

ECON408: Computational Methods in Macroeconomics

Deterministic Dynamics and Introduction to Growth Models

Jesse Perla

jesse.perla@ubc.ca

University of British Columbia

Table of contents

- Overview
- Difference Equations
- Solow Growth Model
- Solow Model Dynamics
- Malthusian Model

Overview

Motivation and Materials

- In this lecture, we will introduce (non-linear) dynamics
 - → This lets us explore stationarity and convergence
 - → We will see an additional example of a fixed point and convergence
- The primary applications will be to simple models of growth, such as the Solow growth model.

Materials

- Adapted from QuantEcon lectures coauthored with John Stachurski and Thomas J. Sargent
 - → Julia by Example
 - → Dynamics in One Dimension

```
using LaTeXStrings, LinearAlgebra, Plots, NLsolve, Roots
using Plots.PlotMeasures
default(;legendfontsize=16, linewidth=2, tickfontsize=12,
bottom_margin=15mm)
```


Difference Equations

(Nonlinear) Difference Equations

$$x_{t+1} = h(x_t)$$

- A time homogeneous first order difference equation
 - ightarrow h:S
 ightarrow S for some $S\subseteq \mathbb{R}$ in the univariate case
 - \rightarrow S is called the **state space** and x is called the **state variable**.
 - \rightarrow Time homogeneity: h is the same at each time t
 - \rightarrow First order: depends on one lag (i.e., x_{t+1} and x_t but not x_{t-1})

Trajectories

- ullet An initial condition x_0 is required to solve for the sequence $\{x_t\}_{t=0}^\infty$
- Given this, we can generate a trajectory recursively

$$egin{aligned} x_1 &= h(x_0) \ x_2 &= h(x_1) = h(h(x_0)) \ x_{t+1} &= h(x_t) = h(h(\dots h(x_0))) \equiv h^t(x_0) \end{aligned}$$

- If not time homogeneous, we can write $x_{t+1} = h_t(x_t)$
- ullet Stochastic if $x_{t+1} = h(x_t, \epsilon_{t+1})$ where ϵ_{t+1} is a random variable

Linear Difference Equations

$$x_{t+1} = ax_t + b$$

For constants a and b. Iterating,

$$x_1 = h(x_0) = ax_0 + b$$
 $x_2 = h(h(x_0)) = a(ax_0 + b) + b = a^2x_0 + ab + b$
 $x_3 = a(a^2x_0 + ab + b) + b = a^3x_0 + a^2b + ab + b$
...

$$x_t = b \sum_{j=0}^{t-1} a^j + a^t x_0 = b rac{1-a^t}{1-a} + a^t x_0$$

Convergence and Stability for Linear Difference Equations

ullet If |a|<1, take limit to check for **global stability**, for all x_0

$$\lim_{t o\infty}x_t=\lim_{t o\infty}g^{t-1}(x_0)=\lim_{t o\infty}\left(brac{1-a^t}{1-a}+a^tx_0
ight)=rac{b}{1-a}$$

- ullet If a=1 then diverges unless b=0 and |a|>1 diverges for all b
- Linear difference equations are either globally stable or globally unstable
- Nonlinear difference equations may be locally stable
 - o For some $|x_0-x^*|<\epsilon$ for some x^* and $\epsilon>0$. Global if $\epsilon=\infty$

Nonlinear Difference Equations

- ullet We can ask the same questions for nonlinear $h(\cdot)$
- Keep in mind the connection to the fixed points from the previous lecture
 - ightarrow If $h(\cdot)$ has a unique fixed point from any initial condition, it tells us about the dynamics
- Connecting to **contraction mappings** etc. would help us be more formal, but we will stay intuitive here
- Let us investigate nonlinear dynamics with a classic example

Solow Growth Model

Models of Economic Growth

- There are different perspectives on what makes countries grow
 - → Malthusian models: population growth uses all available resources
 - → Capital accumulation: more capital leads to more output, tradeoff of consumption today to build more capital for tomorrow
 - → Technological progress/innovation: new ideas lead to more output, so the tradeoffs are between consumption today vs. researching technologies for the future
- The appropriate model depends on country and time-period
 - → Malthusian models are probably most relevant right up until about the time he came up with the idea

