

Química Nivel superior Prueba 2

Miércoles 7 de noviembre de 2018 (tarde)

 Núr	nero	de c	onvo	cator	ia de	l alur	nno	

2 horas 15 minutos

Instrucciones para los alumnos

- Escriba su número de convocatoria en las casillas de arriba.
- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Escriba sus respuestas en las casillas provistas a tal efecto.
- En esta prueba es necesario usar una calculadora.
- Se necesita una copia sin anotaciones del cuadernillo de datos de química para esta prueba.
- La puntuación máxima para esta prueba de examen es [95 puntos].

245904

International Baccalaureate

Baccalauréat International
Bachillerato Internacional

[2]

Conteste todas las preguntas. Escriba sus respuestas en las casillas provistas a tal efecto.

1. Se añaden 3,26 g de hierro en polvo a 80,0 cm³ de solución de sulfato de cobre(II) 0,200 mol dm⁻³. Se produce la siguiente reacción:

$$Fe(s) + CuSO_4(aq) \rightarrow FeSO_4(aq) + Cu(s)$$

(a)	(i)	Determine el reactivo limitante y muestre su trabajo.	[2]
	(ii)	La masa de cobre obtenida experimentalmente fue 0,872 g. Calcule el rendimiento porcentual de cobre.	[2]
	(ii) 		[2]
	(ii) 		[2]
	(ii)		[2]

(b) (i) La reacción se llevó a cabo en un calorímetro. El máximo aumento de temperatura que alcanzó la solución fue de 7,5 °C.

Calcule la variación de entalpía, ΔH , de la reacción, en kJ, suponiendo que todo el calor liberado fue absorbido por la solución. Use las secciones 1 y 2 del cuadernillo de datos.

[2]

(Pregunta 1: continuación)

(ii)	Indique otra suposición que haya realizado en (b)(i).	[1]

(iii) La única incertidumbre significativa está en la medición de la temperatura.

Determine la incertidumbre absoluta del valor de ΔH calculado si la incertidumbre del aumento de temperatura fue $\pm 0.2\,^{\circ}$ C.

(c) (i) Dibuje aproximadamente una gráfica de concentración de sulfato de hierro(II), FeSO₄, en función del tiempo en que transcurre la reacción. [2]

Véase al dorso

-		4.	
Dramints	1.	COntini	Iacioni
(Pregunta		COHUIT	Iacioii

(ii)	Resuma cómo se puede determinar la velocidad de reacción inicial a partir de la gráfica del apartado (c)(i).	[2]
(iii)	Explique, por medio de la teoría de las colisiones, por qué si se reemplaza el hierro en polvo por un trozo de hierro de la misma masa, la velocidad de la reacción disminuye.	[2]
plati	estudiante electrolizó sulfato de hierro(II) acuoso, FeSO ₄ (aq), con electrodos de no. Indique las semiecuaciones para las reacciones en los electrodos. Use la sión 24 del cuadernillo de datos.	[2]
Ánodo (ele	ectrodo positivo):	
Cátodo (el	lectrodo negativo):	

2. Un compuesto orgánico que contiene carbono, hidrógeno y oxígeno contiene 62,02 % de carbono y 10,43 % de hidrógeno en masa.

(a) Determine la fórmula empírica del compuesto. Muestre su trabajo.

[3]

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠.	•	•	•	•	•	٠.	•	•	•	•	•	•	•	 •	•	•	•	 •	•	•	•	•	•	•	•	•	

(b) Se muestra el espectro infrarrojo del compuesto. Deduzca el grupo funcional del compuesto.

[1]

[Fuente: NIST Mass Spec Data Center, S.E. Stein, director, "Mass Spectra" en el Libro del Web de Química del NIST, Base de Datos de Referencia Estándar del NIST Número 69, Eds. P.J. Linstrom y W.G. Mallard, National Institute of Standards and Technology, Gaithersburg MD, 20899]

Véase al dorso

[1]

(Pregunta 2: continuación)

(c) Se muestra el espectro de masas del compuesto. Deduzca la masa molecular relativa del compuesto.

[Fuente: NIST Mass Spec Data Center, S.E. Stein, director, "Mass Spectra" en el Libro del Web de Química del NIST, Base de Datos de Referencia Estándar del NIST Número 69, Eds. P.J. Linstrom y W.G. Mallard, National Institute of Standards and Technology, Gaithersburg MD, 20899]

	 -	•	•	-	 •	-	 -	•	 -	•	 •	٠		 	٠	•	 	•	•	•	•	 	•	•	•	 	٠	•	 •	•	 •	 •	•	 •	 	-	•	 •	٠	 	•	•		
											_		_	 _		_																												

(d) El compuesto no se pudo oxidar con dicromato(VI) de potasio acidificado.

Deduzca la fórmula estructural del compuesto.	[1]
Bodded id formald collactural der compacció.	נין

3.	El bromo	puede	formar	ion	bromato(V),	BrO ₃	
----	----------	-------	--------	-----	----------	-----	------------------	--

(a) (i) Indique la configuración electrónica de un átomo de bromo.

