

# LUNG CANCER ANALYSIS







By Sahil Gupta
Tools used SQL and Power BI



### **Problem Statement: Lung Cancer Analysis**

- Lung cancer remains one of the leading causes of cancer-related deaths worldwide, with late diagnosis significantly reducing survival rates. Key risk factors such as **smoking**, **passive smoking**, **air pollution**, **and genetic predisposition** contribute to its prevalence. Early identification of high-risk individuals and understanding survival patterns are essential for improving patient outcomes.
- This project leverages **SQL** and **Power BI** for data analysis and visualization, utilizing patient records to uncover insights into **risk factors**, **diagnosis trends**, **survival rates**, **and treatment effectiveness**. The goal is to identify key patterns, assess the impact of different factors on lung cancer progression, and data-driven insights to aid early detection and treatment planning.



### PROJECT OBJECTIVE:

- > Patient Data Segmentation: Retrieve and categorize records based on lung cancer diagnosis, smoking status, age, gender, and geography.
- > Risk Factor Analysis: Assess the impact of smoking, passive smoking, and air pollution on lung cancer prevalence.
- > Cancer Progression Insights: Identify unique cancer stages and analyze survival years based on disease progression.
- > Mortality Rate Evaluation: Determine death rates based on early detection and treatment effectiveness.
- > Global Prevalence Ranking: Identify countries with the highest lung cancer rates and mortality statistics.
- Environmental & Occupational Risk Assessment: Establish correlations between air pollution, occupational exposure, and lung cancer risk.
- > Treatment Effectiveness Analysis: Assess the impact of treatment types and early detection on survival rates.
- Gender-Based Analysis: Compare lung cancer prevalence across men and women in different regions.



### **Dataset Overview**

- > Demographic Information: ID, Country, Population\_Size, Age, Gender
- ➤ Lifestyle & Environmental Factors: Smoker, Years\_of\_Smoking, Cigarettes\_per\_Day, Passive\_Smoker, Air\_Pollution\_Exposure, Occupational\_Exposure, Indoor\_Pollution
- Medical History & Diagnosis: Family\_History, Lung\_Cancer\_Diagnosis, Cancer\_Stage, Adenocarcinoma\_Type
- > Healthcare & Treatment: Healthcare\_Access, Early\_Detection, Treatment\_Type
- Patient Outcomes & Statistics: Survival\_Years, Developed\_or\_Developing, Annual\_Lung\_Cancer\_Deaths, Lung\_Cancer\_Prevalence\_Rate, Mortality\_Rate

Nr of columns: 23

Nr of Records: 2206332

### **Data Cleaning for Lung Cancer Analysis**

- **1.Data Validation and Standardization** Used SQL queries to identify and correct inconsistencies in data types, column formats, and categorical values to ensure uniformity.
- **2.Handling Missing and Duplicate Values** Checked for null entries and duplicate records, applying appropriate cleaning techniques like imputation or removal to maintain data integrity.
- **3.Ensuring Data Consistency** Standardized naming conventions, date formats, and categorical labels to create a structured and reliable dataset for analysis.

03



### Business Problems solved

1. Retrieve all records for individuals diagnosed with lung cancer.

SELECT \* FROM Lung\_Cancer\_Data

WHERE Lung\_Cancer\_Diagnosis = 'Yes'

