Sistemas Digitales

Nad Garraz y comunidad (ojalá) Facultad de Ciencias Exactas y Naturales UBA

Choose your destiny:

(dobleclick en los ejercicio para saltar)

• Notas teóricas

• Ejercicios de la guía:

1.	6.	11.
2.	7.	12.
3.	8.	13.
4.	9.	
5.	10.	

El repo en github para descargar las guías con los últimos updates.

https://github.com/

La Guía 1 se actualizó por última vez: 19/08/2024 @ 22:25

Guía 1

-_-les/blob/main/1-guia/1-sol.pdf

Si querés mandar un ejercicio o avisar de algún error, lo más fácil es por Telegram **3**.

Notas teóricas:

□ Complejidad:

Es lo que nos da la necesida de abstraer.

□ Abstracción:

Para lidiar con la complejidad que tienen los sistemas usamos la abstracción.

De menor a mayor abstracción:

electrones \rightarrow transistores \rightarrow circuitos analógicos \rightarrow circuitos digitales \rightarrow circuitos de lógica \rightarrow micro-arquitectura \rightarrow arquitectura \rightarrow sistema operativo \rightarrow aplicaciones de software

Lo más abstracto es más fácil de controlar e implementar que lo menos abstracto.

- □ Sistemas numéricos:
 - Decimal:

$$9745_{10} = 9 \times 10^3 + 7 \times 10^2 + 4 \times 10^1 + 5 \times 10^0$$

El rango de un número decimal con n dígitos mayor o igual a cero es $10^n:0,1,\ldots,10^n-1$

■ Binario:

$$1101_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 10^1 + 1 \times 10^0 = 13_{10}.$$

El rango de un número <u>binario</u> con n dígitos mayor o igual a cero es $2^n : 0, 1, ..., 2^n - 1$. Si tengo solo un bit, <u>binary digit</u>, puedo obtener o bien 0 o bien 1. Si tengo dos bits, entonces puedo tener 2^2 dígitos, 00, 01, 10, 11. (el rango es después de todo 4).

■ Hexadecimal:

$$2AD_{16} = 2 \times 16^2 + A \times 16^1 + D \times 16^0 = 685_{10}$$

El rango de un número <u>hexadecimal</u> con n dígitos mayor o igual a cero es $16^n:0,1,\ldots,16^n-1$. Cada dígito de un número en base hexadecimal corresponde a un número binario de 4-bits. Después de todo un número i_{16} de un solo dígito tiene un rango de $16:0,\ldots 15$ y un número binario de 4-bits tiene un rango de $2^4=16$ \checkmark

$$2\mathtt{AD_{16}} = \underbrace{\mathtt{0010}}_{2} \underbrace{\mathtt{1010}}_{\mathtt{A}} \underbrace{\mathtt{1101}}_{\mathtt{D}} \, {}_{2}$$

- □ Operaciones entre números binarios: Se poné picante según la representación usada.
 - Sumar es fácil si los números son positivos. Tengo overflow si el resultado tiene más cifras que bits disponibles para almacenar dicho resultado.
- □ Números binarios con signo:

Hay distintas representaciones para hacer esto, acá están las 2 más usadas:

■ signo+magnitud

El bit más significativo, el de más a la izquierda, marca el signo. Un número con n bits en esta representación tiene un rango: $[-2^{n-1}+1, 2^{n-1}-1]$. Por ejemplo con 3-bits:

El rango es [-3, 3]

Base 2	\rightarrow	Base 10	
000	\rightarrow	0	
001	\rightarrow	1	
<mark>0</mark> 10	\rightarrow	2	
011	\rightarrow	3	
1 00	\rightarrow	-0	
1 01	\rightarrow	-1	
1 10	\rightarrow	-2	
1 11	\rightarrow	-3	

Sumar normalmente en esta representación no tiene sentido. Representa en total 2ⁿ - 1 elementos porque el -0 está usando un lugar al pedo.

