Teoria Sygnałów w zadaniach

Tomasz Grajek, Krzysztof Wegner

Politechnika Poznańska

Wydział Elektroniki i Telekomunikacji

Katedra Telekomunikacji Multimedialnej i Mikroelektroniki

pl. M. Skłodowskiej-Curie 5

60-965 Poznań

www.et.put.poznan.pl

www.multimedia.edu.pl

Copyright © Krzysztof Wegner, 2019 Wszelkie prawa zastrzeżone ISBN 978-83-939620-1-3 Wydrukowano w Polsce

Zadanie 1. Oblicz transformatę Fouriera sygnału $f(t) = \frac{1}{1+t^2}$ za pomocą twierdzeń.

Załóżmy sygnał $g(t) = e^{-|t|}$ i wyznaczmy jego transformatę.

$$\begin{split} G(\jmath\omega) &= \int_{-\infty}^{\infty} g(t) \cdot e^{-\jmath\omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{\infty} e^{-|t|} \cdot e^{-\jmath\omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{0} e^{t} \cdot e^{-\jmath\omega \cdot t} \cdot dt + \int_{0}^{\infty} e^{-t} \cdot e^{-\jmath\omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{0} e^{t} \cdot e^{-\jmath\omega \cdot t} \cdot dt + \int_{0}^{\infty} e^{-t} \cdot e^{-\jmath\omega \cdot t} \cdot dt \\ &= \lim_{\tau \to \infty} \int_{-\tau}^{0} e^{(1-\jmath\omega) \cdot t} \cdot dt + \lim_{\tau \to \infty} \int_{0}^{\tau} e^{-(1+\jmath\omega) \cdot t} \cdot dt \\ &= \lim_{\tau \to \infty} \int_{-\tau}^{0} e^{(1-\jmath\omega) \cdot t} \cdot dt + \lim_{\tau \to \infty} \int_{0}^{\tau} e^{-(1+\jmath\omega) \cdot t} \cdot dt \\ &= \left\{ \begin{aligned} z_1 &= -(1+\jmath\cdot\omega) \cdot t & z_2 &= (1-\jmath\cdot\omega) \cdot t \\ dz_1 &= -(1+\jmath\cdot\omega) \cdot dt & dz_2 &= (1-\jmath\cdot\omega) \cdot dt \\ dt &= \frac{1}{-(1+\jmath\cdot\omega)} \cdot dz_1 & dt &= \frac{1}{1-\jmath\cdot\omega} \cdot dz_2 \end{aligned} \right\} \\ &= \lim_{\tau \to \infty} \int_{-\tau}^{0} e^{z_2} \cdot \frac{1}{1-\jmath\cdot\omega} \cdot dz_2 + \lim_{\tau \to \infty} \int_{0}^{\tau} e^{z_1} \cdot \frac{1}{-(1+\jmath\cdot\omega)} \cdot \lim_{\tau \to \infty} \int_{0}^{\tau} e^{z_1} \cdot dz_1 \\ &= \frac{1}{1-\jmath\cdot\omega} \cdot \lim_{\tau \to \infty} e^{z_2} \Big|_{-\tau}^{0} + \frac{1}{-(1+\jmath\cdot\omega)} \cdot \lim_{\tau \to \infty} e^{z_1} \Big|_{0}^{\tau} \\ &= \frac{1}{1-\jmath\cdot\omega} \cdot \lim_{\tau \to \infty} e^{(1-\jmath\omega) \cdot t} \Big|_{-\tau}^{0} + \frac{1}{-(1+\jmath\cdot\omega)} \cdot \lim_{\tau \to \infty} e^{-(1+\jmath\omega) \cdot t} \Big|_{0}^{\tau} \\ &= \frac{1}{1-\jmath\cdot\omega} \cdot \lim_{\tau \to \infty} \left(e^{(1-\jmath\omega) \cdot 0} - e^{(1-\jmath\omega) \cdot (-\tau)} \right) + \frac{1}{-(1+\jmath\cdot\omega)} \cdot \lim_{\tau \to \infty} \left(e^{-(1+\jmath\omega) \cdot \tau} - e^{-(1+\jmath\omega) \cdot 0} \right) \\ &= \frac{1}{1-\jmath\cdot\omega} \cdot \lim_{\tau \to \infty} \left(e^{0} - e^{-(1-\jmath\omega) \cdot \tau} \right) + \frac{1}{-(1+\jmath\cdot\omega)} \cdot \lim_{\tau \to \infty} \left(e^{-(1+\jmath\omega) \cdot \tau} - e^{0} \right) \\ &= \frac{1}{1-\jmath\cdot\omega} \cdot \left(\lim_{\tau \to \infty} 1 - \lim_{\tau \to \infty} e^{-\tau} \cdot e^{\jmath\omega \cdot \tau} \right) + \frac{1}{-(1+\jmath\cdot\omega)} \cdot \left(\lim_{\tau \to \infty} e^{-\tau} \cdot e^{-\jmath\omega \cdot \tau} - \lim_{\tau \to \infty} 1 \right) \\ &= \frac{1}{1-\jmath\cdot\omega} \cdot \left(\lim_{\tau \to \infty} 1 - \lim_{\tau \to \infty} e^{-\tau} \cdot \lim_{\tau \to \infty} e^{\jmath\omega \cdot \tau} \right) + \frac{1}{-(1+\jmath\cdot\omega)} \cdot \left(\lim_{\tau \to \infty} e^{-\tau} \cdot \lim_{\tau \to \infty} e^{-\jmath\omega \cdot \tau} - 1 \right) \end{aligned}$$

