

A discrete-time system  ${\cal H}$  is a transformation (a rule or formula) that maps a discrete-time input signal x into a discrete-time output signal y

$$y = \mathcal{H}\{x\}$$

$$x \longrightarrow \mathcal{H} \longrightarrow y$$

- Systems manipulate the information in signals
- Examples:
  - A speech recognition system converts acoustic waves of speech into text
  - · A radar system transforms the received radar pulse to estimate the position and velocity of targets
  - A functional magnetic resonance imaging (fMRI) system transforms measurements of electron spin into voxel-by-voxel estimates of brain activity
  - A 30 day moving average smooths out the day-to-day variability in a stock price

#### Signal Length and Systems



- Recall that there are two kinds of signals: infinite-length and finite-length
- Accordingly, we will consider two kinds of systems:
  - $lue{1}$  Systems that transform an infinite-length-signal x into an infinite-length signal y
  - 2 Systems that transform a length-N signal x into a length-N signal y (Such systems can also be used to process periodic signals with period N)
- For generality, we will assume that the input and output signals are complex valued

## System Examples (1)

Identity

Scaling

Offset

Square signal

Shift

Decimate

Square time

 $y[n] = x[n+2] \quad \forall n$ 

 $y[n] = x[2n] \quad \forall n$ 

 $y[n] = x[n^2] \quad \forall n$ 

 $y[n] = x[n] \quad \forall n$ 

 $y[n] = 2x[n] \quad \forall n$ 

 $y[n] = x[n] + 2 \quad \forall n$ 

 $y[n] = (x[n])^2 \quad \forall n$ 

#### System Examples (2)



■ Shift system ( $m \in \mathbb{Z}$  fixed)

$$y[n] = x[n-m] \quad \forall n$$

■ Moving average (combines shift, sum, scale)

$$y[n] = \frac{1}{2}(x[n] + x[n-1]) \quad \forall n$$

■ Recursive average

$$y[n] = x[n] + \alpha y[n-1] \quad \forall n$$

#### Summary

- Systems transform one signal into another to manipulate information
- We will consider two kinds of systems:
  - $lue{1}$  Systems that transform an infinite-length-signal x into an infinite-length signal y
  - 2 Systems that transform a length-N signal x into a length-N signal y (Such systems can also be used to process periodic signals with period N)



A system  $\mathcal{H}$  is (zero-state) **linear** if it satisfies the following two properties:

Scaling

$$\mathcal{H}\{\alpha x\} = \alpha \mathcal{H}\{x\} \quad \forall \ \alpha \in \mathbb{C}$$

$$x \longrightarrow \mathcal{H} \longrightarrow y \qquad \alpha x \longrightarrow \mathcal{H} \longrightarrow \alpha y$$

Additivity

If 
$$y_1 = \mathcal{H}\{x_1\}$$
 and  $y_2 = \mathcal{H}\{x_2\}$  then
$$\mathcal{H}\{x_1 + x_2\} = y_1 + y_2$$

$$x_1 \longrightarrow \mathcal{H} \longrightarrow y_1 \qquad x_2 \longrightarrow \mathcal{H} \longrightarrow y_2$$

$$x_1 + x_2 \longrightarrow \mathcal{H} \longrightarrow y_1 + y_2$$

#### **Linearity Notes**

A system that is not linear is called **nonlinear** 

■ To prove that a system is linear, you must prove rigorously that it has **both** the scaling and additivity properties for **arbitrary** input signals

■ To prove that a system is nonlinear, it is sufficient to exhibit a **counterexample** 

#### Example: Moving Average is Linear (Scaling)

$$x[n] \longrightarrow \mathcal{H} \longrightarrow y[n] = \frac{1}{2}(x[n] + x[n-1])$$

- Scaling: (Strategy to prove Scale input x by  $\alpha \in \mathbb{C}$ , compute output y via the formula at top, and verify that it is scaled as well)
  - Let

$$x'[n] = \alpha x[n], \quad \alpha \in \mathbb{C}$$

- Let y' denote the output when x' is input (that is,  $y' = \mathcal{H}\{x'\}$ )
- Then

$$y'[n] = \frac{1}{2}(x'[n] + x'[n-1]) = \frac{1}{2}(\alpha x[n] + \alpha x[n-1]) = \alpha \left(\frac{1}{2}(x[n] + x[n-1])\right) = \alpha y[n] \checkmark$$

#### Example: Moving Average is Linear (Additivity)

$$x[n] \longrightarrow \mathcal{H} \longrightarrow y[n] = \frac{1}{2}(x[n] + x[n-1])$$

- **Additivity:** (Strategy to prove Input two signals into the system and verify that the output equals the sum of the respective outputs)
  - Let

$$x'[n] = x_1[n] + x_2[n]$$

- Let  $y'/y_1/y_2$  denote the output when  $x'/x_1/x_2$  is input
- Then

$$y'[n] = \frac{1}{2}(x'[n] + x'[n-1]) = \frac{1}{2}(\{x_1[n] + x_2[n]\} + \{x_1[n-1] + x_2[n-1]\})$$
$$= \frac{1}{2}(x_1[n] + x_1[n-1]) + \frac{1}{2}(x_2[n] + x_2[n-1]) = y_1[n] + y_2[n] \checkmark$$

#### Example: Squaring is Nonlinear

$$x[n] \longrightarrow \mathcal{H} \longrightarrow y[n] = (x[n])^2$$

- Additivity: Input two signals into the system and see what happens
  - Let

$$y_1[n] = (x_1[n])^2, y_2[n] = (x_2[n])^2$$

Set

$$x'[n] = x_1[n] + x_2[n]$$

• Then

$$y'[n] = (x'[n])^2 = (x_1[n] + x_2[n])^2 = (x_1[n])^2 + 2x_1[n]x_2[n] + (x_2[n])^2 \neq y_1[n] + y_2[n]$$

• Nonlinear!

