2-9 Sorting and Selection

Hengfeng Wei

hfwei@nju.edu.cn

May 28, 2018

1 / 16

How to Argue?

Am I Alone?

QUICKSORT Invented by Tony Hoare in 1959/1960

QUICKSORT Invented by Tony Hoare in 1959/1960

null pointer

QUICKSORT Invented by Tony Hoare in 1959/1960

null pointer
"I call it my billion-dollar mistake."

Show that QUICKSORT's best-case running time is $\Omega(n \log n)$.

Show that QUICKSORT's best-case running time is $\Omega(n \log n)$.

$$T(n) = 2T(\frac{n}{2}) + \Theta(n)$$

Show that QUICKSORT's best-case running time is $\Omega(n \log n)$.

$$T(n) = 2T(\frac{n}{2}) + \Theta(n)$$

$$T(n) = \underbrace{n}_{\text{PARTITION}} \underbrace{\log n}_{\text{Height}}$$
 (Recursion Tree)

5 / 16

Show that QUICKSORT's best-case running time is $\Omega(n \log n)$.

$$T(n) = 2T(\frac{n}{2}) + \Theta(n)$$

$$T(n) = \underbrace{n}_{\text{PARTITION}} \underbrace{\log n}_{\text{Height}}$$
 (Recursion Tree)

$$T(n) = \min_{0 \le q \le n-1} \left(T(q) + T(n-q-1) \right) + \Theta(n)$$

Show that QUICKSORT's best-case running time is $\Omega(n \log n)$.

$$T(n) = 2T(\frac{n}{2}) + \Theta(n)$$

$$T(n) = \underbrace{n}_{\text{PARTITION}} \underbrace{\log n}_{\text{Height}}$$
 (Recursion Tree)

$$T(n) = \min_{0 \le q \le n-1} \left(T(q) + T(n-q-1) \right) + \Theta(n)$$

$$T(n) = \Omega(n \log n)$$

Show that QUICKSORT's best-case running time is $\Omega(n \log n)$.

$$T(n) = 2T(\frac{n}{2}) + \Theta(n)$$

$$T(n) = \underbrace{n}_{\text{PARTITION}} \underbrace{\log n}_{\text{Height}}$$
 (Recursion Tree)

$$T(n) = \min_{0 \le q \le n-1} \left(T(q) + T(n-q-1) \right) + \Theta(n)$$

$$T(n) = \Omega(n \log n)$$

By substitution.

Median-of-3 Partition (Problem 7-5)

Argue that in the $\Omega(n \log n)$ running time of QUICKSORT, the *median-of-3* method affects only the constant factor.

Median-of-3 Partition (Problem 7-5)

Argue that in the $\Omega(n \log n)$ running time of QUICKSORT, the *median-of-3* method affects only the constant factor.

Median-of-3 Partition (Problem 7-5)

Argue that in the $\Omega(n \log n)$ running time of QUICKSORT, the *median-of-3* method affects only the constant factor.

$$T(n) = \min_{0 \le q \le n-1} \left(T(q) + T(n-q-1) \right) + \Theta(n)$$
$$T(n) = \Omega(n \log n)$$

Sorts an already $\frac{n}{k}$ -sorted array

n elements

not sorted

8 / 16

Sorts an already $\frac{n}{k}$ -sorted array

n elements

not sorted

 $\Omega(n \log k)$

Sorts an already $\frac{n}{k}$ -sorted array

n elements

not sorted

$$\Omega(n \log k)$$
 $O(n \log k)$

Sorts an already $\frac{n}{k}$ -sorted array

n elements

not sorted

$$\Omega(n \log k)$$
 $O(n \log k)$

$$(k!)^{\frac{n}{k}} \le \underline{L} \le 2^H$$

8 / 16

O(?)

9 / 16

$$O(?)$$
 $\Omega(?)$

9 / 16

$$O(?)$$
 $\Omega(?)$

$$L \ge \left(\underbrace{\frac{n}{k, \dots, k}}\right) = \frac{n!}{(k!)^{\frac{n}{k}}}$$

$$O(?)$$
 $\Omega(?)$

$$L \ge \left(\underbrace{\frac{n}{k, \dots, k}}\right) = \frac{n!}{(k!)^{\frac{n}{k}}} \implies \Omega(n \log(n/k))$$

Sorting $[0, n^3 - 1]$ (Problem 8.3 - 4)

Sort n integers in $[0, n^3 - 1]$ in ${\cal O}(n)$ time.

