Devoir surveillé n°05: corrigé

SOLUTION 1.

- 1. Une primitive de $x \mapsto \frac{3x}{1+x^2}$ est $x \mapsto \frac{3}{2}\ln(1+x^2)$. On en déduit que les solutions de (E_H) sont les fonctions $x \mapsto \lambda \exp\left(\frac{3}{2}\ln(1+x^2)\right) = (1+x^2)^{\frac{3}{2}}$ où $\lambda \in \mathbb{R}$.
- 2. Posons donc P: $x \mapsto ax^3 + bx^2 + cx + d$ avec $(a, b, c, d) \in \mathbb{R}^4$. On obtient

$$\forall x \in \mathbb{R}, (1+x^2)P'(x) - 3xP(x) = -bx^3 + (3a-2c)x^2 + (2b-3d)x + c$$

Une condition suffisante (et même nécessaire en fait, mais qu'importe) pour que P soit solution de (E) est donc

$$\text{que} \ (a,b,c,d) \ \text{v\'erifie le syst\`eme} \begin{cases} -b=0 \\ 3a-2c=0 \\ 2b-3d=0 \end{cases} . \text{On trouve alors } a=\frac{2}{3}, \ b=0, \ c=1 \ \text{et } d=0. \ \text{Ceci signifie que la} \\ d=1 \end{cases}$$

fonction polynomiale P: $x \mapsto \frac{2}{3}x^3 + x$ est solution de (E).

On en déduit que les solutions (E) sont les fonctions

$$f_{\lambda} \colon x \mapsto \frac{2}{3}x^3 + x + \lambda(1 + x^2)^{\frac{3}{2}}$$
 où $\lambda \in \mathbb{R}$

3. Remarquons que pour tout x > 0

$$(1+x^2)^{\frac{3}{2}} = x^3 \left(1 + \frac{1}{x^2}\right)^{\frac{3}{2}}$$

Puisque $\lim_{x\to+\infty}\frac{1}{x^2}=0$, on obtient via un développement limité classique

$$\left(1 + \frac{1}{x^2}\right)^{\frac{3}{2}} = 1 + \frac{3}{2x^2} + \frac{3}{8x^4} + o\left(\frac{1}{x^4}\right)$$

A fortiori

$$\left(1 + \frac{1}{x^2}\right)^{\frac{3}{2}} = 1 + \frac{3}{2x^2} + o\left(\frac{1}{x^3}\right)$$

On en déduit

$$(1+x^2)^{\frac{3}{2}} = x^3 + \frac{3}{2}x + o(1)$$

4. Soit $\lambda \in \mathbb{R}$. D'après la question précédente,

$$f_{\lambda}(x) = \left(\frac{2}{3} + \lambda\right) x^3 + \left(1 + \frac{3}{2}\lambda\right) x + o(1)$$

Si $\lambda \neq -\frac{2}{3}$, $f_{\lambda}(x) \underset{x \to +\infty}{\sim} \left(\frac{2}{3} + \lambda\right) x^3$ et f admet une limite infinie en $+\infty$.

Si $\lambda = -\frac{2}{3}$, $f_{\lambda} = g$ et g(x) = o(1) de sorte que g admet une limite finie (nulle) en $+\infty$.

g est donc l'unique solution de (E) admettant une limite finie en $+\infty$.

5. g est dérivable sur \mathbb{R} et on trouve $g'(x) = 2x^2 + 1 - 2x\sqrt{1 + x^2} = \left(\sqrt{1 + x^2} - x\right)^2$ pour tout $x \in \mathbb{R}$. De plus, par stricte croissance de la racine carrée, pour tout $x \in \mathbb{R}$, $\sqrt{1 + x^2} > \sqrt{x^2} = |x| \ge x$. On en déduit que g'(x) > 0 pour tout $x \in \mathbb{R}$. Ainsi g est strictement croissante sur \mathbb{R} .

