```
In [2]: import pandas as pd
   import numpy as np
   import matplotlib as mpl
   import seaborn as sns
   import pydot
   %matplotlib inline
   #this is for Back End of the matplotlib for better visualization
```

```
In [3]: titanic_train = pd.read_csv("titanic_train.csv")
    titanic_test = pd.read_csv("titanic_test.csv")
    gen_df = pd.read_csv("gender_baseline.csv")
```

In [4]: titanic_train.head()

Out[4]:

	passenger_id	pclass	name	sex	age	sibsp	parch	ticket	fare	cabin	embarke
0	1216	3	Smyth, Miss. Julia	female	NaN	0	0	335432	7.7333	NaN	(
1	699	3	Cacic, Mr. Luka	male	38.0	0	0	315089	8.6625	NaN	
2	1267	3	Van Impe, Mrs. Jean Baptiste (Rosalie Paula Go	female	30.0	1	1	345773	24.1500	NaN	
3	449	2	Hocking, Mrs. Elizabeth (Eliza Needs)	female	54.0	1	3	29105	23.0000	NaN	
4	576	2	Veal, Mr. James	male	40.0	0	0	28221	13.0000	NaN	

In [5]: titanic_test

Out[5]:

	passenger_id	pclass	name	sex	age	sibsp	parch	ticket	fare	cabin	E
0	295	1	Thayer, Mr. John Borland Jr	male	17.0	0	2	17421	110.8833	C70	
1	1150	3	Risien, Mr. Samuel Beard	ma l e	NaN	0	0	364498	14.5000	NaN	
2	89	1	Davidson, Mr. Thornton	male	31.0	1	0	F.C. 12750	52.0000	B71	
3	1063	3	Nirva, Mr. Iisakki Antino Aijo	male	41.0	0	0	SOTON/O2 3101272	7.1250	NaN	
4	1020	3	Minkoff, Mr. Lazar	ma l e	21.0	0	0	349211	7.8958	NaN	
***	•••	•••	•••	•••	•••	***	•••	•••	***	•••	
454	1194	3	Sdycoff, Mr. Todor	male	NaN	0	0	349222	7.8958	NaN	
455	403	2	Eitemiller, Mr. George Floyd	ma l e	23.0	0	0	29751	13.0000	NaN	
456	108	1	Fleming, Miss. Margaret	female	NaN	0	0	17421	110.8833	NaN	
457	510	2	Mudd, Mr. Thomas Charles	male	16.0	0	0	S.O./P.P. 3	10.5000	NaN	
458	1265	3	Van Impe, Miss. Catharina	female	10.0	0	2	345773	24.1500	NaN	

459 rows × 14 columns

In [6]: #printing their shapes

print("The shape for train is {}.\n The shape for test is {}.".format(titanic_ train.shape, titanic_test.shape))

The shape for train is (850, 15). The shape for test is (459, 14).

In [7]: titanic_train.shape

Out[7]: (850, 15)

```
In [8]: gen_df
```

Out[8]:

	passenger_id	survived
0	295	0
1	1150	0
2	89	0
3	1063	0
4	1020	0
•••		
454	1194	0
455	403	0
456	108	1
457	510	0
458	1265	1

459 rows × 2 columns

```
In [9]: titanic_train.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 850 entries, 0 to 849
Data columns (total 15 columns):

Column Non-Null Count Dtype 0 passenger_id 850 non-null int64 1 850 non-null int64 pclass 2 name 850 non-null object 3 850 non-null object sex 4 676 non-null float64 age 5 sibsp 850 non-null int64 6 parch 850 non-null int64 7 ticket 850 non-null object 8 fare 849 non-null float64 9 cabin 191 non-null object 10 embarked 849 non-null object 308 non-null object 11 boat 12 body 73 non-null float64 13 home.dest 464 non-null object int64 14 survived 850 non-null

dtypes: float64(3), int64(5), object(7)

memory usage: 99.7+ KB

```
In [10]: titanic_train_copy = titanic_train.copy()
```

In [11]: #del titanic_train['passenger_id']

```
In [12]: | titanic_train.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 850 entries, 0 to 849
         Data columns (total 15 columns):
              Column
                             Non-Null Count
          #
                                             Dtype
          0
              passenger_id
                            850 non-null
                                             int64
          1
              pclass
                             850 non-null
                                             int64
          2
                             850 non-null
                                             object
              name
          3
                             850 non-null
                                             object
              sex
          4
                                             float64
              age
                             676 non-null
          5
                             850 non-null
                                             int64
              sibsp
          6
              parch
                             850 non-null
                                             int64
          7
              ticket
                             850 non-null
                                             object
          8
                                             float64
              fare
                             849 non-null
          9
              cabin
                             191 non-null
                                             object
          10 embarked
                             849 non-null
                                             object
          11 boat
                             308 non-null
                                             object
          12 body
                             73 non-null
                                             float64
          13 home.dest
                             464 non-null
                                             object
          14 survived
                             850 non-null
                                             int64
         dtypes: float64(3), int64(5), object(7)
         memory usage: 99.7+ KB
In [13]:
         df_drop = titanic_train.drop(columns=["name", "fare", "passenger_id", "body",
          "home.dest", "ticket"], axis = 1)
In [14]:
         df drop.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 850 entries, 0 to 849
         Data columns (total 9 columns):
          #
              Column
                         Non-Null Count
                                         Dtype
                         _____
                         850 non-null
                                         int64
          0
              pclass
          1
                         850 non-null
                                         object
              sex
          2
                         676 non-null
                                         float64
              age
          3
              sibsp
                        850 non-null
                                         int64
          4
              parch
                         850 non-null
                                         int64
          5
              cabin
                         191 non-null
                                         object
          6
              embarked 849 non-null
                                         object
          7
                         308 non-null
                                         object
              boat
          8
              survived 850 non-null
                                         int64
         dtypes: float64(1), int64(4), object(4)
         memory usage: 59.9+ KB
         df_drop = df_drop.fillna(-99999)
In [15]:
```

