Aritmética em Corpos Finitos

Ranieri Althoff

¹Universidade Federal de Santa Catarina Departamento de Informática e Estatística Segurança em Computação

1. Algoritmo de Euclides

O algoritmo de Euclides é um método simples de encontrar o máximo divisor comum (GCD) entre dois números inteiros diferentes de zero. Foi desenvolvido pelo matemático homônimo por volta de 300 a.C. e é baseado no princípio de que o GCD entre dois números não muda quando um é subtraído pelo outro.

É fácil verificar esta propriedade: suponha dois números a e b com um máximo divisor comum n (gcd(a,b)=n, então a=kn e b=ln, sendo todas as variáveis números inteiros. Ao subtrair a por b, temos que a-b=kn-ln=(k-l)n, ou seja, o resultado continua sendo múltiplo de n.

De forma análoga, é possível encontrar que r=a-qb, ou seja, subtraímos de a a maior quantidade possível de b (pela propriedade acima descrita gcd(a,b)-gcd(b,a%b) e usamos o resto r para aplicar o GCD utilizando valores menores. Esse procedimento é repetido até que um dos valores seja zero, indicando que o outro é o GCD entre a e b.

A versão extendida do algoritmo, além de calcular o GCD, também encontra dois inteiros α e β tal que $gcd(a,b)=a\alpha+b\beta$, chamados de coeficientes da **identidade de Bézout**. Esse algoritmo é útil para encontrar o inverso multiplicativo de um número: se a e b são relativamente primos, $a\alpha \equiv 1 \pmod{b}$ e $b\beta \equiv 1 \pmod{a}$.

1.1. Exemplos

a) Algoritmo de Euclides para gcd(9907321467, 941).

$$9907321467 = 941 \times 10528503 + 144$$

$$941 = 144 \times 6 + 77$$

$$144 = 77 \times 1 + 67$$

$$77 = 67 \times 1 + 10$$

$$67 = 10 \times 6 + 7$$

$$10 = 7 \times 1 + 3$$

$$7 = 3 \times 2 + 1$$

$$3 = 1 \times 3 + 0$$

Sendo no próximo passo b=0, o valor final de a e, portanto, o GCD entre os dois números, 1. É possível ver que, logo no primeiro passo, o maior número diminuiu por várias ordens de grandeza.

b) A identidade de *Bézoit* pode ser encontrada se revertendo os passos do algoritmo de Euclides, encontrando a inversa multiplicativa de a e b módulo b e a, respectivamente:

$$1 = 7 + 3 \times (-2)$$

$$1 = 7 + (10 - 7) \times (-2)$$

$$1 = 7 \times 3 + 10 \times (-2)$$

$$1 = (67 + 10 \times (-6)) \times 3 + 10 \times (-2)$$

$$1 = 67 \times 3 + 10 \times (-20)$$

$$1 = 67 \times 3 + (77 - 67) \times (-20)$$

$$1 = 67 \times 23 + 77 \times (-20)$$

$$1 = (144 - 77) \times 23 + 77 \times (-20)$$

$$1 = 144 \times 23 + 77 \times (-43)$$

$$1 = 144 \times 23 + (941 + 144 \times (-6)) \times (-43)$$

$$1 = 144 \times 281 + 941 \times (-43)$$

$$1 = (9907321467 + 941 \times (-10528503)) \times 281 + 941 \times (-43)$$

$$1 = 9907321467 \times 281 + 941 \times (-2958509386)$$

Usando uma linguagem de programação, é fácil verificar que $9907321467 * 281 \equiv 1 \pmod{941}$ e $941 * -2958509386 \equiv 1 \pmod{9907321467}$.

2. Grupos, anéis e corpos

2.1. Grupo

Um grupo G é um conjunto, finito ou infinito, de elementos acompanhado de uma operação binária * (chamada de operação do grupo) que satisfazem as seguintes propriedades fundamentais [Weisstein 1999c]:

Associatividade: o agrupamento dos fatores não altera o resultado da operação.

$$\forall a, b, c \in G, \quad (a * b) * c = a * (b * c)$$

Identidade: existe um elemento identidade e ou 1 em G tal que todo elemento a em G aplicado com e resulte no próprio a.

$$\forall a \in G, \quad a * e = e * a = a.$$

Inversa: existe uma inversa a^{-1} para cada elemento tal que todo elemento a em G aplicado com sua inversa resulte na identidade e.

$$\forall a \in G, \quad a * a^{-1} = a^{-1} * a = e$$

Um exemplo de grupo pode ser o conjunto 0, 1 sob a operação lógica \wedge .

