Spectral based sound description

Xavier Serra

Music Technology Group
Universitat Pompeu Fabra, Barcelona
http://mtg.upf.edu

Index

- Sinusoidal plus residual model features
- Spectral-based features in Essentia
- Features for sound/music description
- Features for instrument modeling
- Music description

Sinusoidal+residual model features

- Instantaneous frequency and amplitude of partials
- Instantaneous spectrum of residual
- Instantaneous fundamental frequency
- Amplitude and spectral shape of sinusoidal component
- Amplitude and spectral shape of residual

Essentia functionality

- audio file i/o; standard DSP building blocks; filters
- Descriptors such as
 - spectral: spectral shape, MFCC, Bark/Mel bands
 - time-domain/rhythmic: loudness, dynamics, onsets, beats, beats per minute, danceability
 - tonal: melody, pitch, chroma, key, scale, chords
 - high-level: segmentation, genres, mood (happy/sad), instrumentation (acoustic, electronic, timbre dark/bright, voice male/female)

Spectral features in Essentia

- BarkBands: computes the Bark band energies.
- **MelBands**: computes the Mel band energies.
- **ERBBands**: computes the energies in bands spaced on an Equivalent Rectangular Bandwidth scale.
- MFCC: computes the Mel-frequency cepstral coefficients of a frame.
- **GFCC**: computes the gammatone feature cepstrum coefficients similar to MFCCs.
- LPC: computes the Linear Predictive Coding coefficients of a frame as well as the associated reflection coefficients.
- **HFC**: computes the High-Frequency Content measure.
- SpectralContrast: computes spectral contrast of a spectrum.
- Inharmonicity and Dissonance: both try to estimate whether an audio frame "sounds" harmonic or not.
- SpectralWhitening: whitens the input spectrum.
- Panning: computes the panorama distribution of a stereo audio frame.

Essentia extractors

Executable extractors built by combining algorithms in a "data-flow" manner


```
import essentia
from essentia.standard import *
from pylab import *
loader = essentia.standard.MonoLoader(filename = 'oboe.wav')
audio = loader()
w = Windowing(type = 'hann')
spectrum = Spectrum()
mfcc = MFCC()
pool = essentia.Pool()
for frame in FrameGenerator(audio, frameSize = 1024, hopSize = 512):
  mfcc_bands, mfcc_coeffs = mfcc(spectrum(w(frame)))
  pool.add('lowlevel.mfcc', mfcc coeffs)
  pool.add('lowlevel.mfcc bands', mfcc bands)
output = YamlOutput(filename = 'mfcc.sig')
output(pool)
```

Sound similarity

Prominent pitch detection

(Salamon, 2013)

Peak tracking in polyphonic signals

Onset detection

Instrument model

- Spectral Shape Models (formants, average shape, ...)
- Phase Models (constant, formant-based, ...)
- Frequency Models (harmonic model, piano model)
- Vibrato Models
- Articulation Models (frequency, amplitude functions)
- Residual Models
- Brightness-Loudness model (amplitude versus spectral tilt)

Taxonomy of musical features

STRUCT		CONCEPT LEVEL		MUSICAL CONTENT FEATURES				
CONTEXTUAL	global beyond 3 sec	HIGH II	EXPRESSIVE	cognition emotion affect = syntactic+semantic co				
		HIGH I	FORMAL	melody key profile	tonality cadence	rhythmic patterns tempo	instrument	dynamics trajectory articulation
	global <3 sec	MID	PERCEPTUAL	successive intervallic pattern	simultane intervallic pattern	beat IOI	spectral envelope	dynamic range sound level
NON-CONTEXTUAL	local + spatial	LOWII	SENSORIAL	periodicity pitch		note duration onset	roughness spectral	neural energy
	local + temporal	LOWI	PHYSICAL	fundamental		offset duration	spectral centroid spectrum	peak

Lesaffre et alt., 2003

Audio content classification

Levels of description

- Low-level (signal-centered) descriptors: computed from the audio signal in a direct or derived (ex: spectral analysis) way: average energy, spectral centroid, MFCCs
- Mid-level (object-centered) descriptors: requiring an induction operation or data modeling: key, genre, instrument ...
- High-level (user-centered) descriptors: requiring a user model: mood (ex: happy, sad), ...

Facets of music content

Structure description

- Partitioning the sound stream into homogeneous regions
- Detecting special roles for the segmented regions: intro, verse, chorus, bridge,
- Other segments can also be identified: instrumental / singing; solo / ensemble; chords...

Structure description

Figure 4.4. Two-dimensional similarity plot of The Beatles' song entitled I'm a Loser.

(Ong, 2006)

Tonal description

- Extract:
 - Melody (predominant melody or score)
 - Harmony (chords)
 - Key, modulations
- Much research is related to automatic transcription of music (Klapuri PhD 2004)
 - Fundamental frequency / Multipitch estimation (de Cheveigné)
 - Melody extraction (Predominant pitch, note segmentation)
 - Still unsolved, even for monophonic signals.
- Pitch class distribution of a piece
- Mid and high level features -> apply a tonal model / musical analysis (Krumhansl, Leman, Temperley,)

Tonal description

Key Note

Mode

Tonality strength

Rhythm description

Extraction of the metrical structure of a piece

(Gouyon, 2005)

Rhythm description

References

- http://essentia.upf.edu
- http://en.wikipedia.org/wiki/Music_information_retrieval

•

Credits

All the slides of this presentation are released under an Attribution-Noncommercial-Share Alike license.