Home work

 $\beta^{(l)}$

A) Different ways of picking 8 Combinations

from G tiles

2+(N-1) C N-1

 $8+(4-1)_{c} = 11_{c} = 111_{d} = 165$

Answer: 165

B) Pick at least 4 green tiles and exactly I blue tile for picking 8 tiles

B G G G G _ _ _

 $\sqrt{\frac{3}{3}}$

We can pick either Green, Blue of Red tiles for the remaining 3 places.

L=3

 $3+(3-1)_{c_{3-1}} = \sum_{3-1}^{5}$

 $5_{c_3} = \frac{5!}{3!(5-3)!} = 10$

Answer: 10 ways

c) Picking 8 tiles where Red tiles are always greater than green tiles.

Cose 1:
$$G_1 = 0$$
 $R = 1$
 $8/Y/R = 7$
 $Y = 7$
 $Y = 7$
 $Y = 7$
 $Y = 8$
 $Y = 7$
 $Y = 9$
 $Y = 9$

Case G:

$$\gamma = 1$$
, $\gamma = 3$
 $1 + (3-1)_{c} = 3_{c}$
 $3 - 1$

Now adding the Combination from all the Cases:

$$\frac{9!}{2! \cdot 7!} + \frac{7!}{2! \cdot 5!} + \frac{3!}{2! \cdot 3!} + \frac{3!}{2! \cdot 1!}$$

Answer: There are 70 ways

Question 2:

Mean:
$$\overline{X} = \frac{1}{n} \sum_{j=1}^{n} X_j$$

Median:
$$86+87 = 86.5$$

Standard Deviation:
$$O = \int_{N}^{1} \frac{S}{S}(x_{j} - \overline{x})^{2}$$