Chapitre 27

Fonctions de deux variables

Objectifs

- Rappeler la notion de norme, définir les parties bornées et les parties ouvertes de \mathbb{R}^2 .
- Notion de limite et de continuité pour les fonctions de deux variables.
- Notions de dérivées partielles, de fonctions de classe \mathscr{C}^1 .
- Notion d'intégration, passage en coordonnées polaires, formule de Green-Riemann.

Sommaire

I)	Fonctions continues
	1) Définitions
	2) Limite
	3) Continuité
	4) Extension
II)	Calcul différentiel
	1) Dérivées partielles premières
	2) Dérivée suivant un vecteur 6
	3) Fonctions de classe C1
	4) Dérivées partielles d'ordre 2
III)	Calcul intégral
	1) Intégration sur un pavé
	2) Intégration sur un fermé borné
	3) Passage en coordonnées polaires
	4) Formule de Green-Riemann
IV)	Exercices

Fonctions continues I)

Définitions

On rappelle que \mathbb{R}^2 est un \mathbb{R} -espace vectoriel \mathbb{R}^1 muni du produit scalaire canonique : si u=(x,y)et v = (x', y') alors (u|v) = xx' + yy', et de la norme euclidienne : $||u|| = \sqrt{x^2 + y^2}$, celle-ci ayant les propriétés suivantes :

- $\forall u = (x, y) \in \mathbb{R}^2, ||u|| \geqslant 0.$
- $\begin{array}{ll}
 & \forall u \in \mathbb{R}^2, ||u|| = 0 \iff u = 0. \\
 & \forall u \in \mathbb{R}^2, \lambda \in \mathbb{R}, ||\lambda u|| = |\lambda|.||u||.
 \end{array}$
- $\forall u, v \in \mathbb{R}^2, ||u+v|| \leq ||u|| + ||v||$ (inégalité triangulaire).

On définit alors les notions suivantes :

- Distance euclidienne : la distance de $u \in \mathbb{R}^2$ à $v \in \mathbb{R}^2$ est la norme de la différence : d(u, v) = ||u v||.
- 1. C'est aussi un espace affine

- Partie bornée : une partie A de \mathbb{R}^2 est dite **bornée** lorsqu'il existe un réel M tel que :

$$\forall x \in A, ||x|| \leq M.$$

- Boule ouverte : soit $u \in \mathbb{R}^2$ et r > 0, la boule ouverte de centre u et de rayon r est l'ensemble $B(u,r) = \{v \in \mathbb{R}^2 \mid ||u-v|| < r\}$. De même on peut définir les boules fermées et les sphères. **Remarque**: Si u = (x, y) alors le pavé ouvert : $]x - \frac{r}{\sqrt{2}}; x + \frac{r}{\sqrt{2}}[\times]y - \frac{r}{\sqrt{2}}; y + \frac{r}{\sqrt{2}}[$ est inclus dans B(u, r).
- Partie ouverte : une partie A de \mathbb{R}^2 est dite **ouverte** lorsque A est une réunion (quelconque) de boules ouvertes, ou encore : $\forall u \in A, \exists r > 0, B(u, r) \subset A$. Par convention, l'ensemble vide est considéré comme une partie ouverte.

Exemples:

- $-\mathbb{R}^2$ est une partie ouverte de \mathbb{R}^2 .
- Une boule ouverte est une partie ouverte de \mathbb{R}^2 .
- Un demi-plan ouvert (i.e. bord exclu) est une partie ouverte.
- Une réunion quelconque de parties ouvertes est une partie
- Une intersection finie de parties ouvertes est une partie
- Une boule fermée n'est pas une partie ouverte de \mathbb{R}^2 .

DÉFINITION 27.1 (applications partielles)

Soit A une partie de \mathbb{R}^2 , soit $f: A \to \mathbb{R}$ une fonction, et soit $a = (x_0, y_0) \in A$. La première application partielle de f en a est la fonction $f_{1,a}: t \mapsto f(t,y_0)$ (on fixe la deuxième variable à y_0), et la deuxième application partielle de f en a est la fonction $f_{2,a}: t \mapsto f(x_0,t)$ (on fixe la première *variable* à x_0).

Exemple: Soit $f(x,y) = \frac{x^2+y}{x^2+y^2+1}$, la première application partielle de f en a = (0,0) est $f_{1,a}(t) = \frac{t^2}{1+t^2}$, et la deuxième application partielle de f en a est $f_{2,a}(t) = \frac{t}{1+t^2}$.

Remarque: Les applications partielles permettent de se ramener aux fonctions d'une variable réelle.

2) Limite

DÉFINITION 27.2 (point adhérent)

Soit A une partie non vide de \mathbb{R}^2 et $a \in \mathbb{R}^2$, on dit que a est adhérent à A lorsque **toute boule** ouverte de centre a rencontre $A: \forall r > 0, B(a,r) \cap A \neq \emptyset$.

DÉFINITION 27.3

Soit $f: A \to \mathbb{R}$ une fonction, et soit $a \in \mathbb{R}^2$ un point adhérent à A, soit $\ell \in \mathbb{R}$, on dit que f admet $pour \ limite \ \ell \ en \ a \ lorsque : \forall \ \varepsilon > 0, \exists \ \alpha > 0, \forall \ u \in A, ||u - a|| < \alpha \Longrightarrow |f(u) - \ell)| < \varepsilon.$ *Notation* : $\lim f = \ell$

2

Remarques:

- Pour que $A \cap B(a, α)$ ne soit jamais vide, il est nécessaire que a soit adhérent à A.
- On peut remplacer les inégalités strictes par des inégalités larges, cela ne change pas le sens de la définition.
- $-\lim f = \ell \iff \lim |f \ell| = 0.$

Exemple: Les fonctions coordonnées, soit $c_1: \mathbb{R}^2 \to \mathbb{R}$ définie par $c_1(x,y) = x$ et $c_2: \mathbb{R}^2 \to \mathbb{R}$ définie par $c_2(x,y) = y$. Soit $a = (x_0, y_0) \in \mathbb{R}^2$, on a : $\lim_a c_1 = x_0 = c_1(a)$ et $\lim_a c_2 = y_0 = c_2(a)$.

