MTH 224, Spring 2024

Instructor: Bahman Angoshtari

Lecture 8

Section 2.3: variance of discrete r.v.

Section 2.4: Bernoulli and binomial distributions.

8.1. Expectation of discrete random variables (continued)

- Basic properties of expectation:
 - (1) $\mathbb{E}[a] = a$ for any constant a.
 - (2) $\mathbb{E}[aX] = a\mathbb{E}[X]$ for any constant a and any random variable X.
 - (3) $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$ for any constants a and b and any random variable X.
 - (4) $\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$ for any constants a and b and any random variables X and Y.
- You can prove (1), (2), and (3) using the definition of expectation. To prove (4), we need the concept of **joint distributions** which we will learn later.

EXAMPLE 8.1. N assignments are returned to N students at random. On average, how many students get their own work back?

SOLUTION. This problem can be solved by a trick using **indicator random variables**. Let X be the number of student who get their own work. Let A_i , i = 1, ..., N, be the event that the i-th student gets his/her own work. Define $\mathbb{1}_{A_i}$, the **indicator random variable** for event A_i , as follows

$$\mathbb{1}_{A_i} = \begin{cases} 1 & \text{if } A_i \text{ occurs (the i-th student gets her/his own work)} \\ 0 & \text{otherwise (the i-th student gets someone else's work)} \end{cases}$$

It then follows that

$$X = \mathbb{1}_{A_1} + \mathbb{1}_{A_2} + \dots + \mathbb{1}_{A_N} = \sum_{i=1}^N \mathbb{1}_{A_i}.$$

The question asks for $\mathbb{E}[X]$. By the properties of expected value, we have

$$\mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{N} \mathbb{1}_{A_i}\right] = \sum_{i=1}^{N} \mathbb{E}[\mathbb{1}_{A_i}].$$

Note that:

$$\mathbb{E}[\mathbb{1}_{A_i}] = 1 \times \mathbb{P}\Big(\mathbb{1}_{A_i} = 1\Big) + 0 \times \mathbb{P}\Big(\mathbb{1}_{A_i} = 0\Big) = \mathbb{P}(A_i) = \frac{1}{N}.$$

Finally, we obtain that

$$\mathbb{E}[X] = \sum_{i=1}^{N} \mathbb{E}[\mathbb{1}_{A_i}] = \sum_{i=1}^{N} \frac{1}{N} = \frac{N}{N} = 1.$$

On average, only one student gets their own HW back. Interestingly, this average number does not depend on the total number of students N.

8.2. Variance of discrete random variables

 The variance of a random variable provides information of how spread the values taken by the random variable are.

DEFINITION 8.2. Let X be a discrete random variable with supp $(X) = \{x_1, x_2, \dots\}$ and pmf $p_X(x)$. The variance of X, denoted by Var(X), is

$$Var(X) = \mathbb{E}\left[\left(X - \mathbb{E}[X]\right)^{2}\right] = \sum_{x \in \mathbb{R}} \left(x - \mathbb{E}[X]\right)^{2} p_{X}(x) = \left(x_{1} - \mathbb{E}[X]\right)^{2} p_{X}(x_{1}) + \left(x_{2} - \mathbb{E}[X]\right)^{2} p_{X}(x_{2}) + \dots$$

The standard deviation of X is $\sqrt{\operatorname{Var}(X)}$. It is common to use the notation σ_X^2 for $\operatorname{Var}(X)$, and use σ_X to denote the standard deviation of X.

- Note that Var(X) is the **weighted average** of the squared distances between values in the support of X and $\mathbb{E}[X]$, with weights equal to the probability of each value.
- If $\mathbb{E}[X]$ does not exist, then Var(X) does not exist as well. It may be the case that $\mathbb{E}[X]$ exists, but the series in the definition of Var(X) diverges. In that case, we also say that Var(X) does not exist.
- Basic properties of variance:
 - (1) Var(a) = 0 for any constant a.
 - (2) $Var(aX) = a^2 Var(X)$ for any constant a and any random variable X.
 - (3) $Var(aX + b) = a^2Var(X)$ for any constants a and b and any random variable X.
 - (4) $Var(aX + bY) = a^2Var(X) + b^2Var(Y) + 2abCov(X, Y)$ for any constants a and b and any random variable X and Y.
 - (5) $\operatorname{Var}(X) = \mathbb{E}[X^2] (\mathbb{E}[X])^2$ for any random variable X. In many occasions, it is easier to calculate variance using this formula instead of the definition!
- You can prove (1), (2), and (3) using the definition of variance. To prove (4), we need the concept of **joint distributions** and **covariance** which we will learn later.
- Property (5) is shown as follows. For simplicity, let us define $\mu = \mathbb{E}[X]$. Note that μ is a constant. By the definition of variance,

$$\begin{aligned} \operatorname{Var}(X) &= \mathbb{E}\left[\left(X - \mu\right)^2\right] = \mathbb{E}\left[X^2 + \mu^2 - 2\mu X\right] \\ &= \mathbb{E}\left[X^2\right] + \mathbb{E}\left[\mu^2\right] - 2\mu \mathbb{E}\left[X\right] \\ &= \mathbb{E}\left[X^2\right] + \mu^2 - 2\mu^2 = \mathbb{E}\left[X^2\right] - (\mathbb{E}[X])^2 \,. \end{aligned}$$

EXAMPLE 8.3. N assignments are returned to N students at random. We calculated that, on average, 1 student get their own work back. What is the standard deviation of the number of students who get their work back? Assume that $N \geq 2$.

