Lecture 7 (Constantinos Daskalakis)

Problem 1

Anna applies gradient descent-ascent with a small step-size to the following minimax problem:

$$\min_{x \in \mathbb{R}} \max_{y \in \mathbb{R}} (y \cdot (x - 0.5))$$

and start at $x_0 = 0$, $y_0 = 0$. What does she observe?

- (a) The sequence (x_k, y_k) , k = 1, 2, ... converge to (0, 0).
- **(b)** The sequence (x_k, y_k) , k = 1, 2, ... converge to (0.5, 0).
- (c) The sequence $(\sum_{j=1}^k x_j/k, \sum_{j=1}^k y_j/k), k = 1, 2, \dots$ converges to (0, 0).
- (d) The sequence $(\sum_{i=1}^{k} x_i/k, \sum_{i=1}^{k} y_i/k), k = 1, 2, ...$ converges to (0.5, 0).
- (e) None of the above.

Berta applies the <u>optimistic gradient descent-ascent</u> algorithm (with a small step-size) to the same problem. She starts again from $x_0 = 0$, $y_0 = 0$. What does she observe?

- (a) The sequence (x_k, y_k) , k = 1, 2, ... converge to (0, 0).
- **(b)** The sequence $(x_k, y_k), k = 1, 2, ...$ converge to (0.5, 0).
- (c) The sequence $(\sum_{j=1}^k x_j/k, \sum_{j=1}^k y_j/k), k = 1, 2, \dots$ converges to (0, 0).
- (d) The sequence $(\sum_{i=1}^{k} x_i/k, \sum_{i=1}^{k} y_i/k), k = 1, 2, ...$ converges to (0.5, 0).
- (e) None of the above.

Note: Gradient descent-ascent is defined through the following update rules:

$$x_{k+1} = x_k - \eta \cdot \nabla_x f(x_k, y_k) ,$$

$$y_{k+1} = y_k + \eta \cdot \nabla_y f(x_k, y_k) ,$$

where f(x, y) is the objective function and $\eta > 0$ the step-size.

The optimistic gradient descent-ascent algorithm is defined via:

$$x_{k+1} = x_k - 2\eta \cdot \nabla_x f(x_k, y_k) + \eta \cdot \nabla_x f(x_{k-1}, y_{k-1}),$$

$$y_{k+1} = y_t + 2\eta \cdot \nabla_y f(x_k, y_k) - \eta \cdot \nabla_y f(x_{k-1}, y_{k-1}),$$

where f is again the objective function and $\eta > 0$ the step-size.