Utilização de indicadores ambientais e epidemiológicos no estudo da dinâmica da malária

Raphael Felberg Levy

Fundação Getulio Vargas Escola de Matemática Aplicada

Orientador:

Flávio Codeço Coelho

Trabalho de Conclusão de Curso 12 de dezembro de 2023

Introdução

Base de referência: Trajetórias – Base de referência para o TCC, elaborado por pesquisadores do Centro de Biodiversidade e Serviços Ecossistêmicos SinBiose/CNPq ¹. Inclui indicadores de diferentes dimensões para municípios da Amazônia Legal:

- Perda de biodiversidade: desmatamento, degradação florestal, queimadas, mineração
- Anomalias climáticas: precipitação, temperatura mínima
- Ocorrência de doenças: malária, doença de Chagas, leishmaniose, dengue

Objetivo: Estudo de dinâmicas da malária na região amazônica com base em fatores epidemiológicos, climáticos e ambientais.

Metodologia: Análise dos comportamentos da transmissão através de modelos SIR e SEI para populações de hospedeiros e vetores.

Introdução

Vetor selecionado: *Plasmodium vivax*, espécie responsável pelo maior número de casos no Brasil ², e transmitido por mosquitos da espécie *Anopheles darlingi*.

Período de análise: 2004 a 2008

Região de análise: Zona rural de Manaus, tendo a maior incidência de casos por 100.000 habitantes, de aproximadamente 184.030,772 em 2006.

Introdução

Dados utilizados e teoria: utilizando o censo do IBGE ³, com dados de 2000, 2007 e 2010, estimei valores para os anos da análise através de interpolação linear.

Foi decidido estudar impactos do desmatamento em geral, causado pela construção de estradas, assentamentos, práticas agrícolas e extrativistas, entre outras ⁴.

Foto 1: criadouros naturais do Anopheles ⁵

Foto 2: bordas florestais se tornam criadouros ideais ⁶

Ano	População rural estimada
2004	7717
2005	7889
2006	8061
2007	8233
2008	8492
2009	8751

FGV EMAP

Formulação original: elaborada por Paul E. Parham & Edwin Michael ⁷, com o objetivo de considerar como os efeitos da sazonalidade podem ser incorporados em modelos e podem impactar a dinâmica da população de vetores.

$$\begin{cases} \frac{dS_H}{dt} = -ab_2 \left(\frac{I_M}{N}\right) S_H \\ \frac{dI_H}{dt} = ab_2 \left(\frac{I_M}{N}\right) S_H - \gamma I_H \\ \frac{dR_H}{dt} = \gamma I_H \\ \frac{dS_M}{dt} = b - ab_1 \left(\frac{I_H}{N}\right) S_M - \mu S_M \\ \frac{dE_M}{dt} = ab_1 \left(\frac{I_H}{N}\right) S_M - \mu E_M - ab_1 \left(\frac{I_H}{N}\right) S_M l(\tau_M) \\ \frac{dI_M}{dt} = ab_1 \left(\frac{I_H}{N}\right) S_M l(\tau_M) - \mu I_M \end{cases}$$

Funções e parâmetros utilizados:

Parâmetro	Definição	Cálculo
T(t)	Temperatura	$T_1(1+T_2\cos(\omega_1t-\phi_1))$
R(t)	Precipitação	$R_1(1+R_2\cos(\omega_2t-\phi_2))$
b(R,T)	Taxa de nascimento de mosquitos (/ dia)	$\frac{B_E p_E(R) p_L(R, T) p_P(R)}{(\tau_E + \tau_L(T) + \tau_P)}$
a(T)	Taxa de picadas (/dia)	$\frac{(T-T_1)}{D_1}$
$\mu(T)$	Taxa de mortalidade de mosquitos per capita $(/ \text{ dia})$	$-\log(p(T))$
$\tau_M(T)$	Duração do ciclo de esporozoitos (dias)	$\frac{DD}{(T-T_{min})}$
$ au_L(T)$	Duração da fase de desenvolvimento das larvas (dias)	$\frac{1}{c_1T+c_2}$
p(T)	Taxa diária de sobrevivência dos mosquitos	$e^{(-1/(AT^2+BT+C))}$
$p_L(R)$	Probabilidade de sobrevivência das larvas de- pendente de chuva	$\left(\frac{4p_{ML}}{R_L^2}\right)R(R_L-R)$
$p_L(T)$	Probabilidade de sobrevivência das larvas de- pendente de temperatura	$e^{-(c_1T+c_2)}$
$p_L(R,T)$	Probabilidade de sobrevivência das larvas de- pendente de temperatura e chuva	$p_L(R)p_L(T)$
$l(\tau_M)(T)$	Probabilidade de sobrevivência de mosquitos durante o ciclo de esporozoitos (/ dia)	$p(T)^{\tau_M(T)}$
M(t)	Número total de mosquitos	$S_M(t) + E_M(t) + I_M(t)$
N(t)	Número total de humanos	$S_H(t) + I_H(t) + R_H(t)$

