DATA2002

Decision trees and random forests

Garth Tarr

Decision trees

Random forests

Decision trees

A decision tree determines the predicted outcome based on series of questions and conditions.

When making Decision Trees, there are several factors we take into consideration.

- What features do we make our decisions on?
- What is the threshold for classifying each question into a yes or no answer?

Consider the iris dataset

```
library(tidyverse)
glimpse(iris)

## Rows: 150
## Columns: 5
```

```
library(GGally)
ggpairs(iris, mapping = aes(col = Species)) + t
```

```
## Rows: 150

## Columns: 5

## $ Sepal.Length <dbl> 5.1, 4.9, 4.7, 4.6, 5.0, 5.4, 0.8

## $ Sepal.Width <dbl> 3.5, 3.0, 3.2, 3.1, 3.6, 3.9, 0.4

## $ Petal.Length <dbl> 1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 4.5

## $ Petal.Width <dbl> 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 3.5

## $ Species <fct> setosa, setosa, setosa, setosa
```

Sepal.Length Sepal.Width Petal.Length Petal.Width **Species** 1.2 -Corr: 0.872*** Corr: 0.818*** versicolor: 0.754*** Corr: -0.428*** Corr: -0.366*** versicolor: 0.561*** versicolor: 0.664** Corr: 0.963*** versicolor: 0.787**

How can we construct a **decision tree** to determine the Species of iris given petal and sepal measurements?

R

Trees in R

- We can use the rpart package (recursive partitioning) to build our decision tree.
- It uses a formula structure, much like lm() and glm() to identify the dependent variable (what we're trying to predict) and the explanatory variables (what information do we have available to help prediction).

```
library(rpart)
tree = rpart(Species ~ ., data = iris, method = "class")
```

- The formula Species ~ . in the code above says we want to predict Species using all the variables in the data frame iris.
- Specifying method = "class" means we want to build a classification (decision) tree.

```
tree
```

```
## n= 150
##
## node), split, n, loss, yval, (yprob)
        * denotes terminal node
##
##
## 1) root 150 100 setosa (0.33333333 0.3333333 0.33333333)
##
    2) Petal.Length< 2.45 50 0 setosa (1.00000000 0.00000000 0.00000000) *
    3) Petal.Length>=2.45 100 50 versicolor (0.00000000 0.50000000 0.50000000)
##
##
   6) Petal.Width< 1.75 54 5 versicolor (0.00000000 0.90740741 0.09259259) *
##
   7) Petal.Width>=1.75 46  1 virginica (0.00000000 0.02173913 0.97826087) *
 summary(tree)
## Call:
## rpart(formula = Species ~ ., data = iris, method = "class")
   n= 150
##
##
```

CP nsplit rel error xerror xstd

1 0.50 0 1.00 1.16 0.05127703 ## 2 0 44 1 0 50 0 72 0 06119923

Trees in R

```
library(rpart)
tree = rpart(
   Species ~ .,
   data = iris,
   method = "class")

library(rpart.plot)
rpart.plot(tree)
```

- Using the rpart.plot() function from the rpart.plot library, we can visualise the results of our classification tree.
- Each node shows the predicted class, the predicted probability of each class, and the percentage of observations in each node.

Is it magic?

How does it work? In this tree, we only need to consider two variables.

```
p1 = iris %>% ggplot() +
  aes(x = Petal.Length,
      y = Petal.Width,
      colour = Species) +
  geom_point(size = 4) +
  theme_classic(base_size = 30)
```


Is it magic?

The first branch is done to "best" split the data to create the most "pure" (homogenous) partitions.

Petal.Length < 2.45

```
p2 = p1 +
  geom_vline(
   aes(xintercept=2.45),
   size = 2
)
```


Is it magic?

The next branch applies to observations that have Petal.Length > 2.45 and it tries to find the next best split of the data.

