Wiser: Increasing Throughput in Payment Channel Networks with Transaction Aggregation

Samarth Tiwari¹, Michelle Yeo², Zeta Avarikioti³, Iosif Salem⁴, Krzysztof Pietrzak², Stefan Schmid⁴

¹Centrum Wiskunde & Informatica Amsterdam, Netherlands ²Institute of Science and Technology Austria, Austria ³TU Wien, Austria ⁴TU Berlin, Germany

Background

- PCNs: layer 2 solutions to improve scalability of blockchains
- Intermediary nodes on a payment path charge a routing fee

Transaction aggregation in PCNs

- Finding a set of channels which execute as many transactions as possible
 - Take into account both input transactions as well as the topology of the PCN
- Added benefit to users compared to sequential/individual execution

Motivating example 1

Motivating example 2

Our contribution

Wiser is the first solution that performs transaction aggregation in PCNs that satisfies the following properties:

- 1. Computational feasibility
- 2. Balance security
- 3. Optimality
- 4. Cost efficiency
- 5. Privacy

$$G = (V, E), |V| = n, |E| = m$$

• Flow vector $\mathbf{f} = (f(e))_{e \in E}$, $0 \le f(e) \le c(e) \ \forall e \in E$

$$G = (V, E), |V| = n, |E| = m$$

- Flow vector $\mathbf{f} = (f(e))_{e \in E}$, $0 \le f(e) \le c(e) \ \forall e \in E$
- List of transactions $T = \{t_1, t_2, \dots, t_k\}$

$$t_i = [0, ..., w_{sender}, ..., -w_{receiver}, ..., 0]$$

• Demand vector $d = \sum_{t \in T} t$

$$G = (V, E), |V| = n, |E| = m$$

- Flow vector $\mathbf{f} = (f(e))_{e \in E}$, $0 \le f(e) \le c(e) \ \forall e \in E$
- List of transactions $T = \{t_1, t_2, \dots, t_k\}$

$$t_i = [0, ..., w_{sender}, ..., -w_{receiver}, ..., 0]$$

- Demand vector $d = \sum_{t \in T} t$
- A flow f routes d if $\forall v$,

$$\sum_{(v,u)\in E} f(v,u) - \sum_{(u,v)\in E} f(u,v) = d(v)$$

$$G = (V, E), |V| = n, |E| = m$$

- Flow vector $f = (f(e))_{e \in E}$, $0 \le f(e) \le c(e) \ \forall e \in E$
- List of transactions $T = \{t_1, t_2, \dots, t_k\}$

$$t_i = [0, ..., w_{sender}, ..., -w_{receiver}, ..., 0]$$

- Demand vector $d = \sum_{t \in T} t$
- A flow f routes d if $\forall v$,

$$\sum_{(v,u)\in E} f(v,u) - \sum_{(u,v)\in E} f(u,v) = d(v)$$

Goal: find feasible subset $T' \subset T$ such that $\sum_{t_i \in T'} |t_i|$ is maximised

PCN model

Wiser protocol implementation

Flow computation phase

- MPC delegates sampled randomly from hubs
 - Prevents Sybil attacks
 - Sufficient computational and financial resources
- Secret sharing of transactions and channel balances to delegates
- Oracle to solve the computational problem
 - MPC so efficiency is important
 - Convert problem to integer program and use result by Eisenbrand and Weismantel¹ to solve in time linear in number of transactions and exponential in number of hubs.

Atomic flow execution

- Typical HTLC based solutions require connectivity and locks payments for time linear in length of the path
- Flow output might involve disconnected components of network
- Thora¹: multi-channel atomic updates in constant time

¹Aumayr, Abbaszadeh, Maffei, https://eprint.iacr.org/2022/317

- 1. Computational feasibility
- 2. Balance security
- 3. Optimality
- 4. Cost efficiency
- 5. Privacy

Theorem: The transaction aggregation problem can be solved in time $O(k(h\Delta)^{h^2})$

- 1. Computational feasibility
- 2. Balance security
- 3. Optimality
- 4. Cost efficiency
- 5. Privacy

Follows from atomic updates of Thora

- 1. Computational feasibility
- 2. Balance security
- 3. Optimality
- 4. Cost efficiency
- 5. Privacy

Follows from correctness of optimization solver

- 1. Computational feasibility
- 2. Balance security
- 3. Optimality
- 4. Cost efficiency
- 5. Privacy

Follows from the fact that fee function satisfies triangle inequality

- 1. Computational feasibility
- 2. Balance security
- 3. Optimality
- 4. Cost efficiency
- 5. Privacy

Follows from security guarantees of the MPC protocol

Conclusion

 First solution that performs transaction aggregation in PCNs that is computationally feasible, balance secure, optimal, cost efficient, and private

Future work:

- 1. Designing computationally tractable protocol for other topologies
- 2. Cross-chain aggregation

Thank you!

myeo@ist.ac.at