Data

What is Data?

- Collection of data objects and their attributes
- An attribute is a property or characteristic of an object
 - Examples: eye color of a person, temperature, etc.
 - Attribute is also known as variable, field, characteristic, or feature
 Objects
- A collection of attributes describe an object
 - Object is also known as record, point, case, sample, entity, or instance

Attributes

		$\overline{}$		
Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Attribute Values

- Attribute values are numbers or symbols assigned to an attribute
- Distinction between attributes and attribute values
 - Same attribute can be mapped to different attribute values
 - Example: height can be measured in feet or meters
 - Different attributes can be mapped to the same set of values
 - Example: Attribute values for ID and age are integers
 - But properties of attribute values can be different
 - ID may have no limit but age may have a maximum and minimum value

Types of Attributes

- There are different types of attributes
 - Categorical (Qualitative):
 - Nominal
 - Ordinal
 - Numeric (Quantitative):
 - Interval
 - Ratio

Properties of Attribute Values / 1

 The type of an attribute depends on which of the following properties it possesses:

```
• Distinctness: = and \neq
```

- Multiplication: * and /
- Nominal attribute: distinctness
- Ordinal attribute: distinctness & order
- Interval attribute: distinctness, order & addition
- Ratio attribute: all 4 properties

Properties of Attribute Values / 2

Attribute	Description	Examples	Operations
Type			
Nominal	The values of a nominal attribute are just different names, i.e., nominal attributes provide only enough information to distinguish one object from another. $(=, \neq)$	zip codes, employee ID numbers, eye color, sex: {male, female}	mode, entropy, contingency correlation, χ ² test
Ordinal	The values of an ordinal attribute provide enough information to order objects. (<, >)	hardness of minerals, {good, better, best}, grades, street numbers	median, percentiles, rank correlation, run tests, sign tests
Interval	For interval attributes, the differences between values are meaningful, i.e., a unit of measurement exists. (+, -)	calendar dates, temperature in Celsius or Fahrenheit	mean, standard deviation, Pearson's correlation, <i>t</i> and <i>F</i> tests
Ratio	For ratio variables, both differences and ratios are meaningful. (*, /)	temperature in Kelvin, monetary quantities, counts, age, mass, length, electrical current	geometric mean, harmonic mean, percent variation

Discrete and Continuous Attributes

Discrete Attribute

- Has only a finite or countably infinite set of values
- Examples: zip codes, counts, or the set of words in a collection of documents
- Often represented as integer variables.
- Note: binary attributes are a special case of discrete attributes

Continuous Attribute

- Has real numbers as attribute values
- Examples: temperature, height, or weight.
- Practically, real values can only be measured and represented using a finite number of digits.
- Continuous attributes are typically represented as floating-point variables.

Record Data

 Data that consists of a collection of records, each of which consists of a fixed set of attributes

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Data Matrix

- If data objects have the same fixed set of numeric attributes, then the data objects can be thought of as points in a multidimensional space, where each dimension represents a distinct attribute
- Such data set can be represented by an *m* by *n* matrix,
 where there are *m* rows, one for each object, and *n* columns,
 one for each attribute

Projection of x Load	Projection of y load	Distance	Load	Thickness
10.23	5.27	15.22	2.7	1.2
12.65	6.25	16.22	2.2	1.1

Document Data

- Each document becomes a 'term' vector,
 - each term is a component (attribute) of the vector,
 - the value of each component is the number of times the corresponding term occurs in the document.

	team	coach	pla y	ball	score	game	n <u>vi</u> .	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Transaction or Market Basket Data

- A special type of record data, where
 - each record (transaction) involves a set of items.
 - For example, consider a grocery store. The set of products purchased by a customer during one shopping trip constitute a transaction, while the individual products that were purchased are the items.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Graph Data

Examples: Generic graph and HTML Links

Data Mining

Graph Partitioning

Parallel Solution of Sparse Linear System of Equations

N-Body Computation and Dense Linear System Solvers

Chemical Data

Benzene Molecule: C₆H₆

Ordered Data / 1

Sequences of transactions

Ordered Data / 2

Genomic sequence data

Ordered Data / 3

Spatio-Temporal Data

Jan

Average Monthly Temperature of land and ocean

Terima Kasih

Create Data

1. Matlab

1.1 Membuat File editor (.m file)

Langkah awal membuat file editor (.m file)

