1 量子群

1.1 sl₂ 的表示

$$\diamondsuit$$
 $\mathfrak{sl}_2 = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a + d = 0 \}.$ টে $h = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \qquad e = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \qquad f = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}.$

所以 $\mathfrak{sl}_2 = \mathbb{C} \cdot f \oplus \mathbb{C} \cdot h \oplus \mathbb{C} \cdot e$.

$\boxed{[\downarrow,\to]}$	f	h	e	
f	0	2f	-h	
h	-2f	0	2e	
e	h	-2e	0	

记 $V=\mathbb{C}^2$ 是 \mathfrak{sl}_2 的自然表示. 记 $\mathbf{v}_1=\binom{1}{0},\mathbf{v}_2=\binom{0}{1}$ 是自然基

$\downarrow \cdot \rightarrow$	\mathbf{v}_2	\mathbf{v}_1
f	0	\mathbf{v}_2
\overline{h}	$-\mathbf{v}_2$	\mathbf{v}_1
\overline{e}	\mathbf{v}_1	0

$$-1$$
 v_2 v_1 v_1

对每个 $n \in \mathbb{Z}_{\geq 1}$, 我们都可以定义一个 \mathfrak{sl}_2 的不可约表示, 形式地, 对称代数的 n-1 次部分 $S^{n-1}V$.

$$\mathbf{v}_{2}^{1-n} \overset{e}{\underbrace{\hspace{1cm}}} \mathbf{v}_{2}^{3-n} \overset{e}{\underbrace{\hspace{1cm}}} \mathbf{v}_{2}^{n-2} \mathbf{v}_{1} \overset{e}{\underbrace{\hspace{1cm}}} \cdots \overset{e}{\underbrace{\hspace{1cm}}} \mathbf{v}_{1}^{n-3} \mathbf{v}_{2} \overset{e}{\underbrace{\hspace{1cm}}} \mathbf{v}_{1}^{n-1}$$

且 $\{S^{n-1}V: n \in \mathbb{Z}_{\geq 1}\}$ 给出 \mathfrak{sl}_2 的所有有限维不可约表示. 例如 S^0V 是平凡表示, $S^1V=V$. 特别地, \mathfrak{sl}_2 的有限维不可约表示的同构只由维数决定.

对于一个 \mathfrak{sl}_2 的表示 V, 记 $V_n=\{x\in V: hx=nx\}.$ 记特征

$$\chi(V) = \sum_{n \in \mathbb{Z}} \dim V_n \cdot e^{nx}.$$

那么

$$\begin{cases} \chi(V \oplus W) = \chi(V) + \chi(W), \\ \chi(V \otimes W) = \chi(V)\chi(W). \end{cases}$$

(回忆 h 在张量上的作用是 $h \otimes 1 + 1 \otimes h$). 根据上面的分解

$$\chi(S^{n-1}V) = e^{(1-n)x} + \dots + e^{(n-1)x} = \frac{e^{nx} - e^{-nx}}{e^x - e^{-x}}.$$

我们可以稍微将记号其拓展到 \mathfrak{gl}_2 上. 记 $\mathfrak{h} = \{\binom{x_1}{x_2}\}$ 为对角矩阵代数, 以及 $x_1, x_2 \in \mathfrak{h}^*$,

$$\begin{cases} x_1: & \binom{x_1}{x_2} \mapsto x_1 \\ x_2: & \binom{x_1}{x_2} \mapsto x_2 \end{cases}$$

对于 \mathfrak{gl}_2 的表示 V 以及 $\alpha \in \mathfrak{h}^*$ 记

$$V_{\alpha} = \{ x \in V : \forall h \in \mathfrak{h}, h \cdot x = \alpha(h) \cdot x \}.$$

特征

$$\chi(V) = \sum_{\alpha \in \mathfrak{h}^*} \dim V_\alpha \cdot e^\alpha.$$

作为 \mathfrak{gl}_2 的表示遗忘为 \mathfrak{sl}_2 的表示,相应的特征 $e^{x_1} \mapsto e^x$, $e^{x_2} \mapsto e^{-x}$. 这是因为 $x_1(^1_{-1}) = 1$, $x_2(^1_{-1}) = -1$.

