6-§. Chiziqli funksionallar

Bu paragraf chiziqli funksionallar, ularning ayrim xossalariga bagʻishlangan.

6.1-ta'rif. L chiziqli fazoda aniqlangan f sonli funksiya funksional deb ataladi. Agar barcha $x, y \in L$ lar uchun

$$f(x+y) = f(x) + f(y)$$

boʻlsa, f additiv funksional deyiladi.

6.2-ta'rif. Agar barcha $x \in L$ va barcha $\alpha \in C$ lar uchun

$$f(\alpha x) = \alpha f(x),$$

boʻlsa, f bir jinsli funksional deyiladi. Agar barcha $x \in L$ va barcha $\alpha \in C$ sonlar uchun

$$f(\alpha x) = \overline{\alpha} f(x)$$

boʻlsa, u holda kompleks chiziqli fazoda aniqlangan f funksional qoʻshma bir jinsli deyiladi, bu yerda $\overline{\alpha}$ soni α ga qoʻshma kompleks son.

6.3-ta'rif. Additiv va bir jinsli funksional chiziqli funksional deyiladi. Additiv va qo'shma bir jinsli funksional qo'shma chiziqli (yoki antichiziqli) funksional deyiladi.

Chiziqli funksionallarga misollar keltiramiz.

6.1-misol. $R^n \equiv \{x = (x_1, x_2, K, x_n), x_i \in R\}$ - n o'lchamli vektor fazo va $a = (a_1, a_2, K, a_n) \in R^n$ belgilangan element bo'lsin. U holda

$$f: \mathbb{R}^n \to \mathbb{R}, \ f(x) = \sum_{i=1}^n a_i x_i$$

moslik \mathbb{R}^n da chiziqli funksional boʻladi.

$$u(z) = \sum_{k=1}^{n} a_k \, \bar{z}_k$$

tenglik bilan aniqlanuvchi $u:C^n\to C$ akslantirish qoʻshma chiziqli funksionalni aniqlaydi.

6.2. Quyidagi I va $I^*: C[a,b] \to C$ funksionallar

$$I(x) = \int_{a}^{b} x(t) dt$$
, $I^{*}(x) = \int_{a}^{b} \overline{x(t)} dt$

 $\mathbb{C}[a,b]$ fazodagi chiziqli va qoʻshma chiziqli funksionallarga misol boʻladi.

6.3. $y_0 \in C[a,b]$ berilgan element bo'lsin. Har bir $x \in C[a,b]$ funksiyaga

$$F(x) = \int_{a}^{b} x(t) y_0(t) dt$$

sonni mos qoʻyamiz. Bu funksionalning chiziqliligi integrallash amalining asosiy xossalaridan kelib chiqadi.

$$F * (x) = \int_{a}^{b} \overline{x(t)} y_0(t) dt$$

funksional C[a,b] fazoda qoʻshma chiziqli funksional boʻladi.

6.4. $\binom{1}{2}$ fazoda chiziqli funksionalga misol keltiramiz. k - belgilangan natural son boʻlsin. $\binom{1}{2}$ dagi har bir $x = (x_1, x_2, K, x_k, K)$ uchun

$$f_k(x) = x_k$$

deymiz. Bu funksionalning chiziqliligi koʻrinib turibdi.

6.1. Chiziqli funksionalning geometrik ma'nosi

Bizga L chiziqli fazoda aniqlangan, nolmas f chiziqli funksional berilgan boʻlsin. Bu f funksional uchun f(x)=0 shartni qanoatlantiruvchi barcha $x\in L$ nuqtalar toʻplami uning yadrosi deyiladi va $Ker f = \{x \in L : f(x) = 0\}$ koʻrinishda belgilanadi. Ker f toʻplam L ning qism fazosi boʻladi. Haqiqatan ham, agar $x, y \in Ker f$ boʻlsa, u holda ixtiyoriy a,b sonlar uchun

$$f(ax+by) = a f(x)+b f(y) = 0$$

tenglik oʻrinli.

