This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

406010107 A JAN 1994

- (54) MANUFACTURE OF METALLIC TI TARGET FOR SPUTTERING

(11) 6-10107 (A)

(43) 18.1.1994 (19) JP

(21) Appl. No. 4-171136 (22) 29.6.1992

(71) OSAKA TITANIUM CO LTD (72) TAKASHI ONISHI(2)

(51) Int. Cl⁵. C22F1/18,C23C14/34

PURPOSE: To provide the method for manufacturing a target suitable for obtaining a Ti sputtered thin film product having a uniform film thickness distribution and small in stuck materials.

CONSTITUTION: This is the method for manufacturing the target for sputtering in which, in the method for manufacturing the target for sputtering metal Ti, the cast material of Ti is subjected to hot forging, is thereafter subjected to cold rolling at ≤400°C and is subsequently subjected to heat treatment in the range of 500 to 650°C. In this way, the structure of the target for sputtering metal Ti can be formed into a one having uniform fine crystalline grains free from nonrecrystallized grains. By executing sputtering using this target, the film thickness distribution of the thin film can be uniformized as well as the

increase in stuck materials can be suppressed.

THIS PAGE BLANK (USPTO)

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-10107

(43)公開日 平成6年(1994)1月18日

(51) Int.Cl.5

識別記号

FI

技術表示箇所

C 2 2 F 1/18 C 2 3 C 14/34

Н

* 1

9046-4K

庁内整理番号

審査請求 未請求 請求項の数1(全 4 頁)

(21)出願番号

特願平4-171136

(71)出願人 000205351

住友シチックス株式会社

(22)出願日

平成4年(1992)6月29日

兵庫県尼崎市東浜町1番地

(72)発明者 大西 隆

兵庫県尼崎市東浜町1番地大阪チタニウム

製造株式会社内

(72)発明者 白石 博章

兵庫県尼崎市東浜町1番地大阪チタニウム

製造株式会社内

(72)発明者 落合 崇

兵庫県尼崎市東浜町1番地大阪チタニウム

製造株式会社内

(74)代理人 弁理士 穂上 照忠

(54) 【発明の名称】 スパッタリング用の金属Tiターゲットの製造方法

(57)【要約】

【目的】膜厚分布が均一で、しかも付着物の少ないTiスパッタ薄膜製品を得るために好適なターゲットの製造方法を提供する。

【構成】金属Tiのスパッタリング用ターゲットの製造において、Tiの鋳造材を熱間鍛造加工後 400℃以下で冷間圧延加工を行い、その後 500~650 ℃の範囲で熱処理することを特徴とするスパッタリング用ターゲットの製造方法。

【効果】金属Tiのスパッタリング用ターゲットを未再結晶粒のない均一な微細結晶粒をもつ組織とすることができる。このターゲットを用いてスパッタリングすることにより、薄膜の膜厚分布を均一とし、しかも付着物の増加を抑えることができる。

【特許請求の範囲】

【請求項1】金属Tiのスパッタリング用ターゲットの製造において、Tiの鋳造材を熱間鍛造加工後 400℃以下で冷間圧延加工を行い、その後 500~650 ℃の範囲で熱処理することを特徴とするスパッタリング用ターゲットの製造方法。

1

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、LSI チップ等の多層配線およびバリヤメタル材料として半導体素子上に薄膜を 10成膜する際に用いるTiスパッタターゲットに関する。

[0002]

【従来の技術】一般にスパッタターゲットの製造においては、その金属材料の結晶粒径を制御している。インゴット鋳造時そのままの結晶粒径では大きすぎるため、鍛造加工、圧延加工を施して形状を整えるとともに結晶粒径を小さくし、その後熱処理することにより所定の結晶粒径とする。しかし、この方法では、熱処理温度を高温にしなければ均一な結晶粒径を持つ組織が得られず、また、熱処理温度を高温にしすぎると結晶粒が粗大化する製品の膜厚分布の不均一化および付着物の増加による製品不良率増加の原因の一つとなっている。

[0003]

【発明が解決しようとする課題】Tiのスパッタターゲットを製造する場合は、金属Tiを真空溶解法で溶解し、作製したインゴットを熱間で鍛造加工および圧延加工を施すことにより、インゴットをスパッタターゲットの形状に整えるとともに一旦結晶粒を小さくする。その後、熱処理することにより結晶粒径を制御している。しかし、このような一般的な方法では、結晶粒径を小さく抑えようとして熱処理温度を低温にすると結晶粒径が不均一な組織となり、また、均一な結晶粒径を持つ組織を得るために熱処理温度を高温にすると結晶粒が粗大化してしまうという上記と同様の問題を避けることはできない。

