

Divide et Impera

Divide et impera:

- Dividi:
 - se l'istanza del problema da risolvere è troppo complicata per essere risolta direttamente, dividila in due o più parti
- Risolvi (ricorsivamente):
 usa la stessa tecnica divide et impera per risolvere le
 singole parti (sottoproblemi)
- Combina:

combina le soluzioni trovate per i sottoproblemi in una soluzione per il problema originario.

Vittorio Maniezzo - Universita di Bologna

Merge sort

- Algoritmo di ordinamento basato sulla tecnica Divide et Impera.
- Ideato da John von Neumann nel 1945.
- Implementato come algoritmo di ordinamento standard (con alcune ottimizzazioni) nelle librerie di alcuni linguaggi (Perl, Java) e alcune versioni di Linux.

Vittorio Maniezzo - Universita di Bologna

3

MergeSort: Algoritmo

Dividi: se S contiene almeno due elementi (un solo elemento è banalmente già ordinato), rimuovi tutti gli elementi da S e inseriscili in due vettori, S_1 e S_2 , ognuno dei quali contiene circa la metà degli elementi di S.

 $(S_1 \text{ contiene i primi n/2 elementi e } S_2 \text{ contiene i rimanenti n/2 elementi}).$

Risolvi: ordina gli elementi in S_1 e S_2 usando MergeSort (ricorsione).

Combina: metti insieme gli elementi di S_1 e S_2 ottenendo un unico vettore S ordinato (merge)

Vittorio Maniezzo - Universita di Bologna

Merge Sort: Algoritmo MergeSort(A,p,r) if p < r then

p < r then
q=(p+r)/2
MergeSort(A,p,q)
MergeSort(A,q+1,r)
Merge(A,p,q,r)</pre>

Merge(A,p,q,r)

- 1. Rimuovi il più piccolo dei due elementi affioranti in A[p..q] e A[q+1..r] e inseriscilo nel vettore in costruzione.
- 2. Continua fino a che i due vettori sono svuotati.
- 3. Copia il risultato in A[p..r].

Vittorio Maniezzo - Universita di Bologna

5

Merge sort, complessitá

$$T(n) = 2T(n/2) + \Theta(n) = \Theta(n \log n)$$

La complessità di Merge Sort non dipende dalla configurazione iniziale dell'array da ordinare:

→ la complessità è la stessa nei casi ottimo/pessimo/medio

	1361 (1011 301 (Merge sort
Caso pessimo	$\Theta(n^2)$	$\Theta(n \log(n))$
Caso medio	$\Theta(n^2)$	$\Theta(n \log(n))$
Caso ottimo	$\Theta(n)$	$\Theta(n \log(n))$

Vittorio Maniezzo - Universita di Bologna

9

Merge Sort

Costo computazionale:

- Caso pessimo: $\theta(n \log n)$
- Caso medio: $\theta(n \log n)$
- Caso ottimo: $\theta(n \log n)$

Di solito proposto in versione ricorsiva e non in place.

Se algoritmo non in place: richiede O(n) di memoria ausiliaria.

Vittorio Maniezzo - Universita di Bologna

Pseudo codice dell'algoritmo Merge	
Ordina l'array A dalla posizione p all	ar 1: procedure Merge(A, p, q, r) 2: i ← p, j ← q+1, k ← 0
1. presedure MargaCart (A p. r)	2: 1 ← p, j ← q+1, k ← 0 3: while i ≤ q and j ≤ r do
1: procedure MergeSort(A, p, r)	4: if A[i] < A[j] then
2: if p < r then	5: $B[k] \leftarrow A[i]$
3: $q \leftarrow (p + r)/2$	6: i ← i+1
4: MergeSort(A, p, q)	7: else
5: MergeSort(A, q+1, r)	8: $B[k] \leftarrow A[j]$
6: Merge(A, p, q, r)	9: j ← j+1 10: end if
7: end if	10: end 11 11: k ← k+1
[·] [·]	11: K ← K+1 12: end while
8: end procedure	13: while i ≤ q do
	14: $B[k] \leftarrow A[i]$
	15: $i \leftarrow i+1$ Leftover sx
	16: k ← k+1
	17: end while
	18: while j ≤ r do
	19: $B[k] \leftarrow A[j]$ 20: $j \leftarrow j+1$ Leftover dx
	, , , -
	21: k ← k+1 22: end while
	22: end while 23: for k ← p to r do
	23: For $k \leftarrow p$ to 1 do 24: $A[k] \leftarrow B[k-p]$ Ricopia in A
	25: end for
	26: end procedure
ittorio Maniezzo - Universita di Bologna	P-V-C-U-L

```
Merge sort, implementazioni
void mergeSortIter(int a[], int n)
                                                     void mergeInPlace(int* a,int 1,int m,int u)
{ int* b;
                                                     { int i, y;
   int linit, rinit, rend;
                                                        for(; 1
                                                                    && m < u; ++1)
                         on lo chiedo
   int i, j, length, m;
b = (int*) calloc(n, sizeof(int));
                                                                     < a[m]))
                                                                      <del>\</del>+];
   for (length = 1; length < n; length *= 2)</pre>
                                                                       η-1; i>l; --i) // shift
   { for (linit = 0; linit + length < n;</pre>
                                                                        [i-1];
           linit += length*2)
      {    rinit = linit + length;
         rend = rinit + length;
         if (rend > n) rend = n;
         m = linit; i = linit
                                                      oid msortInPlace(int* a, int l, int u)
                                                     { int m = (1+u)/2; if (1 < u)
         while (i < rinit
         { if (a[i]
                                                        { msortInPlace(a, 1, m);
            { b[~
            else
                                                           msortInPlace(a, m+1, u);
            { b[m]
                                                           mergeInPlace(a, 1, 1, u);
           m++;
                                                     }
         while (i < rint) { b[m] = a[i]; i++; m++;}
                                                                        In place
         while (j < rend) \{ b[m] = a[j]; j++; m++; \}
         for (m = linit; m < rend; m++)
           a[m] = b[m];
                                       Iterativo
      }
   }
                                                              E iterativo in place?
   free(b);
                    (v. anche https://www.codeproject.com/Articles/5275988/Fastest-sort-algorithm)
Vittorio Maniezzo - Universita di Bologna
```

Quick sort

Algoritmo di ordinamento basato sulla tecnica Divide et Impera.

