Fouille de Données

Data Mining

Classification - Partie 2

Plan du cours

- 1. Classification associative
- 2. Méthodes d'évaluation d'un modèle
- 3. Combinaison de modèles
- 4. K plus proches voisins

Contexte

SAVOIR - PREDIRE - DECIDER

Arbres de décision : ID3

Algorithmes de construction d'arbres de décision

Plusieurs problèmes:

- Comment choisir l'attribut qui sépare le mieux l'ensemble d'exemples? On parle souvent de la variable de segmentation (Split).
- Comment choisir les critères de séparation d'un ensemble selon l'attribut choisi, et comment ces critères varient selon que l'attribut soit numérique ou nominal?
- Quel est le nombre optimal du nombre de critères qui minimise la taille de l'arbre et maximise la précision ?
- ➤ Quels sont les critères d'arrêt de ce partitionnement, sachant que souvent l'arbre est d'une taille gigantesque ?

Algorithmes de construction d'arbres de décision

- La bonne taille de l'arbre:
- Eviter l'overfitting Sur-apprentissage: anomalies, bruits, erreurs, etc.
- L'arbre construit peut être d'une taille importante.
- => Opérations d'élagage.
- Eliminer les branches les moins significatives.
- Elagage avant ou après apprentissage : pré-élagage ou post-élagage.

Choix de la bonne taille de l'arbre

Pré-élagage

- Effectué lors de la construction de l'arbre.
- Au moment du calcul du gain d'information, décider de l'importance ou non de sa subdivision.
- Arrêter la construction lorsqu'il n'y a pas d'association statistiquement significative entre un attribut et la classe d'un nœud particulier.
- Couper complètement des branches qui peuvent être générées.

Choix de la bonne taille de l'arbre

Post-élagage

- Effectué **après** la construction de l'arbre en coupant des sous arbres entiers et en les remplaçant par des feuilles représentant la classe la plus fréquente dans l'ensemble des données de cet arbre.
- > On commence de la racine et on descend.
- ➤ Pour chaque nœud interne (non feuille), on mesure sa performance avant et après sa coupure (son remplacement par une feuille).
- ➤ Si la différence est peu importante, on coupe le sous arbre et on le remplace par une feuille.

Les règles sont plus simples à lire et à interpréter que les arbres.

Une règle d'association pour chaque feuille.

➤ Connaissance sous forme de : **IF-THEN**

Extraction des règles solides qui ont dans leur partie droite l'attribut classe.

> Exemple:

Outlook sunny overcast Humidity yes high normal ves no

IF (Outlook=sunny) **AND** (Humidity=normal) **THEN** Play =yes

- Exemple :
 - ✓ IF (Outlook=sunny) AND (Humidity=high) THEN Play=no
 - ✓ **IF** (Outlook=rain) **AND** (Wind=true) **THEN** Play=no
 - **✓ OTHERWISE** play=yes

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

IF (Outlook=sunny) and (Humidity=high) THEN Play =no

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

IF (Outlook=rainy) and (Wind=true) THEN Play =no

Outlook	Temp	Humidity	Windy	Play
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Overcast	Cool	Normal	True	Yes
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
o).				

OTHERWISE play=yes

Deux étapes:

1. Apprentissage (entrainement)

Deux étapes:

- Apprentissage (entrainement+evaluation)
- 2. Classification (Utilisation)

Input Data

Méthodes d'évaluation

Deux étapes:

- Apprentissage
 (entrainement + evaluation on Test Set)
- 1. Classification (Utilisation)

Deux bases d'exemples:

- 1. Training Set
- 2. Test Set

Méthodes d'évaluation

Deux étapes:

- Apprentissage
 (entrainement + evaluation on Test Set)
- 1. Utilisation

Creating the training and test sets

Deux bases d'exemples:

- 1. Training Set
- 2. Test Set

training set

Y = Class	X1 = concavity	X2 = perimeter
В	-0.39874785	-0.332451413
В	-0.87966023	-1.253810272
М	1.987839169	-0.249719577
В	-0.97490322	-1.488018741
М	1.262132653	-0.114908349
В	-0.21085026	-0.245850822

test set

Y = Class	X1 = concavity	X2 = perimeter
В	-1.03994838	-0.722600465
М	1.278909223	-0.031581320
В	-0.86355473	-0.702066304
М	-0.605339335	0.492188574

- Evaluer pour s'assurer de la capacité de généralisation en dehors des données d'entrainement.
- Overfitting/Underfitting Variance/Biais tradeoff
- ➤ Permet de qualifier le comportement du modèle appris sur les données non utilisées lors de l'apprentissage.

