STAT 201B: Probability

Feynman Liang* Department of Statistics, UC Berkeley

Last updated: January 23, 2020

Contents

1	Lecture 1: A high level overview11.1 What is a stochastic process?		
	1.2 Major classes of stochastic processes		
2	Lecture 2: Markov chains 4		
	2.1 Kolmogorov consistency		
	2.2 Markov chains		
1	Lecture 1: A high level overview	2020-01-21	
Instructor Jim Pitman, Evans 303			
Γε	ext Durrett's PTE, Version Jan 2019, https://services.math.duke.edu/~rtd/PTE/PTE5_011119.pdf		
Γα	Topics		

- Mainly chapters 5–9 of Durrett's
- Material from chapter 3 neglected in 205A
- Poisson processes
- Infinitely divisible and stable laws

We will start with Markov chains; read Chapter 5 of Durrett in next few weeks.

1.1 What is a stochastic process?

Answers

- Distribution with time
- Family of r.v.s indexed by some index set I, often I = time, space, space-time.
- \bullet Usually some structure on I
 - Metric space
 - $-I = \{1, \dots, n\} = [n]$ (Julia and MATLAB's choice)
 - * Sometimes $I = \{0, 1, ..., n\}$ (Python's choice), be careful
 - Semi-group: $i, j \in I \Rightarrow i + j \in I$
 - * Sometimes want a group, e.g. $I = \mathbb{Z}$
- A random function $I \to \text{(some space)}$

^{*}feynman@berkeley.edu

Let's unpack that last answer a bit more. Here and elsewhere, let $(\Omega, \mathcal{F}, \Pr)$ be a (background) probability space. For fixed $\omega \in \Omega$, the **sample path** $(X_i(\omega), i \in I)$ is a deterministic function from I to some space. To define a random function taking values in the sample paths, we must be ensure that

$$\Omega \ni \omega \mapsto (X_i(\omega), i \in I)$$

is measurable.

{fig:1-21-1}

Figure 1: One sample path $(B_t(\omega))_{t\in I}$

Example 1

Let I = [n] and suppose $(X_i, i \in I)$ are real-valued. Is $\Pr(X_i, i \in I \text{ is increasing}) = \Pr(X_1 \leq \cdots \leq X_n)$ the Pr of a measurable set?

Notice

$$\Pr(X_1 \le \dots \le X_n) = \Pr(X_{i+1} - X_i \ge 0, i \in [n-1])$$

$$= \Pr\left(\bigcap_{i \in [n-1]} \underbrace{\{X_{i+1} - X_i \ge 0\}}_{=:E_i}\right)$$

Why is E_i measurable? E_i is the preimage of $[0, \infty)$ under $\omega \mapsto X_2(\omega) - X_1(\omega)$, so it suffices to show measurability of this function. But this is true because the subtraction function $(x, y) \mapsto y - x$ is measurable (because it is continuous) and composition of measurable functions remain measurable.

 $\{fig: 1-21-2\}$

Figure 2: $\omega \mapsto X_2(\omega) - X_1(\omega)$ can be written as a composition of two measurable functions

For yet another viewpoint, consider the first half of the composition from the previous example and notice that the pair of r.v.s (X_1, X_2) induces a product σ -algebra $\mathcal{F}_1 \otimes \mathcal{F}_2$ generated by sets of the form

$$F_1 \times F_2 = \{(x_1, x_2) : x_i \in F_i\} \tag{1}$$

for $F_i \in \mathcal{F}_i$ i.e. $X_i^{-1}(F_i) \in \mathcal{F}$. This is a very convenient generating set since (due to closure under intersection of σ -fields \mathcal{F}_i) it is closed under intersection and hence a π -system, enabling the use of Dynkin's π - λ theorem (taking the λ -system to be all subsets where two candidate distributions agree) to conclude the uniqueness of the distribution on the product space $\mathcal{F}_1 \otimes \mathcal{F}_2$. In this view, a stochastic process can be viewed as the unique measure on the product space $\prod_{i \in I} \operatorname{supp} X_i$.