| ID  | Country   | Population_Size | Age        | Gender | Smoker | Years_of_Smoking | Cigarettes_per_Day | Passive_Smoker | Family_History | Lung_Cancer_Diagnosis | Canc |
|-----|-----------|-----------------|------------|--------|--------|------------------|--------------------|----------------|----------------|-----------------------|------|
| 26  | Pakistan  | 225             | 40         | Female | Yes    | 11               | 17                 | No             | No             | Yes                   | Stag |
| 32  | Nigeria   | 206             | 55         | Male   | Yes    | 9                | 8                  | No             | Yes            | Yes                   | Stag |
| 33  | Turkey    | 85              | 33         | Male   | Yes    | 4                | 12                 | No             | Yes            | Yes                   | Stag |
| 93  | UK        | 67              | 61         | Male   | Yes    | 14               | 28                 | No             | No             | Yes                   | Stag |
| 106 | Ethiopia  | 120             | 70         | Male   | Yes    | 7                | 21                 | No             | No             | Yes                   | Stag |
| 157 | Germany   | 83              | 72         | Male   | Yes    | 25               | 26                 | No             | No             | Yes                   | Stag |
| 168 | Indonesia | 273             | 47         | Female | No     | 0                | 0                  | Yes            | No             | Yes                   | Stag |
| 188 | Egypt     | 102             | 71         | Male   | Yes    | 36               | 7                  | Yes            | No             | Yes                   | Stag |
| 207 | Iran      | 84              | 51         | Male   | Yes    | 28               | 26                 | No             | No             | Yes                   | Stag |
| 227 | Russia    | 145             | 85         | Male   | Yes    | 40               | 26                 | No             | No             | Yes                   | Stag |
| 229 | Turkey    | 85              | 66         | Male   | Yes    | 25               | 6                  | No             | No             | Yes                   | Stag |
| 289 | DR Con    | 95              | 32         | Female | Yes    | 15               | 8                  | No             | No             | Yes                   | Stag |
| 298 | Nigeria   | 206             | 60         | Male   | Yes    | 19               | 21                 | No             | No             | Yes                   | Stag |
| 300 | Mexico    | 128             | 28         | Female | No     | 0                | 0                  | No             | Yes            | Yes                   | Stag |
| 335 | Indonesia | 273             | 73         | Male   | Yes    | 27               | 24                 | No             | No             | Yes                   | Stag |
| 346 | Indonesia | 273             | 20         | Male   | Yes    | 3                | 6                  | No             | No             | Yes                   | Stag |
| 438 | DR Con    | 95              | 51         | Male   | Yes    | 26               | 26                 | No             | Yes            | Yes                   | Stag |
| 454 | Egypt     | 102             | 48         | Male   | Yes    | 34               | 18                 | No             | No             | Yes                   | Stag |
| 482 | Turkey    | 85              | 32         | Male   | Yes    | 14               | 11                 | Yes            | No             | Yes                   | Stag |
| 500 | UK        | 67              | 28         | Female | No     | 0                | 0                  | No             | No             | Yes                   | Stag |
| 570 | Philippi  | 113             | 21         | Female | No     | 0                | 0                  | No             | Yes            | Yes                   | Stag |
| 61Q | China     | 1/100           | <b>1</b> Q | Mala   | Vac    | 10               | Q                  | Vac            | No             | Vac                   | Stad |



```
2. Count the number of smokers and non-smokers.
SELECT
    CASE
        WHEN Smoker = 'Yes' THEN 'Smoker'
        WHEN Smoker = 'No' THEN 'Non-Smoker'
        ELSE 'Unknown'
    END AS Smoking_Status,
    FORMAT(CAST(COUNT(ID) AS BIGINT), 'NO') AS Total_Count
FROM Lung_Cancer_Data
GROUP BY
     Smoker;
3. List all unique cancer stages present in the dataset.
SELECT
  DISTINCT Cancer_Stage
FROM Lung_Cancer_Data
WHERE
     Cancer_Stage <> 'None'
ORDER BY
     Cancer_Stage
```

| Smoking_Status | Total_Count |
|----------------|-------------|
| Smoker         | 88,341      |
| Non-Smoker     | 132,291     |

| Cancer_Stage |
|--------------|
| Stage 1      |
| Stage 2      |
| Stage 3      |
| Stage 4      |



4. Retrieve the average number of cigarettes smoked per day by smokers.

```
SELECT

AVG(Cigarettes_per_Day* 1.00) Avg_Nr_of_Cigarret_Smoked_by_Smokers

FROM Lung_Cancer_Data

WHERE

Smoker = 'Yes'

Avg_Nr_of_Cigarret_Smoked_by_Smokers

17.501296
```

5. Count the number of people exposed to high air pollution.

```
SELECT
    FORMAT(COUNT(ID), 'N0') Nr_of_People
FROM Lung_Cancer_Data
WHERE
    Air_Pollution_Exposure = 'High'
```

Nr\_of\_People 55,108



```
6. Find the top 5 countries with the highest lung cancer deaths.
SELECT * FROM
(SELECT
   DISTINCT Country,
   Annual_Lung_Cancer_Deaths,
   DENSE_RANK()OVER(ORDER BY Annual_Lung_Cancer_Deaths DESC) Rank
FROM Lung_Cancer_Data
)t
WHERE
      Rank<=5
ORDER BY
       Rank
7. Count the number of people diagnosed with lung cancer by gender.
SELECT
   Gender,
   COUNT(Lung_Cancer_Diagnosis) Nr_of_People_Diagnosed_by_Cancer
FROM Lung_Cancer_Data
WHERE
      Lung_Cancer_Diagnosis = 'Yes'
GROUP BY
      Gender
```

| Country | Annual_Lung_Cancer_Deaths | Rank |
|---------|---------------------------|------|
| China   | 690000                    | 1    |
| USA     | 130000                    | 2    |
| Japan   | 75000                     | 3    |
| India   | 70000                     | 4    |
| Russia  | 60000                     | 5    |



