Matrix Estimation Meets Content Based Filtering				
Description	What	Limitations/Assumptions	Example/Form ula	Reference/Co mments
Outline	Matrix Estimation meets Content-based Matrix Estimation across time Matrix Estimation everything together			
Combined Approach	 Content based supervised learning Matrix Estimation Combine estimates 			

Matrix Estimation Me	ets Content Based Filtering			
Description	What	Limitations/Assumptions	Example/Formula	Reference/Co mments
Problem statement Prediction problem: complete the matrix			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Problem statement Prediction problem: complete the matrix	If (i, j) is observed $E[Y_{ij}] = L_{ij}$ If (i, j) is not observed $Y_{ij} = \star \text{ or ?}$ Goal: produce estimation $\hat{L}_{i:}$ for all i. i observed features y_{j}	Observations: Yij over i in users, j in items Goal: produce estimation L^ij for all i, j		
Problem statement Prediction problem: complete the matrix Content-based: Model	$ E_{ij} = f(x_i, y_j) \\ e.g. \ L_{ij} = ax_i + \beta y_j + \gamma \\ ox \ L_{ij} = \exp(\alpha x_i + \beta y_j + \gamma) \\ ox \ L_{ij} = \exp(\alpha x_i + \beta y_j + \gamma) \\ item \ j $ Problem reduces to learning model f That istraditional supervised learning (regression, or, classification) $ E_{ij} = \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{$	Problem reduces to learning model f That is, traditional supervised learning (regression or classification)		
Problem statement Prediction problem: complete the matrix Matrix Estimation: Model	v_j v_j u_i $L_{ij} = f(u_i, v_j)$ $low-rank: \ L_{ij} = u_i^T v_j$ $item \ j$	Problem reduces to learning "factorization" of the matrix either through similarites or algebraic approaches		
Matrix Estimation meets Content-based: Model Prediction problem: complete the matrix	item features $\frac{y}{\log x} = \frac{1}{\log x} \left(\frac{x_i}{x_j} + \frac{y_j}{x_j} + y_$	Problem reduces to learning model f That is, traditional supervised learning (regression or classification)		
Matrix Estimation meets Content-based: Algorithm	Step 1. Content-based supervised learning $ \begin{aligned} & \text{Lear the regressor (or classifier) } f_{obs} & & & & & & & & & & & & & & & & & & &$	Content based supervised learning Matrix estimation Combine estimates		
Matrix Estim	ation Across Time			Poforor as /Ca
Description	What	Limitations/Assumptions	Example/Formula	Reference/Co mments

	Latent features	
	$v_j(t)$	
	$L_{ij}(t) = f(u_i(t), v_j(t))$	
	$u_i(t)$ low-rank: $L_{ij}(t) = u_i^T(t)v_j(t)$ user i	
	$u_i(\cdot), v_j(\cdot) \text{ time-series}$	Problem reduces estimating time varying
Matrix Estimation over time: Model		matrix where
Prediction problem: complete the matrix over time, indexed by t	item <i>j</i>	Latent factors are time varying, observations are partial and noisy
Matrix Estimation over Time: Model		$L_{ij}(t), \ i \in [N], \ j \in [M]$
Prediction problem: complete the matrix over time, indexed by t	Multiple time series	$L_{ij}(t), \ t \in [i, j], \ j \in [i, j]$
Matrix Estimation over TIme: Model	They obey latent structure	$T = (x) = (x)^T + (x) = (x) = md$
Prediction problem: complete the matrix over time, indexed by t	where each component of ui, vj is a structured time-series	$L_{ij}(t) = u_i(t)^T v_j(t), \ u_i(t), \ v_j(t) \in \mathbb{R}^d$
		Partial, noisy observations of the $L_{ij}(t),\;i\in[N],\;j\in[M]$
Matrix Estimation over TIme: Model Prediction problem: complete the matrix over time, indexed by t	Observations	NOT $u_i(t), \ v_j(t) \in \mathbb{R}^d$
. 100.00.07 problem. Complete the matrix over time, indexed by t	355.12.0110	
		Observations:
		MACATRIANTA
		$\dots, X(-1), X(0), X(1), \dots, X(T-1), X(T), X(T+1), \dots$
	Ground truth of interest:	observed missing Forecast
A digression: time series imputation, forecasting	, X(-1), X(0), X(1),,X(T-1),X(T),X(T+1),	uoserveu missing rurecast
	Page Matrix	
	X(1) $X(2)$ $X(L+1)$ $X(2L)$ $X(T-L+1)$ $X(T)$	
	+	
	X(1) X(L+1) X(T-L+1) X(2) X(L+2) X(T-L+2)	
	X(2) A(L+2)	
	X(L) X(2L) X(T)	
Page Matrix	$P = [P_{ij} = X(i + (j-1)L)] \in \mathbb{R}^{L \times \frac{T}{L}}$	
		X(1) X(2) X(L) X(L+1) X(L) X(T-L+1) X(T)
		*
		X(1) X(L+1) X(T-L+1) X(2) X(L+2) X(T-L+2)
		x(L) X(2L) X(T)
Imputation of time series data	Transform to Matrix, Do Matrix Estimation , Undo Transformation	very very
		Matrix Est X
		~ ~ "
		Features Linear
		Target β^k
Forecasting of time series data	Transform to Matrix, Do Matrix Estimation , Regression, Prediction	p
		$\mathcal{X} \stackrel{Matrix \; Ext}{\Longrightarrow} M$
		Features Linear Regression
Forecasting of time series data	Transform to Matrix, Do Matrix Estimation, Regression, Prediction	Tanget β^k
i orcodoung or affic scries data	Transform to matrix, Do matrix Estimation, regression, Fiediction	

