# CS5489 - Machine Learning

#### Lecture 8a - Neural Networks

Prof. Antoni B. Chan

Dept. of Computer Science, City University of Hong Kong

#### **Outline**

- History
- Perceptron
- Multi-class logistic regression
- Multi-layer perceptron (MLP)

## Original idea

- Perceptron
  - Warren McCulloch and Walter Pitts (1943), Rosenblatt (1957)
  - Simulate a neuron in the brain
    - 1. take binary inputs (input from nearby neurons)
    - 2. multiply by weights (synapses, dendrites)
    - 3. sum and threshold to get binary output (output axon)
  - Train weights from data.



• Multiple outputs handled by using multiple perceptrons



- Problem:
  - linear classifier, can't solve harder problems

### Multi-layer Perceptron

- Add hidden layers between input and output neurons
  - each layer extracts some features from the previous layers

- can represent complex non-linear functions
- train weights using backpropagation algorithm. (1970-80s)
- (now called a neural network)



- Problem:
  - difficult to train.
  - sensitive to initialization.
  - computationally expensive (at the time).

#### Decline in the 1990s

- Because of those problems, NN became less popular in the 1990s
  - Support vector machines (SVM) had good accuracy
    - easy to use only one global optimum.
    - o learning is not sensitive to initialization.
    - theory about generalization guarantees.
  - Not a lot of data, so kernel methods were still okay.

### Deep learning

- There was a resurgence in NN in the 2000s, due to a number of factors:
  - improvements in network architecture
    - o developed nodes that are easier to train
  - better training algorithms
    - better ways to prevent overfitting
    - o better initialization methods
  - faster computers
    - massively parallel GPUs (Thanks to gamers!)
  - more labeled data
    - o from Internet
    - o crowd-sourcing for labeling data (Amazon Turk)
- We can train NN with more and more layers ⇒ Deep Learning



**Outline** 

- History
- Perceptron
- · Multi-class logistic regression
- Multi-layer perceptron (MLP)

### Perceptron

- Model a single neuron
  - ullet input  $\mathbf{x} \in \mathbb{R}^d$  is a d-dim vector
  - apply a weight to the inputs
  - sum and threshold to get the output
- Formally,
  - $lacksquare y = f(\sum_{j=0}^d w_j x_j) = f(\mathbf{w}^T \mathbf{x})$
  - w is the weight vector.
  - f(a) is the activation function

$$\circ$$
  $f(a) = egin{cases} 1, & a > 0 \ 0, & ext{otherwise} \end{cases}$ 



### Perceptron training criteria

- Train the perceptron on data  $D = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$
- Only look at the points that are misclassified.
  - Loss is based on how badly misclassified

$$E(\mathbf{w}) = \sum_{i=1}^{N} \begin{cases} -y_i \mathbf{w}^T \mathbf{x}_i, & \mathbf{x}_i \text{ is misclassified} \\ 0, & \text{otherwise} \end{cases}$$

• Minimize the loss:  $\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} E(\mathbf{w})$ 

# **Perceptron Loss Function**

- Define  $z_i = y_i \mathbf{w}^T \mathbf{x}_i$ ,
- The loss function is

$$L(z_i) = \max(0, -z_i)$$

Out[5]:



## **Training algorithm**

- · We can learn the model by applying gradient descent.
  - lacksquare Move f w in the direction to decrease the loss E(f w).
  - lacksquare Gradient descent update:  $\mathbf{w} \leftarrow \mathbf{w} \eta rac{d}{d\mathbf{w}} E(\mathbf{w})$ 
    - $\circ$   $\eta$  is the learning rate for gradient descent



- Computers were slow back then...
- Solution: only look at one data point at a time and use gradient descent.
  - lacksquare loss of a misclassified point  $\mathbf{x}_i$ :  $E_i(\mathbf{w}) = -y_i \mathbf{w}^T \mathbf{x}_i$
  - lacksquare Gradient:  $rac{d}{d\mathbf{w}}E_i(\mathbf{w}) = -y_i\mathbf{x}_i$

#### · Perceptron Algorithm

- For each point  $\mathbf{x}_i$ ,
  - $\circ$  If the point  $\mathbf{x}_i$  is misclassified,
    - $\circ~$  Update weights:  $\mathbf{w} \leftarrow \mathbf{w} + \eta y_i \mathbf{x}_i$
- Repeat until no more points are misclassified

#### Notes:

- The effect of the update step is to rotate  $\mathbf{w}$  towards the misclassified point  $\mathbf{x}_i$ .
- This is called Stochastic Gradient Descent.
  - useful because we only need to look at a little bit of data at a time.
  - less computing/memory requirement in each iteration.