Exogenous vs. Endogenous

- In these, the tradeoffs are key
 - → Can be driven by some sort of decision driven by the agent's themselves (e.g., government plans, consumers saving, etc.) endogenously
 - → Or exogenously choose, not responsive to policy and incentives
 - → You always leave some things exogenous to isolate a key force
- What determines the longrun growth rate? Use fixed points!
 - → In models of capital accumulation, technology limits the longrun growth
 - → Models of innovation choice often called **endogenous growth models**

Solow Model Summary

- The **Solow** model describes aggregate growth from the perspective of accumulating physical capital
 - → The tension is between consumption and savings
 - → Production not directed towards consumption goods is used to build capital for future consumption
 - → e.g. factories, robots, facilities, etc.
- Endogeneity
 - → Technology and population growth are left fully exogenous
 - → Capital accumulation occurs through an exogenously given savings rate
 - → The neoclassical growth model endogenizing that rate

Technology

- In this economy, output is produced by combining labor and capital
- Labor N_t , which we assume is supplied **inelastically**
 - → Assume it is proportional to the population
- Capital, K_t , which is accumulated over time
- In addition, total factor productivity (TFP), z_t , is the technological level in the economy
- The physical output from operating the technology is:

$$Y_t = z_t F(K_t, N_t)$$

Properties of the Technology Function

- Note that land, etc. are NOT a factor of production
- ullet We will assume $F(\cdot,\cdot)$ is **constant returns to scale**

$$F(\alpha K, \alpha N) = \alpha F(K, N) \quad \forall \alpha > 0$$

ullet Assume F has **diminishing marginal products**

$$o$$
 i.e. $rac{\partial F(K,N)}{\partial K}>0$, $rac{\partial F(K,N)}{\partial N}>0$, $rac{\partial^2 F(K,N)}{\partial K^2}<0$, $rac{\partial^2 F(K,N)}{\partial N^2}<0$

Constant Returns to Scale

- Define output per worker as $y_t = Y_t/N_t$ and capital per worker as $k_t = K_t/N_t$
- Take F, divide by N_t , use CRS, and define $f(\cdot)$

$$egin{aligned} Y_t &= z_t F(K_t, N_t) \ rac{Y_t}{N_t} &= rac{z_t F(K_t, N_t)}{N_t} \ y_t &= z_t F\left(rac{K_t}{N_t}, rac{N_t}{N_t}
ight) = z_t F(k_t, 1) \equiv z_t f(k_t) \end{aligned}$$

ightarrow f also has diminishing marginal products, f'(k)>0, f''(k)<0

Population Growth

- ullet From some initial condition N_0 for population
- Assume that population grows at a constant rate g_N , i.e.

$$N_{t+1}=(1+g_N)N_t$$

- ullet Hence $N_{t+1}/N_t=1+g_N$ and $N_t=(1+g_N)^tN_0$
- If $g_N < 0$ then shrinking population

Capital Accumulation

- ullet Capital is accumulated by **investment**, X_t , with per capital $x_t \equiv X_t/N_t$
 - → Macroeconomists should think in "allocations", not "dollars"!
- Output, Y_t from production can be used for consumption or investment
- ullet Between periods, $\delta \in (0,1)$ proportion of capital depreciates
 - → e.g. machines break down, buildings decay, etc.

$$C_t + X_t = Y_t \equiv \underbrace{z_t F(K_t, N_t)}_{ ext{Total Output}} \ \underbrace{K_{t+1}}_{ ext{Next}} = \underbrace{(1-\delta)}_{ ext{depreciation}} \underbrace{K_t + X_t}_{ ext{investment}}, \delta \in (0,1) \ \underbrace{K_{t+1}}_{ ext{of capital}} = \underbrace{(1-\delta)}_{ ext{of capital}} \underbrace{K_t + X_t}_{ ext{in new capital}}, \delta \in (0,1)$$

Per Capita Capital Dynamics

ullet Recall that $N_{t+1}/N_t=1+g_N$ and $y_t=z_tf(k_t)$

$$egin{split} rac{K_{t+1}}{N_t} &= (1-\delta)rac{K_t}{N_t} + rac{X_t}{N_t} \ rac{N_{t+1}}{N_{t+1}}rac{K_{t+1}}{N_t} &= \left(rac{N_{t+1}}{N_t}
ight)\left(rac{K_{t+1}}{N_{t+1}}
ight) = (1-\delta)rac{K_t}{N_t} + rac{X_t}{N_t} \ k_{t+1}(1+g_N) &= (1-\delta)k_t + x_t \end{split}$$

