

Improving Ceph Performance With Networking

Ceph Networking—When 10GbE Is Not Enough
Tong Liu
tong@mellanox.com

Company headquarters:

- Yokneam, Israel; Sunnyvale, California
- ~1,900 employees* worldwide

Solid financial position

- FY14 revenue of \$463.6M
- 2Q15 revenue of \$163.1M
- 3Q15 guidance of \$169-\$171M
- Cash + investments @June 30, 2015 = \$467.2M

Leading Supplier of End-to-End Interconnect Solutions

Comprehensive End-to-End InfiniBand and Ethernet Portfolio (VPI)

Ethernet that Delivers: 25, 50, 100GbE Switch & Adapters

One Switch. A World of Options.

Flexibility, Opportunities, Speed

Open Ethernet, Zero Packet Loss

Connect *4 Connect *4 Lx

Most Cost-Effective Ethernet Adapter
2.5X the Network Performance
Same Infrastructure, Same Connector

One Switch - A World of Opportunities

25, 50, & 100G at Your Fingertips

Why is Ceph Popular?

The only open-source, software-defined, scale-out enterprise storage

Scale-out Block and Object

- Up to hundreds of nodes, petabytes of storage
- Distributed architecture for performance and availability

Enterprise Features

- High availability: redundancy, replication, failover, rebalancing
- Capacity: Multi-site, tiering, erasure coding
- Data management: Cloning, snapshots, thin provisioning

Software-Defined and Open Source

- Flexible hardware options
- Build your own or buy as pre-integrated Ceph appliances
- Integrated With OpenStack

Scale-Out Architecture Requires A Fast Network

6

- Scale-out grows capacity and performance in parallel
- Requires fast network for replication, sharing, and metadata (file)
 - Throughput requires bandwidth
 - IOPS requires low latency
- Proven in HPC, storage appliances, cloud, and now... Ceph

Interconnect Capabilities Determine Scale Out Performance

Ceph Has Two Logical Networks

- High performance networks enable maximum cluster availability
 - Clients, OSD, Monitors and Metadata servers communicate over multiple network layers
 - Real-time requirements for heartbeat, replication, recovery and re-balancing
 - Cluster write traffic is 3x (replication) or 1.5x (EC) more than public network
- Cluster ("backend") network performance dictates cluster's performance and scalability
 - "Network load between Ceph OSD Daemons easily dwarfs the network load between Ceph Clients and the Ceph Storage Cluster" (Ceph Documentation)

Solid State Storage – Faster Storage Needs Faster Networks

Advanced Networking and Protocol Offloads Required to Match Storage Media Performance

Ceph Deployment Using 10GbE and 40GbE

- Cluster (Private) Network @ 40/56GbE
 - Smooth HA, unblocked heartbeats, efficient data balancing
- Throughput Clients @ 40/56GbE
 - Guaranties line rate for high ingress/egress clients
- IOPs Clients @ 10GbE or 40/56GbE
 - 100K+ IOPs/Client @4K blocks

Single Client Throughput and Transaction Capabilities

IOPs Testing results based on fio benchmark, 4KB block, 20GB file,128 parallel jobs, RBD Kernel Driver with Linux Kernel 3.13.3 RHEL 6.3, Ceph 0.72.2

(http://www.mellanox.com/related-docs/whitepapers/WP_Deploying_Ceph_over_High_Performance_Networks.pdf)

2.5x Higher Throughput, 15% Higher IOPs with 40Gb Ethernet vs. 10GbE!

Mellanox Switches Maximize Ceph Performance & Efficiency

SX1036/1710(x86) – 36x 40/56GbE ports Ideal 40GbE Aggregation Switch

SX1024/1400(x86) 48x 10GbE + 12x 40GbE Non-blocking 10GbE → 40GbE ToR

SX1012 – 12x 10/40/56GbE ports Ideal storage/Database 10/40GbE Switch

SX1016 – 64x 10GbE ports Highest density 10GbE ToR

Lowest Power Consumption

SX1710 - 91W

SX1036 - 83W

SX1016 - 62W

SX1024 - 75W

SX1012 - 50W

Lowest Latency 220ns

True Cut Through 10/40GbE Switches: 220ns vs. 8000ns

11

10GbE Port to 10GbE Port Latency Test Bed Typical Data Center ToR Switch User Scenario

Servers (simulated with the Ixia IP Performance Tester to evaluate the latency with 10Gbps line-rate traffic between them)

Note: 10GbE connectivity was achieved through break-out cables.

