Point Cloud Augmentation with Weighted Local Transformation

Sihyeon Kim^{1*}, Sanghyeok Lee^{1*}, Dasol Hwang¹, Jaewon Lee¹, Seong Jae Hwang², Hyunwoo J. Kim^{1†} Korea University¹, University of Pittsburgh²

Motivation

Only limited data exist for 3D Deep Learning

Data Augmentation is **ESSENTIAL!**

- Previous works are limited to *Global* augmentations.
- For example, Conventional Data Augmentation (CDA) generates the augmented \mathcal{P}' with a global scaling factor s, a rotation matrix \mathbf{R} , and a translation matrix ${f B}$ including translation and point-wise noise.

PointWOLF explicitly considers the local transformation, which is crucial for point cloud data.

Original Sample Augmented Sample

Given an anchor point $\mathbf{p}_{j}^{\mathcal{A}}(\mathbf{+})$, the **local transformation** for an input point \mathbf{p}_{i} can be written as: $\mathbf{p}_i^j = \mathbf{S}_j \mathbf{R}_j \Big(\mathbf{p}_i - \mathbf{p}_j^{\mathcal{A}} \Big) + \mathbf{b}_j + \mathbf{p}_j^{\mathcal{A}}$

where \mathbf{R}_j , \mathbf{S}_j and \mathbf{b}_j are rotation matrix, scaling matrix and translation vector specifically correspond to $\mathbf{p}_{j}^{\mathcal{A}}$.

By employing kernel regression to smoothly interpolate the local transformations, **smooth** deformations $\hat{T}(\cdot)$ generates diverse and realistic augmented samples.

$$\hat{T}(\mathbf{p}_i) = \frac{\sum_{j=1}^{M} K_h(\mathbf{p}_i, \mathbf{p}_j^{\mathcal{A}}) T}{\sum_{k=1}^{M} K_h(\mathbf{p}_i, \mathbf{p}_k^{\mathcal{A}})}$$

 $K_h(\cdot,\cdot)$ is a kernel function and T_j is the local transformation centered at $\mathbf{p}_j^{\mathcal{A}}$.

Below are examples with ModelNet40

CDA PointWOLF

68.8 (1.8\(\dagger))

45.1 (22.2†)

AugTune: Effective DA Tuning Method

 $c = c_{\mathcal{P}'}$

 $C_{\mathcal{P}} = C_{\mathcal{P}'}$

 $c_{\mathcal{P}*} \approx c$

- An effective scheme to adaptively adjust the strength of DA with a single hyperparameter λ .
- Defines a target confidence score C for the final augmented \mathcal{P}^* as below:

$$c = \max(c_{\mathcal{P}'}, (1 - \lambda)c_{\mathcal{P}})$$

• To generate \mathcal{P}^* with the target confidence c , AugTune uses linear interpolation between the original ${\mathcal P}$ and the augmented ${\mathcal P}'$ with α^* , which is the solution to

$$\alpha^* = \underset{\alpha}{\operatorname{argmin}} \| c - f(\alpha \mathcal{P} + (1 - \alpha) \mathcal{P}') \|^2$$

• Due to computational expense, we approximate α^* by $\tilde{\alpha}$ as below:

$$\alpha c_{\mathcal{P}} + (1 - \alpha)c_{\mathcal{P}'} = c$$

Experiments

PointWOLF

Shape Classification

		Table	1. Overall accuracy	on ModelNet40.			
Dataset	Model	CDA	CDA (w/o R)	PointAugment [4]	PointMixup [5]	PointWOLF	
	PointNet	89.2	89.7	90.8	89.9	91.1	
MN40	PointNet++	91.3	92.5	92.4	92.7	93.2	
	DGCNN	91.7	92.7	92.9	93.1	93.2	
ReducedMN40	PointNet	81.9	82.7	84.1	83.4	85.7	
	PointNet++	85.9	87.8	87.0	88.6	88.7	
	DGCNN	87.5	88.8	88.3	89.0	89.3	
		Table 2.	Overall accuracy o	n ScanObjectNN.			
Dataset	Model	0	DA Point	Augment [4] F	PointMixup [5]	PointWOLF	
OBJ_ONLY	PointNet	7	6.1	74.4	-	78.7	
	PointNet++	. 8	86.6	85.4	88.5	89.7	
	DGCNN	8	35.7	83.1	-	88.8	
PB_T50_RS	PointNet	6	54.0	57.0	-	67.1	
	PointNet++	. 7	9.4	77.9	80.6	84.1	
	DGCNN	7	7.3	76.8	-	81.6	

Part Segmentation

Table 3. Overall mean IoU (mIoU) on ShapeNetPart

Method	air plane	bag	cap	car	chair	ear phone	guitar	knife	lamp	labtop	motor bike	mug	pistol	rocket	skate board	table	mIoU
PointNet														55.1			l
+PointWOLF	82.5	73.3	78.8	73.2	89.6	72.2	91.2	86.2	79.7	95.2	64.6	92.5	80.2	56.6	73.1	82.2	83.8
PointNet++	81.9	83.4	86.4	78.6	90.5	64.7	91.4	83.1	83.4	95.1	69.6	94.7	82.8	56.9	76.0	82.3	84.8
+PointWOLF	82.0	83.9	87.3	77.6	90.6	78.4	91.1	87.6	84.7	95.2	62.0	94.5	81.3	62.5	75.7	83.2	85.2
DGCNN	82.2	75.1	81.3	78.2	90.6	73.6	90.8	87.8	84.4	95.6	57.8	92.8	80.6	51.5	73.9	82.8	84.8
+PointWOLF	82.9	73.3	83.5	76.7	90.8	76.7	91.4	89.2	85.2	95.8	53.7	94.0	80.1	54.9	74.3	83.4	85.2

Robustness to Global and Local Corruption

(c) Dropout

Corrupted

(d) Noise

LocalDrop C=566.5 (3.3\(\dagger)) 52.8 60.0 (7.2\(\dagger)\) 77.2 (3.3\(\dagger)) LocalAdd 69.4 (5.9\(\dagger)) 51.5 64.6 (13.1\(\dagger)\) 92.2 (1.0\(\dagger)\) r=0.2590.4 (6.4\(\dagger)\) Dropout 29.5 60.8 (31.3\(\dagger)\) 93.0 (1.5\(\dagger)\) Noise 87.6 (8.8\(\dagger)) σ =0.03

22.9

Table 7. Robustness to Corruption.

Corruption

 $\mathcal{C}=3$

Conclusion

- 3D Data Augmentation produces smoothly varying non-rigid deformations by locally weighted transformations.
- Diverse and realistic augmented samples bring consistent improvements over existing augmentations.
- Validates the importance of understanding the local structure and improves the robustness against corruptions.
- Suggests an efficient scheme to adaptively adjust the strength of augmentation during training with a single hyperparameter.

Codes are available at https://github.com/mlvlab/PointWOLF