

•1

KÉSZÜLÉKEK FEJLESZTÉSI FÁZISAI

- Műszaki specifikáció meghatározása (50%*):
 Egyeztetés, marketing, bench-marking, meglévő és várható előírások, hatósági előírások.
- Prototípus kifejlesztése (30%*): Specifikáció, tesztelés, gyárthatóság, ár.
- Gyártástechnológia kidolgozása (10%*): Gyártási költségek, gyártáskapacitás, tesztelés.
- Próbagyártás (10%*): Tesztelés (kihozatal/selejt arány).
- Gyártás (0%*): Minőségellenőrzés, SPC.
- *: a termék sikerességében való szerep aránya

३ BME**ETT**

Elektronikus készülékek

•2

ÚT A MŰSZAKI SPECIFIKÁCIÓIG 1. Mit kell létrehozni? A mérnöki gyakorlatban olyan készülékekkel foglalkozunk, amelyekre igény mutatkozik. Az igény lehet: • valós: • Egyedi (pl. atomerőmű), • nem egyedi, vagy piaci (pl. autó), • látens (pl. SMS), • a kitalálás pillanatában még nem létező (pl. Rubik kocka).

_			
•			

३ BME**ETT**

ÚT A MŰSZAKI SPECIFIKÁCIÓIG

- 2. Ki lesz a felhasználó? (jelen és jövő)
 - Gyerek, felnőtt (férfi vagy nő),
 - · idős/beteg
 - · átlagos fogyasztó,
 - szakember.
 - · specialista.

funkciók, ergonómiai szempontok

3. Hol használjuk? (jelen és jövő)

- Beltér/kültér, hideg/meleg (konyha, fürdőszoba),
- strandon, víz alatt, 20 000 m magasan,
- kemencében, váltóban (forró olajban), kipufogócsőben,
- · műholdon.

⇒ a működés környezeti feltételei (*T,RH*, *p* stb.)

३ BME**ETT**

Elektronikus készülékek

4/52

•4

ÚT A MŰSZAKI SPECIFIKÁCIÓIG

4. Mikorra kell elkészíteni? Mennyire szigorú a határidő?

- A piaci megjelenés időpontjának optimuma van:
 - hosszabb fejlesztési idő alatt a készülék tulajdonságaival lehet megelőzni a konkurenciát
 - gyors piaci megjelenéssel a készülék újdonságereje nagyobb,
- egyéb szempontokat figyelmen kívül hagyva, a piaci megjelenés idejének csökkentésével a költségek meredeken növekszenek
- a határidő betartása:
 - az esetek többségében fontos, de csúszás tolerálható.
 - egyes esetekben kulcsfontosságú
 (pl. Spirit Rover)

३ BME**ETT**

•5

Elektronikus készülékek

ÚT A MŰSZAKI SPECIFIKÁCIÓIG

5. Mennyibe fog kerülni a készülék?

Pontosabban megfogalmazva: gazdaságos-e a készülék kifejlesztése, előállítása, gyártása? Mennyibe fog kerülni a piacra dobásig?

Az előzetes költségbecslés a tervet még a megszületése előtt keresztbehúzhatja. Hiába jó (és megvalósítható, eladható, stb.) egy ötlet, ha a gyártó számára nem gazdaságos a megvalósítás.

- A költségek fontosabb összetevői:
- fejlesztés,
- gyártástervezés, gyártósor felállítása,
- gyártás,utóélet:
 - (üzemeltetés),
 - terméktámogatás (alkatrész utánpótlás),
 karbantartás.
 - garanciális problémák kezelése,
 - újrahasznosítás

Példa: Pro/Primo, Microkey (minden szempontból megfelelő, de gazdaságtalan)

🇞 BME**ett**

Elektronikus készű

0/02

ÚT A MŰSZAKI SPECIFIKÁCIÓIG 6. További kérdések (sokszor már ezen a szinten pontos kell választ adni) - a készülék tervezett és megvalósítható térfogatigénye, tömege, - a készülék energiaigénye, - tervezett élettartam, - megfelelés a szabványoknak és direktíváknak. Elkerülhette valami a figyelmünket a stratégiai kérdésekben? Komplex fejlesztési projektekben megvalósíthatósági tanulmányt kell készíteni.