Funções e parâmetros utilizados:

Parâmetro	Definição
b_1	Proporção de picadas de mosquitos suscetíveis em humanos infectados que produzem infecção
b_2	Proporção de picadas de mosquitos infectados em humanos suscetíveis que produzem infecção
γ	$1/{\rm Duração}$ média da infecciosidade em humanos (dias $^{-1})$
T_1	Temperatura média na ausência de sazonalidade (° C)
T_2	Amplitude da variabilidade sazonal na temperatura
R_1	Precipitação mensal média na ausência de sazonalidade (mm)
R_2	Amplitude da variabilidade sazonal na precipitação
ω_1	Frequência angular das oscilações sazonais na temperatura (meses $^{-1}$)
ω_2	Frequência angular das oscilações sazonais na precipitação (meses ⁻¹)
ϕ_1	"Phase lag" da variabilidade da temperatura (defasagem de fase)
ϕ_2	"Phase lag" da variabilidade da precipitação (defasagem de fase)
B_E	Número de ovos colocados por adulto por oviposição
p_{ME}	Probabilidade máxima de sobrevivência dos ovos
p_{ML}	Probabilidade máxima de sobrevivência das larvas
p_{MP}	Probabilidade máxima de sobrevivência das pupas
$ au_E$	Duração da fase de desenvolvimento dos ovos (dias)
b_{3}^{*}	Taxa de infecção em mosquitos expostos $(1/\tau_M(T))$

Parâmetro	Definição
$ au_P$	Duração da fase de desenvolvimento das pupas (dias)
R_L	Chuva limite até que os sítios de reprodução sejam eliminados, removendo indivíduos de estágio imaturo (mm)
T_{min}	Temperatura mínima, abaixo dessa temperatura não há desenvolvimento do parasita: 14.5 (°C)
DD	"Degree-days" para desenvolvimento do parasita. Número de graus em que a temperatura média diária excede a temperatura mínima de desenvolvimento. "Sum of heat" para maturação: $105~(^{\circ}C~{\rm dias})~^{[10],[15]}$
A	Parâmetro empírico de sensibilidade (° C^2 dias) ⁻¹
В	Parâmetro empírico de sensibilidade (° C dias) ⁻¹
C	Parâmetro empírico de sensibilidade (dias ⁻¹)
D_1	Constante: 36.5 (°C dias)
c_1	Parâmetro empírico de sensibilidade (° C dias) ⁻¹
c_2	Parâmetro empírico de sensibilidade (dias ⁻¹)
T'*	Parâmetro empírico de temperatura (° C)

Formulação adaptada: as equações originais foram modificadas de forma a incluir uma taxa de natalidade e mortalidade de humanos μ_H , uma taxa de incubação de expostos b_3 , além do fator k utilizado para estudar os efeitos do desmatamento.

$$\begin{cases} \frac{dS_H}{dt} = \mu_H N - akb_2 \left(\frac{I_M}{N}\right) S_H - \mu_H S_H \\ \frac{dI_H}{dt} = akb_2 \left(\frac{I_M}{N}\right) S_H - \gamma I_H - \mu_H I_H \\ \frac{dR_H}{dt} = \gamma I_H - \mu_H R_H \\ \frac{dS_M}{dt} = b - akb_1 \left(\frac{I_H}{N}\right) S_M - \mu S_M \\ \frac{dE_M}{dt} = akb_1 \left(\frac{I_H}{N}\right) S_M - \mu E_M - b_3 E_M - l E_M \\ \frac{dI_M}{dt} = b_3 E_M - \mu I_M \end{cases}$$

Formulação original: utilizando os métodos como foram definidos pelos autores de referência, assim como os valores passados para os parâmetros, iniciando com 10.000 mosquitos, sendo metade inicialmente exposta, os resultados foram como a seguir:

Formulação original: utilizando os métodos como foram definidos pelos autores de referência, assim como os valores passados para os parâmetros, iniciando com 10.000 mosquitos, sendo metade inicialmente exposta, os resultados foram como a seguir:

Formulação original: utilizando os métodos como foram definidos pelos autores de referência, assim como os valores passados para os parâmetros, iniciando com 10.000 mosquitos, sendo metade inicialmente exposta, os resultados foram como a seguir:

APLICADA

Adaptando as funções R e T: de forma a aproximar a temperatura e chuva em Manaus ao longo do ano 8 , modifiquei os fatores T_i , R_i , ω e Φ :

Foto 3: evolução da temperatura e precipitação em Manaus

Formulação com R e T adaptados: tendo corrigido os parâmetros de R e T, e mantendo os demais, o resultado ficou como a seguir:

Formulação com R_L aumentado: como a média de chuvas passou de 85.9 mm para 250.083 mm, aumentamos R_I de 50 para 450.

Formulação para alcançar equilíbrio de mosquitos: a população de mosquitos não consegue se estabelecer, e tende à extinção. Modificando A, B e C para diminuir μ e aproximar do equilíbrio:

Aumentando o número de mosquitos: aumentando M para 300.000 e E_{MO} para 50.000 e as probabilidades de sobrevivência dos estágios prematuros de desenvolvimento nos criadouros:

Modificando a passagem de mosquitos entre compartimentos: para contornar o efeito da baixa transferência entre compartimentos, as equações do SEI foram modificadas, de forma a utilizar um parâmetro b_3 de infecção de expostos.

$$\begin{cases}
\frac{dS_M}{dt} = b - ab_1 \left(\frac{I_H}{N}\right) S_M - \mu S_M \\
\frac{dE_M}{dt} = ab_1 \left(\frac{I_H}{N}\right) S_M - \mu E_M - ab_1 \left(\frac{I_H}{N}\right) S_M l(\tau_M)
\end{cases}$$

$$\begin{cases}
\frac{dS_M}{dt} = b - ab_1 \left(\frac{I_H}{N}\right) S_M - \mu S_M \\
\frac{dE_M}{dt} = ab_1 \left(\frac{I_H}{N}\right) S_M - \mu E_M - b_3 E_M l \\
\frac{dI_M}{dt} = ab_1 \left(\frac{I_H}{N}\right) S_M l(\tau_M) - \mu I_M
\end{cases}$$

$$\begin{cases}
\frac{dI_M}{dt} = ab_1 \left(\frac{I_H}{N}\right) S_M l(\tau_M) - \mu I_M \\
\frac{dI_M}{dt} = b_3 E_M l - \mu I_M
\end{cases}$$

Modificando a passagem de mosquitos entre compartimentos: para contornar o efeito da baixa transferência entre compartimentos, as equações do SEI foram modificadas, de forma a utilizar um parâmetro b_3 de infecção de expostos. Nesse ponto, γ passou de 1/120 para 1/1825, e T_1 foi substituído por T'.

Adaptando a probabilidade diária de sobrevivência: embora aproximem mais um comportamento real de transmissão considerando as entradas e saídas dos compartimentos, as equações ainda precisaram ser adaptadas, removendo a associação de l a b_3 , assim como da entrada de novos indivíduos no compartimento I_M .

$$\begin{cases} \frac{dS_M}{dt} = b - ab_1 \left(\frac{I_H}{N}\right) S_M - \mu S_M \\ \frac{dE_M}{dt} = ab_1 \left(\frac{I_H}{N}\right) S_M - \mu E_M - b_3 E_M l \end{cases}$$

$$\begin{cases} \frac{dE_M}{dt} = ab_1 \left(\frac{I_H}{N}\right) S_M - \mu E_M - b_3 E_M l \\ \frac{dI_M}{dt} = b_3 E_M l - \mu I_M \end{cases}$$

$$\begin{cases} \frac{dI_M}{dt} = b_3 E_M l - \mu I_M \end{cases}$$

$$\begin{cases} \frac{dI_M}{dt} = b_3 E_M - \mu I_M \end{cases}$$

Adaptando a probabilidade diária de sobrevivência: embora aproximem mais um comportamento real de transmissão considerando as entradas e saídas dos compartimentos, as equações ainda precisaram ser adaptadas, removendo a associação de l a b_3 , assim como da entrada de novos indivíduos no compartimento I_M .

Adaptando a probabilidade diária de sobrevivência: embora aproximem mais um comportamento real de transmissão considerando as entradas e saídas dos compartimentos, as equações ainda precisaram ser adaptadas, removendo a associação de l a b_3 , assim como da entrada de novos indivíduos no compartimento I_M .

