Course #2:

Deep Learning, from MLP to CNN

Roadmap

• MLP and Image classification as a case study

• CNN: basic principles

Application to image classification

• Classic CNN architectures

Recap from Course #1 Things to know

- Supervised vs. unsupervised learning
- Training loss
- Model
- Layers
- Fully-Connected/Dense NNs (MLP)
- Activation functions
- Backpropagation
- Weights and biases
- Optimizers
- epoch

Feedforward networks (Weights and biases)

$$f(x) = \sigma \left[\sum_{i} \omega_{i} \sigma_{i} \left(\sum_{j} \omega_{i,j} x_{j} + b_{i} \right) + b \right]$$

Guidelines to implement Deep Learning schemes

- 1. Problem formulation (inputs/outputs)
- 2. Data collection (cf. supervised vs. non-supervised)
- 3. Definition of performance metrics
- 4. Selection of neural architectures (at least 2 models)
- 5. Selection of a training loss
- 6. Split dataset into training / validation / test datasets
- 7. Train the selected models from the training dataset and save the best models onto the validation dataset
- 8. Benchmark the performance of the trained models onto the test dataset
- 9. Update/iterate 4-5-6-7-8

Image classification case-study

Let's go

https://github.com/CIA-Oceanix/DLCourse_MOi_2022/blob/main/notebooks/notebook_MNIST_classification_MLP_with_correction.ipynb

1. Problem formulation (inputs/outputs)

Training / validation / test dataset

Dataset

Training dataset

Test dataset

Training

Validation

Test dataset

Data used during the optimisation (gradient descent on mini-batches)

Data never provide to the NN during the training procedure

Data used to monitor the training after each epoch

2. Data collection

```
train_data = datasets.MNIST(root = 'data', train = True, download = True, transform = transform)
test_data = datasets.MNIST(root = 'data', train = False, download = True, transform = transform)
```

3. Performance metrics

4. Neural architecture

```
import torch.nn as nn
import torch.nn.functional as F
class MLP(nn.Module):
    def init (self): # FUNCTION TO BE COMPLETED
        super(MLP,self). init ()
        hidden 1, hidden 2 = 512, 256
        self.fcl = nn.Linear(28*28, hidden 1)
        self.fc2 = nn.Linear(hidden 1, hidden 2)
        self.fc3 = nn.Linear(hidden 2,10)
        self.dropout = nn.Dropout(0.2)
   def forward(self,x): # FUNCTION TO BE COMPLETED
        x = x.view(-1,28*28)
        x = F.relu(self.fcl(x))
        x = self.dropout(x)
        x = F.relu(self.fc2(x))
        x = self.dropout(x)
        x = self.fc3(x)
        return x
```

5. Training loss

```
criterion = nn.CrossEntropyLoss() # TO DO
```

Model complexity?

6. Split dataset into training / validation / test datasets

```
import torch
from torch.utils.data.sampler import SubsetRandomSampler
import numpy as np
batch size = 20
valid size = 0.2
train size = 0.2
indices = np.random.permutation(len(train_data))[:int(train_size*len(train_data))]
train data = torch.utils.data.Subset(train data,indices )
def create data loaders(batch size, valid size, train data, test data): # FUNCTION TO BE COMPLETED
 total train = len(train data)
 num val = int(total train * valid size)
 num train = total train - num val
 tr data, val data = torch.utils.data.random split(train data, [num train, num val])
 train loader = torch.utils.data.DataLoader(tr_data, batch_size = batch_size)
 valid_loader = torch.utils.data.DataLoader(val_data, batch_size = batch_size)
 test loader = torch.utils.data.DataLoader(test data, batch size = batch size)
  return train loader, valid loader, test loader
```

7. Model training

```
optimizer = torch.optim.SGD(model 1.parameters(), lr = 0.01)
 for epoch in range(n epochs):
     train loss, valid loss = 0, 0
     model.train()
     for data, label in train loader:
         data = data.to(device=device, dtype=torch.float32)
         label = label.to(device=device, dtype=torch.long)
         optimizer.zero grad()
         output = model(data)
         loss = criterion(output, label)
         loss.backward()
         optimizer.step()
         train_loss += loss.item() * data.size(0)
     model.eval()
     for data, label in valid loader:
         data = data.to(device=device, dtype=torch.float32)
         label = label.to(device=device, dtype=torch.long)
         with torch.no grad():
             output = model(data)
         loss = criterion(output,label)
         valid loss += loss.item() * data.size(0)
     train_loss /= len(train_loader.sampler)
     valid loss /= len(valid loader.sampler)
     train losses.append(train loss)
```

Image classification case-study

Go and run the notebook

Questions:

Test the training procedure for the MLP with a dropout value of 0. and 0.2. What is the effect of the dropout layer?

