STA 235H - Model Selection I: Bias vs Variance, Cross-Validation, and Stepwise

Fall 2021

McCombs School of Business, UT Austin

Introduction to prediction

- So far, we had been focusing on causal inference:
 - Estimating an effect and "predicting" a counterfactual (what if?)
- Now, we will focus on prediction:
 - Estimate/predict outcomes under specific conditions.

Differences between inference and prediction

- Inference → focus on covariate
 - o Interpretability of model.
- Prediction → focus on outcome variable
 - Accuracy of model.

Both can be complementary!

• Churn: Measure of how many customers stop using your product (e.g. cancel a subscription).

Replying to @latimesent

Streaming platforms like HBO Max and Disney+ are struggling with a phenomenon known as "churn." We explain:

How fast do you cancel streaming services? It's a problem for Hollywood A new report suggests more than 60% of people who dropped a streaming service did so after they watched the show or movie that got them to sign up. \mathcal{S} latimes.com

8:34 PM · Mar 28, 2021 · Twitter Web App

...

• Churn: Measure of how many customers stop using your product (e.g. cancel a subscription).

Less costly to keep a customer than bring a new one

Replying to @latimesent

Streaming platforms like HBO Max and Disney+ are struggling with a phenomenon known as "churn." We explain:

How fast do you cancel streaming services? It's a problem for Hollywood A new report suggests more than 60% of people who dropped a streaming service did so after they watched the show or movie that got them to sign up. 8 latimes.com

8:34 PM · Mar 28, 2021 · Twitter Web App

...

• Churn: Measure of how many customers stop using your product (e.g. cancel a subscription).

Less costly to keep a customer than bring a new one

Prevent churn

Replying to @latimesent

Streaming platforms like HBO Max and Disney+ are struggling with a phenomenon known as "churn." We explain:

How fast do you cancel streaming services? It's a problem for Hollywood A new report suggests more than 60% of people who dropped a streaming service did so after they watched the show or movie that got them to sign up. 8 latimes.com

8:34 PM · Mar 28, 2021 · Twitter Web App

• Churn: Measure of how many customers stop using your product (e.g. cancel a subscription).

Less costly to keep a customer than bring a new one

Prevent churn

Identify customer that are likely to cancel/quit/fail to renew

Replying to @latimesent

Streaming platforms like HBO Max and Disney+ are struggling with a phenomenon known as "churn." We explain:

How fast do you cancel streaming services? It's a problem for Hollywood A new report suggests more than 60% of people who dropped a streaming service did so after they watched the show or movie that got them to sign up. $\mathscr E$ latimes.com

8:34 PM · Mar 28, 2021 · Twitter Web App

Bias vs Variance

"There are no free lunches in statistics"

- Not one method dominates others: Context/dataset dependent.
- Remember that the goal of prediction is to have a method that is accurate in predicting outcomes on previously unseen data.
 - Validation set approach: Training and testing data

Balance between flexibility and accuracy

Bias vs Variance

Variance

"[T]he amount by which f would change if we estimated it using a different training dataset"

Bias

"[E] rror introduced by approximating a real-life problem with a model"

Which models do you think are higher variance: More flexible models or less flexible models?

Bias vs. Variance: The ultimate battle

- In inference, bias >> variance
- In prediction, we care about both:
 - Measures of accuracy will have both bias and variance.

Trade-off at different rates

How do we measure accuracy?

Different measures:

- Remember $Adj R^2$?
- Mean Squared Error (MSE): Can be decomposed into variance and bias terms

$$MSE = rac{1}{n}\sum_{i=1}^{n}(y_i - \hat{f}\left(x_i
ight))^2$$

How do we measure accuracy?

Different measures:

• Akaike Information Criterion (AIC): Balances goodness of fit while penalizing for number of predictors

$$AIC = 2(d+1) - 2\log(\hat{L}) \stackrel{OLS}{=} rac{1}{n\hat{\sigma}^2}(RSS + 2d\hat{\sigma}^2)$$

• Bayesian Information Criterion (BIC): Balances goodness of fit while penalizing for number of predictors

$$BIC = (d+1)\log(n) - 2\log(\hat{L}) \stackrel{OLS}{=} rac{1}{n\hat{\sigma}^2}(RSS + \log(n)d\hat{\sigma}^2)$$

where $\hat{\sigma}^2$: Estimate of the error variance (full model), d: Number of predictors, \hat{L} : Maximum likehood estimate.

Example: Let's predict pre-churn!

• You work at Disney+ and you know that a good measure for someone at risk of unsubscribing is the times they've logged in the past week:

```
disney <- read.csv("https://raw.githubusercontent.com/maibennett/sta235/main/exampleSite/content/Cla
head(disney)</pre>
```

```
## id female city age logins mandalorian unsubscribe
## 1 1 1 1 53 10 0 1
## 2 2 1 1 48 7 1 0
## 3 3 0 1 45 7 1 0
## 4 4 1 1 51 5 1 0
## 5 5 1 1 45 10 0 0 1
```

Two candidates: Simple vs Complex

• Simple Model:

$$logins_i = eta_0 + eta_1 imes mandalorian + eta_2 imes city + arepsilon_i$$

• Complex Model:

$$egin{aligned} logins_i = & eta_0 + eta_1 imes mandalorian + eta_2 imes age + eta_3 imes age^2 + \ & eta_4 imes city + eta_5 imes female + arepsilon_i \end{aligned}$$

Create Validation Sets

```
set.seed(100) #Always set seed for replication!

n <- nrow(disney)

train <- sample(1:n, n*0.8) #randomly select 80% of the rows for our training sample

train.data <- disney %>% slice(train)
test.data <- disney %>% slice(-train)
```