### Example

- Iteration 1
  - w rotates towards the misclassified point (bold circle)

#### In [8]: figs[0]



• Iteration 2

#### In [9]: figs[1]



• Iteration 3

#### In [10]: figs[2]



- Iteration 4
  - No more errors

#### In [11]: figs[3]



· Final classifier

In [12]: plt.figure(figsize=(4,4))
plot\_perceptron((w,0),X,Y,axbox)



# **Perceptron Algorithm**

- Fails to converge if data is not linearly separable
- Rosenblatt proved that the algorithm will converge if the data is linearly separable.
  - the number of iterations is inversely proportional to the separation (margin) between classes.
  - This was one of the first machine learning results!
- · Different initializations can yield different weights
  - There are multiple decision boundaries with 0 loss.







#### **Outline**

History

- Perceptron
- · Multi-class logistic regression
- Multi-layer perceptron (MLP)

## Revisiting Multiclass logistic regression

- ullet Consider a multi-class classification problem with C classes
  - class labels  $y \in \{1, \dots, C\}$
  - equivalently, class vectors:

$$\mathbf{y} \in \{egin{bmatrix} 1 \ 0 \ \vdots \ 0 \end{bmatrix}, egin{bmatrix} 0 \ 1 \ \vdots \ 0 \end{bmatrix}, \cdots, egin{bmatrix} 0 \ 0 \ \vdots \ 1 \end{bmatrix} \} = \{\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_C \}$$

•  $\mathbf{e}_i$  is the canonical vector.

#### Linear functions

- ullet Construct C linear functions, one for each class
  - $lacksquare g_j(\mathbf{x}) = \mathbf{w}_j^T \mathbf{x}$ , for  $j = \{1, \cdots, C\}$
  - $\mathbf{w}_i$  is the weight vector for the j-th class.
  - (to reduce clutter, we implicitly include the bias term)
- Combine into a vector-valued function ( $\mathbb{R}^C$ ):
  - \$\mathbf{q}(\mathbf{x}) =

$$egin{bmatrix} g_1(\mathbf{x}) \ dots \ g_C(\mathbf{x}) \end{bmatrix}$$

 $= \mathbb{W}^T$ 

\mathbf{x}\$,

lacksquare Weight matrix:  $\mathbf{W} = [\mathbf{w}_1, \cdots, \mathbf{w}_C]$ 

### Mapping to probabilities

- output of  $\mathbf{g}(\mathbf{x})$  is a real vector in  $\mathbb{R}^C$ .
- How to map it to set of class probabilities?
  - lacksquare require  $0 \leq p(y=j|\mathbf{x}) \leq 1$
  - lacksquare and  $\sum_{j=1}^C p(y=j|\mathbf{x})=1.$

#### Softmax function

- ullet Given a real vector  $\mathbf{a} \in \mathbb{R}^C$
- Let  $s_j(\mathbf{a}) = rac{\exp(a_j)}{\sum_{k=1}^C \exp(a_k)}$ 

  - $\begin{tabular}{l} \blacksquare & \mbox{if } a_j\gg a_i \mbox{, then the exponent will cause } s_j({\bf a})\to 1. \\ \blacksquare & \mbox{denominator ensures } \sum_{j=1}^C s_j({\bf a})=1. \\ \end{tabular}$
- Let  $\mathbf{s}(\mathbf{a}) = [s_1(\mathbf{a}) \cdots s_C(\mathbf{a})]^T$ 
  - the output vector is  $\sim$ 1 in the dimension of  ${\bf a}$  with largest value, and 0 elsewhere.
  - called the **softmax** function ("soft" because the values can be between 0 and 1)

