Adversarial LQ Mean-Field Games over Multigraphs

Muhammad Aneeq uz Zaman, Sujay Bhatt and Tamer Başar

Figure: Multigraph of 6 agents

Figure: Multigraph of 6 agents

• Vertices represent agents, edges represent interactions.

Figure: Multigraph of 6 agents

- Vertices represent agents, edges represent interactions.
- Multigraph composed of two underlying graphs.

Figure: Multigraph of 6 agents

- Vertices represent agents, edges represent interactions.
- Multigraph composed of two underlying graphs.
- Blue edges represent virtual interactions (global graph).

Figure: Multigraph of 6 agents

- Vertices represent agents, edges represent interactions.
- Multigraph composed of two underlying graphs.
- Blue edges represent virtual interactions (global graph).
- Red edges represent physical interactions (local graph/neighborhood).

Figure: Multigraph of 6 agents

- Vertices represent agents, edges represent interactions.
- Multigraph composed of two underlying graphs.
- Blue edges represent virtual interactions (global graph).
- Red edges represent physical interactions (local graph/neighborhood).
- Adversary manipulates mass opinion (Media Houses).

Figure: Multigraph of 6 agents

- Vertices represent agents, edges represent interactions.
- Multigraph composed of two underlying graphs.
- Blue edges represent virtual interactions (global graph).
- Red edges represent physical interactions (local graph/neighborhood).
- Adversary manipulates mass opinion (Media Houses).
- Assumption: Local graphs are non-overlapping.

¹F. Delarue, "Mean field games: A toy model on an Erdős–Rényi graph." ESAIM: Proceedings and Surveys, vol. 60, pp. 1–26, 2017.

²S. Gao, P. E. Caines, and M. Huang, "LQG graphon MFGs," arXiv preprint arXiv:2004.00679, 2020.

³ H. Tembine, Q. Zhu, and T. Başar, "Risk-sensitive mean-field games," IEEE Transactions on Automatic Control, vol. 59, no. 4, pp. 835–850, 2013.

• Can be modeled as a game over multigraphs.

 $^{^{1}}$ F. Delarue, "Mean field games: A toy model on an Erdős–Rényi graph." ESAIM: Proceedings and Surveys, vol. 60, pp. 1–26, 2017.

²S. Gao, P. E. Caines, and M. Huang, "LQG graphon MFGs," arXiv preprint arXiv:2004.00679, 2020.

³H. Tembine, Q. Zhu, and T. Başar, "Risk-sensitive mean-field games," IEEE Transactions on Automatic Control, vol. 59, no. 4, pp. 835–850, 2013.

- Can be modeled as a game over multigraphs.
- Nash Equilibrium (NE) hard to find so consider Mean-Field Games (MFG), $N \to \infty$.

¹F. Delarue, "Mean field games: A toy model on an Erdős–Rényi graph." ESAIM: Proceedings and Surveys, vol. 60, pp. 1–26, 2017.

²S. Gao, P. E. Caines, and M. Huang, "LQG graphon MFGs," arXiv preprint arXiv:2004.00679, 2020.

³H. Tembine, Q. Zhu, and T. Başar, "Risk-sensitive mean-field games," IEEE Transactions on Automatic Control, vol. 59, no. 4, pp. 835–850, 2013.

- Can be modeled as a game over multigraphs.
- Nash Equilibrium (NE) hard to find so consider Mean-Field Games (MFG), $N \to \infty$.
- MFGs over Erdős–Rényi graphs¹ and Graphon MFGs² studied in literature.

 $^{^3}$ H. Tembine, Q. Zhu, and T. Başar, "Risk-sensitive mean-field games," IEEE Transactions on Automatic Control, vol. 59, no. 4, pp. 835-850, 2013. 4日 → 4周 → 4 目 → 4 目 → 9 Q P

¹F. Delarue, "Mean field games: A toy model on an Erdős–Rényi graph." ESAIM: Proceedings and Surveys, vol. 60, pp. 1-26, 2017.

²S. Gao, P. E. Caines, and M. Huang, "LQG graphon MFGs," arXiv preprint arXiv:2004.00679, 2020.

