AI HW2

1a)

Limit 1: S

Limit 2: $S \rightarrow a \rightarrow b \rightarrow c$ Limit 3: $S \rightarrow a \rightarrow d \rightarrow G_2$

The path solution is therefore $S \rightarrow a \rightarrow d \rightarrow G_2$

This is not the optimal path as the shortest traversal to the goal state is s -> b -> G₁

1b)

A heuristic h(n) is admissible if for every node n, $h(n) <= h^*(n)$ where $h^*(n)$ is the true cost to reach the goal from n.

If we n = a, then the true cost to the shortest goal G_2 is 2. Therefore h <= 2 for the function to be admissible.

To make the overall heuristic function admissible, h = 0, 1, 2

Consistency: $h(a) - h(n) \le actual cost(a to n)$ where n represents any successor node from a, and h(n) represents the estimated cost of reaching the goal state from n.

$$h(a) \le actual cost(a to G_2) + h(G_2) \rightarrow h(a) \le 2 + 0$$

 $h(a) \le actual cost(a to d) + h(d) \longrightarrow h(a) \le 1 + 0$

Therefore, h(a) = 0, 1 to satisfy the conditions for the function to be consistent.

1c)

<u>Node</u>	<u>F = g + h</u>
S	4 = 0 + 4
b	4 = 2 + 2
a	3 = 3 + 0
С	6 = 6 + 0
d	5 = 4 + 1
G ₂	5 = 5 + 0
G ₄	4 = 4 + 0

Expanded Nodes:

- 1. S
- 2. S->A
- 3. S -> A -> B
- 4. $S \rightarrow A \rightarrow B \rightarrow G_1$

The path solution is $S \to B \to G_1$ which is the optimal path as when h = 0 the function is both admissible and heuristic which suggests optimality.

2a)

Variables: $X = \{G, O, T, U\}$ Domains: $D_i = \{0, ..., 9\}$

Constraints:

- Unary: $G = \{1, ..., 9\}, T = \{1, ..., 9\}, O = \{1\}$

2b)

The LCV assignment to the MRV variable would be O = 1

Binary Constraint:

$$-$$
 T = O + O = 20

Global Constraints:

Alldiff(X_i)

<u>Nodes</u>	0	Т	G	U
<u>Domain</u>	1	{2}	{2,, 9}	{0, 2,, 9}

2c)

The LCV assignment to the MRV variable would be T = 2 as that is the only domain possible under the current unary constraints.

<u>Nodes</u>	0	Т	G	U
<u>Domain</u>	1	2	{2, , 9}	{0, 2, 9}

2d)

$$G >= 10 - T$$

U = $(G + T \% 10)$

Constraints:

- Global: Alldiff(X_i)

If we know that T = 2

Therefore: G >= 10 - 2 >= 8

Therefore $G = \{8, 9\}$

If
$$G = 8 \rightarrow U = (8 + 2 \% 10) = 0$$
, or if $G = 9 \rightarrow U = (9 + 2 \% 10) = 1 U = \{0, 1\}$

$$O = 1$$
, $T = 2$, $G = \{8, 9\}$, $U = \{0, 1\}$

3b)

The best action for x to take is to compute the board:

Х	X	
Х		0
0	0	Х

The expected score therefore at the end of the game would be **4** if all players played rationally.