#### 1 Foreword

Author: Anderson Chau

Disclaimer: The notes are written only for my memorization purpose after I have studied online lecture notes and blogs.

#### 2 Confusion Matrix

Predict True, Actual True: True Positive (TP)
Predict True, Actual False: False Positive (FP)
Predict False, Actual False: False Negative (FN)
Predict False, Actual True: True Negative (TN)

Accuracy = (TP+FN)/(TP+FP+FN+TN), performance of correct classification

Precision = TP / (TP+FP) (correctly classified as positive / Everything classified as positive), example usage: Cancer detection. (We don't want to initiate cancer treatment if the person is actually healthy).

Recall = TP / (TP + FN) ( correctly classified as positive / Actually positive ), FP is more expensive than TN . (e.g. Fraud detection).

Note: Mathematically, Precision and Recall are inverse relationship, there is a tradeoff between recall and precision.

F1 score = 2(P\*R)/(P+R), a compromised metric

#### 3 K-Nearest Neighbour

Description : Choose the \*majority\* class of nearest (e.g. Eclidean Distance ) K data points and classify it.

How to Choose K(hyper-paramaeter): General rule of thumb: sqrt(number of data)/2 or by searching and comparing different k's for highest prediction accuracy.

Normalization of data in preprocessing is a must

### 4 K-Means Clustering

Simple Description: Identify clusters by finding the centroid of data points

Algorithm:

- 1. Initialize  $\mu_1, \mu_2, \dots, \mu_k$  randomly (k is hyper-parameter)
- 2. Repeated until converge:
- (i)  $c^{(i)} := \arg\min_j ||x^{(i)} \mu_j||^2, j \in [1:k]$ , (i.e.  $c^{(i)}$  denote which  $\mu$  the  $x^{(i)}$  is linked to. Link each data point to nearest  $\mu_j$ . If  $x^{(i)}$  is nearest to  $\mu_s$ , then  $c^{(i)} = j$ . Thus, k partitions are created.)
- (ii)  $\mu_j:=\frac{\sum_{i=1}^m 1\{c^{(i)}=j\}x^{(i)}}{\sum_{i=1}^m 1\{c^{(i)}=j\}}$ , (i.e. For each data point in each partition from (i), find the new centroid and assign to  $\mu_k$

Proof of convergence of the algorithm: consider

$$J(c,\mu) = \sum_{i=1}^{m} ||x^{(i)} - \mu_{c^{(i)}}||^2$$

 $J(c,\mu)=\sum_{i=1}^m||x^{(i)}-\mu_{c^{(i)}}||^2$  Observation : J must be monotonically decreasing. It is because for step (i) It is adjusting  $c^{(i)}$  to reduce J, for step (ii) we are adjusting  $\mu_i$  to reduce J J is non-convext, it may get to local minimum. To try several random initial values, and choose the lowest J.

#### Linear Regression(MSE approach) 5

Hypothesis:

$$h_{\theta}(x) = \sum_{j} \theta_{j} x_{j} = \theta^{\top} x$$

We want to minimize MSE (Mean Square Error)

$$J(\theta) = \frac{1}{2} \sum_{i} \left( h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2} = \frac{1}{2} \sum_{i} \left( \theta^{\top} x^{(i)} - y^{(i)} \right)^{2}$$

Gradient of J:

$$\frac{\partial J(\theta)}{\partial \theta_j} = \sum_{i} x_j^{(i)} \left( h_{\theta}(x^{(i)}) - y^{(i)} \right)$$

Each  $\theta_j$  is updated for each step by gradient descent algorithm.

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

Practically:

- (i) Learning rate  $\alpha$  is hyperparameter and data dependent, larger, fewer steps to get to min. but may miss the minimum. (Monitor the loss curve, J value vs iteration).
- (ii) Batch GD is slow, may be Mini-Batch GD or Stochastic GD.
- (iii) If  $\alpha$  is small but the loss oscillate, converged and stop learning.

#### 6 Linear Regression(MLE approach)

#### 7 Logistic Regression

$$P(y = 1|x) = h_{\theta}(x) = \frac{1}{1 + \exp(-\theta^{\top}x)} \equiv \sigma(\theta^{\top}x)$$
$$P(y = 0|x) = 1 - P(y = 1|x) = 1 - h_{\theta}(x)$$

Loss function is

$$J(\theta) = -\sum_{i} \left[ y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$

Again, BGD for following gradient of J:

$$\frac{\partial J(\theta)}{\partial \theta_j} = \sum_i x^{(i)} j \left( h \theta(x^{(i)}) - y^{(i)} \right)$$

Interpretation: For a particular sample: if h return 1/0 and y return 1/0, the term is 0. if h return 1/0 and y return 0/1, the term is positive infinity.

