

iNEMO inertial module: 3D accelerometer and 3D gyroscope

Datasheet - production data

Features

Analog supply voltage: 1.71 V to 3.6 V

- Independent IOs supply (1.71 V)
- "Always on" eco power mode down to 1.8 mA
- 3 independent acceleration channels and 3 angular rate channels
- ±2/±4/±8/±16 g full scale
- ±245/±500/±2000 dps full scale
- SPI/I²C serial interface
- Embedded temperature sensor
- Embedded FIFO
- ECOPACK[®], RoHS and "Green" compliant

Applications

- · GPS navigation systems
- · Impact recognition and logging
- · Gaming and virtual reality input devices
- Motion-activated functions
- · Intelligent power saving for handheld devices
- Vibration monitoring and compensation
- · Free-fall detection
- 6D orientation detection

Description

The LSM6DS0 is a system-in-package featuring a 3D digital accelerometer and a 3D digital gyroscope. ST's family of MEMS sensor modules leverages the robust and mature manufacturing processes already used for the production of micromachined accelerometers and gyroscopes.

The various sensing elements are manufactured using specialized micromachining processes, while the IC interfaces are developed using CMOS technology that allows the design of a dedicated circuit which is trimmed to better match the sensing element characteristics.

The LSM6DS0 has a full-scale acceleration range of $\pm 2/\pm 4/\pm 8/\pm 16$ g and an angular rate range of $\pm 245/\pm 500/\pm 2000$ dps. The LSM6DS0 has two operating modes in that the accelerometer and gyroscope sensors can be either activated at the same ODR or the accelerometer can be enabled while the gyroscope is in power-down.

The LSM6DS0 is available in a plastic land grid array (LGA) package.

Table 1. Device summary

Part number	Temp. range [°C]	Package	Packing			
LSM6DS0	-40 to +85	LGA-16L	Tray			
LSM6DS0TR	-40 to +85	(3x3x0.86 mm)	Tape and reel			

Contents LSM6DS0

Contents

1	Pin (descript	tion	8
2	Mod	ule spe	cifications	10
	2.1	Mecha	anical characteristics	10
	2.2	Electri	cal characteristics	12
		2.2.1	Recommended power-up sequence	12
	2.3	Tempe	erature sensor characteristics	13
	2.4	Comm	nunication interface characteristics	14
		2.4.1	SPI - serial peripheral interface	14
		2.4.2	I ² C - inter-IC control interface	15
	2.5	Absolu	ıte maximum ratings	16
	2.6	Termin	nology	17
		2.6.1	Sensitivity	17
		2.6.2	Zero-g and zero rate level	17
3	Fund	ctionalit	ty	18
	3.1	Opera	ting modes	18
	3.2	Gyroso	cope power modes	18
	3.3	Multipl	le reads (burst)	20
	3.4	Digital	block diagram	21
	3.5			
		3.5.1	Bypass mode	22
		3.5.2	FIFO mode	23
		3.5.3	Continuous mode	23
		3.5.4	Continuous-to-FIFO mode	24
		3.5.5	Bypass-to-Continuous mode	25
4	Digit	tal inter	faces	26
	4.1	I ² C se	rial interface	26
		4.1.1	I ² C operation	27
	4.2	SPI bu	us interface	28
		4.2.1	SPI read	29
		4.2.2	SPI write	30

		4.2.3 SPI read in 3-wire mode
5	Appli	cation hints
	5.1	External capacitors
6	Regis	ster mapping
7	Regis	ster description
	7.1	ACT_THS (04h)
	7.2	ACT_DUR (05h)
	7.3	INT_GEN_CFG_XL (06h)
	7.4	INT_GEN_THS_X_XL (07h)
	7.5	INT_GEN_THS_Y_XL (08h)
	7.6	INT_GEN_THS_Z_XL (09h)
	7.7	INT_GEN_DUR_XL (0Ah)
	7.8	REFERENCE_G (0Bh)
	7.9	INT_CTRL (0Ch)
	7.10	WHO_AM_I (0Fh)
	7.11	CTRL_REG1_G (10h)
	7.12	CTRL_REG2_G (11h)
	7.13	CTRL_REG3_G (12h) 41
	7.14	ORIENT_CFG_G (13h)
	7.15	INT_GEN_SRC_G (14h)
	7.16	OUT_TEMP_L (15h), OUT_TEMP_H (16h)
	7.17	STATUS_REG (17h)
	7.18	OUT_X_G (18h - 19h)
	7.19	OUT_Y_G (1Ah - 1Bh)
	7.20	OUT_Z_G (1Ch - 1Dh)
	7.21	CTRL_REG4 (1Eh)
	7.22	CTRL_REG5_XL (1Fh)
	7.23	CTRL_REG6_XL (20h)
	7.24	CTRL_REG7_XL (21h)
	7.25	CTRL_REG8 (22h)
	7.26	CTRL_REG9 (23h)

10	Revis	sion history58
9	Pack	age information
8	Sold	ering information
	7.39	INT_GEN_DUR_G (37h)
	7.38	INT_GEN_THS_Z_G (35h - 36h)
	7.37	INT_GEN_THS_Y_G (33h - 34h)
	7.36	INT_GEN_THS_X_G (31h - 32h)
	7.35	INT_GEN_CFG_G (30h)
	7.34	FIFO_SRC (2Fh)
	7.33	FIFO_CTRL (2Eh)
	7.32	OUT_Z_XL (2Ch - 2Dh)
	7.31	OUT_Y_XL (2Ah - 2Bh)
	7.30	OUT_X_XL (28h - 29h)
	7.29	STATUS_REG (27h)
	7.28	INT_GEN_SRC_XL (26h)
	7.27	CTRL_REG10 (24h)

LSM6DS0 List of tables

List of tables

Table 1.	Device summary	1
Table 1.	Pin description	
Table 2.	Mechanical characteristics	
Table 3.	Electrical characteristics	
Table 4.		
	Temperature sensor characteristics	
Table 6.	SPI slave timing values	
Table 7.	I ² C slave timing values	
Table 8.	Absolute maximum ratings	
Table 9.	Gyroscope operating modes	
Table 10.	Operating mode current consumption	
Table 11.	Accelerometer turn-on time	
Table 12.	Gyroscope turn-on time	
Table 13.	Serial interface pin description	
Table 14.	I ² C terminology	
Table 15.	SAD+Read/Write patterns	
Table 16.	Transfer when master is writing one byte to slave	
Table 17.	Transfer when master is writing multiple bytes to slave	
Table 18.	Transfer when master is receiving (reading) one byte of data from slave	
Table 19.	Transfer when master is receiving (reading) multiple bytes of data from slave	
Table 20.	Register mapping	33
Table 21.	ACT_THS register	35
Table 22.	ACT_THS register description	35
Table 23.	ACT_DUR register	35
Table 24.	ACT_DUR register description	35
Table 25.	INT_GEN_CFG_XL register	35
Table 26.	INT_GEN_CFG_XL register description	
Table 27.	INT_GEN_THS_X_XL register	
Table 28.	INT_GEN_THS_X_XL register description	
Table 29.	INT_GEN_THS_Y_XL register	
Table 30.	INT_GEN_THS_Y_XL register description	
Table 31.	INT_GEN_THS_Z_XL register	
Table 32.	INT_GEN_THS_Z_XL register description	
Table 33.	INT GEN DUR XL register	
Table 34.	INT_GEN_DUR_XL register description	
Table 35.	REFERENCE G register	
Table 36.	REFERENCE_G register description	
Table 37.	INT CTRL register	
Table 38.	INT_CTRL register description	
Table 39.	WHO AM I register	
Table 40.	CTRL REG1 G register.	
Table 41.	CTRL_REG1_G register description.	
Table 42.	ODR and BW configuration setting (after LPF1)	
Table 43.	ODR and BW configuration setting (after LPF2)	
Table 44.	CTRL_REG2_G register	
Table 44.	CTRL_REG2_G register description.	
Table 45.	CTRL_REG2_G register description.	
Table 46.	CTRL_REG3_G register description	
Table 47.		
1 abit 40.	Gyroscope high-pass filter cutoff frequency configuration [Hz]	42

Table 49.	ORIENT_CFG_G register	
Table 50.	ORIENT_CFG_G register description	
Table 51.	INT_GEN_SRC_G register	
Table 52.	INT_GEN_SRC_G register description	
Table 53.	OUT_TEMP_L register	
Table 54.	OUT_TEMP_H register	
Table 55.	OUT_TEMP register description	
Table 56.	STATUS_REG register	
Table 57.	STATUS_REG register description	
Table 58.	CTRL_REG4 register	
Table 59.	CTRL_REG4 register description	
Table 60.	CTRL_REG5_XL register	
Table 61.	CTRL_REG5_XL register description	
Table 62.	CTRL_REG6_XL register	
Table 63.	CTRL_REG6_XL register description	
Table 64.	ODR register setting (accelerometer only mode)	
Table 65.	CTRL_REG7_XL register	
Table 66.	CTRL_REG7_XL register description	
Table 67.	Low pass cut-off frequency in high resolution mode (HR = 1)	
Table 68.	CTRL_REG8 register	
Table 69.	CTRL_REG8 register description	
Table 70.	CTRL_REG9 register	
Table 71.	CTRL_REG9 register description	
Table 72.	CTRL_REG10 register	
Table 73.	CTRL_REG10 register description	
Table 74.	INT_GEN_SRC_XL register	
Table 75.	INT_GEN_SRC_XL register description	
Table 76.	STATUS_REG register	
Table 77.	STATUS_REG register description.	
Table 78.	FIFO_CTRL register	
Table 79.	FIFO_CTRL register description	
Table 80.	FIFO mode selection	
Table 81.	FIFO_SRC register	
Table 82.	FIFO_SRC register description.	
Table 83.	FIFO_SRC example: OVR/FSS details	
Table 84.	INT_GEN_CFG_G register	
Table 85.	INT_GEN_CFG_G register description	
Table 86.	INT_GEN_THS_XH_G register	
Table 87.	INT_GEN_THS_XL_G register	
Table 88.	INT_GEN_THS_X_G register description	
Table 89.	INT_GEN_THS_YH_G register	
Table 90.	INT_GEN_THS_YL_G register	
Table 91.	INT_GEN_THS_Y_G register description	
Table 92.	INT_GEN_THS_ZH_G register	
Table 93.	INT_GEN_THS_ZL_G register	
Table 94.	INT_GEN_THS_Z_G register description	
Table 95.	INT_GEN_DUR_G register	
Table 96.	INT_GEN_DUR_G register description	
Table 97	Document revision history	58