Propriétés : on retrouve les propriétés usuelles, à savoir :

- Si la limite existe alors elle est unique.
- Si f a une limite finie en a, alors f est bornée au voisinage de a.
- Si $\lim_{a} f = \ell$ et $\lim_{a} g = \ell'$, alors : $\lim_{a} (f + g) = \ell + \ell'$.

 - $-\lim^{u} f \times g = \ell \times \ell'.$
 - $\ \forall \ \lambda \in \mathbb{R}, \lim_{a} \lambda f = \lambda \ell.$
- $\forall A \in \mathbb{R}, \underset{a}{\min_{A}}$...

 Si $\ell' \neq 0$, alors $\lim_{a} \frac{f}{g} = \frac{\ell}{\ell'}$.

 Soit $f: A \to \mathbb{R}$ avec $\lim_{a} f = b$, et $g: J \to \mathbb{R}$ avec $\operatorname{Im}(f) \subset J$ et $\lim_{b} g = \ell$, alors $\lim_{a} g \circ f = \ell$

La limite (lorsqu'elle existe) ne dépend pas du « chemin » suivi.

Exemples:

- La fonction $f(x,y) = \frac{x^2 + y^2}{x^2 y^2}$ est définie continue sur $\{(x,y) \in \mathbb{R}^2 \mid |x| \neq |y|\}$. Si on fait tendre (x,y) vers (0,0) suivant la direction u = (1,a) [i.e. y = ax] avec $|a| \neq 1$, alors on trouve $f(x,y) = \frac{1+a^2}{1-a^2} \underset{(x,y)\to(0,0)}{\longrightarrow} \frac{1+a^2}{1-a^2}$, on en déduit que f n'a pas de limite en (0,0).
- La fonction $f(x,y) = \frac{x^2y}{x^2+y^2}$ a pour limite 0 en (0,0), car $|f(x,y)| \le |y|$.

3) Continuité

Soit $A \subset \mathbb{R}^2$, l'ensemble des fonctions de A vers \mathbb{R} est noté $\mathscr{F}(A,\mathbb{R})$, il est facile de voir que pour les opérations usuelles sur les fonctions, c'est une ℝ-algèbre.

DÉFINITION 27.4 (continuité)

Soit $f:A\to\mathbb{R}$ et soit $a\in A$, on dit que f est continue en a lorsque $\lim_a f=f(a)$. Si f est continue en tout point de A, on dit que f est continue sur A, l'ensemble des fonctions continues sur A est noté $\mathscr{C}^0(A,\mathbb{R}).$

Propriétés: théorèmes généraux

- $-\mathscr{C}^0(A,\mathbb{R})$ est une \mathbb{R} -algèbre.
- Si f, g : A → \mathbb{R} sont continues sur A et si g ne s'annule pas, alors $\frac{f}{g}$ est continue sur A. Si $f: A \to \mathbb{R}$ est continue sur A, et si $g: J \to \mathbb{R}$ est continue sur J avec Im(f) $\subset J$, alors $g \circ f$ est
- continue sur A.

Il en découle en particulier que toute fonction polynomiale ou rationnelle en x et y, est continue sur son ensemble de définition.

-√ THÉORÈME 27.1

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction continue, et soit $\lambda \in \mathbb{R}$, alors l'ensemble :

$$\mathscr{O} = \left\{ (x, y) \in \mathbb{R}^2 / f(x, y) > \lambda \right\}$$

est un ouvert.

Preuve: Soit $a \in \mathcal{O}$, f est continue en a et $f(a) > \lambda$, en prenant $\varepsilon = f(a) - \lambda > 0$, il existe r > 0 tel que $u \in B(a,r) \Longrightarrow |f(u) - f(a)| < \varepsilon$, ce qui entraı̂ne $f(u) > \lambda$, donc $B(a,r) \subset \mathcal{O}$, ce qui prouve que \mathcal{O} est un ouvert. \square

-THÉORÈME 27.2

Si f est continue en $a = (x_0, y_0) \in A$, alors la première application partielle de f en a est continue en x_0 , et la deuxième est continue en y_0 . Mais la réciproque est fausse.

Preuve: Soit $\varepsilon > 0$, il existe r > 0 tel que $\forall u \in A$, $||u - a|| < r \Longrightarrow |f(u) - f(a)| < \varepsilon$. Soit $t \in \mathbb{R}$, si $|t - x_0| < r$, alors $||(t, y_0) - a|| = |t - x_0| < r$, donc $|f(t, y_0) - f(a)| < \varepsilon$, c'est à dire $|f_{1,a}(t) - f_{1,a}(x_0)| < \varepsilon$, ce qui prouve que $f_{1,a}$ est continue en x_0 . Le raisonnement est similaire pour $f_{2,a}$.

Donnons un contre-exemple pour la réciproque : $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$, en considérant les directions u = (1,1) et v = (1,-1), on voit que la fonction f n'a pas de limite en (0,0), donc f n'est pas continue en (0,0), par contre les deux applications partielles de f en (0,0) sont continues en 0 car elles sont nulles.

4) Extension

Soit A un partie de \mathbb{R}^2 et $f:A\to\mathbb{R}^2$, alors pour tout couple (x,y) de A, f(x,y) est un couple de réels dont les deux composantes sont fonctions de x et y, par conséquent il existe deux fonctions : $f_1, f_2:A\to\mathbb{R}$ telles que :

$$\forall (x, y) \in A, f(x, y) = (f_1(x, y), f_2(x, y)).$$

Par définition, les fonctions f_1 et f_2 sont les fonctions **composantes** de f.

Définition 27.5

- Une telle fonction f est dite **continue** en a ∈ A lorsque les **fonctions composantes sont continues** en a.
- Soit $\ell = (\ell_1, \ell_2) \in \mathbb{R}^2$ et soit $a \in \mathbb{R}^2$ adhérent à A, on dit que f admet pour limite ℓ en a lorsque fonctions composantes admettent pour limite respectivement ℓ_1 et ℓ_2 en a.

