

DNA sequence:

cccttcatgtctttgttagaaacccatttatcttcttagggcccaatttgcaccaacccacatttttcacctaacccac  
caaaggcctgcacatgttgacgtgaacacccaaactaacacgtgtcatactgccagtggatatgatgcataccat  
accagagtcatagagttttgggtggaaagatttgcggatgccttcttcatttctccaactccctccaaaccc  
aacaaaatgttatattagcaaagccccaagtgtaaaacgaaagttaataatccatgtgtatcgtaatttgc  
gaggaagataaaaatttcaatccccatttgcattgttcatttgcattgttgcattgttgcattgttgcattgttgc

[transit peptide start]

ATGGCGCAAGTTAGCAGAATCTGCAATGGTGTGCAGAACCCATCTTATCTCCAATCTCTCGAAATCCAGTCACGC  
AAATCTCCCTATCGGTTCTCTGAAGACGCAGCAGCATCCACGAGCTTATCCGATTTCTCGTCGTGGGGATTGAAGAAGA  
GTGGGATGACGTTAATTGGCTCTGAGCTTCGTCTTAAGTCATGTCTCTGTTCCACGGCGAG

[mature peptide starts]

AAAGCGTCGGAGATTGTACTTCAACCCATTAGAGAAATCTCCGGTCTTATAAGCTTCTGGCTCCAAGTCTCTATCAA  
TCGGATCCTGCTTCTCGCTCTGAGGTATATACCTTCGTTCTCTGTAAATCTGAACCTAGATTAT  
AAAGATTGATACTTACCATTTGCTGGTTTATAGGGAAACAATGAGTGGACAACCTGTTGAATAGCGATGACATC  
ATTACATGCTTGATGCGTTGAAGAGATGGGACTTAATGTTGAAACTGACAGTAAAATAATCTGTGTAGTTGAAGG  
ATGTTGGGGGATATTCCAGCTTCATAGATTCAAAGAGTGAATATCGAACCTTACCTCGGTAAATGCCAGGAACAGCAATGC  
GTCCACTTACCGCTGCCGTACTGCTGCAGGTGAAACGCAAGGTAGATTGAAGGAGTTGATGCTTCTGGTATTTGATG  
TTAAGGAATGGAGCTTTGTTGATGCTTATGATCCATTATTCCAGTTATGCTGTTGATGGGTGCTGTTGATGAGAG  
AAAGACCTATACGGGATTGGGTTGGCTTAAGCAGCTTGGCTGATGTTGAATGACTCTTGGAACTAACTGCC  
CCTGTTGCTCAACGCTAATGGGCCCTCCCCGGTGGAAAGGTTAGATCTGCAATGGCATGTGAATATGAAATCTCG  
TTCCCTACTATGAACACTTGCAGAACATGGATTGGTGTTCATCATGCTTAGCTGACAGATTTCAGTTTTAAATCTACTC  
TCAACGGATGGATCCTAAAATAGAATCGGATTGGTGTTCATCATGCTTAGCTGACAGATTTCGGTGTATGATTCT  
TGATTAACAAATTAGGAGACATGTTATGCAATTGCAAGCTGATGTTGAATGACTCTGACTGCTCT  
GCTCATGTCGCTCCCTAGCTCTGGAGACGTCGAGATTGCAAAATTAAATTCTGTTCCATATGTTGAAA  
TGACATTGAAGTTGATGGAAACGTTGGGGTTAGTGTGAGCATAGTGAATAGCTGGATCTGGTCTTGTCAACCCCC  
CAAAATACAACAGTAGGAGTTATTCTTCTTCTGAAATCACATCCCTTAGCTGACAAATATAATGACTAAAGG  
TGAATGATTGAGGTCTCCGGGTTAGCGTATGAGGGTGTGCTGTTGATGCTTAGTGTATTTCTGGCTGGTGTGCC  
TTACGGTGAACACTGTCAACAGTCGAAGGTTGTGAAACTACCAAGCTTGCAGGTAAATTGTAACACTGAATCATGACGAG  
GCTGTTAAGTTATAGTGAATTCTGCTAGGTCAAAGTTCATCTTGTACAAGTTGATATAACATATTGCAAGATTC  
TAAGCTCAATTGGTGTGATGAATCTAGGGAGATGTAACATTGCGAGGTCTTGAGAAATGGGATGTAAGGTG  
TGGACAGAGAACAGTGTGACTGTGACAGGACCACCTAGAGATGCTTTGGAAATGAGACACTTGCGGGCTATTGATGTC  
CATGAACAAAATGCGCTGATGTGAGCCATGACCCCTTGCCTGCTCTTTGCTGACGGTCAACCCACCAATTAGAGATG  
GTAAGTAAAAGCTCTCTTATAATTAGGTTCTCAATATTGATCACTTAATTCTGTTGGTTAATATAGGGCT  
AGCTGGAGAGTAAAGGAGACAGAAAGGATGATTGCCATTGCAAGAGCTTAGAAAAGTAAGAGATTCTTATCTCT  
TTCTGTCCTTGACAGTGTGCTCATTCTAAGTAATTAGCTCATAAATTGTTGTTGTTGCTGAGCTGGGAGCTACAGTGG  
AGAAGGTTCAGATTATTGTTGATGAACTCCGCCAAAAGGTGAAACCGCAGAGATTGATACATATGATGATCATAGAA  
TGGCAATGGCATTCTCTTGCAGCTTGTGCTGATGTTCCAATCACCACCAACGACTCTGGTTGCACCAGGAAAACCTTC  
CCCGACTACTTCAAGTACTTGAAGAATCACAAAGCACTAAacaataaaactctgttttcttgcattcaagtt

