Math Methods Homework #2

Question 1:
$$\Omega = \{ z \in C \mid Im(z) > 0, |z| > 1 \}$$

 $\partial \Omega = \{ z \in C \mid |Re(z)| > 1 \} \cup \{ z \in C \mid Im(z) \ge 0, |z| = 1 \}$

a) Given
$$f(z) = Z + \frac{1}{z}$$
, show that $\forall z \in \partial \Omega$, $f(z) \in \mathbb{R}$.
Let $Z = e^{i\theta}$ on $\theta \in [0, \pi]$. For points on the real existing $f(e^{i\theta}) = e^{i\theta} + \frac{1}{e^{i\theta}} = e^{i\theta} + e^{-i\theta} = 2\cos(\theta) \in \mathbb{R}$

b) Given
$$f(z) = Z + \frac{1}{Z}$$
, Show that $\forall z \in \mathbb{C}$, $f(z) = \Omega$.
Let $Z = Re^{i\theta}$ on $G \in (0, \pi)$
 $f(Re^{i\theta}) = Re^{i\theta} + \frac{1}{Re^{i\theta}} = Re^{i\theta} + \frac{1}{Re^{-i\theta}}$

$$= (R\cos\theta + \frac{1}{R}\cos\theta) + i(R\sin\theta - \frac{1}{R}\sin\theta)$$

$$= (R + \frac{1}{R})\cos\theta + i\sin\theta(R - \frac{1}{R})$$

$$SIN\Theta > O, Ee(O, \pi)$$
 $(R - \frac{1}{R}) > O, R > 1$
-1 $\leq cos \Theta \leq 1$, $\Theta \in (O, \pi)$ $\Rightarrow (R - \frac{1}{R}) sin \Theta > O \forall \Theta \in (O, \pi)$

Questian 2

Given
$$f(z) = z + \frac{1}{z} = u(x,y) + iv(x,y)$$

a) Let $z = x + iy$, $f(x + iy) = (x + iy) + \frac{1}{(x + iy)} = x + iy + \frac{x - iy}{x^2 + y^2}$
 $f(z) = \left(x + \frac{x}{x^2 + y^2}\right) + i\left(y - \frac{y}{x^2 + y^2}\right) = v(x,y) = x\left(1 + \frac{1}{x^2 + y^2}\right)$
 $v(x,y) = y\left(1 - \frac{1}{x^2 + y^2}\right)$

b) See Diagram Attached.

Question 3

a)
$$\overrightarrow{\nabla}U(x,y) = \frac{\partial}{\partial x} \left(x + \frac{x}{x^2 + y^2} \right) \hat{x} + \frac{\partial}{\partial y} \left(x + \frac{x}{x^2 + y^2} \right) \hat{y}$$

$$= \left(1 + \frac{1}{x^2 + y^2} - \frac{2x^2}{(x^2 + y^2)^2} \right) \hat{x} + \left(-\frac{2xy}{(x^2 + y^2)^2} \right) \hat{y}$$

$$\overrightarrow{\nabla}V(x,y) = \frac{\partial}{\partial x} \left(y - \frac{y}{x^2 + y^2} \right) \hat{x} + \frac{\partial}{\partial y} \left(y - \frac{y}{x^2 + y^2} \right) \hat{y}$$

$$= \left(\frac{2xy}{(x^2 + y^2)^2} \right) \hat{x} + \left(1 - \frac{1}{x^2 + y^2} + \frac{2y^2}{(x^2 + y^2)^2} \right) \hat{y}$$

b) Du(x,y): Fluid flow field (velocity field).

Du(x,y): Fluid normal field.

I graphed the gradients and saw the was the direction of fluid traveling left to light.

