Support Vector Machines (SVM)

- Support vector machines (SVMs) are a set of supervised learning methods used for classification, regression and outliers detection
- Goal is to create the best line or decision boundary called optimal hyperplane that can segregate n-dimensional space into classes
- SVM finds the hyperplane using support vectors (essential training tuples) and margins (defined by the support vectors)
- Support Vector Machines tries to produce linear decision boundaries
- is robust to outliers
- based on statistical approach
- can better handle highly-dimensional data
- used for classification as well as Regression problems, but mostly used for Classification
- is a Classifier, forward neural network, supervised learning algorithm
- · Can handle linear as well as non-linear data
- SVM Algorithm types
 - Linear SVM
 - for linearly separable data
 - a single stright line can entirely divide the data points into their respective classes
 - Kernel SVM
 - for non-linear separable data
 - used when data points cannot be separated with a single straight line
 - original data id transformed by these kernel functions into a higher dimensional feature space where the features can be linearly separable

• Hyperplane

- the best decision boundary differentiating classes
- o it can be linear/straight line for linearly separable data / 2 features
- it can be non-linear plane / 2-D plane for non-linearly separable data / 3 features
- \circ equation is $w^Tx + b = 0$
- Optimal Hyperplane
 - the hyperplanee with maximum margin is called the optimal Hyperplane
- Support Vectors
 - vectors / data points closest to the hyperplane are called Support Vectors
- Margin
 - distance between the hyperplane and the support vectors (nearest data point) is called Margin
 - o margin is expected to be as large as possible to find the optimal hyperplance
 - two types of margins
 - 1. Hard Margin
 - Maximum Margin Hyperplane or Hard Margin Hyperplane is a hyperplane that properly separates the data points of different categories without any misclassification

2. Soft Margin

- when data is not perfectly separable or contains outliers, then Soft margin is used
- Each data point has a slack variable introduced by the soft margin SVM formulation, which softens the strict margin requirement and permits certain misclassifications or violations
- it discovers compromise between increasing the margin and reducing violations
- Kernel
 - o mathematical function in SVM used to map the original input data points to high dimensional feature spaces
 - o makes it easy to find the hyperplane even if the data points are not linearly separable

- Kernel refers to a method that allows us to apply linear classifiers to non-linear problems by mapping non-linear data into a higher-dimensional space without the need to visit or understand that higher-dimensional space
- o Common kernel functions are linear, polynomial, rbf(radial basis function), sigmoid, neural net
- C
- o called as regularization parameter used to balance magin maximization and misclassification fines
- penalty for misclassifications is decided by regularization parameter
- o more the value of C, stricter the penaly, so leading to smaller margin and fewer misclassifications
- Model performance can be altered by changing the value of hyperparameters which are C (Regularization factor), gamma, and kernel

Advantages of SVM

- · works better when data is linear, effective in high dimensional data
- · robust to outliers
- · can help us with image classification
- memory efficient as it uses subset of training data points in the decision function called support vectors
- different kernel functions can be specified and it is possible to specify custom kernels

Disadvantages of SVM

- · Choosing a good kernel is not easy
- · does not show good results on a bigger data set
- Hyperparameters of SVM are C and gamma, & it is not easy to fine tune these hyper parameters

→ Note for Kernel Trick

- when there is no separating plane
 - · Use bigger set of features, makes use of kernel trick
 - it would make computation hopelessly slow, but using kernel trick we can make computation fast even with huge number of features
 - extend the definition of maximum margin to allow non-separating planes
 - this can be done by using the "Slack" variables, thereby using soft margin technique
 - slack variables are constrained to be non-negative

▼ import libs

```
1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt
4 import seaborn as sns
```

▼ import dataset

```
1 # from google.colab import files
2 # uploaded = files.upload()
3 # D9data3.csv
4
5 import os
6 os.chdir(r'C:\Users\surya\Downloads\PG-DBDA-Mar23\Datasets')
7 os.getcwd()
```

