# Python\_Bank\_Loan\_Project

August 30, 2025

# 1 Bank Loan Analysis Project

#### 1.1 Importing Libraries

```
[2]: import pandas as pd
import numpy as pn
import matplotlib.pyplot as plt
import seaborn as sb
import warnings
import plotly.express as px
```

#### 1.2 Importing Data

```
[3]: df = pd.read_excel("C:/Users/vivid/OneDrive/Desktop/Data Analysis Projects/

→Python Project/financial_loan.xlsx")
```

```
[3]: df.head()
```

```
[3]:
             id address_state application_type emp_length
                                                                       emp_title \
     0 1077430
                                                 < 1 year
                                                                           Ryder
                          GA
                                    INDIVIDUAL
     1 1072053
                          CA
                                                  9 years
                                                                  MKC Accounting
                                    INDIVIDUAL
     2 1069243
                           CA
                                   INDIVIDUAL
                                                  4 years Chemat Technology Inc
     3 1041756
                           TX
                                    INDIVIDUAL
                                                 < 1 year
                                                             barnes distribution
     4 1068350
                           IL
                                    INDIVIDUAL 10+ years
                                                                   J&J Steel Inc
```

|   | grade | home_ownership | issue_date | <pre>last_credit_pull_date</pre> | <pre>last_payment_date</pre> | \ |
|---|-------|----------------|------------|----------------------------------|------------------------------|---|
| 0 | C     | RENT           | 2021-02-11 | 2021-09-13                       | 2021-04-13                   |   |
| 1 | E     | RENT           | 2021-01-01 | 2021-12-14                       | 2021-01-15                   |   |
| 2 | C     | RENT           | 2021-01-05 | 2021-12-12                       | 2021-01-09                   |   |
| 3 | В     | MORTGAGE       | 2021-02-25 | 2021-12-12                       | 2021-03-12                   |   |
| 4 | Α     | MORTGAGE       | 2021-01-01 | 2021-12-14                       | 2021-01-15                   |   |

|   | sub | grade | term      | verification_status | annual income | dti    | \ |
|---|-----|-------|-----------|---------------------|---------------|--------|---|
| 0 | ••• | C4    | 60 months | Source Verified     | _             | 0.0100 | • |
| 1 | ••• | E1    | 36 months | Source Verified     | 48000.0       | 0.0535 |   |
| 2 |     | C5    | 36 months | Not Verified        | 50000.0       | 0.2088 |   |
| 3 |     | B2    | 60 months | Source Verified     | 42000.0       | 0.0540 |   |
| 4 |     | A1    | 36 months | Verified            | 83000.0       | 0.0231 |   |

```
installment int_rate
                         loan_amount
                                      total_acc
                                                   total_payment
0
        59.83
                 0.1527
                                 2500
                                                4
                                                             1009
                                                4
       109.43
                                                             3939
1
                 0.1864
                                 3000
2
       421.65
                 0.1596
                                12000
                                               11
                                                             3522
3
                                                9
                                                             4911
        97.06
                 0.1065
                                 4500
4
       106.53
                 0.0603
                                 3500
                                               28
                                                             3835
```

[5 rows x 24 columns]

#### 1.3 Metadata of Data

```
[4]: print("No of Rows:", df.shape[0]) # for column: shape[1]
```

No of Rows: 38576

#### 1.4 Data type

[5]: df.dtypes

```
[5]: id
                                         int64
     address_state
                                        object
     application_type
                                        object
     emp_length
                                        object
     emp_title
                                        object
     grade
                                        object
    home_ownership
                                        object
     issue_date
                               datetime64[ns]
     last_credit_pull_date
                               datetime64[ns]
                               datetime64[ns]
     last_payment_date
     loan_status
                                        object
                               datetime64[ns]
    next_payment_date
    member_id
                                         int64
     purpose
                                        object
     sub_grade
                                        object
                                        object
     verification_status
                                        object
     annual_income
                                       float64
     dti
                                       float64
     installment
                                       float64
     int_rate
                                       float64
     loan_amount
                                         int64
     total_acc
                                         int64
     total_payment
                                         int64
     dtype: object
```

