Министерство науки и высшего образования Российской Федерации Национальный научно-исследовательский университет ИТМО Факультет программной инженерии и компьютерной техники

Лабораторная работа №5 по дисциплине «Вычислительная математика».

Вариант №1.

Работу выполнил: Афанасьев Кирилл Александрович, Студент группы Р3206. Преподаватель: Рыбаков Степан Дмитриевич.

Оглавление

Задание	3
Вычислительная реализация	4
Исходный код программы	5
Вывод	5

Задание

Исходные данные:

- 1. Пользователь вводит таблично заданную функцию.
- 2. Пользователь вводит аргумент функции, которую требуется найти

Программная реализация задачи:

- 1. Исходные данные задаются тремя способами:
 - 1. В виде набора данных (таблицы x, y); пользователь вводит значения с клавиатуры;
 - 2. В виде сформированных в файле данных (подготовить не менее трех тестовых вариантов);
 - 3. На основе выбранной функции, из тех, которые предлагает программа, например, $\sin x$. Пользователь выбирает уравнение, исследуемый интервал и количество точек на интервале (не менее двух функций).
- 2. Сформировать и вывести таблицу конечных разностей;
- 3. Вычислить приближенное значение функции для заданного значения аргумента, введенного с клавиатуры, указанными методами (см. табл. 2). Сравнить полученные значения.
- 4. Построить графики заданной функции с отмеченными узлами интерполяции и интерполяционного многочлена Ньютона/Гаусса (разными цветами);

Вычислительная реализация задачи:

- 1. Выбрать из табл. 1 заданную по варианту таблицу y = f(x) (таблица 1.1 таблица 1.5):
- 2. Построить таблицу конечных разностей для заданной таблицы. Таблицу отразить в отчете;
- 3. Вычислить значения функции для аргумента X (см. табл.1), используя первую или вторую интерполяционную формулу Ньютона. Обратить внимание, какой конкретно формулой необходимо воспользоваться;
- 4. Вычислить значения функции для аргумента X_2 (см. табл. 1), используя первую или вторую интерполяционную формулу Гаусса. Обратить внимание, какой конкретно формулой необходимо воспользоваться;
- 5. Подробные вычисления привести в отчете.

Вычислительная реализация

Таблица конечных разностей:

1.2557	0.920700	0.024699	-0.04369	1.075600	-4.12770	10.1917
2.1764	0.945399	-0.01900	1.031900	-3.05210	6.064	
3.1218	0.926399	1.012900	-2.02020	3.011899		
4.0482	1.939300	-1.00729	0.991699			
5.9875	0.932000	-0.01560				
6.9195	0.916399					
7.8359						

Для X1 = 0.251 считаем первой формулой (интерполирование вперед), так как это левая половина:

$$N_n(x) = y_0 + t\Delta y_0 + \frac{t(t-1)}{2!}\Delta^2 y_0 + \dots + \frac{t(t-1)\dots(t-n+1)}{n!}\Delta^n y_0$$

 $t = (x-x0)/h = 0.02$
N $n(x) = 1.2557 + 0.02 * 0.92007 + \dots = 1.22$

Для X2 = 0.402 считаем первой интерполяционной формулой, так как x > a:

$$\begin{split} P_n(x) &= y_0 + t\Delta y_0 + \frac{t(t-1)}{2!}\Delta^2 y_{-1} + \frac{(t+1)t(t-1)}{3!}\Delta^3 y_{-1} \\ &+ \frac{(t+1)t(t-1)(t-2)}{4!}\Delta^4 y_{-2} \\ &+ \frac{(t+2)(t+1)t(t-1)(t-2)}{5!}\Delta^5 y_{-2} \dots \\ &+ \frac{(t+n-1)\dots(t-n+1)}{(2n-1)!}\Delta^{2n-1} y_{-(n-1)} \\ &+ \frac{(t+n-1)\dots(t-n)}{(2n)!}\Delta^{2n} y_{-n} \end{split}$$

$$t = 0.02$$

P $n(x) = 1.2557 + 0.02 * 0.92007 + ... = 4.096$

Исходный код программы

GitHub: https://github.com/Zerumi-ITMO-Related/cmath5 020524_1

Вывод

Во время выполнения данной лабораторной работы я ознакомился с приемами интерполяции функции, многочленами Лагранжа, Ньютона и Гаусса. Мною было написано консольное приложение, вычисляющее значения интерполяционных полиномов.