Diagnostic Structural Models: Examining the Distribution of Attributes

Lecture Overview

- This lecture will provide an understanding of structural models used in DCMs
 - What they are: estimates of how attributes are distributed in a sample of examinees
 - Differing types of structural models
 - Mplus: log-linear structural models
 - FlexMIRT: saturated log-linear structural models and higher order models
 - BayesNets Discussed in a future lecture
 - Other methods not readily available in commercial software

Notation Used Throughout

- Attributes: a = 1, ..., A
- Respondents: r = 1, ..., R
- Attribute Profiles: $\alpha_r = [\alpha_{r1}, \alpha_{r2}, ..., \alpha_{rA}]$
 - Each attribute α_{ra} today is defined as being 0 or 1: $\alpha_{ra} \in \{0,1\}$
- Latent Classes: c = 1, ..., C
 - We have $C = 2^A$ latent classes one for each possible attribute profile
 - An attribute profile is a specific permutation of all A attributes
- Items: i = 1, ..., I
 - Restricted to dichotomous item responses (either 0 or 1): $Y_{ri} \in \{0,1\}$
- **Q-matrix**: Elements q_{ia} are indicators an item i measures attribute a
 - q_{ia} is either 0 (does not measure a) or 1 (measures a): $q_{ia} \in \{0,1\}$

STRUCTURAL MODELS

DCM Structural Models

- Throughout this class, attribute profile base-rates have been mentioned as being influential in DCMs
 - Part of respondent diagnoses: the attribute "base rates"
 - Describes distribution of attribute profiles in a sample
 - Proportion of masters for any given attribute
 - Correlation of attributes
- The base-rates represent the probability any respondent has a given attribute profile
- For a test measuring A attributes, 2^A profiles are possible
 - The structural model provides the probability for each profile

DCMs are Constrained Latent Class Models

- Previously we've learned how different DCMs provide different parameterizations of the measurement component of the model
 - The LCDM and which attributes are specified in the q-matrix
- In this lecture we'll learn about the parameterization of the structural component of DCMs
 - Choice of structural model not dependent on the measurement component

Observed Data: Probability of observing examinee *r*'s vector of item responses to all *I* items

Measurement Component:

Product of Conditional Item Response Probabilities (Item Responses are Independent)

$$P(\mathbf{Y}_r = \mathbf{y}_r) = \sum_{c=1}^{C} v_c \prod_{i=1}^{I} \pi_{ic}^{y_{ri}} (1 - \pi_{ic})^{1 - y_{ri}}$$

Structural component:

Proportion of examinees in each class

DCM Structural Models – Defined

- ullet The parameter vector for the structural model is u_c
- Each attribute profile α_c has one
- v_c is the base-rate probability of attribute profile c:

$$\nu_c = P(\boldsymbol{\alpha}_c)$$

• The example estimates of ν_c for a 4-attribute Q-matrix are shown on the next slide

С	$ u_c$	$lpha_1$	$lpha_2$	$lpha_3$	$lpha_4$
1	.212	0	0	0	0
2	.070	0	0	0	1
3	.056	0	0	1	0
4	.084	0	0	1	1
5	.038	0	1	0	0
6	.026	0	1	0	1
7	.050	0	1	1	0
8	.153	0	1	1	1
9	.002	1	0	0	0
10	.003	1	0	0	1
11	.002	1	0	1	0
12	.017	1	0	1	1
13	.003	1	1	0	0
14	.011	1	1	0	1
15	.017	1	1	1	0
16	.255	1	1	1	1

Interpreting the Structural Model

- Because of numerous v_c parameters, interpretation can difficult
- Structural model can be useful for detecting attribute hierarchies
- Often, the ν_c parameters are re-expressed as:
 - The marginal probability an attribute is mastered in the population
 - The correlation between any two attributes

SAS Structural Model Summary

SAS can be used to compute summaries of the structural model

parameters

```
□ DATA structural;
 INPUT class eta alpha1-alpha4;
    .21247 0 0 0 0
   .03801 0 1 0 0
   .02582 0 1 0 1
    .00226 1 0 0 0
 10 .00354 1 0 0 1
 14 .01089 1 1 0 1
 15 .01733 1 1 1 0
 16 .25512 1 1 1 1
 RUN;
□ PROC FREQ DATA=structural;
 TABLE alpha1-alpha4;
 TABLE alpha1*alpha2 alpha1*alpha3 alpha1*alpha4
       alpha2*alpha3 alpha2*alpha4 alpha3*alpha4 / PLCORR;
 RUN:
```

