1 Introduction

Proposition 1.1 (Goldbach Conjecture). Every even integer greater than 2 is the sum of two primes.

The Goldbach Conjecture is equivalent to the following.

Proposition 1.2. Every integer $n \geq 2$ is the average of two primes.

A natural extension of the Goldbach conjecture is the following.

Proposition 1.3. If a prime p divides an integer $n \geq 2$, then n is the average of p primes.

Another equivalent statement due to Sebastian Martín Ruiz is as follows.

Proposition 1.4. For all even integers $n \geq 4$, there exists an integer $k \in [n-1]$ such that

$$\varphi(n^2 - k^2) = (n-1)^2 - k^2.$$

Proposition 1.5. Proposition 1.4 is equivalent to the Goldbach Conjecture.

Proof. Suppose $e \geq 4$ is an even integer.

If the Goldbach Conjecture is true, then there exist two primes p and q such that e = p + q, and without loss of generality, we can suppose p > q. Let n := (p + q)/2 and k := (p - q)/2.

Now,

$$\varphi(n^{2} - k^{2}) = \varphi((n+k)(n-k))$$

$$= \varphi(pq)$$

$$= \varphi(p)\varphi(q)$$

$$= (p-1)(q-1)$$

$$= ((n+k)-1)((n-k)-1)$$

$$= ((n-1)+k)((n-1)-k)$$

$$= (n-1)^{2} - k^{2}$$

Conversely, if 1.4 holds, then there exists an integer $k \in [n-1]$ such that

$$\varphi(n^2 - k^2) = (n-1)^2 - k^2.$$

Let n := e/2. If n + k and n - k are both prime, then we are done by setting p := n + k and q := n - k. Otherwise, at least one of n + k or n - k is composite. Let $d := \gcd(n + k, n - k)$. Then we arrive at the contradiction $\varphi(n^2 - k^2) < (n - 1)^2 - k^2$:

$$\varphi(n^{2} - k^{2}) = \varphi((n+k)(n-k))$$

$$= \varphi\left(d^{2} \frac{(n+k)(n-k)}{d}\right)$$

$$= \varphi(d^{2})\varphi\left(\frac{n+k}{d} \frac{n-k}{d}\right)$$

$$= d\varphi(d)\varphi\left(\frac{n+k}{d}\right)\varphi\left(\frac{n-k}{d}\right)$$

$$= d\varphi\left(\frac{n+k}{d}\right)\varphi(d)\varphi\left(\frac{n-k}{d}\right)$$

$$\leq \varphi\left(d\frac{n+k}{d}\right)\varphi\left(d\frac{n-k}{d}\right) \qquad \text{(equality if } d=1\text{)}$$

$$= \varphi(n+k)\varphi(n-k)$$

$$< (n+k-1)(n-k-1)$$

$$= (n-1)^{2} - k^{2}.$$

2 References

1. ...