IN THE CLAIMS

Please delete all prior lists of claims in the application and insert the following list of claims:

- 1-3. (CANCELED)
- 4. (CURRENTLY AMENDED) An isolated, unnatural polypeptide compound of formula:

$$A - \begin{bmatrix} X_a - Y - Z_c - \end{bmatrix}_d A'$$

wherein:

each X and each Z is independently variable and is selected from the group consisting of α -amino acid residues, β -amino acid residues, and γ -amino acid residues, provided that at least one X or Z comprises an α -amino acid residue and at least another two of X or Z comprise two cyclically-constrained β -amino acid residues; and

wherein each cyclically-constrained β -amino acid residue is independently selected from the group consisting of:

۶

wherein V and W are combined, together with the carbon atoms to which they are bonded, and independently define a substituted or unsubstituted, monocyclic or bicyclic C_3 - C_{10} cycloalkyl, cycloalkenyl or heterocyclic ring having one or more N, O or S atom(s) as the heteroatom(s);

the substituents on carbon atoms of the rings being independently selected from the group consisting of linear, branched, or cyclic C_1 - C_6 -alkyl, alkenyl, alkynyl; mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl, and the substituents listed above for V and W when V and W are not combined;

the substituents on nitrogen heteroatoms of the rings being independently selected from the group consisting of hydrogen, monocyclic or bicyclic C_1 - C_{10} -alkyl, alkenyl, or alkynyl; mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl, $-S(=O)_2$ - R^{17} , -C(=O)- R^{17} , $-S(=O)_2$ - C_1 - R^{18} , and -C(=O)- C_1 - R^{18} , where C_1 - C_2 - C_3 - C_4 - C_5

wherein R^{17} is independently selected from the group consisting of hydrogen, monocyclic or bicyclic C_1 - C_{10} -alkyl, alkenyl, or alkynyl; mono-

or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl; and

>

wherein R¹⁸ is independently selected from the group consisting of hydroxy, linear, branched, or cyclic C₁-C₆-alkyl, alkenyl, or alkynyl; monoor bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl-C₁-C₆-alkyl; mono- or bicyclic heteroaryl-C₁-C₆-alkyl; C₁-C₆-alkyloxy, aryloxy, heteroaryloxy, thio, C₁-C₆-alkylthio, C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, arylthio, arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, amino, mono- or di-C₁-C₆-alkylamino, mono- or diarylamino, mono- or diheteroarylamino, N-alkyl-N-arylamino, N-alkyl-Nheteroarylamino, N-aryl-N-heteroarylamino, aryl-C₁-C₆-alkylamino, carboxylic acid, carboxamide, mono- or di-C₁-C₆-alkylcarboxamide, monoor diarylcarboxamide, mono- or diheteroarylcarboxamide, N-alkyl-Narylcarboxamide, N-alkyl-N-heteroarylcarboxamide, N-aryl-Nheteroarylcarboxamide, sulfonic acid, sulfonamide, mono- or di-C₁-C₆alkylsulfonamide, mono- or diarylsulfonamide, mono- or diheteroarylsulfonamide, N-alkyl-N-arylsulfonamide, N-alkyl-Nheteroarylsulfonamide, N-aryl-N-heteroarylsulfonamide, urea; mono- di- or tri-substituted urea, wherein the substitutent(s) is selected from the group consisting of C₁-C₆-alkyl, aryl, heteroaryl; O-alkylurethane, O-arylurethane, and O-heteroarylurethane; and

wherein R^5 and R^6 are independently selected from the group consisting of hydrogen, hydroxy, linear, branched, or cyclic C_1 - C_{16} -alkyl, alkenyl, or alkynyl; mono-or di- C_1 - C_{16} alkylamino; mono- or bicyclic aryl; mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_{16} -alkyl; mono- or bicyclic heteroaryl- C_1 - C_{16} -alkyl; -(CH_2)₀₋₆- OR^7 ,