# Linear or Nonlinear? You Be the Judge! (1)

Identity

Scaling

Offset

Square signal

Shift

Decimate

Square time

 $y[n] = x[n+2] \quad \forall n$ 



 $y[n] = x[n] \quad \forall n$ 

 $y[n] = 2x[n] \quad \forall n$ 

 $y[n] = x[n] + 2 \quad \forall n$ 

 $y[n] = (x[n])^2 \quad \forall n$ 

#### Linear or Nonlinear? You Be the Judge! (2)

■ Shift system ( $m \in \mathbb{Z}$  fixed)

$$y[n] = x[n-m] \quad \forall n$$

Moving average (combines shift, sum, scale)

$$y[n] = \frac{1}{2}(x[n] + x[n-1]) \quad \forall n$$

Recursive average

$$y[n] = x[n] + \alpha y[n-1] \quad \forall n$$

#### Matrix Multiplication and Linear Systems

- Matrix multiplication (aka Linear Combination) is a fundamental signal processing system
- Fact 1: Matrix multiplications are linear systems (easy to show at home, but do it!)

$$y = \mathbf{H} x$$
$$y[n] = \sum_{m} [\mathbf{H}]_{n,m} x[m]$$

(Note: This formula applies for both infinite-length and finite-length signals)

- Fact 2: All linear systems can be expressed as matrix multiplications
- As a result, we will use the matrix viewpoint of linear systems extensively in the sequel
- Try at home: Express all of the linear systems in the examples above in matrix form

#### Matrix Multiplication and Linear Systems in Pictures

Linear system

$$y = \mathbf{H} x$$

$$y[n] = \sum_{m} [\mathbf{H}]_{n,m} x[m] = \sum_{m} h_{n,m} x[m]$$

where  $h_{n,m} = [\mathbf{H}]_{n,m}$  represents the row-n, column-m entry of the matrix  $\mathbf{H}$ 



#### System Output as a Linear Combination of Columns

■ Linear system

$$y = \mathbf{H} x$$

$$y[n] = \sum_{m} [\mathbf{H}]_{n,m} x[m] = \sum_{m} h_{n,m} x[m]$$

where  $h_{n,m} = [\mathbf{H}]_{n,m}$  represents the row-n, column-m entry of the matrix  $\mathbf{H}$ 



#### System Output as a Sequence of Inner Products

Linear system

$$y = \mathbf{H} x$$

$$y[n] = \sum_{m} [\mathbf{H}]_{n,m} x[m] = \sum_{m} h_{n,m} x[m]$$

where  $h_{n,m} = [\mathbf{H}]_{n,m}$  represents the row-n, column-m entry of the matrix  $\mathbf{H}$ 



#### Summary

- Linear systems satisfy (1) scaling and (2) additivity
- To show a system is <u>linear</u>, you have to prove it rigorously assuming arbitrary inputs (work!)
- To show a system is <u>nonlinear</u>, you can just exhibit a counterexample (often easy!)
- Linear systems ≡ matrix multiplication
  - Justifies our emphasis on linear vector spaces and matrices
  - ullet The output signal y equals the linear combination of the columns of  ${f H}$  weighted by the entries in x
  - Alternatively, the output value y[n] equals the inner product between row n of  ${\bf H}$  with x



A system  ${\cal H}$  processing infinite-length signals is **time-invariant** (shift-invariant) if a time shift of the input signal creates a corresponding time shift in the output signal



- Intuition: A time-invariant system behaves the same no matter when the input is applied
- A system that is not time-invariant is called **time-varying**

#### Example: Moving Average is Time-Invariant

$$x[n] \longrightarrow \mathcal{H} \longrightarrow y[n] = \frac{1}{2}(x[n] + x[n-1])$$

Let

$$x'[n] = x[n-q], \quad q \in \mathbb{Z}$$

- Let y' denote the output when x' is input (that is,  $y' = \mathcal{H}\{x'\}$ )
- Then

$$y'[n] = \frac{1}{2}(x'[n] + x'[n-1]) = \frac{1}{2}(x[n-q] + x[n-q-1]) = y[n-q] \checkmark$$

#### Example: Decimation is Time-Varying

$$x[n] \longrightarrow \mathcal{H} \longrightarrow y[n] = x[2n]$$

- This system is time-varying; demonstrate with a counter-example
- Let

$$x'[n] = x[n-1]$$

- Let y' denote the output when x' is input (that is,  $y' = \mathcal{H}\{x'\}$ )
- Then

$$y'[n] = x'[2n] = x[2n-1] \neq x[2(n-1)] = y[n-1]$$

# Time-Invariant or Time-Varying? You Be the Judge! (1)

Identity

Scaling

Offset

Square signal

Shift

Decimate

Square time

 $y[n] = x[n+2] \quad \forall n$ 

 $y[n] = x[2n] \quad \forall n$ 

 $y[n] = x[n] \quad \forall n$ 

 $y[n] = 2x[n] \quad \forall n$ 

 $y[n] = x[n] + 2 \quad \forall n$ 

 $y[n] = (x[n])^2 \quad \forall n$ 

 $y[n] = x[n^2] \quad \forall n$ 

### Time-Invariant or Time-Varying? You Be the Judge! (2)

• Shift system ( $m \in \mathbb{Z}$  fixed)

$$y[n] = x[n-m] \quad \forall n$$

■ Moving average (combines shift, sum, scale)

$$y[n] = \frac{1}{2}(x[n] + x[n-1]) \quad \forall n$$

Recursive average

$$y[n] = x[n] + \alpha y[n-1] \quad \forall n$$

A system  ${\mathcal H}$  processing length-N signals is **time-invariant** (shift-invariant) if a circular time shift of the input signal creates a corresponding circular time shift in the output signal



- Intuition: A time-invariant system behaves the same no matter when the input is applied
- A system that is not time-invariant is called **time-varying**

#### Summary

- Time-invariant systems behave the same no matter when the input is applied
- Infinite-length signals: Invariance with respect to any integer time shift
- Finite-length signals: Invariance with respect to a circular time shift
- To show a system is <u>time-invariant</u>, you have to prove it rigorously assuming arbitrary inputs (work!)
- To show a system is time-varying, you can just exhibit a counterexample (often easy!)



