All Pairs Shortest Path

Dr. Navjot Singh Design and Analysis of Algorithms

Shortest Paths

What is the shortest path from A to E?

Shortest Paths

Shortest Paths

What algorithm would we use to calculate this?

- Bellman-Ford (since the graph has negative edges)
- **O(VE)**

- Bellman-Ford (since the graph has negative edges)
- O(VE)
- Called a single-source shortest path algorithm. Why?

- Bellman-Ford (since the graph has negative edges)
- **O(VE)**
- Calculate all paths from a single vertex.

What is the shortest path from A to C?
If we already calculated A to E using BellmanFord do we need to do any work?

No new calculations! Bellman-Ford calculates all shortest paths starting at A.

Shortest Paths

What is the shortest path from D to C?
If we already calculated A to E using
Bellman-Ford do we need to do any work?

Different source.

Have to run Bellman-Ford again!

Easy solution?

Run Bellman-Ford from each vertex!

Running time (in terms of E and V)?

Run Bellman-Ford from each vertex!

 $O(V^2E)$

- Bellman-Ford: O(VE)
- V calls, one for each vertex

 d_{ij}^{k} = shortest path from vertex i to vertex j using only vertices $\{1, 2, ..., k\}$

What is $d_{15}^{2?}$ What is $d_{41}^{4?}$ What is $d_{15}^{3?}$

$$d_{15}^2 = 9$$
. Can only use 2.

 d_{ij}^{k} = shortest path from vertex i to vertex j using only vertices $\{1, 2, ..., k\}$

 $d_{15}^{3} = 1$. Can't use vertex 4.

 d_{ij}^{k} = shortest path from vertex i to vertex j using only vertices $\{1, 2, ..., k\}$

 $d_{41}^4 = \infty$. No possible path.

ii. key idea

$$d_{33}^{5} = 0$$
. $d_{ii}^{k} = 0$ for all *i*.

 d_{ij}^{k} = shortest path from vertex i to vertex j using only vertices $\{1, 2, ..., k\}$

If we want all possibilities, how many values are there (i.e. what is the size of $d_{ij}^{\ k}$)? (Poll)

 d_{ij}^{k} = shortest path from vertex i to vertex j using only vertices $\{1, 2, ..., k\}$

 V^3

- *i*: all vertices
- *j*: all vertices
- k: all vertices

 d_{ij}^{k} = shortest path from vertex i to vertex j using only vertices $\{1, 2, ..., k\}$

What is d_{ij}^{V} ?

- Distance of the shortest path from i to j
- If we can calculate this, for all (i, j), we're done!

Assume we know d_{ij}^{k}

How can we calculate d_{ij}^{k+1} , i.e. shortest path now including vertex k+1? (Hint: in terms of d_{ij}^{k})

- 1) Vertex k+1 doesn't give us a shorter path
- 2) Vertex k+1 does give us a shorter path

Recursive relationship

 d_{ij}^{k} = shortest path from vertex i to vertex j using only vertices $\{1, 2, ..., k\}$

- 1) Vertex k+1 doesn't give us a shorter path
- 2) Vertex k+1 does give us a shorter path

$$d_{ij}^{k+1} = ?$$

Recursive relationship

$$d_{ij}^{k}$$
 = shortest path from vertex i to vertex j using only vertices $\{1, 2, ..., k\}$

- 1) Vertex k+1 doesn't give us a shorter path
- 2) Vertex k+1 does give us a shorter path

$$d_{ij}^{k+1} = d_{ij}^{k}$$

Recursive relationship

 d_{ij}^{k} = shortest path from vertex i to vertex j using only vertices $\{1, 2, ..., k\}$

- 1) Vertex k+1 doesn't give us a shorter path
- 2) Vertex k+1 does give us a shorter path

$$d_{ij}^{k+1} = ?$$

- 1) Vertex k+1 doesn't give us a shorter path
- 2) Vertex k+1 does give us a shorter path

$$d_{ij}^{k+1} = ?$$

- 1) Vertex k+1 doesn't give us a shorter path
- 2) Vertex k+1 does give us a shorter path

$$d_{ij}^{k+1} = d_{i(k+1)}^{k} + d_{(k+1)j}^{k}$$

Two options:

