Bayesian Optimization for Hyperparameter Optimization

Computationally Expensive Acquisition Functions

Bernd Bischl <u>Frank Hutter</u> Lars Kotthoff Marius Lindauer Joaquin Vanschoren

Given the surrogate $\hat{c}^{(t)}$ fit at iteration t

Imagine that we sample at a random configuration λ

We would then observe the cost $c(\lambda)$ at this imaginary configuration λ

With this hypothetical data point at λ , we'd have this 1-step lookahead surrogate $\hat{c}^{(t+1)}|_{\lambda}(\cdot)$

Visualization of How Different the Lookahead Surrogate Can Be

A comparison of $\hat{c}^{(t)}(\cdot)$ and $\hat{c}^{(t+1)}|_{\pmb{\lambda}}(\cdot)$ for a given $\pmb{\lambda}$.

Visualization of How Different the Lookahead Surrogate Can Be

A comparison of $\hat{c}^{(t)}(\cdot)$ and $\hat{c}^{(t+1)}|_{\lambda}(\cdot)$ for a given λ .

Visualization of How Different the Lookahead Surrogate Can Be

A comparison of $\hat{c}^{(t)}(\cdot)$ and $\hat{c}^{(t+1)}|_{\pmb{\lambda}}(\cdot)$ for a given $\pmb{\lambda}$.

Given the surrogate $\hat{c}(\lambda) = \mathcal{N}(\mu(\lambda), \sigma^2(\lambda))$ fit at iteration t

If we are risk-neutral, we'd return $\arg\min_{\pmb{\lambda}}\left(\mu(\pmb{\lambda})\right)^{(t)}$ as incumbent, with value $(\mu^*)^{(t)}$

If we perform a one-step look-ahead for configuration $\pmb{\lambda}$, we would get $\hat{c}^{(t+1)}|_{\pmb{\lambda}}$

We would then be interested in the minimum of the updated mean function $\left(\mu^*\right)^{(t+1)}\mid_{\pmb{\lambda}}$

The Knowledge Gradient is then the expectation of the improvement $(\mu^*)^{(t+1)} - (\mu^*)^{(t+1)}|_{\lambda}$

Knowledge Gradient (KG): Formal Definition

• The Knowledge Gradient is the expectation of the improvement $(\mu^*)^{(t+1)} - (\mu^*)^{(t+1)}|_{\lambda}$:

$$u_{KG}^{(t)}(\boldsymbol{\lambda}) = \mathbb{E}\left[(\mu^*)^{(t)} - (\mu^*)^{(t+1)} \Big|_{\boldsymbol{\lambda}^{(t)} = \boldsymbol{\lambda}} \right]$$

$$= \min_{\boldsymbol{\lambda}' \in \boldsymbol{\Lambda}} \mu^{(t)} \left(\boldsymbol{\lambda}' \middle| \mathcal{D}^{(t-1)} \right) - \mathbb{E}_{\tilde{c} \sim \hat{c}(\boldsymbol{\lambda})^{(t)}} \left[\min_{\boldsymbol{\lambda}' \in \boldsymbol{\Lambda}} \mu^{(t+1)} \left(\boldsymbol{\lambda}' \middle| \mathcal{D}^{(t-1)} \cup \{\langle \boldsymbol{\lambda}, \tilde{c} \rangle\} \right) \right]$$

Knowledge Gradient (KG): Formal Definition

• The Knowledge Gradient is the expectation of the improvement $(\mu^*)^{(t+1)} - (\mu^*)^{(t+1)}|_{\lambda}$:

$$u_{KG}^{(t)}(\boldsymbol{\lambda}) = \mathbb{E}\left[(\mu^*)^{(t)} - (\mu^*)^{(t+1)} \Big|_{\boldsymbol{\lambda}^{(t)} = \boldsymbol{\lambda}} \right]$$

$$= \min_{\boldsymbol{\lambda}' \in \boldsymbol{\Lambda}} \mu^{(t)} \left(\boldsymbol{\lambda}' | \mathcal{D}^{(t-1)} \right) - \mathbb{E}_{\tilde{c} \sim \hat{c}(\boldsymbol{\lambda})^{(t)}} \left[\min_{\boldsymbol{\lambda}' \in \boldsymbol{\Lambda}} \mu^{(t+1)} \left(\boldsymbol{\lambda}' | \mathcal{D}^{(t-1)} \cup \{\langle \boldsymbol{\lambda}, \tilde{c} \rangle\} \right) \right]$$

$$\begin{array}{c} \mathsf{Choose} \ \pmb{\lambda}^{(t)} = \argmax_{\pmb{\lambda} \in \pmb{\Lambda}} (u_{KG}^{(t)}(\pmb{\lambda})) \end{array} |$$

