Universidade Estadual de Campinas Faculdade de Engenharia Elétrica e de Computação MÉTODOS DA ENGENHARIA ELÉTRICA Professor Anésio dos Santos Júnior

PROVA 02

OUESTÕES EXPOSITIVAS

Questão 1 – Considere o campo vetorial $\vec{M} = (4y+10z)\hat{a}_x + (4x+6z)\hat{a}_y + (5x+6y)\hat{a}_z$. Calcule o seu rotacional no ponto (-2;9;16). Calcule a integral de linha $\oint_C \vec{M} \cdot d\vec{\ell}$ onde o caminho C é definido pelos segmentos orientados \overrightarrow{PQ} , \overrightarrow{QR} , \overrightarrow{RT} e \overrightarrow{TP} onde o pontos P(0;2;0), Q(0;2;1), R(1;2;1) e T(1;2;0) são dados em coordenadas cartesianas.

Questão 2 – Considere conhecidos o campo vetorial $\vec{M} = M_x \hat{a}_x + M_y \hat{a}_y + M_z \hat{a}_z$, o campo rotacional $\vec{N} = \nabla \times \vec{M}$, o caminho fechado e orientado C, a integral de linha sobre C $\oint_C \vec{M} \cdot d\vec{\ell} = J$ e a área S da superfície circundada por C.

a-)Determine o fluxo do campo \vec{N} , $\iint \vec{N} \cdot d\vec{S}$, onde S é a superfície limitada pelo caminho C;

b-)Calcule o fluxo do campo $\vec{N}, \ \underset{c}{\oiint} \vec{N} \cdot d\vec{S}$, onde S' é uma superficie fechada (Gaussiana).

Questão 3 – Resolva as seguintes equações e represente suas soluções no plano complexo:

- a-) $z^3 + i = 0$;
- b-) $z^4 i 2\sqrt[2]{3} z^2 4 = 0$.

Questão 4 – Considere a função $\omega = f(z)$ e o conjunto A no plano complexo z. Obtenha a imagem do domínio A mapeada no plano complexo ω através da função f(z) (mapeamento) e as represente geometricamente nos seguintes casos:

$$a\text{--})\,\omega=e^z\;,\;\;A=\left\{z=\left(x,y\right)\in C\;/\;x\in R,\,x=cte\;\;e\;\;\forall y\in R\right\};$$

$$b\text{--})\,\omega = \frac{1}{z}\,,\ \ A = \Big\{z = \big(x,y\big) \in C \ / \ \big|z\big| = \sqrt{x^2 + y^2} \in R, \ \big|z\big| \ge 2 \ \Big\}.$$