[1]

.....

(ii) En el eje de energía provisto, dibuje aproximadamente el diagrama orbital de la **capa de valencia** de un átomo de bromo (en su estado fundamental). Use cajas para representar orbitales y flechas para representar electrones.

[1]

(b) (i) Dibuje dos estructuras de Lewis (representación de electrones mediante puntos) para el BrO_3^- .

[2]

Estructura I – cumple la regla del octeto:

Estructura II – no cumple la regla del octeto:

(Esta pregunta continúa en la página siguiente)

Véase al dorso

-	_	4 .	
/ Uraaiint	2 3 00	ntiniia	$\alpha \alpha \alpha \alpha \lambda$
recumin	a ə. u.u	111111111111111111111111111111111111111	
(Pregunt			,

 (ii) Determine la estructura de Lewis preferente basándose en la carga formal sobre el átomo de bromo. Justifique su respuesta. 	[2]
(c) Prediga, por medio de la TRPEV, la geometría del ion BrO ₃ ⁻ y los ángulos de enlace O–Br–O.	[3]
Geometría:	
Justificación:	
Ángulo O–Br–O:	
(d) (i) Los iones bromato(V) actúan como agentes oxidantes en condiciones ácidas para formar iones bromuro.	
Deduzca la semiecuación para esta reacción de reducción.	[2]

(Pregunta	3.	continua	ción)
rieguiila	J.	Continua	CIUII

	(ii)	Los iones bromato(V) oxidan a los iones hierro(II), Fe ²⁺ , a iones hierro(III), Fe ³⁺ .	
		Deduzca la ecuación para esta reacción redox.	[1]
	(iii)	Calcule la variación de energía libre de Gibbs estándar, ΔG^{\ominus} , en J, de la reacción redox de (ii), usando las secciones 1 y 24 del cuadernillo de datos.	
		$E^{\ominus} (BrO_3^{-}/Br^{-}) = +1,44 \text{ V}$	[2]
·	(e) India	que y explique la propiedad magnética de los iones hierro(II) y hierro(III).	[2]

4. Las propiedades de los elementos y sus compuestos se pueden relacionar con la posición de los elementos en la tabla periódica.

(a) Explique la disminución de radio atómico desde el Na al Cl. [2]

Véase al dorso

(Pregunta 4: continuación)

(b)	Explique por qué el radio del ion sodio, Na ⁺ , es menor que el radio del ion óxido, O ²⁻ .	[2
-----	---	----

[2]

(d)	Prediga cuál, si el Mn ²⁺ o el Fe ²⁺ , tendrá con mayor probabilidad la entalpía de	
	hidratación más exotérmica. Justifique su respuesta.	[2]

5	Esta r	eacción s	e usa	en la	ı fabrica	ación	de	ácido	sulfúrico

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$
 $K_c = 280 \text{ a } 1000 \text{ K}$

(a)	Indique por qué esta reacción de equilibrio se considera homogénea.	[1]

(b)	Prediga, dando una razón, el signo de la variación de entropía estándar de la reac directa.	ción	[1
• •			

(c)	ald 10						_								θ,	eı	n k	J,	pa	ara	1 е	st	a ı	rea	ЭC	cióı	n	[2]

(d)	Prediga, dando sus razones, si la reacción directa es endotérmica o exotérmica. Use sus respuestas a (b) y (c).	[2]

•	 •	 •	 ٠	 •	 •	 •	 •		•	 •	•	 •	 •	 •	 •	٠.	•	٠.	-	 •	 		•	 -		 -	 ٠	 	•
							 •	٠.					 •			٠.		٠.			 			 		 			
																					 			 	 	 		 -	

	_	4.	
Pregunta	F :	CONTINUE	CIANI
rieuuiila	J.	CUIIIIII	CIUIII

	(e)	Se mezclaron 0,200 mol de dióxido de azufre, 0,300 mol de oxígeno y 0,500 mol de trióxido de azufre en un recipiente de 1,00 dm³ a 1000 K.	
		Prediga la dirección de la reacción. Muestre su trabajo.	[3]
6.		cido butanoico, $CH_3CH_2CH_2COOH$, es un ácido débil y la etilamina, $CH_3CH_2NH_2$, es una e débil.	
	(a)	(i) Indique la ecuación para la reacción de cada sustancia con agua.	[2]
	Ácid	do butanoico:	
	Etila	amina:	
		(ii) Dibuje un diagrama para mostrar la deslocalización de los electrones en la base conjugada del ácido butanoico.	[1]

egunta 6	6: cc	ontinuación)
((iii)	Deduzca el estado de oxidación medio del carbono en el ácido butanoico.
(b)	(i)	La concentración de iones hidrógeno, [H ⁺], de una solución acuosa de ácido butanoico 0,250 mol dm ⁻³ , es 0,00192 mol dm ⁻³ . Calcule la concentración de iones hidróxido, [OH ⁻], en la solución a 298 K.
((ii)	Determine el pH de una solución acuosa de etilamina 0,250 mol dm ⁻³ a 298 K, usando la sección 21 del cuadernillo de datos.