 $-(CH_2)_{0.6}-SR^7, -(CH_2)_{0.6}-S(=O)-CH_2-R^7, -(CH_2)_{0.6}-S(=O)_2-CH_2-R^7, -(CH_2)_{0.6}-NR^7R^7, -(CH_2)_{0.6}-NHC(=O)R^7, -(CH_2)_{0.6}-NHS(=O)_2-CH_2-R^7, \\ -(CH_2)_{0.6}-C(=O)-OH, -(CH_2)_{0.6}-C(=O)-OR^7, -(CH_2)_{0.6}-C(=O)-NH_2, -(CH_2)_{0.6}-C(=O)-NHR^7, -(CH_2)_{0.6}-C(=O)-N(R^7)_2, -(CH_2)_{0.6}-O-(CH_2)_{2.6}-R^8, -(CH_2)_{0.6}-S-(CH_2)_{2.6}-R^8, -(CH_2)_{0.6}-S(=O)_2-(CH_2)_{2.6}-R^8, -(CH_2)_{0.6}-NH-(CH_2)_{2.6}-R^8, -(CH_2)_{0.6}-N-\{(CH_2)_{2.6}-R^8\}_2, -(CH_2)_{0.6}-NHC(=O)-(CH_2)_{2.6}-R^8, \text{ and } -(CH_2)_{0.6}-NHS(=O)_2-(CH_2)_{2.6}-R^8; \text{ wherein}$

ć

 R^7 is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, alkenyl, or alkynyl; mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl; and

R⁸ is selected from the group consisting of hydroxy, C₁-C₆-alkyloxy, aryloxy, heteroaryloxy, thio, C₁-C₆-alkylthio, C₁-C₆-alkylsulfinyl, C₁-C₆alkylsulfonyl, arylthio, arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, amino, mono- or di-C₁-C₆alkylamino, mono- or diarylamino, mono- or diheteroarylamino, N-alkyl-Narylamino, N-alkyl-N-heteroarylamino, N-aryl-N-heteroarylamino, aryl-C₁- C_6 -alkylamino, carboxylic acid, carboxamide, mono- or di- C_1 - C_6 alkylcarboxamide, mono- or diarylcarboxamide, mono- or diheteroarylcarboxamide, N-alkyl-N-arylcarboxamide, N-alkyl-Nheteroarylcarboxamide, N-aryl-N-heteroarylcarboxamide, sulfonic acid, sulfonamide, mono- or di-C₁-C₆-alkylsulfonamide, mono- or diarylsulfonamide, mono- or diheteroarylsulfonamide, N-alkyl-Narylsulfonamide, N-alkyl-N-heteroarylsulfonamide, N-aryl-Nheteroarylsulfonamide, urea; mono- di- or tri-substituted urea, wherein the substitutent(s) is selected from the group consisting of C₁-C₆-alkyl, aryl, heteroaryl; O-alkylurethane, O-arylurethane, and O-heteroarylurethane; and wherein R⁹, R¹⁰, and R¹³ are independently selected from the group consisting of hydrogen, linear, branched, or cyclic C₁-C₆-alkyl, alkenyl, or alkynyl; mono-or di- C_1 – C_6 alkylamino, mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl, -(CH_2)₁₋₆- OR^{11} , -(CH_2)₁₋₆- SR^{11} , -(CH_2)₁₋₆-S(=O)- CH_2 - R^{11} , -(CH_2)₁₋₆- R^{11} , -(CH_2)₁₋₆-C(=O)-C(=

 R^{11} is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, alkenyl, or alkynyl; mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl; and

 R^{12} is selected from the group consisting of hydroxy, C_1 - C_6 -alkyloxy, aryloxy, heteroaryloxy, thio, C_1 - C_6 -alkylthio, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -alkylsulfonyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, amino, mono- or di- C_1 - C_6 -alkylamino, mono- or diarylamino, mono- or diheteroarylamino, N-alkyl-N-arylamino, N-alkyl-N-heteroarylamino, N-aryl-N-heteroarylamino, aryl- C_1 - C_6 -alkylamino, carboxylic acid, carboxamide, mono- or di- C_1 - C_6 -alkylamino, or diarylcarboxamide, mono- or diheteroarylcarboxamide, N-alkyl-N-arylcarboxamide, N-alkyl-N-heteroarylcarboxamide, sulfonic acid, sulfonamide, mono- or di- C_1 - C_6 -alkylsulfonamide, mono- or diarylsulfonamide, mono- or diheteroarylsulfonamide, N-alkyl-N-arylsulfonamide, N-alkyl-N-heteroarylsulfonamide, N-aryl-N-heteroarylsulfonamide, N-alkyl-N-heteroarylsulfonamide, N-aryl-N-heteroarylsulfonamide, urea; mono- di- or tri-substituted urea, wherein the

