International TOR Rectifier

PD -95037B **IRF7103PbF**

HEXFET® Power MOSFET

- Adavanced Process Technology
- Ultra Low On-Resistance
- Dual N-Channel MOSFET
- Surface Mount
- Available in Tape & Reel
- Dynamic dv/dt Rating
- Fast Switching
- Lead-Free

Description

The SO-8 has been modified through a customized leadframe for enhanced thermal characteristics and dual-die capability making it ideal in a variety of power applications. With these improvements, multiple devices can be used in an application with dramatically reduced board space. The package is designed for vapor phase, infra red, or wave soldering techniques. Power dissipation of greater than 0.8W is possible in a typical PCB mount application.

Absolute Maximum Ratings

Parameter		Max.	Units
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	3.0	
I _D @ T _A = 70°C Continuous Drain Current, V _{GS} @ 10V		2.3	A
I _{DM}	Pulsed Drain Current ①	10	
P _D @T _A = 25°C	Power Dissipation	2.0	W
	Linear Derating Factor	0.016	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
dv/dt	Peak Diode Recovery dv/dt ②	4.5	V/nS
T _{J,} T _{STG}	Junction and Storage Temperature Range	-55 to + 150	℃

Thermal Resistance Ratings

	Parameter	Min.	Тур.	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient ④			62.5	°C/W

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	·						
	Parameter	Min.	Тур.	Max.	Units	Conditions	
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	50			V	$V_{GS} = 0V, I_D = 250\mu A$	
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.049		V/°C	Reference to 25°C, I _D = 1mA	
В	Static Drain-to-Source On-Resistance		0.11	0.13	Ω	V _{GS} = 10V, I _D = 3.0A ③	
R _{DS(ON)}	Static Dialific-Source Off-Resistance		0.16	0.20	52	V _{GS} = 4.5V, I _D = 1.5A ③	
$V_{GS(th)}$	Gate Threshold Voltage	1.0		3.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$	
g _{fs}	Forward Transconductance		3.8		S	V _{DS} = 15V, I _D = 3.0A ③	
	Drain to Course Leekage Current			2.0		V _{DS} = 40V, V _{GS} = 0V	
IDSS	Drain-to-Source Leakage Current			25	μA	V _{DS} = 40V, V _{GS} = 0V, T _J = 55 °C	
Lean	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V	
I _{GSS}	Gate-to-Source Reverse Leakage			-100	IIA	V _{GS} = - 20V	
Qg	Total Gate Charge		12	30		I _D = 2.0A	
Q _{gs}	Gate-to-Source Charge		1.2		nC	V _{DS} = 25V	
Q _{gd}	Gate-to-Drain ("Miller") Charge		3.5			V _{GS} = 10V ③	
t _{d(on)}	Turn-On Delay Time		9.0	20		V _{DD} = 25V	
t _r	Rise Time		8.0	20		I _D = 1.0A	
t _{d(off)}	Turn-Off Delay Time		45	70	ns	$R_G = 6.0\Omega$	
t _f	Fall Time		25	50		$R_D = 25\Omega$ ③	
L _D	Internal Drain Inductance	_	4.0		nH	Between lead,6mm(0.25in.)	
L _S	Internal Source Inductance		6.0] ''''	from package and center of die contact	
C _{iss}	Input Capacitance		290			V _{GS} = 0V	
Coss	Output Capacitance		140		pF	V _{DS} = 25V	
C _{rss}	Reverse Transfer Capacitance		37		1	f = 1.0MHz	

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions	
ls	Continuous Source Current			2.0		MOSFET symbol	
	(Body Diode)		2.0		Α	showing the	
I _{SM}	Pulsed Source Current		_	12	- 12	A	integral reverse
	(Body Diode) ①						p-n junction diode.
V _{SD}	Diode Forward Voltage			1.2	V	T _J = 25°C, I _S = 1.5A, V _{GS} = 0V ③	
t _{rr}	Reverse Recovery Time		70	100	ns	T _J = 25°C, I _F = 1.5A	
Q_{rr}	Reverse RecoveryCharge		110	170	nC	di/dt = 100A/µs ③	
t _{on}	Forward Turn-On Time	Intr	Intrinsic turn-on time is negligible (turn-on is dominated by L_S+L_D)				

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- $\begin{tabular}{ll} @ & I_{SD} \le 1.8A, & di/dt \le 90A/\mu s, & V_{DD} \le V_{(BR)DSS}, \\ & T_{J} \le 150 ^{\circ}C \end{tabular}$
- 4 Surface mounted on FR-4 board, $t \leq 10$ sec.

Fig 1. Typical Output Characteristics,

Fig 2. Typical Output Characteristics,

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Ambient Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

International Rectifier

Fig 12a. Basic Gate Charge Waveform

Fig 12b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

Fig 13. For N-Channel HEXFETS

International IOR Rectifier

SO-8 Package Outline (Mosfet & Fetky) Dimensions are shown in milimeters (inches)

DIM	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	.0532	.0688	1.35	1.75	
A1	.0040	.0098	0.10	0.25	
b	.013	.020	0.33	0.51	
С	.0075	.0098	0.19	0.25	
D	.189	.1968	4.80	5.00	
E	.1497	.1574	3.80	4.00	
е	.050 BASIC		1.27 BASIC		
e 1	.025 BASIC		0.635 BASIC		
Н	.2284	.2440	5.80	6.20	
K	.0099	.0196	0.25	0.50	
L	.016	.050	0.40	1.27	
У	0°	8°	0°	8°	

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
- 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
- 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE

SO-8 Part Marking Information

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

SO-8 Tape and Reel (Dimensions are shown in milimeters (inches))

NOTES:

- 1. CONTROLLING DIMENSION : MILLIMETER.
- ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

- 1. CONTROLLING DIMENSION : MILLIMETER.
 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualifications Standards can be found on IR's Web site.

> International IOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.02/2010