Thermal Tool

Catalog

Argur	ments	2
	Format	
	Tools for PTU, sensor, and HDD	
	Tools for CPU_pid and GPU_pid	
	to Use?	
	ion History	
	2021.01.21 Debugptu2	
	2021.02.20 Upgrade –gpulogcpulog	

Arguments

--output thermal.xlsx--hdd HDDtemp.txt

• --bmc BMCtemp.txt/BMCtempswitch.txt

--bmc2 sdr.txt

--ptu PTUtemp_old.txt--ptu2 PTUtemp_new.txt

• --cpulog CPU_PID.log/CPU_PID.txt

• --gpulog GPU_pid.txt

• --draw enable/disable (optional, the default value is 'enable', set it to 'disable' if you don't plan to draw)

Excel Format

1. Tools for PTU, sensor, and HDD

All the sheets can be classified into the following three types: common sheet, log sheet, and summary sheet.

Common sheet

PTU, sensor, and HDD are all common sheets, which are used as the guidelines to generate the log sheet and summary sheet.

In the common sheet, you **must** fill in the data you want to grasp from a given log file, starts from the **first** column and the **second** row, for example:

Figure 1 PTU example

	Α	В	С		D
1					
2	Inlet_Temp				
3	Outlet_Tem	р			
4	CPU0_DTS				
5	CPU1_DTS				
6	CPU2_DTS				
7	CPU3_DTS				
8	CPU0_DDR	_DIMM_	Т		
9	CPU1_DDR	_DIMM_	Т		
10	CPU2_DDR	DIMM_	Т		
11	CPU3_DDR	_DIMM_	Т		
12	CPU0_Vcor	e_T			
13	CPU1_Vcor	e_T			
14	CPU2_Vcor	e_T			
15	CPU3_Vcor	e_T			
16	PCH_Temp				
	+ +	PTU	sensor	НС	DD hdd

Figure 2 sensor example

Figure 3 HDD example

Log sheet

PTU log, sensor log, and hdd log are all log sheets, which used to represent the data.

When use the tool, you don't need to delete them or create a new sheet manually because the tool will automatically clear the previous data or create a log sheet if it does't exist.

> Summary sheet

PTU summary, sensor summary, and hdd summary are all log sheets, which used to summarize the data in the log sheet.

Similarly, the summary sheets are also automatically updated or created, there is no need to clear them or create new ones manually.

2. Tools for CPU pid and GPU pid

Same as the first tool, all the sheets can be classified into the following three types: common sheet, log sheet, and summary sheet.

In the common sheet, you must fill in the data you want to grasp from a given log file, starts from the first column and the second row

	A
1	sensor name
2	Id:0,sensorindex:15;CPU0_DTS_MARGIN_TEMP
3	ld:1,sensorindex:16;CPU1_DTS_MARGIN_TEMP
4	ld:2,sensorindex:17;CPU2_DTS_MARGIN_TEMP
5	ld:3,sensorindex:18;CPU3_DTS_MARGIN_TEMP
6	Id:4,sensorindex:195;CPU0_DDR_DIMM_TEMP
7	Id:5,sensorindex:196;CPU1_DDR_DIMM_TEMP
8	ld:6,sensorindex:197;CPU2_DDR_DIMM_TEMP
9	Id:7,sensorindex:198;CPU3_DDR_DIMM_TEMP
10	Id:8,sensorindex:199;CPU0_BPS_DIMM_TEMP
11	Id:9,sensorindex:200;CPU1_BPS_DIMM_TEMP
12	ld:10,sensorindex:201;CPU2_BPS_DIMM_TEMP
13	ld:11,sensorindex:202;CPU3_BPS_DIMM_TEMP
14	ld:12,sensorindex:27;CPU0_VCORE_TEMP
15	ld:13,sensorindex:28;CPU1_VCORE_TEMP
16	ld:14,sensorindex:29;CPU2_VCORE_TEMP
17	ld:15,sensorindex:30;CPU3_VCORE_TEMP
18	Id:16,sensorindex:6;PCH_TEMP
19	ld:17,sensorindex:82;OCP_NIC_TEMP
20	Idi10 concerndow154.0CD NIC ODTIONO TEMP
	BMC_CPU BMC_GPU BMC_CPU log

