Verificación de Modelos

Dante Zanarini

LCC

2 de diciembre de 2020

Verificación Formal

Ingredientes:

- Un lenguaje para describir sistemas
- Un lenguaje de especificación
- Un mecanismo para verificar que la descripción de un sistema satisface la especificación

Una forma: Verificación de Modelos

- Es una técnica automática usada principalmente para sistemas reactivos y concurrentes
- Estos sistemas están diseñados, en general, para tener un comportamiento infinito
- Por lo tanto, necesitamos métodos para razonar sobre cómputos infinitos

Verificación de Modelos, ingredientes más comunes

ullet Los sistemas se describen mediante un sistema de transiciones ${\cal M}$ (finito)

Verificación de Modelos, ingredientes más comunes

- ullet Los sistemas se describen mediante un sistema de transiciones ${\cal M}$ (finito)
- Las propiedades se expresan como fórmulas ϕ en alguna lógica temporal (la validez de una fórmula puede depender de dónde estoy parado en la ejecución de un programa)

Verificación de Modelos, ingredientes más comunes

- ullet Los sistemas se describen mediante un sistema de transiciones ${\cal M}$ (finito)
- Las propiedades se expresan como fórmulas ϕ en alguna lógica temporal (la validez de una fórmula puede depender de dónde estoy parado en la ejecución de un programa)
- El mecanismo de verificación es automatizable, es decir, existe un programa que
 - ▶ Responde Sí en caso que $\mathcal{M} \models \phi$
 - ▶ En caso que $\mathcal{M} \not\models \phi$, responde No + un camino en el modelo que no cumple la propiedad

La lógica CTL

- Computation Tree Logic es una lógica temporal
- Se utiliza para expresar propiedades sobre las ejecuciones de un programa
- Sintaxis:
 - $\mathbf{0} \perp \in \mathsf{CTL}$
 - ② $p_i \in \mathsf{CTL}, i \in \mathbb{N}$

La lógica CTL

- Computation Tree Logic es una lógica temporal
- Se utiliza para expresar propiedades sobre las ejecuciones de un programa
- Sintaxis:
 - \bullet $\bot \in \mathsf{CTL}$
 - ② $p_i \in \mathsf{CTL}, i \in \mathbb{N}$
 - **3** Si $\phi \in CTL$, entonces $(\neg \phi) \in CTL$
 - Si $\phi, \psi \in CTL$, entonces $(\phi \land \psi) \in CTL$
 - **5** Si $\phi \in CTL$, entonces $\forall \bigcirc \phi$, $\exists \bigcirc \phi \in CTL$
 - $\textbf{ 0} \ \, \mathsf{Si} \,\, \phi, \psi \in \mathsf{CTL}, \,\, \mathsf{entonces} \,\, \forall [\phi \, \mathsf{U} \, \psi], \,\, \exists [\phi \, \mathsf{U} \, \psi] \in \mathsf{CTL}$

La lógica CTL

- Computation Tree Logic es una lógica temporal
- Se utiliza para expresar propiedades sobre las ejecuciones de un programa
- Sintaxis:
 - $\mathbf{1}$ $\perp \in \mathsf{CTL}$
 - $p_i \in \mathsf{CTL}, i \in \mathbb{N}$
 - \bullet Si $\phi \in \mathsf{CTL}$, entonces $(\neg \phi) \in \mathsf{CTL}$
 - **9** Si $\phi, \psi \in \mathsf{CTL}$, entonces $(\phi \land \psi) \in \mathsf{CTL}$
 - **5** Si $\phi \in CTL$, entonces $\forall \bigcirc \phi$, $\exists \bigcirc \phi \in CTL$
 - **o** Si $\phi, \psi \in \mathsf{CTL}$, entonces $\forall [\phi \cup \psi], \exists [\phi \cup \psi] \in \mathsf{CTL}$
- Precedencia de los operadores: \neg , $\forall \bigcirc$, $\exists \bigcirc$, \land , $\forall U$, $\exists U$
- Definimos ⊤, ∨ y → usando sus equivalencias proposicionales con ¬,
 ⊥ y ∧

Algunas fórmulas (y no-fórmulas)

