Отчет по лабораторной работе

Эффект Зеемана

Работу выполнили студенты

Краснощёкова Дарья, Козлов Александр

Содержание

1	Pac	чёт расщепления рекомендуемых к наблюдению спектральных линий	2				
2	2 Немного про экспериментальную установку						
3	3 Наблюдение нормального эффекта Зеемана на примере линии 585.2						
	3.1	Исследование характера поляризации линий в поперечном эффекте	5				
	3.2	Измерение расщепления линий в поперечном эффекте и определение удель-					
		ного заряда электрона	5				
	3.3	Оценка разрешающей способности ИФП и её сопоставление с расчётной ве-					
		личиной	7				

1 Расчёт расщепления рекомендуемых к наблюдению спектральных линий

$$N = 1, \; \lambda = 585.25 \; \text{HM}$$

Переход $J \to J+1$ осуществляется между комбинирующими уровнями $E_1(J_1=0,\ L_1=0,\ S_1=0)$ и $E_2(J_2=1,\ L_2=1,\ S_2=0).$ По формуле

$$g = 1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)} \tag{1}$$

находим факторы Ланде $g_1=?,\ g_2=1.$ Переходы, на которых возможно получение зеемановских компонент, показаны стрелками на рисунке 1. Подставив в предложенные в

Рис. 1: Излучательные переходы, разрешённые правилами отбора для спектральной линии $\lambda=585.25~\mathrm{hm}.$

методичке формулы входные данные, получаем расчёт расщепления для рассматриваемого пример. Результаты этого расчёта отражены в таблице 1.

Λ	I_1	M_2	$\Delta\omega_{M_1,M_2}\cdot\hbar/(\mu_0H)$	I_{\perp}	I_{\parallel}	Тип
	0	-1	1	1/2	1	σ
	0	0	0	1	0	π
	0	1	-1	1/2	1	σ

Таблица 1: Расщепление для спектральной линии $\lambda = 585.25$ нм.

$$N=3, \; \lambda=594.48 \;$$
нм

Переход $J \to J$ осуществляется между комбинирующими уровнями $E_1(J_1=2,\ L_1=1,\ S_1=1)$ и $E_2(J_2=2,\ L_2=1,\ S_2=1)$. Факторы Ланде $g_1=3/2,\ g_2=3/2$. Расщепление расчитано в таблице 2.

M_1	M_2	$\Delta\omega_{M_1,M_2}\cdot\hbar/(\mu_0H)$	I_{\perp}	I_{\parallel}	Тип
-2	-2	0	4	0	π
-2	-1	-3/2	1	2	σ
-1	-2	3/2	1	2	σ
-1	-1	0	1	0	π
-1	0	-3/2	3/2	3	σ
0	-1	3/2	3/2	3	σ
0	0	0	0	0	π
0	1	-3/2	3/2	3	σ
1	0	-3/2	3/2	3	σ
1	1	0	1	0	π
1	2	-3/2	1	2	σ
2	1	3/2	1	2	σ
2	2	0	4	0	π

Таблица 2: Расщепление для спектральной линии $\lambda = 594.48$ нм.

$$N = 6, \; \lambda = 607.4 \,$$
 нм

Переход $J \to J+1$ осуществляется между комбинирующими уровнями $E_1(J_1=0,\ L_1=1,\ S_1=1)$ и $E_2(J_2=1,\ L_2=1,\ S_2=1)$. Факторы Ланде $g_1=?,\ g_2=3/2$. Расщепление рассчитано в таблице 3.

M_1	M_2	$\Delta\omega_{M_1,M_2}\cdot\hbar/(\mu_0H)$	I_{\perp}	I_{\parallel}	Тип
0	-1	3/2	1/2	1	σ
0	0	0	1	0	π
0	1	-3/2	1/2	1	σ

Таблица 3: Расщепление для спектральной линии $\lambda = 607.4$ нм.

$$N = 14, \; \lambda = 638.3 \;$$
нм

Переход $J \to J$ осуществляется между комбинирующими уровнями $E_1(J_1=1,\ L_1=2,\ S_1=1)$ и $E_2(J_2=1,\ L_2=1,\ S_2=1)$. Факторы Ланде $g_1=1/2,\ g_2=3/2$. Расщепление расчитано в таблице 4.

2 Немного про экспериментальную установку

Мы изучали эффект Зеемана на примере спектра излучения неона с помощью интерферометра Фабри–Перо (ИФП). ИФП является многолучевым интерферометром высокой разрешающей способности. Он состоит из двух прозрачных клиновидных пластин, внутренние поверхности которых ограничивают плоскопараллельный слой воздуха. На эти поверхности нанесено диэлектрической покрытие, обеспечивающее энергетический коэффициент отражения ρ , близкий к единице.

M_1	M_2	$\Delta\omega_{M_1,M_2}\cdot\hbar/(\mu_0H)$	I_{\perp}	I_{\parallel}	Тип
-1	-1	1	1	0	π
-1	0	-1/2	1/2	1	σ
0	-1	3/2	1/2	1	σ
0	0	0	0	0	π
0	1	-3/2	1/2	1	σ
1	0	1/2	1/2	1	σ
1	1	-1	1	0	σ

Таблица 4: Расщепление для спектральной линии $\lambda = 638.3$ нм.

