SUMATORY RÓWNOLEGŁE

Zamienność dodawania i odejmowania

W systemie pozycyjnym i uzupełnieniowym używając dopełnień można zastąpić odejmowanie dodawaniem i *vice versa*:

$$X - Y = \overline{\overline{X} + Y}$$
$$X + Y = \overline{\overline{X} - Y} = \overline{\overline{Y} - X}$$

Zależność ta jest też widoczna w logicznych strukturach dodawania i odejmowania

Ponieważ $\mathbf{0} - \mathbf{Y} = \overline{\mathbf{Y}} + ulp$, gdzie $ulp = \beta^{-m}$ (o reprezentacji $\{0,...,0,1\}$), więc mamy także

$$X - Y = X + \underline{Y} = X + \overline{Y} + ulp$$

$$X + Y = X - \underline{Y} = X - \overline{Y} - ulp =$$

$$= Y - \underline{X} = Y - \overline{X} - ulp$$

Możliwe jest więc utworzenie uniwersalnego układu dodająco-odejmującego.

Logika dodawania i odejmowania

Logika dodawania i odejmowania pozycyjnego:

Dla danych $x_i, y_i \in \{0,1,...,\beta-1\}, c_i \in \{0,1\}$ istnieją $s_i \in \{0,1,...,\beta-1\}, c_{i+1} \in \{0,1\}$ takie, że

$$x_i + y_i + c_i = \beta c_{i+1} + s_i, x_i - y_i - c_i = -\beta c_{i+1} + s_i,$$
gdzie $x_i, y_i, s_i \in \{0, 1, ..., \beta - 1\}, c_i \in \{0, 1\},$

czemu odpowiada iteracyjne (kaskadowe) powiązanie pozycji.

W podstawie β =2 równaniom arytmetycznym odpowiadają funkcje logiczne:

$$\begin{array}{lll} \textit{dodawanie} & \overline{X+Y}=\overline{X}-Y=\overline{Y}-X & \textit{odejmowanie} & \overline{X-Y}=\overline{X}+Y \\ s_i=x_i\oplus y_i\oplus c_i=h_i\oplus c_i & \overline{s}_i=\overline{x}_i\oplus y_i\oplus c_i=h_i\oplus c_i \\ \textit{sumator:} & c_{i+1}=x_iy_i+(x_i\oplus y_i)\ c_i= & \textit{subtraktor:} & c_{i+1}=\overline{x}_iy_i+(\overline{x}_i\oplus y_i)\ c_i= \\ &=x_iy_i+(x_i+y_i)\ c_i=g_i+p_ic_i & =\overline{x}_iy_i+(\overline{x}_i+y_i)\ c_i=g_i+p_ic_i \end{array}$$

$$\begin{array}{c|c} x_i & y_i \\ \hline c_{i+1} & FA/\Sigma & c_i \\ \hline & S_i & \end{array}$$

Schemat dodawania/odejmowania w systemach dwójkowych

W podstawowym układzie dodawania/odejmowania można wyróżnić 3 bloki:

- blok wejściowy do równoległego tworzenia funkcji pomocniczych h_i , g_i , p_i (..= h_i)
- blok wytwarzania przeniesień c_i
- blok tworzenia sum s_i

Sumator kaskadowy RCA (ang. *Ripple-Carry Adder*) – sekwencyjne tworzenie przeniesień (w układzie odejmującym zmienia się tylko struktura bloku wejściowego)

Analiza szybkości dodawania i odejmowania

- * czas sekwencyjnego dodawania/odejmowania n-pozycyjnego jest rzędu nT
- * w systemie dwójkowym: suma lub różnica jest wartością funkcji logicznej 2n zmiennych, którą można wytworzyć w układzie o głębokości logicznej $\lceil \log_2 2n \rceil$

Propagacja przeniesienia

• obliczenie sumy/różnicy na pozycji *i*+1 wymaga użycia przeniesienia z pozycji *i*:

$$s_i = x_i \oplus y_i \oplus c_i = h_i \oplus c_i$$

• kolejne przeniesienia są powiązane rekurencyjnie:

$$c_{i+1} = g_i + p_i c_i$$

- gwarantowany czas wykonania dodawania/odejmowania zależy od szybkości wytworzenia przeniesienia na najwyższej pozycji
- czas *T* wytworzenia sumy/różnicy stały od chwili ustalenia przeniesienia

Inne metody

W sieciach logicznych efekt przyśpieszenia można uzyskać także przez:

- tworzenie i składanie alternatywnych sum pozycyjnych $(s_i^0 = h_i \oplus 0, s_i^1 = h_i \oplus 1)$ oraz grupowych (dla alternatywnych wartości przeniesień wejściowych do grupy pozycji)
- wykorzystanie nadmiarowej reprezentacji argumentów (np. kod SD)

