Fondamentaux mathématiques Résumé de cours à compléter en classe

(DIFIQ)

I Suites numériques

.....

Objectifs d'exercice (Voir feuille d'exercices TD1)

- + Reconnaitre une suite arithmétique (resp. géométrique)
- + Déterminer le terme général d'une suite arithmétique (resp. géométrique)
- + Calculer des sommes de suites arithmétiques (resp. géométriques)
- + Calculer une dérivée, notamment celle d'une fonction composée
- + Trouver une primitive pour une fonction de référence ou une fonction composée
- + Calculer une intégrale simple

.....

1. Définition et modes de génération

a) Définition

On appelle suite numérique toute application de \mathbb{N} , ou d'une partie de \mathbb{N} , dans \mathbb{R} .

b) Modes de génération

Une suite peut être définie par son terme général explicite ou par récurrence. Exemple de suite définie par récurrence : La suite (u_n) définie pour tout n non nul par : $u_n = \frac{1}{n}$ Exemple de suite définie par récurrence : La suite (u_n) définie pour tout n supérieur ou égal à 3 par : $u_3 = 2$ et $u_{n+1} = \frac{u_n}{5} + 7$

2. Suites arithmétiques

a) Définition

Une suite est arithmétique si pour tout n de son ensemble de définition la relation suivante, dans laquelle r représente un certain réel, est vraie :

$$\forall n \in \mathbb{N}, u_{n+1} = u_n + r$$

b) Terme général explicite

Le terme général d'une suite arithmétique de premier terme u_p avec p un entier s'écrit :

$$\forall n \in \mathbb{N}, n \ge p, u_n = u_p + (n-p) \times r$$

c) Somme

Soient p et N deux entiers naturels avec $N \ge p$, la somme des termes d'une suite arithmétique (u_n) , du terme d'indice p au terme d'indice N, s'écrit :

$$\sum_{k=p}^{N} u_k = \frac{u_p + u_N}{2} \times (N - p + 1)$$

3. Suites géométriques

a) Définition

Une suite (v_n) est géométrique si pour tout entier n de son ensemble de définition la relation suivante, dans laquelle q représente un réel, est vraie :

$$\boxed{\forall n \in \mathbb{N}, v_{n+1} = v_n \times q}$$

On dira alors que la suite est géométrique de raison q.

b) Terme général explicite

Le terme général d'une suite géométrique v de premier terme v_p avec p un entier s'écrit :

$$\forall n \in \mathbb{N}, n \ge p, v_n = v_p + \times q^{n-p}$$

c) Somme

Soit p et N deux entiers naturels avec $N \ge p$, la somme des termes d'une suite géométrique (v_n) , du terme d'indice p au terme d'indice N, s'écrit :

$$\sum_{k=p}^{N} u_k = v_p \times \frac{1 - q^{N-p+1}}{1 - q}$$

II Dérivation, primitives et intégrale

.....

Objectifs d'exercice (Voir feuille d'exercices TD1)

- + Calculer une dérivée, notamment celle d'une fonction composée
- + Trouver une primitive pour une fonction de référence ou une fonction composée
- + Calculer une intégrale simple

.....

1. Dérivation

a) Interprétation géométrique

Schéma

b) Définition du nombre dérivé

Soit f une fonction définie sur un intervalle I de \mathbb{R} et à valeurs dans \mathbb{R} et a un élément de I. On dit que f est dérivable en a si la limite suivante est finie :

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Cette limite finie est alors appelée le nombre dérivé de f en a et noté f'(a).

Si cette limite n'est pas finie, on dira que f n'est pas dérivable en a.

A noter au passage que la quantité $\frac{f(x)-f(a)}{x-a}$ est le taux d'accroissement de la fonction f en a.

Interprétation géométrique

c) Notion de fonction dérivée

Ensemble de dérivabilité:

On appelle ensemble de dérivabilité d'une fonction, l'ensemble des réels a de son ensemble de définition en lesquels la limite du taux d'accroissement est finie.

Fonction dérivée ou dérivée

On appelle la dérivée d'une fonction f, une fonction f' qui à chaque réel de l'ensemble de dérivabilité de f associe comme image le nombre dérivé en ce réel.

