

IEEE WCCI (IJCNN) 2024 YOKOHAMA, JAPAN June 30 - July 5, 2024

Arjun Roy, Christos Koutlis, Symeon Papadopoulos, Eirini Ntoutsi

FairBranch: Mitigating Bias Transfer in Fair Multi-task Learning

MAMMOth
EU HORIZON-RIA Project ID:101070285

Outline

- Introduction and Motivation
- Problem Definition
- FairBranch
- Experiments
- Discussion and Conclusion

Introduction and Motivation

Single vs Multi-task Learning

STL MTL

Single vs Multi-task Learning

STL MTL

 learn a single supervised prediction tasks (STL).

Single vs Multi-task Learning

STL

Single Task Learning TaskSmile

MTL

• learn a single supervised prediction tasks (STL).

- Learn multiple supervised prediction tasks concurrently (MTL).
- Utilize a shared optimization space to enhance generalization across the tasks.

The Conflicting Gradient Problem

Hypothetical loss surface of the shared parameter space jointly trained with two task losses L_1 and L_2

The Conflicting Gradient Problem

Hypothetical loss surface of the shared parameter space jointly trained with two task losses L_1 and L_2

Two task t1 (blue arrow), and t2 (red arrow) moving together:

• in the same optimization direction

$$\nabla_{shared} L_1 \cdot \nabla_{shared} L_2 \geq 0$$

The Conflicting Gradient Problem

Hypothetical loss surface of the shared parameter space jointly trained with two task losses L_1 and L_2

Two task t1 (blue arrow), and t2 (red arrow) moving together:

• in the same optimization direction

$$\nabla_{shared} L_1 \cdot \nabla_{shared} L_2 \geq 0$$

Two task t1 (blue arrow), and t2 (red arrow) moving towards:

respective local minima in conflicting direction

$$\nabla_{shared} L_1 \cdot \nabla_{shared} L_2 < 0$$

Knowledge Gain (KG): difference in accuracy between MTL (\mathcal{M}) and STL (\mathcal{H}) trained on t:

$$KG(t): P(\mathcal{M}^t(X) = Y_t) - P(\mathcal{H}(X) = Y_t)$$

Knowledge Gain (KG): difference in accuracy between MTL (\mathcal{M}) and STL (\mathcal{H}) trained on t:

$$KG(t): P(\mathcal{M}^t(X) = Y_t) - P(\mathcal{H}(X) = Y_t)$$

Knowledge Gain (KG): difference in accuracy between MTL (\mathcal{M}) and STL (\mathcal{H}) trained on t:

$$KG(t): P(\mathcal{M}^t(X) = Y_t) - P(\mathcal{H}(X) = Y_t)$$

Knowledge Gain (KG): difference in accuracy between MTL (\mathcal{M}) and STL (\mathcal{H}) trained on t:

$$KG(t): P(\mathcal{M}^t(X) = Y_t) - P(\mathcal{H}(X) = Y_t)$$

Ideal scenario: achieve non-negative (green triangles), i.e., KG(t)≥0 for all t.

Knowledge Gain (KG): difference in accuracy between MTL (\mathcal{M}) and STL (\mathcal{H}) trained on t:

$$KG(t): P(\mathcal{M}^t(X) = Y_t) - P(\mathcal{H}(X) = Y_t)$$

Ideal scenario: achieve non-negative (green triangles), i.e., KG(t)≥0 for all t.

Knowledge Gain (KG): difference in accuracy between MTL (\mathcal{M}) and STL (\mathcal{H}) trained on t:

$$KG(t): P(\mathcal{M}^t(X) = Y_t) - P(\mathcal{H}(X) = Y_t)$$

Ideal scenario: achieve non-negative (green triangles), i.e., KG(t)≥0 for all t.

Negative Transfer: where KG(t)<0, (red triangles).

Knowledge Gain (KG): difference in accuracy between MTL (\mathcal{M}) and STL (\mathcal{H}) trained on t:

$$KG(t): P(\mathcal{M}^t(X) = Y_t) - P(\mathcal{H}(X) = Y_t)$$

Ideal scenario: achieve non-negative (green triangles), i.e., KG(t)≥0 for all t.

Negative Transfer: where KG(t)<0, (red triangles).

Knowledge Gain (KG): difference in accuracy between MTL (\mathcal{M}) and STL (\mathcal{H}) trained on t:

$$KG(t): P(\mathcal{M}^t(X) = Y_t) - P(\mathcal{H}(X) = Y_t)$$

Ideal scenario: achieve non-negative (green triangles) , i.e., $KG(t) \ge 0$ for all t.

