

PY32F071 数据手册

32 位 ARM® Cortex®-M0+ 微控制器

Puya Semiconductor (Shanghai) Co., Ltd

32 位 ARM® Cortex®-M0+ 微控制器

产品特性

- 内核
 - 32 位 ARM® Cortex® M0+
 - 最高 72 MHz 工作频率
- 存储器
 - 最大 128 K/ 96 K/ 64 K/ 32 Kbytes flash 存储
 - 最大 16 K/ 12 K/ 8 K/ 4 Kbytes SRAM
- 时钟系统
 - 一 外部高速晶振(HSE) 4~32 MHz
 - 外部低速晶振(LSE) 32.768 KHz
 - 一 内部 高速时钟(HSI) 4/8/16/22.12/24 MHz
 - 内部 低速时钟(LSI) 32.768 KHz
 - PLL 支持对 HSI 或 HSE 的 2 倍频及 3 倍频
- 电源管理和复位
 - 工作电压: 1.7 V ~ 5.5 V
 - 低功耗模式: Sleep 和 Stop
 - 上电/掉电复位 (POR/PDR)
 - 一 掉电检测复位 (BOR)
 - 一 可编程的电压检测 (PVD)
- 通用输入输出(I/O)
 - 一 多达 58 个 I/O,均可作为外部中断
 - 驱动电流 8 mA
- 7通道 DMA 控制器
- 1 x 12 位 ADC
 - 一 支持 最多 16 个外部输入通道
 - 輸入电压转换范围: 0 ~ Vcca
- 1 x 12 位 DAC, 支持 2 个通道
- 3路比较器

- 3路运算放大器
- 支持 8 * 36 / 4 * 40 LCD
- 13 个定时器
 - 1个16位高级控制定时器 (TIM1)
 - ─ 1 个 32 位通用定时器 (TIM2)
 - ─ 5个16位通用定时器(TIM3/14/15/16/17)
 - 2 个基本定时器(TIM6/TIM7)
 - 1 个低功耗定时器(LPTIM),支持从低功耗模式唤醒
 - 1 个独立看门狗定时器 (IWDT)
 - 1 个窗口看门狗定时器 (WWDT)
 - 1个 SysTick timer
- RTC
- 通讯接口
 - 一 2个串行外设接口(SPI),带 I²S 功能
 - 一 4 个通用同步/异步收发器(USART),支持自动 波特率检测,其中 2 个支持 ISO7816,LIN,IrDA
 - 2 个 I²C 接口,支持标准模式 (100 kHz)、 快速模式 (400 kHz),支持 7 位/ 10 位寻址模式, 其中一个支持 SMBus/PMBus
 - 1路 USB 2.0 全速接口
- 硬件 CRC 32 模块
- 硬件 32 位除法器
- 唯一 UID
- 串行单线调试 (SWD)
- 工作温度: -40~85℃
- 封装 LQFP64, LQFP48, QFN64,QFN48, QFN32

目录

产	品特性		2
1.	简介		6
2.	功能	概 述	8
	2.1.	Arm® Cortex®-M0+ 内核	8
	2.2.	存储器	8
	2.3.	Boot 模式	8
:	2.4.	时钟系统	9
:	2.5.	电源管理	. 11
	2.5.	1. 电源框图	.11
	2.5.	2. 电源监控	.11
	2.5.	3. 电压调节器	.12
	2.5.	4. 低功耗模式	. 13
:	2.6.	复位	. 13
	2.6.	1. 电源复位	. 13
	2.6.	2. 系统复位	. 13
	2.7.	通用输入输出 GPIO	
	2.8.	硬件除法器	.14
:	2.9.	DMA	. 14
	2.10.	中断	. 15
	2.10	1 -10-10-10	
	2.10).2. 扩展中断 EXTI	. 15
:	2.11.	模数转换器 ADC	. 15
	2.12.	数模转换器 (DAC)	. 16
	2.13.	比较器 (COMP)	. 16
:	2.14.	运算放大器(OPA)	. 16
:	2.15.	LCD 控制器(LCD)	. 17
:	2.16.	定时器	. 17
	2.16	6.1. 高级定时器	. 17
	2.16	5.2. 通用定时器	. 18
	2.16	6.3. 基本定时器 TIM6/TIM7	. 19
	2.16	6.4. 低功耗定时器 LPTIM	. 19
	2.16	6.5. IWDG	. 19
	2.16	6.6. WWDG	. 19
	2.16	S.7. SysTick timer	. 19
:	2.17.	实时时钟 RTC	. 19
:	2.18.	循环冗余校验计算单元 CRC	.20
:	2.19.	时钟校验系统 CTC	.20
:	2.20.	系统配置控制器 SYSCFG	.20
	2.21.	Debug support (DBG)	.21

	2.22.	I ² C 接口	21
	2.23.	通用同步异步收发器 USART	22
	2.24.	串行外设接口 SPI	23
	2.25.	USB 2.0 全速模块	23
	2.26.	SWD	24
3.	. 引脚配	置	25
	3.1. 端	品 A 复用功能映射	36
	3.2. 端	品 B 复用功能映射	37
	3.3. 端	品C复用功能映射	38
		品 F 复用功能映射	
4.	. 存储器	映射	40
5.	. 电气特	性	50
	5.1. 测	试条件	50
	5.1.1.	最小值和最大值	50
	5.1.2.	典型值	50
	5.2. 绝	9对最大额定值	50
	5.3. I		51
	5.3.1.	通用工作条件	51
	5.3.2.	上下电工作条件	51
	5.3.3.	内嵌复位和 LVD 模块特性	51
	5.3.4.	工作电流特性	53
	5.3.5.	低功耗模式唤醒时间	54
	5.3.6.	外部时钟源特性	54
	5.3.7.	内部高频时钟源 HSI 特性	57
	5.3.8.	内部低频时钟源 LSI 特性	57
	5.3.9.	锁相环 PLL 特性	58
	5.3.10	. 存储器特性	58
	5.3.11	. EFT 特性	59
	5.3.12		
	5.3.13	. 端口特性	59
	5.3.14	. NRST引脚特性	60
	5.3.15	. ADC 特性	60
	5.3.16	. DAC 特性	61
	5.3.17	. 比较器特性	62
	5.3.18	. 运算放大器特性	63
	5.3.19	. 温度传感器特性	64
	5.3.20	. 内置参考电压特性	64
	5.3.21	. 内置的参考电压	64
	5.3.22	. 定时器特性	65
	5 3 23	通讯口特性	65

6.	封装	信息	69
		 LQFP64 封装尺寸	
	6.2.	LQFP48 封装尺寸	70
	6.3.	QFN64 封装尺寸	71
	6.4.	QFN48 封装尺寸	72
	6.5.	QFN32 (4*4) 封装尺寸	73
7.	订购	9信息	74
8.	版本	s历史	75

1. 简介

PY32F071 系列微控制器采用高性能的 32 位 ARM® Cortex®-M0+ 内核,宽电压工作范围的 MCU。嵌入高达 128 Kbytes flash 和 16 Kbytes SRAM 存储器,最高工作频率 72 MHz。包含多种不同封装类型多款产品。芯片集成多路 I²C、SPI、USART 等通讯外设,1 路 12 位 ADC,2 路 DAC,13 个定时器,1 个 USB 2.0, 3 路比较器,3 路运算放大器,1 个 LCD 驱动器。

PY32F071 系列微控制器的工作温度范围为- 40 °C ~ 85 °C,工作电压范围 1.7 V ~ 5.5 V。芯片提供 sleep 和 stop 低功耗工作模式,可以满足不同的低功耗应用。

PY32F071 系列微控制器适用于多种应用场景,例如控制器,手持设备,PC 外设,游戏和 GPS 平台、工业应用等。

表 1-1 PY32F071 系列产品规划及特征

	外设	PY32F071Rx(64pin)	PY32F071Cx(48pin)	PY32F071Kx(32pin)				
Flash r	nemory (Kbyte)	128	128	128				
SR	AM (Kbyte)	16 16 16						
	高级定时器	1 (16-bit)						
	通用定时器		5 (16-bit) 1(32-bit)					
定时器	基本定时器		2					
	低功耗定时器		1					
	SysTick		1					
	Watchdog		2					
	SPI[I ² S]		2[2]					
,8;II C	I ² C		2					
通讯口	USART	4						
	USB	1						
	DMA	7ch						
	RTC	Yes						
	通用端口	58	42	28				
	ADC	1	1	1				
(外部证	通道+ 内部通道)	(13 + 8)	(13 + 8)	(13 + 8) (10 + 8)				
	DAC	1						
	(通道数)	2						
植	製以比较器	3						
	放大器		3					
L	CD 控制器	1						
	最高主频	72 MHz						
	工作电压	1.7 - 5.5 V						
	工作温度	- 40 - 85 °C						
	封装	LQFP64,QFN64	LQFP48,QFN48	QFN32				

图 1-1 功能模块

2. 功能概述

2.1. Arm® Cortex®-M0+ 内核

Arm® Cortex® - M0+ 是一款为广泛的嵌入式应用设计的入门级 32 位 Arm Cortex 处理器。它为开发人员提供了显著的好处,包括:

- 结构简单,易于学习和编程
- 超低功耗,节能运行
- 精简的代码密度等

Cortex - M0+ 处理器是 32 位内核,面积和功耗优化高,为 2 级流水的冯诺伊曼架构。处理器通过精简但强大的指令集和广泛优化的设计,提供高端处理硬件,包含单周期乘法器,提供了 32 位架构计算机所期望的卓越性能,比其他 8 位和 16 位微控制器具有更高的代码密度。

Cortex - M0+ 与一个嵌套的矢量中断控制器(NVIC)紧密耦合。

2.2. 存储器

片内集成 SRAM。通过 bytes(8 bits)、half - word(16 bits)或者 word(32 bits)的方式可访问 SRAM。

片内集成 Flash,包含两个不同的物理区域组成:

- Main flash 区域,它包含应用程序和用户数据
- Information 区域,14 kbytes,它包括以下部分:
 - Option bytes
 - UID bytes
 - System memory

对 Flash main memory 的保护包括以下几种机制:

- Read protection(RDP),防止来自外部的访问。
- Wrtie protection (WRP) 控制,以防止不想要的写操作(由于程序存储器指针 PC 的混乱)。写保护的最小保护单位为 8 kbytes。
- Option byte 写保护,专门的解锁设计。

2.3. Boot 模式

通过 BOOT0 pin 和 boot 配置位 nBOOT 存放于 Option bytes 中,可选择三种不同的启动模式,如下表所示:

表 2-1 Boot 配置

Boot mode	configuration	Mada			
nBOOT1 bit	BOOT0 pin	Mode			
Х	0	选择 Main flash 作为启动区			

Boot mode	e configuration	Mada			
nBOOT1 bit	BOOT0 pin	Mode			
1	1	选择 System memory 作为启动区			
0	1	选择 SRAM 作为启动区			

Boot loader 程序存储在 System memory,用于通过 USART 接口下载 Flash 程序。

2.4. 时钟系统

CPU 启动后默认系统时钟频率为 HSI 8 MHz,在程序运行后可以重新配置系统时钟频率和系统时钟源。可以选择的高频时钟有:

- 一个 4/8/16/22.12/24 MHz 可配置的内部高精度 HSI 时钟。
- 一个 32.768 kHz 可配置的内部 LSI 时钟。
- 4~32 MHz HSE 时钟,并且可以使能 CSS 功能检测 HSE。如果 CSS fail,硬件会自动转换系统时钟为 HSI,HSI 频率由软件配置,同时 CPU NMI 中断产生。
- 一个 32.768 KHz LSE 时钟。
- PLL 时钟,PLL 源可以选择 HSE。如果选择 HSE 源,当 CSS 使能并且 CSS fail 时,关闭 PLL 和 HSE, 硬件选择系统时钟源为 HSI。

AHB 时钟可以基于系统时钟分频,APB 时钟可以基于 AHB 时钟分频。AHB 和 APB 时钟频率最高为 72 MHz。

图 2-1 系统时钟结构图

2.5. 电源管理

2.5.1. 电源框图

图 2-2 电源框图

编号	电源	电源值	描述					
1	Vcc	1.7 v ~ 5.5 v	通过电源管脚为芯片提供电源。					
2	V _{DDD}	1.2 v / 1.0 v ± 10%	来自于 VR 的输出,为芯片内部主要逻辑电路、SRAM 供电。当 MR 供电时,输出 1.2 v。当进入 stop 模式时,根据软件配置,可以由 MR 或者 LPR 供电,并根据软件配置决定 LPR 输出是 1.2 v 或者 1.0 v。					
3	Vcca	1.7 v ~ 5.5 v	通过电源管脚为芯片模拟电路提供电源。					

表 2-2 电源框图

2.5.2. 电源监控

2.5.2.1. 上下电复位 (POR/PDR)

芯片内设计 Power on reset (POR) / Power down reset (PDR) 模块,为芯片提供上电和下电复位。 该模块在各种模式之下都保持工作。

2.5.2.2. 欠压复位 (BOR)

除了 POR/PDR 外,还实现了 BOR(brown out reset)。BOR 仅可以通过 option byte 使能和关闭。当 BOR 被打开时,BOR 的阈值可通过 Option byte 进行选择,且上升和下降检测点都可被单独配置。

图 2-3 POR/PDR/BOR 阈值

2.5.2.3. 电压检测 (PVD)

Programmable Voltage detector (PVD) 模块可以用来检测 Vcc 电源(也可以检测 PB7 引脚的电压),检测点可通过寄存器进行配置。当 Vcc 高于或低于 PVD 的检测点时,产生相应的复位标识。该事件内部连接到 EXTI 的 line 16,取决于 EXTI line 16 上升/下降沿配置,当 Vcc 上升超过 PVD 的检测点,或者 Vcc 降低到 PVD 的检测点以下,产生中断,在中断服务程序中用户可以进行紧急的 shutdown 任务。

图 2-4 PVD 阈值

2.5.3. 电压调节器

芯片设计两个电压调节器:

- MR (Main regulator) 在芯片正常运行状态时保持工作。
- LPR (low power regulator) 在 stop 模式下,提供更低功耗的选择。

2.5.4. 低功耗模式

芯片在正常的运行模式之外,有2个低功耗模式:

- Sleep mode: CPU 时钟关闭 (NVIC, SysTick 等工作),外设可以配置为保持工作。 (建议只使能必须工作的模块,在模块工作结束后关闭该模块)
- Stop mode:该模式下 SRAM 和寄存器的内容保持,高速时钟 PLL、HSI 和 HSE 关闭,VDD 域下大部分模块时钟都被停掉。GPIO,PVD,COMP output,RTC 和 LPTIM 可以唤醒 stop 模式。

2.6. 复位

芯片内设计两种复位,分别是: 电源复位和系统复位。

2.6.1. 电源复位

电源复位在以下几种情况下产生:

- 上下电复位 (POR / PDR)
- 欠压复位 (BOR)

2.6.2. 系统复位

当产生以下事件时,产生系统复位:

- NRST pin 的复位
- 窗口看门狗复位(WWDG)
- 独立看门狗复位(IWDG)
- SYSRESETREQ 软件复位
- Option byte load 复位 (OBL)