#### 8 Logistic Regression(MLE approach)

#### 9 Softmax Regression(Multi-Class Logistic)

k classes, n x k parameters , and the hypothesis is :

$$h_{\theta}(x) = \begin{bmatrix} P(y=1|x;\theta) \\ P(y=2|x;\theta) \\ \vdots \\ P(y=K|x;\theta) \end{bmatrix} = \frac{1}{\sum_{j=1}^{K} \exp(\theta^{(j)\top}x)} \begin{bmatrix} \exp(\theta^{(1)\top}x) \\ \exp(\theta^{(2)\top}x) \\ \vdots \\ \exp(\theta^{(K)\top}x) \end{bmatrix}$$
(1)

Below Loss function is simple to understand: By referencing to previous hpothesis, we want to maximize the y=k associated probility.

$$J(\theta) = -\left[\sum_{i=1}^{m} \sum_{k=1}^{K} 1\{y^{(i)} = k\} \log \left( \frac{\exp(\theta^{(k)\top} x^{(i)})}{\sum_{j=1}^{K} \exp(\theta^{(j)\top} x^{(i)})} \right) \right]$$

Gradient of J is, we solve the problem by GD:

$$\nabla_{\theta^{(k)}} J(\theta) = -\sum_{i=1}^{m} \left[ x^{(i)} \left( 1\{y^{(i)} = k\} - P(y^{(i)} = k | x^{(i)}; \theta) \right) \right]$$

Where:

$$P(y^{(i)} = k | x^{(i)}; \theta) = \frac{\exp(\theta^{(k) \top} x^{(i)})}{\sum_{j=1}^{K} \exp(\theta^{(j) \top} x^{(i)})}$$

#### 10 BGD variation: Mini BGD/SGD

BGD use all training data in a single step, which is exteremely costly.

### 11 Loss function in Classification(Binary) Problem - General treatment

General Hypothesis :  $h_{\theta}(x) = x^T \theta$ 

Adjustment for binary classification:

$$\operatorname{sign}(h_{\theta}(x)) = \operatorname{sign}(\theta^{T} x) = \operatorname{sign}(t) = \begin{cases} 1 & \text{if } t > 0 \\ 0 & \text{if } t = 0 \\ -1 & \text{if } t < 0 \end{cases}$$

Measure of confidence :  $h_{\theta}(x) = x^T \theta$  gives larger value, more confident

Margin ( $yx^T\theta$ ): (i) if  $h_{\theta}(x)$  classify correctly, margin is positive, otherwise negative.

(ii) Therefore our objective is to maximize the margin ( we want both correct classification and be confident)

Consider the following loss function:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \phi\left(y^{(i)} \theta^{T} x^{(i)}\right)$$

We want penalize wrong classification and encourage correct one , we design  $\phi$  as  $\phi(z) \to 0$  as  $z \to \infty$ , while  $\phi(z) \to \infty$  as  $z \to -\infty$  where  $z = yx^T\theta$ , and examples are :

logistic loss :  $\phi_{\text{logistic}}(z) = \log(1 + e^{-z})$  , used in logistic regression

hinge loss :  $\phi_{\text{hinge}}(z) = [1 - z]_{+} = \max 1 - z, 0$ , used in SVM

Exponential loss  $\phi_{\rm exp}(z) = e^{-z}$ , used in boosting

# 12 Kernel Mapping (Special case demo by Linear Regression + Polymoninal Kernel)

- (I) Purpose : To x map from lower higher dimension. Useful when data are non-linearly separable(Transform to a curve)
- (II) Computation complexity does not necessarily increase proportionately.
- (III) Example : a mapping function  $\varphi: R \to R^4$ ,  $x \to [1, x, x^2, x^3]$ , and h is  $\theta^T x$  having  $\theta = [\theta_1, \theta_2, \theta_3, \theta_4]$

(IV) Terms : x is called attribute,  $x \to [1, x, x^2, x^3]$  called feature,  $\varphi$  feature map,  $\varphi: R^1 \to R^4$  in this case. d =1 p = 4

(IV) Another Example : a mapping function  $\varphi: R^3 \to R^{1000}$ ,  $x \to [1, x_1, x_1^2, x_1^3, x_1x_2, x_1x_2^2, \dots]$  (\*) ,let d = 3 , p =1000. If we exhaust all possibilities, then p = 1 + d +  $d^2$  +  $d^3$  (\*\*)