- Can be modeled as a game over multigraphs.
- Nash Equilibrium (NE) hard to find so consider Mean-Field Games (MFG), $N \to \infty$.
- MFGs over Erdős–Rényi graphs¹ and Graphon MFGs² studied in literature.
- First to investigate the local(physical) vs global(virtual) graph dichotomy in multigraphs.

 $^{^3}$ H. Tembine, Q. Zhu, and T. Başar, "Risk-sensitive mean-field games," IEEE Transactions on Automatic Control, vol. 59, no. 4, pp. 835-850, 2013. 4日 → 4周 → 4 目 → 4 目 → 9 Q P

¹F. Delarue, "Mean field games: A toy model on an Erdős–Rényi graph." ESAIM: Proceedings and Surveys, vol. 60, pp. 1-26, 2017.

²S. Gao, P. E. Caines, and M. Huang, "LQG graphon MFGs," arXiv preprint arXiv:2004.00679, 2020.

- Can be modeled as a game over multigraphs.
- Nash Equilibrium (NE) hard to find so consider Mean-Field Games (MFG), $N \to \infty$.
- MFGs over Erdős–Rényi graphs¹ and Graphon MFGs² studied in literature.
- First to investigate the local(physical) vs global(virtual) graph dichotomy in multigraphs.
- Risk-sensitive and robust MFGs³ considers adversarial agents but does not consider sparse graph structure.

 $^{^3}$ H. Tembine, Q. Zhu, and T. Başar, "Risk-sensitive mean-field games," IEEE Transactions on Automatic 4 ロ ト 4 倒 ト 4 重 ト 4 重 ト 9 9 9 Control, vol. 59, no. 4, pp. 835-850, 2013.

¹F. Delarue, "Mean field games: A toy model on an Erdős–Rényi graph." ESAIM: Proceedings and Surveys, vol. 60, pp. 1-26, 2017.

²S. Gao, P. E. Caines, and M. Huang, "LQG graphon MFGs," arXiv preprint arXiv:2004.00679, 2020.

• Formulate the *N*-agent Adversarial LQ game over Multigraphs.

- Formulate the N-agent Adversarial LQ game over Multigraphs.
- Introduce the Adversarial LQ-MFG over Multigraphs.

- Formulate the N-agent Adversarial LQ game over Multigraphs.
- Introduce the Adversarial LQ-MFG over Multigraphs.
- Characterize the MFE

- Formulate the N-agent Adversarial LQ game over Multigraphs.
- Introduce the Adversarial LQ-MFG over Multigraphs.
- Characterize the MFE
 - Characterize the equilibrium policies of adversary and generic agent.

- Formulate the N-agent Adversarial LQ game over Multigraphs.
- Introduce the Adversarial LQ-MFG over Multigraphs.
- Characterize the MFE
 - Characterize the equilibrium policies of adversary and generic agent.
 - Characterize the equilibrium aggregate behavior.

- Formulate the *N*-agent Adversarial LQ game over Multigraphs.
- Introduce the Adversarial LQ-MFG over Multigraphs.
- Characterize the MFE
 - Characterize the equilibrium policies of adversary and generic agent.
 - Characterize the equilibrium aggregate behavior.
- Numerical Results.

- Formulate the N-agent Adversarial LQ game over Multigraphs.
- Introduce the Adversarial LQ-MFG over Multigraphs.
- Characterize the MFE
 - Characterize the equilibrium policies of adversary and generic agent.
 - Characterize the equilibrium aggregate behavior.
- Numerical Results.
- Future directions.

$$Z_{t+1}^{i} = AZ_{t}^{i} + BU_{t}^{i} + CV_{t} + W_{t}^{i}, t \in (0, \dots, T-1),$$

• Agent $i \in [N]$ has linear dynamics (uncoupled),

$$Z_{t+1}^{i} = AZ_{t}^{i} + BU_{t}^{i} + CV_{t} + W_{t}^{i}, t \in (0, ..., T-1),$$

ullet Adversary input (V_t) affects dynamics and cost of agents,

$$Z_{t+1}^{i} = AZ_{t}^{i} + BU_{t}^{i} + CV_{t} + W_{t}^{i}, t \in (0, ..., T-1),$$