2.7. 通用输入输出 GPIO

每个 GPIO 都可以由软件配置为输出(push - pull 或者 open drain),输入(floating, pull – up / down,analog),外设复用功能,锁定机制会冻结 I/O 口配置功能。GPIO 功能概要如下:

- 寄存器支持 IO Port / AHB 总线读写
- 输出状态: 推挽输出或者开漏输出 + 上拉/下拉
- 数据输出来自数据寄存器(GPIOx_ODR)或者外设(复用功能输出)
- 每个 I/O 可进行速度选择
- 输入状态: 浮空, 上拉/下拉, 模拟
- 数据输入送给输入数据寄存器(GPIOx_IDR)或者外设(复用功能输入)
- 位置位/复位寄存器(GPIOx_BSRR),允许对 GPIOx_ODR 的位写访问

- 锁定机制 (GPIOx_LCKR)会冻结 I/O 口配置功能
- 模拟功能
- 复用功能选择寄存器 (每个 IO 口最多 16 种复用功能)
- 单周期内快速翻转的能力
- 高度灵活的 I/O 多路选择功能,使得 I/O 口作为 GPIO,或者作为各种外设接口功能

2.8. 硬件除法器

32 位有符号 / 无符号整数硬件除法器模块,主要作用为对输入模块的两个 32 位数据做除法,需要消耗 8 个 clk 时钟周期完成一次除法操作。

硬件除法器支持以下特性:

- 可配置有符号 / 无符号整数除法计算
- 32 位被除数, 32 位除数
- 输出 32 位商和 32 位余数
- 除数为零警告标志位,除法运算结束标志位
- 8 个时钟周期完成一次除法运算
- 写除数寄存器触发除法运算开始
- 读商寄存器/余数寄存器时自动等待计算结束

2.9. DMA

直接存储器存取(DMA)用来提供在外设和存储器之间或者存储器和存储器之间的高速数据传输。搬移数据无需 CPU 干预,数据可以通过 DMA 快速地移动,这就节省了 CPU 的资源来做其他操作。 DMA 控制器有 7 个通道,每个通道专门用来管理来自于一个或多个外设对存储器访问的请求。还有一个仲裁器来协调各个 DMA 请求的优先权。

主要功能如下:

- 单 AHB master
- 支持外设到存储器,存储器到外设,存储器到存储器和外设到外设的数据传输
- 片上存储器设备,如 FLASH,SRAM,AHB 和 APB 外设,作为源和目标
- 所有 DMA 通道均可独立配置:
 - 每个通道要么与来自外设的 DMA 请求信号相关联,要么与存储器到存储器传输中的软件触发器相关联。这个配置是由软件完成的。
 - 请求之间的优先级由软件可编程(每个通道 4 级:非常高、高、中、低),在相等的情况下由硬件可编程(例如对通道 1 的请求比对通道 2 的请求优先)。
 - 一 源和目标的传输大小是独立的(字节,半字,字),模拟打包和拆包。源地址和目标地址必须按数据大小对齐。
 - 可编程传输数据数:0~65535
- 每个通道生成一个中断请求。每个中断请求都是由三个 DMA 事件中的任何一个引起的:传输完成、半传输或传输错误。

2.10. 中断

PY32F071 通过 Cortex-M0+ 处理器内嵌的矢量中断控制器(NVIC)和一个扩展中断/事件控制器(EXTI) 来处理异常。

2.10.1. 中断控制器 NVIC

NVIC 是 Cortex-M0+ 处理器内部紧耦合 IP。NVIC 可以处理来自处理器外部的 NMI(不可屏蔽中断)和可屏蔽外部中断,以及 Cortex-M0+ 内部异常。NVIC 提供了灵活的优先级管理。

处理器核心与 NVIC 的紧密耦合大大减少了中断事件和相应中断服务例程(ISR)启动之间的延迟。ISR 向量列在一个向量表中,存储在 NVIC 的一个基地地址。要执行的 ISR 的向量地址是由向量表基址和用作偏移量的 ISR 序号组成的。

如果高优先级的中断事件发生,而低优先级的中断事件刚好在等待响应,稍后到达的高优先级的中断事件 将首先被响应。另一种优化称为尾链(tail-chaining)。当从一个高优先级的 ISR 返回时,然后启动一 个挂起的低优先级的 ISR,将跳过不必要的处理器上下文的压栈和弹栈。这减少了延迟,提高了电源效 率。

NVIC 特性:

- 低延时中断处理
- 4级中断优先级
- 支持1个NMI中断
- 32 个可屏蔽的中断通道 (不包括 16 个 CPU 的中断)
- 高优先级中断可打断低优先级中断响应
- 支持尾链(tail chaining)优化
- 硬件中断向量检索

2.10.2. 扩展中断 EXTI

EXTI 增加了处理物理线事件的灵活性,系统可以通过 GPIO 和指定模块(PVD/COMP/RTC/LPTIM)输入事件唤醒。

EXTI 控制器有多个通道,包括最多 16 个 GPIO,1 个 PVD 输出,3 个 COMP 输出,以及 RTC 和 LPTIM 唤醒信号。其中 GPIO,PVD,COMP 可以配置上升沿、下降沿或双沿触发。任何 GPIO 信号通过选择信号配置为 EXTIO ~ 15 通道。

- 每个 EXTI line 都可以通过寄存器独立屏蔽。
- EXTI 控制器可以捕获比内部时钟周期短的脉冲。
- EXTI 控制器中的寄存器锁存每个事件,即使是在 stop 模式下,处理器从停止模式唤醒后也能识别唤醒的来源,或者识别引起中断的 GPIO 和事件。

2.11. 模数转换器 ADC

芯片具有 1 个 12 位的 SARADC。该模块共有最多 18 个要被测量的通道,包括 16 个外部通道和 8 个内部通道。参考电压选择电源电压。

- 各通道的转换模式可以设定为单次、连续、扫描、不连续模式。转换结果存储在左对齐或者右对 齐的 16 位数据寄存器中。
- 模拟 watchdog 允许应用检测是否输入电压超出了用户定义的高或者低阈值。
- ADC 实现了在低频率下运行,可获得很低的功耗。
- 在采样结束,转换结束,连续转换结束,模拟 watchdog 时转换电压超出阈值时产生中断请求。

2.12. 数模转换器 (DAC)

数字/模拟转换模块(DAC)是 12 位数字输入,电压输出的数字/模拟转换器。 DAC 可以配置为 8 位或 12 位模式,也可以与 DMA 控制器配合使用。 DAC 工作在 12 位模式时,数据可以设置成左对齐或右 对齐。 DAC 模块有 2 个输出通道,每个通道都有单独的转换器。在双 DAC 模式下, 2 个通道可以独 立地进行转换,也可以同时进行转换并同步地更新 2 个通道的输出。主要特性如下:

- 12 位模式下数据左对齐或者右对齐
- 同步更新功能
- 噪声波形生成
- 三角波形生成
- 双 DAC 通道同时或者分别转换
- 每个通道都有 DMA 功能
- 支持 DMA 下溢错误检测
- 外部触发转换

2.13. 比较器 (COMP)

芯片内集成 3 个通用比较器(general purpose comparators)COMP,分别是 COMP1/2/3。这两三个模块可以作为单独的模块,也可以与 timer 组合在一起使用。

比较器可以被如下使用:

- 被模拟信号触发,产生低功耗模式唤醒功能
- 模拟信号调节
- 当与来自 timer 的 PWM 输出连接时, Cycle by cycle 的电流控制回路

2.14. 运算放大器(OPA)

OPA1/2/3 模块可以灵活配置,适用于简易放大器应用。内部的 3 个运放可以使用外部电阻进行级联。 OPA 功能概要如下:

- 3个独立配置运放
- OPA 的输入范围是 0 到 AVcc,输出范围是 0.1 V 到 AVcc 0.2 V (以模拟模块需求为准),可编程增益
- 可配置为以下模式
 - 通用运放模式 (general purpose OPA)

一 DAC 电压跟随器

2.15. LCD 控制器(LCD)

LCD 控制器是一款适用于单色无源液晶显示器(LCD)的数字控制器/驱动器,最多具有 8 个公用端子 (COM) 和 40 个区段端子 (SEG),用以驱动 160 (4 * 40)或 288 (8 * 36)个 LCD 图像元素。端子的 确切数量取决于数据手册中所述的器件引脚。LCD 功能概要如下:

- 高度灵活的帧速率控制
- 支持静态、 1/2、 1/3、 1/4、 1/6 和 1/8 占空比
- 支持 1/2、1/3 偏置电压
- 多达 16 个寄存器的 LCD 数据 RAM
- 可通过软件配置 LCD 的对比度
- 3 种驱动波形生成方式
 - 一 内部电阻分压、外部电阻分压,外部电容分压方式
 - 一可通过软件配置内部电阻分压方式的功耗,从而匹配 LCD 面板所需的电容电荷
- 支持低功耗模式: LCD 控制器可在 run、 Sleep、 stop 模式下进行显示
- 可配置帧中断
- 支持 LCD 闪烁功能且可配置多种闪烁频率
- 未使用的 LCD 区段和公共引脚可配置为数字或模拟功能

2.16. 定时器

PY32F071 不同定时器的特性如下表所示:

表 2-3 定时器特性

类型	Timer	位宽	计数方向	预分频	DMA	捕获/比较通道	互补输出
高级定时器	TIM1	16 位	上,下, 中央对齐	1 ~ 65536	支持	4	3
通用定时器	TIM2	32 位	上,下, 中央对齐	1 ~ 65536	支持	4	-
	TIM3	16 位	上,下, 中央对齐	1 ~ 65536	支持	4	-
通用定时器	TIM14	16 位	上	1 ~ 65536	-	1	-
	TIM15	16 位	上	1 ~ 65536	-	2	1
	TIM16,TIM17	16 位	上	1 ~ 65536	支持	1	1
基本定时器	TIM6,TIM7	16 位	上	1 ~ 65536	支持	-	-

2.16.1. 高级定时器

高级定时器(TIM1)由 16 位被可编程分频器驱动的自动装载计数器组成。它可以被用作各种场景,包括:输入信号(输入捕获)的脉冲长度测量,或者产生输出波形(输出比较、输出 PWM、带死区插入的互补 PWM)。

TIM1包括4个独立通道,用作:

- 输入捕获
- 输出比较
- PWM产生(边缘或者中心对齐模式)
- 单脉冲模式输出

如果 TIM1 配置为标准的 16 位计时器,则它具有与 TIMx 计时器相同的特性。如果配置为 16 位 PWM 发生器,则具有全调制能力(0 - 100%)。

在 MCU debug 模式,TIM1 可以冻结计数。

具有相同架构的 timer 特性共享,因此 TIM1 可以通过计时器链接功能与其他计时器一起工作,以实现同步或事件链接。

TIM1 支持 DMA 功能。

2.16.2. 通用定时器

2.16.2.1. TIM2/TIM3

TIM2/TIM3 通用定时器是由 32/16 位可编程分频器驱动的 32/16 位自动重装载计数器构成。具有 4 个独立的通道,每个用于输入捕获/输出比较,PWM 或者单脉冲模式输出。

- 可以通过计时器链接功能与 TIM1 一起工作
- 支持 DMA 功能
- 能够处理正交(增量)编码器信号和数字输出从 1 到 3 霍尔效应传感器
- 在 MCU debug 模式,TIM2/TIM3 可以冻结计数

2.16.2.2. TIM14

- 通用定时器 TIM14 由可编程预分频器驱动的 16 位向上自动装载计数器构成。
- TIM14 具有 1 个独立通道用于输入捕获/输出比较,PWM 或者单脉冲模式输出。
- 在 MCU debug 模式,TIM14 可以冻结计数。

2.16.2.3. TIM15/TIM16/TIM17

- TIM15、TIM16 和 TIM17 由可编程预分频器驱动的 16 位自动装载计数器构成。
- TIM15 具有 2 个独立通道用于输入捕获/输出比较,PWM 或者单脉冲模式输出。
- TIM16/TIM17 具有 1 个独立通道用于输入捕获/输出比较,PWM 或者单脉冲模式输出。
- TIM15、TIM16/TIM17 具有带死区的互补输出。
- TIM15、TIM16/TIM17 支持 DMA 功能。

■ 在 MCU debug 模式,TIM15、TIM16/TIM17 可以冻结计数。

2.16.3. 基本定时器 TIM6/TIM7

- 基本定时器 TIM6/TIM7 包含一个 16 位自动装载计数器,由各自的可编程预分频器驱动。
- 16位自动装载计数器。
- 触发 DAC 的同步电路。
- 在更新事件(计数器溢出)发生时产生中断/DMA请求。

2.16.4. 低功耗定时器 LPTIM

- LPTIM 为 16 位向上计数器,包含 3 位预分频器。支持连续/单次模式。
- LPTIM 可以配置为 stop 模式唤醒源。
- 在 MCU debug 模式,LPTIM 可以冻结计数值。

2.16.5. IWDG

芯片内集成了一个 Independent watchdog(简称 IWDG),该模块具有高安全级别、时序精确及灵活使用的特点。IWDG 发现并解决由于软件失效造成的功能混乱,并在计数器达到指定的 timeout 值时触发系统复位。

- IWDG 由独立的 RC 振荡器提供时钟,可在 STOP 模式下工作。
- IWDG 最适合需要 watchdog 作为主应用之外的独立过程,并且无很高的时序准确度限制的应用。
- 通过 option byte 的控制,可以使能 IWDG 硬件模式。
- IWDG 是 stop 模式的唤醒源,以复位的方式唤醒 stop 模式。
- 在 MCU debug 模式,IWDG 可以冻结计数值。

2.16.6. WWDG

系统窗口看门狗是基于一个 7 位的下行计数器,可以设置为自由运行。当出现问题时,它可以作为一个看门狗来复位系统。计数时钟为 APB 时钟(PCLK)。它具有预警中断能力,计数器可以在 MCU debug 模式下被冻结。

2.16.7. SysTick timer

SysTick 计数器专门用于实时操作系统 (RTOS),但也可以用作标准的向下计数器。

SysTick 特性:

- 24 位向下计数
- 自装载能力
- 计数器记到0时可产生中断(可屏蔽)

2.17. 实时时钟 RTC

实时时钟是一个独立的定时器。RTC 模块拥有一组连续计数的计数器,在相应软件配置下,可提供时钟日历的功能。修改计数器的值可以重新设置系统当前的时间和日期。

■ RTC 为预分频系数最高为 2²⁰ 的 32 位可编程计数器。

- RTC 计数器时钟源可以为 LSE、LSI 以及 HSE 时钟除以 128,可以作为 stop 唤醒源。
- RTC 可以产生闹钟中断,秒中断和溢出中断(可屏蔽)。
- RTC 支持时钟 calibration。
- 在 MCU debug 模式,RTC 可以冻结计数。

2.18. 循环冗余校验计算单元 CRC

循环冗余校验(CRC)计算单元是根据固定的生成多项式得到 32 位 CRC 计算结果。在其他的应用中, CRC 技术主要应用于核实数据传输或者数据存储的正确性和完整性。CRC 计算单元含有 1 个 32 位数据寄存器:

