Tema 6. MOSTREIG I ESTIMACIÓ DE PARÀMETRES POBLACIONALS

Població i mostres

Una **població** és el conjunt total d'individus damunt el qual es vol fer un estudi estadístic.

Una mostra és el subconjunt de la població damunt el qual es fa l'estudi.

Mostreig: procés de selecció d'una mostra a partir d'una població

Per a cada element d'una mostra s'obté una dada estadística X_i.

El valor d'aquesta dada es pot considerar una variable aleatòria.

Una mostra de tamany n es diu **Mostra Aleatòriament Simple** (**M.A.S.**) si les variables aleatòries X_i es poden considerar independents i idènticament distribuïdes (i.i.d.).

Existeixen diferents **tècniques de mostreig** per a obtenir una M.A.S. representativa d'una població.

Paràmetres mostrals i poblacionals

Els paràmetres estadístics (mitjana, variància, etc.) obtinguts a partir d'una mostra es diuen **paràmetres mostrals**.

Els paràmetres obtinguts a partir d'una població es diuen paràmetres poblacionals.

Paràmetres mostrals habituals

Mitjana mostral

$$\bar{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

Variància mostral

$$\hat{s}_{X}^{2} = \frac{n}{n-1} \left(\frac{\sum_{i=1}^{n} X_{i}^{2}}{n} - \bar{X}^{2} \right)$$

Desviació típica mostral

$$\hat{s}_X = \sqrt{\hat{s}_X^2}$$

Proporció mostral

$$\hat{p}_X = \frac{CF}{n}$$

On:

n : nombre de valors mostrals

*X*_i : ièsim valor mostral

CF : casos favorables al succés que volem mesurar

Paràmetres mostrals habituals

Exemple: mostra de 10 individus, mesuram l'alçada de cada persona

Persona	Alçada (cm)
1	173
2	175
3	175
4	176
5	
6	173
7	175
8	170
9	176
10	175

$$\bar{X} = \frac{173 + 175 + 175 + 176 + 172 + 173 + 175 + 170 + 176 + 175}{10} = 174$$

$$\hat{s}_X^2 = \frac{10}{9} \left(\frac{173^2 + 175^2 + 175^2 + 176^2 + 172^2 + 173^2 + 175^2 + 170^2 + 176^2 + 175^2}{10} - 174^2 \right) = 3,78$$

$$\hat{s}_X = \sqrt{3,78} = 1,94$$

Succés: més alt de 175 cm $\hat{p}_X = \frac{2}{10} = 0,2$

Paràmetres mostrals i variables aleatòries

Els paràmetres mostrals són variables aleatòries

Paràmetre mostral	Esperança	Variància	Distribució de probabilitat	
$\frac{\text{(estadístic)}}{\bar{X}}$	$E(\bar{X}) = \mu$	$\operatorname{Var}(\bar{X}) = \frac{\sigma^2}{n}$	$\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$ $\frac{\bar{X} - \mu}{\hat{s}_X / \sqrt{n}} \sim t_{n-1}$ $\bar{Y} = N(\hat{s}_X^2)$	població normal, σ conegut població normal, σ desconegut, $n \leq 30$ σ desconegut, $n > 30$
			l	
\hat{p}_X	$E(\hat{p}_X) = p$	$\operatorname{Var}(\hat{p}_X) = \frac{p(1-p)}{n}$	$\hat{p}_X \sim N(p, \frac{p(1-p)}{n})$ $\hat{p}_X \sim t_{n-1}$	població normal $n>30$ població normal, $n\leq 30$

Altres distribucions mostrals:

Paràmetre mostral	Distribució de probabilitat	
Diferència de mitjanes	$ar{X} - ar{Y} \sim N(\mu_X - \mu_Y, \frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m})$	si poblacions normals i variàncies conegudes
	$rac{rac{(ar{X} - ar{Y}) - (\mu_X - \mu_Y)}{\sqrt{rac{1}{n} + rac{1}{m}}}}{\sqrt{rac{n\hat{s}_X^2 + m\hat{s}_Y^2}{n + m - 2}}} \sim t_{n + m - 2}$	si poblacions normals i variàncies
	$\sqrt{\frac{n}{n+m-2}}$	desconegudes però iguals i $n \leq 30$
	$\bar{X} - \bar{Y} \sim N(\mu_X - \mu_Y, (\frac{n\hat{s}_X^2 + m\hat{s}_Y^2}{n + m - 2})(\frac{1}{n} + \frac{1}{m}))$	si poblacions normals i variàncies desconegudes però iguals i $n>30$
	$\bar{X} - \bar{Y} \sim N(\mu_X - \mu_Y, \frac{\hat{s}_X^2}{n} + \frac{\hat{s}_Y^2}{m})$	si poblacions normals i variàncies desconegudes i diferents
Diferència de proporcions	$\hat{p}_X - \hat{p}_Y \sim N(p_X - p_Y, \frac{\hat{p}_X(1-\hat{p}_X)}{n} + \frac{\hat{p}_Y(1-\hat{p}_Y)}{m})$	n gran

Estimadors

Els paràmetres mostrals s'anomenen **estimadors** quan permeten *estimar* els valors poblacionals.

Notació: θ (valor que es vol estimar)

 $\hat{ heta}$ (valor de l'estimador)

Per a un estimador ideal es verifica:

(i) la mitjana dels valors de l'estimador és igual al valor que es vol estimar (estimador insesgat)

$$E(\hat{\theta}) = \theta$$

(ii) la variància dels valors de l'estimador és petita

Estimadors

Mostra Població

Mitjana mostral (\overline{X}) estimador insesgat de Esperança (μ)

Variància mostral (\hat{g}_X^2) estimador insesgat de Variància (σ^2)

Proporció mostral (\hat{p}_X) estimador insesgat de probabilitat (p)

Intervals de confiança

Donen el rang de valors més probable d'un paràmetre poblacional

Es donen sempre en funció de:

(i) el **nivell de confiança** del paràmetre (probabilitat que el valor poblacional estigui en l'interval)

o bé

(ii) el **nivell de significació** (α) o error permès (probabilitat que el valor poblacional estigui *fora* de l'interval)

Intervals de confiança més habituals

mal i σ és conegut
mal, σ no és conegut
mal
mal i σ és conegut mal, σ no és conegut mal

Altres intervals de confiança:

Paràmetre mostral	Interval de confiança	
Diferència de mitjanes	$\bar{X} - \bar{Y} \pm z_{\alpha/2} \sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}$	si poblacions normals i variàncies conegudes
	$\bar{X} - \bar{Y} \pm t_{n+m-2,\alpha/2} \sqrt{\frac{n\hat{s}_X^2 + m\hat{s}_Y^2}{n+m-2}} \sqrt{\frac{1}{n} + \frac{1}{m}}$	
		desconegudes però iguals i $n \leq 30$
	$\bar{X} - \bar{Y} \pm z_{\alpha/2} \sqrt{\frac{n\hat{s}_X^2 + m\hat{s}_Y^2}{n + m - 2}} \sqrt{\frac{1}{n} + \frac{1}{m}}$	si poblacions normals i variàncies
	'	desconegudes però iguals i $n > 30$
	$\bar{X} - \bar{Y} \pm z_{\alpha/2} \sqrt{\frac{\hat{s}_X^2}{n} + \frac{\hat{s}_Y^2}{m}}$	si poblacions normals i variàncies desconegudes i diferents
Diferència de proporcions	$\hat{p}_X - \hat{p}_Y \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_X(1-\hat{p}_X)}{n} + \frac{\hat{p}_Y(1-\hat{p}_Y)}{m}}$	n gran