$12a_{0350} (K12a_{0350})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -1.64650 \times 10^{477} u^{119} - 2.04219 \times 10^{477} u^{118} + \dots + 5.37967 \times 10^{477} b + 4.63499 \times 10^{477}, \\ &- 3.01914 \times 10^{477} u^{119} - 5.15986 \times 10^{477} u^{118} + \dots + 1.39872 \times 10^{478} a - 8.49918 \times 10^{477}, \\ &u^{120} + u^{119} + \dots + 20u - 4 \rangle \\ I_2^u &= \langle -3au + b - 6a - 2u - 5, \ 18a^2 - 3au + 30a - 4u + 15, \ u^2 - 2 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 126 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -1.65 \times 10^{477} u^{119} - 2.04 \times 10^{477} u^{118} + \dots + 5.38 \times 10^{477} b + 4.63 \times 10^{477}, \ -3.02 \times 10^{477} u^{119} - 5.16 \times 10^{477} u^{118} + \dots + 1.40 \times 10^{478} a - 8.50 \times 10^{477}, \ u^{120} + u^{119} + \dots + 20u - 4 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.215851u^{119} + 0.368900u^{118} + \dots - 7.05008u + 0.607642 \\ 0.306060u^{119} + 0.379613u^{118} + \dots + 5.50411u - 0.861574 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.332303u^{119} - 0.00324083u^{118} + \dots + 13.9294u + 1.86986 \\ 0.0130671u^{119} - 0.181215u^{118} + \dots - 8.87043u + 1.39199 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1.04132u^{119} + 1.06701u^{118} + \dots - 15.4491u + 4.99065 \\ -0.237104u^{119} - 0.338198u^{118} + \dots + 5.15503u - 0.569560 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.224721u^{119} + 0.373611u^{118} + \dots + 35.9761u - 7.40116 \\ 0.00695986u^{119} + 0.265753u^{118} + \dots + 10.9571u - 2.73290 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.319236u^{119} - 0.184456u^{118} + \dots + 5.05899u + 3.26185 \\ 0.0130671u^{119} - 0.181215u^{118} + \dots + 8.87043u + 1.39199 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1.29087u^{119} - 0.889115u^{118} + \dots + 8.87043u + 1.39199 \\ -0.0403642u^{119} + 0.0496315u^{118} + \dots + 0.215259u + 0.360299 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.476243u^{119} - 0.238640u^{118} + \dots + 10.5808u + 2.24891 \\ -0.0571666u^{119} - 0.190125u^{118} + \dots - 6.03312u + 0.790341 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.281956u^{119} + 0.848688u^{118} + \dots + 44.4292u - 6.63066 \\ 0.0206301u^{119} + 0.0726329u^{118} + \dots - 0.388572u + 0.172894 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $0.797956u^{119} + 1.82037u^{118} + \cdots + 33.6708u 21.8023$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{120} + 44u^{119} + \dots - 3756u + 289$
c_{2}, c_{6}	$u^{120} - 2u^{119} + \dots + 64u + 17$
c_3, c_8	$u^{120} + u^{119} + \dots + 20u - 4$
