

GyverControl - универсальный контроллер-таймер для теплицы и других мест, где нужна автоматизация по таймеру или показателям микроклимата/другим датчикам. Ссылки на все компоненты, схемы, инструкции и другая информация находятся на странице проекта на официальном сайте: https://alexgyver.ru/gyvercontrol/. Прошивка и всё относящееся к проекту (картинки схем, файлы печатных плат) находятся в репозитории на GitHub, прямая ссылка на скачивание есть на странице проекта.

Оглавление

Железо	2
Софтовые фишки	2
Применение как контроллера полива	3
Другие универсальные применения	
Управление системой GyverControl	
Описание режимов и настроек	
Режимы работы каналов	
Настройки каналов релеНастройки каналов сервоНастройки каналов серво	
Настройки канала привода	
Меню с переводом	
Главное меню, уровень вложенности 0	-
Настройка режима, уровень вложенности 1	
Описание интерфейса	8
Экран отладки	8
Экран сервиса	9
Структурная схема меню (версия 1.3)	9
Карта печатной платы v1.1	10
Подключение специальных датчиков	10
DHT11/DHT22	10
DS18b20	
Термистор	
ПИД и Рассвет. Схемы	
Настройка ПИД регулятора	14
Советы по подключению реле	14
Постоянный ток	
Постоянный и переменный ток	
Переменный ток	16

Троблема с нехваткой памяти		
Проблема		
Отключение компонентов системы		
Использование другого загрузчика	16	
Ещё раз, инструкция по загрузке прошивки		
Watchdog	17	
Прошивка загрузчика OptiBoot	17	
Подключение	18	
Прошивка	19	
Загрузка GyverControl	20	
Изменения в версиях	20	

Железо

- Arduino Nano (ATmega 328p) как главный контроллер системы
- **7 каналов** с логическим выходом 5V, к которым можно подключать обычное реле, твердотельное реле, силовые ключи (транзисторы, модули на основе транзисторов)
- 2 канала сервоприводов, подключаются обычные модельные серво больших и маленьких размеров
- **1 канал** управления линейным электроприводом с концевиками ограничения движения и с работой по тайм-ауту
- Датчик температуры воздуха (ВМЕ280)
- Датчик влажности воздуха (ВМЕ280)
- 4 аналоговых датчика (влажности почвы или других)
- Модуль опорного (реального) времени RTC DS3231 с автономным питанием
- Большой **LCD дисплей** (LCD 2004, 20 столбцов, 4 строки)
- Орган управления энкодер
- *Версия 1.4 и выше*: добавлена поддержка датчиков:
 - о **DHT11/DHT22** цифровой датчик температуры/влажности
 - о Термистор аналоговый датчик температуры
 - о **DS18b20 (Dallas)** цифровой датчик температуры

Софтовые фишки

- Хранение всех настроек в энергонезависимой памяти (не сбрасываются при перезагрузке)
- Датчики влажности почвы (все аналоговые датчики) не находятся под постоянным напряжением, оно подаётся только на момент опроса, что позволяет продлить жизнь даже самым дешёвым датчикам влажности почвы (напряжение подаётся за 50 мс до опроса и выключается через 50 мс после).
- Оптимизированный вывод данных на дисплей
- Каждый из 10 каналов (7 реле, 2 серво и 1 привод) имеет **индивидуальные настройки** и может работать по таймеру или по датчикам
- 6 режимов работы для разных каналов: три разных таймера, работа по условию с датчиков, ПИД и рассвет
- Серво работает с моей библиотекой **ServoSmooth**, это обеспечивает плавное их движение: плавный разгон и торможение с ограничением максимальной скорости, а также отсутствие рывков и незапланированных движений при старте системы
- *Версия 1.4+* : добавлены режимы ПИД регулятора (PID) и режим Рассвет (Dawn) для каналов 3 и 4 (ШИМ сигнал) и обоих каналов серво
- Версия 1.4+: каналы серво можно использовать для подключения реле
- Линейный привод имеет концевики, внешние кнопки для управления и настройку скорости движения. Частота ШИМ драйвера 31 кГц, т.е. не пищит
- Экран отладки, где отображается вся текущая информация о состоянии железа и датчиков
- Графики температуры и влажности воздуха и показаний с аналоговых датчиков за последние сутки

• Сервисное меню, позволяющее вручную управлять каждой железкой

Применение как контроллера полива

- Периодичный полив (реле)
 - о Схема с индивидуальными помпами/клапанами
 - о Схема с одной помпой и несколькими клапанами
- Полив на основе показаний датчиков влажности почвы
- Полив в указанные дни недели с окончанием по таймеру ИЛИ по показанию с датчика
- Управление освещением (реле) с привязкой ко времени суток
- Проветривание (привод открывает окно/серво открывает заслонку) по датчику температуры или влажности воздуха
- Увлажнение (включение увлажнителя) по датчику влажности воздуха
- Обогрев (включение обогревателя) по датчику температуры
- Выполнение действий сервоприводом (нажатие кнопок на устройствах, поворот рукояток, поворот заслонок, перемещение предметов) по датчику или таймеру