•
$$p_1 \rightarrow \forall \bigcirc p_2$$

•
$$\forall [p_1 \cup (p_2 \wedge p_3)]$$

$$\bullet \ \exists \bigcirc p_0 \to \forall \bigcirc \forall \bigcirc p_1$$

$$\bullet \ \forall \bigcirc (\forall [p_0 \cup (\exists [p_1 \cup p_2])])$$

•
$$[p_1 \cup p_2]$$

•
$$\exists (p_1 \land p_2)$$

•
$$\forall [p_1 \cup \bigcirc p_2]$$

$$\bullet \ \forall [(p_1 \cup p_2) \land (p_3 \cup p_4)]$$

• Las fórmulas de CTL se interpretan sobre sistemas de transiciones

- Las fórmulas de CTL se interpretan sobre sistemas de transiciones
- Un sistema de transiciones \mathcal{M} es una tupla (S, \rightarrow, I, L) , donde:
 - S es un conjunto finito de estados
 - ▶ $I \subseteq S$ es el conjunto de estados iniciales
 - ightharpoonup ightharpoonup S imes S imes S es una relación de transición entre estados
 - ▶ $L: S \rightarrow \mathcal{P}(AT)$ es una función de etiquetado

- Las fórmulas de CTL se interpretan sobre sistemas de transiciones
- Un sistema de transiciones \mathcal{M} es una tupla (S, \rightarrow, I, L) , donde:
 - S es un conjunto finito de estados
 - I ⊆ S es el conjunto de estados iniciales
 - $ightharpoonup
 ightharpoonup \subseteq S imes S$ es una relación de transición entre estados
 - ▶ $L: S \to \mathcal{P}(AT)$ es una función de etiquetado
- Asumimos que \rightarrow es no bloqueante $(\forall s \exists s^l(s, s^l) \in \rightarrow)$

Sistemas de transiciones

- AT es un conjunto de proposiciones atómicas, que depende de qué quiero especificar
- Si $s, s' \in \rightarrow$, escribimos $s \rightarrow s'$

Definición

Una traza es una secuencia infinita de estados s_1, s_2, \ldots tal que, para todo $i \in \mathbb{N}, \ s_i \to s_{i+1}$

• Notación para trazas: $s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow ...$

Sistemas de transiciones, ejemplo

•
$$S = \{s_0, s_1, s_2, s_3\}$$

•
$$I = \{s_0\}$$

•
$$L(s_0) = \{p\},\$$

$$\bullet \ L(s_1)=\{q\} \ ,$$

•
$$L(s_2) = \{p, q\},$$

•
$$L(s_3) = \emptyset$$

•
$$\mathcal{M}, s \not\models \bot$$

•
$$\mathcal{M}, s \models p_i \text{ sii } p_i \in L(s)$$

$$\bullet$$
 $\mathcal{M},s\not\models \bot$

•
$$\mathcal{M}, s \models p_i \text{ sii } p_i \in L(s)$$

- $\mathcal{M}, s \models \neg \phi \text{ sii } \mathcal{M}, s \not\models \phi$
- $\mathcal{M}, s \models \phi \land \psi$ sii $\mathcal{M}, s \models \phi$ y $\mathcal{M}, s \models \psi$

•
$$\mathcal{M}, s \not\models \bot$$

•
$$\mathcal{M}, s \models p_i \text{ sii } p_i \in L(s)$$

- $\mathcal{M}, s \models \neg \phi \text{ sii } \mathcal{M}, s \not\models \phi$
- $\mathcal{M}, s \models \phi \land \psi$ sii $\mathcal{M}, s \models \phi$ y $\mathcal{M}, s \models \psi$
- $\mathcal{M}, s \models \forall \bigcirc \phi$ sii para todo s' tal que $s \to s'$, se cumple $\mathcal{M}, s' \models \phi$
- $\mathcal{M}, s \models \exists \bigcirc \phi$ sii para algún s' tal que $s \rightarrow s'$, se cumple $\mathcal{M}, s' \models \phi$

