תזכורת והערות

- $A \leq_n B$ מתקיים $A \in NP$ אם לכל שפה $A \in NP$ מתקיים אם לכל שפה B היא B היא B
 - אם: ($rac{NPC}{NP}$, $rac{NP}{NP}$ -complete) אם: ho
 - .קשה-NP היא B \circ
 - $B \in NP \circ$

(minimap) ציור

[שימו לב לדברים הבאים:

- $P \subset NP$ זה שבעיה (שפה) נמצאת ב- NP לא אומר שהיא קשה הרי
- זה ששפה היא NP-קשה לא אומר כ"כ הרבה על הקושי שלה, שכן היא יכולה להיות אי פתירה לחלוטין (כמו בעיית העצירה שפת (L_{halt}) , ואז היא כלל לא מעניינת.
 - . NP -שלמות מכילה את הבעיות הקשות ביותר ב-- NP

[

:ראינו

- $A \in P \Leftrightarrow P = NP$ שלמה אזי NP היא.

בעיית קדקודים וכיסויים

[ישנן בעיות למציאת מקסימום/מינימום שאנו כבר יודעים שקשות (כגון מציאת חתך מקסימלי, או קבוצה בלתי-תלויה מקסימלית).

אם יש לנו אלגוריתם שיודע למצוא **האם** יש (למשל) קבוצה בלתי תלויה בגודל $k \leq 1$, היינו יכולים עזרת חיפוש בינארי למצוא קבוצה בלתי תלויה מקסימלית (לא נסביר איך [[נראה לי שזה בדומה בעזרת חיפוש בינארי במערך אינסופי – בודקים את התא במקום 2^i עבור לצורה שבה עושים חיפוש בינארי במערך אינסופי – בודקים את התא במקום 2^i וו).

......

 $[".\,k]$ (או לכל היותר) לכן מעתה נדבר על מציאת האם יש משהו כזה בגודל של לפחות (או לכל היותר)

בעיית קבוצה בלתי-תלויה (IS)

- כך שקיימת קב"ת [] = קבוצה (Independent Set) כל הזוגות הזוגות (G=(V,E),k) כל הזוגות בגודל $U\subseteq V$ (בלתי תלויה $U\subseteq V$ [] בגודל
- או $u \not\in U$ מתקיים $(u,v) \in E$ או ער כך שלכל קשת $(u,v) \in U$ מתקיים שווים $v \not\in U$ או שניהם). $v \not\in U$

הרצאה 25

(VC) בעיית כיסוי קדקודים

- $C \subseteq V$ כיסוי קדקודים כיסוי ($G = \left(V, E\right), t$) כל הזוגות פל איים כיסוי קדקודים VC (Vertex Cover) בגודל ב
- ער או $u\in C$ מתקיים $u\in C$ מתקיים או $u\in C$ כיסוי קדקודים קבוצת קדקודים $C\subseteq V$ כך שלכל קשת $v\in C$ (או שניהם). $v\in C$

G = Uאם"ם $V \setminus U$ כיסוי קדקודים ב- G = V, E אם"ם ער קב"ת בגרף U

רדוקציה ביניהם

. $IS \leq_p VC$ טענה: קיימת רדוקציה

הוכחה:

. $f\left(G=(V,E),k\right)=\left(G,\left|V\right|-k\right)$ נגדיר

- <u>זמן ריצה:</u>
- $\mathrm{O}(|G|)$ להעתיק את G לוקח זמן \circ
- לוקח זמן $\log |V|$ (ני המספרים הללו בזיכרון מיוצגים ע"י $\log |V|$ לוקח זמן $\log |V|$ סיביות []
 - נכונות:

 $k \leq t$ בגודל בגודל ע $\subseteq V$ קיימת קבוצה בלתי תלויה בגודל $\Leftrightarrow (G,k) \in IS$

$$|V \setminus U| \le |V - k|$$
- קיימת קב"ת כך ש

$$.|C|\!\leq\!|V|\!-\!k$$
 -פר ש- $C\!\subseteq\!V$ כך ש- C

בעיית הקליקה (CLIQUE)

מהאבחנה

- 0.00 בגודל $U\subseteq V$ באיימת קליקה ער כך שקיימת בגודל G=(V,E),k בגודל G=CLIQUE
 - , קשת. $(u,v)\in E$, $(u\neq v)$ $u,v\in U$ כך שלכל $U\subseteq V$ קשת. $u\neq v$

