

SEQUENCE LISTING

5

<110> Conner, Timothy W.
Dubois, Patrice
Malven, Marianne
Masucci, James D.

10

<120> PLANT REGULATORY SEQUENCES FOR SELECTIVE CONTROL
OF GENE EXPRESSION

15

<130> 38-21(15678)B promoters

<140> n/a
<141> 2001-05-01

20

<150> US 60/201,255
<151> 2000-05-01

<160> 98

25

<170> PatentIn Ver. 2.1

<210> 1
<211> 22
<212> DNA
<213> Artificial Sequence

30

<220>
<223> Description of Artificial Sequence: adaptor
sequence

35

<400> 1
gtaatacgac tcactatagg gc 22

40

<210> 2
<211> 19
<212> DNA
<213> Artificial Sequence

45

<220>

<223> Description of Artificial Sequence: adaptor sequence

<400> 2

5 actatagggc acgcgtggt 19

<210> 3

<211> 30

10 <212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: adaptor

15 sequence

<400> 3

aggcaagct tggtcgacgg cccgggctgg 30

20

<210> 4

<211> 17

<212> DNA

<213> Artificial Sequence

25

<220>

<223> Description of Artificial Sequence: fully synthesized primer

30

<400> 4

ctgacggagg cgctacg 17

35

<210> 5

<211> 17

<212> DNA

<213> Artificial Sequence

40

<220>

<223> Description of Artificial Sequence: fully synthesized primer

45

<400> 5

gttgaagtgc atgcagc 17

<210> 6
<211> 17
<212> DNA
<213> Artificial Sequence

5 <220>
<223> Description of Artificial Sequence: fully
synthesized primer

10 <400> 6
cgtcggtat agattta 17

<210> 7
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
20 <223> Description of Artificial Sequence: fully
synthesized primer

<400> 7
ccatgactca cttcctg 17

<210> 8
<211> 17
<212> DNA
30 <213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: fully
synthesized primer

35 <400> 8
cgaatctgct acggatc 17

40 <210> 9
<211> 17
<212> DNA
<213> Artificial Sequence

45 <220>
<223> Description of Artificial Sequence: fully

synthesized primer

<400> 9
acacggatc tctgagc 17

5 <210> 10
10 <211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: fully
synthesized primer

15 <400> 10
cacacgtaat cgtaatg 17

<210> 11
<211> 17
<212> DNA
<213> Artificial Sequence

25 <220>
<223> Description of Artificial Sequence: fully
synthesized primer

<400> 11
ccatgcacca gctgcag 17

<210> 12
<211> 17
35 <212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: fully
40 synthesized primer

<400> 12
cgaatctgct acggatc 17

⁴⁵
 $\langle 210 \rangle$ 13

<211> 17
<212> DNA
<213> Artificial Sequence

5 <220>
<223> Description of Artificial Sequence: fully
synthesized primer

10 <400> 13
atgcgcagac gttgagg 17

15 <210> 14
<211> 24
<212> DNA
<213> Artificial Sequence

20 <220>
<223> Description of Artificial Sequence: fully
synthesized primer

<400> 14
ggacccccagc gtccgttagcg cctc 24

25 <210> 15
<211> 33
<212> DNA
<213> Artificial Sequence

30 <220>
<223> Description of Artificial Sequence: fully
synthesized primer

35 <400> 15
ggatccccagc tccgacacgcg agatcttacc gtc 33

40 <210> 16
<211> 35
<212> DNA
<213> Artificial Sequence

45 <220>
<223> Description of Artificial Sequence: fully
synthesized primer

5 <400> 16
 gatatccagat ctgtccggccg tctccgacat tagcg 35

 10 <210> 17
 <211> 35
 <212> DNA
 <213> Artificial Sequence

 15 <400> 17
 gatatccagat ctagcgaatc tgctacggat caata 35

 20 <210> 18
 <211> 17
 <212> DNA
 <213> Artificial Sequence

 25 <220>
 <223> Description of Artificial Sequence: fully
 synthesized primer

 30 <400> 18
 ggacatcacc atccagg 17

 35 <210> 19
 <211> 17
 <212> DNA
 <213> Artificial Sequence

 40 <220>
 <223> Description of Artificial Sequence: fully
 synthesized primer

 45 <400> 19
 catcgagcgt gccggag 17

 45 <210> 20
 <211> 27

<212> DNA
 <213> Artificial Sequence
 <220>
 5 <223> Description of Artificial Sequence: fully
 synthesized primer
 <400> 20
 ggatgccatc gaagctggat ggtgatg 27
 10
 <210> 21
 <211> 38
 <212> DNA
 15 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: fully
 synthesized primer
 20 <400> 21
 ggatccagat ctaagtagag agggccacc acc agtagtc 38
 <210> 22
 <211> 37
 <212> DNA
 25 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: fully
 synthesized primer
 30 <400> 22
 ggatccagat ctcccctttg ctagttctct cctcgcc 37
 <210> 23
 <211> 17
 35 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: fully
 40 synthesized primer
 45

	<400> 23	
	acgacacctgga caagtac	17
5	<210> 24	
	<211> 17	
	<212> DNA	
	<213> Artificial Sequence	
10	<220>	
	<223> Description of Artificial Sequence: fully synthesized primer	
	<400> 24	
15	tcgccttcac gttgtcg	17
	<210> 25	
	<211> 27	
20	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: fully synthesized primer	
25	<400> 25	
	cagctcgccg tgtacttgcc caggatcg	27
	<210> 26	
	<211> 39	
30	<212> DNA	
	<213> Artificial Sequence	
35	<220>	
	<223> Description of Artificial Sequence: fully synthesized primer	
40	<400> 26	
	ggatccagat ctaggttgc atccagctgg atggcgatg	39
	<210> 27	
45	<211> 27	
	<212> DNA	

cctcgacag cgtcgagcag 20

<210> 31

5 <211> 27

<212> DNA

<213> Artificial Sequence

<220>

10 <223> Description of Artificial Sequence: fully synthesized primer

<400> 31

ctgccctcgc acagcgtcga gcagaag

27

15

<210> 32

<211> 39

<212> DNA

20 <213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: fully synthesized primer

25

<400> 32

ggatccagat cttcggcgat tgttgatgga tcggagaag

39

30

<210> 33

<211> 17

<212> DNA

<213> Artificial Sequence

35

<220>

<223> Description of Artificial Sequence: fully synthesized primer

40

<400> 33

ccatggccaa gaagggt

17

45

<210> 34

<211> 21

<212> DNA

<213> Artificial Sequence

TOP SECRET//
EYES ONLY//
NOFORN//
REF ID: A6512

5	<220>	
	<223> Description of Artificial Sequence: fully synthesized primer	
	<400> 34	
	cccttctcct tcatgtccac c	21
10	<210> 35	
	<211> 26	
	<212> DNA	
	<213> Artificial Sequence	
15	<220>	
	<223> Description of Artificial Sequence: fully synthesized primer	
	<400> 35	
20	ccttcggc catggcgccg aacgcc	26
25	<210> 36	
	<211> 39	
	<212> DNA	
	<213> Artificial Sequence	
30	<220>	
	<223> Description of Artificial Sequence: fully synthesized primer	
	<400> 36	
	ggatccagat ctcgaagtgg tacgcccgcga taggctcat	39
35	<210> 37	
	<211> 34	
	<212> DNA	
	<213> Artificial Sequence	
40	<220>	
	<223> Description of Artificial Sequence: fully synthesized primer	
45	<400> 37	
	ggatccagat ctcatgtccg tagatgtgca ccac	34