[6]: df.describe()

```
[6]:
                       id
                                               issue_date \
     count
            3.857600e+04
                                                    38576
            6.810371e+05
                           2021-07-16 02:31:35.562007040
     mean
            5.473400e+04
                                      2021-01-01 00:00:00
     min
                                      2021-04-11 00:00:00
     25%
            5.135170e+05
     50%
            6.627280e+05
                                      2021-07-11 00:00:00
     75%
            8.365060e+05
                                      2021-10-11 00:00:00
     max
            1.077501e+06
                                      2021-12-12 00:00:00
            2.113246e+05
                                                      NaN
     std
                     last_credit_pull_date
                                                          last_payment_date
     count
                                      38576
                                                                       38576
            2021-06-08 13:36:34.193280512
                                             2021-06-26 09:52:08.909166080
     mean
     min
                       2021-01-08 00:00:00
                                                        2021-01-08 00:00:00
     25%
                       2021-04-15 00:00:00
                                                        2021-03-16 00:00:00
     50%
                       2021-05-16 00:00:00
                                                        2021-06-14 00:00:00
     75%
                       2021-08-13 00:00:00
                                                        2021-09-15 00:00:00
                       2022-01-20 00:00:00
                                                        2021-12-15 00:00:00
     max
                                        NaN
     std
                                                                        NaN
                         next_payment_date
                                                member id
                                                            annual income
                                                             3.857600e+04
     count
                                      38576
                                             3.857600e+04
     mean
            2021-07-26 20:42:20.605557760
                                             8.476515e+05
                                                             6.964454e+04
     min
                       2021-02-08 00:00:00
                                             7.069900e+04
                                                             4.000000e+03
     25%
                       2021-04-16 00:00:00
                                             6.629788e+05
                                                             4.150000e+04
     50%
                       2021-07-14 00:00:00
                                             8.473565e+05
                                                             6.000000e+04
     75%
                       2021-10-15 00:00:00
                                                             8.320050e+04
                                             1.045652e+06
     max
                       2022-01-15 00:00:00
                                             1.314167e+06
                                                             6.000000e+06
                                             2.668105e+05
                                                             6.429368e+04
     std
                                        NaN
                      dti
                            installment
                                              int_rate
                                                          loan_amount
                                                                           total_acc
            38576.000000
                           38576.000000
                                          38576.000000
                                                         38576.000000
                                                                       38576.000000
     count
                0.133274
                             326.862965
                                              0.120488
                                                         11296.066855
                                                                           22.132544
     mean
                0.00000
                                              0.054200
                                                           500.000000
                                                                            2.000000
     min
                              15.690000
     25%
                0.082100
                             168.450000
                                              0.093200
                                                          5500.000000
                                                                           14.000000
     50%
                0.134200
                             283.045000
                                              0.118600
                                                         10000.000000
                                                                           20.000000
     75%
                0.185900
                             434.442500
                                              0.145900
                                                         15000.000000
                                                                           29.000000
                0.299900
                            1305.190000
                                              0.245900
                                                         35000.000000
                                                                           90.000000
     max
                0.066662
                             209.092000
                                                          7460.746022
     std
                                              0.037164
                                                                           11.392282
            total_payment
             38576.000000
     count
             12263.348533
     mean
     min
                34.000000
     25%
              5633.000000
     50%
             10042.000000
     75%
             16658.000000
```

```
max 58564.000000
std 9051.104777
```

#### 1.5 1. Total Loan Applications

```
[7]: total_loan_applications = df['id'].count()
print('Total Loan Applications:', total_loan_applications)
```

Total Loan Applications: 38576

#### 1.6 Month-To-Date Total Loan Applications

MTD Loan Applications for December 2021 :4314

#### 1.7 2. Total Funded Amount

```
[10]: total_funded_amount = df['loan_amount'].sum()
print('Total Funded Amount:', total_funded_amount)
```

