Prof. Dr. Bernhard Drabant Duale Hochschule Baden-Württemberg Mannheim Fakultät Wirtschaft

Datenaufbereitung

Data Science als Prozess

- A uswahl der Daten
- Vorverarbeitung der Daten
- Transformation der Daten
- Datenbereitstellung
- Wissensensgewinnung

Prof. Dr. Bernhard Drabant Datenaufbereitung

Data-Science-Plattform

Operative / externe vs. dispositive Systeme und Daten

	operativ / extern	dispositiv	
Ziel	Daten des laufenden Betriebs: Geschäftsprozessdaten, Sensordaten, etc.	Daten auf Basis operativer oder externer Daten. Relevant für Wissensgewinnung, extrahiert von Datenquelle	
Ausrichtung	Detaillierte, feingranulare Geschäftsprozessdaten; Datensätze pro Transaktion	Transformierte, angereicherte, ggf. aggregierte Daten, aber auch Streaming-Daten	
Zeitbezug	Aktuell; zeitpunktbezogen; transaktionsbasiert	zeitraum- und zeitpunktbezogen; historisiert ("Eternal Truth")	
Zustand	Oft redundant; verteilt und heterogen	konsistent, vereinheitlicht, skaliert, bereinigt	
Update	laufend, konkurrierend, transaktional (z. B. ACID)	fortschreibend auf jeder Aggregationsstufe (s. o. Zeitbezug)	
Anfragen / Queries	oft statisch im Programm, auf Datensätzen	Variabel, gemäß Anforderungen der Wissensgewinnung	

Probleme der Datenaufbereitung

- Verschiedene Quellen und Sichten auf die Daten
- Heterogenität
 - Syntax, Wertebereiche, Schema, Semantik, Pflicht- oder Optional-Felder, Schnittstellen und Formate (Datenbanken, Dateien, Bilder, Streaming), ...
- Inkompatibilität
- Inkonsistenz
- Fehlerhafte Daten oder fehlende Genauigkeit der Daten
- Unvollständigkeit, Nicht-Verfügbarkeit, ...
- Veraltete Daten
- Redundanz
- Fehlende Vertrauenswürdigkeit
- Fehlende Interpretierbarkeit

Auswahl der Daten

- Daten aus verschiedenen operativen Systeme und externen Datenquellen
 - Daten aus Geschäftsprozessen betrieblicher Informationssysteme
 - Internet-Daten
 - Sensordaten
 - Maschinendaten
 - •
- Ausrichtung an Bedarfen der Anwendungsdomäne
- Inhaltliche Themenschwerpunkte

Vorverarbeitung der Daten

- Qualität der Daten von besonderer Bedeutung
- Bereinigung und Konsolidierung
- Vervollständigung
- aber ggf. auch Original-Daten (Warum?)

Transformation

- Erzeugung integrierter Daten
 - vereinheitlicht
 - harmonisiert
 - reduziert, verdichtet
 - abgeleitet

Datenbereitstellung D

- Konsistente dispositive Daten: Basis für Wissensgewinnung, Modellbildung, Anwendung
- Von operativen und externern Quellen unabhängige Datenhaltung
- Zentralisierte oder verteilte dispositive Daten
- Relevanz im Kontext der Belange der Anwendungsdomäne
 - gemäß Fragestellungen & Anforderungen
- Durchführung "beliebiger" Auswertungen
- Unterstützung individueller Sichten
 - z. B. Zeitrahmen, Struktur, Dimensionen, Verdichtungen etc.

Generelle Anforderungen (Ende-zu-Ende)

- Automatisierung der Abläufe
- Mehrfachverwendbarkeit und Erweiterbarkeit
 - Integration neuer Quellen und Sichten

Beispiel: Datenaufbereitung in BI-Systemen

ETL-Prozess (Extract-Transform-Load)

Qualitätsmerkmale der Datenaufbereitung

Qualitätsmerkmale

- Relevanz, Zweckdienlichkeit
- Zuverlässigkeit, Glaubwürdigkeit, Nachvollziehbarkeit
- Konsistenz
- Korrektheit
- Verwendbarkeit, geeignetes Format
- Vollständigkeit
 - z. B. keine fehlenden Werte oder Attribute
 - ggf. Originaldaten
- Genauigkeit
 - z. B. Anzahl Nachkommastellen
- Granularität Tag, Monat, Quartal, Zeitstempel

