重なり滞留を起こす複数牛個体の高速追跡法

宮崎大学 工学部 情報システム工学科 67180570 AHMAD AMINNIN BIN MAT NOOR(アミニン) 指導教員 椋木 雅之 教授 2022/02/16

研究背景

肉牛や乳牛の酪農では、 農業資源である牛の管理が必要

牛の行動を自動で監視することがますます重要に なり、情報技術への依存度が高まっている

研究背景

従来の複数物体追跡:

常に動き続ける物体が追跡対象

例:通路を歩く人の追跡

重なり滞留をあまり考慮していなかった

研究目的

重なり滞留が多く発生する牛の群れに対して、

従来手法(SORT) の**高速な追跡処理**を保ちつつ
↓

SORTの追跡の誤り(IDスイッチ)数を **削減する**ために**改良**

従来の複数物体追跡: SORT

Simple Online and Real Time Tracking (SORT)

- 4つのプロセスを経て、 複数物体追跡を実現する
- 1. 物体検出
- 2. 追跡IDの割り当て
- 3. 追跡IDの作成と削除
- 4. カルマンフィルタ予測

高速な処理で追跡できる

1. 物体検出

各フレームに対して物体検出を適用する。

物体検出結果は、物体を囲う矩形 (バウンディングボックス;bbox)で表現される。

bbox

2. 追跡IDの割り当て

bboxに対して、軌跡の予測位置と比較して、 ハンガリアン法により追跡IDを割り当てる

現フレーム

軌跡の 予測位置

3. 追跡IDの作成と削除

4. カルマンフィルタ予測

次フレームの処理の前に、 カルマンフィルタで次フレームでの位置を予測する

SORTの問題点

SORTの問題点

SORTは追跡処理の簡易性と高速性を重視している

 \downarrow

重なり滞留によるIDスイッチを考慮していない

IDスイッチ

滞留

重なり

12

重なり滞留への対処:提案手法

提案手法の流れ

SORTの高速 な追跡処理を 保ちつつ

SORTのIDス イッチ数を削 減する

提案手法の流れ

SORTの高速 な追跡処理を 保ちつつ

SORTのIDス イッチ数を削

減する

1.画像の拡大と再検出

遠くに小さく撮影されている牛では、 検出に失敗することが多い

 \downarrow

画像を拡大して再検出することで、 検出失敗を低減する

提案手法の流れ

SORTの高速 な追跡処理を 保ちつつ

SORTのIDス

イッチ数を削減する

2. 「滞留」状態の導入

長時間滞留している牛についても、 継続して追跡が行えるようにする

「滞留」状態

提案手法の流れ

SORTの高速 な追跡処理を 保ちつつ

SORTのIDス イッチ数を削 減する

3.「滞留」状態での追跡データの保持と追跡IDの結合

「滞留」状態の軌跡に対し、近くに新規IDの bbox が検出された場合、追跡IDを結合して一つにする

提案手法の流れ

SORTの高速 な追跡処理を 保ちつつ

SORTのIDス イッチ数を削 減する

4.カルマンフィルタ位置予測の停止

予測 bbox

「滞留」状態の軌跡に対して、等速運動で長期間 予測を行うと、滞留している牛の位置から予測位 置が大きく外れてしまう

予測を停止して、これを避ける

提案手法の流れ

SORTの高速 な追跡処理を 保ちつつ

SORTのIDス

イッチ数を削 減する

5.リフレッシュレート

精度と処理速度のトレードオフを考慮して

画像の拡大と再検出、および追跡IDの結合は、一定間隔離れた時間(リフレッシュレート)毎に行う

リフレッシュレート=60

実験

評価実験

3分程度の長さの動画中から29秒(60 FPS、1772フレーム)を切り取り、処理対象とした

SORTと DeepSORT (SORT の性能を向上させるために外観情報も使用する)と比較する

SORT**の**追跡結果 36.52 FPS

DeepSORTの追跡結果 21.48 FPS

提案手法の追跡結果 36.04 FPS

全体の結果

まとめ

重なり滞留が多く発生する牛の群れに対して ↓

提案手法はSORTの高速性を維持しつつ、 DeepSORTを超える追跡精度を達成した

今後の課題

さらなる検出精度の向上