МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ УНИВЕРСИТЕТ ИТМО

П. В. Кустарев, Р. И. Попов, С. В. Быковский, В. Ю.Пинкевич

Цифровая схемотехника

Методические указания к лабораторным работам

Санкт-Петербург

П. В. Кустарев, Р. И. Попов, С. В. Быковский, В. Ю.Пинкевич . Цифровая схемотехника. Методические указания к лабораторным работам. — СПб.: Университет ИТМО, 2016.-16 с.

Содержание

Ла	абораторная работа №1. «Введение в проектирование цифровых ин-				
те	ральных схем»				
1.1	Цели работы				
1.2	Порядок выполнения работы				
1.3	Задания по вариантам				
Тр	ебования к оформлению отчетов				
_	ебования к оформлению отчетов				
-	ример работы в среде LTSPICE				
Пţ	оимер работы в среде LTSPICE	•			
П г	Оимер работы в среде LTSPICE	•			
Π _f 3.1	оимер работы в среде LTSPICE	• •			

Введение

Лабораторные работы данного курса посвящены изучению полупроводниковых приборов и простейших цифровых схем на их основе - базовых операционных элементов, которые являются элементной базой для проектирования более сложных устройств (микропроцессоров, периферийных контроллеров и др.).

Лабораторные работы охватывают следующий список тем:

- 1. Лабораторная работа №1 «Введение в проектирование цифровых интегральных схем»;
- 2. Лабораторная работа №2 «Комбинационные схемы»;
- 3. Лабораторная работа №3 «Триггеры и схемы последовательностного типа»;
- 4. Лабораторная работа №4 «Проектирование схем полупроводниковой памяти».

Для исследования работы электрических схем инженер-проектировщик может создать прототип устройства на макетной плате или воспользоваться ручными расчётами на бумаге. Однако, при разработке интегральной миксрососхемы создание прототипа может быть крайне дорогостоящим и длительным процессом. Сложность таких схем зачастую не позволяет провести требуемые расчеты вручную. Поэтому, при разработке большинства микросхем, а также сложных печатных плат, повсеместно применяется компьютерное моделирование. Наиболее известной системой аналогового моделирования является программа SPICE и её многочисленные наследники.

Лабораторные работы будут выполняться в среде моделирования LTSPICE, которая относится к классу SPICE-подобных симуляторов электронных схем общего назначения.

Лабораторная работа №1. «Введение в проектирование цифровых интегральных схем»

1.1 Цели работы

- Получить базовые знания о принципах построения цифровых интегральных схем с использованием технологии КМОП
- Познакомиться с основными параметрами цифровых вентилей

1.2 Порядок выполнения работы

- 1. Постройте схему вентиля согласно варианту задания
- 2. Проведите моделирование работы схемы и определите задержку распространения сигнала через схему
- 3. Подключите на выход вентиля еще один аналогичный вентиль и измерьте значение задержки распространения сигнала
- 4. Подключите на выход вентиля параллельно 4 аналогичных вентиля и также измерьте значение задержки
- 5. Сделайте вывод о влиянии нагрузки на временные характеристики работы вентиля и объясните причину их изменения
- 6. Постройте схему, реализующую логическую функцию в заданном логическом базисе, согласно варианту задания
- 7. Измерьте максимальную и минимальную задержку распространения сигнала от входа к выходу.

8. Определите максимальную частоту изменения входных сигналов, при которой построенная схема сохраняет работоспособность

1.3 Задания по вариантам

Таблица 1.1: Варинаты заданий

№ Варианта	Вентиль	Логическая схема и логический базис
1	OR	$Y = X1 \lor X2 \lor X3$ Логический базис: И-НЕ
2	NOR	$Y = !(X1 \lor X2) \lor X3$ Логический базис: И-НЕ
3	AND	$Y=X1\wedge X2\wedge X3$ Логический базис: ИЛИ-НЕ
4	XOR	$Y=(X1\lor X2)\oplus X3$ Логический базис: ИЛИ-НЕ
5	OR	$Y = !(X1 \land X2) \lor X3$ Логический базис: И-НЕ
6	NOR	$Y = X1 \land !(X2 \lor X3)$ Логический базис: И-НЕ
7	AND	$Y = X1 \land !X2 \land !X3$ Логический базис: ИЛИ-НЕ
8	XOR	$Y=X1\oplus X2\oplus X3$ Логический базис: И-НЕ
9	AND	$Y = !X1 \wedge !X2 \wedge X3$ Логический базис: ИЛИ-НЕ
10	XOR	$Y = !X1 \land (X2 \oplus X3)$ Логический базис: И-НЕ

2 Требования к оформлению отчетов

Отчет должен содержать:

- Титульный лист, на котором указываются:
 - название университета
 - кафедра
 - дисциплина
 - номер лабораторной работы
 - тема и вариант лабораторной работы
 - Фамилии И.О. и группа исполнителей
 - Фамилия И.О. преподавателя
- Содержание
- Цель и задачи работы
- Отчет о выполнении заданий работы. Отчет по каждому заданию содержит:
 - Изучаемую схему.
 - Результаты моделирования (временная диаграмма).
 - Комментарии результатов (минимум 2 предложения).
- Общий вывод по работе (какие знания и навыки получены).