Ker f qism fazoning koo'lchami birga teng. Haqiqatan ham, Ker f ga qarashli bo'lmagan, ya'ni $f(x_0) \neq 0$ bo'ladigan qandaydir x_0 elementni olamiz. Bunday element mavjud, chunki $f(x) \neq 0$ (aynan nolga teng emas). Umumiylikni

chegaralamasdan hisoblashimiz mumkinki, $f(x_0)=1$ (aks holda biz $x_0/f(x_0)$ ni olgan boʻlar edik, chunki $f(x_0/f(x_0))=1$). Ixtiyoriy x element uchun $y=x-x_0\cdot f(x)$ desak, u holda

$$f(y) = f(x - x_0 \cdot f(x)) = 0,$$

ya'ni $y \in Ker f$. Qaralayotgan x element $x = ax_0 + y$, $y \in Ker f$ ko'rinishda tasvirlanadi va bu tasvir yagonadir. Haqiqatan ham,

$$x = ax_0 + y$$
, $y \in Ker f$ va $x = a'x_0 + y'$, $y' \in Ker f$

bo'lsin. U holda

$$(a-a')x_0 = y' - y$$

tenglik oʻrinli. Agar a=a' boʻlsa, y=y' ekanligi koʻrinib turibdi. Agar $a-a'\neq 0$ boʻlsa, u holda

$$x_0 = \frac{y' - y}{a - a'} \in Ker f$$

ekanligi kelib chiqadi. Bu esa $x_0 \not\in Ker\ f$ shartga zid. Bu qarama-qarshilik tasdiqni isbotlaydi.

Bu yerdan kelib chiqadiki, ikkita x_1 va x_2 elementlar Ker f qism fazo boʻyicha bitta qoʻshni sinfda yotishi uchun $f(x_1) = f(x_2)$ shartning bajarilishi zarur va yetarli. Haqiqatan ham,

$$x_1 = f(x_1)x_0 + y_1, y_1 \in Ker f, x_2 = f(x_2)x_0 + y_2, y_2 \in Ker f$$

tenglikdan

$$x_1 - x_2 = (f(x_1) - f(x_2))x_0 + (y_1 - y_2)$$

tenglik kelib chiqadi. Bu yerdan koʻrinib turibdiki, $x_1 - x_2 \in Ker f$ boʻlishi uchun $f(x_1) - f(x_2) = 0$ boʻlishi zarur va yetarli.

 $Ker\ f$ qism fazo boʻyicha har qanday ξ sinf oʻzining ixtiyoriy vakili bilan bir qiymatli aniqlanadi. Bunday vakil sifatida $a\ x_0$ koʻrinishdagi elementni olish mumkin. Bu yerdan koʻrinadiki, $L/Ker\ f$ qism fazoning oʻlchami birga teng ekan, ya'ni $Ker\ f$ ning kooʻlchami birga teng.

Chiziqli funksionalning yadrosi Ker f oʻzida nolga aylanadigan funksionalni oʻzgarmas koʻpaytuvchi aniqligida bir qiymatli aniqlaydi.

Haqiqatan ham, f va g funksionallar yadrolari teng boʻlsin, ya'ni $Ker\ f=Ker\ g$. U holda f uchun $x_0\in L$ elementni shunday tanlaymizki, $f(x_0)=1$ boʻlsin. Koʻrsatamizki, $g(x_0)\neq 0$. Ixtiyoriy $x\in L$ uchun

$$x = f(x)x_0 + y$$
, $y \in Ker f$ va $g(x) = f(x)g(x_0) + g(y) = f(x)g(x_0)$

tengliklarga egamiz. Agar $g(x_0) = 0$ bo'lsa, $g(x) \equiv 0$ bo'lar edi. $g(x) = g(x_0)f(x)$ tenglikdan f va g funksionallarning proporsional ekanligi kelib chiqadi.

Koo'lchami birga teng bo'lgan ixtiyoriy L' qism fazo berilgan bo'lsin. U holda shunday f chiziqli funksional mavjudki, Ker f = L' bo'ladi. Buning uchun L' qism fazoda yotmaydigan ixtiyoriy $x_0 \in L$ elementni olamiz va ixtiyoriy $x \in L$ elementni $x = a x_0 + y$, $y \in L'$ ko'rinishda yozamiz. Bunday yoyilma yagona. f(x) = a tenglik yordamida aniqlanuvchi chiziqli funksionalning yadrosi Ker f = L' bo'ladi.

