

Handbuch

HIMax[®]

X-DI 64 51

Digitales Eingangsmodul

Alle in diesem Handbuch genannten HIMA Produkte sind mit dem Warenzeichen geschützt. Dies gilt ebenfalls, soweit nicht anders vermerkt, für weitere genannte Hersteller und deren Produkte.

HIQuad®, HIQuad®X, HIMax®, HIMatrix®, SILworX®, XMR®, HICore® und FlexSILon® sind eingetragene Warenzeichen der HIMA Paul Hildebrandt GmbH.

Alle technischen Angaben und Hinweise in diesem Handbuch wurden mit größter Sorgfalt erarbeitet und unter Einschaltung wirksamer Kontrollmaßnahmen zusammengestellt. Bei Fragen bitte direkt an HIMA wenden. Für Anregungen, z. B. welche Informationen noch in das Handbuch aufgenommen werden sollen, ist HIMA dankbar.

Technische Änderungen vorbehalten. Ferner behält sich HIMA vor, Aktualisierungen des schriftlichen Materials ohne vorherige Ankündigungen vorzunehmen.

Alle aktuellen Handbücher können über die E-Mail-Adresse documentation@hima.com angefragt werden.

© Copyright 2019, HIMA Paul Hildebrandt GmbH Alle Rechte vorbehalten.

Kontakt

HIMA Paul Hildebrandt GmbH Postfach 1261 68777 Brühl

Tel.: +49 6202 709-0
Fax: +49 6202 709-107
E-Mail: info@hima.com

	Änderungen	Art der Ä	nderung
index		technisch	redaktionell
4.00	Erstausgabe des Handbuchs zu SILworX V4	Х	Х
11.00	Aktualisierte Ausgabe zu SILworX V11	Х	Х

X-DI 64 51 Inhaltsverzeichnis

Inhaltsverzeichnis

1	Einleitung	5
1.1	Aufbau und Gebrauch des Handbuchs	5
1.2	Zielgruppe	5
1.3	Darstellungskonventionen	6
1.3.1 1.3.2	Sicherheitshinweise Gebrauchshinweise	6 7
2	Sicherheit	8
2.1	Bestimmungsgemäßer Einsatz	8
2.1.1 2.1.2	Umgebungsbedingungen ESD-Schutzmaßnahmen	8 8
2.2	Restrisiken	8
2.3	Sicherheitsvorkehrungen	8
3	Produktbeschreibung	9
3.1	Sicherheitsfunktion	9
3.1.1	Reaktion im Fehlerfall	9
3.2	Lieferumfang	9
3.3	Typenschild	10
3.4	Aufbau	11
3.4.1	Blockschaltbild	11
3.4.2	Anzeige	12
3.4.3 3.4.4	Modul-Statusanzeige Systembusanzeige	14 15
3.4.5	E/A-Anzeige	15
3.5	Produktdaten	16
3.6	Connector Boards	18
3.6.1	Mechanische Codierung von Connector Boards	18
3.6.2	Codierung Connector Boards X-CB 006 5x	19
3.6.3 3.6.4	Connector Boards mit Schraubklemmen Klemmenbelegung Connector Boards mit Schraubklemmen	20 21
3.6.5	Connector Boards mit Kabelstecker	23
3.6.6	Steckerbelegung Connector Boards mit Kabelstecker	24
3.7	Systemkabel X-CA 003	25
3.7.1	Codierung Kabelstecker	26
4	Inbetriebnahme	27
4.1	Montage	27
4.1.1	Beschaltung nicht benutzter Eingänge	27
4.2	Einbau und Ausbau des Moduls	28
4.2.1	Montage eines Connector Boards	28
4.2.2	Modul einbauen und ausbauen	30
4.3	Konfiguration des Moduls in SILworX	32
4.3.1 4.3.2	Register Modul Register F/A Submodul DI64, 51	33 34
4.3.2	Register E/A-Submodul DI64_51 Register E/A-Submodul DI64_51: Kanäle	34 35
4.3.4	Beschreibung Submodul-Status [DWORD]	36

HI 801 176 D Rev. 11.00 Seite 3 von 52

Inhaltsve	erzeichnis	X-DI 64 51
4.3.5	Beschreibung <i>Diagnose-Status</i> [DWORD]	37
4.4	Anschlussvarianten	38
4.4.1 4.4.2	Eingangsverschaltungen Anschluss von Transmitter über Field Termination Assembly	38 40
5	Betrieb	41
5.1	Bedienung	41
5.2	Diagnose	41
6	Instandhaltung	42
6.1	Instandhaltungsmaßnahmen	42
7	Außerbetriebnahme	43
8	Transport	44
9	Entsorgung	45
	Anhang	47
	Glossar	47
	Abbildungsverzeichnis	48
	Tabellenverzeichnis	49
	Index	50

Seite 4 von 52 HI 801 176 D Rev. 11.00

X-DI 64 51 1 Einleitung

1 Einleitung

Das vorliegende Handbuch beschreibt die technischen Eigenschaften des Moduls und seine Verwendung. Das Handbuch enthält Informationen über die Installation, die Inbetriebnahme und die Konfiguration in SILworX.

1.1 Aufbau und Gebrauch des Handbuchs

Der Inhalt dieses Handbuchs ist Teil der Hardware-Beschreibung des programmierbaren elektronischen Systems HIMax.

Das Handbuch ist in folgende Hauptkapitel gegliedert:

- Einleitung
- Sicherheit
- Produktbeschreibung
- Inbetriebnahme
- Betrieb
- Instandhaltung
- Außerbetriebnahme
- Transport
- Entsorgung

Zusätzlich sind die folgenden Dokumente zu beachten:

Dokument	Inhalt	Dokumenten-Nr.
HIMax Systemhandbuch	Hardware-Beschreibung HIMax System	HI 801 000 D
HIMax Sicherheitshandbuch	Sicherheitsfunktionen des HIMax Systems	HI 801 002 D
HIMax Wartungshandbuch	Beschreibung wichtiger Tätigkeiten zum Betrieb und Wartung	HI 801 170 D
Kommunikationshandbuch	Beschreibung der safe ethernet Kommunikation und der verfügbaren Protokolle	HI 801 100 D
Automation Security Handbuch	Beschreibung von Automation Security Aspekten bei HIMA Systemen	HI 801 372 D
SILworX Erste Schritte Handbuch	Einführung in SILworX	HI 801 102 D
SILworX Online-Hilfe (OLH)	SILworX Bedienung	

Tabelle 1: Zusätzlich geltende Handbücher

Die aktuellen Handbücher können über die E-Mail-Adresse documentation@hima.com angefragt werden. Für registrierte Kunden stehen die Produktdokumentationen im HIMA Extranet als Download zur Verfügung.

1.2 Zielgruppe

Dieses Dokument wendet sich an Planer, Projekteure, Programmierer und Personen, die zur Inbetriebnahme, zur Wartung und zum Betreiben von Automatisierungsanlagen berechtigt sind. Vorausgesetzt werden spezielle Kenntnisse auf dem Gebiet der sicherheitsbezogenen Automatisierungssysteme.

HI 801 176 D Rev. 11.00 Seite 5 von 52

1 Einleitung X-DI 64 51

1.3 Darstellungskonventionen

Zur besseren Lesbarkeit und zur Verdeutlichung gelten in diesem Dokument folgende Schreibweisen:

Fett Hervorhebung wichtiger Textteile.

Bezeichnungen von Schaltflächen, Menüpunkten und Registern im

Programmierwerkzeug, die angeklickt werden können.

Kursiv Parameter und Systemvariablen, Referenzen.

Courier Wörtliche Benutzereingaben.

RUN Bezeichnungen von Betriebszuständen (Großbuchstaben). Kap. 1.2.3 Querverweise sind Hyperlinks, auch wenn sie nicht besonders

gekennzeichnet sind.

Im elektronischen Dokument (PDF): Wird der Mauszeiger auf einen Hyperlink positioniert, verändert er seine Gestalt. Bei einem Klick springt

das Dokument zur betreffenden Stelle.

Sicherheits- und Gebrauchshinweise sind besonders gekennzeichnet.

1.3.1 Sicherheitshinweise

Um ein möglichst geringes Risiko zu gewährleisten, sind die Sicherheitshinweise unbedingt zu befolgen.

Die Sicherheitshinweise im Dokument sind wie folgt dargestellt.

