Frist for innlevering: tirsdag 3. mars kl 17.00

ØVING 5

Oppgåve 1 Krumning og stykkevis konstante potensial

I tidlegare oppgåver (øving 2 og 3) har vi sett at ein energieigenfunksjon, dvs ei løysing av den tidsuavhengige Schrödingerlikning, $\hat{H}\psi = E\psi$, eller

$$\psi'' = \frac{2m}{\hbar^2} [V(x) - E]\psi,$$

krummar mot aksen i klassisk tillatne område, og bort frå aksen i klassisk forbodne område. I område der V(x) = E, er bølgjefunksjonen lineær.

a) Vi skal nå sjå korleis dette fungerer for ein energieigenfunksjon med energi E når potensialet er **stykkevis konstant**:

Figuren viser eit potensial som er stykkevis konstant i områda $0 < x < x_1$, der $V = V_1$ og $x_1 < x < x_2$, der $V = V_2$. Vi går ut frå at dette systemet har ein <u>reell</u> energieigenfunksjon med energi E, slik at $V_1 < E < V_2$. Overtyd deg om at at bølgjefunksjonen i området $0 < x < x_1$ er på forma

$$\psi(x) = A\cos kx + B\sin kx = A'\cos(kx - \alpha), \qquad k = \sqrt{2m(E - V_1)/\hbar^2}.$$

Dette kallar vi **trigonometrisk form** og løysinga er sinusforma og krummar raskare mot aksen jo større differansen $E-V_1$ er. Samanlikn med løysingane for partikkel i boks som vi har gjennomgått på forelesning. Moralen er: Den kinetiske energien, $K=E-V_1$, avgjer bølgetalet og dermed kor mykje $\psi(x)$ krummar. Det omvendte gjeld og: Krumninga av $\psi(x)$ gjev informasjon om $E-V_1$.

b) Overtyd deg om at løysinga i området $x_1 < x < x_2$ er på forma

$$\psi(x) = Ce^{-\kappa x} + De^{\kappa x}, \qquad \kappa = \sqrt{2m(V_2 - E)/\hbar^2}$$
$$= C' \sinh \kappa x + D' \cosh \kappa x,$$

Dette kallar vi **hyperbolsk** form ¹. Bølgjefunksjonen krummar raskare bort frå aksen jo større $V_2 - E$ er (jf løysingane for endeleg potensialbrønn).

¹Symbolet κ står for den greske bokstaven kappa. I dette kurset bruker vi denne når vi har eit klassisk forbode område der E-V er ein negativ konstant. I klassisk tillatne område der E-V er ein positiv konstant bruker vi bølgjetalet k.

Løysinga i dette området kan skrivast på forma $\psi=2D''\sinh[\kappa(x-x_2)]$. Forklar kvifor. Hint: Skriv løysinga på forma $\psi(x)=C''e^{-\kappa(x-x_2)}+D''e^{\kappa(x-x_2)}$, eller bruk at $\sinh[\kappa(x-x_2)]$ og $\cosh[\kappa(x-x_2)]$ er to uavhengige løysingar av eigenverdilikninga for dette området akkurat som $e^{\pm\kappa x}$.

c) Vi tenker oss nå at $V(x) = V_3$, der V_3 er ein konstant, for $-\infty < x < x_3$. Her ligg x_3 ein stad til venstre for den delen av potensialet som er innteikna ovanfor. Studer tilfella (i) $E < V_3$, (ii) $E > V_3$ og (iii) $E = V_3$, og avgjer for kvart for tilfelle om den aktuelle eigenfunksjonen er kvadratisk integrerbar. Dersom eigenfunksjonen er kvadratisk integrerbar har vi det ein kan kallar ein lokalisert og difor **bunden** tilstand. Viss eigenfunksjonen ikkje er kvadratisk integrerbar beskriv den ein ikkje-lokalisert og dimed **ubunden** tilstand. Hint: Finn ut korleis kvadvatisk oppfører seg for kvadvatisk for kvadvatisk av dei tre tilfella. I tilfelle (iii) kan du sjå bort frå at kvadvatisk null for kvadvatisk for kvadvatisk av dei tre tilfella. I tilfelle (iii)

d)

Figuren viser grunntilstanden ψ_1 for potensialet vist i figuren nedanfor

Denne tilstanden har energien $E_1 \approx 0.67 V_0$. Kva er forma til ψ_1 i barriereområdet? Hint: ψ_1 er symmetrisk.

e) Figuren viser eit liknande potensial og to funksjonar, ψ_a og ψ_b .

