2019 怪兽 学堂

Unsupervised Learning

虾米

2019-4

Road map

- Basic concepts
- K-means algorithm
- Representation of clusters
- Hierarchical clustering
- Distance functions
- Data standardization
- Summary

Supervised learning vs. unsupervised learning

- Supervised learning: discover patterns in the data that relate data attributes with a target (class) attribute.
 - These patterns are then utilized to predict the values of the target attribute in future data instances.
- Unsupervised learning: The data have no target attribute.
 - We want to explore the data to find some intrinsic structures in them.

Clustering

- Clustering is a technique for finding similarity groups in data, called clusters. I.e.,
 - it groups data instances that are similar to (near) each other in one cluster and data instances that are very different (far away) from each other into different clusters.
- Clustering is often called an unsupervised learning task as no class values denoting an a priori grouping of the data instances are given, which is the case in supervised learning.
- Due to historical reasons, clustering is often considered synonymous with unsupervised learning.
 - In fact, association rule mining is also unsupervised
- This chapter focuses on clustering.

An illustration

• The data set has three natural groups of data points, i.e., 3 natural clusters.

What is clustering for?

- Let us see some real-life examples
- Example 1: groups people of similar sizes together to make "small", "medium" and "large" T-Shirts.
 - Tailor-made for each person: too expensive
 - One-size-fits-all: does not fit all.
- Example 2: In marketing, segment customers according to their similarities
 - To do targeted marketing.

What is clustering for? (cont···)

- Example 3: Given a collection of text documents, we want to organize them according to their content similarities,
 - To produce a topic hierarchy
- In fact, clustering is one of the most utilized data mining techniques.
 - It has a long history, and used in almost every field, e.g., medicine, psychology, botany, sociology, biology, archeology, marketing, insurance, libraries, etc.
 - In recent years, due to the rapid increase of online documents, text clustering becomes important.

Aspects of clustering

- A clustering algorithm
 - Partitional clustering
 - Hierarchical clustering
 - ...
- A distance (similarity, or dissimilarity) function
- Clustering quality
 - Inter-clusters distance ⇒ maximized
 - Intra-clusters distance ⇒ minimized
- The quality of a clustering result depends on the algorithm, the distance function, and the application.

Road map

- Basic concepts
- K-means algorithm
- Representation of clusters
- Hierarchical clustering
- Distance functions
- Data standardization
- Summary

K-means clustering

- K-means is a partitional clustering algorithm
- Let the set of data points (or instances) D be

$$\{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n\}$$
, where $\mathbf{x}_i = (x_{i1}, x_{i2}, \cdots, x_{ir})$ is a vector in a real-valued space $X \subseteq R^r$, and r is the number of attributes (dimensions) in the data.

- The *k*-means algorithm partitions the given data into *k* clusters.
 - Each cluster has a cluster center, called centroid.
 - *k* is specified by the user

K-means algorithm

- Given k, the k-means algorithm works as follows:
 - 1)Randomly choose *k* data points (seeds) to be the initial centroids, cluster centers
 - 2) Assign each data point to the closest centroid
 - 3)Re-compute the centroids using the current cluster memberships.
 - 4) If a convergence criterion is not met, go to 2).

K-means algorithm – (cont ···)

```
Algorithm k-means(k, D)
    Choose k data points as the initial centroids (cluster centers)
    repeat
        for each data point \mathbf{x} \in D do
4
           compute the distance from \mathbf{x} to each centroid;
           assign x to the closest centroid // a centroid represents a cluster
6
        endfor
        re-compute the centroids using the current cluster memberships
8
    until the stopping criterion is met
```

Stopping/convergence criterion

- 1. no (or minimum) re-assignments of data points to different clusters,
- 2. no (or minimum) change of centroids, or
- minimum decrease in the sum of squared error (SSE),

$$SSE = \sum_{j=1}^{k} \sum_{\mathbf{x} \in C_j} dist(\mathbf{x}, \mathbf{m}_j)^2$$
 (1)

• C_i is the *j*th cluster, \mathbf{m}_j is the centroid of cluster C_j (the mean vector of all the data points in C_j), and $dist(\mathbf{x}, \mathbf{m}_j)$ is the distance between data point \mathbf{x} and centroid \mathbf{m}_j .

