Unidad 9: Cálculo diferencial en campos escalares

1 Campos escalares.

Definición: Llamamos campo escalar a una función cuyo dominio está contenido en \mathbb{R}^n , para algún $n \in \mathbb{N}$ y cuyo codominio es \mathbb{R} . Es decir

$$f : D \subset \mathbb{R}^n \to \mathbb{R}$$
$$(x_1, x_2, \dots, x_n) \to f(x_1, x_2, \dots, x_n)$$

Si no se especifica el dominio, se sobreentiende que es el mayor donde la ley de f está definida.

Definición: Conjunto imagen o recorrido de f

Im
$$f = \{ y \in \mathbb{R} : \exists (x_1, x_2, \dots, x_n) \in \mathbb{R}^n \text{ tal que } f(x_1, x_2, \dots, x_n) = y \}$$
.

Ejemplos:

1) $f: \mathbb{R}^3 \to \mathbb{R}$ tal que $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$ función módulo. Dom $f = \mathbb{R}^3$, Im $f = \mathbb{R}^+_0$.

2)
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 tal que $f(x,y) = \frac{\sqrt{x+y+1}}{x-1}$. Dom $f = \{(x,y) \in \mathbb{R}^2 : x+y+1 \ge 0, \ x \ne 1\}$

3) Las funciones reales son casos particulares de campos escalares cuando n=1.

Observación:

1) Notación

$$\begin{array}{ccc} f & : & D \subset \mathbb{R}^n \to \mathbb{R} \\ \overline{x} & \to & f(\overline{x}) = y \in \mathbb{R} \end{array}$$

con $\overline{x} = (x_1, x_2, \dots, x_n)$, x_i variables independientes e y variable dependiente.

2) En esta materia nos limitaremos al estudio de campos escalares definidos en \mathbb{R}^2 o \mathbb{R}^3 .

Definición: Sea $f: D \subset \mathbb{R}^n \to \mathbb{R}$, llamaremos gráfica de f al conjunto

$$G_f = \{(x_1, \dots, x_n, f(x_1, \dots, x_n)) : (x_1, \dots, x_n) \in \text{Dom } f\}$$
$$= \{(\bar{x}, f(\bar{x})) : \bar{x} \in \text{Dom } f \subset \mathbb{R}^n\}.$$

Observaciones:

- 1) $G_f \subset \mathbb{R}^{n+1}$
- 2) Sólo podremos esbozar la gráfica de campos definidos en \mathbb{R} (funciones reales) o \mathbb{R}^2 (campos escalares en \mathbb{R}^2).

3) Sea $f:D\subset\mathbb{R}^2\to\mathbb{R}$ un campo escalar, suele llamarse superficie en \mathbb{R}^3 a la gráfica de f, en este caso

$$S = G_f = \{(x, y, z) : (x, y) \in \text{Dom } f \text{ y } z = f(x, y)\}.$$

Ejemplos:

1) f(x,y) = 6 - 2x - 3y, Dom $f = \mathbb{R}^2$ su gráfica es la superficie de ecuación z = f(x,y) o sea z = 6 - 2x - 3y o bien 2x + 3y + z = 6 que es la ecuación de un plano.

2) $f(x,y) = \sqrt{9-x^2-y^2}$, Dom $f = \{(x,y): x^2+y^2 \le 9\}$, la gráfica es la superficie de ecuación z = f(x,y) o sea

$$z = \sqrt{9 - x^2 - y^2} \iff x^2 + y^2 + z^2 = 9$$
, con $z \ge 0$

que es una semiesfera de radio 3 centrada en el origen.

3) Sea $z=f(x,y)=4-x^2-y^2$, dom $(f)=\mathbb{R}^2$. Cada plano $z=\text{cte}\leq 4$ corta a G_f en una circunferencia.

4) Sea $z = f(x, y) = x^2 + 1$, dom $(f) = \mathbb{R}^2$. Cada plano y = cte corta a G_f en una parábola $z = x^2 + 1$.

Conjuntos de nivel. 2

Definición: Sea $f: D \subset \mathbb{R}^n \to \mathbb{R}$ y $k \in \mathbb{R}$, llamamos conjunto de nivel k de f a y notamos C_k al conjunto

$$C_k = \{(x_1, \dots, x_n) \in \mathbb{R}^n : f(x_1, \dots, x_n) = k\}.$$

Observación:

- 1) $C_k \neq \emptyset \Leftrightarrow k \in \operatorname{Im} f$.
- 2) Cuando n=2, C_k son curvas de nivel de ecuación f(x,y)=k. Son las proyecciones al plano xyde las curvas intersección de la superficie z = f(x, y) con el plano z = k.
- 3) Cuando n = 3, C_k son superficies de nivel de ecuación f(x, y, z) = k.

Ejemplos:

- 1) f(x,y) = 6 2x 3y, C_k) $6 2x 3y = k \in \text{Im } f = \mathbb{R} \text{ o } 2x + 3y = 6 k \text{ son rectas para } \forall k \in \mathbb{R}$. 2) $f(x,y) = \sqrt{9 x^2 y^2}$, C_k) $\sqrt{9 x^2 y^2} = k \in \text{Im } f \subset \mathbb{R}_0^+ \Leftrightarrow x^2 + y^2 = 9 k^2 \text{ son circumferencias}$ de radio $\sqrt{9-k^2}$ si $0 \le k < 3$, un punto si k = 3 y \emptyset si k > 3 o k < 0.
- 3) $f: \mathbb{R}^2 \to \mathbb{R}, z = f(x,y) = 4 (x^2 + y^2)$. $C_k = \{(x,y): x^2 + y^2 = 4 k\} \neq \emptyset$ si y sólo si $k \in (-\infty, 4]$ siendo, C_k circunferencias centradas en el origen de radio $\sqrt{4-k}$ si k < 4 o un punto (el origen) si k=4.

4) $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x^2 + 1$. $C_k = \{(x,y): x^2 + 1 = k\} \neq \emptyset$ si y sólo si $k \geq 1$, donde, C_k son dos rectas paralelas $x = \pm \sqrt{k-1}$ si y sólo si k > 1 y C_1 es el eje y.

5) $f: \mathbb{R}^3 \to \mathbb{R}$, $f(x,y,z) = x^2 + y^2 + z^2$, las superficies de nivel k de f serán $C_k = \{(x,y,z): x^2 + y^2 + z^2 = k\} \neq \emptyset$ si y sólo si $k \geq 0$, siendo, C_k es f eras centradas en el origen de radio \sqrt{k} si k > 0 o un punto (¿cuál?) si k = 0.

3 Límites y continuidad.

Para poder definir el concepto de límite de campos escalares tenemos que definir formalmente qué significa que $f(\overline{x}) \to L$ cuando $x \to a$.

