Monitor de Temperatura e Umidade (DHT11/DHT22 + LCD I2C)

Este projeto utiliza um microcontrolador ESP32 para ler dados de temperatura e umidade de um sensor DHT e exibi-los em um Display LCD 16x2 (ou 20x4) via comunicação I2C.

Componentes de Hardware Utilizados

- Microcontrolador: Placa de Desenvolvimento ESP32 (qualquer modelo, como DevKitC)
- Sensor: Módulo DHT11 (ou DHT22)
- Display: Display LCD 16x2 ou 20x4 com Módulo Adaptador I2C (chip PCF8574)

📌 Esquema de Conexão (Wiring)

Componente	Pino do Componente	Pino do ESP32	Observações
Alimentação	VCC (Módulo I2C)	5V (ou VIN)	Fonte de Alimentação do Display. Use o pino 5V do ESP32 (se disponível) ou VIN se estiver alimentando o ESP32 com 5V via USB.
	GND (Módulo I2C)	GND	Terra comum.
Comunicação I2C	SDA (Data)	GPIO 21	Pino de Dados I2C (Padrão do Arduino Core).
	SCL (Clock)	GPIO 22	Pino de Clock I2C (Padrão do Arduino Core).
Sensor DHT	DATA (ou OUT)	GPIO 4	Pino de dados do Sensor. Certifique-se do

		resistor Pull-up (módulos já vêm com ele).
VCC (DHT)	5V ou 3V3	O DHT11/22 funciona com 3.3V, mas pode ser alimentado com 5V.
GND (DHT)	GND	Terra comum.

X Configuração e Ajustes Importantes

1. Organização dos Arquivos

Para que o Arduino IDE compile o projeto corretamente, é CRÍTICO que todos os arquivos estejam na mesma pasta do seu sketch (código principal).

Pasta dht_lcd_esp32_projeto	Descrição
dht_lcd_esp32_projeto.ino	O arquivo principal (main) contendo setup() e loop().
LCD_I2C.h	Arquivo de cabeçalho da classe LCD I2C.
LCD_I2C.cpp	Arquivo de implementação da classe LCD I2C.

2. Bibliotecas Necessárias

Certifique-se de que as seguintes bibliotecas estão instaladas no seu Arduino IDE (via Gerenciador de Bibliotecas):

- **DHT sensor library** (da Adafruit)
- Adafruit Unified Sensor (Dependência da biblioteca DHT)

3. Ajuste do Brilho/Contraste do Display LCD

Se o seu display ligar, mas não mostrar nenhum texto (apenas quadrados ou tela totalmente acesa/apagada), você provavelmente precisa ajustar o contraste:

- Potenciômetro: No verso do módulo I2C (PCF8574), há um pequeno potenciômetro (um componente redondo azul com um parafuso).
- Ajuste: Use uma chave de fenda pequena (Phillips) para girar o parafuso lentamente

em ambas as direções (sentido horário e anti-horário) até que o texto fique nítido no display.

4. Endereço I2C do Display

O código está configurado com o endereço I2C mais comum (0x27):

LCD_I2C lcd(0x27, 16, 2);

Se o seu display não funcionar, é possível que o endereço seja 0x3F. Se necessário, use um *I2C Scanner* (disponível online) para descobrir o endereço correto do seu módulo.