Przyspieszanie dodawania dwuargumentowego

Przyśpieszanie wytwarzania przeniesień

- antycypacja przeniesień (carry look-ahead adder, CLA)
 - tworzenie przeniesień dla kilku (zwykle 4) sąsiednich pozycji
- równoległe wytwarzanie przeniesień (parallel prefix adder, PPA), albo
 - korekcja sum tymczasowych aktualizowanym przeniesieniem (ELM)
- skracanie ścieżki propagacji przeniesienia (carry skip adder, CSKA)

Składanie sum tymczasowych

- sumator z przełączaniem sum częściowych (carry-select adder, CSLA)
 - równoległe wytwarzanie alternatywnych blokowych sum częściowych
 - składanie sum warunkowych (conditional sum adder, COSA)
 - tworzenie wariantowych sum dla bloków 2ⁱ kolejnych pozycji
- korekcja półsum (carry-increment adder, CIA)
 - korekcja sum blokowych przeniesieniami

Składanie sum częściowych jest de facto zrównolegleniem wytwarzania sum wraz z przeniesieniami sterującymi tym składaniem ...

Wytwarzanie i propagacja przeniesień w dodawaniu dwójkowym

Funkcja przeniesienia może mieć jedną z równoważnych form

$$c_{i+1} = x_i y_i + (x_i \oplus y_i) c_i = x_i y_i + (x_i + y_i) c_i$$

ponieważ $a+b=a\oplus b+ab$ (OR(a,b)=XOR(a,b)+ab). Składowymi wyrażenia są:

• funkcja *wytwarzania* (*generowania*) przeniesienia, określająca stan, który wymusza przeniesienie wyjściowe *ci+1*=1, niezależnie od *ci*:

$$g_i = x_i y_i$$
,

• funkcja *przekazywania* (*propagacji*) przeniesienia ($x_i \neq y_i \Rightarrow c_{i+1} = c_i$)

$$p_i = x_i \oplus y_i$$
 lub $p_i = x_i + y_i = \overline{k}_i$

która jednocześnie określa tzw. pół-sumę

$$h_i = x_i \oplus y_i$$

W wyrażeniach określających przeniesienia może też być użyta

• funkcja *wygaszania* (*kasowania*) przeniesienia (wymuszenie c_{i+1} =0)

$$k_i = \overline{x_i + y_i}$$

Wytwarzanie i propagacja przeniesień w odejmowaniu dwójkowym

Funkcja pożyczki (przeniesienia wstecznego) może mieć jedną z form

$$c_{i+1} = \overline{x}_i y_i + (\overline{x}_i \oplus y_i) c_i = \overline{x}_i y_i + (\overline{x}_i + y_i) c_i$$

ponieważ $a+b=a\oplus b+ab$ (OR(a,b)=XOR(a,b)+ab). Składowymi wyrażenia są:

• funkcja *wytwarzania* (*generowania*) pożyczki, określająca stan, który wymusza *pożyczkę* z wyższej pozycji c_{i+1} =1, niezależnie od c_i :

$$g_i = \overline{x}_i y_i$$

• funkcja propagacji (przekazywania) pożyczki ($x_i = y_i \Rightarrow c_{i+1} = c_i$):

$$p_i = \overline{x}_i \oplus y_i$$
 lub $p_i = \overline{x}_i + y_i = \overline{k}_i$

która jednocześnie określa tzw. pół-różnicę

$$h_i = \overline{x}_i \oplus y_i$$

W wyrażeniach określających pożyczki równoważnie może też być użyta

• funkcja *wygaszania* (*kasowania*) pożyczki (wymuszenie c_{i+1} =0)

$$k_i = \overline{\overline{x}_i + y_i}$$

Powiązania przeniesień*)

Struktura logiczna sieci przeniesień i pożyczek jest jednakowa

$$c_{i+1} = g_i + p_i c_i$$

$$c_{i+2} = g_{i+1} + p_{i+1} g_i + p_{i+1} p_i c_i = (g_{i+1} + p_{i+1} g_i) + (p_{i+1} p_i) c_i$$

$$c_{i+3} = g_{i+2} + p_{i+2} (g_{i+1} + p_{i+1} g_i + p_{i+1} p_i c_i) = [g_{i+2} + p_{i+2} (g_{i+1} + p_{i+1} g_i)] + [p_{i+2} (p_{i+1} p_i)] c_i$$

gdzie $g_i = x_i y_i$, $p_i = x_i \oplus y_i$ w dodawaniu, albo $g_i = \overline{x}_i y_i$, $p_i = \overline{x}_i \oplus y_i$ w odejmowaniu. Jak widać, każde z tych wyrażeń zawiera dwa składniki powiązane rekurencyjnie:

- opisujący warunki wystarczające do *generowania* (*wymuszenia*) przeniesienia wyjściowego =1 niezależnie od przeniesienia wejściowego,
- określający *propagację* (*przepływ*) przeniesienia z niższej pozycji do wyjścia.