1. Pilih New Script

- 2. Ketik source code di file editor
- 3. Setelah source code sudah benar, klik tombol Run (Segitiga berwarna Hijau) pada Toolbar di file editor.
- 4. Hasil akan muncul

1.2 Membaca data dari Excel

Langkah - Langkah

1. Buatlah data di excel dengan namakan Book 1

Data = 'Book 1'.xls

2. Syntax yang digunakan di matlab untuk membaca data adalah

A. xlsread

xlsread digunakan untuk membaca semua data yang ada di excelnya kecuali variabelnya

```
nama_variabel = xlsread('nama_file')
```

B. readtable

readtable digunakan untuk membaca semua file yang ada di excel beserta variabelnya. Disamping itu juga readtable dapat digunakan untuk file CSV.

nama_variabel = readtable('nama_file')

Contoh

A. Menggunakan xslread

Hasil:

B. Menggunakan readtable

Hasil:

1.2. Mengambil Nilai Variabel

1. Mengambil Nilai dari 3 Variabel, yaitu : X1, X2, dan X3

Hasil:

2. Mengambil Nilai dari salah satu variabel

PHYTON

1. Mengimpor function yang ada di library

```
import pandas as pd
```

2. Pembacaan data

```
data = pd.read_csv("Data_Kung_People.csv")
df = pd.DataFrame(data)
print(df)
```

Hasil:

	People	Height	Weight	Age	Male
0	1	151	47	63	1
1	2	139	36	63	0
2	3	136	31	65	0
3	4	156	53	41	1
4	5	145	41	51	0
101	102	152	51	34	0
102	103	160	47	44	1
103	104	149	40	43	Θ
104	105	142	32	73	0
105	106	167	57	38	1
[106	rows x	5 column	s]		

3. Mengambil variabel

```
height = df['Height']
print(height)
```

Hasil:

	Height
0	151
1	139
2	136
3	156
4	145
* *	
101	152
102	160
103	149
104	142
105	167

Data Preprocessing

A. Outlier dan Missing Value

MATLAB

1. Outlier

1.1 Deteksi Outlier

Untuk mengatasi data yang hilang atau outliers pada data menggunakan function isoutlier.

```
A = [1 4 17 48 10 7 13 2 3];
b = isoutlier(A)
```

Hasil:

```
Command Window
>> hilang
b =
   1×9 logical array
   0 0 0 1 0 0 0 0 0
```

Nilai 0 = bukan *outliers*, sedangkan nilai 1 = *outliers*.

1.2 Penanganan Outlier

Data cleaning dapat disebut juga dengan data scrubing proses ini akan memastikan data yang akan diproses benar dan akurat. Mendeteksi *outliers* dan perubahan yang mendadak akan membantu mengidentifikasi tren atau pola data yang signifikan. Pada MATLAB ada beberapa function yang dapat digunakan dalam proses data cleaning, berikut penjelasannya:

1. filloutlier

Function ini digunakan untuk mendeteksi outliers dan mengganti nilainya sesuai dengan metode yang dipilih.

Metode yang digunakan untuk menangani pada function filloutlier

Metode	Deskripsi
Numeric scalar	Untuk mengganti nilai <i>outliers</i> dengan nilai skalar yang spesifik.
Center	Untuk mengganti nilai <i>outliers</i> dengan nilai pusat.
Clip	Untuk mengganti nilai <i>outliers</i> dengan nilai ambang batas yang
	lebih rendah untuk elemen yang lebih kecil dan untuk elemen
	yang lebih besar digunakan nilai ambang atas.
previous	Untuk mengganti nilai <i>outliers</i> dengan nilai yang sama dengan
	data pada baris sebelumnya.

Next	Untuk mengganti nilai <i>outliers</i> dengan nilai yang sama dengan
	data pada baris selanjutnya.
Nearest	Untuk mengganti nilai <i>outliers</i> dengan nilai data yang terdekat.
Linear	Untuk mengganti nilai <i>outliers</i> dengan nilai interpolasi linear dari
	nilai-nilai data terdekat yang tidak hilang. Metode ini digunakan
	untuk tipe data datetime dan duration.
Spline	Untuk mengganti nilai <i>outliers</i> dengan nilai dari data-data
	berdekatan yang dihubungkan oleh satu polinom. Metode ini
	digunakan untuk tipe data datetime dan duration.
Pchip	Untuk mengganti nilai <i>outliers</i> dengan nilai hasil penjumlahan
	nilai baris sebelumnya dan nilai baris setelahnya lalu dibagi dua.