Par opérations sur les limites, il est clair que $\lim_{-\infty} g = -\infty$. Par ailleurs, on a vu à la question précédente que $\lim_{+\infty} g = 0$.

SOLUTION 2.

1. On a

$$I_0 = \int_0^1 e^{-2x} dx = \left[-\frac{1}{2} e^{-2x} \right]_0^1 = \frac{1 - e^{-2}}{2}$$

Par intégration par parties :

$$I_{1} = \int_{0}^{1} (1 - x)e^{-2x} dx = \left[-\frac{1}{2} (1 - x)e^{-2x} \right]_{0}^{1} + \frac{1}{2} \int_{0}^{1} e^{-2x} dx$$
$$= \frac{e^{-2}}{2} + \frac{1}{2} \cdot \frac{1 - e^{-2}}{2} = \frac{1 + e^{-2}}{4}$$

- 2. Soit $n \in \mathbb{N}$. Pour $x \in [0,1]$, $1-x \in [0,1]$ et donc $(1-x)^{n+1} \le (1-x)^n$. Par croissance de l'intégrale, on en déduit que $I_{n+1} \le I_n$. Ceci signifie que (I_n) est décroissante.
- **3.** Soit $n \in \mathbb{N}$. Comme $\varphi_n \ge 0$ sur [0, 1], $I_n \ge 0$.
- **4.** Par décroissance de g, on a $g(x) \le 1$ pour tout $x \in [0,1]$. Par conséquent, $\varphi_n(x) \le (1-x)^n$ pour tout $x \in [0,1]$. Ainsi

$$0 \le I_n \le \int_0^1 (1-x)^n dx = \frac{1}{n+1}$$

D'après le théorème des gendarmes, (I_n) converge vers 0.

5. Soit $n \in \mathbb{N}$. Par intégration par parties :

$$2I_{n+1} = \int_0^1 2(1-x)^{n+1} e^{-2x} dx = \left[-(1-x)^{n+1} e^{-2x} \right]_0^1 + (n+1) \int_0^1 (1-x)^n e^{-2x} dx = 1 - (n+1)I_n$$

- **6.** On a donc $nI_n = 1 I_n 2I_{n+1}$. Puisque (I_n) converge vers 0, (I_{n+1}) converge également vers 0 (suite extraite) et (nI_n) converge vers 1.
- 7. On a $nI_n 1 = -I_n 2I_{n+1}$ donc

$$n(nI_n-1) = -nI_n - 2nI_{n+1} = -nI_n - 2(n+1)I_{n+1} + 2I_{n+1}$$

Comme (nI_n) converge vers 1, $((n+1)I_{n+1})$ converge également vers 1 (suite extraite) et puisque que (I_{n+1}) converge vers 0, la suite $(n(nI_n-1))$ converge vers -3.

8. Puisque $(n(nI_n-1))$ converge vers -3, on en déduit que nI_n-1 $\underset{n\to+\infty}{\sim} -\frac{3}{n}$ i.e. nI_n-1 $\underset{n\to+\infty}{=} -\frac{3}{n}+o\left(\frac{1}{n}\right)$. Puis il vient $I_n=\frac{1}{n\to+\infty}\frac{1}{n}-\frac{3}{n^2}+o\left(\frac{1}{n^2}\right)$. Ainsi $a=0,\ b=1$ et c=-3.

SOLUTION 3.

