

5-2-2.평행선과 넓이_비상(김원경)

내 교과서 속 문제를 실제 기출과 유사 변형하여 구성한 단원별 족보

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

- 1) 제작연월일: 2020-07-25
- 2) 제작자 : 교육지대㈜
- 3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

개념check

[평행선과 넓이]

l//m이면 \triangle ABC와 \triangle DBC는 밑변 BC가 공통,

높이는 h로 같으므로

두 삼각형의 넓이가 서로 같다.

 $\Rightarrow l//m$ 이면 $\triangle ABC = \triangle DBC$

[삼각형과 넓이]

높이가 같은 두 삼각형의 넓이의 비는 밑변의 길이의 비와 같다.

⇒ △ABC와 △ACD에서 \

 \overline{BC} : $\overline{CD} = m : n$ 이면

 $\triangle ABC : \triangle ACD = m : n$

기본문제

 $oldsymbol{1}$. 다음 그림에서 l//m이고 두 직선 l, m 사이 거 리는 5cm, $\overline{BC} = 6cm$ 일 때, $\triangle ABC$ 의 넓이와 △DBC**의 넓이의 합은?**

- ① 15cm²
- ② 20cm²
- $3) 25 \text{cm}^2$
- $(4) 30 \text{cm}^2$
- ⑤ 35cm²

[문제]

2. 다음 그림과 같이 \overline{AD} $//\overline{BC}$ 인 사다리꼴 ABCD 에서 두 대각선의 교점을 ()라고 하자. \triangle ABC = 17cm², \triangle OBC = 12cm²**2 44**, \triangle ODC**4** 넓이를 구하면?

- $\bigcirc 5 \text{cm}^2$
- ② 6cm²
- $37cm^2$
- 4 8cm²
- ⑤ 9cm²

[예제]

3. 다음은 그림과 같은 □ABCD에서 점 D를 지나 고 \overline{AC} 에 평행한 직선을 그어 \overline{BC} 의 연장선과 만나 는 점을 E라고 할 때, □ABCD = △ABE**임을 설명** 하는 과정이다. 빈 칸에 들어갈 것으로 옳지 않은 것은?

AC // DE이므로

 \triangle ACD와 \triangle ACE는 밑변 (\uparrow) 가 공통이고,

높이가 같다.

따라서 $\triangle ACD = (\downarrow \downarrow)$ 이다.

그러므로 □ABCD = (다) +△ACD

 $= \Delta ABC + (라)$

① (7)): AC

② (나): △AED

③ (다): △ABC

④ (라): △ACE

⑤ (□): △ABE

[문제]

- **4.** 다음 그림에서 \overline{AC} // \overline{DE} 이고,
 - \square ABCD = 8 cm²일 때, $\overline{\text{CE}}$ 의 길이를 구하면?

- ① 4 cm
- $\bigcirc \frac{9}{2}$ cm
- ③ 5 cm
- $4 \frac{11}{2}$ cm
- ⑤ 6 cm

평가문제

[중단원 학습 점검]

5. 다음 그림에서 \overline{BC} // \overline{AD} , $\overline{\mathrm{BE}}//\overline{\mathrm{CD}}$ 이고, $\overline{\text{CD}} = 5 \text{cm}$, $\overline{\text{DE}} = 4 \text{cm}$ 일 때, $\triangle ABC$ 의 넓이를 구하 면?

- ① 10cm^2
- 215cm^2
- 30 cm^2
- 4 25cm²
- 30cm^2

- [단원 마무리]
- **6.** 다음 그림에서 \overline{AC} // \overline{DE} 이고, \overline{BC} : \overline{CE} =5:2 \triangle ABC의 넓이가 15cm 2 일 때, 색칠한 부분의 넓이 를 구하면?

- ① 20cm²
- ② 21cm²
- ③ 22cm²
- 4) 23cm²
- ⑤ 24cm²

유사문제

7. □ABCD에서 AB//DE일 때, □AECD의 넓이를 구하는 과정이다. □ 안에 들어갈 내용으로 옳지 않 은 것은?

AB//DE이므로

 $\Delta AED = (7\dagger)$

(나) $\Box AECD = \triangle AED +$

 $=\Delta BED + (4)$

(다)

 $=\frac{1}{2}\times\overline{BC}\times\overline{CD}$

 $=\frac{1}{2}\times 8\times$

(D) (cm²)

① (7)): △BED

② (나): △DEC

③ (다): △ABC

④ (라): 5cm

⑤ (□]) : 20

8. $\overline{AC}/\overline{DE}$, $\overline{AB} \perp \overline{BE}$ **0** \overline{AB} , $\overline{AB} = 7$, $\overline{BC} = 6$, $\overline{CE} = 8$ 일 때, □ABCD의 넓이는?