例如上面的 $S^{n-1}V$ 不仅是 \mathfrak{sl}_2 的表示, 也是 \mathfrak{gl}_2 的表示, 其特征是

$$\chi(S^{n-1}V) = \frac{e^{nx_1} - e^{nx_2}}{e^{x_1} - e^{x_2}}$$

除此之外, gl₂ 独有的表示是 行列式表示 det

$$\mathbb{C} \xrightarrow{g} \mathbb{C} \qquad x \mapsto (\operatorname{tr} g) \cdot x.$$

对应的特征是

$$\chi(\det) = e^{x_1 + x_2} = e^{x_1} \cdot e^{x_2}.$$

 \det 作为 \mathfrak{sl}_2 的表示是平凡的.

我们可以用分拆 $a \ge b$ 来记最高权 $ax_1 + bx_2$ 的表示, 近以

$$V = \square, \qquad S^2V = \square, \qquad S^3V = \square$$

如果遗忘到 \mathfrak{sl}_2 上, 那么 $x_1 + x_2 = 0$, 即 $ax_1 + bx_2 = (a-1)x_1 + (b-1)x_2$

下面我们来讨论重数公式,即计算 \mathfrak{sl}_2 的两个不可约分解的张量如何分解. 如果我们只关心分解的重数这个并不困难,只需要计算特征公式. 例如 S^4V 和 S^5V ,

$S^4(V)^{S^5(V)}$	-5	-3	-1	1	3	5
-4	-9	-7	-5	-3	-1	1
-2	-7	-5	-3	-1	1	3
0	-5	-3	-1	1	3	5
2	-3	-1	1	3	5	7
4	-1	1	3	5	7	9

这些"权"是如何组合成一些不可约分解的直和的呢? 只需要沿着右上那条边扒开,即

这被称为Clebsch-Gordan 公式. 这是最简单版本的Littlewood-Richardson 系数的计算.

1.2 \mathfrak{sl}_n 的表示

回忆 \mathfrak{sl}_n 中, Cartan 子代数

$$\mathfrak{h} = \{ \operatorname{diag}(x_1, \dots, x_n) : x_1 + \dots + x_n = 0 \}$$

将 $x_1, ..., x_n \in \mathfrak{h}^*$ 视作坐标. 单根取作 $\{\alpha_i = x_i - x_{i+1} : i = 1, ..., n-1\}$. 那么 \mathfrak{sl}_2 -triple 对应

$$\begin{array}{ll} h_i &= \mathrm{diag} \left(\dots 0, \binom{i \ i+1}{-1}, 0 \dots \right) \\ e_i &= \mathrm{diag} \left(\dots 0, \binom{i \ 1}{0}, 0 \dots \right) = E_{i,i+1} \\ f_i &= \mathrm{diag} \left(\dots 0, \binom{i \ 1}{0}, 0 \dots \right) = E_{i+1,i} \end{array}$$

回忆其的自然表示 $V=\mathbb{C}^n$. 记 $\mathbf{v}_1,\ldots,\mathbf{v}_n$ 为自然基. 那么

$$\mathbb{C}\mathbf{v}_i = V_{x_i} = \{v \in V : \operatorname{diag}(x_1, \dots, x_n)v = x_i v\}.$$

其作用由下表给出

	 \mathbf{v}_{i-1}	\mathbf{v}_i	\mathbf{v}_{i+1}	\mathbf{v}_{i+2}	
e_i	 0	0	\mathbf{v}_i	0	
f_i	 0	\mathbf{v}_{i+1}	0	0	

考虑 $V^{\otimes N}$, 此时

$$\mathfrak{gl}_n$$
 $\overset{\curvearrowright}{$ $\overset{}{\sim}$ $V^{\otimes N}$ $\overset{\curvearrowleft}{\sim}$ $\overset{\hookrightarrow}{\sim}$ $\overset{\hookrightarrow$

对于 N 的一个分拆 $\lambda = \lambda_1 \ge \lambda_2 \ge \cdots$, 并填入 1 到 N.

