

实验报告书

课程名	3称:	路由技术原理与应用						
学	院:		计算机					
专	业:		网络工程					
年	级:	2020级						
班	级:							
学生姓	性名	潘玥	学	号:	202010420211			
任课教师:			— 租	星琨				
开课时间:		2022			学年第1学期			

成都大学

年 月 日

实验成绩统计表

实验项目序号	实验项目成绩	占实验总成绩比例
实验 1		
实验 2		
实验3		
实验 4		
实验 5		
实验 6		
实验 7		
实验 8		
实验 9		
实验 10		
实验 11		
实验 12		
总成绩		教师签名

成都大学实验报告单

课程名称	路由技术原理 与应用	任课教师	程琨	学	院	计算机学院		
学生姓名/学号 (小组成员)	潘玎	302010420	211	专 班	业 级	网络工程 20-2		
实验室及地点		10318		实验	:日期	22. 09. 30		
实验项目名称		使	用路由器构建园	X M				
实 验 类 型	□认知性	□认知性 □验证性 □综合性 □设计性 □研究性 □创新性						
实 验 目 的 及要求	网,并通过配置 1、理解路由器 2、掌握静态路	本实验在前面学习的基础上,通过增加路由器,构建更为复杂的园区 网,并通过配置静态路由实现路由转发。 1、理解路由器的工作原理; 2、掌握静态路由的配置方法; 3、掌握使用路由器构建园区网的方法。						
实验仪器、材料			eNSP、 Wiresh	ark				

实验内容及过程记录

一、任务1: 在 eNSP 中部署园区网

Step1:在 eNSP 中的网络拓扑如图 1-1 所示

图 1-1 在 eNSP 中的网络拓扑图

二、任务 2: 配置交换机与主机

Step1: 配置主机网络参数

根据实验规划,给 Host-1~Host-8 配置 IP 地址等信息,并启动每台主机。

Step 2: 配置交换机 SW-1

① 启动交换机 SW-1, 进入 CLI 界面。

```
<Huawei>system-view
 2
      Enter system view, return user view with Ctrl+Z.
    //美闭信息中心
 3
 4
      [Huawei]undo info-center enable
     Info: Information center is disabled.
 5
      //将设备名改为 SW-1
 6
 7
    [Huawei]sysname SW-1
      //创建 VLAN11 和 VLAN12
 8
 9
    [SW-1]vlan batch 11 12
      Info: This operation may take a few seconds. Please wait for a moment...done.
10.
     //将 Ethernet 0/0/1 和 Ethernet 0/0/2 设为 Access 模式,分别划入 VLAN11、VLAN12
11.
      [SW-1]interface Ethernet 0/0/1
12
13.
     [SW-1-Ethernet0/0/1]port link-type access
      [SW-1-Ethernet0/0/1]port default vlan 11
14
    [SW-1-Ethernet0/0/1]quit
15
16.
      [SW-1]interface Ethernet 0/0/2
17
    [SW-1-Ethernet0/0/2]port link-type access
18
      [SW-1-Ethernet0/0/2]port default vlan 12
19
     [SW-1-Ethernet0/0/2]quit
      //将 GE0/0/1 接口设为 Trunk 模式, 并允许 VLAN11 和 VLAN12 的数据帧通过
20.
     [SW-1]interface GigabitEthernet 0/0/1
21
      [SW-1-GigabitEthernet0/0/1]port link-type trunk
22
     [SW-1-GigabitEthernet0/0/1]port trunk allow-pass vlan 11 12
23.
24
      [SW-1-GigabitEthernet0/0/1]quit
25
    [SW-1]quit
26.
      <SW-1>save
```