8. Retrieve records of individuals older than 60 who are diagnosed with lung cancer.

```
SELECT * FROM Lung_Cancer_Data
WHERE Age > 60 AND Lung_Cancer_Diagnosis = 'Yes'
```

| ID   | Country      | Population_Size | Age | Gender | Smoker | Years_of_Smoking | Cigarettes_per_Day | Passive_Smoker | Family_History | Lung_Canc | Cancer_Sta( |
|------|--------------|-----------------|-----|--------|--------|------------------|--------------------|----------------|----------------|-----------|-------------|
| 93   | UK           | 67              | 61  | Male   | Yes    | 14               | 28                 | No             | No             | Yes       | Stage 1     |
| 106  | Ethiopia     | 120             | 70  | Male   | Yes    | 7                | 21                 | No             | No             | Yes       | Stage 2     |
| 157  | Germany      | 83              | 72  | Male   | Yes    | 25               | 26                 | No             | No             | Yes       | Stage 3     |
| 188  | Egypt        | 102             | 71  | Male   | Yes    | 36               | 7                  | Yes            | No             | Yes       | Stage 1     |
| 227  | Russia       | 145             | 85  | Male   | Yes    | 40               | 26                 | No             | No             | Yes       | Stage 2     |
| 229  | Turkey       | 85              | 66  | Male   | Yes    | 25               | 6                  | No             | No             | Yes       | Stage 1     |
| 335  | Indonesia    | 273             | 73  | Male   | Yes    | 27               | 24                 | No             | No             | Yes       | Stage 2     |
| 848  | Nigeria      | 206             | 72  | Male   | Yes    | 21               | 27                 | No             | No             | Yes       | Stage 1     |
| 879  | Thailand     | 70              | 81  | Male   | Yes    | 31               | 17                 | No             | Yes            | Yes       | Stage 4     |
| 907  | USA          | 331             | 64  | Male   | Yes    | 1                | 23                 | No             | No             | Yes       | Stage 4     |
| 973  | Japan        | 125             | 73  | Male   | Yes    | 25               | 26                 | Yes            | No             | Yes       | Stage 4     |
| 1044 | South Africa | 59              | 64  | Male   | Yes    | 13               | 14                 | No             | No             | Yes       | Stage 2     |
| 1116 | Germany      | 83              | 65  | Male   | No     | 0                | 0                  | No             | No             | Yes       | Stage 4     |
| 1194 | UK           | 67              | 63  | Male   | No     | 0                | 0                  | No             | No             | Yes       | Stage 4     |
| 1230 | Thailand     | 70              | 66  | Male   | Yes    | 8                | 10                 | No             | No             | Yes       | Stage 1     |
| 1291 | UK           | 67              | 68  | Male   | Yes    | 18               | 21                 | No             | No             | Yes       | Stage 2     |
| 1320 | DR Congo     | 95              | 73  | Female | No     | 0                | 0                  | Yes            | No             | Yes       | Stage 2     |
| 1397 | Ethiopia     | 120             | 67  | Female | Yes    | 7                | 24                 | No             | No             | Yes       | Stage 2     |
| 1406 | Philippines  | 113             | 62  | Male   | Yes    | 17               | 26                 | Yes            | No             | Yes       | Stage 2     |
| 1458 | UK           | 67              | 63  | Female | Yes    | 31               | 13                 | No             | Yes            | Yes       | Stage 4     |



```
9. Find the percentage of smokers who developed lung cancer.
SELECT
ROUND (
CAST(
  SUM(
  CASE
     WHEN Smoker = 'Yes' AND Lung_Cancer_Diagnosis = 'Yes' THEN 1
  END ) AS float) /
  SUM(
                                                      Percentage_of_Smokers_with_developed_Lung_Cancer
  CASE
                                                      7.07
     WHEN Smoker = 'Yes' THEN 1
   END ) * 100,
2) Percentage_of_Smokers_with_developed_Lung_Cancer
FROM Lung_Cancer_Data
```



10. Calculate the average survival years based on cancer stages. \_

```
SELECT
    Cancer_Stage,
    AVG(Survival_Years * 1.0) AS Avg_Survival_Years
FROM Lung_Cancer_Data
WHERE
    Cancer_Stage <> 'None'
GROUP BY
    Cancer_Stage
ORDER BY
    AVG(Survival_Years * 1.0) DESC;
```

| Cancer_Stage | Avg_Survival_Years |
|--------------|--------------------|
| Stage 2      | 5.596906           |
| Stage 3      | 5.551487           |
| Stage 4      | 5.448680           |
| Stage 1      | 5.421725           |

