COMPUTER SCIENCE TRIPOS Part IA – 2014 – Paper 2

7 Discrete Mathematics (MPF)

- (a) Let m be a fixed positive integer.
 - (i) For an integer c, let $K_c = \{ k \in \mathbb{N} \mid k \equiv c \pmod{m} \}$.

Show that, for all $c \in \mathbb{Z}$, the set K_c is non-empty.

[2 marks]

(ii) For an integer c, let κ_c be the least element of K_c .

Prove that for all $a, b \in \mathbb{Z}$, $a \equiv b \pmod{m}$ iff $\kappa_a = \kappa_b$.

[4 marks]

(b) (i) State Fermat's Little Theorem.

[2 marks]

- (ii) Prove that for all natural numbers m and n, and for all prime numbers p, if $m \equiv n \pmod{(p-1)}$ then $\forall k \in \mathbb{N}$. $k^m \equiv k^n \pmod{p}$. [6 marks]
- (c) (i) Use Euclid's Algorithm to express the number 1 as an integer linear combination of the numbers 34 and 21. [3 marks]
 - (ii) Find a solution $x \in \mathbb{N}$ to $34 \cdot x \equiv 3 \pmod{21}$.

[3 marks]