CSC 2400: Computer Systems

Information as Bits

•1

What kinds of data do we need to represent?

- Numbers integers, floating point, ...
- Text characters, strings, ...
- Images pixels, colors, shapes, ...
- Sound
- Instructions
- ...

Integers

•3

Unsigned Integers

- \Box An *n*-bit unsigned integer represents 2^n values: from 0 to 2^n -1
- □ Example for n = 3:

2 ²	21	20	
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	$7 = 2^3 - 1$

Signed Integers

- □ How do computers differentiate between positive and negative integers?
 - Positive integers have the most significant bit (left bit) 0
 - Negative integers have the most significant bit (left bit) 1
- □ Negative integer representations:
 - 1. Sign-Magnitude
 - 2. One's Complement
 - 3. Two's Complement

•5

1. Sign-Magnitude

- □ Reserve the leftmost bit to represent the sign:
 - 0 means positive
 - 1 means negative
- Examples

Sign Magnitude

- □ Hard to do arithmetic this way, so it is rarely used
 - What is the result of 44 44?

- Assume 8-bit sign-magnitude representation for integers
- What is the decimal value of

11010110

•7

1. Sign-Magnitude (contd.)

Sign Magnitude

- □ For numbers represented on n bits:
 - Range of positive integers: from 0 to $(2^{n-1}-1)$
 - Range of negative integers: from $-(2^{n-1}-1)$ to -1

- □ Assume 8-bit sign-magnitude representation for integers
- □ What is the smallest value you can represent in this system?
- □ What is the largest value you can represent in this system?

•9

•2. One's Complement

 \Box For example, the 5-bit representation of (12)₁₀ is:

0110 0

The One's complement is: (2⁵ −1) −12:

31 □ 1111 1

12 □ -0110 0

2. One's Complement

□ Leftmost bit is 0 for positive numbers

```
0 0 1 0 1 1 0 0 -> 44
```

□ To obtain the corresponding negative number (-44), flip every bit:

```
1 1 0 1 0 0 1 1 - -44
```

In short, the one's complement of a positive number can be obtained by flipping 1s to 0s and 0s to 1s

•11

2. One's Complement (contd.)

 \Box What is the result of 44 – 44?

□ Issue: two different representations for zero

•3. Two's Complement

 \Box The Two's complement of an n-bit number N is given by $(2^n) - N$.

```
\Box(2^n) – N can be written as (2^n - 1) – N + 1.
```

 $\Box(2^n - 1) - N$ is One's complement. Hence, Two's complement is One's Complement + 1

•13

3. Two's Complement

□ Leftmost bit is 0 for positive numbers

```
0 0 1 0 1 1 0 0 - 44
```

□ To obtain the corresponding negative number -44, add 1 to the one's complement of 44:

```
1 1 0 1 0 0 1 1 → one's complement
+ 0 0 0 0 0 0 0 1

1 1 0 1 0 1 0 0 → two's complement
```

3. Two's Complement (contd.)

 \Box What is the result of 44 – 44?

- Used by most computer systems
- □ For numbers represented on *n* bits:

Range of integers: •from -2^{n-1} to $2^{n-1}-1$

•15

Two's Complement to Decimal

- 1. If leading bit is one, take two's complement to get a positive number
- 2. Convert to decimal: add powers of 2 that have "1" in corresponding bit positions
- 3. If original number was negative, add a minus sign

$$X = 01101000_{(2)}$$

= $2^6+2^5+2^3_{(10)}=64+32+8_{(10)}$
= $104_{(10)}$

Assuming 8-bit two's complement numbers.

n	2 ⁿ
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024
	,

Another Example

Assume 8-bit two's complement numbers.

$$X = 11100110_{(2)}$$

 Leading bit is one, so take two's complement to get a positive number

$$-X = 00011001 + 00000001_{(2)}$$

= $00011010_{(2)}$

2. Convert to decimal

$$-X = 2^4 + 2^3 + 2^1_{(10)} = 16 + 8 + 2_{(10)} = 26_{(10)}$$

3. Add a minus sign

$$X = -(-X) = -26_{(10)}$$

•19

More Examples

$$X = 00100111_{two}$$

$$= 2^{5}+2^{2}+2^{1}+2^{0} = 32+4+2+1$$

$$= 39_{ten}$$

$$X = 11100110_{two}$$

$$-X = 00011010$$

$$= 2^{4}+2^{3}+2^{1} = 16+8+2$$

$$= 26_{ten}$$

$$X = -26_{ten}$$

Assuming 8-bit 2's complement numbers.

