Amazon Delivery Time Prediction – Detailed Project Report

1. Problem Statement

Timely deliveries are the backbone of customer satisfaction in e-commerce. Companies like Amazon face challenges due to unpredictable factors such as traffic, weather, distance, and agent delays. The goal of this project is to build a machine learning model that can **predict delivery times more accurately**, helping optimize planning, reduce inefficiencies, and improve customer trust.

2. Data Understanding

- Dataset size: 43,739 records, 16 columns
- Key features:
 - o Agent details Age, Rating
 - o Geographical info Store & Drop coordinates
 - o **Time info** Order date/time, Pickup time
 - External factors Weather, Traffic
 - o **Operational factors** Vehicle type, Area, Product category
 - o **Target variable** Delivery Time (hours)

3. Data Preprocessing

- Handled missing values:
 - o Agent_Rating → filled with median
 - Weather → filled with mode
- Data type conversions:
 - o Converted dates & times to datetime
 - Converted categorical columns to category
- Feature Engineering:
 - o Distance_km → calculated from store & drop coordinates
 - Pickup_Delay_min → difference between order and pickup

- o Order_DayOfWeek → day extracted from date
- o Order_Hour → extracted from order time

4. Exploratory Data Analysis (EDA)

- **Delivery patterns by weekday** Some days show longer delays
- Impact of traffic High traffic significantly increases delivery times
- Weather influence Stormy and foggy weather correlated with longer delays
- Agent rating Higher ratings often linked with faster deliveries
- **Distance factor** Strong positive correlation between distance and delivery time

5. Model Building

Trained multiple models to compare performance:

- 1. **Linear Regression** Baseline, poor fit
- 2. Random Forest Regressor Strong performance, handled non-linearity well
- 3. **Gradient Boosting Regressor** Good, but slightly weaker than Random Forest
- 4. **XGBoost Regressor** Best performing model

6. Model Evaluation

Model	RMSE	MAE	R ²
Linear Regression	32.44	25.70	0.6124
Random Forest	22.98	17.59	0.8054
Gradient Boosting	24.20	18.98	0.7842
XGBoost	22.92	17.87	0.8065

Interpretation:

- Linear Regression was too simple.
- Random Forest and Gradient Boosting captured non-linearity well.

• XGBoost emerged as the best, explaining ~81% of the variance in delivery times.

7. Deployment (Streamlit App)

- A user-friendly app was built in Streamlit.
- Users can input agent details, distance, traffic, weather, etc.
- The app predicts delivery time instantly using the **XGBoost model**.
- Designed for business teams to use predictions without technical knowledge.

8. Conclusion

- Predictive modelling can significantly improve last-mile delivery planning.
- XGBoost provided the most accurate results.
- The app demonstrates an end-to-end pipeline: from raw data → cleaned dataset
 → feature engineering → model training → deployment.
- Businesses can use such models to reduce delays, optimize resources, and improve customer satisfaction.

9. Future Scope

- Incorporate real-time traffic/weather APIs for live predictions
- Explore **deep learning models** for further accuracy
- Extend the system to **recommend optimal routes** along with delivery time prediction