HW1: visualization

1. Creation of three different disk images

The three disk images are as follows.

Disk Image	Result	Commands for Creation		
		sudo qemu-system-x86_64		
QEMU-qcow2		-hda ubuntu.img		
	img	-boot d		
	ubuntu.img	-cdrom ./ubuntu-20.04.6-live-server-amd64.iso		
		-m 2046		
		-boot strict=on		
		sudo qemu-system-x86_64		
		-drive format=raw, file=ubuntu_raw.raw		
OFMIL ross		-boot d		
QEMU-raw	ubuntu_	-cdrom ./ubuntu-20.04.6-live-server-amd64.iso		
	raw.raw	-m 2046		
		-boot strict=on		
	<pre>peter@ubuntu:~/Desktop\$ sudo docker tmages [sudo] password for peter:</pre>	sudo docker pull ubuntu:20.04		
Container	REPOSITORY TAG IMAGE ID CREATED SIZE ubuntu-server 20.04 42dbb47e4c5e 17 hours ago 261ME			

- 2. Present main steps to enable a QEMU VM. In addition, please present the detailed QEMU commands, and VM configurations: 10 points
 - Steps to enable a QEMU VM
 - Step1: install QEMU on a platform like Linux or window
 - Step2: download 20.04 ubuntu server operating system.
 - Step3: build a VM with the command mentioned below.
 - Step4: start the VM with the command mentioned below.
 - Commands required

QEMU-qcow2	 sudo qemu-system-x86_64 -hda ubuntu.img -boot d -cdrom ./ubuntu-20.04.6-live-server-amd64.iso -m 2046 sudo qemu-system-x86_64 -hda ubuntu.img
QEMU-raw	 sudo qemu-system-x86_64 -drive format=raw, file=ubuntu_raw.raw -boot d -cdrom ./ubuntu-20.04.6-live- server-amd64.iso -m 2046 -boot strict=on sudo qemu-system-x86_64 -driv format=raw,file=ubuntu_raw.raw

- 3. Present main steps to create the Docker container. This must show your steps in creating your own image and your image history! Do not copy any classmate's image. In addition, please describe the operations you use to manage Docker containers (and some other operations which you think are also important): 10 points
 - Steps to create a container

Step1: install docker on a platform like Linux or window

Step2: pull a ubuntu server image for docker hub.

Step3: run the image

Step4: install the tools such as sysbench, SSH, sshpass.

Step5: exit the image, and then save the container as a new image named

ubnutu-server:20.04

Step6: start the new image.

Commands required

	1. Pull an image from hub
	sudo docker image pull ubuntu:20.04
	2. Run the image
	sudo run -it ubuntu:20.04 /bin/bash
	3. Install the tools on the image
	spt-get install sysbench
Docker image	spt-get install ssh
	spt-get install sshpass
	4. Exit the image
	5. Show all active containers
	sudo docker ps -a
	6. Create a new image with the active container created by the
	original image
	sudo docker commit container_id new_name_image

- 4. Proof of experiment. Include screen snapshots of your Docker and QEMU running environments for each experiment: 10 points
 - QEMU
 - 1. Start QEMU

2. Log in

3. System info

```
Machine View

Ubuntu 20.04.6 LTS peter tty1

peter login: peter
Passund:
Helcome to Ubuntu 20.04.6 LTS (GNU/Linux 5.4.0-170-generic x86_64)

* Documentation: https://help.ubuntu.com
* Management: https://belp.ubuntu.com
* Management: https://buntu.com/davantage

System information as of Tue 06 Feb 2024 04:45:49 AM UTC

System load: 0.75
Usage of /: 58.0% of 8.0268
Memory usage: 4%
Susup usage: 0%
Processes: 100
Inv4 address for ens3: 10.0.2.15
Inv8 address for ens3: 10.0.2.15
Inv8 address for ens3: feo:iS054:ff:fel2:3456

* Strictly confined Kubernetes makes edge and IoT secure. Learn how MicroKBs
just raised the bar for easy, resilient and secure KBs cluster deployment.
https://ubuntu.com/agage/secure-kubernetes-at-the-edge

* Introducing Expanded Security Maintenance for Applications.
Receive updates to over 25,000 software packages with your
Ubuntur Pro subscription. Free for personal use.
https://ubuntu.com/pro

Expanded Security Maintenance for Applications is not enabled.
o updates can be applied immediately.
Enable ESM Apps to receive additional future security updates.
See https://ubuntu.com/esm or run: sudo pro status

Last login: Mon Feb 5 10:13:49 UTC 2024 on tty1
peter@peter:"$ peter@peter:"$ peter@peter:"$ _
```

