f(x) is continuous at x=c if $\forall \varepsilon>0$ $\exists \delta>0$ s.k. if $0<|x-c|<\delta$ \Rightarrow $|f(x)-f(c)|<\varepsilon$ Some time we are interested in case where f(x) is not defined If f(c) does not excist, we could still consider $\lim_{\lambda \to 0} f(\lambda) = L$ $\lim_{\lambda \to 0} f(\lambda) = L$ Worked example: $f(x) = \sqrt{x}$ has limit 2 as $x \rightarrow 4$. $\varepsilon=1$ How could we guarantee $2-1 < \sqrt{x} < 2+1$? Easy: we just need 1 < x < 9So we see that if 4-3 < x < 4+3 < 911 1x-4/3 then 2-1</2 < 2+1 8=3 What about E=0.01? 0-00001

Can we guarantee 1.99 < 5x < 2.01? As before: 3.966 < x < 4.040 So it 3.9601=4-0.0399 < x < 4+0.0399 < 4.040) it is ok. So if $\varepsilon = 0.01$ we can take $\delta = 0.0399$ $\sqrt{|x-4|} < 0.0399 \Rightarrow |\sqrt{x}-2| < 0.01$ General Prost Given any E>O, how can we governtee

| 151-2| < E (=) 2-E < 15C < 2+ E (=) 4-4E+E (x<4+4E+E) So take $5 = 4E - E^2$, so 4 - 5 < x < 4 + 5> 4-42+ €2 < 7 < 4+4 € - €2 < 4+4 € - €2 => 2-E </bc> That is, $\forall \varepsilon > 0$ we take $\delta = 4\varepsilon - \varepsilon^2$ ($\varepsilon \approx 2$) & then $|x-4| < \delta \Rightarrow |\sqrt{x} - 2| < \varepsilon$ [If $\varepsilon \gg 2$, take $\delta = 4\varepsilon$ check $|x-4| < 4 \Rightarrow |\sqrt{x} - 2| < 2$]

Given E>0, how to find 5>0, t. |2-4| <8 => |Tx-2| < E We could use $2|\pi-2| \leq |x-4| = |(x-2)(x+2)|$ 56 it we choose $\delta = 2\epsilon$ it works: $|x-4|<5 \Rightarrow 2|\sqrt{x}-2|\leq |x-4|<5=2\leq$ => \J5c-2 \ E Now we know lim 12 = 2 = 14 So vic is continuous at x = 4 We could repeat the proof (s) replacing 4, 2 to move him tre = TE so tre by c, TE.

What about the origin? New definition Left limits. lim f(5c) = L: Y270 78>0: O<>c- C< 8 => | F(6c)-L| < 8 lim f(x) = L: YE>0 35>0: O(c->(<8=>) | f(a)-L | < 8 Note: Lim f(sc) = L (=> both left & right limits are L funtinuous from left or right at x= < if bett or right limit = f(c). K.g. Vic is continuous from right at x=0. Proof?.