Metode yang digunakan untuk mendeteksi pada function filloutlier

Metode	Deskripsi
Median	Metode ini mendefinisikan <i>outliers</i> sebagai elemen yang berskala 3 kali
	lebih dari MAD dari <i>median</i> . Skala MAD didefinisikan sebagai
	c*median(abs(A-median(A)))
	dimana $c = -1/(sqrt(2) * erfcinv(3/2))$
Mean	Metode ini mendefinisikan <i>outliers</i> sebagai elemen yang berskala 3 kali
	lebih dari standar deviasinya. Metode ini lebih cepat dari metode
	median tetapi kurang akurat.
Quartiles	Metode ini digunakan saat data tidak terdistribusi secara normal, dan
	mendefinisikan <i>outliers</i> sebagai elemen yang bernilai lebih dari 1,5
	rentang interkuartil di kuartil atas (75%) atau di kuartil bawah (25%)
Grubbs	Pada metode ini data diasumsikan sebagai data yang berdistribusi
	normal. Metode grubbs mendeteksi <i>outliers</i> dan menghilangkan satu
	outliers setiap satu iterasi berdasarkan uji hipotesis.
Gesd	Outliers dideteksi dengan menggunakan uji penyimpangan studentized,
	metode ini mirip dengan metode grubbs tetapi bekerja lebih baik dari
	grubbs

Berikut *source code* contoh program penggunaan *function* <u>filloutlier</u> menggunakan beberapa metode:

```
A = [57 59 65 70 59 58 57 58 350 61 62 60 62 58 57];
C = std(A)
Outlier = 3*C
B = filloutliers(A,'nearest','mean')
```

Hasil:

```
C =
   74.9055

Outlier =
   224.7166

B =
   57   59   65   70   59   58   57   58   61   61   62   60   62   58   57
```

2. <u>rmoutlier</u>

Function ini digunakan untuk mendeteksi dan menghapus outliers. Function ini mirip dengan function filloutlier, bedanya jika pada function filloutlier setelah outliers dideteksi akan diperbaiki tetapi pada function remoutlier outliers akan dihapus. Function remoutlier hanya competitible pada MATLAB 2018. function remoutlier terdapat beberapa metode yang digunakan dan mendeteksi outliers pada data.

Metode yang digunakan untuk mendeteksi pada function rmoutlier

Metode	Deskripsi
Median	Metode ini mendefinisikan <i>outliers</i> sebagai elemen yang berskala 3 kali
	lebih dari MAD dari median. Skala MAD didefinisikan sebagai
	c*median(abs(A-median(A)))
	dimana $c = -1/(sqrt(2) * erfcinv(3/2))$
Mean	Metode ini mendefinisikan <i>outliers</i> sebagai elemen yang berskala 3 kali
	lebih dari standar deviasinya. Metode ini lebih cepat dari metode <i>median</i>
	tetapi kurang akurat.
Quartiles	Metode ini digunakan saat data tidak terdistribusi secara normal, dan
	mendefinisikan <i>outliers</i> sebagai elemen yang bernilai lebih dari 1,5 rentang
	interkuartil di kuartil atas (75%) atau di kuartil bawah (25%)
Grubbs	Pada metode ini data diasumsikan sebagai data yang berdistribusi normal.
	Metode grubbs mendeteksi <i>outliers</i> dan menghilangkan satu <i>outliers</i> setiap
	satu iterasi berdasarkan uji hipotesis.
Gesd	Outliers dideteksi dengan menggunakan uji penyimpangan studentized,
	metode ini mirip dengan metode grubbs tetapi bekerja lebih baik dari grubbs

Contoh source code:

Hasil:

```
M =
                                                                                                          57
     57
             59
                            70
                                    59
                                            58
                                                   57
                                                           58
                                                                   61
                                                                           62
                                                                                  60
                                                                                          62
                                                                                                  58
                    65
  1×15 <u>logical</u> array
K =
                            70
     57
             59
                    65
                                    59
                                            58
                                                   57
                                                                           62
                                                                                          62
                                                                                                          57
```

Variabel M dan K berisi data yang telah dihilangkan *outliers*nya. Sedangkan pada variabel N digunakan untuk mendeteksi adanya *outliers* Nilai 0 = bukan *outliers*, sedangkan nilai 1 = *outliers*.

