Mini Homework 5

1. The recursion formula:
$$M_{i,w} = \begin{cases} 0 \text{ if } i = 0 \text{ or } w = 0 \\ M_{i-1,w} \text{ if } nw_i > w \text{ for } 1 \leq n \leq n_i \\ \max_{0 \leq n \leq n_i} nv_i + M_{i-1,w-nw_i} \text{ otherwise} \end{cases}$$

i∖w	0	1	2	3	4	5	6	7	8
1	0	0	0	6	6	6	12	12	12
2	0	0	0	6	6	6	12	12	12
3	0	1	2	6	7	8	12	13	14
4	0	1	4	6	8	10	12	14	16

- 2. Backtracking from $M_{i,w}$ until w = 0:
 - $\bullet \ \ \text{If} \ M_{i,w} = M_{i-1,w} \ , \ \text{then goes to} \ M_{i-1,w} \ .$
 - Else for $n = 1, 2, ..., n_i$:
 - If $M_{i,w} = nv_i + M_{i-1,w-nw_i}$, then take n items, goes to $M_{i-1,w-nw_i}$ and break.

The graphical representation of backtracking is as follows (each number denotes the step):

i∖w	0	1	2	3	4	5	6	7	8	Remark
1	4						3			Take 2 items
2							2			
3							1			
4									0	Take 1 item