A more complex Lakeshore example using all ArcNLET-Py modules

Wei Mao

Michael Core

Ming Ye

wm23a@fsu.edu

mcore@fsu.edu

mye@fsu.edu

2/24/2024

1 Introduction

A more complex Lakeshore example using all ArcNLET-Py modules

Model reactive transport of NH₄-N and NO₃-N in both vadose zone and groundwater

2.2 Data prepare

- Study area shapefile with one polygon
- DEM raster
- Location of septic tanks multi-point shapefile
- Waterbodies shapefile

https://github.com/ArcNLET-Py/ArcNLET-

Py/tree/main/Examples

All input files need to use the same projected coordinate

2.3 Structure of ArcNLET-Py

- ArcNLET-Py modules
 - 0-Preprocessing
 - Extracts data (hydraulic conductivity, porosity, and soil types) from SSURGO database
 - 1-Groundwater Flow
 - Analyzes groundwater velocity and velocity direction based on DEM and soil data
 - 2-Particle Tracking
 - Simulates water particle movement from sources (septic tanks) to waterbodies
 - 3-VZMOD (Optional)
 - Models nitrate and ammonium concentrations in the Vadose Zone
 - 4-Transport
 - Models nitrate and ammonium plume transport in the groundwater
 - 5-Load Estimation
 - Estimates mass loading to surface waterbodies

2.4 Preprocessing module

- Inputs
 - Study area
- Outputs
 - Hydraulic conductivity
 - Porosity
 - Soil types

Beaudette, D., Skovlin, J., Roecher, S., Brown, A. soilDB: soil database interface. https://cran.r-project.org/web/packages/soilDB/index.html

2.4 Preprocessing module

Water movement

Harmonic mean

$$K = \frac{Z_1 + Z_2 + Z_3}{\frac{Z_1}{K_1} + \frac{Z_2}{K_2} + \frac{Z_3}{K_3}}$$

Weighted average
$$K = \frac{Z_1 K_1 + Z_2 K_2 + Z_3 K_3}{Z_1 + Z_2 + Z_3}$$

2.5 Groundwater flow module

- Inputs
 - DEM,
 - Waterbodies
 - Hydraulic Conductivity
 - Porosity
- Parameters
 - Smoothing Factor
 - Z-Factor
- Outputs
 - Velocity Magnitude and Direction
 - Hydraulic Gradient
 - Smoothed DEM

2.6 Particle Tracking module

- Inputs
 - Velocity Magnitude and Direction
 - Source locations
 - Waterbodies
 - Porosity
- Outputs
 - Particle paths of potential contaminant travel routes

2.6 Particle Tracking Module

14/20

2.7 VZMOD Module

 Ammonium and nitrate transport with sorption, nitrification, and denitrification in vadose zone

2.7 VZMOD Module Concentration (mg/L) 0.5 Depth (ft) 1.5 NH₄-N NO₃-N 17/20

2.8 Transport Module

- Predicting nitrate and ammonium plumes in groundwater
- Inputs
 - Source locations
 - Waterbodies
 - Particle paths
- Outputs
 - Plume raster of concentration distribution
 - Plume info shapefile

2.8 Transport Module 19/20

2.9 Load Estimation Module

- Calculates the removal rate of nitrate and ammonium via denitrification
- Inputs
 - Plume info shapefile from the 4-Transport module
- Outputs
 - CSV
 - Mass output load
 - Mass removal rate
 - Mass input load

