NDEX

Standa	rd	Section Rol	INc. 22	0701
School	/College	St	ibject	
SL NO	DATE	TITLE	PAGE NO	Digna
1.		Basic Python Perogram	0	Tha
2.		consent Recommendation	9	20
3.		Nenely	10	70
4		Dyrth Firest search	10	De
5.		A* Agorithus	LO	Mp
6 -		water jug prablem	10	Ma
7.		Dicision Tree	(0	20
8.		t means	10	X
9.		Artificial Numal	Lo	X
		Network		1
10-		MinMax	10	20
11.		Introduction to	0	The
	•	Prolog		
12.		Prolog- family tree	10	1
		completed		

```
PYTHON PROGRAMS:
1. Reverse the array:
     def neverse (start, end, and:
          while start cend:
             aus[start], aus [end] = aus [end], aus [start]
             Start+=1
             end -= 1
          outurn our
    if __ name __ == "_ main _-":
        au = [1,2,3,4,5,6,7]
         print (neverse (0,6,001))
  OUTPUT:
     [7, 6, 5, 4, 3, 2, 1]
 2. Monotonic
      def monotonic (aur, n):
         inc = True
         dec = True
         for i in nange (1,n):
            if auxio (avr[i-1]:
                 inc = False
            if aur[i] > aur[i-1].
                dec = False
            if ine or dec:
                 print ("monotonic")
            ilse:
                 print ("not monotonic")
      if _ name _ = "_ main _ ":
             aver = [6,5,4,2]
             n = len (ever)
DUTPUT:
             mongtonic (avor, n)
```

monot once

```
def is substring (51,52):
       M= len(Si)
        N = len (52)
        for i in mange (N-M+1):
           1:0
           while j>M and Sz[i+j] == si[j]:
               j+=1
            it j == M:
               Hervin True
       return false
    if -- name - = " -- main -- ".
       SI = "hello"
       52 : " world nello"
       print (issubstring (S1, S2))
 OUTPUT .
   True
4 Vowels count:
     def vowelscount (8):
          count = 0
           for i in s:
             it in 'aciou'.
                 count = count + 1
              return count
     if -- name -- = "__ main__":
         S = "gelk"
         ans = vowelscound(s)
        print (ans)
 OU TPUT:
```

2

3. Substring:

6 Largest (avin)

morn = avi [0]

for i in nange [1, n).

if avvi[i] > man:

morn = avi [i]

return man

[f = name = _"main = ":

avi = [10, 20, 50]

n = len (avi)

ans = largest (avi, n)

print ('tarquit = ", avi)

largest : 30

EX:02 N- Queens Problem det share-diagnol (xo, yo, x1, y1): dx = abs (xo - x1) dy = abs (40 - 41) netwen dy == dx def col-clashes (65, c): for i in mange (c): if snare-oliagnal (i, bs[i], c, bs[c]): networ True neturn False def nos-clashes (the-board): for col in range (1, len (the board)): if col-clashes (the board, col): neturn Truce neturn False def main(): import random ring = noundam. Random () bd = list (nange (P)) num-found = 0 truis = 0 result : [] while num found < 10; ring shuffle (bd) tours +=1 it not now-dashes (bd) and bd not in success. print ("Found solution gog in Eig tries.". · format (ba, tries)) tries = b rum-found +=1 result append (list (bd)) zwint nesult?

Code for DFS search: def dfs (graph, start, visited None): if visited is Nove: Vinited = Setl) Visited. add (start) print (start, end: " ") for neighbour in graph [start]: if neighbour not in visited des (grape, neighbour, visited) graph : 5 A': ['B', 'C'] B. [D, E.] ·c':['F'], D':[] E': ['F'] F':[] dfs (graph, 'A') output: ABDEF Result: Thus, the python program for implementing DES search algorithm was executed successfully.