Suppose that the n records have keys in the range $\left[0,k\right]\!.$

Modify Counting-Sort to sort them in place O(k) in O(n+k) time.

Suppose that the n records have keys in the range [0, k]. Modify COUNTING-SORT to sort them in place (O(k)) in O(n + k) time.

Suppose that the n records have keys in the range [0,k]. Modify COUNTING-SORT to sort them in place (O(k)) in O(n+k) time.

Suppose that the n records have keys in the range [0,k]. Modify COUNTING-SORT to sort them in place (O(k)) in O(n+k) time.

				-			7	
A:	2	5	3	0	2	3	0	3

Suppose that the n records have keys in the range [0,k]. Modify COUNTING-SORT to sort them in place (O(k)) in O(n+k) time.

	_	_	3	-	-	-	•	_
A:	2	5	3	0	2	3	0	3

While $(i \ge 1)$:

While $(i \ge 1)$:

Code here

Finding the 2nd Smallest Element (Problem 9.1-1) Show that the 2nd smallest of n elements can be found with $n+\lceil \log n \rceil -2$ comparisons in the worst case.

Finding the 2nd Smallest Element (Problem 9.1-1) Show that the 2nd smallest of n elements can be found with $n + \lceil \log n \rceil - 2$ comparisons in the worst case.

$$(n-1) + (n-1-1) = 2n-3$$

$$n + \lceil \log n \rceil - 2 = (n-1) + (\lceil \log n \rceil - 1)$$

$$n + \lceil \log n \rceil - 2 = (n-1) + (\lceil \log n \rceil - 1)$$

$$n + \lceil \log n \rceil - 2 = (n-1) + (\lceil \log n \rceil - 1)$$

$$n + \lceil \log n \rceil - 2 = (n-1) + (\lceil \log n \rceil - 1)$$

#Potential 2nd smallest elements $\leq \lceil \log n \rceil$

$$n + \lceil \log n \rceil - 2 = (n-1) + (\lceil \log n \rceil - 1)$$

#Potential 2nd smallest elements $\leq \lceil \log n \rceil$

Q: Can we do even better?

$$\Omega = n + \lceil \log n \rceil - 2$$

$$\Omega = n + \lceil \log n \rceil - 2 = (n-1) + (\lceil \log n \rceil - 1)$$

$$\Omega = n + \lceil \log n \rceil - 2 = (n - 1) + (\lceil \log n \rceil - 1)$$

TAOCP Vol 3 (Page 209, Section 5.3.3)

S:n distinct numbers $k \leq n$

S:n distinct numbers $k \leq n$

$$\frac{n}{2} - \frac{k}{2} \sim \frac{n}{2} + \frac{k}{2}$$

S:n distinct numbers k < n

$$\frac{n}{2} - \frac{k}{2} \sim \frac{n}{2} + \frac{k}{2}$$

$$S = \{800, 6, 900, \frac{50}{7}, 7\}, \quad k = 2 \implies \{6, 7\}$$

S:n distinct numbers k < n

$$\frac{n}{2} - \frac{k}{2} \sim \frac{n}{2} + \frac{k}{2}$$

$$S = \{800, 6, 900, 50, 7\}, \quad k = 2 \implies \{6, 7\}$$

$$S - 50 = \{750, -44, 850, 0, -43\}$$

S:n distinct numbers k < n

$$\frac{n}{2} - \frac{k}{2} \sim \frac{n}{2} + \frac{k}{2}$$

$$S = \{800, 6, 900, 50, 7\}, \quad k = 2 \implies \{6, 7\}$$

$$S - 50 = \{750, -44, 850, 0, -43\}$$

median + subtraction + (k + 1)-th smallest + partition + add

Thank You!

Office 302

Mailbox: H016

hfwei@nju.edu.cn