Computer Networks

EDA387/DIT663

Fault-tolerant Algorithms for Computer Networks

Introduction and Leader Election (Ch.2)

http://www.ted.com/talks/danny_hillis_the_internet_co uld_crash_we_need_a_plan_b.html

Self-* Methods

- Computer systems can be complex due to numerous factors including scale, decentralization, heterogeneity, mobility, dynamism, bugs and failures
- Deploying, operating and maintaining such systems can be not only very difficult, but also very costly
- A flurry of recent activity has been directed at this problem whereby future computer systems are envisioned to be self-configuring, self-organizing, self-managing and self-repairing, aka, self-* properties

Self-* Methods

- Fault-tolerant computer systems that are self-stabilizing can recover after the occurrence of transient faults
 - which can cause an arbitrary corruption of the system state (so long as the program's code is still intact)
- This design criteria liberate the application designer from dealing with low-level complications, and provide an important level of abstraction
- Consequently, the application design can easily focus on its task and knowledge-driven aspects

Goal

- We would like to understand how to design selfstabilizing network protocols
- At the end of these lectures and after the home assignments you should be able to:
 - Define network tasks
 - leader election, token circulation, spanning tree construction (BFS) and network topology update (routing)
 - Propose methods for solving such tasks
 - with an emphasis on self-stabilizing methods
 - Argue about the correctness of their proposals

Today

- Task definition
- Solutions for Internet-like networks
 - How to describe such solutions?
 - How to argue about their correctness?
- Other type of networks
 - When can we not solve a task?

What is a System of Computer Networks?

- A network system consists of multiple autonomous computers that communicate through local networks
 - Communication networks
 - Multiprocessor computers
 - Multitasking single processor
- The computers interact with each other in order to achieve a common goal
 - Namely, the program task
- A Distributed System is modeled by a set of *n* state machines called processors that communicate with each other

The Network Model

Processor can be a computer, a router, CPU, a thread, process, etc.

Denote:

- p_i the ith processor in the set of the processors P
- neighbor of P_i a processor that can communicate with it directly

Network Representation

How to represent the network?

Network Representation

How to represent the network?

Ways of communication

- message passing fits communication networks and all the rest
- shared memory fits geographically close systems (our focus today)

Shared Memory

- Processors communicate by the use of shared communication registers
- The configuration will be denoted by $\mathbf{c} = \langle s_1, s_2, \dots, s_n, r_{1,2}, r_{1,3}, \dots r_{i,j}, \dots r_{n,n-1} \rangle$ where $s_i = \text{State of } p_i$ $r_i = \text{Content of communication register I}$
- Sometime we write c_i and sometime c[i] --- they are the same

Computation Steps

In shared memory model ...

Synchronous Computation

- Every state transition of a process is due to communication-step execution
- O A step will be denoted by a
- $c_1 \stackrel{a}{\rightarrow} c_2$ denotes the fact that c_2 can be reached from c_1 by a single step a
- Step a is applicable to configuration c iff $\exists c' : c \xrightarrow{a} c'$.
- O Execution $E = \langle c_1, a_1, c_2, a_2, ... \rangle$: an alternating sequence such that $c_{i-1} \stackrel{a}{\rightarrow} c_i$ (i>1)
- A global clock pulse (pulse) triggers a simultaneous step of every processor in the system
 - Fits multiprocessor systems in which the processors are located close to one another
- The execution of a synchronous network is totally defined by c_1 , the first configuration in E
 - Therefore, we can write $E = \langle c_1, c_2, ... \rangle$

Synchronous Computation

- Need to designate a single processor as the organizer of some (other) task among several processors
 - Simplifies many tasks by providing a single point of decision
- Leader election: (eventually) in every configuration, there is exactly one processor in the network for which the property *Leader* holds
 - Before the task is begun, all network nodes are unaware which node will serve as the "Leader," or coordinator, of the task
 - After a leader election method has been to run, however, each node throughout the network recognizes a particular, unique node as the task leader

- The network nodes communicate among themselves in order to decide which of them will have the "Leader" property
- For that, the processors need some method in order to break the symmetry among them
- How can they do that?