So, the per-capita dynamics of capital are

$$k_{t+1} = rac{1}{1+g_N}[(1-\delta)k_t + x_t]$$

Savings

- ullet In the Solow model, the savings rate is exogenously given as $s\in(0,1)$
 - → In the neoclassical growth model, it is endogenously determined based on consumer or planner preferences
- Hence, $x_t = sy_t = sz_t f(k_t)$. Combine with previous dynamics to get

$$k_{t+1} = rac{1}{1+g_N}[(1-\delta)k_t + sz_t f(k_t)]$$

- Given assumptions on $f(\cdot)$, this is a nonlinear difference equation given an exogenous z_t process
- ullet With this, we can analyze the dynamics of y_t , k_t , and c_t over time

Steady State

- Assume that $z_t = \bar{z}$ is constant over time
- ullet Look for **steady state**: $k_{t+1}=k_t=ar{k}$ and $y_{t+1}=y_t=ar{y}$, etc.
 - → Note that this is a **fixed point** of the dynamics. May or may not exist

$$ar{k} = rac{1-\delta}{1+g_N}ar{k} + rac{sar{z}}{1+g_N}f(ar{k}) \ igg(rac{1+g_N}{1+g_N} - rac{1-\delta}{1+g_N}igg)ar{k} = rac{sar{z}}{1+g_N}f(ar{k}) \ igg(g_N+\delta)ar{k} = rac{sar{z}f(ar{k})}{sar{z}f(ar{k})} \ egin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ &$$

Example Production Function

- ullet Consider production function of $f(k)=k^lpha$ for $lpha\in(0,1)$
- In this case, lpha will be interpretable as the **capital share** of income

$$ar{k} = \left(rac{sar{z}}{g_N+\delta}
ight)^{rac{1}{1-lpha}}$$

Visualizing the Steady State

```
q N = 0.02
   delta = 0.05
   s = 0.2
4 z = 1.0
5 \text{ alpha} = 0.5
6 k_ss = (s * z / (g_N + delta))^(1/(1-alpha))
   k_{values} = 0.1:0.01:10.0
9 lhs = (g_N + delta) * k_values
   rhs = s * z .* k_values.^alpha
11
   plot(k_values, lhs, label=L"Growth-adjusted depreciation: $(\delta + g_N)k$",
13
        xlabel=L"Capital per capita ($k$)")
   plot!(k_values, rhs, label=L"Investment per capita: $s \bar{z} f(k)$")
   vline!([k_ss], label=L"Steady State Capital: $\bar{k}$", linestyle=:dash)
```


Visualizing the Steady State

Wages and Rental Rate of Capital

- Production could be run by a planner, or by a set of firms
- Consider (real) profit maximizing firms. Price normalized to 1
 - ightarrow Hire labor and capital at real rates w_t and r_t respectively

$$\max_{K_t,N_t} \left[z_t F(K_t,N_t) - w_t N_t - r_t K_t
ight]$$

The first order conditions are

$$egin{aligned} z_t rac{\partial F(K_t, N_t)}{\partial K_t} &= r_t \ z_t rac{\partial F(K_t, N_t)}{\partial N_t} &= w_t \end{aligned}$$

Using Constant Returns to Scale

- ullet Can show that for any CRS $F(K_t,N_t)$ that $rac{\partial F(\gamma K_t,\gamma N_t)}{\partial K_t}=rac{\partial F(K_t,N_t)}{\partial K_t}$
 - ightarrow Same for N_t derivative. ,
- Set $\gamma = 1/N_t$ and write the marginal products as ratios,

$$egin{split} rac{\partial F(K_t,N_t)}{\partial K_t} &= f'(K_t/N_t) = f'(k_t) \ rac{\partial F(K_t,N_t)}{\partial N_t} &= f(k_t) - k_t f'(k_t) \end{split}$$