3.1 Definiciones preliminares

 \Diamond Suma en \mathbb{R}^n : Hay una función de $\mathbb{R}^n \times \mathbb{R}^n$ en \mathbb{R}^n llamada suma (+) definida por

$$u+v=(u_1+v_1,\ldots,u_n+v_n)$$

 \Diamond Producto por escalares en \mathbb{R}^n : Hay una función de $\mathbb{R} \times \mathbb{R}^n$ en \mathbb{R}^n llamada producto por escalares definida por

$$\alpha u = (\alpha u_1, \dots, \alpha u_n)$$

 \Diamond Norma en \mathbb{R}^n : Hay una función de \mathbb{R}^n en \mathbb{R}^+_0 llamada norma en \mathbb{R}^n que indicaremos $\|\cdot\|$, definida por

$$||x|| = \sqrt{x_1^2 + \ldots + x_n^2}$$

 \Diamond Topología de \mathbb{R}^n

En los espacios normados es entonces posible definir una distancia o métrica euclideana entre puntos del espacio d(x,y) = ||x-y||.

 \Diamond Distancia en \mathbb{R}^n : Hay una función de $\mathbb{R}^n \times \mathbb{R}^n$ en \mathbb{R}^+_0 llamada distancia (o métrica) en \mathbb{R}^n que indicaremos d, definida por

$$d(x,y) = ||x - y||$$

Propiedad: Dados $x, y, z \in \mathbb{R}^n$ esta función distancia verifica:

- i) d(x, y) = d(y, x)
- ii) $d(x,y) \le d(x,z) + d(z,y)$ desigualdad triangular
- iii) $d(x,y) \ge 0$ y d(x,y) = 0 si y sólo si x = y
- \Diamond Esfera o bola de centro $a \in \mathbb{R}^n$ y radio r > 0 y notamos B(a, r), $B(\overline{a}, r)$, $B_r(a)$ o B(a) al conjunto

$$B\left(a,r\right) = \left\{x \in \mathbb{R}^{n} : d\left(x,a\right) < r\right\}$$

- \Diamond Abierto de \mathbb{R}^n : A no vacío de \mathbb{R}^n es abierto sii para cada $a \in A$ existe $B(a,r) \subset A$.
- \Diamond **Punto interior:** Un punto a es interior de A sii existe $B(a,r) \subset A$.

Proposición: Un conjunto A de \mathbb{R}^n es **abierto** si todos sus puntos son interiores, es decir, si $A = \mathring{A} = \{\text{puntos interiores de } A\}.$

Observación: El vacío es abierto por definición, \mathbb{R}^n es abierto, si $\{A_i\}_{i\in I}$ es una familia cualquiera de abiertos entonces $\bigcup_{i\in I} A_i$ es abierta y si $\{A_i\}_{i=1}^n$ es una familia finita de abiertos entonces $\bigcap_{i=1}^n A_i$ es abierta.

- \Diamond **Entorno de un punto:** Llamaremos entorno de un punto a a todo conjunto que contenga B(a,r). Es decir E es entorno de a y si existe r>0 tal que $a\in B(a,r)\subset E$.
- \Diamond Conjunto cerrado: Un conjunto $B \subset \mathbb{R}^n$ es cerrado si $\mathcal{C}B = \tilde{B}$ es abierto.

Teorema: a) \mathbb{R}^n y \emptyset son cerrados. b) Intersección arbitraria de cerrados es cerrada. c) Unión finita de cerrados es cerrada.

 \Diamond **Punto clausura:** Si $A \subset \mathbb{R}^n$, el punto $x \in \mathbb{R}^n$ es un **punto clausura de** A si y sólo si todo entorno de x tiene intersección no vacía con A. Llamaremos **clausura de** A y notaremos $\overline{A} = \{\text{puntos clausura de } A\}$, se verifica $A \subset \overline{A}$.

Proposición: Un conjunto A es cerrado si y sólo si $A = \overline{A}$.

Ejemplos: a) La bola B(a,r) es abierta. En efecto, sea $x \in B(a,r) \Rightarrow ||x-a|| < r \Rightarrow ||x-a|| = r - \delta \operatorname{con} \delta > 0$. Usando la desigualdad triangular es fácil ver que $B(x, \frac{\delta}{2}) \subset B(a,r)$.

- **b)** En particular, si n = 1, $B(a, r) = \{x \in \mathbb{R} : |x a| < r\} = (a r, a + r)$ o sea que el intervalo abierto es un conjunto abierto.
- c) En \mathbb{R}^3 el conjunto $P = \{(x, y, z) : a < x < b, \ c < y < d, \ e < z < f\}$ es un abierto, llamado caja o prisma rectangular.
- d) En \mathbb{R}^3 el conjunto $\mathcal{C}P$ es cerrado.

$$\mathcal{C}P = \{(x, y, z) : (x \le a \lor x \ge b) \land (y \le c \lor y \ge d) \land (z \le e \lor z \ge f)\}$$

- e) El conjunto $E = \{x : ||x a|| \ge r\}$ es cerrado pues $E = \mathcal{C}B\left(a, r\right)$.
- **f)** El conjunto $D = \{x : \|x a\| > r\}$ es abierto y $\overline{B(a,r)} = \{x : \|x a\| \le r\}$ es cerrado. Por ejemplo en \mathbb{R} : si a < b, los conjuntos $(-\infty,a)$, (b,∞) , (a,b), $(-\infty,a) \cup (b,\infty)$ son abiertos. Por lo tanto el intervalo cerrado [a,b] es cerrado.
- **g)** En \mathbb{R} , el intervalo [a, b) no es abierto ni cerrado. En efecto, no es abierto pues a no es interior a [a, b) y no es cerrado pues b no es interior a $\mathcal{C}[a, b)$.
- h) El conjunto $\{a\}$ es cerrado $\forall a \in \mathbb{R}^n$. Por ejemplo, en \mathbb{R} , $\mathcal{C}\{a\} = (-\infty, a) \cup (a, \infty)$ es abierto. En \mathbb{R}^n ,

$$C\{a\} = \{x : ||x - a|| > 0\}$$

Observación: La intersección (cualquiera) de abiertos no necesariamente es abierta, por ejemplo: en \mathbb{R} , $\forall n \in \mathbb{N}$ los intervalos $(-\frac{1}{n}, \frac{1}{n})$ son abiertos. $\bigcap_{n \in \mathbb{N}} (-\frac{1}{n}, \frac{1}{n}) = \{0\}$ es cerrado.

 \Diamond Punto frontera y frontera de un conjunto: Un punto z es punto frontera de A si cualquier N(z) contiene puntos de A y de $\mathcal{C}A$. Definimos la frontera de A y notamos $\partial A = \{\text{puntos frontera de } A\}$.

$$z \in \partial A$$
 si y sólo si para todo $N(z)$, $N(z) \cap A \neq \emptyset$ y $N(z) \cap CA \neq \emptyset$.

Teorema: Un conjunto es cerrado si y sólo si contiene a su frontera. (A cerrado si y sólo si $\partial A \subset A$)

 \Diamond Punto exterior y exterior de un conjunto: Si $A \subset \mathbb{R}^n$, el punto $a \in \mathbb{R}^n$ es llamado un punto exterior de A si existe $B(a) \subset \mathcal{C}A$. Llamaremos exterior de A y notaremos con ext $A = \{\text{puntos exteriores de } A\}$, se verifica ext $A \subset \mathcal{C}A$.

Observación: Para todo $A \subset \mathbb{R}^n$, se verifica: i) $\operatorname{ext} A = \mathring{\mathcal{C}} A$ ii) $\mathbb{R}^n = \mathring{A} \cup \partial A \cup \operatorname{ext} A$ y todos estos conjuntos son disjuntos 2 a 2.

