

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI, INFORMATYKI I INŻYNIERII BIOMEDYCZNEJ

KATEDRA INFORMATYKI STOSOWANEJ

Praca dyplomowa magisterska

Aplikacja internetowa wyznaczająca ograniczenia prędkości na drogach na podstawie danych z OpenStreetMap Web application that determines speed limits on roads based on data from OpenStreetMap

Autor: Piotr Jaromin Kierunek studiów: Informatyka

Opiekun pracy: dr inż. Grzegorz Rogus

Uprzedzony o odpowiedzialności karnej na podstawie art. 115 ust. 1 i 2 ustawy z dnia 4 lutego 1994 r. o prawie autorskim i prawach pokrewnych (t.j. Dz.U. z 2006 r. Nr 90, poz. 631 z późn. zm.): "Kto przywłaszcza sobie autorstwo albo wprowadza w błąd co do autorstwa całości lub części cudzego utworu albo artystycznego wykonania, podlega grzywnie, karze ograniczenia wolności albo pozbawienia wolności do lat 3. Tej samej karze podlega, kto rozpowszechnia bez podania nazwiska lub pseudonimu twórcy cudzy utwór w wersji oryginalnej albo w postaci opracowania, artystycznego wykonania albo publicznie zniekształca taki utwór, artystyczne wykonanie, fonogram, wideogram lub nadanie.", a także uprzedzony o odpowiedzialności dyscyplinarnej na podstawie art. 211 ust. 1 ustawy z dnia 27 lipca 2005 r. Prawo o szkolnictwie wyższym (t.j. Dz. U. z 2012 r. poz. 572, z późn. zm.): "Za naruszenie przepisów obowiązujących w uczelni oraz za czyny uchybiające godności studenta student ponosi odpowiedzialność dyscyplinarną przed komisją dyscyplinarną albo przed sądem koleżeńskim samorządu studenckiego, zwanym dalej «sądem koleżeńskim».", oświadczam, że niniejszą pracę dyplomową wykonałem(-am) osobiście i samodzielnie i że nie korzystałem(-am) ze źródeł innych niż wymienione w pracy.

Spis treści

1.	Wpr	owadze	enie	7
	1.1.	Wstęp)	7
	1.2.	Cele p	pracy	9
	1.3.	Wyko	rzystane technologie	11
	1.4.	Przeg	ląd literatury	11
	1.5.	Układ	l pracy	15
2.	Inte	rfejs uż	ytkownika - TODO	17
	2.1.	Wido	k główny aplikacji	18
	2.2.	Menu	wyboru warstw	19
	2.3.	Wido	k zaznaczonych ulic	20
	2.4.	Wido	k dopuszczalnych ograniczeń prędkości	21
	2.5.	Wido	k istotnych obiektów pobranych z OSM	22
	2.6.	Wido	k obiektów zdefiniowanych przez użytkownika	23
	2.7.	Doda	wanie własnych obiektów	24
3.	Algo	rytm -	TODO	25
	3.1.	Przyp	orządkowanie obiektów reprezentowanych przez punkty, do poszczególnych dróg	26
	3.2.	Wyzn	aczanie współrzędnych punktu znajdującego się na drodze, odległego o n metrów	
		od inr	nego punktu	27
	3.3.	Wyzn	aczanie minimalnego obszaru pokrywającego	29
	3.4.	Powię	ekszanie wyznaczonego obszaru pokrywającego	31
	3.5.	Łącze	nie powiększonych obszarów pokrywających	32
		3.5.1.	Łączenie powiększonych obszarów pokrywających w przypadku gdy jeden ob-	
			szar w całości znajduje się w drugim	32
		3.5.2.	Łączenie powiększonych obszarów pokrywających w przypadku gdy jeden ob-	
			szar nachodzi w całości tylko jednym bokiem	34
		3.5.3.	Łączenie powiększonych obszarów pokrywających w przypadku gdy jeden ob-	
			szar nachodzi tylko jednym rogiem	37

6 SPIS TREŚCI

3.6.	Znajdowanie punktów przecięcia drogi i powiększonego obszaru	39
3.7.	Sprawdzanie, czy punkt przecięcia należy do odcinka	40
3.8.	Przyporządkowanie obiektów reprezentowanych przez wielokąty, do poszczególnych dróg	42
3.9.	Przejścia dla pieszych	44
	3.9.1. Przyporządkowywanie przejść dla pieszych do poszczególnych dróg	44
	3.9.2. Wyznaczanie prędkości i umieszczanie jej w odpowiednim miejscu na mapie	45
3.10.	Typ nawierzchni	46
3.11.	Przejazdy kolejowe	48
	3.11.1. Przyporządkowywanie przejazdów kolejowych do poszczególnych dróg	48
	3.11.2. Wyznaczanie prędkości i umieszczanie jej w odpowiednim miejscu na mapie	49
3.12.	Sygnalizacja świetlna	50
	3.12.1. Przyporządkowywanie sygnalizacji świetlnej do poszczególnych dróg	50
	3.12.2. Wyznaczanie prędkości i umieszczanie jej w odpowiednim miejscu na mapie	51
3.13.	Przystanki autobusowe i tramwajowe	52
3.14.	Szkoły i miesca zabaw	53
3.15.	Sklepy i miejsca kultów religijnych	54
3.16.	Liczba pasów ruchu	55
3.17.	Rodzaj drogi	56
3.18.	Płynna zmiana prędkości pojazdów	57
3.19.	Historia wypadków	58
3.20.	Zakręty	59
3.21.	Umiejscowienie znaków na drodze	59

1. Wprowadzenie

1.1. Wstęp

Bezpieczeństwo na drodze stanowi jedno z podstawowych celów stawianych zarówno przez budowniczych dróg, producentów samochodów ich użytkowników a także osób znajdujących się pobliżu. Aby zredukować liczbę wypadków, niezbędne jest uwzględnienie ogromnej liczby czynników wpływających na bezpieczeństwo na drogach. Należy wziąć pod uwagę warunki atmosferyczne występujące w danej okolicy, ukształtowanie terenu, roślinność która może niekorzystnie wpłynąć na widoczność, drzewa znajdujące się w pobliżu tras oraz samo oznakowanie dróg. Ważne są także pojazdy, które biorą udział w ruchu, funkcję jakie spełnia dana droga, ilość pasów ruchu i ich szerokość, liczba zakrętów i promień ich skrętu oraz typ nawierzchni, z której składa się jezdnia. Nie należy także lekceważyć statystyk dotyczących wypadków na danych odcinkach dróg. Na bezpieczeństwo na drogach wpływ mają również producenci pojazdów. Rozwijane przez nich inteligentne czujniki oraz systemy wspomagania jazdy mają kluczowe znaczenie w redukcji ryzyka popełnienia błędu przez człowieka.

W tabeli 1.1. znajduje się zestawienie przedstawiające tolerancje biomechaniczną człowieka dla różnych typów pojazdów.

Tabela 1.1. Biomechaniczna tolerancja na wypadki

Typ wypadku	Prędkość uderzenia
samochód / pieszy / rowerzysta	20 - 30 km/h
samochód / motocykl	20 - 30 km/h
samochód / drzewo lub słup	30 - 40 km/h
samochód / samochód (zderzenie boczne)	50 km/h
samochód / samochód (zderzenie czołowe)	70 km/h

Source: Na podstawie Austroroads 2005

Z tabeli 1.1. odczytać można, że najbardziej podatni na zagrożenia w ruchu drogowym są piesi, rowerzyści i motocykliści. Oczywiście są to uśrednione dane. Ryzyko poważnych obrażeń, a nawet śmierci, w niektórych przypadkach może wystąpić przy jeszcze mniejszych prędkościach.

1.1. Wstęp

W "Raport o stanie bezpieczeństwa ruchu drogowego dla dróg krajowych w zarządzie GDDKiA" opublikowanym na stronie Generalnej Dyrekcji Dróg Krajowych i Autostrad, znajduje się zestawienie liczby wypadków drogowych i ich skutków, w latach 2007 - 2016.

Wypadki drogowe i ich skutki w latach 2007 - 2016

Rys. 1.1. wypadki drogowe i ich skutki

Source: Raport o stanie bezpieczeństwa ruchu drogowego dla dróg krajowych w zarządzie GDDKiA.

LICZBA WYPADKÓW LICZBA ZABITYCH LICZBA RANNYCH

Z Rys. 1.1 odczytać można, że liczba wypadków, z jednym wyjątkiem (z roku 2016) nieustannie maleje. W 2007 roku miało miejsce 10562 wypadków, w których liczba zabitych wyniosła 2028 osób, natomiast rannych było 14975. W porównaniu z 2016 został odnotowany spadek o ok. 40 %. Niewątpliwie jest to ogromny sukces, jednak liczba ta dalej jest zatrważająco wysoka.

P. Jaromin Aplikacja internetowa wyznaczająca ograniczenia prędkości na drogach na podstawie danych z OpenStreetMap

1.2. Cele pracy

1.2. Cele pracy

Głównym celem niniejszej pracy dyplomowej jest stworzenie inteligentnego systemu, mającego za zadanie predykcję dopuszczalnych prędkości w ruchu drogowym. Ponadto zostaną opracowane modele i narzędzia pozwalające na obliczenie prędkości ma drogach. Rozwiązanie bazować będzie na metodach automatycznego wnioskowania, modelach matematycznych i informacjach geoprzestrzennych. Dzięki temu, możliwe będzie wyznaczenie optymalnego rozwiązania dla złożonego, wielokryterialnego problemu, w którym kluczowe znaczenie będzie miało bezpieczeństwo uczestników ruchu drogowego, przy zachowaniu maksymalnej przepustowości infrastruktury drogowej.

