Comparison of algorithm for dominant algae classification in water source site in Yeongsan, Seomjin river basin

Using Statistical Machine Learning technique 황성윤・박종환・최병웅・신동석 / 정강영

환경부 국립환경과학원 영산강물환경연구소 / 환경부 국립환경인재개발원 교육기획과

## Introduction

- 영산강 및 섬진강 수계 대표 상수원 지점인 주암호와 탐진호는 지역에 거주하는 시민들에게 물을 공급하는 자원으로서 중요한 역할을 하고 있음. 하지만 `21년 이후 시작된 급격한 강수량 감소와 `22년 극심한 가뭄으로 인해 수자원이 부족할 위기에 처해 있으며 이에 따라 발생하는 우점조류 또한 영향을 받는 것으로 보여짐.
- (연구의 목적) 영산강 수계 상수원 지점의 우점조류 분류를 위한 다양한 통계적 기계학습 알고리즘의 성능을 비교 연구하고 어느 시기에 어떤 조류가 자주 발생하는지 탐색

# **Data and Methods**

- 조사대상지점 : 영산강 및 섬진강 유역 수계 상수원 지점인 주암호(댐앞(J1), 신평교(J2)) 및 탐진호(댐앞(T1), 유치천 합류부(T2))
- 사용변수
- 수질항목 : BOD, COD, T-N, T-P, TOC, SS, EC, pH, DO, temperature, turbidity(탁도), transparency(투명도), Chlorophyll-a
- 수리, 수문 : low(저수위), flow1(유입량), flow2(방류량), reservoir(저수량)
- 반응변수 : dominant(blue(남조류), diatom(규조류), green(녹조류), others(기타조류))
- 분석방법
- 1) Pattern analysis based Self Organizing Map(SOM)
- 2) Compare 11 Statistical Machine Learning algorithm for classification based misclassification rate
- 사용데이터
- `17년부터 `21년까지의 물환경측정망 주(일)별 자료
- `17년부터 `20년까지의 자료를 training data로 두고 알고리즘을 훈련시킨 뒤 `21년 자료를 test data로 사용하여 분류 알고리즘에 대한 평가 실시
- 데이터 출처 : 국립환경과학원 물환경정보시스템 ( <u>https://water.nier.go.kr/web</u> )

- 사용프로그램 : R version 4.2.1

# 

#### <영산강 수계 지점>

# **Result and Discussion**

- Pattern analysis based Self Organizing Map(SOM)
- `17~`21년 수질측정망, 조류경보제, 수리, 수문 관련 주(일)별 자료 기반 수질항목 및 수리, 수문 관련 변수에 대한 패턴분석 실시
- ✓ 수질의 상태를 파악하는 데 필요한 대표적인 수질항목들 중 생물화학적 산소요구량(BOD), 생화학적 산소요구량(COD), 총질소(T-N), 총인(T-P), 총유기탄소(TOC), 부유물질량(SS), 그리고 전기전도도(EC)가 이 시기에 서로 비슷한 패턴을 나타내는 것으로 보아 서로 관련성이 있는 수질항목들끼리는 비슷한 변화를 보인다고 판단할 수 있음.
- ✓ 그리고 수리, 수문 관련 변수인 저수위(low)와 저수량(reservoir)도 이 시기에 서로 비슷한 패턴을 나타내고 있음을 확인할 수 있음.



• Compare 11 Statistical Machine Learning algorithm for classification based misclassification rate

1) Decision Tree(DT) : 나무모양의 의사결정모형을 통해 특정 변수에 대한 관측값과 예측값을 연결하는 방법. 최적 분리기준 선정을 위한 node의

불순도를 검토 시 회귀의 경우는 오차제곱합( $MSE(t) = \frac{1}{n_t} \sum_{i=1}^{n_t} \{y_i(t) - \overline{y_t}\}^2$ )을, 분류의 경우는 Gini계수( $gini(t) = 1 - \sum_{j=1}^{J} p_j^2(t)$ ) 또는

Entropy계수( $entropy(t) = -\sum_{j=1}^{J} p_j(t) log_2 p_j(t)$ )를 사용함.

