Ceci n'est pas d'intelligence

Logica en formele systemen

Propositielogica

Syntaxis

Prof. dr. Marjon Blondeel Academiejaar 2024-2025

Inhoud propositielogica

- Inleiding
- Syntaxis
- Semantiek
- Geldig gevolg
- Afleidingen
- Metatheorie

Proposities

Proposities (uitspraken of beweringen) zijn atomair

- We gaan ze niet verder analyseren (de bouwstenen)
- We stellen ze voor door symbolen, nl letters

Voorbeelden:

- Ik ben ziek: z
- Ik lust koffie: k
- 7 < 4: a
- X==2: b

Beweringen zijn waar of vals

Logische connectieven

Hoe gaan we proposities verbinden?

- niet: ¬
- en: ∧
- of: V
- als ... dan: →
- dan en slechts dan: ↔

Voorbeelden

- Aanname: De afstandsbediening is stuk of de TV werkt niet goed.
- Aanname: De TV werkt wel goed.
- Conclusie: De afstandsbediening is stuk.

- Aanname: $(s \lor \neg t)$
- Aanname: t
- Conclusie: s

Voorbeelden

- Aanname: Als je ziek bent, dan lust je geen koffie.
- Aanname: Je lust koffie.
- Conclusie: Je bent niet ziek.

- Aanname: $(z \rightarrow \neg k)$
- Aanname: k
- Conclusie: $\neg z$

Alfabet: definitie

Het alfabet van de propositielogica bestaat uit

- 1. een verzameling propositieletters
- 2. de logische symbolen: \neg , \land , \lor , \rightarrow en \leftrightarrow
- 3. ee hulpsymbolen:) en (

Definitie

Syntaxis: formule

De formules van de propositielogica worden als volgt gedefinieerd:

- 1. elke propositieletter is een formule
- 2. als φ en ψ formules zijn, dan zijn $\neg \varphi$, $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \rightarrow \psi)$ en $(\varphi \leftrightarrow \psi)$ ook formules
- 3. niets anders is een formule

Uitdrukkingen in de propositielogica noemen we formules. Hiervoor worden Griekse letters gebruikt.

Definitie

Inductieve definitie

Een inductieve definitie heeft 3 kenmerkende onderdelen:

- 1. Een basisstap elke propositieletter is een formule
- 2. 1 of meer opbouwstappen als φ en ψ formules zijn, dan zijn $\neg \varphi$, $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \rightarrow \psi)$ en $(\varphi \leftrightarrow \psi)$ ook formules
- 3. Een afsluitende stap niets anders is een formule

Terminologie

Propositieletters zijn atomaire formules en worden ook atomen genoemd. Deze zijn niet meer te ontleden in kleinere formules.

vorm

 $(\varphi \leftrightarrow \psi)$

uitspraak

niet phi phi en psi phi of psi als phi dan psi phi dan en slechts dan als psi

naam

negatie conjunctie disjunctie implicatie equivalentie

Opgelet: verschillen met natuurlijke taal

De 'en' uit natuurlijke taal en de logische A zijn niet 100% equivalent.

- Ze kwam binnen en deed het licht uit.
- Ze deed het licht uit en kwam binnen.

Natuurlijke taal: volgorde belangrijk Propositielogica: gelijkwaardig (zie semantiek)

Opgelet: verschillen met natuurlijke taal

De 'of' uit natuurlijke taal en de logische v zijn niet 100% equivalent.

Voor je verjaardag krijg je een racefiets of een computer

Natuurlijke taal: een van de twee Propositielogica: kunnen beide zijn (zie semantiek)

Oefening: welke zijn geldige formules?

- 1. p
- $2. \neg \neg p$
- $3. (\neg p)$
- 4. $\neg(p \rightarrow \neg q)$
- *5. q* ¬
- 6. $((p \land q) \rightarrow r) \rightarrow (\neg p \land q)$
- 7. $(p \land q) \land r$
- 8. $(p \lor q \lor r)$

Formuleschema en instantie

 $(\varphi \land \psi)$ is een abstracte vorm, geen concrete formule, we noemen dit een formuleschema

instantie van het formuleschema onstaat als we "echte" formules invullen, by

- $(p \land q)$
- $(p \land p)$
- $((p \rightarrow q) \land ((r \rightarrow s) \rightarrow q))$

Oefening

Zijn volgende formules instanties van $((\varphi \land \psi) \rightarrow \psi)$?

1.
$$((p \land q) \rightarrow r)$$

2.
$$(((\neg r \lor r) \land (\neg p \land q)) \rightarrow (\neg p \land q))$$

3.
$$((r \land r) \rightarrow r)$$

Substitutie: inleidend voorbeeld

formules

- $\varphi: ((p \land q) \rightarrow p)$
- ψ : $(r \lor s)$

door elk voorkomen van p in φ te vervangen door de formule ψ krijgen we een nieuwe formule

$$(((r \lor s) \land q) \rightarrow (r \lor s))$$

Notatie: $[\psi/p] \varphi$

Uitspraak: substitueren van ψ voor p in φ

Substitutie: definitie

- 1. $[\psi/p] \varphi = \psi$ als $\varphi = p$ $[\psi/p] \varphi = \varphi$ als φ een propositieletter is en $\varphi \neq p$
- 2. $[\psi/p] \neg \varphi = \neg [\psi/p] \varphi$ $[\psi/p] (\varphi \wedge \chi) = ([\psi/p] \varphi \wedge [\psi/p] \chi)$ $[\psi/p] (\varphi \vee \chi) = ([\psi/p] \varphi \vee [\psi/p] \chi)$ $[\psi/p] (\varphi \rightarrow \chi) = ([\psi/p] \varphi \rightarrow [\psi/p] \chi)$ $[\psi/p] (\varphi \leftrightarrow \chi) = ([\psi/p] \varphi \leftrightarrow [\psi/p] \chi)$

Definitie

Substitutie: voorbeeld

$$\psi$$
: $(r \wedge s)$

- 1. $[\psi/p]p = (r \wedge s)$
- 2. $[\psi/p]q = q$
- 3. $[\psi/p]\neg p = \neg [\psi/p]p = \neg (r \land s)$
- 4. $[\psi/p](p \land q) = ([\psi/p]p \land [\psi/p]q) = ((r \land s) \land q)$
- 5. $[\psi/p](p \to q) = ([\psi/p]p \to [\psi/p]q) = ((r \land s) \to q)$

Substitutie: oefening

1.
$$[(p \rightarrow q)/r](r \lor s)$$

2.
$$[(p \rightarrow q)/r](r \lor \neg r)$$

3.
$$[r/r](r \vee \neg r)$$

4.
$$[(r \lor \neg r)/r]r$$

5.
$$[(p \lor \neg p)/q](q \to (s \to q))$$

Constructieboom

De opbouw van een formule kan gegeven worden door een constructieboom.

Constructieboom: opmerkingen

- Men kan bewijzen dat elke formule exact 1 constructieboom heeft.
- Haakjes zijn heel belangrijk.
 - Ze geven het bereik aan van connectieven.
 - Ze leggen de constructie eenduidig vast.
- Zinnen in natuurlijke taal zijn niet eenduidig vast te leggen (zie oefening volgende slide).

Constructieboom: oefening

Hoeveel constructiebomen bestaan er voor "Als de baby niet huilt en trappelt, dan is ze gelukkig."? Gebruik volgende propositieletters

- h: "de baby huilt"
- t: "de baby trappelt"
- g: "de baby is gelukkig"