取 Young symmetriser $b_{\lambda} = c_{\lambda} r_{\lambda}$, 其中 c_{λ} 是列交错和, r_{λ} 是行和. 记

$$V_{\lambda} = V^{\otimes N} b_{\lambda}$$

把 $x_1 \otimes \cdots \otimes x_N$ 按照填入的数按顺序记入 Young 表, 并且将 \mathbf{v}_i 在 Young 图中改写为 i.

$$r_{\lambda} = \sum_{\substack{\sigma \in \mathfrak{S}_{\{1,2,3,4\}} \times \mathfrak{S}_{\{5,6,7\}} \times \mathfrak{S}_{\{8\}} \\ c_{\lambda} = \sum_{\substack{\sigma \in \mathfrak{S}_{\{1,5,8\}} \times \mathfrak{S}_{\{2,6\}} \times \mathfrak{S}_{\{3,7\}} \times \mathfrak{S}_{\{4\}}}} (-1)^{\sigma} \sigma.$$

$$x_1 \otimes x_2 \otimes x_3 \otimes x_4 \\ \otimes \otimes \otimes \otimes \\ x_1 \otimes \cdots \otimes x_8 = \begin{cases} x_1 \otimes x_2 \otimes x_3 \otimes x_4 \\ \otimes \otimes \otimes \\ x_5 \otimes x_6 \otimes x_7 \\ \otimes \\ x_8 \end{cases}$$

令 M 是一个 Young 表对应的单项式. 注意到:

• 当列中有重复元素时, $M \cdot b_{\lambda} = 0$.

[因为列是交错和]

• (非零时) 其权为 $\phi_1 x_1 + \cdots + \phi_n x_n$, 其中 ϕ_i 是 Young 表中 i 的使用次数.

回忆 x 在张量积上的作用是逐项作用再相加.

记 M_0 是第 i 行全部填 i 的 Young 表对应的单项式. 注意到:

• 第 i 行全部填 i 时, 记为 M_0 , 那么 $M_0 \cdot b_{\lambda} \neq 0$.

考虑 M 在 $M \cdot b_{\lambda}$ 前的系数.

• 任何一个 M, 都可以作用数次 $\{E_{ij}\}$ 进入 $\mathbb{C}M_0$. 且如果列元素不同, 那么可以作用数次 $\{E_{ij}\}$ 进入 $\mathbb{C}^{\times}M_0$. 看下面的例子.

之后的步骤如下

- 从上面两点说明 V_{λ} 中含有一个 \mathfrak{sl}_n 的一个最高权为 $\lambda_1 x_1 + \ldots + \lambda_n x$ 的不可约表示.
- 证明列严格递增且行单调递增 (半标准 Young 表) 的 Young 表构成一组基.
- 此时再利用 Weyl 特征公式 (即 Schur 函数) 说明这个表示必定是整个 V_{λ} .

上述过程还可以用 Schur-Weyl 对偶来说明.

习题 1. 证明列严格递增且行单调递增 (半标准 Young 表) 的 Young 表构成一组基. [提示: 首先他们线性无关,说明每个半标准 Young 图都被一串 $E_{i < j}$ 提到 M_0 ,且作用在比其小 (某个序下)Young 图上得 0. 再说明张成整个表示,我们说明任何一个 Young 表对应的单项式都可以. 首先可以假设列严格递增; 找最先 (某个序下) 出现的的行递减. 考