Algorytm predykcji dopuszczalnych prędkości w ruchu drogowym będzie wykorzystywał następujące informacje

- pojedyncze poziome zakręty zostaną podzielone na trzy grupy, według długości promienia skrętu:
 - mały promień skrętu o maksymalnej długości promienia 300m
 - średni promień skrętu o długości promienia powyżej 300m i poniżej 600m
 - duży promień skrętu o długości promienia powyżej 600m
- połączone poziome zakręty połączone prostą o długości nie przekraczają 200m. Zostaną podzielone na dwie grupy, według długości promienia skrętu:
 - najpierw zakręt o większym promieniu, następnie o mniejszym
 - najpierw zakręt o mmiejszym promieniu, następnie o większym
- pobliże szkół i miejsc zabaw w takich przypadkach prędkość musi zostać dobrana, aby kierowca
 bez przeszkód mógł zatrzymać się, nie powodując zagrożenia dla zdrowia i życia osób niepełnoletnich. Należy mieć na uwadze fakt, że zachowanie małoletnich osób często jest nieobliczalne.
 Nigdy nie wiadomo kiedy mogą pojawić się na drodze
- pobliże sklepów i miejsc kultów religijnych dostosowanie prędkości do większego niż zwykle ruchu pieszych jak i pojazdów mechanicznych.
- pobliże przystanków autobusowych i tramwajowych zdarzają się szczególne sytuacje, gdy pasażerowie komunikacji zbiorowej, bez uprzedniego upewnienia się, biegną do już odjeżdżającego autobusu czy tramwaju. W takim przypadku szczególnie ważne jest dostosowanie prędkości, żeby kierowca mógł bez przeszkód, odpowiednio wcześniej, zareagować na taką ewentualność

10 1.2. Cele pracy

– przejścia dla pieszych - w sytuacjach jak powyżej, z tą różnicą, że zamiast na autobus, przebiegają na "późnym zielonym" lub czasem już czerwonym. Do takich sytuacji najczęściej dochodzi w miastach, gdzie tempo życia jest bardzo duże. Należy pamiętać, że ok. 25% wypadków na przejściach z sygnalizacją spowodowane jest wtargnięciem pieszego na czerwonym świetle

- tunele i mosty szczególne typy dróg, gdzie w tunelach są inne warunki oświetleniowe, oraz stan nawierzchni w większości przypadków nie jest zależny od warunków atmosferycznych. Mosty zazwyczaj nie są tak szerokie jak ulice do nich prowadzące, dlatego trzeba być przygotowanym na np. zwężenia drogi.
- ilość pasów ruchu prędkość będzie większa na kilku pasmowej drodze, w porównaniu z jednopasmową
- typ nawierzchni jest to bardzo ważny czynnik, ponieważ pojazdy mechaniczne, poruszając się z nieodpowiednią prędkością po nieprzystosowanej do tego nawierzchni, np. żwirowej, bardzo szybko ulegają kosztownym uszkodzeniom
- typ drogi w skład których wchodzą autostrady, drogi osiedlowe, ekspresowe, główne itp.
- zmiana prędkości między poszczególnymi strefami ograniczeń prędkości płynna jazda jest znacznie mniej ryzykowna niż nagła zmiana prędkości pojazdu. Dlatego w sytuacjach, gdy na drodzę znajdue np. przejście dla pieszych, należy stopniowo ustawiać coraz to niższe wartości znaków sygnalizujących ograniczenie prędkości
- przejazdy kolejowe są zarówno strzeżone jak i niestrzeżone. W obu przypadkach należy zachować szczególną ostrożność, dlatego też prędkość musi być odpowiednio niższa. Trzeba mieć na uwadze, że przez dużą masę pojazdów szynowych, wypadki kolejowe należą do jednych z najbardziej śmiercionośnych.

historia wypadkow

Oprócz danych pobranych z OpenStreetMap, aplikacja musi posiadać możliwość manualnego, przez zwykłego użytkownika, definiowania obiektów i przeszkód na drodze. Jest to szczególnie istotne, gdyż nie wszystkie dane umieszczone są OSM.

Kluczową kwestią działanie algorytmu są również miejsca, w których powinien umieszczać znaki ograniczenia prędkości. Kierowca odpowiednio wcześniej musi zostać poinformowany o przeszkodzie na drodze, żeby mieć wystarczającą ilość czasu na reakcję. Dla przykładu, niedopuszczalna jest sytuacja, podczas której kierowca podróżując z szybkością 90 km/h, natrafia na znak informujący o znajdującym się za nim przejściu dla pieszych. Prawidłowo działający algorytm, powinien informować o potrzebie stopniowej redukcji prędkości, poprzez umieszczanie znaków ograniczeń prędkości o coraz to mniejszych wartościach. Dzięki temu możliwe będzie zapewnienie płynność jazdy, przy zachowaniu odpowiedniego bezpieczeństwa.

1.3. Wykorzystane technologie

Cała aplikacja bazować będzie na dynamicznej stronie internetowej. W tym celu zostanie wykorzystany stos technologiczny, bazujący na javascripcie, jakim jest MEAN stack. Miałem kilka powodów, dla którym wybrałem te konkretne technologie. Pierwszym jest rosnąca popularność tego stosu. Coraz więcej firm przekonuje się do tej technologii, więc popyt na programistów z tego zakresu rośnie z roku na rok. Drugim powodem jest fakt, że można go uruchomić na prawie każdym urządzeniu czy platformie, dzięki czemu jest zapewniona duża przenośność kodu. Dodatkowo MEAN stack idealnie nadaje sie do prostych, skalowalnych aplikacji webowych, w których nacisk kładziony jest na bazujący wymianę danych w czasie rzeczywistym na wielu urządzeniach.

Schemat działania aplikacji będzie wyglądał następująco. Dane zostaną pobrane z oficjalnej strony OpenStreetMap, 'www.openstreetmap.org'. Są one zapisane w formacie xml. W celu łatwiejszego ich przetwarzania, zostaną przekonwertowane do formatu GeoJson. Jest to rozszerzenia formatu Json o dane niezbędne do operowaniu na geograficznym typie danych. Przetworzone dane, będą przechowywane w mLab. Jest to w pełni zarządzana usługa bazy danych w chmurze, która hostuje bazy danych MongoDB.

Back-end aplikacji zostanie napisany w Node.js. Jego głównym zadaniem będzie połączenie się z mLabem w celu pobrania, zapisu, edycji i usuwania danych. Ponadto będzie komunikował się również z frontendem, po to, aby przekazywać pobrane dane. Dodatkowo, w celu zmniejszenia objętości kodu i tym samym zwiększenia jego czytelności, zostanie użyty framework Express.js.

Za zarządzanie front-endem odpowiedzialny będzie angular w wersji 5. Na nim zostanie uruchomiona biblioteka Leaflet. Umożliwia wyświetlenie interaktywnej mapy, którą zasilić można różnymi typami danych, np. w formacie GeoJson. Dzięki niej, użytkownik zyska możliwość wprowadzania swoich danych, przeglądania już istniejących czy dowiedzieć się, jakie prędkości są dozwolone na danych odcinkach dróg. Kolejną, dość istotną funkcjonalnością biblioteki Leaflet jest możliwość zarządzania wyświetlanymi obiektami. W prosty sposób można ukryć wszystkie dane, wyświetlać tylko drogi, tylko ograniczenia prędkości lub różne kombinację danych, które nas interesują.

1.4. Przegląd literatury

Han(2009) podaje przykład, jak zmiana prędkości wpływa na bezpieczeństwo i płynność jazdy. Jeśli kierowca napotka zbyt wiele stref prędkości z obrębie krótkiego odcinka drogi lub zbyt wiele zmian ograniczeń prędkości w sąsiedztwie danej strefy, to wtedy może poczuć dezorientację. Zwraca uwagę, jak ważne jest rozmieszczenie odpowiednich znaków, dla zredukowania poziomu stresu kierowcy.

Nama(2016) przedstawia jak kierowcy dostosowują prędkość w sytuacji gdy znajdują się na górzystej, nieregularnej drodze. Średnia wariancja prędkości w takim terenie wynosi ok. 55%. Spowodowane jest to połączeniem cech geometrycznych zarówno poziomych jak i pionowych. Kierowcy na potrzeby bezpieczeństwa, w przypadku poziomych zakrętów, zmniejszają prędkość. Dodatkowym czynnikiem

1.4. Przegląd literatury

jest także ciągłe, zmieniające się nachylenie terenu. Uwzględnić należy również fakt, że zakręty znajdujące się na szczycie, wyglądają na znacznie bardziej niebezpieczne niż są w rzeczywistości. Wszystkie te czynniki w niekorzystny sposób wpływają na utrzymywanie stałej prędkości. Tabela 1.2. przedstawia średnią prędkość pojazdów w zależności od promienia krzywizny zakrętu, jego długości oraz nachylenia.

