

Cassandra and the Multi-Cloud

Amanda K Moran

Developer Advocate for DataStax

©2019 DataStax. Use only with permission.

But first... A Little About Amanda

- Graduated with MS in Computer Science and Engineering from Santa Clara University in 2012
- Worked as a Software Engineer for 6 years and now is a Developer Advocate
- Apache Committer, PMC Member, and initial contributor to all installation and deployment work for Apache Trafodion
- Keywords: Disney, Cloud, Dogs, Veggies, Linux, Databases, Big Data, Analytics, Testing, and Running

What Are We Talking About Today

- Introduction to Apache Cassandra
- What are Multiple DataCenters?
- Why all this talk about MultiCloud?!
- Apache Cassandra and the MultiCloud
- Demo!

Introduction to Apache Cassandra

What is Apache Cassandra?

- First developed by Facebook
- Became a top-level Apache Foundation project in 2010
- NoSQL database
- Distributed, decentralized database
- Elastic scalability -- add/remove nodes with no downtime

What is Apache Cassandra?

- High performance
 - Very fast -- low latency
- High availability / fault tolerant
 - No single point of failure
- Solves many of the problems faced with a traditional DB for certain workloads

What Does All This Mean?

- Let's talk about the Big Topics:
 - Distributed Systems
 - Replication
 - Elastically Scalable
 - High Availability
 - Latency
 - Read path
 - Write path

Note: Don't forget this is just a brief intro!

Distributed System

- Every node in the cluster has the same role
 - Really!
 - Cassandra does not have a Master-Worker Architecture
- Any client can connect to any node
 - All nodes are Read and Write ready
- But this is not to say that all nodes contain all data

The cluster

Token	Range
0	0-25
26	26-50
51	51-75
76	76-100

Replication

- To be able to survive a node going down data must be copied to other nodes
- The Replication Factor (RF) is set by the user
 - 1-Number of nodes in the Cluster (not recommended)
- The data is asynchronously replicated
 - Automatic
 - Peer-to-peer communication

Replication

DC1: RF=3

Node	Primary	Replica	Replica
10.0.0.1	00-25	76-100	51-75
10.0.0.2	26-50	00-25	76-100
10.0.0.3	51-75	26-50	00-25
10.0.0.4	76-100	51-75	26-50

DC1

10.0.0.1 00-25 76-100 51-75

10.0.0.4 76-100 51-75 26-50

10.0.0.2 26-50 00-25 76-100

10.0.0.3 51-75 26-50

Elastically Scalable

- As more nodes are added, performance increases linearly
- You can scale up or down with no downtime
 - Not even a restart!
- Reads and Writes both scale

Scale-Up Linearity

High Availability

- The lack of a Master node allows for high availability
 - No single point of failure
- Replication allows nodes to fail and data to still be available
 - Cassandra expects nodes to fail and doesn't panic

Latency

- How is Apache Cassandra able to achieve such low latency?
- It's all about the read and write path!
 - The write path is truly beautiful in its simplicity!

High throughput with quick responses times are easy to

BEEP! BEEP!

achieve

Write Path (Client to Cluster)

Read Path (Client to Cluster)

- Data modeling comes in to play here!
 - This is the one "simple trick about Cassandra/Nosql"
- Partition data by nodes
- Query will essentially query one node and return the data
 - Constant time READ access

```
select * from myTable where state = `CA`
```


Multiple Data Centers

- Cassandra Cluster represented as a ring
- Can support multiple rings chained together
 - Separated by region
 - Separated by workload

Multiple Data Centers

- Multiple Data Center support is out of the box
- Replication happens between data centers automatically
 - No need to sync data

What is DataStax?

- DataStax is the enterprise version of Apache Cassandra
- 70% of the the commits to the open source project
- 2x the Write performance of Apache Cassandra
- 2x the Read performance
- Add in the ability to do Search, Analytics, and Grpah
- Cool tools!

WHY Multi-Cloud?

What is Multi-Cloud?

- Two or more public cloud providers at the same time
 - Data moving between two++ providers

Why Multi-Cloud?

- Data Center Locality
 - Not all zones are in each provider
- Provider Specific Services
- Cloud provider competition
 - Can shop around cheap compute! -- Maybe
 - More likely -- afraid of lock in to a competitor
- Cost

Why can Apache Cassandra do MultiCloud?

- Multi Data Center support -- out of the box
- Cloud Native database
 - Built for the cloud
 - Multi region support
 - Expanded to Hybrid cloud
 - Easy expansion to Multi-Cloud
- Every node has the same job

Only Database that supports Multi-Cloud

DSE Cluster

Active - Active - Active - Active

Only Database that supports Multi-Cloud

Demo

Why NOT Multi Cloud?

Issues with Multi-Cloud

- Complexity
- Networking!
 - Latency
- Security
 - Boundary protection
- Legal
- Scaling at the Application layer

Okay, this was awesome! What now?

Information and Links

- Learn more about Cassandra: https://academy.datastax.com/
- Learn more about DataStax: https://www.datastax.com/
- Follow me on Twitter: @AmandaK_Data
- Github: https://github.com/amandamoran

Join us at Accelerate!!

