KAIST 2023F MAS212 Linear Algebra Summary

Choi Pooreunhaneul / Choi Pooha

University: KAIST Department: Mathematical Science

Github: Choi Pooha

December 26, 2023

CONTENTS

CHAPTER	Linear Equations	Page 3
1.1	Fields	3
1.2	Systems of Linear Equations	4
1.3	Matrices and Elementary Row Operations	4
1.4	Row-Reduced Echelon Matrices	4
1.5	Matrix Multiplication	4
1.6	Invertible Matrices	4
CHAPTER	Vector Spaces	Page 5
2.1	Vector Spaces	5
2.2	Subspaces	6
2.3	Bases and Dimensions	6
2.4	Coordinates	8
2.5	Summary of Row-Equivalence	8
2.6	Computations Concerning Subspace	8
CHAPTER	Linear Transformations	PAGE 9
3.1	Linear Transformations	9
3.2	The Algebra of Linear Transformations	10
	Isomorphism	12
3.4	Representation of Transformation by Matrices	12
3.5	Linear Functionals	13
3.6	The Double Dual	15
3.7	The Transpose of a Linear Transformation	16
CHAPTER	Polynomials	Page 18
4.1	Algebras	18
	The Algebra of Polynomials	18
	Lagrange Interpolation	19
	Polynomial Ideals	20
	The Prime Factorization of a Polynomial	21

CHAPTER	DETERMINANTS	Page 23
5.1	Commutative Rings	23
5.2	Determinant Functions	23
5.3	Permutations and the Uniqueness of Determinants	24
5.4	Additional Properties of Determinants	25
5.5	Modules	26
5.6	Multilinear Functions	26
5.7	The Grassman Ring	26
CHARMER	Expression Conservation February	D. C. 27
CHAPTER	ELEMENTARY CANONICAL FORMS	PAGE 27
	Introduction	27
	Characteristic Values	27
	Annihilating Polynomials	28
	Invariant Subspaces Simultaneous Triangulation, Simultaneous Diagonalization	29
	Simultaneous Triangulation; Simultaneous Diagonalization	31 32
	Direct-Sum Decompositions Invariant Direct Sum	34
	The Primary Decomposition Theorem	34
0.0	The Filmary Decomposition Theorem	34
CHAPTER	The Rational and Jordan Forms	Page 37
7.1	Cyclic Subspaces and Annihilaters	37
7.2	Cyclic Decompositions and the Rational Form	38
7.3	The Jordan Form	41
7.4	Computation of Invariant Factors	42
7.5	Summary; Semi-Simple Operators	42
CHAPTER	Inner Product Spaces	PAGE 43
8.1	Inner Products	43
8.2	Inner Product Spaces	44
8.3	Linear Functionals and Adjoints	46
8.4	Unitary Operators	47
8.5	Normal Operators	49

Chapter 1

Linear Equations

1.1 Fields

Note:-

- This is summary note for 2023 Fall, KAIST MAS212 Linear Algebra course taught by Prof. Jinhyun Park.
- I assumed that you are familiar enough to MAS109 Introduction to Linear Algebra course, or just some notation used in basic linear algebra like matrix and row operations.
- I also assumed that you are familiar enough to some mathematical logic symbols.
- We used Kenneth Hoffman / Ray Kunze Linear Algebra 2nd ed.

Definition 1.1.1: Field

Algebraic structure F satisfying given properties are called field:

- 1. Addition is commutative: $\forall \{x, y\} \subset \mathbb{F} \ (x + y = y + z)$
- 2. Addition is associative: $\forall \{x, y, z\} \subset \mathbb{F} (x + (y + z) = (x + y) + z)$
- 3. $\forall x \in \mathbb{F} \exists ! 0 \in \mathbb{F} (x + 0 = x)$
- 4. $\forall x \in \mathbb{F} \exists ! (-x) \in \mathbb{F} (x + (-x) = 0)$
- 5. Multiplication is commutative: $\forall \{x,y\} \subset \mathbb{F} \ (xy=yx)$
- 6. Multiplication is associative: $\forall \{x, y, z\} \subset \mathbb{F} \ (x(yz) = (xy)z)$
- 7. $\forall x \in \mathbb{F} \exists ! 1 \in \mathbb{F} (x1 = x)$
- 8. $\forall x \in \mathbb{F} \ \exists ! x^{-1} = 1/x \in \mathbb{F} \ (xx^{-1} = 1)$
- 9. $\forall \{x, y, z\} \in \mathbb{F} (x(y+z) = xy + xz)$

1.2 Systems of Linear Equations

This Chapter is Intentionally Skipped at Lectures.

1.3 Matrices and Elementary Row Operations

This Chapter is Intentionally Skipped at Lectures.

1.4 Row-Reduced Echelon Matrices

This Chapter is Intentionally Skipped at Lectures.

1.5 Matrix Multiplication

Definition 1.5.1: Matrix Multiplication

$$C := [C_{ij}]. C_{ij} := \sum_{r=1}^{n} A_{ir} B_{rj}.$$

Theorem 1.5.1

Matrix multiplication is associative, but not commutative.

1.6 Invertible Matrices

Definition 1.6.1: Invertible Matrices

P is invertible $\iff \exists ! Q \ (PQ = QP = I).$

Chapter 2

Vector Spaces

2.1 Vector Spaces

Definition 2.1.1: Vector Spaces

A vector space consists of the following:

- 1. field *F* of scalars
- 2. a set *V* of objects called vectors
- 3. $\forall \{\alpha, \beta, \gamma\} \subset V$, a rule called vector addition holds:
 - addition is commutative: $\alpha + \beta = \beta + \alpha$
 - addition is associative: $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$
 - $\exists ! 0 \in V \ (\alpha + 0 = \alpha)$
 - $\exists ! (-\alpha) \in V \ (\alpha + (-\alpha) = 0)$
- 4. $\forall \{\alpha, \beta\} \subset V \ \forall \{c_1, c_2\} \subset F$, a rule called scalar multiplication holds:
 - $1\alpha = \alpha$
 - $(c_1c_2)\alpha = c_1(c_2\alpha)$
 - $c_1(\alpha + \beta) = c_1\alpha + c_1\beta$
 - $(c_1+c_2)\alpha=c_1\alpha+c_2\alpha$

Definition 2.1.2: Linear Combinations

 $\alpha \in V$ is said to be linear combination of the vectors $\alpha_1, \ldots, \alpha_n \in V$ if $\exists c_1, \ldots, c_n \in F$ s.t.

$$\alpha = c_1 \alpha_1 + \dots + c_n \alpha_n = \sum_{i=1}^n c_i \alpha_i$$

2.2 Subspaces

Definition 2.2.1: Subspaces

 $W \subset V$ is called subspace if W satisfies vector space axioms.

Theorem 2.2.1

 $((V:f.d.v.s/F) \land (\{0\} \subsetneq W \subset V)) \Rightarrow (W \text{ is subspace} \iff \forall \{\alpha,\beta\} \in V \ \forall c \in F \ (c\alpha + \beta \in V)).$

Proof. We have to check: $W \neq \emptyset \Rightarrow \exists w \in W \Rightarrow 0 \in W$.

Theorem 2.2.2

 $\{W_i\}:= \text{collection of subspaces of } F\text{-v.s. } V\text{. Let } W:=\cap W_i\text{. then } W \text{ is also subspace.}$

Proof. All W_i has 0, thus $0 \in \cap W_i$, which implies $W \neq \emptyset$. Let $v_1, v_2 \in W$, $c \in F$. Then $\forall v_1, v_2 \in W_i$. Since W_i is subspace, $cv_1 + v_2 \in W_i$ for all i, thus also in W.

Definition 2.2.2: Span

V: F-v.s. $S \subset V:=$ any nonempty subset. The span(S) is the intersetion of all subspaces of V that contains S.

Theorem 2.2.3

span(S) is set of All linear combination of S/F.

Proof. $W := \operatorname{span}(S)$ and let L be set of all lin. comb. of S/F. Then obviously, $L \subset W$ because $S \subset WW$ and W is subspace.

Conversely, note that $S \subset L$. If we prove L is subspace, then since $S \subset L$, $W = \text{span}(S) \subset L$. Then L is apparently a subsapce. Thus W = L.

2.3 Bases and Dimensions

Definition 2.3.1: Linearly Independent

V: F-v.s., and take S as subset of V. We say S is linearly independent if $\exists \alpha_1, \ldots, \alpha_n \in S$ and $c_1, \ldots, c_n \in F$, not all zero, s.t. $c_1\alpha_1 + \cdots + c_n\alpha_n = 0$ has nontrivial solution. If S is not linearly dependent, we say it is linearly independent.

Theorem 2.3.1

V: F-v.s. $\alpha_1, \ldots, \alpha_n$ are linearly independent $\iff \forall i \in [n] \ \forall c_i \in F \ ((c_1\alpha_1 + \cdots + c_n\alpha_n = 0) \Rightarrow c_1 = c_2 = \cdots = c_n = 0.$

Proof. Exercise!

Definition 2.3.2: Basis

V: F-v.s. A basis of V is a subset $S \subset V$ s.t. S is lin. indep. and span(S) = V.

Definition 2.3.3: Finite Dimensional

If basis S has property $|S| < \infty$, we say V is finite dimensional vector space.

Theorem 2.3.2

V: F-v.s. that is spanned by $\{\beta_1, \dots, \beta_n\} \subset V$. Then any lin. indep. set of vec. in V is finite and card. is no bigger than n.

Proof. E.T.S. that every subset S with more than n vec. are lin. dep. Suppose $S = \{\alpha_1, \ldots, \alpha_m\}$, for distinct vec. with $m \ge n$. Since $\{\beta_1, \ldots, \beta_n\}$ spans V, for each $1 \le j \le m$, $\alpha_j = \sum_{i=1}^n A_{ij}\beta_i$. Let $x_1, \ldots, x_m \in F$ be arbitrary chosen. Then $x_1\alpha_1 + \cdots + x_m\alpha_m = \sum_{j=1}^m x_j\alpha_j = \sum_{i=1}^n \left(\sum_{j=1}^m A_{ij}x_j\right)\beta_i$. Consider the system $[A_{ij}][\mathbf{x}^T] = 0$. This has at least 1 free variable, which leads system has nontrivial solution.

Corollary 2.3.1

V: F-v.s. that has finite spanning set. Then any two basis of V have same card.

. Apply Theorem 2.3.2 to both side of two different basis.

Lemma 2.3.1

 $W \subsetneq V$ be finite dim. v.s. Then dim $(W) < \dim(V)$.

Proof. Let S_0 be a basis of W. S_0 is lin. indep., so can enlarged it to get a basis of V. Since W is propersubset of V, $\exists v \in V \setminus W$. Take $S_1 = S_0 \cup \{v\}$, and repeat this. finite dimensional condition of V implies this algorithm terminates in finite times, and thus we can conclude $\dim(W) < \dim(V)$.

Theorem 2.3.3

 $W_1, W_2 \subset V$: finite v.s. Then $W_1 + W_2$ is a finite dim. v.s. and $\dim(W_1) + \dim(W_2) = \dim(W_1 + W_2) - \dim(W_1 \cap W_2)$.

Proof. Choose $\{\alpha_1, \ldots, \alpha_d\}$ a basis for $W_1 \cap W_2$. We can extend this into W_1 and W_2 's basis. Take $\{\alpha_1, \ldots, \alpha_d, \beta_{d+1}, \ldots, \beta_d\}$ be basis for W_1 and $\{\alpha_1, \ldots, \alpha_d, \gamma_{d+1}, \ldots, \gamma_b\}$ be basis for W_2 .

Claim 2.3.1

 $\alpha_1, \ldots, \alpha_d, \beta_{d+1}, \ldots, \beta_a, \gamma_{d+1}, \ldots, \gamma_b$ is a basis for $W_1 + W_2$.

Proof. Suppose for arbitrary lin. indep. set B, span $(B) = W_1 + W_2$. Let $x \in W_1 + W_2$. Then $x = w_1 + w_2$ where $w_1 \in \text{span}\{\alpha, \beta\}$ and $w_2 \in \text{span}\{\alpha, \gamma\}$, thus $x \in \text{span}\{\alpha, \beta, \gamma\}$. On the other hand, each vec. in B is already in $W_1 + W_2$. Thus $\text{span}(B) = W_1 + W_2$.

Claim 2.3.2

This B is lin. indep.

Proof. Suppose we have $\sum a_i \alpha_i + \sum b_j \beta_j + \sum c_k \gamma_k = 0$ for alal scalars are 0. Then $\sum a_i \alpha_i + \sum b_j \beta_j = -\sum c_k \gamma_k$. Thus $\sum c_k \gamma_k \in W_1 \cap W_2$ where $\{\alpha_1, \dots, \alpha_d\}$ is basis for $W_1 \cap W_2$ and γ are indep. with α . Thus $\forall k \in \mathbb{N}$ ($c_k = 0$). Simarly, we can see that all scalars are 0. Thus B is indep.

This two claim leads $\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2)$.

2.4 Coordinates

Definition 2.4.1: Coordinates (Ordered Basis)

An ordered basis for *F*-v.s. *V* is a sequence of vec. that forms a basis.

Lemma 2.4.1

V: f.d.v.s./F. Suppose $B = \{v_1, \dots, v_n\}$ is an ordered basis of V. Then for each $x \in V$, $\exists !$ expression of the form $x = x_1v_1 + \dots + x_nv_n$ for some $x_i \in F$.

Proof. Existence of expression of form is trivial since B is basis of V.

For uniqueness, suppose we have two expression. Then indepence condition of each v_i leads these expression have exactly same coefficients.

Definition 2.4.2: Coordinate Matrix

V: f.d.v.s./F, B be ordered basis. We define $[x]_B = [x_1 x_2 \cdots x_n]^T$ the coordinate matrix of x w.r.t. the basis B.

Theorem 2.4.1

V: f.d.v.s./F, B and B' be two different ordered basis of V. Then $\exists!$ invertible mat. P s.t. $\forall x \in B$, $[x]_B = P[x]_{B'}$, also $[x]_{B'} = P^{-1}[x]_B$.

Proof. Let $B := \{\alpha_1, \dots, \alpha_n\}$ and $B' := \{\beta_1, \dots, \beta_n\}$. For $\beta_j \in B'$, since B is a basis, $\beta_j = \sum_{i=1}^n P_{ij}\alpha_i$ and this P_{ij} are uniquely decided. Let $P := [P_{ij}]$. Let $x \in V$. Write $[x]_B = [x_1 \dots x_n]^T$, $[x]_{B'} = [x'_1 \dots x'_n]^T$. Then $x = \sum_i \left(\sum_j x'_j P_{ij}\right) \alpha$. By uniqueness, we can derive $[x]_B = P[x']_B$. Since B and B' are lin. indep., x = 0 implies $[x]_B = [x]_{B'} = 0$. Thus P is invertible. \square

2.5 Summary of Row-Equivalence

This Chapter is Intentionally Skipped at Lectures

2.6 Computations Concerning Subspace

This Chapter is Intentionally Skipped at Lectures

Chapter 3

Linear Transformations

3.1 Linear Transformations

Definition 3.1.1: Linear Transformation

 $T: V_1 \to V_2$ for v.s. V_1, V_2 is function called linear transformation if this function satisfies $T(cx_1 + x_2) = cT(x_1) + T(x_2)$ for $x_i \in V_i$, $c \in F$.

Exercise 3.1.1

If *T* is a linear trans., then T(0) = 0.

Proof. T(0) + T(0+0) = 2T(0).

Exercise 3.1.2 If T is a linear trans., then T(-x) = -T(x).

Theorem 3.1.1

 $V,W: \text{f.d.v.s.}/F, \{\alpha_1,\ldots,\alpha_n\}$ be basis of V and $\{\beta_1,\ldots,\beta_m\}$ be any given subset of W. Then $\exists!T:V\to W$ s,t, $T(\alpha_i)=\beta_i$.

Proof. Define $T_0(x_1\alpha_1 + \cdots + x_n\alpha_n) := \sum_{i=1}^n x_i\beta_i$. This is lin. trans. Thus existence is proven. For uniqueness, if there if another U s.t. $U(\alpha_i) = \beta_i$, then $U(\sum x_i\alpha_i) = \sum x_iU(\alpha_i) = \sum x_i\beta_i = T_0(\sum x_i\alpha_i)$. Thus $U = T_0$.

Definition 3.1.2: Null Space and Range

 $T: V \to W:$ lin. trans. of v.s./F. $N(T) \subset V$, $R(T) \subset W$ where $N(T) := \{v \in V \mid Tv = \}$ and $R(T) := \{w \in W \mid \exists v \in V \ (w = T(v))\}.$

Definition 3.1.3

 $\operatorname{nullity}(T) := \dim_{\mathbb{F}}(N(T)), \operatorname{rank}(T) := \dim_{\mathbb{F}}(R(T)).$

Theorem 3.1.2

 $V: \text{f.d.v.s.}/F, T: V \to W: \text{lin. trans. Then } \text{rank}(T) + \text{nullity}(T) = \text{dim}(V).$

Proof. Begin with N(T). Choose basis $\{v_1, \ldots, v_k\}$ of N(T) and choose $v_{k+1}, \ldots, v_n \in V$ s.t. $\{v_1, \ldots, v_n\}$ is a basis of V.

