

Optimal Algorithm for Max-Min Fairness Bandit

Zilong Wang¹, Zhiyao Zhang², **Shuai Li**¹

¹ Shanghai Jiao Tong University

² Ohio State University

Max-Min Fairness for Multiple Players

[Radunovic et al. 2007, Asadpour et al. 2010, Zahavi et al. 2013]

 maximize total reward maybe unfair to certain player

- max-min fairness maximizes the reward of the minimal player
- Max-min matching $m^* \in \arg\max_{m} \min_{i} \mu_{i,m_i}$ with Max-min value $\gamma^* = \max_{m} \min_{i} \mu_{i,m_i}$ utilities
- Usually assume #players ≤ #items

(Offline) Algorithm: Known Utilities $\{\mu_{i,k}\}$

- N players, K items, $N \leq K$
- Binary Search Threshold Test Algorithm [Panagiotas et al. 2023]
 - Sort $\{\mu_{i,k}\}_{i\in[N],k\in[K]}$
 - Binary search candidate max-min value γ :
 - Delete edges (i, k) with $\mu_{i,k} < \gamma$
 - Run Hungarian algorithm for max matching
 - If max matching has size N, set γ as lower bound, continue search

- Sort $\mu_{i,k}$: 1, 0.9, 0.8, 0.6, 0.5, 0.3
- Test $\gamma = 0.8$
 - Delete edges with $\mu_{i,k} < \gamma = 0.8$
 - Find max-matching of size = 3 = N Yes!

(Offline) Algorithm: Known Utilities $\{\mu_{i,k}\}$ 2

- *N* players, *K* items, $N \leq K$
- Binary Search Threshold Test Algorithm [Panagiotas et al. 2023]
 - Sort $\{\mu_{i,k}\}_{i\in[N],k\in[K]}$
 - Binary search candidate max-min value γ :
 - Delete edges (i, k) with $\mu_{i,k} < \gamma$
 - Run Hungarian algorithm for max matching
 - If max matching has size N, set γ as lower bound, continue search
 - Else set γ as upper bound, continue search
- Time complexity: $O(\log(NK) NK^2)$

- Sort $\mu_{i,k}$: 1,0.9,0.8, 0.6,0.5, 0.3
- Test $\gamma = 0.8$
 - Delete edges with $\mu_{i,k} < \gamma = 0.8$
 - Find max-matching of size = 3 = N Yes!
- Test $\gamma = 0.9$
 - Delete edges with $\mu_{i,k} < \gamma = 0.9$
 - Find max-matching of size = 2 < N No!

$$\Rightarrow \gamma^* = 0.8$$

Multi-Player Multi-Armed Bandit

- N players, K arms, $N \leq K$
- At round t = 1, 2, ..., T:
 - Each player $i \in [N]$ selects an arm $m_i(t) \in [K]$ and observes
 - No collision: 1-subgaussian reward $X_i(t)$ with unknown mean $\mu_{i,m_i(t)}$
 - Collision: 0 reward
 - Player i cannot observe other players' actions and rewards
 - (Decentralized) Each player updates him/herself
- Objective: Minimize max-min regret:

$$R(T) = \mathbb{E}\left[T\gamma^* - \sum_{t=1}^{T} \min_{i \in [N]} X_i(t)\right]$$

Existing Results

	Regret Type	Regret Bound	
Bistritz et al. ICML 2020	Upper Bound	$O(\exp(NK)\log T\log\log T + \exp\frac{1}{\Delta_1})$	
	Lower Bound	$\Omega\left(\frac{\log T}{\Delta}\right)$	huge ganl
Leshem. ICASSP 2025	Upper Bound	$O(N^2 K \log T \log \log T + \exp \frac{1}{\Delta_1})$	huge gap!

 $\Delta_1 \coloneqq \min_{i,i'k,k'} |\mu_{i,k} - \mu_{i',k'}| : \text{minimum gap among all } (i,k) \text{ pairs (require all pairs are distinct)}$ $\Delta \coloneqq \min_{(i,k):\mu_{i,k} < \gamma^*} (\gamma^* - \mu_{i,k}) : \text{minimum gap between max-min value and sub-optimal pair}$

Problem Hardness? Lower Bound

- Each sub-optimal pair (i, k) needs to be explored sufficient $\Omega\left(\frac{\log T}{\Lambda^2}\right)$ times
- But each round can explore multiple ($\leq N$) pairs with a matching
- There are NK pairs in total
- What is the problem hardness for the coefficient in front of $\Omega\left(\frac{\log T}{\Lambda^2}\right)$?
 - NK or N^2 or K?
- Can we design hard instance?

