A Tuned Hyperparameters

For all the tasks, we tune the batch size, learning rate, contribution penalty (λ) and weight decay (μ) . On the CauseMe datasets we tune the number of hidden units, whereas on the DREAM-3 dataset we tune the number of hidden layers. For computational efficiency, hyperparameters are tuned using a Tree-structured Parzen Estimator [5]. Tuned hyperparameters are provided in Tables 3-6.

Table 3. Tuned Hyperparameters of NAVAR (MLP) on the CauseMe Datasets. We Indicate the Different Variations of the "Nonlinear VAR" Dataset by the Number of Variables N and Number of Time Steps T. K is the Number of Lags Considered, λ is the Contribution Penalty, and μ is the Weight Decay.

	K	Hidden Units	Layers	Batch Size	Learning Rate	λ	μ
Tuning range	-	[8, 128]	-	[16, 256]	[5e-5, 5e-3]	[0, 0.5]	[1e-7, 0.5]
Nonlinear VAR							
N=3, T=300	5	32	1	64	0.00005	0.1344	2.903e-3
N=5, T=300	5	16	1	64	0.0001	0.1596	2.420e-3
N=10, T=300	5	128	1	64	0.0005	0.2014	8.557e-3
N=20, T=300	5	32	1	64	0.0002	0.2434	4.508e-3
Climate	2	32	1	16	0.0002	0.3924	4.322e-3
Weather	5	32	1	64	0.0001	0.0560	4.903e-3
River	5	8	1	256	0.0001	0.1708	5.092e-4

Table 4. Tuned Hyperparameters of NAVAR (LSTM) on the CauseMe Datasets. We Indicate the Different Variations of the "Nonlinear VAR" Dataset by the Number of Variables N and Number of Time Steps T. K is the Number of Lags Considered, λ is the Contribution Penalty, and μ is the Weight Decay.

	K	Hidden Units	Layers	Batch Size	Learning Rate	λ	μ
Tuning range	-	[8, 128]	-	[16, 256]	[5e-5, 5e-3]	[0, 0.5]	[1e-7, 0.5]
Nonlinear VAR							
N=3, T=300	5	16	1	64	0.0001	0.1370	8.952e-4
N=5, T=300	5	32	1	32	0.00005	0.2445	2.6756e-4
N=10, T=300	5	64	1	128	0.0001	0.0784	7.1237e-4
N=20, T=300	5	128	1	64	0.00005	0.3512	1.901e-6
Climate	2	64	1	128	0.0002	0.2334	6.231e-4
Weather	5	8	1	256	0.0005	0.0172	1.687e-3
River	5	128	1	128	0.001	0.0544	4.465e-4

Table 5. Tuned Hyperparameters of NAVAR (MLP) on the DREAM-3 Datasets. K is the Number of Lags Considered, λ is the Contribution Penalty, and μ is the Weight Decay.

	K	Hidden Units	Layers	Batch Size	Learning Rate	λ	μ
Tuning range	-	-	[1, 4]	[16, 256]	[5e-5, 5e-3]	[0, 0.5]	[1e-7, 0.5]
Ecoli1	2	10	1	128	0.0005	0.1883	1.114e-4
Ecoli2	2	10	1	32	0.001	0.2011	1.710e-4
Yeast1	2	10	2	16	0.002	0.2697	1.424e-4
Yeast2	2	10	1	256	0.0002	0.1563	2.013e-4
Yeast3	2	10	1	16	0.0002	0.1559	1.644e-4

Table 6. Tuned Hyperparameters of NAVAR (LSTM) on the DREAM-3 Datasets. K is the Number of Lags Considered, λ is the Contribution Penalty, and μ is the Weight Decay.

	K	Hidden Units	Layers	Batch Size	Learning Rate	λ	μ
Tuning range	-	-	-	-	[5e-5, 5e-3]	[0, 0.5]	[1e-7, 0.5]
Ecoli1	21	10	1	46	0.002	0.2208	1.094-5
Ecoli2	21	10	1	46	0.002	0.1958	3.233e-6
Yeast1	21	10	1	46	0.002	0.2343	5.309e-5
Yeast2	21	10	1	46	0.002	0.2189	1.987-5
Yeast3	21	10	1	46	0.002	0.2128	1.049e-5

B ROC Curves

The receiver operating characteristics (ROC) of the different methods are compared in Figure 5. Here, an ROC curve represents the trade-off between the true-positive rate (TPR) and the false-positive rate (FPR) achieved by a given method while inferring the underlying pairwise causal relationships.

 $\begin{tabular}{ll} \textbf{Figure 5.} & ROC \ Curves \ for \ Neural \ Methods \ on the \ DREAM-3 \ Datasets. \ Curves \ for \ the \ Methods \ other \ than \ NAVAR \ are \ Extracted \ from \ [15, Figure 7] \end{tabular}$