Elliptic Curve Fast Fourier Transform

- FFT: efficient algorithms on polynomials. $O(n \log n)$ for:
 - EXTEND (interpolation)
 - multiplication
 - Convert: evaluation table ← coefficient representation

- FFT: efficient algorithms on polynomials. $O(n \log n)$ for:
 - EXTEND (interpolation)
 - multiplication
 - Convert: evaluation table ← coefficient representation
- **Problem: FFT requires FFT-friendly field** (\mathbb{F}^{\times} containing size 2^k subgroup)
 - Not FFT-friendly:
 - secp256k1 (for ECDSA)
 - BN254 (pairing)
 - Use non-native field arithmetic? ~100x overhead.

- FFT: efficient algorithms on polynomials. $O(n \log n)$ for:
 - EXTEND (interpolation)
 - multiplication
 - Convert: evaluation table ← coefficient representation
- **Problem: FFT requires FFT-friendly field** (\mathbb{F}^{\times} containing size 2^k subgroup)
 - Not FFT-friendly:
 - secp256k1 (for ECDSA)
 - BN254 (pairing)
 - Use non-native field arithmetic? ~100x overhead.
- Solution: Replace $\mathbb{F}_q^ imes$ with an elliptic curve group over \mathbb{F}_q
 - Theorem: Can always find size $2^k \simeq 2\sqrt{q}$ subgroup!

How fast is ECFFT?

Algorithm	Description	Runtime
ENTER	Coefficients to evaluations (fft analogue)	$\mathcal{O}(n\log^2 n)$
EXIT	Evaluations to coefficients (ifft analogue)	$\mathcal{O}(n\log^2 n)$
DEGREE	Computes a polynomial's degree	$\mathcal{O}(n \log n)$
EXTEND	Extends evaluations from one set to another	$\mathcal{O}(n \log n)$
MEXTEND	EXTEND for special monic polynomials	$\mathcal{O}(n \log n)$
MOD	Calculates the remainder of polynomial division	$\mathcal{O}(n \log n)$
REDC	Computes polynomial analogue of Montgomery's REDC	$\mathcal{O}(n \log n)$
VANISH	Generates a vanishing polynomial (from section 7.1)	$\mathcal{O}(n\log^2 n)$

Table from https://github.com/wborgeaud/ecfft-bn254

How fast is ECFFT?

Evaluate degree n-1 polynomial on n points:

Table from

https://github.com/wborgeaud/ecfft-bn254

log n	Naive (ms)	Classic (ms)	ECFFT (ms)
1	0.000165	0.000126	0.000384
2	0.00046	0.000256	0.002144
3	0.00203	0.000639	0.008599
4	0.00688	0.001781	0.030458
5	0.032354	0.003268	0.085556
6	0.119391	0.007594	0.239939
7	0.479542	0.018378	0.613242
8	1.873195	0.043694	1.425794
9	7.619662	0.093	3.964933
10	30.034845	0.20955	9.308925
11	121.564343	0.453727	22.186604
12	482.728362	0.976134	51.505625
13	1930.495799	2.166843	119.317395
14	7745.103265	4.57555	275.499648

FFT Recap:

- G: group of order $n=2^k$
- Degree n polynomial $P(X): G \to \mathbb{F}$ in coefficient representation
- Want to compute evaluations at all points of G

FFT Recap:

- G: group of order $n = 2^k$
- Degree n polynomial $P(X): G \to \mathbb{F}$ in coefficient representation
- Want to compute evaluations at all points of G

Key ingredients:

- **2-to-1** map $\phi: X \mapsto X^2$
- **Decomposition:** $P(X) = P_0(X^2) + X \cdot P_1(X^2)$

FFT Recap:

- G: group of order $n = 2^k$
- Degree n polynomial $P(X): G \to \mathbb{F}$ in coefficient representation
- Want to compute evaluations at all points of G

Key ingredients:

- **2-to-1** map $\phi: X \mapsto X^2$
- **Decomposition:** $P(X) = P_0(X^2) + X \cdot P_1(X^2)$
- Each iteration halves:
 - Number of evaluation points
 - Degree of polynomials