'C:\\Users\\surya\\Downloads\\PG-DBDA-Mar23\\Datasets'

```
1 dataset = pd.read_csv('D9data3.csv')
```

² dataset.head()

	Age	EstimatedSalary	Purchased
0	19	19000	0
1	35	20000	0
2	26	43000	0
3	27	57000	0
4	19	76000	0

1 dataset.shape

(400, 3)

1 dataset.describe()

	Age	EstimatedSalary	Purchased
count	400.000000	400.000000	400.000000
mean	37.655000	69742.500000	0.357500
std	10.482877	34096.960282	0.479864
min	18.000000	15000.000000	0.000000
25%	29.750000	43000.000000	0.000000
50%	37.000000	70000.000000	0.000000
75%	46.000000	88000.000000	1.000000
max	60.000000	150000.000000	1.000000

```
1 dataset.info()
   <class 'pandas.core.frame.DataFrame'>
   RangeIndex: 400 entries, 0 to 399
   Data columns (total 3 columns):
                        Non-Null Count Dtype
    # Column
    --- -----
    0 Age
                        400 non-null
                                        int64
    1 EstimatedSalary 400 non-null
                                        int64
    2 Purchased
                        400 non-null
                                        int64
   dtypes: int64(3)
   memory usage: 9.5 KB
```

▼ Imputation (Null check)

```
1 dataset.isnull().sum()

Age 0
EstimatedSalary 0
Purchased 0
dtype: int64
```

▼ identify X & Y

```
1 x = dataset.iloc[ : , :-1].values
2 x[:5]

array([[    19, 19000],
       [    35, 20000],
       [    26, 43000],
       [    27, 57000],
       [    19, 76000]], dtype=int64)
```

```
1 y = dataset.iloc[ : , -1].values
2 y[:5]
array([0, 0, 0, 0], dtype=int64)
```

▼ splitting

▼ Preprocessing

▼ Feature scaling

```
1 from sklearn.preprocessing import StandardScaler
```

▼ Linear SVM

• for linearly separable data

▼ Modeling - Linear SVM

```
1 from sklearn.svm import SVC

1 lsvmclassifier = SVC(C=1, kernel='linear', random_state=0)
2 # C-Support Vector Classification
3 # C : Regularization parameter
```

▼ Training - Linear SVM

```
1 lsvmclassifier.fit(x_train, y_train)

v SVC
SVC(C=1, kernel='linear', random_state=0)
```

▼ Prediction - Linear SVM

```
1 lsvmclassifier.predict(sc.transform([[30, 78000]]))
2 # prediction with custom test case
    array([0], dtype=int64)

1 y_pred_linear = lsvmclassifier.predict(x_test)
2 y_pred_linear[:5]
    array([0, 0, 0, 0, 0], dtype=int64)
```

▼ Evaluation - Linear SVM

▼ confusion_matrix

```
1 from sklearn.metrics import confusion_matrix
1 confusion_matrix(y_test, y_pred_linear)
```

▼ classification_report

```
1 from sklearn.metrics import classification_report
```

1 print(classification_report(y_test, y_pred_linear))

	precision	recall	f1-score	support
0	0.95	0.90	0.92	58
1	0.76	0.86	0.81	22
accuracy			0.89	80
macro avg	0.85	0.88	0.86	80
weighted avg	0.89	0.89	0.89	80

▼ accuracy_score

```
1 from sklearn.metrics import accuracy_score
```

1 accuracy_score(y_test, y_pred_linear)

0.8875

▼ precision_score

1 from sklearn.metrics import precision_score

```
1 precision_score(y_test, y_pred_linear)
0.76
```

▼ recall_score

```
1 from sklearn.metrics import recall_score
1 recall_score(y_test, y_pred_linear)
0.8636363636363636
```

- ▼ Kernel SVM (c=1)
 - for non-linearly separable data
- ▼ Modeling Kernel SVM (c=1)

```
1 from sklearn.svm import SVC

1 ksvmclassifier = SVC(C=1, kernel='rbf', random_state=0)
```