substitutent(s) is selected from the group consisting of C₁-C₆-alkyl, aryl, heteroaryl; O-alkylurethane, O-arylurethane, and O-heteroarylurethane; R¹⁴ is selected from the group consisting of hydrogen, linear, branched, or cyclic C₁-C₆-alkyl, alkenyl, or alkynyl; mono-or di- C₁-C₆ alkylamino, mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl-C₁-C₆-alkyl, mono- or bicyclic heteroaryl-C₁-C₆-alkyl, -S(=O)₂-(CH₂)₁₋₆-R¹¹, -C(=O)R¹¹, -S(=O)₂-(CH₂)₂₋₆R¹², and -C(=O)-(CH₂)₁₋₆-R¹²; wherein R¹¹ and R¹² are as defined above;

R¹⁵ and R¹⁶ are selected from the group listed above for R⁹, R¹⁰, and R¹³, and are further selected from the group consisting of hydroxy, C₁-C₆-alkyloxy, aryloxy, heteroaryloxy, thio, C₁-C₆-alkylthio, C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, arylthio, arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, amino, mono- or di-C₁-C₆-alkylamino, mono- or diarylamino, mono- or diheteroarylamino, N-alkyl-N-arylamino, N-alkyl-N-heteroarylamino, Naryl-N-heteroarylamino, aryl-C₁-C₆-alkylamino, carboxylic acid, carboxamide, mono- or di-C₁-C₆-alkylcarboxamide, mono- or diarylcarboxamide, mono- or diheteroarylcarboxamide, N-alkyl-N-arylcarboxamide, N-alkyl-Nheteroarylcarboxamide, N-aryl-N-heteroarylcarboxamide, sulfonic acid, sulfonamide, mono- or di-C₁-C₆-alkylsulfonamide, mono- or diarylsulfonamide, mono- or diheteroarylsulfonamide, N-alkyl-N-arylsulfonamide, N-alkyl-Nheteroarylsulfonamide, N-aryl-N-heteroarylsulfonamide, urea; mono- di- or trisubstituted urea, wherein the substitutent(s) is selected from the group consisting of C_1 - C_6 -alkyl, aryl, heteroaryl; O-alkylurethane, O-arylurethane, and Oheteroarylurethane, provided that R¹⁵ and R¹⁶ are not simultaneously hydrogen; and

each "Y" is independently variable and is a single bond or a reverse-turn moiety; and

each "A" is independently selected from the group consisting of hydrogen, hydroxy, and an amino-terminus protecting group, and "A' " is selected from the group consisting of hydroxy and a carboxy-terminus protecting group; and

each "a," "c," and "d" is an independently variable positive integer, and wherein

"a" + "c" > 3; and or

salts thereof.

- 5. (CANCELED)
- 6. (CURRENTLY AMENDED) An isolated, unnatural polypeptide compound of formula:

$$A - \begin{bmatrix} X_a - Y - Z_c - \end{bmatrix}_d A'$$

wherein:

each X and each Z is independently variable and is selected from the group consisting of α -amino acid residues, β -amino acid residues, and γ -amino acid residues, provided that at least one X or Z is an α -amino acid residue and at least another two of X or Z comprise two cyclically-constrained residues, the two cyclically-constrained residues comprising cyclically-constrained β -amino acid residues or cyclically-constrained γ -amino acid residues, or one cyclically-constrained β -amino acid residue and one cyclically-constrained γ -amino acid residue; and

wherein the cyclically-constrained β -amino acid residues are selected from the group consisting of:

wherein V and W are combined, together with the carbon atoms to which they are bonded, and independently define a substituted or unsubstituted, monocyclic or bicyclic C_3 - C_{10} cycloalkyl, cycloalkenyl or heterocyclic ring having one or more N, O or S atom(s) as the heteroatom(s);

the substituents on carbon atoms of the rings being independently selected from the group consisting of linear, branched, or cyclic C_1 - C_6 -alkyl, alkenyl, alkynyl; mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl, and the substituents listed above for V and W when V and W are not combined;

the substituents on nitrogen heteroatoms of the rings being independently selected from the group consisting of hydrogen, monocyclic or bicyclic C₁-C₁₀-alkyl, alkenyl, or alkynyl; mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl-C₁-