Другие универсальные применения

- Система поддерживает 4 аналоговых датчика, это не обязательно должны быть датчики влажности почвы, у китайцев полно других «датчиков-модулей», которые **точно так же** подключаются к схеме:
 - о Датчик света: «умная» система освещения, резервное освещение
 - о Термистор (до 80 градусов): контроль нагрева объекта
 - Датчик звука: закрывание окна при сильном шуме снаружи (почему нет? =))
 - о **Датчик ИК излучения** (датчик пожара) разные варианты сигнализации, или даже тушения (включаем помпу с водой, открываем кран сервой)
 - о Датчик дождя: закрытие окон, сигнализирование, включение помп на откачку
 - Датчик уровня воды/датчик наличия воды: автоматическое наполнение резервуара, автоматическая откачка воды помпой из ёмкости/подвала, перекрытие водяных магистралей при протечке, сигнализация о протечке
 - о **Газоанализаторы** в ассортименте: сигнализатор или даже проветривание (открываем окно) по уровню угарного газа и других промышленных газов
 - о Оптический датчик препятствия: тут нужна фантазия
 - о Потенциометр: как дополнительный орган контроля системы
- Сервопривод довольно универсальная штука, может открывать/закрывать заслонки, может нажимать кнопки других устройств, вращать ручки регулировки других устройств, с приделанным шатуном получает возможность линейно перемещать предметы/ползунки других устройств. Сервоприводы есть разных размеров, от микро (2 кг/см) и средних (13 кг/см) до весьма мощных (50 кг/см)
- Реле умеет замыкать контакты питания и управлять любыми устройствами, также реле может включить блок питания (например светодиодной ленты). Реле можно поставить параллельно проводам к кнопке другого устройства, и оно будет его включать или выключать.
- *Версия 1.4* и выше позволяет поддерживать температуру при помощи **ПИД** регулятора, для террариумов/инкубаторов/любого поддержания температуры:
 - о Подавать **ШИМ** сигнал на полевой транзистор, управляющий нагревом
 - о Поворачивать сервоприводом крутилку сетевого диммера
- *Версия 1.4* и выше имеет режим **Рассвет**, позволяющий использовать контроллер для аквариума/террариума и прочих «животных ферм»

Управление системой GyverControl

Основным органом управления является энкодер, рукоятку которого может вращать и нажимать (она является кнопкой). При запуске системы мы попадаем на настройку канала 0. Вращая рукоятку энкодера можно перемещать курсор выбора (стрелочка) по пунктам меню. Чтобы изменить значение выбранного пункта, нужно нажать рукоятку энкодера и повернуть её, удерживая нажатой. Удержанный поворот при выбранном имени канала — смена канала для настройки. Листаем направо и у нас будет по порядку 7 каналов реле, два серво и линейный привод. Чтобы перейти к настройке режима, нужно навести на него курсор и кликнуть кнопкой, не

поворачивая. Откроется окно настройки режима, выйти из которого можно кликнув по надписи ВАСК (назад). Удерживая и вращая рукоятку на выбранном названии режима можно сменить режим, всего их 4. В корне меню (выбор каналов) листая налево от канала 0 будет экран отладки (DEBUG), режим настроек (SETTINGS) и сервисный режим (SERVICE). На экране отладки показаны все текущие положения реле, приводов и показания с датчиков. Вращая рукоятку на экране отладки последовательно листаются суточные графики показаний с датчиков: температура воздуха, влажность и показания с аналоговых датчиков. Деления на графике имеют шаг 1.6 часа. На экране сервиса можно управлять любым каналом в ручном режиме, при активном экране сервиса автоматика не работает, система находится полностью в ручном режиме. Поворотом рукоятки можно выбрать нужный канал, положение серво или настройку текущего времени, и удержанным поворотом её изменить. Если включить систему с зажатой рукояткой энкодера, произойдёт полный сброс настроек каналов и режимов. При удержаннии кнопки энкодера более двух секунд (без поворота рукоятки) привод передвинется в противоположное направление, при повторном нажатии — передвинется обратно. Сделано для доступа в теплицу, у которой привод управляет дверью.

Версия 1.2 и выше: выбор типа управления энкодером, настройка CONTROL_TYPE в прошивке. При установке в 0 навигация осуществляется как описано выше. При установке в 1 логика управления строится следующим образом: выбор пункта меню поворотом энкодера, курсор — стрелочка. При клике курсор меняется на «галочку» > , при повороте с курсором галочкой величина изменяется. Ещё раз кликаем — курсор меняется на стрелочку и можно выбирать нужный пункт меню.