② 使用 display vlan 命令查看 VLAN 信息

图 2-1 SW-1 的 VLAN 信息

Step3:配置交换机 SW-2、SW-3、SW-4

① 配置 SW-2

```
[Huawei]undo info-center enable
 1
     Info: Information center is disabled.
 2
     //将设备名改为 SW-2
 3
    [Huawei]sysname SW-2
 4
      //创建 VLAN13 和 VLAN14
 5
     [SW-2]vlan batch 13 14
 6
      Info: This operation may take a few seconds. Please wait for a moment...done.
 7
    //将 Ethernet 0/0/1 和 Ethernet 0/0/2 设为 Access 模式,分别划入 VLAN13、VLAN14
 8
      [SW-2]interface Ethernet 0/0/1
 9
    [SW-2-Ethernet0/0/1]port link-type access
10
11
      [SW-2-Ethernet0/0/1]port default vlan 13
     [SW-2-Ethernet0/0/1]quit
12
      [SW-2]interface Ethernet 0/0/2
13
    [SW-2-Ethernet0/0/2]port link-type access
14
      [SW-2-Ethernet0/0/2]port default vlan 14
15
    [SW-2-Ethernet0/0/2]quit
16.
      //将 GE0/0/1 接口设为 Trunk 模式,并允许 VLAN13 和 VLAN14 的数据帧通过
17
    [SW-2]interface GigabitEthernet 0/0/1
18.
19
      [SW-2-GigabitEthernet0/0/1]port link-type trunk
20
     [SW-2-GigabitEthernet0/0/1]port trunk allow-pass vlan 13 14
21
      [SW-2-GigabitEthernet0/0/1]quit
22
     [SW-2]quit
23
      <SW-2>save
```

图 2-2 SW-2 的 VLAN 信息

② 配置 SW-3

```
1 [Huawei]undo info-center enable
      Info: Information center is disabled.
 2
   //将设备名改为 SW-3
 3
      [Huawei]sysname SW-3
 4
    //创建 VLAN15 和 VLAN16
 5
     [SW-3]vlan batch 15 16
 6
    Info: This operation may take a few seconds. Please wait for a moment...done.
 7
     //将 Ethernet 0/0/1 和 Ethernet 0/0/2 设为 Access 模式, 分别划入 VLAN15、VLAN16
 8
 9
    [SW-3]interface Ethernet 0/0/1
      [SW-3-Ethernet0/0/1]port link-type access
10
11.
    [SW-3-Ethernet0/0/1]port default vlan 15
      [SW-3-Ethernet0/0/1]quit
12.
13.
    [SW-3]interface Ethernet 0/0/2
      [SW-3-Ethernet0/0/2]port link-type access
14.
     [SW-3-Ethernet0/0/2]port default vlan 16
15
      [SW-3-Ethernet0/0/2]quit
16.
    //将 GEO/0/1 接口设为 Trunk 模式, 并允许 VLAN15 和 VLAN16 的数据帧通过
17.
      [SW-3]interface GigabitEthernet 0/0/1
     [SW-3-GigabitEthernet0/0/1]port link-type trunk
19.
20
      [SW-3-GigabitEthernet0/0/1]port trunk allow-pass vlan 15 16
    [SW-3-GigabitEthernet0/0/1]quit
21
      [SW-3]quit
22.
23.
      <SW-3>save
```

```
| Image: Common | Image: Commo
```

图 2-3 SW-3 的 VLAN 信息

③ 配置 SW-4

```
[Huawei]undo info-center enable
      Info: Information center is disabled.
 2
    //将设备名改为 SW-4
 3
      [Huawei]sysname SW-4
 4
    //创建 VLAN17 和 VLAN18
 5
      [SW-4]vlan batch 17 18
 6
 7
    Info: This operation may take a few seconds. Please wait for a moment...done.
     //将 Ethernet 0/0/1 和 Ethernet 0/0/2 设为 Access 模式,分别划入 VLAN17、VLAN18
    [SW-4]interface Ethernet 0/0/1
 9
      [SW-4-Ethernet0/0/1]port link-type access
10.
    [SW-4-Ethernet0/0/1]port default vlan 17
11.
12.
     [SW-4-Ethernet0/0/1]quit
    [SW-4]interface Ethernet 0/0/2
13.
      [SW-4-Ethernet0/0/2]port link-type access
14
    [SW-4-Ethernet0/0/2]port default vlan 18
15.
      [SW-4-Ethernet0/0/2]quit
16
    //将 GE0/0/1 接口设为 Trunk 模式, 并允许 VLAN17 和 VLAN18 的数据帧通过
17
      [SW-4]interface GigabitEthernet 0/0/1
18
    [SW-4-GigabitEthernet0/0/1]port link-type trunk
19
      [SW-4-GigabitEthernet0/0/1]port trunk allow-pass vlan 17 18
20.
     [SW-4-GigabitEthernet0/0/1]quit
21
      [SW-4]quit
22.
23
     <SW-4>save
```

