$$Mem.\ y''+py'+qy=f(x),\quad p,q\in\mathbb{R}$$
 Для начала $y''+py'+qy=0$ - ЛОДУ $_2$ $C_2'(x)=C_1e^{(\lambda_1-\lambda_2)x}$

Рассмотрим три случай для $\lambda_{1,2}$

1) $\lambda_{1,2} \in \mathbb{R}$, $\lambda_1 \neq \lambda_2$ - случай различных вещественных корней

1)
$$\lambda_{1.2} \in \mathbb{R}$$
, $\lambda_1 \neq \lambda_2$ - случай различных вещественных корней $C_2(x) = \int C_1 e^{(\lambda_1 - \lambda_2)x} dx = \frac{C_1 e^{(\lambda_1 - \lambda_2)x}}{\lambda_1 - \lambda_2} + C_2 = \underbrace{\frac{C_1}{\lambda_1 - \lambda_2}}_{\widehat{C}} e^{(\lambda_1 - \lambda_2)x} + C_2$

Тогда,
$$y(x) = C_2(x)e^{\lambda_2 x} = (\tilde{C_1}e^{\lambda_1-\lambda_2}x + C_2)e^{\lambda_2 x} = \boxed{C_1e^{\lambda_1 x} + C_2e^{\lambda_2 x}}$$
 - решение ЛОДУ, $\lambda_1 \neq \lambda_2$

2) $\lambda_1 = \lambda_2 = \lambda \in \mathbb{R}$ - случай вещ. кратных корней

$$C'_2(x) = C_1 e^{0x} = C_1 \Longrightarrow C_2(x) = \int C_1 dx = C_1 x + C_2$$

$$y(x)=(C_1x+C_2)e^{\lambda x}=C_1xe^{\lambda x}+C_2e^{\lambda x}=y(x)$$
 - решение ЛОДУ, $\lambda_1=\lambda_2$

3) $\lambda = \alpha \pm i\beta \in \mathbb{C}$ - случай комплексно сопряженных корней

Так как $\lambda_1 \neq \lambda_2$, то аналогично первому случаю $y(x) = C_1 e^{(\alpha+i\beta)x+C_2 e} + C_2 e^{(\alpha-i\beta)x}$ - решение ЛОДУ

Получим ℝ-решения:

$$y(x) = C_1 e^{\alpha x} e^{i\beta x} + C_2 e^{\alpha x} e^{-i\beta x} = e^{\alpha x} (C_1(\cos \beta x + i \sin \beta x) + C_2(\cos \beta x - i \sin \beta x)) = e^{\alpha x} (C_1 + C_2) \cos \beta x + e^{\alpha x} i (C_1 - C_2) \sin \beta x$$

$$Rey(x) = \underbrace{(C_1 + C_2)e^{\alpha x}\cos\beta x}_{u(x)}, Imy(x) = \underbrace{(C_1 + C_2)e^{\alpha x}\sin\beta x}_{v(x)} \quad y(x) = u(x) + iv(x)$$

Так как y(x) - решение ЛОДУ:

$$u'' + iv'' + pu' + ipv' + qu + iqv = 0$$

$$(u'' + pu' + qu) + i(v'' + pv' + qv) = 0$$
 $\forall x \in [\alpha; \beta]$, то есть $z \in \mathbb{C}$ и $z = 0$

$$\left\{ u'' + pu' + qu = 0, v'' + pv' + qv = 0 \right\}$$

Тогда можно считать решением $y(x) = u(x) + v(x) = C_1 e^{\alpha x} \cos \beta x + C_2 e^{\alpha x} \sin \beta x$ - решение ЛОДУ, $\lambda_{1,2} \in \mathbb{C}$

Nota. Ни про одно из полученных решений нельзя сказать, что оно общее (см. след. пункт) Также еще не решено ЛНДУ2

4.5.3. Свойства решений $\Pi \Pi Y_2$

$$\mathbf{Def.}\ Ly\stackrel{def}{=}y''(x)+py'(x)+qy(x)$$
 - лин. дифф. оператор $L:E\subset C^2_{[a;b]}\to F\subset C_{[a};b]$

Nota. Все определения лин. пространства, базиса, лин. независимости, лин. оболочки

И ЛДУ $_2$ записывается как Ly = 0 - ЛОДУ $_2$, Ly = f(x) - ЛНДУ $_2$

Th. 1.
$$\exists y_1, y_2$$
 - частные решение ЛОДУ, то есть $Ly_1=0, Ly_2=0$ Тогда $Ly=0,$ если $y=C_1y_1+C_2y_2$

$$Ly = y'' + py' + qy = (C_1y_1 + C_2y_2)'' + p(C_1y_1 + C_2y_2)' + q(C_1y_1 + C_2y_2) = C_1Ly_1 + C_2Ly_2 = 0$$

Def.
$$y_1, y_2$$
 - лин. нез. $\iff C_1 y_1 + C_2 y_2 = 0 \implies \forall C_1 = 0 \iff \nexists k : y_2 = k y_1, k \in \mathbb{R}$

Mem.Для определения лин. независимости в Линале использовали rgAили $\det A$ Введем индикатор лин. независимости

Заметим, что если y_1, y_2 - лин. зав., то y_1', y_2' - лин. зав.

