1 Lista de exercícios: conceitos básicos

- 1. Considere os seguintes números: $x_1 = 27$, $x_2 = 0.138$ e $x_3 = 45.128$ que estão na base 10. Escreva-os na base 2.
- 2. Considere os seguintes números: $x_1 = 111011$, $x_2 = 0.01001$ e $x_3 = 10.0111$ que estão na base 2. Escreva-os na base 10.
- 3. Considere os seguintes números: $x_1 = 13$, $x_2 = 0.143$ e $x_3 = 23.314$ que estão na base 5. Escreva-os na base 2.
- 4. Dados os números $(13.44)_5$, $(122.35)_6$ e $(31.202)_4$. Existe algum com representação exata no sistema F(2, 10, 10, 10)?
- 5. Considere o sistema F(2, 8, 4, 4) e os números: $x_1 = 0.10110011 \times 2^2$ e $x_2 = 0.10110010 \times 2^2$. Qual dos dois números representa melhor $(2.8)_{10}$?
- 6. Considere o sistema F(2,2,2,3).
 - a) Exiba todos os números representáveis neste sistema e coloque-os sobre um eixo ordenado.
 - b) Qual o maior número na base 10 que pode ser representado neste sistema sem fazer arredondamento?
 - c) Qual o menor número positivo na base 10 que pode ser representado neste sistema sem fazer arredondamento?
- 7. Considere o sistema F(2,8,10,10). Represente no sistema os números: $x_1 = \sqrt{8}$, $x_2 = e^2$, $x_3 = 3.57$, onde todos estão na base 10. Existe algum com representação exata neste sistema?
- 8. Mostre que se x é um número no sistema $F\left(\beta,t,m,M\right)$, então $\bar{x}=x\left(1+\delta\right)$, onde $|\delta|\leq \frac{1}{2}\beta^{1-t}$.
- 9. Mostre que $\frac{1}{2}\beta^{1-t}$ é o melhor limitante para $|\delta|$.
- Efetue as operações indicadas, utilizando aritmética de ponto flutuante com três algarismos significativos.
 - a) (19.3 1.07) 10.3 e 19.3 (1.07 + 10.3).
 - b) $27.2 \times 1.3 327.0 \times 0.00251$,
 - c) $\frac{10.1-3.1\times8.2}{14.1+7.09\times3.2^2}$,
 - d) (367.0 + 0.6) + 0.5 e 367.0 + (0.6 + 0.5),
 - e) $\sum_{i=1}^{100} 0.11$. (Compare seu resultado com 100×0.11 .)

11. Deseja-se calcular:

$$S = \sum_{k=1}^{10} \frac{2}{k^2} \tag{1}$$

no sistema F(10,3,5,4), usando arredondamento em todas as operações. Assim, efetue a soma:

- a) da direita para a esquerda,
- b) da esquerda para a direita.

Os valores obtidos em a) e b) são iguais?

- 12. Usando arredondamento para quatro dígitos significativos, efetue as operações indicadas e escreva o resultado na forma normalizada.
 - a) $0.5971 \times 10^3 + 0.4268 \times 10^0$,
 - b) $0.5971 \times 10^{-1} 0.5956 \times 10^{-2}$
 - c) $\frac{0.5971\times10^3}{0.4268\times10^{-1}}$
 - d) $(0.5971 \times 10^3) \times (0.4268 \times 10^0)$.
- 13. Usando arredondamento a cada operação efetuada, calcule:

$$\sum_{i=1}^{n} i^2 - \sum_{i=2}^{n} i^2 = 1,\tag{2}$$

somando os termos em

- a) ordem crescente,
- b) ordem decrescente.

Considere n = 100. Os valores obtidos são iguais?

