Image segmentation

DENV Foci Detection

for Focus forming assay

Image segmentation for dengue virus foci detection in forming focus assay

Introduction

Program Pipeline

Evaluation

Datasets

User manual

OUTLINE

Introduction

Focus forming assay

The focus forming assay (FFA) is an immunostaining technique and a variation of the **viral plaque assay**. Instead of detecting the plaque formation after virus-induced cell lysis these assays detect infected host cells and infectious virus particles before a plaque is formed.

96-well plate

Datasets

FFA: 4 plates

Foci count

(by human)

336 rows

	id	Human count
0	P1_A1	0
1	P1_A2	33
2	P1_A3	41
3	P1_A4	40
4	P1_A5	66

Raw image

335 images

Foci negative: 20 images (control 16 images)

Foci positive: 315 images

FFA: Focus forming assay

Datasets

Pixel mask

319 file

X		У		cluster	
	215		52		1
	218		52		1
	265		52		2
	266		52		2
	191		53		3
	192		53		3
	193		53		3
	194		53		3

Pixel mask

Datasets

Program pipeline

Bland-Altman

Bland-Altman plot is a method to describe agreement between two quantitative measurements. These statistical limits are calculated by using the mean and the standard deviation of the differences between two measurements.

Program - Human

The average of Program-count less than Human-count is 2.4 foci

t-test :Paired two sample for mean

A paired t-test is used to compare two population means where you have two samples in which observations in one sample can be paired with observations in the other sample.

Hypothesized Mean Difference = 0
Alpha = 0.05

P-value = 2.75 \times 10⁻²¹ (Reject H_0)

The program counted foci significantly difference human count (p-value < 0.05)

	Program	Human
Mean	65.655	68.149
Variance	1452.082	1507.365
Observations	334	334
Pearson Correlations	0.9933	
Hypothesized Mean Difference	0	
df (degree of freedom)	333	
t Stat	-10.1558	
P(T<=t) one-tail	1.37x10 ⁻²¹	
t Critical one-tail	1.649	
P(T<=t) two-tail	2.75x10 ⁻²¹	
t Critical two-tail	1.967	

Regression statistic

Regression analysis is a set of statistical methods used for the estimation of relationships between a dependent variable and one or more independent variables. It can be utilized to assess the strength of the relationship between variables and for modeling the future relationship between them.

	Regression Statistics table
Multiple R	0.993
R Square	0.986
Adjusted R Square	0.986
Standard Error	4.388
Observations	334

Intersection Over Union (IoU): pixel position

IOU(Intersection over Union) is a term used to describe the extent of overlap of two boxes. The greater the region of overlap, the greater the IOU.

Average IoU of pixel position for each foci from the program detected image and the original pixel position is 21%.

Confusion matrix (Specificity)

Specificity measures a test's ability to correctly generate a negative result (also known as the "true negative" rate).

id	Program	Human
P1_A1	0	0
P1_A12	0	0
P1_B12	0	0
P1_B1	0	0
P1_C1	0	0
P1_C12	0	0
P1_D12	0	0
P1_D1	0	0
P1_E1	0	0
P1_E12	1	0
P1_F12	0	0
P1_F1	0	0
P1_G1	0	0
P1_G12	0	0
P1_H12	0	0
P1_H1	0	0

Image : P1 E12

Specificity = TN/(TN+FP)

TN = 15

FP = 1

Specificity = 15/16 = 0.9375

User manual

1. config.ini file for set the parameters

Input folder

*Image data in each folder

Output folder

Example of data input folder by path given in step 1.1 parameter: input_image_folder

Additionally, the input folder will contain a folder of image files (.jpg) of each plate you wish to use in the foci count.

Example of data output folder by path given in step 1.2 parameter : output_image_folder

Additionally, the output folders need to be created and set the name similarly in [Paths] output_image_folder

app_window.py	00:37	4 KB	Python Script
config.ini	00:37	241 ไบต์	เอกสาร
foci_detection.py	00:37	5 KB	Python Script
™ README.md	00:37	190 ไบต์	Markdown File

2. right click on the file:app_window.py > Open with > PythonFor run it with python

Output folder

When the program finishes running, the output will be in the output folder with the specified path location.

1-figure_P1-DV4-day60_2021-7-19_20_27_54	19/7/2564 20:28	File folder
1-figure_P2-DV4-day60_2021-7-19_20_27_54	19/7/2564 20:28	File folder
1-figure_P3-DV4-day60_2021-7-19_20_27_54	19/7/2564 20:28	File folder
1-figure_P4-DV4-day60_2021-7-19_20_27_54	19/7/2564 20:28	File folder
logfile.log	19/7/2564 20:28	Text Document

The results consist of "Folder by number of input folders" and "logfile"

Each folder contains:

- 1) folder "binary_image"
- 2) folder "foci_description"
- 3) folder "raw box"
- 4) folder "raw_number"
- 5) "foci_count_result.csv"

Additionally, 1-figure_P1-DV4-day60_2021-7-19_20_27_54: file name, year/month/day, hours/minutes/seconds respectively