- 对该寄存器进行写操作时,作为输入寄存器,可以输入要进行 CRC 计算的新数据。
- 对该寄存器进行读操作时,返回上一次 CRC 计算的结果。
- 每一次写入数据寄存器,其计算结果是前一次 CRC 计算结果和新计算结果的组合(对整个 32 位字进行 CRC 计算,而不是逐字节地计算)。
- 可以通过设置寄存器 CRC_CR 的 RESET 位来重置寄存器 CRC_DR 为 0xFFFF FFFF。该操作不 影响寄存器 CRC_IDR 内的数据。
- 支持配置 CRC 初始值。

2.19. 时钟校验系统 CTC

时钟校准控制器(CTC)采用硬件的方式,自动校准内部配置为 16 MHz 时的 RC 晶振(HSI),并将 3 倍频后的 PLL(48 M)作为 USBD 模块时钟源。CTC 模块基于外部高精度的参考信号源来校准 HSI 的时钟频率,通过自动的或手动的调整校准值,以得到一个精准的 PLL48 M 时钟。

CTC 模块主要完成如下功能:

- 三个外部参考信号源: GPIO, LSE 时钟, USBD_SOF。
- 提供软件参考同步脉冲。
- 硬件自动校准,无需软件操作。
- 具有参考信号源捕获和重载功能的 16 位校准计数器。
- 用于频率评估和自动校准的8位时钟校准基值。
- 标志位和中断,用于指示时钟校准的状态:校准成功状态(CKOKIF),警告状态(CKWARNIF) 和错误状态(ERRIF)。

2.20. 系统配置控制器 SYSCFG

SYSCFG 模块主要完成如下功能:

- 使能或者不使能_I²C 类型 IO pin 上的滤波使能
- 使能或者不使能在所有 IO pin 上的滤波使能
- 重映射某些 DMA 的触发源到不同的 DMA 通道
- 重映射位于代码区间开始区域的存储器 (Boot)

■ 管理 TIMERs ETR 或者刹车输入

2.21. Debug support (DBG)

MCU DBG 模块协助调试器提供以下功能:

- 支持睡眠模式,停止模式和待机模式
- CPU 进入 HALT 时,控制定时器、看门狗停止计数或者继续计数
- CPU 进入 HALT 时,阻止 I²C1 和 I²C2 SMBUS 超时
- 分配跟踪引脚

MCUDBG 寄存器还提供芯片 ID 编码。使用 JTAG 或者 SW 调试接口,或者用户程序都可以访问此 ID 编码。

2.22. I²C 接口

 I^2C (inter-integrated circuit)总线接口连接微控制器和串行 I^2C 总线。它提供多主机功能,控制所有 I^2C 总线特定的顺序、协议、仲裁和时序。支持标准(Sm)、快速(Fm)。

I²C 特性:

- 2个 I²C 接口,支持 Slave 和 master 模式
- 多主机功能:可以做 master,也可以做 slave
- 支持不同通讯速度
 - 标准模式 (Sm) : 高达 100 kHz
 - 快速模式 (Fm): 高达 400 kHz
- 作为 Master
 - 产生 Clock
 - Start 和 Stop 的产生
- 作为 slave
 - 一 可编程的 I2C 地址检测
 - 一 可响应 2 个从地址的双地址能力
 - Stop 位的发现
- 7位/10位寻址模式
- 通用广播 (General call)
- 状态标志位
 - 一 发送/接收模式标志位
 - 一 字节传输完成标志位
 - I²C busy 标志位
- 错误标志位
 - Master arbitration loss
 - 一 地址/数据传输后的 ACK failure
 - Start/Stop 错误
 - Overrun/Underrun(时钟拉长功能 disable)

- 可选的时钟拉长功能
- 具备 DMA 能力的单字节 buffer
- 软件复位
- 模拟噪声滤波功能
- 支持 SMBus

2.23. 通用同步异步收发器 USART

PY32F071 包含 4 个 USART,支持 ISO7816, LIN, IrDA。

通用同步异步收发器(USART)提供了一种灵活的方法与使用工业标准 NRZ 异步串行数据格式的外部设备之间进行全双工数据交换。USART 利用分数波特率发生器提供宽范围的波特率选择。

它支持同步单向通信和半双工单线通信,它还允许多处理器通信。

支持自动波特率检测。

使用多缓冲器配置的 DMA 方式,可以实现高速数据通信。

USART 特件:

- 全双工异步通信
- NRZ标准格式
- 可配置 16 倍或者 8 倍过采样,增加在速度和时钟容忍度的灵活性
- 发送和接收共用的可编程波特率,最高达 4.5 Mbit/s
- 自动波特率检测
- 可编程的数据长度8位或者9位
- 可配置的停止位(支持 0.5,1,1.5 或 2 个停止位)
- 同步模式和为同步通讯的时钟输出功能
- 单线半双工通讯
- 独立的发送和接收使能位
- 硬件流控制
- 通过 DMA 缓冲接收/发送字节
- 检测标志
 - 接收 buffer 满
 - 一 发送 buffer 空
 - 一 传输结束
- 奇偶校验控制
 - 一 发送校验位
 - 一 对接收数据进行校验
- 带标志的中断源
 - CTS 改变
 - 一 发送寄存器空
 - 一 发送完成
 - 一 接收数据寄存器满
 - 一 检测到总线空闲

- 一 溢出错误
- 一 帧错误
- 一 噪音操作
- 一 校验错误
- 多处理器通信
 - 一 如果地址不匹配,则进入静默模式
- 从静默模式唤醒:通过空闲检测和地址标志检测,两种唤醒接收器的方式:地址位 (MSB,第9位), 总线空闲。

2.24. 串行外设接口 SPI

PY32F071 包含 2 个 SPI。串行外设接口(SPI)允许芯片与外部设备以半双工、全双工、单工同步的串行方式通信。此接口可以被配置成主模式,并为外部从设备提供通信时钟(SCK)。接口还能以多主配置方式工作。

SPI 特性如下:

- Master 或者 slave 模式
- 3线全双工同步传输
- 2线半双工同步传输(有双向数据线)
- 2线单工同步传输(无双向数据线)
- 8 位或者 16 位传输帧选择
- 支持多主模式
- 8个主模式波特率预分频系数 (最大为 fpclk/2)
- 从模式频率 (最大为 fpclk/4)
- 主模式和从模式下均可以由软件或硬件进行 NSS 管理: 主/从操作模式的动态改变
- 可编程的时钟极性和相位
- 可编程的数据顺序,MSB 在前或 LSB 在前
- 可触发中断的专用发送和接收标志
- SPI 总线忙状态标志
- Motorola 模式
- 可引起中断的主模式故障、过载
- 2个具备 DMA 能力的 32 位 Rx 和 Tx FIFOs

2.25. USB 2.0 全速模块

PY32F071 包含 1 个 USB 2.0 全速模块。USB 外设实现了 USB2.0 全速总线和 APB1 总线间的接口。 支持 USB 挂起/恢复操作,可以停止设备时钟实现低功耗。主要特性如下:

- 符合 USB 2.0 全速设备的技术规范
- 可配置1到6个USB端点
- CRC(循环冗余校验)生成/校验,反向不归零 (NRZI) 编码/解码和位填充
- 支持控制传输/同步传输/批量传输/中断传输

- 支持批量/同步端点的双缓冲区机制
- 支持 USB 挂起/恢复操作
- 帧锁定时钟脉冲生成
- 专用的 1024 字节的数据包缓存存储

2.26. SWD

ARM SWD 接口允许串口调试工具连接到 PY32F071。

3. 引脚配置

图 3-1 LQFP64 PY32F071R1xT Pinout1

图 3-2 LQFP48 PY32F071C1xT Pinout1

图 3-3 QFN64 PY32F071R1xU Pinout1

图 3-4 QFN48 PY32F071C1xU Pinout1

图 3-5 QFN32 PY32F071K1xU Pinout1

表 3-1 引脚定义的术语和符号

类	型	符号	定义		
		S	Supply pin		
		G	Ground pin		
端口	类型		Input - only pin		
1,01	.><	I/O	Input/ output pin		
		NC	无定义		
		COM	正常 5 V 端口,支持模拟输入输出功能		
沿上	14 ±±/ ⊓	RST	复位端口,内部带弱上拉电阻,不支持模拟输入输出功能		
上 一	结构	COM F	具有模拟输入功能的 I ² C Fm+		
		COM U	具有 USB PHY 功能的 GPIO 5 V 容限		
No	otes	-	除非有其他说明,不然所有端口都被在复位之间和之后,作为浮空的输入		
治口中积	复用功能		通过 GPIOx_AFR 寄存器选择的功能		
端口功能	附加功能		通过外设寄存器直接选择或使能的功能		

表 3-2 引脚定义

		封装							端口功能	8
R1	C1	R1	C1	К1		端				
LQFP64	QFP48	N64 F	QFN48 (N32 P	复位		端口	Notes	复用功能	附加功能
Lo	LQF	QF	QF	QF		类型	结构			
1	1	1	1		PF9	I/O	COM		-	1
2	2	2	2		PC13	I/O	СОМ		SPI1_SCK/l ² S1_CK	
2		2			FU13	1/0	COM		TIM1_BKIN	-

		封装							端口功能		
LQFP64 R1	LQFP48 C1	QFN64 R1	QFN48 C1	QFN32 K1	复位	端口类型	端口结构	Notes	复用功能	附加功能	
3	3	3	3		PC14	I/O	СОМ		TIM1_BKIN2	OSC32_IN	
4	4	4	4		PC15	I/O	СОМ		TIM15_BKIN	OSC32_OUT	
									CTC_SYNC		
_	_	_	_		PF0-	1/0	0014		USART2_TX	000 111	
5	5	5	5	1	OSC_IN	I/O	COM		TIM1_BKIN	OSC_IN	
									TIM14_CH1		
									USART2_RX		
6	6	6	6	2	PF1- OSC_OUT	I/O	COM		TIM1_CH1N	OSC_OUT	
					000_001				TIM15_CH1N		
									TIM1_CH2		
7	7	7	7	3	PF2-NRST	I/O	RST		EVENTOUT	-	
									MCO		
									EVENTOUT	ADC_IN10,	
		8			PC0	I/O	COM		SPI1_MISO/I ² S1_MCK	COMP1_INP0,	
8		ð			PCU	1/0	COM		USART2_CTS	COMP2_INN0,	
									USART3_RTS	SEG27	
									EVENTOUT		
									SPI1_MOSI/I ² S1_SD	ADC_IN11,	
9		9			PC1	I/O	COM		USART2_RTS	COMP1_INP1, COMP2_INN1,	
									USART3_CTS	SEG26	
									TIM15_CH1		
									EVENTOUT		
									SPI2_MISO/I ² S2_MCK	ADC_IN12,	
10		10			PC2	I/O	COM		USART3_TX	COMP1_INP2, COMP2_INN2,	
									USART3_RX	SEG25	
									TIM15_CH2		
									EVENTOUT	ADC_IN13,	
11		11			PC3	I/O	СОМ		SPI2_MOSI/I ² S2_SD	COMP1_INP3,	
' '					F C3	1/0	COIVI		USART3_RX	COMP2_INN3,	
									USART3_TX	SEG24	
12	8	12	8	4	Vssa	G			Ground		
13	9	13	9	5	Vcca	S			Analog power	supply	
									USART2_CTS	ADC_IN0,	
									TIM2_CH1_ETR	COMP1_INP4, COMP1_INN0,	
14	10	14	10	6	PA0	I/O	COM		USART4_TX	COMP1_INNO, COMP2_INP0,	
									COMP1_OUT	COMP2_INN4,	
									SPI2_SCK	SEG23	
									EVENTOUT	ADC_IN1, COMP1_INP5,	
15	11	15	11	7	PA1	I/O	COM		USART2_RTS	COMP1_INP5, COMP1_INN1,	
									TIM2_CH2	COMP2_INP1,	

		封装							端口功能	į į
LQFP64 R1	LQFP48 C1	QFN64 R1	QFN48 C1	QFN32 K1	复位	端口类型	端口结构	Notes	复用功能	附加功能
						-			USART4_RX	COMP2_INN5,
									TIM15_CH1N	SEG22
									I ² C1_SMBA	
									SPI1_SCK/l ² S1_CK	
									SPI2_MOSI	
									TIM15_CH1	
									USART2_TX	ADC_IN2,
16	12	16	12	8	PA2	I/O	СОМ		TIM2_CH3	COMP1_INP6, COMP1_INN2,
		. 0		Ü		., 0	00		COMP2_OUT	COMP2_INP2,
									SPI1_MOSI/I ² S1_SD	SEG21
									SPI2_MISO	
									EVENTOUT	
									TIM15_CH2	ADC_IN3, COMP1_INP7,
17	13	17	13	9	PA3	I/O	СОМ		USART2_RX	COMP1_INP7, COMP1_INN3,
								$X \supset$	TIM2_CH4	COMP2_INP3,
									SPI2_MISO	SEG20
									SPI2_NSS/I ² S2_WS	
40		40			DEO	1/0	0014 5		EVENTOUT	
18		18			PF3	I/O	COM_F		I ² C1_SCL	-
									l ² C2_SCL l ² C1_SCL	
19		19			PF4	I/O	COM_F		I ² C2_SCL	-
									EVENTOUT	
									SPI1_NSS/I ² S1_WS	ADC INIA
									USART2_CK	ADC_IN4, DAC_OUT1,
20	14	20	14	10	PA4	I/O	СОМ		TIM14_CH1	COMP1_INP8,
									SPI2_MOSI	COMP1_INN4, COMP2_INP4,
									USART2_TX	SEG19
									PVD_OUT	
									EVENTOUT	ADC_IN5,
									SPI1_SCK/ I ² S1_CK	DAC_OUT2, COMP1_INP9,
21	15	21	15	11	PA5	I/O	COM		TIM2_CH1_ETR	COMP1_INN5,
									USART3_TX	COMP2_INP5, COMP3_INP0,
									EVENTOUT	
									SPI1_MISO/I ² S1_MCK	ADC_IN6,
									TIM3_CH1	COMP1_INP10,
22	16	22	16	12	PA6	I/O	COM		TIM1_BKIN	COMP1_INN6,
									USART3_CTS	OPA2_INN, SEG17
									TIM16_CH1	3_3
									COMP1_OUT	

