

SCHOOL OF ELECTRONIC INFORMATION AND ELECTRICAL ENGINEERING

A new combinational logic minimization technique

Zhaole Li

Workshop of AES, 2022

Section 1 Introduction

Optimal combinational circuits

The meaningful metrics for constructing optimal combinational circuits are gate count, depth, energy consumption, etc.

The number of n-variable Boolean functions is 2^{2^n} , so no known techniques can even find the optimal circuits for 8-variable Boolean functions. Thus we build the implementations using some heuristics.

Optimal combinational circuits

- 1 This work presented a new technique for circuit implementations with two steps:
 - Reducing multiplicative complexity for the non-linear components;
 - **2** Then optimizing the linear components.
- 2 The metric is gate count with AND, XOR and 1;

First Step

Definition

The multiplicative complexity of a function is the number of \mathbb{F}_2 multiplications necessary and sufficient to compute it.

Example

The multiplicative complexity of $f(x_1,x_2,x_3,x_4)=x_1x_2x_3x_4+x_1x_2x_3+x_1x_2x_4+x_2x_3x_4+x_1x_2+x_1x_3+x_1x_4+x_2x_3+x_3x_4$ is no greater than 3 since $f=(x_1+1)(x_2+1)(x_3+1)(x_4+1)+x_1+x_2+x_3+x_4+1$ and is 3 due to $\deg(f)=4$.

Second Step

The second step is composed by finding the maximal linear components of the circuit and minimizing the number of XOR gates needed. A new heuristic for the second step is proposed.

Section 2

Non-linear components of Sbox in AES¹

¹Boyar J, Peralta R. A new combinational logic minimization technique with applications to cryptology[C]//International Symposium on Experimental Algorithms. Springer, Berlin, Heidelberg, 2010: 178-189.

\mathbb{F}_{2^4} inversion

The only non-linear component in AES's Sbox is to compute the inverse in the finite field field \mathbb{F}_{2^8} . Canright built a circuit for inverses in \mathbb{F}_{2^8} by giving a circuit for inverses in \mathbb{F}_{2^4} . Using the same general technique but in different bases $\{W,W^2,Z^2,Z^8\}$ we can represent an element $\Delta=\left(x_0W+x_1W^2\right)Z^2+\left(x_2W+x_3W^2\right)Z^8$ of \mathbb{F}_{2^4} , and the inverse of this element $\Delta'=\left(y_0W+y_1W^2\right)Z^2+\left(y_2W+y_3W^2\right)Z^8$ can be calculated as the following:

 $^{^2}W$ is a root of x^2+x+1 over \mathbb{F}_2 , Z is a root of x^2+x+W over \mathbb{F}_{2^2} .

\mathbb{F}_{2^4} inversion

$$\begin{cases}
-y_0 = x_1 x_2 x_3 + x_0 x_2 + x_1 x_2 + x_2 + x_3 \\
-y_1 = x_0 x_2 x_3 + x_0 x_2 + x_1 x_2 + x_1 x_3 + x_3 \\
-y_2 = x_1 x_0 x_3 + x_0 x_2 + x_0 x_3 + x_0 + x_1 \\
-y_3 = x_1 x_2 x_0 + x_0 x_2 + x_0 x_3 + x_1 x_3 + x_1
\end{cases}$$

Optimal non-linear components

For \mathbb{F}_{2^4} inversion, we take the method:

- 1 pick an equation and build an efficient circuit for it;
- 2 store the intermediate functions used in above for possible usage in the other equations;
- 3 iterate until all equations have been computed.

Remark:

It turns out that 3 multiplications are enough to compute any functions on four variables.

Optimal non-linear components

$$\begin{cases}
-y_1 = (x_0x_2 + x_1)(x_2 + x_3) + x_3 \\
-y_3 = (x_0x_2 + x_3)(x_0 + x_1) + x_1 \\
-y_0 = (x_0x_2 + y_1)x_3 + y_1 + x_2 + x_3 \\
-y_2 = (x_0x_2 + y_3)x_3 + y_3 + x_0 + x_1
\end{cases}$$

This circuit needs $5\ \mathsf{AND}$ gates and $11\ \mathsf{XOR}$ gates.

Section 3

Minimizing linear components³

³Boyar J, Peralta R. A new combinational logic minimization technique with applications to cryptology[C]//International Symposium on Experimental Algorithms. Springer, Berlin, Heidelberg, 2010: 178-189.

An example of linear component

Example

$$\begin{pmatrix}
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{pmatrix}$$

Actually written in the equations $x_1+x_2; x_1+x_2+x_3; x_1+x_2+x_3+x_4; x_2+x_3+x_4.$ It's easy to see that we only need 4 XOR to compute the linear component $v_1=x_1+x_2; v_2=v_1+x_3; v_3=v_2+x_4; v_4=v_3+x_1.$

A new heuristic

Let S be a set of linear functions. For any linear predicate f, we define the distance $\delta(S,f)$ as the minimum number of additions of elements from S necessary to obtain f. For the linear Boolean function, initially S is just the set of all variables $x_1,x_2,...,x_n$, then a new base element is the form of two old base elements, update the $\delta(S,f)$ until $\delta(S,f)=0$.

- ① For the (n,m)-linear Boolean functions, we use the $m \times n$ matrix over \mathbb{F}_2 such as $f(\mathbf{x}) = M\mathbf{x}$. S still be just the set of all variables $x_1, x_2, ..., x_n$;
- 2 Denote Dist[] the distance from S to the linear function given by rows of M, in fact, $Dist[i] = \delta(S, f_i)$ where f_i is the i^{th} linear function given by M;
- $oldsymbol{3}$ Pick a new base element by adding two old base elements and then update Dist[];
- 4 Iterate the last step until Dist[] = (0, 0, ..., 0).

How to pick the new base element

- 1 pick those that minimize the sum of new distances;
- 2 pick one that maximizing the Euclidean norm of the vector of new distances;

This criterion seems strange for maximizing. But we want a distance (0,2,1) rather than (1,1,1).

Example

We bulid the circuit of the following equation system:

$$y_0 = x_0 + x_1 + x_2$$

$$y_1 = x_1 + x_3 + x_4$$

$$y_2 = x_0 + x_2 + x_3 + x_4$$

$$y_3 = x_1 + x_2 + x_3$$

$$y_4 = x_0 + x_1 + x_3$$

$$y_5 = x_1 + x_2 + x_3 + x_4$$

so the matrix
$$M$$
 is
$$\begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 \end{pmatrix}.$$

Example |

- ① In above situation, the initial S is the set $\{[00001], [00010], [00100], [01000], [10000]\};$
- 2 The initial distance is Dist = [2, 2, 3, 2, 2, 3];
- 3 First choose the two coloumn which have the most 1 in the same row;
- 4 ...

Thank You

 $\label{eq:combinational logic} \mbox{ Zhaole Li} \cdot \mbox{ A new combinational logic } \\ \mbox{minimization technique}$