ODE Lesson 6: Lipschitz Conditions - Complete Checking Guide

ODE 1 - Prof. Adi Ditkowski

1 The Lipschitz Condition - Full Understanding

Definition 1 (Lipschitz Condition). f(x,y) is Lipschitz in y on domain D if:

$$|f(x, y_1) - f(x, y_2)| \le L|y_1 - y_2|$$

for all $(x, y_1), (x, y_2) \in D$ and some constant $L \geq 0$.

Intuition: Lipschitz = "Speed limit on vertical change"

- The function can't change too rapidly in the y-direction
- Prevents vertical tangents or jumps
- Ensures controlled behavior

2 Method 1: The Derivative Test

Derivative Test (Most Common):

If $\frac{\partial f}{\partial y}$ exists and satisfies:

$$\left| \frac{\partial f}{\partial u}(x,y) \right| \le L \quad \text{for all } (x,y) \in D$$

Then f is Lipschitz in y with constant L.

2.1 Step-by-Step Algorithm

- 1. Compute $\frac{\partial f}{\partial y}$
- 2. Find the maximum of $\left| \frac{\partial f}{\partial y} \right|$ on your domain
- 3. This maximum is your Lipschitz constant L
- 4. If the maximum is infinite, f is not Lipschitz

Example 1 (Derivative Test Application). Check if $f(x,y) = x^2y + e^x$ is Lipschitz on $|x| \le 2$, $|y| \le 3$:

Solution:

$$\frac{\partial f}{\partial y} = x^2 \tag{1}$$

$$\left| \frac{\partial f}{\partial y} \right| = |x^2| = x^2 \tag{2}$$

$$\max_{|x| \le 2} x^2 = 4 \tag{3}$$

Therefore, Lipschitz with L=4. \checkmark

3 Method 2: Direct Estimation

Direct Method (When derivative doesn't exist everywhere):

Directly compute and bound:

$$|f(x, y_1) - f(x, y_2)|$$

Example 2 (Non-differentiable but Lipschitz). Show f(y) = |y| is Lipschitz: Solution:

$$||y_1| - |y_2|| \le |y_1 - y_2|$$

(This is the reverse triangle inequality)

Therefore, Lipschitz with L=1, even though f'(0) doesn't exist! \checkmark

4 Method 3: Composition Rules

Theorem 1 (Building Lipschitz Functions). 1. If g is Lipschitz with L_g and h is Lipschitz with L_h :

- g + h is Lipschitz with $L = L_g + L_h$
- cg is Lipschitz with $L = |c|L_g$
- 2. If g is Lipschitz with L_g and bounded by M:
 - g^2 is Lipschitz with $L = 2ML_g$
- 3. If $g \circ h$ exists and both are Lipschitz:
 - $g \circ h$ is Lipschitz with $L = L_g \cdot L_h$

Function	Domain	Lipschitz?	Constant L
ay + b	\mathbb{R}	Yes	a
y^2	$ y \le M$	Yes	2M
$y^n \ (n \ge 1)$	$ y \le M$	Yes	nM^{n-1}
$\sin(y), \cos(y)$	\mathbb{R}	Yes	1
e^y	$y \leq M$	Yes	e^{M}
$\ln(y)$	$y \ge \epsilon > 0$	Yes	$1/\epsilon$
\sqrt{y}	$y \ge \epsilon > 0$	Yes	$1/(2\sqrt{\epsilon})$
y	\mathbb{R}	Yes	1
$y^{\alpha} \ (0 < \alpha < 1)$	Near $y = 0$	No	∞
1/y	Near $y = 0$	No	∞

5 Lipschitz Check for Common Functions

6 The Non-Lipschitz Hall of Shame

Functions that are NOT Lipschitz at y=0:

- $f(y) = |y|^{\alpha}$ for $0 < \alpha < 1$
- $f(y) = \sqrt{|y|}$ (special case of above)
- $\bullet \ f(y) = y^{2/3}$
- $\bullet \ f(y) = y \ln |y|$
- f(y) = sign(y) (discontinuous)

7 Systematic Checking Flowchart

8 Local vs Global Lipschitz

Quick Classification:

- Globally Lipschitz: One L works everywhere
 - Linear functions: f(y) = ay + b
 - Bounded derivatives: $f(y) = \sin(y)$, $f(y) = \arctan(y)$
- \bullet Locally Lipschitz: Different L for different regions
 - Polynomials: $f(y) = y^n$ for $n \ge 2$
 - Exponentials: $f(y) = e^y$
 - Most smooth functions
- Not Lipschitz: At some points, no finite L
 - Powers less than 1: $f(y) = y^{1/2}$ at y = 0
 - Vertical tangents or cusps

9 Advanced Example: Piecewise Functions

Example 3 (Checking Piecewise Lipschitz). Consider:

$$f(y) = \begin{cases} y^2 & |y| \le 1\\ 2|y| - 1 & |y| > 1 \end{cases}$$

Check Lipschitz on \mathbb{R} :

Step 1: Check each piece

- For $|y| \le 1$: f'(y) = 2y, so $|f'(y)| \le 2$
- For |y| > 1: $f'(y) = \pm 2$, so |f'(y)| = 2

Step 2: Check transition points $y = \pm 1$

- Left derivative at y = 1: $\lim_{h\to 0^-} \frac{f(1+h)-f(1)}{h} = 2$
- Right derivative at y=1: $\lim_{h\to 0^+} \frac{f(1+h)-f(1)}{h}=2$
- Derivatives match!

Conclusion: Lipschitz with L=2 globally. \checkmark

10 Computing Optimal Lipschitz Constants

Method 1 (Finding the Best L). For f(x, y) on domain D:

- 1. Compute $\frac{\partial f}{\partial y}$
- 2. Find critical points: solve $\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = 0$

- 3. Evaluate $\left| \frac{\partial f}{\partial y} \right|$ at:
 - Critical points
 - Boundary of domain
- 4. Take the maximum value

Example 4 (Optimal Constant). Find the best Lipschitz constant for $f(y) = y^3 - 3y$ on [-2, 2]:

$$f'(y) = 3y^2 - 3 (4)$$

$$f''(y) = 6y = 0 \Rightarrow y = 0 \tag{5}$$

$$|f'(0)| = 3 \tag{6}$$

$$|f'(\pm 2)| = |12 - 3| = 9 \tag{7}$$

Optimal L=9. \checkmark

11 Exam Strategy Summary

Prof. Ditkowski's Lipschitz Checklist:

- 1. Linear in $y? \Rightarrow$ Always Lipschitz
- 2. Compute $\partial f/\partial y$
- 3. Check boundedness on your domain
- 4. Watch for y^{α} with $\alpha < 1$ at y = 0
- 5. For piecewise: check each piece AND transitions
- 6. State the Lipschitz constant explicitly

12 Memory Device

CHECK for Lipschitz:

- Continuous derivative helps
- Horizontal bounds needed
- Exponentials need bounded domain
- Corners might still work (like |y|)

 \bullet Keep away from vertical tangents