Lower Bound - Instance Design

- Increasing any pair in Gray-Box would change m^* and γ^*
- \implies Each pair needs to explore $N_{i,k} \ge \Omega\left(\frac{\log T}{\Lambda^2}\right)$
- Key Observation: $\exists O(N^2)$ pairs in Gray-Box, use this to prove coefficient of $O(N^2)$

Lower Bound Proof

• Regret =
$$\mathbb{E}\left[T\gamma^* - \sum_{t=1}^T \min_{i \in [N]} X_i(t)\right]$$
 matching without selecting 0-pair = $\Delta \cdot \mathbb{E}\left[\sum_{t=1}^T \mathbb{I}\left\{\min_{i} \mu_{i,m_i(t)} = 1/2\right\}\right] + \gamma^* \cdot \mathbb{E}\left[\sum_{t=1}^T \mathbb{I}\left\{\min_{i} \mu_{i,m_i(t)} = 0\right\}\right]$

suboptimal

- Claim: Without selecting 0-pair, at most one pair in Gray-Box will be selected
- $N_1 = \#\{\text{one } 1/2\text{-pair is selected and no 0-pair}\}$
- $N_2 = \#\{0\text{-pair is selected}\} \Rightarrow \text{ at most } N \frac{1}{2}\text{-pair is selected}$

•
$$\Omega\left(\frac{N^2 \log T}{\Delta^2}\right) = \sum_{i \in (N/2,N]} \sum_{k \in [1,N/2]} N_{i,k} \le N_1 + N \cdot N_2$$

 $\le N_1 + \frac{\gamma^*}{\Delta} \cdot N_2 = \text{Regret } / \Delta$

$$= \frac{(N^2 \log T)}{\Delta} \frac{\Delta \le \gamma^* / N}{\Delta}$$

Lower Bound Proof 2

- \forall pair (N, k) with k > N, increasing its value changes m^* and γ^*
- Each such pair needs to explore $\Omega\left(\frac{\log T}{\Delta^2}\right)$ times
- Each round explores at most one such pair $\Rightarrow \Omega\left(\frac{(K-N)\log T}{\Delta}\right)$ regret

Lower Bound

• Theorem (Lower Bound) N players, K arms, time horizon T, \exists an instance with $\Delta \leq \gamma^*/N$, s.t. any uniformly consistent algorithm satisfies the max-min regret

$$R(T) \ge \Omega\left(\frac{\max\{N^2, K\}\log T}{\Delta}\right)$$

Online Algorithm: Decentralized Fair Elimination

- Phased-based exploration
- At each phase s:
 - Exploration s.t. each remaining pair is selected for 2^s times
 - Players communicate their statistics: $\left\{\hat{\mu}_{i,k}, N_{i,k}\right\}_{i,k}$
 - Eliminate unnecessary pairs

Online Algorithm: Exploration

- Begin w/ any candidate matching m using remaining pairs
 - Such a matching must exist if only sub-optimal pairs are deleted
- Denote arms in m as candidate arms

Use any arm to make up a full matching

 $\Rightarrow N^2$ rounds to explore each pair once

Online Algorithm: Elimination

• For
$$(i,k)$$
, $UCB_{i,k}(t) = \hat{\mu}_{i,k}(t) + c\sqrt{\frac{\log T}{N_{i,k}(t)}}$, $LCB_{i,k}(t) = \hat{\mu}_{i,k}(t) - c\sqrt{\frac{\log T}{N_{i,k}(t)}}$

- Compute max-min value γ_{LCB} using LCB_{i,k}
 - $\Rightarrow \gamma_{LCB} \leq \gamma^*$ w.h.p.
- Eliminate pairs (i, k) if

 - (i, k) cannot form a matching

• UCB_{i,k} <
$$\gamma_{\text{LCB}}$$
, or when $N_{i,k} \ge \frac{\log T}{\left(\Delta_{i,k}/2\right)^2}$ before phase $s: 2^s \ge \frac{\log T}{\left(\Delta_{i,k}/2\right)^2}$

