一些特殊的范畴

现在规定几种特殊的范畴。

- 离散范畴: 只有对象不含箭头(恒等箭头除外)的范畴。
- Set: **所有集合构成的范畴**, 为局部小范畴, 满足
 - Set 中对象为任意集合;
 - Set 中箭头为集合间映射。
- Cat: **所有范畴构成的范畴**,满足
 - Cat 中任何对象都构成一个范畴;
 - Cat 中任何箭头都构成一个函子。

若 C, D 为 Cat 中对象,则:

- C^{op}: **反范畴**,满足
 - C^{op} 中对象皆形如 c, c 为任意 C 中的对象;
 - C^{op} 中箭头皆形如 i^{op} : $c_2 \xrightarrow{C^{op}} c_1$, i: $c_1 \xrightarrow{c} c_2$ 可为任意 C 中的箭头。
- C×D: **积范畴**,满足
 - C×D 中对象皆形如 c.d,
 c,d分别为任意 C,D 中的对象;
 - C×D 中箭头皆形如 i.j,
 j分别为任意 C, D 中的箭头。
- C→Cat D : 所有 C 到 D 的函子的范畴 , 满足
 - C → D 中任何对象
 都是 C 到 D 的函子;
 - C → D 中任何箭头
 都是函子间自然变换。
- C/c: 俯范畴, 这里 c 为任意 C 中对象; 满足
 - C/c₂ 中对象皆形如 c.1.i, 其中 c 和
 i: c→c₂ 分别为 C 中任意的对象和箭头;
 - c₂/C 中箭头皆形如 f i_{c₂} id 且满足下述交换图,其中
 c, c' 为 C 中任意对象且 f, i, i' 为 C 中任意箭头;

- c₁/C: **仰范畴**, 这里 c 为任意 C 中对象; 满足
 - c_1/C 中对象皆形如 $1.\overline{c}$. i, 其中 c 和 i: $c_1 \rightarrow c$ 分别为 C 中任意的对象和箭头;
 - C/c₁ 中箭头皆形如 <u>id</u>. <u>f</u> 且满足下述交换图,其中c, c'为 C 中任意对象且 <u>f</u>, <u>i</u>, <u>i'</u> 为 C 中任意箭头;

