**Definition 37.36.** Given two metric spaces,  $(E, d_E)$  and  $(F, d_F)$ , a function,  $f: E \to F$ , is uniformly continuous if for every  $\epsilon > 0$ , there is some  $\eta > 0$ , such that, for all  $a, b \in E$ ,

if 
$$d_E(a,b) \leq \eta$$
 then  $d_F(f(a),f(b)) \leq \epsilon$ .

See Figures 37.42 and 37.43.



Figure 37.42: The real valued function  $f(x) = \sqrt{x}$  is uniformly continuous over  $(0, \infty)$ . Fix  $\epsilon$ . If the x values lie within the rose colored  $\eta$  strip, the y values always lie within the peach  $\epsilon$  strip.

As we saw earlier, the metric on a metric space is uniformly continuous, and the norm on a normed metric space is uniformly continuous.

The uniform continuity theorem can be stated as follows:

**Theorem 37.45.** Given two metric spaces,  $(E, d_E)$  and  $(F, d_F)$ , if E is compact and if  $f: E \to F$  is a continuous function, then f is uniformly continuous.

*Proof.* Consider any  $\epsilon > 0$  and let  $(B_0(y, \epsilon/2))_{y \in F}$  be the open cover of F consisting of open balls of radius  $\epsilon/2$ . Since f is continuous, the family,

$$(f^{-1}(B_0(y,\epsilon/2)))_{y\in F},$$

is an open cover of E. Since, E is compact, by Lemma 37.44, there is a Lebesgue number,  $\delta$ , such that for every open ball,  $B_0(a, \eta)$ , of radius  $\eta \leq \delta$ , then  $B_0(a, \eta) \subseteq f^{-1}(B_0(y, \epsilon/2))$ , for some  $y \in F$ . In particular, for any  $a, b \in E$  such that  $d_E(a, b) \leq \eta = \delta/2$ , we have  $a, b \in B_0(a, \delta)$  and thus,  $a, b \in f^{-1}(B_0(y, \epsilon/2))$ , which implies that  $f(a), f(b) \in B_0(y, \epsilon/2)$ . But then,  $d_F(f(a), f(b)) \leq \epsilon$ , as desired.

We now prove another lemma needed to obtain the characterization of compactness in metric spaces in terms of accumulation points.