L chiziqli fazoda kooʻlchami birga teng boʻlgan qandaydir L' qism fazo berilgan boʻlsin. U holda L fazoning L' qism fazo boʻyicha har qanday qoʻshni sinfi L' qism fazoga parallel boʻlgan gipertekislik deyiladi (xususan, L' qism fazoning oʻzi θ elementni saqlovchi, ya'ni «koordinata boshidan oʻtuvchi» gipertekislik hisoblanadi). Boshqacha aytganda, L' qism fazoga parallel boʻlgan M' gipertekislik - bu L' qism fazoni qandaydir $x_0 \in L$ vektorga parallel koʻchirishdan paydo boʻladigan toʻplam, ya'ni

$$M' = L' + x_0 = \{ y : y = x + x_0, x \in L' \}.$$

Koʻrinib turibdiki, agar $x_0 \in L'$ boʻlsa, M' = L' boʻladi, agarda $x_0 \notin L'$ boʻlsa, u holda $M' \neq L'$.

Agar f - L chiziqli fazoda aniqlangan chiziqli funksional boʻlsa, $M_f = \{x \in L: f(x) = 1\}$ toʻplam Ker f qism fazoga parallel gipertekislik boʻladi.

Haqiqatan ham, $f(x_0)=1$ boʻladigan x_0 elementni tanlab, ixtiyoriy elementni $x=\alpha\,x_0+y$, $y\in Ker\,f$ koʻrinishda yozishimiz mumkin.

Ikkinchi tomondan, agar M' - koo'lchami birga teng bo'lgan L' qism fazoga parallel va koordinata boshidan o'tmaydigan gipertekislik bo'lsa, u holda shunday yagona f chiziqli funksional mavjudki,

$$M' = \{x : f(x) = 1\}$$

bo'ladi. Haqiqatan ham, $M'=L'+x_0$, $x_0\in L$ bo'lsin. U holda har qanday $x\in L$ element yagona ravishda $x=a\,x_0+y$, $y\in L'$ ko'rinishda tasvirlanadi. f(x)=a tenglik yordamida aniqlanadigan chiziqli funksional izlanayotgan funksional bo'ladi. Uning yagonaligi quyidagidan kelib chiqadi:

Agar $x \in M'$ da g(x) = 1 boʻlsa, u holda $y \in L'$ da g(y) = 0 boʻladi. Bundan $g(ax_0 + y) = a = f(ax_0 + y)$

tenglik kelib chiqadi.

Shunday qilib, L chiziqli fazoda aniqlangan noldan farqli barcha chiziqli funksionallar bilan koordinata boshidan oʻtmaydigan L dagi barcha gipertekisliklar oʻrtasida oʻzaro bir qiymatli moslik oʻrnatildi.

7-§. Qavariq toʻplamlar va qavariq funksionallar

 $L\,$ - haqiqiy chiziqli fazo, $x\,$ va $\,y\,$ uning ikki nuqtasi boʻlsin. U holda

$$\alpha x + \beta y$$
, $\alpha, \beta \in [0,1]$, $\alpha + \beta = 1$

shartni qanoatlantiruvchi barcha elementlar toʻplami x va y nuqtalarni tutashtiruvchi kesma deyiladi va u [x, y] bilan belgilanadi, ya'ni

$$[x,y] = \{ \alpha x + \beta y : \quad \alpha, \beta \in [0,1], \ \alpha + \beta = 1 \}.$$

7.1-ta'rif. Agar $M \subset L$ to 'plam o 'zining ixtiyoriy $x, y \in M$ nuqtalarini tutashtiruvchi [x, y] kesmani ham o 'zida saqlasa, M ga qavariq to 'plam deyiladi.

