

Obtaining $V_2(PO_4)_3$ by sodium extraction from single-phase $Na_xV_2(PO_4)_3$ (1 < x < 3) positive electrode materials

Park S., Wang Z., Choudhary K., Chotard J.-N., Carlier D., Fauth F., Canepa P., Croguennec L., and Masquelier C.; Nat. Mater., 36, 7877 (2024).

PDF

2024-10-23-wang-v2po43nature-matt.pdf

10.1038/s41563-024-02023-7

Abstract

We report on single-phase $Na_xV_2(PO_4)_3$ compositions (1.5 < x < 2.5) of the Na super ionic conductor type, obtained from a straightforward synthesis route. Typically, chemically prepared c-Na2V2(PO4)3, obtained by annealing an equimolar mixture of Na₃V₂(PO₄)₃ and NaV₂(PO₄)₃, exhibits a specific sodium-ion distribution (occupancy of the Na(1) site of only 0.66(4)), whereas that of the electrochemically obtained e-Na₂V₂(PO₄)₃ (from Na₃V₂(PO₄)₃) is close to 1. Unlike conventional $Na_3V_2(PO_4)_3$, when used as positive electrode materials in Na-ion batteries, the NaxV2(PO4)3 compositions lead to unusual single-phase Na+ extraction/insertion mechanisms with continuous voltage changes upon Na+ extraction/insertion. We demonstrate that the average equilibrium operating voltage observed upon Na+ deintercalation from single-phase $Na_2V_2(PO_4)_3$ is increased up to an average value of ~3.70 V versus Na^+/Na (thanks to the activation of the V4+/V5+ redox couple) compared to 3.37 V versus Na+/Na in conventional $Na_3V_2(PO_4)_3$, thus leading to an increase in the theoretical energy density from 396.3 Wh kg₋₁ to 458.1 Wh kg₋₁. Electrochemical and chemical Na⁺ deintercalation from c-Na₂V₂(PO₄)₃ enables complete Na-ion extraction, increasing energy density.

Join our Group Our Sponsors Get in Touch