- Adversary input (V_t) affects dynamics and cost of agents,
- Y_t^i is local effect on agent i, $Y_t^i = \sum_{j \in \mathcal{N}(i)} Z_t^j / |\mathcal{N}(i)|$.

$$Z_{t+1}^{i} = AZ_{t}^{i} + BU_{t}^{i} + CV_{t} + W_{t}^{i}, t \in (0, ..., T-1),$$

- ullet Adversary input (V_t) affects dynamics and cost of agents,
- Y_t^i is local effect on agent i, $Y_t^i = \sum_{j \in \mathcal{N}(i)} Z_t^j / |\mathcal{N}(i)|$.
- Agent *i* coupled through *consensus-like* terms in cost,

$$\begin{split} J_{N}^{i}(\pi^{i}, \pi^{-i}, V) &= \\ &\sum_{t=0}^{T-1} \mathbb{E} \bigg[\big\| Z_{t}^{i} \big\|_{Q_{t}}^{2} + \Big\| Z_{t}^{i} - \frac{1}{N} \sum_{j=1}^{N} Z_{t}^{j} \Big\|_{\tilde{Q}_{t}}^{2} + \big\| Z_{t}^{i} - Y_{t}^{i} \big\|_{\tilde{Q}_{t}}^{2} + \big\| U_{t}^{i} \big\|_{R_{t}}^{2} - \big\| V_{t} \big\|_{S_{t}}^{2} \bigg] \\ &+ \mathbb{E} \bigg[\big\| Z_{T}^{i} \big\|_{Q_{T}}^{2} + \Big\| Z_{T}^{i} - \frac{1}{N} \sum_{j=1}^{N} Z_{T}^{j} \Big\|_{\tilde{Q}_{T}}^{2} + \big\| Z_{T}^{i} - Y_{T}^{i} \big\|_{\tilde{Q}_{T}}^{2} \bigg]. \end{split}$$

$$Z_{t+1}^{i} = AZ_{t}^{i} + BU_{t}^{i} + CV_{t} + W_{t}^{i}, t \in (0, ..., T-1),$$

- Adversary input (V_t) affects dynamics and cost of agents,
- Y_t^i is local effect on agent i, $Y_t^i = \sum_{j \in \mathcal{N}(i)} Z_t^j / |\mathcal{N}(i)|$.
- Agent *i* coupled through *consensus-like* terms in cost,

$$\begin{split} J_{N}^{i}(\pi^{i},\pi^{-i},V) &= \\ &\sum_{t=0}^{T-1} \mathbb{E} \bigg[\big\| Z_{t}^{i} \big\|_{Q_{t}}^{2} + \Big\| Z_{t}^{i} - \frac{1}{N} \sum_{j=1}^{N} Z_{t}^{j} \Big\|_{\tilde{Q}_{t}}^{2} + \big\| Z_{t}^{i} - Y_{t}^{i} \big\|_{\tilde{Q}_{t}}^{2} + \big\| U_{t}^{i} \big\|_{R_{t}}^{2} - \big\| V_{t} \big\|_{S_{t}}^{2} \bigg] \\ &+ \mathbb{E} \bigg[\big\| Z_{T}^{i} \big\|_{Q_{T}}^{2} + \Big\| Z_{T}^{i} - \frac{1}{N} \sum_{j=1}^{N} Z_{T}^{j} \Big\|_{\tilde{Q}_{T}}^{2} + \big\| Z_{T}^{i} - Y_{T}^{i} \big\|_{\tilde{Q}_{T}}^{2} \bigg]. \end{split}$$

$$Z_{t+1}^{i} = AZ_{t}^{i} + BU_{t}^{i} + CV_{t} + W_{t}^{i}, t \in (0, ..., T-1),$$