Knowledge Gradient: Pseudocode for Monte Carlo Approximation

$$u_{KG}^{(t)}(\pmb{\lambda}) = const - \mathop{\mathbb{E}}_{\tilde{c} \sim \hat{c}(\lambda)^{(t)}} \left[\min_{\pmb{\lambda}' \in \pmb{\Lambda}} \mu^{(t+1)} \left(\pmb{\lambda}' \mid \mathcal{D}^{(t-1)} \cup \{\langle \pmb{\lambda}, \tilde{c} \rangle\} \right) \right]$$

Sampling Based Knowledge Gradient Acquisition Function

Require: Surrogate \hat{c} , candidate configuration λ , dataset \mathcal{D}

```
Result: Utility u(\lambda)
```

- 1 for s=1 to S do
- 2 | Sample $\tilde{c}_s \sim \hat{c}(\boldsymbol{\lambda})$
- 3 Update \hat{c} with $\{\langle \pmb{\lambda}, \tilde{c}_s \rangle\}$ to yield $\hat{c}_s = \mathcal{N}(\mu_s, \sigma_s^2)$
- 4 $e[s] \leftarrow \min_{\lambda' \in \Lambda} \mu_s$
- 5 $u \leftarrow const \frac{1}{S} \sum_{s=1}^{S} e[s]$

Knowledge Gradient: Pseudocode for Monte Carlo Approximation

$$u_{KG}^{(t)}(\boldsymbol{\lambda}) = const - \mathop{\mathbb{E}}_{\tilde{c} \sim \hat{c}(\lambda)^{(t)}} \left[\min_{\boldsymbol{\lambda}' \in \boldsymbol{\Lambda}} \mu^{(t+1)} \left(\boldsymbol{\lambda}' \mid \mathcal{D}^{(t-1)} \cup \{\langle \boldsymbol{\lambda}, \tilde{c} \rangle\} \right) \right]$$

Sampling Based Knowledge Gradient Acquisition Function

Require: Surrogate \hat{c} , candidate configuration λ , dataset \mathcal{D}

```
Result: Utility u(\lambda)
```

1 for s=1 to S do

2 | Sample
$$\tilde{c}_s \sim \hat{c}(\boldsymbol{\lambda})$$

3 Update
$$\hat{c}$$
 with $\{\langle \boldsymbol{\lambda}, \tilde{c}_s \rangle\}$ to yield $\hat{c}_s = \mathcal{N}(\mu_s, \sigma_s^2)$

4
$$e[s] \leftarrow \min_{\lambda' \in \Lambda} \mu_s$$

5
$$u \leftarrow const - \frac{1}{S} \sum_{s=1}^{S} e[s]$$

This sampling view is useful for intuition; but in practice, there are more efficient ways to optimize KG [Frazier 2018]

ullet Key idea: Evaluate $oldsymbol{\lambda}$ which most reduces our uncertainty about the location of $oldsymbol{\lambda}^*$

- Key idea: Evaluate λ which most reduces our uncertainty about the location of λ^*
- We'll use the p_{min} distribution to characterize the location of λ^* :

$$p_{min}(\boldsymbol{\lambda}^*|\mathcal{D}) = p(\boldsymbol{\lambda}^* \in \underset{\boldsymbol{\lambda}' \in \boldsymbol{\Lambda}}{\operatorname{arg\,min}}(\hat{c}(\boldsymbol{\lambda}')|\mathcal{D}))$$

- Key idea: Evaluate λ which most reduces our uncertainty about the location of λ^*
- We'll use the p_{min} distribution to characterize the location of λ^* :

$$p_{min}(\boldsymbol{\lambda}^*|\mathcal{D}) = p(\boldsymbol{\lambda}^* \in \underset{\boldsymbol{\lambda}' \in \boldsymbol{\Lambda}}{\operatorname{arg\,min}}(\hat{c}(\boldsymbol{\lambda}')|\mathcal{D}))$$

ullet Our uncertainty is then captured by the entropy $H(p_{min}(\cdot|\mathcal{D}))$ of the p_{min} distribution

- ullet Key idea: Evaluate $oldsymbol{\lambda}$ which most reduces our uncertainty about the location of $oldsymbol{\lambda}^*$
- We'll use the p_{min} distribution to characterize the location of λ^* :

$$p_{min}(\boldsymbol{\lambda}^*|\mathcal{D}) = p(\boldsymbol{\lambda}^* \in \underset{\boldsymbol{\lambda}' \in \boldsymbol{\Lambda}}{\operatorname{arg\,min}}(\hat{c}(\boldsymbol{\lambda}')|\mathcal{D}))$$

- ullet Our uncertainty is then captured by the entropy $H(p_{min}(\cdot|\mathcal{D}))$ of the p_{min} distribution
- Minimizing $H(p_{min}(\cdot|\mathcal{D}))$ yields a peaked p_{min} distribution, i.e., strong knowledge about the location of λ^*

For each sample drawn from \hat{c} , we can compute where $oldsymbol{\lambda}^*$ lies

For each sample drawn from \hat{c} , we can compute where $oldsymbol{\lambda}^*$ lies

