Practical works – n°5

Discrete Fourier Transform

- Exercice 1 2D frequency plan
- **1.1** Define an image as follows (or similar):

```
N=64;

Ts=1/N; Fs=N; df=Fs/N% sampling

Im(N/8:N/4,N/4+1:N/2) =1;

Im(1:N/4,N/2+1:N) = Im;

Im(N/4+1:N/2,:) = Im;

Im(N/2+1:3*N/4,:) = Im(1:N/4,:);

Im(3*N/4+1:N,:) = Im(1:N/4,:);

Display the image.
```

- 1.2 Compute the $I_f = DFT\{I_m\}$ of the image and display real and imaginary parts (a+jb), modulus and phase (in degrees) $[\rho, \theta]$. Do not forget to apply fftshift.
- 1.3 Discuss about the frequency axes in the images. Interpret the different images (modulus and phase).
- 1.4 Plot $|I_f(u,0)|$ and $|I_f(0,v)|$ with the correct frequency range. Discuss about these results. What does $I_f(u,v)$ represent.
- Exercice 2 Reconstruction form modulus and/or phase
- **2.1** Load a gray image I_{m1} and display this image.
- **2.2** Compute and display the $I_{f1} = [\rho_1, \theta_1] = DFT\{I_{m1}\}$ with $\rho_1 = |I_{f1}|$ and $\theta_1 = \arg[I_{f1}]$ of this image Apply a $log(\rho_1 + 1)$ transformation to display the low amplitudes. Display the phase in degrees.
- **2.3** Thanks to the DTF^{-1} , reconstruct an image from $I_f(\rho_1, 0)$ and another from $I_f(1, \theta_1)$. Display the real parts of these reconstructions.
- **2.4** Load a second gray image I_{m2} and display this image.
- **2.5** Compute and display the $I_{f2} = [\rho_2, \theta_2] = DFT\{I_{m2}\}$ with $\rho_2 = |I_{f2}|$ and $\theta_2 = \arg[I_{f2}]$ of this image.
- **2.6** Reconstruct an image from $[\rho_2, \theta_1]$ and another from $[\rho_1, \theta_2]$. Display these reconstructions. Conclusion?