)	
	Math 340 HW 1 -1
	Tony Liana
	39356993
	1) Three founding furties of Linear Programming:
	- Kantonaich
3	
5	- Von Neumann
5	- Dentzig
3	
3	see article attached
3	
)	2) Part Following linear programming problem in standard inequality four
)	
1	min x1 - 3x2
2	Subject to XI + XZ=Z
2	X1 ≥ 3
	X2 unconstigued
	\$ max -x1 +3x2 (min f = -max (-f))
	5.t. XI +XZ=Z (X=Q (X = Q 2 - X = a) (1 0) Y = a
	X1 23 (X2 Q (=) X-a 207
	$x \ge \text{unconstrained} \left(x = x^{+} - x^{-}, x^{+}, x^{-} \ge 0 \right)$
2	=> max -x, +3x2 replace max -(x1'-3)+3(x2'-x2=)
2	50 t. x1 t x2 = 7 x1 = x1 - 3 t x2 - x2 = 2
1	-X1-X2 \le -2 -(x1'-3) - (x2+-x2-) \le -2
2	10+ X1= X1'-3=0 X1'20 X1', X2+, X2- 30
	x2+, x2- =0
	max -x1'+3x2+-3x2+3 or max -x1'+3x2+3x2- ("maxf + const)
0	Grally -x1'-x2+x2-5-5
	St. X1' +X2+ - X2 = 50
1	-X1'-X2+ + X2 = -5
	xi', xet xc ≥0