

Marco Listanti

Lo strato di collegamento Parte 5

"Addressing", "Ethernet" "Hub e Switch"

Indirizzamento nello strato di collegamento

Indirizzi MAC

Indirizzo IP a 32 bit (Strato di rete)

- Indirizzo a livello di rete
- Analogo all'indirizzo postale di una persona
- Ha una struttura gerarchica e deve esser aggiornato quando una persona cambia residenza (cambia rete)

Indirizzo MAC (strato di data link)

- Analogo al numero di codice fiscale di una persona
- Ha una struttura orizzontale e non varia a seconda del luogo in cui la persona si trasferisce (indipendente dalla rete)
- Indirizzo a 48 bit (per la maggior parte delle LAN)

Indirizzi MAC

Indirizzi MAC

- La IEEE sovrintende alla gestione degli indirizzi MAC
- Quando una società vuole costruire schede di rete, compra un blocco di spazio di indirizzi (unicità degli indirizzi)
- Indirizzo orizzontale MAC --> portabilità
 - 💶 È possibile spostare una scheda LAN da una LAN a un'altra
- Gli indirizzi IP hanno una struttura gerarchica e devono essere aggiornati se il terminale cambia rete
 - dipendono dalla sottorete IP cui il nodo è collegato.

Address Resolution Protocol (ARP)

Come si determina l'indirizzo MAC di un nodo se si conosce solo l'indirizzo IP del nodo?

- Ogni nodo IP (host, router) nella LAN ha una tabella ARP
- Tabella ARP
 - contiene la corrispondenza tra indirizzi IP e MAC
- < Indirizzo IP; Indirizzo MAC; TTL>
 - TTL (tempo di vita)
 - valore che indica quando bisognerà eliminare una data voce nella tabella
 - il tempo di vita tipico è di 20 min

Protocollo ARP nella stessa sottorete

- Un host A vuole inviare un messaggio ad un host B
 - l'indirizzo MAC di B non è nella tabella ARP di A
- A trasmette in una frame broadcast il messaggio di richiesta ARP, contenente l'indirizzo IP di B
 - Indirizzo MAC del destinatario
 - FF-FF-FF-FF
 - Tutti gli host della LAN ricevono la richiesta ARP

- L'host B riceve la frame ARP e risponde ad A comunicandogli il proprio indirizzo MAC
 - il frame viene inviato all'indirizzo MAC di A che è scritto nel messaggio ARP
- Il messaggio di risposta ARP è inviato in una frame standard
- ARP è "plug-and-play":
 - La tabella ARP di un nodo si costituisce automaticamente e non deve essere configurata dall'amministratore del sistema

Invio verso un nodo esterno alla sottorete

- Invio di un pacchetto tra due host A a B, localizzati in due LAN diverse (Reti 1 e 2) attraverso un router R
- E' necessario che A conosca l'indirizzo IP di B

Il router R ha due tabelle ARP, una per ciascuna LAN

Invio verso un nodo esterno alla sottorete

- A crea un pacchetto con origine A, e destinazione B
- A usa ARP per ottenere l'indirizzo MAC di R (scheda della rete 1)
- A invia il pacchetto a R
- R rimuove il pacchetto IP dalla frame Ethernet, e vede che la destinazione è B
- R usa ARP per ottenere l'indirizzo MAC di B
- R crea un frame contenente il pacchetto IP e lo invia a B

Ethernet

Standard IEEE 802.3

Ethernet

- 1970 ALOHAnet radio network deployed in Hawaiian islands
- 1973 Metcalf and Boggs invent Ethernet, random access in wired net
- 1979 DIX Ethernet II Standard
- 1985 IEEE 802.3 LAN Standard (10 Mbps)
- 1995 Fast Ethernet (100 Mbps)
- 1998 Gigabit Ethernet
- 2002 10 Gigabit Ethernet