Berre den eine av desse er ein energieigenfunksjon for dette potensialet. Studér krumninga til ψ_a og ψ_b avgjer kva for funksjon som energieigenfunksjon til potensialet. Kvifor er energien for denne tilstanden høgare enn barrierehøgda V_0 ? Kvifor er energien berre litt høgare enn V_0 ? Hint: Kva veg krummar funksjonen i barriereområdet, og krummar den mykje eller lite? Kvifor kan ikkje den andre funksjonen vere ein energieigentilstand? Hint: Undersøk om den krummar på ein fornuftig måte.

f)

På figuren ser du to energieigenfunksjonar for potensialet

$$V(x) = \begin{cases} V_0 & \text{for} & 0 < x < L, \\ \infty & \text{elles.} \end{cases}$$

Kva er bølgjelengdene λ , bølgetala k, og den kinetiske energien $E-V_0$ for dei to løysingane? (Partikkelen har masse m).

g) To partiklar med masse m beveger seg i kvart sitt potensial:

Her har ein valt lengdene a_1 og a_2 slik at grunntilstandsenergiane begge er lik V_0 :

$$E_1^{(i)} = E_1^{(ii)} = V_0.$$

Skissér dei to grunntilstandane $\psi_1^{(i)}$ og $\psi_1^{(ii)}$. Finn a_1 . Forklar kvifor a_2 må vere større enn a_1 , og finn forholdet a_2/a_1 , om du kan. Hint: I eit symmetrisk potensial er grunntilstanden symmetrisk.

Oppgåve 2 Eindimensjonal dobbelt-brønn

a) I denne oppgåva er potensialet av same type som ovanfor, men barrieren i midten er mykje høgare. Barriere-området blir da nokså "strengt forbode" klassisk fysikk og difor nokså "ugjennomtrengeleg" for tilstandane med lågast energi. Dette viser seg m.a ved at bølgjefunksjonane ψ_1 og ψ_2 for grunntilstanden og fyrste eksiterte tilstand for dette potensialet, begge er sterkt "undertrykt" i det forbodne barriereområdet. (Grunntilstanden er symmetrisk og fyrste eksiterte tilstand er antisymmetrisk). I dei "tillatne" områda (brønnane) vil løysingane likne på boksløysingar, som vist i figuren.

Forklar med utgangspunkt i krumninga til dei to ψ -ane kvifor dei to energiane E_1 og E_2 må vere nokså like i dette tilfellet, slik at $\Delta E \equiv E_2 - E_1$ blir liten samanlikna med E_1 og E_2 . Hint: Samanlikn bølgjelengdene og dermed bølgetala til dei sinusforma kurvene i dei klassisk tillatne områda.

Forklar også kvifor dei sinusforma funksjonane i dei klassisk tillatne områda må ha omtrent same amplitude. Hint: Tenk på at både ψ_1 og ψ_2 skal vere normerte. Merk at dette tyder ψ_1 og ψ_2 er omtrent like i høgre brønn, og omtrent motsett like i venstre brønn.

Forklar også kvifor dei (sterkt understrykte) løysingane i barriereområdet i midten må vere av typen $A \cosh[\kappa_1 x]$ og $B \sinh[\kappa_2 x]$ for ψ_1 og ψ_2 .

b) Tenk deg at vi preparerer systemet i tilstanden $\Psi(x,0)=\frac{1}{\sqrt{2}}\left[\psi_1(x)+\psi_2(x)\right]$ ved t=0. Løysinga av Schrödingerlikninga for t>0 blir då ifølgje tillegg 2

$$\Psi(x,t) = \frac{1}{\sqrt{2}} \left[\psi_1(x) e^{-iE_1 t/\hbar} + \psi_2(x) e^{-iE_2 t/\hbar} \right].$$

Argumentér for at partikkelen med stor sannsynlegheit er i brønnen til høgre ved t=0, og at den omtrent like sikkert er i brønnen til venstre ved t=T/2, der $T=2\pi\hbar/(E_2-E_1)$. Hint: If det som ble sagt om ψ_1 og ψ_2 ovanfor, og sjå på den relative fasen mellom dei to bidraga ovanfor, $\exp[-i(E_2-E_1)t/\hbar]$. Partikkelen kjem seg altså gjennom barrieren, sjøl om den er høg!

c) Frå formelen for $\Psi(x,t)$ ovanfor er det lett å sjå at den relative fasefaktoren mellom dei to ledda er lik -i ved t=T/4, og at sannsynlegheitstettheiten då blir $|\Psi(x,T/4)|^2=\frac{1}{2}(\psi_1^2(x)+\psi_2^2(x))$, som er symmetrisk fordelt mellom dei to brønnane. Tyder dette at partikkelen har "delt seg"?