Remarques:

- Cela s'applique aussi aux fonctions à valeurs complexes.
- Cette définition se généralise aux fonctions à valeurs dans \mathbb{R}^n .

^o-théorème 27.3

Soit $f: A \to \mathbb{R}^2$, $a \in \mathbb{R}^2$ adhérent à A, et $\ell = (\ell_1, \ell_2)$ alors $\lim_a f = \ell$ ssi:

$$\forall \varepsilon > 0, \exists \alpha > 0, \forall u \in A, ||u - a|| < \alpha \Longrightarrow ||f(u) - \ell|| < \varepsilon.$$

Preuve:
$$\max \left\{ |f_1(u) - f_1(a)|, |f_2(u) - f_2(a)| \right\} \le ||f(u) - f(a)|| = \sqrt{|f_1(u) - f_1(a)|^2 + |f_2(u) - f_2(a)|^2}.$$

Remarque: On en déduit que f est continue en $a \in A$ ssi $\lim_{a} f = f(a)$.

Il est facile de vérifier que $\mathscr{C}^0(A, \mathbb{R}^2)$ est un \mathbb{R} -espace vectoriel pour les opérations usuelles [c'est même une \mathbb{C} -algèbre si on remplace \mathbb{R}^2 par \mathbb{C}], et que **la composée de deux fonctions continues est continue**.

II) Calcul différentiel

1) Dérivées partielles premières

Soit U un ouvert de \mathbb{R}^2 et soit $a=(x_0,y_0)\in U$, il existe $\varepsilon>0$ tel que $B(a,\sqrt{2}\varepsilon)\subset A$, par conséquent le pavé ouvert $]x_0-\varepsilon;x_0+\varepsilon[\times]y_0-\varepsilon;y_0+\varepsilon[$ est inclus dans U, donc la première application partielle de f en a est définie au moins sur l'intervalle $]x_0-\varepsilon;x_0+\varepsilon[$, et la deuxième sur $]y_0-\varepsilon;y_0+\varepsilon[$.

Définition 27.6

Si la première (respectivement la deuxième) application partielle de f en α est dérivable en x_0 (respectivement y_0), on dit que f admet une dérivée partielle par rapport à x (respectivement par rapport à y) en a, on la note : $\frac{\partial f}{\partial x}(a)$ (respectivement $\frac{\partial f}{\partial y}(a)$). Si f admet une dérivée partielle par

rapport à x en tout point de U, alors on définit la fonction : $\frac{\partial f}{\partial x}$: $U \rightarrow \mathbb{R}$, (même $(x,y) \mapsto \frac{\partial f}{\partial x}(x,y)$

chose par rapport à y).

Les applications partielles sont des fonctions de $\mathbb R$ dans $\mathbb R$, on peut donc utiliser les théorèmes généraux pour étudier leur dérivabilité, et les règles de dérivation usuelles pour les calculs.

Exemple: Soit $f(x,y) = \frac{x^2+y}{x^2+y^2+1}$ et soit a=(x,y), on a $f_{1,a}(t) = \frac{t^2+y}{t^2+y^2+1}$ qui est dérivable sur \mathbb{R} d'où $\frac{\partial f}{\partial x}(a) = \frac{2x}{(x^2+y^2+1)^2}$; d'autre part $f_{2,a}(t) = \frac{x^2+t}{x^2+t^2+1}$ qui est dérivable sur \mathbb{R} , d'où $\frac{\partial f}{\partial y}(a) = \frac{x^2(1-2y)-y^2+1}{(x^2+y^2+1)^2}$.

THÉORÈME 27.4 (première application)

Si $f: U \to \mathbb{R}$ admet un extremum local en $a = (x_0, y_0) \in U$, et si f admet ses deux dérivées partielles en a, alors $\frac{\partial f}{\partial x}(a) = 0$ et $\frac{\partial f}{\partial y}(a) = 0$, mais la réciproque est fausse.

Preuve: Supposons que *a* soit un maximum local, il existe donc r > 0 tel que $B(a, r) \subset U$ et $\forall u \in B(a, r), f(u) \leq f(a)$, par conséquent $\forall t \in]x_0 - r; x_0 + r[, f(t, y_0) \le f(a), c'est à dire <math>f_{1,a}(t) \le f_{1,a}(x_0),$ or la fonction $f_{1,a}(t)$ est dérivable en x_0 et x_0 est à l'intérieur de l'intervalle $]x_0-r;x_0+r[$, d'où $f'_{1,a}(x_0)=0$, c'est à dire $\frac{\partial f}{\partial x}(a)=0$, le raisonnement est le même pour la deuxième variable.

 $z = x^2 + 3y^2 + 2x - 4y$ minimum en $M(-1, \frac{2}{3}, -\frac{7}{3})$

 $z = x^2 - y^2,$ pas d'extrêmum en (0,0) (point col)

Exemples:

- Soit $f(x,y) = x^2 + 3y^2 + 2x 4y$, f admet ses deux dérivées partielles sur \mathbb{R}^2 , qui sont $\frac{\partial f}{\partial x}(x,y) = 2x + 2$ et $\frac{\partial f}{\partial y}(x,y) = 6y - 4$, ces deux fonctions s'annulent pour x = -1 et y = 2/3, donc le seul point où il peut y avoir un extremum est a = (-1, 2/3). On a $f(x, y) = (x + 1)^2 + 3(y - 2/3)^2 - 7/3$, or f(-1, 2/3) = -7/3, on voit donc que $f(x, y) \ge f(a)$, f présente donc un minimum global en a.
- Soit $f(x,y) = x^2 y^2$, f admet ses deux dérivées partielles sur \mathbb{R}^2 et $\frac{\partial f}{\partial x}(x,y) = 2x$ et $\frac{\partial f}{\partial y}(x,y) = -2y$, donc le seul point où f peut présenter un extremum est a = (0,0), on a f(a) = 0, or si t > 0, on a $f(t,0) = t^2 > 0$ et $f(0,t) = -t^2 < 0$, donc f ne présente pas d'extremum en a (ce qui fournit un contre-exemple pour la réciproque du théorème).