		封装							端口功能	E C
LQFP64 R1	LQFP48 C1	QFN64 R1	QFN48 C1	QFN32 K1	复位	端口类型	端口结构	Notes	复用功能	附加功能
23	17	23	17	13	PA7	I/O	COM		EVENTOUT SPI1_MOSI/I ² S1_SD TIM3_CH2 TIM1_CH1N TIM14_CH1 TIM17_CH1 COMP2_OUT	ADC_IN7, COMP1_INP11, COMP1_INN7, OPA2_INP, SEG16
24		24			PC4	I/O	СОМ		EVENTOUT USART3_TX COMP3_OUT SPI1_NSS/I ² S1_WS USART1_TX TIM2_CH1_ETR IR_OUT	ADC_IN14, COMP1_INN8, SEG15
25		25			PC5	I/O	СОМ		USART3_RX SPI1_MOSI/I ² S1_SD USART1_RX TIM2_CH2	ADC_IN15, COMP1_INN9, SEG14
26	18	26	18	14	PB0	1/0	СОМ		EVENTOUT TIM3_CH3 TIM1_CH2N USART3_CK COMP1_OUT SPI1_NSS/I ² S1_WS USART3_RX	ADC_IN8, COMP2_INN6, SEG13
27	19	27	19	15	PB1	I/O	СОМ		EVENTOUT TIM14_CH1 TIM3_CH4 TIM1_CH3N USART3_RTS COMP3_OUT	ADC_IN9, COMP2_INP6, COMP2_INN7, COMP3_INP1, COMP3_INN1, SEG12
28	20	28	20		PB2	I/O	СОМ		EVENTOUT SPI2_MISO USART3_TX	COMP2_INP7, COMP2_INN8, SEG11
29	21	29	21		PB10	I/O	COM_F		I ² C2_SCL TIM2_CH3 USART3_TX SPI2_SCK/I ² S2_CK COMP1_OUT USART2_RTS	COMP2_INP8, SEG10

		封装							端口功能	Ĕ						
LQFP64 R1	LQFP48 C1	QFN64 R1	QFN48 C1	QFN32 K1	复位	端口类型	端口结构	Notes	复用功能	附加功能						
						-			I ² C1_SCL							
									EVENTOUT							
									I ² C2_SDA							
									TIM2_CH4							
20	20	20	22		DD44	1/0	COME		USART3_RX	COMP3_INP8,						
30	22	30	22		PB11	I/O	COM_F		COMP2_OUT	COMP3_INN4,						
									SPI2_MOSI	SEG9						
									USART2_CTS							
									I ² C1_SDA							
31	23	31	23	16	Vss	G			Ground							
32	24	32	24	17	Vcc	S			Digital power	supply						
									EVENTOUT							
								SPI2_NSS/I ² S2_WS	COMP2_INP9,							
33	25	33	25	18	PB12	I/O	COM		TIM1_BKIN	OPA3_INN,						
									USART3_CK	SEG8						
									TIM15_BKIN							
									EVENTOUT							
									SPI2_SCK/I ² S2_CK							
									TIM1_CH1N	COMP1_INP10,						
34	26	34	26	19	PB13	I/O	COM_F	COM_F		USART3_CTS	COMP2_INP10,					
34	20	34	20	19	FBIS	1/0			COM_F	COM_P		I ² C2_SCL	OPA3_INP,			
									I ² C1_SCL							
									EVENTOUT							
									SPI2_MISO/I ² S2_MCK	COMP2 INP11,						
									TIM15_CH1	COMP3_INP9,						
35	27	35	27	20	PB14	I/O	COM_F		TIM1_CH2N	COMP3_INN5						
									USART3_RTS	OPA3_OUT SEG6						
		7							I ² C2_SDA	0200						
									I ² C1_SDA							
									EVENTOUT							
									SPI2_MOSI/I ² S2_SD							
36	28	36	28		PB15	I/O	COM		TIM15_CH2	SEG5						
									TIM1_CH3N							
									TIM15_CH1N							
									TIM3_CH1							
37		37			PC6	I/O	СОМ		SPI2_SCK/I ² S2_CK	SEG4						
									USART4_RX							
									TIM2_CH3							

		封装							端口功能	ğ.
LQFP64 R1	LQFP48 C1	QFN64 R1	QFN48 C1	QFN32 K1	复位	端口类型	端口结构	Notes	复用功能	附加功能
38		38			PC7	I/O	СОМ		TIM3_CH2 SPI2_MISO/I ² S2_MCK USART4_TX TIM2_CH4	COMP3_INP13, COMP3_INN8 SEG3
39		39			PC8	I/O	СОМ		TIM3_CH3 SPI2_MOSI/I ² S2_SD USART4_CTS TIM1_CH1	SEG2
40		40			PC9	I/O	СОМ		TIM3_CH4 SPI2_NSS/I ² S2_WS I ² S1_CKIN USART4_RTS TIM1_CH2	SEG1
41	29	41	29	21	PA8	I/O	СОМ		EVENTOUT MCO USART1_CK TIM1_CH1 CTC_SYNC SPI2_NSS USART1_TX	SEG0, OPA1_OUT
42	30	42	30	22	PA9	I/O	COM_F		EVENTOUT TIM15_BKIN USART1_TX TIM1_CH2 I2C1_SCL SPI2_MISO MCO I²C2_SCL	COM0 OPA1_INP
43	31	43	31	23	PA10	I/O	COM_F		EVENTOUT TIM17_BKIN USART1_RX TIM1_CH3 I²C1_SDA SPI2_MOSI I²C2_SDA	COM1 OPA1_INN
44	32	44	32		PA11	I/O	COM_U		EVENTOUT USART1_CTS TIM1_CH4 COMP1_OUT SPI1_MISO/I2S1_MCK	USB_DM COM2

		封装							端口功能	Ĕ		
LQFP64 R1	LQFP48 C1	QFN64 R1	QFN48 C1	QFN32 K1	复位	端口类型	端口结构	Notes	复用功能	附加功能		
									TIM1_BKIN2			
									EVENTOUT			
									USART1_RTS			
45	33	45	33		PA12	I/O	0014 11		TIM1_ETR	USB_DP		
45	33	45	33		PAIZ	1/0	COM_U		COMP2_OUT	COM3		
									SPI1_MOSI/I ² S1_SD			
									I ² S1_CKIN			
									EVENTOUT			
									SWDIO			
46	34	46	34	24	PA13	I/O	СОМ		IR_OUT			
40	34	40	34	24	PAIS	1/0	COM		USART1_RX	-		
									COMP3_OUT			
									PVD_OUT			
47	35	47	35	25	PF5	I/O	COM		TIM1_BKIN2	RTC_OUT		
48	36	48	36	26	PF6	I/O	COM		USART1_CTS	-		
									EVENTOUT			
									SWCLK			
49	37	49	37	27	PA14	I/O	СОМ		USART2_TX	-		
									USART1_TX			
									PVD_OUT			
						1			EVENTOUT			
									SPI1_NSS/I ² S1_WS			
50	38	50	38		PA15	I/O	СОМ		USART2_RX	_		
30	50	50	30						TIM2_CH1_ETR			
									USART4_RTS			
									USART3_RTS			
									USART4_TX			
51		51			PC10	I/O	COM		USART3_TX	COM4/SEG39		
									TIM1_CH3			
									USART4_RX			
52	X	52			PC11	I/O	COM		USART3_RX	COM5/SEG38		
									TIM1_CH4			
									USART4_CK			
53		53	3 PC12 I/O		СОМ		USART3_CK	COM6/SEG37				
									TIM14_CH1			
		_							TIM3_ETR			
54		54			PF7	I/O	СОМ		USART3_RTS	COM7/SEG36		
									TIM1_CH1N			
55	39	55	39	28	PB3	I/O	СОМ		EVENTOUT	COMP2_INN9		
					=				SPI1_SCK/I ² S1_CK	SEG35/VLCDH		

		封装							端口功能	E C		
LQFP64 R1	LQFP48 C1	QFN64 R1	QFN48 C1	QFN32 K1	复位	端口类型	端口结构	Notes	复用功能	附加功能		
									TIM2_CH2			
									USART1_RTS			
									TIM1_CH2			
									EVENTOUT			
									SPI1_MISO/I ² S1_MCK			
									TIM3_CH1	COMP1_INP12		
56	40	56	40	29	PB4	I/O	СОМ		USART1_CTS	COMP2_INP12 SEG34/VLCD3		
									USART1_CK	3LO34/ VLOD3		
									TIM1_CH2N			
									TIM17_BKIN			
									SPI1_MOSI/I ² S1_SD			
						TIM3_CH2						
									TIM16_BKIN			
	4.4		4.4	00	DD 5	I/O	СОМ		I ² C1_SMBA	COMP1_INP13		
57	41	57	41	30	PB5				USART1_CK	SEG33/VLCD2		
									COMP2_OUT			
									USART1_RTS			
									USART1_TX			
									TIM1_CH3N			
									EVENTOUT			
									USART1_TX			
									I ² C1_SCL TIM16_CH1N	COMP1_INP14,		
58	42	58	42	31	PB6	I/O	COM_F		SPI2_MISO	COMP2_INP14		
									USART3_CTS	SEG32/VLCD1		
									TIM1_CH3			
									I ² C2_SCL			
									EVENTOUT			
									USART1_RX			
									I ² C1_SDA			
									TIM17_CH1N	PVD_IN,		
59	43	59	43	32	PB7	I/O	COM_F		USART4_CTS	COMP2_INP15 SEG31		
									SPI2_MOSI	OLO31		
									I ² C2_SDA			
								TIM1_CH1				
60	44	60	44		PF8/BOOT	I/O	СОМ			SEG30		
									EVENTOUT			
C4	A.E.	64	A.F.		DDO	1/0	COM 5		I ² C1_SCL	85000		
61	45	61	45		PB8	I/O	COM_F		I ² C2_SCL	SEG29		
									TIM16_CH1			

		封装							端口功能			
2	C1	R1	C1	K1		端						
LQFP64	LQFP48	QFN64	QFN48 C1	QFN32	复位	口 类型	端口 结构	Notes	复用功能	附加功能		
									SPI2_SCK			
									USART1_TX			
									USART3_TX			
									TIM15_BKIN			
									TIM1_CH1N			
					EVENTOUT							
					PB9	I/O			IR_OUT			
			46						I ² C1_SDA			
62	46	62					COM_F		TIM17_CH1	SEG28		
02	40	02	40		1 09		COIVI_I		SPI2_NSS/I ² S2_WS	OLO20		
									USART1_RX			
									USART3_RX			
							I ² C2_SDA					
63	47	63	47		Vss	G			Ground			
64	48	64	48		V_{CC}	S			Digital power	supply		

- 1. 选择 PF2 或者 NRST 通过 option bytes 进行配置。
- 2. 复位后,PA13 和 PA14 两个 pin 被配置为 SWDIO 和 SWCLK AF 功能,前者内部上拉电阻、后者内部下拉电阻被激活。
- 3. PF8-BOOT0 默认数字输入模式,且下拉使能。

3.1. 端口 A 复用功能映射

表 3-3 端口 A 复用功能映射

Port A	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
PA0	-	USART2_ CTS	TIM2_CH1_ ETR	-	USART4_T X	-	-	COMP1_O UT	SPI2_SCK	-		-	-	-	-	-
PA1	EVENTOUT	USART2_ RTS	TIM2_CH2	-	USART4_ RX	TIM15_CH 1N	I ² C1_SM BA	-	SPI1_SCK/I ² S1_C K	SPI2_MOSI	-	-	-	-	-	-
PA2	TIM15_CH1	USART2_T X	TIM2_CH3	-	-	-	-	COM2_OU T	SPI1_MOSI/I ² S1_ SD	SPI2_MISO	-	-	-	-	-	-
PA3	TIM15_CH2	USART2_ RX	TIM2_CH4	-	-		-	EVEN- TOUT	SPI2_MSIO	SPI2_NSS/I²S2 _WS	-	-	-	-	-	-
PA4	SPI1_NSS/I ² S1_ WS	USART2_ CK	-	-	TIM14_CH 1	-	-	EVEN- TOUT	SPI2_MOSI	USART2_TX	-	-	PVD_ OUT	1	-	-
PA5	SPI1_SCK/I ² S1_C K	•	TIM2_CH1_ ETR	-	-	-	-	EVEN- TOUT		-	USART3_TX	-	-	1	-	-
PA6	SPI1_MISO/I ² S1_ MCK	TIM3_CH1	TIM1_BKIN	-	USART3_ CTS	TIM16_CH 1	EVEN- TOUT	COMP1_O UT	-	-	-	-	-	-	-	-
PA7	SPI1_MOSI/I ² S1_ SD	TIM3_CH2	TIM1_CH1N	-	TIM14_CH 1	TIM17_CH 1	EVEN- TOUT	COMP2_O UT	-	-	-	-	-	-	-	-
PA8	MCO	USART1_ CK	TIM1_CH1	EVE NTO UT	CTC_SYN C	-		-	SPI2_NSS	-	USART1_TX	-	-	-	-	-
PA9	TIM15_BKIN	USART1_T X	TIM1_CH2	-	-) -	I ² C1_SCL	EVEN- TOUT	SPI2_MISO	МСО	-	-	-	I ² C2_S CL	-	-
PA1 0	TIM17_BKIN	USART1_ RX	TIM1_CH3	-			I ² C1_SD A	EVEN- TOUT	SPI2_MOSI	-	-	-	-	I ² C2SD A	=	-
PA1 1	EVENTOUT	USART1_ CTS	TIM1_CH4	-			-	COMP1_O UT	SPI1_MISO/l ² S1_ MCK	-	-	TIM1_BK IN2	-	-	-	-
PA1 2	EVENTOUT	USART1_ RTS	TIM1_ETR	-). <	-	-	COMP2_O UT	SPI1_MOSI/I ² S1_ SD	I ² S1_CKIN	-	-	-	-	-	-
PA1 3	SWDIO	IROUT		-	-	-	-	EVEN- TOUT	-	USART1_RX	-	COMP3_ OUT	PVD_ OUT	-	-	-

Port A	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
PA1 4	SWCLK	USART2_T X	1	-	•	-	-	EVEN- TOUT	•	USART1_TX		·	PVD_ OUT	-	-	-
PA1 5	SPI1_NSS/I ² S1_ WS	USART2_ RX	TIM2_CH1_ ETR	EVE NTO UT	USART4_ RTS			EVEN- TOUT			USART3_RTS_D E_CK					

3.2. 端口 B 复用功能映射

表 3-4 端口 B 复用功能映射

Port B	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF1	AF13	AF14	AF1 5
PB0	EVENTOUT	TIM3_CH 3	TIM1_CH2 N	-	USART3_C K	-	-	COMP1_O UT	SPI1_NSS/I ² S1_ WS	-	USART3_R X	-	-	-	-	-
PB1	TIM14_CH1	TIM3_CH 4	TIM1_CH3 N	-	USART3_R TS	-	-	EVEN- TOUT	-	-	-	COMP3_O UT	-	-	-	-
PB2	-	-	-	-	-	-		EVEN- TOUT	SPI2_MISO	-	USART3_T X	-	-	-	-	-
PB3	SPI1_SCK/I ² S1_C K	EVEN- TOUT	TIM2_CH2	-	USART1_R TS		-	EVEN- TOUT	-	-	-	TIM1_CH2	-	-	-	-
PB4	SPI1_MISO/I ² S1_M CK	TIM3_CH 1	EVEN- TOUT	-	USART1_C TS	TIM17_BKIN	-	-	-	-	-	TIM1_CH2 N	-	USART1_ CK	-	-
PB5	SPI1_MOSI/I ² S1_S D	Tim3_CH 2	TIM16_BKI N	I ² C1_SMB A	USART1_C K		-	COM2_OU T	-	USART1_R TS	-	TIM1_CH3 N	-	USART1_ TX	-	-
PB6	USART1_TX	I ² C1_SCL	TIM16_CH 1N	-	. (7)	-	-	EVEN- TOUT	SPI2_MISO	-	USART3_C TS	TIM1_CH3	-	l ² C2_SCL	-	-
PB7	USART1_RX	I ² C1_SDA	TIM17_CH 1N		USART4_C TS	-	-	EVEN- TOUT	SPI2_MOSI	-	-	TIM1_CH1	-	I ² C2_SDA	-	-
PB8	-	I ² C1_SCL	TIM16_CH 1			-	-	EVEN- TOUT	SPI2_SCK	USART1_T X	USART3_T X	TIM15_BKI N	-	l ² C2_SCL	TIM1_CH 1N	-
PB9	IR_OUT	I ² C1_SDA	TIM17_CH 1	EVEN- TOUT		SPI2_NSS/I ² S2_WS	-	-	-	USART1_R X	USART3_R X	-	-	I ² C2_SDA	-	-
PB1 0	-	I ² C2_SCL	TIM2_CH3	-	USART3_T X	SPI2_SCK/I ² S2_CK	_	COMP1_O UT	-	USART2_R TS	-	-	-	l ² C1_SCL	-	-

