

SUPERIOR DE TECNOLOGIA E GESTÃO Tipo de Prova: Exame Normal

Curso: LEI / LSIRC

U.C.: Sistemas Operativos

Ano Letivo 2017/2018

Data: 25/01/2018 Hora: 10:00 Duração: 2h 30m

Observações: Com consulta de documentação própria.

O tempo previsto para responder a cada questão é apresentado entre parêntesis reto.

A cotação atribuída a cada pergunta é apresentada entre parêntesis curvo.

Grupo I

1. (1,0 valores)

Para cada uma das seguintes afirmações deverá indicar se as considera verdadeiras ou falsas. Caso considere alguma afirmação como falsa deverá rescreve-la, transformando-a numa afirmação verdadeira. À simples negação não será atribuída nenhuma cotação.

- a) [2,5 min] Programa é uma entidade passiva que necessita de recursos.
- b) [2,5 min] Sistemas interativos usam escalonamento de médio prazo.
- c) [2,5 min] Secções críticas requerem um limite mínimo para o número de pedidos de acesso às mesmas.
- d) [2,5 min] A preempção de semáforos deve implicar preferencialmente o seu rollback.
- 2. [10 min] (1,0 valores

"Há lugar à atualização do *Instruction Pointer* de um processo nos estados de *running*, *waiting* e *ready*."

Comente a afirmação, indicando também se **concorda ou não** com a mesma. Fundamente a sua resposta com um **exemplo concreto**.

3. [10 min] (1,0 valores)

"Processos não cooperativos devem ser implementados dando especial atenção às suas secções criticas."

Comente a afirmação, indicando também se **concorda ou não** com a mesma. Fundamente a sua resposta com um **exemplo concreto**.

4. [10 min] (2,0 valores)

Assumindo um sistema com 64K de memória virtual por *pagging* com páginas de 8K. Indique, recorrendo à técnica MMU e à seguinte tabela, a que endereços físicos correspondem os endereços virtuais: **29110**; **56003**.

00	0
11	1
10	1
00	0
00	1
01	1
00	0
00	0

ESTGF-PR05-Mod013V2 Página 1 de 4

SUPERIOR DE TECNOLOGIA E GESTÃO Tipo de Prova: Exame Normal

Curso: LEI / LSIRC U.C.: Sistemas Operativos Ano Letivo 2017/2018 Data: 25/01/2018 Hora: 10:00 Duração: 2h 30m

5. [10 min] (2,0 valores)

Considere um computador com **1024KB** de memória que utiliza um sistema operativo que faz a gestão de memória pelo algoritmo *buddy*. Apresente uma representação de como a memória ficaria dividida considerando o estado atual e após a lista de acontecimentos apresentados de seguida:

Estado atual: Lista de eventos

...

6. [15 min] (2,5 valores)

Considere o sequinte conjunto de processos. Assuma que os processos chegam no instante.

Considere o seguinte conjunto de processos. Assuma que os processos chegam no instante de tempo indicado na tabela seguinte:

Processo	Instante de chegada	Duração
P1	0,0	1,5
P2	0,0	0,2
P3	0,1	1,0
P4	1,1	1,3
P5	1,2	0,9

Calcule o tempo médio de vida, considerando que o algoritmo de escalonamento é o **SJF** (com quantum igual a 0,5). Fundamente a sua resposta com todos os cálculos que sentir necessidade de efectuar.

7. [15 min] (2,5 valores) Assuma um sistema com os tipos de recursos (A, B, ...), processos (P1, P2, ...) e caracte-

rização como apresentada nas tabelas seguintes.

Alocação					
	Α	В	С	D	E
P1	1	2	0	1	1
P2	1	0	1	2	0
P3	0	0	1	0	0
P4	2	0	4	1	2

	Α	В	С	D	Е
P1	1	4	1	7	3
P2	2	3	2	4	1
P3	1	4	1	0	6
P4	3	1	4	2	3

Necessidades máximas

Disponibilidades				
Α	В	С	D	Е
2	1	2	4	4

Valide, recorrendo ao algoritmo do banqueiro, se existe um sequência de execução que mantenha o sistema num estado seguro. Justifique a sua resposta

ESTGF-PR05-Mod013V2 Página 2 de 4

ESCOLA Superior De Tecnologia Egestão Tipo de Prova: Exame Normal

Curso: LEI / LSIRC U.C.: Sistemas Operativos Ano Letivo 2017/2018 Data: 25/01/2018 Hora: 10:00 Duração: 2h 30m

Grupo II

8. (3,0 valores) Considere a classe **Janela** apresentada na listagem seguinte:

```
public class Janela {
2 | JFrame frm1, frm2, frm3;
   JLabel lbl1, lbl2;
   JButton btn;
   ActionListener updateListener;
6
7
        public Janela () {
8
            frm1 = new JFrame("Janela_1");
9
            lbl1 = new JLabel("\sqcup \sqcup 0");
10
            frm1.add(lbl1);
11
            frm1.setSize(200, 200);
12
            frm1.setLocation(200, 100);
13
            frm1.setVisible(true);
14
15
            frm2 = new JFrame("Janela_{\perp}2");
16
            1b12 = new JLabel("_{\sqcup\sqcup}0");
17
            frm2.add(1b12);
18
            frm2.setSize(200, 200);
19
            frm2.setLocation(800, 100);
20
            frm2.setVisible(true);
21
22
            frm3 = new JFrame("Janela_3");
23
            btn = new JButton("Parar/Continuar");
24
            updateListener = new ActionListener(){
25
                @Override
26
                public void actionPerformed(ActionEvent e) {
27
                     // INSERT BUTTON CODE HERE
28
                }
29
            };
30
            btn.addActionListener(updateListener);
31
            frm3.add(btn);
32
            frm3.setSize(200, 200);
33
            frm3.setLocation(500, 200);
34
            frm3.setVisible(true);
35
            }
36
37
        public static void main(String args[]) {
38
            Janela main = new Janela();
39
40
   }
```

a) [10 min] Qual será o resultado esperado da sua execução?

ESTGF-PR05-Mod013V2 Página 3 de 4

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Tipo de Prova: Exame Normal

Curso: LEI / LSIRC

U.C.: Sistemas Operativos

Ano Letivo 2017/2018 Data: 25/01/2018 Hora: 10:00 Duração: 2h 30m

b) [10 min] Podem surgir situações de míngua (*starvation*) ou bloqueio (*deadlock*) decorrente do código apresentado? Justifique.

9. [50 min] (5,0 valores)

Recorrendo a *threads* Java e aos mecanismos de sincronização vistos nas aulas, apresente uma solução que implemente o comportamento representado na figura, respeitando as seguintes considerações:

- Cada Janela (JFrame) deve ser executada numa thread própria, separada das demais.
- A cada segundo, a "Janela 1" deve incrementar o número apresentado pela "Janela 2" e vice-versa.
- Garanta que apenas uma janela atualiza o valor da outra em cada instante de tempo.
- Sempre que o utilizador carregar no botão (presente na "Janela 3"), ambas as Janelas 1
 e 2 devem suspender tal atualização, até que o utilizador carregue novamente no botão.

ESTGF-PR05-Mod013V2 Página 4 de 4