Claim 3.1.1

 $T(v_{k+1}), \dots, T(v_n)$ is a basis of R(T).

Proof. For linear independence, suppose $c_{k+1}T(v_{k+1}) + \cdots + c_nT(v_n) = 0$. Then $T(c_{k+1}v_{k+1} + \cdots + c_nv_n) = 0$, so $c_{k+1}v_{k+1} + \cdots + c_nv_n \in N(T)$. Since $\{v_1, \ldots, v_k\}$ is a basis of N(T), $c_{k+1}v_{k+1} + \cdots + c_nv_n = a_1v_1 + \cdots + a_kv_k$. Since $\{v_1, \ldots, v_n\}$ is basis, those are lin. indep. Thus all coefficients are 0, thus $T(v_{k+1}), \ldots, T(v_n)$ are indep.

Claim 3.1.2 span
$$\{T(v_{k+1}),...,T(v_n)\}=R(T)$$

Proof. Exercise!

Thus $\dim(R(T)) = n - k$.

Theorem 3.1.3

For $m \times n$ mat. A, row rank is equal to column rank.

Proof. $V := F^n$ and $W := F^m$. $T : V \to W$ is lin. trans. Then col. rank = dim. of spans of col. = dim(R(T)) = rank(T). Also, nullity(T) = dim(N(T)) = n-rank(T) = number of rows with leading 1's in RREF = number of cols. with leading 1's in RREF = dim. of col. space of A. Thus row rank is equal to col. rank.

3.2 The Algebra of Linear Transformations

Definition 3.2.1: L(V, W)

L(V, W) is set of all lin. trans. from V to W.

Theorem 3.2.1

V,W:F-v.s. Then L(V,W) is itself vec. space over F.

Proof. Let $T, U \in L(V, W)$. Define $T + U : V \to W$ by (T + U)(v) = T(v) + U(v).

Claim 3.2.1 $cT + U \in L(V, W)$

Proof. $(cT+U)(av_1+v_2)=cT(av_1+v_2)+U(av_1+v_2)$ where both T and U is lin. trans. Thus trivially it is lin. trans.

Theorem 3.2.2

V: n-dim. v.s./F, W: m-dim. v.s./F. Then $\dim_F(L(V, W)) = nm.$

Proof. Suppose $B = \{\alpha_1, \dots, \alpha_n\}$ is basis of V, $B' = \{\beta_1, \dots, \beta_m\}$ is basis of W. For each (p,q) where $1 \le p \le m$ and $1 \le q \le r$, define $E^{p,q}(\alpha_i) = 0$ if $i \ne q$ and β_p if i = q. Then these are lin. indep. trans. $V \to W$ and they span L(V, W).

Lemma 3.2.1

 $U \circ T$ is a lin. trans. in L(V, Z) where $U : V \to W$ and $T : W \to Z$.

Proof. Exercise!

Definition 3.2.2: Endomorphism (Linear Operator)

For the case $T: V \to V$, we say T is an endomorphism or linear operator.

Definition 3.2.3

 $T: V \to W$ be lin. trans. Then

- one-to-one or injective if $T(v) = 0 \Rightarrow v = 0$. (nonsingular)
- onto or surjective if T(V) = W
- *T* is invertible if $\exists U: W \to V$ s.t. $U \circ T = T \circ U = Id$

Exercise 3.2.1

T is injective and surjective \iff T is invertible.

Exercise 3.2.2

 $T: V \to W$ is a nonsingular lin. trans. Then any lin. indep. subset S of V is sent to lin. indep. set T(S).

Exercise 3.2.3

Suppose $T: V \to W$ is invertible. Then $\dim(V) = \dim(W)$ for f.d.v.s. V and W.

Theorem 3.2.3

Suppose V, W as f.d.v.s./F and dim(V) = dim(W). Let $T: V \to W$ be a lin. trans. TFAE:

- i) *T* is invertible
- ii) *T* is nonsingular, i.e., *T* is injective
- iii) *T* is onto, i.e., *T* is surjective

Proof. $\operatorname{rank}(T) + \operatorname{nullity}(T) = n$. T is nonsingular \iff $\operatorname{nullity}(T) = 0 \iff \operatorname{rank}(T) = n$ \iff $R(T) = W \iff T$ is onto.

Definition 3.2.4: General linear Group

G = invertible endo. on V. with inverse \circ . Then G = GL(V) is the general linear group of V.

Definition 3.2.5: Group

If some algebraic structure is associative with identity, we say this algebraic structure is group.

3.3 Isomorphism

Definition 3.3.1: Isomorphism

V,W:F—v.s. We say a lin. trans. $T:V\to W$ is an isomorphism if T is an invertible lin. trans.

Theorem 3.3.1

V: n-d.v.s./F. Then V is isomorphic to F^n ($V \simeq F^n$).

Proof. $B := \{\alpha_1, \dots, \alpha_n\}$ is basis of V. Define $T : V \to F^n$, i.e., $v \mapsto [v]_B$.

Claim 3.3.1

This is isomorphism \iff *T* is injective.

Proof. Suppose T(v) = 0. Then v = 0.

3.4 Representation of Transformation by Matrices

Theorem 3.4.1

V,W:F-v.s. and B,B' be basis, where $T:V\to W$ be lin. trans. Then $\exists !m\times n$ mat. A. s.t. $[Tv]_{B'}=A[v]_B$.

Theorem 3.4.2

V, W, Z: f.d.v.s./F, B, B', B'' be basis. Let $U \circ T: V \to Z$ be lin. trans. If $A_1 = [T]_{B,B'}$ and $A_2 = [T]_{B',B''}$, then $[U \circ T]_{B,B''} = A_2 \circ A_1$.

Theorem 3.4.3

T: endo. on f.d.v.s.V/F, where B_1,B_2 be two different basis of V. Let P be mat. s.t. $[v]_{B_1}=P[v]_{B_2}.$ Then $[T]_{B_2}=P^{-1}[T]_{B_1}P.$

Definition 3.4.1: Similar

We say M and N are similar if \exists invertible P s.t. $N = P^{-1}MP$.

3.5 Linear Functionals

Definition 3.5.1: Linear Functional

V: F-v.s. A lin. trans. $T: V \to F$ is called a linear functional.

Example 3.5.1

Definite integral and functions, especially constant function are linear functional.

Definition 3.5.2: Dual Vector Space

V: F-v.s. We normally write $V^* = L(V, F)$ the dual vector space of V.

Note:-

For finite dimensional V, $\dim(V^*) = \dim(V)$. But if V is infinite dimensional, $\dim(V^*)$ can be extremely large.

Lemma 3.5.1

V: n-d.v.s./F. Let $\{\alpha_1, \ldots, \alpha_n\}$ be a basis of V. Define $f \in V^*$ by declaring $f_i(\alpha_j) = \delta_{ij}$. Then $\{f_1, \ldots, f_n\}$ is basis of V^* .

Proof. Because $\dim(V^*) = \dim(V) = n$, E.T.S. that f_1, \ldots, f_n are lin. indep. Suppose $\exists c_1 f_1 + \cdots + c_n f_n = 0$ for some $c_i \in F$ in V^* . Since $f_i(\alpha_j) = \delta_{ij}$, we can derive $c_j f_j(\alpha_j) = 0$. Thus $c_1 = \ldots = c_n = 0$, which implies $\{f_1, \ldots, f_n\}$ is basis.

Definition 3.5.3: The Dual Basis

 $\{f_1,\ldots,f_n\}\subset V^*$ is called the dual basis of the basis $\{\alpha_1,\ldots,\alpha_n\}$ of V.

Lemma 3.5.2

 $V: n\text{-d.v.s.}/F. \{\alpha_1, \dots, \alpha_n\}$ is basis of V. Let $\{f_1, \dots, f_n\}$ is the dual basis. Then

- i) For each $f \in V^* f = \sum_{i=1}^n f(\alpha_i) f_i$
- ii) For each $v \in V$ $v = \sum_{i=1}^{n} f_i(v)\alpha_i$

Proof. i): Since $f \in \text{span}\{f_1, \dots, f_n\}$, $\exists \text{ expression } f = \sum_{i=1}^n x_i f_i \text{ for some } x_i \in F$. Evaluate at $\alpha_i : f(\alpha_i) = x_i$.

ii): Since $v \in \text{span}\{\alpha_1, \dots, \alpha_n\}$, $\exists \text{ expression } v = \sum_{i=1}^n y_i \alpha_i$. Apply the dual basis. \Box

Note:-

V: n-d.v.s./F. Let $f \in V^*$. Suppose $f \neq 0$ and $f: V \to F$ be surjective. $N_f := N(f)$. We know $\dim(N(f)) + \dim(R(f)) = \dim(V)$. Since $\dim(R(f)) = 1$, $\dim(N(f)) = n - 1$.

Definition 3.5.4: Hyperspace

V: f.d.v.s./F. subspace W which has property $\dim(W) = \dim(V) - 1$ is called hyperspace.

Definition 3.5.5: Annihilator

V: F-v.s. S be a nonempty subspace. The annihilator of S, $S^{\circ} = Ann(S)$ is defined to be $S^{\circ} := \{ f \in V^* \mid \forall \alpha \in S \ (f(\alpha) = 0) \}.$

Exercise 3.5.1

Ann(S) is subspace of V^* .

Example 3.5.2

If $S = \{0\}$, then $Ann(S) = V^*$.

Example 3.5.3

If S = V, then $Ann(S) = \{0\}$.

Theorem 3.5.1

V: n-d.v.s./F, and W be subspace. Then $\dim(W) + \dim(W^\circ) = \dim(V) = n$.

Proof. $k := \dim(W)$ with $\{\alpha_1, \ldots, \alpha_n\} \subset W$. Choose $\alpha_{k+1}, \ldots, \alpha_n \in V$ s.t. $\{\alpha_1, \ldots, \alpha_n\}$ is basis of V. Let $\{f_1, \ldots, f_k, f_{k+1}, \ldots, f_n\}$ be the dual basis.

Claim 3.5.1

 $\{f_{k+1},\ldots,f_n\}$ is a basis of W°

Proof. Let's see if $f_{k+1}, \ldots, f_n \in W^{\circ}$. Indeed, by the constructure of the dual basis, all f_i for $i \geq k+1$ vanishes on α_i for $1 \leq i \leq k$. Thus $f_{k+1}, \ldots, f_n \in W^{\circ}$.

Lin. indep. is obvious since this is part of basis of V^* .

Claim 3.5.2

 $\operatorname{span}\{f_{k+1},\ldots,f_n\}=W^\circ$

Proof. $f \in W^{\circ} \subset V$. So $f = \sum_{i=1}^{n} f(\alpha_i) f_i$. Since $f \in W^{\circ}$, $f(\alpha_i) = 0$ for all $\alpha_i \in W$, $1 \le i \le k$. Thus $f = \sum_{i=1}^{n} f(\alpha_i) f_i$.

Corollary 3.5.1

V: n-d.v.s./F. W be k-dim. subspace. Then W is intersection of n-k hyperspaces in V of the form N_f for some $0 \neq f_i \in V^*$.

Proof. Basis of W can be extended to basis of V. Take $\{f_1, \ldots, f_n\} \subset V^*$ be the dual basis of $\{\alpha_1, \ldots, \alpha_n\}$. Then $W = \bigcap_{i=k+1}^n N_{f_i}$.

Corollary 3.5.2

V: n-d.v.s./F. W be hyperspace. Then $W=N_f$ for some $0 \neq f \in V^*$.

Exercise 3.5.2

 W_1, W_2 be subspaces. V: n-d.v.s./F. Then $W_1 = W_2 \iff W_1^{\circ} = W_2^{\circ}$.

3.6 The Double Dual

Definition 3.6.1: Double Dual

V : F-v.s. $V^{**} = L(V^*.F) = L(L(V,F),F)$.

Note:-

Dual is not natural in general, but double dual is natural. Define $L_{\alpha} \in V^{**}$ as: $L_{\alpha} : V^* \to F : f \mapsto f(\alpha)$.

Note:- 🛉

Define $\mathfrak{L}: V \to V^{**}: \alpha \mapsto L_{\alpha}$.

Claim 3.6.1

 \mathfrak{L} is a lin. trans.

Proof. Suppose $\alpha_1, \alpha_2 \in V$, $c \in F$. $\mathfrak{L}(c\alpha_1 + \alpha_2) = L_{c\alpha_1 + \alpha_2}(f) = f(c\alpha_1 + \alpha_2) = cf(\alpha_1) + f(\alpha_2)$.

Claim 3.6.2

 \mathfrak{L} is injective.

Proof. Suppose for some $\alpha \in V$, we have $\mathfrak{L}(\alpha)L_{\alpha} \in V^*$ is $0 \iff \forall f \in V^* \ (L_{\alpha}(f) = 0) \iff \forall f \in V^* \ (f(\alpha) = 0) \iff \alpha = 0$. Thus \mathfrak{L} is injective.

Note:-

Thus \mathfrak{L} is not surjective in general for infinite dimensional V.

Theorem 3.6.1

V: f.d.v.s./F. Then \mathfrak{L} is an iso. of vec. spaces.

Proof. V: n-d.v.s./F. Then $\dim(V^*) = \dim(V^**) = n$. Thus $\mathfrak L$ is injective. lin. trans. from n-dim. to n-dim. is automatically surjective.

Definition 3.6.2: Proper Subspace

V: v.s./F. Then $W \subset V$ is proper if it is not equal to V.

Definition 3.6.3: Maximal

V: v.s./F. A proper subspace $W \subsetneq V$ is said to be maximal if there is no intermediate subspace between W and V, i.e., if there is subspace $W \subset Z \subset V$, then either W = Z or V = Z.

Note:-

If dim(V) = n, then proper maximal subspace has dim. n - 1.

Definition 3.6.4: Generalization of Hyperspace

V: v.s./F. A hyperspace of V is a proper maximal subspace of V.

Theorem 3.6.2

V: F-v.s. Suppose $f \in V^* \setminus \{0\}$. Then, $N_f = \{x \in v \mid f(x) = 0\}$ is hyperspace in V.

Proof. N.T.S. N_f is proper maximal subspace of V. It is proper since $N_f = V$ implies $f \equiv 0$, which is contradiction. E.T.S. that $\forall \alpha \in V \setminus N_f$, span $\{N_f, \alpha\} = V$. For this, E.T.S. that $\forall \beta \in V \ (\beta \in \text{span}\{N_f, \alpha\})$. Let $c := \frac{f(\beta)}{f(\alpha)}$. Note that $\alpha \notin N_f$ is $f(\alpha) \neq 0$. Let $\gamma := \beta - c\alpha$. Then $f(\gamma) = f(\beta) - cf(\alpha) = 0$. Thus $\gamma \in N_f$. Then $\beta = \gamma + c\alpha \in \text{span}\{N_f, \alpha\}$ since $\gamma \in N_f$. Thus N_f is hyperspace.

Theorem 3.6.3

V: F-v.s. Let W be hyperspace. Then $\exists f \in V^* \setminus \{0\}$ $(W = N_f)$.

Proof. Since it's proper, $\exists \alpha \in V \setminus W$. $W \subsetneq \text{span}\{W, \alpha\} \subset V$. Since W is maximal, $\text{span}\{W, \alpha\} = V$. Then $\forall \beta \in V$ can be written as $\beta = \gamma + c\alpha$ for some $\gamma \in W$, $c \in F$.

Claim 3.6.3

This γ and c are uniquely decided by β .

Proof. Suppose $\beta = \gamma + c\alpha = \gamma' + c\alpha'$. Then $\gamma - \gamma' = (c' - c)\alpha$. If $c' - c \neq 0$, then $\alpha \in W$, which is contradiction. Thus this expression is unique.

Claim 3.6.4

 $c := g(\beta) \in F$. Then $g : V \to F : \beta \mapsto g(\beta)$ is linear.

Proof. N.T.S. $g(d\beta_1 + \beta_2) = dg(\beta_1) + g(\beta_2)$. Let $\beta_1 = \gamma_1 + c_1\alpha$, $\beta_2 = \gamma_2 + c_2\alpha$ where $c_i = g(\beta_i)$. Then $\beta_1 + \beta_2 = \gamma_1 + \gamma_2 + (c_1 + c_2)\alpha$. By the uniqueness of the expression, $g(\beta_1 + \beta_2) = c_1 + c_2 = g(\beta_1) + g(\beta_2)$. Also, $g(d\beta_1) = dc_1 = dg(\beta_1)$. Thus g is linear.

Since $g \in V^*$, $N_g = W$, thus our statement holds.

3.7 The Transpose of a Linear Transformation

Definition 3.7.1: Transpose

 $T: V \to W$: lin. trans. of F-v.s. We define the transpose $T^t: W^* \to V^*$. Then $V \to W \to F$ is defined as $g \circ T \in V^*$. So $T^t(g) = g \circ T$.

Lemma 3.7.1

 T^t is lin. trans.