```
In [16]: df_drop.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 850 entries, 0 to 849
         Data columns (total 9 columns):
              Column
                        Non-Null Count Dtype
          0
                        850 non-null
              pclass
                                         int64
          1
                        850 non-null
                                         object
              sex
          2
                        850 non-null
                                         float64
              age
          3
                        850 non-null
                                         int64
              sibsp
          4
                                         int64
              parch
                        850 non-null
          5
              cabin
                        850 non-null
                                         object
          6
              embarked 850 non-null
                                         object
          7
              boat
                        850 non-null
                                         object
          8
              survived 850 non-null
                                         int64
         dtypes: float64(1), int64(4), object(4)
         memory usage: 59.9+ KB
```

The above dataframe tell us the submission format we need to submit in a competition

```
In [17]:
         from sklearn.model_selection import train_test_split
In [18]:
         #setting X for our predictors and y for what we want to predict.
         # X=titanic train.drop(['survived'],axis=1)
In [19]: | # y = titanic train['survived']
In [20]:
         # #splitting with train_test_split imported earlier
         # X train,X test,y train,y test=train test split(X,y,random state=42,test size
          =0.25)
In [21]: | df_drop.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 850 entries, 0 to 849
         Data columns (total 9 columns):
          #
              Column
                        Non-Null Count Dtype
          0
              pclass
                        850 non-null
                                         int64
          1
              sex
                        850 non-null
                                         object
          2
              age
                        850 non-null
                                         float64
          3
                        850 non-null
                                         int64
              sibsp
          4
              parch
                        850 non-null
                                         int64
          5
              cabin
                        850 non-null
                                         object
          6
              embarked 850 non-null
                                         object
          7
              boat
                         850 non-null
                                         object
          8
              survived 850 non-null
                                         int64
         dtypes: float64(1), int64(4), object(4)
         memory usage: 59.9+ KB
```

```
In [22]: from sklearn.preprocessing import LabelEncoder
In [23]: | lb = LabelEncoder()
In [24]:
         df_drop['sex'] =lb.fit_transform(df_drop["sex"])
In [25]: | df_drop['boat'] = df_drop['boat'].replace('D', -99999)
In [26]: | df_drop['boat'] = df_drop['boat'].replace('B', -999999)
In [27]: | df_drop['boat'] = df_drop['boat'].replace('C D', -999999)
In [28]: | df_drop['boat'] = df_drop['boat'].replace('13 15 B', -999999)
In [29]: | df_drop['boat'] = df_drop['boat'].replace('A', -999999)
In [30]: | df_drop['boat'] = df_drop['boat'].replace('C', -999999)
In [31]: | df_drop['boat'] = df_drop['boat'].replace('5 7', -999999)
In [32]: df drop['boat'] = df drop['boat'].replace('13 15', -999999)
In [33]: | df_drop['boat'] = df_drop['boat'].replace('5 9', -999999)
In [34]: | df drop['boat'] = df drop['boat'].replace('15 16', -999999)
In [35]: | df drop["boat"] = lb.fit transform(df drop['boat'].astype(str))
In [36]: | df_drop['boat'].unique()
Out[36]: array([ 6, 0, 12, 3, 1, 16, 15, 9, 14, 8, 17, 7, 11, 4, 5, 10, 13,
                 2])
In [37]: #setting X for our predictors and y for what we want to predict.
         X=df_drop.drop(['survived'],axis=1)
```

```
In [38]: X
```

Out[38]:

	pclass	sex	age	sibsp	parch	cabin	embarked	boat
0	3	0	-99999.0	0	0	-99999	Q	6
1	3	1	38.0	0	0	-99999	S	0
2	3	0	30.0	1	1	-99999	S	0
3	2	0	54.0	1	3	-99999	S	12
4	2	1	40.0	0	0	-99999	S	0
***	•••	•••		***	***	•••		
845	1	1	55.0	0	0	C39	S	0
846	1	1	58.0	0	0	B37	С	0
847	2	0	24.0	1	0	-99999	S	5
848	3	0	3.0	1	1	-99999	S	0
849	2	1	52.0	0	0	-99999	S	0

850 rows × 8 columns

