Tecnológico de Monterrey.

TC2038. Análisis y diseño de Algoritmos A

M.C. Ramona Fuentes Valdéz

rfuentes@tec.mx

87

Grafos

Problema del vendedor ambulante Traveling Salesman Problem (TSP)

Dada una colección de ciudades y el costo de viaje entre cada par de ellas, el problema del vendedor ambulante (*traveling salesman problem* o *TSP*), es encontrar la forma más económica de visitar todas las ciudades y regresar a su punto de partida.

- La simplicidad del enunciado del problema es engañosa: el *TSP* es uno de los problemas más intensamente estudiados en la matemática computacional y, sin embargo, no se conoce ningún método de solución eficaz para el caso general.
- ➤ De hecho, la resolución del TSP resolvería el problema P vs NP y obtendría un premio de \$ 1,000,000 otorgado por el Clay Mathematics Institute (http://www.claymath.org/).

Definición

Dado

- Un conjunto de ciudades {c₁,c₂,...,c_N }.
- Para cada par de ciudades {c_i,c_j} hay una distancia d(c_i,c_j).

Encontrar:

La permutación $\pi \colon \{1,2,...,N\} \to \{1,2,...,N\}$ que minimiza

$$\sum_{i=1}^{N-1} d(c_{\pi(i)}, c_{\pi(i+1)}) \; + \; d(c_{\pi(N)}, c_{\pi(1)})$$

http://www.claymath.org/

THE TRAVELLING SALESMAN PROBLEM WHAT'S THE SHORTEST ROUTE TO VISIT ALL LOCATIONS AND RETURN? ADDING MORE STOPS TAKES LONGER AND LONGER TO FIGURE IT OUT

Grafos

Problema del vendedor ambulante Traveling Salesman Problem (TSP

Algoritmo del vecino más cercano

- 1. Elige un vértice de referencia para iniciar.
- 2. Camina a su vecino más cercano (por ejemplo: a lo largo de las aristas más cortas posibles.
- 3. En cada estado del recorrido, camina hacia el vecino más cercano que no se haya visitado.
- 4. Cuando se hayan visitado todos los vértices, regresa al vértice de inicio.

Algoritmo repetitivo del vecino más cercano

- 1. Elige un vértice de referencia para iniciar y utiliza el algoritmo del vecino más cercano para encontrar un circuito Hamiltoniano.
- 2. Repite el paso 1 para cada posible vértice inicial. Se deben tener un total de N circuitos hamiltonianos.
- 3. Elige el más barato.

Usualmente, no existe una forma de saber anticipadamente cual vértice de referencia trabajará mejor.

93

Grafos

Actividad: Problema del vendedor ambulante

Instrucciones:

1) Para el siguiente grafo, realiza una propuesta de solución.

Algoritmo de enlace más barato (CLA, en inglés)

- Agrega el vértice disponible más económico a tu recorrido.
- Repite hasta que se tenga un circuito hamiltoniano.
- Asegúrate de agregar exactamente dos aristas en cada vértice.
- No cerrar el circuito hasta que todos los vértices se encuentren en él

Idea: Inicia en e

punto intermedi

- 2) Revisa los siguientes enlaces de una propuesta de solución al TSP
 - El "blob", la extraordinaria criatura que nos obliga a cuestionarnos si somos la especie más inteligente,
 - Slime Mold Can Solve Exponentially Complicated Problems in Linear Time,
 - A Slime Mold-Ant Colony Fusion Algorithm for Solving Traveling Salesman Problem,
 - a) Realiza un resumen (máximo una cuartilla) o una presentación (máximo 5 dispositivas) sobre los antecedentes, esencia, y desarrollo del algoritmo de slime mold.
 - Agrega las conclusiones sobre este tipo de algoritmos alternos a los tradicionales para resolver el problema del TSP (vendedor viajero)
 - c) Recuerda incluir las referencias en formato APA.

Grafos Algoritmos Algoritmo voraz de Kruskal (1956) El conjunto de aristas T está vacío inicialmente. Las aristas de G se ordenan por orden creciente de longitud. A medida que progresa el algoritmo, se van añadiendo aristas a T. Mientras no haya encontrado una solución, el grafo parcial formado por nodos de G y aristas de T consta de varios componentes conexos. Para añadir una arista se verifica que ésta no produzca un ciclo en alguna de las componentes conexas formadas por las aristas de T y los nodos de G. Los elementos de T que se incluyen en una componente conexa dada forman un árbol de recubrimiento mínimo para esa componente. Al final, sólo queda una componente conexa, así que T es un árbol de recubrimiento mínimo para todos los nodos de G. Ejemplo: ¿Cuál es el árbol de recubrimiento mínimo usando Kruskal? Aristas ordenadas: {1,2} {4,7} {2,3} {3,5} {4,5} {2,4} T = [(,), (,), (,), (,), (,), (,)]{6,7} {3,6} {1,4} {5,7} {2,5} {5,6}

