10. Übung Maß- und Wahrscheinlichkeitstheorie 1 SS2019

1. $f:[a,b] \rightarrow mathbbR$ sei eine stetige Funktion. Zeigen Sie, dass

$$\int_{[a,b]} f d\lambda = \int_a^b f(x) dx.$$

Es stimmen also in diesem Fall Lebesgue- und Riemann-Integral überein (approximieren Sie f durch geeignete Treppenfunktionen).

2. Die Verteilungsfunktion F sei stetig differenzierbar und f stetig. Dann gilt

$$\int_{]a,b]} f d\mu_F = \int_a^b f(x)F'(x)dx.$$

3. Im Maßsraum $(\Omega, 2^{\Omega}, \zeta)$ mit $\zeta(A) = |A|$ gilt

$$\int f d\zeta = \sum_{\omega \in \Omega} f(\omega).$$

4. Gegeben ist die Verteilungsfunktion

$$F(x) = \begin{cases} e^{-x} & \text{wenn } x > 0, \\ 0 & \text{sonst.} \end{cases}$$

Bestimmen Sie $\int x d\mu_F(x)$.

5. Zeigen Sie: die Folge

$$f_n(\omega) = \begin{cases} 1 & \text{wenn } \sqrt{n} - \lfloor \sqrt{n} \rfloor \le \omega \le \sqrt{n+1} - \lfloor \sqrt{n} \rfloor, \\ 0 & \text{sonst} \end{cases}$$

konvergiert in $([0,1],\mathfrak{B},\lambda)$ im Maß, aber nicht fast überall.

- 6. $(\Omega, \mathfrak{S}, \mathbb{P})$ sei ein Wahrscheinlichkeitsraum, $A_n \in \mathfrak{S}, n \in \mathbb{N}$. Zeigen Sie:
 - (a) Die Folge $A_n()$ konvergiert genau dann in Wahrscheinlichkeit gegen 0, wenn $\lim \mathbb{P}(A_n) = 0$.
 - (b) Wenn $\sum_n \mathbb{P}(A_n) < \infty$, dann konvergiert die Folge $A_n()$ fast sicher gegen 0.
 - (c) Wenn die Ereignisse A_n unabhängig sind, dann ist die hinreichende Bedingung aus Punkt b) auch notwendig.
- 7. Der Satz von Lusin: f sei eine Borel- (oder Lebesgue-) messbare Funktion auf [a,b]. Dann gibt es für jedes $\epsilon > 0$ ein $A \in \mathfrak{B}$ mit $\lambda(A) < \epsilon$, sodass die Einschränkung von f auf A stetig ist (in der Vorlesung wurde gezeigt, dass es eine Folge von stetigen Funktionen gibt, die fast überall gegen f konvergiert).