 C_6 -alkyl, mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl, $-S(=O)_2$ - R^{17} , -C(=O)- R^{17} , $-S(=O)_2$ - $(CH_2)_{n+1}$ - R^{18} , and -C(=O)- $(CH_2)_n$ - R^{18} , where n=1 to 6;

wherein R^{17} is independently selected from the group consisting of hydrogen, monocyclic or bicyclic C_1 - C_{10} -alkyl, alkenyl, or alkynyl; monoor bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl; and

wherein R¹⁸ is independently selected from the group consisting of hydroxy, linear, branched, or cyclic C₁-C₆-alkyl, alkenyl, or alkynyl; monoor bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl-C₁-C₆-alkyl; mono- or bicyclic heteroaryl-C₁-C₆-alkyl; C₁-C₆-alkyloxy, aryloxy, heteroaryloxy, thio, C₁-C₆-alkylthio, C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, arylthio, arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, amino, mono- or di-C₁-C₆-alkylamino, mono- or diarylamino, mono- or diheteroarylamino, N-alkyl-N-arylamino, N-alkyl-Nheteroarylamino, N-aryl-N-heteroarylamino, aryl- C_1 - C_6 -alkylamino, carboxylic acid, carboxamide, mono- or di-C₁-C₆-alkylcarboxamide, monoor diarylcarboxamide, mono- or diheteroarylcarboxamide, N-alkyl-Narylcarboxamide, N-alkyl-N-heteroarylcarboxamide, N-aryl-Nheteroarylcarboxamide, sulfonic acid, sulfonamide, mono- or di-C₁-C₆alkylsulfonamide, mono- or diarylsulfonamide, mono- or diheteroarylsulfonamide, N-alkyl-N-arylsulfonamide, N-alkyl-Nheteroarylsulfonamide, N-aryl-N-heteroarylsulfonamide, urea; mono- di- or tri-substituted urea, wherein the substitutent(s) is selected from the group consisting of C₁-C₆-alkyl, aryl, heteroaryl; O-alkylurethane, O-arylurethane, and O-heteroarylurethane; and

wherein R^5 and R^6 are independently selected from the group consisting of hydrogen, hydroxy, linear, branched, or cyclic C_1 - C_{16} -alkyl, alkenyl, or alkynyl; mono-or

di- C_1 - C_{16} alkylamino; mono- or bicyclic aryl; mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_{16} -alkyl; mono- or bicyclic heteroaryl- C_1 - C_{16} -alkyl; -(CH_2)₀₋₆- OR^7 , -(CH_2)₀₋₆- SR^7 , -(CH_2)₀₋₆-S(=O)- CH_2 - R^7 , -(CH_2)₀₋₆- NR^7R^7 , -(CH_2)₀₋₆- $NHC(=O)R^7$, -(CH_2)₀₋₆- $NHS(=O)_2$ - CH_2 - R^7 , -(CH_2)₀₋₆-C(=O)-OH, -(CH_2)₀₋₆-C(=O)- OR^7 , -(CH_2)₀₋₆-C(=O)- NH_2 , -(CH_2)₀₋₆-C(=O)- $C(E_2$)₀₋₆- $C(E_2$)₀₋₆- $E(E_2$)₀₋₆- $E(E_2)$ ₀₋₆- $E(E_2$)₀₋₆- $E(E_2)$ ₀₋₆- $E(E_2)$ ₀₋

 R^7 is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, alkenyl, or alkynyl; mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl; and

 R^8 is selected from the group consisting of hydroxy, C_1 - C_6 -alkyloxy, aryloxy, heteroaryloxy, thio, C_1 - C_6 -alkylthio, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -alkylsulfonyl, arylthio, arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, amino, mono- or di- C_1 - C_6 -alkylamino, mono- or diarylamino, mono- or diheteroarylamino, N-alkyl-N-arylamino, N-alkyl-N-heteroarylamino, N-aryl-N-heteroarylamino, aryl- C_1 - C_6 -alkylamino, carboxylic acid, carboxamide, mono- or di- C_1 - C_6 -alkylamide, mono- or diheteroarylcarboxamide, N-alkyl-N-arylcarboxamide, N-alkyl-N-heteroarylcarboxamide, N-alkyl-N-heteroarylcarboxamide, sulfonic acid, sulfonamide, mono- or di- C_1 - C_6 -alkylsulfonamide, mono- or diarylsulfonamide, mono- or diheteroarylsulfonamide, N-alkyl-N-heteroarylsulfonamide, N-aryl-N-heteroarylsulfonamide, or tri-substituted urea, wherein the substitutent(s) is selected from the group consisting of C_1 - C_6 -alkyl, aryl, heteroaryl; O-alkylurethane, O-arylurethane, and O-heteroarylurethane;