11. Count the number of lung cancer patients based on passive smoking.

```
Passive_Smoker,
    COUNT(ID) Nr_of_Lung_Cancer_Patient
FROM Lung_Cancer_Data
WHERE
    Lung_Cancer_Diagnosis = 'Yes'
GROUP BY
    Passive_Smoker
```

| Passive_Smoker | Nr_of_Lung_Cancer_Patient |
|----------------|---------------------------|
| Yes            | 2735                      |
| No             | 6226                      |



12. Find the country with the highest lung cancer prevalence rate.

```
SELECT * FROM
(
SELECT
    DISTINCT Country,
    Lung_Cancer_Prevalence_Rate,
    DENSE_RANK() OVER(ORDER BY Lung_Cancer_Prevalence_Rate DESC)
    Rank
FROM Lung_Cancer_Data
)t
WHERE RANK = 1
```

| Country      | Lung_Cancer_Prevalence_Rate | Rank |
|--------------|-----------------------------|------|
| Philippines  | 2.5                         | 1    |
| Germany      | 2.5                         | 1    |
| India        | 2.5                         | 1    |
| France       | 2.5                         | 1    |
| UK           | 2.5                         | 1    |
| Vietnam      | 2.5                         | 1    |
| South Africa | 2.5                         | 1    |
| Pakistan     | 2.5                         | 1    |
| Thailand     | 2.5                         | 1    |
| DR Congo     | 2.5                         | 1    |
| Ethiopia     | 2.5                         | 1    |
| Brazil       | 2.5                         | 1    |
| Iran         | 2.5                         | 1    |
| Russia       | 2.5                         | 1    |
| USA          | 2.5                         | 1    |
| Egypt        | 2.5                         | 1    |
| Indonesia    | 2.5                         | 1    |
| Italy        | 2.5                         | 1    |
| China        | 2.5                         | 1    |
| Nigeria      | 2.5                         | 1    |
| Japan        | 2.5                         | 1    |
| Mexico       | 2.5                         | 1    |
| Bangladesh   | 2.5                         | 1    |
| Myanmar      | 2.5                         | 1    |
| Turkey       | 2.5                         | 1    |



13.(A) Identify the smoking years' impact on lung cancer Impact of Smoking Duration on Lung Cancer Stages: A Case Count Analysis **SELECT** Years\_of\_Smoking, Cancer\_Stage, COUNT(\*) AS Cases FROM Lung\_Cancer\_Data **WHERE** Lung\_Cancer\_Diagnosis = 'Yes' AND Smoker = 'Yes' **GROUP BY** Years\_of\_Smoking, Cancer\_Stage ORDER BY Cancer\_Stage, COUNT(\*) DESC

|                          | 0 0:         |       |
|--------------------------|--------------|-------|
| Years_of_Smoking         | Cancer_Stage | Cases |
| 27                       | Stage 1      | 57    |
| 36                       | Stage 1      | 49    |
| 37                       | Stage 1      | 45    |
| 23                       | Stage 1      | 44    |
| 15                       | Stage 1      | 42    |
| 6                        | Stage 1      | 41    |
| 26                       | Stage 1      | 41    |
| 4                        | Stage 1      | 40    |
| 31                       | Stage 1      | 40    |
| 3                        | Stage 1      | 40    |
| 8                        | Stage 1      | 40    |
| 20                       | Stage 1      | 39    |
| 35                       | Stage 1      | 39    |
| 40                       | Stage 1      | 38    |
| 29                       | Stage 1      | 38    |
| 38                       | Stage 1      | 38    |
| 33                       | Stage 1      | 38    |
| 39                       | Stage 1      | 38    |
| 28                       | Stage 1      | 38    |
| 1                        | Stage 1      | 36    |
| 32                       | Stage 1      | 36    |
| 13                       | Stage 1      | 36    |
| 10                       | Stage 1      | 36    |
| y executed successfully. |              |       |



ORDER BY

Cancer\_Stage;

# Instructions

```
13.(B)Average Years of Smoking Across Lung Cancer Stages
SELECT
    Cancer_Stage,
    AVG(Years_of_Smoking * 1.00) AS Avg_Smoking_Years
FROM Lung_Cancer_Data
WHERE
    Lung_Cancer_Diagnosis = 'Yes'
    AND
    Smoker = 'Yes'
GROUP BY
    Cancer_Stage

Stage 2
```

| Cancer_Stage | Avg_Smoking_Years |
|--------------|-------------------|
| Stage 1      | 20.921917         |
| Stage 2      | 20.633940         |
| Stage 3      | 19.722868         |
| Stage 4      | 20.418085         |



