Problem Set 4

Student Name: Noah Reef

Problem 1

Let \mathcal{H} be the set of linear hypothesis defined as

$$\mathcal{H} = \{ h_a(x) := a^T x : ||a||_2 \le B \}$$

and suppose that for all $(x, y) \in \mathcal{D}$ we have that

$$||x||_2 \le X$$
 and $||y||_2 \le Y$

Then we can define the class of linear least square hypothesis as

$$\mathcal{L} = \{ f(x) = \ell(h_a(x), y) := \frac{1}{2} (h_a(x) - y)^2 : h_a \in \mathcal{H} \}$$

Then we get that for the Radamacher complexity that

$$\mathcal{R}_{S}(\mathcal{H}) = \mathbb{E}_{\sigma} \left[\sup_{h_{a} \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{m} \sigma_{i} h_{a}(x_{i}) \right] = \frac{1}{n} \mathbb{E}_{\sigma} \left[\sup_{||a||_{2} \leq B} \sum_{i=1}^{m} \sigma_{i} a^{T} x_{i} \right]$$

$$\leq \frac{1}{n} \mathbb{E}_{\sigma} \left[\sup_{||a||_{2} \leq B} \left| a^{T} \sum_{i=1}^{n} \sigma_{i} x_{i} \right| \right]$$

$$\leq \frac{1}{n} \mathbb{E}_{\sigma} \left[\sup_{||a||_{2} \leq B} ||a||_{2} \left| \left| \sum_{i=1}^{n} \sigma_{i} x_{i} \right| \right|_{2} \right]$$

$$\leq \frac{B}{n} \mathbb{E}_{\sigma} \left[\left| \left| \sum_{i=1}^{n} \sigma_{i} x_{i} \right| \right|_{2} \right]$$

$$\leq \frac{B}{n} \sqrt{n} X$$

and hence we have that

$$\mathcal{R}_S(\mathcal{H}) \le \frac{BX}{\sqrt{n}}$$

lastly we can define the loss function as

$$\phi_y(z) = \ell(z, y) = \frac{1}{2}(z - y)^2$$

with $z = h_a(x)$, and compute the derivative as

$$\phi_y'(z) = (z - y)$$

and get that

$$|\phi'_{y}(z)| \le |z| + |y| = |h_{a}(x)| + |y| \le BX + Y$$

and hence we have that

$$\mathcal{R}_S(\mathcal{L}) \le \frac{BX}{\sqrt{n}}(BX + Y)$$

Problem 2

```
1 import numpy as np
2 import pandas as pd
4 def nystrom_approx(X, sigma, r):
      K = kernel_matrix(X, sigma)
      A = K[0:r, 0:r]
      B = K[r:, 0:r]
      Z = np.block([[A],[B]])
      return Z @ np.linalg.pinv(A) @ Z.T
def fourier_approx(X, sigma, r):
      n, d = X.shape
      # Sample random frequencies from N(0, 1/sigma^2 I)
14
      W = np.random.normal(loc=0.0, scale=1.0/sigma, size=(d, r))
      # Sample random offsets from Uniform[0, 2pi]
16
      b = np.random.uniform(0, 2*np.pi, size=r)
17
      # Compute the feature mapping
18
      Phi = np.sqrt(2.0 / r) * np.cos(X @ W + b)
19
      return Phi @ Phi.T
20
22
24 def kernel_matrix(X, sigma=1):
      # Compute the squared norms of each row in X (shape: (n, 1))
      sum_X = np.sum(X ** 2, axis=1, keepdims=True)
26
27
      # Compute the pairwise squared Euclidean distances in a vectorized
     manner
      dists = sum_X + sum_X.T - 2 * X @ X.T
29
30
      # Compute the Gaussian kernel matrix
31
      K = np.exp(-dists / (2 * sigma ** 2))
      return K
33
# Create pandas DataFrame
df = pd.DataFrame(columns=["d", "n", "r", "Nystrom Error", "Fourier Error"
38 # Test the Nystrom approximation and Fourier approximation
39 ds = [2, 4, 8, 16]
40 ns = [1024,4096,16384]
41 \text{ rs} = [128, 512, 1024]
```