A system  ${\cal H}$  is **linear time-invariant** (LTI) if it is both linear and time-invariant

■ LTI systems are the foundation of signal processing and the main subject of this course

# LTI or Not? You Be the Judge! (1)

Identity

# Decimate

Square time

$$y[n] = (x[n])^2 \quad \forall n$$

 $y[n] = x[n] \quad \forall n$ 

$$y[n] = x[n+2] \quad \forall n$$

$$y[n] = x[2n] \quad \forall n$$

$$\forall n$$

$$\forall n$$

$$\forall \imath$$

$$\forall n$$

$$y[n] = x[n] + 2 \quad \forall n$$

$$y[n] = 2x[n] \quad \forall n$$

- $y[n] = x[n^2] \quad \forall n$

#### LTI or Not? You Be the Judge! (2)

■ Shift system ( $m \in \mathbb{Z}$  fixed)

$$y[n] = x[n-m] \quad \forall n$$

Moving average (combines shift, sum, scale)

$$y[n] = \frac{1}{2}(x[n] + x[n-1]) \quad \forall n$$

Recursive average

$$y[n] = x[n] + \alpha y[n-1] \quad \forall n$$

#### Matrix Multiplication and LTI Systems (Infinite-Length Signals)

Recall that all linear systems can be expressed as matrix multiplications

$$y = \mathbf{H} x$$
$$y[n] = \sum_{m} [\mathbf{H}]_{n,m} x[m]$$

Here  $\mathbf{H}$  is a matrix with infinitely many rows and columns

Let  $h_{n,m} = [\mathbf{H}]_{n,m}$  represent the row-n, column-m entry of the matrix  $\mathbf{H}$ 

$$y[n] = \sum_{m} h_{n,m} x[m]$$

lacktriangle When the  $\underline{\text{linear system}}$  is also  $\underline{\text{shift invariant}}$ , lacktriangle has a special structure

#### Matrix Structure of LTI Systems (Infinite-Length Signals)

Linear system for infinite-length signals can be expressed as

$$y[n] = \mathcal{H}\{x[n]\} = \sum_{m=-\infty}^{\infty} h_{n,m} x[m], -\infty < n < \infty$$

■ Enforcing time invariance implies that for all  $q \in \mathbb{Z}$ 

$$\mathcal{H}\{x[n-q]\} = \sum_{m=0}^{\infty} h_{n,m} x[m-q] = y[n-q]$$

■ Change of variables: n' = n - q and m' = m - q

$$\mathcal{H}\{x[n']\} = \sum_{m'=1}^{\infty} h_{n'+q,m'+q} x[m'] = y[n']$$

Comparing first and third equations, we see that for an LTI system

$$h_{n,m} = h_{n+q,m+q} \quad \forall q \in \mathbb{Z}$$

#### LTI Systems are Toeplitz Matrices (Infinite-Length Signals) (1)

For an LTI system with infinite-length signals

$$h_{n,m} = h_{n+q,m+q} \quad \forall \ q \in \mathbb{Z}$$

$$\mathbf{H} = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ \cdots & h_{-1,-1} & h_{-1,0} & h_{-1,1} & \cdots \\ \cdots & h_{0,-1} & h_{0,0} & h_{0,1} & \cdots \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ \cdots & h_{0,0} & h_{-1,0} & h_{-2,0} & \cdots \\ \cdots & h_{1,0} & h_{0,0} & h_{-1,0} & \cdots \\ \cdots & h_{2,0} & h_{1,0} & h_{0,0} & \cdots \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

■ Entries on the matrix <u>diagonals</u> are the same – **Toeplitz matrix** 

#### LTI Systems are Toeplitz Matrices (Infinite-Length Signals) (2)

All of the entries in a Toeplitz matrix can be expressed in terms of the entries of the

```
• 0-th column: h[n] = h_{n,0}
```

• Time-reversed 0-th row:  $h[m] = h_{0,-m}$ 

$$\mathbf{H} \ = \ \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ \cdots & h_{0,0} & h_{-1,0} & h_{-1,1} & \cdots \\ \cdots & h_{1,0} & h_{0,0} & h_{-1,0} & \cdots \\ \cdots & h_{2,0} & h_{1,0} & h_{0,0} & \cdots \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} \ = \ \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ \cdots & h[0] & h[-1] & h[-2] & \cdots \\ \cdots & h[1] & h[0] & h[-1] & \cdots \\ \cdots & h[2] & h[1] & h[0] & \cdots \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

■ Row-n, column-m entry of the matrix  $[\mathbf{H}]_{n,m} = h_{n,m} = h[n-m]$ 

#### LTI Systems are Toeplitz Matrices (Infinite-Length Signals) (3)

All of the entries in a Toeplitz matrix can be expressed in terms of the entries of the

• 0-th column:  $h[n] = h_{n,0}$  (this is an infinite-length signal/column vector; call it h)

• Time-reversed 0-th row:  $h[m] = h_{0,-m}$ 

Example: Snippet of a Toeplitz matrix

$$[\mathbf{H}]_{n,m} = h_{n,m}$$
$$= h[n-m]$$

Note the diagonals!





