From Last Lecture

Examples in Chapter 3

About p-values and Inference

Tests and estimates

Robustness

Linear Mode

Stat 205: Introduction to Nonparametric Statistics

Lecture 03: Nonparametric Inference Continued

Instructor David Donoho; TA: Yu Wang

Questions for Today

From Last Lecture

Examples in Chapter 3

About p-values and Inference

Tests and estimates

Robustness

Linear Mode

- Examples
- ► Inference Discussion
- ► Tests and estimates
- Confidence Statements
- Robustness
- ► Rank-estimation Linear Model

Example 3.2.1 Esophageal Cancer, 1

From Last

Examples in Chapter 3

p-values an Inference

Tests and

Robustness

Linear Mode

(Breslow et al. 1980)

- Case-control study of esophageal cancer.
- Null Hypothesis:
 Alcohol consumption same in the two groups.
- Dataset

library(datasets); data(esoph); head(esoph)

##		agegp	alcgp	tobgp	ncases	ncontrols	
##	1	25-34	0-39g/day	0-9g/day	0	40	
##	2	25-34	0-39g/day	10-19	0	10	
##	3	25-34	0-39g/day	20-29	0	6	
##	4	25-34	0-39g/day	30+	0	5	
##	5	25-34	40-79	0-9g/day	0	27	
##	6	25-34	40-79	10-19	0	7	

Example 3.2.1 Esophageal Cancer, 2

From Last

Examples in Chapter 3

p-values an

Tests and estimates

Robustness

Linear Mode

```
> tail(esoph)
agegp alcgp tobgp neases neontrols
83 75+ 40-79 20-29 0 3
44 75+ 40-79 30+ 1
85 75+ 80-119 0-9g/doy 1 1
86 75+ 80-119 10-19 1
87 75+ 120+ 0-9g/doy 2 2
88 75+ 120+ 19-19 1
```

Data Wrangling: x <- rep(esoph\$alcgp,esoph\$ncases)

```
[1] 120+
               0-39g/day 40-79
                                                                128+
                                                                          120+
[17] 48-79
                        48-79
                                  48-79
                                            49-79
                                                      48-79
                                                                48-79
                                                                          48-79
[33] 80-119
               88-119
                        80-119
                                  88-119
                                            80-119
                                                      88-119
                                                                88-119
                                                                          80-119
```

```
Data Wrangling: x <- as.numeric(x)
```

Example 3.2.1 Esophageal Cancer, 3

From Last Lecture

Examples in Chapter 3

p-values and

estimates

Robustness

Linear Mode

```
□ 120-1
□ 120-1
□ 40-79
□ 40-79
□ 0-39g/da

Cases Controls
```

```
> y<- rep(esoph$alcgp,esoph$ncontrols)
> x<- rep(esoph$alcgp,esoph$ncases)</pre>
```

> wilcox.test(as.numeric(x),as.numeric(y))

Wilcoxon rank sum test with continuity correction

```
data: as.numeric(x) and as.numeric(y)
W = 135612, p-value < 2.2e-16</pre>
```

alternative hypothesis: true location shift is not equal to 0

Reject H_0 alcohol consumption is the same

Example 3.2.1 Esophageal Cancer, 4

From Last

Examples in Chapter 3

About p-values and Inference

estimates

Robustness

Linear Mode

Case-control study

From Wikipedia, the free encyclopedia

A case—control study (also known as case—referent study) is a type of observational study in which two existing groups differing in outcome are identified and compared on the basis of some supposed causal attribute. Case—control studies are often used to identify factors that may contribute to a medical condition by comparing subjects who have that condition/disease (the "cases") with patients who do not have the condition/disease but are otherwise similar (the "controls").^[1] They require fewer resources but provide less evidence for causal inference than a randomized controlled trial. A case—control study produces only an odds ratio, which is an inferior measure of strendth of association compared to relative risk.

Example 3.2.1 Esophageal Cancer, 5

From Last Lecture

Examples in Chapter 3

About p-values and Inference

Tests and estimates

Robustness

Definition [edit]

The case—control is a type of epidemiological observational study. An observational study is a study in which subjects are not randomized to the exposed or unexposed groups, rather the subjects are observed in order to determine both their exposure and their outcome status and the exposure status is thus not determined by the researcher.

