

CSC380: Principles of Data Science

Clustering: K Means

Outline

- Unsupervised Learning
 - Clustering
 - Types of Clustering
 - K Means Intuition
 - Formalising K Means
 - Convergence In K- Means
 - Choosing an Optimum Number Of K
 - K-Means++
 - K-Medoids
 - Assumptions Made by K-Means
 - Application Case
 - How to Use K Means?
 - How can We Improve?

Unsupervised Learning

Supervised Learning

Unsupervised Learning

Clustering

Task 1: Group These Set of Document into 3 Groups based on meaning

Doc1: Health, Medicine, Doctor

Doc 2: Machine Learning, Computer

Doc 3: Environment, Planet

Doc 4: Pollution, Climate Crisis

Doc 5: Covid, Health, Doctor

Task 1: Group These Set of Document into 3 Groups.

Doc1: Health, Medicine, Doctor

Doc 2: Machine Learning, Computer

Doc 3: Environment, Planet

Doc 4: Pollution, Climate Crisis

Doc 5: Covid, Health, Doctor

Task 1: Group These Set of Document into 3 Groups.

Doc1: Health, Medicine, Doctor

Doc 5: Covid, Health, Doctor

Doc 3: Environment,

Planet

Doc 4 : Pollution, Climate

Crisis

Doc 2 : Machine Learning, Computer

Supervised Learning **Unsupervised Learning** Discrete classification or clustering categorization

Types of Clustering

Density Based Clustering

Distribution-based Clustering

Hierarchical Clustering

Centroid-based Clustering

One such Centroid Based Clustering Algorithm Is K-Means

K Means Intuition

Basic Steps

- Assign Cluster Centroids

- Until Convergence:
 - Cluster Assignment Step
 - Re-assigning Centroid Step

Basic Steps

- Assign Cluster Centroids
- Until Convergence:
 - Cluster Assignment Step
 - Re-assigning Centroid Step

Fig 9.1 from Bishop - Pattern Recognition And Machine Learning

K Means Formalisation

What is a Cluster?

A group of data points whose inter-point distances are small compared with the distances to points outside of the cluster.

Clustering?

Consider a set of D-dimensional vectors μ_k , where k=1, . . . , K , in which μ_k is a prototype associated with the kth cluster.

Clustering?

The goal of Clustering is then to find an assignment of data points to clusters, as well as a set of vectors {µ_k}, such that the sum of the squares of the distances of each data point to its closest vector µk, is a minimum.

First we choose some initial values for the

Step1: Assignment of data points to clusters

- 1-of-K coding scheme

For each data point x_n , we introduce a corresponding set of binary indicator variables $r_{nk} \in \{0, 1\}$, where $k = 1, \ldots, K$ describing which of the K clusters the data point xn is assigned to, so that if data point x_n is assigned to cluster k then $r_{nk} = 1$, and $r_{ni} = 0$ for j = k.

Objective function - Distortion Measure

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

Step 2: Assign Cluster to Each Point.

We minimize J with respect to the r_{nk} , keeping the μ_k fixed

$$r_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_{j} \|\mathbf{x}_n - \boldsymbol{\mu}_j\|^2 \\ 0 & \text{otherwise.} \end{cases}$$

Step 3: Reassignment of Centroids

We minimize J with respect to the μ_k , keeping rnk fixed.

function J is a quadratic function of μ_k , and it can be minimized by setting its derivative with respect to μ_k to zero giving

$$2\sum_{n=1}^{N} r_{nk}(\mathbf{x}_n - \boldsymbol{\mu}_k) = 0$$
 (9.3)

which we can easily solve for μ_k to give

$$\mu_k = \frac{\sum_n r_{nk} \mathbf{x}_n}{\sum_n r_{nk}}.$$
(9.4)

This simply means -

 μ_k equal to the mean of all of the data points x_n assigned to cluster k

This simply means -

μ_k equal to the mean of all of the data points xn assigned to cluster k

Hence the name K Means

K-means algorithm

Randomly initialize K cluster centroids $\mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n$

Convergence In K-Means

Promise of Convergence

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

Plot of the cost function J given by (9.1) after each E step (blue points) and M step (red points) of the K-means algorithm for the example shown in Figure 9.1.

Iterating until Convergence

But,

It may converge to a local rather than global minimum of J.

A cluster Has Just One Point?

Why?

A cluster Has Just One Point?

Why?

What to Do?

Choosing The Number Of K

How to Choose Number of K?

Most common approach is Visualise, and then pick manually

Most common approach is Visualise, and then pick manually

How to Choose Number of K?

The Elbow Method

How to Choose Number of K?

But sometimes it doesn't work

Image Source : Andrew NG Machine Learning

KMeans ++

Is there a way to start Smarter?

Suppose we have the small dataset

(7,4),(8,3),(5,9),(3,3),(1,3),(10,1) to which we wish to assign 3 clusters.

We begin by randomly selecting (7,4) to be a cluster center.

X	$\min(d(x,z_i)^2)$
(7,4)	
(8,3)	
(5,9)	
(3,3)	
(1,3)	
(10,1)	

We begin by randomly selecting (7,4) to be a cluster center.