Remarque: Soit $f: U \to \mathbb{R}$ définie par f(x,y) = 2x - y + 1 avec U = B'(0,1), alors en notant u = (x,u) et n(2,-1) on a $f(x,y) = (u \mid n) + 1$ et donc $1 - \|u\| \times \|n\| \le f(u) \le 1 + \|u\| \times \|n\|$, c'est à dire $1 - \sqrt{5} \le f(u) \le 1 + \sqrt{5}$, f est donc bornée, mais on voit que les bornes sont atteintes lorsque $u = \pm \frac{n}{\|n\|}$, f a donc un maximum et un minimum sur U. Mais si on observe les deux dérivées partielles : $\frac{\partial f}{\partial x}(x,y) = 2$ et $\frac{\partial f}{\partial y}(x,y) = -1$, ont voit qu'elles ne s'annulent jamais, le théorème ne s'applique donc pas sur U, car ici, U n'est pas un ouvert. Par contre, Le théorème s'applique sur la boule ouverte B(0,1) et permet de dire que si f ne présente pas d'extrêmum local sur la boule ouverte.

2) Dérivée suivant un vecteur

Soit U un ouvert de \mathbb{R}^2 , soit $a \in U$, soit $f: U \to \mathbb{R}$, et soit $h = (h_1, h_2) \in \mathbb{R}^2$ non nul, il existe r > 0 tel que $B(a,r) \subset U$, comme $\lim_{t \to 0} a + th = a$, il existe $\varepsilon > 0$ tel que $t \in]-\varepsilon$; $\varepsilon[\Longrightarrow a+th \in B(a,r)$ et donc $a+th \in U$, on peut alors considérer la fonction $g_{h,a}: t \mapsto f(a+th)$, c'est une fonction de \mathbb{R} dans \mathbb{R} définie au moins sur $]-\varepsilon$; $\varepsilon[$.

DÉFINITION 27.7 (dérivée suivant un vecteur h)

Si la fonction $g_{h,a}$ ci-dessus est dérivable en 0, on dit que f admet une dérivée en a suivant le vecteur h, et on pose $g'_{h,a}(0) = D_h(f)(a)$.

Exemple: Soit $f(x,y) = \sin(xy) + x - y$, soit a = (0,0), et soit h = (1,-2), on a alors $g_{h,a}(t) = f(t,-2t) = -\sin(2t^2) + 3t$, cette fonction est dérivable en 0 et $g'_{h,a}(0) = 3$, donc f admet une dérivée en a suivant le vecteur h et $D_h(f)(a) = 3$.

Cas particuliers:

- f admet une dérivée partielle par rapport à la première variable en $a = (x_0, y_0)$ ssi f admet une dérivée en a suivant le vecteur (1,0).
 - **Preuve**: On a $g_{h,t} = f(x_0 + t, y_0) = f_{1,a}(x_0 + t)$, donc $g_{h,a}$ et dérivable en 0 ssi $f_{1,a}$ est dérivable en x_0 . Si c'est le cas, alors $D_h(f)(a) = \frac{\partial f}{\partial x}(a)$.
- f admet une dérivée partielle par rapport à la deuxième variable en $a = (x_0, y_0)$ ssi f admet une dérivée en a suivant le vecteur (0, 1).
 - **Preuve**: On a $g_{h,t} = f(x_0, y_0 + t) = f_{2,a}(y_0 + t)$, donc $g_{h,a}$ et dérivable en 0 ssi $f_{2,a}$ est dérivable en y_0 . Si c'est le cas, alors $D_h(f)(a) = \frac{\partial f}{\partial y}(a)$.

3) Fonctions de classe C1

Définition 27.8

Soit U un ouvert de \mathbb{R}^2 , soit $f: U \to \mathbb{R}$ une fonction, on dit que f est de classe \mathscr{C}^1 sur U lorsque : $\forall a \in U, \forall h \in \mathbb{R}^2 \setminus \{(0,0)\}, f$ admet une dérivée en a suivant le vecteur h et l'application :

$$D_h(f): U \rightarrow \mathbb{R}$$

 $a \mapsto D_h(f)(a)$

est continue sur U.

Exemple: Soit $f(x,y) = x^2 + xy$, soit $a = (x_0, y_0)$ et soit $h = (h_1, h_2)$, on a $g_{h,a}(t) = f(x_0 + th_1, x_0 + th_2) = (x_0 + th_1) + (x_0 + th_1)(y_0 + th_2)$, cette fonction est dérivable en 0 et $g'_{h,a}(0) = h_1(2x_0 + y_0) + h_2x_0$, donc $D_h(f)$: $(x,y) \mapsto h_1(2x+y) + h_2x$, cette fonction est continue sur \mathbb{R}^2 , et par conséquent f est de classe \mathscr{C}^1 sur \mathbb{R}^2 .

Remarque: Si f est de classe \mathscr{C}^1 , alors en tout point a de U, f admet ses deux dérivées partielles (en prenant h = (1,0) et h = (0,1)), de plus les deux dérivées partielles sont continues sur U car : $D_{(1,0)}(f)(a) = \frac{\partial f}{\partial x}(a)$ et $D_{(0,1)}(f)(a) = \frac{\partial f}{\partial y}(a)$.