# Matrix Structure of LTI Systems (Finite-Length Signals)

lacktriangle Linear system for signals of length N can be expressed as

$$y[n] = \mathcal{H}\{x[n]\} = \sum_{n=0}^{N-1} h_{n,m} x[m], \quad 0 \le n \le N-1$$

■ Enforcing time invariance implies that for all  $q \in \mathbb{Z}$ 

$$\mathcal{H}\{x[(n-q)_N]\} = \sum_{n=1}^{N-1} h_{n,m} x[(m-q)_N] = y[(n-q)_N]$$

■ Change of variables: n' = n - q and m' = m - q

$$\mathcal{H}\{x[(n')_N]\} = \sum_{m=1}^{M-1-q} h_{(n'+q)_N,(m'+q)_N} x[(m')_N] = y[(n')_N]$$

Comparing first and third equations, we see that for an LTI system

$$h_{n,m} = h_{(n+q)_N,(m+q)_N} \quad \forall q \in \mathbb{Z}$$

# LTI Systems are Circulent Matrices (Finite-Length Signals) (1)

lacktriangle For an LTI system with length-N signals

$$h_{n,m} = h_{(n+q)_N,(m+q)_N} \quad \forall q \in \mathbb{Z}$$

$$\begin{bmatrix} h_{0,0} & h_{0,1} & h_{0,2} & \cdots & h_{0,N-1} \\ h_{1,0} & h_{1,1} & h_{1,2} & \cdots & h_{1,N-1} \\ h_{2,0} & h_{2,1} & h_{2,2} & \cdots & h_{2,N-1} \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ h_{N-1,0} & h_{N-1,1} & h_{N-1,2} & \cdots & h_{N-1,N-1} \end{bmatrix} = \begin{bmatrix} h_{0,0} & h_{N-1,0} & h_{N-2,0} & \cdots & h_{1,0} \\ h_{1,0} & h_{0,0} & h_{N-1,0} & \cdots & h_{2,0} \\ h_{2,0} & h_{1,0} & h_{0,0} & \cdots & h_{3,0} \\ \vdots & \vdots & \vdots & & \vdots \\ h_{N-1,0} & h_{N-2,0} & h_{N-3,0} & \cdots & h_{0,0} \end{bmatrix}$$

■ Entries on the matrix <u>diagonals</u> are the same + <u>circular wraparound</u> - **circulent matrix** 

# LTI Systems are Circulent Matrices (Finite-Length Signals) (2)

All of the entries in a circulent matrix can be expressed in terms of the entries of the

```
• 0-th column: h[n] = h_{n,0}
```

 $\bullet$  Circularly time-reversed  $0\text{-th row}\colon\quad h[m]=h_{0,(-m)_N}$ 

$$\begin{bmatrix} h_{0,0} & h_{N-1,0} & h_{N-2,0} & \cdots & h_{1,0} \\ h_{1,0} & h_{0,0} & h_{N-1,0} & \cdots & h_{2,0} \\ h_{2,0} & h_{1,0} & h_{0,0} & \cdots & h_{3,0} \\ \vdots & \vdots & \vdots & & \vdots \\ h_{N-1,0} & h_{N-2,0} & h_{N-3,0} & \cdots & h_{0,0} \end{bmatrix} = \begin{bmatrix} h[0] & h[N-1] & h[N-2] & \cdots & h[1] \\ h[1] & h[0] & h[N-1] & \cdots & h[2] \\ h[2] & h[1] & h[0] & \cdots & h[3] \\ \vdots & \vdots & \vdots & & \vdots \\ h[N-1] & h[N-2] & h[N-3] & \cdots & h[0] \end{bmatrix}$$

 $\blacksquare$  Row-n, column-m entry of the matrix  $[\mathbf{H}]_{n,m} = h_{n,m} = h[(n-m)_N]$ 

# LTI Systems are Circulent Matrices (Finite-Length Signals) (3)

- All of the entries in a circulent matrix can be expressed in terms of the entries of the
  - 0-th column:  $h[n] = h_{n,0}$  (this is a signal/column vector; call it h)
  - ullet Circularly time-reversed 0-th row:  $h[m]=h_{0,-m}$

■ Example: Circulent matrix

$$[\mathbf{H}]_{n,m} = h_{n,m}$$
$$= h[(n-m)_N]$$

Note the diagonals and circulent shifts!





## Summary

■ LTI = Linear + Time-Invariant

■ Fundamental signal processing system (and our focus for the rest of the course)

- Infinite-length signals: System = Toeplitz matrix H
  - $\bullet \ [\mathbf{H}]_{n,m} = h_{n,m} = h[n-m]$

- Finite-length signals: System = Circulent matrix **H** 
  - $[\mathbf{H}]_{n,m} = h_{n,m} = h[(n-m)_N]$



## Recall: LTI Systems are Toeplitz Matrices (Infinite-Length Signals)



- LTI system = multiplication by infinitely large Toeplitz matrix  $\mathbf{H}$ :  $y = \mathbf{H}x$
- All of the entries in H can be obtained from the
  - 0-th column:  $h[n] = h_{n,0}$  (this is a signal/column vector; call it h)
  - Time-reversed 0-th row:  $h[m] = h_{0,-m}$
- Columns/rows of H are shifted versions of the 0-th column/row





#### Impulse Response (Infinite-Length Signals)

- The 0-th column of the matrix  $\mathbf{H}$  the column vector h has a special interpretation
- Compute the output when the input is a **delta function** (impulse):  $\delta[n] = \begin{cases} 1 & n = 0 \\ 0 & \text{otherwise} \end{cases}$



lacktriangle This suggests that we call h the **impulse response** of the system

## Impulse Response from Formulas (Infinite-Length Signals)

■ General formula for LTI matrix multiplication

$$y[n] = \sum_{m=-\infty}^{\infty} h[n-m] x[m]$$

• Let the input  $x[n] = \delta[n]$  and compute

$$\sum_{m=-\infty}^{\infty} h[n-m] \, \delta[m] = h[n] \, \checkmark$$

$$\delta \longrightarrow \mathcal{H} \longrightarrow h$$

 The impulse response characterizes an LTI system (that is, carries all of the information contained in the matrix H)

$$c \longrightarrow h \longrightarrow b$$

# Example: Impulse Response of the Scaling System



- Consider system for infinite-length signals; finite-length signal case is similar
- Scaling system:  $y[n] = \mathcal{H}\{x[n]\} = 2x[n]$
- $\blacksquare$  Impulse response:  $h[n] \ = \ \mathcal{H}\{\delta[n]\} \ = \ 2\,\delta[n]$
- Toeplitz system matrix:

$$[\mathbf{H}]_{n,m} = h[n-m] = 2\,\delta[n-m]$$





## Example: Impulse Response of the Shift System



 Consider system for infinite-length signals; finite-length signal case uses circular shift

