Prénom :	/20
Matricule :	120
Vous disposez de 50 minutes pour répondre aux question	ns suivantes.
1. Vous mettez sur une balance à plateaux 65,4 mol d'éthane (C_2H_6) devez-vous mettre sur l'autre plate soit en équilibre ? Rappel : $N_A = 6,022 \times 10^{23}$ (4 poin Temps suggéré : 5 minutes	au de la balance pour que cette dernière

2. Compréhension d'un procédé

(4 points)

Dans le procédé opéré en régime permanent représenté ci-dessous, du $A_{(g)}$ provenant du réservoir R1 est chauffé dans l'échangeur de chaleur HX1 puis acheminé au réacteur D1. Un courant de $B_{(g)}$ provenant du compresseur C1 est aussi ajouté. La réaction suivante se produit dans le réacteur D1 :

$$A_{(g)} + B_{(g)} \rightarrow 2 C_{(g)}$$

À la sortie du réacteur D1, le courant est refroidi dans l'échangeur de chaleur HX2, entrainant la condensation d'une partie du mélange de A, B, C, puis est acheminé au réservoir R3 opérant à 8 atm et 75°C. *Temps suggéré : 5 minutes*

Figure 1 - Diagramme d'écoulement du procédé

Questions	Réponses
Vrai ou Faux ? Le débit massique total entrant dans le procédé (points 1 et 3) est égal au débit massique total sortant du procédé (points 7 et 8). Justifiez votre réponse. (1 point)	
Vrai ou Faux ? Le débit massique de A _(g) qui entre dans le réacteur est égal au débit massique de A _(g) qui sort du réacteur. Justifiez votre réponse. (1 point)	

Vrai ou Faux ? Le nombre de moles totales qui sortent du réacteur est égal au nombre de moles totales qui entrent dans ce réacteur. Justifiez votre réponse. (1 point)	
Sachant que la pression est de 1 atm aux points 1 et 2, comment varie (augmente, diminue, reste constante) la masse volumique du gaz A entre ces deux points ? Justifiez votre réponse. (1 point)	

3. Séparation d'un mélange BTX Temps suggéré : 35 minutes

(12 points)

Vous désirez analyser une unité de séparation d'un mélange BTX (Benzène/Toluène/Xylène) dans une raffinerie. Le mélange à séparer dans le courant 1 du schéma de la page suivante contient 15% molaire de benzène (B ou C_6H_6), 35% molaire de toluène (T ou C_7H_8) et 50% molaire de xylène (X ou C_8H_{10}). Le débit de la conduite 1 est de 1000 mol/s.

La colonne à distiller CD1 permet de séparer le mélange et **tout le X se retrouve dans le résidu (courant 6)**. De plus, le courant 6 contient 20% du T se trouvant dans l'alimentation et aucun B. Le distillat (courant 4) est acheminé à la colonne CD2.

Le courant 10 contient 25% molaire de T. Le rebouilleur HX-04 opère à 105°C. Une analyse du courant 13 a permis de déterminer qu'il contient 5% molaire de B et 95% molaire de T.

Figure 2 - Système de distillation

Complétez l'annotation du procédé en utilisant les variables pertinentes, et ce, uniquement pour les conduites utiles à votre résolution.

A) Effectuez une analyse des degrés de liberté (DDL) sur le procédé global. (3 points)

B)	Effectuez une analyse des degrés de liberté (DDL) sur le système de distillation no. 1 (donc les courants 1, 4 et 6). <i>(3 points)</i>
C)	Déterminez les déhits partiels (mol/s) des courants 4 et 6 (6 noint)
C)	Déterminez les débits partiels (mol/s) des courants 4 et 6. <i>(6 point)</i>
C)	Déterminez les débits partiels (mol/s) des courants 4 et 6. <i>(6 point)</i>
C)	Déterminez les débits partiels (mol/s) des courants 4 et 6. <i>(6 point)</i>
C)	Déterminez les débits partiels (mol/s) des courants 4 et 6. <i>(6 point)</i>
C)	Déterminez les débits partiels (mol/s) des courants 4 et 6. <i>(6 point)</i>
C)	Déterminez les débits partiels (mol/s) des courants 4 et 6. (6 point)
C)	Déterminez les débits partiels (mol/s) des courants 4 et 6. (6 point)

