

Optical Communications Lab

Experiment 6

Wolfgang Heni Sebastian Heunisch

Institute of Photonics and Quantum Electronics

Tutor: Jingshi Li

15. June 2011

1. Preparation

1.1 Design of an awesome resonator

1.2 Measuring the Resonator Parameters

To caracterize a resonator its power transmission in dependency of the frequency can easily be measured. By that measurement, the whidth of the resonance lines at full width half maximum (FWHM) δf and the free spectral range Δf can determined. (cf. figure ??). The quotient $F = \Delta f/\delta f$ is called Finesse. For the case of critical coupling F is given as:

$$F = \frac{\Delta f}{\delta f} = \frac{\pi \sqrt{1 - \kappa}}{\kappa} = \frac{\pi \exp\left(-\alpha/2L\right)}{1 - \exp\left(-\alpha/L\right)}$$
(1.1)

This can be rearranged to:

$$\kappa = 0.5 \pm \sqrt{0.25 + F^2/\pi^2} \tag{1.2}$$

and

$$\alpha = -\frac{\ln F}{L(\ln F + 2\ln \pi)} \tag{1.3}$$

respectively.

1.3 Over-Critical and Under-Critical coupling

2. Experiment