



# ELMo Embeddings

Exploring the power of context.

### Session flow



- Characterization Problem at hand
- Existing solutions and how they work
- Drawbacks of these solutions
- In comes ELMO
- How does it solve the problem
- Testing on our results
- Applications of ELMO



#### **Artificial Intelligence meets News**

We want to change the way news is consumed today.



**Summarization** 

Question
Answer
Generation

Quotes Generation

### AI behind UnFound

**News Ranking** 

Timeline Detection

Stance Detection



# How to deal with Text data?



# Word Embeddings!

### One-hot encoding

What if the **size of vocabulary** increases to a million words?

The Do the words ants and toxic have any resemblance?

USA

are
toxic

## Word Embeddings



Hello [0.3 0.6 0.1 0.9]

Word embeddings are distributed representations in vector space.

### Understanding Embeddings









### Task- News Clustering

1. The king of Africa had planted this tree.

2. The queen of England is set to land in Africa this year.

3. This year we received a good quality of **apples**.

## Popular Embedding models



- Word2Vec
- GloVe
- Doc2Vec
- fastText
- Gensim

### A simple Skip-gram model



The quick brown fox jumps over the lazy dog. The lazy dog was sleeping when the brown fox arrived. The brown fox found no other way to get on the other side. Jumping over the lazy dog was the only option that the brown fox had.

brown — fox

lazy — dog

### A Shallow Neural Network





## Drawbacks of current approaches ...



The play performed by the artists was very funny.

All work and no play makes everyone dull.

# Polysemy





- "Deep Contextualized Word Embeddings"
- The Paper was presented at this year's NAACL, in June.
- Developed by AllenNLP team at the University of Washington
- Detailed info at <a href="https://allennlp.org/elmo">https://allennlp.org/elmo</a>

### Elmo representations are...



#### 1. Contextual

The representation for each word depends on the entire context in which it is used.

The play performed by the artists was very funny.

All work and no play makes everyone dull.



### Elmo representations are...

### 2. Deep

The word representations combine all layers of a deep <a href="pre-trained">pre-trained</a> neural network.

### Elmo representations are...

#### 3. Character Based

ELMo representations are purely character based, allowing the network to use morphological clues to form robust representations for out-of-vocabulary tokens unseen in training.

### A sneak-peak into ELMo architecture..

Consists of 3 Layers –









Original Target Image



Target image with morphing lines



edges



morphing lines



### CNN Layer



apple apple apple apple



### **LSTM layers**







### Global benchmarks achieved

| Task                   | Previous<br>SOTA       |                   | Our<br>baseline | ELMo+<br>Baseline | Increase (Absolute/Relative) |
|------------------------|------------------------|-------------------|-----------------|-------------------|------------------------------|
| SQuAD                  | SAN                    | 84.4              | 81.1            | 85.8              | 4.7 / 24.9%                  |
| SNLI                   | Chen et al<br>(2017)   | 88.6              | 88.0            | 88.7 +/- 0.17     | 0.7 / 5.8%                   |
| SRL                    | He et al<br>(2017)     | 81.7              | 81.4            | 84.6              | 3.2 / 17.2%                  |
| Coref                  | Lee et al<br>(2017)    | 67.2              | 67.2            | 70.4              | 3.2 / 9.8%                   |
| NER                    | Peters et al<br>(2017) | 91.93 +/-<br>0.19 | 90.15           | 92.22 +/- 0.10    | 2.06 / 21%                   |
| Sentiment<br>(5-class) | McCann et al<br>(2017) | 53.7              | 51.4            | 54.7 +/- 0.5      | 3.3 / 6.8%                   |





- 1. The play performed by the artists was very funny.
- 2. All work and no **play** makes everyone dull.
- 3. We must **play** everyday to be fit and fine.

1. The play performed by the artists was very funny.

Noun

2. All work and no play makes everyone dull. Verb

Similarity = 0.79

2. All work and no **play** makes everyone dull. Verb

3. We must **play** everyday to be fit and fine. Verb

Similarity = 0.87



#### Conclusion

Similarity (Verb-Verb) > Similarity (Verb-Noun)

0.87

### Our Results and Observations



1. The cat sat on the mat.

- 2. **Dog** came on the **cricket** field.
- 3. The **football** World Cup is held in Russia.

The cat sat on the mat.

A **Dog** came on the cricket field.

Similarity = 0.49

A Dog came on the **cricket** field.

The **football** World Cup is held in Russia.

Similarity = 0.68



#### Conclusion

# The model gives decent similarity between words that are different but used in similar context.





| Feature             | Current Model | Future Model       |
|---------------------|---------------|--------------------|
| Summarization       | GloVe         | ELMo               |
| Question Generation | GloVe         | ELMo               |
| Answer Generation   | GloVe         | ELMo               |
| Stance Detection    | GloVe         | ELMo (Implemented) |
| Document Retriever  | Concept Net   | ELMo               |

## Questions!