Unsupervised Learning

We have thus far focused on Supervised Learning where we are given training set

$$\langle \mathbf{X}, \mathbf{y} \rangle = [\mathbf{x^{(i)}}, \mathbf{y^{(i)}} | 1 \le i \le m]$$

and we wish to construct a function to map from arbitrary feature vectors ${\bf x}$ of length n to some target/label ${\bf y}$.

We now switch to Unsupervised Learning where we are given

$$\mathbf{X} = [\mathbf{x^{(i)}}|1 \le i \le m]$$

That is: feature vectors without associated target/labels.

This may feel somewhat strange? What can we do given only features?

Quite a bit! Learning relationships between features enables us to

- Make recommendations based on similarity to other examples
- Enables us to visualize the data and discover relationships among examples
- Filter out "noise" or low information features

For example: from the perspective of some companies **you** are a feature vector!

- Several thousand attributes that define your past behavior
 - Purchases
 - Books read, movies viewed (one feature per book/movie)
 - Music, food preferences
 - Activities, hobbies

- Sparse vector
 - You've seen only a small fraction of the thousands of possible movies (one feature per movie)
- "You may also like" recommendation
 - The relationship between features among the training examples
 - Supports an association between a subset of features that are defined for you
 - And other features (movies/products) that are not yet defined for you

Dimensionality reduction

Discovering the relationship among features can facilitate a more compact representation of feature vectors.

Let

$$\mathbf{X}_j = [\mathbf{x}_j^{(\mathbf{i})} \, | \, 1 \leq i \leq m] \, ext{ for } 1 \leq j \leq n$$

(i.e., \mathbf{X}_j denotes a column of \mathbf{X} ; feature j across all examples)

denote the values of feature j among the m examples in the training set.

• So \mathbf{X}_j is a vector of length m.

Is it possible that many $(\mathbf{X}_j,\mathbf{X}_{j'})$ pairs are highly correlated (j'
eq j) ?

Dimensionality reduction is the process of representing a dataset

- That has n raw features
- ullet With $n^\prime << n$ synthetic features
- While retaining *most* of the information

Examples

Color 3D object to Black/white 2D still image

- Lose Depth, Color dimensions
 - Spatial dimensions (1000 imes 1000)

$$\times$$
 1000)

- Color dimension: 3
- n = 1000 * 1000

$$n' = 1000 * 1000$$

$$= \frac{n}{1000*3}$$

For the purpose of recognizing the object, little information is lost

Equity time series

Consider daily observations of all tickers in an equity index (e.g., the S&P 500) of $n=500\,\mathrm{stocks}$

Dataset **X**

- row dimension: date
 - $\mathbf{X^{(i)}}$ (Row i of \mathbf{X}) corresponds to one day of returns, across all n stocks
- column dimension: stock ticker
 - lacksquare $lackbox{X}_j$ is the *timeseries* of daily returns of stock j
- $\mathbf{x}_{j}^{(\mathbf{i})}$ is the daily return of stock j on day i

It is common to observe that the timeseries of two tickers j,j^\prime are correlated

- All stocks in the "market" tend to move up/down together
- Daily returns of stocks with similar characteristics tend to be more similar than for stocks with differing characteristics
 - Industry, Size

Thus, $\mathbf{X}_j, \mathbf{X}_{j'}, j \neq j'$ are correlated

One way to interpret the high mutual correlation among equity returns

- There are common influences (factors) affecting many individual equities
- Pair-wise correlation of equity returns (i.e., features) arises through influence of the shared factors

We can write this mathematically:

Let $\tilde{\mathbf{X}}_{\mathrm{index}}$ be the time series of daily returns of a factor ("the market") that affects all equities

$$egin{aligned} \mathbf{X}_1 &= eta_1 * ilde{\mathbf{X}}_{ ext{index}} + \epsilon_1 \ \mathbf{X}_2 &= eta_2 * ilde{\mathbf{X}}_{ ext{index}} + \epsilon_2 \ dots & \ \mathbf{X}_{500} &= eta_{500} * ilde{\mathbf{X}}_{ ext{index}} + \epsilon_{500} \end{aligned}$$

The return timeseries \mathbf{X}_j of each stock j in the index is decomposed into

- The return timeseries associated with factor $ilde{\mathbf{X}}_{ ext{index}}:eta_j* ilde{\mathbf{X}}_{ ext{index}}$
- A return timeseries ϵ_j that is stock-specific
- the return of j at time i is

$$\mathbf{x}_j^{(\mathbf{i})} = eta_j * \mathbf{x}_{ ext{index}}^{(\mathbf{i})} + \epsilon_j^{(\mathbf{i})}$$

