CSE446/546 Notes on Gaussian Confidence Intervals

Kevin Jamieson, University of Washington

1 Gaussian random variables

A Gaussian random vector X with mean $\mu \in \mathbb{R}^d$ and covariance $\Sigma^2 \in \mathbb{R}^{d \times d}$ has probability density function

$$p(x) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} e^{-(x-\mu)\Sigma^{-1}(x-\mu)/2}$$

where for any square matrix A, |A| denotes the determinant of A. For convenience, we will notate this as $X \sim \mathcal{N}(\mu, \Sigma)$.

Proposition 1. Fix $A \in \mathbb{R}^{p \times d}$ and $b \in \mathbb{R}^p$. If $X \sim \mathcal{N}(\mu, \Sigma)$ then $AX + b \sim \mathcal{N}(A\mu + b, A\Sigma A^{\top})$.

Proposition 1 allows us to transform a standard Gaussian vector, i.e. $Z \sim \mathcal{N}(0, I_d)$, into an arbitrary p-dimensional Gaussian vector with arbitrary mean and covariance for any $p \leq d$. It also allows illuminates the properties of empirical means of Gaussian random variables.

Example 1. Let $X_1, \ldots, X_n \in \mathbb{R}$ be IID with $X_i \sim \mathcal{N}(\mu, \sigma^2)$. Noticing that the vector $X \sim \mathcal{N}(\mu \mathbf{1}, \sigma^2 I_d)$, we may choose $A = (\frac{1}{n}, \ldots, \frac{1}{n}) \in \mathbb{R}^{1 \times n}$ and b = 0 to conclude that $\frac{1}{n} \sum_{i=1}^n X_i \sim \mathcal{N}(\mu, \sigma^2/n)$.

Because Proposition 1 gives an explicit transformation of arbitrary Gaussian random variables, many of the properties of a Gaussian are understood through a standard Gaussian $Z \sim \mathcal{N}(0,1)$ with PDF $p(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$.

Proposition 2. For any $t \ge 0$ we have

$$\frac{1}{\sqrt{2\pi}} \frac{t}{t^2 + 1} e^{-t^2/2} \le \int_{x - t}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \le \min\{1, \frac{1}{\sqrt{2\pi}} \frac{1}{t}\} e^{-t^2/2}.$$
 (1)

Example 2. Let $X_1, \ldots, X_n \in \mathbb{R}$ be IID with $X_i \sim \mathcal{N}(\mu, \sigma^2)$. By example 1, if $\widehat{\mu}_n = \frac{1}{n} \sum_{i=1}^n X_i$ then $\widehat{\mu}_n \sim \mathcal{N}(\mu, \sigma^2/n)$. By Proposition 1 we have that $(\widehat{\mu}_n - \mu)/\sigma \sim \mathcal{N}(0, 1)$. Thus, by Proposition 2 we have that for any $\delta \in (0, 1)$ that $\mathbb{P}(\widehat{\mu}_n \geq \mu + \sqrt{2\sigma^2 \log(1/\delta)}) \leq \delta$. By symmetry, we can also obtain a two-sided bound with $\mathbb{P}(|\widehat{\mu}_n - \mu| \geq \sqrt{2\sigma^2 \log(1/\delta)}) \leq \mathbb{P}(\widehat{\mu}_n \geq \mu + \sqrt{2\sigma^2 \log(2/\delta)}) + \mathbb{P}(-\widehat{\mu}_n \geq -\mu + \sqrt{2\sigma^2 \log(2/\delta)}) \leq \delta/2 + \delta/2 = \delta$. Stated another way, with probability at least $1 - \delta$ we have that $\widehat{\mu}_n$ will be contained within the confidence interval $[\mu - \sqrt{2\sigma^2 \log(2/\delta)}, \mu + \sqrt{2\sigma^2 \log(2/\delta)}]$.

