Parallel Conjugate Gradient Method with Stencil-Based Matrix-Vector Multiplication

Algorithm The Conjugate Gradient (CG) Algorithm Define A and b based on the input parameter nDefine maximum iterations imax and tolerance error rmaxInitialize u = 0, q = -b, d = b $q_0 = g^T g$ for it = 1, 2, ... until it == imax or |b - Au| < rmax do q = Ad $\tau = q_0/(d^Tq)$ ⊳ Step length $u = u + \tau d$ ▶ Approximate solution ▶ New residual $g = g + \tau q$ $q_1 = g^T g$ ▶ Improvement $\beta = q_1/q_0$ $d = -g + \beta d$ ▶ New search direction $q_0 = q_1$ end for **return** u, the approximation solution

Initialization

block_size = n / \sqrt{p} residual = n % \sqrt{p} If row < residual: get an extra row

Initialize $\mathbf{u} = \mathbf{0}$, $\mathbf{g} = -\mathbf{b}$, $\mathbf{d} = \mathbf{b}$, and $q_0 = \mathbf{g}^T \mathbf{g}$

These vectors has the same shapes on each process, since all the basis operations are element-wise operation.

Scalar product: $q_0 = \mathbf{q}^T \mathbf{q} = \sum_{i=0}^{p-1} s^{(i)}$

Iteration Process

Step1. Exchange Boundary Data

Four directions: up, down, left, right, use MPI_Sendrecv()

Step2.
$$Ab^{(i)} = q^{(i)}, i = 0, 1, p - 1$$

Repeat 200 times

Step4. Vector updates: $\mathbf{u} = \mathbf{u} + \tau \mathbf{d}$, $\mathbf{g} = \mathbf{g} + \tau \mathbf{q}$

Step6. Vector updates:
$$\mathbf{d} = -\mathbf{g} + \beta \mathbf{d}$$

Step3. Scalar product: $s = \boldsymbol{d}^T \boldsymbol{q} = \sum_{i=0}^{p-1} s^{(i)}, \tau = q_0/s$

MPI_Allreduce()

$$s^{(i)} = \sum_i \sum_j d^{(i)}_{i,j} q^{(i)}_{i,j}$$

$$\bullet$$

$$d^{(0)}, \dots, d^{(p-1)}$$

$$q^{(0)}, \dots, q^{(p-1)}$$

Step5. Scalar product:
$$q_1 = \boldsymbol{d}^T \boldsymbol{q} = \sum_{i=0}^{p-1} s^{(i)}$$
, $\beta = q_1/q_0$

Scalability Experiments

Strong Scalibility, n = 2048

Weak Scalibility, n = 256 per process

Outputs

n	residual ($ g _2$)
256	3.82×10^{-5}
512	4.43×10^{-3}
768	6.34×10^{-3}
1024	7.28×10^{-3}
1280	7.62×10^{-3}
1536	7.90×10^{-3}
1972	8.14×10^{-3}
2048	8.25×10^{-3}

$$n = 1024$$
, itr = 722, $r = 9.75e-6$