

Parser LL (1) (Primeiros e Seguidores)

GCC130 - Compiladores

Conjunto Primeiros

- primeiros (α)
 - É o conjunto de terminais que começam as cadeias derivadas de α

- Se a é um terminal, então primeiros (a) = {a}
- Se A-> €, é uma regra de produção, então adicione € em primeiros (A).
- Se A->Y1 Y2 Y3....Yn é uma produção,
 - primeiros(A) = primeiros(Y1)
 - Se primeiros (Y1) contém € então primeiros (A) = {primeiros (Y1) - €} U {primeiros (Y2)}
 - Se primeiros (Yi) contém € para todos i=1
 até n, então adicione € em primeiros (A).

$$\mathsf{E} \to \mathsf{TE}'$$

$$E' \rightarrow +TE' \mid \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \epsilon$$

$$F \rightarrow (E) \mid id$$

$$P(E) = \{\}$$

$$\mathsf{E} \to \mathsf{TE}'$$

$$E' \rightarrow +TE' \mid \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \epsilon$$

$$F \rightarrow (E) \mid id$$

$$P(E) = P(T)$$

$$E' \rightarrow +TE' \mid \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \epsilon$$

$$F \rightarrow (E) \mid id$$

$$P(E) = P(T) = P(F)$$

$$E \rightarrow TE'$$
 $E' \rightarrow +TE' \mid \epsilon$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' \mid \epsilon$
 $F \rightarrow (E) \mid id$

$$P(E) = P(T)=P(F)=\{(,id)\}$$

$$E \rightarrow TE'$$
 $E' \rightarrow +TE' \mid \epsilon$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' \mid \epsilon$
 $F \rightarrow (E) \mid id$

$$P(E) = P(T)=P(F)=\{(,id)\}$$

 $P(E') = \{+, \epsilon\}$

$$E \rightarrow TE'$$
 $E' \rightarrow +TE' \mid \epsilon$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' \mid \epsilon$
 $F \rightarrow (E) \mid id$

$$P(E) = P(T)=P(F)= \{(,id)\}$$

 $P(E') = \{+, \epsilon\}$
 $P(T')= \{*, \epsilon\}$

$$A \rightarrow BCD$$

$$B\rightarrow 1 \mid \epsilon$$

$$C \rightarrow 2 \mid \epsilon$$

$$D \rightarrow 3$$

$$P(A) = \{1,2,3\}$$

Conjunto Seguidores

- seguidores (A)
 - É o conjunto de terminais que podem aparecer imediatamente após A em alguma forma sentencial
 - Em outras palavras, é o conjunto de terminais "a" tal que existe uma derivação na forma S ⇒ αAaβ
 - Se A pode ser o símbolo mais à direita em alguma forma sentencial, \$ (fim de cadeia) está em seguidores(A)

- 1) seguidores (S) = {\$} // onde S é o símbolo inicial da gramática
- 2) Se A -> αBβ é uma produção, onde α, B e β são símbolos gramaticais quaisquer, então tudo em primeiros (β) exceto € está em seguidores (Β).
- 3) Se A-> α B é uma produção, então tudo em seguidores (A) está em seguidores (B).
- 4) Se A-> α B β é uma produção e primeiros (β) contém ϵ , então seguidores (B) contém {primeiros (β) - ϵ } U seguidores (A)

$$\mathsf{E} \to \mathsf{TE}'$$

$$E' \rightarrow +TE' \mid \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \epsilon$$

$$F \rightarrow (E) \mid id$$

$$S(E) = ?$$

$$\mathsf{E} \to \mathsf{TE}'$$

$$E' \rightarrow +TE' \mid \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \epsilon$$

$$F \rightarrow (E) \mid id$$

$$S(E) = {\$}$$

$$\mathsf{E} \to \mathsf{TE}'$$

$$E' \rightarrow +TE' \mid \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \epsilon$$

$$F \rightarrow (E) \mid id$$

$$S(E) = {\$,}$$

$$A -> \alpha B \beta$$

$$A->\alpha B$$

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' \mid \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \epsilon$$

$$F \rightarrow (E) \mid id$$

$$S(E) = {\$,}$$

$$S(E') = ?$$

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' \mid \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \epsilon$$

$$F \rightarrow (E) \mid id$$

$A->\alpha$ B β

$$A->\alpha B$$

$$S(E) = \{\$,\}$$

$$S(E') = ?$$

$$E \rightarrow TE'$$
 $E' \rightarrow +TE' \mid \epsilon$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' \mid \epsilon$
 $F \rightarrow (E) \mid id$

$$A->\alpha$$
B β

$$A->\alpha B$$

$$S(E) = \{\$,\}$$

 $S(E') = S(E) = \{\$,\}$

$$E \rightarrow TE'$$
 $E' \rightarrow +TE' \mid \epsilon$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' \mid \epsilon$
 $F \rightarrow (E) \mid id$

Seguidores:

$$S(E') = S(E) = \{\$,\}$$

 $S(T) = ?$

$$E \rightarrow TE'$$
 $A \rightarrow \alpha B\beta$
 $E' \rightarrow +TE' \mid \epsilon \mid A \rightarrow \alpha B$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' \mid \epsilon \mid E \rightarrow (E) \mid id$

$$S(E') = S(E) = \{\$,\}$$

 $S(T) = P(E') = \{+\}$
 $S(T) = S(E') = \{\$,\}$

$$E \rightarrow TE'$$
 $E' \rightarrow +TE' \mid \epsilon$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' \mid \epsilon$
 $F \rightarrow (E) \mid id$

Seguidores:

$$S(E') = S(E) = \{\$,\}$$

 $S(T) = \{\$,\},+\}$
 $S(T') = ?$

$$E \rightarrow TE'$$
 $E' \rightarrow +TE' \mid \epsilon$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' \mid \epsilon$
 $F \rightarrow (E) \mid id$

$$A->\alpha B\beta$$

$$A->\alpha B$$

$$S(E') = S(E) = \{\$,\}$$

 $S(T') = S(T) = \{\$,\}$

$$E \rightarrow TE'$$
 $E' \rightarrow +TE' \mid \epsilon$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' \mid \epsilon$
 $F \rightarrow (E) \mid id$

Seguidores:

$$S(E') = S(E) = \{\$,\}$$

 $S(T') = S(T) = \{\$,\}+\}$
 $S(F) = ?$

$$E \rightarrow TE'$$
 $E' \rightarrow +TE' \mid \epsilon$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' \mid \epsilon$
 $F \rightarrow (E) \mid id$

$$A->\alpha B\beta$$

$$A->\alpha B$$

$$S(E') = S(E) = \{\$,\}$$

 $S(T') = S(T) = \{\$,\},+\}$
 $S(F) = \{*,\$,\},+\}$

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' \mid \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \epsilon$$

$$\mathsf{F} \to (\mathsf{E}) \mid \mathsf{id}$$

Primeiros:

$$P(E) = P(T)=P(F)=\{(,id)\}$$

$$P(E') = \{+, \epsilon\}$$

$$P(T') = \{*, \epsilon\}$$

$$S(E') = S(E) = \{\$,\}$$

$$S(T') = S(T) = \{\$, \}, +\}$$

$$S(F) = \{*,\$,),+\}$$

GG