•7

३ BME**ETT**

MECHANIKAI TERVEZÉS, SZERKEZETI KONSTRUKCIÓ Készülék mechanikai vázszerkezet tervezése, doboz és burkolat kialakítás – formatervezés, részegységek belső elrendezése: sinrendszerű szerelés, alaplap, többkártyás rendszer, előlap-, kezelőlap-, hátlaptervezés – ergonómia.

•10

ERGONÓMIAI TERVEZÉS Készülékek kezelés szempontjából történő optimális kialakítása – előlap, kezelőlap tervezés. Példa: elektronikus műszerek

- egyértelmű, esztétikus feliratozás. kijelzők és kezelőszervek működési elv szerinti
- összerendezése · összetartozó elemek egy csoportban, színnel jelölve keretbe foglalva,
- fontos kezelőszervek mellett LED indikátor.
- · nagyteljesítményű nyomógomb és kapcsoló nagyobb
- hálózati főkapcsoló az előlap valamelyik szélén. leofontosabb indikátor az előlap bal felső sarkában
- Optimális munkakörülmények, munkahelyek kialakítása. Példa: szerelő munkahely -

३ BME**ETT**

Elektronikus készülékek

•13

ÜZEMBIZTONSÁGRA TERVEZÉS

- · Üzembiztonság fogalomköre:
 - életvédelem, balesetvédelem, vagyonvédelem,
 - rendeltetésszerű és meghibásodott állapotban sem okozhat kárt,
 - az okozott kárért, balesetért a tervező és gyártó a felelős!
 - · Safety Engineer.
- Üzembiztonsági, környezetállósági témakörök:
 - · környezeti hatások elleni védelem:
 - klimatikus,
 - kémiai, biológiai
 - mechanikai igénybevételek, autóiparban rezgések elleni védelem,
 - · túláramvédelem,
 - túlmelegedés elleni (tűz) védelem,
 - káros sugárzások elleni védelem,
 - robbanásvédelem.

३ BME**ETT**

Elektronikus készülékek

•14

ÉRINTÉSVÉDELMI TERVEZÉS

- A készülékek fémes részei, amelyek üzemszerűen nincsenek feszültség alatt, meghibásodás esetén se okozhassanak áramütést. A szabványok betartása kötelező!
- Érintésvédelmi osztályok:
- I.Érintésvédelmi osztály:

 "Üzemi szigetelés + megérinthető fémrészek összekötve (pl. készülékház + ajtó) és a hálózati védőföldre kötve (védőeres hálózati kábel, színjelzés: zöld-sárga).
 - II.Érintésvédelmi osztály
 - Szigetelőanyag burkolat: az összes fémrészt burkolja (pl. hajszárító). A külső burkolat egyben a védőszigetelés is.
 - III. Érintésvédelmi osztály:
 - Érintési feszültség 24 50 Veff AC
 - Nincs olyan áramköri rész, amely ennél nagyobb feszültségen

0%			
-20	RM/	١Œ١	 гт

GYÁRTHATÓSÁGRA TERVEZÉS (DFM) Minőségügy, 6 szigma, terméktervezés, amely figyelembe veszi a gyártási követelményeket, olyan tervezési lépés, amelyben csoportmunkát alkalmazunk a termék kifeilesztésére. több eszközt és technikát magába foglaló keret a gyártható termék létrehozására. Előnyök: alacsonyabb fejlesztési költség, rövidebb fejlesztési idő, rövidebb idő a gyártás megkezdéséig, alacsonyabb szerelési és tesztelési költségek, iobb minőséa. **३** BME**ETT** Elektronikus készülékek •16 GYÁRTHATÓSÁGRA, TESZTELHETŐSÉGRE TERVEZÉS (DFM) Irányelvek: minimalizáliuk az alkatrészek számát. használjunk szabványos és azonos elemeket minimalizáljuk a szerelési síkok számát (Z-axis), használjunk standard szerszámfejeket, fúrókat, eszközöket, kerüljük a szűk furatokat (forgácsok, egyenesség, eltömődés), használjunk közös méretet a szerszámrögzítéshez, minimalizáljuk a szerelési irányokat, maximalizáljuk a hozzáférhetőséget; szerelésre tervezés, minimalizáliuk a kézi műveleteket. küszöböljük ki az utólagos állítást, használjunk ismételhető, jól ismert folyamatokat, tervezzük az alkatelemeket a hatékony tesztelés lehetőségére. kerüljük a rejtett részleteket, hozzunk létre szimmetriát két irányban, kerüljük az összekuszálás lehetőségét, tervezzünk önmegvezető (önpozicionáló) elemeket **३** BME**ETT** Elektronikus készülékek •17 **MEGBÍZHATÓSÁGI TERVEZÉS** Soros struktúrájú (redundanciamentes) rendszer jellemzői: a rendszer véges számú elemből áll, egy elem meghibásodása a rendszer meghibásodásához vezet, a meghibásodások egymástól függetlenek, a kommersz elektronikai berendezések soros struktúrájúak. Melegtartalékolt (párhuzamos) rendszer jellemzői: a rendszer működéséhez egy elem működése szükséges, hibafelismerő elem, kapcsolóelem esetenként szükséges, a tartalék állapota ismert, a tartalék is fogyaszt energiát, elhasználódik. Hidegtartalékolt rendszer jellemzői: nidegjartalekolt rentiszer jenemzot: a rendszer nazonos elemből áll, a rendszer működéséhez egy elem működése szükséges, a tartalékban lévő elem nincs bekapcsolva, nem fogyaszt energiát, a tartalékban lévő elem nem hibásodhat meg, hibáfelismerő és kapcsolóelemre van szükség,