▼ Training - Kernel SVM (c=1)

```
1 ksvmclassifier.fit(x_train, y_train)
```

```
SVC
```

▼ Prediction - Kernel SVM (c=1)

```
1 y_pred_kernel = ksvmclassifier.predict(x_test)
2 y_pred_kernel[:5]
array([0, 0, 0, 0], dtype=int64)
```

- ▼ Evaluation Kernel SVM (c=1)
- ▼ confusion_matrix

```
1 from sklearn.metrics import confusion_matrix

1 confusion_matrix(y_test, y_pred_kernel)
    array([[54, 4],
        [ 1, 21]], dtype=int64)
```

▼ classification_report

```
1 from sklearn.metrics import classification_report

1 print(classification_report(y_test, y_pred_kernel))

precision recall f1-score support

0 0.98 0.93 0.96 58
```

1	0.84	0.95	0.89	22
accuracy			0.94	80
macro avg	0.91	0.94	0.92	80
weighted avg	0.94	0.94	0.94	80

▼ accuracy_score

```
1 from sklearn.metrics import accuracy_score
```

```
1 accuracy_score(y_test, y_pred_kernel)
```

2 # higher accuracy means mis-classification has reduced

0.9375

▼ precision_score

```
1 from sklearn.metrics import precision_score
```

1 precision_score(y_test, y_pred_kernel)

0.84

▼ recall_score

1 from sklearn.metrics import recall_score

1 recall_score(y_test, y_pred_kernel)

0.9545454545454546

- ▼ Kernel SVM (c=100)
- ▼ Modeling Kernel SVM (c=100)

```
1 from sklearn.svm import SVC

1 ksvmclassifier100 = SVC(C=100, kernel='rbf', random_state=0)
```

▼ Training - Kernel SVM (c=100)

```
1 ksvmclassifier100.fit(x_train, y_train)

v SVC
```

```
SVC(C=100, random_state=0)
```

▼ Prediction - Kernel SVM(c=100)

```
1 y_pred_kernel100 = ksvmclassifier100.predict(x_test)
2 y_pred_kernel100[:5]
array([0, 0, 0, 0], dtype=int64)
```

▼ Evaluation - Kernel SVM (c=100)

▼ confusion_matrix

classification_report

```
1 from sklearn.metrics import classification_report

1 print(classification_report(y_test, y_pred_kernel100))

precision recall f1-score support

0 0.98 0.93 0.96 58
```

0 1	0.98 0.84	0.93 0.95	0.96 0.89	58 22
accuracy			0.94	80
macro avg	0.91	0.94	0.92	80
weighted avg	0.94	0.94	0.94	80

▼ accuracy_score

```
1 from sklearn.metrics import accuracy_score
1 accuracy_score(y_test, y_pred_kernel100)
0.9375
```

▼ precision_score

```
1 from sklearn.metrics import precision_score
1 precision_score(y_test, y_pred_kernel100)
0.84
```

▼ recall_score

```
1 from sklearn.metrics import recall_score
1 recall_score(y_test, y_pred_kernel100)
0.9545454545454546
```

▼ SVM Application

▼ import libs

```
1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt
```

▼ import dataset

```
1 # from google.colab import files
2 # uploaded = files.upload()
3 # D13data1.csv
4
5 import os
6 os.chdir(r'C:\Users\surya\Downloads\PG-DBDA-Mar23\Datasets')
7 os.getcwd()
```

'C:\\Users\\surya\\Downloads\\PG-DBDA-Mar23\\Datasets'

```
1 dataset = pd.read_csv('D13data1.csv')
2 dataset.head()
```

