MEAT & CANCER: A CRITICAL REVIEW BASED ON CAUSAL ANALYSIS (work in progress)

A PREPRINT

Any volunteer?
Any Department
Anywhere

Enrique Otero Madrid, Spain @eoteromuras

August 25, 2019

ABSTRACT

According to World Health Organization (WHO), processed meat has been declared Group 1 carcinogenic to humans. That means that according to epidemiological studies there is a convincing evidence that the agent causes cancer. However, reviewing some of the mainly referred studies with the lenses of causal inference analysis reveals possible flaws that would invalidate these conclusions. The author(s) intention is to discuss these studies with statistical rigour. By applying last accepted knowledge in the field of causal inference as diagrams and *do-calculus*. With main focus on transparent exposition of health domain assumptions. And the translation of these assumptions into explicit language, diagrams and formulas. So the veracity of domain assumptions can be refuted according to domain expertise. And any conclusion derived from these assumptions being validated or invalidated on the bases of axiomatic logic and maths.

Keywords Meat · Cancer · Causality

1 Introduction

In October 2015 IARC held an expert panel that considered the evidence for read and processed meats as possible human carcinogens. They classified processed meat as a Group 1 carcinogenic to humans, and red meat as Group 2A, probably carcinogenic [1]. A summary of the final evaluations were published online in The Lancet Oncology [2]. And the details of these conclusions were published later in a monograph in 2016 [3].

The consumption of processed meat was associated with small increases in the risk of cancer in the studies reviewed. In these studies, the risk generally increased with the amount of meat consumed [1].

In the next sections we will focus on three studies supporting IARC conclusions, and we will remark different flaws detected in them. Particularly:

- As starting point, in Section 2 we will present IARC monograph and Chan meta-analysis [4], as it's the main reference for IARC when they conclude "each 50 gram portion of processed meat eaten daily increases the risk of colorectal cancer by 18%". And we will remark potential problems related to heterogeneity. Though our focus will be in introducing possible problems related to not conditioning on missing confounders (Section 3), or conditioning on a collider (Section 4).
- In Section 3 we present Sandhu et al meta-analysis [7] as an example of discarding a plausible confounder based on a possible wrong procedure. Sandhu meta-analysis is both referenced by Chan's [4] and IARC monograph [3] ¹.

¹Analysis on Section 3 has still much room for improvement. And Section 2 is maybe unnecessary long. So as an anxious reader you can skip directly to Section 4. Though feedback on the full document would be appreciated, either as a potential collaborator, critical reviewer or helpful hater:)

Table 1: Relative risks of meta-analyses of processed meat, and colorectal cancer. Chan et al. meta-analysis

Pooled RR (95% CI)	n	Heterogeneity (I2)
1.18 (1.10–1.28), P-value=0.00	9	12%, P-value=0.33

RR – relative risk; CI – confidence interval; n – number of studies

• Finally in Section 4 we'll discuss a study by Cross et al [12] as an example of generating strange and questionable conclusions based on the wrong procedure of conditioning on a collider. This study is particularly relevant as it's the one that contributes the most to results on Chan's meta-analysis.

For this purposes we will use different causal inference techniques as causal diagrams and *do-calculus*, as presented by Pearl's et al [5].

2 Processed Meat and Colorectal Cancer Incidence

In [3] the IARC Working Group analyzed both "20 large [...] cohort studies [...] extended from as early as the 1990s until the 2010s", and "a large number of case-control studies (approximately 150)". The monograph describes also five criteria they applied in reviewing and interpreting the available literature in order to be considered for their meta-analysis.

Regarding case-control studies, they considered that "approximately 10% of all case-control studies reviewed were informative for the assessment of the consumption of processed meat in relation to incidence of cancer of the colorectum". Taking into account previous statement of approximately 150 control-studies, they should be 150/10 = 15 informative studies. However they say: "Six of the nine studies considered showed positive associations with cancer of the colorectum." Could this difference (9 vs. 15) be a typo?

In relation to cohort studies, the IARC presented conclusions from a meta-analysis including data from 10 of these studies that "reported a statistically significant dose–response association between consumption of red meat and/or processed meat and cancer of the colorectum". More concretely, they refer to Chan et al [4], where "dose-response relationships were expressed per increment of intake of 100 grams per day for red and processed meat, and 50 grams per day for processed meat as in previous meta-analyses [6], [7]

2.1 Dose-response Analysis on Processed Meat. Heterogeneity and Confounders

26 publications from 21 studies were included in Chan's meta-analysis [4]. Being 15 publications from 14 studies on processed meat. Results in Table 1.

A relatively low I-squared level of 12% with a relatively high p-value of 0.33 should indicate no significant heterogeneity between studies. So the combined results would not be invalidated. Though critizism has been done to I-squared as an adequate measure of heterogeneity, specially when the number of studies is small. [8].