I A						Tak	oleau p	oériodi	ique d	Tableau périodique des éléments	nents						18 VIII A
1 H hydrogène 2 1,008	2 II A											13 III A	14 IV A	15 < A	16 ∨I A	17 VII A	2 He hélium 4,003
	₽ Be											B 2	ن و	► Z	∞ 0	6 L	10 Ne
lithium b 6,941 9	bérylium 9,012											bore 10,81	carbone 12,01	azote 14,01	oxygène 16,00	fluor 19,00	néon 20,18
Na I	12 Mg											13 Al	14 S :	15 P	36 S	17 C	18 A
Ε.	magnésium 24,31	3 IIIB	4 IV B	5 < B	6 VI B	7 VII B	ω _	9 VIIIIB	10	11 1B	12 II B	aluminium 26,98	silicium 28,09	phosphore 30,97	soufre 32,07	chlore 35,45	argon 39,95
19 X	20 Ca	21 Sc	75 125	23	ن ٪	25 Mn	26 Fe	27 Co	788 .E	5 0	30 Zn	31 Ga	32 Ge	33 As	% Se	£ ಹ	% 호
assium .0	E 8	scandium 44,96	titane 47,88	vanadium 50,94	chrome 52,00	manganèse 54,94	fer 55,85	cobalt 58,93	nickel 58,69	cuivre 63,55	zinc 65,39	gallium 69,72	germanium 72,59	arsenic 74,92	sélénium 78,96	brome 79,90	krypton 83,80
37 37 3		~	40 Ž	41 Nb	42 Mo	43 Tc	R 45	8	46 Pd	47 Aq	8 5	49 In	S 20	51 Sb	52 Te	23 I	₹ %
mni .	tium	yttrium 88,91	zirconium 91,22	niobium 92,91	molybdène 95,94		ruthénium 101,1	rhodium 102,9	palladium 106,4	argent 107,9	cadmium 112,4	indium 114,8	étain 118,7	antimoine 121,8	tellure 127,6	iode 126,9	xénon 131,3
55 5 Cs E		57 La	72 Hf	73 Ta	4 ⁷ ×	75 Re	76 0s	1 .	₽ ₩	79 Au	8 =	18 E	82 Pb	8 	84 6	85 At	% 2
E.	Ę, "	lanthane 138,9	hafnium 178,5	tantale 180,9	tungstène 183,9	rhénium 186,2	osmium 190,2	iridium 192,2	platine 195,1	or 197,0	mercure 200,6	thallium 204,4	plomb 207,2	bismuth 209,0	polonium (210)	astate (210)	radon (222)
87 8 Fr francium (223)		89 Ac actinium (227)	104 105 Rt autherfordium (257) (260)	105 Db dubnium (260)	Sg seaborgium (263)		108 Hs hassium (265)	Mt meitnerium (266)									
				Ge cérium	59 60 Nd praséodyme néodyme 141.2	60 Nd néodyme	61 Pm prométhium	62 Sm samarium	63 Eu europium	64 Gd gadolinium	65 Tb terbium	66 Dy dysprosium	67 Ho holium	68 Er erbium	69 Tm thulium	70 Yb ytterbium	71 Lu lutécium
Pol.	POLYTECHNIQUE Montréal	VIQUE		90 Th thorium	91 92 D protactinium uranium (231)	92 U uranium 238.0	93 Np neptunium	Pu plutonium (242)	95 Am américium			98 Cf californium (249)	99 Es einsteinium (254)	100 Fm fermium (253)	101 102 No mendélévium nobélium (256)	102 No nobélium (254)	