<i>C</i> ₄	$28561(28561u^{120} + 43940u^{119} + \dots - 1.49875 \times 10^8u + 1.98894 \times 10^7u^{119} + \dots + 1.49875 \times 10^8u + 1.98894 \times 10^7u^{119} + \dots + 1.49875 \times 10^8u^{119} + \dots + 1.498894 \times 10^8u^{119} + \dots + 1.$
c_5,c_{10}	$u^{120} + u^{119} + \dots - 36u - 4$
c_7,c_{12}	$u^{120} + 3u^{119} + \dots - 495u - 343$
<i>c</i> 9	$28561(28561u^{120} + 160381u^{119} + \dots - 9126759u - 5810977)$
c_{11}	$u^{120} + 55u^{119} + \dots + 208u + 16$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing	_
c_1	$y^{120} + 68y^{119} + \dots - 12388564y + 83521$	
c_2, c_6	$y^{120} + 44y^{119} + \dots - 3756y + 289$	
c_3, c_8	$y^{120} + 65y^{119} + \dots + 176y + 16$	-
c_4	$815730721 \\ \cdot (8.16 \times 10^8 y^{120} + 3.97 \times 10^{10} y^{119} + \dots - 1.14 \times 10^{16} y + 3.96 \times 10^{10} y^{119} + \dots + 1.14 \times 10^{16} y + 3.96 \times 10^{10} y^{119} + \dots + 1.14 \times 10^{16} y + 3.96 \times 10^{10} y^{119} + \dots + 1.14 \times 10^{16} y + 3.96 \times 10^{10} y^{119} + \dots + 1.14 \times 10^{16} y + 3.96 \times 10^{10} y^{119} + \dots + 1.14 \times 10^{16} y + 3.96 \times 10^{10} y^{119} + \dots + 1.14 \times 10^{16} y + 3.96 \times 10^{10} y^{119} + \dots + 1.14 \times 10^{10} y^{$	10 ¹⁴)
c_5, c_{10}	$y^{120} - 55y^{119} + \dots - 208y + 16$	
c_7, c_{12}	$y^{120} - 69y^{119} + \dots - 633301y + 117649$	
<i>c</i> ₉	$815730721 \\ \cdot (8.16 \times 10^8 y^{120} + 1.20 \times 10^{10} y^{119} + \dots - 3.67 \times 10^{14} y + 3.38 \times 10^{14} y^{110} + \dots + 3.00 \times 10^{14} y$	10^{13})
c_{11}	$y^{120} + 25y^{119} + \dots - 26880y + 256$	

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.202989 + 0.990498I		
a = 1.83289 - 0.71222I	-0.32290 - 2.49959I	0
b = -0.954993 + 0.764552I		
u = 0.202989 - 0.990498I		
a = 1.83289 + 0.71222I	-0.32290 + 2.49959I	0
b = -0.954993 - 0.764552I		
u = 0.125340 + 0.971618I		
a = 2.29726 - 1.15154I	-0.16867 - 2.70921I	0
b = -0.720096 + 0.848381I		
u = 0.125340 - 0.971618I		
a = 2.29726 + 1.15154I	-0.16867 + 2.70921I	0
b = -0.720096 - 0.848381I		
u = -0.215875 + 0.921340I		
a = -2.05386 - 0.66138I	-1.27200 + 6.24574I	0
b = 0.97482 + 1.02658I		
u = -0.215875 - 0.921340I		
a = -2.05386 + 0.66138I	-1.27200 - 6.24574I	0
b = 0.97482 - 1.02658I		
u = 1.067700 + 0.000614I		
a = 0.699094 + 0.164069I	-0.94837 + 7.62370I	0
b = -0.790349 + 0.550536I		
u = 1.067700 - 0.000614I		
a = 0.699094 - 0.164069I	-0.94837 - 7.62370I	0
b = -0.790349 - 0.550536I		
u = 0.147019 + 1.070360I		
a = 1.49597 + 0.11383I	0.041800 + 0.517074I	0
b = 0.387476 + 0.924439I		
u = 0.147019 - 1.070360I		
a = 1.49597 - 0.11383I	0.041800 - 0.517074I	0
b = 0.387476 - 0.924439I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.852150 + 0.335345I		
a = 0.862162 - 0.729618I	-6.79846 - 6.21229I	0
b = 0.007238 - 1.142000I		
u = -0.852150 - 0.335345I		
a = 0.862162 + 0.729618I	-6.79846 + 6.21229I	0