2. Data yang hilang

2.1 Deteksi data hilang

Data disebut data yang hilang jika, data yang seharusnya berisi data numerik tetapi bernilai karakter atau data kosong. Hal ini dapat disebabkan oleh beberapa faktor seperti pengisisan data yang salah , data responden yang tidak lengkap, dan lain lain. Deteksi data yang hilang dengan MATLAB menggunakan <u>ismissing</u>. *Function* ini digunakan untuk mencari data yang hilang. Berikut source *code* contoh program penggunaan *function* ismissing:

```
A = [2 4 NaN 6 NaN NaN NaN 9];
b = ismissing(A)
```

Hasil:

```
b =
   1×7 logical array
   0 0 1 0 1 1 0
```

Nilai 0 = bukan data yang hilang, sedangkan nilai 1 = data hilang.

2.2 Penanganan Data yang Hilang

Pada beberapa kasus, data yang akan diolah seringkali terdapat data yang hilang. Data yang hilang dapat mengganggu metode analisis data. Oleh karena itu, data hilang harus ditangani dengan benar. Pada MATLAB ada beberapa function yang dapat digunakan dalam penanganan data yang hilang,

1. <u>missing</u>

Function ini digunakan untuk menghilangkan data. *Function* ini memungkinkan pengguna mengosongkan nilai pada data untuk mewakili data yang hilang. Nilai ini selanjutnya secara otomatis dikonversi ke nilai standar sesuai dengan tipe data yang asli. Berikut source *code* contoh program penggunaan *function* missing:

```
Tanggal = datetime({'2015-12-18 08:03:05';'2015-12-18
10:03:17';'2015-12-18 12:03:13'});
Temperatur = [37.3;39.1;42.3];
Arah_Angin = categorical({'NW';'NW';'N'});
TT = timetable(Tanggal, Temperatur, Arah_Angin);
disp(TT)
TT.Tanggal(3) = missing;
TT.Temperatur(3) = missing;
TT.Arah_Angin(3) = missing;
disp(TT)
```

Hasil:

Tanggal	Temperatur	Arah_Angin
18-Dec-2015 08:03:05	37.3	NW
18-Dec-2015 10:03:17	39.1	N
18-Dec-2015 12:03:13	42.3	NM
Tanggal	Temperatur	Arah_Angin
18-Dec-2015 08:03:05	37.3	NW
18-Dec-2015 10:03:17	39.1	N
	NaN	<undefined:< td=""></undefined:<>

Contoh program diatas menunjukan sebuah *time table* dengan data berisi tanggal, temperatur, dan arah angin. Pada tabel kedua dapat dilihat bahwa baris ketiga telah dikosongkan dan tipe data sesuai dengan tipe data tabel pertama.

2. fillmissing

Function ini digunakan untuk mengisi data yang hilang. Function ini memungkinkan pengguna mengisi sendiri nilai data yang hilang. Nilai ini selanjutnya secara otomatis dikonversi ke nilai standar sesuai dengan tipe data yang asli. Berikut nilai-nilai tipe data pada data:

- NaN, digunakan untuk medefinisikan tipe data single, double, duration, dan calenderDuration
- o NaT, digunakan untuk mendefinisikan tipe data datetime
- o <missing>, digunakan untuk mendefinisikan tipe data string
- o <undefined>, digunakan untuk mendefinisikan tipe data categorical
- o '', digunakan untuk mendefinisikan tipe data char
- o {''}, digunakan untuk mendefinisikan tipe data cell array

Berikut source *code* contoh program penggunaan *function* missing:

```
Temperatur = [37.3;NaN;42.3];
Arah_Angin = categorical({'NW';'N';'NW'});
TT = table(Temperatur,Arah_Angin);
disp(TT)
F = fillmissing(TT,'constant',0,'DataVariables',@isnumeric);
disp(F)
```

Hasil:

F = fillmissing(TT, 'constant', 0, 'DataVariables', @isnumeric);

Mengisi nilai data kosong dengan nilai konstan 0 dan sebagai alternatif, digunakan fungsi @isnumeric untuk mendefinisikan tipe data numerik.

Dalam pengisian nilai pada data kosong terdapat beberapa metode yang digunakan menagani data hilang.