- Signalwort: Warnung, Vorsicht, Hinweis.
- Art und Quelle des Risikos.
- Folgen bei Nichtbeachtung.
- Vermeidung des Risikos.

Die Bedeutung der Signalworte ist:

- Warnung: Bei Missachtung droht schwere K\u00f6rperverletzung bis Tod.
- Vorsicht: Bei Missachtung droht leichte K\u00f6rperverletzung.
- Hinweis: Bei Missachtung droht Sachschaden.

SIGNALWORT

Art und Quelle des Risikos! Folgen bei Nichtbeachtung. Vermeidung des Risikos.

HINWEIS

Art und Quelle des Schadens! Vermeidung des Schadens.

Seite 6 von 52 HI 801 176 D Rev. 11.00

X-DI 64 51 1 Einleitung

1.3.2 Gebrauchshinweise Zusatzinformationen sind nach folgendem Beispiel aufgebaut: An dieser Stelle steht der Text der Zusatzinformation. Nützliche Tipps und Tricks erscheinen in der Form: TIPP An dieser Stelle steht der Text des Tipps.

HI 801 176 D Rev. 11.00 Seite 7 von 52

2 Sicherheit X-DI 64 51

2 Sicherheit

Sicherheitsinformationen, Hinweise und Anweisungen in diesem Dokument unbedingt lesen. Das Produkt nur unter Beachtung aller Richtlinien und Sicherheitsrichtlinien einsetzen.

Dieses Produkt wird mit SELV oder PELV betrieben. Vom Produkt selbst geht kein Risiko aus. Einsatz im Ex-Bereich nur mit zusätzlichen Maßnahmen erlaubt.

2.1 Bestimmungsgemäßer Einsatz

HIMax Komponenten sind zum Aufbau von sicherheitsbezogenen Steuerungssystemen vorgesehen.

Für den Einsatz der Komponenten im HIMax System sind die nachfolgenden Bedingungen einzuhalten.

2.1.1 Umgebungsbedingungen

Die in diesem Handbuch genannten Umgebungsbedingungen sind beim Betrieb des HIMax Systems einzuhalten. Die Umgebungsbedingungen sind in den Produktdaten aufgelistet.

2.1.2 ESD-Schutzmaßnahmen

Nur Personal, das Kenntnisse über ESD-Schutzmaßnahmen besitzt, darf Änderungen oder Erweiterungen des Systems oder den Austausch von Komponenten durchführen.

HINWEIS

Schäden am HIMax System durch elektrostatische Entladung!

- Für die Arbeiten einen antistatisch gesicherten Arbeitsplatz benutzen und ein Erdungsband tragen.
- Bei Nichtbenutzung Komponente elektrostatisch geschützt aufbewahren, z. B. in der Verpackung.

2.2 Restrisiken

Von einem HIMA System selbst geht kein Risiko aus.

Restrisiken können ausgehen von:

- Fehlern in der Projektierung.
- Fehlern im Anwenderprogramm.
- Fehlern in der Verdrahtung.

2.3 Sicherheitsvorkehrungen

Am Einsatzort geltende Sicherheitsbestimmungen beachten und vorgeschriebene Schutzausrüstung tragen.

Seite 8 von 52 HI 801 176 D Rev. 11.00

3 Produktbeschreibung

Das Modul X-DI 64 51 ist ein digitales NonSIL-Eingangsmodul und für den Einsatz im programmierbaren elektronischen System (PES) HIMax bestimmt.

Das Modul dient zur Auswertung von bis zu 64 digitalen Eingangssignalen. Die digitalen Eingänge sind stromziehende Eingänge für 24 VDC Signale gemäß Typ 3 der IEC 61131-2.

Das Modul ist auf allen Steckplätzen im Basisträger einsetzbar, ausgenommen auf den Steckplätzen für die Systembusmodule, näheres im Systemhandbuch HI 801 000 D.

Das Modul kann zusammen mit sicherheitsbezogenen Modulen und anderen NonSIL-Modulen in einem Basisträger betrieben werden. Eine redundante Verschaltung von sicherheitsbezogenen und NonSIL-Modulen ist nicht erlaubt.

Das Modul ist rückwirkungsfrei. Dies beinhaltet speziell EMV, elektrische Sicherheit, Kommunikation zu X-SB und X-CPU, und das Anwenderprogramm.

Modul und Connector Board sind mechanisch codiert, siehe Kapitel 3.6. Die Codierung schließt den Einbau eines nicht passenden Moduls aus.

Die Normen, nach denen die Module und das HIMax System geprüft und zertifiziert sind, können dem HIMax Sicherheitshandbuch HI 801 002 D entnommen werden.

Die Zertifikate und die EU-Baumusterprüfbescheinigung befinden sich auf der HIMA Webseite.

3.1 Sicherheitsfunktion

Das Modul wertet die digitalen Eingangssignale aus und stellt diese dem Anwenderprogramm zur Verfügung.

Das Modul führt keine sicherheitsbezogenen Funktionen aus.

Parameter und Status des Moduls dürfen nicht für Sicherheitsfunktionen verwendet werden.

3.1.1 Reaktion im Fehlerfall

Bei Fehlern liefern die zugewiesenen Eingangsvariablen den Initialwert (Standardwert = 0) an das Anwenderprogramm.

Damit im Fehlerfall die Eingangsvariablen den Wert 0 an das Anwenderprogramm liefern, müssen die Initialwerte auf 0 gesetzt werden.

Das Modul aktiviert die LED Error auf der Frontplatte.

3.2 Lieferumfang

Das Modul benötigt zum Betrieb ein passendes Connector Board. Bei Verwendung eines Field Termination Assembly (FTA) wird ein Systemkabel benötigt, um das Connector Board mit dem FTA zu verbinden. Die Connector Boards, Systemkabel und FTAs gehören nicht zum Lieferumfang des Moduls.

Die Beschreibung der Connector Boards erfolgt in Kapitel 3.7, die der Systemkabel in Kapitel 3.8. Die FTAs sind in eigenen Handbüchern beschrieben.

HI 801 176 D Rev. 11.00 Seite 9 von 52

3.3 Typenschild

Das Typenschild enthält folgende wichtige Angaben:

- Produktname
- Prüfzeichen
- Barcode (2D-Code oder Strichcode)
- Teilenummer (Part-No.)
- Hardware-Revisionsindex (HW-Rev.)
- Betriebssystem-Revisionsindex (OS-Rev.)
- Versorgungsspannung (Power)
- Ex-Angaben (wenn zutreffend)
- Produktionsjahr (Prod-Year:)

Bild 1: Typenschild exemplarisch

Seite 10 von 52 HI 801 176 D Rev. 11.00

3.4 Aufbau

Das Modul ist mit 64 digitalen Eingängen (24 V) für digitale Signale von elektromechanischen Schaltgeräten (Kontaktgeber) und Näherungsschaltern (2-Draht) ausgestattet. Zur sicheren Erkennung eines High-Pegels am digitalen Eingang muss die Spannungs- und die Stromschwelle (siehe Tabelle 7) überschritten werden.

Die acht kurzschlussfesten Speisungen (S1+ bis S8+) versorgen je acht Speiseausgänge. Jedem digitalen Eingang ist ein Speiseausgang zugeordnet.

Das Prozessorsystem des E/A-Moduls steuert und überwacht die E/A-Ebene. Die Daten und Zustände des E/A-Moduls werden über den redundanten Systembus den Prozessormodulen übermittelt. Der Systembus ist aus Gründen der Verfügbarkeit redundant ausgeführt. Die Redundanz ist nur gewährleistet, wenn beide Systembusmodule in den Basisträger gesteckt und in SILworX konfiguriert wurden.

LEDs zeigen den Status der digitalen Eingänge auf der Anzeige an, siehe Kapitel 3.4.2.

3.4.1 Blockschaltbild

Nachfolgendes Blockschaltbild zeigt die Struktur des Moduls:

Bild 2: Blockschaltbild

HI 801 176 D Rev. 11.00 Seite 11 von 52

3.4.2 Anzeige

Nachfolgende Abbildung zeigt die Frontansicht des Moduls mit den LEDs:

Bild 3: Frontansicht

Seite 12 von 52 HI 801 176 D Rev. 11.00

Die LEDs zeigen den Betriebszustand des Moduls an. Dabei sind alle LEDs im Zusammenhang zu betrachten. Die LEDs des Moduls sind in folgende Kategorien unterteilt:

- Modul-Statusanzeige (Run, Error, Stop, Init).
- Systembusanzeige (A, B).
- E/A-Anzeige (DI 1 ... 64, Field).

