Sprawozdanie z projektu pierwszego - Struktury Baz Danych

Piotr Sieński

4 grudnia 2022

1 Opis projektu

1.1 Typ rekordów

Wylosowanym typem rekordów sa walce o danym promieniu podstawy i wysokości sortowane według objetości.

1.2 Zastosowana metoda

Do realizacji zadania wykorzystana została metoda sortowania polifazowego (fibonacciego) na 3 taśmach.

1.3 Specyfikacja formatu pliku testowego

Serializacja rekordów przeprowadzana jest za pomoca modułu json jezyka Python. Zakłada sie że w każdej linii pliku testowego znajduje sie opis jednego rekordu w formacie json, tzn.

```
{"radius": promień podstawy, "height": wysokość}
```

gdzie promień podstawy i wysokość sa liczbami zmiennoprzecinkowymi. Przykładowa zawartość pliku zawierajacego dwa rekordy o promieniach podstawy 1 i wysokościach 1 i 3 :

```
{"radius": 1, "height": 1} {"radius": 1, "height": 3}
```

2 Sposób prezentacji wyników działania programu

2.1 Uruchomienie programu

W celu uruchomienia programu należy wykonać poniższa komende w folderze, gdzie znajduje sie plik main.py

python main.py

2.2 Opcje generowania rekordów

Istnieja 3 możliwości na podanie danych wejściowych do programu, po starcie należy wybrać jedna z nich po pojawieniu sie nastepujacego komunikatu:

```
Type "lf" to load whole file, "gr" to generate file with random records, "lr" to read records from STDIN "q" to quit
```

2.2.1 Ładowanie wcześniej przygotowanego pliku

Po wybraniu opcji "lf" czyli ładowania przygotowanego wcześniej pliku należy podać ścieżke do pliku zawierajacego rekordy podane w odpowiednim formacie (opisanym w punkcie 1.3)

2.2.2 Generowanie losowego pliku

Po wybraniu opcji "gr"czyli generowania pliku z losowymi rekordami należy podać liczbe rekordów do wylosowania. Wylosowane wartości pól rekordów należeć beda do przedziału (0, 1)

2.2.3 Generowanie nowego pliku rekord po rekordzie

Po wybraniu opcji "lr" wyświetli sie nastepujacy komunikat :

```
Type "l" to load single record from STDIN, "r" to add random_record, "s" to save, "q" to quit
```

Dopóki użytkownik nie wybierze opcji "s" możliwe bedzie wybranie opcji "r", czyli dodania pojedyńczego rekordu o losowej wartości oraz opcji "l", czyli dodanie rekordu o podanej wartości.

2.3 Etap sortowania

Po wygenerowaniu lub załadowaniu pliku z rekordami zostana one wyświetlone oraz możliwe bedzie wybranie czy miedzy fazami sortowania wyświetlane beda informacje na temat liczby odczytów / zapisów i zawartości taśm. Przykładowe wyjście przed rozpoczeciem sortowania:

LOADED FILE:

```
Right circular cylinder — base radius: 0.66, height: 0.33, volume: 0.46 Right circular cylinder — base radius: 0.65, height: 0.95, volume: 1.25 Right circular cylinder — base radius: 0.70, height: 0.76, volume: 1.16 Run in verbose mode? (y/n)
```

Jeśli wybrana zostanie opcja verbose = n, od razu zostanie wyświetlona liczba serii na pliku wejściowym, liczba faz sortowania, liczba odczytów (łacznie z odczytami z pliku wejściowego) i zapisów oraz posortowany plik:

```
Initial runs: 2  
File sorted in 1 phases  
WRITES: 3 + \text{READS}: 3 = 6  
Right circular cylinder — base radius: 0.66, height: 0.33, volume: 0.46  
Right circular cylinder — base radius: 0.70, height: 0.76, volume: 1.16  
Right circular cylinder — base radius: 0.65, height: 0.95, volume: 1.25
```

Jeśli wybrana zostanie opcja verbose = t, dodatkowo po każdej z faz sortowania (włacznie z etapem dystrybucji) wyświetlona zostanie zawartość każdej z taśm wraz z liczba serii na taśmie i liczba odczytów / zapisów z / do pliku przypisanego do taśmy

```
AFTER PHASE: 0
Tape0:
RUNS: 1, DUMMY RUNS: 0
WRITES: 1, READS: 0
Right circular cylinder — base radius: 0.66, height: 0.33, volume: 0.46
Right circular cylinder — base radius: 0.70, height: 0.76, volume: 1.16
Right circular cylinder — base radius: 0.65, height: 0.95, volume: 1.25
Tape1:
RUNS: 0, DUMMY RUNS: 0
WRITES: 1, READS: 1
Tape2:
RUNS: 0, DUMMY RUNS: 0
WRITES: 1, READS: 1
```

3 Eksperyment

Eksperyment polega na porównaniu wartości teoretycznych liczby faz sortowania i ilości operacji dyskowych z wartościami uzyskanymi podczas sortowania. Wartość teoretyczna liczby faz p w zależności od liczby serii w pliku wejściowym r można wyznaczyć jako $p=1.45\cdot\log_2 r$, a ilość operacji dyskowych o w zależności od liczby rekordów N, liczby serii r i ilości rekordów na blok pamieci b jako $o=\frac{2N}{b}(1.04\cdot\log_2 r+1)$. Obliczone według powyższych wzorów wartości zestawione zostały z realnymi wartościami dla losowo wygenerowanych plików zawierajacych n rekordów dla $n\in\{8,16,32,\dots 8192\}$ i b=5. Poniższy wykres i tabela przedstawiaja wyniki eksperymentu.

N	8	16	32	64	128	256	512	1024	2048	4096	8192
O_R	17	34	77	167	406	874	2002	4319	9799	20761	44281
O_T	9.85	25.08	63.48	154.93	364.43	853.75	1895.24	4237.42	9337.67	20385.29	44216.66
P_R	3	4	6	7	9	10	12	13	15	16	17
P_T	2.9	4.07	5.52	7.04	8.52	10.23	11.50	13.02	14.49	15.95	17.41

 O_R, O_T - liczba operacji rzeczywista i teoretyczna, P_R, P_T - ilość faz, N - ilość rekordów

Jak widać wartości sa bardzo podobne i dla wiekszych N różnice sa coraz mniejsze. Lekkie rozbieżności moga wynikać z faktu, że przybliżenie bierze pod uwage sklejajace sie serie, które moga wystepować z różna czestotliwościa.