Programação Paralela - Trabalho 2

Fabiano A. de Sá Filho

Departamento de Informática Universidade Federal do Paraná – UFPR GRR20223831 fabiano.filho@ufpr.br

Resumo—Este trabalho teve como objetivo a paralelização de um programa de particionamento de vetores em C. Para tal foi utilizado um pool de threads com a biblioteca pthreads. Foram rodados dois experimentos, o primeiro com mil elementos no vetor de posições, e o segundo com 100 mil. Conforme planilhas em anexo, a paralelização foi um sucesso, de forma que ao aumentar o número de threads, diminui-se o tempo de execução e aumenta-se o throughput.

I. Observações sobre o trabalho

O arquivo enviado contém os códigos fonte e makefile. O README contém as instruções para compilar e rodar o programa. Também tem a saída que foi rodada no cluster w00 e que foi utilizada na planilha para os dois experimentos, que também é inclusa. Vale pontuar algumas ressalvas sobre o desenvolvimento do trabalho:

- Impactos da Cache: Modifique o script slurm fornecido e fiz meu proprio script run.sh, que produzem os resultados utilizados pela planilha. Dessa forma, o script slurm chama o executável novamente cada uma das NTIMES vezes, o que significa que a cada chamada do executavel os vetores são gerados novamente, não havendo portanto impacto da Cache nas medições de tempo.
- Apesar do meu algoritmo escalar bem com paralelismo, eu acredito que minha solução tem complexidade alta, talvez O(n*np). Não pude rodar os experimentos com 100 mil elementos no cluster w00, em todas as tentativas, ultrapassei o limite de tempo.

II. DISCUSSÃO DE RESULTADOS

Como pode ser observado pela planilha, o algoritmo de partição proposto obteve sucesso ao ser paralelizado. Por exemplo, para 1000 posições (parte A), obtivemos um tempo médio de 11,1 segundos sem threads, mas com 8 threads, o tempo cai para 1,6 segundos, representando uma aceleração de 7,1x. O throughput obtido com 8 threads foi de 6,41 MEPS, contra somente 0,91 MEPS com apenas uma thread.

SAÍDA DO COMANDO LSCPU

Architecture:	x86_64
CPU op-mode(s):	32-bit,
64-bit	
Byte Order:	Little
Endian	

Address sizes:	38 bits		
physical, 48 bits virtual			
CPU(s):	8		
On-line CPU(s) list:	0-7		
Thread(s) per core:	1		
Core(s) per socket:	4		
Socket(s):	2		
NUMA node(s):	1		
Vendor ID:			
GenuineIntel			
CPU family:	6		
Model:	23		
Model name:	Intel(R		
	@ 2.80		
GHz	_		
Stepping:	6		
CPU MHz:			
2792.839			
BogoMIPS:	5585.67		
Virtualization:	VT-x		
L1d cache:	256 KiB		
Lli cache:	256 KiB		
L2 cache:	24 MiB		
NUMA node0 CPU(s):	0-7		
Vulnerability Itlb multihit:	KVM:		
Mitigation: VMX disabled			
Vulnerability L1tf: Mitigation; PTE Inversion; VMX EPT			
disabled	IX EFI		
Vulnerability Mds:			
Vulnerable: Clear CPU buffers			
attempted, no microcode; SMT disabled			
Vulnerability Meltdown:			
Mitigation; PTI			
Vulnerability Spec store bypass:			
Vulnerable Vulnerable			
Vulnerable Vulnerability Spectre v1:			
Mitigation; usercopy/swapgs barriers			
anduser pointer sanitization			
Vulnerability Spectre v2:			
Mitigation; Full generic retpoline,			
STIBP disabled, RSB filling	,		
Vulnerability Srbds:	Not		
affected			
Vulnerability Tsx async abort:	Not		
affected			
Flags:	fpu vme		
de pse tsc msr pae mce cx8 a	_		
mtrr pge mca cmov pat pse36 c	lflush		
dts acpi mmx fxsr sse sse2 ht			
syscall nx lm constant_tsc			
arch_perfmon pebs bts rep_good nopl			
cpuid aperfmperf pni dtes64 m			
ds_cpl vmx est tm2 ssse3 cx16 xtpr			
pdcm dca sse4_1 lahf_lm pti			
tpr_shadow vnmi flexpriority	vpid		

III. SAÍDA DO PROGRAMA TOPOLOGY

