

Современные подходы к построению рекомендательных систем

Алексей Чернобровов

Матричная факторизация

	1+1	Три	12	Легенд
		мушкетёра	стульев	a Nº17
Алексей	10	9	1	7
Борис		9	2	
Вова	1		6	
Коля	3	(3)	4	10
Петя		1		
Юля			3	6

 u_i — «интересы пользователей» v_i — «параметры фильмов»

$$\hat{x}_{ij} \approx \langle u_i v_j \rangle = \sum_{K=1}^K u_{ik} v_{jk}$$

$$\hat{x}_{ij} = \langle u_i v_j \rangle$$

$$\sum_{i,j} \left(\left\langle u_i v_j \right\rangle - \hat{x}_{ij} \right)^2 \to \min$$

Факторизация — это операция разложения объекта (число, матрица) на его простые составляющие.

Способы разложения матрицы:

- PCA (Principal component analysis метод главных компонент);
- SVD (Singular value decomposition сингулярное разложение);
- NNMF/NMF (Non-negative matrix factorization неотрицательное разложение матрицы).

Идея факторизации матрицы:

Идея факторизации матрицы:

Общий вид разложения:

 $\pmb{X}(\pmb{m} imes \pmb{n}) = \pmb{U} \; (\pmb{m} imes \pmb{k}) \; \cdot \; \pmb{V} \; (\pmb{k} imes \pmb{n})$, где k — количество компонент.

Алгоритм SVD

SVD (Singular Value Decomposition)

переводится как сингулярное разложение матрицы.

• Теорема о сингулярном разложении: у любой матрицы \mathbf{A} размера $n \times m$ существует

разложение в произведение трёх матриц: U, $\sum u V^T$:

$$A = U \times \sum_{n \times m} \times V^{T}$$

• Матрицы U и V ортогональные, а Σ диагональная (хотя и не квадратная).

$$\begin{split} UU^T &= I_n, & VV^T &= I_m, \\ \sum &= diag\left(\lambda_1, \dots, \lambda_{\min(n,m)}\right), \; \lambda_1 \geq \dots \geq \lambda_{\min(n,m)} \geq 0 \end{split}$$

Алгоритм SVD

SVD (Singular Value Decomposition)

переводится как сингулярное разложение матрицы.

• Помимо обычного разложения бывает ещё усечённое, когда из лямбд остаются только первые d чисел, а остальные мы полагаем равными нулю.

$$\lambda_{d+1}, \dots, \lambda_{\min(n,m)} \coloneqq 0$$

• Это равносильно тому, что у матриц U и V мы оставляем только первые d столбцов, а матрицу Σ обрезаем до квадратной $d \times d$.

$$A' = U' \times \sum_{n \times d} V'^{T}$$

$$n \times m \qquad n \times d \qquad d \times d \qquad d \times m$$

SVD для рекомендаций

Чтобы предсказать оценку пользователя U для фильма V, мы берем некоторый вектор p_u (набор параметров) для данного пользователя и вектор для данного фильма q_i .

Их скалярное произведение и будет нужным нам предсказанием: $\hat{x}_{ij} = \langle u_i, v_j \rangle$

$$\hat{x}_{ui} = \langle u_i, v_j \rangle$$

Обобщение SVD

Саймон Фанк в статье в блоге, описывающей его решение Netflix Prize, предложил использовать более общий вид разложения:

$$\hat{x}_{ij} = \mu + b_i + b_j + q_j^T p_i$$

Особенности SVD

SVD хорошо работает с рейтингами. Но если матрица задана бинарными значениями (0, 1), как, например, в случае, когда матрица заполняется покупками, SVD, как правило, показывает плохие результаты.

NMF (неотрицательное разложение)

Идея разложения сохраняется, однако в NMF применяются положительные матрицы.

Недостатком NMF является, что в общем случае построения такое разложение является NP-трудной задачей.

ALS (alternating least squares) — популярный итеративный алгоритм разложения матрицы предпочтений на произведение двух матриц: факторов пользователей (U) и факторов товаров (V).

Работает по принципу минимизации среднеквадратичной ошибки на проставленных рейтингах.

Оптимизация происходит поочерёдно, сначала по факторам пользователей, потом по факторам товаров. Также для обхода переобучения к среднеквадратичной ошибке добавляются регуляризационные коэффициенты.

Практика

Алексей Чернобровов

Разбор практики

Алексей Чернобровов

Проблема «холодного старта»

Алексей Чернобровов

Проблема «холодного старта»

Новый пользователь ещё не успел проявить активность в системе, и о нём практически ничего не известно, а новый объект ещё никто не оценил. Возникает проблема «холодного старта».

Решение проблемы:

- Использовать средние оценки или взвешенное среднее всех «предсказанных» результатов и т.п.
- Использовать матричную факторизацию специального вида.
- Применяется принцип суперпозиции рекомендательных систем или гибридные рекомендательные системы.

Как валидировать проблему «холодного старта»?

Валидировать проблему «холодного старта» оффлайн довольно сложно, поэтому самый простой вариант — её тестировать онлайн на реальных пользователях и смотреть, какой результат получится.

Проблема «длинного хвоста»

«Длинный

хвост» — розничная концепция, описывающая явление больших суммарных продаж товаров, ставших в своё время классикой, по сравнению с товарами, которые в настоящее время считаются модными.

Концепцию «Длинный хвост» впервые сформулировал Крис Андерсон.

Одно из решений — объединять товары, для которых мало статистики, в кластеры или в какую-то категорию.

