Network Basics

Wang Xiaolin

School of CIS SWFU

June 27, 2011

∞ wx672ster@gmail.com

☎ 13577067397

What's A Computer Network?

http://en.wikipedia.org/wiki/Computer_network

The History of Internet

1836: Telegraph

1858-1866: Transatlantic cable

1876: Telephone

1957: USSR launches Sputnik

1962-1968: Packet-switching networks developed

1969: Birth of Internet

1971: People communicate over a network

1977: E-mail takes off, Internet becomes a reality

1982: TCP/IP defines future communication1987: Commercialisation of Internet Born

1993: The WWW Revolution truly begins

1996: Microsoft enters

- RFC2235 Hobbes' Internet Timeline(v8.2)
- Internet History Timeline

- connection method: wired, wireless...
- topology
- scale
- network architecture: c/s, p2p...

Connection method

Wired Technologies:

Wireless Technologies:

PAN, LAN, CAN, WAN, MAN ...

Topology

Network Architecture

Distributed
Clients

Basic Hardware Components

What Computer Networks For?

- Resources sharing
- communicating
- more ...

What's The Internet?

- The network of networks.
- ► Tech view: TCP/IP
- ► App view: Google

What's TCP/IP?

A set of communication protocols designed for the Internet.

what's a protocol? a rule, a treaty, an agreement ...

TCP/IP Protocol Stack

Every networked computer has it inside.

7	Application	
6	Presentation	Application
5	Session	
4	Transport	Transport
3	Network	Internet
2	Data Link	Network
1	Physical	Interface
	OSI Reference Model	TCP/IP

TCP/IP Overview

Basic Structure

Figure: Basic TCP/IP Network Node

Questions we're going to answer:

- 1. Where will an incoming Ethernet frame go? ARP module or IP module?
- 2. Where will an incoming IP packet go? UDP module or TCP module?
- 3. Where will an incoming transport message (UDP datagram, TCP segment) go? TELNET or FTP or ...?

The Name Of A Unit Of Data

- Application Message
- TCP Segment , UDP Datagram
- ► IP packet (Fig. 5)
- Ethernet frame (Fig. 2)

Ethernet

- 1. Frame format?
- 2. Address format?
- 3. Broadcast address?
- 4. CSMA/CD? (Please explain)

Ethernet

Ethernet Version II Frame

Figure: Ethernet Version II Frame Format

ARP

ARP Looking up the ARP table to find the destination MAC address.

Example ARP table

IP address	Ethernet address
223.1.2.1	08-00-39-00-2F-C3
223.1.2.3	08-00-5A-21-A7-22
223.1.2.4	08-00-10-99-AC-54

ARP

Where does the ARP table come from?

Example ARP Request

Sender IP Address	223.1.2.1
Sender Enet Address	08-00-39-00-2F-C3
Target IP Address	223.1.2.2
Target Enet Address	FF-FF-FF-FF

Example ARP Response

Sender IP Address	223.1.2.2
Sender Enet Address	08-00-28-00-38-A9
Target IP Address	223.1.2.1
Target Enet Address	08-00-39-00-2F-C3

ARP

Where does the ARP table come from?

The updated table

IP address	Ethernet address
223.1.2.1	08-00-39-00-2F-C3
223.1.2.2	08-00-28-00-38-A9
223.1.2.3	08-00-5A-21-A7-22
223.1.2.4	08-00-10-99-AC-54

IP Router

```
network applications
         |TCP|
                   |UDP|
         ----
       | ARP |
                      | ARP |
       ----
          | ENET |
                 |ENET|
          ---@-- ---@--
    -----|----|
                  Ethernet Cable 2
-----
 Ethernet Cable 1
```

Figure: Router

IPRouting

Routing Find a route in the route table.

IP
Direct Routing—IP is overhead

Addresses in an Ethernet frame for an IP packet from A to B

address	source	destination
IP header	Α	В
Ethernet header	Α	В

IP Indirect Routing

Figure: Three IP Networks; One Internet

Computer D has a TCP/IP protocol stack similar to Figure 3.