Total Funded Amount 435757075

#### 1.7.1 Formatting

```
[14]: total_funded_amount = df['loan_amount'].sum()
   total_funded_amount_millions = total_funded_amount / 1000000
   print('Total Funded Amount: ${:.2f}M'.format(total_funded_amount_millions))
```

Total Funded Amount: \$435.76M

### 1.8 Month-To-Date Total Funded Amount

```
mtd_total_funded_amount = mtd_data['loan_amount'].sum()
mtd_total_funded_amount_millions = mtd_total_funded_amount / 1000000

print('MTD Total Funded Amount: ${:.2f}M'.

spromat(mtd_total_funded_amount_millions))
```

MTD Total Funded Amount: \$53.98M

#### 1.9 3. Total Amount Received

```
[19]: total_amount_received = df['total_payment'].sum()
    total_amount_received_millions = total_amount_received / 1000000
    print('Total Amount Received: ${:.2f}M'.format(total_amount_received_millions))
```

Total Amount Received: \$473.07M

#### 1.10 MTD Total Amount Received

MTD Total Amount Received: \$58.07M

#### 1.11 4. Average Interest Rate

```
[21]: avg_int_rate = df['int_rate'].mean()
print('Average Interest Rate: ', avg_int_rate)
```

Average Interest Rate: 0.12048831397760265

#### 1.11.1 Formatting

```
[23]: avg_int_rate = df['int_rate'].mean() * 100
print('Average Interest Rate: {:.2f}%'.format(avg_int_rate))
```

Average Interest Rate: 12.05%

#### 1.12 5. Average Debt-To-Income Ratio

```
[24]: avg_dti_rate = df['dti'].mean()* 100
print('Average DTI Rate: {:.2f}%'.format(avg_dti_rate))
```

Average DTI Rate: 13.33%

#### 1.13 6. Good Loan Metrics

Good Loan Applications: 33243 Good Loan Funded Amount: \$370.22M Good Loan Received: \$435.79M Good Loan Percentage: 86.18%

#### 1.14 7. Bad Loan Metrics

Bad Loan Applications: 5333
Bad Loan Funded Amount: \$65.53M
Bad Loan Yet to Receive: \$37.28M
Bad Loan Percentage: 13.82%

#### 2 Charts

#### 2.1 1. Monthly Trends

#### 2.1.1 a. Monthly Trends by Issue Date for Total Funded Amount

```
[21]: monthly_funded = (
          df.sort_values('issue_date')
          .assign(month_name=lambda x:x['issue_date'].dt.strftime('%b %Y'))
          .groupby('month_name', sort=False)['loan_amount']
          .sum()
          .div(1000000)
          .reset_index(name='loan_amount_millions')
      )
      plt.figure(figsize=(10,5))
      plt.fill between(monthly funded['month name'],
       monthly_funded['loan_amount_millions'], color = 'skyblue', alpha=0.5)
      plt.plot(monthly_funded['month name'], monthly_funded['loan_amount_millions'],

color = 'blue', linewidth=2)

      for i, row in monthly_funded.iterrows():
          plt.text(i,row['loan_amount_millions']+0.1, f"{row['loan_amount_millions']:.
       \hookrightarrow 2f\}M"
                  ha='center', va='bottom', fontsize=9, rotation=0, color='black')
      plt.title('Total Funded Amount by Month', fontsize=14)
      plt.xlabel('Month')
      plt.ylabel('Funded Amount ($ Millions)')
      plt.xticks(ticks=range(len(monthly_funded)),__
       ⇔labels=monthly_funded['month_name'], rotation=45)
      plt.grid(True, linestyle='--', alpha=0.6)
      plt.tight_layout()
```





