

JianYan Testing Group Shenzhen Co., Ltd.

Report No.: JYTSZ-R12-2200088

IC RF Test Report

Applicant: Nebra Ltd

Address of Applicant: Unit 4 Bells Yew Green Business Court Bells Yew Green

Equipment Under Test (EUT)

Product Name: Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra

Indoor Helium Hotspot ROCK Pi 4 Version

Model No.: NEBHNT-HHRK4-915, NEBHNT-HHRK4-915-2, NEBHNT-

HHRK4-915-3

Canada IC: 27187-HHRK4

Applicable Standards: RSS-Gen Issue 5, RSS-247 Issue 2

Date of Sample Receipt: 05 Jan., 2022

Date of Test: 06 Jan., to 08 May, 2022

Date of Report Issued: 18 May, 2022

Test Result: PASS

Tested by: / **Date:** 18 May, 2022

Reviewed by: Date: 18 May, 2022

Approved by: Date: 18 May, 2022

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	09 May, 2022	Original
01	18 May, 2022	Updated page1, 4

3 Contents

			Page
1	Cov	ver Page	1
2	Ver	rsion	2
3	Cor	ntents	3
4	Ger	neral Information	4
	4.1	Client Information	4
	4.2	General Description of E.U.T.	4
	4.3	Test Mode and Test Environment	5
	4.4	Description of Support Units	5
	4.5	Measurement Uncertainty	5
	4.6	Additions to, Deviations, or Exclusions From the Method	
	4.7	Laboratory Facility	
	4.8	Laboratory Location	
	4.9	Test Instruments List	6
5	Mea	asurement Setup and Procedure	7
	5.1	Test Channel	7
	5.2	Test Setup	7
	5.3	Test Procedure	9
6	Tes	st Results	10
	6.1	Summary	10
	6.2	Antenna Requirement	13
	6.3	AC Power Line Conducted Emission	
	6.4	Conducted Output Power	16
	6.5	6dB Occupied Bandwidth	
	6.6	20dB Occupied Bandwidth	
	6.7	Carrier Frequencies Separation	
	6.8	Hopping Channel Number	
	6.9	Dwell Time	
	6.10	Power Spectral Density	
	6.11	Spurious Emission	23

4 General Information

4.1 Client Information

Applicant:	Nebra Ltd
Address:	Unit 4 Bells Yew Green Business Court Bells Yew Green
Manufacturer/Factory:	Nebra Ltd
Address:	Unit 4 Bells Yew Green Business Court Bells Yew Green

4.2 General Description of E.U.T.

TIE OCHCIAI DCSOND	
Product Name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version
Model No.:	NEBHNT-HHRK4-915, NEBHNT-HHRK4-915-2, NEBHNT-HHRK4-915-3
Operation Frequency:	903.9 MHz – 905.3 MHz
Number of Channel:	8
Modulation Type:	LoRa
Modulation Technology:	Hybrid spread-spectrum
Antenna Type:	External Antenna
Antenna Gain:	1 dBi (declare by applicant)
AC Adapter:	Model No.:R241-1202500I
	Input: AC100-240V, 50/60Hz 1.5 A
	Output: DC 12.0V, 2.5A
Remark:	Model No.: NEBHNT-HHRK4-915, NEBHNT-HHRK4-915-2, NEBHNT-HHRK4-915-3 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.
Test model, sample#	NEBHNT-HHRK4-915, WSZR122200088
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

4.3 Test Mode and Test Environment

Test Modes:			
Non-hopping mode:	Keep the EUT in continuous transmitting mode.		
Hopping mode:	Keep the EUT in hopping mode.		
Remark: The report only refle	ects the test data of worst mode.		
Operating Environment:			
Temperature:	15℃ ~ 35℃		
Humidity:	20 % ~ 75 % RH		
Atmospheric Pressure:	1010 mbar		

4.4 Description of Support Units

The EUT has been tested as an independent unit.

