Lista de Exercícios

Rodrigo Nascimento

29 de novembro de 2023

Problema 0.1 Mostre que $\vec{\mathbf{v}} = \hat{\mathbf{e}}_x$ e $\vec{\mathbf{w}} = \hat{\mathbf{e}}_y$ são vetores lineramente independentes. Calcule também a norma dos dois vetores.

Solução:

 $\vec{\mathbf{v}}$ e $\vec{\mathbf{w}}$ serão linearmente independentes se

$$\alpha \vec{\mathbf{v}} + \beta \vec{\mathbf{w}} = 0, \quad \text{com } \alpha, \beta \in \mathbb{R}$$
 (1)

uma vez que

$$\alpha \vec{\mathbf{v}} = \alpha \hat{\mathbf{e}}_x = \alpha \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \qquad \beta \vec{\mathbf{w}} = \beta \hat{\mathbf{e}}_y = \beta \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

tem-se que

$$\alpha \vec{\mathbf{v}} + \beta \vec{\mathbf{w}} = \alpha \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
, se e somente se $\alpha, \beta = 0$

logo

$$\vec{\mathbf{v}} = \hat{\mathbf{e}}_x, \quad \vec{\mathbf{w}} = \hat{\mathbf{e}}_y, \quad \tilde{\text{sao}} \text{ linearmente independentes}$$
 (2)

A norma (ou módulo) destes dois vetores é dada por

$$\|\vec{\mathbf{v}}\| = \sqrt{\hat{\mathbf{e}}_x \cdot \hat{\mathbf{e}}_x}$$

$$= \delta_{xx}$$

$$= 1$$

$$\|\vec{\mathbf{w}}\| = \sqrt{\hat{\mathbf{e}}_y \cdot \hat{\mathbf{e}}_y}$$

$$= \delta_{yy}$$

$$= 1$$

Problema 0.2 Considere os seguintes vetores no \mathbb{R}^2 : $\vec{\mathbf{v}} = (1,2)^T$ e $\vec{\mathbf{w}} = (-1,1)^T$.

- a. Estes vetores são linearmente independentes?
- b. Escreva qualquer vetor $\vec{\mathbf{x}} = (x_1, x_2)$ na base dada por $\vec{\mathbf{v}}$ e $\vec{\mathbf{w}}$.

Solução:

a. Desde que

$$\alpha \vec{\mathbf{v}} + \beta \vec{\mathbf{w}} = 0$$
$$\alpha \begin{pmatrix} 1\\2 \end{pmatrix} + \beta \begin{pmatrix} -1\\1 \end{pmatrix} = 0$$

isto é

$$\begin{cases} \alpha - \beta = 0 \\ 2\alpha + \beta = 0 \end{cases} \implies \alpha, \beta = 0, \quad \forall \alpha, \beta \in \mathbb{R}$$

conclui-se que $|\vec{\mathbf{v}}|$ e $|\vec{\mathbf{w}}|$ são linearmente independentes

b. Escolhendo arbitrariamente $\alpha=4$ e $\beta=6$, então $\vec{\mathbf{x}}=(x_1,x_2)$ é dado por

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 4 \begin{pmatrix} 1 \\ 2 \end{pmatrix} + 6 \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$\log \vec{\mathbf{x}} = (-2, 8)^T$$

Problema 0.3 Determinar todos os vetores do \mathbb{R}^3 ortogonais ao vetor $\vec{\mathbf{v}} = (2,0,1)^T$.

Solução:

Definição 0.1 Dois vetores quaisquer $|u\rangle$ e $|v\rangle$ são ortogonais se

$$\langle u|v\rangle = 0 \tag{3}$$

Definindo $\langle u|=(u_1,u_2,u_3)$ tem-se

$$\langle u|v\rangle = (u_1, u_2, u_3) \cdot \begin{pmatrix} 2\\0\\1 \end{pmatrix}$$

= $2u_1 + u_3 = 0 \implies u_1 = -\frac{u_3}{2}$

logo, qualquer vetor da forma $\langle u|=(-u_3/2,u_2,u_3)$ será ortogonal à $|v\rangle$

Problema 0.4 Mostrar que vale a identidade $(\vec{\mathbf{u}} \times \vec{\mathbf{v}}) \times \vec{\mathbf{w}} = (\vec{\mathbf{w}}^T \cdot \vec{\mathbf{u}}) \cdot \vec{\mathbf{v}} - (\vec{\mathbf{w}}^T \cdot \vec{\mathbf{v}}) \cdot \vec{\mathbf{u}}$. Deduzir que $\vec{\mathbf{u}}^T \cdot (\vec{\mathbf{u}} \times \vec{\mathbf{v}})$