Подходы к построению рекомендательных систем

Алексей Чернобровов

Методы построения рекомендательных систем

- Collaborative filtering.
- Content-based.
- Demographic.
- Utility-based.
- Knowledge-based.

Collaborative filtering

 Рекомендации для пользователя строятся на основе оценок похожих пользователей.

COLLABORATIVE FILTERING

Collaborative filtering

- 1 User-based
- dal poals
- 2 Item-based

Content-based

- Рассчитываются признаки для пользователей и объектов.
- Строится модель классификации/регрессии, приближающая оценки пользователей.

CONTENT-BASED FILTERING

Demographic

- Производится **сегментация пользователей** на группы.
- Рекомендации строятся на основе предпочтений группы.

Первое, что нужно сделать, — это собрать все данные, которые нам доступны о пользователе.

Например, нам могут быть известны социально-демографические характеристики пользователя: пол, возраст, род деятельности, образование. Далее необходимо провести сегментацию пользователей и посчитать предпочтения для полученных групп.

Рекомендация производится на основе того, в какую группу попадает новый пользователь.

Utility-based

Для каждого пользователя строится utility function, которая будет оценивать полезность данного объекта для данного пользователя.

Соответственно, такую utility function нужно рассчитать для каждого пользователя и далее на её основе строить рекомендации, выбирать только те объекты, которые получают большое значение по этой функции.

Knowledge-based

- Строится база знаний о том, как объекты *I* соотносятся с интересами и предпочтениями пользователя, которая с помощью правил эти соотношения описывает.
- Далее на основе предпочтений пользователей опять оценивается полезность объектов по этим правилам, и на основании этой полезности строятся рекомендации.

Гибридные подходы

Алексей Чернобровов

Гибридный подход

Гибридный подход

Гибридный подход — это сочетание коллаборативной и контентной фильтраций.

- Улучшает качество рекомендаций.
- Позволяет сначала взвешивать результаты согласно контентной фильтрации, а затем смещать эти веса по направлению к коллаборативной фильтрации (по мере «вызревания» доступного набора данных по конкретному пользователю).

- Weighted,
- Switching,
- Mixed,
- Feature combination,
- Cascade,
- Feature augmentation.

Weighted

- Рекомендации строятся на основе комбинирования оценок от разных систем с весами.
- Стратегия объединения: считать средневзвешенный прогноз по нескольким оценкам.
- Например:
 - линейная комбинация,
 - голосование.

Switching

- Рекомендации строятся путём переключения между системами, работающими независимо, на основании критериев для переключения.
- Стратегия объединения: для разных продуктов/пользователей применять различные алгоритмы.

Mixed

- Список рекомендаций состоит из «смеси» рекомендаций от разных систем.
- Стратегия объединения: вычисляются рекомендации по разным алгоритмам, а потом просто объединяются в один список.

Виды гибридизации

Feature combination

- Подход основан на content-based.
- Признаки от разных систем объединяются в одну выборку для построения единой модели.

Виды гибридизации

Cascade

- Поэтапное применение нескольких моделей для уточнений рекомендаций.
- · Candidate selection.

Виды гибридизации

Feature augmentation

• Выход от одной или нескольких рекомендательных систем используется как входные признаки для другой системы.

Нейронные сети для задач рекомендаций

Embedding (векторное представление)

Embedding — это сопоставление произвольной сущности (пользователя, фильма, текста) некоторому вектору.

	dim-0	dim-1	dim-2	dim-3	dim-4	 dim-45	dim-46	dim-47	dim-48	dim-49
title										
War and Peace	-0.279165	-0.107367	0.114153	0.143709	-0.141921	 -0.067178	0.230711	-0.230550	0.199285	-0.099167
Anna Karenina	-0.248443	-0.000578	0.150472	0.151845	0.000908	 -0.141615	0.178011	-0.230794	0.042102	-0.189196
The Hitchhiker's Guide to the Galaxy (novel)	-0.190761	-0.060406	0.115548	-0.249868	-0.120824	 -0.038944	0.084992	-0.047035	-0.054157	-0.209883

Дополнительные преимущества нейронных сетей

Использование

Skillbox

Обратная сторона

Are We Really Making Much Progress? A Worrying Analysis of Recent Neural Recommendation Approaches

Maurizio Ferrari Dacrema Politecnico di Milano, Italy maurizio.ferrari@polimi.it Paolo Cremonesi Politecnico di Milano, Italy paolo.cremonesi@polimi.it Dietmar Jannach University of Klagenfurt, Austria dietmar.jannach@aau.at

https://github.com/MaurizioFD/RecSys2019_DeepLearning_Evaluation

https://arxiv.org/pdf/1907.06902.pdf

Практика

Neural Collaborative Filtering

Neural Collaborative Filtering

Как развиваются рекомендательные системы?

Развитие в рекомендательных системах

Развитие рекомендательных систем и их усовершенствование идёт постоянно — и идёт по следующим направлениям:

- количество контента, который мы рекомендуем;
- информация, которую мы знаем о контенте;
- информация о юзерах;
- интерфейсные решения.

Библиотека DLRM от Facebook

Библиотека DLRM на Python для построения рекомендательных систем.

Recommenders от Microsoft

https://github.com/microsoft/recommenders

- Десятки разных алгоритмов, которые постоянно пополняются.
- · Встроенные dataset.
- Удобство интеграции с Azure.

Skillbox

Заключение

Что мы рассмотрели:

- гибридный подход и виды гибридизации,
- матричную факторизацию,
- нейронные сети для задач рекомендаций.

Спасибо за внимание!