

Hybrid Machine Learning Soil Moisture Forecasting

Agricultural & Biological Engineering
Sandra M. Guzmán, Assistant professor¹

¹Smart Irrigation and Hydrology- Agricultural and Biological Engineering Department, Indian River Research and Education Center, Fort Pierce, FL

Rationale

Accurate estimations of soil water content are needed to create decision-support systems for irrigation management in agriculture. Hybrid approaches combining signal preprocessing techniques and ensemble learning algorithms could provide the necessary accuracy for a reliable machine learning (ML) forecast system.

Background

In our lab we had **first-hand experience** working with **soil moisture sensors data** for irrigation management and from there we identified the following **challenges**:

- **Complexity** created from non-linear and non-stationary time series.
- Single algorithms are limited to performing well only on specific parts of the data.

Methods

- 1. We implemented two **signal decomposition** techniques to **reduce the complexity** of the time series data.
- 2. We implemented an **ensemble learning** algorithm known as a **Mixture of Experts** (**MoE**), which creates **expert** models for **specific** sections of the time series using a gating network.
- 3. For the **MoE** we used **sequential** training of the expert algorithms and a **Gaussian Gating Network** that were trained using an Expectation-Maximization (EM) algorithm to produce point estimation.

Results MoE

- 1. With the MoE were able to extend the time in which the model performs relatively well from 82 to 2000-time steps.
- 2. During the **training and validation**, the models performed **exceptionally well**, however, the performance was reduced in the **testing**, which suggests some signs of overfitting.
- 3. The EM optimization algorithm made the convergence of the model to global minima dependent on the initialization values.

- Incorporating signal decomposition techniques caused an average reduction in the mean absolute error (MAE) of 44% and increased the data interpretability.
- After around 84-time steps (42 hours) the model deteriorates.

• With the MoE were able to extend the time in which the model performs relatively well from 82 (42 hours) to 2000-time steps (42 days).

Results MoE

Table 1. Loss (Mean Absolute Error) on training and validation

	Sensor 1	Sensor 2	Sensor 3
Loss training	0.002	0.012	0.029
Loss Validation	0.002	0.040	0.140

Table 2. Mean Absolute Error & Mean Squared Error on test dataset

	Sensor 1	Sensor 2	Sensor 3
MSE	1.370	3.055	3.181
MAE	0.953	1.365	1.542

Conclusions

- A combination of signal preprocessing and ensemble learning algorithms can increase the accuracy of ML-based soil moisture forecasting systems for up to several weeks, which meets the irrigation management needs of most agricultural systems.
- • Signal preprocessing techniques contribute mainly to reducing the complexity of times series, while ensemble learning approaches contribute the most to increasing the forecast model's legitimacy over time.

Future work

1. Developing a gating network that allows incorporating multiple heterogeneous models to extend the applicability of the model to a wider range of time series characteristics.

Acknowledgment

- This work is supported by the University of Florida IFAS Archer Early Career Seed Grant.
- National Institute of Food and Agriculture,
 U.S. Department of Agriculture, Hatch project under accession number 1021250
- Smart Irrigation and Hydrology Lab members.
- Dr. Catia Silva.

Research and

Education Center

Interested?
Scan me!