图 2-4 SW-4 的 VLAN 信息

三、任务3:配置路由交换机并进行通信测试

Step1: 配置路由交换机 RS-1

① 配置 VLAN11 和 VLAN12 的 SVI

```
1 <Huawei>system-view
     Enter system view, return user view with Ctrl+Z.
 2
   [Huawei]undo info-center enable
 3
     Info: Information center is disabled.
 4
 5
   [Huawei]sysname RS-1
     //创建 VLAN11 和 VLAN12
 6
   [RS-1]vlan batch 11 12
 7
     Info: This operation may take a few seconds. Please wait for a moment...done.
8
   //进入 VLAN11 接口(即创建 VLAN11 的 SVI)
9
     [RS-1]interface vlanif 11
10
     //配置 VLAN11 接口的 IP 地址
11.
     [RS-1-Vlanif11]ip address 192.168.64.254 255.255.255.0
12
    [RS-1-Vlanif11]quit
13.
     //配置 VLAN12 的 SVI 地址
14.
    [RS-1]interface vlanif 12
15
     [RS-1-Vlanif12]ip address 192.168.65.254 255.255.255.0
16
17
    [RS-1-Vlanif12]quit
     //将连接 SW-1 的接口设为 Trunk 模式,并允许 VLAN11 和 VLAN12 的数据帧通过
18
    [RS-1]interface GigabitEthernet 0/0/24
19
      [RS-1-GigabitEthernet0/0/24]port link-type trunk
20.
     [RS-1-GigabitEthernet0/0/24]port trunk allow-pass vlan 11 12
21.
22.
     [RS-1-GigabitEthernet0/0/24]quit
```

② 测试 VLAN11 和 VLAN12 之间的通信

```
PC>ping 192.168.64.1: 32 data bytes, Press Ctrl_C to break
From 192.168.64.1: bytes=32 seq=1 ttl=128 time<1 ms
From 192.168.64.1: bytes=32 seq=2 ttl=128 time<1 ms
From 192.168.64.1: bytes=32 seq=3 ttl=128 time<1 ms
--- 192.168.64.1 ping statistics ---
3 packet(s) transmitted
3 packet(s) received
0.00% packet loss
round-trip min/avg/max = 0/0/0 ms
```

图 3-1 Host-1 和 Host-2 之间正常通信

可以看到此时 Host-1 和 Host-2 之间可以正常通信。

③ 配置与路由器 R-1 相连的接口

配置路由交换机的上联接口(与路由器相连)时,分为三步:

- i. 在路由交换机上创建一个 VLAN (此处创建的是 VLAN100);
- ii. 给该 VLAN 配置接口地址;
- iii. 将上联路由器的接口配置成 Access 模式, 划入该 VLAN 中。具体命令如下:

```
1 //创建 VLAN100
     [RS-1]vlan 100
   [RS-1-vlan100]quit
 3.
     //配置 VLAN100 的接口地址
4
    [RS-1]interface vlanif 100
 5
     [RS-1-Vlanif100]ip address 10.0.1.1 255.255.255.252
   [RS-1-Vlanif100]quit
7
     //将上联路由 R-1 的接口设置成 Access 类型,并划入 VLAN100
8
9
   [RS-1]interface GigabitEthernet 0/0/1
     [RS-1-GigabitEthernet0/0/1]port link-type access
10
    [RS-1-GigabitEthernet0/0/1]port default vlan 100
11.
     [RS-1-GigabitEthernet0/0/1]quit
12.
```

④ 配置 RS-1 的静态路由

在 RS-1 上配置默认路由,使得访问所有目的网络的数据包,都被 RS-1 发送到 10.0.1.2,这是路由器 R-1 的 GE0/0/1 接口地址。

```
1 [RS-1]ip route-static 0.0.0.0 0.0.0.0 10.0.1.2
2 [RS-1]quit
```

⑤ 查看 RS-1 的路由表

图 3-2 RS-1 的路由表

Step 2: 配置路由交换机 RS-2、 RS-3、 RS-4

① 查看 RS-2 的路由表

图 3-3 RS-2 的路由表

② 查看 RS-3 的路由表

图 3-4 RS-3 的路由表

③ 查看 RS-4 的路由表

图 3-5 RS-4 的路由表

Step3:测试通信结果

使用 Ping 命令测试当前的通信情况,测试结果见表 3-1。

从测试结果可以看出,路由交换机下联的不同 VLAN 之间可以正常通信,例如 Host-1 与 Host-2。

但是路由器所连接的不同网络之间还不能正常通信,例如 Host-1 和 Host-3,因为尚未给路由器配置路由。

	次 り 乳量	中田人沃州之归进	10次以50不
序号	源主机	目的主机	通信结果
1	Host−1	Host-2	通
2	Host-3	Host-4	通
3	Host-5	Host-6	通
4	Host-7	Host-8	通
5	Host-1	Host−3	不通
6	Host-3	Host−5	不通
7	Host-5	Host-7	不通