Ejemplos: a) La frontera de B(a,r) es $\partial B(a,r) = \{x : ||x-a|| = r\}$ y es también la frontera de su complemento.

- **b)** En \mathbb{R} , la $\partial(a,b) = \partial[a.b] = \partial(a,b] = \partial[a,b] = \{a,b\}.$
- c) En \mathbb{R}^2 , sea $B = B(\mathbf{0}, r) = \{(x, y) \in \mathbb{R}^2 : ||(x, y) (0, 0)|| < r\} = \{(x, y) \in \mathbb{R}^2 : ||(x, y)|| < r\} = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < r^2\}$. Indicar \mathring{B} , CB, ∂B , \overline{B} , $\operatorname{ext} B = \mathring{C}B$.

3.2 Límite de un campo escalar en un punto

Definición: Sea $f:D\subseteq\mathbb{R}^n\to\mathbb{R}$, $D=\mathrm{Dom}\,f$, sea $a\in\overline{D}=\overset{\circ}{D}\cup\partial D$, (o sea que todo entorno de a tiene intersección no vacía con A) entonces diremos que $L\in\mathbb{R}$ es el **límite de** f **cuando** x **tiende a** a si y sólo si dado $\varepsilon>0$, existe $\delta>0$ tal que si $x\in D$ y $0<\|x-a\|<\delta$ entonces $|f(x)-L|<\varepsilon$. Es decir, dada una bola de centro L y radio ε existe una bola de centro a y radio δ tal que si $x\in B(a,\delta)$ entonces $\bar{f}(x)\in B(L,\varepsilon)$.

Notación:

$$\lim_{x \to a} f(x) = L \quad \text{o} \quad f(x) \xrightarrow{x \to a} L$$

Observaciones: Para los casos n=2 (que serán para los que veremos ejemplos) la definición es: Sea $f:D\subseteq\mathbb{R}^2\to\mathbb{R}$ decimos que $f\to L$ cuando $(x,y)\to(a,b)$ y notamos

$$\lim_{(x,y)\to(a,b)} f(x,y) = L$$

sii dado $\varepsilon > 0$ existe $\delta > 0$ tal que si $(x,y) \in D$ y $0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta \Longrightarrow |f(x,y) - L| < \varepsilon$

Observación: Recordemos que para funciones reales, que $x \to a$ era equivalente a acercarse a a por el segmento \vec{ax} o \vec{xa} según x esté a la derecha o izquierda de a. Además si el $\lim_{x\to a} f(x)$ existe entonces existen los límites laterales y son iguales, y si los límites laterales son distintos no existe el límite. En cambio, en \mathbb{R}^n , en particular en \mathbb{R}^2 , que $x \to a$ significa que podemos acercarnos a a por cualquier camino. Esto nos dará una condición necesaria de existencia del límite:

Proposición: Sean C_1 y C_2 dos curvas que contienen al punto $(a,b) \in R^2$, sean $L_1 = \lim_{(x,y)\to(a,b)} f(x,y)$ cuando (x,y) se acerca a (a,b) por la curva C_1 y $L_2 = \lim_{(x,y)\to(a,b)} f(x,y)$ cuando (x,y) se acerca a (a,b) por la curva C_2 . Entonces:

a) Si
$$L_1 \neq L_2 \Rightarrow$$
 no existe $\lim_{(x,y)\to(a,b)} f(x,y)$
b) Si $L_1 = L_2 \Rightarrow \exists \lim_{(x,y)\to(a,b)} f(x,y)$

b) Si
$$L_1 = L_2 \Rightarrow \exists \lim_{(x,y)\to(a,b)} f(x,y)$$

Nos acercamos al origen por la recta
$$x=0,$$
 $\lim_{\substack{(x,y)\to(0,0)\\x=0}}f(0,y)=\lim_{\substack{(x,y)\to(0,0)\\x=0}}\frac{0}{y^2}=0$

Por lo tanto

Introducimos el concepto de Límites radiales. Nos acercamos al origen por todas las rectas que pasan por el origen

$$\begin{cases} y = mx \\ x = 0 \end{cases}$$

Evaluamos
$$\lim_{\substack{(x,y)\to(0,0)\\y=mx}} f(x,mx) = \lim_{\substack{x\to0\\y=mx}} \frac{5x^2mx}{x^2+m^2x^2} = \lim_{\substack{x\to0\\y=mx}} \frac{5mx}{1+m^2} = 0$$

Y ahora
$$\lim_{(x,y)\to(0,0)} f(0,y) = \lim_{y\to 0} 0 = 0$$

Evaluamos $\lim_{\substack{(x,y)\to(0,0)\\y=mx}} f(x,mx) = \lim_{\substack{x\to0\\y=mx}} \frac{5x^2mx}{x^2+m^2x^2} = \lim_{\substack{x\to0\\y=mx}} \frac{5mx}{1+m^2} = 0$ Y ahora $\lim_{\substack{(x,y)\to(0,0)\\x=0}} f(0,y) = \lim_{\substack{y\to0\\x=0}} 0 = 0$ ¿Será entonces $\lim_{\substack{(x,y)\to(0,0)\\x=0}} \frac{5x^2y}{x^2+y^2} = 0$? No lo podemos asegurar, lo probamos por definición, pues de existir tieno que valor 0 (vinicidad del 12). existir tiene que valer 0 (unicidad del límite que probaremos luego),

$$\left\| \frac{5x^2y}{x^2 + y^2} \right\| = \left| \frac{5x^2y}{x^2 + y^2} \right| = \left| \frac{x^2}{x^2 + y^2} \right| |5y| \le 5 |y| = 5\sqrt{y^2} \le 5\sqrt{x^2 + y^2} \underset{\text{si } \sqrt{x^2 + y^2} < \delta = \frac{\varepsilon}{5}}{\varepsilon}$$

por lo tanto

$$\lim_{(x,y)\to(0,0)} \frac{5x^2y}{x^2+y^2} = 0$$

Usando límites radiales nos acercamos por y = mx,

$$\lim_{(x,y)\to(0,0)} h(x,y) = \lim_{\substack{x\to 0\\y=mx}} h(x,mx) = \lim_{\substack{x\to 0\\y=mx}} \frac{xm^2x^2}{x^2 + m^4x^4} = \lim_{\substack{x\to 0\\y=mx}} \frac{xm^2}{1 + m^4x^2} = 0 \ \forall m.$$

Pero ¿será entonces $\lim_{(x,y)\to(0,0)}\frac{5x^2y}{x^2+y^2}=0$?. Buscamos otra curva para acercarnos al origen, por ejemplo por la parábola $x=y^2$, entonces

$$\lim_{\substack{y \to 0 \\ x = y^2}} h(y^2, y) = \lim_{\substack{y \to 0 \\ x = y^2}} \frac{y^4}{y^4 + y^4} = \frac{1}{2}$$

por lo tanto

Introducimos la transformación a coordenadas polares y calculamos $\lim_{(x,y)\to(0,0)}g\left(x,y\right)$ haciendo $\lim_{\rho \to 0} g\left(\rho\cos\theta, \rho\sin\theta\right)$

$$\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases} \qquad \lim_{\rho \to 0} \frac{\rho^3 (\cos^3 \theta + \sin^3 \theta)}{\rho^2} = \lim_{\rho \to 0} \rho \underbrace{(\cos^3 \theta + \sin^3 \theta)}_{\text{acotado}} = 0$$

Por lo tanto, como el límite es independiente de θ (no depende por qué curva me acerco al origen), existe el límite y vale

Usando coordenadas polares

$$\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases} \qquad \lim_{\rho \to 0} \frac{\rho \cos \theta + \rho \sin \theta}{\rho} = \cos \theta + \sin \theta = \begin{cases} 1 & \text{si } \theta = 0 \\ \sqrt{2} & \text{si } \theta = \frac{\pi}{4} \end{cases}$$

El límite $\lim_{\rho \to 0} f(\rho \cos \theta, \rho \sin \theta)$ depende de θ , es decir depende por qué curva me acerco al origen, por lo tanto no existe el límite.

