Семинар 3. Тема занятия: "Расчёт реакций линейной электрической цепи с источниками синусоидальных сигналов в статическом режиме. Метод комплексных амплитуд."

Целью проведения занятия является освоение методов расчёта устройств, работающих с периодическими сигналами и в частности с гармоническими сигналами; более глубокое осмысление основных элементов цепей - резистивного, индуктивного и ёмкостного как потребителей активной, реактивной положительной и реактивной отрицательной мощности.

Синусоидальный (гармонический) сигнал с методической точки зрения является в теории цепей базовым (или типовым) при анализе процессов в частотной области и при получении необходимых в практике частотных характеристик различных электромагнитных устройств и систем.

Синусоидально изменяющиеся во времени напряжения $u(t) = U_m \sin(\omega t + \psi_u)$ и токи $i(t) = I_m \sin(\omega t + \psi_i)$ (см. рис.1) характеризуются следующими параметрами:

- $U_{\it m}$, $I_{\it m}$ амплитудные (максимальные) значения;
- $\omega = 2\pi f = 2\pi/T$ частота (угловая), рад/с;
- f = 1/T частота (циклическая), Гц;
- *Т* период, c;
- ψ_{u} , ψ_{i} начальные фазы.

Рис.1. Синусоидальные напряжение и ток

Положительные начальные фазы $\psi_u > 0$ и $\psi_i > 0$ откладываются от начала координат влево, отрицательные – вправо.

По оси ординат откладываются мгновенные значения функций u(t)в вольтах и i(t)в амперах.

По оси абсцисс откладывается или время t в секундах, или пропорциональная ему угловая величина ωt в радианах. Поэтому периодом будет являться или T [c], или 2π [рад].

Разность начальных фаз напряжения и тока $\phi = \psi_u - \psi_i$ называется углом сдвига фазы тока по отношению к напряжению. При $\phi = 0$ ток и напряжение совпадают по фазе (синфазны), при $\phi = \pm \pi$ - противоположны по фазе (в противофазе), при $\phi = \pm \pi/2$ находятся в квадратуре, если $\phi > 0$ - ток отстает от напряжения, если $\phi < 0$ - ток опережает напряжение.

Комплексная амплитуда \dot{U}_m соответствует положению вектора $\dot{U}_m(t)$ на комплексной плоскости в начальный момент времени t=0 (puc.3.2).

Комплексная амплитуда \dot{U}_m , как всякое комплексное число, может быть представлена в трех формах:

- в показательной

$$\dot{U}_m = \left| \dot{U}_m \right| e^{j \arg \left\langle \dot{U}_m \right\rangle} = U_m e^{j \psi_u}; \tag{1}$$

- в алгебраической

$$\dot{U}_m = \operatorname{Re}\{\dot{U}_m\} + j\operatorname{Im}\{\dot{U}_m\} = a + jb, \tag{2}$$

где $a = \operatorname{Re}\{\dot{U}_m\}$ – вещественная часть (вещественной число),

 $b=\operatorname{Im}\{\dot{U}_m\}$ — вещественный множитель при мнимой единице, jb - мнимая часть числа $\dot{U}_m;$

- в тригонометрической

$$\dot{U}_m = U_m \cos \psi_u + jU_m \sin \psi_u. \tag{3}$$

Между тремя формами очевидна следующая связь:

$$a = \text{Re}\{\dot{U}_{m}\} = U_{m}\cos\psi_{u}; \ b = \text{Im}\{\dot{U}_{m}\} = U_{m}\sin\psi_{u}; \}$$

$$\psi_{u} = \arg\{\dot{U}_{m}\} = \arg\{b/a\}; \ |\dot{U}_{m}| = U_{m} = \sqrt{a^{2} + b^{2}}. \}$$
(4)

В вычислительном процессе наиболее удобными являются показательная и алгебраическая формы. Тригонометрическая форма используется только для взаимного перехода показательной и алгебраической форм.

Расчет цепи с R,L и C элементами целесообразно проводить в следующей последовательности:

- переход от синусоидальных функций источников к их комплексным амплитудам (комплексным действующим значениям);
 - вычисление комплексных сопротивлений элементов;
- переход к расчетной схеме для комплексных сопротивлений и комплексных амплитуд (комплексных действующих значений) токов и напряжений;
- расчет комплексных амплитуд (комплексных действующих значений) искомых токов и напряжений;
 - проверка правильности решения по уравнению баланса комплексных мощностей;
- восстановление синусоидальных функций (функций-оригиналов) искомых токов и напряжений по их комплексным амплитудам.

