BCB BCB/GDCB/STAT/COM S 568 Spring 2011

Homework 5

February 24, 2011

Let $X = X_1 X_2 ... X_N$ be a sequence of scores derived from independently identically distributed random variables X_i for which $\Pr\{X_i = s_j\} = p_j, \ j = 1, 2, ... r$ with the restrictions $\Pr\{X_i > 0\} > 0$ and $E[X] = \sum_{k=1}^r p_k s_k < 0$. The maximal segmental score S in X approximately follows an extreme value distribution such that

$$\Pr\{S > \frac{\ln N}{\lambda} + x\} = 1 - e^{-Ke^{-\lambda x}},$$

where λ is the unique positive root of $E[e^{\lambda X_i}] = 1$, and K is a function of λs_i .

- (i) Describe how to graphically determine S and the corresponding segment.
- (ii) Determine x_c such that $\Pr\{S > \frac{\ln N}{\lambda} + x_c\} = p$.
- (iii) For a scoring scheme $t_i = \rho s_i$, determine the equivalent offset x_c^* giving the same probability p, i.e. find x_c^* such that $\Pr\{T > \frac{\ln N}{\lambda'} + x_c^*\} = p$, where T is the maximal segmental score and λ' is the parameter for the t_i scoring scheme.
 - (iv) Explain why λ can be interpreted as a scale factor.
- (v) The threshold value S_p for the maximal segmental score to be significant at the p-level is $S_p = \frac{\ln N}{\lambda} + x_c$ with x_c determined as in (ii). For $\lambda = \frac{\ln 2}{2}$, determine the p-level threshold S'_p when considering a sequence of length N' = 2N.
 - (vi) Altschul (1998; Proteins 32:88) defines a normalized score as

$$S' = \frac{\lambda S - \ln K}{\ln 2}.$$

Making use of the result that the number of separate high-scoring segments, i.e. segments with scores exceeding $\frac{\ln N}{\lambda} + x$, is closely approximated by a Poisson distribution with parameter $K \exp\{-\lambda x\}$, prove his assertion that the expected number of distinct segment pairs with normalized score greater than or equal to y is well approximated by the formula

$$E(S' \ge y) \sim \frac{N}{2y}.$$

Solution:

- (i) The maximal segmental score corresponds to the highest peak in the excursion plot of E_k versus k, where $E_0 = 0$ and $E_k = \max\{E_{k-1} + X_k, 0\}$, and the coordinates of the maximal scoring segment are from the beginning of the excursion (first positive scoring position of the excursion) to the position where the peak is achieved.
- (ii) We look for the solution of $1 e^{-Ke^{-\lambda x_c}} = p$, which after a little bit of manipulation is seen to be

$$x_c = \frac{\ln K - \ln \left[\ln \frac{1}{1 - p} \right]}{\lambda}.$$

(iii) By definition, λ is the unique positive root of $\mathrm{E}[e^{\lambda X_i}] = 1$. In the t_i scoring scheme, all the X_i are multiplied by ρ , and thus λ' is seen to be $\frac{\lambda}{\rho}$. As $T = \rho S$, it is clear that the solution is $x_c^* = \rho x_c$.

- (iv) As K is a function of the λs_i and by result (iii), we can multiply the s_i scores by a factor ρ , and all we would need to change in the formulae is to replace λ by $\lambda' = \frac{\lambda}{\rho}$. Equivalently, we could select a particular λ' value and scale given scores s_i by the appropriate ρ factor.
- (v) The centering value $\frac{\ln N}{\lambda}$ becomes $\frac{\ln N'}{\lambda} = \frac{2 \ln 2N}{\ln 2} = \frac{\ln N}{\lambda} + 2$. Thus, $S_p' = S_p + 2$.
- (vi) Subtract $\frac{\ln K}{\lambda}$ from both sides of the inequality $S > \frac{\ln N}{\lambda} + x$ and multiply by $\frac{\lambda}{\ln 2}$ to get

$$\frac{\lambda S - \ln K}{\ln 2} > \frac{\lambda}{\ln 2} [\frac{\ln N}{\lambda} + x] - \frac{\ln K}{\ln 2},$$

or S'>y where $y=\frac{\ln N-\ln K}{\ln 2}+\frac{\lambda}{\ln 2}x$. Solving for x gives $x=\frac{1}{\lambda}[y\ln 2-\ln N+\ln K]$. Inserting into $\exp\{-\lambda x+\ln K\}$ gives $\exp\{-y\ln 2+\ln N\}=\frac{N}{2^y}$. Thus, $Prob\{S'>y\}=1-\exp\{-\frac{N}{2^y}\}$, and the assertion holds by the cited Poisson approximation.