R Structural Model Summary

 Using the psych package, we can calculate tetrachoric correlations using R:

```
if (!require(psych)) install.packages("psych")
library(psych)

structuralModel = read.csv(file = "structuralModelEstimates.csv")

# summarizing via tetrachoric correlations:

tetrachoric(x = structuralModel[,paste0("Att", 1:4)], weight = structuralModel$Prob)
```

SAS Structural Model Summary

• For each attribute, marginally:

Proportion of Masters

SAS Structural Model Summary

• For each pair of attributes:

Tetrachoric Correlation

Kendall's Tau-b 0.4963 0.724 Stuart's Tau-c 0.4571 0.752 Somers' D C R 0.5328 0.761 Somers' D R C 0.4624 0.754 Pearson Correlation 0.4963 0.724 Spearman Correlation 0.7809 0.899 Lambda Asymmetric C R 0.3470 1.501 Lambda Asymmetric R C 0.0641 2.310 Lambda Symmetric 0.2308 1.610 Uncertainty Coefficient C R 0.2053 0.653	Statistic	Value	ASE
Stuart's Tau-c 0.4571 0.752 Somers' D C R 0.5328 0.761 Somers' D R C 0.4624 0.754 Pearson Correlation 0.4963 0.724 Spearman Correlation 0.7809 0.899 Lambda Asymmetric C R 0.3470 1.501 Lambda Asymmetric R C 0.0641 2.310 Lambda Symmetric 0.2308 1.610 Uncertainty Coefficient C R 0.2053 0.653	Gamma	0.8961	0.6958
Somers' D C R 0.5328 0.761 Somers' D R C 0.4624 0.754 Pearson Correlation 0.4963 0.724 Spearman Correlation 0.4963 0.724 Tetrachoric Correlation 0.7809 0.899 Lambda Asymmetric C R 0.3470 1.501 Lambda Asymmetric R C 0.0641 2.310 Lambda Symmetric 0.2308 1.610 Uncertainty Coefficient C R 0.2053 0.653	Kendall's Tau-b	0.4963	0.7247
Somers' D R C 0.4624 0.754 Pearson Correlation 0.4963 0.724 Spearman Correlation 0.4963 0.724 Tetrachoric Correlation 0.7809 0.899 Lambda Asymmetric C R 0.3470 1.501 Lambda Asymmetric R C 0.0641 2.310 Lambda Symmetric 0.2308 1.610 Uncertainty Coefficient C R 0.2053 0.653	Stuart's Tau-c	0.4571	0.7520
Pearson Correlation 0.4963 0.724 Spearman Correlation 0.4963 0.724 Tetrachoric Correlation 0.7809 0.899 Lambda Asymmetric C R 0.3470 1.501 Lambda Asymmetric R C 0.0641 2.310 Lambda Symmetric 0.2308 1.610 Uncertainty Coefficient C R 0.2053 0.653	Somers' D C R	0.5328	0.7618
Spearman Correlation 0.4963 0.724 Tetrachoric Correlation 0.7809 0.899 Lambda Asymmetric C R 0.3470 1.501 Lambda Asymmetric R C 0.0641 2.310 Lambda Symmetric 0.2308 1.610 Uncertainty Coefficient C R 0.2053 0.653	Somers' D R C	0.4624	0.7542
Tetrachoric Correlation 0.7809 0.899 Lambda Asymmetric C R 0.3470 1.501 Lambda Asymmetric R C 0.0641 2.310 Lambda Symmetric 0.2308 1.610 Uncertainty Coefficient C R 0.2053 0.653	Pearson Correlation	0.4963	0.7247
Lambda Asymmetric C R 0.3470 1.501 Lambda Asymmetric R C 0.0641 2.310 Lambda Symmetric 0.2308 1.610 Uncertainty Coefficient C R 0.2053 0.653	Spearman Correlation	0.4963	0.7247
Lambda Asymmetric R C 0.0641 2.310 Lambda Symmetric 0.2308 1.610 Uncertainty Coefficient C R 0.2053 0.653	Tetrachoric Correlation	0.7809	0.8990
Lambda Symmetric 0.2308 1.610 Uncertainty Coefficient C R 0.2053 0.653	Lambda Asymmetric C R	0.3470	1.5014
Uncertainty Coefficient C R 0.2053 0.653	Lambda Asymmetric R C	0.0641	2.3100
	Lambda Symmetric	0.2308	1.6109
	Uncertainty Coefficient C R	0.2053	0.6539
Uncertainty Coefficient R C 0.2275 0.702	Uncertainty Coefficient R C	0.2275	0.7020

