

planetmath.org

Math for the people, by the people.

$\begin{array}{c} \text{proof that a relation is union of functions if} \\ \text{and only if } \mathbf{AC} \end{array}$

 ${\bf Canonical\ name} \quad {\bf ProofThat A Relation Is Union Of Functions If And Only If AC}$

Date of creation 2013-03-22 16:34:23 Last modified on 2013-03-22 16:34:23

Owner ratboy (4018) Last modified by ratboy (4018)

Numerical id 4

Author ratboy (4018)

Entry type Proof Classification msc 03E25 **Theorem.** A relation R is the union of a set of functions each of which has the same domain as R if and only if for each set A of nonempty sets, there is a choice function on A.

Proof. Suppose that R is a relation with dom(R) = A and $rng(R) \subseteq B$. Let $g \colon A \to \mathcal{P}(B)$ be given by $a \mapsto R[\{a\}]$. There is be a choice function c on g[A]. Let $f = c \circ g$, and for each pair $\langle a,b \rangle \in R$, let f_{ab} send a to b and agree with f elsewhere. Let $F = \{f_{ab} \mid \langle a,b \rangle \in R\}$. Clearly $\bigcup F \subseteq A \times B$, so suppose $\langle u,v \rangle \in \bigcup F$; then there is a pair $\langle a,b \rangle \in R$ such that $\langle u,v \rangle \in f_{ab} \in F$. Either $\langle u,v \rangle = \langle a,b \rangle$, or $v = f(u) = c \circ g(u) = c(R[\{u\}]) \in R[\{u\}]$. In each case, $\langle u,v \rangle \in R$. Thus, $\bigcup F \subseteq R$. For each pair $\langle a,b \rangle \in R$, $\langle a,b \rangle \in f_{ab} \in F$, so $R \subseteq \bigcup F$. Therefore, $R = \bigcup F$. Suppose that A is set of nonempty sets. Let $R = \bigcup \{\{a\} \times a \mid a \in A\}$. A set x is an element of dom(R) if and only if $x \in \{a\}$ for some $a \in A$. Thus, dom(R) = A. There is a set F of functions, each of which has domain A, such that $R = \bigcup F$. Let $f \in F$; then dom(f) = A, and for each pair $\langle a, f(a) \rangle \in f$, $\langle a, f(a) \rangle \in \{a\} \times a$; i.e., $f(a) \in a$. Each such f is, thus, a choice function on A.