Задание 1

Тема. Поразрядные операции и их применение

Цель. Получить навыки применения поразрядных операций в алгоритмах

Задание. Выполнить упражнения по применению битовых операций по изменению значений битов в ячейке оперативной памяти, созданию маски для изменения значения ячейки. Создание выражения, содержащего поразрядные операции, для выполнения определенной операции над значением ячейки.

В таблице 1 приведены варианты индивидуальных заданий. Номер варианта определяется по формуле — это (остаток от деления номера студента в списке журнала на 19)+1.

В приложении 1 приведены примеры выполнения поразрядных операций.

В каждом варианте пять упражнений, пронумерованных в столбцах таблицы 1.

Требования к выполнению задания

1. Разработать программу, которая продемонстрирует выполнение упражнений варианта. Результаты выполнения упражнения выводить на монитор.

Требования к упражнениям (номер требования определяет номер упражнения в таблице)

- 1) Определить переменную целого типа, присвоить ей значение, используя константу в шестнадцатеричной системе счисления. Разработать оператор присваивания и его выражение, которое установит заданные в задании биты исходного значения переменной в значение 1, используя соответствующую маску и поразрядную операцию.
- 2) Определить переменную целого типа. Разработать оператор присваивания и его выражение, которое обнуляет заданные в задании биты исходного значения переменной, используя соответствующую маску и поразрядную операцию. Значение в переменную вводится с клавиатуры.
- 3) Определить переменную целого типа. Разработать оператор присваивания и выражение, которое умножает значение переменной на число, указанное в третьем столбце варианта, используя соответствующую поразрядную операцию. Изменяемое число вводится с клавиатуры.
- 4) Определить переменную целого типа.

Разработать оператор присваивания и выражение, которое делит значение переменной на число, указанное в четвертом столбце варианта, используя соответствующую поразрядную операцию. Изменяемое число вводится с клавиатуры.

5) Определить переменную целого типа.

Разработать оператор присваивания и выражение, в котором используются только поразрядные операции. В выражении используется маска — переменная. Маска может быть инициализирована единицей в младшем разряде (вар 1) или единицей в старшем разряде (вар 2). Изменяемое число вводится с клавиатуры.

2. Выполнить тестирование программы

3. Оформить отчет

Варианты упражнений

№	1 Номер бита	2 Номер бита	3 множитель	4 делитель	5 Задание для выражения
1	5-ый и 7-ой справа	С 9-ого четыре бита слева	8	8	Установить п-ый бит в 1, используя маску пункта 1
2	Три старших	12-ый, 14-ый, 3-ий	4	4	Установить п-ый бит в 1, используя маску пункта 2
3	Только с четными номерами	7-ой, 9-ый, 11-ый	16	16	Обнулить n-ый бит в 1, используя маску пункта 1
4	Только с не четными номерами	С 5-ого бита четыре слева	32	32	Установить n-ый бит в 1, используя маску пункта 2
5	17-ый, 15-ый, 1- ый	С 5-ого бита три справа	64	64	Обнулить n-ый бит в 1, используя маску пункта 2
6	3-ий, 11-ый, 5- ый	Четыре младших бита	128	128	Установить п-ый бит в 1, используя маску пункта 2
7	Четыре старших бита	9-ый, 11-ый, 3-ий	512	512	Обнулить n-ый бит в 1, используя маску пункта 1
8	1-ый, 6-ой, 9-ый	1-ый, 6-ой, 9-ый	8	8	Установить п-ый бит в 1, используя маску пункта 1
9	0-ый, 11-ый, 3- ий	Четыре старших бита	4	4	Обнулить n-ый бит в 1, используя маску пункта 2
10	Четыре младших бита	3-ий, 11-ый, 5-ый	16	16	Установить п-ый бит в 1, используя маску пункта 2
11	С 5-ого бита четыре слева	5-ый, 7-ой справа	32	32	Обнулить n-ый бит в 1, используя маску пункта 1

12	С 3-ого бита	Три старших	64	64	Установить п-ый
	три справа				бит в 1, используя
					маску пункта 1
13	7-ой, 9-ый, 11-	Только с четными	128	128	Обнулить n-ый
	ый	номерами			бит в 1, используя
					маску пункта 1
14	12-ый, 14-ый, 3-	Только с нечетными	512	512	Установить п-ый
	ий	номерами			бит в 1, используя
					маску пункта 2
15	С 9-ого бита	17-ий, 15-ый, 1-ый	1024	1024	Обнулить n-ый
	четыре слева				бит в 1, используя
					маску пункта 1
16	1-ый, 2-ой,7-ой	С 7-ого три бита	8	8	Обнулить п-ый
		слева			бит в 1, используя
					маску пункта 1
17	С 3-ого бита	12-ый, 11-ый, 1-ый	32	32	Обнулить п-ый
	четыре слева				бит в 1, используя
					маску пункта 2
18	3-ий, 5-ый, 8-ой	С 4-ого два бита	16	16	Обнулить n-ый
		слева			бит в 1, используя
					маску пункта 1
19	1-ый, 5-ый, 6-ой	15-ый, 12-ый, 3-ий	128	128	Обнулить n-ый
					бит в 1, используя
					маску пункта 1

Приложение 1. Поразрядные операции

x< <n< th=""><th>Сдвиг влево двоичного</th><th>unsigned int x=7; x=x<<2;</th></n<>	Сдвиг влево двоичного	unsigned int x=7; x=x<<2;
	кода (умножение на 2 ⁿ)	результат 0х000001С
x>>n	Сдвиг вправо двоичного	unsigned int x=28; x=x>>2;
	кода (деление на 2 ⁿ)	результат =0х00000007
x & maska	Поразрядное И	Правило выполнения операции
	(применяется для записи в	111
	указанный разряд 0)	& 100
		= 100
		Установить в двоичном коде
		переменной x только 9-ый справа бит
		в 0
		unsigned short int x=0xAEFF;
		unsigned short int maska=0xFDFF;
		x=x & maska результат 0xACFF

X maska	Поразрядное ИЛИ	Правило выполнения операции
21 Haska	(применяется для записи в	привыно выполнения спериции
	указанный разряд 1)	111
	указанный разряд 1)	
		100
		111
		Установить в двоичном коде
		переменной х 9-ый справа бит в 1
		unsigned short int x=0xACFF;
		unsigned short int maska=0x0200;
		x=x maska результат 0хАЕFF;
X ^ maska	Исключающее ИЛИ для	Правило выполнения операции
	поразрядных операций	1111
	Используется для	^ 0001
	проверки	= 1110
	соответствующих битов	unsigned int x=0xF, a=1;
	двух переменных, если	a=x^a;
	они имеют разные	Результат: в переменной а значение
	значения, то результат 1, а	0x0000000E
	если равны, то 0.	
~	Инверсия (0 заменяет на	x=0x0F;
	1, а 1 на 0)	~x;
		результат 0хF0

Пример реализации алгоритма вывода двоичного кода заданного значения

```
void coutp(unsigned int x)
{
    int n=sizeof(int)*8;
    unsigned maska=(1<<(n-1));

    for(int i=1; i<=n;i++)
    {
        cout<<((x&maska)>>(n-i));
        maska=maska>>1;
    }
}
```