- ullet Adversary input (V_t) affects dynamics and cost of agents,
- Y_t^i is local effect on agent i, $Y_t^i = \sum_{j \in \mathcal{N}(i)} Z_t^j / |\mathcal{N}(i)|$.
- Agent i coupled through consensus-like terms in cost,

$$\begin{split} J_{N}^{i}(\pi^{i}, \pi^{-i}, V) &= \\ &\sum_{t=0}^{T-1} \mathbb{E} \left[\left\| Z_{t}^{i} \right\|_{Q_{t}}^{2} + \left\| Z_{t}^{i} - \frac{1}{N} \sum_{j=1}^{N} Z_{t}^{j} \right\|_{\tilde{Q}_{t}}^{2} + \left\| Z_{t}^{i} - Y_{t}^{i} \right\|_{\tilde{Q}_{t}}^{2} + \left\| U_{t}^{i} \right\|_{R_{t}}^{2} - \left\| V_{t} \right\|_{S_{t}}^{2} \right] \\ &+ \mathbb{E} \left[\left\| Z_{T}^{i} \right\|_{Q_{T}}^{2} + \left\| Z_{T}^{i} - \frac{1}{N} \sum_{i=1}^{N} Z_{T}^{j} \right\|_{\tilde{Q}_{T}}^{2} + \left\| Z_{T}^{i} - Y_{T}^{i} \right\|_{\tilde{Q}_{T}}^{2} \right]. \end{split}$$

$$Z_{t+1}^{i} = AZ_{t}^{i} + BU_{t}^{i} + CV_{t} + W_{t}^{i}, t \in (0, ..., T-1),$$

- ullet Adversary input (V_t) affects dynamics and cost of agents,
- Y_t^i is local effect on agent i, $Y_t^i = \sum_{j \in \mathcal{N}(i)} Z_t^j / |\mathcal{N}(i)|$.
- Agent *i* coupled through *consensus-like* terms in cost,

$$\begin{split} J_{N}^{i}(\pi^{i},\pi^{-i},V) &= \\ &\sum_{t=0}^{T-1} \mathbb{E} \bigg[\big\| Z_{t}^{i} \big\|_{Q_{t}}^{2} + \Big\| Z_{t}^{i} - \frac{1}{N} \sum_{j=1}^{N} Z_{t}^{j} \Big\|_{\tilde{Q}_{t}}^{2} + \big\| Z_{t}^{i} - Y_{t}^{i} \big\|_{\tilde{Q}_{t}}^{2} + \big\| U_{t}^{i} \big\|_{R_{t}}^{2} - \big\| V_{t} \big\|_{S_{t}}^{2} \bigg] \\ &+ \mathbb{E} \bigg[\big\| Z_{T}^{i} \big\|_{Q_{T}}^{2} + \Big\| Z_{T}^{i} - \frac{1}{N} \sum_{j=1}^{N} Z_{T}^{j} \Big\|_{\tilde{Q}_{T}}^{2} + \Big\| Z_{T}^{i} - Y_{T}^{i} \big\|_{\tilde{Q}_{T}}^{2} \bigg]. \end{split}$$

$$Z_{t+1}^{i} = AZ_{t}^{i} + BU_{t}^{i} + CV_{t} + W_{t}^{i}, t \in (0, ..., T-1),$$

- Adversary input (V_t) affects dynamics and cost of agents,
- Y_t^i is local effect on agent i, $Y_t^i = \sum_{j \in \mathcal{N}(i)} Z_t^j / |\mathcal{N}(i)|$.
- Agent *i* coupled through *consensus-like* terms in cost,

$$\begin{split} J_{N}^{i}(\pi^{i}, \pi^{-i}, V) &= \\ &\sum_{t=0}^{T-1} \mathbb{E} \left[\left\| Z_{t}^{i} \right\|_{Q_{t}}^{2} + \left\| Z_{t}^{i} - \frac{1}{N} \sum_{j=1}^{N} Z_{t}^{j} \right\|_{\tilde{Q}_{t}}^{2} + \left\| Z_{t}^{i} - Y_{t}^{i} \right\|_{\tilde{Q}_{t}}^{2} + \left\| U_{t}^{i} \right\|_{R_{t}}^{2} - \left\| V_{t} \right\|_{S_{t}}^{2} \right] \\ &+ \mathbb{E} \left[\left\| Z_{T}^{i} \right\|_{Q_{T}}^{2} + \left\| Z_{T}^{i} - \frac{1}{N} \sum_{i=1}^{N} Z_{T}^{j} \right\|_{\tilde{Q}_{T}}^{2} + \left\| Z_{T}^{i} - Y_{T}^{i} \right\|_{\tilde{Q}_{T}}^{2} \right]. \end{split}$$

$$Z_{t+1}^{i} = AZ_{t}^{i} + BU_{t}^{i} + CV_{t} + W_{t}^{i}, t \in (0, ..., T-1),$$