Diminuindo a curva de infecção: com o modelo devidamente adaptado, foi possível diminuir γ a 1/120 de forma a diminuir a duração da infecciosidade humana:

Diminuindo a curva de infecção: com o modelo devidamente adaptado, foi possível diminuir γ a 1/120 de forma a diminuir a duração da infecciosidade humana. Analisando também com $I_{H0}=1$ e $E_{M0}=1$:

O valor R_0 é o número médio de indivíduos infectados por cada indivíduo infectado quando uma doença é introduzida em uma população, assumindo todos inicialmente suscetíveis. Para seu cálculo, usei a formulação de van den Driessche e Watmough 9 .

Definições necessárias:

- 1. $X = (x_1, ..., x_n)^T$: $x_i \ge 0$ o número de indivíduos em cada compartimento i, ordenando os m primeiros compartimentos para que sejam os compartimentos com infectados
- 2. $X_s = \{x \ge 0 | x_i = 0, i = 1, \dots, m\}$: conjunto de estados livres de doença
- 3. $\dot{x} = f_i(x) = \mathcal{F}_i(x) \mathcal{V}_i(x), i = 1, \dots, n$: modelo de transmissão da doença
- 4. $\mathcal{F}_i(x)$: taxa de aparecimento de novas infecções no compartimento i
- 5. $\mathcal{V}_{i}^{+}(x)$: taxa de entrada de indivíduos no compartimento i por outros meios
- 6. $\mathcal{V}_i^-(x)$: taxa de saída de indivíduos no compartimento i
- 7. $V_i(x) = V_i^-(x) V_i^+(x)$

O valor R_0 é o número médio de indivíduos infectados por cada indivíduo infectado quando uma doença é introduzida em uma população, assumindo todos inicialmente suscetíveis. Para seu cálculo, usei a formulação de van den Driessche e Watmough 9 .

Definições necessárias:

8.
$$F = \left[\frac{\partial \mathcal{F}_i(x_0)}{\partial x_j}\right]$$

9.
$$V = \left[\frac{\partial \mathcal{V}_i(x_0)}{\partial x_j}\right]$$

10.
$$\mathcal{R}_0 = \rho(FV^{-1})$$

Cálculo de R₀ do SIR:

m=1, e os compartimentos são reordenados: [I_H, S_H, R_H]

 $\mathcal{F}_i(x)$: taxa de surgimento de novos infectados no compartimento i

$$\mathcal{F} = \left[ab_2 I_M S_H \right]$$

 $\mathcal{V}_i(x)^-$: taxa de saída do compartimento i

 $\mathcal{V}_i(x)^+$: taxa de entrada do compartimento i

$$\begin{cases} \mathcal{V}^{-} = \left[\gamma I_{H}\right] \\ \Rightarrow \mathcal{V}_{i}(x) = \mathcal{V}_{i}(x)^{-} - \mathcal{V}_{i}(x)^{+} \Rightarrow \mathcal{V} = \left[\gamma I_{H}\right] \\ \mathcal{V}^{+} = \left[0\right] \end{cases}$$

$$V = \frac{\partial \mathcal{V}}{\partial I_H} = \left[\gamma \right]$$

No equilíbrio, $[S_{H}^{*}, I_{H}^{*}] = [1, 0] e$

$$R_0 = \left| rac{ab_2}{\gamma} \right|$$

Cálculo de R_o do SEI:

m=2, e os compartimentos são reordenados: $[E_M, I_M, S_M]$

$$\mathcal{F} = \begin{bmatrix} ab_1 I_H S_M \\ 0 \end{bmatrix}$$

$$F = rac{\partial \mathcal{F}}{\partial E_M, I_H} = egin{bmatrix} rac{\partial ab_1 I_H S_M}{\partial E_M} & rac{\partial ab_1 I_H S_M}{\partial I_H} \ rac{\partial 0}{\partial E_M} & rac{\partial 0}{\partial I_H} \end{bmatrix} = egin{bmatrix} 0 & ab_1 S_M \ 0 & 0 \end{bmatrix}$$

$$V = rac{\partial \mathcal{V}}{\partial E_M, I_M} = egin{bmatrix} rac{\partial E_M(\mu + b_3 + l)}{\partial E_M} & rac{\partial E_M(\mu + b_3 + l)}{\partial I_M} \ rac{\partial I_M}{\partial I_M} & rac{\partial \mu I_M - b_3 E_M}{\partial I_M} \end{bmatrix} = egin{bmatrix} \mu + b_3 + l & 0 \ -b_3 & \mu \end{bmatrix}$$

