

Android Interface for FPAA Device

Benjamin Bolte, Sahil Shah, Siwan Kim and Jennifer Hasler

FPAAs are computationally efficient

Tablet interface gives portability and ease of data collection

I	ŀ
Georgia Institute of Technology	
W of Technology	

Parameter	Value	Parameter	Value
Number of CABs	98	Number of CLBs	98
On Chip μP	Open Source MSP430	μP clock frequency	0 - 50MHz
C block Line Capacitance	160fF	S Block Line Capacitance	160fF
V _{dd} (analog)	2.5V	V _{dd} (digital)	2.5V, 3.3V
V _{dd} Injection	6.0V	V _{dd} Tunneling	12V
Program Memory	16k x 16	Data Memory	16k x 16
CMOS Process	Standard 350nm	Die Size	12mm x 7mm
General Digital I/O	16 (in), 16(out)	SPI ports	5
General Analog I/O	125	Analog Parameters	359,014

Tablet-Board Communication

Choose between different programs to run on-chip

Programming flow integrates with high-level design tools

CAD tools used to enable Hardware-Software Codesign

Code available at https://github.com/codekansas/FpaaApp

REFERENCES

- [1] S. Nedevschi, R. K. Patra, and E. A. Brewer, "Hardware speech recognition for user interfaces in low cost, low power devices," in 42nd Annual Conf. on Design Automation (DAC), 2005, pp. 684–689.
- [2] S. George, S. Kim, S. Shah, J. Hasler, M. Collins, F. Adil, R. Wunderlich, S. Nease, and S. Ramakrishnan, "A programmable and configurable mixed-mode FPAA SOC," Accepted to IEEE Transactions on VLSI, Oct 2015.
- [3] J. Gehring, "Graphview open source graph plotting library for android."
- [4] J. Hasler and B. Marr, "Finding a roadmap to achieve large neuromorphic hardware systems," Frontiers in Neuromorphic Engineering (2013)
- [5] H. B. Marr, B. Degnan, P. Hasler, and D. Anderson, "Scaling Energy Per Operation via an Asynchronous Pipeline," IEEE Trans. on VLSI 2013