- Adversary input (V_t) affects dynamics and cost of agents,
- Y_t^i is local effect on agent i, $Y_t^i = \sum_{j \in \mathcal{N}(i)} Z_t^j / |\mathcal{N}(i)|$.
- Agent *i* coupled through *consensus-like* terms in cost,

$$\begin{split} J_{N}^{i}(\pi^{i}, \pi^{-i}, V) &= \\ &\sum_{t=0}^{T-1} \mathbb{E} \left[\left\| Z_{t}^{i} \right\|_{Q_{t}}^{2} + \left\| Z_{t}^{i} - \frac{1}{N} \sum_{j=1}^{N} Z_{t}^{j} \right\|_{\tilde{Q}_{t}}^{2} + \left\| Z_{t}^{i} - Y_{t}^{i} \right\|_{\tilde{Q}_{t}}^{2} + \left\| U_{t}^{i} \right\|_{R_{t}}^{2} - \left\| V_{t} \right\|_{S_{t}}^{2} \right] \\ &+ \mathbb{E} \left[\left\| Z_{T}^{i} \right\|_{Q_{T}}^{2} + \left\| Z_{T}^{i} - \frac{1}{N} \sum_{i=1}^{N} Z_{T}^{j} \right\|_{\tilde{Q}_{T}}^{2} + \left\| Z_{T}^{i} - Y_{T}^{i} \right\|_{\tilde{Q}_{T}}^{2} \right]. \end{split}$$

• $|\mathcal{N}(i)| = |\mathcal{N}(j)|, i, j \in [N]$

- $|\mathcal{N}(i)| = |\mathcal{N}(j)|, i, j \in [N]$
- Agent *i* has access to local history, NE hard to find.

- $|\mathcal{N}(i)| = |\mathcal{N}(j)|, i, j \in [N]$
- Agent i has access to local history, NE hard to find.
- Cost function of adversary,

$$J_N^0(V,\pi^{(N)}) = -\frac{1}{N}\sum_{i=1}^N J_N^i(\pi^i,\pi^{-i},V)$$

Formulation (finite population)

- $|\mathcal{N}(i)| = |\mathcal{N}(j)|, i, j \in [N]$
- Agent i has access to local history, NE hard to find.
- Cost function of adversary,

$$J_N^0(V,\pi^{(N)}) = -\frac{1}{N}\sum_{i=1}^N J_N^i(\pi^i,\pi^{-i},V)$$

Adversary aims to disrupt/delay consensus.

Formulation (finite population)

- $|\mathcal{N}(i)| = |\mathcal{N}(j)|, i, j \in [N]$
- Agent i has access to local history, NE hard to find.
- Cost function of adversary,

$$J_N^0(V,\pi^{(N)}) = -rac{1}{N}\sum_{i=1}^N J_N^i(\pi^i,\pi^{-i},V)$$

Adversary aims to disrupt/delay consensus.

Definition (Nash Equilibrium)

The set $\pi^* = (\pi^{1*}, \dots, \pi^{N*})$ and adversary policy $V^* = (V_0^*, \dots, V_{T-1}^*)$ constitute Nash equilibrium if,

$$J_N^i(\pi^{i*}, \pi^{-i*}, V^*) \le J_N^i(\pi^i, \pi^{-i*}, V^*), \quad \pi^i \in \Pi^i, i \in [N]$$

 $J_N^0(\pi^*, V^*) \le J_N^0(\pi^*, V), \quad V \in \mathcal{V}$

• $N \to \infty$ but finite local graph.

