Vehicle Interaction Learning

Xiaosong Jia

Generate Graph Data

- 1. For each entrance, generate a possible-neighbor-vehicle set.
- 2. Clip their appearance frames to make sure they are close enough.
- 3. Find all vehicles enter from this entrance and sort them by time order. (Main Vehicle)
- 4. For each Main Vehicle, at each time step, find their N nearest neighbors in the possible-neighbor-vehicle set.

Generate Graph Data

- 5. For all the contiguous frames with same neighbors and length > T, we keep it as a spatial-temporal graph. It is a N*T*D matrix.
- 6. For each timestep, we calculate the TTC of all pairs of vehicles, which forms a T*N*N matrix.
- 7. To generate a T*N*N label matrix: TTC<3s -> Positive, TTC > 8s -> Negative, otherwise -> Unknown

Generate Graph Data

Additional Processing

- 1. Delete all the duplicate samples.
- 2. Divide training-test set by folders.
- 3. FPS = 10, Max_number_of_neighbors=10
- 4. Features: coordinate, velocity

Graph data statistics

MaxLength	#Train Sample	# Test Sample	Average Length	Max Length
2s	43614	5436	3.60s	46.2s
4s	11037	1351	6.16s	46.2s
8s	1603	180	12.4s	46.2s

Max Length	#Object 2	#Object 3	#Object 4	#Object 5	#Object 6	#Object7	#Object 8	#Object 9
2s	17556	12984	6894	3449	1704	716	240	71
4s	6694	2450	1107	475	226	67	2	1
8s	1105	313	121	51	12	1	0	0

Multi-agent, Multi-type Interaction model

- Input: N objects, T frames, D features (coordinate and velocity)
- -> N*T*D matrix
- Output: T frames, N*N 'pairs of objects, M confidences of each type of interactions -> T*N*N*M matrix

 Graph: Node- a vehicle at a timestep, Edge – the interaction type of the two corresponding vehicles (nodes)

Spatial-Temporal Message Fusion

- At each time-step, let each vehicle 'know' other vehicles' information and information about its past (no future information to avoid data leakage)
- Right now, fully connected graph.
- Fuse spatial and temporal information alternatively by transformers (spatialtemporal transformer)
- Transformer can fuse information from others with attention mechanism


```
## number_of_objects, seq_len, n_embed
x = x.transpose(@,1) ## seq_len, number_of_objects, n_embed
for i in range(len(self.spatial_module)):
    x, attn_weight = self.temporal_module[i](x.transpose(@,1), position_enc=pos_enc, non_pad_mask=None, slf_attn_mask=slf_att_mask) ##
    number_of_objects, seq_len, n_embed
    x, attn_weight = self.spatial_module[i](x.transpose(@,1), position_enc=None, non_pad_mask=None, slf_attn_mask=None)##seq_len,
    number_of_objects, n_embed
```

Interaction Message Fusion

 Edge Embedding: Concatenate embeddings of two corresponding nodes
 -> T*N*N*2hidden

 Interaction Type Judgement: A set of linear layers with Edge Embedding -> T*N*N*M (M is the number of interaction types.)

 Interaction Embedding: M sets of linear layers with Edge Embedding -> M*T*N*N*hidden

Interaction Message Fusion

 Interaction Edge Embedding: weighted sum of M Interaction Embedding -> M*T*N*N*hidden -> T*N*N*hidden

Hard (one hot weight) vs Softmax weights?

 Interaction Node Embedding: fuse original Node Embedding and Interaction Edge Embeddings of all its edges.

Should no-interaction edge has its own embedding?

Interaction Message Fusion

Interaction Node Embedding:

Soft-no-interaction:
$$v_i' = w_1 * v_i + w_2 * \sum_{j \in N(i)} v_{ij}$$

connect_ratio: cr

Hard-no-interaction: $\boldsymbol{v_i'} = (w_1 + 1 - cr) * \boldsymbol{v_i} + (w_2 + cr) * \sum_{j \in N(i)} v_{ij}$

Trajectory Prediction

- Another spatial-temporal transformer: spread interaction information
- -> Visualize Attention Matrix: at each timestep, each vehicle's attention point

- LSTM: at each time step, predict next t frames relative movement.
 - T*N*t*2 matrix

Loss Function

• Trajectory Prediction Loss: predict next t step's relative movement

$$L_{traj} = \left| |pred - gt| \right|^2$$

Prior Distribution (KL Loss)

Label Information: Positive:0.0252, Negative:0.9168, Unknown:0.05799

3 types of edges -> Prior: uniform for unknown: [0.9458, 0.0397, 0.0145]

$$L_{prior} = \sum_{k} p_k log \frac{p_k}{p_k'}$$

Supervised Edge Label (Cross Entropy Loss):

$$L_{sup} = -\sum_{k} y_k log p_k'$$

Loss Function

 Unsupervised Edge Entropy Loss: make model more sure about edge types

$$L_{ent} = -\sum_{k} p_{k}' log p_{k}'$$

• Edge Diverse Loss: make edge embeddings more distinguished

$$L_{diverse} = -\sum_{i,j,k_1,k_2} \left| \frac{v_{ij,k_1} v_{ij,k_2}}{\left| \left| v_{ij,k_1} \right| \left| \left| \left| v_{ij,k_1} \right| \right| \right|} \right|$$

Some Results

• Supervised edge + Predict Trajectory + Prior Distribution

```
*** Epoch: [10][1351/1351], pred_losses 1.42214e-06, supervised_edge_losses 0.217, kl_losses 0.026, unsupervised_edge_entropy_losses 0.000, edge_fc_diverse_losses 0.000, losses 0.081, supervised_edge_accs 0.935, supervised_edge_precisions 0.185, supervised_edge_recalls 0.289 Edge0_num 0.8676789837388353, Edge1_num 0.12866615722138683, Edge2_num 0.003654859039777816
```

*** Epoch: [27][1351/1351], pred_losses 4.39581e-07, supervised_edge_losses 0.217, kl_losses 0.032, unsupervised_edge_entropy_losses 0.000, edge_fc_diverse_losses 0.000, losses 0.083, supervised_edge_accs 0.912, supervised_edge_precisions 0.172, supervised_edge_recalls 0.338 Edge0_num 0.8438336578992778, Edge1_num 0.15319512575903238, Edge2_num 0.002971216341689879

New Idea

- Pure transformer for prediction
- Check: at each layer, what each vehicle is pay attention to?
- Dense-transformer: each vehicle always observe low level and high level features of other vehicles

Only supervised task?

