Міністерство освіти і науки України

Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського"

Факультет інформатики та обчислювальної техніки

Катедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 3 з дисципліни «Алгоритми та структури даних-1.

Основи алгоритмізації»

«Дослідження ітераційних циклічних алгоритмів» Варіант 18

Виконав студент ІП-11 Лесів Владислав Ігорович

Перевірив Мартинова О.П.

Лабораторна робота 3

Дослідження ітераційних циклічних алгоритмів

Мета — дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій. Варіант №18.

18. Задане дійсне число x. Послідовність $a_1, a_2, ..., a_n$ утворена за законом $a_n = x^n / (2n)!$, n = 1, 2, ...

Отримати суму $a_1 + a_2 + ... + a_k$, де k - найменше ціле число, що задовольняє двом умовам: k > 10, $|a_k| < 10^{-5}$.

Постановка задачі. Результатом розв'язку ϵ сума елементів заданої законом послідовности за виконання необхідним умов задачі, та число-умова виконання критеріїв. Для визначення результату повинне бути задане дійсне число х. Інших початкових даних для розв'язку не потрібно.

Побудова математичної моделі. Складемо таблицю імен змінних.

Змінна	Тип	Ім'я	Призначення
Задане дійсне число х	Дійсний	X	Початкове дане
Елемент послідовности	Дійсний	a	Проміжне
			значення
Значення факторіалу числа	Цілий	fac	Проміжне
			значення
Сума елементів послідовности	Дійсний	S	Результат
Число, яке задовільняє умови	Цілий	k	Результат
задачі			

Математичне формулювання задачі зводиться до перевірки виконання заданих умов. Якщо модуль значення елемента послідовности на кроці k більший або рівний за 10^{-5} , тобто $|a| < 10^{-5}$, а саме число k > 10, отримуємо виконання умов, що спричинить завершення перевірки. У іншому випадку одна з умов не виконується, тому додаємо елемент до суми елементів та продовжуємо перевірку в циклі.

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

Крок 2. Деталізуємо дію обчислення початкового значення суми елементів та першого члена послідовности.

Крок 3. Деталізуємо дію обчислення значення суми елементів послідовности за виконання заданих умов.

Псевдокод

крок 1

початок

введення х

виведення s, k

обчислення початкового значення суми та першого члена

обчислення значення суми елементів послідовности за виконання заданих умов

кінець

крок 2

початок

введення х

s := x/2;

a := x/2;

обчислення значення суми елементів послідовности за виконання заданих умов

виведення s, k

кінець

```
крок 3
початок
 введення х
 s := x/2;
 a := x/2;
 k:=1;
 повторити
 поки |a|>=10^{(-5)} або k<=10
   k := k+1;
   fac:=1;
   повторити
    для і від 1 до 2k
      fac:=fac*i;
   все повторити
   a:=(x^k)/fac;
   s:=s+a;
```

все повторити

вивести s, k

кінець

Блок-схема

крок 1

крок 2

Випробування алгоритму. Перевіримо правильність алгоритму на довільних конкретних значеннях початкових даних. n — загальна к-сть блоків.

Блок	Дія
	Початок
1	Введення х=2
2	s:=1; a:=1; k:=1;
3	a >=10^(-5) k<=10 - істина
4	k:=2; fac:=1; i:=1;
5	i<=2*k – 1<=4 - істина
6	fac:=1*1; i:=2;
7	i<=2*k – 2<=4 - істина
8	fac:=1*2; i:=3;
9-11	
12	fac:=6*4; i:=5;
13	i<=2*k – 5<=4 - хиба
14	a:=(2^2)/24=1/6; s:=1+1/6;
15	a >=10^(-5) k<=10 - істина
16	k:=3; fac:=1; i:=1;
	•••
n-2	a:=1.82e-18;
	s:=1.178183556608571;
n-1	a >=10^(-5) k<=10 – хиба
n	Виведення s=1.178183556608571,
	k=11
	Кінець

Висновок. Отже, у цій роботі я дослідив подання операторів повторення дій та набув практичних навичок їх використання під час складання циклічних програмних специфікацій. У результаті лабораторної роботи було розроблено математичну модель, що відповідає постановці задачі; псевдокод та блок-схеми, які пояснюють логіку алгоритму. Використовуючи ітераційний цикл з передумовою while для повторюваної перевірки умов, отримуємо коректний результат.