Petal.width < 1.75

Alternative visualisation with partykit

install.packages("partykit") # A Toolkit for Recursive Partytioning
library(partykit)
plot(as.party(tree))

Making a prediction

How would we predict the species of a flower with

- Sepal.Length = 5.0
- Sepal.Width = 3.9
- Petal.Length = 1.4
- Petal.Width = 0.3

How about:

- Sepal.Length = 5.0
- Sepal.Width = 3.9
- Petal.Length = 3.4
- Petal.Width = 0.3

Making a prediction

This was our fitted model:

```
tree <- rpart(Species ~ ., data = iris, method = "class")
```

Using predict(), we can predict the class of a new data point, much like for lm() and glm() objects.

```
predict(tree, new_data, type = "class")
```

```
## 1 2
## setosa versicolor
## Levels: setosa versicolor virginica
```

Assessing in sample performance in the iris data

```
library(caret)
 predicted_species = predict(tree, type = "class")
 confusionMatrix(
   data = predicted_species,
   reference = iris$Species)
## Confusion Matrix and Statistics
##
               Reference
##
## Prediction setosa versicolor virginica
                    50
##
     setosa
                                          0
    versicolor
                               49
##
    virginica
                                         45
##
## Overall Statistics
##
                  Accuracy: 0.96
                    95% CI: (0.915, 0.9852)
       No Information Rate: 0.3333
##
       P-Value [Acc > NIR] : < 2.2e-16
```

Kappa : 0.94

##

Model selection

- How did our tree know to know to only use two splits?
- There is a **complexity parameter** that can be used to determine if a proposed new split *sufficiently* improves the predictive power or not.
- A choice is made whether to keep or "prune" a proposed new branch.
- Default is that a branch should decrease the error by 1%.
- This helps to avoid overfitting.

Titanic tree

```
data("Titanicp", package = "vcdExtra")
titanic tree = rpart(survived ~ sex + age + pclass, data = Titanicp, method = "class")
titanic_tree
## n= 1309
##
## node), split, n, loss, yval, (yprob)
       * denotes terminal node
##
##
   1) root 1309 500 died (0.6180290 0.3819710)
##
    2) sex=male 843 161 died (0.8090154 0.1909846)
      4) age>=9.5 800 136 died (0.8300000 0.1700000) *
##
##
      5) age< 9.5 43 18 survived (0.4186047 0.5813953)
##
       ##
       3) sex=female 466 127 survived (0.2725322 0.7274678) *
##
```

plot(as.party(titanic_tree))

What if we in lower the complexity parameter threshold, so that each new branch only needs to decrease the error by 0.9%?

What if we in increase the complexity parameter threshold, so that each new branch needs to decrease the error by 2%?

Evaluating (in-sample) performance

1% (default)

```
titanic_1_pred = predict(titanic_tree, type = "class")
confusionMatrix(data=titanic_1_pred, reference = Titanicp$survived)$table

## Reference
## Prediction died survived
## died 682 147
## survived 127 353

confusionMatrix(data=titanic_1_pred, reference = Titanicp$survived)$overall[1]

## Accuracy
## 0.7906799
```

Evaluating (in-sample) performance

0.9%

```
titanic_0.9_pred = predict(titanic_tree0.9, type = "class")
 confusionMatrix(data=titanic_0.9_pred,
                reference = Titanicp$survived)$table
##
            Reference
## Prediction died survived
##
    died
          718
                       164
    survived 91
##
                       336
 confusionMatrix(data=titanic_0.9_pred,
                reference = Titanicp$survived)$overall[1]
   Accuracy
## 0.8051948
```

Evaluating (in-sample) performance

2%

0.7799847

```
titanic_2_pred = predict(titanic_tree2, type = "class")
 confusionMatrix(data=titanic_2_pred,
                 reference = Titanicp$survived)$table
##
            Reference
## Prediction died survived
##
    died
          682
                       161
    survived 127
##
                       339
 confusionMatrix(data=titanic_2_pred,
                 reference = Titanicp$survived)$overall[1]
   Accuracy
```

Performance benchmarking

500

```
table(Titanicp$survived)

##
##
## died survived
```

What if our prediction model was just that everyone died? The accuracy would be:

```
809/(809+500)
```

```
## [1] 0.618029
```

809

##

When considering performance, we should take into account that a "null" model might appear to give quite good performance when we have unbalanced group sizes.

Evaluating (out-of-sample) performance

```
titanic_complete = Titanicp %>% select(survived, sex, age, pclass) %>% drop_na()
 train(survived ~ sex + age + pclass, data = titanic_complete,
       method = "rpart", trControl = trainControl(method = "cv", number = 10))
## CART
##
## 1046 samples
     3 predictor
##
     2 classes: 'died', 'survived'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 942, 941, 942, 941, 941, 941, ...
## Resampling results across tuning parameters:
##
##
    ср
        Accuracy Kappa
    0.01639344 0.7696021 0.5002840
    0.01873536 0.7648311 0.4910097
##
##
    0.45901639 0.6748002 0.2449885
##
## Accuracy was used to select the optimal model using
   the largest value.
## The final value used for the model was cp = 0.01639344.
```

Final model

The CV procedure suggested 1.6% for the complexity parameter.

Decision tree weaknesses

- Decision trees can become very complex very quickly without a complexity penalty, it will happily
 continue until perfect classification (likely massively overfitting the data).
- The selected tree might be very sensitive to the complexity penalty
- Can only make decisions parallel to axes:

A single tree is prone to overfitting

When you **overfit** you're modelling noise rather than signal.

Random forests

Random forests

In a **random forest** we grow many trees. Each one learns from different (sub)samples of observations and different combinations of variables.

A random forest is constructed by:

- 1. Choosing the number of decision trees to grow and the number of variables to consider in each tree.
- 2. Randomly selecting the rows of the data frame with replacement.
- 3. Randomly selecting the appropriate number of variables from the data frame.
- 4. Building a decision tree on the resulting data set.
- 5. Repeating this procedure a large number of times.
- 6. A prediction is be made by **majority rule**, i.e. running your new observation through all the trees in the forest and seeing which class is predicted most often.
- The randomForest::randomForest() function in R defaults to 500 trees each trained on sqrt(p) variables where p is the number of predictors in the full data set.

Ensemble learning: bagging (bootstrap aggregating)

Mode = Classification

Ensemble decision making

Source: GSS 32 / 36

randomForest in R

```
library(randomForest)
 iris_rf <- randomForest(Species ~ ., iris)</pre>
 iris rf
##
## Call:
    randomForest(formula = Species ~ ., data = iris)
                  Type of random forest: classification
##
                        Number of trees: 500
##
## No. of variables tried at each split: 2
##
           OOB estimate of error rate: 5.33%
## Confusion matrix:
              setosa versicolor virginica class.error
##
                  50
## setosa
                                                  0.00
## versicolor
                                                  0.06
                             47
## virginica
                                        45
                                                  0.10
```

Using the randomForest() function, we can train our ensemble learning using the same formula we passed to rpart.

randomForest in R

```
predict(iris_rf, new_data)
```

```
## 1 2
## setosa setosa
## Levels: setosa versicolor virginica
```

Again, we can use the same new_data values in the predict function as before to reach the same prediction we did with rpart.

Titanic random forest

MeanDecreaseGini

122,29587

21.97414

40.82804

##

sex

age

pclass

Note: OOB is short for: Out-of-bag

```
titanic_rf = randomForest(survived ~ sex + age + pclass, titanic_complete)
 titanic rf
##
## Call:
   randomForest(formula = survived ~ sex + age + pclass, data = titanic_complete)
##
                 Type of random forest: classification
                       Number of trees: 500
##
## No. of variables tried at each split: 1
##
         OOB estimate of error rate: 20.75%
##
## Confusion matrix:
##
      died survived class.error
## died
       567
                      52 0.08400646
## survived 165 262 0.38641686
 importance(titanic rf)
```

For more details on decision trees see Hastie, Tibshirani, and Friedman (2009; section 9.2) and James, Witten, Hastie, et al. (2017; chapter 8).

References

Hastie, T., R. Tibshirani, and J. Friedman (2009). *The Elements of Statistical Learning*. 2nd ed. Springer Series in Statistics. New York, NY, USA: Springer. URL: https://web.stanford.edu/~hastie/ElemStatLearn/.

James, G., D. Witten, T. Hastie, and R. Tibshirani (2017). An Introduction to Statistical Learning: With Applications in R. New York: Springer. URL: https://www-bcf.usc.edu/~gareth/ISL/.

Jed Wing, M. K. C. from, S. Weston, A. Williams, C. Keefer, A. Engelhardt, T. Cooper, Z. Mayer, B. Kenkel, the R Core Team, M. Benesty, et al. (2018). *caret: Classification and Regression Training.* R package version 6.0-80. URL: https://CRAN.R-project.org/package=caret.

Liaw, A. and M. Wiener (2002). "Classification and Regression by randomForest". In: *R News* 2.3, pp. 18-22. URL: https://CRAN.R-project.org/doc/Rnews/.

Therneau, T. and B. Atkinson (2018). *rpart: Recursive Partitioning and Regression Trees*. R package version 4.1-13. URL: https://CRAN.R-project.org/package=rpart.

Acknowledgements

Special thanks to Sarah Romanes **y** for providing content inspiration from her R Ladies talks on machine learning:

- sarahromanes.github.io/r-ladies-ML-1
- sarahromanes.github.io/r-ladies-ML-2