

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE170405101

FCC REPORT

Applicant: SHENZHEN LOFTYNN INTELLIGENCE TECHNOLOGY CO.,

LTD.

Address of Applicant:

Room 301, Xindongxing Commercial Centre, Liuxian 2nd

Road, Baoan, Shenzhen, GD 518101

Equipment Under Test (EUT)

Product Name: Baby Monitor

Model No.: E660R

Trade mark: Axvue, Lanman

FCC ID: 2AJD6-660R

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 20 Apr., 2017

Date of Test: 20 Apr., to 05 May, 2017

Date of report issued: 08 May, 2017

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Report No: CCISE170405101

2 Version

Version No.	Date	Description
00	08 May, 2017	Original

Prepared by:

Mike DU
Date: 08 May, 2017

Test Engineer

Reviewed by: Date: 08 May, 2017

Project Engineer

3 Contents

			Page
1	С	OVER PAGE	1
2	٧	/ERSION	2
3	С	CONTENTS	3
4	T	EST SUMMARY	4
5	G	GENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST MODE	6
	5.4	LABORATORY FACILITY	6
	5.5	LABORATORY LOCATION	6
	5.6	TEST INSTRUMENTS LIST	7
6	T	EST RESULTS AND MEASUREMENT DATA	8
	6.1	Antenna requirement	8
	6.2	CONDUCTED EMISSIONS	9
	6.3	CONDUCTED OUTPUT POWER	12
	6.4	20dB Occupy Bandwidth	14
	6.5	CARRIER FREQUENCIES SEPARATION	
	6.6	HOPPING CHANNEL NUMBER	19
	6.7	DWELL TIME	
	6.8	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	6.9	BAND EDGE	_
		.9.1 Conducted Emission Method	
	-	.9.2 Radiated Emission Method	
	6.10	0.0000	
		.10.1 Conducted Emission Method	
_	-		
7	T	EST SETUP PHOTO	38
8	E	UT CONSTRUCTIONAL DETAILS	40

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	SHENZHEN LOFTYNN INTELLIGENCE TECHNOLOGY CO., LTD.
Address of Applicant:	Room 301, Xindongxing Commercial Centre, Liuxian 2nd Road, Baoan, Shenzhen, GD 518101
Manufacturer/Factory:	SHENZHEN LOFTYNN INTELLIGENCE TECHNOLOGY CO., LTD.
Address of Manufacturer/ Factory:	Room 301, Xindongxing Commercial Centre, Liuxian 2nd Road, Baoan, Shenzhen, GD 518101

5.2 General Description of E.U.T.

Product Name:	Baby Monitor			
Model No.:	E660R			
Operation Frequency:	2410MHz~2468MHz			
Transfer rate:	1 Mbits/s			
Number of channel:	15			
Modulation type:	GFSK			
Modulation technology:	FHSS			
Antenna Type:	Monopole Antenna			
Antenna gain:	0 dBi			
Power supply:	Rechargeable Li-ion Battery DC3.6V-800mAh			
AC adapter:	Model: P5 0750500			
	Input: AC100-240V 50/60Hz 250mA			
	Output: DC 7.5V, 500mA			

Channel List					
Channel	Frequency	Channel	Frequency		
0	2410.875MHz	8	2444.625MHz		
1	2414.250MHz	9	2448.000MHz		
2	2417.625MHz	10	2451.375MHz		
3	2424.375Hz	11	2458.125MHz		
4	2427.750MHz	12	2461.500MHz		
5	2431.125MHz	13	2464.875MHz		
6	2434.500MHz	14	2468.250MHz		
7 2441.250MHz					
Remark: Channel 0, 7 &14 selected for test.					

Report No: CCISE170405101

5.3 Test mode

Transmitting mode: Keep the EUT in transmitting mode with modulation

The sample was placed 0.8m above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working with a fresh battery, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

● IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Report No: CCISE170405101

5.6 Test Instruments list

Radia	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017	
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	02-25-2017	02-24-2018	
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	02-25-2017	02-24-2018	
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	02-25-2017	02-24-2018	
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	02-25-2017	02-24-2018	
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	02-25-2017	02-24-2018	
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	02-25-2017	02-24-2018	
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	02-25-2017	02-24-2018	
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	02-25-2017	02-24-2018	
10	Loop antenna	Laplace instrument	RF300	EMC0701	02-25-2017	02-24-2018	
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
12	Coaxial Cable	N/A	N/A	CCIS0018	02-25-2017	02-24-2018	
13	Coaxial Cable	N/A	N/A	CCIS0020	02-25-2017	02-24-2018	

Cond	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	02-25-2017	02-24-2018	
3	LISN	CHASE	MN2050D	CCIS0074	02-25-2017	02-24-2018	
4	Coaxial Cable	CCIS	N/A	CCIS0086	02-25-2017	02-24-2018	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The EUT antenna is an integral antenna which permanently attached, and the best case gain of the antenna is 0 dBi.

