Problem Set 5

Problems marked (T) are for discussions in Tutorial sessions.

1. Let $S = \{\mathbf{e}_1 + \mathbf{e}_4, -\mathbf{e}_1 + 3\mathbf{e}_2 - \mathbf{e}_3\} \subset \mathbb{R}^4$. Find S^{\perp} .

Solution: $(\mathbf{e}_1 + \mathbf{e}_4)^{\perp}$ is the set of all vectors that are orthogonal to $\mathbf{e}_1 + \mathbf{e}_4$. That is, the set of all $\mathbf{x}^T = (x_1, \dots, x_4)$ such that $x_1 + x_4 = 0$. So S^{\perp} is the solution space of $\begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ -1 & 3 & -1 & 0 & 0 \end{bmatrix}$. Apply GJE and get it.

Otherwise apply GS with $\{\mathbf{e}_1 + \mathbf{e}_4, -\mathbf{e}_1 + 3\mathbf{e}_2 - \mathbf{e}_3, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4\}$. Linear span of the last two vectors of the orthonormal basis is S^{\perp} .

2. Show that there are infinitely many orthonormal bases of \mathbb{R}^2 .

Solution: Columns of $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$, for $0 \le \theta < 2\pi$, form bases of \mathbb{R}^2 . Idea is that take $\{e_1, e_2\}$ and then counter-clockwise rotate the set by an angle θ .

3. **(T)** What is the projection of $\mathbf{v} = \mathbf{e}_1 + 2\mathbf{e}_2 - 3\mathbf{e}_3$ on $H := \{(x_1, x_2, x_3, x_4) : x_1 + 2x_2 + 4x_4 = 0\}$?

Solution: Basis for H: $\left\{ \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 2\\-1\\0\\0 \end{bmatrix}, \begin{bmatrix} 4\\0\\0\\-1 \end{bmatrix} \right\}$.

Orthonormalize: $\left\{\mathbf{w}_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \mathbf{w}_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 \\ -1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{w}_3 = \frac{1}{\sqrt{105}} \begin{bmatrix} 4 \\ 8 \\ 0 \\ -5 \end{bmatrix} \right\}.$

The projection is $\langle \mathbf{v}, \mathbf{w}_1 \rangle \mathbf{w}_1 + \langle \mathbf{v}, \mathbf{w}_2 \rangle \mathbf{w}_2 + \langle \mathbf{v}, \mathbf{w}_3 \rangle \mathbf{w}_3 = \begin{bmatrix} 0 \\ 0 \\ -3 \\ 0 \end{bmatrix} + 0 \mathbf{w}_2 + \frac{20}{105} \begin{bmatrix} 4 \\ 8 \\ 0 \\ -5 \end{bmatrix} = \frac{1}{21} \begin{bmatrix} 16 \\ 32 \\ -63 \\ -20 \end{bmatrix}.$

Alternately: Let **x** be the projection. Then $\mathbf{v} - \mathbf{x}$ is parallel to $\begin{bmatrix} 1\\2\\0\\4 \end{bmatrix}$, the normal vector of H.

As $\hat{\mathbf{u}}$ is the unit vector in the direction of the vector \mathbf{u} , we get

$$\mathbf{v} - \mathbf{x} = \langle \mathbf{v}, \widehat{\mathbf{v} - \mathbf{x}} \rangle \widehat{\mathbf{v} - \mathbf{x}} = \frac{5}{21} \begin{bmatrix} 1\\2\\0\\4 \end{bmatrix}. \text{ So } \mathbf{x} = \begin{bmatrix} 1\\2\\-3\\0 \end{bmatrix} - \frac{5}{21} \begin{bmatrix} 1\\2\\0\\4 \end{bmatrix} = \frac{1}{21} \begin{bmatrix} 16\\32\\-63\\-20 \end{bmatrix}.$$

4. Let \mathbb{V} be a subspace of \mathbb{R}^n . Then show that $\dim \mathbb{V} = n - 1$ if and only if $\mathbb{V} = \{\mathbf{x} : \mathbf{a}^T \mathbf{x} = 0\}$ for some $\mathbf{a} \neq \mathbf{0}$.

Solution: Let $\mathbb{V} = \{\mathbf{x} : \mathbf{a}^T \mathbf{x} = 0\} = \mathcal{N}(A)$, where $A = \mathbf{a}^T$. Since $\mathbf{a} \neq \mathbf{0}$, we see that $\operatorname{rank}(A) = 1$ and hence $\dim \mathbb{V} = n - 1$ (use $\dim(\mathcal{N}(A)) + \dim(\operatorname{col space}(A)) = n$).