3.3 Teoremas sobre límites.

Los teoremas vistos para funciones de una variable pueden en general aplicarse a campos escalares, con demostraciones análogas, enunciamos algunos de ellos para los casos particulares n=2:

Teorema: Si existe $\lim_{(x,y)\to(a,b)} f(x,y) = L$ es único.

Teorema: Son equivalentes:

$$\lim_{(x,y)\rightarrow(a,b)}f\left(x,y\right)=L, \lim_{(x,y)\rightarrow(a,b)}\left(f\left(x,y\right)-L\right)=0y\lim_{\|(x,y)-(a,b)\|\rightarrow0}\left|f\left(x,y\right)-L\right|=0$$

Definición: f es acotada en un entorno N(a,b) si existe M>0 tal que $|f(x,y)|\leq M$ para todo $(x,y) \in N(a,b).$

Teorema: Si existe $\lim_{(x,y)\to(a,b)} f(x,y) = L$ entonces f es acotada en algún entorno de (a,b).

Teorema (Álgebra de los límites): Sean f, g campos escalares de \mathbb{R}^2 en \mathbb{R} con igual dominio Theorema (Algebra de los limites): Sean f,g campos escalares $D \subseteq \mathbb{R}^2$, sean $b = \lim_{(x,y) \to (a,b)} f(x,y)$ y $c = \lim_{(x,y) \to (a,b)} g(x,y)$. Entonces:

a) $\lim_{(x,y) \to (a,b)} f(x,y) + g(x,y) = b + c$ b) $\forall \lambda \in \mathbb{R}$, $\lim_{(x,y) \to (a,b)} \lambda f(x,y) = \lambda b$ c) $\lim_{(x,y) \to (a,b)} f(x,y) g(x,y) = bc$

a)
$$\lim_{(x,y)\to(a,b)} f(x,y) + g(x,y) = b + c$$

b)
$$\forall \lambda \in \mathbb{R}$$
, $\lim_{x \to a} \lambda f(x, y) = \lambda b$

c)
$$\lim_{(x,y)\to(a,b)} f(x,y)g(x,y) = bc$$

$$\mathrm{d}) \lim_{(x,y)\to(a,b)} \left| f\left(x,y\right) \right| = \left| b \right|$$

e) Si
$$c \neq 0$$
, $\lim_{(x,y)\to(a,b)} \frac{f(x,y)}{g(x,y)} = \frac{b}{c}$

Demostración: a, b, c y e) idénticas a las hechas para funciones reales.

d) dado $\varepsilon > 0$, existe $\delta > 0$ tal que si $x \in D$ y $0 < ||x - a|| < \delta$ entonces

$$||f(x,y)| - |b|| \le |f(x,y) - b| < \varepsilon.$$

Teorema (Carácter local del límite): Sean $f, g: D \subseteq \mathbb{R}^2 \to \mathbb{R}$ tales que existe r > 0 tal que $f(x,y) = g(x,y) \ \forall (x,y) \in B((a,b),r) - \{(a,b)\} \subseteq D$. Entonces si $\lim_{(x,y)\to(a,b)} f(x,y) = L$ $\Rightarrow \lim_{(x,y)\to(a,b)} g(x,y) = L$.

Teorema (Intercalación para campos escalares): Sean $f,g,h:D\subseteq\mathbb{R}^2\to\mathbb{R}$ tales que existe r>0 donde $g(x,y)\leq f(x,y)\leq h(x,y) \ \forall (x,y)\in B((a,b),r)-\{(a,b)\}\subseteq D.$ Entonces si $\lim_{(x,y)\to(a,b)}g(x,y)=\lim_{(x,y)\to(a,b)}h(x,y)=L\Rightarrow \lim_{(x,y)\to(a,b)}f(x,y)=L.$

Las demostraciones de estos teoremas se omiten pues son idénticas a las hechas en cursos anteriores de análisis matemático.

3.4 Continuidad de campos escalares.

Definición: Decimos que el campo $f:D\subseteq\mathbb{R}^2\to\mathbb{R}$ es continuo en $(a,b)\in D=\mathrm{Dom}\, f$ si $\lim_{(x,y)\to(a,b)}f(x,y)=f(a,b).$ Si f es continuo en (a,b) para todo $(a,b)\in D$ decimos que f es **continuo**.

Teorema (Continuidad de la composición): Sean $f: D \subseteq \mathbb{R}^2 \to \mathbb{R}$ y $g: B \subseteq \mathbb{R} \to \mathbb{R}$ (con $f(D) \subseteq B$). Si f es continua en (a,b) y g es continua en f(a,b) entonces $h = g \circ f$ definida por h(x,y) = g(f(x,y))es continua en (a,b).

Demostración: Sean $\varepsilon > 0$, como g es continua en f(a,b), existe r > 0 tal que si

$$|f(x,y) - f(a,b)| < r \Rightarrow |g(f(x,y)) - g(f(a,b))| < \varepsilon$$

Pero como f es continua en (a,b), para este r existe $\delta = \delta(r) > 0$ tal que si

$$\|(x,y) - (a,b)\| < \delta \Rightarrow |f(x,y) - f(a,b)| < r \Rightarrow |g(f(x,y)) - g(f(a,b))| < \varepsilon$$

Por lo tanto $\lim_{(x,y)\to(a,b)}g\left(f\left(x,y\right)\right)=g\left(f\left(a,b\right)\right)$ entonces $h=g\circ f$ es continua en (a,b).

Ejemplos de campos escalares continuos:

- 1) f(x,y) = k = cte es continua, en efecto $|f(x,y) f(a,b)| = |k-k| = 0 < \varepsilon \ \forall \varepsilon > 0 \ y \ \forall (x,y)$.
- 2) f(x,y) = x es continua, en efecto $|f(x,y) f(a,b)| = |x-a| < \varepsilon$ si $\delta = \varepsilon$. Idem, f(x,y) = y es continua.
- 3) $f(x,y) = \alpha x^r y^s$ con $\alpha \in R$, $r,s \in N_0$, entonces f es continua.
- 4) $p(x,y) = \sum_{i=1}^{n} \alpha_i x^{r_i} y^{s_i}$, los polinomios son continuos.
- 5) $f(x,y) = \frac{p(x,y)}{q(x,y)}$ las funciones racionales son continuas donde $q(x,y) \neq 0$.