7.2-ta'rif. Agar biror $x \in E$ nuqta va ixtiyoriy $y \in L$ uchun shunday $\varepsilon = \varepsilon(y) > 0$ son mavjud bo'lib, barcha t, $|t| < \varepsilon$ larda $x + ty \in E$ munosabat bajarilsa, $x \in E$ nuqta $E \subset L$ to'plamning yadrosiga qarashli deyiladi. $E \subset L$ to'plamning yadrosi - J(E) bilan belgilanadi, ya'ni

$$J(E) = \{ x \in E : \forall y \in L, \exists \varepsilon = \varepsilon(y) > 0, \forall t \in R, |t| < \varepsilon, x + ty \in E \}.$$

7.3-ta'rif. Yadrosi bo'sh bo'lmagan qavariq to'plam qavariq jism deyiladi.

7.1-misol. R^3 fazoda kub, shar, tetrayedr, tekislikda toʻgʻri toʻrtburchak, doira, uchburchak qavariq jism boʻladi. $\frac{C_2}{2}$ fazodagi

$$B[0,1] = \left\{ x \in \binom{n}{2} : \sum_{n=1}^{\infty} |x_n|^2 \le 1 \right\}$$

birlik shar qavariq jism bo'ladi.

7.2. R^2 da toʻgʻri chiziq (kesma) qavariq toʻplam boʻladi, lekin qavariq jism boʻlmaydi. Chunki, uning yadrosi boʻsh toʻplam (mustaqil isbotlang).

Agar M qavariq toʻplam boʻlsa, u holda uning yadrosi J(M) ham qavariq toʻplamdir. Haqiqatan ham,

$$x, y \in J(M)$$
 va $z = \alpha x + \beta y$, $\alpha, \beta \ge 0$, $\alpha + \beta = 1$

boʻlsin. U holda ixtiyoriy $a \in L$ uchun shunday $\varepsilon_1 > 0$, $\varepsilon_2 > 0$ sonlar mavjudki, $|t_1| < \varepsilon_1$, $|t_2| < \varepsilon_2$ shartni qanoatlantiruvchi barcha t_1 , t_2 larda $x + t_1 a$ va $y + t_2 a$ elementlar M toʻplamda yotadi. Bundan kelib chiqadiki, barcha $|t| < \varepsilon$, $\varepsilon = \min(\varepsilon_1, \varepsilon_2)$ larda

$$\alpha(x+ta)+\beta(y+ta)=\alpha x+\beta y+\alpha ta+\beta ta=z+ta\in M$$
, ya'ni $z\in J(M)$.

7.1-teorema. Istalgan sondagi qavariq toʻplamlarning kesishmasi yana qavariq toʻplamdir.

Isbot. Faraz qilaylik,

$$M = \prod_{\alpha} M_{\alpha}$$

boʻlib, barcha M_{α} lar qavariq toʻplamlar boʻlsin, x va y lar M ning ikki ixtiyoriy nuqtasi boʻlsin. U holda x va y nuqtalarni tutashtiruvchi [x,y] kesma M_{α} larning

har biriga qarashli va demak, M ga ham qarashli. Shunday qilib, M haqiqatan ham qavariq toʻplam ekan. Δ

Shuni eslatib oʻtamizki, qavariq jismlarning kesishmasi yana qavariq jism boʻlavermaydi. Bunga quyidagi misolda ishonch hosil qilish mumkin.

7.3. Tekislikdagi
$$P = \{(x, y): 0 \le x \le 1, 0 \le y \le 1\}$$
 va

 $Q = \{(x, y): 0 \le x \le 1, 1 \le y \le 2\}$ qavariq jismlarning kesishmasi

$$PI Q = \{(x, y): 0 \le x \le 1, y = 1\}$$

kesmadan iborat bo'lib, u qavariq jism emas (7.2-misolga qarang).

Qavariq toʻplam tushunchasi qavariq funksional tushunchasi bilan uzviy bogʻliq.

7.4-ta'rif. Agar L haqiqiy chiziqli fazoda aniqlangan manfiymas p funksional

1)
$$p(x+y) \le p(x) + p(y)$$
, $\forall x, y \in L$,

2)
$$p(ax) = a p(x)$$
, $\forall a \ge 0 \ va \ \forall x \in L$

shartlarni qanoatlantirsa, p ga qavariq funksional deyiladi.