## Mapping to probabilities

- Define the probability of the j-th class  $p(y=j|\mathbf{x})$  as:
  - $\quad \bullet \quad p(y=j|\mathbf{x}) = f_j(\mathbf{x}) = s_j(\mathbf{g}(\mathbf{x})) = \frac{\exp(g_j(\mathbf{x}))}{\sum_{k=1}^{C} \exp(g_k(\mathbf{x}))}$ 
    - $\circ$  if  $g_j(\mathbf{x}) \gg g_i(\mathbf{x})$ , then the exponent will cause numerator to be very large, and thus  $p(y=j|\mathbf{x}) \to 1$ .
    - the class with largest response  $g_i(\mathbf{x})$  will have highest probability.
    - o denominator ensures probabilities sum to 1 over classes.
- Finally, define the posterior probability vector:

$$egin{bmatrix} p(y=1|\mathbf{x}) \ dots \ p(y=C|\mathbf{x}) \end{bmatrix} = \mathbf{f}(\mathbf{x}) = \mathbf{s}(\mathbf{g}(\mathbf{x})))$$

# Example

· linear functions and mapped probabilities

In [16]: sfig

Out[16]:



## Learning with MLE

- ullet let old y be the class vector representation of the class
  - i.e.  $y_i = 1$  indicates class y = j, and 0 otherwise.
- · Log-likelihood function
  - categorical distribution

$$egin{aligned} \log p(\mathbf{y}|\mathbf{x}) &= \log \prod_{j=1}^C f_j(\mathbf{x})^{y_j} \ &= \sum_{j=1}^C y_j \log f_j(\mathbf{x}) = \mathbf{y}^T \log \mathbf{f}(\mathbf{x}) \end{aligned}$$

- Note: the \$\log\$ of a vector is element-wise log.
  - Maximum Likelihood Estimation (MLE)
    - Let  $\mathcal{D} = \{(\mathbf{y}_i, \mathbf{x}_i)\}$  be the training set.
    - MLE goal:

$$egin{aligned} \mathbf{W}^* &= rgmax \sum_{i=1}^N \log p(\mathbf{y}_i|\mathbf{x}_i) \ &= rgmax \sum_{i=1}^N \mathbf{y}_i^T \log \mathbf{f}(\mathbf{x}_i) \ &rac{N}{N} \ \ rac{C}{N} \end{aligned}$$

• Equivalently, turn maximization problem into minimization

$$\mathbf{W}^* = rgmin_{\mathbf{W}} \sum_{i=1}^N \left\{ -\sum_{j=1}^C y_{ij} \log f_j(\mathbf{x}_i) 
ight\} = \sum_{i=1}^N L(\mathbf{y}_i, \mathbf{f})$$

- Called the **cross-entropy loss** between ground-truth  $\mathbf{y}_i$  and prediction  $\mathbf{f}(\mathbf{x}_i)$   $L(\mathbf{y}, \mathbf{f}) = -\sum_{j=1}^C y_j \log f_j(\mathbf{x})$

## How to optimize?

- Use gradient descent:
  - $oldsymbol{oldsymbol{w}} oldsymbol{oldsymbol{W}}^{(t)} = oldsymbol{oldsymbol{W}}^{(t-1)} \eta rac{dL}{doldsymbol{oldsymbol{W}}}ig|_{oldsymbol{oldsymbol{W}}^{(t-1)}}$ 
    - $\circ$  gradient evaluted at current parameters  $\mathbf{W}^{(t-1)}$ .
- How do we compute the gradient?
  - We have a composition of functions:

$$\circ \mathbf{g}(\mathbf{x}) = \mathbf{W}^T \mathbf{x}$$

$$\circ \mathbf{f}(\mathbf{x}) = \mathbf{s}(\mathbf{g}(\mathbf{x}))$$

$$L(\mathbf{y}, \mathbf{f}) = -\mathbf{y}^T \log \mathbf{f}(\mathbf{x})$$



- Use the chain rule!
  - in one-dimension:

$$\circ$$
 suppose  $f(x) = s(g(x))$ 

$$\circ$$
 suppose  $f(x)=s(g(x))$   $\circ$  by the chain rule:  $rac{df}{dx}=rac{df}{dg}rac{dg}{dx}$ 

• our case is more complicated because of vector-valued functions.