FFT illustrated as an FFTree

ECFFT illustrated as an FFTree

ECFFT illustrated as an FFTree

ECFFT illustrated as an FFTree

Main algorithm: EXTEND

Given:

- Two sub-FFTrees with n leaves S, S'.
- Evaluations of deg <n polynomial P on S

EXTEND(S,S') computes evaluations of P on S' in O(n log n):

- Base case: |S|=|S'|=1 and P is constant.
- Recursive step:
 - Use 2-to-1 isogeny ϕ to decompose evaluations of P on S into evaluations of $P_0, \Phi_0 \to \phi(S)$
 - P_0, P_1 have half the degree of P
 - $\phi(S)$ is half the size of S
 - Apply EXTEND to get evaluations of P_0, P_1 on S'
 - Invert decomposition to recover evaluations of P on S'

ENTER: Coefficients -> Evaluations

Given:

- A sub-FFTree with n leaves L.
- Coefficients of deg <n polynomial

ENTER(L) computes evaluations of P on L in $O(n \log^2 n)$

- Base case: |L|=1 and P is constant.
- Recursive step:
 - Decompose P into low and high coefficients:

$$P(X) = U(X) + X^{n/2}V(X)$$

- Call ENTER to get evaluations of U, V on S
- Call EXTEND on *U*, *V* to get their evaluations on S'
- Invert decomposition to get evaluations of P on L

$$L = S \cup S'$$

Isogenies: replacing the squaring map

Definition: An isogeny is a morphism between elliptic curves that is also a group homomorphism.

- Morphism: polynomial mapping $\phi:(x:y:z)\mapsto (\phi_0(x,y,z):\phi_1(x,y,z):\phi_2(x,y,z))$
- Normalize z=1 $\phi: (x,y) \mapsto \left(\frac{\phi_0(x,y,1)}{\phi_2(x,y,1)}, \frac{\phi_1(x,y,1)}{\phi_2(x,y,1)}\right)$

Equivalent definition: An isogeny $\phi: E \to E'$ is a rational map sending the identity to the identity: $0_E \mapsto 0_{E'}$

Isogenies: replacing the squaring map

Equivalent definition: An isogeny $\phi: E \to E'$ is a rational map sending the identity to the identity: $0_E \mapsto 0_{E'}$

2-to-1 isogeny example:

$$E_0: y^2 = x^3 + ax^2 + b^2x$$

$$E_1: y^2 = x^3 + (a+6b)x^2 + (4ab+8b^2)x$$

$$\phi: (x,y) \mapsto \left(x - 2b + \frac{b^2}{x}, y(1 - \frac{b}{x^2})\right)$$

$$\ker(\phi) = \{(0,0), \infty\}$$

Problem: mismatched types

- Elliptic curve on \mathbb{F}_p contains points $(x,y) \in \mathbb{F}_p^2$
- But for evaluation sets $L^{(i)} \subseteq \mathbb{F}_p$

Problem: mismatched types

- Elliptic curve on \mathbb{F}_p contains points $(x, y) \in \mathbb{F}_p^2$
- But for evaluation sets $L^{(i)} \subseteq \mathbb{F}_p$

Solution:

- Project EC points and isogenies to x-coordinate.
- Theorem: x-coordinate of any isogeny depends only on x-coordinate of input.

$$\phi:(x,y)\mapsto(\phi_x(x),\phi_y(x,y))$$

Problem: mismatched types

- Elliptic curve on \mathbb{F}_p contains points $(x,y) \in \mathbb{F}_p^2$
- But for evaluation sets $L^{(i)} \subseteq \mathbb{F}_p$

Solution:

- Project EC points and isogenies to x-coordinate.
- Theorem: x-coordinate of any isogeny depends only on x-coordinate of input.

