In [119]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeClassifier #Import Decision Tree Classifier
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.linear_model import LinearRegression
```

In [120]:

```
df = pd.read_csv("D:/PGDAI - lec/Machine learning/Dataset/train_loan.csv")
df.head(15)
```

Out[120]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coar
0	LP001002	Male	No	0	Graduate	No	5849	
1	LP001003	Male	Yes	1	Graduate	No	4583	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	
4	LP001008	Male	No	0	Graduate	No	6000	
5	LP001011	Male	Yes	2	Graduate	Yes	5417	
6	LP001013	Male	Yes	0	Not Graduate	No	2333	
7	LP001014	Male	Yes	3+	Graduate	No	3036	
8	LP001018	Male	Yes	2	Graduate	No	4006	
9	LP001020	Male	Yes	1	Graduate	No	12841	
10	LP001024	Male	Yes	2	Graduate	No	3200	
11	LP001027	Male	Yes	2	Graduate	NaN	2500	
12	LP001028	Male	Yes	2	Graduate	No	3073	
13	LP001029	Male	No	0	Graduate	No	1853	
14	LP001030	Male	Yes	2	Graduate	No	1299	
4								•

In [121]:

```
df.drop('Loan_ID',inplace=True, axis=1)
df
```

Out[121]:

	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantInc
0	Male	No	0	Graduate	No	5849	_
1	Male	Yes	1	Graduate	No	4583	15
2	Male	Yes	0	Graduate	Yes	3000	
3	Male	Yes	0	Not Graduate	No	2583	23
4	Male	No	0	Graduate	No	6000	
609	Female	No	0	Graduate	No	2900	
610	Male	Yes	3+	Graduate	No	4106	
611	Male	Yes	1	Graduate	No	8072	2
612	Male	Yes	2	Graduate	No	7583	
613	Female	No	0	Graduate	Yes	4583	

614 rows × 12 columns

→

In [122]:

df.shape

Out[122]:

(614, 12)

In [123]:

df.describe()

Out[123]:

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History
count	614.000000	614.000000	592.000000	600.00000	564.000000
mean	5403.459283	1621.245798	146.412162	342.00000	0.842199
std	6109.041673	2926.248369	85.587325	65.12041	0.364878
min	150.000000	0.000000	9.000000	12.00000	0.000000
25%	2877.500000	0.000000	100.000000	360.00000	1.000000
50%	3812.500000	1188.500000	128.000000	360.00000	1.000000
75%	5795.000000	2297.250000	168.000000	360.00000	1.000000
max	81000.000000	41667.000000	700.000000	480.00000	1.000000

In [124]:

df.isnull().sum()

Out[124]:

Gender	13
Married	3
Dependents	15
Education	0
Self_Employed	32
ApplicantIncome	0
CoapplicantIncome	0
LoanAmount	22
Loan_Amount_Term	14
Credit_History	50
Property_Area	0
Loan_Status	0
dtype: int64	

In [126]:

```
df['Gender'].fillna(df['Gender'].mode()[0],inplace=True)
df['Married'].fillna(df['Married'].mode()[0],inplace=True)
df['Dependents'].fillna(df['Dependents'].mode()[0],inplace=True)
df['Self_Employed'].fillna(df['Self_Employed'].mode()[0],inplace=True)
df['LoanAmount'].fillna(df['LoanAmount'].mean(),inplace=True)
df['Loan_Amount_Term'].fillna(df['Loan_Amount_Term'].mode()[0],inplace=True)
df['Credit_History'].fillna(df['Credit_History'].mode()[0],inplace=True)
df.head(20)
    12841
                     10968.0
                              349.000000
                                                       360.0
                                                                       1.0
                                                                               Semiurban
                                                                                                   Ν
     3200
                                                                                   Urban
                       700.0
                               70.000000
                                                       360.0
                                                                       1.0
                                                                                                   Υ
                              109.000000
    2500
                     1840.0
                                                       360.0
                                                                       1.0
                                                                                   Urban
                                                                                                   Υ
    3073
                     8106.0
                                                       360.0
                                                                                   Urban
                              200.000000
                                                                       1.0
                                                                                                   Υ
     1853
                     2840.0
                               114.000000
                                                       360.0
                                                                       1.0
                                                                                   Rural
                                                                                                   Ν
     1299
                     1086.0
                               17.000000
                                                       120.0
                                                                       1.0
                                                                                   Urban
                                                                                                   Υ
     4950
                        0.0
                              125.000000
                                                       360.0
                                                                       1.0
                                                                                   Urban
                                                                                                   Υ
     3596
                        0.0
                               100.000000
                                                       240.0
                                                                       1.0
                                                                                   Urban
                                                                                                   Υ
     3510
                        0.0
                               76.000000
                                                       360.0
                                                                       0.0
                                                                                   Urban
                                                                                                   Ν
     4887
                        0.0
                               133.000000
                                                       360.0
                                                                       1.0
                                                                                   Rural
                                                                                                   Ν
     2600
                     3500.0
                               115.000000
                                                       360.0
                                                                       1.0
                                                                                   Urban
```

In [127]:

df.isnull().sum()

Out[127]:

Gender 0 Married 0 Dependents 0 Education 0 Self_Employed 0 0 ApplicantIncome CoapplicantIncome 0 LoanAmount 0 Loan_Amount_Term 0 Credit_History 0 Property_Area 0 Loan Status 0 dtype: int64

In [134]:

```
df['Gender']=df['Gender'].map({'Male':1,'Female':0})
df['Married']=df['Married'].map({'Yes':1,'No':0})
df['Education']=df['Education'].map({'Graduate':1,'Not Graduate':0})
df['Dependents'].replace('3+',3,inplace=True)
df['Self_Employed']=df['Self_Employed'].map({'Yes':1,'No':0})
df['Property_Area']=df['Property_Area'].map({'Semiurban':1,'Urban':2,'Rural':3})
df['Loan_Status']=df['Loan_Status'].map({'Y':1,'N':0})
```

In [135]:

df

cantincome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Property_Area	Loan_Status	
5849	0.0	146.412162	360.0	1.0	2	1	
4583	1508.0	128.000000	360.0	1.0	3	0	
3000	0.0	66.000000	360.0	1.0	2	1	
2583	2358.0	120.000000	360.0	1.0	2	1	
6000	0.0	141.000000	360.0	1.0	2	1	
2900	0.0	71.000000	360.0	1.0	3	1	
4106	0.0	40.000000	180.0	1.0	3	1	
8072	240.0	253.000000	360.0	1.0	2	1	
7583	0.0	187.000000	360.0	1.0	2	1	
4583	0.0	133.000000	360.0	0.0	1	0	
•							

Decision Tree

In [136]:

```
print(df.groupby('Loan_Status').size())

Loan_Status
0    192
1    422
dtype: int64

In [137]:

columns != 'Loan_Status'], df['Loan_Status'], stratify = df['Loan_Status'], random_state=42)
```

```
In [138]:
```

```
print(y_train.value_counts())
print(y_test.value_counts())
1
     316
     144
0
Name: Loan_Status, dtype: int64
     106
1
0
      48
Name: Loan_Status, dtype: int64
In [139]:
feature_name = list(X_train.columns)
class_name = list(y_train.unique())
feature_name
Out[139]:
['Gender'
 'Married',
 'Dependents',
 'Education',
 'Self_Employed',
 'ApplicantIncome',
 'CoapplicantIncome',
 'LoanAmount',
 'Loan_Amount_Term',
 'Credit_History',
 'Property_Area']
In [140]:
class_name
Out[140]:
[0, 1]
In [141]:
clf = DecisionTreeClassifier()
clf = clf.fit(X_train,y_train)
In [143]:
y_pred = clf.predict(X_test)
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
Accuracy: 0.7532467532467533
In [145]:
y_pred = clf.predict(X_train)
print("Accuracy:",metrics.accuracy_score(y_train, y_pred))
Accuracy: 1.0
```

Random Forest

In [146]:

```
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(n_estimators=20)
model = model.fit(X_train,y_train)

#Predict the response for test dataset
y_pred = model.predict(X_test)
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
```

Accuracy: 0.7987012987012987

In [147]:

```
y_pred = model.predict(X_train)
print("Accuracy:",metrics.accuracy_score(y_train, y_pred))
```

Accuracy: 0.9956521739130435

In [152]:

```
feature_importance=pd.DataFrame({
   'model':model.feature_importances_,
   'clf':clf.feature_importances_
},index=df.drop(columns=['Loan_Status']).columns)
feature_importance.sort_values(by='model',ascending=True,inplace=True)

index = np.arange(len(feature_importance))
fig, ax = plt.subplots(figsize=(18,8))
rfc_feature=ax.barh(index,feature_importance['model'],0.4,color='purple',label='Random Fore
dt_feature=ax.barh(index+0.4,feature_importance['clf'],0.4,color='lightgreen',label='Decisi
ax.set(yticks=index+0.4,yticklabels=feature_importance.index)

ax.legend()
plt.show()
```


In [156]:

```
import six
import sys
sys.modules['sklearn.externals.six'] = six
from sklearn.tree import export_graphviz
from sklearn.externals.six import StringIO
from IPython.display import Image
import pydotplus
from six import StringIO
```

In []: