GPU Accelerated Fast Fourier Transform

Matt McCarthy

Christopher Newport University matthew.mccarthy.12@cnu.edu

December 2015

Abstract We empirically investigate the performance benefits of parallel fast Fourier transform running on the GPU over a sequential version running on the GPU.

1 Background

1.1 Discrete Fourier Transform

The discrete Fourier transform is a mathematical transformation that takes a set of Complex-valued signals and outputs a set of Complex-valued frequencies. For an n-dimensional Complex-valued vector \mathbf{X} , the discrete Fourier transform $\mathbf{Y} = \mathcal{F}(X)$ is given by

$$Y_j = \sum_{k=0}^n x_k \omega^{jk}$$

where ω is the *n*-th root of unity, $e^{2\pi i/n}$. Since **Y** is an *n*-dimensional, Complex-valued vector, we can see that the discrete Fourier transform has a complexity of $\Theta(n^2)$.

1.2 Fast Fourier Transform

Furthermore, we can split the discrete Fourier transform into even and odd sums for n = 2m, yielding

$$Y_j = \sum_{k=0}^{m} x_{2k} \omega^{2jk} + \omega^j \sum_{k=0}^{m} x_{2k+1} \omega^{2jk}$$

which is two separate discrete Fourier transforms. Suppose $n=2^k$. If we iterate this process, we get the following algorithm called the one-dimensional, unordered radix 2, fast Fourier transform.

- 1: function R-FFT($\mathbf{X}, \mathbf{Y}, n, \omega$)
- 2: **if** n=1 **then**

```
y_0 = x_0
 4:
            else
                  Let \mathbf{Q} = \mathbf{0}, \mathbf{T} = \mathbf{0} \in \mathbb{C}^n
 5:
                  Let \mathbf{X_e} = (x_0, x_2, \dots, x_{n-2})
 6:
                  Let \mathbf{X_o} = (x_1, x_3, \dots, x_{n-1})
 7:
                  R\text{-}FFT(\mathbf{X_e}, \mathbf{Q_e}, n/2, \omega^2)
 8:
                  R-FFT(\mathbf{X}_{\mathbf{0}}, \mathbf{T}_{\mathbf{0}}, n/2, \omega^2)
 9:
                  for all j \in \{0, 1, ..., n-1\} do
10:
                        y_j = q_{j \mod n/2} + \omega^i t_{j \mod n/2}
11:
12:
                  end for
            end if
13:
14: end function
```

- 1.2.1 Cooley Tukey
- 1.3 Parallelization
- 2 Experimental Design
- 3 Test Environment
- 3.1 Test System
- 3.2 Test Program
- 4 Results
- 4.1 Linear Speedup
- 5 Conclusion

Appendix