In conclusion, we have seen that a stochastic process can be viewed as:

- A large collection of r.v.'s $(X_i, i \in I)$
- (With suitable formalism) a random function $\omega \mapsto (X_i(\omega), i \in I)$ from Ω to the product space $\prod_{i \in I} \operatorname{supp} X_i$
- The (unique) probability measure (aka law) of the random function on the product space (or a suitable subset, e.g. continuous functions $\subset \{f : \mathbb{R} \to \mathbb{R}\}\)$
 - This is an example of the **push-forward** of Pr under $\omega \mapsto (X_i(\omega), i \in I)$, which induces a probability measure on the product space
 - This allows us to forget about the background probability space $(\Omega, \mathcal{F}, \Pr)$. Instead, take Ω to be the product space, \mathcal{F} the product σ -fields, and \Pr the law of the push-forward measure.

Important advanced idea (French idea — Meyer & school late 1960s): You should think of the bivariate function $(\omega, i) \mapsto X(\omega, i)$ as the stochastic process.

1.2 Major classes of stochastic processes

- 1. IID model, $(X_i, i \in I)$ are IID; law is product of identical probability laws.
- 2. Independent, not necessarily identical; law is product of various probability laws. Notice there's no problem if the laws are defined with respect to different σ -fields.
- 3. Sums of IID or independent non-identically distributed; random walks with independent increments $S_n = \sum_{i=1}^n X_i$
- 4. Martingales; centering the X_i in the previous example (i.e. $\mathbb{E}X_i = 0$) makes S_n a martingale.

Recall that a filtration is an ascending chain of σ -algebras $\mathcal{F}_n \uparrow \mathcal{F}$. For absolutely integrable random variable X, the conditional expectation (with respect to \mathcal{F}_n) is the (almost surely) unique random variable $X_n = \mathbb{E}[X \mid \mathcal{F}_n]$ which integrates like X over \mathcal{F}_n (important slogan), i.e.

$$\mathbb{E}[Y_n X_n] = \mathbb{E}[Y_n X]$$

is true for all Y_n that are \mathcal{F}_n -measurable (and for which the above makes sense i.e. remains integrable).

 (M_n, \mathcal{F}_n) is a martingale $\Leftrightarrow \mathbb{E}|M_n| < \infty, M_n \in \mathcal{F}_n$, and $\mathbb{E}[M_{n+1} \mid \mathcal{F}_n] = M_n$. Iterating, we have for all i < j we have $\mathbb{E}_{\mathcal{F}_i} M_j = \mathbb{E}[M_j \mid \mathcal{F}_i] = M_i$

The notation $\mathbb{E}_{\mathcal{F}_i}$ for conditional expectation is used to suggest viewing $\mathbb{E}_{\mathcal{F}_i}$ as an operator $L^1(\Omega, \mathcal{F}, \Pr) \to L^1(\Omega, \mathcal{F}, \Pr)$. In fact, $\mathbb{E}_{\mathcal{G}}$ is a partial averaging operator:

$$\mathcal{G} \subset \mathcal{H} \Rightarrow \mathbb{E}_{\mathcal{G}}\mathbb{E}_{\mathcal{H}} = \mathbb{E}_{\mathcal{G}} = \mathbb{E}_{\mathcal{H}}\mathbb{E}_{\mathcal{G}}$$

As a consequence, $\mathbb{E}_{\mathcal{G}}$ is a projection: $\mathbb{E}_{\mathcal{G}}\mathbb{E}_{\mathcal{G}} = \mathbb{E}_{\mathcal{G}}$.

5. Markov Chains / processes; "chain" usually implies either the state space S or time set I is discrete, whereas process often implies at least one (often both) I and S are continuous (often intervals).

The key idea for definition of a Markov Process is conditional independence (worth understanding in detail). Abstractly, discrete r.v.s (X, Y, Z) taking values in (S_X, S_Y, S_Z) respectively is a

Markov triple iff X and Z are conditionally independent given Y, written $X \perp Z$ means:

- (a) $\Pr[X=x,Z=z\mid Y=y]=\Pr[X=x\mid Y=y]\Pr[Z=z\mid Y=y]$ for all x,y,z such that this makes some
- (b) $\Pr[Z = z \mid X = x, Y = y] = \Pr[Z = z \mid Y = y]$
- (c) $Pr[X = x \mid Z = z, Y = y] = Pr[X = x \mid Y = y]$
- 6. Brownian motion
- 7. Stationary processes (exchangeable)
- 8. Gaussian processes

Figure 3: The conditional expectation $\phi(x) = \mathbb{E}[Z(X,Y) \mid X=x]$ can be viewed as a function of x partially averages over Y to return $\phi(x) = \mathbb{E}[Z(x,Y)]$

9. Lévy processes

{fig:1-21-3}

2 Lecture 2: Markov chains

2020-01-22

2.1 Kolmogorov consistency

A crucial tool for proving existence of section chastic processes is **Kolmogorov's consistency Theorem**. Suppose we want to make a stochastic process

$$(X_i, i \in I), X_i \in \mathbb{R}$$

perhaps using a large index set I.