נשים לב שאת התנאי של קבוצה בלתי תלויה ניתן לרשום גם באחת משתי הדרכים הבאות:

- $\{u,v\}\!\not\subseteq\! U$ קשת אז $\{u,v\}\!\in\! E$ קבוצה בלתי תלויה: קבוצת קדקודים $U\!\subseteq\! V$ כך שאם $\{u,v\}$
 - (u,v) אזי $\{u,v\}$ בוצה בלתי תלויה: קבוצת קדקודים $U\subseteq V$ כך שאם u
 eq v אזי $\{u,v\}\subseteq U$ קבוצה בלתי תלויה.

, $G^c = ig(V, E^cig)$, קבוצה בגרף המשלים, קליקה בגרף $U \Leftrightarrow G = ig(V, Eig)$ קבוצה ב"ת בגרף עבר:

10.6.2014

$$E^{c} = \left\{ \left(u, v \right) \middle| \begin{array}{c} u \neq v \\ \left(u, v \right) \notin E \end{array} \right\}$$

<u>דוגמה</u>:

רדוקציה בין קב"ת לקליקה

 $.IS \leq_p CLIQUE$ טענה: קיימת רדוקציה

<u>הוכחה:</u>

 $f\left(G,k
ight) = \left(G^{c},k
ight)$ נביט בפונקציה

- - <u>נכונות</u>: מיידי מהאבחנה.

הקושי בחיים

נראה בהמשך כי IS היא NP -קשה. ראינו:

$$IS \leq_{p} VC$$
$$IS \leq_{p} CLIQUE$$

תם אות. VC, CLIQUE -קשות.

NP: כדי להראות NP-שלמות, צ"ל שהבעיות הנ"ל

. IS נשאיר זאת כתרגיל): בדיוק כמו עבור

[צריך רק בקבלת מופע ופתרון לבדוק שהפתרון נכון (שזה בסה"כ אומר לוודא את התנאי לגבי הקשתות והקבוצה הנתונה).]

בעיית כיסוי קבוצות (SC)

בכיסוי צמתים כל קדקוד $\,v\,$ יכול לכסות את כל הקשתות שחלות בו:

בעיית כיסוי קבוצות:

- כך שקיים $\{t,C_1,\ldots,C_n\subseteq U \$ ומספר א כך שקיים פרטים מהסוג אות מהסוג באודל אומספר פרטים בגודל באודל אודל באודל רכיסוי קבוצות באודל באודל רכיסוי פרטים באודל רכיסוי באודל רכיס
 - $\bigcup_{i \in C} C_i = U$ כיסוי קבוצות אם C: סיסוי קבוצות •

<u>דוגמה</u>:

$$U = \{1, ..., 7\}$$

$$C_1 = \{1, 2, 7\}$$

$$C_2 = \{2, 3, 4\}$$

$$C_3 = \{1, 5\}$$

$$C_4 = \{5, 6\}$$

$$C_5 = \{2, 4, 7\}$$

$$C_1 \cup C_2 \cup C_4 = \{1, ..., 7\} = U$$

.3 הוא כיסוי קבוצות בגודל $\mathcal{C} = \big\{1, 2, 4\big\}$

טענה (VC הוא מקרה פרטי של VC

. Set Cover הוא מקרה פרטי של Vertex Cover

<u>הוכחה:</u>

:בהינתן גרף G = (V, E) נגדיר

$$\forall v \in V$$
 $C_v = \{(u, v) | (u, v) \in E\}$

[[$E \cap (V \times \{v\})$ שזה כמו לכתוב []

 $:U\subseteq V$ אבחנה: לכל

E כיסוי צמתים של $U \Leftrightarrow G$ כיסוי צמתים U

 $[.igcup_{v} = E$ -פאשר הכוונה בכך ש- עיסוי קבוצות של U -כיסוי פיסוי U

ובכן:

כיסוי צמתים U

- $v \in U$ או $u \in U$ מתקיים $(u,v) \in E$ או \Leftrightarrow
- .ig(u,vig) שייכת ל- $\bigcup_{v\in U}C_v$ -כי רק -כי רק שייכת ל- שייכת ל- שייכת ל- שייכת ל- ig(u,vig)

