

Discrete Mathematics

Jidong Yuan yuanjd@bjtu.edu.cn SD 404

Algebraic Structure

- Outline:
- Introduction to Algebraic Structure
- Semigroup and Monoid
- Group and Subgroup
- Abelian Group, Cyclic Group and Permutation Group
- Coset
- Ring and Field
- Lattice
- Boolean algebra

Review

- Algebraic system <A, °>
 - ✓3 properties
 - Closure
 - Commutativity
 - Associativity
 - √3 constants
 - Identity
 - Zero
 - □Inverse

- √ 7 special algebraic systems
 - ■Semigroup
 - Monoid
 - □Group
 - □ Abelian Group
 - □Cyclic Group
 - ☐Permutation Group
 - Coset
- ✓ 2 relations
 - Homomorphism
 - □ Isomorphism

Ring

Definition:

- •Let $\langle S, \triangle, * \rangle$ be a algebraic system with two binary operations. $\langle S, \triangle, * \rangle$ is said to be a **Ring** if the following conditions are satisfied.
- (1) $\langle S, \triangle \rangle$ is an Abelian group.
- (2) $\langle S, * \rangle$ is a semigroup.
- (3) * is distributive over \triangle .
- Distributive property

Let \triangle and * are binary operations defined on set S, for $\forall a, b, c$, if

$$a*(b \triangle c)=(a*b) \triangle (a*c)$$
 and $(b \triangle c)*a=(b*a) \triangle (c*a)$

Then * is distributive over \triangle .

Ring Cont.

Example:

• Determine whether $\langle \mathbf{R}, +, \cdot \rangle$ is a ring or not.

- •Let <*S*, \triangle , *> be a ring,
- ✓ if * is communitive, then $\langle S, \triangle, * \rangle$ is a **communitive ring**.
- ✓ if $\langle S, * \rangle$ has a identity (monoid), then $\langle S, \triangle, * \rangle$ is a **ring with identity**.

•**Z**_n={[0], [1], [2], [3],...,[n-1]}, define [a] + [b] = [a + b], [a] • [b] = [a • b]. Show that $\langle \mathbf{Z}_n, +, \cdot \rangle$ is a communitive ring with identity.

Let <A, \triangle , *> be a ring, e be the identity of <A, $\triangle>$, a^{-1} denotes the inverse of a on <A, $\triangle>$. For $\forall a,b,c\in A$, show that

$$(1) a * e = e * a = e$$

(2)
$$a * b^{-1} = a^{-1} * b = (a * b)^{-1}$$

Example 2 Cont.

Let <A, \triangle , *> be a ring, e be the identity of <A, $\triangle>$, a^{-1} denotes the inverse of a on <A, $\triangle>$. For $\forall a, b, c \in A$, show that

(3)
$$a^{-1} * b^{-1} = a * b$$

Field

Definition:

- •Let $\langle S, \triangle, * \rangle$ be an algebraic system with two binary operations. $\langle S, \triangle, * \rangle$ is said to be a **Field** if the following conditions are satisfied.
- (1) $\langle S, \triangle \rangle$ is an Abelian group.
- (2) $\langle S \{\theta\} \rangle$, *> is an Abelian group.
- (3) * is distributive over \triangle .

Example:

- ●<**R**, +, •>
- <**Z**, +, ⋅>

• Let $\langle A, +, \cdot \rangle$ be a algebraic system, A are the following sets:

(1)
$$A = \{x \mid x \ge 0, x \in \mathbf{Z}\}$$

(2)
$$A = \{x \mid x = a/b, a, b \in \mathbb{Z}^+, a \neq b\}$$

(3)
$$A = \{x \mid x = a + b\sqrt{3}, a, b \in \mathbf{Q}\}$$

• Is ring $\langle \mathbf{Z}_4, +, \cdot \rangle$ a field? What about $\langle \mathbf{Z}_5, +, \cdot \rangle$?

•Ring $\langle \mathbf{Z}_n, +, \cdot \rangle$ is a field when n is a prime number.