4.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
Conducted Emission for LISN (9kHz ~ 150kHz)	±3.11 dB
Conducted Emission for LISN (150kHz ~ 30MHz)	±2.62 dB
Radiated Emission (30MHz ~ 1GHz) (3m SAC)	±4.45 dB
Radiated Emission (1GHz ~ 18GHz) (3m SAC)	±5.34 dB
Radiated Emission (18GHz ~ 40GHz) (3m SAC)	±5.34 dB

Note: All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

4.6 Additions to, Deviations, or Exclusions From the Method

No

4.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

● CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

4.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://jyt.lets.com

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-170-C No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

4.9 Test Instruments List

Radiated Emission(3m SAC):						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal.Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	ETS	9m*6m*6m	WXJ001-1	01-19-2021	01-18-2024	
BiConiLog Antenna	Schwarzbeck	VULB9163	WXJ002	03-07-2021	03-06-2022	
biconilog Antenna	Scriwarzbeck	VULD9103	VV AJUU2	02-17-2022	02-16-2023	
Biconical Antenna	Schwarzbeck	VUBA9117	WXJ002-1	06-20-2021	06-19-2022	
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-2	03-07-2021	03-06-2022	
nom Antenna	Schwarzbeck	DDNA9120D	VV AJUUZ-Z	02-17-2022	02-16-2023	
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-3	06-18-2021	06-17-2022	
Pre-amplifier	Schwarzbeck	BBV9743B	WXG001-7	03-07-2021	03-06-2022	
(30MHz ~ 1GHz)	Schwarzbeck	DDV9/43D	WAG001-7	02-17-2022	02-16-2023	
Pre-amplifier	SKET	LNPA_0118G-50	WXG001-3	03-07-2021	03-06-2022	
(1GHz ~ 18GHz)				02-17-2022	02-16-2023	
Pre-amplifier	55.0	TRLA-	11/1/0004-0	03-07-2021	03-06-2022	
(18GHz ~ 40GHz)	RF System	180400G45B	WXG001-9	02-17-2022	02-16-2023	
FMI Toot Doggiver	Dalada Q Oahaaan	ESRP7	WXJ003-1	03-03-2021	03-02-2022	
EMI Test Receiver	Rohde & Schwarz	ESRP7	WXJ003-1	02-17-2022	02-16-2023	
Spectrum Analyzer	KEYSIGHT	N9010B	WXJ004-2	11-27-2021	11-26-2022	
Band Reject Filter Group	Tonscend	JS0806-F	WXJ089	N	<u>/</u> A	
Coaxial Cable	JYTSZ	JYT3M-1G-NN-8M	WXG001-4	03-07-2021	03-06-2022	
(30MHz ~ 1GHz)	J1132	JT I SIVI- I G-ININ-OIVI	WAG001-4	02-17-2022	02-16-2023	
Coaxial Cable	IVTC7	JYT3M-18G-NN-	WYC001 5	03-07-2021	03-06-2022	
(1GHz ~ 18GHz)	JYTSZ	8M	WXG001-5	02-17-2022	02-16-2023	
Coaxial Cable	1 1Y1SZ 1 1 W/XG001-7	JYT3M-40G-SS-	WYC001 7	03-07-2021	03-06-2022	
(18GHz ~ 40GHz)		WAG001-7	02-17-2022	02-16-2023		
Test Software	Tonscend	TS+		Version: 3.0.0.1		

Conducted Emission:							
Test Equipment	Manufacturer	Model No.	Manage No.	Cal.Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
EMI Test Receiver	Rohde & Schwarz	ESCI 3	WXJ003	03-03-2021	03-02-2022		
Elvii Test Receiver	Ronde & Schwarz	E3CI 3	VV X J U U S	02-17-2022	02-16-2023		
DE 0 :: 1	TOD DDECICION	RSU0301 WXG003	WYC002	03-03-2021	03-02-2022		
RF Switch	TOP PRECISION		WAG003	02-17-2022	02-16-2023		
LICN	Cabusandaala	NOLK 0407	00 1004 40	03-18-2021	03-17-2022		
LISN	Schwarzbeck	NSLK 8127	QCJ001-13	02-17-2022	02-16-2023		
LISN	Rohde & Schwarz	ESH3-Z5	WXJ005-1	06-18-2021	06-17-2022		
LISN Coaxial Cable	IVT07	D/TOF 40 NIN 0M	W/VC002 4	03-03-2021	03-02-2022		
(9kHz ~ 30MHz)	JYTSZ	JYTCE-1G-NN-2M WXG003-1		02-17-2022	02-16-2023		
Test Software	AUDIX	E3	\	ersion: 6.110919/	b		

5 Measurement Setup and Procedure

5.1 Test Channel

According to ANSI C63.10-2013 chapter 5.6.1 Table 4 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

Channel		Fre	equency	C	Channel
1	903.9MHz	4	904.5MHz	7	905.1MHz
2	904.1MHz	5	904.7MHz	8	905.3MHz
3	904.3MHz	6	904.9MHz		

Note:

Channel No. 1, 5 & 8 were selected as Lowest, Middle and Highest channel.

