微分方程式

1. 変数分離形

独立変数 x とその関数 y(x), 導関数 y'=y'(x) に関する等式

$$F(x, y, y') = 0$$

が恒等的になりたつとき, y=y(x)を微分方程式F(x,y,y')=0

を微分方程式という。多くの場合

$$y' = F(x, y)$$

とy' について解いた形を用いる.

例.
$$y' = ky$$

微分方程式 F(x, y, y') = 0 に対して y = y(x) を代入したとき

$$F(x, y(x), y'(x)) = 0$$

の解という 例. $y=e^{kx}$ は y'=ky の解

$$ky$$
 の解

一般解・初期値問題 -2-微分方程式の解は一般には任意定数を含む解を持つ. そのような 解を一般解という.

例. Cを任意定数として $y = Ce^{kx}$ は y' = ky の一般解

一般解に対して初期条件

$$y(a) = b$$

与えると、解が(一般には)一意に定まる. 初期条件を満たす解を求める問題を初期値問題という

例. 初期値問題 y(0) = 2 を満たす y' = ky の解は $y = 2e^{kx}$

k を定数, C を任意定数とする. 関数 $y=Ce^{kx}$ は微分方程式

$$y' - ky = 0$$

の一般解であることを確かめよ. また初期値問題

$$y(0) = y_0, \quad y_0 = \mathbf{z} \mathfrak{Z}$$

を満たす解を求めよ.

解説 $y = Ce^{kx}$ とすると

$$y' - ky = Cke^{kx} - kCe^{kx} = 0.$$

となるので $y = Ce^{kx}$ はy' - ky = 0の一般解.

初期条件を考えると $y(0)=C=y_0$ なので、初期値問題の解は

$$y = y_0 e^{kx}$$

 $y = Ce^{kx}$ 以外の解は存在しない.

なぜならば y = y(x) が y' - ky = 0 の解とすると両辺に e^{-kx} をか けると

$$y'(x)e^{-kx} - ky(x)e^{-kx} = \frac{d}{dx}[y(x)e^{-kx}] = 0$$

となるので、微分して $\mathbf{0}$ になる関数は定数 *)だから、この定数をC

とおくと $y(x)e^{-kx} = C$. したがって

$$y(x) = Ce^{kx}$$

*) 平均値の定理を用いる

例 [人口増加の方程式] -5- 「人口の増える速さはそのときの人口に比例する」とすると,人口をp(t)とすると

$$\frac{dp}{dt} = kp$$
 となる(k は比例定数). これをとくと

 $p(t) = p_0 e^{kt}$

と指数関数的に爆発的に人口が増える

$$(x - C)^2 + y^2 = C^2$$

で定まる x の関数 y は微分方程式

$$2xyy' + x^2 - y^2 = 0$$

の一般解になる. さらに初期条件

$$y(1) = -3$$

を満たす解を求めよ.

解説 $(x-C)^2+y(x)^2=C^2$ の両辺をxで微分すると -7-2x-2C+2yy'=0. となるのでxをかけて $2x^2-2Cx+2xyy'=0$. 他方で元の式は $x^2-2xC+y^2=0$ なので-2xCの項を消去して

$$x^2 - y^2 + 2xyy' = 0.$$

初期条件 y(1) = -3 を考えると $(-1 - C)^2 + (-3)^2 = C^2$ より 1 - 2C + 9 = 0. よって C = 5. したがって

$$(x-5)^2+y^2=5^2$$

となり $y=\pm\sqrt{5^2-(x-5)^2}$ となるが, $y(1)=-3$ なので $y=-\sqrt{10x-x^2}$

 $y = -\sqrt{10x - x^2}$

- を確かめよ. また初期値問題 y(1) = -1 を満たす解を求めよ. 2. C を任意定数とする. $(x+y)^3 = C(x-y)$ で定まる x の関数
- =y(x,C)y は微分方程式
 - (2x-y)y' = -x + 2y
- の一般解になることを確かめよ. さらに初期条件 y(1) = 0 を満た す解を求めよ
- 3. 関数 $y = \frac{1}{C-x}$ は微分方程式 $y' y^2 = 0$ の一般解であることを確かめよ. さらに初期条件 y(0) = 2 を満たす解を求めよ.

正規形 $(y' = ... \circ N)$ の 1 階常微分方程式 y' = F(x, y)

変数分離形の常微分方程式とは

$$\frac{dy}{dx} = f(x)g(y)$$

の形のものをいう. このとき次のように変数を分離して

$$\frac{dy}{g(y)} = f(x)dx$$

一般解は

$$\int \frac{dy}{g(y)} = \int f(x) \, dx + C, \quad (C : \mathbf{\Xi} \mathbf{X})$$

で与えられる.

-10-

$$\frac{dy}{dx} = f(x)g(y)$$

に対して、まず、
$$g(y) \neq 0$$
 とする。このとき
$$\frac{1}{g(y)}y' = f(x)$$

となるが, y の関数

$$\int \frac{1}{g(y)} y' \, dy$$
 と $y = y(x)$ と を 合成 した x の 関数 を x で 微分 する と
$$\frac{d}{dx} \int \frac{1}{g(y)} \, dy = \frac{1}{g(y)} y'$$

となる.

