Electrochemical Deposition of Biferrocene Derivative-Attached Gold Nanoparticles and the Morphology of the Formed Film

Mami Yamada, Tamon Tadera, Kenya Kubo, and Hiroshi Nishihara*

Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan 113-0033 Received: September 27, 2002

The electrodeposition phenomenon of octyl thiolate-stabilized gold nanoparticles with a 2.3 ± 0.5 nm core diameter modified with biferrocene-terminated alkanethiolates on their surface (Au, –BFc) has been investigated using cyclic voltammetry, STM and AFM morphological observation, and electrochemical quartz crystal microbalance (EQCM) of the deposited Au_n-BFc film. Consecutive potential scans causing two-step oneelectron oxidation of the biferrocene units of Au_n-BFc in CH₂Cl₂ electrolyte solution produce the adhesive Au_n -BFc film on electrode surface. The deposition rate is lower for the biferrocene derivative on one particle $\theta_{\rm BFc}$ with a smaller modification number and a kind of electrolyte anion: ${\rm ClO_4^-} \sim {\rm BF_4^-} \gg {\rm PF_6^-}$. The STM and AFM images have revealed that the thickness of the Au_n-BFc film grows gradually by increasing the number of cyclic scans, forming many monolayer-level domains with ca. 80 nm diameter of the assembled Au_n -BFcs. The average interparticle spacing of neighboring Au_n -BFcs in the film is 7.5 nm, which is longer than the estimated diameter of whole Au_n —BFc species (5.9 nm). Analysis of boron in the film electrodeposited in $Bu_4NBF_4-CH_2Cl_2$ by the prompt γ -ray neutron activation (PGA) method shows that the BF_4 ion is incorporated in the film. EQCM measurement suggests that not only ions but also the included CH₂Cl₂ solvent molecules in the film are moved in and out reversibly in a potential range of $E^{0'}_{2}$ of Au_n -BFc. These results indicate that the formation of ionic lattice including Au_n -BFc²⁺ and counterion is accompanied by the exclusion of CH₂Cl₂ solvent molecules among the particles in the initial deposition process.

Introduction

Recently, preparation methods of stable and size-controlled gold nanoparticles using alkanethiols have been developed, and their special electronic and electrochemical properties have been revealed. One important area of study on nanoparticles is the fabrication of their dimension-controlled assembly for the purpose of making new electronic and optical devices such as quantum wire, single electron device, and nonlinear optical films. Several methods to induce assembly such as self-assembly using monodispersed particles; chemical interaction using dithiol, ionic polymers, metal ions, and organic ligands with an adsorptive group (including DNA); or physical perturbation by electric field or light have been reported.

We recently reported a novel electrochemical procedure to fabricate redox-active Au^{13} and Pd^{14} nanoparticle films on electrode substrates using biferrocene (BFc) derivative-attached metal nanoparticles, Au_n –BFc, prepared by a substitution reaction of octyl thiolate-covered metal nanoparticles (Au_n –OT) with the biferrocene-terminated alkanethiol derivative (BFcS). The electrodeposition is achieved by the two-electron oxidation of the BFc units attached to metal nanoparticles. We also found that the electroreductive deposition of Au nanoparticles was modified with the use of an anthraquinone derivative. 2h,16 This method can be utilized for constructing heterolayers of metal nanoparticles, 16a and the film thus formed shows novel photoelectrochemical characteristics different from those of a single particle.

From these previous results, the metal nanoparticles functionalized with "multiredox" molecules can be generally ag-

gregated on the electrode by electrooxidative or reductive reaction. Note that while the properties of ferrocenylalkanethiolattached nanoparticles have been investigated,17 there is no report on the deposition phenomenon by oxidation of redox sites on the surface. Thus, the detailed elucidation of the mechanism itself is of considerable interest, and can contribute to the advanced practical application of fabricated and more ordered metal nanoparticle assemblies, which may be used in conjunction with recent developments in the like-charge attraction in metastable colloidal crystallites. 18 Possible candidates for the driving force of this electrochemical aggregation are "physical interaction" and/or "chemical bond formation" among the particles (Figure 1). The former would be attributed to the collective interaction among the charged Au_n-BFc, electrolyte, and solvent in solution, while the latter could be defined as the coupling reaction of the BFc units on the neighboring nanoparticles, which could occur when they are oxidized to become reactive.19

The purpose of the present study is to evaluate the electrodeposition process noted above on the basis of electrochemical and spectroscopic measurements. We measured the electrodeposition rate and observed the surface structure of the Au_n –BFc films in STM and AFM images by varying several parameters of the deposition conditions in CH_2Cl_2 solutions of Au_n –BFc. The parameters were (i) electrolyte anion, (ii) the number of potential scans, and (iii) the modification number of BFc units on a nanoparticle surface (θ_{BFc}).

Experimental Section

Chemicals. All solvents and reagents used for syntheses were of extrapure grade, and were purchased from Kanto Chemicals

^{*}To whom correspondence should be addressed. E-mail: nisihara@chem.s.u-tokyo.ac.jp. Fax and phone: +81-3-5841-4348.

 X^- : Electrolyte anion Ox^+ - Ox^+ : Biferrocenium site

A⁺-A⁺: Chemical species formed by a coupling reaction of biferrocenium units

Figure 1. Two possible machanisms of electrodeposition between adjacent Au_n -BFc particles by electrooxidation.

or Tokyo Kasei. They were used as received, unless otherwise noted. Dichloromethane used for electrochemical measurements was of HPLC grade (Kanto Chemicals). Tetrabutylammonium salts, Bu₄NClO₄, Bu₄NBF₄, and Bu₄NPF₆ (HPLC grade, Kanto Chemicals) were used after recrystallization from ethanol.