表 3-1 配置路由交换机之后通信测试结果

四、任务 4: 配置路由器并进行通信测试

Step 1: 配置路由器 R-1

① 配置 R-1 的接口地址

<huawei>system-view</huawei>
Enter system view, return user view with Ctrl+Z.
[Huawei]undo info-center enable
Info: Information center is disabled.
[Huawei]sysname R-1
//配置路由器接口地址
[R-1]interface GigabitEthernet0/0/0
[R-1-GigabitEthernet0/0/0]ip address 10.0.0.1 255.255.255.252
[R-1-GigabitEthernet0/0/0]quit
[R-1]interface GigabitEthernet0/0/1
[R-1-GigabitEthernet0/0/1]ip address 10.0.1.2 255.255.255.252
[R-1-GigabitEthernet0/0/1]quit
[R-1]interface GigabitEthernet0/0/2
[R-1-GigabitEthernet0/0/2]ip address 10.0.2.2 255.255.255.252
[R-1-GigabitEthernet0/0/2]quit

② 在路由器上配置静态路由

③ 显示路由器 R-1 的路由表

```
te Flags: R - relay, D - download to fib
 uting Tables: Public
Destinations : 11
                                Routes : 11
estination/Mask
                                          Flags NextHop
                                                                 Interface
      10.0.0.0/30 Direct 0
                                            D 10.0.0.1
                                                                 GigabitEthernet
      10.0.0.1/32 Direct 0
                                                127.0.0.1
                                                                 GigabitEthernet
      10.0.1.0/30 Direct 0
                                                                 GigabitEthernet
      10.0.1.2/32 Direct 0
                                                127.0.0.1
                                                                 GigabitEthernet
      10.0.2.0/30 Direct 0
                                                                 GigabitEthernet
      10.0.2.2/32 Direct 0
                                                                 GigabitEthernet
     127.0.0.0/8
                   Direct
                                                127.0.0.1
                                                127.0.0.1
10.0.1.1
  192.168.64.0/23
                  Static
                                                                 GigabitEthernet
  92.168.66.0/23 Static 60
                                                10.0.2.1
                                                                 GigabitEthernet
                                           RD
  192.168.68.0/22 Static 60
                                           RD
                                                10.0.0.2
                                                                 GigabitEthernet
```

图 4-1 路由器 R-1 的路由表

Step 2: 配置路由器 R-2、R-3

① 显示路由器 R-2 的路由表

图 4-2 路由器 R-2 的路由表

② 显示路由器 R-3 的路由表

[R-3]display ip routing-table Route Flags: R - relay, D - download to fib									
Routing Tables: Public Destinations : 11 Routes : 11									
Destination/Mask	Proto	Pre	Cost	Flags	NextHop	Interface			
10.0.0.4/30	Direct			D	10.0.0.6	GigabitEthernet			
10.0.0.6/32	Direct			D	127.0.0.1	GigabitEthernet			
10.0.3.0/30	Direct			D	10.0.3.2	GigabitEthernet			
10.0.3.2/32	Direct			D	127.0.0.1	GigabitEthernet			
10.0.4.0/30	Direct			D	10.0.4.2	GigabitEthernet			
10.0.4.2/32	Direct			D	127.0.0.1	GigabitEthernet			
127.0.0.0/8	Direct	0	0	D	127.0.0.1	InLoopBack0			
127.0.0.1/32		0	0	D	127.0.0.1	InLoopBack0			
192.168.64.0/22		60	0	RD	10.0.0.5	GigabitEthernet			
0/0/0									
192.168.68.0/23	Static	60		RD	10.0.3.1	GigabitEthernet			
0/0/1						-			
192.168.70.0/23 0/0/2	Static	60	0	RD	10.0.4.1	GigabitEthernet			

图 4-3 路由器 R-3 的路由表

Step3:测试通信结果

使用 Ping 命令测试当前的通信情况,如下表所示。可以看出,此时各个主机之间可正常通信。

± 4 4	配置路中交换机之后通信测试结果	ı
35 4-1	姓首 移出 父母别 乙后用污测试验法	4

序号	源主机	目的主机	通信结果
1	Host−1	Host-2	通
2	Host-1	Host-3	通
3	Host−1	Host-4	通
4	Host-1	Host-5	通
5	Host-1	Host-6	通
6	Host-1	Host-7	通
7	Host−1	Host-8	通