Negative Transfer: where KG(t)<0, (red triangles).

Root Cause: Research identified accuracy conflict as origin. [Guangyuan et al., ICLR 22; Yu et al., NeurIPS 20; Du et al., ContLearn 18].

Problem Definition

What is Fairness-aware MTL aka fair-MTL?

What is Fairness-aware MTL aka fair-MTL?

 learn multiple supervised prediction tasks without discrimination

$$F_{viol}^{(t)}(\mathcal{M}) = \sum_{c \in \mathbb{C}} |P(\mathcal{M}^t(X)|S = g, c) - P(\mathcal{M}^t(X)|S = \overline{g}, c)| \leq 0$$

 $g \; \mathrm{and} \; \overline{g}$ represents groups like "male", and "female".

What is Fairness-aware MTL aka fair-MTL?

 $\underset{\theta}{\operatorname{argmin}} \sum_{t} w_{t} \Big(\mathcal{L}_{t}(\theta, U) + \lambda_{t} \mathcal{F}_{t}(\theta, S) \Big)$

Requires to optimize minimum two losses [Roy et al., ECMLPKDD 22] per task t

- accuracy loss L_t and
- fairness loss F_t .

λ sets accuracy and fairness trade-off, ω sets the inter-task trade-off

 learn multiple supervised prediction tasks without discrimination

$$F_{viol}^{(t)}(\mathcal{M}) = \sum_{c \in \mathbb{C}} |P(\mathcal{M}^t(X)|S = g, c) - P(\mathcal{M}^t(X)|S = \overline{g}, c)| \leq 0$$

 $g \ {
m and} \ \overline{g}$ represents groups like "male", and "female".

Exaggerated Conflict Gradient Problem in fair-MTL

Hypothetical loss surface of the shared parameter space jointly trained with two accuracy L_1 and L_2 , and two fairness F_1 and F_2 losses

$$\underset{\theta}{\operatorname{argmin}} \sum_{t} w_{t} \Big(\mathcal{L}_{t}(\theta, U) + \lambda_{t} \mathcal{F}_{t}(\theta, S) \Big)$$

Requires to optimize minimum two losses [Roy et al., ECMLPKDD 22] per task t

- accuracy loss L_t and
- fairness loss F_t .

 λ sets accuracy and fairness trade-off, ω sets the inter-task trade-off

Exaggerated Conflict Gradient Problem in fair-MTL

Hypothetical loss surface of the shared parameter space jointly trained with two accuracy L_1 and L_2 , and two fairness F_1 and F_2 losses

$$\underset{\theta}{\operatorname{argmin}} \sum_{t} w_{t} \Big(\mathcal{L}_{t}(\theta, U) + \lambda_{t} \mathcal{F}_{t}(\theta, S) \Big)$$

Requires to optimize minimum two losses [Roy et al., ECMLPKDD 22] per task t

- accuracy loss L_t and
- fairness loss F_t .

 λ sets accuracy and fairness trade-off, ω sets the inter-task trade-off

More conflicts to deal with

Introduces the fairness conflict problem

$$\nabla_{shared} F_1 \cdot \nabla_{shared} F_2 < 0$$

Fairness Conflict in SOTA MTL

Recon [Guangyuan et al., ICLR 22]

TAG [Fifty et al., NeurlPS 21]

• Fairness conflict observed in SOTA MTL methods when trained on real world census data [Ding et al., NeurIPS 21].

Discrimination Gain (DG): difference in fairness violation between MTL (\mathcal{M}) and STL (\mathcal{H}) trained on t:

$$DG(t): F_{viol}^{(t)}(\mathcal{M}) - F_{viol}^{(t)}(\mathcal{H})$$

Discrimination Gain (DG): difference in fairness violation between MTL (\mathcal{M}) and STL (\mathcal{H}) trained on t:

$$DG(t): F_{viol}^{(t)}(\mathcal{M}) - F_{viol}^{(t)}(\mathcal{H})$$

Discrimination Gain (DG): difference in fairness violation between MTL (\mathcal{M}) and STL (\mathcal{H}) trained on t:

$$DG(t): F_{viol}^{(t)}(\mathcal{M}) - F_{viol}^{(t)}(\mathcal{H})$$

ACS-PUMS [Ding et al., NeurlPS 21]

Discrimination Gain (DG): difference in fairness violation between MTL (\mathcal{M}) and STL (\mathcal{H}) trained on t:

$$DG(t): F_{viol}^{(t)}(\mathcal{M}) - F_{viol}^{(t)}(\mathcal{H})$$

Bias Transfer: where DG(t)>0 i.e., positive gain of discrimination (red triangles).