<220>
 <223> Description of Artificial Sequence: fully
 synthesized primer

5 <400> 41
 ggatccagat ctcatgctc cgccggcgaa ggttttgc 40

10 <210> 42
 <211> 34
 <212> DNA
 <213> Artificial Sequence

15 <220>
 <223> Description of Artificial Sequence: fully
 synthesized primer

<400> 42
 ggatccagat ctctcgccgg cgaagggtt ttgc 34

20
 <210> 43
 <211> 19
 <212> DNA
 <213> Artificial Sequence

25
 <220>
 <223> Description of Artificial Sequence: fully
 synthesized primer

30 <400> 43
 ctacgactag ctagattcc 19

35 <210> 44
 <211> 18
 <212> DNA
 <213> Artificial Sequence

40 <220>
 <223> Description of Artificial Sequence: fully
 synthesized primer

<400> 44
 45 gcggattctg ttcttgcc 18

<210> 45
<211> 18
<212> DNA
5 <213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: fully synthesized primer

10 <400> 45
gccccatcg ttctcc 18

15 <210> 46
<211> 27
<212> DNA
<213> Artificial Sequence

20 <220>
<223> Description of Artificial Sequence: fully synthesized primer

<400> 46
25 acgcggatcc tgggtggcgc catcg 27

30 <210> 47
<211> 39
<212> DNA
<213> Artificial Sequence

35 <220>
<223> Description of Artificial Sequence: fully synthesized primer

<400> 47
ggatccagat cttgggcgcc atcgcggtg gaatctac 39

40 <210> 48
<211> 32
<212> DNA
<213> Artificial Sequence

45 <220>

<223> Description of Artificial Sequence: fully synthesized primer

<400> 48

5 ggatccagat ctcgttgcg gtgttcgcgt tg 32

<210> 49

<211> 15

10 <212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: fully synthesized primer

15

<400> 49

ccgcctttagt tcagt 15

TOP STRAND
5' → 3'
3' ← 5'

<210> 50

<211> 15

<212> DNA

<213> Artificial Sequence

25

<220>

<223> Description of Artificial Sequence: fully synthesized primer

30

<400> 50

cccgcaattc atttc 15

35

<210> 51

<211> 27

<212> DNA

<213> Artificial Sequence

40

<220>

<223> Description of Artificial Sequence: fully synthesized primer

45

<400> 51

gtctgttgtc catgcgattc acgctac

27

5 <210> 52
 <211> 43
 <212> DNA
 <213> Artificial Sequence
 10 <400> 52
 ggatccagat ctcatgcgat tcacgtaca gccaaatgat cga 43

15 <210> 53
 <211> 32
 <212> DNA
 <213> Artificial Sequence
 20 <220>
 <223> Description of Artificial Sequence: fully
 synthesized primer

25 <400> 53
 ggatccagat ctgcccggtc agacatgtt ac 32

30 <210> 54
 <211> 33
 <212> DNA
 <213> Artificial Sequence
 35 <220>
 <223> Description of Artificial Sequence: fully
 synthesized primer

40 <400> 54
 ggatccagat ctgctcggcg cggtggtcgg tcg 33

45 <210> 55
 <211> 18
 <212> DNA
 <213> Artificial Sequence
 50 <220>
 <223> Description of Artificial Sequence: fully

synthesized primer

5	<400> 55 atgagggttc ttgttagag	18
10	<210> 56 <211> 18 <212> DNA <213> Artificial Sequence	
15	<220> <223> Description of Artificial Sequence: fully synthesized primer	
20	<400> 56 cccatcagtc cgctgttg	18
25	<210> 57 <211> 40 <212> DNA <213> Artificial Sequence	
30	<220> <223> Description of Artificial Sequence: fully synthesized primer	
35	<400> 57 ggatcc taga tctaaacaca gagactaaca gcttctctac	40
40	<210> 58 <211> 27 <212> DNA <213> Artificial Sequence	
45	<220> <223> Description of Artificial Sequence: fully synthesized primer	
	<400> 58 tgccgtgtga tcatattcta gagacac	27
	<210> 59	

5 <211> 27
 <212> DNA
 <213> Artificial Sequence
 10 <220>
 <223> Description of Artificial Sequence: fully
 synthesized primer
 <400> 59
 10 aaacacagag actaacagct tctctac 27
 15 <210> 60
 <211> 18
 15 <212> DNA
 <213> Artificial Sequence
 20 <220>
 <223> Description of Artificial Sequence: fully
 synthesized primer
 <400> 60
 20 atttccaggc gcaggttg 18
 25 <210> 61
 <211> 18
 <212> DNA
 <213> Artificial Sequence
 30 <220>
 <223> Description of Artificial Sequence: fully
 synthesized primer
 35 <400> 61
 tgccctggct cgtcgaa 18
 40 <210> 62
 <211> 27
 <212> DNA
 <213> Artificial Sequence
 45 <220>
 <223> Description of Artificial Sequence: fully
 synthesized primer

	<400> 62	
	cctgccacga catcttgcc cggtcag	27
5		
	<210> 63	
	<211> 27	
	<212> DNA	
	<213> Artificial Sequence	
10		
	<220>	
	<223> Description of Artificial Sequence: fully synthesized primer	
15	<400> 63	
	tcgcacatca ggtgctcgta cacgtac	27
20		
	<210> 64	
	<211> 38	
	<212> DNA	
	<213> Artificial Sequence	
25		
	<220>	
	<223> Description of Artificial Sequence: fully synthesized primer	
30	<400> 64	
	ggatcctaga tctctgcgct ggagaatgga tcggagag	38
35		
	<210> 65	
	<211> 19	
	<212> DNA	
	<213> Artificial Sequence	
40		
	<220>	
	<223> Description of Artificial Sequence: fully synthesized primer	
45	<400> 65	
	gaatcatcggt aataatggc	19
50		
	<210> 66	
	<211> 16	

<212> DNA

<213> Artificial Sequence

<220>

5 <223> Description of Artificial Sequence: fully
synthesized primer

<400> 66

taggagcggg agcatc

16

10

<210> 67

<211> 27

<212> DNA

15 <213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: fully
synthesized primer

20

<400> 67

catcgccgga tgccatggac ctaccct

27

25

<210> 68

<211> 27

<212> DNA

<213> Artificial Sequence

30

<220>

<223> Description of Artificial Sequence: fully
synthesized primer

<400> 68

35 gccaggagga gcacgacgag gaacacg

27

40

<210> 69

<211> 40

<212> DNA

<213> Artificial Sequence

45

<220>

<223> Description of Artificial Sequence: fully
synthesized primer

<400> 69
 ggatcctaga tctgccagga ggagcacgac gaggaacacg 40

5 <210> 70
 <211> 19
 <212> DNA
 <213> Artificial Sequence

10 <220>
 <223> Description of Artificial Sequence: fully synthesized primer

<400> 70
 15 caaacgctgc tgcgctc 19

20 <210> 71
 <211> 16
 <212> DNA
 <213> Artificial Sequence

25 <220>
 <223> Description of Artificial Sequence: fully synthesized primer

<400> 71
 30 gagcgtggcg acgacg 16

35 <210> 72
 <211> 27
 <212> DNA
 <213> Artificial Sequence

40 <220>
 <223> Description of Artificial Sequence: fully synthesized primer

<400> 72
 45 gcgccatttt ctccagggtt ttctctc 27

<210> 73
 <211> 27
 <212> DNA

<213> Artificial Sequence

<220>

5 <223> Description of Artificial Sequence: fully synthesized primer

<400> 73
caccgatcaa aacgacaggc tcctctg 27

10 <210> 74

<211> 40

<212> DNA

<213> Artificial Sequence

15 <220>

<223> Description of Artificial Sequence: fully synthesized primer

20 <400> 74
ggatcc taga ttcaccgat caaaacgaca ggccctctg 40

25 <210> 75

<211> 25

<212> DNA

<213> Artificial Sequence

30 <220>

<223> Description of Artificial Sequence: fully synthesized primer

<400> 75
caaggaggtg ttccacagcg tggcc 25

35 <210> 76

<211> 25

<212> DNA

40 <213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: fully synthesized primer