- Assume 8-bit two's complement representation for integers
- · What is the decimal value of

11010110

•21

Exercises

- \Box Assuming 5-bit two's complement representation, what is the decimal value of $1011_{(2)}$?
- □ What is -2 in 4-bit two's complement representation?
- □ What is -2 in 6-bit two's complement representation?

- □ Assume 8-bit 2's complement representation for integers
- □ What is the smallest value you can represent in this system?
- □ What is the largest value you can represent in this system?

•23

Binary Number Representation Summary

□ Leftmost bit 0 indicates positive number

Leftmost bit 1 indicates <u>negative number</u>

- □ To negate a binary value:
 - sign-magnitude: flip the sign bit
 - one's complement: take the one's complement
 - two's complement: take the two's complement
- □ Binary to decimal (two's complement):
 - normal conversion from binary to decimal, accounting for most significant bit having negative weight

Floating-Point Numbers

Decimal System: 11.625 analyzed as

$$11.625 = (1 \times 10) + 1 + (6 \times 10^{-1}) + (2 \times 10^{-2}) + (5 \times 10^{-3})$$

□ Binary System:

•31

Floating-Point Numbers

Table 1.5 Binary Weights for an 8-Bit Fraction

2^{-1}	2^{-2}	2^{-3}	2-4	2^{-5}	2^{-6}	2^{-7}	2^{-8}
1/2	1/4	1/8	1/16	1/32	1/64	1/128	1/256
0.5	0.25	0.125	0.0625	0.03125	0.015625	0.0078125	0.00390625

You try it:

How to Store Floating-Point Numbers?

- We have no way to store the point separating the whole part from the fractional part!
- Standard committees (IEEE) came up with a way to store floating point numbers

•33

Floating-Point Normalization

□ Every floating-point binary number (except for zero) can be normalized by choosing the exponent so that the radix point falls to the right of the leftmost 1 bit

```
37.25_{(10)} = 100101.01_{(2)} = 1.0010101 \times 2^{5}
7.625_{(10)} = 111.101_{(2)} = 1.11101 \times 2^{2}
0.3125_{(10)} = 0.0101_{(2)} = 1.01 \times 2^{-2}
fraction exponent mantissa significand
```

IEEE Floating-Point Standard (Single Precision, 32 bits)

□ Sign-Magnitude: sign bit S, exponent E and fraction F

$$N = -1^{S} \times 1.$$
fraction $\times 2^{\text{exponent}-127}$, $1 \le \text{exponent} \le 254$

- Special values:
 - E = 0, F = 0 represents 0.0
 - Exponent with all bits 1 (value 255) is reserved to represent ±infinity (if F = 0) and NaN (Not a Number, if F!= 0)

•35

How would 15213.0 be stored?

- \Box First, 15213₍₁₀₎ = 11101101101101₍₂₎
- □ Normalize to 1.1101101101101₍₂₎ x 2¹³
 - The true exponent is 13, so the biased E is

$$E = 13 + 127 \text{ (Bias)} = 140_{(10)} = 10001100_{(2)}$$

- The fraction is

Floating Point Representation:

How would 15213.5 be stored?

- \Box First, 15213.5₍₁₀₎ = 11101101101101.1₍₂₎
- □ Normalize to 1.11011011011011₍₂₎ x 2¹³
 - The true exponent is 13, so the biased E is

$$E = 13 + 127 \text{ (Bias)} = 140_{(10)} = 10001100_{(2)}$$

- The fraction is

Floating Point Representation:

Hex: **4** 6 6 D B 5 0 0 Binary: **0100 0110 0110 1101 1011 0110 0000 0000**

•38

How would 23.75 be stored?

- \Box First, 23.75₍₁₀₎ = 10111.11₍₂₎
- \Box Normalize to 1.011111₍₂₎ x 2⁴
- The true exponent is 4, so the biased E is

$$E = 4 + 127 \text{ (Bias)} = 131_{(10)} = 10000011_{(2)}$$

The fraction is

Floating-Point Representation:

How would -23.75 be stored?

□ Just change the sign bit:

□ Do not take the two's complement!

•40

Floating-Point Numbers

IEEE Floating-Point Standard

IEEE Floating-Point Standard (Single Precision, 32 bits)

□ Sign-Magnitude: sign bit S, exponent E and fraction F

- □ The binary exponent is not stored directly. Instead, *E* is the sum of the true exponent and 127. This *biased exponent* is always non-negative (seen as magnitude only).
- The fraction part assumes a normalized significand in the form
 1.F (so we get the extra leading bit for free)

•42

How would 23.75 be stored?