### 2.1.2 b. Monthly Trends by Issue Date for Total Amount Received

```
[22]: monthly_received = (
          df.sort_values('issue_date')
          .assign(month_name=lambda x:x['issue_date'].dt.strftime('%b %Y'))
          .groupby('month_name', sort=False)['total_payment']
          .sum()
          .div(1000000)
          .reset_index(name='amount_received_millions')
      )
      plt.figure(figsize=(10,5))
      plt.fill_between(monthly_received['month_name'],_
       →monthly_received['amount_received_millions'], color = 'lightgreen', alpha=0.
       ⇒5)
      plt.plot(monthly_received['month_name'],__
       amonthly_received['amount_received_millions'], color = 'green', linewidth=2)
      for i, row in monthly_received.iterrows():
          plt.text(i,row['amount_received_millions']+0.1,__

¬f"{row['amount_received_millions']:.2f}M",
                  ha='center', va='bottom', fontsize=9, rotation=0, color='black')
      plt.title('Total Amount Received by Month', fontsize=14)
      plt.xlabel('Month')
      plt.ylabel('Received Amount ($ Millions)')
```



#### 2.1.3 c. Monthly Trends by Issue Date for Total Loan Applications

```
[23]: monthly_applications = (
          df.sort values('issue date')
          .assign(month_name=lambda x:x['issue_date'].dt.strftime('%b %Y'))
          .groupby('month_name', sort=False)['id']
          .reset_index(name='loan_applications_count')
      )
      plt.figure(figsize=(10,5))
      plt.fill_between(monthly_applications['month_name'],_
       omonthly_applications['loan_applications_count'], color = 'orange', alpha=0.5)
      plt.plot(monthly applications['month name'],
       monthly_applications['loan_applications_count'], color = 'black', ا
       →linewidth=2)
      for i, row in monthly_applications.iterrows():
          plt.text(i,row['loan_applications_count']+0.5,_

¬f"{row['loan applications count']}K",
                  ha='center', va='bottom', fontsize=9, rotation=0, color='black')
```



#### 2.2 2. Regional Analysis

#### 2.2.1 a. Regional Analysis by State for Total Funded Amount

```
plt.ylabel('State')
plt.tight_layout()
plt.show()
```



#### 2.2.2 b. Regional Analysis by State for Total Amount Received

```
plt.title('Total Amount Received by State (in $ Thousands)')
plt.xlabel('Amount Received')
plt.ylabel('State')
plt.tight_layout()
plt.show()
```



#### 2.2.3 c. Regional Analysis by State for Total Loan Applications



#### 2.3 3. Loan Term Analysis

### 2.3.1 c. Loan Term Analysis by Total Funded Amount

```
[95]: term_funding_millions = df.groupby('term')['loan_amount'].sum()/1000000

colors = ['#FF6347', '#4CAF50', '#FFEB3B', '#2196F3']

plt.figure(figsize=(5,5))
plt.pie(
```

```
term_funding_millions,
  labels=term_funding_millions.index,
  autopct=lambda p:f'{p:.1f}%\n${p*sum(term_funding_millions)/100:.1f}M',
    startangle=90, wedgeprops={'width':0.4},
    colors=colors
)
plt.gca().add_artist(plt.Circle((0, 0), 0.80, color='white'))
plt.title('Total Funded Amount by Term (in $ Millions)')
plt.show()
```

# Total Funded Amount by Term (in \$ Millions)



#### 2.3.2 b. Loan Term Analysis by Total Amount Received

```
[93]: term_funding_millions = df.groupby('term')['total_payment'].sum()/1000000

colors = plt.cm.cividis(pn.linspace(0,1,len(loan_applications_thousands)))
plt.figure(figsize=(5,5))

plt.figure(figsize=(5,5))
plt.pie(
    term_funding_millions,
    labels=term_funding_millions.index,
```

```
autopct=lambda p:f'{p:.1f}%\n${p*sum(term_funding_millions)/100:.1f}M',
    startangle=90, wedgeprops={'width':0.4},
    colors=colors
)
plt.gca().add_artist(plt.Circle((0, 0), 0.80, color='white'))
plt.title('Total Amount Received by Term (in $ Millions)')
plt.show()
```

