SVM

Séparation(s) linéaire(s)

Plusieurs (une infinité) de séparations linéaires possibles ...

Séparation(s) linéaire(s)

Y en a-t-il une meilleure?

Y en a-t-il une meilleure?

Y en a-t-il une meilleure?

Nouveau problème : trouver les W qui maximisent la marge !

Nouveau problème : trouver les W qui maximisent la marge !

C.à.D.: Trouver les vecteurs supports:

Minimiser:

$$\frac{1}{2}\alpha^T \begin{bmatrix} y_1 y_1 x_1^T x_1 & \cdots & y_1 y_N x_1^T x_N \\ \vdots & \ddots & \vdots \\ y_N y_1 x_N^T x_1 & \cdots & y_N y_N x_N^T x_N \end{bmatrix} \alpha + [-1 \quad \dots \quad -1]\alpha$$

Sous contraintes:

$$y^T \alpha = 0$$

Avec:

$$\alpha \geq 0$$

Une fois α obtenu, on peut retrouver W:

$$W = \sum_{n=1}^{N} \alpha_n y_n x_n$$

Une fois α obtenu, on peut retrouver W:

$$W = \sum_{n=1}^{N} \alpha_n y_n x_n$$

Attention, il nous manque w_0 !

Pour trouver w_0 :

1 – Choisir un x_n tq $\alpha_n > 0$ c.à.d un Vecteur Support!

2 – Sachant que $y_n(w^Tx_n + b) = 1$

3 – Cela nous donne:

$$b = \frac{1}{y_n} - \sum_i w_i x_{n_i}$$

Machine à noyaux

Retour sur les SVMs

Si nos exemples sont de grande dimension,

$$\begin{bmatrix} y_1 y_1 x_1^T x_1 & \cdots & y_1 y_N x_1^T x_N \\ \vdots & \ddots & \vdots \\ y_N y_1 x_N^T x_1 & \cdots & y_N y_N x_N^T x_N \end{bmatrix}$$

Sera difficile à calculer!

Retour sur les SVMs

Projection des entrées dans un autre espace (le retour) :

$$\begin{bmatrix} y_1 y_1 z_1^T z_1 & \cdots & y_1 y_N z_1^T z_N \\ \vdots & \ddots & \vdots \\ y_N y_1 z_N^T z_1 & \cdots & y_N y_N z_N^T z_N \end{bmatrix}$$

Si l'espace est de dimension supérieure à l'espace de départ, cela devrait être encore pire !

Retour su

Projection des

Si l'espace est devrait être er

art, cela

Retour sur les SVMs

Projection des entrées dans un autre espace (le retour) :

$$\begin{bmatrix} y_1 y_1 z_1^T z_1 & \cdots & y_1 y_N z_1^T z_N \\ \vdots & \ddots & \vdots \\ y_N y_1 z_N^T z_1 & \cdots & y_N y_N z_N^T z_N \end{bmatrix}$$

Si l'espace est de dimension supérieure à l'espace de départ, cela devrait être encore pire !

Cela dépend du type de transformation!

Retour sur les SVMs

Cela dépend du type de transformation!

Nous n'avons besoin que de l'existence de la possibilité d'effectuer produit scalaire dans le nouvel espace!

```
\begin{bmatrix} y_1 y_1 K(x_1, x_1) & \cdots & y_1 y_N K(x_1, x_N) \\ \vdots & \ddots & \vdots \\ y_N y_1 K(x_N, x_1) & \cdots & y_N y_N K(x_N, x_N) \end{bmatrix}
```

Différents noyaux :

Noyau Polynomial de degré Q:

$$K(x_n, x_m) = (1 + x_n^T x_m)^Q$$

Noyau à Base Radiale :

$$K(x_n, x_m) = e^{-x_n^2} e^{-x_m^2} e^{2x_n x_m}$$

vaux:

Equivalent à une projection dans un espace de dimension infinie!

egré Q:

$$K(x_n, x_m) = (1 + x_n^T x_n)$$

Sans augmentation du nombre de paramètres!

Noyau à Base Radiale :

$$K(x_n, x_m) = e^{-x_n^2} e^{-x_m^2} e^{2x_n x_m}$$

Conclusion

Recommandation et pièges

Généraliser

Minimiser l'erreur sur les exemples

Recommandation et pièges

Quel modèle choisir?

Privilégier les modèles simples avant tout !

L'explication (le modèle), la plus simple est la plus probable !

Quels autres modèles?

Tous les modèles que nous avons vus sont utiles et continuent d'être améliorés !

Quels autres modèles?

Le monde de l'apprentissage artificiel est très vaste ...

Ouverture

Apprentissage par renforcement

Très utile pour le Jeu (vidéo)!

- Peut être utilisé avec les modèles neuronaux que nous avons vu!
- Idéal dans les cas ou les exemples étiquetés sont rares et arrivent au cours du temps.
- Q-Learning : indépendant du modèle

Metaheuristiques

Nous ne faisons qu'estimer des paramètres !

On peut utiliser un algorithme génétique pour trouver les poids d'un réseau de neurones à la place de la descente de gradient!

etc.

DeepLearning

La nouvelle classe de techniques 'à la mode', notamment les Convolutional Neural Networks,

Intrinsèquement liée au 'Big Data'

Etat des lieux :

http://slideshot.epfl.ch/play/khnnunGF0elc

Prochaines étapes de votre parcours :

Recommandations quasi-exhaustives pour le ML:

http://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf

« Best MOOC Ever! »:

http://work.caltech.edu/telecourse.html