Tabela 1.2. Średnie prędkości pojazdów w zależności od promienia krzywizny, długości oraz nachylenia

promień krzywizny (m)	nachylenie (%)	długość zakrętu (%)	średnia prędkość (km/h)
50	4	74	48.9
100	2	139	47.8
100	-6	33	56.2
100	6	33	49.9
150	-6	31	49.8
150	-4	64	54.3
150	2	32	54.7
150	4	43	52.1
200	-4	56	54.2
200	-2	27	59.6
200	2	205	45.8
200	4	10	60.9
200	6	102	50.1
300	-6	73	58.2
300	2	74	52.6

Source: Na podstawie Expanded Operating Speed Model

W tabeli 1.2 znalazły się dane z obserwacji na drodze, na której ograniczenie prędkości wynosiło 50 km/h. Zauważyć można, że w 45% prędkość była wyższa niż dopuszczalna.

Forbes(2012) wspomina o relacji pomiędzy prędkością, a ryzykiem wypadku dla prędkości pomiędzy 25 km/h a 120 km/h. Gdy średnia prędkość ruchu jest zmniejszona, liczba wypadków i poziom niebezpieczeństwa spowodowania urazów prawie zawsze maleje. Gdy średnia prędkość ruchu wzrasta, liczba wypadków i poziom niebezpieczeństwa spowodowania urazów przeważnie rośnie. Relacja między średnią prędkością a ryzykiem wypadków może być adekwatnie opisana według poniższego modelu:

$$CMF = (V_a/V_b)^X (1.1)$$

gdzie

CMF – Współczynnik modyfikacji wypadku

 V_a – średnia prędkość przed warunkiem

P. Jaromin Aplikacja internetowa wyznaczająca ograniczenia prędkości na drogach na podstawie danych z OpenStreetMap

1.4. Przegląd literatury

- V_b średnia prędkość po warunkiem
 - X 3.6 dla częstotliwości wypadków, w których pojawiły się ofiary śmiertelne
 - 2.0 dla częstotliwości wypadków, w których nie było ofiar śmiertelnych
 - 1.0 dla częstotliwości gdzie uszkodzeniu uległy tylko pojazdy
 - 4.5 dla ofiar śmiertelnych
 - 2.7 dla których poszkodowani ponieśli tylko obrażenia ciała

Porównuje także ograniczenia prędkości dla poszczególnych obszarów znajdujących się w USA. Ich wynik znajduje się w tabeli 1.3.

Tabela 1.3. Ograniczenia prędkości w różnych stanach

Stan	Prędkość	Obszar	
Delaware	40 km/h	dowolna dzielnica biznesowa	
	40 km/h	dowolna dzielnica mieszkalna	
	30 km/h	wszystkie strefach szkolnych	
	80 km/h	dwupasmowa jezdnia	
	90 km/h	czteropasmowa jezdnia	
	15 km/h	alejki	
	50 km/h	ulice dzielnic miejskich	
Minneasota	110 km/h	wiejskie autostrady międzystanowe	
Minneasota	105 km/h	miejskie autostrady międzystanowe	
	105 km/h	drogi ekspresowe	
	90 km/h	pozostałe drogi	
	25 km/h	alejki, wąskie uliczki mieszkalne	
Oregon	30 km/h	dzielnice biznesowe, strefy szkolne	
	40 km/h	dzielnice mieszkalne, parki publiczne, brzegi oceanu	
	90 km/h	wiejskie autostrady, ciężarówki na międzystanowych autostradach	
	105 km/h	pojazdy pasażerskie, lekkie ciężarówki na międzystanowych autostradach	

Source: Na podstawie Methods and Practices for Setting Speed Limits: An Informational Report

Han(2009) zwraca uwagę, jak pora dnia wpływa na ruch na drodzę. W godzinach porannych, gdy osoby pracujące jadą do pracy, osoby nieletnie do szkół oraz w godzinach popołudniowych, gdy wracają do domów. Obserwowany jest wzmożony ruch na drogach. Więcej pojazdów na drodze, oznacza większe korki, a co za tym idzie, zmniejszenie rzeczywistej prędkości. Natomiast w pozostałych porach dnia, gdy ruch jest mniejszy, możliwe jest szybsze poruszanie się po drodze. C. Han opisuje także jak prawidłowo ustawiać znaki drogowe. Oznakowanie powinno być umieszczone w każdym odpowiednim punkcie wzdłuż drogi, np. wokół potencjalnych punktów konfliktowych, zwężeniach i rozwidleniach

1.4. Przegląd literatury

dróg, zmianie ich nawierzchni itp. Powtórzenia znaków, najlepiej żeby były w odległości 1000m na autostradach. W obszarach miejskich, rekomendowana odległość to 400-500 m.

Jurewicz(2014) wskazuje bezpośrednią relację pomiędzy prędkością a ryzykiem wypadku. W sytuacji gdy prędkość jest zmniejszana, liczba wypadków i rannych spada w 85 procentach przypadków. Gdy prędkość jest zwiększana, liczba wypadków i rannych wzrasta w 71 procentach przypadków. Największym dowodem na to są tak zwane badania 'przed i po'. W latach 1980 ograniczenie prędkości dla wiejskich i zewnętrznych autostrad w metropolii zostało zwiększone ze 100 km/h do 110 km/h, ale zostało z powrotem zredukowane do 100 km/h z powodu obaw o bezpieczeństwo. Badanie 'przed, w trakcie i po' zostało prowadzone na przestrzeni 2,5 roku. W sytuacji, gdy ograniczenie prędkości zostało zwiększone do 110 km/h, wskaźnik ofiar wypadków wzrósł o prawie 25%. Gdy prędkość ponownie została zmniejszona do 100 km/h wskaźnik zmalał o prawie 20%.

Vadeby i Frosman (2018) przeprowadzili badania na temat, jak nowe ograniczenia prędkości wpłynęły na bezpieczeństwo. Dla przykładu, gdy na wiejskich drogach została zmniejszona wartość dozwolonej prędkości z 90 km/h do 80 km/h, zauważono spadek liczby wypadków śmiertelnych o 14 w skali roku. Nie zauważono natomiast żadnych znaczących zmian dla liczby poważnych obrażeń ciała. Na autostradzie, po zwiększeniu dozwolonej prędkości do 120 km/h, zanotowano wzrost wypadków, w których doszło do poważnych obrażeń. Nie odnotowano natomiast znaczącej zmiany względem ofiar śmiertelnych. Wzrost liczby poważnych obrażeń ciała wystąpił na wszystkich rodzajach autostrad, jednak największy wzrost został zauważony na wąskich autostradach o szerokości 21.5 m. Dla dwupasmowych jezdni, po zmniejszeniu prędkości ze 110 do 100 km/h, doszło do zmniejszenia liczby wypadków z poważnymi obrażeniami ciała o 16 w skali roku. Vadeby i Frosman (2018) wskazują także na fakt, iż wzrost dozwolonej prędkości o 10 km/h spowodował średni wzrost prędkości pojazdów mechanicznych o ok. 2-3 km/h, a zmniejszenie dozwolonej prędkości o 10 km/h, spowodował zmniejszenie średniej prędkości pojazdów o 3 km/h.

Soriguera i inni (2017) przeprowadzili badanie, które wykazało, jak mała wartość ograniczenia prędkości wpływa na ruch uliczny. Jako rezultat, uzyskali następujące wyniki.

- Dla ograniczenia prędkości do 80 km/h, maksymalna przepustowość może wynieść 1972 samochodów na godzinę na jednym pasie ruchu, dla szerokiego zakresu zajętości jezdni (17.6 25.8%) i średniej prędkości wahającej się między 51 a 73 km/h
- Dla ograniczenia prędkości do 60 km/h, maksymalna przepustowość nie uległa dużej zmianie, wyniosła 1956 pojazdów na godzinę na jednym pasie ruchu. Zajętość jezdni utrzymywała się na wysokim poziomie 24.4 - 25.8%.
- Dla ograniczenia prędkości do 40 km/h, maksymalna przepustowość nieznacznie zmalała, do poziomu 1942 samochodów na godzinę na jednym pasie ruchu. Natomiast znacznie wzrosła zajętość jedni, wynosiła 32.0 - 34.7

Z powyższych wyników, można dojść do dwóch wniosków. Pierwszy jest taki, że zmniejszenie prędkości skutkuje znacznym zwiększeniem poziomu zajętości jezdni w warunkach swobodnego przepływu.

P. Jaromin Aplikacja internetowa wyznaczająca ograniczenia prędkości na drogach na podstawie danych z OpenStreetMap

1.5. Układ pracy

W skrócie, zmniejszenie prędkości pozwala osiągnąć stabilny, wysoki poziom zajętości jezdni, zapobiegając tym samym różnym wypadkom i utrzymywaniem dużej akumulacji pojazdów na drodze. Drugi wniosek jest taki, że dla małej prędkości, jaką jest 40 km/h, średnia prędkość przepływu pojazdów, wynosząca 1942 pojazdów/h/pas, może zostać podtrzymana przez dłuższy okres. W praktyce oznacza to znaczne zmniejszenie prawdopodobieństwa wystąpienia korku na drodze.

1.5. Układ pracy

Praca składa się z N rozdziałów.

- Pierwszy z nich zawiera wstęp, cele pracy, wykorzystane technologie oraz przegląd literatury.
- Drugi składa się z ...,
- W trzecim zawarto informacje na temat...
- Czwarty...

