Приложение 1

Значения физических постоянных

Гравитационная постоянная	G = $6.67 \cdot 10^{-11} \text{ m}^3/(\kappa \Gamma \cdot c^2)$
Ускорение свободного падения	g = 9.81 m/c^2
Число Авогадро	$N_A = 6.02 \cdot 10^{26} \text{ 1/кгмоль}$
Газовая постоянная	
Постоянная Больцмана	$k = 1,38 \cdot 10^{-23}$ Дж/К
Скорость света в вакууме	c = $3,00.10^8$ m/c
Элементарный заряд	e = $1,60 \cdot 10^{-19}$ Кл
Масса электрона	
Удельный заряд электрона	
Атомная единица массы	

Приложение 2

ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ И ВЫСШЕЙ МАТЕМАТИКИ

1. Векторная алгебра.

• Вектор — величина, характеризуемая значением, или модулем вектора, и направлением. Графически вектор изображают как отрезок прямой, длина которого в выбранном масштабе равна его модулю. Чтобы обозначить направление, на отрезке с одной стороны ставят стрелку, это — конец вектора. Начало вектора — с другой стороны. С векторами можно выполнять операции сложения, вычитания и умножения, причем результатом умножения может быть скаляр (в скалярном произведении) или вектор (при умножении вектора на число или в векторном произведении).

• Сложение векторов: $\vec{a} + \vec{b} = \vec{c}$. Вектор суммы соединяет начало первого вектора с концом второго, если начало второго вектора приставить к концу первого. Для сложения векторов можно использовать «правило параллелограмма».

- Вычитание векторов: $\vec{a} \vec{b} = \vec{c}$. Вектор разности соединяет конец вычитаемого вектора с концом уменьшаемого, если начала векторов приставить друг к другу.
- Умножение вектора на число (скаляр) не приводит к изменению направления вектора, если число положительное, и приводит к изменению направления на обратное, если число отрицательное. Модуль получившегося вектора равен произведению модуля первоначального вектора на абсолютную величину числа.
- Для скалярного произведения векторов используют обозначения $\vec{a} \cdot \vec{b}$ или (\vec{a}, \vec{b}) . Результат скалярного произведения $\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos \alpha$, где $|\vec{a}| = a$ модуль вектора \vec{a} , $|\vec{b}| = b$ модуль вектора \vec{b} , α угол между векторами, если их начала приставить друг к другу. Произведение $|\vec{a}|\cos \alpha$ можно рассматривать как проекцию вектора \vec{a} на направление, задаваемое вектором \vec{b} . Применив для обозначения проекции a_b , перепишем скалярное произведение в виде $\vec{a} \cdot \vec{b} = a_b \cdot b$. Если проектировать вектор \vec{b} на направление вектора \vec{a} , можно получить $\vec{a} \cdot \vec{b} = a \cdot b_a$.

При вычислении скалярного произведения справедливы следующие правила:

$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a} ,$$

$$\{A\vec{a}\} \cdot \vec{b} = A\{\vec{a} \cdot \vec{b}\} ,$$

постоянная,

$$\{\vec{a} + \vec{b}\} \cdot \vec{c} = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}$$
.

ullet Для векторного произведения используют обозначения $ec{a} imes ec{b}$ или $[ec{a}, ec{b}]$. Модуль вектора-

произведения $|\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin \alpha$, где α - угол между векторами, если их начала приставить друг к другу. Вектор-произведение перпендикулярен плоскости, в которой лежат векторы-сомножители \vec{a}

и \vec{b} , его направление находят по «правилу правого винта»: если первый вектор-сомножитель поворачивать ко второму и использовать это направление для вращения головки винта с правой резьбой, то направления движения (ввинчивания) всего винта определит направление вектора-произведения (на рисунке это вектор \vec{c}).

При вычислении векторного произведения справедливы следующие правила:

$$\{A\vec{a}\} imes \vec{b} = A\{\vec{a} imes \vec{b}\}$$
 , где A – постоянная, $\vec{a} imes \vec{b} = -\vec{b} imes \vec{a}$, $\{\vec{a}+\vec{b}\} imes \vec{c} = \vec{a} imes \vec{c}+\vec{b} imes \vec{c}$.

• В пространстве вектор можно задать двумя точками, началом и концом вектора, каждая из которых имеет три координаты. Поэтому вектор записывают как $\vec{a}(x_1,y_1,z_1;x_2,y_2,z_2)$, где первые три координаты

относятся к началу вектора, три последние — к концу. Для удобства принято помещать начало вектора в начало координат, в таком случае его

случае его записывают как $\vec{a}(x,y,z)$, где $x=x_2-x_1, y=y_2-y_1, z=z_2-z_1$ - координаты конца вектора. Такое представление вектора называют «координатным». В координатном

представлении модуль вектора, то есть его длину, легко определить по теореме Пифагора: $a=|\vec{a}|=\sqrt{x^2+y^2+z^2}$.