- > Evaluer pour s'assurer de la capacité de généralisation en dehors des données d'entrainement.
- Overfitting/Underfitting Variance/Biais tradeoff
- ➤ Permet de qualifier le comportement du modèle appris sur les données non utilisées lors de l'apprentissage.
- Sur les exemples d'entrainement ou autres exemples réservés pour le test.
- ➤ Différentes <u>mesures/metrics</u> d'évaluation :
 - ✓ Accuracy
 - ✓ Sensitivité
 - ✓ Spécificité
 - ✓ Moyenne harmonique, F1 Score
 - ✓ Etc.

Précision P (Accuracy) d'un modèle

- Métrique intuitive, qui représente le rapport entre le nombre d'exemples correctement classés et le nombre total des exemples testés.
- > = > Pourcentage des exemples correctement classés.
- \triangleright Taux d'erreurs = 100 P

accuracy =

Précision P (Accuracy) d'un modèle

 $accuracy = \frac{number\ of\ correct\ predictions}{total\ number\ of\ predictions}$

Matrice de confusion

- Aucune information sur la nature des erreurs.
- Exemple : considérer un échantillon non cancéreux alors qu'il l'est, est beaucoup plus grave de considérer un échantillon cancéreux alors qu'il ne l'est pas.
- Cas de classification binaire : Observation (y) et Prédiction (f)

$$\begin{cases} \hat{f}(x_i) = \text{Yes} & et \ y_i = \text{Yes} & correcte \ positive \\ \hat{f}(x_i) = \text{Yes} & et \ y_i = \text{No} & fausse \ positive \\ \hat{f}(x_i) = \text{No} & et \ y_i = \text{No} & correcte \ n\'egative \\ \hat{f}(x_i) = \text{No} & et \ y_i = \text{Yes} & fausse \ n\'egative \end{cases}$$

Matrice de confusion

CP : classe positive considérée positive - TP

> CN : classe negative considérée negative - TN

> **FP** : classe negative considérée positive - FP

> **FN** : classe positive considérée negative - FN

▼	
False Negatives	True Negatives
•	0
True Positives	False Positives
	0

		Yes	No
vation	Yes	СР	FN
Observation	No	FP	CN

Prédiction

Matrice de confusion

> Attention:

		Prediction		
		Positive Negative		
ual	Positive	TP	FN	
Actual	Negative	FP	TN	

Matrice de confusion

- ➤ Modèle sans erreurs : CP + CN = N
- ➤ Multi classes : nombre de colonnes = nombre de classes
- > Accuracy (Précision globale):

$P = \frac{CP + CN}{CP + FP + CN + FN}$			Prédi	iction
			Yes	No
	vation	Yes	СР	FN
	Observ	No	FP	CN

Matrice de confusion

Exemple 1:

- Chat ou Chien ?
- N = 14 exemples/animaux testés
- Deux Classes : Chat, Chien
- En réalité : **8** Chats et **6** Chiens.
- Le modèle a prédit :
- ✓ À partir des 8 chats : 5 l'étaient seulement, les 3 restants étaient Chiens.
- ✓ A partir des 6 Chiens : 4 l'étaient seulement, les 2 autres étaient Chats.

		Prédiction		
		Chat	Chien	
bservation	Chat	СР	FN	
Observ	Chien	FP	CN	

Matrice de confusion

Exemple 1:

- Chat ou Chien ?
- N = 14 exemples/animaux testés
- Deux Classes : Chat, Chien
- En réalité : 8 Chats et 6 Chiens.
- Le modèle a prédit :
- ✓ Depuis les 8 Chats : 5 l'étaient seulement, les 3 restants étaient Chiens.
- ✓ Depuis les 6 Chiens : 4 l'étaient seulement, les 2 autres étaient Chats.

		Prédiction		
		Chat	Chien	
bservation	Chat	5	3	
Observ	Chien	2	4	

Matrice de confusion

Exemple 2:

		Prédiction		
		Chat	Chien	Lapin
on	Chat	5	3	0
Observation	Chien	2	3	1
qo	Lapin	0	2	11

- Chat, Chien, ou Lapin?
- N = 27 exemples/animaux testés
- Trois Classes : Chat, Chien, Lapin
- En réalité : 8 Chats et 6 Chiens, 13 Lapins.

Matrice de confusion

Exemple 2:

On considère Chat comme classe positive.

		Prédiction		
		Chat	Chien	Lapin
Observation	Chat	5	3	0
	Chien	2	3	1
\$qO	Lapin	0	2	11

		Prédiction	
		Chat	Chien&Lapin
tion	Chat	5	3
Observation	Chien& Lapin	2	17

Matrice de confusion

Exemple 2:

On considère Chat comme classe positive.

