Failure Cascade Prediction in Large-Scale Power Systems

Xinyu Wu, Sathwik Chadaga, Miroslav Kosanic,

Massachusetts Institute of Technology

Power Blackout Stems from Failure Cascade

Influence Model Characterizes Failure Cascade

Demonstration of Influence Model on Real Power Grid

- data obtained **Example: IEEE1354**

Goals:

- Failure Cascade Predictor: predicts failure cascade sequence accurately and efficiently given initial failure
- Critical Component Identifier: yields the top 10 to 20 components whose failure induces severe blackouts

Principal Investigator / Co-Investigator(s):

Eytan H. Modiano, Massachusetts Institute of Technology Marija Ilić, Massachusetts Institute of Technology H. Vincent Poor, Princeton University

Technical Approach:

- Parallel cascade sample generation in the cloud
- Influence model learning framework for failure cascade prediction and critical component identification 国
- Deep neural net (DNN) module to identify the mapping from power loading profiles to the influence values
- A multi-layered influence model to add voltage/reactive power phenomena in power blackout analysis

Expected Outcomes:

Failure Cascade Predictor

Metric	Result
Failure Size	Error < 3% (100 failures, predicted size [97,103])
Final State	Error < 9% (100 components, >90 correct)
Failure Time	Error within 1 min for a 10-min failure cascade
Time Cost	1000 cascades for IEEE2383 AC in MATLAB. Simulation: 8 hours; Our method: 33s (1/872)

Critical Component Identifier

Pick Critical Components by Influence Model

Ongoing Works

- DNN-based Influence Value Estimator Under Load Variation
- Incorporation of Voltage/Reactive Power Phenomena in the Influence Model

X. Wu, D. Wu and E. Modiano, "Predicting Failure Cascades in Large Scale Power Systems via the Influence Model Framework," in IEEE Transactions on Power Systems, vol. 36, no. 5, pp. 4778-4790, Sept. 2021, doi: 10.1109/TPWRS.2021.3068409.

