

- True
- False

Incorrect. The "cache" is used in our implementation to store values computed during forward propagation to be used in backward propagation.

∠⁷ Expand

Correct Great, you got all the right answers.

4.	We can not use vectorization to calculate $da^{[l]}$ in backpropagation, we must use a for loop over all the examples. True/False?	1/1 point
	○ True	
	False	
	∠ [¬] Expand	
	\bigcirc Correct Correct. We can use vectorization in backpropagation to calculate $dA^{[l]}$ for each layer. This computation is done over all the training examples.	

5. Suppose W[i] is the array with the weights of the i-th layer, b[i] is the vector of biases of the i-th layer, and g is the activation function used in all layers. Which of the following calculates the forward propagation for the neural network with L layers.

```
for i in range(1, L+1):

Z[i] = W[i]*A[i-1] + b[i]

A[i] = g(Z[i])
```

for i in range(L):

$$Z[i+1] = W[i+1]*A[i+1] + b[i+1]$$

 $A[i+1] = g(Z[i+1])$

(X) Incorrect

No. Remember that the range omits the last number thus the range from 1 to L calculates only the A up to the L-1 layer.

How many layers does this network have?

- \bigcirc The number of layers $_L$ is 3. The number of hidden layers is 3.
- The number of layers _L is 4. The number of hidden layers is 3.
- \bigcirc The number of layers $_L$ is 5. The number of hidden layers is 4.
- The number of layers L is 4. The number of hidden layers is 4.

Expand

Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers.

- True Yes. The gradient of the output layer depends on the difference between the value computed during the forward propagation process and the target values.
- False No. The gradient of the output layer depends on the difference between the value computed during the forward propagation process and the target values.

Expand

Correct

8.	A shallow neural network with a single hidden layer and 6 hidden units can compute any function that a neural network with 2 hidden layers and 6 hidden units can compute. True/False?
	False
	○ True
	∠ [¬] Expand
	Correct Correct. As seen during the lectures there are functions you can compute with a "small" L-layer deep neural network that shallower networks require exponentially more hidden units to compute.

1/1 point

Which of the following statements is true? (Check all that apply).

☐ P[I] will have shape	(3, 1)	
------------------------	--------	--

✓ Correct

Yes. More generally, the shape of $b^{[l]}$ is $\binom{n}{n}$

✓ Correct

Yes. More generally, the shape of W (i) is (n!, n!t-1)).

✓ Correct

Yes. More generally, the shape of $_{W}$ [4] is $(_{n}\mu,_{n}|_{l-1})$.

10. In the general case if we are training with m examples what is the shape of $A^{[l]}$?	1/1 point
$\bigcirc \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
$\bigcirc \ \ ^{(}_{m^{'}n^{[l+1]}})$	
\bigcirc ($_{n^{[l+1]_{'}}m}$)	
(n[l], m)	

Yes. The number of rows in $A^{[1]}$ corresponds to the number of units in the l-th layer.