THÉORÈME 27.5

Si f admet ses deux dérivées partielles en tout point de U et si celles-ci sont continues sur U, alors f admet un développement limité d'ordre 1 en tout point $a \in U$, c'est à dire :

$$f(a+h) = f(a) + h_1 \frac{\partial f}{\partial x}(a) + h_2 \frac{\partial f}{\partial y}(a) + ||h|| \varepsilon(h)$$

 $avec \lim_{h \to (0,0)} \varepsilon(h) = 0.$

Preuve: On a (avec a = (x, y) et $h = (h_1, h_2)$):

$$\begin{split} f(x+h_1,y+h_2)-f(a)-h_1\frac{\partial f}{\partial x}(a)-h_2\frac{\partial f}{\partial y}(a) \\ &=f(x+h_1,y+h_2)-f(x,y+h_2)+f(x,y+h_2)-f(a)-h_1\frac{\partial f}{\partial x}(a)-h_2\frac{\partial f}{\partial y}(a) \\ &=h_1\frac{\partial f}{\partial x}(x+\theta h_1,y+h_2)+h_2\frac{\partial f}{\partial y}(x,y+\theta' h_2)-h_1\frac{\partial f}{\partial x}(a)-h_2\frac{\partial f}{\partial y}(a) \text{ avec } \theta,\theta'\in]0;1[\end{split}$$

ďoù

$$\begin{split} |f(x+h_1,y+h_2)-f(a)-h_1\frac{\partial f}{\partial x}(a)-h_2\frac{\partial f}{\partial y}(a)| \\ &\leqslant |h_1||\frac{\partial f}{\partial x}(x+\theta h,y+h_2)-\frac{\partial f}{\partial x}(a)|+|h_2||\frac{\partial f}{\partial y}(x,y+\theta'h_2)-\frac{\partial f}{\partial y}(a)| \\ &\leqslant ||h||\left(|\frac{\partial f}{\partial x}(x+\theta h,y+h_2)-\frac{\partial f}{\partial x}(a)|+|\frac{\partial f}{\partial y}(x,y+\theta'h_2)-\frac{\partial f}{\partial y}(a)|\right) \end{split}$$

les deux dérivées partielles étant continues, le terme entre parenthèses tend vers 0 lorsque h tend vers (0,0), ce qui termine la preuve.

Le plan d'équation:

$$z = f(a,b) + (x-a)\frac{\partial f}{\partial x}(a,b) + (y-b)\frac{\partial f}{\partial y}(a,b)$$

est appelé plan tangent à la surface z = f(x, y) au point M(a, b, f(a, b)).

-\

MPSI - Cours

THÉORÈME 27.6

Si f admet ses deux dérivées partielles en tout point de U et si celles-ci sont continues sur U, alors f est de classe \mathscr{C}^1 sur U. De plus, pour tout vecteur $h \in \mathbb{R}^2$, on $D_h(f)(a) = h_1 \frac{\partial f}{\partial x}(a) + h_2 \frac{\partial f}{\partial y}(a)$.

Preuve: Soit $a = (x, y) \in U$ et soit $h = (h_1, h_2) \in \mathbb{R}^2$, on a $g_{h,a}(t) = f(x + th_1, y + th_2)$ et $g_{h,a}(0) = f(a)$, d'où :

$$\frac{g_{h,a}(t) - g_{h,a}(0)}{t} = \frac{1}{t} \left(th_1 \frac{\partial f}{\partial x}(a) + th_2 \frac{\partial f}{\partial y}(a) + N(th)\varepsilon(th) \right),$$

ce qui donne:

$$\frac{g_{h,a}(t) - g_{h,a}(0)}{t} = h_1 \frac{\partial f}{\partial x}(a) + h_2 \frac{\partial f}{\partial y}(a) \pm ||h|| \varepsilon(th),$$

si $t \to 0$, alors la limite de l'expression ci-dessus est $h_1 \frac{\partial f}{\partial x}(a) + h_2 \frac{\partial f}{\partial y}(a)$, ce qui prouve que f admet une dérivée en a suivant le vecteur h et que $D_h(f)(a) = h_1 \frac{\partial f}{\partial x}(a) + h_2 \frac{\partial f}{\partial y}(a)$.

DÉFINITION 27.9 (gradient de f)

Si f est de classe \mathscr{C}^1 sur U, alors on pose pour $a \in U$: $\operatorname{Grad}_f(a) = \left(\frac{\partial f}{\partial x}(a), \frac{\partial f}{\partial y}(a)\right)$, c'est le **gradient de** f **en** a. En prenant le produit scalaire canonique de \mathbb{R}^2 , le développement limité d'ordre 1 de f en a s'écrit : $f(a+h) = f(a) + (\operatorname{Grad}_f(a)|h) + o(h)$.

Sur une courbe de niveau de f $(f(x,y)=\lambda)$ la relation ci-dessus devient $(\operatorname{Grad}_f(a)|\frac{h}{\|h\|})=o(1)$ ce qui entraîne que la tangente à cette courbe « au point a » est la droite **orthogonale au vecteur gradient**.

même chose dans le plan xOy

Propriétés:

- Une fonction de classe \mathscr{C}^1 sur U est continue sur U.
 - **Preuve**: Soit $f: U \to \mathbb{R}$ une fonction de classe \mathscr{C}^1 , et soit $a \in U$, on peut écrire pour h voisin de (0,0): $f(a+h) = f(a) + h_1 \frac{\partial f}{\partial x}(a) + h_2 \frac{\partial f}{\partial y}(a) + ||h|| \varepsilon(h)$, on voit que $\lim_{h \to (0,0)} f(a+h) = f(a)$, *i.e.* f est continue en a. \square
- $-\mathscr{C}^1(U,\mathbb{R})$ est une \mathbb{R} -algèbre pour les lois usuelles sur les fonctions, c'est en fait une sous-algèbre de $\mathscr{C}^0(U,\mathbb{R})$.

Preuve: Montrons par exemple la stabilité pour l'addition : si f,g sont \mathscr{C}^1 sur U, soit $a=(x,y)\in U$, la première application partielle de f+g en a est $f_{1,a}+g_{1,a}:t\mapsto f(t,y)+g(t,y)$ or ces deux fonctions sont dérivables en x, donc f+g admet une dérivée partielle par rapport à sa première variable et $\frac{\partial (f+g)}{\partial x}(a)=\frac{\partial f}{\partial x}(a)+\frac{\partial f}{\partial y}(a)$, or ces deux fonctions sont continues sur U et donc $\frac{\partial (g+h)}{\partial x}$ est continue sur U. Le raisonnement est le même

pour la deuxième variable, finalement les deux dérivées partielles de f + g sont continues sur U, donc f + gest de classe \mathscr{C}^1 sur U.