		Prédiction		
		Chat	Chien	Lapin
Observation	Chat	5	3	0
	Chien	2	3	1
Obs	Lapin	0	2	11

		Prédiction	
		Chat	Chien&Lapin
tion	Chat	5	3
Observation	Chien& Lapin	2	17

		Predicted Class			
		C ₁ C ₂ C _N			
Actual Class	C_1	C _{1,1}	FP	:	$C_{1,N}$
	C ₂	FN	TP		FN
	$\mathbf{C_N}$	$C_{N,1}$	FP		$C_{N,N}$

Matrice de confusion

Autres mesures:

Sensitivité – True Positive Rate:

$$Sv = \frac{CP}{CP + FN}$$

Spécificité – True Negative Rate:

$$Sp = \frac{CN}{CN + FP}$$

Moyenne harmonique :

$$Mh = \frac{2 * Sv * Sp}{Sv + Sp}$$

		Prédiction	
		Yes	No
bservation	Yes	СР	FN
Observ	No	FP	CN

		Prediction		
		Positive	Negative	
ual	Positive	TP	FN	
Actual	Negative	FP	TN	

Matrice de confusion: Autres mesures

Matrice de confusion

Autres mesures:

Metric	Formula	Evaluation focus
Accuracy	$ACC = \frac{TP + TN}{TP + TN + FP + FN}$	Overall effectiveness of a classifier
Precision	$PRC = \frac{TP}{TP + FP}$	Class agreement of the data labels with the positive labels given by the classifier
Sensitivity	$SNS = \frac{TP}{TP + FN}$	Effectiveness of a classifier to identify positive labels. Also called true positive rate (TPR)
Specificity	$SPC = \frac{TN}{TN + FP}$	How effectively a classifier identifies negative labels. Also called true negative rate (TNR)
F ₁ score	$F_1 = 2 \frac{\text{PRC} \cdot \text{SNS}}{\text{PRC} + \text{SNS}}$	Combination of precision (PRC) and sensitivity (SNS) in a single metric
Geometric mean	$GM = \sqrt{SNS \cdot SPC}$	Combination of sensitivity (SNS) and specificity (SPC) in a single metric
Area under (ROC) curve	$AUC = \int_{0}^{1} SNS \cdot dSPC$	Combined metric based on the receiver operating characteristic (ROC) space (Powers, 2011)

Classification performance metrics based on the confusion matrix.

Méthodes de validation

Méthodes de validation

Méthode HoldOut

Maximiser précision Test => Maximiser précision Modèle

- L'apprentissage d'un modèle se fait à base de plusieurs paramètres.
- ➤ Le choix de leurs valeurs se fait à travers plusieurs essais et évaluations.
- Paramètres optimaux => précision de 100%.
- ➤ Problème d'overfitting => Mesure de précision non suffisante.
- > D'où les méthodes de **validation** et d'évaluation.
- Tirer des conclusions sur le comportement d'un modèle face à tout l'espace d'exemples en limitant l'influence des exemples d'entrainement.

Méthode validation croisée

Subdiviser **D** en **k** sous-ensembles de même taille - Folds.

Example: k-Fold Cross-Validation

Méthode validation croisée

Subdiviser **D** en **k** sous-ensembles de même taille - Folds.

Méthode validation croisée

Si **k=N** (i.e. test sur un seul exemple exclu) => Méthode **Leave-One-Out**

Précision Finale = Moyenne (Itération 1, Itération 2, ...)

Méthode Bootstrap

Subdiviser **D** en **k** sous-ensembles **aléatoires** – Par remplacement.

Combinaison de modèles

≛ Suivre

Determining if an image is a Chihuahua or muffin is a tough problem in artificial intelligence

- Combiner plusieurs modèles avec des performances faibles (weak learners) permettant d'obtenir un modèle plus efficace (meta-learner).
- Créer un grand nombre de petits modèles rapidement puis développer un modèle qui les rassemble.

- > Deux méthodes : Parallèles et séquentielles.
- ➤ Méthodes **parallèles** : Bagging et Random Forest.
- ➤ Méthodes **séquentielles** : Boosting (AdaBoost, Gradient Boosting, XGBoost etc.)
- > Stacking, Stacked Generalization (Wolpert, 1992).

Random Forest Simplified

Boosting

Les exemples mal classés sont *boostés* (mettre à jour leur poids) pour qu'ils aient davantage d'importance vis-à-vis du classifier faible au prochain tour, afin qu'il pallie le manque.