- 1) 45
- 2 46
- 3 48
- **4**9
- **⑤** 50
- **9.** $\overline{AC}//\overline{DE}$, $\overline{AB} \perp \overline{BE}$ **9.** $\overline{AB} = 5cm$, $\overline{BC} = 4cm$, $\overline{CE} = 6cm$ 일 때, $\Box ABCD$ 의 넓이는?

- (1) $22cm^2$
- ② $24cm^2$
- $(3) 25cm^2$
- $(4) 27cm^2$
- (5) $28cm^2$
- ${f 10}$. 그림은 평행사변형 ABCD이다. \overline{CD} 위의 점 E에 대하여 \overline{AE} 와 \overline{BD} 가 만나는 점을 F라고 한다. $\triangle ABF$ 의 넓이는 $9cm^2$ 이고, $\triangle DEF$ 의 넓이는 $2cm^2$ 일 때, $\triangle BCE$ 의 넓이는?

- \bigcirc 7cm²
- ② $8cm^2$
- (3) $9cm^2$
- $\bigcirc 10cm^2$
- $(5) 11cm^2$

11. 다음 그림에서 l//m, $\overline{AE}//\overline{DC}$ 이고, $\Box ABED$ 의 넓이가 $36cm^2$ 일 때, \overline{EC} 의 길이는?

- ① 2cm
- ② 3cm
- ③ 4cm
- (4) 5cm
- (5) 6cm
- $oxed{12}$. 평행사변형 ABCD에서 $\overline{BD}//\overline{EF}$ 일 때, 넓이가 나머지 넷과 다른 하나는?

- ① $\triangle ABE$
- ② $\triangle DBE$
- \bigcirc $\triangle DBF$
- 4 $\triangle ADF$
- \bigcirc $\triangle BEF$
- 13. 그림과 같이 $\overline{AD}//\overline{BC}$ 인 사다리꼴 ABCD에서 두 대각선의 교점이 O이고 $\triangle ABO$ 의 넓이가 $18cm^2$, $\triangle DBC$ 의 넓이가 $45cm^2$ 일 때, $\square ABCD$ 의 넓이는?

- (1) $63cm^2$
- $\bigcirc 66cm^2$
- $(3) 69cm^2$
- $(4) 72cm^2$
- $(5) 75 cm^2$

14. $\overline{AD}//\overline{BC}$ 인 사다리꼴 ABCD에서 $\triangle ABC$ 의 넓이 가 15cm²일 때, △DBC**의 넓이는?**

- ① $12 cm^2$
- 215cm^2
- 318cm^2
- 40 cm^2
- ⑤ 25cm²
- 15. 그림과 같이 $\overline{\mathrm{AD}}//\overline{\mathrm{BC}}$ 인 사다리꼴 ABCD 에서 두 대각선의 교점이 \bigcirc OODD \triangle DBC = 75cm², \triangle ABO = 25cm²**2 III**, \triangle OBC**9 III II**

- ① 30cm^2
- ② 35cm^2
- 340cm^2
- 45cm^2
- $\bigcirc 50 \text{cm}^2$

4

정답 및 해설

1) [정답] ④

[해설] \triangle ABC와 \triangle DBC에서

밑변의 길이가 $\overline{BC} = 6$ cm으로 같고

높이는 5cm으로 같으므로

따라서 $\triangle ABC = \triangle DBC$

 $\triangle ABC + \triangle DBC = 2 \times \left(\frac{1}{2} \times 6 \times 5\right) = 30 \text{ cm}^2$

2) [정답] ①

[해설] $\triangle ABC = \triangle DBC = 17 \text{cm}^2$, $\triangle OBC = 12 \text{cm}^2$ 이

 $\therefore \triangle ODC = \triangle DBC - \triangle OBC = 17 - 12 = 5 \text{ cm}^2$

3) [정답] ②

[해설] (나): △ACE

4) [정답] ③

[해설] 다음 그림과 같이 AE를 그으면

 $\overline{AC} // \overline{DE}$ 이므로 $\triangle ACD = \triangle ACE$

이때 $\overline{CE} = x \text{ cm}$ 라고 하면

$$\Box ABCD = \triangle ABE = \frac{1}{2} \times \overline{AB} \times \overline{BE}$$

$$=\frac{1}{2}\times2\times(3+x)=8\left(\mathrm{cm}^{2}\right)$$
이므로 $x=5$

 $\therefore \overline{\text{CE}} = 5 \text{ cm}$

5) [정답] ①

[해설] \overline{BC} // \overline{AD} 이므로 $\triangle ABC = \triangle DBC$

이때 $\triangle DBC$ 는 밑변의 길이가 $\overline{CD} = 5cm$, 높이가 $\overline{DE} = 4cm$ 이므로

