Prepared for submission to JHEP

ML Cheatsheet

Steve Young

Abstract: Everything I know about machine learning.

Contents

1	Conve	ntions	1		
2	Linear	r Regression	2		
	2.1 E	Basics	2		
3	Logistic Regression				
	3.1 2	Cclasses	2		
	3.2 2	2+ classes	2		
4	Gauss	ian Discriminant Analysis (GDA) and Naive Bayes	3		
	4.1	GDA	3		
	4.2 N	Naive Bayes (for text classification)	3		
5	Bias/V	ariance Tradeoff	4		
6		Assessment	4		
		Classification	4		
		5.1.1 Precision/Recall	4		
		6.1.2 Receiver operating characteristic curve (ROC)	5		
	6.2 N	Misc	5		
7	K-means				
8	PCA				
9	Time S	Series	6		
		Stationarity	6		
	9.2 A	ARCH	6		
10	Gaussian Processes				
11	Neura	l Networks	6		
		Hyperparameters	6		
	11.2 E	Bias/Variance	6		
12	Variat	ional Methods	7		
A	Math	Stuff	8		
	A.1 N	Matrix Stuff	8		
	A	A.1.1 Partitioned Matrix Inversion	8		

	A.2	Gaussians	8
		A.2.1 Partitioned Gaussians: Conditional and Marginal Distributions	8
		A.2.2 Bayes' theorem for Gaussian variables	8
	A.3	Singular value decomposition	9
	A.4	Matrix derivatives	9
В	B.1	Linear Regression Hierarchy Maximum likelihood Maximum a pastoriari	9
	B.2 B.3	Maximum a posteriori Full Bayesian (stationary prior)	9 10
		Variational Bayes (non-stationary prior)	10

1 Conventions

Math Notation

- $x \in \{0, 1\}^r$: x is a vector of form e.g. (0, 1, 1, 0, ..., 1, 0) of length r.
- ~: random variable drawn from a distribution
 ∝: "proportional to"
- $\mathbf{1}(\cdot)$: indicator function 1 when arg is true, 0 when arg is false.
- Boldface capital letters are matrices, e.g. $\mathbf{A} = \mathbf{U}\mathbf{W}\mathbf{V}^T$
- log is base e by default \rightarrow entropy in nats.

Ng CS229 / DeepLearning.ai

- m: number of training examples in the dataset
- *n* : dimension of training examples
- $x^{(i)} \in \mathbb{R}^n$: i^{th} training example (column vector), $1 \le i \le m$
- $y^{(i)}$: i^{th} output (column vector), $1 \le i \le m$
- $x_i : j^{th}$ component of a training example, $1 \le j \le n$.
- $\mathbf{X} \in \mathbb{R}^{n \times m}$: (input/design) matrix (training examples are *column* vectors)¹
- $X \in \mathbb{R}^{m \times n}$: (input/design) matrix (training examples are *row* vectors)

¹Note our non-conventional definition of the design matrix **X**. The more conventional version is denoted **X**.

2 Linear Regression

2.1 Basics

- Hypothesis $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots = \sum_{j=0}^n \theta_j x_j \equiv \theta^T x$, where $x_0 = 1$.
- Cost function

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$
 (2.1)

• Analytically solve via normal equations, where **X** is the augmented $(n + 1) \times m$ design matrix

$$\vec{\theta} = (\mathbf{X}\mathbf{X}^T)^{-1}\mathbf{X}\,\vec{y} \tag{2.2}$$

where $\vec{\theta}$ and \vec{y} are column vectors of the n+1 weights and m outputs, respectively.

3 Logistic Regression

3.1 2 classes

With 2 labels $y \in \{0, 1\}$ and m training examples $x^{(i)}, 1 \le i \le m$, we have

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}} \tag{3.1}$$

$$p(y|x;\theta) = (h_{\theta}(x))^{y} (1 - h_{\theta}(x))^{1-y}$$
(3.2)

$$L(\theta) = \prod_{i=1}^{m} (h_{\theta}(x^{(i)}))^{y^{(i)}} (1 - h_{\theta}(x^{(i)}))^{1 - y^{(i)}}$$
(3.3)

$$l(\theta) = \log L(\theta) = \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))$$
(3.4)

with deriv

$$\frac{\partial}{\partial \theta_i} l(\theta) = x_j^T (y - h_{\theta}(x)) \tag{3.5}$$

We can't minimize the log-likelihood analytically, so we must use numerical optimization.

The log-likelihood is just the cross entropy

$$H(p,q) = -\sum_{i} p_i \log q_i \tag{3.6}$$

with p the actual outputs, and q the hypothesis $h_{\theta}(x)$

3.2 2+ classes

One-versus-all: For k classes, do k normal log regs. Each has two classes: the target class, and all the rest. New examples are classified by whichever of these k log regs. has highest score.