Figure 4 BMC_CPU example

	Α	В		С		
1	sensor					
2	Lowest Am	bient temp				
3	[PID-GPU_0	Outlet_T]				
4	[PID-Disk_F	_Temp]				
5	[PID-GPU0	_Temp]				
6	[PID-GPU1	_Temp]				
7	[PID-GPU2	_Temp]				
8	[PID-GPU3	_Temp]				
9	[PID-GPU4]	_Temp]				
10	[PID-GPU5	_Temp]				
11	[PID-GPU6	_Temp]				
12	[PID-GPU7	_Temp]				
13	[PID-GPU8]	_Temp]				
14	[PID-GPU9	_Temp]				
15	[PID-GPU10	O_Temp]				
16	[PID-GPU1:	1_Temp]				
17	[PID-GPU12	2_Temp]				
18	[PID-GPU13	3_Temp]				
19	[PID-GPU14	4_Temp]				
20	IDID COLLU				г	D140 00
	+ +	BMC_CPU	,	BMC_G	PU	BMC_CF

Figure 5 BMC_GPU example

How to Use?

To use the tool, you have to execute the following command:

[tool name] --output [excel name] --[operations] [log name]

Examples

- .\thermal.exe --output .\thermal.xlsx --bmc .\BMCtemp.txt --hdd .\HDDtemp.txt -- ptu .\PTUtemp_old.txt
- thermal.exe --output thermal.xlsx --bmc BMCtemp.txt --hdd HDDtemp.txt --ptu PTUtemp_old.txt --draw disable
- thermal.exe --output thermal.xlsx --bmc2 sdr.txt --hdd HDDtemp.txt --ptu2 PTUtemp_new.txt

- .\thermal.exe --output thermal.xlsx --bmc2 .\sdr.txt --hdd .\HDDtemp.txt -ptu2 .\PTUtemp_new.txt --draw diable
- .\thermal.exe --output thermal.xlsx --ptu .\PTUtemp_old.txt --draw disable
- .\thermal.exe --output thermal.xlsx --ptu2 .\PTUtemp_new.txt
- .\thermal.exe --output thermal.xlsx --bmc .\BMCtemp.txt
- thermal.exe --output thermal.xlsx --bmc2 .\PTUtemp old.txt
- thermal.exe --output .\log.xlsx --cpulog .\CPU_PID.txt --gpulog .\GPU_pid.txt
- thermal.exe --output log.xlsx --cpulog CPU_PID.txt
- thermal2.exe --output log.xlsx --cpulog CPU_PID.txt --gpulog GPU_pid.txt --draw disable

Revision History

1. 2021.01.21 Debug --ptu2

> Issue

In the summary sheet, CPU0 has data whereas CPU1 is empty.

Reason

In the ptu.txt, data is incomplete. The 1668th datais incomplete for it only contains CPU0 while CPU1 is missing.

1000	CLUV	-	-	2424	2400 100.00 2.14 100.00	0.00	0.00	0.00	0.00	04 24 255,44 1.012 1.005 OAO	UAU U	14.007
1666	CPU 1	-	-	3460	2400 100.00 2.54 100.00	0.00	0.00	0.00	0.00	82 22 299.39 1.000 0.985 0x0	0x0 0	17.824
1666	MEMO	-	-	-		-	-	-		52 - 35.85	0х0 -	-
1666	MEM 1	-	-	-		-	-	-		55 - 65.25	0x0 -	-
1667	CPU0	-	-	3493	2100 100.00 2.19 100.00	0.00	0.00	0.00	0.00	88 16 300.15 1.012 0.905 0x0	0x0 0	15.660
1667	CPU 1	-	-	3456	2400 100.00 2.54 100.00	0.00	0.00	0.00	0.00	83 21 300.08 0.997 0.985 0x0	0x0 0	18.598
1667	MEMO	-	-	-		-	-	-		52 - 35.88	0x0 -	-
1667	MEM 1	-	-	-		-	-	-		55 - 65.11	0x0 -	-
1668	CPU0	-	-	3492	2400 100.00 2.15 100.00	0.00	0.00	0.00	0.00	89 15 299.67 0.990 0.907 0x0	0x	
												~
									Unix (LF)	第1列,第1行	100%	

This missing data then leads to an incomple log sheet.