Porta's Dictionary of Epidemiology defines the case—control study as: an observational epidemiological study of persons with the disease (or another outcome variable) of interest and a suitable control group of persons without the disease (comparison group, reference group). [2] The potential relationship of a suspected risk factor or an attribute to the disease is examined by comparing the diseased and nondiseased subjects with regard to how frequently the factor or attribute is present (or, if quantitative, the levels of the attribute) in each of the groups (diseased and nondiseased). [42]

For example, in a study trying to show that people who smoke (the attribute) are more likely to be diagnosed with lung cancer (the outcome), the cases would be persons with lung cancer, the controls would be persons without lung cancer (not necessarily healthy), and some of each group would be smokers. If a larger proportion of the cases smoke than the controls, that suggests, but does not conclusively show, that the hypothesis is valid.

Examples [edit]

One of the most significant triumphs of the case–control study was the demonstration of the link between tobacco smoking and lung cancer, by Richard Doll and Bradford Hill. They showed a statistically significant association in a large case–control study. [10] Opponents argued for many years that this type of study cannot prove causation, but the eventual results of cohort studies confirmed the causal link which the case–control studies suggested, [11][12] and it is now accepted that tobacco smoking is the cause of about 87% of all lung cancer mortality in the US.

Example 3.1: Melanoma Mortality

From Last Lecture

Examples in Chapter 3

About p-values and Inference

Tests and estimates

Robustness

The downloaded binary packages are in

/var/folders/n7/9qc2q4sn2qb6jwkcchc6636h0000gp/T//Rtmp9kqFtk/downloaded_packages > library(HSAUR2)

trying URL 'http://lib.stat.cmu.edu/R/CRAN/bin/macosx/contrib/4.0/HSAUR2_1.1-18.tgz'

Content type 'application/x-gzip' length 3111882 bytes (3.0 MB)

Loading required package: tools

> head(USmelanoma)

downloaded 3.0 MB

	mortality	latitude	longitude	ocean
Alabama	219	33.0	87.0	yes
Arizona	160	34.5	112.0	no
Arkansas	170	35.0	92.5	no
California	182	37.5	119.5	yes
Colorado	149	39.0	105.5	no
Connecticut	159	41.8	72.8	yes

Example 3.1 Melanoma Mortality

From Last Lecture

Examples in Chapter 3

About p-values and Inference

Tests and estimates

Robustness

Linear Mode

Exploratory Analysis (Boxplot)

FIGURE 3.1 Mortality rates for white males due to malignant melanoma in the United States.

Formal Analysis

TABLE 3.1
Estimates of Increase in Mortality Due to Malignant
Melanoma in White Males in the United States

	Test	n-value	Estimate	Std Error
Least Squares	3.60	0.00	31.49	8.55
Wilcoxon	3.27	0.00	31.00	9.26

Q: What do such p-values mean?

One-Sample Problem: Tests and Estimates, 1

From Last Lecture

Examples in Chapter 3

About p-values an Inference

Tests and estimates

Robustness

Linear Mod

Test	Estimate
Sign Test	Median
Wilcoxon Signed-Rank	Hodges-Lehmann
Normal Scores Test	Normal Scores Estimate

Sign Test Example:

- Apply Sign Test to shifted sample {X_i − Δ}.
- Record dependence of Sign Test statistic on the shift parameter.

$$S(\Delta) \equiv \sum_{i=1}^{n} \operatorname{sign}(X_i - \Delta)$$

- Let $M_n \equiv M_n(\{X_i\}) = Median(\{X_i\})$.
- Suppose no ties, n odd. Then

$$S(M_n)=0.$$

Indeed,

$$\#\{i: X_i \leq M_n\} = \#\{i: X_i \geq M_n\}.$$

One-Sample Problem: Tests and Estimates, 2

From Last Lecture

Examples in Chapter 3

About p-values an Inference

Tests and estimates

Robustnes

Linear Mode

Test	Estimate
Sign Test	Median
Wilcoxon Signed-Rank Test	Hodges-Lehmann
Normal Scores Rank Test	Normal Scores Estimate

Wilcoxon Test Example:

- Apply the Wilcoxon Rank-Sum Test to shifted sample $\{X_i \Delta\}$.
- ▶ Record dependence of Wilcoxon signed-rank-sum statistic on the shift parameter.

$$W(\Delta) = \sum_{i=1}^{n} \operatorname{sign}(X_{i} - \Delta)R|X_{i} - \Delta|$$

- Let $H_n \equiv H_n(\{X_i\}) = Median_{i,j}(\{(X_i + X_i)/2\})$. Hodges-Lehmann aka Pseudomedian.
- Suppose no ties among the pairwise 'Walsh averages' $A_{i,j} \equiv (X_i + X_j)/2$. Define sign(0) = 0.

$$W(H_n)=0.$$

One-Sample Problem: Confidence Statements, 1

From Last Lecture

Examples in Chapter 3

About p-values and Inference

Tests and estimates

Robustness

Estimate	(1-lpha) Confidence Statement
Median	$(X_{(c_1+1)}, X_{(n-c_1)})$
Hodges-Lehmann	$(A_{(c_2+1)}, A_{(n_2-c_2)})$