Луч, вошедший в интерферометр и многократно отразившийся от зеркальных поверхностей, образует ряд проходящих параллельных лучей с постоянной разностью хода

$$\Delta = 2h\cos\Psi,\tag{2}$$

где через h обозначена толщина воздушного слоя, а $\Psi \ll 1$ обозначает угол падения света в зазор.

Объектив, установленный после ИФП, формирует линии равного наклона, представляющие собой систему концентрических колец. Угловые размеры колец Ψ_i определяются из условия интерференционного максимума

$$2h\cos\Psi_i = m_i\lambda = m_0\lambda\cos\Psi_i,\tag{3}$$

где m_i — это порядок интерференции (большое целое число, так как размеры воздушного зазора макроскопичны), а $m_0 = 2h/\lambda$ — максимальный порядок интерференции, который отвечает $\Psi_i = 0$. Индекс i растёт от центра интерференционной картины и обозначает номер кольца.

Диаметр колец Фабри-Перо определяется формулой

$$d_i^2 = \frac{4f^2\lambda(m_0 - m_i)}{h},\tag{4}$$

где f — фокусное расстояние объектива. Можно ввести дробную долю порядка интерференции ε_{λ} , которая определяется следующим образом

$$m_0 - m_i = i - 1 + \varepsilon_{\lambda}. \tag{5}$$

Характерными особенностями ИФП как спектрального прибора является высокая разрешающая способность

$$R = \frac{m_0 \pi \sqrt{\rho}}{1 - \rho} \tag{6}$$

и малая дисперсионная область (интервал длин волн, где можно наблюдать интерференционную картину без наложения соседних порядков)

$$\Delta \lambda = \frac{\lambda^2}{2h\cos\Psi}.\tag{7}$$

Это приводит к тому, что надо использовать спектрограф. ИФП устанавливается так, чтобы плоскость локализации колец совместилась с плоскостью щели спектрографа, которая вырезает из колец узкую вертикальную полоску. Таким образом, спектрограф разлагает свет в спектр в горизонтальной плоскости, а ИФП — вдоль вертикальной входной щели спектрографа.

3 Наблюдение нормального эффекта Зеемана на примере линии 585.25 нм

3.1 Исследование характера поляризации линий в поперечном эффекте

Пронаблюдали характер поляризации компонент в поперечном эффекте (продольный эффект не мог быть нами наблюдаем по причине негодности установки). Убедились, что при наблюдении поперечного эффекта σ и π линии поляризованы линейно в перпендикулярных друг другу плоскостях.

3.2 Измерение расщепления линий в поперечном эффекте и определение удельного заряда электрона

При магнитном поле H=6600 Э измерили расщепление в поперечном эффекте. Для наглядности приведём смысл используемых ниже обозначений на рисунке 2. Результаты измерений занесли в таблицу 5. Для расщепления была заявлена в методичке следующая

ΔR_{m_1}	ΔR_{m_2}	ΔR_{m_3}	ΔR_{m_4}	$\langle \Delta R_m \rangle$
10	7	8	10	8.75
ΔR_{λ_1}	ΔR_{λ_2}	ΔR_{λ_3}	_	$\langle \Delta R_{\lambda} \rangle$
25	23	26	_	24.67

Таблица 5: Результаты измерений расщепления для спектральной линии $\lambda = 585.25$ нм.

формула:

$$\delta\lambda = \frac{\lambda^2}{2h} \frac{\langle \Delta R_m \rangle}{\langle \Delta R_\lambda \rangle}.$$
 (8)

По ней и будет вестись расчёт. Заметим, что h=4 мм. Подставив, получаем

$$\delta \lambda = 1.52 \cdot 10^{-9} \text{ cm} = 1.52 \cdot 10^{-2} \text{ HM}.$$
 (9)

Теперь вычислим удельный заряд электрона. Для этого учтём, что при наложении магнитного поля наблюдаемые в поперечном эффекте частоты $\omega_{1,2} = \omega_0 \pm \Omega$. Откуда получаем формулу для вычисления циклотронной частоты

$$\Omega = \frac{\delta\omega}{2} = \frac{1}{2} \left(\frac{2\pi c}{\lambda - \delta\lambda} - \frac{2\pi c}{\lambda + \delta\lambda} \right). \tag{10}$$

Рис. 2: Вид двух соседних колец при расщеплении спектральной линии в магнитном поле. ΔR_m — разность радиусов колец одного порядка интерференции, образованных излучением разных длин волн $(\lambda - \Delta \lambda, \ \lambda, \ \lambda + \Delta \lambda)$. ΔR_{λ} — разность радиусов колец разных порядков интерференции, образованных излучением одной длины волны.

А по определению циклотронная частота

$$\Omega = \frac{e}{m} \frac{H}{c}.\tag{11}$$

Значит, удельный заряд электрона может быть выражен следующим образом:

$$\frac{e}{m} = \frac{\pi c^2}{H} \left(\frac{1}{\lambda - \delta \lambda} - \frac{1}{\lambda + \delta \lambda} \right). \tag{12}$$

Проводим расчёт и получаем

$$\frac{e}{m} = 3.79 \cdot 10^{17}$$
 в единицах СГС. (13)

Отметим, что табличное значение данной величины в единицах СГС составляет $5.27 \cdot 10^{17}$.

3.3 Оценка разрешающей способности ИФП и её сопоставление с расчётной величиной