- **1.** f est continue sur \mathbb{R}^* comme quotient de fonctions continues dont le dénominateur ne s'annule pas sur \mathbb{R}^* . De plus, $\arctan t \sim t$ donc $\lim_{t\to 0} \frac{\arctan t}{t} = 1 = f(0)$ donc f est continue en 0. Ainsi f est continue sur \mathbb{R} . Enfin, \arctan étant impaire, f est paire.
- 2. On sait que $\frac{1}{1+t^2} = 1 + o(t)$. Par intégration, $\arctan t = \arctan 0 + t + o(t^2)$. On en déduit que f(t) = 1 + o(t). Ainsi f est dérivable en 0 et f'(0) = 0.
- 3. f est dérivable sur \mathbb{R}^* comment quotient de fonctions dérivables sur \mathbb{R}^* dont le dénominateur ne s'annule pas. De plus, f est dérivable en 0 d'après la question précédente. Ainsi f est dérivable sur \mathbb{R} . De plus, pour tout $f \in \mathbb{R}^*$,

$$f'(t) = \frac{1}{t(1+t^2)} - \frac{\arctan t}{t^2}$$

4. $u \mapsto u$ et $u \mapsto -\frac{1}{2(1+u^2)}$ sont de classe \mathscr{C}^1 sur \mathbb{R} de dérivées respectives $u \mapsto 1$ et $u \mapsto \frac{u}{(1+u^2)^2}$. Soit $t \in \mathbb{R}^*$. Par intégration par parties

$$\int_0^t \frac{u^2}{(1+u^2)^2} du = \left[-\frac{u}{2(1+u^2)} \right]_0^t + \int_0^t \frac{du}{2(1+u^2)} = -\frac{t}{2(1+t^2)} + \frac{\arctan t}{2} = -\frac{1}{2}t^2 f'(t)$$

Si t > 0, $\int_0^t \frac{u^2}{(1+u^2)^2} du > 0$ comme intégrale d'une fonction continue positive non constamment nulle et donc f'(t) < 0. Ainsi f est strictement décroissante sur \mathbb{R}_+ . Comme f est paire, f est strictement croissante sur \mathbb{R}_- .

5. Puisque $\lim_{+\infty} \arctan = \frac{\pi}{2}$, $\lim_{+\infty} f = 0$. Par parité, $\lim_{-\infty} f = 0$. Ainsi la courbe représentative de f admet l'axe des abscisses pour asymptote.

- **6.** Posons $F: x \mapsto \int_0^x f(t) \, dt$. Ainsi $\phi(x) = \frac{F(x)}{x}$ pour tout $x \in \mathbb{R}^*$. F est continue sur \mathbb{R} en tant que primitive de f. Ainsi ϕ est continue sur \mathbb{R}^* en tant que quotient de fonctions continues dont le dénominateur ne s'annule pas. De plus, F est dérivable en 0 donc $\lim_{x\to 0} \frac{F(x)-F(0)}{x-0} = F'(0)$ i.e. $\lim_{x\to 0} \frac{F(x)}{x} = f(0)$. Ainsi ϕ est continue en 0. Finalement, ϕ est continue sur \mathbb{R} . Posons u(x) = F(x) + F(-x) pour tout $x \in \mathbb{R}$. u est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$, u'(x) = F'(x) F'(-x) = f(x) f(-x) = 0. Ainsi u est constante sur \mathbb{R} égale à u(0) = 2F(0) = 0. On en déduit que F est impaire. Il s'ensuite que ϕ est paire.
- 7. Soit $x \in \mathbb{R}_+^*$. Comme f est décroissante sur [0, x] d'après la question 4, pour tout $t \in [0, x]$, $f(x) \le f(t) \le f(0)$. Par croissance de l'intégrale,

$$\int_0^x f(x) \, \mathrm{d}t \le \int_0^x f(t) \, \mathrm{d}t \le \int_0^x dt$$

et par suite

$$x f(x) \le x \phi(x) \le x$$

Puisque x > 0,

$$f(x) \le \phi(x) \le 1$$

L'inégalité est encore valable si $x \in \mathbb{R}_{-}^{*}$ puisque f et ϕ sont paires. Enfin, l'égalité est valable si x = 0 puisque $f(0) = \phi(0) = 1$.

Finalement, $f(x) \le \phi(x) \le 1$ pour tout $x \in \mathbb{R}$.