Wages and Rental Rate of Capital

Finally, we can write

$$egin{aligned} r_t &= z_t f'(k_t) \ w_t &= z_t f(k_t) - z_t f'(k_t) k_t \end{aligned}$$

ullet For the Cobb-Douglas production function $F(K_t,N_t)=K_t^lpha N_t^{1-lpha}$, we have

$$egin{aligned} f(k_t) &= k_t^lpha \ f'(k_t) &= lpha k_t^{lpha - 1} \ r_t &= lpha z_t k_t^{lpha - 1} \ w_t &= z_t k_t^lpha - z_t lpha k_t^{lpha - 1} k_t = (1 - lpha) z_t k_t^lpha \end{aligned}$$

Shares of Income

- ullet Recall that per-capita output is $y_t=z_tf(k_t)$
- $ullet w_t = (1-lpha)z_t k_t^lpha$
 - \rightarrow Interpret $1-\alpha$ as the **labor share** of output, or income
- $ullet r_t k_t = lpha z_t k_t^lpha$
 - \rightarrow Interpret α as the **capital share**
- Key to these expressions were competitive markets in hiring labor/capital
 - → i.e., workers end up paid their marginal products

Solow Model Dynamics

Summary of Equations

- ullet Exogenous z_t sequence. e.g., $z_{t+1}/z_t=1+g_z$ given some initial z_0
- ullet Population growth $N_{t+1}/N_t=1+g_N$ given some initial N_0

$$k_{t+1} = rac{1}{1+g_N}[(1-\delta)k_t + sz_tf(k_t)], \quad ext{given } k_0$$

- ightarrow Output per capita $y_t=z_tf(k_t)$
- ightarrow Consumption per capita $c_t = (1-s)y_t = (1-s)z_t f(k_t)$
- ullet Wages $w_t = (1-lpha)z_t k_t^lpha$ and rental rate of capital $r_t = lpha z_t k_t^{lpha-1}$
- ullet Steady state capital $ar k=\left(rac{sar z}{g_N+\delta}
 ight)^{rac{1}{1-lpha}}$ if $g_z=0$ and $z_0=ar z$

45 Degree Diagram

- ullet With a fixed point $k_{t+1}=h(k_t)$ note that a fixed point is when ar k=h(ar k)
- We can plot the dynamics of the sequence comparing the functions to the 45 degree line where that occurs
- This diagram will help us interpret stability and convergence

Iteration

• First, lets write a general function to iterate a (univariate) map

iterate_map (generic function with 1 method)

Plotting the Dynamics

```
function plot45(f, xmin, xmax, x0, T; num_points = 100, label = L"h(k)",
                   xlabel = "k", size = (600, 500))
       # Plot the function and the 45 degree line
       x grid = range(xmin, xmax, num points)
 5
       plt = plot(x\_grid, f.(x\_grid); xlim = (xmin, xmax), ylim = (xmin, xmax),
 6
                   linecolor = :black, lw = 2, label, size)
       plot!(x_grid, x_grid; linecolor = :blue, lw = 2, label = nothing)
 8
       # Iterate map and add ticks
9
       x = iterate_map(f, x0, T)
10
11
       if !isnothing(xlabel) && T > 1
12
         xticks!(x, [L"%$(xlabel) {%$i}" for i in 0:T])
13
         yticks!(x, [L"%$(xlabel) {%$i}" for i in 0:T])
14
       end
15
16
       # Plot arrows and dashes
       for i in 1:T
17
```

plot45 (generic function with 1 method)

Fixed Points

```
k_bar(p) = 1.7846741842265788

h(k_bar(p); p) = 1.7846741842265788

h(0.0; p) = 0.0
```


45 Degree Diagram for Solow

Transition Dynamics

```
k_{vals} = iterate_{map}(k \rightarrow h(k; p), k_0, T)
2 plot(0:T, k_vals; label =[L"k_t" nothing],
       title=L"Dynamics from k_0 = k_0 ",
       seriestype = [:scatter, :line],
       xlabel = "t", size=(600, 400))
```


Rental Rate of Capital

Why does it decrease?

```
r(k;p) = p.alpha * p.z_bar * k^(p.alpha - 1)
  w(k;p) = (1 - p.alpha) * p.z_bar * k^(p.alpha)
3
  @show k 0
  plot(0:T, r.(k_vals; p); label = L"r_t",
       title="Real Rental Rate of Capital",
       xlabel = "t", size=(600, 400))
  hline!([r(k_bar(p);p)];linestyle=:dash,
         label=L"r(\bar{k})", alpha=0.5)
```


Wages

Why does it increase?

```
@show k_0
  plot(0:T, w.(k_vals; p); label = L"w_t",
       title="Real Wages",
        xlabel = "t", size=(600, 400))
  hline!([w(k_bar(p);p)];linestyle=:dash,
6
        label=L''w(\bar{k})'', alpha=0.5)
```


Above the Steady State?

