NAME:	VIJESH HINGU
UID:	2021300042
BATCH	C
SUBJECT	DAA
EXPERIMENT	1A
NO:	
DATE OF	30-01-2023
PERFORMANCE	06.02.2022
DATE OF	06-02-2023
SUBMISSION AIM:	To implement the various functions e.g. linear, non-
A1IVI.	
	linear, quadratic, exponential etc. The input (i.e. n) to all the above
	functions varies from 0 to 100 with in answered of 1. Then add the
	functions varies from 0 to 100 with increment of 1. Then add the
A L CODITION	function n! in the list and execute the same for n from 0 to 20.
ALGORITHM	1. Declare floating variables a1,a2,a3,a4,a5,a6,a7,a8,a9,a10.
	2. Assign a function to each variable –
	a1=pow(3.0,i)/pow(2.0,i);
	a2=pow(i,3);
	a3=pow(log2(i),2);
	a4=log2(factorial(i));
	a5=pow(2,(pow(2,i)));
	a6=i;
	a7 = log(log(i));
	a8=log2(i);
	a9=i*(pow(2,i));
	a10=pow(i,(log2(log2(i))));
	3. Create a floating variable fact and assign it the factorial function.
	float fact=factorial(i);
	4. Print the results of all these functions for numbers 1 to 100.
	5. Paste the result in an Excel sheet and create graphs for all functions
PROGRAM	#include <stdio.h></stdio.h>
	#include <math.h></math.h>
L	

```
float factorial(int n)
             float ans=1;
             for(n;n>=1;n--)
                           ans=ans*n;
             return ans;
void main()
             float a1,a2,a3,a4,a5,a6,a7,a8,a9,a10;
             int i;
             for(i=0;i<=100;i++)
                           a1 = pow(3.0,i)/pow(2.0,i);
                           a2=pow(i,3);
                           a3 = pow(log2(i),2);
                           a4=log2(factorial(i));
                           a5=pow(2,(pow(2,i)));
                            a6=i;
                           a7 = log(log(i));
                           a8=log2(i);
                           a9=i*(pow(2,i));
                           a10=pow(i,(log2(log2(i))));
                           float fact=factorial(i);
printf("\n%d\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f
```

RESULT (SNAPSHOT):

1. $(3/2)^n$

2. n^3

3. (lg(n))^2

4. lg(n!)

5. 2^(2^n)

6. n

7. ln(ln(n))

8. lg(n)

9. n*(2^n)

$10.n^{(lg(lg(n)))}$

11.n!

CONCLUSION:

With the help of this experiment, I was able to understand and implement various functions graphically and was also able to note the changes in the values of the functions when input is varied from 0 to 100.