

### Building a Radio Recommendation Engine

John Min

May 1, 2014

### Approaches to recommendation

#### 1. Content-based

- Mel-frequency cepstral coefficients (MFCC) feature extraction
- 2. Dyadic data analysis
  - ► Latent factor models: (Bayesian) PMF
  - Mixed membership models: Latent Dirichlet Allocation (LDA)
  - $Arr M^3F = BPMF + LDA$

# Mixed Membership Matrix Factorization (M<sup>3</sup>F)

- $ightharpoonup K^U$ : the number of user topics
- K<sup>M</sup>: the number of item topics
- ▶  $\Lambda^U$  ~ Wishart( $W_0, \nu_0$ ),  $\Lambda^M$  ~ Wishart( $W_0, \nu_0$ )
- ▶ For each user  $i \in \{1, ..., N\}$ :
  - $\bullet$   $u_i \sim N(\mu^U, (\lambda^U)^{-1})$
  - $\theta_i^U \sim \text{Dir}(\alpha/K^U)$
- ▶ For each item  $j \in \{1, ..., M\}$ :
  - $\triangleright$   $v_i \sim N(\mu^V, (\lambda^V)^{-1})$
  - $\theta_i^V \sim \text{Dir}(\alpha/K^V)$
- ▶ For each rating r<sub>i</sub>j:
  - lacksquare  $z_{ij}^U \sim \mathsf{Multi}(1, \theta_i^U), z_{ij}^V \sim \mathsf{Multi}(1, \theta_i^V)$
  - $r_i j \sim N(\beta_{ij}^{kl} + u_i \cdot v_j, \sigma^2)$

# M<sup>3</sup>F-TIB (Topic-Indexed Bias)

$$\beta_{ij}^{kl} = \chi_0 + c_i^k + d_j^l$$

- $\blacktriangleright$   $\chi_0$  is a fixed global bias
- $c_i^k$ 's and  $d_i^l$ 's are drawn from Gaussian priors
- "Napoleon Dynamite" effect
- each user and item can choose a different topic and thus, a different bias for each rating (such as in the case that multiple users share a single account)

## Gibbs sampler (simplified)

- ▶ sample hyperparameters,  $\{(\mu_U, \Lambda_U), (\mu_M, \Lambda_M)\}$
- ▶ sample topics,  $(z_{ij}^U, z_{ij}^M)$
- ▶ sample user parameters  $(\theta_i^U, u_i, \{c_i^k\}_{k=1}^{K^U})$
- ightharpoonup sample item parameters  $(\theta_j^V, v_i, \{d_j^I\}_{k=1}^{K^V})$

## Coming to theaters (or online radios) near you

- get results!
- compare content-based approach with matrix factorization
- ▶ integrate the MFCC feature vector with MF algorithms