

US006323497B1

(12) United States Patent Walther

(10) **Patent No.:**

US 6,323,497 B1

(45) Date of Patent:

Nov. 27, 2001

(54) METHOD AND APPARATUS FOR CONTROLLING ION IMPLANTATION DURING VACUUM FLUCTUATION

(75) Inventor: Steven R. Walther, Andover, MA (US)

(73) Assignee: Varian Semiconductor Equipment Assoc., Gloucester, MA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: **09/586,492**

(22) Filed: Jun. 2, 2000

(51) Int. Cl. 7 G21G 5/10

(52) U.S. Cl. 250/492.21; 250/492.1

156/345

(56) References Cited

U.S. PATENT DOCUMENTS

4,283,631	8/1981	Turner 250/492 B
4,421,988	12/1983	Robertson et al 250/492.2
4,449,051	5/1984	Berkowitz 250/492.2
4,504,194	3/1985	Holden 417/48
4,587,433	5/1986	Farley 250/492.2
4,751,393	6/1988	Corey, Jr. et al 250/492.21
4,807,994	2/1989	Felch et al
4,922,106	5/1990	Berrian et al 250/492.2

5,475,618	*	12/1995	Le 364/550
5,572,038		11/1996	Sheng et al 250/492.21
			Jahns 156/345
5,760,409		6/1998	Chen et al 250/492.21
6,101,971	*	8/2000	Denholm 118/723

* cited by examiner

Primary Examiner—John F. Niebling Assistant Examiner—André C Stevenson

(74) Attorney, Agent, or Firm-Wolf, Greenfield & Sacks

(57) ABSTRACT

A method and apparatus for controlling implantation during vacuum fluctuations along a beam line. Vacuum fluctuations may be detected based on a detected beam current and/or may be compensated for without measuring pressure in an implantation chamber. A reference level for an ion beam current can determined and a difference between the reference value and the measured ion beam current can be used to control parameters of the ion implantation process, such as a wafer scan rate. The difference value can also be scaled to account for two types of charge exchanging collisions that result in a decrease in detected beam current. A first type of collision, a non-line of sight collision, causes a decrease in detected beam current, and also a decrease in the total dose delivered to a semiconductor wafer. A second type of collision, a line of sight collision, causes a decrease in detected beam current, but does not affect a total dose delivered to the wafer. Scaling of the difference can therefore be used to adjust a wafer scan rate that accounts for non-line of sight collisions.

15 Claims, 4 Drawing Sheets