Proof. $T^t(cg_1 + g_2) = (cg_1 + g_2) \circ T = cg_1 \circ T + g_2 \circ T = cT^t(g_1) + T^t(g_2).$

Theorem 3.7.1

 $T: V \rightarrow W:$ lin. trans. Then

- i) $N(T^t) = Ann(R(T))$
- ii) If V, W is f.d.v.s./F, rank(T^t) = rank(T) and $R(T^t) = Ann(N(T))$

$$T: V \longrightarrow W \qquad T^*: W^* \longrightarrow V^* \quad Ann(R(T)) = N(T^t)$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$N(T) \qquad R(T) \qquad R(T^t) \qquad N(T^t) \quad Ann(N(T)) = R(T^t)$$

Proof. i): $N(T^t)$ =Ann(R(T)), $g ∈ N(T^t) ⇔ T^t(g) = 0 ⇔ g ∘ T = 0 ⇔ g ∈ Ann(<math>R(T)$). ii): Let dim(V) = n, dim(W) = m. Let $r := \operatorname{rank}(T)$. Then dim(Ann(R(T))) = m - r. By i), Ann(R(T)) = $N(T^t)$ ⇒ dim $N(T^t)$ = m - r ⇒ dim($R(T^t)$) = r by rank-nullity. Next, N.T.S. $R(T^t)$ = Ann(R(T)). Let $f ∈ R(T^t)$. Then $f = T^t(g)$ for some $g ∈ W^*$. Then f = g ∘ T. Now if α ∈ N(T), f(α) = g ∘ T(α) = 0, thus f ∈ Ann(N(T)). So $R(T^t) ⊂ Ann(N(T))$. But since both have same dim., $R(T^t)$ = Ann(R(T)).

Chapter 4

Polynomials

4.1 Algebras

Definition 4.1.1: Algebra

F-algebra *A* or linear algebra A/F is an *F*-v.s. with a product structvue $A \times A \to A$ which has ass., dis., comm. where multiplication is not necesserily comm. If *A* has an element $1_A \in A$ s.t. $\forall \alpha \in A \ (1_A \cdot \alpha = \alpha \cdot 1_A = \alpha)$ then we say *A* is an *F*-algebra with 1.

Example 4.1.1

- (i) F[x]: finite polynomial with coeff. in F is F-algebra with unity 1.
- (ii) F[[x]]: formal power series in x with coeff. in $F:\sum_{i=1}^{\infty}a_ix^i$ form is F-algebra with unity 1.
 - (iii) Suppose $n \ge 1$ with field F. $M_{n \times n}(F)$: F-algebra with unity $1_A = I_n$
 - (iv) V: F-v.s. A = L(V, V) is F-algebra with unity $1_A = Id_V$ with + and \circ .

4.2 The Algebra of Polynomials

Note:-

 $f,g \in F[x]$. $f := \sum a_i x_i$, $g := \sum b_j x_j$ We say $f = g \iff \forall i = j \ (a_i = b_j)$. But this is not equiv. to say that $\forall \alpha \in F \ (f(\alpha) = g(\alpha))$.

Example 4.2.1

 $F = \mathbb{Z}/p$. Then Fermat's Little Theorem says $\forall \alpha \in F \ (\alpha^p \equiv \alpha)$. Consider $f = 1 + x^p$ and g = 1 + x. Then $f \neq g$ but $f(\alpha) = g(\alpha)$.

Definition 4.2.1: Degree of Polynomials

Suppose $f \in F[x]\setminus\{0\}$. Degree of f is defined to be n if $f = a_0 + \cdots + a_n x^n$ with $a_n \in F\setminus\{0\}$. Note that we don't define degree of 0.

Definition 4.2.2: Monic

 $f \in F[x] \setminus \{0\}$ is monic if the coeff. of highest deg. is 1.

Exercise 4.2.1

 $f, g \in F[x] \setminus \{0\}$. Then $f g \in F[x] \setminus \{0\}$ where $\deg(f g) = \deg(f) + \deg(g)$ and if f, g is monic, f g either.

Definition 4.2.3: Evaluation

A is an *F*-algebra and $f(x) \in F[x]$ where $f = \sum_{i=0}^{n} a_i x^i$. Let $\alpha \in A$ be a fixed element. Define $f(\alpha) = \sum_{i=0}^{n} a_i \alpha^i$ and we call it the evaluation of α in f(x). $ev_{\alpha} : F[x] \to A : f(x) \mapsto f(\alpha)$. $f_1 + f_2$, $f_1 f_2$, cf_1 are all respected.

Definition 4.2.4: Homomorphism

Let A_1 and A_2 be both F-algebras. A function $\varphi: A_1 \to A_2$ is called a homomorphism of F-algebra if:

- 1. It is an *F*-lin. trans.
- 2. $\varphi(\alpha_1\alpha_2) = \varphi(\alpha_1)\varphi(\alpha_2)$

Theorem 4.2.1 Euclidean Algorithm on F[x]

 $f, g \in F[x]$ for nonzero g with property $\deg(f) \ge \deg(g)$. $\exists q \in F[x] \ (r = f - qg)$. we have either r = 0 or $r \ne 0$ for $\deg(r) < \deg(g)$.

Note:-

In modern algebra, a ring with this property is called an Euclidean domain.

Definition 4.2.5: Divisibility

If r = 0, f = qg. Then we denote this situation as $g \mid f$.

Lemma 4.2.1

 $f(x) \in F[x] \setminus \{0\}, (x-c) \in F[x] \text{ for } c \in F. \text{ Then } (x-c) \mid f(x) \iff f(c) = 0.$

Proof. f = qg + r = q(x - c) + r. Then f(c) = r, so $(x - c)|f \iff r = 0$. These are called a zero, solution, or root of f.

Exercise 4.2.2

 $f(x) \in F[x]$, $\deg(f) = n \ge 1$. Then f has at most n roots.

4.3 Lagrange Interpolation

This Chapter is Intentionally Skipped at Lectures

4.4 Polynomial Ideals

Definition 4.4.1: Ideals

F: field. F[x]: polynomial ring over F. An ideal $M \subset F[x]$ is an F-subspace s.t. if $f \in F[x]$ and $g \in M$, then $f g \in M$.

Example 4.4.1

M = (x): poly. divisible by x.

Definition 4.4.2: Principal Ideal

An ideal of the form $M = (g_0)$: poly. divisible by g_0 is called a principal ideal.

Theorem 4.4.1

F: field. $M \subset F[x]$: a nonzero ideal. Then M is a principal ideal given by a monic.

Proof. Since $M \neq 0$, M does contain nonzero poly. So, the set of deg. of nonzero poly. in \mathbb{N}_0 is nonempty. Let $g_0 \in M$ hs the minimal possible deg. If $g_0 = a_d x^d + \cdots + a_1 x + a_0$, then $\frac{1}{a_d} g_0 = x^d + \cdots$ with the same deg. So using this instead, call it g_0 , the g_0 is monic.

Claim 4.4.1

 $M=(g_0).$

Proof. $g_0 \subset M$ is obvious.

 $(M \subset g_0)$: N.T.S. $\forall f \in M \ (f = qg_0)$. By the Euclidean algorithm, $\exists q, r \in F[x] \ (f = g_0q + r)$. Suppose $r \neq 0$. Then $f = qg_0 + r$ with $\deg(r) < \deg(g_0)$. But $r = f - qg_0$ where $f, g_0 \in M, r \in M$. This is contradiction to minimality of g. Thus r = 0, which means f is multiple of g_0 .

Note:-

By putting g_0 monic, g_0 is also unique.

Corollary 4.4.1

 $p_1, p_2, \dots, p_n \in F[x]$ not all zero. Then $\exists !$ monic $g_0 \in F[x]$ s.t.

- i) $p_1F[x] + \cdots + p_nF[x] = (g_0)$
- ii) $\forall i (g_0 | p_i)$
- iii) if $f \mid p_i$ for all i, then $f \mid g_0$. Such g_0 is called G.C.D. of p_i .

Proof. Check $p_1F[x] + \cdots + p_nF[x]$ is an ideal. By this, $M \neq 0 \Rightarrow \exists ! g_0 \ ((g_0) = M)$. Also, $(p_i) \subset M = (g_0) \Rightarrow p_{\in}(g_0) \Rightarrow g_0 \mid p_i$. Also, $f \mid p_i \Rightarrow p_i = fh_i$ thus $g_0 = fh_1F[x] + \cdots + fh_nF[x] \Rightarrow f \mid g_0$.

Definition 4.4.3: Coprime (Relatively Prime)

 p_i are coprime of relatively prime if $gcd(p_1, ..., p_n) = (1)$.

4.5 The Prime Factorization of a Polynomial

Definition 4.5.1: Reducible

F: field. $f \in F[x] \setminus \{0\}$. We say f is reducible if f = gh for some $g, h \in F[x]$ where $\deg(g), \deg(h) \ge 1$. If we can't, we say it is irreducible.

Definition 4.5.2: Prime Element

We say f is a prime element if it has property that whenever $f \mid gh$, either $f \mid g$ or $f \mid h$.

Example 4.5.1

F: field. f: poly. of deg. 1 in F[x] is irreducible.

Example 4.5.2

 $F: \mathbb{R}. \ f(x) = x^2 + ax + b. \ f$ is irreducible $\iff f$ has a root in $\mathbb{R} \iff D \ge 0$.

Example 4.5.3

 $F: \mathbb{F}_p = \mathbb{Z}/p$. Then there are many irreducible poly. of deg. d.

Theorem 4.5.1

Let $p(x) \in F[x] \setminus \{0\}$. Then it is irreducible \iff it is prime.

Proof. (\Leftarrow): Suppose it is reducible. p = gh for some $g, h \in F[x]$ with deg. ≥ 1 . Since p is prime, $p \mid g$ or $p \mid h$. But then, $\deg(p) \le \deg(g)$ or $\deg(p) \le \deg(h)$. But this is impossible since $\deg(g), \deg(h) < \deg(p)$.

(⇒): $gcd(p,g) = (d) \Rightarrow d \mid p \Rightarrow p$ is irreducible, so d = 1 or d = p. If d = p, $d \mid g$ leads $p \mid g$. If d = 1, $\exists p_0, g_0 \ (pp_0 + gg_0 = 1)$. Thus $php_0 + ghg_0 = h$ leads $p \mid h$.

Theorem 4.5.2

F: field. Every non-constant poly. $f(x) \in F[x]$ factors into a product of irreducible poly. $f = p_1 p_2 \cdots p_r$, and this is unique up to relabeling.

Sketch. For convenience, assume f is monic. If deg(f) = 1, f(x) = x - a for $a \in F$. Since (x - a) irreducible, it just holds.

Suppose $\deg(f) > 1$. We use induction. Suppose theorem holds $\forall g \ (\deg(g) < \deg(f))$. If f itself is irreducible, f = f. If f is reeducible, f = gh for some non-constant $g, h \in F[x]$ of $\deg(g), \deg(h) < \deg(f)$. By induction hypothesis, $g = p_1 \cdots p_r$, $h = q_1 \cdots q_s$. By putting together, $f = p_1 \cdots p_r q_1 \cdots q_s$. So existence is proven.

For uniqueness, suppose $f = p_1 \cdots p_r = q_1 \cdots q_s$. Then $p_1 | q_1 \cdots q_s$. Being prime, $p_1 | q_j$ for some j. Since q_j is irreducible, $cq_j = p_1$. By cancelling, repeating, and relabeling, we can deduce factorization is unique.

Definition 4.5.3: Formal Derivative

 $f(x) \in F[x] = a_0 + a_1 x + \dots + a_n x^n$. Define $f' = a_1 + 2a_2 x + \dots + na_n x^{n-1}$ as formal derivative.

Lemma 4.5.1

(f+g)' = f'+g' and (fg)' = f'g+fg'.

Theorem 4.5.3

 $f \in F[x]$. Then, f is a product of distinct irreducible poly. $\iff f$ and f' are relatively Prime.

Sketch. (\Leftarrow): Suppose f and f' are relatively prime but $f = p^2h$ for irreducible p. Then $f' = 2pp'h + p^2h'$, which is contradiction.

(⇒): Exercise!

Definition 4.5.4: Algebraically Closed

F is algebraically closed if every irreducible poly. in F[x] is of deg. 1.

 \iff Every $f(x) \in F[x]$ of deg. $n \ge 1$ has precisely n roots with multiplicity.

 \iff Every non-constant $f \in F[x]$ factors into linear poly.

Example 4.5.4

 $\mathbb C$ is algebraically closed, but $\mathbb R$ is not.

Chapter 5

Determinants

5.1 Commutative Rings

Definition 5.1.1: Ring

R: a ring with two operation +, \cdot s.t. < R, + > form abelian group and \cdot satisfies $a \cdot (b+c)$ and $(b+c) \cdot a$. A ring with unity is a ring with $1 \in R$ s.t. $\forall a \ (1 \cdot a = a \cdot 1 = a \in R)$.

5.2 Determinant Functions

Definition 5.2.1: *n*-Linear and Alternating

K: a ring. A function $D: K^{n \times n} \to K$. This is considered as a function on n rows and n columns.

- i) We say D is n-linear if D is a linear function on the i-th row while fixing others. $D(ca_1+a_1',a_2,\ldots,a_n)=cD(a_1',a_2,\ldots,a_n)+D(a_1,a_2,\ldots,a_n).$ ii) An n-linear function $D:K^{n\times n}\to K$ is called alternating if D(A)=0 when $\forall i\neq j$ ($a_i=1$)
- ii) An *n*-linear function $D: K^{n \times n} \to K$ is called alternating if D(A) = 0 when $\forall i \neq j \ (a_i = a_j)$.

Exercise 5.2.1

 $D: K^{n \times n} \to K:$ alternating n-linear function. $A \in K^{n \times n}$. A':= matrix obtained by interchanging i, j-th rows and fix others. Then D(A') = -D(A).

Proof. Using given property. Exercise!

Definition 5.2.2: Determinant Function

K: commu. ring with 1. $D: K^{n \times n} \to K$ be a function. We say D determinant function if D is n-linear, alternating, and $D(I_n) = 1$.

Theorem 5.2.1

 \exists ! such *D* that we call the determinant function.

Theorem 5.2.2

Concrete description of *D* in terms of permutation.

Definition 5.2.3: Minor

K: commu. ring with 1, n > 1. Let $A \in K^{n \times n}$ and (i, j) for $1 \le i, j \le n$. A(i|j)4 is $(n-1) \times (n-1)$ mat. with i-th row and j-th col. removed. We call this (i, j)-minor.

Definition 5.2.4

 $D(A(i|j)) = D_{ij}(A).$

Theorem 5.2.3

n > 1, $D: K^{(n-1)\times(n-1)} \to K$, alternating (n-1)-linear function. Let $1 \le j \le n$. $A \in K^{n\times n}$. Define $E_j(A) := \sum_{i=1}^n (-1)^{i+j} A_{ij} D_{ij}(A)$. Then E_j is an alternating n-linear function on $K^{n\times n}$. Also, if $D: K^{(n-1)\times(n-1)} \to K$ is a determinant function, so is E_j .

Proof. $A: n \times n$ mat. Note that $D_{ij}(A)$ is indep. of the entries of i-th row and j-th col. D is (n-1)-linear on $K^{(n-1)\times(n-1)}$, so $D_{ij}(A)$ is linear, further more $A_{ij}D_{ij}(A)$ is n-linear. Thus E_j is n-linear being a lin. comb. of n-linear functions. To prove alternating, suppose A has two equal rows at α_k, α_{k+1} . Take $i \neq k, k+1$. Then $D_{ij}(A) = 0$ because A(i|j) has two identical rows and D is alternating. Then $E_j(A) = (-1)^{k+j}D_{kj}(A) + (-1)^{k+1+j}D_{k+1j}(A)$. Here, $A_{kj} = A_{k+1j}$, $D_{k+1j} = D_{kj}$, thus D. This shows D_i is alternating D_i -linear. Also, since D_i -linear, we can see trivially D_i -linear.

Corollary 5.2.1

For all $n \in \mathbb{N}$, \exists det, function.

Proof. If n = 1, $D_1 = Id_k$ is a det. function. Suppose n > 1 and cor. holds for $1 \le i < n$. Then D_{n-1} is a det. function, thus we can take $D_n = E_i$ written in terms of D_{n-1} .

5.3 Permutations and the Uniqueness of Determinants

Definition 5.3.1: Permutation

A permutation σ of S is a bijective function $\sigma: S \to S$. We have |S|! permutations.

Definition 5.3.2: Transposition

 $\tau \in S_n$ is called transposition if it interchange just the values of 2 members.

Note:-

Every permutation can be written as a product of disjoint cycles. Also, every cycle is a product of non-disjoint transpositions.

Theorem 5.3.1

 S_n be the permutations on n letters. $\sigma \in S_n$. For any permutation, the number of transpositions needed to express $\sigma \mod 2$ is an invariant of σ . Also, we define $\text{sgn}(\sigma)$ as 1 if mod is even, -1 if odd.

Corollary 5.3.1

 $\sigma_1, \sigma_2 \in S_n$. Then $sgn(\sigma_1\sigma_2) = sgn(\sigma_1)sgn(\sigma_2)$.

Theorem 5.3.2 The Uniqueness of Determinant

Let $D: K^{n \times n} \to K$ be a function that is alternating n-linear with $D(I_n) = 1$. Then D is unique with $D = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) A(1, \sigma_1) \cdots A(n, \sigma_n)$.