- The network nodes communicate among themselves in order to decide which of them will have the "Leader" property
- For that, the processors need some method in order to break the symmetry among them
- How can they do that?
- Hint: if each node has unique identity, such as IP address, then the nodes can compare their identities, and decide that the processor with the highest identity is the leader

```
1 do forever

2 write id to r_i

3 for m := 1 to n do lr_m := read(r_m)

4 Leader := (id == maximum \{lr_m.id \mid 1 \le m \le n\})

5 (* if Leader == True then act_like_a_leader() *)
```

- Every processor:
 - starts by writing its unique id to its register (line 2)
 - reads the ids of its neighbors (line 3)
 - decides on the "Leader" property (line 4)

Arguing Correctness

- We need to convincingly demonstrate that some system properties and statements are necessarily true.
- The proof must demonstrate that a statement is true in all cases, without a single exception.
- The statement that is proved is often called a theorem, a lemma, or a claim.
- For example:

Lemma (**maximum**): Let A be a set of (unique) integers, which is totally ordered by \leq . There is a single (unique) maximal value, $maximum(A, \leq)$.

Proof Statement

• First list all of the proof assumptions before claiming that some properties hold within a finite time

- Assumptions:
 - All processors execute the same program
 - All processors have unique ids
 - The system is synchronous
 - All processors take their steps simultaneously
 - All processors start executing the program simultaneously in line 01
 - The network topology is of a fully connected graph
- Within one complete iteration of the leader election program,
 exactly one processor has the property "Leader"

Convergence of Leader Election

Lemma (start of lemma statement)

- Suppose that in a synchronous network, all processors have unique ids and that they all execute the Leader Election program.
 - Namely, all processors take their steps simultaneously and start executing the program simultaneously.

Leader Election Convergence

- Moreover, suppose that the network topology is of a fully connected graph.
- Within one complete iteration of the leader election program, exactly one processor has the property "Leader".
- Let $E=(c_0, c_1,...)$ be the system execution of the leader election program.
- Let c_{safe} be the first configuration after one complete iteration of the program, in which all processors execute lines 1 to 5.

Convergence of Leader Election

• In c_{safe} , exactly one processor has the property "Leader", which is the processor with the maximal id, p_{max} .

(end of lemma statement)

Remark: We later remove the assumption that all processors start in line 01

Proof: Suppose that all programs start from executing line 1. Since all processors start executing their programs simultaneously, we are going to show that c_{safe} is $c_{\text{n+1}}$, because n+1 steps guarantee one complete iteration.

By line 2 of the pseudo code, we have that in configuration c_1 , it holds that for any processor, p_i : $r_i = id$.

By line 3, we have that in configuration $c_{(1+n)}$, it holds that for any two processors, p_i and p_j , the sets $A_i = \{lr_{mi}.id \mid 1 \le m \le n\}$ and A_j are identical, i.e., $A_i = A_j$.

By the assumption that all processors have unique ids and the maximum lemma, we have that in configuration $c_{(n+1)}$ exactly one processor, p_{max} , has the property of being a leader. I.e., for any p_i in $P \setminus \{p_{max}\}$: Leader_i = false and Leader_{max} = true, where P is the set of all processors in the system.

(The symbol □ is used to mark the end of a proof.)