45 <400> 76

tggcggtcgcaacgacggag tgcacat 25

5 <210> 77
<211> 27
<212> DNA
<213> Artificial Sequence

10 <220>
<223> Description of Artificial Sequence: fully synthesized primer

15 <400> 77
accgtgaagt tgtcgccggc cttcttg 27

20 <210> 78
<211> 40
<212> DNA
<213> Artificial Sequence

25 <220>
<223> Description of Artificial Sequence: fully synthesized primer

30 <400> 78
ggatcctaga tctacgagga tcgcccata gcccacccagg 40

35 <210> 79
<211> 2213
<212> DNA
<213> Zea mays

40 <400> 79
cctgtcccttc ggcatttctg tagctactct cgacgatgag gtcttcgtcg cctcatcggt 60
aggcaaagtgc tccatttgcac cctctaagga ggttaggacta atcaactccca tagtgacacc 120
tatgttaggccatctgagcag aggcaatgat ctttactaa gactgattca gccaaagttta 180
actcttgcaggatgcctctaaa caaataactt tggagcaag tgaattttgg caatttgttag 240
gtgaaggcag taaaatgtat ctggccctac ctcctcagcc acitttatac tggaaaatgc 300
catgacgcga cacgggtcat ggaaattgtt cccgcgcagc gtcccaagtc cccccctcgat 360
gatttaactt cttaggtcaac cgttttact tcaaataactt caccttc ttaaacaagc 420
tttaggaagt tggttttcgg atctttggaa ttggccctcc aagttataat ttgtcaatc 480
taagcttgcata gcaaagaaaa caaactcata tcgcaatggg ctactttgg ggacccttcata 540
tggtaagat cacttgctta aactttact ttgacacaag ctatgtgtt tcaagaaat 600
ctctactgat gcacgaagcc aacccctcggt cggttggccat cattgcacat 660

gaaaggtgaa agggatttaa ccaaagtta tagctcgat gacagcaaag gagcttcaga 720
 tacaagccaa aggaaaaggc gacgaaggcc taaaatccgag cagccgaaga tggggaaaat 780
 acgctactgc cctaacaaca ttgttaaaca gtgagggta caattgtaat tatgtactaa 840
 gtcggtcgt ctccccata aatagatgaa cagtaaccgg cataaattac atttgccag 900
 5 gtgcacacgc ttgtatagc tcaggctcca aaacacattc gtgcatactt gcactaagaa 960
 gtcaatggta tgattgtaaa ctgtttct ataagagaaa tgaattcta aggacatga 1020
 gatgagtct catatctcg tcatgtttt atgtattcta gtcgattaca tccaacctc 1080
 gtccttgagt agttatccca aagacttaac acttcaagga tgaaggcttc tacittttaa 1140
 cattgttg tctgtttt tatttcattt agcaattaaa agcaagtgac taacacatgg 1200
 10 ttaaacccaa gatccgaaaa gaggctaaaa ttgagcaaga atgaacaaaa gttggtaaga 1260
 ggaacataaa ccaacccttc ttagcaacat tcttccaaaa aaagaagatc aaaacatgt 1320
 ccctgtatt ttgtgaaaac tggatctca aaattgccta caatggaagg tggctacgag 1380
 aaacggttat aatcgaggag gtagagagaa ttatgtcta caaccctcac aggcggttc 1440
 cctaagaaac atccactcta aatgtcttg cacatacggt tcacttaaaa aaccgcaa 1500
 15 gcaaaattgtt cattttcact ggaggtttt taagcgaacc gctagaggaa atctcattt 1560
 caccggcgat ccttaagaca tatcatgagc gaggtgcct tggagccgg aagagtgg 1620
 caatgaccta taaaaagcag aggacacagg agtgcctat tcaaggattt cctaaaaata 1680
 gcaaggcca aacgaccatt tcgtgtacat agcaaacggt gtcctctct ctcagaaag 1740
 gatatctcg ggaacatcca tccatccccaa atccccaaag gcgaggagag aactagcaaa 1800
 gggaaatgg ctgttccac aaacaacact ctcagggtgc tggatgttgc aatgggtgt 1860
 20 tgcggcgac tatgcacacg gaaaaggact gtagcaaagg caggagactt ggcggccagcc 1920
 cctgtccgt taggagcagg aggcgcacc gcagccccag aaggtgcggc tagagccagc 1980
 aggcacgttc acatatcgaa gttcggcgac accagcgacg gcaagacgga ctcgacacag 2040
 gttcattgc attgcattgc attgcattgc atgtggcac ggtgggtgtga ctgtgcact 2100
 ggtcaatga tctatcaggc agtccaggac acgtggacgt cagcgtgcgg agcgatgg 2160
 gacgcaacga tgctcatccc caagggcgac tacctggtgg gccctctcta ctt 2213

<210> 80
 <211> 809
 <212> DNA
 <213> Zea mays

<400> 80

35 aaaaaaccctt cgggttcacg ggttggta ctataggaac aaacccgtac caataaacc 60
 gtccggata gatttatgcc cattaacaaa cccatggata tggaaattgtt tccaaaccc 120
 taccctaata gggtaaaaac ccatcggtt tcgggttcg agtacccatt gtcattttt 180
 acaggaagtg agtcatgggc ctcttgtcg ttgcgcctc tcgcctatg gtccgtact 240
 ttccacgggtt acacatatgg ggccttccat ggctcttta tcaactgggc ctcgaaggct 300
 40 agcttagttga tggcttgcattt aattgcattt catggcttcc tctgtccgtt ccgactgagc 360
 gattctccg gttaggggacg tgcagtgcacg ctgggtcattt gcgatggatg gctgcgatg 420
 gtccaagaat ttctcccccgg catgtccctt cctccagacc tccaccatg cagcaggctc 480
 ctggtagagc taactaaatc ggggaccctt tctcaagttt tcatctat atatgcagca 540
 gataccctaga agagcaccgac cgagcttagga gaagcgcgaa cgcgtgcacg cgcagacgtt 600
 45 gaggtcgagg gacacggat ctctgacccat catggagag cgaccggca cgcacacgtt 660
 tggccgcaag ccgagaagag tgccggccg ggagaccgga cgattattga tccgtacgag 720

attcgctaat ggccgatacg gcggacatgg agcggatctt caagcggttc gacaccaacg 780
 gcgacggtaa gatctcgctg tcggagctg 809

5 <210> 81
 <211> 910
 <212> DNA
 <213> Zea mays

10 <400> 81
 ccgtgacttt ccacgggtac acatatgggc cctaccatgg ctctcttac aactgggcct 60
 cgaaggcttag ttagttgatg gettgcataaa ttgcattgca taattgcgt ttcgcctacc 120
 atgtgcctgt ttgttcggc ttctgacagc ttctggccac caaaaagctgc tgccgactgc 180
 caaacgcctc gcitttcagt cagcttctat aaaattcggtt ggggcaaaaaa ccatccaaaa 240
 15 tcaatataaa cacataatcg gttgagtcgt tgaatagtt ggaatccgtc acitctaga 300
 tattgaaccc tatgaacaac ttatcttcc tccacacgta atcgtaatga tactcagatt 360
 ctttccacag ccaaattccc ccacagccaa atttcagaaa aagctggta gaaaaaagct 420
 gaacccaaaca gccccatggt ctccctgtc ccgtccggct gagcgattct tccggtgaaa 480
 gagctgcagc ttttgcattgg cgatggatgg cagcgagggtg gtccaagaat ttctcccccgg 540
 catgtcctct cttccagacc tccaccgatg cagcaggctc ctggtagagc taactaaatc 600
 ggggaccctt tctcaagttt tcatcactat atatgcagca gatacctaga agagcacgac 660
 cgagcttagga gaagcgcgaa cgccgtgcat gcgcagacgt tgaggtcgag ggacacggta 720
 tctctgagct tcatcgaga gcgaccgc accgcccacgc ttggccgcaaa gcccagaaga 780
 gtgccgggcc gggagacccgg acgattattt atccgtacca gattcgctaa tggcggagac 840
 20 ggccgacatg gagcggatct tcaagcggtt cgacaccaac ggccgacggta agatctcgct 900
 gtccggagctg 910

