

REMARKS

The Examiner has indicated under Disposition of Claims that claims 1 - 44 are pending in the current application. However, claims 1 – 35 were cancelled upon filing the divisional application as noted in the Application Transmittal Letter (copy enclosed) dated March 31, 2004. A refund of fees charged for additional claims is hereby requested if applied to the divisional case. New claim 45 is added. Accordingly, claims 36 – 45 are presently pending in the application.

Specification

By way of the foregoing amendment, Applicant hereby provides priority data of the current application.

Objection to the Drawings

The drawings have been objected to as failing to illustrate “sub-bodies” (as disclosed in the specification at, for example, page 4, lines 1-8).

Applicant tenders a Replacement Drawing Sheet for FIG. 3, which labels a sub-body as “42”. This structure is disclosed in the specification and no structure has been added to the figure. No new matter has been added by the addition of this reference numeral.

Double Patenting

Claims 1-35 have been rejected under 35 U.S.C. § 101 as claiming the same invention of co-pending U.S. Patent Application No. 10/202,401. Please note that the Transmittal Letter accompanying the divisional patent filing dated March 31, 2004 requested the cancellation of original claims 1-35. So that there is no confusion, claims 1-35 are hereby cancelled, thus obviating the rejection.

Claim Rejections – 35 U.S.C. § 112

Claim 41 has been rejected under 35 U.S.C. § 112, first paragraph, as failing to comply with the enablement requirement, namely that the wafer sensor structure as claimed is not enabled. It is Applicant’s view that the wafer sensor structure would be well-known to someone skilled in the art and submit as evidence example sensors capable of optical position detection. Attached herein are two articles in this analogous field to demonstrate that one knowledgeable in the art can use the components disclosed in these articles to make and/or

IN THE DRAWINGS

The drawings have been objected to under 37 C.F.R. § 1.83(a). FIG. 3 has been corrected in compliance with 37 C.F.R. § 1.121(d). Applicant submits herewith Annotated Sheet Showing Changes and Replacement Sheet.

use the invention. The first article is an Omron sensor brochure which shows typical sensor assembly structures and applications. The second article is a SMC Pneumatics catalog showing a sensor structure attached to an actuator. Reconsideration and removal of the §112, first paragraph rejection is thus hereby respectfully requested.

Claim 40 has been rejected under 35 U.S.C. § 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter. Claim 40 is now amended to clarify the claim, specifying that sensing includes the “presence and position” of the wafer. Removal of the rejection is thus respectfully requested.

Claim 42 has been rejected under 35 U.S.C. § 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter regarding which wafers are sensed. Claim 42 is now amended to include the limitation wherein the peripheral zone of “each” wafer proximate the hand is optically sensed. Removal of the rejection in light of this clarification and amendment is respectfully requested.

Claim Rejections – 35 U.S.C. § 102

Claims 36 – 39 and 42 – 44 have been rejected under 35 U.S.C. § 102(b) as being anticipated by Cameron, et al. (WO 00/02803; hereinafter “Cameron”). Claims 37-39 and 42-44 depend directly or indirectly from claim 36. Because Cameron does not teach all of the elements as set forth in claim 36, and therefore in claims 37-39 and 42-44, Applicant respectfully disagree with the rejection.

Claim 36 recites *mechanically grasping a selected number of wafers by a corresponding number of blades....* In describing the disclosed robotic hand, Applicant expressly stated that “As used therein, ‘mechanically’ grasping refers to wafer engagement by other than by application of pneumatic force directly to a surface of a wafer.” (Patent Application, page 3, lines 6-8)

Cameron does not teach mechanically grasping of wafers step as set forth in claim 36. Instead, Cameron utilizes a vacuum wafer grasping mechanism wherein vacuum suction is used to secure the substrate to the paddle. (Cameron, page 5, lines 17-20, 26-28, 30-31, page 6, line 1) This type of pneumatic force is explicitly excluded from the definition of mechanically grasping as set forth in the present application.

