- 1. (a) To show $QR \leq \mathbb{Z}_p^*$ it is enough to show (i) $1 \in QR$, (ii) closure under multiplication, and (iii) closure under inversion.
 - i. Indeed $1 \in QR$, because $1 \equiv 1^2 \pmod{p}$
 - ii. Let $s_1, s_2 \in QR$. Then are $r_1, r_2 \in \mathbb{Z}_p^*$ s.t. $s_1 \equiv r_1^2 \pmod{p}$, $s_2 \equiv r_2^2 \pmod{p}$. Then follows:

$$s_1 s_2 \equiv r_1^2 r_2^2 = (r_1 r_2)^2 \pmod{p}$$

and $r_1r_2 \in \mathbb{Z}_p^*$ because \mathbb{Z}_p^* is a group. Therefore $s_1s_2 \in QR$ by definition.

iii. Let $s \in \mathbb{Z}_p^*$. Then there is $r \in \mathbb{Z}_p^*$ s.t. $s \equiv r^2 \pmod{p}$. Therefore:

$$s^{-1} \equiv (r^2)^{-1} = (r^{-1})^2 \pmod{p}$$

and $r^{-1} \in \mathbb{Z}_p^*$, therefore $s^{-1} \in QR$.

- (b) Let $g \in \mathbb{Z}_p^*$, $\mathbb{Z}_p^* = \langle g \rangle$. Assume by contradiction that $g \in QR$. Then there is an $r \in \mathbb{Z}_p^*$ s.t. $g \equiv r^2 \pmod{p}$. Because g generates \mathbb{Z}_p^* there exists $i \in \mathbb{Z}$ s.t. $r \equiv g^i \pmod{p}$. Therefore $g \equiv g^{2i} \pmod{p} \iff g^{2i-1} \equiv 1 \pmod{p}$. Therefore $2i 1 | o(g) = \varphi(p) = p 1$. Note that for prime p > 2 we know p is odd, therefore p 1 is even. On the other hand 2i 1 is odd, therefore we get a contradiction (that odd divides even), meaning $g \notin QR$. For the edge case where p = 2, \mathbb{Z}_p^* is the trivial group (of 1 element), and in this case the claim is not true (because $\mathbb{Z}_p^* = QR = \langle 1 \rangle$). From now on we will assume p > 2.
- (c) Let $g \in \mathbb{Z}_p^*$, $\mathbb{Z}_p^* = \langle g \rangle$.
 - i. Let $a \in \mathbb{Z}_p^*$. Assume $a \in QR$. Then there exists $r \in \mathbb{Z}_p^*$ s.t. $a \equiv r^2 \pmod{p}$. Because g generates \mathbb{Z}_p^* , there exists a $k \in \mathbb{Z}$ s.t. $r \equiv g^k \pmod{p}$. Therefore $a \equiv r^2 \equiv \left(g^k\right)^2 = g^{2k} \pmod{p}$.
 - ii. Let $a \in \mathbb{Z}_p^*$. Assume that $a \equiv g^{2k} \pmod{p}$ for some k. Then $a \equiv (g^k)^2 \pmod{p}$, $g^k \in \mathbb{Z}_p^*$, therefore by definition $a \in QR$.
- (d) Let $a \in \mathbb{Z}_n^*$, $\mathbb{Z}_n^* = \langle g \rangle$.
 - i. Assume $a \in QR$. Then by (c) there is a $k \in \mathbb{Z}$ s.t. $a \equiv g^{2k} \pmod{p}$. Therefore

$$a^{\frac{p-1}{2}} \equiv (g^{2k})^{\frac{p-1}{2}} = (g^{p-1})^k \equiv 1^k = 1 \pmod{p}$$

(Note that $q^{p-1} \equiv 1$ because o(q) = p - 1)

ii. Assume $a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$. There is an $i \in \mathbb{Z}$ s.t. $a \equiv g^i \pmod{p}$. Therefore

$$1 \equiv (g^i)^{\frac{p-1}{2}} = (g^{\frac{p-1}{2}})^i \stackrel{*}{=} (-1)^i \pmod{p}$$

Thus i is even (again assuming p > 2). Denote i = 2k, and now by (c) we get that $a \in QR$.

* - This can be explained as follows: $g^{\frac{p-1}{2}} \not\equiv 1$ because $o(g) = p-1 > \frac{p-1}{2}$, and $\left(g^{\frac{p-1}{2}}\right)^2 = g^{p-1} \equiv 1$.

Therefore necessarily $g^{\frac{p-1}{2}} \equiv -1$, because ± 1 are the only square roots of 1 (mod p). (There are no other roots because x^2-1 as at most 2 roots)

(e) Denote $a = g^x \mod p$. Then x is even \iff there is a $k \in \mathbb{Z}$ s.t. $x = 2k \iff a \in QR$ (by c) \iff $a^{\frac{p-1}{2}} \equiv 1 \pmod p$ (by d).

Therefore given $f(x) = g^x \mod p$ we can compute $b := (f(x))^{\frac{p-1}{2}} \mod p$. If b = 1 then necessarily x is even, i.e. parity(x) = 0. Otherwise (if b = 0) x is odd, i.e. parity(x) = 1.

 $a^n \mod p$ can be computed efficiently as follows: compute values a^{2^k} iteratively by squaring (mod p), until $2^k \ge n$ (note that we don't have to store a^{2^k} in memory, as we compute (mod p)). Then according to the binary representation of n, multiply these values for which the k'th bit of n is 1. The whole process involves $O(\log_2(n))$ multiplications mod p, which is linear in the number of bits of n.