2) Bagging(Bag) : 다수의 복원추출(sampling with replacement) sample( $L_b, b = 1, ..., B$ )을 통한 다수의 decision tree( $\vartheta(x, L_b), b = 1, ..., B$ )를 만들고 예측 경기를 명기( $\vartheta(x, L_b), t = 1, ..., B$ )를 만들고 예측

결과를 평균 $(\vartheta_B(x) = \frac{1}{B}\sum_{b=1}^B \vartheta(x, L_b))$ 하거나 분류 결과를 바탕으로 다중투표 $(\vartheta_B(x) = Mode\ \vartheta(x, L_b))$ 하여 최종 결론을 도출하는 방법.

만드는 방법. 과적합(overfitting)의 위험을 줄이는 장점이 있음. 4) Gradient Boosting(GB) : gradient를 이용하여 모형을 만들고 이를 통해 나오는 잔차(residual)를 다시 모형화하는 과정을 반복하는 방법. 이러한 과정을

3) AdaBoost(Ada) : 예측 성능이 낮은 약한 학습기(weak learner)들을 가중치 조절을 통해 적절히 조합하여 성능이 좋은 강한 학습기(strong learner)를

4) Gradient Boosting(GB) : gradient를 이용하여 모형을 만들고 이를 통해 나오는 잔차(residual)를 다시 모형화하는 과정을 반복하는 방법. 이러한 과정을 통해 편향(bias)을 줄일 수 있지만 과적합(overfitting)의 위험은 높아짐. 5) Random Forest(RF) : Bagging을 실시할 때 각각의 sample에 대하여 임의로 일부의 설명변수를 선택하여 Decision Tree를 만드는 과정을 통해 sample

사이의 연관성을 줄이는 방법. 6) Extreme Gradient Boosting(XGB) : Gradient Boosting 시행 시 나타나는 느린 수행시간과 과적합의 위험을 보완하기 위하여 이 알고리즘에 추가로 병렬

6) Extreme Gradient Boosting(XGB): Gradient Boosting 시행 시 나타나는 느린 수행시간과 과적합의 위험을 보완하기 위하여 이 알고리즘에 추가로 병렬학습이 지원되도록 구현한 방법. 자체적으로 교차타당성 검증(cross-validation test)를 수행할 수 있으며 과적합이 나타나는 시점을 감지해주는 Early Stopping 기능이 있음. (본 연구에서는 5-fold cross-validation을 적용하였으며, test data에 대한 mlogloss의 값이 가장 작은 시점을 best iteration으로 판단하였음.)

7) Linear Discriminant Analysis(LDA) : R.A.Fisher의 선형판별 경계를 이용하여 분류하는 방법.

8) Flexible Discriminant Analysis(FDA) : spline 방법을 이용하여 비선형(non-linear) 판별 경계를 만들어 분류하는 방법.

9) Regularized Discriminant Analysis(RDA) : 설명변수(explanatory variable)가 많을 경우 shrinkage와 같은 regularization을 통해 공분산행렬(covariance matrix)에 대한 추정을 향상시켜서 판별 경계를 만드는 방법.

**10**) Support Vector Machine(SVM) : kernel trick을 통해 decision boundary와 support vector 사이의 거리인 마진(margin)을 최대화하여 분류하는 방법. (본연구에서는 가장 flexible하다고 알려져 있는 radial basis kernel( $k(u,v)=<\varphi(u),\varphi(v)>=\exp[-\gamma||u-v||^2]$ )을 적용함.)

**11**) Deep Neural Network(DNN) : 입력층(input layer)과 출력층(output layer) 사이에 다수의 은닉층(hidden layer)를 구축하여 만든 신경망 모형. (본 연구에서는 은닉층의 배열을 3 × 3 으로 설정함.)