14. Determine the mortality rate for patients with and without early detection.

```
SELECT
    Early_Detection,
    COUNT(*) AS Total_Patients,
    ROUND(AVG(Mortality_Rate), 2) AS Avg_Mortality_Rate,
    ROUND(MAX(Mortality_Rate), 2) AS Max_Mortality_Rate,
    MIN(Mortality_Rate) AS Min_Mortality_Rate
FROM Lung_Cancer_Data
GROUP BY
    Early_Detection;
```

| Early_Detection | Total_Patients | Avg_Mortality_Rate | Max_Mortality_Rate | Min_Mortality_Rate |
|-----------------|----------------|--------------------|--------------------|--------------------|
| Yes             | 61719          | 3.08               | 89.97              | 0                  |
| No              | 158913         | 3.04               | 90                 | 0                  |



15. Group the lung cancer prevalence rate by developed vs. developing countries.

```
SELECT
    Developed_or_Developing as Country_Status,
    COUNT(ID) Nr_of_Patient,
    ROUND(AVG(Lung_Cancer_Prevalence_Rate),4) Avg_LCPR,
    MAX(Lung_Cancer_Prevalence_Rate) Max_LCPR,
    MIN(Lung_Cancer_Prevalence_Rate) Min_LCPR
FROM Lung_Cancer_Data
GROUP BY
    Developed_or_Developing
```

| Country_Status | Nr_of_Patient | Avg_LCPR | Max_LCPR | Min_LCPR |
|----------------|---------------|----------|----------|----------|
| Developing     | 167741        | 1.5022   | 2.5      | 0.5      |
| Developed      | 52891         | 1.5018   | 2.5      | 0.5      |



16. Identify the correlation between lung cancer prevalence and air pollution levels.

```
SELECT
Air_Pollution_Exposure,
SUM(
CASE
WHEN Lung_Cancer_Diagnosis = 'Yes' THEN 1
ELSE 0
END) Nr_of_Lung_Cancer_Patient,
ROUND(AVG(Lung_Cancer_Prevalence_Rate)* 1.00,3) Avg_LCP_rate,
ROUND(MAX(Lung_Cancer_Prevalence_Rate)* 1.00,3) Max_LCP_Rate,
ROUND(MIN(Lung_Cancer_Prevalence_Rate)* 1.00,3) Max_LCP_Rate
FROM Lung_Cancer_Data
GROUP BY
Air_Pollution_Exposure
```

| Air_Pollution_Exposure | Nr_of_Lung_Cancer_Patient | Avg_LCP_rate | Max_LCP_Rate | Max_LCP_Rate |
|------------------------|---------------------------|--------------|--------------|--------------|
| High                   | 2239                      | 1.503        | 2.5          | 0.5          |
| Low                    | 2224                      | 1.503        | 2.5          | 0.5          |
| Medium                 | 4498                      | 1.501        | 2.5          | 0.5          |



17. Find the average age of lung cancer patients for each country.

```
SELECT
   Country,
   AVG(Age*1.00) Avg_Age
FROM Lung_Cancer_Data
WHERE
       Lung_Cancer_Diagnosis = 'Yes'
GROUP BY
       Country
ORDER BY
   AVG(Age*1.00) DESC
```

| Country      | Avg_Age   |
|--------------|-----------|
| Germany      | 54.177710 |
| Egypt        | 54.040431 |
| South Africa | 53.731092 |
| Russia       | 53.420588 |
| Brazil       | 53.376770 |
| Italy        | 53.231182 |
| Philippines  | 53.011396 |
| Mexico       | 52.913690 |
| China        | 52.884615 |
| Ethiopia     | 52.772616 |
| Thailand     | 52.705014 |
| UK           | 52.675213 |
| Vietnam      | 52.657738 |
| Indonesia    | 52.631147 |
| France       | 52.591780 |
| Bangladesh   | 52.432132 |
| DR Congo     | 52.351648 |
| Pakistan     | 52.320809 |
| Japan        | 52.183417 |
| Nigeria      | 52.148541 |
| Turkey       | 52.128865 |
| Myanmar      | 51.852546 |
| USA          | 51.766578 |
| Iran         | 51.668711 |
| India        | 51.065671 |
|              |           |



