Course Code	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned			
1 1	111.	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ECC303	Digital System Design	03			03			03

Course	Course	Examination Scheme								
Code	Name		The	ory Mar	ks	Exam	Term	Practical	Total	
		Internal Assessment			End Sem.	Duration	Work	and Oral		
		Test1	Test2	Avg.	Exam.	(Hrs.)				
ECC303	Digital									
	System	20	20	20	80	03			100	
	Design									

Course Pre-requisite:

FEC105 - Basic Electrical Engineering

Course Objectives:

- To understand number system representations and their inter-conversions used in digital electronic circuits.
- To analyze digital logic processes and to implement logical operations using various combinational logic circuits.
- To analyze, design and implement logical operations using various sequential logic circuits.
- 4. To study the characteristics of memory and their classification.
- 5. To learn basic concepts in VHDL and implement combinational and sequential circuits using VHDL.

Course Outcomes:

After successful completion of the course student will be able to:

- Understand types of digital logic, digital circuits and logic families.
- Analyze, design and implement combinational logic circuits.
- 3. Analyze, design and implement sequential logic circuits.
- 4. Develop a digital logic and apply it to solve real life problems.
- Classify different types of memories and PLDs.
- Simulate and implement basic combinational and sequential circuits using VHDL/Verilog.

Module No.	Unit No. Topics					
1.0		Number Systems and Codes				
	1.1	Review of Binary, Octal and Hexadecimal Number Systems, their inter-conversion, Binary code, Gray code and BCD code, Binary Arithmetic, Addition, Subtraction using 1's and 2's Complement	04			
2.0		Logic Family and Logic Gates	05			
	2.1	Difference between Analog and Digital signals, Logic levels, TTL and CMOS Logic families and their characteristics	03			
	2.2	Digital logic gates, Universal gates, Realization using NAND and NOR gates, Boolean Algebra, De Morgan's Theorem				
3.0		Combinational Logic Circuits	12			
	3.1	SOP and POS representation, K-Map up to four variables and Quine-McClusky method for minimization of logic expressions	04			
	3.2	Arithmetic Circuits: Half adder, Full adder, Half Subtractor, Full Subtractor, Carry Look ahead adder and BCD adder, Magnitude Comparator	04			
	3.3	Multiplexer and De-Multiplexer: Multiplexer operations, cascading of Multiplexer, Boolean function implementation using MUX, DEMUX and basic gates, Encoder and Decoder	04			
4.0		Sequential Logic Circuits	12			
	4.1	Flip flops: RS, JK, Master slave flip flops; T & D flip flops with various triggering methods, Conversion of flip flops, Registers: SISO, SIPO, PISO, PIPO, Universal Shift Register	04			
	4.2	Counters: Asynchronous and Synchronous counters with State transition diagram, Up/Down, MOD N, BCD Counter	04			
	4.3	Applications of Sequential Circuits: Frequency division, Ring counter, Johnson counter, Introduction to design of Moore and Mealy circuits	04			
5.0		Different Types of Memories and Programmable Logic Devices	04			
	5.1	Classification and Characteristics of memory, SRAM, DRAM, ROM, PROM, EPROM and Flash memories	02			
	5.2	Introduction: Programmable Logic Devices (PLD), Programmable Logic Array (PLA), Programmable Array Logic (PAL)	02			
6.0		Introduction to VHDL	02			
	6.1	Basics of VHDL/Verilog Programming, Design and implementation of adder, subtractor, multiplexer and flip flop using VHDL/Verilog	02			
		Total	39			

Text Books:

- John F. Warkerly, "Digital Design Principles and Practices", Pearson Education, Fifth Edition (2018).
- Morris Mano, Michael D. Ciletti, "Digital Design", Pearson Education, Fifth Edition (2013).
- R. P. Jain, "Modern Digital Electronics", Tata McGraw Hill Education, Forth Edition (2010).
- 4. A. Anand Kumar, "Fundamentals of Digital Circuits", PHI, Fourth Edition (2016).
- Volnei A. Pedroni, "Digital Electronics and Design with VHDL" Morgan Kaufmann Publisher, First Edition (2008).
- Stephen Brown & Zvonko Vranesic, "Fundamentals of Digital Logic with Verilog Design", Third Edition, MGH (2014).

Reference Books:

- Thomas L. Floyd, "Digital Fundamentals", Pearson Prentice Hall, Eleventh Global Edition (2015).
- Mandal, "Digital Electronics Principles and Applications", McGraw Hill Education, First Edition (2010).
- Ronald J. Tocci, Neal S. Widmer, Gregory L. Moss "Digital Systems Principles and Applications", Ninth Edition, PHI (2009).
- Donald P. Leach / Albert Paul Malvino/Gautam Saha, "Digital Principles and Applications", The McGraw Hill, Eight Edition (2015).
- Stephen Brown & Zvonko Vranesic, "Fundamentals of Digital Logic Design with VHDL", Second Edition, TMH (2009).
- J. Bhasker, "A Verilog HDL Primer", Star Galaxy Press, Third Edition (1997).

NPTEL / Swayam Course:

 Course: Digital Circuits By Prof. Santanu Chattopadhyay (IIT Kharagpur); https://swayam.gov.in/nd1_noc20_ee70/preview

Internal Assessment (20-Marks):

Internal Assessment (IA) consists of two class tests of 20 marks each. IA-1 is to be conducted on approximately 40% of the syllabus completed and IA-2 will be based on remaining contents (approximately 40% syllabus but excluding contents covered in IA-I). Duration of each test shall be one hour. Average of the two tests will be considered as IA marks.

End Semester Examination (80-Marks):

Weightage to each of the modules in end-semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- Question paper will comprise of total 06 questions, each carrying 20 marks.
- Question No: 01 will be compulsory and based on entire syllabus wherein 4 to 5 sub-questions will be asked.
- Remaining questions will be mixed in nature and randomly selected from all the modules.
- Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 5. Total 04 questions need to be solved.