SIGyE

Coordinación del Sistema Geoestadístico

mayo 21, 2024

Resumen

"Proyecto: Sistema de Integración Geográfica y Estadística. Sistema de gestión de la base geográfica del INDEC en la CSG" INDEC. (borrador).

Índice

Si	stem	ua de Integración Geográfica y Estadística (INDEC)]
1	Inti	roducción	2
	1.1	Objetivos	2
	1.2	Metas	2
2	Des	sarrollo	5
	2.1	Componentes (técnicos y accesorios - capacitación-)	ę
3	Bas	se de Datos	6
	3.1	Unidades Geoestadísticas	6
	3.2	Modelo Geográfico	10
	3.3	Esquema de interacción	18

Sistema de Integración Geográfica y Estadística (INDEC)

Un proyecto de la Coordinación del Sistema Geoestadístico (CSG) de la Dirección Nacional de Metodología e Infraestructura Estadística (DNMIE) del Instituto Nacional de Estadística y Censos (INDEC Argentina) para la CSG y las Direcciones Provinciales de Estadísticas (DPE).

1 Introducción

El presente documento es una propuesta estratégica de la Coordinación del Sistema Geoestadístico (CSG). El objetivo es establecer la metodología de trabajo para la gestión de la base geográfica del INDEC en la CSG y en las áreas geoestadísticas de las Direcciones Provinciales de Estadística durante el decenio 2020-2030.

Dentro del plan estructurado en varios ejes, aquí abordamos el punto 2: Implementación de la Base de Datos Relacional y Topológica en la CSG y las DPE. ¹

1.1 Objetivos

- 1. Administración de la unidades geoestadísticas básicas y sus relaciones con el modelo geográfico social/legal para el manejo de la información estadística.
- 2. Control intrínseco de la consistencia de las unidades geoestadísticas. Esto sería el control topologico a distintos niveles.
- 3. Mantenimiento de la trazabilidad de las unidades geoestadísticas a lo largo del tiempo. A nivel de codificación y geografía.
- 4. Administración de las relaciones del modelo geográfico, sus modificaciones a lo largo del tiempo y su participación en los distintos operativos.
- 5. Preparación de los datos para diferentes publicaciones y aplicativos.
- 6. Generación y mantenimiento de la base de datos "multipropósito" ² para el cruce de datos estadísticos provenientes de diferentes fuentes adecuándose a los distintos ámbitos y los diferentes grados de cobertura.
- 7. Carga de archivos Shape (.shp, .shx, .dbf, .prj) con datos de cartografía urbana.
- 8. Carga de archivos E00 (.e00) con datos de cartografía urbana.
- 9. Carga de archivos DBF de listado de viviendas ADRA.
- 10. Carga de archivos PxxRad en formato DBF. Datos de Radios, tipo de radio y su relación con localidad/entidad

1.2 Metas

- 1. Construir un Catálogo de imágenes versionado, censo2020, censo 2018 (Anabella)
- 2. Completar la carga de otras unidades geográficas: . Entidades . Gobiernos Locales . Radios Rurales .
- $3.\ {\rm Lograr}$ la integración de datos básicos del censo 2022
- 4. Lograr la integración de datos de otros registros administrativos.
- 5. Consumir geoservicio de geolocalización de INDEC (JC ArcGis) o evaluar alternativas API GeoRef / Nominatim
- 6. Realizar un relevamiento de visores a fin de incorporar/sincronizar intercambio de datos con el sistema.
- 7. Desarrollar un módulo para poder dar de baja de Elementos (*)

 $^{^1{\}rm Extraído}$ del "Master Plan"

²Se utiliza multipropósito cómo el sinónimo al concepto definido para el Catastro "multifinaritario", ver https://es.wikipedia.org/wiki/Catastro_multifinalitario donde también se usa multiprósito como sinónimo.

