Incremental Minimization in Spaces of Nonpositive Curvature

Ariel Goodwin ¹ Adrian S. Lewis ¹ Genaro López-Acedo ² Adriana Nicolae ³

CONTROL TOUR

Cornell University

¹Cornell University

²University of Seville

³Babeş-Bolyai University

The Problem: Minimizing a Sum of Functions

$$\min \left\{ f(x) = \sum_{i=1}^{m} f_i(x) \mid x \in C \right\} \quad (SUM)$$

 $f_i : C \subseteq X \to \mathbb{R}$ are functions, (X, d) is a **complete geodesic metric space**

Existing algorithms converge at unknown rate and rely on proximal steps (difficult)

Example: The Weber problem (optimal facility location) is

$$\min_{x \in X} \sum_{i=1}^{m} w_i d(x, a_i)^{p_i}$$

The special case $p_i = p \ge 1$ for $1 \le i \le m$ is the p-mean problem

Hadamard Spaces

Geodesics are paths γ in X with $d(\gamma(t), \gamma(t')) = |t - t'|$

X has **curvature** ≤ 0 **(CAT(0))** if $t \mapsto d(\gamma(t), y)^2 - t^2$ is convex $\forall y \in X$, γ geodesic

Hadamard Space: Complete geodesic space of curvature ≤ 0

Includes Euclidean and Hilbert space (classical optimization), but also:

Applications modeled in such spaces include hierarchical classification, matrix means, phylogenetics, facility location, and robotic motion

Any two points in a Hadamard space are joined by a unique geodesic

Busemann Convexity

Geodesic rays $r: \mathbb{R}_+ \to X$ induce a notion of **direction** $r(\infty)$:

For n-manifolds the **space of directions** X^{∞} is \mathbb{S}^{n-1} , but for the **tripod** it is discrete To a direction $\xi \in X^{\infty}$ we associate the **Busemann function** $b_{\xi} \colon X \to \mathbb{R}$:

$$b_{\xi}(y) := \lim_{t \to \infty} (d(y, r(t)) - t) \qquad (r(0) = x_0, r(\infty) = \xi)$$

(i)
$$\mathbb{R}^n$$
: $b_{\xi}(y) = \langle y, -\xi \rangle$

(ii)
$$\mathbb{H}^n$$
: $b_{\xi}(y) = -\log\left(\frac{1-\|y\|^2}{\|\xi-y\|^2}\right)$

The Euclidean case shows Busemann functions generalize affine functions

(iii) Tripod:
$$b_{\xi_i}((y,j)) = (-1)^{\delta_{ij}}y$$

Definition: $f: C \to \mathbb{R}$ has a **Busemann subgradient** $(\xi, s) \in X^{\infty} \times \mathbb{R}_+$ at x if

 $f(y)-sb_{\xi}(y)\geq f(x)-sb_{\xi}(x)\quad \forall y\in C$ Then f is **Busemann convex** if it has a Busemann subgradient at each $x\in C$

- Stronger than geodesic convexity in general (equivalent in \mathbb{R}^n)
- Simple calculus: max rule, chain rule, but no sum rule... (splitting is key)

Examples: Busemann functions, distances to points/balls/horoballs (sublevel sets of Busemann functions)

An Incremental Subgradient Algorithm

Simple algorithm for solving (SUM) in $X = \mathbb{R}^n$ due to Bertsekas and Nedić (2001):

For
$$k=0,1,2,\ldots$$
 do For $i=0,1,\ldots,m-1$ do
$$x^{k,i+1}=\mathrm{proj}_C(x^{k,i}-t_kv^{k,i}) \ \ \text{where} \ \ v^{k,i}\in\partial f_{i+1}(x^{k,i})$$
 $x^{k+1}=x^{k,m}$

Generalizing, use Busemann subgradient $(\xi^{k,i}, s_{k,i})$ for f_{i+1} at $x^{k,i}$ to update iterate: $x^{k,i+1} = \operatorname{proj}_C(r(t_k s_{k,i}))$ where $r(0) = x^{k,i}, r(\infty) = \xi^{k,i}$

Computing Medians

A median of $A = \{a_1, \ldots, a_m\} \subseteq X$ is a solution to (SUM) with $f_i = w_i d(\cdot, a_i)$

 f_i has Busemann subgradient $(r_i(\infty), w_i)$ at $x \neq a_i$ where $r_i(d(x, a_i)) = a_i$

The resulting incremental subgradient step is $x^{k,i+1} = \operatorname{proj}_C(r_i(t_k w_i))$

At step i in each internal loop, the iterate moves towards a_i proportionally to w_i

Theorem (Median Complexity)

If
$$C=B(x^0,f(x^0)/w_1)$$
, $t_k=2/(w_1m\sqrt{k+1})$ then f has a minimizer in C and
$$\min_{i=1,\dots,k}f(x^i)-f_{\rm opt}=O(1/\sqrt{k})$$

Application: Computing the Median of Phylogenetic Trees

Several candidate phylogenetic trees may be generated to model an evolutionary history; means and medians condense this data into one representative tree

The **BHV** tree space \mathcal{T}_n models the set of all binary trees on n labelled leaves, each with n-2 nonnegative internal edge lengths (viewed as a point in $[0,\infty)^{n-2}$)

Geodesics in \mathcal{T}_n are computable in polynomial time (Owen and Provan, 2011)

In both experiments below we compute the median of three trees in \mathcal{T}_4

References and Acknowledgements:

- [1] M. Bačák. Convex Analysis and Optimization in Hadamard Spaces. De Gruyter, Berlin, 2014.
- [2] M.R. Bridson and A. Haefliger. Metric Spaces of Non-Positive Curvature. Springer-Verlag Berlin, 1999.
- [3] A.S. Lewis, G. López-Acedo, and A. Nicolae. Horoballs and the subgradient method. arXiv:2403.15749, 2024.

Ariel Goodwin is supported by the NSERC postgraduate fellowship PGSD-587671-2024