

HCC/HCF4027B

DUAL-J-K MASTER-SLAVE FLIP-FLOP

- SET-RESET CAPABILITY
- STATIC FLIP-FLOP OPERATION RETAINS STATE INDEFINITELY WITH CLOCK LEVEL EITHER "HIGH" OR "LOW"
- MEDIUM SPEED OPERATION 16MHz (typ. clock toggle rate at 10V)
- STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS
- QUIESCENT CURRENT SPECIFIED TO 20V FOR HCC DEVICE
- INPUT CURRENT OF 100nA AT 18V AND 25°C FOR HCC DEVICE
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDEC TENTATIVE STANDARD N⁰. 13A, "STANDARD SPECIFICATIONS FOR DESCRIPTION OF "B" SERIES CMOS DEVICES".

DESCRIPTION

The **HCC4027B** (extended temperature range) and **HCF4027B** (intermediate temperature range) are monolithic integrated circuit, available in 16-lead dual in-line plastic or ceramic package and plastic micro package.

The **HCC/HCF4027B** is a single monolithic chip integrated circuit containing two identical complementary-symmetry J-K master-slave flip-flops. Each flip-flop has provisions for individual J, K, Set, Reset, and Clock input signals, Buffered Q and Q signals are provided as outputs. This input-output arrangement provides for compatible operation with the **HCC/HCF4013B** dual D-type flip-flop.

The HCC/HCF4027B is useful in performing control, register, and toggle functions. Logic levels present at the J and K inputs along with internal self-steering control the state of each flip-flop; changes in the flip-flop state are synchronous with the positive-going transition of the clock pulse. Set and reset functions are independent of the clock and are initiated when a high level signal is present at either the Set or Reset input.

June 1989 1/12

FUNCTIONAL DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DD} *	Supply Voltage: HCC Types	- 0.5 to + 20	V
	HCF Types	– 0.5 to + 18	V
V_{i}	Input Voltage	- 0.5 to V _{DD} + 0.5	V
I_1	DC Input Current (any one input)	± 10	mA
P _{tot}	Total Power Dissipation (per package) Dissipation per Output Transistor	200	mW
	for T _{op} = Full Package-temperature Range	100	mW
Top	Operating Temperature : HCC Types	– 55 to + 125	°C
	HCF Types	- 40 to + 85	°C
T _{stg}	Storage Temperature	- 65 to + 150	°C

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for external periods may affect device reliability.

* All voltage values are referred to Vss pin voltage.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage: HCC Types	3 to 18	V
	HCF Types	3 to 15	V
VI	Input Voltage	0 to V _{DD}	V
Top	Operating Temperature : HCC Types HCF Types	- 55 to + 125 - 40 to + 85	°C

LOGIC DIAGRAM AND TRUTH TABLE

ONE OF TWO IDENTICAL J-K FLIP-FLOPS

TRUTH TABLE

	Present State				CL∆		State	
	Inp	uts		Output	CL		Out	puts
J	К	S	R	Q		Q	lα	
I	Х	0	0	0		I	0	
Х	0	0	0	I		I	0	
0	Х	0	0	0	_/_	0	I	
Х	ı	0	0	I	_/_	0	I	
Х	Х	0	0	Х				← No Change
Х	Х	ı	0	Х	Х	I	0	
Х	Х	0	I	Х	Х	0	I	
Х	Х	Ī	I	Х	Х	I	Ī	

LOGIC I = HIGH LEVEL LOGIC O = LOW LEVEL

 Δ - LEVEL CHANGE

X - DON'T CARE

STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)

			Т	est Con	dition	s	Value							
Symbol	Parame	ter	Vı	۷o	I ₀	V _{DD}	T _{Low} * 25°C T _{High} *					igh*	Unit	
			(V)	(V)		(V)	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
ΙL	Quiescent		0/ 5			5		1		0.02	1		30	
	Current	нсс	0/10			10		2		0.02	2		60	
		Types	0/15			15		4		0.02	4		120	
			0/20			20		20		0.04	20		600	μΑ
			0/ 5			5		4		0.02	4		30	
		HCF Types	0/10			10		8		0.02	8		60	
		1) 000	0/15			15		16		0.02	16		120	
V _{OH}	Output High	h	0/ 5		< 1	5	4.95		4.95			4.95		
	Voltage		0/10		< 1	10	9.95		9.95			9.95		V
			0/15		< 1	15	14.95		14.95			14.95		
Vol	Output Low	ı	5/0		< 1	5		0.05			0.05		0.05	
	Voltage		10/0		< 1	10		0.05			0.05		0.05	V
			15/0		< 1	15		0.05			0.05		0.05	
V_{IH}	Input High			0.5/4.5	< 1	5	3.5		3.5			3.5		
	Voltage			1/9	< 1	10	7		7			7		V
				1.5/13.5	< 1	15	11		11			11		
V_{IL}	Input Low			4.5/0.5	< 1	5		1.5			1.5		1.5	V
	Voltage			9/1	< 1	10		3			3		3	
				13.5/1.5	< 1	15		4			4		4	
I _{OH}	Output		0/ 5	2.5		5	- 2		- 1.6	- 3.2		- 1.15		
	Drive Current	HCC	0/ 5	4.6		5	- 0.64		- 0.51	- 1		- 0.36		
	Odifelit	Types	0/10	9.5		10	- 1.6		- 1.3	- 2.6		- 0.9		
			0/15	13.5		15	- 4.2		- 3.4	- 6.8		- 2.4		mA
			0/ 5	2.5		5	- 1.53		- 1.36	- 3.2		- 1.1		
		HCF	0/ 5	4.6		5	- 0.52		- 0.44	- 1		- 0.36		
		Types	0/10	9.5		10	- 1.3		- 1.1	- 2.6		- 0.9		
			0/15	13.5		15	- 3.6		- 3.0	- 6.8		- 2.4		
I_{OL}	Output	HCC	0/ 5	0.4		5	0.64		0.51	1		0.36		
	Sink Current	Types	0/10	0.5		10	1.6		1.3	2.6		0.9		
	Odnoni		0/15	1.5		15	4.2		3.4	6.8		2.4		mA
		ПСЕ	0/ 5	0.4		5	0.52		0.44	1		0.36		1117 (
		HCF Types	0/10	0.5		10	1.3		1.1	2.6		0.9		
			0/15	1.5		15	3.6		3.0	6.8		2.4		
I _{IH} , I _{IL}	Input Leakage	HCC Types	0/18	Any In	put	18		± 0.1		±10 ⁻⁵	± 0.1		± 1	μΑ
	Current	HCF Types	0/15			15		± 0.3		±10 ⁻⁵			± 1	•
Cı	Input Capa	citance		Any In	put					5	7.5			pF

