Computability and Krivine realizability

Jonas Frey

February 9, 2016

Abstract

This is a note on a construction in realizability that J.-L. Krivine showed me in PPS on November 20, 2015.

1 Detecting computability

We use the formalism of Krivine realizability with λ -terms (not combinators), without stack constants (only the symbol ε for the empty stack), and with a constant end representing termination. Thus the syntax is given by the following grammar.

Terms: $t ::= x \mid \lambda x.t \mid tt \mid \mathbf{c} \mid \mathbf{k}_{\pi} \mid \text{end}$ Stacks: $\pi ::= \varepsilon \mid t \cdot \pi$ t closedProcesses: $p ::= t \star \pi$ t closed

On processes we define the usual reduction relation.

The set of closed terms is denoted by Λ , Π is the set of stacks, and QP is the set of *quasi-proofs*, i.e. terms not containing 'end' (contrary to the traditional approach we allow continuation terms k_{π} – this difference is not a big deal, and is discussed in Section 5.2 of [1]). Furthermore, we use the notation $(t \star \pi) \downarrow$ to say that the process $t \star \pi$ terminates, i.e.

$$(t \star \pi) \downarrow \quad :\Leftrightarrow \quad \exists \rho \,.\, t \star \pi \succ^* \text{end} \star \rho.$$

The set of terminating processes gives a pole \perp .

$$\bot\!\!\!\!\bot = \{t \star \pi \in \mathsf{\Lambda} \times \mathsf{\Pi} \mid (t \star \pi) \downarrow \}$$

Using this pole, we model higher order classical logic in the usual way, where truth values are subsets of Π and more generally predicates are families of truth values $\varphi, \psi: I \to P(\Pi)$. In particular, truth \top and falsity \bot are given by \varnothing and Π , respectively, and (using the $\|-\|$ and |-| notation as e.g. in [3]) the inequality predicate on a set I can be defined as

$$\|i \neq j\| = \begin{cases} \bot & i = j \\ \top & i \neq j, \end{cases}$$

which is equivalent to the negation of *Leibniz equality* (or *Lawvere equality* [5])¹. Moreover, it is easy to see that

$$|i \neq j| = ||i \neq j||^{\perp} = \begin{cases} \{t \mid (t \star \varepsilon) \downarrow\} & i = j \\ \Lambda & i \neq j. \end{cases}$$

Now let $f: \mathbb{N} \to \{0,1\}$ be a function, and consider the formula

$$\Phi \equiv \forall x . \operatorname{nat}(x) \Rightarrow f(x) \neq 0 \Rightarrow f(x) \neq 1 \Rightarrow \bot.$$

Assume this formula is valid, i.e. there exists a quasi-proof t realizing it. Assume that ω is a diverging term, and that for $n \in \mathbb{N}$, \overline{n} denotes the n-th church numeral. Let $n \in \mathbb{N}$ and assume that f(n) = 0. Then we have $\overline{n} \in |\mathrm{nat}(n)|$, $\mathrm{end} \in |n \neq 0|$, $\omega \in |n \neq 1|$, and $\varepsilon \in \|\bot\|$. Since t is a realizer of Φ , we can therefore deduce that the process

$$t \, \overline{n} \, \text{end} \, \omega \star \varepsilon$$

terminates, and similarly, if f(n) = 1, we can deduce that

$$t \; \overline{n} \; \omega \; \mathrm{end} \star \varepsilon$$

terminates. Since we assumed that t is a quasi-proof, t has to bring the 'end' supplied as argument in head position in both cases to achieve termination. The argument ω , on the other hand, may never come in head position since this would mean divergence. This means that t has to compute the value of f(n) in order to decide which argument to put in head position, thus f has to be computable.

Conversely, I assume it shouldn't be too hard to prove that Φ is valid whenever f is computable (but how?).

Next, assume that f is not computable. It turns out that in this case the negation of Φ is valid! To show this, it suffices to find a quasi-proof u such that $ut \star \varepsilon$ terminates for all realizers t of Φ . For $t \in \Phi^{\perp}$ and $n \in \mathbb{N}$ we know that

$$t\overline{n} \Vdash f(n) \neq 0 \Rightarrow f(n) \neq 1 \Rightarrow \bot$$

i.e.

$$t\overline{n} \Vdash \bot \Rightarrow \top \Rightarrow \bot$$
 or $t\overline{n} \Vdash \top \Rightarrow \bot \Rightarrow \bot$

since f(n) = 0 or f(n) = 1 for all $n \in \mathbb{N}$.

Moreover, since f is not computable, there must exist an $n \in \mathbb{N}$ such that

$$t\overline{n} \Vdash \top \Rightarrow \top \Rightarrow \bot$$

(as before, if t were able to always pick the useful one among the two arguments, then f would be computable).

Using this observation, we can construct a realizer of $\neg \Phi$ by means of a fixed point construction. Concretely, let while be a term such that

while
$$t n \succ^* t n$$
 (while $t (Sn)$)

¹It is not obvious that this 'pointwise' definition works, but it does.

