4.1. Observability of Nonlinear Systems

Nonlinear systems of the following form are considered:

$$\Sigma: \begin{array}{lcl} \dot{\boldsymbol{x}} & = & \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{u}), & \boldsymbol{x} \in \mathcal{M} \subseteq R^n \\ \boldsymbol{y} & = & \boldsymbol{h}(\boldsymbol{x}), & \boldsymbol{y} \in R^m \end{array}$$

The discussion follows Hermann and Krener (1977)

Definition: Indistinguishable states

Two states $\mathbf{x}_0, \mathbf{x}_1 \in \mathcal{M}$ are said to be **indistinguishable**, if for every admissible input $\mathbf{u}(t), t_0 \leq t \leq t_{end}$, identical outputs result:

$$\mathbf{y}(t; \mathbf{x}_0) \equiv \mathbf{y}(t; \mathbf{x}_1)$$
 for $t_0 \leq t \leq t_{end}$

Notation: $I(\mathbf{x}_0)$ = set of all points that are indistinguishable from \mathbf{x}_0 .

Definition: Observability

System Σ is observable at \mathbf{x}_0 , if $\mathbf{l}(\mathbf{x}_0) = \mathbf{x}_0$. System Σ is observable, if $\mathbf{l}(\mathbf{x}) = \mathbf{x}$ for all $\mathbf{x} \in \mathcal{M}$.

Remark:

- Observability is sometimes called "global observability".
- Reconstruction of \boldsymbol{x} from measurement data may be possible for certain inputs $\boldsymbol{u}(t), t_0 \leq t \leq t_{end}$ only.

Definition: Local observability

System Σ is locally observable at \mathbf{x}_0 , if for every open neighbourhood \mathcal{N} of \mathbf{x}_0 and for every solution $\mathbf{x}(t)$ completely in \mathcal{N} $I_{\mathcal{N}}(\mathbf{x}_0) = \mathbf{x}_0$. System Σ is locally observable, if $I_{\mathcal{N}}(\mathbf{x}) = \mathbf{x}$ for all $\mathbf{x} \in \mathcal{M}$.

Note that local observability is a stronger property than observability.

Definition: Weak observability

System Σ is weakly observable at \mathbf{x}_0 , if there is some neighbourhood $\mathcal V$ of \mathbf{x}_0 , where $I(\mathbf{x}_0) \cap \mathcal V = \mathbf{x}_0$. System Σ is weakly observable, if such a neighbourhood $\mathcal V$ exists for all $\mathbf{x} \in \mathcal M$.

Definition: Local weak observability

System Σ is locally weakly observable at \mathbf{x}_0 , if there is some neighbourhood \mathcal{V} of \mathbf{x}_0 , where $I_{\mathcal{N}}(\mathbf{x}_0) \cap \mathcal{V} = \mathbf{x}_0$, for all solutions $\mathbf{x}(t)$ completely in any neighbourhood \mathcal{N} of \mathbf{x}_0 . System Σ is locally weakly observable, if this property holds for all $\mathbf{x} \in \mathcal{M}$.

Summary:

For LTI systems:

observable \iff locally observable \iff weakly observable \iff locally weakly observable

4.1.2. Observability Mapping

Lie Derivative

Consider autonomous system $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}), \quad \mathbf{y} = \mathbf{h}(\mathbf{x})$:

Time derivatives of the measurements:

$$\frac{d\mathbf{y}}{dt} = \frac{\partial \mathbf{h}}{\partial \mathbf{x}} \frac{d\mathbf{x}}{dt} = \frac{\partial \mathbf{h}}{\partial \mathbf{x}} \mathbf{f}(\mathbf{x})$$

Higher derivatives of y can be written compactly by introducing the operator $L_f[.]$ (Lie derivative):

$$L_{f}[\mathbf{h}] := \frac{\partial \mathbf{h}}{\partial \mathbf{x}} \mathbf{f}(\mathbf{x}) = \text{ time derivative of } \mathbf{h} \text{ along the system trajectory } \mathbf{x}$$

$$\Rightarrow \frac{d^{2}\mathbf{y}}{dt^{2}} = \frac{\partial}{\partial \mathbf{x}} \left(\frac{\partial \mathbf{h}}{\partial \mathbf{x}} \mathbf{f}(\mathbf{x}) \right) \mathbf{f}(\mathbf{x}) = L_{f}[L_{f}[\mathbf{h}]] = L_{f}^{2}[\mathbf{h}]$$

$$\frac{d^{k}\mathbf{y}}{dt^{k}} = L_{f}^{k}[\mathbf{h}]$$

4.1.2. Observability Mapping

Observability mapping Q(x) for an autonomous system

$$\begin{pmatrix} \mathbf{y} \\ \dot{\mathbf{y}} \\ \ddot{\mathbf{y}} \\ \vdots \end{pmatrix} = \begin{pmatrix} L_f^0[\mathbf{h}(\mathbf{x})] \\ L_f^1[\mathbf{h}(\mathbf{x})] \\ L_f^2[\mathbf{h}(\mathbf{x})] \\ \vdots \end{pmatrix} =: \mathbf{Q}(\mathbf{x})$$

- Q(x) defines a set of nonlinear equations for determining x from $V, \dot{V}, \ddot{V}, \dots$
- For a general nonlinear system, the number of time derivatives is not fixed (Cayley Hamilton theorem is not applicable!)
- For LTI systems: $\mathbf{Q}(\mathbf{x}) = \mathcal{O}\mathbf{x}$ with Kalman observability matrix \mathcal{O} .