Over-fitting

Overview

NEXT LECTURE

Optimizers

[Chapter 8, Goodfellow et al.]

Gradient-based approach

• Stochastic gradient descent (i.i.d examples):

$$\theta^{k+1} = \theta^k - \epsilon_k \frac{\partial J(\theta^k)}{\partial \theta^k}$$

- direction is a random variable, whose the expectation is the gradient to be estimated.
- faster than batch gradient descent
- Minibatch SGD:
 - SGD on 10 to 100 examples (mini batch)
 - less noisy estimate of the gradient

Gradient-based approach

Over-fitting

Regularzation tricks to avoid overfitting

- Penalty terms In the training loss
- Data augmentation
- Dropout layers

Parameter norm penalization

Regularized objective function:

$$\tilde{J}(\theta) = J(\theta) + \alpha \Omega(\theta)$$

• L² norm:
$$\Omega(\theta) = \frac{1}{2}||w||_2^2$$

• L¹ norm:
$$\Omega(\theta) = ||w||_1 = \sum_i |w_i|$$

Data augmentation

- Purpose: improving model generalization error by training on more data
- Very efficient for object recognition
- How to:
 - apply (geometric) transformations on input data (such as translation, rotation, scaling for images).
 - noise injection

Dropout

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

Convolutional Neural Networks

State-of-the-art NNs in computer vision

DL models are (in general) feedforward models. VGG16 as an illustration

Elementary components

Convolution layers

Activation layers

Pooling layers

FC layers

Elementary components

Convolution layers

Activation layers

Pooling layers

Dense layers

torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)

https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html

Number of parameters?
Independent on the sizes of the input and output layer

Dense layer vs Conv layer

Elementary components

Convolution layers

Activation layers

Pooling layers

Dense layers

ReLU (Rectified Linear Unit)

Elementary components

Convolution layers

Activation layers

Pooling layers

Dense layers

Pooling downsamples the input layer

Elementary components

Convolution layers

Activation layers

Pooling layers

Dense layers

Dense layers
or
Fully-connected (FC) layer
as in a classic MLP

Image classification case-study with CNN

Examples of DL models for object recognition (2010-2020)

AlexNet (60M of parameters)

DL and Benchmarking (Data Challenges)

https://paperswithcode.com/sota/image-classification-on-imagenet

of object classes: 1000 # of images > 1.2 M

Best accuracy score: ~91%

State-of-the-art architectures: CNN, Vision Transformers

CNN-based classification and Ocean Data

LIMNOLOGY and OCEANOGRAPHY: METHODS

Automated plankton image analysis using convolutional neural networks

Jessica Y. Luo O. 1-2ea Jean-Olivier Irissen. Beniamin Craham. Cedric Guigand. Amin Sarafraz. Christi

| Marinet | Harfiel | H

Tropical Cyclone Intensity Classification and Estimation Using Infrared Satellite Images With Deep Learning

TESE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Vertical Structure-Based Classification of Oceanic Eddy Using 3-D Convolutional Neural Network

Fine-tuning from pre-trained models

Figure 2: The architecture of VGG16 model.

General idea: the first layers involve generic feature extraction step and the last block can be regarded as a dataset-specific classification block.

Fine-tuning from pre-trained models

General idea: the first layers involve generic feature extraction step and the last block can be regarded as a dataset-specific classification block.

Fine-tuning from pre-trained models

https://github.com/CIA-Oceanix/DLCourse_MOi_2022/blob/main/notebooks/notebook_MNIST_classification_MLP_CNN_TransferLearning_students.ipynb

Examples of DL models for object recognition (2010-2020)

AlexNet (60M of parameters)

Lecture. #2 Things to know (CNN)

- Convolution layers
- Pooling layers
- Activation layers
- Dropout layers
- Padding and stride
- Fully-Connected/Dense layers
- Fine-tuning
- Over-fitting
- Data augmentation