Observe that for every $F \subset I$, $|F| < \infty$, the law of $(X_i, i \in I)$, presuming it exists on $\prod_I \mathbb{R}$, induces a joint law on $(X_i, i \in F)$.

 $\Pr(\wedge_{j=1}^n X_{i_j} \leq x_i)$ is known from $\prod_I \mathbb{R}$, and this is the CDF of something on \mathbb{R}^n . Hence, the law of $(X_i, i \in F)$ is a probability measure on $\mathbb{R}^{|F|}$. The law on $\mathbb{R}^{|F|}$ and the law on $\prod_I \mathbb{R}$ are related: **they must be consistent!** A joint law on (X_1, X_2) implies laws for X_1 and X_2 obtained by projection (i.e. marginalization).

More generally, if $F \subset G$ then the law of $X_F := (X_i, i \in F)$ must be the projection of the law of X_G .

Definition 2

A collection of joint laws of X_F on $\mathbb{R}^{|F|}$ for each $F \subset I$ finite is **consistent** if it satisfies the above.

Theorem 3 (Kolmogorov)

For every consistent collection of finite dimensional distributions (FDDs), there exists a unique probability law on $(\mathbb{R}^I, \otimes_{i \in I} \mathcal{B})$ with these prescribed FDDs.

Remark 4. We hardly ever use it, because in nearly all interesting cases it is obvious how to construct $(X_i, i \in I)$ once you know the FDDs.

Remark 5. Unless I is countable, there is a serious issue that too few sets in \mathbb{R}^I are measurable for us to care about this product construction.

Exercise 6. Show that every measurable set in \mathbb{R}^I is generated by some countable set of coordinates: $B \subset \mathbb{R}^I$ in product σ -field, then $B \in (X_{i_1}, X_{i_2}, \ldots)$ for some sequence i_1, i_2, \ldots

As a result, with I = [0, 1] the set of continuous paths is not measurable!

Example 7 (Continuum of IID r.v.s)

Given any consistent family of FDDs, we can construct an infinite sequence of IIDs (X_i) with any prescribed law F.

we can construct infintely many IID uniforms on [0,1] by setting $U_1 = \sum_{i\geq 1}^{\infty} X_i(\omega) 2^{-n}$. We can construct infintely many IID uniforms on [0,1] by setting $U_1 = \sum_{i\geq 1} X_{2^i} 2^{-i}$, $U_2 = \sum_{i\geq 1} X_{3^i} 2^{-i}$, continuing with other powers of primes to maintain independence. Then use inverse CDF to construct arbitrary law.

{sub:Markov⊔ chains}

2.2 Markov chains

Let (S, S) be the **state space**, sometimes abstract. If S is countable, we will always take $S = 2^S$.

Good to know what works easily for (S, \mathcal{S}) .

Start with a general definition.

Definition 8 (Markov transition function)

Let (S_1, S_1) and (S_2, S_2) be two probability spaces. P is called a Markov transition function kernel if

$$P: S_1 \times \mathcal{S}_2 \to [0, 1]$$

satisfying

- 1. For all $x \in S_1$, $A \mapsto P(x, A)$ is a probability measure on (S_2, S_2) .
- 2. For fixed $A \in \mathcal{S}_2$, $x \mapsto P(x, A)$ is \mathcal{S}_1 -measurable.

Usually $S_2 = \sigma(C_2)$ for some π -system C_2 (closed under intersection), so we only need to check measurability of $x \mapsto P(x,A)$ for $A \in \mathcal{C}_2$. This is because (assuming 1.) $\{A: x \mapsto P(x,A) \text{ measurable}\}$ is a λ -system containing π -system C_2 , apply Dynkin π - λ .