X	$\min(d(x,z_i)^2)$
(7,4)	-
(8,3)	2
(5,9)	29
(3,3)	17
(1,3)	37
(10,1)	18

We begin by randomly selecting (7,4) to be a cluster center.

X	prob
(7,4)	-
(8,3)	2/103
(5,9)	29 103
(3,3)	17/103
(1,3)	37/103
(10,1)	18/103

We add (1,3) to the list of cluster centers.

X	$\min(d(x,z_i)^2)$
(7,4)	-
(8,3)	
(5,9)	
(3,3)	4. 1
(1,3)	-
(10,1)	

We add (1,3) to the list of cluster centers.

X	$\min(d(x,z_i)^2)$
(7,4)	-
(8,3)	2
(5,9)	29
(3,3)	4
(1,3)	-
(10,1)	18

We add (1,3) to the list of cluster centers.

X	prob
(7,4)	-
(8,3)	2/55
(5,9)	29/55
(3,3)	4/55
(1,3)	-
(10,1)	18/55

We add (5,9) to the list of cluster centers.

X	prob
(7,4)	-
(8,3)	
(5,9)	-
(3,3)	
(1,3)	-
(10,1)	

We now run k-means with initialized centers (7,4),(1,3), and (5,9).

X	prob
(7,4)	-
(8,3)	
(5,9)	-
(3,3)	
(1,3)	-
(10,1)	

K Medoids

- Type of Data

 - Reaction to Outliers
- How can we generalise better?

The issue with Squared Euclidean Distance

K-medoids algorithm

$$\widetilde{J} = \sum_{n=1}^{N} \sum_{k=1}^{N} r_{nk} \mathcal{V}(\mathbf{x}_n, \boldsymbol{\mu}_k)$$

Assumptions made by K Means

1. All clusters are the same size.(Area not Cardinality)

2. Clusters have the same extent in every direction.

3. Clusters have similar numbers of points assigned to them.

Application Case:

Image Segmentation and Compression

What is Segmentation?

Segmentation is to partition an image into regions each of which has a reasonably homogeneous visual appearance or which corresponds to objects or parts of objects

Original image

Original image

How to Use?

sklearn.cluster.KMeans

```
class sklearn.cluster.KMeans(n_clusters=8, *, init='k-means++', n_init=10, max_iter=300, tol=0.0001, verbose=0, random_state=None, copy_x=True, algorithm='auto')
```

[source]


```
# Importing the dataset
dataset = pd.read_csv('../input/Mall_Customers.csv',index_col='CustomerID')
```

dataset.head()

	Genre	Age	Annual_Income_(k\$)	Spending_Score
CustomerID				
1	Male	19	15	39
2	Male	21	15	81
3	Female	20	16	6
4	Female	23	16	77
5	Female	31	17	40


```
# Using the elbow method to find the optimal number of clusters
from sklearn.cluster import KMeans
wcss = []
for i in range(1, 11):
    kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)
    kmeans.fit(X)
# inertia method returns wcss for that model
    wcss.append(kmeans.inertia_)
```

```
plt.figure(figsize=(10,5))
sns.lineplot(range(1, 11), wcss,marker='o',color='red')
plt.title('The Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.show()
```



```
# Fitting K-Means to the dataset
kmeans = KMeans(n_clusters = 5, init = 'k-means++', random_state = 42)
y_kmeans = kmeans.fit_predict(X)
```



```
# Visualising the clusters
plt.figure(figsize=(15,7))
sns.scatterplot(X[y_kmeans == 0, 0], X[y_kmeans == 0, 1], color = 'yellow', label = 'Cluster 1',
s = 50)
sns.scatterplot(X[y_kmeans == 1, 0], X[y_kmeans == 1, 1], color = 'blue', label = 'Cluster 2', s=
50)
sns.scatterplot(X[y_kmeans == 2, 0], X[y_kmeans == 2, 1], color = 'green', label = 'Cluster 3', s
=50)
sns.scatterplot(X[y_k] = 3, 0], X[y_k] = 3, 1], color = 'grey', label = 'Cluster 4', s=
50)
sns.scatterplot(X[y_kmeans == 4, 0], X[y_kmeans == 4, 1], color = 'orange', label = 'Cluster 5',
s = 50)
sns.scatterplot(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], color = 'red',
                label = 'Centroids', s=300, marker=',')
plt.grid(False)
plt.title('Clusters of customers')
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
plt.legend()
plt.show()
```


What Can We improve Further?

Each Data Point is assigned to just One Cluster ie Hard Assignment.

Each Data Point is assigned to just One Cluster ie Hard

Assignment.

Question: Is this the most optimum way to look at the

problem?

		_		
Ś				
	1)	

~	

Question: Is this the most optimum way to look at the

problem?

Soft Assignments?

References

- Google Developers Clustering in Machine Learning
- KMeans++ Sara Jensen
- Pattern Recognition and Machine Learning- Christopher Bishop Mlb MLBook How to Read a Model?