An example

(A). Random selection of k centers

Iteration 1: (B). Cluster assignment

(C). Re-compute centroids

An example (cont ···)

Iteration 2: (D). Cluster assignment

Iteration 3: (F). Cluster assignment

(E). Re-compute centroids

(G). Re-compute centroids

An example distance function

The k-means algorithm can be used for any application data set where the mean can be defined and computed. In the Euclidean space, the mean of a cluster is computed with:

$$\mathbf{m}_{j} = \frac{1}{|C_{j}|} \sum_{\mathbf{x}_{i} \in C_{j}} \mathbf{x}_{i} \tag{2}$$

where $|C_j|$ is the number of data points in cluster C_j . The distance from one data point \mathbf{x}_i to a mean (centroid) \mathbf{m}_j is computed with

$$dist(\mathbf{x}_{i}, \mathbf{m}_{j}) = ||\mathbf{x}_{i} - \mathbf{m}_{j}||$$

$$= \sqrt{(x_{i1} - m_{j1})^{2} + (x_{i2} - m_{j2})^{2} + ... + (x_{ir} - m_{jr})^{2}}$$
(3)

A disk version of k-means

- K-means can be implemented with data on disk
 - In each iteration, it scans the data once.
 - as the centroids can be computed incrementally
- It can be used to cluster large datasets that do not fit in main memory
- We need to control the number of iterations
 - In practice, a limited is set (< 50).
- Not the best method. There are other scale-up algorithms, e.g., BIRCH.

A disk version of k-means (cont ···)

```
Algorithm disk-k-means(k, D)
     Choose k data points as the initial centriods \mathbf{m}_i, j = 1, ..., k;
     repeat
                                                           // 0 is a vector with all 0's
          initialize \mathbf{s}_i = \mathbf{0}, j = 1, \dots, k;
          initialize n_i = 0, j = 1, ..., k;
                                                           // n_i is the number points in cluster j
          for each data point x \in D do
               j = \arg \min dist(\mathbf{x}, \mathbf{m}_i);
              assign \mathbf{x} to the cluster j;
              \mathbf{s}_{i} = \mathbf{s}_{i} + \mathbf{x};
              n_{i} = n_{i} + 1;
10
          endfor
          \mathbf{m}_i = \mathbf{s}_i/n_i, i = 1, \ldots, k,
     until the stopping criterion is met
```

Strengths of k-means

- Strengths:
 - Simple: easy to understand and to implement
 - Efficient: Time complexity: O(tkn),
 where n is the number of data points,
 k is the number of clusters, and
 t is the number of iterations.
 - Since both *k* and *t* are small. *k*-means is considered a linear algorithm.
- K-means is the most popular clustering algorithm.
- Note that: it terminates at a local optimum if SSE is used. The global optimum is hard to find due to complexity.

Weaknesses of k-means

- The algorithm is only applicable if the mean is defined.
 - For categorical data, *k*-mode the centroid is represented by most frequent values.
- The user needs to specify k.
- The algorithm is sensitive to outliers
 - Outliers are data points that are very far away from other data points.
 - Outliers could be errors in the data recording or some special data points with very different values.

Weaknesses of k-means: Problems with outliers

(A): Undesirable clusters

(B): Ideal clusters

Weaknesses of k-means: To deal with outliers

- One method is to remove some data points in the clustering process that are much further away from the centroids than other data points.
 - To be safe, we may want to monitor these possible outliers over a few iterations and then decide to remove them.
- Another method is to perform random sampling. Since in sampling we only choose a small subset of the data points, the chance of selecting an outlier is very small.
 - Assign the rest of the data points to the clusters by distance or similarity comparison, or classification

Weaknesses of k-means (cont ···)

• The algorithm is sensitive to initial seeds.

(A). Random selection of seeds (centroids)

Weaknesses of k-means (cont ···)

If we use different seeds: good results

There are some methods to help choose good seeds

(A). Random selection of k seeds (centroids)

Road map

- Basic concepts
- K-means algorithm
- Representation of clusters
- Hierarchical clustering
- Distance functions
- Data standardization
- Summary

Common ways to represent clusters

- Use the centroid of each cluster to represent the cluster.
 - compute the radius and
 - standard deviation of the cluster to determine its spread in each dimension
 - The centroid representation alone works well if the clusters are of the hyper-spherical shape.
 - If clusters are elongated or are of other shapes, centroids are not sufficient

Using classification model

- All the data points in a cluster are regarded to have the same class label, e.g., the cluster ID.
 - run a supervised learning algorithm on the data to find a classification model.

$$x \le 2 \rightarrow \text{cluster 1}$$

 $x > 2$, $y > 1.5 \rightarrow \text{cluster 2}$
 $x > 2$, $y \le 1.5 \rightarrow \text{cluster 3}$

Use frequent values to represent cluster

- This method is mainly for clustering of categorical data (e.g., k-modes clustering).
- Main method used in text clustering, where a small set of frequent words in each cluster is selected to represent the cluster.

Clusters of arbitrary shapes

- Hyper-elliptical and hyperspherical clusters are usually easy to represent, using their centroid together with spreads.
- Irregular shape clusters are hard to represent. They may not be useful in some applications.
 - Using centroids are not suitable (upper figure) in general
 - K-means clusters may be more useful (lower figure), e.g., for making 2 size T-shirts.

Road map

- Basic concepts
- K-means algorithm
- Representation of clusters
- Hierarchical clustering
- Distance functions
- Data standardization
- Summary

Hierarchical Clustering

• Produce a nested sequence of clusters, a tree, also called Dendrogram.

