Theorem 0.1. Let **D** have pushouts. Given a coreflection $L \dashv R : \mathbf{C} \to \mathbf{D}$ where R preserves pushouts, R is a Street optibration.

Proof. Fix an arrow $f: a \to b$ in \mathbb{C} and an object x such that Rx := a. Define \hat{f} as the pushout of Lf along the counit ε_x

$$LRx \xrightarrow{Lf} Lb$$

$$\varepsilon \downarrow \qquad \qquad \downarrow$$

$$x \xrightarrow{\hat{f}} x + LRx Lb$$

Observe that $R\hat{f}: Rx \to R(x +_{LRx} Lb)$. Also there is a string of isomorphisms

$$R(x +_{LRx} Lb) \rightarrow Rx +_{RLRx} RLb \rightarrow Rx +_{Rx} b \rightarrow b$$

whose composite we call h. Then $R\hat{f} = f.h^{-1}$ as desired. (note: some details are needed here)

Now show that \hat{f} is cocartesian. Consider a **D**-arrow $g: x \to y$ with a C-arrow $\theta: R(x +_{LRx} Lb) \to Ry$ so that $R\hat{f}.\theta = Rg$. Can we uniquely lift θ ? Set up the diagram

where $g' := Lh^{-1}.L\theta.\varepsilon_y$. To show the outer square commutes, it suffices to show that Lf.g' and $\varepsilon_x.g$ have the same image under the adjunction homset correspondence. We have

$$Lf.g'=Lf.Lh^{-1}.L\theta.\varepsilon_y\mapsto \eta_{Rx}.RLf.RLh^{-1}.RL\theta.R\varepsilon_y=f.h^{-1}.\theta=R\hat{f}.\theta=Rg$$
 and

$$\varepsilon_x.g \mapsto \eta_{Rx}.Rg = Rg.$$

Theorem 0.2. Given a Street opfibration $R: \mathbf{D} \to \mathbf{C}$, it is a right adjoint when it is nice.

Let's try to figure out what *nice* could be. Here are some helpful theorems.

Theorem 0.3 (Freyd's general adjoint functor theorem). A functor $F: X \to Y$ is a right adjoint if x is complete, locally small, and F satisfies the solution set condition. The latter says, for any Y-object y, there exists a small set I indexing a collection of X-objects x_{iI} and Y-arrows $f_i: y \to F(x_i)$ such that every F-valued Y-arrow $y \to Rx$ factors as $Fg.f_k$ for $k \in I$ and $g: x_k \to x$.

Theorem 0.4 (Gabriel-Zisman). An adjunction $L \dashv R: \mathbf{C} \leftrightarrow \mathbf{D}$. TFAE:

- (a) L is full and faithful;
- (b) the unit is an isomorphism;
- (c) the induced comonad on \mathbf{D} is idempotent, L is conservative, and R is essentially surjective.

Now, let's prove a strong theorem then try to weaken it

Theorem 0.5. Let **D** be locally small and complete. Also let $R: \mathbf{D} \to \mathbf{C}$ be a continuous, surjective-on-objects Grothendiek opfibration. Then R is a right adjoint.

Proof. We use 0.3. Suffice to show the solution set condition holds. Fix a C-objects c. Then the indexing set is *, the collection of D-objects consists of a single object x_c over c (which exists by surjective-on-objects assumption), and the collection of \mathbf{C} -arrows consists of the identity. Any map $f: c \to Rd$ has a cocartesian lifting $\hat{f}: x_c \to x_{Rd}$ and $f = R\hat{f}.1_c$.

Theorem 0.6. Let \mathbf{D} be locally small and complete. Also let $R \colon \mathbf{D} \to \mathbf{C}$ be a continuous, surjective-on-objects, conservative Street opfibration. Then R is a right adjoint.

Proof. We use 0.3. Suffice to show the solution set condition holds. Fix a C-objects c. Then the indexing set is *, the collection of D-objects consists of a single object x_c over c (which exists by surjective-on-objects assumption), and the collection of \mathbf{C} -arrows consists of the identity. For any map $f: c \to Rd$, there exists an essential cocartesian lifting $\hat{f}: x_c \to d'$ together with a \mathbf{C} -isomorphism $h: Rd' \to Rd$ such that $f = h.R\hat{f}$. But $f = h.R\hat{f} = R\hat{h}.R\hat{f}.1_c = R(\hat{h}.\hat{f}).1_c$ where $h = R\hat{h}$ because R is conservative.

Theorem 0.7. Let **D** be locally small and complete. Also let $R: \mathbf{D} \to \mathbf{C}$ be a continuous, essentially surjective, conservative Street opfibration. Then R is a right adjoint.

Proof. We use 0.3. Suffice to show the solution set condition holds. Fix a C-object c. Then the indexing set is *, the collection of D-objects consists of a single object d' where $\theta: c \cong Rd'$ (which exists by essential surjectivity), and the collection of C-arrows is θ . For any C-arrow $f: c \to Rd$, we have (by Street opfibrationness) $f.\theta^{-1}: Rd' \to c \to Rd$, a cocartesian essential lifting $f.\hat{\theta}^{-1}: d' \to d''$ in \mathbf{D} , and an isomorphism $h: d \to d''$ (by conservatism) such that $f.\theta^{-1} = Rh.Rf.\hat{\theta}^{-1}$. This implies, as required by GAFT, that $f = R(hf.\hat{\theta}).\theta$.

Thoughts about these assumptions. Here are the desired examples I can think of now: **Set** together with **Graph** or **Top**. The enriched over sets and completeness are both there. So is essential surjectivity. And reflection of isomorphisms. The continuity is definitely needed, since it's necessary if R is a right adjoint.

Go back to the right adjoint we had in the "converse" to the above theorem. That is, we have a coreflection $L \dashv R \colon \mathbf{C} \leftrightarrow \mathbf{D}$ where L is left exact. Of course this gives the continuity of R. Essential surjectivity follows from Gabriel-Zisman. Is it a Street opfibration? L is conservative, but is R?

Example 0.8. No, R is not in general conservative. Consider the underlying node functor **Graph** \rightarrow **Set**. All **Graph**-endomorphisms on

are sent to the identity on 2.

At this point, we have partial converses:

Let **D** have pushouts. Given a coreflection $L\dashv R\colon \mathbf{C}\to \mathbf{D}$ where R preserves pushouts, R is a Street opfibration.

Let **D** be locally small and complete. Also let $R: \mathbf{D} \to \mathbf{C}$ be a continuous, essentially surjective, conservative Street opfibration. Then R is a right adjoint.