Ideato da *Tony Hoare* (o meglio, da *Sir Charles Anthony Richard Hoare*) nel 1960, in visita come studente presso la Moscow State University.

Oggetto della tesi si dottorato di Robert Sedgewick nel 1975.

Implementato come *algoritmo di ordinamento standard* nella libreria C di Unix (**qsort ()**).

Vittorio Maniezzo - Universita di Bologna

13

13

Quicksort: L'idea

Dividi: Dividi il vettore in due parti non vuote.

Risolvi: ordina le due parti ricorsivamente

Combina: fondi le due parti ottenendo un vettore ordinato.

A={10,5,41,3,6,9,12,26}

Vittorio Maniezzo - Universita di Bologna


```
Quick Sort: pseudocodice
                                             1: function PARTITION(A, p, q, r)
   1: procedure QUICKSORT(A, p, r)
                                             2: i ← p
   2: if p < r then
                                             3: j ← r
       q \leftarrow PIVOT(A, p, r)
                                             4: pivot \leftarrow A[q]
          j \leftarrow PARTITION(A, p, q, r)
                                             5: SWAP(A,p,q)
          QUICKSORT(A, p, j)
          QUICKSORT(A, j+1, r)
                                             6: while i < j do
                                             7: while j > p and pivot \le A[j] do
   7: end if
                                             8:
                                                   j ← j - 1
   8: end procedure
                                                 end while
                                             9:
                                            10: while i < r and pivot > A[i] do
                                            11: i \leftarrow i + 1
                                            12: end while
   1: procedure Swap(A, i, j)
                                                  if i < j then</pre>
                                            13:
   2: tmp \leftarrow A[i]
                                            14:
                                                   SWAP(A,i,j)
   3: A[i] ← A[j]
4: A[j] ← tmp
                                            15: end if
                                            16: end while
   5: end procedure
                                            17: SWAP(A,p,j)
                                            18: return j
                                            19: end function
   1: function PIVOT(A, p, r)
   2: return (p + rand()%(r-p+1)) //random in [p,...,r]
   3: end function
Vittorio Maniezzo - Universita di Bologna
```


QS: distribuzione degli input

Abbiamo assunto implicitamente che tutte le sequenze di numeri da ordinare fossero equiprobabili.

Se ciò non fosse vero potremmo avere costi computazionali più alti.

Possiamo "rendere gli input equiprobabili"?

Vittorio Maniezzo - Universita di Bologna

25

QS randomizzato

QSR usa una versione randomizzata della procedura Partition.

Randomized-partition(A,p,r)
i=random(p,r)
exchange(A[p],A[i])
return Partition(A,p,r)

Un algoritmo randomizzato non ha un input pessimo, bensì ha una sequenza di scelte pessime di pivot.

Vittorio Maniezzo - Universita di Bologna

Quick Sort

Costo computazionale:

- Costo pessimo: $\theta(n^2)$
- Caso medio: $\theta(n \log n)$
- Caso ottimo: $\theta(n \log n)$

Anche quick sort *di solito* è *presentato* in forma ricorsiva, ma senza utilizzare memoria ausiliaria (versione in place).

Ovviamente, se ne può fare una versione iterativa.

Vittorio Maniezzo - Universita di Bologna

27

Selezione	
Ordinamento $\Theta(nlog(n))$	
Selezione: Calcolare l'iesimo elemento nell'ordinamento.	
Selezione del minimo/massimo $\Theta(n)$	
Selezione: caso generale?	
Vittorio Maniezzo - Universita di Bologna	29

Selezione Input: un insieme A di n numeri distinti e un numero i tra 1 e n Output: l'elemento x in A maggiore di esattamente i-1 altri numeri in A Soluzione banale: ordino gli elementi di A e prendo l'iesimo elemento nell'ordinamento. Θ(n log(n)) (analisi del caso pessimo)

Selezione in tempo lineare nel caso pessimo

Bisogna evitare il caso pessimo, in cui si separa sempre un solo elemento (o un numero indipendente da n).

Necessario un buon algoritmo di partition, che garantisca di lasciare un numero sufficiente di elementi in ogni partizione

 ε n (1- ε)n

Nota: basta che arepsilon sia maggiore di zero e indipendente da n

Vittorio Maniezzo - Universita di Bologna

33

Select lineare

Select(A,i)

- 1. Dividi i numeri in input in gruppi da 5 elementi ciascuno.
- Ordina ogni gruppo (qualsiasi metodo va bene).
 Trova il mediano in ciascun gruppo.
- 3. Usa Select ricorsivamente per trovare il mediano dei mediani. Lo chiamiamo x.
- 4. Partiziona il vettore in ingresso usando x ottenendo due vettori A' e A'' di lunghezza k e n-k.
- Se i≤k allora Select(i) sul vettore A' altrimenti Select(i-k) sul vettore A'.

Vittorio Maniezzo - Universita di Bologna

.....

