Зависимость и независимость случайных величин

- **1.** Имеется урна с 3 белыми и 3 черными шарами. Производится последовательное извлечение шаров (без возвращения) до первого появления белого шара; *X* число извлеченных шаров. Далее извлечение шаров продолжается до первого появления черного шара; *Y* число шаров, извлеченных во второй серии. Требуется составить закон распределения двумерной случайной величины (*X*; *Y*).
- **2.** Закон распределения системы случайных величин (X;Y) задан таблицей распределения вероятностей:

Y	-1	0	1	
0	0,01	0,04	0,05	
1	0,06	0,24	0,1	
2	0,05	0,15	0,1	
3	0,04	0,07	0,09	

Найдите: а) законы распределения случайных величин X и Y; б) закон распределения случайной величины Y при условии, что X=0; в) вероятность события (X<2,Y<1). Что полученные законы распределения говорят о зависимости случайных величин X и Y?

3. Закон распределения системы случайных величин (X;Y) задан таблицей распределения вероятностей:

X	0	1	2	3	4	5	6
0	0,202	0,174	0,113	0,062	0,049	0,023	0,004
1	0	0,099	0,064	0,04	0,031	0,02	0,006
2	0	0	0,031	0,025	0,018	0,013	0,008
3	0	0	0	0,001	0,002	0,004	0,011

Найдите коэффициент корреляции случайных величин X и Y и корреляционную матрицу. Что полученные результаты говорят о коррелированности и зависимости случайных величин X и Y?