2 Linear regression with Gaussian noise

We now consider linear regression. Suppose we observed $\{(x_i, y_i)\}_{i=1}^n$ where each pair is drawn IID from an unknown distribution, but it is know that there exists some $\theta_* \in \mathbb{R}^d$ such that $y_i = \langle x_i, \theta_* \rangle + \eta_i$ where $\eta_i \sim \mathcal{N}(0, \sigma^2)$. As discussed in class, consider the least squares estimator (equivalent to the maximum likelihood estimator)

$$\widehat{\theta} = \arg\min_{\theta \in \mathbb{R}^d} \sum_{i=1}^n (y_i - \langle x_i, \theta \rangle)^2$$

$$= \left(\sum_{i=1}^n x_i x_i^\top\right)^{-1} \sum_{i=1}^n x_i y_i$$

$$= \theta_* + \left(\sum_{i=1}^n x_i x_i^\top\right)^{-1} \sum_{i=1}^n x_i \eta_i$$

where the second inequality has assumed that $\left(\sum_{i=1}^n x_i x_i^\top\right)^{-1}$ exists, and the third inequality plugs in our assumed model $y_i = \langle x_i, \theta_* \rangle + \eta_i$. If we let $X = (x_1, \dots, x_n)^\top \in \mathbb{R}^{n \times d}$ and $\eta = (\eta_1, \dots, \eta_n)^\top$ then we may write $\hat{\theta} = \theta_* + (X^\top X)^{-1} X^\top \eta$. Applying Proposition 1 with $A = (X^\top X)^{-1} X^\top$ and $b = \theta_*$ we observe that $\hat{\theta} \sim \mathcal{N}(\theta_*, \sigma^2(X^\top X)^{-1})$ using the fact that $(X^\top X)^{-1} X^\top \cdot \sigma^2 I_n \cdot X(X^\top X)^{-1} = \sigma^2(X^\top X)^{-1}$. For any $z \in \mathbb{R}^d$ we may apply Proposition 1 yet again to observe that $z^\top (\hat{\theta} - \theta_*) \sim \mathcal{N}(0, \sigma^2 z^\top (X^\top X)^{-1} z)$ and Proposition 2 to conclude that

$$\mathbb{P}\left(|z^{\top}(\hat{\theta} - \theta_*)| \ge \sqrt{2\sigma^2 z^{\top}(X^{\top}X)^{-1}z\log(2/\delta)}\right) \le \delta. \tag{2}$$

If we fix $i \in \{1, ..., d\}$ and set $z = \mathbf{e}_i$ where \mathbf{e}_i denotes a vector of all zeros except for a 1 in the *i*th position, then Equation 2 says $\mathbb{P}(|\widehat{\theta}_i - \theta_{*,i}| > \sqrt{2\sigma^2[(X^\top X)^{-1}]_{i,i}\log(2/\delta)}) \leq \delta$. However, this only holds for a *single* component $i \in \{1, ..., d\}$. To account for spurious noise, we may take a union bound over all $i \in \{1, ..., d\}$:

$$\begin{split} \mathbb{P}(\bigcup_{i=1}^{d} \{ |\widehat{\theta}_{i} - \theta_{*,i}| > \sqrt{2\sigma^{2}[(X^{\top}X)^{-1}]_{i,i} \log(2d/\delta)} \}) \leq \sum_{i=1}^{d} \mathbb{P}(|\widehat{\theta}_{i} - \theta_{*,i}| > \sqrt{2\sigma^{2}[(X^{\top}X)^{-1}]_{i,i} \log(2d/\delta)}) \\ \leq \sum_{i=1}^{d} \frac{\delta}{d} = \delta. \end{split}$$

We conclude with the observation that with probability at least $1 - \delta$, $\widehat{\theta}_i > \sqrt{2\sigma^2[(X^\top X)^{-1}]_{i,i}\log(2d/\delta)}$ implies that $\theta_{*,i} > 0$ for all i (and an analogous conclusion for $\theta_{*,i} < 0$). This provides a rigorous way of justifying whether the coefficients of $\widehat{\theta}$ imply "real" correlation with the observed phenomenon.