Návrh analogových integrovaných obvodů Ústav mikroelektroniky FEKT VUT v Brně	Jméno Tomáš Vavrinec		ID 240893
	Ročník	Obor MET	Skupina
Název zadání 4. Dvoustupňový zesilovač			

ZADÁNÍ ÚLOHY

Navrhněte dvoustupňový operační zesilovač se vstupními tranzistory typu NMOS podle obr. 1, který bude navržen pro tyto vstupní parametry s CL = 10 pF.

Tabulka 1: Požadované parametry

parametr	hodnota	Vypočítané	Simulace
zesílení (A_{u0})	≥ 60 dB		
šířka pásma (GBW)	$\geq 10 \text{ MHz}$		
fázová rezerva (PM)	≥ 60°	60°	
amplitudová rezerva (AM)	- dB	Nepočítá se	
rychlost přeběhu $(SR)^*$	$\geq 10 \text{ V/}\mu\text{s}$		
systematický ofset (U_{OFF})	$\leq 500 \; \mu V$	0	
spotřeba $(P_{\rm diss})$	$-\mathrm{mW}$		
vstupní napěťový rozsah (ICMR)	- V		
výstupní napěťový rozsah (OVS)	- V		

^{*} pro nástupnou i sestupnou hranu

Vypočítejte a následně simulací zjistěte dosažené parametry z tab. 1. Zobrazte SPICE Output log s parametry všech tranzistorů a vložte jej do protokolu. Zkontrolujte především gm vstupních tranzistorů a gm7, zda odpovídá výpočtu. Dále vložte do protokolu simulační schémata a výstupy simulací ukazující odsimulované hodnoty. orovnejte výsledky s ručními výpočty - vytvořte tabulku odsimulovaných a vypočítaných parametrů (viz. Tab. 1 - stejná bude v závěru).

Obr. 1: Schéma zesilovače

1 Vypracování

1.1 Zesilovač s odporovou zátěží

Jako první určíme proud I_d , to uděláme dvěma způsoby, podle požadovaného SR a podle požadovaného GBW a vybereme ten větší.

Podle SR

$$I_d = SR \cdot C_L = 10 \cdot 10^6 \cdot 10 \cdot 10^{-12} = 100[\mu A]$$

Podle GBW

$$I_d = GBW \cdot U_{OV} \cdot \pi \cdot C_L = 10 \cdot 10^6 \cdot 0.2 \cdot \pi \cdot 10 \cdot 10^{-12} = 62.8[\mu A]$$

Proud tedy bude $I_{dM6} = 100[\mu A]$

Dále můžeme určit rozměry tranzistorů M_6 a M_7 , k čemuž budeme muset zvolit napětí U_{OV} , která sme s ohledem na pracovní rozsah už v minulém kroku zvolili jako $U_{OV} = 0.2[V]$. Délku tranzistoru L zvolím s ohledem na parametr $\lambda L = 2[\mu m]$.

$$W_{M6} = L \cdot \frac{2 \cdot I_d}{K P_N \cdot U_{OV}^2} = 2\mu \cdot \frac{2 \cdot 100\mu}{200\mu 0.2^2} = 50[\mu m]$$

$$W_{M7} = L \cdot \frac{2 \cdot I_d}{K P_P \cdot U_{OV}^2} = 2\mu \cdot \frac{2 \cdot 100\mu}{50\mu 0.2^2} = 200[\mu m]$$

Dále můžeme určit proud diferenčním stupněm jako desetinu destinu proudu výstupním stupněm, tedy $I_{dM}=10[\mu A]$ z čehož můžeme určit rozměry tranzistorů M1 až M_5

$$W_{M1,2} = L \cdot \frac{2 \cdot I_d}{K P_N \cdot U_{OV}^2} = 2\mu \cdot \frac{2 \cdot 10\mu}{200\mu 0.2^2} = 5[\mu m]$$

$$W_{M4,5} = L \cdot \frac{2 \cdot I_d}{K P_P \cdot U_{OV}^2} = 2\mu \cdot \frac{2 \cdot 10\mu}{50\mu 0.2^2} = 20[\mu m]$$

Proud tranzistorem M_3 je součtem proudu I_{dM1} a I_{dM2} a tedy $I_{dM3}=20[\mu A]$ jeho šířka tedy bude dvojnásobná $W_{M3}=10[\mu A]$ Tranzistor M_8 zvolíme stejný jako tranzistor M_3 , tedy $L=2[\mu m]W=10[\mu m]$ a zbývá určit jen rezistor R_1 jako:

$$R_1 = \frac{U_{CC} - (U_{OV} + U_{TH})}{I_{dM3}} = \frac{1.8 - (0.2 + 0.4)}{20 \cdot 10^{-6}} = 60[k\Omega]$$

Zesílení mi vychází o necelý decibel menší než dle zadání, zkusil jsem tedy lehce zvětšit zatěžovací odpor na hodnotu $R_1 = 102.48[k\Omega]$ a obdržel jsem průběh ??

Z průběhu ?? určíme SR jako:

$$SR_{rise} = \frac{\Delta U}{\Delta t} = \frac{U_2 - U_1}{t_2 - t_1} = \frac{1.677 - 0.196}{126n - 81n} = 32.9[V/\mu s]$$

$$SR_{fell} = \frac{\Delta U}{\Delta t} = \frac{U_1 - U_2}{t_2 - t_1} = \frac{1.618 - 0.174}{2752n - 2344n} = 3.5[V/\mu s]$$

Sestupná hrana je pomalejší, než by dle zadání měla být, což je způsobeno předpokladem lineárního vybíjení kondenzátoru C_1 , zatím co je exponenciální, jak je vidět na průběhu ??

GBW je větší, než bylo požadováno, protože proud tranzistorem jsme stanovili vyšší, abychom splnili SR.

Obr. 2: Schéma zesilovače

Obr. 3: $\mbox{.}{\bf AC}$ analýza zesilovače

Obr. 4: .AC analýza zesilovače se zvětšeným zatěžovacím odporem na $R_1=102.48[k\Omega]$

