МГТУ им. Н.Э. БАУМАНА

Факультет «Фундаментальные науки» Кафедра «Вычислительная математика и математическая физика»

О.В. Михайлова, Т.В. Облакова

Случайные процессы-1. Основные понятия

Электронное учебное издание

Методические указания к выполнению домашнего задания по курсу «Теория случайных процессов»

Москва

(С) 2014 МГТУ им. Н.Э. БАУМАНА

Рецензент: проф., д.т.н. Сидняев Н.И.

Михайлова О.В., Облакова Т.В.

Случайные процессы-1. Основные понятия. Методические указания к выполнению домашнего задания по курсу «Теория случайных процессов». - МГТУ имени Н.Э. Баумана, 2014. 25 с.

Издание содержит материал для самостоятельной проработки основных понятий курса теории случайных процессов и охватывает как общие понятия, так и операции дифференцирования и интегрирования случайных по неслучайной переменной. Методические указания содержат необходимый теоретический материал, примеры решения типовых задач, материал для самоконтроля и варианты типового домашнего задания.

Для студентов направления подготовки "Математика и компьютерные науки", специальности "Прикладная математика", а также студентов машиностроительных специальностей, изучающих курс теории случайных процессов и стохастического анализа.

Рекомендовано учебно-методической комиссией факультета «Фундаментальные науки» МГТУ им. Н.Э. Баумана

Михайлова Ольга Владимировна

Облакова Татьяна Васильевна

Случайные процессы-1. Основные понятия

(С) 2014 Михайлова О.В., Облакова Т.В.

(С) 2014 МГТУ им. Н.Э. БАУМАНА

Содержание.

1. Введение. Цели и задачи методических указаний	4
2. Основные понятия и характеристики случайных процессов	5
3. Дифференцирование случайных процессов	13
4. Интегрирование случайных процессов	18
5. Варианты домашнего задания	23
6. Литература	25

1.Введение. Цели и задачи методических указаний

Теория случайных процессов – бурно развивающаяся область теории вероятностей, изучающая изменение во времени состояния стохастической системы. Случайные процессы широчайшее применение В таких областях науки автоматизированные системы управления, автоматизация технологических процессов и производств, радио- и электротехника, кибернетика, биология, химия, экономика, транспорт, связь и т.п. Программы все большего числа специальностей и направлений подготовки инженеров включают курс случайных процессов. Для успешного освоения необходимы базовые «Математический дисциплины знания курсов анализ», «Дифференциальные уравнения», «Теория вероятностей» и некоторые элементы курса «Функциональный анализ». Курс достаточно хорошо обеспечен фундаментальными учебниками, написанными как ведущими математиками [1], так и преподавателями конкретных вузов [2], [3], в то же время открытие новых специальностей и направлений подготовки обнаружило недостаток методических материалов уровня задачников и проведения практических занятий методических указаний ДЛЯ обеспечения самостоятельной подготовки студентов. Данное издание предназначено для методического обеспечения направления подготовки 01020062 - Математика и компьютерные науки, но также может быть использовано студентами других специальностей, предусматривающих расширенное изложение предмета.

Целью данных методических указаний является ознакомление студентов, изучающих курс случайных процессов, с основными понятиями, относящимися к определению случайного процесса, его основными характеристиками и операциями дифференцирования и интегрирования случайного процесса по неслучайной переменной. Задача указаний – освоение терминологии и отработка навыков вычисления и интерпретации числовых характеристик случайных процессов. Методические указания содержат необходимый теоретический материал, сгруппированный в трех параграфах, примеры решения типовых задач, материал для самоконтроля в виде задач с приведенными ответами. Отдельный параграф содержит 25 вариантов типового домашнего задания.

2. Основные понятия и характеристики случайных процессов.

Определение. Случайным процессом (СП) X(t) называется семейство случайных величин (СВ) $X(t,\omega)$, зависящее от неслучайного аргумента t, интерпретируемого как время. СВ $X(t_0) = X(t_0,\omega)$ в которую обращается СП при $t=t_0$ называется сечением СП, соответствующим данному значению аргумента t_0 . Реализацией СП $X(t,\omega)$ называется неслучайная функция X(t), в которую превращается СП X(t) в результате опыта.

Примеры.

1) $Y(t) = X \cdot t + a$, где X - CB, a – неслучайная постоянная. Каждая из реализаций этого СП – прямая линия, проходящая через точку (0,a). Реализации различаются угловыми коэффициентами (см. рис 1.).

2) $Y(t) = \cos(\omega t + X)$, где X – случайная фаза колебаний, распределенная равномерно в интервале $(-\pi,\pi)$. Реализациями в этом примере являются синусоиды, смещенные относительно друг друга (см. рис 2.).

Определение. *Характеристиками* СП называются его моменты, которые являются неслучайными функциями. В частности, *математическим ожиданием* СП X(t)

называется неслучайная функция $m_X(t)$, которая при любом значении аргумента t равна математическому ожиданию соответствующего сечения СП: $m_X(t) = M[X(t)]$.

Математическое ожидание – это «средняя» функция, вокруг которой происходит разброс реализаций (см. рис. 4.). Заметим, что эта

функция, характеризующая «среднее» значение СП, сама является неслучайной величиной.

Свойства математического ожидания.

- 1. Математическое ожидание (м.о.) неслучайной функции $\varphi(t)$ равно самой неслучайной функции: $M[\varphi(t)] = \varphi(t)$.
- 2. Неслучайный множитель $\varphi(t)$ можно выносить за знак м.о.:

$$M[\varphi(t)X(t)] = \varphi(t)M[X(t)] = \varphi(t)m_X(t).$$

3. М. о. суммы двух случайных процессов равно сумме м. о.:

$$M[X(t) + Y(t)] = m_X(t) + m_Y(t).$$

Это свойство можно обобщить на n слагаемых СП: $M[\sum_{i=1}^n X_i(t)] = \sum_{i=1}^n m_{X_i}(t)$.

В частности, если X(t) – СП, $\varphi(t)$ - неслучайная функция, то

$$M[X(t) + \varphi(t)] = m_X(t) + \varphi(t).$$

Определение. *Центрированным* СП $\check{X}(t)$ называется процесс, который получится, если из СП X(t) вычесть его математическое ожидание: $\check{X}(t) = X(t) - m_X(t)$.

Определение. *Начальным моментом -го порядка* СП X(t) называется математическое ожидание k-ой степени, соответствующего значения сечения СП:

$$\alpha_k(t) = M\left[\left(X(t)\right)^k\right].$$

Определение. *Центральным моментом -го порядка* – м.о. k-ой степени центрированного СП : $\alpha_k(t) = M\left[\left(\check{X}(t) \right)^k \right] = M\left[\left(X(t) - m_X(t) \right)^k \right]$.

Определение. Дисперсией СП X(t) называется неслучайная функция $D_X(t)$, которая при любых значениях аргумента t равна дисперсии соответствующего сечения СП X(t), то есть среднее квадрата сечения СП минус квадрат среднего:

$$D_X(t) = D[X(t)] = M[X^2(t)] - m_X^2(t) = M\left[\left(\check{X}(t)\right)^2\right] = M\left[\left(X(t) - m_X(t)\right)^2\right].$$

Определение. *Средним квадратичным отклонением (с.к.о.)* $\sigma_X(t)$ СП X(t) называется арифметическое значение квадратного корня из дисперсии: $\sigma_X(t) = \sigma[X(t)] = \sqrt{D_X(t)}$.

Свойства дисперсии СП.

- 1. Дисперсия неслучайной функции $\varphi(t)$ равна нулю: $D[\varphi(t)] = 0$.
- 2. Дисперсия суммы СП X(t) и неслучайной функции $\varphi(t)$ равна дисперсии СП X(t): $D[X(t) + \varphi(t)] = D_X(t)$.
- 3. Дисперсия произведения СП X(t) на неслучайную функцию $\varphi(t)$ равна произведению квадрата неслучайного множителя на дисперсию СП: $D[\varphi(t)X(t)] = \varphi^2(t)D_X(t)$.

Определение. *Корреляционной функцией* СП X(t) (к.ф.) называется неслучайная функция $K_X(t,t')$ двух аргументов t и t', которая при каждой паре значений аргументов t и t' равна ковариации соответствующих сечений СП X(t) и X(t'):

$$K_X(t,t') = Mig[reve{X}(t) \cdot reve{X}(t') ig] = M[X(t)X(t')] - m_X(t)m_X(t'),$$
 или $K_X(t,t') = Mig[ig(X(t) - m_X(t) ig) ig(X(t') - m_X(t') ig) ig].$

Свойства корреляционной функции.