- 8. Capacitar recursos humanos para... desgloce de capacitaciones...
- 9. Incorporar las normativas vigentes en cuanto a nombre de calles y numeración.
- 10. Generar Reportes de vías de circulación (ver: http://172.22.26.215/reportes, http://172.22.26.215/reportes_2022)
- 11. Desarrollar un Sistema de gestión de informes (informes generados por operario)
- 12. Desarrollar un Sistema para la generación de layers en topología y edición.
- 13. Generar un "mapa base INDEC" asociado según operativo/tag. (estilos)
- 14. Incorporar reportes de areas conflictivas: por limites, doble asignación, imputación, etc.
- 15. Incorporar procedimientos para la validación y/o generación de códigos para los distintos objetos geográficos. (CODIFICACIÓN)
- 16. Generar módulo de Verificación (tag: verificado?) (verificador x OG?)
- 17. Actualizar la carga de Archivo de Domicilios de la República Argentina (ADRA) / Actualización de Domicilios
- 18. Modulo para Integración de alturas de ADRA a la base geográfica. (pensando en otras fuentes)
- 19. Generar Manual de estilos y estilos para capa base INDEC.
- 20. Desarrollar Módulo para la gestión de archivos. (Ale y Sil)

1.2.1 Actividades

(*)

[x] Borrar Provincia

Borrar Departamentos

[] Borrar Localidad

2 Desarrollo

2.1 Componentes (técnicos y accesorios - capacitación-)

2.1.1 Sistema WEB

Para la gestión, carga, edición y navegación de unidades geoestadísticas y objetos geográficos relacionados.

Visualización de los componentes geográficos.

Segmentación de radios urbanos.

2.1.2 Integración de submódulo de segmentación.

El sistema web prepara los datos y dispara los procesos del submódulo de segmentación, ésto incluye:

- Generación de grafo (Advacencia de lados) para el cálculo de la continuidad de los segmentos.
- Ejecución de diferentes procesos según la distribución de las viviendas, para áreas según su densidad.
- Generación de descripción de los segmentos.
- Generación de planillas R3 con resumen de la segmentación para cada radio.

2.1.3 Plugin QGIS

Visualización de los componentes geográficos.

Salidas gráficas de mapas para la Segmentación 2022 del CNPyV.

Consulta y acceso a la Base de Datos geográfica y geoestadística.

2.1.4 Esquema de Base de Datos

Unidades Geoestadísticas Básicas

- Provincias
- Departamentos
- Fracciones
- Radios
- Manzanas
- Lados de Manzanas
- Viviendas
- Segmentos

Relaciones de unidades del modelo Geográfico

- Localidades
- Aglomerados
- Entidades
- Gobiernos Locales
- Parajes
- Bases Antárticas
- Regiones
- Vías de circulación

Figura 1: Diagrama de Base de Datos

3 Base de Datos

3.1 Unidades Geoestadísticas

3.1.1 Provncias

```
campos <- dbListFields(con, "provincia")
knitr::kable(campos, format = "simple", caption = "Campos de tabla provincia")</pre>
```

Cuadro 1: Campos de tabla provincia

id codigo nombre fecha_desde fecha_hasta observacion_id geometria_id srid

```
df <- dbGetQuery(con, "SELECT * FROM provincia order by random() limit 5")
knitr::kable(df, caption = "Tabla provincia", border_left = TRUE, border_right = TRUE) %>%
  kable_styling(font_size = 8) %>%
  kable_styling(latex_options = "striped", full_width = F) %>%
  kable_styling(latex_options = c("repeat_header")) %>%
  row_spec(0, angle = 70)
```

3.1.2 Departamentos

```
campos <- dbListFields(con, "departamentos")
knitr::kable(campos, format = "simple", caption = "Campos de tabla departamentos")</pre>
```

Cuadro 2: Tabla provincia

þį	codigo	$^{hombr_{ m e}}$	$fech_{a_desde}$	$fech_{a_hast_{a}}$	$^{observacion}_{-id}$	$g_{ m eometria_id}$	Pias
11	42	La Pampa	NA	NA	NA	NA	22183
20	78	Santa Cruz	NA	NA	NA	NA	22182
21	82	Santa Fe	NA	NA	NA	NA	22185
18	70	San Juan	NA	NA	NA	NA	22182
4	14	Córdoba	NA	NA	NA	NA	22184