Proof. Suppose e_1, \ldots, e_n as rows of I_n and α_i as rows of A. Then $\alpha_i = \sum_{j=1}^n A_{ij} e_j$, so $D(A) = D(\alpha_1, \ldots, \alpha_n) = D(\sum_{j=1}^n A_{1j} e_j, \ldots, \alpha_n) = \sum_{j=1}^n A_{ij} D(e_j, \ldots, \alpha_n)$, thus

 $D(A) = \sum_{j_1=1}^n \cdots \sum_{j_n=1}^n A_{1j_1} \cdots A_{nj_n} D(e_{j_1}, \dots, e_{j_n})$. If any $j_p = j_q$, then $D(e_1, \dots, e_n) = 0$. Thus all entries in this are different. So j_i are permutation of $\{1, \dots, n\}$. If σ is the permutation, $D(e_{j_1}, \dots, e_{j_n}) = \operatorname{sgn}(\sigma) D(I_n)$. Therefore det. function is unique.

Theorem 5.3.3

 $\det(AB) = \det(A)\det(B).$

Hint. B is fixed. Define $D(A) := \det(AB)$ as n-linear algernating. Then $D(A) = \det(A)D(I_n)$.

5.4 Additional Properties of Determinants

Corollary 5.4.1

 $\det(A^t) = \det(A)$

Proof. $\det(A^t) = \sum_{\sigma} \operatorname{sgn}(\sigma) A(\sigma_1, 1) \cdots A(\sigma_n, n)$. Take $i = \sigma^{-1}j$. $A(\sigma i, j) = A(j, \sigma^{-1}j)$. Thus $\det(A^t) = \sum_{\sigma^{-1}} \operatorname{sgn}(\sigma^{-1}) A(1, \sigma^{-1}1) \cdots A(n, \sigma^{-1}n) = \det(A)$.

Corollary 5.4.2

 $A: n \times n \text{ mat. and } B: i\text{-th row } \leftarrow r_i + cr_j. \text{ Then } \det(A) = \det(B).$

Proof. $\det(r_1 + cr_2, r_2) = \det(r_1, r_2) + 2\det(r_2, r_2) = \det(r_1, r_2) = \det(A)$.

Theorem 5.4.1

It

$$M = \begin{bmatrix} A & B \\ 0 & C \end{bmatrix}$$

for block mat. A, B, C, then det(M) = det(A) det(B).

. Fix A, B, then D(A, B, C) is a function of C. Then D is alternating, linear function.

Note:- 🛉

Now, we can use cofactor expansion to derive determinant.

Definition 5.4.1: Adj

 $adj(A) := C^t$ where each entries of C are cofactor expansion of A, i.e., $C = [C_{ij}]$.

Corollary 5.4.3

$$A \cdot \operatorname{adj}(A) = \operatorname{adj}(A) \cdot A = \operatorname{det}(A)I_n$$
.

Corollary 5.4.4

$$A^{-1} = \operatorname{adj}(A)/\operatorname{det}(A).$$

5.5 Modules

This Chapter is Intentionally Skipped at Lectures

5.6 Multilinear Functions

This Chapter is Intentionally Skipped at Lectures

5.7 The Grassman Ring

This Chapter is Intentionally Skipped at Lectures

Chapter 6

Elementary Canonical Forms

6.1 Introduction

6.2 Characteristic Values

Definition 6.2.1: Characteristic Value and Vectors, Spaces

T: endo. on f.d.v.s V/F. A characteristic value of T is $c \in F$ s.t. $\exists \alpha \in V \setminus \{0\}$ s.t. $T\alpha = c\alpha$. This α is also called a characteristic vector of T associated to c. Also, $E_c := \{\alpha \in V \mid T\alpha = c\alpha\}$ is called the characteristic space of T associated to c.

Theorem 6.2.1

T: endo. on f.d.v.s. V/F. TFAE:

- i) *c* is a characteristic value of *T*
- ii) Operator T cI is singular (not invertible)
- iii) det(T-cI) = 0

Proof. ii) \iff iii) is trivial. If i) holds, $\exists v \in V \setminus \{0\}$ $(Tv = cv) \Rightarrow (T - cI)v = 0$. Thus this is not injective, so singular. Thus i) \iff ii).

Definition 6.2.2: Characteristic Polynomials

 $f(x) := \det(xI - A) \in F[x]$ is called characteristic polynomial of T. Then f is monic with $\deg(f) = n$ for $n \times n$ mat. A and $\forall c$ which is characteristic values, f(c) = 0.

Exercise 6.2.1

Check the choice of basis doesn't affect the char. poly. of *T*.

Proof.
$$B := P^{-1}AP$$
. $\det(xI - B) = \det(xI - P^{-1}AP) = \det(P^{-1}(xI - A)P) = \det(xI - A)$.

Definition 6.2.3: Diagonalizable

T: endo. on f.d.v.s. V/F. If $\exists \mathfrak{B} = \{v_1, v_2, \dots, v_n\}$ s.t. each v_i are char. vec. of T, we say T is diagonalizable.

 $[T]_{\mathfrak{B}} = \begin{bmatrix} c_1 \\ \ddots \\ c \end{bmatrix}$ with (may be) repititions. Then $[T]_{\mathfrak{B}}$ is diagonal mat. Further-

more, we can see $f(x) = \det(xI - [T]_{\mathfrak{B}})$ is decomposed complety into a product of linear factors.

Example 6.2.1

 $A: n \times n$ mat. on f.d.v.s. V/\mathbb{R} . If char. poly. has no real sol., then it is not diagonalizable.

Lemma 6.2.1

T: endo. on f.d.v.s. V/F. Suppose c_1, c_2, \ldots, c_k are all possible distinct char. values of Tand $W_i := \text{Null}(T - c_i I)$. Then $W := W_1 + \cdots + W_k \Rightarrow \dim(W) = \dim(W_1) + \cdots + \dim(W_k)$.

Proof. Trivially $\dim(W) \leq \dim(W_1) + \cdots + \dim(W_k)$. Thus we have to check \geq part. Suppose $\forall \beta_i \in W_i \ (\beta_1 + \dots + \beta_k = 0)$. We will show $\forall \beta_i = 0$. Suppose $\beta_1 + \beta_2 = 0$. Then $T\beta_1 + T\beta_2 = 0$ $c_1\beta_1+c_2\beta_2=0$. We can derive $(c_1-c_2)\beta_2=0$. Since $c_1\neq c_2,\ \beta_2=0$ thus $\beta_1=0$. Inductively, we can derive $\forall \beta_i = 0$. Thus $\dim(W) = \dim(W_1) + \cdots + \dim(W_k)$.

T : endo. on n-d.v.s. $V/F.\ c_1,c_2,\ldots,c_k$ are all possible distinct char. values of T and $W_i:=\text{Null}(T-c_iI).$ TFAE:

- i) T is diagonalizable
- ii) Char. poly. $p(x) = \prod_{i=1}^{k} (x c_i)^{d_i}$ where $d_i = \dim(W_i)$ iii) $d_1 + d_2 + \dots + d_k = n = \dim(V)$

Proof. i) \Rightarrow ii): $\exists \bigcup_{i=1}^{k} \mathfrak{B}_{i}$, basis of V where each \mathfrak{B}_{i} are the part belonging to c_{i} . Then, $\operatorname{span}(\mathfrak{B}_i) = W_i, \dim(W_i) = d_i \Rightarrow p(x) = \prod_{i=1}^k (x - c_i)^{d_i} \text{ where } d_i = \dim(W_i).$

ii)⇒ iii): Trivial.

iii) \Rightarrow i): $W_1 + \cdots + W_k = W \Rightarrow d_1 + \cdots + d_k = n$. Thus W = V. Thus V has a basis consisting of char. vec., so diagonalizable.

Annihilating Polynomials 6.3

Theorem 6.3.1

T: endo. on n-d.v.s. V/F. p(x) as char. poly. of T, and m(x) as min. poly. of T. Ignoring multiplicities, p(x) and m(x) has same sol. in F.

Proof. $m(c) = 0 \Rightarrow m(x) = (x - c)q(x)$. m is minimal implies $q(T) \neq 0$. Thus $\exists \beta \in V$ s.t. $q(T)\beta \neq 0$. This leads $(T-cI)q(T)\beta = 0$ since $(T-cI)q(T)\beta = m(T)\beta = 0\beta$. Thus $q(T)\beta$ is char. vec., which leads c as a char. value of T, so p(c) = 0.

Now if p(c) = 0, $\exists \alpha \in V \setminus \{0\}$ s.t. $T\alpha = c\alpha$. Thus $T^n \alpha = c^n \alpha$. So for any poly. $f(x) \in F[x]$, $f(T)\alpha = f(c)\alpha$. In particular, $m(T)\alpha = m(c)\alpha \Rightarrow m(c)\alpha = 0\alpha \Rightarrow m(c) = 0$.

Corollary 6.3.1

$$p(x) = \prod_{i=1}^{k} (x - c_i)^{d_i} \Rightarrow m(x) = \prod_{i=1}^{k} (x - c_i)^{r_i} \text{ where } 1 \le r_i \le d_i.$$

Theorem 6.3.2 Cayley-Hamilton

T: endo. on n-d.v.s. V/F. p(x) as char. poly. of T. Then p(T)=0. In particular, m(x)|p(x).

Proof. $K := \{h(T) \mid h(x) \in F[x]\}$ be image of $ev_T : F[x] \to L(v,v)$. Let $\mathfrak{B} = \{\alpha_1, \dots, \alpha_n\}$ be a basis of $V. A := [T]_{\mathfrak{B}}$ so that $T\alpha_i = \sum_{j=1}^n A_{ji}\alpha_j$ $(i \in [n]) \Rightarrow \sum_{j=1}^n (\delta_{ij}T - A_{ji}I)\alpha_j = 0$. Then $B := [B_{ij}]$ where $B_{ij} := (\delta_{ij}T - A_{ji}I)$. We know $adj(B) \cdot B = B \cdot adj(B) = det(B)I$. By construction, $\sum_{j=1}^n B_{ij}\alpha_j = 0 \Rightarrow \sum_{j=1}^n adj(B)_{ki}B_{ij}\alpha_j = 0$. Taking sums over i leads $0 = \sum_{i=1}^n \sum_{j=1}^n adj(B)_{ki}B_{ij}\alpha_j = \sum_{j=1}^n (\sum_{i=1}^n adj(B)_{ki}B_{ij})\alpha_j = \sum_{j=1}^n \delta_{kj} det(B)\alpha_j = det(B)\alpha_k$. Since $\{\alpha_1, \dots, \alpha_n\}$ is basis, det(B) = 0, which is char. poly. of T.

6.4 Invariant Subspaces

Theorem 6.4.1

T: endo. on f.d.v.s. V/F. c_1, c_2, \ldots, c_k are all possible distinct char. values of T. Then T is diagonalizable $\iff m(x) = (x - c_1)(x - c_2) \cdots (x - c_k)$.

Proof. Only for (\Rightarrow) here: Let f(x) be a char. poly. of T. Then m(x)|f(x). Thus $m(x) = (x-c_1)^{e_1}(x-c_2)^{e_2}\cdots(x-c_k)^{e_k}$.

Claim 6.4.1
$$(T - c_1 I)(T - c_2 I) \cdots (T - c_k I) = 0$$

Proof. Since T is diagonalizable, it has a basis $\{\alpha_1, \ldots, \alpha_n\}$ consisting of char. vec. Thus $T\alpha_j = c_{i(j)}\alpha_j$ where $c_{i(j)} \in \{c_1, \ldots, c_k\}$. This leads $(T - c_{i(j)}I)\alpha_j = 0$. Take $S := (T - c_1I)\cdots(T - c_kI)$. Then for each $j \in [n]$, $S(\alpha_j) = 0$. since each α_i form basis, $\forall v \in V$ (S(v) = 0). Thus Claim 6.4.1 holds.

Oppisite of this proof is at Theorem 6.4.3.

Corollary 6.4.1

T: endo. on n-d.v.s. V/F. Suppose T has n distinct char. values. If $f(x) = \prod_{i=1}^{n} (x - c_i)$ where distinct c_i , then m(x) = f(x) thus it is diagonalizable.

Definition 6.4.1: *T***-Invariant Subspaces**

T: endo. on n-d.v.s. V/F. Take subspace W. We say W is T-invariant or invariant under T if $T(W) \subset W$. If W is T-invariant, then T induces a endo. on W, denoted as $T|_{W}$.

$$T: V \longrightarrow V$$

$$\uparrow \qquad \uparrow$$

$$T|_{W}: W \longrightarrow W$$

Example 6.4.1

W = 0 is trivailly *T*-invariant. Also, char. space E_c is *T*-invariant.

Lemma 6.4.1

Suppose W is T-invariant. m(x) as min. poly. and f(x) as char. poly. of T. Then $m_W(x)|m(x)$ and $f_W(x)|f(x)$ for each restriction to W.

Proof. Choose a basis $\mathfrak{B}' = \{\alpha_1, \dots, \alpha_k\}$ of W and extend it to $\mathfrak{B} = \{\alpha_1, \dots, \alpha_k, \alpha_{k+1}, \dots, \alpha_n\}$ which is a basis of V. Since W is T-inv., $T\alpha_i \in \operatorname{span}\{\mathfrak{B}'\}$. So $A = [T]_{\mathfrak{B}} = \begin{bmatrix} B & C \\ 0 & D \end{bmatrix}$ where $B = [T|_W]_{\mathfrak{B}'}$. Furthermore, $f(x) = \det(xI - A) = \det(xI - B) \cdot \det(xI - D)$. clearly, $f_W(x) \mid f(x)$. Note that $A^r = \begin{bmatrix} B^r & C_r \\ 0 & D^r \end{bmatrix}$. Therefore, $\forall p(x) \in F[x]$ (p(T) = 0), we can see $p_W(x) \mid p(x)$. Especially, $m_W(x) \mid m(x)$.

Definition 6.4.2: *T***-Conductors**

T: endo. on f.d.v.s. V/F. W be T-inv. subspaces. Suppose $\alpha \in V$. We define T-conductor as $S_T(\alpha; W) := \{g(x) \in F[x] \mid g(T)\alpha \in W\}$.

Lemma 6.4.2

 $S_T(\alpha; W)$ is a nonzero ideal.

Proof. char. poly. f(x) satisfies $f(T) = 0 \in W \Rightarrow f(x) \in S_T(\alpha; W)$. Trivially it is closed. Also, since polynomials are commutative and W is T-inv., it satisfies properties of ideals.

Definition 6.4.3: *T***-Conductor as Generator**

The unique monic poly. generator of $S_T(\alpha; W)$ is also often called the T-conductor of α to W.

Corollary 6.4.2

Min. poly. and char. poly. is in $S_T(\alpha; W)$, thus generator of that conductor divides both.

Definition 6.4.4: Triangulable

T: endo. on f.d.v.s. V/F. We say T is triangulable if V has a basis $\mathfrak B$ s.t. $[T]_{\mathfrak B}$ is an upper triangular mat.

Corollary 6.4.3

T is diagonalizable \Rightarrow *T* is triangulable.

Lemma 6.4.3

T: endo. on f.d.v.s. V/F. Suppose $m(x) = \prod_{i=1}^k (x-c_i)^{r_i}$ where c_i are all distinct and $r_i \ge 1$. If W is T-inv. subspace, then $\exists \alpha \in V \setminus W \ ((T-cI)\alpha \in W)$ for some char. value $c = c_i$.

Proof. Let $\beta \in V \setminus W$ and let g(x) be the min. T-conducting poly. taking β to W. Then g(x)|m(x). Since $\beta \notin W$, $\deg(g(x)) \geq 1$. Then $g(x) = \prod_{i=1}^k (x-c_i)^{e_i}$ for $e_i \leq r_i$. since $\deg(g) \geq 1$, $\exists j \ (e_j \geq 1)$, so $(x-c_j)|g(x) \Rightarrow g(x) = (x-c_j)h(x)$. $\alpha := h(T)\beta$. This cannot be in W since g(x) is the min. deg. fellow in $S_T(\beta; W)$. But $(T-c_jI)\alpha = g(T)\beta \in W$. Thus $(x-c_j) = S_T(\alpha; W)$.

Theorem 6.4.2

T: endo. on n-d.v.s. V/F. T is triangulable $\iff m(x) = \prod_{i=1}^k (x - c_i)^{r_i}$ for $r_i \ge 1$.

Proof. (\Rightarrow): Since T is triangulable, $\exists \mathfrak{B}$ s.t. $[T]_{\mathfrak{B}}$ is triangular. Thus char. poly. $f(x) = \prod_{i=1}^k (x-c_i)^{e_i}$ for $\sum e_i = n$, $e_i \geq 1$ and distinct c_i . Since m(x)|f(x) our statement holds.

(\Leftarrow): Suppose $m(x) = \prod_{i=1}^k (x-c_i)^{r_i}$. We use the Lemma 6.4.3 repeatedly over different choices of W. Take W = 0 then $\exists \alpha_1 \in V \setminus W$ (($T - d_1$) $\alpha_1 = 0$) for some d_1 . Take $W_1 = \text{span}\{\alpha_1\}$. Then $\exists \alpha_2 \in V \setminus W_1$ (($T - d_2$) $\alpha_2 = 0$). Repeating this, we can derive $T\alpha_1 = d_1\alpha_1$, $T\alpha_2 = d_1\alpha_1$.