- 1. При равенстве аргументов (t = t') к.ф. равна дисперсии $K_X(t, t) = D_X(t)$.
- 2. К.ф. $K_X(t,t')$ симметрична относительно своих аргументов: $K_X(t,t') = K_X(t',t)$
- 3. К.ф. $K_X(t,t')$ является положительно определенной квадратичной формой относительно аргументов t и t': $\iint_B a(t)a(t')K_X(t,t')dtdt' \ge 0$, где a(t) любая функция аргумента t, B произвольное подмножество множества $T \times T$, на котором определен СП X(t).
- 4. К.ф. не меняется от прибавления к СП X(t) произвольной неслучайной функции $\varphi(t)$: $K_Y(t,t')=K_X(t,t')$, если $Y(t)=X(t)+\varphi(t)$.
- 5. Имеет место неравенство Коши-Буняковского: $|K_X(t,t')| \leq \sqrt{D_X(t) D_X(t')}$.

Замечание. К.ф. $K_X(t,t')$ может быть как положительной, так и отрицательной. Она характеризует не только степень тесноты линейной зависимости между двумя сечениями X(t) и X(t') СП, но и разброс этих сечений относительно м.о. $m_X(t)$.

Определение. *Нормированной к.ф.* (н.к.ф.) $r_X(t,t')$ СП X(t) называется функция, полученная делением к.ф. $K_X(t,t')$ на произведение с.к.о. $\sigma_X(t) \cdot \sigma_X(t')$:

$$r_X(t,t') = \frac{\kappa_X(t,t')}{\sigma_X(t) \cdot \sigma_X(t')} = \frac{\kappa_X(t,t')}{\sqrt{D_X(t) D_X(t')}}.$$

Свойства $r_X(t,t')$.

- 1. Если t = t', то $r_X(t, t') = r_X(t, t) = 1$
- 2. Н.к.ф. $r_X(t,t')$ симметрична относительно своих аргументов $r_X(t,t')=r_X(t',t)$
- 3. $|r_x(t,t')| \le 1$.
- 4. $\iint_{B} a(t)a(t')r_{X}(t,t')\sigma_{X}(t)\cdot\sigma_{X}(t')dtdt'\geq 0$

Определение. Взаимной к.ф. $R_{ij}(t,t')$ двух СП $X_i(t)$ и $X_j(t)$ называется неслучайная функция двух аргументов t и t', которая при каждой паре значений t и t' равна ковариации сечений двух СП $X_i(t)$ и $X_j(t)$: $R_{ij}(t,t') = M[\widecheck{X}_i(t)\cdot\widecheck{X}_j(t')]$.

Свойства взаимной к.ф.

- 1. Взаимная к.ф. $R_{ij}(t,t')=Mig[reve{X}_l(t)\cdotreve{X}_j(t')ig]$ в общем случае не равна взаимной к.ф. $R_{ij}(t',t)=Mig[reve{X}_l(t')\cdotreve{X}_j(t)ig]$, т.к. ковариация между сечениями $X_i(t)$ и $X_j(t')$ в общем случае не равна ковариации между сечениями $X_i(t')$ и $X_j(t)$: $R_{ij}(t,t')\neq R_{ij}(t',t)$.
- 2. При одновременной перемене мест индексов и аргументов вз. к.ф. не меняется: $R_{ij}(t,t')=R_{ji}(t',t)$.
- 3. При равенстве индексов i=j вз.к.ф. равна к.ф. СП $X_i(t)$:

$$R_{ii}(t,t') = M\big[\widecheck{X}_i(t) \cdot \widecheck{X}_i(t')\big] = K_{X_i}(t,t').$$

4. Пусть $Y_1(t)=X_1(t)+\varphi_1(t), Y_2(t)=X_2(t)+\varphi_2(t)$, где $\varphi_1(t)$ и $\varphi_2(t)$ - неслучайные функции. Тогда $R_{Y_1Y_2}(t_1,t_2)=R_{X_1X_2}(t_1,t_2)$.

Определение. *Нормированная вз.к.ф.* определяется по формуле: $r_{ij}(t,t') = \frac{R_{ij}(t,t')}{\sigma_i(t)\cdot\sigma_j(t')}$, где $\sigma_i(t) = \sqrt{D_i(t)} = \sqrt{K_i(t,t)}$ - с.к.о СП $X_i(t)$, $\sigma_j(t) = \sqrt{D_j(t)} = \sqrt{K_j(t,t)}$ - с.к.о СП $X_j(t)$.

Свойства нормированной взаимной корреляционной функции.

1.
$$r_{ij}(t,t') = r_{ji}(t',t)$$
.

2.
$$r_{ii}(t, t') = r_i(t, t')$$
.

Определение. Пусть $\vec{X}(t) = (X_1(t), X_2(t), ..., X_n(t))$ – векторный случайный процесс. Его математическим ожиданием называется вектор $\vec{m}_X(t) = (m_1(t), m_2(t), ..., m_n(t))$, где $m_i(t) = M[X_i(t)]$.

Ковариационной матрицей векторного СП $\vec{X}(t)$ называется матрица, составленная из вз. к.ф. $R_{ij}(t,t')$:

$$\boldsymbol{R}_{ij}(t,t') = \begin{pmatrix} R_{11}(t,t') & R_{12}(t,t') & \dots & R_{1n}(t,t') \\ R_{21}(t,t') & R_{22}(t,t') & \dots & R_{2n}(t,t') \\ \dots & \dots & \dots & \dots \\ R_{i1}(t,t') & R_{i2}(t,t') & \dots & R_{in}(t,t') \\ \dots & \dots & \dots & \dots \\ R_{n1}(t,t') & R_{n2}(t,t') & \dots & R_{nn}(t,t') \end{pmatrix}.$$

Замечание. Матрица (R_{ij}) , вообще говоря, не симметрична, а на ее главной диагонали стоят $R_{ii}(t,t') = K_i(t,t')$ - корреляционные функции компонент $X_i(t)$.

Определение. СП $X_i(t)$ и $X_j(t)$, $i \neq j$, называются некоррелированными, если их вз.к.ф. $R_{ij}(t,t')=0$, при любом значении аргументов t и t'.

Определение. Векторный СП $\vec{X}(t)$ называется процессом c некоррелированными составляющими, если матрица вз.к.ф. является диагональной т.е. $R_{ij}(t,t') = 0$ при $i \neq j$.

Следствие. К.ф. суммы СП и некоррелированной с ним СВ равна сумме к.ф. СП и дисперсии СВ: $K_Z(t_1,t_2)=K_X(t_1,t_2)+DY$, если Z(t)=X(t)+Y.

Пример 1. Найдите м.о., дисперсию и к.ф. синусоиды постоянной частоты ω со случайной амплитудой U, если MU = 7, DU = 0.5.

Решение. Если СП $X(t) = U \sin \omega t$, то его характеристики равны

$$m_X(t) = M[U \sin \omega t] = \sin \omega t \cdot MU = 7 \sin \omega t$$
,

 $K_X(t_1, t_2) = M[(U \sin \omega t_1 - 7 \sin \omega t_1)(U \sin \omega t_2 - 7 \sin \omega t_2)] = M[(U - 7)^2 \sin \omega t_1 \sin \omega t_2] = \sin \omega t_1 \sin \omega t_2 M[(U - 7)^2] = \sin \omega t_1 \sin \omega t_2 DU = 0,5 \sin \omega t_1 \sin \omega t_2.$

$$D_X(t) = K_X(t,t) = 0.5 \sin^2 \omega t.$$

Пример 2. Найдите математическое ожидание, корреляционную функцию и дисперсию случайного процесса $X(t) = t^2 + U \cos t + V \sin t$, где случайный вектор (U, V) имеет математическое ожидание (-0,5;1) и ковариационную матрицу $\begin{pmatrix} 3 & -2 \\ -2 & 2 & 9 \end{pmatrix}$.

Решение.

$$\begin{split} m_X(t) &= M[t^2 + U\cos t + V\sin t] = t^2 + \cos t\,MU + \sin t\,MV = t^2 - 0.5\cos t + \sin t, \\ K_X(t_1,t_2) &= M[(t_1^2 + U\cos t_1 + V\sin t_1 - t_1^2 + 0.5\cos t_1 - \sin t_1)(t_2^2 + U\cos t_2 + V\sin t_2 - t_2^2 + 0.5\cos t_2 - \sin t_2)] = \\ &= M[\big((U+0.5)\cos t_1 + (V-1)\sin t_1\big)\big((U+0.5)\cos t_2 + (V-1)\sin t_2\big)\big] = \\ &= M[(U+0.5)^2\cos t_1\cos t_2 + (U+0.5)(V-1)\sin(t_1+t_2) + (V-1)^2\sin t_1\sin t_2\big] = \\ &= \cos t_1\cos t_2\,DU + \sin(t_1+t_2)\cos(U,V) + \sin t_1\sin t_2\,DV = \\ &= 3\cos t_1\cos t_2 - 2\sin(t_1+t_2) + 2.9\sin t_1\sin t_2, \\ D_X(t) &= K_X(t,t) = 3\cos^2 t - 2\sin 2t + 2.9\sin^2 t. \end{split}$$

Пример 3. Найдите математическое ожидание и корреляционную функцию суммы двух некоррелированных случайных процессов X(t) и Y(t) с характеристиками $m_X(t) = t$, $m_Y(t) = -t$, $K_X(t_1, t_2) = t_1t_2$, $K_Y(t_1, t_2) = t_1t_2e^{\alpha(t_1+t_2)}$.