Требования к оформлению:

- Шрифт: Times New Roman 12 pt, межстройный интервал одинарный, поля с краев листа 2 см.
- Сквозная нумерация страниц

• Обязательны подписи к рисункам и таблицам, а также ссылки на них в тексте отчета

Отчет выполняется в виде самодостаточного документа. Материал, изложенный в отчете, должен пониматься без дополнительных комментариев со стороны исполнителей.

3 Пример работы в среде LTSPICE

Рассмотрим основные принципы работы в среде LTSPICE и познакомимся с КМОП-схемотехникой на примере простейшего цифрового вентиля – инвертора.

3.1 О программе LTSPICE

Загрузить программу LTSPICE можно с сайла Linear Technology по адресу: http://www.linear.com/designtools/software/. Доступны версии под Windows и Mac OS, под Linux LTSPICE можно запустить в Wine.

LTSPICE имеет встроенную справку с описанием основных приемов работы. Также, в интернете можно найти множество уроков и статей по использованию LTSPICE. Рекомендуется ознакомиться со следующими видеоуроками: http://cmosedu.com/videos/ltspice/ltspice_videos.htm.

Модели транзисторов поддерживаемые LTSPICE (BSIM4) имеют множество настраиваемых параметров, которые позволяют получить характеристики транзистора, характерные для конкретного техпроцесса, например 40 nm TSMC, 32 nm Intel и др. Как правило, производители полупроводников извлекают значения этих параметров путем измерения характеристик реальных транзисторов, изготовленных в рамках разработки и настройки технологического процесса на фабрике. Затем полученные параметры передаются разработчикам цифровых схем, чтобы те могли промоделировать свои проекты в SPICE-симуляторе. BSIM4-параметры для некоторых фабрик доступны на сайте MOSIS: https://www.mosis.com/requests/test-data.

В рамках данного курса будут использоваться модели транзисторов для техпроцесса 90 нм, полученные путем моделирования. Цифра в названии технологии, как правило, означает минимальную длину канала транзистора. Т.к. увеличение длины канала транзистора в цифровых схемах не дает никакого положительного эффекта, все транзисторы в рамках этого курса будут иметь длину канала равную 90 нм. Минимальная допустимая ширина канала обычно в два раза больше минимальной допустимой длины, т.е. для техпроцесса 90 нм минимальная ширина канала равна

180 нм. Увеличение ширины канала увеличивает его проводимость и емкости между затвором и каналом.

3.2 Подготовка к работе

Загрузите файл с параметрами транзисторов: 90nm_bulk.txt (предоставляется преподавателем) и сохраните его в своем рабочем каталоге. В этом же каталоге следует сохранять и все схемы, выполняемые в рамках курса.

Запустите программу LTSPICE. Окно программы представлено на рис. 3.1.

Рисунок 3.1: Окно программы LTSPICE

В меню Tools \rightarrow Color Preferences (рис. 3.1) можно настроить цвета, в которых изображаются рабочее поле и схема.

3.3 Создание схемы и симуляция

Создайте новую схему (File \rightarrow New Schematic, рис. 3.2) и добавьте к ней SPICE-директиву, подключающую параметры для транзисторов (Edit \rightarrow SPICE Directive). Разместите директиву на схеме (рис. 3.3).

Рисунок 3.2: Окно настроек нового проекта схемы

Постройте схему тестирования инвертора, как показано на рис. 3.4. Для этого добавьте на схему транзисторы pmos4 и nmos4, компоненты voltage, res, cap (Edit

.include 90nm_bulk.txt

Рисунок 3.3: Директива, вставленная в схему

 \rightarrow Component), землю (Edit \rightarrow Place GND), а затем соедините проводами (Edit \rightarrow Draw Wire). Отредактируйте параметры компонентов в соответствии со схемой на рис. 3.4. Для редактирования параметров необходимо щелкнуть на компоненте правой кнопкой мыши. Чтобы вывести параметры транзистора рядом с компонентом, необходимо отредактировать текстовое поле PMOS (NMOS), щелкнув на нем правой кнопкой мыши.

Для источника питания VDD1 задайте постоянное значение напряжения 1 В. Для тестового источника напряжения V1 задайте параметры, как показано на рис. 3.5 (в окне параметров нажать кнопку Advanced). Он будет генерировать прямоугольные импульсы.

