

TWO-COLUMN
PROOFS
FULL UNIT:
PRESENTATION

Terms of Use

Thanks so much for downloading this file!

This resource is for personal use in your own classroom only. The copyright is owned by Math Giraffe and all rights are reserved. Permission is granted to copy pages for your own students.

Placing any part of this file anywhere online is a violation of the Digital Millennium Copyright Act.

You may:

- Print this file and distribute it to your students
 - Use it in your own classroom

You may not:

- Upload it on the internet to another site in any form
- Sell it, sell any part of it, or sell anything based upon it
 - Share it without permission

I hope that you and your students enjoy this!

© Copyright Math Giraffe

Note to Teacher:

THIS UNIT WILL GUIDE YOU AND YOUR STUDENTS THROUGH THE ENTIRE CONCEPT OF GEOMETRY PROOFS FROM BEGINNING TO END. THE UNIT BEGINS WITH THE BASIC BUILDING BLOCKS OF PROOFS. STUDENTS LEARN THE PROPERTIES AND POSTULATES THAT WILL BECOME THE JUSTIFICATIONS FOR PROOFS. THEY BEGIN WITH JUSTIFYING ALGEBRA PROBLEMS THAT THEY ARE FAMILIAR WITH AND EASE INTO THE GEOMETRY PROOFS. THE UNIT USES THE TWO-COLUMN STRUCTURE FOR PROOF WRITING.

THIS PRESENTATION SET IS ACCOMPANIED BY A SET OF PRINTABLE RESOURCES THAT YOU CAN USE AS PRACTICE AND ASSESSMENT AS YOU GO THROUGH THE UNIT.

Suggested Pacing Guide

	Regular Class Periods	Block Schedule
Day 1	Properties of Equality and Congruence (presentation p.5-18, printables p.2 -6)	Properties of Equality and Congruence, Postulates (presentation p. 5–24, printables 2-10)
Day 2	Properties Warm-Up (Printables p.7-8) Lesson on Postulates (presentation p.19-24, printables p.9-10)	The Two-Column Proof Structure, Algebraic Proofs (presentation p.25-34, printables p.11-16)
Day 3	The Two-Column Proof Structure, Algebraic Proofs (Presentation p.25-34, printables p.11-14)	Proofs Using Definitions and Postulates (presentation p. 35-51, printables p. 17-25), Review of Special Angle Pairs (presentation p. 52, 53)
Day 4	Algebra Proofs Warm-Up (printables p. 15-16) Lesson on Proofs Using Definitions and Postulates (presentation p. 35-51, printables p.17-25)	Quiz 1 (printables p.26-29), Proofs Using Special Angle Pairs (presentation p. 54-59, printables p.30-37)
Day 5	Quiz 1 (printables p.26-29) Review of Special Angle Pairs (presentation p. 52, 53)	Proofs Using Triangles (presentation p.60, printables p.38-41)
Day 6	Proofs Using Special Angle Pairs (presentation p. 54-59, printables p.30-31)	Quiz 2 (printables p.42-45)
Day 7	Warm-Up using Special Angle Pairs (printables p.32-33), More Proofs Using Special Angle Pairs (Transversals)(printables p. 34-37)	
Day 8	Proofs Using Triangles (presentation p.60, printables p.38-41)	
Day 9	Quiz 2 (printables p.42-45)	

Introduction to Proofs

When writing a proof, your job is to complete a puzzle. You start with the given information and have to reach the "goal" statement. You must show your logic to prove that you can get the desired result. To do this, you need to justify every statement that you make. Your statements and justifications link together to form the proof.

This unit will focus on a two-column style proof. Before we begin writing the formal proofs, we need a few building blocks of knowledge that will become our justifications. Justifications can be properties, postulates, and theorems that have already been proven or accepted as truth.