^{*} T_{Low} = - 55°C for HCC device : - 40°C for HCF device. * T_{High} = + 125°C for HCC device : + 85°C for HCF device. The Noise Margin for both "1" and "0" level is : 1V min. with V_{DD} = 5V, 2V min. with V_{DD} = 10V, 2.5 V min. with V_{DD} = 15V.

DYNAMIC ELECTRICAL CHARACTERISTICS ($T_{amb} = 25^{\circ}C$, $C_{L} = 50 pF$, $R_{L} = 200 k\Omega$, typical temperature coefficient for all $V_{DD} = 0.3\%$ °C values, all input rise and fall time = 20ns)

Comple e l	Dama		Test Conditions			Unit		
Symbol	Para	meter –		V_{DD} (V)	Min.	Тур.	Max.	Unit
t _{PLH} , t _{PHL}	Propagation	Clock to Q or Q		5		150	300	
	Delay Time	Outputs		10		65	130	ns
				15		45	90	
t _{PLH}	Propagation	Set to Q or Reset		5		150	300	
	Delay Time	to Q		10		65	130	
				15		45	90	ns
t _{PHL}	Propagation	Set to Q or Reset		5		200	400	
	Delay Time	to Q		10		85	170	
				15		60	120	
$t_{THL},\ t_{TLH}$	Transition Time			5		100	200	
				10		50	100	ns
				15		40	80	
t _W	Pulse Width	Clock		5	140	70		
				10	60	30		
				15	40	20		ns
t _W	Pulse Width	Set or Reset		5	180	90		
				10	80	40		
				15	50	25		
t _r ,t _f	Clock Input Rise			5			15	
	or Fall Time			10			4	μs
				15			1	
t _{setup}	Setup Time	Data		5	200	100		
				10	75	35		ns
				15	50	25		
f _{max}	Maximum	Toggle Mode		5	3.5	7		
	Clock Input Frequency *			10	8	16		MHz
	Frequency			15	12	24		

^{*} Input tr, tf = 5ns.

Typical Output Low (sink) Current Characteristics.

Typical Output High (source) Current Characteristics.

Typical Propagation Delay Time vs.Load Capacitance (CLOCK or SET to Q, CLOCK or RESET to \overline{Q}).

Minimum Output Low (sink) Current Characteristics.

Minimum Output High (source) Current Characteristics.

Typical Propagation Delay Time vs. Load Capacitance (SET to \overline{Q} or RESET to Q).

Typical Maximum Clock Frequency vs. Supply Voltage (Toggle Mode).

Typical Dynamic Power Dissipation/ Per Device vs.Frequency.

TEST CIRCUITS

Quiescent Device Current.

Input Voltage.

Input Leakage Current.

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm		inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
a1	0.51			0.020			
В	0.77		1.65	0.030		0.065	
b		0.5			0.020		
b1		0.25			0.010		
D			20			0.787	
E		8.5			0.335		
е		2.54			0.100		
e3		17.78			0.700		
F			7.1			0.280	
I			5.1			0.201	
L		3.3			0.130		
Z			1.27			0.050	

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm		inch			
DiWi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А			20			0.787	
В			7			0.276	
D		3.3			0.130		
Е	0.38			0.015			
e3		17.78			0.700		
F	2.29		2.79	0.090		0.110	
G	0.4		0.55	0.016		0.022	
Н	1.17		1.52	0.046		0.060	
L	0.22		0.31	0.009		0.012	
М	0.51		1.27	0.020		0.050	
N			10.3			0.406	
Р	7.8		8.05	0.307		0.317	
Q			5.08			0.200	

SO16 (Narrow) MECHANICAL DATA

DIM.		mm		inch				
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А			1.75			0.068		
a1	0.1		0.2	0.004		0.007		
a2			1.65			0.064		
b	0.35		0.46	0.013		0.018		
b1	0.19		0.25	0.007		0.010		
С		0.5			0.019			
c1			45°	(typ.)				
D	9.8		10	0.385		0.393		
Е	5.8		6.2	0.228		0.244		
е		1.27			0.050			
e3		8.89			0.350			
F	3.8		4.0	0.149		0.157		
G	4.6		5.3	0.181		0.208		
L	0.5		1.27	0.019		0.050		
М			0.62			0.024		
S			8° (r	nax.)				

PLCC20 MECHANICAL DATA

DIM.		mm		inch			
Diiii.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	9.78		10.03	0.385		0.395	
В	8.89		9.04	0.350		0.356	
D	4.2		4.57	0.165		0.180	
d1		2.54			0.100		
d2		0.56			0.022		
E	7.37		8.38	0.290		0.330	
е		1.27			0.050		
e3		5.08			0.200		
F		0.38			0.015		
G			0.101			0.004	
М		1.27			0.050		
M1		1.14			0.045		

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