 $*\alpha_1 + d_2\alpha_2$, and so on, thus $[T]_{\{\alpha_1,\dots,\alpha_n\}} = \begin{bmatrix} d_1 & * & * \\ 0 & \ddots & * \\ 0 & 0 & d_k \end{bmatrix}$, which is upper triangular mat. \square

Theorem 6.4.3

T: endo. on n-d.v.s. V/F. T is diagonalizable $\iff m(x) = (x - c_1)(x - c_2) \cdots (x - c_k)$.

Proof. Forward is at Theorem 6.4.1. (\Leftarrow): Let $W \subset V$ be subspace spanned by all char. vec. Suppose $W \subsetneq V$ toward contradiction. Since $T\alpha = c\alpha$ for each char. vec. α of T, W is T-inv. So by Lemma 6.4.3, $\exists \alpha \in V \setminus W$ ($(T - c_j I)\alpha =: \beta \in W$). Note that $\beta \in W \setminus \{0\}$. So we can write $\beta = \beta_1 + \dots + \beta_k$ where $\beta_i \in E_{c_i}$. Here, $T\beta_i = c_i\beta_i$, and $T^k\beta_i = c_i^k\beta_i$. Thus $f(T)\beta = f(T)\beta_1 + \dots + f(T)\beta_k$. $m(x) := (x - c_j)h(x)$ where $h(x) = \prod_{i \neq j} (x - c_i)$. Clearly $h(c_j) \neq 0$. Consider $h(x) - h(c_j) = (x - c_j)q(x) \Rightarrow h(T)\alpha - h(c_j)\alpha = q(T)(T - c_j I)\alpha = q(T)\beta \in W$. Also, $m(T)\alpha = (T - c_j I)h(T)\alpha = 0 \Rightarrow h(T)\alpha \in E_{c_j} \subset W$. Thus $(h(T)\alpha \in W) \land (q(T)\beta \in W)$ implies $h(c_j)\alpha \in W$, so $h(c_j) = 0$. This is contradiction to the fact that min. poly. has distinct roots, so W = V, which means V has basis consisting of char. vec., and T is diagonalizable. \square

Corollary 6.4.4

If *F* is algebraically closed, then *T* is always triangulable.

6.5 Simultaneous Triangulation; Simultaneous Diagonalization

Definition 6.5.1: Commuting Family

 T_i : endo. on n-d.v.s. V/F. We say \mathscr{F} is a commuting family of endo. if $\forall T_i, T_j \in \mathscr{F}$ $(T_iT_j=T_jT_i)$.

Definition 6.5.2: F-Invariant

If $\forall T_i \in \mathscr{F}$ (*W* is T_i -invariant), then we say *W* is \mathscr{F} -inv.

Lemma 6.5.1

Suppose \mathscr{F} is a commuting family of triangulable endo. Suppose $W \subsetneq V$, which is \mathscr{F} -inv. Then $\exists \alpha \in V \setminus W \ (\forall T_i \in \mathscr{F} \ ((T_i - cI)\alpha \in \operatorname{span}\{W, \alpha\}))$.

Proof. We may assume $\{T_1, \ldots, T_r\}$, a maximal lin. indep. subset of \mathscr{F} . Applying Lemma 6.4.3 to T_1 , $\exists \beta_1 \in V \setminus W \ \exists c_1 \in F \ ((T_1 - c_1 I)\beta_1 \in W)$. Let $V_1 = \{\beta \in V \mid (T_1 - c_1 I)\beta \in W\}$. $\beta_1 \in V_1$, so it is nonempty and $W \not\subseteq V_1 \subset V$. Here, by construction, V_1 is \mathscr{F} -inv. since $\forall T_i \in \mathscr{F} \ ((T_1 - c_1 I)T\beta = T(T_1 - c_1 I)\beta \in W)$.

Now, take $V_1 \subset V$ and let $U_2 := T_2|_{V_1}$. Applying Lemma 6.4.3 to $V_1 \setminus W$ and U_2 , $\exists \beta_2 \in V_1 \setminus W \ \exists c_2 \in F \ ((T_2 - c_2 I)\beta_2 \in W)$. So, $\beta_2 \notin W$, $(T_1 - c_1 I)\beta_2 \in W$, $(T_2 - c_2 I)\beta_2 \in W$. Take $V_2 = \{\beta \in V_1 \mid (T_2 - c_2 I)\beta \in W\}$. Then $(\beta_2 \notin W) \land (\beta_2 \in V_2)$. By repeating, we can get $W \subsetneq \cdots \subset V_1 \subset V$. Thus terminates in finite steps since $\dim(V) < \infty$.

Corollary 6.5.1

V: f.d.v.s./F and \mathscr{F} as comuuting family of triangulable endo. Then $\exists \mathfrak{B}$ s.t. $[T_i]_{\mathfrak{B}}$ are all upper triangular mat.

Proof. Exercise. Use our argument for a single operator and use Lemma 6.4.3 for commuting families. □

Corollary 6.5.2

V: f.d.v.s./F and \mathscr{F} as comuuting family of diagonalizable endo. Then $\exists \mathfrak{B}$ s.t. $[T_i]_{\mathfrak{B}}$ are all diagonal mat.

Corollary 6.5.3

Suppoer F is algebraically closed and \mathcal{F} as commuting family of endo. Then \exists simultaneously triangulating basis.

6.6 Direct-Sum Decompositions

Definition 6.6.1: Independent

V: v.s./F. We say subspaces, just say W_i , are indep. if there common elements are just 0.

Definition 6.6.2: Internal Direct Sum

If $W = \sum_{i=1}^{k} W_i$ and each W_i are indep., then we say the sum is direct and we write it as $W = \bigoplus_{i=1}^{k} W_i$.

Exercise 6.6.1

If $W = \bigoplus_{i=1}^k$, then $\exists!$ expression of $w \in W$ w.r.t. each $w_i \in W_i$.

Definition 6.6.3: Projection

V: f.d.v.s./F. Supopose we have endo. $E: V \to V$ s.t. $E^2 = E$. Then we say E is a projection.

Example 6.6.1

 $V := V_1 \oplus V_2$. $P_1 : V \mapsto V_1$ and $P_2 : V \mapsto V_2$. Then those classical 'projection' is actually a projection we defined above.

Lemma 6.6.1

Let E be a projection. Then for $V:=V_1\oplus V_2$ and $P_1:V\mapsto V_1$, E really is a classical 'projection', i.e., $E = P_1 : V \mapsto V_1$.

Proof. $V_1 := R(E), V_2 := N(E).$

$$V = V_1 \oplus V_2$$

Proof. Let $v \in V$. Then v = E(v) + v - E(v). $E(v) \in R(E)$. Also, $E(v - E(v)) = E(v) - E^2(v) = 0$, so $(v-E(v)) \in N(E)$. Thus V = R(E) + N(E). To show this is direct, suppose we have $v_1 + v_2 = 0$ for $(v_1 \in R(E)) \land (v_2 \in N(E))$. Then $v_1 = -v_2 \in R(E)$ and $\exists \alpha \in V \ (v_1 = R(\alpha))$. $E(v_1) = -E(v_2) = 0$ and $E(v_1) = E^2(\alpha) = E(\alpha) = v_1$. Since $E(v_1) = 0$, $v_1 = 0$. Thus $v_2 = 0$, which leads sum is direct.

Now if $v \in V_1 \oplus V_2$, write $v = v_1 + v_2$, then $E(v) = E(v_1) = v_1$. So $E = P_1$.

V: f.d.v.s./F and $V = \bigoplus_{i=1}^k W_i$. Then $\exists E_i : V \mapsto W_i$ s.t.

- i) Each E_i are projection ii) $\forall i \neq j \ (E_i E_j = 0)$ iii) $I = \sum E_i$ iv) The range of E_i is W_i

Converse also holds. Furthermore, only i), ii), and iii) leads our theorem.

Proof. i), ii), and iv) are trivial by definition. For iii), take $\alpha \in V$. $\alpha = \sum E_i \alpha \Rightarrow I = \sum E_i$. Conversely, suppose we have E_i $i \in [k]$ s.t. they satisfy those first three conditions. We can take W_i as $R(E_i)$. Then, $V = W_1 + \cdots + W_k$. We have to show this is direct. By iii), we have $\alpha = \sum E_i \alpha$. This expression is unique since if $\alpha = \alpha_1 + \cdots + \alpha_k$ for $\alpha_i \in W_i$, then using i) and ii), we can derive $E_j \alpha = \sum_{i=1}^k E_j \alpha_i = E_j^2 \beta_j = E_j \beta_j = \alpha_j$ if we take $\alpha_i = E_i \beta_i$.

6.7 Invariant Direct Sum

Theorem 6.7.1

T: endo. on n-d.v.s. V/F. $V=\bigoplus_{i=1}^k W_i$. Let $E_i:V\mapsto V$ be projection to W_i . Then W_i are T-inv. $\iff T$ commutes with E_i .

Proof. (\Leftarrow): Suppose T commutes with all E_i . Let $\alpha_i \in W_i = R(E_i)$. N.T.S. $T\alpha_i \in W_i$. We can write $\alpha_i = E_i\beta$. So $T\alpha_i = TE_i\beta = E_iT\beta$, which leads $T\alpha_i \in R(E_i) = W_i$. Since α_i was arbitrary element is W_i , W_i is T-inv.

(\$\Rightarrow\$): Let \$\alpha \in V\$. We can say \$\alpha = \nu_1 + \cdots + \nu_k\$ for each \$\nu_i \in W_i\$ uniquely. \$W_i := \$R(E_i)\$, so each \$\nu_i = E_i(\alpha)\$. So \$\alpha = E_1(\alpha) \cdots + E_k(\alpha) \Rightarrow T \alpha = TE_1(\alpha) + \cdots TE_k(\alpha)\$. Since \$E_i(\alpha) \in W_i\$ is \$T\$-inv., \$T(E_i\alpha) = E_i(\beta_i) \in W_i \Rightarrow T \alpha = E_1(\beta_1) + \cdots + E_k(\beta_k)\$. For \$i \neq j\$, \$E_j T E_i \alpha = E_j E_i \beta_i = 0\$. For \$i = j\$, \$E_j T E_j \alpha = E_j \beta_j\$. Thus \$E_j T \alpha = E_j T E_1 \alpha + \cdots + E_j T E_k \alpha = E_j \beta_j = T E_j \alpha\$. Thus \$E_j T = T E_j\$ since \$\alpha\$ is arbitrary.

Theorem 6.7.2

T: endo. on n-d.v.s. V/F. If T is diagonalizable and if c_1, \ldots, c_k are the distinct char. values of T, then $\exists E_i$ on V s.t.

- i) $T = c_1 E_1 + \dots + c_k E_k$
- ii) $I = \sum_{i} E_{i}$
- iii) $\forall i \neq j \ (E_i E_j = 0)$
- iv) $E_{i}^{2} = E_{i}$
- v) The range of E_i is the char. space for T associated with c_i

Converse also holds. Furthermore, only i), ii), and iii) leads our theorem.

Proof. (\Rightarrow): Suppose diagonalizable with char. values c_i . $W_i := E_{c_i} = N(T - c_i I)$. Since T is diagonalizable, $V = \bigoplus_{i=1}^k W_i$. Thus ii) \sim v) are trivial. Now, $\alpha = \sum E_i \alpha \Rightarrow T\alpha = \sum TE_i \alpha = \sum Ta_i = \sum c_i a_i = \sum c_i E_i \alpha$. Since α is arbitrary, $T = \sum c_i E_i$.

(\Leftarrow): Using ii) and iii) to obtain iv). using i) and iv) to obtain $R(E_i) \subset N(T-c_iI)$. Since we assumed $E_i \neq 0$, c_i is char. value of T. Take $i) - c \times ii$). Then $(T - cI) = (c_1 - c)E_1 + \cdots + (c_k - c)E_k$. so if $(T - cI)\alpha = 0$, we must have $(c_i - c)E_i\alpha = 0$. If $\alpha \neq 0$, then $E_i\alpha \neq 0$ for some i, so in this case, $c_i = c$. Certainly T is diagonalizable, since every nonzero vector in $R(E_i)$ is a char. vec. of T, and $I = \sum E_i$ shows these char. vec. span V. Now we have to show $N(T - c_iI) = R(E_i)$. This is clear since if $T\alpha = c_i\alpha$, then $\sum_{j=1}^k (c_j - c_i)E_j\alpha = 0$ hence $(c_j - c_i)E_j\alpha = 0$ for each j, and then $E_j\alpha = 0$ for $j \neq i$. Since $\alpha = \sum E_i\alpha$ and $E_j\alpha = 0$ for $j \neq i$, $\alpha = E_i\alpha$, which shows $\alpha \in R(E_i)$.

6.8 The Primary Decomposition Theorem

Theorem 6.8.1 Primary Decomposition Theorem

T: endo. on f.d.v.s. V/F. \exists a decomposition of V into $V = \bigoplus_{i=1}^k W_i$ s.t. $W_i = N(p_i(T)^{r_i})$ where $m(x) = \prod_{i=1}^k p_i(x)^{r_i}$ for $r_i \ge 1$ and irreducible, distinct p_i . Also, each W_i are

T-inv., and $T_i := T|_{W_i}$ has min. poly. $p_i(T)^{r_i}$.

Proof. When k=1, it is trivial. Suppose k>1. Define $f_i(x):=\frac{m(x)}{p_i(x)^{r_i}}=\prod_{j\neq i}p_j(x)^{r_j}$. Then $\gcd(f,p_i^{r_i})=1$. Since each f_i are also relatively prime, $\exists g_1,\ldots,g_k\ (f_1g_1+\cdots+f_kg_k=1)$. Define $h_i(x):=f_i(x)g_i(x)$. For $i\neq j,\ m\mid f_if_j$ thus $f_i(T)f_j(T)=0$. Note that $\sum h_i(T)=I$. Define $E_i:=h_i(T)$. Then $\sum E_i=I$ and $\forall i\neq j\ (E_iE_j=0)$ since $E_iE_j=f_i(T)g_i(T)f_j(T)g_j(T)=0$. Thus we can see E_i are projection. Thus $V=\bigoplus_{i=1}^k R(E_i)$ and each are T-inv.

```
Claim 6.8.1 R(E_i) = W_i = N(p_i(T)^{r_i})
```

Proof. Let $\alpha \in R(E_i)$. Then $\alpha = E_i \alpha \Rightarrow p_i(T)^{r_i} \alpha = p_i(T)^{r_i} f_i(T) g_i(T) \alpha = 0$ since $p_i(T)^{r_i} f_i(T) g_i(T) = m(T) g_i(T) = 0$. Thus $R(E_i) \subset N(p_i(T)^{r_i})$. Conversely, let $\alpha \in N(p_i(T)^{r_i})$. Note that if $i \neq j$, $p_i^{r_i} \mid f_j$ thus $p_i^{r_i} \mid f_j g_j = h_j$, thus $f_j(T) g_j(T) \alpha = h_j(T) \alpha = 0$. In other words, $\forall i \neq j$, α is in V whose projection about E_j is 0. Thus α has only $R(E_i)$ component. Thus $N(p_i(T)^{r_i}) \subset R(E_i)$, consequently $R(E_i) = N(p_i(T)^{r_i})$.

Now we have to show T_i has min. poly. as $p_i(x)^{r_i}$. Note that $W_i = N(p_i(T)^{r_i})$ implies $p_i(T)^{r_i}|_{W_i} = 0$. Thus $m_i(x) \mid p_i(x)^{r_i}$. So $m_i(x) = p_i^{s_i}$ for $1 \le s_i \le r_i$. E.T.S. $s_i = r_i$. Let g(x) be poly. s.t. $g(T_i) = 0$.

```
Claim 6.8.2 p_i(x)^{r_i} | g(x)
```

Proof. $g(T_i) = 0 \iff g(T)f_i(T) = 0$. So min. poly. of T divides $g(x)f_i(x)$. Since $gcd(p_i^{r_i}, f_i) = 1$, $m(x) \mid g(x)f_i(x)$ leads $p_i^{r_i} \mid g(x)$. In particular, $m_i(x)$ is divisible by $p_i^{r_i}$, thus $r_i = s_i$.

Corollary 6.8.1

 E_1, \ldots, E_k be projection associated to primary decomposition of V w.r.t. T. Then each E_i is a poly. in T. In particular, if $U: V \mapsto V$ is another endo. commuting with T, then, U commutes with each E_i so W_i are U-inv.

Theorem 6.8.2

T: endo. on f.d.v.s. V/F. If T is triangulable, \exists diagonalizable D and nilpotent N s.t. T = D + N and DN = ND. Such D and N are uniquely determined by T.

Proof. $m(x) = \prod (x - c_i)^{r_i}$ for distinct c_i . Take $R(E_i) = W_i := N((T - c_i I)^{r_i})$ as like Theorem 6.8.1. Take $D := \sum c_i E_i$ and N = T - D.

Claim 6.8.3

N is nilpotent

Proof. $I = \sum E_i \Rightarrow T = \sum TE_i \Rightarrow N = T - D = \sum (T - c_i I)E_i$. Since each E_i are poly. in T and $E_i E_i = 0$, $N^r = \sum (T - c_i I)^r E_i$. By choosing $r = \max(r_1, \dots, r_k)$, $N^r = 0$.