- \Box First, 23.75₍₁₀₎ = 10111.11₍₂₎
- □ Normalize to 1.011111₍₂₎ x 2⁴
- The true exponent is 4, so the biased E is

$$E = 4 + 127 \text{ (Bias)} = 131_{(10)} = 10000011_{(2)}$$

The fraction is

Floating-Point Representation:

□ Find the IEEE representation of 40.0

•44

IEEE Floating-Point Standard (Single Precision, 32 bits)

□ Sign-Magnitude: sign bit *S*, exponent *E* and fraction *F*

$$N = -1^{S} \times 1$$
. fraction $\times 2^{\text{exponent}-127}$, $1 \le \text{exponent} \le 254$

Special values:

- E = 0, F = 0 represents 0.0
- Exponent with all bits 1 (value 255) is reserved to represent ±infinity (if F = 0) and NaN (Not a Number, if F!= 0)

Reverse Your Steps:

Convert to decimal the IEEE 32-bit floating-point number

$$\begin{array}{ccc} \frac{1}{\uparrow} & \underbrace{01111110}_{\uparrow} & \underbrace{10000000000000000000000000}_{\uparrow} \\ \textit{sign} & \textit{exponent} & \textit{fraction} \end{array}$$

- Sign is 1, so the number is negative
- Exponent field is 01111110 = 126 (decimal)
- Fraction is 10000000000... = 0.5 (decimal)

□ Value =
$$-1.1_{(2)}$$
 x $2^{(126-127)}$ = $-1.1_{(2)}$ x 2^{-1} = $-0.11_{(2)}$ = $-0.75_{(10)}$

•46

Exercise – Reverse Your Steps

- □ Convert the following 32 bit number to its decimal floating point equivalent:
 - 1 01111101 01010...0

Exercise - Reverse your Steps

- Convert to decimal the IEEE 32-bit floating-point number
 - 0 10000011 10011000..0

•48

IEEE Floating-Point Standard (Double Precision, 64 bits)

 $N = -1^{S} \times 1.$ fraction $\times 2^{\text{exponent}-1023}$, $1 \le \text{exponent} \le 2046$

□ Exponent with all bits 1 (value 2047) is reserved to represent ±infinity (if fraction is 0) and NaN (if fraction is not 0)

Approximations: How would 0.1 be stored?

2^{-1}	2^{-2}	2^{-3}	2-4	2 ⁻⁵	2 ⁻⁶	2^{-7}	2-8
1/2	1/4	1/8	1/16	1/32	1/64	1/128	1/256
0.5	0.25	0.125	0.0625	0.03125	0.015625	0.0078125	0.00390625

- □ First, 0.1₍₁₀₎ = _ . _ _ _ _ (2)
- □ Normalize to _ . _ _ _ _ _ x 2⁻⁴
- Biased exponent is
- Fraction is

IEEE Floating-Point Representation:

•50

Approximations: How would 0.1 be stored?

Table 1.5 Binary Weights for an 8-Bit Fraction

2^{-1}	2^{-2}	2^{-3}	2-4	2^{-5}	2^{-6}	2^{-7}	2^{-8}
1/2	1/4	1/8	1/16	1/32	1/64	1/128	1/256
0.5	0.25	0.125	0.0625	0.03125	0.015625	0.0078125	0.00390625

- □ In general, it is dangerous to think of floating point values as being "exact"
- □ Fractions will probably be approximate
 - If the fraction can be exactly expressed in binary, it might still be exact, like 1/2
 - But for example, 1/10 will be an approximate value

ASCII

•54

The ASCII Code

American Standard Code for Information Interchange

Lower case: 97-122 and upper case: 65-90 E.g., 'a' is 97 and 'A' is 65 (i.e., 32 apart)

char Constants

- □ C has char constants (sort of)
- □ Examples

Use **single** quotes for **char** constant
Use **double** quotes for **string** constant

* Technically 'a' is of type int; automatically truncated to type char when appropriate

•56

More char Constants

Escape characters

Constant	Binary Representation (assuming ASCII)	Note	
'\b'	00001000	backspace	
'\f'	00001100	form feed	
'\n'	00001010	newline	
'\r'	00001101	carriage return	l
'\t'	00001001	horizontal tab	Used
(\v')	00001011	vertical tab	often
1//1	01011100	backslash	
1/11	00100111	single quote	
1\"1	00100010	double quote	
('\0')	0000000	null	

Interesting Properties of ASCII Code

- What is relationship between a decimal digit ('0', '1', ...) and its ASCII code?
- □ What is the difference between an upper-case letter ('A', 'B', ...) and its lower-case equivalent ('a', 'b', ...)?
- Given two ASCII characters, how do we tell which comes first in alphabetical order?
- Are 128 characters enough? (http://www.unicode.org/)

•58

What did we learn?

- Computer represents everything in binary
 - Integers, floating-point numbers, characters, ...
 - Pixels, sounds, colors, etc.