wherein R^9 , R^{10} , and R^{13} are independently selected from the group consisting of hydrogen, linear, branched, or cyclic C_1 - C_6 -alkyl, alkenyl, or alkynyl; mono-or di- C_1 - C_6 alkylamino, mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5

heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl, -(CH₂)₁₋₆-OR¹¹, -(CH₂)₁₋₆-SR¹¹, -(CH₂)₁₋₆-S(=O)-CH₂-R¹¹, -(CH₂)₁₋₆-S(=O)₂-CH₂-R¹¹, -(CH₂)₁₋₆-NR¹¹R¹¹, -(CH₂)₁₋₆-NHC(=O)R¹¹, -(CH₂)₁₋₆-NHS(=O)₂-CH₂-R¹¹, -(CH₂)₀₋₆-C(=O)-OH, -(CH₂)₀₋₆-C(=O)-OR¹¹, -(CH₂)₀₋₆-C(=O)-NH₂, -(CH₂)₀₋₆-C(=O)-NHR¹¹, -(CH₂)₀₋₆-C(=O)-N(R¹¹)₂, -(CH₂)₁₋₆-O-(CH₂)₂₋₆-R¹², -(CH₂)₁₋₆-S-(CH₂)₂₋₆-R¹², -(CH₂)₁₋₆-S(=O)₂-(CH₂)₂₋₆-R¹², -(CH₂)₁₋₆-NH-(CH₂)₂₋₆-R¹², -(CH₂)₁₋₆-N-{(CH₂)₂₋₆-R¹²}₂, -(CH₂)₁₋₆-NHC(=O)-(CH₂)₂₋₆-R¹², and -(CH₂)₁₋₆-NHS(=O)₂-(CH₂)₂₋₆-R¹²; wherein

 R^{11} is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, alkenyl, or alkynyl; mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl; and

 R^{12} is selected from the group consisting of hydroxy, $C_1\text{-}C_6\text{-}alkyloxy$, aryloxy, heteroaryloxy, thio, $C_1\text{-}C_6\text{-}alkylthio}$, $C_1\text{-}C_6\text{-}alkylsulfinyl}$, $C_1\text{-}C_6\text{-}alkylsulfonyl}$, arylthio, arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, amino, mono- or di- $C_1\text{-}C_6\text{-}alkylamino}$, mono- or diarylamino, N-alkyl-N-arylamino, N-alkyl-N-heteroarylamino, N-alkyl-N-heteroarylamino, aryl- $C_1\text{-}C_6\text{-}alkylamino}$, carboxylic acid, carboxamide, mono- or di- $C_1\text{-}C_6\text{-}alkylcarboxamide}$, mono- or diarylcarboxamide, mono- or diheteroarylcarboxamide, N-alkyl-N-arylcarboxamide, N-alkyl-N-heteroarylcarboxamide, N-aryl-N-heteroarylcarboxamide, sulfonic acid, sulfonamide, mono- or di- $C_1\text{-}C_6\text{-}alkylsulfonamide}$, mono- or diarylsulfonamide, N-alkyl-N-heteroarylsulfonamide, N-alkyl-N-arylsulfonamide, N-alkyl-N-heteroarylsulfonamide, N-aryl-N-heteroarylsulfonamide, urea; mono- di- or trisubstituted urea, wherein the substitutent(s) is selected from the group consisting of $C_1\text{-}C_6\text{-}alkyl$, aryl, heteroaryl; O-alkylurethane, O-arylurethane, and O-heteroarylurethane;

 R^{14} is selected from the group consisting of hydrogen, linear, branched, or cyclic C_1 - C_6 -alkyl, alkenyl, or alkynyl; mono-or di- C_1 - C_6 alkylamino, mono- or bicyclic aryl,

mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl, - $S(=O)_2$ -(CH_2)₁₋₆- R^{11} , - $C(=O)R^{11}$, - $S(=O)_2$ -(CH_2)₂₋₆ R^{12} , and -C(=O)-(CH_2)₁₋₆- R^{12} ; wherein R^{11} and R^{12} are as defined above;

