Работа 3.3.4 Эффект Холла в полупроводниках

Работу выполнил Матренин Василий Б01-006

Цель работы: Измерение подвижности и концентрации носителей заряда в полупроводниках и проводниках.

В работе используются: Электромагнит с источником питания, амперметр, милливеберметр, реостат, источник питания, цифровой вольтметр, образцы легированного германия.

1 Экспериментальная установка

Рис. 1: Схема экспериментальной установки

Схема для измерения ЭДС Холла представлена на рисунке 1. В зазоре электромагнита создаётся постоянное магнитное поле, величину которого можно менять регуляторами источника питания электромагнита.

Образец из легированного германия, смонтированный в специальном держателе, подключается к источнику питания. При замыкании K_2 вдоль длинной стороны образца течёт ток, величина которого регулируется реостатом R и измеряется миллиамперметром. В образце, помещённом в зазор, возникает разность потенциалов U_{34} , которая измеряется с помощью цифрового вольтметра

Влияние омического падения напряжения исключается измерением напряжения U_0 между 3 и 4 в отсутствие магнитного поля. По знаку $\mathcal{E} = U_{34} \pm U_0$ можно определить характер проводимости – электронный или дырочный, зная направление тока в образце и направление магнитного поля.

2 Теоретические сведения

Рис. 2: Эффект Холла

На электрон, движущийся в магнитном поле, действует сила Лоренца. Также на пластине с током, помещённой в магнитное поле, возникает разность потенциалов. В итоге, сила, действующая на электрон:

$$F_1 = -eE - e < v > B \tag{1}$$

Под действием этой силы электроны отклоняются к грани Б, на грани А создаётся нескомпенсированный положительный заряд. Из-за разности потенциалов возникает электрическое поле, направленное от грани А к Б: $F_2 = eE_z$. Приравнивая F_1 и F_2 , найдём ЭДС Холла:

$$U_{ab} = -\frac{IB}{nea} = -R_x \frac{IB}{a} \tag{2}$$

Также в эксперименте проводится измерение удельной проводимости образца:

$$\sigma = \frac{IL_{35}}{U_{35}al} \tag{3}$$

Концентрация носителей тока в образце:

$$n = \frac{1}{R_{\rm x}e} \tag{4}$$

Подвижность носителей тока:

$$b = \frac{\sigma}{en} \tag{5}$$

3 Ход работы

3.1 Зависимость В от тока через обмотку

Данные представлены в таблице 1.

I, A	0,58	0,74	0,90	1,07	1,23	1,40	1,55
U, мТл	608	750	880	972	1043	1088	1137

Таблца 1: В (I).

3.2 ВАХ для германия

Данные представлены в таблице 2.

U, мкВ	327	673	1004	1178	1344	1501	1686
І, мА	0.2	0.4	0.6	0.7	0.8	0.9	1

Таблиа 2: ВАХ германия.

Полученная зависимость линейна. К-т наклона $\,k_{\mathrm{BAX}} = 0,598 \pm 0,002\,rac{\mathtt{A}}{\mathtt{B}}\,$

Параметры образца: $L_{35} = 3,0$ мм; l = 1,7 мм; a = 1,5 мм.

Тогда удельная проводимость образца: $\sigma = \frac{IL_{35}}{U_{35}al} = 7,07 \pm 0,03\,\frac{1}{{\tt Om\cdot cm}}$

3.3 Зависимость ЭДС Холла от В

Для нескольких значений тока снял зависимоть ЭДС Холла от В.

В, мТл	Ux, мкВ	-Uх, мкВ	Ucp, мкВ
1137	515	-434	474
1088	506	-418	462
1043	483	-397	440
972	458	-370	415
880	416	-335	376
750	367	-287	327
608	300	-224	262

Tаблиа 3: ЭДС Холла от В для 1мА.

В, мТл	Ux, мкВ	-Uх, мкВ	Ucp, мкB
1137	267	-222	245
1088	263	-200	232
1043	247	-192	221
972	235	-182	209
880	215	-163	190
750	188	-137	163
608	157	-106	132

Таблиа 4: ЭДС Холла от <math>B для 0,5мA.

В, мТл	Ux, мкВ	-Uх, мкВ	Ucp, мкB
1137	133	-98	116
1088	131	-95	113
1043	128	-90	109
972	121	-84	103
880	111	-75	93
750	97	-62	80
608	82	-47	65

Таблиа 3: ЭДС Холла от B для 0,25мA.

На рисунке 3 представлены графики для этих данных:

Puc. 3: Uab(B)

Рассчетные значения

Рассчетные значения для к-та Холла:

$$R_1 = (54, 9 \pm 0, 3) \cdot 10^{-5} \frac{\text{M}^3}{\text{Km}}$$

$$R_2 = (55, 6 \pm 0, 3) \cdot 10^{-5} \frac{\text{M}^3}{\text{Km}}$$

$$R_3 = (55, 1 \pm 0, 3) \cdot 10^{-5} \frac{\text{M}^3}{\text{K}\pi}$$

Значения R_i совпали с высокой точностью.

Также рассчитал концентрацию носителей заряда в образце: $n = (1.1 \pm 0.1) \cdot 10^{22} \mathrm{m}^{-3}$

И подвижность носителей тока:
$$b = (3,76 \pm 0,1) \cdot 10^3 \frac{\text{см}^2}{\text{B} \cdot \text{c}}$$

4 Вывод

В ходе данной лабараторной работы была снята зависимость ЭДС Холла от В. Данная зависимость оказалась линейной, что хорошо согласуется с теорией. Также по данной зависимости были рассчитаны к-т Холла, концентрация носителей заряда и подвижность носителей заряда. Значения для двух последних величин с высокой точностью совпали с табличными.