

Design a counter that will count in 2-bit Gray code sequence:

Output Transitions		Flip-	Flip-flop	
QN	QN+1	7	K	
0 —	→ O	0	×	
0 —	── ▶	1	×	
1 —	→ 0	×	1	
1		×	0	

Serial In/Serial Out shift register:

Fig: 4-bit serial in/serial out Shift registers
Determine 20, Q1, Q2 and Q3 for the following clock
and D input:

Serial In/Papallel Out Shift Register:

Fig: Logie symbol

Fig: A serial in/parallel out shift register

Parallel In/Serial Out Shift Register:

Fig: Four Bit Parallel In Serial Out Shift Register

Fig : Four bit Ramallel In/ Sevial Out Shift Register

Fig: Four Bit Rapallel In/Parallel Out Shift Register