Заметьте, что ширина канала PMOS-транзистора в два раза больше, чем ширина канала NMOS-транзистора. Это связано с тем, что мобильность дырок примерно в 2 раза ниже мобильности электронов, следовательно, чтобы обеспечить одинаковую проводимость каналов, ширину PMOS-канала нужно сделать примерно в два раза больше.

Рисунок 3.4: Схема тестирования инвертора

Добавьте на схему настройки анализа переходного процесса (Edit ightarrow SPICE Analysis) с параметрами, как показано на рис. 3.6.

Запустите симуляцию (Simulate \to Run). С помощью «щупа» добавьте на график входное и выходное напряжения на инверторе (рис. 3.7).

Рисунок 3.5: Окно настроек источника напряжения

Рисунок 3.6: Окно настроек процедуры анализа переходного процесса

3.4 Создание иерархических элементов

Для разработки более сложных схем полезно будет иметь готовый инвертор в «библиотеке» и вставлять его в схемы как иерархический элемент.

Для создания библиотечного элемента требуется создать схему (File \rightarrow New Schematic) и символ (File \rightarrow New Symbol) с одинаковыми именами, например, inverter. В схеме необходимо создать именованные порты ввода и вывода (с помощью Edit \rightarrow Label Net), а в символе - порты с такими же названиями (Edit \rightarrow Add Pin/Port).

В качестве параметра инвертора удобно указать множитель для ширины каналов транзисторов, это позволит создавать инверторы разного размера. Для создания

Рисунок 3.7: Результаты моделирования переходного процесса в инверторе

параметра поместите на схему директиву SPICE (Edit \rightarrow SPICE Directive), как показано на рис. 3.8. В дальнейшем можно использовать имя этого параметра при задании параметров элементов схемы – в нашем случае транзисторов.

Рисунок 3.8: Схема инвертора

Иерархическое представление инвертора в виде символа изображено на рис. 3.9. Теперь инвертор можно вставлять в новые схемы как библиотечный элемент. После помещения на схему можно редактировать его параметры по щелчку правой кнопкой мыши в строке PARAMS, например, ввести «T_SIZE=2». Схема тестирования инвертора с использованием разработанного иерархического представления (символа) показана на рис. 3.10.

Рисунок 3.9: Символ инвертора

Рисунок 3.10: Схема тестирования инвертора с использованием разработанного символа

3.5 Ограничения области применимости SPICEсимуляторов

Несмотря на то что SPICE во многих случаях может заменить прототипирование, часто результаты моделирования могут оказаться недостаточно точными или даже совсем не совпадать с работой реальной схемы. Реальные электронные компоненты являются сложными устройствами, работа которых зависит от множества параметров. Результаты моделирования точны на столько, на сколько точны модели компонентов.

Модели схем в SPICE свободны от шума, перекрёстных помех, паразитных емкостей и др. в том случае, если они явно не внесены в модель проектировщиком. Например, сигнал в несколько пикоампер может корректно управлять схемой в SPICE-модели, но в физическом мире будет полностью забит шумом и паразитными цепями.

SPICE-моделирование не подходит для исследования излучающих и принимающих схем (антенн). Для задач такого рода используются системы, построенные на численном решении уравнений Максвелла.

SPICE не является лучшим средством для предсказания поломки компонентов. Моделирование не выдаст никакого сигнала предупреждения в случае, если будет превышено максимально допустимое значение тока или напряжения для какого-то из компонентов. Например, проектировщик может не заметить тока в несколько ампер на одной из цепей при моделировании схемы, но после изготовления такая схема при включении сгорит.

Список литературы

- 1. Жан М. Рабаи, Ананта Чандракасан, Боривож Николич. Цифровые интегральные схемы. Методология проектирования— 2-е изд.. М.:«Вильямс», 2007.
- 2. David Harris, Sarah Harris. Digital Design and Computer Architecture, 2d edition.
- 3. N. H.E. Weste, D.M. Harris. CMOS VLSI design: A circuits and systems perspective.
- 4. Угрюмов Е.П. Цифровая схемотехника. Уч. пособие для ВУЗов. 2-ое изд. СПб.: БХВ Петербург, 2007, 800 с.
- 5. Хоровиц П., Хилл У., Искусство схемотехники./ Пер. с англ. 6-е изд. М.: Мир, 2003. 704 с.
- 6. Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic Digital Integrated Circuits Prentice Hall; Prentice Hall 2 edition (January 3, 2003)
- 7. Baker, R. Jacob. CMOS: Circuit Design, Layout, and Simulation, Third Edition. Wiley-IEEE, 2010. http://CMOSedu.com
- 8. Weste, Neil H. E. and Harris, David M. CMOS VLSI Design: A Circuits and Systems Perspective, Fourth Edition. Boston: Pearson/Addison-Wesley, 2010.
- 9. Точчи, Рональд, Дж., Уидмер, Нил, С. Цифровые системы. Теория и практика. 8-е изд.. М.: «Вильямс», 2004.