WHAT IS CLAIMED IS:

A light-emitting device comprising:

a pair of electrodes formed on a substrate; and organic compound layers comprising a light-emitting layer provided in between the electrodes,

wherein at least one of the organic compound layers comprises a heterocyclic compound having at least two hetero atoms and a phosphores cent compound.

10

- 2. The light-emitting device according to claim 1, wherein the phosphorescent compound is an organic metal complex.
- The light-emitting device according to claim 2, wherein
 the organic metal complex is an ortho-metalated metal complex.
 - 4. The light-emitting device according to claim 1, wherein the heterocyclic compound is represented by formula (I):

20

wherein R represents a hydrogen atom or a substituent; X represents -O-, -S-, =N or =N-R³; R³ represents a hydrogen 25 atom, an aliphatic hydrocarbon group, an aryl group or a

10

heterocyclic group; and Orepresents an atomic group necessary for forming a heteroring together with N and X.

5. A polymer comprising a repeating unit represented 5 by formula (D-I):

$$\begin{array}{c}
\begin{pmatrix}
H \\
C \\
C
\end{pmatrix}
\\
\stackrel{\text{H2}}{\text{C}}
\\
\stackrel{\text{N}}{\text{C}}
\\
\stackrel{\text{N$$

wherein Ar^D represents an arylene group or a divalent heterocyclic group; R^{D1} and R^{D2} each independently represent a hydrogen atom or a substituent; n^D represents an integer of 0 to 3; and m^D represents an integer of 0 to 5.

The light-emitting device according to claim 1, wherein the heterocyclic compound is a polymer comprising a repeating unit represented by formula (D):

$$\begin{array}{c}
\begin{pmatrix}
H & H_2 \\
C & C
\end{pmatrix} \\
\begin{pmatrix}
Ar^D \\
N
\end{pmatrix} & M
\end{pmatrix} (R^{D2})_{m^D}$$

$$(R^{D1})_{n^D}$$

25

10

whereinAr^Drepresents an arylene group or a divalent heterocyclic group; R^{D1} and R^{D2} each independently represent a hydrogen atom or a substituent; n^D represents an integer of 0 to 3; m^D represents an integer of 0 to 5; and m' represents 0 or 1.

- 7. The light-emitting device according to claim 6, wherein the substituent is a group selected from the group consisting of an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an alkoxy group, an aryloxy group, an acyl group, a halogen atom, a cyano group, a heterocyclic group, and a silyl group.
- 8. A polymer comprising a repeating unit represented 15 by formula (E-I):

$$(R^{E1})_{nE}$$

$$(H H_2)$$

$$Ar^{E}$$

$$(R^{E2})_{mE}$$

$$(R^{E2})_{mE}$$

wherein Ar^E represents an arylene group or a divalent heterocyclic group; R^{E1} and R^{E2} each independently represent a hydrogen atom

10

or a substituent; n^E and m^E each independently represent an integer of 0 to 5; and n^\prime represents 0 or 1.

9. The light-emitting device according to claim 1, wherein the heterocyclic compound is a polymer comprising a repeating unit represented by formula (E):

$$(Ar^{E}) n'$$

$$(R^{E1})_{nE}$$

$$(R^{E2})_{mE}$$

$$(R^{E2})_{mE}$$

wherein Ar^E represents an arylene group or a divalent heterocyclic group; R^{E1} and R^{E2} each independently represent a hydrogen atom or a substituent; n^E and m^E each independently represent an integer of 0 to 5; and n' represents 0 or 1.

20 10. The light-emitting device according to claim 9, wherein the substituent is a group selected from the group consisting of an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an alkoxy group, an aryloxy group, an acyl group, a halogen atom, a cyano group, a heterocyclic group, 25 and a silyl group.

5 ·

12. The light-emitting device according to claim 1, wherein the organic compound layers comprise a polymer.

- 13. The light-emitting device according to claim 1,

 10 wherein the phosphorescent compound has a phosphorescence
 quantum yield at room temperature of at least 25%.
- 14. The light-emitting device according to claim 3, wherein the ortho-metalated metal complex contains 5 to 100 carbon atoms.
 - 15. The light-emitting device according to claim 3, wherein the ortho-metalated metal complex is a compound having a partial structure represented by formula (K-1):

20

$$Q_{k1}$$
 $N^{mm}M$
 $(K-1)$

wherein M represents a transition metal; Q_{k1} represents an atomic group necessary for forming a 5- or 6-membered aromatic ring;

and Q_{k2} represents an atomic group necessary for forming a 5- or 6-membered aromatic azole ring;

or tautomer of the compound.

5