R Structural Model Summary

```
> tetrachoric(x = structuralModel[,paste0("Att", 1:4)], weight = structuralModel$Prob)

Call: tetrachoric(x = structuralModel[, paste0("Att", 1:4)], weight = structuralModel$Prob)
tetrachoric correlation
    Att1 Att2 Att3 Att4

Att1 1.00
Att2 0.78 1.00
Att3 0.73 0.74 1.00
Att4 0.70 0.63 0.71 1.00

with tau of
Att1 Att2 Att3 Att4
0.49 -0.13 -0.34 -0.30
```

Attribute Summary

• For the DTMR data, we have the following summary of attribute summary information

Attribute	Prop. Master		Tetrachoric Correlations		
1. Referent Unit	.312				
2. Partitioning/Iterating	.553	.781			
3. Appropriateness	.634	.723	.740		
4. Multiplicative Comparison	.619	.703	.626	.711	

- Such information is helpful in determining nature of attributes in a population of interest
 - Analogous to information about latent variables in CFA/MIRT

Differing Structural Models

- The structural model of a DCM has the potential to have an overwhelming number of parameters
 - For A attributes, total estimated: 2^A-1
 - All must sum to 1
 - Saturated model
- Multiple structural models exist
 - All <u>reduce</u> the number of parameters
 - All use <u>categorical data analysis</u> techniques to model u_c
- Analogous to latent variable covariance structure in structural equation modeling
 - Distribution of attributes is categorical, not continuous
 - Can help to determine nature of attribute relationships

Types of Structural Models

Log-linear model

- Models the natural logarithm of ν_c by the attributes in each profile
- Allows for varying levels of complexity
 - Most: Saturated Model full set of parameters
 - Least: Independent Attributes Model no parameters
- Implemented in Mplus and main focus of discussion today

Tetrachoric correlation model

- Provides an item factor model for latent attributes
- Uses only bivariate information for pairs of attributes
- Allows for covariance structures to be estimated
- Not available in any software packages (see Templin & Henson, 2006)

Hierarchical factors model

• Special case of tetrachoric correlation model (see de la Torre & Douglas, 2004)

Mixture models

- Henson and Templin (2005): used to evaluate types of pathological gamblers
- Also given by von Davier (2008)

Bayesian Networks

All of these except BayesNets are described in Chapter 8 of Rupp et al. (2010)

LOG-LINEAR STRUCTURAL MODELS

The Logic Behind Log-Linear Models

 Log-linear models take the set of probabilities from the structural model and re-express them on the log scale

$$\mu_c = \log \nu_c$$

- Re-expression on the log scale is convenient as these terms can now be modeled (predicted) by other features in the model
 - The attributes themselves
 - Covariates (if any)
- Because of the re-expression, redundant terms can be removed from the model
 - Simplifying estimation, improving parsimony
- In a structural model, there are 2^A probabilities... ...but they all add up to 1.0
 - Therefore there can only be at most $2^A 1$ log-linear model parameters

Log-Linear Structural Models

- The log-linear structural model is the easiest to implement with Mplus
 - Due to its availability in Mplus (called a latent variable mean)
- μ_c is the natural logarithm of ν_c :

$$\mu_c = \log \nu_c$$

• We can convert from μ_c back to probabilities:

$$v_c = \frac{\exp(\mu_c)}{\sum_{i=1}^{2^A} \exp(\mu_i)}$$

DTMR Latent Variable Means

- Mplus fixes the value of the last class "mean" to zero...
- So the rest are in reference to this last class

_				
Means				
C#1	-0.183	0.142	-1.288	0.198
C#2	-1.295	0.259	-5.006	0.000
C#3	-1.521	0.341	-4.455	0.000
C#4	-1.116	0.307	-3.637	0.000
C#5	-1.904	0.314	-6.058	0.000
C#6	-2.290	0.439	-5.213	0.000
C#7	-1.639	0.307	-5.347	0.000
C#8	-0.509	0.226	-2.257	0.024
C#9	-4.725	0.783	-6.036	0.000
C#10	-4.277	0.680	-6.288	0.000
C#11	-4.690	0.700	-6.704	0.000
C#12	-2.726	0.537	-5.076	0.000
C#13	-4.327	0.674	-6.422	0.000
C#14	-3.154	0.550	-5.737	0.000
C#15	-2.689	0.381	-7.049	0.000