KBR happy (rolanda). listenzmusic (mia). Listemanusic (yolanda): nayyy (yolanda). Plays Alnthu lantmia): - homen music (mia) plays Air (mu tar (volanda) · listens emissic (xorans. DUTPUT. ? - prays Air (mia) lrue ? - playstur (mitar (yolanda). true kB3. likes (dan, sally), likes (nally, dan). liker (john, brithney) mouried (x,y): like(x,y), likes(y,x). friends (x, y): - likes(x, x); likes(x,x) OUTPUT: ?- likes (dan, x) X= sally ? - married (dan, sally) true ? - married (john, buttoney) KB4. food (burger) ford (sandyoran) Feed (pizza) South lunch (naudwich) dinner (pizza) medi(x):- food(x).

loss, mal = model. evaluate (x test / test viviles a co.)
pount ("Mean Ausolute (rough on test disture", man a
y-pried = model. priedled (x test) me = mean squared account (x. 1223, 2p-120)

print ("Mean agrand Evior on his doin") men,

OUTPUT :

Mean Absolute Ever on Les data: 717-356384371843 Mean Squared Error on test date: 729649.360019725

RESULT: Thus, the program to implement ANIN for an application in requestion using pythou is incented successfully.

```
Ex: 04
Water Jug:
Perogram Code:
def fill-4-gallon (x, y, x-max, y-max):
    retwen (x-max,y)
def fill-3-gallon (x,y, 2-max, y-max):
    netwer (x, y-max)
 def empty-4-gallon (x, y, x-max, y-max):
    netwer (0, y)
 def empty-3-gallon (2, y, 2-max, y-max):
     return (x,0)
 def powt-4-to-3 (x,y, x-max, y-max):
     transfer = min (x, y, max, y)
     return (2 - transfer, y+transfer)
 def powr-3 to-4 (x, y, x-max, y-max):
      transfer = min (y, x-max - x)
      return ( at transfer, y-transfer)
def dfs_water-jug (x_max, y_max, goas-x, visited=None,
                    start = (0,0)):
     if visited is None:
         Visited = set()
         stack = [staru]
         white stack:
             state = stack. popl)
             x, y = state
             it state in visited:
               Continue
```

Vibited add (state)

return state

print (f" Groge reciched: Estate 3")

EXOB IMPLEMENTATION OF K-MEANS CLUSTER TECHNIQUE

To implement a k-means elustering. AIM: technique using pyrnon language

EXPLANATION;

- · Import & means from skeerin, cluster
- · Assign x and 4
- · call the function kmcount)
- · Perform scatter operation and display the output.

PROUTRAM:

From skleam. Wester import kneaus import numpy as no import matphollip pypiol as pet

x= np-aviay ([1,2], [1.5, 1.8], [5,8], [8,8], [1,66] [9,11], [8,2], [10,2], [9,3], [8,9], [0,3], [6,4]]

Kmians = KMions (n_uisters = 3)

kmeans. fit(x) centers = Kimians, cluster - centers -

raterls = kmeans. laterls-

pu. scatter (xfi, d), x[:,1], c=labels, any="16: marker=10/ salel = 1 Para points)

plt. seather [centure [:, 0], unders [:, 1], 5-200

(= but, marker='x', eabel='cluster centers pet title ("k-mans clustering")

pet. xladel ("x-anis")

pet. Ylabel ("Y-axis")

pet. regende)

pit mow()

EX:03 Algoritum import heapq class Node: def init (self, parent: None, position= Nonself parent parent self. position : position self- 9:0 self. h = 0 self of 0 def-eg- (self, other): return self position = other position def assar (mare, start, end): Start-node = Node (Node, Start) end-node = Node (None, end) open ust -[] closed-list [] open. list. append (start. node) while lenconen list) > 0: current_node = open_list[0] current_index 5 D for index them in enumerate (open-list). if item.f < current_node. +: covered_node = item Current-index = index open list pop (would index) (losed list append (corners_node) if avound node == end node: path : [] current = auvient_nade while current is not None: path agreed (would position) current : current parent orchwin path [::-1]

output: Found solution [5, 3, 1, 7, 4, 6, 0, 2] in 688 todas Found solution [5, 2, 6, 1, 7, 4, 0,3] in 421 tries [[5,3,1,7,4,6,0,2],[5,2,6,1,7,4,0,3]] this is the solution for 8 queen problem. - - - - Q . -. Q - -- - R - - - -· - - Q - - - -- - - - 2 -- 2 - - 2 - - - - Q -. Q Q ----- - a - - -. . Q . - . . . for 4 queens: found solution [1,3,0,2] in 7 trius found solution [2,0,3,1] in 32 tries