	Mean of the integrated profile	Standard deviation of the integrated profile	Excess kurtosis of the integrated profile	Skewness of the integrated profile	Mean of the DM- SNR curve	Standard deviation of the DM-SNR curve	Excess kurtosis of the DM-SNR curve	Skewnes of th DM-SN curv
0	140.562500	55.683782	-0.234571	-0.699648	3.199833	19.110426	7.975532	74.24222
1	102.507812	58.882430	0.465318	-0.515088	1.677258	14.860146	10.576487	127.39358
2	103.015625	39.341649	0.323328	1.051164	3.121237	21.744669	7.735822	63.17190
3	136.750000	57.178449	-0.068415	-0.636238	3.642977	20.959280	6.896499	53.59366

1 dataset.shape

(17898, 9)

1 dataset.describe()

	Mean of the integrated profile	Standard deviation of the integrated profile	Excess kurtosis of the integrated profile	Skewness of the integrated profile	Mean of the DM-SNR curve	Standard deviation of the DM- SNR curve	k
count	17898.000000	17898.000000	17898.000000	17898.000000	17898.000000	17898.000000	17
mean	111.079968	46.549532	0.477857	1.770279	12.614400	26.326515	
std	25.652935	6.843189	1.064040	6.167913	29.472897	19.470572	
min	5.812500	24.772042	-1.876011	-1.791886	0.213211	7.370432	
25%	100.929688	42.376018	0.027098	-0.188572	1.923077	14.437332	
50%	115.078125	46.947479	0.223240	0.198710	2.801839	18.461316	
75%	127.085938	51.023202	0.473325	0.927783	5.464256	28.428104	

1 dataset.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 17898 entries, 0 to 17897
Data columns (total 9 columns):

Data	Cotamins (cotal 5 cotamins):		
#	Column	Non-Null Count	Dtype
0	Mean of the integrated profile	17898 non-null	float64
1	Standard deviation of the integrated profile	17898 non-null	float64
2	Excess kurtosis of the integrated profile	17898 non-null	float64
3	Skewness of the integrated profile	17898 non-null	float64
4	Mean of the DM-SNR curve	17898 non-null	float64
5	Standard deviation of the DM-SNR curve	17898 non-null	float64
6	Excess kurtosis of the DM-SNR curve	17898 non-null	float64
7	Skewness of the DM-SNR curve	17898 non-null	float64
8	target_class	17898 non-null	int64

```
dtypes: float64(8), int64(1)
memory usage: 1.2 MB
```

▼ imputation

```
Mean of the integrated profile 0
Standard deviation of the integrated profile 0
Excess kurtosis of the integrated profile 0
Skewness of the integrated profile 0
Mean of the DM-SNR curve 0
Standard deviation of the DM-SNR curve 0
Excess kurtosis of the DM-SNR curve 0
Skewness of the DM-SNR curve 0
Excess kurtosis of the DM-SNR curve 0
Skewness of the DM-SNR curve 0
target_class 0
dtype: int64
```

▼ handling column names

▼ stripping column names

renaming column names

▼ checking dataset after handling column names

```
1 dataset.head()
```

	Mean	SD	Kurtosis	Skewness	Mean_DM- SNR	SD_DM- SNR	Kurtosis_DM- SNR	Skewness_DI SI
0	140.562500	55.683782	-0.234571	-0.699648	3.199833	19.110426	7.975532	74.2422
1	102.507812	58.882430	0.465318	-0.515088	1.677258	14.860146	10.576487	127.3935
2	103.015625	39.341649	0.323328	1.051164	3.121237	21.744669	7.735822	63.1719

understanding target

```
1 dataset['target_class'].value_counts()
```

 ${\tt target_class}$

0 16259

1 1639

Name: count, dtype: int64

▼ EDA

1 import seaborn as sns

▼ hist plot for target

1 sns.histplot(x=dataset['target_class'])

