

Rov-Lab 사용자 설명

iRoVLab3000의 회로 구성

iRoVLab3000의 실물

iRo /Lab3000의 블록도

실험시 주의사항

- 전원 연결한채로 절대로 기판을 올리거나 뚜 껑을 닫지 말아야 함
- J-TAG케이블 연결시 단자 반드시 확인후 연 결(좌측이 12V)
- 교재의 핀 할당 표는 맞지 않으니 수업시 제 공하는 핀 번호 파일 사용할 것

응용회로 설계

★ 7-Segment

- 7개의 조각으로 나뉘어진 LED
- 각 세그먼트마다 A ~ G까지 이름이 붙어 있다.
- 각 A ~ G의 Segment들이 조합으로 숫자 표시필요 (Decoder가 필요하다.)

입 력			출 력							
d3	d2	d1	dO	a	b	C	d	е	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	1	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1

7Segment Decoder 및 LED

- ★ 6개의 7-Segment 동작원리
- 각 segment에 대한 LED신호가 6개 모두 공통으로 연결 되어짐
- 각 세그먼트들의 활성화 비활성화를 지정해주기 위한 Digit신호 6개가 필요
- Digit신호를 각 segment마다 일정주기로 전달하여 숫자표시

DIGIT1

DIGIT6

DIGIT1	G3	0
DIGIT2	G4	0
DIGIT3	НЗ	0
DIGIT4	H4	0
DIGIT5	H1	0
DIGIT6	G1	0

•7-Segment Digit Value (Base Board)왼쪽1에서 오른쪽 6


```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity seg7 is
  Port ( RSTB : in std_logic;
       CLK_50M: in std_logic;
       DIGIT
              : inout std_logic_vector(5 downto 0);
       SEG
               : out std_logic_vector(6 downto 0));
end seg7;
architecture Behavioral of seg7 is
signal clk_500 : std_logic;
begin
--======= 자리 선택 Clock(500Hz) Generator =============
    process(RSTB, CLK_50M)
    variable cnt: integer range 0 to 50000; -- 50M/50K=1KHZ and 1KHZ/2=500 HZ
                                       -- 5000000 50M/5M=10HZ and 10HZ/2=5 HZ
    begin
        if RSTB = '0' then
                       -- variable 인 경우에는 := 를 사용함
            cnt := 0;
            clk 500 <= '0'; -- signal 인 경우에는 <= 를 사용함
        elsif rising_edge (CLK_50M) then
           if cnt >= 49999 then -- 정상동작시
              if cnt >= 1 then -- 시뮬레이션시
                 cnt := 0;
                 clk 500 <= not clk 500;
            else
                 cnt := cnt + 1;
            end if:
        end if;
    end process;
```

```
--======== Digit selection =======================
   process(RSTB,clk_500)
   beain
       if RSTB = '0' then
           DIGIT <= "100000";
       elsif rising edge (clk 500) then
           DIGIT <= DIGIT(0) & DIGIT (5 downto 1); -- 선택 자리 이동
       end if;
   end process;
process(DIGIT)
   begin
     case DIGIT is
       when "100000" => SEG <="0000110"; --가장 오른쪽 첫번째 1표시. GFEDCBA
       when "010000" => SEG <="1011011"; --두번째 2표시
       when "001000" => SEG <="1001111"; --세번째 3표시
       when "000100" => SEG <="0110011"; --네번째 4표시
       when "000010" => SEG <="1101101"; --다섯번째 5표시
       when "000001" => SEG <="1111101"; --여섯번째 6표시
       when others => SEG <="0000000"; --표시 없음
       end case;
   end process;
end Behavioral;
```


8-1. 7-Segment 제어기의 설계- 각 신호기능

신호 이름	입출력	설 명		
CLK_50M	입력	트레이닝 키트에 있는 클록 신호. 50 MHz T9번으로 연결되어 있음.		
RSTB	입력	시스템 Reset 신호 F4번으로 연결되어 있음. Active 'L'		
DIGIT(5:0)	출력	6개의 자리 중 하나를 선택하기 위해 사용되는 신호. 6비트의 값으로 한 비트의 값만 1인데 500 Hz 속도로 1의 값이 오른쪽으로 이동한다. 6번째 비트 다음에는 다시 첫 번째 비트가 1이 된다. Active 'H ' DIGIT(0) = DIGIT 1: 맨 왼쪽		
SEG(6:0)	출력	7 세그먼트로 연결되는 신호 7개의 세그먼트 A ~G 로 연결됨. Active 'H' SEG(0) = A		

8-1. 7-Segment 제어기의 설계-Pin배치

	입 력		출 력		
신호 이름	키트 이름	핀 번호	신호 이름	키트 이름	핀 번호
CLK_50M	FPGA_clock	T9	DIGIT(5)	DIGIT6	G1
RSTB	Reset Pin	F4	DIGIT(4)	DIGIT5	H1
			DIGIT(3)	DIGIT4	H4
			DIGIT(2)	DIGIT3	Н3
	A	16	DIGIT(1)	DIGIT2	G4
			DIGIT(0)	DIGIT1	G3
F	/ B	(6)	SEG(6)	SEG_G	D2
	G		SEG(5)	SEG_F	D1
E []			SEG(4)	SEG_E	C3
			SEG(3)	SEG_D	C2
	D H	14	SEG(2)	SEG_C	B1
			SEG(1)	SEG_B	C2
			SEG(O)	SEG_A	G2

DIGIT1(DIGIT(0))

DIGIT6(DIGIT(5))

DIGIT1	G3	0
DIGIT2	G4	0
DIGIT3	НЗ	0
DIGIT4	H4	0
DIGIT5	H1	0
DIGIT6	G1	0

•7-Segment Digit Value (Base Board)왼쪽1에서 오른쪽 6


```
--======== Digit selection =======================
   process(RSTB,clk_500)
   beain
       if RSTB = '0' then
           DIGIT <= "100000";
       elsif rising edge (clk 500) then
           DIGIT <= DIGIT(0) & DIGIT (5 downto 1); -- 선택 자리 이동
       end if;
   end process;
process(DIGIT)
   begin
     case DIGIT is
       when "100000" => SEG <="0000110"; --가장 왼쪽 첫번째 1표시, GFEDCBA
       when "010000" => SEG <="1011011"; --두번째 2표시
       when "001000" => SEG <="1001111"; --세번째 3표시
       when "000100" => SEG <="0110011"; --네번째 4표시
       when "000010" => SEG <="1101101"; --다섯번째 5표시
       when "000001" => SEG <="1111101"; --여섯번째 6표시
       when others => SEG <="0000000"; --표시 없음
       end case;
   end process;
end Behavioral;
```


8-1. 7-Segment 제어기의 설계- 각 신호기능

신호 이름	입출력	설 명		
CLK_50M 입력		트레이닝 키트에 있는 클록 신호. 50 MHz T9번으로 연결되어 있음.		
RSTB	입력	시스템 Reset 신호 F4번으로 연결되어 있음. Active 'L'		
DIGIT(5:0)	출력	6개의 자리 중 하나를 선택하기 위해 사용되는 신호. 6비트의 값으로 한 비트의 값만 1인데 500 Hz 속도로 1의 값이 오른쪽으로 이동한다. 6번째 비트 다음에는 다시 첫 번째 비트가 1이 된다. Active 'H ' DIGIT(5) = DIGIT 1: 맨 왼쪽		
SEG(6:0)	출력	7 세그먼트로 연결되는 신호 7개의 세그먼트 A ~G 로 연결됨. Active 'H' SEG(0) = A		

8-1. 7-Segment 제어기의 설계-Pin배치

	입 력		출 력		
신호 이름	키트 이름	핀 번호	신호 이름	키트 이름	핀 번호
CLK_50M	FPGA_clock	T9	DIGIT(5)	DIGIT1	G3
RSTB	Reset Pin	F4	DIGIT(4)	DIGIT2	G4
			DIGIT(3)	DIGIT3	Н3
			DIGIT(2)	DIGIT4	H4
	A	16	DIGIT(1)	DIGIT5	H1
			DIGIT(0)	DIGIT6	G1
F	B	(h)	SEG(6)	SEG_G	D2
	G		SEG(5)	SEG_F	D1
E	E C			SEG_E	C3
			SEG(3)	SEG_D	C2
	ОН	19	SEG(2)	SEG_C	B1
			SEG(1)	SEG_B	C2
			SEG(O)	SEG_A	G2

DIGIT1(DIGIT(5))

DIGIT6(DIGIT(0))

DIGIT1	G3	0
DIGIT2	G4	0
DIGIT3	НЗ	0
DIGIT4	H4	0
DIGIT5	H1	0
DIGIT6	G1	0

•7-Segment Digit Value (Base Board)왼쪽1에서 오른쪽 6

The END

수고하셨습니다.!!

