Kathmandu University Department of Electrical and Electronics Engineering ENGG 211 Electronics Engineering-I #Assignment-2 (BJT)

- 1. If the emitter current of a transistor is 8mA and I_B is 1/100 of I_C , determine the levels of I_C and I_B .
- 2. a. Given α_{dc} of 0.998, determine the I_C if $I_E=4$ mA. b. Determine the α_{dc} if $I_E=2.8$ mA and $I_B=20\mu A$.
- 3. With explanation, draw emitter current (I_E) versus base to emitter potential difference (V_{BE}) and collector current (I_C) versus collector to emitter potential difference (V_{CE}) for a NPN type Bipolar Junction Transistor operating in the active region.
- 4. Find the collector current and the emitter potential in the circuit shown in figure 1, Assume base emitter drop as 0.7 V and $\beta = 100$.

Figure 1

5. Show that the transistor of figure 2 is working in the saturation region.

Figure 2

- 6. For the fixed-bias configuration of figure 3, determine:
 - a. Vcc
- b. Ico
- c. ß
- d. R_B

Figure 3

- 7. Given the information provided in figure 4, determine:
 - a. Rc
- b. RE
- c. R_B
- d. Vce
- e. V_B

Figure 4

- 8. a. Determine I_C and V_{CE} for the network of figure 5.
 - b. Change β to 135 and determine the new value of I_{C} and V_{CE} for the network of figure 5.
 - c. Determine the magnitude of the percent change in I_{C} and V_{CE} using the following equations:

$$\%\Delta I_{C} = \left| \frac{I_{C_{(part b)}} - I_{C_{(part a)}}}{I_{C_{(part a)}}} \right| \times 100\%, \qquad \%\Delta V_{CE} = \left| \frac{V_{CE_{(part b)}} - V_{CE_{(part a)}}}{V_{CE_{(part a)}}} \right| \times 100\%$$

Figure 5

9. Given the information appearing in figure 6. Determine:

a. I_C

 $b. \ V_E$

c. V_{CC}

d. V_{CE}

 $e.\ V_{B}$

f. R₁

Figure 6

10. For the voltage feedback network of figure 7. Determine:

a. I_C

b. V_C

c. V_E

 $d.\ V_{CE}$

Figure 7

- 11. Given $V_B = 4V$ for the network of figure 8. Determine:
 - a. VE
- b. I_C
- c. V_C
- $d.\ V_{CE}$
- $e.\ I_{B}$

Figure 8

- 12. For the network of figure 9. Determine:
 - a. I_B
- b. Ic
- $c. V_{C}$
- $d.\ V_{CE}$

Figure 9