Matemáticas II. Grupo 911	Calificación
Primer Parcial. 22 de Marzo de 2021	

N. 1	N. 2	N. 3	N. 4	TOTAL

Por favor, redacta la solución de los ejercicios siguientes en hojas separadas. No olvides escribir tu nombre y apellidos junto a tus soluciones.

D.N.I.:

Grupo: Firma:

1. (3 puntos). En el espacio de polinomios de grado menor o igual que 2 con coeficientes reales, $\mathbb{R}_{\leq 2}[x]$, consideramos los siguientes conjuntos:

$$B = \{1, x, x^2\}$$
 , $C = \{x - 1, x + 1, (x + 1)^2\}$.

- 1. Justifica razonadamente que C es una base de $\mathbb{R}_{\leq 2}[x]$.
- 2. Calcula las ecuaciones matriciales del cambio de la base B a la base C.
- 3. Calcula las coordenadas del polinomio $p(x) = 1 + x + x^2$ en la base C.
- 2. (2 puntos). Considera el espacio vectorial \mathbb{R}^4 .
 - 1. Encuentra una base y calcula la dimensión del subespacio $W_1 = \{ (a, a-b, a-b, b) \mid a, b \text{ números reales } \}$
 - 2. Encuentra todos los vectores ortogonales a W_1 y su dimensión.
- 3. (2 puntos). Considera la transformación lineal

$$H(x, y, z) = (x, 2y + z, z + 2y)$$

- 1. ¿Son (1,0,0) y (0,1,1) vectores propios de H?
- 2. Calcula H(1,1,1) y $H^{10}(1,1,1)$.
- **4.** (3 puntos). Considera \mathbb{R}^3 con el producto escalar habitual y la recta vectorial L de vector director $\vec{u}_1 = (1, -1, 1)$.
 - 1. Calcula una base $\{\vec{u}_2, \vec{u}_3\}$ del plano ortogonal a la recta L, denotado por L^{\perp} .
 - 2. Considera el vector $\vec{v} = (1, 1, 1)$ y calcula el vector proyectado de \vec{v} sobre el plano L^{\perp} .
 - 3. Calcula la distancia mínima del vector \vec{v} al plano L^{\perp} y el ángulo que forma \vec{u}_1 con \vec{v} .