PROPERTIES OF EQUALITY

Addition Property of Equality

Adding the same number to both sides of an equation results in an equivalent equation.

```
If a = b is true,
Then a + m = b + m is also true.
```

Subtraction Property of Equality

Subtracting the same number from both sides of an equation results in an equivalent equation.

```
If a = b is true,
Then a - m = b - m is also true.
```


PROPERTIES OF EQUALITY

Multiplication Property of Equality

Multiplying both sides of an equation by the same nonzero number results in an equivalent equation.

Division Property of Equality

Dividing both sides of an equation by the same nonzero number results in an equivalent equation.

If
$$a = b$$
 is true,
Then $\frac{a}{m} = \frac{b}{m}$ is also true (for $m \neq 0$).

REFLEXIVE PROPERTY OF EQUALITY

A number is equal to itself.

x = x

REFLEXIVE PROPERTY OF CONGRUENCE

A figure is congruent to itself.

$$<$$
A \cong

SYMMETRIC PROPERTY OF EQUALITY

The sides of an equation can be switched. If a = b, then b = a

SYMMETRIC PROPERTY OF CONGRUENCE

The sides of a congruency statement can be switched. If <A \cong <B, then <B \cong <A

TRANSITIVE PROPERTY OF EQUALITY

If two numbers are equal to the same number, then they are equal to each other. If a = b and b = c, then a = c

TRANSITIVE PROPERTY OF CONGRUENCE

If two figures are congruent to the same figure, then they are congruent to each other.

If <A \cong <B, and <B \cong <C, then <A \cong <C

Identify which property was used to get from column 1 to column 2.

1	6n + 9 = 15	6n + 9 - 9 = 15 - 9	
		or	
		6n = 6	
2	$\overline{JK} \cong \overline{GH}$	$\overline{GH} \cong \overline{JK}$	
3	<qrs <uvw<="" th="" ≅=""><th><qrs <xyz<="" th="" ≅=""><th></th></qrs></th></qrs>	<qrs <xyz<="" th="" ≅=""><th></th></qrs>	
	and		
	<uvw <b="" ≅=""><XYZ</uvw>		
4	m<4 = m<9	m<4 + m<1 = m<9	
		+ m<1	

Write a new congruency statement using the transitive property.

5	$<$ DEF \cong $<$ ABC and $<$ JKL \cong $<$ DEF	
6	$\overline{RS} \; \cong \; \overline{VW}$ and $\overline{RS} \; \cong \; \overline{XY}$	Maricellarie

Identify which property was used to get from column 1 to column 2.

1	6n + 9 = 15	6n + 9 - 9 = 15 - 9	Subtraction
		or	Property of
		6n = 6	Equality
2	$\overline{JK} \cong \overline{GH}$	$\overline{GH} \cong \overline{JK}$	Symmetric Property of Congruence
3	<qr5 <uvw<="" th="" ≅=""><th><QR\$ ≅ <XYZ</th><th>Transitive</th></qr5>	< QR \$ ≅ <XYZ	Transitive
	and		Property of
	<uvw <xyz<="" th="" ≅=""><th></th><th>Congruence</th></uvw>		Congruence
4	m<4 = m<9	m<4+m<1=m<9	Addition Property
		+ m<1	of Equality

Write a new congruency statement using the transitive property.

5	<def <math="">\cong <abc <jkl="" <math="" and="">\cong <def< th=""><th><abc <jkl<="" th="" ≅=""></abc></th></def<></abc></def>	<abc <jkl<="" th="" ≅=""></abc>
6	$\overline{RS} \; \cong \; \overline{VW}$ and $\overline{RS} \; \cong \; \overline{XY}$	$\overline{VW} \cong \overline{XY}$

© Copyright 2014 Math Giraffe

Substitution

Property

SUBSTITUTION
PROPERTY OF
EQUALITY:
IF TWO NUMBERS ARE
EQUAL, ONE CAN
REPLACE THE OTHER IN
AN EQUATION.

SUBSTITUTION PROPERTY OF CONGRUENCE: IF TWO FIGURES ARE CONGRUENT, ONE CAN REPLACE THE OTHER IN **a** CONGRUENCY STATEMENT.