【0004】ところで、スパッタ法においては留意すべき重要な品質目標として、製品の膜厚分布が均一であること、薄膜への付着物が少ないことがあげられる。これは、膜厚分布が不均一であるとそれに伴い薄膜の膜抵抗値が異なり、したがって性能のばらつきが生ずるからである。膜厚分布を均一にするにはスパッタターゲットの、特に結晶粒を微細でしかもできるだけ均一にすればよい。一方、付着物はターゲットから発生する金属Tiを主成分とする極微粒の粒子であるが、ターゲットの結晶粒が多いと半導体素子の不良につながるので、スパッタターゲットの結晶粒径を小さくすることにより、付着物を少なくする必要がある。

【0005】本発明の目的は、膜厚分布が均一で、しかも付着物の少ないTiスパッタ薄膜製品を得るために好適 50

なターゲットの製造方法を提供することにある。

[0006]

【課題を解決するための手段】本発明の要旨は次の方法 にある。

【0007】金属Tiのスパッタリング用ターゲットの製造において、Tiの鋳造材を熱間鍛造加工後 400℃以下で冷間圧延加工を行い、その後 500~650 ℃の範囲で熱処理することを特徴とするスパッタリング用ターゲットの製造方法。

[0008]

.30

【作用】前記のように、スパッタリング法によって薄膜製品を製造する場合には、その性能を確保し歩留りを向上させるために、付着物の少ない、しかも膜厚分布が均一な薄膜が得られるようにその条件を選定しなければならない。これらを達成するための条件の一つとして、均一で微細な結晶組織を有するスパッタターゲットを用いることが不可欠である。そのためのターゲットの製造方法として、熱間鍛造加工と結晶粒制御のための熱処理の工程の間に、冷間圧延加工を加えるのである。ここでは、熱間鍛造加工と区別するために 400℃以下の温度における加工を冷間加工と称する。

【0000】 冷間での圧延加工を付加し、その際の温度 を 400℃以下、およびその後の熱処理温度を 500~650 ℃の範囲とするのは次の理由による。

【0010】400 ℃以下の温度で冷間圧延加工を行うと、変形抵抗が大きいために結晶粒が密な繊維状組織となり、内部歪の蓄積エネルギーが大きくなる。よって、これに続く熱処理では、この歪を核として再結晶が起こるため、熱間での圧延加工を行う時よりも低温で再結晶が完了する。そして、この時の結晶粒径は熱間鍛造加工後よりは勿論、熱間での圧延加工後のそれよりもさらに小さくなっている。この場合、冷間圧延加工の加工率を50~70%の範囲とすることが、最終熱処理後の望ましい結晶粒径(10~35μm)を得る上で好適である。

【0011】上記のように冷間圧延加工された金属Tiの再結晶温度は 500℃前後と推定されるので、この冷間圧延加工材を 500℃以上で熱処理すると再結晶が完了して、上記の理由により未再結晶粒のない均一で微細な結晶粒を持つ組織が得られる。しかし、熱処理温度を上げていくと結晶粒の粗大化が進み、 650℃を超える温度では粗大化しすぎて、薄膜への付着物の増加を招くような結晶組織しか得られなくなってしまう。 500 ℃未満の温度で熱処理を行うと再結晶が完了しないために、薄膜の膜厚分布が不安定となるような、未再結晶粒を含む不均一な結晶粒組織しか得られない。

【0012】上記の本発明の方法により製造される金属 Tiのターゲットは、結晶粒径が10~35μmの範囲の均一な微細組織を有するものとなる。ここで、例えばターゲットの結晶粒径が不均一で未再結晶粒が残っていると、 スパッタリング時にArイオンの衝突しやすい場所、しに

くい場所が生じてくるため、Tiが飛ばされやすい場所、 飛ばされにくい場所ができ、成膜が不均一になる。しか し、ターゲットの結晶組織が均一であるとスパッタリン グ時に、Arイオンがターゲットに衝突する場所とともに Tiが放出される場所も均一となるため、得られる成膜も 均一なものとなる。

【0013】付着物については、次のように考えられる。スパッタリングはArイオン1個が単独で衝突するのではなく、ある大きさの範囲をもってTiを飛ばしていると考えられる。付着物の原因は、このようなスパッタリ 10ング状態の差によるTiの飛ばされ方の違いによるものである。すなわち、ターゲットの結晶粒径が不均一でかつ大きいと、ある大きさの範囲をもったArイオンが衝突しやすい場所では、ターゲットの周辺が溶解されるという状態になり、この溶解物がスパッタリングされ付着物となる。したがって、本発明の方法によるターゲットを用いれば、スパッタ後の薄膜は均一な厚さと付着物の少ない安定した成膜となるのである。

