

a) Das seguintes afirmações apenas uma não é ver





(d) Das seguintes expressões regulares apenas uma representa a linguagem  $L_3$ . Assinale-a.

abcc\*bb\*
abcc
abcb

abcc\*bb)\*
abc(

 $abc(c|bb)^*$  alc bbc



(f) Obtenha uma **expressão regular** que reconheça a linguagem  $L_1$ . Apresente os passos intermédios e/ou o raciocínio adequados para justificar a sua resposta.



$$L_3 = \{ab(c)^m (bb)^n : m > 0 \land n \ge 0\}$$

(e) Das seguintes gramáticas apenas uma é uma gramática regular que representa a linguagem  $L_3$ . Assinale-a.



- 2. Na linguagem Java um literal numérico inteiro pode ser escrito nas bases 2, 8, 10 e 16. Os prefixos 0b, 0 e 0x são usados para representar, respetivamente, as bases 2, 8 e 16. A base 10 não tem prefixo. Por exemplo, 0b11, 0743, 1299 e 0x12fD são literais numéricos válidos e 0b2 e 028 são inválidos.
  - (.) Apresente uma expressão regular que represente os padrões válidos para os literais numéricos em Java. Pode definir a expressão regular pretendida a partir de outras mais simples.

$$e_2 = 0b [0-1]7$$
 $e_8 = 0 [0-7] +$ 
 $e_{10} = 0 \times [0-9A-Fa-b] +$ 
 $e_{16} = [1-9][0-9]*$ 

#### Universidade de Aveiro

#### Departamento de Eletrónica, Telecomunicações e Informática

#### Compiladores

| Exame | teórico | 1 | modelo |
|-------|---------|---|--------|
|       |         |   |        |

 $N^{\underline{o}}Mec:$ Nome:

1. Sobre o alfabeto  $A = \{a, b, c\}$ , considere a linguagem  $L_1$ , definida pelo autómato finito  $M_1$ , a linguagem  $L_2$ , definida pela gramática regular  $G_2$  (cujo símbolo inicial é  $S_2$ ), e a linguagem  $L_3$ .



$$S_2 \to a X$$
  
  $X \to b \mid b c b X \mid b S_2$   $L_3 = \{ab(c)^m (bb)^n : m > 0 \land n \ge 0\}$ 

$$L_3 = \{ab(c)^m (bb)^n : m > 0 \land n \ge 0\}$$

(a) Das seguintes afirmações apenas uma **não** é verdadeira. Assinale-a

 $ab \in L_1$ 

 $cabb \in L_1$ 

 $abab \in L_1$ 

 $abcbb \in L_1$ 

(b) Determine um autómatos finito determinista equivalente a  $M_1$ .



(c) Obtenha um autómato finito, determinista ou não determinista, mas não generalizado, que reconheça a linguagem  $L_5 = L_1 \cdot L_2$ . Apresente os passos intermédios e/ou o raciocínio adequados para justificar a sua resposta.



|                               |                                                                             | $abc(c bb)^*$                                                 |                                                                     |                          |
|-------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------|--------------------------|
| (e)                           | Das seguintes gramáticas a $L_3$ . Assinale-a.                              | apenas uma é uma gramátic                                     | ca regular que representa a                                         |                          |
|                               |                                                                             |                                                               | (->Blc(<br>î;<br>(= c*B                                             |                          |
|                               |                                                                             |                                                               |                                                                     |                          |
| (f)                           |                                                                             | regular que reconheça a li<br>o adequados para justificar a   | nguagem $L_1$ . Apresente os sua resposta.                          | passos in-               |
|                               | 2 & da                                                                      | 3<br>9                                                        |                                                                     |                          |
|                               | 1                                                                           | B                                                             |                                                                     |                          |
| (g)                           | Mostre que $L_3$ $L_1$ . (No sentido lato $(2)$ .) Apresent a sua resposta. | ote que se trata do subconju<br>te os passos intermédios e/ou | unto em sentido estrito (⊂)<br>1 o raciocínio adequados para        | e não em<br>a justificar |
| Q                             | ) elle 1 -                                                                  | E                                                             | 2 b (1) a (                                                         | 3 6                      |
|                               | (oble) (bb)                                                                 | *                                                             | $ \begin{array}{c} \text{as } \mathbb{C} \\ (7) - (2) \end{array} $ | ξ<br>-5 (1)              |
| $(\mathcal{L}_{\mathcal{L}})$ | E 1                                                                         | EBB                                                           |                                                                     | bb                       |
|                               | (ab(c) (bb)*                                                                | *                                                             |                                                                     |                          |