Container

1. Start container

2. System info

```
root@c9d32eSef076:/# lscpu

peter@ubuntu:/media/peter/32G$ sudo docker run -it --privileged ubuntu-server:20.04 /bin/bash
root@c9d32eSef076:/# lscpu
Architecture:

x86_64

CPU op-node(s):
32-bit, 64-bit
Byte Order:
Little Endian
Address sizes:
45 bits physical, 48 bits virtual
(PU(s):
4
0n-line CPU(s) list:
0-3
11
Core(s) per socket:
1
Core(s) per socket:
1
Core(s) per socket:
1
CPU Annily:
6
Model:
126
Model:
126
Model intel(R) Core(TM) i5-1035G1 CPU @ 1.00GHz
Stepping:
CPU MHz:
1190.098
BogoMIPS:
Whypervisor vendor:
VMware
Virtualization type:
Lid cache:
128 KiB
12 cache:
120 Ans
NuMa node0 CPU(s):
0-3
Vulnerability Address
Vulnerability Idin Nullithit:
Not affected
Vulnerability Melidown:
Wilnerability Melidown:
W
```

5. Present your measurements in given different scenarios for each virtualization technology: 20 points

• For QEMU (qcow2)

There are 24 test cases, and perform each test case 5 times. The experiment results are as follows.

8 test cases for CPU

Command	Cpus	Memory	Prime
sudo qemu-system-x86_64 /	2	2G	10000
-smp 2 -m 2G -hda ubuntu.img	2	2G	20000

Command	Cpus	Memory	Prime	1
---------	------	--------	-------	---

sudo qemu-system-x86_64 /	2	4G	10000
-smp 2 -m 4G -hda ubuntu.img	2	4G	20000

Command	Cpus	Memory	Prime
sudo qemu-system-x86_64 /	4	2G	10000
-smp 4 -m 2G -hda ubuntu.img	4	2G	20000

Command	Cpus	Memory	Prime
sudo qemu-system-x86_64 /	4	4G	10000
-smp 4 -m 4G -hda ubuntu.img	4	4G	20000

8 test cases for MEMORY

Command	Cpus	Memory	Block Size
sudo qemu-system-x86_64 /	2	2G	1K
-smp 2 -m 2G -hda ubuntu.img	2	2G	2K

Command	Cpus	Memory	Block Size
sudo qemu-system-x86_64 /	2	4G	1K
-smp 2 -m 4G -hda ubuntu.img	2	4G	2K

Command	Cpus	Memory	Block Size
sudo qemu-system-x86_64 /	4	2G	1K
-smp 4 -m 2G -hda ubuntu.img	4	2G	2K

Command	Cpus	Memory	Block Size
sudo qemu-system-x86_64 /	4	4G	1K
-smp 4 -m 4G -hda ubuntu.img	4	4G	2K

8 test cases for FILEIO

Command	Cpus	Memory	mode
sudo qemu-system-x86_64 /	2	2G	seqrewr
-smp 2 -m 2G -hda ubuntu.img	2	2G	rndwr

Command	Cpus	Memory	mode
	2	4G	seqrewr

sudo qemu-system-x86_64 /	2	4G	rndwr
-smp 2 -m 4G -hda ubuntu.img			

Command	Cpus	Memory	mode
sudo qemu-system-x86_64 /	4	2G	seqrewr
-smp 4 -m 2G -hda ubuntu.img	4	2G	rndwr

Command	Cpus	Memory	mode
sudo qemu-system-x86_64 /	4	4G	seqrewr
-smp 4 -m 4G -hda ubuntu.img	4	4G	rndwr

• For QEMU (RAW)

There are 24 test cases, and perform each test case 5 times. The experiment results are as follows.