Types of hierarchical clustering

- Agglomerative (bottom up) clustering: It builds the dendrogram (tree) from the bottom level, and
 - merges the most similar (or nearest) pair of clusters
 - stops when all the data points are merged into a single cluster (i.e., the root cluster).
- Divisive (top down) clustering: It starts with all data points in one cluster, the root.
 - Splits the root into a set of child clusters. Each child cluster is recursively divided further
 - stops when only singleton clusters of individual data points remain, i.e., each cluster with only a single point

Agglomerative clustering

It is more popular then divisive methods.

- At the beginning, each data point forms a cluster (also called a node).
- Merge nodes/clusters that have the least distance.
- Go on merging
- Eventually all nodes belong to one cluster

An example: working of the algorithm

Road map

- Basic concepts
- K-means algorithm
- Representation of clusters
- Hierarchical clustering
- Distance functions
- Data standardization
- Summary

Distance functions

- Key to clustering. "similarity" and "dissimilarity" can also commonly used terms.
- There are numerous distance functions for
 - Different types of data
 - Numeric data
 - Different specific applications

Distance functions for numeric attributes

- Most commonly used functions are
 - Euclidean distance and
 - Manhattan (city block) distance
- We denote distance with: $dist(\mathbf{x}_i, \mathbf{x}_j)$, where \mathbf{x}_i and \mathbf{x}_j are data points (vectors)
- They are special cases of Minkowski distance. h is positive integer.

$$dist(\mathbf{x}_{i}, \mathbf{x}_{j}) = ((x_{i1} - x_{j1})^{h} + (x_{i2} - x_{j2})^{h} + \dots + (x_{ir} - x_{jr})^{h})^{\frac{1}{h}}$$

Euclidean distance and Manhattan distance

• If h = 2, it is the Euclidean distance

$$dist(\mathbf{x}_{i}, \mathbf{x}_{j}) = \sqrt{(x_{i1} - x_{j1})^{2} + (x_{i2} - x_{j2})^{2} + \dots + (x_{ir} - x_{jr})^{2}}$$

• If h = 1, it is the Manhattan distance

$$dist(\mathbf{x}_{i}, \mathbf{x}_{j}) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + ... + |x_{ir} - x_{jr}|$$

Weighted Euclidean distance

$$dist(\mathbf{x}_{i}, \mathbf{x}_{j}) = \sqrt{w_{1}(x_{i1} - x_{j1})^{2} + w_{2}(x_{i2} - x_{j2})^{2} + \dots + w_{r}(x_{ir} - x_{jr})^{2}}$$

Road map

- Basic concepts
- K-means algorithm
- Representation of clusters
- Hierarchical clustering
- Distance functions
- Data standardization
- Summary

Data standardization

- In the Euclidean space, standardization of attributes is recommended so that all attributes can have equal impact on the computation of distances.
- Consider the following pair of data points
 - \mathbf{x}_{i} : (0.1, 20) and \mathbf{x}_{i} : (0.9, 720).

$$dist(\mathbf{x}_i, \mathbf{x}_j) = \sqrt{(0.9 - 0.1)^2 + (720 - 20)^2} = 700.000457,$$

- The distance is almost completely dominated by (720-20) = 700.
- Standardize attributes: to force the attributes to have a common value range

Interval-scaled attributes

- Their values are real numbers following a linear scale.
 - The difference in Age between 10 and 20 is the same as that between 40 and 50.
 - The key idea is that intervals keep the same importance through out the scale
- Two main approaches to standardize interval scaled attributes, range and z-score. f is an attribute

$$range(x_{if}) = \frac{x_{if} - \min(f)}{\max(f) - \min(f)},$$

Interval-scaled attributes (cont ···)

• Z-score: transforms the attribute values so that they have a mean of zero and a mean absolute deviation of 1. The mean absolute deviation of attribute f, denoted by s_f , is computed as follows

$$s_f = \frac{1}{n} \left(|x_{1f} - m_f| + |x_{2f} - m_f| + \dots + |x_{nf} - m_f| \right),$$

$$m_f = \frac{1}{n} \left(x_{1f} + x_{2f} + \dots + x_{nf} \right),$$

Z-score:
$$z(x_{if}) = \frac{x_{if} - m_f}{s_f}.$$

Summary

- Clustering is has along history and still active
 - There are a huge number of clustering algorithms
 - More are still coming every year.
- We only introduced several main algorithms. There are many others, e.g.,
 - density based algorithm, sub-space clustering, scale-up methods, neural networks based methods, fuzzy clustering, coclustering, etc.
- Clustering is hard to evaluate, but very useful in practice.
 This partially explains why there are still a large number of clustering algorithms being devised every year.
- Clustering is highly application dependent and to some extent subjective.