Considere a definição a seguir

Definição 0.2 O produto vetorial entre dois vetores em termos do símbolo de Levi-Civita é

$$\vec{\mathbf{u}} \times \vec{\mathbf{v}} = \sum_{i,j,k} \varepsilon_{ijk} u_i v_j \hat{\mathbf{e}}_k \tag{4}$$

deseja-se demostrar que

$$(\vec{\mathbf{u}}\times\vec{\mathbf{v}})\times\vec{\mathbf{w}} = \left(\vec{\mathbf{w}}^T\cdot\vec{\mathbf{u}}\right)\cdot\vec{\mathbf{v}} - \left(\vec{\mathbf{w}}^T\cdot\vec{\mathbf{v}}\right)\cdot\vec{\mathbf{u}}$$

Demonstração. Utilizando a definição 0.2, tem-se que

$$(\vec{\mathbf{u}} \times \vec{\mathbf{v}}) \times \vec{\mathbf{w}} = \sum_{i,j,k} \varepsilon_{ijk} (\vec{\mathbf{u}} \times \vec{\mathbf{v}})_i w_j \hat{\mathbf{e}}_k$$

dado que

$$(\vec{\mathbf{u}} \times \vec{\mathbf{v}})_i = \sum_{j,k} \varepsilon_{ijk} u_j v_k$$

ficamos com

$$(\vec{\mathbf{u}} \times \vec{\mathbf{v}}) \times \vec{\mathbf{w}} = \sum_{i,j,k} \varepsilon_{ijk} \left(\sum_{l,m} \varepsilon_{lmi} \vec{\mathbf{u}}_l \vec{\mathbf{v}}_m \right) \vec{\mathbf{w}}_j \hat{\mathbf{e}}_k$$
$$= \sum_{i,j,k,l,m} \varepsilon_{ijk} \varepsilon_{lmi} \vec{\mathbf{u}}_l \vec{\mathbf{v}}_m \vec{\mathbf{w}}_j \hat{\mathbf{e}}_k$$

usando a relação

$$\sum_{i} \varepsilon_{ijk} \varepsilon_{lmi} = \delta_{jl} \delta_{km} - \delta_{jm} \delta_{kl}$$

tem-se

$$\begin{split} (\vec{\mathbf{u}}\times\vec{\mathbf{v}})\times\vec{\mathbf{w}} &= \sum_{j,k,l,m} (\delta_{jl}\delta_{km} - \delta_{jm}\delta_{kl})\vec{\mathbf{u}}_{l}\vec{\mathbf{v}}_{m}\vec{\mathbf{w}}_{j}\hat{\mathbf{e}}_{k} \\ &= \sum_{j,k,l,m} \delta_{jl}\delta_{km}\vec{\mathbf{u}}_{l}\vec{\mathbf{v}}_{m}\vec{\mathbf{w}}_{j}\hat{\mathbf{e}}_{k} - \sum_{j,k,l,m} \delta_{jm}\delta_{kl}\vec{\mathbf{u}}_{l}\vec{\mathbf{v}}_{m}\vec{\mathbf{w}}_{j}\hat{\mathbf{e}}_{k} \\ &= \sum_{j,l} \vec{\mathbf{w}}_{j}\vec{\mathbf{u}}_{l}\delta_{jl}\sum_{k,m}\hat{\mathbf{e}}_{k}\vec{\mathbf{v}}_{m}\delta_{km} - \sum_{j,m}\vec{\mathbf{w}}_{j}\vec{\mathbf{v}}_{m}\delta_{jm}\sum_{k,l}\hat{\mathbf{e}}_{k}\vec{\mathbf{u}}_{l} \end{split}$$

usando a definição

Definição 0.3 Dado dois vetores $\vec{\bf u}$ e $\vec{\bf v}$, o produto escalar entre estes vetores é, por definição

$$\vec{\mathbf{u}}^T \cdot \vec{\mathbf{v}} = \sum_{i,j} u_i v_j \delta_{ij} \tag{5}$$

logo

$$(\vec{\mathbf{u}}\times\vec{\mathbf{v}})\times\vec{\mathbf{w}}=\left(\vec{\mathbf{w}}^T\cdot\vec{\mathbf{u}}\right)\vec{\mathbf{v}}-\left(\vec{\mathbf{w}}^T\cdot\vec{\mathbf{v}}\right)\vec{\mathbf{u}}$$

A segunda demonstração envolve o produto misto

$$\vec{\mathbf{u}}^T \cdot (\vec{\mathbf{u}} \times \vec{\mathbf{v}}) = 0$$

Demonstração. Usando a definição 0.3, devemos ter

$$\vec{\mathbf{u}}^T \cdot (\vec{\mathbf{u}} \times \vec{\mathbf{v}}) = \sum_{i,j} u_i (\vec{\mathbf{u}} \times \vec{\mathbf{v}})_j \delta_{ij}$$

$$= \sum_{i,j} u_i \left(\sum_{i,k} \varepsilon_{ijk} u_i v_k \right) \delta_{ij}$$

$$= \sum_{i,j,k} \varepsilon_{ijk} u_i^2 v_k \delta_{ij}$$

$$= \sum_{i,j,k} \varepsilon_{ijk} \delta_{ij} u_i^2 v_k$$

$$= 0$$

Problema 0.5 Usando a definição de produto vetorial em termos dos versores de base, deduzir as propriedades do produto vetorial de dois vetores qualquer.