

LÚCIO VINICIOS SANTOS SOUZA MATHEUS BECK

1º PROJETO: CÁLCULO DE ZEROS DE FUNÇÃO ATRAVÉS DE MÉTODOS NUMÉRICOS EM C++

LÚCIO VINICIOS SANTOS SOUZA MATHEUS BECK

1º PROJETO: CÁLCULO DE ZEROS DE FUNÇÃO ATRAVÉS DE MÉTODOS NUMÉRICOS EM C++

Relatório de Projeto

Apresentado ao Curso de Graduação em Engenharia Civil e Engenharia da Computação da UFBA como um dos pré-requisitos para aprovação na disciplina Cálculo Numérico.

Sob a orientação da professora Rafaela Souza Alcântara.

Salvador – BA

SUMÁRIO

1.	INTRODUÇÃO	4
2.	APRESENTAÇÃO DO PROBLEMA ESCOLHIDO	5
3.	DESCRIÇÃO DO DESENVOLVIMENTO	6
4.	APRESENTAÇÃO DOS RESULTADOS	7
5.	CONCLUSÃO	9
6.	BIBLIOGRAFIA	.10

1. INTRODUÇÃO

Os métodos numéricos consistem em, a partir de uma estimativa inicial, repetir o mesmo procedimento várias vezes, usando-se a cada vez como estimativa o resultado obtido na vez anterior, isto é na última iteração feita, até se alcançar a precisão desejada. Dessa forma, escolhemos o método conhecido como da Bisseção e também o método de Newton (ou Método de Newton-Raphson), desenvolvido por Isaac Newton e Joseph Raphson para resolvermos o problema proposto.

No método da Bisseção, "bissectaremos" repetidamente um intervalo e então selecionaremos um subintervalo contendo a raiz para processamento adicional, que tem o objetivo de estimar as raízes de uma função. Já no método de Newton, escolhe-se uma aproximação inicial para esta. Após isso, calcula-se a equação da reta tangente (por meio da derivada) da função nesse ponto e a interseção dela com o eixo das abcissas, a fim de encontrar uma melhor aproximação para a raiz. Repetindo-se o processo, cria-se um método iterativo para encontrarmos a raiz da função.

Os Métodos Numéricos procuram desenvolver processos de cálculo (algoritmos), utilizando uma sequência finita de operações computacionais bem definidas, de forma a que certos problemas matemáticos se tornem exequíveis. Estes algoritmos envolvem, em geral, um grande número de cálculos aritméticos. Não é pois de estranhar que, nas últimas décadas, com o rápido crescimento das potencialidades dos computadores digitais, o papel dos Métodos Numéricos na resolução de problemas de engenharia tenha sofrido grande incremento.

2. APRESENTAÇÃO DO PROBLEMA ESCOLHIDO

Dada uma função $a(x) = 2.02x^5 - 1.28x^4 + 3.06x^3 + 2.92x^2 - 5.66x + 6.08$ utilizada num estudo do comportamento mecânico dos materiais, onde a(x) é o comprimento da fissura, implementamos dois algoritmos em c++ utilizando dois dos métodos numéricos vistos em sala: Método da Bisseção e Método de Newton. Através desses métodos, determinamos as raízes do polinômio, ou seja, a(x) = 0 e comparamos os resultados da utilização desses dois métodos com o valor real obtido através do software *Wolfram Alpha*. Para os gráficos que foram gerados, utilizamos o software *Google Sheets*.

3. DESCRIÇÃO DO DESENVOLVIMENTO

Os algoritmos foram desenvolvidos utilizando c++ com as bibliotecas iostream, iomanip e math.h. Para o método da bisseção, o algoritmo foi feito utilizando sucessivas chamadas recursivas da função metodoBissecao (a, b, epsilon), onde os valores de 'a' e 'b' são alterados conforme o resultado da multiplicação entre f(a) e f(a+b/2) é maior ou menor que zero. Já para o método de newton, utilizamos duas funções, representando nosso a(x) e nosso a'(x) respectivamente, onde nosso valor de x aproximado é calculado segundo a expressão x = xi - (funcao(xi)/funcaoDerivada(xi)). Assim, x é calculado n vezes, sendo n a quantidade máxima de iterações do loop, passada como argumento da função.