Konkrete Schritte der Datenaufbereitung

Aufbau der Data-Science-Plattform

Abhängig von

- Data-Science-Szenario
- Anforderungen an System

Beispiele

- λ-Architektur für Big Data und IoT
- Lokales Data Science Lab

Auswahl der Daten

Aufgabe

- Bestimmung der f
 ür das Data-Science-Szenaro relevanten externen Daten und Daten aus den operativen Systemen
- Übertragung und Zusammenführung dieser Daten in temporäre Arbeitsbereiche (Staging Areas)
- Strategie (abhängig von Szenario)
 - periodisch
 - auf Anfrage
 - Ereignisgesteuert (z.B. bei Erreichen einer definierten Anzahl von Änderungen)
 - sofortige Übertragung

Realisierung

- Nutzung von Standardschnittstellen (ODBC, Streaming, IoT-Protokoll MQTT, ...)
- Ausnahmebehandlung im Fehlerfall

Aufgabe

- Extrahierte Daten bereinigen
- Möglicherweise auch zusätzlich: Original-Daten mitführen bis zur Datenbereitstellung
 - Data Lake (Big Data)

Realisierung

- Nutzung von syntaktischen und semantischen Modellen, Syntax Checker, Rule Engines, etc.
- ggf. Ausnahmebehandlungen bei nicht automatisiert auflösbaren Konflikten

Bereinigung der Daten

- syntaktische Defekte und semantische Defekte
 - Fehlerhafte Werte
 - Fehlende Werte
 - Veraltete Werte
- Rauschen und Ausreißer (?)

• ..

Syntaktische Defekte

- Formale Mängel (Kodierung der Daten)
 - Syntax definiert alle zulässigen Wörter/Zeichenfolgen

Semantische Defekte

Mängel, die semantische Inhalte oder die Sinnhaftigkeit betreffen

Klassen von Defekten

- Klasse 1: Automatisierbare Erkennung, automatisierbare Korrektur
- Klasse 2: Automatisierbare Erkennung, manuelle Korrektur
- Klasse 3: Manuelle Erkennung, manuelle Korrektur

Beachte

- Jede Klasse erfordert besondere Behandlung
- Fehler der Klasse 2 und 3 erschweren zeitnahe Datenbereitstellung
 - kritisch bei großen Datenmengen und zeitnaher Bereitstellung

Defekte der Klasse 1

- Automatisierbare Erkennung und Korrektur
- Beispiel syntaktischer Defekte:
 - Bestimmte eindeutige fehlerhafte Formate.
 - Behebung durch Mapping-Tabellen, Transformationsregeln
- Beispiel semantischer Defekte:
 - Fehlende Ist-Werte.
 - Behebung durch Soll-Werte oder Ist-Werte aus Vormonat

Defekte der Klasse 2

- Automatisierbare Erkennung und manuelle Korrektur
- Manuelle Behebung durch technische Spezialisten oder Domänenexperten
- Beispiele syntaktischer Defekte:
 - Bisher nicht berücksichtigte, eindeutige fehlerhafte Syntaxdefekte
 - Zukünftige Berücksichtigung in Modellen und Algorithmen → wird zu Defekt der Klasse 1
 - Uneindeutige, fehlerhafte Syntaxdefekte
 - Zukünftige Berücksichtigung in Algorithmen und Modellen nicht möglich
 - Konkrete Beispiele?
- Beispiel semantischer Defekte:
 - Ausreißerwerte oder bisher unbekannte Muster
 - Löschen, separieren oder markieren der Ausreißerwerte und Muster
 - Ggf. zukünftige Berücksichtigung gewisser neuer Muster

Defekte der Klasse 3

- Manuelle Erkennung und manuelle Korrektur
- Manuelles Erkennen und Behebung durch Spezialisten
- Beispiele semantischer Defekte der Klasse 3:
 - Datenfehler, die nicht durch Plausibilitätsprüfungen, Mustererkennung, etc. identifiziert werden können
 - Ggf. Behebung der Mängel in den Prozessen in den operativen Systemen
- Syntaktische Defekte fallen nicht in Klasse 3
 - Syntax definiert alle zulässigen Wörter/Zeichenfolgen