Решение.

$$\begin{split} M[X(t)+Y(t)] &= m_X(t) + m_Y(t) = t - t = 0, \\ K_{X+Y}(t_1,t_2) &= M[(X(t_1)-t_1+Y(t_1)+t_1)(X(t_2)-t_2+Y(t_2)+t_2)] = \\ &= M[(X(t_1)-t_1)(X(t_2)-t_2) + (X(t_1)-t_1)(Y(t_2)+t_2) + (Y(t_1)+t_1)(X(t_2)-t_2) \\ &+ (Y(t_1)+t_1)(Y(t_2)+t_2)] = K_X(t_1,t_2) + 0 + 0 + K_Y(t_1,t_2) \\ &= t_1 t_2 \big(1 + e^{\alpha(t_1+t_2)}\big). \end{split}$$

Пример 4. Заданы два случайных процесса $X(t) = V_1 \cos \omega_1 t + V_2 \sin \omega_1 t$, $Y(t) = U_1 \cos \omega_2 t + U_2 \sin \omega_2 t$. Математические ожидания всех случайных величин V_1 , V_2 , U_1 и U_2 равны нулю, даны дисперсии $DV_1 = DV_2 = 1$, $DU_1 = DU_2 = 4$, нормированная

корреляционная матрица системы (V_1,V_2,U_1,U_2) имеет вид $\begin{pmatrix} 1 & 0 & 0.5 & 0 \\ 0 & 1 & 0 & -0.5 \\ 0.5 & 0 & 1 & 0 \\ 0 & -0.5 & 0 & 1 \end{pmatrix}$

Найдите взаимную корреляционную функцию $R_{XY}(t_1,t_2)$ и значение этой функции при $t_1=0,\,t_2=1.$ Найдите $R_{YX}(t_1,t_2)$ и значение этой функции при $t_1=0,\,t_2=1.$

Решение. Найдем математические ожидания

$$m_X(t)=M[V_1\cos\omega_1t\ +V_2\sin\omega_1t]=\cos\omega_1t\ MV_1+\sin\omega_1t\ MV_2=0,$$
 му таблицы найдем ковариации

$$\begin{aligned} \cos{(V_1,U_1)} &= 0.5 \cdot \sqrt{DU_1 \cdot DV_1} = 1, \cos{(V_2,U_2)} = -0.5 \cdot \sqrt{DU_1 \cdot DU_1} = -2, \\ \cos{(V_1,V_2)} &= \cos{(V_1,U_2)} = \cos{(V_2,U_1)} = \cos{(U_1,U_2)} = 0, \text{ To} \\ R_{XY}(t_1,t_2) &= M[(V_1\cos{\omega_1t_1} + V_2\sin{\omega_1t_1})(U_1\cos{\omega_2t_2} + U_2\sin{\omega_2t_2})] = \\ &= M[V_1U_1\cos{\omega_1t_1}\cos{\omega_2t_2} + V_1U_2\cos{\omega_1t_1}\sin{\omega_2t_2} + V_2U_1\sin{\omega_1t_1}\cos{\omega_2t_2} \\ &+ V_2U_2\sin{\omega_1t_1}\sin{\omega_2t_2}] = \cos{\omega_1t_1}\cos{\omega_2t_2} - 2\sin{\omega_1t_1}\sin{\omega_2t_2}. \end{aligned}$$

Следовательно, $R_{XY}(0,1) = \cos \omega_2$.

Аналогично,

$$\begin{split} R_{YX}(t_1,t_2) &= M[(U_1\cos\omega_2t_1\ + U_2\sin\omega_2t_1)(V_1\cos\omega_1t_2\ + V_2\sin\omega_1t_2)] = \\ &= M[V_1U_1\cos\omega_2t_1\cos\omega_1t_2\ + U_1V_2\cos\omega_2t_1\sin\omega_1t_2 + U_2V_1\sin\omega_2t_1\cos\omega_1t_2\\ &\quad + U_2V_2\sin\omega_2t_1\sin\omega_1t_2] = \cos\omega_2t_1\cos\omega_1t_2 - 2\sin\omega_2t_1\sin\omega_1t_2. \end{split}$$
 Следовательно, $R_{YX}(0,1) = \cos\omega_1.$

Пример 5. Имеются два некоррелированных случайных процесса X(t) и Y(t) с характеристиками $m_X(t)=t^2$, $m_Y(t)=1$, $K_X(t_1,t_2)=e^{\alpha_1(t_1+t_2)}$, $K_Y(t_1,t_2)=e^{\alpha_2(t_1-t_2)}$. Найдите характеристики случайного процесса $Z(t)=X(t)+tY(t)+t^2$. Решите ту же задачу, если случайные процессы X(t) и Y(t) коррелированны, а их взаимная корреляционная функция равна $R_{XY}(t_1,t_2)=ae^{-\alpha|t_2-t_1|}$.

Решение.

Найдем математическое ожидание:

$$m_Z(t)=M[X(t)+tY(t)+t^2]=m_X(t)+tm_Y(t)+t^2=t^2+t+t^2=2t^2+t,$$
 Если случайные процессы $X(t)$ и $Y(t)$ некоррелированные, то
$$K_Z(t_1,t_2)=M[(X(t_1)+t_1Y(t_1)+t_1^2-2t_1^2-t_1)(X(t_2)+t_2Y(t_2)+t_2^2-2t_2^2-t_2)]=\\=M[ig((X(t_1)-t_1^2)+t_1(Y(t_1)-1)ig)ig((X(t_2)-t_2^2)+t_2(Y(t_2)-1)ig)ig]=\\=M[(X(t_1)-t_1^2)(X(t_2)-t_2^2)+(X(t_1)-t_1^2)t_2(Y(t_2)-1)+t_1(Y(t_1)-1)(X(t_2)-t_2^2)+\\t1t2Yt1-1Yt2-1=KXt1,t2+t1t2KYt1,t2=ea1(t1+t2)+t1t2ea2(t1-t2),$$
 откуда $D_Z(t)=K_Z(t,t)=e^{2a_1t}+t^2.$

В предположении коррелированности X(t) и Y(t) получим:

$$K_Z(t_1, t_2) = K_X(t_1, t_2) + t_2 R_{XY}(t_1, t_2) + t_1 R_{XY}(t_2, t_1) + t_1 t_2 K_Y(t_1, t_2) =$$

$$= e^{\alpha_1(t_1 + t_2)} + t_2 a e^{-\alpha|t_2 - t_1|} + t_1 a e^{-\alpha|t_1 - t_2|} + t_1 t_2 e^{\alpha_2(t_1 - t_2)} =$$

$$=e^{\alpha_1(t_1+t_2)}+a(t_1+t_2)e^{-\alpha|t_2-t_1|}+t_1t_2e^{\alpha_2(t_1-t_2)}.$$

В этом случае $D_7(t) = K_7(t,t) = e^{2\alpha_1 t} + t^2 + 2at$.

Задачи для самоконтроля.

- **1.** Случайный процесс $X(t) = Ve^{4t}$, где V случайная величина. Найдите сечения СП X(t), соответствующие фиксированным значениям аргумента: a) $t_1 = 3$; б) $t_2 = 4\pi$. Ответ: a) Ve^{12} ; б) $Ve^{16\pi}$.
- **2.** Найдите математическое ожидание, корреляционную функцию и дисперсию СП $X(t) = U \sin 7t$, где U- случайная величина с MU = 4, DU = 0,2,.

Other:
$$m_X(t) = 4 \sin 7t$$
, $K_X(t_1, t_2) = 0.2 \sin 7t_1 \sin 7t_2$, $D_X(t) = 0.2 \sin^2 7t$.

3. Случайный процесс $X(t) = U \sin 4t$, где U - случайная величина, равномерно распределенная на интервале (3; 5). Найдите математическое ожидание, корреляционную функцию и дисперсию случайного процесса X(t).

Other:
$$m_X(t) = 4 \sin 4t$$
, $K_X(t_1, t_2) = \frac{1}{3} \sin 4t_1 \sin 4t_2$, $D_X(t) = \frac{1}{3} \sin^2 4t$.

4. Случайный процесс $X(t) = V(t + t^3)$, где V случайная величина, равномерно распределенная на интервале (-2; 2). Найдите математическое ожидание, корреляционную функцию, дисперсию и одномерную плотность распределения случайного процесса X(t).

Other:
$$m_X(t) = 0$$
, $K_X(t_1, t_2) = \frac{4}{3}(t_1 + t_1^3)(t_2 + t_2^3)$, $D_X(t) = \frac{4}{3}(t + t^3)^2$,

$$p_{X(t)}(x) = \begin{cases} \frac{1}{4(t+t^3)}, & |x| < 2|t+t^3| \\ 0, & |x| > 2|t+t^3| \end{cases}.$$

5. Задана корреляционная функция $K_X(t_1,t_2)=t_1t_2e^{-|t_2-t_1|}$ случайного процесса X(t). Найдите нормированную корреляционную функцию.