IP Indirect Routing

Addresses in an Ethernet frame for an IP packet from A to E (before D)

address	source	destination
IP header	Α	Е
Ethernet header	Α	D

Addresses in an Ethernet frame for an IP packet from A to E (after D)

address	source	destination
IP header	Α	Е
Ethernet header	D	Е

IP Module Routing Rules

- For an outgoing IP packet, entering IP from an upper layer, IP must decide whether to send the IP packet directly or indirectly, and IP must choose a lower network interface. These choices are made by consulting the route table.
- For an incoming IP packet, entering IP from a lower interface, IP must decide whether to forward the IP packet or pass it to an upper layer. If the IP packet is being forwarded, it is treated as an outgoing IP packet.
- 3. When an incoming IP packet arrives it is never forwarded back out through the same network interface.

IP Address

Address Formats

High	Format	Class	Decimal
Order			Address
Bits			Range
0	7 bits of net,	а	1 🛮 126
	24 bits of host		
10	14 bits of net,	b	128 🛮 191
	16 bits of host		
110	21 bits of net,	С	192 🛮 223
	8 bits of host		
111	escape to extended addressing mode		

IP

Special IP Addresses

- A value of zero in the network field means this network. (source only)
- A value of zero in the host field means network address.
- 127.x.x.x are loopback address.
- 255.255.255.255 is boardcast address.
- Private address:
 - ▶ 10.x.x.x
 - ► 172.16.x.x~172.31.x.x
 - ▶ 192.168.x.x
- CIDR—Classless Inter-Domain Routing—An IP addressing scheme that replaces the older system based on classes A, B and C.

IP Names

People refer to computers by names, not numbers.

/etc/hosts

127.0.0.1 localhost 202.203.132.242 cs2.swfc.edu.cn cs2

/etc/networks

localnet 202.203.132.192

IP Route Table

Example IP Route Table

```
      wx672@cisd-ftp: "$ route

      Kernel IP routing table

      Destination
      Gateway
      Genmask
      Flags
      Metric
      Ref
      Use
      Iface

      localnet
      *
      255.255.255.192
      U
      0
      0
      0
      0
      eth0

      192.168.128.0
      *
      255.255.252.0
      U
      0
      0
      0
      eth0

      default
      202.203.132.254
      0.00.0
      UG
      0
      0
      0
      eth0
```

^{&#}x27;man route' for detailed meaning of each field.

IP

Direct Routing Details

The route table inside alpha (simplified)

network	flag	router	interface
development	direct		1

Alpha is sending an IP packet to beta...Please describe.

IP

Indirect Routing Details

```
223.1.4.1
                     223.1.3.1
 223.1.2.1
                     223.1.2.4
                                         223.1.3.2
                                         _____
                                         |epsilon|
  | alpha |
                     | delta |
Ethernet 1
                               Ethernet 2
IP network "Development"
                               IP network "accounting"
           223.1.2
                                           223.1.3
                               -----
                               l iota l
                                     1 223.1.4.2
                       --0-----
                           Ethernet 3
                           IP network "factory"
                                       223.1.4
```

(For protocol stack inside delta, see Figure 3)

IP
Indirect Routing Details

The route table inside alpha

network	flag	router	interface
223.1.2	direct		1
223.1.3	indirect	223.1.2.4	1
223.1.4	indirect	223.1.2.4	1

The route table inside delta

network	flag	router	interface
223.1.2	direct		1
223.1.3	direct		3
223.1.4	direct		2

IP Indirect Scenario

Alpha is sending an IP packet to epsilon...Please describe.

IP Managing The Routes

- Manually maintained by administrator
- ICMP can report some routing problems
- For larger networks, routing protocols are used.

IP Packet

Figure: IP Packet Format

Networking Devices

Application		
Presentation		Application
Session		
Transport		Transport
Network	Routers	Network
Data Link	Bridges/Switches	Network
Physical	Repeters/Hubs	Interface

Physical Layer Networking Devices

Repeater connects network segments at the physical layer.

Physical Layer Networking Devices

Repeater connects network segments at the physical layer.

Hub a multi-port repeater

Physical Layer Networking Devices

Repeater connects network segments at the physical layer.

Hub a multi-port repeater

- simple, cheap
- Repeaters/Hubs do NOT isolate collision domains.
- ▶ 100m maximum

Link Layer Networking Devices

Bridge connects multiple network segments at the data link layer (layer 2)

Switch a multi-port bridge

Transparent bridging

Uses a forwarding database to send frames across network segments

- Learning
- Flooding
- Forwarding
- Filtering
- Aging

Network Layer Networking Devices

Router connects two or more logical subnets at the network layer (layer 3)

Routing is to find a route in the route table.(page 22)

Bridging			
	L2	L3	
	MAC addr.(local)	IP addr.(global)	
	intranet	internet	
	Forwarding DB	9	
	relearn, flooding	more efficient	

- to put multiple segments into one bridged network, or
- to divide it into different networks interconnected by routers

The Logo of The Internet

What pops up in your mind if I say "Internet"?