- 1) Vertex k+1 doesn't give us a shorter path
- 2) Vertex k+1 does give us a shorter path

$$d_{ij}^{k+1} = ?$$

How do we combine these two options?

 d_{ij}^{k} = shortest path from vertex i to vertex j using only vertices $\{1, 2, ..., k\}$

Two options:

- 1) Vertex k+1 doesn't give us a shorter path
- 2) Vertex k+1 does give us a shorter path

$$d_{ij}^{k+1} = \min(dijk, d_{i(k+1)}^{k} + d_{(k+1)j}^{k})$$

Pick whichever is shorter

Calculate d_{ij}^{k} for increasing k, i.e. k = 1 to V

```
Floyd-Warshall(G = (V,E,W)):

d^0 = W // initialize with edge weights

for k = 1 to V

for i = 1 to V

dijk = min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})
```

38

```
Floyd-Warshall(G = (V,E,W)):

d^0 = W // initialize with edge weights

for k = 1 to V

for i = 1 to V

for j = 1 to V

dijk = min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})
```


			< = 0									
			3								5	
1 é	0	4	-1	¥	¥ ù ú 5 ú	1 é	0	4	-1	¥	¥ Û 5 Ú] i
2 ê	¥	0	¥	¥	5 ú	2 ê	¥	0	¥	¥	5 ú	ו ڵ
3 ê	¥	3	0	2	2 Ú	3 ê	¥	3	0	2	2 Ú	į
4 ê	¥	¥	¥	0	-3 Ú	4 ê	¥	¥	¥	0	-3 L	<u>.</u>
5 ê	¥	¥	1	¥	-3 ú 0 ģ	5 <u>ê</u>	¥	¥	1	¥	-3 Ú 0 ģ	j

```
Floyd-Warshall(G = (V,E,W)):

d^0 = W // initialize with edge weights

for k = 1 to V

for i = 1 to V

for j = 1 to V

dijk = min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})
```


		ŀ	< = 1						k	x = 2		
		2			5			1	2	3	4	5
1 É	0	4	-1	¥	¥ ù ú 5 ú	1	é ê	0	4	-1	¥	? ù
2 ê	¥	0	¥	¥	5 ú	2						Ú
3 Â	V	2	Λ	2	2 Ú	3	ê					Ú
4 ê	¥	¥	¥	0	-3 ^Ú ú	4	ê ê					Ú
5 <u>ê</u>	¥ ¥	¥	1	¥	Ο ģ	5	ê					ģ

```
Floyd-Warshall(G = (V,E,W)):

d^0 = W // initialize with edge weights

for k = 1 to V

for i = 1 to V

for j = 1 to V

dijk = min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})
```



```
Floyd-Warshall(G = (V,E,W)):

d^0 = W // initialize with edge weights

for k = 1 to V

for i = 1 to V

for j = 1 to V

dijk = min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})
```


		ŀ	< = 2			k = 3	
			3	4	5	1 2 3 4 5	ı
1 É	0	4	-1 ¥	¥	9 Ù	1 é 0 ?	Ù
2 ê	¥	0	¥	¥	5 ú 5 ú	2 ê	ú Ú
3 ^	V	2	Λ	2	2 Ú	3	Ú
4 ê	¥	¥	¥	0	-3 ^Ú	4 Ê ê	Ú Ú
5 <u>ê</u>	¥	¥	0 ¥ 1	¥	Οģ	5 ê ê	ψ́

```
Floyd-Warshall(G = (V,E,W)):

d^0 = W // initialize with edge weights

for k = 1 to V

for i = 1 to V

for j = 1 to V

dijk = min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})
```


minimum

Found a shorter path!

```
Floyd-Warshall(G = (V,E,W)):

d^0 = W // initialize with edge weights

for k = 1 to V

for i = 1 to V

for j = 1 to V

dijk = min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})
```


		ŀ	< = 2			k = 3	
	1	2		4	5	1 2 3 4 5	
1 é	0	4	-1 ¥	¥	9 Ù	$\begin{array}{cccc} 1 & \overset{\acute{e}}{\hat{e}} & 0 & 2 \\ 2 & & & \\ \mathbf{\hat{e}} & & & \\ \end{array}$	Ù
2 ê	¥	0	¥	¥	5 ú	2 ê	u Ú
3 ê	¥	3	0	2	2 Ú	3 ê	Ú
4 ê	¥	¥	¥	0	-3 ^Ú ú	4	Ú
5 <u>ê</u>	¥	¥	1	¥	Ο ģ		Ú Ú

```
Floyd-Warshall(G = (V,E,W)):

d^0 = W // initialize with edge weights

for k = 1 to V

for i = 1 to V

for j = 1 to V

dijk = min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})
```


		k	ς = 2) -		k = 3
	1	2	3	4	5	1 2 3 4 5
1 é	0 ¥	4	-1	¥	9 Ù	1 é 0 2 -1 ? ù ú
2 ê	¥	0	¥	¥	5 ú 5 ú	2 ê Ú
3 ê	¥	3	0	2	2 Ú	3 ê Ú
4 ê	¥	¥	¥	0	-3 Ú	4 Ê Ú Ú
5 _ĝ	¥ ¥	¥	1	¥	Ο ģ	5 Ê Ý

```
Floyd-Warshall(G = (V,E,W)):

d^0 = W // initialize with edge weights

for k = 1 to V

for i = 1 to V

for j = 1 to V

dijk = min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})
```



```
Floyd-Warshall(G = (V,E,W)):

d^0 = W // initialize with edge weights

for k = 1 to V

for i = 1 to V

for j = 1 to V

dijk = min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})
```


		ŀ	< = 2					k	= 3		
	1	2	3	4	5		1	2	3	4	5
1 é	0 ¥	4	-1	¥	9 Ù 2 Ú	1	9 0	2	-1	1	Ù
2 ê	¥	0	¥	¥	5 ú		<u>)</u>				Ú
3 Â	\vee	3	0	2	2 Ú	3 (Ú
4 ê	¥	¥	¥	0	-3 Ú	4					Ú Ú
5 <u>ê</u>	¥	¥	1	¥	Ο ģ		<u>}</u>				ģ

```
Floyd-Warshall(G = (V,E,W)):

d^0 = W // initialize with edge weights

for k = 1 to V

for i = 1 to V

for j = 1 to V

dijk = min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})
```


		ŀ	< = 2) -				k	x = 3		
	1	2	3	4	5		1	2	3	4	5
1 É	0 ¥	4	-1	¥	9 Ù 2 Ú	1	é c	2	-1	1	? Ù Ú
2 ê	¥	0	¥	¥	5 ú	2	ê				Ú
3 ê	¥	3	0	2	2 Ú	3	ê				Ú
4 ê	¥	¥	¥	0	-3 Ú	4	ê				Ú Ú
5 ĝ	¥ ¥	¥	1	¥	Ο ģ	5	ê ê				Ú

```
Floyd-Warshall(G = (V,E,W)):

d^0 = W // initialize with edge weights

for k = 1 to V

for i = 1 to V

for j = 1 to V

dijk = min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})
```


minimum

Found a shorter path!

```
Floyd-Warshall(G = (V,E,W)):

d^0 = W // initialize with edge weights

for k = 1 to V

for i = 1 to V

for j = 1 to V

dijk = min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})
```


		ŀ	< = 2						x = 3		
			3								5
1 É	0	4	-1	¥	9 ù 5 ú	1 é	0	2	-1	1	1 ù ú 5 ú
2 ê	¥	0	¥	¥	5 ú	2 ê	¥	0	¥	¥	5 ú
3 ê	¥	3	0	2	2 ú						2 Ú
4 ê	¥	¥	¥	0	-3 Ú	4 ê	¥	¥	¥	0	-3 ^Ú
5 ĝ	¥	¥	1	¥	-3 Ú 0 Ú	5 <u>ê</u>	¥	¥	1	¥	-3 Ú 0 Ú

```
Floyd-Warshall(G = (V,E,W)):

d^0 = W // initialize with edge weights

for k = 1 to V

for i = 1 to V

for j = 1 to V

dijk = min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})
```


		k	= 3							k	ζ = 4		
			3		5				1		3	4	
1	é 0 ê ¥	2	-1	1	1	Ù	1	é	0	2	-1	1	? ù Ú Ú
2	ê¥	0	¥	¥	5	ú Ú	2	ê					Ú
3	ê¥	3	0	2			3	ê					Ú
4	ê ê ¥	¥	¥	0	-3	Ú	4	ê					Ú Ú
5	ê ¥ ê ¥	¥	1	¥	0	ψ	5	ê ê					Ý

```
Floyd-Warshall(G = (V,E,W)):

d^0 = W // initialize with edge weights

for k = 1 to V

for i = 1 to V

for j = 1 to V

dijk = min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})
```


Found a shorter path!

```
Floyd-Warshall(G = (V,E,W)):

d^0 = W // initialize with edge weights

for k = 1 to V

for i = 1 to V

for j = 1 to V

dijk = min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})
```



```
Floyd-Warshall(G = (V,E,W)):

d^0 = W // initialize with edge weights

for k = 1 to V

for i = 1 to V

for j = 1 to V

dijk = min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})
```


		k	= 3							k	= 4			
			3										5	
1	é 0 ê ¥	2	-1	1	1	Ù	1	é	0	2	-1	1	-2 ù ú 5 ú	
2	ê¥	0	¥	¥	5	u Ú	2	ê	¥	0	¥	¥	5 ú	
3	ê ¥	3	0	2	2	Ú	3	ê	¥	3	0	2	? ú	
4	ê ê ¥	¥	¥	0	-3	Ú	4	ê					Ú Ú	
5	ê ¥ ê ¥	¥	1	¥	0	ψ́	5	ê ê ê					Ú	

```
Floyd-Warshall(G = (V,E,W)):

d^0 = W // initialize with edge weights

for k = 1 to V

for i = 1 to V

for j = 1 to V

dijk = min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})
```



```
Floyd-Warshall(G = (V,E,W)):

d^0 = W // initialize with edge weights

for k = 1 to V

for i = 1 to V

for j = 1 to V

dijk = min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})
```


$\mathsf{return}\ d^{\mathit{V}}$

			= 3							= 4		
			3									5
1	é o	2	-1	1	1 ù 5 ú		é	0	2	-1	1	-2 ù ú 5 ú
2	ê¥	0	¥	¥	5 ú	2	e Pê	¥	0	¥	¥	5 ú
					2 Ú							-1 Ú
4	ê ¥	¥	¥	0	-3 Ú	4	, ê ô	¥	¥	¥	0	-3 Ú
5	ê¥	¥	1	¥	-3 ú 0 ú	Ę	, ê	¥	¥	1	¥	-3 Ú 0 ý

```
Floyd-Warshall(G = (V,E,W)):

d^0 = W // initialize with edge weights

for k = 1 to V

for i = 1 to V

for j = 1 to V

dijk = min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})
```


Is it correct?

```
Floyd-Warshall(G = (V,E,W)):

d^0 = W // initialize with edge weights

for k = 1 to V

for i = 1 to V

for j = 1 to V

dijk = min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})
```


Is it correct?

Any assumptions?

```
Floyd-Warshall(G = (V,E,W)):

d^0 = W // initialize with edge weights

for k = 1 to V

for i = 1 to V

for j = 1 to V

dijk = min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})
```


Is it correct?

Assuming the graph has no negative cycles!

What happens if there is a negative cycle?

```
Floyd-Warshall(G = (V,E,W)):

d^0 = W // initialize with edge weights

for k = 1 to V

for i = 1 to V

for j = 1 to V

dijk = min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})
```


If the graph has a negative weight cycle, at the end, at least one of the diagonal entries will be a negative number, i.e., we there's a way to get back to a vertex using all of the vertices that results in a negative weight

Run-time?

```
Floyd-Warshall(G = (V,E,W)):

d^0 = W // initialize with edge weights

for k = 1 to V

for i = 1 to V

for j = 1 to V

dijk = min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})
```


Run-time: $\theta(V^3)$

```
Floyd-Warshall(G = (V,E,W)):

d^0 = W // initialize with edge weights

for k = 1 to V

for i = 1 to V

dijk = min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})
```


Space usage?

```
Floyd-Warshall(G = (V,E,W)):

d^0 = W // initialize with edge weights

for k = 1 to V

for i = 1 to V

for j = 1 to V

dijk = min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})
```


Label all vertices with a number from 1 to V

 d_{ij}^{k} = shortest path from vertex i to vertex j using only vertices $\{1, 2, ..., k\}$

If we want all possibilities, how many values are there (i.e. what is the size of $d_{ij}^{\ k}$)?

Label all vertices with a number from 1 to V

 d_{ij}^{k} = shortest path from vertex i to vertex j using only vertices $\{1, 2, ..., k\}$

 V^3

i: all vertices

Can we do better?

• *j*: all vertices

k: all vertices

Space usage: $\theta(V^2)$

Only need the current value and the previous

```
Floyd-Warshall(G = (V,E,W)):

d^0 = W // initialize with edge weights

for k = 1 to V

for i = 1 to V

for j = 1 to V

dijk = min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})
```

All pairs shortest paths

V * Bellman-Ford: O(V²E)

Floyd-Warshall: $\theta(V^3)$

All pairs shortest paths for positive weight graphs: calculate the shortest paths between all points

Easy solution?

All pairs shortest paths for positive weight graphs: calculate the shortest paths between all points

Run Dijsktras from each vertex!

Running time (in terms of E and V)?

All pairs shortest paths for positive weight graphs: calculate the shortest paths between all points

Run Dijsktras from each vertex!

$$O(V^2 \log V + V E)$$

- V calls do Dijkstras
- Dijkstras: O(V log V + E)

All pairs shortest paths

V * Bellman-Ford: O(V²E)

Floyd-Warshall: $\theta(V^3)$

 $V * Dijkstras: O(V^2 log V + V E)$

Is this any better?

All pairs shortest paths

V * Bellman-Ford: O(V²E)

Floyd-Warshall: $\theta(V^3)$

 $V * Dijkstras: O(V^2 log V + V E)$

If the graph is sparse!

All pairs shortest paths for positive weight graphs: calculate the shortest paths between all points

Run Dijsktras from each vertex!

Challenge: Dijkstras assumes positive weights

Reweight the graph to make all edges positive such that shortest paths are preserved

let h be any function mapping a vertex to a real value

If we change the graph weights as:

$$\hat{w}(u,v) = w(u,v) + h(u) - h(v)$$

The shortest paths are preserved

$$\hat{w}(u,v) = w(u,v) + h(u) - h(v)$$

Lemma: proof

Let $s, v_1, v_2, ..., v_k, t$ be a path from s to t

The weight in the reweighted graph is:

$$\hat{w}(s, v_1, ..., v_k, t) = w(s, v_1) + h(s) - h(v_1) + \hat{w}(v_1, ..., v_k, t)$$

$$= w(s, v_1) + h(s) - h(v_1) + w(v_1, v_2) + h(v_1) - h(v_2) + \hat{w}(v_2, ..., v_k, t)$$

$$= w(s, v_1) + h(s) + w(v_1, v_2) - h(v_2) + \hat{w}(v_2, ..., v_k, t)$$

$$= w(s, v_1) + h(s) + w(v_1, v_2) - h(v_2) + w(v_2, v_3) + h(v_2) - h(v_3) + \hat{w}(v_3, ..., v_k, t)$$

$$= w(s, v_1) + h(s) + w(v_1, v_2) + w(v_2, v_3) - h(v_3) + \hat{w}(v_3, ..., v_k, t)$$
...
$$= w(s, v_1, ..., v_k, t) + h(s) - h(t)$$

Lemma: proof

$$\hat{w}(s, v_1, ..., v_k, t) = w(s, v_1, ..., v_k, t) + h(s) - h(t)$$

Claim: the weight change preserves shortest paths, i.e. if a path was the shortest from s to t in the original graph it will still be the shortest path from s to t in the new graph.

Justification?

$$\hat{w}(s, v_1, ..., v_k, t) = w(s, v_1, ..., v_k, t) + h(s) - h(t)$$

Claim: the weight change preserves shortest paths, i.e. if a path was the shortest from s to t in the original graph it will still be the shortest path from s to t in the new graph.

h(s) – h(t) is a constant and will be the same for all paths from s to t, so the absolute ordering of all paths from s to t will not change.

Lemma

let h be any function mapping a vertex to a real value

If we change the graph weights as:

$$\hat{w}(u,v) = w(u,v) + h(u) - h(v)$$

The shortest paths are preserved

Big question: how do we pick h?

Need to pick h such that the resulting graph has all weights as positive

$$\hat{w}(u,v) = w(u,v) + h(u) - h(v)$$

Create G' with one extra node s with 0 weight edges to all nodes run Bellman-Ford(G',s)

if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra's from every vertex
reweight shortest paths based on G

run Bellman-Ford(G',s)

if no negative-weight cycle

reweight edges in G with h(v)=shortest path from s to v run Dijkstra's from every vertex reweight shortest paths based on G

run Bellman-Ford(G',s)

if no negative-weight cycle

reweight edges in G with h(v)=shortest path from s to v run Dijkstra's from every vertex reweight shortest paths based on G

S→A: ?
S→B:
S→C:
S→D:
S→E:

run Bellman-Ford(G',s)

if no negative-weight cycle

reweight edges in G with h(v)=shortest path from s to v run Dijkstra's from every vertex reweight shortest paths based on G

S→A: 0 S→B: S→C: S→D: S→E:

run Bellman-Ford(G',s)

if no negative-weight cycle

reweight edges in G with h(v)=shortest path from s to v run Dijkstra's from every vertex reweight shortest paths based on G

S→A: 0 S→B: ? S→C: S→D: S→E:

run Bellman-Ford(G',s)

if no negative-weight cycle

reweight edges in G with h(v)=shortest path from s to v run Dijkstra's from every vertex reweight shortest paths based on G

S→A: 0 S→B: -2 S→C: S→D: S→E:

run Bellman-Ford(G',s)

if no negative-weight cycle

reweight edges in G with h(v)=shortest path from s to v run Dijkstra's from every vertex reweight shortest paths based on G

