MAT 5210 Homework 3

- 1. Let $\Phi_m(x) \in \mathbb{C}[x]$ be the *m*-th cyclotomic polynomial, the monic polynomial whose roots are the primitive *m*-th roots of 1 in \mathbb{C} . Show that
 - (a) $\Phi_1(x) = x 1$; $\Phi_2(x) = x + 1$; $\Phi_3(x) = x^2 + x + 1$; $\Phi_4(x) = x^2 + 1$.
 - (b) $\prod_{d|m} \Phi_d(x) = x^m 1$.
 - (c) $\Phi_m(x) \in \mathbb{Z}[x]$. [Hint: prove first that $\Phi_m(x) \in \mathbb{Q}[x]$ by induction on m].
 - (d) If p is prime then $\Phi_p(x) = 1 + x + x^2 + \dots + x^{p-1}$ and $\Phi_{p^n}(x) = \Phi_p(x^{p^{n-1}})$.
 - (e) $\deg \Phi_{nm} = \deg \Phi_m \deg \Phi_n$ if (m,n) are relatively prime.
- 2. Find the Galois groups of the following polynomials and for each subgroup identify the corresponding subfield of the splitting field:
 - (a) $x^2 + 1$ over \mathbb{R} ;
 - (b) $x^3 1$ over \mathbb{Q} ;
 - (c) $x^3 5$ over \mathbb{Q} ;
 - (d) $x^6 3x^3 + 2 \text{ over } \mathbb{Q};$
 - (e) $x^5 1$ over \mathbb{Q} ;
 - (f) $x^6 + x^3 + 1$ over \mathbb{Q} .
- 3. Prove that $\mathbb{Q}(\sqrt{2+\sqrt{2}})$ is Galois over \mathbb{Q} , and find its Galois group.
- 4. Find the Galois group of the polynomial $x^{p^n} x t$ over $\mathbb{F}_{p^n}(t)$ (you can assume that this polynomial is irreducible over $\mathbb{F}_{p^n}(t)$).
- 5. Let p be an odd prime, $K = \mathbb{F}_p(t)$, and $f = x^4 t \in K[x]$.
 - (a) Find the splitting field E of f distinguishing the cases $p \equiv 1 \mod 4$ and $p \equiv 3 \mod 4$. (Hint: if α is a root of f, find $c \in E$ such that $c\alpha$ is a root of f).
 - (b) Write down a set of generators for Gal(E/K) distinguishing the cases $p \equiv 1 \mod 4$ and $p \equiv 3 \mod 4$.
 - (c) In the case $p \equiv 1 \mod 4$ write down the Galois correspondence for E: K and Gal(E/K).

- 6. In this exercise you will complete the characterization of finite fields. Let L be a finite field. Recall that there exists a prime number p, and a positive integer n such that $|L| = p^n$. Recall that (L^*, \cdot) is a cyclic group.
 - (a) Show that there exists an irreducible polynomial $g(x) \in \mathbb{F}_p[x]$ such that $L \cong \mathbb{F}_p[x]/(g(x))$.
 - (b) Show that L is a Galois extension of \mathbb{F}_p .
 - (c) Show that, up to isomorphism, there exists a unique finite field of cardinality p^n . This finite field is denoted by \mathbb{F}_{p^n} .
 - (d) Show that the map $\varphi : \mathbb{F}_{p^n} \longrightarrow \mathbb{F}_{p^n}$ defined by $\varphi(y) := y^p$ is an automorphism of \mathbb{F}_{p^n} . This map is called the Frobenius automorphism.
 - (e) Show that $Gal(\mathbb{F}_{p^n}/\mathbb{F}_p) \cong (\mathbb{Z}/n\mathbb{Z}, +)$.
- 7. Let ℓ be a positive integer, p be a prime number, and $f_{\ell} = x^{2^{\ell}} + 1 \in \mathbb{F}_p[x]$. If N > 1 is an integer, we denote by $(\mathbb{Z}/N\mathbb{Z})^*$ the set of invertible elements of the ring $\mathbb{Z}/N\mathbb{Z}$. Recall that $((\mathbb{Z}/N\mathbb{Z})^*, \cdot)$ is a multiplicative group.
 - (a) Show that any polynomial of degree 2 in $\mathbb{F}_p[x]$ splits in $\mathbb{F}_{p^2}[x]$.
 - (b) Show that for p=3 the polynomial f_1 is irreducible in $\mathbb{F}_3[x]$ and give a construction of the field \mathbb{F}_{3^2} .
 - (c) Show that the splitting field of f_{ℓ} is isomorphic to the splitting field of $x^{2^{\ell+1}} 1 \in \mathbb{F}_p[x]$.
 - (d) Prove that for p = 5 the polynomial $f_2 \in \mathbb{F}_5[x]$ is reducible.
 - (e) Show that there exists an integer ℓ such that for any prime number p, the polynomial f_{ℓ} is reducible in $\mathbb{F}_p[x]$. (Hint: show first that $((\mathbb{Z}/2^n\mathbb{Z})^*,\cdot)$ is not a cyclic group if $n\geq 3$).