CSE 382M Problem Set 4 Spring 2025

```
43 for d in ds:
      for n in ns:
44
          # Generate random data
          mu = 0
46
          sigma = 1
47
          shape = (n, d)
48
49
          X = np.random.normal(mu,sigma,shape)
50
          # Construct total kernel matrix
51
          K = kernel_matrix(X)
          for r in rs:
55
               # Construct Nystrom approximation
               K_nys = nystrom_approx(X, 1, r)
               # Construct Fourier approximation
59
               K_fourier = fourier_approx(X, 1, r)
61
               # Compute the error
62
               nystrom_error = np.linalg.norm(K - K_nys) / np.linalg.norm(K)
63
               fourier_error = np.linalg.norm(K - K_fourier) / np.linalg.norm
64
     (K)
65
66
               # Append results to DataFrame
67
               df = pd.concat([df, pd.DataFrame({"d": [d], "n": [n], "r": [r
     ], "Nystrom Error": [nystrom_error], "Fourier Error": [fourier_error]})
     ], ignore_index=True)
69
70 # Save DataFrame to CSV
71 df.to_csv("kernel_approximation_errors.csv", index=False)
73 print(df.to_latex(
      index=False,
      float_format="%.4f",
75
      column_format="|c|c|c|c|c|",
76
      escape=False,
77
      caption="Kernel Approximation Errors",
      label="tab:kernel_approximation_errors"
79
80 ))
```

d	n	r	Nystrom Error	Fourier Error
2	1024	128	0.0033	0.1743
2	1024	512	0.0013	0.0774
2	1024	1024	0.0006	0.0639
2	4096	128	0.0025	0.1860
2	4096	512	0.0013	0.0716
2	4096	1024	0.0009	0.0812
2	16384	128	0.0023	0.1383
2	16384	512	0.0012	0.0857
2	16384	1024	0.0008	0.0693
4	1024	128	0.0698	0.3975
4	1024	512	0.0141	0.2148
4	1024	1024	0.0000	0.1406
4	4096	128	0.0785	0.3973
4	4096	512	0.0130	0.1987
4	4096	1024	0.0054	0.1463
4	16384	128	0.0684	0.4436
4	16384	512	0.0121	0.2051
4	16384	1024	0.0046	0.1589
8	1024	128	0.6445	1.6959
8	1024	512	0.3354	0.8601
8	1024	1024	0.0000	0.6053
8	4096	128	0.6695	2.0762
8	4096	512	0.3766	1.0520
8	4096	1024	0.2622	0.7291
8	16384	128	0.6157	2.1504
8	16384	512	0.3460	1.0789
8	16384	1024	0.2422	0.7586
16	1024	128	0.9349	2.8316
16	1024	512	0.7059	1.4132
16	1024	1024	0.0000	0.9979
16	4096	128	0.9839	5.6222
16	4096	512	0.9333	2.8146
16	4096	1024	0.8624	1.9895
16	16384	128	0.9953	11.0760
16	16384	512	0.9805	5.5400
16	16384	1024	0.9619	3.9167

Problem 3

Suppose we have the following Kernel regression problem $Kw=y+\eta$ where η is some noise. If K is a full-rank kernel matrix we have that

$$K = U\Sigma V^T$$
 with $\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_n > 0$