Source: Tolly, January 2015

Figure 3

Typical 10-40GbE ToR RFC 2544 Latency Results: Mellanox SX1036 vs. Arista DCS-70500X

Layer 2 Two 10GbE Ports (as reported by Ixia IxNetwork)

Ceph Performance Testing Using Hard Drives

Supermicro: Optimizing For Throughput and Price/Throughput

- Red Hat, Supermicro, Seagate, Mellanox, Intel
- Extensive Performance Testing: Disk, Flash, Network, CPU, OS, Ceph
- Reference Architecture Published on the Red Hat site

Supermicro Testing 12 -72 Disks Per Node, 2x10GbE vs. 40GbE

Key Test Results

- More disks = more MB/s per server, less/OSD
- More flash is faster (usually)
- All-flash 2-SSDs node faster than 36 HDDs

40GbE Advantages

- Up to 2x read throughput per server
- Up to 50% decrease in latency
- Easier than bonding multiple 10GbE links

Scalable Informatics Ceph Testing at 40GbE

Sequential read throughput per server 3x replication, librados

Scalable Informatics Test Setup

- 50 * 3TB SATA HDD + 10 * SATA SSD, or...
- 60 * 3TB SATA HDD (no SSDs)
- Mellanox 40GbE network

Key Test Results

- Read 3000 MB/s per server with 3x rep (24 Gb/s)
- Read 2500 MB/s per server with 6+2 EC (20 Gb/s)
- Definitely need 40GbE

QCT (Quanta Cloud Technology) & Red Hat Ceph Storage Testing

• QuantaPlex T21P-4U Dual-Node

- 2 OSD nodes, 70 HDD & 4 SSD per server
- 35x 8TB HDD + 2x PCle SSD per node
- 10GbE or Mellanox 40GbE NIC

Key 40GbE Test Results

- Up to 2700MB/s read per node
- Up to 7x faster reads than 10GbE

Optimizing Ceph for Flash

Ceph Flash Optimization By SanDisk

Highlights Compared to Stock Ceph

- Read performance up to 8x better
- Write performance up to 2x better with tuning

Optimizations

- All-flash storage for OSDs
- Enhanced parallelism and lock optimization
- Optimization for reads from flash
- Improvements to Ceph messenger

Test Configuration

- InfiniFlash Storage with IFOS 1.0 EAP3
- Up to 4 RBDs
- 2 Ceph OSD nodes, connected to InfiniFlash
- 40GbE NICs from Mellanox

SanDisk InfiniFlash

SanDisk InfiniFlash, Maximizing Ceph Random Read IOPS

Random Read IOPs

Random Read Latency (ms)

Ceph On Flash Needs 40GbE (or 100GbE)

Setup	SanDisk InfiniFlash	Scalable Informatics	Supermicro (more all-flash tests coming)	Mellanox (more all-flash tests coming)
OSD Servers	Dell R720	SI Unison	Supermicro	Supermicro
OSD Nodes	2	1	3	2
Flash	1 InfiniFlash 64x8TB = 512TB	24 SATA SSDs per node	2x PCIe SSDs per node	12x SAS SSDs per node
Cluster Network	40GbE	100GbE	40GbE	56GbE
Total Read Throughput	71.6 Gb/s	70 Gb/s	43 Gb/s	44 Gb/s
Per-Server Read Throughput	35 Gb/s	70 Gb/s	14 Gb/s	22 Gb/s

Adding RDMA To Ceph

XioMessenger

RDMA Enables Efficient Data Movement

- Hardware Network Acceleration → Higher bandwidth, Lower latency
- Highest CPU efficiency → more CPU Power To Run Applications