ACS-PUMS [Ding et al., NeurlPS 21]

Discrimination Gain (DG): difference in fairness violation between MTL (\mathcal{M}) and STL (\mathcal{H}) trained on t:

$$DG(t): F_{viol}^{(t)}(\mathcal{M}) - F_{viol}^{(t)}(\mathcal{H})$$

Bias Transfer: where DG(t)>0 i.e., positive gain of discrimination (red triangles).

ACS-PUMS [Ding et al., NeurlPS 21]

Discrimination Gain (DG): difference in fairness violation between MTL (\mathcal{M}) and STL (\mathcal{H}) trained on t:

$$DG(t): F_{viol}^{(t)}(\mathcal{M}) - F_{viol}^{(t)}(\mathcal{H})$$

Bias Transfer: where DG(t)>0 i.e., positive gain of discrimination (red triangles).

Ideal scenario: non-positive bias transfer, i.e., DG(t)≤0 (green triangles).

Fairness Conflict to Bias Transfer

ACS-PUMS [Ding et al., NeurlPS 21]

Discrimination Gain (DG): difference in fairness violation between MTL (\mathcal{M}) and STL (\mathcal{H}) trained on t:

$$DG(t): F_{viol}^{(t)}(\mathcal{M}) - F_{viol}^{(t)}(\mathcal{H})$$

Bias Transfer: where DG(t)>0 i.e., positive gain of discrimination (red triangles).

Ideal scenario: non-positive bias transfer, i.e., DG(t)≤0 (green triangles).

Fairness Conflict to Bias Transfer

Discrimination Gain (DG): difference in fairness violation between MTL (\mathcal{M}) and STL (\mathcal{H}) trained on t:

$$DG(t): F_{viol}^{(t)}(\mathcal{M}) - F_{viol}^{(t)}(\mathcal{H})$$

Bias Transfer: where DG(t)>0 i.e., positive gain of discrimination (red triangles).

Ideal scenario: non-positive bias transfer, i.e., DG(t)≤0 (green triangles).

Root Cause: we hypothesize bias transfer originates from fairness conflict.

FairBranch

Desiderata from SOTA MTL

Methods	Negative Transfer	Fairness	Dynamic Architecture
FAFS [Lu et al., CVPR 17]	✓	-	✓
TAG [Fifty et al., NeurIPS 21]	✓	-	-
PCGrad [Yu et al., NeurIPS 20]	✓	-	-
Recon [Guangyuan et al., ICLR 22]	✓	-	✓
L2TFMT [Roy et al., ECML 22]	-	✓	-
WB-fair [Hu et al., ECML 23]	-	✓	-

Desiderata from SOTA MTL

Methods	Negative	Transfer	Fairness	Dynamic Architecture		
FAFS [Lu et al., CVPR 17]	√		-	✓		
TAG [Fifty et al., NeurIPS 21]	✓		-	-		
PCGrad [Yu et al., NeurIPS 20]	✓		-	-		
Recon [Guangyuan et al., ICLR 22]	✓		-	✓		
L2TFMT [Roy et al., ECML 22]	-		√	-		
WB-fair [Hu et al., ECML 23]	_		√	-		

Tackle accuracy conflicts

Desiderata from SOTA MTL

Methods	Negative Transfer	Fairness	Dynamic Architecture	
FAFS [Lu et al., CVPR 17]	✓	-	\checkmark	
TAG [Fifty et al., NeurIPS 21]	✓	-	-	
PCGrad [Yu et al., NeurIPS 20]	✓	-	-	
Recon [Guangyuan et al., ICLR 22]	✓	-	\checkmark	
L2TFMT [Roy et al., ECML 22]	-	✓	-	
WB-fair [Hu et al., ECML 23]	-	✓	-	

Tackle fairness conflicts

Desiderata from SOTA MTL

Methods	Negative Transfer	Fairness	Dynamic Architecture		
FAFS [Lu et al., CVPR 17]	✓	-		I ✓	
TAG [Fifty et al., NeurIPS 21]	✓	-		-	
PCGrad [Yu et al., NeurIPS 20]	✓	-		-	
Recon [Guangyuan et al., ICLR 22]	✓	-		✓	
L2TFMT [Roy et al., ECML 22]	-	✓		-	
WB-fair [Hu et al., ECML 23]	-	✓		-	

Tackle erroneous over-generalization

Desiderata from SOTA MTL

Groups Tasks on Parameter Similarity [Kornblith et al., ICML 19]:

- Intuition strong parameter similarity ensures similar direction of minima.
- Expectation move together without any conflict.