Cuadro 4: Tabla departamentos

- Pi	$codi_{SO}$	$^{n_{Om}b_{re}}$	Provincia_id	$fech_{a}_desd_{e}$	fecha_hasta	$ob_{servacion_id}$	8eometria_id
53	06260	Esteban Echeverría	2	NA	NA	NA	NA
341	50007	Capital	13	NA	NA	NA	NA
109	06609	Pehuajó	2	NA	NA	NA	NA
498	86126	Ojo de Agua	22	NA	NA	NA	NA
502	86154	Rivadavia	22	NA	NA	NA	NA

Cuadro 3: Campos de tabla departamentos

id
codigo
nombre
provincia_id
fecha_desde
fecha_hasta
observacion_id
geometria_id

```
df <- dbGetQuery(con, "SELECT * FROM departamentos order by random() limit 5")
knitr::kable(df, caption = "Tabla departamentos", border_left = TRUE, border_right = TRUE) %>%
kable_styling(font_size = 8) %>%
kable_styling(latex_options = "striped", full_width = F) %>%
kable_styling(latex_options = c("repeat_header")) %>%
row_spec(0, angle = 70)
```

Cuadro 6: Tabla fraccion

iq	$^{co}digo$	$^{departamento}_{-id}$	$fech_a_desd_e$	$fech_a_hast_a$	ob_{ser} ra cio_{n-id}	$geom_{etria_id}$
65129	0656811	103	NA	NA	NA	84373
64222	0626001	53	NA	NA	NA	83466
66336	3403504	280	NA	NA	NA	85580
63779	0603512	20	NA	NA	NA	83023
66076	3001508	260	NA	NA	NA	85320

knitr::kable(campos, format = "simple", caption = "Campos de tabla fracciones")

Cuadro 5: Campos de tabla fracciones

```
id
codigo
departamento_id
fecha_desde
fecha_hasta
observacion_id
geometria_id
```

```
df <- dbGetQuery(con, "SELECT * FROM fraccion order by random() limit 5")
knitr::kable(df, caption = "Tabla fraccion", border_left = TRUE, border_right = TRUE) %>%
kable_styling(font_size = 8) %>%
kable_styling(latex_options = "striped", full_width = F) %>%
kable_styling(latex_options = c("repeat_header")) %>%
row_spec(0, angle = 70)
```

 ∞

3.1.4 Radios

```
campos <- dbListFields(con, "radio")
knitr::kable(campos, format = "simple", caption = "Campos de tabla radio")</pre>
```

Cuadro 7: Campos de tabla radio

```
id
codigo
fraccion_id
fecha_desde
fecha_hasta
observacion_id
geometria_id
tipo_de_radio_id
resultado
user_id
issegmentado
updated_at
created_at
nombre
```

```
df <- dbGetQuery(con, "SELECT * FROM radio order by random() limit 5")
knitr::kable(df, caption = "Tabla radio", border_left = TRUE, border_right = TRUE) %>%
  kable_styling(font_size = 8) %>%
  kable_styling(latex_options = "striped", full_width = F) %>%
  kable_styling(latex_options = c("repeat_header")) %>%
  row_spec(0, angle = 70)
```

. Pi	$^{co}dig_{O}$	fraccion_id	f_{ech_a} _ des_{de}	fecha_hasta	ob_{set} $racio_{n_id}$	$^{geometria}_{-id}$	$^{tipo}_{-de}$ $^{-ladio}_{-id}$	resultado	USer_id	issegmentado	$^{up}d^{ated}_{-at}$	$^{created}_{-at}$	$^{nomb_{re}}$
20934	064120612	64578	NA	NA	NA	108943	3	NA	NA	NA	NA	NA	NA
46991	500210106	66740	NA	2019-07-23 23:59:59	NA	135000	3	NA	NA	NA	NA	NA	NA
43389	460140407	67395	NA	NA	NA	131398	3	NA	NA	NA	NA	NA	NA
41795	900700807	67793	NA	NA	NA	129804	3	NA	NA	NA	NA	NA	NA
35774	140840315	68052	NA	NA	NA	123783	3	NA	NA	NA	NA	NA	NA