Nach dem Zuschalten der Versorgungsspannung erfolgt immer ein LED-Test, bei dem alle LEDs für mindestens 2 s leuchten. Bei zweifarbigen LEDs erfolgt während des Tests einmalig ein Farbwechsel.

Definition der Blinkfrequenzen

In der folgenden Tabelle sind die Blinkfrequenzen definiert:

Definition	Blinkfrequenz
Blinken1	Lang (600 ms) an, lang (600 ms) aus.
Blinken2	Kurz (200 ms) an, kurz (200 ms) aus, kurz (200 ms) an, lang (600 ms) aus.
Blinken-x	Ethernet-Kommunikation: Aufblitzen im Takt der Datenübertragung.

Tabelle 2: Blinkfrequenzen der LEDs

Einige LEDs signalisieren Warnungen (Ein) und Fehler (Blinken1), siehe nachfolgende Tabellen. Die Anzeige von Fehlern hat Priorität gegenüber der Anzeige von Warnungen. Bei der Anzeige von Fehlern können Warnungen nicht angezeigt werden.

HI 801 176 D Rev. 11.00 Seite 13 von 52

3.4.3 Modul-Statusanzeige

Diese LEDs sind oben auf der Frontplatte angeordnet.

LED	Farbe	Status	Bedeutung
Run	Grün	Ein	Modul im Zustand RUN, Normalbetrieb.
		Blinken1	Modul im Zustand
			STOPP / BS WIRD GELADEN
		Aus	Modul nicht im Zustand RUN,
			weitere Status LEDs beachten.
Error	Rot	Ein	Systemwarnung, z. B.:
			Fehlende Lizenz für Zusatzfunktionen
			(Kommunikationsprotokolle), Testbetrieb.
		Dlinkond	Temperaturwarnung Sustantialian - B.
		Blinken1	Systemfehler, z. B.: Durch Selbsttest festgestellter interner Modulfehler
			 Durch Selbsttest festgestellter interner Modulfehler, z. B. Hardware-Fehler oder Fehler der
			Spannungsversorgung.
			 Fehler beim Laden des Betriebssystems
		Aus	Kein Fehler festgestellt
Stop	Gelb	Ein	Modul im Zustand
			STOPP / GÜLTIGE KONFIGURATION
		Blinken1	Modul in einem der folgenden Zustände:
			 STOPP / FEHLERHAFTE KONFIGURATION
			STOPP / BS WIRD GELADEN
		Aus	Modul nicht im Zustand STOPP,
			weitere Status LEDs beachten.
Init	Gelb	Ein	Modul im Zustand INIT
		Blinken1	Modul in einem der folgenden Zustände:
			• LOCKED
			STOPP / BS WIRD GELADEN
		Aus	Modul in keinem der beschriebenen Zustände,
			weitere Status LEDs beachten.

Tabelle 3: Modul-Statusanzeige

Seite 14 von 52 HI 801 176 D Rev. 11.00

3.4.4 Systembusanzeige

Die LEDs für die Systembusanzeige sind mit Sys Bus gekennzeichnet.

LED	Farbe	Status	Bedeutung
А	<u>Grün</u>	Ein	Physikalische und logische Verbindung zum Systembusmodul in Steckplatz 1.
		Blinken1	Keine Verbindung zum Systembusmodul in Steckplatz 1.
	Gelb	Blinken1	Physikalische Verbindung zum Systembusmodul in Steckplatz 1 hergestellt.
			Keine Verbindung zu einem (redundanten) Prozessormodul im Systembetrieb.
В	Grün	Ein	Physikalische und logische Verbindung zum Systembusmodul in Steckplatz 2.
		Blinken1	Keine Verbindung zum Systembusmodul in Steckplatz 2.
	Gelb	Blinken1	Physikalische Verbindung zum Systembusmodul in Steckplatz 2 hergestellt.
			Keine Verbindung zu einem (redundanten) Prozessormodul im Systembetrieb.
A+B	Aus	Aus	Keine physikalische und keine logische Verbindung zu den Systembusmodulen in Steckplatz 1 und 2.

Tabelle 4: Systembusanzeige

3.4.5 E/A-Anzeige

Die LEDs der E/A-Anzeige sind mit *Channel* überschrieben.

LED	Farbe	Status	Bedeutung
DI 1 64	<mark>Gelb</mark>	Ein	High-Pegel liegt an
		Blinken2	Kanalfehler
		Aus	Low-Pegel liegt an
Field	Rot	Blinken2	Ohne Funktion
		Aus	

Tabelle 5: E/A-Anzeige

HI 801 176 D Rev. 11.00 Seite 15 von 52

3.5 Produktdaten

Allgemein	
Versorgungsspannung	24 VDC, -15 +20 %, w _s ≤ 5 %,
	SELV, PELV
Stromaufnahme	250 mA bei 24 VDC (ohne Kanäle und Speisungen)
	Max. 800 mA (bei max. Ausgangsstrom der Speisungen)
Zykluszeit des Moduls	2 ms
Schutzklasse	Schutzklasse III nach IEC/EN 61131-2
Betriebstemperatur	0 +60 °C
Transport- und Lagertemperatur	-40 +70 °C
Feuchtigkeit	Max. 95 % relative Feuchte, nicht kondensierend
Verschmutzung	Verschmutzungsgrad II nach IEC/EN 60664-1
Aufstellhöhe	< 2000 m
Schutzart	IP20
Abmessungen (H x B x T) in mm	310 x 29,2 x 230
Masse	Max. 1 kg

Tabelle 6: Produktdaten

Bild 4: Ansichten

Seite 16 von 52 HI 801 176 D Rev. 11.00

Digitale Eingänge	
Anzahl der Eingänge (Kanalzahl)	64 unipolar mit Bezugspol DI- / L-,
	voneinander nicht galvanisch getrennt
Eingangsart	Stromziehend, 24 VDC, Typ 3 nach IEC 61131-2
Nenneingangsspannung	0 24 V
Gebrauchsbereich Eingangsspannung	-3 30 V (strombegrenzt auf max. 2,6 mA)
Schaltpunkt	Typ. 9,4 V ± 0,8 V (2,1 mA ± 0,3 mA)

Tabelle 7: Technische Daten der digitalen Eingänge

Speisung	
Anzahl Speisungen	8 mit jeweils 8 Ausgängen
Ausgangsspannung Speisung	Versorgungsspannung - 2,5 VDC
Ausgangsstrom Speisung	100 mA pro Gruppe
	Kurzschlussfest
Zuordnung der Speiseausgänge	
Zur Speisung muss der jeweils de	em Eingang zugeordnete Speiseausgang verwendet werden!
Speisung S1+	DI1+ DI8+
Speisung S2+	DI9+ DI16+
Speisung S3+	DI17+ DI24+
Speisung S4+	DI25+ DI32+
Speisung S5+	DI33+ DI40+
Speisung S6+	DI41+ DI48+
Speisung S7+	DI49+ DI56+
Speisung S8+	DI57+ DI64+

Tabelle 8: Technische Daten der Speisung

HI 801 176 D Rev. 11.00 Seite 17 von 52

3.6 Connector Boards

Ein Connector Board verbindet das Modul mit der Feldebene. Modul und Connector Board bilden zusammen eine funktionale Einheit. Vor dem Einbau des Moduls Connector Board auf dem vorgesehenen Steckplatz montieren.

Folgende Connector Boards sind für das Modul verfügbar:

Connector Board	Beschreibung
X-CB 006 51	Mono Connector Board mit Schraubklemmen
X-CB 006 52	Redundantes Connector Board mit Schraubklemmen
X-CB 006 53	Mono Connector Board mit Kabelstecker
X-CB 006 54	Redundantes Connector Board mit Kabelstecker

Tabelle 9: Verfügbare Connector Boards

3.6.1 Mechanische Codierung von Connector Boards

E/A-Module und Connector Boards sind ab Hardware-Revisionsindex (HW-Rev.) 00 mechanisch codiert. Durch die Codierung werden fehlerhafte Bestückungen ausgeschlossen und damit Rückwirkungen auf redundante Module und das Feld verhindert. Zusätzlich dazu hat eine fehlerhafte Bestückung keinen Einfluss auf das HIMax System, da nur in SILworX korrekt konfigurierte Module in RUN gehen.