D and N are commute since they are poly. in T. Thus existence is proven.

For uniqueness, suppose we have T = D' + N' = D + N. Then D - D' = N' - N. We know D - D' is diagonalizable. Now suppose $N^r = N'^{r'} = 0$. Then $(N' - N)^A = \sum_{i=0}^A \binom{A}{i} N'^i N^{A-i}$. Taking A > r + r' leads $(N' - N)^A = 0$. Take $\alpha := N' - N = D' - D$. Then α is diagonalizable and nilpotent, which leads $\alpha = 0$. Thus D = D' and N = N'.

Chapter 7

The Rational and Jordan Forms

7.1 Cyclic Subspaces and Annihilaters

Definition 7.1.1: *T***-Cyclic Subspaces**

T: endo. on f.d.v.s. V/F. Take $\alpha \in V$. Then the T-cyclic subspace generated by α is denoted as $Z(\alpha; T) := \{g(T)\alpha \in V \mid g(x) \in F[x]\}$. Just in case $Z(\alpha; T) = V$, we say V is cyclically generated by α and T, and α is a cyclic vector for T.

Note:-

 $Z(\alpha; T)$ is always T-invariant. Also, $Z(\alpha; T)$ is very sensitive to choice of α . If $\alpha = 0$, nothing no show. If α is a char. vec., then $T\alpha = c\alpha$, so $Z(\alpha; T) = \text{span}\{\alpha\}$, which implies 1-dimensional. Also note that converse holds.

Definition 7.1.2: *T*-Annihilaters

The *T*-annihilater, denoted as $M(\alpha; T) := \{g(x) \in F[x] \mid g(T)\alpha = 0\}.$

Note:-

Note that annihilator is just a special case of conductor, which takes W = 0. We can also see that monic generator of annihilator divides minimal poly.

Theorem 7.1.1

T: endo. on f.d.v.s. V/F. p_{α} : T-annihilator of α . Then

- i) $deg(p_{\alpha}) = dim(Z(\alpha; T))$
- ii) If $deg(p_{\alpha}) = k$, then $\{\alpha, T\alpha, ..., T^{k-1}\alpha\}$ forms a basis of $Z(\alpha; T)$
- iii) Let $U := T|_{Z(\alpha;T)} : Z \mapsto Z$. Then min. poly. of U is $p_{\alpha}(x)$.

Proof. Take $g(x) = p_{\alpha}q(x) + r(x)$ by Euclidean algorithm for $\deg(p_{\alpha}) = k$. Note that $(p_{\alpha}) = M(\alpha; T)$. Thus $p_{\alpha}q \in M(\alpha; T) \Rightarrow g(T)\alpha = p_{\alpha}(T)q(T)\alpha + r(T)\alpha = r(T)\alpha \Rightarrow Z(\alpha; T) = \operatorname{span}\{\alpha, T\alpha, \dots, T^{k-1}\alpha\}$. Thus $\dim(Z(\alpha; T)) \leq k$.

Claim 7.1.1

 $\{\alpha, T\alpha, \dots, T^{k-1}\alpha\}$ is a linearly independent set.

Proof. Suppose not. Then there is nonzero coefficients satisfying $\sum c_i T^i \alpha = 0$. Clearly g(x) = $\sum c_i x^i$ has deg < k. But p_α is the nonzero poly. of min. deg. in $M(\alpha; T)$, while $g(x) \in M(\alpha; T)$ with degree less than $p_a(x)$. This is contradiction, so this set is linearly independent.

Thus by Claim 7.1.1, $Z(\alpha; T)$ is k-dimensional with $\deg(p_{\alpha}) = k$. i) and ii) done. For iii), need to check $p_a(U) = 0$ and it really is poly. with min. deg.

An arbitrary element of $Z(\alpha; T)$ is of the form $g(T)\alpha$ for some $g(x) \in F[x]$. Thus $p_{\alpha}(U)g(T)\alpha = p_{\alpha}(T)g(T)\alpha = g(T)p_{\alpha}(T)\alpha = 0$. Our first condition holds. Second condition is immediate from the minimality of the degree of p_{α} in $M(\alpha; T)$.

Lemma 7.1.1 Companion Matrices

T: endo. on f.d.v.s. V/F. $W=Z(\alpha;U)\subset V$ where $U:=T|_{Z(\alpha;T)}$. Then w.r.t. the basis

$$\{\alpha, T\alpha, \dots, T^{k-1}\alpha\} = \mathfrak{B} \text{ of } Z, [U]_{\mathfrak{B}} = \begin{bmatrix} 0 & -c_0 \\ 1 & \ddots & -c_1 \\ & \ddots & \ddots & \vdots \\ & & 1 & -c_{k-1} \end{bmatrix} \text{ where } p_{\alpha} = x^k + \sum_{i=0}^{k-1} c_i x^i.$$
This matrix is called companion matrix.

Proof. $\mathfrak{B}:=\{\alpha,T\alpha,\ldots,T^{k-1}\alpha\}=\{\alpha_1,\ldots,\alpha_k\}$. Then $U\alpha_1=T\alpha=\alpha_2,\ U\alpha_2=T^2\alpha=\alpha_3,\ \text{and}$ so on, $U\alpha_{k-1}=T^{k-1}\alpha=\alpha_k$. By our supposition of $p_\alpha,\ p_\alpha(U)\alpha=U^k\alpha+\sum_{i=0}^{k-1}c_iU^i\alpha$. Thus we can derive companion matrix of above form.

Theorem 7.1.2

U has a cyclic vec. \iff there is some ordered basis s.t. U is represented by the companion mat. of the min. poly. for U.

Corollary 7.1.1

If A is the companion mat. of a monic poly. p, then p is both min. and char. poly. of A.

Cyclic Decompositions and the Rational Form 7.2

Definition 7.2.1: Complementary Subspaces

T: endo. on f.d.v.s. V/F. $W \subset V$ as T-inv. subspaces. If $\exists T$ -inv. subspace $W' \subset V$ s.t. $V = W \oplus W'$, then we say W' is a complementary T-inv. subspaces of W.

Definition 7.2.2: *T***-Admissible**

T: endo. on f.d.v.s. V/F. A subspace is T-admissible if W is T-inv. and $\exists f(x) \in$ $F[x] \exists \beta \in V \exists \gamma \in W \ (f(T)\beta \in W \Rightarrow f(T)\beta = f(T)\gamma).$

Lemma 7.2.1

T: endo. on f.d.v.s. V/F. Suppose W is T-inv. If its complementary T-inv. subspace exists, then W is T-admissible.

Proof. W is trivially T-inv. Suppose $f(T)\beta \in W$ for $(f(x) \in F[x]) \land (\beta \in V)$. Since $V = (f(x)) \land (f(x)) \land$ $W \oplus W'$, $\beta = \gamma + \gamma'$ for unique $(\gamma \in W) \land (\gamma' \in W')$. Then $f(T)\beta = f(T)\gamma + f(T)\gamma'$. Since $f(T)\beta$ and $f(T)\gamma$ are T-inv. and in W, $f(T)\gamma'$ should be in W. Independence of W and W' implies thus $f(T)\gamma' = 0$. Thus $f(T)\beta = f(T)\gamma$, so W is T-admissible.

Theorem 7.2.1 Cyclic Decomposition Theorem

T: endo. on f.d.v.s. V/F. Let $W_0\subset V$ be any proper T-admissible subspace. $\exists \alpha_1,\ldots,\alpha_r\in V\setminus\{0\}$ with respective T-annihilators p_1,\ldots,p_r s.t.

i) $V = W_0 \oplus (\bigoplus_{i=1}^r Z(\alpha_i; T))$ ii) $p_k \mid p_{k-1}$ Furthermore, the integer r and p_i are uniquely determined by i), ii), and the fact that

Proof. We will divide our proof to 4 steps. During our proof, we intentionally denote $f(T)\beta$ as $f\beta$.

Before: Let $\beta \in V \setminus W$. Consider $S(\beta; W) := \{g(x) \in F[x] \mid g(T)\beta \in W\}$. Then \exists monic poly. generator f s.t. $f(T)\beta \in W$. By T-admissibility, $\exists \gamma \in W$ s.t. $f(T)\beta = f(T)\gamma$. Let $\alpha :=$ $\beta - \gamma$, then $f(T)\alpha = 0$. Since $\gamma \in W$, we can see that $S(\alpha; W) = S(\beta; W)$ and f is also the *T*-conductor of α to W. Since $f(T)\alpha = 0$, $f \in M(\alpha; T)$. Thus $(f) = S(\alpha; W) \subset M(\alpha; T)$. Conversely, if $g \in M(\alpha; T)$, $g(T)\alpha = 0 \in W$ so $M(\alpha; T) \subset S(\alpha; T)$. Thus $S(\alpha; W) = M(\alpha; T)$ and f is also a T-annihilater.

```
Claim 7.2.1
W \cap Z(\alpha; T) = 0.
```

Proof. Suppose $g(T)\alpha \in W \cap Z(\alpha; T)$. Then $g \in S(\alpha; W) = M(\alpha; T)$ implies $g(T)\alpha = 0$. Thus $W \cap Z(\alpha; T) = 0$, so $W + Z(\alpha; T) \Rightarrow W \oplus Z(\alpha; T)$.

Step 1: Let's make following observation: Let $W \subset V$ be a proper T-inv. subspace. Then $\max_{\alpha \in V} S(\alpha; W)$ is obtained by some $\beta \in V$, so that $\deg(S(\beta; W))$ is maximized.

For the above β , $W+Z(\beta;T)$ is T-inv. and strictly larger than W. Applying this observation to the given $W_0 \subset V : T$ -inv. proper subspaces. Then we obtain $\beta_1 \in V$ s.t. $\deg(S(\beta_1; T))$ is maximized among deg($S(\beta; W)$). Again, take $W_2 = W_1 + Z(\beta_2; T)$, which leads $W_0 \subsetneq W_1 \subsetneq W_2 = W_1 + Z(\beta_2; T)$ $\cdots \subsetneq W_r = V$.

From this, we can derive at least $V = W_0 + \sum_{i=1}^r Z(\beta_i; T)$. Know Let's say $(p_k) :=$ $S(\beta_k; W_{k-1})$ has the maximum deg. among the conductors.

Step 2: Take W_i , β_i , p_i $i \in [r]$ as above. Fix $1 \le k \le r$ and let $\beta \in V$. Suppose $(f) = S(\beta; W_{k-1})$. Write $f \beta = \beta_0 + \sum_{i=1}^{k-1} g_i \beta_i$ for some $g_i \in F[x]$, $\beta_i \in W_i$.

```
Claim 7.2.2 \beta_0 = f \gamma_0 for some \gamma_0 \in W_0 and f \mid g_i.
```

Proof. If k = 1, it means W_0 is T-admissible, so nothing to proof. Thus suppose k > 1. By the Euclidean algorithm, $g_i = fh_i + r_i$. We want to prove all $r_i = 0$. Let $\gamma := \beta - \sum_{i=1}^{k-1} h_i \beta_i$. Then $\beta - \gamma = \sum_{i=1}^{k-1} h_i \beta_i \subset W_{k-1}$. This leads $S(\gamma; W_{k-1}) = S(\beta; W_{k-1})$. Also, $f\gamma = f\beta - \sum_{i=1}^{k-1} fh_i \beta_i = f\beta - \sum_{i=1}^{k-1} g_i \beta_i - \sum_{i=1}^{k-1} g_i \beta_i + \sum_{i=1}^{k-1} r_i \beta_i$. Thus $f\gamma = \beta_0 + \sum_{i=1}^{k-1} r_i \beta_i \cdots$ (1). Toward contradiction, some $r_j \neq 0$ and say that j is the largest between such numbers. $f\gamma=\beta_0+\sum_{i=1}^{k-1}r_i\beta_i \text{ for nonzero } r_i. \text{ Clearly } \dim(r_i)<\dim(f) \cdots (2). \text{ Consider conductor } (p):=S(\gamma;W_{j-1}). \text{ With } W_{j-1}\subset W_{k-1}, S(\gamma;W_{j-1})\subset S(\gamma;W_{k-1})=(f). \text{ Thus } f\mid p, \text{ i.e., } p=fq \text{ for some } q\in F[x]. \text{ Applying } g\text{ to } (2)\text{ leads } p(\gamma)=g\beta_0+\sum_{i=1}^{j-1}gr_i\beta_i+gr_j\beta_j \text{ where } p(\gamma)\in W_{j-1}, \ g\beta_0\in W_0\subset W_{j-1}, \ gr_i\beta_i\in W_i\subset W_{j-1}. \text{ This eq. leads } gr_j\beta_j\in W_{j-1}, \text{ and thus } \deg(gr_j)\geq \deg(S(\beta_j;W_{j-1}))=\deg(p_j) \text{ by definition, and } \deg(p_j)\geq \deg(S(\gamma;W_{j-1})) \text{ by mazimality condition of } \beta_j, \text{ where } \deg(S(\gamma;W_{j-1}))=\deg(p)=\deg(p)=\deg(fg). \text{ Consequently, } \deg(r_i)\geq \deg(f), \text{ which is contradiction. Thus all } r_i=0, \text{ and all } f\mid g_i, \text{ and } (1)\text{ says } f\gamma=\beta_0\in W_0. \text{ Since } W_0 \text{ is } T\text{-admissible, } \exists \gamma_0\in W_0 \text{ s.t. } f\gamma=\beta_0=f\gamma_0.$

Step 3: Now we will find $\{\alpha_1, \dots, \alpha_r\}$ in V which satisfies i) and ii).

Take $\{\beta_1, \ldots, \beta_r\}$ as *Step 1*. Fix $1 \le k \le r$. Apply *Step 2* to the vec. $\beta = \beta_k$ and the *T*-conductor $f = p_k$. We obtain $p_k \beta_k = p_k \gamma_0 + \sum_{i=1}^{k-1} p_k h_i \beta_i$ for $\gamma_0 \in W_0$. Let $\alpha_k := \beta_k - \gamma_0 - \sum_{i=1}^{k-1} h_i \beta_i$. Since $\beta_k - \alpha_k \in W_{k-1}$, $S(\alpha_k; W_{k-1}) = S(\beta_k; W_{k-1}) = (p_k)$, and since $p_k \alpha_k = 0$, we have $W_{k-1} \cap Z(\alpha_k; T) = \{0\}$. Because each α_k satisfies this condition, $W_k = W_0 \oplus (\bigoplus_{i=1}^k Z(\alpha_i; T))$ and that p_k is the *T*-annihilater of α_k .

Since $p_i \alpha_i = 0$ for each i, we have the trivial relation $p_k \alpha_k = 0 + p_1 \alpha_1 + \dots + p_{k-1} \alpha_{k-1}$. Apply **Step 2** with β_i replaced by α_i and with $\beta = \alpha_k$, we can conclude p_k divides each p_i with i < k.

Step 4: We will show r and each poly. p_r are uniquely determined by the conditions. Take γ_i , g_i $i \in [s]$ that satisfies conditions either. We will show r = s and $p_i = g_i$.

The poly. g_1 is determined as the T-conductor of V into W_0 . Let $S(V; W_0)$ be the collection of poly. f s.t. $\forall \beta \in V$ ($f \beta \in W_0$), i.e., poly. f s.t. $R(f(T)) \subset W_0$. Then $S(V; W_0)$ is nonzero ideal. g_1 is the monic generator of this. Each $\beta \in V$ has the form $\beta = \beta_0 + f_1 \gamma_1 + \cdots + f_s \gamma_s$ and so $g_1\beta = g_1\beta_0 + \sum_{i=1}^s g_1f_i\gamma_i$. Since each g_i divides g_1 , we have $g_1\gamma_i = 0$ for all i and $g_1\beta = g_1\beta_0 \in W_0$. Thus $g_1 \in S(V; W_0)$. Since g_1 is the monic poly. of least deg. which sends γ_1 into W_0 , we see that g_1 is the monic poly. of least deg. in the ideal $S(V; W_0)$. By the same argu., g_1 also, so $g_1 = g_1$. Now note three facts:

- 1. $fZ(\alpha; T) = Z(f\alpha; T)$
- 2. If $V = \bigoplus_{i=1}^k V_i$, where each V_i is T-inv., $fV = fV_1 \oplus \cdots \oplus fV_k$.
- 3. If α and γ have the same T-annihilator, then $f \alpha$ and $f \gamma$ have the same T-annihilator and thus $\dim(Z(f \alpha; T)) = \dim(Z(f \gamma; T))$.

Now, proceed induction to show that r = s and $p_i = g_i$. Suppose $r \ge 2$. Then $\dim(W_0) + \dim(Z(\alpha_1; T)) < \dim(V)$ Since $p_1 = g_1$, we know $\dim(Z(\alpha_1; T)) = \dim(Z(\gamma_1; T))$. Thus $\dim(W_0) + \dim(Z(\gamma_1; T)) < \dim(V)$. Then

$$p_2V = p_2W_0 \oplus Z(p_2\alpha_1; T)$$

$$p_2V = p_2W_0 \oplus Z(p_2\gamma_1; T) \oplus \cdots \oplus Z(p_2\gamma_s; T)$$

satisfies our desire. Furthermore, we conclude that $p_2\gamma_2=0$ and g_2 divides p_2 . The argument can be reversed to show that p_2 divides g_2 . Thus $g_2=p_2$.