8 test cases for CPU

Command	Cpus	Memory	Prime
sudo qemu-system-x86_64 /	2	2G	10000
-smp 2 -m 2G /	2	2G	20000
-drive format=raw,file=ubuntu_raw.raw			

Command	Cpus	Memory	Prime
sudo qemu-system-x86_64 /	2	4G	10000
-smp 2 -m 4G / -drive format=raw,file=ubuntu_raw.raw	2	4G	20000

Command	Cpus	Memory	Prime
sudo qemu-system-x86_64 /	4	2G	10000
-smp 4 -m 2G /	4	2G	20000
-drive format=raw,file=ubuntu_raw.raw			

Command	Cpus	Memory	Prime
sudo qemu-system-x86_64 /	4	4G	10000
-smp 4 -m 4G /	4	4G	20000
-drive format=raw,file=ubuntu raw.raw			

8 test cases for MEMORY

Command	Cpus	Memory	Block Size
sudo qemu-system-x86_64 /	2	2G	1K
-smp 2 -m 2G /	2	2G	2K

•

Command	Cpus	Memory	Block Size
sudo qemu-system-x86_64 /	2	4G	1K
-smp 2 -m 4G /	2	4G	2K
-drive format=raw,file=ubuntu_raw.raw			

•

Command	Cpus	Memory	Block Size
sudo qemu-system-x86_64 /	4	2G	1K
-smp 4 -m 2G /	4	2G	2K
-drive format=raw,file=ubuntu_raw.raw			

•

Command	Cpus	Memory	Block Size
sudo qemu-system-x86_64 /	4	4G	1K
-smp 4 -m 4G /	4	4G	2K
-drive format=raw,file=ubuntu_raw.raw			

8 test cases for FILEIO

2G	seqrewr
2G	rndwr

•

Command	Cpus	Memory	mode
sudo qemu-system-x86_64 /	2	4G	seqrewr
-smp 2 -m 4G /	2	4G	rndwr
-drive format=raw,file=ubuntu_raw.raw			

•

Command	Cpus	Memory	mode
sudo qemu-system-x86_64 /	4	2G	seqrewr
-smp 4 -m 2G / -drive format=raw,file=ubuntu raw.raw	4	2G	rndwr

•

Cpus	Memory	mode
4	4G	seqrewr
4	4G	rndwr
_	4 4	4 4G

Container

There are 24 test cases, and perform each test case 5 times. The experiment results are as follows.

8 test cases for CPU

Command	Cpus	Memory	Prime
sudo docker run -itprivileged /	2	2G	10000
cpus=2memory=2G / ubuntu-server:20.04 /bin/bash	2	2G	20000

Command	Cpus	Memory	Prime
sudo docker run -itprivileged /	2	4G	10000
cpus=2memory=4G / ubuntu-server:20.04 /bin/bash	2	4G	20000

Command	Cpus	Memory	Prime
sudo docker run -itprivileged /	4	2G	10000
cpus=4memory=2G /	4	2G	20000
ubuntu-server:20.04 /bin/bash			

Command	Cpus	Memory	Prime
sudo docker run -itprivileged /	4	4G	10000
cpus=4memory=4G /	4	4G	20000
ubuntu-server:20.04 /bin/bash			

8 test cases for MEMORY

Command	Cpus	Memory	Block Size
sudo docker run -itprivileged /	2	2G	1K
cpus=2memory=2G /	2	2G	2K
ubuntu-server:20.04 /bin/bash			

Command	Cpus	Memory	Block Size
sudo docker run -itprivileged /	2	4G	1K
cpus=2memory=4G /	2	4G	2K
ubuntu-server:20.04 /bin/bash			

Command		Memory	Block Size
sudo docker run -itprivileged /		2G	1K
cpus=4memory=2G /	4	2G	2K
ubuntu-server:20.04 /bin/bash			

Command		Memory	Block Size
sudo docker run -itprivileged /		4G	1K
cpus=4memory=4G /	4	4G	2K
ubuntu-server:20.04 /bin/bash			

8 test cases for FILEIO

Command		Memory	mode
sudo docker run -itprivileged /	2	2G	seqrewr
cpus=2memory=2G / ubuntu-server:20.04 /bin/bash	2	2G	rndwr

Command		Memory	mode
sudo docker run -itprivileged /	2	4G	seqrewr
cpus=2memory=4G /	2	4G	rndwr
ubuntu-server:20.04 /bin/bash			

Command		Memory	mode
sudo docker run -itprivileged /		2G	seqrewr
cpus=4memory=2G /	4	2G	rndwr
ubuntu-server:20.04 /bin/bash			

Command		Memory	mode
sudo docker run -itprivileged /	4	4G	seqrewr
cpus=4memory=4G /	4	4G	rndwr
ubuntu-server:20.04 /bin/bash			