E/A-Module und die zugehörigen Connector Boards sind mit einer mechanischen Codierung in Form von Keilen versehen. Die Codierkeile in der Federleiste des Connector Boards greifen in Aussparungen der Messerleiste des E/A-Modulsteckers ein, siehe Bild 5.

Codierte E/A-Module können nur auf die zugehörigen Connector Boards aufgesteckt werden.

Seite 18 von 52 HI 801 176 D Rev. 11.00

Bild 5: Beispiel einer Codierung

Codierte E/A-Module können auf uncodierte Connector Boards gesteckt werden. Uncodierte E/A-Module können nicht auf codierte Connector Boards gesteckt werden.

3.6.2 Codierung Connector Boards X-CB 006 5x

Folgende Tabelle zeigt die Position der Codierkeile am E/A-Modulstecker:

a7	a13	a20	a26	e7	e13	e20	e26
			X	X		X	

Tabelle 10: Position der Codierkeile

HI 801 176 D Rev. 11.00 Seite 19 von 52

3.6.3 Connector Boards mit Schraubklemmen

Bild 6: Connector Boards mit Schraubklemmen

Seite 20 von 52 HI 801 176 D Rev. 11.00

3.6.4 Klemmenbelegung Connector Boards mit Schraubklemmen

Pin-Nr.	Bezeichnung	Signal	Pin-Nr.	Bezeichnung	Signal
1	101	S1+	1	102	S1+
2	01b	DI1+	2	02b	DI2+
3	03b	DI3+	3	04b	DI4+
4	05b	DI5+	4	06b	DI6+
5	07b	DI7+	5	08b	DI8+
6	201	DI-	6	202	DI-
7	103	S2+	7	104	S2+
8	09b	DI9+	8	10b	DI10+
9	11b	DI11+	9	12b	DI12+
10	13b	DI13+	10	14b	DI14+
11	15b	DI15+	11	16b	DI16+
12	203	DI-	12	204	DI-
Pin-Nr.	Bezeichnung	Signal	Pin-Nr.	Bezeichnung	Signal
1	105	S3+	1	106	S3+
2	17b	DI17+	2	18b	DI18+
3	19b	DI19+	3	20b	DI20+
4	21b	DI21+	4	22b	DI22+
5	23b	DI23+	5	24b	DI24+
6	205	DI-	6	206	DI-
7	107	S4+	7	108	S4+
8	25b	DI25+	8	26b	DI26+
9	27b	DI27+	9	28b	DI28+
10	29b	DI29+	10	30b	DI30+
11	31b	DI31+	11	32b	DI32+
12	207	DI-	12	208	DI-
Pin-Nr.	Bezeichnung	Signal	Pin-Nr.	Bezeichnung	Signal
1	109	S5+	1	110	S5+
2	33b	DI33+	2	34b	DI34+
3	35b	DI35+	3	36b	DI36+
4	37b	DI37+	4	38b	DI38+
5	39b	DI39+	5	40b	DI40+
6	209	DI-	6	210	DI-
7	111	S6+	7	112	S6+
8	41b	DI41+	8	42b	DI42+
9	43b	DI43+	9	44b	DI44+
10	45b	DI45+	10	46b	DI46+
11	47b	DI47+	11	48b	DI48+
12	211	DI-	12	212	DI-

HI 801 176 D Rev. 11.00 Seite 21 von 52

Pin-Nr.	Bezeichnung	Signal	Pin-Nr.	Bezeichnung	Signal
1	113	S7+	1	114	S7+
2	49b	DI49+	2	50b	DI50+
3	51b	DI51+	3	52b	DI52+
4	53b	DI53+	4	54b	DI54+
5	55b	DI55+	5	56b	DI56+
6	213	DI-	6	214	DI-
7	115	S8+	7	116	S8+
8	57b	DI57+	8	58b	DI58+
9	59b	DI59+	9	60b	DI60+
10	61b	DI61+	10	62b	DI62+
11	63b	DI63+	11	64b	DI64+
12	215	DI-	12	216	DI-

Tabelle 11: Klemmenbelegung Connector Boards mit Schraubklemmen

Der Anschluss der Feldseite erfolgt mit Klemmensteckern, die auf die Stiftleisten des Connector Boards aufgesteckt werden.

Die Klemmenstecker besitzen folgende Eigenschaften:

Anschluss Feldseite	
Klemmenstecker	8 Stück, 12-polig
Leiterquerschnitt	0,2 1,5 mm² (eindrähtig) 0,2 1,5 mm² (feindrähtig) 0,2 1,5 mm² (mit Aderendhülse)
Abisolierlänge	6 mm
Schraubendreher	Schlitz 0,4 x 2,5 mm
Anzugsdrehmoment	0,2 0,25 Nm

Tabelle 12: Eigenschaften der Klemmenstecker

Seite 22 von 52 HI 801 176 D Rev. 11.00

3.6.5 Connector Boards mit Kabelstecker

Bild 7: Connector Boards mit Kabelstecker

HI 801 176 D Rev. 11.00 Seite 23 von 52

3.6.6 Steckerbelegung Connector Boards mit Kabelstecker

Zu diesen Connector Boards stellt HIMA vorgefertigte Systemkabel bereit, siehe Kapitel 3.7. Kabelstecker und Connector Board sind codiert.

Steckerbelegung!

Die folgende Tabelle beschreibt die Steckerbelegung der Kabelstecker des Systemkabels.

Die Adernkennzeichnung ist gemäß IEC 60304 ausgeführt. Es werden die Farbkurzzeichen gemäß IEC 60757 verwendet.

Daiba	С		b		a	
Reihe	Signal	Farbe	Signal	Farbe	Signal	Farbe
1	DI64+	YEBU 1)	DI32+	YEBU		YE ²⁾
2	DI63+	GNBU 1)	DI31+	GNBU	Interne	GN ²⁾
3	DI62+	YEPK 1)	DI30+	YEPK	Verwend- ung ³⁾	BN ²⁾
4	DI61+	PKGN 1)	DI29+	PKGN	diig	WH ²⁾
5	DI60+	YEGY 1)	DI28+	YEGY		
6	DI59+	GYGN 1)	DI27+	GYGN		
7	DI58+	BNBK 1)	DI26+	BNBK		
8	DI57+	WHBK 1)	DI25+	WHBK		
9	DI56+	BNRD 1)	DI24+	BNRD		
10	DI55+	WHRD 1)	DI23+	WHRD		
11	DI54+	BNBU 1)	DI22+	BNBU		
12	DI53+	WHBU 1)	DI21+	WHBU		
13	DI52+	PKBN 1)	DI20+	PKBN		
14	DI51+	WHPK 1)	DI19+	WHPK		
15	DI50+	GYBN 1)	DI18+	GYBN		
16	DI49+	WHGY 1)	DI17+	WHGY		
17	DI48+	YEBN 1)	DI16+	YEBN	DI-	RDBK
18	DI47+	WHYE 1)	DI15+	WHYE	DI-	BUBK
19	DI46+	BNGN 1)	DI14+	BNGN	DI-	PKBK
20	DI45+	WHGN 1)	DI13+	WHGN	DI-	GYBK
21	DI44+	RDBU 1)	DI12+	RDBU	DI-	PKRD
22	DI43+	GYPK 1)	DI11+	GYPK	DI-	GYRD
23	DI42+	VT 1)	DI10+	VT	DI-	PKBU
24	DI41+	BK ¹⁾	DI9+	BK	DI-	GYBU
25	DI40+	RD ¹⁾	DI8+	RD	S8+	YEBK 1)
26	DI39+	BU ¹⁾	DI7+	BU	S7+	GNBK 1)
27	DI38+	PK ¹⁾	DI6+	PK	S6+	YERD 1)
28	DI37+	GY 1)	DI5+	GY	S5+	GNRD 1)
29	DI36+	YE 1)	DI4+	YE	S4+	YEBK
30	DI35+	GN ¹⁾	DI3+	GN	S3+	GNBK
31	DI34+	BN ¹⁾	DI2+	BN	S2+	YERD
32	DI33+	WH 1)	DI1+	WH	S1+	GNRD

¹⁾ Zusätzlicher orangefarbener Ring bei Farbwiederholung der Adernkennzeichnung.

Tabelle 13: Steckerbelegung der Kabelstecker des Systemkabels

Seite 24 von 52 HI 801 176 D Rev. 11.00

²⁾ Zusätzlicher violetter Ring bei zweiter Farbwiederholung der Adernkennzeichnung.