5.2 Test Setup

1) Conducted emission measurement:

Note: The 0.8 m distance specified between EUT/AE/PSU and AMN/AAN, is applicable only to the EUT being measured. If the device is AE then it shall be >0.8 m.

2) Radiated emission measurement:

Below 1GHz (3m SAC)

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-170-C No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

5.3 Test Procedure

5.3 Test Procedure	
Test method	Test step
Conducted emission	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.
Radiated emission	For below 1GHz:
	1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m.
	 EUT works in each mode of operation that needs to be tested, and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
	For above 1GHz: 1. The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m.
	2. EUT works in each mode of operation that needs to be tested, and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.
	3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
Conducted test method	The antenna port of EUT was connected to the test port of the test system through an RF cable.
	The EUT is keeping in continuous transmission mode and tested in all modulation modes.
	Open the test software, prepare a test plan, and control the system through the software. After the test is completed, the test report is exported through
	the test software.

6 Test Results

6.1 Summary

6.1.1 Clause and data summary

Test items	Standard clause	Test data	Result
Antenna Requirement	RSS-Gen Section 6.8	See Section 6.2	Pass
AC Power Line Conducted Emission	RSS-Gen Section 8.8	See Section 6.3	Pass
Conducted Output Power	RSS-247 Section 5.4(a)	See Section 6.4	Pass
6dB Occupied Bandwidth	RSS-247 Section 5.2(a)	See Section 6.5	Pass
20dB Occupied Bandwidth	RSS-247 Section 5.1(a)	See Section 6.5	Pass
Carrier Frequencies Separation	RSS-247 Section 5.1(b)	See Section 6.6	Pass
Hopping Channel Number	RSS-247 Section 5.1(c)	See Section 6.7	Pass
Dwell Time	RSS-247 Section 5.1(c)	See Section 6.8	Pass
Power Spectral Density	RSS-247 Section 5.2(b)	See Section 6.9	Pass
	RSS-Gen Section 6.13		
Spurious Emission	RSS-Gen Section 8.10	See Section 6.10	Pass
	RSS-247 Section 5.5		

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

6.1.2 Test Limit

Test items			Limit		
		Frequency	Limit	(dBµV)	
		(MHz)	Quasi-Peak	Average	
AC Power Line Conducted		0.15 - 0.5	66 to 56 Note	56 to 46 Note	
Emission		0.5 – 5	56	46	
		5 – 30	60	50	
		Note: The level decre	eases linearly with the loga	arithm of the frequency.	
Conducted Output Power	output po hopset u output po	ower shall not exce ses 50 or more hop	ed 1.0 W, and the e.i. oping channels; the med 0.25 W and the e.	ne maximum peak cor .r.p. shall not exceed naximum peak conduc i.r.p. shall not exceed	4 W if the cted
6dB Occupied Bandwidth			this type of hybrid sy rmally associated wit	stem to comply with the hamber of the hamber	he 500
20dB Occupied Bandwidth	The bandwidth of a frequency hopping channel is the 20 dB emission bandwidth, measured with the hopping stopped. The system's radio frequency (RF) bandwidth is equal to the channel bandwidth multiplied by the number of channels in the hopset. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.				
Carrier Frequencies Separation				ncies separated by a r channel, whichever is	
Hopping Channel Number	N/A				
Dwell Time	The transmission must comply with a 0.4 second/channel maximum dwell time when the hopping function is turned on.				
Max Power Density	The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of section 5.4(d), (i.e. the power spectral density shall be determined using the same method as is used to determine the conducted output power).				
Carrier Frequencies Separation				ncies separated by a r channel, whichever is	

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required:

Spurious Emission

Frequency	Limit (d	iΒμV/m)	Detector		
(MHz)	@ 3m @ 10m		Detector		
30 – 88	40.0	30.0	Quasi-peak		
88 – 216	43.5	33.5	Quasi-peak		
216 – 960	46.0	36.0	Quasi-peak		
960 – 1000	54.0	44.0	Quasi-peak		
Note: The more stringent limit	applies at transition	on frequencies.			
Frequency	Limit (dBμV/m) @ 3m				
riequelicy	Ave	rage	Peake		
Above 1 GHz	54.0		74.0		
Note: The measurement band	dwidth shall be 1 N	IHz or greater.			