Oznaczając te składniki jako: $(i \ge j)$

generowanie:
$$G_{i:j} = g_i + p_i g_{i-1} + p_i p_{i-1} g_{i-2} + ... + p_i ... p_{j+1} g_j$$
, $G_{i:i} = g_i$

propagacja:
$$P_{i:j} = p_i p_{i-1} ... p_j, P_{i:i} = p_i$$

otrzymujemy ogólną zależność
$$c_{i+1} = G_{i:j} + P_{i:j}c_j$$

Powiązania funkcji $G_{i:j}$ i $P_{i:j}$ i związki przeniesień można łatwo opisać przy użyciu podstawowego operatora przeniesień znanego też jako operator Brenta-Kunga.

Podstawowy operator przeniesień

Podstawowy operator przeniesień (ang. fundamental carry operator) jest zdefiniowany tak:

$$(f,g) = (x,y) \circ (v,z) = (x + yv, yz)$$

opisuje rekurencyjne powiązanie kolejnych przeniesień:

$$(c_{i+1},\ldots)=(g_i,p_i)\circ(c_i,\ldots)$$

Operator ten jest obustronnie łączny (ang. associative) lecz nie jest przemienny:

$$[(x,y)\circ(q,r)]\circ(a,b) = (x+yq,yr)\circ(a,b) = (x+yq+yra,yrb), (x,y)\circ[(q,r)\circ(a,b)] = (x,y)\circ(q+ra,rb) = (x+yq+yra,yrb).$$

Przy jego użyciu powiązanie dowolnych przeniesień można przedstawić jako $(i \ge j)$:

$$(c_{i+1},...) = (g_i, p_i) \circ (g_{i-1}, p_{i-1}) \circ ... \circ (g_j, p_j) \circ (c_j,...) = (G_{i:j} + P_{i:j}) \circ (c_j,...)$$

Ale każde przeniesienie zależy od c_0 , więc (argument ... jest nieistotny, może być 0)

$$(c_{i+1},...) = (g_i, p_i) \circ ... \circ (g_2, p_2) \circ (g_1, p_1) \circ (g_0, p_0) \circ (c_0,...) = (G_{i:0} + P_{i:0}c_0,...)$$

Rekurencyjnie skojarzone są też funkcje $(G_{i:j}, P_{i:j}) = (g_i, p_i) \circ (g_{i-1}, p_{i-1}) \circ ... \circ (g_j, p_j)$

$$G_{i:j} = G_{i:k} + P_{i,k}G_{k-1:j}, i \ge k > j$$
 $P_{i:j} = P_{i,k}P_{k-1:j}$

Obliczanie funkcji rekurencyjnie skojarzonych – problem prefiksowy.

Tworzenie przeniesień

Z uwagi na łączność operatora Brenta-Kunga, poszczególne przeniesienia:

$$(c_{i+1},0) = (g_i, p_i) \circ \dots \circ (g_3, p_3) \circ (g_2, p_2) \circ (g_1, p_1) \circ (g_0, p_0) \circ (c_0, 0) = (G_{i:0} + P_{i:0}c_0, 0) = (g_i, p_i) \circ \dots \circ (g_3, p_3) \circ (g_2, p_2) \circ (g_1, p_1) \circ (g_0 + p_0c_0, 0) = (G_{i:0}^*, 0)$$

można wytwarzać wieloma sposobami:

– sekwencyjnie (po kolei) – struktura RC (ang. *Ripple-Carry*):
$$(c_1,0) = (g_0,p_0) \circ (c_0,0), (c_2,0) = (g_1,p_1) \circ (c_1,0), (c_3,0) = (g_2,p_2) \circ (c_2,0),...$$

− jednocześnie w grupach po *k* pozycji – struktura CL (ang. *Carry Lookahead*):

$$(c_{i+1},0) = (g_{i},p_{i}) \circ (c_{i},0),$$

$$(c_{i+2},0) = (g_{i+1},p_{i+1}) \circ (g_{i},p_{i}) \circ (c_{i},0),$$

$$(c_{i+3},0) = (g_{i+2},p_{i+2}) \circ (g_{i+1},p_{i+1}) \circ (g_{i},p_{i}) \circ (c_{i},0),$$
...
$$(c_{i+k},0) = (g_{i+k-1},p_{i+k-1}) \circ ... \circ (g_{i+1},p_{i+1}) \circ (g_{i},p_{i}) \circ (c_{i},0),$$

