Bölüm:7 **İŞ VE KİNETİK ENERJİ**

Sabit Bir Kuvvetin Yaptığı İş

Bir F kuvvetinin d kadar yerdeğiştirme sırasında cisim üzerinde yaptığı iş

- Birimi: newton × metre = Joule (J)
- Kuvvet var ama cisim yerdeğiştirmiyorsa (d=0), yapılan iş sıfırdır.
- Kuvvet gidilen yönle geniş açı yapıyorsa, yani kuvvetin izdüşümü ters yönde ise, yapılan iş negatif olur.
- İşin Skaler Çarpım olarak ifadesi: $W = Fd \cos \theta = \vec{F} \cdot \vec{d}$

Not -1: İş için yazılan bağıntı, F kuvvetinin sabit olduğu durum içindir.

Not - 2: Cismin noktasal olduğunu kabul ettik.

Not -3: $0 < \phi < 90^{\circ} \Rightarrow W > 0$; $90^{\circ} < \phi < 180^{\circ} \rightarrow W < 0$

NET İŞ: Cisme birden fazla kuvvet etkiyorsa (örneğin F_A , F_B ve F_C), net iş $(W_{net})'$ in hesaplanması:

Yol-1: Herbir kuvvetin yaptığı işler $(W_A, W_B \text{ ve } W_C)$ ayrı ayrı hesaplanır ve sonra da toplanır $(W_{net} = W_A + W_B + W_C)$.

Yol - 2 : Cisim üzerine etki eden net kuvvet $(F_{net} = F_A + F_B + F_C)$ bulunur ve sonra da net kuvvetin yaptığı iş hesaplanır $(W_{\text{net}} = \vec{F}_{\text{net}} \cdot \vec{d})$.

Cisme enerji aktarılmışsa W pozitiftir (W > 0) ve Fkuvveti cisim üzerinde pozitif iş yapmıştır denir.

Aksine, cisimden dışarıya enerji alınmışsa W negatiftir (W < 0) ve F kuvveti cisim üzerinde negatif iş yapmıştır denir.

Örnek: xy-düzlemindeki bir cisim F = 5.0 i + 2.0 j(N)kuvvetinin etkisiyle $\vec{d} = 2,0 \hat{i} + 3,0 \hat{j}$ (m) ile verilen bir yer-değiştirme yapıyor.

- a-) Kuvvetin yaptığı işi
- b-) Kuvvetle yer-değiştirme vektörü arasındaki açıyı bulunuz.

$$a-)$$
 W = $\mathbf{F} \cdot \mathbf{d} = (5,0) \cdot (2,0) + (2,0) \cdot (3,0) = 16$ J

$$b-) \mathbf{F} \cdot \mathbf{d} = Fd \cos \theta = \sqrt{29} \cdot \sqrt{13} \cdot \cos \theta$$

$$\theta = \cos^{-1}(\frac{16}{\sqrt{377}}) = 35^{\circ}$$

Yerçekimi Kuvvetinin Yaptığı İş:

Kütlesi m olan bir cisim A noktasından vo ilk hızıyla yukarı doğru firlatılsın.

Cisim yükseldikçe, yer-çekimi kuvveti ($F_g = mg$) tarafından yavaşlatılır ve B noktasında daha düşük bir v hızına sahip olur.

Cisim A noktasından B noktasına giderken, yer-çekimi kuvvetinin yaptığı iş:

$$W_g(A \rightarrow B) = F_g.d = mgd \cos 180^\circ = -mgd$$

Cisim B noktasından A noktasına dönerken, yer-çekimi kuvveti tarafından yapılan iş:

$$W_g(B \to A) = \vec{F_g} \cdot \vec{d} = mgd \cos 0^\circ = +mgd$$

Değişken Bir Kuvvetin Yaptığı İş

x-ekseni boyunca a dan b ye giden bir cisme, yol boyunca değişen bir F(x) kuvveti etkiyor olsun.

[a, b] yolu, N sayıda küçük Δx aralıklarına bölünür.