### Applying the Chain rule

· Work backwards to compute gradient



- Gradient of loss wrt **f**:

$$rac{dL}{d\mathbf{f}} = egin{bmatrix} rac{dL}{df_1} \ dots \ rac{dL}{df_C} \end{bmatrix}$$

- · Gradient of loss wrt g:
  - First, look at individual *q*<sub>4</sub>
    - $\circ$  changes in  $g_i$  affect all  $f_k$ , so sum over derivatives of  $f_k$ .

$$rac{dL}{dg_j} = \sum_{k=1}^C rac{dL}{df_k} rac{df_k}{dg_j} = rac{d\mathbf{f^T}}{dg_j} rac{dL}{d\mathbf{f}}$$

- where  $\frac{d^m}{f}^T}{dg_j} = \frac{d_1}{dg_j} \cdot \frac{dg_j}{s}$ 
  - Gradient of loss wrt g:
    - For all linear functions g

$$rac{dL}{d\mathbf{g}} = egin{bmatrix} rac{dL}{dg_1} \ dots \ rac{dL}{dg_C} \end{bmatrix} = egin{bmatrix} rac{d\mathbf{f}^T}{dg_1} rac{dL}{d\mathbf{f}} \ dots \ rac{d\mathbf{f}}{dg_C} rac{dL}{d\mathbf{f}} \end{bmatrix} = rac{d\mathbf{f}^T}{d\mathbf{g}} rac{dL}{d\mathbf{f}}$$

- where the Jacobian (transpose) is:

$$rac{d\mathbf{f}^T}{d\mathbf{g}} = egin{bmatrix} rac{df_1}{dg_1} & \cdots & rac{df_C}{dg_1} \ dots & \ddots & dots \ rac{df_1}{dg_C} & \cdots & rac{df_C}{dg_C} \end{bmatrix}$$

- (how each input dimension of affects each output dimension of  $\mathbf{f}(\mathbf{g})$ )
  - Gradient of loss wrt  $\mathbf{w}_i$ :
    - $\begin{array}{c} \bullet \quad \frac{dL}{d\mathbf{w}_j} = \sum_{k=1}^{C} \frac{dg_k}{d\mathbf{w}_j} \frac{dL}{dg_k} = \frac{d\mathbf{g}^T}{d\mathbf{w}_j} \frac{dL}{d\mathbf{g}} \\ \bullet \quad \text{since weight vector } \mathbf{w}_j \text{ only appears in } g_j \\ \end{array}$

$$\circ \ \frac{dL}{d\mathbf{w}_i} = \frac{dg_j}{d\mathbf{w}_i} \frac{dL}{dg_i}$$

#### Summary:

- · Chain rule:
  - compute the gradient by working backwards from  $\mathbf{f}$  to  $\mathbf{w}_i$ 
    - 1. Gradient of loss wrt  $\mathbf{f}$ :  $\frac{dL}{d\mathbf{f}}$
    - 2. Gradient of loss wrt  $\mathbf{g}$ :  $\frac{d\mathbf{f}}{d\mathbf{g}} = \frac{d\mathbf{f}^T}{d\mathbf{g}} \frac{dL}{d\mathbf{f}}$ 3. Gradient of loss wrt  $\mathbf{w}_j$ :  $\frac{dL}{d\mathbf{w}_j} = \frac{d\mathbf{g}^T}{d\mathbf{w}_j} \frac{dL}{d\mathbf{g}}$



- Final result after some derivation of gradients:
  - $lacksquare rac{dL}{d\mathbf{w}_i} = \mathbf{x}(f_j(\mathbf{x}) y_j)$

## Example

```
multi_class='multinomial', solver='lbfgs')
            # use multi-class and corresponding solver
mlogreg.fit(trainX, trainY)
# now contains 3 hyperplanes and 3 bias terms (one for each class)
print("w=", mlogreg.coef_)
print("b=", mlogreg.intercept_)
# predict from the model
predY = mlogreg.predict(testX)
# calculate accuracy
acc = metrics.accuracy_score(testY, predY)
print("test accuracy=", acc)
w = [[-4.13092437 \ 1.30718735]
 [-0.71717021 0.23609022]
 [ 4.84809458 -1.54327757]]
b= [ 11.46078594
                  5.40723484 -16.86802078]
test accuracy= 0.97333333333333333
```

· class probabilites from softmax function.

#### In [21]: lr3classm

Out[21]:



#### **Summary**

- Two related linear classification models: Perceptron, Multi-class logistic regression
  - compute a linear function of input
  - non-linear output function (threshold or soft-max)
- We have assumed the inputs are feature vectors already.
  - What if we want to extract the features vectors too?