EXAMPLE1:

If m < G = m < H and we know that m < G + m < A = m < B,

We can rewrite the statement as follows:

$$m < H + m < A = m < B$$
.

Substitution

Property

EXAMPLE2:

If $\overline{TV}\cong \overline{WX}$ and we know that $\overline{WX}\cong \overline{YU}$

We can rewrite the statement as follows:

$$\overline{TV} \cong \overline{YU}$$

THE SUBSTITUTION AND TRANSITIVE PROPERTIES CAN BE USED

FOR FULL EXPRESSIONS AS WELL.

Look at the following example.

The following information is GIVEN:

d = c, a = c d + p = n, a + c = n Note: In order to use the Transitive Property, the equivalent parts must each be an ENTIRE SIDE of the equation!

Depending on our goal, we can write quite a few statements from the given equations.

Since two different expressions are equal to n, they are equal to each other. We can now write a new statement: d + p = a + c.

It can help to put boxes around the expressions to clearly see which expressions are equal.

USING THE FOUR GIVEN STATEMENTS ABOVE, WRITE AS MANY NEW STATEMENTS AS YOU CAN. USE ONLY SUBSTITUTION AND THE TRANSITIVE PROPERTY.

ANGLE <u>MEASURES</u> are NUMBERS, and Can Be <u>Equal</u>, m < 1 = m < 4

ANGLES ARE FIGURES AND CAN BE CONGRUENT. $< xyz \cong < pqR$

SEGMENT <u>LENGTHS</u> are NUMBERS and Can Be <u>Equal</u>. MN = ST

SEGMENTS ARE FIGURES AND CAN BE CONGRUENT. $\overline{GH}\cong \overline{CD}$

DETERMINE WHETHER EACH STATEMENT IS ACCEPTABLE AND EXPLAIN.

LABC = LSTU

3. $PR \cong GH$

2. VW = VY

4. m<5 = m<8

5. $\overrightarrow{AB} = \overrightarrow{CD}$

DETERMINE WHETHER EACH STATEMENT IS ACCEPTABLE AND EXPLAIN.

ZABC = ZSTU

3. PR = GH

n = m < 8

 $5. \quad \overline{AB} = \overline{CD}$

SEGMENT ADDITION POSTULATE:

If B lies between A and C on segment AC, then the length of \overline{AB} plus the length of \overline{BC} is equal to the length of \overline{AC} .

Given: X is the midpoint of \overline{VZ} ,

VY = 16,

XY = 2

WX = 9

Find each length.

1	WY =	
2	VW =	
3	XZ =	
4	WZ =	
5	YZ =	
6	VZ =	

Given: X is the midpoint of \overline{VZ} ,

VY = 16,

XY = 2

WX = 9

Find each length.

1	WY =	11
2	VW =	5
3	XZ =	14
4	WZ =	23
5	YZ =	12
6	VZ =	28

ANGLE ADDITION POSTULATE:

If B is in the interior of angle AOL, then the measure of angle AOB plus the measure of angle BOL is equal to the measure of angle AOL.

m < AOB + m < BOC = m < AOC

Practice

Given: m<STQ = 78°

 $m < QTP = 31^{\circ}$

m<STR = m<QTP

Find each angle measure.

1	m <stp =<="" th=""><th></th></stp>	
2	m <str =<="" td=""><td></td></str>	
3	m <rtq =<="" td=""><td></td></rtq>	
4	m <rtp =<="" td=""><td></td></rtp>	

Practice

Given: m<STQ = 78°

m<QTP = 31°

m<STR = m<QTP

Find each angle measure.

1	m <stp =<="" th=""><th>109°</th></stp>	109°
2	m <str =<="" td=""><td>31°</td></str>	31°
3	m <rtq =<="" td=""><td>47°</td></rtq>	47°
4	m <rtp =<="" td=""><td>78°</td></rtp>	78°

WE ALREADY KNOW HOW TO SOLVE THE FOLLOWING PROBLEM. SOLVE FOR X, AND SHOW EVERY STEP OF YOUR WORK.