Otbet:
$$r_X(t_1, t_2) = e^{-|t_2 - t_1|} sign(t_1 t_2)$$
.

6. Найдите математическое ожидание, корреляционную функцию и дисперсию случайного процесса $X(t) = 1 + Ut^{-3t} + Ve^{-5t}$, если двумерная плотность распределения

вероятностей вектора (*U*, *V*) имеет вид:
$$f(x_1; x_2) = \frac{1}{24\pi} \exp\left\{-\left(\frac{(x_1-4)^2}{32} + \frac{(x_2-2)^2}{18}\right)\right\}$$
.

Other:
$$m_X(t) = 1 + 4e^{-3t} + 2e^{-2t}$$
, $K_X(t_1, t_2) = 16e^{-3(t_1 + t_2)} + 9e^{-5(t_1 + t_2)}$, $D_X(t) = 16e^{-6t} + 9e^{-10t}$.

- **7.** Докажите, что корреляционная функция случайного процесса X(t) равна корреляционной функции центрированного случайного процесса $\check{X}(t) = X(t) m_X(t)$.
- **8.** Известна дисперсия $D_X(t)$ случайного процесса X(t). Найдите дисперсию случайного процесса Y(t) = X(t) + 3.

Ответ. $D_Y(t) = D_X(t)$.

9. Известна дисперсия $D_X(t)$ случайного процесса X(t). Найдите дисперсию случайного процесса Y(t) = (t+4)X(t).

Otbet. $D_Y(t) = (t+4)^2 D_X(t)$.

10. На вход усилительного звена подается случайный процесс X(t), математическое ожидание и корреляционная функция которого: $m_X(t) = t$, $K_X(t_1, t_2) = e^{-\alpha(t_2 - t_1)^2}$, $\alpha > 0$. Найдите: а) математическое ожидание; б) корреляционную функцию выходного случайного процесса Y(t), если коэффициент усиления k = 5.

Otbet: $m_X(t) = 5t$, $K_X(t_1, t_2) = 25e^{-\alpha(t_2 - t_1)^2}$.

- **11.** Известна к.ф. $K_X(t_1,t_2)$ случайного процесса X(t). Найдите корреляционную функцию случайного процесса: а) Y(t)=X(t)(t+2); б) Z(t)=CX(t), где C постоянная. Ответ: а) $K_Y(t_1,t_2)=(t+2)^2K_X(t_1,t_2)$, б) $K_Z(t_1,t_2)=C^2K_X(t_1,t_2)$.
- **12.** Случайный процесс X(t) задан в виде X(t) = Vt + b, где V случайная величина, распределенная по нормальному закону с параметрами m_V и σ_V , b неслучайная величина. Найдите плотность распределения f(x,t) сечения случайного процесса X(t) и его характеристики $m_X(t)$, $K_X(t_1,t_2)$, $D_X(t)$.

Otbet:
$$f(x,t) = \frac{1}{\sqrt{2\pi}\sigma_V t} \exp\left\{-\frac{(x-m_V t-b)^2}{2\sigma_V^2 t^2}\right\}, m_X(t) = m_V t + b, K_X(t_1,t_2) = t_1 t_2 \sigma_V^2,$$

$$D_X(t) = t^2 \sigma_V^2.$$

- **13.** Докажите, что к. ф. произведения двух центрированных некоррелированных случайных процессов равна произведению к. ф. сомножителей.
- **14.** Дан случайный процесс $X(t) = t + e^{-4t} + U_1 \cos t + U_2 \sin t + V_1 \cos 3t + V_2 \sin 3t$, где U_1, U_2, V_1 и V_2 попарно некоррелированные случайные величины, $MU_1 = MU_2 = MV_1 = MV_2 = 0$, $DU_1 = DU_2 = 2$, $DV_1 = DV_2 = 1$. Найдите математическое ожидание, корреляционную функцию и дисперсию случайного процесса X(t).

Otbet:
$$m_X(t) = t + e^{-4t}$$
, $K_X(t_1, t_2) = 2\cos(t_1 - t_2) + \cos 3(t_1 - t_2)$, $D_X(t) = 3$.

15. Найдите взаимную корреляционную функцию двух случайных процессов $X(t) = Ue^t$ и $Y(t) = Ut^3$, где U случайная величина, причем DU = 5.

Ответ: $R_{XY}(t_1, t_2) = 5e^{t_1}t_2^3$.

16. Найдите нормированную взаимную корреляционную функцию двух случайных процессов X(t) = (t+1)U и Y(t) = tU, где U - случайная величина, причем DU = 10.

Ответ:
$$R_{XY}(t_1, t_2) = 10(t_1 + 1)t_2$$
.

- **17.** Докажите, что взаимная к. ф. двух случайных процессов X(t) и Y(t) равна взаимной к. ф. центрированных случайных процессов $\check{X}(t)$ и $\check{Y}(t)$.
- **18.** Случайный процесс X(t) в каждом сечении представляет собой непрерывную случайную величину с плотностью распределения f(x,t). Напишите выражения для математического ожидания M[X(t)] и дисперсии D[X(t)].

Other:
$$M[X(t)] = \int_{-\infty}^{\infty} x f(x,t) dx$$
, $D[X(t)] = \int_{-\infty}^{\infty} x^2 f(x,t) dx - \left(\int_{-\infty}^{\infty} x f(x,t) dx\right)^2$.

19. Задан случайный процесс $X(t) = Ue^{-at} + Ve^{-bt}$, где U и V - некоррелированные СВ, для которых $m_U = m_V = 0$, $D_U = D_V = D$. Найдите характеристики случайного процесса X(t).

Otbet:
$$m_X(t) = 0$$
, $K_X(t_1, t_2) = \left(e^{-a(t_1 + t_2)} + e^{-b(t_1 + t_2)}\right)D$, $D_X(t) = \left(e^{-2at} + e^{-2bt}\right)D$.

20. Случайный процесс X(t) задан своим каноническим разложением $X(t) = \sum_{i=1}^{n} V_i e^{-a_i t} + b$, где V_i - центрированные случайные величины с дисперсиями D_{V_i} , i = 1,2,...,n,

 $M[V_iV_j]=0$ при $i\neq j,a$ - неслучайная величина. Найдите характеристики СП X(t).

Otbet:
$$m_X(t) = b$$
, $K_X(t_1, t_2) = \sum_{i=1}^n e^{-a_i(t_1 + t_2)} D_{V_i}$, $D_X(t) = \sum_{i=1}^n e^{-2a_i t} D_{V_i}$.

3. Дифференцирование случайных процессов.

Определение. Говорят, что последовательность случайных величин $X_1, X_2, ...$ сходится в смысле среднего квадратичного к случайной величине X, если математическое ожидание квадрата разности $X_n - X$ стремится к нулю при $n \to \infty$: $\lim_{n \to \infty} M[(X_n - X)^2] = 0$. Случайную величину X называют пределом в среднеквадратичном последовательности случайных величин $X_1, X_2, ...$ и пишут:

$$X = l.i.m.X_n$$
.

Определение. Случайная величина η называется пределом ϵ смысле среднего квадратичного случайной функции $\xi(t)$ при $t \to a$, если математическое ожидание квадрата разности $\xi(t) - \eta$ стремится к нулю при $n \to \infty$: $\lim_{n \to \infty} M[(\xi(t) - \eta)^2] = 0$,

$$\eta = l.i.m.\xi(t).$$

Определение. Случайный процесс X(t) называют *дифференцируемым*, если существует такой процесс X'(t) (его называют *производной*), что

$$l.i.m. \left[\frac{X(t + \Delta t) - X(t)}{\Delta t} - X'(t) \right].$$

Определение. *Производной случайного процесса X'*(t) называют среднеквадратичный предел отношения приращения процесса к приращению аргумента Δt при $\Delta t \to 0$:

$$X'(t) = \lim_{\Delta t \to 0} \frac{X(t + \Delta t) - X(t)}{\Delta t}.$$

Теорема 1. Математическое ожидание производной X'(t) от случайного процесса X(t) равно производной от его математического ожидания: $m_{X'}(t) = (m_X(t))'$.

Теорему 1 можно обобщить: математическое ожидание производной порядка n от случайного процесса равно производной этого же порядка от его математического ожидания.

Теорема 2. Корреляционная функция производной X'(t) от случайного процесса X(t) равна второй смешанной производной от его корреляционной функции:

$$K_{X'}(t_1,t_2) = \frac{\partial^2 K_X(t_1,t_2)}{\partial t_1 \partial t_2}.$$

Теорема 3. Взаимная корреляционная функция случайного процесса X(t) и его производной X'(t) равна частной производной от корреляционной функции по соответствующему аргументу: $R_{XX}(t_1,t_2) = \frac{\partial K_X(t_1,t_2)}{\partial t_2}, \ R_{X'X}(t_1,t_2) = \frac{\partial K_X(t_1,t_2)}{\partial t_1}.$

Пример 1. Известно, что M[X(t)] = 2t + 1, $K_X(t_1, t_2) = e^{-(t_2 - t_1)^2}$. Найдите математическое ожидание, корреляционную функцию и дисперсию процесса Y(t) = X'(t).