8. F est dérivable sur \mathbb{R} en tant que primitive de f. ϕ est alors dérivable sur \mathbb{R}^* comment quotient de fonctions dérivables sur \mathbb{R}^* dont le dénominateur ne s'annule pas. De plus, pour tout $x \in \mathbb{R}^*$,

$$\phi'(x) = \frac{F'(x)}{x} - \frac{F(x)}{x^2} = \frac{1}{x} (f(x) - \phi(x))$$

On sait d'après la question 2 que f(x) = 1 + o(x). Comme F est une primitive de f, $F(x) = F(0) + x + o(x^2)$. Or F(0) = 0 donc $F(x) = x + o(x^2)$. Par suite, $\phi(x) = 1 + o(x)$. Ainsi ϕ est dérivable en 0 et $\phi'(0) = 0$.

Puisque pour tout $x \in \mathbb{R}_+^*$, $f(x) \le \phi(x)$ et que $\phi'(x) = \frac{1}{x} (f(x) - \phi(x))$, ϕ' est négative sur \mathbb{R}_+^* et ϕ est donc décroissante sur \mathbb{R}_+ . Puisque ϕ est paire, ϕ est croissante sur \mathbb{R}_- .

9. Soit $x \in [1, +\infty[$. Pour tout $t \in [1, x[$, $0 \le \arctan t \le \frac{\pi}{2} \operatorname{donc} 0 \le f(t) \le \frac{\pi}{2t}$. Par croissance de l'intégrale

$$\int_{1}^{x} 0 \, \mathrm{d}t \leqslant \int_{1}^{x} f(t) \, \mathrm{d}t \leqslant \int_{1}^{x} \frac{\pi}{2t} \, \mathrm{d}t$$

ou encore

$$0 \le \int_{1}^{x} f(t) \, \mathrm{d}t \le \frac{\pi}{2} \ln x$$

puis

$$0 \le \frac{1}{x} \int_{1}^{x} f(t) \, \mathrm{d}t \le \frac{\pi}{2} \frac{\ln x}{x}$$

Par croissances comparées, $\lim_{x\to+\infty}\frac{\ln x}{x}=0$ et donc $\lim_{x\to+\infty}\frac{1}{x}\int_1^x f(t)\,\mathrm{d}t=0$ via le théorème des gendarmes. Enfin, pour tout $x\in\mathbb{R}^*$

$$\phi(x) = \frac{1}{x} \int_{0}^{1} f(t) dt + \frac{1}{x} \int_{1}^{x} f(t) dt$$

et $\lim_{x\to+\infty} \frac{1}{x} = 0$ donc $\lim_{x\to+\infty} \phi(x) = 0$.

- **10.** L'équation différentielle équivaut à xy' + xy = f(x) sur \mathbb{R}_+^* et sur \mathbb{R}_-^* ou encore à (xy)' = f(x). On en déduit que les solutions sur \mathbb{R}_+^* et sur \mathbb{R}_-^* sont les fonctions $x \mapsto \phi(x) + \frac{\lambda}{x}$ où λ décrit \mathbb{R} .
- 11. Soit y une éventuelle solution de $x^2y'+xy=\arctan x$ sur \mathbb{R} . La question 10 montre qu'il existe $(\lambda_1,\lambda_2)\in\mathbb{R}^2$ tel que $y(x)=\begin{cases} \phi(x)+\frac{\lambda_1}{x} & \text{si } x<0\\ \phi(x)+\frac{\lambda_2}{x} & \text{si } x>0 \end{cases}$. La continuité de y en 0 impose $\lambda_1=\lambda_2=0$. Ainsi ϕ et y coïncident sur \mathbb{R}^* . Puisque ces deux fonctions sont continues, elles coïncident également en 0 et sont donc égales.

Réciproquement, ϕ vérifie bien l'équation différentielle sur \mathbb{R} . C'est donc l'unique solution sur \mathbb{R} de l'équation différentielle $x^2y'+xy=\arctan x$.