五、任务5: 抓包分析路由器的工作过程

Step1:设置抓包地点

如图 5-1 所示分别在

① (路由交换机 RS-1 的 GE0/0/1 接口)处、

- ②(路由器 R-1 的 GE0/0/0 接口)处、
- ③(路由器 R-2 的 GE0/0/1 接口)处、
- ④ (路由器 R-3 的 GE0/0/2 接口)处 进行抓包。

图 5-1 设置抓包地点

Step2: 抓包分析跨路由器通信时,报文首部中地址的变化

- (1) 执行 Host-1 至 Host-8 的通信 (PING) 在 Host-1 中 ping Host-8,注意,此时 Host-1 和 Host-8 能正常通信。
- (2) 查看并分析抓取的报文

图 5-2 在①处抓取的报文

	icmp					×	- C	表达式·		+
No.		Time	Source	Destination	Protocol	Length	Info			^
г	1	0.000000	192.168.64.1	192.168.71.1	ICMP	74	Echo	(ping)		
	2	0.109000	192.168.71.1	192.168.64.1	ICMP	74	Echo	(ping)		
	3	1.219000	192.168.64.1	192.168.71.1	ICMP	74	Echo	(ping)		
	4	1.328000	192.168.71.1	192.168.64.1	ICMP	74	Echo	(ping)		
-	5	2.438000	192.168.64.1	192.168.71.1	ICMP	74	Echo	(ping)		
4	6	2.563000	192.168.71.1	192.168.64.1	ICMP	74	Echo	(ping)		
	7	3.656000	192.168.64.1	192.168.71.1	ICMP	74	Echo	(ping)		
	8	3.766000	192.168.71.1	192.168.64.1	ICMP	74	Echo	(ping)		
	9	4.828000	192.168.64.1	192.168.71.1	ICMP	74	Echo	(ping)		
L	10	4.922000	192.168.71.1	192.168.64.1	ICMP	74	Echo	(ping)		~
>	Frame !	5: 74 bytes	on wire (592 bits),	74 bytes captured (59	2 bits) on :	interfa	ce 0			
>	Etherne	et II, Src:	HuaweiTe_df:33:9c (54:89:98:df:33:9c), Ds	t: HuaweiTe	5a:41:	87 (54:89:9	8:5	a:
>	Intern	et Protocol	Version 4, Src: 192	.168.64.1, Dst: 192.16	8.71.1					
>	Intern	et Control	Message Protocol							

图 5-3 在②处抓取的报文

图 5-4 在③处抓取的报文

图 5-5 在④处抓取的报文

(3) 分析在①~④处抓取的 Host-1 与 Host-8 之间通信的 ICMP request 报文

表 5-1 报文首部地址

抓包点	报文项目	项目内容	备注
	源 MAC 地址	4C:1f:cc:05:01:94	RS-1 的 MAC 地址
(1)	目的 MAC 地址	54:89:98:df:33:9d	R-1 的 GE 0/0/1 MAC 地址
1)	源 IP 地址	192. 168. 64. 1	Host-1 的 IP 地址
	目的 IP 地址	192. 168. 71. 1	Host-8的IP地址
	源 MAC 地址	54:89:98:df:33:9c	R-1 的 GE 0/0/0 MAC 地址
2	目的 MAC 地址	54:89:98:5a:41:87	R-2 的 GE 0/0/0 MAC 地址
2)	源 IP 地址	192. 168. 64. 1	Host-1 的 IP 地址
	目的 IP 地址	192. 168. 71. 1	Host-8的 IP 地址
	源 MAC 地址	54:89:98:5a:41:88	R-2的GE 0/0/1 MAC地址
3	目的 MAC 地址	54:89:98:e5:5c:50	R-3 的 GE 0/0/0 MAC 地址
3)	源 IP 地址	192. 168. 64. 1	Host-1 的 IP 地址
	目的 IP 地址	192. 168. 71. 1	Host-8的 IP 地址
	源 MAC 地址	54:89:98:e5:5c:52	R-3 的 GE 0/0/2 MAC 地址
4)	目的 MAC 地址	4c:1f:cc:41:7c:e4	RS-4的MAC地址
4)	源 IP 地址	192. 168. 64. 1	Host-1 的 IP 地址
	目的 IP 地址	192. 168. 71. 1	Host-8的 IP 地址
	日的 It 地址	192. 100. 71. 1	nost_o til tt 证证