Biz bu yerda p(x) miqdorni chekli deb faraz qilmaymiz, ya'ni ayrim $x \in L$ lar uchun $p(x) = \infty$ ham bo'lishi mumkin. Agar barcha $x \in L$ lar uchun p(x) chekli bo'lsa, p chekli funksional deyiladi.

7.4-misol. $p:C[a,b] \rightarrow R$ va

$$p(x) = \int_{a}^{b} |x(t)| dt$$

akslantirishning chekli qavariq funksional ekanligini isbotlang.

Isbot. Integralning monotonlik xossasidan, ixtiyoriy $x \in C[a, b]$ uchun $p(x) \ge 0$ ekanligi kelib chiqadi. Endi bizga C[a,b] fazoning ixtiyoriy x va y elementlari berilgan boʻlsin. U holda

$$p(x+y) = \int_{a}^{b} |x(t) + y(t)| dt \le \int_{a}^{b} |x(t)| dt + \int_{a}^{b} |y(t)| dt = p(x) + p(y)$$

tengsizlik oʻrinli. Xuddi shunday ixtiyoriy x va $\alpha \ge 0$ uchun

$$p(\alpha x) = \int_{a}^{b} |\alpha x(t)| dt = \alpha \int_{a}^{b} |x(t)| dt = \alpha p(x)$$

tenglik oʻrinli. Demak, p qavariq funksional ekan. Uning chekli qavariq funksional ekanligi $p(x) \le (b-a)\max |x(t)| < \infty$ tengsizlikdan kelib chiqadi. Δ

7.5.
$$q:C[0,1] \to R$$
 va

$$q(x) = V_0^1[x]$$

akslantirish chekli boʻlmagan qavariq funksional boʻlishini isbotlang.

Isbot. q funksionalning manfiymasligi va qavariq funksional ta'rifidagi 1-2 shartlarning bajarilishi funksiya toʻla oʻzgarishi xossalaridan kelib chiqadi. Haqiqiy oʻzgaruvchining funksiyalari nazariyasi fanidan ma'lumki, C[0,1] fazoning $x_0(t) = t \sin(1/t)$ elementi uchun $V_0^1[x_0] = +\infty$ tenglik oʻrinli. Demak, q chekli boʻlmagan qavariq funksional ekan. Δ

Endi qavariq toʻplamlar bilan qavariq funksionallar orasidagi bogʻlanishni qaraymiz.

7.2-teorema. $Agar\ p:L \to R_+\ qavariq\ funksional\ va\ k>0\ bo\ 'lsa,\ u\ holda$

$$E = \{ x \in L : p(x) \le k \}$$

qavariq toʻplam boʻladi. Agar p funksional chekli boʻlsa, u holda E toʻplam yadrosi nol elementni saqlaydigan,

$$J(E) = \{ x \in L : p(x) < k \}$$

yadroli qavariq jism boʻladi.

Isbot. Agar $x, y \in E$ va $\alpha + \beta = 1$, $\alpha, \beta \ge 0$ bo'lsa, u holda

$$p(\alpha x + \beta y) \le p(\alpha x) + p(\beta y) = \alpha p(x) + \beta p(y) < k\alpha + k\beta = k$$

ya'ni E - qavariq to'plam. Endi p chekli funksional, p(x) < k, t > 0 va $y \in L$ bo'lsin. U holda

$$p(x \pm t y) \le p(x) + t p(\pm y)$$

Agar p(-y) = p(y) = 0 bo'lsa, u holda ixtiyoriy t uchun $x \pm t y \in E$ bo'ladi. Agar p(-y), p(y) sonlardan hech bo'lmaganda birortasi noldan farqli bo'lsa, u holda

$$t < \frac{k - p(x)}{\max(p(y), p(-y))}$$

shartda $x \pm t \ y \in E$ bo'ladi. Qavariq funksionalning θ nuqtadagi qiymati nolga teng bo'lgani uchun $\theta \in J(E)$. Δ

Endi k=1 holni qaraymiz. U holda har qanday chekli p qavariq funksional L da $\theta \in J(E)$ boʻladigan yagona $E = \{x \in L : p(x) \le 1\}$ qavariq jismni aniqlaydi. Aksincha, E - yadrosi nol elementni saqlaydigan qavariq jism boʻlsin. U holda har bir $x \in L$ ga

$$p_E(x) = \inf \left\{ r > 0 : \frac{x}{r} \in E \right\}$$

sonni mos qoʻyuvchi akslantirish qavariq funksional boʻladi (mustaqil isbotlang). Bu funksional *E* qavariq jism uchun *Minkovskiy funksionali* deyiladi.