<Axes: xlabel='target_class', ylabel='Count'>

▼ hist plot for features

```
'n
                                         0.4
                                                     n's
                                                                 n̈α
                                                                             1 0
 1 plt.figure(figsize=(12, 12))
 2 plt.subplot(4, 2, 1)
 3 dp1 = sns.histplot(x=dataset['Mean'])
 5 plt.subplot(4, 2, 2)
 6 dp2 = sns.histplot(x=dataset['SD'])
 8 plt.subplot(4, 2, 3)
 9 dp3 = sns.histplot(x=dataset['Kurtosis'])
10
11 plt.subplot(4, 2, 4)
12 dp4 = sns.histplot(x=dataset['Skewness'])
13
14 plt.subplot(4, 2, 5)
15 dp5 = sns.histplot(x=dataset['Mean_DM-SNR'])
```

```
16
17 plt.subplot(4, 2, 6)
18 dp6 = sns.histplot(x=dataset['SD_DM-SNR'])
19
20 plt.subplot(4, 2, 7)
21 dp7 = sns.histplot(x=dataset['Kurtosis_DM-SNR'])
22
23 plt.subplot(4, 2, 8)
24 dp8 = sns.histplot(x=dataset['Skewness_DM-SNR'])
25
26 plt.show()
```


▼ box plot for features

```
1 # sns.set_style(5)
2 plt.figure(figsize=(12, 12))
3 plt.subplot(4, 2, 1)
4 f1 = dataset.boxplot(column='Mean')
5
6 plt.subplot(4, 2, 2)
```

```
7 f2 = dataset.boxplot(column='SD')
 8
 9 plt.subplot(4, 2, 3)
10 f3 = dataset.boxplot(column='Kurtosis')
11
12 plt.subplot(4, 2, 4)
13 f4 = dataset.boxplot(column='Skewness')
14
15 plt.subplot(4, 2, 5)
16 f5 = dataset.boxplot(column='Mean_DM-SNR')
17
18 plt.subplot(4, 2, 6)
19 f6 = dataset.boxplot(column='SD DM-SNR')
20
21 plt.subplot(4, 2, 7)
22 f7 = dataset.boxplot(column='Kurtosis DM-SNR')
23
24 plt.subplot(4, 2, 8)
25 f8 = dataset.boxplot(column='Skewness DM-SNR')
26
27 plt.show()
```


▼ Pairplot

1 sns.pairplot(dataset)

```
c:\users\surya\appdata\local\programs\python\python39\lib\site-packages\seaborn\axisgrid.p
self._figure.tight_layout(*args, **kwargs)
<seaborn.axisgrid.PairGrid at 0x1f76ae0cc10>
```


▼ identify X & Y

```
array([0, 0, 0, 0, 0], dtype=int64)
```

Splitting

PreProcessing

Feature scaling

```
1 from sklearn.preprocessing import StandardScaler
```

▼ Linear SVM

▼ Modeling - Linear SVM

```
1 from sklearn.svm import SVC

1 lsvmc = SVC(C=1, kernel='linear', random_state=0)
```

▼ Training - Linear SVM

```
1 lsvmc.fit(x_train, y_train)
```

```
SVC
SVC(C=1, kernel='linear', random_state=0)
```

▼ Prediction - Linear SVM

```
1 lin_y_pred = lsvmc.predict(x_test)
2 lin_y_pred[:5]
array([0, 0, 0, 0], dtype=int64)
```

▼ Evaluation - Linear SVM

▼ confusion_matrix

```
1 from sklearn.metrics import confusion_matrix

1 confusion_matrix(y_test, lin_y_pred)
    array([[3289, 17],
        [ 37, 237]], dtype=int64)
```

▼ classification_report

```
1 from sklearn.metrics import classification_report
1 print(classification_report(y_test, lin_y_pred))
```

support	f1-score	recall	precision	
3306	0.99	0.99	0.99	0
274	0.90	0.86	0.93	1
3580	0.98			accuracy
3580	0.94	0.93	0.96	macro avg
3580	0.98	0.98	0.98	weighted avg

▼ accuracy_score

```
1 from sklearn.metrics import accuracy_score
```

```
1 accuracy_score(y_test, lin_y_pred)
```