Softmax regression: Model classification cases as *multinomial* distribution. For k classes, hypothesis is k-dim vector

$$h_{\theta}(x) = \frac{1}{\sum_{l=1}^{k} \exp(\theta^{(l)T} x)} \times \left[\exp(\theta^{(1)T} x), \dots, \exp(\theta^{(k)T} x) \right]$$
(3.7)

The log-likelihood is

$$l(\theta) = -\sum_{i=1}^{m} \sum_{l=1}^{k} \mathbf{1}(y^{(i)} = l) \log \frac{\exp(\theta^{(l)T} x)}{\sum_{m=1}^{k} \exp(\theta^{(m)T} x)}$$
(3.8)

TODO: show how 2-class log reg cost func can be written this way. write down deriv of cost func. clean up notation.

4 Gaussian Discriminant Analysis (GDA) and Naive Bayes

Generative algorithm: Instead of modeling p(y|x), model p(y) and p(x|y), then get posterior p(y|x) via Bayes' theorem.

4.1 GDA

Can used GDA for classification problem when input features are continuous-val random vars. Models p(x|y) as multivariate Gaussian. Model is

$$y \sim \text{Bernoulli}(\phi)$$

$$x|y = 0 \sim \mathcal{N}(\mu_0, \Sigma)$$

$$x|y = 1 \sim \mathcal{N}(\mu_1, \Sigma)$$
(4.1)

TODO: finish —

4.2 Naive Bayes (for text classification)

For training examples $x \in \{0, 1\}^n$ (a *vocabulary*² of length n), assume the components of an example, x_i , are conditionally independent given y (*Naive Bayes assumption*).

$$p(x_1, \dots, x_n | y) = \prod_{i=1}^n p(x_i | y)$$
(4.2)

Model is parameterized by

$$\phi_y = p(y=1),$$
 $\phi_{j|y=1} = p(x_j = 1|y=1),$ $\phi_{j|y=0} = p(x_j = 1|y=0)$ (4.3)

²the j^{th} entry is 1 if the example contains the j^{th} word in the vocabulary. **Example**: If the vocab is {cats, rats, bats}, then n = 3, and a training example that contains "cats", "rats", but not "bats", would be x = (1, 1, 0).

where $j \in (1, n)$, for a total of 2n + 1 parameters. Likelihood is

$$L(\phi_{y}, \{\phi_{j|y=1}, \phi_{j|y=0}\}_{j=1}^{n}) = \prod_{i=1}^{m} p(x^{(i)}, y^{(i)})$$
(4.4)

which has MLE values

$$\phi_{j|y=1}$$
 = fraction of spam (y=1) in which word j appears
$$\phi_{j|y=0}$$
 = fraction of non-spam (y=0) in which word j appears
$$\phi_{v}$$
 = fraction of training examples that are spam (4.5)

To make predictions, we don't need the evidence p(x); we just need to compare

$$p(y = 1|x) \propto p(x|y = 1)p(y = 1)$$

$$p(y = 0|x) \propto p(x|y = 0)p(y = 0)$$
 (4.6)

and pick the class that has the higher value (un-normalized posterior).

TODO: finish — show how last two eqs are actually calculated

5 Bias/Variance Tradeoff

- High bias: underfitting. high training error and test error.
- **High variance**: overfitting. *low* training error and *high* test error

Can't use the test set to decide on values of hypers (*e.g.* number of parameters in model) because "we could just tweak the values of the hypers until the estimator performs optimally [on the test set]".

Cross-validation allows you to do model scoring (on frequentist stats, versus *e.g.* info criteria for Bayesian stats.. **TODO: verify i know what i'm talking about**).

Can average together multiple models with high capacity (low bias, but high variance). The result of combining is to *reduce* the variance of the combined model.

6 Model Assessment

6.1 Classification

6.1.1 Precision/Recall

For 2 classes, with $\{TN, FN, FP, TP\} = \{\text{true negatives, false negatives, false positives, true positives}\},$ we have the *loss* or *confusion matrix*:

$$\begin{pmatrix} TN & FP \\ FN & TP \end{pmatrix},$$
(6.1)

where the rows/columns are actual/predicted numbers of examples not-in-class (negative), or in-class (positive). We define the *precision* and *recall*:

precision =
$$\frac{TP}{TP + FP}$$
, recall = $\frac{TP}{TP + FN}$. (6.2)

Precision is ability of classifier to not classify actual negatives as positive (*i.e.* low false positives). So *e.g.* if positive is "person doesn't have cancer", we want high precision.

Recall is ability of classifer to find all positive samples.

6.1.2 Receiver operating characteristic curve (ROC)

True Positive Rate (TPR): same as recall

True Negative Rate (TNR): fraction of actual negatives that are classified as negative TN/(TN + FP)

False Positive Rate (FPR): 1 - TNR

ROC plots TPR versus FPR.