b = 0.007238 + 1.142000I		
u = 0.914607		
a = 0.851655	-5.82465	0
b = -0.435552		
u = 0.780664 + 0.465076I		
a = -1.096220 - 0.807047I	-4.16799 + 1.47675I	0
b = -0.008377 - 0.989825I		
u = 0.780664 - 0.465076I		
a = -1.096220 + 0.807047I	-4.16799 - 1.47675I	0
b = -0.008377 + 0.989825I		
u = -0.887719 + 0.193758I		
a = -0.588745 + 0.560769I	2.29091 + 2.82384I	0
b = 0.650690 + 0.951781I		
u = -0.887719 - 0.193758I		
a = -0.588745 - 0.560769I	2.29091 - 2.82384I	0
b = 0.650690 - 0.951781I		
u = 0.240892 + 1.065480I		
a = -0.498725 + 0.703933I	1.14757 + 2.11836I	0
b = -0.317623 - 0.022486I		
u = 0.240892 - 1.065480I		
a = -0.498725 - 0.703933I	1.14757 - 2.11836I	0
b = -0.317623 + 0.022486I		
u = 0.290138 + 0.858508I		
a = -0.03373 - 2.51112I	-0.31268 - 4.67708I	0
b = 0.281653 - 0.886609I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.290138 - 0.858508I		
a = -0.03373 + 2.51112I	-0.31268 + 4.67708I	0
b = 0.281653 + 0.886609I		
u = 0.258264 + 1.075510I		
a = 1.50891 - 0.07679I	1.67115 - 7.31624I	0
b = -1.143560 + 0.311585I		
u = 0.258264 - 1.075510I		
a = 1.50891 + 0.07679I	1.67115 + 7.31624I	0
b = -1.143560 - 0.311585I		
u = 0.764474 + 0.461851I		
a = -0.298629 + 0.362400I	2.98659 + 2.31380I	0
b = 0.670058 + 0.722219I		
u = 0.764474 - 0.461851I		
a = -0.298629 - 0.362400I	2.98659 - 2.31380I	0
b = 0.670058 - 0.722219I		
u = -0.160215 + 0.875406I		
a = -0.178043 + 0.956426I	1.78046 + 2.19670I	0
b = 0.237759 + 0.257881I		
u = -0.160215 - 0.875406I		
a = -0.178043 - 0.956426I	1.78046 - 2.19670I	0
b = 0.237759 - 0.257881I		
u = -1.115540 + 0.028792I		
a = -0.719250 + 0.216715I	0.99396 - 1.73965I	0
b = 0.717128 + 0.648150I		
u = -1.115540 - 0.028792I		
a = -0.719250 - 0.216715I	0.99396 + 1.73965I	0
b = 0.717128 - 0.648150I		
u = -0.240281 + 1.106510I		
a = -1.232710 + 0.037129I	2.78737 + 2.78465I	0
b = 0.996617 + 0.162947I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.240281 - 1.106510I		
a = -1.232710 - 0.037129I	2.78737 - 2.78465I	0
b = 0.996617 - 0.162947I		
u = -0.185554 + 1.130230I		
a = -0.482242 + 0.322174I	2.28964 + 2.10386I	0
b = 0.564824 + 0.004451I		
u = -0.185554 - 1.130230I		
a = -0.482242 - 0.322174I	2.28964 - 2.10386I	0
b = 0.564824 - 0.004451I		
u = 0.845851 + 0.117669I		
a = 0.432782 + 0.605481I	0.98227 - 8.35275I	0
b = -0.643954 + 1.038350I		
u = 0.845851 - 0.117669I		
a = 0.432782 - 0.605481I	0.98227 + 8.35275I	0
b = -0.643954 - 1.038350I		
u = -0.171786 + 0.834696I		
a = -1.92251 - 0.56569I	-2.12298 + 0.96742I	0
b = 0.729359 + 1.199970I		
u = -0.171786 - 0.834696I		
a = -1.92251 + 0.56569I	-2.12298 - 0.96742I	0
b = 0.729359 - 1.199970I		
u = -1.034480 + 0.561437I		
a = 1.085660 - 0.500482I	-8.61583 + 2.18923I	0
b = -0.207120 - 0.980921I		
u = -1.034480 - 0.561437I		