- Regret in phase $s \le (N^2 + K)2^s \cdot \max_{(i,k) \in \text{Phase } s} \Delta_{i,k} \le O\left((N^2 + K)2^s \cdot \sqrt{\frac{\log T}{2^s}}\right)$
- Regret $\leq O\left((N^2 + K)\sum_{s}\sqrt{2^s\log T}\right) \leq O\left((N^2 + K)\frac{\log T}{\Delta}\right)$

$$\left(s_{\max} \le O\left(\log \frac{\log T}{\Delta^2} \right) \right)$$

Online Algorithm: Regret

Theorem (Upper Bound) N players, K arms, time horizon T.
 The max-min regret of the Decentralized Fair Elimination algorithm satisfies

$$R(T) \le O\left(\frac{(N^2 + K)\log T}{\Delta} + C_{\text{comm}}\log T\right)$$

phase will go on if m^* is not unique

Result

	Regret Type	Regret Bound
Bistritz et al. ICML 2020	Upper Bound	$O(\exp(NK)\log T\log\log T + \exp\frac{1}{\Delta_1})$
	Lower Bound	$\Omega\left(\frac{\log T}{\Delta}\right)$
Leshem. ICASSP 2025	Upper Bound	$O(N^2K\log T\log\log T + \exp\frac{1}{\Delta_1})$
Our Work	Upper / Lower Bound	$\Theta\left((N^2+K)\frac{\log T}{\Delta}\right)$

Close the gap!

16

 $\Delta_1 \coloneqq \min_{i,i'k,k'} |\mu_{i,k} - \mu_{i',k'}|$: minimum gap among all (i,k) pairs (require all pairs are distinct)

 $\Delta := \min_{(i,k):\mu_{i,k}<\gamma^*} (\gamma^* - \mu_{i,k})$: minimum gap between max-min value and sub-optimal pair

Conclusion

- Lower bound: Design worst case instance
- Upper bound: Propose optimal exploration assignment strategy
- Future Direction:
 - Strategy-proof of players
 - Robustness against attacker
 - Extend the analysis to other notions of fairness, e.g., envy-freeness [Gamow et al. 1958] and proportionality [Steinhaus 1948]

Thanks! & Questions?

Shuai Li

- Associate professor at Shanghai Jiao Tong University
- Research interests: RL/ML Theory
- Personal website: https://shuaili8.github.io/

References

- [Asadpour et al. 2010] Asadpour, A. and Saberi, A. An approximation algorithm for max-min fair allocation of indivisible goods. SIAM Journal on Computing, 39(7):2970–2989, 2010.
- [Radunovic et al. 2007] Radunovic, B. and Le Boudec, J.-Y. A unified framework for max-min and min-max fairness with applications. IEEE/ACM Transactions on networking, 15(5): 1073–1083, 2007.
- [Zahavi et al. 2013] Zehavi, E., Leshem, A., Levanda, R., and Han, Z. Weighted max-min resource allocation for frequency selective channels. IEEE transactions on signal processing, 61 (15):3723–3732, 2013.
- [Panagiotas et al. 2023] Panagiotas, I., Pichon, G., Singh, S., and U c, ar, B. Engineering Fast Algorithms for the Bottleneck Matching Problem. In Gørtz, I. L., Farach-Colton, M., Puglisi, S. J., and Herman, G. (eds.), 31st Annual European Symposium on Algorithms (ESA 2023)
- [Bistritz et al. 2020] Bistritz, I., Baharav, T., Leshem, A., and Bambos, N. My fair bandit: Distributed learning of max-min fairness with multi-player bandits. In International Conference on Machine Learning, pp. 930–940. PMLR, 2020.
- [Leshem. 2025] Leshem, A. Near optimal privacy preserving fair multi-agent bandits*. In ICASSP 2025 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5, 2025. doi: 10.1109/ICASSP 49660. 2025.10889464.
- [Gamow et al. 1958] Gamow, George; Stern, Marvin (1958). Puzzle-math. Viking Press. ISBN 0670583359.
- [Steinhaus 1948] Steinhaus, Hugo (1948). "The problem of fair division". Econometrica. 16 (1): 101– 104. JSTOR 1914289.