• Координатное представление вектора позволяет записать его в виде $\vec{a} = \vec{i} \, x + \vec{j} \, y + \vec{k} \, z$, где \vec{i} , \vec{j} , \vec{k} - единичные векторы, или орты, каждый

из них направлен в положительную сторону осей x, y, z соответственно. По модулю все орты равны единице. Справедливость координатного представления вектора иллюстрирует рисунок, из которого видно, что сложение по правилу параллелограмма трех векторов $\vec{i}x$, $\vec{j}y$, $\vec{k}z$ дает искомый вектор \vec{a} .

• Если векторы записать в координатном представлении как $\vec{a}(x_1,y_1,z_1),\ \vec{b}(x_2,y_2,z_2),\ \vec{c}(x_3,y_3,z_3)$, то операции с ними отвечают следующим правилам.

Сложение $\vec{a} + \vec{b} = \vec{c}$:

$$x_3 = x_1 + x_2$$
, $y_3 = y_1 + y_2$, $z_3 = z_1 + z_2$.

Вычитание $\vec{a} - \vec{b} = \vec{c}$:

$$x = x_1 - x_2$$
, $y = y_1 - y_2$, $z = z_1 - z_2$.

Умножение на число $A \cdot \vec{a} = \vec{c}$:

$$x_3 = Ax_1, \quad y_3 = Ay_1, \quad z_3 = Az_1.$$

Скалярное произведение $(\vec{a}, \vec{b}) = x_1 x_2 + y_1 y_2 + z_1 z_2$.

Правая часть равенства есть результат учета скалярных произведений ортов, входящих в векторы \vec{a} и \vec{b} :

$$\vec{i}\cdot\vec{i}=\vec{j}\cdot\vec{j}=\vec{k}\cdot\vec{k}=1,\quad \vec{i}\cdot\vec{j}=\vec{j}\cdot\vec{i}=\vec{j}\cdot\vec{k}=\vec{k}\cdot\vec{j}=\vec{k}\cdot\vec{i}=\vec{i}\cdot\vec{k}=0\,.$$

Векторное произведение $\vec{c} = \vec{a} \times \vec{b}$:

$$x_3 = y_1 z_2 - z_1 y_2$$
, $y_3 = z_1 x_2 - x_1 z_2$, $z_3 = x_1 y_2 - y_1 x_2$.

Выражения координат вектора-произведения есть результат учета векторных произведений ортов, входящих в векторы \vec{a} и \vec{b} :

$$\begin{split} \vec{i} \times \vec{j} &= \vec{k} \,, \quad \vec{j} \times \vec{k} = \vec{i} \,, \quad \vec{k} \times \vec{i} = \vec{j} \,, \quad \vec{j} \times \vec{i} = -\vec{k} \,, \quad \vec{k} \times \vec{j} = -\vec{i} \,, \\ \vec{i} \times \vec{k} &= -\vec{j} \,, \quad \vec{i} \times \vec{i} = \vec{j} \times \vec{j} = \vec{k} \times \vec{k} = \vec{0} \quad. \end{split}$$

• Пользуясь координатным представлением векторов, можно получить полезные при решении задач векторные тождества (их справедливость следует из равенства левых и правых частей выражений, вычисленных через координаты векторов):

$$\vec{a} \cdot \vec{a} - \vec{b} \cdot \vec{b} = a^2 - b^2 = (\vec{a} - \vec{b})(\vec{a} + \vec{b}),$$

$$\vec{a} \cdot \{\vec{b} \times \vec{c}\} = \vec{c} \{\vec{a} \times \vec{b}\} = \vec{b} \{\vec{c} \times \vec{a}\},$$

$$\vec{a} \times \vec{b} \times \vec{c} = \vec{b} \{\vec{a} \cdot \vec{c}\} - \vec{c} \{\vec{a} \cdot \vec{b}\}.$$

2. Дифференцирование.

- Производной функции f(x) по аргументу x называют предел отношения приращения функции Δf к приращению аргумента Δx , вычисленный при Δx стремящемся к нулю. Для обозначения производной используют запись $\frac{df(x)}{dx}$. Согласно определению $\frac{df(x)}{dx} = \lim_{\Delta x \to 0} \frac{\Delta f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) f(x)}{\Delta x}$.
- В качестве примера найдем производную от x^2 :

$$\frac{d\{x^2\}}{dx} = \lim_{\Delta x \to 0} \frac{(x + \Delta x)^2 - x^2}{\Delta x} = \lim_{\Delta x \to 0} \frac{2x\Delta x + (\Delta x)^2}{\Delta x} = \lim_{\Delta x \to 0} \{2x\} + \lim_{\Delta x \to 0} \{\Delta x\} = 2x.$$

• Производная имеет смысл углового коэффициента γ касательной к кривой f(x) в точке x. Действительно, из рисунка видно, что при вычислении углового коэффициента прямой $\gamma = \frac{\Delta f(x)}{\Delta x}$ предельный переход $\Delta x \to 0$ даст производную

функции $\frac{df(x)}{dx}$. Зная это геометрическое свойство производной, удается отыскать точки максимума и минимума (экстремума) функции. В них касательная к кривой параллельна оси x, а значит, угловой коэффициент касательной и соответствующая ему производная равны нулю: $\gamma = \frac{df(x)}{dx} = 0$. Решая получившееся уравнение, можно определить координаты x экстремумов функции.