Bereinigung	1. Klasse	2. Klasse	3. Klasse
Syntaktische Defekte	Bekannte Abweichungen und resultierende Anpassungen	Bisher nicht berücksichtigte Syntaxvarianten Nicht eindeutig zu behebende Syntaxfehler	
Semantische Defekte	Fehlende Datenwerte Unstimmige Wertekonstellationen	Fehlende Datenwerte Unstimmige Wertekonstellationen Ausreißer	Nur fachlich erkennbare und korrigierbare Defekte

Transformation

Aufgabe

 Umwandlung der bereinigten Daten zur Verwendung in den Data-Science-Szenarien

Teilprozesse

Harmonisierung

- semantisch und syntaktisch
- Vergleichbarkeit der Daten und Entitäten
- Auflösung von Redundanzen

Integration

- Reduktion, Verdichtung, Diskretisierung
- Hierarchiebildung, Aggregation
- Anreicherung durch weitere Kennzahlen und abgeleitete Daten
- Erzeugung diverser Sichten, Filterung

- Bereinigte Daten liegen nach Vorverarbeitung heterogen vor
- Semantische und syntaktische Harmonisierung
 - syntaktische und semantische Konsistenz
 - in feinster Granularität und größtem Umfang
 - feiner und umfänglicher geht es im Folgenden nicht mehr
 - ▶ allenfalls können diese Daten noch zu einer gröberen Granularität aggregiert werden
 - ▶ Folge: Initiale Granularität und Umfang muss vorab festgelegt werden
- Ggf. Beibehaltung der Original-Daten: Data Lake

Prof. Dr. Bernhard Drabant Datenaufbereitung

- Grund: Operative und externe Daten haben hohe Heterogenität in Form von
 - unterschiedlich kodierten Daten
 - unterschiedlich skalierte Daten
 - Synonymen
 - Homonymen
 - Schemadisharmonien
 - Schlüsseldisharmonien
 - Redundanzen
 - Dimensionsreduktion
 - und Kombinationen davon
- Aktion: Auflösung dieser syntaktischen Heterogenitäten und Inkonsistenzen

- Unterschiedlich kodierte Daten
 - Daten mit identischen Attributnamen und identischer Bedeutung
 - Unterschiedliche Wertebereiche/Domänen, Einheiten, Formatierungen
- Beispiele:
 - Attribut: masse des Produktes
 - Datensätze aus verschiedenen Quellen:
 - (masse = 10,5); Einheit: kg, Domäne: Dezimalzahlen, 1 Nachkommastelle
 - (masse = 10.512); Einheit: kg, Domäne: Dezimalzahlen, 3 Nachpunktstellen
 - (masse = s); Domäne: $\{1 < 10 \text{kg}, 10 \text{kg} \le m < 50 \text{kg}, s \ge 50 \text{kg}\}$
 - (masse = 11.00); Einheit: Unze, Domäne: Dezimalzahlen, 2 Nachpunktstellen
- Aktion: Wahl einer gemeinsamen Domäne, Einheit, Formatierung

- Daten mit gleichem Skalenniveau und unterschiedlicher Skalierung
 - Attribute von zwei Mengen von Datensätzen haben gleiche Bedeutung und gleiche Skalenniveaus aber unterschiedliche Domänen / Skalierungen
- Beispiel:
 - Einkommen (metrische Verhältnisskalierung mit natürlichem Nullpunkt)
 - Afrika: Zwischen 10 € und 10.000 € pro Jahr
 - ► Europa: Zwischen 1.000 € und 300.000 € pro Jahr
 - Vergleiche die relativen Einkommensverteilungen der beiden Kontinente
 - Dazu skaliere die Einkommen beispielsweise auf das Intervall [0,100]

- Synonyme
 - Daten mit unterschiedlichen Attributnamen und identischer Bedeutung
- Beispiele:
 - Attribut: Personal
 - Attribut: Mitarbeiter
 - Semantik: jeweils Name der/des Angestellten
- Aktion:
 - Wahl eines gemeinsamen Attributnamens
 - ggf. Wahl einer gemeinsamen Domäne, Einheit, Formatierung

