tarea1

September 26, 2022

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
import statsmodels.formula.api as smf
import sklearn
import scipy
from scipy.stats import nbinom
```

```
[2]: # higher ed data
     juna = pd.read_csv('../../data/junaeb.csv')
     #Se eliminan las filas inválidas
     juna.dropna(inplace=True)
     indexNames = juna[juna['vive_madre'] > 1].index
     juna.drop(indexNames , inplace=True)
     indexNames = juna[juna['n_habitaciones'] < 1].index</pre>
     juna.drop(indexNames , inplace=True)
     indexNames = juna[juna['n_habitaciones'] > 19].index #Hay un valor muy alejado, __
      →por lo que afecta el análisis
     juna.drop(indexNames , inplace=True)
     indexNames = juna[juna['cercania_juegos'] >2].index
     juna.drop(indexNames , inplace=True)
     indexNames = juna[juna['cercania_servicios'] >2].index
     juna.drop(indexNames , inplace=True)
     mapa = \{2:1,1:0\}
     juna["cercania_juegos"] = juna["cercania_juegos"].map(mapa)
     juna["cercania_servicios"] = juna["cercania_servicios"].map(mapa)
     juna.reset_index(drop=True, inplace=True)
     juna.head()
     #Cambiar el tipo de los stings vacios
```

```
cercania_juegos
[2]:
        vive_padre vive_madre n_personas n_habitaciones
     0
                  0
                                1
                                           3.0
                                                             4.0
     1
                  0
                                1
                                           5.0
                                                             3.0
                                                                                  0
     2
                   1
                                1
                                           5.0
                                                             3.0
                                                                                  0
     3
                   1
                                1
                                           4.0
                                                             2.0
                                                                                  0
     4
                   1
                                1
                                           5.0
                                                             3.0
                                                                                  1
        cercania_servicios
                               edad_primer_parto
                                                    area
                                                           educm
                                                                  educp
                                             25.0
     0
                           0
                                                       1
                                                               0
                                                                       0
                                             23.0
     1
                           0
                                                       1
                                                              13
                                                                      13
     2
                           0
                                             19.0
                                                       1
                                                              12
                                                                      17
     3
                           0
                                             27.0
                                                       1
                                                               6
                                                                      13
     4
                           0
                                             20.0
                                                       1
                                                              13
                                                                      16
```

0.0.1 1) Limpieza de datos

- Se limpió la variable vive madre puesto que existían valores mayores a 1
- Se limpió la variable n_habitaciones en los que existian variables menores a 1
- Las variables politomicas cercania_juegos y cerania_servicios, transformadas a variables binarias excluyendo las observaciones donde este dato era "no se sabe"

Análisis de las distribuciones de las variables

Descripcion de vive_padre Tipo de variable: dummy Media: 0.6855874425241795

Desviacion estandar: 0.4642814891607616

Descripcion de vive_madre Tipo de variable: dummy Media: 0.9738385920405899

Desviacion estandar: 0.1596151267674574

Descripcion de n_personas Tipo de variable: discreta Media: 4.394165213255113

Desviacion estandar: 1.34184789603652

Descripcion de n_habitaciones Tipo de variable: discreta Media: 2.58442999841446

Desviacion estandar: 0.8734578723689438

Descripcion de cercania_juegos

Tipo de variable: dummy Media: 0.18170286982717615

Desviacion estandar: 0.38559945140488

Descripcion de cercania_servicios

Tipo de variable: dummy Media: 0.13191691771048042

Desviacion estandar: 0.33840042040790486

Descripcion de edad_primer_parto

Tipo de variable: discreta Media: 22.215316315205328

Desviacion estandar: 5.187610718790342

Descripcion de area Tipo de variable: dummy Media: 0.9004280957666085

Desviacion estandar: 0.2994283555722934

Descripcion de educm

Tipo de variable: discreta Media: 12.654510860948152

Desviacion estandar: 3.9007054844832445

Descripcion de educp

Tipo de variable: discreta Media: 11.210401141588711

Desviacion estandar: 5.267413722692069


