Homework 2

Christopher Chapline

February 3, 2015

1 Exercise 2.3.2

	0	1	
$\operatorname{start} \rightarrow$	$\{p\}$	$\{q,s\}$	$\{q\}$
	$\{r\}$	$\{s\}$	$\{p\}$
*	$*\{s\}$	Ø	$\{p\}$
*	$*\{q\}$	$\{r\}$	$\{q,r\}$
*	$*\{q,r\}$	$\{q,s\}$	$\{q,r,p\}$
*	$*\{q,s\}$	$\{r\}$	$\{q,r,p\}$
	Ø	Ø	Ø
*	$*\{q,r,p\}$	$\{r, s, q\}$	$\{q,r,p\}$
*	$*\{r, s, q\}$	$\{s,r\}$	$\{q,r,p\}$
*	$*\{s,r\}$	$\{s\}$	$\{p\}$

2 Exercise 2.3.3

This DFA accepts the language containing strings of 0's and 1's that end in one of the following: $00,\,01,\,001.$

	0	1	
$start \rightarrow$	<i>{p}</i>	$\{p,q\}$	{ <i>p</i> }
	$\{q\}$	$\{r,s\}$	{ <i>t</i> }
	$\{r\}$	$\{p,r\}$	$\{t\}$
*	$\{s\}$	Ø	Ø
*	$\{t\}$	Ø	Ø
	$\{p,q\}$	$\{p,q,r,s\}$	$\{p\}$
*	$\{r,s\}$	$\{p,q\}$	$\{t\}$
	$\{p,r\}$	$\{p,q,r\}$	$\{p,t\}$
	Ø	Ø	Ø
*	$\{p,q,r,s\}$	$\{p,q,r\}$	$\{p,t\}$
	$\{p,q,r\}$	$\{p,q\}$	$\{p,t\}$
*	$\{p,t\}$	$\{p,q\}$	$\{p\}$

3 Exercise 2.3.4(a)

	0	1		9
$\rightarrow s$	$a_0 \cup \{w_0,, w_9\} \cap w_0$	$a_1 \cup \{w_0,, w_9\} \cap w_1$		$a_9 \cup \{w_0,, w_9\} \cap w_9$
$-*a_0$	Ø	Ø		Ø
w_0	a_0	w_0		w_0
a_1	Ø	Ø		Ø
w_1	w_1	a_1		w_1
•••				
$*a_{9}$	Ø	Ø		Ø
w_9	w_9	w_9		a_9

In this NFA, the states labeled a_i are accepting states for the symbol i. The states labeled w_i are "waiting states" for the symbol i. Waiting states will transition to themselves on all input that is not i and when i is encountered, they transition to a_i . In the start state, this NFA will transfer to nine waiting states and one accepting state upon reading the first symbol j. These states will be $a_i \cup \{w_0, ..., w_9\} \cap w_j$.

4 Exercise 2.3.4(b)