In relation to confounders, Chan claims: "we cannot rule out residual confounding". Though "in all studies, relative risk estimates were adjusted for age and sex, and all except two adjusted for total energy intake. More than half of the study results were adjusted for body mass index (BMI), smoking, alcohol consumption, or physical activity, close to half controlled for dairy food or calcium intake, social economic status, family history of colorectal cancer, or plant food or folate intake. In some studies, the estimates were controlled for use of nonsteroidal anti-inflammatory drugs, fish or white meat intake". And also: "several potential confounders were not included in the final statistical models in some studies because, as the authors reported, their inclusion in the model did not substantially modified the relative risk estimates." However, sometimes the decision of excluding a confounder could be flawed, not only based on domain assumptions, but also in the logical procedure itself, as we will discuss on the example of Section 3

Chan's paper refers to other studies with similar conclusions, like [6, 10]. Though it adds also: "In a more recent article on the NHS and the HPFS, the associations of red meat and processed meat and colon cancer were attenuated after better adjustment for confounders and longer followup" [9]

The biggest study analyzed in [4] regarding number of people was Cross et al. [12] with 494036 men and women. In this study adjusts were made on "Age, sex, ethnicity, BMI, smoking habits, alcohol intake, physical activity, total energy intake, fruit and vegetable intake, education level, marital status, family history of cancer" And according to weight and results Cross's study is the one that contributes the most to RR for colorectal cancer on the consumption of processed

meat on Chan's meta-analysis. So in section 4 we'll try to prove that Cross study could be flawed because of a wrong experiment design on implicitely conditioning on a collider.

3 Don't Discard Fiber, Vegetables, Fruits or Life-style as Possible Confounders

In 2001 Sandhu et al published a meta-analysis on the relation between meat consumption and colorectal cancer [7]. Discussing about "Meat and Other Dietary and Associated Factors" they wrote: "the current prospective epidemiological data show only a weak negative association between vegetables and fruits consumption and risk of colorectal cancer. Four recent studies, two randomized trials on adenoma recurrence and two large prospective studies [...] found no association among fiber, vegetables, and fruits consumption and risk of colorectal cancer."

But even if the total effect from fiber, vegetables, and fruits consumption on colorrectal cancer is negligible, matematically the direct effect even could be important. Under the assumption that consumption of vegetables was associated with consumption of meat via dietary lifestyle.

As an example, considering:

- X: meat
- Y: colorrectal cancer
- V: vegetables
- U: some dietary lifestyle, confounder of V and X

with the following causal diagram:

$$\begin{array}{ccc} X & \longrightarrow & Y \\ \uparrow & & \uparrow \\ U & \longrightarrow & V \end{array}$$

If "no association among fiber, vegetables, and fruits consumption and risk of colorectal cancer"

$$P(Y|V) = P(Y) \tag{1}$$

Otherwise, according to the provided causal diagram, V blocks all back-door paths between X and Y. Thus:

$$P(Y|do(X)) = \sum_{i=1}^{N} P(Y|X, V_i)P(V_i)$$
 (2)

For instance if we consider that V is a binary variable, then:

$$P(Y|do(X)) = P(Y|X,\overline{V})P(\overline{V}) + P(Y|X,V)P(V) = P(Y|X)(P(\overline{V}) + P(V)) = P(Y|X)$$
(3)

On the basis of the previous analysis we still have no evidences that justify to ignore V.

For instance, in the specific case where X and V are binary variables, U = constant = 1. Thus

$$X = 1 - V = \overline{V} \tag{4}$$

Then:

$$P(Y|do(X)) = P(Y|X, \overline{V})P(\overline{V}) + P(Y|X, V)P(V) = P(Y|X, X)(1 - P(V)) + P(Y|X, \overline{X})P(\overline{X})$$
 (5)

So finally:

$$P(Y|do(X)) = P(Y|X)(1 - P(V)) = P(Y|X) \times 1 = P(Y|X)$$
(6)

As an example, ignoring the effect of V we get:

$$\begin{array}{c} X \longrightarrow Y \\ \uparrow \\ U & V \end{array}$$

With no backdoor paths between X and Y. So it would be:

$$P(Y|do(X)) = P(Y|X) \tag{7}$$

4 Leukemia versus Life-style Cancers. The Collider Bias

As previously said, Cross study on 2007 [12] was the second biggest included on Chan's meta-analysis. And the one that partially contributed more to increase the summary relative risk (RRs) for processed meat on colorectal cancer. Chan's pooled estimation of 1.18 was finally included in the IARC monograph [3] and into the WHO claim [1]. But ignoring this study could reduce Chan's pooled RR from 1.18 to 1.10.

In this context, we will show in this section an example of probable bad control in Cross study leading to some strange results.