95

```
Grafos
Algoritmos
Algoritmo voraz de Kruskal
Pseudocódigo
función Kruskal(G=<N,A>: grafo; longitud: A->R+):conjunto de aristas
  {iniciación}
  Ordenar A por longitudes crecientes
  n ← el número de nodos en G
  T \leftarrow \emptyset {contendrá las aristas del árbol de recubrimiento mínimo}
  Iniciar n conjuntos, cada uno de los cuales
  contiene un elemento distinto de N
  {bucle voraz}
  repetir
     e ←{u,v} ← Arista más corta, aún no considerada
     comp_u ← buscar(u)
     comp_v ← buscar(v)
     si comp_u ≠ comp_v entonces
fusionar(comp_u, comp_v)
        T \leftarrow T \cup \{e\}
  hasta que T contenga n-1 aristas
  devolver T
```


Grafos

Algoritmos

Algoritmo voraz de Kruskal

Complejidad

En un grafo con n nodos y a aristas, el número de operaciones está en:

- O(alog(a)) para ordenar las aristas, lo cual es equivalente a O(alog(n)) porque n-1≤a≤n(n-1)/2
- O(n) para iniciar los n conjuntos disjuntos
- $O(alog(n)) \rightarrow O(alog(n))$ para las búsquedas
- $O((n-1)n) \rightarrow O(n^2)$ para las fusiones
- Todo lo demás es de orden ⊕(1)
- Complejidad: $O(n^2 + a \log n) \rightarrow O(n^2)$
- Algunos autores [brassard] consideran la complejidad de la fusión como O(logK) (considerando la operación de fusión de árboles que producen K nodos) con lo que la complejidad queda de O(alog(n)).

IMTA. Dr. Alberto Gonzále

Grafos

Algoritmos

Algoritmo voraz de Kruskal vs Prim

- En Kruskal, la función de selección escoge las aristas por orden creciente de longitud, sin preocuparse por su conexión con las aristas seleccionadas anteriormente (salvo la prevención de no formar un ciclo).
 - > El resultado es un bosque de árboles que crece al azar, hasta que al final forman un árbol único.
- En Prim, el algoritmo crece de forma natural, comenzando por una raíz arbitraria.
 - ➤ En cada fase se agrega una nueva rama al árbol, el algoritmo se detiene cuando se han alcanzado todos los nodos.

99

Grafos

Algoritmos

Algoritmo de Prim

- Sea B un conjunto de nodos, y sea T un conjunto de aristas.
- Inicialmente, B contiene un único nodo arbitrario, y T está vacío.
- En cada paso, Prim busca la arista más corta posible $\{u,v\}$ tal que $u \in B$ y $v \in N \setminus B$. Entonces añade v a B y $\{u,v\}$ a T.
- De esta manera, todas las aristas de T forman en todo momento un árbol de recubrimiento mínimo para los nodos de B.
- Se continua mientras B ≠ N.

Ejemplo:

¿Cuál es el árbol de recubrimiento mínimo usando Prim?

{1,2} {4,7} {2,3} {3,5} {4,5} {2,4} {6,7} {3,6} {1,4} {5,7}

Aristas ordenadas:

IMTA. Dr. Alberto Go

Grafos Algoritmos Algoritmo de Prim Las aristas del conjunto A siempre forman un árbol simple. Inicia de cualquier nodo arbitrario: $V_{\Delta} = \{a\}$ En cada paso: – Encuentra el nodo de menor peso cruzando (V_A, V - V_A) Agrega esa arista en A Repite hasta que el árbol se extienda para todos los vértices. Pseudocódigo función Prim(G=<N,A>: grafo; longitud: A->R+):conjunto de aristas {iniciación} MST-PRIM(G, w, r) $T \leftarrow \emptyset$ for each $u \in G.V$ B ← { se inicializa con un miembro arbitrario de N } $u.key = \infty$ $u.\pi = NIL$ mientras B ≠ N hacer r.key = 0buscar e = $\{u,v\}$ de longitud mínima tal que $u \in B$ y $v \in N\setminus B$ Q = G.V $T\leftarrow T\cup \{e\}$ while $Q \neq \emptyset$ $B \leftarrow B \cup \{v\}$ u = EXTRACT-MIN(Q)fin mientras for each $v \in G.Adj[u]$ if $v \in Q$ and w(u, v) < v. key devolver T 10 $v.\pi = u$ 11 v.key = w(u, v)

101

Grafos

Algoritmos

Algoritmo de Prim

Complejidad

- El bucle principal se ejecuta n-1 veces
- La búsqueda interna requiere de un tiempo n (dada la condición que verifica que $u \in B \ y \ v \in N \setminus B$)
- Por lo tanto $O((n-1)n) \rightarrow O(n^2)$
- Si en promedio, Kruskal requiere un tiempo que está en O(alog(n)) [brassard], considera que en el peor de los casos, a = n(n-1)/2 (para árboles muy densos), y la complejidad llega a O(n²log(n)) por lo que en estos casos resulta más eficiente utilizar Prim.