6.2 Conducted Emissions

Test Requirement:	FCC Part 15 C Section 1	5.207				
Test Method:	ANSI C63.4:2014					
Test Frequency Range:	150 kHz to 30 MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9 kHz, VBW=30 k	Hz Sween time-auto				
•	Frequency range	Limit (dRu\/\			
Limit:	(MHz)	Average				
	0.15-0.5	Quasi-peak 66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the log	arithm of the frequency.				
Test setup:	Reference	e Plane				
	AUX Equipment Test table/Insulation plane Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Ner Test table height=0.8m	EMI Receiver	ower			
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 					
Test Instruments:	Refer to section 5.7 for d	letails				
Test mode:	Bluetooth (Continuous tr	ansmitting) mode				
Test results:	Pass					

Measurement Data:

Line:

Trace: 5

Site

: CCIS Shielding Room : FCC PART15 B QP LISN LINE : Baby Monitor Condition

EUT Model : E660R Test Mode : RX mode Power Rating : AC 120/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Mike

Remark

Kemark	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>d</u> B	₫B	dBu₹	—dBu∜	<u>dB</u>	
1	0.402	28.86	0.24	10.72	39.82	57.81	-17.99	QP
2	0.426	34.43	0.24	10.73	45.40	57.33	-11.93	QP
3	0.426	26.77	0.24	10.73	37.74	47.33	-9.59	Average
1 2 3 4 5 6 7 8 9	0.759	24.70	0.31	10.80	35.81	56.00	-20.19	QP
5	0.779	15.84	0.30	10.80	26.94	46.00	-19.06	Average
6	0.871	14.81	0.28	10.83	25.92	46.00	-20.08	Average
7	1.016	23.14	0.26	10.87	34.27	56.00	-21.73	QP
8	1.249	14.07	0.28	10.90	25.25	46.00	-20.75	Average
9	2.581	13.02	0.33	10.93	24.28	46.00	-21.72	Average
10	2.884	24.12	0.33	10.92	35.37	56.00	-20.63	QP
11	16.661	20.53	0.28	10.91	31.72	50.00	-18.28	Average
12	17.109	31.58	0.29	10.91	42.78	60.00	-17.22	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Neutral:

Trace: 7 Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : Baby Monitor Condition

