# QUANTITATIVE RESEARCH METHODS DR. MEIKE MORREN

Lecture 4

#### contents

- Linear regression
  - Deterministic vs Probabilistic
  - Simple regression with nominal, ordinal and interval variables
  - T-test

- Estimating the coefficients
- Plotting the line

#### LINEAR REGRESSION

#### Simple linear regression

- Straight line
- Y is called the response/dependent variable
- x is called the predictor or independent variable (sometimes explanatory)
- The model is written as:

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

# R plot mtcars

## Scatterplot

#### Scatterplot of miles/gallon & horsepower



#### Deterministic vs probabilistic

Deterministic

$$Y_i = \beta_0 + \beta_1 x_i$$

Probabilistic

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

#### Estimation of parameters

$$b_0 = \bar{y} - b_1 \bar{x}$$

$$b_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Using the expected value which is the mean here and can also be written as:

$$\overline{y} = E(y) = \frac{1}{n} \sum_{i=1}^{n} y_i$$

## Ad line (first estimate parameters)

```
z <- lm(mpg ~ hp, data = mtcars)
plot(mtcars$hp, mtcars$mpg, col="blue")
abline(z,lty="dashed", col="red")</pre>
```

#### Scatterplot of miles/gallon & horsepower



# Equation (1/3)



# Equation (2/3)



# Equation (3/3)



#### Assess fit

| Y    | X   | Y predicted | Error | Error<br>squared |
|------|-----|-------------|-------|------------------|
| 21   | 110 | 22.59       | -1.59 | 2.54             |
| 22.8 | 110 | 22.59       | -1.59 | 2.54             |
| 21.4 | 931 | 23.75       | 95    | .91              |
| 18.7 | 110 | 22.59       | -1.19 | 1.43             |
| 18.1 | 175 | 18.16       | .54   | .29              |
| 14.3 | 105 | 22.93       | -4.83 | 23.38            |
| 24.4 | 245 | 13.38       | .92   | .84              |
| 22.8 | 62  | 25.87       | -1.47 | 2.16             |
| 19.2 | 95  | 23.62       | 82    | .67              |

#### Assess fit

Calculate predicted values using the parameters

 Find the errors (= difference between predicted and actual values)

Sum all squared errors

## Model fit (1)

SSE = sum of squared errors

$$SSE = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2$$

SST = sum of squares (total variation)

$$SST = \sum_{i=1}^{n} (Y_i - \overline{Y})^2$$

SSR = sum of squares regression (explained variation)

$$SSR = \sum_{i=1}^{n} (\widehat{Y}_i - \overline{Y})^2$$

## Model fit (2)

$$SST = SSE + SSR$$

$$R^2 = 1 - SSE/SST$$

$$R^2$$
 adjusted =

$$1 - (SSE/(n-k)) / (SST/(n-1))$$

$$SSE = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2$$

$$SST = \sum_{i=1}^{n} (Y_i - \overline{Y})^2$$

$$SSR = \sum_{i=1}^{n} (\widehat{Y}_i - \overline{Y})^2$$

# NOMINAL INDEPENDENT VARIABLES

#### Nominal variables

Is equal to a dummy variable:

Ex. Female (1) and male (0)

# Coefficient interpretation for dummy variables

The coefficient still represents a one-point increase, but now this means the effect of being male on the dependent variable



# Intercept interpretation for dummy variables

The constant still represents the mean level of the dependent variable where the independent variables are zero, now this is being female

$$Y_i = b_0 + b_1 x_1 + \varepsilon_i$$
The mean level of Y for females (i.e. X1=0)

```
materpre is biquarear of troop majubeed is
F-statistic: 23.66 on 1 and 30 DF, p-value: 3.416e-05
> summary(lm(mpg ~ vs, data = mtcars))
call:
lm(formula = mpq \sim vs, data = mtcars)
Residuals:
  Min 10 Median 30 Max
-6.757 -3.082 -1.267 2.828 9.383
coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 16.617 1.080 15.390 8.85e-16 ***
           7.940 1.632 4.864 3.42e-05 ***
VS.
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.581 on 30 degrees of freedom
Multiple R-squared: 0.4409, Adjusted R-squared: 0.4223
F-statistic: 23.66 on 1 and 30 DF, p-value: 3.416e-05
>
```

```
oquareur orrivoj najaocea
F-statistic: 23.66 on 1 and 30 DF, p-value: 3.416e-05
> summary(lm(mpg ~ vs, data = mtcars))
call:
lm(formula = mpg \sim vs, data = mtcars)
Residuals:
  Min 10 Median 30
                              Max
-6.757 -3.082 -1.267 2.828 9.383
coefficients:
            Estimate Std. En
(Intercept) < 16.617
                                    The mean level of Y where X is 0
              7.940
VS.
Signif. codes: 0 '***' 0.001 √*' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.581 on 30 degrees of freedom
Multiple R-squared: 0.4409, Adjusted R-squared: 0.4223
F-statistic: 23.66 on 1 and 30 DF, p-value: 3.416e-05
>
```

```
is aquai car or roay majaacca is
F-statistic: 23.66 on 1 and 30 DF, p-value: 3.416e-05
> summary(lm(mpg ~ vs, data = mtcars))
call:
lm(formula = mpq \sim vs, data = mtcars)
Residuals:
  Min 10 Median 30 Max
-6.757 -3.082 -1.267 2.828 9.383
coefficients:
            Estimate Std. Err t value Pr(>|t|)
(Intercept)
             16.617
                                  The increase in Y where X is 1 (=USA)
Signif. codes: 0 '***' 0.001
                               *' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.581 on 30 degrees of freedom
Multiple R-squared: 0.4409, Adjusted R-squared: 0.4223
F-statistic: 23.66 on 1 and 30 DF, p-value: 3.416e-05
> -
```