 We can overcome this by subtracting off what the last class would have been from every cell

Categorical Latent Variables

Log-Linear Model Set Up

- It is important to remember that the structural model is a reexpression of the probability of any examinee having a given attribute pattern
 - The "saturated" log-linear model has as many parameters as possible $(2^A 1)$ for a test measuring A attributes)
- In our example, we have 4 attributes (16 probabilities, 15 of which must be estimated)
 - Mplus fixes the value of the last class to zero
- Our parameterization (and the Mplus implementation) will reflect this constraint
 - We will therefore omit what we will learn to be an intercept

Log-Linear Structural Model Notation

• Like the LCDM, the log-linear structural model parameters have several subscripts:

$$\gamma_{e,[a_1,\dots)}$$

- Subscript #1 e: the level of the effect
 - 0 would be the intercept but we won't have one
 - 1 is the main effect
 - 2 is the two-way interaction
 - 3 is the three-way interaction
- Subscript #2 $(a_1,...)$: the attributes the effect applies to
 - Same number of attributes listed as number in Subscript #2

Log-Linear Model for μ_c

- The structural model then uses an ANOVA-like model to predict the value of μ_c as a function of the attributes that are defined in attribute profile c
 - Shown for 4-attribute model (used in the DTMR)
 - Includes main effects, 2-way, 3-way, and 4-way interactions
- The general model is given by:

$$\begin{split} \mu_c &= \gamma_{1,(1)}(\alpha_{c1}) + \gamma_{1,(2)}(\alpha_{c2}) + \gamma_{1,(3)}(\alpha_{c3}) + \gamma_{1,(4)}(\alpha_{c4}) \\ &+ \gamma_{2,(1,2)}(\alpha_{c1})(\alpha_{c2}) + \gamma_{2,(1,3)}(\alpha_{c1})(\alpha_{c3}) + \gamma_{2,(1,4)}(\alpha_{c1})(\alpha_{c4}) \\ &+ \gamma_{2,(2,3)}(\alpha_{c2})(\alpha_{c3}) + \gamma_{2,(2,4)}(\alpha_{c2})(\alpha_{c4}) + \gamma_{2,(3,4)}(\alpha_{c3})(\alpha_{c4}) \\ &+ \gamma_{3,(1,2,3)}(\alpha_{c1})(\alpha_{c2})(\alpha_{c3}) + \gamma_{3,(1,2,4)}(\alpha_{c1})(\alpha_{c2})(\alpha_{c4}) \\ &+ \gamma_{3,(2,3,4)}(\alpha_{c2})(\alpha_{c3})(\alpha_{c4}) + \gamma_{4,(1,2,3,4)}(\alpha_{c1})(\alpha_{c2})(\alpha_{c3})(\alpha_{c4}) \end{split}$$

Main effects

- Because not all attribute profiles include all attributes, only some terms get used to predict each value of μ_c
- For profile 1: $\alpha_1 = [\alpha_{11} = 0; \alpha_{12} = 0; \alpha_{13} = 0; \alpha_{14} = 0]$: $\mu_1 = \gamma_{1,(1)}(0) + \gamma_{1,(2)}(0) + \gamma_{1,(3)}(0) + \gamma_{1,(4)}(0) + \gamma_{2,(1,2)}(0)(0) + \gamma_{2,(1,3)}(0)(0) + \gamma_{2,(1,4)}(0)(0) + \gamma_{2,(2,3)}(0)(0) + \gamma_{2,(2,4)}(0)(0) + \gamma_{2,(3,4)}(0)(0) + \gamma_{3,(1,2,3)}(0)(0)(0) + \gamma_{3,(1,2,3)}(0)(0)(0) + \gamma_{4,(1,2,3,4)}(0)(0)(0)(0)$
 - As all attributes are zero, the predicted value of $\mu_1=0$
- Although this may seem counter-intuitive, this is our constraint
 - We only get 15 parameters, not 16
 - The value of μ_1 is relative the probability ν_1 depends on the other terms in the model

