Epreuve écrite

Examen de fin d'études secondaires 2010

Section: B et C

Branche: chimie

I	uméro d'ordre du candid	lat
	•	

[QC = question de cours; AT = question de transfert; EN = exercice numérique]

I. Addition sur les alcènes (13 pts.)

1) Le schéma ci-dessous représente le recouvrement des nuages électroniques dans une molécule d'éthène :

- a) Nommer la liaison A et préciser les nuages qui se recouvrent pour former cette liaison. [AT:1]
- b) Nommer la liaison B et préciser les nuages qui se recouvrent pour former cette liaison. [AT:1]
- c) Quels nuages de quels atomes se recouvrent pour former la liaison D? [AT:1]
- d) Dans une molécule d'éthène, indiquer la valeur de l'angle formé entre A et C et entre B et C. [AT:1]
- 2) a) Donner la formule et le nom des alcènes qui, par hydrogénation, conduisent au 3-méthylpentane. [AT:3]
 - b) Repérer, parmi ces alcènes, ceux qui représentent une isomérie de configuration. Les nommer en nomenclature CIP respectivement Z/E. [AT:3] (hydrogénation = addition de H₂)
- 3) Etudier le mécanisme en trois étapes de l'hydratation du propène catalysée par des ions oxonium. [QC:3]

II. Aldéhydes (20 pts.)

- 1) Comparer et expliquer la volatilité des aldéhydes avec celle des alcanes et des alcools de même masse molaire. [QC:2]
- 2) a) Etudier le mécanisme de la nitration du benzaldéhyde, sachant que le groupement aldéhyde exerce un effet accepteur de doublet M-. [QC:5]
 - b) Dessiner également les formes contributives à la mésomérie du benzaldéhyde pour expliquer la position du substituant nitro. [AT:4]

Epreuve écrite

Examen de fin d'études secondaires 2010	Numéro d'ordre du candidat
Section: B et C	
Branche: chimie	
d'une solution d'éthanal 0,08-M dans l'erlenmeye	[QC:2] miroir d'argent. [QC:4]
III. Hydrolyse d'un ester (10 pts.) Un arôme artificiel de pomme est dû à un ester aliphati	que et saturé de formule brute. CoH.oOo
L'hydrolyse de cet ester donne deux composés orga a) Ecrire l'équation de cette hydrolyse en utilisant la	niques A et B.
 2) On réalise les expériences suivantes à partir de A : * A est oxydé par le dichromate de potassium en mi * A₁ réagit avec la DNPH, mais pas avec le réactif a) Quelle est la fonction chimique du composé A₁? b) Quelle est la fonction chimique du composé A? c) En déduire la fonction chimique de B. 	lieu acide pour donner un composé organique A ₁ . de Schiff [AT:2]
 3) La masse molaire de A₁ vaut 58 g/mol. a) Déterminer la formule semi-développée de A₁. b) Déterminer la formule semi-développée de A. 	[AT:2]
 4) La molécule B contient une seule ramification, mais a) Trouver * formule semi-développée de B. b) Ecrire la formule semi-développée de l'ester. Le r 	•
* une	

Epreuve écrite

Examen de fin d'études secondaires 2010

Section: B et C

Branche: chimie

Numéro d'ordre du candidat	

IV. Acide hypochloreux (17 pts.)

- 1) On met l'acide hypochloreux en présence :
 - a) de l'ion sulfite,
 - b) de l'hydroxyde de sodium.

Dresser les équations de protolyse envisageables et discuter chaque fois, si la protolyse est à considérer comme complète, équilibrée ou nulle. [AT/EN:3]

- 2) L'acide hypochloreux est moins acide que l'acide chloreux.
 - a) Expliquer en comparant les molécules concernées.
 - b) Vérifier en calculant le degré de dissociation α des deux solutions acides 0,2 M. [EN/AT:3]
- 3) On réalise le titrage de 20 ml d'une solution d'acide hypochloreux par une solution de KOH_(aq) 0,02 M et on obtient la courbe de titrage représentée au-dessous.

