

What Is The Final Project?

Build a lane-keeping car using:

- RC car
- (undergraduate teams) RPi 4
- (graduate teams) Beaglebone Al-64
- Optical speed encoder
- Batteries (portable phone charger; 7.2 V battery)
- WiFi adapter
- Webcam

Python & openCV

Code From Last Year Available

Code on Hackster

You can use that code liberally, but be sure to cite it in your code files and in your written submission

Reliable Source: TikTok

https://www.tiktok.com/@mamari_18/video/7041 642065960226095?is_copy_url=0&is_from_web app=v1&item_id=7041642065960226095

Zoom Lecture On Monday 11/20

Control & Feedback

Technology Controversy In

You sha

Tesla vehicle in 'Full Self-Driving' beta mode 'severely damaged' after crash in California

It would appear to be the first crash involving Tesla's controversial new driver assist feature

By Andrew J. Hawkins | @andyjayhawk | Nov 12, 2021, 10:09am EST

https://www.theverge.com/2021/11/12/22778135/tesla-full-se lf-driving-beta-crash-fsd-california

"I don't know what the state's going to do next, but I suspect that it's something along the lines of... they're going to use the iPad, and Mr. Binger was talking about pinching the screen. iPads, which are made by Apple, have artificial intelligence in them that allow things to be viewed through three dimensions and logarithms."

We've Heard This Before

Making Our Own Mobile & Embedded System

https://www.instructables.com/ /Autonomous-Lane-Keeping-Car-Using-Raspberry-Pi-and/

Pipeline of Image Processing From Instructable

What Do We Call This Approach

- Pipeline approach
- Tesla
- Likely ever other major player apart from Comma Al

That's Our X

Tesla's X & Comma Al's X

Figure 1: **Deep Learning based self-driving car**. The architecture can be implemented either as a sequential perception-planing-action pipeline (a), or as an End2End system (b). In the sequential pipeline case, the components can be designed either using AI and deep learning methodologies, or based on classical non-learning approaches. End2End learning systems are mainly based on deep learning methods. A safety monitor is usually designed to ensure the safety of each module.

Pipeline of Image Processing From Instructable

ROI: Region of Interest

Do We Need The Whole Scene?

Line Segment Detection

- How do we infer and present a shape?
- We have edges
- But there are holes
- Python: cv2.HoughLinesP()
 - frame, rho, theta,
 min_threshold,
 minLineLength, maxLineGap
 - Returns line endpoints

```
def detect_line_segments(cropped_edges):
  rho = 1
  theta = np.pi / 180
  min_threshold = 10
  line segments =
       cv2.HoughLinesP(cropped_edges,
              rho,
              theta,
              min_threshold,
              np.array([]),
              minLineLength=5,
              maxLineGap=0)
  return line_segments
```


Hough Transform: Locate Shapes

- Feature extraction
- Patented! (1962)
- Normally plot x and y for a line
 - Multiple points
 - One line
- Line: y=ax+b [y=mx+b]
- Can also plot line as "a" (slope; m) and "b"
 - Multiple lines
 - One point

https://towardsdatascience.com/lines-detection-with-hough-transform-84020b3b1549

Problem

19

Rho & Theta

- Notice cv2.HoughLinesP() takes rho & theta rather than slope and intercept
 - This function concerned with precision of rho and theta, not actual rho and theta values
- Radius and angle
- $y=-x\cos\theta/\sin\theta + \rho/\sin\theta$

[FIG3] Using the normal parameterization of a straight line resolved the problem of "throwing a line at random" and also suggested a superior transform for computer vision purposes.

Real lane image from: User raja_961, "Autonomous Lane-Keeping Car Using Raspberry Pi and OpenCV". https://www.instructables.com/Autonomous-Lane-Keeping-Car-Using-Raspberry-Pi-an@2 Image indexing figure from: "Understanding Coordinate System". URL: https://noobeed.com/nb_coord_system.htm

Real lane image from: User raja_961, "Autonomous Lane-Keeping Car Using Raspberry Pi and OpenCV". https://www.instructables.com/Autonomous-Lane-Keeping-Car-Using-Raspberry-Pi-an22 Image indexing figure from: "Understanding Coordinate System". URL: https://noobeed.com/nb_coord_system.htm

Real lane image from: User raja_961, "Autonomous Lane-Keeping Car Using Raspberry Pi and OpenCV". https://www.instructables.com/Autonomous-Lane-Keeping-Car-Using-Raspberry-Pi-ar24 Image indexing figure from: "Understanding Coordinate System". URL: https://noobeed.com/nb_coord_system.htm

Getting Our Lane Lines: Just Take Some Averages

PWM: Pulse-Width Modulation

- Analog to digital encoding
- We tend to control motors via PWM
- PWM involves changing the duty cycle of a square wave
- DC of 0% means 0V DC waveform
- DC of 100% means 3.3V DC waveform
- DC of 50% means typical square wave going from 0V to 3.3V back and forth

"Pulse Width Modulation". Electronics Tutorials. URL: https://www.electronics-tutorials.ws/blog/pulse-width-modulation.html

Translating PWM To Steering & Speeds For Our RC Car

- Electronic speed controller (ESC) for speed motors
- The steering motor is a servo motor

"Pulse Width Modulation". Electronics Tutorials. URL: https://www.electronics-tutorials.ws/blog/pulse-width-modulation.html

Pipeline of Image Processing From Instructable

Feedback: PID Control

PID Controller