³⁾ Die Adern müssen einzeln isoliert werden! Eine weitere Verwendung ist verboten!

3.7 Systemkabel X-CA 003

Das Systemkabel X-CA 003 verbindet die Connector Boards X-CB 006 53/54 mit dem Field Termination Assembly.

Allgemein	
Kabel	LIYY 80 x 0,25 mm ² +
	2 x 2 x 0,25 mm ²
Leiter	Feindrähtig
Mittlerer Außendurchmesser (d)	Ca. 15,3 mm,
	max. 20 mm für alle Systemkabel-Typen
Mindestbiegeradius	
fest verlegt	5 x d
frei beweglich	10 x d
Brennverhalten	Flammwidrig und selbstverlöschend nach IEC 60332-1-2, -2-2
Länge	8 30 m
Farbcodierung	In Anlehnung an DIN 47100, siehe Tabelle 13.

Tabelle 14: Kabeldaten

1 Identische Kabelstecker

Bild 8: Systemkabel X-CA 003 01 n

Das Systemkabel ist in folgenden Standardlängen lieferbar:

Systemkabel	Beschreibung	Länge	Gewicht
X-CA 003 01 8	Codierte Kabelstecker	8 m	3,75 kg
X-CA 003 01 15	beidseitig.	15 m	7 kg
X-CA 003 01 30		30 m	14 kg

Tabelle 15: Verfügbare Systemkabel

HI 801 176 D Rev. 11.00 Seite 25 von 52

3.7.1 Codierung Kabelstecker

Die Kabelstecker sind mit drei Codierstiften ausgerüstet. Damit passen die Kabelstecker nur in Connector Boards und FTAs mit der entsprechenden Codierung, siehe Bild 7.

Seite 26 von 52 HI 801 176 D Rev. 11.00

X-DI 64 51 4 Inbetriebnahme

4 Inbetriebnahme

Dieses Kapitel beschreibt die Installation und die Konfiguration des Moduls, sowie dessen Anschlussvarianten. Für weitere Informationen siehe HIMax Systemhandbuch HI 801 000 D.

4.1 Montage

Bei der Montage sind folgende Punkte zu beachten:

- Betrieb nur mit zugehörigen Lüfterkomponenten, siehe Systemhandbuch HI 801 000 D.
- Betrieb nur mit zugehörigem Connector Board, siehe Kapitel 3.6.
- Das Modul einschließlich seiner Anschlussteile ist so zu errichten, dass die Anforderungen der EN 60529:1991 + A1:2000 mit der Schutzart IP20 oder besser erfüllt werden.

HINWEIS

Beschädigung durch falsche Beschaltung!

Nichtbeachtung kann zu Schäden an elektronischen Bauelementen führen. Die folgenden Punkte sind zu beachten.

- Feldseitige Stecker und Klemmen
 - Bei Anschluss der Stecker und Klemmen an die Feldseite auf geeignete Erdungsmaßnahmen achten.
 - Zum Anschluss der Näherungsschalter und Schaltgeräte an die digitalen Eingänge ist ein ungeschirmtes Kabel zugelassen.
 - HIMA empfiehlt, bei mehrdrahtigen Leitungen die Leitungsenden mit Aderendhülsen zu versehen. Die Anschlussklemmen müssen zum Unterklemmen der verwendeten Leitungsquerschnitte geeignet sein.
- Bei Verwendung der Speisung den jeweils dem Eingang zugeordneten Speiseausgang verwendet werden, siehe Tabelle 8.
 - HIMA empfiehlt, die Speisung des Moduls zu verwenden.
 - Bei Fehlfunktionen einer externen Stromquelle kann der betroffene Messeingang des Moduls überlastet und beschädigt werden. Bei Einsatz einer externen Stromquelle sind nach einer nichttransienten Überlast an den Messeingängen die Schaltschwellen zu überprüfen.
- Redundante Verschaltung der Eingänge über die entsprechenden Connector Boards realisieren, siehe Kapitel 3.6 und 4.4.

4.1.1 Beschaltung nicht benutzter Eingänge

Nicht benutzte Eingänge dürfen offen bleiben und müssen nicht abgeschlossen werden. Zur Vermeidung von Kurzschlüssen ist es nicht zulässig, Leitungen mit auf der Feldseite offenen Enden an den Connector Boards anzuschließen.

HI 801 176 D Rev. 11.00 Seite 27 von 52

4 Inbetriebnahme X-DI 64 51

4.2 Einbau und Ausbau des Moduls

Dieses Kapitel beschreibt den Austausch eines vorhandenen oder das Einsetzen eines neuen Moduls.

Beim Ausbau des Moduls verbleibt das Connector Board im HIMax Basisträger. Dies vermeidet zusätzlichen Verdrahtungsaufwand an den Anschlussklemmen, da alle Feldanschlüsse über das Connector Board des Moduls angeschlossen werden.

4.2.1 Montage eines Connector Boards

Werkzeuge und Hilfsmittel:

- Schraubendreher Kreuz PH 1 oder Schlitz 0,8 x 4,0 mm.
- Passendes Connector Board.

Connector Board einbauen:

- 1. Connector Board mit der Nut nach oben in die Führungsschiene einsetzen (siehe hierzu nachfolgende Zeichnung). Die Nut am Stift der Führungsschiene einpassen.
- 2. Connector Board auf der Kabelschirmschiene auflegen.
- Mit den unverlierbaren Schrauben am Basisträger festschrauben. Zuerst die unteren, dann die oberen Schrauben eindrehen.

Connector Board ausbauen:

- 1. Unverlierbare Schrauben vom Basisträger losschrauben.
- 2. Connector Board unten von der Kabelschirmschiene vorsichtig anheben.
- 3. Connector Board aus der Führungsschiene herausziehen.

Bild 9: Einsetzen des Mono Connector Boards, exemplarisch

Seite 28 von 52 HI 801 176 D Rev. 11.00

X-DI 64 51 4 Inbetriebnahme

Bild 10: Festschrauben des Mono Connector Boards, exemplarisch

Montageanleitung gilt ebenso für redundante Connector Boards. Je nach Typ des Connector Boards wird eine entsprechende Anzahl von Steckplätzen belegt. Die Anzahl der unverlierbaren Schrauben ist vom Typ des Connector Boards abhängig.

HI 801 176 D Rev. 11.00 Seite 29 von 52

4 Inbetriebnahme X-DI 64 51

4.2.2 Modul einbauen und ausbauen

Dieses Kapitel beschreibt den Einbau und Ausbau eines HIMax Moduls. Ein Modul kann eingebaut und ausgebaut werden, während das HIMax System in Betrieb ist.

HINWEIS

Beschädigung von Steckverbindern durch Verkanten! Nichtbeachtung kann zu Schäden an der Steuerung führen. Modul stets behutsam in den Basisträger einsetzen.

Werkzeuge und Hilfsmittel:

- Schraubendreher, Schlitz 0,8 x 4,0 mm.
- Schraubendreher, Schlitz 1,2 x 8,0 mm.

Module einbauen:

- 1. Abdeckblech des Lüftereinschubs öffnen:
 - ☑ Verriegelungen auf Position open stellen.
 - ☑ Abdeckblech nach oben klappen und in Lüftereinschub einschieben.
- Modul an Oberseite in Einhängeprofil einsetzen, siehe
- 3. Modul an Unterseite in Basisträger schwenken und mit leichtem Druck einrasten lassen, siehe 2.
- 4. Modul festschrauben, siehe 3.
- 5. Abdeckblech des Lüftereinschubs herausziehen und nach unten klappen.
- 6. Abdeckblech verriegeln.

Module ausbauen:

- 1. Abdeckblech des Lüftereinschubs öffnen:
 - ☑ Verriegelungen auf Position open stellen
 - ☑ Abdeckblech nach oben klappen und in Lüftereinschub einschieben
- 2. Schraube lösen, siehe 3.
- 3. Modul an Unterseite aus Basisträger schwenken und mit leichtem Druck nach oben aus Einhängeprofil herausdrücken, siehe 2 und 1.
- 4. Abdeckblech des Lüftereinschubs herausziehen und nach unten klappen.
- 5. Abdeckblech verriegeln.

