ChEn 3603 Homework #9

You can do the stage calculation by hand if you want to; my solutions will do this all using python.

Problem 1 (15 pts)

SHR 6.7 (Absorption of CO_2 from air). Note that you need to report x and y ultimately, not X and Y.

Problem 2 (10 pts)

Given the data in problem 1 and the same desired recovery of CO₂,

- 1. (2 pts) Determine the minimum value of L'/V' to achieve the desired separation.
- 2. (6 pts) If the solvent flow rate is twice the minimum, how many theoretical stages are required?
- 3. (2 pts) If each stage has an efficiency of 40%, how many actual trays are required?

Problem 3 (10 pts)

SHR 6.8 (Absorption of acetone from air).

For part (c), report mole fraction rather than concentration.

Problem 4 (12 pts)

SHR 6.32 (SHR 6.25 in third edition) – Absorption of SO₂ in a packed tower.

An SO_2 -air mixture is scrubbed with water in a packed tower at 20 ° C 20°C and 1 atm. Solute-free water enters the top at 1,000 lb/h and is well distributed over the packing. The liquor leaving contains 0.6 lb SO_2 per 100 lb of solute-free water. The partial pressure of SO_2 in the gas leaving is 23 torr. The *mole* ratio of water to air is 25. The necessary equilibrium data are tabulated below.

Solubility of SO2 in H2O at 20°C

lb SO ₂ 100 lb <i>H</i> ₂ O	p_{SO_2} (torr)
0.02	0.5
0.05	1.2
0.10	3.2
0.15	5.8
0.20	8.5
0.30	14.1
0.50	26.0
0.70	39.0
1.0	59

^{1. (4} pts) What percent (on a mole basis) of the SO₂ in the entering gases is absorbed in the tower?

2. (10 pts) During operation, it was found that rate coefficients k_p and k_p remained substantially constant throughout the tower at

$$k_L = 1.3 \, \mathrm{ft/hr},$$
 $k_p = 0.195 \, \mathrm{lbmol/h\cdot ft^2 \cdot atm}$

At a point in the tower where the liquid concentration is 0.001 lbmol SO_2 per lbmol of water, what is the liquid concentration at the gas–liquid interface (in lbmol/ft³) and SO_2 vapor partial pressure at the interface (in atm)? The solution density is 1 g/cm³.