Metode yang digunakan pada function fillmissing

Metode	Deskripsi		
previous	Untuk mengisi data yang hilang dengan nilai		
	yang sama dengan data pada baris sebelumnya.		
Next	Untuk mengisi data yang hilang dengan nilai		
	yang sama dengan data pada baris selanjutnya.		
Nearest	Untuk mengisi data yang hilang dengan nilai		
	data yang terdekat.		
Linear	Untuk mengisi data yang hilang dengan nilai		
	hasil penjumlahan nilai baris sebelumnya dan		
	nilai baris setelahnya lalu dibagi dua.		
Spline	Untuk mengisi data yang hilang dengan nilai		
	dari data-data berdekatan yang dihubungkan		
	oleh satu polinom. Metode ini digunakan untuk		
	tipe data datetime dan duration.		
Pchip	Untuk mengisi data yang hilang dengan tipe data		
	numerik, durasi dan <i>datetime</i> .		

Berikut source *code* contoh program penggunaan metode *function* <u>fillmissing</u>:

```
Temperatur = [37.3;NaN;42.3];
Arah_Angin = categorical({'NW';'';'N'});
TT = table(Temperatur, Arah_Angin);
disp(TT)
F =
fillmissing(TT,'previous','DataVariables', {'Arah_Angin'})
G = fillmissing(F,'pchip','DataVariables', {'Temperatur'});
disp(G)
```

Hasil:

Comma	nd Window	
	Temperatur	Arah_Angin
	37.3	NW
	NaN	<undefined></undefined>
	42.3	N
	Temperatur	Arah_Angin
	37.3	NW
	39.8	NW
	42.3	N

^{&#}x27;DataVariable' pada contoh diatas digunakan untuk mengisi data yang hilang pada variabel terterntu.

3. Contoh Source Code

```
Data = readtable('Book1.xlsx'); % Membaca Data
%Deteksi Outlier
Outlier = isoutlier(Data); % Deteksi Outlier
% Penanganan Outlier
B = filloutliers(Data, 0); % Mereplace outlier dengan '0'
L = filloutliers(Data, 'nearest', 'DataVariables', {'X2'}); % Mereplace dengan data terdekat
K = rmoutliers(Data);
                      % Menghilangkan data outlier
% Deteksi Data Missing
Missing1 = ismissing(B); % Mendeteksi data missing dari variabel B
                                % Mendeteksi data missing dari variabel K
Missing2 = ismissing(K);
% penanganan Data Missing
 % Mereplace data missing dengan nilai '0' pada variabel B
X = fillmissing(B,'constant',0,'DataVariables',@isnumeric);
 % Mereplace data missing dengan nilai '0' pada variabel K
Y = fillmissing(K ,'constant', 0, 'DataVariables', @isnumeric)
 %Mereplace data missing dengan nilai sebelumnya pada variabel B
Z = fillmissing(B,'previous','DataVariables',{'X3'});
 % Transformasi Data
Normalisasi = normalize(X, 'zscore'); % Normalisasi pada data yang sudah OK(data X)
```

Hasil:

Data Awal

1. Deteksi Outlier

```
Outlier =

3×3 logical array

0 0 0
0 1 0
0 0 0
```

2. Penangannan Outlier

Menggantikan dengan nilai 0

Menggantikan dengan nilai sebelumnya

Menghapus Outlier

Deteksi Data Missing

Penanganan Data Missing

Mengisi dengan nilai 0

Mengisi dengan nilai terdekat

4 0

7 8 6

4. Normalisasi

Normalisasi dilakukan dengan metode z-score

Normalisasi =

3×3 <u>table</u>

X1	X 2	х3
_		_
-1	-0.32026	0
0	-0.80064	1
1	1.1209	-1

Phyton

1. Outlier

```
dataset= [10,12,12,13,12,11,14,13,15,10,10,10,100,12,14,13, 12,10,
10,11,12,15,12,13,12,11,14,13,15,10,15,12,10,14,13,15,10]
```

```
import numpy as np
import pandas as pd
outliers=[]
def detect_outlier(data_1):

   threshold=3
   mean_1 = np.mean(data_1)
   std_1 =np.std(data_1)

   for y in data_1:
        z_score= (y - mean_1)/std_1
        if np.abs(z_score) > threshold:
            outliers.append(y)
   return outliers
```

```
outlier_datapoints = detect_outlier(dataset)
print(outlier_datapoints)
```

Hasil:

100

Data (df)

	Column_1	Column_2
0	1	1
1	1	1
2	1	1
3	1	1
4	1	10
5	1	1
6	1	1
7	1	1
8	1	1
9	1	1
10	10	1

```
z_scores = stats.zscore(df)

abs_z_scores = np.abs(z_scores)
filtered_entries = (abs_z_scores < 3).all(axis=1)
new_df = df[filtered_entries]

print(new_df)</pre>
```

Output:

	Column_1	Column_2
0	1	1
1	1	1
2	1	1
3	1	1
5	1	1
6	1	1
7	1	1
8	1	1
9	1	1

2. Missing Value

Drop Missing Values in Python

- To remove data that contains missing values, Pandas library has a built-in method called 'dropna'.
- Essentially, with the dropna method, you can choose to drop rows or columns that contain missing values, like NaN.
- So you'll need to specify "axis=0" to drop the rows, or "axis=1" to drop the columns that contain the missing values. "Inplace=True" just writes the result back into the dataframe.

