

T Confidence Intervals

Mathematical Biostatistics Boot Camp

Brian Caffo, PhD Johns Hopkins Bloomberg School of Public Health

Table of contents

- 1. Independent group *t* intervals
- 2. Likelihood method
- 3. Unequal variances

Independent group t confidence intervals

- Suppose that we want to compare the mean blood pressure between two groups in a randomized trial; those who received the treatment to those who received a placebo
- We cannot use the paired t test because the groups are independent and may have different sample sizes
- We now present methods for comparing independent groups

Notation

- Let X_1, \ldots, X_{n_x} be iid $N(\mu_x, \sigma^2)$
- Let Y_1, \ldots, Y_{n_y} be iid $N(\mu_y, \sigma^2)$
- Let \bar{X} , \bar{Y} , S_x , S_y be the means and standard deviations
- · Using the fact that linear combinations of normals are again normal, we know that $\bar{Y} \bar{X}$ is also normal with mean $\mu_y \mu_x$ and variance $\sigma^2(\frac{1}{n_x} + \frac{1}{n_y})$
- The pooled variance estimator

$$S_p^2 = \{(n_x - 1)S_x^2 + (n_y - 1)S_y^2\}/(n_x + n_y - 2)$$

is a good estimator of σ^2

Note

- The pooled estimator is a mixture of the group variances, placing greater weight on whichever has a larger sample size
- · If the sample sizes are the same the pooled variance estimate is the average of the group variances
- · The pooled estimator is unbiased

$$E[S_p^2] = \frac{(n_x - 1)E[S_x^2] + (n_y - 1)E[S_y^2]}{n_x + n_y - 2}$$
$$= \frac{(n_x - 1)\sigma^2 + (n_y - 1)\sigma^2}{n_x + n_y - 2}$$

• The pooled variance estimate is independent of $\bar{Y} - \bar{X}$ since S_x is independent of \bar{X} and S_y is independent of \bar{Y} and the groups are independent

Result

- The sum of two independent Chi-squared random variables is Chi-squared with degrees of freedom equal to the sum of the degrees of freedom of the summands
- · Therefore

$$(n_x + n_y - 2)S_p^2/\sigma^2 = (n_x - 1)S_x^2/\sigma^2 + (n_y - 1)S_y^2/\sigma^2$$
$$= \chi_{n_x - 1}^2 + \chi_{n_y - 1}^2$$
$$= \chi_{n_x + n_y - 2}^2$$

Putting this all together

· The statistic

$$\frac{\frac{\bar{Y} - \bar{X} - (\mu_y - \mu_x)}{\sigma \left(\frac{1}{n_x} + \frac{1}{n_y}\right)^{1/2}}}{\sqrt{\frac{(n_x + n_y - 2)S_p^2}{(n_x + n_y - 2)\sigma^2}}} = \frac{\bar{Y} - \bar{X} - (\mu_y - \mu_x)}{S_p \left(\frac{1}{n_x} + \frac{1}{n_y}\right)^{1/2}}$$

is a standard normal divided by the square root of an independent Chi-squared divided by its degrees of freedom

- Therefore this statistic follows Gosset's t distribution with $n_x + n_y 2$ degrees of freedom
- Notice the form is (estimator true value) / SE

Confidence interval

• Therefore a $(1-\alpha) \times 100\%$ confidence interval for $\mu_y - \mu_x$ is

$$\bar{Y} - \bar{X} \pm t_{n_x + n_y - 2, 1 - \alpha/2} S_p \left(\frac{1}{n_x} + \frac{1}{n_y} \right)^{1/2}$$

- · Remember this interval is assuming a constant variance across the two groups
- · If there is some doubt, assume a different variance per group, which we will discuss later

Likelihood method

· Exactly as before,

$$\frac{\bar{Y} - \bar{X}}{S_p \left(\frac{1}{n_x} + \frac{1}{n_y}\right)^{1/2}}$$

follows a non-central t distribution with non-centrality parameter $\frac{\mu_y - \mu_x}{\sigma \left(\frac{1}{n_x} + \frac{1}{n_y}\right)^{1/2}}$

• Therefore, we can use this statistic to create a likelihood for $(\mu_y - \mu_x)/\sigma$, a standardized measure of the change in group means

Example

- · Comparing SBP for 8 oral contraceptive users versus 21 controls
- \cdot $\bar{X}_{OC}=132.86$ mmHg with $s_{OC}=15.34$ mmHg
- $\cdot \ \bar{X}_C = 127.44$ mmHg with $s_C = 18.23$ mmHg
- Pooled variance estimate

$$s_p^2 = \frac{7(15.34)^2 + 20(18.23)^2}{8 + 21 - 2} = 307.8$$

- $t_{27,.975} = 2.052$ (in R, qt(.975, df = 27))
- Interval

$$132.86 - 127.44 \pm 2.052 \left\{ 307.8 \left(\frac{1}{8} + \frac{1}{21} \right)^{1/2} \right\} = [-9.52, 20.36]$$

Likelihood plot for the effect size

Reasonable values for the effect size from the confidence interval

$$[-9.52, 20.36]/sp = [-.54, 1.16]$$

Unequal variances

Note that under unequal variances

$$\bar{Y} - \bar{X} \sim N \left(\mu_y - \mu_x, \frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y} \right)$$

· The statistic

$$\frac{\bar{Y} - \bar{X} - (\mu_y - \mu_x)}{\left(\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}\right)^{1/2}}$$

approximately follows Gosset's t distribution with degrees of freedom equal to

$$\frac{\left(S_x^2/n_x + S_y^2/n_y\right)^2}{\left(\frac{S_x^2}{n_x}\right)^2/(n_x - 1) + \left(\frac{S_y^2}{n_y}\right)^2/(n_y - 1)}$$

Example

- · Comparing SBP for 8 oral contraceptive users versus 21 controls
- $\bar{X}_{OC} = 132.86$ mmHg with $s_{OC} = 15.34$ mmHg
- $\bar{X}_C = 127.44$ mmHg with $s_C = 18.23$ mmHg
- df = 15.04, $t_{15.04,.975} = 2.13$
- Interval

$$132.86 - 127.44 \pm 2.13 \left(\frac{15.34^2}{8} + \frac{18.23^2}{21} \right)^{1/2} = [-8.91, 19.75]$$