4.1.2. Observability Mapping

Construction of the observability mapping Q(x) for a non-autonomous system

Assume input signals as piecewise constant.

Abbreviation: $f(x, u_i) =: f_i(x)$.

• Form derivatives of y with respect to $\Delta t_1, \Delta t_2, \dots, \Delta t_k$. It can be shown (Hermann and Krener, 1977) that

$$\left. \frac{\partial}{\partial \Delta t_1} \left(\frac{\partial}{\partial \Delta t_2} \left(\cdots \frac{\partial \mathbf{y}}{\partial \Delta t_k} \right) \right) \right|_{\Delta t_1 = \cdots = \Delta t_k = 0} = L_{\mathbf{f}_1} \left[L_{\mathbf{f}_2} \left[\cdots L_{\mathbf{f}_k} [\mathbf{h}] \right] \right]$$

 The rows of Q(x) consist of all possible Lie derivatives of the above type.

4.1.3. Observability Rank Condition

Definition:

System Σ satisfies the observability rank condition at \mathbf{x}_0 , if $\frac{\partial \mathbf{Q}(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}_0}$ contains n linear independent row vectors.

Observability indices:

System Σ is said to have observability indices $\kappa_1, \kappa_2, \dots, \kappa_m$ at \mathbf{x}_0 , if observability rank condition is satisfied after forming κ_i derivatives of y_i .

Observability indices of a given system are not unique.

Observability condition:

The observability rank condition is sufficient, but not necessary for local weak observability.

4.1.4. Linearised System

Consider a steady state solution x_s of an autonomous system with $f(x_s) = 0$ and the linearised system

$$\Delta \dot{x} = A \Delta x \text{ with } A = \frac{\partial f}{\partial x}\Big|_{X_s}$$

$$\Delta y = C \Delta x \text{ with } C = \frac{\partial h}{\partial x}\Big|_{X_s}$$

Observability of the linearised system is equivalent to the observability rank condition at x_s .

4.1.5. Structural Observability

- Full structural rank of $\partial \mathbf{Q}(\mathbf{x})/\partial \mathbf{x}$ is necessary to satisfy the observability rank condition.
- Output connectivity of all states is necessary for observability of the nonlinear system.

Example:

$$\dot{x}_1 = f_1(x_1, x_3)
\dot{x}_2 = f_2(x_1, x_2, x_3)
\dot{x}_3 = f_3(x_1, x_3)
y = h(x_3)$$

$$\begin{array}{rcl}
\dot{x}_1 & = & f_1(x_1, x_3) \\
\dot{x}_2 & = & f_2(x_1, x_2, x_3) \\
\dot{x}_3 & = & f_3(x_1, x_3) \\
y & = & h(x_3)
\end{array}
\quad \begin{bmatrix}
\frac{\partial \mathbf{Q}(\mathbf{x})}{\partial \mathbf{x}}
\end{bmatrix} = \begin{pmatrix}
0 & 0 & * \\
* & 0 & * \\
* & 0 & * \\
\vdots & \vdots & \vdots
\end{pmatrix}$$

⇒ observability rank condition not satisfied

 $\Rightarrow x_2$ not output connected.

4.1.6. Nonlinear Canonical Forms

Observability canonical form:

Consider an autonomous system with a scalar measurement:

$$\dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x}), \quad \boldsymbol{y} = \boldsymbol{h}(\boldsymbol{x})$$

Idea for nonlinear state transformation:

Use y and its time derivatives as new state vector \bar{x} :

$$\bar{\boldsymbol{x}} = \begin{pmatrix} y \\ \dot{y} \\ \vdots \\ \frac{d^{n-1}y}{dt^{n-1}} \end{pmatrix} = \begin{pmatrix} h(\boldsymbol{x}) \\ L_f h(\boldsymbol{x}) \\ \vdots \\ L_f^{n-1} h(\boldsymbol{x}) \end{pmatrix} =: \bar{\Phi}(\boldsymbol{x})$$

 $\bar{\mathbf{x}} = \bar{\Phi}(\mathbf{x})$ defines a nonlinear coordinate transformation

4.1.6. Nonlinear Canonical Forms

Observability canonical form:

Resulting transformed system equations:

$$\bar{S}: \dot{\bar{x}} = \begin{pmatrix} \bar{x}_2 \\ \bar{x}_3 \\ \vdots \\ \bar{x}_n \\ \bar{f}_n(\bar{x}) \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix} \bar{x} + \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ \bar{f}_n(\bar{x}_1, \dots, \bar{x}_n) \end{pmatrix}$$

$$y = \bar{x}_1$$

Condition for existence of the transformation $x \leftrightarrow \bar{x}$:

• $\bar{\Phi}^{-1}$ exists (\Rightarrow system is observable)

Or:

r: $\bullet \ \frac{\partial \bar{\Phi}}{\partial \mathbf{x}} \text{ is invertible } (\Rightarrow \text{ system is locally weakly observable})$

4.1.6. Nonlinear Canonical Forms

Nonlinear observer canonical form

$$S^*: \qquad \dot{\mathbf{x}^*} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix} \mathbf{x}^* - \begin{pmatrix} a_{n-1}(y) \\ a_{n-2}(y) \\ \vdots \\ a_1(y) \\ a_0(y) \end{pmatrix}$$

$$y = h^*(\mathbf{C}\mathbf{x}^*) \Longrightarrow \mathbf{C}\mathbf{x}^* = h^{*-1}(y) =: \gamma(y)$$

- all nonlinearities depend on y only ⇒ simple observer design.
- transformation to a system in observer canonical form is very difficult in most cases.