

May 2018

Rakesh Auplish

"The Problem"

SOME IDIOT IS
USING OUR NETWORK
ROOM FOR MEETINGS
AND UNPLUGGING
THE SERVER BECAUSE
IT'S TOO NOISY.

Source: Dilbert.com

Business Problem

- A telecom company is on a journey to enhance customer experience and putting customer first.
- Top priority items are network uptime and network quality of service.
- The aspiration is to be proactive in network maintenance.
- A statistical model for predicting network outages and their severity is required to facilitate proactive maintenance.

Objective

- Prediction of 3 class outcome of an incident on the telephone network.
 Develop a machine learning model to perform automatic predictions.
 - Possible outcomes 0: No disruption, 1: Momentary glitch, 2: Service disruption

Features / Metrics

- 5 features used for prediction
 - Location, Logfeature and Volume, Event Type, Resource, Incident Severity

Methodology

- 5 classification estimators used to get accuracy scores for objective evaluation
- 4 modelling scenarios used to assess impact of other factors
 - Use hyperparameters for optimization, Use default parameters, Exclude feature
- 20 accuracy scores compared

Assumptions

- Data definitions and business meaning of data assumed
 - No metadata / data dictionary provided
- Relationships between data entities assumed from profiling data

Risks

- Assumptions about business meaning could be wrong
- An incorrect inference of relationship between data entities could have a profound impact on prediction accuracy

Results

- Baseline Accuracy 64.82%
- GradientBoost Classifier is the best estimator in all scenarios
 - 76.48% accuracy for 10 iterations with hyperparameters
 - 76.16% accuracy for 10 iterations with default parameters
- The model performed very well on a single run
- Suitable for real-time predictions on events as they are reported

Recommendation

Recommend GradientBoost Classifier for implementation

Data Dictionary is based on inferences drawn from data profiling and analysis

Entity Logs

Description Periodic information provided by equipment sensors connected to

the network relating to state of network

Attributes Id Unique Identifier for a log

Location Id for the location of the equipment (no description)

Fault Severity Resultant severity

3 classes (0 - No disruption, 1 - Momentary glitch, 2 - Total disruption)

Comments Two data sets have been provided

train dataset for training the models, contains fault severity

test dataset for testing the models

Data Dictionary is based on inferences drawn from data profiling and analysis

Entity Events

Description Type of event reported by equipment sensors. Multiple event types

can be associated to a Log

Attributes Id Unique Identifier for a log

Event_type Id for event type(no description)

Multiple Classes - values like 11, 15, 20, 7

Data Dictionary is based on inferences drawn from data profiling and analysis

Entity Resources

Description Type of resource providing information to a log. Multiple resources

can be associated to a Log

Attributes Id Unique Identifier for a log

resource_type Id for a resource (no description)

Multiple classes - values: 1,2,3,4,5,6,7,8,9,10

Data Dictionary is based on inferences drawn from data profiling and analysis

Entity Severity Type

Description Type of severity for the log. One severity associated to a Log

Attributes Id Unique Identifier for a log

severity_type Id for the severity (no description)

Multiple classes - values: 1, 2, 3, 4, 5

Data Dictionary is based on inferences drawn from data profiling and analysis

Entity Log feature

Description Feature(s) associated with a log. Attribute volume gives the

intensity of the feature. More than one log feature associated to a

Log

Attributes Id Unique Identifier for a log

log_feature Id for the log feature (no description)

Multiple classes - values like 68, 172, 56, 193

volume Intensity of the log feature

(Values range from 1 to 1310)

Data relationships

Resource type				
id	resource_type			
14804	resource_type 2			
14804	resource_type 8			

Severity type				
id	severity_type			
14804	severity_type 1			

Log feature					
id	log_feature	volume			
14804	feature 134	1			
14804	feature 219	1			
14804	feature 117	1			
14804	feature 227	2			
14804	feature 237	2			
14804	feature 232	2			
14804	feature 181	1			
14804	feature 160	1			
14804	feature 29	1			

Exploratory Data Analysis

Summary

- 18552 Unique Log IDs together in Test and Train
- 18552 Unique Log IDs in all other Data sets.
 All logs are included in data sets
- One or more rows for each Log ID in the data sets
- Mutually exclusive Log IDs across Test and Train 0 rows repeat
- Location IDs repeat across Test and Train 842 rows repeat

Data Frame	Rows	Columns	Unique IDs
Train	7381	3	7381
Test	11171	2	11171
Event	31170	2	18552
Resource	21076	2	18552
Severity	18552	2	18552
Log Feature	58671	3	18552

Fault Severities

 65% events have no impact

Severities

 Highly skewed to the right

Resources

- Resource 8 has 49% of data
- Resource 2 has 42% of data
- Highly skewed to the right

Events

- Top 5 events have 84% of data
- Highly skewed to the right

Locations

Locations with frequency of 100 and more have 23% of data

 Highly skewed to the right but a larger spread

Locations by Fault severity

Total disruption

Momentary Glitch

Data Engineering

- Almost all data is categorical
- The only exception is logfeature volume
- Distribution is biased for a few classes, data normalized by binning classes
- One hot encoding through the use of get_dummies method
- Logfeatures transposed to preserve volume