6) $f(x,y) = \sqrt{x^2 + y^2}$ es continua, pues es composición de $g: R_0^+ \to R$, $g(t) = \sqrt{t}$ y $h: R^2 \to R_0^+$, $h(x,y) = x^2 + y^2$ que son continuas.

- 7) La norma es un campo escalar continuo.
- 8) $f(x,y) = \ln(1+x^2+y^2)$ es composición de funciones continuas.
- 9) Las composiciones con exponenciales, trigonométricas, racionales, polinomios, logaritmos, etc son continuos.

4 Derivadas direccionales y parciales de campos escalares.

Definición: Sean $f: D \subseteq \mathbb{R}^n \to \mathbb{R}$ y $\bar{x} \in \mathring{D}$ (entonces existe r > 0 tal que $B_r(\bar{x}) \subseteq D$). Sean \bar{u} un versor y $h \neq 0$ tal que $\bar{x} + h\bar{u} \in B_r(\bar{x})$. Si existe

$$\lim_{h\to 0} \frac{f\left(\bar{x} + h\bar{u}\right) - f\left(\bar{x}\right)}{h} = D_{\bar{u}}f\left(\bar{x}\right)$$

se lo llama derivada direccional de f en \bar{x} en la dirección de \bar{u} .

Por ejemplo podemos tomar h tal que |h| < r pues

$$d(\bar{x} + h\bar{u}, \bar{x}) = \|\bar{x} + h\bar{u} - \bar{x}\| = \|h\bar{u}\| = |h| \|\bar{u}\| = |h| < r.$$

Observación: En \mathbb{R}^2 , si $\bar{u} = (u_1, u_2)$ es un versor y $\bar{x} = (a, b)$, entonces

$$D_{\bar{u}}f(a,b) = \lim_{h \to 0} \frac{f(a + hu_1, b + hu_2) - f(a,b)}{h}$$

Definición: (Derivada parcial): En particular, si $\bar{u} = \bar{e}_i = \left(0, \dots, \widehat{1}, \dots, 0\right)$ el i-ésimo vector de la base canónica de \mathbb{R}^n , si existe

$$\lim_{h \to 0} \frac{f\left(\bar{x} + h\bar{e}_i\right) - f\left(\bar{x}\right)}{h} = D_{\bar{e}_i} f\left(\bar{x}\right)$$

se lo llama derivada parcial i-ésima de f en \bar{x} .

Notaciones: Llamaremos indistintamente derivada direccional de f en \bar{x} en la dirección de \bar{e}_i o derivada parcial i-ésima de f en \bar{x} o derivada parcial de f respecto de x_i en \bar{x} o derivada de f respecto de x_i en \bar{x} y notaremos

$$D_{\bar{e}_i}f(\bar{x}) = D_i f(\bar{x}) = f_{x_i}(\bar{x}) = \frac{\partial f}{\partial x_i}(\bar{x})$$

Ejemplos: 1) Sea $f(x,y) = x + y^2$ calcular las derivadas parciales de f en $\bar{x} = (a,b)$

$$D_1 f(a,b) = f_x(a,b) = \lim_{h \to 0} \frac{f(\bar{x} + h\bar{e}_1) - f(\bar{x})}{h} = \lim_{h \to 0} \frac{f((a,b) + (h,0)) - f(a,b)}{h}$$
$$= \lim_{h \to 0} \frac{f((a+h,b)) - f(a,b)}{h} = \lim_{h \to 0} \frac{a+h+b^2-a-b^2}{h} = 1$$

$$D_{2}f(a,b) = f_{y}(a,b) = \lim_{h \to 0} \frac{f(\bar{x} + h\bar{e}_{2}) - f(\bar{x})}{h} = \lim_{h \to 0} \frac{f((a,b) + (0,h)) - f(a,b)}{h}$$
$$= \lim_{h \to 0} \frac{a + (b+h)^{2} - a - b^{2}}{h} = \lim_{h \to 0} \frac{b^{2} + 2bh + h^{2} - b^{2}}{h} = 2b$$

Podemos observar que $f_x(a, b)$ es derivar respecto de x la función f dejando a y como constante y luego calcularla en (a, b) y f_y es derivar f respecto de y dejando x como constante y luego calcularla en (a, b).

2) Calcular la derivada direccional de f(x,y)=x+y en (1,1) en la dirección de $\bar{u}=(-1,-1)$. Para aplicar la definición debemos calcular el versor $\bar{u}_0=\frac{\bar{u}}{\|\bar{u}\|}=\left(\frac{-1}{\sqrt{2}},\frac{-1}{\sqrt{2}}\right)$

$$D_{\bar{u}_0} f(1,1) = f'\left((1,1), \left(\frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)\right) = \lim_{h \to 0} \frac{f\left((1,1) + h\left(\frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)\right) - f(1,1)}{h}$$
$$= \lim_{h \to 0} \frac{1 - \frac{h}{\sqrt{2}} + 1 - \frac{h}{\sqrt{2}} - 2}{h} = -\sqrt{2}$$

Para ciertos campos escalares, pronto veremos una manera de calcular las derivadas direccionales sin calcular este límite.

3) Sea $f(x,y,z) = xe^{y^2z}$ calcular las derivadas parciales en $\bar{x} = (a,b,c)$

$$D_1 f(a, b, c) = \lim_{h \to 0} \frac{f(a + h, b, c) - f(a, b, c)}{h} = \lim_{h \to 0} \frac{(a + h)e^{b^2c} - ae^{b^2c}}{h} = e^{b^2c}$$

$$D_2 f(a, b, c) = \lim_{h \to 0} \frac{f(a, b + h, c) - f(a, b, c)}{h} = \lim_{h \to 0} \frac{ae^{(b+h)^2c} - ae^{b^2c}}{h} =$$

$$= \lim_{h \to 0} ae^{b^2c} \frac{e^{2bhc + h^2c} - 1}{h} = \lim_{h \to 0} ae^{b^2c} \frac{e^{2bhc + h^2c}(2bc + 2hc)}{1} = ae^{b^2c} 2bc$$

$$D_{3}f(a,b,c) = \lim_{h \to 0} \frac{f(a,b,c+h) - f(a,b,c)}{h} = \lim_{h \to 0} \frac{ae^{b^{2}(c+h)} - ae^{b^{2}c}}{h} = \lim_{h \to 0} ae^{b^{2}c} \frac{e^{b^{2}h} - 1}{h} = \lim_{h \to 0} ae^{b^{2}c} \frac{e^{b^{2}h}b^{2}}{1} = ae^{b^{2}c}b^{2}$$

