Introduction to Programming/ Week 6: Documenting your program

/ A little more typesetting

A little more typesetting

In Overleaf, start a new document and try these commands.

Functions

If you put letters into math mode in LaTeX, like $\setminus (\sin(x) \setminus)$, LaTeX takes these as variable names sin(x) - s times i times n times (x). We write function names and other mathematical operators in non-italic text to avoid confusion - $\sin(x)$.

With many function names, LaTeX has a command which presents these in non-italic font. For example sin, cos and tan.

The brackets after these are optional - mathematically $\tan(x)$ and $\tan x$ are equally valid, though often using brackets is clearer. If you aren't using brackets, you must put a space at the end of the function name like \t x.

$$\sin\left(\frac{x^2}{\pi}\right)$$

looks better than

$$\sin(\frac{x^2}{\pi})$$

This is achieved using

Peter Rowlett 1

Sets

We can define a set using $\{...\}$ like $\{a,b,c\}$. These braces are used for commands in LaTeX, for example a section heading is written using \section{Title}. We tell LaTeX we mean to include a $\{$ in the document and are not using one as part of a command using a \setminus , like this:

```
Let \(A = \{a,b,c\}\}\) be a set containing three elements.
```

The \in symbol is formed using \setminus in. The \mid that means "such that" is just \mid , though I prefer to put \sim \mid \sim where the \sim just put a bit of extra space around the symbol. So we can define a set $A=\{x\in\mathbb{R}\mid x>5\}$ like this.

For maps between sets, we use \t to, so a map $heta:\mathbb{N} o \mathbb{R}$ can be defined like this

```
\theta: \mathbb{N} \to \mathbb{R}
```

Peter Rowlett 2