дает возможность применить рассмотреть любую модель в терминах теории автоматов. В таком случае:

- Состояниями автомата являются закодированные состояния системы
- Входной алфавит кодирует поступающие в систему на каждом шаге решения (в случае открытых систем)
- Выходной алфавит кодирует некоторую функцию полезности, введенную для оценки принимаемых решений. Она зависит от поставленных целей
- Функции переходов и выходов определяются взаимосвязями внутри системы, которые были установлены в процессе моделирования

В докладе предлагаются возможные постановки математических задач, имеющие как теоретический, так и практический интерес.

- 1. Оптимизация моделей.
- 2. Нахождение классов входных воздействий, обеспечивающих необходимое поведение системы (стабилизацию, рост значения какого-либо элемента и т. д.)
 - 3. Исследование устойчивости систем.

Список литературы

- 1. For rester J. W. Principles of systems. — Wright-Allen Press, 1968. — C. 10–50.
- 2. Forrester J. W. Urban dynamics. Pegasus Comunications, Inc., 1999. C. 12–16.
- 3. Foster R. O. The dynamics of blood sugar regulation // MIT, 1970. C. 25–30, 41.
- 4. Boksha V. V. Microlithography Dynamics. Social, economic, spatial and temporal implications of developments in computing technology // MIT Thesis. M. Sc. in Management, 2000. P. 154.
- 5. Boksha V. V., Bruggeman B., O'Brien M. Microlithography cost analysis // Proceedings of Interface Symposium. San Diego, California, 1999. P. 10.

О МАРКОВСКИХ СЛУЧАЙНЫХ ПОЛЯХ

А. А. Петюшко (Москва)

Пусть $A=\{1,2,...,a\}$ и $B=\{1,2,...b\}, a,b<\infty$ — два конечных множества. Пусть $S=\{1,2,...,N\}$ — множество индексов.

Пусть $X = \{X_i | i \in S\}$ — многомерная случайная величина, такая что каждая компонента X_i , являющаяся одномерной случайной

величиной, принимает значение x_j и определена в своем вероятностном пространстве. Для простоты будем считать, что $\forall j \ X_j$ дискретны, определены на одном вероятностном пространстве и множество значений — конечно.

Также для удобства можно представлять, что множество индексов S задает множество точек на плоскости. Соответственно, рассматриваем реализацию многомерной случайной величины X в этих точках. Введенная таким образом случайная величина X называется случайным полем (Random Field).

Совместное событие $(X_1=x_1,...,X_N=x_N)$, или кратко X=x, где $x=\{x_1,...,x_N\}$, назовем конфигурацией X.

Пусть X — случайное поле со значениями на множестве A, т. е. $\forall i \in S \ x_i \in A$. Если x — какая-то конкретная конфигурация X, то χ — множество всех возможных конфигураций:

$$\chi = \{ x = (x_1, ..., x_N) | x_i \in A \ \forall i \in S \}.$$

Введем понятие $cucmembi\ cocedcmba$: это множество $\partial = \{\partial i, i \in S\}$, где ∂i — множество элементов из S, называемое mabлоном cocedcmba dля элемента i, такая что:

$$\left\{\begin{array}{l} i \notin \partial i, \\ i \in \partial j \Leftrightarrow j \in \partial i. \end{array}\right.$$

Определение. Случайное поле X будем называть марковским случайным полем (Markov Random Field, MRF) в соответствии с системой соседства ∂ тогда и только тогда, когда $\forall i$:

$$\left\{ \begin{array}{l} P(X=x) > 0 \ \forall x \in \chi, \\ P(X_i = x_i | \ X_j = x_j, \ j \in S \backslash \{i\}) = P(X_i = x_i | \ X_j = x_j, \ j \in \partial i). \end{array} \right.$$

Определение. *Клика с* — множество элементов из S, т.ч. $\forall s, r \in c \Rightarrow r \in \partial s$. Заметим, что любое подмножество клики — также клика.

Пусть x_c — набор значений X_i , где $i \in c$. Введем потенциальную функцию $V_c(x_c)$ как любую функцию от x_c .