<AdaBoost>

\* 나무모형기법(Tree-based technique) 기반 변수 중요도(Variable Importance) 산출 결과

(Gini계수의 감소량이 클수록 변수 중요도는 증가함.)

| Algorithm   |               | Bagging        |                |                |                | AdaBoost       |                |                |                | Gradient Boosting |                |                |               |
|-------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-------------------|----------------|----------------|---------------|
| si          | site          |                | J2             | T1             | T2             | J1             | J2             | T1             | T2             | J1                | J2             | T1             | T2            |
| Explanatory | BOD           | 1.6355         | 0.9169         | 1.1297         | 10.8399        | 5.6507         | 2.5200         | 2.8904         | 6.3378         | 4.7210            | 3.8538         | 3.8438         | 7.1205        |
| Variable    | COD           | 3.8333         | 0.7026         | 3.8302         | 0.9498         | 3.5922         | 4.2718         | 5.9266         | 5.5429         | 4.0495            | 2.8880         | 2.3893         | 3.2432        |
|             | T-N           | <u>7.4599</u>  | 3.2770         | 4.3892         | 6.6656         | 7.1632         | 6.8363         | 5.1513         | <u>12.6210</u> | 6.4846            | 4.9263         | 3.9274         | 7.1299        |
|             | T-P           | 1.4672         | 0.9657         | 1.5616         | 1.9833         | 5.6082         | 5.2904         | 4.6107         | 5.4723         | 3.7721            | 2.8662         | 2.9988         | 3.4984        |
|             | тос           | 1.2449         | 1.0364         | 4.2252         | 2.1312         | 2.8110         | 3.7497         | 3.3685         | 5.6915         | 2.2819            | 3.0551         | 2.6374         | 5.0416        |
|             | SS            | 1.6676         | 1.8185         | 2.2088         | 2.8324         | 6.9689         | 5.9100         | 7.3457         | 5.8641         | 4.3569            | 3.1686         | 5.0863         | <u>7.8285</u> |
|             | EC            | 5.2796         | 4.0081         | <u>4.9430</u>  | 2.3617         | 5.4458         | 4.9678         | 8.5282         | 6.2782         | 4.2516            | 2.9874         | 5.1073         | 4.3782        |
|             | рН            | 5.0045         | 4.8076         | 0.8526         | 0.5071         | 5.3132         | <u>9.8304</u>  | 3.6943         | 5.4650         | 5.6531            | 4.7403         | 1.7300         | 1.8485        |
|             | DO            | <u>27.6322</u> | 4.3681         | <u>38.1803</u> | 0.8516         | <u>10.1666</u> | 8.0513         | 9.0549         | 3.2185         | <u>18.8630</u>    | <u>12.5884</u> | <u>21.7981</u> | 4.4447        |
|             | temperature   | <u>26.8603</u> | <u>56.3125</u> | 4.8959         | <u>40.8129</u> | <u>8.5444</u>  | <u>15.2595</u> | <u>11.4148</u> | <u>7.9387</u>  | <u>14.1587</u>    | <u>28.6057</u> | <u>9.0861</u>  | 24.0900       |
|             | turbidity     | 1.3616         | <u>5.6490</u>  | 1.9789         | 0.9841         | 5.8153         | 4.4691         | 7.0753         | 7.3113         | 4.0198            | 5.7638         | 3.6315         | 2.8180        |
|             | transparency  | 0.9494         | 1.0104         | 0.6039         | 7.4691         | 4.8099         | 3.6236         | 2.8685         | 3.0329         | 2.7471            | 1.4522         | 2.0729         | 3.7890        |
|             | Chlorophyll-a | 2.7983         | 3.0667         | 2.6586         | <u>10.6094</u> | 6.0164         | 5.7869         | 6.9407         | <u>11.6879</u> | 4.4275            | 5.2633         | 8.6551         | <u>8.4707</u> |
|             | low           | 5.9047         | <u>8.5669</u>  | <u>22.7470</u> | 5.6243         | <u>7.9080</u>  | <u>8.6515</u>  | 6.4177         | 4.2984         | 6.1043            | <u>7.7380</u>  | <u>12.0714</u> | 5.1879        |
|             | flow1         | 2.6420         | 1.5443         | 1.2025         | 1.2009         | 6.7924         | 5.7999         | <u>8.5961</u>  | 3.8236         | 5.6886            | 4.8684         | 6.4260         | 3.1708        |
|             | flow2         | 4.0167         | 1.9053         | 3.0403         | 4.1070         | 6.7450         | 4.8961         | 5.1958         | 5.2944         | <u>7.0044</u>     | 3.0835         | 7.2473         | 7.4192        |
|             | reservoir     | 0.2423         | 0.0442         | 1.5523         | 0.0696         | 0.6490         | 0.0857         | 0.9204         | 0.1215         | 1.4160            | 2.1512         | 1.2913         | 0.5208        |

| Vi8,        | /             | Nandom Forest  |                |               |               |              |  |
|-------------|---------------|----------------|----------------|---------------|---------------|--------------|--|
| 9           | Site          | J1             | J2             | T1            | T2            | 10           |  |
| Explanatory | BOD           | 5.9695         | 4.6365         | 3.5421        | 5.2089        | 90           |  |
| Variable    | COD           | 4.4951         | 3.5999         | 3.1710        | 2.9838        | 0.6          |  |
|             | T-N           | 6.8724         | 4.5885         | 5.3339        | <u>6.8941</u> | Emor<br>0,4  |  |
|             | T-P           | 5.3997         | 3.9794         | 3.3720        | 3.0757        | 0.2          |  |
|             | тос           | 4.0196         | 4.0364         | 3.2089        | 3.7005        | 00           |  |
|             | SS            | 6.3774         | 4.1817         | 4.1619        | 4.2580        |              |  |
|             | EC            | 6.3620         | 4.6390         | 4.8253        | 3.2457        |              |  |
|             | рН            | 5.2232         | 5.8216         | 2.6926        | 3.0130        | 10           |  |
|             | DO            | <u>14.9574</u> | <u>13.4656</u> | <u>9.9765</u> | 5.0061        | 80 90        |  |
|             | Temperature   | <u>13.7624</u> | <u>19.4183</u> | 6.3579        | <u>9.8199</u> |              |  |
|             | Turbidity     | 5.2893         | 6.4522         | 3.4035        | 3.5417        | Error<br>0.4 |  |
|             | Transparency  | 3.8750         | 3.6271         | 2.2659        | 2.4647        | 0.2 0        |  |
|             | Chlorophyll-a | 5.5955         | 5.0021         | 4.4082        | <u>5.3775</u> | 0 00         |  |
|             | low           | 6.5629         | <u>7.0060</u>  | <u>6.4680</u> | 4.3383        | 0            |  |
|             | flow1         | 5.4151         | 4.4692         | 4.0369        | 2.2046        |              |  |
|             | flow2         | <u>7.6780</u>  | 5.7702         | 5.4426        | 4.2021        |              |  |
|             | reservoir     | 6.6172         | 6.5845         | <u>6.4504</u> | 4.2510        |              |  |
|             |               |                |                |               |               |              |  |



(Extreme Gradient Boosting의 경우는 3가지 측정 기준(Gain, Cover, Frequency) 기반의 변수 중요도를 산출해준다.)

