Pure Postgraduate Seminar Inner Model Theory

Dan Saattrup Nielsen

December 9, 2016

- {Ø}
- (

```
\{\emptyset, \{\emptyset\}\}
• \{\{\emptyset\}\}
• \{\emptyset\}
```

:

• • • •

• •

•

•

 $\mathcal{M} \models$ " $f : \alpha \rightarrow \beta$ "

$$\mathcal{M} \models \text{"}f : \alpha \to \beta$$
"
$$\mathcal{N} \models \text{"}j(f) : j(\alpha) \to j(\beta)$$
"

 $\mathcal{M} \models$ "The dress is white and gold"

 $\mathcal{M} \models$ "The dress is white and gold" $\mathcal{N} \models$ "The dress is $\underbrace{j(\text{white})}_{\text{blue}}$ and $\underbrace{j(\text{gold})}_{\text{black}}$ "

 $|\mathcal{M}|$

$$E \in \mathcal{M}$$

Premice

Definition

A (coarse) **premouse** is a structure of the form $\mathcal{M} = \langle L_{\alpha}^{\vec{E}}, \vec{E}, F \rangle$, where \vec{E} is a *fine* extender sequence and every proper initial segment of \mathcal{M} is sound.

Linear iterations

Linear iterations

Linear iterations

 ${\cal M}$ is linearly iterable if all these iterates are premice.

 ${\cal M}$ is **linearly iterable** if all these iterates are premice. Note that the extenders here *don't overlap*.

 \mathcal{M}

At limit steps player II picks a branch b through the tree and take the direct limit along b.

Mice

Definition

An **iteration strategy** for a premouse \mathcal{M} is a winning strategy for player II in the iteration game.

Mice

Definition

An **iteration strategy** for a premouse \mathcal{M} is a winning strategy for player II in the iteration game.

Definition

A mouse is a premouse for which an iteration strategy exists.

Condensation Theorem for L

If $j: \mathcal{H} \to L$ is elementary then $\mathcal{H} \lhd L$.

Condensation Theorem for L

If $j: \mathcal{H} \to L$ is elementary then $\mathcal{H} \lhd L$.

Definition

The **projectum** of a mouse \mathcal{M} , written $\rho(\mathcal{M})$, is the least ordinal $\rho \leq \operatorname{On}^{\mathcal{M}}$ such that there exists a subset $A \subseteq \rho$ definable over \mathcal{M} with parameters and satisfying that $A \notin \mathcal{M}$. The least such parameter is the **standard parameter**, denoted by $p(\mathcal{M})$.

Condensation Theorem for L

If $j: \mathcal{H} \to L$ is elementary then $\mathcal{H} \lhd L$.

Definition

The **projectum** of a mouse \mathcal{M} , written $\rho(\mathcal{M})$, is the least ordinal $\rho \leq \mathsf{On}^{\mathcal{M}}$ such that there exists a subset $A \subseteq \rho$ definable over \mathcal{M} with parameters and satisfying that $A \notin \mathcal{M}$. The least such parameter is the **standard parameter**, denoted by $p(\mathcal{M})$.

Condensation Theorem for mice

If \mathcal{M} is a mouse and $j : \mathcal{H} \to \mathcal{M}$ is elementary with crit $j \geq \rho(\mathcal{H})$ and $\mathcal{M} \models \text{``}\rho(\mathcal{H})$ is a cardinal", then $\mathcal{H} \lhd \mathcal{M}$.

Applications of comparison

Definition

The core of a mouse \mathcal{M} , written $\mathfrak{C}(\mathcal{M})$, is a subset of \mathcal{M} all of whose elements are definable from $\rho(\mathcal{M})$ and $p(\mathcal{M})$.

Applications of comparison

Definition

The **core** of a mouse \mathcal{M} , written $\mathfrak{C}(\mathcal{M})$, is a subset of \mathcal{M} all of whose elements are definable from $\rho(\mathcal{M})$ and $p(\mathcal{M})$.

If $\mathcal{M} \models \mathsf{ZF}^-$ or if \mathcal{M} is sound then $\mathfrak{C}(\mathcal{M}) = \mathcal{M}$.

Applications of comparison

Definition

The core of a mouse \mathcal{M} , written $\mathfrak{C}(\mathcal{M})$, is a subset of \mathcal{M} all of whose elements are definable from $\rho(\mathcal{M})$ and $\rho(\mathcal{M})$.