Transition Dynamics

```
1 k_vals = iterate_map(k -> h(k; p), k_0, T)
2 plot(0:T, k_vals; label = [L"k_t" nothing],
3          title=L"Dynamics from $k_0 = %$k_0$",
4          seriestype = [:scatter, :line],
5          xlabel = "t", size=(600, 400))
```


Rental Rate of Capital

Why does it increase?

```
@show k_0
  plot(0:T, r.(k_vals; p); label = L"r_t",
       title="Real Rental Rate of Capital",
       xlabel = "t", size=(600, 400))
  hline!([r(k_bar(p);p)];linestyle=:dash,
6
         label=L''r(\bar{k})'', alpha=0.5)
```


Wages

• Why does it decrease?

```
@show k_0
  plot(0:T, w.(k_vals; p); label = L"w_t",
       title="Real Wages",
        xlabel = "t", size=(600, 400))
  hline!([w(k_bar(p);p)];linestyle=:dash,
        label=L"w(\bar{k})", alpha=0.5)
6
```


At Zero Capital

```
1 k_0 = 0.0
2 @show h(k_0; p)
3 plot45(k \rightarrow h(k; p), k_min, k_max, k_0,
         T; label = L"k_{t+1} = h(k_t)")
```


Perturb Zero Capital

```
1 k_0 = 0.0001
2 @show h(k_0; p)
3 plot45(k \rightarrow h(k; p), k_min, k_max, k_0,
         T; label = L''k_{t+1} = h(k_t)''
```

 $h(k_0; p) = 0.03791744066881159$

Transition Dynamics

```
k_{vals} = iterate_{map}(k \rightarrow h(k; p), k_0, T)
2 plot(0:T, k_vals; label =[L"k_t" nothing],
       title=L"Dynamics from k_0 = k_0 ",
       seriestype = [:scatter, :line],
       xlabel = "t", size=(600, 400))
```


Marginal Product of Capital

Recall that the Marginal Product of Capital (MPK) is

$$z_t rac{\partial F(K_t,N_t)}{\partial K_t} = z_t f'(K_t/N_t) = lpha z_t k_t^{lpha-1}$$

How does the MPK change as the economy grows?

Visualizing the MPK

ullet Strictly positive, monotonically decreasing, asymptote at k=0

```
# No g N here, that is in dynamics
2 MPK(k; p) = p.alpha * p.z_bar * k^{(p.alpha - 1)}
  k_{vals} = range(0.0, 10.0; length=100)
  plot(k_vals, MPK.(k_vals; p);
       label = L'' \alpha \bar{z}k^{\alpha-1}'',
       xlabel = "k",
6
       title="Marginal Product of Capital",
       size=(600, 500), ylim=(0.0, 2.0))
8
```


Visualizing the MPK Transition

ullet Converges to a point where capital can't accumulate without smaller s

```
k 0 = 0.25
  T = 10
  k_{vals} = iterate_{map}(k \rightarrow h(k; p), k_0, T)
  plot(0:T, MPK.(k_vals; p);
        label = L'' \land bar\{z\}k t^{\alpha-1}'',
        xlabel = "t",
        title="MPK Transition Dynamics",
        size=(600, 500), ylim=(0.0, 2.0))
8
```


Gradients of h(k)

$$abla h(k;p) = rac{1}{1+g_N}(lpha sz_t k^{1-lpha} + 1 - \delta).$$

- Recall fixed points are $k^* = h(k^*)$
- Contraction mappings are a global property where points get closer
- Locally, we can ask the same question. Gradients help us understand whether points expand or contract