Synthesis of 1-(9-Thiononyl-1-one)-1',1"-biferrocene (BFcS). The synthetic procedure was based on that outlined in the previous literature. 13,20 The compound 1-(9-bromo-1-one)-1',1"biferrocene (758 mg, 1.32 mmol) was prepared with a yield of 45.4% by the Friedel-Crafts reaction of 1,1"-biferrocene with 8-bromooctyl chloride and aluminum chloride in CH₂Cl₂ at room temperature for 20 h, followed by the addition of thiourea (101 mg, 1.33 mmol) in ethanol (90 mL) and stirring at reflux for 40 h. The reaction mixture was basified with degassed 0.02 M aqueous NaOH (128 mL) by refluxing for 8 h to give a dark red oil in solution. After the solvent was evaporated in a vacuum, the residue was dissolved in CHCl₃ and filtered. The filtrate was dried over Na₂SO₄. The solvent was again evaporated in a vacuum, and the resulting red oil was chromatographed on silica gel using CH₂Cl₂. The fraction containing thiol ($R_f = 0.47$) was collected to give dark orange oil (502 mg, yield: 72%). Anal. Found: C, 62.4; H, 6.25; S, 5.83. Calcd for C₂₈H₃₂OSFe₂· 0.5H₂O: C, 62.6; H, 6.19; S, 5.97. IR (KBr) $\nu_{\text{max}}/\text{cm}^{-1}$: 2568 (S-H), 1658 (C=O). UV-vis (CH₂Cl₂): $\lambda_{\text{max}}/\text{nm}$: 462. ¹H NMR (CDCl₃, 270 MHz) δ /ppm: 0.88 (t, 1H, J = 7.4 Hz), 1.20-1.70 (m, 10H), 2.42 (t, 2H, J = 7.3 Hz,), 2.51 (t, 2H, J= 6.8 Hz), 3.95 (s, 5H), 4.18 (t, 4H, J = 1.6 Hz), 4.28 (t, 2H, J = 1.9 Hz), 4.32 (t, 4H, J = 1.6 Hz), 4.55 (t, 2H, J = 1.9 Hz).

Synthesis of Octyl Thiolate-Covered Au Nanoparticle (Au_n–OT). The synthesis followed a standard procedure. ^{1a} In short, to a vigorously stirred solution of tetra-*n*-octylammonium bromide (4.58 g, 8.38 mmol) in 200 cm³ of toluene was added HAuCl₄·H₂O (0.776 g, 1.87 mmol) in 60 mL of deionized water stirred for 1 h. Octanethiol (0.274 g, 1.87 mmol) was added, then 0.5 M aqueous NaBH₄ (32 mL) was quickly poured into the vigorously stirred mixture. After the mixture was stirred for 3.5 h, the organic phase was separated, and the volume was reduced to ca. 10 mL with a rotary evaporator below 50 °C. The solution was suspended in 650 mL of ethanol and kept at –17 °C in a refrigerator for 12 h. The precipitates were collected by filtration on a membrane filter, and washed thoroughly with ethanol and acetone (330 mg, yield: 91.3%).

Synthesis of BFc-Attached Au Nanoparticle (Au_n -BFc). The modification of BFc units on the particle surface was

SCHEME 1: Preparation and Electrodeposition of Au_n -BFcs.

performed by a typical substitution reaction ¹⁵ of BFcS with Au_n —OT in toluene at room temperature (Scheme 1). The reaction conditions were conducted using the following solutions: (i) 25 mg/2 mL Au_n —OT solution for 24 h, (ii) 25 mg/12 mL Au_n —OT solution for 48 h, and (iii) 25 mg/2 mL Au_n —OT solution for 48 h. After addition of ethanol, the sample precipitated was collected by filtration and rinsed with ethanol and acetone to remove excess BFcS and displaced octanethiol. No contamination of free BFcS in the product was confirmed by 1 H NMR.

Spectroscopy. The ¹H NMR spectra of the samples in CDCl₃ were collected with a JEOL EX270 spectrometer. Infrared absorbance spectra were acquired using a JASCO FT/IR-620V spectrometer. UV—vis absorption spectra were recorded with an Agilent 453 UV—vis spectroscopy system. Inductively coupled plasma (ICP) measurements were carried out with a SII SPS-7000A spectrometer. The concentration of gold in the sample solution was calculated by a working curve using the standard reference material of gold at 242.795 nm.

The Prompt γ -ray Neutron Activation Analysis (PGA) Method.^{21,22} Boron content of the film was assayed by the PGA method. The Au_n-BFc film employed for the analysis was prepared in a solution of 15 μ M Au_n-BFc (θ _{BFc} = 7.5) at HOPG in Bu₄NBF₄-CH₂Cl₂ with 120 potential scans. The surface of the film-deposited HOPG was thoroughly rinsed with CH₂Cl₂. The 478 keV γ -ray emitted from ⁷Li produced via the 10 B $(n,\alpha)^7$ Li reaction was used as the analysis line. Without any preprocessing, a film on the HOPG substrate was placed at the target position of the PGA system of the neutron beam guide at the JRR-3M reactor in Japan Atomic Energy Research Institute. An HOPG substrate without film was also examined for the purpose of checking the boron content. Aqueous solution of boric acid of exactly known amount was dropped on a piece of filter paper and dried to use as a boron standard. The prompt γ -ray spectrum of each sample was measured for 5000s by using a cold neutron beam with a flux of ca. 2×10^7 cm⁻² s⁻¹. A special curve-fitting code²³ was employed in order to estimate the 478 keV peak areas because general curve-fitting programs are useless for analyzing the significantly Doppler-broadened peaks.20

Cyclic Voltammetry. Cyclic voltammetry was carried out in a standard one-compartment cell under an argon atmosphere at 25 °C using a platinum-wire counter electrode and an Ag/Ag⁺ reference electrode [10 mM AgClO₄ in 0.1 M

 $Bu_4NCIO_4^-MeCN$, $E^{0'}$ (Fc/Fc⁺) = 0.27 V vs Ag/Ag⁺ (Fc: ferrocene)] with a BAS CV-50W voltammetric analyzer. Electrodeposition of Au_n-BFc on an indium-tin oxide (ITO)-coated glass electrode (1.0 \times 1.5 cm²) or on a highly ordered pyrolytic graphite (HOPG: 0.28 mm²) was carried out with consecutive scans between -0.3 and 0.9 V vs Ag/Ag⁺ in a solution of Au_n-BFc in 0.1 M electrolyte (Bu₄NClO₄-CH₂Cl₂, Bu₄NBF₄-CH₂-Cl₂, or Bu₄NPF₆-CH₂Cl₂). The ITO electrodes were washed in ultrapure water (>18.2 M Ω cm⁻¹) containing a protein remover for 5 min and cleaned sufficiently by ultrapure water and acetone for 5 min, respectively, under sonication before the experiment. The electrodeposited films were cleaned with CH₂Cl₂ after the preparation process then dried under vacuum.