Create Validation Sets

```
set.seed(100) #Always set seed for replication!
n <- nrow(disney)

train <- sample(1:n, n*0.8)

train.data <- disney %>% slice(train)
test.data <- disney %>% slice(-train)
```

Create Validation Sets

```
set.seed(100) #Always set seed for replication!
n <- nrow(disney)
train <- sample(1:n, n*0.8) #randomly select 80% of the rows for our training sample
train.data <- disney %>% slice(train)
test.data <- disney %>% slice(-train)
```

Estimate Accuracy Measure

```
library(modelr)
lm_simple <- lm(logins ~ mandalorian + city, data = train.data)</pre>
lm complex <- lm(logins ~ female + city + age + I(age^2) + mandalorian, data = train.data)</pre>
# For simple model:
rmse(lm simple, test.data)
## [1] 2.089868
# For complex model:
rmse(lm complex, test.data)
## [1] 2.093429
```

• Which one would you prefer?

Cross-Validation

• To avoid using only one training and testing dataset, we can iterate over k-fold division of our data:

Cross-Validation

Procedure for *k-fold* cross-validation:

- 1. Divide your data in *k-folds* (usually, K=5 or K=10).
- 2. Use k=1 as the testing data and $k=2,\ldots,K$ as the training data.
- 3. Calculate the accuracy measure A_k on the testing data.
- 4. Repeat for each k.
- 5. Average A_k for all $k \in K$.

Main advantage: Use the entire dataset for training AND testing.

Extreme scenario: K=n
ightarrow Leave One Out Cross-Validation (LOOCV)

```
library(caret)
set.seed(100)
train.control <- trainControl(method = "cv", number = 10)
lm_simple <- train(logins ~ mandalorian + city, data = disney, method="lm", trControl = train.control
lm_simple</pre>
```

```
library(caret)
set.seed(100)
train.control <- trainControl(method = "cv", number = 10)
lm_simple <- train(logins ~ mandalorian + city, data = disney, method="lm", trControl = train.control
lm_simple</pre>
```

```
library(caret)
set.seed(100)
train.control <- trainControl(method = "cv", number = 10)
lm_simple <- train(logins ~ mandalorian + city, data = disney, method="lm", trControl = train.control
lm_simple</pre>
```

Rsquared MAE

Tuning parameter 'intercept' was held constant at a value of TRUE

2.087314 0.6724741 1.639618

##

RMSE

```
library(caret)
set.seed(100)
train.control <- trainControl(method = "cv", number = 10)</pre>
lm_simple <- train(logins ~ mandalorian + city, data = disney, method="lm", trControl = train.control)</pre>
lm_simple
## Linear Regression
##
## 5000 samples
      2 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 4500, 4501, 4499, 4500, 4500, 4501, ...
## Resampling results:
##
```

Stepwise selection

- We have seen how to choose between some given models. But what if we want to test all possible models?
- Stepwise selection: Computationally-efficient algorithm to select a model based on the data we have (subset selection).

Algorithm for forward stepwise selection:

- 1. Start with the *null model*, M_0 (no predictors)
- 2. For k = 0, ..., p 1: (a) Consider all p k models that augment M_k with one additional predictor. (b) Choose the *best* among these p k models and call it M_{k+1} .
- 3. Select the single best model from M_0, \ldots, M_p using CV.

Backwards stepwise follows the same procedure, but starts with the full model.

Will forward stepwise subsetting yield the same results as backwards stepwise selection?

How do we do stepwise selection in R?

```
library(leaps)
regfit.fwd <- regsubsets(logins ~ . - unsubscribe, data=disney, method = "forward")</pre>
summary(regfit.fwd)
## Subset selection object
## Call: regsubsets.formula(logins ~ . - unsubscribe, data = disney, method = "forward")
## 5 Variables (and intercept)
               Forced in Forced out
## id
                   FALSE
                              FALSE
## female
                   FALSE
                          FALSE
FALSE
FALSE
                              FALSE
## city
                  FALSE
                  FALSE
                              FALSE
## age
## mandalorian
                  FALSE
                              FALSE
## 1 subsets of each size up to 5
## Selection Algorithm: forward
            id female city age mandalorian
                             11 11 11 11
```

How do we do stepwise selection in R?

• Which one would you choose out of the 5 models? Why?

How do we do stepwise selection in R?

7.026494

```
# We can see the number of covariates that is optimal to choose:
lm.fwd$bestTune
    nvmax
## 2
# And how does that model looks like:
summary(lm.fwd$finalModel)
## Subset selection object
## 5 Variables (and intercept)
            Forced in Forced out
## id
                 FALSE
                            FALSE
## female
          FALSE
                            FALSE
         FALSE
FALSE
                            FALSE
## city
## age
                            FALSE
## mandalorian
               FALSE
                            FALSE
## 1 subsets of each size up to 2
## Selection Algorithm: forward
           id female city age mandalorian
# If we want to recover the coefficient names, we can use the coef() function:
coef(lm.fwd$finalModel, lm.fwd$bestTune$nvmax)
## (Intercept)
                     city mandalorian
                 2.577163 -6.265728
```

Takeaway points

- In prediction, everything is going to be about bias vs variance.
- Importance of validation sets.
- We have methods to select models.

Next class

- Continue with prediction and model selection
- Shrinkage methods:
 - Ridge regression and Lasso.

References

- James, G. et al. (2021). "Introduction to Statistical Learning with Applications in R". Springer. Chapter 2, 5, and 6.
- STDHA. (2018). "Stepwise Regression Essentials in R."
- STDHA. (2018). "Cross-Validation Essentials in R."