EXPECTED VALUE AND VARIANCE

Expected value of a random variable:

Definition: Let X be a continuous random variable with range [a, b] and probability density function f(x). The *expected value* of X is defined by

$$E(X) = \int_{a}^{b} x f(x) \, dx.$$

Let's see how this compares with the formula for a discrete random variable:

$$E(X) = \sum_{i=1}^{n} x_i p(x_i).$$

f(x) is often written as p(x) and it denotes the probability density function.

A **probability density function** is a function f defined on an interval (a, b) and having the following properties.

$$(\mathbf{a}) f(x) \ge 0$$
 for every x

(b)
$$\int_{a}^{b} f(x) dx = 1$$

Expected value is also called the mean or average.

1. Let $f(x) = 2/x^2$. You would like to use this function as the pdf over a range [a, b]. You set a = 1. Find the value of b such that both the above properties for pdf hold.

2. For the speed dial shown below:

Find a valid pdf that ensures uniform distribution and satisfies both properties. What is the probability of the following: $5 \le X \le 300$ i.e. $P(5 \le X \le 300)$

3. Suppose X is a uniform function in range [0, 1]. What is E(X)

4.	[Discrete	Case]
----	-----------	-------

Suppose that we toss a fair coin until a head first comes up, and let X represent the number of tosses that were made. Then the possible values of X are 1, 2, . . ., and the distribution function of X is defined by ______. What is the expected value of X?

Some properties of E(X)

1. If X and Y are random variables on a sample space Ω then

$$E(X+Y) = E(X) + E(Y)$$

- 2. If a and b are constants then E(aX + b) = aE(X) + b.
- 5. The standard normal function is defined as:

$$Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1).$$

The expected value of Z i.e. E(Z) is 0. Using the properties above, find E(X).

6. Find the expected value of the exponential probability density function, which is defined as:

$$f(x;\lambda) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0, \\ 0 & x < 0. \end{cases}$$

Variance of a random variable

Variance is defined as:

Definition: Let X be a continuous random variable with mean μ . The *variance* of X is $Var(X) = E((X - \mu)^2)$.

Properties of Variance:

- 1. If X and Y are independent then Var(X + Y) = Var(X) + Var(Y).
- 2. For constants a and b, $Var(aX + b) = a^2Var(X)$.
- 3. **Theorem**: $Var(X) = E(X^2) E(X)^2 = E(X^2) \mu^2$.

7.

Let $X \sim \text{uniform}(0,1)$. Find Var(X) and σ_X .

8.

Let $X \sim \exp(\lambda)$. Find $\operatorname{Var}(X)$ and σ_X .