UNITN, CORSO DI LAUREA IN MATEMATICA, A.A. 2019/2020

Geometria A - 26 maggio 2020 - Prova Intermedia

Esercizio 1. Si consideri lo spazio vettoriale \mathbb{R}^3 e sia $\mathcal{E} = \{e_1, e_2, e_3\}$ la base canonica. Si definisca la forma bilineare simmetrica $b_k : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$, al variare del parametro reale k in modo che:

- $b_k(e_1, e_1) = 2;$
- $b_k(e_2, e_2) = b_k(e_3, e_3) = k + k^2$;
- $e_1 \in \langle e_1, e_2 \rangle^{\perp}$;
- $b_k(e_1 + 2e_2 e_3, e_1 + 2e_2 e_3) = 2 + k + 9k^2$.
- (i) Si scriva la matrice A_k associata alla forma bilineare b_k rispetto la base \mathcal{E} e si dica per quali valori di $k \in \mathbb{R}$, la forma bilineare b_k risulta degenere. Si stabilisca, inoltre, la segnatura di A_k al variare di $k \in \mathbb{R}$.
- (ii) Si trovino al variare di $k \in \mathbb{R}$, se esistono, una matrice $M \in GL_3(\mathbb{R})$ ortogonale ed una matrice diagonale $D \in M_3(\mathbb{R})$ per cui ${}^tMA_kM = D$.
- (iii) Sia k = 2. Dopo aver verificato che in questo caso b_2 rappresenta un prodotto scalare, trovare una base ortonormale di \mathbb{R}^3 rispetto a tale prodotto scalare.

Esercizio 2. Sia $\mathbb{P}^2(\mathbb{C})$ il piano proiettivo complesso di coordinate $[x_0, x_1, x_2]$ e sia $\mathbb{A}^2(\mathbb{C})$ il piano affine complesso di cordinate (x, y). Si considerino inoltre le rette proiettive $U_0 = \{[x_0, x_1, x_2] \in \mathbb{P}^2 : x_0 = 0\}$ e $U_1 = \{[x_0, x_1, x_2] \in \mathbb{P}^2 : x_1 = 0\}$ e le relative funzioni di proiettivizzazione

proiettivizzazione
$$j_0: \mathbb{A}^2 \to \mathbb{P}^2 \setminus U_0$$
 $j_1: \mathbb{A}^2 \to \mathbb{P}^2 \setminus U_1$ $(x,y) \mapsto [1,x,y]$ $(x,y) \mapsto [x,1,y].$

Si definisca su \mathbb{A}^2 la curva $\mathcal{C}_{a,b}$ definita dal polinomio

$$f_{a,b}(x,y) = x^4 + y^4 + 2x^2y^2 + ax^2 + by^2 = 0$$

al variare di $a, b \in \mathbb{C}$.

- (i) Si trovino i punti singolari di $C_{a,b}$. Si verifichi inoltre che se a=0, se b=0, oppure se a=b la curva risulta riducibile, trovando le sue componenti irriducibili.
- (ii) Si classifichino i punti singolari, calcolando la molteplicità di $C_{a,b}$ in suddetti punti e si trovino le tangenti principali. Infine si calcoli la molteplicità di intersezione tra le tangenti principali e la curva $C_{a,b}$ nel punto di tangenza.

Si fissino i valori a = 2 e b = -2.

(iii) Si verifichi che i punti impropri della curva $\overline{\mathcal{C}} = j_0\left(\mathcal{C}_{2,-2}\right)$ sono singolari. Si trovino le tangenti principali nei punti impropri, studiando la curva $\mathcal{D} = j_1^{-1}\left(\overline{\mathcal{C}}\right)$ e si ricavino le equazioni degli asintoti per $\mathcal{C}_{2,-2}$.