

Experimental Probe of Inflationary Cosmology (EPIC)

Jamie Bock

JPL / Caltech

The EPIC Consortium

Cal	tec	:h/l	IPA	C
-----	-----	------	------------	---

Charles Beichman Eric Hivon

Mana Kana

Marc Kamionkowski

Andrew Lange Tim Pearson

Anthony Readhead

Jonas Zmuidzinas

UC Berkeley/LBNL

Paul Richards

Adrian Lee Carl Heiles

Bill Holzapfel,

Helmut Spieler

Huan Tran

Martin White

Cardiff

Walter Gear

Carnegie Mellon

Jeff Peterson

U Chicago

John Carlstrom

Clem Pryke

U Colorado

Jason Glenn

UC Davis

Lloyd Knox

Dartmouth

Robert Caldwell

Fermilab

Scott Dodelson

IAP

Ken Ganga

JPL

Dustin Crumb

Peter Day

Darren Dowell

Mark Dragovan

Todd Gaier

Krzysztof Gorski

Warren Holmes

Jeff Jewell

Charles Lawrence

Rick LeDuc

Erik Leitch

Steven Levin

Mark Lysek

Hien Nguyen Ron Ross

Celeste Satter

Mike Seiffert

IAS

Jean-Loup Puget Nicolas Ponthieu

UC Irvine

Asantha Cooray

Manoj Kaplinghat

U Minnesota

Shaul Hanany

Michael Milligan

NIST

Kent Irwin

Stanford

Sarah Church

UC San Diego

Brian Keating

Tom Renbarger

Some Background

NASA funded 3 mission studies for the Einstein "Inflation Probe"

- Envisioned as \$350-\$500M mission launch 2010 & every 3 years
- 2 year study & not much money
- In the meantime, some programmatic changes at NASA...

These results are the work of a small group of dedicated individuals

Asantha Cooray	Warren Holmes	Mark Lysek	Tom Renbarger
Dustin Crumb	Brian Keating	Michael Milligan	Celeste Satter
Shaul Hanany	Adrian Lee	Nicolas Ponthieu	Huan Tran

What did we study?

- 2 point designs responding to the Weiss committee roadmap
- Selected mission tradeoffs
- Key technical challenges for imaging polarimeters

What are we still working on?

- Foreground subtraction model
- Complete systematic error analysis
- Complete optical analysis incl. sidelobes

What is outside of our study plans?

- Other design options (interferometry, HEMTs)
- Cost analysis

Recommendations from the Weiss Committee

Two missions

1º beams: 1.6 μK \sqrt{s} @ 1-yr 0.1º beams: 1.1 μK \sqrt{s} @ 1-yr

GW polarization science goal is r = 0.01 note two peaks

Foreground subtraction is key recommends 30 – 300 GHz

What Do You Get for Higher Resolution? (One Example)

Science Inputs to EPIC Mission Study

Low-Cost Option			
Science	Science Requirements	Instrument	
GW <bb></bb>	Detect both I = 5 & I = 100 <bb> bumps at r = 0.01 after Galactic foreground removal</bb>	1º FWHM @100 GHz All sky 2 μK√s 2 years 30 – 300 GHz	

Comprehensive Science Option			
Science	Science Requirements	Instrument	
GW <bb></bb>	Detect both I = 5 & I = 100 <bb> bumps at r = 0.01 after Galactic foreground removal</bb>	5' FWHM @100 GHz All sky	
Lensing <bb></bb>	Measure lensing <bb> to cosmic variance to I = 1000 Potential to subtract lensing <bb></bb></bb>	2 μK√s 2 years 30 – 300 GHz	
<ee></ee>	Measure <ee> to cosmic variance into the damping tail</ee>		

Drift-Scanned Imaging Polarimeters

PAST

Instruments scaleable to higher sensitivity - "only" requires better detector arrays Do the optics have large enough throughput? Can we control systematic errors to < 10 nK? - currently demonstrated to < 1 μ K

Team encompasses many PIs in imaging polarimetry

Low-Cost Mission Architecture

Comprehensive Mission Architecture

Scan Strategy

Highly Redundant & Uniform Scan Coverage

Optical Design Methodology

20

-20

-60

Gain (dBi)

Requirements:

Large Throughput

Small - 20° FOV at 100 GHz

Large - 3° FOV at 100 GHz 5° FOV at 30 GHz

- Flat and Telecentric Focal Plane
- Cold Pupil Stop
- Low Sidelobes

Metrics:

- Strehl ratios
- Mueller matrices
- E/H and co/cross beam differences

Tools:

• Code5

main beam + Mueller matrices

• Grasp9

main beam

sidelobes

polarization

Zemax

main beam

physical optics (lenses)

Analytical calculations

S. Hanany M. Milligan

T. Renbarger H. Tran

Optical Systems Study

Refractor

FWHM @ 100 GHz	0.80
FOV @ 100 GHz	20°
Strehl ratio*	> 0.96
I-Pol.*	0.02 % (ideal AR)
	0.5 % (poor AR)
X-pol.*	< 5e-6

Gregorian Dragone

FWHM @ 100 GHz	4'
FOV @ 100 GHz	30
Strehl ratio*	> 0.94
I-Pol.*	0.14 % (ideal AR)
	1.0 % (poor AR)
X-pol.*	18 %

Main Beam Polarization Systematics

- Instrument polarization converts T to Q & U
- Cross-polarization converts Q to U
- Goal is to keep raw effect below science goal
- Effects can be measured and removed, and/or mitigated by a waveplate

Assumptions:

- take difference between x & y PSB
- parameterize main beam effect
- convolve with scan strategy
- calculate resulting power spectrum

Refractor with 1° FWHM at 100 GHz

Refractor with 1° FWHM at 100 GHz

Polarization Modulators

- + Removes polarization of downstream optics
- + High frequency chop
- Can introduce own polarization effects
- Bandwidth a problem

S. Hanany et al.

Faraday

B. Keating et al.

Focal Planes – Existing Technology

Erog coverage	[CH-1	60 200
Freq. coverage	[GHz]	60 – 300
# bolo		700
NEP	[W/√Hz]	~6e-18
System NET	[μK√s]	2.4
τ	[ms]	25
Wires to 0.1 K		1500
Focal plane mass at 0.1 K	[kg]	20
JFET power to 40 K	[mW]	130 mW

Bolometer Noise Budget 10000 ■ margin □ readout 8000 ■ bolo photon $NET^2[\mu K^2s]$ 6000 **NTD Margin** 4000 $NEP = \sqrt{2} NEP(calc)$ 2000 0 **EPIC TES Planck EPIC NTD**

Absorber-Coupled NTD Bolometers

Planck/HFI focal plane (52 bolometers)

Low-power SPIRE JFETs (360 channels)

Irvine Workshop 23-25 March 2006

Focal Planes – Future Capabilities

Freq. coverage	[GHz]	30 – 300
# bolo		2200
NEP	[W/√Hz]	~6e-18
System NET	[μK√s]	1.6
τ	[ms]	1
Wires to 0.1 K (32:1 mux/band)		600
Focal plane mass at 0.1 K	[kg]	5
SQUID power to 0.1 K	[μW]	1

Bolometer Noise Budget 10000 ■ margin □ readout 8000 ■ bolo photon $\mathsf{NET}^2[\mu K^2s]$ 6000 **TES Margin** 4000 NEP = 2 NEP(calc)2000 0 **Planck EPIC NTD EPIC TES**

Antenna-Coupled TES Bolometers

A. Lee et al.

Conclusions

Scientific case for space

All-sky space mission needed Political landscape is currently unfavorable ... we need to stick together as a community

Imaging polarimeter approach
Optical design feasible
Main beam effects are encouraging
Systematics study still in progress

Foregrounds

Need to know their amplitude Need to know how well they subtract ... especially for v > 90 GHz

Technologies

We could build a very capable mission right now Clear path forward: improve focal plane sensitivities Antenna-coupled bolometers *reduce* cost & complexity System demos of new technologies

Backup Materials

Irvine Workshop 23-25 March 2006

Gregorian Dragone with 5' FWHM at 100 GHz

Gregorian Dragone with 5' FWHM at 100 GHz