```
[4]: # Modelo de regresión Lineal MCO
    columnas = [col for col in juna.columns]
    columnas.remove("vive_padre")
    columnas.remove("vive_madre")
    columnas.remove("cercania_servicios")
    columnas.remove("cercania_juegos")

    y=juna['vive_padre']
    X=juna[columnas]
    model = sm.OLS(y,X)
    resultado_ols = model.fit()
    print(resultado_ols.summary())
```

OLS Regression Results

```
======
Dep. Variable:
```

vive_padre R-squared (uncentered):

0.737

Model: OLS Adj. R-squared (uncentered):

0.737

Method: Least Squares F-statistic:

2945.

Date: Thu, 15 Sep 2022 Prob (F-statistic):

0.00

Time: 18:26:19 Log-Likelihood:

-3545.1

No. Observations:	6307	AIC:
7102.		
Df Residuals:	6301	BIC:
7143.		
Df Model:	6	
Covariance Type:	nonrobust	

=======================================	=======	=======			
0.975]	coef	std err	t	P> t	[0.025
n_personas 0.078	0.0695	0.004	16.899	0.000	0.061
n_habitaciones	-0.0425	0.007	-6.169	0.000	-0.056
edad_primer_parto 0.015	0.0134	0.001	15.595	0.000	0.012
area -0.009	-0.0423	0.017	-2.486	0.013	-0.076
educm -0.010	-0.0123	0.001	-8.914	0.000	-0.015
educp 0.036	0.0340	0.001	31.705	0.000	0.032
Omnibus: Prob(Omnibus): Skew: Kurtosis:	======	694.444 0.000 -0.821 2.467	Prob(JB): Cond. No.	(JB):	1.990 782.923 9.78e-171 92.2

Notes:

- [1] R^2 is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

0.0.2 Notas del modelo de regresión lineal (MCO)

- Notamos que las variables "cercania de juegos" y "cercanía de servicios" no son variables explicativas para predecir la variable "vive_padre" puesto que su rango de valores oscila entre los positivos y negativos, por lo que no hay seguridad de que estos son distintos de cero
- El R^2 tiene un valor de 0.783 lo que significa que las variables independientes explican un 78.3% del comportamiento de la variable independiente "vive_padre"
- Debido a que vive_padre es una variable dicotomica, la OLS sirve para determinar valores cuantativos discretos, los valores de esta variable mediante OLS sale de los rangos

```
[5]: # Modelo Probit
    columnas = [col for col in juna.columns]
    columnas.remove("vive_padre")
    columnas.remove("vive_madre")
    columnas.remove("cercania_servicios")
    columnas.remove("cercania_juegos")
    y=juna['vive_padre']
    X=juna[columnas]
    model = sm.Probit(y,X)
    resultado_probit = model.fit()
    print(resultado_probit.summary())
```

 ${\tt Optimization} \ {\tt terminated} \ {\tt successfully}.$

Current function value: 0.542215

Iterations 5

Probit Regression Results

============	=======	=======	=========	========	:========
Dep. Variable:	<pre>vive_padre No. Observations:</pre>			6307	
Model:	- -		Df Residuals:		6301
Method:		MLE	Df Model:		5
Date:	Thu, 15 S	ep 2022	Pseudo R-squ.	:	0.1291
Time:	1	8:26:19	Log-Likelihoo	d:	-3419.7
converged:		True	LL-Null:		-3926.6
Covariance Type:	no	nrobust	LLR p-value:		6.176e-217
=====	=======	======	========		
	coef	std err	z	P> z	[0.025
0.975]					
n_personas	0.1317	0.014	9.699	0.000	0.105
0.158					
n_habitaciones	-0.1683	0.022	-7.507	0.000	-0.212
-0.124					
edad_primer_parto	0.0183	0.003	6.423	0.000	0.013
0.024					
area	-0.3825	0.057	-6.664	0.000	-0.495
-0.270					
educm	-0.0586	0.005	-12.377	0.000	-0.068
-0.049					
educp	0.0960	0.004	26.781	0.000	0.089
0.103					
=======================================	========	======	=========	=======	==========
=====					

[6]: # Modelo Logit
model = sm.Logit(y,X)

