Decision Trees

TJ Machine Learning Club

Classification vs. Regression

- Classification
 - Classifying photos of fruits
 - Determining whether tumor is benign or malignant
- Regression
 - Predicting COVID-19 cases given demographic data
 - Predicting house prices given house features

Source: https://medium.com/datasoc/whats-the-problem-1ff8b338094b

Features vs. Labels

Features (like x): Characteristics of the input

 In the picture, features are whether or not patient smokes (smoke), consumes alcohol (alco), and performs physical activity (active)

Label (like y): The prediction or classification of the input

 Whether or not patient has cardiovascular disease (cardio)

Training and Testing Datasets

Training data has both features and labels

Testing data only has the features

Need to predict cardio

What is a Decision Tree?

- A decision tree is just a series of questions
- The key in creating a decision tree is asking the right questions

Figure 1: Real Life Decision Tree

Gini Impurity

- Measure of how "messy" some collection of data is

$$I_G(i) = 1 - \sum_{k=1}^{c} p(k|i)^2$$

i = some data
k = class index
c = total number of classes
p(k|i) = probability of randomly selecting item of class k from data

Ex. Gini Impurity

$$I_G(i) = 1 - \sum_{k=1}^{c} p(k|i)^2$$

Let's calculate the Gini Impurity for these groups of data, where the two possible classes are blue or red:

$$I_G(i) = 1 - \sum_{k=1}^{c} p(k|i)^2$$

$$I_G(i) = 1 - \sum_{k=1}^{c} p(k|i)^2$$

$$1 - (3/6)^2 - (3/6)^2 = \boxed{1/2}$$

$$1 - (2/6)^2 - (4/6)^3 = 4/9 = 0.4444$$

$$1 - (6/6)^2 = \boxed{0}$$

Ex. Gini Impurity

$$I_G(i) = 1 - \sum_{k=1}^{c} p(k|i)^2$$

0.5

0.444

0

Ex. Gini Impurity

$$I_G(i) = 1 - \sum_{k=1}^{c} p(k|i)^2$$

Information Gain

$$IG(D_p, f) = I(D_p) - \frac{N_{left}}{N_p} I(D_{left}) - \frac{N_{right}}{N_p} I(D_{right})$$

- D_p , D_{left} , D_{right} are the parent node, left node dataset, and right node dataset respectively
- I is a measure of impurity (like Gini Impurity)
- N_p , N_{left} , and N_{right} are the number of items in the parent, left, and right nodes respectively
- f is the question you are asking to create the split

$$IG(D_p, f) = I(D_p) - \frac{N_{left}}{N_p} I(D_{left}) - \frac{N_{right}}{N_p} I(D_{right})$$

$$I_G(i) = 1 - \sum^c p(k|i)^2$$

$$IG(D_p, f) = I(D_p) - \frac{N_{left}}{N_p} I(D_{left}) - \frac{N_{right}}{N_p} I(D_{right})$$

$$IG(D_p, f) = I(D_p) - \frac{N_{left}}{N_p} I(D_{left}) - \frac{N_{right}}{N_p} I(D_{right})$$

0.05556

$$IG(D_p, f) = I(D_p) - \frac{N_{left}}{N_p} I(D_{left}) - \frac{N_{right}}{N_p} I(D_{right})$$

$$I_G(i) = 1 - \sum_{i=1}^{c} p(k|i)^2$$

$$IG(D_p, f) = I(D_p) - \frac{N_{left}}{N_p} I(D_{left}) - \frac{N_{right}}{N_p} I(D_{right})$$

$$IG(D_p, f) = I(D_p) - \frac{N_{left}}{N_p} I(D_{left}) - \frac{N_{right}}{N_p} I(D_{right})$$

1/2

N O BBBT 3/8 BBBT
$$\frac{1}{2} - \left(\frac{2}{6}\right)(0) - \left(\frac{4}{6}\right)\left(\frac{3}{8}\right) = \frac{1}{4} = 0.25$$

TBTBBT

Height > 6'4"

How to Come Up with Values for the Questions?

The most straightforward way: Try out different values from the items in your training dataset

Overfitting

- <u>Techniques to prevent overfitting in decision trees:</u>
- Continue recursively generating nodes only if information gain is larger than some threshold (e.g. 0.1)
- After creating the tree, prune all nodes that are at a depth greater than some threshold