- Scaling system:  $y[n] = \mathcal{H}\{x[n]\} = x[n-2]$
- lacksquare Impulse response:  $h[n] = \mathcal{H}\{\delta[n]\} = \delta[n-2]$
- Toeplitz system matrix:

$$[\mathbf{H}]_{n,m} = h[n-m] = \delta[n-m-2]$$



# Example: Impulse Response of the Moving Average System



 Consider system for infinite-length signals; finite-length signal case is similar



- Moving average system:  $y[n] = \mathcal{H}\{x[n]\} = \frac{1}{2}(x[n] + x[n-1])$
- $\blacksquare$  Impulse response:  $h[n] = \mathcal{H}\{\delta[n]\} = \frac{1}{2}\left(\delta[n] + \delta[n-1]\right)$
- Toeplitz system matrix:

$$[\mathbf{H}]_{n,m} = h[n-m] = \frac{1}{2} \left( \delta[n-m] + \delta[n-m-1] \right)$$



## Example: Impulse Response of the Recursive Average System



 Consider system for infinite-length signals; finite-length signal case is similar



- Recursive average system:  $y[n] = \mathcal{H}\{x[n]\} = x[n] + \alpha y[n-1]$
- Impulse response:  $h[n] = \mathcal{H}\{\delta[n]\} = \alpha^n u[n]$
- Toeplitz system matrix:

$$[\mathbf{H}]_{n,m} = h[n-m] = \alpha^{n-m} u[n-m]$$



## Recall: LTI Systems are Circulent Matrices (Finite-Length Signals)



- LTI system = multiplication by  $N \times N$  circulent matrix  $\mathbf{H}$ :  $y = \mathbf{H}x$
- All of the entries in H can be obtained from the
  - 0-th column:  $h[n] = h_{n,0}$  (this is a signal/column vector; call it h)
  - Time-reversed 0-th row:  $h[m] = h_{0,(-m)_N}$
- $[\mathbf{H}]_{n,m} = h_{n,m}$  $= h[(n-m)_N]$
- Columns/rows of H are circularly shifted versions of the 0-th column/row





#### Impulse Response (Finite-Length Signals)

- The 0-th column of the matrix  $\mathbf{H}$  the column vector h has a special interpretation
- lacktriangle Compute the output when the input is a **delta function** (impulse):  $\delta[n] = egin{cases} 1 & n=0 \\ 0 & \text{otherwise} \end{cases}$



lacktriangle This suggests that we call h the **impulse response** of the system

#### Impulse Response from Formulas (Finite-Length Signals)

General formula for LTI matrix multiplication

$$y[n] = \sum_{m=0}^{N-1} h[(n-m)_N] x[m]$$

■ Let the input  $x[n] = \delta[n]$  and compute

$$\sum_{m=0}^{N-1} h[(n-m)_N] \, \delta[m] = h[n] \, \checkmark$$

$$\delta \longrightarrow \mathcal{H} \longrightarrow h$$

■ The impulse response characterizes an LTI system (that is, carries all of the information contained in the matrix H)

$$:\longrightarrow h \quad \longmapsto i$$

## Summary

- lacktriangle LTI system = multiplication by infinite-sized Toeplitz or N imes N circulent matrix lacktriangle: y = lacktriangle Hx
- lacktriangle The **impulse response** h of an LTI system = the response to an impulse  $\delta$ 
  - The impulse response is the 0-th column of the matrix H
  - The impulse response characterizes an LTI system



- $lue{}$  Formula for the output signal y in terms of the input signal x and the impulse response h
  - Infinite-length signals

$$y[n] = \sum_{m=-\infty}^{\infty} h[n-m] x[m], -\infty < n < \infty$$

• Length-N signals

$$y[n] = \sum_{n=0}^{N-1} h[(n-m)_N] x[m], \quad 0 \le n \le N-1$$



## Three Ways to Compute the Output of an LTI System Given the Input



- II If  $\mathcal H$  is defined in terms of a formula or **algorithm**, apply the input x and compute y[n] at each time point  $n\in\mathbb Z$ 
  - This is how systems are usually applied in computer code and hardware
- 2 Find the impulse response h (by inputting  $x[n] = \delta[n]$ ), form the **Toeplitz system matrix H**, and multiply by the (infinite-length) input signal vector x to obtain  $y = \mathbf{H} x$ 
  - This is not usually practical but is useful for conceptual purposes
- f B Find the impulse response h and apply the formula for matrix/vector product for each  $n\in\mathbb{Z}$

$$y[n] = \sum_{m=-\infty}^{\infty} h[n-m] x[m] = x[n] * h[n]$$

This is called convolution and is both conceptually and practically useful (Matlab command: conv)

## Convolution as a Sequence of Inner Products



Convolution formula

$$y[n] = x[n] * h[n] = \sum_{m=-\infty}^{\infty} h[n-m] x[m]$$

- To compute the entry y[n] in the output vector y:
  - I Time reverse the impulse response vector h and shift it n time steps to the right (delay)
  - Compute the inner product between the shifted impulse response and the input vector x
- $\blacksquare$  Repeat for every n



## A Seven-Step Program for Computing Convolution By Hand

$$y[n] = x[n] * h[n] = \sum_{m=-\infty}^{\infty} h[n-m] x[m]$$

- **Step 1:** Decide which of x or h you will flip and shift; you have a choice since x\*h=h\*x
- **Step 2:** Plot x[m] as a function of m
- **Step 3:** Plot the time-reversed impulse response h[-m]
- **Step 4:** To compute y at the time point n, plot the time-reversed impulse response after it has been shifted to the right (delayed) by n time units: h[-(m-n)] = h[n-m]
- Step 5: y[n] = the inner product between the signals x[m] and h[n-m] (Note: for complex signals, do not complex conjugate the second signal in the inner product)
- **Step 6:** Repeat for all n of interest (potentially all  $n \in \mathbb{Z}$ )
- **Step 7:** Plot y[n] and perform a reality check to make sure your answer seems reasonable

