

2 关系的运算

重点:

- □ 作为集合时的运算
- □ 关系的逆、合成运算
- □ 自反闭包、对称闭包、传递闭包
- □ 关系运算是否保持五大性质

2 关系的运算——集合运算

定义11 设R和S是从集合A到B的关系,取全集为A×B,则R∩S,RUS,R一S,~R,R⊕S 仍是A到B的关系,并且对于任意 $x \in A$, $y \in B$:

```
x (R \cap S) y \Leftrightarrow x R y \wedge x S y
x (R \cup S) y \Leftrightarrow x R y \vee x S y
x (R - S) y \Leftrightarrow x R y \wedge x \overline{S} y
x (\sim R) y \Leftrightarrow x \overline{R} y
x (R \oplus S) y \Leftrightarrow x (R - S) y \vee x (S - R) y
\Leftrightarrow (x R y \wedge x \overline{S} y) \vee (x S y \wedge x \overline{R} y)
```

例:设R和S是集合A= $\{1,2,3,4\}$ 上的关系, $R = \{ \langle x, y \rangle | x - y \in 2 \text{ 的非零整倍数 } \}$ $S = \{\langle x, y \rangle | x - y \in 3 \text{ 的非零整倍数 } \}$ 求: R∩S, R∪S, R-S和~R。 解: $R = \{<1, 3>, <3, 1>, <2, 4>, <4, 2>\}$ $S = \{<1, 4>, <4, 1>\}$ 集合运算 则 $R \cap S = \emptyset$, $R \cup S = \{<1, 3>, <3, 1>, <2, 4>, <4, 2>, <1, 4>, <4, 1>\},$ $R-S = \{<1, 3>, <3, 1>, <2, 4>, <4, 2>\}$

 \sim R={<1, 1>,<1, 2>,<1, 4>,<2, 1>,<2, 2>,<2, 3>,

<3, 2>, <3, 3>,<3, 4>,<4, 1>,<4, 3>,<4, 4>}.
R∩S = { <x, y> | x-y是 6 的非零整倍数 }

 $R \cup S = \{ \langle x, y \rangle | x - y \neq 2 \text{ } 0 \text{ } 1 \text{ } 1 \text{ } 2 \text{ } 2 \text{ } 1 \text{ } 1 \text{ } 2 \text{ } 2 \text{ } 1 \text{ } 2 \text{$

- 例:设R₁和R₂是从集合A到集合B的二元关系。证明
- $(1) \operatorname{dom}(R_1 \cup R_2) = \operatorname{dom}(R_1) \cup \operatorname{dom}(R_2)$
- (2) $ran(R_1 \cap R_2) \subseteq ran(R_1) \cap ran(R_2)$
 - 解: (1) 对任意的 $x \in dom(R_1 \cup R_2)$, 存在 $y \in ran(R_1 \cup R_2)$, 使得<x, $y > \in R_1 \cup R_2$ 。
 - (a) 若<x, y> \in R₁, 则x \in dom(R₁);
 - (b) 若 $\langle x, y \rangle \in R_2$, 则 $x \in dom(R_2)$ 。
 - 因此, $x \in dom(R_1) \cup dom(R_2)$,从而 $dom(R_1 \cup R_2) \subseteq dom(R_1) \cup dom(R_2)$ 。
 - 对任意的x∈ dom(R_1) \cup dom(R_2),
 - (a) 若 $x \in dom(R_1)$,则存在 $y \in ran(R_1)$,有 $< x, y > \in R_1$,得 $< x, y > \in R_1 \cup R_2$,从而 $x \in dom(R_1 \cup R_2)$ 。
 - (b) 同理可证,若x∈ dom(R_2),必有x∈dom($R_1 \cup R_2$)。因此 dom(R_1)∪ dom(R_2) ⊆dom($R_1 \cup R_2$)。
 - 综上所述, $dom(R_1 \cup R_2) = dom(R_1) \cup dom(R_2)$ 。

10

例:设R₁和R₂是从集合A到集合B的二元关系。证明

- $(1) \operatorname{dom}(R_1 \cup R_2) = \operatorname{dom}(R_1) \cup \operatorname{dom}(R_2)$
- (2) $\operatorname{ran}(R_1 \cap R_2) \subseteq \operatorname{ran}(R_1) \cap \operatorname{ran}(R_2)$

解: (2) 略

问题: $ran(R_1 \cap R_2) = ran(R_1) \cap ran(R_2)$?

