Holstein model for organic semiconductors

Andriy Zhugayevych (http://zhugayevych.me) July 28, 2022

1	Introduction	1
2	Adiabatic polaron	2
3	Donor-acceptor system and transition spectral density	2
4	Independent boson model	E
	4.1 Franck-Condon factors	6
	4.2 Wave-function and correlators	6
	4.3 Transition spectral density	7
5	Spectral lineshape	8
6	Spectral overlap in semiclassical approximation	11
7	Two-site Holstein model with one boson per site	11
8	Inertia effects	13
Ap	pendix	14
Α	Vibrations	14
В	Perturbation theory for normal modes of weakly interacting systems	16
		16
D	Sum rules for Franck-Condon factors of Independent boson model	17
\mathbf{E}	Surface hopping	17
\mathbf{F}	Spectral overlap from experiment	18
G	Phonon correlator in complex plane	18
Η	Nonorthogonal basis	20
Ι	Estimation of exciton transfer integrals from dimer calculations	21
J	Hopping amplitudes	21
Re	ferences	22

§1. Introduction

Our starting point is *Holstein-Peierls* Hamiltonian:

$$\sum_{ij} H_{ij}^{1e} c_i^{\dagger} c_j + \sum_{\alpha} \hbar \omega_{\alpha} \left(b_{\alpha}^{\dagger} b_{\alpha} + \frac{1}{2} \right) + \sum_{ij\alpha} \hbar \omega_{\alpha} g_{ij\alpha} \left(b_{\alpha}^{\dagger} + b_{\alpha} \right) c_i^{\dagger} c_j, \tag{1.1}$$

where c_i^{\dagger} is the quasiparticle (Frenkel excitons, holes etc.) creation operator and b_{α}^{\dagger}) is the localized phonon (normal mode) creation operator. The notations for the one-electron Hamiltonian are as follows:

$$H_{ij}^{1e} = \delta_{ij}\varepsilon_i + (1 - \delta_{ij})t_{ij}, \qquad (1.2)$$

here ε_i is on-site energy and t_{ij} is transfer integral. Electron-phonon coupling described by the constants $g_{ij\alpha} \equiv g_{ji\alpha}$ is called local for i = j (Holstein model [1]) and nonlocal otherwise (Peierls model [2]). In (1.1) the localized basis is chosen for phonons, for plane waves α is the wave vector and the last term must be modified as follows

$$\left(\mathsf{b}_{\alpha}^{\dagger} + \mathsf{b}_{\alpha}\right) \to \left(\mathsf{b}_{\alpha}^{\dagger} + \mathsf{b}_{-\alpha}\right). \tag{1.3}$$

For small or vanishing ω_{α} it might be reasonable to use $G_{ij\alpha} = \hbar \omega_{\alpha} g_{ij\alpha}$ as independent constants.

The classical limit of the Hamiltonian (1.1) can be obtained by reversing the formulas of Appendix A yielding

$$\sum_{ij} H_{ij}^{1e} \mathbf{c}_i^{\dagger} \mathbf{c}_j + \frac{1}{2} \sum_{\alpha} \hbar \omega_{\alpha} \left(\omega_{\alpha}^{-2} \dot{\xi}_{\alpha}^2 + \xi_{\alpha}^2 \right) + \sqrt{2} \sum_{ij\alpha} \hbar \omega_{\alpha} g_{ij\alpha} \xi_{\alpha} \mathbf{c}_i^{\dagger} \mathbf{c}_j$$
(1.4)

or

$$\sum_{ij} H_{ij}^{1e} c_i^{\dagger} c_j + \frac{1}{2} \sum_{\alpha} M_{\alpha} \dot{x}_{\alpha}^2 + \frac{1}{2} \sum_{\alpha\beta} U_{\alpha\beta}^{"} x_{\alpha} x_{\beta} + \sum_{ij\alpha} \tilde{g}_{ij\alpha} x_{\alpha} c_i^{\dagger} c_j,$$

$$\tag{1.5}$$

where

$$\tilde{g}_{ij\alpha} = M_{\alpha} \sum_{\beta} T_{\alpha\beta} \sqrt{2\hbar\omega_{\beta}} \,\omega_{\beta} \,g_{ij\beta}. \tag{1.6}$$