1.5. Układ pracy

2. Interfejs użytkownika - TODO

W niniejszym rozdziale skupię się na szczegółowym opisie interfejsu użytkownika. Zostaną przedstawione najważniejsze funkcję, które pomogą użytkownikowi w korzystaniu z programu. Omówinone zostaną poszczególne warstwy wyświetlone na mapie, przełączanie między nimi oraz tworzenie własnych warst, przedstawiających dodaną przez użytkownika informację. W pierwszej sekcji przedstawiony zostanie widok główny aplikacji wraz z dokładnym omówieniem. W dalszych częsciach tego rozdziału, opisane zostaną kolejne warstwy. Na końcu przedstawiony zostanie sposób, jak dodawać własne obiekty, żeby były widoczne na mapie.

2.1. Widok główny aplikacji

Rys. 2.1. przedstawia widok główny aplikacji. W lewym górnym rogu znajdują się dwa przyciski: "+" oraz "-". Umożliwiają one przybliżanie i oddalanie widoku mapy. W prawym górnym rogu znajduję się menu wyboru wyświetlanej warstwy. Szczegóły dostępne w rozdziale 2.2. Ponadto, użytkownik posiada możliwość, za pomocą myszki, przesuwania obecnie wyświetlanej mapy w dowolnym kierunku. Mapa pobierana jest w czasie rzeczywistym ze strony OpenStreetMap.

Rys. 2.1. Widok główny aplikacji

P. Jaromin Aplikacja internetowa wyznaczająca ograniczenia prędkości na drogach na podstawie danych z OpenStreetMap

2.2. Menu wyboru warstw

Rys. 2.2. przedstawia menu wyboru warstw. Dostępny jest dopiero po najechaniu kursorem myszki. Umozliwia wyświetlanie na mapie elementów, które użytkownik w danej chwili potrzebuje.

Rys. 2.2. Menu wyboru warstw

Menu wyboru warst, Rys. 2.2, składa się z pięciu elementów:

- Open Street Map domyślna warstwa, służąca do wyświetlania głównej mapy.
- Only street służy do zaznaczania na mapie, wszystkich dostępnych ulic. Więcej szczegółów znajduje się w rozdziale 2.3
- Speed limit najważniejsza warstwa, przedstawiajaca dopuszczalne prędkości na drogach. Więcej szczegółów znajduje się w rozdziale 2.4
- Objects wyświetla obiekty istotne dla algorytmu obliczajacego predkość pojazdów. W ich skład wchodzą np. przystanki autobusowe i tramwajowe, szkoły, kościoły, place zabaw itp. Więcej szczegółów znajduje się w rozdziale 2.5
- Custom objects wyświetla dane wprowadzone przez wszystkich użytkowników aplikacji. Więcej szczegółów znajduje się w rozdziale 2.6

Istotną funkcjonalnością jest możliwość wyświetlania dowolnych kombinacji warstw. Użytkownik może zaznaczyć dowolną liczbę widoków, które zostaną wyswietlone na głównej mapie.

2.3. Widok zaznaczonych ulic

Rys. 2.3 przedstawia mapę, na której zaznaczone są poszczególne odcinki dróg. Reprezentowane są przez niebieskie linie łamane, przebiegającą przez sam jej środek. Zostały uzglednione różnego rodzaju klasy dróg, takie jak:

- autostrady
- drogi ekspresowe
- drogi główne ruchu przyspieszonego
- drogi główne
- drogi zbiorcze
- drogi lokalne
- drogi dojazdowe

Rys. 2.3. Widok zaznaczonych ulic

P. Jaromin Aplikacja internetowa wyznaczająca ograniczenia prędkości na drogach na podstawie danych z OpenStreetMap

2.4. Widok dopuszczalnych ograniczeń prędkości

Na mapie z Rys. 2.4, zostały umieszczone ograniczenia prędkości dla każdego odcinka drogi. Do wyznaczania tych ograniczeń, algorytm uwzględnił szereg czynników, które zostały opisane w późniejszych rozdziałach. Dla lepszej wizualizacji wyznaczonych danych, do wykonania Rys. 2.4., został włączony także widok zaznaczonych ulic, opisany w rozdziale 2.3.

Rys. 2.4. Widok dopuszczalnych ograniczeń prędkości

2.5. Widok istotnych obiektów pobranych z OSM

Rys. 2.5 przedstawia istotne, z puktu widzenia algorytmu, obiekty pobrane z OpenStreetMap. W ich skład wchodzą:

- przedszkola i szkoły
- przystanki autobusowe i tramwajowe
- przejścia dla pieszczych
- sklepy i miejsca kultu religijnego
- place zabaw

Rys. 2.5. Widok istotnych obiektów pobranych z OSM

P. Jaromin Aplikacja internetowa wyznaczająca ograniczenia prędkości na drogach na podstawie danych z OpenStreetMap

2.6. Widok obiektów zdefiniowanych przez użytkownika

2.7. Dodawanie własnych obiektów

P. Jaromin Aplikacja internetowa wyznaczająca ograniczenia prędkości na drogach na podstawie danych z OpenStreetMap

3. Algorytm - TODO

Niniejszy rozdział skupiać się będzie na algorytmie służącym do rozwiązania problemu, jakim jest wyznaczenie optymalnej prędkości na drodze. Zostaną w nim opisane poszczególne składowe wchodzące w jego skład, takie jak:

- przyporządkowanie obiektów reprezentowanych przez punkty, do poszczególnych dróg
- przyporządkowanie obiektów reprezentowanych przez dwuwymiarowe figury geometryczne, do poszczególnych dróg
- wyznaczanie dopuszczalnej prędkości
- odpowienie umiejscowienie znaków

Dodatkowo, w celu lepszej wizualizacji problemu, zostaną umieszczone zdjęcia, przedstawiające działanie poszczególnych części algorytmu.

3.1. Przyporządkowanie obiektów reprezentowanych przez punkty, do poszczególnych dróg

Jednym z kluczowych elementów działania algorytmu jest odpowiednie przyporządkowanie obiektów drogowych do poszczególnych dróg. W OpenStreetMap reprezentowane są zarówno przez punkty, jak również przez dwuwymiarowe obiekty geometryczne.

Obiekty z OpenStreetMap reprezentowane przez punkty:

- przejścia dla pieszych
- przejazdy kolejowe
- sygnalizacja świetlna

W niniejszej sekcji skupię się na rozwiązaniu problemu jakim jest przyporządkowanie obiektów przedstawianych jako punkty, do poszczególnych dróg. Do tego celu wykorzystam wzór 3.1, wyznaczający odległość punktu od prostej.

Source: Na podstawie mathworld.wolfram.com

Wzór wyznaczający odległość punktu od prostej:

$$d = \frac{|(x_2 - x_1)(y_1 - y_0) - (x_1 - x_0)(y_2 - y_1)|}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}$$
(3.1)

- Zmienne: x1, y1, x2, y2 oznaczają współrzędne geograficzne odpowiednio początku i końca drogi.
- Zmienne x0, y0 oznaczają współrzędne punktu reprezentujące obiekt drogowy.
- Zmienna d oznacza najkrótszą odległość punktu od drogi.

P. Jaromin Aplikacja internetowa wyznaczająca ograniczenia prędkości na drogach na podstawie danych z OpenStreetMap

3.2. Wyznaczanie współrzędnych punktu znajdującego się na drodze, odległego o n metrów od innego punktu

Istotnym aspektem działania algorytmu jest rozwiązanie problemu wyznaczenie współrzędnych punktu, znajdującego się na drodze, odległego o n metrów od innego punktu. Jest to niezbędne w sytuacji, gdy np. program musi ustawić na drodze znak ograniczenia prędkości w odległosci n metrów od przejścia dla pieszych.

Do rozwiązania tego zadania, posłużyłem się własnościami trygonometrycznymi.

Odległość między dwoma punktami a i b wynosi:

$$d_1 = \sqrt{(x^1 - x^2)^2 + (y^1 - y^2)^2}$$
(3.2)

oraz sinus kata abc:

$$sin_{abc} = \frac{x2 - x1}{d_1} \tag{3.3}$$

jak również sinus kąta ebf:

$$sin_{ebf} = \frac{x2 - x0}{d_2} \tag{3.4}$$

oraz to, że sinusy tego samego kąta są równe:

$$sin_{abc} = sin_{ebf} = > \frac{x2 - x1}{d_1} = \frac{x2 - x0}{d_2}$$
 (3.5)

przez proste przekształcenie, otrzymujemy wzór na współrzędną x0

$$x0 = x2 - \frac{d_2 * (x2 - x1)}{d_1} \tag{3.6}$$

Wyznaczenie wzoru na współrzędną y0 jest podobne do wyznaczania współrzędnej x0, z tą różnicą, że zamiast sinusa, liczymy cosinusa kąta abc:

$$cos_{abc} = \frac{y2 - y1}{d_1} \tag{3.7}$$

oraz cosinusa kata ebf:

$$cos_{ebf} = \frac{y2 - y0}{d_2} \tag{3.8}$$

a skoro cosinus tego samego kąta są równe:

$$cos_{abc} = cos_{ebf} = > \frac{y2 - y1}{d_1} = \frac{y2 - y0}{d_2}$$
 (3.9)

otrzymujemy równanie współrzędnej y0:

$$y0 = y2 - \frac{d_2 * (y2 - y1)}{d_1} \tag{3.10}$$

Przez powyższe obliczenia, wyznaczone zostały wspórzędne poszukiwanego punktu:

$$\left(x2 - \frac{d_2 * (x2 - x1)}{d_1}, y2 - \frac{d_2 * (y2 - y1)}{d_1}\right) \tag{3.11}$$

3.3. Wyznaczanie minimalnego obszaru pokrywającego

W niniejszej sekcji skupię się na sposobie w jaki algorytm wyznacza minimalny obszar pokrywający (eng. minimum bounding box). Będzie on wykorzystany w późniejszych obliczeniach, mających na celu przypisanie poszczególnych dróg do danych obszarów, na których obowiązuje ograniczenie prędkości.