Описание режимов и настроек

Режимы работ ы каналов

- 1. **Timer** простой периодичный таймер: задаются периоды **Period** и время **Work** в формате ЧЧ:ММ:СС. С периодом Period совершается выбранное действие и выполняется в течение периода Work. Например, Period стоит 1 час, Work 10 секунд. Каждый час будет совершаться действие в течение 10 секунд, то есть если выбран канал реле, то реле включится и выключится через 10 секунд, затем снова включится через час и выключится через 10 секунд и так далее. Как канал ведёт себя на участке Work задаётся в параметре Direction, то есть это может быть вкл/выкл и выкл/вкл (реле), направо/налево и налево/направо (серво) и открыть/закрыть и закрыть/открыть (линейный привод). Данный режим не имеет привязки к реальному времени, перезагрузка системы сбрасывает текущий таймер. Внимание! Work не должна быть дольше Period! На этом же экране выводится время, оставшееся до следующего срабатывания **Left**.
 - Мин. значение: 1 секундаМакс. значение: 999 часов
 - Привязка к реальному времени: нет
 - Применение: полив в гидропонных системах, проветривание без датчика
- 2. Тіmer RTC периодичный таймер, в отличие от предыдущего обладает привязкой к реальному времени, имеет настройку Period включения и продолжительности Work (в секундах), которая будет совершаться, и Start hour начального часа, с которого начинается отсчёт периода (для периодов больше 2 часов). Например, период 15 минут, работа 10 секунд: каждые 15 минут будет производиться действие продолжительностью 10 секунд. Привязка к реальному времени работает следующим образом: действие будет совершаться с выбранным периодом от начала часа, то есть если выбран 15 минутный, то действие будет в 0, 15, 30 и 45 минут каждого часа. Если выбранный Period больше часа (от двух и более) то можно выбрать час Start from, от которого пойдёт отсчёт. Все периоды кратны 24 часам, поэтому работа начинается в одни и те же часы каждого дня! Пример: Period 8 часов, начальный час 0. Действие будет выполнено в 0, 8 и 16 часов каждого дня. Если поставить начальный час (Start hour) 3 часа, то действие будет выполнено в 3, 11 и 19 часов каждого дня. При сбросе питания следующее действие будет совершено в ближайшее время «будильника». В версиях выше 1.4 добавлены периоды, кратные суткам (1, 2.. 7). В них таймер будет срабатывать в час, отмеченный как start hour. Внимание! Work не должна быть дольше Period!
 - Периоды на выбор: каждые 1, 5, 10, 15, 20, 30, 60 минут и 1, 2, 3, 4, 6, 8, 12, 24 часа, 1, 2.. 7 суток
 - Привязка к реальному времени: да
 - Применение: полив в гидропонных системах, проветривание без датчика

Период	Раз в сутки	Когда срабатывает	
1 мин	1440	Каждую минуту	

3 мин	480	0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57 мин. каждого часа	
5 мин	288	0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 мин. каждого часа	
10 мин	144	0, 10, 20, 30, 40, 50 мин. каждого часа	
15 мин	96	0, 15, 30, 45 мин. каждого часа	
30 мин	48	0, 30 мин. каждого часа	
1 час	24	Каждый час	
2 часа	12	0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 часа каждого дня (+ сдвиг на стартовый час)	
3 часа	8	0, 3, 6, 9, 12, 15, 18, 21 час каждого дня (+ сдвиг на стартовый час)	
4 часа	6	0, 4, 8, 12, 16, 20 часов каждого дня (+ сдвиг на стартовый час)	
6 часов	4	0, 6, 12, 18 часов каждого дня (+ сдвиг на стартовый час)	
8 часов	3	0, 8, 16 часов каждого дня (+ сдвиг на стартовый час)	
12 часов	2	0, 12 часов каждого дня (+ сдвиг на стартовый час)	
24 часа	1	0 часов каждого дня (+ сдвиг на стартовый час)	

- 3. Week (бывший Day) простой таймер на одно действие с привязкой к реальному времени, имеет настройку On (время в формате ЧЧ:ММ:СС) время, с которого действие активно, и Off (время в формате ЧЧ:ММ:СС) время, с которого действие не активно. Также имеется 7 «ячеек» дней недели Days, с понедельника по воскресенье. При перезагрузке действие вернётся в нужное положение согласно текущему времени. Пример: таймер настроен на 6 и 20 часов (Start и Stop). Соответствующее текущему каналу и параметру Direction действие будет активно с 6 до 20 часов, и неактивно с 20 до 6 часов утра следующего дня. При внезапной перезагрузке система совершит действие так, как оно должно быть на этом отрезке времени, то есть из прошлого примера если в промежуток между 6 и 20 часами произойдёт внезапная перезагрузка, при запуске система активирует действие по каналу. Внимание! Оп должен быть меньше Off!

 Также режим имеет настройку Global, которая вынуждает любой другой режим работать «по расписанию» Week. Что это даёт: например можно настроить полив во вторник и пятницу с 17 до 18 часов вечера (из бочки), поставить галочку global и настроить режим Sensor под полив. Как это будет работать: система будет поливать этот канал по режиму Sensor, но делать это только по расписанию (вторник и пятница 17-18).
 - Выбор дня недели
 - Выбор времени: 0-23 часа, кратно 1 часу
 - Привязка к реальному времени: да
 - Применение: идеальный режим для освещения и редкого полива
- 4. Sensor действие на основе датчика. С периодом опроса Period опрашивается выбранный датчик под названием Sensor и при превышении порогового значения maxV и выполняется действие согласно выбранному каналу (реле/серво/привод). Действие «отключится» при достижении величиной порога minV, таким образом реализован ructepesuc. Period опроса задаётся в секундах или минутах (по мере увеличения). Датчик выбирается из списка: Air t. температура воздуха, Air h. влажность воздуха и 4 аналоговых датчика (влажности почвы) с SENS_1 по SENS_4. Пороговое значение (minV и maxV) задаётся с 0 до 255 с шагом 1 до значения 50 и с шагом 10 начиная от 50 (датчики влажности почвы имеют диапазон значений 0-255). Например, выбран датчик температуры воздуха, период опроса 1 час и пороговое значение 25. Каждый час система проверяет температуру, при превышении 25 градусов будет выполнено соответствующее каналу действие (включить реле, открыть окно). Через час будет снова произведена проверка. Важно: пороговые значения можно указывать как максимум больше минимума, так и наоборот, это инвертирует логику работы режима Sensor независимо от направления работы канала (Direction).
 - Применение: открытие/закрытие створок по температуре/влажности (привод), полив по влажности почвы, управление вентилятором/увлажнителем (реле) или заслонками (серво) по температуре/влажности.
- 5. **PID** пропорционально-интегрально-дифференциальный регулятор, позволяет с высокой точностью поддерживать управляемую величину (нагреватель-температура, заслонка-температура, вентилятор-температура, вентилятор-влажность, и так далее). Режим доступен для каналов 3 и 4 (отмечены звёздочкой), а также обоих каналов серво в режиме серво. Имеет настройки коэффициентов **P**, **I**, **D** (D вам скорее всего не пригодится в реальной работе, но он там всё равно есть). Выбираем **Sens** источник входного сигнала один из сенсоров, как в режиме Sensor (**Air t.** температура воздуха, **Air h.** влажность воздуха и 4 аналоговых датчика (влажности почвы) с **SENS_1** по **SENS_4**). Настройка **Set** указывает, к какому