Addressing Negative Transfer

Groups Tasks on Parameter Similarity [Kornblith et al., ICML 19]:

 Intuition - strong parameter similarity ensures similar direction of minima.

Expectation - move together without any conflict.

Addressing Negative Transfer

Branch Task Groups:

 Intuition - similar tasks benefits from sharing more knowledge.

 Expectation: sharing less with dissimilar tasks reduces over-generalization. Addressing erroneous overgeneralization

Groups Tasks on Parameter Similarity [Kornblith et al., ICML 19]:

Intuition - strong parameter similarity ensures similar direction of minima.

Expectation - move together without any conflict.

Addressing Negative Transfer

Branch Task Groups:

 Intuition - similar tasks benefits from sharing more knowledge.

 Expectation: sharing less with dissimilar tasks reduces over-generalization. Addressing erroneous overgeneralization

Conflict-free Fairness Correction:

 Intuition - correcting the fairness conflict between task gradients within tasks groups ensures fair-MTL without Bias Transfer. Addressing Bias
Transfer

Hypothetical example of Fairness Gradient Conflict correction

Conflict-free Fairness Correction:

 Intuition - correcting the fairness conflict between task gradients within tasks groups ensures fair-MTL without Bias Transfer. Addressing Bias Transfer

Experiments

Tabular Data: ACS-PUMS Census Data [Ding et al., NeurIPS 21]

attribute.

of tasks: 5

Train on census 2019 and test on census 2021. Gender used as protected attribute.

of tasks: 5

Tabular Data: ACS-PUMS Census Data [Ding et al., NeurIPS 21]

- FairBranch effectively tackles both negative transfer (non-negative KG) and bias transfer (non-positive DG).
- Among competitors, conflict correction on parameter space (PCGrad, Recon) outperform other on negative transfer.

Visual Data: CelebA Data [Liu et al., ICCV 15]

Gender used as protected attribute # of tasks 17

Age used as protected attribute # of tasks 31

Visual Data: CelebA Data [Liu et al., ICCV 15]

Gender used as protected attribute # of tasks 17

Age used as protected attribute # of tasks 31

- FairBranch effectively tackles negative transfer (non-negative KG), but suffers from bias transfer (positive DG) in some tasks.
- Among competitors, conflict correction on parameter space (PCGrad, Recon) outperform other on negative transfer.

Reporting on the average Knowledge Gain (KG) and average Discrimination Gain (\overline{D} G) :

	Model	Metric		ACS-PUMS		CelebA	
				18-19	19-21	gen	age
		Κ̄G		0.028	0.012	-0.011	-0.024
 bing	FAFS	$ \bar{DG} $	EP	0.009	0.019	0.015	0.017
Task-grouping			EO	0.013	0.020	0.019	0.026
 		Κ̈G		0.022	0.064	-0.012	-0.010
Tas	TAG	\bar{DG}	EP	0.008	0.015	0.015	0.013
		DU	EO	0.014	0.022	0.010	0.017
42	Κ̄G			0.015	0.025	0.035	0.025
var	PCGrad	$ar{DG}$	EP	0.004	0.006	0.007	0.009
Conflict aware		DG	EO	0.006	0.006	0.008	0.004
Hic	Recon	Κ̄G		0.025	0.017	0.026	0.028
S		$ar{DG}$	EP	0.015	0.014	-0.001	0.005
			EO	0.040	0.036	<u>0.001</u>	0.009
ى		Κ̈G		0.024	-0.005	-0.022	-0.020
War	L2TFMT	\bar{DG}	EP	0.001	0.001	<u>-0.002</u>	0.0
Sa			EO	0.002	0.003	0.001	<u>0.003</u>
Fairness aware		Κ̈̄G		-0.016	0.002	-0.051	-0.080
- Fai	WB-fair	$ar{DG}$	EP	<u>0.001</u>	0.004	0.001	0.002
' '			EO	0.002	0.006	0.003	0.007
	FairBranch	Κ̄G		0.036	0.032	0.036	0.006
Our		$ar{DG}$	EP	-0.001	0.0	-0.004	-0.001
			EO	0.0	0.0	-0.003	0.0

- FairBranch outperforms all the competitors on 10 out of 12 evaluation report.
- In all experiment FairBranch have average Knowledge Gain > 0, and average Discrimination Gain ≤ 0.
- In visual data even under large # of tasks, SOTA MTLs like TAG, FAFS fails, FairBranch consistently positive on Knowledge Gain.
- Similar findings for fairness against SOTA fair-MTL observed with L2TFMT, WB-fair on Discrimination Gain.