Rys. 3.1 przedstawia przykładowy wielokąt reprezentujący interesujący nas obiekt pobrany z Open-StreetMap.

Rys. 3.1. Przykładowy wielokąt reprezentujący obiekt na mapie

W celu znalezienia minimalnego obszaru pokrywający niezbędne jest wyznaczenie czterech współrzędnych (x1, y1), (x2, y2), (x3, y3), (x4, y4) reprezentuących cztery wierzchołki prostokąta.

W celu wyznaczenia wierzchołka północno-zachodniego, należy obliczyć minimalną wartość współrzędnej x oraz maksymalną wartość współrzędnej y.

$$x1 = min(x_a, x_b, x_c, x_d, x_e, x_f, x_g)$$

$$y1 = min(y_a, y_b, y_c, y_d, y_e, y_f, y_g)$$
(3.12)

Żeby wyznaczyć wierzchołek północno-wschodni, należy obliczyć maksymalną wartość współrzędnej x i y.

$$x2 = max(x_a, x_b, x_c, x_d, x_e, x_f, x_g)$$

$$y2 = max(y_a, y_b, y_c, y_d, y_e, y_f, y_g)$$
(3.13)

Wierzchołek południowo-wschodni obliczamy jako maksymalną wartość współrzędnej x oraz minimalną wartość wsółrzędnej y.

$$x3 = max(x_a, x_b, x_c, x_d, x_e, x_f, x_g)$$

$$y3 = min(y_a, y_b, y_c, y_d, y_e, y_f, y_g)$$
(3.14)

Aby wyznaczyć południowo-zachodni wierzchołek, należy obliczyć minimalną wartość współrzędnej x i y.

$$x4 = min(x_a, x_b, x_c, x_d, x_e, x_f, x_g)$$

$$y4 = min(y_a, y_b, y_c, y_d, y_e, y_f, y_g)$$
(3.15)

Po wyznaczeniu powyższych współrzędnych minimalny obszar pokrywający wygląda tak, jak na rysunku 3.2

Rys. 3.2. Minimalny obszar pokrywający dany obiekt

P. Jaromin Aplikacja internetowa wyznaczająca ograniczenia prędkości na drogach na podstawie danych z OpenStreetMap

3.4. Powiększanie wyznaczonego obszaru pokrywającego

Kolejnym krokiem niezbędnym do przyporządkowania dwuwymiarowych obiektów do poszczególnych dróg jest powiększenie wyznaczonego obszaru pokrywającego. W celu wyznaczenia wierzchołków powiększonego obszaru, skorzystam z poniżej podanych równań.

$$x1' = x1 - n y1' = y1 + n$$
 (3.16)

$$x2' = x2 + n y2' = y2 + n$$
 (3.17)

$$x3' = x3 + n y3' = y3 - n$$
 (3.18)

$$x4' = x4 - n y4' = y4 - n$$
 (3.19)

Rys. 3.3 przedstawia minimalny obszar pokrywający powiększony o n metrów względem pierwotnego. Oczywiście obszar można dowolnie powiększać, w zależności od obiektu, który się w nim znajduje. Tak więc dla placów zabaw czy przedszkoli będzie znacznie większy, w porównaniu do np. przystanków autobusowych.

3.5. Łączenie powiększonych obszarów pokrywających

W celu przyszpieszenia części algorytmu odpowiedzialnego za przypisywanie danego odcinka drogi do obszaru w którym obowiązuje ograniczenie prędkości, niezbędne jest połączenie nachodzących na siebie obszarów oraz wyznaczenie jego konturu. Można rozróżnić kilka przypadków:

- gdy jeden obszar całkowicie znajduje się wewnątrz drugiego
- gdy dwa rogi obszaru mającego kształt prostokątu znajdują się wewnątrz innego obszaru
- gdy tylko jeden róg obszaru mającego kształt prostokątu znajdje się wewnątrz innego obszaru

W niniejszych podrozdziale skupię na dokładnej metodzie wyznaczania konturu dla każdego z powyższych przypadków.

3.5.1. Łączenie powiększonych obszarów pokrywających w przypadku gdy jeden obszar w całości znajduje się w drugim

Do sytuacji w której dany obszar pokrywający w całości znajduje się wewnątrz innego obszaru dochodzi gdy np. wokół przedszkola znajduje się plac zabaw. W takiej sytuacji można pominąć wewnętrzy obszar. Na rys 3.4 został przedstawiony taki przypadek.

Rys. 3.4. Obszar pokrywający wewnątrz innego obszaru

P. Jaromin Aplikacja internetowa wyznaczająca ograniczenia prędkości na drogach na podstawie danych z OpenStreetMap

W pierwszym kroku należy znaleźć takie obszary. W tym celu algorytm iteruje po wszystkich obszarach i sprawdza, czy współrzędne spełniają wszystkie niżej przedstawione warunki.

$$x4 <= x5 <= x2$$

 $x4 <= x7 <= x2$
 $y4 <= y5 <= y2$
 $y4 <= x7 <= y2$
(3.20)

W następnym kroku algorytm usuwa tak znaleziony obszar. W wyniku czego na mapie pozostaje tylko obszar przestawiony na rys.3.5

Rys. 3.5. Wynik usunięcia obszaru pokrywającego wewnątrz innego obszaru

3.5.2. Łączenie powiększonych obszarów pokrywających w przypadku gdy jeden obszar nachodzi w całości tylko jednym bokiem

W przypadku gdy jeden obszar pokrywający w całości nachodzi tylko jednym bokiem, algorytm rozróżnia cztery możliwe sytuacje. Wszystkie one zostały przestawione na rysunku 3.6.

Rys. 3.6. Wszystkie możliwe sytuacje w których jeden obszar nachodzi na drugi tylko jednym bokiem

W pierwszym kroku należy znaleźć takie obszary. W tym celu algorytm iteruje po wszystkich obszarach i sprawdza, czy współrzędne spełniają wszystkie niżej przedstawione warunki.

Dla pierwszej ćwiarki z rys. 3.6

$$x11 \le x15 \le x13$$

 $y13 \le y15 \le y11$
 $y13 \le y18 \le y11$
 $x13 \le x16$ (3.21)

Dla drugiej ćwiarki z rys. 3.6

$$x24 \le x26 \le x22$$

 $y23 \le y26 \le y21$
 $y23 \le y27 \le y21$
 $x25 \le x21$ (3.22)

P. Jaromin Aplikacja internetowa wyznaczająca ograniczenia prędkości na drogach na podstawie danych z OpenStreetMap

Dla trzeciej ćwiarki z rys. 3.6

$$x31 <= x35 <= x33$$

 $x31 <= x36 <= x33$
 $y33 <= y35 <= y11$
 $y38 < x34$ (3.23)

Dla czwartek ćwiarki z rys. 3.6

$$x41 \le x48 \le x43$$

 $x41 \le x47 \le x43$
 $y43 \le y47 \le 411$
 $y46 > x42$ (3.24)

W następnym kroku algorytm wyznacza punkty przecięcia. Z racji tego, że nachodzące obszary są prostokątami zrotowanymi pod takim samym kątem, to do ich wyznaczenia pobiera odpowiednie współrzędne już wyznaczonych obszarów.

