Introduction to convolutional neural network for computer vision

Lijing Wang, DSSG tutorial session, 07/23/2021

Icebreaker discussion 🧾

Name one exciting \(\subseteq \) computer vision application you have used/heard of

What is computer vision?

From wikipedia:

- how computers can gain high-level understanding from digital images or videos
- understand and automate tasks that the human visual system can do

AI helps return Rembrandt's The Night Watch (1642) to original size

Seeing AI by Microsoft

Seeing AI: Talking carema for the blind and low vision community

Other exciting applications

- Self-driving car
- Al-assisted elderly care solution
- Crop yield and crop type mapping in remote area
- Face recognition
- Retailing: Amazon Go
- Image search
- •

Basic computer vision tasks

- Image classification
- Object detection
- Image captioning
- Semantic segmentation

A Core Task in Computer Vision

Object detection car

<u>This image</u> is licensed under <u>CC BY-NC-SA 2.0</u>; changes made

Action recognition bicycling

This image is licensed under CC BY-SA 3.0

Scene graph prediction <person - holding - hammer>

Captioning: a person holding a hammer

This image is licensed under CC BY-SA 3.0;

Credit: http://cs231n.stanford.edu/slides/2021/lecture_1.pdf

Image classification: CIFAR-10

Today's learning goals

- 1. Understand how the convolutional neural networks (CNN) work
- 2. Implement CNN using Tensorflow and Keras
- 3. Train your CNN on CIFAR-10
- 4. Visualize the performance of your trained CNN
- 5. [Optional] Transfer learning

Recap: deep learning basics by Armin

Perceptron:

- Loss function: binary cross-entropy
- Gradient descent: learning rate, batch size

Artificial neural networks (ANN): a sequence of multiple perceptrons

- Activation functions: sigmoid, tanh, relu ...
- Backpropagation: enable the gradient descent in ANN

Artificial Neural Network

Credit: Armin's dssg-dl-tutorial notebooks

Why do we need CNN in computer vision?

Using the ANN, without convolutional neural networks:

How many parameters do we need?

32x32x3 image -> stretch to 3072 x 1

10 x 3072 ~ 30k

Input: 32 x 32 x 3

Each neuron looks at the full input volume

Why do we need CNN in computer vision?

Using ANN (fully connected neural network):

- Many parameters to be trained
- Ignore the spatial structures of digital images or videos

Input: 32 x 32 x 3

Using convolutional neural networks:

- Few parameters than ANN
- Preserve the spatial structure and take advantage of local spatial coherence

Convolution layer

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

 $5 \times 5 \times 3 = 75$

rc

Apply the convolution kernels/filters

activation map

Comparison between ANN and CNN

Input: 32 x 32 x 3

Multiple convolution filters

Another green filter

Multiple convolution filters

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Recall: Image classification, CIFAR-10

ConvNets: a sequence of convolutional layer

- Stack 1) convolutional layer, 2) activation function, 3) pooling layer
- Without using the pooling layer

Pooling layer: downsampling

Stride: the amount of movement for that filter

One simple ConvNets architecture: LeNet

Yann LeCun et al. 1989

Softmax activation function:

• the last activation for the classification task: Exponential + Normalize

Credit: https://towardsdatascience.com/softmax-activation-function-explained-a7e1bc3ad60

ConvNetJS CIFAR-10 demo

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

ConvNetJS CIFAR-10 demo

Description

This demo trains a Convolutional Neural Network on the <u>CIFAR-10 dataset</u> in your browser, with nothing but Javascript. The state of the art on this dataset is about 90% accuracy and human performance is at about 94% (not perfect as the dataset can be a bit ambiguous). I used <u>this python script</u> to parse the <u>original files</u> (python version) into batches of images that can be easily loaded into page DOM with img tags.

This dataset is more difficult and it takes longer to train a network. Data augmentation includes random flipping and random image shifts by up to 2px horizontally and verically.

By default, in this demo we're using Adadelta which is one of per-parameter adaptive step size methods, so we don't have to worry about changing learning rates or momentum over time. However, I still included the text fields for changing these if you'd like to play around with SGD+Momentum trainer.

Report questions/bugs/suggestions to @karpathy.

Start with our first CNN!

Colab notebook:

https://colab.research.google.com/drive/1ZtAebRezPJ00LGavIpgCK7L7Vo5FjHVJ?usp=sharing

- How do the convolution kernels/filters work?
- How does the pooling layer work?
- The classification task on CIFAR-10!

Transfer learning

 In practice, very few people train an entire ConvNets from scratch (with random initialization), because it is relatively rare to have a dataset of sufficient size.

 In our GSV team, we don't have enough labeled google street view images to train our ConvNets.

Transfer learning be like

Feature extractor: training on ImageNet

- More than 14 million images have been hand-annotated
- More than 20,000 categories

Source: https://image-net.org/

Pretrained on ImageNet with a fancy architecture: ResNet-50

Feature extractor

Credit: https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d

Transfer Learning with CNNs

1. Train on Imagenet

FC-1000 FC-4096 FC-4096 MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128 MaxPool Conv-64 Conv-64

Image

2. Small Dataset (C classes)

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

3. Bigger dataset Finetuning

Do your own transfer learning: stand on the shoulder of the giants

Colab notebook, transfer learning part:

https://colab.research.google.com/drive/1ZtAebRezPJ00LGavIpgCK7L7Vo5FjHVJ?usp=sharing

Discussion on transfer learning

	very similar dataset	very different dataset
very little data	Use Linear Classifier on top layer	You're in trouble Try linear classifier from different stages
quite a lot of data	Finetune a few layers	Finetune a larger number of layers

Takeaways for your current/future computer vision project

- 1. Train a model on a large dataset (ImageNet) that similar to your task (CIFAR-10)
- 2. Transfer learning to your task (CIFAR-10)

Reference:

- Stanford CS231N, Convolutional Neural Networks for Visual Recognition: http://cs231n.stanford.edu/
 - Course video 2017: https://www.youtube.com/watch?v=vT1JzLTH4G4
- Stanford Vision and Learning lab: http://svl.stanford.edu/
- Data for Sustainable Development: https://ermongroup.github.io/cs325b/