VERIFICATION OF UML/OCL CLASS DIAGRAMS USING-CONSTRAINT PROGRAMMING

Schnebli Zoltán 1

¹Babeş-Bolyai University, Faculty of Mathematics and Computer Science

INTRODUCTION

· Motivation?

· Model driven development and architecture

• Ensure the quality of the final application - find design issues before development stage

IDEEA

 \cdot Transform UML/OCL diagrams into Constraint Satisfaction Problem

· Check satisfiability

EXAMPLE

	1 apei				
ĺ	title: String				
	wordCount: int				
	studentPaper: boolean				
manuscript		1	1	submission	
Writes				Rev	iews
author		12	3	referee	
	Researcher				
	name: String				
	isStudent: boolean				

Paner

context Researcher inv NoSelfReviews:
 self.submission—>excludes(self.manuscript)

context Paper inv PaperLength:
 self.wordCount < 10000

context Paper inv AuthorsOfStudentPaper:
 self.studentPaper = self.author—>exists(x | x.isStudent)

context Paper inv NoStudentReviewers:
 self.referee—>forAll(r | not r.isStudent)

context Paper inv LimitsOnStudentPapers:
 Paper::allInstances()—>exists(p | p.studentPaper) and
 Paper::allInstances()—>select(p | p.studentPaper) —>size() < 5

EXAMPLE

- · A Review requires exactly 3 Researcher
- · Writes requires either 1 or 2 Researcher
 - -> we can't satisfy the constraints

EXAMPLE

- · NoStudentReviewers: Students cannot be referees
- · Writes: all Researchers are authors (multiplication)
- · Review: all authors must review Papers
- · At least one student paper with a student author
 - -> we can't satisfy the constraints

 Translate each element into a set of variables, domains and constraints

• Ensure that each domain is bounded, the referenced objects are existing

 \cdot Discard every attribute that does not participate in any constraints

· Implicit cardinality constraints due to the association multiplicities

- Parse textual OCL and transform it to a tree using a toolkit
- With a post-order traversal transform each node into a Prolog compound term

Evaluation of the CSP

· Check if the model can be instanciated

- · The designer has to check the satisfiability of the model
- · Remove constraint redundancies