是他们的交错和. 这是任何列内的置换 σ 都一定存在一个两个 "标出位置"位置出现在同一行. 因此行内变换含有一个 $\sigma^{-1}G\sigma$ 的对换, 因此 $M\cdot g\cdot b_{\lambda}=0$. 展开 Mg 归纳.] 习题 $\mathbf{2}$ (Howe 对偶). 考虑

$$\operatorname{GL}_n \overset{\curvearrowleft}{\not\succeq} \operatorname{M}_{n,k} \overset{\curvearrowleft}{\not\sqsubset} \operatorname{GL}_k.$$

记 $M_{n,k}$ 多项式函数为 R,作为 GL_n 和 GL_k 的表示,R 应该如何分解? [提示: 这个表示的特征是 $\prod_{i,j} \frac{1}{1-x_iy_j}$,根据 Cauchy 恒等式,其分解是 $\bigoplus V_\lambda \otimes V_\lambda$.]

注意 1 类似地, Littlewood 恒等式和余 Cauchy 恒等式也可以有类似的表示版本, 即"范畴化".

参考文献

• Goodman and Wallach. Symmetry, Representations, and Invariants.

1.3 Kashiwara 晶体基

上一节我们虽然说明

任何一个 M, 都可以作用数次 $\{E_{ij}\}$ 进入 $\mathbb{C}M_0$.

但是我们没法确定前面的系数.

以后见之明,量子群告诉我们

即 $2 = (1+q)|_{q=1}$. 换句话说 Lie 代数作为 q=1 的特殊情况, 把 Young 图上某种 "分次"结构隐藏掉了. Kashiwara 的想法是取 q=0.

记 $\mathbb{I} = \{1, \ldots, n-1\}$, 权格 $\Lambda = \mathbb{Z}x_1 \oplus \cdots \oplus \mathbb{Z}x_n/(x_1 + \ldots + x_n)$, fundamental weight $\omega_i = x_1 + \ldots + x_i$.

我们定义 Kashiwara 晶体基 是 \mathcal{B} 伴着下列映射

作用
$$e_i, f_i: \mathcal{B} \to \mathcal{B} \cup \{0\}$$

尺度 $\epsilon_i, \varphi_i: \mathcal{B} \to \mathbb{Z} \cup \{0\}$
权 $\operatorname{wt}: \mathcal{B} \to \Lambda$

我们要求

$$e_i(x) = y \iff f_i(y) = x.$$

且此时
$$\begin{cases} \epsilon_i(y) = \epsilon_i(x) - 1 \\ \varphi_i(y) = \varphi_i(x) + 1 \\ \mathrm{wt}(y) = \mathrm{wt}(x) + \alpha_i. \end{cases}$$
 还要求

$$\varphi_i(x) - \epsilon_i(x) = \langle h_i, \operatorname{wt}(x) \rangle$$
.

注意 1 这里的 e_i , f_i 是 Kashiwara operator 和 Lie 代数中的 e_i 和 f_i 不一样,虽然有联系,但是这里仅仅不妨理解为一个记号.

[注意 2] 实际上不如说 Kashiwara 晶体基是定义了一个带了一些结构的图 (晶体图). 为了画出这个图, 我们可以只标记 f_i , 且可以略去 $f_i(x)=0$ 的那些. 下图中出现的情况. 都有

$$\epsilon_i(x) = \max\{k : e_i^k x \neq 0\}$$

$$\varphi_i(x) = \max\{k : f_i^k x \neq 0\}$$

例如, 仿照 \mathfrak{sl}_n 的表示, 定义一个 Young 表的权是 $\ell_1 x_1 + \cdots + \ell_n x_n$, 其中 ℓ_i 是 i 使用的次数.