💸 BME**ETT**

a tartalékelem bekapcsolása időt vesz igénybe

c káczülákak

•19

A megbízhatósági vizsgálatok legfontosa	abb kérd	dése	<u>∋:</u>		
Ha üzemeltetünk egy alkatrészt, vagy ké meghibásodásra?	szüléke	t, m	nilyen gyakran	számíth	atunk
Erre a kérdésre a hibaráta függvény (haz	zárd füg	gvé	ny) ad választ	, amely:	
egy alkatrészpopulációban történt meghi meghibásodásig (vagy a vizsgálat végéiç				a	
Hibaráta függvény meghatározása: λ(t)	$= \frac{\lim}{\Delta t \to 0}$	<u>R(</u>	$\frac{(t) - R(t + \Delta t)}{\Delta t \cdot R(t)} =$	$-\frac{R'(t)}{R(t)} =$	$= \frac{f(t)}{R(t)}$
A hibaráta függvény meghatározásának	lehetős	ége	i:		
 alkatrészek modellezésével (bonyolultsága r kísérletek segítségével: 	miatt erő	sen	korlátozott lehet	tőségek),	
 szabvány alapján (pl. Mil-HDBK 217F), 					

A HIBARÁTA FÜGGVÉNY					
Egy alkatrész megbízhatósága (hibaráta függvénye) nagyban függ az alkatrész kivitelétől és az üzemeltetés körülményeitől. Elektronikus alkatrészek esetén a legfontosabb tényezők:					
 kiviteli típus (kereskedelmi, ipari, katonai), előállítás technológiája (pl. nagy és kis értékű ellenállások gyártástechnológiája eltérő), hőmérséklet, 					
terhelés, a készülék (amely az alkatrészt tartalmazza) üzemeltetési körülményei: hőmérséklet ingadozása,					
páratartalom és ingadozása, rázás, ütés (pl. asztali, mobil, autóelektronikai készülék), egyéb hatások (pl. korrozív környezet).					
A hibaráta függvény meghatározásának lehetőségei: • alkatrészek modellezésével (bonyolultsága miatt erősen korlátozott lehetőségek), • kisérletek segítségével: • szabvány alapján (pl. Mil-HDBK 217F),					
saját mérésekkel és azok kiértékelésével.					
BME ETT Elektronikus készülékek 21/52					

A HIBARÁTA FÜGGVÉNY, ALKATRÉSZEK

A meghibásodásért felelős mechanizmusok a különböző alkatrésztípusoknál eltérőek, ezért az alkatrészek megbízhatóságának időfüggése is eltérő. Az egyes csoportokat az f(t)-re illeszthető függvények szerint különböztetjük meg:

- a meghibásodásért felelős jelenség a bekapcsolt nagyságrendekkel gyorsabb,
- λ(t) az időben monoton nő (folyamatos öregedés),

•22

A HIBARÁTA FÜGGVÉNY, ALKATRÉSZEK **FAJTÁI**

2. Exponenciális:

- a meghibásodásért felelős jelenség sebessége bekapcsolt állapotban nem mutat jelentős eltérést a kikapcsolt állapothoz képest,
- $\lambda(t)$ az időben állandó, $\lambda(t) => \lambda$ (az alkatrész nem öregszik, ún. örökifjú tulajdonságot mutat),
- leírás: $f(t) = \lambda e^{-\lambda t}$ $R(t) = e^{-\lambda t}$ $\lambda(t) = \lambda = \frac{1}{T_0}$
- a matematikai reprezentáció egyszerűsége miatt használata elterjedt (szabványokban gyakran minden alkatrésztípust ezzel a leírással közelítenek).