FIG. 1A

Protein sequence:

MAQVSRICNGVQNPSLISNL SKSSQRKSPLSVSLKTOQHPRAYPISSWGLKKSGMTLIGSELRPLKVMSSVSTAE  
KASEIVLQPIREISGLIKLPGSKSLSNRILLLAALSEGTTVVVDNLLNSDDINYM DALKRLGLNVETDSENNRAVV  
EGCGGIFPASIDSKSDIELYLGNAGTAMRPLTAAVTAAGGNASYVLDGVPRMRERPIGDLVVGLKQLGADVECTLG  
TNCPVVRVNANGGLPGGKVKLGSISQQYLTALIMSAPLALGDVEIEIVDKLISVPYVEMTLKLMERFGVSVEHSD  
SWDRFFVKGGQKYKSPGNAYVEGDASSACYFLAGAATGETVTVEGC GTTSLQGDVKFAEVLEKGCKVWTENSV  
TVTGPPRDAFGMRHLRAIDVN MNKMPDVAMTLAVVALFADGPTTIRDVASWRVKETERMIACTELRKLGATVEEG  
SDYCVITPPKKVKTAEIDTYDDHRMAMAFSLAACADV PITINDSGCTRKTFPDYFQVLERITKH

FIG. 1B

Arabidopsis thaliana wild type sequence:

|          |     |     |     |     |            |            |     |     |     |            |     |
|----------|-----|-----|-----|-----|------------|------------|-----|-----|-----|------------|-----|
| Position | 173 | 174 | 175 | 176 | 177        | 178        | 179 | 180 | 181 | 182        | 183 |
|          | L   | G   | N   | A   | G          | T          | A   | M   | R   | P          | L   |
|          | CTC | GGT | AAT | GCA | <b>GGA</b> | <b>ACA</b> | GCA | ATG | CGT | <b>CCA</b> | CTT |

Arabidopsis thaliana mutant sequences:

|                                                      |     |     |     |     |            |            |            |     |     |            |     |
|------------------------------------------------------|-----|-----|-----|-----|------------|------------|------------|-----|-----|------------|-----|
| Name                                                 | CTC | GGT | AAT | GCA | <b>GCA</b> | ACA        | GCA        | ATG | CGT | <b>CCA</b> | CTT |
| <b>A<sub>177</sub></b>                               | L   | G   | N   | A   | <b>A</b>   | T          | A          | M   | R   | P          | L   |
| <b>I<sub>178</sub></b>                               | CTC | GGT | AAT | GCA | <b>GGA</b> | <b>ATA</b> | GCA        | ATG | CGT | <b>CCA</b> | CTT |
|                                                      | L   | G   | N   | A   | G          | <b>I</b>   | A          | M   | R   | P          | L   |
| <b>A<sub>177</sub>I<sub>178</sub></b>                | CTC | GGT | AAT | GCA | <b>GCA</b> | <b>ATA</b> | GCA        | ATG | CGT | <b>CCA</b> | CTT |
|                                                      | L   | G   | N   | A   | <b>A</b>   | <b>I</b>   | A          | M   | R   | P          | L   |
| <b>I<sub>178</sub>S<sub>182</sub></b>                | CTC | GGT | AAT | GCA | <b>GGA</b> | <b>ATA</b> | GCA        | ATG | CGT | <b>TCA</b> | CTT |
|                                                      | L   | G   | N   | A   | G          | <b>I</b>   | A          | M   | R   | <b>S</b>   | L   |
| <b>A<sub>177</sub>S<sub>182</sub></b>                | CTC | GGT | AAT | GCA | <b>GCA</b> | ACA        | GCA        | ATG | CGT | <b>TCA</b> | CTT |
|                                                      | L   | G   | N   | A   | <b>A</b>   | T          | A          | M   | R   | <b>S</b>   | L   |
| <b>A<sub>177</sub>I<sub>178</sub>S<sub>182</sub></b> | CTC | GGT | AAT | GCA | <b>GCA</b> | <b>ATA</b> | GCA        | ATG | CGT | <b>TCA</b> | CTT |
|                                                      | L   | G   | N   | A   | <b>A</b>   | <b>I</b>   | A          | M   | R   | <b>S</b>   | L   |
| <b>V<sub>178</sub>S<sub>182</sub></b>                | CTC | GGT | AAT | GCA | <b>GGA</b> | <b>GTA</b> | GCA        | ATG | CGT | <b>TCA</b> | CTT |
|                                                      | L   | G   | N   | A   | G          | <b>V</b>   | A          | M   | R   | <b>S</b>   | L   |
| <b>L<sub>178</sub>S<sub>182</sub></b>                | CTC | GGT | AAT | GCA | <b>GGA</b> | <b>TTA</b> | GCA        | ATG | CGT | <b>TCA</b> | CTT |
|                                                      | L   | G   | N   | A   | G          | <b>L</b>   | A          | M   | R   | <b>S</b>   | L   |
| <b>A<sub>177</sub>V<sub>178</sub></b>                | CTC | GGT | AAT | GCA | <b>GCA</b> | <b>GTA</b> | GCA        | ATG | CGT | <b>CCA</b> | CTT |
|                                                      | L   | G   | N   | A   | <b>A</b>   | <b>V</b>   | A          | M   | R   | P          | L   |
| <b>A<sub>177</sub>L<sub>178</sub></b>                | CTC | GGT | AAT | GCA | <b>GCA</b> | <b>TTA</b> | <b>GTA</b> | ATG | CGT | <b>CCA</b> | CTT |
|                                                      | L   | G   | N   | A   | <b>A</b>   | <b>L</b>   | <b>A</b>   | M   | R   | P          | L   |