Il progetto originale di Bob Metcalfe che portò allo standard Ethernet

Topologia a bus o a stella

- La topologia a bus originale è stata sostituita dalla topologia a stella alla metà degli anni 90
- Al centro della stella è collocato un elemento denominato switch che esegue le funzioni di commutazione delle frame sui rami della stella
- Ciascun nodo esegue un protocollo Ethernet separato e non entra in collisione con gli altri

IEEE 802.3 MAC

CSMA/CD

- Parametro principale di sistema: Slot Time
 - limite superiore per rivelare una collisione (2t_{prop})
 - limite superiore per acquisire il canale in trasmissione
 - limite superiore per la lunghezza di una frame in caso di collisione
 - quanto per il calcolo del tempo di ritrasmissione in caso di collisione
 - max{round-trip propagation, MAC jam time}

IEEE 802.3: Parametri originali

- Transmission Rate: 10 Mbit/s
- Lunghezza minima di una frame: 512 bit = 64 byte
- Slot time: 512 bit/10 Mbit/s = 51.2 μsec
 - 51.2 μ sec \times 2 \times 10⁵ km/sec = 10.24 km (round trip delay)
 - 5.12 km estensione massima della rete
- Lunghezza massima della rete: 2500 meters + 4 repeater (5 tratte di 500 metri ciascuna)
- Regola
 - ogni incremento di 10 volte del bit rate, determina la diminuizione di 10 volte della lunghezza massima della rete

Frame Ethernet (IEEE 802.3)

La scheda di rete trasmittente incapsula i pacchetti IP in una frame Ethernet

- Preambolo (7 byte)
 - Ogni byte ha la configurazione 10101010 (onda quadra)
 - Serve per "attivare" le schede di rete dei riceventi e a sincronizzare i loro clock con quello del trasmittente
- Start Delimiter (1 byte)
 - ha configurazione 10101011
 - indica l'inizio della frame

Frame Ethernet (IEEE 802.3)

- Source e Destination Address (6 byte ciascuno)
 - Sono gli indirizzi MAC del mittente e del destinatario della frame
 - Quando una scheda di rete riceve una frame contenente nel campo destination address il proprio indirizzo MAC o l'indirizzo broadcast (es.: un pacchetto ARP), copia la frame nel buffer di ricezione
 - Le frame con altri indirizzi MAC vengono ignorate
- Length (2 byte)
 - Indica il numero di byte del campo informativo
 - Lunghezza massima della frame 1518 byte (esclusi preamble e SD)
 - Lunghezza massima del campo informativo 1500 bytes
- PAD
 - assicura che la lunghezza minima di una frame sia 64 byte
- CRC (4 byte)

Fasi operative del protocollo CSMA/CD

- La scheda di rete prepara una frame Ethernet (802.3)
- Se il canale è inattivo, inizia la trasmissione.
- Se il canale risulta occupato, resta in attesa fino a quando non rileva più il segnale
- Verifica, durante la trasmissione, la presenza di eventuali segnali provenienti da altri terminali
- Se non ne rileva considera il pacchetto spedito

- Se rileva segnali da altri adattatori (evento di collisione), interrompe immediatamente la trasmissione del pacchetto e invia un segnale di disturbo (jam)
- La scheda di rete calcola l'intervallo di backoff
- Se si è arrivati all'n-esima collisione consecutiva, stabilisce un valore K tra {0,1,2,...,2ⁿ-1}
- La scheda di rete aspetta un tempo pari a K volte 512 bit (slot size)

Protocollo CSMA/CD di Ethernet

Segnale di disturbo (jam)

- la finalità è di avvisare della collisione tutti gli altri adattatori che sono in fase trasmissiva
- Ha lunghezza 48 bit

Intervallo di bit

- corrisponde a 0,1 μs perEthernet a 10 Mbps
- per K=1023, il tempo di attesa complessivo è di circa 50 ms
 - $1023 \times 512 \times 0.1 \, \mu s \cong 50 \, \text{ms}$