a = 1.085660 + 0.500482I	-8.61583 - 2.18923I	0
b = -0.207120 + 0.980921I		
u = 0.509258 + 1.080060I		
a = -0.693221 - 0.384489I	-2.20069 - 6.31530I	0
b = 0.161413 - 1.188380I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.509258 - 1.080060I		
a = -0.693221 + 0.384489I	-2.20069 + 6.31530I	0
b = 0.161413 + 1.188380I		
u = -1.200420 + 0.103729I		
a = 0.773407 + 0.381234I	-2.44940 - 13.11410I	0
b = -0.665350 + 1.057800I		
u = -1.200420 - 0.103729I		
a = 0.773407 - 0.381234I	-2.44940 + 13.11410I	0
b = -0.665350 - 1.057800I		
u = -0.616678 + 1.060240I		
a = 0.185913 - 0.231296I	-6.86455 + 3.65797I	0
b = 0.017347 - 1.145710I		
u = -0.616678 - 1.060240I		
a = 0.185913 + 0.231296I	-6.86455 - 3.65797I	0
b = 0.017347 + 1.145710I		
u = 0.071139 + 0.767821I		
a = -0.766900 + 0.278980I	-0.71039 + 1.36487I	-6.45479 + 0.I
b = 0.414325 + 1.037240I		
u = 0.071139 - 0.767821I		
a = -0.766900 - 0.278980I	-0.71039 - 1.36487I	-6.45479 + 0.I
b = 0.414325 - 1.037240I		
u = 1.225120 + 0.196206I		
a = -0.734550 + 0.348848I	-0.04980 + 7.04998I	0
b = 0.663880 + 0.999341I		
u = 1.225120 - 0.196206I		
a = -0.734550 - 0.348848I	-0.04980 - 7.04998I	0
b = 0.663880 - 0.999341I		
u = -0.527948 + 1.123740I		
a = 0.720724 - 0.101032I	-4.36117 + 11.26390I	0
b = -0.139915 - 1.287900I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.527948 - 1.123740I		
a = 0.720724 + 0.101032I	-4.36117 - 11.26390I	0
b = -0.139915 + 1.287900I		
u = 0.040199 + 1.251880I		
a = -0.974076 - 0.823210I	-0.72258 - 3.71661I	0
b = -0.177940 + 0.691389I		
u = 0.040199 - 1.251880I		
a = -0.974076 + 0.823210I	-0.72258 + 3.71661I	0
b = -0.177940 - 0.691389I		
u = 0.151062 + 0.722891I		
a = 1.43814 - 0.59435I	-2.51414 - 4.12934I	-16.4536 + 7.0812I
b = -0.484144 + 1.294440I		
u = 0.151062 - 0.722891I		
a = 1.43814 + 0.59435I	-2.51414 + 4.12934I	-16.4536 - 7.0812I
b = -0.484144 - 1.294440I		
u = -0.641582 + 0.334485I		
a = 0.157238 + 0.522437I	2.37369 + 3.13295I	-5.19542 - 2.99721I
b = -0.703427 + 0.562473I		
u = -0.641582 - 0.334485I		
a = 0.157238 - 0.522437I	2.37369 - 3.13295I	-5.19542 + 2.99721I
b = -0.703427 - 0.562473I		
u = -0.092146 + 1.281900I		
a = -1.13710 + 1.04294I	2.11803 + 1.48065I	0
b = 0.542386 - 0.612790I		
u = -0.092146 - 1.281900I		
a = -1.13710 - 1.04294I	2.11803 - 1.48065I	0
b = 0.542386 + 0.612790I		
u = -0.301148 + 1.254700I		
a = -1.19267 + 0.79638I	6.96547 + 6.35967I	0
b = 1.046590 - 0.593449I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.301148 - 1.254700I		
a = -1.19267 - 0.79638I	6.96547 - 6.35967I	0
b = 1.046590 + 0.593449I		
u = -0.066911 + 0.696541I		
a = -2.64854 - 2.78771I	-0.521713 - 0.088016I	-14.1626 + 0.5129I
b = -0.335906 - 0.774807I		
u = -0.066911 - 0.696541I		
a = -2.64854 + 2.78771I	-0.521713 + 0.088016I	-14.1626 - 0.5129I
b = -0.335906 + 0.774807I		
