PROT: SMPU_Switching

Description:

- This example assumes that the system assigns memory areas to two tasks taskA, and taskB using SMPU and SMPU_STRUCTUREs 1 / 2. The system changes its core's PC to "4" before entering taskA, and "5" before entering taskB.
- Global variable array "taskA_Region0" and "taskA_Region1" are the RAM memory which can be accessed only by task A ("Routine_TaskA") (or only by master who has a PC of "4").
- Global variable array "taskB_Region0" is the RAM memory which can be accessed only by taskB ("Routine_TaskB") (or only by master who has a PC of "5").
- In normal operation, "taskB_Region0" is accessed in "Routine_TaskB", "taskA_Region0" and "taskA_Region1" are accessed in "Routine_TaskA".
- User can infuse bugs intentionally by changing "INJECT_BUG_MODE", e.g. if INJECT_BUG_MODE = INJECT_BUG_TO_TASK_A, "Routine_TaskA" will access memory of "taskB_Region0" and will cause bus fault error (hardfault).

Target Device:

Traveo-II CYT2Bx devices

CPU Board:

CYTVII-B-E-1M-176-CPU Rev. C Board

PROT: SMPU_Switching

Dependency:

None

> Expectation:

- INJECT_BUG_MODE = INJECT_BUG_TO_NONE
 - Nothing happens. Program will continue increasing value of variable "taskA_Region0", "taskA_Region1", "taskB_Region2".
- INJECT_BUG_MODE = INJECT_BUG_TO_TASK_A
 - Will cause bus fault in "Routine_TaskA" because of accessing taskB memory.
- INJECT_BUG_MODE = INJECT_BUG_TO_TASK_B_0
 - Will cause bus fault in "Routine_TaskB" because of accessing taskA memory region 0.
- INJECT_BUG_MODE = INJECT_BUG_TO_TASK_B_1
 - Will cause bus fault in "Routine_TaskB" because of accessing taskA memory region 1.

PROT: SMPU_Switching

Legend:

 Red block for power, debug (Mandatory)