■ complemento a 2:

Menos intuitivo, pero más útil. Si tengo un número de n-bits, voy a tener siempre:

 \blacksquare Para encontrar el opuesto a un número, se cambian los 0 por 1 y bicerveza 1 , luego se le suma 1 a eso, ej:

$$5_{10} = 0101_2 \xrightarrow[-5]{\text{busco}} 1010_2 + 0001_2 = 1011_2 = -5_{10}.$$

Cosa que no funciona con el weird number, porque su complemento te da a él mismo Δ .

 \blacksquare El rango es de $[-2^{n-1}, 2^{n-1} - 1]$, 2^n elementos. Hay un elemento negativo más que positivos.

 \blacksquare Ejemplito: En 3-bits me encuentro todo el conjunto, [-4, 3]:

$$\begin{array}{c|cccc} 000_2 & \rightarrow & 0_{10} \\ 001_2 & \rightarrow & 1_{10} \\ 010_2 & \rightarrow & 2_{10} \\ 011_2 & \rightarrow & 3_{10} \\ 100_2 & \rightarrow & -4_{10} \\ 101_2 & \rightarrow & -3_{10} \\ 110_2 & \rightarrow & -2_{10} \\ 111_2 & \rightarrow & -1_{10} \\ \end{array}$$

El Suma en complemento a 2 : Si sumo dos números de distinto signo no voy a tener overflow!

4 bits:
$$-4_{10} + 5_{10} = 1100_2 + 0101_2 = 110001_2 = 11001_2$$

■ Sign extension: Para encontrar la representación de un número conocido con más bits. Copio el signo al resto de los númerosengo que mandar el bit del signo hacia el dígito más significativo,:

4 bits:
$$6_{10} = 0110_2$$
 y $-5_{10} = 1011_2$
Extendido a 8 bits: $6_{10} = (0000 \ 0110)_2$ y $-5_{10} = (1111 \ 1011)_2$

□ Exceso m:

🖻 Se desplaza el 0 a la posición m. Es así que si la representación es exceso 4 en 6-bits base 3: $0_{10} = (000 \ 0011)_3$

¹chiste: bicerveza = $\blacksquare \blacksquare$. Se escribe viceversa $\blacksquare \blacksquare$

$\ {\bf \sqsubseteq}\ Comparación\ representaciones\ del \ mismo\ {\tt Dato}:$

Posición	Dato	unsigned	signo+magnitud	Exceso m (m=4)	complemento a 2
0	(0000) ₂	0	0	-4	0
1	(0001) ₂	1	1	-3	1
2	(0010) ₂	2	2	-2	2
3	(0011) ₂	3	3	-1	3
4	(0100) ₂	4	4	0	4
5	(0101) ₂	5	5	1	5
6	(0110) ₂	6	6	2	6
7	(0111) ₂	7	7	3	7
8	(1000) ₂	8	-0	4	-8
9	(1001) ₂	9	-1	5	-7
10	(1010) ₂	10	-2	6	-6
11	(1011) ₂	11	-3	7	-5
12	(1100) ₂	12	-4	8	-4
13	(1101) ₂	13	-5	9	-3
14	(1110) ₂	14	-6	10	-2
15	(1111) ₂	15	-7	11	-1

Ejercicios de la guía:

Ejercicio 1

- a) Utilizando el método del cociente, expresar en bases 2, 3 y 5 los números 33₁₀ y 511₁₀.
- b) Expresar en decimal los números 1111₂, 1111₇ y CAFE₁₀.
- c) Expresar 17₈ en base 5 y BABA₁₃ en base 6.
- d) Pasar (1010 1110 1010 1101)₂, (1111 1011 0010 1100 0111)₂, (0 0110 0010 1001)₂, a base 4, 8 y 16 agrupando bits.
- e) Expresar en decimal los números 0x142536, 0x142536 y 0xFCD9, y pasar a base 16 los números 7848_{10} y 46183_{10} .
- a) Fijarse si el número es cercado a una potencia de la base buscada.

$$33_{10} = (10\ 0001)_2 = 1020_3 = 113_5$$
 $511_{10} = (1111\ 1111)_2 = (20\ 0221)_3 = 4021_5$

b) ¿Tiene truco?