Electrochemical Quartz Crystal Microbalance (EQCM) Measurement. EQCM was carried out in a standard Teflon cell under an argon atmosphere at 25 °C using a platinum-wire counter electrode and an Ag/Ag+ reference electrode with a Hokuto HQ-101B QCM controller and HZ-3000 polarization system. The gold-coated electrode of the crystals (6 MHz, 13 mm diameter) was purchased from Hokuto Denko and used as received as a working electrode.

Transmission Electron Microscopy (TEM). TEM images of Au_n -OT were obtained with a Hitachi HF-2000 microscope. Samples for TEM were prepared by drop-casting 4 mL of a 0.5 mg/mL Au_n-OT solution in CH₂Cl₂ onto standard carboncoated films on copper grids (600 mesh, from Ohta Giken) and drying them in a vacuum overnight. Size distribution of the metal cores were measured from enlarged TEM images for at least 200 individual particles using the computer program Scion Image Release 4 (Scion Corporation).

Scanning Tunneling Microscopy (STM). STM topographic images of the electrodeposited film on HOPG were taken at a constant current of 0.3-0.5 nA and a bias of 0.1-0.5 V with a Pt/Ir (4:1) tip with a PicoSPM (Molecular Imaging) controlled by a PicoScan (Molecular Imaging) at room temperature in air.

Atomic Force Microscopy (AFM). AFM topographic image of the electrodeposited film on HOPG was obtained with a SiN cantilever with a spring constant of 0.12 N/m (Digital Instruments) in contact mode (6 mm scanner) with a PicoSPM (Molecular Imaging) controlled by a PicoScan (Molecular Imaging) at room temperature in air.

Calculations of Anion Diameter. The anion structures of the electrolyte were optimized by the MM+ method with the default parameters packaged with the computer program, HyperChem Release 6 (HyperCube Ltd).

Results and Discussion

Syntheses. Au_n -OTs were prepared by the Brust method, using the reduction of HAuCl₄ with a 10-fold excess of NaBH₄ in the presence of octanethiol in a single organic phase. 1a The average core diameter of Au_n -OT thus prepared was determined by TEM to be 2.3 ± 0.5 nm. This core size corresponds to 309 Au atoms, a magic number of cuboctahedron core shape, and an average of 92 octyl thiolate units are bound to the surface of one particle.²⁴

The number of exchanged BFcS on the Au_n-OT surface θ_{BFc} was calculated by the ratio of the integrals of the ¹H NMR signals between BFc and methyl protons at 3.9-4.7 and 0.8-0.9 ppm, respectively. The reaction condition of i, ii, and iii noted in the Experimental Section produced three types of Au_n BFc with $\theta_{BFc} = 3.6$, 7.5, and 15, respectively, indicating that the more concentrated solution and longer reaction time produced Au_n-BFc with a larger θ_{BFc} . The UV-vis spectrum

Figure 2. Cyclic voltammograms of 5.0 μ M Au_n-BFc ($\theta_{BFc} = 15$) at HOPG in 0.1 M Bu₄NClO₄-CH₂Cl₂ at 100 mV/s between -0.3 to 0.9 V vs Ag/Ag⁺ in the positive direction from bottom to the top with the first, 10th, 20th, 30th, 40th, 50th, and 60th cyclic scans.

of Au_n-BFc in CH₂Cl₂ exhibited a surface plasmon band²⁵ at 516 nm ($\epsilon_{\text{max}} = 7.7 \times 10^5 \text{ M}^{-1} \text{ cm}^{-1}$).

Electrodeposition Behavior of Au_n -BFc ($\theta_{BFc} = 15$): Dependence of the Electrolyte Species in a Solution. Three electrolyte salts of a tetra-n-butylammonium cation (Bu₄N⁺) with three respective different anions, ClO₄⁻, BF₄⁻, and PF⁻, were employed in order to examine the effects of the counterion on the deposition process of Au_n -BFc ($\theta_{BFc} = 15$). Figure 2 shows the typical cyclic voltammograms of Au_n-BFc in the electrodeposition process, which is measured in a solution of Au_n-BFc at HOPG in Bu₄NClO₄-CH₂Cl₂. The peak current increases gradually by consecutive potential scans between -0.3and 0.9 V vs Ag/Ag⁺, where a two-step one-electron oxidation due to BFc units on a particle surface occurs at 0.15 and 0.54 V vs Ag/Ag⁺. The peak-to-peak separation slowly becomes larger with increasing the number of cyclic scans since the higher film resistance prevents the electron transfer in a thicker film. Cyclic voltammogram of the electrode film thus prepared exhibited two of each cathodic and anodic waves, the peak currents of which were proportional to the potential scan rate in pure Bu₄NClO₄-CH₂Cl₂ indicating the behavior of surface immobilized redox species. It should be noted that there appear additional anodic and cathodic shoulders at ca. 0.3 V between the major waves. This can be ascribed to the chemical decomposition of the biferrocenium unit in the electrodeposited film as observed for the SAM of BFcS on an Au(111) surface. 19c

We also observed the current growth in cyclic voltammograms when the other electrolytes, Bu₄NBF₄ and Bu₄NPF₆, were adopted; however, its increasing rate depends on the anion, as shown in Figure 3A, which displays the cyclic voltammograms at the 60th potential cycle in Au_n-BFc solution with each electrolyte. The peak currents measured in ClO₄⁻ and BF₄⁻ containing solution are comparable, whereas in PF₆⁻ solution the current is reduced to almost half that of the others. A similar electrolyte effect is detectable in the UV-vis spectra of the Au_n -BFc films on ITO (Figure 3B). The films formed in the ClO₄⁻ and BF₄⁻ solutions exhibit similar intensity and maximal absorbance at ca. 550 nm, which is derived from the red-shifted surface plasmon band of closely assembled Au_n-BFcs in the film. 2h,26 In contrast, the film prepared in the PF₆⁻ solution is about one-fourth that of the others in absorbance intensity. The color change in photos of the Au_n-BFc films by changing the number of cyclic potential scans evidently confirm this difference of the electrodeposition rate, as displayed in Figure 4. These results deduce that the electrodeposition rate of Au_n-BFc in PF₆⁻ solution is inhibited compared to that in ClO₄⁻ or BF₄⁻ solution.