THÉORÈME 27.7 (dérivée d'une composée : règle de la chaîne)

Soit U un ouvert de \mathbb{R}^2 , soit I un intervalle de \mathbb{R} , soit $\varphi: I \to \mathbb{R}^2$ définie par $\varphi(t) = (u_1(t), u_2(t))$ où u_1 et u_2 sont de classe \mathscr{C}^1 de I dans \mathbb{R} , avec $\operatorname{Im}(\varphi) \subset U$, et soit $f: U \to \mathbb{R}$ une fonction de classe \mathscr{C}^1 sur U, alors la fonction $f \circ \varphi : I \to \mathbb{R}$ est de classe \mathscr{C}^1 et :

$$\forall \ t \in I, (f \circ \varphi)'(t) = u_1'(t) \frac{\partial f}{\partial x}(\varphi(t)) + u_2'(t) \frac{\partial f}{\partial y}(\varphi(t))$$

Preuve: $f \circ \varphi(t) = f(u_1(t), u_2(t))$, soit $t_0 \in I$:

$$f[\varphi(t)] - f[\varphi(t_0)] = [u_1(t) - u_1(t_0)] \frac{\partial f}{\partial x}(\varphi(t_0)) + [u_2(t) - u_2(t_0)] \frac{\partial f}{\partial y}(\varphi(t_0)) + N(\varphi(t) - \varphi(t_0))\varepsilon(\varphi(t) - \varphi(t_0)).$$

On divise tout par $t-t_0$, il est clair que la somme des deux premiers termes va tendre vers $u_1'(t_0)\frac{\partial f}{\partial x}(\varphi(t_0))+$ $u_2'(t_0)\frac{\partial f}{\partial y}(\varphi(t_0))$, et c'est une fonction continue de t_0 , quant au reste, il devient : $\frac{|t-t_0|}{t-t_0}N\left(\frac{\varphi(t)-\varphi(t_0)}{t-t_0}\right)\varepsilon(\varphi(t)-\varphi(t_0))$, il est facile de voir que cette expression a pour limite 0 lorsque t tend vers t_0 , ce qui termine la preuve.

Exercice: La formule d'*Euler*. Soit $f:U\to\mathbb{R}$ une fonction de classe \mathscr{C}^1 sur U homogène de rapport $\alpha>0$, *i.e.* : $\forall \ a \in U, f(ta) = t^{\alpha}f(a). \text{ On a alors} : x \frac{\partial f}{\partial x}(a) + y \frac{\partial f}{\partial y}(a) = \alpha f(a).$

Réponse: Posons $\varphi(t) = (tx, ty)$ alors $f \circ \varphi$ est de classe \mathscr{C}^1 au voisinage de 0^+ , et sa dérivée est : $x \frac{\partial f}{\partial x}(ta) +$ $y\frac{\partial f}{\partial y}(ta)$, mais cette dérivée est aussi égale à $\alpha t^{\alpha-1}f(a)$, il suffit alors de prendre t=1 pour avoir la formule.

-√-THÉORÈME 27.8

Soient U et V deux ouverts de \mathbb{R}^2 , soit $\varphi: V \to U$ définie par $\varphi(x,y) = (\varphi_1(x,y), \varphi_2(x,y))$ où φ_1 et φ_2 sont de classe \mathscr{C}^1 à valeurs réelles, soit $f: U \to \mathbb{R}$ une fonction de classe \mathscr{C}^1 , alors la fonction $f \circ \varphi : V \to \mathbb{R}$ est de classe \mathscr{C}^1 sur V et $\forall a \in V$:

$$\frac{\partial (f \circ \varphi)}{\partial x}(a) = \frac{\partial \varphi_1}{\partial x}(a) \times \frac{\partial f}{\partial x}(\varphi(a)) + \frac{\partial \varphi_2}{\partial x}(a) \times \frac{\partial f}{\partial y}(\varphi(a))$$

$$\frac{\partial (f \circ \varphi)}{\partial y}(a) = \frac{\partial \varphi_1}{\partial y}(a) \times \frac{\partial f}{\partial x}(\varphi(a)) + \frac{\partial \varphi_2}{\partial y}(a) \times \frac{\partial f}{\partial y}(\varphi(a))$$

Preuve: La première application partielle de $f \circ \varphi$ en $a = (x, y) \in V$ est $(f \circ \varphi)_{1,a}(t) = f(\varphi_1(t, y), \varphi_2(t, y))$, il suffit alors d'appliquer le théorème précédent en prenant $u_1(t) = \varphi_1(t,y)$ et $u_2(t) = \varphi_2(t,y)$.

Dérivées partielles d'ordre 2

Définition 27.10

Soit U un ouvert de \mathbb{R}^2 et soit $f: U \to \mathbb{R}$ une fonction de classe \mathscr{C}^1 sur U, on dit que f est de classe \mathscr{C}^2 sur U lorsque ses deux dérivées partielles sont de classe \mathscr{C}^1 sur U.

Notations:

$$\frac{\partial}{\partial x}(\frac{\partial f}{x}) = \frac{\partial^2 f}{\partial x^2}; \quad \frac{\partial}{\partial y}(\frac{\partial f}{x}) = \frac{\partial^2 f}{\partial y \partial x}$$

$$\frac{\partial}{\partial x}(\frac{\partial f}{y}) = \frac{\partial^2 f}{\partial x \partial y}; \quad \frac{\partial}{\partial y}(\frac{\partial f}{y}) = \frac{\partial^2 f}{\partial y^2}$$

Remarques:

- Les fonctions polynomiales ou rationnelles en x et y sont de classe \mathscr{C}^2 sur leur ensemble de définition.
- $\mathscr{C}^2(U,\mathbb{R})$ est une \mathbb{R} -algèbre pour les opérations usuelles sur les fonctions, c'est en fait une sous-algèbre de $\mathscr{C}^1(U,\mathbb{R})$.

THÉORÈME 27.9 (de Schwarz (admis))

Si f est de classe \mathscr{C}^2 sur U alors : $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$.

III) Calcul intégral

Nous ne définirons pas la notion d'intégrale double, nous donnerons seulement une technique de calcul qui permet de se ramener à deux intégrales d'une variable (théorème de *Fubini* ²) ainsi que le passage en coordonnées polaires.