значению показания с выбранного датчика регулятор будет стараться приводить систему. Настройка **T** задаёт период итерации расчёта, для медленных процессов есть смысл поставить побольше (читайте в отдельной главе «Настройка ПИД регулятора»). Настройки **min** и **max** отвечают за минимальный и максимальный управляющий сигнал с данного канала, для каналов 3 и 4 это ШИМ сигнал, рабочий диапазон 0-255. Для каналов серво это угол, 0-180 градусов.

- Применение: поддержание заданной величины (температура, влажность) не релейным способом, т.е. плавно и без резких включений. ШИМ сигнал может управлять транзистором, который отвечает за нагреватель. Серво может поворачивать заслонки (проветривание) или крутилки диммеров для управления сетевыми нагревателями, вентиляторами и прочим оборудованием.
- 6. **Dawn** режим «рассвета» для контроля освещения с плавным рассветом и закатом. Режим доступен для каналов 3 и 4 (отмечены звёздочкой), а также обоих каналов серво в режиме серво. Плавно включается в час **Start** на протяжении **Dur** минут, затем выключается в час **Stop** в течение **Dur** минут. Включается до максимального значения, указанного в **max**, и выключается до **min**. На каналах 3 и 4 эта величина задаёт скважность ШИМ сигнала, рабочий диапазон 0 255. Управлять можно полевым транзистором, например, светодиодной лентой. На каналах серво рабочий диапазон 0 180, градусов поворота вала серво. Может управлять крутилкой сетевого диммера, для ламп накаливания или диммируемых светодиодных.
 - Применение: организация условий освещённости, приближенных к реальным, для аквариумов, террариумов, курятников и проч.

Наст ройки каналов реле

- 1. Direction как ведёт себя реле при активации по таймеру/датчику. ВКЛ-ВЫКЛ или ВЫКЛ-ВКЛ
- 2. Туре логика работы реле
 - Relay канал реле ведёт себя как обычное реле, может использоваться для управления любой нагрузкой постоянного или переменного тока (управлять сетевыми устройствами): полив индивидуальными помпами, полив индивидуальными клапанами от источника воды под давлением, управления увлажнителями, обогревателями, вентиляторами, приборами освещения и всем другим подобным. Не зависит от других каналов.
 - Valve тип канала реле для системы, где есть общая помпа/клапан от источника воды и несколько индивидуальных клапанов на полив разных участков. Канал реле, настроенный как клапан, одновременно со своей активацией (по таймеру/датчику) активирует другой канал/каналы, настроенный как общий.
 - **Common** тип канала реле для системы, где есть общая помпа/клапан от источника воды и несколько индивидуальных клапанов на полив разных участков. Канал реле, настроенный как общий, не имеет настроек режима. Вместо этого он активируется сам одновременно с любым другим каналом, настроенным как клапан. Автоматически сам деактивируется при отсутствии неактивных каналов клапанов.

Наст ройки каналов серво

- 1. **Direction** как ведёт себя серво при активации по таймеру/датчику. Поворот в направлении **МИН-МАКС** угол или наоборот, **МАКС-МИН** угол
- 2. Пределы углы поворота серво от 0 до 180 градусов с шагом 10
- 3. Дополнительно: в скетче в секции настроек есть настройка максимальной скорости движения сервоприводов (SERVO1_SPEED и SERVO2_SPEED) и их ускорение на разгон и торможение (SERVO1_ACC и SERVO2_ACC). Я не стал вносить их в настройки сервисного меню и каналов, т.к. они не так часто нужны.

Наст ройки канала привода

- 1. **Направление** как ведёт себя привод при активации по таймеру/датчику, **ОТКРЫТЬ-ЗАКРЫТЬ** или **ЗАКРЫТЬ-ОТКРЫТЬ**
- 2. **Таймаут** время, которое будет подаваться сигнал на движение привода. Концевик (если он есть) прервёт движение привода

Меню с переводом

Главное меню, уровень вложенност и 0

- 1. Service (Сервис)
- **2. Debug** (Экран отладки)
- **3. Channel 0 Channel 6** (Каналы реле 0-6)
 - о Mode (Режим) клик для перехода в настройки режима
 - о Direction (Направление работы)
 - On-Off
 - Off-On
 - о Туре (Тип канала реле)
 - **Relay** (Реле)
 - Valve (Клапан)
 - Common (Общий)
- **4. Servo 1 Servo 2** (Каналы серво 1 и 2)
 - о Mode (Режим) клик для перехода в настройки режима
 - о Direction (Направление работы)
 - Min-Max
 - Max-Min
 - о Limits (Пределы поворота)
 - Min
 - Max
- 5. Drive (Канал привода)
 - о Mode (Режим) клик для перехода в настройки режима
 - о Direction (Направление работы)
 - Open-Close
 - Close-Open
 - о Timeout (Время движения)