$$\begin{split} &= \frac{1}{1 - \jmath \cdot \omega} \cdot \left(1 - 0 \cdot \lim_{\tau \to \infty} e^{\jmath \cdot \omega \cdot \tau}\right) + \frac{1}{-(1 + \jmath \cdot \omega)} \cdot \left(0 \cdot \lim_{\tau \to \infty} e^{-\jmath \cdot \omega \cdot \tau} - 1\right) \\ &= \frac{1}{1 - \jmath \cdot \omega} \cdot (1 - 0) + \frac{1}{-(1 + \jmath \cdot \omega)} \cdot (0 - 1) \\ &= \frac{1}{1 - \jmath \cdot \omega} + \frac{1}{-(1 + \jmath \cdot \omega)} \cdot (-1) \\ &= \frac{1}{1 - \jmath \cdot \omega} + \frac{1}{1 + \jmath \cdot \omega} \\ &= \frac{(1 + \jmath \cdot \omega)}{(1 + \jmath \cdot \omega) \cdot (1 - \jmath \cdot \omega)} + \frac{(1 - \jmath \cdot \omega)}{(1 + \jmath \cdot \omega) \cdot (1 - \jmath \cdot \omega)} \\ &= \frac{(1 + \jmath \cdot \omega) + (1 - \jmath \cdot \omega)}{(1 + \jmath \cdot \omega) \cdot (1 - \jmath \cdot \omega)} \\ &= \frac{2}{1 + \omega^2} \end{split}$$

Transformata sygnału $g(t)=e^{-|t|}$ jest równa $G(\jmath\omega)=\frac{2}{1+\omega^2}$. Postać funkcji $G(\jmath\omega)=\frac{2}{1+\omega^2}$ nie jest identyczna z postacią funkcji f(t), funkcja różni się o współczynnik 2.

Z twierdzenia o liniowości transformaty

$$g(t) \xrightarrow{\mathcal{F}} G(\jmath\omega)$$

$$h(t) = \alpha \cdot g(t) \xrightarrow{\mathcal{F}} H(\jmath\omega) = \alpha \cdot G(\jmath\omega)$$

otrzymujemy

$$h(t) = \frac{1}{2} \cdot e^{-|t|}$$

$$H(j\omega) = \frac{1}{2} \cdot \frac{2}{1 + \omega^2}$$

$$= \frac{1}{1 + \omega^2}$$

Na podstawie sygnału h(t) i korzystając z twierdzenia o symetrii możemy wyznaczyć transformatę sygnału f(t).

$$h(t) \xrightarrow{\mathcal{F}} H(\jmath\omega)$$

$$f(t) = H(t) \xrightarrow{\mathcal{F}} F(\jmath\omega) = 2\pi \cdot h(-\omega)$$

$$F(j\omega) = 2\pi \cdot h(-\omega)$$
$$= 2\pi \cdot \frac{1}{2} \cdot e^{-|-\omega|}$$
$$= \pi \cdot e^{-|\omega|}$$

Transformata Fouriera sygnału $f(t)=\frac{1}{1+t^2}$ jest równa $F(\jmath\omega)=\pi\cdot e^{-|\omega|}$