	Multiple resourcements		
	uen		
Multiple measurements	kern / providers		
	Put everything together Users: N. Items: M		
	Time Horizon: T Measurements: K		
	Quantity of interest: user i, item j, measurement k at time t	T (1)	
	Problem statement:	$L_{ijk}(t)$	
Recommendation: Model Everything	Estimate the above using noisy, sparse observations	3 1 7	
	The model		
	$L_{ijk}(t) = f_{\text{obs}}^k(x_i, y_j) + f_{\text{latent}}^k(u_i(t), v_j(t))$		
	$u_i(\cdot), \ v_i(\cdot)$ time-series		
	A useful special instance		
	$f_{ ext{obs}}^k(x_i,y_j) = lpha^k x_i + eta^k y_j + \gamma^k$		
	$J_{\text{obs}}(w_i, y_j) = d_i w_i + p_i y_j + p_i$		
Recommendation: Model Everything	$f_{\text{latent}}^k(u_i(t), v_j(t)) = \sum_{\ell=1}^d u_{i\ell}(t) v_{j\ell}(t) w_{k\ell}$		
		Step 1. Content based learning	
		For each measurement k, learn via supervised learning $f_{ m obs}^k$, that is $(lpha^k,eta^k,\gamma^k)$	
		$f_{\rm obs}$, that is $(\alpha_{\rm o}, \rho_{\rm o}, \gamma_{\rm o})$	
		Step 2. Obtain difference (not learnt through content)	
	Content based learning	Step 2. Obtain difference (not learnt through content) $L_{ijk}^{ m diff}(t) = L_{ijk}(t) - L_{ijk}^{ m obs}$	
	For each measurement K, learn via supervised learning	$L_{ijk}(t) = L_{ijk}(t)$ where $L_{ijk}^{\mathrm{obs}} = f_{\mathrm{obs}}^{k}(x_i, y_j)$	
Recommendation: Algorithm	Obtain difference (not learnt through content)	where $D_{ijk} = J_{\mathrm{obs}}(x_i, y_j)$	
		$L_{ijk}(1) L_{ijk}(P+1)$	
		i i	
	Build stack Pace matrice across entries, slices of tensor That is, for measurement k, create Page matrix with	$L_{ijk}(P)$ $L_{ijk}(2P)$	
Recommendation: Algorithm	P rows, T/P x N x M columns	COLD 2 th	
	Build stack Pace matrice across entries, slices of tensor That is, for measurement k, create Page matrix with		
Recommendation: Algorithm	P rows, T/P x N x M columns	Lumium	
		Call it Z^k	
		Z^1 Z^K	
	Build stack Pace matrice across entries, slices of tensor		
	That is, for measurement k, create Page matrix with P rows, T/P x N x M columns	Step 4. Perform matrix estimation on it to obtain	
Recommendation: Algorithm	Perform matrix estimation on it	$\widehat{L}_{isk}^{diff}(t)$	
		$\widehat{L}_{ijk}(t) = \widehat{L}_{ijk}^{ ext{diff}}(t) + L_{ijk}^{ ext{obs}}$	
	5. Final Estimate		
	Some remarks: We flattened tensor in matrix to estimate to L^diff ik (t)	Some remarks:	
Recommendation: Algorithm	But, it comes at the cost of increased computation	We flattened tensor in matrix to estimate to $\widehat{L}^{ ext{diff}}_{ijk}(t)$	

Post session summary Recommendation systems				
Description	What	Limitations/Assumptions	Example/Formula	Reference/Co mments
3 dimensions of recommendation systems	Multiple measurements - Data for observed preferences Content or Exogenous features: Features of users/items Dynamics - Time varying aspect			
syntehetic prediction	This is a counterfactual prediction where actual prediction and synthetic prediction which will be predicted if the event did not occur to provide analysis of what is the impact of the event	2	Basque cuntry is in norther spain. It was affected by terrorism from mid to late 70's and it also experienced a decline in the per-capita GDP income around the same time. The question is whether this decline was due to that terrorism or due to some other factors To answer this question, we need to come up with a counterfactual prediction or synthetic prediction of the per-capita GDP of the Basque country if there was no terrorism	
How do we find these predictions	We will use Matrix estimation to determine the synthetic predictions Idea is similar to what we have learned in collaborative filtering We identify the intervention	mount 3 % 13 3 per mount of the		
Synthetic control	We will observe pre-intervention data, find the similarity of each donor with the target, and use it to create synthetic post-intervention data. This method is called synthetic control			
Applications for matrix technique estimation	Predict scores in an ongoing game Can be used to find highlights or breakthroughs in a game or history when comparing the predictions change and some gap between the actual and predicted score can be observed	India in Australia on 24 Mer 2011 Prediction after over 30.0 India that India Australian and India In	Forecasting cricket trajectory in an India vs Australia game from 2011	