Véase al dorso

(Pregunta 6: continuación)

(c) Dibuje aproximadamente la curva de pH para la titulación de 25,0 cm³ de solución acuosa de etilamina con 50,0 cm³ de solución acuosa de ácido butanoico de igual concentración. No se requieren cálculos.

[3]

(Pregunta 6: continuación)

	lique por que el àcido butanoico es un líquido a temperatura ambiente mientras la etilamina es un gas a temperatura ambiente.	[2]
(e) (i)	Indique un reactivo adecuado para la reducción del ácido butanoico.	[1]
(ii)	Deduzca el producto de la reacción de reducción completa en (e)(i).	[1]

Véase al dorso

7. Considere el siguiente ciclo de la ley de Hess:

$$CH_2 = CH_2(g) + H_2(g) \xrightarrow{Etapa \ 1} CH_3CH_3(g)$$
 $+ \frac{7}{2}O_2(g)$
 $+ tapa \ 2$
 $+ tapa \ 3$
 $+ tapa \ 3$
 $+ tapa \ 3$

(a)	Identifique el tipo de reacción de la etapa 1.	[1]
(b)	Calcule la variación de entalpía estándar, ΔH^\ominus , de la etapa 2 usando la sección 13 del cuadernillo de datos.	[1]
(c)	Determine la variación de entalpía estándar, ΔH^\ominus , de la etapa 1.	[1]

(Pregunta 7: continuación)

(d)	Sugiera una razón por la cual el valor de ΔH^{\ominus} calculado usando la ley de Hess en el
	apartado (c), se puede considerar preciso y una razón por la cual se puede considerar
	aproximado.

	\sim
	`/
•	

Aproximado	. .		
Aproximado).		

Véase al dorso

8. El dióxido de carbono contribuye significativamente al calentamiento global. Se puede usar como materia prima con metiloxirano para formar polímeros.

$$n CO_2 + n HC CH_2 \longrightarrow \begin{bmatrix} O \\ CH_3 \end{bmatrix} CH_2 \longrightarrow \begin{bmatrix} O \\ CH_3 \end{bmatrix}$$

metiloxirano

(a)	Sugi	iera por qué el anillo de tres miembros del metiloxirano es inestable.	[1]
(b)	(i)	Dibuje dos isómeros estructurales del metiloxirano.	[2]
	(ii)	Indique, dando una razón, si el metiloxirano puede formar isómeros <i>cis-trans</i> .	[1]

(Pregunta 8: continuación)

(c) Prediga el desplazamiento químico y el patrón de desdoblamiento de la señal producida por los átomos de hidrógeno rotulados **X** en el espectro de RMN de ¹H del polímero. Use la sección 27 del cuadernillo de datos.

[2]

$$\begin{bmatrix}
CH_3 \\
CX_2 - CH - O - C - O
\end{bmatrix}$$

	Desplazamiento químico:	
	Patrón de desdoblamiento:	
9.	Los haluros de alquilo sufren reacciones de sustitución nucleófila con hidróxido de sodio.	
	 (a) Indique una razón por la cual la mayoría de los haluros de alquilo son más reactivos que los alcanos. 	[1]
	(b) Clasifique el 1-bromopropano como haluro de alquilo primario, secundario o terciario, dando una razón.	[1]

Véase al dorso

	_	4.	
Dradiints	3 U · 1	`Antini	ISCION
Pregunta	น ฮ. เ	<i>,</i> 0111111	uacioii

	[4]
	[1]
e comprender los mecanismos de las reacciones orgánicas.	[2]
	n, si en la sustitución nucleófila el ion hidróxido actúa como un se de Lewis o ninguno.

[2]

[1]

10. Se propuso el siguiente mecanismo para una reacción:

$A + B \rightarrow C + D$	etapa lenta
$D + B \rightarrow A + E$	etapa rápida

(a) Clasifique las sustancias B y D como reactivo, producto, catalizador o intermediario, basándose en el mecanismo propuesto.

R·		
D.		

D:

(b)	Deduzca la expresión de velocidad.	[1]

(c) Calcule la velocidad de reacción inicial para el experimento 2, si se mide en las mismas condiciones.

Experimento	[A] / mol dm ⁻³	[B] / mol dm ⁻³	Velocidad inicial / mol dm ⁻³ s ⁻¹
1	0,200	0,200	1,20
2	0,300	0.200	

No escriba en esta página.

Las respuestas que se escriban en esta página no serán corregidas.

No escriba en esta página.

Las respuestas que se escriban en esta página no serán corregidas.

24FP23

No escriba en esta página.

Las respuestas que se escriban en esta página no serán corregidas.

