

Vorlesung Computational Intelligence

Teil 4: Evolutionäre und Memetische Algorithmen 4.10 Scheduling-Anwendung

Ralf Mikut, Wilfried Jakob, Markus Reischl

Institut für Angewandte Informatik (IAI) / Campus Nord

4.10 Scheduling-Anwendung

Übersicht:

- Scheduling mit Ressourcenoptimierung in der Verfahrenstechnik
 - Aufgabenstellung
 - Entscheidungsvariable, Aufgabentyp und Genmodell
 - Komplexität
 - Bewertung
 - Ergebnisse

Scheduling-Anwendung – Aufgabenstellung

Scheduling mit Ressourcenoptimierung in der Verfahrenstechnik

Aufgabenstellung (1):

- Mitarbeitereinsatz- und Produktionsplanung bei einem chargenorientierten Herstellungsprozess
- Charge: Stoffmenge, die in einem Herstellungsprozess ohne Unterbrechung entsprechend einem Verfahren erzeugt wird.
- Die meisten Chargen benötigen ein Vorprodukt -> Verfahrenskette
- Quantitätsunterschiede der einzelnen Schritte einer Verfahrenskette (Eine Charge kann z.B. die 2,5-fache Menge der Vorgänger-Charge benötigen)
- Eine Charge belegt während ihrer Herstellung eine Anlage.
- Mehrere Verfahren können die gleiche Anlage belegen.
- Produktion in Conti-Schichten (rund um die Uhr)
- Einhaltung von Lieferterminen

Scheduling-Anwendung – Aufgabenstellung

<u>Aufgabenstellung (2):</u>

Ein Verfahren gibt auch an, zu welchen Zeiten was zu tun ist und wie viel Mitarbeiter dafür benötigt werden:

Schichtspitze:

Kumulierter Mitarbeiterbedarf einer Schicht (8 h):

Überlagerung des Mitarbeiterbedarfs bei der Produktion zweier Chargen:

Scheduling-Anwendung – Aufgabenstellung

Aufgabenstellung (3):

Planungs- und Optimierungsziele:

- 1. Erstellung von regelkonformen Produktionsplänen (Quantitative Einhaltung der Verfahrensketten, keine Anlagenmehrfachbelegung, ...)
- 2. Reduktion der Schichtspitzen durch homogenere Belastung der Mitarbeiter
- 3. Verkürzung der Gesamtproduktionszeit
- 4. Verbesserung der Liefertreue (Einhaltung der Endtermine)

Konkrete Planungsaufgabe:

- 1. Stundengenaue Planung der Produktion von 87 Chargen in 9 Anlagen
- 2. Maximal 12 Mitarbeiter Ziel: Reduktion auf 9 Mitarbeiter
- 3. Zeitrahmen: Maximal 1680 Stunden = 210 Schichten (Ergebnis bisheriger manueller Planung)

Scheduling-Anwendung – Aufgabentyp u. Genmodell

Entscheidungsvariable, Aufgabentyp und Genmodell

- Startzeiten der Chargen
- Keine Zuordnung von Chargen zu Anlagen (bei der konkreten Aufgabe)
- Lösung von Belegungskonflikten
 - → Element einer Schedulingaufgabe

Genmodell: Vorschläge?

Institut für Angewandte Informatik (IAI) / CN

Scheduling-Anwendung – Komplexität

Komplexität:

- Vernachlässigung der Belegungskonflikte
- Grobe Abschätzung aller Startzeitkombinationen:
 - Reduktion der Startzeiten wegen der Verfahrensketten und der Laufzeiten von 1680 h auf geschätzte 1500 h:

$$1500^{87}\approx 2\cdot 10^{276}$$

Bei Verwendung der resultierenden Startzeiten von ca. 1000 h:

$$1000^{87}\approx 10^{261}$$

Zum Vergleich: geschätzte Sternenanzahl im Universum: 7 · 10²²

Scheduling-Anwendung – Bewertung

Bewertung (1):

Hauptkriterien:

- Gesamtzeit zur Herstellung aller Chargen
- 2. Schichtspitzenmaximum: Maximale Mitarbeiteranzahl aller Schichten

Was muss noch bewertet werden?

Genügt das?

Institut für Angewandte Informatik (IAI) / CN

Scheduling-Anwendung – Bewertung

Bewertung (2):

Bewertung des Schichtspitzenüberhanges berechnet durch

(Schichtspitze – Zielwert) · Schichten

mit Hilfe einer Exponentialfunktion zur Erfassung auch großer Überhänge:

Scheduling-Anwendung – Bewertung

Bewertung (3):

Bewertung der Gesamtzeit im Bereich 1200 Stunden (150 Schichten) bis 1680 Stunden, danach Abwertung durch Straffunktion

Scheduling-Anwendung – Ergebnisse

Ergebnisse (1):

Vorgabe (manuelle Planung):

zeitoptimierte Planung Schichten 41 % Einsparung an Mitarbeiterstunden

Scheduling-Anwendung – Ergebnisse

Ergebnisse (2):

Vergleich der eingesetzten Algorithmen

AMMA einsetzen für Überblick und schnelle Erzeugung erster Lösungen. Bei Einbau in ein Planungssystem kann der Aufwand zur Einstellung des SMA-R lohnen.