Result:

Thus, the python program for 8 queens and 4 queens problem was executed successfully

```
etistetren:[]
 for new-position in [(0,-1),(0,1),(-1,0),(1,0),(-1,-1),(-1,1),
   (1,-1), (1,1)]:
   nock-position = (womens_node.position[0]+
    new position[0], current_node.position[1] +
    new-position (17)
    if node-position[0]> (len (mare)-1) or node-position[0]
      <0 or node. position[1] > (len (maze [ len (maze)-1])-1)
     07
        continue
    if mare [node_position[0]][nod-position[1]]!=0:
        continue
    new_node = Node (worent_node, node_position)
     Children append (new node)
 for while in children:
     for closed third in closed-list:
        if child == closed_ child:
           continue
     unid g = current_node g +1
     United in = [[United position[0] - end node.position[0]) +)
      + ((wild.perition[1] - ind_node.position[1]) xx2)
     for open-node in open-list:
        if third == open node and child g > open node g:
            worth nece
     open_list.append (child)
olef main ():
   mare = [[0,0,0,0,1,0,0,0,0,0]
            [0,0,0,0,1,0,0.0,0,0]
            [0,0,0,0,1,0,0,0,0,0]
            [0,0,0,0,1,0,0,0,0,0]
            [0,0,0,0,1,0,0,0,0,0]
```

nent states = [fill-4-gallon (2, y, x-max, y-max, y-max, y-max, y-max, y-max, y-max, y-max, y-max),
empty-4-gallon (x, y, x-max, y-max),
empty-3-gallon (x, y, x-max, y-max),

for new states in new states:

if new state not in visited tack append (new state)

powry-to-3 (x, y, n-max, y-max),

pow1. 3+0.4 (x, y, x max, y. max)]

return wone

x_max = 4 y_max = 3

goal 2 = 2

dfs-water-jug (x-man, y-man, goal-x)

OUTPUT:

Visiting state: (0,0)
Visiting state: (0,3)

Visiting state: (3,0) Visiting state: (3,3)

visiting state (4,2)

Visiting state: (4,0) Visiting state: (1,3)

Viniting Mate: [1,0]

Visiting state: (4,1)

morning state: (2,3)

Visiting state: (2,3)

the puther program for water jug proster

[0,00,0,0,0,0,0,0,0] [0,0,0,0,1,0,0,0,0,0] [0,0,0,0,1,0,0,0,0,0,] [0.0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0,0]] start = 10,0) end = (7,6) path = astar (more, start, end print (path) 14 -- name -- = " -- main -- ":

output:

main!)

[(0,0),(1,1),(2,2),(3,3),(4,3),(5,4),(6,5),27,5

Result;

Thus, the python program for A* algorithm is verified and executed successfully

Exilynementation of Decision True classification Techniques

AIM:

To implement a decision tre classification technique for gender classification using python

EXPLANATION:

- · Import tree from skearin
- · call the function Decision Tree (lassifier () from
- · Assign Values for x and x
 - · Call the function predicting on the basics of giver nandom values you each given peature.
 - · Display the output.

PROGRAM:

from skleaver import viel

V - [[c = 150] [- - -] ...

X = [[5.8, 150], [5.2,130], [6.0,180], [5.4, 125], [5.9,160],

[6.1,110], [6.1,200], [5.3,140], [6.7,155], [6.2,210]] X = [1,0,1,0,1,0,10,1,1]

classifier = tree. Decision Tree (dossifier 1)

Sample -data = [55.5, 145]

prudiction = classifter. predict (sample-data)

gender = "Male" if prediction[0] == 1 else "Female"

print (f"The predicted gender for the injust {sample-data } is: ? gender?")

OUTPUT:

The predicted gender for the input [[5 5,145]] is: Funale

RESULT!

Thus, the program to imprement decision trace is executed successfully.

EX:07 IMPLEMENTATION OF ARTIFICIAL NEURAL. NETWORKS FOR APPLICATION IN RECORESSION

To implementing artificial neural networks for AIM: an application in Regression using Python.

