Wprowadzenie do teorii zbiorów

Lista zadań nr 3.

- 1. Pokaż, że dobry porządek $\langle X, <_X \rangle$ zanurza się (tzn. jest izomorficzny z pewnym podzbiorem) w $\langle \mathbb{R}, < \rangle$ wtedy i tylko wtedy, gdy X jest przeliczalny.
- 1,5 Udowodnij, że obie definicje dodawania (mnożenia) są równoważne.
- 2. Udowodnij, że $\alpha + \beta = \alpha \cup \{\alpha + \gamma : \gamma < \beta\}$.
- 3. Udowodnij, że
- a) $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$;
- b) $\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$.
- 4. Udowodnij, że
- a) $\alpha < \beta \Rightarrow \gamma + \alpha < \gamma + \beta$;
- b) $\alpha < \beta \Rightarrow \alpha + \gamma \leq \beta + \gamma$;
- c) $\alpha \leq \beta \Rightarrow (\exists! \delta) \alpha + \delta = \beta$.
- 5. Udowodnij, że $(\forall \alpha)(\exists \beta)(\exists n \in \omega) Lim(\beta) \land \alpha = \beta + n$.
- 6. Udowodnij, że $\alpha \cdot \beta = \{\alpha \cdot \xi + \eta : \xi < \beta \land \eta < \alpha\}.$
- 7. Zdefiniuj (rekurencyjnie) potęgowanie liczb porządkowych.
- 8. Udowodnij, że liczba ω^{ω} (potęgowanie porządkowe!) jest przeliczalna.
- 9. Wykaż, że jeśli $Lim(\alpha)$, to następujące warunki są równoważne:
- a) $(\forall \beta, \gamma < \alpha) \beta + \gamma < \alpha$;
- b) $(\forall \beta < \alpha) \beta + \alpha = \alpha$;
- c) $(\forall X \subseteq \alpha) \ ot(X) = \alpha \lor ot(\alpha \setminus X) = \alpha;$
- d) $(\exists \delta) \alpha = \omega^{\delta}$.
- 10. Wykaż, że jeśli $\alpha < \beta$, to $R_{\alpha} \subseteq R_{\beta}$.
- 11. Wykaż, że $R_{\alpha} \cap \mathbf{ON} = \alpha$.
- 12. Napisz porządną (rekurencyjną) konstrukcję tcl(x).
- 13. Pokaż, że konstrukcja z zad. 12 jest poprawna (tzn. że zdefiniowany obiekt to istotnie tcl(x)).
- 14. Pokaż, że $x \in y \Rightarrow \operatorname{tcl}(x) \subset \operatorname{tcl}(y)$.
- 15. Pokaż, że $x \in y \Rightarrow \operatorname{rank}(x) < \operatorname{rank}(y)$.

Zadania dodatkowe

16. Napisz formuły ψ_1, ψ_2 , użyte w twierdzeniu o rekursji pozaskończonej do zdefiniowania dodawania i mnożenia liczb porządkowych.