$$\triangle DBC = \frac{1}{2} \times 5 \times 4 = 10 \text{cm}^2$$

 $\therefore \triangle ABC = \triangle DBC = 10 \text{cm}^2$

6) [정답] ②

[해설] BC: CE=5:2이므로

 $\triangle ABC : \triangle ACE = 15 : \triangle ACE = 5 : 2 = 5$

 $\triangle ACE = 6 \text{ cm}^2$

이때 \overline{AC} // \overline{DE} 이므로 $\triangle ACD = \triangle ACE$

그러므로 색칠한 부분의 넓이는

 \triangle ABC + \triangle ACD

 $= \Delta ABC + \Delta ACE$

 $= 15 \text{cm}^2 + 6 \text{cm}^2 = 21 \text{cm}^2$

7) [정답] ③

[해설] $3\Delta BED + \Delta DEC$ 이므로 $(\Box \Delta BCD)$ 이다.

8) [정답] ④

[해설] $\overline{AC}//\overline{DE}$ 이므로 $\triangle ACD = \triangle ACE$ 이다.

이 때, $\Box ABCD = \triangle ABC + \triangle ACD$

 $= \triangle ABC + \triangle ACE = \triangle ABE$

이다

따라서 $\square ABCD = \frac{1}{2} \times 14 \times 7 = 49$ 이다.

9) [정답] ③

[해설] $\overline{AC}//\overline{DE}$ 이므로 $\triangle DAC = \triangle EAC$

그러므로

 $\Box ABCD = \triangle ABC + \triangle DAC$

 $= \triangle ABC + \triangle EAC = \triangle ABE = \frac{1}{2} \times 10 \times 5$

 $=25cm^{2}$

10) [정답] ①

[해설] $\triangle ADE = \triangle BDE$ 이므로

 $\triangle BEF = \triangle BED - \triangle DFE$

 $= \triangle AED - \triangle DFE$

 $= \triangle AFD$

 $\therefore \triangle BEF = \triangle AFD$

이때 $\triangle BCD = \triangle ABD$ 이므로

 $\Delta BEF = \Delta AFD = acm^2$ 이라 하면

 $\triangle BCE + \triangle BEF + \triangle DFE = \triangle ABF + \triangle AFD$

 $\triangle BCE + a + 2 = 9 + a$

 $\therefore \triangle BCE = 7(cm^2)$

11) [정답] ③

[해설] $\overline{AE}//\overline{DC}$ 이므로 $\triangle AED = \triangle AEC$ 이다.

 $\square ABED = 36cm^2$ 일 때,

 $\square ABED = \triangle ABE + \triangle AED$

 $= \triangle ABE + \triangle AEC = \triangle ABC$

이므로

$$\frac{1}{2} \times (8 + \overline{EC}) \times 6 = 36$$
, $\therefore \overline{EC} = 4cm$

12) [정답] ⑤

[해설] $\overline{AB}//\overline{DC}$ 이므로 $\triangle ADF = \triangle DBF$

 $\overline{BD}//\overline{EF}$ 이므로 $\triangle DBF = \triangle DBE$

 $\overline{AD}//\overline{BC}$ 이므로 $\triangle DBE = \triangle ABE$

 $\therefore \triangle DBF = \triangle DBE = \triangle ADF = \triangle ABE$

13) [정답] ⑤

[해설] $\triangle OAB = \triangle ODC = 18cm^2$ 이므로

 $\Delta BOC = 45 - 18 = 27(cm^2)$

 $\triangle BOC$: $\triangle ODC = 27:18 = 3:2$ 이므로

 \overline{OB} : \overline{OD} =3:20] $\overline{\Box}$.

 $\triangle ABO: \triangle AOD = 3:2$ 이므로

 $\Delta AOD = 12cm^2$

따라서 $\square ABCD = 12 + 18 + 45 = 75(cm^2)$ 이다.

14) [정답] ②

[해설] $\overline{AD}//\overline{BC}$ 이므로 $\triangle ABC = \triangle DBC$ 이다. 따라서 $\triangle ABC = 15cm^2$ 일 때, $\triangle DBC = 15cm^2$ 이 다.

15) [정답] ⑤

[해설] $\triangle ABC$ 와 $\triangle DBC$ 는 밑변의 길이가 \overline{BC} 으로 같고 높이가 \overline{AD} , \overline{BC} 사이의 거리로 같아서 $\triangle ABC = \triangle DBC$ 따라서 $\triangle ABC - \triangle OBC = \triangle DBC - \triangle OBC$ 이므 로 $\triangle ABO = \triangle DCO = 25cm^2$ $\therefore \triangle OBC = 75 - 25 = 50cm^2$