Глубинное обучение Лекция 2: Автоматическое дифференцирование

Лектор: Антон Осокин

ФКН ВШЭ, 2019

Основной шаг обучения нейросетей

- Даны объект х, ответ у, значения параметров θ
- Итерация обучения:
 - Выходы нейросети f(x, θ)
 - Функция потерь $\ell(f(x,\theta),y)$
 - Градиент потерь по выходам нейросети
 - Градиент потерь по параметрам
 - Шаг стохастической оптимизации

Deep learning frameworks

- 1. Есть все необходимые функции (CPU, GPU)
- 2. Организация единой системы
 - Собирает полные производные из производных слоев
 - Автоматическое дифференцирование

Производные на компьютере

[Baydin et al., 2017]

- Аналитическая формула
- Численный градиент
 - Конечные разности
- Символьное дифференцирование
 - Производная вычисляется алгебраически
 - Сначала формула, затем вычисления
- Алгоритмическое дифференцирование
 - Производная вычисляется как композиция элементарных производных во время выполнения программы

Производные на компьютере

[Baydin et al., 2017]

Производные на компьютере

[Baydin et al., 2017]

- Аналитическая формула
 - Возможны очень эффективные реализации
 - Требуется выводить формулы, не всегда есть удобная запись
- Численный градиент (конечные разности)
 - Универсальный метод
 - Численные нестабильности (A + ε, A A)
 - Медленно
- Символьное дифференцирование
 - Производная вычисляется алгебраически
 - Сначала вся формула, потом вычисления
- Алгоритмическое дифференцирование
 - Выполнение начинается сразу
 - Сохраняются промежуточные результаты

Алгоритмическое дифференцирование: прямой метод (forward mode)

- Производные вместе с выполнением
 - Функция $y = f(x), x \in \mathbb{R}^n, y \in \mathbb{R}^m$
 - Производные $v_i' = \frac{dv_i}{dx_1}$

$$v_3 := v_1 v_2$$
 $v_3' := v_1' v_2 + v_1 v_2'$
 $v_3 := \ln(v_2)$ $v_3' := \frac{1}{v_2} v_2'$

• Якобиан вычисляется по столбцам

$$J = \begin{pmatrix} \frac{dy_1}{dx_1} \cdots \frac{dy_1}{dx_n} \\ \vdots \ddots \vdots \\ \frac{dy_m}{dx_1} \cdots \frac{dy_m}{dx_n} \end{pmatrix}$$

• Легко вычислять произведения Jr

Алгоритмическое дифференцирование: обратный метод (reverse mode, backprop)

- Сначала выполнение, потом производные
 - Функция $y=f(x), x\in\mathbb{R}^n, y\in\mathbb{R}^m$
 - Производные $\bar{v}_i = \frac{dy_1}{dv_i}$

$$v_3 := v_1 v_2 \qquad \qquad \bar{v}_1 := \frac{dy_1}{dv_1} = \frac{dy_1}{dv_3} \frac{dv_3}{dv_1} = \bar{v}_3 v_2 \qquad \qquad \bar{v}_1 := \bar{v}_3 v_2, \ \bar{v}_2 := v_1 \bar{v}_3$$

$$v_3 := \ln(v_2) \qquad \qquad \bar{v}_2 := \bar{v}_3 \frac{1}{v_2}$$

• Якобиан вычисляется по строкам

$$J = \begin{pmatrix} \frac{dy_1}{dx_1} \cdots \frac{dy_1}{dx_n} \\ \vdots \ddots \vdots \\ \frac{dy_m}{dx_1} \cdots \frac{dy_m}{dx_n} \end{pmatrix}$$

Если m = 1, то Якобиан = градиент^Т

• Легко вычислять произведения rJ

Прямой или обратный метод?

- Производная из элементарных производных
- Функция $y = f_4(f_3(f_2(f_1(x)))), x \in \mathbb{R}^n, y \in \mathbb{R}^m$
- Полная производная

$$\frac{dy}{dx} = \frac{df_1(x)}{dx} \frac{\partial f_2(f_1)}{\partial f_1} \frac{\partial f_3(f_2)}{\partial f_2} \frac{\partial f_4(f_3)}{\partial f_3}$$

• Прямой метод

$$\frac{dy}{dx} = \frac{df_1(x)}{dx} \frac{\partial f_2(f_1)}{\partial f_1} \frac{\partial f_3(f_2)}{\partial f_2} \frac{\partial f_4(f_3)}{\partial f_3}$$

• Обратный метод

$$\frac{dy}{dx} = \frac{df_1(x)}{dx} \frac{\partial f_2(f_1)}{\partial f_1} \frac{\partial f_3(f_2)}{\partial f_2} \frac{\partial f_4(f_3)}{\partial f_3}$$

Прямой или обратный метод?

- Производная из элементарных производных
- Функция $y = f_4(f_3(f_2(f_1(x)))), x \in \mathbb{R}^n, y \in \mathbb{R}^m$
- Прямой метод эффективен, когда $n \ll m$
- Обратный метод эффективен когда $n\gg m$
- В МО, х признаки и параметры, у функция потерь
 - Обычно используется обратный метод
 - В сложных случаях можно использовать комбинации
- Оптимальный порядок умножения матриц можно найти с помощью динамического программирования

Как вычислить Гессиан на вектор?

- Функция $y = f(x_1, x_2, \dots, x_n), x \in \mathbb{R}^n, y \in \mathbb{R}$
- Гессиан матрица вторых производных

$$H = \begin{pmatrix} \frac{df}{dx_1 dx_1} & \cdots & \frac{df}{dx_1 dx_n} \\ \vdots & \ddots & \vdots \\ \frac{df}{dx_n dx_1} & \cdots & \frac{df}{dx_n dx_n} \end{pmatrix}$$

- Гессиан очень большая матрица
- Стохастические методы второго порядке требуют вычисления Hv (пример KFAC [Martens&Grosse, 2015])

Метод 1:

1.
$$g(x) = v^T \nabla f(x)$$

2.
$$Hv = \nabla[g(x)]$$

Метод 2:

1.
$$g(x) = \nabla f(x)$$

2.
$$Hv = J_q v$$

Deep learning frameworks

- 1. Есть все необходимые функции (CPU, GPU)
- 2. Организация единой системы
 - Собирает полные производные из производных слоев
 - Автоматическое дифференцирование

Библиотеки для глубинного обучения

1. Низкоуровневые операции: BLAS, LAPACK, 🛂 NumPy

- 2. Линейная алгебра с дифференцированием
 - Отлельное построение вычислительного графа

Построение графа совместно с выполнением

3. Высокоуровневые библиотеки

Рекомендации (сентябрь 2019)

Production

Data science

Что дальше?

ML research

JAX: Autograd и XLA для numpy https://github.com/google/jax

S4TF: Autograd в языке! Python - медленный https://github.com/tensorflow/swift

Зачем знать про backprop?

Andrej Karpathy Follow

Director of AI at Tesla. Previously Research Scientist at OpenAI and PhD student at Stanford. I like to train deep neural nets on large datasets.

Dec 19, 2016 · 7 min read

Yes you should understand backprop

"Backprop – leaky abstraction!"

- Почему сеть не обучается?
- Почему сеть обучается медленно?

Back-propagation

[Rumelhart&McClelland, 1986]

- Вход: x_i, y_i, параметры W₁, b₁, W₂, b₂
- Найти градиент по параметрам нейросети

- 1. Проход вперёд (вычисление слоёв и функции потерь)
- 2. Проход назад (вычисление градиентов)

Проблемы в функциях активаций

• Сигмоида (или tanh)

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

- Градиент $\frac{\partial \sigma(x)}{\partial x} = \sigma(x)(1-\sigma(x))$
 - Градиент ≈ 0 при |х| ≥ 6
 - Максимум градиента = 0.25
 - При каждом умножении макс. градиента уменьшается
- ReLu(x) = $\begin{cases} 0, x \le 0, \\ x, x > 0 \end{cases}$

$$\frac{\partial \text{ReLu}(x)}{\partial x} = \begin{cases} 0, x \le 0, \\ 1, x > 0 \end{cases}$$

- Мёртвые узлы!

[Karpathy, 2016]

Инициализация сетей

• 'glorot' ('xavier') и 'kaiming'

[Glorot&Bengio, 2010] [He et al., 2015]

• Инициализация линейного слоя:

$$y = w^T h(x)$$

- Идея: выбрать дисперсию весов так, чтобы активации были распределены стандартно-нормально
- Пусть w i.i.d., x i.i.d., x и w независимы, $\mathbb{E}w_i = 0$ $\mathrm{Var}[y] = d\mathrm{Var}[w_i h(x_i)] = d\mathrm{Var}[w_i] \mathbb{E}[h(x_i)^2]$
- Выберем $\mathrm{Var}[w_i] := \frac{1}{d} \frac{\mathrm{Var}[x_i]}{\mathbb{E}[h(x_i)^2]}$
- Для ReLu $\operatorname{Var}[w_i] := rac{2}{d}$, или $w_i \sim \mathcal{N}(0, \sigma^2 := rac{2}{d})$

Инициализация сетей

• Пример из личной практики seq2seq с вниманием для машинного перевода БАГ: медленное обучение и потерянные 3 BLEU

Проблемы с градиентом – повод разрабатывать новые архитектуры!

Skip connections (ResNet, [He et al., 2016])

- Regular: y:=f(x) \Rightarrow $\frac{d\ell}{dx}:=f'(x)\frac{d\ell}{dy}$

- Skip: y := f(x) + x \Rightarrow $\frac{d\ell}{dx} := f'(x)\frac{d\ell}{dy} + \frac{d\ell}{dy}$

• Функции потерь на разной глубине (e.g. [Wei et al., 2016])

Проблемы с градиентом – повод разрабатывать новые архитектуры!

Skip connections (ResNet, [He et al., 2016])

- Функции потерь на разной глубине (e.g. [Wei et al., 2016])
- Специальные слои (LSTM/GRU) [Hochreiter& Schmidhuber, 1997]
 - RNN итеративное применение слоя

$$h_t := W_h \sigma(h_{t-1}) + W_x x_t + b$$

- Матрица W_h возводится в степень t
- Градиент либо затухает (LSTM), либо взрывается (clipping)

Заключение

- Backprop –автоматическое дифференцирование
 - По умолчанию используется обратный метод
 - В ряде случае нужны и другие методы
- При обучении моделей надо думать о градиенте
 - Затухание и взрыв градиентов
 - Инициализация
 - Специальные архитектуры