25 <210> 82
 <211> 1511
 <212> DNA
 <213> Zea mays

30 <400> 82
 atcgtgtaaag gtgatttagt tcatttgtt tgaggaaagt gtgggtcttg gtggctgtt 60
 ccacgtggtt ctgtgtctcg agttttcatg ttctcatcat tctgtccctt gtttggagg 120
 cgagggtatt gtcttctcca ctggagctgg gcagattttt gtttgaacca tcgcgtatgt 180
 gctgtgtaaac ctgtggcttt ttgacattaa ttaaggtagt gttcggttctt ggagccagg 240
 gggatggagt ggctccgttc gagagattt ggggagttgg atggctcggtt atttgaatat 300
 35 aattccctt tttagaacca ctctatctt taaaggattt gcactcagggtt tttcttagc 360
 tcaaccgtca gtggaaatcg atttctgttc atgggttctt taactgtaccc gccaatgaaa 420
 aacgattttc actagcggttt atcggttacc tgcctatgaa aataattttt tctactggc 480
 tctaaccgtcg gaggttcttga aaaacgccag tgcaaataag ttcgaacca tctctataaa 540
 acttcttttctt actagtgaca tggaaaccaat ccgaacaaaca ttaaaatggatgg agtgaagtgg 600
 40 cttgatccaa ctatagtccaa gaaatcaaacttgcctaga aggctgtgg gcacgaggac 660
 ttgaactcta aaaaagatgt ggtgctggc ctcttcaaaa tatttggattt ttgttcagca 720

ttttgtttt gttttgtag gcgttagttcg atttacccat ttatatgatt cgctgtgata 780
 caatatcata tgaattaaa atcaactgac ccccccgttg gatcatggaa attgaaitcc 840
 attctaataa tagtaattt aatataatc aattaagcta attcagttt ttgcaaaata 900
 tatttgtata ttattattag caagatgtt gaaatattt tgtgctatat tttactata 960
 5 gaggggttag acgaagagtgc tcitgttaagt tacagagtag aaacaaatc tactaatgca 1020
 taaaatcatt ttcatttcctg cacccatga atttgaaccc catgaattt agataggctt 1080
 atatctgaac ttgaaaatg ggtggaaatgt caaatttcaa attaaataag ttaatttattt 1140
 aggtgaattc caattccctt gaaacaaagg gatctaaacg tccctgaga aaatttgcatt 1200
 gtgcacaaaaa gttcacaatt tgcatgctga cacacgcattc tctgggtccg tacgattgg 1260
 10 aaaacttgat gagggtgcct ttgttagca tccgcatcaa taggacctt gaaacggtaa 1320
 gagttggtca tcgagaacct gaaaaaaaaac tagaggacag gagttctta ttcaaggatg 1380
 gcctcaaaat agcaaagtcc agacggtcat ttctgtaaa tagcagacgg tgctctcg 1440
 tctctgcaa tctccggaa catccatcga tctccccca gcggcgagga gagccggcgg 1500
 ccacaggaag g 1511

15

<210> 83
 <211> 459
 <212> DNA
 <213> Zea mays

<400> 83
 cgtatcttagc gactacatgc tacaacatgc tcgatgtcat atacacctat acatgtcact 60
 atggcgtatc atacttgcatttcc acatctaaga catgatccat gtacaactac 120
 gataagatag gaggactgt taaatctcg ttggccatgt gaccagatca tgctctgct 180
 gggcttcgg gcctcggtt ctctcaccaa ttatagtggg tagctgtttaa atgcacatgc 240
 ctatataatgg acatgtatgc atgctatttag agtatttagt agaaggctac cactgcacga 300
 agagagaggt acgatcgaa gggaaactct catggccata cacctatcat ctcccttcg 360
 tgacatccta ctgtgttatataaaccac acgatcatgt tagttccaca agcaaattaa 420
 acctatcatc atcttcctcg atccatcaac aatcgccga 459

30

<210> 84
 <211> 1503
 <212> DNA
 <213> Zea mays

35

<400> 84
 atccccaag gtatcagcag tgggtccggaa ccccccattggaa aaagtgtgg accccctgtt 60
 40 atatggaccg gacccctcagg taaggccagg gacccctccacg ggcgcgaact gaacccttgc 120
 gatgggtccc ggaccctctt gtgtggatc cggggccactc acaacaagggt cccgggattc 180
 tgggacaaag aataacctggaa ccttggtaa gaccaagcga gggtccggag ccgacacgtg 240
 ttccggccat gcgggttacg ctctgtctt ccactcaggt ggagacccga tgctgccacg 300
 tggccccatca ccgtgacgtt agccagcgaa cgaaggctga cgtaaaggctt ctggccaca 360
 45 cggccctcgtt atttattaca gataagccgc atcgcgttc cactccactg gcaggcgatg 420
 tgccgcctca gaatttaatg agccttgcctt actccactgg caggcgatgt gccgcctcgtt 480

catttaatgt gccctgtcca ctctgctgac aggcaacgac cagccatcct gcaggccgc 540
tgcctgtcca ttccgttggc aagcagtacg cctatgctgc ggcatacact gtgctcatca 600
tcactcgctg gttaccaagg aggcagcatg ggataccaat actatatgca ctacagacat 660
tatagcgctc ggggttcacc ctggcggtac gggcatttagt tgcttccttc catttgtccc 720
tcggccccaca tgtcggggct cagcaccctt gtacgtgccc cccttgagct ataaaaggga 780
gggcacacga cgltacaagg aagacccaac ttaggctcac acactcactc aaactcaca 840
gttcatacaa gctctcaagc tcaatacatc acacagtggaa gttagggtatt acgctctggc 900
ggcccgaacc actctaaacc ctttgtgttt ctgtgttct tcccgattcc atctagcagg 960
caaaaacgcctt gggcccttcc tcacatctagg atttagggcg ggtgcgttcc gccacccgac 1020
cgagaattc ccttcggac agtactcatg accacaaatt cagaccctgt ttgctagctc 1080
attcatcgta gcatagttcc attcactcat cgaagacaaa acatggttgc gattgtgagc 1140
accatgtgtt cgtcgatgca ggcgcattgtc cgatggatcg tggcattggc gttcctagtg 1200
agcgggtgact ggtgcggtcc tcccaagggtt cccctggca agaacatcac ggccacctac 1260
ggcagcgact ggctggacgc taaagcgaca tggtatggca agccaacggg tgctggcccc 1320
gacgacaacg gtggcggctg cgggtacaag gacgtgaaca agccccctt caatagcatg 1380
ggcgcgtgca gcaacatccc tatttcaag gatggctgg gatgtgggtc ctgcitcgag 1440
atcaagtgtg ataaggctgc ggagtgctt ggcaagccccg cgggtgtta catcacggac 1500
atg 1503