Def.
$$W \stackrel{\text{обозн}}{=} \begin{vmatrix} y_1(x) & y_2(x) \\ y_1'(x) & y_2'(x) \end{vmatrix}$$
 - определитель Вронского или вронскиан

Th. 2.
$$y_1, y_2$$
 - лин. зав. $\Longrightarrow W = 0$ на $[a; b]$

$$\begin{array}{l}
\square\\y_2 = ky_1\\y_2' = ky_1' \Longrightarrow W = \begin{vmatrix}y_1(x) & y_2(x)\\y_1'(x) & y_2'(x)\end{vmatrix} = 0
\end{array}$$

Th. 3.
$$x_0 \in [a; b]$$
, $\exists W(x_0) = W_0$
 $W_0 = 0 \Longrightarrow W(x) = 0 \forall x \in [a; b]$
 $W_0 \neq 0 \Longrightarrow W(x) \neq 0 \forall x \in [a; b]$

$$\exists y_1(x), y_2(x)$$
 - реш ЛОДУ,

$$\begin{cases} Ly_1 = 0 & | \cdot y_2 \\ Ly_2 = 0 & | \cdot y_1 \end{cases} \iff \begin{cases} y_1''y_2 + py_1'y_2 + qy_1y_2 = 0y_2''y_1 + py_2'y_1 + qy_1y_2 = 0 \end{cases}$$

$$(y_1''y_2 - y_2''y_1) + p(y_1'y_2 - y_2'y_1) = 0$$

$$W'(x) + pW(x) = 0$$

$$\frac{dW(x)}{W(x)} = -pdx$$

$$W(x) = Ce^{-\int_{x_0}^x p dx}$$

$$W_0 = Ce^{-\int_{x_0}^{x_0} p dx} = C$$

Тогда
$$W(x) = W_0 e^{-\int_{x_0}^x p dx} \iff \begin{bmatrix} W_0 = 0 \Longrightarrow W(x) = 0 \\ W_0 \neq 0 \Longrightarrow W(x) \neq 0 \end{bmatrix}$$
 $\forall x \in [a; b]$

Th. 4. y_1, y_2 - лин. нез. $\Longrightarrow W(x) \neq 0$ на [a; b]

□ Докажем от противного

$$\exists x_0 \in [a;b] \mid W(x_0) = 0 \implies W(x) = 0 \forall x \in [a;b] \iff \begin{vmatrix} y_1(x) & y_2(x) \\ y_1'(x) & y_2'(x) \end{vmatrix} = y_1(x)y_2'(x) - y_2(x)y_1'(x)\forall x \in [a;b]$$

Можно поделить на y_1^2 , так как y_1,y_2 - лин. нез. Тогда $\frac{W}{y_1^2} = \left(\frac{y_2}{y_1}\right)' = 0 \Longrightarrow \frac{y_2}{y_1} = k \in \mathbb{R} \longleftrightarrow y_2 = ky_1$ - лин. зав., противоречие

Nota. Общее решение $\Pi O \Pi Y_2$ - это семейство всех решений (интегральных кривых), каждое

из которых проходит через точку $(x_0, y_0) \in D$ и ему соответствует свой и единственный набор (C_1, C_2)

Th. 5. y_1, y_2 - лин. нез. решения ЛОДУ, тогда $\overline{y}(x) = C_1 y_1 + C_2 y_2$ - общее решение ЛОДУ₂ \Box Нужно убедиться, что через точку $(x_0, y_0) \in D$ проходит и только одна кривая $\overline{y}(x_0)$

Зададим НУ:
$$\begin{cases} y_1(x_0)=y_{10}\\ y_2(x_0)=y_{20} \end{cases}$$
, тогда $\overline{y}(x_0)=C_1y_{10}+C_2y_{20}\\ \overline{y}'(x_0)=C_1y_{10}'+C_2y_{20}'$ - задача Коши Знаем, что $\overline{y}=C_1y_1+C_2y_2$ - решение (просто, не общее)

Тогда в
$$x_0$$
 $\begin{cases} C_1 y_{10} + C_2 y_{20} = \overline{y}_0 \\ C_1 y_{10}' + C_2 y_{20}' = \overline{y}_0' \end{cases} \iff \begin{pmatrix} y_{10} & y_{20} \\ y_{10}' & y_{20}' \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} \overline{y}_0 \\ \overline{y}_0' \end{pmatrix}$ - система крамеровского типа

$$\begin{vmatrix} y_{10} & y_{20} \\ y'_{10} & y'_{20} \end{vmatrix} = W_0 \neq 0 \iff \exists! (C_1, C_2)$$
 - решение СЛАУ

Таким образом через всякую x_0 проходит одна! кривая $\overline{y}(x) = C_1 y_1 + C_2 y_2$

Nota. Вывод: если найдены какие-либо лин. нез. y_1, y_2 , то общее решение ЛОДУ $_2$ будет $C_1y_1 + C_2 + y_2 = \overline{y}$

Def. Такие $\{y_1, y_2\}$ называется ФСР ЛОДУ₂

Nota. Тогда, найденные решения ЛОДУ - все общие

- 1) $\lambda_1 \neq \lambda_2$: Φ CP $\{e^{\lambda_1 x}, e^{\lambda_2 x}\}, \lambda_i \in \mathbb{R}$
- 2) $\lambda_1 = \lambda_2 = \lambda$: Φ CP $\{e^{\lambda x}, xe^{\lambda x}\}$
- 3) $\lambda_{1,2} = \alpha \pm i\beta \in : \Phi CP \{e^{\alpha x} \cos \beta x, e^{\alpha x} \sin \beta x\}$

Th. 6. Решение ЛНДУ Ly = f(x)

 $\overline{y}(x): L\overline{y} = 0$ - общее решение ЛОДУ

 $y^*(x) : Ly^*(x) = f(x)$ - частное решение ЛНДУ

Тогда $y(x) = \overline{y} + y^*$ - общее решение ЛНДУ

 \square Lab. \square