

YEAR 12 MATHEMATICS SPECIALIST SEMESTER ONE 2017 QUESTIONS OF REVIEW 2: Functions

By daring & by doing

	Name:		
Wednesday 29 th March	Time: 40 minutes	Mark	/35
Calculator free.			

1. [3 & 3 = 6 marks]

The graphs of y_1 and y_2 are shown on axes to the right.

(a) Use the graph to solve the following equations.

(i)
$$y_1 = 3$$

(ii)
$$y_2 \ge 0$$

- **(b)** State the equation for the graph of
 - (i) y_1

(ii) y_2

2. [5 marks]

Calculate where y = |x - 1| intersects $y = \frac{x}{2} + 4$. Represent your solution on the axes provided.

3. [5 marks]

$$f(x) = |x|$$
 and $g(x) = |x + 2|$

Determine a piecewise defined expression for the sum f(x) + g(x) and sketch y = f(x) + g(x) on these axes.

4. [2, 2 & 6 = 10 marks]

The graphs of y = f(x) and y = g(x) are shown.

- (a) Does f(x) possess an inverse function? Explain
- (b) Find
 - (i) $g \circ f(3)$

(ii) $f \circ g(5)$

- (c) State
 - (i) the domain of g

- (ii) the range of f
- (iii) the maximal range of $f \circ g(x)$

(iv) the maximal domain of $g \circ f(x)$

5. [2, 2, 2, 1 & 2 = 9 marks]

The axes to the right show the graph of $g(x) = \sqrt{x+4} + 2$.

(a) Find the value of $(g \circ f)(1)$ if f(x) = 2x - 5

- **(b) (i)** State the range of $g^{-1}(x)$
 - (ii) State the domain of $g^{-1}(x)$
- (c) Find the defining rule for $g^{-1}(x)$ in simplest form.

- (d) Is $g^{-1}(\chi)$ one-to-one?
- (e) On the axes above, add a sketch of the graph of $y = g^{-1}(x)$ showing the coordinates of all relevant features clearly.