- $N \to \infty$ but finite local graph.
- Generic agent dynamics

$$Z_{t+1} = AZ_t + BU_t + CV_t + W_t.$$

- $N \to \infty$ but finite local graph.
- Generic agent dynamics

$$Z_{t+1} = AZ_t + BU_t + CV_t + W_t.$$

Generic agent cost function

$$J(\mu, \bar{Z}, V) = \sum_{t=0}^{T-1} \mathbb{E}[\|Z_t\|_{Q_t}^2 + \|Z_t - Y_t\|_{\tilde{Q}_t}^2 + \|Z_t - \bar{Z}_t\|_{\tilde{Q}_t}^2 + \|U_t\|_{R_t}^2 - \|V_t\|_{S_t}^2] + \mathbb{E}[\|Z_T\|_{Q_T}^2 + \|Z_T - Y_T\|_{\tilde{Q}_T}^2 + \|Z_T - \bar{Z}_T\|_{\tilde{Q}_T}^2]$$

- $N \to \infty$ but finite local graph.
- Generic agent dynamics

$$Z_{t+1} = AZ_t + BU_t + CV_t + W_t.$$

Generic agent cost function

$$\begin{split} J(\mu, \bar{Z}, V) &= \\ &\sum_{t=0}^{T-1} \mathbb{E} \big[\big\| Z_t \big\|_{Q_t}^2 + \big\| Z_t - Y_t \big\|_{\bar{Q}_t}^2 + \big\| Z_t - \bar{Z}_t \big\|_{\bar{Q}_t}^2 + \big\| U_t \big\|_{R_t}^2 - \big\| V_t \big\|_{S_t}^2 \big] \\ &+ \mathbb{E} \big[\big\| Z_T \big\|_{Q_T}^2 + \big\| Z_T - Y_T \big\|_{\bar{Q}_T}^2 + \| Z_T - \bar{Z}_T \|_{\bar{Q}_T}^2 \big] \end{split}$$

• $\bar{Z} = (\bar{Z}_0, \dots, \bar{Z}_T)$ represents global mean-field, $Y = (Y_0, \dots, Y_T)$ represents local mean-field.

⁴P. Turnes Jr and L. Monteiro, "An epidemic model to evaluate the homogeneous mixing assumption," Communications in Nonlinear Science and Numerical Simulation,vol. 19, no. 11, pp. 4042–4047,2014.

⁵B. O. Baumgaertner, P. A. Fetros, S. M. Krone, and R. C. Tyson, "Spatial opinion dynamics and the effects of two types of mixing," Physical Review E, vol. 98, no. 2, p. 022310, 2018 4 D > 4 P > 4

Assumption (Homogeneous Mixing)

The local mean-field Y_t is assumed to be an exogenous noise process with mean $\mathbb{E}[Y_t] = \bar{Z}_t$.

⁴P. Turnes Jr and L. Monteiro, "An epidemic model to evaluate the homogeneous mixing assumption," Communications in Nonlinear Science and Numerical Simulation,vol. 19, no. 11, pp. 4042–4047,2014.

⁵B. O. Baumgaertner, P. A. Fetros, S. M. Krone, and R. C. Tyson, "Spatial opinion dynamics and the effects of two types of mixing," Physical Review E, vol. 98, no. 2, p. 022310, 2018 ← □ ▶ ← ② ▶ ← ② ▶ ← ③ ▶ ← ③ ▶ ← ③ ▶ ← ③ ▶ ← ② ▶ ← ○ □ ▶ ← □

Assumption (Homogeneous Mixing)

The local mean-field Y_t is assumed to be an exogenous noise process with mean $\mathbb{E}[Y_t] = \bar{Z}_t$.

Hypothesis standard in infection⁴ and opinion dynamics⁵ literature.

⁴P. Turnes Jr and L. Monteiro, "An epidemic model to evaluate the homogeneous mixing assumption," Communications in Nonlinear Science and Numerical Simulation,vol. 19, no. 11, pp. 4042–4047,2014.

⁵B. O. Baumgaertner, P. A. Fetros, S. M. Krone, and R. C. Tyson, "Spatial opinion dynamics and the effects of two types of mixing," Physical Review E, vol. 98, no. 2, p. 022310, 2018 ← □ ▶ ← ② ▶ ← ③ ▶ ← ③ ▶ ← ③ ▶ ← ③ ▶ ← ③ ▶ ← ③ ▶ ← ③ ▶ ← ③ ▶ ← ③ ▶ ← ○ ▶

Assumption (Homogeneous Mixing)

The local mean-field Y_t is assumed to be an exogenous noise process with mean $\mathbb{E}[Y_t] = \bar{Z}_t$.