例: $A=B=\{1, 2, 3\},$ $R_1=\{<1, 2>, <2, 3>\}, R_2=\{<1, 2>, <1, 3>\},$ $R_1\cap R_2=\{<1, 2>\},$ $ran(R_1\cap R_2)=\{2\}, ran(R_1)\cap ran(R_2)=\{2,3\}$

例: 若R和S都是非空集X上的自反(反自反、对称、反对称、传递)关系, 判断 $R\cap S$, $R\cup S$, R-S, $\sim R$, $R\oplus S$ 是否是自反(反自反、对称、反对称、传递)的。

R, S	R∩S	RUS	R-S	$R \oplus S$	~R
自反		$\sqrt{}$			
反自反	V	V	V	V	
对称		V	V	V	V
反对称			V		
传递	V				

2 关系的运算——求逆

定义12 (逆关系) 将关系R中每个有序偶的第一元和第二元对换所得到的关系, 称为R的逆关系, 记作 R^{-1} , $R^{-1} = \{ < x, y > | < y, x > \in R \}$ 。

例:
$$R = \{ \langle a, 1 \rangle, \langle a, 3 \rangle, \langle b, 1 \rangle, \langle b, 2 \rangle, \langle c, 1 \rangle \}$$
 $R^{-1} = \{ \langle 1, a \rangle, \langle 3, a \rangle, \langle 1, b \rangle, \langle 2, b \rangle, \langle 1, c \rangle \}$ 显然, $dom(R^{-1}) = ran(R)$, $ran(R^{-1}) = dom(R)$ 。

定理:设A,B为非空有限集合,R为从A到B的二元关系。

- (1) $M_{R^{-1}} = M_{R}^{T}$ (转置)
- (2) 把 G_R 的每个有向边反向后,得到 R^{-1} 的关系图 $G_{R^{-1}}$

例: 设集合A={a, b, c}上的二元关系R为 R={<a, a>, <a, c>, <b, a>, <b, b>, <c, a>, <c, b>}。 试给出R与R-1的关系图与关系矩阵。

定理: 若R, R_i (i=0, 1, 2, ...)都是从集合A到集合B的二元关系, K为N的非空子集, 则有

- $(1) (R^{-1})^{-1}=R;$
- (2) $(\sim R)^{-1} = \sim (R^{-1});$
- (3) 如果 $R_1 \subseteq R_2$,则 $R_1^{-1} \subseteq R_2^{-1}$;
- (4) 如果 $R_1 = R_2$,则 $R_1^{-1} = R_2^{-1}$;
- (5) $(\bigcup_{n\in K} R_n)^{-1} = \bigcup_{n\in K} (R_n^{-1});$
- (6) $(\bigcap_{n\in K} R_n)^{-1} = \bigcap_{n\in K} (R_n^{-1});$
- (7) $(R_1-R_2)^{-1}=R_1^{-1}-R_2^{-1}$;
- (8) $(R_1 \oplus R_2)^{-1} = R_1^{-1} \oplus R_2^{-1}$.

定理:设R为集合A上的二元关系。则

R是自反的(反自反、对称、反对称、传递)当且仅当 R-1是自反的(反自反、对称、反对称、传递)

逆运算保持关系的五个性质

定理:集合A上的二元关系 R是对称的当且仅当R=R-1。

例:设R为非空有限集A上的二元关系。如果R是反对称的,则R \cap R-1的关系矩阵 $M_{R\cap R^{-1}}$ 最多能有多少个元素为 1?

解:由于R是反对称的,则对任意的 $x, y \in A, x \neq y, 有$ 若 $< x, y > \in R$,则 $< y, x > \notin R$,因此 $< x, y > \notin R^{-1}$,所以 $< x, y > \notin R$ $\cap R^{-1}$ 。

若<x, x> \in R,则<x, x> \in R⁻¹,因此; <x, x> \in R \cap R⁻¹。因此, R \cap R⁻¹ \subseteq I_A,得|R \cap R⁻¹| \le | I_A| = |A|。显然I_A是反对称的,且I_A \cap I_A⁻¹= I_A,所以 M_{R \cap R}⁻¹最多能有|A|个元素为1。

- 例: 若R为集合A上的二元关系,试证
- (1) RUR-1是A上的包含R的最小对称关系;
- (2) R∩R-1为A上的包含在R中的最大对称关系。

$$R \cap R^{-1} \subseteq R \subseteq R \cup R^{-1}$$

- 证: (1) 分析:
 - (a) $R \subseteq R \cup R^{-1}$;
 - (b) RUR-1是对称的;
 - (c) RUR-1是满足以上两个条件的最小的关系。
 - ✓ 设R₁为任意的A上包含R的对称关系,则

