

Università degli studi Milano-Bicocca Dipartimento di Fisica - Laboratorio II

Esperienza Ottica - Interferometro

F. Ballo, S. Franceschina, S. Dolci - Gruppo T1 39 June 23, 2024

Abstract

Nella seguente relazione vengono presentati i risultati ottenuti dalla sesta esperienza del corso di Laboratorio II riguardante l'analisi di fenomeni ottici. L'obiettivo di questa esperienza è quello di riprodurre due esperimenti di interferometria: Fabri-Perot e Michelson. Per ciascuno di questi setup riprodotti in laboratorio lo scopo è quello di verificare certe relazioni, che occorrono nel momento in cui raggi luminosi interferiscono tra loro, dalle quali è possibile ricavare informazioni utili come la lunghezza d'onda della sorgente.

Contents

1 Configurazione setup esperienza		
2	2 Fabry-Perot	2
	2.1 Verifica della legge di interferenza	. 3
	2.2 Analisi Dati legge di interferenza	
	2.3 Calibrazione micrometro - Frange	
	2.4 Analisi Dati calibrazione micrometro	
	2.5 Conclusioni Fabry-Perot	
3	3 Interferometro Michelson	6
	3.1 Verifica calibrazione micrometro	. 6
	3.2 Misura indice rifrazione aria	
	3.3 Misura indice rifrazione vetro	
	3.4 Misura lunghezza d'onda con righello reticolo	
4	1 Considerazioni sugli errori	8
-	4.1 Commenti finali	
5	5 Tabelle	9

1 Configurazione setup esperienza

Per le misure di questa esperienza abbiamo utilizzato:

- Un interferometro di precisione PASCO scientific Modello OS-9255A/OS-9258A, [link]
- Sorgente: laser monocromatico He-Ne con lunghezza d'onda $\lambda = 632.8\,\mathrm{nm}$.
- Lente divergente: lente da 18mm.
- Specchi compresi nella dotazione PASCO

2 Fabry-Perot

La prima parte dell'esperienza consiste nella verifica della legge che descrive i massimi di interferenza, visibili quando due sorgenti si sommano in fase. Per farlo abbiamo montanto l'interferometro in configurazione Fabry-Perot:

Figure 1: Configurazione Fabry-Perot.

La luce del fascio laser incide contro una lente divergente e entra nella cavità di Fabry-Perot, ovvero due specchi semiriflettenti distanziati d. Le riflessioni successive tra i due specchi formano la figura di interferenza sullo schermo, posto a circa un metro di distanza. È interessante notare come, per ricavare le relazioni che verranno utilizzate per descrivere il fenomeno, si introduca l'ipotesi che i raggi luminosi siano paralleli tra di loro nell'ingresso della cavità, nonostante la presenza di una lente divergente. Abbiamo motivato questa ipotesi osservando che la lente divergente è posta molto vicina alla cavità, e quindi la divergenza dei raggi luminosi è trascurabile. Non si può dire lo stesso per quanto riguarda i raggi che incidono sullo schermo, essi infatti sono considerati divergenti perchè la distanza tra schermo e specchio è significativa.

Figure 2: Configurazione Fabry-Perot.

Un'altra osservazione importante riguarda gli angoli delle frange di interferenza. Per l'angolo θ , quello riportato in figura 2,

abbiamo posto il vertice nel fuoco della lente divergente (18mm avanti) e misurato la distanza tra tale fuoco e lo schermo. In questo modo, misurando in seguito la distanza tra il centro della figura di interferenza e la frangia, è possibile calcolare l'angolo θ come l'arcotangente del rapporto tra le due distanze. In ogni caso, tali considerazioni sono state rilevanti solo per questa prima parte dell'esperienza, in cui era richiesto di verificare la legge 1 confrontando i valori di angoli attesi con quelli misurati. Per tutte le altre esperienze abbiamo potuto considerare $\theta \approx 0$ e quindi $\cos(\theta) \approx 1$ poichè lo schermo si trova a una grande distanza dalla sorgente puntiforme.

2.1 Verifica della legge di interferenza

In questa prima parte dell'esperienza abbiamo cercato di verificare la seguente legge di interferenza, che descrive quando i due raggi luminosi interferiscono in fase:

$$\delta_r \frac{\lambda}{2\pi} + 2d\cos(\theta) = N\lambda \tag{1}$$

d è la distanza tra i due specchi, δ_r rappresenta lo sfasamento , θ è l'angolo di incidenza della luce, N è l'ordine di interferenza e λ è la lunghezza d'onda del laser sorgente. Per verificarla abbiamo deciso di invertire la relazione in modo da evidenzare la dipendenza di $\cos(\theta)$ dalle altre variabili, ricavando la relazione 2:

$$\cos(\theta) = \frac{N\lambda}{2d} - \frac{\delta_r \lambda}{4d\pi} \tag{2}$$

Dopo aver verificato le opportune calibrazioni del laser, delle lenti e dello specchio, abbiamo misurato il diametro dei cerchi di interferenza con un calibro e calcolato così il coseno dell'angolo θ .