下面是一些例子

$$\mathbb{I} = \{1\} \qquad \boxed{1 \ | \ 1 \ | \ 1} \xrightarrow{1} \boxed{1 \ | \ 1} \boxed{2} \xrightarrow{1} \boxed{1 \ | \ 2} \xrightarrow{2} \boxed{2} \boxed{2}$$

$$\mathbb{I} = \{1, 2, 3\} \qquad \boxed{1} \xrightarrow{1} \boxed{2} \xrightarrow{2} \boxed{3} \xrightarrow{3} \boxed{4}$$

Kashiwara 晶体基的一个优点是在张量积下非常好. 对于两个晶体基 \mathcal{B}_1 和 \mathcal{B}_2 . 那么可以定义二者的张量积 $\operatorname{wt}(x \otimes y) = \operatorname{wt}(x) + \operatorname{wt}(y)$ 以及

$$f_i(x \otimes y) = \begin{cases} f_i(x) \otimes y & \varphi_i(y) \leq \epsilon_i(x) \\ x \otimes f_i(y) & \varphi_i(y) > \epsilon_i(x) \end{cases}$$

$$e_i(x \otimes y) = \begin{cases} e_i(x) \otimes y & \varphi_i(y) < \epsilon_i(x) \\ x \otimes e_i(y) & \varphi_i(y) \ge \epsilon_i(x) \end{cases}$$
$$\varphi_i(x \otimes y) = \max\{\varphi_i(x), \varphi_j(y) + \langle h_i, \operatorname{wt}(x) \rangle\}$$
$$\epsilon_i(x \otimes y) = \max\{\epsilon_i(x), \epsilon_j(y) - \langle h_i, \operatorname{wt}(x) \rangle\}$$

这样定义是有动机的, 这是经典的 Clebsch-Gordan 公式

$x \otimes y$	y	1111 -	\rightarrow 1112 $-$	\rightarrow 112121 $-$	\rightarrow 222
\overline{x}	$\epsilon(x)^{\varphi(y)}$	3	2	1	0
	0	111111	$\begin{array}{c} \boxed{1} \boxed{1} \boxed{1} \boxed{1} \\ \rightarrow & \otimes \\ \boxed{1} \boxed{1} \boxed{2} \end{array}$	$ \begin{array}{c c} \hline 111111\\ & \otimes \\ \hline 11212 \end{array} $	111111 → ⊗ 21212
	1	111112 ⊗ —	$ \begin{array}{c} 111112\\ \rightarrow & \otimes \\ 1112 \end{array} $	$ \begin{array}{ccc} 111112 \\ \rightarrow & \otimes \\ 11212 \\ & & \end{array} $	111112
11122	2	111212 \otimes $ 1111$	111212 → ⊗ 11112 	↓ 111212 ⊗ 11212	↓ 11122 ⊗ 2122
1222	3	1121212 ⊗ 11111	↓ 1121212 ⊗ 111121	$ \downarrow 1121212 $ \otimes 112121	↓ 1 2 2 2 ⊗ 2 2 2
2 2 2 2	4	↓	↓ 2 2 2 2 ⊗ 1 1 2	$\downarrow \\ 2 2 2 2 \\ \otimes \\ 1 2 2$	$ \downarrow 2 2 2 2 $ \otimes $2 2 2$

例如

$x \otimes y$	y	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
\overline{x}	$\epsilon(x)^{\varphi(y)}$	100 010 001 000
1	0 0 0	$\boxed{1 \otimes 1 \xrightarrow{1} 1 \otimes 2 \xrightarrow{2} 1 \otimes 3 \xrightarrow{3} 1 \otimes 4}$
1		$\downarrow 1 \qquad \downarrow 1 \qquad \downarrow 1$
2	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	$2 \otimes 1 \qquad 2 \otimes 2 \xrightarrow{2} 2 \otimes 3 \xrightarrow{3} 2 \otimes 4$
2		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
3	0 1 0	$3 \otimes 1 \xrightarrow{1} 3 \otimes 2 \qquad 3 \otimes 3 \xrightarrow{3} 3 \otimes 4$
3 🗼		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
4	0 0 1	$ \boxed{ 4 \otimes 1 \xrightarrow{1} 4 \otimes 2 \xrightarrow{2} 4 \otimes 3 } \qquad 4 \otimes 4 $

由此出发能够得到经典的 Littlewood–Richardson rule. 具体来说, 考虑自然表示 V_{\square} ,

$$\boxed{1} \xrightarrow{1} \cdots \xrightarrow{n-1} \boxed{n}.$$

对每一个 fundamental weight $\omega_i = x_1 + \cdots + x_N$ 对应的基本表示 V_i 可以嵌入 $V_{\square}^{\otimes N}$. 对应连通分支的晶体图是 $i_1 \otimes \cdots \otimes i_N$ 使得 $i_1 < \cdots < i_N$. 我们将其记

为 \vdots . 一般地,假如把任何一个权 λ 写成 ω_i 的和按照 i_N

 $\omega_1 > \omega_2 > \cdots > \omega_{n-1}$ 降序

$$\lambda = \omega_{n-1} + \dots + \omega_{n-2} + \dots$$

可以把对应的表示嵌入到对应

$$V_{n-1} \otimes V_{n-1} \otimes \cdots \otimes V_{n-2} \otimes \cdots$$

中. 此时记为

对应的 Crystal graph 的连通分支恰好对应半标准 Young 表.

参考文献

- Bump, Schilling. Crystal Bases: Representations And Combinatorics
- Nakashima. Crystal base and a generalization of the Littlewood-Richardson rule for the classical Lie algebras.

2 范畴化

2.1 Temperley-Lieb 代数

下面我们关注一些映射. 我们用 \mathfrak{sl}_2 的自然表示 $V=\mathbb{C}^2$. 我们定义

$$V \otimes V$$

$$\epsilon \downarrow \qquad$$
诱导自反对称形
$$\begin{cases} B(\mathbf{v}_1, \mathbf{v}_1) = B(\mathbf{v}_2, \mathbf{v}_2) = 0, \\ B(\mathbf{v}_1, \mathbf{v}_2) = 1, \\ B(\mathbf{v}_2, \mathbf{v}_1) = -1 \end{cases}$$

这满足

$$\forall g \in \mathfrak{sl}_2, \quad B(gx, y) + B(x, gy) = 0.$$

说明 ϵ 是一个 \mathfrak{sl}_2 表示之间的同态.

我们定义

这满足

$$\forall g \in \mathfrak{sl}_2, \quad g \cdot \eta(1) = 0.$$

说明 η 是一个 \mathfrak{sl}_2 表示之间的同态.

紧接着, 我们记

$$\eta \overset{V \otimes V}{\underset{\mathbb{C}}{\uparrow}} = \ \smile \ , \qquad \epsilon \overset{\mathbb{C}}{\underset{V \otimes V}{\uparrow}} = \ \bigcap \ , \qquad \mathrm{id} \overset{V}{\underset{V}{\uparrow}} = \ \big| \ .$$

例如

使得

$$x \mapsto (\mathbf{v}_1 \otimes \mathbf{v}_2 - \mathbf{v}_2 \otimes \mathbf{v}_1) \otimes x$$

$$\mapsto (\mathbf{v}_1 \otimes \mathbf{v}_2 - \mathbf{v}_2 \otimes \mathbf{v}_1) \otimes (\mathbf{v}_1 B(\mathbf{v}_2, x) - \mathbf{v}_2 B(\mathbf{v}_1, x))$$

这些图有如下运算律

注意到, 通过上面的配合 B,

$$V \cong V^*$$
 (作为 SL_2 的表示)

而注意到

$$\operatorname{Hom}(V^{\otimes k}, V^{\otimes h}) = (V^*)^{\otimes k} \otimes V^{\otimes h} \cong V^{\otimes (k+h)}.$$

所以

$$\operatorname{Hom}_{\operatorname{SL}_2}(V^{\otimes k}, V^{\otimes h}) = (V^{\otimes (k+h)})^{\operatorname{SL}_2}$$

所以问题变成找 $V^{\otimes n}$ 上面的 SL_2 -线性不变量, 即

$$\{f: V^{\otimes n} \to \mathbb{C}: \forall g \in \mathrm{SL}_2, f(gx_1, \dots, gx_n) = f(x_1, \dots, x_n)\}.$$

这只有在 n=2k 是偶数时才非 0, 因为 $\binom{-1}{-1} \in SL_2$. 此时等于计算

$$\{f: V^{\otimes k} \to V^{\otimes k}: \forall g \in \operatorname{SL}_2, f(gx) = gf(x)\} = \operatorname{End}_{\operatorname{SL}_2}(V^{\otimes k}).$$

根据 Schur–Weyl 对偶, 这是由 \mathfrak{S}_k 在 $\operatorname{End}(V^{\otimes k})$ 中的像 生成的.