```
resultado_logit = model.fit()
print(resultado_logit.summary(alpha = 0.05))
```

Optimization terminated successfully.

Current function value: 0.539831

Iterations 6

Logit Regression Results

	=======	; :=======			=========
Dep. Variable: Model: Method: Date: Time: converged: Covariance Type:	vive_padre Logit MLE Thu, 15 Sep 2022 18:26:19 True		No. Observations: Df Residuals: Df Model: Pseudo R-squ.: Log-Likelihood: LL-Null: LLR p-value:		6307 6301 5 0.1329 -3404.7 -3926.6 1.912e-223
0.975]	coef	std err	z	P> z	[0.025
n_personas 0.284	0.2366	0.024	9.674	0.000	0.189
n_habitaciones -0.216	-0.2926	0.039	-7.528	0.000	-0.369
edad_primer_parto 0.042	0.0327	0.005	6.595	0.000	0.023
area -0.459	-0.6580	0.101	-6.493	0.000	-0.857
educm -0.091	-0.1081	0.009	-12.473	0.000	-0.125
educp 0.178	0.1655	0.006	25.902	0.000	0.153

- =====
 - 5. Comente los resultados obtenidos en 2, 3 y 4. ¿Cuáles y por qué existen las diferencias entre los resultados?. En su opinión, ¿Cuál sería el más adecuado para responder la pregunta de investgación y por qué? ¿Qué variables resultaron ser robustas a la especificación?
 - Pese a que el modelo OLS obtiene coeficientes con una alta significancia y el modelo explica un 73.9% la probabilidad de que el padre viva en el hogar, el resultado del podelo no está acotado entre [0,1] por lo que carece de propiedades proyectivas.
 - De esta forma las distribuciones Probit y Logit son mas apropiadas puesto que permiten precedir la probabilidad de que el padre viva en el hogar. Y entre estos modelos, sabemos que el modelo Logit tiene un Pseudo- R^2 mayor, por lo que se ajusta mejor a los datos que Probit.

- Por otro lado, los valores de salida de log-likelihood de los modelos indican que el modelo Logit es el que mejor se ajusta a los datos que el modelo OLS y Probit, ya que, presente un valor mayor en log-likelihood, afirmando lo anterior.
- Entre las variables usadas en los modelos, "cercania_servicios" y "cercania_juegos" demostraron ser no significativas y ademas tienen coeficientes muy cercanos a cero por lo que se tomó la decisión de excluirlas del modelo. Además se excluyó "vive_madre" pues es una variable que solo mostró significancia en el modelo OLS, por lo que no la consideramos lo suficientemente robusta para predecir la variable "vive_padre".
- 6. Ejecute un modelo Poisson para explicar el número de personas que hay dentro de un hogar. (n_personas). Seleccione las variables dependientes a incluir en el modelo final e interprete su significado.

Generalized Linear Model Regression Results

=======================================			========	========	
Dep. Variable:	n_personas		No. Observati	6307	
Model:		GLM	Df Residuals:		6298
Model Family:	Po	oisson	Df Model:		8
Link Function:		Log	Scale:		1.0000
Method:	IRLS		Log-Likelihoo	d:	-11561.
Date:	Thu, 15 Sep	2022	Deviance:		2214.1
Time:	18:	:26:19	Pearson chi2:		2.52e+03
No. Iterations:		5	Pseudo R-squ.	(CS):	0.03717
Covariance Type:	noni	cobust	_		
=======================================					
=====					
	coef	std er	r z	P> z	[0.025
0.975]					-
vive padre	0.1219	0.01	4 8.491	0.000	0.094
- -					
vive_madre	0.7513	0.03	4 21.899	0.000	0.684
vive_padre	0.1219 0.7513			0.000	0.094

0.819						
n_habitaciones	0.1973	0.006	32.354	0.000	0.185	
0.209						
cercania_juegos	0.0586	0.017	3.476	0.001	0.026	
0.092	0.0040	0.010	0.000	0 004	0.007	
cercania_servicios	0.0648	0.019	3.390	0.001	0.027	
0.102						
edad_primer_parto	-0.0031	0.001	-2.711	0.007	-0.005	
-0.001						
area	0.1594	0.021	7.443	0.000	0.117	
0.201						
educm	0.0016	0.002	0.978	0.328	-0.002	
0.005						
educp	0.0003	0.001	0.261	0.794	-0.002	
0.003						

=====

_ _ _ _

7. Determine sobre dispersion y posible valor optimo de alpha para un modelo Binomial Negativa.

