

HUMAN MACHINE TEACHERS

JESSE, JOANNE, ERIC, MARTTI, SEFA & AYRTON

VOORTGANG CONTAINER PROJECT

Onderzoeksvragen

Hoofdvraag

Met welke methode(s) kunnen we het uitladingsdeel van het container stacking probleem optimaal oplossen?

Deelvragen

- 1. Welke methoden (heuristieken) zijn mogelijk bij het container stacking probleem?
- 2. Wat is een move en wat zijn de restricties?
- 3. Welke containers zijn er en welke gaan we gebruiken?
- 4. Hoe is de haven ingericht en wat zijn de restricties?
- 5. Hoe kunnen we de container data simuleren?

Globale planning

Weeknummer	Label	Onderdeel	Voortgang	Begindatum	Dagen
	Planningen	Globale planning	100%	10-okt	. 1
	Plan van aanpak	Tussenresultaten	80%	10-okt	2
	Plan van aanpak	Eindresultaat	60%	10-okt	: 2
	Dataset	Dataset verkrijgen	90%	10-okt	: 2
	Literatuuronderzoek	LO Haven etc	0%	10-okt	. 2
1	Literatuuronderzoek	LO containers	0%	10-okt	: 2
_	Literatuuronderzoek	LO heuristieken	0%	10-okt	: 6
	Presentaties	Persentatie week 8	0%	12-okt	2
	Dataset	Oriënteren dataset	0%	12-okt	2
	Literatuuronderzoek	LO machine learning	0%	12-okt	. 7
	Dataset	Data Cleanen	0%	14-okt	. 9
2	Heuristieken	Verschillende heuristieken toepassen & beste kiezen	0%	17-okt	: 6
	Dataset	Data simuleren	0%	17-okt	: 6
	Machine/Deep Learning	ML modellen testen en toepassen	0%	19-okt	: 14
3	Heuristieken	Heuristiek optimaliseren/ verbeteren	0%	31-okt	: 10
	Presentaties	Presentatie week 10	0%	2-nov	, 2
	Machine/Deep Learning	ML model verbeteren	0%	2-nov	8
4	Machine/Deep Learning	ML model verbeteren	0%	2-nov	. 8
	Machine/Deep Learning	Code samenvoegen/ koppelen	0%	9-nov	, 2
	Presentaties	Einpresentatie	0%	9-nov	, 2
G	Planningen	x	80%	10-okt	: 1
	Plan van aanpak	El .	70%	10-okt	2
	Literatuuronderzoek	8	0%	10-okt	: 9
	Dataset	2	0%	10-okt	13
	Heuristieken	w.	0%	17-okt	: 24
	Machine/Deep Learning	şí.	0%	19-okt	22
	Visualizer	-	0%	7-nov	3

Onderzoek naar containers

Container afmeting:

20 ft standaard container is waar we het beste voor kunnen gaan, want dit is de afmeting van de standaard.

Onderzoek naar datasets

```
import pandas as pd
#Contains all the actions that get executed (and the status of those actions)
acti = pd.read csv('/data/container/actions.csv').dropna(axis=1, how='all')
#Contains all the locations of the containers.
#NOTE: Er zijn 4 plekken waar de containers kunnen staan. (Op de Truck, Yard Terminal, Simple Terminal en Vessel)
       Dus het lijkt alsof de data gemixt is. Sommige data wordt niet gebruikt voor verschillende types dtypes.
       Bii SimpleTerminal staat er in de Cachedstrina de Locatie van de container.
       Ik weet niet wat bay, tier en row betekenen. Dit zouden we nog moeten uitzoeken.
con loc = pd.read csv('/data/container/containerlocationinformation.csv').dropna(axis=1, how='all')
#Contains all the movements of the containers that have been executed. This is why hand is larger than acti.
#NOTE: In de kolom jobsposition zit een epoch timestamp.
hand = pd.read csv('/data/container/handling.csv',low memory=False).dropna(axis=1, how='all')
#Contains the machinery that's available with a lot of info about this machinery.
#NOTE: Sommige machines zijn dus in andere landen. De longitude en latitude lijken ver van Nederland te zitten bij sommige m
       Verder zijn er ook sommige machines die gedelete zijn.
mach = pd.read csv('/data/container/machine.csv').dropna(axis=1, how='all')
#Contains markers showing what dimensions the container stacks and lots have. I'm not entirely sure how it works.
mark = pd.read csv('/data/container/marker.csv').dropna(axis=1, how='all')
#Contains some kinda info about the stacks.
stack try = pd.read csv('/data/container/stackentry.csv').dropna(axis=1, how='all')
#Contains some kinda info about the stacks.
stacks = pd.read_csv('/data/container/stacks.csv').dropna(axis=1, how='all')
```

Vragen?