Specifying Covariance Models using Path Diagrams

Will Gertsch

April 28, 2021

Introduction

A path diagram is a graphical approach for specifying covariances.

- Commonly used in psychology and other social sciences.
- Subject expert can easily draw relationships between variables.
- Can handle mediation and multiple outcomes.
- Goal: specify a model for the population covariance matrix Σ .

Basic Ideas

Let's start with a simple model.

Suppose we have the linear model

$$y_i = \beta_0 + \beta_1 x_{1i} + e_i$$

where $e_i \sim N(0, \sigma^2)$ for independent observations i = 1, ..., n.

 We will recreate this regression with a path diagram to demonstrate the basics of path analysis.

Path Diagram Notation

Path diagrams use the following notation

- Labeled squares are observed variables.
- Symbols attached to arrows are population parameters.
- Single-headed arrows are regression coefficients.
- Regression coefficients are commonly called "paths".
- Curved double-headed arrows are covariances or variances.

Simple Model

This diagram specifies a covariance model for variables x_1 , y on subject i.

$$\Sigma = \mathsf{Var} \begin{pmatrix} x_{1i} \\ y_i \end{pmatrix} = \begin{pmatrix} \sigma_{x1}^2 & 0 \\ 0 & \sigma_y^2 \end{pmatrix}$$

- σ_{x1}^2 , σ_y^2 are variances of x_{1i} and y_i .
- There are no paths or covariances between x_{1i} and y_i .
- Therefore the covariance of x_{1i} and y_i is 0.

No Intercept Model

This model adds a regression path between x_1 and y with parameter β_1 .

- The added path creates the regression equation $y_i = \beta_1 x_{1i} + 1 * e_i$, $e_i \sim N(0, \sigma^2)$.
- e_i is the error term of the regression.
- Circle notation: *e_i* is unobserved.
- Equation derived by looking at all paths into y_i .

No Intercept Model

- x_{1i} and e_i assumed independent because no path connects them.
- Unobserved variables like e_i are not included in Σ .
- The covariance matrix is only for observed variables.
- $Cov(y_i, x_{1i}) = Cov(\beta_1 x_{1i} + e_i, x_{1i}) = \beta_1 \sigma_{x_1}^2$

$$\Sigma = \mathsf{Var} \begin{pmatrix} x_{1i} \\ y_i \end{pmatrix} = \begin{pmatrix} \sigma_{x1}^2 & \beta_1 \sigma_{x1}^2 \\ \beta_1 \sigma_{x1}^2 & \sigma^2 \end{pmatrix}$$

Simple Linear Regression

We add the intercept β_0 to the previous model.

- Triangle: a constant term for all subjects.
- Constant is usually set to 1.
- A path from a triangle will add an intercept.
- $y_i = \beta_0 + \beta_1 x_{1i} + e_i$, $e_i \sim N(0, \sigma^2)$

Simple Linear Regression

What is the covariance of x_{1i} and y_i ?

- $Cov(x_{1_i}, y_i) = \beta_1 \sigma_{x1}^2$
- Is this the same as $\beta_1 \sigma_{x1}^2$ for the no-intercept model?
- No: β_1 is different between the two models.

Simple Linear Regression

Let $r_{x1,y}$ be the population correlation between x_{1i} and y_i .

$$r_{x1,y} = \frac{\mathsf{Cov}(x_{1i}, y_i)}{\sqrt{\sigma_{x1}^2} \sqrt{\sigma_y^2}}$$

 β_1 for this model is

$$\beta_1 = r_{x1,y} \frac{\sigma_y}{\sigma_{x1}}$$

Mediation

Path analysis can accommodate more than 1 regression equation.

- This mediation model specifies 2 regression equations.
- $y_i = \beta_1 x_{1i} + e_i$ $z_i = \alpha_1 y_i + \epsilon_i$, $e_i \sim N(0, \sigma^2)$, $\epsilon_i \sim N(0, \sigma_\epsilon^2)$
- We can show $Cov(x_{1i}, z_i) = \alpha_1 \beta_1 \sigma_{x1}^2$

Estimation and Inference

To fit covariance models, we estimate Σ .

ullet One popular way to find the estimate $\hat{\Sigma}$ is to minimize

$$F_{ML} = \log |\hat{\Sigma}| + \operatorname{tr}(S\hat{\Sigma}^{-1}) - \log |S| - k$$

- S is the observed covariance matrix, k is the number of observed variables, log is the natural logarithm, $tr(\cdot)$, $|\cdot|$ are the trace and determinant.
- Assuming multivariate normality, $(n-1)F_{ML}$ has a chi-square distribution with degrees of freedom equal to the number of parameters estimated.
- Other estimators exist for non-normal data, missing data, etc.

Conclusion

- We drew path diagrams for simple 2 variable models.
- It is easy to draw more complicated diagrams for bigger models.
- \bullet F_{ML} provides an easy way to fit many of these models.

References

 Wang, Jichuan, and Xiaoqian Wang. 2012. Structural Equation Modeling with Mplus: Methods and Applications. Wiley Series in Probability and Statistics. Chichester, West Sussex: Wiley/Higher Education Press.