Séries d'applications (1)

Séries d'applications (1)

J. Ribault

13 janvier 2017

 $(f_n)_{n\in\mathbb{N}}$ est une suite à éléments dans $\mathcal{F}(I,\mathbb{K})$. Soit $x\in I$.

 $\sum f_n(x)$

- est un nombre
- est une application
- o est une série numérique
- o est une série d'applications
- o n'existe pas nécessairement

 $(f_n)_{n\in\mathbb{N}}$ est une suite à éléments dans $\mathcal{F}(I,\mathbb{K}).$ Soit $x\in I.$

$$\sum_{n=0}^{+\infty} f_n(x)$$

- est un nombre
- est une application
- o est une série numérique
- est une série d'applications
- o n'existe pas nécessairement

n=0

 $(f_n)_{n\in\mathbb{N}}$ est une suite à éléments dans $\mathcal{F}(I,\mathbb{K})$. $\sum_{n=0}^{+\infty}f_n$

- est un nombre
- $oldsymbol{0}$ est une application définie sur I
- o est une série numérique
- o est une série d'applications
- aucune réponse n'est correcte

Soient $(f_n)_{n\in\mathbb{N}}$ une suite à éléments dans $\mathcal{F}(I,\mathbb{K})$ et $x\in I$. On pose :

$$\forall n \in \mathbb{N}, \ S_n = \sum_{k=0}^n f_k$$

 S_n

- o est un nombre
- \odot est une application définie sur I
- o est une suite numérique
- \odot est une suite d'applications définies sur I
- o n'existe pas nécessairement

Soient $(f_n)_{n\in\mathbb{N}}$ une suite à éléments dans $\mathcal{F}(I,\mathbb{K})$ et $x\in I$. On pose :

$$\forall n \in \mathbb{N}, \ S_n = \sum_{k=0}^n f_k$$

 $(S_n(x))$

- o est un nombre
- $oldsymbol{0}$ est une application définie sur I
- o est une suite numérique
- est une suite d'applications
- o n'existe pas nécessairement

Soient $(f_n)_{n\in\mathbb{N}}$ une suite à éléments dans $\mathcal{F}(I,\mathbb{K})$ et $x\in I$. On pose :

$$\forall n \in \mathbb{N}, \ S_n = \sum_{k=0}^n f_k$$

 (S_n)

- o est un nombre
- \odot est une application définie sur I
- o est une suite numérique
- \odot est une suite d'applications définies sur I
- o n'existe pas nécessairement

Soient $(f_n)_{n\in\mathbb{N}}$ une suite à éléments dans $\mathcal{F}(I,\mathbb{K})$ et $x\in I$. On pose :

$$\forall n \in \mathbb{N}, \ S_n = \sum_{k=0}^n f_k$$

$S_n(x)$

- o est un nombre
- $oldsymbol{\circ}$ est une application définie sur I
- o est une suite numérique
- est une suite d'applications
- o n'existe pas nécessairement

Soient $(f_n)_{n\in\mathbb{N}}$ une suite à éléments dans $\mathcal{F}(I,\mathbb{K})$ et $x\in I$. On pose :

$$\forall n \in \mathbb{N}, \ S_n = \sum_{k=0}^n f_k \text{ et } R_n = \sum_{k=0}^{+\infty} f_k - S_n$$

 R_n

- est un nombre
- $oldsymbol{\circ}$ est une application définie sur I
- o est une suite numérique
- \odot est une suite d'applications définies sur I
- o aucune des réponses n'est correcte

Soient $(f_n)_{n\in\mathbb{N}}$ une suite à éléments dans $\mathcal{F}(I,\mathbb{K})$ et $x\in I$.

On suppose que $\sum_{n>0} f_n$ converge simplement sur I.

On pose:

$$\forall n \in \mathbb{N}, \ S_n = \sum_{k=0}^n f_k \text{ et } R_n = \sum_{k=0}^{+\infty} f_k - S_n$$

 R_n

- est un nombre
- \odot est une application définie sur I
- o est une suite numérique
- \odot est une suite d'applications définies sur I
- o aucune des réponses n'est correcte

 $(f_n)_{n\in\mathbb{N}}$ est une suite à éléments dans $\mathcal{F}(I,\mathbb{K})$. On suppose que $\sum_{n\geqslant 0}f_n$ converge simplement sur I.

$$\sum_{n=0}^{+\infty} f_n$$

- est un nombre
- \odot est une application définie sur I
- o est une série numérique
- est une série d'applications
- o aucune réponse n'est correcte

Notations

 $(f_n)_{n\in\mathbb{N}}$ est une suite à éléments dans $\mathcal{F}(I,\mathbb{K})$.

Sans hypothèses supplémentaires, on peut définir :

- $\sum_{n>0} f_n$. C'est une série d'applications.
- pour tout $n \in \mathbb{N}$, $S_n = \sum_{k=0}^n f_k$.

C'est une application définie sur I.

- $(S_n)_{n\in\mathbb{N}}$ est alors une suite d'applications.
- pour tout $x \in I$, $S_n(x)$ est un nombre.
- pour tout $x \in I$, $(S_n(x))_{n \in \mathbb{N}}$ est une suite numérique.
- pour tout $x \in I$, $\sum_{n \geqslant 0} f_n(x)$. C'est une série numérique.

Notations

 $(f_n)_{n\in\mathbb{N}}$ est une suite à éléments dans $\mathcal{F}(I,\mathbb{K})$.

SUR LE DOMAINE DE CONVERGENCE SIMPLE DE $\sum_{n\geqslant 0}f_n$,

on peut définir :

- $S = \sum_{n=0}^{+\infty} f_n$. C'est une application.
- pour tout $n \in \mathbb{N}$, $R_n = S S_n$. C'est une application. (R_n) est une suite d'applications.

Notations

 $(f_n)_{n\in\mathbb{N}}$ est une suite à éléments dans $\mathcal{F}(I,\mathbb{K})$.

POUR TOUT *x* APPARTENANT AU

DOMAINE DE CONVERGENCE SIMPLE DE $\sum_{n\geqslant 0}f_n$,

on peut définir :

- $S(x) = \sum_{n=0}^{+\infty} f_n(x)$. C'est un nombre.
- pour tout $n \in \mathbb{N}$, $R_n(x) = S(x) S_n(x)$. C'est un nombre. $(R_n(x))_{n \in \mathbb{N}}$ est une suite numérique.