From many samples we can approximate the p_{min} distribution

From many samples we can approximate the p_{min} distribution

Entropy Search: Formal Definition

• The p_{min} distribution characterizes the location of λ^* :

$$p_{min}(\boldsymbol{\lambda}^*|\mathcal{D}) = p(\boldsymbol{\lambda}^* \in \underset{\boldsymbol{\lambda}' \in \boldsymbol{\Lambda}}{\operatorname{arg\,min}}(\hat{c}(\boldsymbol{\lambda}')|\mathcal{D}))$$

Entropy Search: Formal Definition

• The p_{min} distribution characterizes the location of λ^* :

$$p_{min}(\boldsymbol{\lambda}^*|\mathcal{D}) = p(\boldsymbol{\lambda}^* \in \underset{\boldsymbol{\lambda}' \in \boldsymbol{\Lambda}}{\operatorname{arg\,min}}(\hat{c}(\boldsymbol{\lambda}')|\mathcal{D}))$$

• Our uncertainty about the location of λ^* is captured by the entropy $H(p_{min}(\cdot|\mathcal{D}))$ of the p_{min} distribution

Entropy Search: Formal Definition

• The p_{min} distribution characterizes the location of λ^* :

$$p_{min}(\boldsymbol{\lambda}^*|\mathcal{D}) = p(\boldsymbol{\lambda}^* \in \underset{\boldsymbol{\lambda}' \in \boldsymbol{\Lambda}}{\operatorname{arg\,min}}(\hat{c}(\boldsymbol{\lambda}')|\mathcal{D}))$$

- Our uncertainty about the location of λ^* is captured by the entropy $H(p_{min}(\cdot|\mathcal{D}))$ of the p_{min} distribution
- Entropy search aims to minimize $H(p_{min})$, to yield a peaked p_{min} distribution:

$$u_{ES}(\boldsymbol{\lambda}) = H(p_{min}(\cdot|\mathcal{D})) - \underset{\tilde{c} \sim \hat{c}(\lambda)^{(t)}}{\mathbb{E}} H(p_{min}(\cdot|\mathcal{D} \cup \{\langle \boldsymbol{\lambda}, \tilde{c} \rangle\}))$$

Choose
$$\pmb{\lambda}^{(t)} = \operatorname*{arg\,max}_{\pmb{\lambda} \in \pmb{\Lambda}}(u_{ES}^{(t)}(\pmb{\lambda}))$$

Entropy Search: Pseudocode for Monte Carlo Approximation

$$u_{ES}(\boldsymbol{\lambda}) = const - \underset{\tilde{c} \sim \hat{c}(\lambda)^{(t)}}{\mathbb{E}} H(p_{min}(\cdot | \mathcal{D} \cup \{\langle \boldsymbol{\lambda}, \tilde{c} \rangle\}))$$

Sampling Based Entropy Search Acquisition Function

```
Require: Surrogate \hat{c}, candidate configuration \lambda, finite set of representer points \Lambda_r, dataset \mathcal{D}
      Result: Utility u(\lambda)
  1 for s=1 to S do
               Sample \tilde{c}_s \sim \hat{c}(\lambda); \hat{c}_s \leftarrow \text{Update } \hat{c} \text{ with } \{\langle \lambda, \tilde{c}_s \rangle \}
               Initialize F[\boldsymbol{\lambda}] = 0 \quad \forall \boldsymbol{\lambda}' \in \boldsymbol{\Lambda}_r
  3
               for n=1 to N do
  4
                 Sample q_n \sim \hat{c}_s
           \lambda_s \leftarrow \arg\min_{\boldsymbol{\lambda}' \in \boldsymbol{\Lambda}_r} g_nF[\boldsymbol{\lambda}_s] \leftarrow F[\boldsymbol{\lambda}_s] + 1
            p_{min,s}(\lambda') \leftarrow F_{\lambda'}/N \quad \forall \lambda' \in \Lambda_r
             H_s \leftarrow H(p_{min,s}), computed as -\sum_{\lambda' \in \Lambda_-} p_{min,s}(\lambda') \log p_{min,s}(\lambda')
10 u \leftarrow const - \frac{1}{G} \sum_{s=1}^{S} H_s
```

Entropy Search: Variations

- The sample-based approximation is slow; for a faster approximation with expectation propagation see the original ES paper [Hennig et al. 2012]
- Predictive Entropy Search [Hernández-Lobato et al. 2014] is a frequently-used equivalent formulation that gives rise to more convenient approximations
- Max-Value Entropy Search [Wang and Jegelka 2017] is a recent variant that is cheaper to compute and has similar behavior
- Further reading and summary for ES: [Metzen 2016]

Questions to Answer for Yourself / Discuss with Friends

- Repetition. Describe the similarities and differences between KG and El.
- Discussion. When is there an incentive for entropy search to sample at $\max(p_{min})$?