 R^{15} and R^{16} are selected from the group listed above for R^9 , R^{10} , and R^{13} , and are further selected from the group consisting of hydroxy, C_1 - C_6 -alkyloxy, aryloxy, heteroaryloxy, thio, C_1 - C_6 -alkylthio, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -alkylsulfonyl, arylthio, arylsulfinyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, amino, mono- or di- C_1 - C_6 -alkylamino, mono- or diarylamino, mono- or diheteroarylamino, N-alkyl-N-arylamino, N-alkyl-N-heteroarylamino, N-aryl-N-heteroarylamino, aryl- C_1 - C_6 -alkylamino, carboxylic acid, carboxamide, mono- or di- C_1 - C_6 -alkylcarboxamide, mono- or diarylcarboxamide, mono- or diheteroarylcarboxamide, N-alkyl-N-arylcarboxamide, N-alkyl-N-heteroarylcarboxamide, N-alkyl-N-heteroarylsulfonamide, mono- or diheteroarylsulfonamide, mono- or diarylsulfonamide, mono- or diheteroarylsulfonamide, N-alkyl-N-heteroarylsulfonamide, N-aryl-N-heteroarylsulfonamide, urea; mono- di- or tri-substituted urea, wherein the substitutent(s) is selected from the group consisting of C_1 - C_6 -alkyl, aryl, heteroaryl; O-alkylurethane, O-arylurethane, and O-heteroarylurethane, provided that R^{15} and R^{16} are not simultaneously hydrogen; and

wherein the cyclically-constrained γ -amino acid residues are selected from the group consisting of:

$$\begin{array}{c|c} \hline \\ R \\ \hline \\ H \\ \hline \\ O \\ \end{array} \begin{array}{c|c} \hline \\ R \\ \hline \\ H \\ \hline \\ O \\ \end{array} \begin{array}{c|c} \hline \\ R \\ \hline \\ H \\ \hline \\ O \\ \end{array} \begin{array}{c|c} \hline \\ R \\ \hline \\ H \\ \hline \\ O \\ \end{array}$$

wherein R, together with the carbons to which it is attached, and further together with the β -position carbon in the γ -amino acid backbone where appropriate, independently

defines a substituted or unsubstituted, monocyclic or bicyclic C_3 to C_{10} cycloalkyl, cycloalkenyl, or heterocycle moiety, the heterocycle moiety having 1, 2, or 3 heteroatoms selected from the group consisting of N, S, and O; and

each "Y" is independently variable and is a single bond or a reverse-turn moiety; and

each "A" is independently selected from the group consisting of hydrogen, hydroxy, and an amino-terminus protecting group, and "A' " is selected from the group consisting of hydroxy and a carboxy-terminus protecting group; and

each "a," "c," and "d" is an independently variable positive integer, and wherein
"a" + "c" > 3; and or
salts thereof.

7. (CANCELED)

- 8. (ORIGINAL) The compound of Claim 6, wherein at least one of X or Z is a cyclically-constrained β -amino acid residue wherein V and W, and the carbon atoms to which they are bonded, define a substituted or unsubstituted C_4 to C_6 cycloalkyl, cycloalkenyl, or heterocyclic ring having one nitrogen atom as the sole heteratom.
- 9. (ORIGINAL) The compound of Claim 6, wherein at least one of X or Z is a cyclically-constrained β -amino acid residue wherein V and W, and the carbon atoms to which they are bonded, define a substituted or unsubstituted cyclopentyl, cyclohexyl, pyrrolidinyl, or piperdinyl ring.

10. (CANCELED)

11. (WITHDRAWN and CURRENTLY AMENDED) A method of probing, disrupting, or mimicking binding interactions between two protein molecules or fragments thereof, the method comprising:

in an in vivo, in vitro, or ex vivo reaction between the two proteins,

- (a) introducing to the reaction an unnatural polypeptide compound according to Claim 3 Claim 4; and then
- (b) quantifying any effect of the added compound from step (a) on thermodynamic or kinetic parameters of the binding interaction between the two protein molecules or fragments thereof.

12-14. (CANCELED)