- Hypothesis standard in infection⁴ and opinion dynamics⁵ literature.
- Adversary's cost function, $J^0(V, \mu, \bar{Z}) = \lim_{N \to \infty} J^0_N(V, \mu^{(N)})$.

⁴P. Turnes Jr and L. Monteiro, "An epidemic model to evaluate the homogeneous mixing assumption," Communications in Nonlinear Science and Numerical Simulation, vol. 19, no. 11, pp. 4042–4047,2014.

Assumption (Homogeneous Mixing)

The local mean-field Y_t is assumed to be an exogenous noise process with mean $\mathbb{E}[Y_t] = \bar{Z}_t$.

- Hypothesis standard in infection⁴ and opinion dynamics⁵ literature.
- Adversary's cost function, $J^0(V, \mu, \bar{Z}) = \lim_{N \to \infty} J_N^0(V, \mu^{(N)})$.

Definition (Mean-Field Equilibrium)

The tuple $(\mu^*, V^*, \bar{Z}^*, Y^*)$ is a mean-field equilibrium if, **Optimality**: $\mu^* = \operatorname{argmin}_{\mu} J(\mu, \bar{Z}^*, V^*), \quad V^* = \operatorname{argmin}_{V} J^0(V, \mu^*, \bar{Z}^*),$ **Consistency**: \bar{Z}^* and Y^* are aggregate behaviors *consistent* with μ^* and V^* .

⁴P. Turnes Jr and L. Monteiro, "An epidemic model to evaluate the homogeneous mixing assumption," Communications in Nonlinear Science and Numerical Simulation,vol. 19, no. 11, pp. 4042–4047,2014.

⁵B. O. Baumgaertner, P. A. Fetros, S. M. Krone, and R. C. Tyson, "Spatial opinion dynamics and the effects of two types of mixing," Physical Review E, vol. 98, no. 2, p. 022310, 2018 ← □ ▶ ← ② ▶ ← ② ▶ ← ③ ▶ ← ③ ▶ ← ③ ▶ ← ② ▶ ← ○ №

Form of generic agent's equilibrium control

Form of generic agent's equilibrium control

Theorem

The generic agent's equilibrium control adapted to filtration $\mathcal{F}_t^Z \vee \mathcal{F}_t^Y$ is given by

$$U_t^* = -R_t^{-1}B^T\zeta_{t+1}$$

where ζ_t can be constructed as

$$\begin{split} \zeta_t &= A^T \zeta_{t+1} + (Q_t + \bar{Q}_t + \tilde{Q}_t) Z_t - \bar{Q}_t \bar{Z}_t - \tilde{Q}_t Y_t - M_t^{\zeta}, \\ \zeta_T &= (Q_T + \bar{Q}_T + \tilde{Q}_T) Z_T - \bar{Q}_T \bar{Z}_T - \tilde{Q}_T Y_T, \\ M_t^{\zeta} &= A^T \zeta_{t+1} - A^T \mathbb{E} \big[\zeta_{t+1} \mid \mathcal{F}_t^Z \vee \mathcal{F}_t^Y \big]. \end{split}$$

where M_t^{ζ} is a martingale difference sequence adapted to filtration $\mathcal{F}_t^Z \vee \mathcal{F}_t^Y$.

Form of adversary's equilibrium control

Form of adversary's equilibrium control

Theorem

If the following condition is satisfied

$$S_t - C^T \hat{P}_{t+1} C > 0, \tag{1}$$

where the matrix \hat{P}_t is defined recursively by

$$\hat{P}_{t} = Q_{t} + A^{T} \hat{P}_{t+1} A + A^{T} \hat{P}_{t+1} C (S_{t} - C^{T} \hat{P}_{t+1} C)^{-1} C^{T} \hat{P}_{t+1} A, \quad \hat{P}_{T} = Q_{T},$$

then the equilibrium control policy of the adversary is,

$$V_t^* = -S_t^{-1} C^T \bar{\zeta}_{t+1}^0, \, \bar{\zeta}_t^0 = A^T \bar{\zeta}_{t+1}^0 - Q_t \bar{Z}_t, \, \bar{\zeta}_T^0 = -Q_T \bar{Z}_T, \quad (2)$$

where $\bar{\zeta}_t^0$ is the adversary's co-state and \bar{Z} is the global MF of the agents.

