Corrigé feuille d'exercices 10

30 novembre 2019

Les exercices avec une \star sont des exercices plus difficiles.

Sur cette matière, vous serez aussi évalués sur la qualité de votre rédaction. Pratiquez-vous dès maintenant à bien rédiqer!

Exercice 1.

- 1. Soit $\mathcal{B}_1 = \{\vec{v_1}, \vec{v_2}, \vec{v_3}, \vec{v_4}\}$ un sous-ensemble de vecteurs de \mathbb{R}^3 . Est-ce une base de \mathbb{R}^3 ?
- 2. Soit $\mathcal{B}_2 = \{\vec{v_1}, \vec{v_2}\}$ une famille libre de \mathbb{R}^3 . Est-ce une base?
- 3. Soit $\mathcal{B}_3 = \{\vec{v_1}, \vec{v_2}, \vec{v_3}, \vec{v_4}\}$, un famille génératrice de \mathbb{R}^4 . Est-ce nécessairement une base de \mathbb{R}^4 ?

Solution.

- 1. On a vu que \mathbb{R}^3 est de dimension 3, donc un sous-ensemble de 4 vecteurs ne peut pas être une base.
- 2. On a vu que \mathbb{R}^3 est de dimension 3, toutes ces bases contiennent dont 3 vecteurs, donc ce n'est pas une base.
- 3. Oui car \mathbb{R}^4 est de dimension 4, donc toute famille génératrice de 4 vecteurs est aussi une famille libre et donc une base.

Exercice 2. Parmi les transformations suivantes, lesquelles sont des transformations linéaires? (Justifier)

- 1. $T_1: \mathbb{R}^2 \to \mathbb{R}^4$ tel que $(x, y) \mapsto (x + 2y, 3x y, 5x y, x y)$
- 2. $T_2: \mathbb{R}^3 \to \mathbb{R}^2$ tel que $(x, y, z) \mapsto (0, x + y + z)$
- 3. $T_3: \mathbb{R}^3 \to \mathbb{R}^2$ tel que $(x, y, z) \mapsto (1, x + y + z)$
- 4. $T_4: \mathbb{R}^2 \to \mathbb{R}^3$ tel que $(x,y) \mapsto (x-2y+z, x+z^2)$
- 5. $T_5: \mathcal{M}_2 \to \mathcal{M}_2$ tel que $T_5(A) = A + A^T$ (On rappelle que \mathcal{M}_2 est l'ensemble des matrices carrées de taille 2.)

Solution. (On donne uniquement la réponse mais vous devez rédiger la justification.)

- 1. Oui
- 2. Oui
- 3. Non
- 4. Non

5. Oui

Exercice 3. Dans l'exercice précédent, pour les transformations qui sont linéaires, déterminer leur noyau.

Solution.

1. On résout le système

$$\begin{cases} x + 2y &= 0 \\ 3x - 5y &= 0 \\ 5x - y &= 0 \\ x - y &= 0 \end{cases}$$

On obtient que $ker(T_1) = \{(0,0)\}.$

- 2. $\ker(T_2) = \{(x, y, z) \in \mathbb{R}^3 \text{ tels que } x + y + z = 0\}.$
- 5. On cherche l'ensemble des matrices A telles que $A + A^T = 0$, c'est-à-dire $A^T = -A$, donc $\ker(T_5)$ est l'ensemble des matrices antisymétriques de tailles 2.

Exercice 4. Soit $T:U\to V$ une transformation linéaire d'un espace vectoriel U vers un espace vectoriel V. On note T(U) le sous-ensemble de V des images des éléments de U par T:

$$T(U) = \{T(u); u \in U\}$$

Montrer que T(U) est un sous-espace vectoriel de V.

Solution. Soit $\vec{u} \in U$, alors le vecteur nul est dans U puisque c'est un espace vectoriel et il peut s'écrire $\overrightarrow{0} = \vec{u} - \vec{u}$. Alors $T(\overrightarrow{0}) = T(\vec{u} - \vec{u})$ et comme T est une transformation linéaire $T(\vec{u} - \vec{u}) = T(\vec{u}) - T(\vec{u}) = \overrightarrow{0}$. Donc $\overrightarrow{0} \in T(U)$.