Наст ройка режима, уровень вложенност и 1

- **1. Timer** (Простой периодичный таймер)
 - **Period** (Время паузы, оно же период работы)
 - Work (Время работы)
 - Left (Осталось до следующего включения)
- 2. Timer RTC (Периодичный таймер с привязкой ко времени)
 - Period (Период работы)
 - Work (Время работы)
 - Start from (Час, начиная с которого считается период)
- **3. Week** (Суточный таймер)
 - Days (дни)
 - On (Час начала работы)
 - Off (Час окончания работы)
 - Global (Глобальный флаг)
- **4. Sensor** (Датчик)
 - Period (Период опроса)
 - Sensor (Выбор датчика)
 - Threshold (Пороговое значение)
- **5. PID** (ПИД регулятор)
 - P/I/D коэффициенты регулятора

- Sens sensor (Сенсор)
- Set setpoint (Установка регулятора)
- Т (Время итерации)
- min/max (минимальный и максимальный порог выходного сигнала)

6. Dawn (Paccвeт)

- **Start** (Время начала рассвета)
- Stop (Время начала заката)
- Dur (Продолжительность рассвета и заката)
- min/max (минимальная и максимальная величина управляющего сигнала)

Описание интерфейса

Экран отладки

На экране отладки в реальном времени (период обновления – 1 секунда) отображаются состояния всех компонентов системы: позиции реле, серво и привода, показания всех датчиков, системное время и аптайм (время в сутках с момента последней перезагрузки).

Экран сервиса

На экране сервиса можно изменить положение любой железки (реле, серво, привод). Новое положение «существует» только при активном экране сервиса, при выходе с экрана сервиса всё железо вернётся на свои места согласно режиму. Пока активен режим сервиса — таймеры остановлены, т.е. действия по таймерам при активном экране сервиса не выполняются.

На экране сервиса можно также настроить время системы (оно обновится только при его изменении), общий период опроса датчиков **SP** (секунды) и период обновления графика **PP** (**DAY** – суточный график, **HR** – график за час, **MIN** – график за минуту)

Структурная схема меню (версия 1.3)

Карта печатной платы v1.1

Выходы и компоненты платы GyverControl

Подключение специальных датчиков

Прошивка версии 1.4 и выше имеет поддержку нескольких специальных датчиков

- DHT11/DHT22 цифровой датчик температуры/влажности
- Термистор аналоговый датчик температуры
- DS18b20 (Dallas) цифровой датчик температуры

DHT11/DHT22

Цифровой датчик температуры и влажности. DHT11 имеет очень большие погрешности и не рекомендуется к использованию, DHT22 уже можно поставить. Датчик подключается ко входу SENS2 и заменяет датчик BMP280, то есть данные по основной температуре и влажности будут браться с него, отображаться в окне Debug и в настройках режима Sensor и PID. Показания датчика на втором канале (SENS2) в окне Debug заменяются на чёрточку. Датчик необходимо питать от постоянных 5V, то есть от любой шины питания на плате, кроме шины питания датчиков (т.к. она имеет непостоянное питание). Для активации датчика нужно включить настройку DHT_SENS2. Тип датчика (11 или 22) указывается в настройке DHT_TYPE

DS18b20

Цифровой датчик температуры, удобен в своём исполнении в герметичном корпусе. Датчик подключается ко входу SENS1 температура с него выводится как показание датчика SENS1 в градусах по Цельсию. Датчик необходимо питать от постоянных 5V, то есть от любой шины питания на плате, кроме шины питания датчиков (т.к. она имеет непостоянное питание). Для активации датчика нужно включить настройку **DALLAS_SENS1**

Термист ор

В прошивках версии выше 1.3 добавлена поддержка NTC термисторов, позволяющая выводить показания с термистора в градусах Цельсия, вместо сырого аналогового сигнала. Термисторы можно подключить ко входам SENS1-SENS4, включив соответствующую настройку **THERM1-THERM4**. Температурный коэффициент термистора (В, beta, бета-коэффициент) настраивается для каждого термистора в настройке **BETA_COEF1- BETA_COEF4**, данный коэффициент всегда указан в описании термистора на странице магазина или в даташите. Термисторы бывают в герметичном корпусе «пуля», что делает их применение более приятным и функциональным. **Важно**: в отличие от цифровых датчиков, на показания термистора могут оказывать влияния наводки от находящихся рядом с проводом индуктивных нагрузок, а также длина провода. Рекомендуется не подключать термисторы проводами длиннее 1 метра, а также скручивать провод в «косичку», таким образом он будет хоть как-то экранирован.

Рекомендуется использовать NTC термисторы с сопротивлением 10 кОм при температуре 25 градусов Цельсия. Температурную «базу» термистора можно настроить во вкладке sensors в строке 44, но при использовании рекомендуемых термисторов ничего менять не нужно.

