a)

Show: $\phi \rightarrow \psi \models_{SC} \phi \longrightarrow \psi$

Let $M = \langle W, \preceq, I \rangle$ be any SC-model.

We will show that for each $r \in W$, if $V_M(\phi \rightarrow \psi, r) = 1$, then $V_M(\phi \rightarrow \psi, r) = 1$.

- i) Suppose for reductio that for some $r \in W$ we have that $V_M(\phi \dashv \psi, r) = 1$ and $V_M(\phi \sqcup \psi, r) = 0$.
- ii) From the latter in i) since $V_M(\phi \longrightarrow \psi, r) = 0$, we know that there is some closest-to-r ϕ -world at which ψ is false. i.e. for some $a \in W$, we have the following.
- a) $V_M(\phi, a) = 1$
- b) For any $x \in W$, if $V_M(\phi, x) = 1$, then $a \leq_r x$
- c) $V_M(\psi, a) = 0$
- iii) From the former in i) since $V_M(\phi \rightarrow \psi, r) = 1$, we have that $V_M(\Box(\phi \rightarrow \psi), r) = 1$ by definition of \neg 3. Hence, $V_M(\phi \rightarrow \psi), a) = 1$. Hence, $V_M(\phi, a) = 0$ or $V_M(\psi, a) = 1$. Since from line ii) part a) we have $V_M(\phi, a) = 1$, we must have that $V_M(\psi, a) = 1$.
- iv) From line ii) part c) we have $V_M(\psi, a) = 0$ and from iii) we have $V_M(\psi, a) = 1$ which is a contradiction.

Therefore, our initial assumption was wrong. Therefore, $\phi \dashv \psi \models_{SC} \phi \square \rightarrow \psi$, as required.

b)

Show: $\phi \longrightarrow \psi \models_{SC} \phi \rightarrow \psi$

Let $M = \langle W, \preceq, I \rangle$ be any SC-model.

We will show that for each $r \in W$, if $V_M(\phi \longrightarrow \psi, r) = 1$, then $V_M(\phi \to \psi, r) = 1$.

- i) Suppose for reductio that for some $r \in W$ we have that $V_M(\phi \longrightarrow \psi, r) = 1$ and $V_M(\phi \to \psi, r) = 0$.
- ii) From the latter in i) since $V_M(\phi \to \psi, r) = 0$, we know that $V_M(\phi, r) = 1$ and $V_M(\psi, r) = 0$.
- iii) From the former in ii) we have $V_M(\phi, r) = 1$. And we also know by the "Base" constraint that for any $a \in W$ we have $r \leq_r a$. Hence, immediately we know r is a closest-to-r ϕ -world.

- iv) From the former in i) we have that $V_M(\phi \longrightarrow \psi, r) = 1$ and from iii) we have that r is a closest-to-r ϕ -world. Hence, $V_M(\psi, r) = 1$.
- v) From the latter in ii) we have $V_M(\psi, r) = 0$ and from iv) we have $V_M(\psi, r) = 1$ which is a contradiction.

Therefore, our initial assumption was wrong. Therefore, $\phi \longrightarrow \psi \models_{SC} \phi \rightarrow \psi$, as required.

 $\mathbf{c})$

CORRECTION: Exercise 8.3 c) was corrected in Sider's errata. We will solve the corrected version below.

Show:
$$(P \lor Q) \square \to R \not\models_{SC} P \square \to R$$

Consider the following countermodel $M = \langle W, \preceq, I \rangle$.

As in Sider, we will only specify parts of the model that are relevant.

$$W = \{r, a, b\}$$

$$\preceq_r = \{\langle b, a \rangle, ...\}$$

$$I(Q, b) = I(R, b) = I(P, a) = 1$$
. And all else is 0.

We have that $V_M((P \lor Q) \longrightarrow R, r) = 1$ and $V_M(P \longrightarrow R, r) = 0$.

