Лабораторная работа 1.4 Исследование вынужденной прецессии гироскопа

Зотов Алексей 496 гр.

24 мая 2016 г.

Цель работы: исследовать вынужденную прецессию уравновешенного симметричного гироскопа; установить зависимость угловой скорости вынужденной прецессии от величины момента сил, действующих на ось гироскопа; по угловой скорости прецессии определить угловую скорость вращения ротора гироскопа.

В работе используются: гироскоп в кардановом подвесе, секундомер, набор грузов, отдельный ротор гироскопа, цилиндр известной массы, крутильный маятник, штангенциркуль, линейка.

Рис 1: Гироскоп

Рис 2: Вынужденная прециссия гироскопа

Движение осесимметричного тела удобно разбить на две составляющие выделить из вектора полной угловой скорости $\vec{\omega}$ угловую скорость вращения оси симметрии $\vec{\Omega}$ (угловая скорость прециссии) , которую обычно называют угловой скоростью прецессии, и $\vec{\omega_0}$ угловую скорость собственного вращения:

$$\vec{\omega} = \vec{\omega_0} + \vec{\Omega} \tag{1}$$

В зависимости от того, приложены или нет к гироскопу какие-либо внешние силы, различают два типа его движения:

1. Если момент внешних сил равен нулю ($\vec{M}=0$), то сохраняется момент импульса системы: $\vec{L}=const.$

Если раскрутить гироскоп исходно только вокруг своейоси (т. е. $\vec{\Omega}=0$), то вектор угловой скорости $\vec{\omega_0}$ также должен оставаться неизменным по модулю и направлению, а следовательно, и ось гироскопа (\vec{s}) должна сохранять свою ориентацию в пространстве при любом перемещении центра масс системы.

2. Если же приложить к исходно уравновешенному гироскопу внешнюю силу с ненулевым моментом, то гироскоп придёт в движение, определяемое уравнением:

$$\vec{\Omega} \times \vec{L} = \vec{M} \tag{2}$$

Ход работы:

- 3. По реакции гироскопа определим, в какую сторону вращается ротор. Совпадает с направлением гироскопа, изображенного на Рис. 2.
- 4. Определим момент инерции ротора гироскопа по формуле

$$I_0 = I_{\text{II}} \frac{T_0^2}{T_{\text{II}}^2},$$

где $I_{\rm II}=\frac{mr^2}{2}$, $T_{\rm II}$ и T_0 - периоды колебаний на проволочном подвесе цилиндра и ротора гироскопа соответственно.

Проведем необходимые измерения: $t_6 = [28.20 , 28.28 , 28.37 , 28.50 , 28.40 , 28.59]$ с - 6 измерений времени 6-ти полных колебаний ротора.

 $T_0 = 4.73$, $\sigma_0 = 0.02$, $\varepsilon_0 \approx 0.005 = 0.5\%$ - относительная погрешность.

Параметры цилиндра:

 $m_{\rm II} = 1617.7~{
m g}$ - масса

 $d_{\rm H} = 7.8~{
m cm}$ - диаметр

 $t_{\rm u} = [35.97 \;,\, 36.06 \;,\, 36.25 \;,\, 36.03 \;,\, 36.25 \;,\, 36.10]$ с - время 6-ти полных колебаний цилиндра.

 $T_{\rm H} = 6.02 \ {\rm c}$

 $\sigma_{\rm u}=0.02$, $\varepsilon_{\rm u}\approx 0.003=0.3\%$

Получим $I_{\text{II}} = 12.30 \cdot 10^{-4} \rightarrow I_0 \approx 7.6 \cdot 10^{-4} \ kg/m^2$

$$\left(\frac{\sigma_{I_0}}{I_0}\right)^2 = \left(\frac{\sigma_m}{m}\right)^2 + 4\left(\frac{\sigma_r}{r}\right)^2 + 4\left(\frac{\sigma_{T_0}}{T_0}\right)^2 + 4\left(\frac{\sigma_{T_{\text{II}}}}{T_{\text{II}}}\right)^2$$

$$\sigma_{I_0}=0.2\cdot 10^{-4}\ \mathrm{kg}\cdot \mathrm{m}^2$$

5. Параметры установки:

 $R=18.6~{
m cm}$ - радиус для измерения вертикального угла отклонения $r=12.3~{
m cm}$ - плечо силы

Результаты измерения количества полных оборотов и вертикального отклонения в зависимости от веса грузов:

$t_t r$, min	2.30	2.36	2.11	1.48	2.51	2.18	2.47	2.10	3.28
$n_{\text{оборотов}}$	1	1	1	1	2	2	3	3	4
m, g	60	76	93	116	141	173	215	268	335
Δh , cm	3.9	2.6	2.0	1.7	3.1	2.2	2.5	2.1	1.3

6. Найдем угловую скорость прециссии как:

$$\Omega = \frac{2\pi n}{t} = \frac{2\pi}{T}$$

Ошибка Ω:

$$\sigma_{\Omega} = 2\pi\Omega \left(\frac{\sigma_T}{T}\right)$$

y=kx+b , $k\approx 0.39$, $b\approx 0.014$, $\sigma_k\approx 0.023$, $\sigma_b\approx 0.002$

Из (2) получим:

$$\omega_0 = \frac{M}{I_0\Omega} = \frac{1}{kI_0} \approx 3.4 \cdot 10^3 \text{ рад/c}$$

$$\sigma_{\omega_0} = \omega_0 \sqrt{\left(\frac{\sigma_{\text{tg }\alpha}}{\text{tg }\alpha}\right)^2 + \left(\frac{\sigma_{I_0}}{I_0}\right)^2} \approx 0.2 \cdot 10^3 \text{рад/c}$$

- 7. Частота, полученная с помощью звукового генератора : $\nu_s=480~\Gamma$ ц $\Longrightarrow \omega_s=2\pi\nu\approx 3015.9~{\rm pag/c}$ Что достаточно близко к полученному значению, с учетом погрешности.
- 8. Определим момент сил трения:

$$\Omega = \Omega_{\text{hor}} + \Omega_{\text{ver}} \implies \vec{\Omega}_{\text{hor}} \times \vec{L} = \vec{M}_{\text{rp}}$$
 (3)

 $\Omega_{\rm hor} = \frac{d}{dt} \varphi,$ где φ - угол вертикального отклонения оси гироскопа \vec{s}

$$M_{tr} = \Omega_{\rm tr} L$$

$$L = 1/k \implies M_{tr} = k\Omega_{tr}$$

Так как $\Omega_{tr} \ll \Omega \ll \omega_0$,то приближение о том, что весь момент импульса создается ω_0 и направлен параллельно оси гироскопа, можно принять.