- Median
 - X_(i) are the order statistics:

$$X_{(1)} \leq X_{(2)} \leq \ldots X_{(n)};$$

- orstats = sort(x) in R.
- c₁ is the α /2-quantile of the binomial distribution bin(n,1/2) c.1 = gbinom(alpha/2,n,0.5)
- Hodges-Lehmann
 - A(i) are the ordered Walsh Averages:

$$A_{(1)} \leq A_{(2)} \leq \ldots A_{(n_2)};$$

orwalsh = sort(as.vector(outer(xx,FUN=function(x,y)(x+y)/2))) in R.

- $n_2 = n(n+1)/2 = \#\{(i,j): 1 \le i,j \le n\}.$
- c₂ denotes the α/2-quantile of the Wilcoxon signed-rank W⁺
 c.2 = qsignrank(alpha/2,n)

Tests and estimates

One-Sample Problem: Confidence Statements, 2

Estimate $(1 - \alpha)$ Confidence Statement Median $(X_{(c_1+1)}, X_{(n-c_1)})$

 c_1 is the $\alpha/2$ -quantile of the binomial distribution bin(n,1/2)c.1 = abinom(albha/2.n.0.5) Asymptotically.

$$c_1 \approx \frac{n}{2} + 2 \cdot 3_{\alpha/2} \sqrt{n}, \qquad n \to \infty.$$

Theorem: Distribution-Free Coverage probability of Confidence Statements:

- Suppose
 - $X_i =_{iid} \Delta + Z_i, i = 1, \ldots, n$
 - \triangleright $Z_i \sim F$ symmetric.

$$P\{Z_i < -t\} = P\{Z_i > t\}, \quad \forall t \in \mathbf{R}.$$

Conclude:

$$P\{X_{(c_1)} \leq median(\{X_i\}) \leq X_{(n-c_1)}\} \geq 1 - \alpha.$$

If α/2 is an exact lower tail probability, alpha = 2 * pbinom(c.1,n,1/2) , and if F is a continuous increasing CDF on its support,

$$P\{X_{(c_1)} \leq median(\{X_i\}) \leq X_{(n-c_1)}\} = 1 - \alpha.$$

so-called exact coverage probability. These conclusions are true for all F: distribution-free.

Similar statements are available for Hodges-Lehmann, Normal Scores, and other rank tests. Would-be statements like these for t-test, in case F is not $N(0, \sigma^2)$, would not be true.

Robust Estimation Concepts. 1. Sensitivity Curve

From Last Lecture

Examples in Chapter 3

About p-values and Inference

Tests and estimates

Robustness

Linear Mode

- ightharpoonup Statistic $\hat{\theta}(\mathbf{x})$
- ightharpoonup Our sample $\mathbf{x}_n = (x_1, \dots, x_n)^T$
- Augmented sample $\mathbf{x}_{n+1}(\mathbf{z}) = (x_1, \dots, x_n, \mathbf{z})^T$
- Sensitivity curve:

$$S(\mathbf{z}; \hat{\theta}) \equiv \frac{\hat{\theta}(\mathbf{x}_{n+1}(\mathbf{z}) - \hat{\theta}(\mathbf{x}_n))}{1/(n+1)}$$

Robust Estimation Concepts. 2. Sensitivity Curve

From Last Lecture

Examples in Chapter 3

About p-values and Inference

Tests and estimates

Robustness

Linear Mode

Robust Estimation Concepts. 2 Breakdown Point

From Last Lecture

Examples in Chapter 3

About p-values and Inference

Tests and estimates

Robustness

inear Mode

- $\blacktriangleright \quad \mathsf{Statistic} \ \hat{\theta} \equiv \hat{\theta}(\cdot)$
- Our sample $\mathbf{x}_n = (x_1, \dots, x_n)^T$
- Augmented sample $\mathbf{x}_{n+k}(\mathbf{z}_1,\ldots,\mathbf{z}_k)=(x_1,\ldots,x_n,\mathbf{z}_1,\ldots,\mathbf{z}_k)^T$
- $\hat{\theta}$ breaks down at \mathbf{x}_n under contamination with k points if

$$+\infty = \max_{\substack{(\mathbf{z}_1,\ldots,\mathbf{z}_k)}} |\hat{\theta}[\mathbf{x}_{n+k}(\mathbf{z}_1,\ldots,\mathbf{z}_k)] - \hat{\theta}(\mathbf{x})|$$

