

A VISION-BASED INTELLIGENT SYSTEM FOR EYE CLINIC

PROPOSAL PRESENTATION

Team Members

Zhong Xiaohui Zheng Xiaolan Lim Chang Siang Li Zhenghao, Kelvin

Project sponsor (Kelvin)

- This is a self-sponsored project relating to the healthcare domain
- There is no real-world dataset available for this project:
 - Open-Source dataset
 - Create our own dataset
- Domain expertise will be provided by team member, Kelvin Li

Business problem statement (Kelvin)

- Specialist clinics in hospital are overwhelm
- Clinical staffs are occupied by routine basic examination work
- Objective:
 - Free clinical staff capacity by automating routine and low-risk health examination work
 - Develop a vision-based system to observe and interact with patients
- Impact:
 - Our vision system will should easily adapt to different types of clinic in Singapore
 - Help to ease the manpower crunch and improve efficiency in delivery of healthcare services in Singapore

Project Objective (Xiaohui)

- To design and develop an intelligent vision system for Smart Health Teleconsultation
- The system should have these capabilities:
 - Image-Based person identification
 - Ability to detect and count the number of person in the view
 - Ability to detect the presence and absence of objects present on the person's face
 - Ability to detect the orientation of the eyes
 - Ability to detect and recognize body gesture for touchless operation

Solution Overview (Xiaohui)

Technical problem statement (Xiaolan) (Xiaolan)

- Patient Registration: A system that can perform patient registration and identify through visionbased recognition system.
- Scene Understanding: The vision system must be able to understand the situation of the scene and provide suggestion actions.
 - Example 1: Only patient can be presented in examination room. Any other persons must be asked to leave the room before the examination starts.
 - Example 2: The system may instruct the patient to perform certain actions. The vision system must be able to recognize that the patient has performed the correct actions before proceeding to the next step.

Related work (Xiaolan)

Existing Implementations:

- https://informatics.bmj.com/content/22/3/323
- https://www.uspharmacist.com/article/solohealth-launchesinteractive-vision-test-kiosk
- https://drugstorenews.com/otc/pursuant-health-intros-retinalscreening-its-self-service-retail-kiosks

Related works:

- Facial Recognition System
- Object Detection system
- Remote Patient Monitoring

	Face Recognition System	Person detection system	Scene Understanding System
Existing Model	Self-develop	YOLOOpenCV	Self-develop
Dataset	MS-Celeb-1MiQiYi-VID	MS-Celeb-1MiQiYi-VIDINRIA Person Dataset	Self-generated

Proposed technical approach

References

- 1. dlib HoG Face feature dectection: http://dlib.net/face_detector.py.html
- Keras CNN model zoo: https://keras.io/api/applications/

Proposed technical approach

Person Detection System

Reference

- 1. OpenCV models: https://github.com/opencv/opencv/tree/master/data
- 2. Keras Pretrained models: https://keras.io/api/applications/

Proposed technical approach

Scene understanding system

Reference

1. You Only Look Once: Unified, Real-Time Object Detection: https://arxiv.org/abs/1506.02640

Experimental design (Kelvin)

Technical metrics

- Accuracy and Precision evaluation for each model during training and validation
- Accuracy and Precision evaluation actual usage
- Inference speed comparison

Business metrics

- Time reduction between manual process versus automated process
 - Achieve by setting up mock to emulate real-world process and compare the time taken for current workflow versus improve workflow with our solution

Project deliverables (Xiaohui)

- Will deliver an end-to-end intelligent system that interacts with patient from the registration stage to the end of examination
- Will deliver a video demonstration of the capability of the vision system, namely:
 - Capturing image data from patient photo ID
 - Ability to detect person in the scene, and
 - Perform person identification by facial features
 - Ability to detect and identify objects or obstruction on person's face
 - Ability to correct classify if the person has performed the correct actions (e.g., cover left eye or right eye)

Team members' responsibility

Team member	Responsibility
Zhong Xiaohui	 Team Lead UX Designer AI Engineer for Person Detection System Project manangement
Zheng Xiaolan	 Dataset creation and annotation Background research Al Engineer for Scene understanding system
Lim Chang Siang	 Dataset sourcing Establish AI workflow for model development AI Engineer for Person Recognition System Software development and system integration
Li Zhenghao, Kelvin	 Domain Expert / Product Owner Dataset creation and annotation Al Engineer for Scene understanding system System evaluation

List the relevant references.