<210> 85
<211> 658
<212> DNA
<213> Zea mays

<400> 85
aaattaatac aaataaaaatc atataagtca ctccttcctc aaatttatcg tatataaaaa 60
atttttttga ttgttatttgaa aatataatatac acaattatatac gatgcaaggtt tcttaatta 120
gttattatc tataactatataaaaaatc agt atacacatgtt tttatataatc atatggact 180
ttttccatata tatagttattgtatgaaatttt cgccccctcta tgtcataactc ctggcttcac 240
cctagtcac tacgtcaatttttcgatc aatgcacgc aaaaatgattt tgcattttg 300
gtgtccaaaaatcttaatata tattttttaga caaatagagt taaacagatgtttaaacatag 360
atttgactta agataaaaaat agattttaga aaatacagaa cagccccagtttctgcatt 420
gctaaaaaaaaac actccgtgaa acaatgtgga ccgcaaaaaag ttcccttcaaa atcctgccat 480
ctgatgtat ttttggggcc aaaacctccatc accaaccaaaaa cacaacctct tggctttatt 540
taacttgtc cttgcggatgtttcgatc ttttgcgttgcgaggaaata cgaacgtcgt acgagaacct 600
ttctccctcc tccaccttc tccatccatc gccaacggcaa aacaccttcg ccggcgag 658

40 <210> 86
<211> 1173
<212> DNA
<213> Zea mays

45 <400> 86
gtcgtcaacc cggtgactgc catggcccc atgattccgc ccaccatcaa ctgcagcatg 60

accgtgetcc tacgcctgct acaaggtgcg tggagtagtc gttgcttcc tgcttgctgc 120
 tcgatatgca tgccgttcgc gttgccatgc gaatgagacg aagaagaaac taaaggagga 180
 tgccggcctg ttctgtgtcg cagggtgcac ggaggagatc agggacatct ggtatggggc 240
 5 ggtcatgtg cacgacgccc ccatggcga tatcctggtg ttctgagagcc cggcggcgtc 300
 cggaggcac atctgcgccc agtccatctc ccactggagc gacitcgcgg ccaaggtcgc 360
 cgagctgtac cctgagtaca aggtgcccaa gtaagcgacc cgaccatgtt ctgtgaaaat 420
 gaaaacctgg atagatagag cattgttagt cttatagttt cgtacgttgc aggttcccc 480
 aggataaccca gcctggctg gtgcgacagg gagccgagga ggggtccaag aagctcg 540
 cgttgggct gcacitcagc cctctggaga agatcatcg ggacgctgtg gaggccctca 600
 10 agagcagagg ctacatttcg tagctagccg accgacggca gctatagtgg agtagtatgc 660
 ctgtcaattt tcgattccca agtggcaaat tctgcaaaac gagtccgcca atatgaacaa 720
 taaaataaaga acgttgtat aaaataaagc agattttctg ttgcatttgg cccttcaaag 780
 catccgtggt ggtaagattt cctatgtatct gtcctggctg gtcggccctg agcaccttt 840
 ttctgttagac ggatgcctta tcaccttaggg attgttttat tataattgcata taatgc 900
 15 tgggtgatcc aaattaaagc aggatctaaa atggcgaca ggctaagctt ataatgaaca 960
 cagaataaaa tcaagggtgga atgtgtccgc aatcgacgct gcgatitcga atgctaaata 1020
 aataataatcgg taacacggac ggacgttagaa gagaagccat tatgcgtggc aggcagcaca 1080
 agagctatttccaa aagccgcgg caacggaggg ctgcaattca caaaccctaa aatttaggtca 1140
 ccccgccac ttcaacgcg aacaccgca acg 1173

20
 <210> 87
 <211> 1587
 <212> DNA
 25 <213> Zea mays

<400> 87
 actttccca ttgcgagga atctccacaa gttggagcct ctcaccctta caaagtatg 60
 atcacaaga aagcacaaga gtaaggatgg gagagcaaca caccgaagac tcaaattcg 120
 30 agcacaatca cgcacacaag ccaagacitg agctcgaaac acacgcacatg gagtttgc 180
 ctcaaacaga gctcaaatac ctaacacagc gaatcaaatg cgtggagacg gagtctgg 240
 gtcttagaat gttcttgaa agcttggat tctgctccat ggccttaggg gtcccttta 300
 aaccctcaag acagcttagga gtcgttggag atcaacatgg aaggctgatc ttccctctg 360
 ccgagtggcg caccggacag tccggcgc caccggcag gtcctgtac ttgtccgg 420
 35 tgcgtatcc ttccatatcg ggcgcacatcg accgttgcgc cggcggttc gttggcgat 480
 cagacactgt acgggttaca cggacagtc tgggtgccc aaccaaccgt tggccgtcc 540
 acgtgttacc cgcagatttgc gtcggccacc gttggccgtg agcggccgtt gtcgtatcg 600
 40 cagtcattag gaacgaagca taaacaaaag cgcgtgtatgg acacacat taggtat 660
 tggctaact tgacacactt gatgttgc atggcttgc cgactctata 720
 ggcttagctg cacggcacat aattaggtt gtacttgc gtcgtatgc agcctatatg 780
 tgcgtatcc tttccatatcg tgggttgc tttttttttt aatgtgtgc 840
 cacataagca aacaagacga catgtcatac catatgttgc agagagatgat gagagatgtt 900
 aatggggat aaagcttat ttcacttgc aatgtgttgc atattgtat ggtatccttgc 960
 45 gaatcgat gatgaaatcc tcaattgttgc aatggcttgc tggcaccgc tacgttaggg 1020
 ctattcaaga accaacaatg tacagttgtt gcaacgttgc tggtttttgc ttccagatta 1080
 aagccaaatgg ttttagacttgc tgcgtatcc acaaaaacag tgcgtatcc 1140

gtataagcat taagcaaaca agcgaacatt gcttagctac aaccaatttg ctgggcitcc 1200
 atgggcatcg cagaagtatt gtggctgcat attgctgaaa ttatagcgag ggcccaaggc 1260
 ccatcacttc acttcgaggt cagcattgtt ctttggtaa cgtctcgata aatttgtca 1320
 cttaaaatag accagttcaa ttctggtct agtcaacatg cctggatcca cgggggagcg 1380
 5 aggagacgaa tgggtggccc gcccgcgtga gccaagccg agcccggtcg tccgtccaa 1440
 cacccccctcg ttatactat atatacacag acgcacgata cccatatcggt ggtgctagaa 1500
 gcaactgaaa acagccgagc gatctccctt ccctccctt ctccgatcca ttctccagcg 1560
 cagcgaagta aacatgtctg accgggc 1587

10 <210> 88
 <211> 665
 <212> DNA
 <213> Zea mays

15 <400> 88
 aaagaaaatt ggttggaaat tactcgaccc cgtcaatttta acagtgcacat tgaatttgc 60
 gaggctgtt agatgaagac atgccagattt gagggttatt tactataaag gagatttttag 120
 gtgtgaatga caaacgcitcc agccgaatac ttaaaagact ggctaagaag aacaaagcta 180
 atttggtggaa ggttccatcc aacagtgtatg aggaaagaac accaactctg gttagaagtag 240
 agtatgttgc tgcataaag agttttttttt ttgtggaaaaa cttcagctgt tagttttattt 300
 ggtcagcaat gttgttgg ctagcatg catgagtcgg attctgtac catctccatt 360
 taccgggtcc ctgggttatta tccccccatc acaagagtgg ccaacatgca gcccctgaaa 420
 cctggcgaag tccaaggggg agcgaggaga cgaacgtgtg gccacggta ggtggggatc 480
 20 cggccttca cccctcaac ttgggattcc ctctctattt agccatccgt ccgggtgcacg 540
 atgctacaag ctccctgtca ccagtcagaa aacagtggta tcgagttgtt tcaactgcacg 600
 agcacatctt ccggcgcacca ccggccctccc tctccgtctt ctgcgcacgg accaacgcgc 660
 cgagc 665

