Московский государственный технический университет им. Н. Э. Баумана

Курс «Технологии машинного обучения»

Отчёт по рубежному контролю №2

«Методы построения моделей машинного обучения.»

Вариант № 9

Выполнил:	Проверил:
Дувакин А.В.	Гапанюк Ю.Е
группа ИУ5-63Б	

Дата: 15.04.25 Дата:

Подпись: Подпись:

Задание:

Номер варианта: 9

Номер набора данных, указанного в задаче: 9

(https://www.kaggle.com/arindam235/startup-investments-crunchbase)

Метод №1: Дерево решений

Метод №2: Случайный лес

Ход выполнения:

файлы Подготовка датасета Удаление колонок • permalink, name, homepage_url, поскольку они носят информационных характер и не влияют на определение статуса компании • region, поскольку она избыточна для определения метоположения компании • founded_at , 'founded_quarter', 'founded_year'. Будем использовать значения из колонок founded_month • funding_total_usd, поскольку она содержит данные в некорректном формате • category list, поскольку она содержит список категорий, который тяжело обработать в рамках данной задачи [156] df = df.drop(['permalink', 'name', 'homepage_url', 'category_list', 'region', 'founded_at', 'founded_quarter', 'founded_year', 'funding_total_usd'], axis=1) Удаление пропусков Удалим все строки, содержащие null хотя бы в одной колонке [[157] df = df.dropna() (158] df.info() df.head() <- <class 'pandas.core.frame.DataFrame'> Index: 23217 entries, 0 to 49437 Data columns (total 30 columns): # Column Non-Null Count Dtype 23217 non-null object 23217 non-null float64 0 market 1 status status country_code state_code city funding_rounds founded_month first_funding_at last_funding_at seed venture 10 venture 11 equity_crowdfunding 12 undisclosed 13 convertible_note 14 debt_financing 15 angel 23217 non-null 23217 non-null print(Y_test.shape) (18572, 29) (4644, 29) (18572,) (4644,) Обучение моделей Дерево решений [171] clf = GridSearchCV(DecisionTreeClassifier(random_state=10, class_weight='balanced'), {'max_depth':range(3,40)}) clf.fit(X_train, Y_train) dt_clf = clf.best_estimator_ print(clf.best_score_, clf.best_params_) ⊕ 0.7813913380022918 {'max_depth': 35} Случайный лес [172] rf_clf = RandomForestClassifier(random_state=10, class_weight='balanced', n_jobs=-1) rf_clf.fit(X_train, Y_train) **⊕** RandomForestClassifier RandomForestClassifier(class_weight='balanced', n_jobs=-1, random_state=10) Оценка качества моделей

Метрики

Ассигасу (Точность) = (число правильно предсказанных классов) / (общее число объектов)

Precision для каждого класса — это отношение числа правильно классифицированных объектов данного класса к числу всех объектов, которые были предсказаны как принадлежащие этому классу.

Recall для каждого класса — это отношение числа правильно классифицированных объектов данного класса к числу всех SFAhjdv6izDi9Jc#scrollTo=_ | реально принадлежат этому классу.

print(tabulate(data, headers=headers, tablefmt="grid"))

7	Метрика \ модель	Дерево решений	Случайный лес
	accuracy	0.776	0.847
	precision	0.779	0.791
	recall	0.776	0.847
	f1	0.777	0.803

cm_dt = confusion_matrix(Y_test, y_pred_dt) cm_rf = confusion_matrix(Y_test, y_pred_rf)

fig, axes = plt.subplots(1, 2, figsize=(12, 4))

$$\label{disp1} \begin{split} & \text{disp1} = \text{ConfusionMatrixDisplay(confusion_matrix=cm_dt)} \\ & \text{disp1.plot(ax=axes[0], cmap=plt.cm.Blues, colorbar=False)} \\ & \text{axes[0].set_title('Дерево решений')} \end{split}$$

disp2 = ConfusionMatrixDisplay(confusion_matrix=cm_rf) disp2.plot(ax=axes[1], cmap=plt.cm.Blues, colorbar=False) axes[1].set_title('Cnyчайный лес')

<u></u> Техt(0.5, 1.0, 'Случайный лес')