| Extreme Gradient Boosting |               |               |               |               |               |               |               |               |               |               |               |               |               |
|---------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Me                        | thod          | Gain          |               |               |               | Cover         |               |               |               | Frequency     |               |               |               |
| site                      |               | J1            | J2            | T1            | T2            | J1            | J2            | T1            | T2            | J1            | J2            | T1            | T2            |
| Explanatory<br>Variable   | BOD           | 0.0449        | 0.0196        | 0.0144        | 0.0817        | 0.0440        | 0.0415        | 0.0052        | 0.0332        | 0.0568        | 0.0530        | 0.0312        | 0.0601        |
|                           | COD           | 0.0465        | 0.0173        | 0.0366        | 0.0549        | 0.0345        | 0.0101        | 0.0649        | <u>0.1455</u> | 0.0589        | 0.0276        | 0.0567        | <u>0.1148</u> |
|                           | T-N           | 0.0630        | 0.0491        | 0.0518        | 0.0951        | 0.0568        | 0.0298        | 0.0496        | <u>0.1691</u> | 0.0589        | 0.0668        | <u>0.0850</u> | <u>0.1257</u> |
|                           | T-P           | 0.0293        | 0.0217        | 0.0260        | 0.0380        | 0.0811        | 0.0110        | 0.0259        | 0.0222        | 0.0632        | 0.0323        | 0.0567        | 0.0437        |
|                           | тос           | 0.0206        | 0.0185        | 0.0679        | 0.0731        | 0.0259        | 0.0163        | <u>0.0975</u> | 0.0384        | 0.0400        | 0.0369        | 0.0822        | 0.0738        |
|                           | SS            | 0.0443        | 0.0275        | 0.0197        | 0.0604        | 0.0571        | 0.0254        | 0.0209        | 0.1181        | 0.0505        | 0.0415        | 0.0510        | 0.0902        |
|                           | EC            | 0.0559        | 0.0600        | 0.0780        | 0.0411        | 0.0466        | 0.0340        | <u>0.1631</u> | 0.0173        | 0.0653        | 0.0691        | <u>0.1048</u> | 0.0574        |
|                           | рН            | 0.0605        | 0.0619        | 0.0333        | 0.0130        | <u>0.0869</u> | <u>0.1219</u> | 0.0191        | 0.0580        | 0.0695        | 0.0853        | 0.0453        | 0.0410        |
|                           | DO            | 0.2042        | <u>0.1016</u> | 0.2582        | 0.0059        | <u>0.1613</u> | 0.1071        | <u>0.2418</u> | 0.0034        | 0.0989        | <u>0.1152</u> | <u>0.1218</u> | 0.0164        |
|                           | temperature   | <u>0.1892</u> | <u>0.3681</u> | <u>0.0871</u> | <u>0.2813</u> | <u>0.1386</u> | <u>0.1811</u> | 0.0581        | <u>0.2365</u> | <u>0.1032</u> | 0.0899        | 0.0595        | <u>0.1175</u> |
|                           | turbidity     | 0.0400        | 0.0598        | 0.0230        | 0.0304        | 0.0173        | 0.0702        | 0.0308        | 0.0185        | 0.0484        | 0.0691        | 0.0453        | 0.0492        |
|                           | transparency  | 0.0173        | 0.0126        | 0.0100        | 0.0341        | 0.0159        | 0.0484        | 0.0065        | 0.0168        | 0.0295        | 0.0300        | 0.0255        | 0.0301        |
|                           | Chlorophyll-a | 0.0258        | 0.0580        | 0.0500        | <u>0.1026</u> | 0.0502        | 0.0785        | 0.0417        | 0.0550        | 0.0526        | <u>0.1014</u> | 0.0680        | 0.0984        |
|                           | low           | <u>0.0655</u> | 0.0689        | <u>0.1416</u> | 0.0090        | 0.0503        | <u>0.1408</u> | 0.0497        | 0.0093        | <u>0.0758</u> | 0.0737        | 0.0453        | 0.0164        |
|                           | flow1         | 0.0270        | 0.0297        | 0.0588        | 0.0148        | 0.0419        | 0.0281        | 0.0569        | 0.0110        | 0.0526        | 0.0484        | 0.0765        | 0.0219        |
|                           | flow2         | 0.0579        | 0.0256        | 0.0195        | 0.0644        | 0.0838        | 0.0558        | 0.0344        | 0.0478        | 0.0674        | 0.0599        | 0.0255        | 0.0437        |
|                           | reservoir     | 0.0082        | 0.0000        | 0.0241        | 0.0000        | 0.0076        | 0.0000        | 0.0340        | 0.0000        | 0.0084        | 0.0000        | 0.0198        | 0.0000        |