Bu aralıkların birinde yapılan küçük iş (şekildeki dikdörtgenin alanı):

$$\Delta W_i \approx F(x_i)\,\Delta x \qquad \qquad (i=1,2,3,\ldots N)$$

aralığındaki belirli integrali olur:

(Değişken kuvvetin yaptığı iş)

Kısa İntegral Bilgisi:

Belirsiz integral:
$$\Phi(x) = \int F(x) dx$$
 veya $\frac{d\Phi}{dx} = F(x)$

Bazı fonksiyonların belirsiz integralleri (c bir sabit).			
fonksiyon (F)	$\Phi(x)$	fonksiyon (F)	$\Phi(x)$
1	x + c	cos x	$\sin x + c$
x	$\frac{1}{2}x^2 + c$	sin x	$-\cos x + c$
x ²	$\frac{1}{3}x^3 + c$	e ^x	$e^x + c$
$\sqrt{x} = x^{1/2}$	$\frac{2}{3}x^{3/2} + c$	$\frac{1}{x}$	$\ln x + c$
x^n	$\frac{x^{n+1}}{n+1} + c$	ln x	$x \ln x - x + c$

Belirli integral hesabı:

$$\int_a^b F(x) dx = \Phi(x) \Big|_{x=a}^{x=b} = \Phi(b) - \Phi(a)$$

Örnek: $F = (4x\hat{i} + 3y\hat{j})$ N' luk kuvvetin etkisindeki bir cisim orijinden başlayarak x = 5 m noktasına hareket etmektedir. Kuvvetin yaptığı işi bulunuz.

$$W = \int_{\eta}^{5} \vec{F} \cdot d\vec{r} = ; d\vec{r} = dx \hat{\mathbf{i}} + dy \hat{\mathbf{j}}$$

$$W = \int_{\eta}^{5} (4x \hat{\mathbf{i}} + 3y \hat{\mathbf{j}}) \cdot (dx \hat{\mathbf{i}} + dy \hat{\mathbf{j}})$$

$$W = \int_{\eta}^{5} (4x dx + 3y dy) = \int_{0}^{5} 4x dx + \int_{0}^{3} 3y dy$$

$$W = 4 \left(\frac{x^{2}}{2}\right)_{0}^{5} = 50 \text{ J}$$

Örnek: Bir cisim üzerine etkiyen kuvvetin cismin

konumuna bağlılığı şekildeki gibidir.

$$a-) x = 0 - 8 \text{ m},$$

$$b-) x = 8 - 12 \text{ m}$$

$$c-) x = 0 - 12 \text{ m}$$

aralıklarında bu kuvvetin yaptığı işi bulunuz.

$$a-)$$
 $W_{0-8} = \int_{x_1}^{x_2} F(x) dx = \int_{0}^{8} F(x) dx = \frac{8.6}{2} = 24 \text{ J}$ \iff $x = 0 - 8 \text{ m araligidaki}$ üçgensel bölgenin alan

$$b-) W_{8-12} = \int_{x_i}^{x} F(x) dx = \int_{8}^{2} F(x) dx = \frac{4(-3)}{2} = -6 \text{ J} \iff \frac{x=8-12 \text{ m aralığıdaki}}{\text{üçgensel bölgenin alanı}}$$

$$(c-)W = W_{0-8} + W_{8-12} = 24 - 6 = 18 \text{ J}$$

(5-15)

Örnek :Bir cisme etkiyen kuvvet, x metre cinsinden olmak üzere, F = (8x-16) N ifadesine göre değişmektedir.

a-) x=0 -3 m aralığında kuvvetin yaptığı işi bulunuz.

b−) Kuvvet-konum grafiğini çiziniz ve x = 0 − 3 m aralığında kuvvetin yaptığı işi grafikten bulunuz.

$$a-)W = \int_{x}^{x} F(x)dx = \int_{0}^{3} (8x-16)dx = \left(8\frac{x^{2}}{2} - 16x\right)_{0}^{3} = -12J$$

$$b-)W = W_{0-2} + W_{2-3} = \frac{2(-16)}{2} + \frac{1.8}{2} = -12 \text{ J}$$

Örnek : Salıncağa binmiş W(=mg) ağırlığındaki bir çocuğu, ipler düşeyle θ_0 açısı yapana kadar (burada çocuk

durgundur) yatay bir F kuvvetiyle ittiğinizi düşünün.

Bunun için uygulamanız gereken kuvveti, sıfirdan

başlayarak çocuk dengeye gelene kadar belirli bir maksimum değere kadar artırmanız gerekir. Uyguladığınız F kuvvetinin yaptığı işi bulunuz.

