Kwadratische vergelijkingen oplossen

Eigenschap 1. Vierkantsvergelijkingen $ax^2 + bx + c = 0$ oplossen in \mathbb{R} .

Een (reële) tweedegraadsvergelijking van de vorm $ax^2 + bx + c$, met $a, b, c \in \mathbb{R}$ en $a \neq 0$ heeft als **discriminant** het (reële) getal $D = b^2 - 4ac$, en heeft als oplossingen

als D < 0: geen reële oplossingen

als
$$D=0$$
: precies een reële oplossing, namelijk $x_1=-\frac{b}{2a}$

als
$$D > 0$$
: precies twee reële oplossingen, namelijk $x_1 = \frac{-b + \sqrt{D}}{2a}$ en $x_2 = \frac{-b - \sqrt{D}}{2a}$

Bovendien zijn de volgende uitspraken equivalent:

- (a) x_1 en x_2 zijn oplossingen van de vergelijking $ax^2 + bx + c = 0$ (b) x_1 en x_2 zijn nulpunten van de functie $f(x) = ax^2 + bx + c$ (c) x_1 en x_2 zijn snijpunten van de kromme $y = ax^2 + bx + c$ met de x-as d) $ax^2 + bx + c = a(x x_1)(x x_2)$

(d)
$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$
 (ontbinden in factoren)
(e) $x_1 + x_2 = -\frac{b}{a}$ en $x_1 \cdot x_2 = \frac{c}{a}$ (som en product van de wortels)

Voorbeeld 1.

1.
$$f(x) = x^2 + 5x + 4 = -1$$
 en -4

We be schouwen de kwadratische functie $f(x) = x^2 + 5x + 4$

De wortels van een kwadratische vergelijking van de vorm $ax^2 + bx + c = 0$ worden gevonden met de formule:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

waarbij in ons geval:

$$a = 1, b = 5, c = 4$$

Berekenen eerst de discriminant:

$$D = b^2 - 4ac = 5^2 - 4(1)(4) = 25 - 16 = 9$$

Aangezien de discriminant positief is, zijn er twee reële oplossingen:

$$x = \frac{-5 \pm \sqrt{9}}{2(1)}$$

$$x = \frac{-5 \pm 3}{2}$$

Hieruit volgen de twee wortels:

$$x_1 = \frac{-5+3}{2} = \frac{-2}{2} = -1$$

$$x_2 = \frac{-5-3}{2} = \frac{-8}{2} = -4$$

Dus de oplossingen van de vergelijking $x^2 + 5x + 4 = 0$ zijn:

$$x = -1$$
 of $x = -4$

Ontbonden in factoren geeft dit: $f(x) = x^2 + 5x + 4 = (x + 1)(x + 4)$

2.
$$f(x) = 3x^2 + 2x + \frac{1}{3} = \frac{-1}{3}$$

Uitwerking: We beschouwen de kwadratische functie $f(x) = 3x^2 + 2x + \frac{1}{3}$

De wortels van een kwadratische vergelijking van de vorm $ax^2+bx+c=0$ worden gevonden met de abc-formule:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

waarbij in ons geval:

$$a = 3$$
, $b = 2$, $c = \frac{1}{3}$

We berekenen eerst de discriminant:

$$D = b^2 - 4ac = 2^2 - 4(3)\left(\frac{1}{3}\right) = 4 - 4 = 0$$

Aangezien de discriminant nul is, is er precies één oplossing

$$x = \frac{-2}{2(3)}$$

$$x = \frac{-2}{6} = \frac{-1}{3}$$

Dus de enige oplossing van de vergelijking $3x^2 + 2x + \frac{1}{3} = 0$ is:

$$x = -\frac{1}{3}$$

Ontbonden in factoren geeft dit $f(x) = 3x^2 + 2x + \frac{1}{3} = (x + \frac{1}{3})(x + \frac{1}{3}) = (x + \frac{1}{3})^2$

3.
$$f(x) = -2x^2 + 3x - 5$$
 = Geen reële oplossingen

Uitwerking: We beschouwen de kwadratische functie $f(x) = -2x^2 + 3x - 5$

De wortels van een kwadratische vergelijking van de vorm $ax^2+bx+c=0$ worden gevonden met de abc-formule:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

waarbij in ons geval:

$$a = -2$$
, $b = 3$, $c = -5$

We berekenen eerst de discriminant:

$$D = b^2 - 4ac = 3^2 - 4(-2)(-5) = 9 - 40 = -31$$

Aangezien de discriminant negatief is, zijn er geen reële oplossingen.

Dus de vergelijking $-2x^2 + 3x - 5 = 0$ heeft geen reële wortels.

Oefening 1.

- 1. De wortels van $x^2 4x + 3$ zijn 1 en 3
- **2.** De wortels van $-2x^2 + 4x + 8$ zijn -2 en 4
- **3.** De wortels van $2x^2 8x + 16$ zijn 2 (dubbele wortel)
- **4.** De wortels van $2x^2 + 5x + 2 \text{ zijn } -\frac{1}{2} \text{ en } -2$
- **5.** De wortels van $3x^2 6x + 3$ zijn 1 (dubbele wortel)
- **6.** De wortels van $x^2 + 4x + 5$ zijn geen reële wortels
- **7.** De wortels van $x^2 + 2x 8 \text{ zijn}$ **-4 en 2**
- **8.** De wortels van $4x^2 + 12x + 9$ zijn $-\frac{3}{2}$ (dubbele wortel)
- **9.** De wortels van $3x^2 + 6x + 3$ zijn -1 (dubbele wortel)
- **10.** De wortels van $-x^2 + 4x + 1$ zijn $-\frac{1}{2}$ en 5

Oefening 2.

- 1. De wortels van $x^2 + 2x + 2$ zijn geen reële wortels
- 2. De wortels van $2x^2 3x 5$ zijn $\frac{5}{2}$ en -1
- **3.** De wortels van $5x^2 + 4x 1$ zijn $\frac{1}{5}$ en -1
- **4.** De wortels van $-3x^2 + 12x 12$ zijn 2(dubbele wortel)
- **5.** De wortels van $x^2 + 6x + 5$ zijn -1 en -5
- **6.** De wortels van $4x^2 + 4x + 10$ zijn geen reële wortels
- **7.** De wortels van $4x^2 + 8x + 3$ zijn $-\frac{3}{2}$ en $-\frac{1}{2}$
- **8.** De wortels van $x^2 2x + 1$ zijn 1(dubbele wortel)
- **9.** De wortels van $3x^2 2x 8$ zijn 2 en $-\frac{4}{3}$
- **10.** De wortels van $-x^2 + 5x 6$ zijn 2 en 3

Voorbeeld 2. Substitutie

Oefening 3. Bepaal de oplossingen van volgende vergelijkingen door een geschikte substitutie toe te passen.