- 14. Considere o sistema F(3,3,2,2). Dizer quais das seguintes afirmações são verdadeiras. Para as que forem falsas, dizer como seria o correto.
 - a) No sistema dado, podemos representar 181 números.
 - b) A representação de $(0.342)_{10}$ no sistema dado é 0.101×3^{0} .
 - c) A representação de $(15.342)_{10}$ no sistema dado é 0.120×3^3 .
 - d) O maior número positivo deste sistema é: 0.111×3^2 .
 - e) O menor número positivo deste sistema é: 0.100×3^{-2} .
 - f) O número (38)₁₀ não pode ser representado no sistema dado.
- 15. Deseja-se calcular $e^{-0.15}$.
 - a) Obtenha, usando uma calculadora, o valor exato de $e^{-0.15}$.

b) Considere o sistema F(10,5,10,10) e a série truncada em 25 termos. Calcule:

$$e^{-0.15} e^{\frac{1}{e^{0.15}}}$$
 (3)

e compare os resultados.

16. Seja

$$S = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$
 (4)

Calcule S, considerando n = 1000 e efetuando a soma dos termos em:

- a) ordem crescente,
- b) ordem decrescente.
- 17. Se a, b e c são reais e $a \neq 0$, então a equação:

$$ax^2 + bx + c = 0 ag{5}$$

é satisfeita para exatamente dois valores de *x*:

$$\begin{cases} x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \\ x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a} \end{cases}$$
 (6)

Entretanto, desde que $ax^2 + bx + c = a(x - x_1)(x - x_2)$, obtemos que: $ax_1x_2 = c$ e, assim, podemos reescrever Eq. (6) na seguinte forma:

$$\begin{cases} x_1 = -\frac{b + sinal \ de \ (b) \ \sqrt{b^2 - 4ac}}{2a}, \\ x_2 = \frac{c}{ax_1}. \end{cases}$$
 (7)

Temos ainda que x_1 e x_2 podem ser escritos como:

$$\begin{cases} x_1 = \frac{-2c}{b + \sqrt{b^2 - 4ac}} \\ x_2 = \frac{c}{ax_1} \end{cases}$$
 (8)

Utilizando Eq. (6), (7) e (8) calcule as raízes das equações para os valores de *a*, *b* e *c* dados a seguir:

a)
$$a = 1$$
; $b = -10^5$; $c = 1$

b)
$$a = 1$$
; $b = -4$; $c = 3.9999999$,

c)
$$a = 6$$
, $b = 5$. $c = -4$.

18. Calcule

$$\sqrt{701} - \sqrt{700} \tag{9}$$

usando seis algarismos significativos em todas as operações. O resultado que você obteve possui seis algarismos significativos corretos? Você saberia obter o resultado com o máximo de algarimos significativos corretos?

19. Calcule as raízes da equação:

$$x^2 - 60x + 1 = 0 ag{10}$$

usando quatro algarismos significativos em todas as operações. O resultado das raízes que você obteve possui quatro algarimos significativos corretos? Você saberia o que fazer para obtê-las com o máximo de algarimos significativos?

20. Para valores de *x* próximos de 4, considere o cálculo de:

$$\frac{\frac{1}{\sqrt{x}} - \frac{1}{2}}{x - 4}.\tag{11}$$

Calcule a expressão para x = 3.9, com três algarismos significativos corretos.

21. A função de Bessel satisfaz a seguinte relação de recorrência:

$$J_{n+1}(x) - \frac{2n}{x} J_n(x) + J_{n-1}(x) = 0.$$
 (12)

Se x=1, $J_0(1)=0.4401$, calcule $J_n(1)$ para $n=2,3,\ldots,10$. Refaça os cálculos começando com valores mais precisos, isto é, faça: $J_0(1)=0.76519769$ e $J_1(1)=0.44005059$. Como você explica seus resultados com o fato de que $J_n(1)\to 0$ quando n cresce?

22. Faça $J_{10}(1) = 0$ e $J_{9}(1) = \mu$. Use a fórmula do exercício anterior na forma:

$$J_{n-1}(1) = 2nJ_n(1) - J_{n+1}(1)$$
(13)

e calcule $J_8(1)$, $J_7(1)$, . . . Encontre μ através da identidade:

$$J_0(x) + 2J_2(x) + 2J_4(x) + 2J_6(x) + \dots = 1$$
 (14)

e calcule $J_9(1)$, $J_8(1)$, ..., $J_0(1)$. Como esses resultados se comparam com os valores exatos?