Plotting $\nabla h(k)$

```
1 h_k(k; p) = (1 / (1 + p_i q_i N)) * (
      p.alpha * p.s * p.z_bar * k^(p.alpha-1)
      + 1 - p.delta)
   k_{vals} = range(0.0, 10.0; length=100)
   plot(k_vals, h_k.(k_vals; p);
        label = L"\nabla h(k)",
 6
        xlabel = "k",
        title=L"Gradient of $h(k)$",
        size=(600, 500), ylim=(0.0, 2.0))
 9
   vline!([k_bar(p)];label=L"h(\bar{k})=\bar{k}",
          linestyle=:dash)
11
   vline!([0.0];label=L"h(0)=0", linestyle=:dash)
   hline!([1.0];linestyle=:dot, label=nothing,
14
          alpha=0.5, lw=1)
```


Local and Global Stability

- ullet Consider a fixed point ar k=h(ar k)
- ullet is **local stable** if there exists an $\epsilon>0$
 - o For all $|k-ar{k}|<\epsilon$, $\lim_{T o\infty}h^T(k)=ar{k}$
- i.e., starting close to the steady state it converges to steady state
 - ightarrow Global stability if $\epsilon=\infty$
 - ightarrow Given some continuity assumptions, can show that $abla h(ar{k}) < 1$ is sufficient
- ullet Solow: k=0 blows up, so this is only locally stable for $\epsilon=ar{k}$

Non-convexity in Production

• Let
$$f(k) = -\frac{1}{3}k^3 + k^2 + \frac{1}{3}k, h(k) = sf(k) + (1-\delta)k$$

Fixed Points

- There are now 3 fixed points
- In this case we can eyeball the graph for initial conditions

```
1 h_multi_vec(k_vec) = [h_multi(k_vec[1])] # pack/unpack as vector
2 k_star_1 = fixedpoint(h_multi_vec, [0.0]).zero[1]
3 k_star_2 = fixedpoint(h_multi_vec, [1.0]).zero[1]
4 k_star_3 = fixedpoint(h_multi_vec, [2.0]).zero[1]
5 @show k_star_1, k_star_2, k_star_3;
```


Detour into Roots of Equations

- ullet A **root** or zero of a function $\hat{h}(\cdot)$ is a point k^* such that $\hat{h}(k^*)=0$
- ullet Fixed points $k^*=h(k^*)$ is a **root** of the equation $\hat{h}(k)\equiv h(k)-k$
- Alternative algorithms for univariate solvers can bracket a solution

Steady States and Gradients

- There are now 3 fixed points, lets look at the gradients
- ullet Remember that abla h(ar k) < 1 is sufficient for stability

In Increasing Returns Region

```
1 k_0 = 0.8
  plot45(h_multi, k_min, k_max, k_0,
         T; label = L''k_{t+1} = h(k_t)''
```


In Decreasing Returns Region

```
1 k_0 = 1.5
  plot45(h_multi, k_min, k_max, k_0,
         T; label = L''k_{t+1} = h(k_t)'')
```


In Decreasing Returns Region

```
k_0 = 2.0
plot45(h_multi, k_min, k_max, k_0,
       T; label = L''k_{t+1} = h(k_t)'')
```


Visualizing the MPK

```
1 function MPK_multi(k;s=0.95, delta=0.99)
2    return s*(-k^2 + 2 * k + 1/3)
3 end
4 k_vals = range(0.0, 2.0; length=100)
5 plot(k_vals, MPK_multi.(k_vals);
6    label = "MPK",
7    xlabel = "k",
8    title="Marginal Product of Capital",
9    size=(600, 500), ylim=(0.0, 2.0))
```


Malthusian Model

Population Growth and Fixed Factors

- ullet With population growth $(g_N>0)$, investment leads to more capital accumulation through savings
- Wages and consumption increase in the Solow model
 - → The key is that capital can expand
- What if resources are limited (and no substitutes)?

Malthusian Model

- Malthusian model is pretty accurate for most of human history
 - → Population growth expands when food/shrinks with scarcity
 - → Productivity can grow, but so can population
 - → Land is in fixed supply
- Assume there is a subsistence consumption per capita