30 <210> 89
 <211> 833
 <212> DNA
 <213> Zea mays

35 <400> 89
 acggaaccta aatatggatg tcttacaaca gctaatttta tgcaaaagggt tccagcatgc 60
 ccattcgta ccctgtgaac atggcagat ctacgggtat tatgttctgg cacaccctac 120
 gtatccggta tatctggccg attatgtttt aatactatga ggttggatgataatcacat 180
 40 ttcacaaaatg agagctgaga attaatccg tgcaaaattttat ttatattttat tgttggaa 240
 tatgttttttta agtaggtgaa gataacataa ttaagatatac gattatgtct cttagtaagg 300
 tctcagctaa aaagtcgtat gaactattttag catgactttt cattgatttta tattgttattt 360
 tatgaatatt tttaacttac ttacaaattttaaaggatttatttattttat ttgaactttat 420
 cctataattt aaaatttact atgtaatttc atgtaaaaat ggttctaat ttgatcgagt 480
 45 atatatatga aaatttttaga tgactttag aaaaatttca gatccgcattt tggctgcaga 540
 gtgttagagga tggatgtca cagatgcact tcattgttgcata acaagtttc 600

atgcaataca agcctataaa taaatgtcct gactaagett tcgtccacag aatttaccac 660
 ttctccgct gagtactacc gattcaacag aacagataga ccactcgta acactgtaca 720
 cttctaccta tatattcgct tcttcctct tgcaaatcat attgtcaata gtaacagtga 780
 gaagaacaca caaaaatgagg gttcttgtag agaagctgtt agtctctgtg ttt 833

5

<210> 90
 <211> 823
 <212> DNA
 10 <213> Zea mays

<400> 90
 ctgcacggta ctccaagtat aagacacagc taaaacacaa cataatgcag tggcatgtc 60
 taaaacatgt gtcttaccat attcattgtt tcaatcagaa cattcaataa attaaagtga 120
 15 ccaatcagat agtccctgt cccgaatata gagctaagac actgtgtctt cgtaagata 180
 catgtcttga gattttttac attcacccccctt ctagacacac tctaagacac aacttaagac 240
 accccattgtt catgccctaa ctggcaccgc tacgttagggg ctattcaaga accaaccatg 300
 tacagttgtt gcaacgtgaa tggttatttg cttcagatta aagctaatta tttagactga 360
 tgcagctgca attcatagag aaaaaaacag tgttagaagcc gtataagcat taagcaaaca 420
 20 agcgaacatt gcttagctac aaccaatttg ctgggcttcc atggcatttc cagaagtatt 480
 gtggctgcat attgctgaaa ttatagcgag ggcccaaggc ccatcacttc acttcgaggt 540
 cagcattgtt ctttgtttaa cgtctcgata aatttgcata cttaaaatag accagtcaa 600
 ttctgggtctt agtcaacatg cctggatcca cgggggagcg aggagacgaa tgtgtggccc 660
 25 gccgcagtga ggccaagccg agccggctcg tccgtccaaac cacccctcg ttataactat 720
 atatacacag acgcacgata cccatatgtt ggtcttagaa gcaactgaaa acagccgagc 780
 gatctctctt ccctctccctt ctccgatcca ttctccagcg cag 823

D9346903 - 053104

<210> 91
 <211> 1163
 <212> DNA
 30 <213> Zea mays

<400> 91
 35 actacagccc gagggcgcct gtctacgggc ccctcgccgc agactatctg gttgtcccac 60
 cggatagtcc ggtgcacacc agacaattac tggtaactgt cgggtgtgcc atcaggcggtt 120
 ggttgactgc cttttcttg gatttctcg cagttcttt tgagcttctt ttgttcttga 180
 gtcttggact tctatgttc tttttatatc ttcttttgag gttgtgcattt ctcattgcct 240
 tagtccaatc ctcttcgcattt cctgtgaact acaaacatcaa acactagcaa acacattttt 300
 40 ccacaggttg cttttttcat caaacacccaa aacccttttga gccaaatggc acagggtccat 360
 tttcattaca gccaccctcc tcagtcgtt gttgttagtt attttcgcacg gtcacgtgt 420
 atagccgcca aaatttggca aatttcggca ccacaatgtc caaccatcgaa aatttaggacaa 480
 atagggaaaa tcacggccg cccttcattt ttccacggcg aatttagggtc accaaacccaa 540
 aacaatcgaa aaccaaaacca cgagccttaa ttttggcctt cttgaccggcc aaaaatttaca 600
 45 tgttttcttc tagtggtagg gggagttata agcaacaact ctaacaatttgc tagaaaaata 660
 acattgggtt accaagatgtt gtaagagagg aatttaggat gagattaata tttttttttt 720

gctatctaaa ctttatacat gaggtttcta ggctcgcat atgttataga gtcaaaaagt 780
 atgacatgtt ttttagtca caacaaagtg tggcittcca cacttttg 840
 tttaactaag attagccatg acaattatg agcactcgca tgttggcca cctatatata 900
 gcgagacttg tgcacccaag acttcctccg tgcgaggta gtgcacgacc ataggacaag 960
 5 aggagcttgtc attcgcgcgt ctcaaggaa caatcccc taaaaatagc cacacaacat 1020
 tcatgttgcc tatataaaa catcgtgcct cgcccgccc atcatcacag tcgaaacaaa 1080
 gccacaacac atacagggaaa gcaagcaaga atcatcgaa taatggctcg tgcacgcgt 1140
 ttccctcgctg tgctccctt ggc 1163

10 <210> 92
 <211> 2126
 <212> DNA
 <213> Zea mays

15 <400> 92
 cctccgaaat caccgaccac agagatacac ttgcacgggt gtgcgggcga tcagatttt 60
 ggggagcgctc ttcgcgactg ctcgcgtat cgtccacagc ttgcgttgc tcgcctccc 120
 aagttgacgc gtgcgtctgt tttcttccc ggcgaccgtt cgaggactg cactgcgtac 180
 atcttcctgc accgacttcg tacggctaca tcgaacaaac acacgagatg ttcgtgtga 240
 atggagccac tgggccttg agcatcgctc cttccgcgtt gtacactctg ttctcgat 300
 ttgtcatgt ttcatgtctgt ttactgcct atgcgagtag ttatacacat atgcacatac 360
 atgtcatcac atatatcgca ctgattatctt ggattaaatt aaaactaaaa atgcctaact 420
 ttctaaacat atttgcattt gttctacta ttccgtttt atttggttt ttgattgagt 480
 20 gtgatgagtt gtgaagtaat gtcataat atataatataat gcataaaaaat 540
 atagaataac tccctataaaaa acagatccat cttatctga aagattctat attatcctaa 600
 tagatccatc ttgcctgtat aagcatactt attccaccc agagtaacaa tcatgatcta 660
 atccaaattt attagatcta atctaatttca atctaattca atataatcta atttgaccta 720
 atttagtcaa aactagtcta atctaattctt cttattgtat ttctgtct 780
 25 atatctaaag gttagaacta attaacttat ctatgtccaaat ctaggagcaa aacaacaaac 840
 atgattctac atattctat gaagcttaag ccacccatata agccatatgc tctacccat 900
 gagctatttgcgtt gtttgcgtt tttttttttt tgcaattttt 960
 gaacatgtatgttgcgtt tttttttttt tgcaattttt tgcaattttt 1020
 tgacttcata ttggatttgcgtt gtttgcgtt tttttttttt tgcaattttt 1080
 30 atatggttgt atccgtgggg gtggcctttt atttggttt atttcacttg agagagttttt 1140
 atttggttt atccgtgggg gtggcctttt atttggttt atttcacttg agagagttttt 1200
 taagggttgcgtt cttttttttt tgcaattttt tgcaattttt tgcaattttt 1260
 tcatgctgaa actaatcttca tttttttttt tgcaattttt tgcaattttt 1320
 gtttgcgtt gtttgcgtt tttttttttt tgcaattttt tgcaattttt 1380
 35 atatggttgt atccgtgggg gtggcctttt atttggttt atttcacttg agagagttttt 1440
 atttggttt atccgtgggg gtggcctttt atttggttt atttcacttg agagagttttt 1500
 agactcaaag gagttcttgcgtt tttttttttt tgcaattttt tgcaattttt 1560
 gtctataact aacatttttttca gagtttttttca gagtttttttca catgactaaa gtttttttttca 1620
 aatcaaggggg atttatttttttca aacagaaaaat gtttttttttca gtttttttttca 1680
 40 gtttttttttca gtttttttttca gtttttttttca gtttttttttca gtttttttttca 1740
 agtagggcac actcttaact ttgcgttgcgtt gtttttttttca ctttttttttca 1800

aggcttcgtc agtcgtgca caggtaaga ttgatgattt gatgtactt tgaaccgctc 1860
 taactaacta aatcgccctc gagtgccgg cgggtgcgag caacaaggcc gtccgctct 1920
 tgttcgccc tgcattgttt ccgttcggtt ccatcaattc caccacgaaa taaggctgta 1980
 5 taaatcttc ctggcgltc cctctcttc ctgtcatcg cggacggaa ccaaacgcca 2040
 aacgctgctg cgctctctcc ttctcgctt gaccccccag agcgagaggg aggggcaccc 2100
 agaggagcct gtcgtttga tcggtg 2126