Conversely, suppose that dim $\mathbb{V} = n - 1$. Get an orthonormal basis $\{\mathbf{u}_1, \dots, \mathbf{u}_{n-1}\}$ of \mathbb{V} and extend it to an orthonormal basis $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ of \mathbb{R}^n . Then $\mathbb{V} = \{\mathbf{x} : \mathbf{u}_n^T \mathbf{x} = 0\}$.

5. (T) Does there exist a real matrix A, for which, the Row space and column space are same but the null-space and left null-space are different?

Solution: Not possible. Use the fundamental theorem of linear algebra which states that

$$\mathcal{N}(A) = (\text{col space}(A^T))^{\perp} \text{ and } \mathcal{N}(A^T) = (\text{col space}(A))^{\perp}.$$

That is, same row and column spaces require us to have a square matrix. This further implies that the dimension of null-spaces have to be same. Now, null-space and left-null-space are orthogonal to row and column spaces, respectively (which are same in this case). Hence, the Null-spaces are also same.

6. (T) Consider two real systems, say $A\mathbf{x} = \mathbf{b}$ and $C\mathbf{y} = \mathbf{d}$. If the two systems have the same **nonempty** solution set, then, is it necessary that row space(A) = row space(C)?

Solution: Yes. Observe that they have to be systems with the same number of variables. So, the two matrices A and C have the same number of columns. If they have the unique solution then $\mathcal{N}(A) = \{\mathbf{0}\} = \mathcal{N}(C)$.

If it has infinite number of solutions then let S_h be the solution set of the corresponding homogeneous system $A\mathbf{x} = \mathbf{0}$ and $C\mathbf{y} = \mathbf{0}$. Thus, $\mathcal{N}(A) = \mathcal{N}(C)$.

So, by fundamental theorem of linear algebra, col space (A^T) = col space (C^T) . That is, row space (A) = row space (C).

7. Show that the system of equations $A\mathbf{x} = \mathbf{b}$ given below

$$x_1 + 2x_2 + 2x_3 = 5$$

 $2x_1 + 2x_2 + 3x_3 = 5$
 $3x_1 + 4x_2 + 5x_3 = 9$

has no solution by finding $\mathbf{y} \in \mathcal{N}(A^T)$ such that $\mathbf{y}^T \mathbf{b} \neq 0$.

Solution: Note that if the system has a solution \mathbf{x}_0 then, we get $A\mathbf{x}_0 = \mathbf{b}$. Thus, for any $\mathbf{y} \in \mathcal{N}(A^T)$, we have

$$\mathbf{y}^T \mathbf{b} = \mathbf{y}^T (A \mathbf{x}_0) = (\mathbf{y}^T A) \mathbf{x}_0 = (A^T \mathbf{y})^T \mathbf{x}_0 = \mathbf{0}^T \mathbf{b} = 0.$$
 (1)

But, it is easy to check that $\begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$ is in $\mathcal{N}(A^T)$ and $\begin{bmatrix} -1 \\ -1 \end{bmatrix}$ $\begin{bmatrix} 5 \\ 5 \\ 9 \end{bmatrix} = -1$. A contradiction

to Equation (1). Thus, the given system has no solution.

8. (T) Suppose A is an n by n real invertible matrix. Describe the subspace of the row space of A which is orthogonal to the first column of A^{-1} .

Solution: Let A[:,j] (respectively, A[i,:]) denote the j-th column (respectively, the i-th row) of A. Then, $AA^{-1} = I_n$ implies $\langle A[i,:], A^{-1}[:,1] \rangle = 0$ for $2 \le i \le n$. So, the row subspace of A which is orthogonal to the first column of A^{-1} equals $LS(A[2,:], A[3,:], \ldots, A[n,:])$.

- 9. (T) Let $A_{n\times n}$ be any matrix. Then, the following statements are equivalent.
 - (i) A is unitary.
 - (ii) For any orthonormal basis $\{\mathbf{u}_1,\ldots,\mathbf{u}_n\}$ of \mathbb{C}^n , the set $\{A\mathbf{u}_1,\ldots,A\mathbf{u}_n\}$ is also an orthonormal basis.

Solution: (i) \Rightarrow (ii): Suppose A is unitary. Then $\langle A\mathbf{u}_i, A\mathbf{u}_j \rangle = \langle \mathbf{u}_i, A^*A\mathbf{u}_j \rangle = \langle \mathbf{u}_i, \mathbf{u}_j \rangle$. It follows that $\{A\mathbf{u}_1, \dots, A\mathbf{u}_n\}$ is orthonormal, hence a basis of \mathbb{C}^n .

