G4a Properties of Kites

Use the slope of the sides and diagonals to determine whether a parallelogram with vertices A(2, 7), B(7, 9), C(5, 4), and D(0, 2) is arectangle, rhombus, or square. Give all the names that apply.

G4a Properties of Kites and Trapezoids

Objective: I can use the properties of kites and trapezoids to solve problems.

Homework: pg

Define kite based on the examples.

Complete G4a Kite Exploration

A **<u>kite</u>** is a quadrilateral with exactly two pairs of congruent consecutive sides.

A quadrilateral with exactly one pair of parallel sides.

THEOREM		HYPOTHESIS	CONCLUSION
6-6-1	If a quadrilateral is a kite, then its diagonals are perpendicular. (kite → diags. ⊥)	$A \xrightarrow{B} C$	ĀC ⊥ BD
6-6-2	If a quadrilateral is a kite, then exactly one pair of opposite angles are congruent. (kite → one pair opp. & ≅)	$A \stackrel{B}{\swarrow} C$	∠B ≅ ∠D ∠A ≇ ∠C

A <u>trapezoid</u> is a quadrilateral with exactly one pair of parallel sides. Each of the parallel sides is called a **base**. The nonparallel sides are called <u>legs</u>. <u>Base</u> angles of a trapezoid are two consecutive angles whose common side is a base.

If the legs of a trapezoid are congruent, the trapezoid is an <u>isosceles trapezoid</u>. The following theorems state the properties of an isosceles trapezoid.

heorems	Isosceles	Trapezoids
---------	-----------	------------

THEOREM		DIAGRAM	EXAMPLE
6-6-3	If a quadrilateral is an isosceles trapezoid, then each pair of base angles are congruent. (isosc. trap. → base ᠖ ≅)	A B C D	∠A ≅ ∠D ∠B ≅ ∠C
6-6-4	If a trapezoid has one pair of congruent base angles, then the trapezoid is isosceles. (trap. with pair base $\&$ \cong \rightarrow isosc. trap.)	$A \xrightarrow{B} C$	ABCD is isosceles.
6-6-5	A trapezoid is isosceles if and only if its diagonals are congruent. (isosc. trap. ↔ diags. ≅)	A B D	$\overline{AC} \cong \overline{DB} \leftrightarrow ABCD$ is isosceles.

The <u>midsegment of a trapezoid</u> is the segment whose endpoints are the midpoints of the legs. In Lesson 5-1, you studied the Triangle Midsegment Theorem. The Trapezoid Midsegment Theorem is similar to it.

heorem <u>6-6-6</u>

Trapezoid Midsegment Theorem

The midsegment of a trapezoid is parallel to each base, and its length is one half the sum of the lengths of the bases.

$$\overline{XY} \parallel \overline{BC}, \overline{XY} \parallel \overline{AD}$$

$$XY = \frac{1}{2}(BC + AD)$$

SUMMARY

- Always, Sometimes, Never
- 1. The opposite angles of a trapezoid are supplementary.
- 2. The opposite angles of a kite are supplementary.
- 3. A pair of consecutive angles in a kite are supplementary.
- 4. The midsegment of a trapezoid is half the sum of the length of the bases.