華中科技大學

电子线路实验报告

信号产生和变换电路

院	系 _	电子信息与通信学院	
专业班级		信卓 2201 班	
姓	名	董浩	
学	号	U202213781	
指导教师		陈林	

2023年12月14日

目 录

1	实验名称	1
2	实验目的	1
3	实验元器件	1
4	实验任务	1
5	实验原理	2
5.1	信号发生电路	2
5.2	信号分离电路	3
5.3	信号合成电路	4
6	仿真分析	5
6.1	信号发生电路	5
6.2	低通滤波	5
6.3	带通滤波	6
7	实验过程	6
8	实验总结	6

1 实验名称

信号的产生、分解与合成

2 实验目的

设计一个信号产生、分解与合成电路,能够产生所需频率的方波,和三角波,并对所产生的方波进行滤波分解,产生多个不同频率的正弦信号,再将这些信号再合成为近似方波信号

3 实验元器件

名称	型号(参数)	数量
运算放大器	NE5532	3
	5.1ΚΩ	1
	10ΚΩ	3
电阻	20ΚΩ	1
	47ΚΩ	1
	100ΚΩ	1
电容	0.1μF	1
七分	0.01μF	1

4 实验任务

- 1. 设计信号产生电路: 能够产生频率为 5KHz 峰峰值为 10V 的方波,再由方波 生成对应频率,峰峰值为 6V 的三角波。
- 2. 设计信号分解、合成电路:对所产生的方波进行滤波分解,产生该方波的一次、三次谐波正弦信号,再将这些信号再合成为近似方波信号。

5 实验原理

5.1 信号发生电路

图 5-1 信号发生

对于同向迟滞比较器,有:

$$V_{+} = \frac{R_2}{R_2 + R_3 + RP_1} V_{o_1} + \frac{R_3 + RP_1}{R_2 + R_3 + RP_1} V_{ia}$$
 (5-1)

其中:

$$V_{ia} = \frac{R_2}{R_2 + R_3 + RP_1} V_{o1} \tag{5-2}$$

故有:

$$V_{T-} = \frac{-R_2}{R_3 + RP_1} V_{CC}, V_{T+} = \frac{R_2}{R_3 + RP_1} V_{CC}$$
 (5-3)

即得到方波。

对于反向积分器,有:

$$v_{o2} = -\frac{1}{C_2} \int_{t_0}^{t_1} \frac{v_{o_1}}{R_4 + RP_2} dt - v_{c2}(t_0) = \pm \frac{v_{CC}}{(R_4 + RP_2)C_2} + v_{o2}(t_0)$$
 (5-4)

输出 v_{o1} 为高电平 $(+v_{CC})$,比较器门限电压为 V_{T-} 。这时积分器开始反向积分,三角波 vo2 线性下降。当 vo2 下降到 V_{T-} 时,比较器翻转,输出 v_{o1} 由高电平跳到低电平,门限电压为 V_{T+} 这时积分器又开始正向积分, v_{o2} 线性增加。如此反复,就可自动产生方波-三角波。

5.2 信号分离电路

图 5-2 二阶低通滤波器

特征角频率

$$\omega_0 = \frac{1}{\sqrt{C_1 C_2 R_1 R_2}}$$

$$f_0 = \frac{1}{2\pi \sqrt{C_1 C_2 R_1 R_2}}$$

$$Q = \frac{\sqrt{C_1 C_2 R_1 R_2}}{C_2 (R_1 + R_2)}$$

设计二阶巴特沃斯低通滤波器如图 5-3所示,特征频率 5KHz:

2nd Order Low Pass Butterworth

Pass Band Frequency = 5.000 KHz

图 5-3 二阶低通设计

设计二阶巴特沃斯带通滤波器如图 5-4所示,特征频率 15KHz,带宽 2.5KHz:

图 5-4 二阶带通设计

5.3 信号合成电路

先使用移相器获得相位相同的波形,再使用加法器电路合成两波形,如图 5-5所示:

图 5-5 移项与合成电路

6 仿真分析

6.1 信号发生电路

图 6-1 信号发生仿真

6.2 低通滤波

图 6-2 二阶低通仿真

6.3 带通滤波

图 6-3 二阶带通仿真

7 实验过程

如图所示连接电路,调整电位器阻值合适后接入电路,微调电位器,调整方波和三角波的频率和峰峰值至符合要求。搭建滤波器电路时,在电源和地间加入适当的滤波电容。波形符合要求,通过验收。

8 实验总结

方波的幅度由 $+V_{CC}$ 和 $-V_{EE}$ 决定,小于它们 1V 左右;三角波幅度可由 R_{P1} 进行调节,但会影响频率。调节 R_{P2} ,可调节频率,且不会影响三角波幅度,可用 R_{P2} 实现频率微调,用 C_2 改变频率范围。误差分析:测量存在误差和实验电路的 局限性,输出的波形并不是标准的方波和三角波,而是有一些杂量。

此外,滤波电路需要特别注意连线,否则会出现高频自激。