טענה [SC] היא SP-קשה

.היא Set Cover

(בהנחה ש- IS קשה) קשה (בהנחה ש- IS קשה) הוכחה:

הרדקוציה:

 $f: (G,t) \mapsto \left(E, \left\{C_v \middle| v \in V\right\}, t\right)$ לפי הטענה הקודמת

נכונות: ב- $|U| \le t$ קיים כיסוי צמתים $|U| \le t$ ב- $|U| \le G$ קיים כיסוי קבוצות $|U| \le C$ f(G,t)

- <u>זמן ריצה:</u>
- $O(|E| + \log t)$: E, t את ס
- $v \in V$ מספיק לעבור על רשימת השכנים של כל צומת : C_v מספיק לעבור על רשימת השכנים של כל אומת $\mathrm{O}(|V|\!+\!|E|)$ – [לשם כך עוברים על כל קדקוד פעם אחת ועל כל קשת פעמיים]
 - סה"כ: לינארי בגודל הקלט ○

משפט [SC] היא SC משפט

.שלמה. Set Cover

הוכחה:

. ראינו ש-SC היא

[את הקטע הבא חשוב לכתוב (במבחן, למשל), ולא לשכוח]

ניתן לבדוק בזמן פולינומי [[בגודל (U,C_1,\ldots,C_n,t) ועד א ניתן לבדוק כי בהינתן מופע Set Cover \in NP

.
$$\left|w\right| \leq t$$
 והאם $\bigcup_{i=m} C_i = U$ האם , $w \subseteq \{1,\dots,n\}$ והאם לבדוק האם [[

[[בשביל לבדוק זאת אפשר לעבור על כל האיברים בכל הקבוצות, לסמן כל איבר בקבוצה האוניברסלית כשנתקלים בו בתת-הקבוצה הנוכחית ובסוף לוודא שסימנו את כולם (או לספור את כמות האיברים החדשים שאנו מסמנים).]]

10.6.2014 עמוד 5 מתוך 6

בעיית Satisfiability) SAT, ספיקות)

- C_1,\ldots,C_m היא נוסחה בוליאנית שמורכבת מפסוקיות SAT היא נוסחה בוליאנית שמורכבת מפסוקיות •
- . פסוקית היא ביטוי מהסוג $(l_1 \! extcircled l_2 \! extcircled \cdots \! extcircled l_k)$ כאשר כל l_i הוא ליטרל ullet
- \overline{x}_t (ניתן לסמן גם , x_t או שלילה של משתנה, \overline{x}_t [וווווא או משתנה, x_t או שלילה של פיטרל
 - $C_1 \wedge C_2 \wedge \cdots \wedge C_m$ הנוסחה היא מהצורה \bullet

דוגמה:

$$\varphi(x_1, x_2, x_3, x_4, x_5, x_6) = (x_1 \vee \neg x_3 \vee x_4) \wedge (\neg x_6) \wedge (x_2 \vee x_3 \vee \neg x_5) \wedge (\neg x_5 \vee \neg x_1)$$

.(arphi(השמה) = \mathcal{T} -ש כל הנוסחאות ס כנ"ל כך שקיימת השמה מספקת (השמה כך ש- SAT

למשל בדוגמה:

$$\varphi(x_1, x_2, x_3, x_4, x_5, x_6) = (x_1 \vee \neg x_3 \vee x_4) \wedge (\neg x_6) \wedge (x_2 \vee x_3 \vee \neg x_5) \wedge (\neg x_5 \vee \neg x_1)$$

$$\varphi(\mathcal{T}, \mathcal{F}, \mathcal{T}, \mathcal{F}, \mathcal{F}, \mathcal{F}) = (\mathcal{T} \vee \neg \mathcal{T} \vee \mathcal{F}) \wedge (\neg \mathcal{F}) \wedge (\mathcal{F} \vee \mathcal{T} \vee \neg \mathcal{F}) \wedge (\neg \mathcal{F} \vee \neg \mathcal{T}) = \mathcal{T}$$

רדוקציה מ-SAT ל-IS

רוצים לקודד נוסחת SAT בתור גרף כך ש:

קבוצה בלתי תלויה ≡ השמה מספקת

[נבחר רק ליטרל אחד להיות מסופק (זה מספיק לנו).]