- $(ii) \Rightarrow (i)$: Suppose (ii) is satisfied by A. Consider the standard basis $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$. By hypothesis $\{A\mathbf{e}_1, \dots, A\mathbf{e}_n\}$ is an orthonormal basis. That is the columns of A form an orthonormal basis, that is, $A^*A = I$.
- 10. Let \mathbb{V} be an inner product space and S be a nonempty subset of \mathbb{V} . Show that
 - (i) $S \subset (S^{\perp})^{\perp}$.
 - (ii) If \mathbb{V} is finite dimensional and S is a subspace then $(S^{\perp})^{\perp} = S$.
 - (iii) If $S \subset T \subset \mathbb{V}$, then $S^{\perp} \supset T^{\perp}$.
 - (iv) If S is a subspace then $S \cap S^{\perp} = \{0\}.$

Solution: (i) $\mathbf{x} \in S \Rightarrow \langle \mathbf{w}, \mathbf{x} \rangle = 0$, for all $\mathbf{w} \in S^{\perp} \Rightarrow \mathbf{x} \perp S^{\perp} \Rightarrow \mathbf{x} \in (S^{\perp})^{\perp}$.

(ii) If $S = \{\mathbf{0}\}$, \mathbb{V} we have nothing to show. So let $S \neq \{\mathbf{0}\}$, \mathbb{V} . Take a basis of S, apply GS to get an orthonormal basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ of S. Extend that to an orthonormal basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{w}_1, \ldots, \mathbf{w}_m\}$ of \mathbb{V} . It is easy to show that $\mathbf{w}_i \in S^{\perp}$.

Now let $\mathbf{x} \in (S^{\perp})^{\perp} \subset \mathbb{V}$. Thus $\mathbf{x} = \sum \alpha_i \mathbf{u}_i + \sum \beta_j \mathbf{w}_j$, for some $\alpha_i, \beta_j \in \mathbb{C}$. As $\mathbf{x} \in (S^{\perp})^{\perp}$, we have $\langle \mathbf{x}, \mathbf{y} \rangle = 0$, for all $\mathbf{y} \in S^{\perp}$. In particular $\langle \mathbf{x}, \mathbf{w}_j \rangle = 0$, for all j. Thus $\mathbf{x} = \sum \alpha_i \mathbf{u}_i \in S$.

- (iii) Obvious.
- (iv) Let $\mathbf{x} \in S \cap S^{\perp}$. Then $\mathbf{x} \perp S$. In particular $\langle \mathbf{x}, \mathbf{x} \rangle = 0$. Thus $\mathbf{x} = \mathbf{0}$.
- 11. Let A_1, \dots, A_k be k real symmetric matrices of order n such that $\sum A_i^2 = 0$. Show that each $A_i = 0$.

Solution: For each $\mathbf{x} \in \mathbb{R}^n$ we have

$$0 = \mathbf{x}^T \left(\sum A_i^2 \right) \mathbf{x} = \sum \mathbf{x}^T A_i^2 \mathbf{x} = \sum \mathbf{x}^T A_i^T A_i \mathbf{x} = \sum \|A_i \mathbf{x}\|^2.$$

Hence, A_i **x** = 0 for each i and for each **x**. In particular, A_i **e**₁ = **0**, A_i **e**₂ = **0**, ..., A_i **e**_n = **0** \Rightarrow A_i = **0**.

- 12. Let \mathbb{V} be a normed linear space and $\mathbf{x}, \mathbf{y} \in \mathbb{V}$. Is it true that $\left| \|\mathbf{x}\| \|\mathbf{y}\| \right| \le \|\mathbf{x} \mathbf{y}\|$?
- 13. (T) Polar Identity: The following identity holds in an inner product space.
 - Complex IPS: $4\langle \mathbf{x}, \mathbf{y} \rangle = \|\mathbf{x} + \mathbf{y}\|^2 \|\mathbf{x} \mathbf{y}\|^2 + i\|\mathbf{x} + i\mathbf{y}\|^2 i\|\mathbf{x} i\mathbf{y}\|^2$.

