ISEN Lille mars 2016

\mathcal{M} athématiques $\mathcal{C}i\mathbf{R}^2$

\mathscr{C} onsignes

- ullet Cette épreuve de ullet h contient ullet ullet questions équipondérées indépendantes.
- L'usage de la calculatrice non programmable est **permis** bien que peu utile.
- Lisez attentivement les concises questions ainsi que ces quelques consignes.
- Cette ligne était **juste pour voir** si vous aviez lu la précédente.
- Rédigez clairement en explicitant vos raisonnements et énonçant les résultats utilisés.
- Amusez-vous bien! et surtout, exprimez-vous (sensément) sur les différents sujets.

\mathcal{N} otations

- \mathbf{F}_q désigne le corps fini à q éléments, \mathbf{C} l'ensemble des nombres complexes;
- j l'un des deux nombres complexes satisfaisant $j^2 = -1$;
- $\mathcal{M}_{m \times n}(\mathbf{F})$ l'ensemble des matrices $m \times n$ à coefficients dans un corps \mathbf{F} ;
- $GL_n(\mathbf{F})$ le groupe des matrices inversibles dans $\mathcal{M}_{n\times n}(\mathbf{F})$;
- \mathcal{D}_n le groupe des isométries du plan préservant un n-gone régulier;
- S_n le groupe des permutations de $\{1, \ldots, n\}$.

— I —

Soit j l'un des deux nombres complexes satisfaisant $j^2 = -1$.

- a) Résoudre pour $w \in \mathbb{C}$ l'équation du second degré $w^2 2(1+2j)w + 1 = 0$.
- b) Décrire soigneusement l'ensemble des nombres complexes $z \in \mathbb{C}$ pour lesquels $\cos z = 1 + 2j$.

- II -

- a) Pour $P \in GL_n(\mathbf{F}_5)$ et $A \in \mathcal{M}_{m \times n}(\mathbf{F}_5)$, vérifier que la formule $P \star A := A \cdot P^{-1}$ définit une action de groupe.
- b) Vérifier que $A = \begin{bmatrix} 1 & 3 & 4 & 0 \\ 3 & 1 & 4 & 2 \\ 1 & 2 & 3 & 4 \end{bmatrix}$ et $B = \begin{bmatrix} 4 & 3 & 2 & 1 \\ 1 & 1 & 0 & 0 \\ 2 & 2 & 0 & 0 \end{bmatrix}$ sont dans la même orbite pour cette action.

- III -

On fabrique des assortiments de 16 chocolats dans des boîtes carrées 4×4 .

- a) Décrire les 8 éléments du groupe diédral \mathcal{D}_4 comme des permutations dans \mathcal{S}_{16} , en précisant leur signature.
- b) Combien d'assortiments géométriquement différents peut-on confectionner à l'aide de 3 A, 3 B, 4 C et 6 D?

— IV —

a) Donner une formule pour le terme général d'une suite de nombres réels $(x_n)_{n\in\mathbb{N}}$ satisfaisant

$$x_{n+2} = x_{n+1} + 6x_n + 1 + 3^n \quad (n \ge 0), \qquad x_0 = 0, \quad x_1 = 1.$$

b) Même question en supposant maintenant que les x_n sont des scalaires dans \mathbf{F}_5 .