2.10 Solution set of a quadratic inequality. Let $C \subseteq \mathbb{R}^n$ be the solution set of a quadratic inequality,

$$C = \{ x \in \mathbf{R}^n \mid x^T A x + b^T x + c \le 0 \},\$$

with $A \in \mathbf{S}^n$, $b \in \mathbf{R}^n$, and $c \in \mathbf{R}$.

- (a) Show that C is convex if $A \succeq 0$.
- (b) Show that the intersection of C and the hyperplane defined by $g^T x + h = 0$ (where $g \neq 0$) is convex if $A + \lambda g g^T \succeq 0$ for some $\lambda \in \mathbf{R}$.

Are the converses of these statements true?

- (a) 方法一:
 - 设 x=y+v, 且 y 和v 是对称矩阵
 - x' *A * x + b' * x + c = (y' + v') *A * (y + v) + b' (y + v) + c

$$=y'*A*y+(b'+2*v'*A)*y+v'*A*v+b'*v+c$$

设 v'=-1/2*b'*inv(A),

k = -(v' * A * v + b' * v + c)

- =-1/4*b'*(inv(A))'*b+1/2*b'*(inv(A))'*b-c
- =1/4*b'*(inv(A))'*b-c
- 设 D={y∈R^n|y'*A*y≤k}
- (1) k < 0
- D=空集
- (2) k=0
- $D=\{y \mid y=0\}$
- (3) k>0

 $D = \{y \in R \cap |y' * (A/k) * y \leq 1\}$

- ∵A/k 半正定
- ∴设 A/k=B*B 且 B 半正定
- ∴设 $S=\{z\in R^n|z'*z\leq 1\}$ 即 $S=\{z\in R^n|norm(z)\leq 1\}$
- ::任意 z1, z2∈S, norm(z1)≤1, norm(z2)≤1

任意 $\theta \in [0,1]$, norm $(\theta *z1 + (1-\theta)*z2) \le \theta *norm(z1) + (1-\theta)*norm(z2) \le 1$

- ∴S 是凸集
- ∴D 是凸集
- ∴C 是凸集

方法二:

- ∵Rⁿ 是凸集, diff((x'*A*x+b'*x),2)=2*A 半正定
- ∴x'*A*x+b'*x 是凸函数
- ∴设α =-c, x'*A*x+b'*x 的α次水平集C是凸集

方法三: 本质上用定义二证明 f(x)凸函数, 然后凸函数的 α 次水平集

∵Rⁿ 是凸集

设 f(x)=x'*A*x+b'*x+c

设 $g(t)=f(x+t*v)=\cdots$

∴设 f(t)=对任意 x∈Rⁿ, 任意 v∈Rⁿ, 任意t∈R

Converse ::

取 x 为 1x1 时, A=-1, b=0, c=-1

- ∴C=R 是凸集
- :A 不是半正定
- :.不成立

(b) 方法一:

设 $D = \{x \in R^n | x'*A*x+b'*x+c \le 0$ 且 $g'*x+h=0\}$

 $\exists \exists D = \{x \in R^n | x'*A*x+b'*x+c+(g'*x+h)'*(g'*x+h) \leq 0 \exists g'*x+h=0\}$

∴任意 x1∈D, g'*x1+h=0

任意 x2∈D, g'*x2+h=0

- ∴任意 $\theta \in [0,1]$, $g'*(\theta*x1+(1-\theta)*x2)+h=\theta*(g'*x1+h)+(1-\theta)*(g'*x2+h)=0$
- ∴F={x∈R|g'x+h=0}是凸集
- $x' * A * x + b' * x + c + \lambda * (g' * x + h)' * (g' * x + h)$

 $= x'*(A+\lambda*g*g')*x+(b'+\lambda*h'*g')*x+\lambda*x'*g*h+c+\lambda*h'*h$

 $\cdot \cdot diff(x'*(A+\lambda*g*g')*x+(b'+\lambda*h'*g')*x+\lambda*x'*g*h+c+\lambda*h'*h, 2)$

=2*(A+\/*g*g') 半正定

设 $E = \{x \in R \cap |x'*A*x+b'*x+c+(g'*x+h)'*(g'*x+h) \le 0\}$

∴凸函数 x'*(A+*g*g')*x+(b'+*h'*g')*x+*x'*g*h+c+*h'*h 的 0 次水平集 E 是凸

集

∴D=E∩F 是凸集

方法二:同(1)方法(3)

Converse:

取 x 为 1x1 时, A=-1, b=0, c=-1, g=0, h=0

- ∴D=R 是凸集
- :A 不是半正定
- :不成立
- **3.21** Pointwise maximum and supremum. Show that the following functions $f: \mathbf{R}^n \to \mathbf{R}$ are convex.
 - (a) $f(x) = \max_{i=1,...,k} ||A^{(i)}x b^{(i)}||$, where $A^{(i)} \in \mathbf{R}^{m \times n}$, $b^{(i)} \in \mathbf{R}^m$ and $|| \cdot ||$ is a norm on \mathbf{R}^m .
 - (b) $f(x) = \sum_{i=1}^{r} |x|_{[i]}$ on \mathbf{R}^n , where |x| denotes the vector with $|x|_i = |x_i|$ (i.e., |x| is the absolute value of x, componentwise), and $|x|_{[i]}$ is the ith largest component of |x|. In other words, $|x|_{[1]}, |x|_{[2]}, \ldots, |x|_{[n]}$ are the absolute values of the components of x, sorted in nonincreasing order.
- (a) : R^m 凸 集
 - **∴**||x||, x∈R^m 是凸函数
 - ∵Rⁿ 凸集
 - ∴||A(i)*x-b(i)||, 是凸函数
 - ∴f(x)=max(||A(i)*x-b(i)||), i=1,···,k 是凸函数
- (b) **∵**任意 x1, x2∈Rⁿ, 任意 θ∈[0,1]

$$\begin{split} f(\theta *_{X}1 + (1 - \theta) *_{X}2) &= \Sigma(|\theta *_{X}1 + (1 - \theta) *_{X}2|[i]) \\ &\leqslant \Sigma((\theta * |x_{1}| + (1 - \theta) *_{X}2|)[i]) \\ &\leqslant \theta *_{\Sigma}(|x_{1}|[i]) + (1 - \theta) *_{\Sigma}(|x_{2}|[i]) \\ &= \theta *_{f}(x_{1}) + (1 - \theta) *_{f}(x_{2}) \end{split}$$