CSE 382M Problem Set 4 Spring 2025

and hence the solution the above regression problem is given by,

$$w = K^{-1}(y + \eta) = \sum_{i=1}^{n} \frac{1}{\sigma_i} u_i^T(y + \eta) v_i$$

then for a low-rank approximation of our kernel matrix we have that $K_r = U_r \Sigma_r V_r^T$ and our solution vector is given by

$$w_r = \sum_{i=1}^r \frac{1}{\sigma_i} u_i^T (y + \eta) v_i = \sum_{i=1}^r \frac{1}{\sigma_i} u_i^T y v_i + \sum_{i=1}^r \frac{1}{\sigma_i} u_i^T \eta v_i = w_r^* + \delta w_r$$

then we get that

$$||\delta w_r|| \le \frac{||\eta||}{\sigma_r}$$

and so

$$\frac{||\delta w_r||}{||w_r^*||} \le \kappa_r \frac{||\eta||}{||y||}$$

Lastly to the error is not too large we require that

$$\kappa_r \frac{||\eta||}{||y||} \le 1 \implies \sigma_r \ge \sigma_1 \frac{||\eta||}{||y||} \implies \sigma_r \ge \sigma_1 \frac{||\eta||}{||y||}$$

Problem 4

Part a

```
import numpy as np
2 import pandas as pd
3 from sklearn.kernel_approximation import Nystroem
4 from sklearn.model_selection import KFold
 def linear_regression_regularized(A, b, theta):
      r = A.shape[1]
      Z = A.T @ A + theta * np.eye(r)
      y = A.T @ b
      w = np.linalg.solve(Z, y)
      return w
 df = pd.DataFrame(columns=["Dataset", "Best Theta", "Test Error"])
 for i in range(2):
16
17
      # Load the in the dataset
18
     fl=np.load('CSE_382M/ps_4/ps_4 code/datasets/dataset{}.npz'. format(i
     +1))
     xtrain = fl['xtrain'].T
      ytrain = fl['ytrain'].T
21
```

CSE 382M Problem Set 4 Spring 2025

```
# regualarization parameter theta
      thetas = [1e-4, 1e-3, 1e-2, 1e-1, 1, 10, 100]
24
      # errors
26
      err = \{\}
27
      # Create K-Fold Cross-Validation split of the training dataset
29
      kf = KFold(n_splits=5, shuffle=True, random_state=42)
30
      kf.get_n_splits(xtrain)
31
      for train_index, test_index in kf.split(xtrain):
          x_train, x_test = xtrain[train_index], xtrain[test_index]
33
          y_train, y_test = ytrain[train_index], ytrain[test_index]
35
          # Loop over the regularization parameters
          for theta in thetas:
37
               feature_map = Nystroem(kernel='rbf', gamma=1, n_components
     =100)
               x_train_transformed = feature_map.fit_transform(x_train)
39
               x_test_transformed = feature_map.transform(x_test)
40
41
               # Train the model
42
43
               w = linear_regression_regularized(x_train_transformed, y_train
     , theta)
44
               # Make predictions
45
               y_pred = x_test_transformed @ w
46
               # Compute the error
47
               error = np.mean((y_test - y_pred) ** 2)
48
               # Store the error
               if theta not in err:
                   err[theta] = []
               err[theta].append(error)
      # Compute the average error for each theta
      for theta in err:
54
          err[theta] = np.mean(err[theta])
56
      # pick best theta
57
      best_theta = min(err, key=err.get)
58
      # test the best theta
60
      yTest = fl['ytest'].T
61
      xTest = fl['xtest'].T
62
      xtrain = fl['xtrain'].T
63
      ytrain = fl['ytrain'].T
65
      feature_map = Nystroem(kernel='rbf', gamma=1, n_components=100)
      xtrain_transformed = feature_map.fit_transform(xtrain)
67
      xTest_transformed = feature_map.transform(xTest)
      w = linear_regression_regularized(xtrain_transformed, ytrain,
     best_theta)
      y_pred = xTest_transformed @ w
70
      # Compute the error
72
      error = np.mean((yTest - y_pred) ** 2)
```

Part b

Dataset	Best Theta	Test Error
1	1.000E-03	9.973E-09
2	1.000E+00	1.226E-09