<Figure size 500x500 with 0 Axes>

#### Total Amount Received by Term (in \$ Millions)



# 2.3.3 c. Loan Term Analysis by Total Loan Applications

```
[91]: loan_applications_thousands = df.groupby('term')['id'].count()

colors = plt.cm.viridis(pn.linspace(0,1,len(loan_applications_thousands)))
plt.figure(figsize=(5,5))
plt.pie(
    loan_applications_thousands,
    labels=loan_applications_thousands.index,
    autopct=lambda p:f'{p:.1f}%\n{p*sum(loan_applications_thousands)/100:.0f}K',
    startangle=90, wedgeprops={'width':0.4},
```

```
colors=colors
)
plt.gca().add_artist(plt.Circle((0, 0), 0.80, color='white'))
plt.title('Total Loan Applications by Term (in Thousands)')
plt.show()
```

Total Loan Applications by Term (in Thousands)



#### 2.4 4. Employment Length Analysis

#### 2.4.1 a. Employment Length Analysis by Total Funded Amount

```
plt.ylabel('Employment Length')
plt.title('Total Funded Amount by Employment Length')
plt.grid(axis='x', linestyle='--', alpha=0.5)
plt.tight_layout()
plt.show()
```



#### 2.4.2 b. Employment Length Analysis by Total Amount Received



#### 2.4.3 c. Employment Length Analysis by Total Loan Applications



#### 2.5 5. Loan Purpose Analysis

#### 2.5.1 a. Loan Purpose by Total Funded Amount



#### 2.5.2 b. Loan Purpose by Total Amount Received



#### 2.5.3 c. Loan Purpose by Total Loan Applications



#### 2.6 6. Home-ownership Analysis

#### 2.6.1 a. Home-ownership by Total Funded Amount

```
[81]: home_funding = df.groupby('home_ownership')['loan_amount'].sum().reset_index()
home_funding['loan_amount_millions'] = home_funding['loan_amount']/1000000

fig = px.treemap(
    home_funding,
    path=['home_ownership'],
    values='loan_amount_millions',
    color='loan_amount_millions',
    color_continuous_scale='Blues',
    title='Total Funded Amount by Home Ownership ($ Millions)',
    hover_data={'loan_amount_millions': ':,.2f'}
)

fig.update_traces(
    hovertemplate='%{label}: $%{value:.2f}M<extra></extra>'
)

fig.show()
```

# Total Funded Amount by Home Ownership (\$ Millions)



#### 2.6.2 b. Home Ownership by Total Amount Received

```
[82]: home_funding = df.groupby('home_ownership')['total_payment'].sum().reset_index()
home_funding['received_amount_millions'] = home_funding['total_payment']/1000000

fig = px.treemap(
    home_funding,
    path=['home_ownership'],
    values='received_amount_millions',
    color='received_amount_millions',
    color_continuous_scale='Viridis',
    title='Total Amount Received by Home Ownership ($ Millions)',
    hover_data={'received_amount_millions': ':,.2f'}
)
fig.update_traces(
    hovertemplate='%{label}: $%{value:.2f}M<extra></extra>'
)
```

# Total Amount Received by Home Ownership (\$ Millions)



#### 2.6.3 c. Home Ownership by Total Loan Applications

```
[88]: home_funding_app = df.groupby('home_ownership')['id'].count().reset_index()
home_funding_app['total_applications_thousands'] = home_funding_app['id']/1000

fig = px.treemap(
    home_funding_app,
    path=['home_ownership'],
    values='total_applications_thousands',
    color='total_applications_thousands',
    color_continuous_scale='Cividis',
    title='Total Loan Applications by Home Ownership (Thousands)',
    hover_data={'total_applications_thousands': ':,.2f'}
)
fig.update_traces(
    hovertemplate='%{label}: %{value:.0f}K<extra></extra>'
)
```

# Total Loan Applications by Home Ownership (Thousands



[]: