Universidad Austral de Chile Facultad de Ciencias de la Ingeniería Centro de Docencia de Ciencias Básicas para Ingeniería

Guía de Trabajo 5

1) Analiza si se puede aplicar el teorema de Rolle a las siguientes funciones en los intervalos que se indican. En caso afirmativo, encuentra el punto cuya existencia asegura el teorema.

a)
$$f(x) = x^2 - (a+b)x + ab$$
 en el intervalo $[a,b]$

b)
$$f(x) = \begin{cases} x^3 & si & -1 \le x \le 1 \\ x^2 + x - 1 & si & 1 < x \le 2 \end{cases}$$
 en el intervalo [1,2]

c)
$$f(x) = |2x+1|$$
 en el intervalo $[-2,1]$

2) Aplique alguno de los teoremas vistos (Rolle, Valor Medio o Valor Intermedio) para demostrar que:

a) La ecuación cúbica $f(x) = x^3 - 3x + 1$ no puede tener más de una raíz en]-1,1[

b) La designaldad:
$$e^a(x-a) < e^x - e^a < e^x(x-a)$$
, con $a < x$

c) La designaldad:
$$\frac{x-a}{x} < \ln\left(\frac{x}{a}\right) < \frac{x-a}{a}$$
, con $0 < a < x$

3) Calcula "a" y "b" para que el Teorema del Valor Medio sea aplicable, encontrando el/los c cuya existencia se asegura:

a)
$$f(x) = \begin{cases} x^2 + x - a & si & 0 \le x < 1 \\ bx + 3 & si & 1 \le x \le 3 \end{cases}$$
 en $[0,3]$

a)
$$f(x) =\begin{cases} x^2 + x - a & si & 0 \le x < 1 \\ bx + 3 & si & 1 \le x \le 3 \end{cases}$$
 en $[0,3]$ b) $f(x) =\begin{cases} \frac{a+1}{x} & si & 1 \le x \le 3 \\ x^2 + b & si & 3 < x \le 4 \end{cases}$

4) Calcula los siguientes límites

a)
$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{\ln(1+x)} \right)$$

b)
$$\lim_{x \to 1} \left(\frac{x}{\ln(x)} - \frac{1}{\ln(x)} \right)$$

a)
$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\ln(1+x)} \right)$$
 b)
$$\lim_{x \to 1} \left(\frac{x}{\ln(x)} - \frac{1}{\ln(x)} \right)$$
 c)
$$\lim_{x \to 0} \left(\frac{x \cos(x) - sen(x)}{x^3} \right)$$

d)
$$\lim_{x\to 0} \left(\frac{e^x - e^{-x} - 2x}{x - senx} \right)$$
 e) $\lim_{x\to 0} \left(\frac{1}{x^2} \right)^{tgx}$

e)
$$\lim_{x\to 0} \left(\frac{1}{x^2}\right)^{tg}$$

f)
$$\lim_{x \to 1} \left(\frac{sen(x-1)}{x^2 - 3x + 2} \right)$$

g)
$$\lim_{x\to 0} (senx)^{senx}$$

h)
$$\lim_{x \to \infty} \frac{(\ln x)^2}{\sqrt{x}}$$

i)
$$\lim_{x\to\pi} (x-\pi) tg \frac{x}{2}$$

$$j) \lim_{x \to \infty} \left(x + e^x + e^{2x} \right)^{\frac{1}{x}}$$

k)
$$\lim_{x \to \frac{\pi}{4}} \cos(2x) \sqrt{tgx}$$

$$\lim_{x\to 0} \frac{a^x - b^x}{x}$$

5) Determine las constantes *a* y *b* de manera que:

a)
$$\lim_{x \to 0} \left(x^{-3} sen(3x) + ax^{-2} + b \right) = 0$$
 b) $\lim_{x \to 0} \frac{\cos(ax) - b}{2x^2} = -4$

b)
$$\lim_{x \to 0} \frac{\cos(ax) - b}{2x^2} = -4$$