6. Shell scripts for running the experiment: 10 points

The shell script is used for performing the experiment automatically.

```
#!/bin/bash

#/** */
touch "results.txt"

#/** Init */
K=(1 2 3 4 5)
CPU=("10000" "20000")
MEMORY=("1k" "2k")
FILEIO=("seqrewr" "rndwr")
```

```
#/** Execute commands */
echo "############## CPU ############ | tee -a results.txt
for k in "\{K[@]\}"; do
   #/** compute five times */
   echo "****** $k ***** | tee -a results.txt
   #/** CPU */
   for cpu in "${CPU[@]}"; do
       echo "@@@ $cpu " | tee -a results.txt
       sysbench --test=cpu --cpu-max-prime=$cpu /
       --time=30 run | tee -a results.txt
       echo "" | tee -a results.txt
   done
done
echo "############# MEMO ###########"| tee -a results.txt
for k in "${K[@]}"; do
   #/** MEMO */
   echo "****** $k ******* | tee -a results.txt
   for memo in "${MEMORY[@]}"; do
       echo "@@@ $memo " | tee -a results.txt
       sysbench --test=memory --memory-block-size=$memo /
       --time=30 run | tee -a results.txt
       echo "" | tee -a results.txt
   done
done
echo "############## FILEIO #########" | tee -a results.txt
for k in "${K[@]}"; do
   #/** FILEIO */
   echo "****** $k ******* | tee -a results.txt
   for fileio in "${FILEIO[@]}"; do
       echo "@@@ $fileio " | tee -a results.txt
       /** prepare data */
       sysbench --test=fileio prepare
       sysbench --test=fileio --file-test-mode=$fileio /
       --time=30 run | tee -a results.txt /
       sysbench --test=fileio cleanup
       echo "" | tee -a results.txt
       #/** clean cache */
       echo 3 > /proc/sys/vm/drop_caches | tee -a results.txt
   done
done
echo "############## UPLOAD ########### | tee -a results.txt
```

sshpass -p 'ZTj2024!!\$\$' scp ./results.txt root@50.116.10.36:/home/
echo "success!" | tee -a results.txt

echo "########### DELETE ##########" rm results.txt

Table1 shell script

7. Presentation and analysis of the performance data: 20 points

1. Qemu(qcow2)

Cpus = 2, Memory = 2G

CPUs	MEMORY	Prime	min	avg	max
2	2G	10000	2.272	3.71	91.78
2	2G	20000	6.36	9.23	94.9

CPUs	MEMORY	Block size	min	avg	max
2	2G	1k	0	0	23.248
2	2G	2k	0	0	25.504

CPUs	MEMORY	FiloIO	min	avg	max
2	2G	Seq	0.05	0.422	76.522
2	2G	Rnd	0.026	0.978	99.396

Cpus = 2, Memory = 4G

CPUs	MEMORY	Prime	min	avg	max
2	4G	10000	2.84	3.99	29.19
2	4G	20000	5.81	7.89	34.33

CPUs	MEMORY	Block size	min	avg	max
2	4G	1k	0	0	18.026
2	4G	2k	0	0	16.054

CPUs	MEMORY	FiloIO	min	avg	max
2	4G	seq	0.03	0.4	95.374
2	4G	rnd	0.024	0.928	89.854

Cpus =4, Memory = 2G

CPUs	MEMORY	Prime	min	avg	max
4	2G	10000	2.17	2.816	39.946
4	2G	20000	5.766	7.136	26.282

CPUs	MEMORY	Block size	min	avg	max
4	2G	1k	0	0	14.93
4	2G	2k	0	0	12.69

CPUs	MEMORY	FiloIO	min	avg	max
4	2G	seq	0.042	0.442	56.828
4	2G	rnd	0.024	0.824	49.362

Cpus = 4, Memory = 4G

CPUs	MEMORY	Prime	min	avg	max
4	4G	10000	2.142	2.86	18.466
4	4G	20000	5.676	6.936	23.794

CPUs	MEMORY	Block size	min	avg	max
4	4G	1k	0	0	15.214
4	4G	2k	0	0	17.706

CPUs	MEMORY	FiloIO	min	avg	max
4	4G	seq	0.02	0.36	45.284
4	4G	rnd	0.024	0.874	42.664

2 Qemu(RAW)

Cpus = 2, Memory = 2G

CPUs	MEMORY	Prime	min	avg	max
2	2G	10000	2.158	3.284	48.716
2	2G	20000	5.754	7.626	46.552