FIG. 2



FIG. 3A

FIG. 3B

|      |      |      |      |      |      |      |      |      |
|------|------|------|------|------|------|------|------|------|
| 12.0 | 1220 | 1230 | 1240 | 1250 | 1260 | 1270 | 1280 | 1290 |
| 12.1 | 1230 | 1240 | 1250 | 1260 | 1270 | 1280 | 1290 | 1290 |
| 12.2 | 1240 | 1250 | 1260 | 1270 | 1280 | 1290 | 1290 | 1290 |
| 12.3 | 1250 | 1260 | 1270 | 1280 | 1290 | 1290 | 1290 | 1290 |
| 12.4 | 1260 | 1270 | 1280 | 1290 | 1290 | 1290 | 1290 | 1290 |
| 12.5 | 1270 | 1280 | 1290 | 1290 | 1290 | 1290 | 1290 | 1290 |
| 12.6 | 1280 | 1290 | 1290 | 1290 | 1290 | 1290 | 1290 | 1290 |
| 12.7 | 1290 | 1290 | 1290 | 1290 | 1290 | 1290 | 1290 | 1290 |
| 12.8 | 1300 | 1310 | 1320 | 1330 | 1340 | 1350 | 1360 | 1370 |
| 12.9 | 1310 | 1320 | 1330 | 1340 | 1350 | 1360 | 1370 | 1380 |
| 13.0 | 1320 | 1330 | 1340 | 1350 | 1360 | 1370 | 1380 | 1390 |
| 13.1 | 1330 | 1340 | 1350 | 1360 | 1370 | 1380 | 1390 | 1390 |
| 13.2 | 1340 | 1350 | 1360 | 1370 | 1380 | 1390 | 1390 | 1390 |
| 13.3 | 1350 | 1360 | 1370 | 1380 | 1390 | 1390 | 1390 | 1390 |
| 13.4 | 1360 | 1370 | 1380 | 1390 | 1390 | 1390 | 1390 | 1390 |
| 13.5 | 1370 | 1380 | 1390 | 1390 | 1390 | 1390 | 1390 | 1390 |
| 13.6 | 1380 | 1390 | 1390 | 1390 | 1390 | 1390 | 1390 | 1390 |
| 13.7 | 1390 | 1390 | 1390 | 1390 | 1390 | 1390 | 1390 | 1390 |
| 13.8 | 1400 | 1410 | 1420 | 1430 | 1440 | 1450 | 1460 | 1470 |
| 13.9 | 1410 | 1420 | 1430 | 1440 | 1450 | 1460 | 1470 | 1480 |
| 14.0 | 1420 | 1430 | 1440 | 1450 | 1460 | 1470 | 1480 | 1490 |
| 14.1 | 1430 | 1440 | 1450 | 1460 | 1470 | 1480 | 1490 | 1490 |
| 14.2 | 1440 | 1450 | 1460 | 1470 | 1480 | 1490 | 1490 | 1490 |
| 14.3 | 1450 | 1460 | 1470 | 1480 | 1490 | 1490 | 1490 | 1490 |
| 14.4 | 1460 | 1470 | 1480 | 1490 | 1490 | 1490 | 1490 | 1490 |
| 14.5 | 1470 | 1480 | 1490 | 1490 | 1490 | 1490 | 1490 | 1490 |
| 14.6 | 1480 | 1490 | 1490 | 1490 | 1490 | 1490 | 1490 | 1490 |
| 14.7 | 1490 | 1490 | 1490 | 1490 | 1490 | 1490 | 1490 | 1490 |
| 14.8 | 1500 | 1510 | 1520 | 1530 | 1540 | 1550 | 1560 | 1570 |
| 14.9 | 1510 | 1520 | 1530 | 1540 | 1550 | 1560 | 1570 | 1570 |
| 15.0 | 1520 | 1530 | 1540 | 1550 | 1560 | 1570 | 1570 | 1570 |

FIG. 3C

# FIG. 4

10            20            30            40            50            60            70            80            90            100  
**NLSKSSQRKSPLSVSLXKTOQHPRAYPISSWGLKKSGMTLIGSELR-----PLKVNSSVSTAERKASEIVLQPIREISGLIKLPGSKSLSN atepsps . PRO**  
**MLKXQNKSPDSVSIXTHQ-----PRASSWGLKKSGTMLNGSVIR-----PVKUTASYSTSEKASETVLQPIREISGLIKLPGSKSLSN bnepsps . PRO**  
**NEHKPQPKSSSELVEGSKK-----LKNSA-----NSMVLVKKDSIFMQKFCFSRISASVATQKPSETVLQPIKEISGTVKLPGSKSLSN petaroa . PRO**  
**NEHKPQPKSSSELVEGSKK-----AEETVLQPIKEISGTVKLPGSKSLSN zmepsps . PRO**

---

110            130            140            150            160            170            180            190            200            210  
**.NSDDINNMILDALKRLGLNVETDSENRAVEGGGLFPASIDSKSDIELEYLGAGMAMRPLTAATVAAGGNAASYVLDGVPRMRERPIODLY atepsps . PRO**  
**.MSDDINNMILDALKRLGLNVERDSVNRAVEGGGLFPASIDSKSDIEYLGLAGMAMRPLTAATVAAGGNAASYVLDGVPRMRERPIODLY bnepsps . PRO**  
**.SSDCDINNMIGALKTLGLHVVEOSANQRAVEGGGLFPVGKESKLEIQFLGAGTAMRPLTAATVAGGNSRYVLDGVPRMRERPIODLY petaroa . PRO**  
**.MSDOVNMILGALRPLGLSYEADKAANKRAVVNGGGKFV~-EDAKEVQULFNGAGTAMRPLTAATVAAGGNAASYVLDGVPRMRERPIODLY zmepsps . PRO**