TODO: F score

6.2 Misc

k: number of model parameters

• Akaike Information Criteria (AIC): $2k - 2 \ln L(\theta)$ TODO: how to apply in practice

7 K-means

- Setup: Select any K points from data to serve as initial centroids of the clusters.
- Repeat until (stopping criteria: *e.g.* no points change clusters, sum of distances is minimized, some total number of iterations..):
 - 1. Assign each datapoint to the cluster with closest centroid.
 - 2. Compute *K* new centroids, each the mean of the datapoints in its cluster.

8 PCA

PCA is unsupervised technique for finding directions of most variance in dataset. The *principal components* are a set of *n* orthonormal *n*-dim basis vects along the directions of maximum variance, ordered by decreasing variance in their directions.

To calc:

- via eigenvectors: Principal components of *de-meaned n*×*m* design matrix **X** are the eigenvectors of the covariance matrix of **X**, $\mathbf{C}_{\mathbf{X}} = \frac{1}{m}\mathbf{X}\mathbf{X}^T$.
- via SVD: Define $\mathbf{Y} = \frac{1}{\sqrt{m}} \mathbf{X}^T$, and take its SVD A.3, which is $\mathbf{Y} = \mathbf{U}\mathbf{W}\mathbf{V}^T$. Then \mathbf{U}^T is $n \times m$ matrix that projects \mathbf{X} onto its principal components, \mathbf{W} is the matrix of principal comp values, and \mathbf{V} is orthonormal matrix of the principal components. TODO: Verify/fix statement on \mathbf{U} projection.

9 Time Series

9.1 Stationarity

Definition 1 (Second Order Stationarity) is when correlation between sequential observations is only a function of the lag.

• **Dickey-Fuller test:** tests for stationarity of AR model. Null hypothesis is "series is *non-stationary*".

9.2 ARCH

• **Box-Jenkins:** systematic methodology for identifying and estimating models that can incorporate both AR and MA.

10 Gaussian Processes

11 Neural Networks

11.1 Hyperparameters

Hypers: learning rate, num iteractions, num hidden layers, num units in each layer, choise of activation function, amout of momentum, minibatch size, regularization type and amount.

11.2 Bias/Variance

Bias/variance is less of a *tradeoff* in neural network training, since we have a number of methods to reduce both independently.

- **Reduce bias (train set perf):** Bigger network, train longer, (NN arch search)
- **Reduce variance (dev set perf):** More data, regularization.. (when changed go back and retune bias)

12 Variational Methods

Preliminary section!

If our prior is not a conjugate prior to our likelihood, we can't compute posterior in closed form. Try:

- approximate intractable posterior $p(\vec{\theta}|\vec{y})$ with tractable $q(\vec{\theta}|\gamma)$.
- Adjust γ to minimize $KL\left[p(\vec{\theta}|\vec{y})||q(\vec{\theta}|\gamma)\right] \rightarrow \text{complicated}$, since we don't know $p(\vec{\theta}|\vec{y})$. Eventually will use *Expectation Propagation* to solve.
- Adjust γ to minimize $KL\left[q(\vec{\theta}|\gamma)||p(\vec{\theta}|\vec{y})\right] \rightarrow \text{simpler: } \textit{Variational Bayes.}$
- Variational Bayes: minimizing $KL\left[q(\vec{\theta}|\gamma)||p(\vec{\theta}|\vec{y})\right] \iff$ maximizing ELBO $\mathscr L$
- note the *latent/hidden variables* helping us are the $\vec{\theta}$

Appendix A Math Stuff

A.1 Matrix Stuff

A.1.1 Partitioned Matrix Inversion

Given block decomposition of matrix into submatrices A, B, C, D, the inverse is:

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{pmatrix}^{-1} = \begin{pmatrix} \mathbf{M} & -\mathbf{M}\mathbf{B}\mathbf{D}^{-1} \\ -\mathbf{D}^{-1}\mathbf{C}\mathbf{M} & \mathbf{D}^{-1} + \mathbf{D}^{-1}\mathbf{C}\mathbf{M}\mathbf{B}\mathbf{D}^{-1} \end{pmatrix}, \tag{A.1}$$

where

$$\mathbf{M} = \left(\mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C}\right)^{-1} \tag{A.2}$$

(NB compare with Matt Headrick's compendium inversion formula)

A.2 Gaussians

A.2.1 Partitioned Gaussians: Conditional and Marginal Distributions

From BISHOP, sections 2.3.1 - 2.3.2.

