Differentiation Rules

Julia: Hmm...I don't think differentiation rules, it takes so long and I hate using that long limit definition!

Dylan: No no Julia, it's differentiation rules!

Julia: Ohhhh, that makes more sense!

The Power Rule

Julia: I hate how long it takes to differentiate powers!

Dylan: Yeah, it takes forever! I feel like there was some sort of pattern to it though. I couldn't figure anything out though.

James: Sounds like you guys need my help again?

Julia and Dylan: Help us James!

James: There is a pattern! Check out this table I made!

$$\begin{array}{c|c}
f(x) & f'(x) \\
\hline
x^2 & 2x^1 \\
x^3 & 3x^2 \\
x^4 & 4x^3
\end{array}$$

Question 1 What pattern do you notice in James' table? Generalize this pattern in terms of x^n

Free Response: This is the model solution

Question 2
$$\frac{\partial}{\partial x}x^n$$
) = $\boxed{n*x^n-1}$

Question 3 Using the limit definition of a derivative, compute the derivative for x^5 , did you get the same answer as you would using the pattern you generalized above?

Free Response: This is the model solution

The Constant Rule

Dylan: Wow! That's neat!

Julia: I wish we could use rules like this all over the place though, it would really save me time.

James: There are plenty of places with rules like this! Why don't we look at a function like y = 3?

Consider y = c, where c is some arbitrary constant.

Question 4 Derive this function using the limit definition. What does your answer mean?

Free Response: This is the model solution

Question 5 Using what you found in the previous problem, compute the following derivatives:

- (a) f(x) = 2
- (b) f(x) = 100
- (c) f(x) = 0

Free Response: This is the model solution

Free Response: This is the model solution

Free Response: This is the model solution

The Constant Multiple Rule

Julia: James! Show us more! These things are going to save me so much time on my homework!

James: Alright alright, calm down Julia. We can look at a function like y = 3x next.

Consider y = kx, where k is some arbitrary constant.

Question 6

Derive this function using the limit definition. What does your answer mean?

Free Response: This is the model solution

Question 7

Using what you found in the previous problem, compute the following derivatives:

$$f(x) = 4x$$

$$f(x) = 10x$$

$$f(x) = \frac{1}{5}x$$

Free Response: This is the model solution

The Sum and Difference Rules

Dylan: Wow, this stuff is awesome! Is there any way to put it all together? Like, is there an easy way to tell what the derivative of f(x) = 3x + 4 is?

James: There is Dylan!

Consider the differentiable functions f(x) and g(x). We will define a function j(x) = f(x) + g(x).

- (a) Take the derivative of j(x) using the limit definition. What does your answer mean? Hint: In j(x+h), the (x+h) will replace x in the component functions as well.
- (b) Using what you found in the previous problem, compute the following derivatives:

(i)
$$f(x) = 3x^2 - 5x + 2$$
, $g(x) = x^2 + 3x$

(ii)
$$f(x) = x^2 - 4x + 2$$
, $g(x) = -4x^2 + 3$

(iii)
$$f(x) = 5x^3 + 3x$$
, $q(x) = 2x^2 - 13x$

(c) Julia wonders if a similar rule exists for j(x) = f(x) - g(x). Using the limit definition of derivative, determine if there is a pattern. Then, if there is a rule, use it to solve the 1a, 1b, and 1c. If there is not, do them using the limit definition.

3

In Summary

We've covered a lot of differentiation rules in this lab, to help you out we've made the following table.

Power Rule	$\frac{d}{dx}(x^n) = n * x^{(n-1)}, \text{where } n \text{ is any real number}$ besides 0.
Constant Rule	$\frac{d}{dx}(c) = 0$
Constant Multiple Rule	$\frac{d}{dx}(cf(x)) = c\frac{d}{dx}f(x)$
Sum Rule	$\frac{d}{dx}(f(x) + g(x)) = \frac{d}{dx}f(x) + \frac{d}{dx}g(x)$
Difference Rule	$\frac{d}{dx}(f(x) - g(x)) = \frac{d}{dx}f(x) - \frac{d}{dx}g(x)$