Natriumthiosulfat

Kapitel 1: Reaktionskinetik

Problemstilling

En opløsning af natriumthiosulfat er klar og farveløs. Når der tilsættes saltsyre, bliver væsken uklar og efterhånden uigennemsigtig, da der dannes uopløseligt, finfordelt svovl.

Reaktionen mellem thiosulfat og saltsyre kan skrives

$$S_2O_3^{2-}(aq) + 2 H_3O^+(aq) \rightarrow S(s) + SO_2(g) + 3 H_2O(l)$$
 (I)

De mikroskopiske svovlkrystaller findes i en opslæmning og gør væsken uigennemsigtig og mælket at se på. I mikroskala skal I undersøge, hvordan reaktionshastigheden afhænger af koncentrationerne af thiosulfat og oxonium og bestemme reaktionsordenen med hensyn til de to reaktanter.

Teori

Ved at variere koncentrationerne af thiosulfat og oxonium undersøges koncentrationernes indflydelse på tiden *t*, der går fra reaktionens start, til væsken er uigennemsigtig.

I forsøgene har alle reaktionsblandinger samme volumen. Det er den samme mængde svovl, der gør væsken uigennemsigtig. Derfor er faldet i koncentration af thiosulfat, $-\Delta[S_2O_3^{\ 2-}]$, ens i hvert forsøg.

Reaktionshastigheden er givet ved

$$v = \frac{-\Delta[S_2O_3^{2-}]}{\Delta t}$$

Da tælleren er konstant, er $\frac{1}{\Delta t}$ et mål for reaktionshastigheden i starten af reaktionen, dvs. for initialhastigheden (*Kend Kemien 3*, side 14). Det forudsættes, at $[S_2O_3^{\ 2-}]$ og $[H_3O^+]$ ikke ændres væsentligt inden for det tidsrum, reaktionen iagttages.

Ved efterbehandlingen undersøges, hvorledes $\frac{1}{\Delta t}$ varierer med koncentrationerne af de to reaktanter hver for sig.

Apparatur

- brøndplade 4 imes 6 brønde
 - á 4 mL
- 3 engangspipetter
- stopur
- hvidt papir til underlag
- blyant eller pen med sort tusch

Kemikalier

- 0,1 м natriumthiosulfat
- 1 м saltsyre

Sikkerhed

1/3

Forarbejde

- 1. I reaktionsskemaet er formlen for frit svovl forenklet og angivet som S(s), selv om grundstoffet er opbygget af molekyler. Hvad er den korrekte formel for svovlmolekylerne?
- 2. Undersøg, hvilke R- og S-sætninger der gælder for de kemikalier, I skal arbejde med.

Udførelse

Under brøndpladen lægges et stykke hvidt papir med seks sorte krydser svarende til placeringen af seks brønde på en række.

Kom dråber af saltsyre og vand i brøndene A1 – A6 som angivet i tabel 1.

Tilsæt 30 dråber natriumthiosulfat i brønd A6, og start stopuret samtidig.

Når krydset under brønden ikke længere kan ses, stoppes uret. Den målte tid noteres i tabel 2.

Gentag denne procedure med de fem andre brønde og tilsæt det antal dråber, der er angivet i tabel 2.

Gennemfør tilsvarende forsøg med oxoniums indflydelse på reaktionshastigheden. Lav de nødvendige tabeller hertil.

Bortskaffelse

Kemikalieblandingen hældes i affaldsdunk til uorganisk affald.

Resultater

Tabel 1 Saltsyre og vand						
Brønd nr.	A1	A2	A3	A4	A5	A6
Saltsyre (dråber)	20	20	20	20	20	20
Vand	25	20	15	10	5	0

Tabel 2 Tilsætning af thiosulfat og målt t						
Brønd nr.	A1	A2	A3	A4	A5	A6
Thiosulfat (dråber)	5	10	15	20	25	30
t/s						

Efterbehandling

- 1. Undersøg reaktionshastighedens afhængighed af $[S_2O_3^{2-}]$, og bestem om muligt en reaktionsorden.
- 2. Undersøg reaktionshastighedens afhængighed af $[H_3O^+]$, og bestem om muligt en reaktionsorden.
- 3 Reaktionen (I) er muligvis sammensat af følgende tre delreaktioner

(a)
$$S_2O_3^{2^-}(aq) + H_3O^+(aq) \rightarrow HS_2O_3^{-}(aq) + H_2O(I)$$

(b)
$$HS_2O_3^-(aq) \rightarrow S(s) + HSO_3^-(aq)$$

(c)
$$HSO_3^-(aq) + H_3O^+(aq) \rightarrow SO_2(g) + 2 H_2O(l)$$

Bekræfter jeres resultater, at delreaktion (b) er langsom i forhold til de andre og derfor er hastighedsbestemmende?

4. Kommenter evt. fejlkilder.