Then the realizer of $\neg \Phi$ is given by

$$u = \lambda t$$
. while $(\lambda nx \cdot tnxx) \ \overline{0}$.

Thus, for non-computable f, the model validates

$$\exists n . \operatorname{nat}(n) \land f(n) \neq 0 \land f(n) \neq 1.$$

Since we have f(n) = 0 or f(n) = 1 for all 'named' integers, Krivine interprets this as saying that the model has non-standard integers.

Topos theoretically, a question that arises in this context is whether the *natural numbers object* has global sections that are not 'named'. This does not necessarily follow from the established existence property, since it is not a *unique* existence statement.

2 Topos theoretic interpretation

In the topos $\mathbf{Set}[\mathcal{K}_{\perp}]$ associated to the pole \perp , the above can be interpreted as follows. The function $f: \mathbb{N} \to 2$ (where $2 = \{0, 1\}$) gives rise to a morphism $\Delta(f): \Delta(\mathbb{N}) \to \Delta(2)^3$. The natural numbers object \mathbb{N} of $\mathbf{Set}[\mathcal{K}_{\perp}]$ embeds into $\Delta(\mathbb{N})$, and the object 2 = 1+1 embeds into $\Delta(2)$. The validity of Φ is equivalent to a map $h: \mathbb{N} \to 2$ making the diagram

$$\begin{array}{ccc}
\mathbf{N} - -^h - & \geq \mathbf{2} \\
\downarrow & & \downarrow \\
\Delta(\mathbb{N}) & \xrightarrow{\Delta f} & \Delta(2)
\end{array}$$

commute.

This observation is curious, for the following reason. We have just shown that such an h exists if and only if f is computable. However, higher order classical logic allows to prove the existence of non-computable functions from the integers to a 2-element set – in particular any definable predicate on the integers has a characteristic function. So if we choose f to be the characteristic function of such a definable predicate, then interpreting the same predicate in the model gives rise to a function $h: \mathbf{N} \to \mathbf{2}$ in $\mathbf{Set}[\mathcal{K}_{\perp}]$. However, this h will not make the above diagram commute, and in particular will not be 'tracked' by f.

A The while loop

Let $\perp \!\!\! \perp$ be an arbitrary pole, let $S = \lambda n f x \cdot f(n f x)$, let $\overline{n} = S^n(\lambda f x \cdot x)$ for $n \in \mathbb{N}$ (then the \overline{n} are β -equivalent to Church numerals), and let 'while' be a term with

while
$$xy \star \pi \succ^* xy \star (\text{while } x(Sy)) \cdot \pi$$
.

 $^{^2\}mathrm{A}$ systematic exposition of 'while' is in Appendix A.

 $^{^3\}Delta$ is the 'constant objects functor' [2, Def. 3.7] and it seems to correspond to Krivine's \mathbb{J} -function [4, pg. 14].

Theorem 1 Let t be a term such that

$$\forall n \in \mathbb{N} \,.\, t \; \overline{n} \Vdash \bot \Rightarrow \bot \quad and \quad \exists n \in \mathbb{N} \,.\, t \; \overline{n} \Vdash \top \Rightarrow \bot.$$

Then while $t \overline{0} \Vdash \bot$.

Proof. We show that the set $\{n \in \mathbb{N} \mid \text{ while } t \ \overline{n} \Vdash \bot\}$ is inhabited and downward closed. By assumption there exists n_0 with $t \ \overline{n_0} \Vdash \top \Rightarrow \bot$. Let $\pi \in \|\bot\| = \Pi$. Then we have

while
$$t \overline{n_0} \star \pi \succ^* t \overline{n_0} \star (\text{while } t (S \overline{n_0})) \cdot \pi \in \bot$$
.

Now let $n \in \mathbb{N}$ such that while $t \overline{n+1} \Vdash \bot$ and let $\pi \in ||\bot||$. Then we have

while
$$t \, \overline{n} \star \pi \, \succ^* \, t \, \overline{n} \star (\text{while } t \, (S \, \overline{n})) \cdot \pi \, = \, t \, \overline{n} \star (\text{while } t \, \overline{n+1}) \cdot \pi$$

which is in \bot since $t\overline{n} \Vdash \bot \Rightarrow \bot$.

References

- [1] J. Frey. Realizability toposes from specifications. In 13th International Conference on Typed Lambda Calculi and Applications, TLCA 2015, July 1-3, 2015, Warsaw, Poland, pages 196–210, 2015.
- [2] J.M.E. Hyland, P.T. Johnstone, and A.M. Pitts. Tripos theory. *Math. Proc. Cambridge Philos. Soc.*, 88(2):205–231, 1980.
- [3] J.L. Krivine. Realizability in classical logic. *Panoramas et synthèses*, 27:197–229, 2009.
- [4] J.L. Krivine. Realizability algebras II: New models of ZF+DC. Log. Methods Comput. Sci., 8(1):1:10, 28, 2012.
- [5] F.W. Lawvere. Equality in hyperdoctrines and the comprehension schema as an adjoint functor. *Applications of Categorical Algebra*, 17:1–14, 1970.