```
[8]: model=sm.GLM(y,X,family=sm.families.Poisson()).fit()
    print(f"Lambda: {model.mu}")
    #Hacemos el test de sobredispersion
    aux=((y-model.mu)**2-model.mu)/model.mu
    auxr = sm.OLS(aux,model.mu).fit()
    alpha = auxr.params[0]
    print(auxr.params)
    print(f"Alpha: {alpha}")
```

Lambda: [5.0684192 4.29549815 4.9114804 ... 3.3424157 3.91072775 4.22787141]

x1 -0.139349 dtype: float64

Alpha: -0.13934908752525318

No existe sobredispersión, puesto que el valor de Alpha es negativo, implicando que la varianza es menor a la media, además se puede comparar con que $\frac{\text{Pearson}chi^2}{Df} < 1$ justificando la misma afirmación.

- 8. Usando la informacion anterior, ejecute un modelo Binomial Negativa para explicar el número de personas que hay dentro de un hogar. (n_personas). Seleccione las variables dependientes a incluir en el modelo final e interprete su significado.
- La distribución Binomial Negativo se utiliza cuando la distribución Poisson presente sobredispersión, es decir, cuando su varianza es superior a su media. Por ende, realizar un modelo Binomial Negativo sería erroneo en este caso.
- Debido a que alpha es negativo, no se puede ajustar una distribucion Binomial Negativa para ser equivalente a la Poisson puesto que valores negativos generan resultados fuera del rango posible para la estimación.

• De todas formas, al generar un modelo con una distribucion binomial negativa el modelo no se ajusta tan bien como la distribucion Poisson.

```
[9]: columnas = [col for col in juna.columns]
    columnas.remove("n_personas")
    columnas.remove("edad_primer_parto")
    columnas.remove("educm")
    columnas.remove("educp")
    y=juna['n_personas']
    X=juna[columnas]
    negbin=sm.GLM(y,X,family=sm.families.NegativeBinomial()).fit()
    print(negbin.summary())
```

Generalized Linear Model Regression Results

Dep. Variable: Model: Model Family: Link Function: Method: Date: Time: No. Iterations: Covariance Type:	n_personas No. Observations: GLM Df Residuals: NegativeBinomial Df Model: Log Scale: IRLS Log-Likelihood: Thu, 15 Sep 2022 Deviance: 18:26:19 Pearson chi2: 8 Pseudo R-squ. (CS): nonrobust			6307 6301 5 1.0000 -16297. 422.79 512. 0.004607	
0.975]	coef	std err	Z	P> z	[0.025
vive_padre 0.193 vive_madre 0.730	0.1338	0.030	4.456 11.031	0.000	0.075 0.510
n_habitaciones 0.250 cercania_juegos 0.146	0.2219	0.015	15.267	0.000	0.193
cercania_servicios 0.163 area 0.272	0.0755 0.1828	0.044	1.698 4.027	0.089	-0.012 0.094

9. Comente los resultados obtenidos en 6, 7 y 8. ¿Cuáles y por qué existen las diferencias entre los resultados?. En su opinión, ¿Cuál sería el más adecuado para responder la pregunta de investgación y por qué? ¿Qué variables resultaron ser robustas a la especificación?

- La utilización del modelo Poisson es el adecuado para determinar el "número de integrantes del hogar" debido a que al realizar un test de sobre dispersión nos da un alpha negativo el cual es respaldado por $\frac{\text{Pearson}chi^2}{Df} < 1$, lo que significa que no existe sobre dispersión, ósea que la varianza del modelo es inferior a la media.
- Las variables que no presentan significancia para el modelo son "edad_primer_parto", "educm" y "educp", por lo que no son varibles robustas.
- Los valores de salida de log-likelihood de los modelos indican que el modelo que se ajusta a los datos es el modelo Poisson, ya que, presenta un valor mayor que el modelo Binomial Negativa

[]: