Tableaux Proposizionali

Corso di Logica

Brunella Gerla

Università dell'Insubria, Varese brunella.gerla@uninsubria.it

Per controllare se una formula P con n variabili diverse è soddisfacibile dobbiamo scrivere una tabella con 2^n righe.

Teorema di Cook

Il problema SAT di stabilire se una formula è soddisfacibile è un problema NP-completo.

Quindi controllare la soddisfacibilità è complicato.

Si possono comunque introdurre dei metodi per decidere la soddisfacibilità più velocemente almeno per alcuni tipi di formule.

Studiamo i TABLEAUX che sono un metodo per refutazione.

Definizione

Una formula P è una α -formula se ha la forma $A \wedge B$ oppure $\neg(A \vee B)$ oppure $\neg(A \to B)$. I ridotti di una α -formula sono definiti dalla seguente tabella:

	ridotti	
$A \wedge B$	Α	В
$\neg (A \lor B)$	$\neg A$	$\neg B$
$\neg (A \rightarrow B)$	Α	$\neg B$

Proposizione

Ogni α -formula è equivalente alla congiunzione dei suoi ridotti.

Definizione

Una formula P è una β -formula se ha la forma $A \vee B$ oppure $\neg(A \wedge B)$ oppure $A \to B$. I ridotti di una α -formula sono definiti dalla seguente tabella:

	ridotti	
$A \lor B$	Α	В
$\neg (A \land B)$	$\neg A$	$\neg B$
$A \rightarrow B$	$\neg A$	В

Proposizione

Ogni β -formula è equivalente alla disgiunzione dei suoi ridotti.

Proposizione

Ogni formula P è di uno dei seguenti tipi:

- P è un letterale;
- P è una doppia negazione, cioè $P = \neg \neg Q$;
- $P \ \dot{e} \ una \ \alpha$ -formula;
- $P \ \dot{e} \ una \ \beta$ -formula.

Definizione

Una coppia di letterali $X, \neg X$ si dice **complementare**.

Chiaramente una coppia complementare di letterali non è soddisfacibile. In generale vale che:

Proposizione

Un insieme di letterali è soddisfacibile se e solo se non contiene coppie complementari.

Esempio

Sia $P = (X \lor \neg Y) \land \neg X$. Se v è una valutazione che soddisfa P allora v deve soddisfare sia $X \lor \neg Y$ che $\neg X$.

Se v soddisfa $X \vee \neg Y$ allora v o soddisfa X oppure soddisfa $\neg Y$.

Quindi o v soddisfa sia X che $\neg X$ (che è impossibile) oppure v soddisfa $\neg X$ e $\neg Y$.

In particolare, la valutazione v(X)=0 e v(Y)=0 soddisfa la formula P. Vogliamo rappresentare questo ragionamento su un albero:

Le formule nello stesso nodo le leggiamo in AND mentre le formule su nodi diversi, ma allo stesso livello le leggiamo in OR.

Nota che nelle foglie ci sono solo letterali e in una delle foglie c'è una coppia complementare.

Definizione di tableau

Definizione

Un **tableau** per una formula P è un albero T i cui nodi sono etichettati con insiemi di sottoformule di P.

Denotiamo con E(n) l'etichetta del nodo n.

L'albero si costruisce per passi successivi.

Al passo 0 abbiamo un albero T_0 formato da un solo nodo con etichetta $\{P\}$.

Se al passo i-1 abbiamo costruito un albero T_{i-1} , al passo i costruiamo l'albero T_i guardando le foglie dell'albero T_{i-1} :

• Se nelle foglie ci sono solo letterali, allora la costruzione termina e T_{i-1} sarà l'albero finale.

- supponiamo che nell'etichetta E(n) della foglia n ci sia una formula G che non è un letterale. Allora si possono avere i seguenti casi:
 - Se G è una doppia negazione $G = \neg \neg G_1$, allora l'albero T_i si costruisce aggiungendo un nodo n_1 come successore di n e ponendo

$$E(n_1) = (E(n) \setminus \{G\}) \cup \{G_1\}.$$

Se G è una α formula con ridotti G_1 e G_2 , allora l'albero T_i si costruisce aggiungendo un nodo n_1 come successore di n e ponendo

$$E(n_1) = (E(n) \setminus \{G\}) \cup \{G_1, G_2\}.$$

Se G è una β formula con ridotti G_1 e G_2 , allora l'albero T_i si costruisce aggiungendo due nod n_1 e n_2 come successori di n e ponendo

$$E(n_1) = (E(n) \setminus \{G\}) \cup \{G_1\},\,$$

$$E(n_2) = (E(n) \setminus \{G\}) \cup \{G_2\}.$$

La costruzione termina sempre, perché la complessità delle formule diminuisce.

