Autor: Daniela Spurtacz

Prowadzacy: Daniela Spurtacz

Rzędy i generatory

Wstęp teoretyczny

Definicja 1 Dla $a \perp n$ rząd liczby a modulo n (oznaczany $ord_n(a)$) to najmniejsza taka liczba dodatnia, że $a^{ord_n(a)} \equiv 1 \mod n$.

Lemat 1 $a^k \equiv 1 \mod n \iff ord_n(a) \mid k$

Definicja 2 Generator (inaczej: pierwiastek pierwotny) modulo n to taka liczba g, że $ord_n(g) = \varphi(n)$.

Lemat 2 Jeśli g jest generatorem modulo n, to zbiór $\{g, g^2, g^3, \dots, g^{\varphi(n)}\}$ jest permutacją zbioru liczb względnie pierwszych z n modulo n.

Twierdzenie 3 Generator modulo n istnieje wtedy i tylko wtedy, gdy n = 1, n = 2, n = 4, $n = p^k$ lub $n = 2p^k$ dla p nieparzystego, pierwszego.

Fakciki

- 1. $ord_n(a) \mid \varphi(n)$
- 2. $ord_n(a^k) = \frac{ord_n(a)}{NWD(k, ord_{n(a)})}$
- 3. $ord_n(a) \perp ord_n(b) \Rightarrow ord_n(ab) = ord_n(a) ord_n(b)$

Zadania

- 1. Wyznacz wszystkie liczby dodatnie n takie, że $n \mid 2^n 1$.
- 2. *Udowodnij, że jeśli $g \in \mathbb{N}$ jest generatorem modulo $n \in \mathbb{N}$ oraz $2 \nmid gn$, to g jest generatorem modulo 2n.
- 3. Udowodnij, że dla liczby pierwszej p oraz k niepodzielnego przez p-1 zachodzi:

$$1^k + 2^k + 3^k + \dots + (p-1)^k \equiv 0 \mod p$$

- 4. Udowodnij, że jeśli $p \mid 2^{2^n} + 1$ dla p pierwszego i n naturalnego to $p \equiv 1 \mod 2^{n+1}$.
- 5. *Załóżmy, że modulo $n \in \mathbb{N}$ istnieje liczba rzędu d. Ile jest wtedy reszt rzędu d modulo n?
- 6. Udowodnij, że istnieje takie naturalne n, że $n^2 \equiv -1 \mod p$ wtedy i tylko wtedy gdy p daje resztę 1 modulo 4 lub gdy p=2.
- 7. Udowodnij, że $n \mid \varphi(a^n 1)$ dla $a \perp n$ gdzie n < a są liczbami naturalnymi.
- 8. Dana jest liczba pierwsza p. Znajdź wszystkie funkcje $f:\mathbb{Z}\to\mathbb{Z}$ takie że dla każdej pary całkowitych m, n zachodzą:
 - $m \equiv n \mod p \Rightarrow f(m) = f(n)$
 - f(mn) = f(m)f(n)
- 9. Znajdź wszystkie pary (p, n) liczby pierwszej p i liczby naturalnej n, że

$$p^{n} + 1 \mid n^{p} + 1$$

- 10. Udowodnij, że jeśli $n \mid 5^n 2^n$ dla n naturalnego, to $3 \mid n$.
- 11. Dana jest liczba całkowita n > 2. Udowodnij, że największy dzielnik pierwszy liczby $2^{2^n} + 1$ jest większy niż $2^{n+2}(n+1)$.

Prowadzący: Daniela Spurtacz

Autor: Daniela Spurtacz

Szkice rozwiązań

1. Weźmy min $p\mid n$. $2^n\equiv 1\equiv 2^{p-1}\Rightarrow p\mid 2^{NWD(n,p-1)}-1=2^1-1$ sprzeczność

2. $4\varphi(2n)=\varphi(n)$ bo można parować $n-2k-1 \perp n$ z $2n-2k-1 \perp 2n$. Potem $g^r\equiv_{2n}1\Rightarrow_n1\Rightarrow r\geq \varphi(n)=\varphi(2n)$

3. Istnieje generator g i

$$\sum_{1}^{p-1} i^k = \sum_{0}^{p-2} (g^k)^i = \frac{g^{k(p-1)}}{g^k - 1}$$

Góra przystaje do 0 z MTF a dół nie, bo $p-1 \nmid k$.

4. $ord_p(2) \mid 2^{n+1}$ ale nie dzieli 2^n , więc $2^{n-1} = ord_p(2) \mid p-1$

5. a, a_2, \ldots, a^d to wszystkie rozwiązania $X^d \equiv 1$, ale tylko $\varphi(n)$ z nich ma rząd d (patrz fakt 2)

6. Jeśli $4 \nmid p-1$ to gdyby $-1 \equiv n^2 \equiv g^{2k}$ to $p-1 \mid 4k \Rightarrow p-1 \mid 2k$, czyli $1 \equiv g^{2k}$ sprzeczność Jeśli $4 \mid p-1$ to $n=q^{\frac{p-1}{4}}$

7. $ord_{a^n-1}(a)=a$ bo mniejsze potęgi są za małe, więc podzielność zachodzi

8. $f(0) = f(0)^2$, teraz jeśli f(0) = 1 to $1 = f(0 \cdot n) = 1 \cdot f(n)$ dla każdego n. W drugim przypadku f(0) = 0. Wtedy niech g jest generatorem f(g) jednoznacznie wyznacza całe f. $f(g) = f(g^p) = f(g)^p$, czyli f = 0 jest rozwiązaniem, oraz f(a) = 1 dla $p \nmid a$ też jest rozwiązaniem. Ostatnim rozwiązaniem jest f(a) = 1 dla reszt kwadratowych i f(a) = -1 dla niereszt kwadratowych.

9. Sprawdzić ręcznie p=2. Dla p>2, n jest nieparzyste, czyli $p+1\mid p^n+1\mid n^p+1$. NWD(n,p+1)=1, więc weźmy $r=ord_{p+1}(n)$. $r\mid 2p$ ale $r\nmid p$, oraz $r\leq \varphi(p+1)\leq p$ więc r=2. Zatem $p+1\mid n+1$. p=n działa, ale n>p już nie, bo p^n+1 będzie za duże.

10. Niech p to będzie najmniejszy dzielnik pierwszy n. Oczywiście p nie jest równe 2 ani 5, więc $ord_p(\frac{5}{2}) \mid p-1 \Rightarrow ord_p\left(\frac{5}{2}\right) < p$. W dodatku $p \mid 5^n-2^n$ więc

$$\left(\frac{5}{2}\right)^n \equiv 1 \mod p$$

Czyli $ord_p\left(\frac{5}{2}\right)\mid n$, czyli n ma mniejszy dzielnik niż p, czyli musi on być równy 1, to znaczy $ord_p\left(\frac{5}{2}\right)=1$, czyli $5\equiv 2\mod p$ czyli p=3, więc rzeczywiście $3\mid n$.

11. Dowolne $p \mid 2^{2^n} + 1$ ma $ord_p(2) \mid 2^{n+1}$ ale nie dzieli 2^n więc jest równe 2^{n+1} czyli $2^{n+1} \mid p-1$.

$$2^{2^{n}} + 1 = \prod_{i=1}^{m} (k_{i}2^{n+1} + 1) > 2^{m(n+1)} + 1$$

Wiec $2^n > m(n+1)$.

$$1 \equiv 2^{2^n} + 1 \equiv 2^{2n+2} \cdot \cos + 2^{n+1} \sum_{i=1}^m k_i + 1 \equiv 2^{n+1} \sum_{i=1}^m k_i + 1 \mod 2^{2n+2}$$

$$2^{2n+2} \le 2^{n+1} \sum_{i=1}^{m} k_i$$

Jeśli każde $k_i \leq 2(n+1)$

$$2^{n+1} \le \sum_{i=1}^{m} k_i \le m \cdot 2(n+1) = 2m(n+1) < 2 \cdot 2^n = 2^{n+1}$$

sprzeczność. Zatem pewne $k_i > 2(n+1)$ wtedy $p_i = k_i 2^{n+1} + 2(n+1)2^{n+1} + 1$.