0.9849162011173185

▼ precision_score

```
1 from sklearn.metrics import precision_score
```

```
1 precision_score(y_test, lin_y_pred)
```

0.9330708661417323

▼ recall_score

1 from sklearn.metrics import recall_score

```
1 recall_score(y_test, lin_y_pred)
     0.864963503649635
```

- ▼ Kernel SVM (c=1, kernel='rbf')
- ▼ Modeling Kernel SVM (c=1, kernel='rbf')

```
1 from sklearn.svm import SVC

1 ksvmc = SVC(C=1, kernel='rbf', random_state=0)
```

▼ Training - Kernel SVM (c=1, kernel='rbf')

```
1 ksvmc.fit(x_train, y_train)

v SVC
SVC(C=1, random_state=0)
```

▼ Prediction - Kernel SVM (c=1, kernel='rbf')

```
1 kernel_y_pred = ksvmc.predict(x_test)
2 kernel_y_pred[:5]
array([0, 0, 0, 0], dtype=int64)
```

- ▼ Evaluation Kernel SVM (c=1, kernel='rbf')
- ▼ confusion_matrix

```
1 from sklearn.metrics import confusion_matrix

1 confusion_matrix(y_test, kernel_y_pred)
    array([[3285, 21],
        [ 40, 234]], dtype=int64)
```

▼ classification_report

0 1	0.99 0.92	0.99 0.85	0.99 0.88	3306 274
accuracy macro avg	0.95	0.92	0.98 0.94	3580 3580
weighted avg	0.98	0.98	0.98	3580

▼ accuracy_score

```
1 from sklearn.metrics import accuracy_score
1 accuracy_score(y_test, kernel_y_pred)
0.9829608938547486
```

▼ precision_score

```
1 from sklearn.metrics import precision_score

1 precision_score(y_test, kernel_y_pred)

0.9176470588235294
```

▼ recall_score

```
1 from sklearn.metrics import recall_score
1 recall_score(y_test, kernel_y_pred)
0.8540145985401459
```

▼ roc_curve

```
1 from sklearn.metrics import roc_curve

1 fpr, tpr, thresholds = roc_curve(y_test, kernel_y_pred)
```

ROC curve - fpr vs tpr

▼ roc_auc_score

```
1 from sklearn.metrics import roc auc score
   1 roc auc score(y test, kernel y pred)
   2 # The higher the AUC, the better the model's performance at distinguishing
   3 # between the positive and negative classes.
   4 # An AUC score of 1 means the classifier can perfectly distinguish
   5 # between all the Positive and the Negative class points.
       0.9238312557129043
▼ Kernel SVM (c=100, kernel='poly')
▼ Modeling - Kernel SVM (c=100, kernel='poly')
                                             πpr
   1 from sklearn.svm import SVC
```

▼ Training - Kernel SVM (c=100, kernel='poly')

1 ksvm100poly = SVC(C=1, kernel='poly', random state=0)

```
1 ksvm100poly.fit(x_train, y_train)
```

▼ SVC

▼ Prediction - Kernel SVM (c=100, kernel='poly')

```
1 y_pred_ksvm100poly = ksvm100poly.predict(x_test)
2 y_pred_ksvm100poly[:5]
array([0, 0, 0, 0], dtype=int64)
```

- ▼ Evaluation Kernel SVM (c=100, kernel='poly')
- ▼ confusion_matrix

```
1 from sklearn.metrics import confusion_matrix

1 confusion_matrix(y_test, y_pred_ksvm100poly)
    array([[3286, 20],
       [ 42, 232]], dtype=int64)
```

▼ classification_report

```
1 from sklearn.metrics import classification_report

1 print(classification_report(y_test, y_pred_ksvm100poly))

precision recall f1-score support

0 0.99 0.99 0.99 3306
```

1	0.92	0.85	0.88	274
accuracy			0.98	3580
macro avg	0.95	0.92	0.94	3580
weighted avg	0.98	0.98	0.98	3580