More importantly, Applicants have determined that are two significant advantages to use mechanical grasping over vacuum grasping in wafer handling process. First, mechanical grasping introduces less contamination. The vacuum end-effector relies on the end-effector surface area in contact with the wafer to produce a lateral (parallel to wafer surface) friction

force. This contact area and the associated micro displacement (vibration, slippage) produce particles on the backside of the wafer. When wafers are processed in wet tanks (cleaning processes) the backside particles can migrate to the front side where the chips are located. These particles would cause failures and decrease manufacturing yields. On the other hand, edge grip end effectors have minimal contact area and thus minimal particles are produced. Based on our measurements, an order-of-magnitude analysis shows vacuum end effectors produce 10,000 particles and edge grip end effectors produce 10 particles per grip. Second, while edge grip end effectors have a known constant grip force based on the pneumatic force of the gripping actuator, vacuum end effectors grip (friction) force is less known or constant. The vacuum grip force is highly dependent on the surface roughness and the co-planarity of the end effector and wafer. The variability of the vacuum end effector grip force does not make the vacuum end effector a good candidate for multi-plane wafer motion. In addition, the vacuum end effector relies on the friction force between the end effector and wafer surface to produce a lateral (parallel to wafer surface) friction force. When the robot arm is accelerating in the horizontal plane with a horizontal wafer surface or when the robot arm is moving in the vertical plane with a vertical wafer surface, there are forces acting on the wafer may be greater than the lateral friction force, which could cause wafer slip and damage.

Since mechanical grasping is clearly distinguishable from vacuum grasping in the wafer handling process, and Cameron only teaches a vacuum wafer grasping mechanism, reconsideration and allowance of claims 36-39 and 42-44 are thus respectfully requested.

Claim Rejections – 35 U.S.C. § 103

Claims 40 – 41 have been rejected under 35 U.S.C. § 103(a) as being unpatentable over Cameron in view of Bacchi, et al. (U.S. Patent No. 6,275,748; hereinafter “Bacchi”). Applicants respectfully disagree with the rejection.

Claim 40 recites sensing the presence and position of wafer comprises detecting a displacement of a wafer contact pad when said wafer contact pad contacts a wafer peripheral zone. Claim 41 recites that the optical sensing of wafer step comprises optically detecting a displacement of the wafer contact pad when said wafer contact pad contacts a wafer peripheral zone. Examiner alleges that Cameron discloses position and presence sensors and Bacchi discloses the step of sensing the wafer pad displacement.

Upon careful review of the prior art, it is Applicants’ view that Cameron in view of Bacchi does not teach detection of wafer presence and position via wafer pad displacement as recited in claims 40-41.

The optical sensors disclosed in Bacchi are used to detect retracted, safe specimen loading/gripping and extended positions of the active contact point. (see, e.g., Bacchi, Col. 2, line 22-24) The active contact point is movable between a retracted wafer-loading position and an extended wafer-gripping position to urge the wafer against the distal rest pads so that the wafer is gripped only at its edge or within the exclusion zone to reduce contamination. (see, e.g., Bacchi, Col. 2, line 15-20). The active contact point disclosed in Bacchi does not perform wafer gripping functionality. Instead, Bacchi discloses that it is the proximal and distal rest pads that support and grip the wafer. (See, e.g., Bacchi, Col. 2, lines 10-15)

In contrast, the wafer contact pad recited in claims 40-41 is structured to serve the wafer grasping function. (Patent Application, page 3, lines 17-18, page 2, line 26-29)

Since the active contact point disclosed in Bacchi serves a distinct function from that of the wafer contact pad recited in claim 40 and 41, detection of the positions of the active contact point is not the same as the detection of wafer contact pad displacement. Thus, Bacchi does not disclose detection of wafer contact pad displacement by detecting the position of the active contact point.

Furthermore, Cameron does not disclose wafer sensors to detect position and presence of the wafers on the plurality of the end-effectors as recited in claim 38, and thus in the corresponding dependent claims 40-41. Cameron discloses position sensor to detect location of the wafer in the cassette station.

In neither Cameron, nor Bacchi, is there a suggestion to combine the optical detection of the active control points of Bacchi with wafer detection feature from Cameron. Furthermore, there is no suggestion to use optical sensors to detect wafer pad displacement in Bacchi. Care must be made when combining references.

The Federal Circuit has been consistent in reversing the PTO when a rejection is made on the basis of hindsight, that is when an Examiner rejects the application under 35 U.S.C. §103(a) grounds as obvious under a combination of two or more patents without any specific suggestion within the patents to combine the features. In re Rouffett, 47 USPQ2d 1453 (Fed. Cir. 1998), the Federal Circuit refused to uphold an obviousness rejection, even where skill in the art is high, absent the specific identification of principal, known to one of ordinary skill in the art that suggests the claimed combination.

The Federal Circuit reemphasized the care to be taken when combining prior art references in obviousness findings in Ecolochem v. Southern Cal. Edison, 56 USPQ2d 1065 (Fed. Cir. 2000), stating that such absence of evidence to combine prior art references “is defective as hindsight analysis.” The Federal Circuit held similarly in In re Kotzab, 55

USPQ2d 1313 (Fed. Cir. 2000), reversing the PTO and stating that, “[i]dentification of prior art statements that, in abstract, appear to suggest claimed limitation does not establish prima facie case of obviousness without finding as to specific understanding or principal within knowledge of skilled artisan that would have motivated one with no knowledge of the invention to make the combination in the manner claimed.”

Finally, the Federal Circuit has reaffirmed their view that the PTO used improper hindsight analysis to reject patent claims under §103(a) in the recent case of In re Lee, 277 F.3d 1338, 61 USPQ2d 1430 (Fed. Cir. 2002), stating that a specific suggestion in the prior art cited is required and not a simple citation to “common knowledge and common sense.” Lee includes a tour-de-force of case law directed to the issue of combining references including those as follows:

- “The factual inquiry whether to combine references must be thorough and searching. . . . It must be based on objective evidence of record. This precedent has been reinforced in myriad decisions, and cannot be dispensed with.” (Lee, 277 F.3d at 1343)
- “A showing of a suggestion, teaching, or motivation to combine the prior art references is an essential component of an obviousness holding.” (*quoting Brown & Williamson Tobacco Corp. v. Philip Morris, Inc.*, 229 F.3d 1120, 1124-25, 56 USPQ2d 1456, 1459 (Fed. Cir. 2000))
- “Our case law makes clear that the best defense against the subtle but powerful attraction of a hindsight-based obviousness analysis if rigorous application of the requirement for a showing of the teaching or motivation to combine prior art references.” (*quoting C.R. Bard, Inc. v. M3 Systems, Inc.*, 157 F.3d 1340, 1352, 48 USPQ2d 1225, 1232 (Fed. Cir. 1998))
- “There must be some motivation, suggestion, or teaching of the desirability of making the specific combination that was made by the applicant.” (*quoting In re Dance*, 160 F.3d 1339, 1343, 48 USPQ2d 1635, 1637 (Fed. Cir. 1998))
- “Teachings of references can be combined *only* if there is some suggestion or incentive to do so.” (*quoting In re Fine*, 837 F.2d 1071, 1075, 5 USPQ2d 1596, 1600 (Fed. Cir. 1988)) (emphasis in original)

The Patent Office has failed to display the rigor required by the Federal Circuit holdings in demonstrating a suggestion within the art that the cited prior art references should be combined.

CONCLUSION

For the foregoing reasons, reconsideration and allowance of claims 36-45 of the application as amended is solicited. The Examiner is encouraged to telephone the undersigned at (503) 222-3613 if it appears that an interview would be helpful in advancing the case.