2.2 Analisi Dati legge di interferenza

Di seguito riportiamo i dati raccolti in laboratorio; la distanza dello schermo dalla sorgente è pari a $D=1.37\pm0.01m$, assumendo come punto sorgente il fuoco della lente (18mm). Successivamente per la verifica del modello abbiamo eseguito un'interpolazione con la legge 2, mantenendo come parametri liberi δ_r e d.

Abbiamo ripetuto tale misura per quattro volte, variando d, al fine di poter verificare in più

configurazioni la legge 1. Riportiamo i grafici dei fit ottenuti per ciascuna delle misurazioni in figura 3:

Figure 3: Interpolazioni della legge 2.

Nella tabella 1 riportiamo i valori ottenuti per i parametri δ_r e d con i relativi errori, insiema ai valori del $\tilde{\chi}^2$ e p-value trovati dalle interpolazioni.

Interpolazione 1			Interpolazione 2		
Parametro	Valore	Errore	Parametro	Valore	Errore
d	0.00252	4.82e-07	d	0.00254	4.83e-07
δ_r	5.01e+04	9.56	δ_r	5.04e+04	9.58
$\tilde{\chi}^2 07$	p-value : 1	$ ilde{\chi}^2$	0.0398	p-value : 1	
Interpolazione 3			Interpolazione 4		
Parametro	Valore	Errore	Parametro	Valore	Errore
d	0.00219	4.22e-07	d	0.00255	4.84e-07
δ_r	4.34e + 04	8.36	δ_r	5.06e + 04	9.60
$ ilde{\chi}^2$	0.75	p-value : 0.678	$\tilde{\chi}^2$	0.0756	p-value : 1

Table 1: Dati, deviazioni e test $\tilde{\chi}^2$ con p-value, suddivisi per interpolazione.

2.3 Calibrazione micrometro - Frange

L'interferometro in configurazione Fabry-Perot è dotato di un micrometro che permette di variare la distanza tra i due specchi Δd . Quando questa Δd varia, varia anche il cammino ottico dei raggi luminosi e quindi la posizione delle frange di interferenza. La legge che lega questo spostamento è la seguente:

$$\Delta d = \frac{\Delta N \cdot \lambda}{2 \cdot \cos(\theta)} \tag{3}$$

Misurando quante frange scorrono sullo schermo è possibile risalire a una misura di alta precisione del Δd e quindi calibrare il micrometro.

Dopo aver registrato una posizione di partenza inziale dello specchio abbiamo scelto $\Delta d_{\rm nonio}=20\mu{\rm m}$ come passo del nonio, il coseno dell'angolo θ approssimato a circa 1, dato che assumiamo incidenza normale. Infine abbiamo ripetuto la misura più volte, sempre ripartendo dalle stessa posizione iniziale cercando così di ridurre l'errore statistico e ottenendo una media per la distanza.

2.4 Analisi Dati calibrazione micrometro

Riportiamo in seguito i dati ottenuti dalle misurazioni:

Misura	Frange ΔN	Distanza Δd
1	61	19.300
2	64	20.249
3	59	18.667
4	60	18.984
5	60	18.984
5	64	20.249

Table 2: Dati raccolti per la calibrazione del micrometro-Fabry-Perot.

Per la stima della distanza, riportiamo il valor medio e l'errore standard

$$\Delta d_{\rm mis} = (19.41 \pm 0.11) \ \mu {\rm m}$$

Per questi calcoli abbiamo utilizzato come valore tabulato la lunghezza d'onda del laser He-Ne $\lambda = 632.8\,\mathrm{nm}$ [link]. Abbiamo inoltre verificato che anche utilizzando $\lambda_{\mathrm{aria}} = \frac{\lambda_0}{n_{\mathrm{aria}}}$ dove $n_{\mathrm{aria}} = 1,0003$ è l'indice di rifrazione dell'aria, la precisione della misura non cambia. Mostrare questo fatto numericamente

2.5 Conclusioni Fabry-Perot

3 Interferometro Michelson

Nella seconda parte dell'esperienza abbiamo montato l'interferometro in configurazione Michelson, prima per verificare la calibrazione del micrometro (e confrontarla con Fabry-Perot), poi per effettuare altre misure sull'indice di rifrazione dell'aria e del vetro.

