I used to be a banker, but then I lost interest.

Simple interest

FORMULA

- Simple Interest:
- SI = P R R N

100 Where,

P= Principal Amount (Rupees)

R= Rate of Interest (per cent per annum)

(p.c.p.a)

N= No. of period (Years)

SI= Simple Interest (Rupees)

Que1. A person borrows \$50000 for 5 years. What is the rate of simple interest charged if the person had to pay \$66000 ?

Que2. After how many years would a sum doubles itself at 10% rate of simple interest ?

Que3. At a certain rate of simple interest a sum becomes three times in 15 years . In how many years will the sum become 9 times ?

Que4. A certain sum of money amounts to 7/4 times of itself in 3 years at simple interest. Find the rate percent per annum?

Que5. If \$460 amounts to \$640 in 6 years at simple interest, what will it amounts to in 2 years at the same rate ?

Que6. A certain sum was put at certain rate at SI for 3 years. Had it been put at 2% higher rate , it would have fetched \$360 more. Find the sum ?

Simple Interest

- In simple interest, interest for all years is same.
- 2. SI is smaller than CI

3. Formula is

4. Interest is on Principal amount only.

Compound Interest

- In compound interest, interest for all years is different.
- 2. CI is larger than SI

Amount =
$$P\left(1 + \frac{R}{100}\right)^n$$

3. Formula is $Amount = P \left(1 + \frac{R}{100}\right)^{n}$ 4. Interest is on previous interest as well as the principal amount.

Compound Interest

Que7. A bank charges a rate of 10% compounded annually . What is the total amount to be paid on a loan of \$36000 for 2 years?

Explanation

Compound Interest

Note: Amount and compound interest increases at the same rate every year which is equal to Rate (R).

Que8. If the ratio of CI in the 7th and 8th year is 10:11, then find the rate of interest being offered ?

Que9. If the rate of interest is 12.5%, then find the ratio of CI earned in 24^{th} to 25^{th} year ?

Que10. If the rate of interest is 15%, then find the ratio of the total CI earned in the first 2 years to total SI earned in the first two years, if the Principal kept is same?

Que11. A sum triples in 5 years at CI. Find in how many years the sum becomes 9 times of itself?

Compounding Annually, Semi Annually, Quarterly

Que12. If a bank offers two schemes i.) Semi annual compounding at 40% per annum. ii.) Quarterly compounding at 40% per annum. Which of the two is a better scheme for depositors?

INDICES

Rules of Indices

For $a \neq 0, b \neq 0$

Rule	Example
$a^x \times a^y = a^{x+y}$	$a^3 \times a^2 = a^{3+2} = a^5$
$a^x \div a^y = a^{x-y}$	$a^6 \div a^2 = a^{6-2} = a^4$
$\left(a^{x}\right)^{y}=a^{xy}$	$\left(a^2\right)^3 = a^{2\times 3} = a^6$
$a^{0} = 1$	$a^{0} = 1$
$a^{-x} = \frac{1}{a^x}$	$a^{-5} = \frac{1}{a^5}$
$a^{\frac{x}{y}} = \sqrt[y]{a^x} = \left(\sqrt[y]{a}\right)^x$	$a^{\frac{3}{5}} = \sqrt[5]{a^3} = \left(\sqrt[5]{a}\right)^3$

Que.

3⁶⁰

2¹⁰⁰

Que.
$$\sqrt{20} + \sqrt{125} = \sqrt{x}$$
. Find x.

Que.

Quantity A Quantity B
$$(1/2)^{y}$$

$$(1/4)^{y}$$

Que. Given
$$12^{x} + 12^{x+1} = 3^{x} + 3^{x+1} + 3^{x+2}$$

Quantity A

Quantity B

	Simple and Compound Interest Date Page Date
Quegg	P=50000\$ Time = 5 years A = 66000\$
	A = P + D = 66000 $D = 16000$
	J = PRN 100
	16000 = 50000x RX5
	$R = 16000 \frac{32}{2500}$
	R = 16-41/1
Que 52	$A = 2P = P + \Gamma$ $SO T = P$
	I - PARAN
	$R = P_X \otimes X 10 \times N$ 100
	N=10years
Que 13	A = 3P = P+2 $2 = 2P$ $3um = A = 9P = P+2$
	$D = PRN$ $100 \qquad 2 = 8P$
	2f = FRNS $R = 200$
San Francisco	

Que; G I = PRN

 $I_{1} = PRB$ $I_{2} = P(R+2) \times 3$ I_{0}

 $I_2 - I_1 = 360$

6P = 360

P=GOVDE

Que: 2) A = P[1+ R]

 $A = 36000 \left[\frac{14}{109} \right]^2$

A = 36000 [11]2

A = 36000 × 1.21

A= 43580B

Due: 8 (I increases every year by rate (R)

It in 7th year CI = 102 then in 8th year CI-11x

Y. Increase in $CI = \frac{2}{10x} \times 100 = [70\%]$