Példák: ellenállás, tranzisztor, integrált áramkörök

£ 1.03 0.01 idő

•23

🏖 BME**ETT**

A HIBARÁTA FÜGGVÉNY, ALKATRÉSZEK FAJTÁI, ÉS AZ ÚN. "KÁDGÖRBE"

3.	Weibull

- összetett rendszerek leírására alkalmas, melyeknél az élettartam kezdeti szakaszában korai meghibásodások lehetnek, az élettartam végén pedig elhasználódás jellegű hibajelenségek léphetnek fel,
- λ(t) az élettartam során csökken, stagnál, majd növekszik,
- leírás: $f(t) = \frac{\beta}{\eta} \cdot \left(\frac{t}{\eta}\right)^{\beta-1} \cdot e^{-\left(\frac{t}{\eta}\right)^{\beta}}$

η: karakterisztikus élet		
λ(t) Λ [0<β<1]	β-=1	β>1
Korai meghibásodások	Normál üzem	Elhasználódás

•24

३ BME**ETT**

SZABVÁNYOKRA ÉPÜLŐ MEGVALÓSÍTÁS

- nem szükséges intuitív tervezés,
- minden paraméter (méret, térfogategységre eső disszipáció, stb szabványokból kiválasztható.
- rejtett hibák felbukkanásának esélve kisebb.

Hátránya:

- · a tervező keze teljesen kötött,
- egyedi ötletek megvalósítása nem lehetséges,
- a készülék az esetek döntő többségében
- nagyobb tételben a gyártás gazdaságtalanná válhat

Elektronikus készülékek

•25

३ BME**ETT**

SZABVÁNYOKAT RÉSZBEN KÖVETŐ **MEGVALÓSÍTÁS**

- · Ez a gyakoribb eset,
- kötelező szabványok (EMC, érintés védelem, gép direktíva stb.) minden körülmények között betartandóak.
- · lehetőség van az ár/költség/kihozatal/gyártási kapacitás optimalizálására,
- · valamennyi tervezési fázis szükséges,
- · lehetőség van minden paraméterben a folyamatos gyártmány fejlesztésre,
- példa: notebook kontsrukció.

३ BME**ETT**

•26

A TERMIKUS KONSTRUKCIÓK

- · Az elektronikus alkatrészekben működésük során hő keletkezik,
- · a készülékeket kívülről különböző hőhatások érhetik,
- a hő és a hőmérséklet változása káros hatásokat gyakorolhat az elektronikus készülékek működésére.

Túlhevült furatszerelt ellenállás **३** BME**ETT**

Túláramtól sérült

felületszerelt ellenállás

•28

HŐSZÁLLÍTÁS (KONVEKCIÓ)

A hőenergia terjedése gázokban és folyadékokban a közeget alkotó részecskék rendezett elmozdulásával (áramlás) valósul meg, de szerepet játszhat a részecskék közötti molekuláris szintű hővezetés és sugárzás is.

(a sugárzás elhanyagolásával, ha az áramló közegben csak hővezetés, és a tömegáramból adódó hőáramlás van), ahol $\mathbf{w_x},\,\mathbf{w_y},\,\mathbf{w_z}$ a közeg sebességösszetevői melyek a Navier-Stokes egyenlet segítségével határozhatók meg.

A közegben a sebességtér kialakulása lehet:

- természetes (az anyagok sűrűsége hőmérsékletfüggő, ezért melegítés hatására áramlás alakul ki).
- mesterséges (a gáz vagy folyadék mesterséges áramoltatása).