Exemple : la fonction carré

2. Calcul de dérivées

a) Dérivées des fonctions usuelles

Tableau des dérivées usuelles

$\boxed{ \ \ \text{Fonction}f\text{définie par}: \ \ \text{Fonction}f'\big \text{Ensemble de dérivabilit\'e}}$
f(x) = k, k constante réelle
f'(x) = 0
${\mathbb R}$
$f(x) = x^n, n \in \mathbb{N}^*$
$f'(x) = nx^{n-1}$
$\mathbb R$
$f(x) = \frac{1}{x}$
$f'(x) = -\frac{1}{x^2}$
$]-\infty;0[ext{ ou }]0;+\infty[$
$f(x) = \frac{1}{x^n}, n \in \mathbb{N}$
$f'(x) = -\frac{n}{x^{n+1}}$
$]-\infty;0[ext{ ou }]0;+\infty[$
$f(x) = \sqrt{x}$
$f'(x) = \frac{1}{2\sqrt{x}}$
$]0;+\infty \lbrack$
$f(x) = e^x$
$f'(x) = e^x$
${\mathbb R}$
$f(x) = \ln(x)$
$f'(x) = \frac{1}{x}$
$]0;+\infty [$

b) Opération sur les dérivées : somme, produit, quotient

u et v sont deux fonctions dérivables sur un intervalle I et k est un réel.

Somme	(u+v)' = u' + v'
Produit par un réel	(ku)' = ku'
Produit	$(u \times v)' = u' \times v + u \times v'$
Inverse	Si $v \neq 0$ sur I , $\left(\frac{1}{v}\right)' = -\frac{v'}{v^2}$
Qoutient	Si $v \neq 0$ sur I , $\left(\frac{u}{v}\right)' = \frac{u' \times v - u \times v'}{v^2}$

c) Dérivée d'une fonction composée

u dérivable sur un intervalle I et v dérivable en u(x) pour tout x élément de I.

u(x) = ax + b	$[v(ax+b)]' = a \times v'(ax+b)$
Puissance entière	$[(u(x))^n]' = nu'(x) \times [u(x)]^{n-1}, n \in \mathbb{Z}^*, n \neq 1 \text{ et } u(x) \neq 0 \text{ sur } I \text{ si } n < 0$
avec exp	$\left(e^{u(x)}\right)' = u'(x) \times e^{u(x)}$
avec ln	$[\ln(u(x))]' = \frac{u'(x)}{u(x)} \text{ avec } u \text{ à valeurs strictement positives}$
Cas général	$[v(u(x))]' = v'(u(x)) \times u'(x)$

3. Primitives

a) Notion de primitive

Définition

Soit f une fonction définie sur un intervalle I de \mathbb{R} . On appelle primitive de f sur I toute fonction dérivable F dérivable sur I telle que pour tout x de I, F'(x) = f(x).

Théorème

Toute fonction continue sur un intervalle I de \mathbb{R} admet une primitive sur I.

b) Primitives des fonctions usuelles

Fonction f	Fonction primitive F	Intervalle
$x^n, n \in \mathbb{N}$	$\frac{x^{n+1}}{n+1}$	\mathbb{R}
$\frac{1}{x}$	$\ln x $	$]-\infty,0[$ ou $]0,+\infty[$
$\frac{1}{x^n} = x^{-n}, n \in \mathbb{N} \setminus \{0, 1\}$	$\frac{x^{-n+1}}{1-n} = \frac{1}{(1-n)x^{n-1}}$	$]-\infty,0[$ ou $]0,+\infty[$
$x^{\alpha}, \alpha > 0$	$\frac{x^{\alpha+1}}{\alpha+1}$	$]0,+\infty[$
e^x	e^x	\mathbb{R}

4. Calcul intégral

a) Définition

Soit f une fonction continue sur un intervalle I de $\mathbb R$ et F une primitive de f sur $\mathcal I$, alors on a l'égalité fondamentale suivante :

$$\forall (a,b) \in I^2, \int_a^b f(x)dx = F(b) - F(a)$$

b) Relation de Chasles

Soit f une fonction continue sur un intervalle I.

$$\forall (a,b,c) \in I^3, \int_a^c f(x)dx = \int_a^b f(x)dx + \int_b^c f(x)dx$$

c)Linéarité de l'intégration

Soit f et g deux fonctions continues sur un intervalle I et α et β deux réels quelconques.

$$\forall (a,b) \in I^2, \int_a^b (\alpha f(x) + \beta g(x)) dx = \alpha \int_a^b f(x) dx + \beta \int_a^b g(x) dx$$

d)Interprétation graphique

Théorème Soit a et b deux réels, Si f est continue et positive sur [a, b], alors $\int_a^b f(x)dx$ est égale à l'aire du domaine délimité par les droites verticales d'équations x = a et x = b, l'axe des abscisses et la courbe représentative de f dans un repère orthogonal.

.....