# **PSYCH 260**

Emotion

Rick O. Gilmore 2021-10-26 08:18:09



2:25

## Don't You Worry 'Bout a Thing



#### Announcements

- Thursday: Go over Exams 1 & 2
- Thursday: Quiz 3 (on Canvas, starting after class)
- No class on Tuesday, November 2 (Election Day)

### **Today's Topics**

- Wrap up on schizophrenia
- Biology of emotion
- Happiness/pleasure and reward
- Fear & stress

### **Biology of Emotion**

- What is emotion?
- What are the types of emotions?
- Biological systems involved in emotion

### What is emotion?

- Feelings
- Physiological state

### **Emotions as actions**

https://www.biomotionlab.ca/html5-bml-walker/

### What is cause? What is effect?

"Do we run from a bear because we are afraid or are we afraid because we run? William James posed this question more than a century ago, yet the notion that afferent visceral signals are essential for the unique experiences of distinct emotions remains a key unresolved question at the heart of emotional neuroscience."

(Harrison, Gray, Gianaros, & Critchley, 2010)

### **Competing views**

- James-Lange
  - Physiological response -> subjective feelings
- Cannon-Bard
  - Severing CNS (spinal cord & vagus, Xth n) from rest of body leaves emotional expression unchanged
  - Physiological states slow, don't differentiate among emotions

### **Competing views**

- Schacter-Singer
  - Physiological arousal + cognitive appraisal -> emotional states

### What are the different types of emotions?



(Plutchik, 1980)

### **Emotions**

- Vary in valence
  - Positive/negative
- Vary in intensity (arousal)
- Vary in action tendency
  - Approach/avoid

### Emotions (can) serve biological goals

- Ingestion
- Defense
- Reproduction
- Affiliation



(Plutchik, 1980)

## Is emotion different from cognition?



Nature Reviews | Neuroscience

(Pessoa, 2008)

### (Pessoa, 2008)

Here, I will argue that complex cognitive-emotional behaviours have their basis in dynamic coalitions of networks of brain areas, none of which should be conceptualized as specifically affective or cognitive. Central to cognitive-emotional interactions are brain areas with a high degree of connectivity, called hubs, which are critical for regulating the flow and integration of information between regions.

### (Pessoa, 2008)

Here, I will argue that complex cognitive-emotional behaviours have their basis in dynamic coalitions of networks of brain areas, none of which should be conceptualized as specifically affective or cognitive. Central to cognitive-emotional interactions are brain areas with a high degree of connectivity, called hubs, which are critical for regulating the flow and integration of information between regions.

# Emotion as "computing" (or information processing)

- Input
  - Internal states
  - External world
- Processing/evaluation
- Output
  - Internal states
  - External world

# Happiness and reward

### Components of happiness

- Aristotle
- · Hedonia
  - Pleasure
- · Eudaimonia
  - Life satisfaction
  - Relates to motivation

## "Computing" happiness

- Inputs
  - External
  - Internal
- Processing
- Outputs
  - Feelings
  - Actions

### **Brain mechanisms**

- Circuits for signaling pleasure and pain
- Similarities across animal species
  - Behavior & brain
- Dopamine and endogenous opioid neurotransmitter systems involved

# Neuroanatomy of 'happiness'



(Kringelbach & Berridge, 2009)

### Rewards

- A reward reinforces (makes more prevalent/probable) some behavior
- Milner and Olds (Milner, 1989) discovered 'rewarding' power of electrical self-stimulation
- · (Heath, 1963) studied effects in human patients.

### **Electrical self-stimulation**



### "Reward" circuitry in the brain



(Nestler & Carlezon, 2006)

### Nodes in the "reward" circuit

- Ventral tegmental area (VTA) in midbrain
- Nucleus accumbens (nAcc), ventral striatum
- Hypothalamus (Hyp)
- Amygdala (Amy)
- Hippocampus (HP)
- Dorsal Raphe Nucleus/Locus Coeruleus (DR/LC)
- Prefrontal cortex (PFC)

### Nucleus accumbens and dorsal striatum



(Kohls, Chevallier, Troiani, & Schultz, 2012)

# Psychopharmacology of 'happiness'

- Dopamine
- · Serotonin, Norepinephrine
- · ACh

## ACh projections in the CNS



(Cock, Vidailhet, & Arnulf, 2008)

# Brain contains its own systems for binding drugs associated with 'pleasure'

- Endorphins: Endogenous morphine-like compounds
  - e.g., morphine, heroin, oxycontin (oxycodone) are opioids



(Clapp, Bhave, & Hoffman, n.d.)

### Comparative risk

"A comparative risk assessment of drugs including alcohol and tobacco using the margin of exposure (MOE) approach was conducted. The MOE is defined as ratio between toxicological threshold (benchmark dose) and estimated human intake. Median lethal dose values from animal experiments were used to derive the benchmark dose. The human intake was calculated for individual scenarios and population-based scenarios ..."