There are two possible factors to cause the effects of the electrolyte anion. The first is the difference in the "redox

Figure 3. (A) Cyclic voltammograms of 5.0 μM Au_n –BFc (θ_{BFc} = 15) at HOPG in 0.1 M Bu_4NClO_4 –CH₂Cl₂ (solid), Bu_4NBF_4 –CH₂Cl₂ (dotted), and Bu_4NPF_6 –CH₂Cl₂ (dashed) at 100 mV/s between -0.3 and 0.9 V vs Ag/Ag^+ in the positive direction at the 60th cyclic potential scan. (B) UV–vis spectra of electrodeposited Au nanoparticle films prepared in a solution of 5.0 μM Au_n –BFc (θ_{BFc} = 15) in 0.1 M Bu_4 –NClO₄–CH₂Cl₂ (solid line), Bu_4NBF_4 –CH₂Cl₂ (dotted line), and Bu_4 -NPF₆–CH₂Cl₂ (dashed line) at ITO at 100 mV/s between -0.3 and 0.9 V vs Ag/Ag^+ with 60 scans.

Figure 4. Photographs of electrodeposited Au nanoparticle films prepared in a solution of $5.0 \,\mu\text{M}$ Au_n-BFc ($\theta_{\text{BFc}} = 15$) at ITO in CH₂-Cl₂ with 0.1 M tetra-*n*-butylammonium salt of anion given in the figure at ITO at 100 mV/s between -0.3 and 0.9 V vs Ag/Ag⁺. The values in the figure are those of the cyclic scans.

TABLE 1: Redox Potential of Au_n -BFc (θ_{BFc} = 15) and Electrolyte Anion Diameters

electrolyte	$E^{0\prime}{}_1/{ m V}^a$	$E^{0\prime}{}_2/{ m V}^a$	anion diameter/Å
Bu ₄ NClO ₄ ^b	0.15	0.54	2.3
$Bu_4NBF_4{}^b$	0.15	0.54	2.1
$Bu_4NPF_6{}^b$	0.17	0.59	3.3

^a Potential refer to Ag/Ag⁺. ^b In 0.1 M electrolyte—CH₂Cl₂ at HOPG.

potential of Au_n -BFc" depending on the electrolyte anion (see Table 1). In Bu_4NPF_6 - CH_2Cl_2 , the second redox potential $E^{0\prime}_2$ is more positive than the second redox potentials in the other

two electrolytes by 50 mV, resulting in a decrease of the period during which the biferrocene units are held in the 2+ state when the potential range is fixed as between -0.3 and 0.9 V. 26 However, in a complementary experiment in which the potential range of the cyclic potential scan in PF $_6$ ⁻ solution was shifted in the more positive direction by 50 mV (namely, scanned between -0.25 and 0.95 V), the redox activity in the film that formed was not still comparable to the redox activities in the solutions of the other two anions.

The second factor is the "anion size effect". Presumably, anions surround the biferrocenium units on the Au_n-BFc surface as a counterion in the electrooxidation process. The charged Au_n-BFcs and the counteranions are likely to assemble voluntarily as a result of their lattice energy involving electrostatic force and van der Waals-like force. Hence, when the particles can get closer to each other with the smaller anions, the electrodeposition proceeds efficiently with a larger attractive van der Waals-like force, which prevents the dissolution of the deposited particles on rereduction to the neutral biferrocene state. The diameter of PF₆⁻, 3.3 Å, is prominently larger than that of the other anions (ClO_4^- , 2.3 Å; BF_4^- , 2.1 Å), as shown in Table 1, which accords well with the experimental results described above. This anion effect is a convincing proof of the importance of interparticle electrostatic interaction in this electrodeposition mechanism.

STM Images of the Electrodeposited Au_n -BFc Films: Dependence of the Number of Potential Scans and Basic Morphological Aspects. We investigated the morphological features of the Au_n -BFc film and the changes in the surface structure by increasing the number of potential scans in the electrodeposition process. STM images of the Au_n -BFc (θ_{BFc} = 3.6) films at HOPG deposited in ClO_4 - solution by 5 and 60 cyclic scans are shown in Figure 5. Figure 5A shows that the spherical Au_n -BFcs gather to construct an island of particles, but the whole electrode area is not covered and the clear step line of the HOPG surface still appears when the number of potential scans is five. Figure 5B shows that, by 60 potential scans, the Au_n -BFcs of a similar size are tightly assembled to cover all the electrode and build up multiple layers with a fairly flat surface.

Figure 5C is the enlarged image of Figure 5B, and shows that the average spacing between the adjoining electrodeposited Au_n -BFcs is 7.5 nm. This value is obviously larger than the estimated maximal Au_n-BFc particle size of 5.9 nm (core diameter, 2.3 nm; octyl thiolate, 1.0 nm; and biferrocene, 0.8 nm) even if a deviation in core diameter of 0.5 nm is taken into consideration. This finding implies that the Au_n-BFcs are not electrodeposited via direct contact between BFc moieties and/or the alkyl chain, but are electrodeposited by maintaining a certain distance between the particles. At this stage we can exclude the possibility of the deposition mechanism involving a "chemical combination" between adjacent Au_n-BFcs with oxidized BFc units. We have checked the morphology of the Au_n-BFc films on the other electrolytes Bu₄NBF₄ and Bu₄-NPF₆ used for electrodeposition, and the STM images confirmed that the average interparticle distance is independent of electrolyte, maintained at 7.5 nm in all cases. The coverage of the Au_n-BFc monolayer Γ_{mono} is calculated as 3.2×10^{-12} mol cm⁻².¹³ It should be mentioned that our previous report on the Au_n -AQ with an estimated maximal diameter of 5.8 nm^{2h} has shown that the inter-nanoparticle distance in the Au_n -AQ film electrodeposited in Bu₄NClO₄-CH₂Cl₂ was 8.5 nm, indicating an existence of spacing between the Au_n-AQs as the same feature as Au_n -BFcs.

Figure 5. The STM image of the Au_n -BFc ($\theta_{BFc} = 3.6$) film on HOPG electrodeposited in 5.3 μ M Au_n -BFc ($\theta_{BFc} = 3.6$) in 0.1 M Bu_4 NClO₄-CH₂Cl₂ between -0.3 and 0.9 V vs Ag/Ag⁺ at 100 mV/s by 5 (A) and 60 (B) cyclic potential scans. (C) The enlarged STM image of Figure 5B (top), and the cross-sectional profile along the dotted line (bottom). The STM (D, top) and AFM (E, top) images of the Au_n -BFc ($\theta_{BFc} = 7.5$) film on HOPG electrodeposited in 5.2 μ M Au_n-BFc ($\theta_{BFc} = 7.5$) in 0.1 M Bu₄NClO₄-CH₂Cl₂ between -0.3 and 0.9 V vs Ag/Ag⁺ at 100 mV/s by 5 cyclic scans, and the typical cross-sectional profile along the cross axis (bottom).

The most likely candidate for the chemical species existing in the space among adjacent Au_n -BFcs in the film, estimated at 7.5-5.9 = 1.6 nm (Figure 6), is the used electrolyte, even if the potential in the electrodeposition experiment is stopped at -0.3 V where BFc units are in the neutral state. It is a matter of interpretation that not all of the anions which gather around the oxidized BFc units as counterions in the electrodeposition process are removed; some of them are immobilized into the interparticle space of the film even after the potential is set back to -0.3 V.

The presence of anions and the proportion of Au_n -BFc particles and BF₄⁻ anions in the film prepared in BF₄⁻ solution were examined by PGA and ICP. The boron content of the film assayed by PGA after subtracting the contribution from the HOPG substrate (0.30 ppm) was determined as 8.9×10^{-8} mol $(2.9 \times 10^{-8} \text{ mol cm}^{-2})$. The concentration of the gold contained in the film was determined as 1.08 ppm with ICP. Considering the average molecular weight of one nanoparticle (Au₃₀₉ = 60862), the amount of the deposited Au_n -BFc ($\theta_{BFc} = 7.5$) was quantified as 8.9×10^{-10} mol $(3.2 \times 10^{-10} \text{ mol cm}^{-2})$,

Figure 6. The illustration of adjacent electrodeposited Au_n -BFcs in the film.

which gave the ratio of the Au_n –BFc ($\theta_{BFc} = 7.5$) particle and BF₄⁻ anion in the film as 1:9.3. This value is suitable for the estimation that 62% of the counteranions of BFc²⁺ remain as spacers.

STM and AFM Images of the Electrodeposited Au_n-BFc Films: Dependence of the Modification Number of BFc Sites on the Particle Surface and Specific Film Structure. STM and AFM images of the Au_n-BFc film with a larger modification number ($\theta_{\rm BFc} = 7.5$) are shown in Figure 5D,E. In contrast to the image for Au_n -BFc ($\theta_{BFc} = 3.6$) shown in Figure 5A, the Au_n-BFcs ($\theta_{BFc} = 7.5$) completely concealed the electrode surface to form the particle film which is flat within a level of 5 nm in height in the same electrolysis conditions as displayed in Figure 5D. In the UV-vis spectra, the absorbance of the Au_n-BFc ($\theta_{BFc} = 7.5$) film was 3 times larger than that of the Au_n-BFc ($\theta_{BFc} = 3.6$) film, suggesting that the electrodeposition rate is faster for Au_n -BFcs with higher θ_{BFc} . Notably, a thicker Au_n-BFc film can be constructed by increasing the number of potential scans even in a solution of Au_n -BFc (θ_{BFc} = 3.9), and the surface morphology (i.e., interparticle distance) is independent of the $\theta_{\rm BFc}$ value.

The surface in Figure 5D maintains a monolayer-level flatness seen in its cross sectional view, whereas it is apparent that domains of particles ca. 70-80 nm in diameter (encircled by a dotted line) are constructed. The AFM image of the same sample shown in Figure 5E reveals the peculiar nanostructure of the Au_n -BFc film; round-shaped domains spreading on the whole surface as if huge particles are assembled on the electrode. The cross sectional profile demonstrates that the domain size is fairly uniform, with an average diameter of ca. 80 nm, corresponding to ca. $100 \ Au_n$ -BFc particles assuming that Au_n -BFcs are packed with a spacing of 7.5 nm.

EQCM Measurement of Au_n-**BFc Deposition.** EQCM measurement was carried out to analyze the mass change in the electrochemical process. Figure 7 displays the typical EQCM behavior of Au_n-BFc ($\theta_{\rm BFc} = 7.5$) at a gold electrode in Bu₄-NClO₄-CH₂Cl₂. In the first potential sweep in the positive direction, only a slight frequency decrease is observed in the first electron oxidation of the BFc moieties at $E^{0'}_{1} = 0.15$ V, whereas the frequency decreases dramatically from 0.54 to 0.9 V when the second electron oxidation of the BFc sites takes place at $E^{0'}_{2} = 0.54$ V. This behavior reflects that the electrooxidative aggregation of Au_n-BFcs occurs by the two-electron oxidation of the BFc units, since a frequency decrease relates to a mass increase on the electrode. When the potential scan was reversed at 0.9 V to the negative potential, the frequency continues to decrease until 0.54 V; however, a

Figure 7. Cyclic voltammograms (top) and ΔF -potential curves (bottom) of 5.2 μ M Au_n-BFc ($\theta_{\rm BFc}=7.5$) at a gold electrode in 0.1 M Bu₄NClO₄-CH₂Cl₂ at 100 mV/s between -0.3 and 0.9 V vs Ag/Ag⁺ in the positive direction with the first (solid line), fifth (dotted line), 10th (dashed line), 15th (dotted-dashed line), and 20th (2-dotted-dashed line) scans.

significant frequency increase starts after the electrode potential becomes more negative than $E^{0\prime}_{2}$. Thus, the frequency difference before and after the potential cycling at -0.3 V corresponds to the net weight of the deposited Au_n-BFcs. For example, a frequency decrease of 6.0 Hz after the first scan corresponds to 9.7×10^{-8} g increase in mass weight calculated by the Sauerbery equation of $\Delta F = -C\Delta W$, where ΔF is the frequency change, C is the proportional constant that depends on the parameters of QCM electrode properties (e.g., the electrode area, quartz density, and quartz elasticity, and the value is equivalent to 6.17 \times 10⁷ Hz g⁻¹ in this study), and ΔW is the weight change on the electrode. During the course of repeated cyclic potential scans, similar ΔF -potential behavior in one cycle was observed, and the frequency steadily decreased after each cycle with current increase of cyclic voltammograms, indicating that the Au_n -BFc layer is continuously accumulated on the electrode surface. These EQCM results are interpretable as follows: (1) Au_n -BFcs are apt to aggregate at the electrode/electrolyte interface and adsorb to the electrode by the formation of the BFc²⁺ state on the particle surface, (2) significant desorption of assembled Au_n-BFcs from the electrode occurs after BFc sites are returned to the neutral state by reduction, and (3) a small portion of the strongly adsorbed flocks of Au_n-BFcs remain on the electrode. By repeating the potential scans, the Au_n -BFc film might be fabricated by the remaining adsorbed Au_n -BFcs, resulting in the formation of the domains demonstrated in the STM and AFM images (Figure 8, in the i, ii, and iii processes).

EQCM Measurement of the Au_n-BFc Film. EQCM measurement of the Au_n-BFc film was carried out to gain insight on the movement of electrolyte ions in the redox process of the film. Figure 9, top, shows the cyclic voltammogram of the Au_n-BFc ($\theta_{\rm BFc}=7.5$) film (prepared in PF₆⁻ solution) for 2 scans, showing a stable two-step one-electron redox wave of BFc moieties. The coverage of the Au_n-BFc in this film $\Gamma_{\rm BFc}$

Figure 8. The illustration of the electrodeposition process in Au_n BFc solution at the electrode interface. (i) Two-electron oxidation of the BFc sites, (ii) set back to the neutral state by two-electron reduction, and (iii) repeating the potential sweep.

Figure 9. Cyclic voltammograms (top) and ΔF -potential curves (bottom) of a Au_n-BFc ($\theta_{BFc} = 7.5$) film on a gold electrode in 0.1 M Bu₄NPF₆-CH₂Cl₂ at 30 mV/s between -0.3 to 0.9 V vs Ag/Ag⁺ in the positive direction with the first (solid) and second (dotted) scan. The film was prepared in a 5.2 μ M Au_n-BFc ($\theta_{BFc} = 7.5$) in 0.1 M Bu_4NPF_6 - CH_2Cl_2 at 100 mV/s between -0.3 and 0.9 V vs Ag/Ag^+ in the positive direction with 25 scans.

is calculated as 2.1×10^{-11} mol cm⁻² with 6.7 particle layers. It is possible to estimate the total weight of the Au_n -BFc film $\Delta W_{\rm CV}$ by the following equation:

$$\Delta W_{\rm CV} = Q(W_{\rm Au} + 9.3W_{\rm elec})/F\theta_{\rm BFc} \tag{1}$$

where Q (C) is the redox charge calculated by the first peak current in Figure 9, top; W_{Au} and W_{elec} are the molecular weight of Au_n -BFc ($\theta_{BFc} = 7.5$) and the Bu_4NPF_6 electrolyte, respectively, in g mol^{-1} ; and F is the Faraday constant (96500 C mol⁻¹), supposing that the rate of the simultaneously deposited electrolyte is the same as that in the case in Bu₄NBF₄-CH₂Cl₂ (vide supra). The value of $\Delta W_{\rm CV}$ is calculated as 2.4×10^{-6} g, which is reasonable compared to the amount estimated based on the frequency change in the electrodeposition process $\Delta W_{\rm OCM}$, determined as 3.6×10^{-6} g with the frequency decrease in 221 Hz. The discrepancy between the two values might be

caused by factors such as the frequency change generated by the viscoelasticity of the film, solvent molecules included in the film, and/or Au_n-BFcs removed by rinsing with CH₂Cl₂ after the deposition.

The ΔF -potential curves of the film in Figure 9, bottom, reveal that the frequency decreases until the potential reaches ca. 0.5 V; conversely, the frequency starts to increase significantly after ca. 0.6 V, around $E^{0\prime}_{2}$ of BFc units. The tendency of frequency change in one potential cycle is considerably similar, suggesting that some chemical species are excluded from the film reversibly at the potential more positive than E^{0}_{2} . The ΔF decrease at $E^{0\prime}_{1}$ is elucidated by the entry of the anions inside the Au_n -BFc film to fill the spaces among the particles by one-electron oxidation of BFc units. As for the ΔF increase at $E^{0\prime}_{2}$, the first plausible interpretation is that the second redox reaction is accompanied not by the introduction of the anion species, but by the release of the cation species from the film. This assumption is valid in a situation that the electrolyte was included in advance before the oxidation reaction; namely, the cations should be simultaneously involved as a counterion to detected anions in the film as described in the PGA and ICP experiment even when the BFc is in the neutral form. Presuming that all the cations (Bu₄N⁺) in the film corresponding to 50% of the number of BFc sites come out at $E^{0\prime}_{2}$, the decrease of weight in the film equals 2.6×10^{-8} g, whereas the amount determined by a frequency increase of 10 Hz, shown in Figure 9, bottom, corresponds to 1.6×10^{-7} g, of which value is ca. 6 times larger of the estimated value. This discrepancy proves that not only the included cations of electrolyte, but also other chemical species in the film should be considered to explain the ΔF increase at $E^{0\prime}_{2}$. The desorption of $\mathrm{Au}_{n}\mathrm{-BFc}$ in some parts of the film is hardly practicable, since the Au_n-BFc particles are positively tend to increase the attractive interaction over $E^{0\prime}_{2}$ (vide supra) and the cyclic voltammograms in Figure 9, top, exhibit stable current waves. Thus, that the rational elucidation is "the exclusion of solvent molecules". The second oxidation of the BFc moieties in the Au_n-BFc film provokes an increase in the local ionic interaction with the anions and gains the polarity around the particles; subsequently, the lesspolar solvent molecules of CH2Cl2 are naturally expelled from the charged Au_n-BFc film. The decrease of 1.3×10^{-7} g (=1.6 \times 10⁻⁷ g - 2.6 \times 10⁻⁸ g) is equivalent to the loss of 54 molecules per Au_n-BFc particle. This value is adequate judging from the size of the interparticle space.

