Parameter, having occurs when a feature map is generated from the result of convolution between a filter and input data from a unit in a plane in the convolution layer. This results in all or most of the units in the layer sharing the weights, which is a major feature of CNNs.

CWN	for	vertical			boundanies!			(100)""(-	, di
10	10	10	0	O	0,,,,,	193	2	(. q V)			
10	10				O		3.54	0	30	30	0
10	10	10	٥	0	0/4/		-1		30		
10	10		0	0	o X	1 0	1 -1) E				
•	10	10	0	O		10	- {		30 30		
	10	10		O			7				6
					= N.96	3 7 3	-Ŝ (4×4		
	67	KG i	mag	re	· · · · · · · · · · · · · · · · · · ·	filter	1,	\$ 111A .			2 /-1

convolving with this filter results in having the middle part of the 4x4 result in having a dark boundary shown below;

30s representing light boundaries 0s representing dank boundaries Filter 2 would represent detention of hight edges. Therefore, resulting in a 4x4 image having light boundaries.

30s representing dank bondamies

light boundaries