Seite 30 von 52 HI 801 176 D Rev. 11.00

X-DI 64 51 4 Inbetriebnahme

- 1 Einsetzen/Herausschieben
- 2 Einschwenken/Ausschwenken

3 Befestigen/Lösen

Bild 11: Modul einbauen und ausbauen

Abdeckblech des Lüftereinschubs während des Betriebs des HIMax Systems nur kurz (< 10 min) öffnen, da dies die Zwangskonvektion beeinträchtigt.

HI 801 176 D Rev. 11.00 Seite 31 von 52

4 Inbetriebnahme X-DI 64 51

4.3 Konfiguration des Moduls in SILworX

Das Modul wird im Hardware-Editor des Programmierwerkzeugs SILworX konfiguriert.

Bei der Konfiguration folgende Punkte beachten:

Zur Diagnose des Moduls und der Kanäle können die Systemparameter zusätzlich zum Messwert im Anwenderprogramm ausgewertet werden. Nähere Informationen zu den Systemparametern sind in den nachfolgenden Tabellen zu finden.

 Wird eine Redundanzgruppe angelegt, so erfolgt die Konfiguration der Redundanzgruppe in deren Registern. Die Register der Redundanzgruppe unterscheiden sich von denen der einzelnen Modulen, siehe nachfolgende Tabellen.

Zur Auswertung der Systemparameter im Anwenderprogramm müssen den Systemparametern globale Variable zugewiesen werden. Diesen Schritt im Hardware-Editor in der Detailansicht des Moduls durchführen.

Die nachfolgenden Tabellen enthalten die Systemparameter des Moduls in derselben Reihenfolge wie im Hardware-Editor.

TIPP

Zur Umwandlung der Hexadezimalwerte in Bitfolgen eignet sich z. B. der Taschenrechner von Windows® in der entsprechenden Ansicht.

Seite 32 von 52 HI 801 176 D Rev. 11.00

X-DI 64 51 4 Inbetriebnahme

4.3.1 Register **Modul**

Das Register **Modul** enthält die folgenden Systemparameter des Moduls:

Systemparameter	Datentyp	R/W	Beschreibung		
Name		W	Name des Moduls		
Reservemodul	BOOL	W	Aktiviert: Im Basisträger fehlendes Modul der Redundanzgruppe wird nicht als Fehler gewertet. Deaktiviert: Im Basisträger fehlendes Modul der Redundanzgruppe wird als Fehler gewertet. Standardeinstellung: Deaktiviert Wird nur im Register der Redundanzgruppe angezeigt!		
Störaustastung	BOOL	W	Störaustastung durch Prozessormodul zulassen (Aktiviert/Deaktiviert). Standardeinstellung: Aktiviert Das Prozessormodul verzögert die Fehlerreaktion auf eine transiente Störung bis zur Sicherheitszeit. Der letzte gültige Prozesswert bleibt für das Anwenderprogramm bestehen. Details zur Störaustastung siehe Systemhandbuch HI 801 000 D.		
Systemparameter	Datentyp	R/W	Beschreibung		
Die folgenden Status u verwendet werden.	nd Parameter k	können glo	obalen Variablen zugewiesen und im Anwenderprogramm		
Modul OK	BOOL	R	TRUE: Mono-Betrieb: Kein Modulfehler. Redundanz-Betrieb: Mindestens eines der redundanten Module hat keinen Modulfehler (ODER-Logik). FALSE: Modulfehler Kanalfehler eines Kanals (keine externe Fehler) Modul ist nicht gesteckt. Parameter Modul-Status beachten!		
Modul-Status	DWORD	R	Status des Moduls Codierung Beschreibung 0x00000001 Fehler des Moduls 1) 0x00000002 Temperaturschwelle 1 überschritten 0x00000004 Temperaturschwelle 2 überschritten 0x00000008 Temperaturwert fehlerhaft 0x00000010 Spannung L1+ fehlerhaft 0x00000020 Spannung L2+ fehlerhaft 0x00000040 Interne Spannungen fehlerhaft 0x80000000 Keine Verbindung zum Modul 1) 1) Diese Fehler haben Auswirkung auf den Status Modul OK und müssen nicht extra im Anwenderprogramm ausgewertet werden.		
Zeitstempel [µs]	DWORD	R	Mikrosekunden-Anteil des Zeitstempels. Zeitpunkt der Messung der digitalen Eingänge		
Zeitstempel [s]	DWORD	R	Sekunden-Anteil des Zeitstempels. Zeitpunkt der Messung der digitalen Eingänge		

Tabelle 16: Register **Modul** im Hardware-Editor

HI 801 176 D Rev. 11.00 Seite 33 von 52

4 Inbetriebnahme X-DI 64 51

4.3.2 Register **E/A-Submodul DI64_51**

Das Register E/A-Submodul DI64_51 enthält die folgenden Systemparameter:

Systemparameter	Datentyp	R/W	Beschreibung
Dieser Parameter kann	nicht geändert	werden.	
Name		W	Name des Registers
Systemparameter	Datentyp	R/W	Beschreibung
Die folgenden Status un verwendet werden.	d Parameter k	rönnen glo	obalen Variablen zugewiesen und im Anwenderprogramm
Diagnose-Anfrage	DINT	W	Zur Anforderung eines Diagnosewerts muss über den Parameter <i>Diagnose-Anfrage</i> die entsprechende ID (Codierung siehe 4.3.5) an das Modul gesendet werden.
Diagnose-Antwort	DINT	R	Sobald die <i>Diagnose-Antwort</i> die ID der <i>Diagnose-Anfrage</i> (Codierung siehe 4.3.5) zurückliefert, enthält der <i>Diagnose-Status</i> den angeforderten Diagnosewert.
Diagnose-Status	DWORD	R	Angeforderter Diagnosewert gemäß Diagnose-Antwort. Im Anwenderprogramm können die IDs der Diagnose-Anfrage und der Diagnose-Antwort ausgewertet werden. Erst wenn beide die gleiche ID enthalten, enthält der Diagnose-Status den angeforderten Diagnosewert.
Hintergrundtest-Fehler	BOOL	R	TRUE: Hintergrundtest fehlerhaft FALSE: Hintergrundtest fehlerfrei
Restart bei Fehler	BOOL	W	Jedes E/A-Modul, das aufgrund von Fehlern dauerhaft abgeschaltet ist, kann durch den Parameter Restart bei Fehler wieder in den Zustand RUN überführt werden. Dazu den Parameter Restart bei Fehler von FALSE auf TRUE stellen. Das E/A-Modul führt einen vollständigen Selbsttest durch und nimmt nur dann den Zustand RUN ein, wenn kein Fehler entdeckt wurde. Standardeinstellung: FALSE
Submodul OK	BOOL	R	TRUE: Kein Submodulfehler, keine Kanalfehler FALSE: Submodulfehler, Kanalfehler (auch externe Fehler) eines Kanals
Submodul-Status	DWORD	R	Bitcodierter Status des Submoduls (Codierung siehe 4.3.4)

Tabelle 17: Register E/A-Submodul DI64_51 im Hardware-Editor

Seite 34 von 52 HI 801 176 D Rev. 11.00

X-DI 64 51 4 Inbetriebnahme

4.3.3 Register E/A-Submodul DI64_51: Kanäle

Das Register **E/A-Submodul DI64_51: Kanäle** enthält die folgenden Systemparameter für jeden digitalen Eingang.

Den Systemparametern mit -> können globale Variablen zugewiesen und im Anwenderprogramm verwendet werden. Die Werte ohne -> müssen direkt eingegeben werden.