Port B	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF1	AF13	AF14	AF1 5
PB1	EVENTOUT	I ² C2_SDA	TIM2_CH4	-	USART3_R X	-	-	COMP2_O UT	SPI2_MOSI	USART2_C TS			-	I ² C1_SDA	-	-
PB1 2	SPI2_NSS/I ² S2_W S	EVEN- TOUT	TIM1_BKIN	-	USART3_C K	TIM15_BKIN	-	-	=	-			-	-	-	-
PB1 3	SPI2_SCK/I ² S2_C K	-	TIM1_CH1 N	-	USART3_C TS	l ² C2_SCL	-	EVEN- TOUT	-	мсо		TIM15_CH 1N	-	l ² C1_SCL	-	-
PB1 4	SPI2_MISO/I ² S2_M CK	TIM15_C H1	TIM1_CH2 N	-	USART3_R TS	I ² C2_SDA	-	EVEN- TOUT	-	-	-	TIM15_CH 1	-	I ² C1_SDA	-	-
PB1 5	SPI2_MOSI/I ² S2_S D	TIM15_C H2	TIM1_CH3 N	TIM15_CH 1N	-	-	1	EVEN- TOUT	-		-	-	-	-	1	-

3.3. 端口 C 复用功能映射

表 3-5 端口 C 复用功能映射

PortC	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
PC0	EVENTOUT	-	-	-	-	-	-	-	SPI1_MISO/I ² S1_MCK	USART2_CTS	USART3_RTS	-	-	-	-	-
PC1	EVENTOUT	-	-	-	-	-	-		SPI1_MOSI/I ² S1_SD	USART2_RTS	USART3_CTS	TIM15_CH1	-	-	-	-
PC2	EVENTOUT	SPI2_MISO/I ² S2_MCK	-	-	-	-		-	-	USART3_TX	USART3_RX	TIM15_CH2	-	-	-	-
PC3	EVENTOUT	SPI2_MOSI/I ² S2_SD	-	-	-	-	-	-	-	USART3_RX	USART3_TX	-	-	-	-	-
PC4	EVENTOUT	USART3_TX	-	-	-	-	-	COMP3_OUT	SPI1_NSS/I ² S1_WS	USART1_TX	-	TIM2_CH1_ETR	IR_OUT	-	-	-
PC5	-	USART3_RX	-	-	-	-	-	-	SPI1_MOSI/I ² S1_SD	USART1_RX	-	TM2_CH2	-	-	-	-
PC6	TIM3_CH1	-	-	-	-	-	-	-	SPi2_SCK/l ² S2_CK	-	USART4_RXD	TIM2_CH3	-	-	-	-
PC7	TIM3_CH2	-	-	-	-		-	-	SPI2_MISO/I ² S2_MCK	-	USART4_TX	TIM2_CH4	-	-	-	-
PC8	TIM3_CH3	-	-	-	-	-	-	-	SPI2_MOSI/I ² S2_SD	-	USART4_CTS	TIM1_CH1	-	-	-	-
PC9	TIM3_CH4	-	-	-	-		-	-	SPI2_NSS/I ² S2_WS	I ² S1_CKIN	USART4_RTS	TIM1_CH2	-	-	-	-
PC10	USART4_TX	USART3_TX	-		-		-	-	-	-	-	TIM1_CH3	-	-	-	-
PC11	USART4_RX	USART3_RX	-			-	-	-	-	-	-	TIM1_CH4	-	-	-	-
PC12	USART4_CK	USART3_CK	. 1	-	-	-	-	-	-	-	-	TIM14_CH1	-	-	-	-
PC13	-	-	-		-	-	-	-	SPI1_SCK/I ² S1_CK	-	-	TIM1_BKIN	-	-	-	-
PC14	-	-	-	-	-	-	-	-	-	-	-	TIM1_BKIN2	-	-	-	-
PC15	-	-	-	-	-	-	-	-	-	-	-	TIM15_BKIN	-	-	-	-

3.4. 端口 F 复用功能映射

表 3-6 端口 F 复用功能映射

PortF	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
PF0	CTC_SYNC	-	-	-	-	-	-	-	-	USART2_TX	3.0	TIM14_CH1	-	TIM1_BKIN	-	-
PF1	-	-	-	-	-	-	-	-	-	USART2_RX		TIM15_CH1N	-	TIM1_CH1N	-	-
PF2	EVENTOUT	-	-	-	-	-	-	-	МСО	-	-	-	-	TIM1_CH2	-	-
PF3	EVENTOUT	-	-	-	-	-	I ² C1_SCL	-	-		-	-	-	I ² C2_SCL	-	-
PF4	-	-	-	-	-	-	I ² C1_SDA	-	-		-	-	-	I ² C2_SDA	1	-
PF5	-	-	TIM1_BKIN2	-	-	-	-	-	-		-	-	-	-	-	-
PF6	-	-	-	-	USART1_CTS	-	-	-	-		-	-	-	-	-	-
PF7	TIM3_ETR	USART3_RTS	-	-	-	-	-	-			-	TIM1_CH1N	-	-	-	-
PF8	-	-	-	-	-	-	-	-	-	<u></u>	-	-	-	-	-	-
PF9	-	-	-	-	-	-	-	- 7	-	-	-	-	-	-	-	-

4. 存储器映射

图 4-1 存储器映射

表 4-1 存储器地址

Туре	Boundary Address	Size	Memory Area	Description
SRAM	0x2000 4000-0x3FFF FFFF	-	Reserved	1.CPU 读写该空间时产生 Response error,进而进入 Hard-Fault 异常; 2.DMA 访问时产生 TEIF 状态位;
	0x2000 0000-0x2000 3FFF	16 KBytes	SRAM	如果硬件上电配置 SRAM 为 16 KBytes, 则 SRAM 地址空间为 0x2000 0000-0x2000 3FFF
	0x1FFF 3400-0x1FFF FFFF	-	Reserved	访问参见 2.5.2 节描述
	0x1FFF 3300-0x1FFF 33FF	256 Bytes	FT infor1 bytes	Flash Verify Value; Analog和 Flash Trimming; Debug ID;
Code	0x1FFF 3200-0x1FFF 32FF	256 Bytes	FT infor0 bytes	Normal TS DATA; High TS DATA; HSI Re-Trim data; Flash/sram size 配置;
	0x1FFF 3100-0x1FFF 31FF	256 Bytes	Option bytes	芯片软硬件 option bytes 信息;
	0x1FFF 3000-0x1FFF 30FF	256 Bytes	UID bytes	Unique ID
	0x1FFF 0000-0x1FFF 2FFF	12 KBytes	System memory	存放 boot loader
	0x0802 0000-0x1FFE FFFF	-	Reserved	-
	0x0800 0000-0x0801 FFFF	128 KBytes	Main flash memory	

Туре	Boundary Address	Size	Memory Area	Description
				1.CPU 读写该空间时产生 Re-
				sponse error,进而进入 Hard-
	0x0002 0000-0x07FF FFFF	-	Reserved	Fault 异常;
				2.DMA 访问时产生 TEIF 状态
				位;
			根据 Boot 配	. ()
			置选择,是:	*/O
			1) Main flash	V.,
	0x0000 0000-0x0001 FFFF	128 KBytes	memory	
			2) System	
			memory	
			3) SRAM	

1. 上述空间除外,其余标注为 reserved 的空间,无法进行写操作,读为 0,且产生 response error。

表 4-2 外设寄存器地址

Bus	Boundary Address	Size	PY32F071	Access Response
	0xE000 000-0xE00F FFFF	1 Mbytes	M0+	
				1.CPU 读写该空间时产生 Re-
				sponse error,进而进入 Hard-
	0x5000 1800 - 0x5FFF FFFF	256 MB	Reserved	Fault 异常;
IODODT				2.DMA 访问时产生 TEIF 状态
IOPORT				位;
				1.定义空间按照寄存器定义属性
	0x5000 1400 - 0x5000 17FF	1 KB	GPIOF	访问;
				2.未使用空间无法写,读回 0;

Bus	Boundary Address	Size	PY32F071	Access Response
				1.CPU 读写该空间时产生 Re-
				sponse error,进而进入 Hard-
	0x5000 1000 - 0x5000 13FF	1 KB	Reserved	Fault 异常;
				2.DMA 访问时产生 TEIF 状态
				位;
				1.CPU 读写该空间时产生 Re-
				sponse error,进而进入 Hard-
	0x5000 0C00 - 0x5000 0FFF	1 KB	Reserved	Fault 异常;
				2.DMA 访问时产生 TEIF 状态
				位;
				1.定义空间按照寄存器定义属性
	0x5000 0800 - 0x5000 0BFF	1 KB	GPIOC	访问;
				2.未使用空间无法写,读回 0;
				1.定义空间按照寄存器定义属性
	0x5000 0400 - 0x5000 07FF	1 KB	GPIOB	访问;
				2.未使用空间无法写,读回 0;
				1.定义空间按照寄存器定义属性
	0x5000 0000 - 0x5000 03FF	1 KB	GPIOA	访问;
				2.未使用空间无法写,读回 0;
				1.CPU 读写该空间时产生 Re-
				sponse error,进而进入 Hard-
AHB	0x4002 4000 - 0x4FFF FFFF	256 MB	Reserved	Fault 异常;
				2.DMA 访问时产生 TEIF 状态
				位;

Bus	Boundary Address	Size	PY32F071	Access Response
	0x4002 3C00 – 0x4002 3FFF	1 KB	Reserved	CPU 和 DMA 无法写,读返回 0
	0x4002 3800 -0x4002 3BFF	1 KB	DIV	1.定义空间按照寄存器定义属性 访问; 2.未使用空间无法写,读回 0;
	0x4002 3400 - 0x4002 37FF	1 KB	Reserved	CPU 和 DMA 无法写,读返回 0
	0x4002 3000 - 0x4002 33FF	1 KB	CRC	1.定义空间按照寄存器定义属性访问; 2.未使用空间无法写,读回 0;
	0x4002 2400 - 0x4002 2FFF	3 KB	Reserved	CPU 和 DMA 无法写,读返回 0
	0x4002 2000 - 0x4002 23FF	1 KB	FLASH	1.定义空间按照寄存器定义属性访问;
				2.未使用空间无法写,读回 0;
	0x4002 1C00 - 0x4002 1FFF	1 KB	Reserved	CPU 和 DMA 无法写,读返回 0
	0x4002 1800 - 0x4002 1BFF	1 KB	EXTI	1.定义空间按照寄存器定义属性访问;
	1.0,			2.未使用空间无法写,读回 0;
	0x4002 1400 - 0x4002 17FF	1 KB	Reserved	CPU 和 DMA 无法写,读返回 0
				1.定义空间按照寄存器定义属性
	0x4002 1000 - 0x4002 13FF	1 KB	RCC ⁽²⁾	访问;
				2.未使用空间无法写,读回 0;
	0x4002 0400 - 0x4002 0FFF	3 KB	Reserved	CPU和DMA无法写,读返回0
				1.定义空间按照寄存器定义属性
	0x4002 0000 - 0x4002 03FF	1 KB	DMA	访问;
				2.未使用空间无法写,读回 0;

Bus	Boundary Address	Size	PY32F071	Access Response
	0x4001 5C00 - 0x4001 FFFF	41 KB	Reserved	CPU 和 DMA 无法写,读返回 0
				1.定义空间按照寄存器定义属性
	0x4001 5800 - 0x4001 5BFF	1 KB	DBG	访问;
				2.未使用空间无法写,读回 0;
	0x4001 4C00 - 0x4001 57FF	3 KB	Reserved	CPU 和 DMA 无法写,读返回 0
				1.定义空间按照寄存器定义属性
	0x4001 4800 - 0x4001 4BFF	1 KB	TIM17	访问;
				2.未使用空间无法写,读回 0;
				1.定义空间按照寄存器定义属性
	0x4001 4400 - 0x4001 47FF	1 KB	TIM16	访问;
				2.未使用空间无法写,读回 0;
				1.定义空间按照寄存器定义属性
APB	0x4001 4000 - 0x4001 43FF	1 KB	TIM15	访问;
				2.未使用空间无法写,读回 0;
	0x4001 3C00 - 0x4001 3FFF	1 KB	Reserved	CPU 和 DMA 无法写,读返回 0
				1.定义空间按照寄存器定义属性
	0x4001 3800 - 0x4001 3BFF	1 KB	USART1	访问;
				2.未使用空间无法写,读回 0;
	0x4001 3400 - 0x4001 37FF	1 KB	Reserved	CPU 和 DMA 无法写,读返回 0
				1.定义空间按照寄存器定义属性
	0x4001 3000 - 0x4001 33FF	1 KB	SPI1/I ² S1	访问;
				2.未使用空间无法写,读回 0;
				1.定义空间按照寄存器定义属性
	0x4001 2C00 - 0x4001 2FFF	1 KB	TIM1	访问;
				2.未使用空间无法写,读回 0;

Bus	Boundary Address	Size	PY32F071	Access Response
	0x4001 2800 - 0x4001 2BFF	1 KB	Reserved	CPU和DMA无法写,读返回0
				1.定义空间按照寄存器定义属性
	0x4001 2400 - 0x4001 27FF	1 KB	ADC	访问;
				2.未使用空间无法写,读回 0;
	0x4001 0400 - 0x4001 23FF	8 KB	Reserved	CPU和DMA无法写,读返回0
				1.定义空间按照寄存器定义属性
	0x4001 0300 - 0x4001 03FF		OPA	访问;
				2.未使用空间无法写,读回 0;
				1.定义空间按照寄存器定义属性
	0x4001 0200 - 0x4001 02FF	1 KB	COMP	访问;
				2.未使用空间无法写,读回 0;
				1.定义空间按照寄存器定义属性
	0x4001 0000 - 0x4001 01FF		SYSCFG	访问;
				2.未使用空间无法写,读回 0;
	0x4000 8000- 0x4000 FFFF	32 KB	Reserved	CPU和DMA无法写,读返回0
				1.定义空间按照寄存器定义属性
	0x4000 7C00 - 0x4000 7FFF	1 KB	LPTIM1	访问;
				2.未使用空间无法写,读回 0;
	0x4000 7800 - 0x4000 7BFF	1 KB	Reserved	CPU和DMA无法写,读返回0
				1.定义空间按照寄存器定义属性
	0x4000 7400 - 0x4000 77FF	1 KB	DAC	访问;
				2.未使用空间无法写,读回 0;
				1.定义空间按照寄存器定义属性
	0x4000 7000 - 0x4000 73FF	1 KB	PWR 注3	访问;
				2.未使用空间无法写,读回 0;

