LIMITS, CONTINUITY & DIFFERENTIABILITY

Some questions (Assertion-Reason type) are given below. Each question contains Statement - 1 (Assertion) and Statement - 2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct. So select the correct choice:

Choices are:

- (A) Statement – 1 is True, Statement – 2 is True; Statement – 2 is a correct explanation for Statement – 1.
- (B) **Statement – 1** is True, **Statement – 2** is True; **Statement – 2** is **NOT** a correct explanation for **Statement – 1**.
- (C) **Statement – 1** is True, **Statement – 2** is False.
- **Statement 1** is False, **Statement 2** is True. (D)
- Statement 1 is Paise, Statement 2 is the set of all points where the function $f(x) = \begin{cases} 0, & x = 0 \\ \frac{x}{1 + e^{1/x}}, & x \neq 0 \end{cases}$ is differentiable is $(-\infty, \infty)$. 43.

Statements-2: Lf'(0) = 1, Rf'(0) = 0 and f'(x) =
$$\frac{1 + e^{1/x} - x(e^{1/x} \times \frac{-1}{x^2})}{(1 + e^{1/x})^2}, \text{ which exists } \forall x \neq 0.$$

Statements-1: $f(x) = \begin{cases} 3 - x^2, & x > 2 \\ x^3 + 1, & x < 2 \end{cases}$ then f(x) is differentiable at x = 144.

Statements-2: A function y = f(x) is said to have a derivative if

$$\lim_{h \to 0^+} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0^-} \frac{f(x+h) - f(x)}{h}$$

Consider the function $f(x) = (|x| - |x - 1|)^2$ 45.

Statement – 1: f(x) is continuous everywhere but not differentiable at x = 0 and 1.

Statement – 2: $f'(0^{-}) = 0$, $f'(0^{+}) = -4$, $f'(1^{-}) = 4$, $f'(1^{+}) = 0$.

Statement – 1: $\lim_{x\to 0} \frac{e^{1/x}-1}{e^{1/x}+1}$ does not exist 46.

Statement – 2: L.H.L. = 1 and R.H.L. = -1

Statement-1: $\lim_{x\to 0} \cos^{-1}(\cos^2 x)$ does not exist 47.

Statement–2: $\csc^{-1}x$ is well defined for $|x| \ge 1$.

48. Let $f:[0,2] \rightarrow [0,2]$ be a continuous function

Statement–1: f(x) = x for at least one $0 \le x \le 2$

Statement–2: f(x) = -x for at least one $0 \le x \le 2$

49. Let h(x) = f(x) + g(x) and f'(a), g'(a) are finite and definite

Statement–1: h(x) is continuous at x = 9 and hence $h(x) = x^2 + 1 \cos x$ is continuous at x = 0**Statement–2:** h(x) is differentiable at x = a and hence $h(x) = x^2 + |\cos x|$ is differentiable at x = 0

50. : $f(x) = e^{|x|}$ is non differentiable at x = 0. Statement-1

: Left hand derivative of f(x) is -1 and right hand derivative of f(x) is 1. Statement-2

: $\lim [\cos x] = 0$, where [x] = G.I.F51. Statement-2

> : as $x \to 0$, cos x lies between 0 and 1. Statement-2

: $\lim_{x \to \infty} \sec^{-1} \left(\frac{x}{x+1} \right)$ does not exist. 52. Statement-1

> Statement-2 : sec⁻¹ t is defined for those t, whose modulus value is more than or equal to 1.

53. Suppose [\cdot] and $\{\cdot\}$ denotes the greatest integer function and fractional part function respectively. Let $f(x) = \{x\}$ $\sqrt{\{x\}}$.

Statement-1 : f is not differentiable at integrable points.

Statement-2 : f is not continuous at integral points.

: $\lim_{x\to 0} \frac{2^{1/x}}{1+2^{1/x}} = 1$. Statement-2 : $\lim_{x\to 0} \frac{\cos^{-1}(1-x)}{\sqrt{x}} = \sqrt{2}$. 54. Statement-1

Download FREE Study Package from www.TekoClasses.com&Learn on Video www.MathsBySuhag.com Phone :(0755) 32 00 000,98930 58881 WhatsApp 9009 260 559 PART 1 OF 1

- 55. Statement-1: The number of points of discontinuity of f(x) is all 0. Where $f(x) = \int_{0}^{x} t \sin\left(\frac{1}{t}\right)$.
 - **Statement–2** : The function $h(x) = \max \{-x, 1, x^2\} \ \forall \ b \ x \in \mathbb{R}$, is not differentiable at two values of x.
- 56. Statement-1: If p, q, r all are positive, then $\lim_{x\to\infty} \left(1+\frac{1}{p+qx}\right)^{r+sx}$ is $e^{s/q}$
 - **Statement-2**: $\lim_{x\to 0} (1+x)^{1/x} = e$.
- **57. Statement–1 :** For $f(x) = ||x^2| 4|x||$, the number of points of non differentiability is 3.
 - **Statement–2**: A continuous function is always differentiable
- 58. Statement-1: If $f(x) = x (1 \log x)$ then for 0 < a < c < b $(a - b \log c = b (1 - \log b) - a (1 - \log a)$
 - Statement-2: If f(x) is diff. (a, b) and cont. in [a, b] then for at least one a < c < b $f'(c) = \frac{f(b) f(a)}{b a}$
- 59. Statement 1: Let $\{x\}$ denotes the fractional part of x. Then $\lim_{x\to 0} \frac{\tan\{x\}}{\{x\}} = 1$
 - **Statement 2:** $\lim_{x\to 0} \frac{\tan x}{x} = 1$
- 60. Statement 1: $\int_{0}^{t} \sin x \, dx = 1 \cot Statement 2$: sinx is continuous in any closed interval [0, t]
- 61. Statement 1: $\lim_{x\to 0} \left[\frac{\sin x}{x} \right] = 0$ where [·] G.I.F. Statement 2: $\left[\lim_{x\to 0} \frac{\sin x}{x} \right] = 1$
- **62.** Statement 1: The function $f(x) = \frac{1}{x-4}$ is continuous at a point $x = a \ne 4$.
 - **Statement 2 :** For x = a, f(x) has a definite value and as $x \to a$, f(x) has a limit which is also equal to its definite value of $x = a \ne 4$.
- 63. Statements-1: $\lim_{x\to 0^+} x \sin \frac{1}{x} = 1$ Statements-2: $\lim_{y\to \infty} y \sin \frac{1}{y} = 1$
- **64.** Statements-1: $f(x) = \lim_{n \to \infty} (\sin x)^{2n}$, then the set of points of discontinuities of f is $\{(2n+1)\pi/2, n \in I\}$
 - **Statements-2:** Since $-1 < \sin x < 1$, as $n \to \infty$, $(\sin x)^{2n} \to 0$, $\sin x = \pm 1 \Rightarrow \pm (1)^{2n} \to 1$, $n \to \infty$.
- **65.** Statements-1: $f(x) = \lim_{n \to \infty} (\cos x)^{2n}$, then f is continuous everywhere in $(-\infty, \infty)$
 - **Statements-2:** $f(x) = \cos x$ is continuous everywhere i.e., in $(-\infty, \infty)$
- **66. Statements-1:** For the graph of the function y = f(x) the valid statement is

- f(x) is differentiable at x = 0
- **Statements-2:** Lf'(c) = R f'(c), we say that f'(c) exists and Lf'(c) = Rf'(c) = f'(c).
- 67. Statements-1: $\lim_{x\to 0} \left[\frac{\sin x}{x} \right] = 1$
 - Statements-2: $\lim_{x\to a} f(g(x)) = f(L)$ where $\lim_{x\to a} g(x) = L$. Also function 'f' must be continuous at L.
- **68. Statements-1:** $f(x) = max (1, x^2, x^3)$ is differentiable $\forall x \in R$ except x = -1, 1 **Statements-2:** Every continuous function is differentiable

69. Statements-1:
$$\lim_{x\to\infty}\frac{\sin(2x+2)}{x}=2$$

Statements-2: Since sinx has a range of [-1, 1]
$$\forall x \in \mathbb{R} \Rightarrow \lim_{x \to \infty} \frac{\sin x}{x} = 0$$

70. Statements-1:
$$f(x) = \begin{cases} \frac{|\sin x|}{x}, & x > 0\\ 1, & x = 0 \end{cases}$$
, is a continuous function at $x = 0$.
$$\left[-\frac{|\sin x|}{x}, & x < 0 \right]$$

Statements-2: If left hand limit = right hand limit & both the limits exists finitely then function can be made continuous.

- 71. **Statements-1:** f(x) = x|x| is differentiable at every point in its domain.
 - **Statements-2:** If f(x) is as a derivative at every point & g(x) has a derivative at every point in their domains, then h(x) = f(x).g(x) is differentiable at every point in its domain.
- 72. Statements-1: $x = \cos x$ for some $x \in (0, \pi/2)$
 - **Statements-2:** If f(x) is a continuous in an interval I and f(a) & f(b) are two values at a & b & c is any value in between f(a) & f(b), then there is some x in (a, b) where f(x) = c.
- 73. Statements-1: $f: R \to R$ and $f(x) = e^x e^{-x}$ the range of f(x) is R
 - **Statements-2:** If f(x) is a continuous function in [a, b] then f(x) will take all values in between f(a) and f(b).
- 74. Statements-1: If a < b < c < d then $(x a)(x c) \lambda(x b)(x d) = 0$ will have real for all $\lambda \in \mathbb{R}$.
 - **Statements-2:** If f(x) is a function $f(x_1)$ $f(x_2) < 0$ then f(x) = 0, for at least one $x \in (x_1, x_2)$.
- 75. Statements-1: $\lim_{x\to 0} \frac{1}{x^2} = \infty$
 - **Statements-2:** If $\lim_{x\to a} \frac{1}{x^2} = \infty$, then for every positive number G arbitrarily assign (however large) there exist a $\delta > 0$ such that for all $x \in (a \delta, a) \cup (a, a + \delta)$ f(x) a > 0.
- 76. Statements-1: The maximum and the minimum values of the function $f(x) = \frac{e^x + e^{-x}}{2}$, $-1 \le x \le 3$, exists.
 - Statements-2: If domain of a continuous function is in closed interval then its range is also in a closed interval.
- 77. **Statements-1:** For any function $y = f(x) \lim_{x \to a} f(x) = f(a)$
 - **Statements-2:** If f(x) is a continuous function at x = a then $\lim_{x \to a} f(x) = f(a)$
- 78. Statements-1: $\lim_{n\to\infty} \frac{(\lfloor \underline{n})^{1/x}}{x} = \frac{1}{e}$
 - Statements-2: If y = f(x) is continuous in (a, b) then $\lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{n} f\left(\frac{r}{n}\right) = \int_{0}^{b} f(x) dx$.
- **79. Statements-1:** If f is finitely derivable at c, then f is continuous at c.
 - **Statements-2:** If at x = c both LHD and RHD exist finitely but LHD \neq RHD then f(x) is continuous at x = c.
- 80. Statements-1: If f(x + y) = f(x) + f(y), then f is either differentiable everywhere or not differentiable everywhere
 - **Statements-2:** Any function is either differentiable everywhere or not differentiable everywhere.
- **81.** Statements-1: The function $f(x) = |x^3|$ is differentiable at x = 0
 - **Statements-2:** At x = 0 f'(x) = 0
- 82. Statements-1: When |x| < 1 $\lim_{n \to \infty} \frac{\log(x+2) x^{2n} \cos x}{x^{2n} + 1} = \log(x+2)$
 - **Statements-2:** For -1 < x < 1, as $n \to \infty$, $x^{2n} \to 0$.
- 83. Statements-1: $f(x) = \frac{1}{x [x]}$ is discontinuous for integral values of x. where [.] denotes greatest integer
 - function. **Statements-2:** For integral values of x, f(x) is undefined.

Download FREE Study Package from www.TekoClasses.com&Learn on Video www.MathsBySuhag.com Phone: (0755) 32 00 000,98930 58881 WhatsApp 9009 260 559 PART 1 OF 1

Statements-1: : $f(x) = x^n \sin\left(\frac{1}{x}\right)$ is differentiable for all real values of x ($n \ge 2$) 84.

Statements-2: for $n \ge 2$ right hand derivative = Left hand derivative (for all real values of x).

Statements-1: The function $f(x) = \begin{cases} \frac{e^{1/x} - 1}{e^{1/x} + 1}, & \text{when } x \neq 0 \\ e^{1/x} + 1, & \text{when } x \neq 0 \end{cases}$ is discontinuous at x = 0. 85.

Statements-2: f(0) = 0.

Statements-1: The function f(x) defined by $\begin{cases} x & \text{for } x < 1 \\ 2-x & \text{for } 1 \le x \le 2 \\ -2+3x-x^2 & \text{for } x > 2 \end{cases}$ is differentiable at x = 2. 86.

Statements-2: L.H.D. at x = 2 = R.H.D. at x = 2

Statements-1: $\lim_{x\to 0} \sec^{-1} \left| \frac{\sin x}{x} \right| = 0$ [.] denotes greatest integer function. 87.

Statements-2: $\lim_{x\to 0} \sec^{-1} \left[\frac{\tan x}{x} \right] = 0$ [.] denotes greatest integer function.

Statements-1: $f(x) = \begin{cases} 2x + 1 & x < 1 \\ x^2 + x + 1 & 1 \le x < 2 \text{ is continuous} \\ x^3 - 1 & x \ge 2 & \text{at } x = 1, 2 \end{cases}$ 88.

Statements-2: $f'(1^-) = 2 f'(1^+) = 3$, $f'(1^-) = 5 f'(2^+) = 6$

Statements-1: $\lim_{x \to 0} \frac{e^{1/x}}{x}$ does not exist 89.

- **Statements-2:** Right hand limit as $x \to 0$ does not exist **Statements-1:** $\lim_{x \to 0} (1+3x)^{1/x} = e^3$ **Statements-2:** since $\lim_{x \to 0} (1+x)^{1/x} = e$ 90.
- 91. **Statements-1:** sinx = 0 has at least one roots between $(-\pi/2, \pi/2)$ **Statements-2:** Since sinx is continuous in $[-\pi/2, \pi/2]$ and sin $(-\pi/2) = -1$, sin $(\pi/2) = 1$ i.e. sinx has opposite sign is at $x = -\pi/2$, $x = \pi/2$, by intermediate theorem
- **Statements-1:** Let $f(x) = \frac{e^{1/x} e^{-1/x}}{e^{1/x} + e^{-1/x}}, x \ne 0 = 0, x = 0$ then f(x) has a jump discontinuity at x = 0. 92.

Statements-2: Since $\lim_{x \to 0} f(x) = 1$

and $\lim_{x \to 0^+} f(x) = 1$

Statements-1: The set of all points where the function 93.

$$f(x) = \begin{cases} 0 & , x = 0 \\ \frac{x}{1 + e^{1/x}} & , x \neq 0 \end{cases}$$
 is differentiable $(-\infty, \infty) - \{0\}$

Statements-2: Lf'(0) = 1, Rf'(0) = 0 is

$$f'(x) = \frac{e^{1/x} + e^{1/x}}{(1 + e^{1/x})^2} \text{ . which exists } \forall x \neq 0$$

Statements-1: $f(x) = \frac{[x]}{x}$, $x \neq 0$, where [] denotes greatest integer function, then f(x) is differentiable at x = 194.

Statements-2: L f' (1) $\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{-}} \frac{[x]}{|x|} - 1$

Download FREE Study Package from www.TekoClasses.com&Learn on Video www.MathsBySuhag.com Phone: (0755) 32 00 000,98930 58881 WhatsApp 9009 260 559 PART 1 OF 1

$$= \lim_{x \to 1} \frac{0}{\frac{|x|}{|x-1|}} - 1 = \lim_{x \to 1^{-}} \frac{1}{x-1} = -\infty \qquad \therefore f'(1) \text{ does not exist.}$$

		<u>ANSWER KEY</u>				
43. D	44. D	45. A	46. C	47. A	48. A	49. C
50. A	51. A	52. A	53. C	54. B	55. B	56. A
57. A	58. A	59. D	60. A	61. B	62. A	63. D
64. A	65. D	66. D	67. D	68. C	69. D	70. B
71. C	72. A	73. A	74. C	75. A	76. A	77. D
78. A	79. A	80. C	81. A	82. A	83. A	84. A
85. B	86. A	87. D	88. A	89. A	90. A	91. A
92 A	93 A	94 Δ				

SOLUTION

- 43. Statement-2 is true. (D) Statement-1 is wrong
- Clearly $\cos^2 x < 1$ in the neighbourhood of the point $x = 0 \Rightarrow \csc^{-1}(\cos^2 x)$ is well defined at x = 0 but not in the 47. neightbourhood of the point $x = 0 \Rightarrow$ limit does not exist. Hence (A) is the correct option.
- 48. Clearly $0 \le f(0) \le 2$ and $0 \le f(2) \le 2$ As f(x) is continuous, f(x) attains all values between f(0) and f(2), and the graph will have no breaks. So graph will all the line y = x at are point x at least where $0 \le x \le 2$.
- Since f'(a) and g'(a) are finite and definite \Rightarrow h'(a) is also finite and definite 49. \Rightarrow h(x) is differentiable at x = 0
 - \Rightarrow h(x) is continuous at x = a.

50. (a)
$$e^{|x|} = \begin{cases} e^x, & x \ge 0 \\ e^{-x}, & x < 0 \end{cases}$$
 \therefore L.H.D = -1 R.H.D = 1.

- 51. (a) Clearly statement – I is true and statement – II is the correct explination of statement – I.
- Statement II is true and correct reasoning for statement I, because $\lim_{x\to\infty} \frac{x}{x+1} = 1$. 52.

Hence (a) is the correct answer.

53. Statement – II is false, as for any $n \in I$, f(n +) = n, f(n -) = n - 1 + 1 = n, f(n) = nHowever statement – I is true, as for any $n \in I$

$$f'(n+) = \lim_{h \to 0+} \frac{f\left(n+h\right) - f\left(n\right)}{h} = \lim_{h \to 0+} \frac{\sqrt{\left\{n+h\right\}}}{h} = \lim_{h \to 0+} \frac{1}{\sqrt{h}} = \infty. \qquad \text{Hence (c) is the correct answer.}$$

5

 $\lim_{x \to 0} \frac{2^{1/x}}{1 + 2^{1/x}} = \lim_{x \to 0} \frac{1}{1 + 2^{-1/x}} = 1$ 54. $\lim_{x \to 0} \frac{\cos^{-1}(1-x)}{\sqrt{x}} = \lim_{x \to 0^+} \frac{\theta}{\sqrt{1-\cos\theta}} \text{ (let, } \cos^{-1}(1-x) = \theta \Rightarrow 1-x = \cos\theta)$

$$\lim_{x \to 0^+} \frac{\theta}{\sqrt{2} \sin\left(\frac{\theta}{2}\right)} = \sqrt{2} .$$
 Hence (b) is the correct answer.

Download FREE Study Package from www.MathsBySuhag.com & Learn on Video www.MathsBySuhag.com Phone :(0755) 32 00 000,98930 58881 WhatsApp 9009 260 559 PART 1 OF 1

55.
$$f(x) = \int_{0}^{x} t \sin\left(\frac{1}{t}\right) dt$$

$$\therefore f'(x) = x \sin\left(\frac{1}{x}\right)$$

clearly, f'(x) is a finite number at all $x \in (0, \pi)$.

 \therefore f(x) is differentiable at all $x \in (0, \pi)$.

$$h(x) = \begin{cases} x^2; & x \le -1 \\ 1; & -1 \le x \le 1 \\ x^2; & x \ge 1 \end{cases}$$

from graph it is clear that h(x) is continuous at all x and it is not differentiable at x = -1, 1. Hence (b) is the correct answer.

56. (A) Required limit
$$\lim_{x \to \infty} \frac{1}{ep + qx} (r + dx)$$

 $e^{s/c}$

57. Graph of
$$f(x) = ||x^2 - 4|x||$$
 is

So no of points of non-diff. is 3.

Ans.: A

58. (A)
$$f'(c) = \frac{f(b) - f(a)}{b - a}$$
$$-\log c = \frac{b(1 - \log b) - a(1 - \log a)}{b - a} \Rightarrow (a - b) \log c = b(1 - \log b) - a(1 - \log a)$$

- 63. The **Statements-1:** is false sin as $x \to O^+$, the function $x \sin \frac{1}{x} = a$ qtyt. aproⁿ. zero) × (finite number between 0 &
 - 1). Thus $\lim_{x\to 0^+} x \sin \frac{1}{x} \to 0$.

The Statement-2 is true since it is equivalent to standard limit $\lim_{x\to 0}\frac{\sin x=1}{x}$

 \Rightarrow option (d) is correct.

64. Option (a) is correct. **Statements-1:** is the solution of Statement-2.

65.
$$\lim_{n \to \infty} x^{2n} = 0 \begin{cases} |x| < 1 \\ |x| = 1 \end{cases}$$

$$f(x) = \lim_{n \to \infty} (\cos x)^{2n} = \begin{cases} 0, & \text{if } |\cos x| < 1 \\ 1 & \text{if } |\cos x| = 1 \end{cases}$$

 $\begin{array}{l} f(x) \text{ is continuous at all } x, \text{ except for those values of } x \text{ for which } |cosx| = 1 \\ \Rightarrow x = n\pi \ n {\in} I. \end{array}$ Ans. (D)

66. from Questions figure clearly Ans. (D)

$$67. \qquad \lim_{x \to 0} \left[\frac{\sin x}{x} \right] = 0$$

because sinx < x when x > 0

Download FREE Study Package from www.MathsBySuhag.com Phone :(0755) 32 00 000,98930 58881 WhatsApp 9009 260 559 PART 1 OF 1

So
$$\frac{\sin x}{x} < 1$$
 for $x > 0$
So $\left[\frac{\sin x}{x}\right] = 0$ for $x > 0$ because $\frac{\sin x}{x}$ is odd function so it is correct for $x < 0$.

So, 'd' is correct

- 68. The graph of max $(1, x^2, x^3)$ is as under clearly function is **NOT** differentiable at x = -1, 1. Every continuous function is not necessarily differentiable. So, 'c' is correct.
- 73. (A) $\lim_{x \to \infty} f(x) = \infty$ $\lim f(x) = -\infty$ and f(x) is continuous in R then f(x) will take all values in between $(-\infty, \infty)$
- 74. (C) A quadratic polynomial is always continuous f(b).f(d) < 0 then there exist one value of $x \in (b, d)$ at which f(x) = 0 if one root of a real equation is real then another real will also real. If f(x) is not continuous and $f(x_1).f(x_2) < 0$ then we cannot say that there is at least one $x \in (x_1, x_2)$ at which f(x) = 0.
- 80. The **Statements-1:** is true. If f is differentiable at 'c' then f'(c) exists.

$$\Rightarrow \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} \text{ exists} \Rightarrow \lim_{h \to 0} \frac{f(c) + f(h) - f(c)}{h} \text{ exists}$$

$$= \lim_{h \to 0} \frac{f(h)}{h} \text{ exists. Now if p be some other point then } f'(0) = \lim_{h \to 0} \frac{f(p+h) - f(p)}{h} = \lim_{h \to 0} \frac{f(h)}{h}$$
which exists.

Now any function is either differentiable nowhere or differentiable atleast one point, then it is differentiable for all x. Thus assertion is true.

The reason R is false since any function is either differentiable nowhere is differentiable at one point.

- 81. For x > 0, $f(x) = x^3 \Rightarrow f'(x) = 3x^2 \Rightarrow f'(0) = 0$ for x < 0, $f(x) = -x^3 \Rightarrow f'(x) = -3x^2 \Rightarrow f'(0) = 0$. (A)
- 82. (a) Both Statements-1: and Statement-2 are true and Statement-2 is the correct explanation of Statements-1:.
- 83. (a) For all integral values of x, x [x] = 0 $\Rightarrow f(x) = \frac{1}{0}$, which is not defined.

: Statements-1: and Statement-2 both are true and Statement-2 is the correct explanation of Statements-1:.

84. (a)
$$f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{h^n \sin\left(\frac{1}{h}\right) - 0}{h}$$
$$= \lim_{h \to 0} h^{n-1} \sin\left(\frac{1}{h}\right) (n \ge 2) \qquad = 0 \text{ finite number} = 0$$

Hence **Statements-1:** and Statement-2 both are true and Statement-2 is the correct explanation of **Statements-1:** .

85. (B)
$$\lim_{x\to 0^-} f(x) = -1$$

 $\lim_{x\to 0^+} f(x) = 1$ L.H.L. at $x = 0, \neq R$.H.L. at $x = 0$.

86. (A) L.H.D. at
$$x = 2$$

$$= \left\{ \frac{d}{dx} (2 - x) \right\}_{x=2} = -1$$

$$= \left\{ \frac{d}{dx} (-2 + 3x - x^2) \right\}_{x=2} = -1$$
R.H.D. at $x = 2$

89.
$$\lim_{x \to 0^{+}} \frac{e^{1/x}}{x} = \lim_{x \to 0^{+}} \frac{1 + \frac{1}{x} + \frac{1}{2!} \frac{1}{x^{2}} + \dots}{x}$$
$$= \lim_{x \to 0^{+}} \left(\frac{1}{x} + \frac{1}{x^{2}} + \frac{1}{2x^{3}!} + \dots \right) = \infty \text{ (infinits)}$$

Download FREE Study Package from www.TekoClasses.com&Learn on Video www.MathsBySuhag.com Phone: (0755) 32 00 000,98930 58881 WhatsApp 9009 260 559 PART 1 OF 1

$$\therefore \lim_{x \to 0^+} \frac{e^{1/x}}{x} \text{ does not exist}$$
 (Ans. A)

90.
$$\lim_{\substack{x \to 0 \\ = e^3}} (1+3x)^{1/x} \lim_{\substack{x \to 0}} \left[\left(1+3x^{1/3x}\right) \right]^3$$

$$= e^3$$
because
$$\lim_{\substack{x \to 0 \\ = e^3}} (1+x)^{1/x} = e$$
Ans. (A)

91. $f(x) = \sin x$ continuous in $[-\pi/2, \pi/2]$ by intermediate value theorem $f(-\pi/2) = \sin (-\pi/2) = -1$

$$f\left(\frac{\pi}{2}\right) = \sin\frac{\pi}{2} = 1$$
 $f\left(-\frac{\pi}{2}\right)$ and $f\left(\frac{\pi}{2}\right)$ are of opposite sign is

 \therefore by intermediate value theorem, \exists a point

 $c \in [-\pi/2, \pi/2]$ such that f(x) = 0

 \exists s a point $x \in [-\pi/2, \pi/2]$ such that f(x) = 0 i.e., $\sin x = 0$

thus sinx = 0 has at least one root between $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ Ans. (A)

92.
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{e^{1/x} - e^{-1/x}}{e^{1/x} + e^{-1/x}} \lim_{x \to 0} \frac{1 - e^{-2/x}}{1 + e^{-2/x}}$$

$$\lim_{x \to 0^{+}} f(x) = 1 \qquad \qquad \lim_{x \to 0^{-}} f(x) = 1$$

x = 0, f(0) = 0 Hence f(x) is discontinuous at x = 0 then Ans. (A)

93. Lf'(0) =
$$\lim_{x \to 0^{-}} \frac{\frac{f(x) - f(0)}{x - 0}}{\frac{x - 0}{x - 0}} = \lim_{x \to 0^{-}} \frac{\frac{x}{1 + e^{1/x}} - 0}{x}$$

$$Rf'(0) = \lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{x}{1 + e^{1/x}} - 0$$

$$= \lim_{x \to 0^+} \frac{1}{1 + e^{1/x}} = 0$$

L f'(0) \neq R f'(0) so it is differentiable in $(-\infty, \infty) - \{0\}$

$$f'(x) = \frac{1 + e^{1/x} + e^{1/x}}{(1 + e^{1/x})^2} \ \forall x \neq 0$$
 Ans. (A)

94. Rf'(1) =
$$\lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1} = x \to 1^{+} \frac{[x]}{|x|} - 1$$

$$= \lim_{x \to 1^+} \frac{\frac{1}{|x|} - 1}{x - 1} = \lim_{x \to 1^+} \frac{1 - x}{x(x - 1)} = x \to 1^+ - \frac{1}{x} = -1$$

Lf'(1) =
$$\infty$$
 then f'(1) does not exist. then Ans. (A)

For 38 Years Que. of IIT-JEE (Advanced)

& 14 Years Que. of AIEEE (JEE Main)

we have already distributed a book