2.2. **Anel**

Mais restritivo que um grupo, um anel é um conjunto G acompanhado de duas operações + e * (interpretados como adição e multiplicação) que satisfazem as seguintes propriedades fundamentais [Weisstein 1999d]:

Associatividade aditiva: tal qual como a associatividade em grupos, o agrupamento dos fatores não altera o resultado da adição.

$$\forall a, b, c \in G, \quad (a+b)+c=a+(b+c)$$

Comutatividade aditiva: a ordem dos fatores não altera o resultado da adição.

$$\forall a, b \in G, \quad a+b=b+a$$

Identidade aditiva: tal qual a identidade em grupos, existe um elemento 0 tal que todo elemento a em G adicionado a 0 resulte no próprio a.

$$\forall a \in G$$
, $a+0=0+a=a$

Inversa aditiva: tal qual a inversa em grupos, existe uma inversa a^{-1} para cada elemento tal que todo elemento a em G adicionado a sua inversa resulte na identidade 0.

$$\forall a \in G, \quad a + (-a) = (-a) + a = 0$$

Distributividade: a operação de multiplicação deve ser distributiva sobre a operação de adição.

$$\forall a, b, c \in G, \quad a * (b + c) = (a * b) + (a * c) \land (b + c) * a = (b * a) + (c * a)$$

Associatividade multiplicativa: a operação de multiplicação também é associativa:

$$\forall a, b, c \in G$$
, $(a * b) * c = a * (b * c)$

Um exemplo de anel infinito é o conjunto de números inteiros \mathbb{Z} , já que há a operação de adição e multiplicação que satisfaz todas as condições acima sobre esse conjunto.

2.3. Corpo

Um corpo é um conjunto G, satisfazendo todas as condições de um anel e adicionalmente todo elemento $a \in G$ diferente de zero possui inversa multiplicativa. Essa característica é conhecida como álgebra de divisão, porque é a propriedade que permite que um certo conjunto possua uma operação de divisão [Weisstein 1999a].

Um corpo com uma quantidade finita de elementos é conhecido como um **corpo de Galois** [Weisstein 1999b]. Os exemplos mais usados de corpos finitos são os conjuntos de números relativamente primos a n, denotados \mathbb{Z}_n .

3. Corpos primos e binários

Corpos finitos sempre tem um número de elementos primo ou potência de um primo, e para cada potência de primo p^n existe apenas um (considerando corpos isomórficos como iguais) corpo finito \mathbb{F}_{p^n} .

3.1. Corpo primo

Um corpo finito \mathbb{F}_p , onde p é um número primo, é chamado de corpo primo de ordem p e contém as classes de congruencia módulo p, sendo os p elementos denominados $0, 1, \ldots, p-1$. a=b em \mathbb{F}_p significa $a\equiv b\pmod{p}$ [Weisstein 1999b].

O corpo finito \mathbb{F}_2 é um corpo primo que consiste dos elementos 0 e 1 e satisfaz as seguintes operações:

3.2. Corpo binário

Um corpo finito de ordem 2^m , onde $m \ge 1$, é chamado de corpo binário. Em geral, são corpos cujos elementos são polinômios, cujos coeficientes são 0 ou 1 com grau máximo m-1 (e.g. $x^4+x^3+x^1+1$ para m=5).

O corpo finito \mathbb{F}_{2^3} é composto pelos seguintes polinômios:

$${x^2 + x + 1, x^2 + x, x^2 + 1, x^2, x + 1, x, 1, 0}$$

4. Polinômios irredutíveis

Um polinômio é dito irredutível se não puder ser fatorado em polinômios não-triviais em um mesmo grupo. A irredutibilidade de um polinômio depende do grupo no qual está sendo trabalhado, portanto.

No corpo finito \mathbb{F}_{2^3} , o polinômio x^2+x+1 é irredutível, mas x^2+1 não é, pois $(x+1)(x+1)=x^2+2x+1\equiv x^2+1\pmod 2$.

4.1. Aritmética em corpos finitos

Para se realizar aritmética em corpos finitos, se realiza a operação entre os termos de mesmo grau, depois dividindo por um polinômio irredutível que define o corpo [Stallings 2002]. Por exemplo:

$$p = x^{3} + x + 1$$

$$q = x^{3} + x^{2}$$

$$p + q = 2x^{3} + x^{2} + x + 1$$

No entanto, para corpos binários, a operação de adição convenientemente é equivalente a operação de ou-exclusivo sobre os bits do polinômio. Pelo mesmo exemplo, convertendo os termos dos polinômios para 0 ou 1 no corpo \mathbb{F}_{2^3} .

$$\begin{aligned} p &= 1011_2 \\ q &= 1100_2 \\ p+q &= p \oplus q \equiv 0111_2 \pmod{1011} = x^2+x+1 \pmod{x^3-x-1} \end{aligned}$$

A operação de multiplicação em um corpo finito é a multiplicação módulo um polinômio irredutível que define o corpo, o que também pode ser feito se convertendo os termos para uma representação binária, o que facilita o uso por computadores [Stallings 2002]:

$$p*q = x^6 + x^5 + x^4 + 2x^3 + x^2 = 1110100_2$$

$$p*q = 1110100_2 \equiv 110_2 \pmod{1011} = x^2 + x \pmod{x^3 - x - 1}$$

5. Encontrando x

a)
$$9x \equiv 8 \pmod{7}$$

= $9x \equiv 1 \pmod{7}$
 $x = 4 + 7n$

b)
$$x \equiv 5 \pmod{3}$$

= $x \equiv 2 \pmod{3}$
 $x = 2 + 3n$

c)
$$x \equiv 5 \pmod{-3}$$

= $x \equiv -1 \pmod{-3}$
 $x = -1 - 3n$

e)
$$x \equiv -5 \pmod{-3}$$

= $x \equiv -2 \pmod{-3}$
 $x = -2 - 3n$

f)
$$x \equiv 1234^{-1} \pmod{4321} \ x \times 1234 = 1 \pmod{4321}$$

g)
$$x \equiv -24140 \pmod{40902} = x \equiv 16762 \pmod{40902}$$
 $x = 16762 + 40902n$

6. Inversas multiplicativas do conjunto \mathbb{Z}_{11}

O conjunto Z_n é o conjunto dos números relativamente primos a n. Como 11 é um número primo, todos os números inferiores a ele são relativamente primos, portanto o conjunto compreende $1, 2, \ldots, 10$. As inversas multiplicativas podem ser encontradas se multiplicando os números deste conjunto de forma a encontrar $ab = 1 \pmod{11}$, sendo a a inversa multiplicativa de b e vice-versa [Stallings 2002].

*	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	1	3	5	7	9
3	3	6	9	1	4	7	10	2	5	8
4	4	8	1	5	9	2	6	10	3	7
5	5	10	4	9	3	8	2	7	1	6
6	6	1	7	2	8	3	9	4	10	5
7	7	3	10	6	2	9	5	1	8	4
8	8	5	2	10	7	4	1	9	6	3
9	9	7	5	3	1	10	8	6	4	2
10	10	9	8	7	6	5	4	3	2	1

É possível concluir, portanto, que os pares de inversas multiplicativas de \mathbb{Z}_{11} são (1,1),(2,6),(3,4),(5,9) e (10,10).

7. Aritmética polinomial em \mathbb{Z}_{10}

a)
$$(7x+2) - (x^2+5) = -x^2 + 7x - 3 = 9x^2 + 7x + 7$$

b)
$$(6x^2 + x + 3) \times (5x^2 + 2) = 30x^4 + 5x^3 + 27x^2 + 2x + 6 = 5x^3 + 7x^2 + 2x + 6$$

8. Polinômios em corpos finitos

- a) $gcd(x^3+x+1,x^2+x+1)$ sobre GF(2) x^3+x+1 é irredutível em GF(2), portanto o único divisor comum com outros polinômios do mesmo grupo é 1.
- **b**) $gcd(x^3 x + 1, x^2 + 1)$ sobre GF(3) $x^2 + 1$ é irredutível em GF(3), portanto o único divisor comum com outros polinômios do mesmo grupo é **1**.

9. Tabela aditiva e multiplicativa para ${\rm GF}(2^4)$

Para o polinômio irredutível x^4+x+1 , as tabelas de adição e multiplicação do corpo finito $GF(2^4)$ são:

	۱ ۵		_	_		_		_				-	\sim	_	_	_
+	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
0	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	\overline{F}
1	1	0	3	2	5	4	7	6	9	8	B	A	D	C	F	E
2	2	3	0	1	6	7	4	5	A	B	8	9	E	F	C	D
3	3	2	1	0	7	6	5	4	B	A	9	8	F	E	D	C
4	4	5	6	7	0	1	2	3	C	D	E	F	8	9	A	B
5	5	4	7	6	1	0	3	2	D	C	F	E	9	8	B	A
6	6	7	4	5	2	3	0	1	E	F	C	D	A	B	8	9
7	7	6	5	4	3	2	1	0	F	E	D	C	B	A	9	8
8	8	9	A	B	C	D	E	F	0	1	2	3	4	5	6	7
9	9	8	B	A	D	C	F	E	1	0	3	2	5	4	7	6
A	A	B	8	9	E	F	C	D	2	3	0	1	6	7	4	5
B	B	A	9	8	F	E	D	C	3	2	1	0	7	6	5	4
C	C	D	E	F	8	9	A	B	4	5	6	7	0	1	2	3
D	D	C	F	E	9	8	B	A	5	4	7	6	1	0	3	2
E	E	F	C	D	A	B	8	9	6	7	4	5	2	3	0	1
F	F	E	D	C	B	A	9	8	7	6	5	4	3	2	1	0

```
1
        2
                     5
                          6
                                           A
                                              B
                                                   C
                                                       D
         2
             3
                     5
                          6
                              7
                                  8
                                               \overline{B}
                                                   \overline{C}
                                                            \overline{E}
                                                                \overline{F}
1
    1
                 4
                                       9
                                           A
                                                        D
                                                   B
                                                            F
2
    2
        4
             6
                 8
                     A
                         C
                              E
                                  3
                                       1
                                           7
                                               5
                                                        9
                                                                D
                     F
    3
        6
             5
                 C
                                  B
                                      8
                                           D
                                               E
                                                   7
3
                         A
                              9
                                                            1
                                                                 2
                     7
                         B
                                       2
                                           E
        8
            C
                 3
                              F
                                  6
                                               A
                                                   5
                                                            D
                                                                 9
4
    4
                                                        1
            F
                 7
                     2
                         D
                                  E
                                      B
                                                   9
                                                       C
5
    5
        A
                              8
                                           4
                                               1
                                                            3
                                                                 6
6
    6
        C
            A
                 B
                     D
                          7
                              1
                                  5
                                       3
                                           9
                                               F
                                                   E
                                                        8
                                                            2
                                                                 4
                 F
                                                    2
7
    7
        E
             9
                     8
                          1
                              6
                                  D
                                      A
                                           3
                                               4
                                                        5
                                                            C
                                                                B
        3
                     E
                              D
                                  C
                                           F
                                               7
                                                        2
8
    8
            B
                 6
                          5
                                       4
                                                   A
                                                            9
                                                                 1
        1
                 2
                     B
                              A
                                  4
                                      D
                                           5
                                               C
                                                   6
                                                       F
                                                            7
                                                                E
9
    9
             8
                          3
                                  F
        7
                 E
                     4
                                       5
                                                        В
                                                                C
A
    A
            D
                          9
                              3
                                           8
                                               2
                                                   1
                                                            6
                                           2
            E
                 A
                     1
                          F
                                  7
                                      C
                                               9
                                                   D
                                                                 3
В
    В
        5
                              4
                                                        6
                                                            8
C
    C
        B
             7
                 5
                     9
                         E
                              2
                                  A
                                      6
                                           1
                                               D
                                                   F
                                                        3
                                                            4
                                                                 8
                     C
D
    D
        9
             4
                 1
                          8
                              5
                                  2
                                      F
                                           B
                                               6
                                                    3
                                                       E
                                                            A
                     3
                                       7
    E
        F
             1
                 D
                          2
                              C
                                  9
                                           6
                                                        A
                                                            B
E
                                               8
                                                    4
                                                                 5
    F
             2
                              В
                                      E
        D
                 9
                     6
                          4
                                  1
                                           C
                                               3
                                                    8
                                                        7
                                                            5
                                                                A
```

Utilizando os números como representação dos polinômios como explicado em seções anteriores.

10. Inverso multiplicativo em $GF(2^4)$

Para o polinômio irredutível $x^4 + x + 1$, utilizando as tabelas acima, se encontra que o inverso multiplicativo de $x^3 + x + 1$, que pode ser representado como 1011_2 ou B_{16} , é $x^2 + 1$ (101_2 ou 5_{16}).

Referências

- Stallings, W. (2002). *Cryptography and Network Security: Principles and Practice*. Pearson Education, 3rd edition.
- Weisstein, E. (1999a). Field axioms. Wolfram MathWorld. Disponível em: http://mathworld.wolfram.com/FieldAxioms.html. Acesso em: 25 mai 2016.
- Weisstein, E. (1999b). Finite field. Wolfram MathWorld. Disponível em: http://mathworld.wolfram.com/FiniteField.html. Acesso em: 25 mai 2016.
- Weisstein, E. (1999c). Group. Wolfram MathWorld. Disponível em: http://mathworld.wolfram.com/Group.html. Acesso em: 25 mai 2016.
- Weisstein, E. (1999d). Ring. Wolfram MathWorld. Disponível em: http://mathworld.wolfram.com/Ring.html. Acesso em: 25 mai 2016.