```
In [39]: X.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 850 entries, 0 to 849
Data columns (total 8 columns):
     Column
               Non-Null Count
                                Dtype
 0
     pclass
               850 non-null
                                int64
 1
               850 non-null
                                int32
     sex
 2
     age
               850 non-null
                                float64
 3
               850 non-null
                                int64
     sibsp
 4
                                int64
     parch
               850 non-null
 5
     cabin
               850 non-null
                                object
 6
     embarked
               850 non-null
                                object
 7
               850 non-null
                                int32
     boat
dtypes: float64(1), int32(2), int64(3), object(2)
memory usage: 46.6+ KB
```

```
In [40]: df_drop['embarked'] = lb.fit_transform(df_drop['embarked'].astype(str))
```

```
In [41]: df_drop['cabin'] = lb.fit_transform(df_drop['cabin'].astype(str))
```

```
In [42]: df_drop.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 850 entries, 0 to 849
          Data columns (total 9 columns):
           #
                Column
                          Non-Null Count Dtype
           0
                pclass
                           850 non-null
                                            int64
           1
                                            int32
                sex
                           850 non-null
           2
                          850 non-null
                                            float64
                age
           3
                sibsp
                          850 non-null
                                            int64
           4
                          850 non-null
                                            int64
                parch
           5
                cabin
                           850 non-null
                                            int32
           6
                embarked 850 non-null
                                            int32
           7
                boat
                          850 non-null
                                            int32
           8
                survived 850 non-null
                                            int64
          dtypes: float64(1), int32(4), int64(4)
          memory usage: 46.6 KB
In [43]:
          X= df_drop.drop(columns='survived')
In [44]:
          y = df_drop['survived']
In [45]:
          X_train, X_test, y_train, y_test = train_test_split(X,y, test_size = 0.2, rand
          om state = 42)
In [46]:
          X train
Out[46]:
                                    sibsp
                pclass
                       sex
                                age
                                          parch cabin embarked boat
                                                               3
           332
                    3
                         0
                               18.0
                                        0
                                              0
                                                     0
                                                                    0
           383
                    1
                               58.0
                                                    39
                                                               1
                                                                    0
           281
                         0
                               29.0
                                        0
                                                     0
                                                               3
                                                                    0
                    3
             2
                    3
                               30.0
                                                               3
                                                                    0
                         0
                                                     0
           231
                               47.0
                                              0
                                                    71
                                                               1
                    1
                                        1
                                                                    0
                                 ...
                    ...
                                                              ...
                                                                    ...
            71
                    2
                         1
                               39.0
                                        0
                                                               3
                                                                    0
           106
                    2
                               36.0
                                        0
                                              0
                                                     0
                                                               3
                                                                    0
                         1
           270
                    3
                               35.0
                                              0
                                                               3
                                                                    0
           435
                    3
                               28.0
                                              0
                                                               3
                                                                    0
                         1
                                        0
                                                     0
           102
                    3
                           -99999.0
                                        0
                                              0
                                                     0
                                                               3
                                                                    0
```

680 rows × 8 columns

```
In [47]: #Let's start by using Logistic Regression model since the problem is about cla
         ssification
         from sklearn.linear_model import LogisticRegression
         #instanciating the model
         lr = LogisticRegression(max_iter=100000)
In [48]: | #fitting our model
         lr.fit(X_train, y_train)
Out[48]: LogisticRegression(max_iter=100000)
In [49]: | lr_pred = lr.predict(X_test)
In [50]: | 1r pred
Out[50]: array([0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0,
                1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0,
                0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0,
                0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1,
                0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0,
                1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1,
                0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0,
                0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1], dtype=int64)
In [51]: from sklearn.metrics import accuracy score
In [52]: | acc = accuracy_score(y_test, lr_pred)
In [53]: acc
Out[53]: 0.9176470588235294
In [54]: from sklearn.neighbors import KNeighborsClassifier
In [55]: knn = KNeighborsClassifier()
In [56]: knn.fit(X_train, y_train)
Out[56]: KNeighborsClassifier()
In [57]: | knn pred = knn.predict(X test)
In [58]: | from sklearn.metrics import accuracy_score
In [59]: knn_acc = accuracy_score(y_test, knn_pred)
In [60]:
         knn_acc
Out[60]: 0.9058823529411765
```

```
In [61]: | from sklearn.svm import SVC
In [62]: | svm = SVC(kernel='linear')
In [63]: | svm.fit(X_train, y_train)
Out[63]: SVC(kernel='linear')
In [65]: svm_pred = svm.predict(X_test)
In [66]: | acc_svm = accuracy_score(y_test, svm_pred)
In [67]: acc_svm
Out[67]: 0.9529411764705882
In [68]: | from sklearn.metrics import auc
In [72]: | from sklearn.metrics import precision_recall_curve
In [74]:
         pre_rec_cur = precision_recall_curve(y_test, svm_pred )
In [75]: | pre_rec_cur
Out[75]: (array([0.4
                            , 0.98387097, 1.
                                                     ]),
                           , 0.89705882, 0.
          array([1.
                                                     ]),
          array([0, 1], dtype=int64))
In [ ]:
```