S**→**A: 0

S**→**B: -2

S**→**C: 0

S→D: 0

S**→**E: -3

S**→**A: 0

S**→**B: -2

S**→**C: 0

S**→**D: 0

S**→**E: -3

reweight edges in G with h(v)=shortest path from s to v

$$\hat{w}(u,v) = w(u,v) + h(u) - h(v)$$

reweight edges in G with h(v)=shortest path from s to v

$$\hat{w}(u, v) = w(u, v) + h(u) - h(v)$$
-1 + 0 - -2

reweight edges in G with h(v)=shortest path from s to v

$$\hat{w}(u,v) = w(u,v) + h(u) - h(v)$$

reweight edges in G with h(v)=shortest path from s to v

$$\hat{w}(u, v) = w(u, v) + h(u) - h(v)$$
2 + -2 - 0

reweight edges in G with h(v)=shortest path from s to v

$$\hat{w}(u,v) = w(u,v) + h(u) - h(v)$$

reweight edges in G with h(v)=shortest path from s to v

$$\hat{w}(u, v) = w(u, v) + h(u) - h(v)$$
4 + 0 - 0

reweight edges in G with h(v)=shortest path from s to v

$$\hat{w}(u,v) = w(u,v) + h(u) - h(v)$$

reweight edges in G with h(v)=shortest path from s to v

$$\hat{w}(u, v) = w(u, v) + h(u) - h(v)$$
5 + 0 - -3

reweight edges in G with h(v)=shortest path from s to v

$$\hat{w}(u,v) = w(u,v) + h(u) - h(v)$$

Create G'
run Bellman-Ford(G',s)
if no negative-weight cycle
 reweight edges in G with h(v)=shortest path from s to v
 run Dijkstra's from every vertex

reweight shortest paths based on G

Create G'
run Bellman-Ford(G',s)
if no negative-weight cycle
reweight edges in G with h(v)=shortest path from s to v
run Dijkstra's from every vertex

reweight shortest paths based on G

Create G'
run Bellman-Ford(G',s)
if no negative-weight cycle
 reweight edges in G with h(v)=shortest path from s to v
 run Dijkstra's from every vertex
 reweight shortest paths based on G

A**→**B: -1

A**→**C: 2

A**→**D: 1

A**→**E: -2

Need to pick h such that the resulting graph has all weights as positive

Create G' with one extra node s with 0 weight edges to all nodes run Bellman-Ford(G',s)

if no negative-weight cycle

reweight edges in G with h(v)=shortest path from s to v

run Dijkstra's from every vertex

reweight shortest paths based on G

Why does this work (i.e. how do we guarantee that reweighted graph has only positive edges)?

h(u) shortest distance from s to u

h(v) shortest distance from s to v

Claim: $h(v) \in h(u) + w(u, v)$

Why?

- h(u) shortest distance from s to u
- h(v) shortest distance from s to v

Claim: $h(v) \stackrel{.}{\vdash} h(u) + w(u, v)$

If this weren't true, we could have made a shorter path s to v using u

... but this is in contradiction with how we defined h(v)

- h(u) shortest distance from s to u
- h(v) shortest distance from s to v

$$h(v) \stackrel{\cdot}{\vdash} h(u) + w(u, v)$$

$$\underbrace{w(u,v) + h(u) - h(v)}_{\mathbf{Y}} \stackrel{3}{\mathbf{0}}$$

What is this?

- h(u) shortest distance from s to u
- h(v) shortest distance from s to v

$$h(v) \stackrel{\cdot}{\vdash} h(u) + w(u, v)$$

$$\underbrace{w(u,v) + h(u) - h(v)}_{\mathbf{Y}} \stackrel{3}{\rightarrow} 0$$

$$\hat{w}(u,v) = w(u,v) + h(u) - h(v)$$

$$\hat{w}(u, v) = w(u, v) + h(u) - h(v)^3 0$$

All edge weights in reweighted graph are non-negative


```
Create G'
run Bellman-Ford(G',s)
if no negative-weight cycle
reweight edges in G
run Dijkstra's from every vertex
reweight shortest paths based on G
```

Run-time?


```
Create G' \theta(V)
run Bellman-Ford(G',s) O(V^2)
if no negative-weight cycle
reweight edges in G
run Dijkstra's from every vertex
reweight shortest paths based
on G \theta(E)
```

Run-time?

All pairs shortest paths

V * Bellman-Ford: O(V²E)

Floyd-Warshall: $\theta(V^3)$

Johnson's: $O(V^2 \log V + V E)$

- Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C., Introduction to algorithms. MIT press, 2009
- Dr. David Kauchak, Pomona College
- Prof. David Plaisted, The University of North Carolina at Chapel Hill