Therefore, $(P \lor Q) \square \to R \not\models_{SC} P \square \to R$.

d)

Show:
$$(P \land Q) \longrightarrow R \not\models_{SC} P \longrightarrow (Q \longrightarrow R)$$

Consider the following countermodel $M = \langle W, \preceq, I \rangle$.

As in Sider, we will only specify parts of the model that are relevant.

$$W = \{r, a, b\}$$

$$\preceq_r = \{\langle a, b \rangle, ...\}$$

$$\preceq_a = \{\langle b, r \rangle, \ldots\}$$

$$I(P, a) = I(Q, b) = 1$$
. And all else is 0.

We have that $V_M((P \wedge Q) \longrightarrow R, r) = 1$ and $V_M(P \longrightarrow (Q \longrightarrow R), r) = 0$.

Therefore,
$$(P \land Q) \square \rightarrow R \not\models_{SC} P \square \rightarrow (Q \square \rightarrow R)$$
.

 \mathbf{a}

CORRECTION: Exercise 8.4 a) was corrected in Sider's errata. We will solve the corrected version. Sider's correction removes the antecedent $\Diamond P$ in the wff below.

Show:
$$\models_{SC} \sim (P \square \rightarrow \sim Q) \rightarrow (P \square \rightarrow Q)$$

Let $M = \langle W, \preceq, I \rangle$ be any SC-model.

We will show that for each $r \in W$ we have $V_M(\sim (P \square \rightarrow \sim Q) \rightarrow (P \square \rightarrow Q), r) = 1$.

- i) Suppose for reductio that for some $r \in W$, $V_M(\sim (P \square \rightarrow \sim Q) \rightarrow (P \square \rightarrow Q), r) = 0$.
- ii) From i) we get $V_M(\sim (P \longrightarrow \sim Q), r) = 1$ and $V_M(P \longrightarrow Q, r) = 0$.
- iii) From the former in ii) since $V_M(\sim (P \square \rightarrow \sim Q), r) = 1$, we get $V_M(P \square \rightarrow \sim Q, r) = 0$. Hence, there is some closest-to-r P-world at which $\sim Q$ is false. i.e. for some $a \in W$, we have the following.
- a) $V_M(P, a) = 1$
- b) For any $x \in W$, if $V_M(P, x) = 1$, then $a \leq_r x$
- c) $V_M(\sim Q, a) = 0$
- iv) From the latter in ii) since $V_M(P \square \to Q, r) = 0$ we know there is some closest-to-r P-world at which Q is false. i.e. for some $b \in W$, we have the following.
- a) $V_M(P, b) = 1$
- b) For any $x \in W$, if $V_M(P, x) = 1$, then $b \leq_r x$
- c) $V_M(Q,b) = 0$
- v) From line iii) part a) we have $V_M(P,a) = 1$. Hence, by line iv) part b) since $V_M(P,a) = 1$, we get that $b \leq_r a$. From line iv) part a) we have $V_M(P,b) = 1$. Hence, by line iii) part b) since $V_M(P,b) = 1$, we get that $a \leq_r b$. Since $a \leq_r b$ and $b \leq_r a$, by anti-symmetry we get that a = b.
- vi) Since a = b from v) and since $V_M(\sim Q, a) = 0$ from line iii) part c), we get that $V_M(\sim Q, b) = 0$. Hence, $V_M(Q, b) = 1$.
- vii) From vi) we have $V_M(Q, b) = 1$ and from line iv) part c) we have $V_M(Q, b) = 0$ which is a contradiction.

So our initial assumption was wrong. Therefore, $\models_{SC} \sim (P \square \rightarrow \sim Q) \rightarrow (P \square \rightarrow Q)$.

Note that since we have shown $\models_{SC} \sim (P \square \rightarrow \sim Q) \rightarrow (P \square \rightarrow Q)$, then trivially we also have that $\models_{SC} \Diamond P \rightarrow [\sim (P \square \rightarrow \sim Q) \rightarrow (P \square \rightarrow Q)]$. Hence, Sider's original formula for Exercise 8.4 a) and the corrected formula in the errata are actually both valid. But it is clear that the antecedent $\Diamond P$ is redundant.

b)

Show:
$$\not\models_{SC} [P \square \rightarrow (Q \rightarrow R)] \rightarrow [(P \land Q) \square \rightarrow R]$$

Consider the following countermodel $M = \langle W, \preceq, I \rangle$.