Определение. Дискретное распределение называется $pacnpedenenuem\ \Gamma ubbca,$ если

$$\mathbf{P}(X=x) = \frac{1}{Z} \exp\left(-\sum_{c \in C} V_c(x_c)\right),\tag{1}$$

где C — множество всех клик, а Z — нормирующая константа, тА-кая что:

$$Z = \sum_{x \in \gamma} \exp\left(-\sum_{c \in C} V_c(x_c)\right). \tag{2}$$

Наиболее важной теоремой, связывающей марковские случайные поля и распределение Гиббса, является следующая

Теорема (Hammersley—Clifford) [1]. X — марковское случайное поле $\Leftrightarrow \mathbf{P}(X=x)$ — распределение Гиббса.

Таким образом, мы имеем возможность вычислять вероятность конфигурации для любого марковского случайного поля по формулам (1), (2).

Определение. Скрытое марковское случайное поле (Hidden Markov Random Field, HMRF) — пара случайный полей (X,Y), т.ч. выполняются следующие условия:

- 1) $X = \{X_i, i \in S\}$ так называемое "скрытое" (или, другими словами, ненаблюдаемое) марковское поле со значениями в A.
- 2) $Y = \{Y_i, i \in S\}$ наблюдаемое (вовсе не обязательно марковское) случайное поле со значениями в B. Важно, что $\forall i \in S, \forall d \in A$ известны условные распределения $\mathbf{P}(Y_i|X_i=d)$.
- 3) Для любой конфигурации $x \in \chi$ случайные величины Y_i условно независимы, т. е.

$$\mathbf{P}(Y|\ X=x) = \prod_{i \in S} \mathbf{P}(Y_i|\ X_i = x_i).$$

Рассмотрим марковскую цепь с состояниями $x_0, x_1, ..., x_n$, функционирующую в дискретном времени. Построим многомерную случайную величину $X=\{X_i, i=\overline{0..n}\}$ по этой марковской цепи следующим образом: $\mathbf{P}(X_i=x_i)$ — это вероятность того, что в момент времени i мы находились в состоянии x_i . Назовем X порожденной случайной величиной.

Теорема 1. Любая порожденная случайная величина — это марковское случайное поле линейной структуры.

Теорема 2. Любое марковское случайное поле линейной структуры — это порожденная случайная величина.

Теперь рассмотрим скрытую марковскую модель [2] и ее связь с марковским случайным полем и скрытым марковским случайным полем.

Рассмотрим скрытую марковскую модель, функционирующую в дискретном времени. Пусть при некотором ее функционировании при проходе через состояния $x_0, x_1, ..., x_n$ на выход подавались буквы $y_0, y_1, ..., y_n$ соответственно. Рассмотрим многомерную случайную величину

$$Z = (Z_1, Z_2, ..., Z_{2n+2}) = (X_0, Y_0, X_1, Y_1, ..., X_n, Y_n),$$

причем вероятность $\mathbf{P}(X_i = x_i | X_{i-1} = x_{i-1})$ — это вероятность перехода $a(x_{i-1}, x_i)$ из состояния x_{i-1} в состояние x_i , а вероятность $\mathbf{P}(Y_i = y_i | X_i = x_i)$ — это вероятность выдачи $b(y_i, x_i)$ буквы y_i в состоянии x_i . Назовем такую многомерную случайную величину скрытой порожденной случайной величиной.

Теорема 3. Любая скрытая порожденная случайная величина— это скрытое случайное марковское поле линейной структуры.

Теорема 4. Любое скрытое марковское случайное поле линейной структуры — это скрытая порожденная случайная величина.

Список литературы

- 1. Hammersley J. M., Clifford P. Markov random fields in statistics // Unpublished paper. 1971.
- 2. Rabiner L. R. A tutorial on hidden Markov models and selected applications in speech recognition // Proceedings of the IEEE. February 1989. 77 (2). P. 257-286.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ НЕПЕРЕЧИСЛИТЕЛЬНЫХ ЗАДАЧ ПОИСКА

А. П. Пивоваров (Москва)

Данная работа основывается на информационно-графовой модели поиска информации [1]. В этой модели перечислительная задача информационного поиска (ЗИП) представляет из себя тройку $I=\langle X,V,\rho\rangle$, где X — множество запросов, V — библиотека, являющаяся конечным подмножеством множества всех возможных записей Y, а ρ — отношение поиска, заданное на $X\times Y$. При этом содержательно задача I состоит в том, чтобы для любого произвольного запроса $x\in X$ перечислять те и только те записи из V, которые находятся в отношении ρ с x.