Bus	Boundary Address	Size	PY32F071	Access Response
				1.定义空间按照寄存器定义属性
	0x4000 6C00 - 0x4000 6FFF	1 KB	СТС	访问;
				2.未使用空间无法写,读回 0;
	0x4000 6800 - 0x4000 6BFF	1 KB	Reserved	CPU 和 DMA 无法写,读返回 0
	0x4000 6400 - 0x4000 67FF	1 KB	Reserved	CPU和DMA无法写,读返回0
			USB SRAM(实	1.定义空间按照寄存器定义属性
	0x4000 6000 - 0x4000 63FF	1 KB	际以IP为	访问;
			准)	2.未使用空间无法写,读回 0;
				1.定义空间按照寄存器定义属性
	0x4000 5C00 - 0x4000 5FFF	1 KB	USB	访问;
				2.未使用空间无法写,读回 0;
				1.定义空间按照寄存器定义属性
	0x4000 5800 - 0x4000 5BFF	1 KB	l ² C2	访问;
				2.未使用空间无法写,读回 0;
				1.定义空间按照寄存器定义属性
	0x4000 5400 - 0x4000 57FF	1 KB	I ² C1	访问;
				2.未使用空间无法写,读回 0;
	0x4000 5000 - 0x4000 53FF	1 KB	Reserved	CPU 和 DMA 无法写,读返回 0
				1.定义空间按照寄存器定义属性
	0x4000 4C00 - 0x4000 4FFF	1 KB	USART4	访问;
				2.未使用空间无法写,读回 0;
				1.定义空间按照寄存器定义属性
	0x4000 4800 - 0x4000 4BFF	1 KB	USART3	访问;
				2.未使用空间无法写,读回 0;

Bus	Boundary Address	Size	PY32F071	Access Response
				1.定义空间按照寄存器定义属性
	0x4000 4400 - 0x4000 47FF	1 KB	USART2	访问;
				2.未使用空间无法写,读回 0;
	0x4000 3C00 - 0x4000 43FF	2 KB	Reserved	CPU 和 DMA 无法写,读返回 0
				1.定义空间按照寄存器定义属性
	0x4000 3800 - 0x4000 3BFF	1 KB	SPI2/I ² S2	访问;
				2.未使用空间无法写,读回 0;
	0x4000 3400 - 0x4000 37FF	1 KB	Reserved	CPU 和 DMA 无法写,读返回 0
				1.定义空间按照寄存器定义属性
	0x4000 3000 - 0x4000 33FF	1 KB	IWDG	访问;
				2.未使用空间无法写,读回 0;
				1.定义空间按照寄存器定义属性
	0x4000 2C00 - 0x4000 2FFF	1 KB	WWDG	访问;
				2.未使用空间无法写,读回 0;
				1.定义空间按照寄存器定义属性
	0x4000 2800 - 0x4000 2BFF	1 KB	RTC	访问;
	(0)			2.未使用空间无法写,读回 0;
				1.定义空间按照寄存器定义属性
	0x4000 2400 - 0x4000 27FF	1 KB	LCD	访问;
				2.未使用空间无法写,读回 0;
	·			1.定义空间按照寄存器定义属性
	0x4000 2000 - 0x4000 23FF	1 KB	TIM14	访问;
				2.未使用空间无法写,读回 0;
	0x4000 1800 - 0x4000 1FFF	2 KB	Reserved	CPU 和 DMA 无法写,读返回 0

Bus	Boundary Address	Size	PY32F071	Access Response
				1.定义空间按照寄存器定义属性
	0x4000 1400 - 0x4000 17FF	1 KB	TIM7	访问;
				2.未使用空间无法写,读回 0;
				1.定义空间按照寄存器定义属性
	0x4000 1000 - 0x4000 13FF	1 KB	TIM6	访问;
				2.未使用空间无法写,读回 0;
	0x4000 0800 - 0x4000 0FFF	2 KB	Reserved	CPU 和 DMA 无法写,读返回 0
				1.定义空间按照寄存器定义属性
	0x4000 0400 - 0x4000 07FF	1 KB	TIM3	访问;
			. A	2.未使用空间无法写,读回 0;
				1.定义空间按照寄存器定义属性
	0x4000 0000 - 0x4000 03FF	1 KB	TIM2	访问;
				2.未使用空间无法写,读回 0;

- 1. 上表 AHB 标注为 Reserved 的地址空间,无法写操作,读回为 0,且产生 hardfault。
- 2. 不仅支持 32 位 word 访问,还支持 halfword 和 byte 访问。
- 3. 不仅支持 32 位 word 访问,还支持 halfword 访问。

5. 电气特性

5.1. 测试条件

除非特殊说明,所有的电压都以 Vss 为基准。

5.1.1. 最小值和最大值

除非特殊说明,通过在环境温度 T_A=25 °C 和 T_A=T_A(max)下进行的芯片量产测试筛选,保证在最坏的环境温度、供电电压和时钟频率条件下达到最小值和最大值。

基于表格下方注解的电特性结果、设计仿真和/或工艺参数的数据,未在生产中进行测试。最小和最大数值参考了样品测试,取平均值再加或者减三倍的标准偏差。

5.1.2. 典型值

除非特殊说明,典型数据是基于 T_A=25 °C 和 V_{CC}=3.3 V。这些数据仅用于设计指导未经过测试。 典型的 ADC 精度数值是通过对一个标准批次的采样,在所有温度范围下测试得到,95%的芯片误差小于 等于给出的数值。

5.2. 绝对最大额定值

如果加在芯片上超过以下表格给出的绝对最大值,可能会导致芯片永久性的损坏。这里只是列出了所能承受的强度分等,并不意味着在此条件下器件的功能操作无误。长时间工作在最大值条件下可能影响芯片的可靠性。

符号	描述	最小值	最大值	单位
Vcc	外部主供电电源	- 0.3	6.25	V
Vin	其他 Pin 的输入电压	- 0.3	Vcc + 0.3	V

表 5-1 电压特性(1)

表 5-2 电流特性

符号	描述	最大值	单位
Ivcc	流进 Vcc pin 的总电流(供应电流)(1)	300	
Ivss	流出 Vss pin 的总电流(流出电流) (1)	300	mA
I _{IO(PIN)}	COM IO 的输出灌电流 ⁽²⁾	20	

^{1.} 电源 Vcc 和地 Vss 引脚必须始终连接到外部允许范围内的供电系统上。

所有 IO 的拉电流	-20	
------------	-----	--

- 1. 电源 Vcc 和地 Vss 引脚必须始终连接到外部允许范围内的供电系统上。
- 2. IO 类型可参考引脚定义的术语和符号。

表 5-3 温度特性

符号	描述	数值	单位
T _{STG}	存储温度范围	- 65 ~ + 150	℃
То	工作温度范围	- 40 ~+ 85	℃

5.3. 工作条件

5.3.1. 通用工作条件

表 5-4 通用工作条件

		₹ ○・週/DエIFが口			
符号	参数	条件	最小值	最大值	单位
f _{HCLK}	内部 AHB 时钟频率	- (10	0	72	MHz
f _{PCLK}	内部 APB 时钟频率	-	0	72	MHz
Vcc	标准工作电压	-	1.7	5.5	V
V _{CCA} (1)	模拟电路工作电压	必须与 Vcc 相同 ⁽¹⁾	1.7	5.5	V
Vin	IO 输入电压		- 0.3	Vcc + 0.3	V
TA	环境温度		- 40	85	°C
TJ	结温		- 40	105	°C

^{1.} 建议使用相同的电源为 Vcc和 Vcca 供电,在上电和正常操作期间,Vcc和 Vcca 之间最多允许有 300mV 的 差别。

5.3.2. 上下电工作条件

表 5-5 上电和掉电工作条件

符号	参数	条件	最小值	最大值	单位
	Vcc上升速率	-	0	8	0.7
tvcc	Vcc下降速率	-	20	8	us/V

5.3.3. 内嵌复位和 LVD 模块特性

表 5-6 内嵌复位模块特性

符号	参数	条件	最小值	典型值	最大值	单位
		PLS[2:0]=000 (上升沿)	1.7	1.8	1.9	V
		PLS[2:0]=000 (下降沿)	1.6	1.7	1.8	V
		PLS[2:0]=001 (上升沿)	1.9	2	2.1	V
		PLS[2:0]=001 (下降沿)	1.8	1.9	2	V
		PLS[2:0]=010 (上升沿)	2.1	2.2	2.3	V
		PLS[2:0]=010 (下降沿)	2	2.1	2.2	V
PLS[2:0]=000 (上升沿) 1.7 1.8 PLS[2:0]=000 (下降沿) 1.6 1.7 PLS[2:0]=001 (上升沿) 1.9 2 PLS[2:0]=001 (下降沿) 1.8 1.9 PLS[2:0]=010 (上升沿) 2.1 2.2	2.4	2.5	V			
	可编程电压检	PLS[2:0]=011 (下降沿)	2.2	2.3	2.4	V
V PVD	测器电平选择	PLS[2:0]=100 (上升沿)	2.5	2.6	2.7	V
		PLS[2:0]=100 (下降沿)	2.4	2.5	2.6	V
		PLS[2:0]=101 (上升沿)	2.7	2.8	2.9	V
		PLS[2:0]=101 (下降沿)	2.6	2.7	2.8	V
		PLS[2:0]=110 (上升沿)	2.9	3	3.1	V
		PLS[2:0]=110 (下降沿)	2.8	2.9	3	٧
		PLS[2:0]=111 (上升沿)	3.1	3.2	3.3	V
		PLS[2:0]=111 (下降沿)	3	3.1	3.2	V
$V_{\text{PVDhyst}}^{(1)}$	PVD 迟滞	-	-	100	-	mV
V	上电/下电复位	上升沿	1.5	1.6	1.7	V
V POR/PDR	VPOR/PDR VPOR/PDR	1.45	1.55	1.65	V	
V _{PDRhyst} (1)	PDR 迟滞	-	-	20	-	mV
		BOR_LEV[2:0]=000 (上升沿)	1.7	1.8	1.9	V
		BOR_LEV[2:0]=000 (下降沿)	0 (下降沿) 1.6 1.7 1.8 1.9 2 2.1 (下降沿) 1.8 1.9 2 2.1 1 (下降沿) 2.1 2.2 2.3 2.4 2.5 1 (上升沿) 2.3 2.4 2.5 1 (下降沿) 2.5 2.6 2.7 2.8 2.9 1 (上升沿) 2.9 3 3.1 3.2 3.3 1 (下降沿) 3 3.1 3.2 3.3 1 (下降沿) 4.5 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.	V		
	VPVD 可编程电压检测器电平选择 VPVDhyst(1) PVD 迟滞 VPOR/PDR 上电/下电复位 阈值 VPDRhyst(1) PDR 迟滞	BOR_LEV[2:0]=001 (上升沿)	1.9	2	2.1	V
VPVD 可编程电压检测器电平选择 PL PL PL PD PL PD PL PD </td <td>BOR_LEV[2:0]=001 (下降沿)</td> <td>1.8</td> <td>1.9</td> <td>2</td> <td>V</td>	BOR_LEV[2:0]=001 (下降沿)	1.8	1.9	2	V	
		BOR_LEV[2:0]=010 (上升沿)	2.1	2.2	2.3	٧
		BOR_LEV[2:0]=010 (下降沿)	2	2.1	2.2	V
		BOR_LEV[2:0]=011 (上升沿)	2.3	2.4	2.5	V
VBOR	BOR 國個电压 	BOR_LEV[2:0]=011 (下降沿)	2.2	2.3	2.4	V
		BOR_LEV[2:0]=100 (上升沿)	2.5	2.6	2.7	V
		BOR_LEV[2:0]=100 (下降沿)	2.4	2.5	2.6	V
		BOR_LEV[2:0]=101 (上升沿)	2.7	2.8	2.9	V
		BOR_LEV[2:0]=101 (下降沿)	2.6	2.7	2.8	V
		BOR_LEV[2:0]=110 (上升沿)	2.9	3	3.1	V
		BOR_LEV[2:0]=110 (下降沿)	2.8	2.9	3	V

		BOR_LEV[2:0]=111 (上升沿)	3.1	3.2	3.3	V
		BOR_LEV[2:0]=111 (下降沿)	3	3.1	3.2	V
V_BOR_hyst	BOR 迟滞	-	-	100	-	mV

- 1. 由设计保证,不在生产中测试。
- 2. 数据基于考核结果,不在生产中测试。

5.3.4. 工作电流特性

表 5-7 运行模式电流

		条件							
符号	系统时钟	频率	代码	运行	外设时钟	FLASH sleep	典型值 ⁽¹⁾	最大值	单位
		72 MHz			ON	DISABLE	8.37	-	
		/ Z IVIMZ			OFF	DISABLE	4.60	-	
		48 MHz			ON	DISABLE	6.54		
		40 IVITZ			OFF	DISABLE	4.01		
	HSI	24 MHz		Flash	ON	DISABLE	3.82	-	mA
		24 IVITZ	While(1)		OFF	DISABLE	2.60	-	
		16 MHz			ON	DISABLE	2.78	-	
l(rup)					OFF	DISABLE	1.90	-	
I _{DD} (run)		8 MHz			ON	DISABLE	1.80	-	
					OFF	DISABLE	1.21	-	
		4 MHz			ON	DISABLE	1.04	-	
		4 IVITZ			OFF	DISABLE	0.87	-	
	LSI	22.760 kHz			ON	DISABLE	350.2	-	
	LOI	32.768 kHz			OFF	DISABLE	293.2	-	uA
	LSI	32.768 kHz			ON	ENABLE	276.7	-	uA
	LOI	32.700 KMZ			OFF	ENABLE	224.6	-	uA

1. 数据基于考核结果,不在生产中测试。

表 5-8 sleep 模式电流

		- 条(4				
符号	系统时钟	频率	外设时钟	FLASH sleep	典型值(1)	最大值	单位
		72 MHz	ON	DISABLE	6.16	•	mA
		72 IVITZ	OFF	DISABLE	2.13	-	mA
· ·		48 MHz	ON	DISABLE	4.57	-	mA
		40 IVITZ	OFF	DISABLE	1.82	-	mA
l(aloop)	HSI	24 MHz	ON	DISABLE	2.12		mA
I _{DD} (sleep)	ПОІ	24 IVITZ	OFF	DISABLE	0.89	-	mA
		16 MHz	ON	DISABLE	1.56	-	mA
		TO WITTE	OFF	DISABLE	0.71		mA
		8 MHz	ON	DISABLE	1.01	-	mA
		O IVITIZ	OFF	DISABLE	0.53	-	mA

		条件					
符号	系统时钟	频率	外设时钟	FLASH sleep	典型值(1)	最大值	单位
		4 MU-	ON	DISABLE	0.74	-	mA
		4 MHz	OFF	DISABLE	0.46	-	mA
	LSI	32.768 kHz	ON	DISABLE	349.4	-	uA
	LSI	32.700 KHZ	OFF	DISABLE	292.5	-	uA
	1 61	20.700 1.11-	ON	ENABLE	278.4	-	uA
	LSI	32.768 kHz	OFF	ENABLE	224.4	-	uA