Sample data inside the folder: foci description

Name Date modified Size A1.csv 14/7/2564 15:25 Microsoft Excel C... 1 KB XII A2.csv 14/7/2564 15:25 Microsoft Excel C... 1 KB A3.csv 14/7/2564 15:25 Microsoft Excel C... 1 KB A4.csv 14/7/2564 15:25 Microsoft Excel C... 1 KB A5.csv 14/7/2564 15:25 Microsoft Excel C... A6.csv 14/7/2564 15:25 Microsoft Excel C... A7.csv Microsoft Excel C... 14/7/2564 15:25 A8.csv Microsoft Excel C... 14/7/2564 15:25 A9.csv 14/7/2564 15:25 Microsoft Excel C... A10.csv 14/7/2564 15:25 Microsoft Excel C... A11.csv 14/7/2564 15:25 Microsoft Excel C... 4 KB A12.csv 14/7/2564 15:25 Microsoft Excel C... B1.csv 14/7/2564 15:25 Microsoft Excel C... B2.csv 14/7/2564 15:25 Microsoft Excel C... 3 KB B3.csv 14/7/2564 15:25 Microsoft Excel C... 3 KB B4.csv 14/7/2564 15:25 Microsoft Excel C... 3 KB B5.csv 14/7/2564 15:25 Microsoft Excel C... B6.csv Microsoft Excel C... 14/7/2564 15:25 3 KB B7.csv 14/7/2564 15:25 Microsoft Excel C... 4 KB B8.csv Microsoft Excel C... 14/7/2564 15:25 3 KB B9.csv 14/7/2564 15:25 Microsoft Excel C... 3 KB B10.csv 14/7/2564 15:25 Microsoft Excel C... 4 KB B11.csv 14/7/2564 15:25 Microsoft Excel C... 3 KB X B12.csv 14/7/2564 15:25 Microsoft Excel C... 1 KB 🝱 C1.csv 14/7/2564 15:25 Microsoft Excel C... C2.csv 14/7/2564 15:25 Microsoft Excel C... C3.csv 14/7/2564 15:25 Microsoft Excel C... C4.csv 14/7/2564 15:25 Microsoft Excel C... Xa C5.csv 14/7/2564 15:25 Microsoft Excel C...

Additionally, The folder contains a data file (.csv) with details of Center point (x,y) of each foci, foci size (pixels) and Normalize area (%).

	id	foci count
0	P1_C8	52
1	P1_A1	C
2	P1_C9	68
3	P1_A3	40
4	P1_A2	28
5	P1_A6	92
6	P1_A7	84
7	P1_A5	67
8	P1_B9	105
9	P1_B8	108
10	P1_A4	35

<u>Example</u>, Inside the foci_count_result.csv is the result file of counting the number of foci in each image.

<u>Example</u>, Inside the logfile.log the result is about the program running status.

```
2021-07-14 14:30:38,838, INFO, app.py, P1, C8.jpg, foci detected: success 2021-07-14 14:30:38,911, INFO, app.py, P1, A1.jpg, foci detected: success 2021-07-14 14:30:39,002, INFO, app.py, P1, C9.jpg, foci detected: success 2021-07-14 14:30:39,058, INFO, app.py, P1, A3.jpg, foci detected: success 2021-07-14 14:30:39,128, INFO, app.py, P1, A2.jpg, foci detected: success 2021-07-14 14:30:39,271, INFO, app.py, P1, A6.jpg, foci detected: success 2021-07-14 14:30:39,381, INFO, app.py, P1, A7.jpg, foci detected: success 2021-07-14 14:30:39,453, INFO, app.py, P1, A5.jpg, foci detected: success 2021-07-14 14:30:39,549, INFO, app.py, P1, B9.jpg, foci detected: success 2021-07-14 14:30:39,637, INFO, app.py, P1, B9.jpg, foci detected: success 2021-07-14 14:30:39,703, INFO, app.py, P1, B8.jpg, foci detected: success 2021-07-14 14:30:39,703, INFO, app.py, P1, A4.jpg, foci detected: success 2021-07-14 14:30:39,703, INFO, app.py, P1, A4.jpg, foci detected: success 2021-07-14 14:30:39,703, INFO, app.py, P1, A4.jpg, foci detected: success 2021-07-14 14:30:39,703, INFO, app.py, P1, A4.jpg, foci detected: success 2021-07-14 14:30:39,703, INFO, app.py, P1, A4.jpg, foci detected: success 2021-07-14 14:30:39,703, INFO, app.py, P1, A4.jpg, foci detected: success 2021-07-14 14:30:39,703, INFO, app.py, P1, A4.jpg, foci detected: success 2021-07-14 14:30:39,703, INFO, app.py, P1, A4.jpg, foci detected: success 2021-07-14 14:30:39,703, INFO, app.py, P1, A4.jpg, foci detected: success 2021-07-14 14:30:39,703, INFO, app.py, P1, A4.jpg, foci detected: success 2021-07-14 14:30:39,703, INFO, app.py, P1, A4.jpg, foci detected: success 2021-07-14 14:30:39,703, INFO, app.py, P1, A4.jpg, foci detected: success 2021-07-14 14:30:30,703, INFO, app.py, P1, A4.jpg, foci detected: success 2021-07-14 14:30:30,703, INFO, app.py, P1, A4.jpg, foci detected: success 2021-07-14 14:30:30,703, INFO, app.py, P1, A4.jpg, foci detected: success 2021-07-14 14:30:30,703, INFO, app.py, P1, A4.jpg, foci detected: success 2021-07-14 14:30:30,703, INFO, app.py, P1, A4.jp
```


Sample data inside binary_image folder

Additionally, This folder contains image files (.jpg) that are binary image (black:0, white:1).

- Black is Background.
- White is Foci.

Sample data inside raw_box folder

<u>Additionally</u>, This folder contains image files (.jpg) that are raw image with a rectangular frame detected for each foci.

Sample data inside raw_number folder

Additionally, This folder contains image files (.jpg) that has an id number for each foci. So, that connect to the information file in foci_description folder.