

EXAMEN DE FIN D'ÉTUDES SECONDAIRES 2017

BRANCHE	SECTION(S)	ÉPREUVE ÉCRITE		
		Durée de l'épreuve		
		3 heures		
-1	D -4 C	Date de l'épreuve		
Physique	B et C	01.06.2017		
		Numéro du candidat		

I Champs électrique et magnétique (6+1+4+2=13P)

Une particule α pénètre avec un vecteur vitesse horizontal de norme 100 km/s dans un champ électrique uniforme vertical de norme 720 V/m qui est créé par un condensateur plan. Les armatures du condensateur ont une longueur de 12 cm et sont distantes de 6 cm. Le point d'entrée O, origine d'un repère cartésien, est équidistant des armatures. La particule α quitte le condensateur en un point S qui est situé plus bas que le point d'entrée O.

- 1. Établir les équations horaires du mouvement ainsi que l'équation cartésienne de la trajectoire.
- 2. Calculer le temps que la particule met pour traverser le condensateur.
- 3. Déterminer l'ordonnée du point S et la vitesse de la particule en ce point.
- 4. Le champ magnétique terrestre a une intensité de 48 μT. Calculer le rapport de la force électrique et de la force magnétique maximale en O.

II Satellites (4+2+3+3=12P)

Jupiter possède 67 lunes, dont les quatre les plus grandes ont été découvertes par Galilée en 1610. Les orbites des quatre lunes galiléennes sont en bonne approximation circulaires et possèdent les rayons suivants:

Lune	Io	Europa	Ganymède	Callisto		
rayon de l'orbite (en km)	421 700	671 034	1 070 412	1 882 709		

- 1. Établir les expressions des intensités du vecteur accélération et du vecteur vitesse du centre de gravité des lunes galiléennes en fonction de la masse M_J de Jupiter et de la distance r qui les sépare du centre de gravité de Jupiter.
- 2. Sachant que la masse de Jupiter est égale à 318 fois la masse de la Terre, calculer l'accélération et la vitesse linéaire du centre de gravité de Callisto.
- 3. Énoncer la troisième loi de Kepler pour les lunes de Jupiter. L'utiliser pour montrer que les périodes de révolution des lunes Ganymède, Europa et lo obéissent à la relation $T_G = 2T_E = 4T_I$.
- 4. La lune Carpo se déplace autour de Jupiter sur une trajectoire elliptique (voir figure).

Énoncer la deuxième loi de Kepler pour le système Jupiter-Carpo et en déduire en quel point (A ou B) la vitesse linéaire du centre de gravité de la lune Carpo est plus grande.

III Ondes (4+2+4+2=12P)

- 1. Établir l'équation d'une onde qui se propage dans le sens positif de l'axe des abscisses dans le cas où l'élongation de la source est une fonction sinusoïdale du temps.
- 2. On considère une onde progressive d'équation $y(x,t)=0,1\cdot\sin[10\pi\ (t-0,2x)]$, toutes les grandeurs étant données en unités SI. Calculer la célérité de l'onde ainsi que la vitesse maximale d'un point du milieu de propagation.
- 3. Faire un schéma du dispositif expérimental de l'expérience de Melde. Comment peut-on interpréter la formation de l'onde stationnaire et plus particulièrement celle des nœuds et des ventres de vibration?
- 4. Une corde de guitare devrait vibrer avec une fréquence fondamentale de 196 Hz. La tension de la corde est mal réglée et elle vibre avec une fréquence de 200 Hz. Faut-il augmenter ou diminuer la tension de la corde pour qu'elle vibre correctement ? Justifier.

IV Effet photoélectrique (2+4+(3+2+2)=13P)

- 1. Définir ce que l'on entend par effet photoélectrique et par travail d'extraction.
- 2. Formuler l'hypothèse d'Einstein quant à la nature corpusculaire de la lumière. Quel autre modèle de la lumière connaît-on? Indiquer, pour chacun des modèles de la lumière, le nom d'une expérience historique qui le confirme.
- 3. Une cellule photoélectrique au potassium est éclairée par un laser bleu de puissance 1 mW et de longueur d'onde 400 nm. Le travail d'extraction du potassium vaut 2,25 eV.
 - a) Calculer la vitesse maximale des électrons émis.
 - b) En supposant que seulement 20 % des photons arrivant sur la plaque produisent un effet photoélectrique, calculer le nombre d'électrons qui sont émis par seconde.
 - c) Le travail d'extraction ou la vitesse des électrons expulsés vont-ils varier si on échange le laser bleu contre un laser rouge? Justifier à chaque fois.

V Physique nucléaire (2+2+(3+3)=10P)

Le plutonium 239 est un émetteur α qui peut subir une fission nucléaire sous l'effet d'un bombardement de neutrons.

