知识点: 同态

测试题 14.17 设 $V_1 = \langle \mathbf{C}, \cdot \rangle, V_2 = \langle \mathbf{R}, \cdot \rangle$ 是代数系统,·为普通乘法. 下面哪个函数 $f \in V_1$ 到 V_2 的同态? 如果 f 是同态,指出 f 是否为单同态、满同态和同构,并求出 V_1 在 f 下的同态像,如果不是请说明理由.

- (1) $f: \mathbb{C} \rightarrow \mathbb{R}, f(z) = |z| + 1, \forall z \in \mathbb{C}.$
- (2) $f: \mathbb{C} \rightarrow \mathbb{R}, f(z) = |z|, \forall z \in \mathbb{C}.$
- (3) $f: \mathbb{C} \rightarrow \mathbb{R}, f(z)=0, \forall z \in \mathbb{C}.$
- (4) $f: \mathbb{C} \rightarrow \mathbb{R}, f(z)=2, \forall z \in \mathbb{C}.$

测试题 14.18 设 $V_1 = \langle A, \circ \rangle$, $V_2 = \langle B, * \rangle$ 和 $V_3 = \langle C, \bullet \rangle$ 是代数系统,证明:

- (1) $V_1 \cong V_1$.
- (2) 若 $V_1 \cong V_2$,则 $V_2 \cong V_1$.
- (3) 若 $V_1 \cong V_2$, $V_2 \cong V_3$, 则 $V_1 \cong V_3$.

测试题 14.19 设 $V_1 = \langle \mathbf{Q}^*, \cdot \rangle$ 和 $V_2 = \langle \mathbf{Q}, + \rangle$ 是代数系统,其中 **Q** 是有理数集合,**Q*** = **Q**-{0}. ·和+分别代表普通乘法和加法. 证明不存在 V_1 到 V_2 的同构.

测试题 14.20 设 G_1 和 G_2 是群,判断以下映射 φ : $G_1 \rightarrow G_2$ 是否为同态映射? 如果是,说明它是否为单同态和满同态. 定义同态的核 $\ker \varphi = \{x/x \in G_1, \varphi(x) = e\}$,对于同态 φ 求出 $\ker \varphi$.

- (1) $G_1=G_2=G$, $\varphi: G \rightarrow G$, $\varphi(x)=e$, $\forall x \in G$, 其中 e 为 G 的单位元.
- (2) $G_1=G_2=\langle \mathbf{Z},+\rangle$ 为整数加群, $\varphi:\mathbf{Z}\to\mathbf{Z}$, $\varphi(n)=2n, \forall n\in\mathbf{Z}$.
- (3) $G_1 = \langle \mathbf{R}, + \rangle$, $G_2 = \langle \mathbf{R}^+, \cdot \rangle$,**R** 为实数集, \mathbf{R}^+ 为正实数集,+和·分别为普通加法和乘法. $\varphi: G_1 \to G_2$, $\varphi(x) = \mathbf{e}^x$, $\forall x \in \mathbf{R}$.
 - (4) 设 \mathbf{Z}_n 为模 n 整数加群, $\varphi: \mathbf{Z}_{15} \rightarrow \mathbf{Z}_3$, $\varphi(x) = (x) \mod 3$.

测试题 14.21 设Σ是非空有穷字母表, ω 是Σ上的有限个字符构成的序列. 序列中的字符个数称为串的长度,记作 $|\omega|$. λ 表示空串, $|\lambda|=0$. 对任意的 $k \in \mathbb{N}$,令 Σ_k 表示Σ上的所有长度为 k 的串的集合,那么 $\Sigma^* = \mathbf{Y}_{i=0}^{\infty} \Sigma_i$ 表示Σ上的所有串的集合. 在 Σ^* 定义连接运算。, $\forall \omega_1, \omega_2 \in \Sigma^*$, $\omega_1=a_1a_2\cdots a_m$, $\omega_2=b_1b_2\cdots b_n$,那么 $\omega_1\circ\omega_2=a_1a_2\cdots a_mb_1b_2\cdots b_n$. 回答下面的问题:

- (1) 如果 $|\Sigma|=n$, card $|\Sigma^*|$ 等于什么?
- (2) Σ*与连接运算构成代数系统,分析这个系统是否满足交换律、结合律、 幂等律,是否具有单位元和零元.
 - (3) 令 f: $\Sigma^* \rightarrow \mathbb{N}$, $f(\omega) = |\omega|$, 证明 f 构成< Σ^* , \circ >到< \mathbb{N} , +>的满同态映射.