Population Growth

- ullet Consumption per capital is $c_t \equiv Y_t/N_t$
 - → i.e., no savings, all production to consumption
- Subsistence consumption per capita is c^*
- ullet Population growth rate for some $\gamma \in (0,1)$

$$g_N(Y_t,N_t) \equiv \left(rac{c_t}{c^*}
ight)^{\gamma} - 1$$

ullet Note: $c_t > c^* \implies g_N > 0$ and $c_t < c^* \implies g_N < 0$

Production

- ullet Production is $Y_t=z_tF(L,N_t)$ where L is land
 - ightarrow Same assumptions as before for $F(L,N_t)=L^{lpha}N_t^{1-lpha}$
 - ightarrow Let $\ell_t \equiv L/N_t$ be land per capita
- Then following CRS logic, we see that consumption per capital is

$$y_t = c_t = z_t f(\ell_t) = z_t \ell_t^lpha$$

Substitute into Population Growth

$$egin{aligned} rac{N_{t+1}}{N_t} &= 1 + g_N(N_t) = \left(rac{c_t}{c^*}
ight)^{\gamma} \ &= \left(rac{z_t\ell_t^lpha}{c^*}
ight)^{\gamma} = \left(rac{z_t}{c^*}
ight)^{\gamma}\ell_t^{lpha\gamma} \ &= \left(rac{z_t}{c^*}
ight)^{\gamma}L^{lpha\gamma}N_t^{-lpha\gamma} \ N_{t+1} &= \left(rac{z_t}{c^*}
ight)^{\gamma}L^{lpha\gamma}N_t^{1-lpha\gamma} \end{aligned}$$

Steady State

ullet For a fixed $z=ar{Z}$, assume $ar{N}$ and substitute

$$egin{align} ar{N} &= \left(rac{ar{z}}{c^*}
ight)^{\gamma} L^{lpha\gamma} ar{N}^{1-lpha\gamma} \ ar{N}^{lpha\gamma} &= \left(rac{ar{z}}{c^*}
ight)^{\gamma} L^{lpha\gamma} \ ar{N} &= \left(rac{ar{z}}{c^*}
ight)^{rac{\gamma}{lpha\gamma}} L^{rac{lpha\gamma}{lpha\gamma}} &= \left(rac{ar{z}}{c^*}
ight)^{rac{1}{lpha}} L \ ar{c} &= ar{z} ar{\ell}^{lpha} &= ar{z} igg(rac{L}{ar{N}}igg)^{lpha} &= ar{z} igg(\left(rac{c^*}{ar{z}}
ight)^{rac{1}{lpha}} rac{L}{L}igg)^{lpha} &= c^* \ \end{pmatrix}$$

Implementation

```
1 h(N; p) = (p.z_bar / p.c_star)^p.gamma * p.L^(p.
2 N_bar(p) = (p.z_bar / p.c_star)^(1/p.alpha) * p.
3 c(N; p) = p.z_bar * (p.L / N)^p.alpha
4 p = (;z_bar = 1.0, c_star = 0.1, alpha = 0.6,
5 gamma = 0.3, L = 1.0)
6 @show N_bar(p);
```

```
N_bar(p) = 46.4158883361278
```


Population Growth

```
1 N_0 = 10.0
2 T = 20
3 N_vals = iterate_map(N -> h(N; p), N_0, T)
4 plot(0:T, N_vals; label = [L"N_t" nothing],
5          title=L"Dynamics from $N_0 = %$N_0$",
6          seriestype = [:scatter, :line],
7          xlabel = "t", size=(600, 400))
```


Consumption per Capita

```
1 c_vals = c.(N_vals; p)
  plot(0:T, c_vals; label =[L"c_t" nothing],
       title="Consumption-per-capita",
       seriestype = [:scatter, :line],
       xlabel = "t", size=(600, 400))
  hline!([p.c_star];linestyle=:dash,
         label=L"c^*", alpha=0.5)
```


Technological Growth!

• Start at $ar{N}$ then double $ar{z}$

```
1 N_0 = N_bar(p) # old steady state
2 p = merge(p, (; z_bar = 2.0)) # changes a field
 3 N_{vals} = iterate_{map}(N \rightarrow h(N; p), N_0, T)
4 c_{vals} = c.(N_{vals}; p)
   plot(0:T, c_vals; label =[L"c_t" nothing],
        title="Consumption-per-capita",
 6
        seriestype = [:scatter, :line],
        xlabel = "t", size=(600, 400))
   hline!([p.c_star];linestyle=:dash,
          label=L"c^*", alpha=0.5)
10
```


Pessimistic Perspective on Technology

- Population will expand until subsistence consumption is reached
- Technology growth only leads to a higher population, not to material welfare gains
- The key assumption here: Fixed factors and population growth
- Are there fixed factors with modern production technologies?