<210> 93
 10 <211> 2508
 <212> DNA
 <213> Zea mays

<400> 93
 15 actgcgttgt aaaagtaaac tgaattctgg ttgtgaacta ctgtttaag taaatgcgtg 60
 tttctgtttt ttgttgtcag tgcattctg ttttcaactga tgaaccacc atttctgctt 120
 tcaatgaatc tattgaactg aactgcacaa aaagaaaattt ttctatttt tgtagtgca 180
 caaacggAAC tcaacggAAC tagatctgaa tatgttttag tgacacaaaca gaaattttc 240
 tgttctggtt tcagtgaact ccacaaatAG aactgaatct attatgttt agttagaaaa 300
 20 cagataccga aatgctacat ctagcactt atctggcaga atcagaaaaat tggggcaaat 360
 acaagttgtt taagagcaca aacagaaact gaatctgtt gattgcagaa accaataaaaa 420
 acagaaaaat atgtgaaaaa taattcataa gtaggcagtg gtggcgttat ggtgcatacc 480
 aggTTCTTt tcaaatgatt tgctaaagtc aaatatatgc ttctggctg attgattgt 540
 gaaactgaaa tggatattt attcggcac tatgaaataa actcactgtg atcctgaaac 600
 25 atatcagttg tttttttt tgtaaatctt ttataccact aggggagaaaa attagcttag 660
 ttcaatcgca tctcatatgt ctaattacca ggggagaaaa tttagcttagt tcattttgtt 720
 gctgccatat gggtaaaaaa ataatgagac atctaaatca gtaaatttggaa aatatacgat 780
 cttaaacctg caggtagttt cttaaacctg attctagctt caacttagt caactaccgg 840
 tagttttta aaccgttattt tagctacatg ttatatttg tggcacaaga actttttaaga 900
 30 acataatgtg atgcccactg tatttagttt ctacttcaag accaactgtt ttttagtttac 960
 aaatgtgttt tcaagattt agaaattttt agtctgaaattt atccacacca tatttttgaa 1020
 ctgacatcat ttctaaagat attactgattt agaatcttc acttttataa tgctttgcag 1080
 gagtggcccc tctggagttt aatatgcgt tataaccaaa ttttacccct tttatccctag 1140
 aagagttgcc aagacacggt ataagaccat gataatagac taagagagga tttggctcta 1200
 35 attactatattt tgcagtccca tgagaactttt gaggatatttgc agattgtttt 1260
 attaattttt taaagttaaa gattgtatgtt gttgagtttgc tatccactt ttttggaaagt 1320
 gtcttgcaat tccaatccaa ggatgtataa aatactgcattt gggctaaatgt tttttttttt 1380
 catgtatttgc gaggatatttgc ttttggaaatgtt agtctgatgc actagaagct 1440
 tgtaatttttgc ttttggaaatgtt gtttggaaatgtt gtttggaaatgtt 1500
 40 ttttggaaatgtt ttttggaaatgtt gtttggaaatgtt gtttggaaatgtt 1560
 gaacatgaat ttgtataatc acaactcacc atcccttca atatgtttagt aatatacgat 1620
 ttataattttt ttcaccctac aataaaaaat ttttggaaatgtt gtttggaaatgtt 1680
 atccctgttattt atcaacccatg gattttgttca ttttggaaatgtt gtttggaaatgtt 1740
 ttggttttttt caaatgatag acttcgatattt ttttggaaatgtt gtttggaaatgtt 1800
 45 gcattactaa aaaaatgacccat atgtatatac aagtgttcccgatggcaacg cacggacata 1860
 tacctgtca atcactaaga ccctaattttt gaaatgttcccgatggcaacg cacggacata 1920

gtaaaggcaa gtatatacggt gtatgtatat aagagccggt gtataacaaca atttttata 1980
 agaaaacttg aacaagtgc cagggttga aatcttcata tatgtgccga cgccattcaa 2040
 catcatattt ggcttctggc gaggatcgta gtatcaagca acataaaagc aatgacaaac 2100
 5 agcgaagcac aaagatctcc caggctcgta ataaactaat cacaatgtt ttgtctcc 2160
 acaattagca caacccattt tagaaaaaga tgccacgatc gatcgagacg ttggccagct 2220
 atcaaacaga taagaactac ccaaataattt cctaaatcca gaacggaaga cccattgact 2280
 aggtccctac ctctcaaata gacagactat tcttctccac atcaaaatat aggactccc 2340
 gatgcaacaa acacgggcca ccacacaaca atggtaaat gaccatgcat gcatccacgt 2400
 10 ccgtacgcag ccatttcgta tataaattt cttccatcc gattcaacta caagcttgcg 2460
 ggcaaaaatg gcaaaggctc tcctagggtt cctatcgccg atcctcg 2508

<210> 94
 <211> 1797
 15 <212> DNA
 <213> Zea mays

<400> 94

aagctttagg aagtgttt tcggatctt ggaattggc ctccaagtt taattttgc 60
 aatctaagct ctttgc当地 aaaaacaaact catacgcaa tggctactt ttggggacct 120
 tctatgtga agatcacttg cttaaacttt tacttgaca caagctatgt tgtttcagga 180
 atatctctac tggatgc当地 agccaaacctt cggtcggaa ggcgtgc当地 gaagcattgc 240
 acatgaaagg tggaaagggtt ttaaccaaag ttgatagctt cgtatgacagc aaaggagctt 300
 cagatacaag ccaaaggaaa aggccgacgaa ggcctaaatc cgagcagccg aagatgggga 360
 20 aaatacgcta ctgc当地taac aacatttgta aacagtggagg ggtacaattt taatttatgt 420
 ctaagtc当地 tgc当地cccc tataaatacata tgaacagttt cccgc当地aaa ttacattttg 480
 ccagggtgcta cagcttgc当地 tagctcaggc tccaaacac attcgcttgc当地 tctgc当地ta 540
 agaagtcaat ggtatgattt taaacttgtt ttctataaga gaaatgaaat tctaaggc当地 600
 atgagatgatg ttctcatatc ttgc当地atgt ttatgtat tctatgc当地 tacatccaa 660
 25 ctgc当地ctt gagtagttt cccaaagact taacacttca aggatgagg ct当地actttt 720
 ttaacatttg ttgtcttgc当地 ttatgtat taaaagcaag tgactaaca 780
 atggtaaac ccaagatccg aaaagaggct aaaatttgc aagaatgaaac aaaagggtt 840
 aagaggaaca taaaccaacc ttcttagca acatttcc local aaaaaaagaa gatcaaaaaca 900
 tgc当地cttgc当地 tattttgtga aaactggatc tccaaatgtt cctacaatgg aaggtggctt 960
 30 cgagaaacccggttataatcgaa ggaggtagag agaatttttgc当地tacaacct tcacaggccg 1020
 ttcccttaag aacatccac tctaaatgtt ttgc当地ata cggttcaattt aaaaaaccgc 1080
 aaatgcaat tggatctttt cactggagg ttttaagcg aaccgcttgc当地 gggaaatctca 1140
 ttgc当地ccgg cgatccctaa gacatatcat gagcgagggtt gc当地tggaaag cc当地ggagg 1200
 tggcaatga cttataaaaaa gc当地aggaca caggatgttgc当地 ctatcaagc attgc当地aaa 1260
 40 aatagcaaaag gccaaacgc当地 catttc当地gtt acatagcaaa cggttgc当地ctt ctctctcaag 1320
 aaaggatatc ttccggaaaca tccatccatc cccaaatcccc aaaggcgagg agagaacttag 1380
 caaagggaa atggctgctt ccacaaacaa cacttc当地agg ttgttgc当地tca cc当地taatgg 1440
 tggatgc当地cc ggatgttgc当地 cagcgaaaag gactgttgc当地 aaggcaggag acttggcc 1500
 agccctgtt ccgttggagg caggaggccg caccgc当地agg cc当地agggtt cggcttagagc 1560
 45 cagcaggacg ttgc当地atcat cgaaggttcg cgc当地accaggc gacggcaaga cggactcgac 1620
 acagggttgc当地 ttgc当地atttgc当地 ttgc当地atgtt gcacgggtt gtgactgtatg 1680