- w pełni równolegle – struktura prefiksowa PP (ang. *Parallel Prefix*), np. tak: $(c_{i+1},0) = (g_i,p_i) \circ ... \circ [(g_5,p_5) \circ (g_4,p_4)] \circ [(g_3,p_3) \circ (g_2,p_2)] \circ [(g_1,p_1) \circ (g_0,p_0)] \circ (c_0,0) = (g_i,p_i) \circ ... \circ [(g_5,p_5) \circ (g_4,p_4)] \circ \{[(g_3,p_3) \circ (g_2,p_2)] \circ [(g_1,p_1) \circ (g_0,p_0)]\} \circ (c_0,0)$

Sumator z antycypacją przeniesień (carry look-ahead adder, CLA)

Kolekcję przeniesień na kolejne pozycje

$$(c_{i+1},0) = (g_i, p_i) \circ (c_i,0),$$

$$(c_{i+2},0) = (g_{i+1}, p_{i+1}) \circ (g_i, p_i) \circ (c_i,0),$$

$$(c_{i+3},0) = (g_{i+2}, p_{i+2}) \circ (g_{i+1}, p_{i+1}) \circ (g_i, p_i) \circ (c_i,0),...$$

można tworzyć jednocześnie jako funkcje logiczne wielu zmiennych (np. k=4):

$$\begin{split} c_{i+1} &= g_i + p_i c_i \\ c_{i+2} &= g_{i+1} + p_{i+1} g_i + p_{i+1} p_i c_i \\ c_{i+3} &= g_{i+2} + p_{i+2} g_{i+1} + p_{i+2} p_{i+1} g_i + p_{i+2} p_{i+1} p_i c_i \\ c_{i+4} &= g_{i+3} + p_{i+3} g_{i+2} + p_{i+3} p_{i+2} g_{i+1} + p_{i+3} p_{i+2} p_{i+1} g_i + p_{i+3} p_{i+2} p_{i+1} p_i c_i \end{split}$$

i odpowiednio wyznaczyć kilka kolejnych bitów sumy, ale:

- złożoność funkcji c_{i+r} rośnie z kwadratem zasięgu r,
- ograniczona jest liczba wejść bramki i jej obciążenie prądowe (technologia)

Wyznaczywszy funkcje ($G_{i,i+r-1}$, $P_{i,i+r-1}$) można za ich pomocą powiązać r-bitowe moduły CLA (typowo r=4) w sumator n-r-pozycyjny, tworząc blok CLG.

Moduł sumatora z antycypacją przeniesień (CLA)

Czterobitowy sumator CLA z sygnałami G,P dla bloku CLG

Alternatywny moduł CLA (bramki 2-we)

Wielomodułowe sumatory z antycypacją przeniesień (CLA)

Sumator zbudowany z kaskady bloków CLA

Sumator 16-bitowy CLA z blokiem wytwarzania przeniesień CLG

Struktura logiczna funkcji G i P

$$(G_{HL}, P_{HL}) = (G_H, P_H) \circ (G_L, P_L) = (G_H + P_H G_L, P_H P_L)$$

W bloku sumatora/subtraktora, który obejmuje pozycje od i do k (HL= i:k) i zawiera sąsiadujące bloki H=k:s+1 oraz L=s:i ($i \le s \le k$) mamy odpowiednio:

$$G_{k:i} = G_{k:s+1} + P_{k:s+1}G_{s:i},$$

 $P_{k:i} = P_{k:s+1}P_{s:i}$

przy tym:
$$G_{k:k} = g_k = x_k y_k$$
 i $P_{k:k} = p_k = x_k + y_k$ (lub $P_{k:k} = h_k = x_k \oplus y_k$).

- wartość bitu sumy s_i zależy od półsumy h_i , oraz przeniesienia c_i : $s_i = h_i \oplus c_i$
- przeniesienie zależy od funkcji G oraz P: $c_i = G_{i-1:0} + P_{i-1:0}c_0$
- wytworzenie funkcji $G_{i:0}$, $P_{i:0}$ można wykonać w sekwencji $\lceil \log_2 n \rceil$ działań

Podstawowa struktura sumatora prefiksowego (PPA)

sumator prefiksowy (ang. parallel prefix adder, PPA) – blok GP:

– przeniesienia równoległe $c_i = G_{i-1:0} + P_{i-1:0}c_0$, zamiast sekwencji $c_{i+1} = g_i + p_i c_i$

$$s_i = h_i \oplus c_i = h_i \oplus (G_{i-1:0} + P_{i-1:0}c_0)$$

- jeśli c_0 =0, to $c_i = G_{i-1:0}$ i wtedy $s_i = h_i \oplus c_i = h_i \oplus G_{i-1:0}$, $s_0 = h_0$