Extracted from [12]: "Surprisingly, both leukemia and melanoma were inversely associated with processed meat intake; the inverse association for leukemia was mainly for lymphocytic leukemia (n = 534; $HR^2 = 0.70$; 95% CI = 0.52-0.93; p for trend = 0.05) and not myeloid and monocytic leukemia (n = 457; HR = 0.88; 95% CI = 0.64-1.20; p for trend = 0.73)."

But according to described cohort follow-up: "[it] was calculated from baseline (1995–1996) until censoring at the end of 2003, or when the participant moved out of one of the eight study areas, had a cancer diagnosis, or died, whichever came first" [12]. Thus, analyzing several types of cancer as target while implicitly conditioning on not having any other cancer converts the variable "any cancer" in a collider.

Considering

- X: processed meat
- Y: leukemia
- C1: colorectal cancer
- C: any type of cancer

and assuming the following causal diagram:

$$\begin{array}{ccc} X & \longrightarrow & Y \\ \downarrow & & \downarrow \\ C1 & \longrightarrow & C \end{array}$$

So conditioning on the collider C opens the path Y -> C <-C1 <-X, invalidating the results of the study. This situation is typically known as *collider bias*. Being a well known example the *Berkson Paradox* described for instance in Pearl's et al [5].

And this could explain these strange results, where cancers as colorectal, usually associated with dietary lifestyle, have Hazard Ratios above 1 (HR=1.2), whereas leukemia shows apparently an inverse relation to processed meat, with an HR of 0.7. As we can see in Figure 1

Moreover even despite or because of the collider bias some patterns could be noticed. For instance, between the 4 most prevalent types of cancer, colorectal and lung cancer show similar results in this study, with higher HR values. While prostate and female breast show values closer to 1. Besides, Cross et al point that: "a stepwise addition of the covariates to a simple age- and sex-adjusted model showed that the effects of red and processed meat intake on cancer risk were attenuated the most by the addition of the smoking variable to the models".

All this patterns and hints could be useless because of the collider bias. Or they could indicate "dietary" and/or "life style" as possible confounder of both meat consumption and smoking and some types of cancers as colorectal or lung. While prostate or breast cancer would be less dependent from presumptive or proved bad habits. ³

5 Conclusions

To be finished...

²Hazard Ratio, not related to the brand new unworn Real Madrid player. Joking aside, it would be also interesting to go deeper into how Cross's Hazard Ratios (HR) have been converted to Chan's pooled Relative Risks (RR). Being these metrics similar but not the same

³It would be great if we could demonstrate someday this hypothesis of "dietary" & "life-style" cancers. Or at least trying to do it

Figure 1: HRs and 95% CIs for the 5th Versus 1st Quintile of Processed Meat Intake and Cancer Risk for Both Sexes Combined (Except for Sex-Specific Cancers). From Cross et al. [12]

References

- [1] Q&A on the carcinogenicity of the consumption of red meat and processed meat https://www.who.int/features/qa/cancer-red-meat/en/ October 2015
- [2] Bouvard V. et al. Carcinogenicity of consumption of red and processed meat
- [3] IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Red Meat and Processed Meat. Vol 114 https://monographs.iarc.fr/wp-content/uploads/2018/06/mono114.pdf
- [4] Chan et al. Red and Processed Meat and Colorectal Cancer Incidence: Meta-Analysis of Prospective Studies https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0020456&type=printable
- [5] Pearl et al. The Book of Why. The New Science of Cause and Effect
- [6] World Cancer Research Fund/American Institute for Cancer Research. (2007) Food, Nutrition, Physical Activity, and the Prevention of Cancer: a Global Perspective Washington DC: AICR.
- [7] Sandhu MS, White IR, McPherson K (2001) Systematic review of the prospective cohort studies on meat consumption and colorectal cancer risk: a meta-analytical approach. Cancer Epidemiol Biomarkers Prev 10: 439–446
- [8] Von Hippel P. The heterogeneity statistic I2 can be biased in small meta-analyses https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410499/ BMC Med Res Methodol. 2015; 15: 35.
- [9] Wei EK, Giovannucci E, Wu K, Rosner B, Fuchs CS, et al. (2004) Comparison of risk factors for colon and rectal cancer. IntJCancer 108: 433–442.
- [10] Wei EK, Colditz GA, Giovannucci EL, Fuchs CS, Rosner BA (2009) Cumulative risk of colon cancer up to age 70 years by risk factor status using data from the Nurses' Health Study. AmJEpidemiol 170: 863–872.
- [11] English DR, MacInnis RJ, Hodge AM, Hopper JL, Haydon AM, et al. (2004) Red meat, chicken, and fish consumption and risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev 13: 1509–1514.

[12] Cross et al. 2007 A prospective study of red and processed meat intake in relation to cancer risk. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2121107/