#### t.test()

When you ad a dummy variable to the model, you compare two means

- The mean of Y when X is zero
- The mean of Y when X is one

□ This is exactly the same as a t-test!

```
summary(lm(mpg \sim vs, data = mtcars))
   plot(mtcars$vs, mtcars$mpg, col="blue")
   abline(z,lty="dashed", col="red")
materpre a squarea. Vittos, Augustea a squarea. Vittes
F-statistic: 23.66 on 1 and 30 DF, p-value: 3.416e-05
> summary(lm(mpg ~ vs, data = mtcars))
call:
lm(formula = mpg \sim vs, data = mtcars)
Residuals:
  Min 10 Median 30 Max
-6.757 -3.082 -1.267 2.828 9.383
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 16.617 1.080 15.390 8.85e-16 ***
            7.940 1.632 4.864 3.42e-05 ***
VS
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```



#### Exercise 4\_1.r

#### Use the WVS dataset

Relate happiness to country

- a) Estimate a model with dummy variable (country)
- b) Change the dummy variable into a factor
- c) Change reference group
- d) Check with t.test function

# ORDINAL INDEPENDENT VARIABLES

#### Ordinal variables

 You should regard a variable ordinal when you can assume order, but you are not sure about the equal distances

- Compare two models in which
  - (1) you include this variable as a multinomial variable (and explore each category separately)
  - (2) you include the variable as interval variable

## Ordinal variables (factor())

```
> summary(Im(mpg ~ gear, data = mtcars))
call:
lm(formula = mpg ~ gear, data = mtcars)
Residuals:
            1Q Median
   Min
                            30
                                   Max
-10.240 -2.793 -0.205 2.126 12.583
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                          4.916
                               1.144 0.2618
(Intercept)
             5.623
               3.923
                         1.308
                                2.999
                                       0.0054 **
gear
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 5.374 on 30 degrees of freedom
Multiple R-squared: 0.2307, Adjusted R-squared: 0.205
F-statistic: 8.995 on 1 and 30 DF, p-value: 0.005401
> summary(lm(mpg \( \) factor(gearR) data = mtcars))
call:
lm(formula = mpg ~ factor(gearR), data = mtcars)
Residuals:
    Min
            10 Median
                             3Q
                                   Max
-6.7333 -3.2333 -0.9067 2.8483 9.3667
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                            1.216 13.250 7.87e-14 ***
(Intercept)
                 16<del>. 107</del>
factor(gearR)1
                            1.823
                                  4.621 7.26e-05 ***
                 8.427
factor(gearR)2
                  5.273
                            2.431
                                   2.169
                                           0.0384 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

#### Plot two lines



#### Plot two lines

```
z<-summary(lm(mpg ~ factor(gearR), data = mtcars))
plot(mtcars$gearR, mtcars$mpg, col="blue")
abline(a=z$coef[1,1],b=z$coef[1,2],lty="dashed", col="red")
abline(a=z$coef[1,1],b=z$coef[1,3],lty="dashed", col="red")</pre>
```

#### Exercise 4\_2.r

#### Use the WVS dataset

Relate happiness to education level or age

- Estimate a model with an ordinal variable (eduR or ageR)
- Recode the ordinal variable so that the lowest level is zero
- c) Compare with factor variable
- d) Plot the lines (optional)

# INTERVAL INDEPENDENT VARIABLES

#### Interval variables

- This is the level usually assumed
- A one-point increase is the same across all levels of the variable
- One straight line is estimated

```
z <- lm(mpg ~ hp, data = mtcars)
plot(mtcars$hp,mtcars$mpg, col="blue")
abline(z,lty="dashed", col="red")</pre>
```



#### Ad axis labels



### Ad legend

legend("topright", bty="n", legend=paste("beta coefficient
=", round(z\$coef[2], digits=3)))

OLS: miles/gallon and horsepower



#### Exercise 4\_3.r

Use the WVS dataset

■ Relate happiness to income

- a) Estimate a model with income
- b) Plot the line

#### Next lecture

■ Multiple regression