Sumator prefiksowy rozszerzonej precyzji z redukcją rozgałęzienia c_{IN}

problem: silne rozgałęzienie przeniesienia wejściowego c_{in} , gdy $c_0 \neq 0$, ale:

Uniknięcie rozgałęziania $c_{in}=c_0$ w obliczaniu $c_i=G_{i-1:0}+P_{i-1:0}c_0$ można więc uzyskać traktując c_0 jako przeniesienie z pozycji "-1", gdy jednocześnie $c_{-1}=0$ i $s_{-1}=0$. Tak będzie, gdy $x_{-1}=y_{-1}=c_0$. Wtedy $g_{-1}=c_0$, $p_{-1}=0$ oraz $s_{-1}=0$ (poprawne rozszerzenie), co jest równoważne zastąpieniu sygnału g_0 przez

$$g_0^* = G_{0:-1} = g_0 + p_0 g_{-1} = g_0 + p_0 c_0$$

Alternatywny sygnał $p_0^* = P_{0:-1} = p_0 p_{-1} = 0$, bo $p_{-1} = 0$, wtedy $P_{i-1:0}^* = P_{i-1:-1} = 0$ a w sumatorze obejmującym pozycje od -1 do n-1 jest $(s_0 = h_0 \oplus c_0)$:

$$s_i = h_i \oplus c_i = h_i \oplus G_{i-1:-1} = h_i \oplus (G_{i-1:1} + P_{i-1:1}g_0^*) = h_i \oplus G_{i-1:0}^*.$$

Rozwiązanie to nie wnosi dodatkowego opóźnienia – korekta wejściowa wnosi takie opóźnienie jak obliczenie c_i .

Sumator prefiksowy rozszerzonej precyzji z redukcją rozgałęzienia c_{IN}

Jeśli c_0 jest przetworzone w bloku wstępnym, to $c_i = G_{i-1:0}$. Są dwa schematy:

A)
$$(c_{\#},0) = \dots \circ \{(g_3,p_3) \circ (g_2,p_2)\} \circ \{(g_1,p_1) \circ [(g_0,p_0) \circ (c_0,0)]\}$$

B)
$$(c_{\#},0) = ... \circ (g_3,p_3)] \circ [(g_2,p_2) \circ (g_1,p_1)] \circ [(g_0,p_0) \circ (c_0,0)]$$

Dodatkowa korzyść - uproszczone wykrywanie nadmiaru U2:

$$ov = G_{n-1:0} \oplus G_{n-2:0} = (g_{n-1} + p_{n-1}G_{n-2:0}) \oplus G_{n-2:0} = \overline{g}_{n-1}G_{n-2:0}$$

Zasady konstrukcji sieci prefiksowej GP

Węzeł sieci GP realizuje **dwie** funkcje (G_{HL} i P_{HL}) **czterech** zmiennych (G_{H} , P_{H} , G_{L} , P_{L})

$$(G_{HL}, P_{HL}) = (G_H, P_H) \circ (G_L, P_L) = (G_H + P_H G_L, P_H P_L)$$

Zasady tworzenia struktury GP integrującej funkcje G_H , P_H oraz G_L , P_L

- bloki H i L powinny być rozdzielnie sąsiadujące
- bloki H i L nie mogą być rozdzielone innym blokiem
- bloki H i L *mogą mieć część wspólną* funkcje G_{HL} i P_{HL} są **nadmiarowe**

- \square wytwarzanie $G_{i:i}=g_i$ i $P_{i:i}=p_i$, – operator: $(G_{HL},P_{HL})=(G_H,P_H)\circ(G_L,P_L)$
- regularne struktury dla $n=2^k$ wejść (pozycji),
- w innych przypadkach przyjąć $k=\text{int}(1+\log_2 n)$ i usunąć zbędne gałęzie (sieć integrującą 2^{k-1} pozycji połączyć siecią integrującą pozostałe wejścia)

Grafy sieci równoległego generowania i propagacji przeniesienia (PPA)

Graf prefixowy (Sklansky / Ladner-Fischer) (16 b)

- \square wytwarzanie funkcji $G_{i:i}=g_i$ oraz $P_{i:i}=p_i$ \bigcirc przekazywanie G, P bez zmiany
- – operator prefiksowy $(G_{HL}, P_{HL}) = (G_H, P_H) \circ (G_L, P_L)$

Charakterystyki grafów prefiksowych

Ladner-Fischer – log2n poziomów logicznych, minimum elementów *GP* nierównomierne obciążenia (*Sklansky*)

Kogge & Stone – log2n poziomów logicznych, więcej elementów *GP*, rozłożona obciążalność wyjść