Note that you
use the
Properties of
Equality to solve
for x.

Now, we will arrange these steps into a two-column proof to prove that the solution is $X = \frac{11}{4}$ and justify what we did in each step of the work.

The Two-Column Structure for Proofs

IET'S REVIEW THIS SAMPLE PROOF TOGETHER.

IT IS BASED ON THE SAME EQUATION WE JUST

SOLVED

SOLVED.

The first column contains a series of statements that leads us logically from the given statement(s) to the fact that we are proving.

Line one always contains the first given statement.

Sample Proof #1

Given: x + 3 = 5x - 8

Prove: $x = \frac{11}{4}$

The problem will contain at least one "Given" statement. Your end result must be the statement you are asked to "Prove."

The second column contains the justifications for each statement.

	STATEMENT	JUSTIFICATION 🥠
1	x + 3 = 5x - 8	Given
2	3 = 4x - 8	Subtraction Prop. of Eq.
3	11 = 4×	Addition Prop. of Eq.
4	$\frac{11}{4} = \mathbf{x}$	Division Prop. Of Eq.
5	$\mathbf{x} = \frac{11}{4}$	Symmetric Prop. Of Eq.
6		

Justifications can include definitions, properties, postulates, and theorems that have already been accepted as true.

Sample Proof #2

THE FIRST GIVEN STATEMENT
WILL ALWAYS BE COPIED
EXACTLY ONTO LINE ONE. IF
THERE ARE MULTIPLE GIVEN
STATEMENTS, THE ADDITIONAL
STATEMENTS EACH WILL
HAVE THEIR OWN LINE.

WE DO NOT ALWAYS NEED ALL OF THE

PROVIDED SPACE. THIS PROOF WAS SHORT.

Given: $\langle ABC \cong \langle DEF \rangle$ $\langle DEF \cong \langle JKL \rangle$ Prove: $\langle ABC \cong \langle JKL \rangle$ THE JUSTIFICATION FOR BOTH GIVEN STATEMENTS IS SIMPLY THAT WE WERE "GIVEN" THE STATEMENTS AND THUS MAY ASSUME THEY ARE TRUE.

SINCE SUBSTITUTION AND THE TRANSITIVE PROPERTY ARE ALWAYS USED TO COMBINE TWO PREVIOUS STATEMENTS. WE MUST SPECIFY WHICH PREVIOUS LINES WE ARE USING.

Given:
$$\frac{x}{10} = 3$$
,

Prove: x = y

Hint: You will need to use the properties of equality to solve the equations, then use the transitive property.

	STATEMENT	JUSTIFICATION
1		
2		
3		Start by copying BOTH given statement
4		statements.
5		

Given:
$$\frac{x}{10} = 3$$
,

$$y - 5 = 25$$

Prove: x = y

Next, solve the first equation!

	STATEMENT	JUSTIFICATION
1	$\frac{x}{10} = 3$	Given
2	y - 5 = 25	Given
3		
4		
5		

(continued on next page)

Hint: You will need to use the properties of equality to solve the equations, then use the transitive property.

Given:
$$\frac{x}{10} = 3$$
,

$$y - 5 = 25$$

Prove:

Now, solve the

	STATEMENT	JUSTIFICATION
1	$\frac{x}{10} = 3$	Given
2	y - 5 = 25	Given
3	x = 30	Multiplication Prop. of Equality
4		
5		

(continued on next page)

Hint: You will need to use the properties of equality to solve the equations, then use the transitive property.

Given: $\frac{x}{10} = 3$,

y - 5 = 25

Prove: x = y

Almost done!
Finish up with the
Transitive
Property.

	STATEMENT	JUSTIFICATION
7	$\frac{x}{10} = 3$	Given
2	y - 5 = 25	Given
3	x = 30	Multiplication Prop. of Equality
4	y = 30	Addition Prop. of Equality
5		

(continued on next page)

Hint: You will need to use the properties of equality to solve the equations, then use the transitive property.