Vérifier par un calcul:

a) le pH de la solution initiale de l'acide hypochloreux, [EN:4]
b) le pH au point d'équivalence, [EN:3]
c) le pH après ajout de 7 ml de KOH_(aq), [EN:2]
d) le pH après ajout de 14 ml de KOH_(aq). [EN:2]

Tableau des pKa (abréviations : ac. = acide ; cat. = cation ; an. = anion)

acides forts (plus forts que H_3O^+) HI, HBr, HCl, HClO₄, HNO₃, H_2SO_4

bases de force négligeable

cat. hydronium	H ₃ O ⁺	H₂O	eau	-1,74
ac. chlorique	HCIO ₃	ClO ₃ -	an. chlorate	-1,00
ac. trichloroéthanoïque	CCl₃COOH	CCl₃COO⁻	an. trichloroéthanoate	0,70
ac. iodique	HIO ₃	IO ₃ -	an. iodate	0,80
cat. hexaqua thallium III	[TI(H ₂ O) ₆] ³⁺	[Tl(OH)(H ₂ O) ₅] ²⁺	cat. pentaqua hydroxo thallium III	1,14
ac. oxalique	НООССООН	HOOCCOO-	an. hydrogénooxalate	1.23
ac. dichloroéthanoïque	CHCl₂COOH	CHCl₂COO ⁻	an. dichloroéthanoate	1,26
ac. sulfureux	H ₂ SO ₃	HSO ₃ -	an. hydrogénosulfite	1,80
an. hydrogénosulfate	HSO ₄	SO ₄ ²⁻	an. sulfate	1,92
ac. chloreux	HClO₂	ClO ₂ -	an. chlorite	2,00
ac. phosphorique	H ₃ PO ₄	H ₂ PO ₄	an. dihydrogénophosphate	2,12
ac. fluoroéthanoïque	CH₂FCOOH	CH₂FCOO ⁻	an. fluoroéthanoate	2,57
cat. hexaqua gallium III	[Ga(H ₂ O) ₆] ³⁺	[Ga(OH)(H ₂ O) ₅] ²⁺	cat. pentaqua hydroxo gallium III	2,62
cat. hexaqua fer III	[Fe(H ₂ O) ₆] ³⁺	[Fe(OH)(H ₂ O) ₅] ²⁺	cat. pentaqua hydroxo fer III	2,83
ac. chloroéthanoïque	CH₂ClCOOH	CH₂CICOO ⁻	an. chloroéthanoate	2,86
ac. bromoéthanoïque	CH₂BrCOOH	CH₂BrCOO⁻	an. bromoéthanoate	2,90
cat. hexaqua vanadium III	[V(H ₂ Q) ₆] ³⁺	[V(OH)(H ₂ O) ₅] ²⁺	cat. pentaqua hydroxo vanadium III	2,92
ac. nitreux	HNO ₂	NO ₂ -	an. nitrite	3,14
ac. iodoéthanoïque	CH₂ICOOH	CH₂ICOO ⁻	an. iodoéthanoate	3,16
ac. fluorhydrique	HF	F	an. fluorure	3,17
ac. acétylsalicylique	C ₈ H ₇ O ₂ COOH	C ₈ H ₇ O ₂ COO	an. acétylsalicylate	3,48
ac. cyanique	HOCN	OCN-	an. cyanate	3,66
ac. méthanoïque	НСООН	HCOO-	an. méthanoate	3,75
ac. lactique	СН₃СНОНСООН	CH₃CHOHCOO ⁻	an. lactate	3,87
ac. ascorbique	C ₆ H ₈ O ₆	C ₆ H ₇ O ₆	an. ascorbate	4,17
ac. benzoïque	C ₆ H ₅ COOH	C ₆ H ₅ COO ⁻	an. benzoate	4,19
cat. anilinium	C ₆ H ₅ NH ₃ ⁺	C ₆ H ₅ NH ₂	aniline	4,62

ac. éthanoïque	CH₃COOH	CH₃COO⁻	an. éthanoate	4,75
ac. propanoïque	CH₃CH₂COOH	CH₃CH₂COO ⁻	an. propanoate	4,87
cat. hexaqua aluminium	[AI(H ₂ O) ₆] ³⁺	[Al(OH)(H ₂ O) ₅] ²⁺	cat. pentaqua hydroxo aluminium	4,95
cat. pyridinium	C ₅ H ₅ NH ⁺	C ₅ H ₅ N	pyridine	5,25
cat. hydroxylammonium	NH₃OH ⁺	NH₂OH	hydroxylamine	6,00
dioxyde de carbone (aq)	CO ₂ + H ₂ O	HCO ₃ -	an. hydrogénocarbonate	6,12
ac. sulfhydrique	H₂S	HS ⁻	an. hydrogénosulfure	7,04
an. hydrogénosulfite	HSO ₃ -	SO ₃ ²⁻	an. sulfite	7,20
an. dihydrogénophosphate	H ₂ PO ₄ -	HPO ₄ ²⁻	an. hydrogénophosphate	7,21
ac. hypochloreux	HCIO	CIO-	an. hypochlorite	7,55
cat. hexaqua cadmium	[Cd(H ₂ O) ₆] ²⁺	[Cd(OH)(H ₂ O) ₅] ⁺	cat. pentaqua hydroxo cadmium	8,50
cat. hexaqua zinc	[Zn(H ₂ O) ₆] ²⁺	[Zn(OH)(H ₂ O) ₅] ⁺	cat. pentaqua hydroxo zinc	8,96
cat. ammonium	NH ₄ ⁺	NH ₃	ammoniac	9,20
ac. borique	H ₃ BO ₃	H ₂ BO ₃	an. borate	9,23
ac. hypobromeux	HBrO	BrO ⁻	an. hypobromite	9,24
ac. cyanhydrique	HCN	CN ⁻	an. cyanure	9,31
cat. triméthylammonium	(CH₃)₃NH ⁺	(CH ₃) ₃ N	triméthylamine	9,87
phénol	C ₆ H₅OH	C ₆ H ₅ O ⁻	an. phénolate	9,89
an. hydrogénocarbonate	HCO ₃ -	CO ₃ ²⁻	an. carbonate	10,25
ac. hypoiodeux	HIO	IO-	an. hypoiodite	10,64
cat. méthylammonium	CH ₃ NH ₃ ⁺	CH ₃ NH ₂	méthylamine	10,70
cat. éthylammonium	CH₃CH₂NH₃ ⁺	CH₃CH₂NH₂	éthylamine	10,75
cat. triéthylammonium	(C₂H₅)₃NH ⁺	(C ₂ H ₅) ₃ N	triéthylamine	10,81
cat. diméthylammonium	(CH ₃) ₂ NH ₂ ⁺	(CH₃)₂NH	diméthylamine	10,87
cat. diéthylammonium	$(C_2H_5)_2NH_2^+$	(C₂H₅)₂NH	diéthylamine	11,10
an. hydrogénophosphate	HPO ₄ ²⁻	PO ₄ ³⁻	an. phosphate	12,32
an. hydrogénosulfure	HS ⁻	S ²⁻	an. sulfure	12,90
eau	H ₂ O	OH-	anion hydroxyde	15,74

acides	de	force	négligeable	-
				1

bases fortes
(plus fortes que OH⁻)
O²⁻, NH₂⁻, anion alcoolate RO⁻)

TABLEAU PERIODIQUE DES ELEMENTS

groupe	groupes principaux	aux											grou	groupes principaux	cipaux		
												Ξ	2	>		II/	
1,0																	4,0
I																	He
_		г															2
6,9	0,0											10,8	12,0	14,0	16,0	19,0	20,2
<u></u>	Be											8	O	Z	0	ட	Ne
3	4											2	9	7	8	o	10
23,0	24,3					groupes	groupes secondaires	aires				27,0	28,1	31,0	32,1	35,5	39,9
Na	Mg	Þ										A	Si	۵	S	ū	Ar
7	12	=	//	>		II/				_	=	13	14	15	16	17	18
39,1	40,1	45,0	47,9	6'09	52,0	54,9	55,8	58,9	58,7	63,5	65,4	2'69	72,6	74,9	79,0	79,9	83,8
Y	Ca	Sc	F	>	င်	Ψ	Fe	ပိ	Z	J	Zn	Ga	Ge	As	Se	B	호
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
85,5	9,18	88,9	91,2	92,9	95,9	(26)	101,1	102,9		107,9	112,4	114,8	118,7	121,8	127,6	126,9	131,3
Rb	Ş	>	Zr	g	Mo	Tc	Ru	R	Pd	Ag	B	In	Sn	Sb	Te	H	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
132,9	137,3	175,0	178,5	180,9	183,9	186,2	190,2	192,2	165,1	197,0	200,6	204,4	207,2	209,0	(209)	(210)	(222)
S	Ва	Ľ	H	Ta	>	Re	Os	i	Pt	Au	Hg	F	Pb	Bi	Po	At	Ru
55	56	7.1	72	73	74	75	92	77	78	79	80	81	82	83	84	85	98
(223)	226,0	(260)		(262)	(266)	(264)	(269)	(268)									
Ť.	Ra	ᅼ	Rf	Dp	Sg	Bh	Hs	¥									
87	88	103	104	105		107	108	109									

	138,9	140,1	140,9	144,2		150,4				1			168,9	173,0
lanthanides	La	Ce	Pr	PN	Pm	Sm	Eu	P ₉	Tb	Dy	유	山	H	Yb
	22	58											69	70
	227,0	232,0	1	238,0			1					1	(258)	(259)
actinides	Ac	H	Pa		dN	Pu	Am	E S	BK	Ç	Es	Fm	PΜ	No
	89	06	91	92									101	102