Nous admettrons également la notion d'aire (qui est techniquement difficile à définir) et que si A est une partie du plan qui admet une aire, alors celle-ci est égale à $\iint_A 1 \, dx \, dy$.

Une partie fermée de \mathbb{R}^2 est une partie dont le complémentaire est une partie ouverte, on admettra que toute partie fermée bornée admet une aire.

1) Intégration sur un pavé

THÉORÈME 27.10 (de Fubini ou intégration par tranches)

Si f est continue sur le pavé $P = [a; b] \times [c; d]$, alors :

$$\iint_{P} f(x,y) dx dy = \int_{a}^{b} \left(\int_{c}^{d} f(x,y) dy \right) dx = \int_{c}^{d} \left(\int_{a}^{b} f(x,y) dx \right) dy.$$

Nous admettrons que dans \mathbb{R}^3 muni d'un repère orthonormé, $\iint_P f$ représente le volume algébrique de la partie de l'espace délimitée par la surface d'équation z = f(x,y) et les plans : z = 0, x = a, x = b, y = c, y = d.

Exercices:

- Calculer l'intégrale sur $P = [0;1] \times [0;1]$ de f(x,y) = x(x+y).

Réponse: D'après le théorème de *Fubini*, $\iint_P f = \int_0^1 (\int_0^1 x(x+y) \, dy) \, dx = \int_0^1 x(x+1/2) \, dx = 7/12$.

- Calculer le volume du domaine $D = \{M(x,y,z) / -1 \le x, y \le 1, 0 \le z \le x^2 + y^2\}$. **Réponse**: Il s'agit de calculer en fait $\iint_P f$ avec $f(x,y) = x^2 + y^2$ et $P = [-1;1] \times [-1;1]$. D'où $V(D) = \iint_P x^2 dx dy + \iint_P y^2 dx dy = 8/3$.

^{2.} FUBINI Guido (1879 – 1943) : mathématicien italien connu pour ses travaux sur l'intégration.

2) Intégration sur un fermé borné

Le théorème de Fubini s'énonce différemment :

THÉORÈME 27.11 (de *Fubini*, ou intégration par tranches)

Soit A un fermé borné de \mathbb{R}^2 , soit $P = [a; b] \times [c; d]$ tel que $A \subset P$, on suppose qu'il existe deux fonctions continues α, β sur [a;b] telles que :

$$(x,y) \in A \iff x \in [a;b] \text{ et } \alpha(x) \leq y \leq \beta(x)$$

Si $f: A \to \mathbb{R}$ *est une fonction continue, alors :*

$$\iint_A f(x,y) \, dx \, dy = \int_a^b \left(\int_{\alpha(x)}^{\beta(x)} f(x,y) \, dy \right) dx.$$

Exercices:

- Calculer l'aire du domaine $D = \{M(x, y) / x^2 + y^2 - x \le 0; x^2 + y^2 - y \le 0\}.$

Réponse: L'aire du domaine D est donnée par : $\mathcal{A}(D) = \iint_D 1 \, dx \, dy$. Il est facile de voir que D est l'intersection entre le disque de centre (1/2,0) de rayon 1/2 et le disque de centre (0,1/2) et de rayon 1/2. D'où $(x,y) \in \mathbb{R}$ $D \iff 0 \leqslant x \leqslant 1/2$ et $\alpha(x) \leqslant y \leqslant \beta(x)$ avec $\alpha(x) = \frac{1}{2} - \sqrt{\frac{1}{4} - x^2}$ et $\beta(x) = \sqrt{x(1-x)}$. L'aire recherchée est donc : $\mathscr{A}(D) = \int_0^{1/2} \left(\int_{\alpha(x)}^{\beta(x)} 1 \, dy\right) dx = \int_0^{1/2} \beta(x) dx - \int_0^{1/2} \alpha(x) \, dx$, ce qui donne $\mathscr{A}(D) = \frac{\pi-2}{8}$. On remarquera que l'on peut calculer cette aire de manière purement géométrique.

- Calculer le volume de la sphère de centre O et de rayon R > 0.

3) Passage en coordonnées polaires

Soit *A* un fermé borné de \mathbb{R}^2 avec $A = \{M(r\cos(\theta), r\sin(\theta)) / (r, \theta) \in B\}$ où *B* est un fermé borné de \mathbb{R}^2 . On admettra que si $f: A \to \mathbb{R}$ est continue, alors :

$$\iint_A f(x,y) \, dx \, dy = \iint_B f(r\cos(\theta), r\sin(\theta)) r \, dr \, d\theta.$$

Exercices:

- Calculer l'aire de la portion de plan délimitée par la cardioïde d'équation polaire $\rho = 1 + \cos(\theta)$.

Réponse: Le domaine demandé est $D = \{M(r\cos(\theta), r\sin(\theta)) \ / \ 0 \le r \le 1 + \cos(\theta), 0 \le \theta \le 2\pi\}$, notons B l'ensemble des couples (r,θ) correspondants, B est un fermé borné de \mathbb{R}^2 et $\iint_D 1 \, dx \, dy = \iint_B r \, dr \, d\theta$, ce qui donne $\mathscr{A}(D) = \int_0^{2\pi} \left(\int_0^{1+\cos(\theta)} r \, dr\right) \, d\theta = \int_0^{2\pi} \frac{(1+\cos(\theta))^2}{2} \, d\theta = \frac{3\pi}{2}$.

Recalculer le volume de la sphère à l'aide d'un changement de coordonnées polaires.

Lorsque l'on intègre sur un disque, un secteur angulaire, ou une couronne, un passage en coordonnées polaires est souvent utile.

