Семинар 4

Интерполяционная задача

Начнем с постановки задачи. У нас есть n различных точек на прямой x_1, \ldots, x_n и в них заданы n чисел r_1, \ldots, r_n . Задача: найти многочлен $p(x) = a_0 + a_1x + \ldots + a_{n-1}x^{n-1}$ степени n-1 такой, что $p(x_i) = r_i$.

Заметим, что задачу можно решить с помощью систем линейных уравнений. Подставить все x_i в p(x) с неопределенными коэффициентами и получить следующую СЛУ

$$\begin{pmatrix} 1 & x_1 & \dots & x_1^{n-1} \\ 1 & x_2 & \dots & x_2^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \dots & x_n^{n-1} \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{pmatrix} = \begin{pmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \end{pmatrix}$$

С таким подходом надо уметь решать следующую задачу.

Задача. Доказать, что при различных x_i и любых r_i у системы выше существует единственное решение. (Указание: вспомним, что условие «существует единственное решение» не меняется при элементарных преобразованиях строк и столбцов).

Интерполяционный многочлен Лагранжа

Интерполяционную задачу можно решить явно следующим способом. Рассмотрим многочлен

$$l_i(x) = \frac{(x - x_1) \dots (\widehat{x - x_i}) \dots (x - x_n)}{(x_i - x_1) \dots (\widehat{x_i - x_i}) \dots (x_i - x_n)}$$

где $\widehat{x-x_i}$ (или $\widehat{(x_i-x_i)}$) означает, что этот сомножитель пропущен. Заметим, что $l_i(x_j)=0$ при $j\neq i$ и $l_i(x_i)=1$. Таким образом, ответом к интерполяционной задаче является следующий многочлен

$$p(x) = \sum_{i=1}^{n} r_i l_i(x)$$

Данный многочлен и называется интерполяционным многочленом Лагранжа.

Матрицы коммутирующие с данной

Пусть $A \in \mathrm{M}_n(\mathbb{R})$ и мы хотим найти все матрицы $X \in \mathrm{M}_n(\mathbb{R})$ коммутирующие с A, т.е. найти множество $\{X \in \mathrm{M}_n(\mathbb{R}) \mid AX = XA\}.$

Задача. Пусть $A, B \in M_n(\mathbb{R})$. Тогда B коммутирует с A тогда и только тогда, когда B коммутирует с p(A) для любого многочлена p(x).

Таким образом матрицы вида p(A) всегда коммутируют с A, но это не обязательно все такие матрицы. Например если A — единичная матрица, то p(A) — это все скалярные матрицы, а коммутируют с A все матрицы.

Пусть $A \in \mathrm{M}_n(\mathbb{R})$ – скалярная матрица вида

$$A = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix} \quad \text{где} \quad \lambda_i \neq \lambda_j$$

Пусть $E_i \in \mathcal{M}_n(\mathbb{R})$ – диагональная матрица, у которой на диагонали нули вне i-ой позиции и 1 на i-ой позиции. Пусть $p_i(x)$ – многочлен такой, что $p_i(\lambda_j)=0$ и $p_i(\lambda_i)=1$. Тогда $p_i(A)=E_i$. С другой стороны $A=\sum_{i=1}^n \lambda_i E_i$. Это означает, что матрица X коммутирует с A тогда и только тогда, когда она коммутирует с E_i

для всех і. Теперь явно запишем

$$\begin{pmatrix} 0 & \dots & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ x_{i1} & x_{ii} & x_{in} & \dots & \dots \\ 0 & \dots & 0 & \dots & 0 \end{pmatrix} = E_i X = X E_i = \begin{pmatrix} 0 & \dots & x_{1i} & \dots & 0 \\ \vdots & \dots & \vdots & \dots & \vdots \\ 0 & \dots & x_{ii} & \dots & 0 \\ \vdots & \dots & \vdots & \dots & \vdots \\ 0 & \dots & x_{ni} & \dots & 0 \end{pmatrix}$$

Значит, в i-ой строке и i-ом столбце, только x_{ii} может быть не ноль. То есть с диагональной матрицей A с разными элементами на диагонали коммутируют только диагональные матрицы.

Задача. 1. Найти множество матриц в $M_n(\mathbb{R})$ коммутирующих со всеми матрицами из $M_n(\mathbb{R})$.

2. Найти множество матриц в $\mathrm{M}_n(\mathbb{R})$ коммутирующих со всеми обратимыми матрицами из $\mathrm{M}_n(\mathbb{R}).$