u = 0.294325 + 1.288810I		
a = 1.145480 + 0.813247I	8.11911 - 1.05080I	0
b = -0.966050 - 0.664872I		
u = 0.294325 - 1.288810I		
a = 1.145480 - 0.813247I	8.11911 + 1.05080I	0
b = -0.966050 + 0.664872I		
u = 0.341475 + 1.280630I		
a = -1.90105 - 0.00872I	0.76201 - 6.19196I	0
b = 0.602369 - 1.033590I		
u = 0.341475 - 1.280630I		
a = -1.90105 + 0.00872I	0.76201 + 6.19196I	0
b = 0.602369 + 1.033590I		
u = -0.796395 + 1.099760I		
a = -1.39317 + 0.55781I	3.81397 + 2.16376I	0
b = 0.680943 + 0.865093I		
u = -0.796395 - 1.099760I		
a = -1.39317 - 0.55781I	3.81397 - 2.16376I	0
b = 0.680943 - 0.865093I		
u = 0.423195 + 1.291600I		
a = -1.82406 + 0.03051I	5.24553 - 12.87400I	0
b = 0.763275 - 1.134570I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.423195 - 1.291600I		
a = -1.82406 - 0.03051I	5.24553 + 12.87400I	0
b = 0.763275 + 1.134570I		
u = -0.414925 + 1.307140I		
a = 1.82897 + 0.01688I	6.81555 + 7.35933I	0
b = -0.763150 - 1.074800I		
u = -0.414925 - 1.307140I		
a = 1.82897 - 0.01688I	6.81555 - 7.35933I	0
b = -0.763150 + 1.074800I		
u = 0.193170 + 0.594552I		
a = 0.740458 - 0.666529I	-2.62261 + 1.47478I	-15.3851 - 1.4664I
b = -0.098240 + 1.240000I		
u = 0.193170 - 0.594552I		
a = 0.740458 + 0.666529I	-2.62261 - 1.47478I	-15.3851 + 1.4664I
b = -0.098240 - 1.240000I		
u = 0.655153 + 1.238030I		
a = -0.453361 - 0.509072I	3.89800 + 3.07288I	0
b = 0.676490 + 0.837280I		
u = 0.655153 - 1.238030I		
a = -0.453361 + 0.509072I	3.89800 - 3.07288I	0
b = 0.676490 - 0.837280I		
u = -0.287460 + 0.509167I		
a = -1.030630 + 0.288101I	-0.56479 + 1.45174I	-5.69061 - 3.81457I
b = 0.294151 + 0.891432I		
u = -0.287460 - 0.509167I		
a = -1.030630 - 0.288101I	-0.56479 - 1.45174I	-5.69061 + 3.81457I
b = 0.294151 - 0.891432I		
u = -0.150834 + 0.552483I		
a = 0.224663 - 0.926766I	-2.60685 + 1.42151I	-15.3519 - 4.1761I
b = -0.284188 + 1.222330I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.150834 - 0.552483I		
a = 0.224663 + 0.926766I	-2.60685 - 1.42151I	-15.3519 + 4.1761I
b = -0.284188 - 1.222330I		
u = 0.52628 + 1.33490I		
a = -0.952515 - 0.880427I	3.19983 - 13.23160I	0
b = 0.959021 + 0.573110I		
u = 0.52628 - 1.33490I		
a = -0.952515 + 0.880427I	3.19983 + 13.23160I	0
b = 0.959021 - 0.573110I		
u = -0.53445 + 1.33597I		
a = 0.888636 - 0.841711I	5.11042 + 7.48156I	0
b = -0.909341 + 0.611982I		
u = -0.53445 - 1.33597I		
a = 0.888636 + 0.841711I	5.11042 - 7.48156I	0
b = -0.909341 - 0.611982I		
u = 0.74543 + 1.23902I		
a = 1.57046 + 0.44108I	4.89450 - 8.45588I	0
b = -0.703722 + 0.938834I		
u = 0.74543 - 1.23902I		
a = 1.57046 - 0.44108I	4.89450 + 8.45588I	0
b = -0.703722 - 0.938834I		
u = 0.551421 + 0.017870I		
a = 0.19708 - 1.54303I	-3.11028 + 2.85114I	-15.0953 - 5.2463I
b = -0.397472 - 1.008780I		
u = 0.551421 - 0.017870I		