7.5-ta'rif. L - haqiqiy chiziqli fazo va L_0 - uning biror qism fazosi bo'lsin. L_0 qism fazoda f_0 chiziqli funksional va L fazoda f chiziqli funksional berilgan bo'lsin. Agar ixtiyoriy $x \in L_0$ uchun $f(x) = f_0(x)$ tenglik bajarilsa, f chiziqli funksional f_0 funksionalning L fazoga davomi deyiladi.

Funksionalning davomi bir qiymatli emas. Funksionalning ixtiyoriy davomi maqsadga muvofiq emas. Odatda funksionalni qandaydir shartni saqlab qolgan holda davom ettirish talab qilinadi.

7.3-teorema. (Xan-Banax). Aytaylik, p - L haqiqiy chiziqli fazoda aniqlangan qavariq funksional va L_0 - L ning qism fazosi boʻlsin. Agar L_0 da aniqlangan f_0 chiziqli funksional

$$f_0(x) \le p(x), \quad x \in L_0 \tag{7.1}$$

shartni qanoatlantirsa, u holda f_0 ni L da aniqlangan va L da (7.1) shartni qanoatlantiruvchi f chiziqli funksionalgacha davom ettirish mumkin.

Isbot. $L_0 \neq L$ bo'lgan holda f_0 chiziqli funksionalni L_0 dan kengroq bo'lgan $L^{(1)}$ qism fazogacha (7.1) shartni saqlagan holda chiziqli davom ettirish mumkinligini ko'rsatamiz. L_0 ga qarashli bo'lmagan ixtiyoriy $z \in L$ elementni olamiz. $L^{(1)}$ bilan

 L_0 va z elementlardan tashkil topgan qism fazoni belgilaymiz. $L^{(1)}$ quyidagicha koʻrinishdagi elementlardan tashkil topgan

$$\{tz + x, t \in R, x \in L_0\} = L^{(1)}$$

Agar f_1 funksional f_0 ning $L^{(1)}$ qism fazogacha chiziqli davomi boʻlsa, u holda

$$f_1(tz+x) = f_1(tz) + f_1(x) = t f_1(z) + f_0(x),$$

yoki $f_1(z) = c$ deb olsak,

$$f_1(tz+x)=tc+f_0(x)$$

tenglik oʻrinli boʻladi. Endi c ni shunday tanlaymizki, f_1 funksional (7.1) shartni qanoatlantirsin, ya'ni

$$f_1(tz+x) = tc + f_0(x) \le p(tz+x)$$
 (7.2)

tengsizlik bajarilsin. Agar t > 0 bo'lsa, (7.2) shart quyidagi shartga teng kuchli:

$$c + f_0\left(\frac{x}{t}\right) \le p\left(z + \frac{x}{t}\right)$$
 yoki $c \le p\left(z + \frac{x}{t}\right) - f_0\left(\frac{x}{t}\right)$,

t < 0 bo'lsa,

$$c + f_0\left(\frac{x}{t}\right) \ge -p\left(-z - \frac{x}{t}\right) \text{ yoki } c \ge -p\left(-z - \frac{x}{t}\right) - f_0\left(\frac{x}{t}\right).$$

Bu ikkala shartni qanoatlantiruvchi c son har doim mavjudligini koʻrsatamiz. L_0 qism fazodan olingan ixtiyoriy y' va y'' elementlar uchun

$$-f_0(y'') + p(y''+z) \ge -f_0(y') - p(-y'-z)$$
(7.3)

tengsizlik oʻrinli. Haqiqatan ham, bu tengsizlik quyidagi tengsizlikdan bevosita kelib chiqadi:

$$f_0(y'') - f_0(y') = f_0(y'' - y') \le p(y'' - y') =$$

$$= p((y'' + z) + (-y' - z)) \le p(y'' + z) + p(-y' - z).$$

Endi

$$c'' = \inf_{y''} \left(-f_0(y'') + p(y''+z) \right), \quad c' = \sup_{y'} \left(-f_0(y') - p(-y'-z) \right)$$

deb olamiz. (7.3) tengsizlik ixtiyoriy y' va y'' lar uchun oʻrinli boʻlganidan $c'' \ge c'$ ekanligi kelib chiqadi. Agar c sonini $c'' \ge c \ge c'$ qoʻsh tengsizlikni qanoatlantiradigan qilib tanlasak, u holda

$$f_1(tz+x) = tc + f_0(x)$$

formula bilan aniqlangan f_1 funksional chiziqli va (7.1) shartni qanoatlantiradi.

Shunday qilib, biz f_0 funksionalni L_0 qism fazodan undan kengroq boʻlgan $L^{(1)}$ qism fazogacha (7.1) shartni saqlagan holda chiziqli davom ettirdik.

Agar L chiziqli fazoda sanoqlita x_1, x_2, K , x_n, K elementlar sistemasi mavjud boʻlib, bu sistemani saqlovchi $L(\{x_k\})$ minimal qism fazo L ning oʻziga teng boʻlsa, u holda f_0 funksionalni

$$L^{(1)} = \{L_0, x_1\}, L^{(2)} = \{L^{(1)}, x_2\}, K$$

kengayib boruvchi qism fazolarda yuqoridagidek aniqlab, f_0 funksionalni L fazogacha (7.1) shartni saqlagan holda davom ettirish mumkin.

Agar chiziqli qobigʻi L ga teng boʻladigan sanoqli sistema mavjud boʻlmasa, u holda teoremaning isboti Sorn lemmasi yordamida nihoyasiga etkaziladi ([1] ga qarang). Δ

7.6. L=C[-1,1] uzluksiz funksiyalar fazosi va uning qism fazosi $L_0=\{x\in C[-1,1]:\ x(t)\equiv 0,\ t\in [-1,0]\}$ ni qaraymiz. L_0 qism fazoda f_0 chiziqli funksionalni quyidagicha aniqlaymiz:

$$f_0(x) = \int_{-1}^1 x(t) dt, \quad x \in L_0.$$

L = C[-1,1] chiziqli fazoda f va p funksionallarni esa quyidagicha aniqlaymiz:

$$f(x) = \int_{-1}^{0} x(t)y_0(t)dt + \int_{0}^{1} x(t)dt, \quad p(x) = 2 \max_{-1 \le t \le 1} |x(t)|, \quad x \in L$$

Quyidagicha savollar qoʻyamiz.

- 1) f_0 funksional (7.1) tengsizlikni qanoatlantiradimi?
- 2) f funksional f_0 funksionalning L fazogacha davomi boʻladimi?

3) $y_0 \in C[-1,0]$ qanday tanlanganda f funksional Xan-Banax teoremasining shartlarini qanoatlantiradi?

Yechish. f_0 funksional (7.1) tengsizlikni qanoatlantiradi. Haqiqatan ham,

$$f_0(x) = \int_{-1}^1 x(t) dt \le \int_{-1}^1 \max_{-1 \le t \le 1} |x(t)| dt = 2 \max_{-1 \le t \le 1} |x(t)| = p(x), \ x \in L_0.$$