Modelo Geográfico

3.2.1 Localidades

```
10
      campos <- dbListFields(con, "localidad")</pre>
      print("Campos de tabla localidad")
      ## [1] "Campos de tabla localidad"
      knitr::kable(campos, format = "simple", caption = "Campos de tabla Localidad")
```

Cuadro 9: Campos de tabla Localidad

x
id
codigo
nombre
$aglomerado_id$
$tipo_de_localidad_id$
$tipo_de_poblacion_id$

recha_desde
fecha_hasta
observacion_id
geometria_id
cap_de_rep
cap_de_pcia
cab_de_depto
sede_gob_loc

```
df <- dbGetQuery(con, "SELECT * FROM localidad order by random() limit 5")
knitr::kable(df, caption = "Tabla Localidad", digits = 2, longtable = TRUE) %>%
kable_styling(font_size = 8) %>%
kable_styling(latex_options = "striped", full_width = F) %>%
kable_styling(latex_options = c("repeat_header")) %>%
row_spec(0, angle = 70)
```

Cuadro 10: Tabla Localidad

Pį	$^{og}po_{\circ}$	$^{HOmbr_{e}}$	$^{aglomerado}_{-id}$	tipo_de_localidad_id	$^{tip_{\mathrm{o}}}$ _ $^{d_{\mathrm{e}}}$ _ $^{bobla_{cion_{\mathrm{i}}}}$ id	f_{ech_a} $-d_{esd_e}$	fecha_hasta	observacion_id	$^{8eometria}_{-id}$	$^{do_{I}^{-}}q^{e}_{O}$	$^{cap}_{-de}_{-Dci_a}$	$^{cab}_{de}_{dept_o}$	sede_Sob_loc
4484	50056140	Las Violetas	2993	1	2	NA	NA	NA	6482	1	1	1	1
3903	30008080	Pueblo Liebig's	1525	1	2	NA	NA	NA	5997	1	1	1	2
4656	54070020	Arroyo del Medio	3043	1	2	NA	NA	NA	6703	1	1	1	2
3242	14042040	Chazón	1215	1	2	NA	NA	NA	5417	1	1	1	2
3146	14007100	Las Caleras	1944	1	2	NA	NA	7576	5474	1	1	1	2

3.2.2 Aglomerados

```
campos <- dbListFields(con, "aglomerados")
print("Campos de tabla aglomerados")</pre>
```

```
knitr::kable(campos, format = "simple", caption = "Campos de tabla aglomerados")
```

Cuadro 11: Campos de tabla aglomerados

```
id
codigo
nombre
fecha_desde
fecha_hasta
observacion_id
geometria_id
tipo_de_poblacion_id
```

```
df <- dbGetQuery(con, "SELECT * FROM aglomerados order by random() limit 5")
knitr::kable(df, caption = "Tabla aglomerados", digits = 2, longtable = TRUE) %>%
kable_styling(font_size = 8) %>%
kable_styling(latex_options = "striped", full_width = F) %>%
kable_styling(latex_options = c("repeat_header")) %>%
row_spec(0, angle = 70)
```

Cuadro 12: Tabla aglomerados

p _i	codigo	$^{ROmbr_{ m fc}}$	$f_{ech_a_desd_e}$	f_{ech_a} h_{ast_a}	$^{observacion}_{-id}$	8eometria_id	tipo_de_poblacion_id
256	0187	San Cristóbal	NA	NA	NA	NA	1
722	0657	Río Mayo	NA	NA	NA	NA	1
2964	5770	Jama	NA	NA	NA	NA	2
2312	3417	Tobuna	NA	NA	NA	NA	2

Cuadro 12: Tabla aglomerados (continued)

3.2.3 Entidades

```
campos <- dbListFields(con, "entidades")

print("Campos de tabla entidades")

## [1] "Campos de tabla entidades"

knitr::kable(campos, format = "simple", caption = "Campos de tabla entidades")</pre>
```