• For profile 2:
$$\alpha_2 = [\alpha_{21} = 0; \alpha_{22} = 0; \alpha_{23} = 0; \alpha_{24} = 1]$$
:
$$\mu_2 = \gamma_{1,(1)}(0) + \gamma_{1,(2)}(0) + \gamma_{1,(3)}(0) + \gamma_{1,(4)}(1) + \gamma_{2,(1,2)}(0)(0) + \gamma_{2,(1,3)}(0)(0) + \gamma_{2,(1,4)}(0)(1) + \gamma_{2,(2,3)}(0)(0) + \gamma_{2,(2,4)}(0)(1) + \gamma_{2,(3,4)}(0)(1) + \gamma_{3,(1,2,3)}(0)(0)(0) + \gamma_{3,(1,2,4)}(0)(0)(1) + \gamma_{3,(1,2,3,4)}(0)(0)(1) + \gamma_{4,(1,2,3,4)}(0)(0)(0)(1)$$

• The main effect of attribute 4 only applies

$$\mu_4 = \gamma_{1,(4)}$$

• For profile 6:
$$\alpha_6 = [\alpha_{61} = 0; \alpha_{62} = 1; \alpha_{63} = 0; \alpha_{64} = 1]$$
:
$$\mu_6 = \gamma_{1,(1)}(0) + \gamma_{1,(2)}(1) + \gamma_{1,(3)}(0) + \gamma_{1,(4)}(1) + \gamma_{2,(1,2)}(0)(1) + \gamma_{2,(1,3)}(0)(0) + \gamma_{2,(1,4)}(0)(1) + \gamma_{2,(2,3)}(1)(0) + \gamma_{2,(2,4)}(1)(1) + \gamma_{2,(3,4)}(0)(1) + \gamma_{3,(1,2,3)}(0)(1)(0) + \gamma_{3,(1,2,4)}(0)(1)(1) + \gamma_{4,(1,2,3,4)}(0)(1)(0)(1) + \gamma_{3,(2,3,4)}(1)(0)(1) + \gamma_{4,(1,2,3,4)}(0)(1)(0)(1)$$

 The main effects of attribute 2 and attribute 4, and interaction between attributes 2 and 4 apply

$$\mu_6 = \gamma_{1,(2)} + \gamma_{1,(4)} + \gamma_{2,(2,4)}$$

• For profile 16: $\alpha_{16} = [\alpha_{16,1} = 1; \alpha_{16,2} = 1; \alpha_{16,3} = 1; \alpha_{16,4} = 1]$:

$$\begin{split} \mu_{16} &= \gamma_{1,(1)}(1) + \gamma_{1,(2)}(1) + \gamma_{1,(3)}(1) + \gamma_{1,(4)}(1) \\ &+ \gamma_{2,(1,2)}(1)(1) + \gamma_{2,(1,3)}(1)(1) + \gamma_{2,(1,4)}(1)(1) \\ &+ \gamma_{2,(2,3)}(1)(1) + \gamma_{2,(2,4)}(1)(1) + \gamma_{2,(3,4)}(1)(1) \\ &+ \gamma_{3,(1,2,3)}(1)(1)(1) + \gamma_{3,(1,2,4)}(1)(1)(1) \\ &+ \gamma_{3,(2,3,4)}(1)(1)(1) + \gamma_{4,(1,2,3,4)}(1)(1)(1)(1) \end{split}$$

All parameters apply

$$\begin{array}{l} \mu_{16} = \\ \gamma_{1,(1)} + \gamma_{1,(2)} + \gamma_{1,(3)} + \gamma_{1,(4)} + \gamma_{2,(1,2)} + \gamma_{2,(1,3)} + \gamma_{2,(1,4)} \\ + \gamma_{2,(2,3)} + \gamma_{2,(2,4)} + \gamma_{2,(3,4)} + \gamma_{3,(1,2,3)} + \gamma_{3,(1,2,4)} + \gamma_{3,(2,3,4)} + \gamma_{4,(1,2,3,4)} \end{array}$$

Interpretations of Model Parameters

- The log-linear model with ALL main effects and interactions is statistically equivalent to the saturated structural model
- Two-way interactions are analogous to bivariate correlations in categorical models
 - Higher-level interactions represent higher level of characteristics of attribute distribution (i.e., skewness, kurtosis, etc...)
- Models without interactions imply uncorrelated attributes
 - Main effects are essentially attribute base-rates
- Models without main effects or interactions assume all attribute profiles are equally likely
- Higher order interactions can be removed if not significantly different from zero

Log-Linear Model for ECPE Data (Templin & Hoffman, 2013)

- To demonstrate the log-linear model, we again present our an example with 3 attributes (so 8 classes)
 - Full model (all parameters)

Parameter	Estimate	SE	p-value
Y 0	-0.139	0.112	0.216
Y1,(1)	-3.539	0.888	0.000
Y _{1,(2)}	-3.228	1.378	0.019
Y _{1,(3)}	-0.846	0.220	0.000
Y _{2,(1,2)}	3.438	1.913	0.072
Y 2,(1,3)	1.578	1.079	0.144
Y _{2,(2,3)}	3.533	1.270	0.005
Y _{3,(1,2,3)}	-0.797	2.087	0.703

Reductions in the Structural Model

- Because the three-way interaction was not significant, we can remove that parameter from the model without greatly affecting model fit
 - New results:

Parameter	Estimate	SE	p-value
Y 0	-0.159	0.103	0.122
Y _{1,(1)}	-3.357	0.524	0.000
Y _{1,(2)}	-2.909	0.722	0.000
Y 1,(3)	-0.836	0.214	0.000
Y2,(1,2)	2.785	0.608	0.000
Y _{2,(1,3)}	1.255	0.583	0.031
Y _{2,(2,3)}	3.222	0.638	0.000

New Results for Attribute Probabilities

• The reduced model only slightly modifies the attribute probabilities:

С	Original η _c	New η _c
1	0.30	0.30
2	0.13	0.13
3	0.01	0.02
4	0.18	0.18
5	0.01	0.01
6	0.02	0.02
7	0.01	0.01
8	0.34	0.34

TETRACHORIC STRUCTURAL MODELS

Tetrachoric Structural Models

 Because most summary information is given about attributes and pairs of attributes, tetrachoric models have been developed

 Such models use the tetrachoric correlation between attributes as a model for the probability for each attribute pattern

Available in FlexMIRT, CDM package, and GDINA package

Defining Tetrachoric Correlations

- The tetrachoric correlation is a measure of the association between two binary variables (X,Y)
- The correlation comes from mapping the binary variables $\left(\widetilde{X},\widetilde{Y}\right)$ onto two "underlying" continuous variables
- Each of the continuous variables is bisected by a threshold (τ_X, τ_Y) which transforms the continuous response into a categorical outcome
- The distribution of the underlying continuous variables is

$$\begin{bmatrix} \widetilde{X} \\ \widetilde{Y} \end{bmatrix} \sim N \left(\mathbf{\mu} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \mathbf{\Xi} = \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} \right)$$

• ρ is the tetrachoric correlation coefficient

Tetrachoric Correlation Explained

Bivariate Contingency Table:

		X			
		0	1		
Y	0	0.27	0.04	0.31	
I	1	0.42	0.27	0.69	
		0.69	0.31	1.00	

$$P(X = 1, Y = 1) = P(\tilde{X} \ge \tau_X, \tilde{Y} \ge \tau_Y) =$$

$$\int_{\tau_X}^{\infty} \int_{\tau_Y}^{\infty} \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left(\tilde{X}^2 - 2\rho\tilde{X}\tilde{Y} + \tilde{Y}^2\right) d\tilde{Y} d\tilde{X}$$

Technical Specifics: Multivariate Attributes

 The tetrachoric models assume use the following function to model the probability of an attribute profile:

$$\eta_c = \int_{a_1}^{b_1} \int_{a_2}^{b_2} \dots \int_{a_s}^{b_s} \frac{1}{(2\pi)^{A/2} \mathbf{\Xi}^{1/2}} \exp \left[-\frac{1}{2} \widetilde{\boldsymbol{\alpha}}' \mathbf{\Xi}^{-1} \widetilde{\boldsymbol{\alpha}} \right] \partial \widetilde{\alpha}_A \dots \partial \widetilde{\alpha}_2 \partial \widetilde{\alpha}_1$$

Tetrachoric Correlation Matrix

Multivariate Normal Density

• Where:

$$a_{a} = \begin{cases} \kappa_{a} & if \quad \alpha_{ca} = 1 \\ -\infty & if \quad \alpha_{ca} = 0 \end{cases} \qquad b_{a}$$

$$b_a = \begin{cases} \infty & if & \alpha_{cb} = 1 \\ \kappa_a & if & \alpha_{cb} = 0 \end{cases}$$

Structured Matrices

• Placing a structure on the Ξ tetrachoric correlation matrix expands the model to mimic SEM (Templin & Henson, 2006)

CONCLUDING REMARKS

Take-home Points

- DCM Structural Models describe the distribution of attributes
 - Means
 - Correlations
 - Overall structure

- Log-linear structural models are implemented in Mplus
 - Provide great flexibility in terms of number of parameters
 - Allow for ability to detect higher order structures
 - Attribute hierarchies
 - Allow for potential to model attributes using covariates