Topics in Computational Economics

Laszlo Tetenyi

March 24, 2016

Exercise 1

Firstly, note that as the collection of vectors in X are linearly independent, X has column rank equal to k. Therefore $ker(X) = \{0\}$, that is $\forall v \in \mathbb{R}^n$ the condition $Xv = 0 \implies v = 0$. Secondly, take the product norm (inherited from the dot product) and note that $||v|| = 0 \implies v = 0$ by definition. Thirdly by the properties of the transpose $\langle Xv, w \rangle = \langle v, X^Tw \rangle$. Now these three facts imply that the following is true $\forall v \neq 0$:

$$0 < ||Xv|| = \langle Xv, Xv \rangle = \langle v, X^T Xv \rangle = \langle X^T Xv, v \rangle$$
(1)

implying that X^TX is positive definite. As a positive definite matrix only has positive eigenvalues it is invertible (the determinant is nonzero).

Exercise 2

The collection of vectors in X are assumed to be linearly independent, therefore they must form a basis of \mathbb{R}^n . This immediatly implies that X spans \mathbb{R}^n . Combined with the fact that $\forall \ v \in S$, Pv = v (where S is the subspace spanned by X, P is the projection to S) we have that Pv = v, $\forall \ v \in \mathbb{R}^n$, that is, P is the identity. A more direct proof would be to invert P, and show that it is equal to P, but the previous proof also conveys intuition.

Exercise 3

Directly calculate:

$$P = 1_{n \times 1} (1_{n \times 1}^T 1_{n \times 1})^{-1} 1_{n \times 1}^T = \frac{1_{n \times 1} 1_{n \times 1}^T}{n} = \frac{1_{n \times n}}{n}$$
 (2)

Therefore for any $y \in \mathbb{R}^n$

$$Py = \frac{1_{n \times n}}{n}y = \begin{bmatrix} \frac{\sum_{i=1}^{n} y_i}{n} \\ \frac{\sum_{i=1}^{n} y_i}{n} \\ \vdots \\ \frac{\sum_{i=1}^{n} y_i}{n} \end{bmatrix} = \begin{bmatrix} \bar{y} \\ \bar{y} \\ \vdots \\ \bar{y} \end{bmatrix}$$
(3)

Exercise 4

Firstly, note that multiplying the residual maker *M* from the right with a matrix formed by any collections of vectors from *X* would result in 0. To see this take *X* itself and to select the relevant columns, multiply it from the right with a "selector" matrix *S*, whose only nonzero elements (namely ones) are on the diagonal:

$$MXS = (I - X(X^{T}X)^{-1}X^{T})XS = XS - XS = 0$$
(4)

Implying that M1 = 0. As M is symmetric this implies $1^T M = 0$ and so $1^T M y = 0$, proving the claim.

Exercise 5

Show by double inclusion.

$$S \cap S^T \supset \{0\}$$

For any subspace S, 0 must be contained in it as taking a (degenerate) linear combination with weights (0,0) of any two vectors in S must be contained. As S^T is a subspace too, this direction is proved.

$$S \cap S^T \subset \{0\}$$

Take any $v \in S \cap S^T$. By definition it must hold that $v \in S$ and $v \perp S$. The latter implies that $\langle v, x \rangle = 0$ for any $x \in S$, including v itself. That is ||v|| = 0 and by the properties of the norm we have v = 0