海大資工 AI 機器學習作業報告

(一)實驗結果

系統	分類器	系統設定	正確率
A	SVM	svm.SVC, kernel='poly'	97.64%
В	SVM	svm.SVC,kernel='linear'	96.76%
С	SVM	svm.SVC, kernel='rbf'	91.47%
D	Naive Bayes	MultinomialNB	93.52%
Е	Decision Tree	criterion = 'entropy'	99.11%
		max_depth=5	
F	Random Forest	n_estimators=100	99.11%
		criterion = 'gini'	
G	XGBoost	n_estimators=100	98.52%
		learning_rate= 0.7	
Н	Tensorflow	3 層 hidden layer,每一層後面都有接	97.94%
		leakyReLu 和 batchnorm	

(二)系統比較

系統 A、B、C 都屬於 SVM 分類器,差別在於 kernel (核函數)的不同, kernel='poly'的效果最佳。傳統機器學習模型 (Decision Tree、Random Forest、XGBoost) 與深度學習模型,深度學習模型的效果沒有傳統機器學習模型來得好。

(三)結論

Decision Tree 和 Random Forest 的效果是最好的,我把 Decision Tree 展開來:

資料集的資料特徵與類別可能較為明確,適合樹狀結構分割,決策樹和隨機森林善於處理這類結構化資料,並能自動發現特徵之間的重要規則,因此表現特別突出。Tensorflow 模型雖然有三層 hidden layer 並加入 leakyReLU 與batchnorm,理論上能處理更複雜的非線性關係,但由於資料集規模或特徵維度有限,深度學習未必能完全發揮優勢,反而可能因參數過多導致訓練效果略低於傳統方法。