Brent-Kung – >log 2*n* poziomów logicznych, mniej elementów *GP*, stała obciążalność wyjść

Han & Carlson −>log2*n* poziomów logicznych, najmniej elementów *GP*, najmniejsza obciążalność wyjść

Parametry sieci GP jako elementy PPA

Typ struktury	liczba ogniw GP	l. poziomów	obciążenie	przełączenia	
RCA	²/3 n	n-1	2	n/2	
Ladner-Fischer	½ n log 2 n	log2n	n/2	¼ nlog2n	
Brent-Kung	$2n-n\log_2 n-2$	$2\log_2 n - 2$	$\log_2 n + 1$	$\sim 3/8 n \log_2 n$	
Kogge & Stone	$n\log_2 n - n + 1$	$\log_2 n$	2	½ n log 2 n	
Han & Carlson	½ n log2n	$\log_2 n + 1$	2	¼ nlog2n	

Sumator ELM - koncepcja*

Obliczona wartość początkowa sumy $h_i = s_{i:i}$ na może ulec zmianie, jeśli $c_i = 1$. Niech $s_{i:r}$ oznacza tymczasową sumę na pozycji i z uwzględnieniem wszystkich wcześniejszych wejść $x_\#$, $y_\#$, począwszy od wejścia x_r , y_r . Mamy:

$$s_{i:r} = h_i \oplus G_{i-1:r},$$

 $s_{i:0} = h_i \oplus (G_{i-1:0} + H_{i-1:0}c_0)$

Z rekurencyjnego powiązania funkcji $G_{i:j}$ wynika dalej, że (i>r>j):

$$\begin{split} s_{i:j} &= h_i \oplus G_{i-1:j} = h_i \oplus G_{i-1:r} \oplus G_{i-1:r} \oplus (G_{i-1:r} + H_{i-1:r}G_{r-1:j}) = \\ &= s_{i:r} \oplus (G_{i-1:r} \oplus (G_{i-1:r} + H_{i-1:r}G_{r-1:j})) = s_{i:r} \oplus \overline{G}_{i-1:r}H_{i-1:r}G_{r-1:j}, \end{split}$$

Metodą indukcji można pokazać, że $\overline{G}_{i:j}H_{i:j} = h_i\overline{G}_{i-1:j}H_{i-1:j} = H_{i:j}$, skąd mamy:

$$\begin{split} s_{i:r} &= h_i \oplus G_{i-1:r}, \\ s_{i:j} &= s_{i:r} \oplus H_{i-1:r} G_{r-1:j}. \end{split}$$

przy tym bitami końcowej sumy są $s_i = s_{i:0}$.

Ponieważ powyższe funkcje są niezależne, więc możliwe jest wytworzenie sumy końcowej w strukturze zawierającej $\log_2 n$ poziomów.

Jeśli $c_0 \neq 0$ należy, jak w sumatorze PPA, przyjąć $g_0^* = g_0 + h_0 c_0$ oraz $h_0^* = 0$.

Sumator ELM - korekcja sum tymczasowych*

Z podanych zależności wynika zasada konstrukcji sumatora, podobna jak PPA

Schemat sumatora ELM (struktura Ladnera-Fischera) przy c_0 =0.

Powiązania sum można także zrealizować w strukturze Kogge'a-Stone'a

Inkrementer i dekrementer

wykonuje działanie X+1 (inkrementer) albo X-1 (dekrementer)

 \rightarrow wystarczy łańcuch półsumatorów (HA) lub półsubtraktorów (HS) półsumator (half adder, HA) – realizuje funkcje $s_i = x_i \oplus c_i$, $c_{i+1} = x_i c_i$ półsubtraktor (half subtracter, HS) – realizuje funkcje $s_i = x_i \oplus c_i$, $c_{i+1} = \overline{x}_i c_i$

Układy inkrementera i dekrementera są *komplementarne*, bo $X-1=\overline{\overline{X}+1}$

układ zliczający – inkrementer/dekrementer ze sprzężeniem $x_i^{(t+1)} = s_i^{(t)}$ i zapamiętywaniem stanu $S(t) = \{s_{k-1}^{(t)}, s_{k-2}^{(t)}, ..., s_1^{(t)}, s_0^{(t)}\}$

Inkrementer i dekrementer prefiksowy

Ponieważ układy inkrementera i dekrementera są *komplementarne*, bo $X-1=\overline{X}+1$, wystarczy zbudować jeden z nich. Przeanalizujemy budowę inkrementera. Założenie: Jedynkę traktujemy jako $c_0=1$, więc argumentami są X, Y=0 i $c_0=1$. Blok wejściowy:

Na każdej pozycji jest:
$$g_i = G_{i:i} = x_i \land 0 = 0$$
, $p_i = P_{i:i} = x_i \oplus 0 = x_i = h_i$. Wobec tego: $(c_{i+1}, 0) = (0, x_i) \circ ... \circ (0, x_3) \circ (0, x_2) \circ (0, x_1) \circ (0, x_0) \circ (1, 0)$

Stąd wynika, że $c_i = P_{i-1:0} = x_{i-1}...x_1x_0$ oraz $s_i = x_i \oplus P_{i-1:0}$

A zatem:

- 1. Blok wejściowy jest zbędny ($g_i = 0$, $p_i = h_i = x_i$)
- 2. Węzłem sieci prefiksowej jest więc bramka iloczynu logicznego $P_{HL} = P_H P_L$
- 3. Blok sumy zawiera 2-wejściowe bramki XOR realizujące $s_i = x_i \oplus P_{i-1:0}$

Dekrementer powstaje przez zanegowanie wszystkich bitów argumentu oraz wszystkich bitów sumy.

SUMATORY WARUNKOWE I INNE

Sumy warunkowe - koncepcja (Sklansky)

L	$x_i + y_i$	1+0	0+0	1+1	1+0	0+1	1+1	1+0	0+1
0	c_{i+1}^0	0	0	1	0	0	1	0	0
	$S_{i:i}^0$	1 <	0	0	1	1/	0	1	1
	c_{i+1}^1	1	0	1	1	1	1	1	_
	$S_{i:i}^1$	0	1	1	0	0	1	0	_
1	c_{2i+2}^0	0		1		1		0	
	$S_{2i+1:2i}^0$	1	0/	0	1	0	0	1	1
	c_{2i+2}^1	0	4	1		1		_	_
	$S_{2i+1:2i}^1$	1	1	1	0	0	1	_	_
2	C_{4i+4}^0	0				1			
	$S_{4i+3:4i}^0$	1	1	0	1	0	0	1	1
	C_{4i+4}	0				_	_	_	_
	$S^1_{4i+3:4i}$	1	1	1	0		_	_	_
	S ³ _{7:0}	1	1	1	0	0	0	1	1

Sumator sum warunkowych (conditional sum adder, COSA)*

Tworzenie alternatywnych sum jedno-, dwu-, cztero-, ośmio-, ...-bitowych

Poziom 0 – sumy i przeniesienia warunkowe dla osobnych bitów (i=0,1,...)

$$x_{i} + y_{i} + 0 = 2c_{i:i}^{0} + s_{i:i}^{0} \text{ oraz } x_{i} + y_{i} + 1 = 2c_{i:i}^{1} + s_{i:i}^{1}$$

$$\mathbf{s}_{i:i} = \{s_{i:i}^{0}, s_{i:i}^{1}\} = \{x_{i} \oplus y_{i}, x_{i} \equiv y_{i}\}$$

$$\mathbf{c}_{i+1} = \{c_{i+1}^{0}, c_{i+1}^{1}\} = \{x_{i}y_{i}, x_{i} + y_{i}\}$$

Poziom p (\Box – złożenie wektorów)

– warunkowe sumy $\mathbf{s}_{2ri+2r-1,2ri}^{\alpha}$ i przeniesienia $c_{2r(i+1)}^{\alpha}$ grup $r=2^p$ bitów,

- dla
$$i=0,1,...,\lceil n\cdot 2^{-p}\rceil - 1$$

$$\mathbf{s}_{2ri+2r-1,2ri}^{\alpha} = \left[c_{2ri+r}^{\alpha} \mathbf{s}_{2ri+2r-1,2ri+r}^{1} + (1-c_{2ri+r}^{\alpha}) \mathbf{s}_{2ri+2r-1,2ri+r}^{1}\right] \|\mathbf{s}_{2ri+r-1,2ri}^{\alpha},$$

$$c_{2r(i+1)}^{\alpha} = c_{2ri+r}^{\alpha} c_{2ri+2r}^{1} + (1-c_{2ri+r}^{\alpha}) c_{2ri+2r}^{0}$$

Końcowy wynik sumowania powstaje na poziomie $k = \lceil \log_2 n \rceil$ $(r = 2^k)$.