L'algoritmo presentato non è deterministico, perché ad ogni passo si possono scegliere nodi diversi e formule diverse all'interno di uno stesso nodo.

Conviene però applicare sempre prima le regole delle α formule (che non biforcano l'albero) e poi alle β formule.

Esempio

$$\neg(((X \to Y) \land (X \to \neg Y)) \to \neg X)$$

$$(X \to Y) \land (X \to \neg Y), \neg \neg X$$

$$(X \to Y) \land (X \to \neg Y), X$$

$$X \to Y, X \to \neg Y, X$$

$$\neg X, X \to \neg Y, X$$

$$Y, X \to \neg Y, X$$

$$\neg X, \neg X, X \to \neg Y, X$$

$$Y, \neg X, X \to \neg Y, X$$

In ogni foglia compare una coppia complementare.

Definizione

Un ramo di un tableau è **chiuso** se la foglia contiene una coppia complementare. Un tableau è **chiuso** se ogni ramo è chiuso.

Un ramo è **aperto** se non è chiuso. Un albero è aperto se ha almeno un ramo aperto.

Esempio

$$(\neg Y \to X) \lor \neg (Z \land Y \to \neg X)$$

$$\neg Y \to X \quad \neg (Z \land Y \to \neg X)$$

$$\neg \neg Y \quad X \quad Z \land Y, \neg \neg X$$

$$\mid \qquad \qquad \mid$$

$$Y \quad Z, Y, X$$

Tutti i rami di questo albero sono aperti.

Questa formula è soddisfatta se v(Y) = 1 oppure se v(X) = 1 oppure se v(X) = v(Y) = v(Z) = 1.

Teorema di completezza e correttezza

Una formula P è insoddisfacibile se e solo se esiste un tableau chiuso per P.

E' possibile scrivere tableaux diversi per una stessa formula, ma se esiste un tableau chiuso per P allora sono tutti chiusi. Denoteremo con T_P un tableau che ha P come radice.

Correttezza. Se T_P è un tableau chiuso allora P è insoddisfacibile.

Dimostrazione.

Se n è un nodo di T_P definiamo l'altezza di n in T come:

- Se n è una foglia allora h(n) = 0;
- se n ha un figlio n_1 allora $h(n) = h(n_1) + 1$.
- se n ha due figli n_1 e n_2 allora $h(n) = \max(h(n_1), h(n_2)) + 1$.

Dimostriamo per induzione su h(n) che per ogni nodo n di T_P l'insieme E(n) è insoddisfacibile.

Dimostrazione.

Se h(n)=0 allora n è una foglia e poiché T_P è chiuso allora E(n) contiene una coppia complementare quindi è insoddisfacibile. Sia h(n)>0, quindi n ha 1 o 2 figli. Sia $G\in E(n)$ la formula a cui si applica la regola.

• Se $G = \neg \neg G_1$ allora n_1 è il successore di n e

$$E(n_1) = (E(n) \setminus \{G\}) \cup \{G_1\};$$

per ipotesi di induzione, dato che $h(n_1) < h(n)$, $E(n_1)$ è insoddisfacibile. Quindi per ogni interpretazione v esiste una formula $P \in E(n_1)$ tale che v(P) = 0: se $P \in E(n)$ allora anche E(n) è insoddisfacibile; se $P = G_1$ allora $v(G) = v(G_1) = 0$ e quindi dato che $G \in E(n)$ ancora E(n) è insoddisfacibile.

Dimostrazione

• Se G è una α -formula allora c'è un figlio n_1 e

$$E(n_1) = (E(n) \setminus \{G\}) \cup \{G_1, G_2\}.$$

Per ipotesi di induzione $E(n_1)$ è insoddisfacibile e quindi per ogni valutazione v esiste una formula $P \in E(n_1)$ tale che v(P) = 0.