•
$$\mathcal{M}, s \not\models \bot$$

•
$$\mathcal{M}, s \models p_i \text{ sii } p_i \in L(s)$$

- $\mathcal{M}, s \models \neg \phi \text{ sii } \mathcal{M}, s \not\models \phi$
- $\mathcal{M}, s \models \phi \land \psi$ sii $\mathcal{M}, s \models \phi$ y $\mathcal{M}, s \models \psi$
- $\mathcal{M}, s \models \forall \bigcirc \phi$ sii para todo s' tal que $s \rightarrow s'$, se cumple $\mathcal{M}, s' \models \phi$
- $\mathcal{M}, s \models \exists \bigcirc \phi$ sii para algún s' tal que $s \rightarrow s'$, se cumple $\mathcal{M}, s' \models \phi$
- $\mathcal{M}, s \models \forall [\phi \cup \psi]$ sii para cada traza $s_0 \to s_1 \to s_2 \to \dots$ con $s = s_0$, existe $j \in \mathbb{N}$ tal que:
 - $\triangleright \mathcal{M}, s_j \models \psi$
 - $\mathcal{M}, s_i \models \phi$, para todo i < j

- $\mathcal{M}, s \not\models \bot$ $\mathcal{M}, s \models p_i \text{ sii } p_i \in L(s)$
- $\mathcal{M}, s \models \neg \phi \text{ sii } \mathcal{M}, s \not\models \phi$
- $\mathcal{M}, s \models \phi \land \psi \text{ sii } \mathcal{M}, s \models \phi \text{ y } \mathcal{M}, s \models \psi$
- $\mathcal{M}, s \models \forall \bigcirc \phi$ sii para todo s^l tal que $s \to s^l$, se cumple $\mathcal{M}, s^l \models \phi$
- $\mathcal{M}, s \models \exists \bigcirc \phi$ sii para algún s' tal que $s \rightarrow s'$, se cumple $\mathcal{M}, s' \models \phi$
- $\mathcal{M}, s \models \forall [\phi \cup \psi]$ sii para cada traza $s_0 \to s_1 \to s_2 \to \dots$ con $s = s_0$, existe $j \in \mathbb{N}$ tal que:
 - $ightharpoonup \mathcal{M}, s_j \models \psi$
 - $\mathcal{M}, s_i \models \phi$, para todo i < j
- $\mathcal{M}, s \models \exists [\phi \cup \psi]$ sii para alguna traza $s_0 \to s_1 \to s_2 \to \dots$ con $s = s_0$, existe $j \in \mathbb{N}$ tal que:
 - $ightharpoonup \mathcal{M}, s_j \models \psi$
 - $\mathcal{M}, s_i \models \phi$, para todo i < j

Definición

Sea
$$\mathcal{M} = (S, \rightarrow, I, L)$$
.

- Decimos que $\mathcal{M} \models \phi$ sii para todo $s \in I, \mathcal{M}, s \models \phi$
- ϕ es válida ($\models \phi$) sii $\mathcal{M}, s \models \phi$, para todo \mathcal{M}, s
- Cualquier tautología proposicional es válida
- Otros ejemplos de fórmulas válidas:
 - $\exists [\phi_1 \cup \phi_2] \rightarrow (\phi_2 \vee (\phi_1 \wedge \exists \bigcirc \exists [\phi_1 \cup \phi_2]))$
 - $\blacktriangleright \ \forall \bigcirc p \to \exists \bigcirc p$
- Algunas fórmulas que no son válidas:
 - $\triangleright \ \forall \bigcirc p \rightarrow p$
 - $\blacktriangleright \ \exists [\top \cup p] \to \forall [\top \cup p]$
 - $\blacktriangleright \ \forall [p \cup q] \rightarrow q \lor (p \land \forall \bigcirc q) \lor (p \land \forall \bigcirc p \land \forall \bigcirc \forall \bigcirc q)$

Semántica, ejemplos

Observemos que, para todo s, $\mathcal{M}, s \models \top$, donde $\top = \neg \bot$

•
$$\mathcal{M}, s_0 \models p$$

•
$$\mathcal{M}, s_0 \not\models q$$

•
$$\mathcal{M}, s_1 \models \exists \bigcirc p$$

•
$$\mathcal{M}, s_1 \not\models \forall \bigcirc p$$

$$\bullet \ \mathcal{M}, s_3 \models \forall \bigcirc p \land \forall \bigcirc q$$

•
$$\mathcal{M}, s_0 \models \forall [\top \cup (p \land q)]$$

$$\bullet \ \mathcal{M}, s_0 \models \exists [(p \lor q) \cup (\neg p \land \neg q)]$$