Formule de Green-Riemann

Intégrale curviligne : Soient U un ouvert de \mathbb{R}^2 , soient $P,Q:U\to\mathbb{R}$ deux fonctions de classe \mathscr{C}^1 sur U et soit $\mathscr C$ une courbe incluse dans U, de classe $\mathscr C^1$ et paramétrée par (x(t),y(t)) avec $t\in [a;b]$. On appelle intégrale curviligne suivant le chemin $\mathscr C$ de la forme différentielle P(x,y)dx+Q(x,y)dy, le nombre noté $\oint [P(x,y)dx + Q(x,y)dy]$ et défini par :

$$\oint_{\mathscr{C}} \left[P(x,y) dx + Q(x,y) dy \right] = \int_{a}^{b} P(x(t),y(t))x'(t)dt + \int_{a}^{b} Q(x(t),y(t))y'(t)dt.$$

Formule de *Green* ³-*Riemann* : Soient U un ouvert de \mathbb{R}^2 , soient $P,Q:U\to\mathbb{R}$ deux fonctions de classe \mathscr{C}^2 sur U, soit K un fermé borné inclus dans U dont le bord est une courbe \mathscr{C} de classe \mathscr{C}^1 , paramétrée par (x(t),y(t)) avec $t\in[a;b]$, et orientée dans le sens « intérieur à gauche » :

alors on a:

$$\iint_{K} \left[\frac{\partial Q}{\partial x}(x,y) - \frac{\partial P}{\partial y}(x,y) \right] dx \, dy = \oint_{\mathscr{C}} \left[P(x,y) \, dx + Q(x,y) \, dy \right].$$

Application: Soit K un fermé borné inclus dans U dont le bord est une courbe $\mathscr C$ de classe $\mathscr C^1$, paramétrée par (x(t),y(t)) avec $t\in [a;b]$, et orientée dans le sens « intérieur à gauche », alors en prenant par exemple P(x,y)=0 et Q(x,y)=x, l'aire de K est :

$$\mathscr{A}(K) = \iint_{K} 1 \, dx \, dy = \oint_{\mathscr{C}} x \, dy = \int_{a}^{b} x(t)y'(t)dt = -\int_{a}^{b} y(t)x'(t) \, dt = \frac{1}{2} \int_{a}^{b} \left[f(t), f'(t) \right] dt,$$

car P(x,y)dx + Q(x,y)dy = x dy et $\frac{\partial Q}{\partial x}(x,y) - \frac{\partial P}{\partial y}(x,y) = 1$, on peut prendre également Q(x,y) = 0 et P(x,y) = -y. Lorsque l'on a un paramétrage polaire $\rho(t)$ de cette courbe, alors $\iint_K 1 dx dy = \frac{1}{2} \int_a^b \rho^2(t) dt$, car $\int_a^b [f(t), f'(t)] dt = \int_a^b \rho^2(t) dt$.

IV) Exercices

★Exercice 27.1

 \mathbb{R}^2 est muni de sa structure euclidienne canonique. Étudier la classe de la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par f(x) = ||x|| et calculer ses dérivées partielles.

★Exercice 27.2

Étudier la continuité des fonctions suivantes :

$$a) f(x,y) = \begin{cases} \frac{x+y}{\sin(x+y)} & \text{si } \sin(x+y) \neq 0 \\ 1 & \text{sinon} \end{cases} \quad b) f(x,y) = \begin{cases} e^{x-y} & \text{si } y \geqslant x \\ 1 & \text{sinon} \end{cases}$$

$$c) f(x,y) = \begin{cases} th(\frac{x^2}{y^2}) & \text{si } y \neq 0 \\ 1 & \text{sinon} \end{cases}.$$

★Exercice 27.3

Étudier la classe des fonctions suivantes :

$$f(x,y) = \begin{cases} e^x & \text{si } y \geqslant 0 \\ e^x \cos(y) & \text{sinon} \end{cases} \qquad f(x,y) = \begin{cases} \frac{x^3 + y^3}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

^{3.} GREEN George (1793 – 1841) : mathématicien anglais autodidacte, un des pionniers de la physique mathématique.

★Exercice 27.4

Étudier les extremums locaux des fonctions suivantes :

a)
$$f(x,y) = x^2 + y^4$$

b) $f(x,y) = x^2 + y^3$
c) $f(x,y) = x^2 + 3y^2 + 2x - 4y$
d) $f(x,y) = x^4 + y^4 - 2(x - y)^2$.
e) $f(x,y) = x^2 + 2x + 4xy + y^2$

★Exercice 27.5

Soit U un ouvert de \mathbb{R}^2 et soit $f:U\to\mathbb{R}$ une fonction de classe \mathscr{C}^3 , on appelle Laplacien de f la fonction $\Delta(f)=\frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}$. On suppose que $\Delta(f)=0$ calculer le Laplacien de la fonction u définie par $u(x,y)=x\frac{\partial f}{\partial x}+y\frac{\partial f}{\partial y}$.

★Exercice 27.6

On considère l'équation aux dérivées partielles suivante :

$$\frac{\partial^2 f}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 f}{\partial t^2} = 0 \quad (E)$$

où f est de classe \mathscr{C}^2 , on pose u = x - ct, v = x + ct, et F(u, v) = f(x, t).

- a) Calculer $\frac{\partial^2 f}{\partial x^2}$ et $\frac{\partial^2 f}{\partial t^2}$ en fonction des dérivées partielles de F.
- b) Montrer que f est solution de l'équation (E) si et seulement si $\frac{\partial^2 F}{\partial u \partial v} = 0$.
- c) En déduire toutes les solutions de (E).

★Exercice 27.7

- a) On considère la courbe paramétrée, dans un repère orthonormé, par $\begin{cases} x(t) = t \sin(t) \\ y(t) = 1 \cos(t) \end{cases}$ avec $t \in [0; \pi]$ (arche de cycloïde). Calculer l'aire de la portion de plan délimitée par cette arche et l'axe de abscisses.
- b) Calculer l'aire de l'astroïde paramétrée par $\begin{cases} x(t) &= \cos^3(t) \\ y(t) &= \sin^3(t) \end{cases}$
- c) Calculer le volume d'un cône de hauteur h > 0 et de base circulaire de rayon r > 0.
- d) Soit f une fonction continue sur un intervalle [a;b], dans un repère orthonormé, on fait tourner la courbe de f autour de l'axe Ox. Quel et le volume engendré? Retrouver ainsi le volume du cône, de la sphère, ...