Propensity Score Diagnostics Lucy D'Agostino McGowan Wake Forest University

Checking balance

Love plots (Standardized Mean Difference)

ECDF plots

Standardized Mean Difference (SMD)

$$d = \frac{X_{treatment} - X_{control}}{\sqrt{\frac{s_{treatment}^2 + s_{control}^2}{2}}}$$

SMD in R

Calculate standardized mean differences

```
library(halfmoon)
library(tidyverse)

smds <- tidy_smd(
    df,
    .vars = c(confounder_1, confounder_2, ...),
    .group = exposure,
    .wts = wts # optional,
    make_dummy_vars = TRUE # optional
)</pre>
```

Calculating SMDs

```
1 vars <- c(
  "sex", "race", "age", "education",
 "smokeintensity", "smokeyrs",
 "exercise", "active", "wt71"
   smds <- tidy smd(</pre>
   nhefs complete wts,
   .vars = all of(vars),
10 \cdot group = qsmk,
.wts = w_ate,
12 make dummy vars = TRUE
13)
14
15 smds
```

Calculating SMDs

```
# A tibble: 28 \times 4
  variable
                method qsmk
                                  smd
                <chr> <chr> <chr> <dbl>
  <chr>
                              0.160
1 sex1
                observed 1
2 race1
                observed 1 0.177
                observed 1 -0.282
3 age
4 education2
                observed 1
                              0.112
5 education3
                observed 1
                               0.0472
6 education4
                observed 1
                               0.0270
 7 education5
                observed 1
                              -0.166
8 smokeintensity observed 1
                              0.217
9 smokeyrs
                observed 1
                             -0.159
10 exercise1
                observed 1
                              -0.0398
```

Plotting SMDs

Plot them! (in a Love plot!)

Love plot

Your turn 1

Create a Love Plot for the propensity score weighting you created in the previous exercise

06:00

ECDF

For continuous variables, it can be helpful to look at the *whole* distribution pre and post-weighting rather than a single summary measure

ECDF

Unweighted ECDF

```
ggplot(nhefs_complete_wts, aes(x = wt71, color = factor(qsmk)))
geom_ecdf() +
scale_color_manual(
    "Quit smoking",
    values = c("#5154B8", "#5DB854"),
    labels = c("Yes", "No")
    ) +
    xlab("Weight in Kg in 1971") +
    ylab("Proportion <= x")</pre>
```

Unweighted ECDF

Weighted ECDF

```
ggplot(nhefs_complete_wts, aes(x = wt71, color = factor(qsmk)))
geom_ecdf(aes(weights = w_ate)) +
scale_color_manual(
    "Quit smoking",
    values = c("#5154B8", "#5DB854"),
labels = c("Yes", "No")
    ) +
    xlab("Weight in Kg in 1971") +
    ylab("Proportion <= x (Weighted)")</pre>
```

Weighted ECDF

Your turn 2

Create an unweighted ECDF examining the park_temperature_high confounder by whether or not the day had Extra Magic Hours. Create a weighted ECDF examining the park_temperature_high confounder

Bonus! Weighted Tables in R

1. Create a "design object" to incorporate the weights

```
library(survey)

svy_des <- svydesign(
  ids = ~ 1,
  data = df,
  weights = ~ wts

)</pre>
```

2. Pass to gtsummary::tbl_svysummary()

```
library(gtsummary)
tbl_svysummary(svy_des, by = x) |>
  add_difference(everything() ~ "smd")
# modify_column_hide(ci) to hide CI column
```

Characteristic	0 N = 1,565	1 N = 1,561	Difference 2	95% CI
WEIGHT IN KILOGRAMS IN 1971	69 (60, 80)	69 (59, 79)	0.01	-0.06, 0.08
D: WHITE 1: BLACK OR OTHER N 1971			0.01	-0.06, 0.08
0	1,359 (87%)	1,352 (87%)		
1	206 (13%)	209 (13%)		
AGE IN 1971	43 (33, 52)	43 (33, 53)	-0.01	-0.08, 0.06
D: MALE 1: FEMALE			0.00	-0.07, 0.07
0	764 (49%)	764 (49%)		
1	802 (51%)	797 (51%)		
NUMBER OF CIGARETTES SMOKED PER DAY IN 1971	20 (10, 25)	20 (10, 30)	0.02	-0.05, 0.09
YEARS OF SMOKING	24 (15, 33)	24 (14, 33)	0.00	-0.07, 0.07
IN RECREATION, HOW MUCH EXERCISE? IN 1971, 0:much exercise,1:moderate exercise,2:little or no exercise			0.04	-0.03, 0.11
0	302 (19%)	294 (19%)		
1	665 (42%)	691 (44%)		
2	599 (38%)	576 (37%)		
N YOUR USUAL DAY, HOW ACTIVE ARE YOU? IN 1971, Divery active, 1:moderately active, 2:inactive			0.03	-0.04, 0.10
0	700 (45%)	684 (44%)		
1	718 (46%)	738 (47%)		
2	147 (9.4%)	138 (8.9%)		
Median (Q1, Q3); n (%) Standardized Mean Difference	147 (0.478)	130 (0.370)		
CI = Confidence Interval				

Bonus Your Turn: Weighted Tables