$$\begin{aligned} &1111_2 = 15_{10} \\ &1111_7 = 400_{10} \\ &\text{CAFE}_{16} = \text{C} \times 16^3 + \text{A} \times 16^2 + \text{F} \times 16^1 + \text{E} \times 16^0 = 12 \times 16^3 + 10 \times 16^2 + 15 \times 16^1 + 14 \times 16^0 = 51966_{10} \end{aligned}$$

c) ¿Hay truco para no pasar por base 10?

$$\begin{aligned} &17_8 = 15_{10} = 30_5 \\ &\text{BABA}_{13} = 11 \times 13^3 + \ 10 \times 13^2 + \ 11 \times 13^1 + \ 10 \times 13^0 = 26180_{10} = 321112_6 \end{aligned}$$

d) Como las bases se tiene que cambiar a otras bases que son potencia de 2, se puede hacer agrupando los bits.

$$(1010\ 1110\ 1010\ 1101)_2 = (22\ 32\ 22\ 31)_4 = 5555_8 = AEAD_{16}$$
 $(1111\ 1011\ 0010\ 1100\ 0111)_2 = (33\ 23\ 02\ 30\ 13)_4 = (373\ 1307)_8 = FB2CD_{16}$
 $(0\ 0110\ 0010\ 1001)_2 = (12\ 02\ 21)_4 = 3051_8 = C29_{16}$

e)
$$0x142536 = 142536_{16} = 1 \times 16^5 + 4 \times 16^4 + 2 \times 16^3 + 5 \times 16^2 + 3 \times 16^1 + 6 \times 16^0 = (132\ 0246)_{10}$$

 $0xFCD9 = FCD9_{16} = 15 \times 16^3 + 12 \times 16^2 + 13 \times 16^1 + 9 \times 16^0 = (6\ 4729)_{10}$
 $7848_{10} = 0x1EA8$
 $(4\ 6183)_{10} = 0xB467$

Ejercicio 2 Realizar las siguientes sumas de precisión fija, sin convertir a decimal. Indicar en cada caso si hubo acarreo.

a)
$$\begin{array}{c}
 100001_2 \\
 + 0111110_2 \\
 \hline
 -----2
\end{array}$$

$$\begin{array}{c} 100001_2 \\ + 011111_2 \end{array}$$

$$\begin{array}{c} 9999_{16} \\ + 1111_{16} \\ \end{array}$$

$$d) \frac{\text{F0F0}_2}{+ \text{F0CA}_2}$$

$$\begin{array}{c} & 100001_2 \\ + & 011110_2 \\ \hline & 111111_2 \end{array}$$

$$\begin{array}{c} 9999_{16} \\ + 1111_{16} \\ \hline \text{AAAA}_2 \end{array}$$

$$\begin{array}{c} \text{Acarreo} & \frac{111111}{100001_2} \\ + & 011111_2 \\ \hline & & 1000000_2 \end{array}$$

$$\begin{array}{c} \text{Acarreo} & \textbf{1} & \textbf{1} \\ & & \text{F0F0}_2 \\ & + & \text{F0CA}_2 \\ \hline & & \textbf{1E1BA}_2 \end{array}$$

Precisión fija? Tengo overflow en el b y en el d? Se tira el decimal de más? Cómo se expresa el resultado?

Ejercicio 3 ¿Puede suceder en alguna base que la suma de dos números de precisión fija tenga un acarreo mayor que 1? Exhibir un ejemplo o demostrar lo contrario.

Ejercicio 4 Sean los siguientes numerales binarios de ocho dígitos:

$$r = (1011 \ 1111)_2$$
, $s = (1000 \ 0000)_2$ y $t = (1111 \ 1111)_2$.

¿Qué números representan si asumimos que son codificaciones de enteros en complemento a 2 ? ¿Y si fueran codificaciones en signo+magnitud ?