EUT : E660R Model Test Mode : RX mode Power Rating : AC 120/60Hz Test Mode

Environment : Temp: 23 °C Huni: 56% Atmos: 101KPa

Test Engineer: Mike

Remark

Freq	Read Level	LISN Factor			Limit Line	Over Limit	Remark
MHz	dBu∜	<u>dB</u>	dB	dBu√	dBu∇	<u>ab</u>	
0.402	32.20	0.23	10.72	43.15	57.81	-14.66	QP
0.402	22.47	0.23	10.72	33.42	47.81	-14.39	Average
0.426	38.83	0.23	10.73	49.79	57.33	-7.54	QP
0.426	26.36	0.23	10.73	37.32	47.33	-10.01	Average
0.779	28.12	0.31	10.80	39.23	56.00	-16.77	QP
0.871	16.31	0.29	10.83	27.43	46.00	-18.57	Average
1.160	27.39	0.26	10.89	38.54	56.00	-17.46	QP
2.608	14.31	0.29	10.93	25.53	46.00	-20.47	Average
3.258	27.33	0.32	10.91	38.56	56.00	-17.44	QP
3.346	15.04	0.32	10.91	26.27	46.00	-19.73	Average
16.750	21.44	0.27	10.91		50.00	-17.38	Average
17.475	33.18	0.27	10.91	44.36	60.00	-15.64	QP
	Freq 0.402 0.402 0.426 0.426 0.779 0.871 1.160 2.608 3.258 3.346 16.750	Read Level MHz dBuV 0.402 32.20 0.402 22.47 0.426 38.83 0.426 26.36 0.779 28.12 0.871 16.31 1.160 27.39 2.608 14.31 3.258 27.33 3.346 15.04 16.750 21.44	Read LISN Level Factor MHz dBuV dB	Read LISN Cable Freq Level Factor Loss MHz dBuV dB dB	Read LISN Cable Level Factor Loss Level	Read LISN Cable Limit Freq Level Factor Loss Level Limit MHz dBuV dBuV dBuV dBuV dBuV dBuV 0.402 32.20 0.23 10.72 43.15 57.81 0.402 22.47 0.23 10.72 33.42 47.81 0.426 38.83 0.23 10.73 49.79 57.33 0.426 26.36 0.23 10.73 37.32 47.33 0.779 28.12 0.31 10.80 39.23 56.00 0.871 16.31 0.29 10.83 27.43 46.00 1.160 27.39 0.26 10.89 38.54 56.00 2.608 14.31 0.29 10.93 25.53 46.00 3.258 27.33 0.32 10.91 38.56 56.00 3.346 15.04 0.32 10.91 26.27 46.00 <td>Read LISN Cable Loss Level Limit Over Limit Freq Level Factor Loss Level Lime Limit MHz dBuV dB dB dBuV dBuV dB 0.402 32.20 0.23 10.72 43.15 57.81 -14.66 0.402 22.47 0.23 10.72 33.42 47.81 -14.39 0.426 38.83 0.23 10.73 49.79 57.33 -7.54 0.426 26.36 0.23 10.73 37.32 47.33 -10.01 0.779 28.12 0.31 10.80 39.23 56.00 -16.71 0.871 16.31 0.29 10.83 27.43 46.00 -18.57 1.160 27.39 0.26 10.89 38.54 56.00 -17.46 2.608 14.31 0.29 10.93 25.53 46.00 -20.47 3.258 27.33 0.32 10.91 38.56 56.00 -17.44 3.346 15.04 0.32 10.91 26.27 46.00</td>	Read LISN Cable Loss Level Limit Over Limit Freq Level Factor Loss Level Lime Limit MHz dBuV dB dB dBuV dBuV dB 0.402 32.20 0.23 10.72 43.15 57.81 -14.66 0.402 22.47 0.23 10.72 33.42 47.81 -14.39 0.426 38.83 0.23 10.73 49.79 57.33 -7.54 0.426 26.36 0.23 10.73 37.32 47.33 -10.01 0.779 28.12 0.31 10.80 39.23 56.00 -16.71 0.871 16.31 0.29 10.83 27.43 46.00 -18.57 1.160 27.39 0.26 10.89 38.54 56.00 -17.46 2.608 14.31 0.29 10.93 25.53 46.00 -20.47 3.258 27.33 0.32 10.91 38.56 56.00 -17.44 3.346 15.04 0.32 10.91 26.27 46.00

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(1)		
Test Method:	ANSI C63.10:2013 and DA00-705		
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)		
Limit:	125 mW(21 dBm)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Non-hopping mode		
Test results:	Pass		

Measurement Data

Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
Lowest	16.18	21.00	Pass
Middle	16.83	21.00	Pass
Highest	17.07	21.00	Pass

Test plot as follows:

Date: 2.MAY.2017 23:44:04

Lowest channel

Date: 2.MAY.2017 23:41:32

Middle channel

Date: 2.MAY.2017 23:45:54

Highest channel

6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013 and DA00-705
Receiver setup:	RBW=30 kHz, VBW=100 kHz, detector=Peak
Limit:	NA
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Non-hopping mode
Test results:	Pass

Measurement Data:

Test channel	20dB Occupy Bandwidth (kHz)	
Lowest	3564	
Middle	3600	
Highest	3600	

Test plot as follows:

Date: 2.MAY.2017 23:56:27

Lowest channel

Date: 2.MAY.2017 23:51:05

Middle channel

Date: 2.MAY.2017 23:53:39

Highest channel

6.5 Carrier Frequencies Separation

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013 and DA00-705
Receiver setup:	RBW=100 kHz, VBW=300 kHz, detector=Peak
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Hopping mode
Test results:	Pass

Measurement Data:

Test Frequencies(MHz)	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
2410	3384	2400.00	Pass
2417	6740	2400.00	Pass
2434	6780	2400.00	Pass
2441	3384	2400.00	Pass
2451	6760	2400.00	Pass
2468	3372	2400.00	Pass

Note: According to section 6.3

Mode	20dB bandwidth (kHz)	Limit (kHz)	
Wode	(worse case)	(Carrier Frequencies Separation)	
GFSK	3600	2400.00	

Test plot as follows:

Date: 2.MAY.2017 22:57:39

2410MHz

Date: 2.MAY.2017 23:10:57

2417MHz

Date: 2.MAY.2017 23:16:53

2434MHz

Date: 2.MAY.2017 23:01:35

2441MHz

Date: 2.MAY.2017 23:21:03

2451MHz

Date: 2.MAY.2017 23:05:40

2468MHz

6.6 Hopping Channel Number

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013 and DA00-705
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak
Limit:	15 channels
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Hopping mode
Test results:	Pass

Measurement Data:

Hopping channel numbers	Limit	Result
15	≥15	Pass

Test plot as follows:

Date: 26.APR.2017 18:45:24

6.7 Dwell Time

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013 and KDB DA00-705
Receiver setup:	RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak
Limit:	0.4 Second
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Hopping mode
Test results:	Pass

Measurement Data (Worse case)

Dwell time per hop (Second)	Hopping numbers	Dwell time in one period (Second)	Limit (Second)	Result
0.000122	58	0.007076	0.4	Pass

Remark:

The test period: T=0.4 Second/Channel x15 Channel = 6 s

Test plot as follows:

Date: 2.MAY.2017 22:51:31 Date: 3.MAY.2017 18:11:11

6.8 Pseudorandom Frequency Hopping Sequence

Test Requirement:

FCC Part 15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: $2^9 1 = 511$ bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.9 Band Edge

6.9.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)	
Test Method:	ANSI C63.10:2013 and DA00-705	
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Non-hopping mode and hopping mode	
Test results:	Pass	

Test plot as follows:

No-hopping mode

Hopping mode

No-hopping mode

Hopping mode

6.9.2 Radiated Emission Method

Test Requirement: FCC Part 15 C Section 15.209 and 15.205 Test Method: ANSI C63.10: 2013 Test Frequency Pages: 2.30Hz to 2.50Hz				
Toot Frequency Pange: 2.20Hz to 2.50Hz				
Test Frequency Range: 2.3GHz to 2.5GHz	2.3GHz to 2.5GHz			
Test site: Measurement Distance: 3m	Measurement Distance: 3m			
Receiver setup: Frequency Detector RBW VBW	Remark			
Peak 1MHz 3MHz	Peak Value			
Above 1GHz Peak 1MHz 10Hz	Average Value			
Limit: Frequency Limit (dBuV/m @3m)	Remark			
Above 1GHz 54.00 74.00	Average Value Peak Value			
Test setup: Horn Antenna Tower Ground Reference Plane Test Receiver Test Receiver Test Receiver Test Receiver	AE EUT Ground Reference Plane			
at a 3 meter camber. The table was rotated 360 degrees to position of the highest radiation. 2. The EUT was set 3 meters away from the interference-rec was mounted on the top of a variable-height antenna towers. The antenna height is varied from one meter to four meters determine the maximum value of the field strength. Both his polarizations of the antenna are set to make the measurer of the antenna are set to make the measurer of the antenna was tuned to heights from 1 meters to 4 meters was turned from 0 degrees to 360 degrees to find the max of the test-receiver system was set to Peak Detect Function Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB to specified, then testing could be stopped and the peak value be reported. Otherwise the emissions that did not have 10	 The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified 			
Test Instruments: Refer to section 5.7 for details				
Test mode: Non-hopping mode	Non-hopping mode			
Test results: Passed	Passed			

Remark:

1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Baby Monitor : E660R : E660R

Test mode : L Mode

Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: Mike

REMARK : EUT

	Freq		Antenna Factor						
	MHz	dBu₹	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	dBuV/m	dBu√/m	<u>dB</u>	
1 2	2390.000 2390.000								

Vertical:

Site Condition : 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT : Baby Monitor

Model : E660R Test mode : L Mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Mike REMARK :

\$200 DOM
ver mit Remark
). 25 Peak
6.96 Average
0.47 Peak
.47 Average
3.22 Peak
5.93 Average
6.15 Peak
3.11 Average
9

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Baby Monitor : E660R EUT

: E660R
Test mode : H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Mike
REMARK :

	Freq		Antenna Factor						Remark
	MHz	dBu∇	$-\overline{dB}/\overline{m}$	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500		150 00 FEET (150 FEET)						

Vertical:

Site Condition : 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

: Baby Monitor : E660R EUT Model

Test mode : H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Mike REMARK :

	Freq		Antenna Factor					
	MHz	dBu∇	<u>dB</u> /m	 <u>ab</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500							

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013 and DA00-705						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Non-hopping mode						
Test results:	Pass						

Test plot as follows:

Date: 1.MAY.2017 23:55:31

30MHz~25GHz

Date: 2.MAY.2017 00:00:32

30MHz~25GHz

Date: 25.APR.2017 17:27:50

30MHz~25GHz

6.10.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Se	ection 15.209								
Test Method:	ANSI C63.10: 20									
Test Frequency Range:	9 kHz to 25 GHz	10								
Test site:	Measurement Dis	stance: 3m								
Receiver setup:	Frequency	Detector	RBW	VBW	Remark					
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak Value					
	Above 4CH-	Peak	1MHz	3MHz	Peak Value					
	Above 1GHz	Peak	1MHz	10Hz	Average Value					
Limit:	Freque	ncy	Limit (dBuV/	m @3m)	Remark					
	30MHz-8	8MHz	40.0)	Quasi-peak Value					
	88MHz-21	I6MHz	43.5	5	Quasi-peak Value					
	216MHz-960MHz 46.0 Quasi-peak Value									
	960MHz-1GHz 54.0 Quasi-peak Value									
	Ahove 1	Above 1GHz 54.0 Average Value								
	7,5000	74.0 Peak Value								
	Tum Table Ground Plane Above 1GHz	EUT table)	Horn Antenna eference Plane Pre- Amptier Co	Antenna Sear Anter RF Test Receiver						

Test Procedure:	The EUT was placed on the top of a rotating table 0.8m(below 1GHz) /1.5m(above 1GHz) above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
	2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.7 for details
Test mode:	Non-hopping mode
Test results:	Pass

Remark:

- 1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.
- 2. 9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.

Measurement data:

Below 1GHz

Vertical:

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL Condition

: Baby Monitor EUT Model : E660R Test mode : RX Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Mike

mumur										
	Freq		Antenna Factor							
_								-Cartes and		
	MHz	dBu∀	dB/m	dB	dB	dBuV/m	dBuV/m	dB		
1	59.025	49.55	10.70	1.38	29.78	31.85	40.00	-8.15	QP	
1 2 3 4 5	132.221	43.98	12.16	2.32	29.32	29.14	43.50	-14.36	QP	
3	154.279	41.97	10.30	2.55	29.18	25.64	43.50	-17.86	QP	
4	214.514	43.30	11.02	2.85	28.74	28.43	43.50	-15.07	QP	
5	291.036	44.61	12.30	2.92	28.47	31.36	46.00	-14.64	QP	
6	696.857	33.26	19.18	4.16	28.68	27.92	46.00	-18.08	QP	

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL Condition

: Baby Monitor : E660R EUT Model Test mode : RX Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Mike REMARK

x_{10}									
	Freq		Antenna Factor				Limit Line		Remark
_	MHz	dBu∜	<u>dB</u> /m		<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	131.297	50.22	12.19	2.30	29.32	35.39	43.50	-8.11	QP
2	154.279	52.84	10.30	2.55	29.18	36.51	43.50	-6.99	QP
3	211.527	48.63	10.78	2.86	28.76	33.51	43.50	-9.99	QP
4	254.728	50.00	11.81	2.82	28.53	36.10	46.00	-9.90	QP
5	302.481	50.01	12.78	2.95	28.45	37.29	46.00	-8.71	QP
6	352.943	39.61	14.22	3.10	28.57	28.36	46.00	-17.64	QP

Above 1GHz:

Test channel:		Lowest			Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4821.75	51.39	35.99	6.80	41.81	52.37	74.00	-21.63	Vertical	
4821.75	48.66	35.99	6.80	41.81	49.64	74.00	-24.36	Horizontal	

Test cha	nnel:		Lowest			vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4821.75	41.31	35.99	6.80	41.81	42.29	54.00	-11.71	Vertical
4821.75	38.56	35.99	6.80	41.81	39.54	54.00	-14.46	Horizontal

Test channel:		Middle			Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.50	48.58	36.38	6.86	41.84	49.98	74.00	-24.02	Vertical
4882.50	48.27	36.38	6.86	41.84	49.67	74.00	-24.33	Horizontal

Test channel:		Middle			Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.50	38.62	36.38	6.86	41.84	40.02	54.00	-13.98	Vertical
4882.50	38.72	36.38	6.86	41.84	40.12	54.00	-13.88	Horizontal

Test channel:		Highest			Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4936.50	51.84	36.71	6.91	41.87	53.59	74.00	-20.41	Vertical
4936.50	53.47	36.71	6.91	41.87	55.22	74.00	-18.78	Horizontal

Test channel:		Highest			Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4936.50	41.02	36.71	6.91	41.87	42.77	54.00	-11.23	Vertical
4936.50	42.15	36.71	6.91	41.87	43.90	54.00	-10.10	Horizontal

7 Test Setup Photo