Se $P \in E(n)$ allora E(n) è insoddisfacibile.

Se invece $P \in E(n_1) \setminus E(n)$ allora o $P = G_1$ oppure $P = G_2$, quindi o $v(G_1) = 0$ oppure $v(G_2) = 0$ e quindi v(G) = 0.

Dimostrazione.

• Se G è una β -formula allora ci sono due figli n_1 e n_2 e

$$E(n_1) = (E(n) \setminus \{G\}) \cup \{G_1\}.$$

$$E(n_2) = (E(n) \setminus \{G\}) \cup \{G_2\}.$$

Per ipotesi di induzione $E(n_1)$ e $E(n_2)$ sono insoddisfacibili e quindi per ogni valutazione v esistono $P_1 \in E(n_1)$ e $P_2 \in E(n_2)$ tale che $v(P_1) = v(P_2) = 0$. Se $P_1 \in E(n)$ oppure $P_2 \in E(n)$ allora E(n) è insoddisfacibile.

Altrimenti $P_1 = G_1$ e $P_2 = G_2$ e quindi $v(G_1) = 0$ e $v(G_2) = 0$ e quindi v(G) = 0.

Quindi l'insieme E(n) è insoddisfacibile per ogni n e quindi anche la formula P che è l'unico elemento dell'etichetta della radice è insoddisfacibile.

Completezza

Se P è insoddisfacibile allora il tableau T_P è chiuso.

Definizione

Un insieme di formule Γ è un **Hintikka** set (o H-set) se:

- Γ non contiene coppie complementari;
- **2** Se $\neg \neg P \in \Gamma$ allora $P \in \Gamma$;
- **3** se $P \in \Gamma$ e P è una α formula con ridotti P_1 e P_2 allora $P_1, P_2 \in \Gamma$;
- **③** se P ∈ Γ e P è una β formula con ridotti P_1 e P_2 allora o $P_1 ∈ Γ$ oppure $P_2 ∈ Γ$.

Esempio

L'insieme $\Gamma_1 = \{X \to Y, Y, Z\}$ è un Hintikka set.

 $\Gamma_2 = \{Y, X \to Y, X \land Z, X\}$ non è un Hintikka set.

$$\Gamma_3 = \{X, Y, \neg Y, X \rightarrow Y, X \land Z, Z\}$$
?

Nel seguito invece dell'induzione strutturale useremo l'induzione sul rango di una formula definito nel seguente modo:

Definizione

Il rango rg(P) di una formula P è dato da:

- Se P è un letterale allora rg(P) = 1;
- se $P = \neg \neg P_1$ allora $rg(P) = rg(P_1) + 1$;
- se P è una α formula o una β formula con ridotti P_1 e P_2 allora $rg(P) = rg(P_1) + rg(P_2) + 1$

Lemma 1

Ogni H-set è soddisfacibile.

Dimostrazione.

Sia Γ un H-set. Definiamo una valutazione ν tale che

$$v(X) = \begin{cases} 1 & \text{se } X \in \Gamma \\ 0 & \text{se } X \notin \Gamma \end{cases}$$

Dimostriamo per induzione su rg(P) che per ogni $P \in \Gamma$ si ha v(P) = 1. Se rg(P) = 1 allora P è un letterale: se $P = X \in \Gamma$ allora per definizione v(P) = 1; altrimenti se $P = \neg X \in \Gamma$ allora $X \notin \Gamma$ e quindi v(X) = 0 e v(P) = 1;

Se rg(P) > 1 allora

• Se $P = \neg \neg P_1 \in \Gamma$ allora poiché Γ è un Hintikka set, $P_1 \in \Gamma$. Dato che $rg(P_1) < rg(P)$ per ipotesi di induzione si ha che $v(P_1) = 1$ e quindi v(P) = 1.

Dimostrazione.

- Se $P \in \Gamma$ è una α formula con ridotti P_1 e P_2 , allora $P_1, P_2 \in \Gamma$ e per ipotesi di induzione $v(P_1) = v(P_2) = 1$, quindi v(P) = 1.
- Se $P \in \Gamma$ è una β formula con ridotti P_1 e P_2 , allora o $P_1 \in \Gamma$ o $P_2 \in \Gamma$ e quindi per ipotesi di induzione o $v(P_1) = 1$ oppure $v(P_2) = 1$, quindi v(P) = 1.