Theorem 9

Let λ be a probability distribution on (S_1, \mathcal{S}_1) and $P(\cdot, \cdot)$ a transition function for $(S_1, \mathcal{S}_1) \to (S_2, \mathcal{S}_2)$. Then $\exists!$ joint law of (X_1, X_2) on $(S_1 \times S_2, S_1 \otimes S_2)$ such that

$$X_1 \sim \lambda$$
$$X_2 \mid X_1 = x \sim P(x, \cdot)$$

{thm:fubini}

Theorem 10 (Fubini)

$$\mathbb{E}g(X_1, X_2) = \int_{S_1} \int_{S_2} g(x_1, x_2) \underbrace{\Pr(X_1 \in dx_1)}_{\lambda(dx_1)} \underbrace{\Pr(X_2 \in dx_2 \mid X_1 = x_1)}_{P(x_1, dx_2)}$$

for every product measurable q which is either bounded, non-negative, or absolutely integrable.

Exercise 11. $\mathbb{E}[g(X_1, X_2) \mid X_1] = \psi_q(X_1)$ where $\psi_q(x) = ??$

Proof. Key idea: make the joint law on $(S_1 \times S_2, S_1 \times S_2)$ first. Construct measure on product space, X_1 and X_2 are the coordinates.

Define

$$I(g) = \int_{S_1} \lambda(dx_1) \int_{S_2} g(x_1, x_2) P(x_1, dx_2)$$

Potential issues with I(q):

- Is it defined? Try $g(x_1, x_2) = f(x_1)h(x_2)$ for $f \in m(\mathcal{S}_1)$ and $h \in m(\mathcal{S}_2)$.
- Must check the second integral is S_1 -measurable
- OK because take $f = \mathbb{1}_A$, $h = \mathbb{1}_B$.

 $g \mapsto I(g)$ is linear, bounded, non-negative, monotone. What is it's measure? Take $g = \mathbb{1}_C$ for $C \in \mathcal{S}_1 \otimes \mathcal{S}_2$ and use monotonicity of the two integrals in I along with monotone convergence theorem.

Hence, $C \mapsto I(\mathbb{1}_C)$ is a probability measure on the product space satisfying the desired goals.

Remark 12. This is only abstract measure theory. If we were in say \mathbb{R}^2 , we could appeal to Riesz representation theorem.

How?

Flipping the transition kernel

There is no universal Bayes theorem for inverting laws (X_1) , CD of $(X_2 \mid X_1) \leftrightarrow \text{law } (X_2)$, CD of $(X_1 \mid X_2)$

$$\Pr[X_2 \in A] = \int \Pr[X_1 \in dx_1] \underbrace{\Pr(X_2 \in A \mid X_1 = x)}_{P(x,A)}$$

Only if we assume densities relative to a product measure, a great in genuity can gen flip general Markovian P to get a \tilde{P} .

In the discrete case, these are a matrix and vector:

$$P = (P(x, \{y\}), x \in S_1, y \in S_2)$$
(2)

$$\lambda = (\lambda(x), x \in S) \tag{3}$$

$$\lambda(x) = \Pr(X_1 = x) \tag{4}$$

$$Pr(X_2 = y) = \sum_{x} \lambda(x) P(x, y) = (\lambda P)(y)$$
(5)

$$\Pr(X_1 = x \mid X_2 = y) = \frac{\lambda(x, y)P(x, y)}{(\lambda P)(y)}$$
(6)

for all $y:(\lambda P)(y)>0$.

More generally, let λ be the initial distribution of X_1 , P a transition kernel $X_1 \to X_2$, and $f \ge 0$ nonnegative measurable.

$$\mathbb{E}f(X_2) = \int_{S_1} \lambda(dx)(Pf)(x) = \int_{S_2} (\lambda P)(dy)f(y)$$
$$Pf(x) = \int_{S_2} P(x, dy)f(y)$$
$$(\lambda P)(A) = \int_{S_1} \lambda(dx)P(x, A)$$

Notice $\lambda \mapsto \lambda P$ and $f \mapsto Pf$ have excellent and obvious properties as operators on probability measures.

Example 13

If
$$f \ge 0$$
, then $Pf \ge 0$.
If $0 \le f_n \uparrow f$, then $0 \le Pf_n \uparrow Pf$.

If S_1 and S_2 are finite, then we are doing matrix algebra whree P is a $S_1 \times S_2$ stochastic matrix and λP is the action of P on a row vector λ (distributions over states, measures more generally) and Pf the action on a column vector f (observables over states, non-negative functions more generally).

Now consider $S_1 = S_2$ countable.

Definition 14

Say (X_n) is a Markov chain with initial distribution λ and stationary transition matrix P if

$$\Pr[X_0 = x_0, \dots, X_n = x_n] = \lambda(x_0) \prod_{i=1}^n P(x_{i-1}, x_i)$$