Denge durumunda:
$$\sum F_x = F - T \sin \theta = 0$$
 $F = T \sin \theta$

$$\sum F_y = T \cos \theta - mg = 0$$

$$W = mg$$

$$T = mg / \cos \theta$$

$$F = mg \tan \theta \to W = \int \vec{F} \cdot d\vec{l} = \int_{0}^{a_0} F(Rd\theta) \cos \theta = mgR \int_{0}^{a_0} \sin \theta d\theta$$

 $W = -mgR\cos\theta \int_{-\infty}^{\theta_0} mgR(1-\cos\theta_0)$

x = 0

R = 0

R = 0

R positif

X positif

X negatif

X negatif

X negatif

Yay Kuvveti:

Denge durumundaki bir yaya (uzamamış veya sıkışmamış yay) bir blok bağlı bulunsun.

Yayı d kadar gerecek şekilde bloğu sağa doğru bir miktar çekelim. Yay elimize ters doğrultuda bir direnç kuvveti (F) uygular.

Yayı d kadar sıkıştıracak şekilde bloğu sola doğru itersek, yay elimize yine ters doğrultuda bir direnç kuvveti (F) uygular.

Her iki durumda da, yay tarafından elimize uygulanan F kuvveti yayı doğal uzunluğuna getirecek yönde etkir. Büyüklüğü ise, uzama veya sıkışma miktarı (x) ile orantılıdır.

Eşitlik olarak F = -kx bağıntısı ile verilir. Bu eşitlik "Hooke yasası" , k ise "yay sabiti" olarak bilinir.

Bir Yayın Yaptığı İş

Normal uzunluğu $L_0\,$ olan bir yayı $L\,$ boyuna kadar uzatalım (veya, sıkıştıralım).

Sıkışma

Yay daima bir F kuvvetiyle karşı koyar.

Yayın uzama miktarı: $x = L - L_0$

(Uzama için x > 0, sıkışma için x < 0.)

Hooke yasası: Bir yayda oluşan kuvvet, uzamayla orantılı ve karşı koyacak yönde oluşur.

F = -kx

(Eksi işareti kuvvetin uzamaya ters yönde olduğunu belirtir.)

k: Yay sabiti

WWW.

Yay Kuvveti Tarafından Yapılan İş:

Yay sabiti k olan bir yayın boyunu, kuvvet uygulayarak x_i' den x_s' ye getirmiş olalım. Yayın elimize uyguladığı kuvvetin yaptığı işi (W_{yay}) hesaplamak isteyelim.

Yayın kütlesiz olduğunu ve Hooke yasasına uyduğunu varsayalım.

Değişken kuvvetin yaptığı iş bağıntısından,

$$W_{yay} = \int_{x_i}^{x_i} F(x) dx = \int_{x_i}^{x_i} -kx dx = -k \int_{x_i}^{x_i} x dx = -k \left[\frac{x^2}{2} \right]_{x_i}^{x_i} = \frac{1}{2} k x_i^2 - \frac{1}{2} k x_s^2$$

bulunur.

Yay başlangıçta uzamasız durumda ise $(x_i = 0)$ ve yayı x kadar germiş veya sıkıştırmış isek $(x_x = \pm x)$, yay kuvvetinin yaptığı iş

$$W_{yay} = -\frac{1}{2}kx^2$$
 olarak bulunur.

■Kütle x=x, den x=x, ye keyfi bir yerdeğiştirme yaparsa, yay kuvvetinin yaptığı iş;

$$W_{s} = \int_{x_{i}}^{x_{s}} (-kx)dx = \frac{1}{2}kx_{i}^{2} - \frac{1}{2}kx_{s}^{2}$$

Üç-Boyutlu Uzayda Kuvvetin Yaptığı İş:

Üç-boyutlu uzayda tanımlı bir \vec{F} kuvveti genel olarak $\vec{F} = F_{x}(x, y, z)\hat{i} + F_{y}(x, y, z)\hat{j} + F_{z}(x, y, z)\hat{k}$

biçiminde tanımlanabilir.

Böylesi bir kuvvetin etkisinde, bir cismi koordinatı (x_i, y_i, z_i) olan A noktasından koordinatı (x_s, y_s, z_s) olan B noktasına, belirli bir yol boyunca, hareket ettirmek için yapılacak iş,

$$dW = \vec{F} \cdot d\vec{r} = F_x dx + F_y dy + F_z dz$$

$$W = \int_A^B dW = \int_{x_1}^{x_2} F_x dx + \int_{y_1}^{y_2} F_y dy + \int_{x_2}^{x_2} f_z dz$$

ile verilir.