• При дифференцировании выполнены следующие правила:

$$\frac{d\{A \cdot f(x)\}}{dx} = A \cdot \frac{df(x)}{dx},$$
 где $A -$

постоянная,

$$\frac{d\{f(x) + \varphi(x)\}}{dx} = \frac{df(x)}{dx} + \frac{d\varphi(x)}{dx},$$
$$\frac{d\{f(x) \cdot \varphi(x)\}}{dx} = \varphi(x) \cdot \frac{df(x)}{dx} + f(x) \cdot \frac{d\varphi(x)}{dx}.$$

• В механике производной по времени является вектор мгновенной скорости, получаемый при дифференцировании радиус-вектора, задающего положение тела в пространстве. При дальнейшем дифференцировании по времени вектора мгновенной скорости получают вектор ускорения. На примере вычисления вектора мгновенной скорости рассмотрим, как проводить дифференцирование вектора.

$$\vec{V} = \frac{d\vec{r}(t)}{dt} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}(t)}{\Delta t} = \lim_{\Delta t \to 0} \frac{\vec{r}(t + \Delta t) - \vec{r}(t)}{\Delta t} = \vec{i} \lim_{\Delta t \to 0} \frac{x(t + \Delta t) - xr(t)}{\Delta t} + \vec{j} \lim_{\Delta t \to 0} \frac{y(t + \Delta t) - y(t)}{\Delta t} + \vec{k} \lim_{\Delta t \to 0} \frac{z(t + \Delta t) - zr(t)}{\Delta t} = \vec{i} \frac{dx(t)}{dt} + \vec{j} \frac{dy(t)}{dt} + \vec{k} \frac{dz(t)}{dt} .$$

Из приведенного расчета следует, что вычисление производной от векторной величины сводится к вычислению трех производных по каждой из ее координат.

3. Интегрирование.

ullet Определенным интегралом от функции f(x) в пределах от a до b называют предел интегральной суммы

 $\sum_{i=1}^{\infty} f(x_i) \cdot \Delta x_i$, полученный разбиении промежутка от a до b на большое количество малых промежутков Δx_i (каждому промежутку соответствует среднее если значение аргумента x_i), малых промежутков количество бесконечно растет, чему соответствует

стремление Δx_i к нулю. Для обозначения определенного интеграла

используют запись
$$\int_{a}^{b} f(x)dx$$
. Согласно определению

 $\int_{a}^{b} f(x) dx = \lim_{\Delta x_{i} \to 0} \sum_{a}^{b} f(x_{i}) \cdot \Delta x_{i}$. Определенный интеграл имеет смысл площади под графиком функции f(x) на промежутке [a, b].

• При вычислении определенного интеграла выполнены следующие правила:

$$\int_{a}^{b} A \cdot f(x) dx = A \cdot \int_{a}^{b} f(x) dx,$$
 где $A -$

постоянная,

$$\int_{a}^{b} \{f(x) + \varphi(x)\} dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} \varphi(x) dx.$$

• Если зафиксировать левый конец ξ_0 промежутка интегрирования, считая правый переменной величиной ξ , то интеграл станет функцией

$$F(\xi)$$
 переменной ξ : $\int_{\xi_0}^{\xi} f(x) dx = F(\xi)$. Вычислим производную от $F(\xi)$

по переменной ξ :

$$\frac{dF(\xi)}{d\xi} = \lim_{\Delta\xi \to 0} \frac{\Delta F(\xi)}{\Delta \xi} = \lim_{\Delta\xi \to 0} \frac{F(\xi + \Delta\xi) - F(\xi)}{\Delta \xi} = \lim_{\Delta\xi \to 0} \frac{f(\xi) \cdot \Delta\xi}{\Delta \xi} = f(\xi),$$

поскольку

приращение ΔF (см. рисунок) $\mathbf{f}(\mathbf{x})$ представляет собой площадь прямоугольника со сторонами $f(\xi)$ и $\Delta \xi$. При замене ξ на x, получается связь функции F(x), называемой первообразной подынтегральной функции f(x), и самой подынтегральной функции: $\frac{dF(x)}{dx} = f(x)$.