Пример расчета

Линейная электрическая цепь, схема которой приведена на рис.2,a, содержит идеальный источник синусоидального напряжения $V(t) = V_m \sin(\omega t + \psi_V)$ и потребитель, представляющий последовательно-параллельное соединение элементов R, L и C.

Параметры источника и элементов потребителя заданы: $V_m=10$ В; $\omega=1000$ рад/с; L=0.01 Гн; R=10 Ом; $C=10^{-4}$ Ф.

Требуется определить реакции цепи в установившемся режиме, используя метод комплексных амплитуд.

Рис.2. Исходная схема электрической цепи (a), ее расчетная схема (δ)

В большинстве подобных задач удобно для установившихся режимов принимать начальную фазу источника $\psi_V = 0$. В этом случае фазовые сдвиги всех реакций можно отсчитывать от условного нуля. С учетом этого допущения комплексная амплитуда

напряжения источника будет определяться:

$$\dot{V}_m = V_m e^{j0^\circ} = 10 e^{j0^\circ}$$
, B.

Комплексные сопротивления компонентов цепи:

$$jX_L = j\omega L = j10$$
 , Ом; $-jX_C = -j1/\omega C = -j10$, Ом; $R = 10$ Ом.

Комплексное сопротивление параллельного соединения R,C :

$$Z_2(j\omega) = R(-jX_C)/(R-jX_C) = 5-j5 = 5\sqrt{2}e^{-j45^{\circ}}$$
, Om.

Комплексная амплитуда тока источника:

$$\dot{I}_{m1} = \dot{V}_m / [jX_L + Z_2(j\omega)] = 10e^{j0^\circ} / [5+j5] = 10e^{j0^\circ} / 5\sqrt{2}e^{j45^\circ} = \sqrt{2}e^{-j45^\circ} = 1-j1$$
 А. Комплексные амплитуды напряжений:

$$\dot{U}_{m2} = \dot{U}_{m3} = Z_2(j\omega)\dot{I}_{m1} = 5\sqrt{2}e^{-j45^{\circ}} \cdot \sqrt{2}e^{-j45^{\circ}} = 10e^{-j90^{\circ}} = -j10$$
, B.

Комплексные амплитуды токов:

$$\dot{I}_{m2} = \dot{U}_{m2}/R = 1e^{-j90^{\circ}} = -j1$$
, A; $\dot{I}_{m3} = \dot{U}_{m3}/(-jX_C) = 1e^{j0^{\circ}} = 1$, A.

Комплексная амплитуда напряжения \dot{U}_{m1} :

$$\dot{U}_{m1} = jX_L \dot{I}_{m1} = j10(1-j1) = 10 + j10 = 10\sqrt{2}e^{j45^{\circ}}$$
, B.

Комплексная мощность источника:

$$\widetilde{S}_{\text{MCT.}} = \dot{V} \cdot I_1^* = \dot{V}_m \cdot I_{m1}^* / 2 = 10^{j0^\circ} \cdot \sqrt{2} e^{j45^\circ} / 2 = 5\sqrt{2} e^{j45^\circ} = 5 + j5$$
, BA.

Комплексная мощность потребителя (пассивной части цепи):

$$\widetilde{S}_{\Pi} = \widetilde{S}_1 + \widetilde{S}_2 + \widetilde{S}_3 = j10 + 5 - j5 = 5 + j5 = 5\sqrt{2}e^{j45^{\circ}}$$
, BA,

где:
$$\widetilde{S}_1 = \dot{U}_{m1} I_{m1}^* / 2 = 10\sqrt{2} e^{j45^\circ} \cdot \sqrt{2} \cdot e^{j45^\circ} / 2 = 10 e^{j90^\circ} = j10$$
, BA;

$$\widetilde{S}_2 = \dot{U}_{m2} I_{m2}^* / 2 = 10 e^{-j90^\circ} \cdot 1 e^{j90^\circ} / 2 = 5$$
, BA;

$$\widetilde{S}_3 = \dot{U}_{m3} I_{m3}^* / 2 = 10 e^{-j90^\circ} \cdot 1/2 = 5 e^{-j90^\circ} = -j5$$
, BA;

$$P_{\Pi} = 5$$
, BT; $jQ_{\Pi} = j5$, BAP.