18. Calculate the risk factor of lung cancer by smoker status, passive smoking, and family history.

```
SELECT
CASE
WHEN Lung_Cancer_Diagnosis = 'Yes' THEN 'Diagnosed'
WHEN Lung_Cancer_Diagnosis = 'No' THEN 'Not Diagnosed'
END AS Diagnosis_Status,
(SUM(CASE
       WHEN Smoker = 'Yes' THEN 1
       ELSE 0
       END) *100.00)/ COUNT(*) Smoker_Risk_Percent,
(SUM(CASE
       WHEN Passive_Smoker = 'Yes' THEN 1
       ELSE 0
       END )*100.00)/COUNT(*) Passive_Smoker_Risk_Percent,
(SUM(CASE
       WHEN Family History = 'Yes' THEN 1
       ELSE 0
       END )*100.00)/COUNT(*) Family_History_Risk_Percent
FROM
Lung_Cancer_Data
GROUP BY
   CASE
   WHEN Lung_Cancer_Diagnosis = 'Yes' THEN 'Diagnosed'
        Lung Cancer Diagnosis = 'No' THEN 'Not Diagnosed'
   END
         Diagnosis_Status | Smoker_Risk_Percent | Passive_Smoker_Risk_Percent | Family_History_Risk_Percent |
                             69.7355205892199
                                                     30.5211471933935
                                                                                       14.5296283896886
          Diagnosed
         Not Diagnosed
                             38.7828280680867
                                                     29.8704121017994
                                                                                       14.8924510206877
```



1

2

3

Avg\_Mortality\_Rate

3.43

3.32

3.26

Country

Ethiopia

Japan

Turkey

Rank\_by\_Mortality

```
19. Rank countries based on their mortality rate.
SELECT
       Country,
       ROUND(AVG(Mortality_Rate* 1.00),2) Avg_Mortality_Rate,
       DENSE RANK() OVER(ORDER BY ROUND(AVG(Mortality Rate* 1.00),2) DESC)
Rank by Mortality
FROM Lung_Cancer_Data
GROUP BY
        Country
20. Determine if treatment type has a significant impact on survival years.
SELECT
   Treatment Type,
   AVG(Survival_Years* 1.00) Avg_Survival_Years
FROM Lung_Cancer_Data
GROUP BY
       Treatment_Type
ORDER BY
       AVG(Survival Years* 1.00) DESC
                                  Treatment_Type | Avg_Survival_Years
                                                     5.475555
                                   Radiotherapy
                                   Surgery
                                                     5.470070
```

Chemotherapy

None

5.419234

0.060574

| _         |      |    |
|-----------|------|----|
| USA       | 3.23 | 4  |
| Myanmar   | 3.21 | 5  |
| Nigeria   | 3.21 | 5  |
| Egypt     | 3.16 | 6  |
| Italy     | 3.15 | 7  |
| Indonesia | 3.13 | 8  |
| Banglad   | 3.08 | 9  |
| DR Con    | 3.08 | 9  |
| Brazil    | 3.06 | 10 |
| UK        | 3.06 | 10 |
| France    | 3.03 | 11 |
| South A   | 3.02 | 12 |
| Pakistan  | 2.97 | 13 |
| Philippi  | 2.95 | 14 |
| Thailand  | 2.93 | 15 |
| Russia    | 2.92 | 16 |
| Vietnam   | 2.87 | 17 |
| India     | 2.87 | 17 |
| Germany   | 2.84 | 18 |
| China     | 2.84 | 18 |



```
21. Compare lung cancer prevalence in men vs. women across countrie
WITH LungCancerCTE
AS
SELECT
   Country,
   CASE
      WHEN Gender = 'Male' THEN 'Men'
   ELSE 'Women'
   END AS Gender,
Lung_Cancer_Prevalence_Rate
FROM Lung_Cancer_Data
SELECT
    Country,
    Gender,
    ROUND(AVG(Lung_Cancer_Prevalence_Rate), 2) AS
Avg_Lung_Cancer_Prevalence_Rate
FROM LungCancerCTE
GROUP BY
   Country,
   Gender
ORDER BY
   Country,
   Gender;
```



```
22. Find how occupational exposure, smoking, and air pollution collectively impact lung cancer rates.
WITH
ExposureImpact
AS (
SELECT
CASE
WHEN Lung Cancer Diagnosis = 'Yes' THEN 'Diagnosed'
WHEN Lung Cancer Diagnosis = 'No' THEN 'Not Diagnosed'
END AS Diagnosis_Status,
COUNT(*) AS Nr_of_Cases,
SUM(CASE WHEN Occupational_Exposure = 'Yes' THEN 1 ELSE 0 END) AS Occupational_Exposure_Cases,
SUM(CASE WHEN Smoker = 'Yes' THEN 1 ELSE 0 END) AS Smoking Cases,
SUM(CASE WHEN Air Pollution Exposure = 'High' THEN 1 ELSE 0 END) AS High Air Pollution Cases,
SUM(CASE WHEN Air Pollution Exposure = 'Medium' THEN 1 ELSE 0 END) AS Medium Air Pollution Cases,
SUM(CASE WHEN Air_Pollution_Exposure = 'Low' THEN 1 ELSE 0 END) AS Low_Air_Pollution_Cases
FROM Lung_Cancer_Data
GROUP BY
CASE
WHEN Lung Cancer Diagnosis = 'Yes' THEN 'Diagnosed'
WHEN Lung_Cancer_Diagnosis = 'No' THEN 'Not Diagnosed'
END
SELECT
    Diagnosis Status,
   Nr_of_Cases,
    (Occupational Exposure Cases * 100.0) / Nr of Cases AS Occupational Exposure Percent,
    (Smoking Cases * 100.0) / Nr of Cases AS Smoking Percentage,
    (High_Air_Pollution_Cases * 100.0) / Nr_of_Cases AS High_Air_Pollution_Percent,
    (Medium Air Pollution Cases * 100.0) / Nr of Cases AS Medium Air Pollution Percent,
    (Low Air Pollution Cases * 100.0) /Nr of Cases AS Low Air Pollution Percent
FROM ExposureImpact;
```