Elektronikus készülékek

•31

HŐSUGÁRZÁS Az energia térbeli terjedésének elektromágneses hullámok formájában megvalósuló folyamata. $\label{eq:matter} \text{Matematikai lefrása: } \underline{\text{Stefan-Boltzmann törvény (1879):}} \quad \frac{dQ}{dt} = \epsilon \cdot \sigma_0 \cdot F \cdot \left(T_{sz}^4 - T_k^4 \right)$ (csak ún. szürke testekre érvényes!) ahol dQ/dt a hőáram, ϵ az emissziós tényező, σ_0 a Stefan-Boltzmann állandó (5,67*10-8 Wm²K-4), F a felület, T_{sz} a szilárd test hőmérséklete T_k a környezet hőmérséklete A sugárzás és a hőátadás összehasonlítása: Sugárzás ≥ 0.3 Hőátadás •Felület mérete: 1 cm². 0.2 0.1 •T_f=T_k=300 K •α=20 Wm⁻²K⁻¹, •ε=0,9 350 400 Hőmérsék**l**et, K 🇞 BME**ETT**

•32

HŐÁTADÁS A hőátadás a szilárd testek és a folyadékok (gázok) határfelületén létrejövő hőterjedés, melyben a vezetés, a szállítás és a sugárzás is szerepet játszik. Matematikai leírása: Newton-szabály (1701): $\frac{dQ}{dt} = \alpha \cdot F \cdot (T_{sc} - T_f)$ ahol dQ/dt a hőáram, F a felület, T_{sz} a szilárd test hőmérséklete, T_f a folyadék (gáz) hőmérséklete, α az ún. hőátadási tényező. A hőátadási tényező függ: · a test felületének minőségétől, áramló közeg áramlási tulajdonságaitól (turbulens, lamináris), • a folyadék/gáz fizikai tulajdonságaitól

(hőmérséklet, nyomás, áramlási sebesség,

áramlás típusa...).

💸 BME**ETT**

•34

•35

TERMIKUS INTERFÉSZ MEGOLDÁSOK Hővezető paszta: Ieggyakrabban (oxidált) fémpehely szuszpenziója, a felületeket összeszorítva kell tartani, alkalmazásas körülményes. Hővezető ragasztó: leggyakrabban kerámia por, UV-ra, illetve hőre keményedő szuszpenzióban, kikeményítés után a felületeket nem keli összeszorítva tartani, elektromosan vezető változata is elterjedt, hővezető képessége kisebb. Hővezető képessége kisebb. Hővezető alátét: leggyakrabban nagy hővezetőképességű polimerek, a felületeket összeszorítva kell tartani, a réseket nem töltik ki tökéletesen (kevésbé rugalmasak), szigetelőképességük és átütési ellenálásuk nagy. Halmazállapotváltó anyagok: fémpehely vagy kerámia por szuszpenziója, a felületeket összeszorítva kell tartani, az alacsony olvadáspont miatt a réseket jól kitölti, alkalmazása jól automatizálható.

•37

•40

•43

•44

HŰTÉSI MEGOLDÁSOK - FOLYADÉKHŰTÉS Kífejlesztésének motivációja: • a folyadékok fajhője nagyobb a gázokénál, ezért azonos térfogatú folyadék nagyobb hőmennyiséget képes elszállítani (levegő: 0,001 J.cm³k⁴, viz: 4 J.cm³k⁴), • a folyadékok hővezetési tényezője nagyobb a gázokénál (levegő: 0,026 W.m²l.k⁴, viz: 0,61 W.m²l.k⁴), ezért a határfelületek hőleadási tényezője folyadékhűtés esetén nagyobb (levegő: 20...200 W.m².k⁴, viz: 500...10000 W.m³l.k⁴). Jellemzői: • nagy hűtési teljesítmény és alacsonyabb hőmérséklet érhető el (léghűtéshez képest), • alacsony működési zaj, • hosszú élettartam, megbízható működés, zárt rendszer (kőmyezetből szennyezés nem jut be), • megvalósítása, gyártása körülményesebb, • mérete, tőmege nagy, rázás-, ütésállósága kicsi. Megvalósítási lehetőségek: • indírekt, • direkt. Elektronikus készülékek

•46

•49

TARTALOMJEGYZÉK

- Elektronikus készülékek tervezési fázisai
 - Specifikáció
 - Áramköri tervezés
 - Mechanikai tervezés
 - · Termikus tervezés
 - Egyéb szempontok: zavarvédelem, ergonómia, üzembiztonság, érintésvédelem, gyárthatóság, tesztelhetőség, életciklus
- A megbízhatóság mutatói
- · Termikus tervezés, hűtési megoldások

३ BME**ETT**

Elektronikus készülékek

52/52