Corollary 7.2.1

If, W is T-admissible, it has complementary T-inv. subspace. So with Lemma 7.2.1, if and only if condition holds.

Theorem 7.2.2

T: endo. There is $\alpha \in V$ s.t. T-annihilator of α is equal to min. poly.

Proof. With $W_0 = 0$, apply cyclic decomposition. Take $\alpha = \alpha_1$. T-conductor fo α_1 to W_0 is T-annihilater of α_1 , which is the min. poly.

Theorem 7.2.3

If T has cyclic vec., then char. poly. of T is equal to min. poly. of T.

Theorem 7.2.4 Generalized Cayley-Hamilton Theorem

T: endo. on f.d.v.s. V/F. m be min. poly. and p be char. poly. Then

- i) $p \mid f$
- ii) p and f have the same prime factors except for multiplicities
- iii) If $p = f_1^{r_1} \cdots f_k^{r_k}$, then $f = f_1^{d_1} \cdots f_k^{d_k}$ where d_i is the nullity of $f_i(T)^{r_i}$ divided by the deg. of f_i .
- **Proof.** i): trivial from Cayley-Hamilton Theorem.
- ii): Cyclic decompose with W_0 says $\exists \alpha_1 \sim \alpha_r$ s.t. $V = \bigoplus_{i=1}^r Z(\alpha_i; T)$ with $m(x) = p_1(x)$ which is T-annihilater of α_1 . $p_i \mid p_{i-1}$. Take $T_i := T \mid_{Z(\alpha_i; T)}$. Since $Z(\alpha_i; T)$ is a cyclic vec. space with cyclic vec. α_i , p_i is min. poly. for T_i is also char. poly. of T_i . Thus char. poly. $f(x) = \prod_{i=1}^r p_i$ and any prime factor of m(x) divides f(x) by i) while if a prime factor divides f, it divides one of p_i . Thus $p_i \mid p_{i-1} \mid \cdots \mid p_1 = m(x)$. Thus each prime factor of f also divides m(x).
- iii): Apply primary decomposition: $W_i = N(f_i(T)^{r_i})$. Take $T_i := T|_{W_i}$. Then $f_i(x)^{r_i}$ is the min. poly. of T_i . Applying ii) to T_i its min. poly. Thus char. poly. of T_i is $f_i^{d_i}$ with $d_i \ge r_i$. Here, $\dim(W_i)$ is $d_i \cdot \deg(f_i)$. So $d_i = \frac{\dim(W_i)}{\deg(f_i)} = N(f_i(T)^{r_i})/\deg(f_i)$.

Corollary 7.2.2

T: nilpo. endo. on n-d.v.s. V/F. Then char. poly. of T is x^n .

Proof. T is nilpo. $\Rightarrow \exists N \text{ s.t. } T^N = 0 \Rightarrow \min. \text{ poly. } m(x) \mid x^N \Rightarrow m(x) = x^r. \text{ Thus } f(x) = x^n.$

7.3 The Jordan Form

Note:-

How to find Jordan form?

Solution. Step 1: char. poly. $f(x) = \prod_{i=1}^k (x-c_i)^{d_i}$ for distinct c_i and $m(x) = \prod_{i=1}^k (x-c_i)^{r_i}$ for $1 \le r_i \le d_i$. Take $W_i = N((T-c_iI)^{r_i})$ as primary decomposition theorem. Then $V = \bigoplus_{i=1}^k W_i$. $T_i := T|_{W_i}$ where $m_i(x)$ of T_i is $(x-c_i)^{r_i}$.

Step 2: For each W_i , let $N_i := (T_i - c_i I) : W_i \to W_i$. Then N_i is nilpotent operator on W_i . Note that $T_i = N_i + c_i I$. Consider each W_i the cyclic decomposition of W_i w.r.t. N_i . So,

 $W_i = \bigoplus_{k=1}^{s_i} Z(\alpha_k; N_i)$. Take $\beta_j = \{\alpha_j, N_i \alpha_j, \dots, N_i^{k_j-1} \alpha_j\}$. Then

$$[N_{i}|_{Z(\alpha_{j};N_{i})}]_{\beta_{j}} = \begin{bmatrix} 0 & & & 0 \\ 1 & \ddots & & \vdots \\ & \ddots & \ddots & \vdots \\ & & 1 & 0 \end{bmatrix} \qquad \Rightarrow \qquad [T_{i}|_{Z(\alpha_{j};N_{i})}]_{\beta_{j}} = \begin{bmatrix} c_{u} & & & 0 \\ 1 & \ddots & & \vdots \\ & & \ddots & \ddots & \vdots \\ & & & 1 & c_{i} \end{bmatrix}. \tag{7.1}$$

Take $\mathfrak{B}^i = \cup \beta_j$. Then

where each box is of the form at 7.1 R.H.S. Then finally take $B = \cup \mathfrak{B}^i$. This leads what we call Jordan form, where each small blocks are elementary Jordan blocks.

7.4 Computation of Invariant Factors

This Chapter is Intentionally Skipped at Lectures.

7.5 Summary; Semi-Simple Operators

This Chapter is Intentionally Skipped at Lectures.

Chapter 8

Inner Product Spaces

8.1 Inner Products

Definition 8.1.1: Inner Product

An inner product (-,-) on V is a function $(-,-): V \times V \mapsto F$ satisfying:

- 1. (-,) is linear functionaal with $(c\alpha + \beta, \gamma) = c(\alpha, \gamma) + (\beta, \gamma)$
- 2. $(\beta, \alpha) = \overline{(\alpha, \beta)}$
- 3. $\forall \alpha \in \mathbb{F} \setminus \{0\} \ ((\alpha, \alpha) > 0)$

Note:-

If $F = \mathbb{R}$, $(\beta, \alpha) = (\alpha, \beta)$. Thus 1. and 2. leads $(\cdot, -)$ is also linear. Thus (\cdot, \cdot) is symmetric bilinear form.

But If $F = \mathbb{C}$, then $(\alpha, c\gamma) = c(\gamma, \alpha)$. In this case, we call bbC is sesqui-linear. Also, $(\alpha, \alpha) = \overline{(\alpha, \alpha)}$, thus $(\alpha, \alpha) \in \mathbb{R}$.

Example 8.1.1 (Standard Inner Product)

 $V:=\mathbb{C}^n,$ $[x_i],[y_i]\in\mathbb{C}^n.$ Then $([x_i],[y_i])=\sum_{i=1}^nx_i\bar{y}_i$ is called the standard inner product.

Example 8.1.2 (Positive Definite)

 $F = \mathbb{R}^n$. $A : n \times n$ real mat. s.t. $\forall x \in \mathbb{R}^n$, $x^T A x > 0$. Then A is called positive definite. When A is symmetric pos. def., then $(x, y)_A := x^T A y$.

Exercise 8.1.1

Prove that $(x, y)_A$ is an inner product on \mathbb{R}^n .

Theorem 8.1.1

 $F = \mathbb{R}$, $V = \mathbb{R}^n$. Let (,): $V \times V \mapsto F$ be an arbitrary inn. prod. on V. Then \exists a sym. pos. def. mat. A s.t. (,) = (,) $_A$.

Proof. Choose a basis, the standard basis for convenient. $(e_i, e_j) =: g_{ij}$. Define $A := [g_{ij}]$. Let $x, y \in \mathbb{R}^n$. Then $x = \sum_{i=1}^n x_i e_i$ and $y = \sum_{j=1}^n y_j e_j$. $(x, y) = \sum_i \sum_j x_i y_j e_i e_j = \sum_i \sum_j x_i g_{ij} y_j = \sum_j \sum_j x_i g_{ij} y_j$

 $\sum_{i} x_i \sum_{j} g_{ij} y_j = [x^T]_{\mathfrak{B}} A[y]_{\mathfrak{B}}.$

Definition 8.1.2: Hermitian Matrix

 $n \times n$ mat. A is called Hermitian if $A^* = A = [a_{ij}]$ where $[A^*]_{ij} = [\overline{a_{ji}}] = \overline{A^T}$.

Theorem 8.1.2

 $V = \mathbb{C}^n$. Let $(,): V \times V \mapsto F$ be an inn. prod. on V. Then $(x, y) = x^*Ay$ for some Hermitian pos. def. mat. A and vice versa.

Example 8.1.3

 $V = C([a, b] \mapsto \mathbb{C}) : \mathbb{C}$ -v.s. of continuous functions on [a, b]. Define $f, g \in V$ as $(f, g) := \int_a^b f(t) \overline{g(t)} dt$. Then it is an inn. prod. on V of ∞ -dim.

Definition 8.1.3: Quadratic Form

V: v.s. with inn. prod. Define the quadratic form $\alpha \mapsto ||\alpha||^2 = (\alpha, \alpha) \ge 0$ and $\alpha = 0 \iff ||\alpha||^2 = 0$.

Exercise 8.1.2 Polarization Identity

$$\begin{split} \|\alpha+\beta\|^2 &= \|\alpha\|^2 + 2\Re(\alpha,\beta) + \|\beta\|^2. \ F = \mathbb{R}, \ (\alpha,\beta) = \frac{1}{4}(\|\alpha+\beta\|^2 - \|\alpha-\beta\|^2). \ F = \mathbb{C}, \\ (\alpha,\beta) &= \frac{1}{4}(\|\alpha+\beta\|^2 - \|\alpha-\beta\|^2 + i\|\alpha+i\beta\|^2 - i\|\alpha-i\beta\|^2). \end{split}$$

8.2 Inner Product Spaces

Definition 8.2.1: Inner Product Space

 $F = \mathbb{R}$ or $F = \mathbb{C}$. A vector space V/F with a specified inn. prod. called inner product space.

Note:-

$$\|\alpha\| = \sqrt{(\alpha, \alpha)}.$$

Theorem 8.2.1

V : inn. prod. space. $\forall \alpha, \beta \in V \ \forall c \in F$, we have properties:

- 1. $||c\alpha|| = |c|||\alpha||$
- 2. $\|\alpha\| > 0$ for $\alpha \neq 0$
- 3. $|(\alpha, \beta)| \le ||\alpha|| ||\beta||$
- 4. $\|\alpha + \beta\| \le \|\alpha\| + \|\beta\|$

Proof. 1 and 2 are obvious from definition of inn. prod. For 3, just take $\alpha \neq 0$. Let $\beta^{\parallel} := \frac{(\beta, \alpha)}{\|\alpha\|^2} \alpha$, $\beta^{\perp} := \beta - \beta^{\parallel}$.

This is because: $(\beta^{\perp}, \alpha) = 0 \iff (\beta, \alpha) = c(\alpha, \alpha)$, thus $c = \frac{(\beta, \alpha)}{(\alpha, \alpha)}$.

 $0 \le \|\beta^{\perp}\|^{2} = (\beta^{\perp}, \beta^{\perp}) = (\beta, \beta) - |c|^{2}(\alpha, \alpha) = \|\beta\|^{2} - \frac{|(\alpha, \beta)|^{2}}{\|\alpha\|^{2}} \Rightarrow |(\alpha, \beta)| \le \|\alpha\| \|\beta\|.$ For 4, $\|\alpha + \beta\|^{2} = (\alpha + \beta, \alpha + \beta) = (\alpha, \alpha) + (\alpha, \beta) + (\beta, \alpha) + (\beta, \beta) \le (\|\alpha\| + \|\beta\|)^{2}$. Since both side are positive, we can just take off square.

Note:-

The "angle" is defined as inner product. Using 3, we can derive $-1 \le \frac{(\alpha,\beta)}{\|\alpha\|\|\beta\|} \le 1$. Then for nonzero α , β , define angle θ as:

$$\cos \theta = \frac{(\alpha, \beta)}{\|\alpha\| \|\beta\|}$$

Definition 8.2.2: Orthogoanl and Orthogonal, Orthonormal Set

V: inn. prod. space. We say $\alpha, \beta \in V$ are orthogonal or perpendicular if their inn. prod. is 0. If $S \subset V$, S is orthogonal set if $\forall \alpha \neq \beta \in S$, $(\alpha, \beta) = 0$. If all element of S satisfies $\|\alpha\| = 1$, we say *S* is orthonormal.

Theorem 8.2.2

Suppose $S \subset V$ be orthogonal set. Then S is lin. indep.

Proof. Take $\{\alpha_1, \alpha_2, \dots, \alpha_m\}$ as distinct vectors in S. Then $\beta = c_1 \alpha_1 + \dots + c_m \alpha_m$. So $(\beta, \alpha_k) = c_1 \alpha_1 + \dots + c_m \alpha_m$. $(\sum_j c_j \alpha_j, \alpha_k) = \sum_j c_j(\alpha_j, \alpha_k) = c_k(\alpha_k, \alpha_k)$. Since $(\alpha_k, \alpha_k) \neq 0$, $c_k = \frac{(\beta, \alpha_k)}{\|\alpha_k\|^2}$ for $1 \leq k \leq m$. When $\beta = 0$, this leads $\forall c_i = 0$, so S is lin. indep. set.

Theorem 8.2.3 Gram-Schmidt

Let *V* be an inn. prod. space and let β_1, \ldots, β_n be any indep. vec. in *V*. Then we can construct orthogonal vectors $\alpha_1, \dots, \alpha_n$ in V s.t. for each $k \in [n]$ the set $\{\alpha_1, \dots, \alpha_k\}$ is a basis for the subspace spanned by β_1, \ldots, β_k .

 $\begin{array}{l} \textit{\textbf{Proof.}} \text{ We can apply Gram-Schmidt orthogonalization process. } \alpha_1 := \beta_1. \ \beta_2 = \beta_2^{\perp \{\alpha_1\}} + \beta_2^{\parallel \{\alpha_1\}} \\ \alpha_2 = \beta_2^{\perp \{\alpha_1\}} = \beta_2 - \beta_2^{\parallel \{\alpha_1\}} = \beta_2 - \frac{(\beta_2,\alpha_1)}{\|\alpha_1\|^2} \alpha_1. \ \beta_3 = \beta_3^{\perp \{\alpha_1,\alpha_2\}} + \beta_3^{\parallel \{\alpha_1,\alpha_2\}}. \ \alpha_3 = \beta_3^{\perp \{\alpha_1,\alpha_2\}} = \beta_3 - \frac{(\beta_3,\alpha_1)}{\|\alpha_1\|^2} \alpha_1 - \frac{(\beta_3,\alpha_1)}{\|\alpha_1\|^2}$ $\frac{(\beta_3,\alpha_2)}{\|\alpha_1\|^2}\alpha_2$, and so on. We can take orthogonal basis with this process.

Corollary 8.2.1

All f.d. inn. prod. space has orthogonal basis.

Definition 8.2.3: Best Approximation

V: inn. prod. space. $W \subset V$, $\beta \in V \setminus W$. A best approximation of β to W is $\alpha \in W$ s.t. $\forall \gamma \in W \ (\|\beta - \alpha\| \le \|\beta - \gamma\|).$

Theorem 8.2.4

Let W be a subspaces of an inn. prod. space V and let β be a vec. in V. Then

1. $\alpha \in W$ is a best approx. to β by vec. in $W \iff \beta - \alpha$ is orthogonal to every vec.

- 2. If a best approx. to β by vec. in W exists, it is unique
- 3. If *W* is f.d. and $\{\alpha_1, \dots, \alpha_n\}$ is any ortho. basis for *W*, then the vec. $\alpha = \sum_k \frac{(\beta, \alpha_k)}{\|\alpha_k\|^2} \alpha_k$ is the unique best approx. to β by vec. in *W*

Proof. Note that $\forall \gamma \in W$, $\beta - \gamma = (\beta - \alpha) + (\alpha - \gamma)$, and $\|\beta - \gamma\|^2 = \|\beta - \alpha\|^2 + 2\Re(\beta - \alpha, \alpha - \gamma) + \|\alpha - \gamma\|^2$. Now suppose $\beta - \alpha$ is ortho. to every vec. in W. Then since $(\alpha - \gamma) \in W$, we can see $\|\beta - \gamma\|^2 = \|\beta - \alpha\|^2 + \|\alpha - \gamma\|^2 \ge \|\beta - \alpha\|^2$.

Conversely, suppose $\forall \gamma \in W \ (\|\beta - \gamma\| \ge \|\beta - \alpha\|)$. Then from above we can find that $\forall \gamma \in W \ (2\mathfrak{R}(\beta - \alpha, \alpha - \gamma) + \|\alpha - \gamma\|^2 \ge 0)$. Since every vec. in W may be expressed in the form $\alpha - \gamma$ with $\gamma \in W$, we see that $2\mathfrak{R}(\beta - \alpha, \tau) + \|\tau\|^2 \ge 0$. We may take $\tau = -\frac{(\beta - \alpha, \alpha - \gamma)}{\|\alpha - \gamma\|^2}(\alpha - \gamma)$. Then the equality reduces to the statement $-\frac{|(\beta - \alpha, \alpha - \gamma)|^2}{\|\alpha - \gamma\|^2} \ge 0$, which holds iff $(\beta - \alpha, \alpha - \gamma) = 0$. This completes the proof of 1. and ortho. condition is evidently satisfied by at most one vec. in W, thus proves 2.

