COUNT-BASED EXPLORATION

Jonathan Campbell COMP-767 April 20, 2017

MHY EXPLORES

- With exploration:
 - Better chance of finding optimal policy (e.g.: k-armed bandit)
 - All actions sampled infinitely often in limit: guarantees Q* convergence.
- Simple approaches: ε-greedy/softmax action selection
- Exploration is hard in environments with:
 - noisy rewards
 - nonstationarity
 - very large state spaces

DELAYED Q-LEARNING W/ INTERVAL ESTIMATION

- Keep running average of update to Q(s, a).
- If difference between current Q(s, a) and average is larger than ε, install update and reset average.
 - Add exploration bonus of form $\sqrt{\#(s,a)}$
- If m samples of (s, a) are reached without installing, reset average as well as #(s, a) to 0.
- Performs better with larger m.

Alexander Strehl

Probably Approximately Correct (PAC) Exploration in Reinforcement Learning (2007)

STATE HASHING

- With continuous and/or large state spaces, can't keep counts.
 - May never observe the same exact state more than once.
- Possible solution:
 - Use hash fn. to discretize state and maintain counts of $\Phi(s)$.
 - SimHash: $\phi(s) = \operatorname{sgn}(Ag(s)) \in \{-1, 1\}^k$
 - Add exploration bonus to reward and use regular Q/etc alg.:

$$r^{+}(s,a) = \frac{\beta}{\sqrt{n\left(\phi(s)\right))}}$$

Tang et al.

#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning (2017)

DENSITY MODELS

- Other solution:
 - Replace #(s, a) with density model over state space.
 - Density model gives probability p(x) for state x, and p'(x):
 prob. of x after observing a new occurrence of x ('recoding').
 - Pseudo-count: $\widehat{N}\left(x\right) = \frac{p\left(x\right)\left(1-p'\left(x\right)\right)}{p'\left(x\right)-p\left(x\right)}$
 - Add exploration bonus to reward (same as last slide).
- Difficulty with these approaches:
 - State must first be visited once before bonus can be applied.

Bellemare et al.

Unifying Count-Based Exploration and Intrinsic Motivation (2016)

SAMPLE RESULTS

