

A brief overview of the CF conventions

David Hassell

National Centre for Atmospheric Science University of Reading

Data, metadata and the CF conventions

data

3.56, 6.78, ..., -0.32, 1.86

Data, metadata and the CF conventions

data + metadata

Change in annual average surface air temperature from 1960–1990 to 2070–2100 from HadCM2 IS92a

data

3.56, 6.78, ..., -0.32, 1.86

Data, metadata and the CF conventions

data + metadata

Change in annual average surface air temperature from 1960–1990 to 2070–2100 from HadCM2 IS92a

data

3.56, 6.78, ..., -0.32, 1.86

 The metadata need to follow recognised conventions (CF) so that they can be understood by anyone or anything looking at them

CF conventions

- A set of rules for storing self-describing geoscientific data in netCDF files
- CF describes a netCDF variable (V) containing scientific data that is a discretised within a domain (d)

$$V = V(d) = V(d(t, z, y, x, ...))$$

 The data variable is associated with metadata in the forms of "simple" attributes (e.g. the standard name) and other variables in the file (such as coordinate variables)

NetCDF variables and attributes defined by CF

Data variable Data variable (V) discretised within a domain (d)

$$V = V(d) = V(d(t, z, y, x, ...))$$

- Dimension Independent axis of a domain
- Coordinate variable Unique coordinates for a single dimension
- Scalar coordinate variable A coordinate for an unspecified dimension
- Auxiliary coordinate variable Alternative coordinates for any dimensions
- Boundary variable Cell vertices
- Grid mapping variable Horizontal coordinate system
- Formula terms attribute Vertical coordinate system
- Cell measure variable Cell areas or volumes
- Ancillary data variable Descriptive metadata that depends on the domain
- Standard name attribute Physical description of variables
- Cell methods attribute Variation within cells

Example CF-netCDF file


```
netcdf file {
dimensions:
   lat = 106 :
   lon = 110 ;
   bounds = 2:
variables:
    double time :
        time:standard name = "time" ;
        time:units = "days since 2016-12-01";
        time:calendar = "Gregorian";
        time:bounds = "time bounds";
    double lat(lat) :
       v:standard name = "latitude" ;
       v:units = "degrees" ;
       v:bounds = "lat bounds" ;
    double lon(lon) ;
       x:standard name = "longitude" ;
       x:units = "degrees";
       x:bounds = "lon bounds";
    double time bounds (bounds) ;
    double lat bounds (lat, bounds);
    double lon bounds (lon, bounds);
    double lon(y, x);
        lon:standard name = "longitude" ;
       lon:units = "degrees_east";
    double lat(y, x);
        lat:standard name = "latitude" ;
        lat:units = "degrees north" ;
    double temp(lat, lon);
        temp:standard_name = "air_temperature" ;
        temp:units = "K";
        temp:cell methods = "time: mean" ;
        temp:coordinates = "time";
    double wind(lat, lon) ;
       wind:standard_name = "eastward_wind" ;
        wind:units = "m s-1" ;
        wind:cell methods = "time: maximum";
       wind:coordinates = "time" ;
```

The standard name attribute

- For the systematic identification of the physical quantity contained in variables
- Permissible values are listed in the standard name table (http://cfconventions.org/standard-names.html), which includes precise definitions
- They answer the question, "What does this mean?", rather than the question, "What do you call this?"
 - "precipitable water" has the standard name of atmosphere_mass_content_of_water_vapor
 - there is no name for plain "potential temperature", since we have to distinguish it in air (air_potential_temperature) and in sea water (sea_water_potential_temperature)
- CF also has a "long name" attribute which is not standardised

Standard name: units

 Each standard name implies particular physical dimensions (mass, length, time and other dimensions corresponding to SI base units) expressed as a "canonical unit"

```
- large_scale_rainfall_amount (kg m<sup>-2</sup>)
```

- large_scale_rainfall_flux (kg m⁻² s⁻¹)
- large_scale_rainfall_rate (m s⁻¹)
- number_of_days_with_air_temperature_below_threshold (1)
- spell_length_of_days_with_air_temperature_below_threshold
 (day)

Standard name: additional constraints

- Some standard names require the existence of additional metadata
 - downwelling_radiance_per_unit_wavelength_in_air requires there to be a coordinate variable with the standard name of radiation_wavelength
 - number_of_days_with_air_temperature_above_threshold must have a coordinate variable with the standard name of air_temperature

Variation within cells

CF describes variation within cells by use of the "cell methods" attribute

```
- time: maximum
```

- area: mean

- time: mean (interval: 1 day)

- time: mean (El Nino years)

- area: mean time: maximum

More complex cell methods: climatological statistics

- A series of data points representing sets of time intervals which are not contiguous
 - Corresponding portions of the annual cycle in a set of years, e.g. decadal averages for January:

time: mean within years time: mean over years

 Corresponding portions of days, e.g. the average diurnal cycle in April 1997:

time: range within days time: mean over days

 Both at once, e.g. the average winter daily minimum temperature from the years 1961 to 1990:

time: minimum within days time: mean over days time: mean over years

Number of frost days in winter

time: minimum within days time: sum over days