Now suppose W is f.d. and let $\{\alpha_1, \ldots, \alpha_n\}$ be ortho. basis for W. We know $\beta - \alpha$ is ortho. to each elements of basis, i.e., to every vec. in W, so α it is best approx. to β , which leads $\|\beta - \gamma\| \ge \|\beta - \alpha\|$. Therefore $\alpha \in W$ and it is best approx. to β .

Definition 8.2.4: Orthogonal Complement

 $W^{\perp} := \{ \beta \in V \mid \alpha \perp \beta \, \forall \alpha \in W \}.$

Exercise 8.2.1

V: f.d. inn. prod. space. Then $V=W\oplus W^{\perp}$

Proof. $\beta \in V$. Then $E\beta$ is best approx. lies in W. It is easy to see that this is proj. Also, since $\alpha - E\alpha$ and $\beta - E\beta$ are each ortho. to W, $c(\alpha - E\alpha) + (\beta - E\beta) = (c\alpha + \beta) - (cE\alpha + E\beta) \in W^{\perp}$. Thus E is linear transformation by uniqueness of ortho. proj.

Note that $(\beta \in W^{\perp}) \iff (E\beta = 0)$. The eq. $\beta = E\beta + (\beta - E\beta)$ shows $V = W + W^{\perp}$. Also, $W \cap W^{\perp} = \{0\}$, so $V = W \oplus W^{\perp}$.

8.3 Linear Functionals and Adjoints

Theorem 8.3.1

 $V: \text{f.v.s.}/\mathbb{R} \text{ or } \mathbb{C}, V^*: \text{dual vec. space. Let } f \in V^*. \text{ Then } \exists ! \beta \in V \ (f(-) = (-, \beta)).$

Proof. Choose ortho basis $\{\alpha_1, \ldots, \alpha_n\}$ of V. For uniqueness, try $\beta = \sum_{i=1}^n c_i \alpha_i$. We can see $f(\alpha_j) = (\alpha_j, \sum_{i=1}^n c_i \alpha_i) = \sum_{i=1}^n \overline{c_i}(\alpha_j, \alpha_i) = \overline{c_j}(\alpha_j, \alpha_j)$. If such β exists, then it must be $\beta = \sum_{i=1}^n \frac{\overline{f(\alpha_i)}}{\|\alpha_i\|^2} \alpha_i$.

So take this as β . Now let's prove $f(-) = (-, \beta)$. We can see $(\alpha_j, \beta) = \sum_{i=1}^n \frac{f(\alpha_i)}{\|\alpha_i\|^2} (\alpha_i, \alpha_j) = \frac{f(\alpha_j)}{\|\alpha_j\|^2} (\alpha_j, \alpha_j) = f(\alpha_j)$. Thus such inn. prod. which corresponds to linear functional exists and unique.

Note:-

Usually V and V^* are not naturally related. But if V has inn. prod., then we can have an isomorphism.

Theorem 8.3.2

T: endo. on f.d.v.s. V/\mathbb{R} or \mathbb{C} . Then $\exists !T:V\to T$ s.t. $(T\alpha,\beta)=(\alpha,T^*\beta)$ where T^* is a unique linear operator. If $F=\mathbb{R}$, T^* is transpose and if $F=\mathbb{C}$, T^* is conjugate transpose.

Proof. Fix $\beta \in V \Rightarrow (-,\beta) \in V^*$. Let's modify it a bit to get what we want. Theorem 8.3.1 says that $\exists ! \beta' \in V \ ((T(-),\beta) = (-,\beta'))$. Define $T^* : V \to V : \beta \mapsto \beta'$. This mapping is well-defined. Also, easy to show that T^* is linear, and since for any $\beta \in V$, $T^*\beta$ is uniquely determined, thus uniqueness holds.

Theorem 8.3.3

T: endo. on f.d.v.s. V/\mathbb{F} or \mathbb{C} , $\mathfrak{B} = \{\alpha_1, \dots, \alpha_n\}$ be an orthonormal basis. Let $A := [T]_{\mathfrak{B}} = [A]_{ij}$. Then $A_{ij} = (T\alpha_j, \alpha_i)$.

Proof. $\alpha \in V$. $\alpha = \sum_{i=1}^{n} (\alpha, \alpha_i) \alpha_i$. A is defined by A_{ij} s.t. $T(\alpha_j) = \sum_{i=1}^{n} A_{ij} \alpha_i$. Since $T\alpha_j = \sum_{i=1}^{n} (T\alpha_j, \alpha_i) \alpha_i$, $A_{ij} = (T\alpha_j, \alpha_i)$.

Corollary 8.3.1

T: endo. on f.d.v.s. V/\mathbb{F} or \mathbb{C} , $\mathfrak{B} = \{\alpha_1, \dots, \alpha_n\}$ be an orthonormal basis. Then $[T^*]_{\mathfrak{B}} = ([T]_{\mathfrak{B}})^*$ where L.H.S. is adjoint s.t. $(T\alpha, \beta) = (\alpha, T^*\beta)$ and R.H.S. is conjugate transpose.

Proof.
$$A := [T]_{\mathfrak{B}} = [A_{ij}], B := [T^*]_{\mathfrak{B}} = [B_{ij}].$$
 Then $A_{ij} = (T\alpha_j, \alpha_i)$ and $B_{ij} = (T^*\alpha_j, \alpha_i).$ Then $\overline{B_{ij}} = (\alpha_i, T^*\alpha_j) \Rightarrow \overline{B_{ji}} = (\alpha_j, T^*\alpha_i) = A_{ij}.$

Exercise 8.3.1

$$(T_1 + T_2)^* = T_1^* + T_2^*, (cT)^* = \overline{c}T^*, (T_1T_2)^* = T_2^*T_1^*.$$

Definition 8.3.1: Hermitian

T: endo. on f.d.v.s. V/\mathbb{R} or \mathbb{C} . We say T is Hermitian or self-adjoint if $T = T^*$.

8.4 Unitary Operators

Definition 8.4.1: Preserve

 $T: V \to W$ on inn. prod. space V and W. Then we say T preserves the inn. prod. if $\forall \alpha, \beta \in V \ (T\alpha, T\beta) = (\alpha, \beta)$. We say this is isometry.

Definition 8.4.2: Isomorphism of Inner Product Spaces

An isomorphism of inn. prod. space is a linear transf. s.t. it is an isomorphism of vec. spaces and preserves the inn. prod.

Theorem 8.4.1

 $T: V \to W$ with same dim f.d. inn. prod. spaces. TFAE:

- i) *T* preserves inn. prod.
- ii) *T* is an isomorphism of inn. prod. spaces

- iii) For arbitrary orthonormal basis $\mathfrak B$ of V, $T\mathfrak B$ is an orthonormal basis for W
- iv) For some orthonormal basis mfB of V, $T\mathfrak{B}$ is an orthonormal basis for W

Proof. i) \Rightarrow ii): Suppose $\exists \alpha \in N(T)$. Then $(T\alpha, T\alpha) = ||T\alpha||^2 = ||\alpha||^2 = 0$. Thus $\alpha = 0$. Since $\dim(V) = \dim(W)$, T is one-to-one, Thus T is an isomorphism.

- ii) \Rightarrow iii): Let \mathfrak{B} an arbitrary orthonormal basis $\{\alpha_1, \ldots, \alpha_n\}$. Then $(\alpha_i, \alpha_j) = \delta_{ij}$. Since T preserves, $(T\alpha_i, T\alpha_j) = \delta_{ij}$. Isomorphic condition of T implies then $T\mathfrak{B}$ is basis for W while $\{T\alpha_1, \ldots, T\alpha_n\}$ is an orthonormal set.
 - iii) \Rightarrow iv): Trivial.
 - iv) \Rightarrow i): Let \mathfrak{B} an orthonormal basis of V s.t. $T\mathfrak{B}$ is also an orthonormal basis.

Claim 8.4.1

 $\forall \alpha, \beta \in V \ ((T\alpha, T\beta) = (\alpha, \beta)).$

Proof.
$$\alpha := \sum x_i \alpha_i$$
, $\beta := \sum y_i \alpha_i$. Then $T\alpha = \sum x_i T\alpha_i$ and $T\beta = \sum y_i T\alpha_i$. We can see $(T\alpha, T\beta) = (\sum x_i T\alpha_i, y_j T\alpha_j) = \sum_j \sum_i x_i \overline{y_j}(\alpha_i, \alpha_j)$ while $(\alpha, \beta) = (\sum x_i \alpha_i, \sum y_j \alpha_j) = \sum_j \sum_i x_i \overline{y_j}(\alpha_i, \alpha_j)$, and both are δ_{ij} .

П

Theorem 8.4.2

 $T: V \to W$ on inn. prod. space with preserving $\iff ||T\alpha|| = ||\alpha||$.

Proof. (\Rightarrow): Trivial since $||T\alpha||^2 = (T\alpha, T\alpha) = (\alpha, \alpha) = ||\alpha||^2$. (\Leftarrow): By using polarization identity, we can easily derive this direction.

Definition 8.4.3: Unitary Operator

T is unitary operator if it is an isomorphism on inn. prod. space.

Theorem 8.4.3

 $U:V\to V$ on inn. prod. space. Then U is unitary $\iff U^*$ exists and $UU^*=U^*U=I$.

Proof. (\Rightarrow): If U is unitary, then, isomorphism, so $\exists U^{-1}: V \to V$ and $(U\alpha, \beta) = (U\alpha, I\beta) = (U\alpha, UU^{-1}\beta) = (\alpha, U^{-1}\beta)$. Thus $U^{-1} = U^*$.

(\Leftarrow): Suppose $\exists U^*: V \to V$ s.t. $UU^* = U^*U = I$. Then U is invertible where $U^* = U^{-1}$. Then $(U\alpha, U\beta) = (\alpha, U^*U\beta) = (\alpha, \beta)$.

Definition 8.4.4: Unitary

 $A: n \times n$ mat. on \mathbb{R} or \mathbb{C} . We say A is unitary if $AA^* = A^*A = I$.

Theorem 8.4.4

 $U:V\to V$ on inn. prod. space. Then U is unitary $\iff [U]_{\mathfrak{B}}$ for orthonormal basis \mathfrak{B} is a unitary mat.

Proof. $[U]_{\mathfrak{B}}$ is unitary $\iff U$ is unitary. Then iff condition follows from Theorem 8.4.3. \square

Corollary 8.4.1

If U_1 and U_2 are unitary, then U_1U_2 also. Furthermore, U_1^{-1} is also unitary.

Definition 8.4.5: Unitary Group - Optional

For f.d.inn. prod. space, let U(V) be a collection of all unitary op. on V. This is a group, i.e., closed under mat. multiplication.

Note:-

OPTIONAL.

When $V = \mathbb{C}^n$, $U(\mathbb{C}^n) = U(n)$: the *n*-th unitary group.

 $V = \mathbb{R}^n$, $A : n \times n$ mat. on \mathbb{R} s.t. $AA^t = A^tA = I$. Then O(n) is the real orthogonal group. $V = \mathbb{C}^n$, $A : n \times n$ mat. on \mathbb{C} s.t. $AA^t = A^tA = I$. Then $O(n, \mathbb{C})$ is the complex orthogonal group.

 $SU(n) = \{A \in U(n) \mid \det(A) = 1\}$ is special unitary group.

 $SO(n) = \{A \in O(n) | \det(A) = 1\}$ is special orthogonal group. For example, SO(2) is rotation and SO(3), with $SO(3) \times \mathbb{R}^3$ is rigid motion.

8.5 Normal Operators

Definition 8.5.1: Normal

T: endo on f.d.inn. prod. space. V/F. We say T is normal if $TT^* = T^*T$.

Note:-

Q. When do we have an orthonormal basis $\mathfrak B$ on V s.t. vec. in $\mathfrak B$ are also char. vec. of T?

Theorem 8.5.1

T: endo on f.d.inn. prod. space. V/F. Suppose T is normal. For char. vec. α of T, $c \in F$ is char. value $\iff \overline{c}$ is char. value for T^* with char. vec. α .

Proof.

Claim 8.5.1

If *U* is normal, then $||Uv|| = ||U^*v||$.

Proof.
$$||Uv||^2 = (Uv, Uv) = (v, U^*Uv) = (v, UU^*v) = (U^*v, U^*v) = ||U^*v||^2$$
.

 $\forall c \in F, U := T - cI$ is normal for normal T. Then $U^* = T^* - \overline{c}I$. $UU^* = U^*U$ is obvious. Thus $||(T - cI)\alpha|| = ||(T^* - \overline{c}I)\alpha||$ by Claim 8.5.1. Thus $(T - cI)\alpha = 0 \iff (T^* - \overline{c}I)\alpha = 0$. \square

Theorem 8.5.2

T as Theorem 8.5.1 but not normal. Suppose \exists orthonormal basis \mathfrak{B} s.t. $[T]_{\mathfrak{B}}$ is upper triangular. Then T is normal $\iff [T]_{\mathfrak{B}}$ is diagonal.

Proof. (\Leftarrow): Let $A := [T]_{\mathfrak{B}}$. $A^* = [T^*]_{\mathfrak{B}}$. A is diagonal, so A^* also. Trivially $AA^* = A^*A$, thus $TT^* = T^*T$, i.e., T is normal.

(⇒): Suppose *T* is normal. We are given that *A* is upper triangular. Let $\mathfrak{B} = \{\alpha_1, \dots, \alpha_n\}$. Then

$$A = [T]_{\mathfrak{B}} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ 0 & \ddots & \vdots \\ 0 & 0 & a_{nn} \end{bmatrix}$$

where T is normal, and α_1 is char. vec., where a_{11} are char. value w.r.t. α_1 . By Theorem 8.5.1, $T^*\alpha_1 = \overline{a_{11}}\alpha_1$. On the other hand, since $[T^*]_{\mathfrak{B}} = A^*$, $T^*\alpha_1 = \overline{a_{11}}\alpha_1 + \overline{a_{12}}\alpha_2 + \cdots + \overline{a_{1n}}\alpha_n$. Thus

$$A = [T]_{\mathfrak{B}} = \begin{bmatrix} a_{11} & \cdots & 0 \\ 0 & \ddots & \vdots \\ 0 & 0 & a_{nn} \end{bmatrix}.$$

Applying this algorithm to each α_i leads A is diagonal.

Lemma 8.5.1

T: endo on f.d.inn. prod. space. V/\mathbb{R} or \mathbb{C} . Let $W \subset V$ be T-inv. subspace. Then W^{\perp} is automatically T^* -inv.

Proof. Let $\beta \in W^{\perp}$. N.T.S. $T^*\beta \in W^{\perp}$, i.e., $\forall \alpha \in W \ ((\alpha, T^*\beta) = (T\alpha, \beta) = 0)$. Since W is T-inv., this clearly holds.

Theorem 8.5.3

T: endo on f.d.inn. prod. space. V/\mathbb{C} . Then \exists orthonormal basis $\mathfrak B$ for V s.t. $[T]_{\mathfrak B}$ is upper triangular mat.

Proof. We prove it by induction on $n = \dim(V)$. If n = 1, it is obvious. So suppose n > 1 and assume Theorem 8.5.3 holds for any inn. prod. space with dim < n. Since $F = \mathbb{C}$, applying Fundamental Theorem of Algebra to T^* , \exists char. value $c \in \mathbb{C}$, and a char. vec. α s.t. $T^*\alpha = c\alpha$. By replacing α to $\frac{\alpha}{\|\alpha\|}$, α itself has length 1. Define $W = \operatorname{span}\{\alpha\}^{\perp}$. Since $\operatorname{span}\{\alpha\}$ is T^* -inv, which leads $W = \operatorname{span}\{\alpha\}^{\perp}$ is T-inv. by the Lemma 8.5.1. Then we can see

$$\begin{array}{cccc} T: & V & \longrightarrow V & \dim(V) = n \\ & \updownarrow & & \updownarrow \\ T|_W: & W & \longrightarrow W & \dim(W) = n-1 \end{array}$$

By induction hypothesis, \exists orthonormal basis $\mathfrak{B}' = \{\alpha_1, \ldots, \alpha_{n-1}\}$ s.t. $[T|_W]_{\mathfrak{B}'}$ is upper triangular. Take $\alpha_n := \alpha$, and $\mathfrak{B} = \mathfrak{B}' \cup \{\alpha_n\}$. Then

$$[T]_{\mathfrak{B}} = \begin{bmatrix} [T|_{W}]_{\mathfrak{B}'} & * \\ 0 & * \end{bmatrix}.$$

Thus $[T]_{\mathfrak{B}}$ is upper triangular.

Corollary 8.5.1

T: endo on f.d.inn. prod. space. V/\mathbb{C} where T is normal. Then V has orthonormal basis consisting of char. vec. of T. In particular, T is diagonalizable.

Corollary 8.5.2

With Theorem 8.5.2 and Theorem 8.5.3, if $A \in M_{n \times n}(\mathbb{C})$, \exists unitary mat. $P \in U(n)$ s.t.

 $P^{-1}AP$ is upper triangular. In case $AA^* = A^*A$, $P^{-1}AP$ is diagonal, i.e., A is normal implies A is unitary diagonalizable.

Example 8.5.1

T: endo on f.d.inn. prod. space. V/F. If T is hermitian, i.e., self-adjoint, then T is normal. Also, if T is unitary operator, it is normal.