1. 数据基于考核结果,不在生产中测试。

表 5-9 stop 模式电流

			条	件				
符号	V _{cc}	V_{DD}	MR/LPR	LSI	外设时钟	典型值(1)	最大值	単位
		1.2 V	MR	-	-	130.30	-	
					RTC + IWDG + LPTIM	6.60	-	
				ON	IWDG	6.70	-	
		1.2 V		ON	LPTIM	6.70	-	单位 ————————————————————————————————————
					RTC	6.60	-	
I _{DD} (stop)	1.7 ~ 5.5 V		LPR	OFF	No	6.50	-	uA
			LFK		RTC + IWDG + LPTIM	5.80	-	
				ON	IWDG	5.80	-	
		1.0 V		ON	LPTIM	5.70	-	
					RTC	5.70	-	
				OFF	No	5.50	-	

1. 数据基于考核结果,不在生产中测试。

5.3.5. 低功耗模式唤醒时间

表 5-10 低功耗模式唤醒时间

符号	参	数 ⁽¹⁾	条件	典型值(2)	最大值	单位		
TWUSLEEP	Sleep 的唤	醒时间	-	7.00	1	CPU Cycles		
	Stop 的	MR 供电	Flash 中执行程序,HS 系统时钟	I(24 Mhz)作为	3.50	1	us	
Twustop	唤醒时间	, pp /// th	Flash 中执行程序,	V _{DD} = 1.2 V	7.00	-		
	LPR 供电		HSI 作为系统时钟	V _{DD} = 1.0 V	7.00	-	us	

- 1. 唤醒时间的测量是从唤醒时间开始至用户程序读取第一条指令。
- 2. 数据基于考核结果,不在生产中测试。

5.3.6. 外部时钟源特性

5.3.6.1. 外部高速时钟

在 HSE 的 bypass 模式(RCC_CR 的 HSEBYP 置位),芯片内的高速起振电路停止工作,相应的 IO 作为标准的 GPIO 使用。

图 5-1 外部高速时钟时序图

	71 A 13 SC 13	*1 13 1 *			
符号	参数 ⁽¹⁾	最小值	典型值	最大值	单位
f _{HSE_ext}	用户外部时钟频率	0	8	32	MHz
V _{HSEH}	输入引脚高电平电压	0.7 Vcc	-	Vcc	
VHSEL	输入引脚低电平电压	Vss	-	0.3 Vcc	V
tw(HSEH)	输入高或低的时间	15	-	-	ns
t _{r(HSE)}	输入上升/下降的时间	-	-	20	ns

表 5-11 外部高速时钟特性

1. 由设计保证,不在生产中测试。

5.3.6.2. 外部低速时钟

在 LSE 的 bypass 模式(RCC_BDCR 的 LSEBYP 置位),芯片内的低速起振电路停止工作,相应的 IO 作为标准的 GPIO 使用。

图 5-2 外部低速时钟时序图

	A O IZ /I IPIMAZENJA				
符号	参数 ⁽¹⁾	最小值	典型值	最大值	单位
f _{LSE_ext}	用户外部时钟频率	-	32.768	1000	kHz
V _{LSEH}	输入引脚高电平电压	0.7 Vcc	-	-	V
V _{LSEL}	输入引脚低电平电压	-	-	0.3 Vcc	V
tw(LSEH)	输入高或低的时间	450	-	-	ns
t _{r(LSE)}	檢 λ ト升/下降的时间	_	_	50	ne

表 5-12 外部低速时钟特性

1. 由设计保证,不在生产中测试。

5.3.6.3. 外部高速晶体

t_{f(LSE)}

可以通过外接 32 MHz 的晶体/陶瓷谐振器。在应用中,晶体和负载电容应该尽可能靠近管脚,这样可以使输出变形和启动稳定时间最小化。

符号	参数	条件 ⁽¹⁾	最 小值 ⁽²⁾	典型值	最 大值 ⁽²⁾	单位
f _{OSC_IN}	振荡频率	-	1	-	32	MHz
		During startup	-	-	5.5	
		$V_{\text{CC}=3}$ $V,R_{\text{m}}=30$ $\Omega,$ $C_{\text{L}}=10$ $pF@8$ MHz	-	0.58	-	
		$V_{\text{CC}=3}$ V, R_{m} =45 Ω , C_{L} =10 pF@8 MHz	•	0.59	•	
I _{DD} ⁽⁴⁾	HSE 功耗	$V_{\text{CC}=3}$ V, R_{m} =30 Ω , C_{L} =5 pF@48 MHz	-	0.89	-	mA
		$V_{\text{CC}}=3$ $V,R_{\text{m}}=30$ $\Omega,$ $C_{\text{L}}=10$ pF@48 MHz	1	1.14	1	
		$V_{\text{CC}}=3$ $V,R_{\text{m}}=30$ $\Omega,$ $C_{\text{L}}=20$ pF@48 MHz	1	1.94	1	
t _{SU(HSE)} (3) (4)	启动时间	fosc_in=32 MHz	-	2	-	ms
	/II-38631-3	fosc_in=4 MHz		2	-	ms

表 5-13 外部高速晶体特性

- 1. 晶体/陶瓷谐振器特性基于制造商给出的数据手册。
- 2. 由设计保证,不在生产中测试。
- 3. tsu(HSE)是从启用(通过软件)到时钟振荡达到稳定的启动时间,针对标准晶体/谐振器测量的,不同晶体/谐振器可能会有很大差异。
- 4. 数据基于考核结果,不在生产中测试。

5.3.6.4. 外部低速晶体

可以通过外接 32.768 kHz 的晶体/陶瓷谐振器。在应用中,晶体和负载电容应该尽可能靠近管脚,这样可以使输出变形和启动稳定时间最小化。

#	E 11	カレ 立7	低速晶体特性
ᅏ	D-14	いらい	

符号	参数	条件 ⁽¹⁾	最 小值 ⁽²⁾	典型值	最 大值 ⁽²⁾	单位
		LSE_DRIVER [1:0] = 00	-	250	ı	
1 (4)	1 OF 75±1	LSE_DRIVER [1:0] = 01	-	560	ı	nA
$I_{DD}^{(4)}$	LSE 功耗	LSE_DRIVER [1:0] = 10	-	920	-	nA
		LSE_DRIVER [1:0] = 11	0] = 01 - 560 - nA 0] = 10 - 920 -			
t _{SU(LSE)} (3) (4)	启动时间		-	3	-	s

- 1. 晶体/陶瓷谐振器特性基于制造商给出的数据手册。
- 2. 由设计保证,不在生产中测试。
- 3. tsu(LSE)是从启用(通过软件)到时钟振荡达到稳定的启动时间,针对标准晶体/谐振器测量的,不同晶体/谐振器可能会有很大差异。
- 4. 数据基于考核结果,不在生产中测试。

5.3.7. 内部高频时钟源 HSI 特性

表 5-15 内部高频时钟源特性

符号	参数	条件	最小值	典型值	最大值	单位
				4.0 8.0		
f _{HSI}	HSI 频率	-	-	16.0	-	MHz
				22.12		
				24.0	4.0 8.0 16.0 - 22.12 24.0 - 1(2) - 2(2) 0.1 - 55(1) 2 4(1) 110 - 120 - 170 - 16.0 - M 2 M 2 M 4.0 M	
		V _{CC} =1.7 V~ 5.5 V, T _A =25 °C	-1 ⁽²⁾	-	1 ⁽²⁾	%
$\Delta_{\text{Temp(HSI)}}$	HSI 频率温度漂移	Vcc=1.7 V~ 5.5 V, T _A =0°C~ 85°C	-2 ⁽²⁾	-	2(2)	%
		Vcc=1.7 V~ 5.5 V, T _A =- 40 °C~ 85°C	- 4 ⁽²⁾	4.0 8.0 16.0 22.12 24.0 - 1(2) 9 - 2(2) 9 0.1 - 55(1) 9 2 4(1) 110 - 120 - 170 - 170 - 170	%	
f _{TRIM} ⁽¹⁾	HSI 微调精度	-	-	0.1	-	%
D _{HSI} ⁽¹⁾	占空比		45 ⁽¹⁾	-	55 ⁽¹⁾	%
t _{Stab(HSI)}	HSI 稳定时间	-	-	2	4 ⁽¹⁾	us
		4 MHz	ı	110	ı	uA
I (2)	LICI Th#F	8 MHz	•	120	-	uA
I _{DD(HSI)} (2)	HSI功耗	16 MHz	-	170	-	uA
		22.12 MHz, 24 MHz	-	210	-	uA

- 1. 由设计保证,不在生产中测试。
- 2. 数据基于考核结果,不在生产中测试。

5.3.8. 内部低频时钟源 LSI 特性

#	E 16	内部低频时钟特性	
ᅏ	5-10		

符号	参数	条件	最小值	典型值	最大值	单 位
f _{LSI}	LSI 频率	-	-	32.768	-	KHz
		T _A =25 °C,V _{CC} =3.3 V	- 3	-	+ 3	%
$\Delta_{Temp(LSI)}$	LSI 频率温度漂移	V _{CC} =1.6 V~ 5.5 V T _A =0 °C ~85 °C	- 10 ⁽²⁾	-	10(2)	%
		V _{CC} =1.6 V~ 5.5 V,T _A =-40 °C ~85 °C	最小值 典型值 最大值 位 - 32.768 - KHz -3 - +3 % ~85 °C -10 ⁽²⁾ - 10 ⁽²⁾ %	%		
f _{TRIM} (1)	LSI 微调精度	-	-	0.2	-	%
t _{Stab(LSI)}	LSI 稳定时间	-	-	150		us
I _{DD(LSI)} (1)	LSI 功耗	-	-	300		nA

- 1. 由设计保证,不在生产中测试。
- 2. 数据基于考核结果,不在生产中测试。

5.3.9. 锁相环 PLL 特性

表 5-17 锁相环特性

符号	参数	条件	最小值	典型值	最大值	单位
f _{PLL_IN}	輸入频率	T _A =25 °C,V _{CC} =3.3 V PLL 2 或者 3 倍频	16 ⁽¹⁾	-	24 ⁽¹⁾	MHz
f _{PLL_OUT}	输出频率	T _A =25 °C,V _{CC} =3.3 V	48(1)	1	168	MHz
Jitter	周期抖动	-	-	1	0.3(1)	ns
tLOCK	锁存时间	f _{PLL_IN} =24 MHz	-	25	50 ⁽¹⁾	us

1. 由设计保证,不在生产中测试。

5.3.10. 存储器特性

表 5-18 存储器特性

符号	参数	条件	典型值	最大值(1)	单位
t _{prog}	Page program	-	1.0	1.5	ms
terase	Page/sector/mass erase	-	3.5	4.5	ms
	Page programe	-	2.1	2.9	mA
IDD	Page/sector/mass erase	-	2.1	2.9	mA

1. 由设计保证,不在生产中测试。

表 5-19 存储器擦写次数和数据保持

符号	参数	条件	最小值(1)	单位
N _{END}	擦写次数	T _A = - 40 ~ 85 °C	100	kcycle
t _{RET}	数据保持期限	10 kcycle T _A = 55 °C	20	Year

1. 数据基于考核结果,不在生产中测试。

5.3.11. EFT 特性

表 5-20 EFT 特性

符号	参数	条件	等级	典型值	单位
EFT to IO	-	IEC61000-4-4	В	2	KV
EFT to Power	-	IEC61000-4-4	В	4	KV

5.3.12. ESD & LU 特性

表 5-21 ESD & LU 特性

符号	参数	条件	典型值	单位
V _{ESD(HBM)}	静态放电电压(人体模型)	ESDA/JEDEC JS-001-2017	8	KV
V _{ESD(CDM)}	静态放电电压(充电设备模型)	ESDA/JEDEC JS-002-2018	1	KV
V _{ESD(MM)}	静态放电电压(机器模型)	JESD22-A115C	200	V
LU	静态 Latch-Up	JESD78E	200	mA

5.3.13. 端口特性

表 5-22 IO 静态特性

符号	参数	条件	最小值	典型值	最大值	单位
ViH	输入高电平电压	Vcc=1.7 V~ 5.5 V	0.7 Vcc	-	-	V
VIL	输入低电平电压	V _{CC} =1.7 V~ 5.5 V	-	-	0.3 V _{CC}	V
V _{hys} ⁽¹⁾	斯密特迟滞电压	-	-	200	-	mV
I _{lkg}	输入漏电流	-	-	-	1	uA
R _{PU}	上拉电阻	-	30	50	70	kΩ
R _{PD}	下拉电阻	-	30	50	70	kΩ
C _{IO} ⁽¹⁾	引脚电容	-	-	5	-	pF

1. 由设计保证,不在生产中测试。

表 5-23 输出电压特性

符号	参数 ⁽¹⁾	条件	最小值	最大值	单位
Vol	COM IO output low	$I_{OL} = 8 \text{ mA}, V_{CC} \ge 2.7 \text{ V}$	-	0.4	V
V _{OL}	level	$I_{OL} = 4$ mA, $V_{CC} = 1.8$ V	-	0.5	V
V _{OL} ⁽²⁾		I _{OL} = 8 mA, V _{CC} ≥ 2.7 V	-	0.4	V

符号	参数 ⁽¹⁾	条件	最小值	最大值	单位
V _{OL} ⁽²⁾	Output low level voltage for an I/O pin	$I_{OL} = 4$ mA, $V_{CC} = 1.8$ V	-	0.4	V
Vон	COM IO output high	$I_{OH} = 8 \text{ mA}, V_{CC} \ge 2.7 \text{ V}$	Vcc - 0.4	-	V
V _{OH}	level	$I_{OH} = 4$ mA, $V_{CC} = 1.8$ V	V _{CC} - 0.5	-	V
V _{OH} ⁽²⁾	Output high level volt-	$I_{OL} = 8 \text{ mA}, V_{CC} \ge 2.7 \text{ V}$	Vcc - 0.4	-	V
V _{OH} ⁽²⁾	age for an I/O pin	$I_{OL} = 4$ mA, $V_{CC} = 1.8$ V	V _{CC} - 0.4	-	V

- 1. IO 类型可参考引脚定义的术语和符号。
- 2. 数据基于考核结果,不在生产中测试。

5.3.14. NRST 引脚特性

表 5-24 NRST 管脚特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{IH}	输入高电平电压	V _{CC} =1.7 V~ 5.5 V	0.7 Vcc	-	1	V
VIL	输入低电平电压	V _{CC} =1.7 V~ 5.5 V		-	0.2 V _{CC}	V
V _{hys} ⁽¹⁾	斯密特迟滞电压	-	-	200	-	mV
l _{Ikg}	输入漏电流	-		-	1	uA
R _{PU}	上拉电阻	-	30	50	70	kΩ
R _{PD}	下拉电阻	-	30	50	70	kΩ
C _{IO} ⁽¹⁾	引脚电容	-	-	5	-	pF