- Suppose there is no joint start in line 01?
 - Within (n+1) steps we are guaranteed that <u>all</u> processors, p_i , write their own id to their own register, r_i .
 - Once it happens, r_i 's value does not change.
 - Within (n+1) additional steps we are guaranteed that all processors, p_i , read the registers, r_j , of all of their neighbors, p_i .
 - Once it happens, lr_i 's value does not change.
- The proof is finished by the same arguments on A_i

- We have just proved that the leader election program convergence to a configuration in which it is safe to assume that we have exactly one leader.
- Actually, we can, and should, prove more.
- Lemma (Closure of Leader Election) Assume the same assumption as in the Convergence of Leader Election Lemma. Moreover, suppose that in E's starting configuration, c_0 , the processor with the maximal id, p_{max} is the only processor that has the property of being "Leader". In every configuration in E, p_{max} is the only processor that has the property "Leader".

Legal Behavior

A desired legal behavior is a set of legal executions denoted LE

legal execution

A self-stabilizing system can be started in any arbitrary configuration and will eventually exhibit a desired "legal" behavior

Legal Behavior of Leader Election

- LE_{leader} : In every configuration there is exactly one processor that has the property "Leader"
- Can we guaranteed that starting from arbitrary configuration, we reach a safe configuration with respect to LE_{leader} ?
- Is there a deterministic method for leader election in uniform systems in which all processors are identical?
 - all processors are running the same program, they have no unique id's, etc.

Legal Behavior of Leader Election

- Suppose there is such a method, then how can we deal with an execution E in a network of two processors and a starting configuration, $c[0] = \langle s_1, s_2, r_1, r_2 \rangle$, in which both p_1 and p_2 are in the same state, where $s_1 = s_2$ and $r_1 = r_2$
- Lets say that within *l* steps we reach a configuration in which the leader election task is achieved
 - one processor is a leader and the other one is not
 - $-s_1 = s_2$ and $r_1 = r_2$ do not hold

Legal Behavior of Leader Election

- Let $c[l_{last-same}]$ and $c[l_{first-different}]$ be the last, and respectively, the first be two consecutive configurations in E, such that $s_1 = s_2$ and $r_1 = r_2$ do, and respectively, do not hold
 - Consecutive configurations: $l_{first-different} = l_{last-same} + 1$
- The question is how a deterministic method can take a step that leads from $c[l_{last-same}]$ to $c[l_{first-lifterent}]$?

 - Same program

 - Same state

 - Same number of neighbors
 - No ids
 - Same program counter

Leader Election: Impossibility

Lemma (Impossibility of Leader Election in Anonymous Networks) Let us consider an anonymous, synchronous network that has a topology of a fully connected graph. No deterministic leader election method exists for this network

Proof: Lets assume, in a way of contradiction, that a deterministic leader election method, DLE, *does* exist and E is an execution of DLE that starts in configuration, $c[0] = \langle s_1, s_2, ..., s_i, s_j, ..., s_n, r_1, r_2, ..., r_i, r_j, ..., r_n \rangle$, where $s_i = s_j$ and $r_i = r_j$

Leader Election: Impossibility

DLE solves the leader election task by reaching a configuration in which one processor has a state that is different than all other processors, which is the leader

Therefore, in E there are two consecutive configurations $c[l_{last-same}]$ and $c[l_{first-different}]$ that are the last, and respectively, the first configurations in E for which $s_i = s_j$ and $r_i = r_j$ do, and respectively, do not hold, where $l_{first-different} = l_{last-same} + 1$

Leader Election: Impossibility

Therefore, DLE causes at least one processor to take a step from $c[l_{last-same}]$ to $c[l_{first-different}]$ that is different than the step of other processors between these two configurations

This is a contradiction, because by definition any deterministic algorithm implies that if $s_i = s_j$ and $r_i = r_j$ holds for all p_i and p_j in $c[l] = \langle s_1, s_2, ..., s_i, s_j, ..., s_n, r_1, r_2, ..., r_i, r_j, ..., r_n \rangle$, then both p_i and p_j take identical steps

П

Summary

- Presented the model of share memory
- Presented the self-stabilization design criteria
- Defined the leader election task
- Presented a solution and proved its correctness

Review Questions

1. Write the proof of the Closure for the Leader Election task