## DVB-T

## Projekt TRA – część 2

## Specyfikacja algorytmiczna:

Sygnał cyfrowej telewizji naziemnej (DVB-T) przesyłany jest przy pomocy OFDM. Szerokość jednego przesyłanego kanału wynosi 8 MHz. Częstotliwość próbkowania sygnału dostarczanego do przetwornika cyfrowo analogowego wynosi:  $f_S = \frac{8}{7}B$ 

Otrzymane przeze mnie dane zawierają zapis dwóch kanałów sygnału DVB-T na częstotliwością 482 i 498 MHz spróbkowanych z częstotliwością 30 MHz, czas zapisu sygnału wynosił 1 sekundę.

Standard DVB-T nie zakłada ustalonej budowy odbiornika, nadajnik jest dobrze zdefiniowany natomiast odbiornika "ma działać"



Rys. 1 Transmisja OFDM zaimplementowana z użyciem IDFT/DFT

| Parameter                                                                    | 8K mode  | 2K mode  |  |
|------------------------------------------------------------------------------|----------|----------|--|
| Number of carriers K                                                         | 6 817    | 1 705    |  |
| Value of carrier number K <sub>min</sub>                                     | 0        | 0        |  |
| Value of carrier number K <sub>max</sub>                                     | 6 816    | 1 704    |  |
| Duration T <sub>U</sub> (see note 2)                                         | 896 μs   | 224 μs   |  |
| Carrier spacing 1/T <sub>U</sub> (see notes 1and 2)                          | 1 116 Hz | 4 464 Hz |  |
| Spacing between carriers $K_{min}$ and $K_{max}$ (K-1)/ $T_{U}$ (see note 2) | 7,61 MHz | 7,61 MHz |  |

NOTE 1: Values in italics are approximate values.

NOTE 2: Values for 8 MHz channels. Values for 6 MHz and 7 MHz channels are given in tables E.1 and E.2.

| Mode                                                                                                  | 8K mode           |           |           |           | 2K mode           |           |           |           |  |
|-------------------------------------------------------------------------------------------------------|-------------------|-----------|-----------|-----------|-------------------|-----------|-----------|-----------|--|
| Guard interval                                                                                        | 1/4               | 1/8       | 1/16      | 1/32      | 1/4               | 1/8       | 1/16      | 1/32      |  |
| Δ/T <sub>U</sub>                                                                                      |                   |           |           |           |                   |           |           |           |  |
| Duration of symbol                                                                                    | 8 192 × T         |           |           |           | 2 048 × T         |           |           |           |  |
| part T <sub>U</sub>                                                                                   | 896 μs (see note) |           |           |           | 224 μs (see note) |           |           |           |  |
| Duration of guard                                                                                     | 2 048 × T         | 1 024 × T | 512 × T   | 256 × T   | 512 × T           | 256 × T   | 128 × T   | 64 × T    |  |
| interval $\Delta$                                                                                     | 224 μs            | 112 μs    | 56 μs     | 28 μs     | 56 μs             | 28 μs     | 14 μs     | 7 μs      |  |
| Symbol duration                                                                                       | 10 240 × T        | 9 216 × T | 8 704 × T | 8 448 × T | 2 560 × T         | 2 304 × T | 2 176 × T | 2 112 × T |  |
| $T_S = \Delta + T_U$                                                                                  | 1 120 μs          | 1 008 µs  | 952 μs    | 924 μs    | 280 μs            | 252 μs    | 238 μs    | 231 μs    |  |
| NOTE: Values for 8 MHz channels. Values for 6 MHz and 7 MHz channels are given in tables E.3 and E.4. |                   |           |           |           |                   |           |           |           |  |

Rys. 3 Czas trwania symbolu i przerwy ochronnej

## Kroki

- W związku z tym że otrzymane przeze mnie próbki zawierają informacje o dwóch kanałach, pierwszym rokiem jest odfiltrowanie jednego z nich przy pomocy funkcji filter. Pozostawionym przeze mnie kanałem jest ten na niższej częstotliwości 482 MHz.
- 2. Następnie należy przenieść sygnał na niższe częstotliwości poprzez wymnożenie go o sygnał o odpowiedniej częstotliwości i zdecymować sygnał.
- 3. Analizowany przeze mnie sygnał został spróbkowany z inną częstotliwością niż ta która została wykorzystana przy DAC. Sygnał należy zinterpolować i otrzymać wartości próbek z częstotliwością przewidzianą w standardzie.
- 4. Sygnał zawiera odstępy ochronne pomiędzy symbolami, pobierając dwie ramki sygnału o szerokości odpowiadającej szerokości przrwy między symbolowej i odległych o długość symbolu jestem w stanie przy pomocy korelacji ustalić położenie symbolów. Gdy dwie pobrane ramki spowodują nagły skok wartości korelacji oznacza to że próbki pomiędzy nimi jest to właśnie poszukiwany symbol.
- 5. Po usunięciu odstępów ochronnych i wykorzystaniu FFT powinienem uzyskać wartości próbek konstelacji.



Rys. 4 Schemat blokowy nadajnika i odbiornika OFDM



Rys. 5 Przykładowy wyniku odbiornika przetwarzającego symulowane dane DVB-T