Topic: Discrete random variables and their distributions

In today's problem class we will be studying properties of discrete random variables.

1. Show that the function

$$p_X(x) = \frac{1}{1+\lambda} \left(\frac{\lambda}{1+\lambda}\right)^x$$

for parameter $\lambda > 0$ is a valid probability mass function for a discrete random variable X taking values on $\{0, 1, 2, ...\}$. Also, find $P(X \le x)$ for $x \in \mathbb{R}$.

Solution: Need to show p_X non-negative, and sums to one over the range of X. Clearly, p_X is nonnegative, and the sum of geometric progression gives result, that is,

$$\sum_{x=0}^{\infty} p_X(x) = \sum_{x=0}^{\infty} \frac{1}{1+\lambda} \left(\frac{\lambda}{1+\lambda}\right)^x = \frac{1}{1+\lambda} \left(1 - \frac{\lambda}{1+\lambda}\right)^{-1} = 1,$$

where we note that $\lambda/(1+\lambda) < 1$.

Let x = 0, 1, ..., then

$$P(X \le x) = \sum_{i=0}^{x} p_X(i) = \sum_{i=0}^{x} \frac{1}{1+\lambda} \left(\frac{\lambda}{1+\lambda}\right)^i = (1-\theta) \sum_{i=0}^{x} \theta^i = (1-\theta) \frac{1-\theta^{x+1}}{1-\theta} = 1-\theta^{x+1},$$

where $\theta = \frac{\lambda}{1+\lambda}$. For general $x \in \mathbb{R}$, we have

$$P(X \le x) = \begin{cases} 0, & \text{if } x < 0, \\ 1 - \theta^{\lfloor x \rfloor + 1}, & \text{if } x \ge 0. \end{cases}$$

We note that |x| denotes greatest integer less than or equal to x.

2. For what values of k is the following function a valid probability mass function?

$$p_X(x) = \begin{cases} \frac{k}{x(x+1)} & \text{if } x = n, n+1, n+2, \dots \\ 0 & \text{otherwise} \end{cases}$$

where n is a fixed positive integer.

Hint:

$$\frac{1}{x(x+1)} = \frac{1}{x} - \frac{1}{x+1}.$$

Solution:

$$\sum_{x=n}^{\infty} \frac{k}{x(x+1)} = k \sum_{x=n}^{\infty} \left(\frac{1}{x} - \frac{1}{x+1} \right) = k \left(\frac{1}{n} - \frac{1}{n+1} + \frac{1}{n+1} - \frac{1}{n+2} + \frac{1}{n+2} - \dots \right)$$
$$= \frac{k}{n}.$$

Need $\sum p_X(x) = 1 \Rightarrow k = n$. Also, $p_X(x) \ge 0$ by construction (and also $p_X(x) \le 1$).

Page 1 of 4

3. If $X \sim \text{Poi}(\lambda)$ and we know that $P(X > 0) = 1 - e^{-0.5}$, determine $P(X \le 1)$.

Solution: If
$$X \sim \text{Poi}(\lambda)$$
 so $p_X(x) = P(X = x) = \frac{e^{-\lambda} \lambda^x}{x!}, x = 0, 1, 2, ...$
$$P(X > 0) = 1 - P(X = 0) = 1 - e^{-0.5} \Rightarrow P(X = 0) = e^{-0.5}.$$

$$p_X(0) = P(X = 0) = e^{-\lambda} \Rightarrow \lambda = 0.5$$

$$P(X \le 1) = p_X(0) + p_X(1) = e^{-0.5} + 0.5e^{-0.5} = 1.5e^{-0.5}.$$

4. If $X \sim \text{Poi}(\lambda)$ find the probability that X is odd.

Solution:

$$\sum_{x=0}^{\infty} \frac{e^{-\lambda} \lambda^{2x+1}}{(2x+1)!} = e^{-\lambda} \left(\lambda + \frac{\lambda^3}{3!} + \frac{\lambda^5}{5!} + \dots \right) = e^{-\lambda} \sinh(\lambda).$$