## First Convolution Example (1)

$$y[n] = x[n] * h[n] = \sum_{m=-\infty}^{\infty} h[n-m] x[m]$$

Convolve a unit pulse with itself



## First Convolution Example (2)

$$y[n] = x[n] * h[n] = \sum_{m=-\infty}^{\infty} h[n-m] x[m]$$







## A Seven-Step Program for Computing Convolution By Hand

$$y[n] = x[n] * h[n] = \sum_{m=-\infty}^{\infty} h[n-m] x[m]$$

- **Step 1:** Decide which of x or h you will flip and shift; you have a choice since x\*h=h\*x
- **Step 2:** Plot x[m] as a function of m
- **Step 3:** Plot the time-reversed impulse response h[-m]
- **Step 4:** To compute y at the time point n, plot the time-reversed impulse response after it has been shifted to the right (delayed) by n time units: h[-(m-n)] = h[n-m]
- Step 5: y[n] = the inner product between the signals x[m] and h[n-m] (Note: for complex signals, do not complex conjugate the second signal in the inner product)
- **Step 6:** Repeat for all n of interest (potentially all  $n \in \mathbb{Z}$ )
- **Step 7:** Plot y[n] and perform a reality check to make sure your answer seems reasonable

# Second Convolution Example (1)

■ Recall the recursive average system

$$y[n] = x[n] + \frac{1}{2}y[n-1]$$

and its impulse response  $h[n] = \left(\frac{1}{2}\right)^n u[n]$ 



lacksquare Compute the output y when the input is a unit step x[n]=u[n]



# Second Convolution Example (2)

$$y[n] = h[n] * x[n] = \sum_{m=-\infty}^{\infty} h[m] x[n-m]$$

Recall the super useful formula for the finite geometric series

$$\sum_{k=N}^{N_2} a^k = \frac{a^{N_1} - a^{N_2 + 1}}{1 - a}, \quad N_1 \le N_2$$

# Second Convolution Example (3)

$$y[n] = h[n] * x[n] = \sum_{m=-\infty}^{\infty} h[m] x[n-m]$$





#### Summary

**Convolution** formula for the output y of an LTI system given the input x and the impulse response h (infinite-length signals)

$$y[n] = x[n] * h[n] = \sum_{m=-\infty}^{\infty} h[n-m] x[m]$$

- Convolution is a sequence of inner products between the signal and the shifted, time-reversed impulse response
- Seven-step program for computing convolution by hand
- Check your work and compute large convolutions using Matlab command conv
- Practice makes perfect!



## Circular Convolution as a Sequence of Inner Products



Convolution formula

$$y[n] = x[n] \circledast h[n] = \sum_{m=0}^{N-1} h[(n-m)_N] x[m]$$

- To compute the entry y[n] in the output vector y:
  - **Circularly time reverse** the impulse response vector h and **circularly shift** it n time steps to the right (delay)
  - 2 Compute the **inner product** between the shifted impulse response and the input vector  $\boldsymbol{x}$
- $\blacksquare$  Repeat for every n



## A Seven-Step Program for Computing Circular Convolution By Hand

$$y[n] = x[n] \circledast h[n] = \sum_{m=0}^{N-1} h[(n-m)_N] x[m]$$

- **Step 1:** Decide which of x or h you will flip and shift; you have a choice since x\*h=h\*x
- **Step 2:** Plot x[m] as a function of m on a clock with N "hours"
- **Step 3:** Plot the circularly time-reversed impulse response  $h[(-m)_N]$  on a clock with N "hours"
- Step 4: To compute y at the time point n, plot the time-reversed impulse response after it has been shifted counter-clockwise (delayed) by n time units:  $h[(-(m-n))_N] = h[(n-m)_N]$
- Step 5: y[n] = the inner product between the signals x[m] and  $h[(n-m)_N]$  (Note: for complex signals, do not complex conjugate the second signal in the inner product)
- **Step 6:** Repeat for all n = 0, 1, ..., N 1
- **Step 7:** Plot y[n] and perform a reality check to make sure your answer seems reasonable

# Circular Convolution Example (1)

$$y[n] = x[n] \circledast h[n] = \sum_{m=0}^{N-1} h[(n-m)_N] x[m]$$

lacksquare For N=8, circularly convolve a sinusoid x and a ramp h



# Circular Convolution Example (2)

$$y[n] = x[n] \circledast h[n] = \sum_{n=1}^{N-1} h[(n-m)_N] x[m]$$





#### Summary

**Circular convolution** formula for the output y of an LTI system given the input x and the impulse response h (length-N signals)

$$y[n] = x[n] \circledast h[n] = \sum_{m=0}^{N-1} h[(n-m)_N] x[m]$$

- Circular convolution is a sequence of inner products between the signal and the circularly shifted, time-reversed impulse response
- Seven-step program for computing circular convolution by hand
- Check your work and compute large circular convolutions using Matlab command cconv
- Practice makes perfect!