LSM6DS0 List of figures

List of figures

Figure 1.	Pin connections	8
Figure 2.	Recommended power-up sequence	12
Figure 3.	SPI slave timing diagram	14
Figure 4.	I ² C slave timing diagram	15
Figure 5.	Switching operating modes	18
Figure 6.	Multiple reads: accelerometer only	20
Figure 7.	Multiple reads: accelerometer and gyroscope	20
Figure 8.	Digital block diagram	21
Figure 9.	Bypass mode	22
Figure 10.	FIFO mode	23
Figure 11.	Continuous mode	24
Figure 12.	Continuous-to-FIFO mode	24
Figure 13.	Bypass-to-Continuous mode	25
Figure 14.	Read and write protocol	28
Figure 15.	SPI read protocol	
Figure 16.	Multiple byte SPI read protocol (2-byte example)	30
Figure 17.	SPI write protocol	30
Figure 18.	Multiple byte SPI write protocol (2-byte example)	30
Figure 19.	SPI read protocol in 3-wire mode	
Figure 20.	LSM6DS0 electrical connections	
Figure 21.	INT_SEL and OUT_SEL configuration gyroscope block diagram	
Figure 22.	Wait bit disabled	
Figure 23.	Wait bit enabled	
Figure 24.	LGA 3x3x0.86 16L package outline and dimensions	57

Pin description LSM6DS0

Pin description 1

Figure 1. Pin connections

8/59 DocID025604 Rev 3 LSM6DS0 Pin description

Table 2. Pin description

Pin#	Name	Function
1	Vdd_IO ⁽¹⁾	Power supply for I/O pins
2	SCL SPC	I ² C serial clock (SCL) SPI serial port clock (SPC)
3	SDA SDI SDO	I ² C serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO)
4	SDO SA0	SPI serial data output (SDO) I ² C least significant bit of the device address (SA0)
5	CS	SPI enable I ² C/SPI mode selection (1: SPI idle mode / I ² C communication enabled; 0: SPI communication mode / I ² C disabled)
6	RES	Leave unconnected
7	INT	Programmable interrupt
8	RES	Connect to GND
9	RES	Connect to GND
10	RES	Connect to GND
11	RES	Connect to Vdd or GND
12	GND	0 V supply
13	GND	0 V supply
14	Сар	Connect to GND with ceramic capacitor ⁽²⁾
15	RES	Connect to Vdd or GND
16	Vdd ⁽³⁾	Power supply

^{1.} Recommended 100 nF filter capacitor.

^{2.} $10 \text{ nF} (\pm 10\%)$, 16 V. 1 nF minimum value has to be guaranteed under 11 V bias condition.

^{3.} Recommended 100 nF plus 10 μF capacitors.

Module specifications 2

2.1 **Mechanical characteristics**

@ Vdd = 2.2 V, T = 25 °C unless otherwise noted(a)

Table 3. Mechanical characteristics

Symbol	Parameter	Test conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
				±2		
14 50	Linear acceleration measurement range			±4] _
LA_FS				±8		g
				±16]
				±245		
G_FS	Angular rate measurement range			±500		dps
				±2000		1
		FS = ±2 g		0.061		
	_So Linear acceleration sensitivity	FS = ±4 g		0.122		
LA_So		FS = ±8 <i>g</i>		0.244		mg/LSb
		FS = ±16 <i>g</i>		0.732		
		FS = ±245 dps		8.75		mdps/LSb
G_So	Angular rate sensitivity	FS = ±500 dps		17.50		
		FS = ±2000 dps		70		
LA_TyOff	Linear acceleration typical zero-g level offset accuracy ⁽²⁾	FS = ±8 <i>g</i>		±90		m <i>g</i>
G_TyOff	Angular rate typical zero-rate level ⁽³⁾	FS = ±2000 dps		±30		dps
LA ODB	Linear acceleration output data rate	Gyro ON		952 476 238 119 59.5 14.9		Hz
LA_ODR	Linear acceleration output data rate	Gyro OFF		952 476 238 119 50 10		Hz

a. The product is factory calibrated at 2.2 V. The operational power supply range is from 1.71 V to 3.6 V.

10/59 DocID025604 Rev 3

Table 3. Mechanical characteristics (continued)

Symbol	Parameter	Test conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
G_ODR	Angular digital output data rate			952 476 238 119 59.5		Hz
				14.9		
Тор	Operating temperature range		-40		+85	°C

^{1.} Typical specifications are not guaranteed.

^{2.} Typical zero-g level offset value after soldering.

^{3.} Typical zero-rate level offset value after MSL3 preconditioning.

2.2 Electrical characteristics

@ Vdd = 2.2 V, T = 25 °C unless otherwise noted

Table 4. Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
Vdd	Supply voltage		1.71		3.6	V
Vdd_IO	Power supply for I/O		1.71		Vdd + 0.1	V
	Accelerometer current consumption in normal mode	ODR = 10 Hz		60		
LA_ldd		ODR = 50 Hz		160		μA
		ODR ≥ 119 Hz		330		
G_ldd	Gyroscope current consumption in normal mode			4.0		mA
Тор	Operating temperature range		-40		+85	°C
Trise	Time for power supply rising ⁽²⁾		0.01		100	ms
Twait	Time delay between Vdd_IO and Vdd (2)		0		10	ms

^{1.} Typical specifications are not guaranteed.

2.2.1 Recommended power-up sequence

For the power-up sequence please refer to the following figure, where:

- Trise is the time for the power supply to rise from 10% to 90% of its final value
- Twait is the time delay between the end of the Vdd_IO ramp (90% of its final value) and the start of the Vdd ramp

Vdd_IO 0V

Twait

Vdd 0V

Trise

Figure 2. Recommended power-up sequence

577

^{2.} Please refer to Section 2.2.1: Recommended power-up sequence for more details.

2.3 Temperature sensor characteristics

@ Vdd = 2.2 V, T = 25 $^{\circ}$ C unless otherwise noted $^{(b)}$

Table 5. Temperature sensor characteristics

Symbol	Parameter	Test condition	Min.	Typ. ⁽¹⁾	Max.	Unit
TODB	TODR Temperature refresh rate	Gyro off ⁽²⁾		50		Hz
TODK		Gyro on		59.5		112
TSen	Temperature sensitivity ⁽³⁾			16		LSB/°C
Тор	Operating temperature range		-40		+85	°C

^{1.} Typical specifications are not guaranteed.

b. The product is factory calibrated at 2.2 $\ensuremath{\text{V}}$.

^{2.} When the accelerometer ODR is set to 10 Hz and the gyroscope part is turned off, the TODR value is 10 Hz.

^{3.} The output of the temperature sensor is 0 (typ.) at 25°C

2.4 Communication interface characteristics

2.4.1 SPI - serial peripheral interface

Subject to general operating conditions for Vdd and Top.

Table 6. SPI slave timing values

Symbol	Parameter	Valu	ue ⁽¹⁾	Unit
Symbol	Parameter	Min	Max	Onit
t _{c(SPC)}	SPI clock cycle	100		ns
f _{c(SPC)}	SPI clock frequency		10	MHz
t _{su(CS)}	CS setup time	5		
t _{h(CS)}	CS hold time	20		
t _{su(SI)}	SDI input setup time	5		
t _{h(SI)}	SDI input hold time	15		ns
t _{v(SO)}	SDO valid output time		50	
t _{h(SO)}	SDO output hold time	5		
t _{dis(SO)}	SDO output disable time		50	

Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not tested in production

Figure 3. SPI slave timing diagram

Note: Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both input and output ports.

2.4.2 I²C - inter-IC control interface

Subject to general operating conditions for Vdd and Top.

Table 7. I²C slave timing values

Cumbal	Parameter	I ² C Standa	ard mode ⁽¹⁾	I ² C Fast	mode ⁽¹⁾	Unit
Symbol	Parameter	Min	Max	Min	Max	Offic
f _(SCL)	SCL clock frequency	0	100	0	400	kHz
t _{w(SCLL)}	SCL clock low time	4.7		1.3		
t _{w(SCLH)}	SCL clock high time	4.0		0.6		— μs
t _{su(SDA)}	SDA setup time	250		100		ns
t _{h(SDA)}	SDA data hold time	0	3.45	0	0.9	μs
t _{h(ST)}	START condition hold time	4		0.6		
t _{su(SR)}	Repeated START condition setup time	4.7		0.6		lie.
t _{su(SP)}	STOP condition setup time	4		0.6		— μs
t _{w(SP:SR)}	Bus free time between STOP and START condition	4.7		1.3		

^{1.} Data based on standard I²C protocol requirement, not tested in production.

Figure 4. I²C slave timing diagram

Note: Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports.

Absolute maximum ratings 2.5

Stresses above those listed as "Absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 8. Absolute maximum ratings

Symbol	Ratings	Maximum value	Unit
Vdd	Supply voltage	-0.3 to 4.8	V
T _{STG}	Storage temperature range	-40 to +125	°C
Sg	Acceleration g for 0.1 ms	10,000	g
ESD	Electrostatic discharge protection (HBM)	2	kV
Vin	Input voltage on any control pin (including CS, SCL/SPC, SDA/SDI/SDO, SDO/SA0)	0.3 to Vdd_IO +0.3	V

Note: Supply voltage on any pin should never exceed 4.8 V.

This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part.

This device is sensitive to electrostatic discharge (ESD), improper handling can cause permanent damage to the part.

2.6 Terminology

2.6.1 Sensitivity

Linear acceleration sensitivity can be determined, for example, by applying 1 g acceleration to the device. Because the sensor can measure DC accelerations, this can be done easily by pointing the selected axis towards the ground, noting the output value, rotating the sensor 180 degrees (pointing towards the sky) and noting the output value again. By doing so, $\pm 1~g$ acceleration is applied to the sensor. Subtracting the larger output value from the smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This value changes very little over temperature and over time. The sensitivity tolerance describes the range of sensitivities of a large number of sensors.