- -> 조사대상지점과 사용한 algorithm에 따라 변수 중요도의 산출결과는 차이가 있지만, 전체적으로는 우점조류를 판단하고 분류하는 데 있어 수온(temperature)과 용존산소량(DO), 그리고 저수위(low)가 다른 변수들과 비교했을 때 더 유의미한 영향력을 보이고 있음을 확인할 수 있음.
- \* 조사대상지점 및 Algorithm에 따른 test data에 대한 오분류율(misclassification rate) 산출 결과

| spot | Classification Algorithm |        |        |               |        |        |        |               |               |               |        |
|------|--------------------------|--------|--------|---------------|--------|--------|--------|---------------|---------------|---------------|--------|
|      | DT                       | Bag    | Ada    | GB            | RF     | XGB    | LDA    | FDA           | RDA           | SVM           | DNN    |
| J1   | 0.3846                   | 0.3654 | 0.3846 | 0.3654        | 0.3846 | 0.4038 | 0.3462 | 0.3462        | 0.4038        | 0.3654        | 0.4038 |
| J2   | 0.2692                   | 0.2692 | 0.2692 | 0.2885        | 0.2692 | 0.2885 | 0.2500 | <u>0.2500</u> | 0.2692        | 0.2885        | 0.2692 |
| T1   | 0.1961                   | 0.1373 | 0.1569 | <u>0.1373</u> | 0.1373 | 0.1569 | 0.3137 | 0.3333        | <u>0.1373</u> | <u>0.1373</u> | 0.1373 |
| Т2   | 0.1373                   | 0.1373 | 0.0980 | 0.1373        | 0.1373 | 0.1176 | 0.2157 | 0.2353        | 0.1373        | 0.1373        | 0.1373 |

- -> 조사대상지점에 따른 우점조류 분류에 대한 최적의 알고리즘
  - ✓ J1(주암호 댐앞) : Linear Discriminant Analysis, Flexible Discriminant Analysis
- ✓ J2(주암호 신평교) : Linear Discriminant Analysis, Flexible Discriminant Analysis
- ✓ T1(탐진호 댐앞): Bagging, Gradient Boosting, Random Forest, Regularized Discriminant Analysis, Support Vector Machine, Deep Neural Network
- ✓ T2(탐진호 유치천 합류부): AdaBoost
- → 대체적으로 주암호 관련 지점에서는 Discriminant Analysis 기반 알고리즘이, 탐진호 관련 지점에서는 Tree-based technique 기반 알고리즘이 우점조류를 분류하는 데 좋은 성능을 보였음.

### Conclusion

- 오분류율을 기준으로 판단했을 때 우점조류 분류에 대한 최적의 알고리즘은 조사대상지점에 따라 상이한 차이가 있었음. 이는 각 지점마다 조사변수의 분포와 흐름에 차이가 존재하기 때문인 것으로 판단됨.
- 본 연구에 적용된 수질항목 및 수리, 수문 관련 변수 이외에 더 다양한 측정변수를 적용하여 분석한다면 좀 더 신뢰성 있는 데이터에 대한 분석을 통해 우점조류를 분류하는 데 있어 더 좋은 알고리즘을 제안할 수 있을 것으로 여겨짐. 또한 타 수계(한강, 금강, 낙동강) 내의 상수원 지점에 대해서도 본 연구에서 적용한 기법을 적용한다면 해당 수계의 특성에 부합하는 분석 결과를 도출할 수 있을 것으로 기대됨.





<Gradient Boosting>



<Kernel Trick>