PadhAI: MP Neuron & Perceptron

One Fourth Labs

MP Neuron Learning Algorithm

How do we train our model

1.

	phone 1	phone 2	phone 3	phone 4	phone 5	phone 6	phone 7	phone 8	phone 9	phone 10
Launch (within 6 months) x ₁	0	1	1	0	0	1	0	1	1	0
Weight (<160g) x ₂	1	0	1	0	0	0	1	0	0	1
Screen Size (< 5.9in) x ₃	1	0	1	0	1	0	1	0	1	0
Dual sim x ₄	1	1	0	0	0	1	0	1	0	0
Internal mem(>= 64gb, 4gb ram) x ₅	1	1	1	1	1	1	1	1	1	0
NFC × ₆	0	1	1	0	1	0	1	1	1	0
Radio x ₇	1	0	0	1	1	1	0	0	0	0
Battery (>= 3500mAh) x ₈	0	0	0	1	0	1	0	1	0	0
Price? (> 20k) x ₉	0	1	1	0	0	0	1	1	1	0
Liked (y)	1	0	1	0	1	1	0	1	0	0
Prediction \widehat{y}	?	?	?	?	?	?	?	?	?	?

- 2. $\widehat{y} = (\sum_{i=1}^{n} x_i >= b)$
- 3. cost/loss = $\Sigma_i (y_i \hat{y}_i)^2$
- 4. In this case, we have <u>only one parameter</u>, so we can afford to use <u>brute force search</u>.
 - a. Here, consider we have n features
 - b. b can only range from 0 to n, else it would be a pointless parameter
 - c. b has discrete values only, as the inputs are also discrete values