An angular rate gyroscope is a device that produces a positive-going digital output for counterclockwise rotation around the considered axis. Sensitivity describes the gain of the sensor and can be determined by applying a defined angular velocity to it. This value changes very little over temperature and time.

2.6.2 Zero-g and zero rate level

Linear acceleration zero-g level offset (TyOff) describes the deviation of an actual output signal from the ideal output signal if no acceleration is present. A sensor in a steady state on a horizontal surface will measure 0 g on both the X-axis and Y-axis, whereas the Z-axis will measure 1 g. Ideally, the output is in the middle of the dynamic range of the sensor (content of OUT registers 00h, data expressed as two's complement number). A deviation from the ideal value in this case is called zero-g offset.

Offset is to some extent a result of stress to the MEMS sensor and therefore the offset can slightly change after mounting the sensor onto a printed circuit board or exposing it to extensive mechanical stress. Offset changes little over temperature, see "Linear acceleration zero-g level change vs. temperature" in *Table 3*. The zero-g level tolerance (TyOff) describes the standard deviation of the range of zero-g levels of a group of sensors.

The zero-rate level describes the actual output signal if there is no angular rate present. The zero-rate level of precise MEMS sensors is, to some extent, a result of stress to the sensor and therefore the zero-rate level can slightly change after mounting the sensor onto a printed circuit board or after exposing it to extensive mechanical stress. This value changes very little over temperature and time.

Functionality LSM6DS0

3 Functionality

3.1 Operating modes

The LSM6DS0 has two operating modes available: only accelerometer active and gyroscope in power-down or both accelerometer and gyroscope sensors active at the same ODR. Switching from one mode to the other requires one write operation: writing to $CTRL_REG6_XL$ (20h), the accelerometer operates in normal mode and the gyroscope is powered down, writing to $CTRL_REG1_G$ (10h) both the accelerometer and gyroscope are activated at the same ODR.

Figure 5 depicts both modes of operation from power down.

Figure 5. Switching operating modes

3.2 Gyroscope power modes

In the LSM6DS0, the gyroscope can be configured in three different operating modes: power-down, low-power and normal mode.

Low-power mode is available for lower ODR (14.9, 59.5, 119 Hz) while for greater ODR (238, 476, 952 Hz) the device is automatically in normal mode. *Table 9* summarizes the ODR configuration (ODR_G[2:0] bits set in *CTRL_REG1_G (10h)*) and the corresponding power modes.

To enable low-power mode, the LP_mode bit in CTRL_REG3_G (12h) has to be set to '1'.

Low-power mode allows reaching low-power consumption while maintaining the device always on, refer to *Table 10*.

18/59 DocID025604 Rev 3

LSM6DS0 Functionality

Table 9. Gyroscope operating modes

ODR_G [2:0]	ODR [Hz]	Power mode ⁽¹⁾
000	Power-down	Power-down
001	14.9	Low-power/Normal mode
010	59.5	Low-power/Normal mode
011	119	Low-power/Normal mode
100	238	Normal mode
101	476	Normal mode
110	952	Normal mode

^{1.} Gyroscope low-power mode is available for $G_FS = \pm 2000$ dps.

Table 10. Operating mode current consumption

ODR [Hz]	Power mode	Current consumption ⁽¹⁾ [mA]
14.9	Low-power	1.8
59.5	Low-power	2.3
119	Low-power	2.9
238	Normal mode	4.3
476	Normal mode	4.3
952	Normal mode	4.3

^{1.} Typical values of gyroscope and accelerometer current consumption are based on characterization data

Table 11. Accelerometer turn-on time

ODR [Hz]	BW = 400 Hz ⁽¹⁾	BW = 200 Hz ⁽¹⁾	BW = 100 Hz ⁽¹⁾	BW = 50 Hz ⁽¹⁾					
14.9	0	0	0	0					
59.5	0	0	0	0					
119	1	1	1	2					
238	1	1	2	4					
476	1	2	4	7					
952	2	4	7	14					

The table contains the number of samples to be discarded after switching between power-down mode and normal mode.

Functionality LSM6DS0

ODR [Hz]	LPF1 only ⁽¹⁾	LPF1 and LPF2 ⁽¹⁾
14.9	2	LPF2 not available
59.5 or 119	3	13
238	4	14
476	5	15
952	8	18

Table 12. Gyroscope turn-on time

3.3 Multiple reads (burst)

20/59

When only the accelerometer is activated and the gyroscope is in power down, starting from OUT_X_XL (28h - 29h) multiple reads can be performed. Once OUT_Z_XL (2Ch - 2Dh) is read, the system automatically restarts from OUT_X_XL (28h - 29h) (see Figure 6).

Figure 6. Multiple reads: accelerometer only

When both accelerometer and gyroscope sensors are activated at the same ODR, starting from OUT_X_G (18h - 19h) multiple reads can be performed. Once OUT_Z_XL (2Ch - 2Dh) is read, the system automatically restarts from OUT_X_G (18h - 19h) (see Figure 7).

Figure 7. Multiple reads: accelerometer and gyroscope

DocID025604 Rev 3

The table contains the number of samples to be discarded after switching between low-power mode and normal mode.

LSM6DS0 Functionality

3.4 Digital block diagram

HR HPIS1 0 0 Interrupt LPF2 Generator XL XL LPF1 ADC XLHPF XL0 XL 1 FDS OUT_SEL Data Reg FIFO 0 I2C SPI LPF2 Gyro SRC Registers LPF1 ADC **HPF** Gyro Gyro Gyro CFG Registers HP_EN Interrupt Generator Gyro INT_SEL

Figure 8. Digital block diagram

Functionality LSM6DS0

3.5 FIFO

The LSM6DS0 embeds 32 slots of 16-bit data FIFO for each of the gyroscope's three output channels, yaw, pitch and roll, and 16-bit data FIFO for each of the accelerometer's three output channels, X, Y and Z. This allows consistent power saving for the system, since the host processor does not need to continuously poll data from the sensor, but it can wake up only when needed and burst the significant data out from the FIFO. This buffer can work accordingly to five different modes: Bypass mode, FIFO-mode, Continuous mode, Continuous-to-FIFO mode and Bypass-to-Continuous. Each mode is selected by the FMODE [2:0] bits in the *FIFO_CTRL (2Eh)* register. Programmable FIFO threshold status, FIFO overrun events and the number of unread samples stored are available in the *FIFO_SRC (2Fh)* register and can be set to generate dedicated interrupts on the INT pin using the *INT_CTRL (0Ch)* register.

FIFO_SRC (2Fh)(FTH) goes to '1' when the number of unread samples (FIFO_SRC (2Fh) (FSS5:0)) is greater than or equal to FTH [4:0] in FIFO_CTRL (2Eh). If FIFO_CTRL (2Eh) (FTH[4:0]) is equal to 0, FIFO_SRC (2Fh)(FTH) goes to '0'.

FIFO_SRC (2Fh)(OVRN) is equal to '1' if a FIFO slot is overwritten.

FIFO_SRC (2Fh)(FSS [5:0]) contains stored data levels of unread samples. When FSS [5:0] is equal to '000000', FIFO is empty. When FSS [5:0] is equal to '100000', FIFO is full and the unread samples are 32.

The FIFO feature is enabled by writing '1' in CTRL_REG9 (23h) (FIFO_EN).

To guarantee the correct acquisition of data during the switching into and out of FIFO mode, the first sample acquired must be discarded.

3.5.1 Bypass mode

In Bypass mode (*FIFO_CTRL (2Eh)*(FMODE [2:0]= 000), the FIFO is not operational and it remains empty.

Bypass mode is also used to reset the FIFO when in FIFO mode.

As described in *Figure 9*, for each channel only the first address is used. When new data is available the old data is overwritten.

Figure 9. Bypass mode

LSM6DS0 Functionality

3.5.2 FIFO mode

In FIFO mode (*FIFO_CTRL* (*2Eh*) (FMODE [2:0] = 001) data from the output channels are stored in the FIFO until it is overwritten.

To reset FIFO content, Bypass mode should be selected by writing *FIFO_CTRL (2Eh)* (FMODE [2:0]) to '000'. After this reset command, it is possible to restart FIFO mode, writing *FIFO_CTRL (2Eh)* (FMODE [2:0]) to '001'.

The FIFO buffer memorizes 32 levels of data, but the depth of the FIFO can be resized by setting the STOP_ON_FTH bit in *CTRL_REG9 (23h)*. If the STOP_ON_FTH bit is set to '1', FIFO depth is limited to *FIFO_CTRL (2Eh)*(FTH [4:0]) + 1 data.

A FIFO threshold interrupt can be enabled (INT_OVR bit in *INT_CTRL* (*0Ch*)) in order to be raised when the FIFO is filled to the level specified by the FTH[4:0] bits of *FIFO_CTRL* (*2Eh*). When a FIFO threshold interrupt occurs, the first data has been overwritten and the FIFO stops collecting data from the input channels.

Figure 10. FIFO mode

3.5.3 Continuous mode

Continuous mode (*FIFO_CTRL (2Eh)* (FMODE[2:0] = 110) provides a continuous FIFO update: as new data arrives the older is discarded.

A FIFO threshold flag *FIFO_SRC (2Fh)*(FTH) is asserted when the number of unread samples in FIFO is greater than or equal to *FIFO_CTRL (2Eh)*(FTH4:0).

It is possible to route *FIFO_SRC (2Fh)*(FTH) to the INT pin by writing the INT_FTH bit to '1' in register *INT_CTRL (0Ch)*.

A full-flag interrupt can be enabled (*INT_CTRL* (*0Ch*) (INT_FSS5)= '1') when the FIFO becomes saturated and in order to read the contents all at once. If an overrun occurs, the oldest sample in FIFO is overwritten and the OVRN flag in *FIFO_SRC* (*2Fh*) is asserted.

In order to empty the FIFO before it is full, it is also possible to pull from FIFO the number of unread samples available in *FIFO_SRC (2Fh)* (FSS[5:0]).