 $\frac{x}{10} = 3,$ y - 5 = 25 Given:

Prove: x = y

	STATEMENT	JUSTIFICATION
1	$\frac{x}{10} = 3$	Given
2	y - 5 = 25	Given
3	x = 30	Multiplication Prop. of Equality
4	y = 30	Addition Prop. of Equality
5	× = y	Transitive Prop. (3, 4)

Given: m = n,

n + p = 2t,

t = m

Prove: p = t

Complete the

	STATEMENT	JUSTIFICATION
1		
2		
3		
4		
5		
6		
7		

Prove: p = t

Complete the

	STATEMENT	JUSTÍFICATION
1	m = n	Given
2	n + p = 2t	Given
3	t = m	Given
4	n = t	Transitive Prop. (1, 3)
5	n + p = 2n	Subst. (2, 4)
6	p = n	Subtraction Prop. of Equal. (Subtract n from both sides.)
7	p = t	Transitive Prop. (4, 6)

Some proofs require additional justifications. We will now focus on proofs that use definitions and postulates.

Here are a few justifications that will be used frequently in proofs.

ANGLE ADDITION POSTULATE VGRUENT

SEGMENT ADDITION POSTULATE

Before beginning a geometry proof, take a minute to look and think. Figure out what you know and what you are trying to prove! Use the diagram.

W is the midpoint of \overline{VX} . Given:

XY = VW

 $\overline{WX} \cong \overline{XY}$ Prove:

	STATEMENT	JUSTIFICATION
1		
2		
3		
4		
5		ing the
6		Start by copying the Start by copying the given information and given information the
7		Starts, information the given information the marking it on the diagram.
8		marking it s
(co	ontinued on next page)	qiaa,

Given: W is the midpoint of \overline{VX} .

XY = VW

	STATEMENT	JUSTIFICATION
1	W is the midpoint of \overline{VX} .	Given
2	XY = VW	Given
3		
4		
5		
6		a Lalas to Write
7	N	lext, it helps to write any equations that we definitions)
8		any equacions can (use definitions)
(co	intinued on next page)	CAll (nos

Now, we can use the transitive property.

Given: W is the midpoint of \overline{VX} .

XY = VW

	STATEMENT	JUSTIFICATION
1	W is the midpoint of \overline{VX} .	Given
2	XY = VW	Given
3	vw = w×	Definition of midpoint
4		
5		
6		
7		
8		

We are almost there! Our final line does not look QUITE like the goal, so we use one more definition.

Given: W is the midpoint of \overline{VX} .

WV = VW

	STATEMENT	JUSTIFICATION
1	W is the midpoint of \overline{VX} .	Given
2	WV = YX	Given
3	vw = wx	Definition of midpoint
4	WX = XY	Transitive Prop. (2, 3)
5		
6		
7		
8		

The definition of congruent helps us convert between EQUALITY statements (equations) and CONGRUENCE statements.

When segments have equal lengths, they are congruent.

Given: W is the midpoint of \overline{VX} .

XY = VW

		STATEMENT	JUSTIFICATION
		W is the midpoint of \overline{VX} .	Given
	2	XY = VW	Given
	3	vw = wx	Definition of midpoint
>	4	WX = XY	Transitive Prop. (2, 3)
	5	$\overline{WX} \cong \overline{XY}$	Definition of Congruent
	6		
	7		
	8		

Before beginning a geometry proof, take a minute to look and think. Figure out what you know and what you are trying to prove! Use the diagram.