Boosting

Les exemples mal classés sont *boostés* (mettre à jour leur poids) pour qu'ils aient davantage d'importance vis-à-vis du classifier faible au prochain tour, afin qu'il pallie le manque.

Stacking/Blending

Deux niveaux d'algorithmes. Principalement, algos de types différents.

Stacking/Blending

> Deux niveaux d'algorithmes. Principalement, algos de types différents.

Level 1 training data

Data Point #	prediction from base learner 1	prediction from base learner 2	prediction from base learner 3	prediction from base learner M	actual
1	y ₁₁	y ₁₂	y ₁₃	y _{1M}	y ₁
2	y ₂₁	y ₂₂	y ₂₃	y _{2M}	У2
	***	***	***	***	***
N	y _{N1}	y _{N2}	y _{N3}	y _{NM}	y _N

Data

SAVOIR - PREDIRE - DECIDER

K-Nearest Neighbors

- ➤ KNN K Nearest Neighbors
- Algorithme de classification les plus simple.
- ➤ Principe : Calcul la distance entres tous les exemples de la base et le nouvel exemple qu'on cherche à classifier.
- Choisir la classe majoritaire parmi les K-distances les plus petites.
- Les exemples sont représentés par des vecteurs de coordonnées.
- Distance euclidienne, Manhattan, Minkowski, Hamming, etc.

Exemple: On pose K = 3

Scénario	Jeu d'acteurs	Classe
7	7	Good
7	4	Good
3	4	Bad
1	4	Bad

<u>Test Data</u>: Scénario = 3, Jeu d'acteurs = 7, classe = ?

Exemple: K = 3

Calculer la distance :

Euclidean

$$\sqrt{\sum_{i=1}^{k} (x_i - y_i)^2}$$

Scénario	Scénario Jeu d'acteurs		Distance
7	7	Bon	sqrt[(7-3) ² +(7-7) ²]=4
7	4	Bon	sqrt[(7-3) ² +(4-7) ²]=5
3	4	Mauvais	3
1	4	Mauvais	3.60

<u>Test Data</u>: Scénario = 3, Jeu d'acteurs = 7, classe = ?

Exemple: K = 3

Euclidean
$$\sqrt{\sum_{i=1}^{k} (x_i - y_i)^2}$$

Les 3 plus proches exemples:

	Scénario	Jeu d'acteurs	Classe	Distance
3	7	7	Bon	sqrt[(7-3) ² +(7-7) ²]=4
	7	4	Bon	sqrt[(7-3) ² +(4-7) ²]=5
1	3	4	Mauvais	3
2	1	4	Mauvais	3.60

<u>Test Data</u>: Scénario = 3, Jeu d'acteurs = 7, classe = ?

Exemple: K = 3

Euclidean

$$\sqrt{\sum_{i=1}^{k} (x_i - y_i)^2}$$

Choix de la classe majoritaire

	Scénario	Jeu d'acteurs	Classe	Distance
3	7	7	Bon	sqrt[(7-3) ² +(7-7) ²]=4
	7	4	Bon	sqrt[(7-3) ² +(4-7) ²]=5
1	3	4	Mauvais	3
2	1	4	Mauvais	3.60

<u>Test Data</u>: Scénario = **3**, Jeu d'acteurs = **7**, classe = **Mauvais**

Ressources

Data Mining: concepts and techniques, 3rd Edition

- ✓ Auteur : Jiawei Han, Micheline Kamber, Jian Pei
- ✓ Éditeur : Morgan Kaufmann Publishers
- ✓ Edition: Juin 2011 744 pages ISBN 9780123814807

Data Mining: concepts, models, methods, and algorithms

- ✓ Auteur : Mehmed Kantardzi
- ✓ Éditeur : John Wiley & Sons
- ✓ Edition : Aout 2011 552 pages ISBN : 9781118029121

Data Mining: Practical Machine Learning Tools and Techniques

- ✓ Auteur : Ian H. Witten & Eibe Frank
- ✓ Éditeur : Morgan Kaufmann Publishers
- ✓ Edition : Juin 2005 664 pages ISBN : 0-12-088407-0

Ressources

- Cours Abdelhamid DJEFFAL Fouille de données avancée
 - ✓ www.abdelhamid-djeffal.net

WekaMOOC – Ian Witten – Data Mining with Weka

✓ https://www.youtube.com/user/WekaMOOC/featured

Cours - Laboratoire ERIC Lyon - DATA MINING et DATA SCIENCE

✓ https://eric.univ-lyon2.fr/~ricco/cours/supports_data_mining.html

Gregory Piatetsky-Shapiro - KDNuggets

✓ http://www.kdnuggets.com/