Weekly Progress Report

Jan 03rd - Jan 07th, 2022

Presented by Yannis (Yiming) He 84189287

Noah's Ark | Autonomous Driving Lab LiDAR Domain Adaptation

Manager: Bingbing Liu 00435285 Supervisor: Eduardo Corral Soto 00407762

Weekly Summary

- Done:

- Experiments on clean once,m2 datasets with densified pointcloud (different densification subsampling)
- MFD parameter experiment (optimize the hyper-parameters)
 - M2 Finetunne_Learning Rate (FTLR)= 3e-5, 3e-4, 3e-3

- In Progress:

- Merging densified once objects with original m2 objects for m2 fine-tuning (avoid forgetting source domain features)

- **TODO**:

- Incorporate Mrigank's DSBN
- MFD range experiment
 - No need to densified nearby object. Only densify far-away objects

Work Logs

- Jan 03 (Monday): Holiday
- Jan 04 (Tuesday):
 - Recall Experiment Plans

#	Train	Finetune	Eval	
Baseline				
1,2,3	Cleaned once_1220_sub 2,3,4 with MPPV = 8	Cleaned m2_0928	Cleaned m2_0928	
Parameter Tuning: LR				
4,5,6,7	Cleaned once_1220_sub_best with MPPV = 8	Cleaned m2_0928, lr = 3e-3,4,5,6	Cleaned m2_0928	
Parameter Tuning:				

Experiments on clean once,m2 datasets with densified pointcloud (different densification subsampling)

Experiment Variable: Density of the Densification

- recall

Conclusion:

- Sub4 has best performance among all densification
 - Closest density to the target domain (m2)
- Once_1220_sub4 will be used for further experiment

GREET 1225_3054_WILL VO_7566541_WILL_0525_GREAT_WILL		
Name	once:m2 mean#points ratio	
m2_0928_clean	1	
Once_1220_clean (original)	1.25	
once_1220_sub2	0.72	
once_1220_sub3	0.83	
once_1220_sub4	0.91	

Work Logs:

ONCE_clean Densification, Finetuned on m2_clean with different LR

Experiment Variable:

- LR: 3e-3, 3e-4, 3e-5, 3e-6

Conclusion:

- lr = 3e-4 has best performance
- Once_1220_sub4-FT_m2_lr3e-4 will be used for further experiment

Work Logs

- Jan 04 (Tuesday) (cont'):
 - Add baseline experiment:
 - once_1220_clean_MPPV5_oracle
 - once_1220_clean_MPPV5_73ep-FT_m2_0928_clean_lr_3e-4
- Jan 05-06 (Wed-Thursday)
 - Adding ONCE object to m2_finetuning to avoid forgetting source domain feature
 - Explanation:
 - During the fine-tuning process on target domain, the model starts forgetting source domain
 - → we want to add source samples in data augmentation of the fine-tuning process
 - Inspiration: adding Carla into M2 fine-tuning
 - \rightarrow i.e. add ONCE samples during fine-tuning on M2
 - Incorporating code base that "Merge Carla & M2 for augmentation" from Aich & Yang
 - Modify the codebase to work with ONCE densified data (in progress)
 - Experiment TODO:
 - Baseline experiment with default data augmentation sample group:
 - ['Car:5', 'Truck:9', 'Pedestrian:6', 'Cyclist:6']
 - Parameter tuning for optimal sample group:
 - Baseline experiment with default data augmentation sample group:
 - ['Car:?', 'Truck:?', 'Pedestrian:?', 'Cyclist:?']

End of January 07th, Weekly Report

Weekly Progress Report

Jan 10th - Jan 14th, 2022

Presented by Yannis (Yiming) He 84189287

Noah's Ark | Autonomous Driving Lab LiDAR Domain Adaptation

Manager: Bingbing Liu 00435285 Supervisor: Eduardo Corral Soto 00407762

Weekly Summary

- Done:

- Source Integration:
 - Merging densified once objects with original m2 objects for m2 fine-tuning (avoid forgetting source domain features)
 - Adapt the pipeline from Carla (3 channels) dataset to work with ONCE dataset (4 channels)
 - Parameter tuning: #object insertion: ['Car:a', 'Truck:b', 'Pedestrian:c', 'Cyclist:d']

- In Progress:

- Add visualization for 1. Before insertion, 2. After insertion, 3. Prediction result (in progress)
 - Find "good vs bad insertions" by analyzing loss after each insertion
 - Clean "bad" data for other classes (currently, only car point clouds are clean)

- **TODO**:

- Incorporate Mrigank's DSBN
- MFD range experiment
 - No need to densified nearby object. Only densify far-away objects

Experiment Setup:

- Adding source domain (ONCE_MFD_clean) object to the target domain (M2_clean) fine tuning
- avoid forgetting source domain features

Experiment Variable:

- With vs without source integration
 - Default #object insertion: ['Car:5', 'Truck:9', 'Pedestrian:6', 'Cyclist:6']

Conclusion:

- Source Integration (SI) improves performance even in default setting
- Major increase in the truck category

Next Step:

- Parameter tuning: #object insertion: ['Car:a', 'Truck:b', 'Pedestrian:c', 'Cyclist:d']

Experiment Setup:

- Recall: Tuning Hyper-parameters for Source Integration (recall: avoid forgetting source domain features)
- Since we have seen a Pedestrian AP drop, my hypothesis: "insert more pedestrian object could boost the performance"

Experiment Variable:

- Parameter tuning: #object insertion: ['Car:a', 'Truck:b', 'Pedestrian:c', 'Cyclist:d']

Conclusion:

- Reject the hypothesis: "simply insert more pedestrian would increase the AP of pedestrian"

Next Step:

- Start learning the reaction to object insertion for each class: ['Car:0', 'Truck:0', 'Pedestrian:0', 'Cyclist:0']
 - Tuning 1 class at a time

Truck AP R40@0.5, 0.5, 0.5

[Car:10, Truck:0, Pedestrian:0, Cyclist:0] [Car:0, Truck:10, Pedestrian:0, Cyclist:0] [Car:0, Truck:0, Pedestrian:10, Cyclist:0] [Car:0, Truck:0, Pedestrian:0, Cyclist:0]

Pedestrain AP R40@0.5, 0.25, 0.25

Cyclist AP R40@0.5, 0.25, 0.25

- Baseline: ['Car:0', 'Truck:0', 'Pedestrian:0', 'Cyclist:0']
- Add 10 to each class individually, i.e.

mAP

- ['Car:10', 'Truck:0', 'Pedestrian:0', 'Cyclist:0']

Car AP R40@0.7, 0.5, 0.5

- _
- ['Car:0', 'Truck:0', 'Pedestrian:0', 'Cyclist:1 0']

Conclusion:

- Increasing "car" class has the best return over all classes → since the dataset clean the "bad" car pointcloud
- Truck class has negative response to any classes' insertion

Next Step:

- Add visualization for 1. Before insertion, 2. After insertion, 3. Prediction result (in progress)
- Find "good vs bad insertions" by analyzing loss after each insertion
- Clean "bad" data for other classes (currently, only car point clouds are clean)

Appendix:

SI Hyperparameter Tuning absolute value

End of January 14th, Weekly Report