•
$$\mathcal{M}, s_0 \not\models \exists [p \cup (\neg p \land \neg q)]$$

Operadores derivados

• ϕ es inevitable:

$$\forall \Diamond \phi \equiv \forall [\top \mathsf{U} \, \phi]$$

φ es posible:

$$\exists \Diamond \phi \equiv \exists [\top \mathsf{U} \, \phi]$$

φ es invariante:

$$\forall \Box \phi \equiv \neg \exists \Diamond \neg \phi$$

ullet ϕ es invariante para alguna traza:

$$\exists \Box \phi \equiv \neg \forall \Diamond \neg \phi$$

Operadores derivados, ejemplos

Algunas fórmulas válidas

- $\bullet \ \forall \Box \phi \to \exists \Box \phi$
- $\forall \Box \phi \rightarrow (\phi \land \forall \Box \forall \Box \phi)$
- $\exists \Diamond (p \lor q) \to \exists \Diamond p \lor \exists \Diamond q$

Fórmulas que no son válidas

- $\bullet \ \forall \Diamond (p \lor q) \to \forall \Diamond p \lor \forall \Diamond q$
- $\bullet \ \exists \Box p \land \exists \Box q \rightarrow \exists \Box (p \land q)$

$$\mathcal{M}, s \models \forall \Diamond \phi$$

$$\mathcal{M}, s \models \forall \Diamond \phi$$

$$\iff \text{definición de } \forall \Diamond$$

$$\mathcal{M}, s \models \forall [\top \mathsf{U} \phi]$$

```
 \begin{split} \mathcal{M}, s &\models \forall \Diamond \phi \\ \iff & \mathsf{definici\acute{o}n} \ \mathsf{de} \ \forall \Diamond \\ \mathcal{M}, s &\models \forall [\top \ \mathsf{U} \ \phi] \\ \iff & \mathsf{definici\acute{o}n} \ \mathsf{de} \ \models \ \mathsf{para} \ \forall \ \mathsf{U} \\ \mathsf{para} \ \mathsf{cada} \ \mathsf{traza} \ s_0 \to s_1 \to s_2 \to \dots / s = s_0, \\ \mathsf{existe} \ j \in \mathbb{N} \ \mathsf{tal} \ \mathsf{que} \ \mathcal{M}, s_j \models \phi \ \mathsf{y} \ \mathcal{M}, s_i \models \top, \forall i < j \end{split}
```

$$\mathcal{M}, s \models \forall \Diamond \phi$$
 \iff definición de $\forall \Diamond$
 $\mathcal{M}, s \models \forall [\top U \phi]$
 \iff definición de \models para $\forall U$
para cada traza $s_0 \to s_1 \to s_2 \to \dots / s = s_0$,
existe $j \in \mathbb{N}$ tal que $\mathcal{M}, s_j \models \phi$ y $\mathcal{M}, s_i \models \top, \forall i < j$
 $\iff \mathcal{M}, s \models \top, \forall s$
para cada traza $s_0 \to s_1 \to s_2 \to \dots / s = s_0$,
existe $j \in \mathbb{N}$ tal que $\mathcal{M}, s_j \models \phi$