5. If $X \sim \text{Bin}(n, \theta)$, find g(x) such that

$$p_X(x+1) = q(x)p_X(x), x = 0, 1, \dots, n-1.$$

Solution:

$$p_X(x) = \binom{n}{x} \theta^x (1 - \theta)^{n-x},$$
$$p_X(x+1) = \binom{n}{x+1} \theta^{x+1} (1 - \theta)^{n-x-1}.$$

Note that

$$\binom{n}{x+1} = \frac{n!}{(x+1)!(n-x-1)!} = \frac{n!(n-x)}{(x+1)x!(n-x)!} = \frac{(n-x)}{(x+1)} \binom{n}{x}.$$

So we can write

$$p_X(x+1) = \frac{(n-x)\theta}{(x+1)(1-\theta)} \binom{n}{x} \theta^x (1-\theta)^{n-x}.$$

I.e. when we choose

$$g(x) = \frac{\theta(n-x)}{(1-\theta)(x+1)}, x = 0, 1, 2, \dots, n-1,$$

then the result follows.

6. Let $X \sim \text{Bin}(n, p)$ and let q = 1 - p. Show that $Y = n - X \sim \text{Bin}(n, q)$.

Page 2 of 4

Solution: For $y \in \{0, 1, ..., n\}$, we have

$$p_Y(y) = P(Y = y) = P(n - X = y) = P(X = n - y) = \binom{n}{n - y} p^{n - y} (1 - p)^{n - (n - y)}$$
$$= \binom{n}{y} q^y (1 - q)^{n - y},$$

since

$$\binom{n}{n-y} = \frac{n!}{(n-y)!(n-(n-y))!} = \frac{n!}{(n-y)!y!} = \binom{n}{y}.$$

So the p.m.f. of Y has the functional form of the p.m.f. of a Bin(n,q) random variable.

7. Let $X \sim \text{Bin}(n, p)$ for $n \in \mathbb{N}, 0 , and set <math>q = 1 - p$. Show that $Y := n - X \sim \text{Bin}(n, q)$.

Solution: Let $y \in \{0, 1, \dots, n\}$, then

$$P(Y = y) = P(n - X = y) = P(X = n - y) = \binom{n}{n - y} p^{n - y} (1 - p)^{n - (n - y)}$$
$$= \binom{n}{y} q^{y} (1 - p)^{n - y},$$

and 0 otherwise, which is the pmf of a Bin(n, q) random variable.

8. Let $X \sim \text{Bin}(n, p)$ for an even $n \in \mathbb{N}$, and p = 1/2. Show that the distribution of X is symmetric about n/2, i.e.

$$P(X = \frac{n}{2} + j) = P(X = \frac{n}{2} - j),$$

for all nonnegative integers j.

Solution: From the previous question, we deduce that $X \sim \text{Bin}(n, 1/2)$ implies that Y := n - X = Bin(n, 1/2). Hence

$$P(X = k) = P(Y = k) = P(n - X = k) = P(X = n - k),$$

for all $k \in \mathbb{N}_0$. Since n is even, we can set $k = \frac{n}{2} + j$, for any $j \in \mathbb{N}_0$, and obtain

$$P\left(X = \frac{n}{2} + j\right) = P\left(X = \frac{n}{2} - j\right).$$

9. A fair coin is tossed n times. Let H, T denote the discrete random variables corresponding to the number of heads and the number of tails, respectively, in n tosses of the coin. Define the discrete random variable X = H - T. Find the image/range and probability mass function of X.

Solution: Let H = "Number of Heads", T = "Number of Tails". Then T = n - H and X = H - T = H - (n - H) = 2H - n. Thus

4 Page 3 of 4

4

$$Im X = \{-n, -n+2, -n+4, ..., n-4, n-2, n\}.$$

We note that $H, T \sim \text{Bin}(n, 1/2)$. Hence,

$$p_X(x) = P(X = x) = P(2H - n = x) = P(H = (x + n)/2) = p_H((x + n)/2))$$

= $\binom{n}{\frac{x+n}{2}} \left(\frac{1}{2}\right)^n$,

for $x \in \text{Im}X$ and $p_X(x) = 0$ otherwise.

Page 4 of 4