A simplified picture of chemical species motion for the twostep redox reaction of Au_n-BFc in the film is shown in Figure 10. We expect that the porous Au_n-BFc film with long interparticle spacing acts like a nano-sponge and the solvent molecules, anions in the solution, and possibly cations preincluded move into and out from the film reversibly at $E^{0\prime}_{2}$ by changing the electronic charge of the BFc sites (Figure 10, ii). Additionally the exclusion of solvent is not observed at $E^{0'}_{1}$ in accordance with the electrodeposition phenomenon of Au_n-BFcs. It is inferred that exclusion of solvent molecules around Au_n -BFcs at $E^{0\prime}_2$ causes interparticle approaching and precipitation effectively to form ionic lattice ionic lattice including Au_n -BFc²⁺ and counterion.

We should note that it is still desirable to explain clearly why the interparticle interaction remains when the BFc²⁺ sites are reduced to become the neutral species. In the present stage, it is postulated that the Au_n core also might be positively charged during the deposition process, which causes the attractive interaction among assembled particles and layered films involving electrolyte species even when the potential was set back to

Figure 10. The illustration of ion motion for the two-step redox reaction of Au_n -BFc in the film. The first (i) and the second (ii) redox reaction of the BFc sites in the film.

where BFc sites are in the neutral form. Investigation to clarify this point is currently underway in our laboratory.

Conclusion

The electrodeposition behavior of the biferrocene (BFc)-functionalized Au nanoparticle with a 2.3 ± 0.5 nm core diameter (Au_n-BFc) depends on the number of potential scans, the modification number of BFc units on a Au_n-BFc surface $\theta_{\rm BFc}$, and the electrolyte in solution. The average interparticle distance of the neighboring Au_n-BFcs in the film is 7.5 nm, which distance is independent of the electrolyte used and longer than the estimated diameter of 5.9 nm. Electrolyte salt exists in the interparticle spaces in the film like a glue to bind the nanoparticles. The electrodeposition of Au_n-BFcs forms circular domains ca. 80 nm in diameter and composed of assembled nanoparticles. Mass change at the electrode surface in the electrodeposition process clarified that the interaction between the Au_n-BFc²⁺ particles would be intensified by the exclusion of solvent molecules among the charged particles.

Acknowledgment. This work was supported by Grants-in-Aid for Scientific Research (No. 14204066) from the Ministry of Culture, Education, Science, Sports, and Technology, Japan, and the Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists.

Supporting Information Available: The TEM image and the core diameter histogram of Au_n -BFc (Figure S1), ¹H NMR

signals of Au_n —BFc in CDCl₃ (Figure S2), and the STM images of the biferrocene-attached Pd nanoparticles ($\theta_{BFc} = 26.3$) film on HOPG electrodeposited in CH₂Cl₂ with 0.1 M Bu₄NClO₄ (Figure S3). This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