Systemparameter	Datentyp	R/W	Beschreibung
Kanal-Nr.		R	Kanalnummer, fest vorgegeben
-> Kanalwert [BOOL]	BOOL	R	Boolscher Wert des digitalen Eingangs LOW oder HIGH.
-> Kanal OK [BOOL]	BOOL	R	TRUE: Fehlerfreier Kanal. Der Kanalwert ist gültig. FALSE: Fehlerhafter Kanal. Der Eingangswert wird auf FALSE gesetzt.
EV [μs]	UDINT	W	Einschaltverzögerung Das Modul zeigt einen Pegelwechsel von LOW nach HIGH erst dann an, wenn der High-Pegel länger als die parametrierte Zeit EV ansteht. Die Einschaltverzögerung kann sich maximal um die Zykluszeit des Moduls verlängern. Damit verzögert sich auch die Auswertung des Parameters -> Kanalwert [BOOL].
			Wertebereich: 0 (2 ³¹ -1) Granularität: 1000 μs, z. B. 0, 1000, 2000, Standardeinstellung: 0
AV [μs]	UDINT	W	Ausschaltverzögerung Das Modul zeigt einen Pegelwechsel von HIGH nach LOW erst dann an, wenn der Low-Pegel länger als die parametrierte Zeit AV ansteht. Die Ausschaltverzögerung kann sich maximal um die Zykluszeit des Moduls verlängern. Damit verzögert sich auch die Auswertung des Parameters -> Kanalwert [BOOL].
			Wertebereich: 0 (2 ³¹ -1) Granularität: 1000 µs, z. B. 0, 1000, 2000, Standardeinstellung: 0
Test-Unterdrück. [μs]	UDINT	W	Das digitale Eingangsmodul ist in der Lage externe Testimpulse (kurzfristig von HIGH auf LOW geschaltet) der Dauer tpuls < tunterdrückung auszufiltern. Die Unterdrückungszeit tunterdrückung ist durch den Anwender parametrierbar. Die höchste parametrierte Unterdrückungszeit eines Kanals gilt für alle Kanäle dieses Moduls, wenn für diese Kanäle eine Unterdrückungszeit > 0 eingestellt wurde. Dabei ist zu beachten, dass sich der E/A-Zyklus und damit auch der Prozessormodul-Zyklus verlängern. Wertebereich: 0 500 µs Standardeinstellung: 0 (deaktiviert für diesen Kanal)

HI 801 176 D Rev. 11.00 Seite 35 von 52

4 Inbetriebnahme X-DI 64 51

Systemparameter	Datentyp	R/W	Beschreibung
redund.	BOOL	W	Voraussetzung: Redundantes Modul muss angelegt sein. Aktiviert: Kanalredundanz für diesen Kanal aktivieren Deaktiviert: Kanalredundanz für diesen Kanal deaktivieren Standardeinstellung: Deaktiviert
Redundanz-Wert	BYTE	W	Einstellung, wie der Redundanzwert gebildet wird. Und Oder Standardeinstellung: Oder Wird nur im Register der Redundanzgruppe angezeigt!

Tabelle 18: Register **E/A-Submodul DI64_51: Kanäle** im Hardware-Editor

4.3.4 Beschreibung Submodul-Status [DWORD]

Folgende Tabelle beschreibt die Codierung des Parameters Submodul-Status:

Codierung	Beschreibung
0x00000001	Fehler der Hardware-Einheit (Submodul)
0x00800000	Interner Ferhler
0x01000000	
0x02000000	
0x04000000	
0x08000000	
0x10000000	
0x20000000	
0x40000000	
0x80000000	

Tabelle 19: Codierung Submodul-Status [DWORD]

Seite 36 von 52 HI 801 176 D Rev. 11.00

X-DI 64 51 4 Inbetriebnahme

4.3.5 Beschreibung *Diagnose-Status* [DWORD]

Folgende Tabelle beschreibt die Codierung des Parameters Diagnose-Status:

ID	Beschreibung					
0	Diagnosewerte werden nacheinander angezeigt.					
100	Bitcodierter Temperaturstatus					
	0 = normal					
		nperaturschwelle 1 überschritten				
		nperaturschwelle 2 überschritten				
		nperaturmessung fehlerhaft				
101	Gemessene Temperatur (10 000 Digit/ °C)					
200	Bitcodierter Spannungsstatus					
	0 = normal	(0.4.) (1.4.)				
		· (24 V) fehlerhaft				
201		- (24 V) fehlerhaft				
201	Nicht verwendet!					
202						
203						
300	Komparator 24 V Unterspannung (BOOL)					
1001 1064	Kanalstatus der Kanäle 1 64					
	Codierung	Beschreibung				
	0x0001	Fehler der Hardware-Einheit (Submodul) aufgetreten				
	0x0002	Kanalfehler wegen internem Fehler				
	0x0004	Überstrom, Kanal abgeschaltet				
0x1000 Interner Fehler		Interner Fehler				
	0x2000					
	0x4000					
	0x8000					
2001 2008	Fehlerstatus	ehlerstatus der Speisequellen 1 8 (Speisungen)				
	Codierung	Codierung Beschreibung				
	0x8000	8000 Interner Fehler				

Tabelle 20: Codierung Diagnose-Status [DWORD]

HI 801 176 D Rev. 11.00 Seite 37 von 52

4 Inbetriebnahme X-DI 64 51

4.4 Anschlussvarianten

Dieses Kapitel beschreibt die technisch richtige Beschaltung des Moduls. Die folgenden aufgeführten Anschlussvarianten sind zulässig.

4.4.1 Eingangsverschaltungen

Die Verschaltung der Eingänge erfolgt über Connector Boards. Für die redundante Verschaltung stehen spezielle Connector Boards zur Verfügung, siehe Kapitel 3.6.

Die Speisung ist über Dioden entkoppelt, so können bei Modul-Redundanz die Speisungen zweier Module einen Näherungsschalter versorgen.

Für die Verschaltungen nach Bild 12, Bild 13 und Bild 14 können die Connector Boards X-CB 006 51 (mit Schraubklemmen) oder X-CB 006 53 (mit Kabelstecker) verwendet werden.

1 Transmitterspeisung

2 Digitaler Eingang

Bild 12: Verschaltung mit Kontaktgeber oder 2-Draht-Näherungsschalter

Digitaler Eingang

Bild 13: Verschaltung einer Digitalen Signalquelle mit galvanisch getrennter Versorgung

Seite 38 von 52 HI 801 176 D Rev. 11.00

X-DI 64 51 4 Inbetriebnahme

1 Digitaler Eingang

Bild 14: Verschaltung einer digitalen Signalquelle mit nicht galvanisch getrennter Versorgung

HINWEIS

Überstrom durch falsche Beschaltung!

Nichtbeachtung kann zu Schäden an elektronischen Bauelementen führen.

Masse einer digitalen Signalquelle mit nicht galvanisch getrennter Versorgung nicht mit dem DI- des Moduls verbinden.

Bei den redundanten Verschaltungen nach Bild 15 und Bild 16 stecken die Module nebeneinander im Basisträger auf einem gemeinsamen Connector Board.

Es können die Connector Boards X CB 006 52 (mit Schraubklemmen) oder X CB 006 54 (mit Kabelstecker) verwendet werden.

Bild 15: Redundante Verschaltung mit Kontaktgeber oder 2-Draht-Näherungsschalter

HI 801 176 D Rev. 11.00 Seite 39 von 52

4 Inbetriebnahme X-DI 64 51

Digitaler Eingang

Bild 16: Redundante Verschaltung einer digitalen Signalquelle mit galvanisch getrennter Versorgung

4.4.2 Anschluss von Transmitter über Field Termination Assembly

Der Anschluss von Kontaktgebern und Transmitter über das Field Termination Assembly X-FTA 003 02 erfolgt wie in Bild 17 dargestellt. Für weitere Informationen siehe X-FTA 003 02 Handbuch HI 801 120 D.

Es wird das Connector Board X-CB 006 53 verwendet.

Bild 17: Anschluss über Field Termination Assembly

Seite 40 von 52 HI 801 176 D Rev. 11.00

X-DI 64 51 5 Betrieb

5 Betrieb

Das Modul wird in einem HIMax Basisträger betrieben und erfordert keine besondere Überwachung.

5.1 Bedienung

Eine Bedienung an dem Modul selbst ist nicht vorgesehen.

Eine Bedienung z. B. Forcen der digitalen Eingänge, erfolgt vom PADT aus. Einzelheiten hierzu in der Dokumentation von SILworX.

5.2 Diagnose

Der Zustand des Moduls wird über die LEDs auf der Frontseite des Moduls angezeigt, siehe Kapitel 3.4.2.

Die Diagnosehistorie des Moduls kann zusätzlich mit dem Programmierwerkzeug SILworX ausgelesen werden. In den Kapiteln 4.3.4 und 4.3.5 sind die wichtigsten Diagnosestatus beschrieben.

Wird ein Modul in einen Basisträger gesteckt, erzeugt es während der Initialisierung Diagnosemeldungen, die auf Fehlfunktionen wie falsche Spannungswerte hinweisen.

Diese Meldungen deuten nur dann auf einen Fehler des Moduls hin, wenn sie nach dem Übergang in den Systembetrieb auftreten.

HI 801 176 D Rev. 11.00 Seite 41 von 52

6 Instandhaltung X-DI 64 51

6 Instandhaltung

Defekte Module sind gegen intakte Module des gleichen Typs oder eines zugelassenen Ersatztyps auszutauschen.

Zum Austauschen von Modulen sind die Bedingungen im Systemhandbuch HI 801 000 D zu beachten.

6.1 Instandhaltungsmaßnahmen

Im Zuge der Produktpflege entwickelt HIMA die Betriebssysteme von Modulen weiter. HIMA empfiehlt, geplante Anlagenstillstände zu nutzen, um aktuelle Betriebssystemversionen auf die Module zu laden.

 $\dot{1}$ Die Betriebssystemversionen von Modulen werden im SILworX Control Panel angezeigt. Die Typenschilder zeigen die Version des ausgelieferten Stands, siehe Kapitel 3.3.

Bevor Betriebssysteme auf Module geladen werden, müssen die Kompatibilitäten und Einschränkungen der Betriebssystemversionen auf das System geprüft werden. Dazu sind die jeweils gültigen Release-Notes zu beachten. Betriebssysteme werden mit SILworX auf Module geladen, die sich dazu im Zustand STOPP befinden müssen.

Seite 42 von 52 HI 801 176 D Rev. 11.00

X-DI 64 51 7 Außerbetriebnahme

7 Außerbetriebnahme

Das Modul durch Ziehen aus dem Basisträger außer Betrieb nehmen. Einzelheiten dazu im Kapitel *Einbau und Ausbau des Moduls*.

HI 801 176 D Rev. 11.00 Seite 43 von 52

8 Transport X-DI 64 51

8 Transport

Zum Schutz vor mechanischen Beschädigungen die Komponenten in Verpackungen transportieren.

Die Komponenten immer in den originalen Produktverpackungen lagern. Diese sind gleichzeitig ESD-Schutz. Die Produktverpackung allein ist für den Transport nicht ausreichend.

Seite 44 von 52 HI 801 176 D Rev. 11.00

X-DI 64 51 9 Entsorgung

9 Entsorgung

Industriekunden sind selbst für die Entsorgung außer Dienst gestellter Hardware verantwortlich. Auf Wunsch kann mit HIMA eine Entsorgungsvereinbarung getroffen werden.

Alle Materialien einer umweltgerechten Entsorgung zuführen.

HI 801 176 D Rev. 11.00 Seite 45 von 52

X-DI 64 51 Anhang

Anhang

Glossar

Begriff	Beschreibung
Al	Analog Input: Analoger Eingang
AO	Analog Output: Analoger Ausgang
ARP	Address Resolution Protocol: Netzwerkprotokoll zur Zuordnung von Netzwerkadressen
7	zu Hardware-Adressen
COM	Kommunikation (Modul)
CRC	Cyclic Redundancy Check: Prüfsumme
DI	Digital Input: Digitaler Eingang
DO	Digital Output: Digitaler Ausgang
EMV	Elektromagnetische Verträglichkeit
EN	Europäische Normen
ESD	Electrostatic Discharge: Elektrostatische Entladung
FB	Feldbus
FBS	Funktionsbausteinsprache
HW	Hardware
ICMP	Internet Control Message Protocol: Netzwerkprotokoll für Status- und
	Fehlermeldungen
IEC	Internationale Normen für die Elektrotechnik
LS/LB	Leitungsschluss/Leitungsbruch
MAC	Media Access Control: Hardware-Adresse eines Netzwerkanschlusses
PADT	Programming and Debugging Tool (nach IEC 61131-3): PC mit SILworX
PELV	Protective Extra Low Voltage: Funktionskleinspannung mit sicherer Trennung
PES	Programmable Electronic System: Programmierbares Elektronisches System
R	Read: Auslesen einer Variablen
Rack-ID	Identifikation eines Basisträgers (Nummer)
rückwirkungsfrei	Eingänge sind für rückwirkungsfreien Betrieb ausgelegt und können in Schaltungen mit Sicherheitsfunktionen eingesetzt werden.
R/W	Read/Write: Spaltenüberschrift für Art von Systemvariable
SB	Systembus (-modul)
SELV	Safety Extra Low Voltage: Schutzkleinspannung
SFF	Safe Failure Fraction: Anteil der sicher beherrschbaren Fehler
SIL	Safety Integrity Level (nach IEC 61508)
SILworX	Programmierwerkzeug
SNTP	Simple Network Time Protocol (RFC 1769)
SRS	System.Rack.Slot: Adressierung eines Moduls
SW	Software
TMO	Timeout
W	Write: Variable wird mit Wert versorgt, z. B. vom Anwenderprogramm
WD	Watchdog: Funktionsüberwachung für Systeme. Signal für fehlerfreien Prozess
WDZ	Watchdog-Zeit
Ws	Scheitelwert der Gesamt-Wechselspannungskomponente
<u> </u>	1

HI 801 176 D Rev. 11.00 Seite 47 von 52

Anhang X-DI 64 51

Abbildun	gsverzeichnis	
Bild 1:	Typenschild exemplarisch	10
Bild 2:	Blockschaltbild	11
Bild 3:	Frontansicht	12
Bild 4:	Ansichten	16
Bild 5:	Beispiel einer Codierung	19
Bild 6:	Connector Boards mit Schraubklemmen	20
Bild 7:	Connector Boards mit Kabelstecker	23
Bild 8:	Systemkabel X-CA 003 01 n	25
Bild 9:	Einsetzen des Mono Connector Boards, exemplarisch	28
Bild 10:	Festschrauben des Mono Connector Boards, exemplarisch	29
Bild 11:	Modul einbauen und ausbauen	31
Bild 12:	Verschaltung mit Kontaktgeber oder 2-Draht-Näherungsschalter	38
Bild 13:	Verschaltung einer Digitalen Signalquelle mit galvanisch getrennter Versorgung	38
Bild 14:	Verschaltung einer digitalen Signalquelle mit nicht galvanisch getrennter Versorgung	39
Bild 15:	Redundante Verschaltung mit Kontaktgeber oder 2-Draht-Näherungsschalter	39
Bild 16:	Redundante Verschaltung einer digitalen Signalquelle mit galvanisch getrennter Versorgung	40
Bild 17:	Anschluss über Field Termination Assembly	40

Seite 48 von 52 HI 801 176 D Rev. 11.00

X-DI 64 51 Anhang

Tabellenv	verzeichnis	
Tabelle 1:	Zusätzlich geltende Handbücher	5
Tabelle 2:	Blinkfrequenzen der LEDs	13
Tabelle 3:	Modul-Statusanzeige	14
Tabelle 4:	Systembusanzeige	15
Tabelle 5:	E/A-Anzeige	15
Tabelle 6:	Produktdaten	16
Tabelle 7:	Technische Daten der digitalen Eingänge	17
Tabelle 8:	Technische Daten der Speisung	17
Tabelle 9:	Verfügbare Connector Boards	18
Tabelle 10:	Position der Codierkeile	19
Tabelle 11:	Klemmenbelegung Connector Boards mit Schraubklemmen	22
Tabelle 12:	Eigenschaften der Klemmenstecker	22
Tabelle 13:	Steckerbelegung der Kabelstecker des Systemkabels	24
Tabelle 14:	Kabeldaten	25
Tabelle 15:	Verfügbare Systemkabel	25
Tabelle 16:	Register Modul im Hardware-Editor	33
Tabelle 17:	Register E/A-Submodul DI64_51 im Hardware-Editor	34
Tabelle 18:	Register E/A-Submodul DI64_51: Kanäle im Hardware-Editor	36
Tabelle 19:	Codierung Submodul-Status [DWORD]	36
Tabelle 20:	Codierung Diagnose-Status [DWORD]	37

HI 801 176 D Rev. 11.00 Seite 49 von 52

Anhang X-DI 64 51

Index

Anschlussvarianten	38	Systembusanzeige	15
Blockschaltbild		,	
Connector Board	18	Modul-Statusanzeige	14
mit Kabelstecker	23		
mit Schraubklemmen	20	Eingänge	17
		Modul	
•		Näherungsschalter-Speisung	

Seite 50 von 52 HI 801 176 D Rev. 11.00

HANDBUCH X-DI 64 51

HI 801 176 D

Für weitere Informationen kontaktieren Sie:

HIMA Paul Hildebrandt GmbH

Albert-Bassermann-Str. 28 68782 Brühl, Germany

Telefon: +49 6202 709-0 Fax +49 6202 709-107 E-Mail: info@hima.com

Erfahren Sie online mehr über HIMax:

www.hima.com/de/produkte-services/himax/