Dla pierwszej ćwiarki z rys. 3.6

$$A = (x12, y15)$$

$$B = (x12, y16)$$
(3.25)

Dla drugiej ćwiarki z rys. 3.6

$$C = (x21, y25)$$

 $D = (x21, y28)$ (3.26)

Dla trzeciej ćwiarki z rys. 3.6

$$E = (x35, y34)$$

$$F = (x36, y34)$$
(3.27)

Dla czwartej ćwiarki z rys. 3.6

$$G = (x46, y42)$$

$$H = (x45, y42)$$
(3.28)

W ostatnim kroku algorytm wyznacza kontur tak przygodowanej figury, poprzez połączenie współrzędnych w odpowiedniej kolejności. Zostało to przedstawione w poniższym równaniu:

Dla pierwszej ćwiarki z rys. 3.6

$$(x11, y11) - > (x12, y12) - > (x12, y15) - > (x16, y16) - >$$

$$(x17, y17) - > (x12, y16) - > (x13, y13) - > (x14, y14)$$

$$(3.29)$$

Dla drugiej ćwiarki z rys. 3.6

$$(x21, y21) - > (x22, y22) - > (x23, y23) - > (x24, y24) - >$$

$$(x21, y28) - > (x28, y28) - > (x25, y25) - > (x21, y25)$$

$$(3.30)$$

Dla trzeciej ćwiarki z rys. 3.6

$$(x31, y31) - > (x32, 312) - > (x33, y33) - > (x36, y34) - >$$

$$(x37, y37) - > (x38, y38) - > (x35, y34) - > (x34, y34)$$

$$(3.31)$$

Dla czwartej ćwiarki z rys. 3.6

$$(x41, y41) - > (x45, y42) - > (x45, y45) - > (x46, y46) - >$$

$$(x46, y42) - > (x42, y42) - > (x43, y43) - > (x44, y44)$$

$$(3.32)$$

W wyniku powyższego algorytmu, zostały wyznaczone kontury nachodzących na siebie obszarów. Zostały przedstawione na rys. 3.7

Rys. 3.7. Obrys nachodzących na siebie obszarów

P. Jaromin Aplikacja internetowa wyznaczająca ograniczenia prędkości na drogach na podstawie danych z OpenStreetMap

3.5.3. Łączenie powiększonych obszarów pokrywających w przypadku gdy jeden obszar nachodzi tylko jednym rogiem

Trzecim przypadkiem nachodzenia dwóch obszarów pokrywających jest nachodzenie sie jednym rogiem. W takiej sytuacji możemy rozróżnić dwie możliwości widoczne na rys. 3.8

Rys. 3.8. Nachodzące na siebie obszary

W pierwszej kolejości należy znaleźć interesujące nas obszary które nachodzą na siebie. W pierwszym przypadku rys. 3.8 obszary muszą spełniać równania:

$$x8 <= x3 <= x7$$
 $y8 <= y3 <= y6$
 $x4 < x8$
 $y2 > y6$
(3.33)

Natomiast w drugim przypadku z rys. 3.8:

$$x28 <= x22 <= x27$$
 $y28 <= y22 <= y25$
 $x21 < x25$
 $y23 < y28$
(3.34)

W następnym kroku algorytm wyznacza punkt przecięcia obu powierzchni. Z racji tego, że nachodzące obszary są prostokątami zrotowanymi pod takim samym kątem, to do ich wyznaczenia pobiera odpowiednie współrzędne już wyznaczonych obszarów. Dla pierwszego przypadku z rys. 3.8 punktu przecięcia A i B wynosi:

$$A = (x8, y3)//B = (x3, y6)$$
(3.35)

Oraz dla drugiego przypadku:

$$C = (x28, y21)//D = (x22, y28)$$
 (3.36)

W końcowej fazie algorytm wyznacza kontur nachodzących obszarów. W pierwszym przypadku kolejność współrzędnych konturu wygląda następująco:

$$(x1, y1) - > (x2, y2) - > (x3, y6) - > (x6, y6) - > (x7, y7) - > (x8, y8) - > (x8, y3) - > (x4, y4)$$
(3.37)

A w drugim:

$$(x21, y21) - > (x28, y21) - > (x25, y25) - > (x26, y26) - >$$

$$(x27, y27) - > (x22, y28) - > (x23, y23) - > (x24, y24)$$

$$(3.38)$$

Wynik powyższych krókow został przestawiony na rys. 3.9

Rys. 3.9. Kontur nachodzących na siebie obszarów

P. Jaromin Aplikacja internetowa wyznaczająca ograniczenia prędkości na drogach na podstawie danych z OpenStreetMap

3.6. Znajdowanie punktów przecięcia drogi i powiększonego obszaru

W celu znalezienia punktów przecięcia, wykorzystam fakt, że droga reprezentowana jest zbiór odcinków.

W pierwszej kolejności algorytm będzie iterował po zbiorze odcinków. Każdy odcinek lub bok obszaru reprezentowany jest przez dwie współrzędne:

$$\begin{aligned} &(x_a, y_a) \\ &(x_b, y_b) \end{aligned}$$
 (3.39)

Dzięki temu, bez problemu można określić równanie prostej przechodzącej przez te dwa punkty:

$$(y - y_a)(x_b - x_a) - (y_b - y_a)(x - x_a) = 0 (3.40)$$

Oraz równanie w postaci kierunkowej:

$$y = \frac{y_a - y_b}{x_a - x_b} x + \left(y_a - \frac{y_a - y_b}{x_a - x_b} x_a \right) \tag{3.41}$$

W celu wyznaczenia współrzędnej x punktu przecięcia wystarczy porównać oba równania:

$$\frac{y_c - y_d}{x_c - x_d} x + \left(y_c - \frac{y_c - y_d}{x_c - x_d} x_c \right) = \frac{y_a - y_b}{x_a - x_b} x + \left(y_a - \frac{y_a - y_b}{x_a - x_b} x_a \right) \tag{3.42}$$

W wyniku czego otrzymujemy:

$$x = \frac{(y_a - \frac{y_a - y_b}{x_a - x_b} x_a) - (y_c - \frac{y_c - y_d}{x_c - x_d} x_c)}{\frac{y_c - y_d}{x_c - x_d} - \frac{y_a - y_b}{x_a - x_b}}$$
(3.43)

Aby wyznaczyc współrzędną y, należy przekształcić równanie 3.41 do postaci:

$$x = \frac{y - (y_a - \frac{y_a - y_b}{x_a - x_b} x_a)}{\frac{y_a - y_b}{x_a - x_b}}$$
(3.44)

Następnie porównać równania obu prostych:

$$\frac{y - (y_a - \frac{y_a - y_b}{x_a - x_b} x_a)}{\frac{y_a - y_b}{x_a - x_b}} = \frac{y - (y_c - \frac{y_c - y_d}{x_c - x_d} x_c)}{\frac{y_c - y_d}{x_c - x_d}}$$
(3.45)

W wyniku czego otrzymujemy wzór na współrzędną y przecinającą obie proste:

$$y = \frac{(y_a - \frac{y_a - y_b}{x_a - x_b} x_a)(\frac{y_c - y_d}{x_c - x_d}) - (\frac{y_a - y_b}{x_a - x_b})(y_c - \frac{y_c - y_d}{x_c - x_d} x_c)}{(\frac{y_c - y_d}{x_c - x_d})(\frac{y_a - y_b}{x_a - x_b})}$$
(3.46)

3.7. Sprawdzanie, czy punkt przecięcia należy do odcinka

W celu sprawdzenia, czy punkt przecięcia należy do odcinka, posłużę się własnością, że suma długości mierzonej od początku odcinka do danego punktu oraz od danego punktu, do końca odcinka jest równa całkowitej długości odcinka.

$$|AC| + |CB| = |AB| \tag{3.47}$$

W celu lepszego zobrazowania, posłuże się rysunkiem 3.10

Rys. 3.10. Punkt wewnątrz odcinka

Odległość między dwoma punktami a i b wynosi:

$$d = \sqrt{(x1 - x^2)^2 + (y1 - y^2)^2}$$
(3.48)

Długość odcinka AC wynosi:

$$d_{AC} = \sqrt{(xa - xc)^2 + (ya - yc)^2}$$
(3.49)

Długość odcinka CB wynosi:

$$d_{CB} = \sqrt{(xc - xb)^2 + (yc - yb)^2}$$
(3.50)

P. Jaromin Aplikacja internetowa wyznaczająca ograniczenia prędkości na drogach na podstawie danych z OpenStreetMap

Oraz długość odcinka AB wynosi:

$$d_{AB} = \sqrt{(xa - xb)^2 + (ya - yb)^2}$$
(3.51)

Zgodnie z równaniem 3.47, aby punkt nalezał do odcinka, musi spełniać warunek:

$$\sqrt{(xa-xb)^2 + (ya-yb)^2} = \sqrt{(xa-xb)^2 + (ya-yb)^2} + \sqrt{(xc-xb)^2 + (yc-yb)^2}$$
 (3.52)

3.8. Przyporządkowanie obiektów reprezentowanych przez wielokąty, do poszczególnych dróg

W niniejszej sekcji skupię się na rozwiązaniu problemu przyporządkowania obiektów reprezentowanych przez wielokątny do poszczególnych dróg. Wykorzystywane jest w sytuacjach, gdy trzeba określić dokładne współrzędne początku i końca strefy, na której obowiązuje ograniczonej prędkości. Obiekty na mapie, reprezentowane przez wielokąty:

- szkoły
- parki
- place zabaw
- przystanki autobusowe i tramwajowe
- sklepy
- miejsca kultu

W pierwszej kolejności algorytm znajduje minimalny obszar pokrywający (eng. minimum bounding box) dany obiekt. Dokładny opis został przedstawiony w sekcji 3.3

Następnie, następuje powiększenie wyznaczonego obszaru pokrywającego w celu poszerzenia strefy ograniczonej prędkości. Szczegóły znajdują się w sekcji 3.4

Po wykonaniu powyższych operacji, w celu optymalizacji algorytmu, następuje łączenie nachodzących na siebie powiększonych obszarów. Zostało dokładnie omówione w sekcji 3.5

Ostatnim krokiem jest wyliczenie, które drogi znajdują się o obrębie danego obszaru. Należy zaznaczyć, że Open Street Map, w przypadku łuków czy zakrętów, przedstawia je jako zbiór odcinków. Możemy tutaj wyróżnić dwa przypadki:

- żaden ze zbioru odcinków nie należy do danego obszaru
- jeden lub pewna część odcinków znajduje się w obrębie danego obszaru. W takiej sytuacji należy wyznaczyć wszystkie współrzędne przecięcia, a później określić interesujące nas fragmenty drogi.

