Suicide mortality rates in England: a spatiotemporal study between 2002 – 2021

Connor Gascoigne

Imperial College London

ISEE, Santiago, Chile

25-28 August 2024

MRC Centre for Environment & Health

Imperial College London

Outline

- Introduction
- Methods
- Results
- Conclusion

Introduction

Suicide in England

- Globally, 700,000 deaths by suicide per year and the 4th leading cause of death amoung 15-29 year-olds
- In England:
 - 72,000+ deaths between 2002-2021
 - Increase of 18% between from 2002 to 2021
 - Largest increase from 2002 was 30% in 2020

© Connor Gascoigne Suicide mortality rates in England 4/

Aims

- Build a flexible and robust model to explore and estimate suicide trends in England at a high spatio-temporal resolutions.
 - Account for correlations in both space and time.
 - Account for excess number of zeros due to high spatio-temporal resolution.
- Understand the effect of local environment on suicide to identity area profiles most at risk.

Methods

Outcome

Outcome:

- Suicide deaths (ICD10 X60 X84).
- Age (5-14, 15-24, ..., 75-84, 85+), sex and MSOA.

Population totals:

- Mid-year from ONS.
- Age (5-14, 15-24, ..., 75-84, 85+), Sex and MSOA.

Middle Layer Super Output Area (MSOA):

- Administrative region in UK.
- Consist of 5,000 15,000 individuals.
- Updated every census (2001, 2011, 2021).
- From the 2011 Census, England consists of 6,971 MSOAs

Deprivation:

• ONS IMD releases in '04, '07, '10, '15, '19.

Deprivation:

• ONS IMD releases in '04, '07, '10, '15, '19.

Diversity:

• ONS non-white population releases in '01, '11, '21.

Deprivation:

• ONS IMD releases in '04, '07, '10, '15, '19.

Diversity:

• ONS non-white population releases in '01, '11, '21.

Normalised Difference Vegitation Index (NDVI):

• MODIS satellite 16-day 250m \times 250m.

	REAL PROPERTY.		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
0.00	0.25	0.50	0.75	1.00

Deprivation:

• ONS IMD releases in '04, '07, '10, '15, '19.

Diversity:

• ONS non-white population releases in '01, '11, '21.

Normalised Difference Vegitation Index (NDVI):

• MODIS satellite 16-day 250m \times 250m.

Nighttime Light (NL):

• DMSP and VIIRS satellite yearly $1 \text{km} \times 1 \text{km}$.

Deprivation:

• ONS IMD releases in '04, '07, '10, '15, '19.

Diversity:

• ONS non-white population releases in '01, '11, '21.

Normalised Difference Vegitation Index (NDVI):

• MODIS satellite 16-day 250m \times 250m.

Nighttime Light (NL):

• DMSP and VIIRS satellite yearly $1 \text{km} \times 1 \text{km}$.

Rail:

OpenStreepMap for rail or no-rail per MSOA.

Deprivation:

• ONS IMD releases in '04, '07, '10, '15, '19.

Diversity:

• ONS non-white population releases in '01, '11, '21.

Normalised Difference Vegitation Index (NDVI):

• MODIS satellite 16-day 250m \times 250m.

Nighttime Light (NL):

• DMSP and VIIRS satellite yearly $1 \text{km} \times 1 \text{km}$.

Rail:

OpenStreepMap for rail or no-rail per MSOA.

Road Density:

 Ordance Survey Open Map road density per MSOA.

Deprivation:

• ONS IMD releases in '04, '07, '10, '15, '19.

Diversity:

• ONS non-white population releases in '01, '11, '21.

Normalised Difference Vegitation Index (NDVI):

• MODIS satellite 16-day 250m \times 250m.

Nighttime Light (NL):

• DMSP and VIIRS satellite yearly 1km imes 1km.

Rail:

• OpenStreepMap for rail or no-rail per MSOA.

Road Density:

 Ordance Survey Open Map road density per MSOA.

Population Density:

• Yearly population density per MSOA.

Statistical Model

Indirect Standardisation

Hurdle Model Framework

Linear Predictor

Age and sex structures vary throughout the study period:

Statistical Model

Indirect Standardisation

Hurdle Model Framework

Linear Predictor

Let Y_{it} and E_{it} be the count and (age-sex adjusted) expected value for i^{th} MSOA and t^{th} year. We define Y = (Z, O) where the probability of event y_{it} is defined:

$$ext{Pr}\left(oldsymbol{Y}=y_{it}
ight) = egin{cases} ext{Pr}\left(oldsymbol{Z}=y_{it}
ight), & ext{if } y_{it}=0 \ \left[1- ext{Pr}\left(oldsymbol{Z}=y_{it}
ight)
ight] imes rac{ ext{Pr}\left(oldsymbol{O}=y_{it}
ight)}{1- ext{Pr}\left(oldsymbol{O}=0
ight)}, & ext{if } y_{it}\geq 1 \end{cases}$$

Where:

• Z indicates if a suicide has occurred or not:

$$z_{it} = \left\{ egin{aligned} 1, ext{if } y_{it}
eq 0 \ 0, ext{otherwise} \end{aligned}
ight.$$

• O indicates the observed number of suicides:

$$o_{it} = \left\{ egin{aligned} ext{NA}, ext{if } y_{it} = 0 \ y_{it}, ext{otherwise} \end{aligned}
ight.$$

