5 Assignment 5 Solutions (100 points)

5.1 Soundness and Completeness of ND (20 points)

Solution 1: If $\{\alpha, \beta\} \vdash_{ND} \gamma$ holds, then there is a natural deduction proof which starts with α and β as the premises and ends with γ .

- 1. α Premise
- 2. β Premise
- 3.
- 4. γ ...

Hence, we can construct a ND proof sequence for $\varnothing \vdash (\alpha \land \beta) \rightarrow \gamma$:

1.	$\alpha \wedge \beta$	Assumption
2.	α	$\wedge e, 1$
3.	β	$\wedge e, 1$
4.		
5.	γ	
6	$(\alpha \land \beta) \rightarrow \gamma$	$\rightarrow i$ 1-5

By the soundness of ND, the entailment $\varnothing \vDash (\alpha \land \beta) \rightarrow \gamma$ holds.

Solution 2: Assume $\{\alpha, \beta\} \vdash_{ND} \gamma$ holds. By the soundness of natural deduction, the entailment $\{\alpha, \beta\} \vDash \gamma$ holds. By definition, $\{\alpha, \beta\} \vDash \gamma$ means that for all truth valuation v under which $\alpha^v = T$ and $\beta^v = T$, $\gamma^v = T$. Hence, for all truth valuation v under which $\alpha^v = T$ and $\beta^v = T$, $(\alpha \land \beta) \to \gamma$ is true.

If $\alpha^v = F$ or $\beta^v = F$, $(\alpha \wedge \beta) \to \gamma$ is also true. Hence, $\varnothing \vDash (\alpha \wedge \beta) \to \gamma$, i.e., it is a tautology.

5.2 CNF and Resolution (20 points)

1. (10 points)

Formalization (3 points)

Let: A = Meeting A is scheduled B = Meeting B is scheduled C = Meeting C is scheduled

Constraint 1: $A \to (\neg B \land C)$

Constraint 2: $\neg C \rightarrow ((A \land \neg B) \lor (\neg A \land B))$

Constraint 3 : $\neg A \rightarrow \neg C$

Then, conjunct all three formulas.

Convert to CNF (3 points)

Constraint 1:
$$A \to (\neg B \land C)$$

 $\equiv \neg A \lor (\neg B \land C)$
 $\equiv (\neg A \lor \neg B) \land (\neg A \lor C)$

Constraint 2:
$$\neg C \rightarrow ((A \land \neg B) \lor (\neg A \land B))$$

 $\equiv \dots \dots$
 $\equiv C \lor ((A \lor B) \land (\neg A \lor \neg B))$
 $\equiv (C \lor A \lor B) \land (C \lor \neg A \lor \neg B)$

Constraint 3 :
$$\neg A \rightarrow \neg C$$

 $\equiv A \lor \neg C$

Final CNF Clauses (4 points):

$$(\neg A \lor \neg B) \land (\neg A \lor C) \land (C \lor A \lor B) \land (C \lor \neg A \lor \neg B) \land (A \lor \neg C)$$

2. (10 points) Yes. Schedule Meeting B only, or schedule Meeting A and C.

5.3 Syntax (30 points)

2,3,6,8,10,13,14

5.4 Formalization (30 points)

1. All Students are smart.

$$\forall x(Student(x) \rightarrow Smart(x))$$

2. Every course has at least one prerequisite course.

$$\forall x \, (\mathrm{Course}(x) \to \exists y \, (\mathrm{Course}(y) \land \mathrm{Prerequisite}(y, x)))$$

3. Some students registered for all courses.

$$\exists x (\mathrm{Student}(x) \land \forall y (\mathrm{Course}(y) \to \mathrm{Registered}(x, y)))$$

4. No student is both a TA and a professor.

$$\forall x \, (\mathrm{Student}(x) \to \neg(\mathrm{TA}(x) \land \mathrm{Professor}(x)))$$

$$\neg \exists x \, (\mathrm{Student}(x) \land \mathrm{TA}(x) \land \mathrm{Professor}(x))$$

5. Only professors can access the restricted section of the library.

$$\forall x \, (\operatorname{CanAccess}(x, s) \land \operatorname{Restricted}(s) \to \operatorname{Professor}(x))$$

6. There is a professor who has never taught any course.

$$\exists x \, (\operatorname{Professor}(x) \wedge \forall y \, (\operatorname{Course}(y) \to \neg \operatorname{Teaches}(x,y)))$$

7. Every student loves some student.

$$\forall x(Student(x) \rightarrow \exists y(Student(y) \land Loves(x,y)))$$

8. Every student loves some other student.

$$\forall x(Student(x) \rightarrow \exists y(Student(y) \land \neg(x=y) \land Loves(x,y)))$$

9. There is a student who is loved by every other student.

$$\exists x (Student(x) \land \forall y (Student(y) \land \neg (x = y) \rightarrow Loves(y, x)))$$

10. Some students love only themselves.

$$\exists x \, (\mathrm{Student}(x) \land \mathrm{Loves}(x, x) \land \forall y \, (\mathrm{Loves}(x, y) \rightarrow x = y))$$

11. There is at least one student.

$$\exists x \; \text{Student}(x)$$

12. There is only one student.

$$\exists x (\mathrm{Student}(x) \land \forall y (\mathrm{Student}(y) \to y = x))$$

13. There are at least two students.

$$\exists x \exists y \ (\mathrm{Student}(x) \wedge \mathrm{Student}(y) \wedge \neg (x = y))$$

14. There are more than two students.

$$\exists x \exists y \exists z \, (\mathrm{Student}(x) \wedge \mathrm{Student}(y) \wedge \mathrm{Student}(z) \wedge \neg (x=y) \wedge \neg (y=z) \wedge \neg (x=z))$$

15. Exactly two students failed Geometry.

$$\exists x \,\exists y \, (\mathrm{Student}(x) \wedge \mathrm{Student}(y) \wedge \neg (x=y) \wedge$$

$$\mathrm{Failed}(x, \mathrm{geometry}) \wedge \mathrm{Failed}(y, \mathrm{geometry}) \wedge$$

$$\forall z \, (\mathrm{Student}(z) \wedge \mathrm{Failed}(z, \mathrm{geometry}) \rightarrow (z=x \vee z=y)))$$