Undergraduate Complexity Theory Lecture 6: Problems in P

Marcythm

July 10, 2022

1 Lecture Notes

Recap: Time Hierarchy Theorem $\implies \exists$ languages decidable in exponential time but not in P.

Definition 1.1. $\mathsf{EXP} = \bigcup_{k \in \mathbb{N}} \mathsf{TIME}(2^{n^k}) = \text{languages decidable in } 2^{\mathsf{poly}(n)} \text{ time.}$

Fact 1.2. $P \subseteq EXP$.

- 1. (ST-)PATH \in EXP, and with a cleverer algo, PATH \in P.
- 2. $2\text{-COL} \in \mathsf{EXP}$, with a cleverer algo, $2\text{-COL} \in \mathsf{P}$ too.
- 3. $3\text{-COL} \in \mathsf{EXP},$ but believed not in P.

Theorem 1.3 (BE '05). 3-COL is in $O(1.33^n)$ time.

- 4. LCS \in EXP, and with techniques like memorization and dynamic programming, LCS \in P.
- 5. 3-CLIQUE $\in O(n^3)$. in $O(n^2)$? not sure.

Fact 1.4. can do 3-CLIQUE in $O(n^3/\log^2 n)$ time, or $O(n^{2.38})$ time.

- 6. 4-CLIQUE $\in \mathsf{TIME}(n^4)$. in $\mathsf{TIME}(n^3)$?
- 7. k-CLIQUE within brute force is time $O(\binom{n}{k}\binom{k}{2}) = O(n^k)$: k-CLIQUE \in EXP. in P? don't know.

2 Reading

2.1 Sipser 7.2 (The Class P)