$$R \cup R^{-1} \subseteq R_1$$

- 例: 若R为集合A上的二元关系,试证
- (1) RUR-1是A上的包含R的最小对称关系;
- 证: (1) (a)显然, $R \subseteq R \cup R^{-1}$ 。
- (b) 对于任意<a, b>∈ RUR-1,
- 若<a, b> \in R, 则<b, a> \in R-1; 若<a, b> \in R-1, 则<b, a> \in R。
- 因此,<b, a> \in RUR⁻¹。所以,RUR⁻¹为A上的对称关系。
- (c) 设 R_1 为任意的A上包含R的对称关系,
- 则对于任意<a, b> ∈ R∪R-1,
- (i) 若<a, b> ∈ R, 由R \subseteq R₁ 得 <a, b> ∈ R₁;
- (ii) 若<a, b> \in R-1, 则<b, a> \in R, 由R \subseteq R₁得<b, a> \in R₁。
- 又因为 R_1 对称,所以 $\langle a, b \rangle \in R_1$ 。
- 因此,总有 $< a, b > \in R_1$ 。所以, $R \cup R^{-1} \subseteq R_1$ 。
- 综上所述,RUR-1为A上包含R的最小对称关系。

2 关系的运算——合成

定义12 (合成) 设 R 是 X 到 Y 的关系, S 是Y到Z 的关系,则R \circ S = {<x, z>|∃ y ∈ Y 使得x R y ∧ y S z)} 为 X 到 Z 的关系,称为 R 和 S 的合成。

 $\mathbf{R} \cdot \mathbf{S}$

显然, $dom(R \circ S) \subseteq dom(R)$, $ran(R \circ S) \subseteq ran(S)$ 。

求:
$$R \circ S$$
, $S \circ R$, $(R \circ S) \circ R$, $R \circ (S \circ R)$, $R \circ R$

$$(\mathbf{R} \circ \mathbf{S}) \circ \mathbf{R} = \{ \langle 3, 2 \rangle \}$$

 $\mathbf{R} \circ \mathbf{R} = \{ <1, 2>, <2, 2> \}$

$$\mathbf{R} \circ (\mathbf{S} \circ \mathbf{R}) = \{ <3, 2 > \}$$

可证: 关系的合成运算满足结合律。

例: 设R和S是整数集合I上的两个关系,

$$R = {\langle x, 2x \rangle | x \in I},$$

 $S = {\langle x, 7x \rangle | x \in I}$

试求 R。S, R。R, R。R。R和R。S。R。

解:
$$R \circ S = \{ \langle x, 14x \rangle \mid x \in I \}$$

 $R \circ R = \{ \langle x, 4x \rangle \mid x \in I \}$
 $R \circ R \circ R = \{ \langle x, 8x \rangle \mid x \in I \}$
 $R \circ S \circ R = \{ \langle x, 28x \rangle \mid x \in I \}$

例: 若R为任意集合A上的空关系或全关系,试证 R2=R

关系复合的性质

定理:设A,B,C和D为任意四个集合,二元关系

$$R_1 \subseteq A \times B$$
, R_2 , $R_3 \subseteq B \times C$, $R_4 \subseteq C \times D$:

- 1) 若 $R_2 \subseteq R_3$,则 $R_1 \circ R_2 \subseteq R_1 \circ R_3$ 且 $R_2 \circ R_4 \subseteq R_3 \circ R_4$;
- 2) $R_1 \circ (R_2 \cup R_3) = (R_1 \circ R_2) \cup (R_1 \circ R_3);$
- 3) $(R_2 \cup R_3) \circ R_4 = (R_2 \circ R_4) \cup (R_3 \circ R_4);$
- 4) $R_{1^{\circ}}(R_{2} \cap R_{3}) \subseteq (R_{1^{\circ}}R_{2}) \cap (R_{1^{\circ}}R_{3});$
- 5) $(R_2 \cap R_3) \circ R_4 \subseteq (R_2 \circ R_4) \cap (R_3 \circ R_4);$
- 6) $(R_1 \circ R_2)^{-1} = R_2^{-1} \circ R_1^{-1};$
- 7) $(R_1 \circ R_2) \circ R_4 = R_1 \circ (R_2 \circ R_4) \circ$

定理:设A,B,C和D为任意四个集合,二元关系

$$\mathbf{R}_1 \subseteq \mathbf{A} \times \mathbf{B}, \quad \mathbf{R}_2, \, \mathbf{R}_3 \subseteq \mathbf{B} \times \mathbf{C}, \quad \mathbf{R}_4 \subseteq \mathbf{C} \times \mathbf{D}$$
:

1) 若 $R_2 \subseteq R_3$,则 $R_1 \circ R_2 \subseteq R_1 \circ R_3$ 且 $R_2 \circ R_4 \subseteq R_3 \circ R_4$;