▼ accuracy_score

```
1 from sklearn.metrics import accuracy_score
```

```
1 accuracy_score(y_test, y_pred_ksvm100poly)
```

0.9826815642458101

▼ precision_score

```
1 from sklearn.metrics import precision_score
```

```
1 precision_score(y_test, y_pred_ksvm100poly)
```

0.9206349206349206

▼ recall_score

```
1 from sklearn.metrics import recall_score
```

```
1 recall_score(y_test, y_pred_ksvm100poly)
```

0.8467153284671532

▼ roc_curve

roc_auc_score

```
1 from sklearn.metrics import roc_auc_score

0.2 |
```

- 1 roc_auc_score(y_test, y_pred_ksvm100poly)
- 2 # The higher the AUC, the better the model's performance at distinguishing
- 3 # between the positive and negative classes.
- 4 # An AUC score of 1 means the classifier can perfectly distinguish
- ${\bf 5}$ # between all the Positive and the Negative class points.
 - 0.9203328608457969
- ▼ Kernel SVM (c=100, kernel='sigmoid')
- ▼ Modeling Kernel SVM (c=100, kernel='sigmoid')
 - 1 from sklearn.svm import SVC

```
1 ksvm100sigmoid = SVC(C=100, kernel='sigmoid', random_state=0)
```

▼ Training - Kernel SVM (c=100, kernel='sigmoid')

```
1 ksvm100sigmoid.fit(x_train, y_train)

▼ SVC

SVC(C=100, kernel='sigmoid', random_state=0)
```

Prediction - Kernel SVM (c=100, kernel='sigmoid')

```
1 y_pred_ksvm100sigmoid = ksvm100sigmoid.predict(x_test)
2 y_pred_ksvm100sigmoid[:5]
array([0, 0, 0, 0], dtype=int64)
```

- ▼ Evaluation Kernel SVM (c=100, kernel='poly')
- ▼ confusion_matrix

```
1 from sklearn.metrics import confusion_matrix

1 confusion_matrix(y_test, y_pred_ksvm100sigmoid)
    array([[3013, 293],
        [ 188, 86]], dtype=int64)
```

▼ classification_report

```
1 from sklearn.metrics import classification_report
```

1 print(classification_report(y_test, y_pred_ksvm100sigmoid))

	precision	recall	f1-score	support
	·			
0	0.94	0.91	0.93	3306
1	0.23	0.31	0.26	274
accuracy			0.87	3580
macro avg	0.58	0.61	0.59	3580
weighted avg	0.89	0.87	0.88	3580

▼ accuracy_score

```
1 from sklearn.metrics import accuracy_score
```

```
1 accuracy_score(y_test, y_pred_ksvm100sigmoid)
```

0.8656424581005586

▼ precision_score

1 from sklearn.metrics import precision_score

1 precision_score(y_test, y_pred_ksvm100sigmoid)

0.22691292875989447

▼ recall_score

```
1 from sklearn.metrics import recall_score
1 recall_score(y_test, y_pred_ksvm100sigmoid)
0.31386861313868614
```

▼ roc_curve

- Reciever Operating Characteristic curve
- can be used to evaluate classification, mostly used for binary classifiers such as Logistic regression/classification or sigmoid classification

```
3 plt.ylabel("tpr")
4 plt.title("ROC curve - fpr vs tpr")
5 plt.show()
```


▼ roc_auc_score

• Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores.

```
1 from sklearn.metrics import roc_auc_score
```

- 1 roc_auc_score(y_test, y_pred_ksvm100sigmoid)
- 2 # Area Under the Receiver Operating Characteristic Curve (ROC AUC)
- 3 # from prediction scores.
- 4 # The higher the AUC, the better the model's performance at distinguishing
- 5 # between the positive and negative classes.
- 6 # An AUC score of 1 means the classifier can perfectly distinguish
- 7 # between all the Positive and the Negative class points.

0.612620936938369