If $\mathcal{M} \models \mathsf{ZF}^-$ or if \mathcal{M} is sound then $\mathfrak{C}(\mathcal{M}) = \mathcal{M}$.

Theorem

 $\mathfrak{C}(\mathcal{M})$ is sound whenever \mathcal{M} is a mouse.

$$\mathfrak{C}(\mathcal{N}_1)$$

. . .

That $\mathcal{N}_{\mathsf{On}}$ is a proper class is non-trivial.

That \mathcal{N}_{On} is a proper class is non-trivial.

We need every proper initial segment of \mathcal{N}_{On} to be sound.

That $\mathcal{N}_{\mathsf{On}}$ is a proper class is non-trivial.

We need every proper initial segment of \mathcal{N}_{On} to be sound.

By the previous theorem we need to show that every $\mathfrak{C}(\mathcal{N}_{\alpha})$ is iterable.

• To show iterability of $\mathfrak{C}(\mathcal{N}_{\alpha})$ we need to show existence and uniqueness of branches in our iteration trees.

- To show iterability of $\mathfrak{C}(\mathcal{N}_{\alpha})$ we need to show existence and uniqueness of branches in our iteration trees.
- Existence was proven by Jensen in 2003, working in ZFC.

- To show iterability of $\mathfrak{C}(\mathcal{N}_{\alpha})$ we need to show existence and uniqueness of branches in our iteration trees.
- Existence was proven by Jensen in 2003, working in ZFC.
- Uniqueness was proven by Steel and Mitchell in 1994, below a Woodin cardinal.

- To show iterability of $\mathfrak{C}(\mathcal{N}_{\alpha})$ we need to show existence and uniqueness of branches in our iteration trees.
- Existence was proven by Jensen in 2003, working in ZFC.
- Uniqueness was proven by Steel and Mitchell in 1994, below a Woodin cardinal.

Theorem (Steel-Mitchell-Jensen, 2003)

Assume there is no proper class model with a Woodin cardinal. Then $\mathfrak{C}(\mathcal{N}_{\alpha})$ is iterable.

• Our new mice can be used to construct the **core model** *K*, which is the *L*-like model we hinted at in the beginning.

- Our new mice can be used to construct the **core model** *K*, which is the *L*-like model we hinted at in the beginning.
- This is built gradually, approximating K by certain **pseudo-**K's reminiscent of K^c -constructions.

- Our new mice can be used to construct the **core model** *K*, which is the *L*-like model we hinted at in the beginning.
- This is built gradually, approximating K by certain **pseudo-**K's reminiscent of K^c -constructions.
- \bullet K is then constructed by "stitching together" these pseudo-K's.

- Our new mice can be used to construct the **core model** *K*, which is the *L*-like model we hinted at in the beginning.
- This is built gradually, approximating K by certain **pseudo-**K's reminiscent of K^c -constructions.
- \bullet *K* is then constructed by "stitching together" these pseudo-*K*'s.
- This *K* was built by Jensen and Steel in 2013.

The Main Theorem

Theorem (Jensen-Steel, 2013)

Assume that there is no proper class inner model with a Woodin cardinal. Then there are Σ_2 formulae $\psi_K(v)$ and $\psi_{\Sigma}(v)$ such that

- (i) $K = \{v \mid \psi_K[v]\}$ is a transitive proper class mouse satisfying ZFC;
- (ii) $\{v \mid \psi_{\Sigma}[v]\}$ is the unique iteration strategy for K acting on set-sized iteration trees;
- (iii) (Generic absoluteness) $\psi_K^V = \psi_K^{V[g]}$ and $\psi_{\Sigma}^V = \psi_{\Sigma}^{V[g]} \cap V$ for any V-generic g over a set-sized poset;
- (iv) (Inductive definition) $K|\omega_1^V$ is Σ_1 -definable over $J_{\omega_1}(\mathbb{R})$;
- (v) (Weak covering) For any $\lambda \geq \omega_2^V$ which is a successor K-cardinal, $\operatorname{cof}^V \lambda \geq |\lambda|^V$. Thus $\kappa^{+K} = \kappa^+$ whenever κ is a singular V-cardinal.

We're on the right track

Thank you!