As in Sider, we will only specify parts of the model that are relevant.

$$W = \{r, a, b\}$$

$$\preceq_r = \{\langle b, a \rangle, ...\}$$

$$I(P,a) = I(Q,a) = I(P,b) = 1$$
. And all else is 0.

We have that
$$V_M([P \square \rightarrow (Q \rightarrow R)] \rightarrow [(P \land Q) \square \rightarrow R], r) = 0.$$

Therefore,
$$\not\models_{SC} [P \square \rightarrow (Q \rightarrow R)] \rightarrow [(P \land Q) \square \rightarrow R].$$

Show:
$$\not\models_{LC} [\phi \square \rightarrow (\psi \lor \chi)] \rightarrow [(\phi \square \rightarrow \psi) \lor (\phi \square \rightarrow \chi)]$$

Assume for the sake of contradiction that $\models_{LC} [\phi \square \rightarrow (\psi \vee \chi)] \rightarrow [(\phi \square \rightarrow \psi) \vee (\phi \square \rightarrow \chi)]$ for all wffs ϕ , ψ and χ .

Hence, when ϕ is P and ψ is Q and χ is R, where P, Q, and R are sentence letters, we must have $\models_{LC} [P \square \rightarrow (Q \vee R)] \rightarrow [(P \square \rightarrow Q) \vee (P \square \rightarrow R)].$

However, consider the following countermodel $M = \langle W, \preceq, I \rangle$ for the above instance.

As in Sider, we will only specify parts of the model that are relevant.

$$W = \{r, a, b\}$$

$$\leq_r = \{\langle a, b \rangle, \langle b, a \rangle, ...\}$$

$$I(P, a) = I(R, a) = I(P, b) = I(Q, b) = 1$$
. And all else is 0.

We have that
$$LV_M([P \longrightarrow (Q \vee R)] \to [(P \longrightarrow Q) \vee (P \longrightarrow R)], r) = 0.$$

Hence,
$$\not\models_{LC} [P \square \rightarrow (Q \vee R)] \rightarrow [(P \square \rightarrow Q) \vee (P \square \rightarrow R)]$$
 which is a contradiction.

Therefore, our initial assmuption was wrong.

Therefore,
$$\not\models_{LC} [\phi \square \rightarrow (\psi \lor \chi)] \rightarrow [(\phi \square \rightarrow \psi) \lor (\phi \square \rightarrow \chi)].$$

Required: Show that every LC-valid wff is SC-valid.

We will use the Hint provided by Sider at the back of the book.

Definition: An LC model is "Stalnaker-acceptable" iff it obeys the limit and anti-symmetry assumptions.

First we will prove the following claim.

Claim: For every LC model $M = \langle W, \preceq, I \rangle$ that is Stalnaker-acceptable, for every $w \in W$, and every wff ϕ , we have that $LV_M(\phi, w) = 1$ iff $SV_M(\phi, w) = 1$.

Note, our notation is such that LV is the valuation under Lewis' semantics, and SV is the valuation under Stalnaker's semantics.

Proof. Let $M = \langle W, \preceq, I \rangle$ be an LC model that is Stalnaker-acceptable. Let $w \in W$.

Show: $LV_M(\phi, w) = 1$ iff $SV_M(\phi, w) = 1$ for every wff ϕ .

We will show this by induction on the complexity of ϕ .

Base Case: Consider the case of a sentence letter P.

We know that $LV_M(P, w) = I(P) = SV_M(P, w)$.

Hence, trivially $LV_M(P, w) = 1$ iff $SV_M(P, w) = 1$.