- Homonyme
 - Daten mit gleichen Attributnamen und unterschiedlicher Bedeutung
- Beispiele:
 - Attribut: Partner,
 - Semantik: Name Kunde
 - Attribut: Partner
 - Semantik: Name Lieferant
- Aktion:
 - Differenzierende Attributnamen

- Schemadisharmonien
 - Unterschiedliche Datenmodelle für gleichen Sachverhalt
 - Gleiche Datenmodelle aber unterschiedliche Modellierung
 - Spezialfall: Schlüsseldisharmonien
- Aktion: Wahl eines gemeinsamen, integrierenden Schemas

Syntaktische Harmonisierung

- Schemadisharmonien
 - Unterschiedliche Datenmodelle für gleichen Sachverhalt
 - Beispiel: Objektorientiertes vs. relationales Datenmodell

Objektorientiert: Person Adresse Strasse Name Hausnr. Alter PLZ Stadt relational: Person P_No Name Alter Adresse P_No Strasse PLZStadt Hausnr.

- Schemadisharmonien
 - Gleiche Datenmodelle und unterschiedliche Modellierung
 - ▶ Beispiel: Klassenmodell mit zwei Modellierungen

- Schlüsseldisharmonien
 - basieren auf Unverträglichkeiten der Primärschlüssel
 - ... sind spezielle Schemadisharmonien
- Aktionen:
 - Verschiedene Methoden
 - Beispielsweise:
 - Mapping-Tabellen mit künstlichen Primärschlüsseln
 - Fremdschlüsselbeziehung zu Original-Primärschlüsseln

Syntaktische Harmonisierung

- Beispiel für Schlüsseldisharmonien
 - 3 operative Anwendungssysteme mit Kundendaten
 - 3 unterschiedliche Primärschlüssel für die Kunden

Prof. Dr. Bernhard Drabant Datenaufbereitung

Semantische Harmonisierung

- Syntaktisch harmonisierte Daten werden semantisch harmonisiert
- Gründe
 - Semantische Kennzahlen sind nicht abgestimmt
 - Festlegung der Granularität der bereitzustellenden Daten
 - ...

Semantische Harmonisierung

- Abgleich der semantischen Kennzahlen
 - Sicherstellung semantisch konsistenter Daten und Metriken
 - Vereinheitlichung und Abgrenzung der Kennzahlen und deren Berechnung
- Beispiele
 - Umsatz
 - Zusammenführung unterschiedlicher Gebiets- bzw. Ressortgrenzen
 - Einheitliche Periodenzuordnung
 - Prozess-Kennzahlen
 - Abstimmung semantisch nicht einheitlich abgegrenzter Begrifflichkeiten

Semantische Harmonisierung

- Festlegung der Granularität der bereitzustellenden Daten
 - Zusammenführung der Daten
 - auf die im DS-Szenario geforderte feinste Granularität
 - und ggf. für verschiedene Dimensionen
- Beispiel
 - Zusammenfassung der Positionen der Einzelbelege zu tagesaktuellen Werten
 - Sowohl auf Basis von Produktgruppen als auch auf Basis von Kundengruppen

Elimination von Redundanz

- Daten zu gleichen Sachverhalten werden über mehrere Quellen bereitgestellt
 - Diese Redundanzen können beseitigt werden
 - Ursprung von Redundanz
 - unsauberes oder gewollt redundantes Design der Anwendung
 - verteilte Datenquellen, die die gleichen Sachverhalte beschreiben
- Beispiel:
 - Datenquelle 1 (vom Verband der Getränkeindustrie):
 - Verbrauchszahlen von Erfrischungsgetränken mit Zeitstempel und Wetterdaten
 - Datenquelle 2 (vom Deutschen Wetterdienst):
 - Wetterdaten mit Zeitstempel

Zur Erinnerung: Transformation

Aufgabe

 Umwandlung der bereinigten Daten zur Verwendung in den Data-Science-Szenarien

Teilprozesse

Harmonisierung

- semantisch und syntaktisch
- Vergleichbarkeit der Daten und Entitäten
- Auflösung von Redundanzen