Agar $x \in L_0$, boʻlsa u holda

$$\int_{-1}^{0} x(t) y_0(t) dt = 0$$

bo'ladi. Shuning uchun, barcha $y_0 \in C[-1,0]$ larda $f(x) = f_0(x)$, $x \in L_0$ tenglik o'rinli. Demak, barcha y_0 lar uchun f funksional f_0 funksionalning L fazogacha davomi bo'ladi. Nihoyat,

$$f(x) \le \max_{-1 \le t \le 0} |x(t)| \int_{-1}^{0} |y_0(t)| dt + \int_{0}^{1} \max_{0 \le t \le 1} |x(t)| dt \le 2 \max_{-1 \le t \le 1} |x(t)| = p(x), \ x \in L$$
 tengsizlik,

$$\int_{-1}^{0} |y_0(t)| dt = c \le 1$$

shartni qanoatlantiruvchi barcha $y_0 \in C[-1,0]$ larda oʻrinli. Demak, $c \in [0,1]$ boʻlsa, Xan-Banax teoremasining shartlari bajariladi. Shunday qilib f_0 funksionalni (7.1) shartni saqlagan holda cheksiz koʻp usul bilan L fazogacha davom ettirish mumkin ekan.

Endi Xan-Banax teoremasining kompleks variantini isbot qilamiz.

7.6-ta'rif. L - kompleks chiziqli fazo va unda aniqlangan manfiymas p funksional berilgan bo'lsin. Agar ixtiyoriy $x, y \in L$ va ixtiyoriy $\alpha \in C$ uchun

$$p(x+y) \le p(x) + p(y)$$
 va $p(\alpha x) = |\alpha| p(x)$

shartlar bajarilsa, u holda p - qavariq funksional deyiladi.

7.4-teorema. (Xan-Banax). p - L kompleks chiziqli fazoda aniqlangan qavariq funksional, f_0 esa L_0 qism fazoda aniqlangan va bu qism fazoda

$$|f_0(x)| \le p(x), \quad x \in L_0$$

shartni qanoatlantiruvchi chiziqli funksional boʻlsin. U holda butun L da aniqlangan va

$$f(x) = f_0(x), \forall x \in L_0, |f(x)| \le p(x), \forall x \in L$$

shartlarni qanoatlantiruvchi f chiziqli funksional mavjud.

Isbot. L va L_0 fazolarni haqiqiy chiziqli fazo sifatida qarab, mos ravishda L_R va L_{0R} bilan belgilaymiz. Tushunarliki, p funksional L_R da aniqlangan qavariq funksional boʻladi, $f_{0R}(x) = \text{Re}\,f_0(x)$ esa

$$|f_{0R}(x)| \le p(x), \quad x \in L_{0R}(=L_0)$$

shartni, bundan esa $f_{0R}(x) \le p(x)$ shartni qanoatlantiruvchi L_{0R} dagi haqiqiy chiziqli funksional boʻladi. 7.3-teoremaga koʻra, L_R da aniqlangan va

$$f_R(x) \le p(x), \quad x \in L_R(=L),$$

$$f_R(x) = f_{0R}(x), \quad x \in L_{0R}(=L_0)$$

shartni qanoatlantiruvchi f_R chiziqli funksional mavjud. Tushunarliki,

$$-f_R(x) = f_R(-x) \le p(-x) = p(x).$$

Demak,

$$|f_R(x)| \le p(x), \ x \in L_R(=L)$$
 (7.4)

Endi f funksionalni L da quyidagicha aniqlaymiz

$$f(x) = f_R(x) - i f_R(ix)$$
.

Murakkab boʻlmagan hisoblashlar yordamida koʻrsatish mumkinki, f - L kompleks chiziqli fazoda aniqlangan chiziqli funksional boʻladi hamda

$$f(x) = f_0(x), \forall x \in L_0,$$
 Re $f(x) = f_R(x), \forall x \in L_0$

Ixtiyoriy $x \in L$ uchun $|f(x)| \le p(x)$ ekanligini koʻrsatsak, teorema isbot boʻladi. Teskaridan faraz qilamiz. Biror $x_0 \in L$ uchun $|f(x_0)| > p(x_0)$ boʻlsin. $f(x_0)$ kompleks sonni $f(x_0) = \rho e^{i\varphi}$, $\rho > 0$ koʻrinishda yozamiz va $y_0 = e^{-i\varphi} x_0$ deb olamiz. U holda

$$f_R(y_0) = \text{Re} f(y_0) = \text{Re} [e^{-i\varphi} f(x_0)] = \rho > p(x_0) = p(y_0).$$

Bu esa (7.4) shartga zid. Δ