[0014]

【実施例】金属TiをEB(エレクトロンビーム)溶解法を 20 用いて不活性ガス雰囲気中で溶解し、ついで融液を冷却して所定形状の16個のインゴットにした。この各インゴットに熱間鍛造加工を施した後、表1に示すように、4 個ずつを4種類の温度(室温、300℃、400℃および600℃)で圧延加工を施して角板状の単体ブロックを作製した。このときの加工率はいずれも約50%とした。さらに、それぞれの単体ブロックに450℃、500℃、650℃および700℃の温度で熱処理を施した後、切削加工により円板状の厚さ6㎜、直径300㎜のターゲットを製造して、結晶粒径および最大結晶粒径を求積法により測定し 30 た。

【0015】これらのターゲットを用いて直径6インチのSiウェハーにスパッタリングを行い、得られた薄膜について膜厚の測定および付着物の計測を行った。ここで、膜厚は、繰返し反射干渉法(多重反射法)により測

定し、膜厚の最大値、最小値および平均値から、 (最大値-最小値) /平均値 ×100(%)

の式を用いて膜厚分布に換算した。付着物はダストカウンター (パーティクルカウンター)によりスパッタリング前後の付着物を個数で計測し、その増加量で表した。いずれも、その数値が大きいほど良くないことを示している。以上の結果を表1に併せて示す。

【0016】表1から明らかなように、熱間鍛造後の圧延温度が 400℃以下の場合で熱処理温度が 650℃以下のときは、ターゲットの最大結晶粒径も小さく、スパッタリング後の薄膜への付着物も少ないものが得られている。しかし、熱処理温度が 500℃未満のときには、薄膜の膜厚分布が 500℃以上の熱処理温度のときに比べて悪くなっている。これは、500℃未満での熱処理では再結晶が完全に終わっていないために未再結晶粒があり、不均一な結晶粒組織を持つものしか得られていないことによる。

【0017】400℃を超える圧延温度の場合、500℃未満の熱処理温度では、結晶粒組織が不均一であるため、薄膜の膜厚分布が悪くなっており、650℃を超える熱処理温度では結晶粒が粗大化してしまい、薄膜への付着増加の原因となっている。また、いずれの圧延温度の場合においても、650℃を超える熱処理温度では、結晶粒が粗大化してしまうため、薄膜への付着物増加の原因となっている。

した。このときの加工率はいずれも約50%とした。さらに、それぞれの単体プロックに 450 で、650 を施した後、500 ~650 で 然処理を行うことにより、および 700 の温度で熱処理を施した後、切削加工により円板状の厚さ 6 mm、直径300 mm のターゲットを製造した。 お晶粒径および最大結晶粒径を求積法により測定した。 はいかりででは、薄膜の膜厚分布が 4.6 %以下とた。 はいかり付着物の増加量が35 個以下と少なくなるによりのアントを用いて直径 6 インチ

[0019]

【表1】

6

表 1

圧延温度 (°C)	圧延時 加工率 (%)	熱処理 温 度 (℃)	結 晶 粒 径 (µ m)	最大結晶 粒 径 (µm)	膜 厚 分 布 (%)	付着物 増加量 (個)
室 温	約 50	450	未再結晶粒有	8	5. 1	27
"	"	500	10	12	4. 2	24
"	"	6 50	30	45	4. 0	23
"	"	700	59	73	4. 2	87
300	"	450	未再結晶粒有	9	4. 9	21
"	"	500	12	17	4. 3	28
"	"	6 50	30	40	4. 1	33
"	"	700	53	77	4. 2	101
400	"	450	未再結晶粒有	9	5. 2	31
"	"	500	15	19	4. 6	35
"	"	650	31	45	4.2	30
"	".	700	53	72	4. 3	118
600	"	450	未再結晶粒有	13	5. 1	30
"	"	500	未再結晶粒有	24	4. 8	26
"	"	650	37	52	4. 1	58
"	"	700	59	87	4. 0	115

[0020]

【発明の効果】以上の説明で明らかなように、本発明の 方法によれば、金属Tiのスパッタリング用ターゲットを 未再結晶粒のない均一な微細結晶粒をもつ組織とするこ とができる。このターゲットを用いてスパッタリングすることにより、薄膜の膜厚分布を均一とし、しかも付着物の増加を抑えることができる。