Practice Exam Questions Week 3, Linear Algebra

SOLUTIONS.

1. Consider the following matrix A:

$$A = \begin{bmatrix} 3 & -6 & 2 \\ 1 & -2 & 1 \\ -2 & 4 & -2 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 3 \end{bmatrix}$$

a. Are the columns of A linearly independent?

No, $a_2 = -2 \cdot a_1$ and thus $2 \cdot a_1 + 1 \cdot a_2 + 0 \cdot a_3 = 0$. So, the columns of A are not knowly ordependent. b. Is A invertible? (Hint: use the answer from a.)

No, from a we know that the columns of A do not form a linearly independent set. Hence, by the Invertible Matrix Theorem, A is not invortible.

2. Consider the following transformation

a. Construct the matrix which would give this transformation.

$$T(e_1) = T(1) = \begin{bmatrix} 2 \\ 1/2 \end{bmatrix}$$
 $T(e_2) = T(10) = \begin{bmatrix} 1/2 \end{bmatrix}$

T(e₂)= T(0)= 1/2So, the standard matrix for the linear transformation T is 1/2 1/2.

b. Give the coordinates of point P.

$$\begin{bmatrix} \frac{2}{12} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{5}{12} \\ \frac{3}{2} \end{bmatrix}.$$

3. Consider the following matrix A:

$$A = \left[\begin{array}{rrr} 3 & 2 & -1 \\ 1 & 1 & 0 \\ -2 & -2 & 1 \end{array} \right].$$

a. Compute the inverse of A.

$$\begin{bmatrix}
3 & 2 & -1 & | & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & | & 0 & 1 & 0 & 0
\\
-2 & -2 & 1 & | & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 0 & | & 0 & 1 & 0 & 0 \\
-2 & -2 & 1 & | & 0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 0 & | & 0 & 0 & 1 & 0 \\
-2 & -2 & 1 & | & 0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 0 & | & 0 & 1 & 0 & 0 \\
-2 & -2 & 1 & | & 0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 0 & | & 0 & 1 & 0 & 0 \\
-2 & -2 & 1 & | & 0 & 0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 0 & | & 0 & 1 & 0 & 0 \\
-1 & 0 & 1 & | & 0 & 2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & 1 & 0 & 1 \\
0 & 0 & 1 & | & 0 & 2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & 1 & 0 & 1 \\
0 & 0 & 1 & | & 0 & 2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & 1 & 0 & 1 \\
0 & 0 & 1 & | & 0 & 2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & 1 & 0 & 1 \\
0 & 0 & 1 & | & 0 & 2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & 1 & 0 & 1 \\
0 & 0 & 1 & | & 0 & 2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & 1 & 0 & 1 \\
0 & 0 & 1 & | & 0 & 2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & 1 & 0 & 1 \\
0 & 0 & 1 & | & 0 & 2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & 1 & 0 & 1 \\
0 & 0 & 1 & | & 0 & 2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & 1 & 0 & 1 \\
0 & 0 & 1 & | & 0 & 2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & 1 & 0 & 1 \\
0 & 0 & 1 & | & 0 & 2 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & 1 & 0 & 1 \\
0 & 0 & 1 & | & 0 & 2 & 1
\end{bmatrix}$$

b. Let
$$\mathbf{b} = \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix}$$
 and find a solution to the linear system of equations $A\mathbf{x} = \mathbf{b}$.

c. Give an example of an alternative bottom row for A which would make it singular.

 $\begin{bmatrix} 3 & 2 & -1 \\ 1 & 1 & 0 \end{bmatrix}$ is, for example, not invertible, because in this matrix $2 & 2 & 0 \end{bmatrix}$ there are less than 3 pivot positions.

4. Compute the determinant of the following matrix:

$$\left[\begin{array}{cccc} 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{array}\right].$$

$$\begin{vmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 1 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 1 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 1 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 2 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 2 \end{vmatrix} = (-1) * \begin{vmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 2 \end{vmatrix} = (-1) * ($$

5. True or false? If the given statement is true, briefly explain why. If it is false, give a counterexample.

a. If S is a 3×3 matrix such that $S^2 = 0$, then S^{-1} does not exist.

True let's prove it by contradiction. Suppose for the sahe of contradiction that S' exists.

Then, S'=0=) S.S=0=) S'S.S=5'.0=) S=0.

But, if S=0, then S is not invertible (because it doesn't have any pivot positions). Hence, we have a contradiction with our assumption. As a result, S' does not exist.

b. If the equation $A\mathbf{x} = \mathbf{b}$ is consistent, and the variable x_3 is a free variable in the reduced echelon form of A, then there is a solution with $x_3 = 4$.

True. If x_3 is a free variable, then x_3 can take any value in R. Therefore $x_3=y$ is allowed as well. And the system is consistent, so there is a solution for $x_3=y$.

c. If you take two vectors in \mathbb{R}^3 they will never be linearly dependent.

False, take for example $Y_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $Y_2 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$. Then, $Y_2 = 2\underline{Y}_1$ and thus $\{Y_1, Y_2\}$ is linearly dependent.

d. If F is (2×2) with det(F) = 0 and g is a (2×1) vector, then the matrix equation $F\mathbf{x} = \mathbf{g}$ is always inconsistent. Falso. Take for example $F = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $g = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Then, $\det(F) = 0$, but $[F \mid g] = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and thus $F \propto = g$ has infinitely many solutions. Mence, Fx = q is consistent. e. If G is a (3×3) matrix for which $G^2 = I$, then det(G) = 1. False. Take for example $G = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$.

Then, $G^2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

f. If $det(B) \neq 0$, then B^T is invertible.

True. det (BT)=det (B) and thus det (BT) +0. Hence, BTis invertible.

g. If A is a (3×4) matrix, then the transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^3 onto \mathbb{R}^4 .

False. In order to perform Ax, x needs to be in \mathbb{R}^4 and the resulting verter Ax is in \mathbb{R}^3 . Therefore, A is a transformation from \mathbb{R}^4 to \mathbb{R}^3 .

h. An elementary row operation on A does not change the determinant of A.

False. Consider for example A=[20] Mi0], but det([20]) = 2 and det([0,0])=[.