Given:	$<\!PTR\cong$	<qts< th=""></qts<>
--------	---------------	---------------------

Prove:
$$\langle PTQ \cong \langle RT \rangle$$

	STATEMENT	JUSTIFICATION
1		
2		
3		
4		
5	laray Si	start by filling in any mation. Then, let's see mation. Then let's see mation convert it to an equation cark with a little
6	As always niven infor	start of Then, let 5 30 mation. Then, let 5 30 mation. Then, let 5 30 mation mation. Then, let 5 30 mation mation mation. Then, let 5 30 mation. The
7	if We can we that W	manum convert it to an equo- e can work with a little more easily.
8		Markey

Given: $\langle PTR \cong \langle QTS \rangle$

Prove: $\langle PTQ \cong \langle RTS \rangle$

	STATEMENT	JUSTIFICATION
1	<ptr <qts<="" th="" ≅=""><th>Given</th></ptr>	Given
2	m <ptr =="" m<qts<="" td=""><td>Defn. congruent</td></ptr>	Defn. congruent
3		
4		

Now, we may feel like we are stuck. This is when we use the diagram and think "Do I know anything else?" Sometimes, we can get additional information from the diagram. In this case, we can write some equations of our own using Angle Addition Postulate.

(continued on next page)

The Angle Addition Postulate gives us two new equations to work with. Now that we have a few lines of equations, let's try to combine some to get new statements that will lead us to our goal. Copy line 3, but replace m<PTR with m<QTS.

Given: $\langle PTR \cong \langle QTS \rangle$

	STATEMENT	JUSTIFICATION
1	<ptr <qts<="" th="" ≅=""><th>Given</th></ptr>	Given
2	m <ptr =="" m<qts<="" th=""><th>Defn. congruent</th></ptr>	Defn. congruent
3	m <ptq +="" m<qtr="m<PTR</th"><th>Angle Addition Post.</th></ptq>	Angle Addition Post.
4	m <rt\$ +="" m<qtr="m<QT\$</th"><th>Angle Addition Post.</th></rt\$>	Angle Addition Post.
7 E		
7		
12		

Now, look at lines 4 and 5. When you notice that one entire side of the equation matches, that can be a signal to use the Transitive Property.

Given: $\langle PTR \cong \langle QTS \rangle$

	STATEMENT	JUSTIFICATION
1	<ptr <qts<="" th="" ≅=""><th>Given</th></ptr>	Given
2	m <ptr =="" m<qts<="" th=""><th>Defn. congruent</th></ptr>	Defn. congruent
3	m <ptq +="" m<qtr="m<PTR</th"><th>Angle Addition Post.</th></ptq>	Angle Addition Post.
4	m <rt\$ +="" m<qtr="m<QT\$</th"><th>Angle Addition Post.</th></rt\$>	Angle Addition Post.
5	m <ptq +="" m<qtr="m<QTS</th"><th>Substitution (2, 3)</th></ptq>	Substitution (2, 3)
2		
7		
8		

We are almost there! Note that if we can get the m<QTR to drop away from both sides, we pretty much have the result we want. What property can make m<QTR "disappear?"

Given: $\langle PTR \cong \langle QT \rangle$

	STATEMENT	JUSTIFICATION
1	<ptr <qts<="" th="" ≅=""><th>Given</th></ptr>	Given
2	m <ptr =="" m<qts<="" th=""><th>Defn. congruent</th></ptr>	Defn. congruent
3	m < PTQ + m < QTR = m < PTR	Angle Addition Post.
4	m <rt\$ +="" m<qtr="m<QT\$</th"><th>Angle Addition Post.</th></rt\$>	Angle Addition Post.
5	m <ptq +="" m<qtr="m<QTS</th"><th>Substitution (2, 3)</th></ptq>	Substitution (2, 3)
6	m <rt\$ +="" m<qtr="<br">m<ptq +="" m<qtr<="" th=""><th>Transitive Property (4, 5)</th></ptq></rt\$>	Transitive Property (4, 5)
7		