Yay sabitinin ölçülmesi

Düşey olarak asılmış yayın ucuna m kütleli bir cisim asıldığında yayda d kadar uzama yaparsa Hooke yasasına göre;

$$|F_s| = kd = mg \implies k = \frac{mg}{d}$$

Örneğin, bir yay 0,55 kg'lık bir kütleyle 2 cm gerilirse, yayın kuvvet sabiti;

 $k=mg/d=(0.55 \text{ kg})(9.80 \text{ m/s}^2)/(2x10^{-2} \text{ m})=2.7x10^2 \text{ N/m olur}$

Kinetik Enerji İş-Kinetik Enerji Teoremi

- Basit bir şekilde enerji iş yapabilme yetisi olarak tanımlanabilir •Hareketli cisimlerin sahip olduğu enerji kinetik enerji olarak
- adlandırılır

$$W_{net} = F_{net}d = (ma)d$$

 $d = \frac{1}{2}(v_1 + v_2)t \quad a = \frac{v_2 - v_1}{t}$

 $W_{net} = K_2 - K_1 = \Delta K$

 $K = \frac{1}{2}mv^2$

Bir cisim üzerinde yapılan net iş kinetik enerjideki değişime eşittir

Buradaki $\frac{1}{2}mv^2$ terimi kinetik enerji olarak adlandırılır.

SI sistemindeki birimi

 $kg.m^2/s^2 = joule$

ve sembolik olarak ${\bf J}$ ile gösterilir.

İş-Kinetik enerji teoremi

Cisim üzerine etki eden kuvvet sabit değilse;

$$W_{net} = \int_{x_1}^{x_2} (\Sigma F_x) dx = \int_{x_1}^{x_2} m a_x dx$$

$$a = \frac{dv}{dt} = \frac{dv}{dx} \frac{dx}{dt} = \frac{dv}{dx} v$$

$$W_{net} = \int_{x_1}^{x_2} mv \frac{dv}{dx} dx = \int_{y_1}^{y_2} mv dv = \frac{1}{2} m{v_2}^2 - \frac{1}{2} m{v_1}^2$$

Net kuvvet sabit olsa da olmasa da yapılan iş kinetik enerjideki değişime eşittir!!!

Kinetik Sürtünmeyi İçeren Durumlar

Yatay bir yüzeyde kayan bir cismin hareketine ters yönde etki eden sürtünme kuvvetinden dolayı kinetik enerjide azalma olur.

$$\Delta K_{s \ddot{u}rt \ddot{u}nme} = -f_k d$$

Bir cisim üzerine diğer kuvvetler ile birlikte sürtünme kuvveti de etkidiği zaman, iş-kinetik enerji teoremi;

$$K_i + \Sigma W_{di\check{o}er} - f_k d = K_s$$

Örnek: Kütlesi 6 kg olan bir blok sürtünmesiz bir düzlemde duruyorken, 12 N' luk sabit bir yatay kuvvetin etkisiyle harekete başlıyor. Blok yatayda 3 m yol adıktan sonra hızı ne olur?

$$W = \vec{F} \cdot \vec{d} = 12.3.\cos(0) = 36 \,\text{J} \quad \rightarrow K_s - \vec{K}_i = \frac{1}{2} m v_s^2 - 0 = 36 \,\text{J}$$
$$v_s = \sqrt{\frac{72}{6}} = \sqrt{12} = 3.5 \,\text{m/s}$$

Aynı problemi kinematikten yola çıkarak tekrar çözelim:

$$\sum F_x = 12 = ma_x \rightarrow a_x = \frac{12}{6} = 2 \text{ m/s}^2$$

$$v_x^2 = v_x^2 + 2a \Delta x = 2.2.3 = 12 \rightarrow v \qquad s = \sqrt{12} = 3.5 \text{ m/s}$$