Recall GD stepping:

$$\theta := \theta + \alpha \sum_{i=1}^{n} (y^{(i)} - h_{\theta}(x^{(i)})) x^{(i)}$$

$$\theta := \theta + \alpha \sum_{i=1}^{n} (y^{(i)} - \theta^{T} x^{(i)}) x^{(i)}$$

Putting kernel mapping to the equation:

$$\theta := \theta + \alpha \sum_{i=1}^{n} (y^{(i)} - \theta^{T} \phi(x^{(i)})) \phi(x^{(i)})$$

We pause here to evaluate the cost of computing each of update (Curse of Demensionality...), considering (\*\*). If we just use the kernel direction, we suffer the curse of demensionality: Suppose d (data dimension) = 1000, then by using the mapping in (\*\*) we have p =  $10^9$ .  $\theta^T \phi(x^{(i)})$  need O(p) (dot product ), and O(np) for summing up all data in each step. Going back to BGD.

$$\theta := \theta + \alpha \sum_{i=1}^{n} (y^{(i)} - \theta^{T} \phi(x^{(i)})) \phi(x^{(i)})$$

, assuming  $\theta = \sum_{i=1}^n \beta_i \phi(x^{(i)})$  (\*) at some point, with initialization  $\theta = 0 = \beta$  It becomes

$$\theta := \sum_{i=1}^{n} \beta_i \phi(x^{(i)}) + \alpha \sum_{i=1}^{n} (y^{(i)} - \theta^T \phi(x^{(i)})) \phi(x^{(i)})$$

Rearranging:

$$\theta := \sum_{i=1}^{n} (\beta_i + \alpha(y^{(i)} - \theta^T \phi(x^{(i)}))) \phi(x^{(i)})$$

Therefore it is equivalent to updating  $\beta_i$  (instead of  $\theta_i$ ) by

$$\beta_i := \beta_i + \alpha(y^{(i)} - \theta^T \phi(x^{(i)}))$$

by (\*) above

$$\beta_i := \beta_i + \alpha \left( y^{(i)} - \sum_{j=1}^n \beta_j \phi(x^{(j)})^T \phi(x^{(i)}) \right)$$

Computing of LHS is fast because : (1) we can pre-compute  $\phi(x^{(j)})^T \phi(x^{(i)})$  for all i,j, and (2)  $\phi(x^{(j)})^T \phi(x^{(i)})$  can be represented by  $\langle x^{(i)}, x^{(j)} \rangle$ :  $\langle \phi(x), \phi(z) \rangle = 1 + \sum_{i=1}^d x_i z_i + \sum_{i,j \in \{1,...,d\}} x_i x_j z_i z_j + \sum_{i,j,k \in \{1,...,d\}} x_i x_j x_k z_i z_j z_k = 1 + \langle x, z \rangle + \langle x, z \rangle^2 + \langle x, z \rangle^3$  (\*\*)

Define K where K is n x n ( n is the number of training samples) matrix, with  $K(x,z) = \langle \phi(x), \phi(z) \rangle$ , where  $K_i j$  is  $\langle \phi(x^{(i)}), \phi(x^{(j)}) \rangle$ 

Therefore, the process is : (1) compute  $K_i j$  using (\*\*), for all  $i, j \in \{1, ..., n\}$ . Set  $\beta := 0$ ,

(2) Loop

$$\forall i \in \{1, \dots, n\}, \quad \beta_i := \beta_i + \alpha \left( y^{(i)} - \sum_{j=1}^n \beta_j K(x^{(i)}, x^{(j)}) \right)$$

in vectorized notation:

$$\beta := \beta + \alpha(\tilde{y} - K\beta)$$

When doing inference:

$$\theta^{T}\phi(x) = \sum_{i=1}^{n} \beta_{i}\phi(x^{(i)})^{T}\phi(x) = \sum_{i=1}^{n} \beta_{i}K(x^{(i)}, x)$$

In practice, we do computation using K ( at O(d) cost ) instead of directly from  $\phi(x)$  is much faster. Further, We only need to know K but "just only need to know" the existence of  $\phi(x)$ . There is no need to be able to write down  $\phi(x)$ . Consider the Kernel applied to bitmap: number of bits as d. (Great reduction!) Intuitively, K represents similarity matrix, i.e. K is small if  $\phi(x^{(j)})^T \phi(x^{(i)})$  is small

Example : Gaussian Kernel, it can support inifinitely dimensional space of mapping.

$$K(x,z) = \exp\left(-\frac{||x-z||^2}{2\sigma^2}\right)$$

Mercer Theorem : For K to be a valid Kernel iff K is PSD.

