Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1-3 (Canceled)

4. (Currently Amended) A JAVATM virtual machine residing on a computing apparatus and operating in a JAVATM computing environment, said JAVATM virtual machine capable of executing a Bytecode instruction to determine a string representation associated with a JAVATM object, thereby determining said string representation of said JAVATM object without invoking a JAVATM "to_string" method, wherein said virtual machine is capable of performing the following operations when said Bytecode instruction is executed in order to determine said string representation of a said JAVATM object:

pushing a reference to said JAVATM object on an execution stack; popping <u>a said</u> reference to said JAVATM object from <u>said an</u> execution stack;

accessing a field of said JAVATM object by using said reference to said JAVATM object in order to obtain data representing said field:

determining a string representation of a for said field associated with of said JAVATM object by after said accessing of said field of said JAVATM object by using said reference to said JAVATM object stored on said execution stack; and

pushing on said execution stack a reference to said string representation after said determining of said string representation of said field on top of said execution stack.

5-6. (Canceled)

- 7. (Currently Amended) A JAVATM virtual machine as recited in claim $\underline{4}$ [[5]], wherein said JAVATM virtual machine operates in an embedded system.
- 8. (Currently Amended) In a JAVATM computing environment, a method of retrieving by a virtual machine a string representation for a JAVATM object, said virtual machine residing on a computing apparatus, said method comprising:

receiving a JAVATM Bytecode instruction in a stream of JAVATM
Bytecodes suitable for execution by a virtual machine operating in said JAVATM
computing environment, wherein said JAVATM Bytecode instruction is
designated to determine said string representation for said JAVATM object;

executing said JAVATM Bytecode instruction;

pushing a reference to said JAVATM object on an execution stack when said JAVATM Bytecode instruction is executed;

executing said JAVA Bytecode instruction;

popping said reference to said JAVATM object from said execution stack;

<u>accessing a field of said JAVATM object by using said reference to said</u>

<u>JAVATM object in order to obtain data representing said field;</u>

determining a string representation of a for said field associated with of said JAVATM object by after said accessing of said field of said JAVATM object by using said reference to said JAVATM object stored on said execution stack;

pushing on said execution stack a reference to said string representation after said determining of said string representation, of said field on top of said execution stack after said string representation has been determined; and

wherein said JAVATM Bytecode instruction operates to determine said string representation associated with said JAVATM object, thereby allowing said string representation to be determined without invoking a JAVATM method.

9-10. (Cancelled)

- 11. (Previously Presented) A method as recited in claim 8, wherein said pushing of a reference to said JAVATM object is performed by execution of a JAVATM Aload execution.
- 12. (Previously Presented) A method as recited in claim 11, wherein said method is performed by a virtual machine.
- 13. (Previously Presented) A method as recited in claim 12, wherein said virtual machine is operating in an embedded system.
- 14. (Currently Amended) A computer readable medium including computer program code for retrieving a string representation for a JAVATM object, said computer readable medium comprising:

computer program code for receiving a JAVATM Bytecode instruction in a stream of JAVATM Bytecodes suitable for execution by a virtual machine operating in a JAVATM computing environment, and

wherein said JAVATM Bytecode instruction operates to determine said string representation associated with said JAVATM object by using a reference to said JAVATM object stored on an execution stack, thereby allowing said string representation to be determined without invoking a JAVATM method.

15. (Previously Presented) A computer readable medium as recited in claim 14, wherein said computer readable medium further comprises:

computer program code for popping a reference to a $\mathsf{JAVA}^\mathsf{TM}$ object from an execution stack;

computer program code for determining a string representation of a field associated with said $JAVA^{TM}$ object; and

computer program code for pushing a reference to said string representation of said field on top of said execution stack.

16. (Canceled)

- 17. (Previously Presented) A computer readable medium as recited in claim 15, wherein said computer program code comprises a JAVA[™] Aload instruction that when executed performs the pushing of said reference.
- 18. (Previously Presented) A computer readable medium as recited in claim 17, wherein said computer readable medium is read by a JAVA[™] virtual machine.
- 19. (Previously Presented) A computer readable medium as recited in claim 18, wherein said virtual machine is operating in an embedded system.
- 20. (Currently Amended) A computer system for retrieving a string representation for a JAVATM object in a JAVATM computing environment, said computer system capable of operating to:

receive a JAVATM Bytecode instruction in a stream of JAVATM Bytecodes suitable for execution by a virtual machine operating in said JAVATM computing environment, wherein said JAVATM Bytecode instruction operates to determine said string representation associated with said JAVATM object, thereby allowing said string representation to be determined without invoking a JAVATM method:

executing said JAVATM-Bytecode instruction;

pushing push a reference to said JAVATM object on an execution stack

when said JAVATM Bytecode instruction is executed;

execute said JAVA Bytecode instruction;

popping pop said reference to said JAVA TM object from said execution stack;

access a field associated with said JAVATM object by using said reference; determining determine a string representation of [[a]] said field associated with said JAVATM object by accessing said field JAVATM object using said reference; and

push a reference to said string representation of said field on top of said execution stack.

- 21. (Previously Presented) A computer system as recited in claim 20, wherein said pushing of a reference to said JAVATM object is performed by execution of a JAVATM Aload bytecode.
- 22. (Previously Presented) A computer system as recited in claim 21, wherein said virtual machine operates in an embedded system.
- 23. (New) A virtual machine as recited in claim 4, wherein said reference to said JAVATM object is stored on said execution stack by executing another Bytecode instruction.
- 24. (New) A virtual machine as recited in claim 23, wherein said other Bytecode instruction is a JAVATM Aload bytecode instruction.