• Если положить, что ξ_0 находится левее a и b, то определенный интеграл от a до b можно найти как разность двух площадей под графиком f(x): от ξ_0 до b и от ξ_0 до a, то есть $\int_a^b f(x) dx = F(b) - F(a) = F(x) \Big|_a^b.$ В правой части равенства

использовано принятое обозначение для разности первообразной функции на верхнем и нижнем пределах интегрирования.

- Задача по вычислению определенного интеграла сведена к отысканию первообразной функции, производная от которой равна подынтегральному выражению. Интеграл $\int f(x)dx = F(x)$ носит название неопределенного интеграла и дает значение первообразной. Следует отметить, что в силу произвольности выбора ξ_0 первообразная определена с точностью до произвольной постоянной.
- Воспользуемся связью $\frac{dF(x)}{dx} = f(x)$ и вместо первообразной подставим ее выражение через неопределенный интеграл: $\frac{d\{\int f(x)dx\}}{dx} = f(x)$. Отсюда видно, что операция дифференцирования является обратной по отношению к операции интегрирования.
- В механике определенным интегралом является вектор перемещения $\Delta \vec{r}$ тела за промежуток времени от t_1 до t_2 , находимый как интеграл от вектора мгновенной скорости $\vec{V}(t)$ от момента t_1 до t_2 :

 $\Delta \vec{r} = \int\limits_{t_1}^{t_2} \vec{V}(t) dt = \vec{i} \int\limits_{t_1}^{t_2} V_x(t) dt + \vec{j} \int\limits_{t_1}^{t_2} V_y(t) dt + \vec{k} \int\limits_{t_1}^{t_2} V_z(t) dt$, где $V_x(t)$, $V_y(t)$, $V_z(t)$ - координаты вектора мгновенной скорости, которые можно рассматривать как проекции вектора $\vec{V}(t)$ на координатные оси. Из приведенного расчета следует, что вычисление интеграла от векторной величины сводится к вычислению трех интегралов по каждой из ее координат.

4. Связь функции и ее производной.

- Величины df(x) и dx, входящие в выражение для производной $\frac{df'(x)}{dx}$, носят название дифференциала функции и дифференциала аргумента соответственно. Саму производную можно рассматривать как отношение дифференциалов, при этом, поскольку дифференциалы появляются в результате предельного перехода, они должны быть бесконечно малыми величинами.
- В случае, если производная функции заранее известна (обозначим ее как f'(x)), из выражения $\frac{df(x)}{dx} = f'(x)$ можно найти $df(x) = f'(x) \cdot dx$, в котором дифференциал функции определен через дифференциал

аргумента. Последнее равенство можно проинтегрировать слева и справа, чтобы найти саму функцию: $\int df(x) = \int f'(x) \cdot dx \,, \, \text{ откуда}$ функция $f(x) = \int f'(x) \cdot dx + C$, где C - постоянная интегрирования. В справедливости полученного выражения легко убедиться после вычисления производных от его левой и правой частей.

• Применительно к механике полученное выше соотношение можно, например, использовать при вычислении скорости тела на основе II закона Ньютона, который дает связь производной от скорости и действующей на тело силы: $\frac{d\vec{V}(t)}{dt} = \frac{1}{m}\vec{F}(t) . \ \,$ С помощью указанного соотношения находим $\vec{V}(t) = \frac{1}{m} \int \vec{F}(t) dt + \vec{C}$.

Таблица. Производные и интегралы некоторых функций.

1.1 Производн	110	1.2 Интеграль	
Φ ункция $f(x)$	Производная $\frac{df(x)}{dx}$	Φ ункция $f(x)$	Интеграл $\int f(x)dx$
x^n	nx^{n-1}	x^n	$\frac{1}{n+1}x^{n+1}$
$\ln x$	$\frac{1}{x}$	$\frac{1}{x}$	$\ln x$
$\ln(ax+b)$	$\frac{a}{ax+b}$	$\frac{1}{ax+b}$	$\frac{1}{a}\ln(ax+b)$
e^{x}	e^x	e^x	e^x
e^{ax}	ae ^{ax}	e^{ax}	$\frac{1}{a}e^{ax}$
a^{x}	$a^x \ln a$	a^{x}	$\frac{a^x}{\ln a}$
sin x	$\cos x$	sin x	$-\cos x$
sin ax	a cos ax	sin ax	$-\frac{1}{a}\cos ax$
cos x	$-\sin x$	cos x	sin x
cos ax	$-a\sin ax$	cos ax	$\frac{1}{a}\sin ax$
tgx	$\frac{1}{\cos^2 x}$	$\sin^2 x$	$\frac{1}{2}x + \frac{1}{4}\sin 2x$
ctgx	$-\frac{1}{\sin^2 x}$	$\frac{1}{\sin x}$	$\ln \left tg \frac{x}{2} \right $