Örnek : Kütlesi 6 kg olan bir blok kinetik sürtünme katsayısı $\mu_k = 0.15$ olan bir düzlemde duruyorken, 12 N' luk sabit bir yatay kuvvetin etkisiyle harekete başlıyor. Blok yatayda 3 m yol adıktan sonra hızı ne olur? N

$$W = F \cdot d = 12.3.\cos(0) = 36 \text{ J}$$
 (F nin yaptığı iş)

$$f_k = \mu_k mg = 0.15.6.9.8 = 8.82 \text{ N}$$

 $W_f = \vec{f_k} \cdot \vec{d} = \mu_k mg \cos(\pi) = -8.82.3 = -26.5 \text{ J}$ (f_k 'nın yaptığı iş)

$$W + W_f = \frac{1}{2} m v_s^2 - \frac{1}{2} m v_s^2 = \frac{1}{2} m v_s^2 = 9.5 \rightarrow v_s = \sqrt{\frac{19}{6}} = 1.8 \text{ m/s}$$

Aynı problemi kinematikten yola çıkarak tekrar çözelim

$$\sum F_x = 12 - f_k = 12 - 8.82 = 3.18 = ma_x \rightarrow a_x = \frac{3.18}{6} = 0.53 \text{ m/s}^2$$

$$v_s^2 = v_t^2 + \frac{2}{3} a_x \propto 2.0.53.3 = 3.18 \rightarrow v_s = \sqrt{3.18} = 1.8 \text{ m/s}$$

Örnek: Kütlesi 1.6 kg olan bir blok, yay sabiti $k = 1 \times 10^3$ N/m olan yatay bir yaya bağlıdır. Yay 2 cm sıkıştırılıp durgun halden serbest bırakılıyor. (Yüzey sürtünmesizdir).

- a-) Blok denge noktasından (x=0) geçerken hızı ne olur?
- b−) Aynı soruyu, sabit ve 4 N büyüklüğünde bir sürtünme kuvveti olması durumunda tekrar cevaplayınız.

$$a-)W_{yay} = \frac{1}{2}kx_m^2 = \frac{1}{2}(1\times10^3)(-2\times10^{-2})^2 = 0.2 \text{ J}$$

$$\begin{split} W_{yoy} &= \frac{1}{2} m v_s^2 - \frac{1}{2} m v_s^2 \rightarrow v_s = \sqrt{\frac{2W_{yoy}}{m}} = \sqrt{\frac{2(0.2)}{1.6}} = 0.5 \text{ m/s} \\ b -)W_f &= -f_k x_m = -4 \left(2 \times 10^{-2}\right) = -0.08 \text{ J} \text{ sürtünme kuvvetinin yaptığı iş.} \end{split}$$

$$\Delta K = W_{yuy} + W_f \rightarrow \frac{1}{2} m v_s^2 = 0, 2 - 0, 08 \rightarrow v_s = \sqrt{\frac{2.(0, 12)}{1.6}} = 0.39 \text{ m/s}$$

Örnek: Kütlesi 5 kg olan bir blok sürtünmesiz

bir yüzeyde, yay sabiti $k = 500 \text{ N/m} \, \text{olan}$ yatay bir yaya $v_0 = 6$ m/s hızla çarpıyor ve yayı sıkıştırıyor.

- a-) Yaydaki sıkışma ne kadardır?
- b-) Yay en fazla 15 cm sıkışabiliyorsa, v_0 hızı en fazla ne olur?

$$a-)W_{yay} = \frac{1}{2}kx_i^2 - \frac{1}{2}kx_m^2 = \frac{1}{2}mv_s^2 - \frac{1}{2}mv_i^2$$
$$\frac{1}{2}kx_m^2 = \frac{1}{2}mv_i^2 \rightarrow x_m = \sqrt{\frac{m}{k}}v_i = \sqrt{\frac{5}{500}}.(6) = 0.6 \text{ m}$$

$$b-) x_m = \sqrt{\frac{m}{k}} v_i \rightarrow v_i = \sqrt{\frac{k}{m}} x_m = \sqrt{\frac{500}{5}} . (0.15) = 1.5 \text{ m/s}$$

Örnek: Kütlesi 0.1 kg olan bir blok hava-rayı üzerinde yay sabiti k = 20 N/m olan yatay bir yaya bağlıdır. Blok denge noktasından sağa doğru 1.5 m/s hızla geçiyor. a-) Hava-rayı sürtünmesiz ise, blok ne kadar sağa gidebilir?

b-) Hava-rayı sürtünmeli ise ($\mu_k = 0.47$), blok ne kadar sağa gidebilir?