a = 0.19708 + 1.54303I	-3.11028 - 2.85114I	-15.0953 + 5.2463I
b = -0.397472 + 1.008780I		
u = -0.39398 + 1.39456I		
a = 1.74350 + 0.04414I	5.99648 + 3.81310I	0
b = -0.712038 - 0.891443I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.39398 - 1.39456I		
a = 1.74350 - 0.04414I	5.99648 - 3.81310I	0
b = -0.712038 + 0.891443I		
u = -0.60580 + 1.31894I		
a = 0.637580 - 0.640539I	5.43801 + 2.96205I	0
b = -0.739316 + 0.759070I		
u = -0.60580 - 1.31894I		
a = 0.637580 + 0.640539I	5.43801 - 2.96205I	0
b = -0.739316 - 0.759070I		
u = 0.52914 + 1.37088I		
a = -0.941382 - 0.654409I	-1.28468 - 5.21244I	0
b = 0.754936 + 0.529073I		
u = 0.52914 - 1.37088I		
a = -0.941382 + 0.654409I	-1.28468 + 5.21244I	0
b = 0.754936 - 0.529073I		
u = 0.24828 + 1.44950I		
a = 1.118450 + 0.722661I	6.22710 + 1.68218I	0
b = -0.731705 - 0.815881I		
u = 0.24828 - 1.44950I		
a = 1.118450 - 0.722661I	6.22710 - 1.68218I	0
b = -0.731705 + 0.815881I		
u = -0.59764 + 1.35597I		
a = -1.89626 + 0.18431I	1.5129 + 19.3967I	0
b = 0.727490 + 1.115030I		
u = -0.59764 - 1.35597I		
a = -1.89626 - 0.18431I	1.5129 - 19.3967I	0
b = 0.727490 - 1.115030I		
u = 0.62148 + 1.34536I		
a = 1.84103 + 0.23572I	3.66188 - 13.51110I	0
b = -0.725741 + 1.080140I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.62148 - 1.34536I		
a = 1.84103 - 0.23572I	3.66188 + 13.51110I	0
b = -0.725741 - 1.080140I		
u = 0.45750 + 1.47072I		
a = -1.59958 + 0.00596I	3.66093 + 1.77132I	0
b = 0.683108 - 0.786787I		
u = 0.45750 - 1.47072I		
a = -1.59958 - 0.00596I	3.66093 - 1.77132I	0
b = 0.683108 + 0.786787I		
u = -0.427567 + 0.124510I		
a = -1.27938 + 0.74577I	-0.410665 + 0.350990I	-9.14009 - 0.28858I
b = -0.520833 - 0.306625I		
u = -0.427567 - 0.124510I		
a = -1.27938 - 0.74577I	-0.410665 - 0.350990I	-9.14009 + 0.28858I
b = -0.520833 + 0.306625I		
u = -0.67604 + 1.40424I		
a = -1.68215 + 0.15655I	-2.80574 + 10.55840I	0
b = 0.650729 + 1.052630I		
u = -0.67604 - 1.40424I		
a = -1.68215 - 0.15655I	-2.80574 - 10.55840I	0
b = 0.650729 - 1.052630I		
u = -1.54967 + 0.37438I		
a = 0.769588 + 0.204123I	-6.61511 - 3.02974I	0
b = -0.577365 + 0.931964I		
u = -1.54967 - 0.37438I		
a = 0.769588 - 0.204123I	-6.61511 + 3.02974I	0
b = -0.577365 - 0.931964I		
u = 1.60506 + 0.18152I		
a = 0.884414 + 0.227938I	-6.11465 - 1.47265I	0
b = -0.545678 + 0.787014I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.60506 - 0.18152I		
a = 0.884414 - 0.227938I	-6.11465 + 1.47265I	0
b = -0.545678 - 0.787014I		
u = -0.33661 + 1.58852I		
a = -1.030070 + 0.585576I	3.28785 - 7.00671I	0
b = 0.672963 - 0.909232I		
u = -0.33661 - 1.58852I		
a = -1.030070 - 0.585576I	3.28785 + 7.00671I	0
b = 0.672963 + 0.909232I		
u = -0.373865		
a = -0.539447	-0.794733	-12.4810
b = -0.335233		
u = 0.336296 + 0.040421I		