Given: $\langle PTR \cong \langle QT \rangle$

		STATEMENT	JUSTIFICATION
	7	<ptr <qts<="" th="" ≅=""><th>Given</th></ptr>	Given
	\Box	m < PTR = m < QTS	Defn. congruent
	Ŋ	m < PTQ + m < QTR = m < PTR	Angle Addition Post.
	4	m < RTS + m < QTR = m < QTS	Angle Addition Post.
	5	m <ptq +="" m<qtr="m<QTS</th"><th>Substitution (2, 3)</th></ptq>	Substitution (2, 3)
•	6	m <ptq +="" m<qtr="<br">m<rt\$ +="" m<qtr<="" th=""><th>Transitive Property (4, 5)</th></rt\$></ptq>	Transitive Property (4, 5)
•	7	m <ptq =="" m<rt3<="" th=""><th>Subtraction Prop. of Equal.</th></ptq>	Subtraction Prop. of Equal.
	8		

EXAMPLE 2

Don't worry — It is normal if you are thinking "I would have no idea how to come up with the sequence of those steps myself!" — It takes practice. Take time to look if over and see how each step led to the next.

Given: $\langle PTR \cong \langle QT \rangle$

	STATEMENT	JUSTIFICATION
1	<ptr <qts<="" th="" ≅=""><th>Given</th></ptr>	Given
2	m <ptr =="" m<qts<="" th=""><th>Defn. congruent</th></ptr>	Defn. congruent
3	m <ptq +="" m<qtr="m<PTR</th"><th>Angle Addition Post.</th></ptq>	Angle Addition Post.
4	m <rt\$ +="" m<qtr="m<QT\$</th"><th>Angle Addition Post.</th></rt\$>	Angle Addition Post.
5	m <ptq +="" m<qtr="m<QTS</th"><th>Substitution (2, 3)</th></ptq>	Substitution (2, 3)
6	m <ptq +="" m<qtr="<br">m<rt3 +="" m<qtr<="" th=""><th>Transitive Property (4, 5)</th></rt3></ptq>	Transitive Property (4, 5)
7	m <ptq =="" m<rt\$<="" th=""><th>Subtraction Prop. of Equal.</th></ptq>	Subtraction Prop. of Equal.
8	<ptq <rts<="" th="" ≅=""><th>Defn. congruent</th></ptq>	Defn. congruent

Given: AB = CD

Prove: AC = BD

Start this one off. You should
have a good idea how to begin.
Once you've got the given
statement, then start writing
some equations using Segment
ddition Postulate. See if you can
then combine your equations to
write new ones.

	STATEMENT	JUSTIFICATION
7		
2		
3		
4		
5		
6		
7		
8		

Given: AB = CD

Prove: AC = BD

, В		
A		
	How far were	vou able to cet

n your own? We have to use substitution to get one side of the equation to match. We have a few options – there can be more than one correct proof. Here is one substitution you can do.

	STATEMENT	JUSTIFICATION
1	AB = CD	Given
5	AB + BC = AC	Segment Add. Post.
3	CD + BC = BD	Segment Add. Post.
4	AB + BC = BD	Substitution (1, 3)
5		
6		
7		
8		

Given: AB = CD

Prove: AC = BD

A B
The transitive property is all we
need to finish it up!

	CTOTEMENIT	JUSTIFICATION
	STATEMENT	
1	AB = CD	Given
2	AB + BC = AC	Segment Add. Post.
3	CD + BC = BD	Segment Add. Post.
4	AB + BC = BD	Substitution (1, 3)
5	AC = BD	Transitive Prop. (2, 4)
6		
7		
8		

Review of steps

IN GENERAL, WHEN WRITING A TWO- COLUMN PROOF, WE MUST:

- 1. COPY ALL GIVEN INFORMATION
- 2. Pause to get an understanding of what you know and what you are trying to prove. Make Marks on the Diagram.
- 3. WRITE AND WORK WITH EQUATIONS BASED ON THE GIVEN STATEMENTS IF POSSIBLE. (SOMETIMES YOU CAN CONVERT STATEMENTS INTO EQUATIONS USING DEFINITIONS)
 - 4. DEVELOP NEW EQUATIONS FROM THE DIAGRAM IF POSSIBLE.
- 5. MANIPULATE AND COMBINE YOUR EQUATIONS, ALWAYS KEEPING YOUR GOAL IN MIND. (YOU CAN SOMETIMES USE THE TRANSITIVE PROPERTY OR SUBSTITUTION TO COMBINE TWO LINES)

THEOREMS THAT YOU CAN USE AS JUSTIFICATIONS:

Vertical Angles Theorem: Vertical angles are congruent.