$$\mathcal{M}, s \models \exists \Box \phi$$

$$\mathcal{M}, s \models \exists \Box \phi$$
 \iff definición de $\exists \Box$
 $\mathcal{M}, s \models \neg \forall \Diamond \neg \phi$

```
\mathcal{M}, s \models \exists \Box \phi
\iff definición de \exists \Box
\mathcal{M}, s \models \neg \forall \Diamond \neg \phi
\iff definición de \models
\mathcal{M}, s \not\models \forall \Diamond \neg \phi
```

```
\mathcal{M}, s \models \exists \Box \phi
\iff definición de \exists \Box
\mathcal{M}, s \models \neg \forall \Diamond \neg \phi
\iff definición de \models
\mathcal{M}, s \not\models \forall \Diamond \neg \phi
\iff slide anterior
no se cumple que, para cada traza s_0 \rightarrow s_1 \rightarrow \dots / s = s_0,
existe j \in \mathbb{N} tal que \mathcal{M}, s_i \models \neg \phi
```

```
\mathcal{M}, s \models \exists \Box \phi
  ⇔ definición de ∃□
\mathcal{M}, s \models \neg \forall \Diamond \neg \phi

    ⇔ definición de ⊨

\mathcal{M}, s \not\models \forall \Diamond \neg \phi
  ⇔ slide anterior
no se cumple que, para cada traza s_0 \to s_1 \to \dots / s = s_0,
    existe j \in \mathbb{N} tal que \mathcal{M}, s_i \models \neg \phi
  intercambio de cuantificadores
para alguna traza s_0 \rightarrow s_1 \rightarrow \dots / s = s_0,
    no existe j \in \mathbb{N} tal que \mathcal{M}, s_i \models \neg \phi
```

```
\mathcal{M}, s \models \exists \Box \phi
  ⇔ definición de ∃□
\mathcal{M}, s \models \neg \forall \Diamond \neg \phi

    ⇔ definición de ⊨

\mathcal{M}, s \not\models \forall \Diamond \neg \phi
  no se cumple que, para cada traza s_0 \rightarrow s_1 \rightarrow \dots / s = s_0,
   existe j \in \mathbb{N} tal que \mathcal{M}, s_i \models \neg \phi
  intercambio de cuantificadores
para alguna traza s_0 \rightarrow s_1 \rightarrow \dots / s = s_0,
   no existe j \in \mathbb{N} tal que \mathcal{M}, s_i \models \neg \phi

    definición de ⊨

para alguna traza s_0 \to s_1 \to \dots / s = s_0, no existe j \in \mathbb{N} tal que \mathcal{M}, s_i \not\models \phi
```

```
\mathcal{M}, s \models \exists \Box \phi
  ⇔ definición de ∃□
\mathcal{M}, s \models \neg \forall \Diamond \neg \phi

    ⇔ definición de ⊨

\mathcal{M}, s \not\models \forall \Diamond \neg \phi
  no se cumple que, para cada traza s_0 \rightarrow s_1 \rightarrow \dots / s = s_0,
   existe j \in \mathbb{N} tal que \mathcal{M}, s_i \models \neg \phi
  intercambio de cuantificadores
para alguna traza s_0 \rightarrow s_1 \rightarrow \dots / s = s_0,
   no existe j \in \mathbb{N} tal que \mathcal{M}, s_i \models \neg \phi

    ⇔ definición de ⊨

para alguna traza s_0 \to s_1 \to \dots / s = s_0, no existe j \in \mathbb{N} tal que \mathcal{M}, s_i \not\models \phi
  para alguna traza s_0 \to s_1 \to \dots / s = s_0, para todo j \in \mathbb{N}, \mathcal{M}, s_i \models \phi
```

- Imaginemos que nuestras proposiciones atómicas refieren a animales,
- y consideremos el árbol de computaciones de un sistema de transición

- Imaginemos que nuestras proposiciones atómicas refieren a animales,
- y consideremos el árbol de computaciones de un sistema de transición

- Imaginemos que nuestras proposiciones atómicas refieren a animales,
- y consideremos el árbol de computaciones de un sistema de transición

- Imaginemos que nuestras proposiciones atómicas refieren a animales,
- y consideremos el árbol de computaciones de un sistema de transición

- Imaginemos que nuestras proposiciones atómicas refieren a animales,
- y consideremos el árbol de computaciones de un sistema de transición

Ejercicio 1

 Imaginemos un semáforo, que ocasionalmente puede quedar con la luz amarilla intermitente

- Determinar el conjunto de estados que satisface cada fórmula
- $r \rightarrow \forall \bigcirc v$

∀◊a

• $\forall (n \cup \neg n)$

• $a \rightarrow \forall \bigcirc \forall \bigcirc a$

∀□a

• $\forall (\neg n \cup n)$

 \bullet $\exists \Box \neg v$

• ∀□∀◇a

 $\bullet \exists (n \cup r)$

∀◊ν

∀◊ν

• $r \rightarrow \forall \Diamond v$

Ejercicio 2

¿Cuáles de las siguientes afirmaciones son válidas?

$$\bullet \models \phi \rightarrow \forall \Box \phi$$

- 2 Si $\models \phi$ entonces $\models \forall \Box \phi$