a = 1.66344 + 1.98608I	-1.12664 - 4.84437I	-10.81095 + 6.16099I
b = 0.711214 - 0.564146I		
u = 0.336296 - 0.040421I		
a = 1.66344 - 1.98608I	-1.12664 + 4.84437I	-10.81095 - 6.16099I
b = 0.711214 + 0.564146I		
u = -0.108600 + 0.306225I		
a = 1.42426 - 2.32937I	-2.48368 - 3.99664I	-14.3466 + 4.3294I
b = -0.564521 + 1.107430I		
u = -0.108600 - 0.306225I		
a = 1.42426 + 2.32937I	-2.48368 + 3.99664I	-14.3466 - 4.3294I
b = -0.564521 - 1.107430I		
u = 0.171725 + 0.147653I		
a = -0.47354 - 4.27439I	-2.15402 + 0.44006I	-13.51281 + 1.33837I
b = 0.677264 + 0.943220I		
u = 0.171725 - 0.147653I		
a = -0.47354 + 4.27439I	-2.15402 - 0.44006I	-13.51281 - 1.33837I
b = 0.677264 - 0.943220I		

II. $I_2^u = \langle -3au + b - 6a - 2u - 5, 18a^2 - 3au + 30a - 4u + 15, u^2 - 2 \rangle$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 3au + 6a + 2u + 5 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -2au - 4a - \frac{7}{6}u - \frac{8}{3} \\ 3au + 6a + 2u + 4 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} au + 2a + \frac{5}{6}u + \frac{4}{3} \\ 3au + 6a + 2u + 4 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{2}{3}au - a - \frac{4}{9}u + \frac{1}{9} \\ -3au - 4a - 2u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} au + 2a + \frac{5}{6}u + \frac{4}{3} \\ 3au + 6a + 2u + 4 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} au + 2a + \frac{5}{6}u + \frac{4}{9} \\ au + 2u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ 3u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ 3u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} au + 2a - \frac{1}{6}u + \frac{4}{3} \\ 3au + 6a - u + 4 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} au + \frac{2}{3}a - \frac{1}{18}u + \frac{4}{9} \\ 5au + 6a + 3u + 4 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12au 24a 8u 32

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u^2 - u + 1)^2$
c_3, c_5, c_8 c_{10}	$(u^2-2)^2$
C_4	$81(81u^4 + 54u^3 - 9u^2 - 6u + 7)$
c_6	$(u^2+u+1)^2$
	$(u+1)^4$
c_9	$81(81u^4 + 108u^3 + 72u^2 + 24u + 7)$
c_{11}	$(u+2)^4$
c_{12}	$(u-1)^4$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_6	$(y^2+y+1)^2$
c_3, c_5, c_8 c_{10}	$(y-2)^4$
c_4	$6561(6561y^4 - 4374y^3 + 1863y^2 - 162y + 49)$
c_7, c_{12}	$(y-1)^4$
<i>c</i> ₉	$6561(6561y^4 + 1134y^2 + 432y + 49)$
c_{11}	$(y-4)^4$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.41421		
a = -0.715482 + 0.084551I	-6.57974 + 2.02988I	-14.0000 - 3.4641I
b = 0.500000 + 0.866025I		
u = 1.41421		
a = -0.715482 - 0.084551I	-6.57974 - 2.02988I	-14.0000 + 3.4641I
b = 0.500000 - 0.866025I		
u = -1.41421		
a = -0.951184 + 0.492799I	-6.57974 + 2.02988I	-14.0000 - 3.4641I
b = 0.500000 + 0.866025I		
u = -1.41421		
a = -0.951184 - 0.492799I	-6.57974 - 2.02988I	-14.0000 + 3.4641I
b = 0.500000 - 0.866025I		

III.