Soit $T(\vec{u_1})$ et $T(\vec{u_2})$ deux vecteurs de T(U). Alors $T(\vec{u_1}) + T(\vec{u_2}) = T(\vec{u_1} + \vec{u_2})$ puisque T est linéaire. De plus, $\vec{u_1} + \vec{u_2} \in U$ car U est un espace vectoriel. Donc $T(\vec{u_1} + \vec{u_2}) \in T(U)$.

Enfin, soit $\alpha \in \mathbb{R}$, et $T(\vec{u}) \in T(U)$, alors $\alpha T(\vec{u}) = T(\alpha \vec{u})$ car T est linéaire. De plus, comme U est un espace vectoriel, $\alpha \vec{u} \in U$, donc $T(\alpha \vec{u}) \in T(U)$.

Ainsi T(U) est bien un sous-espace vectoriel de V.

Exercice 5. On considère plusieurs bases de \mathbb{R}^3 .

$$\mathcal{B}_1 = \{\vec{u_1}, \vec{u_2}, \vec{u_3}\}, \text{ où } \vec{u_1} = (-1, 1, -1), \ \vec{u_2} = (0, 2, -1) \text{ et } \vec{u_3} = (-1, 0, -2); \\ \mathcal{B}_2 = \{\vec{v_1}, \vec{v_2}, \vec{v_3}\}, \text{ où } \vec{v_1} = (2, -1, 1), \ \vec{v_2} = (1, -1, 0) \text{ et } \vec{v_3} = (1, 1, 1); \\ \text{et la base standard } \mathcal{B} = \{\vec{e_1}, \vec{e_2}, \vec{e_3}\}, \text{ où } \vec{e_1} = (1, 0, 0), \ \vec{e_2} = (0, 1, 0) \text{ et } \vec{e_3} = (0, 0, 1). \\ \text{Vous pouvez prendre pour acquis qu'il s'agit bien de trois bases de } \mathbb{R}^3.$$

1. Déterminer la matrice de passage $P_{\mathbb{B}\leftarrow\mathbb{B}_1}$ de la base \mathbb{B}_1 à la base \mathbb{B} .

- 2. Déterminer la matrice de passage $P_{\mathcal{B}_2 \leftarrow \mathcal{B}}$ de la base \mathcal{B} à la base \mathcal{B}_2 .
- 3. Déterminer la matrice de passage $P_{\mathcal{B}_2 \leftarrow \mathcal{B}_1}$ de la base \mathcal{B}_1 à la base \mathcal{B}_2 .
- 4. Soit le vecteur $\vec{u} = (3, -1, 4)$ dont les coordonnées sont données dans la base \mathcal{B} . Déterminer les matrices de coordonnées $[\vec{u}]_{\mathcal{B}_1}$ et $[\vec{u}]_{\mathcal{B}_2}$ de \vec{u} dans la \mathcal{B}_1 et \mathcal{B}_2 respectivement.

Solution.

1.
$$P_{\mathbb{B}\leftarrow\mathbb{B}_1} = \begin{pmatrix} -1 & 0 & -1 \\ 1 & 2 & 0 \\ -1 & -1 & -2 \end{pmatrix}$$

2.
$$P_{\mathcal{B}_2 \leftarrow \mathcal{B}} = \begin{pmatrix} -1 & -1 & 2 \\ 2 & 1 & -3 \\ 1 & 1 & -1 \end{pmatrix}$$

3.
$$P_{\mathcal{B}_2 \leftarrow \mathcal{B}_1} = \begin{pmatrix} -2 & -4 & -3 \\ 2 & 5 & 4 \\ 1 & 3 & 1 \end{pmatrix}$$

4.
$$[\vec{u}]_{\mathcal{B}_1} = \left(-\frac{5}{3}, \frac{1}{3}, -\frac{4}{3}\right)$$
 et $[\vec{u}]_{\mathcal{B}_2} = (6, -7, -2)$