Respectfully submitted,

MARGER JOHNSON & McCOLLOM, PC

Scott A. Schaffer
Reg. No. 38,610

MARGER JOHNSON & McCOLLOM, PC
210 SW Morrison Street, Suite 400
Portland, Oregon 97204
Telephone: 503-222-3613
Customer No. 20575

EE-SX77_ /EE-SX87_ Series Photomicrosensors

OMRON

AN EASILY INTEGRATED, MULTI-FACETED
AND POWERFUL SOLUTION

If you have resisted using photomicrosensors (optical switches) for counting, positioning, detection, motion sensing or switching applications, you have not tried one of our photomicrosensors. Only Omron, a recognized world leader in optical switch technology, can give you superior support (short lead times, extensive technical expertise, etc.) and access to the industry's broadest line of photomicrosensors. Our latest addition, the new EE-SX77_ /EE-SX87_ series photomicrosensors, are a cost-effective, easily integrated solution for various applications.

Quick and Easy Installation

One of the industry's smallest designs, making them ideal for space-constrained applications

Red LED indicator window that is visible from either side

Notched optical axis indicator

2 meter attached cable

Standard, 'L', and 'T' shapes for multiple mounting options

Direct connection to Omron's suite of industrial automation products (PLCs, digital panel meters, etc.)

Durability and Performance

Choice of NPN or PNP outputs

Amplified output that can drive relays or PLCs

5 mm slot width

High reliability and long life

IP60 rating

Aggressive competitive pricing

Omron's aggressive pricing program makes high technology affordable. The EE-SX77_ /EE-SX87_ series photomicrosensors' per piece pricing is extremely competitive and their value increases with the quantity ordered.

Complete Vendor Support

When you expect the best from your vendor, you get Omron, and that means high quality products and innovative solutions. We have some of the world's broadest lines of control components (photomicrosensors, relays, switches, etc.) and industrial automation products (PLCs, digital panel meters, etc.) giving us the resources to be flexible when solving applications.

Depending on your application needs, we can either supply a single critical part or an entire suite of interconnected products.

 Innovation
in the Solution Age

Specifications

Item	Transmissive (slotted) models							
Output configuration	Dark-ON	PNP	NPN	Light-ON	PNP	NPN	PNP	NPN
Output	NPN	EE-SX770	EE-SX770A	EE-SX770P	EE-SX770R	EE-SX870	EE-SX870A	EE-SX870P
Model	EE-SX771	EE-SX771A	EE-SX771P	EE-SX771R	EE-SX871	EE-SX871A	EE-SX871P	EE-SX871R
	EE-SX772	EE-SX772A	EE-SX772P	EE-SX772R	EE-SX872	EE-SX872A	EE-SX872P	EE-SX872R
Supply voltage	5 to 24 VDC ±10% ripple (p-p)	10% max						
Current consumption	NPN models: 35 mA max.							
	PNP models: 30 mA max.							
Slot width	5 mm							
Standard target object	Opaque: 2 × 0.8 mm min.							
Differential travel	0.025 mm							
Control output	NPN models: At 5 to 24 VDC: 100 mA load current (I_L) with a residual voltage of 0.8 V max. When driving TTL: 40 mA load current (I_L) with a residual voltage of 0.4 V max.							
	PNP models: At 5 to 24 VDC: 50 mA load current (I_L) with a residual voltage of 1.3 V max.							
Operation indicator (see note 1)	Red LED is ON when the object to be detected is not present							
Response frequency (see note 2)	1 kHz							
Light source	GaAs infrared LED with a peak light wavelength of 940 nm							
Protective circuit (see note 3)	Overcurrent protection (built-in circuit)							
Ambient illuminance	Sensing surface: 1,000 lux max. with fluorescent light							
Ambient temperature	Operating: -25°C to 55°C (-13°F to 131°F) Storage: -30°C to 80°C (-22°F to 176°F)							
Ambient humidity	Operating: 5% to 85% Storage: 5% to 95%							
Vibration resistance	Destruction: 20 to 2,000 Hz, 1.5-mm double amplitude for 2 hours each in X, Y, and Z directions							
Shock resistance	Destruction: 500 m/s ² (50G) three times each in X, Y, and Z directions							
Degree of protection	IEC60529 IP60							
Connection method (standard length)	Pre-wired (2 m)							
Casing material	PBT (polybutylene terephthalate)							
Cable material	PVC (polyvinyl chloride resin)							

- Note:
1. The operation indicator of models with suffix code (A) or (R) will turn ON when the light is interrupted.
 2. The response frequency is a value obtained when the EE-SX detects a rotating disc with holes in it, as shown to the right.
 3. Operates when the load current exceeds the rated value of 100 mA to inhibit a current flow exceeding 120 mA.

OMRON.

www.omron.com/oei

OMRON ELECTRONICS, INC.
Consumer & Commercial Division
Schaumburg, IL

OMRON CANADA, INC.
Scarborough, Ontario

24 Hour Control Fax
United States 847.843.1963
Canada 877.599.4264

©1999 OMRON ELECTRONICS, INC.

SB SX77SX87-1 6/99/10M

UNITED STATES REGIONAL SALES OFFICES AUTHORIZED DISTRIBUTOR:

800.55.OMRON or 847.843.7900

CANADA REGIONAL SALES OFFICE

Toronto 416.286.6465

MEXICO SALES OFFICE

Guadalajara 52.3.684.10.51

BRAZIL SALES OFFICE

Sao Paulo 55.11.5564.6488

ARGENTINA SALES OFFICE

Buenos Aires 54.11.4.787.1129

Air Cylinder: Standard Type Double Acting, Single Rod

Series CJ2

ø6, ø10, ø16

How to Order

Applicable Auto Switch Refer to page 6-16-1 for further information on auto switches.

Type	Special function	Electrical entry	Initiation	Wiring (Output)	Load voltage		Auto switch model		Lead wire length (m)	Pre-wire connector	Applicable load	
					DC	AC	Band mounting (ø6, ø10, ø16)	Rail mounting (ø10, ø16)				
Reed switch	—	Grommet	Yes	3-wire (NPN/Equivalent)	—	5 V	C76	A76H	● ● — — —	IC circuit	—	
				2-wire	—	200 V	A72	A72H	● ● — — —	—	Relay, PLC	
		Connector		2-wire	24 V	12 V	C73	A73H	● ● ● — —			
	With diagnostic output (2-color indication)	Grommet		3-wire (NPN)	—	—	C73C	A73C	● ● ● ● —			
				3-wire (PNP)	—	—	A79W	A79W	● ● — — —			
				2-wire	—	—	H7A1	F7NV	● ● ○ — ○	IC circuit	Relay, PLC	
Solid state switch	—	Grommet	Yes	3-wire (NPN)	5V 12V	—	H7A2	F7PV	● ● ○ — ○	IC circuit		
				3-wire (PNP)	—	—	H7B	F7BV	● ● ○ — ○	—		
		Connector		2-wire	12 V	—	H7C	J79C	— ● ● ● ● —	—		
	Diagnostic indication (2-color indication)	Grommet		3-wire (NPN)	5V 12V	—	H7NW	F7NWV	● ● ○ — ○	IC circuit		
				3-wire (PNP)	—	—	H7PW	F7PW	● ● ○ — ○	—		
				2-wire	12 V	—	H7BW	F7BWV	● ● ○ — ○	—		
	Water resistant (2-color indication)	Grommet		4-wire (NPN)	5V 12V	—	H7BA	F7BA	— ● ○ — ○	—		
				2-wire	—	—	H7BAV	F7BAV	— ● ○ — ○	—		
	With diagnostic output (2-color indication)	Grommet	—	4-wire (NPN)	—	—	H7NF	F79F	● ● ○ — ○	—		

- * Lead wire length symbols: 0.5 m Nil (Example) C73C
- 3 m L (Example) C73CL
- 5 m Z (Example) C73CZ
- None N (Example) C73CN

* Solid state switches marked with "O" are produced upon receipt of order.
** "D-A79W" cannot be mounted on bore size ø10 cylinder with air cushion.