Replace Missing Values in Python

To replace missing values like "NaN" with actual values, pandas library has a built in method called 'replace', which can be used to fill in the missing values with the newly calculated values.

dataframe.replace(missing value, new value)

Replace Missing Values in Python

- As an example, assume that we want to replace the missing values of the variable 'normalized-losses' by the mean value of the variable. Therefore, the missing value should be replaced by the average of the entries within that column
- In Python, first we calculate the mean of the column.
- Then we use the method "replace", to specify the value we would like to be replaced as the first parameter, in this case, NaN.
- The second parameter is the value we would like to replace it with: i.e., the mean, in this example.

2.1 Deteksi Missing Value

df.isna().sum()			
PassengerId	0		
Survived	0		
Pclass	0		
Name	0		
Sex	0		
Age	177		
SibSp	Θ		
Parch	0		
Ticket	0		
Fare	0		
Cabin	687		
Embarked	2		
dtype: int64			

Dengan bantuan fungsi isna () dan sum () kita tahu bahwa dalam dataset semua kolom tidak ada nilai yang kosong kecuali kolom Age dengan 177 missing value, Kolom Cabin 687 dan kolom Embarked 2.

2.2 Penanganan Missing Value

Mengganti missing value dengan nilai rata2

```
1 # Langkah 1
2 df_age = df
3 # Langkah 2
4 rata_umur = df_age['Age'].mean()
5 # Langkah 3
6 df_age['Age'] = df_age['Age'].Fillna(rata_umur)
7 # Langkah 4
8 df_age['Age'].isna().sum()
```

Menghapus missing value

```
1 # Langkah 1
2 df_cabin = df
3 # Langkah 2
4 df_cabin.dropna()
```

Data Preprocessing

B. Data Transformation

Pada beberapa kasus, variabel cenderung memiliki nilai rentang yang sangat besar. Nilai rentang yang sangat besar ini akan mempengaruhi hasil pengelolahan data. Untuk mengatasi masalah ini, data harus ditransformasi terlebih dahulu. Normalisasi sering digunakan. Nilai rentang yan besar akan menjadi rentang yang tidak terlalu besar. Normalisasi terdapat beberapa metode.. Metode normalisasi data yang paling sering digunakan yaitu:

1. Min-Max Normalization

Min-max merupakan metode normalisasi data dengan menskalakan data diantara 0 dan 1. Metode ini menggunakan rumus:

$$X'_{i} = \frac{X_{i} - Min(X)}{Max(X) - Min(X)}$$

Misalnya data $X = [7 \ 10 \ 15 \ 20 \ 25]$

$$X'_{1} = \frac{7-7}{25-7} = 0$$

$$X'_{2} = \frac{10-7}{25-7} = 0,1667$$

$$X'_{3} = \frac{15-7}{25-7} = 0,4444$$

$$X'_{4} = \frac{20-7}{25-7} = 0,7222$$

$$X'_{5} = \frac{25-7}{25-7} = 1$$

Perbandingan data sebelum dan sesudah di normalisasi ditunjukkan pada Tabel 1. X adalah data sebelum dinormalisasi dan X' adalah data setelah dinormalisasi. Rentang data X berada diantara 7 dan 25 sedangkan setelah dinormalisasi rentang data menjadi diantara 0 dan 1.