Intervallo di backoff

- ha lo scopo di adattare il tempo di attesa al numero di nodi coinvolti nella collisione
- Prima collisione: sceglie K tra {0,1}; il tempo di attesa è pari a K volte 512 bit.
- Dopo la seconda collisione: sceglie K tra {0,1,2,3}...
- Dopo dieci collisioni, sceglie K tra {0,1,2,3,4,...,1023}

DIET Dept

Networking Group

Ethernet 802.3 livelli di collegamento e fisico

Standard Ethernet

- protocollo MAC e formato della frame unici
- differenti velocità: 10 Mbit/s, 100 Mbit/s, 1 Gbit/s, 10 Gbit/s
- differenti mezzi trasmissivi: fibra, cavo

IEEE 802.3 Physical Layer (10 Mbit/s)

	10base <u>5</u>	10base <u>2</u>	10base <u>T</u>	10base <u>FX</u>
Medium	Thick coax	Thin coax	<u>T</u> wisted pair	Optical <u>f</u> iber
Max. Segment Length	<u>5</u> 00 m	<u>2</u> 00 m	100 m	2 km
Topology	Bus	Bus	Star	Point-to-point link

Fast Ethernet (100 Mbit/s)

	100baseT4	100baseT	100baseFX
Medium	Twisted pair category 3 UTP 4 pairs	Twisted pair category 5 UTP two pairs	Optical fiber multimode Two strands
Max. Segment Length	100 m	100 m	2 km
Topology	Star	Star	Star

- Identico formato di frame rispetto alla versione a 10 Mbit/s
- La topologia a bus non è prevista
- Standard attualmente prevalente

Gigabit Ethernet (1 Gbit/s)

	1000baseSX	1000baseLX	1000baseCX	1000baseT
Medium	Optical fiber multimode Two strands	Optical fiber single mode Two strands	Shielded copper cable	Twisted pair category 5 UTP
Max. Segment Length	550 m	5 km	25 m	100 m
Topology	Star	Star	Star	Star

- Il time slot è incrementato a 512 byte
- Le frame di lunghezza minima sono estese a 512 byte
- Adozione del "Frame bursting" in modo che le stazioni possano trasmettere un insieme di frame di lunghezza breve
- Il CSMA-CD è sostanzialmente abbandonato
- Questo tipo di reti è largamente adottato nel backbone di reti aziendali

Hub e switch

Hub (repeater)

- Opera allo strato fisico
- Rigenera il segnale analogico (re-shaping, retiming re-trasmitting) e lo ritrasmette su tutte le interfacce uscenti
 - decodifica e ri-codifica il codice di linea (Manchester)
 - rileva collisioni e le inoltra su tutte le porte
 - isola segmenti di rete se si verificano 30 collisioni consecutive
- Permette di aumentare le dimensioni di una LAN rispettando
 - a) Limite teorico imposto dal CSMA/CD
 - b) Limiti al numero massimo di ripetitori utilizzabili

Hub (Repeater)

- Dominio di collisione
 - Sezione di rete in cui qualsiasi coppia di stazioni che trasmettono contemporaneamente generano una collisione
- La sezione di rete collegata da hub (repeater) fa parte di un unico dominio di collisione

Esempio di dominio di collisione

Switch (Bridge)

- Dispositivo intelligente a livello di link, svolge un ruolo attivo
 - Filtra e inoltra le frame Ethernet
 - Esamina l'indirizzo MAC di destinazione e, se possibile, lo invia all'interfaccia corrispondente alla sua destinazione
 - Quando un pacchetto è stato inoltrato nel segmento, usa il protocollo CSMA/CD per accedere al segmento
- Permette di collegare tra loro differenti domini di collisione
- Trasparente
 - Gli host sono inconsapevoli della presenza di switch
- Plug-and-play, autoapprendimento
 - Gli switch non hanno bisogno di essere configurati, apprendono autonomamente la topologia di rete e le regole di instradamento delle frame

Switch (Bridge)

