

Time series definition [1]

Informal definition

A time-series is a set of observation x_t each one being recorder at a specific time t.

Formal definition

A time series model for the observed data x_t is a specification of the joint distribution (or possibile only the mens covariance) of a sequence of random variable X_t of which x_t is postulated to be a realization

A binary process

Consider the sequence of iid random variables, with $P[X_t=1]=p$ and $P[X_t=-1]=1-p$

Random walk

The random walk is obtained by cumulatevely summing iid random variables. Thus a random walk with zero mean is obtained by defining

Stationarity, autocovariance and autocorrelation[1]

Mean Function

Let X_t be a time series with $E(x_t^2 < \infty$ The mean function of X_t is $\mu_X(t) = E(X_t)$. The covariance function of X_t is $\gamma_X(r,s) = Cov(X_r,X_s) = E[(X_r - \mu_X(r))(X_s - \mu_X(s))] \quad \forall r,s$

Weakly stationary TS

 X_t is weakly stationary if i) $\mu_X(t)$ is indipendent from time t and ii) $\gamma_X(t+h)$ is indipendent of t $\forall h$

Autocovariance function

At lag h the autocovariance function is defined as $\gamma_X(h) = \mathit{Cov}(X_{t+h}, X_t)$

Autocorellation function

At lag h the autocorrelation function is defined as

$$\rho(h)_X = \frac{\gamma_X(h)}{\gamma_X(0)} = Cor(X_{t+h}, X_t)$$

Marzio De Corato Review 19 luglio 2024

3/10

Stationarity, autocovariance and autocorrelation [1]

4 / 10

Stationarity, autocovariance and autocorrelation [2]

5/10

Definition [1]

Linear process

Time series X_t is a linear process if it has the representation

$$X_t = \sum_{j=-\infty}^{\infty} \psi_j Z_{t-j}$$

for all t, where $Z_t \approx \mathrm{WN}(0,\sigma^2)$ and ψ_j is a sequence of costants with $\sum_{j=-\infty}^\infty \psi_j < \infty$. In terms of backward shift operator B $BX_t = X_{t-1}$ we have $X_t = \varphi(B)Z_t$ Therefore the previous definition can be casted as $X_t = \varphi(B)Z_t$ in which $\varphi(B)$ can be thought as a linear filter that when applied to the white noise input series Z_t produces the output X_t

Definition [1]

Linear process

The time series X_t is an ARMA(1,1) process if its stationary and satisfiy (for every t)

$$X_t - \varphi X_{t-1} = Z_t + \varphi Z_{t-1}$$

where $Z_t \approx \mathrm{WN}(0, \varphi^2)$ and $\varphi + \theta \neq 0$ or in terms of filters φ and θ

$$\phi(B)X_t = \theta(B)Z_t$$

Remarks

- \bullet A stationary solution of the ARMA(1,1) equation exists if and only if $\varphi \neq \pm 1$
- If $|\varphi| < 1$, then the unique stationary solution is given by $X_t = Z_t + (\varphi + \theta) \sum_{j=1}^{\infty} \varphi^{j-1} Z_{t-j}$. In this case we say that X_t is causal or a causal function of Z_t or a causal function of Z_t since X_t can be espressed in terms of the current and past values Z_s , $s \le t$
- If $|\varphi| > 1$, then the unique stationary solution is given by $X_t = -\theta \varphi^{-1} Z_t (\varphi + \theta) \sum_{j=1}^{\infty} \varphi^{-j-1} Z_{t-j}$. The solution is noncausal, since X_t is then a functional of Z_s $s \ge t$

Wold decomposition [1]

Prediction operator based on the infinite past X_t , $-\infty < t < n$

$$\tilde{P}_n X_{n+h} = \lim_{m \to -\infty} P_{m,n} X_{n+h}$$

Wold decomposition X_t , $-\infty < t < n$

 X_t is a non-deterministic stationary time series, then

$$X_t = \sum_{j=0}^{\infty} \psi_j Z_{t-j} + V_t$$

where V_t is deterministic

Definition [1]

Bibliography I

- [1] Peter J Brockwell e Richard A Davis. Introduction to time series and forecasting. Springer, 2002.
- [2] Jianhua Hao e Fangai Liu. "Improving long-term multivariate time series forecasting with a seasonal-trend decomposition-based 2-dimensional temporal convolution dense network". In: *Scientific Reports* 14.1 (2024), p. 1689.