Equilibrium Global MF dynamics

Equilibrium Global MF dynamics

Theorem

If the preceding assumptions are satisfied, then equilibrium global MF follows linear dynamics,

$$\bar{Z}_{t+1}^* = E_t^{-1} A \bar{Z}_t^* = \bar{F}_t \bar{Z}_t^*,$$
 (3)

where $E_t = (I + BR_t^{-1}B^T\bar{P}_{t+1} - CS_t^{-1}C^T\bar{P}_{t+1})$ and \bar{P}_t is given by the Riccati equation,

$$\bar{P}_t = A^T \bar{P}_{t+1} E_t^{-1} A + Q_t, P_T = Q_T$$

and the equilibrium adversarial policy,

$$V_t^* = S_t^{-1} C^T \bar{P}_t \bar{F}_t \bar{Z}_t^*. \tag{4}$$

is linear in the equilibrium global MF.

Equilibrium Local MF dynamics

Equilibrium Local MF dynamics

and $\tilde{H}_{t} = A^{T}(I - \tilde{P}_{t+1}\tilde{E}_{t}^{-1}BR^{-1}B^{T}).$

Theorem

If the preceding assumptions are satisfied, then local equilibrium MF has linear Gaussian dynamics driven by the equilibrium global MF:

$$Y_{t+1}^* = \tilde{F}_t^1 Y_t^* + \tilde{F}_t^2 \bar{Z}_t^* + \tilde{E}_t^{-1} \tilde{W}_t$$
 (5)

where
$$\tilde{W}_t = \sum_{j \in \mathcal{N}} W_t^j / |\mathcal{N}|$$
,
 $\tilde{E}_t = (I + BR^{-1}B^T\tilde{P}_{t+1} - CS_t^{-1}C^T\tilde{P}_{t+1}), \tilde{F}_t^1 = \tilde{E}_t^{-1}A,$
 $\tilde{F}_t^2 = \tilde{E}_t^{-1}(BR_t^{-1}B^T - CS_t^{-1}C^T)) \sum_{i=0}^{T-t} \prod_{j=1}^{i} \tilde{H}_{t+j}\bar{Q}_{t+i}\bar{F}_{t+j}$
 $\tilde{P}_t = A^T\tilde{P}_{t+1}\tilde{E}_t^{-1}A + Q_t + \bar{Q}_t, \quad \tilde{P}_T = Q_T + \bar{Q}_T,$

 Generic agent's problem can be cast as time varying linear quadratic regulator (TV-LQR) problem.

$$U_t^* = \mu_t^*(Z_t, Y_t^*, \bar{Z}_t^*) = \bar{K}_t^* \begin{pmatrix} Z_t \\ Y_t^* \\ \bar{Z}_t^* \end{pmatrix}$$

Conclusion:

Conclusion:

 Then global mean-field (at equilibrium) has deterministic dynamics, so can be computed offline.

Conclusion:

- Then global mean-field (at equilibrium) has deterministic dynamics, so can be computed offline.
- The adversary actions (at equilibrium) depend *only* on the global mean-field.

Conclusion:

- Then global mean-field (at equilibrium) has deterministic dynamics, so can be computed offline.
- The adversary actions (at equilibrium) depend *only* on the global mean-field.
- The agent's actions (at equilibrium) have linear dependence on,
 - the agent's state,
 - the local mean-field,
 - the global mean-field.

Numerical Results (Affect of Adversary)

- Number of agents N = 10,000
- Neighborhood size $|\mathcal{N}(i)| = 1000$.

Future Directions

- ϵ -Nash analysis of the MFE.
- More general local network structure given homogenous mixing hypothesis,
 - Overlapping local graphs,
 - Agents can have types specifying local connectivity.
- Multiple adversaries.