3.8.0.1. Wyznaczenie obszarów drogi znajdujących się w pobliżu danego obiektu

Rys. 3.11. Droga przebiegająca przez wybrany obszar

3.9. Przejścia dla pieszych

3.9.1. Przyporządkowywanie przejść dla pieszych do poszczególnych dróg

Bardzo ważnym czynnikiem doboru prędkości jest obecność przejść dla pieszych. Te z sygnalizacją świetlną nie stanowią problemu, ponieważ ruch pieszych poruszających się na nich jest ograniczony tylko do sytuacji, gdy sygnalizacja świeci się na zielono. W przypadku przejść bez sygnalizacji, sprawa się komplikuje, ponieważ kierowca jest zobowiązany do zachowania szczególnej ostrożności i zmiejszenia prędkości od 30 km/h.

Do przyporządkowania przejść dla pieszych, do poszczególnych dróg, posłużyłem się wzorem 3.1 na odległość punktu od prostej, przedstawionym w sekcji 3.1.

Rezultatem wdrożenia powyższego wzoru do programu, są:

- na niebiesko zaznaczone drogi, na których znajdują się przejścia dla pieszych
- znakiem "D-6" zostały oznaczone przejścia dla pieszych

Wynik został przedstawiony na Rys. 3.12:

Park osiedlowy

Nowy

A Nowy

A Nowy

Biedronks

Stanistava Stojalowskiego

Rys. 3.12. Drogi na których znajdują się przejścia dla pieszych.

Dzięki tak zobrazowanej sytuacji, można ocenić skuteczność algorytmu przyporządkowującego przejścia dla pieszych do określonych dróg.

P. Jaromin Aplikacja internetowa wyznaczająca ograniczenia prędkości na drogach na podstawie danych z OpenStreetMap

3.9.2. Wyznaczanie prędkości i umieszczanie jej w odpowiednim miejscu na mapie

Bezpieczna prędkość w pobliżu nieoznakowanych przejść dla pieszych wynosi ok. 30 km/h. Zapewnia ona zarówno wystarczajacy czas reakcji, odpowiednio krótką drogę hamowania oraz zmiejsza ryzyko wystąpień potrąceń pieszych.

Algorytm umieszcza znaki ograniczenia prędkości:

- w odległości 50 m od przejścia, gdy maksymalna prędkość na drodze wynosi 60 km/h
- w odległości 150 m od przejścia, gdy maksymalna prędkość przekracza 60 km/h
- w przypadku, gdy przejście dla pieszych znajduje się w odległości mniejszej niż 50m lub 150m
 (w zależności od maksymalnej prędkości), znak zostanie umieszczony na początku drogi
- w przypadku drogi jednokierunkowej, tylko przed przejściem
- w przypadku drogi dwukierunkowej, zarówno przed, jak i za przejściem
- bezpośrednio za przejściem zostanie ustawiony znak przywracającą poprzednie ograniczenie prędkości, za wyjątkiem sytuacji, gdy droga za przejściem dla pieszych jest krótsza niż 100m. W takim wypadku, nie ma sensu zmieniać prędkości.

Rys. 3.13. Ograniczenia prędkości przy przejściach dla pieszych.

46 3.10. Typ nawierzchni

3.10. Typ nawierzchni

W celu zadbania o bezpieczeństwo osób, ale również o dobrą kondycję techniczną pojazdów poruszających się po drogach, niezbędne jest uwzględnienie typu nawierzchni. Nie można dopuścić do sytuacji, gdy na nawierzchni składającej się głównie że żwiru, znajdowało się znak ograniczenia prędkości o wysokiej wartości. Wtedy ulec awarii może zarówno zawieszenie, jak również pojazdy jadące przed nimi pojazdami. Aby zapoabiec tego typu problemom, podzieliłem typ nawierzchni na kilka rodzajów:

- kostka brukowa
- żwir
- drobny żwir
- nieutwardzana
- błotnista
- płyty betowowe
- droga gruntowa
- piasek
- asfalt

Najbardziej problematyczna dla kierowów droga to taka, która pokryta jest żwirem, drobnym żwirem, składająca się z piasku lub jest błotnista. W takich przypadkach ograniczyłem prędkość do 10 km/h. Niewiele lepsza nawierzchnia to taka, która wyłożona jest zarówno kostką brukową oraz płytami betonowymi. Dla nich, odpowiednia prędkość wynosi 20 km/h. W przypadku drogi nieutwardzanej oraz gruntowej, ograniczenie prędkości wynosi 30 km/h. Dla asfaltu, ze względu na jego strukturę, ograniczenie prędkości praktycznie nie występuje.

Na Rys. 3.14 zostały umieszczone ograniczenia prędkości dla dróg, których nawierzchnia pokryta jest materiałem innym niż asfalt. Dla celów demonstracyjnych, został on specjalnie pominięty, ponieważ więszkość dróg jest nim pokryta, przez co Rys. 3.14 stałby się mało czytelny. Oczywiście ogólny algorytm uwzględnia asfalt.

P. Jaromin Aplikacja internetowa wyznaczająca ograniczenia prędkości na drogach na podstawie danych z OpenStreetMap

3.10. Typ nawierzchni

Rys. 3.14. Ograniczenia prędkości ze względu na rodzaj nawierzchni.

48 3.11. Przejazdy kolejowe

3.11. Przejazdy kolejowe

3.11.1. Przyporządkowywanie przejazdów kolejowych do poszczególnych dróg

Istotnych parametrem algorytmu wyznaczającego dopuszczalne prędkości jest obecność przejazdów kolejowych. Jak wiadomo, pociąg nie zatrzyma się w miejscu. Jego droga chamowania w głównej mierze zależy od masy oraz prędkości z jaką się porusza. Dla przykładu, pociąg towarowy o masie ok. 1800 ton, jadący z prędkością ok. 50 km/h, zatrzyma sie po około 500m. Dlatego ważne jest określenie prędkości, z jaką samochód moze się przemieszczać przed takim przejazdem.

Do przyporządkowania przejazdów kolejowych do poszczególnych dróg, wykorzystałem wzór 3.1 znajdujący się w rozdziale 3.9

Rys. 3.15. Drogi na których znajdują się przejazdy kolejowe.

Rys. 3.15 obrazuje wynik przypisania przejazdów kolejowych do poszczególnych dróg:

- kolorem niebieskim drogi, na ktorych znajdują przejazdy kolejowe
- znakiem "A-10" zostały oznaczone przejazdy kolejowe, pobrane z OpenStreetMap

P. Jaromin Aplikacja internetowa wyznaczająca ograniczenia prędkości na drogach na podstawie danych z OpenStreetMap

3.11. Przejazdy kolejowe 49

3.11.2. Wyznaczanie prędkości i umieszczanie jej w odpowiednim miejscu na mapie

Podobnie jak miało to miejsce w rozdziale 3.9, umiejscowienie znaków przed przejazdem będzie zależało od kilku czynników:

- na drodze z ograniczeniem prędkości do 60 km/h, znak zostanie umieszczony 50m przed przejazdem kolejowym
- w przypadku prędkości powyżej 60 km/h, znak zostanie umieszczony w odległości 150m przed przejazdem kolejowym
- w przypadku drogi jednokierunkowej, tylko przed przejazdem kolejowym
- w przypadku drogi dwukierunkowej, zarówno przed, jak i za przejazdem
- bezpośrednio za przejazdem zostanie ustawiony znak przywracającą poprzednie ograniczenie prędkości, za wyjątkiem sytuacji, gdy droga za przejazdem kolejowym jest krótsza niż 100m.
 W takim wypadku, nie ma sensu zmieniać prędkości.

Rys. 3.16 obrazuje przejazd kolejowy znajdujący się na dwukierunkowej drodze, na której obowiązuje ograniczenie prędkości do 80 km/h. Dlatego znaki 30 km/h zostały umieszczone 150m przed przejazdem, a zaraz po nim znaki przywracające poprzednią prędkość 80 km/h. Znaki są po obu stronach, gdyż jest do droga dwukierunkowa

Rys. 3.16. Umiejscowienie znaków przed i za przejazdem kolejowym.

3.12. Sygnalizacja świetlna

3.12.1. Przyporządkowywanie sygnalizacji świetlnej do poszczególnych dróg

Aby kierowca bez problemu mógł zdążyć zareagować na zmieniające się swiatło sygnalizacji świetlnej, niezbędne jest zredukowanie prędkości do odpowiedniej wartości. Ze względu na fakt iż sygnalizacja widoczna jest z relatywnie dużej odległości, prędkość przed nią zostanie ograniczona do ok. 50 km/h.

Rys. 3.17. Drogi na których znajduje się sygnalizacja świetlna.