Functionality LSM6DS0

Figure 11. Continuous mode

3.5.4 Continuous-to-FIFO mode

In Continuous-to-FIFO mode ($FIFO_CTRL$ (2Eh)(FMODE [2:0] = 011), FIFO behavior changes according to the $INT_GEN_SRC_XL$ (26h)(IA_XL) bit. When the $INT_GEN_SRC_XL$ (26h)(IA_XL) bit is equal to '1', FIFO operates in FIFO mode. When the $INT_GEN_SRC_XL$ (26h)(IA_XL) bit is equal to '0', FIFO operates in Continuous mode.

The interrupt generator should be set to the desired configuration by means of INT_GEN_CFG_XL (06h), INT_GEN_THS_X_XL (07h), INT_GEN_THS_Y_XL (08h) and INT_GEN_THS_Z_XL (09h).

The CTRL_REG4 (1Eh)(LIR_XL) bit should be set to '1' in order to have latched interrupt.

Figure 12. Continuous-to-FIFO mode

LSM6DS0 Functionality

3.5.5 Bypass-to-Continuous mode

In Bypass-to-Continuous mode (*FIFO_CTRL (2Eh)*(FMODE[2:0] = '100'), data measurement storage inside FIFO operates in Continuous mode when *INT_GEN_SRC_XL (26h)*(IA_XL) is equal to '1', otherwise FIFO content is reset (Bypass mode).

The interrupt generator should be set to the desired configuration by means of INT_GEN_CFG_XL (06h), INT_GEN_THS_X_XL (07h), INT_GEN_THS_Y_XL (08h) and INT_GEN_THS_Z_XL (09h).

The CTRL_REG4 (1Eh)(LIR_XL) bit should be set to '1' in order to have latched interrupt.

Figure 13. Bypass-to-Continuous mode

Digital interfaces LSM6DS0

4 Digital interfaces

The registers embedded inside the LSM6DS0 may be accessed through both the I²C and SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire interface mode.

The serial interfaces are mapped onto the same pins. To select/exploit the I^2C interface, the CS line must be tied high (i.e connected to Vdd_IO).

Pin name	Pin description
CS	SPI enable I ² C/SPI mode selection (1: SPI idle mode / I ² C communication enabled; 0: SPI communication mode / I ² C disabled)
SCL/SPC	I ² C Serial Clock (SCL) SPI Serial Port Clock (SPC)
SDA/SDI/SDO	I ² C Serial Data (SDA) SPI Serial Data Input (SDI) 3-wire Interface Serial Data Output (SDO)
SDO/SA0	SPI Serial Data Output (SDO) I ² C less significant bit of the device address

Table 13. Serial interface pin description

4.1 I²C serial interface

The LSM6DS0 I²C is a bus slave. The I²C is employed to write the data to the registers whose content can also be read back.

The relevant I²C terminology is provided in the table below.

Term Description

Transmitter The device which sends data to the bus

Receiver The device which receives data from the bus

Master The device which initiates a transfer, generates clock signals and terminates a transfer

Slave The device addressed by the master

Table 14. I²C terminology

There are two signals associated with the I²C bus: the serial clock line (SCL) and the Serial DAta line (SDA). The latter is a bidirectional line used for sending and receiving the data to/from the interface. Both the lines must be connected to Vdd_IO through an external pull-up resistor. When the bus is free, both the lines are high.

The I²C interface is implemeted with fast mode (400 kHz) I²C standards as well as with the standard mode.

In order to disable the I²C block, the I2C_disable bit must be written to '1' in *CTRL_REG9* (23h).

26/59 DocID025604 Rev 3

LSM6DS0 Digital interfaces

4.1.1 I²C operation

The transaction on the bus is started through a START (ST) signal. A START condition is defined as a high-to-low transition on the data line while the SCL line is held high. After this has been transmitted by the master, the bus is considered busy. The next byte of data transmitted after the start condition contains the address of the slave in the first 7 bits and the eighth bit tells whether the master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first seven bits after a start condition with its address. If they match, the device considers itself addressed by the master.

The Slave ADdress (SAD) associated to the LSM6DS0 is 110101xb. The SDO/SA0 pin can be used to modify the less significant bit of the device address. If the SDO/SA0 pin is connected to a voltage supply, LSb is '1' (address 1101011b), else if the SDO/SA0 pin is connected to ground, the LSb value is '0' (address 1101010b). This solution permits to connect and address two different inertial modules to the same I²C bus.

Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line low so that it remains stable low during the high period of the acknowledge clock pulse. A receiver which has been addressed is obliged to generate an acknowledge after each byte of data received.

The I²C embedded inside the LSM6DS0 behaves like a slave device and the following protocol must be adhered to. After the start condition (ST) a slave address is sent, once a slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted. The increment of the address is configured by the *CTRL_REG8* (22h) (IF_ADD_INC).

The slave address is completed with a Read/Write bit. If the bit was '1' (Read), a repeated START (SR) condition must be issued after the two sub-address bytes. If the bit is '0' (Write) the master will transmit to the slave with direction unchanged. *Table 15* explains how the SAD+Read/Write bit pattern is composed, listing all the possible configurations.

Table 15. SAD+Read/Write patterns

Command	SAD[6:1]	SAD[0] = SA0	R/W	SAD+R/W
Read	110101	0	1	11010101 (D5h)
Write	110101	0	0	11010100 (D4h)
Read	110101	1	1	11010111 (D7h)
Write	110101	1	0	11010110 (D6h)

Table 16. Transfer when master is writing one byte to slave

Master	ST	SAD + W		SUB		DATA		SP
Slave			SAK		SAK		SAK	

Table 17. Transfer when master is writing multiple bytes to slave

Master	ST	SAD + W		SUB		DATA		DATA		SP
Slave			SAK		SAK		SAK		SAK	

Digital interfaces LSM6DS0

Table 18. Transfer when master is receiving (reading) one byte of data from slave

M	laster	ST	SAD + W		SUB		SR	SAD + R			NMAK	SP
5	Slave			SAK		SAK			SAK	DATA		

Table 19. Transfer when master is receiving (reading) multiple bytes of data from slave

Master	ST	SAD+W		SUB		SR	SAD+R			MAK		MAK		NMAK	SP
Slave			SAK		SAK			SAK	DATA		DAT A		DATA		

Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes transferred per transfer is unlimited. Data is transferred with the Most Significant bit (MSb) first. If a receiver can't receive another complete byte of data until it has performed some other function, it can hold the clock line, SCL low to force the transmitter into a wait state. Data transfer only continues when the receiver is ready for another byte and releases the data line. If a slave receiver doesn't acknowledge the slave address (i.e. it is not able to receive because it is performing some real-time function) the data line must be left high by the slave. The master can then abort the transfer. A low-to-high transition on the SDA line while the SCL line is high is defined as a STOP condition. Each data transfer must be terminated by the generation of a STOP (SP) condition.

In the presented communication format MAK is Master acknowledge and NMAK is No Master Acknowledge.

4.2 SPI bus interface

The LSM6DS0 SPI is a bus slave. The SPI allows to write and read the registers of the device.

The serial interface connects to applications using 4 wires: CS, SPC, SDI and SDO.

Figure 14. Read and write protocol

CS is the serial port enable and it is controlled by the SPI master. It goes low at the start of the transmission and goes back high at the end. **SPC** is the serial port clock and it is controlled by the SPI master. It is stopped high when **CS** is high (no transmission). **SDI** and **SDO** are respectively the serial port data input and output. Those lines are driven at the falling edge of **SPC** and should be captured at the rising edge of **SPC**.

28/59 DocID025604 Rev 3

LSM6DS0 Digital interfaces

Both the read register and write register commands are completed in 16 clock pulses or in multiples of 8 in case of multiple read/write bytes. Bit duration is the time between two falling edges of **SPC**. The first bit (bit 0) starts at the first falling edge of **SPC** after the falling edge of **CS** while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the rising edge of **CS**.

bit 0: $R\overline{W}$ bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0) from the device is read. In latter case, the chip will drive **SDO** at the start of bit 8.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSb first).

bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).

In multiple read/write commands further blocks of 8 clock periods will be added. When the CTRL_REG8 (22h) (IF_ADD_INC) bit is '0', the address used to read/write data remains the same for every block. When the CTRL_REG8 (22h)(IF_ADD_INC) bit is '1', the address used to read/write data is increased at every block.

The function and the behavior of **SDI** and **SDO** remain unchanged.

4.2.1 SPI read

Figure 15. SPI read protocol

The SPI read command is performed with 16 clock pulses. A multiple byte read command is performed by adding blocks of 8 clock pulses to the previous one.

bit 0: READ bit. The value is 1.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb first).

bit 16-...: data DO(...-8). Further data in multiple byte reads.

Digital interfaces LSM6DS0

Figure 16. Multiple byte SPI read protocol (2-byte example)

4.2.2 SPI write

Figure 17. SPI write protocol

The SPI write command is performed with 16 clock pulses. A multiple byte write command is performed by adding blocks of 8 clock pulses to the previous one.

bit 0: WRITE bit. The value is 0.

bit 1 -7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSb first).

bit 16-...: data DI(...-8). Further data in multiple byte writes.

Figure 18. Multiple byte SPI write protocol (2-byte example)

LSM6DS0 Digital interfaces

4.2.3 SPI read in 3-wire mode

3-wire mode is entered by setting the *CTRL_REG8 (22h)*(SIM) bit equal to '1' (SPI serial interface mode selection).

Figure 19. SPI read protocol in 3-wire mode

The SPI read command is performed with 16 clock pulses:

bit 0: READ bit. The value is 1.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).

A multiple read command is also available in 3-wire mode.

Application hints LSM6DS0

5 Application hints

Figure 20. LSM6DS0 electrical connections

5.1 External capacitors

The device core is supplied through the Vdd line. Power supply decoupling capacitors (C2, C3 = $100 \, nF$ ceramic, C4 = $10 \, \mu F$ Al) should be placed as near as possible to the supply pin of the device (common design practice).

The functionality of the device and the measured acceleration/angular rate data is selectable and accessible through the SPI/I²C interface.