ПИД и Рассвет. Схемы

В прошивке старше 1.4 появились режимы ПИД и Рассвет. И тот и другой режим работает только на серво выходах (идёт управление поворотом серво) и выходах реле REL_3 и REL_4, данные выходы начинают генерировать ШИМ сигнал с частотой 980 Гц.

Для управления нагревателями постоянного тока или светодиодными лентами (для рассвета) нужно использовать полевой транзистор (MOSFET). Подключается следующим образом

Для управления сервоприводом при помощи ПИД нужно просто подключить серво как обычно. Сервопривод может поворачивать заслонки и крутить рукоятки других приборов, как пример — управление сетевым диммером на 10 кВт (ссылка есть в ссылках проекта).

Таким образом можно управлять мощными сетевыми осветителями в режиме Рассвет, или нагревателями для поддержания температуры при помощи ПИД регулятора.

Настройка ПИД регулятора

ПИД регулятор позволяет плавным регулированием управляющего устройства (например, нагреватель) добиться точной установки изменяемой величины (температуры). ПИД регулятор имеет для настройки три коэффициента: пропорциональный **P**, интегральный **I**, дифференциальный **D**. Дифференциальный можно не трогать, для медленно протекающих процессов он бесполезен. Также в системе есть настройка времени **T**, которая задаёт период итерации регулирования. Установка **set** — какую величину с выбранного датчика будет стараться удерживать регулятор. **Min** и **max** — минимальная и максимальная величина сигнала. Для серво это угол (0-180), для ШИМ каналов это заполнение (0-255).

Давайте представим, как работает регулятор: допустим величина с датчика температуры равна 30 градусам, а установка set составляет 42 градуса. Разница между установкой и реальной температурой — 12 градусов. Данная величина умножается на коэффициент Р и идёт в управляющий сигнал. Т.е. если Р = 1, управляющий сигнал будет 12. Чем больше разница между установкой и значением с датчика — тем больше будет управляющий сигнал. Как только реальная величина станет равной установке — управляющий сигнал станет равен 0, т.е. например нагрев выключится. Интегральная составляющая постоянно суммирует ошибку, умноженную на коэффициент и время, и прибавляет в управляющий сигнал. Таким образом она позволяет удерживать величину на малых отклонениях от заданной.

Как настроить регулятор? Можно почитать некоторую теорию здесь http://lazysmart.ru/osnovy-avtomatiki/nastrojka-pid-regulyatora/

Советы по подключению реле

Несмотря на простоту и очевидность подключения нагрузки через реле, можно столкнуться с практически «магическими» проблемами, проявляющимися как глюки в системе контроллера, вплоть до зависания и перезагрузки, и неадекватное поведение дисплея. Рассмотрим типичное подключение нагрузки к реле:

Таким образом реле может управлять практически чем угодно, но проблемы возникают именно с индуктивной нагрузкой, причём как постоянного, так и переменного тока. При резком включении и отключении индуктивной нагрузки создаётся выброс, напряжение которого может в несколько раз превышать напряжение питания цепи, этот выброс провоцирует электромагнитные наводки в электрических цепях, которые приводят к сбоям в работе микроконтроллера и других компонентов. Индуктивной нагрузкой являются моторы (приводы, помпы) и соленоиды (электромагниты, соленоидные клапаны и проч.). Коммутация такой нагрузки без защиты от выбросов будет приводить к сбоям в работе контроллера, поэтому давайте рассмотрим несколько способов более-менее защиты от таких проблем.

Что почитать по теме:

- https://habr.com/ru/company/unwds/blog/390601/
- https://www.elec.ru/articles/mery-po-zashite-kontaktov-rele-ot-povrezhdeniya-du/

Пост оянный т ок

Самые жизненные примеры – помпа и клапан на 12V, которые управляются от блока питания. Самый первый и обязательный шаг к защите от индуктивных выбросов – диод, установленный встречно-параллельно индуктивной нагрузке. Диод рекомендуется припаивать как можно ближе к нагрузке, а не к реле, чтобы между нагрузкой и диодом было как можно меньше проводов. Это рекомендация, совсем необязательно резать провод у помпы под корень и ставить туда диод – можно разместить диод непосредственно у выводов реле, такой вариант тоже будет работать, но хуже.

🥻 Защита диодом (пост. mok)

- Рабочий ток и обратное напряжение диода должны быть сравнимы с номинальным напряжением и током нагрузки. Для нагрузок с рабочим напряжением до 250 VDC u paбочим mokom go 5 A Bnonhe подходит распространенный кремниевый guog 1N4007
- Выводы диода должны быть как можно короче
- Диод следует припаивать (привинчивать) непосредственно к индуктивной нагрузке, без длинных соединительных проводов это улучшает ЭМС при процессах коммутации

Пост оянный и переменный т ок

Очень распространённым способом защиты цепи является RC цепь (она же искрогасящая цепь, снаббер), представляющая собой резистор и конденсатор. RC цепь можно поставить параллельно выводам реле (т.е. последовательно с нагрузкой), что очень удобно.

- Для цепей постоянного moka 12V будет достаточно просто поставить керамический конденсатор ёмкостью 0.1 мкФ параллельно выводам реле
- Для коммутации сетевого напряжения В большинстве случаев подходят номиналы: резистор: 50-100 Ом, 1 Вт

koнgeнcamop: 0.1 мkФ, 400 V • Можно пользоваться формулами:

$$C = \frac{I^2}{10}; \quad R = \frac{E_0}{10 \times I \times (1 + \frac{50}{E_0})};$$

где I - ток нагрузки, E_o - напряжение

Переменный т ок

Для цепей переменного тока есть ещё один совет: используйте твердотельные реле с детектором перехода через ноль (zero detection, zero-cross), они также называются «бесшумные» реле, т.к. в них коммутация происходит в момент перехода напряжения через ноль, и выброс практически равен нулю.

Проблема с нехваткой памяти

Проблема

Прошивка занимает очень много места в памяти микроконтроллера и с полным набором возможностей в плату не умещается. Пожалуйста, не пишите про использование других микроконтроллеров (отладочных плат), я и так их все прекрасно знаю. Сотни людей приготовились собирать проект на базе изначальной схемы, поэтому поддержка проекта будет вестись максимально под микроконтроллер ATmega328p. Для экономии памяти можно отключить некоторые функции, сконфигурировав контроллер под себя «на низком уровне».

От ключение компонент ов сист емы

Версии прошивки начиная с 1.4 имеют «модульность», позволяя включить/выключить ненужные функции и возможности для экономии памяти. Делается это в настройках в самом начале главной вкладки прошивки.

Что отключаем	Название настройки	Экономия памяти
Поддержка Серво и замена их на	SERVO1_RELAY и SERVO2_RELAY	Отключение одного канала – 2%
реле		Отключение обоих каналов – 9%
Графики	USE_PLOTS	3%
ПИД на каналах 3, 4, оба серво,	USE_PID	5%
привод		
Рассвет на каналах 3, 4, оба серво	USE_DAWN	3%
Датчик ВМЕ280	USE_BME	9%
Датчик DS18b20	DALLAS_SENS1	7%
Датчик DHT11/DHT22	DHT_SENS2	3%
Термисторы	THERM1/ THERM2/ THERM3/ THERM4	1%

Использование другого загрузчика

Использование загрузчика Optiboot позволяет не только использовать Watchdog, но и добавляет **4%** памяти к доступному лимиту. О прошивке загрузчика читайте ниже.

Ещё раз, инструкция по загрузке прошивки

- 1. Изучить подробный гайд для новичков (https://alexgyver.ru/arduino-first/)
 - а. Установить свежую Java
 - b. Установить свежую Arduino IDE
 - с. Установить драйвер СН340
- 2. Скопировать библиотеки из папки проекта **libraries** и вставить в папку libraries, находящуюся по пути C:\Program Files (x86)\Arduino\libraries

- 3. Открыть актуальную версию прошивки из папки проекта **firmware**. В папке должны содержаться все остальные файлы, которые были там на момент скачивания архива!
- 4. Настроить Arduino IDE:
 - а. Плата Arduino Nano
 - b. Процессор Atmega328P (Old Bootloader)
 - с. Порт порт, к которому подключена плата

- 5. Нажать загрузить
- 6. При возникновении ошибки загрузки или ошибки компиляции **читать каждую букву** в гайде для новичков https://alexgyver.ru/arduino-first/

Watchdog

Watchdog (англ. Сторожевая собака) — «функция», которая позволяет осуществить автоматическую перезагрузку контроллера в случае зависания. Данная фишка работает только в том случае, если на плату Arduino прошит загрузчик **Optiboot**. Как это сделать читайте ниже.

Прошивка загрузчика OptiBoot

По умолчанию (после покупки) в микроконтроллере стоит старый загрузчик. Новый загрузчик под названием OptiBoot занимает меньше места (освобождает 4% для функций прошивки), а также имеет поддержку Watchdog. Прошить его можно и нужно, в прошивке загрузчика нет ничего страшного, главное точно следовать инструкциям.

Подключение

Для прошивки загрузчика вам понадобится либо программатор (USBasp – продаётся на Алике за 80p), либо плата Ардуино (НАНО, Уно или другая). Вот так выглядит USBasp с 10-пиновым выходом

Самый удобный вариант – прошивать через USBasp с переходником на 6-пин

Но нам такой вариант не очень подходит, т.к. пины будут мешать установке дисплея на плату. Вот так подключается 10-пиновый USPasp к плате, два абсолютно равносильных варианта

Если у вас есть ещё одна Arduino, можно сделать её программатором и тоже прошить загрузчик. Подключать так:

Перед подключением нужно прошить Ардуино-программатор специальным скетчем. Читайте ниже.

Прошивка

Подготовка:

- Запустить Arduino IDE
- Файл/Настройки
- Найти окошко «Дополнительные ссылки для менеджера плат»
- Вставить туда https://github.com/Optiboot/optiboot/optiboot/releases/download/v6.2/package optiboot optiboot-additional index.json
- Нажать ОК
- Инструменты/Плата/Менеджер плат...
- Поиском найти **Optiboot**, нажать установить
- Переходить к прошивке

Прошивка при помощи USBasp

Подготовка:

- В архиве проекта найти папку utility, в ней архив с драйверами USBasp_drivers.zip
- Распаковать, запустить InstallDriver.exe, следовать инструкциям установщика
- Подключить USBasp к компьютеру, дождаться подтверждения «USBasp готово к использованию»

- Отключить USBasp от компьютера
- Подключить USBasp к плате Arduino теплицы
- Подключить USBasp к компьютеру. Arduino теплицы должна запуститься и мигать лампочками
- Инструменты/Плата/Optiboot on 32-pin cpu
- Инструменты/Программатор/USBasp
- Инструменты/Записать загрузчик

После успешной загрузки на плате теплицы будет скетч, который мигает светодиодом (13 пин) по две вспышки каждую секунду. Можно переходить к загрузке прошивки GyverControl.

Прошивка при помощи Arduino

В дальнейшем будем называть:

• Плата Arduino ПРОГРАММАТОР - будет прошивать загрузчик

• Плата Arduino ПОДОПЫТНАЯ - на неё прошивается загрузчик (это плата GyverControl)

Действия с платой ПРОГРАММАТОР:

- Подключить плату к компьютеру
- Файл/Примеры/11.ArduinoISP
- Инструменты/Плата/Arduino NANO
- Инструменты/Процессор/ATmega328p (Old Bootloader)
- Загрузить прошивку
- Соединяем платы по схеме выше
- Инструменты/Программатор/Arduino as ISP
- Инструменты/Плата/Optiboot on 32-pin cpu
- Инструменты/Записать загрузчик
- Если будет ругаться, перезагрузить обе платы кнопкой RESET на плате
- Отключить платы друг от друга

После успешной загрузки на **ПОДОПЫТНОЙ** плате будет скетч, который мигает светодиодом (13 пин) по две вспышки каждую секунду. Можно переходить к загрузке прошивки GyverControl.

Загрузка GyverControl

- Подключить плату контроллера теплицы к компьютеру
- Открыть файл прошивки GyverControl
- Инструменты/Плата/Optiboot on 32-pin cpu
- Инструменты/Процессор/ATmega328p
- Так как мы всё это делали ради Watchdog убедиться, что включена настройка WDT_ENABLE в настройках прошивки
- Загрузить прошивку

Изменения в версиях

- Версия 1.1 начальная версия
- Версия 1.2
 - O Оптимизация Flash памяти для дальнейших доработок
 - 5% за счёт упрощения логики работы EEPROM
 - 1% за счёт оптимизации вывода на дисплей
 - 7% за счёт избавления от класса **String**
 - о Добавлен автоматический переход в окно DEBUG по таймеру неактивности
 - В этот же момент настройки автоматически сохраняются
 - о Исправлена критическая ошибка в построении графиков
 - Добавлена настройка периода графика (сутки, час, минута)
 - График меняется в реальном времени
 - о К режиму "по сенсору" добавлен гистерезис
 - В настройках режима «Sensor» вместо настройки Threshold (как в версии 1.1) теперь две настройки minV и maxV. Обе настройки отвечают за пороговое значение с гистерезисом. Логика такая: если величина с датчика больше maxV канал включается, если меньше minV выключается.
 - о Добавлен режим навигации "кликнул-изменил-кликнул"
 - Настройки в начале скетча:
 - **SETT_TIMEOUT** таймаут неактивности (секунд), после которого автоматически откроется окно DEBUG и сохранятся настройки. Работает при всех активных окнах кроме DEBUG, SERVICE и окон графиков.
 - CONTROL_TYPE тип управления энкодером

- 0 удерживание и поворот для изменения значения
- 1 клик для входа в изменение, повторный клик для выхода (стрелочка меняется на галочку)

• Версия 1.3-1.3.3

- о Добавлены настройки SERVO1_RELAY и SERVO2_RELAY, позволяющие использовать каналы серво как реле
- о Исправлен баг в управлении CONTROL_TYPE 1
- о Добавлена поддержка датчика температуры **ds18b20** на порту сенсора 1 (SENS1)
- Добавлена поддержка термисторов на всех портах сенсоров (SENS1-SENS4)
 - Рассчитано на 10 кОм-ные NTC термисторы. Коэффициент b можно настроить
- о Поправлено несколько багов с приводом
- о Энкодер теперь работает на МЕГЕ
- о Исправлена критическая ошибка в режиме Timer RTC

Версия 1.4

- о Данные с аналоговых датчиков усредняются средним арифметическим
- Температура в градусах (с бортового термометра, термистора или далласа) выводится со значком градуса
- о Добавлен режим ПИД для каналов реле 3 и 4, обоих каналов серво, канала привода
- о Добавлен режим РАССВЕТ для каналов реле 3 и 4 и обоих каналов серво
- о Каналы **ПИД** и рассвета помечены * (звёздочкой)
- На экране отладки каналы ПИД и рассвета выводятся графиком (0-255 ШИМ, 0-180 серво)
- Добавлена настройка, позволяющая убрать из кода датчик ВМЕ280
- o -- К режиму **Day** добавлена настройка Global, задающая время работы для всех режимов
- Режим Day заменён на режим Week "Неделька"
- о При активном **Global** каждый режим получает в название **+W** для напоминания об активном Global
- o В режиме **Timer RTC** появились периоды 1, 2.. 7 суток
- о Добавлена поддержка датчиков **DHT11/DHT22**. ВЫВОД ЗНАЧЕНИЙ ВМЕСТО ВМЕ280!!!
- Значения датчиков сведены к 8 битам (0 минимум, 255 максимум)
- o В режиме Sensor можно установить максимум меньше минимума, это инвертирует работу режима
- Графики можно отключить, это экономит память
- о На экране **Debug** после времени отображается день недели (цифра 1 7)
- о Ещё больше оптимизации
- о И ещё больше оптимизации
- Поправлены баги
- Добавлена поддержка Watchdog (работает только на OptiBoot)