$$\begin{cases} \mathcal{V}^- = \begin{bmatrix} E_M(\mu + b_3 + l) \\ \mu I_M \end{bmatrix} \end{cases}$$

$$\mathcal{V}^{+} = egin{bmatrix} 0 \ b_3 E_M \end{bmatrix}$$

No equilíbrio, $[S_M^*, E_M^*, I_M^*] = [1, 0, 0]$ e

$$R_0 = \left| \frac{ab_1b_3}{(b_3 + l + \mu)\mu} \right|$$

MATEMÁTICA APLICADA

Cálculo de R₀ do modelo acoplado:

m=3, e os compartimentos são reordenados: $[I_H, E_M, I_M, S_H, S_M, R_H]$

$$\mathcal{F} = egin{bmatrix} ab_2 I_M S_H \ ab_1 I_H S_M \ 0 \end{bmatrix}$$

$$\begin{cases} \mathcal{V}^{-} = \begin{bmatrix} \gamma I_{H} \\ E_{M}(\mu + b_{3} + l) \\ \mu I_{M} \end{bmatrix} \\ \Rightarrow \mathcal{V}_{i}(x) = \mathcal{V}_{i}(x)^{-} - \mathcal{V}_{i}(x)^{+} \Rightarrow \mathcal{V} = \begin{bmatrix} I_{H}\gamma \\ E_{M}(\mu + b_{3} + l) \\ \mu I_{M} - b_{3}E_{M} \end{bmatrix} \end{cases}$$

$$F = rac{\partial \mathcal{F}}{\partial I_H, E_M, I_M} = egin{bmatrix} 0 & 0 & ab_2 S_H \ ab_1 S_M & 0 & 0 \ 0 & 0 & 0 \end{bmatrix}$$

$$V = rac{\partial \mathcal{V}}{\partial I_H, E_M, I_M} = egin{bmatrix} \gamma & 0 & 0 \ 0 & b_3 + l + \mu & 0 \ 0 & -b_3 & \mu \end{bmatrix}$$

No equilíbrio,

$$R_0 = \left| \sqrt{\frac{a^2b_1b_2b_3}{(b_3 + l + \mu)\gamma\mu}} \right|$$

R₀ da formulação original:

```
R0_sir = 0.01959825942927436

R0_sei = 0.00012392848185565277

R0_acoplado = 0.0015584551767963053
```


R₀ da formulação original:

```
R0_sir = 0.01959825942927436
R0_sei = 0.00012392848185565277
R0 acoplado = 0.0015584551767963053
```

R₀ da formulação adaptada:

```
R0_sir = 0.26024503397398857
R0_sei = 0.9002047882569278
R0_acoplado = 0.48401841463261647
```


Modelo SEI de Malária com parâmetros: A=12.5, B=15.0, C=-48.78, gamma=1/120, R_L=450, P_ME=0.9, P_ML=0.75, P_MP=0.85, T_linha=25.6

Formulação final: inclusão de parâmetros μ_H = 0.00007 e k:

$$\begin{cases} \frac{dS_H}{dt} = \mu_H N - akb_2 \left(\frac{I_M}{N}\right) S_H - \mu_H S_H \\ \frac{dI_H}{dt} = akb_2 \left(\frac{I_M}{N}\right) S_H - \gamma I_H - \mu_H I_H \\ \frac{dR_H}{dt} = \gamma I_H - \mu_H R_H \\ \frac{dS_M}{dt} = b - akb_1 \left(\frac{I_H}{N}\right) S_M - \mu S_M \\ \frac{dE_M}{dt} = akb_1 \left(\frac{I_H}{N}\right) S_M - \mu E_M - b_3 E_M - lE_M \\ \frac{dI_M}{dt} = b_3 E_M - \mu I_M \end{cases}$$

$$\mathcal{R}_0 \text{ (SIR)} = \left| \frac{akb_2}{\gamma + \mu_H} \right|$$

$$\mathcal{R}_0 \text{ (SEI)} = \left| \frac{akb_1b_3}{(b_3 + l + \mu)\mu} \right|$$

$$\mathcal{R}_{0} = \left| \sqrt{\frac{a^{2}b_{1}b_{2}b_{3}k^{2}}{\mu(\gamma + \mu_{H})(b_{3} + l + \mu)}} \right|$$

