Belief State in WrightEagle

Aijun Bai and Xiaoping Chen

WrightEagle Soccer Simulation 2D Team University of Science and Technology of China

Mexico City, Jun 22 2012

Outline

- Introduction to Belief State
- Representation, Usage and Maintenance
- Summary and Future Work

What is a Belief State?

- A probability distribution over states
- $b(s): S \to [0, 1]$
- Basic concept for
 - POMDPs
 - Dec-POMDPs
- (Dec-)POMDP → belief (Dec-)MDP
 - Intractable in RoboCup 2D

Representation of Belief State

 Assume conditional independence between individual objects

$$b(\vec{s}) = \prod_{0 \le i \le 22} b_i(\vec{s}[i])$$

- Use particles to approximate belief states
- Use Monte Carlo methods to maintain particles

The Resulted Belief States

When will it be useful?

- Observation Planning
 - Plan areas to be observed detailedly
 - Selected scene from 3512 to 3529
- Current State Estimation
 - Good estimation from belief states
 - Selected scene from 244 to 245
- Probability Computation
 - Consider all possible situations
 - Selected scene from 1309 to 1318

Monte Carlo Methods

- Predicate step
 - Motion model p(s'|s,a)
 - Agent self completely known
 - Other players randomly walk or kick
 - Ball physically decay or randomly be kicked
- Update step
 - Sensor model p(o|s)

Example - Agent Self

Belief

Predicated

Updated

Example - Other Players

Belief

Predicated

Updated

(1) b

(2) b = p(b,a)

(3) b=u(b,o)

Example - The Ball

Belief Predicated

(2) b = p(b,a)(1) b

Updated

Summary and Future Work

- Particles
- Monte Carlo Methods
- Usage
 - Observation Planning
 - Current State Estimation
 - Probability Computation
- Opponent Model