RDMA Enables Efficient Data Movement At 100Gb/s

100GbE With CPU Onload

100 GbE With Network Offload

CPU Onload Penalties

- Half the Throughput
- Twice the Latency
- Higher CPU Consumption

2X Better Bandwidth

Half the Latency

33-50% Lower CPU

See the demo: https://www.youtube.com/watch?v=u8ZYhUjSUol

23

Without RDMA

- 5.7 GB/s throughput
- 20-26% CPU utilization
- 4 cores 100% consumed by moving data

With Hardware RDMA

- 11.1 GB/s throughput at half the latency
- 13-14% CPU utilization
- More CPU power for applications, better ROI

Adding RDMA to Ceph

24

RDMA Beta Included in Hammer

- Mellanox, Red Hat, and CohortFS (now part of Red Hat)
- Full RDMA expected in *Infernalis* release

Refactoring of Ceph Messaging Layer

- New RDMA messenger layer called XioMessenger
- New class hierarchy allowing multiple transports (simple one is TCP)
- Async design that leverages Accelio
- Reduced locks; Reduced number of threads

XioMessenger built on top of Accelio (RDMA abstraction layer)

- Integrated into all CEPH user space components: daemons and clients
- Both "public network" and "cloud network"

Ceph 4KB Read IOPS: 40Gb TCP vs. 40Gb RDMA

Deployment Examples

Appliances, Integrators, and Customers

Ceph For Large Scale Storage-Fujitsu Eternus CD10000

27

Hyperscale Storage

- 4 to 224 nodes
- Up to 56 PB raw capacity

Runs Ceph with Enhancements

- 3 different storage nodes
- Object, block, and file storage

Mellanox InfiniBand Cluster Network

- 40Gb InfiniBand cluster network
- 10Gb Ethernet front end network

Media & Entertainment Storage – StorageFoundry Nautilus

Turnkey Object Storage

- Built on Ceph
- Pre-configured for rapid deployment
- Mellanox 10/40GbE networking

- 6-8TB Helium-filled drives
- Up to 2PB in 18U

High-Performance Configuration

- Single client read 2.2 GB/s
- SSD caching + Hard Drives
- Supports Ethernet, IB, FC, FCoE front-end ports
- More information: www.storagefoundry.net

Fast Ceph Storage – Scalable Informatics Unison

For Multi-tenancy and Cloud Deployments

- Powered by Ceph
- Object, block, file and Hadoop storage
- Mellanox 10/40GbE networking

High-Availability Cluster

- 60 HDD in 4U or 50HDD + 10 SSD
- Available in all-flash configuration
- 40, 56, or 100Gb/s cluster network

More information:

- www.scalableinformatics.com/unison.html
- See the white paper

SanDisk InfiniFlash

Flash Storage System

- Announced March 2015
- 512 TB (raw) in one 3U enclosure
- Tested with 40GbE networking

High Throughput

- 8 SAS ports, up to 7GB/s
- Connect to 2 or 4 OSD nodes
- Up to 1M IOPS with two nodes

More information:

http://bigdataflash.sandisk.com/infiniflash

SanDisk

Ceph Customer: Monash University

Research University in Melbourne, Australia

- 67,000 students and 15,000 staff
- 9 locations in 5 countries

3 Ceph Clusters

- 8, 17, and 37 nodes
- >6PB of storage
- Hybrid OSD nodes (mostly HDD)

OpenStack Storage

Cinder for block, S3/Swift for object

Mellanox Networking

- SX1036 switches
- 10GbE to each Ceph node
- 56GbE links between switches

Summary

- Ceph Benefits from Faster Networks 10GbE is not enough!
 - If using >20 HDD per server or all-flash
- End-to-end 40/56 Gb/s transport accelerates Ceph today
 - 100GbE testing has begun!
 - Available in various Ceph solutions and appliances
- What's Coming Next for Ceph
 - RDMA to optimize flash performance—beta in *Hammer*
 - Erasure Coding hardware offload
 - 25GbE Testing

Thank You