▶ Breakdown point: $k^*(\mathbf{x}_n, \hat{\theta}) = \min_k \hat{\theta}$ breaks down at \mathbf{x}_n

$$\epsilon^*(\mathbf{x}_n, \hat{\theta}) = \frac{k^*}{k^* + n}.$$

Property	Mean	Median	
Number to break down	$k^* = 1$	$k^* = n$	$k^* \approx (n+k^*) \cdot (1-\sqrt{2})$
Breakdown Point	$\varepsilon^* = \frac{1}{111}$	$\varepsilon^* = 1/2$	$\varepsilon^* = 0.29$

Examples in Chapter 3

About p-values and Inference

Tests and estimates

Robustness

Linear Model

The Geometry of Linear Models

• Setup the following linear model (for i = 1, ..., n)

$$Y_i = x_i^T \boldsymbol{\beta} + e_i^*$$

where β is a $1 \times p$ vector of unknown parameters

- · β are the parameter of interst
- · Center (usually using the median $T(e_i^*) = \alpha$) the errors $e_i = e_i^* \alpha$

$$Y_i = \alpha + x_i \beta + e_i$$

- Let f(t) be the pdf of the erros e_i
- · Assumption: f(t) can be either asymmetric or symmetric depending on whether signs or ranks are used
- · The intercept α is independent of the slope $\pmb{\beta}$

Examples in Chapter 3

About p-values and Inference

Tests and estimates

Robustness

Linear Model

The Geometry of Linear Models

- Let $Y = (Y_1, \dots, Y_n)^T$ denote the $n \times 1$ vector of observations
- · Let *X* denote the $n \times p$ matrix with rows x_i^T
- · Then we can write the linear model in matrix form:

$$Y = 1\alpha + X\beta + e$$

- · X is centered (that's fine since we have α in the model), and assume X is full column rank
- · Let Ω_F be the column space spanned by colums of X
- So we can rewrite the linear model as (coordinate-free because not restricited to any specific basis vectors)

$$Y = 1\beta + \eta + e$$

with $\eta = \Omega_F$

5/32

Examples in Chapter 3

About p-values and Inference

Tests and estimates

Robustness

Linear Model

The Geometry of Estimation

$$Y = 1\beta + \eta + e$$
 with $\eta = \Omega_F$

- · Task is to minimize some distance between Y and subspace Ω_F
- · Think of η as a hyperplane and the task as projecting Y onto it
- · For the projection we need to define a distance
- Instead of using the usual Euclidean distance, we use a distance based on signs and ranks

$$||v_i||_{\varphi} = \sum_{i=1}^n a(R(v_i))v_i$$

- with scores $a(1) \le a(2) \le \cdots \le a(n)$ and score function $a(i) = \varphi(i/(n+1))$
- \cdot φ is nondecreasing, centered, standardized and defined on the interval (0,1)

Examples in Chapter 3

About p-values and Inference

Tests and estimates

Robustness

Linear Model

The Geometry of Estimation

- $\|v\|_{\varphi}$ is a pseudo-norm:
 - triangle inequality, non-negative, $\|\alpha v\|_{\varphi} = |\alpha| \|v\|_{\varphi}$, and
 - additionally $\|\mathbf{v}\|_{\varphi} = 0$ if and only if $v_1 = \cdots = v_n$
- By setting $\varphi_R(u) = \sqrt{12}(u 1/2)$, we get the Wilcoxon pseudo-norm
- By setting $\varphi_S(u) = \mathrm{sgn}(u-1/2)$, we get the sign pseudo-norm (equivalent to using the L_1 norm)
- · In general

$$D(Y,\Omega_F) = \|Y - \widehat{Y}_{\varphi}\|_{\varphi} = \min_{\eta \in \Omega_F} \|Y - \eta\|_{\varphi}$$

Examples in Chapter 3

About p-values and Inference

Tests and estimates

Robustness

Linear Model

The Geometry of Estimation

$$\widehat{\boldsymbol{\eta}} = D(Y, \Omega_F) = \|Y - \widehat{Y}_{\varphi}\|_{\varphi} = \min_{\boldsymbol{\eta} \in \Omega_F} \|Y - \boldsymbol{\eta}\|_{\varphi}$$

Source: Hettmansperger & McKean (2011)

- · Estimate $\widehat{\pmb{\eta}}_{\scriptscriptstyle{arphi}}$
- · Distance between Y and the space Ω_F is d_F
- · Reduced model subspace $\Omega_R \subset \Omega_F$

Questions for Today

From Last Lecture

Chapter 3

p-values and Inference

Tests and estimates

Robustness

Linear Model

- Examples
- ► Inference Discussion
- ► Tests and estimates
- Confidence Statements
- Robustness
- ► Rank-estimation Linear Model