

2-To show that both parsing trees have similar probabilities, we just need to compute probability of each tree.

```
a)
P(NP - > NP Conj NP ) * P(NP->NP PP) * P(NP->Noun) * P(Noun->dogs) * P(PP->Prep NP) *
P(Prep -> in) * P(NP -> noun) * P (Noun -> houses) * P (Conj -> and) * P (NP -> Noun) * P
(Noun -> cats)

b)
P(NP -> NP PP) * P(NP->Noun) * P(Noun->dogs) * P(PP->Prep NP) * P(Prep -> in) * P(NP -> NP Conj NP ) * P(NP -> noun) * P (Noun -> houses) * P (Conj -> and) * P (NP -> Noun) * P
(Noun -> cats)
```

If you look at both probabilities, we see the exact same probability computations. I used similar colors to show that more easily.

We know that length of the sentence or number of words is m and the CFG has N non-terminals.

The CYK algorithm is as follows (I removed unnecessary details):

- 1. For j < -from 1 to m (length of words = m) do
 - a. For all {A | A -> words[j]}
 - i. Table [j-1,j] <- table[j-1,j] U A
 - b. For i <- from j-2 down to 0 do
 - i. For k < -i + 1 to j-1 do
 - 1. For all {A | A -> BC}
 - a. Table[i,j] <- table[i,j] U A

To compute time complexity for CYK algorithm we have to compute time complexity for each for.

- 1. For $j \sim O(m)$ [because it loops over m words)
 - a. For all $\{A \mid A \rightarrow words[j]\} \sim O(1)$ [because it has 1 or multiple mapping. Since it depends on the CFG we could consider O(1) or O(K), however this won't affect the final result]
 - b. For $i \sim O(m)$ [because it has m-2 operations as it starts from j-2)
 - i. For $k \sim O(m)$ [it has at most m-1 operations when i = 0 and j = m]
 - 1. For all $\{A|A \rightarrow BC\} \sim O(N)$ [since we have at most N non-terminals]

Finally time complexity would be the summation of for at loop 'a' and all loops at loop 'b' multiplied by 'm' as the main loop. CYK = $O(m^*1 + m^*m^*m^*N) = O(m + m^3N) = O(m^3N)$

^{*}Even if we consider loop 'a' as O(K) the final result would be the same.

Now we can do the same for
$$x_{j}(3,5)$$
, $x_{j}(2,4)$, and $x_{j}(1,3)$. Since they are dependent on $x_{j}(1,5)$, $x_{j}(2,5)$, and $x_{j}(1,4)$.

 $x_{j}(3,5)$: $\sum_{i=1}^{2}\sum_{k=1}^{2}$ $x_{j}(2,5)$, and $x_{j}(1,4)$.

 $x_{j}(3,5)$: $\sum_{i=1}^{2}\sum_{k=1}^{2}$ $x_{j}(2,5)$, $x_{j}(2,2)$ $x_{j}(2,4)$: $\sum_{i=1}^{2}\sum_{k=1}^{2}$ $x_{j}(2,5)$ $x_{j}(2,2)$ $x_{j}(2,4)$: $\sum_{i=1}^{2}\sum_{k=1}^{2}$ $x_{i}(2,6)$ $x_{j}(2,6)$ $x_{$

I just realized there is another way of solving this. In some resources (online resources and books) CYK filling using both inside and outside probability is running diagonally as I just

described. But in some like the lecture 16, it happens from bottom to top and left to right, similar to the figure below:

In this case, filling CYK using outside probability would also reverse the filling. In order to fill each column we start from the top (cell[0,m] = 1) and each cell only needs the previous one at the same columns and previous cells and previous columns. For example to compute $\alpha(2,5)$ we only need $\alpha(1,5)$, and to compute $\alpha(3,5)$ we need $\alpha(2,5)$ and so on. So the final direction would be:

Question: In the algorithm that needs the most likely parse tree for a sentence, explain where and what information needs to be stored to reconstruct the tree.

Answer:

In order to reconstruct the optimal (most likely) tree we need to store argmax of each tag (or non-terminal CFG as considered in the equation below). So for each pair of (p,q) we need to store argmax of all CFG non-terminals. However most of them are zero. So the matrix would be $m^2 * N/2$.

"m" is the size of the sentence and N is the size of CFG grammar. I divided the size by 2, because we only need the upper square.

For each [i,p,q] triple we have to store three values, j,k, and r in which j and k are two of N CF grammars and r is a number between p and q. This make the final size $3 * m^2 * N/2$ which is of $O(m^2N)$ space complexity.

$$\psi_i(p,q) = \operatorname*{arg\,max}_{(j,k,r)} P(N^i \to N^j \ N^k) \delta_j(p,r) \delta_k(r+1,q)$$

To re-construct the tree we start from the root which is N^1_{1M} . Considering current state as N^i_{pq} the left child would be N^j_{pr} and right child would be $N^k_{(r+1)q}$ and we select each using packpointers for each i,p,q and corresponding arguments j,k,r we stored earlier.