Rotation-Only Bundle Adjustment

unizar

Seong Hun Lee and Javier Civera (I3A, University of Zaragoza, Spain)

(1)

Paper Nr: 2029

1 Introduction

Global SfM pipeline:

- (1) Feature extraction and matching.
- (2) Relative pose estimation.
- (3) Global rotation estimation by multiple rotation averaging (RA).
- (4) Global translation estimation.
- (5) Multiview triangulation.
- (6) Bundle adjustment (BA).

Steps (4), (5), (6) are influenced by the rotation accuracy of Step (3).

To improve the accuracy, we propose an intermediate step (3.5):

(3.5) Rotation-Only Bundle Adjustment

- + Simpler than BA, as rotations are decoupled from the rest.
- + Complete immunity to inaccurate translations and structure.
- + Accuracy improvement.

2. Two-View Rotation-Only [1]

Find R that makes the normals of the epipolar planes ni coplanar.

→ Eigenvalue minimization problem:

$$R = \operatorname{argmin}_{R} \lambda_{M}(R)$$

where λ_{M} is the smallest eigenvalue of matrix M defined as

$$\mathbf{M} = \sum\nolimits_{i} \left(\widehat{\mathbf{f}}_{i} \times \mathbf{R} \widehat{\mathbf{f}}_{i}' \right) \left(\widehat{\mathbf{f}}_{i} \times \mathbf{R} \widehat{\mathbf{f}}_{i}' \right)^{\mathsf{T}} \ (2)$$

3. Multi-View Rotation-Only

Solve
$$\underset{R_1, \dots, R_n}{\operatorname{argmin}} \sum_{(j,k)} \sqrt{\lambda_M(R_{jk})}$$
 (3)

using the Adam optimizer [2].

[2] D. P. Kingma, J. L. Ba, ADAM: A method for stochastic optimization, ICLR 2015. [3] A. Chatteriee, V. M. Govindu, Robust Relative Rotation Averaging, TPAMI, 2018.

4. Results in Simulation

- RA: SOTA rotation averaging [3] - ROBA: RA [3] + Rotation-Only BA

- 12 different configurations, ROBA improved the results.
- 2. It works for planar scenes and pure rotations, and better for denser graphs.

5. Results on Real Data [4]

	RA	RO	ROBA	
ALM	4.08 (16) 2.35	(267)	
ELS	2.10 (1.06	(48)	
GDM	6.05 (3) 2.43	(87)	
MDR	6.20 (2) 4.42	(61)	
MND	1.46 (4) 0.82	(142)	
NTD	2.08 (14) 1.27	(291)	
NYC	2.87 (1.03	(49)	
PDP	3.86 (1) 2.18	(61)	
PIC	4.14 (220) 1.58	(899)	
ROF	2.94 (6) 2.18	(186)	
TOL	3.83 (1) 1.15	(64)	
TFG	3.40 (553) 2.76	(2194)	
USQ	5.59 (1) 3.26	(62)	
VNC	6.12 (15) 4.96	(289)	
YKM	3.67	1) 1.66	(74)	

L1 mean errors in deg (times in s)

6. Conclusions

- ROBA estimates the global rotations of multiple views, independently of the translations and the scene structure - We formulate the problem by extending the two-view method [1] and solve it
- using the Adam optimizer [2].
- Accuracy
 † when used after RA [3].

[1] L. Kneip, S. Lynen, Direct optimization of frame-to-frame rotation, ICCV 2013.