证: 对任意 $\langle x, z \rangle \in R_1 \circ R_2$,存在 $y \in B$,使得 $\langle x, y \rangle \in R_1$

且
$$\langle y, z \rangle \in \mathbb{R}_2$$
。

由于 $R_2 \subseteq R_3$, 得 $\langle y, z \rangle \in R_3$,

因此 $\langle x, z \rangle \in R_1 \circ R_3$ 。

所以 $\mathbf{R}_1 \circ \mathbf{R}_2 \subseteq \mathbf{R}_1 \circ \mathbf{R}_3$ 。

同理可证 $\mathbf{R}_2 \circ \mathbf{R}_4 \subseteq \mathbf{R}_3 \circ \mathbf{R}_4$ 。

定理:设A,B,C和D为任意四个集合,二元关系 $R_1 \subseteq A \times B$, R_2 , $R_3 \subseteq B \times C$, $R_4 \subseteq C \times D$:

4) $R_{1^{\circ}}(R_{2} \cap R_{3}) \subseteq (R_{1^{\circ}}R_{2}) \cap (R_{1^{\circ}}R_{3});$

证: 对任意 $\langle x, z \rangle \in R_1^\circ (R_2 \cap R_3)$, 则存在 $y \in B$,使得 $< x, y > \in R_1, < y, z > \in R_2 \cap R_3,$ 从而<y, z > \in R_2 且<y, z > \in R_3 。 因此 $\langle x, z \rangle \in R_1 \circ R_2$, $\langle x, z \rangle \in R_1 \circ R_3$,得 $< x, z > \in (R_1 \circ R_2) \cap (R_1 \circ R_3) \circ$ 从而 R_1 ° $(R_2 \cap R_3) \subseteq (R_1 \circ R_2) \cap (R_1 \circ R_3)$ 。 $(\mathbf{R}_1 \circ \mathbf{R}_2) \cap (\mathbf{R}_1 \circ \mathbf{R}_3) \subseteq \mathbf{R}_1 \circ (\mathbf{R}_2 \cap \mathbf{R}_3)$ 是否成立?

 $R_1 = \{<1, 2>, <1, 3>\}, R_2 = \{<2, 4>\}, R_3 = \{<3, 4>\}$

定理:设A,B,C和D为任意四个集合,二元关系

$$R_1 \subseteq A \times B$$
, R_2 , $R_3 \subseteq B \times C$, $R_4 \subseteq C \times D$:

(6)
$$(R_1 \circ R_2)^{-1} = R_2^{-1} \circ R_1^{-1}$$

证: (6) 对于任意<z, x>,

$$< z, x > \in (R_1 \cdot R_2)^{-1}$$

$$\Leftrightarrow < x, z > \in R_1 \cdot R_2$$

$$\Leftrightarrow \exists y \ (\langle x, y \rangle \in R_1 \land \langle y, z \rangle \in R_2)$$

$$\Leftrightarrow \exists y (\langle y, x \rangle \in R_1^{-1} \land \langle z, y \rangle \in R_2^{-1})$$

$$\Leftrightarrow <\mathbf{z}, \mathbf{x}> \in \mathbf{R}_2^{-1} \cdot \mathbf{R}_1^{-1}$$

因此, $(R_1 \circ R_2)^{-1} = R_2^{-1} \cdot R_1^{-1}$ 。

定理:设A,B,C和D为任意四个集合,二元关系

$$R_1 \subseteq A \times B$$
, R_2 , $R_3 \subseteq B \times C$, $R_4 \subseteq C \times D$:

$$(7) (R_1 \circ R_2) \circ R_4 = R_1 \circ (R_2 \circ R_4) \circ$$

证: (7) 对任意<x, w>:

$$\langle x, w \rangle \in (R_1 \circ R_2) \circ R_3$$

- $\Leftrightarrow \exists z \in C (\langle x, z \rangle \in R_1 \circ R_2 \land \langle z, w \rangle \in R_3)$
- $\Leftrightarrow \exists z \in C \ (\exists y \in B \ (\langle x, y \rangle \in R_1 \land \langle y, z \rangle \in R_2) \land \langle z, w \rangle \in R_3)$
- $\Leftrightarrow \exists y \in B(\langle x, y \rangle \in R_1 \land \exists z \in C (\langle y, z \rangle \in R_2 \land \langle z, w \rangle \in R_3))$
- $\Leftrightarrow \exists y \in B(\langle x, y \rangle \in R_1 \land \langle y, w \rangle \in R_2 \circ R_3)$
- $\Leftrightarrow < x, w > \in R_1 \circ (R_2 \circ R_3)$
- 故 $(R_1 \circ R_2) \circ R_3 = R_1 \circ (R_2 \circ R_3)$ 。