En la teoría están cuales son los valores amigos de la representación complemento a 2

• Notar que si r es de complemento:

$$r + 64 = (1011 \ 1111)_2 + (0100 \ 0000)_2 = (1111 \ 1111)_2 = -1_{10} \rightarrow r = -65_{10}$$

Puedo llegar a lo mismo usando la técnica para encontrar el complemento de r:

$$\overline{r} = \overline{10111111}_2 \xrightarrow[1\leftrightarrow 0]{\mathrm{cambio}} \text{ (0100 0000)}_2 \xrightarrow[1]{\mathrm{sumo}} \text{ (0100 0001)}_2 = {}_2 = 65_{10} = \overline{r}, \text{ entonces } r = -65_{10}$$

Si fuese de signo+magnitud : $r = (1011 \ 1111)_2 = -63_{10}$

Sumar normalmente en la representación de signo+magnitud es para problemas.

 \bullet Para complemento a 2: s = (1000 0000)₂ = -128₁₀ es el weird number

Y en signo+magnitud: $s = (1000 \ 0000)_2 = -0_{10}$

• Para complemento a 2: t = $(1111 \ 1111)_2 = -1_{10}$

 $Y \text{ en signo+magnitud} : t = (1111 1111)_2 = -127_{10}$

Ejercicio 5 Codificar los siguientes números en base 2, usando la precisión y forma de representación indicada en cada caso. Comparar los resultados.

- \blacksquare a $0_{10} \rightarrow \text{usando } 8 \text{ bits, notación signo+magnitud y notación complemento a 2.}$
- $-1_{10} \rightarrow \text{usando 8 y 16 bits, en ambos casos notación signo+magnitud y notación complemento a 2}$
- \blacksquare 255₁₀ \rightarrow usando 8 bits notación sin signo y 16 bits notación complemento a 2.
- \blacksquare_{d} -128₁₀ \rightarrow usando 8 y 16 bits, en ambos casos notación complemento a 2.
- \blacksquare 128₁₀ \rightarrow usando 8 bits, notación sin signo y 16 notación complemento a 2.

Leer la técnica para encontrar los números con complemento a 2.

```
\blacksquare_a signo+magnitud : 0_{10} = (0000\ 0000)_2 ? (1000\ 0000)_2. abuso de notación? complemento a 2 : 0_{10} = (0000\ 0000)_2.
```

```
\blacksquare<sub>b</sub> signo+magnitud :
```

```
-1_{10} = (1000 \ 0001)_2.
-1_{10} = (1000 \ 0000 \ 0000 \ 0001)_2.
complemento a 2 :
-1_{10} = (1111 \ 1111)_2.
-1_{10} = (1111 \ 1111 \ 1111 \ 1111)_2.
```

■ Sin Signo:

```
255_{10} = (1111 \ 1111)_2.
complemento a 2 :
255_{10} = (0000 \ 0000 \ 1111 \ 1111)_2.
```

 \blacksquare_d complemento a 2 :

■ Sin Signo:

```
128_{10} = (1000 \ 0000)_2.

128_{10} = (0000 \ 0000 \ 1000 \ 0000)_2.
```

¿Qué se puede interpretar de esto?

Ejercicio 6 ¿Puede alguna cadena binaria de k dígitos, interpretada en complemento a 2, representar un número que no puede ser representado por una cadena de la misma longitud, interpretada en signo+magnitud? ¿Y al revés?

De al teoría de complemento a 2, tengo que el rango es distinto en las distintas interpretaciones. Hay un número más en la de complemento a 2.

Práctica 1

Si tengo k dígitos $(-2^{k-1})_{10} = (100...0)_2$. Número que no puedo representar en signo+magnitud porque

el menor número es $(-2^{k-1} + 1)_{10}$.

La representación complemento a 2 contiene a todos los número de la representación signo+magnitud. ¿Hay algo que aprender? O es solo eso?

Ejercicio 7 Interpretar los operadores y resultados de las sumas del ejercicio 2 como representaciones de enteros en complemento a 2 y, para cada una de ellas, indicar cuáles son correctas, cuáles no. ¿Se evidencia overflow en alguna?

Ejercicio 8 ... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

Ejercicio 9 ... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.

Ejercicio 10 ... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.

Ejercicio 11 ... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

Ejercicio 12 ... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

Ejercicio 13 ... hay que hacerlo!

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.