| Diagnosis_Status | Nr_of_Cases | Occupational_Exposure_Percent | Smoking_Percenta | High_Air_Pollution_Per | Medium_Air_Pollution_Percent | Low_Air_Pollution_Percent |
|------------------|-------------|-------------------------------|------------------|------------------------|------------------------------|---------------------------|
| Diagnosed        | 8961        | 30.867090726481               | 69.735520589219  | 24.986050663988        | 50.195290704162              | 24.818658631849           |
| Not Diagnosed    | 211671      | 30.117966088883               | 38.782828068086  | 24.976968975438        | 49.916615880304              | 25.106415144256           |

# 23. Analyze the impact of early detection SELECT

Cancer\_Stage,
Early\_Detection,

AVG(Survival\_Years \* 1.00) Avg\_Survival\_ye

FROM Lung\_Cancer\_Data

WHERE

Lung\_Cancer\_Diagnosis = 'Yes'

**GROUP BY** 

Cancer\_Stage,

Early\_Detection

ORDER BY

Cancer\_Stage

| •            |                 |                    |
|--------------|-----------------|--------------------|
| Cancer_Stage | Early_Detection | Avg_Survival_years |
| Stage 1      | No              | 5.370440           |
| Stage 1      | Yes             | 5.557404           |
| Stage 2      | No              | 5.604828           |
| Stage 2      | Yes             | 5.576923           |
| Stage 3      | No              | 5.535922           |
| Stage 3      | Yes             | 5.589062           |
| Stage 4      | Yes             | 5.511078           |
| Stage 4      | No              | 5.423976           |



# **Lung Cancer Overview**

**Total Lung Cancer Cases** 

8961

Avg Age of LC Patients

52.66

Smokers with LC %

7.07%

Avg Mortality Rate for LCP

75.09





#### Distribution of Lung Cancer Cases by Age Group & Avg Nr of Cigarrete







#### Lung Cancer Cases by Gender



# Click on Below Button to **Navigate Through** Dashboard Clear all slicers Adenocarcinoma\_Type All **Country Status** V All Cancer\_Stage All $\vee$ Early\_Detection All V Air\_Pollution\_Exposure All $\vee$

# **Smoking & Risk Factors**

**Total Smokers** 

88,341

Avg Years of Smoking

20.42

**High Env Risk Patient** 

2542

**Early Detection Rate** 

28.37%

Distribution Lung Cancer Cases(%) by Cancer Stage & Early Detection



Stage & Early Detection
21.0

Distribution Lung Cancer Cases(%) by Cancer



Distribution of Lung Cancer Cases by Smokers



Distribution of Lung Cancer Patient by Lung Cancer Diagnosis and Smoking Impact Score Score



Lung Cancer cases by Air pollution Exposure & Smokers



#### **Lung Cancer Cases by Passive Smoking**



# Click on Below Button to **Navigate Through** Dashboard Clear all slicers Adenocarcinoma\_Type All **Country Status** V All Cancer\_Stage All Early\_Detection All Air\_Pollution\_Exposure All

