Tradução entre Sistemas de Classes em NLI

<u>Inferência em Linguagem Natural Tradução entre Sistemas de</u>
<u>Classes em NLI SICK-BR ASSIN ASSIN2 MNLI SNLI</u>

Classes

E: Entailment/Acarretamento

• P: Paráfrase

Ø: None

C: Contradição

• N: Neutralidade

Tabela de Tradução

Origem		Destino		
Sistema	Classe	ASSIN	ASSIN2	SICK
ASSIN	E(a,b)		E(a,b)	E(a,b)
	P(a,b)		E(a,b) Λ E(b,a)	E(a,b) Λ E(b,a)
	Ø(a,b)		Ø(a,b)	C(a,b) ⊕ N(a,b)
ASSIN2	E(a,b)	E(a,b) ⊕ P(a,b)		E(a,b)
	Ø(a,b)	Ø(a,b)		C(a,b) ⊕ N(a,b)
SICK	E(a,b)	E(a,b) ⊕ P(a,b)	E(a,b)	
	C(a,b)	Ø(a,b)	Ø(a,b)	
	N(a,b)	Ø(a,b)	Ø(a,b)	

Interpretação

- A classe de destino c_D é a classe que o modelo de destino corretamente classificaria um exemplo da classe de origem c_O num conjunto de dadosdo sistema de origem.
- Nos casos em que $c_D=A\wedge B$ é esperado que o modelo dê ambas as classificações A and B. Em todos os casos na tabela isso implica uma avaliação dupla pelo modelo sendo testado, garantindo que a classe composta seja distinta de outras classes, de forma que o modelo de destino pode ser avaliado no modelo de origem.
- Nos casos em que $c_D=A\oplus B$ o modelo de destino retonará ou uma classe ou A ou B para classificar o exemplo fornecido, o que implia que em tempo de avaliação, ambas as classes A e B devem ser traduzidas para a c_O correspondente.
- Nos casos em que temos a mesma c_D para mais de uma c_O do sistema de origem não conseguimos fazer a avaliação do modelo de destino no dataset de origem, precisamos então traduzir as c_O s correspondentes no dataset de origem para a c_D do dataset de destino e, então, fazer a avaliação.
- O SICK possui anotação de todos os pares em ambos os sentidos (a, b) e (b, a). Durante o treinamento, normalmente o que fazemos é considerar duas entradas distinas, uma (a, b) e outra (b,a). Quando estou testando um modelo que diferencia paráfrase em um corpus como esse, seguindo a tradução acima, poderia acontecer de dar acerto a uma previsão do modelo que é inconsistente. Por exemplo, se E(a,b) e N(b,a) e meu modelo classifica o par (a,b) com P, eu consideraria isso um acerto (porque a tabela acima me manda traduzir $P(a,b) \rightarrow E(a,b)$), mesmo que globalmente a resposta estivesse errada. Isso poderia inflar a métrica de desempenho do ASSIN no SICK, por exemplo, mas fazer qualquer verificação nesse sentido durante a avaliação do modelo atrapalharia a comparabilidade com outros resultados de outros modelos, além de ser inconsistente com a maneira com a qual os modelos são treinados, na qual mede-se a performance apenas localmente, exemplo à exemplo. Dessa

forma, é melhor utilizar a tradução da tabela acima, mesmo neste caso, mas mantendo essa ressalva no que tange à análise desses resultados.