Right angles Theorem: All right angles are congruent.

Linear Pair Theorem: Angles in a linear pair are supplementary.

For Angles Along a Transversal:

Corresponding Angles Postulate: If lines are parallel, then corresponding angles are congruent.

Alternate Interior / Alternate Exterior Angles Theorems: If lines are parallel, then alternate interior / alternate exterior angles are congruent.

Same- Side Interior / Same- Side Exterior Angles Theorems: If lines are parallel, then same-side interior / same-side exterior angles are supplementary.

(We also often use the CONVERSES of the theorems regarding angles along a transversal.)

Lines m and n are parallel.

Prove: $m < 7 = 90^{\circ}$

8

	STATEMENT	JUSTIFICATION
1		
2		
3		
4		
5		
6		After copying the given statements we'll
7		Equation usiant
		definition of a: 1

definition of right angle.

LET'S TRY
THIS PROOF 5

Lines m and n are parallel.

Prove: $m < 7 = 90^{\circ}$

_	NO ARTHUR DESCRIPTION OF THE PARTY OF THE PA	THE PERSON NAMED IN COLUMN TO THE PE
	STATEMENT	JUSTIFICATION
1	Angle 2 is a right angle.	Given
2	Lines m and n are parallel.	Given
3	m<2 = 90	Defn. right angle
4		
5		
6		
7		
8		

Lines m and n are parallel.

Prove: $m < 7 = 90^{\circ}$

_		STATE AND DESCRIPTION OF THE PERSON OF THE P	THE RESIDENCE AND ADDRESS OF THE PARTY OF TH
		STATEMENT	JUSTIFICATION
	7	Angle 2 is a right angle.	Given
	2	Lines m and n are parallel.	Given
	3	m<2 = 90	Defn. right angle
	4	m < 2 = m < 7	Alternate Exterior Angles Theorem
	5		
	6		
	7		
	8		

Lines m and n are parallel.

Prove: $m < 7 = 90^{\circ}$

	THE RESIDENCE OF THE PARTY OF T	THE RESERVE OF THE PARTY OF THE
	STATEMENT	JUSTIFICATION
1	Angle 2 is a right angle.	Given
2	Lines m and n are parallel.	Given
3	m<2 = 90	Defn. right angle
4	m<2 = m<7	Alternate Exterior Angles Theorem
5	m<7 = 90	Substitution (3, 4)
6		
7		
8		

Given: $<9 \approx <3$

m II n

Prove: pllq

	ONE	MOR	7	
'''	-			
IR	THE	E WH	101 =	
	THI	VGI		

	STATEMENT	JUSTIFICATION
1		
2		
3		
4		
5		
6		
7		
8		

Given: $<9 \approx <3$

m II n

Prove: pllq

100		
	STATEMENT	JUSTIFICATION
1	<9 ≅ <3	Given
2	m II n	Given
3	<1 ≅ <3	Corresp. Angles Post.
4	<1 ≅ <9	Transitive Prop. (1, 3)
5	p II q	Converse of Corresp. Angles Post.
6		
7		
8		

PROOFS WITH TRIANGLES

A few more theorems to use as justifications

TRIANGLE SUM THEOREM: The sum of the interior angles of a triangle is 180 degrees.

Base angle theorem for isosceles

TRIANGLES: If two sides of a triangle are congruent, then the two angles opposite them are congruent.

CONVERSE OF BASE ANGLE THEOREM: If two angles of a triangle are congruent, then the two sides opposite them are congruent.