5/

LSM6DS0 Register mapping

6 Register mapping

The table given below provides a list of the 8/16 bit registers embedded in the device and the corresponding addresses.

Table 20. Register mapping

No.	_	`	er address	D. C. H	N. C.
Name	Type	Hex	Binary	Default	Note
Reserved		00-03			Reserved
ACT_THS	r/w	04	00000100	00000000	
ACT_DUR	r/w	05	00000101	00000000	
INT_GEN_CFG_XL	r/w	06	00000110	00000000	
INT_GEN_THS_X_XL	r/w	07	00000111	00000000	
INT_GEN_THS_Y_XL	r/w	08	00001000	00000000	
INT_GEN_THS_Z_XL	r/w	09	00001001	00000000	
INT_GEN_DUR_XL	r/w	0A	00001010	00000000	
REFERENCE_G	r/w	0B	00001011	00000000	
INT_CTRL	r/w	0C	00001100	00000000	
Reserved		0D-0E			Reserved
WHO_AM_I	r	0F	00001111	01101000	
CTRL_REG1_G	r/w	10	00010000	00000000	
CTRL_REG2_G	r/w	11	00010001	00000000	
CTRL_REG3_G	r/w	12	00010010	00000000	
ORIENT_CFG_G	r/w	13	00010011	00000000	
INT_GEN_SRC_G	r	14	00010100	output	
OUT_TEMP_L	r	15	00010101	output	
OUT_TEMP_H	r	16	00010110	output	
STATUS_REG	r	17	00010111	output	
OUT_X_L_G	r	18	00011000	output	
OUT_X_H_G	r	19	00011001	output	
OUT_Y_L_G	r	1A	00011010	output	
OUT_Y_H_G	r	1B	00011011	output	
OUT_Z_L_G	r	1C	00011100	output	
OUT_Z_H_G	r	1D	00011101	output	
CTRL_REG4	r/w	1E	00011110	00111000	
CTRL_REG5_XL	r/w	1F	00011111	00111000	
CTRL_REG6_XL	r/w	20	00100000	00000000	

Register mapping LSM6DS0

Table 20. Register mapping (continued)

Nama	Tuna	Register	address	Default	Note
Name	Туре	Hex	Binary	Default	Note
CTRL_REG7_XL	r/w	21	00100001	00000000	
CTRL_REG8	r/w	22	00100010	00000100	
CTRL_REG9	r/w	23	00100011	00000000	
CTRL_REG10	r/w	24	00100100	00000000	
Reserved		25			Reserved
INT_GEN_SRC_XL	r	26	00100110	output	
STATUS_REG	r	27	00100111	output	
OUT_X_L_XL	r	28	00101000	output	
OUT_X_H_XL	r	29	00101001	output	
OUT_Y_L_XL	r	2A	00101010	output	
OUT_Y_H_XL	r	2B	00101011	output	
OUT_Z_L_XL	r	2C	00101100	output	
OUT_Z_H_XL	r	2D	00101101	output	
FIFO_CTRL	r/w	2E	00101110	00000000	
FIFO_SRC	r	2F	00101111	output	
INT_GEN_CFG_G	r/w	30	00110000	00000000	
INT_GEN_THS_XH_G	r/w	31	00110001	00000000	
INT_GEN_THS_XL_G	r/w	32	00110010	00000000	
INT_GEN_THS_YH_G	r/w	33	00110011	00000000	
INT_GEN_THS_YL_G	r/w	34	00110100	00000000	
INT_GEN_THS_ZH_G	r/w	35	00110101	00000000	
INT_GEN_THS_ZL_G	r/w	36	00110110	00000000	
INT_GEN_DUR_G	r/w	37	00110111	00000000	
Reserved	r	38-7F			Reserved

Registers marked as *Reserved* must not be changed. Writing to those registers may cause permanent damage to the device.

To guarantee proper behavior of the device, all register addresses not listed in the above table must not be accessed and the content stored on those registers must not be changed.

The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up.

LSM6DS0 Register description

7 Register description

The device contains a set of registers which are used to control its behavior and to retrieve linear acceleration, angular rate and temperature data. The register addresses, consisting of 7 bits, are used to identify them and to write the data through the serial interface.

7.1 ACT_THS (04h)

Activity threshold register.

Table 21. ACT_THS register

SLEEP_O _INACT_E	I ACT THS6	ACT_THS5	ACT_THS4	ACT_THS3	ACT_THS2	ACT_THS1	ACT_THS0
---------------------	------------	----------	----------	----------	----------	----------	----------

Table 22. ACT_THS register description

INIAGT	Gyroscope operating mode during inactivity. Default value: 0 (0: Gyroscope in power-down; 1: Gyroscope in sleep mode)
ACT_THS [6:0]	Inactivity threshold. Default value: 000 0000

7.2 ACT_DUR (05h)

Inactivity duration register.

Table 23. ACT_DUR register

	ACT_DUR7	ACT_DUR6	ACT_DUR5	ACT_DUR4	ACT_DUR3	ACT_DUR2	ACT_DUR1	ACT_DUR0	
--	----------	----------	----------	----------	----------	----------	----------	----------	--

Table 24. ACT_DUR register description

ACT_DUR [7:0]

7.3 INT_GEN_CFG_XL (06h)

Linear acceleration sensor interrupt generator configuration register.

Table 25. INT_GEN_CFG_XL register

AOI_XL	6D	ZHIE_XL	ZLIE_XL	YHIE_XL	YLIE_XL	XHIE_XL	XLIE_XL
_		_	_	_	_	_	_

Register description LSM6DS0

Table 26. INT_GEN_CFG_XL register description

AOI_XL	AND/OR combination of accelerometer's interrupt events. Default value: 0 (0: OR combination; 1: AND combination)
6D	6-direction detection function for interrupt. Default value: 0 (0: disabled; 1: enabled)
ZHIE_XL	Enable interrupt generation on accelerometer's Z-axis high event. Default value: 0 (0: disable interrupt request; 1: interrupt request on measured acceleration value higher than preset threshold)
ZLIE_XL	Enable interrupt generation on accelerometer's Z-axis low event. Default value: 0 (0: disable interrupt request; 1: interrupt request on measured acceleration value lower than preset threshold)
YHIE_XL	Enable interrupt generation on accelerometer's Y-axis high event. Default value: 0 (0: disable interrupt request; 1: interrupt request on measured acceleration value higher than preset threshold)
YLIE_XL	Enable interrupt generation on accelerometer's Y-axis low event. Default value: 0 (0: disable interrupt request; 1: interrupt request on measured acceleration value lower than preset threshold)
XHIE_XL	Enable interrupt generation on accelerometer's X-axis high event. Default value: 0 (0: disable interrupt request; 1: interrupt request on measured acceleration value higher than preset threshold)
XLIE_XL	Enable interrupt generation on accelerometer's X-axis low event. Default value: 0 (0: disable interrupt request; 1: interrupt request on measured acceleration value lower than preset threshold)

7.4 INT_GEN_THS_X_XL (07h)

Linear acceleration sensor interrupt threshold register.

Table 27. INT_GEN_THS_X_XL register

THS	S XL X7	THS XL X6	THS XL X5	THS XL X4	THS XL X3	THS XL X2	THS XL X1	THS XL X0
1								

Table 28. INT_GEN_THS_X_XL register description

THS_XL_X [7:0] X-axis interrupt threshold. Default value: 0000 0000

36/59 DocID025604 Rev 3

7.5 INT_GEN_THS_Y_XL (08h)

Linear acceleration sensor interrupt threshold register.

Table 29. INT_GEN_THS_Y_XL register

Table 30. INT_GEN_THS_Y_XL register description

THS_XL_Y [7:0]	Y-axis interrupt threshold. Default value: 0000 0000
----------------	--

7.6 INT_GEN_THS_Z_XL (09h)

Linear acceleration sensor interrupt threshold register.

Table 31. INT_GEN_THS_Z_XL register

THS XL Z7	THS XL Z6	THS XL Z5	THS XL Z4	THS XL Z3	THS XL Z2	THS XL Z1	THS XL Z0

Table 32. INT_GEN_THS_Z_XL register description

THS_XL_Z [7:0]	Z-axis interrupt threshold. Default value: 0000 0000
----------------	--

7.7 INT_GEN_DUR_XL (0Ah)

Linear acceleration sensor interrupt duration register.

Table 33. INT_GEN_DUR_XL register

WAIT_XL	DUR_XL6	DUR_XL5	DUR_XL4	DUR_XL3	DUR_XL2	DUR_XL1	DUR_XL0
_		_	_	_	_	_	_

Table 34. INT_GEN_DUR_XL register description

	Wait function enabled on duration counter. Default value: 0 (0: wait function off; 1: wait for DUR_XL [6:0] samples before exiting interrupt)
DUR_XL [6:0]	Enter/exit interrupt duration value. Default value: 000 0000

7.8 REFERENCE_G (0Bh)

Angular rate sensor reference value register for digital high-pass filter (r/w)

Table 35. REFERENCE_G register

	REF7_G	REF6_G	REF5_G	REF4_G	REF3_G	REF2_G	REF1_G	REF0_G	
--	--------	--------	--------	--------	--------	--------	--------	--------	--

Table 36. REFERENCE_G register description

REF_G [7:0]	Reference value for gyroscope's digital high-pass filter (r/w).
	Default value: 0000 0000

7.9 INT_CTRL (0Ch)

INT pin control register.

Table 37. INT_CTRL register

INT_IG _G I	INT_IG_XL INT_	_FSS5 INT_OVR	INT_FTH	INT_ Boot	INT_ DRDY_G	INT_ DRDY_XL
-------------	----------------	---------------	---------	-----------	-------------	-----------------

Table 38. INT_CTRL register description

INT_IG_G	Gyroscope interrupt enable on INT pin. Default value: 0 (0: disabled; 1: enabled)
INT_ IG_XL	Accelerometer interrupt generator on INT pin. Default value: 0 (0: disabled; 1: enabled)
INT_FSS5	FSS5 interrupt enable on INT pin. Default value: 0 (0: disabled; 1: enabled)
INT_OVR	Overrun interrupt on INT pin. Default value: 0 (0: disabled; 1: enabled)
INT_FTH	FIFO threshold interrupt on INT pin. Default value: 0 (0: disabled; 1: enabled)
INT_ Boot	Boot status available on INT pin. Default value: 0 (0: disabled; 1: enabled)
INT_DRDY_G	Gyroscope data ready on INT pin. Default value: 0 (0: disabled; 1: enabled)
INT_DRDY_XL	Accelerometer data ready on INT pin. Default value: 0 (0: disabled; 1: enabled)

7.10 WHO_AM_I (0Fh)

Who_AM_I register.

