Prof. Mario Gueri ME PRIMEIRA PROVA 28/04/2011 319/320

Escreva nome, tema e RA na primeira folha em branco.

Não são permitidas consultas. A interpretação de enunciados e o uso de tabelas fazem parte da prova. Justifique suas afirmações. Deve citar os resultados utilizados.

Não é permitido o uso de calculadora. Celulares desligados. Fique com a folha de enunciados.

Exercício 1 (2 pontos, 1 ponto cada item)

Seja X_1, X_2, X_3, X_4 uma a. a. s. da distribuição $N(\theta, 2^2), -3 \le \theta \le 0$.

a) Calcule, faça o gráfico e compare os EQM dos estimadores:

$$\hat{\theta}_1 \equiv -2$$
 e $\hat{\theta}_2 = \overline{X} = \frac{x_1 + x_2 + x_3 + x_4}{4}$

b) Idem com os estimadores $\theta_3 = \frac{X_1 - 2X_2}{2}$ e $\theta_4 = \frac{X_1}{2} + \frac{X_2}{2}$.

Exercício 2 (2 pontos, 1 ponto cada item)

X é uma va., sendo E(X) = 110 e $Var(X) = 4^2$. Ache cotas apropriadas de:

a) probabilidade $\{X \le 90\}$ se X for simétrica;

b) probabilidade $\{90 \le X \le 134\}$.

Exercício 3 (2 pontos: item a) 1,4 ponto; item b) 0,6 ponto)

Sejam
$$X_1, X_2, X_3, X_4, X_5$$
 v. a. i. i. d. ~ Normal $(3,5^2)$.
Sejam $X = X_3 + 2X_5$ e $W = \frac{Y-9}{\sqrt{(X_1-3)^2 + (X_2-3)^2 + (X_4-3)^2}}$.

a) Calcule média e variância de (-2)W - 4.102 e a média de $(-2).W^2 + 7$; 7 b) São $(3+X_1+2X_2+log[2+|X_4|])^3$ e $(2X_1-X_2+coseno[X_5])^2$ independentes?

*Exercício 4 (3 pontos: item a) 1 ponto, item b) 2 pontos)

a) $X_1, X_2, ..., X_n$ a. a. s. de uma $Poisson(\theta)$, onde $\theta > 0$.

Calcule o *EMV* de $2\theta^3 + coseno(\theta)$;

 $(x_1, X_2, ..., X_n)$ a. a. s. de uma distribuição Exponencial (θ) , $1 < \theta < 5$;

Ache o *EMV* de θ^{-1} e calcule seu *EQM*. Faça o gráfico para n=2.

* Exercício 5 (1 ponto)

Seja X_1 , X_2 , X_3 a. a. s. de tamanho 3 de uma distribuição $Normal(184, \theta)$,

onde θ denota a variância. Utilizaremos $\widehat{\theta}$ abaixo para estimar θ .

Calcule esperança, variância e EQM de $\theta = \frac{\sum_{j=1}^{3} (X_j - \overline{X})^2}{2}$.