 $\frac{d}{dx} \int \frac{1}{g(y)} dy = \frac{1}{g(y)} y' = f(x)$

となる. この式をxで積分して

$$\int \frac{dy}{g(y)} = \int f(x) \, dx + C, \quad (C: 定数)$$

☆ 最後の式を得るためだけなら変数を分離して

$$\frac{dy}{g(y)} = f(x)dx$$

と書き直して、積分するとよい.

$$\Leftrightarrow$$
 $g(y_0)=0$ となるときには $y\equiv y_0$ (定数関数) が解になる.

-12-

例 1

解説
$$f(x) = 1, g(y) = y$$
 はじめに, $y \neq 0$ としよう

$$(y) = y^2$$

解説 $f(x) = 1, g(y) = y^2$ とみて変数分離形である.

微分したものなので

したがって

はじめに, $y \neq 0$ としよう.

 $\frac{1}{u^2}y' = 1$

となるが左辺はy の関数 $\int \frac{1}{y^2} dy$ と y = y(x) との合成関数をxで

 $\frac{d}{dx} \int \frac{1}{u^2} dy = 1.$

 $-\frac{1}{y} = x - C$

$$y = \frac{1}{x - C}$$

y=0 のときは $y\equiv 0$ (定数関数) は解になっている. したがって答えは

$$y = \frac{1}{x - C}, \quad 0$$

-14-

f(x) = 2x, g(y) = y とみて変数分離形である.

はじめに, $y \neq 0$ としよう.

例 2

$$\frac{y'}{y} = 2x$$

となるが左辺はy の関数 $\int \frac{1}{y} dy = \log|y|$ と y = y(x) との合成関 数をxで微分したものなので

 $\frac{d}{dx}\int \frac{1}{y}dy = \frac{d}{dx}\log|y| = 2x.$

したがって $\log |y| = x^2 + C_1$. y について解いて

 $y = \pm e^{C_1 + x^2}$

よって, $C=\pm e^{C_1}$ と置き直して y=0 のときは $y\equiv 0$ (定数関数) は解になっており, C=0 になっている. したがって答えは

$$y = Ce^{x^2}$$
, C : 任意定数

-16-

解説 はじめに, $y \neq 0,1$ としよう.

$$\frac{dy}{dx} = y(1-y)$$

を形式的に書き直して

例3

$$\frac{dy}{y(1-y)} = dx$$

として両辺を積分する. 部分分数分解により $1 - A \perp B - (B-A)$

$$\frac{1}{y(1-y)} = \frac{A}{y} + \frac{B}{1-y} = \frac{(B-A)y + A}{y(1-y)}$$

とおくとA=1,B-A=0 より, A=B=1. したがって

$$\int \left(\frac{1}{y} + \frac{1}{1-y}\right) dy = \int dx$$

-17-

 $\log \left| \frac{y}{1-y} \right| = x + C_1$

したがって
$$\frac{y}{1-y} = \pm e^{C_1 + x}$$

よって,
$$C=\pm e^{C_1}$$
 と置き直して $y=(1-y)Ce^x$. これより $y=\frac{Ce^x}{1+Ce^x}$.

y = 0,1 のときは $y \equiv 0,1$ (定数関数) は解になっており, y = 0のときは C = 0 の場合にになっているが, y = 1 は含まれない.

$$y = \frac{Ce^x}{1 + Ce^x}, \quad (C: 任意定数); \quad 1$$

- 1 次の微分方程式の一般解を求めよ
- (1) yy' + x = 0 (2) $y^3 + x^6y' = 0$
- (3) $y' \sin x = y \cos x$ (4) $xy(1+x^2)y' = 1+y^2$
- (5) $x^{-2}y' + y^2 + 1 = 0$ (6) $y' = e^{x+y} + 2xe^{x^2+y}$
- (7) $xy' + 1 = y^2$ (8) $(1 x^2)y' + (1 y^2) = 0$
- 2. 次の初期値問題を解け
- (1) $(x^2 + 1)yy' = 1$, y(0) = -3
- (2) $y' = y^{3/2}, \quad y(0) = 1$
- (3) $y' = 2e^x y^3$, y(0) = 1/2
- (4) $y'x \log x = y$, $y(2) = \log 4$

(3) $y = C \sin x$ (4) $y^2 = \frac{Cx^2 - 1}{r^2 + 1}$

(7) $y = \frac{1 + Cx^2}{1 - Cx^2}$ (8) $y = \frac{x - c}{cx - 1}$

(3) $y = \frac{1}{\sqrt{8 - 4e^x}}$ (4) $y = 2 \log x$

2 演習問題の略解
$$1.(1) y = \pm \sqrt{C - x^2} \quad (2) y = \pm \frac{x^{5/2}}{\sqrt{Cx^5 - \frac{2}{5}}}$$

(5) $y = \tan(C - x^3/3)$ (6) $y = -\log(C - e^{x^2} - e^x)$

-19-

2. (1) $y = -\sqrt{2 \tan^{-1} x + 9}$ (2) $y = \frac{4}{(x-2)^2}$