Google Philosophy

Ten things Google has found to be true

- 1. Focus on the user and all else will follow.
- 2. It's best to do one thing really, really well.
- 3. Fast is better than slow.
- 4. Democracy on the web works.
- 5. You don't need to be at your desk to need an answer.
- 6. You can make money without doing evil.
- 7. There's always more information out there.
- 8. The need for information crosses all borders.
- 9. You can be serious without a suit.
- 10. Great just isn't good enough.

Google Philosophy

Software Principles

- 1. INSTALLATION We believe software should not trick you into installing it.
- 2. UPFRONT DISCLOSURE When an application is installed or enabled, it should inform you of its principal and significant functions.
- 3. SIMPLE REMOVAL It should be easy for you to figure out how to disable or delete an application.
- CLEAR BEHAVIOR Applications that affect or change your user experience should make clear they are the reason for those changes.
- SNOOPING If an application collects or transmits your personal information such as your address, you should know.
- 6. KEEPING GOOD COMPANY Application providers should not allow their products to be bundled with applications that do not meet these guidelines.

Google Philosophy Google User Experience

- 1. Focus on people their lives, their work, their dreams.
- 2. Every millisecond counts.
- 3. Simplicity is powerful.
- 4. Engage beginners and attract experts.
- 5. Dare to innovate.
- 6. Design for the world.
- 7. Plan for today's and tomorrow's business.
- 8. Delight the eye without distracting the mind.
- 9. Be worthy of people's trust.
- 10. Add a human touch.

We do not allow pop-up ads of any kind on our site.

Google Philosophy Security

- Google Security
- Product Safety

Google Products

a lot more...

Viruses, Worms, and Trojan Horses

- A computer virus is a computer program that can copy itself and infect a computer without the permission or knowledge of the owner.
- A computer worm is a self-replicating computer program. It uses a network to send copies of itself to other nodes (computers on the network) and it may do so without any user intervention. Unlike a virus, it does not need to attach itself to an existing program.
- A Trojan horse, or trojan for short, is a term used to describe malware that appears, to the user, to perform a desirable function but, in fact, facilitates unauthorized access to the user's computer system. Trojan horses are not self-replicating which distinguishes them from viruses and worms.

Malware, Adware, and Spyware

- Malware, short for malicious software, is software designed to infiltrate or damage a computer system without the owner's informed consent. Malware includes computer viruses, worms, trojan horses, most rootkits, spyware, dishonest adware, crimeware ...
 - Adware or advertising-supported software is any software package which automatically plays, displays, or downloads advertisements to a computer after the software is installed on it or while the application is being used. Some types of adware are also spyware and can be classified as privacy-invasive software.
- Spyware is a type of malware that is installed on computers and that collects information about users without their knowledge.

Choose The Right Tool To Do The Right Thing

Safe Surfing Advice

Take care of your identity and privacy

- Avoid identity theft by using an up to date web browser and blocking bogus emails with a spam filter
- Always use strong passwords
- Don't give away too much personal information on blogs and social networking sites

Safe Surfing Advice

Protect Your PC

- Get anti-virus software, anti-spyware software and a firewall
- Keep your computer up to date
- Block spam emails
- Use an up to date web browser
- Make regular backups
- Encrypt your wireless network

Safe Surfing Advice

Avoid online rip-offs

- When you're shopping online, look for clear signs that you're buying from a reputable company
- On an online auction site, learn how it works and learn to pick good sellers
- Use safe ways to pay, such as PayPal or credit and debit cards
- Use your common sense to avoid scams if it sounds too good to be true, it probably is

Recommended Websites

- ▶ Google
- Wikipedia
- Delicious
- ► MIT Open Courseware
- ► Librivox

References

- RFC1180 TCP/IP tutorial
- RFC1122 Requirements for Internet Hosts Communication Layers
- RFC 1123 Requirements for Internet Hosts Application and Support
- RFC791 Internet Protocol
- RFC2235 Hobbes' Internet Timeline
- Wikipedia Computer Network
- Wikipedia Computer Virus
- Google Corporate Information