---

220            240            250            260            270            280            290            300            310            320  
**.PVYRNANGGLPGCKVKGSSISQQYLTAIIMSNPLALGDVTEIEVDKLISVPYVENTLKLMERGVSVHSWDREFVKCGQKXSGVNA atepsps . PRO**  
**.PVYRNANGGLPGCKVKGSSISQQYLTAIIMSNPLALGDVTEIEVDKLISVPYVENTLKLMERGVSAEHSWSMDREFVKCGQKXSGVNA bnepsps . PRO**  
**.PVYRNANGGLPGCKVKGSSISQQYLTAIIMSNPLALGDVTEIEVDKLISVPYVENTLKLMERGEGISVEHSSWSMDREFVKCGQKXSGVKA petaroa . PRO**  
**.PVYRNANGGLPGCKVKGSSISQQYLTAIIMSNPLALGDVTEIEVDKLISVPYVENTLKLMERGVKAELISDSDVDRFYIKSGQKXSGVNA zmepsps . PRO**

---

330            350            360            370            380            390            400            410            420            430  
**.GETVTVEGGTTSLQGDVKFAEMLEKMGCKVSVTENSVTGPRDAFGMRHLRAIDVMMNKHDIDVANTLAVVVALFDGPTAIRDVASWRV atepsps . PRO**  
**.GETVTVEGGTTSLQGDVKFAEVLEKMGCKVSVTENSVTGPRDAFGMRHLRAIDVMMNKHDIDVANTLAVVVALFDGPTAIRDVASWRV bnepsps . PRO**  
**.GETVTVEGGTTSLQGDVKFAEVLEKMGAEVNTENSVTGPRSSSGRKHLRAIDVMMNKHDIDVANTLAVVVALFDGPTAIRDVASWRV petaroa . PRO**  
**.GETVTVEGGTTSLQGDVKFAEVLEKMGAKYWTETSVTGPRPFGRHLKAIDVMMNKHDIDVANTLAVVVALFDGPTAIRDVASWRV zmepsps . PRO**

---

440            460            470            480            490            500            510            520  
**.TVBEGSDYCVITPPKVKTAELDTDDHRMANAFSLAACADVPITINDSGCTRKTFPDYFQVLERITKH atepsps . PRO**  
**.TVBEGSDYCVITPPKVKPAEIDTYDDHRMANAFSLAACADVPITINDSGCTRKTFPDYFQVLESITKH bnepsps . PRO**  
**.TVBEGSDYCVITPPKVKPAEIDTYDDHRMANAFSLAACADVPITINDSGCTRKTFPDYFQVLESITKH petaroa . PRO**  
**.TVBEGSDYCVITPPKVKPAEIDTYDDHRMANAFSLAACADVPITINDSGCTRKTFPDYFQVLESITKH zmepsps . PRO**

Oligo Name    Oligo Sequence (5' → 3')

ATEPS-A<sub>177</sub>

CGTTTCCACCTGCAGCAGTGAACGGCAGCGGTAAGTGGACGCATTGCTGTGCATTACCGAG

ATEPS-AI

CGTTTCCACCTGCAGCAGTGAACGGCAGCGGTAAGTGGACGCATTGCTGTGCATTACCGAG

ATEPS-IS

CGTTTCCACCTGCAGCAGTGAACGGCAGCGGTAAGTGGACGCATTGCTGTGCATTACCGAG

ATEPS-AS

CGTTTCCACCTGCAGCAGTGAACGGCAGCGGTAAGTGGACGCATTGCTGTGCATTACCGAG

ATEPS-AIS

CGTTTCCACCTGCAGCAGTGAACGGCAGCGGTAAGTGGACGCATTGCTGTGCATTACCGAG

ATEPS-I<sub>177</sub>

CGTTTCCACCTGCAGCAGTGAACGGCAGCGGTAAGTGGACGCATTGCTGTGCATTACCGAG

ATEPS-VS

CGTTTCCACCTGCAGCAGTGAACGGCAGCGGTAAGTGGACGCATTGCTACTCCGCATTACCGAG

ATEPS-LS

CGTTTCCACCTGCAGCAGTGAACGGCAGCGGTAAGTGGACGCATTGCTACTCCGCATTACCGAG

ATEPS-AV

CGTTTCCACCTGCAGCAGTGAACGGCAGCGGTAAGTGGACGCATTGCTACTCCGCATTACCGAG

ATEPS-AL

CGTTTCCACCTGCAGCAGTGAACGGCAGCGGTAAGTGGACGCATTGCTACTCCGCATTACCGAG

FIG. 5



**FIG. 6**

**Arabidopsis clones**

**Bacillus**

L E

**AS**

L E

**WT**

L E

**Salmonella**

L E



**FIG. 7**