• Real IPS:
$$4\langle \mathbf{x}, \mathbf{y} \rangle = \|\mathbf{x} + \mathbf{y}\|^2 - \|\mathbf{x} - \mathbf{y}\|^2$$

Solution: We see that
$$\|\mathbf{x} + \mathbf{y}\|^2 = \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$$
, $\|\mathbf{x} - \mathbf{y}\|^2 = \langle \mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{x}, \mathbf{y} \rangle - \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$ $i\|\mathbf{x} + i\mathbf{y}\|^2 = i\langle \mathbf{x}, \mathbf{x} \rangle + i\langle \mathbf{x}, i\mathbf{y} \rangle + i\langle i\mathbf{y}, \mathbf{x} \rangle + \langle i\mathbf{y}, i\mathbf{y} \rangle$ and $i\|\mathbf{x} - i\mathbf{y}\|^2 = i\langle \mathbf{x}, \mathbf{x} \rangle - i\langle \mathbf{x}, i\mathbf{y} \rangle - i\langle i\mathbf{y}, \mathbf{x} \rangle + \langle i\mathbf{y}, i\mathbf{y} \rangle$. Hence $\|\mathbf{x} + \mathbf{y}\|^2 - \|\mathbf{x} - \mathbf{y}\|^2 + i\|\mathbf{x} + i\mathbf{y}\|^2 - i\|\mathbf{x} - i\mathbf{y}\|^2$

$$= 2\langle \mathbf{x}, \mathbf{y} \rangle + 2\langle \mathbf{y}, \mathbf{x} \rangle + 2i\langle \mathbf{x}, i\mathbf{y} \rangle + 2i\langle i\mathbf{y}, \mathbf{x} \rangle$$

$$= 2\langle \mathbf{x}, \mathbf{y} \rangle + 2\langle \mathbf{y}, \mathbf{x} \rangle - 2i^2\langle \mathbf{x}, \mathbf{y} \rangle + 2i^2\langle \mathbf{y}, \mathbf{x} \rangle = 4\langle \mathbf{x}, \mathbf{y} \rangle.$$

14. **Just for knowledge, will NOT be asked** Let $\|\cdot\|$ be a norm on \mathbb{V} . Then $\|\cdot\|$ is induced by some inner product if and only if $\|\cdot\|$ satisfies the parallelogram law:

$$\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 = 2\|\mathbf{x}\|^2 + 2\|\mathbf{y}\|^2.$$

Solution: See the appendix in my notes.

15. Show that an orthonormal set in an inner product space is linearly independent.

Solution: Let S be an orthonormal set and suppose that $\sum_{i=1}^{n} \alpha_i \mathbf{x}_i = \mathbf{0}$, for some $\mathbf{x}_i \in S$. Then $\alpha_i = \langle \mathbf{x}_i, \sum_{j=1}^{n} \alpha_j x_j \rangle = \langle \mathbf{x}_i, \mathbf{0} \rangle = 0$, for each i. Thus, S is linearly independent.

16. Let A be unitarily equivalent to B (that is $A = U^*BU$ for some unitary matrix U). Then $\sum_{ij} |a_{ij}|^2 = \sum_{ij} |b_{ij}|^2.$

Solution: We have

$$\sum_{ij} |a_{ij}|^2 = \operatorname{tr}(A^*A) = \operatorname{tr}(U^*B^*UU^*BU) = \operatorname{tr}(U^*B^*BU) = \operatorname{tr}(B^*BU^*U) = \operatorname{tr}(B^*B) = \sum_{ij} |b_{ij}|^2.$$

17. For the following questions, find a projection matrix P that projects \mathbf{b} onto the column space of A, that is, $P\mathbf{b} \in \operatorname{col}(A)$ and $\mathbf{b} - P\mathbf{b}$ is orthogonal to $\operatorname{col}(A)$.

(i)
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ (ii) $A = \begin{bmatrix} 1 & -2 & 4 \\ 1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}$.

Solution: Note that an orthonormal basis of col(A) is given by $\{e_1, e_2, e_3\} \subset \mathbb{R}^4$. Hence, the projection matrix equals

$$P = \mathbf{e}_1 \mathbf{e}_1^T + \mathbf{e}_2 \mathbf{e}_2^T + \mathbf{e}_3 \mathbf{e}_3^T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

For the second question, we know $\mathbf{w}_1 = \frac{1}{2}(1,1,1,1)^T$, $\mathbf{w}_2 = \frac{1}{\sqrt{10}}(-2,-1,1,2)^T$ and $\mathbf{w}_3 = \frac{1}{2}(1,-1,-1,1)^T$ form an orthonormal basis of $\operatorname{col}(A)$. Thus, the projection matrix equals

$$P = \mathbf{w}_1 \mathbf{w}_1^T + \mathbf{w}_2 \mathbf{w}_2^T + \mathbf{w}_3 \mathbf{w}_3^T = \frac{1}{10} \begin{bmatrix} 9 & 2 & -2 & 1 \\ 2 & 6 & 4 & -2 \\ -2 & 4 & 6 & 2 \\ 1 & -2 & 2 & 9 \end{bmatrix}.$$

