How High-Speed File Transfer Impacts Your Enterprise Architecture

Joseph Hansen IBM Aspera

A brief history of performance bottlenecks

History of Bottlenecks I'm not latent, you are!

History of Bottlenecks I'm not latent, you are!

History of Bottlenecks I'm not latent, oh wait...

History of Bottlenecks TCP does its part

Distance degrades conditions on all networks

- Latency (or Round Trip Times) increase
- Packet losses increase
- Fast networks just as prone to degradation

TCP performance degrades with distance

 Throughput bottleneck becomes more severe with increased latency and packet loss

TCP does not scale with bandwidth

- TCP designed for low bandwidth
- Adding more bandwidth does not improve throughput

Cloud introduces scale and increased processing, storage capacity, and available bandwidth

History of Bottlenecks I'm not latent, oh wait...

History of Bottlenecks I'm not latent, oh wait...

History of Bottlenecks HTTP Builds on TCP

History of Bottlenecks HTTP "optimizations"

HTTP MULTI-PART UPLOAD

High packet-loss and latency shouldn't slow you

Fasp® – High-performance Data Transport

Maximum transfer speed

- Optimal end-to-end throughput efficiency
- Transfer performance scales with bandwidth independent of transfer distance and resilient to packet loss

Congestion avoidance and policy control

- Automatic, full utilization of available bandwidth
- On-the-fly prioritization and bandwidth allocation

Uncompromising security and reliability

- Secure, user/endpoint authentication
- AES-128 cryptography in transit and at-rest

Scalable management, monitoring and control

- Real-time progress, performance and bandwidth utilization
- Detailed transfer history, logging, and manifest

Low overhead

- Less than 0.1% overhead on 30% packet loss
- High performance with large files or large sets of small files

Resulting in

- Transfers up to thousands of times faster than FTP with precise and predictable transfer times
- Extreme scalability (concurrency and throughput)

Direct-to-Cloud

THE SOLUTION

- Full client-side r/w of object storage
- Synchronous transfer from client to object storage
- · FASP transfer speeds end-to-end
- Real-time optimization of HTTP threads, chunk
- 2Gbps single instance performance
- · Automatic horizontal scaling
- Transfer 100TB per 24 hours per 10Gb/s

Aspera FASP® Performance

Location Agnostic | Predictable & Reliable | Versatile

Summary

Performance bottlenecks move around as technology evolves

Higher speed networks have enabled the deployment of enterprise data centers spread around the globe

Don't settle for bottlenecks created by your cloud platform

High-speed file transfer allows you to move the largest workloads to the cloud

High packet-loss networks can still be used for critical workflows

Aspera technology ensures communications can continue from the field over satellite and wireless networks

Try IBM Aspera Today

http://ibmaspera.com/welcome