- Gli host hanno (normalmente)
 collegamenti dedicati e diretti con lo switch
- Gli switch, se necessario, bufferizzano le frame
- Il CSMA/CD è usato su ciascun collegamento in entrata, anche se non si verificano collisioni
 - collegamenti full duplex
- Trasmissione simultanea da A ad A' e da B a B', senza collisioni
 - La trasmissione simultanea non è possibile con gli hub

switch con sei interfacce (1,2,3,4,5,6)

Domini di collisione

Switch Table

- Ogni switch ha una tabella di commutazione (switch table)
- Ogni record della switch table comprende
 - l'indirizzo MAC di un nodo
 - l'interfaccia a cui è connesso il nodo
 - time stamp
- Come si creano e si mantengono i record di una tabella di commutazione ?
 - Auto apprendimento

switch con sei interfacce (1,2,3,4,5,6)

Switch: autoapprendimento

- Lo switch apprende quali nodi possono essere raggiunti attraverso determinate interfacce
 - quando riceve una frame, lo switch "impara" l'indirizzo MAC del mittente
 - registra la coppia mittente/indirizzo nella sua tabella di commutazione

Indir. MAC I	interfaccia T	TL
A	1	60

Tabella di commutazione (inizialmente vuota)

Switch: filtraggio e inoltro

Quando uno switch riceve un pacchetto

- 1. Registra l'interfaccia associata all'host mittente
- 2. Accede alla tabella utilizzando gli indirizzi MAC

if entry trovato tramite l'indirizzo MAC di destinazione (dest) then{

if dest risiede sull'interfaccia su cui è arrivata la frame then scarta la frame

else rilancia la frame sull'interfaccia indicata

else flood ←

Lo inoltra su tutte le interfacce tranne quella dalla quale è arrivata la frame

Esempio

Destinazione del frame ignota:

flood

Destinazione A, location nota:

selective send

Indir. MAC I	interfaccia T	TL
A	1	60
A'	4	60

Collegamento tra switch

Gli switch possono essere interconnessi tra loro

- Per inviare una frame da A a G, come fa S1 a sapere che deve inoltrare il frame attraverso S4 e S3 ?
- Autoapprende (funziona esattamente come nel caso di un singolo switch)

Esempio

S1→**S5**

→**52**

Address	Port
51	1
53	2

Address	Port
51	1
53	1

→**53**

Address	Port
51	1
53	2
54	2

Address	Port
S1	1
53	1
54	2

→**51**

Address	Port
51	1
53	2
54	2
52	1

Address	Port
<u>51</u>	11
53	1
54	2

Adaptive Learning

- In una rete statica il processo di apprendimento conduce ad uno stato in cui tutti gli indirizzi sono memorizzati nelle switch table
- In situazioni pratiche, in una rete i nodi sono aggiunti, rimossi o spostati
 - Si introduce un timeout che forza periodicamente la ripetizione dell'apprendimento di ogni indirizzo
 - Le informazioni che non vengono rinfrescate sono cancellate dopo un tempo massimo (ageing time 300 s valore consigliato dallo standard)
 - Se una frame arriva su una porta che differisce da quella memorizzata nella switch table, questa viene aggiornata immediatamente

Esercizio

■ Si ipotizzi che C invii un frame a I, e che I risponda a C

Illustrate le tabelle di commutazione e l'inoltro delle frame in S_1 , S_2 , S_3 , S_4

Esempio di rete di un'istituzione

Switch e router a confronto

- Entrambi sono dispositivi store-and-forward
 - Router: dispositivi a livello di rete
 - Switch: dispositivi a livello di collegamento
- I router mantengono tabelle di routing e implementano algoritmi d'instradamento
- Gli switch mantengono tabelle di commutazione e implementano il filtraggio e algoritmi di autoapprendimento

Interconnessione di LAN tramite switch

Problema dei "cicli infiniti"

- La rete magliata deve essere trasformata in albero
 - Protocollo Spanning Tree (IEEE 802.1D) regola il processo di forwarding in presenza di loop nella rete

Per ottenere un albero si deve

- Determinare lo switch radice (Root Bridge - RB)
- disabilitare alcune porte degli switch

Quali salvare ?