$$\phi: (x,y) \mapsto (\phi_x(x), \phi_y(x,y)))$$

This diagram commutes

Hence isogeny x-projections inherit 2-to-1 property

$$\mathbf{E}_{0} \xrightarrow{\boldsymbol{\psi}_{0}} \mathbf{E}_{1} \xrightarrow{\boldsymbol{\psi}_{1}} \mathbf{E}_{2} \xrightarrow{\boldsymbol{\psi}_{2}} \dots \xrightarrow{\boldsymbol{\psi}_{n-2}} \mathbf{E}_{n-1}$$

$$\mathbf{x} \downarrow \qquad \mathbf{x} \downarrow \qquad \mathbf{x} \downarrow \qquad \mathbf{x} \downarrow$$

$$\mathbb{P}^{1}(\mathbf{K}) \xrightarrow{\boldsymbol{\psi}_{0,\mathbf{x}}} \mathbb{P}^{1}(\mathbf{K}) \xrightarrow{\boldsymbol{\psi}_{1,\mathbf{x}}} \mathbb{P}^{1}(\mathbf{K}) \xrightarrow{\boldsymbol{\psi}_{2,\mathbf{x}}} \psi_{n-2,\mathbf{x}} \mathbb{P}^{1}(\mathbf{K})$$

Classical FFT: $P(X) = P_0(X^2) + X \cdot P_1(X^2)$

Classical FFT: $P(X) = P_0(X^2) + X \cdot P_1(X^2)$

Generalize from squaring to any degree 2 rational map $\phi(X) = \frac{u(X)}{v(X)}$

Lemma 3.1: For any degree $\leq n$ polynomial P(X), there is a unique pair of degree $\leq n/2$ polynomials $P_0(X), P_1(X)$ such that

$$P(X) = \left(P_0(\phi(X)) + XP_1(\phi(X))\right)v(X)^{n/2-1}$$

Classical FFT: $P(X) = P_0(X^2) + X \cdot P_1(X^2)$

Take two points s, s' with same square: $s^2 = s'^2 = t$

Can express decomposition with invertible matrix:

$$\begin{pmatrix} P(s) \\ P(s') \end{pmatrix} = \begin{pmatrix} 1 & s \\ 1 & s' \end{pmatrix} \begin{pmatrix} P_0(t) \\ P_1(t) \end{pmatrix}$$

Classical FFT: $P(X) = P_0(X^2) + X \cdot P_1(X^2)$

Take two points s, s' with same square: $s^2 = s'^2 = t$

Can express decomposition with invertible matrix:

$$\begin{pmatrix} P(s) \\ P(s') \end{pmatrix} = \begin{pmatrix} 1 & s \\ 1 & s' \end{pmatrix} \begin{pmatrix} P_0(t) \\ P_1(t) \end{pmatrix}$$

Lemma 3.2: degree 2 rational map $\phi(X) = \frac{u(X)}{v(X)}$ sending both s, s' to t.

Can express decomposition with invertible matrix:

$$\begin{pmatrix} P(s) \\ P(s') \end{pmatrix} = \begin{pmatrix} v(s)^q & sv(s)^q \\ v(s')^q & s'v(s')^q \end{pmatrix} \begin{pmatrix} P_0(t) \\ P_1(t) \end{pmatrix}$$

Steps to implement in practice

- Fix a field \mathbb{F}_q

Steps to implement in practice

- Fix a field \mathbb{F}_q
- Precompute an FFTree:
 - Find an elliptic curve E on \mathbb{F}_q containing a size $n=2^k$ subgroup G.
 - Choose a coset $H = r \cdot G$. Its x-projection H_x will be the FFTree leaves.
 - Recursively add an FFTree layer :
 - Find a 2-to-1 isogeny $\phi: E \to E'$
 - Compute 2x2 decomposition matrix for ϕ

Steps to implement in practice

- Fix a field \mathbb{F}_q
- Precompute an FFTree:
 - Find an elliptic curve E on \mathbb{F}_q containing a size $n=2^k$ subgroup G.
 - Choose a coset $H = r \cdot G$. Its x-projection H_x will be the FFTree leaves.
 - Recursively add an FFTree layer:
 - Find a 2-to-1 isogeny $\phi: E \to E'$
 - Compute 2x2 decomposition matrix for ϕ
- Represent polynomials as evaluations on FFTree leaves H_{x}
- Now you can do ECFFT operations with just $+, \times$ in $\mathbb{F}_q!$