Table 39. WHO_AM_I register

0	1	1	0	1	0	0	0
---	---	---	---	---	---	---	---

7.11 CTRL_REG1_G (10h)

Angular rate sensor control register 1.

Table 40. CTRL_REG1_G register

|--|

^{1.} This bit must be set to '0' for the correct operation of the device

Table 41. CTRL_REG1_G register description

ODR_G [2:0]	Gyroscope output data rate selection. Default value: 000 (Refer to <i>Table 42</i> and <i>Table 43</i>)
FS_G [1:0]	Gyroscope full-scale selection. Default value: 00 (00: 245 dps; 01: 500 dps; 10: not available; 11: 2000 dps)
BW_G [1:0]	Gyroscope bandwidth selection. Default value: 00

ODR_G [2:0] are used to set ODR selection when both the accelerometer and gyroscope are activated. BW_G [1:0] are used to set the bandwidth selection of the gyroscope.

The following table summarizes all frequencies available for each combination of the ODR_G / BW_G bits after LPF1 (see *Table 42*) and LPF2 (see *Table 43*) when both the accelerometer and gyroscope are activated. For more details regarding signal processing please refer to *Figure 21*.

Table 42. ODR and BW configuration setting (after LPF1)

ODR_G2	ODR_G1	ODR_G0	ODR [Hz]	Cutoff [Hz] ⁽¹⁾
0	0	0	Power-down	n.a.
0	0	1	14.9	5
0	1	0	59.5	19
0	1	1	119	38
1	0	0	238	76
1	0	1	476	100
1	1	0	952	100
1	1	1	n.a.	n.a.

^{1.} The values in the table are indicative and can vary proportionally with the specific ODR value.

Table 43. ODR and BW configuration setting (after LPF2)

ODR_G [2:0]	BW_G [1:0]	ODR [Hz]	Cutoff [Hz] ⁽¹⁾
000	00	Power-down	n.a.
000	01	Power-down	n.a.
000	10	Power-down	n.a.
000	11	Power-down	n.a.
001	00	14.9	n.a.
001	01	14.9	n.a.
001	10	14.9	n.a.
001	11	14.9	n.a.
010	00	59.5	16
010	01	59.5	16
010	10	59.5	16
010	11	59.5	16
011	00	119	14
011	01	119	31
011	10	119	31
011	11	119	31
100	00	238	14
100	01	238	29
100	10	238	63
100	11	238	78
101	00	476	21
101	01	476	28
101	10	476	57
101	11	476	100
110	00	952	33
110	01	952	40
110	10	952	58
110	11	952	100
111	00	n.a.	n.a.
111	01	n.a.	n.a.
111	10	n.a.	n.a.
111	11	n.a.	n.a.

^{1.} The values in the table are indicative and can vary proportionally with the specific ODR value.

7.12 CTRL_REG2_G (11h)

Angular rate sensor control register 2.

Table 44. CTRL REG2 G register

					•		
0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	INT_SEL1	INT_SEL0	OUT_SEL1	OUT_SEL0

^{1.} These bits must be set to '0' for the correct operation of the device

Table 45. CTRL_REG2_G register description

INT_SEL [1:0]	INT selection configuration. Default value: 00 (Refer to <i>Figure 21</i>)
OUT_SEL [1:0]	Out selection configuration. Default value: 00 (Refer to <i>Figure 21</i>)

Figure 21. INT_SEL and OUT_SEL configuration gyroscope block diagram

7.13 CTRL_REG3_G (12h)

Angular rate sensor control register 3.

Table 46. CTRL_REG3_G register

LP_mode HP_EN	0 ⁽¹⁾	0 ⁽¹⁾	HPCF3_G	HPCF2_G	HPCF1_G	HPCF0_G
---------------	------------------	------------------	---------	---------	---------	---------

^{1.} These bits must be set to '0' for the correct operation of the device

Table 47. CTRL_REG3_G register description

LP_mode	Low-power mode enable. Default value: 0 (0: low-power disable; 1: low-power enable)
HP_EN	High-pass filter enable. Default value: 0 (0: HPF disabled; 1: HPF enabled, refer to <i>Figure 21</i>)
HPCF_G [3:0]	Gyroscope high-pass filter cutoff frequency selection. Default value: 0000 Refer to <i>Table 48</i> .

Table 48. Gyroscope high-pass filter cutoff frequency configuration [Hz]⁽¹⁾

ODR= 14.9 Hz	ODR= 59.5 Hz	ODR= 119 Hz	ODR= 238 Hz	ODR= 476 Hz	ODR= 952 Hz
1	4	8	15	30	57
0.5	2	4	8	15	30
0.2	1	2	4	8	15
0.1	0.5	1	2	4	8
0.05	0.2	0.5	1	2	4
0.02	0.1	0.2	0.5	1	2
0.01	0.05	0.1	0.2	0.5	1
0.005	0.02	0.05	0.1	0.2	0.5
0.002	0.01	0.02	0.05	0.1	0.2
0.001	0.005	0.01	0.02	0.05	0.1
	1 0.5 0.2 0.1 0.05 0.02 0.01 0.005 0.002	1 4 0.5 2 0.2 1 0.1 0.5 0.05 0.2 0.02 0.1 0.01 0.05 0.005 0.02 0.002 0.01	1 4 8 0.5 2 4 0.2 1 2 0.1 0.5 1 0.05 0.2 0.5 0.02 0.1 0.2 0.01 0.05 0.1 0.005 0.02 0.05 0.002 0.01 0.02 0.002 0.01 0.02	1 4 8 15 0.5 2 4 8 0.2 1 2 4 0.1 0.5 1 2 0.05 0.2 0.5 1 0.02 0.1 0.2 0.5 0.01 0.05 0.1 0.2 0.005 0.01 0.02 0.05 0.002 0.01 0.02 0.05 0.002 0.01 0.02 0.05	1 4 8 15 30 0.5 2 4 8 15 0.2 1 2 4 8 0.1 0.5 1 2 4 0.05 0.2 0.5 1 2 0.02 0.1 0.2 0.5 1 0.01 0.05 0.1 0.2 0.5 0.005 0.01 0.02 0.05 0.1 0.002 0.01 0.02 0.05 0.1

^{1.} Values in the table are indicative and can vary proportionally with the specific ODR value.

7.14 ORIENT_CFG_G (13h)

Angular rate sensor sign and orientation register.

Table 49. ORIENT_CFG_G register

^{1.} These bits must be set to '0' for the correct operation of the device

Table 50. ORIENT_CFG_G register description

SignX_G	Pitch axis (X) angular rate sign. Default value: 0 (0: positive sign; 1: negative sign)
SignY_G	Roll axis (Y) angular rate sign. Default value: 0. (0: positive sign; 1: negative sign)
SignZ_G	Yaw axis (Z) angular rate sign. Default value: 0. (0: positive sign; 1: negative sign)
Orient [2:0]	Directional user orientation selection. Default value: 000

7.15 INT_GEN_SRC_G (14h)

Angular rate sensor interrupt source register.

Table 51. INT_GEN_SRC_G register

					_		
0	IA_G	ZH_G	ZL_G	YH_G	YL_G	XH_G	XL_G

Table 52. INT GEN SRC G register description

IA_G	Interrupt active. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupts have been generated)
ZH_G	Yaw (Z) high. Default value: 0 (0: no interrupt, 1: Z high event has occurred)
ZL_G	Yaw (Z) low. Default value: 0 (0: no interrupt; 1: Z low event has occurred)
YH_G	Roll (Y) high. Default value: 0 (0: no interrupt, 1: Y high event has occurred)
YL_G	Roll (Y) low. Default value: 0 (0: no interrupt, 1: Y low event has occurred)
XH_G	Pitch (X) high. Default value: 0 (0: no interrupt, 1: X high event has occurred)
XL_G	Pitch (X) low. Default value: 0 (0: no interrupt, 1: X low event has occurred)

7.16 OUT_TEMP_L (15h), OUT_TEMP_H (16h)

Temperature data output register. L and H registers together express a 16-bit word in two's complement right-justified.

Table 53. OUT_TEMP_L register

Temp7	Temp6	Temp5	Temp4	Temp3	Temp2	Temp1	Temp0

Table 54. OUT_TEMP_H register

Temp11	Temp11	Temp11	Temp11	Temp11	Temp10	Temp9	Temp8
1 -						-	

Table 55. OUT_TEMP register description

Temp [11:0]	Temperature sensor output data.
	The value is expressed as two's complement sign extended to the MSB.

7.17 **STATUS_REG** (17h)

Status register.

Table 56. STATUS_REG register

0 IG_XL	IG_G	INACT	BOOT_ STATUS	TDA	GDA	XLDA	
---------	------	-------	-----------------	-----	-----	------	--

Table 57. STATUS_REG register description

IG_XL	Accelerometer interrupt output signal. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupt events have been generated)
IG_G	Gyroscope interrupt output signal. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupt events have been generated)
INACT	Inactivity interrupt output signal. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupt events have been generated)
BOOT_ STATUS	Boot running flag signal. Default value: 0 (0: no boot running; 1: boot running)
TDA	Temperature sensor new data available. Default value: 0 (0: new data is not yet available; 1: new data is available)
GDA	Gyroscope new data available. Default value: 0 (0: a new set of data is not yet available; 1: a new set of data is available)
XLDA	Accelerometer new data available. Default value: 0 (0: a new set of data is not yet available; 1: a new set of data is available)

7.18 OUT_X_G (18h - 19h)

Angular rate sensor pitch axis (X) angular rate output register. The value is expressed as a 16-bit word in two's complement.

