SCDM LAB ASSIGNMENT- 4

→ 1. Load 'spambase.csv' file in jupyter notebook.

```
import pandas as pd

df = pd.read_csv("spambase.csv")
```

→ 2. Print the total instances per class of the above dataset

df

	0	0.64	0.64.1	0.1	0.32	0.2	0.3	0.4	0.5	0.6	0.7	0.64.2	0.8	0.9
0	0.21	0.28	0.50	0.0	0.14	0.28	0.21	0.07	0.00	0.94	0.21	0.79	0.65	0.21
1	0.06	0.00	0.71	0.0	1.23	0.19	0.19	0.12	0.64	0.25	0.38	0.45	0.12	0.00
2	0.00	0.00	0.00	0.0	0.63	0.00	0.31	0.63	0.31	0.63	0.31	0.31	0.31	0.00
3	0.00	0.00	0.00	0.0	0.63	0.00	0.31	0.63	0.31	0.63	0.31	0.31	0.31	0.00
4	0.00	0.00	0.00	0.0	1.85	0.00	0.00	1.85	0.00	0.00	0.00	0.00	0.00	0.00
4595	0.31	0.00	0.62	0.0	0.00	0.31	0.00	0.00	0.00	0.00	0.00	1.88	0.00	0.00
4596	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4597	0.30	0.00	0.30	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.80	0.30	0.00
4598	0.96	0.00	0.00	0.0	0.32	0.00	0.00	0.00	0.00	0.00	0.00	0.32	0.00	0.00
4599	0.00	0.00	0.65	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.65	0.00

4600 rows × 58 columns

→ 3. Split the data part and label part of the above dataset.

```
[row, col] = df.shape
Data = df.iloc[0 : row, 0 : (col - 1)]
Label = df.iloc[0 : row, (col - 1)]
```

Data

	0	0.64	0.64.1	0.1	0.32	0.2	0.3	0.4	0.5	0.6	0.7	0.64.2	0.8	0.9
0	0.21	0.28	0.50	0.0	0.14	0.28	0.21	0.07	0.00	0.94	0.21	0.79	0.65	0.21
1	0.06	0.00	0.71	0.0	1.23	0.19	0.19	0.12	0.64	0.25	0.38	0.45	0.12	0.00
2	0.00	0.00	0.00	0.0	0.63	0.00	0.31	0.63	0.31	0.63	0.31	0.31	0.31	0.00
3	0.00	0.00	0.00	0.0	0.63	0.00	0.31	0.63	0.31	0.63	0.31	0.31	0.31	0.00
4	0.00	0.00	0.00	0.0	1.85	0.00	0.00	1.85	0.00	0.00	0.00	0.00	0.00	0.00
4595	0.31	0.00	0.62	0.0	0.00	0.31	0.00	0.00	0.00	0.00	0.00	1.88	0.00	0.00
4596	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4597	0.30	0.00	0.30	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.80	0.30	0.00
4598	0.96	0.00	0.00	0.0	0.32	0.00	0.00	0.00	0.00	0.00	0.00	0.32	0.00	0.00
4599	0.00	0.00	0.65	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.65	0.00

4600 rows × 57 columns

Label

0	1	
1	1	
2	1	
3	1	
4	1	
4595	0	
4596	0	
4597	0	
4598	0	
4599	0	

Name: 1, Length: 4600, dtype: int64

4. Find the accuracy of this using K-Means algorithm in python.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

from sklearn.metrics import accuracy_score
accuracy_score(y_test, predictions)

0.5956521739130435

J. Compare the accuracy of spannose dataset with the

heart disease dataset by using k-means algorithm.

```
df = pd.read csv("heart failure clinical records dataset.csv")
[row, col] = df.shape
Data = df.iloc[0 : row, 0 : (col - 1)]
Label = df.iloc[0 : row, (col - 1)]
from sklearn.model selection import train test split
from sklearn.cluster import KMeans
X=Data
y=Label
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20,random_state=42)
kmns=KMeans(n clusters=2, random state=0)
kmns.fit(X_train,y_train)
    KMeans(n clusters=2, random state=0)
predictions = kmns.predict(X test)
print(predictions)
    0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0
from sklearn.metrics import accuracy score
accuracy_score(y_test, predictions)
    0.5833333333333334
```

✓ 0s completed at 11:31 AM

×