Set Theory

Paolo Bettelini

Contents

1	Defi	initions 2
	1.1	Set
	1.2	Cardinality
	1.3	Subset
	1.4	Proper Subset
	1.5	Empty Set
	1.6	Power Set
	1.7	Union
	1.8	Intersection
	1.9	Difference
	1.10	Subset in terms of relationships
		Disjoint Sets
		Cartesian Product
	1.13	Cartesian Power
	1.14	Complement
		Binary Relation
		Closure
		Injection
		Surjectivity
		Bijectivity
	1.20	Reflexive relation
		Symmetric relation
		Transitive relation

1 Definitions

1.1 Set

A set is a collection of unordered elements.

1.2 Cardinality

The *cardinality* of a set A, denoted |A|, is the amount of elements it contians.

1.3 Subset

If A and B are sets, then A is a subset of B $(A \subseteq B)$, if all the elements of A are also in B. For every set $A, A \subseteq A$.

1.4 Proper Subset

Given two sets A and B, if $A \subseteq B$ but $A \neq B$, then A is a proper (or strict) subset of B

$$A \subset B$$

1.5 Empty Set

The empty set \emptyset is a subset of all other sets.

$$|\emptyset| = 0$$

For every set A

$$\emptyset\subseteq A$$

1.6 Power Set

If B is a set, then the power set $\mathcal{P}(B)$ is defined as the set of all subsets of B

$$\mathcal{P}(B) = \{ A \mid A \subseteq B \}$$

Note that $B \in \mathcal{P}(B)$.

The cardinality of $\mathcal{P}(A)$ is given by

$$|\mathcal{P}(A)| = 2^{|A|}$$

1.7 Union

If A and B are sets, then their union is

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

1.8 Intersection

If A and B are sets, then their *intersection* is

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

1.9 Difference

If A and B are sets, then their difference is

$$A \backslash B = \{ x \mid x \in A \land x \notin B \lor x \in B \land x \notin A \}$$

Note that

$$A \backslash B = B \backslash A \iff A = B$$

1.10 Subset in terms of relationships

$$A \subseteq B \iff A \cup B = B \iff A \cap B = A \iff A \setminus B = \emptyset$$

1.11 Disjoint Sets

If A and B are sets and $A \cap B = \emptyset$, then A and B are disjoint sets.

1.12 Cartesian Product

If A and B are sets, then their cartesian product is

$$A \times B = \{(x, y) \mid x \in A \land y \in B\}$$

which is the set of all possible ordered pairs.

More generally, given n sets A_1, A_2, \ldots, A_2 , their cartesian product $A_1 \times A_2 \times \cdots \times A_n$ is the set of ordered n-tuples (a_1, a_2, \ldots, a_n) with $a_i \in A_i$.

1.13 Cartesian Power

Given a set
$$A$$
, $A^n = \underbrace{A \times A \times \cdots \times A}_n$.

The *n*-dimensional plane of real numbers is a cartesian power \mathbb{R}^n .

1.14 Complement

If A is a set, its *complement* is

$$\bar{A} = \{ x \, | \, x \notin A \}$$

1.15 Binary Relation

If A and B are sets, a function $f:A\to B$ is a binary relation R

$$R = \{(a, b) \, | \, f(a) = b\}$$

Note that $R \subseteq A \times B$

1.16 Closure

A binary operation R for $f: A \to B$ is closed iff

$$\forall a \in A, \forall b \in B, (a,b) \in R$$

1.17 Injection

A function $f: A \to B$ is injective iff

$$\forall a, b \in A \mid a \neq b, f(a) \neq f(b)$$

1.18 Surjectivity

A function $f: A \to B$ is *surjectiv* iff

$$\forall b \in B \exists a \mid f(a) = b$$

1.19 Bijectivity

A function $f:A\to B$ is bijective iff it is both surjective and injective.

1.20 Reflexive relation

A binary relation R for $f: A \to B$ is reflexive iff

$$\forall a \in A, (a, a) \in R$$

1.21 Symmetric relation

A binary relation R for $f: A \to B$ is symmetric iff

$$\forall (a,b) \in R, (b,a) \in R$$

1.22 Transitive relation

A binary relation R for $f:A\to B$ is transitive

$$\forall a, b, c \in A, (a, b) \in R \land (b, c) \in R \implies (a, c) \in R$$