$$I_1^v = \langle a, b-v, v^2+v+1 \rangle$$

(i) Arc colorings

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ v \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -v - 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} v \\ v+1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ v \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -v \\ -v - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -v - 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ -v - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -v - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 4v 10

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4, c_6	$u^2 - u + 1$
c_2	$u^2 + u + 1$
c_3, c_5, c_8 c_{10}, c_{11}	u^2
c_7, c_9	$(u-1)^2$
c_{12}	$(u+1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_6	$y^2 + y + 1$
$c_3, c_5, c_8 \\ c_{10}, c_{11}$	y^2
c_7, c_9, c_{12}	$(y-1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -0.500000 + 0.866025I		
a = 0	-1.64493 - 2.02988I	-12.00000 + 3.46410I
b = -0.500000 + 0.866025I		
v = -0.500000 - 0.866025I		
a = 0	-1.64493 + 2.02988I	-12.00000 - 3.46410I
b = -0.500000 - 0.866025I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^2 - u + 1)^3)(u^{120} + 44u^{119} + \dots - 3756u + 289)$
c_2	$((u^{2} - u + 1)^{2})(u^{2} + u + 1)(u^{120} - 2u^{119} + \dots + 64u + 17)$
c_3, c_8	$u^{2}(u^{2}-2)^{2}(u^{120}+u^{119}+\cdots+20u-4)$
c_4	$2313441(u^{2} - u + 1)(81u^{4} + 54u^{3} - 9u^{2} - 6u + 7)$ $\cdot (28561u^{120} + 43940u^{119} + \dots - 149875040u + 19889425)$
c_5,c_{10}	$u^{2}(u^{2}-2)^{2}(u^{120}+u^{119}+\cdots-36u-4)$
c_6	$(u^{2} - u + 1)(u^{2} + u + 1)^{2}(u^{120} - 2u^{119} + \dots + 64u + 17)$
c_7	$((u-1)^2)(u+1)^4(u^{120}+3u^{119}+\cdots-495u-343)$
c_9	$2313441(u-1)^{2}(81u^{4} + 108u^{3} + 72u^{2} + 24u + 7)$ $\cdot (28561u^{120} + 160381u^{119} + \dots - 9126759u - 5810977)$
c_{11}	$u^{2}(u+2)^{4}(u^{120}+55u^{119}+\cdots+208u+16)$
c_{12}	$((u-1)^4)(u+1)^2(u^{120}+3u^{119}+\cdots-495u-343)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y^2 + y + 1)^3)(y^{120} + 68y^{119} + \dots - 1.23886 \times 10^7 y + 83521)$
c_2, c_6	$((y^2 + y + 1)^3)(y^{120} + 44y^{119} + \dots - 3756y + 289)$
c_3, c_8	$y^{2}(y-2)^{4}(y^{120}+65y^{119}+\cdots+176y+16)$
c ₄	$5352009260481(y^{2} + y + 1)$ $\cdot (6561y^{4} - 4374y^{3} + 1863y^{2} - 162y + 49)$ $\cdot (8.16 \times 10^{8}y^{120} + 3.97 \times 10^{10}y^{119} + \dots - 1.14 \times 10^{16}y + 3.96 \times 10^{14})$
c_5, c_{10}	$y^{2}(y-2)^{4}(y^{120} - 55y^{119} + \dots - 208y + 16)$
c_7, c_{12}	$((y-1)^6)(y^{120} - 69y^{119} + \dots - 633301y + 117649)$
c_9	$5352009260481(y-1)^{2}(6561y^{4} + 1134y^{2} + 432y + 49)$ $\cdot (8.16 \times 10^{8}y^{120} + 1.20 \times 10^{10}y^{119} + \dots - 3.67 \times 10^{14}y + 3.38 \times 10^{13})$
c_{11}	$y^{2}(y-4)^{4}(y^{120}+25y^{119}+\cdots-26880y+256)$