Step3:分析路由表对路由器转发数据包的影响

(1) 更改 R-3 的静态路由配置

在路由器 R-3 上,删除到达目的网络 192.168.64.0/22 的静态路由,命令如下:

1 [R-3]undo ip route-static 192.168.64.0 22 10.0.0.5

```
Destinations: 10 Routes: 10

Destination/Mask Proto Pre Cost Flags NextHop Interface

10.0.0.4/30 Direct 0 0 D 10.0.0.6 GigabitEthernet

0/0/0

10.0.0.6/32 Direct 0 0 D 127.0.0.1 GigabitEthernet

0/0/1

10.0.3.0/30 Direct 0 0 D 10.0.3.2 GigabitEthernet

0/0/1

10.0.3.2/32 Direct 0 0 D 127.0.0.1 GigabitEthernet

0/0/1

10.0.4.0/30 Direct 0 0 D 10.0.4.2 GigabitEthernet

0/0/2

10.0.4.2/32 Direct 0 0 D 127.0.0.1 GigabitEthernet

0/0/2

10.0.4.2/32 Direct 0 0 D 127.0.0.1 GigabitEthernet

0/0/2

127.0.0.0/8 Direct 0 0 D 127.0.0.1 GigabitEthernet

0/0/2

127.0.0.1/32 Direct 0 0 D 127.0.0.1 GigabitEthernet

0/0/1

192.168.68.0/23 Static 60 0 RD 10.0.3.1 GigabitEthernet

0/0/1

192.168.70.0/23 Static 60 0 RD 10.0.3.1 GigabitEthernet

0/0/2

[R-3]
```

图 5-6 路由器 R-3 上删除到达目的网络的静态路由

可以看出,此时路由器 R-3 的路由表中,已经没有到达 192.168.64.0/22 网络的路由条目。

(2) 执行 Host-1 访问 Host-8

在 Host-1 中 ping Host-8,此时 Host-1 和 Host-8 已经不能正常通信。

```
PC>ping 192.168.71.1

Ping 192.168.71.1: 32 data bytes, Press Ctrl_C to break Request timeout!
Request timeout!
Request timeout!
```

图 5-7 再次执行执行 Host-1 访问 Host-8

(3) 在④处再次抓包分析

图 5-8 在④处再次抓包

● 1号报文: R-3 发往 RS-4 的 VLAN100 接口的报文。由于 R-3 的路由表中具有到达目的 IP 地址 192. 168. 71. 1 的路由,因此数据包被从 R-3 的 GE 0/0/2 接口发出,发往下一跳,即 RS-4。由于 RS-4 中具有到达目的 IP 地址 192. 168. 71. 0/24 的路由,因此最终该数据包会被发送到目的主机 Host-8。

会发回确认报文 地址是 Host-1 的 VLAN18 的	S-4 发往 R-3 的 GE 0/0/2 接口的报文。当 Host-8 收到 Host-1 发来的数据包后,报文,该确认报文首部的源 IP 地址是 Host-8 的地址(即 192.168.71.1),目的 IP st-1 的地址(即 192.168.64.1)。该报文先发往 Host-8 的默认网关地址,即 RS-4 的接口地址(192. 168.71.254),然后该确认报文会被 RS-4 依据其路由表中的 .0.0.0/0)通过三层虚拟接口 Vlanif100 发送至路由器 R-3。								
● 3号报文: R-3 发回给 RS-4 的"网络不可到达"的反馈报文。由于现在 R-3 的路由表中没有到达目的网络 192.168.64.0/24 的路由,因此 R-3 丢掉该报文,并向 RS-4 发回"网络不可到达"的反馈报文。									
实验总结与体会									
路由器是不同网络	络之间互即	美的枢:	纽,也是	是园区网、	甚至整个互	五联网的核	心。整个		
实验在前面学习	的基础上,	通过均	曾加路日	由器,构建	建更为复杂的	的园区网。	从拓扑图		
就能看出这个"]	更为复杂'	'。但是	上其实实	R验里面E	卫经给出了 网]络规划,	只需要照		
着做就行。我试着		观划了-	一下,出	出现了好多	岁问题,本质	上还是对象	知识不熟		
悉,希望下次实	验能有进步	 。							
教师评语									
实验成绩	□优	□良	□中	□及格	□不及格	得分: _			