Homework 4

March 8, 2022 José Carlos Muñoz

1

The original 1D data set is

 $[2 \ 1 \ 3 \ 4 \ 7]$

The filter we are using is

 $\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$

Using the convolution the math looks like this

$$2*1+1*0+3*1=5$$

 $1*1+3*0+4*1=5$
 $3*1+4*0+7*1=10$

Therefore, the final matrix will be

 $[5 \ 5 \ 10]$

4

The size of the convolution outout can be calculate with the equation [(W - K + 2 * P)/S + 1]. Where W is the dimension of the incoming tensor. K is the filter size, p is the padding and S is the size of the stride. For these CNN the padding is 1 and the stride is 1. The new tensor size will also have the depth to be same as how many filters therei in the The MaxPooling for all of these CNN. cuts the dimension in half but keeps the depth the same range.

Using what we know we can now determine the dimensions of the Tensor as it pases through eacho fite different Convoluted Neural Networks.

For the First CNN

Layer	output dimensions of Layer
L_1	224x224x64
M	112x112x64
L_2	112x112x128
M	56x56x128
L_3, L_4	56x56x256
M	28x28x256
L_5, L_6	28x28x512
M	14x14x512
L_7, L_8	14x14x512
M	7x7x512
L_9, L_{10}	1x1x4096
L_{11}	1x1x1000
	1

For the Second CNN

Layer	output dimensions of Layer
L_1	224x224x64
LRN	224x224x64
M	112x112x64
L_2	112x112x128
M	56x56x128
L_3, L_4	56x56x256
M	28x28x256
L_5, L_6	28x28x512
M	14x14x512
L_7, L_8	14x14x512
M	7x7x512
L_9, L_{10}	1x1x4096
L_{11}	1x1x1000

For the Third CNN

Layer	output dimensions of Layer
L_1, L_2	224x224x64
M	112x112x64
L_3, L_4	112x112x128
M	56x56x128
L_5, L_6	56x56x256
M	28x28x256
L_7, L_8	28x28x512
M	14x14x512
L_9, L_{10}	14x14x512
M	7x7x512
L_{11}, L_{12}	1x1x4096
L_{13}	1x1x1000

For the Fourth CNN

Layer	output dimensions of Layer
L_1, L_2	224x224x64
M	112x112x64
L_3, L_4	112x112x128
M	56x56x128
L_5, L_6, l_7	56x56x256
M	28x28x256
L_8, L_9, L_{10}	28x28x512
M	14x14x512
L_{11}, L_{12}, L_{13}	14x14x512
M	7x7x512
L_{14}, L_{15}	1x1x4096
L_{16}	1x1x1000

For the Fifth CNN

Layer	output dimensions of Layer
L_1, L_2	224x224x64
M	112x112x64
L_3, L_4	112x112x128
M	56x56x128
L_5, L_6, l_7	56x56x256
M	28x28x256
L_8, L_9, L_{10}	28x28x512
M	14x14x512
L_{11}, L_{12}, L_{13}	14x14x512
M	7x7x512
L_{14}, L_{15}	1x1x4096
L_{16}	1x1x1000

For the Sixth CNN

Layer	output dimensions of Layer
L_1, L_2	224x224x64
M	112x112x64
L_3, L_4	112x112x128
M	56x56x128
L_5, L_6, L_7, L_8	56x56x256
M	28x28x256
$L_9, L_{10}, L_{11}, L_{12}$	28x28x512
M	14x14x512
$L_{13}, L_{14}, L_{15}, L_{16}$	14x14x512
M	7x7x512
L_{17}, L_{18}	1x1x4096
L_{19}	1x1x1000

7

The 7x7 matrix is

The 3x3 matrix

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$$

Using the convolution the math looks like this, only the first 3 columns of the first row of the new matrix will be calculated

$$4 = 6 * 1 + 3 * 1 + 4 * 1 + 4 * 0 + 7 * 0 + 4 * 0 + 7 * -1 + 0 * -1 + 2 * -1$$

$$3 = 3 * 1 + 4 * 1 + 4 * 1 + 7 * 0 + 4 * 0 + 0 * 0 + 0 * -1 + 2 * -1 + 3 * -1$$

$$4 = 4 * 1 + 4 * 1 + 5 * 1 + 4 * 0 + 0 * 0 + 4 * 0 + 2 * -1 + 3 * -1 + 4 * -1$$

The final convolution matrix is

$$\begin{bmatrix} 4 & 3 & 4 & -3 & -3 \\ 0 & -1 & 0 & 1 & -2 \\ -5 & -6 & 1 & -1 & 0 \\ 6 & 11 & 1 & -3 & 1 \\ 3 & 3 & 4 & 4 & 2 \end{bmatrix}$$