- Since there are other applicable auto switches than listed, refer to page 6-3-13 for details.
- For details about auto switches with pre-wire connector, refer to page 6-16-60.

**Air Cylinder: Standard Type
Double Acting, Single Rod Series CJ2**

Specifications

Action	Double acting, Single rod	
Fluid	Air	
Proof pressure	1.05 MPa	
Maximum operating pressure	0.7 MPa	
Minimum operating pressure	ø6	0.12 MPa
	ø10, ø16	0.06 MPa
Ambient and fluid temperature	Without auto switch: -10 to 70°C (No freezing) With auto switch: -10 to 60°C (No freezing)	
Cushion	Rubber bumper/Air cushion	
Lubrication	Not required (Non-lube)	
Thread tolerance	JIS Class 2	
Stroke length tolerance	+1.0 0	
Piston speed	50 to 750 mm/s	
	ø6	0.012 J
Allowable kinetic energy	ø10	0.035 J
	ø16	0.090 J

CJ1

CJP

CJ2

CM2

CG1

MB

MB1

CA2

CS1

C76

C85

C95

CP95

NCM

NCA

D-

-X

20-

Data

JIS Symbol

Double acting,
Single rod

Standard Stroke

Bore size (mm)	Standard stroke
6	15, 30, 45, 60
10	15, 30, 45, 60, 75, 100, 125, 150
16	15, 30, 45, 60, 75, 100, 125, 150, 175, 200

* Intermediate strokes are available by the 1 mm interval with no stroke adjustment by spacer.

Minimum Stroke for Auto Switch Mounting

Auto switch mounting style	Auto switch model	No. of auto switches mounted	Minimum cylinder stroke (mm)	Auto switch mounting style	Auto switch model	No. of auto switches mounted	Minimum cylinder stroke (mm)
Band mounting style (ø6, ø10, ø16)	D-C7□ D-C80	3 (Same side)	90	Rail mounting style (ø10, ø16)	D-A7□	3	35
		3 (Different sides)	55		D-A80	2	10
		2 (Same side)	50		D-A73C	1	5
		2 (Different sides)	15		D-A80C		
	D-H7□ D-H7□W D-H7BAL D-H7NF	1	10		D-A7□H	3	45
		3 (Same side)	105		D-A80H	2	10
		3 (Different sides)	60			1	5
		2 (Same side)	60		D-A79W	3	40
		2 (Different sides)	15			2	15
		1	10			1	10
	D-C73C D-C80C D-H7C	3 (Same side)	105		D-F7□	3	45
		3 (Different sides)	65		D-J79	2	5
		2 (Same side)	65			1	5
		2 (Different sides)	15		D-F7□V	3	30
		1	10		D-J79C	2	5

Series CJ2

Proper Auto Switch Mounting Position (Detection at stroke end) and Its Mounting Height

Reed switch

<Band mounting style>

D-C7□/C80

D-C73C/C80C

Solid state switch

<Band mounting style>

D-H7□

D-H7□W

D-H7BAL

D-H7NF

D-H7C

<Rail mounting style>

D-A7□/A80

<Rail mounting style>

D-F7□/J79

D-F7□W/J79W

D-F79F/F7BAL

D-A7□H/A80H

D-F7□V/F7□WV
D-F7BAVL

D-A73C/A80C

D-J79C

D-A79W

Annotated Sheet Showing Changes

Fig. 3

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.