Digital Image Processing

Intensity Transformations and Spatial Filtering

Dr. Muhammad Sajjad

R.A: Muhammad Abbas

Overview

- > Basic Concepts
- > Intensity transformation and spatial filtering
- > Basic intensity transformation functions
- > Piecewise linear transformation functions
- > Histogram processing

Spatial Domain

• Image plan itself, direct manipulation of pixels in an image.

Transform Domain

- Process the transform coefficients, not directly process the intensity values of the image plane
- E.g. In frequency domain operations are performed on the Fourier transform of an image.

Spatial Domain Process

$$g(x,y) = T[f(x,y)]$$

f(x,y): input image

g(x, y): output image

T: An operator on f defined over a neighborhood of point (x, y)

A 3 x 3 neighborhood about a point (x_0, y_0) in an image. The neighborhood is moved from pixel to pixel in the image to generate an output image.

Types of operations in spatial domain

Point/pixel Operations

- Output value at specific coordinates (x, y) is dependent only on the input value at (x, y)
- In this case the neighborhood is 1x1

$$s = T(r)$$

Local Operations

• The output value at (x, y) is dependent on the input values in the neighborhood of (x, y)

Global Operations

• The output value at (x, y) is dependent on all the values in the input image

Linear vs Nonlinear Operations

$$H[f(x,y)] = g(x,y)$$

- Given two arbitrary constants, a and b, and two arbitrary images f(x, y) and f(x,y),
- H is said to be a linear operator if

$$H[af_1(x,y) + bf(x,y)] = aH[f_1(x,y)] + bH[f_2(x,y)]$$

$$H[af_1(x,y) + bf_2(x,y)] = ag_1(x,y) + bg_2(x,y)$$

• An operator that fails to satisfy these properties is said to be nonlinear.

Examples
Linear => sum operator
Nonlinear => max operator

- → Additivity
- → Homogeneity

Intensity Transformation and Spatial Filtering

Intensity Transformations

- Intensity transformations operate on single pixels of an image
- E.g. Contrast manipulation, image thresholding

Spatial Filtering

- Performs operations on the neighbor hood of every pixel in an image
- E.g. image smoothing and sharpening

Image Enhancement

- Process an image to make the result more suitable than the original image for a specific application
- Image enhancement is subjective (problem oriented)
- Intensity transformation and spatial filtering techniques are often used for image enhancement

Before Contrast Enhancement

After Contrast Enhancement

Image Negatives

$$s = L - 1 - r$$

Applications

• Enhancing white or gray detail embedded in dark regions.

$$L = 256$$

0	50	200		255	205	55
60	128	30	─	195	127	225
186	255	40		69	0	215

Some basic intensity transformation functions

Image Negatives

A digital mammogram

Negative image obtained using image negatives

Image Scaling

$$s = T(r) = a.r$$

Original image

f(x, y)

Scaled image

 $a \cdot f(x,y)$

Log Transformations

$$s = c \log(1 + r)$$

Used to expand the values of dark pixels in an image, while compressing the higher-level values.

Applications

- This transformation is suitable for the case when the dynamic range of a processed image far exceeds the capability of the display device (e.g. display of the Fourier spectrum of an image)
- Also called "dynamic-range compression / expansion"

Fourier spectrum displayed as a grayscale image

Result of applying the log transformation with c=1

Power-law (Gamma) Transformations

$$s = c r^{\gamma}$$

For $\gamma > 1$: Expand values of dark pixels, compress values of brighter pixels

For $\gamma > 1$: Compresses values of dark pixels, expand values of brighter pixels

Applications

• The response of many devices used for image capture, printing, and display obey a power law

The process used to correct these power-law response phenomena is called gamma correction or gamma encoding.

Plots of the gamma equation for various values of gamma (c =1 in all cases)

Power-law (Gamma) Transformations

Power-law (Gamma) Transformations

MRI image of fractured human spine

Result of applying power-law transformation

 $c = 1, \gamma = 0.6$

Result of applying power-law transformation

 $c = 1, \gamma = 0.4$

Result of applying power-law transformation

 $c = 1, \gamma = 0.3$

Contrast Stretching

Increasing the dynamic range of the gray levels for low contrast images.

Low-contrast images can result from

- Poor illumination,
- Lack of dynamic range in the imaging sensor, or
- Wrong setting of a lens aperture during image acquisition

Contrast Stretching

Original Image

Result of contrast stretching

Thresholding

A technique to convert a grayscale image into a binary image by setting pixels below a threshold to black (0) and those above the threshold to white (255).

$$s = T(r) = \begin{cases} 0, & 0 \le r < k \\ 255, & k \le r \le (L-1) \end{cases}$$

Intensity-Level Slicing

• Highlighting a specific range of intensities in an image often is of interest.

Applications

 enhancing features in satellite imagery, such as masses of water, and enhancing flaws in X-ray images

Highlights range [A , B] and leaves other intensities unchanged.

Highlights range [A,B] and reduces all other intensities to a lower level.

Intensity-Level Slicing

Bit-Plane Slicing

• Highlight the contribution made to total image appearance by specific bits.

Bit-Plane Slicing

Histogram

Unnormalized histogram of digital image is defined as

$$h(r_k) = n_k$$
 for $k = 0, 1, 2, \dots, L-1$

 $r_k \rightarrow k^{th}$ intensity value

 $n_k \rightarrow$ number of pixels in image with intensity r_k

Normalized Histogram

$$p(r_k) = \frac{h(r_k)}{MN} = \frac{n_k}{MN}$$

- $n_k \rightarrow$ Number of pixels in the image of size M x N with intensity r_k
- The sum of $p(r_k)$ for all values of k is always 1

image						
3	2	5				
3	1	3				
4	5	0				
6	7	4				

Histogram Equalization

Histogram equalization is the process of uniformly distributing the image histogram over the entire intensity axis by choosing a proper intensity transformation function.

Equalized Histogram

$$p(r_k) = \frac{h(r_k)}{MN} = \frac{n_k}{MN}$$

Transformation function

$$s_k = T(r_k) = (L-1) \sum_{j=0}^k p_r(r_j)$$
 $k = 0, 1, 2, ..., L-1$

L -> #intensity levels in the image

Dark image

Dark image histogram

Histogram-equalized image

Equalized histogram

Histogram Equalization Example

Suppose a 3-bit image (L=8) of size 64×64 , pixels (MN = 4096)

r_k	n_k	$p(r_k) = n_k/MN$	cdf	7 * cdf	Round
$r_0 = 0$	790	0.19	0.19	1.33	1
$r_1 = 1$	1023	0.25	0.44	3.08	3
$r_2 = 2$	850	0.21	0.65	4.55	5
$r_3 = 3$	656	0.16	0.81	5.67	6
$r_4 = 4$	329	0.08	0.89	6.23	6
$r_5 = 5$	245	0.06	0.95	6.65	7
$r_6 = 6$	122	0.03	0.98	6.86	7
$r_7 = 7$	81	0.02	1	7.00	7

These are the values of the equalized histogram

Histogram Equalization Example

Thank You