Como $\bar{x} = (a, b, c)$ es arbitrario, existen las derivadas parciales en todo $(x, y, z) \in R^3$ y definen nuevos campos escalares de R^3 en R, ellos son

$$f_x(x, y, z) = e^{y^2 z}$$

$$f_y(x, y, z) = xe^{y^2 z} 2yz$$

$$f_z(x, y, z) = xe^{y^2 z} y^2$$

Observaciones (derivadas parciales de orden superior): Sea $f: \mathbb{R}^2 \to \mathbb{R}$ tal que existen las derivadas parciales $f_x = D_1 f$, $f_y = D_2 f$ éstas son nuevos campos escalares de \mathbb{R}^2 en \mathbb{R} , y como tales podemos calcularle (si existen) sus derivadas parciales, tendremos derivadas parciales dobles o segundas de f que notaremos

$$D_{1}(D_{1}f) = D_{11}f = f_{xx}$$

$$D_{2}(D_{1}f) = D_{21}f = (f_{x})_{y} = f_{xy}$$

$$D_{1}(D_{2}f) = D_{12}f = (f_{y})_{x} = f_{yx}$$

$$D_{2}(D_{2}f) = D_{22}f = f_{yy}$$

En general si $f: \mathbb{R}^n \to \mathbb{R}$ notamos

$$D_{ij}f = D_i(D_jf) = (f_{x_j})_{x_i} = f_{x_jx_i} = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j}\right) = \frac{\partial^2 f}{\partial x_i \partial x_j} \quad \text{para } i, j = 1, ..., n$$

Ejemplo: Sea $f(x,y) = xe^{y^2}$ calcular las derivadas parciales dobles de f

$$D_{1}f(x,y) = f_{x}(x,y) = e^{y^{2}}$$

$$D_{2}f(x,y) = f_{y}(x,y) = xe^{y^{2}}2y$$

$$D_{11}f(x,y) = f_{xx}(x,y) = 0 \qquad D_{22}f(x,y) = f_{yy}(x,y) = x\left(e^{y^{2}}(2y)^{2} + e^{y^{2}}2\right)$$

$$D_{21}f(x,y) = f_{xy}(x,y) = e^{y^{2}}2y \qquad D_{12}f(x,y) = f_{yx}(x,y) = e^{y^{2}}2y$$
son iguales por qué?

Teorema (Clairaut): Sean $f: D \subset \mathbb{R}^n \to \mathbb{R}$ y $\bar{a} \in \overset{\circ}{D}$. Si $D_{ij}f$ y $D_{j}if$ son continuas en \bar{a} , entonces

$$D_{ij}f\left(\bar{a}\right) = D_{j\ i}f\left(\bar{a}\right)$$

4.1 Interpretación geométrica de las derivadas parciales.

Sea $f: \mathbb{R}^2 \to \mathbb{R}$. La G_f es una superficie $S \subseteq \mathbb{R}^3$ de ecuación z = f(x, y). Fijamos x=a, sea Γ una curva determinada por $\pi_a \cap S = \Gamma$ siendo π_a el plano \bot al eje x en a. El cociente incremental (en π_a) es $\frac{f(a,b+h)-f(a,b)}{h} = \frac{\Delta_y f}{h}$, es la pendiente de la recta secante a Γ , luego $D_2 f(a,b) = f_y(a,b)$ es la pendiente de la recta tangente T a la curva Γ en el punto P de coordenadas (a, b, f(a, b)). Análogamente para $f_x(a, b)$

Observaciones y ejemplos.

1) Algunos campos escalares no tienen derivadas direccionales en un punto a en cualquier dirección ni son continuos en a, sin embargo, si tienen derivadas parciales en ese punto, por ejemplo, sea

f
$$(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$
 dom $(f) = R^2$ y sea $a = (0,0)$.

Nos preguntamos: i) Es f continua en a ? ii) f tiene derivadas parciales f

Nos preguntamos: i) Es f continua en a? ii) f tiene derivadas parciales en a? iii) f tiene derivadas direccionales en a en cualquier dirección?

i) f será continua en (0,0) si y sólo si existe $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$ y vale cero, veamos los límites radiales

$$\lim_{\substack{x \to 0 \\ y = mx}} \frac{xmx}{x^2 + m^2x^2} = \frac{m}{1 + m^2} = \begin{cases} 0 & \text{si } m = 0\\ \frac{1}{2} & \text{si } m = 1 \end{cases}$$

Como depende de m es decir depende por qué recta me acerco al origen, $\nexists \lim_{(x,y)\to(0,0)} f(x,y)$, y entonces f no es continua en a.

- ii) Sea $h \neq 0$, $\frac{f(a+h(1,0))-f(a)}{h} = \frac{f(h,0)-0}{h} = 0 \xrightarrow[h\to 0]{} 0$, luego $D_1f(a) = 0$. Análogamente $D_2f(a) = 0$. Por lo tanto f tiene derivadas parciales en el origen.
- iii) La derivada direccional en la dirección de u=(1,1) en a=(0,0), siendo $u_0=(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})$, será, si existe, el límite

$$\lim_{h \to 0} \frac{f(a + \frac{h}{\sqrt{2}}(1, 1)) - f(a)}{h} = \lim_{h \to 0} \frac{f(\frac{1}{\sqrt{2}}(h, h))}{h} = \lim_{h \to 0} \frac{1}{2h}$$

pero como no existe este límite cuando h tiende a cero entonces f no tiene derivadas direccionales en a en la dirección de (1,1), por lo tanto no tiene derivadas direccionales en el origen en cualquier dirección.

- 2) Si existen las derivadas direccionales en toda dirección u_0 en un punto a entonces existen las derivadas parciales en a. La recíproca en general es falsa, como vimos en el ejemplo anterior.
- 3) En el caso unidimensional, la derivabilidad de una función f en un punto implica la continuidad en ese punto, en efecto, si $h \neq 0$ ponemos $f(a+h)-f(a)=\frac{f(a+h)-f(a)}{h}$ h, cuando $h \to 0$ el segundo miembro tiende a $f'(a) \cdot 0 = 0$ entonces $f(a+h) \to f(a)$. Aplicamos este razonamiento a un campo escalar, supongamos que existe f'(a,y) para $a \in R^n$ y para todo y vector unitario. Entonces si $h \neq 0$ ponemos $f(a+hy)-f(a)=\frac{f(a+hy)-f(a)}{h}$ h y cuando $h \to 0$ el segundo miembro tiende a $f'(a,y) \cdot 0 = 0$, luego la existencia de la derivada direccional en a en cualquier dirección y implica $\lim_{h\to 0} f(a+hy) = f(a)$. Es decir, $f(x) \to f(a)$ cuando $x \to a$ a lo largo de toda recta de dirección y que pasa por a. Pero esto no asegura la continuidad de f en a, como puede verse en el ejemplo que sigue.
- 4) Sea f un campo escalar definido por $f(x,y) = \frac{xy^2}{x^2 + y^4}$ fuera del origen y f(0,0) = 0. Sea a = (0,0), si $h \neq 0$, sea $y = (y_1, y_2)$ un vector unitario con $y_1 \neq 0$, el cociente

$$\frac{f(a+h(y_1,y_2))-f(a)}{h} = \frac{f((hy_1,hy_2))}{h} = \frac{h^3y_1y_2^2}{h^3y_1^2 + h^5y_2^4} = \frac{y_1y_2^2}{y_1^2 + h^2y_2^4}$$

tiene límite $\frac{y_2^2}{y_1}$ cuando $h \to 0$, es decir, existe $f'(a,y) = \frac{y_2^2}{y_1}$. Si $y = (0, y_2)$ y $h \neq 0$, el cociente

$$\frac{f(a+h(0,y_2)) - f(a)}{h} = 0$$

luego existe $f'(a, (0, y_2)) = 0$. Por lo tanto, existe f'(a, y) en cualquier dirección, sin embargo f no es continua en a pues en cada punto de la parábola $x = y^2$ es $f(y^2, y) = \frac{1}{2}$ salvo en el origen que vale 0.

5) Sin embargo, cuando existan las derivadas direccionales en cualquier dirección en un punto a, existirán las derivadas parciales en a y si además éstas son acotadas, resultará f continua en a, como se demuestra en el siguiente:

Teorema: Sea $f:D\subseteq \mathbb{R}^n\to\mathbb{R}$, D abierto de \mathbb{R}^n tal que D_jf , para $j=1,\ldots,n$ son acotadas en D. Entonces f es continua en D. Si D no es abierto y para todo j las $D_j f$ son acotadas en $\overset{\circ}{D}$. Entonces f es continua en \tilde{D} .

Diferenciabilidad de campos escalares. 5

Comentario previo sobre derivabilidad para funciones de \mathbb{R} en \mathbb{R} .

 \lozenge Si $f: \mathbb{R} \to \mathbb{R}$ es derivable en a entonces

$$f(a+h) - f(a) = f'(a)h + hE(a,h)$$
 (1)

donde
$$\lim_{h\to 0} E(a,h) = 0$$
.
Luego $\triangle f = f(a+h) - f(a) = hf'(a) + hE(a,h) = \underbrace{hf'(a)}_{\text{lineal en }h} + \underbrace{o(|h|)}_{|h|}_{\to 0}$

df = hf'(a) es "la diferencial de f en a". Cuando $h \to 0$, $\triangle f \simeq a$

 \Diamond Recíprocamente, si para $f: \mathbb{R} \to \mathbb{R}$ existe $\underline{A \in \mathbb{R}}$ constante y $E(a, h) \to 0$ cuando $h \to 0$, tal que vale una fórmula del tipo (4):

$$f(a+h) - f(a) = Ah + hE(a,h)$$

entonces f derivable en a y f'(a) = A.

Luego, esa expresión para el incremento de f en a es equivalente a ser derivable en a. Usaremos esa expresión para definir diferenciabilidad de un campo escalar $f: \mathbb{R}^n \to \mathbb{R}$.

Definición: Sea $f:D\subseteq\mathbb{R}^n\to\mathbb{R}$ y sea $a\in D$ (existe r>0 tal que $B(a,r)\subset D$), sea v tal que $a+v\in B(a,r)$. Decimos que f es diferenciable en a si existe $\alpha=(\alpha_1,\ldots,\alpha_n)\in\mathbb{R}^n$ tal que

$$f(a+v) - f(a) = \alpha \cdot v + ||v|| E(a,v)$$

donde $\lim_{\|v\|\to 0} E(a, v) = 0$, $\forall v$ tal que $a + v \in B(a, r)$, es decir, $\|v\| < r$.

Observación: 1) El término $\alpha \cdot v$ es lineal en v y representa una transformación lineal

$$T_a$$
: $\mathbb{R}^n \to \mathbb{R}$
 $T_a(v) = \alpha \cdot v$

llamada la diferencial de f en a.

- 2) Para v "chico" la diferencia $f(a+v) f(a) \simeq \alpha \cdot v$ $(\Delta f \simeq df)$
- 3) Fórmula de Taylor de f alrededor de a

$$f(a+v) - f(a) \simeq T_a(v)$$

 $f(a+v) - f(a) = T_a(v) + \underbrace{\|v\| E(a,v)}_{\varepsilon \text{ error}}$

 $\text{debe ser }\lim_{\left\Vert v\right\Vert \rightarrow0}\frac{\varepsilon}{\left\Vert v\right\Vert }=\lim_{\left\Vert v\right\Vert \rightarrow0}E\left(a,v\right)=0\text{, o sea que }\varepsilon=o\left(\left\Vert v\right\Vert \right).$

Propiedades de las funciones diferenciables. 5.1

Teorema: Sea $f: D \subseteq \mathbb{R}^n \to \mathbb{R}$ differenciable en $a \in \mathring{D}$. Entonces:

- a) f es continua en a.
- b) f tiene derivadas direccionales en cualquier dirección $y \in \mathbb{R}^n$ con ||y|| = 1 y vale:

$$D_{y}f(a) = \alpha \cdot y = T_{a}(y)$$

En particular en la dirección e_i , es decir, existen las derivadas parciales.

$$D_i f(a) = \alpha_i$$
 $i = 1, \dots, n$

Dem: a) Veamos que $\lim_{v\to 0} (f(a+v) - f(a)) = 0$. Como f es diferenciable en a será

$$\lim_{v \to 0} (f(a+v) - f(a)) = \lim_{v \to 0} (\alpha \cdot v + ||v|| E(a,v)) = \lim_{v \to 0} (\alpha \cdot v) + \lim_{v \to 0} ||v|| E(a,v) = \alpha \cdot \lim_{v \to 0} v = \alpha \cdot 0 = 0.$$

Luego existe $\lim_{n\to 0} (f(a+v) - f(a)) = 0$ resultando f continua en a.

b) Sean y un versor y $v = \lambda y$ tal que $a + v \in B(a, r)$, es decir $||v|| = |\lambda| < r$, entonces cuando $\lambda \to 0, ||v|| \to 0$ y vale $E(a, v) \to 0$ luego

$$f'(a,y) = \lim_{\lambda \to 0} \frac{f(a+\lambda y) - f(a)}{\lambda} = \lim_{\lambda \to 0} \frac{\alpha \cdot \lambda y + \|\lambda y\| E(a,\lambda y)}{\lambda}$$
$$= \alpha \cdot y \pm 1 \lim_{\lambda \to 0} E(a,v) = \alpha \cdot y$$

Además, como T_a es una transformación lineal tenemos

$$f'(a,y) = D_y f(a) = T_a(y) = T_a\left(\sum_{i=1}^n y_i e_i\right) = \sum_{i=1}^n y_i T_a(e_i) = \sum_{i=1}^n y_i D_i f(a)$$

Y como
$$\alpha \cdot y = \sum_{i=1}^{n} \alpha_i y_i$$
 entonces $f'(a, e_i) = D_i f(a) = \alpha_i$.

5.2 Vector gradiente. Dirección de máximo crecimiento. Criterio de diferenciabilidad.

Definición: Si existen $D_i f(a)$ para $i = 1, \ldots, n$, se llama gradiente de f en a al vector

$$\nabla f(a) = (D_1 f(a), \dots, D_n f(a))$$

Observaciones:

1) f es diferenciable en $a \Rightarrow$ existen $D_y f(a) \forall y \in \mathbb{R}^n$ con ||y|| = 1 y vale

$$D_{y}f\left(a\right) = \nabla f\left(a\right) \cdot y$$

- 2) f diferenciable en $a \Rightarrow f$ continua en a.
- 3) f diferenciable en $a \Rightarrow$ existen las derivadas parciales $D_i f(a) \forall i$ (¿vale la vuelta?).

$$\searrow \exists D_u f(a) \ \forall u \nearrow$$

Teorema: Si $D_i f$ continuas en $A, \forall i = 1, ..., n$ entonces f es diferenciable en $a \in A$.

Ejemplo: $f(x, y, z) = x^2 - yz + 4xz^2 + 1$, calcular $D_u f(a)$ siendo a = (0, 2, -1) y $u = (1, 0, \sqrt{3})$.

Calculamos
$$u_0 = \frac{u}{\|u\|} = (1, 0, \sqrt{3}) \frac{1}{\sqrt{1+3}} = (\frac{1}{2}, 0, \frac{\sqrt{3}}{2})$$

$$\nabla f(x,y,z) = (f_x, f_y, f_z) = (2x + 4z^2, -z, -y + 8xz) \qquad \nabla f(0,2,-1) = (4,1,-2)$$

$$D_u f(a) = \nabla f(0,2,-1) \cdot u_0 = (4,1,-2) \cdot \left(\frac{1}{2},0,\frac{\sqrt{3}}{2}\right) = 2 - \sqrt{3}$$
orema: La derivada direccional en a es máxima en la dirección y sentido del $\nabla f(a)$.

Teorema: La derivada direccional en a es máxima en la dirección y sentido del $\nabla f(a)$.

Dem:
$$(n = 2, 3) |D_y f(a)| = |f'(a, y)| = |\nabla f(a) \cdot y_0| = |\nabla f(a)| |y_0| \left| \cos \left(\nabla f(a)^{\wedge} y_0 \right) \right| =$$
$$= |\nabla f(a)| \left| \cos \left(\nabla f(a)^{\wedge} y_0 \right) \right| \le |\nabla f(a)|.$$

Observación: a) El teorema dice que el crecimiento de f en a es máximo en la dirección e igual sentido del $\nabla f(a)$.

b) Y es mínimo en la dirección y en sentido opuesto del $\nabla f(a)$.

Ejemplos: 1) $T(x,y) = \frac{1}{x^2 + 3y^2}$ es la temperatura en el punto (x,y) de un plano y usted está parado en el punto (a,b) y tiene frío ¿en cuál dirección caminaría? Por ejemplo si (a,b) = (3,1), calculamos $\nabla T(x,y) = \left(\frac{-2x}{(x^2+3y^2)^2}, \frac{-6y}{(x^2+3y^2)^2}\right)$, entonces $\nabla T(3,1) = \left(\frac{-6}{(9+3)^2}, \frac{-6}{(12)^2}\right) = \left(-\frac{1}{24}, -\frac{1}{24}\right)$ Deberá caminar en la dirección (-1,-1) para calentarse, y si quiere congelarse caminará en la dirección opuesta, o sea (1,1).

- 2) Los polinomios (de n variables) y las funciones racionales son diferenciables en todo su dominio.
- 3) $f(x,y) = \sqrt{|xy|}$ no es diferenciable en (0,0). Si lo fuera, debería ser

$$f(x,y) - f(0,0) = \nabla f(0,0) \cdot (x,y) + ||(x,y)|| \qquad E(\bar{0}, (x,y))$$

$$\searrow 0$$

$$cdo(x,y) \to (0,0)$$

ahora, f(0,0) = 0, $f_x(0,0) = 0$, $f_y(0,0) = 0$ luego

$$\sqrt{|xy|} = \sqrt{x^2 + y^2} \ E(\bar{0}, (x, y))$$

luego

$$E\left(\bar{0},(x,y)\right) = \sqrt{\frac{|xy|}{x^2 + y^2}} \underset{\text{si } x = y \neq 0}{\longrightarrow} \sqrt{\frac{1}{2}} \neq 0$$

Por lo tanto f no es diferenciable en (0,0).

4) Ya vimos que si v es "pequeño" $f(a+v)-f(a)\simeq \nabla f(a)\cdot v$, es decir $\Delta f\simeq df$. Veremos que para p en el segmento de recta que va de a hasta a+v vale (TVM generalizado)

$$f(a+v) - f(a) = \nabla f(p) \cdot v$$

Teorema del Valor Medio para campos escalares: Sea D un abierto de \mathbb{R}^n . Si $f: D \to \mathbb{R}$ es $C^1(D)$ (derivadas parciales continuas) y el segmento $\overline{a,a+h} \subset D$ entonces existe $p \in \overline{a,a+h}$ tal que:

$$f\left(a+h\right)-f\left(a\right)=\nabla f\left(p\right)\cdot h$$

Dem: Definimos $F:[0,1]\to\mathbb{R}$ por F(t)=f(a+th) (para cada $t\in[0,1],\ a+th\in A$ luego F es una restricción de f al segmento $\overline{a,a+h}$). Resulta F derivable en t y

$$F'(t) = \nabla f(a+th) \cdot h \tag{2}$$

Ahora

$$f(a+h) - f(a) = F(1) - F(0) = F'(\theta)(1-0) = F'(\theta)$$
 con $0 < \theta < 1$

Por lo tanto existe $p = a + \theta h$ tal que

$$f(a+h) - f(a) = \nabla f(a+\theta h) \cdot h = \nabla f(p) \cdot h.$$

5.3 Plano tangente a una superficie.

Definición: Sea z = f(x,y) la ecuación de una superficie S en \mathbb{R}^3 , sea $P_0 = (x_0,y_0,z_0) =$ $(x_0, y_0, f(x_0, y_0)) \in S$ y supongamos que en (x_0, y_0) la función f es diferenciable. Entonces la ecuación del plano tangente a S en el punto P_0 es

$$z = f(x_0, y_0) + \nabla f(x_0, y_0) \cdot (x - x_0, y - y_0)$$

O sea,

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$
(3)

Ejemplo:

1) Hallar la ecuación del plano tangente a la superficie de ecuación $2x^2 + y^2 = z$ en el punto (1, 1, 3). Sea $f(x, y) = 2x^2 + y^2$, $f_x(x, y) = 4x$, $f_y(x, y) = 2y$ y en $\nabla f(1, 1) = (4, 2)$. Por lo tanto la ec es

$$z - 3 = 4(x - 1) + 2(y - 1)$$

2) Hallar la ecuación plano tangente a la superficie de ecuación $z=\sqrt{r^2-(x^2+y^2)}$ en (x_0,y_0,z_0) . Sea $f(x,y)=\sqrt{r^2-(x^2+y^2)}$ entonces $\nabla f(x,y)=(\frac{-x}{\sqrt{r^2-(x^2+y^2)}},\frac{-y}{\sqrt{r^2-(x^2+y^2)}})$ y $\nabla f(x_0,y_0)=(\frac{-x}{\sqrt{r^2-(x^2+y^2)}},\frac{-y}{\sqrt{r^2-(x^2+y^2)}})$ luego la ecuación del plano tangente es

$$z = z_0 - \frac{x_0}{z_0} (x - x_0) - \frac{y_0}{z_0} (y - y_0)$$

O bien $z - z_0 = -\frac{x_0}{z_0} (x - x_0) - \frac{y_0}{z_0} (y - y_0)$. Para obtener la ecuación cartesiana de este plano hacemos $x_0 (x - x_0) + y_0 (y - y_0) + z_0 (z - z_0) = 0$, como $x_0^2 + y_0^2 + z_0^2 = x_0^2 + y_0^2 + r^2 - (x_0^2 + y_0^2) = r^2$ se tiene $x_0 x + y_0 y + z_0 z = r^2$.