- 1. Expliquer ce que l'on entend par radioactivité et par fission nucléaire.
- 2. Écrire l'équation de désintégration α du plutonium 239 et préciser les lois de conservation qui ont été utilisées pour trouver l'équation.
- 3. La fission nucléaire du plutonium 239 peut se produire suivant la réaction :

239
Pu + n $\rightarrow ^{98}$ Zr + 139 Xe + 3n

a) À l'aide des données du tableau ci-après, calculer en MeV l'énergie libérée lors de cette réaction.

Noyau	²³⁹ Pu	⁹⁸ Zr	¹³⁹ Xe
Énergie de liaison par nucléon (en keV)	7560,310	8581,507	8311,590

b) En supposant que le neutron qui induit la fission nucléaire possède une énergie cinétique de 15,00 MeV, déterminer sa vitesse par un calcul relativiste.

TABLEAU PÉRIODIQUE DES ÉLÉMENTS

GROUPE

1.0079 8

PERIODE

~

3

http://www.ktf-split.hr/periodni/fr/

VIIIA 4.0026

18

	80			48		7	80		Z	.29	4)	7	22)		z			
Helium	0 20.1	Ze	NEON	8 39.9	Ar	ARGON	36 83.80	K	KRYPTON	131	Xe	XENON	86 (222)	Ru	RADON			
7 VIIA	9 18.998 10 20.180	F	FLUOR	1 35.453 1	ひ	CHLORE	35 79.904 3	Br	BROME	53 126.90	_	JODE	85 (210)	At	ASTATE			
6 VIA 1	8 15.999	0	OXYGÊNE	6 32.065	S	SOUFRE	78.96	Se	SÉLÉNIUM	52 127.60	Te	TELLURE	84 (209)	Po	POLONIUM			
15 VA.	7 14.007	Z	AZOTE	15 30.974	<u></u>	PHOSPHORE	72.64 33 74.922 34	As	ARSENIC	51 121.76	Sp	ANTIMOINE	83 208.98	Bi	ВІЅМОТН			
IIIA 14 IVA 15 VA 16 VIA 17 VIIA	6 12.011	U	CARBONE	13 26.962 14 28.086 15 30.974 16 32.065 17 35.453 18 39.948	S	SILICIUM		Ge	GERMANIUM	45 102.91 46 106.42 47 107.87 48 112.41 49 114.82 50 118.71 51 121.76 52 127.60 53 126.90 54 131.29	Sn	ETAIN	82 207.2	Pb	PLOMB	114 (289)	Umd	UNUNQUADIUM
13 IIIA	5 10.811	8	BORE	13 26.982	A	ISB ALUMINIUM	65.39 31 69.723 32	Ga	GALLIUM	49 114.82	I	MUIDN	81 204.38		THALLIUM			
								Zn	ZINC	48 112.41	Cd	CADMIUM	80 200.59	Hg	MERCURE	112 (285)	Ump	UNUNBIUM
						11 18 12	29 63.546	Cu	CUIVRE	47 107.87	Ag	ARGENT	79 196.97	Au	OR	111 (272)	Uwm Uww	UNUNUNUM
VICE		ATIVE (1)				10	28 58.693	Z	NICKEL	46 106.42	Pd	PALLADIUM	78 195.08	Pt	PLATINE	110 (281)	Umm	UNUNNILIUM
NUMÉRO DU GROUPE MICAL ABSTRACT SER (1986)	(a)	– MASSE ATOMIQUE RELATIVE (!)		ÉLÉMENT	SHIP	6	55.845 27 58.933 28 58.693 29 63.546 30	ပိ	COBALT	45 102.91	Rh	RHODIUM	190.23 77 192.22	-	RIDIUM	109 (268)	MIt	HASSIUM MEITNERIUM UNUNNILIUM UNUNBIUM
NUMÉRO DU GROUPE CHEMICAL ABSTRACT SERVICE (1986)		- MASSE AT		- NOM DE L'ÉLÉMENT		_ - - -		Fe	FER	44 101.07	Ru	MOLYBDENE TECHNÉTIUM RUTHÉNIUM		Os	OSMIUM	89-103 104 (261) 105 (262) 106 (266) 107 (264) 108 (277) 109 (268) 110 (281) 111 (272) 112 (285)	HIS	HASSIUM
	13 IIIA	5 10.811	m	BORE		7 VIIB	25 54.938	Mn	MANGANESE	43 (98) 44	J.	TECHNÉTIUM	75 186.21	Re	RHÊNIUM	107 (264)	IBIn	BOHRIUM
ROUPE S DE L'IUPAC	<i></i>	эмідие—	SYMBOLE			VB 6 VIB 7 VIIB	24 51.996	Cr	CHROME	42 95.94 43	Mo	MOLYBDÊNE	74 183.84	M	TUNGSTÊNE	106 (266)	S)	SEABORGIUM
NUMÉRO DU GROUPE RECOMMANDATIONS DE L'IUPAC	(coca)	NOMBRE ATOMIQUE	S			8	23 50.942	>	VANADIUM	40 91.224 41 92.906 42	S	NIOBIUM	72 178.49 73 180.95 74 183.84 75 186.21 76	La	TANTALE	105 (262)	IDIb	Actinides RUTHERFORDIUM DUBNIUM SEABORGIUM
NL RECOMN						4 IVB	22 47.867	Ë	TITANE	40 91.224	Zr	ZIRCONIUM	72 178.49	Ht	HAFNIUM	104 (261)	IRA	RUTHERFORDIUM
						3	21 44.956	Sc	SCANDIUM	39 88.906	>	YTTRIUM	17-73	La-Lu	Lanthanides	t .	Ac-Lr	Actinides
2 118	9.6	Be	BERYLLIUM	12 24.305	Mg	MAGNESIUM 3	19 39.098 20 40.078 21 44.956 22 47.867 23 50.942 24 51.996 25 54.938 26	Ca	CALCIUM	37 85.468 38 87.62 39 88.906	Sr	STRONTIUM	55 132.91 56 137.33	Ba	BARYUM	87 (223) 88 (226)	Ra	RADIUM
HYDROGÉNE 2	3 6.941		LITHIUM	11 22.990 12 24.305	Z	SODIUM	19 39.098	×	POTASSIUM	37 85.468	Rb	RUBIDIUM	55 132.91	Cs	CESIUM	87 (223)	Fr	FRANCIUM