cactggttca atgatctatc aggcagtcca ggacacgtgg acgtcagcgt ggggagcgat 1740
 gggagacgca acgatgcica tccccaggc cgactacctg gtggccctc tctactt 1797

5 <210> 95
 <211> 828
 <212> DNA
 <213> Zea mays

10 <400> 95
 ccgtgacttt ccacgggtac acatatggc cctaccatgg ctctttatc aactgggc 60
 cgaaggcttag ttagttgatg gcttcataa ttgcattgca taattgcgt ttccttacc 120
 atgtgcctgt ttgttcggc ttctgacagc ttctggccac caaaagctgc tgccgtgc 180
 caaacgcctc gctttcagt cagctctat aaaatcggtt ggggcaaaaa ccatccaaaa 240
 15 tcaatataaa cacataatcg gttgagtcgt tgaatagtt ggaatccgtc actttctaga 300
 tattgaaccc tatgaacaac ttatcttcc tccacacgta atcgtaatga tactcagatt 360
 ctttccacag ccaaattccc ccacagccaa atttcagaa aagctggta gaaaaaagct 420
 gaaccaaaca ggcccatggt ctccctgtc ccgtccggct gagcgattct tccggggaa 480
 gagctgcagc tggtgcattt ccatggatgg cagcgagggtg gtccaaagaat ttctcccg 540
 20 catgcctct cctccagacc tccaccgatg cagcaggctc ctggtagagc taactaaatc 600
 ggggacccct tctcaagttt tcatcaatc atatgcagca gataacctaga agagcacgac 660
 cgagcttagga gaagcgcgaa cgccgtgcgt gcgcagacgt tgaggtcgag ggacacggta 720
 tctctgagct tcatcgaggaa gcgacccgcc accggccacgc ttggccgcaa gccgagaaga 780
 gtggccggcc gggagacccgg acgattattt atccgtac gattcgct 828

25 <210> 96
 <211> 847
 <212> DNA
 <213> Zea mays

<400> 96
 ccgtgacttt ccacgggtac acatatggc cctaccatgg ctctttatc aactgggc 60
 cgaaggcttag ttagttgatg gcttcataa ttgcattgca taattgcgt ttccttacc 120
 35 atgtgcctgt ttgttcggc ttctgacagc ttctggccac caaaagctgc tgccgtgc 180
 caaacgcctc gctttcagt cagctctat aaaatcggtt ggggcaaaaa ccatccaaaa 240
 tcaatataaa cacataatcg gttgagtcgt tgaatagtt ggaatccgtc actttctaga 300
 tattgaaccc tatgaacaac ttatcttcc tccacacgta atcgtaatga tactcagatt 360
 ctttccacag ccaaattccc ccacagccaa atttcagaa aagctggta gaaaaaagct 420
 40 gaaccaaaca ggcccatggt ctccctgtc ccgtccggct gagcgattct tccggggaa 480
 gagctgcagc tggtgcattt ccatggatgg cagcgagggtg gtccaaagaat ttctcccg 540
 catgcctct cctccagacc tccaccgatg cagcaggctc ctggtagagc taactaaatc 600
 ggggacccct tctcaagttt tcatcaatc atatgcagca gataacctaga agagcacgac 660
 cgagcttagga gaagcgcgaa cgccgtgcgt gcgcagacgt tgaggtcgag ggacacggta 720
 45 tctctgagct tcatcgaggaa gcgacccgcc accggccacgc ttggccgcaa gccgagaaga 780
 gtggccggcc gggagacccgg acgattattt atccgtac gattcgctaa tggcgagac 840

ggcggac

847

<210> 97

5 <211> 727

<212> DNA

<213> Zea mays

<400> 97

10 aaaaaaccca cgggtcacg gggttggta ctataggaac aaacccgtac caataaacc 60

gtcgggtata gatttatgcc cattaacaaa cccatggata tgaaaattga tccaaacccg 120

taccctaata gggtaaaaac ccacgggt tcgggttcg agtacccatt gtcatctta 180

acaggaagtg agtcatgggc ctcttgtcg ttgcgccttc tcgcctcatg gtccgtgact 240

ttccacgggt acacatatgg gccctaccat ggctcttta tcaactgggc ctgcgaaggct 300

15 agcttagtga tggctgcat aattgcattt catggctc tctgcctccgt ccgactgagc 360

gattcttccg gttagggagc tgcagtgcag ctgggtcatg gcatggatg gctgcgatg 420

gtccaagaat ttctccccgg catgtcctt cctccagacc tccaccgtat cagcaggctc 480

ctggtagagc taactaaatc ggggaccct tctcaagttt tcatcaactat atatgcagca 540

20 gatacctaga agagcacgac cgagcttagga gaagcgcgaa cgcgtcatg cgcagacgtt 600

gaggtcgagg gacacggat ctctgagctt catcgagag cgacccgcca cggccacgct 660

tgcccgaag ccgagaagag tgccggccg ggagaccgga cgattattga tccgttagcag 720

attcgct

727

25 <210> 98

<211> 746

<212> DNA

<213> Zea mays

30 <400> 98

aaaaaaccca cgggtcacg gggttggta ctataggaac aaacccgtac caataaacc 60

gtcgggtata gatttatgcc cattaacaaa cccatggata tgaaaattga tccaaacccg 120

taccctaata gggtaaaaac ccacgggt tcgggttcg agtacccatt gtcatctta 180

acaggaagtg agtcatgggc ctcttgtcg ttgcgccttc tcgcctcatg gtccgtgact 240

35 ttccacgggt acacatatgg gccctaccat ggctcttta tcaactgggc ctgcgaaggct 300

agcttagtga tggctgcat aattgcattt catggctc tctgcctccgt ccgactgagc 360

gattcttccg gttagggagc tgcagtgcag ctgggtcatg gcatggatg gctgcgatg 420

gtccaagaat ttctccccgg catgtcctt cctccagacc tccaccgtat cagcaggctc 480

ctggtagagc taactaaatc ggggaccct tctcaagttt tcatcaactat atatgcagca 540

40 gatacctaga agagcacgac cgagcttagga gaagcgcgaa cgcgtcatg cgcagacgtt 600

gaggtcgagg gacacggat ctctgagctt catcgagag cgacccgcca cggccacgct 660

tgcccgaag ccgagaagag tgccggccg ggagaccgga cgattattga tccgttagcag 720

attcgtaat ggcggatacg gcggac

746

09346902 - 052242