PROGRAM!

import numpy as no prion tensoriflow. Keras, models import sequention from tensorgiono. Korors. layers import Dense from Skleaver. madel-selection invort train to from Skleam, preprocessing import standards from Sklearm metrics import mean requoued- some

np. srandom. seed (42)

X = np. nandom. grand [1000,3) + 10

y = x[:,0] * 300 + X[:,1] * 500 + x[:,2] *100

+ 5000 + np. random. nanoun (1000) * 100

K-train, X+est, Y-train, X-test = train-testspuit (x, y, 1 est - size = 0, 2, nandom_ state = 40)

scalet = Standard Scalet ()

X-train = scaler . fit transform (x-train)

x-test = scaler, transform (x test)

model = Seguential ()

model. add (Deuse (by, injut. dim = x. shapet)

activation = 'rely('))

model. add (Dupse (32, activation = relais)

model-oold (punse(11))

model compile coptimites adown, lossimis, metrics = ['mae'])

inistory = model + fit (x train, x train, epische-115, batch_wite=32, volidation-split=0.2, verilox=1)

RESULT:

eluginos.

Seed of the

EK:08

AIM!

To have procost terminologies and write

ensil programs

TERMINOLOGIES:

Atomic terms our usually strings made 1. Atomic terms: up of tower- and uppercase letters, digit; and the underscore, starting with a convercase letter.

ex: dog ab-6-321

2. Vouriables

variables are strings of letters, digits, and the underscore, starting with a capital letter or an underscore.

EX: PO9 APPU-420

3. conground Terms:

compound terms are made up of a PETILO Wom and a number of arguments (PROLOG terms, i.e. atoms, numbers, variables or other composed terms) inclosed in parenthesis and superated by commas EX

is-bigger (elephant, x) f (9(x,-),7)

DU TPUT: ? - food (Pizza) truce ? - meal(x), lunch(x) x = saudwich 7 - dinner (sandwich) false KBS:

owns (jack, car (bmw)), owns (john, car (cherry)). owns (olivia, con(civic)). owns (Jane, car (envy)). Sidan (car (bmw)). sedan (car (cive)). + ruck (car (chary)).

OUTPUT:

? owns (john, x).

X= car (cherry).

? - owns (who, car (cherry)).

who=john

?- ownstion, -).

tome

? - orom (jame, x), Sedan(x).

false

? - owns() and, x), truck(x).

X- (ar (energ).

RESULT:

Thus the boisic program on proloca terminoligies are executed successfully.

4. Focts: A fact on a produced gathroom they in the begger-aminal (mas) Eige is beautiful. 5. Rules A rule couried of a heart's quelent, and a body to signence of predicates sequipled by comman). EX is_smallet(Y, y): -b-bigger(YrX). auni (Arend, child) - sister (Aund Partent), porent (paren, child) SOURCE CODE: KBI: women (mia). woman (jody). Woman (yolanda). plays Air cruitar (jody). party. Query 1: ?- woman(ma). Gury 2: ? - plays Altomitan (mia). Query 3: ? - party Every 4: ? - corkerd OUTPUT: ?- woman(ma) true ?- playstioncourtanemica). false 1-party mue ? - tencent. ERROR UNKNOWN Providure concret to comit count not connected

AIM:

Process with all possible pacts, rules and queries.

CODE;

/* FACT::*/
male (peter).
male (john).

Male (duris).
Male (kwin).

female (betty). female (jenny).

female (risa).

parent of (unis, peter).

parent of (union, butty).

parent of (kurin, win).

parent of (kevin, lina).

parent of (jeny, john).
parent of (jeny, helen).

/* Rule: : * /

1 + son, parent + son, grandparent

· father (x,x):-male (Y), parent of (x, y)
mother (x,x):- female(y), parent of (x, y)

grangather (x,y):- male (y), parent of (x,z), parent of (z,y)grand mother (x,y):- female (y), parent of (x,z), free white (z,y)mother (x,y):- male (y), bather (x,z), for the (y,w), z=wlister (x,y):- female (y), takes (y,z), bather (y,w), z=w

output:

? parent of (kwin, x)

X= chuis

? father (x, christ

X= Kwin

? sister (x, wis)

bouse

BESULT:

Inst, the PROLOG program to ingrement and much the family tree was successfully completed.