Conflict Analysis of FairBranch

CelebA Age

Conflict Analysis of FairBranch

C o n f l i c t Heatmaps:

tasks like
 'Attractive' and
 '5 o Clock
 shadow' have
 fewer accuracy
 conflicts but
 many fairness
 conflicts
 across all
 tasks.

CelebA Gender

CelebA Age

Discussion and Conclusion

• FairBranch tackles negative transfer and bias transfer better than the competitors.

• FairBranch tackles negative transfer and bias transfer better than the competitors.

- FairBranch tackles negative transfer and bias transfer better than the competitors.
- FairBranch outperforms the competitors on average knowledge and discrimination gain.

- FairBranch tackles negative transfer and bias transfer better than the competitors.
- FairBranch outperforms the competitors on average knowledge and discrimination gain.

- FairBranch tackles negative transfer and bias transfer better than the competitors.
- FairBranch outperforms the competitors on average knowledge and discrimination gain.
- Tackling negative transfer on parameter space is advantageous over on output (loss) space.

- FairBranch tackles negative transfer and bias transfer better than the competitors.
- FairBranch outperforms the competitors on average knowledge and discrimination gain.
- Tackling negative transfer on parameter space is advantageous over on output (loss) space.

- FairBranch tackles negative transfer and bias transfer better than the competitors.
- FairBranch outperforms the competitors on average knowledge and discrimination gain.
- Tackling negative transfer on parameter space is advantageous over on output (loss) space.
- Learning fair multi-task learning (MTL) is challenging due to the complex decisions required, as certain tasks contribute positively to accuracy knowledge transfer while hindering fairness knowledge transfer.

References

- F. Ding, M. Hardt, J. Miller, and L. Schmidt, "Retiring adult: New datasets for fair machine learning," NeurIPS, vol. 34, 2021.
- Y. Du, W. M. Czarnecki, S. M. Jayakumar, M. Farajtabar, R. Pascanu, and B. Lakshminarayanan, "Adapting auxiliary losses using gradient similarity," Continual learning Workshop at NeurIPS 2018.
- C. Fifty, E. Amid, Z. Zhao, T. Yu, R. Anil, and C. Finn, "Efficiently identifying task groupings for multi-task learning," NeurIPS, vol. 34, pp. 27 503–27 516, 2021.
- S. Guangyuan, Q. Li, W. Zhang, J. Chen, and X.-M. Wu, "Recon: Reducing conflicting gradients from the root for multi-task learning," in 11th ICLR, 2022.
- M. Hardt, E. Price, and N. Srebro, "Equality of opportunity in supervised learning," NeurIPS, vol. 29, pp. 3315–3323, 2016.
- F. Hu, P. Ratz, and A. Charpentier, "Fairness in multi-task learning via wasserstein barycenters," in ECMLPKDD. Springer, 2023, pp. 295–312.
- S. Kornblith, M. Norouzi, H. Lee, and G. Hinton, "Similarity of neural network representations revisited," in ICML, 2019, pp. 3519–35.
- Z. Liu, P. Luo, X. Wang, and X. Tang, "Deep learning face attributes in the wild," in ICCV, December 2015.
- A. Roy and E. Ntoutsi, "Learning to teach fairness-aware deep multi-task learning," in ECMLPKDD. Springer, 2022, pp. 710–726.
- T. Yu, S. Kumar, A. Gupta, S. Levine, K. Hausman, and C. Finn, "Gradient surgery for multi-task learning," NeurIPS, vol. 33, pp. 5824–5836, 2020.

Question??

Thank you for your attention

Find me via: Google Scholar, Github, LinkedIn, YouTube

arjun.roy@unibw.de

For more details about FairBranch:

This work is supported by: European Horizon Project MAMMOth EU HORIZON-RIA Project ID:101070285

Question??

Thank you for your attention

Find me via: Google Scholar, Github, LinkedIn, YouTube

arjun.roy@unibw.de

For more details about FairBranch:

This work is supported by: European Horizon Project MAMMOth EU HORIZON-RIA Project ID:101070285