Rys. 3.17 ukazuje sposób działania algorytmu przypisującego do drogi sygnalizację świetlną. Zaznaczono na nim:

- kolorem niebieskim drogi, na ktorych znajduje się sygnalizacja świetlna
- znakiem "A-29" zostały oznaczone sygnalizacje świetlne, pobrane z OpenStreetMap

P. Jaromin Aplikacja internetowa wyznaczająca ograniczenia prędkości na drogach na podstawie danych z OpenStreetMap

3.12.2. Wyznaczanie prędkości i umieszczanie jej w odpowiednim miejscu na mapie

Algorytm umieszcza znaki ograniczenia prędkości w następujący spasób:

- 50m przed sygnalizacją na drodze z ograniczeniem prędkości do 60 km/h
- 150m przed sygnalizacją na drodze z ograniczeniem prędkości powyżej 60 km/h
- w przypadku drogi dwukierunkowej, zarówno przed, jak i za przejazdem

Rys. 3.18 obrazuje fragment skrzyżowania na której znajduje się sygnalizacja świetlna. Ograniczenie prędkości na drogach wynosi od 70 do 80 km/h, dlatego algorytm umieścił znak ograniczenia prędkości do 50 km/h, 150m przed sygnalizacją oraz znak przywracający poprzednią prędkość zaraz za sygnalizacją.

Rys. 3.18. Ograniczenie predkości przed i za światłami drogowymi

3.13. Przystanki autobusowe i tramwajowe

P. Jaromin Aplikacja internetowa wyznaczająca ograniczenia prędkości na drogach na podstawie danych z OpenStreetMap

3.14. Szkoły i miesca zabaw

3.15. Sklepy i miejsca kultów religijnych

P. Jaromin Aplikacja internetowa wyznaczająca ograniczenia prędkości na drogach na podstawie danych z OpenStreetMap

3.16. Liczba pasów ruchu 55

3.16. Liczba pasów ruchu

3.17. Rodzaj drogi

3.17. Rodzaj drogi

3.18. Płynna zmiana prędkości pojazdów

3.19. Historia wypadków

P. Jaromin Aplikacja internetowa wyznaczająca ograniczenia prędkości na drogach na podstawie danych z OpenStreetMap

3.20. Zakręty **59**

3.20. Zakręty

3.21. Umiejscowienie znaków na drodze

Znaki drogowe ograniczenia prędkości są ustawione według następujących kryteriów:

- na początku każdej drogi
- przed nieoznakowanymi przejściami dla pieszych
- przed wjazdem do obszaru, w pobliżu którego znajdują się szkoły, place zabaw, duże sklepy handlowe i miejsca kultów religijnych
- przed zakrętami
- między znakami ograniczenia prędkości, dla których występują duże różnice prędkości

Bibliografia

- [1] M. Levasseur i B. Mitchell. *Expanded Operating Speed Model*. Spraw. tech. AP-T229-13. Austroads Ltd, 2013.
- [2] C. Han i in. *Best Practice for Variable Speed Limits: Literature Review*. Spraw. tech. AP–R342/09. Austroads Incorporated, 2009.
- [3] C. Han, V. Pyta i J. Luk. *Best Practice for Variable Speed Limits: Best Practice Recommendations*. Spraw. tech. AP–R344/09. Austroads Incorporated, 2009.
- [4] C. Jurewicz i in. *Model National Guidelines for Setting Speed Limits at High-risk Locations*. Spraw. tech. AP-R455-14. Austroads Ltd, 2014.
- [5] G. Forbes i in. *Methods and Practices for Setting Speed Limits: An Informational Report*. Spraw. tech. FHWA-SA-12-004. Institute of Transportation Engineers, 2012.
- [6] Annika K. Jägerbrand i Jonas Sjöbergh. "Effects of weather conditions, light conditions, and road lighting on vehicle speed". W: *SpringerPlus* 5.1 (kw. 2016), s. 505. ISSN: 2193-1801. DOI: *10*. *1186/s40064-016-2124-6*.
- [7] Suresh Nama i in. "Vehicle Speed Characteristics and Alignment Design Consistency for Mountainous Roads". W: *Transportation in Developing Economies* 2.2 (wrz. 2016), s. 23. ISSN: 2199-9295. DOI: 10.1007/s40890-016-0028-3.
- [8] Rachid Marzoug i in. "Car Accidents at the Intersection with Speed Limit Zone and Open Boundary Conditions". W: *Cellular Automata*. Wyed. Samira El Yacoubi, Jaroslaw Wąs i Stefania Bandini. Cham: Springer International Publishing, 2016, s. 303–311. ISBN: 978-3-319-44365-2.
- [9] Harri Peltola i Juha Luoma. "Comparison of road safety in Finland and Sweden". W: *European Transport Research Review* 9.1 (grud. 2016), s. 3. ISSN: 1866-8887. DOI: 10.1007/s12544-016-0220-x.
- [10] Gundolf Jakob. "Impact of Different Lengths of Urban Road Segments on Speed-Volume Relationship". W: Contemporary Challenges of Transport Systems and Traffic Engineering. Wyed. Elżbieta Macioszek i Grzegorz Sierpiński. Cham: Springer International Publishing, 2017, s. 169–180. ISBN: 978-3-319-43985-3.

62 BIBLIOGRAFIA

[11] Constantin Alexandru Bratu i Dinu Covaciu. "Study on the Influence of Intersections with Forest Roads upon the Traffic Flows on Highways". W: *CONAT 2016 International Congress of Automotive and Transport Engineering*. Wyed. Anghel Chiru i Nicolae Ispas. Cham: Springer International Publishing, 2017, s. 710–720. ISBN: 978-3-319-45447-4.

- [12] Xiaohua Zhao i in. "Evaluation of the effects of school zone signs and markings on speed reduction: a driving simulator study". W: *SpringerPlus* 5.1 (czer. 2016), s. 789. DOI: 10.1186/s40064-016-2396-x.
- [13] Pritam Saha i in. "Speed Distribution on Two-Lane Rural Highways with Mixed Traffic: A Case Study in North East India". W: *Journal of The Institution of Engineers (India): Series A* 98.1 (czer. 2017), s. 107–113. ISSN: 2250-2157. DOI: 10.1007/s40030-017-0208-0.
- [14] Mansour Hadji Hosseinlou, Salman Aghidi Kheyrabadi i Abbas Zolfaghari. "Determining optimal speed limits in traffic networks". W: *IATSS Research* 39.1 (2015), s. 36 –41. ISSN: 0386-1112. DOI: https://doi.org/10.1016/j.iatssr.2014.08.003.
- [15] Rune Elvik. "Speed Limits, Enforcement, and Health Consequences". W: *Annual Review of Public Health* 33.1 (2012), s. 225–238. DOI: 10.1146/annurev-publhealth-031811-124634.
- [16] Akhilesh Kumar Maurya i in. "Study on Speed and Time-headway Distributions on Two-lane Bidirectional Road in Heterogeneous Traffic Condition". W: *Transportation Research Procedia* 17 (2016). International Conference on Transportation Planning and Implementation Methodologies for Developing Countries (12th TPMDC) Selected Proceedings, IIT Bombay, Mumbai, India, 10-12 December 2014, s. 428 –437. ISSN: 2352-1465. DOI: https://doi.org/10.1016/j.trpro.2016.11. 084.
- [17] Ashish Dhamaniya i Satish Chandra. "Speed Prediction Models for Urban Arterials Under Mixed Traffic Conditions". W: *Procedia Social and Behavioral Sciences* 104 (2013). 2nd Conference of Transportation Research Group of India (2nd CTRG), s. 342 –351. ISSN: 1877-0428. DOI: https://doi.org/10.1016/j.sbspro.2013.11.127.
- [18] Anna Vadeby i Åsa Forsman. "Traffic safety effects of new speed limits in Sweden". W: *Accident Analysis and Prevention* 114 (2018). Road Safety on Five Continents 2016 Conference in Rio de Janeiro, Brazil., s. 34 –39. ISSN: 0001-4575. DOI: *https://doi.org/10.1016/j.aap.2017.02.003*.
- [19] Stanislaw Gaca i Mariusz Kiec. "Speed Management for Local and Regional Rural Roads". W: *Transportation Research Procedia* 14 (2016). Transport Research Arena TRA2016, s. 4170–4179. ISSN: 2352-1465. DOI: https://doi.org/10.1016/j.trpro.2016.05.388.
- [20] Oscar Oviedo-Trespalacios i in. "Effects of road infrastructure and traffic complexity in speed adaptation behaviour of distracted drivers". W: *Accident Analysis and Prevention* 101 (2017), s. 67 –77. ISSN: 0001-4575. DOI: https://doi.org/10.1016/j.aap.2017.01.018.

P. Jaromin Aplikacja internetowa wyznaczająca ograniczenia prędkości na drogach na podstawie danych z OpenStreetMap

BIBLIOGRAFIA 63

[21] Anne Goralzik i Mark Vollrath. "The effects of road, driver, and passenger presence on drivers' choice of speed: a driving simulator study". W: *Transportation Research Procedia* 25 (2017). World Conference on Transport Research - WCTR 2016 Shanghai. 10-15 July 2016, s. 2061 – 2075. ISSN: 2352-1465. DOI: https://doi.org/10.1016/j.trpro.2017.05.400.

- [22] Francesc Soriguera i in. "Effects of low speed limits on freeway traffic flow". W: *Transportation Research Part C: Emerging Technologies* 77 (2017), s. 257 –274. ISSN: 0968-090X. DOI: https://doi.org/10.1016/j.trc.2017.01.024.
- [23] Arthur van Benthem. "What is the optimal speed limit on freeways?" W: *Journal of Public Economics* 124 (2015), s. 44 –62. ISSN: 0047-2727. DOI: https://doi.org/10.1016/j.jpubeco.2015.02. 001.