3

9

~

La masse atomique relative est donnée avec 6 Pure Appl. Chem., 73, No. 4, 667-683 (2001)

n'ont pas de nucléides stables, la valeur entre l'isotope de l'élément ayant la durée de vie la Toutefois, pour les trois éléments Th, Pa et U qui ant une compasition isotopique terrestre connue, une masse atomique est indiquée.

Copyright @ 1998-2002 EniG (eni@kd-split.hr) 68 167.26 69 168.93 70 173.04 71 174.97 LUTÉTIUM YTTERBIUM THULIUM 因了 57 138.91 58 140.12 59 140.91 60 144.24 61 (145) 62 150.36 63 151.96 64 157.25 65 158.93 66 162.50 67 164.93 HOLMIUM H₀ DYSPROSIUM TERBIUM EUROPIUM GADOLINIUM 9 PROMÉTHIUM SAMARIUM SES Pill NEODYME Z Pr Lanthanides Actinides LANTHANE La

103 (262)

MENDELÉVIUM Mid

FERMIUM

BERKELIUM CALIFORNIUM EINSTEINIUM

100 (257) 101 (258) 102 (259)

(252)

66

(251)

(247) 97 (247) 98

96 (243)

95 (244)

94

(237)

92 238.03 93

91 231.04

90 232.04

EN S

の画

Amm

CURIUM

NEPTUNIUM PLUTONIUM AMERICIUM

URANIUM

PROTACTINIUM

THORIUM

ACTINION

(227) Ac 89

Formules trigonométriques

$$\sin^2 x + \cos^2 x = 1$$

$$\cos^2 x = \frac{1}{1 + \tan^2 x}$$

$$\sin^2 x = \frac{tg^2 x}{1 + tg^2 x}$$

$$1 + tg^2x = \frac{1}{\cos^2x}$$

$$\sin (\pi - x) = \sin x$$

 $\cos (\pi - x) = -\cos x$

$$\cos (\pi - x) = -\cos x$$
$$tg (\pi - x) = -tg x$$

$$\sin (\pi + x) = - \sin x$$

$$\cos (\pi + x) = - \cos x$$

$$\tan (\pi + x) = \tan x$$

$$\sin (-x) = - \sin x$$

$$\cos (-x) = \cos x$$

$$tg (-x) = - tg x$$

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x$$

$$\cos\left(\frac{\pi}{2} - x\right) = \sin x$$

$$tg\left(\frac{\pi}{2}-x\right)=\cot g x$$

$$\sin\left(\frac{\pi}{2} + x\right) = \cos x$$

$$\cos\left(\frac{\pi}{2} + x\right) = -\sin x$$

$$tg\left(\frac{\pi}{2} + x\right) = -\cot g x$$

$$\sin (x + y) = \sin x \cos y + \cos x \sin y$$

$$\sin(x - y) = \sin x \cos y - \cos x \sin y$$

$$cos(x + y) = cos x cos y - sin x sin y$$

 $cos(x - y) = cos x cos y + sin x sin y$

$$tg (x + y) = \frac{tg x + tg y}{1 - tg x tg y}$$

$$tg (x - y) = \frac{tg x - tg y}{1 + tg x tg y}$$

$$\sin 2x = 2 \sin x \cos x$$

$$\cos 2x = \cos^2 x - \sin^2 x$$

$$2\cos^2 x = 1 + \cos 2x$$

$$2\sin^2 x = 1 - \cos 2x$$

$$\sin 2x = \frac{2 \operatorname{tg} x}{1 + \operatorname{tg}^2 x}$$

$$\sin 2x = \frac{2 \operatorname{tg} x}{1 + \operatorname{tg}^2 x}$$
 $\cos 2x = \frac{1 - \operatorname{tg}^2 x}{1 + \operatorname{tg}^2 x}$

