

Top View

Application Arduino avec Matlab, Simulink, StateFlow par Marc Jakubowicz Le 2 avril 2016 Version 1.0 Matlab 2016a

Mise en œuvre de l'accéléromètre gyroscope numérique MPU 6050

QFN Package Orientation of Axes of Sensitivity and 24-pin, 4mm x 4mm x 0.9mm Polarity of Rotation

Schéma structurel de la carte du capteur.

Capteur disponible:

http://fr.aliexpress.com/wholesale?catId=0&initiative_id=SB_20160331043101&SearchText=mpu+6050

Schéma de câblage avec une carte Arduino Mega 2560

Modèle de simulation : MPU6050_acq_sf.slx

Propriétés du modèle :

Accélération (X Y Z) : $-2^{15} < acc < 2^{15}$

Paramètre 4G Mode 4G (1C08) sortie -4 < G < 4

Gyroscope (X Y Z) : $-2^{15} < gyro < 2^{15}$

Paramètre $1000^{\circ}.s^{-1}$ Mode 1000 (1B10) sortie -1000 < gyro < 1000

Chronogrammes Initialisation:

i2cWr(uint16(hex2dec('6B00'))); %Power on

i2cWr(uint16(hex2dec('1B10'))); %gyro 0x10=1000°/s

i2cWr(uint16(hex2dec('1C08'))); %acce 0x08= 4G

i2cWr(uint16(hex2dec('1A06'))); %filtrage+actu 0x06= 19ms

i2cWr(uint16(hex2dec('3710'))); %INT_PIN_CFG

i2cWr(uint16(hex2dec('3800'))); %Interrupt Enable 0 désactivé

Chronogrammes mesures:

0x68 adresse I2C du composant

0x3B adresse de départ de lecture des registres.

accXH, accXL, accYH, accYL, accZH, accZL, tempH, TempL, gyroXH, gyroXL, gyroYH, gyroYL, gyroZH, gyroZL

Compilation:

Simulation externe:

AVR Memory Usage Device: atmega2560

Program: 24638 bytes (9.4% Full) (.text + .data + .bootloader)

Data: 1844 bytes (22.5% Full) (.data + .bss + .noinit)

Déployé sur le hardware :

AVR Memory Usage Device: atmega2560

Program: 7506 bytes (2.9% Full) (.text + .data + .bootloader)

Data: 991 bytes (12.1% Full) (.data + .bss + .noinit)

Initialisation du composant :

i2cWr(uint16(hex2dec('6B00')));

4.27 Register 104 – Signal Path Reset SIGNAL_PATH_RESET

Type: Write Only

Register (Hex)	Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
68	104	-	-	-	-	-	GYRO _RESET	ACCEL _RESET	TEMP _RESET

Description:

This register is used to reset the analog and digital signal paths of the gyroscope, accelerometer, and temperature sensors.

The reset will revert the signal path analog to digital converters and filters to their power up configurations.

Note: This register does not clear the sensor registers.

Bits 7 to 3 are reserved.

Parameters:

GYRO_RESET When set to 1, this bit resets the gyroscope analog and digital signal paths.

ACCEL_RESET When set to 1, this bit resets the accelerometer analog and digital signal

paths.

TEMP_RESET When set to 1, this bit resets the temperature sensor analog and digital signal

paths

i2cWr(uint16(hex2dec('1B10')));

4.4 Register 27 – Gyroscope Configuration GYRO_CONFIG

Type: Read/Write

Register (Hex)	Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1B	27	XG_ST	YG_ST	ZG_ST	FS_SI	EL[1:0]	-	-	-

Description:

This register is used to trigger gyroscope self-test and configure the gyroscopes' full scale range.

Gyroscope self-test permits users to test the mechanical and electrical portions of the gyroscope. The self-test for each gyroscope axis can be activated by controlling the XG_ST , YG_ST , and ZG_ST bits of this register. Self-test for each axis may be performed independently or all at the same time.