- (1) (a) Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. J. Chem. Soc., Chem. Commun. 1994, 801. (b) Ziegler, K. J.; Doty, R. C.; Johnston, K. P.; Korgel, B. A. J. Am. Chem. Soc. 2000, 123, 7797. (c) Wu, M. L.; O'Neill, S. A.; Brousseau, L. C.; McConnell, W. P.; Shultz, O. A.; Linderman, R. J.; Feldheim, D. L. J. Chem. Soc., Chem. Commun. 2000, 775. (d) Chen, S. W.; Truax, L. A.; Sommers, J. M. Chem. Mater. 2000, 12, 3864. (e) Templeton, A. C.; Wuelfing, M. P.; Murray, R. W. Acc. Chem. Res. 2000, 33, 27. (f) Pan, C.; Pelzer, K.; Philippot, K.; Chaudret, B.; Dassenoy, F.; Lecante, P.; Casanove, M. J. J. Am. Chem. Soc. 2001, 123, 7584
- (2) (a) Chen, S. W.; Murray, R. W.; Feldberg, S. W. J. Phys. Chem. B 1998, 102, 9898. (b) Chen, S. W.; Ingram, R. S.; Hostetler, M. J.; Pietron, J. J.; Murray, R. W.; Schaaff, T. G.; Khoury, J. T.; Alvarez, M. M.; Whetten, R. L. Science 1998, 280, 2098. (c) Korgel, B. A.; Fullam, S.; Connolly, S.; Fitzmaurice, D. J. Phys. Chem. B 1998, 102, 8379. (d) Maye, M. M.; Lou, Y. B.; Zhong, C. J. Langmuir 2000, 16, 7520. (e) Hicks, J. F.; Zamborini, F. P.; Osisek, A.; Murray, R. W. J. Am. Chem. Soc. 2001, 123, 7048. (f) Haram, S. K.; Quinn, B. M.; Bard, A. J. J. Am. Chem. Soc. 2001, 123, 8860. (g) Shipway, A. N.; Willner, I. J. Chem. Soc., Chem. Commun. 2001, 2035. (h) Yamada, M.; Tadera, T.; Kubo, K.; Nishihara, H. Langmuir 2001, 17, 2363.
- (3) Cantele, G.; Ninno, D.; Iadonisi, G. *Phys. Rev. B* **2000**, *61*, 13730.
 (4) (a) Hroves, J. T.; Ulman, N.; Boxer, S. G. *Science* **1997**, *275*, 651.
 (b) Wang, B.; Wang, H. Q.; Li, H. X.; Zeng, C. G.; Hou, J. G.; Xiao, X. D. *Phys. Rev. B* **2001**, *6303*, 5403.
- (5) Novak, J. P.; Brousseau, L. C.; Vance, F. W.; Johnson, R. C.; Lemon, B. I.; Hupp, J. T.; Feldheim, D. L. *J. Am. Chem. Soc.* **2000**, *122*, 12029
- (6) (a) Kiely, C. J.; Fink, J.; Brust, M.; Bethell, D.; Schiffrin, D. J. *Nature* **1998**, *396*, 444. (b) Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. *Science* **2000**, *287*, 1989. (c) Jin, J.; Iyoda, T.; Cao, C. S.; Song, Y. L.; Jiang, L.; Li, T. J.; Ben Zhu, D. *Angew. Chem., Int. Ed.* **2001**, *40*, 2135.
- (7) (a) Gittins, D. I.; Bethell, D.; Nichols, R. J.; Schiffrin, D. J. *J. Mater. Chem.* **2000**, *10*, 79. (b) Men, Y.; Kubo, K.; Kurihara, M.; Nishihara, H. *Phys. Chem. Chem. Phys.* **2001**, *3*, 3377.
- (8) (a) Caruso, F.; Mohwald, H. *Langmuir* **1999**, *15*, 8276. (b) Pardo-Yissar, V.; Katz, E.; Lioubashevski, O.; Willner, I. *Langmuir* **2001**, *17*, 1110. (c) Caruso, F.; Spasova, M.; Saigueirino-Maceira, V.; Liz-Marzan, L. M. *Adv. Mater.* **2001**, *13*, 1090.
- (9) (a) Zamborini, F. P.; Hicks, J. F.; Murray, R. W. J. Am. Chem. Soc. 2000, 122, 4514. (b) Templeton, A. C.; Zamborini, F. P.; Wuelfing, W. P.; Murray, R. W. Langmuir 2000, 16, 6682.
- (10) (a) Taton, T. A.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc. 2000, 122, 6305. (b) Musick, M. D.; Keating, C. D.; Lyon, L. A.; Botsko, S. L.; Pena, D. J.; Holliway, W. D.; McEvoy, T. M.; Richardson, J. N.; Natan, M. J. Chem. Mater. 2000, 12, 2869. (c) McConnell, W. P.; Novak, J. P.; Brousseau, L. C.; Fuierer, R. R.; Tenent, R. C.; Feldheim, D. L. J. Phys. Chem. B 2000, 104, 8925.
- (11) Gittins, D. I.; Bethell, D.; Schiffrin, D. J.; Nichols, R. J. Nature 2000, 408, 6808.
- (12) (a) Lahav, M.; Heleg-Shabtai, V.; Wasserman, J.; Katz, E.; Willner, I.; Durr, H.; Hu, Y. Z.; Bossmann, S. H. *J. Am. Chem. Soc.* **2000**, *122*, 11480. (b) Yamada, M.; Kuzume, A.; Kurihara, M.; Kubo, K.; Nishihara, H. *J. Chem. Soc.*, *Chem. Commun.* **2001**, 2476.
- (13) Horikoshi, T.; Itoh, M.; Kurihara, M.; Kubo, K.; Nishihara, H. J. Electroanal. Chem. 1999, 473, 113.
- (14) (a) Yamada, M.; Quiros, I.; Mizutani, J.; Kubo, K.; Nishihara, H. *Phys. Chem. Chem. Phys.* **2001**, *3*, 3377. (b) Quiros, I.; Yamada, M.; Mizutani, J.; Kubo, K.; Kurihara, M.; Nishihara, H. *Langmuir* **2002**, *18*, 1413. (c) Yamada, M.; Nisihara, H. *J. Chem. Soc., Chem. Commun.* **2002**, 2578.
- (15) (a) Ingram, R. S.; Hostetler, M. J.; Murray, R. W. *J. Am. Chem. Soc.* **1997**, *119*, 9175. (b) Templeton, A. C.; Cliffel, D. E.; Murray, R. W. *J. Am. Chem. Soc.* **1997**, *121*, 77081.
- (16) (a) Yamada, M.; Kubo, K.; Nishihara, H. Chem. Lett. **1999**, 1335. (b) Nishiyama, K.; Kubo, A.; Taniguchi, I.; Yamada, M.; Nishihara, H. Electrochemistry **2001**, 69, 980. (c) Murata, M.; Yamada, M.; Fujita, T.; Kojima, K.; Kurihara, M.; Kubo, K.; Kobayashi, Y.; Nishihara, H. J. Am. Chem. Soc. **2001**, 123, 12903.
- (17) (a) Green, S. J.; Stokes, J. J.; Hostetler, M. J.; Pietron, J.; Murray, R. W. J. Phys. Chem. B 1997, 101, 2663. (b) Labande, A.; Astruc, D. J. Chem. Soc., Chem. Commun. 2000, 1007. (c) Chen, S. W. Langmuir 2001, 17, 6664.

- (18) Larsen, A. E.; Grier, D. G. Nature 1997, 385, 230.
- (19) (a) Mueller-Westerhof, U. T. Angew. Chem., Int. Ed. Engl. 1986, 25, 5. 702. (b) Astruc, D. Electron-Transfer and Radical Processes in Transition Metal Chemistry; VCH: New York, 1995. (c) Kubo, K.; Kondow, H.: Nishihara, H. Electrochemistry 1999, 67, 1129.
- Kondow, H.; Nishihara, H. *Electrochemistry* **1999**, *67*, 1129. (20) Chidsey, C. E. D.; Bertozzi, C. R.; Putvinski, T. M.; Mujsce, A. M. *J. Am. Chem. Soc.* **1990**, *112*, 4301.
- (21) Yonezawa, C.; Eood, A. K. H.; Hoshi, M.; Ito, Y.; Tachikawa, E. Nucl. Instrum. Methods Phys. Res. 1993, A329, 207.
- (22) Sakai, Y.; Yonezawa, C.; Magara, M.; Sawahata, H.; Ito, Y. Nucl. Instrum. Methods Phys. Res. 1994, A353, 699.
- (23) Kubo, M. K.; Sakai, Y. J. Nucl. Radiochem. Sci. 2000, 1, 83.
- (24) Hostetler, M. J.; Wingate, J. E.; Zhong, C.-J.; Harris, J. E.; Vochet, R. W.; Clark, M. R.; Londono, D.; Green. S. J.; Stokes, J. J.; Wignall, G. D.; Porter, M. D.; Evans, N. D.; Murray, R. W. *Langmuir* **1998**, *14*, 17.
- (25) (a) Alvarez, M. M.; Khoury, J. T.; Schaaff, T. G.; Shafigullin, M. N.; Vezmar, I.; Whetten, R. L. *J. Phys. Chem. B* **1997**, *101*, 3706. (b) Templeton, A. C.; Pietron, J. J.; Murray, R. W. *J. Phys. Chem. B* **2000**, *104*, 564.
- (26) Freeman, R. G.; Grabar, K. C.; Allison, K. J.; Bright, R. M.; Davis, J. A.; Guthrie, P.; Hommer, M. B.; Jackson, M. A.; Smith, P. C.; Walter, D. G.; Natan, M. J. *Science* **1995**, 267, 1629.