Asymptotische Komplexität von Algorithmen

Abgabe Aufgabenblatt 2

Johannes Kruber Luis Nickel

Matrikelnummer: 2288692 Matrikelnummer: 2199554

Felix Naumann

Matrikelnummer: 2210645

4. April 2017

Asymptotische Komplexität von Algorithmen

In halts verzeichn is

Inhaltsverzeichnis

1	Prin	nzahlsuche	1
	1.1	Langsam	1
	1.2	Schnelle	1
	1.3	Sieb des Eratosthenes	3
	1.4	Primzahleigenschaft feststellen	3

1 Primzahlsuche

1.1 Langsam

Entsprechend der Aufgabenstellung wurde die Standard Primzahlensuche aus der Vorlesung implementiert. In Tabelle 1 ist der benötigte Aufwand T zu einer bestimmten Problemgröße N eingetragen. In Abbildung 1.1 ist T in Abhängigkeit zu N aufgetragen. Aus dieser ist zu entnehmen, dass das Steigungsverhalten exponentiell ist.

Tabelle 1: Langsame Primzahlensuche

Problemgröße: N	Aufwand: T(N)
100	9004
200	39204
300	88804
400	158404
500	248004

Abbildung 1.1: Langsame Primzahlensuche T(N)

1.2 Schnelle

Entsprechend der Aufgabenstellung wurde ein optimierte Primzahlensuche von der in Abschnitt 1.1 implementierten Suche implementiert. In Tabelle 2 ist der benötigte Aufwand T zu einer bestimmten Problemgröße N eingetragen. In Abbildung 1.1 ist T in Abhängigkeit zu N aufgetragen. Aus dieser ist zu entnehmen, dass das Steigungsverhalten annähernd linear ist.

Tabelle 2: Schnelle Primzahlensuche

Problemgröße: N	Aufwand: T(N)
100	235
200	627
300	1066
400	1558
500	2112

Abbildung 1.2: Schnelle Primzahlensuche $\mathcal{T}(\mathcal{N})$

1.3 Sieb des Eratosthenes

Entsprechend der Aufgabenstellung wurde die Suche nach dem 'Sieb des Eratosthenes' implementiert. In Tabelle 3 ist der benötigte Aufwand T zu einer bestimmten Problemgröße N eingetragen. In Abbildung 1.3 ist T in Abhängigkeit zu N aufgetragen. Aus dieser ist zu entnehmen, dass das Steigungsverhalten annähernd linear ist.

In Abbildung 1.4 sind die Schnelle Suche und das Sieb des Eratosthenes im Vergleich zueinander zu sehen um die Unterschiede zu verdeutlichen.

Tabelle 3: Sieb d	es Eratosthenes
Problemgröße: N	Aufwand: T(N)
	100

Problemgröße: N	Aufwand: $T(N)$
100	182
200	434
300	712
400	1015
500	1316

Abbildung 1.3: Sieb des Eratosthenes T(N)

1.4 Primzahleigenschaft feststellen

Entsprechend der Aufgabenstellung wurde eine Funktion zum Feststellen der Primzahleneigenschaft implementiert. Der Verlauf einer einzelnen Suche in diesem Algorithmus ist recht linear ohne Steigung, da ab dem ersten gefunden Teiler abgebrochen wird, weil die Primzahleigenschaft dann schon widerlegt ist. Ausreißer treten hauptsächlich bei Primzahlen auf oder wenn der erste Teiler gegen Ende des Prüfintervalls kommt. Aus diesem

1 Primzahlsuche

Abbildung 1.4: Schnelle Suche und Sieb des Eratosthenes im Vergleich T(N)

Grund wurde sich für eine Darstellung des Aufwandes um eine Primzahl entschieden, um das Verhältnis eines Ausreißers zu den Normalen Werten zu verdeutlichen. In Tabelle 4 und Abbildung 1.5 sind der Aufwand T in Abhängigkeit von der Zahl N (Problemgröße) abgebildet. Es wurde das Intervall von [500;506] gewählt welches die Primzahl 503 enthält.

Tabelle 4: Funktion zu Feststellung der Primzahleneigenschaft

Problemgröße: N	Aufwand: T(N)
500	1
501	2
502	1
503	21
504	1
505	4
506	1

Abbildung 1.5: Feststellen der Primzahleneigenschaft $\mathcal{T}(\mathcal{N})$