7.19 OUT_Y_G (1Ah - 1Bh)

Angular rate sensor roll axis (Y) angular rate output register. The value is expressed as a 16-bit word in two's complement.

7.20 OUT_Z_G (1Ch - 1Dh)

Angular rate sensor yaw axis (Z) angular rate output register. The value is expressed as a 16-bit word in two's complement.

44/59 DocID025604 Rev 3

7.21 CTRL_REG4 (1Eh)

Control register 4.

Table 58. CTRL_REG4 register

				_	•		
0 ⁽¹⁾	0 ⁽¹⁾	Zen_G	Yen_G	Xen_G	0 ⁽¹⁾	LIR_XL1	4D_XL1

^{1.} These bits must be set to '0' for the correct operation of the device

Table 59. CTRL_REG4 register description

Zen_G	Gyroscope's yaw axis (Z) output enable. Default value: 1 (0: Z-axis output disabled; 1: Z-axis output enabled)
Yen_G	Gyroscope's roll axis (Y) output enable. Default value: 1 (0: Y-axis output disabled; 1: Y-axis output enabled)
Xen_G	Gyroscope's pitch axis (X) output enable. Default value: 1 (0: X-axis output disabled; 1: X-axis output enabled)
LIR_XL1	Latched interrupt. Default value: 0 (0: interrupt request not latched; 1: interrupt request latched)
4D_XL1	4D option enabled on interrupt. Default value: 0 (0: interrupt generator uses 6D for position recognition; 1: interrupt generator uses 4D for position recognition)

7.22 CTRL_REG5_XL (1Fh)

Linear acceleration sensor Control Register 5.

Table 60. CTRL_REG5_XL register

DEC_1	DEC_0	Zen_XL	Yen_XL	Xen_XL	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾

^{1.} These bits must be set to '0' for the correct operation of the device

Table 61. CTRL_REG5_XL register description

	Decimation of acceleration data on OUT REG and FIFO. Default value: 00 (00: no decimation;					
DEC_[0:1]	01: update every 2 samples;					
	10: update every 4 samples; 11: update every 8 samples)					
Zen_XL	Accelerometer's Z-axis output enable. Default value: 1 (0: Z-axis output disabled; 1: Z-axis output enabled)					
Yen_XL	Accelerometer's Y-axis output enable. Default value: 1 (0: Y-axis output disabled; 1: Y-axis output enabled)					
Xen_XL	Accelerometer's X-axis output enable. Default value: 1 (0: X-axis output disabled; 1: X-axis output enabled)					

7.23 CTRL_REG6_XL (20h)

Linear acceleration sensor control register 6.

Table 62. CTRL_REG6_XL register

ODR_XL2	ODR_XL1	ODR_XL0	FS1_XL	FS0_XL	BW_SCAL _ODR	BW_XL1	BW_XL0

Table 63. CTRL REG6 XL register description

ODR_XL [2:0]	Output data rate and power mode selection. Default value: 000 (see Table 67)				
FS_XL [1:0] Accelerometer full-scale selection. Default value: 00 (00: ±2g; 01: ±16g; 10: ±4g; 11: ±8g)					
BW_SCAL_ODR	Bandwidth selection. Default value: 0 (0: bandwidth determined by ODR selection: - BW = 408 Hz when ODR = 952 Hz, 50 Hz, 10 Hz; - BW = 211 Hz when ODR = 476 Hz; - BW = 105 Hz when ODR = 238 Hz; - BW = 50 Hz when ODR = 119 Hz; 1: bandwidth selected according to BW XL [2:1] selection)				
BW_XL [1:0]	Anti-aliasing filter bandwidth selection. Default value: 00 (00: 408 Hz; 01: 211 Hz; 10: 105 Hz; 11: 50 Hz)				

ODR_XL [2:0] is used to set the power mode and ODR selection. *Table 64* summarizes all available frequencies when only the accelerometer is activated.

Table 64. ODR register setting (accelerometer only mode)

ODR_XL2	ODR_XL1	ODR_XL0	ODR selection [Hz]
0	0	0	Power-down
0	0	1	10 Hz
0	1	0	50 Hz
0	1	1	119 Hz
1	0	0	238 Hz
1	0	1	476 Hz
1	1	0	952 Hz
1	1	1	n.a.

7.24 CTRL_REG7_XL (21h)

Linear acceleration sensor control register 7.

Table 65. CTRL_REG7_XL register

			_	_	•		
HR	DCF1	DCF0	0 ⁽¹⁾	0 ⁽¹⁾	FDS	0 ⁽¹⁾	HPIS1

^{1.} These bits must be set to '0' for the correct operation of the device

Table 66. CTRL_REG7_XL register description

HR	High resolution mode for accelerometer enable. Default value: 0 (0: disabled; 1: enabled). Refer to <i>Table 67</i> .			
DCF[1:0]	Accelerometer digital filter (high-pass and low-pass) cutoff frequency selection: the bandwidth of the high-pass filter depends on the selected ODR. Refer to <i>Table 67</i> .			
FDS	Filtered data selection. Default value: 0 (0: internal filter bypassed; 1: data from internal filter sent to output register and FIFO)			
HPIS1	High-pass filter enabled for acceleration sensor interrupt function on interrupt. Default value: 0 (0: filter bypassed; 1: filter enabled)			

Table 67. Low pass cut-off frequency in high resolution mode (HR = 1)

HR	CTRL_REG7 (DCF [1:0])	LP cutoff freq. [Hz]
1	00	ODR/50
1	01	ODR/100
1	10	ODR/9
1	11	ODR/400

7.25 CTRL_REG8 (22h)

Control register 8.

Table 68. CTRL_REG8 register

воот	BDU	H_LACTIVE	PP_OD	SIM	IF_ADD_INC	BLE	SW_RESET
------	-----	-----------	-------	-----	------------	-----	----------

Table 69. CTRL_REG8 register description

ВООТ	Reboot memory content. Default value: 0 (0: normal mode; 1: reboot memory content ⁽¹⁾)
BDU	Block Data Update. Default value: 0 (0: continuous update; 1: output registers not updated until MSB and LSB read)
H_LACTIVE	Interrupt activation level. Default value: 0 (0: interrupt output pins active high; 1: interrupt output pins active low)
PP_OD	Push-pull/Open Drain selection on INT pin. Default value: 0 (0: push-pull mode; 1: open drain mode)
SIM	SPI Serial Interface Mode selection. Default value: 0 (0: 4-wire interface; 1: 3-wire interface).
IF_ADD_INC	Register address automatically incremented during a multiple byte access with a serial interface (I ² C or SPI). Default value: 1 (0: disabled; 1: enabled)
BLE	Big/Little Endian Data Selection. Default value 0 (0: data LSB @ lower address; 1: data MSB @ lower address)
SW_RESET	Software reset. Default value: 0 (0: normal mode; 1: reset device)

^{1.} Boot request is executed as soon as the internal oscillator is turned-on. It is possible to set the bit while in power-down mode, in this case it will be served at the next normal mode or sleep mode.

7.26 CTRL_REG9 (23h)

Control register 9.

Table 70. CTRL_REG9 register

0 ⁽¹⁾	SLEEP_G	0 ⁽¹⁾	FIFO_	DRDY_	I2C_disable	FIFO_EN	STOP_ON
			TEMP_EN	mask_bit			

^{1.} These bits must be set to '0' for the correct operation of the device

Table 71. CTRL_REG9 register description

SLEEP_G	Gyroscope sleep mode enable. Default value: 0 (0: disabled; 1: enabled)
FIFO_TEMP_EN	Temperature data storage in FIFO enable. Default value: 0 (0: temperature data not stored in FIFO; 1: temperature data stored in FIFO)
DRDY_mask_bit	Data available enable bit. Default value: 0 (0: DA timer disabled; 1: DA timer enabled)
I2C_disable	Disable I ² C interface. Default value: 0. (0: both I ² C and SPI enabled; 1: I ² C disabled, SPI only)
FIFO_EN	FIFO memory enable. Default value: 0 (0: disabled; 1: enabled)
STOP_ON_FTH	Enable FIFO threshold level use. Default value: 0. (0: FIFO depth is not limited; 1: FIFO depth is limited to threshold level)

48/59 DocID025604 Rev 3

7.27 CTRL_REG10 (24h)

Control register 10.

Table 72. CTRL REG10 register

				_			
0 ⁽¹⁾	ST_G	0 ⁽¹⁾	ST_XL				

^{1.} These bits must be set to '0' for the correct operation of the device

Table 73. CTRL_REG10 register description

ST_G	Angular rate sensor self-test enable. Default value: 0 (0: Self-test disabled; 1: Self-test enabled)
ST_XL	Linear acceleration sensor self-test enable. Default value: 0 (0: Self-test disabled; 1: Self-test enabled)

7.28 INT_GEN_SRC_XL (26h)

Linear acceleration sensor interrupt source register.

Table 74. INT_GEN_SRC_XL register

	0	IA_XL	ZH_XL	ZL_XL	YH_XL	YL_XL	XH_XL	XL_XL
--	---	-------	-------	-------	-------	-------	-------	-------

Table 75. INT_GEN_SRC_XL register description

IA_XL	Interrupt active. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupts have been generated)
ZH_XL	Accelerometer's Z high event. Default value: 0 (0: no interrupt, 1: Z high event has occurred)
ZL_XL	Accelerometer's Z low event. Default value: 0 (0: no interrupt; 1: Z low event has occurred)
YH_XL	Accelerometer's Y high event. Default value: 0 (0: no interrupt, 1: Y high event has occurred)
YL_XL	Accelerometer's Y low event. Default value: 0 (0: no interrupt, 1: Y low event has occurred)
XH_XL	Accelerometer's X high event. Default value: 0 (0: no interrupt, 1: X high event has occurred)
XL_XL	Accelerometer's X low event. Default value: 0 (0: no interrupt, 1: X low event has occurred)

7.29 **STATUS_REG** (27h)

Status register.

Table 76. STATUS_REG register

0 IG_XL IG_G INACT	BOOT_ STATUS TDA	GDA XLDA
--------------------	---------------------	----------

Table 77. STATUS_REG register description

IG_XL	Accelerometer interrupt output signal. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupt events have been generated)
IG_G	Gyroscope interrupt output signal. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupt events have been generated)
INACT	Inactivity interrupt output signal. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupt events have been generated)
BOOT_ STATUS	Boot running flag signal. Default value: 0 (0: no boot running; 1: boot running)
TDA	Temperature sensor new data available. Default value: 0 (0: new data is not yet available; 1: new data is available)
GDA	Gyroscope new data available. Default value: 0 (0: a new set of data is not yet available; 1: a new set of data is available)
XLDA	Accelerometer new data available. Default value: 0 (0: a new set of data is not yet available; 1: a new set of data is available)

7.30 OUT_X_XL (28h - 29h)

Linear acceleration sensor X-axis output register. The value is expressed as a 16-bit word in two's complement.

7.31 OUT_Y_XL (2Ah - 2Bh)

Linear acceleration sensor Y-axis output register. The value is expressed as a 16-bit word in two's complement.

7.32 OUT_Z_XL (2Ch - 2Dh)

Linear acceleration sensor Z-axis output register. The value is expressed as a 16-bit word in two's complement.

50/59 DocID025604 Rev 3

7.33 FIFO_CTRL (2Eh)

FIFO control register.

Table 78. FIFO_CTRL register

FMODE2	FMODE1	FMODE0	FTH4	FTH3	FTH2	FTH1	FTH0

Table 79. FIFO_CTRL register description

	FIFO mode selection bits. Default value: 000 For further details refer to <i>Table 80</i> .
FTH [4:0]	FIFO threshold level setting. Default value: 0 0000

Table 80. FIFO mode selection

FMODE2	FMODE1	FMODE0	Mode
0	0	0	Bypass mode. FIFO turned off
0	0	1	FIFO mode. Stop collecting data when FIFO is full.
0	1	0	Reserved
0	1	1	Continuous mode until trigger is deasserted, then FIFO mode.
1	0	0	Bypass mode until trigger is deasserted, then Continuous mode.
1	1	0	Continuous mode. If the FIFO is full, the new sample overwrites the older sample.

7.34 FIFO_SRC (2Fh)

FIFO status control register.

Table 81. FIFO_SRC register

	FTH	OVRN	FSS5	FSS4	FSS3	FSS2	FSS1	FSS0
- 1		l			l			

Table 82. FIFO_SRC register description

FTH	FIFO threshold status. (0: FIFO filling is lower than threshold level; 1: FIFO filling is equal to or higher than the threshold level
OVRN	FIFO overrun status. (0: FIFO is not completely filled; 1: FIFO is completely filled and at least one sample has been overwritten) For further details refer to <i>Table 83</i> .
FSS [5:0]	Number of unread samples stored in FIFO. (000000: FIFO empty; 100000: FIFO full, 32 unread samples) For further details refer to <i>Table 83</i> .

Table 83. FIFO_SR	example:	OVR/FSS details
-------------------	----------	-----------------

FTH	OVRN	FSS5	FSS4	FSS3	FSS2	FSS1	FSS0	Description
0	0	0	0	0	0	0	0	FIFO empty
(1)	0	0	0	0	0	0	1	1 unread sample
(1)	0	1	0	0	0	0	0	32 unread sample
1	1	1	0	0	0	0	0	At least one sample has been overwritten

^{1.} When the number of unread samples in FIFO is greater than the threshold level set in register FIFO_CTRL (2Eh), the FTH value is '1'.

7.35 INT_GEN_CFG_G (30h)

Angular rate sensor interrupt generator configuration register.

Table 84. INT_GEN_CFG_G register

	AOI G	LIR G	ZHIE G	ZLIE G	YHIE G	YLIE G	XHIE G	XLIE G
- 1	_	_	_	_	_	_	_	. –

Table 85. INT_GEN_CFG_G register description

AOI_G	AND/OR combination of gyroscope's interrupt events. Default value: 0 (0: OR combination; 1: AND combination)
LIR_G	Latch gyroscope interrupt request. Default value: 0 (0: interrupt request not latched; 1: interrupt request latched)
ZHIE_G	Enable interrupt generation on gyroscope's yaw (Z) axis high event. Default value: 0 (0: disable interrupt request; 1: interrupt request on measured angular rate value higher than preset threshold)
ZLIE_G	Enable interrupt generation on gyroscope's yaw (Z) axis low event. Default value: 0 (0: disable interrupt request; 1: interrupt request on measured angular rate value lower than preset threshold)
YHIE_G	Enable interrupt generation on gyroscope's roll (Y) axis high event. Default value: 0 (0: disable interrupt request; 1: interrupt request on measured angular rate value higher than preset threshold)
YLIE_G	Enable interrupt generation on gyroscope's roll (Y) axis low event. Default value: 0 (0: disable interrupt request; 1: interrupt request on measured angular rate value lower than preset threshold)
XHIE_G	Enable interrupt generation on gyroscope's pitch (X) axis high event. Default value: 0 (0: disable interrupt request; 1: interrupt request on measured angular rate value higher than preset threshold)
XLIE_G	Enable interrupt generation on gyroscope's pitch (X) axis low event. Default value: 0 (0: disable interrupt request; 1: interrupt request on measured angular rate value lower than preset threshold)

52/59 DocID025604 Rev 3

LSM6DS0

Register description

7.36 INT_GEN_THS_X_G (31h - 32h)

Angular rate sensor interrupt generator threshold registers. The value is expressed as a 15-bit word in two's complement.

Table 86. INT_GEN_THS_XH_G register

DCRM_G	THS_G_						
	X14	X13	X12	X11	X10	X9	X8

Table 87. INT_GEN_THS_XL_G register

| THS_G_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| X7 | X6 | X5 | X4 | X3 | X2 | X1 | X0 |

Table 88. INT_GEN_THS_X_G register description

DCRM G	Decrement or reset counter mode selection. Default value: 0
DCKW_G	(0: Reset; 1: Decrement, as per counter behavior in Figure 22 and Figure 23)
THS_G_X [14:0]	Angular rate sensor interrupt threshold on pitch (X) axis.
	Default value: 0000000 00000000

7.37 INT_GEN_THS_Y_G (33h - 34h)

Angular rate sensor interrupt generator threshold registers. The value is expressed as a 15-bit word in two's complement.

Table 89. INT_GEN_THS_YH_G register

ſ	0 ⁽¹⁾	THS_G_						
	0(.,	Y14	Y13	Y12	Y11	Y10	Y9	Y8

^{1.} This bit must be set to '0' for the correct operation of the device

Table 90. INT_GEN_THS_YL_G register

THS_G_	ĺ							
Y7	Y6	Y5	Y4	Y3	Y2	Y1	Y0	

Table 91. INT_GEN_THS_Y_G register description

THS_G_Y [14:0]	Angular rate sensor interrupt threshold on roll (Y) axis.
1110_0_1 [11.0]	Default value: 0000000 00000000

7.38 INT_GEN_THS_Z_G (35h - 36h)

Angular rate sensor interrupt generator threshold registers. The value is expressed as 15bit word in two's complement.

Table 92. INT_GEN_THS_ZH_G register

0 ⁽¹⁾	THS_G_						
0(1)	Z14	Z13	Z12	Z11	Z10	Z9	Z8

^{1.} This bit must be set to '0' for the correct operation of the device

Table 93. INT_GEN_THS_ZL_G register

THS_G_	THS_G_	THS_G_	THS_G_	THS_G_	THS_G_	THS_G_	THS_G_
Z 7	Z6	Z5	Z4	Z3	Z2	Z1	Z0

Table 94. INT_GEN_THS_Z_G register description

1100 G Z 114.01 1 1	ngular rate sensor interrupt thresholds on yaw (Z) axis. efault value: 0000000 00000000
---------------------	---

7.39 INT_GEN_DUR_G (37h)

Angular rate sensor interrupt generator duration register.

Table 95. INT_GEN_DUR_G register

WAIT_G DUR_G6 DUR_G5 DUR_G4 DUR_G3 DU	R_G2 DUR_G1 DUR_G0

Table 96. INT_GEN_DUR_G register description

WAIT_G	Exit from Interrupt Wait function enable. Default value: 0 (0: wait function off; 1: wait for DUR_G [6:0] samples before exiting interrupt)
DUR_G [6:0]	Enter/exit interrupt duration value. Default value: 000 0000

The **DUR_G** [6:0] bits set the minimum duration of the interrupt event to be recognized. Duration steps and maximum values depend on the ODR chosen.

The **WAIT_G** bit has the following meaning:

- '0': the interrupt falls immediately if the signal crosses the selected threshold
- '1': if the signal crosses the selected threshold, the interrupt falls after a number of samples equal to the value of the duration counter register.

For further details refer to Figure 22 and Figure 23.

Figure 22. Wait bit disabled

Soldering information LSM6DS0

8 Soldering information

The LGA package is compliant with the ECOPACK $^{\circledR}$, RoHS and "Green" standard. It is qualified for soldering heat resistance according to JEDEC J-STD-020.

Leave "Pin 1 Indicator" unconnected during soldering.

Land pattern and soldering recommendations are available at www.st.com/mems.

9 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

1.275 -23 R1 Ф 0.875 2.00 Dimensions are in millimeter unless otherwise specified General Tolerance is +/-0.1mm unless otherwise specified **OUTER DIMENSIONS** ITEM **DIMENSION** [mm] TOLERANCE [mm] Length [L] 3.00 Width [W] 3.00 ±0.1 0.86 MAX Height [H]

Figure 24. LGA 3x3x0.86 16L package outline and dimensions

Revision history LSM6DS0

10 Revision history

Table 97. Document revision history

Date	Revision	Changes
28-Nov-2013	1	Initial release
31-Mar-2014	2	Updated Vdd to 2.2 V in Section 2: Module specifications Updated SW_RESET bit in Table 69: CTRL_REG8 register description Updated dimensions and revised package presentation in Section 9: Package information
03-Nov-2014	3	Document status promoted from preliminary to production data Added ±16 g linear acceleration full scale throughout datasheet Updated footnote 2 of Table 2: Pin description Updated Figure 20: LSM6DS0 electrical connections

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics – All rights reserved