Integration

- Reduktion, Verdichtung, Diskretisierung
- Hierarchienbildung, Aggregation
- Anreicherung durch weitere Kennzahlen und abgeleitete Daten
- Erzeugung diverser Sichten, Filterung

Reduktion

- Einschränkung / Projektion auf die tatsächlich relevanten Daten
 - Nicht benötigte Daten können entfernt werden
- Anwendungsfälle
 - Beschränkung auf die wichtigsten Attribute/Parameter: Principal Component Analysis (PCA)
 - Verkleinerung des eigentlichen Dateninhalts auf wesentliche Informationen
- Beispiele:
 - Angestelltenverhältnisse der Angestellten der IT-Branche in Deutschland.
 - Dafür werden die Mitarbeiter-Identifikationsnummern der einzelnen Firmen nicht benötigt und können aus den jeweiligen Tabellen entfernt werden
 - Eine Firma interessiert sich für die Einkommensverteilungen ihrer Mitarbeiter
 - Das Attribut Einkommen kann aus den Attributen Grundeinkommen und Boni ermittelt werden und kann aus den Datensätzen entfernt werden
 - Art von Redundanz!

Verdichtung

- Transformation großer Datenmengen zu neuen , kleineren Datenmengen, die für die Belange von Relevanz sind
 - Art Datenreduktion
- Beispiel:
 - Zusammenfassung von Datenreihen zu Balkendiagrammen
 - Transformation von Daten zu Häufigkeitsverteilungen
 - Berechnung von Mittelwerten oder Min-Max-Intervallen
 - . . .

Diskretisierung

- Ersetzung der eigentlichen Daten durch eine kleine (diskrete) Datenmenge
- Beispiele
 - Intervall-Blöcke
 - Beispiel: Alter wird ersetzt durch Intervalle (oder Labels)
 - A1 \cong (0,10], A2 \cong (10,30], A3 \cong (30,70], A4 \cong (70,100]
 - Repräsentanten-Werte
 - ersetzen/repräsentieren die Werte der eigentlichen Datenmengen
 - Beispiel: Streaming-Temperaturdaten in 5-min-Zeitfenster
 - Min-Max-Werte, Durchschnittswerte, ...
 - Buckets (Labels) fassen Objekte mit bestimmten Datenwerten zusammen
 - > thematisch, konzeptionell, ähnlichkeitsbasiert
- Auch Art Datenreduktion

Aggregation

- Erweiterung der Daten um **Dimensionen**
- Daten als Fakten, mit Dimensionen ausgestattet
- Daten aggregierbar entlang der Dimensionen ...

→ Multidimensionale Daten

Exkurs – Multidimensionale Daten

Multidimensionale Daten

- Multidimensionale Datenstrukturen bestehen aus
 - Fakt und mehreren Dimensionen

Fakt (oder Measure)

- operative, betriebswirtschaftliche Daten → Kennzahlen
- in der Regel numerische Werte, seltener Ordinalwerte oder nominale Werte
- Beispiele: Kennzahlen, Umsatzerlöse, Einzelkosten, Lagerbestand, etc.

Dimensionen

- beschreibende Daten für ein Fakt
 - reichern Fakt deskriptiv an
- ermöglichen unterschiedliche Sichten auf Fakt
- Beispiele: Lokationen, Regionen, Tage, Quartale, Produkte, Kunden, etc.

Exkurs – Multidimensionale Daten

Multidimensionale Daten

- Beispiele:
 - Datenmodell: Bestelldaten
 - ▶ Wert: 10 Euro, Kunde: Schmitt, Stadt: Mannheim, Datum: 2017-03-24
 - Fakt: Wert (10 Euro)
 - ▶ Dimensionen: Kunde (Schmitt), Stadt (Mannheim), Datum (2017-03-24)
 - Erweiterung der Dimensionen der Bestelldaten möglich
 - Neue Dimensionen: Kundenstatus, Produktgruppe, ...
 - Datenmodell: Sportartikelkette
 - ▶ Fakt: Umsatz
 - ▶ Dimensionen: Ort, Zeit, Produkt

Darstellung?