Note

We can obtain the eta's via Linear Regression

Note that we have actually *increased* the number of features

```
• From n
```

•
$$\mathbf{x}_j$$
 for $1 \leq j < n$

• To
$$(n+1)$$

$$ullet$$
 $ilde{\mathbf{x}}_{ ext{index}}$

$$lacksquare \epsilon_j ext{ for } 1$$

$$\leq j$$

$$\leq n$$

But, by adding another factor

- e.g., a "size" factor
- similar to $\tilde{\mathbf{X}}_{index}$ in that it influences all equities

$$egin{align*} \mathbf{X}_1 &= eta_{1, ext{idx}} * ilde{\mathbf{X}}_{ ext{index}} + eta_{1, ext{size}} * ilde{\mathbf{X}}_{ ext{size}} + \epsilon_1' \ \mathbf{X}_2 &= eta_{2, ext{idx}} * ilde{\mathbf{X}}_{ ext{index}} + eta_{2, ext{size}} * ilde{\mathbf{X}}_{ ext{size}} + \epsilon_2' \ &\vdots \ \mathbf{X}_{500} &= eta_{500, ext{idx}} * ilde{\mathbf{X}}_{ ext{index}} + eta_{500, ext{size}} * ilde{\mathbf{X}}_{ ext{size}} + + \epsilon_{500}' \end{aligned}$$

the magnitude of the stock-specific ϵ_j' decreases compared to the original ϵ_j

- ullet some of the return previously attributed to ϵ_j
- has been explained by $eta_{j, ext{size}} * \mathbf{X}_{ ext{size}}$

As we add even more factors

- some may be specific to *sub-sets* of the universe
 - ullet where $eta_{j,\mathrm{tech}}=0$ when ticker j is not part of the sub-set ("tech" stocks)
 - e.g., industry factors
- ullet the stock-specific ϵ series approaches 0

Once this occurs

- we can drop the ϵ
- and have a model with $n\gg n'$ factors

We thus obtain an approximation of

- the effect of n=500 features (i.e., 500 daily returns)
- using only n^\prime features (the factors)
 - lacksquare with $n\gg n'$

Representing MNIST digits with 20% of the information

We will subsequently show how to represent the MNIST digits (n=784) with vectors of length n' pprox 150

Here's what happens when

- ullet We encode the digits with vectors of length n'
- ullet Perform the inverse mapping back to vectors of length n so we can display as a (28 imes 28) image

PCA: reconstructed MNIST digits (95% variance)

	# <u></u>	 8 <u></u>	<u> </u>	

The reconstructed images are a little blurry (compared to the originals) but still very recognizable.

So it is possible to represent the information of the raw 784 features with only 20% (≈ 150) as many synthetic features.

In other words: 80% of the pixels may be somewhat redundant.

Where are the correlated features in images of digits?

Consider the examples consisting of the (28×28) pixel grids representing the MNIST digit dataset.

Here are some cases to consider:

Let j,j' be indices of two pixels in one of the 4 corners of the (28 imes 28) grid

• Most pixels in the corners are the same (background) colors so the correlation of ${\bf x}_j$ and ${\bf x}_{j'}$ is high

Let j,j' be indices of two pixels that lie in a vertical line in the center of the (28 imes 28) grid

- They will be somewhat correlated because they have the same value in 10% of the images
 - Corresponding to images of digit "1"

Uses of dimensionality reduction

Feature Engineering

If n is large and many features are mutually correlated

- A reduced number n' << n of synthetic features
- Obtained by dimensionality reduction techniques
- May result in
 - better models
 - Some models, like Linear Regression, may be sensitive to correlated features (collinearity)
 - more explainable (fewer factors) models

Clustering

Dimensionality reduction can facilitate an understanding of the structure of examples.

Consider: Are the m examples in the training set

- Uniformly distributed across the *n* dimensional space?
- Do they form *clusters* of examples with similar feature vectors?

Unfortunately: it's hard to visualize n dimensions when n is large.

- By reducing the number of dimensions
- We may be able to visualize related examples
- In such a way that the reduced dimension examples don't lose too much information

Let's illustrate with a limited subset of the smaller (8×8) digits.

8 x 8 digits, subset

Digits subset: [0, 4, 7, 9]

It would be difficult to visualize an example in n=(8*8)=64 dimensional space.

By transforming each example to a smaller number ($n^\prime=2$) of synthetic features we $\it can$ visualize

• Each example as a point in two dimensional space

You can see that our m pprox 700 examples form 4 distinct clusters.

- The clusters were formed
 - Based solely on features

We can only see this

 $\bullet \;$ because we have reduced dimensionality from 64 to 2

It turns out that the clusters correspond to examples mostly representing a single digit.
 The clusters organized themselves based on similarity of features This is unsupervised! No targets were used in forming the clusters! We use the hidden target merely to color the point, not to form the clusters

The reduced dimensions may

- capture salient properties ("semantics") of the example
 - rather than surface properties (pixels, "syntax")

For example: notice that

- low values of Component 1 are associated with the digits 4 and 7
 - is there some property common to these digits? Strong vertical section maybe?
- interpreting the meaning of synthetic features will be discussed subsequently

Noise reduction

Consider

- The MNIST example, where we reduced n by 80% without losing visual information.
- \bullet The equity return example, where the stock specific return ϵ_j became increasingly small

Both examples suggest that there are many features

- With small significance
- Or that represent "noise" In the latter case, dropping features actually improves data quality by eliminating irrelevant feature.s

```
In [5]: print("Done")
```

Done