Consider a joint Gaussian distribution, $\mathcal{N}(\vec{x}|\vec{\mu}, \Sigma)$ with $\Lambda \equiv \Sigma^{-1}$ and

$$\vec{x} = \begin{pmatrix} \vec{x}_a \\ \vec{x}_b \end{pmatrix}, \quad \vec{\mu} = \begin{pmatrix} \vec{\mu}_a \\ \vec{\mu}_b \end{pmatrix}$$
 (A.3)

$$\Sigma = \begin{pmatrix} \Sigma_{aa} & \Sigma_{ab} \\ \Sigma_{ba} & \Sigma_{bb} \end{pmatrix}, \quad \Lambda = \begin{pmatrix} \Lambda_{aa} & \Lambda_{ab} \\ \Lambda_{ba} & \Lambda_{bb} \end{pmatrix}. \tag{A.4}$$

(That is, the vector \vec{x} is partitioned into \vec{x}_a and \vec{x}_b , which induces a block partitioning of the covariance matrix Σ .)

The conditional distribution is:

$$p(\vec{x}_a|\vec{x}_b) = \mathcal{N}(\vec{x}|\vec{\mu}_{a|b}, \Lambda_{aa}^{-1})$$
(A.5)

$$\vec{\mu}_{a|b} = \vec{\mu}_a - \Lambda_{aa}^{-1} \Lambda_{ab} (\vec{x}_b - \vec{\mu}_b) \tag{A.6}$$

The marginal distribution is:

$$p(\vec{x}_a) = \mathcal{N}(\vec{x}_a | \vec{\mu}_a, \mathbf{\Sigma}_{aa}) \tag{A.7}$$

A.2.2 Bayes' theorem for Gaussian variables

From BISHOP, section 2.3.3. NB This is known as a *linear Gaussian model*.

Given a marginal Gaussian distribution for \vec{x} and a conditional Gaussian distribution for \vec{y} given \vec{x} in the form:

$$p(\vec{x}) = \mathcal{N}(\vec{x}|\vec{\mu}, \mathbf{\Lambda}^{-1}) \tag{A.8}$$

$$p(\vec{y}|\vec{x}) = \mathcal{N}(\vec{y}|\mathbf{A}\vec{x} + \vec{b}, \mathbf{L}^{-1}), \tag{A.9}$$

we have

$$p(\vec{y}) = \mathcal{N}(\vec{y}|\mathbf{A}\vec{\mu} + \vec{b}, \mathbf{L}^{-1} + \mathbf{A}\boldsymbol{\Lambda}^{-1}\mathbf{A}^{T})$$
(A.10)

$$p(\vec{x}|\vec{y}) = \mathcal{N}(\vec{x}|\mathbf{\Sigma}\{\mathbf{A}^T\mathbf{L}(\vec{y} - \vec{b}) + \mathbf{\Lambda}\vec{\mu}\}, \mathbf{\Sigma})$$
(A.11)

where

$$\Sigma \equiv (\mathbf{\Lambda} + \mathbf{A}^T \mathbf{L} \mathbf{A})^{-1} \tag{A.12}$$

A.3 Singular value decomposition

An $M \times N$ matrix **A** can be written as $\mathbf{U}\mathbf{W}\mathbf{V}^T$, where **U** is $M \times N$, **W** is $N \times N$ and diagonal, and **V** is $N \times N$ and orthonormal.

If A is square, V are its eigenvectors, and W are its eigenvalues...

Uses

• If $M \ge N$, cols of **U** are an orthonormal basis for space spanned by cols of **A**

TODO: finish —

A.4 Matrix derivatives

$$\frac{\partial}{\partial \vec{x}} \left(\vec{x}^T \vec{a} \right) = \frac{\partial}{\partial \vec{x}} \left(\vec{a}^T \vec{x} \right) = \vec{a} \tag{A.13}$$

TODO: review understanding of this (I recall this expression not enough to answer my questions on a formula derivation) and give examples.

Appendix B The Linear Regression Hierarchy

Linear regression starting from maximum likelihood, through variational Bayes.

B.1 Maximum likelihood

Maximize likelihood $p(y|\theta; \beta)$ wrt θ, β .

B.2 Maximum a posteriori

Introduce prior $p(\theta; \alpha) = \exp(-\alpha \theta^T \theta)$. Find θ by maximizing $p(y|\theta; \beta)p(\theta; \alpha)$ wrt θ . Q: what is proper way to estimate β and α here?

B.3 Full Bayesian (stationary prior)

Calc posterior $p(\theta|y) = p(y|\theta; \beta)p(\theta; \alpha)/p(y; \alpha, \beta)$, where $p(y; \alpha, \beta) = \int_{\theta} p(y|\theta; \beta)p(\theta; \alpha)$ is the evidence. Determine values of hypers α, β by maximizing evidence. This is difficult to do directly, as derivs wrt α, β are hard to compute, so use EM algorithm.

B.4 Variational Bayes (non-stationary prior)