Alternate:

$$P = A(A^{T}A)^{-1}A^{T} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \left(\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \right)^{-1} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \left(\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right)^{-1} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Similarly, it can be verified that

$$P = A(A^{T}A)^{-1}A^{T} = \frac{1}{10} \begin{bmatrix} 9 & 2 & -2 & 1\\ 2 & 6 & 4 & -2\\ -2 & 4 & 6 & 2\\ 1 & -2 & 2 & 9 \end{bmatrix}.$$

18. We are looking for the parabola $y=c+dt+et^2$ that gives the least squares fit to these four measurements:

$$y = 1$$
 at $t = -2$, $y = 1$ at $t = -1$, $y = 1$ at $t = 1$ and $y = 0$ at $t = 2$.

(a) Write down the four equations $(A\mathbf{x} = \mathbf{b})$ for the parabola $c + dt + et^2$ to go through the given four points. Prove that $A\mathbf{x} = \mathbf{b}$ has no solution.

Solution: Verify:
$$A = \begin{bmatrix} 1 & -2 & 4 \\ 1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}$ and $RREF([A \mathbf{b}] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$.

(b) For finding a least square fit of $A\mathbf{x} = \mathbf{b}$, *i.e.*, of $A\begin{bmatrix}c\\d\\e\end{bmatrix} = \mathbf{b}$, what equations would you solve?

Solution: Let $\mathbf{y} = A\mathbf{x} - \mathbf{b}$ be the error vector. Then, the sum of squared errors equals

$$f(x_1, x_2, x_3) = \mathbf{y}^T \mathbf{y} = (A\mathbf{x} - \mathbf{b})^T (A\mathbf{x} - \mathbf{b}) = \mathbf{x}^T A^T A \mathbf{x} - 2\mathbf{x}^T A^T \mathbf{b} + \mathbf{b}^T \mathbf{b}.$$

Thus, differentiating w.r.t x_1, x_2 and x_3 , we get

$$\left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial x_3}\right]^T = 2A^T A \mathbf{x} - 2A^T \mathbf{b}.$$

Now, equating it to zero gives $A^T A \mathbf{x} = A^T \mathbf{b}$. Thus, we want to solve $A^T A \begin{bmatrix} c \\ d \\ e \end{bmatrix} = A^T \mathbf{b}$.

(c) Compute A^TA . Compute its determinant. Compute its inverse.

Solution: $A^T A = \begin{bmatrix} 4 & 0 & 10 \\ 0 & 10 & 0 \\ 10 & 0 & 34 \end{bmatrix}$, $\det(A^T A) = 4 \times 10 \times 34 - 10 \times 10 \times 10 = 360$ and $(A^T A)^{-1} = \frac{1}{\det(A^T A)} C^T$, where C (cofactor matrix, symmetric in this case) is given by:

$$C = \left[\begin{array}{rrr} 340 & 0 & -100 \\ 0 & 36 & 0 \\ -100 & 0 & 40 \end{array} \right].$$

(d) Now, determine the parabola $y = c + dt + et^2$ that gives the least squares fit.

Solution: Using the previous two parts, we see that

$$\begin{bmatrix} c \\ d \\ e \end{bmatrix} = (A^T A)^{-1} A^T \mathbf{b} = \frac{1}{30} \begin{bmatrix} 35 \\ -6 \\ -5 \end{bmatrix}.$$

(e) The first two columns of A are already orthogonal. From column 3, subtract its projection onto the plane of the first two columns to get the third orthogonal vector \mathbf{v} . Normalize \mathbf{v} to find the third orthonormal vector \mathbf{w}_3 from Gram-Schmidt.

Solution: Since third and second columns are already orthogonal, suffices to subtract from the third column its projection onto the first column:

$$\mathbf{v}^T = (4, 1, 1, 4) - \frac{5}{2}(1, 1, 1, 1) = (3/2, -3/2, -3/2, 3/2).$$

To find \mathbf{w}_3 , just divide \mathbf{v} by its length, 3. So,

$$\mathbf{w}_3 = (1/2, -1/2, -1/2, 1/2).$$

(f) Now compute $\mathbf{x} = A \begin{bmatrix} c \\ d \\ e \end{bmatrix}$ to verify that \mathbf{x} is indeed the projection vector onto the column space of the matrix A.

Solution: Verify that for the value of P computed in the previous problem which corresponds to \mathbf{w}_3 in the previous part, we have

$$\mathbf{x}^T = \frac{1}{10} \begin{bmatrix} 9 & 12 & 8 & 1 \end{bmatrix} = (P\mathbf{b})^T.$$