Решение. Согласно теореме 1 $m_Y(t)=\frac{d}{dt}M[X(t)]=(2t+1)'=2.$ Используя теорему 2, находим $K_Y(t_1,t_2)=\frac{\partial^2}{\partial t_1\partial t_2}K_X(t_1,t_2)=\frac{\partial^2}{\partial t_1\partial t_2}e^{-(t_2-t_1)^2}=$ $=-\frac{\partial}{\partial t_1}e^{-(t_2-t_1)^2}\big(2(t_2-t_1)\big)=-e^{-(t_2-t_1)^2}(4(t_2-t_1)^2-2)=2e^{-(t_2-t_1)^2}(1-2(t_2-t_1)^2).$ Откуда $D_Y(t)=K_Y(t,t)=2.$

Пример 2. Дифференцируемый в смысле среднего квадратичного случайный процесс X(t) имеет математическое ожидание $m_X(t)$ и корреляционную функцию $K_X(t_1,t_2)$. Найдите математическое ожидание, дисперсию и корреляционную функцию случайного процесса Y(t) = X(t) + X'(t).

Решение. По свойствам математического ожидания и теореме 1имеем:

$$m_Y(t) = M[X(t) + X'(t)] = M[X(t)] + M[X'(t)] = m_X(t) + (m_X(t))'.$$

Далее используем теоремы 2 и 3:

$$K_Y(t_1, t_2) = M \left[\left(X(t_1) + X'(t_1) - m_X(t_1) - m_{X'}(t_1) \right) \left(X(t_2) + X'(t_2) - m_X(t_2) - m_{X'}(t_2) \right) \right] = M \left[\left(X(t_1) + X'(t_1) - m_X(t_1) - m_{X'}(t_1) \right) \left(X(t_2) + X'(t_2) - m_X(t_2) - m_{X'}(t_2) \right) \right] = M \left[\left(X(t_1) + X'(t_1) - m_X(t_1) - m_X(t_1) \right) \right] = M \left[\left(X(t_1) + X'(t_1) - m_X(t_1) - m_X(t_1) \right) \right] = M \left[\left(X(t_1) + X'(t_1) - m_X(t_1) - m_X(t_1) \right) \right] = M \left[\left(X(t_1) + X'(t_1) - m_X(t_1) - m_X(t_1) \right) \right] = M \left[\left(X(t_1) + X'(t_1) - m_X(t_1) - m_X(t_1) \right) \right] = M \left[\left(X(t_1) + X'(t_1) - m_X(t_1) - m_X(t_1) \right) \right] = M \left[\left(X(t_1) + X'(t_1) - m_X(t_1) - m_X(t_1) \right) \right] = M \left[\left(X(t_1) + X'(t_1) - m_X(t_1) - m_X(t_1) \right) \right] = M \left[\left(X(t_1) + X'(t_1) - m_X(t_1) - m_X(t_1) \right) \right] = M \left[\left(X(t_1) + X'(t_1) - m_X(t_1) - m_X(t_1) \right) \right] = M \left[\left(X(t_1) + X'(t_1) - m_X(t_1) - m_X(t_1) \right) \right] = M \left[\left(X(t_1) + X'(t_1) - m_X(t_1) - m_X(t_1) \right) \right] = M \left[\left(X(t_1) + X'(t_1) - m_X(t_1) - m_X(t_1) \right) \right]$$

$$= M \Big[\big(X(t_1) - m_X(t_1) \big) \big(X(t_2) - m_X(t_2) \big) + \big(X(t_1) - m_X(t_1) \big) \big(X'(t_2) - m_{X'}(t_2) \big) + \\ X't1 - mX't1Xt2 - mXt2 + X't1 - mX't1X't2 - mX't2 = \\ = K_X(t_1, t_2) + R_{XX'}(t_1, t_2) + R_{X'X}(t_1, t_2) + K_{X'}(t_1, t_2) = \\ = K_X(t_1, t_2) + \frac{\partial}{\partial t_1} K_X(t_1, t_2) + \frac{\partial}{\partial t_2} K_X(t_1, t_2) + \frac{\partial^2}{\partial t_1 \partial t_2} K_X(t_1, t_2).$$
Тогда $D_Y(t) = K_Y(t, t) = K_X(t, t) + 2 \frac{\partial}{\partial t} K_X(t, t) + \frac{\partial^2}{\partial t^2} K_X(t, t).$

Пример 3. Траектория космического летательного аппарата в вертикальной плоскости изображается двумя уравнениями: $X(t) = At^2 + Bt + C$, $Y(t) = Et^2 + Ft + H$. Коэффициенты A, B, C, E, F, H являются случайными, так как определяются из опыта с ошибками. Номинальные значения величин A, B, C, E, F, H равны a, b, c, e, f, h, соответственно. Ошибки $\Delta A, \Delta B, \Delta C, \Delta E, \Delta F, \Delta H$ представляют собой случайные величины с математическими ожиданиями, равными нулю, и дисперсиями $D_A, D_B, D_C, D_E, D_F, D_H$. Нормированная корреляционная матрица этих ошибок имеет вид

$$\begin{pmatrix} 1 & 0,4 & -0,2 & 0 & 0 & 0 \\ 0,4 & 1 & 0,3 & 0 & 0 & 0 \\ -0,2 & 0,3 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0,7 & -0,2 \\ 0 & 0 & 0 & 0,7 & 1 & 0,5 \\ 0 & 0 & 0 & -0,2 & 0,5 & 1 \end{pmatrix}.$$
 Найдите математическое ожидание,

корреляционную функцию и дисперсию случайных функций V(t) и U(t), представляющих собой горизонтальную и вертикальную составляющие скорости снаряда.

Решение. Найдем производные: V(t) = X'(t) = 2At + B, U(t) = Y'(t) = 2Et + F. Тогда M[V(t)] = M[2At + B] = 2tMA + Mb = 2ta + b, аналогично M[U(t)] = 2te + f.

Вычислим корреляционную функцию процесса V(t):

$$K_{V}(t_{1}, t_{2}) = M[(2At_{1} + B - 2at_{1} - b)(2At_{2} + B - 2at_{2} - b)] =$$

$$= M[(2t_{1}(A - a) + B - b)(2t_{2}(A - a) + B - b)] = 4t_{1}t_{2}D_{A} + 2(t_{1} + t_{2})cov(A, B) + D_{B} =$$

$$= 4t_{1}t_{2}D_{A} + 2(t_{1} + t_{2})0,4\sqrt{D_{A}D_{B}} + D_{B} = 4t_{1}t_{2}D_{A} + 0,8(t_{1} + t_{2})\sqrt{D_{A}D_{B}} + D_{B}.$$

Тогда $D_V(t) = K_V(t,t) = 4t^2D_A + 1,6t\sqrt{D_AD_B} + D_B.$

Характеристики процесса U(t) находятся аналогично:

$$K_U(t_1,t_2) = 4t_1t_2D_E + 1,4(t_1+t_2)\sqrt{D_ED_F} + D_F, \ D_U(t) = 4t^2D_E + 2,8t\sqrt{D_ED_F} + D_F.$$

Задачи для самоконтроля.

1. Задано математическое ожидание $M[X(t)] = t^3 - 2t^2 + 1$ случайного процесса X(t). Найдите математическое ожидание его производной.

Otbet:
$$m_{X'}(t) = 3t^2 - 4t$$
.

- **2.** Задан случайный процесс X(t) с математическим ожиданием $M[X(t)] = 5 \sin t + t^2$ и корреляционной функцией $K_X(t_1,t_2) = 3t_1t_2\cos(t_1-t_2)$. Найдите математическое ожидание, корреляционную функцию и дисперсию случайного процесса Y(t) = X'(t). Ответ: $m_Y(t) = 5\cos t + 2t$, $K_Y(t_1,t_2) = 3(t_1t_2+1)\cos(t_1-t_2)$, $D_Y(t) = 3(t^2+1)$.
- 3. Задан случайный процесс $X(t) = Ue^{3t} \sin 2t$, где случайная величина U имеет характеристики MU = 2, DU = 3. Найдите математическое ожидание, дисперсию и корреляционную функцию случайного процесса Y(t) = X'(t).

Other: $m_Y(t) = 2e^{3t}(3\sin 2t + 2\cos 2t), K_Y(t_1, t_2) = 3e^{3(t_1 + t_2)}(9\sin 2t_1\sin 2t_2 + 6\sin 2(t1+t2) + 4\cos 2t1\cos 2t2, DYt = 3e6t9\sin 2t + 6\sin 4t + 4\cos 2t.$

- **4.** Найдите математическое ожидание, корреляционную функцию и дисперсию случайного процесса Y(t) = X'(t), если $X(t) = 5 + 2t + Ut^2 + Vt^4$, где U и V некоррелированные СВ, для которых $m_U = m_V = 0$, $D_U = 1$, $D_V = 0$, 2. Ответ: $m_Y(t) = 2$, $K_Y(t_1, t_2) = 4 t_1 t_2 + 3$, $2 t_1^3 t_2^3$, $D_Y(t) = 4t^2 + 3$, $2 t_1^6$.
- **5.** Дифференцируемый в смысле среднего квадратичного случайный процесс $X(t) = Ut + V\cos t$, где случайный вектор (U,V) имеет математическое ожидание (1;-1) и ковариационную матрицу $\begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}$. Найдите математическое ожидание, дисперсию и корреляционную функцию процесса Y(t) = X'(t). Ответ: $m_Y(t) = 1 + \sin t$, $K_Y(t_1, t_2) = 2 \sin t_1 \sin t_2 + 3\sin t_1\sin t_2$, $D_Y(t) = 2 \sin t + 3\sin^2 t$.
- **6.** Найдите математическое ожидание, дисперсию и корреляционную функцию процесса Y(t) = X'(t), если $X(t) = t + U \cos t + V \sin t$, где случайный вектор (U,V) имеет математическое ожидание (-1/2;1) и ковариационную матрицу $\begin{pmatrix} 3 & -2 \\ -2 & 2,9 \end{pmatrix}$.

Other: $m_Y(t) = 1 + 0.5 \sin t + \cos t$, $K_Y(t_1, t_2) = 3 \sin t_1 \sin t_2 + 2 \sin(t_1 + t_2) + 2.9 \cos t_1 \cos t_2$, $D_Y(t) = 3 \sin^2 t + 2 \sin 2t + 2.9 \cos^2 t$.

- 7. Случайный процесс X(t) имеет характеристики M[X(t)]=1, $K_X(t_1,t_2)=e^{\alpha(t_2+t_1)}$. Найдите характеристики случайного процесса Y(t)=tX'(t)+1. Ответ: $m_Y(t)=1$, $K_Y(t_1,t_2)=\alpha^2t_1t_2e^{\alpha(t_2+t_1)}$, $D_Y(t)=\alpha^2t^2e^{2\alpha t}$.
- 8. Случайный процесс X(t) имеет вид: $X(t) = V \cos \omega t$, где V случайная величина с характеристиками MV = 2, $\sigma_V = 3$. Найдите характеристики случайного процесса Y(t) = kX'(t) + X(t), где k неслучайная величина. Ответ: $m_V(t) = -2k\omega \sin \omega t + 2\cos \omega t$, $D_V(t) = 3k^2\omega^2 \sin^2 \omega t 3k\omega \sin 2\omega t + 3\cos^2 \omega t$,

$$K_Y(t_1,t_2) = 3k^2\omega^2\sin\omega t_1\sin\omega t_2 - 3k\omega\sin\omega (t_1+t_2) + 3\cos\omega t_1\cos\omega t_2.$$

9. Случайный процесс X(t) имеет характеристики: $m_X(t) = t^2 - 3$, $K_X(t_1, t_2) = 2e^{-\alpha(t_2 - t_1)^2}$. Найдите характеристики следующих случайных процессов: $Y(t) = tX(t) + t^2 + 1$,

$$Z(t) = 2tX'(t) + (1-t)^2, U(t) = X''(t) + 1.$$

Other:
$$m_Y(t) = t^3 + t^2 - 3t + 1$$
, $K_Y(t_1, t_2) = 2t_1t_2$, $D_Y(t) = 2t^2$;

$$m_Z(t) = 4t^2 - (t-1)^2, \ K_Z(t_1,t_2) = 16\alpha t_1 t_2 e^{-\alpha(t_2-t_1)^2} (1 - 2\alpha(t_2-t_1)^2), \ D_Z(t) = 16\alpha t^2;$$

$$m_U(t) = 3, \ K_U(t_1,t_2) = 8\alpha^2 e^{-\alpha(t_2-t_1)^2} [4\alpha^2(t_2-t_1)^4 - 12\alpha(t_2-t_1)^2 + 3], D_U(t) = 24\alpha^2.$$

10. Найдите корреляционную функцию и дисперсию случайного процесса Y(t) = X(t) + X'(t), если а) $K_X(t_1, t_2) = a^2 \sin \omega t_1 \sin \omega t_2$; б) $K_X(t_1, t_2) = e^{-2(t_2 + t_1)} \cos(t_2 - t_1)$.

Other: a)
$$K_Y(t_1, t_2) = a^2 \sin \omega t_1 \sin \omega t_2 + a^2 \omega \sin \omega (t_1 + t_2) + a^2 \omega^2 \cos \omega t_1 \cos \omega t_2$$
,

$$D_Y(t) = a^2 \sin^2 \omega t + a^2 \omega \sin 2\omega t + a^2 \omega^2 \cos^2 \omega t;$$

6)
$$K_Y(t_1, t_2) = 2e^{-2(t_2+t_1)}\cos(t_2-t_1), D_Y(t) = 2e^{-4t}$$

- **11.** Докажите свойства (теорема 3): а) $R_{XX^+}(t_1,t_2) = \frac{\partial K_X(t_1,t_2)}{\partial t_2}$; б) $R_{X^+X}(t_1,t_2) = \frac{\partial K_X(t_1,t_2)}{\partial t_1}$.
- **12.** Задана корреляционная функция случайного процесса X(t): $K_X(t_1,t_2)=e^{-(t_2-t_1)^2}$. Найдите взаимные корреляционные функции случайного процесса и его производной.

Otbet:
$$R_{XX}(t_1, t_2) = -2(t_2 - t_1)e^{-(t_2 - t_1)^2}$$

13. Известна взаимная корреляционная функция R_{XX} , (t_1, t_2) случайного процесса X(t) и его производной X'(t). Найдите корреляционную функцию производной.

Otbet:
$$K_{X'}(t_1, t_2) = \frac{\partial}{\partial t_1} R_{XX'}(t_1, t_2)$$
.

14. Известна взаимная корреляционная функция $R_{XX}(t_1,t_2) = t_1(t_2+2)e^{t_2+t_1}$ случайного процесса X(t) и его производной X'(t). Найдите корреляционную функцию производной.

Otbet:
$$K_{X'}(t_1, t_2) = (t_1t_2 + 2t_1 + t_2 + 2)e^{t_2+t_1}$$
.

- **15.** Докажите свойства: а) $R_{X''X}(t_1, t_2) = \frac{\partial^2}{\partial t_1^2} K_X(t_1, t_2);$ б) $R_{XX''}(t_1, t_2) = \frac{\partial^2}{\partial t_2^2} K_X(t_1, t_2).$
- **16.** Задана корреляционная функция $K_X(t_1,t_2)=t_1t_2e^{t_2+t_1}$ случайного процесса X(t). Найдите взаимные корреляционные функции случайного процесса и его второй производной.

Otbet:
$$R_{XX''}(t_1, t_2) = (2t_1 + t_1t_2)e^{t_2+t_1}$$
.

17. Задана корреляционная функция $K_X(t_1,t_2)$ случайного процесса X(t). Найдите взаимную корреляционную функцию $R_{YZ}(t_1,t_2)$ случайных процессов Y(t)=aX'(t)+bX(t) и Z(t)=cX'(t)+dX(t), где a,b,c,d - постоянные действительные числа.

Other:
$$R_{YZ''}(t_1, t_2) = ac \frac{\partial^2}{\partial t_1 t_2} K_X(t_1, t_2) + bc \frac{\partial}{\partial t_2} K_X(t_1, t_2) + ad \frac{\partial}{\partial t_1} K_X(t_1, t_2) + bd K_X(t_1, t_2).$$

4. Интегрирование случайных процессов.

Определение. *Интегралом от случайного процесса* X(t) по отрезку [0;t] называют предел в среднеквадратичном интегральной суммы при стремлении к нулю максимальной длины интервала разбиения $d = \max_i \Delta s_i$:

$$Y(t) = \int_{0}^{t} X(s)ds = l.i.m. \sum_{i} X(s'_{i}) \Delta s_{i}.$$

Теорема 1. Математическое ожидание интеграла от случайного процесса равно интегралу от его математического ожидания $m_X(s)$:

$$M\left[\int_{0}^{t} X(s)ds\right] = \int_{0}^{t} m_{X}(s)ds.$$

Теорема 2. Корреляционная функция интеграла $Y(t) = \int_{0}^{t} X(s) ds$ от случайного процесса X(t) равна двойному интегралу от его корреляционной функции $K_X(t_1, t_2)$:

$$K_Y(t_1, t_2) = \int_0^{t_1} \int_0^{t_2} K_X(s_1, s_2) ds_1 ds_2.$$

Теорема 3. Взаимная корреляционная функция случайных процессов X(t) и $Y(t) = \int\limits_0^t X(s) ds$ равна интегралу от корреляционной функции случайного процесса X(t):

$$R_{XY}(t_1, t_2) = \int_{0}^{t_2} K_X(t_1, s) ds.$$

Пример 1. Найдите математическое ожидание, корреляционную функцию и дисперсию случайного процесса $Y(t) = \int\limits_0^t X(s)ds$, если $X(t) = Ue^{3t}\cos 2t$, где случайная величина U имеет характеристики MU = 5, DU = 1.

Решение.

Сначала вычислим математическое ожидание случайного процесса X(t):

$$m_X(t) = M[Ue^{3t}\cos 2t] = e^{3t}\cos 2t MU = 5e^{3t}\cos 2t.$$

Теперь находим математическое ожидание интеграла:

$$M[Y(t)] = \int_{0}^{t} m_X(s) ds = \int_{0}^{t} 5e^{3t} \cos 2t \, ds = \frac{5}{13} [e^{3t} (2\sin 2t + 3\cos 2t) - 3].$$

Для получения корреляционной функции случайного процесса Y(t), предварительно найдем корреляционную функцию случайного процесса X(t). Представив центрированный случайный процесс $\check{X}(t)$ в виде

$$\check{X}(t) = X(t) - m_X(t) = Ue^{3t}\cos 2t - 5e^{3t}\cos 2t = e^{3t}\cos 2t (U - 5),$$
 получим
$$K_X(s_1, s_2) = M \big[\big(e^{3s_1}\cos 2s_1 (U - 5) \big) \big(e^{3s_2}\cos 2s_2 (U - 5) \big) \big] =$$

$$= e^{3(s_1 + s_2)}\cos 2s_1 \cos 2s_2 M \big[(U - 5)^2 \big] = e^{3(s_1 + s_2)}\cos 2s_1 \cos 2s_2.$$

Тогда по теореме 2

$$K_Y(t_1, t_2) = \int_0^{t_1} \int_0^{t_2} K_X(s_1, s_2) \, ds_1 ds_2 = \int_0^{t_1} \int_0^{t_2} e^{3(s_1 + s_2)} \cos 2s_1 \cos 2s_2 \, ds_1 ds_2 =$$

$$= \frac{1}{169} (e^{3t_1} (2\sin 2t_1 + 3\cos 2t_1) - 3) (e^{3t_1} (2\sin 2t_1 + 3\cos 2t_1) - 3).$$

Найдем дисперсию: $D_Y(t) = K_Y(t,t) = \frac{1}{169} [e^{3t}(2\sin 2t + 3\cos 2t) - 3]^2$.

Пример 2. Задан случайный процесс $X(t) = U \cos 3t$, где U - случайная величина, MU = 1, DU = 1.. Найдите математическое ожидание, корреляционную функцию и дисперсию случайного процесса $Y(t) = \frac{1}{t} \int_{0}^{t} X(s) ds$.

Решение.

Сначала вычислим характеристики случайного процесса X(t):

$$m_X(t) = M[U\cos 3t] = \cos 3t MU = \cos 3t,$$

$$K_X(s_1, s_2) = M[(\cos 3s_1 (U - 1))(\cos 3s_2 (U - 1))] = \cos 3s_1 \cos 3s_2.$$

Теперь находим математическое ожидание интеграла $Z(t) = \int_0^t X(s) ds$:

$$m_Z(t) = M \left[\int_0^t X(s) ds \right] = \int_0^t m_X(s) ds = \int_0^t \cos 3t \, ds = \frac{1}{3} \sin 3t.$$

Для получения корреляционной функции случайного процесса Z(t), проинтегрируем $K_X(s_1,s_2)$ согласно теореме 2

$$K_Z(t_1, t_2) = \int_0^{t_1} \int_0^{t_2} K_X(s_1, s_2) \, ds_1 ds_2 = \int_0^{t_1} \int_0^{t_2} \cos 3s_1 \cos 3s_2 \, ds_1 ds_2 = \frac{1}{9} \sin 3t_1 \sin 3t_2.$$

Далее, поскольку $Y(t) = \frac{1}{t}Z(t)$, то $m_Y(t) = \frac{1}{t}m_Z(t) = \frac{1}{3t}\sin 3t$.

$$K_Y(t_1, t_2) = M[(Y(t_1) - m_Y(t_1))(Y(t_2) - m_Y(t_2))] =$$

$$=\frac{1}{t_1t_2}M[(Z(t_1)-m_Z(t_1))(Z(t_2)-m_Z(t_2))]=\frac{1}{t_1t_2}K_Z(t_1,t_2)=\frac{1}{9t_1t_2}\sin 3t_1\sin 3t_2.$$

Следовательно, $D_Y(t) = K_Y(t,t) = \frac{1}{9t^2} \sin^2 3t$.

Задачи для самоконтроля.

- **1.** Найдите математическое ожидание случайного процесса $Y(t) = \int\limits_0^t X(s)ds$, зная математическое ожидание $m_X(t)$ случайного процесса X(t): а) $m_X(t) = 4\cos^2 t$; б) $m_X(t) = t^2 \sin 3t$. Ответ: а) $m_Y(t) = 2t + \sin 2t$; б) $m_Y(t) = \frac{1}{3}(t^3 + \cos 3t 1)$.
- **2.** Найдите математическое ожидание случайного процесса $Y(t) = \int\limits_0^t X(s)ds$, зная случайный процесс $X(t) = U \sin^2 t$, где U случайная величина, MU = 2. Ответ: $m_Y(t) = t \frac{1}{2} \sin 2t$.
- **3.** Найдите математическое ожидание случайного процесса $Y(t) = (t^2 + 4) \int\limits_0^t X(s) ds$, если $X(t) = U \cos^2 t$, где U случайная величина, MU = 3. Ответ: $m_Y(t) = \frac{3}{4}(t^2 + 4)(2t + \sin 2t)$.
- **4.** Случайный процесс X(t) имеет характеристики M[X(t)] = 0, $K_X(t_1, t_2) = \frac{1}{1 + (t_2 t_1)^2}$. Найдите характеристики случайного процесса $Y(t) = \int\limits_0^t X(s) ds$. Ответ: $m_Y(t) = 0$, $D_Y(t) = 2t \arctan t \ln(1 + t^2)$,

 $K_X(t_1, t_2) = t_1 \arctan t_1 + t_2 \arctan t_2 - (t_1 - t_2) \arctan (t_1 - t_2) + \frac{1}{2} \ln \frac{1 + (t_1 - t_2)^2}{(1 + t_1^2)(1 + t_2^2)}.$

5. Задана корреляционная функция $K_X(t_1,t_2)=\sin\omega t_1\sin\omega t_2$ случайного процесса X(t). Найдите корреляционную функцию и дисперсию случайного процесса $Y(t)=\int\limits_0^t X(s)ds$. Ответ: $K_X(t_1,t_2)=\frac{1}{\omega^2}(1-\cos\omega t_1)(1-\cos\omega t_2),\; D_Y(t)=\frac{1}{\omega^2}(1-\cos\omega t)^2.$

6. Задан случайный процесс $X(t) = 4 + Ut^2 + Vt^3$, где U и V - некоррелированные случайные величины, MU = MV = 0, DU = 3, DV = 6. Найдите математическое ожидание, корреляционную функцию и дисперсию случайного процесса $Y(t) = \int\limits_0^t X(s)ds$.

Other: $m_Y(t) = 4t$, $K_X(t_1, t_2) = \frac{1}{3}t_1^3t_2^3 + \frac{3}{8}t_1^4t_2^4$, $D_Y(t) = \frac{1}{3}t^6 + \frac{3}{8}t^8$.

7. Найдите математическое ожидание, корреляционную функцию и дисперсию случайного процесса $Y(t) = \int\limits_0^t X(s)ds$, если $X(t) = Ut + V\cos t$, а случайный вектор (U,V) имеет математическое ожидание (1;-1) и ковариационную матрицу $\begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}$. Ответ: $m_Y(t) = \frac{t^2}{2} - \sin t$, $K_X(t_1,t_2) = \frac{1}{2}t_1^2t_2^2 + \frac{t_1^2}{2}\sin t_2 + \frac{t_2^2}{2}\sin t_1 + 3\sin t_1\sin t_2$,

Other: $m_Y(t) = \frac{t^2}{2} - \sin t$, $K_X(t_1, t_2) = \frac{1}{2}t_1^2t_2^2 + \frac{t_1^2}{2}\sin t_2 + \frac{t_2^2}{2}\sin t_1 + 3\sin t_1\sin t_2$. $D_Y(t) = \frac{1}{2}t^4 + t^2\sin t + 3\sin^2 t.$

- 8. Найдите дисперсию интеграла $Y(t) = \int_0^t X(s)ds$, зная корреляционную функцию случайного процесса X(t): а) $K_X(t_1,t_2) = 2t_1^2t_2^2 + 3t_1t_2$; б) $K_X(t_1,t_2) = t_1t_2e^{t_1+t_2}$. Ответ: а) $D_Y(t) = \frac{2}{9}t^6 + \frac{3}{4}t^4$; б) $D_Y(t) = (te^t e^t + 1)^2$.
- **9.** Задана корреляционная функция случайного процесса X(t): $K_X(t_1,t_2)=e^{-(t_1+t_2)}$. Найдите корреляционную функцию случайного процесса $Y(t)=t\int\limits_0^t X(s)ds$.

