

Advanced Predictive Models for Complex Data

Lecture 4: PCA

Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin

https://psarkar.github.io/teaching

Principal Component Analysis

- Goal: Find the direction of the most variance.
- Say *X* is the data matrix
- The average is $\bar{\mathbf{x}} = \frac{\sum_{i=1}^{n} \mathbf{x}_i}{n}$
- Let $\tilde{\mathbf{x}}_i = \mathbf{x}_i \bar{\mathbf{x}}$

Principal Component Analysis

- Goal: Find the direction of the most variance.
- Say X is the data matrix
- The average is $\bar{\mathbf{x}} = \frac{\sum_{i=1}^{n} \mathbf{x}_i}{n}$
- Let $\tilde{\mathbf{x}}_i = \mathbf{x}_i \bar{\mathbf{x}}$
- The sample variance of $(\tilde{x}_1, \dots, \tilde{x}_n)$ along a direction w is give by:

$$\frac{1}{n} \sum_{i=1}^{n} (\tilde{\mathbf{x}}_{i}^{T} \mathbf{w})^{2}$$

• What is the sample variance of $(x_1, ..., x_n)$ along a direction w?

Principal Component Analysis

Figure 1: Picture courtesy: davidrosenberg.github.io

First component

• So the first PC direction is:

$$\mathbf{w}_1 = \arg\max_{\|\mathbf{w}\| = 1} \frac{1}{n} \sum_{i=1}^{n} (\tilde{\mathbf{x}}_i^T \mathbf{w})^2$$

• And the first PC component of $\tilde{\mathbf{x}}_i$ is $\tilde{\mathbf{x}}_i^T \mathbf{w}_1$

First component

• So the kth PC direction is:

$$\mathbf{w}_{k} = \arg \max_{\substack{\|\mathbf{w}\|=1\\\mathbf{w} \perp \mathbf{w}_{1}, \dots, \mathbf{w}_{k-1}}} \frac{1}{n} \sum_{i=1}^{n} (\tilde{\mathbf{x}}_{i}^{T} \mathbf{w})^{2}$$

- ullet And the k^{th} PC component of $\tilde{\mathbf{x}}_i$ is $\tilde{\mathbf{x}}_i^T \mathbf{w}_k$
- Note that w_1, \ldots, w_k form an orthogonal basis.

Simple algorithm

- ullet Let W is a matrix with ${\it w}_{\it k}$ along its columns
- \bullet $\tilde{X}W$ gives a low dimensional representation of \tilde{X}

Simple algorithm

- \bullet Let W is a matrix with w_k along its columns
- $\tilde{X}W$ gives a **low dimensional** representation of \tilde{X}
- We can frame the optimization problem also as

$$\mathbf{w}_1 = \arg\max_{\|\mathbf{w}\|=1} \mathbf{w}^T \tilde{X}^T \tilde{X} \mathbf{w}$$

Simple algorithm

- \bullet Let W is a matrix with w_k along its columns
- $\tilde{X}W$ gives a **low dimensional** representation of \tilde{X}
- We can frame the optimization problem also as

$$\mathbf{w}_1 = \arg\max_{\|\mathbf{w}\|=1} \mathbf{w}^T \tilde{X}^T \tilde{X} \mathbf{w}$$

• This is the first eigenvector of $S = \tilde{X}^T \tilde{X}$.

Eigenvector and eigenvalues

- Any square symmetrix matrix S has real eigenvalues
- The i^{th} eigenvalue, vector pair satisfy $Sw_i = \lambda_i w_i$
- The eigenvectors are orthogonal to each other, and normalized to have length 1.

Eigenvector and eigenvalues

- Any square symmetrix matrix S has real eigenvalues
- The i^{th} eigenvalue, vector pair satisfy $S w_i = \lambda_i w_i$
- The eigenvectors are orthogonal to each other, and normalized to have length 1.
- In matrix terms, we can write:

$$S = U\Sigma U^T$$
, where

- columns of *U* are the organal eigenvectors, and
- ullet is a diagonal matrix with eigenvalues on the diagonal
- The larger the magnitude of the eigenvalue, more important the eigenvector

- \bullet Let W is a matrix with w_k along its columns
- ullet $\tilde{X}W$ gives a low dimensional representation of \tilde{X}

- \bullet Let W is a matrix with w_k along its columns
- $\tilde{X}W$ gives a **low dimensional** representation of \tilde{X}
- We can frame the optimization problem also as

$$\mathbf{w}_1 = \arg\max_{\|\mathbf{w}\|=1} \mathbf{w}^T \tilde{X}^T \tilde{X} \mathbf{w}$$

- Let W is a matrix with \mathbf{w}_k along its columns
- $\tilde{X}W$ gives a **low dimensional** representation of \tilde{X}
- We can frame the optimization problem also as

$$\mathbf{w}_1 = \arg\max_{\|\mathbf{w}\|=1} \mathbf{w}^T \tilde{X}^T \tilde{X} \mathbf{w}$$

• This is the first eigenvector of $S = \tilde{X}^T \tilde{X}$

- Let W is a matrix with w_k along its columns
- $\tilde{X}W$ gives a **low dimensional** representation of \tilde{X}
- We can frame the optimization problem also as

$$\mathbf{w}_1 = \arg\max_{\|\mathbf{w}\|=1} \mathbf{w}^T \tilde{X}^T \tilde{X} \mathbf{w}$$

- This is the first eigenvector of $S = \tilde{X}^T \tilde{X}$
- What is *S*?

- Let W is a matrix with w_k along its columns
- $\tilde{X}W$ gives a **low dimensional** representation of \tilde{X}
- We can frame the optimization problem also as

$$\mathbf{w}_1 = \arg\max_{\|\mathbf{w}\|=1} \mathbf{w}^T \tilde{X}^T \tilde{X} \mathbf{w}$$

- This is the first eigenvector of $S = \tilde{X}^T \tilde{X}$
- What is *S*?
- Its the scalar multiple of the sample covariance matrix

$$\hat{\Sigma} = \frac{1}{n} \sum_{i} \tilde{\mathbf{x}}_{i} \tilde{\mathbf{x}}_{i}^{T} = \frac{S}{n}$$

- Let W is a matrix with \mathbf{w}_k along its columns
- $\tilde{X}W$ gives a **low dimensional** representation of \tilde{X}
- We can frame the optimization problem also as

$$\mathbf{w}_1 = \arg\max_{\|\mathbf{w}\|=1} \mathbf{w}^T \tilde{X}^T \tilde{X} \mathbf{w}$$

- This is the first eigenvector of $S = \tilde{X}^T \tilde{X}$
- What is *S*?
- Its the scalar multiple of the sample covariance matrix

$$\hat{\Sigma} = \frac{1}{n} \sum_{i} \tilde{\mathbf{x}}_{i} \tilde{\mathbf{x}}_{i}^{T} = \frac{S}{n}$$

 So, all you have to do is to calculate eigenvectors of the covariance matrix.

- So, all you have to do is to calculate eigenvectors of the covariance matrix.
- But, do I even need to do that?

- So, all you have to do is to calculate eigenvectors of the covariance matrix.
- But, do I even need to do that?
- ullet The right singular vectors of \tilde{X} is just fine.

- So, all you have to do is to calculate eigenvectors of the covariance matrix.
- But, do I even need to do that?
- ullet The right singular vectors of \tilde{X} is just fine.
- How many PC's? (more of a dissertaiton question)

Singular value decomposition

- The columns of U are orthogonal eigenvectos of AA^T
- The columns of V are orthogonal eigenvectos of $A^T A$
- A^TA and AA^T have the same eigenvalues, which are all positive, and squares of Σ_{ii} .

Second interpretation

• Minimum reconstruction error:

$$(x_i - (x_i^T w)w)^T (x_i - (x_i^T w)w) = x_i^T x_i - (x_i^T w)^2$$

 So, the first PC direction gives the direction projecting on which has the minimum reconstruction error.

 We will make a covariance matrix and generate independent multivariate gaussian random variables

```
: d=1000
Sigma=np.zeros([d,d])
Sigma[0:200,0:200]=.3;
np.fill_diagonal(Sigma,1)
```

 We will make a covariance matrix and generate independent multivariate gaussian random variables

```
: d=1000
Sigma=np.zeros([d,d])
Sigma[0:200,0:200]=.3;
np.fill_diagonal(Sigma,1)
: plt.matshow(Sigma)
```

: <matplotlib.image.AxesImage at 0x188c373d0>

• Now lets compute eigenvectors of the covariance matrix.

```
X=np.random.multivariate_normal(np.zeros(d),Sigma,5000)

S=np.cov(np.transpose(X))
u,s,vt=svd(S)
```

• Now lets compute eigenvectors of the covariance matrix.

```
X=np.random.multivariate normal(np.zeros(d),Sigma,5000)
S=np.cov(np.transpose(X))
u,s,vt=svd(S)
plot(u[:,0])
[<matplotlib.lines.Line2D at 0x167e5ae50>]
  0.00
 -0.01
 -0.02
 -0.03
 -0.04
 -0.05
 -0.06
 -0.07
               200
                        400
                                 600
                                         800
                                                 1000
```

0.03 0.02 0.01 0.00

ò

200

400

• Now lets do SVD on the data matrix X.

```
u,s,vt=svd(X)

plot(vt[0,:])

[<matplotlib.lines.Line2D at 0x1680810a0>]

0.07 - 0.06 - 0.05 - 0.04 - 0.04 - 0.04 - 0.04 - 0.05 - 0.04 - 0.05 - 0.04 - 0.05 - 0.04 - 0.05 - 0.04 - 0.05 - 0.04 - 0.05 - 0.04 - 0.05 - 0.04 - 0.05 - 0.04 - 0.05 - 0.04 - 0.05 - 0.04 - 0.05 - 0.04 - 0.05 - 0.04 - 0.05 - 0.04 - 0.05 - 0.04 - 0.05 - 0.04 - 0.05 - 0.04 - 0.05 - 0.04 - 0.05 - 0.04 - 0.05 - 0.04 - 0.05 - 0.04 - 0.05 - 0.04 - 0.05 - 0.04 - 0.05 - 0.04 - 0.05 - 0.04 - 0.05 - 0.05 - 0.04 - 0.05 - 0.05 - 0.04 - 0.05 - 0.04 - 0.05 - 0.05 - 0.04 - 0.05 - 0.05 - 0.04 - 0.05 - 0.05 - 0.04 - 0.05 - 0.05 - 0.04 - 0.05 - 0.05 - 0.04 - 0.05 - 0.05 - 0.04 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05 - 0.05
```

600

800

1000

• Now lets do SVD on the data matrix X.

Online PCA - Oja's algorithm

- Erikki Oja wrote a seminar paper in 1982 about a simple neural network model.
- He was inspired by the Hebbian principle (1949, "The organization of behavior", Donald Hebb) which claims that the synaptic energy increases from presynaptic cells stimulating post-synaptic cells.

Online PCA - Oja's algorithm

• For each data-point, you do:

$$w_{t+1} \leftarrow w_t + \eta_t(x_t^T w_t) x_t$$
$$w_{t+1} \leftarrow w_{t+1} / ||w_{t+1}||$$

Online PCA - Oja's algorithm

• For each data-point, you do:

$$w_{t+1} \leftarrow w_t + \eta_t(x_t^T w_t) x_t$$
$$w_{t+1} \leftarrow w_{t+1} / ||w_{t+1}||$$

- Note that here, you do not need to construct the covariance matrix explicitly, which is extremely useful, when d is much larger than n, i.e. in high dimensional settings.
- Step size η_t can be set as $c \log n/n$ or $\eta_t \propto 1/t$
- Sharp error bounds show that the final solution converges to the principal component and the error has weak dependence on dimensionality d

- Now lets do Oja's algorithm for X.
- Set $\eta = 0.001 \log n/n$

Dot product with truth

final vector

- Now lets do Oja's algorithm for X.
- Set $\eta = 0.01 \log n/n$

Dot product with truth

- Now lets do Oja's algorithm for X.
- Set $\eta = 0.1 \log n/n$

Dot product with truth

- Now lets do Oja's algorithm for X.
- Set $\eta = 1 \log n/n$

Dot product with truth

final vector