matrix to rref, we can apply elementary row operations to the matrix $[u_k \ \Gamma]$, which consists of rows $1, \ldots, m$ of the tableau.

Once the new matrix Γ^+ is obtained, the new reduced costs are given by the following proposition.

Proposition 46.2. Given any Linear Program (P2) in standard form

maximize
$$cx$$

subject to $Ax = b$ and $x \ge 0$,

where A is an $m \times n$ matrix of rank m, if (u, K) is a basic (not necessarily feasible) solution of (P2) and if $K^+ = (K - \{k^-\}) \cup \{j^+\}$, with $K = (k_1, \ldots, k_m)$ and $k^- = k_\ell$, then for $i = 1, \ldots, n$ we have

$$c_i - c_{K^+} \gamma_{K^+}^i = c_i - c_K \gamma_K^i - \frac{\gamma_{k^-}^i}{\gamma_{k^-}^{j^+}} (c_{j^+} - c_K \gamma_K^{j^+}).$$

Using the reduced cost notation, the above equation is

$$(\bar{c}_{K^+})_i = (\bar{c}_K)_i - \frac{\gamma_{k^-}^i}{\gamma_{k^-}^{j^+}} (\bar{c}_K)_{j^+}.$$

Proof. Without any loss of generality and to simplify notation assume that K = (1, ..., m) and write j for j^+ and ℓ for k_m . Since $\gamma_K^i = A_K^{-1} A^i$, $\gamma_{K^+}^i = A_{K^+}^{-1} A^i$, and $A_{K^+} = A_K E(\gamma_K^j)$, we have

$$c_i - c_{K+} \gamma_{K+}^i = c_i - c_{K+} A_{K+}^{-1} A^i = c_i - c_{K+} E(\gamma_K^j)^{-1} A_K^{-1} A^i = c_i - c_{K+} E(\gamma_K^j)^{-1} \gamma_K^i,$$

where

$$E(\gamma_K^j)^{-1} = \begin{pmatrix} 1 & -(\gamma_\ell^j)^{-1}\gamma_1^j & & \\ & \ddots & & \vdots & & \\ & 1 & -(\gamma_\ell^j)^{-1}\gamma_{\ell-1}^j & & \\ & & (\gamma_\ell^j)^{-1} & & \\ & & -(\gamma_\ell^j)^{-1}\gamma_{\ell+1}^j & 1 & \\ & & \vdots & & \ddots & \\ & & -(\gamma_\ell^j)^{-1}\gamma_m^j & & 1 \end{pmatrix}$$

where the ℓ th column contains the γ s. Since $c_{K^+} = (c_1, \ldots, c_{\ell-1}, c_j, c_{\ell+1}, \ldots, c_m)$, we have

$$c_{K+}E(\gamma_K^j)^{-1} = \left(c_1, \dots, c_{\ell-1}, \frac{c_j}{\gamma_\ell^j} - \sum_{k=1, k \neq \ell}^m c_k \frac{\gamma_k^j}{\gamma_\ell^j}, c_{\ell+1}, \dots, c_m\right),\,$$