Inductive Hypothesis: Assume ϕ is such that $LV_M(\phi, w) = 1$ iff $SV_M(\phi, w) = 1$. And assume ψ is such that $LV_M(\psi, w) = 1$ iff $SV_M(\psi, w) = 1$.

Show: $LV_M(\sim \phi, w) = 1$ iff $SV_M(\sim \phi, w) = 1$

$$LV_M(\sim \phi,w)=1$$
 iff $LV_M(\phi,w)=0$ iff $SV_M(\phi,w)=0$ By Inductive Hypothesis iff $SV_M(\sim \phi,w)=1$

Show: $LV_M(\phi \to \psi, w) = 1$ iff $SV_M(\phi \to \psi, w) = 1$

$$LV_M(\phi \to \psi, w) = 1$$
 iff $LV_M(\phi, w) = 0$ or $LV_M(\psi, w) = 1$ iff $SV_M(\phi, w) = 0$ or $SV_M(\psi, w) = 1$ By Inductive Hypothesis iff $SV_M(\phi \to \psi, w) = 1$

Show:
$$LV_M(\Box \phi, w) = 1$$
 iff $SV_M(\Box \phi, w) = 1$

$$LV_M(\Box \phi, w) = 1$$
 iff for every $u \in W$, $LV_M(\phi, u) = 1$ iff for every $u \in W$, $SV_M(\phi, u) = 1$ By Inductive Hypothesis iff $SV_M(\Box \phi, w) = 1$

Show:
$$LV_M(\phi \square \rightarrow \psi, w) = 1$$
 iff $SV_M(\phi \square \rightarrow \psi, w) = 1$

Assume for the sake of contradiction that that the above were false.

Without loss of generality, assume $LV_M(\phi \longrightarrow \psi, w) = 1$, and $SV_M(\phi \longrightarrow \psi, w) = 0$. The other case is similar.

Since $SV_M(\phi \longrightarrow \psi, w) = 0$, we know there is some closest-to- $w \phi$ world where ψ is false. Hence, there is some $a \in W$ such that,

- i) $SV_M(\phi, a) = 1$
- ii) For any $x \in W$, if $SV_M(\phi, x) = 1$ then $a \leq_w x$
- iii) $SV(\psi, a) = 0$

From i), since $LV_M(\phi \longrightarrow \psi, w) = 1$, then we know that EITHER,

- a) ϕ is true at no worlds. OR
- b) There is some $x \in W$ such that $LV_M(\phi, x) = 1$ and for all $y \in W$, if $y \leq_w x$ then $LV_M(\phi \to \psi, y) = 1$.

Since $SV_M(\phi, a) = 1$, by Inductive Hypothesis we have that $LV_M(\phi, a) = 1$. Hence, a) cannot hold.

Hence, b) must hold. So there exists some $x \in W$ such that $LV_M(\phi, x) = 1$. By Inductive Hypothesis, $SV_M(\phi, x) = 1$. By ii) we get that $a \leq_w x$.

Since $a \leq_w x$, then from b) we get that $LV_M(\phi \to \psi, a) = 1$.

Hence, $LV_M(\phi, a) = 0$ or $LV_M(\psi, a) = 1$. By Inductive Hypothesis we get that $SV_M(\phi, a) = 0$ or $SV_M(\psi, a) = 1$. Since $SV_M(\phi, a) = 1$ from i), we must have that $SV_M(\psi, a) = 1$.

But $SV_M(\psi, a) = 1$ contradicts the fact that $SV(\psi, a) = 0$ from iii).

By induction on the complexity of wffs, we have proven the **Claim**.

Now we will show that every LC valid wff is SC valid. Let ϕ be an LC valid wff. Hence, ϕ holds in all LC models. In particular, ϕ holds in all Stalnaker-acceptable LC-models. By our **Claim** the truth conditions of both Stalnaker and Lewis semantics in Stalnaker-acceptable LC-models are the same. And every SC model is a Stalnaker-acceptable LC model. Hence, ϕ is valid in all SC models.