(Lachenmeier & Rehm, 2015)

"...For individual exposure the four substances alcohol, nicotine, cocaine and heroin fall into the "high risk" category with MOE < 10, the rest of the compounds except THC fall into the "risk" category with MOE < 100."

(Lachenmeier & Rehm, 2015)

# Brain contains its own systems for binding drugs associated with 'pleasure'

- Endogenous cannabinoids
  - Cannabinoids == psychoactive compounds found in cannibis
  - Cannabinoid receptors: CB1 in CNS; CB2 in body, immune system



(Flores, Maldonado, & Berrendero, 2013)

## Generalizations about happiness/pleasure

- Types of pleasure activate overlapping areas
- Pleasure/happiness engage a network of brain areas
- Pleasure/happiness signaling involves multiple neuromodulators, but DA especially important
- "Reward" pathways activated by many different inputs
- Some exogenous substances bind to endogenous receptor systems

## Fear and stress

## Inducing "fear-like" behavior in animals

#### **Pavlovian Threat Conditioning Paradigm**



http://www.cns.nyu.edu/labs/ledouxlab/images/image\_research/fear\_conditioning.jpg

#### Rat vs. Human

| Measures in Animal Model  | DSM-III: Generalized Anxiety |
|---------------------------|------------------------------|
| Heart rate increase       | Heart pounding               |
| Salivation decrease       | Dry mouth                    |
| Stomach ulcers            | Upset stomach                |
| Respiration change        | Respiration increase         |
| Scanning & vigilance      | Scanning & vigilance         |
| Startle response increase | Jumpiness, easy startle      |
| Urination                 | Frequent urination           |
| Defecation                | Diarrhea                     |
| Grooming                  | Fidgeting                    |
| Freezing                  | Apprehensive expectation     |

Adapted from (Davis, 1992)

## Amygdala circuits



Nature Reviews | Neuroscience

(Medina, Repa, Mauk, & LeDoux, 2002)

## Amygdala's inputs

- Convergent inputs
  - Thalamus ("direct" or "fast"")
  - Cerebral cortex ("indirect" or "slow")

## Amygdala's outputs

- Project to
  - CG (central gray matter) of tegmentum: behavior
  - LH (lateral hyp): ANS
  - PVN (paraventricular n. of hyp): hormones
- Fast-acting, involuntary responses
- Lesions of amygdala impair 'fear conditioning'

#### Cerebral cortex role

- Response discrimination?
  - Cortex lesions cause generalized not cue-specific fear response
- Fast, crude responses vs. slower, detailed ones
  - That's a stick, not a snake!
  - Prefrontal cortex and response inhibition

## But, are we really studying learned 'fear?'

- Amygdala connected to other 'affective' nodes in neural network
- Emotion not just about subjective feelings

## Amygdala as processing hub



Nature Reviews | Neuroscience

(Pessoa, 2008)

## Amygdala as key hub in circuit for survival



(LeDoux, 2012)

## Emotion as global physiological/behavioral "state"



(LeDoux, 2012)

## "Emotional" stimuli serve multiple roles

| Survival Circuit Trigger Stimulus               | Activates a specific survival circuit                                                                                                                                                                                                                                                                           |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Innate (Unconditioned) trigger                  | Elicits innate responses to stimuli without the need for prior exposure to the stimulus and mobilizes other brain resources to deal with the opportunity or challenge presented by the innate trigger                                                                                                           |
| Learned (Conditioned) trigger                   | Potentially elicits innate responses to stimuli after being associated (via Pavlovian conditioning) with an innate trigger; more generally, mobilizes brain resources to deal with the challenge or opportunity signaled by the learned trigger                                                                 |
| 2. Incentive                                    | Modulates instrumental goal-directed behavior to help meet the opportunity or challenge<br>signaled by the stimulus that is triggering activation of a specific survival circuit                                                                                                                                |
| Innate (unconditioned or primary) incentive     | Increases approach toward or avoidance of the stimulus in an effort to resolve the<br>challenge or opportunity present                                                                                                                                                                                          |
| Learned (conditioned or secondary) incentive    | Invigorates and guides behavior toward situations where the challenge or opportunity<br>present can be resolved                                                                                                                                                                                                 |
| 3. Reinforcer                                   | Supports the learning of Pavlovian or instrumental associations                                                                                                                                                                                                                                                 |
| Innate (unconditioned or primary) reinforce     | Induces the formation of associations with neutral stimuli that occur in its presence (through Pavlovian conditioning) and to the formation of associations with responses that lead to the presentation (appetitive stimuli) or removal (aversive stimuli) of the stimulus (through instrumental conditioning) |
| Learned (conditioned or second-order) reinforce | Induces formation of associations with other stimuli (through Pavlovian second-order conditioning) or with goal directed responses (through second-order instrumental conditioning)                                                                                                                             |