When self-test is activated, the on-board electronics will actuate the appropriate sensor. This actuation will move the sensor's proof masses over a distance equivalent to a pre-defined Coriolis force. This proof mass displacement results in a change in the sensor output, which is reflected in the output signal. The output signal is used to observe the self-test response.

The self-test response is defined as follows:

Self-test response = Sensor output with self-test enabled – Sensor output without self-test enabled

The self-test limits for each gyroscope axis is provided in the electrical characteristics tables of the MPU-6000/MPU-6050 Product Specification document. When the value of the self-test response is within the min/max limits of the product specification, the part has passed self test. When the self-test response exceeds the min/max values specified in the document, the part is deemed to have failed self-test.

FS_SEL selects the full scale range of the gyroscope outputs according to the following table.

FS_SEL	Full Scale Range
0	± 250 °/s
1	± 500 °/s
2	± 1000 °/s
3	± 2000 °/s

i2cWr(uint16(hex2dec('1C08')));

4.5 Register 28 – Accelerometer Configuration ACCEL_CONFIG

Type: Read/Write

Register (Hex)	Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1C	28	XA_ST	YA_ST	ZA_ST	AFS_S	SEL[1:0]		-	

Description:

This register is used to trigger accelerometer self test and configure the accelerometer full scale range. This register also configures the Digital High Pass Filter (DHPF).

Accelerometer self-test permits users to test the mechanical and electrical portions of the accelerometer. The self-test for each accelerometer axis can be activated by controlling the XA_ST, YA_ST, and ZA_ST bits of this register. Self-test for each axis may be performed independently or all at the same time

When self-test is activated, the on-board electronics will actuate the appropriate sensor. This actuation simulates an external force. The actuated sensor, in turn, will produce a corresponding output signal. The output signal is used to observe the self-test response.

The self-test response is defined as follows:

Self-test response = Sensor output with self-test enabled – Sensor output without self-test enabled

The self-test limits for each accelerometer axis is provided in the electrical characteristics tables of the MPU-6000/MPU-6050 Product Specification document. When the value of the self-test response is within the min/max limits of the product specification, the part has passed self test. When the self-test response exceeds the min/max values specified in the document, the part is deemed to have failed self-test

AFS_SEL selects the full scale range of the accelerometer outputs according to the following table.

	AFS_SEL	Full Scale Range
	0	± 2g
ſ	1	± 4g
Ĭ	2	± 8g
	3	± 16g

4.3 Register 26 – Configuration CONFIG

Type: Read/Write

Register (Hex)	Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1A	26	-	-	EXT	_SYNC_SET	[2:0]		LPF_CFG[2:0	1

Description:

This register configures the external Frame Synchronization (FSYNC) pin sampling and the Digital Low Pass Filter (DLPF) setting for both the gyroscopes and accelerometers.

An external signal connected to the FSYNC pin can be sampled by configuring EXT_SYNC_SET.

Signal changes to the FSYNC pin are latched so that short strobes may be captured. The latched FSYNC signal will be sampled at the Sampling Rate, as defined in register 25. After sampling, the latch will reset to the current FSYNC signal state.

The sampled value will be reported in place of the least significant bit in a sensor data register determined by the value of EXT_SYNC_SET according to the following table.

EXT SYNC SET	FSYNC Bit Location
0	Input disabled
1	TEMP_OUT_L[0]
2	GYRO_XOUT_L[0]
3	GYRO_YOUT_L[0]
4	GYRO_ZOUT_L[0]
5	ACCEL_XOUT_L[0]
6	ACCEL_YOUT_L[0]
7	ACCEL_ZOUT_L[0]

The DLPF is configured by $DLPF_CFG$. The accelerometer and gyroscope are filtered according to the value of $DLPF_CFG$ as shown in the table below.