### Properties of Convolution

$$x \longrightarrow h \longrightarrow y$$

- $\blacksquare$  Input signal x, LTI system impulse response h, and output signal y are related by the **convolution** 
  - Infinite-length signals

$$y[n] = x[n] * h[n] = \sum_{m=-\infty}^{\infty} h[n-m] x[m], -\infty < n < \infty$$

ullet Length-N signals

$$y[n] = x[n] \circledast h[n] = \sum_{m=0}^{N-1} h[(n-m)_N] x[m], \quad 0 \le n \le N-1$$

- Thanks to the Toeplitz/circulent structure of LTI systems, convolution has very special properties
- We will emphasize infinite-length convolution, but similar arguments hold for circular convolution except where noted

#### Convolution is Commutative

- **Fact:** Convolution is commutative: x \* h = h \* x
- These block diagrams are equivalent:  $x \longrightarrow h \longrightarrow y \qquad h \longrightarrow x \longrightarrow y$
- lacktriangle Enables us to pick either h or x to flip and shift (or stack into a matrix) when convolving
- To prove, start with the convolution formula

$$y[n] = \sum_{m=-\infty}^{\infty} h[n-m] x[m] = x[n] * h[n]$$

and change variables to  $k = n - m \implies m = n - k$ 

$$y[n] = \sum_{k=-\infty}^{\infty} h[k] x[n-k] = h[n] * x[n] \checkmark$$

#### Cascade Connection of LTI Systems

■ Impulse response of the **cascade** (aka series connection) of two LTI systems:  $y = \mathbf{H}_1 \mathbf{H}_2 x$ 



- Interpretation: The product of two Toeplitz/circulent matrices is a Toeplitz/circulent matrix
- Easy proof by picture; find impulse response the old school way

$$\delta \longrightarrow h_1 \longrightarrow h_1 \longrightarrow h_2 \longrightarrow h_1 * h_2$$

#### Parallel Connection of LTI Systems

■ Impulse response of the **parallel connection** of two LTI systems  $y = (\mathbf{H}_1 + \mathbf{H}_2) x$ 



Proof is an easy application of the linearity of an LTI system

## Example: Impulse Response of a Complicated Connection of LTI Systems

■ Compute the overall effective impulse response of the following system



A system  $\mathcal H$  is **causal** if the output y[n] at time n depends only the input x[m] for times  $m \leq n$ . In words, causal systems do not look into the future

**Fact:** An LTI system is causal if its impulse response is causal: h[n] = 0 for n < 0



■ To prove, note that the convolution

$$y[n] = \sum_{m=-\infty}^{\infty} h[n-m] x[m]$$

does not look into the future if h[n-m]=0 when m>n; equivalently, h[n']=0 when n'<0

### Causal System Matrix

**Fact:** An LTI system is causal if its impulse response is causal: h[n] = 0 for n < 0



■ Toeplitz system matrix is lower triangular



The signal x has **support interval**  $[N_1,N_2]$ ,  $N_1 \leq N_2$ , if x[n]=0 for all  $n < N_1$  and  $n > N_2$ . The **duration**  $D_x$  of x equals  $N_2 - N_1 + 1$ 

lacksquare Example: A signal with support interval [-5,5] and duration 11 samples



■ Fact: If x has duration  $D_x$  samples and h has duration  $D_h$  samples, then the convolution y = x \* h has duration at most  $D_x + D_h - 1$  samples (proof by picture is simple)

An LTI system has a **finite impulse response** (FIR) if the duration of its impulse response h is finite

**Example:** Moving average system  $y[n] = \mathcal{H}\{x[n]\} = \frac{1}{2}(x[n] + x[n-1])$ 



An LTI system has an **infinite impulse response** (IIR) if the duration of its impulse response h is infinite

Example: Recursive average system

$$y[n] = \mathcal{H}\{x[n]\} = x[n] + \alpha y[n-1]$$



■ Note: Obviously the FIR/IIR distinction applies only to infinite-length signals

#### Implementing Infinite-Length Convolution with Circular Convolution

- Consider two infinite-length signals: x has duration  $D_x$  samples and h has duration  $D_h$  samples,  $D_x, D_h < \infty$
- Recall that their infinite-length convolution y = x \* h has duration at most  $D_x + D_h 1$  samples
- Armed with this fact, we can implement infinite-length convolution using circular convolution
  - **I** Extract the  $D_x$ -sample support interval of x and zero pad so that the resulting signal x' is of length  $D_x + D_h 1$
  - **2** Perform the same operations on h to obtain h'
  - **3** Circularly convolve  $x' \circledast h'$  to obtain y'
- Fact: The values of the signal y' will coincide with those of the infinite-length convolution y = x \* h within its support interval
- How does it work? The zero padding effectively converts circular shifts (finite-length signals) into regular shifts (infinite-length signals)
   (Easy to try out in Matlab!)

#### Summary

- Convolution has very special and beautiful properties
- Convolution is commutative
- Convolutions (LTI systems) can be connected in cascade and parallel
- An LTI system is causal if its impulse response is causal
- LTI systems are either FIR or IIR
- Can implement infinite-length convolution using circular convolution when the signals have finite duration (important later for "fast convolution" using the FFT)



#### Convolution in Matlab

■ You can build your intuition and solve real-world problems using Matlab's convolution functions

Matlab's conv command implements infinite-length convolution

$$y[n] = x[n] * h[n] = \sum_{m=-\infty}^{\infty} h[n-m] x[m]$$

by implicitly infinitely zero-padding the signal vectors; signal lengths need not be the same

■ Matlab's cconv command implements length-N circular convolution

$$y[n] = x[n] \circledast h[n] = \sum_{m=0}^{N-1} h[(n-m)_N] x[m]$$



## Stable Systems (1)

■ With a stable system, a "well-behaved" input always produces a "well-behaved" output



- Stability is essential to ensuring the proper and safe operation of myriad systems
  - Steering systems
  - Braking systems
  - Robotic navigation
  - Modern aircraft
  - International Space Station
  - Internet IP packet communication (TCP) ...