1. 由设计保证,不在生产中测试。

5.3.15. ADC 特性

表 5-25 ADC 特性

符号	参数	条件	最小值	典型值	最大值	单位
Icc	Vcc功耗	@0.75 MSPS	-	0.4	-	mA
C _{IN} ⁽¹⁾	内部采样和 保持电容	-	-	5	8	pF
Fadc	转换时钟频	Vcc=1.7~ 2.3 V	1	4	8(2)	MHz
FADC	率	V _{CC} =2.3~ 5.5 V	1	8	16 ⁽²⁾	MHz
T _{samp} ⁽¹⁾	-	Vcc=2.3~ 5.5 V	3.5* Tclk	1	41.5* Tclk	-
T _{conv} ⁽¹⁾	-	-	-	12 * Tclk	-	-
T _{eoc} ⁽¹⁾	-	-	-	0.5 * Tclk	-	-

符号	参数	条件	最小值	典型值	最大值	单位
DNL ⁽²⁾	RT	-	-	± 1	-1~1.5	LSB
INL ⁽²⁾	RT	-	-		± 3	LSB
Offset ⁽²⁾	RT	-	-	± 1.5	± 3	LSB

- 1. 由设计保证,不在生产中测试。
- 2. 数据基于考核结果,不在生产中测试。

5.3.16. DAC 特性

表 5-26 DAC 特性

符号	参数	最小值	典型值	最大值	单位	Comments
V _{DDA}	Analog supply voltage	2.2	-	5.5	V	-
D (1)	Resistive load vs. V _{SSA} with buffer ON	5	-	-	kΩ	
R _{LOAD} ⁽¹⁾	Resistive load vs. V _{CCA} with buffer ON	15	-	-	kΩ	
Ro ⁽¹⁾	Impedance out- put with buffer OFF	-	-	15	kΩ	The minimum resistive load between DAC_VOUT and V_{SS} to have a 1% accuracy is 1.5 M Ω .
C _{LOAD} (1)	Capacitive load	-		50	pF	Maximum capacitive load at DAC_OUT pin (when the buffer is ON).
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer ON	0.2).	-	V	It gives the maximum output excursion of the DAC.
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer ON	-	-	V _{DDA} - 0.2	V	
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer OFF	-	0.5	1	mV	It gives the maximum output excursion of the DAC.
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer OFF	-	-	V _{DDA} - 10 mV	V	
	DAC DC current	-	-	600	μΑ	With no load, middle code (0x800) on the inputs
I _{DDA} ⁽¹⁾	consumption in quiescentmode (2)	-	-	700	μΑ	With no load, worst code (0xF1C) at VREF+ = 3.6 V in terms of DC consumption on the inputs

符号	参数	最小值	典型值	最大值	单位	Comments
	Differential linear-	-	-	±1	LSB	Given for the DAC in 10 bits configuration
DNL ⁽²⁾	ity error	-	-	±3	LSB	Given for the DAC in 12 bits configuration
INL ⁽²⁾	Integral linearity error	-	-	±1	LSB	Given for the DAC in 10 bits configuration
				±4	LSB	Given for the DAC in 12 bits configuration
Offset ⁽²⁾	offset error	-	-	±3	LSB	Given for the DAC in 10 bits
	011001 01101	-	-	±12	LSB	Given for the DAC in 12 bits
Gain error ⁽²⁾	Gain error	-	-	±0.5	%	Given for the DAC in 12 bits configuration
tsettling ⁽²⁾	Settling time (full scale: for a 10 bits input code transition between the lowest and the highest input codes when DAC_OUT reaches finalvalue ±1LSB	-	4	10	μs	$C_{LOAD} \le 50 \text{ pF}, R_{LOAD} \ge 5 \text{ k}\Omega$
Update rate ⁽²⁾	Max frequency for a correct DAC_OUT change when small variation in the inputcode (from code i to i+1LSB)			1	MS/s	C _{LOAD} ≤ 50 pF, R _{LOAD} ≥ 5 kΩ
twakeup ⁽²⁾	Wakeup time from off state	-	6.5	10	μs	$C_{LOAD} \le 50 \text{ pF}, R_{LOAD} \ge 5 \text{ k}\Omega$ input code between lowest and highest possible ones.
P _{SRR+} ⁽¹⁾	Power supply rejection ratio (to VDDA) (static DC measurement	-	-67	-40	dB	No RLOAD, CLOAD = 50 pF

- 1. 由设计保证,不在生产中测试。
- 2. 数据基于考核结果,不在生产中测试。

5.3.17. 比较器特性

表 5-27 比较器特性(1)

符号	参数	条件	最小值	典型值	最大值	单位
V _{IN}	Input voltage range	-	0	ı	Vcc	V
Vsc	Scaler offset voltage	-	-	± 5	± 10	mV

符号	参数		条件	最小值	典型值	最大值	单位
I _{DD} (SCAL ER)	Scaler static consumption	-	-		0.8	1	uA
tstart_scal er	Scaler startup time	-		-	100	200	us
t start	Startup time to reach propagation delay	High-speed mo	ode	-	-	5	us
	specification	Medium-speed	mode	-	-	15	
		200 mV step;	High-speed mode	-	40	70	ns
	Drangestion delay	100 mV over- drive	Medium-speed mode	-	0.9	2.3	us
t _D	Propagation delay	>200 mV	High-speed mode	ı	1	85	ns
		step;100 mV overdrive	Medium-speed mode	1	•	3.4	us
V _{offset} (1)	Offset error	-		-	± 5		mV
	h	No hysteresis		-	0	-	\/
V _{hys}	hysteresis	With hysteresis		1	20	-	mV
		Medium-	Static		5	-	uA
		speed mode; No deglitcher	With 50kHz and ± 100mv overdrive square signal	-	6	-	uA
I _{DD}	consumption	Medium- speed mode;	Static	1	7	1	uA
IDD	Consumption	With de- glitcher	With 50kHz and ± 100mv overdrive square signal	-	8	1	uA
		High-speed	Static	-	250	-	uA
		mode; No deglitcher	With 50kHz and ± 100mv overdrive square signal	-	250	-	uA

^{1.} 由设计保证,不在生产中测试。

5.3.18. 运算放大器特性

表 5-28 运算放大器特性

符号	参数	条件	最小值	典型值	最大值	单位
Vi	输入电压	-	0	1	AVcc	V
Vo	输出电压	-	0.1	1	AVcc - 0.2	V
lo	输出电流	-	-	-	2.2	mA
RL	负载时间	-	5 K	-	-	Ω
T _{start}	初始化时间	-	-	-	20	us

符号	参数	条件	最小值	典型值	最大值	单位
Vio	输入失调电压	-	-	± 6	-	mV
PM	相位裕度	-	-	80	-	Deg
UGBW	单位增益宽	-	-	10	-	MHz
SR	压摆率	-	-	8	-	V/us

5.3.19. 温度传感器特性

表 5-29 温度传感器特性

符号	参数	最小值	典型值	最大值	单位
T _L ⁽¹⁾	VTS linearity with temperature	-	± 1	± 2	°C
Avg_Slope ⁽¹⁾	Average slope	2.3	2.5	2.7	mV/°C
V ₃₀	Voltage at 30 °C(± 5 °C)	0.742	0.76	0.785	V
t _{START} (1)	Start-up time entering in continuous mode	-	70	120	us
ts_temp ⁽¹⁾	ADC sampling time when reading the temperature	9	-	-	us

- 1. 由设计保证,不在生产中测试。
- 2. 数据基于考核结果,不在生产中测试。

5.3.20. 内置参考电压特性

表 5-30 内置参考电压特性

符号	参数	最小值	典型值	最大值	单位
VREFINT	Internal reference voltage	1.17	1.2	1.23	V
T _{start_vrefint}	Start time of internal reference voltage	ı	10	15	us
T _{coeff}	Temperature coefficient	ı	-	100(1)	ppm/°C
Ivcc	Current consumption from Vcc	-	12	20	uA

1. 由设计保证,不在生产中测试。

5.3.21. 内置的参考电压

表 5-31 内置的参考电压

符号	参数	条件	最小值	典型值	最大值	单位
T _{coeff}	Internal 2.5 V/1.5 V temperature coefficient	TA=-40°C-85°C			120	ppm/°C

5.3.22. 定时器特性

表 5-32 定时器特性

符号	参数	条件	最小值	最大值	单位
4	Timer resolution time	-	1	-	t _{TIMxCLK}
t _{res(TIM)}		f _{TIMxCLK} = 72 MHz	13.889	-	ns
	Timer external clock	-	-	f _{TIMxCLK} /2	
f _{EXT}	frequency on CH1 to CH4	f _{TIMxCLK} = 72 MHz	-	24	MHz
Restim	Timer resolution	TIM1/3/14/15/16/17	-	16	Bit
	16 bits counter clock	-	1	65536	t _{TIMxCLK}
tcounter	period	f _{TIMxCLK} = 72 MHz	0.013889	913	us

表 5-33 LPTIM 特性(时钟选择 LSI)

预分频	PRESC [2:0]	最小溢出值	最大溢出值	单位
/1	0	0.0305	1998.848	
/2	1	0.0610	3997.696	
/4	2	0.1221	8001.9456	
/8	3	0.2441	15997.3376	
/16	4	0.4883	32001.2288	ms
/32	5	0.9766	64002.4576	
/64	6	1.9531	127998.3616	
/128	7	3.9063	256003.2768	

表 5-34 IWDG 特性(时钟选择 LSI)

			•	
预分频	PR[2:0]	最小溢出值	最大溢出值	单位
/4	0	0.122	499.712	
/8	1	0.244	999.424	
/16	2	0.488	1998.848	
/32	3	0.976	3997.696	ms
/64	4	1.952	7995.392	
/128	5	3.904	15990.784	
/256	6 or 7	7.808	31981.568	

表 5-35 WWDG 特性(时钟选择 48 MHz PCLK)

预分频	WDGTB[1:0]	最小溢出值	最大溢出值	单位
1*4096	0	0.085	5.461	
2*4096	1	0.171	10.923	
4*4096	2	0.341	21.845	ms
8*4096	3	0.683	43.691	

5.3.23. 通讯口特性

5.3.23.1. I2C 总线接口特性

I²C 接口满足 I²C 总线 规格和用户手册的要求:

■ Standard - mode(Sm): 100 kbit/s

■ Fast - mode(Fm): 400 kbit/s

时序由设计保证,前提是I2C外设被正确的配置,并且I2C时钟频率大于下表要求的最小值。

表 5-36 最小 I²C CLK 频率

符号	参数	条件	最小值	单位
fi2CCLK(min)	I ² C 最小时钟频率	-标准模式	2	MHz
		-快速模式	9	IVII 12

I²C SDA 和 SCL 管脚具有模拟滤波功能,参见下表。

表 5-37 I2C 滤波器特性

符号	参数	最小值	最大值	单位
taf	限制过滤器抑制的尖峰持续时间(短于限制持续时间的尖峰被抑制)	50	260	ns

5.3.23.2. 串行外设接口 SPI 特性

表 5-38 SPI 特性

符号	参数	条件	最小值	最大值	单位
f _{SCK}		主机模式	-	12	MHz
1/t _{c(SCK)}	SPI 时钟频率	从机模式	-	12	
$t_{\text{r(SCK)}}$ $t_{\text{f(SCK)}}$	SPI 时钟上升和 下降时间	负载电容: C = 15 pF	-	6	ns
t _{su(NSS)}	NSS setup time	从机模式	4 T _{pclk}	-	ns
th(NSS)	NSS hold time	从机模式	2 T _{pclk} + 10	-	ns
tw(scкн) tw(scкL)	SCK high and low time	主机模式, f _{PCLK} = 36 MHz,presc = 4	T _{pclk} * 2 - 2	T _{pclk} * 2 + 1	ns
t _{su(MI)}	Data input	主机模式, f _{PCLK} = 48 MHz,presc = 4	T _{pclk} + 5 ⁽¹⁾	-	
	setup time	从机模式, f _{PCLK} = 48 MHz,presc = 4	5	-	ns
t _{h(MI)}	Data input hold	主机模式	5	-	20
t _{h(SI)}	time	从机模式	T _{pclk} + 5	-	ns
t _{a(SO)}	Data output access time	从机模式, presc = 4	0	3 T _{pclk}	ns

符号	参数	条件	最小值	最大值	单位	
t _{dis(SO)}	Data output disable time	从机模式	2 T _{pclk} + 5	4 T _{pclk} + 5	ns	
t _{v(SO)}	Data output valid ime	从机模式 (after enable edge), presc = 4	0	1.5 T _{pclk} ⁽²⁾	ns	
t _{v(MO)}	Data output valid ime	主机模式 (after enable edge)	-	6	ns	
t _{h(SO)}	Data output	从机模式, presc = 4	0(3)	-	5	
t _{h(MO)}	hold time	主机模式	2	-	ns	
DuCy(SCK)	SPI slave input clock duty cycle	从机模式	45	55	%	

- 1. 主机在接收沿的前产生 1 pclk 接收控制信号。
- 2. 从机基于 SCK 发送沿最大有 1 PCLK 延时,考虑 IO 延时等,定义 1.5 PCLK。
- 3. 在主机发送的 SCK 占空比接收沿和发送沿之间宽的情况下,从机在发送沿之前就更新数据。

图 5-3 SPI 时序图 – 从机模式, CPHA = 0

图 5-4 SPI 时序图 – 从机模式, CPHA = 1

图 5-5 SPI 时序图 – 主机模式

6. 封装信息

6.1. LQFP64 封装尺寸

6.2. LQFP48 封装尺寸

6.3. QFN64 封装尺寸

6.4. QFN48 封装尺寸

6.5. QFN32 封装尺寸

7. 订购信息

8. 版本历史

版本	日期	更新记录
V0.1	2022.06.16	1. 初版
V0.2	2022.08.16	1. 更新第六章
V0.3	2022.10.16	1. 更新第六章
V0.4	2023.01.16	1. 更新表1-1
V0.5	2023.05.23	1. 更新表5-31 2. 修改格式
V0.6	2023.06.02	1. 更新订购信息
V0.7	2023.07.05	1. 更新表3-1
V0.8	2023.07.25	1. 更新QFN32封装信息
V0.9	2023.08.04	1. 更新QFN32封装信息
V0.10	2023.08.21	1. 更新表3-1

Puya Semiconductor Co., Ltd.

声 明

普冉半导体(上海)股份有限公司(以下简称: "Puya")保留更改、纠正、增强、修改 Puya 产品和/或本文档的权利,恕不另行通知。用户可在下单前获取产品的最新相关信息。

Puya 产品是依据订单时的销售条款和条件进行销售的。

用户对 Puya 产品的选择和使用承担全责,同时若用于其自己或指定第三方产品上的,Puya 不提供服务支持且不对此类产品承担任何责任。

Puya 在此不授予任何知识产权的明示或暗示方式许可。

Puya 产品的转售,若其条款与此处规定不一致,Puya 对此类产品的任何保修承诺无效。

任何带有 Puya 或 Puya 标识的图形或字样是普冉的商标。所有其他产品或服务名称均为其各自所有者的财产。

本文档中的信息取代并替换先前版本中的信息。

普冉半导体(上海)股份有限公司 - 保留所有权利