Otbet: $K_X(t_1, t_2) = t_1 t_2 (1 - e^{-t_1}) (1 - e^{-t_1}).$

10. Найдите математическое ожидание, корреляционную функцию и дисперсию случайного процесса $Y(t) = \frac{1}{2t^2} \int\limits_0^t X(s) ds$, если $X(t) = Ue^{at}$, где a - постоянная величина, U - случайная величина, MU = 1, DU = 3.

Other: $m_Y(t) = \frac{1}{2at^2}(e^{at} - 1)$, $K_X(t_1, t_2) = \frac{3}{4a^2t_1^2t_2^2}(e^{at_1} - 1)(e^{at_2} - 1)$, $D_Y(t) = \frac{1}{4a^2t^4}(e^{at} - 1)^2$.

11. Случайный процесс X(t) имеет характеристики: $m_X(t) = 3 + 4t$, $K_X(t_1, t_2) = 10e^{-2|t_1 - t_2|}$. Найдите математическое ожидание и дисперсию случайного процесса $Y(t) = \int\limits_0^t X(s)ds$.

Other: $m_Y(t) = 3t + 2t^2$, $D_Y(t) = 10t + 5e^{-2t} - 5$.

- **12.** Докажите, что если известна корреляционная функция $K_X(t_1,t_2)$ случайного процесса X(t), то взаимные корреляционные функции случайных процессов X(t) и $Y(t) = \int\limits_0^t X(s)ds$ выражаются интегралами: а) $R_{XY}(t_1,t_2) = \int\limits_0^{t_2} K_X(t_1,s)ds$; б) $R_{YX}(t_1,t_2) = \int\limits_0^t K_X(s,t_2)ds$ (теорема 3).
- **13.** Найдите взаимные корреляционные функции случайных процессов X(t) и $Y(t) = \int_0^t X(s)ds$, если известна корреляционная функция $K_X(t_1,t_2)$ случайного процесса X(t):

a)
$$K_X(t_1, t_2) = t_1 t_2 e^{t_1 + t_2}$$
; 6) $K_X(t_1, t_2) = 4t_1 t_2 + 8$.

Otbet: a)
$$R_{XY}(t_1, t_2) = t_1 t_2 e^{t_1 + t_2} - t_1 e^{t_1 + t_2} + t_1 e^{t_1}$$
; 6) $R_{XY}(t_1, t_2) = 2t_1 t_2^2 + 8t_2$.

5. Домашнее задание «СЛУЧАЙНЫЕ ПРОЦЕССЫ-1»

Задан случайный процесс X(t). Найдите:

- 1) Математическое ожидание $m_X(t) = M[X(t)]$, корреляционную функцию $K_X(t_1, t_2)$ и дисперсию $D_X(t)$ случайного процесса X(t);
- 2) Математическое ожидание, корреляционную функцию и дисперсию случайного процесса $Y_1(t) = \frac{dX(t)}{dt}$;
- 3) Математическое ожидание, корреляционную функцию и дисперсию случайного процесса $Y_2(t) = X(t) + \frac{dX(t)}{dt}$;
- 4) Математическое ожидание, корреляционную функцию и дисперсию случайного процесса $Y_3(t) = \int_0^t X(s) ds$;
 - 5) Взаимные корреляционные функции $R_{XX'}(t_1, t_2)$ и $R_{X'X}(t_1, t_2)$.

Варианты заданий.

- 1. $X(t) = Ut^2 + V \sin t$, где случайный вектор (U, V) имеет математическое ожидание (1, -1) и ковариационную матрицу $\begin{pmatrix} 0.2 & 0.1 \\ 0.1 & 0.3 \end{pmatrix}$.
- 2. $X(t) = Ut + V\cos t$, где случайный вектор (U,V) имеет математическое ожидание (0,-2) и ковариационную матрицу $\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$.
- 3. $X(t)=2+t+Ut^2+Vt^3$, где U и V некоррелированные случайные величины, MU=MV=0, DU=1, DV=0,1.
- 4. $X(t) = U + Ve^t$, где U и V некоррелированные случайные величины, MU = 3, MV = 2, DU = 1, DV = 7.
- 5. $X(t) = U \cos t + V \cos t$, где случайный вектор (U, V) имеет математическое ожидание (-1/2,1) и ковариационную матрицу $\begin{pmatrix} 3 & -2 \\ -2 & 3 \end{pmatrix}$.
- 6. $X(t)=1+Ut+Vt^2$, где U и V некоррелированные случайные величины, MU=MV=0, DU=3, DV=1.
- 7. $X(t) = Ut^2 + Vt^3$, где случайный вектор (U,V) имеет математическое ожидание (3,-4) и ковариационную матрицу $\begin{pmatrix} 2 & 0,1 \\ 0,1 & 2 \end{pmatrix}$.
- 8. $X(t) = Ut + V \sin t$, где U и V некоррелированные случайные величины, MU = MV = 1, DU = DV = 3.

- 9. $X(t) = Ut^2 + Ve^{3t}$, где случайный вектор (U,V) имеет математическое ожидание (-4,0) и ковариационную матрицу $\begin{pmatrix} 1 & -0.4 \\ -0.4 & 1 \end{pmatrix}$.
- 10. $X(t) = t + U \cos t + V \sin t$, где случайный вектор (U, V) имеет математическое ожидание (1,1) и ковариационную матрицу $\begin{pmatrix} 9 & 4 \\ 4 & 9 \end{pmatrix}$.
- 11. $X(t) = Ut + V \sin t + 2$, где U и V некоррелированные случайные величины, MU = MV = 0. DU = DV = 1.
- 12. $X(t) = Ut^2 + Vt^3$, где U и V некоррелированные случайные величины, MU = MV = 0, DU = DV = 1.
- 13. $X(t) = 0.1 U \cos 2t + Ve^{5t}$, где случайный вектор (U, V) имеет математическое ожидание (-3,3) и ковариационную матрицу $\begin{pmatrix} 1 & -0.2 \\ -0.2 & 1 \end{pmatrix}$.
- 14. $X(t) = t^2 + U \sin t + V \cos t$, где U и V некоррелированные случайные величины, MU = MV = 0, DU = DV = 10.
- 15. $X(t) = U \cos t V t^2 4$, где U и V некоррелированные случайные величины, MU = MV = 0, DU = 2, DV = 4.
- 16. $X(t) = 7 t + Ut + Vt^4$, где U и V некоррелированные случайные величины, MU = MV = 0, DU = DV = 1.
- 17. $X(t) = 7U \sin t + Vt^3$, где MU = MV = 2, DU = 1, DV = 7, cov(U, V) = 1.
- $18. X(t) = 1 + U \sin 5t 7Vt \cos t$, где MU = 7, MV = 1, DU = DV = 4, cov(U, V) = 0.
- 19. $X(t) = U \cos t + V t^3$, где U и V некоррелированные случайные величины, MU = MV = 0, DU = 2, DV = 1.
- $20. \, X(t) = 0.2 U e^{5t} + V \cos 4t$, где случайный вектор (U,V) имеет математическое ожидание (1,2) и ковариационную матрицу $\begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix}$.
- $21. X(t) = t + U \sin 2t + V \cos 2t$, где U и V некоррелированные случайные величины, MU = MV = 1, DU = DV = 5.
- $22. \ X(t) = Ut^2 + V \sin t + 4$, где U и V некоррелированные случайные величины, $MU = MV = 0, \ DU = 2, \ DV = 7.$
- $23. \, X(t) = Ut + Vt \sin t + 2t$, где U и V некоррелированные случайные величины, $MU = MV = 0, \,\, DU = 2, \,\, DV = 3.$
- 24. $X(t) = Ue^{5t} + Vte^{7t}$, где MU = 1, MV = 4, DU = DV = 2, cov(U, V) = -4.
- 25. $X(t) = Ue^{6t} + 7V\cos 3t$, где случайный вектор (U,V) имеет математическое ожидание (1,1) и ковариационную матрицу $\begin{pmatrix} 1 & -2 \\ -2 & 3 \end{pmatrix}$.

6. ЛИТЕРАТУРА.

- 1. Булинский А.В., Ширяев А.Н. Теория случайных процессов. М.: Физматлит, 2005, 400 с.
- 2. Волков И.К., Зуев С.М., Цветкова Г.М. Случайные процессы. М.: Изд-во МГТУ им. Н.Э.Баумана, 2003.
- 3. Вентцель Е.С., Овчаров Л.А. Теория случайных процессов и ее инженерные приложения. М.: Высшая школа, 2000.
- 4. Свешников А.А. Сборник задач по теории вероятностей, математической статистике и теории случайных функций. М., Наука, 1970.
- 5. Случайные функции: Учеб. Пособие. Тескин О.И., Цветкова Г.М., Козлов Н.Е., Пашовкин Е.М. М, Изд-во МГТУ, 1994.