## Stable Systems (2)

■ With a stable system, a "well-behaved" input always produces a "well-behaved" output

"well-behaved" 
$$x \longrightarrow h \longrightarrow$$
 "well-behaved"  $y$ 

Example: Recall the recursive average system  $y[n] = \mathcal{H}\{x[n]\} = x[n] + \alpha y[n-1]$  Consider a step function input x[n] = u[n]



### Well-Behaved Signals

■ With a stable system, a "well-behaved" input always produces a "well-behaved" output

"well-behaved" 
$$x \longrightarrow h \longrightarrow$$
 "well-behaved"  $y$ 

 How to measure how "well-behaved" a signal is? Different measures give different notions of stability

lacktriangle One reasonable measure: A signal x is well behaved if it is **bounded** (recall that  $\sup$  is like  $\max$ )

$$||x||_{\infty} = \sup_{n} |x[n]| < \infty$$

# Bounded-Input Bounded-Output (BIBO) Stability



## BIBO Stability (1)

inpi

DEFINITION

An LTI system is **bounded-input bounded-output (BIBO) stable** if a bounded input x always produces a bounded output y



■ Bounded input and output means  $\|x\|_{\infty} < \infty$  and  $\|y\|_{\infty} < \infty$ , or that there exist constants  $A, C < \infty$  such that |x[n]| < A and |y[n]| < C for all n







# BIBO Stability (2)

An LTI system is  ${\bf bounded\text{-}input\ bounded\text{-}output\ (BIBO)}$  stable if a bounded input x always produces a bounded output y

bounded  $x \longrightarrow h \longrightarrow \text{bounded } y$ 

 $\blacksquare$  Bounded input and output means  $\|x\|_{\infty} < \infty$  and  $\|y\|_{\infty} < \infty$ 



**Fact:** An LTI system with impulse response h is BIBO stable if and only if

$$||h||_1 = \sum_{n=-\infty}^{\infty} |h[n| < \infty$$

DEFINITION

### BIBO Stability - Sufficient Condition

- Prove that  $\underline{\text{if } \|h\|_1 < \infty}$  then the system is BIBO stable for any input  $\|x\|_\infty < \infty$  the output  $\|y\|_\infty < \infty$
- Recall that  $||x||_{\infty} < \infty$  means there exist a constant A such that  $|x[n]| < A < \infty$  for all n
- Let  $||h||_1 = \sum_{n=-\infty}^{\infty} |h[n]| = B < \infty$
- $\blacksquare$  Compute a bound on |y[n]| using the convolution of x and h and the bounds A and B

$$|y[n]| = \left| \sum_{m=-\infty}^{\infty} h[n-m] x[m] \right| < \sum_{m=-\infty}^{\infty} |h[n-m]| |x[m]|$$

$$< \sum_{m=-\infty}^{\infty} |h[n-m]| A = A \sum_{k=-\infty}^{\infty} |h[k]| = AB = C < \infty$$

■ Since  $|y[n]| < C < \infty$  for all n,  $||y||_{\infty} < \infty$  ✓

### BIBO Stability – Necessary Condition (1)

- Prove that  $\underline{\text{if } \|h\|_1 = \infty}$  then the system is  $\underline{\text{not}}$  BIBO stable there exists an input  $\|x\|_{\infty} < \infty$  such that the output  $\|y\|_{\infty} = \infty$ 
  - Assume that x and h are real-valued; the proof for complex-valued signals is nearly identical
- Given an impulse response h with  $||h||_1 = \infty$  (assume complex-valued), form the tricky special signal  $x[n] = \operatorname{sgn}(h[-n])$ 
  - x[n] is the  $\pm$  sign of the time-reversed impulse response h[-n]
  - Note that x is bounded:  $|x[n]| \le 1$  for all n







## BIBO Stability – Necessary Condition (2)

■ We are proving that that if  $||h||_1 = \infty$  then the system is not BIBO stable – there exists an input  $||x||_{\infty} < \infty$  such that the output  $||y||_{\infty} = \infty$ 

lacksquare Armed with the tricky special signal x, compute the output y[n] at the time point n=0

$$y[0] = \sum_{m=-\infty}^{\infty} h[0-m] x[m] = \sum_{m=-\infty}^{\infty} h[-m] \operatorname{sgn}(h[-m])$$
$$= \sum_{m=-\infty}^{\infty} |h[-m]| = \sum_{k=-\infty}^{\infty} |h[k]| = \infty$$

 $lue{}$  So, even though x was bounded, y is not bounded; so system is not BIBO stable

## BIBO System Examples (1)

- lacktriangle Absolute summability of the impulse response h determines whether an LTI systems is BIBO stable or not
- **Example:**  $h[n] = \begin{cases} \frac{1}{n} & n \ge 1\\ 0 & \text{otherwise} \end{cases}$

$$\|h\|_1 = \sum_{n=1}^{\infty} \left| \frac{1}{n} \right| = \infty \ \Rightarrow \ \operatorname{not} \ \mathsf{BIBO}$$

Example:  $h[n] = \begin{cases} \frac{1}{n^2} & n \ge 1\\ 0 & \text{otherwise} \end{cases}$ 

$$||h||_1 = \sum_{n=1}^{\infty} \left| \frac{1}{n^2} \right| = \frac{\pi^2}{6} \implies BIBO$$

■ Example:  $h \text{ FIR} \Rightarrow \text{BIBO}$ 







# BIBO System Examples (2)

- **Example:** Recall the recursive average system  $y[n] = \mathcal{H}\{x[n]\} = x[n] + \alpha y[n-1]$

- Impulse response:  $h[n] = \alpha^n u[n]$
- For  $|\alpha| < 1$

$$\|h\|_1 = \sum_{n=0}^{\infty} |\alpha|^n = \frac{1}{1-|\alpha|} < \infty \; \Rightarrow \; \mathsf{BIBO}$$



■ For  $|\alpha| > 1$ 

$$||h||_1 = \sum_{n=0}^{\infty} |\alpha|^n = \infty \Rightarrow \text{not BIBO}$$



#### Summary

 Signal processing applications typically dictate that the system be stable, meaning that "well-behaved inputs" produce "well-behaved outputs"

lacktriangle Measure "well-behavedness" of a signal using the  $\infty$ -norm (bounded signal)

■ BIBO stability: bounded inputs always produce bounded outputs iff the impulse response h is such that  $||h||_1 < \infty$ 

When a system is not BIBO stable, all hope is not lost; unstable systems can often by stabilized using feedback (more on this later)

### Acknowledgements

© 2014 Richard Baraniuk, All Rights Reserved