- Verso la radice ...
- Verso le LAN ...

Opera in tre fasi:

- 1. Elezione del Root Bridge: radice dell'albero
- 2. Selezione della root port: per ogni switch la porta per raggiungere il Root Bridge
- 3. Selezione della designated port: per ogni LAN la porta utilizzata per inoltrare e ricevere le trame della LAN
- Alla fine vengono abilitate al forwarding solo le porte root e designated (le altre vengono bloccate)
- Utilizza trame denominate BPDU Bridge Protocol Data Unit trasmesse in multicast
 - Topology Change Notification BPDU

- Configuration BPDU inviate periodicamente contengono:
 - Root id: l'identificativo del bridge candidato a diventare il Root Bridge
 - Switch id: identificativo del bridge che trasmette la BPDU
 - Root path cost: costo totale del percorso per raggiungere il Root Bridge (posto a 0 dal Root Bridge e aggiornato da ogni altro switch)
 - Flag: Topology Change (TC), TC Acknowledgment (TCA)
- Topology Change Notification BPDU trasmesse solo a seguito di un cambiamento nella topologia verso il Root Bridge

Configuration BPDU

	Octet
Protocol Identifier	1
	2
Protocol Version Identifier	3
BPDU Type	4
Flags	5
	6
	7
Root Identifier	8
	9
	10
	11
	12
	13
	14
Root Path Cost	15
	16
	17

	18
	19
Bridge Identifier	20
	21
	22
	23
	24
	25
Port Identifier	26
Port identifier	27
Message Age	28
Wiessage Age	29
May Age	30
Max Age	31
Hello Time	32
Hello Tillle	33
Forward Delay	34
1 of Ward Doldy	35

Elezione del Root Bridge

- Tutti gli switch si "credono" Root e trasmettono Configuration BPDU con Root id = Switch id
- Alla ricezione di una Configuration BPDU trasmessa dallo switch j lo switch i verifica
 - se Switch id; > Root id; interrompe la tx delle Conf. BPDU e ritrasmette solo le ricevute
 - se Switch id; < Root id; continua a tx Conf BPDU</p>
- Alla fine solo lo switch con l'identificativo più piccolo genera Configuration BPDU → Root Bridge

Selezione della root port

- È la porta attraverso la quale ogni switch raggiunge il Root Bridge (riceve le Conf. BPDU)
- Ogni switch somma al campo Root path cost delle Conf. BPDU il costo della percorso (della LAN) associato alla porta di ricezione
- Ogni switch seleziona la root port come la porta a costo minimo per raggiungere il Root Bridge

Selezione della designated port

- Ogni switch ritrasmette le Conf. BPDU ricevute dalla root port su tutte le altre porte
- Se esistono più switch sulla stessa LAN questi switch riceveranno Conf. BPDU da porte non root
- In ogni LAN lo switch con Root path cost minore è scelto come designated switch e la sua porta verso tale LAN è la designated port

Determinare l'instradamento di una trama dalla stazione a alla stazione b e indicare lo stato delle porte di tutti gli switch dopo la convergenza dello STP

 A regime l'instradamento delle trame dalla stazione a verso la stazione b segue il percorso S4 - S1 - S2

STP: cambiamenti di topologia

- Cambiamenti della topologia vengono notificati al Root Bridge attraverso Topology Change Notification BPDU
- Il Root Bridge invia Conf. BPDU con flag TC = 1 verso tutti gli altri bridge
- I bridge reagiscono al cambiamento della topologia impostando il timer ageing-time al valore forward delay (trasportato nelle Conf. BPDU ... raccomandato 15 s)

Topology Change Notification BPDU

Posizione dello Switch?

- Accessi dedicati
 - Utilizzo pesante e continuativo di risorse di rete
 - server
 - stazioni per video-comunicazione
 - etc.
- Accessi condivisi
 - Stazioni che generano traffico discontinuo