CPUs	MEMORY	Block size	min	avg	max
2	2G	1k	0	0	5.73
2	2G	2k	0	0	7.964

CPUs	MEMORY	FiloIO	min	avg	max
2	2G	seq	0.042	0.312	19.566
2	2G	rnd	0.022	0.706	33.312

Cpus = 2, Memory = 4G

CPUs	MEMORY	Prime	min	avg	max
2	4G	10000	2.154	3.362	31.05
2	4G	20000	5.888	8.69	44.33

CPUs	MEMORY	Block size	min	avg	max
2	4G	1k	0	0	17.762
2	4G	2k	0	0	18.008

CPUs	MEMORY	FiloIO	min	avg	max
2	4G	seq	0.024	0.394	75.674
2	4G	rnd	0.024	1.006	85.932

Cpus = 4, Memory = 2G

CPUs	MEMORY	Prime	min	avg	max
4	2G	10000	2.288	3.79	53.662
4	2G	20000	5.982	8.732	56.116

CPUs	MEMORY	Block size	min	avg	max
4	2G	1k	0	0	57.716
4	2G	2k	0	0	59.154

CPUs	MEMORY	FiloIO	min	avg	max
4	2G	seq	0.062	1.082	124.124
4	2G	rnd	0.032	1.93	168.43

Cpus = 4, Memory = 4G

CPUs	MEMORY	Prime	min	avg	max
4	4G	10000	2.168	3.238	55.16
4	4G	20000	5.932	7.932	43.622

CPUs	MEMORY	Block size	min	avg	max

4	4G	1k	0	0	27.928
4	4G	2k	0	0	28.022

CPUs	MEMORY	FiloIO	min	avg	max
4	4G	seq	0.028	0.45	106.908
4	4G	rnd	0.026	0.966	98.672

3 **Docker**

Cpus = 2, Memory = 2G

CPUs	MEMORY	Prime	min	avg	max
2	2G	10000	0.32	0.452	34.586
2	2G	20000	0.84	1.118	27.442

CPUs	MEMORY	Block size	min	avg	max
2	2G	1k	0	0	16.112
2	2G	2k	0	0	22.74

CPUs	MEMORY	FiloIO	min	avg	max
2	2G	seq	0	0.076	11068.354
2	2G	rnd	0	0.124	4616.096

Cpus = 2, Memory = 4G

CPUs	MEMORY	Prime	min	avg	max
2	4G	10000	0.406	0.49	34.546
2	4G	20000	1.078	1.25	36.058

CPUs	MEMORY	Block size	min	avg	max
2	4G	1k	0	0	27.21
2	4G	2k	0	0	10.142

CPUs	MEMORY	FiloIO	min	avg	max
2	4G	seq	0	0.072	5893.68
2	4G	rnd	0	0.13	4825.658

Cpus = 4, Memory = 2G

CPUs	MEMORY	Prime	min	avg	max
4	2G	10000	0.446	0.61	36.644

4 2G	20000	1.156	1.546	41.526
------	-------	-------	-------	--------

CPUs	MEMORY	Block size	min	avg	max
4	2G	1k	0	0	17.632
4	2G	2k	0	0	10.078

CPUs	MEMORY	FiloIO	min	avg	max
2	2G	seq	0	0.052	4129
2	2G	rnd	0	0.13	857.616

Cpus = 4, Memory = 4G

CPUs	MEMORY	Prime	min	avg	max
4	4G	10000	0.32	0.424	2.786
4	4G	20000	0.848	1.126	179.568

CPUs	MEMORY	Block size	min	avg	max
4	4G	1k	0	0	1.992
4	4G	2k	0	0	1.48

CPUs	MEMORY	FiloIO	min	avg	max
4	4G	seq	0	0.022	138.08
4	4G	rnd	0	0.164	5088.78

As depicted above, the comparison among the three ways is as follow.

CPUs	MEMORY	Performance (average latency)
2	2G	Docker < Qemu(raw) < Qemu(qcow2)
2	4G	Docker < Qemu(raw) < Qemu(qcow2)
4	2G	Docker < Qemu(raw) <= Qemu(qcow2)
4	4G	Docker < Qemu(qcow2) <= Qemu(raw)

Table 2 comparison results

It's important to consider, Docker is much faster in terms of latency than both QEMU(qcow2) and QEMU(raw). For both QEMU(qcow2) and QEMU(raw), in the context of limited resources like CPU and memory, QEMU(raw) potentially outperform in terms of latency. However, if the resources become more powerful, QEMU(qcow2) will have lower latency than QEMU(raw).