Análise Estatística de Simuladores Validação, UA/SA

Leo Bastos¹ Richard Wilkinson²

¹Departamento de Estatística

²Department of Statistics

190 SINAPE

Outline

- Revisão
- Diagnósticos e Validação
 - Numerical Diagnostics
 - Exemplo: Modelo de lixo nuclear
 - Exemplo: Nilson-Kuusk model
- 3 Análises de Incerteza e Sensibilidade

Outline

- Revisão
- Diagnósticos e Validação
 - Numerical Diagnostics
 - Exemplo: Modelo de lixo nuclear
 - Exemplo: Nilson-Kuusk model
- 3 Análises de Incerteza e Sensibilidade

- **x** vetor de inputs $\longrightarrow y = \eta(\mathbf{x})$ é uma escalar
- ullet Queremos aprender sobre o processo representado por $\eta(\cdot)$
- Experimento computacional consiste em um conjunto de rodadas do simulador para diferentes inputs.

- **x** vetor de inputs $\longrightarrow y = \eta(\mathbf{x})$ é uma escalar
- ullet Queremos aprender sobre o processo representado por $\eta(\cdot)$
- Experimento computacional consiste em um conjunto de rodadas do simulador para diferentes inputs.

- **x** vetor de inputs $\longrightarrow y = \eta(\mathbf{x})$ é uma escalar
- Queremos aprender sobre o processo representado por $\eta(\cdot)$
- Experimento computacional consiste em um conjunto de rodadas do simulador para diferentes inputs.

- **x** vetor de inputs $\longrightarrow y = \eta(\mathbf{x})$ é uma escalar
- Queremos aprender sobre o processo representado por $\eta(\cdot)$
- Experimento computacional consiste em um conjunto de rodadas do simulador para diferentes inputs.

- obtenha os dados de treinamento, $D = \{y_1 = \eta(\mathbf{x}_1), \dots, y_n = \eta(\mathbf{x}_n)\}.$ (Planejamento)
- ② Derive a posteriori para $\eta(\cdot)|D,\tilde{\delta}$ (**Emulação**)

- 💿 Valide seu emulador. (Validação)
- Faça as análises de interesse. { Previsão, problema inverso, UA/SA, etc.}

- obtenha os dados de treinamento, $D = \{y_1 = \eta(\mathbf{x}_1), \dots, y_n = \eta(\mathbf{x}_n)\}.$ (Planejamento)
- ② Derive a posteriori para $\eta(\cdot)|D,\tilde{\delta}$ (**Emulação**)
 - Estime os parâmetro de correlação, $\delta = \hat{\delta}$;
 - Podemos usar $\mathbb{E}[\eta(\cdot)|D,\delta]$ como uma aproximação rápida para $\eta(\cdot)$
 - A distribuição de $\eta(\cdot)|D,\delta$ quantifica a incerteza dessa aproximação.
- Valide seu emulador. (Validação)
- Faça as análises de interesse. { Previsão, problema inverso, UA/SA, etc.}

- obtenha os dados de treinamento, $D = \{y_1 = \eta(\mathbf{x}_1), \dots, y_n = \eta(\mathbf{x}_n)\}.$ (Planejamento)
- 2 Derive a posteriori para $\eta(\cdot)|D,\tilde{\delta}$ (**Emulação**)
 - Estime os parâmetro de correlação, $\delta = \tilde{\delta}$;
 - Podemos usar $\mathbb{E}[\eta(\cdot)|D,\hat{\delta}]$ como uma aproximação rápida para $\eta(\cdot)$
 - A distribuição de $\eta(\cdot)|D,\delta$ quantifica a incerteza dessa aproximação.
- Valide seu emulador. (Validação)
- Faça as análises de interesse. { Previsão, problema inverso, UA/SA, etc.}

- obtenha os dados de treinamento, $D = \{y_1 = \eta(\mathbf{x}_1), \dots, y_n = \eta(\mathbf{x}_n)\}$. (**Planejamento**)
- ② Derive a posteriori para $\eta(\cdot)|D,\tilde{\delta}$ (Emulação)
 - Estime os parâmetro de correlação, $\delta = \tilde{\delta}$;
 - \bullet Podemos usar $\mathbb{E}[\eta(\cdot)|D,\tilde{\delta}]$ como uma aproximação rápida para $\eta(\cdot)$
 - A distribuição de $\eta(\cdot)|D,\delta$ quantifica a incerteza dessa aproximação.
- Valide seu emulador. (Validação)
- Faça as análises de interesse. { Previsão, problema inverso, UA/SA, etc.}

- obtenha os dados de treinamento, $D = \{y_1 = \eta(\mathbf{x}_1), \dots, y_n = \eta(\mathbf{x}_n)\}$. (Planejamento)
- ② Derive a posteriori para $\eta(\cdot)|D,\tilde{\delta}$ (Emulação)
 - Estime os parâmetro de correlação, $\delta = \tilde{\delta}$;
 - Podemos usar $\mathbb{E}[\eta(\cdot)|D,\tilde{\delta}]$ como uma aproximação rápida para $\eta(\cdot)$
 - A distribuição de $\eta(\cdot)|D,\tilde{\delta}$ quantifica a incerteza dessa aproximação.
- Valide seu emulador. (Validação)
- Faça as análises de interesse. { Previsão, problema inverso, UA/SA, etc.}

- obtenha os dados de treinamento, $D = \{y_1 = \eta(\mathbf{x}_1), \dots, y_n = \eta(\mathbf{x}_n)\}$. (Planejamento)
- ② Derive a posteriori para $\eta(\cdot)|D,\tilde{\delta}$ (Emulação)
 - Estime os parâmetro de correlação, $\delta = \tilde{\delta}$;
 - Podemos usar $\mathbb{E}[\eta(\cdot)|D,\tilde{\delta}]$ como uma aproximação rápida para $\eta(\cdot)$
 - A distribuição de $\eta(\cdot)|D,\tilde{\delta}$ quantifica a incerteza dessa aproximação.
- Valide seu emulador. (Validação)
- Faça as análises de interesse. { Previsão, problema inverso, UA/SA, etc.}

- obtenha os dados de treinamento, $D = \{y_1 = \eta(\mathbf{x}_1), \dots, y_n = \eta(\mathbf{x}_n)\}.$ (Planejamento)
- ② Derive a posteriori para $\eta(\cdot)|D,\tilde{\delta}$ (Emulação)
 - Estime os parâmetro de correlação, $\delta = \tilde{\delta}$;
 - Podemos usar $\mathbb{E}[\eta(\cdot)|D,\tilde{\delta}]$ como uma aproximação rápida para $\eta(\cdot)$
 - A distribuição de $\eta(\cdot)|D,\tilde{\delta}$ quantifica a incerteza dessa aproximação.
- Valide seu emulador. (Validação)
- Faça as análises de interesse. { Previsão, problema inverso, UA/SA, etc.}

Emulador gaussiano:

$$\eta(\cdot)|\beta,\sigma^2,\delta\sim GP\left(m_0(\cdot),V_0(\cdot,\cdot)\right),$$

$$m_0(\mathbf{x}) = h(\mathbf{x})^T \beta$$

 $V_0(\mathbf{x}, \mathbf{x}') = \sigma^2 C_{\delta}(\mathbf{x}, \mathbf{x}')$

- $h(\cdot)$ e $C_{\delta}(\cdot,\cdot)$ são conhecidos
- $p(\beta, \sigma^2, \delta)$: priori
- Dados de treinamento: (y, X) onde $y_i = \eta(x_i), i = 1, ..., n$

Emulador gaussiano:

$$\eta(\cdot)|\beta,\sigma^2,\delta\sim GP\left(m_0(\cdot),V_0(\cdot,\cdot)\right),$$

$$m_0(\mathbf{x}) = h(\mathbf{x})^T \beta$$

 $V_0(\mathbf{x}, \mathbf{x}') = \sigma^2 C_{\delta}(\mathbf{x}, \mathbf{x}')$

- $h(\cdot)$ e $C_{\delta}(\cdot,\cdot)$ são conhecidos
- $p(\beta, \sigma^2, \delta)$: priori
- Dados de treinamento: (y, X) onde $y_i = \eta(x_i), i = 1, ..., n$

Emulador gaussiano:

$$\eta(\cdot)|\beta,\sigma^2,\delta\sim GP\left(m_0(\cdot),V_0(\cdot,\cdot)\right),$$

$$m_0(\mathbf{x}) = h(\mathbf{x})^T \beta$$

 $V_0(\mathbf{x}, \mathbf{x}') = \sigma^2 C_{\delta}(\mathbf{x}, \mathbf{x}')$

- $h(\cdot)$ e $C_{\delta}(\cdot,\cdot)$ são conhecidos
- $p(\beta, \sigma^2, \delta)$: priori
- Dados de treinamento: (y, X) onde $y_i = \eta(x_i), i = 1, ..., n$

Emulador gaussiano:

$$\eta(\cdot)|\beta,\sigma^2,\delta\sim GP\left(m_0(\cdot),V_0(\cdot,\cdot)\right),$$

$$m_0(\mathbf{x}) = h(\mathbf{x})^T \beta$$

 $V_0(\mathbf{x}, \mathbf{x}') = \sigma^2 C_{\delta}(\mathbf{x}, \mathbf{x}')$

- $h(\cdot)$ e $C_{\delta}(\cdot,\cdot)$ são conhecidos
- $p(\beta, \sigma^2, \delta)$: priori
- Dados de treinamento: (y, X) onde $y_i = \eta(x_i), i = 1, ..., n$.

Emulador t

Pode-se mostrar que

$$\eta(\cdot)|\mathbf{y}, \mathbf{X}, \delta \sim \text{Student-Process}\left(n - q, m_1(\cdot), V_1(\cdot, \cdot)\right)$$

$$\begin{aligned} m_1(x) &= h(x)^T \widehat{\beta} + t_{\delta}(x)^T \mathbf{A}^{-1} (\mathbf{y} - H \widehat{\beta}), \\ V_1(x, x') &= \widehat{\sigma}^2 \left[C_{\delta}(x, x') - t_{\delta}(x)^T \mathbf{A}^{-1} t_{\delta}(x') + (h(x) - t_{\delta}(x)^T \mathbf{A}^{-1} H) \right. \\ &\times \left. (H^T \mathbf{A}^{-1} H)^{-1} \left(h(x') - t_{\delta}(x')^T \mathbf{A}^{-1} H \right)^T \right]. \end{aligned}$$

Outline

- Revisão
- Diagnósticos e Validação
 - Numerical Diagnostics
 - Exemplo: Modelo de lixo nuclear
 - Exemplo: Nilson-Kuusk model
- 3 Análises de Incerteza e Sensibilidade

- **Validation** generally means: "the emulator predictions are close enough to the simulator outputs".
- We want to take account all the uncertainty associated with the emulator.
- "Do the choices that I have made, based on my knowledge of this simulator, appear to be consistent with the observations?"
- Choices for the Gaussian process emulator:

- **Validation** generally means: "the emulator predictions are close enough to the simulator outputs".
- We want to take account all the uncertainty associated with the emulator.
- "Do the choices that I have made, based on my knowledge of this simulator, appear to be consistent with the observations?"
- Choices for the Gaussian process emulator:

- **Validation** generally means: "the emulator predictions are close enough to the simulator outputs".
- We want to take account all the uncertainty associated with the emulator.
- "Do the choices that I have made, based on my knowledge of this simulator, appear to be consistent with the observations?"
- Choices for the Gaussian process emulator:

- **Validation** generally means: "the emulator predictions are close enough to the simulator outputs".
- We want to take account all the uncertainty associated with the emulator.
- "Do the choices that I have made, based on my knowledge of this simulator, appear to be consistent with the observations?"
- Choices for the Gaussian process emulator:
 - Normality
 - Stationarity
 - Correlation parameters estimation

- **Validation** generally means: "the emulator predictions are close enough to the simulator outputs".
- We want to take account all the uncertainty associated with the emulator.
- "Do the choices that I have made, based on my knowledge of this simulator, appear to be consistent with the observations?"
- Choices for the Gaussian process emulator:
 - Normality
 - Stationarity
 - Correlation parameters estimation

- **Validation** generally means: "the emulator predictions are close enough to the simulator outputs".
- We want to take account all the uncertainty associated with the emulator.
- "Do the choices that I have made, based on my knowledge of this simulator, appear to be consistent with the observations?"
- Choices for the Gaussian process emulator:
 - Normality
 - Stationarity
 - Correlation parameters estimation

- **Validation** generally means: "the emulator predictions are close enough to the simulator outputs".
- We want to take account all the uncertainty associated with the emulator.
- "Do the choices that I have made, based on my knowledge of this simulator, appear to be consistent with the observations?"
- Choices for the Gaussian process emulator:
 - Normality
 - Stationarity
 - Correlation parameters estimation

- Since the simulator is deterministic, we need new computer experimental runs for validation.
- Such data is called validation data
- The idea is to compare the validation ouputs with the emulator outputs taking into account associated uncertainty.

- Since the simulator is deterministic, we need new computer experimental runs for validation.
- 2 Such data is called validation data
 - Validation inputs: $\mathbf{X}^* = (\mathbf{x}_1^*, \dots, \mathbf{x}_m^*)^T$
 - Validation outputs: $(y_1^* = \eta(\mathbf{x}_1^*), \dots, y_m^* = \eta(\mathbf{x}_m^*))$
- The idea is to compare the validation ouputs with the emulator outputs taking into account associated uncertainty.

- Since the simulator is deterministic, we need new computer experimental runs for validation.
- Such data is called validation data
 - Validation inputs: $\mathbf{X}^* = (\mathbf{x}_1^*, \dots, \mathbf{x}_m^*)^T$
 - Validation outputs: $(y_1^* = \eta(\mathbf{x}_1^*), \dots, y_m^* = \eta(\mathbf{x}_m^*))$
- The idea is to compare the validation ouputs with the emulator outputs taking into account associated uncertainty.

- Since the simulator is deterministic, we need new computer experimental runs for validation.
- 2 Such data is called validation data
 - Validation inputs: $\mathbf{X}^* = (\mathbf{x}_1^*, \dots, \mathbf{x}_m^*)^T$
 - Validation outputs: $(y_1^* = \eta(\mathbf{x}_1^*), \dots, y_m^* = \eta(\mathbf{x}_m^*))$
- The idea is to compare the validation ouputs with the emulator outputs taking into account associated uncertainty.

- Since the simulator is deterministic, we need new computer experimental runs for validation.
- 2 Such data is called validation data
 - Validation inputs: $\mathbf{X}^* = (\mathbf{x}_1^*, \dots, \mathbf{x}_m^*)^T$
 - Validation outputs: $(y_1^* = \eta(\mathbf{x}_1^*), \dots, y_m^* = \eta(\mathbf{x}_m^*))$
- The idea is to compare the validation ouputs with the emulator outputs taking into account associated uncertainty.

- Numerical Diagnostics
 (Compare D(y*) with P(D(η(X*))|y))
 - (i) Individual prediction errors $D_i(\cdot)$
 - (ii) Credible interval diagnostic $D_{CI}(\cdot)$
 - (iii) Mahalanobis Distance $D_{MD}(\cdot)$
- @ Graphical Diagnostics

- Numerical Diagnostics (Compare $D(\mathbf{y}^*)$ with $\mathbb{P}(D(\eta(\mathbf{X}^*))|\mathbf{y})$)
 - (i) Individual prediction errors $D_i(\cdot)$
 - (ii) Credible interval diagnostic $D_{CI}(\cdot)$
 - (iii) Mahalanobis Distance $D_{MD}(\cdot)$
- Graphical Diagnostics

- Numerical Diagnostics (Compare $D(\mathbf{y}^*)$ with $\mathbb{P}(D(\eta(\mathbf{X}^*))|\mathbf{y})$)
 - (i) Individual prediction errors $D_i(\cdot)$
 - (ii) Credible interval diagnostic $D_{Cl}(\cdot)$
 - (iii) Mahalanobis Distance $D_{MD}(\cdot)$
- ② Graphical Diagnostics

- Numerical Diagnostics (Compare $D(\mathbf{y}^*)$ with $\mathbb{P}(D(\eta(\mathbf{X}^*))|\mathbf{y})$)
 - (i) Individual prediction errors $D_i(\cdot)$
 - (ii) Credible interval diagnostic $D_{Cl}(\cdot)$
 - (iii) Mahalanobis Distance $D_{MD}(\cdot)$
- @ Graphical Diagnostics

- Numerical Diagnostics (Compare $D(y^*)$ with $\mathbb{P}(D(\eta(X^*))|y)$)
 - (i) Individual prediction errors $D_i(\cdot)$
 - (ii) Credible interval diagnostic $D_{Cl}(\cdot)$
 - (iii) Mahalanobis Distance $D_{MD}(\cdot)$
- Graphical Diagnostics
 - (i) Correlated and uncorrelated errors
 - (ii) Individual errors against emulator's predictions
 - (iii) Individual errors against inputs
 - (iv) Uncorrelated errors against the index
 - (v) QQ-plot of the uncorrelated errors

- Numerical Diagnostics (Compare $D(\mathbf{y}^*)$ with $\mathbb{P}(D(\eta(\mathbf{X}^*))|\mathbf{y})$)
 - (i) Individual prediction errors $D_i(\cdot)$
 - (ii) Credible interval diagnostic $D_{Cl}(\cdot)$
 - (iii) Mahalanobis Distance $D_{MD}(\cdot)$
- Graphical Diagnostics
 - (i) Correlated and uncorrelated errors
 - (ii) Individual errors against emulator's predictions
 - (iii) Individual errors against inputs
 - (iv) Uncorrelated errors against the index
 - (v) QQ-plot of the uncorrelated errors

- Numerical Diagnostics (Compare $D(y^*)$ with $\mathbb{P}(D(\eta(X^*))|y)$)
 - (i) Individual prediction errors $D_i(\cdot)$
 - (ii) Credible interval diagnostic $D_{Cl}(\cdot)$
 - (iii) Mahalanobis Distance $D_{MD}(\cdot)$
- Graphical Diagnostics
 - (i) Correlated and uncorrelated errors
 - (ii) Individual errors against emulator's predictions
 - (iii) Individual errors against inputs
 - (iv) Uncorrelated errors against the index
 - (v) QQ-plot of the uncorrelated errors

- Numerical Diagnostics (Compare $D(\mathbf{y}^*)$ with $\mathbb{P}(D(\eta(\mathbf{X}^*))|\mathbf{y})$)
 - (i) Individual prediction errors $D_i(\cdot)$
 - (ii) Credible interval diagnostic $D_{Cl}(\cdot)$
 - (iii) Mahalanobis Distance $D_{MD}(\cdot)$
- Graphical Diagnostics
 - (i) Correlated and uncorrelated errors
 - (ii) Individual errors against emulator's predictions
 - (iii) Individual errors against inputs
 - (iv) Uncorrelated errors against the index
 - (v) QQ-plot of the uncorrelated errors

- Numerical Diagnostics (Compare $D(\mathbf{y}^*)$ with $\mathbb{P}(D(\eta(\mathbf{X}^*))|\mathbf{y})$)
 - (i) Individual prediction errors $D_i(\cdot)$
 - (ii) Credible interval diagnostic $D_{Cl}(\cdot)$
 - (iii) Mahalanobis Distance $D_{MD}(\cdot)$
- Graphical Diagnostics
 - (i) Correlated and uncorrelated errors
 - (ii) Individual errors against emulator's predictions
 - (iii) Individual errors against inputs
 - (iv) Uncorrelated errors against the index
 - (v) QQ-plot of the uncorrelated errors

- Numerical Diagnostics (Compare $D(y^*)$ with $\mathbb{P}(D(\eta(X^*))|y)$)
 - (i) Individual prediction errors $D_i(\cdot)$
 - (ii) Credible interval diagnostic $D_{Cl}(\cdot)$
 - (iii) Mahalanobis Distance $D_{MD}(\cdot)$
- Graphical Diagnostics
 - (i) Correlated and uncorrelated errors
 - (ii) Individual errors against emulator's predictions
 - (iii) Individual errors against inputs
 - (iv) Uncorrelated errors against the index
 - (v) QQ-plot of the uncorrelated errors

Individual prediction errors (standardised)

$$D_i(y^*) = \frac{y_i^* - m_1(\mathbf{x}_i^*)}{\sqrt{V_1(\mathbf{x}_i^*)}}$$

It can be shown that the joint distribution of the individual prediction errors is

$$D_{\mathbf{I}}(\eta(\mathbf{X})^*)|D,\delta \sim \text{Multi Student-t}(n-q,0,C(\mathbf{X}^*;\psi))$$

Credible interval diagnostic

$$D_{CI}(\mathbf{y}^*) = \frac{1}{m} \sum_{i=1}^m \mathbf{1}(\mathbf{y}_i^* \in Cl_i(\alpha))$$

The reference distribution can be obtained by simulation.

Individual prediction errors (standardised)

$$D_i(y^*) = \frac{y_i^* - m_1(\mathbf{x}_i^*)}{\sqrt{V_1(\mathbf{x}_i^*)}}$$

It can be shown that the joint distribution of the individual prediction errors is

$$D_{\mathbf{I}}(\eta(\mathbf{X})^*)|D,\delta \sim \text{Multi Student-t}(n-q,0,C(\mathbf{X}^*;\psi))$$

Credible interval diagnostic

$$D_{Cl}(\mathbf{y}^*) = \frac{1}{m} \sum_{i=1}^m \mathbf{1}(\mathbf{y}_i^* \in Cl_i(\alpha))$$

The reference distribution can be obtained by simulation.

Mahalanobis Distance

$$D_{MD}(\mathbf{y}^*) = (\mathbf{y}^* - m_1(\mathbf{X}^*))^T (V_1(\mathbf{X}^*)^{-1} (\mathbf{y}^* - m_1(\mathbf{X}^*))^T)$$

The distribution of the Mahalanobis distance is

$$\frac{(n-q)}{m(n-q-2)}D_{MD}(\eta(\mathbf{X}^*))|D,\delta\sim F_{m,n-q}$$

- Extreme values for the observed Mahalanobis distance can indicate:
 - Correlation hyperparameters (δ) were poorly estimated

Mahalanobis Distance

$$D_{MD}(\mathbf{y}^*) = (\mathbf{y}^* - m_1(\mathbf{X}^*))^T (V_1(\mathbf{X}^*)^{-1} (\mathbf{y}^* - m_1(\mathbf{X}^*))^T)$$

The distribution of the Mahalanobis distance is

$$rac{(n-q)}{m(n-q-2)}D_{MD}(\eta(\mathbf{X}^*))|D,\delta\sim F_{m,n-q}$$

- Extreme values for the observed Mahalanobis distance can indicate:
 - Correlation hyperparameters (δ) were poorly estimated
 - Stationary GP assumption can be too for approximating the simulator

Mahalanobis Distance

$$D_{MD}(\mathbf{y}^*) = (\mathbf{y}^* - m_1(\mathbf{X}^*))^T (V_1(\mathbf{X}^*)^{-1} (\mathbf{y}^* - m_1(\mathbf{X}^*))^T)$$

The distribution of the Mahalanobis distance is

$$\frac{(n-q)}{m(n-q-2)}D_{MD}(\eta(\mathbf{X}^*))|D,\delta\sim F_{m,n-q}$$

- Extreme values for the observed Mahalanobis distance can indicate:
 - Correlation hyperparameters (δ) were poorly estimated
 - Stationary GP assumption can be too for approximating the simulator

Mahalanobis Distance

$$D_{MD}(\mathbf{y}^*) = (\mathbf{y}^* - m_1(\mathbf{X}^*))^T (V_1(\mathbf{X}^*)^{-1} (\mathbf{y}^* - m_1(\mathbf{X}^*))^T)$$

The distribution of the Mahalanobis distance is

$$rac{(n-q)}{m(n-q-2)}D_{MD}(\eta(\mathbf{X}^*))|D,\delta\sim F_{m,n-q}$$

- Extreme values for the observed Mahalanobis distance can indicate:
 - Correlation hyperparameters (δ) were poorly estimated
 - Stationary GP assumption can be too for approximating the simulator

Individual errors

$$D_i(y^*) = \frac{y_i^* - E[\eta(\mathbf{x}_i^*)|D,\delta]}{\sqrt{V[\eta(\mathbf{x}_i^*)|D,\delta]}}$$

- D_i(y*)s against emulator's predictions
- $D_i(y^*)$ s against inputs
- These errors are correlated

- $D_G(\mathbf{y}^*) = \mathbf{G}^{-1}(\mathbf{y}^* E[\eta(\mathbf{x}^*)|D,\delta])$
- where $V[\eta(\mathbf{X}^*)|D,\delta] = \mathbf{G}\mathbf{G}^T$
 - $D_G(\mathbf{y}^*)$ against the index
 - QQ-plot of $D_G(\mathbf{y}^*)$
 - $D_{MD}(\mathbf{y}^*) = D_G(y^*)^T D_G(y^*)$

Individual errors

$$D_i(y^*) = \frac{y_i^* - E[\eta(\mathbf{x}_i^*)|D,\delta]}{\sqrt{V[\eta(\mathbf{x}_i^*)|D,\delta]}}$$

- D_i(y*)s against emulator's predictions
- $D_i(y^*)$ s against inputs
- These errors are correlated

- $D_G(\mathbf{y}^*) = \mathbf{G}^{-1}(\mathbf{y}^* E[\eta(\mathbf{x}^*)|D,\delta])$
 - $D_G(\mathbf{y}^*)$ against the index*
 - QQ-plot of $D_G(\mathbf{y}^*)$
 - $D_{MD}(\mathbf{y}^*) = D_G(y^*)^T D_G(y^*)$

Individual errors

$$D_i(y^*) = \frac{y_i^* - E[\eta(\mathbf{x}_i^*)|D,\delta]}{\sqrt{V[\eta(\mathbf{x}_i^*)|D,\delta]}}$$

- D_i(y*)s against emulator's predictions
- $D_i(y^*)$ s against inputs
- These errors are correlated

$$D_G(\mathbf{y}^*) = \mathbf{G}^{-1}(\mathbf{y}^* - E[\eta(\mathbf{x}^*)|D, \delta])$$
 where $V[\eta(\mathbf{X}^*)|D, \delta] = \mathbf{G}\mathbf{G}^T$

- $D_G(\mathbf{y}^*)$ against the index*
- QQ-plot of $D_G(\mathbf{y}^*)$

Individual errors

$$D_i(y^*) = \frac{y_i^* - E[\eta(\mathbf{x}_i^*)|D,\delta]}{\sqrt{V[\eta(\mathbf{x}_i^*)|D,\delta]}}$$

- D_i(y*)s against emulator's predictions
- $D_i(y^*)$ s against inputs
- These errors are correlated

$$D_G(\mathbf{y}^*) = \mathbf{G}^{-1}(\mathbf{y}^* - E[\eta(\mathbf{x}^*)|D, \delta])$$
 where $V[\eta(\mathbf{X}^*)|D, \delta] = \mathbf{G}\mathbf{G}^T$

- D_G(y*) against the index*
- QQ-plot of $D_G(\mathbf{y}^*)$

Individual errors

$$D_i(y^*) = \frac{y_i^* - E[\eta(\mathbf{x}_i^*)|D,\delta]}{\sqrt{V[\eta(\mathbf{x}_i^*)|D,\delta]}}$$

- D_i(y*)s against emulator's predictions
- $D_i(y^*)$ s against inputs
- These errors are correlated

$$D_G(\mathbf{y}^*) = \mathbf{G}^{-1}(\mathbf{y}^* - E[\eta(\mathbf{x}^*)|D,\delta])$$
 where $V[\eta(\mathbf{X}^*)|D,\delta] = \mathbf{G}\mathbf{G}^T$

- $D_G(\mathbf{y}^*)$ against the index*
- QQ-plot of $D_G(\mathbf{y}^*)$
- $D_{MD}(\mathbf{y}^*) = D_G(y^*)^T D_G(y^*)$

Individual errors

$$D_i(y^*) = \frac{y_i^* - E[\eta(\mathbf{x}_i^*)|D,\delta]}{\sqrt{V[\eta(\mathbf{x}_i^*)|D,\delta]}}$$

- D_i(y*)s against emulator's predictions
- $D_i(y^*)$ s against inputs
- These errors are correlated

$$D_G(\mathbf{y}^*) = \mathbf{G}^{-1}(\mathbf{y}^* - E[\eta(\mathbf{x}^*)|D,\delta])$$
 where $V[\eta(\mathbf{X}^*)|D,\delta] = \mathbf{G}\mathbf{G}^T$

- $D_G(\mathbf{y}^*)$ against the index*
- QQ-plot of $D_G(\mathbf{y}^*)$
- $D_{MD}(\mathbf{y}^*) = D_G(y^*)^T D_G(y^*)$

Individual errors

$$D_i(y^*) = \frac{y_i^* - E[\eta(\mathbf{x}_i^*)|D,\delta]}{\sqrt{V[\eta(\mathbf{x}_i^*)|D,\delta]}}$$

- D_i(y*)s against emulator's predictions
- $D_i(y^*)$ s against inputs
- These errors are correlated

$$D_G(\mathbf{y}^*) = \mathbf{G}^{-1}(\mathbf{y}^* - E[\eta(\mathbf{x}^*)|D,\delta])$$
 where $V[\eta(\mathbf{X}^*)|D,\delta] = \mathbf{G}\mathbf{G}^T$

- $D_G(\mathbf{y}^*)$ against the index*
- QQ-plot of $D_G(\mathbf{y}^*)$
- $D_{MD}(\mathbf{y}^*) = D_G(y^*)^T D_G(y^*)$

Individual errors

$$D_i(y^*) = \frac{y_i^* - E[\eta(\mathbf{x}_i^*)|D,\delta]}{\sqrt{V[\eta(\mathbf{x}_i^*)|D,\delta]}}$$

- D_i(y*)s against emulator's predictions
- $D_i(y^*)$ s against inputs
- These errors are correlated

$$D_G(\mathbf{y}^*) = \mathbf{G}^{-1}(\mathbf{y}^* - E[\eta(\mathbf{x}^*)|D,\delta])$$
 where $V[\eta(\mathbf{X}^*)|D,\delta] = \mathbf{G}\mathbf{G}^T$

- $D_G(\mathbf{y}^*)$ against the index*
- QQ-plot of $D_G(\mathbf{y}^*)$
- $D_{MD}(\mathbf{y}^*) = D_G(y^*)^T D_G(y^*)$

Decomposing the covariance matrix

Cholesky decomposition (PCD)

$$V = \mathbf{R}^T \mathbf{R}$$

Pivoting Cholesky decomposition (PCD)

$$P^T V P = R^T R$$

Eigen decomposition

$$V = \mathbf{E}^T \Lambda \mathbf{E}$$

Decomposing the covariance matrix

Cholesky decomposition (PCD)

$$V = \mathbf{R}^T \mathbf{R}$$

Pivoting Cholesky decomposition (PCD)

$$\mathbf{P}^T \mathbf{V} \mathbf{P} = \mathbf{R}^T \mathbf{R}$$

Eigen decomposition

$$V = \mathbf{E}^T \Lambda \mathbf{E}$$

Decomposing the covariance matrix

Cholesky decomposition (PCD)

$$V = \mathbf{R}^T \mathbf{R}$$

Pivoting Cholesky decomposition (PCD)

$$\mathbf{P}^T \mathbf{V} \mathbf{P} = \mathbf{R}^T \mathbf{R}$$

Eigen decomposition

$$V = \mathbf{E}^T \Lambda \mathbf{E}$$

$$D^{PC}(\mathbf{y}^*) = (\mathbf{PR}^T)^{-1}(\mathbf{y}^* - E[\eta(\mathbf{x}^*)|D,\delta])$$

- $D^{PC}(\mathbf{y}^*)|D, \delta \sim \text{Multi Student-t}(n-q, 0, C_{\delta}(\mathbf{X}^*))$
- Extreme errors might indicate non-stationarity
- Large errors might indicate under-confident emulator
- Small errors might indicate over-confident emulator
- Pivoting order helps on the graphical interpretation

$$D^{PC}(\mathbf{y}^*) = (\mathbf{PR}^T)^{-1}(\mathbf{y}^* - E[\eta(\mathbf{x}^*)|D,\delta])$$

- $D^{PC}(\mathbf{y}^*)|D,\delta\sim ext{Multi Student-t}(n-q,0,C_\delta(\mathbf{X}^*))$
- Extreme errors might indicate non-stationarity
- Large errors might indicate under-confident emulator
- Small errors might indicate over-confident emulator
- Pivoting order helps on the graphical interpretation

$$D^{PC}(\mathbf{y}^*) = (\mathbf{PR}^T)^{-1}(\mathbf{y}^* - E[\eta(\mathbf{x}^*)|D,\delta])$$

- $D^{PC}(\mathbf{y}^*)|D,\delta \sim \text{Multi Student-t}(n-q,0,C_{\delta}(\mathbf{X}^*))$
- Extreme errors might indicate non-stationarity
- Large errors might indicate under-confident emulator
- Small errors might indicate over-confident emulator
- Pivoting order helps on the graphical interpretation

$$D^{PC}(\mathbf{y}^*) = (\mathbf{PR}^T)^{-1}(\mathbf{y}^* - E[\eta(\mathbf{x}^*)|D,\delta])$$

- $D^{PC}(\mathbf{y}^*)|D,\delta \sim \text{Multi Student-t}(n-q,0,C_{\delta}(\mathbf{X}^*))$
- Extreme errors might indicate non-stationarity
- Large errors might indicate under-confident emulator
- Small errors might indicate over-confident emulator
- Pivoting order helps on the graphical interpretation

$$D^{PC}(\mathbf{y}^*) = (\mathbf{PR}^T)^{-1}(\mathbf{y}^* - E[\eta(\mathbf{x}^*)|D,\delta])$$

- $D^{PC}(\mathbf{y}^*)|D,\delta \sim \text{Multi Student-t}(n-q,0,C_{\delta}(\mathbf{X}^*))$
- Extreme errors might indicate non-stationarity
- Large errors might indicate under-confident emulator
- Small errors might indicate over-confident emulator
- Pivoting order helps on the graphical interpretation

Source: http://web.ead.anl.gov/resrad/

- RESRAD is a computer model designed to estimate radiation doses and risks from RESidual RADioactive materials.
- Maximal release of contamination in drinking water over 10,000

Source: http://web.ead.anl.gov/resrad/

- RESRAD is a computer model designed to estimate radiation doses and risks from RESidual RADioactive materials.
- Maximal release of contamination in drinking water over 10,000
 vears (in millirems)

- Output Log of maximal dose of radiation in drinking water
- 27 inputs
- Training data: $n = 190^*$
- Validation data: m = 69*

Numerical diagnostics

	(47.13; 104.70)

- Output Log of maximal dose of radiation in drinking water
- 27 inputs
- Training data: $n = 190^*$
- Validation data: m = 69*

Numerical diagnostics

	Observed	Expected	95% CI
$D_{CI}(\cdot)$	0.943	0.950	(0.886; 1.000)
$D_{MD}(\cdot)$	58.96	70.00	(47.13; 104.70)

- Output Log of maximal dose of radiation in drinking water
- 27 inputs
- Training data: $n = 190^*$
- Validation data: m = 69*

Numerical diagnostics

	Observed	Expected	95% CI
$D_{CI}(\cdot)$	0.943	0.950	(0.886; 1.000)
$D_{MD}(\cdot)$	58.96	70.00	(47.13; 104.70)

Graphical Diagnostics: Individual errors

 $D_i(\mathbf{y}^*)$ against data order

 $D_i(\mathbf{y}^*)$ against emulator's predictions

Graphical Diagnostics: Individual errors

Graphical Diagnostics: Correlated errors

QQ-plot of $D_i^{PC}(\mathbf{y}^*)$

 $D_i^{PC}(\mathbf{y}^*)$ against the pivoting order

- Example: Nilson-Kuusk model is a reflectance model for a homogeneous plant canopy.
 - The Nilson-Kuusk model is a single output model with 5 inputs
 - The training data contains 150 points
 - The validation data contains 100 points

- Example: Nilson-Kuusk model is a reflectance model for a homogeneous plant canopy.
 - The Nilson-Kuusk model is a single output model with 5 inputs
 - The training data contains 150 points
 - The validation data contains 100 points

- Example: Nilson-Kuusk model is a reflectance model for a homogeneous plant canopy.
 - The Nilson-Kuusk model is a single output model with 5 inputs
 - The training data contains 150 points
 - The validation data contains 100 points

- Example: Nilson-Kuusk model is a reflectance model for a homogeneous plant canopy.
 - The Nilson-Kuusk model is a single output model with 5 inputs
 - The training data contains 150 points
 - The validation data contains 100 points

Graphical Diagnostics - Individual Errors

Graphical Diagnostics - Uncorrelated Errors

 $D_{MD}(\mathbf{y}^*) = 750.237$ and the 95% CI is (69.0, 142.6) Indicating a conflict between emulator and simulator.

Graphical Diagnostics - Input 5

Actions for the Kuusk emulator

- The mean function $h(\cdot) = (1, \mathbf{x}, x_5^2, x_5^3, x_5^4)$
- Log transformation on outputs
- "new" dataset for validation

Actions for the Kuusk emulator

- The mean function $h(\cdot) = (1, \mathbf{x}, x_5^2, x_5^3, x_5^4)$
- Log transformation on outputs
- "new" dataset for validation

Actions for the Kuusk emulator

- The mean function $h(\cdot) = (1, \mathbf{x}, x_5^2, x_5^3, x_5^4)$
- Log transformation on outputs
- "new" dataset for validation

Individual errors

Uncorrelated Errors

 $D_{MD}(\mathbf{y}^*) = 63.873$ and the 95% CI is (32.582, 79.508)

Outline

- Revisão
- Diagnósticos e Validação
 - Numerical Diagnostics
 - Exemplo: Modelo de lixo nuclear
 - Exemplo: Nilson-Kuusk model
- 3 Análises de Incerteza e Sensibilidade

Análise de Incerteza (UA)

- Usada quando existe incerteza a respeito dos inputs
- \bullet A nossa incerteza pode ser descrita por uma distribuição de probabilidade $\mathbb G$
- o interesse então é conhecer a distribuição de probabilidade induzida nos outputs

$$Y = \eta(X)$$

onde $X \sim \mathbb{G}$.

- Análise de Incerteza (UA)
 - Usada quando existe incerteza a respeito dos inputs
 - \bullet A nossa incerteza pode ser descrita por uma distribuição de probabilidade $\mathbb G$
 - o interesse então é conhecer a distribuição de probabilidade induzida nos outputs

$$Y = \eta(X),$$

onde $X \sim \mathbb{G}$.

- Análise de Incerteza (UA)
 - Usada quando existe incerteza a respeito dos inputs
 - \bullet A nossa incerteza pode ser descrita por uma distribuição de probabilidade $\mathbb G$
 - o interesse então é conhecer a distribuição de probabilidade induzida nos outputs

$$Y = \eta(X)$$

onde $X \sim \mathbb{G}$.

- Análise de Incerteza (UA)
 - Usada quando existe incerteza a respeito dos inputs
 - \bullet A nossa incerteza pode ser descrita por uma distribuição de probabilidade $\mathbb G$
 - o interesse então é conhecer a distribuição de probabilidade induzida nos outputs

$$Y = \eta(X),$$

onde $X \sim \mathbb{G}$.

- Análise de Incerteza (UA)
 - Usada quando existe incerteza a respeito dos inputs
 - \bullet A nossa incerteza pode ser descrita por uma distribuição de probabilidade $\mathbb G$
 - o interesse então é conhecer a distribuição de probabilidade induzida nos outputs

$$Y = \eta(X),$$

- Análise de sensibilidade (SA)
 - É usada para entender como cada input (ou grupo de inputs) afeta a distribuição dos outputs.
 - Análise de sensibilidade local é baseada nos derivativos do simulador em torno de um ponto x₀ de interesse
 - Análise de sensibilidade global é baseada em grande mudanças no input de interesse.
 - Análise probablística de sensibilidade (PSA) surge quando existe incerteza nos inputs.
- UA/PSA podem ser feitas usando Monte Carlo.

- Análise de Incerteza (UA)
 - Usada quando existe incerteza a respeito dos inputs
 - \bullet A nossa incerteza pode ser descrita por uma distribuição de probabilidade $\mathbb G$
 - o interesse então é conhecer a distribuição de probabilidade induzida nos outputs

$$Y = \eta(X),$$

- Análise de sensibilidade (SA)
 - É usada para entender como cada input (ou grupo de inputs) afeta a distribuição dos outputs.
 - Análise de sensibilidade local é baseada nos derivativos do simulador em torno de um ponto x₀ de interesse
 - Análise de sensibilidade global é baseada em grande mudanças no input de interesse.
 - Análise probablística de sensibilidade (PSA) surge quando existe incerteza nos inputs.
- UA/PSA podem ser feitas usando Monte Carlo.

- Análise de Incerteza (UA)
 - Usada quando existe incerteza a respeito dos inputs
 - \bullet A nossa incerteza pode ser descrita por uma distribuição de probabilidade $\mathbb G$
 - o interesse então é conhecer a distribuição de probabilidade induzida nos outputs

$$Y = \eta(X),$$

- Análise de sensibilidade (SA)
 - É usada para entender como cada input (ou grupo de inputs) afeta a distribuição dos outputs.
 - Análise de sensibilidade local é baseada nos derivativos do simulador em torno de um ponto x₀ de interesse
 - Análise de sensibilidade global é baseada em grande mudanças no input de interesse.
 - Análise probablística de sensibilidade (PSA) surge quando existe incerteza nos inputs.
- UA/PSA podem ser feitas usando Monte Carlo.

- Análise de Incerteza (UA)
 - Usada quando existe incerteza a respeito dos inputs
 - \bullet A nossa incerteza pode ser descrita por uma distribuição de probabilidade $\mathbb G$
 - o interesse então é conhecer a distribuição de probabilidade induzida nos outputs

$$Y = \eta(X),$$

- Análise de sensibilidade (SA)
 - É usada para entender como cada input (ou grupo de inputs) afeta a distribuição dos outputs.
 - Análise de sensibilidade local é baseada nos derivativos do simulador em torno de um ponto x₀ de interesse
 - Análise de sensibilidade global é baseada em grande mudanças no input de interesse.
 - Análise probablística de sensibilidade (PSA) surge quando existe incerteza nos inputs.
- UA/PSA podem ser feitas usando Monte Carlo.

- Análise de Incerteza (UA)
 - Usada quando existe incerteza a respeito dos inputs
 - \bullet A nossa incerteza pode ser descrita por uma distribuição de probabilidade $\mathbb G$
 - o interesse então é conhecer a distribuição de probabilidade induzida nos outputs

$$Y = \eta(X),$$

- Análise de sensibilidade (SA)
 - É usada para entender como cada input (ou grupo de inputs) afeta a distribuição dos outputs.
 - Análise de sensibilidade local é baseada nos derivativos do simulador em torno de um ponto x₀ de interesse
 - Análise de sensibilidade global é baseada em grande mudanças no input de interesse.
 - Análise probablística de sensibilidade (PSA) surge quando existe incerteza nos inputs.
 - UA/PSA podem ser feitas usando Monte Carlo.

- Análise de Incerteza (UA)
 - Usada quando existe incerteza a respeito dos inputs
 - \bullet A nossa incerteza pode ser descrita por uma distribuição de probabilidade $\mathbb G$
 - o interesse então é conhecer a distribuição de probabilidade induzida nos outputs

$$Y = \eta(X),$$

- Análise de sensibilidade (SA)
 - É usada para entender como cada input (ou grupo de inputs) afeta a distribuição dos outputs.
 - Análise de sensibilidade local é baseada nos derivativos do simulador em torno de um ponto x₀ de interesse
 - Análise de sensibilidade global é baseada em grande mudanças no input de interesse.
 - Análise probablística de sensibilidade (PSA) surge quando existe incerteza nos inputs.
- UA/PSA podem ser feitas usando Monte Carlo.

$$\mathbb{E}[Y] = \int_{\mathcal{X}} \eta(x) d\mathbb{G}(x)$$

- $\{\mathbb{E}_{\{0\}}[x],\dots,\mathbb{E}_{\{0\}}[x]\}$ da distribuição de $\mathbb{E}[x]$.
- Esse procedimento è valido para obter qualquer estatistica de Y
- Oakley and O'Hagan (2002) propoe um método alternativo ao Monte Carlo para obter a distribuição da função de distribuição e da função de densidade de Y.

$$\mathbb{E}[Y] = \int_{\mathcal{X}} \eta(x) d\mathbb{G}(x)$$

- ullet Um algoritmo de Monte Carlo para obter a distribuição de $\mathbb{E}[Y]$
 - ① Gere uma função aleatória $\eta_{(i)}(\cdot)$ da distribuição de $\eta(\cdot)$
 - ② Obtenha $\mathbb{E}_{(i)}[Y] = \int_{\mathcal{X}} \eta_{(i)}(x) d\mathbb{G}(x)$
 - Repita os passos 1 e 2 até obter uma amostra $\{\mathbb{E}_{(1)}[Y], \dots, \mathbb{E}_{(N)}[Y]\}$ da distribuição de $\mathbb{E}[Y]$.
- Esse procedimento é valido para obter qualquer estatística de Y
- Oakley and O'Hagan (2002) propoe um método alternativo ao Monte Carlo para obter a distribuição da função de distribuição e da função de densidade de Y.

$$\mathbb{E}[Y] = \int_{\mathcal{X}} \eta(x) d\mathbb{G}(x)$$

- ullet Um algoritmo de Monte Carlo para obter a distribuição de $\mathbb{E}[Y]$
 - Gere uma função aleatória $\eta_{(i)}(\cdot)$ da distribuição de $\eta(\cdot)$
 - ② Obtenha $\mathbb{E}_{(i)}[Y] = \int_{\mathcal{X}} \eta_{(i)}(x) d\mathbb{G}(x)$
 - ③ Repita os passos 1 e 2 até obter uma amostra $\{\mathbb{E}_{(1)}[Y], \dots, \mathbb{E}_{(N)}[Y]\}$ da distribuição de $\mathbb{E}[Y]$.
- Esse procedimento é valido para obter qualquer estatística de Y
- Oakley and O'Hagan (2002) propoe um método alternativo ao Monte Carlo para obter a distribuição da função de distribuição e da função de densidade de Y.

$$\mathbb{E}[Y] = \int_{\mathcal{X}} \eta(x) d\mathbb{G}(x)$$

- ullet Um algoritmo de Monte Carlo para obter a distribuição de $\mathbb{E}[Y]$
 - **1** Gere uma função aleatória $\eta_{(i)}(\cdot)$ da distribuição de $\eta(\cdot)$
 - Obtenha $\mathbb{E}_{(i)}[Y] = \int_{\mathcal{X}} \eta_{(i)}(x) d\mathbb{G}(x)$
 - Repita os passos 1 e 2 até obter uma amostra $\{\mathbb{E}_{(1)}[Y], \dots, \mathbb{E}_{(N)}[Y]\}$ da distribuição de $\mathbb{E}[Y]$.
- Esse procedimento é valido para obter qualquer estatística de Y
- Oakley and O'Hagan (2002) propoe um método alternativo ao Monte Carlo para obter a distribuição da função de distribuição e da função de densidade de Y.

$$\mathbb{E}[Y] = \int_{\mathcal{X}} \eta(x) d\mathbb{G}(x)$$

- Um algoritmo de Monte Carlo para obter a distribuição de E[Y]
 - **①** Gere uma função aleatória $\eta_{(i)}(\cdot)$ da distribuição de $\eta(\cdot)$
 - Obtenha $\mathbb{E}_{(i)}[Y] = \int_{\mathcal{X}} \eta_{(i)}(x) d\mathbb{G}(x)$
 - Repita os passos 1 e 2 até obter uma amostra $\{\mathbb{E}_{(1)}[Y], \dots, \mathbb{E}_{(N)}[Y]\}$ da distribuição de $\mathbb{E}[Y]$.
- Esse procedimento é valido para obter qualquer estatística de Y
- Oakley and O'Hagan (2002) propoe um método alternativo ao Monte Carlo para obter a distribuição da função de distribuição e da função de densidade de Y.

$$\mathbb{E}[Y] = \int_{\mathcal{X}} \eta(x) d\mathbb{G}(x)$$

- ullet Um algoritmo de Monte Carlo para obter a distribuição de $\mathbb{E}[Y]$
 - **①** Gere uma função aleatória $\eta_{(i)}(\cdot)$ da distribuição de $\eta(\cdot)$
 - Obtenha $\mathbb{E}_{(i)}[Y] = \int_{\mathcal{X}} \eta_{(i)}(x) d\mathbb{G}(x)$
 - Repita os passos 1 e 2 até obter uma amostra $\{\mathbb{E}_{(1)}[Y], \dots, \mathbb{E}_{(N)}[Y]\}$ da distribuição de $\mathbb{E}[Y]$.
- Esse procedimento é valido para obter qualquer estatística de Y
- Oakley and O'Hagan (2002) propoe um método alternativo ao Monte Carlo para obter a distribuição da função de distribuição e da função de densidade de Y.

$$\mathbb{E}[Y] = \int_{\mathcal{X}} \eta(x) d\mathbb{G}(x)$$

- Um algoritmo de Monte Carlo para obter a distribuição de E[Y]
 - **1** Gere uma função aleatória $\eta_{(i)}(\cdot)$ da distribuição de $\eta(\cdot)$
 - Obtenha $\mathbb{E}_{(i)}[Y] = \int_{\mathcal{X}} \eta_{(i)}(x) d\mathbb{G}(x)$
 - Repita os passos 1 e 2 até obter uma amostra $\{\mathbb{E}_{(1)}[Y], \dots, \mathbb{E}_{(N)}[Y]\}$ da distribuição de $\mathbb{E}[Y]$.
- Esse procedimento é valido para obter qualquer estatística de Y
- Oakley and O'Hagan (2002) propoe um método alternativo ao Monte Carlo para obter a distribuição da função de distribuição e da função de densidade de Y.

- Suponha que estamos interessados nos efeitos dos inputs individualmente.
- Seja $z_i(x_i)$ o efeito principal do *i*-ésimo input

$$z_i(x_i) = \mathbb{E}[Y|x_i] - \mathbb{E}[Y]$$

onde
$$\mathbb{E}[Y|x_i] = \int_{\mathcal{X}_{-i}} \eta(x) d\mathbb{G}(\mathbf{x}_{-i}|x_i).$$

Outra quantidade de interesse é

$$V_i = \mathbb{V}ar\{\mathbb{E}[Y|x_i]\}$$

- Um gráfico de cada input x_i versus seu efeito principal $z_i(x_i)$, nos ajuda visualizar a influência de cada input.
- Para mais detalhes veja em Oakley e O'Hagan (2004)

- Suponha que estamos interessados nos efeitos dos inputs individualmente.
- Seja $z_i(x_i)$ o efeito principal do *i*-ésimo input

$$z_i(x_i) = \mathbb{E}[Y|x_i] - \mathbb{E}[Y]$$

onde
$$\mathbb{E}[Y|x_i] = \int_{\mathcal{X}_{-i}} \eta(x) d\mathbb{G}(\mathbf{x}_{-i}|x_i).$$

Outra quantidade de interesse é

$$V_i = \mathbb{V}ar\{\mathbb{E}[Y|x_i]\}$$

- Um gráfico de cada input x_i versus seu efeito principal $z_i(x_i)$, nos ajuda visualizar a influência de cada input.
- Para mais detalhes veja em Oakley e O'Hagan (2004)

- Suponha que estamos interessados nos efeitos dos inputs individualmente.
- Seja $z_i(x_i)$ o efeito principal do *i*-ésimo input

$$z_i(x_i) = \mathbb{E}[Y|x_i] - \mathbb{E}[Y]$$

onde
$$\mathbb{E}[Y|x_i] = \int_{\mathcal{X}_{-i}} \eta(x) d\mathbb{G}(\mathbf{x}_{-i}|x_i).$$

• Outra quantidade de interesse é

$$V_i = \mathbb{V}ar\{\mathbb{E}[Y|x_i]\}$$

- Um gráfico de cada input x_i versus seu efeito principal $z_i(x_i)$, nos ajuda visualizar a influência de cada input.
- Para mais detalhes veja em Oakley e O'Hagan (2004)

- Suponha que estamos interessados nos efeitos dos inputs individualmente.
- Seja $z_i(x_i)$ o efeito principal do *i*-ésimo input

$$z_i(x_i) = \mathbb{E}[Y|x_i] - \mathbb{E}[Y]$$

onde
$$\mathbb{E}[Y|X_i] = \int_{\mathcal{X}_{-i}} \eta(x) d\mathbb{G}(\mathbf{x}_{-i}|X_i)$$
.

Outra quantidade de interesse é

$$V_i = \mathbb{V}ar\{\mathbb{E}[Y|x_i]\}$$

- Um gráfico de cada input x_i versus seu efeito principal $z_i(x_i)$, nos ajuda visualizar a influência de cada input.
- Para mais detalhes veja em Oakley e O'Hagan (2004)

Exemplos

Fig. 1. Posterior expectation of $E(Y|x_i)$ against x_i for each input variable: synthetic example $(\cdots \cdots, X_1, X_2, X_3, X_4, X_5; ----, X_6, X_7, X_8, X_9, X_{10}; ---\cdot, X_{11}, X_{12}, X_{13}, X_{14}, X_{15})$

Exemplos

Fig. 3. Posterior expectation of $E(Y|x_i)$ against x_i for each input variable: reservoir example $(\cdots, X_2; \cdots, X_3; ---, X_4; \cdots,$ others)

Análise probabilística de sensibilidade

- Suponha que estamos interessados nos efeitos dos inputs individualmente.
- Seja $z_i(x_i)$ o efeito principal do *i*-ésimo input

$$z_i(x_i) = \mathbb{E}[Y|x_i] - \mathbb{E}[Y]$$

onde
$$\mathbb{E}[Y|x_i] = \int_{\mathcal{X}_{-i}} \eta(x) d\mathbb{G}(\mathbf{x}_{-i}|x_i).$$

Outra quantidade de interesse é

$$V_i = \mathbb{V}ar\{\mathbb{E}[Y|x_i]\}$$

- Um gráfico de cada input x_i versus seu efeito principal $z_i(x_i)$, nos ajuda visualizar a influência de cada input.
- Para mais detalhes veja em Oakley e O'Hagan (2004)

- Vimos alguns diagnósticos para validar um emulador gaussiano
- onde idéia principal é fazer uma análise de resíduos para um process gaussiano
 - Diagnósticos gráficos e numéricos
- Vimos brevemente as análises de incerteza e sensibilidade em experimentos computacionnais

- Vimos alguns diagnósticos para validar um emulador gaussiano
- onde idéia principal é fazer uma análise de resíduos para um process gaussiano
 - Diagnósticos gráficos e numéricos
- Vimos brevemente as análises de incerteza e sensibilidade em experimentos computacionnais

- Vimos alguns diagnósticos para validar um emulador gaussiano
- onde idéia principal é fazer uma análise de resíduos para um process gaussiano
 - Diagnósticos gráficos e numéricos
- Vimos brevemente as análises de incerteza e sensibilidade em experimentos computacionnais

- Vimos alguns diagnósticos para validar um emulador gaussiano
- onde idéia principal é fazer uma análise de resíduos para um process gaussiano
 - Diagnósticos gráficos e numéricos
- Vimos brevemente as análises de incerteza e sensibilidade em experimentos computacionnais
 - Para essas análises, a emulação é fundamental, pois pode reduzir consideravelmente o tempo computacional.

- Vimos alguns diagnósticos para validar um emulador gaussiano
- onde idéia principal é fazer uma análise de resíduos para um process gaussiano
 - Diagnósticos gráficos e numéricos
- Vimos brevemente as análises de incerteza e sensibilidade em experimentos computacionnais
 - Para essas análises, a emulação é fundamental, pois pode reduzir consideravelmente o tempo computacional.

Approximate Bayesian Computation

- É uma técnica de inferência quando não temos a função de verossimilhança, $\mathbb{P}(D|\theta)$, mas sabemos gerar dela.
- A idéia básica vem do seguinte algoritmo
- Obrigado

- Approximate Bayesian Computation
- É uma técnica de inferência quando não temos a função de verossimilhança, $\mathbb{P}(D|\theta)$, mas sabemos gerar dela.
- A idéia básica vem do seguinte algoritmo

Obrigado

- Approximate Bayesian Computation
- É uma técnica de inferência quando não temos a função de verossimilhança, $\mathbb{P}(D|\theta)$, mas sabemos gerar dela.
- A idéia básica vem do seguinte algoritmo:
 - ① Gere θ de uma distribuição $\pi(\cdot)$
 - ② Gere D' de $\mathbb{P}(\cdot|\theta)$
 - **3** Aceite θ se $D' \approx D$
- Obrigado!

- Approximate Bayesian Computation
- É uma técnica de inferência quando não temos a função de verossimilhança, $\mathbb{P}(D|\theta)$, mas sabemos gerar dela.
- A idéia básica vem do seguinte algoritmo:
 - **①** Gere θ de uma distribuição $\pi(\cdot)$
 - ② Gere D' de $\mathbb{P}(\cdot|\theta)$
 - (a) Aceite θ se $D' \approx D$
- Obrigado!

- Approximate Bayesian Computation
- É uma técnica de inferência quando não temos a função de verossimilhança, $\mathbb{P}(D|\theta)$, mas sabemos gerar dela.
- A idéia básica vem do seguinte algoritmo:
 - **1** Gere θ de uma distribuição $\pi(\cdot)$
 - ② Gere D' de $\mathbb{P}(\cdot|\theta)$
 - ③ Aceite θ se $D' \approx D$
- Obrigado!

- Approximate Bayesian Computation
- É uma técnica de inferência quando não temos a função de verossimilhança, $\mathbb{P}(D|\theta)$, mas sabemos gerar dela.
- A idéia básica vem do seguinte algoritmo:
 - **1** Gere θ de uma distribuição $\pi(\cdot)$
 - ② Gere D' de $\mathbb{P}(\cdot|\theta)$
 - **3** Aceite θ se $D' \approx D$
- Obrigado!

- Approximate Bayesian Computation
- É uma técnica de inferência quando não temos a função de verossimilhança, $\mathbb{P}(D|\theta)$, mas sabemos gerar dela.
- A idéia básica vem do seguinte algoritmo:
 - **1** Gere θ de uma distribuição $\pi(\cdot)$
 - **2** Gere D' de $\mathbb{P}(\cdot|\theta)$
 - **3** Aceite θ se $D' \approx D$
- Obrigado!