所以 $V^{\otimes n}$ 上面的 SL_2 -线性不变量实际上由形如下图 的置换生成

但是交叉可以解开, 泡泡可以消去, 所以只需要由形如下 图的不交弦图生成

另一方面, $V^{\otimes n}$ 的 SL_2 -线性不变量是

$$\operatorname{Hom}_{\operatorname{SL}_2}(V^{\otimes n}, \mathbb{C}) = (V^{\otimes n})^{\operatorname{SL}_2} = (V^{\otimes n})^{\mathfrak{sl}_2}$$

其维数等于 (n=2k)

$$\chi(V^{\otimes n})(x-x^{-1})$$
的 x^1 系数 = $\binom{2k}{k} - \binom{2k}{k-1}$

这也是不交弦图的数目, 因此这样的不交弦图构成一组基.

特别地, $V^{\otimes k}$ 到 $V^{\otimes h}$ 的 \mathfrak{sl}_2 同态也以形如下图的不交

弦图

构成一组基. 他们关于图的拼接构成一个范畴, 称 为 Temperley-Lieb 范畴.

注意 1 $\operatorname{End}_{\operatorname{SL}_2}(V^{\otimes n})$ 被称为 Temperley-Lieb 代数. 注意 $V^{\otimes n}$ 含有一个到 $S^n(V)$ 的投射, 这个由 Jones-Wenzl Projectors 给出.

注意 1 如果改成量子群, 那么

会得到扭结理论中的 Kauffman bracket(可以用来定义 Jone 多项式).

习题 1. 证明不交弦图的数目也是 $\binom{2k}{k} - \binom{2k}{k-1}$. 习题 2. 证明作为 GL_2 的表示, V 和 V^* 不同构, 且 $V^{\otimes n}$ 在 $n \ge 1$ 时没有 GL_2 不变量. [提示: 计算特征, $\chi(V)$ = $e^{x_1} + e^{x_2}$, $\chi(V^*) = e^{-x_1} + e^{-x_2}$. $\chi(V^{\otimes n}) = (e^{x_1} + e^{x_2})^n$ $\mbox{\%}$ 有常数项.]

经典不变量理论

对于复线性空间 V, 记一般线性群 GL(V), 考虑

$$I_{\mathrm{GL}(V)}(k,h) = \mathrm{Hom}_{\mathrm{GL}(V)}(V^{\otimes k}, V^{\otimes h})$$

即 $V^{\otimes k} \longrightarrow V^{\otimes h}$ 的 GL(V) 不变量. 结论是

$$I_{\mathrm{GL}(V)}(k,h) = \begin{cases} 0 & k \neq h \\ \mathrm{im}[\mathbb{C}[\mathfrak{S}_k] \to \mathrm{End}(V^{\otimes k})] & k = h. \end{cases}$$

即 I(k,k) 由 \mathfrak{S}_k 在 $V^{\otimes k}$ 上的置换生成. 画在图上是由

生成的.

对于内积线性空间 V, 记正交群 O(V), 记

$$I_{\mathcal{O}(V)}(k,h) = \operatorname{Hom}_{\mathcal{O}(V)}(V^{\otimes k}, V^{\otimes h})$$

即 $V^{\otimes k} \longrightarrow V^{\otimes h}$ 的 O(V) 不变量. 此时作为 O(V) 模 $V \cong V^*$, 所以 I(k,h) = I(k+1,h-1), 而

$$I_{\mathrm{SL}(V)}(k,h) = \begin{cases} 0 & k \neq h \bmod 2 \\ \text{Brauer 代数的像} & k \equiv h \bmod 2 \end{cases}$$

即 I(k,h) 由 \times , \sim , \sim 生成的.