$$tg 2x = \frac{2 tg x}{1 - tg^2 x}$$

$$\sin 3 x = 3 \sin x - 4 \sin^3 x$$

$$\cos 3x = -3\cos x + 4\cos^3 x$$

$$\sin p + \sin q = 2 \sin \frac{p+q}{2} \cos \frac{p-q}{2}$$

$$\sin p - \sin q = 2 \sin \frac{p-q}{2} \cos \frac{p+q}{2}$$

$$\cos p + \cos q = 2 \cos \frac{p+q}{2} \cos \frac{p-q}{2}$$

$$\cos p - \cos q = -2 \sin \frac{p+q}{2} \sin \frac{p-q}{2}$$

$$tg p + tg q = \frac{\sin (p+q)}{\cos p \cos q}$$
$$\sin (p-q)$$

$$tg p - tg q = \frac{\sin (p-q)}{\cos p \cos q}$$

$$\sin x \cos y = \frac{1}{2} \left[\sin(x+y) + \sin(x-y) \right]$$

$$\cos x \cos y = \frac{1}{2} [\cos(x+y) + \cos(x-y)]$$

$$\sin x \sin y = \frac{1}{2} \left[\cos(x-y) - \cos(x+y) \right]$$

Relevé des principales constantes physiques

Grandeur physique	Symbole usuel	Valeur numérique	Unité	
Constante d'Avogadro	N _A (ou L)	$6,022 \cdot 10^{23}$	mol ⁻¹	
Constante molaire des gaz parfaits	R	8,314	J K ⁻¹ mol ⁻¹	
Constante de gravitation	K (ou G)	6,673 · 10 - 11	$N m^2 kg^{-2}$	
Constante électrique pour le vide	$k = \frac{1}{4\pi\varepsilon_0}$	8,988·109	$N m^2 C^{-2}$	
Célérité de la lumière dans le vide	С	$2,998 \cdot 10^8$	m s ⁻¹	
Perméabilité du vide	μ_0	$4\pi \cdot 10^{-7}$	H m ⁻¹	
Permittivité du vide	$\varepsilon_0 = \frac{1}{\mu_0 c^2}$	8,854·10 ⁻¹²	F m ⁻¹	
Charge élémentaire	e	1,602·10 ⁻¹⁹	С	
Masse au repos de l'électron	m _e	9,1094.10-31	kg	
		5,4858·10 ⁻⁴	u	
		0,5110	MeV/c ²	
Masse au repos du proton	m _p	1,6726·10 ⁻²⁷	kg	
The state of the s	6. 42 1.	1,0073	u	
		938,27	MeV/c ²	
Masse au repos du neutron	m _n	1,6749·10 ⁻²⁷	kg	
		1,0087	u	
		939,57	MeV/c^2	
Masse au repos d'une particule α	m_{α}	6,6447·10 ⁻²⁷	kg	
Masse da repes a sire parent		4,0015	u	
		3727,4	MeV/c ²	
Constante de Planck	h	6,626·10 ⁻³⁴	Js	
Constante de Rydberg de l'atome d'hydrogène	R _H	$1,097 \cdot 10^7$	m ⁻¹	
Rayon de Bohr	r ₁ (ou a ₀)	5,292.10-11	m	
Energie de l'atome d'hydrogène dans l'état fondamental	E_1	-13,59	eV	

Grandeurs liées à la Terre et au Soleil (elles peuvent dépendre du lieu ou du temps)		Valeur utilisée sauf indication contraire			
Composante horizontale du champ magnétique terrestre	Bh	2.10-5	T		
Accélération de la pesanteur à la surface terrestre	g	9,81	m s ⁻²		
Rayon moyen de la Terre	R	6370	km		
Jour sidéral	T	86164	S		
Masse de la Terre	M _T	$5,98 \cdot 10^{24}$	kg		
Masse du Soleil	Ms	$1,99 \cdot 10^{30}$	kg		

Conversion d'unités en usage avec le SI

1 angström 1 électronvolt

= 1 $\overset{\circ}{A}$ = 10⁻¹⁰ m = 1 eV = 1,602·10⁻¹⁹ J = 1 u = 1,6605·10⁻²⁷ kg = 931,49 MeV/c² 1 unité de masse atomique