

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

XXXIV. Tables of the Sturmian Functions for Equations of the Second, Third, Fourth, and Fifth Degrees. By ARTHUR CAYLEY, Esq., F.R.S.

Received December 18, 1856,—Read January 8, 1857.

The general expressions for the Sturmian functions in the form of determinants are at once deducible from the researches of Professor Sylvester in his early papers on the subject in the Philosophical Magazine, and in giving these expressions in the Memoir 'Nouvelles Recherches sur les Fonctions de M. Sturm,' *Liouville*, t. xiii. p. 269 (1848), I was wrong in claiming for them any novelty. The expressions in the last-mentioned memoir admit of a modification by which their form is rendered somewhat more elegant; I propose on the present occasion merely to give this modified form of the general expression, and to give the developed expressions of the functions in question for equations of the degrees two, three, four, and five.

Consider in general the equation

and write

U=
$$(a, b, j, k)(x, 1)^n$$
,
P= $(a, b, j)(x, 1)^{n-1}$,
Q= $(b, j, k)(x, 1)^{n-1}$.

then supposing as usual that the first coefficient a is positive, and taking for shortness n_1 , n_2 , &c. to represent the binomial coefficients $\frac{n-1}{1}$, $\frac{n-1 \cdot n-2}{1 \cdot 2}$, &c. corresponding to the index (n-1), the Sturmian functions, each with its proper sign, are as follows, viz.

$$+ \begin{vmatrix} x^2 P, & x P, & P, & x^2 Q, & x Q, & Q \\ a, & ., & ., & b, & ., & . \\ n_1 b, & a, & ., & n_1 c, & b, & . \\ n_2 c, & n_1 b, & a, & n_2 d, & n_1 c, & b \\ n_3 d, & n_2 c, & n_1 b, & n_3 e, & n_2 d, & n_1 c \\ n_4 e, & n_3 d, & n_2 c, & n_4 f, & n_3 e, & n_2 d \end{vmatrix}$$
, &c.

where the terms containing the powers of x, which exceed the degrees of the several MDCCCLVII. 5 c

functions respectively, vanish identically (as is in fact obvious from the form of the expressions), but these terms may of course be omitted *ab initio*.

The following are the results which I have obtained; it is well known that the last or constant function is in each case equal to the discriminant, and as the expressions for the discriminant of equations of the fourth and fifth degrees are given, Tables No. 12 and No. 26 in my 'Second Memoir upon Quantics*,' I have thought it sufficient to refer to these values without repeating them at length.

Table for the degree 2.

The Sturmian functions for the quadric $(a, b, c)(x, 1)^2$ are

$$(\left[\begin{array}{c|c|c} a & 2 & b & c \end{array} \right] \chi x, 1)^2,$$
 $(\left[\begin{array}{c|c} a & b \end{array} \right] \chi x, 1),$ $\left[\begin{array}{c|c} -1 & ac \\ +1 & b^2 \end{array} \right]$

Table for the degree 3.

The Sturmian functions for the cubic $(a, b, c, d)(x, 1)^3$ are

^{*} Philosophical Transactions, t. cxlvi. p. 101 (1856).

Table for the degree 4.

The Sturmian functions for the quartic (a, b, c, d, e)(x, 1), are

Table for the degree 5.

The Sturmian functions for the quintic $(a, b, c, d, e, f)(x, 1)^5$ are