Resource Type

- Class 8 and class 2 retained
- Other classes binned into 'OTH'
- Use pd.get_dummies to binarise data
- Group by ID to ensure one row for each ID

Event Type

- Classes 11,35,34,15,20 retained
- Other classes binned into 'OTH'
- Use <u>pd.get_dummies</u> to binarise data
- Group by ID to ensure one row for each ID

Location

- Class retained if frequency >= 100
- Other classes binned into 'OTH'
- Use pd.get_dummies to binarise data

Log feature

- Transposed log features to create 366 columns
- Map volume to each column

Severity Type

Use pd.get_dummies to binarise data

Merge Data

- Dataframes merged with Train and Test dataframes
- Two dataframes created
 - All dataframes merged
 - Logfeatures excluded

Model Selection and Optimisation

Estimators

Estimators selected for evaluation

- sklearn.ensemble.RandomForestClassifier
- sklearn.ensemble.AdaBoostClassifier
- sklearn.ensemble.GradientBoostClassifier
- sklearn.neighbors.KNeighborsClassifier
- sklearn.tree.DecisionTreeClassifier

Hyperparameters

Steps for finalization of hyperparameters

- Instantiate model for each estimator
- Get full list of hyperparameters for each estimator using get_params() method
- Determine parameters influencing model accuracy using sklearn.model_selection.RandomizedSearchCV

Scenarios

Scenarios used for comparing model accuracy

- Full training dataset Single run Default parameters
- Training split 70% train 30% validate using sklearn.model_selection.train_test_split
 - Run10 iterations using sklearn.model_selection.cross_val_score for
 - Model instantiated with default parameters
 - Model instantiated with hyperparameters

Model Accuracy Results

Estimator	All features			Features except logfeature		
	Single Run	Default params 10 iters	Optimum params 10 iters	Single Run	Default params 10 iters	Optimum params 10 iters
Random Forest Classifer	71.97%	70.30%	70.70%	59.41%	57.90%	61.10%
KNeigbors Classifer	59.91%	64.00%	64.00%	59.37%	59.80%	64.40%
DecisionTree Classifer	69.35%	68.90%	68.90%	59.10%	56.20%	56.70%
AdaBoost Classifer	72.42%	71.30%	71.30%	66.23%	64.90%	64.90%
GradientBoost Classifer	76.30%	73.70%	73.90%	66.41%	66.20%	64.60%

Model Accuracy Inference

- 5 classification estimators used
- 20 scenarios used for comparing model accuracy
- "logfeature" is a significant feature as it affects accuracy
- GradientBoost Classifier is the best estimator overall
 - 76.30% accuracy for single run
 - 73.90% accuracy for 10 iterations with hyperparameters
 - 73.70% accuracy for 10 iterations with default parameters
- Recommend GradientBoost Classifier

Top 20 Features

Random Forest		Decision Tree		AdaBoost		GradientBoost	
log_feature203	0.117975	log_feature203	0.196701	log_feature203	0.1	log_feature203	0.124773
log_feature82	0.083862	severity_type_1	0.058009	log_feature170	0.06	log_feature170	0.034011
log_feature170	0.03621	log_feature82	0.050477	resource_type_RT8	0.06	log_feature202	0.03206
log_feature54	0.033386	log_feature170	0.044608	event_type_OTH	0.04	log_feature209	0.024589
log_feature232	0.027159	log_feature54	0.02519	log_feature202	0.04	log_feature232	0.024231
log_feature312	0.022933	log_feature312	0.024538	location_995	0.02	log_feature312	0.023538
event_type_OTH	0.022118	log_feature80	0.022101	location_OTH	0.02	log_feature73	0.023496
log_feature80	0.021604	log_feature68	0.019273	event_type_ET11	0.02	log_feature82	0.018607
log_feature68	0.020152	log_feature232	0.017752	event_type_ET34	0.02	log_feature171	0.018412
log_feature71	0.018804	resource_type_OTH	0.015536	event_type_ET35	0.02	log_feature155	0.016335
location_OTH	0.016184	event_type_OTH	0.014884	severity_type_1	0.02	log_feature179	0.016276
event_type_ET15	0.016145	log_feature73	0.014877	log_feature193	0.02	severity_type_1	0.014595
event_type_ET34	0.015661	log_feature71	0.013795	log_feature195	0.02	log_feature134	0.01443
severity_type_1	0.015401	log_feature171	0.012685	log_feature196	0.02	log_feature315	0.014178
log_feature313	0.014771	log_feature315	0.012159	log_feature205	0.02	log_feature70	0.014025
log_feature201	0.014159	log_feature193	0.011945	log_feature140	0.02	log_feature368	0.013464
log_feature193	0.013333	log_feature201	0.011271	log_feature209	0.02	log_feature227	0.012689
severity_type_2	0.012206	log_feature291	0.011234	log_feature212	0.02	log_feature314	0.012604
log_feature73	0.011528	event_type_ET11	0.009957	log_feature319	0.02	log_feature54	0.012336
resource_type_RT8	0.011016	event_type_ET15	0.00971	log_feature295	0.02	event_type_OTH	0.012102

Questions

Source: Dilbert.com