Lemma 2

Se r è un ramo aperto di un tableau T allora l'insieme di formule

$$R = \bigcup_{n \in r} E(n)$$

è un H-set.

Dimostrazione.

- R non contiene coppie complementari perché è aperto.
- ② Se $\neg \neg P \in R$ allora P appartiene all'etichetta del nodo successivo rispetto a quello che contiene $\neg \neg P$ e quindi $P \in R$.
- **3** Se P ∈ R è una α formula con ridotti P_1 e P_2 e P ∈ E(n) ⊆ R allora n ha un successore n_1 tale che $P_1, P_2 ∈ E(n_1) ⊆ R$.
- Se $P \in R$ è una β formula con ridotti P_1 e P_2 e $P \in E(n) \subseteq R$ allora n ha due successori n_1 e n_2 . Se $n_1 \in r$ allora $P_1 \in E(n_1) \subseteq R$. Altrimenti $n_2 \in r$ e quindi $P_2 \in R$.

Dimostrazione della completezza

Se r è un ramo aperto di un tableau T, l'insieme

$$R = \bigcup_{n \in r} E(n)$$

è un *H*-set e quindi è soddisfacibile.

Quindi la radice P dell'albero è soddisfacibile.

Quindi se T_P è un tableau aperto allora P è soddisfacibile, che equivale a dire che

Se P non è soddisfacibile allora T è chiuso.

Proposizione

P è una tautologia se e solo se $T_{\neg P}$ è un tableau chiuso.

Dimostrazione.

P è una tautologia se e solo se $\neg P$ è una contraddizione se e solo se $T_{\neg P}$ è chiuso.

Se il tableau T_P ha un ramo aperto r la cui foglia è n, allora l'interpretazione

$$v(X) = \begin{cases} 1 & \text{se } X \in E(n) \\ 0 & \text{altrimenti;} \end{cases}$$

soddisfa la formula P.

Esempio

Sia $P = \neg(\neg(X \to \neg Y) \to (X \land Y))$. Un tableau per questa formula è :

$$\neg(\neg(X \to \neg Y) \to (X \land Y))$$

$$\neg(X \to \neg Y), \neg(X \land Y)$$

$$X, \neg\neg Y, \neg(X \land Y)$$

$$X, Y, \neg X, X, Y, \neg Y$$

Entrambi i rami sono chiusi quindi P è insoddisfacibile e la formula

$$\neg P = \neg (X \to \neg Y) \to (X \land Y)$$

è una tautologia.

Provare che invece la formula

$$(X \rightarrow Y) \land ((X \rightarrow \neg Y) \rightarrow \neg X)$$

non è una tautologia e trovare una valutazione che non la soddisfa.

Possiamo usare i tableaux anche per trattare la conseguenza logica. Si ha che

Proposizione

Un insieme finito di formule Γ è soddisfacibile se il tableau che ha Γ come radice è aperto.

Esempio

Sia
$$\Gamma = \{X \rightarrow Y, X \lor Y\}.$$

Il tableau è aperto e quindi l'insieme Γ è soddisfacibile (prova).

$$\Gamma_1 = \{X \vee Y, Y \to Z, \neg (X \vee Z)\}$$
 è insoddisfacibile.

Si ha quindi che

$$\Gamma \vDash P \qquad \text{se e solo se}$$

$$\Gamma \cup \{\neg P\} \text{ è insoddisfacibile} \qquad \text{se e solo se}$$

$$T_{\Gamma \cup \{\neg P\}} \text{ è chiuso}.$$

Esempio

Verificare se valgono o no le seguenti conseguenze logiche:

$$\neg X \vDash (X \land \neg Y) \to (X \land Y)$$
$$X \to Y \vDash \neg X \to Y$$
$$X \to Y \vDash \neg Y \to \neg X.$$

Un tableau aperto per una formula ${\cal P}$ permette anche di scrivere una forma normale disgiuntiva ad essa equivalente:

Se T_P ha le foglie n_1, \ldots, n_s allora P è equivalente alla formula

$$\bigvee_{i=1}^{s} \left(\bigwedge_{\ell \in E(n_i)} \ell \right)$$

dove gli ℓ sono i letterali che compaiono nelle etichette $E(n_i)$.