Figure 4: Configurazione Michelson.

3.1 Verifica calibrazione micrometro

Per la calibrazione del micrometro abbiamo seguito lo stesso procedimento utilizzato per Fabry-Perot, utilizzando la 3 per calcolare la distanza Δd percorsa dallo specchio mobile. Abbiamo ripetuto la misura per quattro volte, spostando conm un passo di 20µm, (valore segnato dal nonio). Riportiamo in tabella 3 i risultati. Come valore ottenuto abbiamo deciso di considerare la media delle misure effettuate, e per errore la loro deviazione standard, in quanto misure non dotate di errore, perchè ricavate a partire da N e λ :

$$\Delta d_{\rm mis} = (19.36 \pm 0.10) \ \mu {\rm m}$$

L'errore sul valore medio è stato calcolato pesando gli errori delle singole misure, con la formula 4:

$$\sigma_{\bar{x}} = \sqrt{\frac{\sum_{i=1}^{N} (\sigma_i)^2}{N}} \tag{4}$$

Inserire qualcosa su quale dei due metodi quindi ha dato un risultato più preciso (Michelson)

Mettiamo le tabelle infondo

Misura	Frange ΔN	Distanza Δd
1	62	19.6
2	60	18.9
3	60	18.9
4	60	18.9
5	64	20.2

Table 3: Dati raccolti per la calibrazione del micrometro con Michelson.

3.2 Misura indice rifrazione aria

In questa parte dell'esperienza abbiamo utilizzato l'interferometro in configurazione Michelson per misurare l'indice di rifrazione dell'aria, sfruttando il fatto che, variando la pressione cambia l'indice e di conseguenza il numero di frange di interferenza che scorrono. La configurazione ricalca quella della figura 4, con la differenza che abbiamo inserito una cella a vuoto in uno dei bracci dell'interferometro.

Abbiamo utilizzata la formula 5 per risalire all'indice di rifrazione dell'aria:

$$n = 1 + \frac{\Delta N \lambda P_f}{2d(P_i - P_f)} \tag{5}$$

Laddove P_i e P_f sono le pressioni iniziale e finale ($P_i = 101.325\,\mathrm{kPa}$), ΔN è il numero di frange contate, $d = 0.03\,\mathrm{m}$ la larghezza della cella a vuoto e λ è la lunghezza d'onda del laser.

Come procedura di misura abbiamo fatto variare la pressione nel compressore e contato il numero di frange che scorrevano sul muro. Abbiamo ripetuto la misura per quattro volte, variando la pressione finale, e contando le frange di interferenza. Riportiamo in tabella 4 i dati raccolti e in tabella 5 i valori ottenuti per l'indice di rifrazione dell'aria.

$P_f[kPa]$	$\pm \sigma$	ΔN
76	2	16
80	2	18
50	2	11
42	2	9

Table 4: Dati per misura indice aria.

Misura	n_{aria}	Errore $\pm \sigma$
1	1.00051	0.00005
2	1.00071	0.00008
3	1.00011	0.00009
4	1.00007	0.00006

Table 5: Indici aria risultanti

Miglior stima del valore ottenuto per l'indice di rifrazione dell'aria, con relativo errore:

$$n_{aria} = 1.00035 \pm 0.00005$$

Gli errori sui singoli valori dell'indice di rifrazione sono stati calcolati con la formula di propagazione degli errori, a partire dalla relazione 5, in cui P_f ha come errore la sensibilità del manometro (2 kPa). L'errore sul valore medio è stato calcolato pesando gli errori delle singole misure, con la formula 4.

Operando un test di compatibilità con il valore atteso per l'indice di rifrazione dell'aria, pari a n = 1.00029, otteniamo una distanza in deviazioni standard pari a 1.18, che corrisponde ad una percentuale di circa 35%.

3.3 Misura indice rifrazione vetro

Sempre mantenendo la configuazione Michelson, abbiamo montato un supporto con una lastra di vetro per cercare di ricavarne l'indice di rifrazione. Servendoci di un rotational pointer è possibile aumentare o diminuire l'angolo di incidenza del raggio sulla lastra, allungando o accorciando il cammino ottico del raggio nel mezzo, di conseguenza, similmente a quanto fatto prima, possiamo contare il numero di frange ΔN che scorre al variare dell'angolo θ

$$2 \cdot d \cdot (D_i - D_f) = \Delta N \cdot \lambda \tag{6}$$

- 3.4 Misura lunghezza d'onda con righello reticolo
- 4 Considerazioni sugli errori
- 4.1 Commenti finali

5 Tabelle