4. APRESENTAÇÃO DOS RESULTADOS

Como resultado, podemos observar as seguintes tabelas e gráficos comparando os resultados obtidos a cada iteração para cada método. Foi gerado um gráfico comparando os valores aproximados X encontrados a cada iteração e outro gráfico gerado comparado o erro absoluto calculado com a diferença entre o valor real e o valor aproximado (X-xi).

VALORES X APROXIMADOS ENCONTRADOS

Iteração	Valor de X Encontrado (Método Bissecao)	Valor de X Encontrado (Método de Newton)
1	-1,500000	-1,64341
2	-1,250000	-1,41812
3	-1,375000	-1,32624
4	-1,312500	-1,31179
5	-1,281250	-1,31146
6	-1,296880	-1,31146
7	-1,304690	-1,31146
8	-1,308590	-1,31146
9	-1,310550	-1,31146
10	-1,311520	-1,31146

VALORES DOS ERROS ABSOLUTOS ENCONTRADOS

Iteração	Valor de Fabs(X-xi) (Método Bissecao)	Valor de Fabs(X-xi) (Método Newton)
1	0,1885400000	0,331951
2	0,0614600000	0,106664
3	0,0635400000	0,0147752
4	0,0010400000	0,000325796
5	0,0302100000	0,000325796
6	0,0145800000	0,000325796
7	0,0067725000	0,000325796
8	0,0028662500	0,000325796
9	0,0009131250	0,000325796
10	0,0000634375	0,000325796

Vale ressaltar que neste trabalho utilizamos um software para determinar, com exatidão o valor do polinômio. A raiz real do problema foi calculada utilizando o *Wolfram Alpha* e o valor encontrado foi **-1.31146**.

5. CONCLUSÃO

É possível perceber que, nem sempre, o método ao qual se escolhe para encontrar os zeros de uma função polinomial depende da natureza da função e do grau de precisão que se quer obter. Uma comparação entre métodos analíticos, gráficos e numéricos revela vantagens e desvantagens de cada um deles.

Dessa forma, podemos concluir que as raízes aproximadas encontradas a cada iteração convergem em ambos os métodos para o valor real encontrado, e isso, portanto, garante a eficácia da implementação dos dois algoritmos. Além disso, observamos que o método de Newton é muito mais rápido e eficaz. Além de iterar até encontrar o valor exato da raíz, o encontra com apenas 4 iterações, e portanto, só é gerado erro absoluto até a quarta iteração.

O método da Bisseção é interessante por convergir para a raiz após termos um intervalo pré estabelecido, no entanto, é uma interação duradoura e se, porventura, a função não mudar de sinal durante o processo não conseguimos encontrar a raiz. Já no método de Newton, ele cobre essas desvantagens da Bisseção, uma vez que é mais rápido e podemos encontrar raízes sobre o eixo x e onde a derivada da função é nula, porém, há essa necessidade de calcular a derivada, que na bisseção não era exigido, o que por vezes, pode não ser tão simples assim.

6. BIBLIOGRAFIA

[1] Wolphram Alpha:

 $\frac{\text{http://www.wolframalpha.com/input/?i=2.02x\%5E5+-+1.28x\%5E4+\%2B+3.06x\%5E3+\%}{2B+2.92x\%5E2+-+5.66x+\%2B+6.08}$

- [2] Google Sheets: https://www.google.com/sheets/about/
- [3] Métodos Iterativos para Equações Não-Lineares Método da Bisseção e Método da Iteração Linear, 2018, Rafaela Souza Alcântara.
- [4] Métodos Iterativos para Equações Algébricas e Transcendentes Método de Newton e Método das Cordas, 2018, Rafaela Souza Alcântara.