Clutches and Brakes

Dr. Allen Anilkumar Dept. of Mechanical Engineering

Introduction: clutches

- What are clutches?
 - A mechanical device which permits the connection and disconnection of shafts
- Types: Positive contact, Friction, Magnetic, Fluid coupling, Over-running
- Why are clutches and brakes discussed together?

Classification of 'friction' clutches

- Based on configuration
- Types
 - Disk or axial
 - Cone
 - Rim type with external contracting shoes
 - Rim type with internal expanding shoes
 - Band type

Design goals

- Friction torque to be transmitted
- Amount of actuating force required to transmit this torque
- Geometrical constraints
- Thermal considerations
- Life of product

Materials

- High and reproducible coefft of friction
- Resistance to wear
- Impervious to environmental conditions such as moisture
- Should withstand high temperatures
- High thermal conductivity and diffusivity, and specific heat capacity

Materials

Table 16–5Friction Materials for Clutches

	Friction Coefficient		Max. Temperature		Max. Pressure	
Material	Wet	Dry	°F	°C	psi	kPa
Cast iron on cast iron	0.05	0.15-0.20	600	320	150-250	1000-1750
Powdered metal* on cast iron	0.05-0.1	0.1-0.4	1000	540	150	1000
Powdered metal* on hard steel	0.05–0.1	0.1–0.3	1000	540	300	2100
Wood on steel or cast iron	0.16	0.2-0.35	300	150	60-90	400-620
Leather on steel or cast iron	0.12	0.3-0.5	200	100	10-40	70-280
Cork on steel or cast iron	0.15-0.25	0.3-0.5	200	100	8-14	50-100
Felt on steel or cast iron	0.18	0.22	280	140	5-10	35–70
Woven asbestos* on steel or cast iron	0.1–0.2	0.3–0.6	350–500	175–260	50–100	350–700
Molded asbestos* on steel or cast iron	0.08-0.12	0.2–0.5	500	260	50–150	350–1000
Impregnated asbestos* on steel or cast iron	0.12	0.32	500–750	260–400	150	1000
Carbon graphite on steel	0.05–0.1	0.25	700-1000	370–540	300	2100

^{*}The friction coefficient can be maintained with ± 5 percent for specific materials in this group.

Disk or axial type (friction) clutch

Springs

Uniform pressure and uniform wear

Multi-plate clutch

video

Cone clutch

References

- https://engineeringlearn.com/types-of-clutch/
- https://www.actonservicecentre.co.uk/blog/w hat-is-clutch-its-types-application-working/
- Marshek, Kurt M., and Robert C.
 Juvinall. *Machine component design*. John
 Wiley and Sons, 2012.
- Budynas, Richard G., and J. Keith Nisbett. Shigley's Mechanical Engineering Design. McGraw Hill, 2021.