Aggregation

- Aggregierte Abfragen über Fakten entlang einer oder mehrerer Dimensionen
- Mehrere Aggregate für Fakten möglich: sum, avg, median, min, max, ...
- Beispiel:
 - Bestelldaten
 - ▶ Wert: 10 Euro, Kunde: Schmitt, Stadt: Mannheim, Datum: 2017-03-24
 - Fakt: Wert (10 Euro)
 - Dimensionen: Kunde (Schmitt), Stadt (Mannheim), Datum (2017-03-24)
 - Abfrage auf ursprünglichen Daten: Umsatz durch Kunde Schmitt in Mannheim?
 - Aggregierte Abfragen
 - Umsatz (sum) durch Kunde Schmitt in Baden-Württemberg?
 - Durchschnittlicher Warenkorbeinkaufswert (avg) in Filiale Mannheim

Aggregation

- Aggregate
 - in zusätzlichen Aggregatstabellen zwecks Optimierung der Performanz
 - oder als neue Daten, die die eigentlichen Daten ersetzen/komprimieren
 - oder als Sichten über den eigentlichen Daten

Anreicherung

- Berechnung weiterer Kennzahlen (Fakten) aus den eigentlichen Daten
 - sowohl auf Basis ursprünglichen (harmonisierten) Daten
 - als auch auf Basis der verdichteten, diskreten, aggregierten Daten
- Anreicherung der Datenbasis durch Integration dieser Kennzahlen
- Beispiele
 - Tägliche Umsätze auf Produktebene
 - auf eigentlichen Daten
 - Jährliche Umsätze über alle Produkte auf Regionenebene
 - auf aggregierten Daten
 - Prozesslaufzeit eines Order-to-Casch-Prozesses
 - von Bestellungseingang bis Geldeingang auf Konto
 - oder von Bestellugseingang bis Auslieferung aus Lager

Anreicherung

- Vorteil der Anreicherung / Kennzahlenberechnung
 - Vorberechnung der Kennzahlen erhöht Performanz
 - Kalkulierbares Antwortzeitverhalten bei späteren Abfragen
 - Konsistenz der berechneten Werte
 - nur einmal anwendungs- bzw. szenarioübergreifend gebildet
 - Etablierung gesamtbetrieblicher, semantisch abgestimmter Berechnungsmethoden

47 Datenaufbereitung

Datenbereitstellung

Aufgabe

• Datenbereitstellung der extrahierten, vorverarbeiteten, harmonisierten Daten

für den zentralen Schritt der Wissensgewinnung und Modellbildung

- Strategie (abhängig von Szenario)
 - persistent
 - transient
 - Mischform
- Realisierung (abhängig von Szenario)
 - persistent
 - Datenbanken: SQL, NO-SQL
 - Data Warehouse
 - in verschiedenen Schichten/Stufen
 - transient
 - Streaming-Kanäle: Online-processing, Windowing, ...
 - Messaging: pub-sub, push-pull, ...

Datenbereitstellung

Konzepte und Architektur der Datenablage – und letztendlich der gesamten Data Science Platform – hängen von verschiedenen Faktoren ab:

- Anforderung an die Verwendung der Daten
 - Re-use der Daten: persistent oder transient
 - Struktur der Daten
 - Alter der Daten im Kontext ihrer Verwendung
 - Stichworte: hot, warm, cold
 - Historisierung und Wiederaufsetzbarkeit, "Eternal Truth"
- Anforderung an
 - nachfolgende Wissensgewinnung und Modellbildung
 - nachfolgende Verwendung von Daten, des Wissens und der Modelle
 - Business Intelligence in Unternehmen
 - Sprachverarbeitung und Bilderkennung
 - Online-Szenarien
 - IoT, Predictive Maintenance und Alerting
 - Gesichtserkennung
 - selbstfahrende oder autonome Fahrzeuge, Robotik, KI

Datenaufbereitung

Datenbereitstellung

Beispiel

Data Science im Kontext von λ-Architekturen für Big-Data- und IoT-Szenarien

Datenaufbereitung – Abschließende Diskussion

Warum überhaupt Datenaufbereitung?

Warum nicht gleich Wissensgewinnung auf operativen und externen Daten?

■ Diskussion von Data-Science-Szenarien und möglichen Strategien für die Datenaufbereitung im Kontext dieser Szenarien

Prof. Dr. Bernhard Drabant Datenaufbereitung 51

Fragen?