Вывод:
$$\widetilde{S}_{\text{ист.}} = \widetilde{S}_{\Pi}$$
.

Окончательно комплексные амплитуды реакций:

$$\dot{I}_{m1} \approx 1.414 e^{-j45^{\circ}}$$
, A; $\dot{I}_{m2} = 1 e^{-j90^{\circ}}$, A; $\dot{I}_{m3} = 1 \cdot e^{j0^{\circ}}$, A;

$$\dot{U}_{m1} \approx 14.14e^{j45^{\circ}}$$
, B; $\dot{U}_{m2} = 10e^{-j90^{\circ}}$, B; $\dot{U}_{m3} = 10e^{-j90^{\circ}}$, B.

Реакции в области "t":

$$i_1(t) = 1,41\sin(1000t - 45^\circ)$$
, A; $i_2(t) = 1\sin(1000t - 90^\circ)$, A; $i_3(t) = 1\sin 1000t$, A; $u_1(t) = 14,1\sin(1000t + 45^\circ)$, B; $u_2(t) = u_3(t) = 10\sin(1000t - 90^\circ)$, B.

В качестве домашнего задания студенты дома выполняют индивидуальный расчёт типовой цепи из последовательного соединения R, L и C элементов с разными значениями параметров цепи, частоты и амплитуды напряжения источника. Результаты расчёта проверяются при выполнении лабораторной работы по этой теме с использованием программы Multisim.

Числовые данные даны без привязки к соответствующему номеру схемы. По усмотрению преподавателя могут задаваться одинаковые номера вариантов схем и числовых данных, или один вариант числовых данных на всю группу. Значения уровня напряжения V_0 и частоты f гармонического сигнала задаются преподавателем. Например: $V_0 = 1B*N_2$ схемы, $f = 10 \ \Gamma \text{Ц} * N_2$ схемы

Числовые варианты

№№ п/п	R1, Om	R2, Om	R3, Om	R4, Om	L1, мГн	L2, мГн	С1, мкФ	С2, мкФ
. 1	100	150	200	500	5	15	1	20
2	10	20	300	400	20	40	100	20
3	1000	500	500	100	10	20	2	10
4	20	40	100	200	20	5	0,5	5
5	20	10	500	200	1	2	0,1	1
6	200	300	400	500	10	30	10	20
7	10	50	100	200	5	5	10	100
8	100	20	40	60	8	18	20	50
9	50	- 20	30	40	2	10	10	50
10	-50	. 500	60	50	4	8	2	5
11	100	20	100	200	5	20	10	50
12	1000	200	500	20	2	20	2	20
13	200	1000	100	100	2	4	100	20
14	100	200	50	50	1	5	20	50
15	20	100	200	200	20	20	50	500
16	50	200	200	100	11	2	10	10
17	30	40	50	60	15	30	0,4	1
18	50	100	400	20	15	5	2	10
19	20	200	400	10	15	5	10	2
20	100	200	300	400	10	5	4	10
21	300	300	150	150	1	0,5	40	100
22	50	20	50	100	2	4	100	200
23	500	20	400	100	10	5	10	50
24	200	20	400	40	5	1	2	10
25	100	150	200	400	2	8	0,02	4
26	100	200	300	200	2	20	50	50

Пример расчета (вариант 2 самостоятельной работы по теме 3-го семинара)

Может быть использован при наличии у преподавателя нескольких групп. Задаётся один вариант цепи и различные комбинации числовых данных. В результате у каждого студента имеется свой набор исходных данных для расчёта, а преподавателю относительно проще обнаружить ошибки в расчёте.

Дана цепь.

Цепь представляет собой последовательное соединение R, L и C элементов. Параметры цепи могут быть заданы путём расчёта по следующим формулам:

 $V=U=60+N_{cn rp}*10=150B$ то есть напряжение источника V задаётся равным действующему значению напряжения на участке цепи, которое вычисляется через номер в списке группы $N_{cn rp}$. Примем в рассматриваемом примере величину номера студента, равной 9.

$$\begin{split} R &= 6 + N_{\text{сп rp}} = 6 + 9 = 15 [\text{Ом}] \\ L &= 0.02 * N_{\text{сп rp}} = 0.02 *9 = 0.18 [\Gamma_{\text{H}}] \\ C &= (20 * N_{\text{сп rp}} + 100) \ 10^{\text{-}6} \ [\Phi] = (20 * 9 + 100) \ 10^{\text{-}6} \ [\Phi] = 280 \text{мк} \Phi \\ f &= 20 + 10 * N_{\text{сп rp}} = 20 + 10 *9 = 110 \ [\Gamma_{\text{II}}] \end{split}$$

В разных группах изменяются только константы в приведённых формулах.

