A. String Reconstruction

time limit per test: 2 seconds memory limit per test: 256 megabytes input: standard input

output: standard output

Ivan had string *s* consisting of small English letters. However, his friend Julia decided to make fun of him and hid the string *s*. Ivan preferred making a new string to finding the old one.

Ivan knows some information about the string s. Namely, he remembers, that string t_i occurs in string s at least k_i times or more, he also remembers exactly k_i positions where the string t_i occurs in string s: these positions are $x_{i,1}, x_{i,2}, ..., x_{i,k}$. He remembers n such strings t_i .

You are to reconstruct **lexicographically minimal** string s such that it fits all the information Ivan remembers. Strings t_i and string s consist of small English letters only.

Input

The first line contains single integer n ($1 \le n \le 10^5$) — the number of strings Ivan remembers.

The next n lines contain information about the strings. The i-th of these lines contains non-empty string t_i , then positive integer k_i , which equal to the number of times the string t_i occurs in string s, and then k_i distinct positive integers $x_{i,\,1},x_{i,\,2},...,x_{i,\,k_i}$ in increasing order — positions, in which occurrences of the string t_i in the string t_i start. It is guaranteed that the sum of lengths of strings t_i doesn't exceed t_i 000, t_i 1000, t_i 1000, and the sum of all t_i 1000 doesn't exceed t_i 1000. The strings t_i 1000 can coincide.

It is guaranteed that the input data is not self-contradictory, and thus at least one answer always exists.

Output

Print lexicographically minimal string that fits all the information Ivan remembers.

Examples

```
input

3 a 4 1 3 5 7 ab 2 1 5 ca 1 4

output

abacaba
```

```
input

1 a 1 3

output

aaa
```

```
input

3
ab 1 1
aba 1 3
ab 2 3 5

output

ababab
```