$$a-)W_{yay} = \frac{1}{2}kx_i^2 - \frac{1}{2}kx_m^2 = \frac{1}{2}mv_s^2 - \frac{1}{2}mv_i^2$$

$$(W_{yay} = \frac{1}{2}Kx_i^2 - \frac{1}{2}kx_m^2 = \frac{1}{2}mv_i^2 - \frac{1}{2}mv_i^2$$

$$\frac{1}{2}kx_m^2 = \frac{1}{2}mv_i^2 \to x_m = \sqrt{\frac{m}{k}}v_i = \sqrt{\frac{0.1}{20}}(1.5) = 0.106\text{m}$$

 $b-)W_f = -f_k x_m = -(\mu_k mg)x_m$ sürtünme kuvvetinin yaptığı iş

$$\Delta K = W_{yay} + W_f \rightarrow -\frac{1}{2} m v_i^2 = -\frac{1}{2} k x_m^2 - \mu_k m g x_m \rightarrow \text{ $\mathring{1}$s-kinetik enerji teorimi}$$

$$-\frac{1}{2} 0, 1, v (1,5)^2 = -\frac{1}{2} 20. x_m^2 - 0.47.0, 1.9.8 x_m$$

$$10 x_m^2 + 0.461 x_m - 0.113 = 0 \rightarrow x_m = 0.086 \text{ m} = 8.6 \text{ cm}$$

Güç

Güç, F kuvveti tarafından birim zamanda yapılan iş veya F kuvvetinin iş yapma hızı olarak tarif edilir.

F kuvveti Δt zaman aralığında W kadar iş yapmışsa, ortalama güç

$$P_{\rm ort} = \frac{W}{\Delta t}$$

Ani güç ise

$$P = \frac{dW}{dt}$$

ile tanımlanır.

SI sistemindeki birimi "J/s = watt" tır. "kilowatt-saat" (kW-sa) iş birimidir.

Örneğin, 1000 W gücündeki bir motor 1 saat süreyle çalışıyorsa yaptığı iş W=Pt=1000.3600=3600 kJ bulunur.

$$P = \lim_{\Delta t \to 0} \frac{W}{\Delta t} = \frac{dW}{dt} \equiv ani \ g \ddot{u} \varsigma$$

$$dW = \overrightarrow{F}.d\overrightarrow{s}$$

$$\Rightarrow P = \frac{dW}{dt} = \overrightarrow{F} \cdot \frac{d\overrightarrow{s}}{dt} = \overrightarrow{F} \cdot \overrightarrow{v}$$

- SI birim sistemine göre güç birimi J/s yani watt'tır
- Kilowatt saat bir enerji birmidir;
- 1 kWh=(10³ W)(3600s)=3,6x10⁶ J

Hıza Bağlı Güç İfadesi:

Hareket eden bir cisme, hareket doğrultusu ile φaçısı yapacak şekilde bir F kuvveti uygulayalım.

Uygulanan F kuvvetinin iş yapma hızı

$$P = \frac{dW}{dt} = \frac{F\cos\phi dx}{dt} = F\cos\phi \frac{dx}{dt} = Fv\cos\phi$$

$$P = \vec{F} \cdot \vec{v}$$

Örnek: Bir asansörün kütlesi 1000 kg' dır ve toplam 800 kg taşıyabilmektedir. Asansör yukarı çıkarken 4000 N' luk sabit bir sürtünme kuvveti etkimektedir.

Asansör motorunun sağladığı güç ne olur?

a-)
$$v = \text{sabit} \rightarrow a = 0$$
: $\sum F_y = T - f - Mg = 0$
 $T = f + Mg = (1000 + 800), 9.8 + 4000 = 2,16 \times 10^4 \text{ N}$

 $P = \vec{T} \cdot \vec{v} = T v \cos \theta = 2.16 \times 10^4 .3 = 6.48 \times 10^4 W$

$$b-) a \neq 0$$
: $\sum F_y = T - f - Mg = Ma$

$$T = f + M(g + a) = 4000 + 1800 \cdot 10.8 = 2,34 \times 10^4 \text{ N}$$

 $P = \vec{T} \cdot \vec{v} = T v \cos \theta = \left(2,34 \times 10^4 v\right) \text{W}$ (burada v anlık hızdır)

TESEKKÜRLER