Tabel 1. Perbandingan data sebelum dan sesudah dinormalisasi

X	X'
7	0
10	0,1667
15	0,4444
20	0,7222
25	1

Untuk mempermudah perhitungan, perhitungan dapat dilakukan pada MATLAB. Berikut contoh source codenya

```
v = [7 10 15 20 25];
for i = 1:length(v)
    nor(i) = (v(i)-min(v))/(max(v)-min(v));
end
disp(nor)
```

Hasil:

2. Z-Score Standardization

Metode Z-Score Standardization merupakan metode yang menskalakan selisih antara nilai pada data dan rata-ratanya dengan nilai standar deviasinya. Metode ini menggunakan rumus:

$$X_{i}^{'} = \frac{X_{i} - Mean(X)}{\sigma}$$

Dengan

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (X_i - Mean(X))^2}{n}}$$
 Keterangan: n = Banyak data

 σ = standar deviasi

Misalnya data $X = [7 \ 10 \ 15 \ 20 \ 25]$

o Mencari nilai rata-rata

$$Mean(X) = \frac{7 + 10 + 15 + 20 + 25}{5}$$
$$= \frac{77}{5}$$
$$= 15,4$$

Mencari standar Deviasi

$$\sigma = \sqrt{\frac{(7 - 15,4)^2 + (10 - 15,4)^2 + (15 - 15,4)^2 + (20 - 15,4)^2 + (25 - 15,4)^2}{5}}$$

$$\sigma = \sqrt{\frac{70,56 + 29,16 + 0,16 + 21,16 + 92,16}{5}}$$

$$\sigma = \sqrt{\frac{213,2}{5}}$$

$$\sigma = 6,5299$$

$$x'_{1} = \frac{7-15,4}{6,5299} = -1,2864$$

$$X'_{i} = \frac{10-15,4}{6,5299} = -0,827$$

$$X'_{i} = \frac{15-15,4}{6,5299} = -0,0613$$

$$X'_{i} = \frac{20-15,4}{6,5299} = 0,7044$$

$$X'_{i} = \frac{25-15,4}{6,5299} = 1,4720$$

Perbandingan data sebelum dan sesudah di normalisasi ditunjukkan pada Tabel 2. X adalah data sebelum dinormalisasi dan X' adalah data setelah dinormalisasi. Rentang data X berada diantara 7 dan 25 sedangkan setelah dinormalisasi rentang data menjadi diantara 1,4720 dan -1,2864.

Tabel 2. Perbandingan Data Sebelum dan Sesudah dinormalisasi menggunakan Z-Score

X	X'
7	-1,2864
10	-0,827
15	-0,0613
20	0,7044
25	1,4720

Untuk mempermudah perhitungan dapat dilakukan pada MATLAB dengan source code sebagai berikut:

```
A = [7 10 15 20 25];
rata2 = mean(A);
c = 0;
for i = 1:length(A)
        d(i) = (A(i)-rata2)^2;
        c = c+d(i)
        sd = sqrt(c/length(A));
end
fprintf('Standar Deviasi = %.4f\n Data Baru = ',sd);
for i = 1:length(A)
        X(i) = (A(i)-rata2)/sd;
end
disp(X)
```

Hasil:

```
Command Window

Standar Deviasi = 6.5299

Data Baru = -1.2864 -0.8270 -0.0613 0.7044 1.4702
```

Normalisasi Data pada MATLAB

MATLAB menyediakan *function* yang dapat digunakan untuk memudahkan pengguna dalam menormalisasi data dengan beberapa metode. *Function* ini adalah normalize.

```
Normalisasi = normalize(A)
Normalisasi = normalize(A, method)
```

Pada syntax diatas A merupakan data yang akan dinormalisasi, secara default metode yang digunakan untuk menormalisasi data pada MATLAB adalah metode Z-Score Standardization. method yang digunakan dalam function normalize akan dijelaskan pada Tabel 3.

Tabel 3. Metode normalisasi pada MATLAB

Metode	Penjelasan	
'zscore'	Digunakan untuk data dengan rata-rata = 0 dan standar deviasi = 1	
'scale'	Menskalakan data berdasarkan standar deviasi	
'range'	Menskalakan data pada jarak anatar 1 dan 0.	

Sebagai contoh penggunaan function normalisasi dilakukan dengan source code sebagai berikut:

```
Editor - D:\Mata Kuliah\2020\Genap\Prakt. Pembelajaran Mesin\Minggu 2\Transformasi.m*
  FOITOR
             PUBLISH
            Find Files
                                                               Run Section
                      Go To ▼ Comment % 💥 🐉
                                                              Advance
            Print 🕶
                      Q Find ▼
 Transformasi.m* × +
         A = readtable('Book1.xlsx');
 1 -
         Normalisasi1 = normalize(A);
 2 -
         Normalisasi2 = normalize(A, 'zscore');
 3 -
         Normalisasi3 = normalize (A, 'scale');
 4 -
         Normalisasi4 = normalize (A, 'range')
 5 -
 6
 7
```

Keterangan dan hasil source code diatas sebagai berikut :

1. Membaca data

Hasil:

>> Transformasi

A =

3×3 table

X1	X2	х3
_		
1	2	3
4	5	6
7	8	9

2. Normlaisasi

Hasil

>> Transformasi Normalisasi1 = 3×3 <u>table</u> X1 X2 х3 -1 -1 -1 0 0 0

3. Normalisas dengan method 'zscore'

1

Hasil:

>> Transformasi

Normalisasi2 =

3×3 <u>table</u>

X1	X 2	Х3
_		_
-1	-1	-1
0	0	0
1	1	1

4. Normalisas dengan method 'scale'

>> Transformasi

Normalisasi3 =

3×3 table

X1	X2	х3
		_
0.33333	0.66667	1
1.3333	1.6667	2
2.3333	2.6667	3

5. Normalisas dengan method 'range'

>> Transformasi

Normalisasi4 =

3×3 table

X1	X2	Х3
—		
0	0	0
0.5	0.5	0.5
1	1	1

Normalisasi Data pada Phyton

Ada 3 macam normalisasi yang menggunakan Phyton, yaitu:

1. Simple Feature Scaling

Simple Feature Scaling merupakan metode normalisasi data dengan menskalakan data diantara 0 dan 1. Metode ini menggunakan rumus:

$$X'_i = \frac{X_i}{Max(X)}$$

Misalnya data $X = [7 \ 10 \ 15 \ 20 \ 25]$

$$X_1 = \frac{7}{25} = 0.28$$

$$X'_2 = \frac{10}{25} = 0.4$$

$$X'_{3} = \frac{15}{25} = 0.6$$

$$X'_{4} = \frac{20}{25} = 0.8$$

$$X'_{5} = \frac{25}{25} = 1$$

Normalisasi setiap atribut dapat menerapkan kode berikut. Nilai atribut yang akan dinormalisasi atribut 'umur' dan 'gaji'.

```
df["Umur"] = df["Umur"] / df["Umur"].max()
df["Gaji"] = df["Gaji"] / df["Gaji"].max()
```

2. Min-Max

Penjelasan sama seperti bagian diatas.

```
df["Umur"] = (df["Umur"] - df["Umur"].min()) / (df["Umur"].max() - df["Umur"].min())
df["Gaji"] = (df["Gaji"] - df["Gaji"].min()) / (df["Gaji"].max() - df["Gaji"].min())
```

3. Z score

Penjelasan sama seperti bagian diatas.

```
df["Umur"] = (df["Umur"] - df["Umur"].mean()) / df["Umur"].std()
df["Gaji"] = (df["Gaji"] - df["Gaji"].mean()) / df["Gaji"].std()
```

Normalisasi:

1. Langkah pertama adalah import library terlebih dahulu, library yang digunakan adalah dan Pandas.

```
import pandas as pd
from sklearn import preprocessing
```

2. Baca data

Misalkan data yang digunakan dengan nama "shopping data.csv". Untuk nilai dan atribut data ini buatlah sendiri (bebas)

```
data = pd.read_csv("shopping_data.csv")
df = pd.DataFrame(data)
```

3. Normalisasi

```
min_max_scaler = preprocessing.MinMaxScaler()
np_scaled = min_max_scaler.fit_transform(df)
df_normalized = pd.DataFrame(np_scaled)
```

Data dan Preprocessing

Soal:

Waktu: 60 menit

- 1. Carilah data bebas
- 2. Create data data tersebut menggunakan matlab dan phyton
 - ❖ Inputkan 3 record dari data tersebut ke dalam matlab dan phyton.
- 3. Pilihlah beberapa atribut dari data tersebut
- 4. Lakukan PreProcessing dari data dengan atribut yang dipilih menggunakan Matlab dan Phyton.
 - ❖ Cek apakah data-data tersebut memiliki outlier dan missing value
 - ❖ Jika terdapat outlier dan missing value maka lakukan penangannya
 - ❖ Normalisasikan data data tersebut dengan 1 metode matlab dan phyton (bebas)

Tugas:

- 1. Buat laporan soal diatas
- 2. Laporan terdiri dari Source code, print screen hasil, dan penjelasannya
- 3. Penamaan file: "Laporan Data dan Preprocessing NIM.pdf"
- 4. Paling lambat pengumpulan hari Jumat / 8 September 2023 pukul 23.59
- 5. Tugas dikerjakan secara individu