# **Treatment & Survival Analysis**

**Avg Survival Years** 

5.5

**Total LC Deaths** 

14bn

Avg LC Prevalence Rate

1.50

**Survival Rate by Early Detection** 

28.65%





| Country Average of Annual_LC Dea |        |
|----------------------------------|--------|
| China                            | 690000 |
| USA                              | 130000 |
| Japan                            | 75000  |
| India                            | 70000  |
| Russia                           | 60000  |
| Myanmar                          | 59999  |
| Myanmar                          | 59989  |
| Myanmar                          | 59986  |
| Myanmar                          | 59980  |
| Myanmar                          | 59963  |
| Myanmar                          | 59961  |
| Myanmar                          | 59959  |



Avg Mortality Rate by Treatment Type



Treatment\_Type



(50.01%)



# Futurion UPSKILLING INDIA

## Instructions

### **Insights**

### **High-Level Observations on Lung Cancer**

- ➤ Total Lung Cancer Cases: 8,961 Highlights the disease's prevalence.
- > Average Age of Patients: 52.66 years Most cases occur in middle-aged or older individuals.
- >Smokers with Lung Cancer: 7.07% Indicates other factors (environmental, genetic) also play a role.
- >Average Mortality Rate: 75.09% High mortality underscores the need for early detection.

### **Geographic Distribution**

High cases in **North America, Europe, and Asia**, possibly due to industrialization, air pollution, and smoking.

### **Age-Wise Distribution**

- > Cases remain consistent from ages 20-79 (1,300–1,400 per group).
- >Steep decline in cases (836) at 80-85 age group, likely due to mortality before reaching this age.
- $\triangleright$  Cigarette consumption is constant (~33K) until it declines sharply in 80+ age group (20.2K).

### **Air Pollution & Mortality Impact**

### **Mortality Rate by Air Pollution Levels:**

➤ High: 75.23%

**≻ Medium:** 75.08%

**≻Low:** 74.79%

>Insight: Pollution worsens outcomes, but other factors like smoking and late detection play bigger roles.

# Futurion UPSKILLING INDIA

### Instructions

### **Insights**

### **Smoking & Lung Cancer Risk**

- > Total Smokers: 88,341 Indicates a large high-risk population.
- > Early Detection Rate: 28.37% Over 70% of lung cancer cases are detected late, reducing survival chances.

### **Passive Smoking Impact:**

- > 1 in 3 lung cancer cases (30.06%) are from passive smokers.
- > Non-smokers (69.74%) also develop lung cancer, proving other risk factors matter.

### Air Pollution vs. Smoking Risk

- > Highest lung cancer cases occur in medium & high pollution exposure areas.
- > Even in low-pollution areas, smokers still have a high risk, proving smoking is a dominant risk factor.

### **Gender-Based Analysis**

Men (5,332 cases, 59.5%) are more affected than women (3,629 cases, 40.5%).

### **Smoker's Lung Cancer Cases:**

➤ Males: 4,309 cases (68.96%)

**Females:** 1,940 cases (31.04%)

Insight: Smoking has a stronger impact on men, likely due to historical smoking trends, occupational hazards, and lifestyle.



### Recommendations

### **Age-Based Screening**

> Since cases remain **consistent across ages 20-79**, early detection should start **in the 20s or 30s**, not just for people aged 50+.

#### **Air Pollution Awareness & Policies**

> Although mortality is **high across all pollution levels**, **air pollution control should be prioritized** to reduce compounding risks.

### **Targeted Male-Focused Anti-Smoking Campaigns**

 $\succ$  68.96% of male lung cancer cases are smoking-related  $\rightarrow$  Anti-smoking efforts should be specifically aggressive toward men.

### **Stricter Passive Smoking Regulations**

➤ 30.06% of passive smokers develop lung cancer → Public smoking bans, stricter home & office rules needed to reduce second-hand smoke exposure.

#### **Stronger Early Detection Strategies**

➤ Since only 28.37% of lung cancer cases are detected early, routine screenings (CT scans) should be mandatory for high-risk groups (smokers, passive smokers, and pollution-exposed individuals).

#### **Occupational Risk Prevention**

- > Males are disproportionately affected, likely due to workplace exposure (factories, mining, construction).
- > Stronger safety measures, improved ventilation, and regular health checkups should be implemented in high-risk jobs.

### **Pollution & Smoking Control Together**

 $\succ$  Air pollution increases cancer risk for smokers & non-smokers alike  $\rightarrow$  Governments should control industrial emissions, promote clean energy, and plant more green spaces.