Cuadro 13: Campos de tabla entidades

id
codigo
nombre
localidad_id
fecha_desde
fecha_hasta
observacion_id
cap_de_pcia
cab_de_depto
sede_gob_loc
geometria_id

x created_at updated_at

```
df <- dbGetQuery(con, "SELECT * FROM entidades order by random() limit 5")
knitr::kable(df, caption = "Tabla entidades", digits = 2, longtable = TRUE) %>%
kable_styling(font_size = 8) %>%
kable_styling(latex_options = "striped", full_width = F) %>%
kable_styling(latex_options = c("repeat_header")) %>%
row_spec(0, angle = 70)
```

Cuadro 14: Tabla entidades

id	^{OS} (po _O	hombr_e	localidad_id	fech _a _desd _e	fech _a _hast _a	observacion_id	$^{cap}_{-de}$	$^{cab}_{-d_{e}}_{-d_{e}p_{t_{o}}}$	sede_gob_loc	geometria_id	$^{created}_{-at}$	$^{upd_{ated}}_{-a_t}$
1942	3804204002	Río Blanco	4188	2024-03-27 11:52:05	2024-03-27 11:52:05	0	0	0	1	2	2024-03-27 11:52:05	2024-03-27 11:52:05

3.2.4 Gobiernos Locales

```
campos <- dbListFields(con, "gobierno_local")

print("Campos de tabla gobierno_local")

## [1] "Campos de tabla gobierno_local"

knitr::kable(campos, format = "simple", caption = "Campos de tabla gobierno_local")</pre>
```

Cuadro 15: Campos de tabla gobierno_local

```
id
codigo
nombre
categoria_de_agl_id
tipo_de_agl
tipo_de_poblacion_id
fecha_desde
fecha_hasta
observacion_id
geometria_id
cap_de_rep
cap_de_pcia
cab_de_depto
sede_gob_loc
```

```
# df <- dbGetQuery(con, "SELECT * FROM gobierno_local order by random() limit 5")
# knitr::kable(df, caption = "Tabla gobierno_local", digits = 2, longtable = TRUE) %>%
# kable_styling(font_size = 8) %>%
# kable_styling(latex_options = "striped", full_width = F) %>%
# kable_styling(latex_options = c("repeat_header")) %>%
# row_spec(0, angle = 70)
```

3.2.5 Parajes

```
campos <- dbListFields(con, "paraje")
print("Campos de tabla paraje")</pre>
```

[1] "Campos de tabla paraje"

```
knitr::kable(campos, format = "simple", caption = "Campos de tabla paraje")
```

Cuadro 16: Campos de tabla paraje

```
id
codigo
nombre
departamento_id
fecha_desde
fecha_hasta
observacion_id
fuente_id
geometria_id
sede_gob_loc
gobierno_local_id
tipo_de_poblacion_id
```

```
df <- dbGetQuery(con, "SELECT * FROM paraje order by random() limit 5")
knitr::kable(df, caption = "Tabla paraje", digits = 2, longtable = TRUE) %>%
kable_styling(font_size = 8) %>%
kable_styling(latex_options = "striped", full_width = F) %>%
kable_styling(latex_options = c("repeat_header")) %>%
row_spec(0, angle = 70)
```

Cuadro 17: Tabla paraje

Cuadro 17: Tabla paraje (continued)

Pį.	cod_{igo}	· ·		$^{f_{e}c_{h_{a}}}$ $^{-d_{e}s_{d_{e}}}$	$^{fech_{a_hast_{a}}}$	$ob_{s_G V_{\overline{G}}} c_{io_{n-id}}$	$hente_id$	8eometria_id	$^{2c}de_{-80b_loc}$	80biemo_local_id	$^{tipo_de_pobl_{acion_id}}$
9912	90035A09	Casas Viejas	512	NA	NA	NA	1	13871	1	2106	3
7532	70021A06	Colón	431	NA	NA	NA	1	12224	1	1482	3
2471	14140A47	Colonia Milessi	187	NA	NA	NA	1	14723	1	NA	3

3.2.6 Bases Antárticas

:TODO

3.2.7 Regiones

:TODO

3.2.8 Vías de circulación

:TODO

 \vdash

- 3.2.9 Resultados esperados
- 3.3 Esquema de interacción
- 3.3.1 Interacción con otras áreas
- 3.3.2 Integración con datos estadísticos
- \dots codgeo
- ... vías de circulación

dbDisconnect(con)

[1] TRUE