Расчёт проводится сначала в действующих значениях, а затем определяются амплитудные величины токов и напряжений.

Модуль реактивного индуктивного сопротивления

$$x_L = 2\pi f L = 2*3.14*110*0.18 = 124.3[O_M]$$

Модуль реактивного ёмкостного сопротивления

$$x_C = \frac{1}{2\pi fC} = \frac{1}{2*3.14*110*0.00028} = 5.17[O_M]$$

Комплексное сопротивление индуктивного элемента цепи: $z_L = jx_L = j124.3 [O_M]$

Комплексное сопротивление ёмкостного элемента цепи: $z_{C} = -jx_{C} = -j5.17 [O_{M}]$

Полное комплексное сопротивление цепи:

$$z = R + jx_L - jx_C = 15 + j124.3 - j5.17 = 15 + j119.13$$
[O_M] = $120.1e^{82.8^\circ}$ [O_M], где модуль z равен $|z| = \sqrt{R^2 + (x_L - x_C)^2} = \sqrt{15^2 + 119.13^2} = 120.1$ [O_M] и фаза ϕ равна

$$\phi = arctg \frac{x_L - x_C}{R} = arctg \frac{119.13}{15} = 82.8^{\circ}$$

Действующее значение тока в цепи равно:
$$\stackrel{\bullet}{I} = \frac{\stackrel{\bullet}{U}}{z} = \frac{150 * e^{j0}}{120.1 * e^{j82.8^{\circ}}} = 1.25 * e^{-j82.8^{\circ}} [A]$$

Напряжение на резистивном элементе $\overset{\bullet}{U}_R = R * \overset{\bullet}{I} = 15 * 1.25 * e^{-j82.8^{\circ}} = 18.73 * e^{-j82.8^{\circ}} [B]$

Напряжение на индуктивном элементе

$$\overset{\bullet}{U}_{L} = z_{L} * \overset{\bullet}{I} = 124.3 * e^{j90^{\circ}} * 1.25 * e^{-j82.8^{\circ}} = 155.28 * e^{j7.2^{\circ}} [B]$$

Напряжение на ёмкостном элементе

$$\overset{\bullet}{U}_C = z_C * \overset{\bullet}{I} = 5.17 * e^{-j90^{\circ}} * 1.25 * e^{-j82.8^{\circ}} = 6.46 * e^{-j172.8^{\circ}} [B]$$

Амплитудные значения тока, напряжения источника и напряжений на элементах цепи:

$$\overset{\bullet}{I}_m = \overset{\bullet}{I} * \sqrt{2} = 1.25 * e^{-j82.8^{\circ}} * 1.41 = 1.77 * e^{-j82.8^{\circ}} [A]$$

$$\dot{U}_m = \dot{U} * \sqrt{2} = 150 * 1.414 = 212[B]$$

$$\overset{\bullet}{U}_{Rm} = \overset{\bullet}{U_R} * \sqrt{2} = 18.73 * e^{-j82.8^{\circ}} * 1.414 = 26.49 * e^{-j82.8^{\circ}} [B]$$

$$\overset{\bullet}{U}_{Lm} = \overset{\bullet}{U}_{L} * \sqrt{2} = 155.28 * e^{j7.2^{\circ}} * \sqrt{2} = 219.60 * e^{j7.2^{\circ}} [B]$$

$$\overset{\bullet}{U}_{Cm} = \overset{\bullet}{U}_{C} * \sqrt{2} = 6.46 * e^{-j172.8^{\circ}} * \sqrt{2} = 9.13 * e^{-j172.8^{\circ}} [B]$$

Расчёт мощностей в цепи переменного тока и баланс мощностей:

Активная мощность цепи $P = R * I^2 = 15 * 1.25^2 = 23.44 [Bm]$

Реактивная индуктивная мощность цепи $Q_L = x_L * I^2 = 124.34 * 1.25^2 = 194.28 [BAp]$

Реактивная ёмкостная мощность цепи $Q_C = x_C * I^2 = 5.17 * 1.25^2 = 8.08 [BAp]$

Полная мощность цепи $\dot{S} = P + jQ_L - jQ_C = 23.44 + j186.2[BA]$