1663	20	299.68	21	299.95
1664	16	299.33	21	299.98
1665	20	298.93	19	299.95
1666	22	299.44	22	299.39
1667	16	300.15	21	300.08
1668	15	299.67		

Therefore, the summary sheet only contains CPU0.

Solution

Either delete the incomplete data (line 1668) or supplement the incomplete data will help.

> Improvement in the code

To figure out this problem, we add some tips in the code to help users realize the missing data.

Whenever there exists incomplete data, some warning information will pop up on the screen:

```
C:\Users\Administrator\Desktop\test>python thermal.py --output thermal.xlsx --bmc BMCtemp2020.txt start to process BMCtemp2020.txt...

Warning: data missing at log sheet: row 2, col 20.
Summary sheet returns nothing, please check

Warning: data missing at log sheet: row 2, col 21.
Summary sheet returns nothing, please check

BMC DONE!
```

2. 2021.02.20 Upgrade –gpulog --cpulog

> Add a nickname column

In the requirement sheet, some names are too long and are hard to read in the chart. Therefore, we add a column for short name in the second column. In the meantime, names in the chart of the summary sheet also change.

	A	В
1	sensor name	name
2	ld:0,sensorindex:15;CPU0_DTS_MARGIN_TEMP	a
3	ld:1,sensorindex:16;CPU1_DTS_MARGIN_TEMP	b
4	ld:2,sensorindex:17;CPU2_DTS_MARGIN_TEMP	С
5	ld:3,sensorindex:18;CPU3_DTS_MARGIN_TEMP	d
6	ld:4,sensorindex:195;CPU0_DDR_DIMM_TEMP	e
7	ld:5,sensorindex:196;CPU1_DDR_DIMM_TEMP	f
8	ld:6,sensorindex:197;CPU2_DDR_DIMM_TEMP	g
9	ld:7,sensorindex:198;CPU3_DDR_DIMM_TEMP	h
10	ld:8,sensorindex:199;CPU0_BPS_DIMM_TEMP	i
11	ld:9,sensorindex:200;CPU1_BPS_DIMM_TEMP	j
12	ld:10,sensorindex:201;CPU2_BPS_DIMM_TEMP	k
13	ld:11,sensorindex:202;CPU3_BPS_DIMM_TEMP	I
14	ld:12,sensorindex:27;CPU0_VCORE_TEMP	m
15	ld:13,sensorindex:28;CPU1_VCORE_TEMP	n
16	ld:14,sensorindex:29;CPU2_VCORE_TEMP	0
17	ld:15,sensorindex:30;CPU3_VCORE_TEMP	р
18	Id:16,sensorindex:6;PCH_TEMP	q
19	ld:17,sensorindex:82;OCP_NIC_TEMP	r
20	ld:18,sensorindex:154;OCP_NIC_OPTION0_TEMP	S
21	ld:19,sensorindex:91;PCIE0_CARD_TEMP	t
22	ld:20,sensorindex:92;PCIE1_CARD_TEMP	u
23	ld:21,sensorindex:93;PCIE2_CARD_TEMP	V

Figure 6 add a 2nd column for short name

Figure 7 names in the chart also change

This version is able to retrieve the [Final Domain Output Duty] and add them to the last five columns.

AZ	BA	BB	BC	BD
Final PWM0	Final PWM1	Final PWM2	Final PWM3	Final PWM4
60	60	72	72	72
55	55			
55	55	74	74	74
55	55	74	74	74
60	60			
60	60	74	74	74
60	60	74	74	74
60	60	74	74	74
60	60	74	74	74
55	55			
55	55	74	74	74
60	60			
60	60	74	74	74
60	60	74	74	74
60	60	74	74	74
60	60	74	74	74
60	60	74	74	74
60	60	74	74	74
60	60	74	74	74
60	60	74	74	74
60	60	74	74	74
60	60	74	74	74
60	60	74	74	74
60	60	74	74	74

Figure 8 [Final Domain Output Duty] is shown in the last 5 columns