Schemat sumatora sum warunkowych

Ośmiobitowy sumator sum warunkowych $T=2\lceil \log_2 2n \rceil$, $A=\frac{1}{2}(n\log_2 n+2n\log_2 n)=3n\log_2 n$

Sumator sterowany przeniesieniem (CSLA)

Sumator multipleksowany sterowany przeniesieniem (carry-select adder) składanie k_i -pozycyjnych alternatywnych sum zależnie od przeniesienia tworzonego w szeregowym łańcuchu propagacji

Schemat logiczny sumatora multipleksowanego sterowanego przeniesieniem

Sumy blokowe obliczane jednocześnie \Rightarrow wyższe bity \rightarrow większe bloki Opóźnienie – > $2\sqrt{2n}$ (optymalna liczba bloków – około $\sqrt{2n}$)

Szybkość działania i złożoność sumatorów

Charakterystyki AT

- sumator pełny 1-bitowy FA A=7, $T=2+2 \rightarrow AT=28$ $2\times XOR$, $1\times OR$, $2\times AND \rightarrow opóźnienie przeniesienia 2, sumy 2+2$
- sumator RCA A=7n, $T=2n \rightarrow AT=14n^2$ $n\times FA \rightarrow$ opóźnienie przeniesienia 2n
- sumator kaskadowy CLA $A \approx 7n$, $T \approx 4 \log n \rightarrow AT \approx 56n \log n$ – $n \times FA \rightarrow \log n$ bloków, opóźnienie przeniesienia $2 \cdot 2 \log n$
- sumator PPA $A \approx 5n + 3n \log \sqrt{n}$, $T \approx 3 + 2\log n \rightarrow AT \approx 3n \log^2 n + 14n \log n$ $\log n$ poziomów GP, opóźnienie przeniesienia $2\log n$
- sumator COSA $A=3n\log n$, $T=2+2\log n \rightarrow AT \approx 6n\log^2 n$
 - $-2\times RCA$, $\log n$ poziomów MPX, opóźnienie przeniesienia $2\cdot \log n$
- sumator CSKA $A \approx 8n$, $T \approx 2 \cdot 2\sqrt{n} \rightarrow AT \approx 32n\sqrt{n}$ – $n \times FA + 2\sqrt{n} \times MPX$, $2\sqrt{n}$ bloków \rightarrow opóźnienie przeniesienia $2 \cdot 2\sqrt{n}$
- sumator CSLA $A \approx 2.7n$, $T \approx 2\sqrt{2n} \rightarrow AT \approx 39 n\sqrt{n}$
 - 2×RCA, $\sqrt{2n}$ bloków, opóźnienie przeniesienia $2 \cdot \sqrt{2n}$

Moduły sumatorów i subtraktorów i ich połączenia (1)

Sumator/subtraktor – układ realizujący dodawanie/odejmowanie na ustalonej liczbie pozycji, wtedy c_0 =0.

Moduł sumatora/subtraktora – element konstrukcyjny realizujący algorytm dodawania/odejmowania pozycyjnego z użyciem przeniesienia/pożyczki.

Podstawowy moduł sumatora/subtraktora dwójkowego – jednopozycyjny sumator/subtraktor dwójkowy (FA/FS) (wejście odjemnej oznaczone):

$$s_{i} = x_{i} \oplus y_{i} \oplus c_{i} = h_{i} \oplus c_{i}$$

$$sumator: \quad c_{i+1} = x_{i}y_{i} + (x_{i} \oplus y_{i}) c_{i} =$$

$$= x_{i}y_{i} + (x_{i} + y_{i}) c_{i} = g_{i} + p_{i}c_{i}$$

$$subtraktor: \quad c_{i+1} = \overline{x}_{i}y_{i} + (\overline{x}_{i} \oplus y_{i}) c_{i} =$$

$$= \overline{x}_{i}y_{i} + (\overline{x}_{i} + y_{i}) c_{i} = g_{i} + p_{i}c_{i}$$

$$= \overline{x}_{i}y_{i} + (\overline{x}_{i} + y_{i}) c_{i} = g_{i} + p_{i}c_{i}$$

$$\begin{array}{c|c} x_i & y_i \\ \hline c_{i+1} & FA/\Sigma & c_i \\ \hline & s_i \end{array}$$

Moduły sumatorów i subtraktorów

Moduł sumatora/subtraktora k-pozycyjnego – element konstrukcyjny realizujący algorytm dodawania/odejmowania jednopozycyjnego w podstawie β^k (2 k)

Połączenia modułów sumatorów i subtraktorów

Podstawowym objawem przekroczenia zakresu w kodzie uzupełnieniowym jest niezgodność pozycji lewostronnego rozszerzenia sumy/różnicy z wartością obliczoną na najwyższej pozycji dodawania/odejmowania. Równoważnym objawem jest niezgodność przeniesień na i z najwyższej pozycji.

Moduł dwójkowego **kodu uzupełnieniowego** (U2) **wytwarza** sygnał niezgodności przeniesień na i z najwyższej pozycji $ov = c_{k+i} \oplus c_{k+i-1}$, moduł dla dwójkowego **kodu naturalnego** (NB) **nie ma** takiego wyjścia.

Moduł przeznaczony do użycia w szybkich układach może mieć również wyprowadzone sygnały modułowej generacji i propagacji przeniesień (np. CLA)