(d) Das seguintes expressões regulares apenas uma representa a linguagem  $L_3$ . Assinale-a.

| 2. | Na linguagem Java um literal numérico inteiro pode ser escrito nas bases 2, 8, 10 e 16. Os prefixos |
|----|-----------------------------------------------------------------------------------------------------|
|    | 0b, 0 e 0x são usados para representar, respetivamente, as bases 2, 8 e 16. A base 10 não tem       |
|    | prefixo. Por exemplo, 0b11, 0743, 1299 e 0x12fD são literais numéricos válidos e 0b2 e 028 são      |
|    | inválidos.                                                                                          |

(.) Apresente uma expressão regular que represente os padrões válidos para os literais numéricos em Java. Pode definir a expressão regular pretendida a partir de outras mais simples.







60

### Universidade de Aveiro

Departamento de Eletrónica, Telecomunicações e Informática

## Compiladores / Linguagens Formais e Autómatos

Exame teórico NM

08 de julho de 2021 (Ano Letivo de 2020-2021)

1. Considere, sobre o alfabeto  $T=\{a,b,c,d\}$ , as linguagens  $L_1,\,L_2,\,L_3,\,e\,L_4$  definidas da seguinte forma:

$$L_1 = \{ a^{2n} (bc)^k d^{n+k+1} : n \ge 0 \land k \ge 0 \}$$

 $L_2=\{\,w\in T^*\,:\,w$  é gerada pela expressão regular $e_2=(\mathtt{a}|\mathtt{d})^*(\mathtt{bc})^+(\mathtt{c}|\mathtt{d})^+\,\}$ 

 $L_3 = \{\, w \in T^* \, : \, w \,\, ext{\'e} \,\, ext{reconhecida pelo autómato} \,\, M_3 \, \}$ 

 $L_4 = \{\, w \in T^* \, : \, w \, \, \text{\'e gerada pela gram\'atica} \, G_4 \, \}$ 



Escolha 3 palavras quaisquer da linguagem  $L_1$  e mostre que pertencem também à 1 2,0 ] (a)

Obtenha um autómato finito, não generalizado, que represente a linguagem  $L_2$ . Apresente o raciocínio e/ou os passos intermédios usados para chegar à sua resposta. /[2,0]

Obtenha um autómato finito determinista, que represente a linguagem  $L_3$ Apresente o raciocínio e/ou os passos intermédios usados para chegar à sua resposta.

Determine uma **expressão regular** que represente a linguagem  $L_2^* \cdot L_3$ , concatenação ≠ [2,0] 1 2,0 ]

Apresente o raciocínio e/ou os passos intermédios usados para chegar à sua resposta. do fecho de  $L_2$  com  $L_3$ .

Projecte uma gramática independente do contexto que represente a linguagem [ 2,0 ]

Relativamente à gramática  $G_4$ , determine o conjunto  $\operatorname{predict}(O \to R)$ .

Apresente o raciocínio e/ou os passos intermédios usados para chegar à sua resposta.

Mostre que todos os símbolos não terminais da gramática  $G_4$  são produtivos e [2,0] 1 [2,0] acessíveis.



# $L_3 = \{ab(c)^m(bb)^m; m > 0 \land m > 0$



- 2. Na linguagem Java um literal numérico inteiro pode ser escrito nas bases 2, 8, 10 e 16. Os prefixos 0b, 0 e 0x são usados para representar, respetivamente, as bases 2, 8 e 16. A base 10 não tem prefixo. Por exemplo, 0b11, 0743, 1299 e 0x12fD são literais numéricos válidos e 0b2 e 028 são inválidos.
  - (.) Apresente uma expressão regular que represente os padrões válidos para os literais numéricos em Java. Pode definir a expressão regular pretendida a partir de outras mais simples.

$$e_2 = OL [0-1]T$$
  
 $e_8 = 0 [0-7] +$   
 $e_{10} = 0 \times [0-9 A - Fa - 6] +$   
 $e_{16} = [1-9][0-9]*$ 

$$e_{8} = e_{2} | e_{8} | e_{10} | e_{16}$$
 $O(b|B) (O-1)^{+}$ 
 $O(c-7)^{+}$ 
 $O(x/x) (O-9) (a-f)^{+}$ 
 $E_{2} = e_{2} | e_{8} | e_{10} | e_{16}$ 
 $O(b|B) (O-1)^{+}$ 