(LeDoux, 2012)

## Stress



## Stressors linked with biological imperatives

- Sustenance
  - Hunger, thirst
- Well-being/defense
  - Threat

## Stressors linked with biological imperatives

- Reproduction
  - Rejection
- Affiliation
  - Loneliness

#### Stress and the brain



(McEwen, 2007)

## Regulating internal states

- Homeostasis
  - Regulation of physiological variables (blood  $\mathcal{O}_2$ ) via negative feedback, (Cannon, 1929)
- Allostasis
  - Regulation is active process, anticipatory, can vary by circumstance
- · (Sterling & Eyer, 1988), (Ramsay & Woods, 2014)

#### Brain under stress

- Acute stress
  - Short duration
  - Fast action required
  - HPA (Cortisol), SAM (NE/Epi) axes
- Brain detects threat
- Mobilizes physiological, behavioral responses

#### Brain under stress

- · vs. Chronic stress
  - Long duration, persistent

#### Glucocorticoids

- Adrenal cortex releases hormones
  - Cortisol (hydrocortisone)
    - Increases blood glucose levels
    - Suppresses immune system
    - Reduces inflammation
    - Aids in metabolism
  - Receptors in brain and body

#### Cortisol and the brain



http://www.molecularbrain.com/content/figures/1756-6606-3-2-1-l.jpg

## Glucocorticoid cascade hypothesis

- Cort receptors in hippocampus, amygdala, hypothalamus
  - Hippocampus regulates HPA axis via hypothalamus
- Prolonged cortisol exposure reduces hippocampus response
  - Reduces volume, connectivity in hippocampus
- Hip critical for long-term memory formation
  - Chronic stress impairs long-term memory

## But, cortisol -> stress link not straightforward



(Faresjö et al., 2013)

# Stress and coping across the animal kingdom

- Pain thresholds lower (sensitivity greater) when a mouse's cage mate is also in pain
- Rats will cooperate to release distressed cage mate, foregoing food rewards
- (Sapolsky, 2016)

## Why Zebras Don't Get Ulcers



## Your (zebra) stress ain't like mine

- Phasic (short-term) vs. chronic (long-term)
- Physical stress (hunger, thirst, injury, disease)
  vs. social stress

### Main points

- Biological approach to emotion
  - Behavior
  - Physiological states
  - Subjective feelings
  - Adaptive function
- Networks of brain systems, multiple NT systems

### Next time

- · Quiz 3
- Review Exam 2

#### References

- Cannon, W. B. (1929). Organization for physiological homeostasis. *Physiological Reviews*, *9*(3), 399–431. https://doi.org/10.1152/physrev.1929.9.3.399
- Clapp, P., Bhave, S. V., & Hoffman, P. L. (n.d.). How Adaptation of the Brain to Alcohol Leads to Dependence. Retrieved from http://pubs.niaaa.nih.gov/publications/arh314/310-339.htm
- Cock, V. C. D., Vidailhet, M., & Arnulf, I. (2008). Sleep disturbances in patients with parkinsonism. *Nature Clinical Practice Neurology*, *4*(5), 254–266. https://doi.org/10.1038/ncpneuro0775
- Davis, M. (1992). The role of the amygdala in fear-potentiated startle: Implications for animal models of anxiety. *Trends in Pharmacological Sciences*, *13*, 35–41. https://doi.org/10.1016/0165-6147(92)90014-W
- Faresjö, Å., Theodorsson, E., Chatziarzenis, M., Sapouna, V., Claesson, H.-P., Koppner, J., & Faresjö, T. (2013). Higher Perceived Stress but Lower Cortisol Levels Found among Young Greek Adults Living in a Stressful Social Environment in Comparison with Swedish Young Adults. *PLoS ONE*, 8(9), e73828. https://doi.org/10.1371/journal.pone.0073828
- Flores, Á., Maldonado, R., & Berrendero, F. (2013). Cannabinoid-hypocretin cross-talk in the central nervous system: What we know so far. *Neuropharmacology*, 7, 256. https://doi.org/10.3389/fnins.2013.00256
- Harrison, N. A., Gray, M. A., Gianaros, P. J., & Critchley, H. D. (2010). The embodiment of emotional feelings in the brain. *J. Neurosci.*, *30*(38), 12878–12884. https://doi.org/10.1523/JNEUROSCI.1725-10.2010
- Heath, R. G. (1963). Electrical self-stimulation of the brain in man. *American Journal of Psychiatry*, 120(6), 571–577. https://doi.org/10.1176/ajp.120.6.571
- Kohls, G., Chevallier, C., Troiani, V., & Schultz, R. T. (2012). Social 'wanting' dysfunction in autism: Neurobiological underpinnings and treatment implications. *Journal of Neurodevelopmental Disorders*, 4(10), 1–20. https://doi.org/10.1186/1866-1955-4-10