

Project Title: Grayloc looseness monitoring using piezo transducers

Hamdi Ben Amar, Graduate Student

Department of Mechanical Engineering, Cullen College of Engineering

Problem Statement

- Grayloc connector seals are widely used in various industries and applications.
- Loosening of Graylocs directly results in preload decrease and initiates mechanical failure and leakage.
- We want to accurately predict the level of tightness of the grayloc seals.

Brief Literature Review

- Multiple methods of bolt looseness monitoring of regular flanges have been proposed by researchers.
- Traditional methods include the strain gauge-based methods, vibration-based methods, ultrasonicbased methods, and impedance-based methods.
- With the rapid development of smart materials and intelligent components, various methods embedded these components for flange looseness monitoring.

Experimental Setup and Collection of Data

Fig 1: experimental setup

Fig 2: Grayloc with attached PZT transducers

- Lead zirconate titanate (PZT) are used as transducers and sensors to produce and receive stress waves.
- With the increase of the torque, the real contact area between the clamp and the pipe increases correspondingly: The energy transmitted by the stress wave along the grayloc increases with its tightness.
- Coda waves, which are the back-scattering waves that carry useful information about the structure that they propagated on, is used to analyze the grayloc's tightness level.

Method(s)

Fig 3: Time series response Fig 4: Coda wave response

Fig 5: Flowchart of the proposed method

- A Gaussian impulse signal with 176kHz central frequency and 10MHz sampling rate was used to excite the PZT1 and measure the response at PZT2.
- The test consists of taking the response signal of 0 20 30 40 50 ft lbs.
- The data set consist of 1200 measurements, done in 33 independent subsets.
- The entropy is an effective nonlinear signal analysis technique that measures the complexity and the disorder of a given time series.

Results, Analysis and Discussion

Fig 6: 3D plot of three features

Table1: accuracy of various methods

- The data set was divided into training, testing and independent verification sets.
- The suggested features are correlated to the tightness of the grayloc, which explains the high accuracy.
- The maximum error of the testing sets was 10 ft lbs, which shows that this model has good robustness.

Fig 7: Confusion matrix of the dependent tests using neural

Fig 8: Confusion matrix of the independent tests using neural

Conclusion

- We proposed a new method to monitor the looseness of graylocs using Lead zirconate titanate transducers.
- The coda waves carry useful information about the structure that they propagated on.
- This method, since it is based on the energy and entropy of the propagated stress wave, present an effective way to accurately detect the torque level of the grayloc.
- Future experiments will investigate the feasibility of this method underwater, as well as the monitoring of each bolt separately.

Acknowledgements

The financial support from Midstream Integrity Services (MIS) and technical support from Smart Materials & Structures Lab (SMSL) and Artificial Intelligence Lab for Monitoring & Inspection (AILMI) at UH. This research was supported by Bureau of Safety and Environmental Enforcement (BSEE).

References

- 1. Huang, Jiayu, et al. "A comprehensive review of loosening detection methods for threaded fasteners." Mechanical Systems and Signal Processing 168 (2022): 108652.
- 2. Dresner, Lawrence, and Conrad V. Chester. ATTENUATION OF SHOCK WAVES IN LONG PIPES BY ORIFICE PLATES, ROUGH WALLS, AND CYLINDRICAL OBSTACLES. No. CONF-720906-1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States), 1972.
- 3. Aki, Keiiti, and Bernard Chouet. "Origin of coda waves: source, attenuation, and scattering effects." Journal of geophysical research 80.23 (1975): 3322-3342.
- 4. Hei, Chuang, et al. "Quantitative evaluation of bolt connection using a single piezoceramic transducer and ultrasonic coda wave energy with the consideration of the piezoceramic aging effect." Smart Materials and Structures 29.2 (2020): 027001. 5. Chen, Dongdong, et al. "Full-range bolt preload monitoring with multi-resolution using the time shifts of the direct wave and coda waves." Structural Health Monitoring 22.6 (2023):

3871-3890.