请看Brauer 代数/范畴.

对于辛空间 V, Sp(V) 亦然.

对于复线性空间 V, 记特殊线性群 SL(V), 记

$$I_{\mathrm{SL}(V)}(k,h) = \mathrm{Hom}_{\mathrm{SL}(V)}(V^{\otimes k}, V^{\otimes h})$$

即 $Y^{\otimes k} \longrightarrow V^{\otimes h}$ 的 $\mathrm{SL}(V)$ 不变量. 一般来说, 当 $\dim V \geq$ $=q+q^{-1}$ =q $+q^{-1}$ \Rightarrow V \Rightarrow V Y \Rightarrow V \Rightarrow 列式 $V^{\otimes n} \to \mathbb{C}$ 和其对偶 $\mathbb{C} \to V^{\otimes n}$. 结论是 I(k,h) 由 × 和行列式及其对偶生成的(这个我不太确定).

> 对于 SO(V), 不变量比 O(V) 多了一个行列式及其对 偶 (这我确定是对的).

参考文献

- Fulton and Harris. Representation theory.
- Goodman and Wallach. Symmetry, Representations, and Invariants.

$2.2 \quad \mathfrak{sl}_n$ - \boxtimes

注意到 Temperley-Lieb 代数是对 \mathfrak{sl}_2 的 Schur-Weyl 对偶的精细化, 我们要问这是否能推广到 \mathfrak{sl}_n 的版本?

历史上是先有 \mathfrak{sl}_3 . 考虑自然表示 V, 此时

$$V = \square, \qquad V^* = \square \cong \Lambda^2 V.$$

我们记

$$\uparrow = V, \qquad \downarrow = V^*.$$

那么有下面的映射

以此类推可以定义

他们满足关系

例如

结论是二者之间的所有 513 同态恰好是

 $\bigoplus \mathbb{Z} \cdot [$ 不交的蜘网图] $\bigg/$ 上述三则关系

一般地, \mathfrak{sl}_n 的自然表示 V, 我们记

$$\Lambda^k V = \bigcup_k \qquad \Lambda^k V^* = \bigcup_{-k} \qquad \mathbb{C} = \bigcup_{0 \le k} \mathbb{C}$$

张量则顺次排列,并且我们约定↑为正,记例如

$$\uparrow \downarrow \uparrow \uparrow \uparrow = \Lambda^2 V \otimes \Lambda^3 V^* \otimes V \otimes V.$$

注意到作为 \mathfrak{sl}_n 的表示

$$\uparrow = \underset{-k}{\downarrow} = \bigwedge^{k} V \cong \bigwedge^{n-k} V^{*} = \underset{n-k}{\downarrow}$$

特别地,

$$\uparrow = \downarrow_{n} = \Lambda^{n} V =$$
平凡表示.

但是同构有一个符号的选择 $(-1)^{k(N-k)}$ 的差别.

记

还可以定义

以此类推, 最终会得到任意方向的 人 和 人.

结论是二者之间的所有 \mathfrak{sl}_n 同态恰好是

$$\bigoplus \mathbb{Z} \cdot [$$
不交的蜘网图] $\Big/$ 一堆关系

注意 1 实际上这还会反过来给出 Beilinson, Lusztig 和MacPherson 的量子群 $\dot{U}_q(\mathfrak{sl}_n)$.

参考文献

- Cautis, Kamnitzer, Morrison. Webs and quantum skew Howe duality
- • Tubbenhauer. \mathfrak{gl}_n -webs, categorification and Khovanov-Rozansky homologies
- Mackaay. The $\mathfrak{sl}_n\text{-web}$ algebras and dual canonical bases