SOLUTION. Indicator random variables are again helpful. Let X be the number of student who get their own work. Let A_i , i = 1, ..., N, be the event that the i-th student gets his/her own work. As we saw before,

$$X = \mathbb{1}_{A_1} + \mathbb{1}_{A_2} + \dots + \mathbb{1}_{A_N} = \sum_{i=1}^N \mathbb{1}_{A_i}.$$

We are interested in Var(X). It is easier to use the alternative formula for variance:

$$\operatorname{Var}[X] = \mathbb{E}[X^2] - \left(\mathbb{E}[X]\right)^2 = \mathbb{E}[X^2] - 1.$$

So, we need to calculate $\mathbb{E}[X^2]$. Note that:

$$X^{2} = \left(\mathbb{1}_{A_{1}} + \mathbb{1}_{A_{2}} + \dots + \mathbb{1}_{A_{N}}\right)^{2} = \left(\sum_{i=1}^{N} \mathbb{1}_{A_{i}}\right)^{2}$$
$$= \sum_{i=1}^{N} \left(\mathbb{1}_{A_{i}}\right)^{2} + \sum_{i \neq j} \mathbb{1}_{A_{i}} \mathbb{1}_{A_{j}}$$
$$= \sum_{i=1}^{N} \mathbb{1}_{A_{i}} + \sum_{i \neq j} \mathbb{1}_{A_{i} \cap A_{j}}.$$

In the last step, we use the facts that $(\mathbb{1}_{A_i})^2 = \mathbb{1}_{A_i}$ and that $\mathbb{1}_{A_i}\mathbb{1}_{A_j} = \mathbb{1}_{A_i \cap A_j}$. By taking the expected value of both sides, we obtain that

$$\mathbb{E}[X^2] = \mathbb{E}\left[\sum_{i=1}^N \mathbb{1}_{A_i} + \sum_{i \neq j} \mathbb{1}_{A_i \cap A_j}\right] = \sum_{i=1}^N \mathbb{E}[\mathbb{1}_{A_i}] + \sum_{i \neq j} \mathbb{E}[\mathbb{1}_{A_i \cap A_j}].$$

From the calculation for $\mathbb{E}[X]$, we already know that $\mathbb{E}[\mathbb{1}_{A_i}] = \frac{1}{N}$. We also have:

$$\mathbb{E}[\mathbb{1}_{A_i \cap A_j}] = 1 \times \mathbb{P}\left(\mathbb{1}_{A_i \cap A_j} = 1\right) + 0 \times \mathbb{P}\left(\mathbb{1}_{A_i \cap A_j} = 0\right)$$
$$= \mathbb{P}(A_i \cap A_j) = \mathbb{P}(A_i)\mathbb{P}(A_j | A_i) = \frac{1}{N} \frac{1}{N-1} = \frac{1}{N(N-1)}.$$

Therefore,

$$\mathbb{E}[X^2] = \sum_{i=1}^{N} \mathbb{E}[\mathbb{1}_{A_i}] + \sum_{i \neq j} \mathbb{E}[\mathbb{1}_{A_i \cap A_j}]$$
$$= \sum_{i=1}^{N} \frac{1}{N} + \sum_{i \neq j} \frac{1}{N(N-1)}$$
$$= \frac{N}{N} + \frac{N(N-1)}{N(N-1)} = 2.$$

Finally, we find the variance of X:

$$Var[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 = 2 - 1^2 = 1.$$

So, the standard deviation is $\sqrt{\text{Var}[X]} = 1$.

8.3. Binomial distribution

- A **Bernoulli trial** is a simple experiment with two possible outcomes, which are usually called success and failure. Example: flip a coin with getting H as success.
- Consider an experiment consisting of n independent Bernoulli trials, each having success with probability p and failure with probability 1-p (here, independence means that the outcomes of each trial are independent of the outcomes of other trials).

 \bullet Let X be the number of successes. The pmf of X is then:

$$p_X(k) = \mathbb{P}(X = k) = \mathbb{P}(k \text{ successes in } n \text{ trials}) = \binom{n}{k} p^k (1-p)^{n-k}$$

Explanation: $\binom{n}{k}$ is the number of outcomes in which there are exactly k successes and n-k failures. The probability of one such outcome is $p^k (1-p)^{n-k}$.

DEFINITION 8.4. A random variable X is said to be a **binomial random variable** with parameters n, p if its pmf is given by

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k = 0, 1, \dots, n.$$

Notation: $X \sim \text{Bin}(n, p)$.

• Note that by the binomial theorem: $\sum_{k=0}^{n} {n \choose k} p^k (1-p)^{n-k} = (p+(1-p))^n = 1^n = 1.$

EXAMPLE 8.5. Jack hits his target 70% of the time. What is the probability that he hits his target in at least 8 out of 10 shots?

Solution. X = # of hits. $X \sim \text{Bin}(10, 0.7)$. Then

$$\mathbb{P}\left(X \geq 8\right) = p_X\left(8\right) + p_X\left(9\right) + p_X\left(10\right) = \binom{10}{8}0.7^8 \cdot 0.3^2 + \binom{10}{9}0.7^9 \cdot 0.3^1 + \binom{10}{10}0.7^{10}0.3^0 \approx 0.383.$$