Roll No.

B. Toch. (CSE)

SUPPLEMENTARY EXAMINATION

Sep-2019

CO324 PATTERN RECOGNITION

Time: 3:00 Hours

Max. Marks: 50

Note: Answer ALL questions.

Assume suitable missing data, if any.

USE ONLY OPTIMAL NUMBER OF WORDS TO ANWER

1[a] Discuss the design steps of a pattern recognition system using a block diagram. [consider a practical example] [2]

[b] Consider a tumor detection system using medical imaging. The probability of occurrence of tumor is 0.05. There may be two type of error is detection: the system detects a tumor, and there is no tumor in reality (Type-I error); it fails to detect and there is a tumor (Type-II error). Let the probability of the system detecting a tumor given there is no tumor is 0.1, and probability of the system does not detect any tumor given there is a tumor is 0.01. Find the probability of Type-I error, Type-II error, probability of the system detects a tumor, and the probability of presence of a tumor given the system has detected a tumor.

[2+2+2+2]

2. Answer any TWO of the followings

- [a] What is meant by support vector? Explain, with an example in 2-D feature space. Consider a hyperplane $\mathbf{w}^T \mathbf{x} + w_0 = 0$. The hyperplane acts as decision surface between class i and class j. Calculate margin of an object \mathbf{x} from the decision surface.
- [b] Consider a fictional dataset that describes the weather conditions for playing a game of golf. Given the weather conditions, each tuple classifies the conditions as fit("Yes") or unfit("No") for playing golf.

 Design a classifier based on Naïve Bayes approach and find if there is a play or no play for feature vector X=[Rainy, Cool, Normal, True]. [5]

Day	Outlook	Temperature	Humidity	Windy	Play
0	Rainy	Hot	High	False	No
1	Rainy	Hot	High	True	No
2	Overcast	Hot	High	False	Yes
3	Sunny	Mild	High	False	Yes
4	Sunny	Cool	Normal	False	Yes
5	Sunny	Cool	Normal	True	No
6	Overcast	Cool	Normal	True	Yes
7	Rainy	Mild	High	False	No
8	Rainy	Cool	Normal	False	Yes
9	Sunny	Mild	Normal	False	Yes
10	Rainy	Mild	Normal	True	Yes
11	Overcast	Mild	High	True	Yes
12	Overcast	Hot	Normal	False	Yes
13	Sunny	Mild	High	True	No

- [c] A common issue in the design of pattern recognition systems is of noisy and missing feature. Briefly discus a strategy to deal with noisy and missing features. [5]
- 3. Answer any TWO of the followings
 - [a] Compute the principal axes of the distribution. The covariance matrix of the distribution is given as [5]

$$\Sigma = \begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix}$$

[b] The five observations of two dimensional data are given in Table II. Reduce the dimensionality of data using PCA. [5]

Table II

X	10	12	1'3	14	16
у	16	18	20	22	24

Hint: the eigenvalues of covariance matrix of data are: 0.0670, 14.9330 and the eigenvectors are: $[-0.8174 \quad 0.5760]^T$, $[0.5760 \quad 0.8174]^T$.

[c]Consider the problem of binary classification using the Naive Bayes classifier. You are given two dimensional features (X₁, X₂) and the categorical class conditional distributions in the tables below. The entries

in Table III correspond to $P(X_1 = x_1|Ci)$ and $P(X_2 = x_2|Ci)$ respectively. Given a data point (-1, 1), calculate the following posterior probabilities: $P(C_1|X_1 = -1, X_2 = 1)$. [5]

Table III

	Class	X_1			X_2		
		-1	0	1	-1	0	1
	C_1	0.2	0.4	0.4	0.4	0.5	0.1
	C_2	0.3	0.6	0.1	0.1	0.3	0.6

4. Answer any TWO of the followings

- [a] How would a sample with a feature vector (1, 1) be classified if samples from class A are at (3, 0) (4, 1) and (3, 2) and sample from class B are at (1, -1) and (1, -1.5) using the K means. [5]
- [b] Use KNN algorithm and predict the type of fruit or food type to which Tomato (Sweet = 6, Crunch = 4) belongs

Table IV

Ingredient	Sweet	Crunch	Food Type		
Grape	8	5	Fruit		
Greenbean	3	7	Vegetable		
Nuts	3	6	Protein		
Orange	7	.3	Fruit		

- [c] Explain working of a perception (in ANN) using a block diagram. Also, design XOR gate using ANN. [5]
- 5[a] Consider a neural network with following set of input and desired output training vectors: [5]

$$X^{(1)} = [-1, 2, 0, 1]^T; t^{(1)} = 1,$$

 $X^{(2)} = [0.5, -0.5, 2, -1]^T; t^{(2)} = -1,$
 $X^{(3)} = [-1.5, 0, 0.5, -1]^T; t^{(3)} = +1,$

With initial weight vector $\mathbf{W}^{(i)} = [0.1, 0.4, 0, 0.3]^r$, and the learning rate $\eta = 0.1$. Activation function of neuron is Signam function and learning rule is $\mathbf{W}^{(n+1)} = \mathbf{W}^{(n+1)} + \eta[t^{(n)} - o^{(n)}]\mathbf{X}^{(n)}$. Find out whether ANN will give produce target outputs in two iterations or not. Show each step clearly.

[b] Explain the working of simulated annealing algorithm and compare it with steepest descent algorithm in terms of global vs local search. [5]

[c] Describe the exploitation and exploration phenomenon in Particle Swarm Optimization (PSO) along with adequate mathematical expressions. [5]

----END----