K=1: iniciando com a proporção inicial de picadas bem sucedidas (b_1 =0.04 e b_2 =0.09):

K ≈ 2.075: valor de k limitante para a infecção

R0_sir = 0.535431783645363 R0_sei = 1.8676515487962488 R0 acoplado = 1.0

K=2.5:

R0_sir = 0.6451929640370601 R0_sei = 2.25051197064232 R0_acoplado = 1.2049956385562577

K=5:

R0_sir = 1.2903859280741201 R0_sei = 4.50102394128464 R0 acoplado = 2.4099912771125154

K=10:

R0_sir = 2.5807718561482402 R0_sei = 9.00204788256928 R0_acoplado = 4.819982554225031

Cálculo de equilíbrios

Calculando S_H* e I_H* em função de k:

S_H no equilíbrio em k=2.0746963059512207: 1318.1033115635678

S_H no equilíbrio em k=10: 94.57316030412503

I_H no equilíbrio em k=2.0746963059512207: 53.30298709129911

I_H no equilíbrio em k=10: 63.495027224757386

Cálculo de equilíbrios

Calculando estabilidades globais em função de k:

Trajetória Original termina em: S_H = 7645.039945482037, I_H = 21.635136511609325 Trajetória 5 termina em: S_H = 269.9185970304415, I_H = 122.820937080062

Trajetória Original termina em: $S_H = 7.765930047872488$, $I_H = 69.0051932332421$ Trajetória 5 termina em: $S_H = 8.602295905485134$, $I_H = 69.42962232039685$

Conclusão e Trabalho Futuro

- Maior compreensão das relações entre parâmetros de entrada e modelagem resultante.
- Possível estimar o efeito de maior aproximação entre hospedeiro e vetor antes que a doença se torne endêmica.
- Comparar a metodologia original e modificada e verificar o que poderia ser modificado para que, utilizando os parâmetros originais, o modelo ainda tivesse um equilíbrio endêmico.
- Analisar a evolução dos equilíbrios dados por funções osciladoras ao longo do tempo.
- Aplicar métodos estocásticos, de forma a incorporar as variáveis ambientais em constante mudança.

Referências

- 1. Rorato, A.C., Dal'Asta, A.P., Lana, R.M. et al. Trajetorias: a dataset of environmental, epidemiological, and economic indicators for the Brazilian Amazon. Sci Data 10, 65 (2023). https://doi.org/10.1038/s41597-023-01962-1 (https://doi.org/10.1038/s41597-023-01962-1 (https://zenodo.org/records/7098053#.ZA-AP3bMKUI).
- 2. Oliveira-Ferreira, J., Lacerda, M.V., Brasil, P. et al. Malaria in Brazil: an overview. Malar J 9, 115 (2010). https://doi.org/10.1186/1475-2875-9-115.
- 3. Censo Séries históricas. Brasil / Amazonas / Manaus. https://cidades.ibge.gov.br/brasil/am/manaus/pesquisa/43/0?tipo=gráfico.
- 4. Silva-Nunes, M. Impacto de Alterações Ambientais na Transmissão da Malária e Perspectivas para o Controle da Doença em Áreas de Assentamento Rural da Amazônia Brasileira. https://revistas.ufrj.br/index.php/oa/article/view/7101/5685.
- 5. Sánchez-Ribas, J. et al. New classification of natural breeding habitats for Neotropical anophelines in the Yanomami Indian Reserve, Amazon Region, Brazil and a new larval sampling methodology. Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 110(6): 760-770, September 2015. https://www.scielo.br/j/mioc/a/HphVFKHGq65mVk4BxMPwwt5/?lang=en.
- 6. Study links malaria to deforestation in the Amazon. https://news.mongabay.com/2018/05/study-links-deforestation-and-malaria-in-the-amazon/.
- 7. Parham, P.E., Michael, E. (2010). Modelling Climate Change and Malaria Transmission. In: Michael, E., Spear, R.C. (eds) Modelling Parasite Transmission and Control. Advances in Experimental Medicine and Biology, vol 673. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6064-1 13.
- 8. Climate Data. CLIMA MANAUS (BRASIL). Clima Manaus: Temperatura, Tempo e Dados climatológicos Manaus (climate-data.org).
- 9. van den Driessche P, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci. 2002 Nov-Dec;180:29-48. doi: 10.1016/s0025-5564(02)00108-6. PMID: 12387915.