Application : To SVM, perceptron, linear regression, and other learning algorithms represented only in inner product  $\langle x, z \rangle$ , then Apply K(x,z)

# 13 Generative vs Discriminative Learning Algorithm

## 14 Entropy

Definition:

$$H(x) = -\sum_{i=1}^{n} p(x_i) \log_2 p(x_i)$$

where  $x_1, x_2...$  are all possible events of random variable (distribution) and  $p(x_1), p(x_2)...$  are the probabilities of the respective events.

Connection with uncertainty ( High Entropy , High Uncertainty ) :

Entropy measure the uncertainty of a distribution. Consider a random variable distribution: X=1 at 0.33, X=2 at 0.33, X=3 at 0.33, and another: X=1 at 0.98, X=2 at 0.01, X=3 at 0.01, we say the former distribution has higher uncertainty (more difficult to guess its value).

Connection with amount of information in a \*message\* ( not distribution):

Average number of bits (yes/no answers) NEEDED TO PROVIDE to tell x in a message. Therefore High Entropy. Higher Uncertainty , Higher Amount of Information.

Connection with Decision Tree splitting:

Remember that DT is greedy algorithm: It is to find the split that have greatest reduction in uncertainty (Information Gain) of the distribution (after splitting). We have a certain distribution

#### 15 SVM, Support Vector Machine

Assumptions for illustration : data in binary classes only, linearly separable (if not, then apply Kernel )

Main Idea in Training : We construct a separating hyperplane, the plane has largest distance to all data point.

How?

Let  $y \in \{-1, 1\}$ 

Define classifier  $h_{w,b}(x) = g(w^T x + b)$ , where  $w^T x + b$  is the formula of hyperplane, w is the normal vector to hyperplane.

where g : 
$$g(z) = 1$$
 if  $z \ge 0, g(z) = -1$  if  $z < 0$ 

where 
$$\mathbf{w} = [\theta_1 ... \theta_n]^T$$

Define functional margin (FM):  $\hat{\gamma}^{(i)} = y^{(i)}(w^T x + b)$ .

If FM is positive, it classify correctly. Negative, classify incorrectly.

If the magnitude is large, classifier is confident.

Define Geometric Margin (GM),  $\gamma_i = \frac{\hat{\gamma^i}}{\|w\|}$ 

Further define smallest distance from hyperplane to data points:  $\gamma = \min_{i=1,\dots,m} \gamma^{(i)}$ Thus, our training objective is to maximize this smallest distance.

$$\max_{\gamma, \mathbf{w}, b} \quad \gamma$$
s.t.  $y^{(i)}(\mathbf{w}^T \mathbf{x}^{(i)} + b) \ge \gamma$ ,  $i = 1, \dots, m$ 

$$\|\mathbf{w}\| = 1$$

The last condition ensure FM => GM

Why use GM instead of FM in training? We can always scale w and b to achieve greater magnitude in FM, therefore FM is meaningless for training. Rearranging:

$$\max_{\gamma, \mathbf{w}, b} \hat{\gamma} / \|\mathbf{w}\|$$
s.t.  $y^{(i)}(\mathbf{w}^T \mathbf{x}^{(i)} + b) \ge \hat{\gamma}, \quad i = 1, \dots, m$ 

In order to make it a convex optimization problem ( another subject to study !  $\mathrm{F!}$  )

- (1) we restrict the value of  $\hat{\gamma}=1$  , by scaling w and b (can do single w/b for all  $\hat{\gamma}$  ?)
- (2) and rewriting  $\frac{\hat{\gamma}}{\|\mathbf{w}\|} = \frac{1}{\|\mathbf{w}\|}$ , we get w in from nominator to denominator

$$\min_{\gamma, \mathbf{w}, b} \quad \frac{1}{2} \|\mathbf{w}\|^2$$

s.t. 
$$y^{(i)}(\mathbf{w}^T \mathbf{x}^{(i)} + b) \ge 1, \quad i = 1, ..., m$$

Apply cvx opt. library to solve the above problem

- 16 Boostrapping
- 17 Decision Tree, with Random Forest, Boosting
- 18 PCA, Principal Component Analysis
- 19 SVD, Singular Value Decomposition
- 20 Backpropagation
- 21 EM Algorithm
- 22 Generative Learning Algorithm
- 23 Reinforcement learning
- 24 MAP (Maximum a Posterior) vs MLE (Maximum Likelihood Estimation)
- 25 IDP, Indepent Component Analysis
- 26 Bias Variance Analysis
- 27 Hidden Markov Model
- 28 Apriori
- 29 Recommender System
- 30 Anomaly Detection
- 31 Perceptron