Statistical Model

Indirect Standardisation

Hurdle Model Framework

Linear Predictor

Let $Y_{it} \sim ext{HurdlePoisson}\left(\pi_{it}, \lambda_{it} =
ho_{it}E_{it}
ight)$. We model the zero and occurrence parts as:

$$egin{aligned} z_{it} \sim \operatorname{Binomial}\left(\pi_{it}
ight) \ \operatorname{logit}\left(\pi_{it}
ight) = eta_0^z + oldsymbol{X}oldsymbol{eta}^z + \delta_i + \gamma_t + \xi_{it} \end{aligned}$$

where:

- β_0^z is the zero-model specific intercept.
- β^z are the zero-model regression coefficients for environmental factors.
- δ_i is the shared spatial effect.
- γ_t is the shared temporal effect.
- ξ_{it} is a shared spatio-temporal effect.

$$egin{aligned} o_{it} \sim \operatorname{Poisson}\left(\lambda_{it} =
ho_{it}E_{it} | \, o_{it} > 0
ight) \ \log\left(
ho_{it}
ight) = eta_0^o + oldsymbol{X}oldsymbol{eta}^o + eta_\delta^o \delta_i + eta_\gamma^o \gamma_t + eta_{arepsilon}^o \xi_{it} \end{aligned}$$

where:

- β_0^o is the count-model specific intercept.
- $oldsymbol{eta}^o$ are the count-model regression coefficients for environmental factors.
- δ_i is a shared spatial effect with β^o_δ a scale parameter for the count-model.
- γ_t is a shared temporal effect with β_{γ}^o a scale parameter for the count model.
- ξ_{it} is a shared spatio-temporal effect with β_{ξ}^{o} a scale parameter for the count model.

Results

Spatial Trends

MSOA smoothed-SMR and S-SMR exceedance of 1

 $\phi = 0.68\,(0.60,0.75)$ indicating strong spatial correlation.

Spatio-Temporal Trends

Environmental Factors

Conclusion

- Modelling approach:
 - We used a hurdle model to jointly model the event of- and number of- a suicides.

- Modelling approach:
 - We used a hurdle model to jointly model the event of- and number of- a suicides.
- Spatio-temporal analysis:
 - Spatial correlation: $\phi=0.68\,(0.60,0.75)$ indicates strong spatial correlation in the event of- and number of- suicides.
 - Regional disparities: London has a substantially lower SMR than all other regions and the national average.
 Northern regions have the highest.
 - Trends in time: Increased in national suicide rates over the study period is reflect in both the regional and MSOA level SMR.

- Modelling approach:
 - We used a hurdle model to jointly model the event of- and number of- a suicides.
- Spatio-temporal analysis:
 - Spatial correlation: $\phi=0.68\,(0.60,0.75)$ indicates strong spatial correlation in the event of- and number of- suicides.
 - Regional disparities: London has a substantially lower SMR than all other regions and the national average.
 Northern regions have the highest.
 - Trends in time: Increased in national suicide rates over the study period is reflect in both the regional and MSOA level SMR.
- Environmental factors
 - Local environmental factors are influential on both a suicide occurring in an area and the number of suicides occurring in the area
 - Areas that are more deprived and rural are most at risk of both suicide occurring and increased number of suicides.

Strengths and limitations

Strengths and limitations

- Strengths:
 - U Hurdle model allows flexible modelling of the zeros and non-zeros as they can be defined by different data generating processes.
 - Posteriors distribution from the Bayesian approach allow for straight forward calculation of summary statistics (i.e., SMR) at range of different aggregated level (i.e, regional, national) with the uncertainty well-defined.
 - Hierarchical framework allows for the spatial, temporal and spatio-temporal dependencies to be flexibly considered along with numerous other covariates.
 - High spatio-temporal resolution of the analysis important for future policy makers when assessing high risk areas.

Strengths and limitations

• Strengths:

- U Hurdle model allows flexible modelling of the zeros and non-zeros as they can be defined by different data generating processes.
- Posteriors distribution from the Bayesian approach allow for straight forward calculation of summary statistics (i.e., SMR) at range of different aggregated level (i.e, regional, national) with the uncertainty well-defined.
- Hierarchical framework allows for the spatial, temporal and spatio-temporal dependencies to be flexibly considered along with numerous other covariates.
- High spatio-temporal resolution of the analysis important for future policy makers when assessing high risk areas.

• Limitations:

- Area level characteristic may not reflect individual characteristics.
- Interpretation of scale of effects can be difficult.
- 3 Do not consider more complicated relationships i.e., interactions between covariates and time.

Thanks For Listening, Any Questions?

Email: c.gascoigne@imperial.ac.uk

GitHub: cgascoigne

X: @connorgascoigne

Prior Distributions

Fixed effects:

- $\beta_0^z, \beta_0^z \sim N(0,0)$.
- $\beta^z, \beta^o \sim N(0, 1000)$.
- $eta^o_\delta, eta^o_\gamma, eta^o_\xi \sim \mathrm{N}\,(1,10).$

Spatial effects:

• Structured (ICAR) and unstructured (exchangeable/IID) spatial effects together.

$$ullet \ \delta_i = \sigma_\gamma \left(\sqrt{\phi} u_t^* + \sqrt{1-\phi} v_t^*
ight).$$

• $\phi \in \{0,1\}$ describes how much of the spatial variation is structured and unstructured.

Temporal effects:

- Random Walk of Order 1.
- $ullet \gamma_t | \gamma_{t-1} \sim ext{Normal} \left(\gamma_{t-1}, \sigma_\gamma
 ight).$

Spatio-temporal effects:

- Type I interaction.
- $ullet \ \xi_{it} \sim \mathrm{N} \ ig(0, \sigma_{\xi}ig).$