DLPF_CFG	Acceleror (F ₈ = 1k		Gyroscope					
	Bandwidth Delay (Hz) (ms)		Bandwidth (Hz)	Delay (ms)	Fs (kHz)			
0	260	0	256	0.98	8			
1	184	2.0	188	1.9	1			
2	94	3.0	98	2.8	1			
3	44	4.9	42	4.8	1			
4	21	8.5	20	8.3	1			
5	10	13.8	10	13.4	11			
6	5	19.0	5	18.6	1			
7	RESERVED		RESER\	/ED	8			

i2cWr(uint16(hex2dec('3710')));

4.15 Register 55 – INT Pin / Bypass Enable Configuration INT_PIN_CFG

Type: Read/Write

Register (Hex)	Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
37	55	INT_LEVEL	INT_OPEN	LATCH _INT_EN	INT_RD _CLEAR	FSYNC_ INT_LEVEL	FSYNC_ INT_EN	I2C _BYPASS _EN	-

Description:

This register configures the behavior of the interrupt signals at the INT pins. This register is also used to enable the FSYNC Pin to be used as an interrupt to the host application processor, as well as to enable Bypass Mode on the I²C Master. This bit also enables the clock output.

FSYNC_INT_EN enables the FSYNC pin to be used as an interrupt to the host application processor. A transition to the active level specified in FSYNC_INT_LEVEL will trigger an interrupt. The status of this interrupt is read from the PASS_THROUGH bit in the I²C Master Status Register (Register 54).

When I2C_BYPASS_EN is equal to 1 and I2C_MST_EN (Register 106 bit[5]) is equal to 0, the host application processor will be able to directly access the auxiliary I²C bus of the MPU-60X0. When this bit is equal to 0, the host application processor will not be able to directly access the auxiliary I²C bus of the MPU-60X0 regardless of the state of I2C_MST_EN.

For further information regarding Bypass Mode, please refer to Section 7.11 and 7.13 of the MPU-6000/MPU-6050 Product Specification document.

i2cWr(uint16(hex2dec('3800')));

4.16 Register 56 – Interrupt Enable INT_ENABLE

Type: Read/Write

Register (Hex)	Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
38	56		MOT_EN		FIFO _OFLOW _EN	I2C_MST _INT_EN	-	-	DATA _RDY_EN

Description:

This register enables interrupt generation by interrupt sources.

For information regarding the interrupt status for each interrupt generation source, please refer to Register 58. Further information regarding I²C Master interrupt generation can be found in Register 54.

Bits 2 and 1 are reserved.

Lecture des valeurs

4.18 Registers 59 to 64 – Accelerometer Measurements

ACCEL_XOUT_H, ACCEL_XOUT_L, ACCEL_YOUT_H, ACCEL_ZOUT_H, and ACCEL_ZOUT_L

Type: Read Only

Register (Hex)	Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
3B	59			AC	CEL_XOUT[15:8]				
3C	60			AC	CEL_XOUT[7:0]				
3D	61			AC	CEL_YOUT[15:8]				
3E	62			AC	CEL_YOUT[7:0]				
3F	63		ACCEL_ZOUT[15:8]							
40	64			AC	CEL_ZOUT[7:0]				

4.19 Registers 65 and 66 – Temperature Measurement TEMP_OUT_H and TEMP_OUT_L

Type: Read Only

Register (Hex)	Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
41	65				TEMP_OUT	[15:8]			
42	66				TEMP_OUT	[7:0]			

Temperature in degrees C = (TEMP_OUT Register Value as a signed quantity)/340 + 36.53

4.20 Registers 67 to 72 – Gyroscope Measurements GYRO_XOUT_H, GYRO_XOUT_L, GYRO_YOUT_H, GYRO_YOUT_L, GYRO_ZOUT_H, and GYRO_ZOUT_L

Type: Read Only

Register (Hex)	Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
43	67	GYRO_XOUT[15:8]							
44	68	GYRO_XOUT[7:0]							
45	69	GYRO_YOUT[15:8]							
46	70	GYRO_YOUT[7:0]							
47	71	GYRO_ZOUT[15:8]							
48	72	GYRO_ZOUT[7:0]							