Report No.: JYTSZ-R12-2200088

6.2 Antenna Requirement

Standard requirement:

FCC Part 15 C Section 15.203 & 247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The LoRa antenna is an External antenna which permanently attached, and the best case gain of the antenna is 3 dBi. See product internal photos for details.

6.3 AC Power Line Conducted Emission

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test by:	Mike	Test mode:	Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz		

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	<u>dB</u>	₫B	dBu₹	dBu₹	<u>dB</u>	
1	0.158	29.67	0.00	0.01	29.68	55.56	-25.88	Average
2	0.161	45.81	0.00	0.01	45.82	65.43	-19.61	QP
3	0.186	43.55	0.00	0.02	43.57	64.20	-20.63	QP
4	0.226	25.18	0.00	0.02	25.20	52.61	-27.41	Average
4 5	0.226	40.49	0.00	0.02	40.51	62.61	-22.10	QP
6	0.373	28.87	0.00	0.03	28.90	48.43	-19.53	Average
6	0.377	38.44	0.00	0.03	38.47	58.34	-19.87	QP
8	0.494	24.64	0.00	0.03	24.67	46.10	-21.43	Average
8 9	2.033	33.00	0.00	0.20	33.20		-22.80	
10	2.055	26.63	0.00	0.20	26.83	46.00	-19.17	Average
11	11.021	27.36	0.00	0.11	27.47			Average
12	11.621	34.81	0.00	0.11	34.92		-25.08	

Remark

1. Level = Read level + LISN Factor + Cable Loss.

Product name:		ndoor LoRa ndoor Helium	-			Product m	odel:	IEBHNT-HHRK	(4-91
Test by:	Mike					Test mode): T	x mode	
Test frequency:	150 kHz	2 ~ 30 MHz				Phase:		leutral	
Test voltage:	AC 120	V/60 Hz							
	145.15								
90 Leve	(dBuV)								7
81.0									
72.0									
63.0	-							RSS GEN-QF)
54.0								RSS GEN-AV	,
45.0	3	7							
36.0	MM	Á.							
27.0		Maka	10	whom the	MAN	nanna	Mar.		
18.0	A SUNT	Why Man	ANA ANA	and broken	VVVV	2000	- The second states	en se proposition de la company	u
Walking.	N.		The last	Little Annual L	M M W	A A A	The state of the s	The second secon	
9.0		NAM!	Will		4 A A		- "	and the same of th	44
0		N/Mo/II	The state of the s		uvr			and the second	14
0.15	.2	.5	1	2 Frequenc	cy (MHz)	5	10	20	30
0	.2	.5	1		cy (MHz)	5	10	20	30
0.15		Read	LISN	Frequence		Limit	Over		30
0.15	.2 Freq		LISN	Frequenc	Cy (MHz)	Limit	Over	20 Remark	30
0.15		Read	LISN	Frequence		Limit Line	Over Limit		30
0.15 Trace: 15	Freq	Read Level 1	LISN Factor	Cable Loss	Level	Limit Line dBuV	Over Limit ———————————————————————————————————	Remark	30
0.15 Trace: 15	Freq MHz 0.150 0.150	Read Level 1 dBuV 30.33 46.17	LISN Factor dB 0.00 0.00	Cable Loss dB 0.01	Level dBuV 30.34 46.18	Limit Line dBuV 56.00	Over Limit 	Remark Average QP	30
0.15 Trace: 15	Freq MHz 0.150 0.150 0.190	Read Level 1 	LISN Factor dB 0.00 0.00 0.00	Cable Loss dB 0.01 0.01 0.03	Level dBuV 30.34 46.18 44.22	Limit Line dBuV 56.00 66.00	Over Limit 	Remark Average QP QP	30
0.15 Trace: 15	Freq MHz 0.150 0.150	Read Level 1 dBuV 30.33 46.17	LISN Factor dB 0.00 0.00	Cable Loss dB 0.01	Level dBuV 30.34 46.18	Limit Line dBuV 56.00 66.00 64.02	Over Limit 	Remark Average QP QP Average	30
0.15 Trace: 15	Freq MHz 0.150 0.150 0.190 0.194 0.234 0.377	Read Level 1 	LISN Factor dB 0.00 0.00 0.00 0.00	Cable Loss dB 0.01 0.03 0.03 0.03 0.02 0.03	Level	Limit Line dBuV 56.00 66.00 64.02 53.84 62.30 48.34	Over Limit 	Remark Average QP QP Average QP Average	30
0.15 Trace: 15	Freq MHz 0.150 0.150 0.190 0.194 0.234 0.377 0.377	Read Level 1 	LISN Factor dB 0.00 0.00 0.00 0.00 0.00	Cable Loss dB 0.01 0.03 0.03 0.02 0.03 0.03	Level 30.34 46.18 44.22 28.14 39.83 33.20 38.76	Limit Line 7 dBuV 56.00 66.00 64.02 53.84 62.30 48.34 58.34	Over Limit -25.66 -19.82 -19.80 -25.70 -22.47 -15.14 -19.58	Remark Average QP QP Average QP Average QP Average QP	30
0.15 Trace: 15	Freq MHz 0.150 0.150 0.190 0.194 0.234 0.377 0.377 0.494 0.792	Read Level 1 	LISN Factor 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Cable Loss dB 0.01 0.01 0.03 0.03 0.03 0.03 0.03 0.0	Level dBuV 30.34 46.18 44.22 28.14 39.83 33.20 38.76 22.42 19.88	Limit Line 7 dBuV 56.00 66.00 64.02 53.84 62.30 48.34 46.10 46.00	Over Limit 	Remark Average QP QP Average QP Average QP Average Average Average	30
0.15 Trace: 15	Freq MHz 0.150 0.150 0.190 0.194 0.234 0.377 0.377 0.494	Read Level 1 dBuV 30.33 46.17 44.19 28.11 39.81 33.17 38.73 22.39	LISN Factor dB 0.00 0.00 0.00 0.00 0.00	Cable Loss dB 0.01 0.01 0.03 0.03 0.03 0.03 0.03 0.0	Level dBuV 30.34 46.18 44.22 28.14 39.83 33.20 38.76 22.42	Limit Line 7 dBuV 56.00 66.00 64.02 53.84 62.30 48.34 46.10 46.00 56.00	Over Limit -25.66 -19.82 -19.80 -25.70 -22.47 -15.14 -19.58 -23.68	Remark Average QP Average QP Average QP Average Average Average QP	30

1. Level = Read level + LISN Factor + Cable Loss.

6.4 Conducted Output Power

Test channel	Maximum Output Power (dBm)	Limit (dBm)	Result
Lowest channel	20.33	24.00	Pass
Middle channel	20.21	24.00	Pass
Highest channel	20.39	24.00	Pass

Test plot as follows:

6.5 6dB Occupied Bandwidth

Test channel	6dB Occupy Bandwidth (kHz)	Limit (kHz)	Result
Lowest channel	261.9		Pass
Middle channel	261.4	N/A	Pass
Highest channel	261.1		Pass

Test plot as follows:

6.6 20dB Occupied Bandwidth

Test channel	20dB Occupy Bandwidth (kHz)	Limit (kHz)	Result
Lowest channel	156.0		Pass
Middle channel	156.0	N/A	Pass
Highest channel	156.0		Pass

Test plot as follows:

6.7 Carrier Frequencies Separation

Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
Lowest channel	200		Pass
Middle channel	200	156	Pass
Highest channel	200		Pass

Test plot as follows:

6.8 Hopping Channel Number

Hopping channel numbers	Limit	Result
8	N/A	Pass

Test plot as follows:

6.9 Dwell Time

T _{on} (s)	Hopping numbers (10 s or 20 s period)	Dwell time (s)	Limit (s)	Result
0.055	3	0.165	0.4	Pass

Note:

- 1. Ton is time per hop.
- 2. Dwell time = T_{on} * Hopping numbers.

Test plot as follows:

6.10 Power Spectral Density

- 6		<u> </u>			
	Test Channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result	
	Lowest channel	7.85			
	Middle channel	7.97	8.00	Pass	
	Highest channel	6.48			

Test plot as follows:

6.11 Spurious Emission

6.11.1 Band-edge Emission

6.11.2 Conducted Spurious Emission

6.11.3 Emissions in Restricted Frequency Bands

The Emissions in Resultation requests y Europe				
Product Name: Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version		Product Model:	NEBHNT-HHRK4-915	
Test By:	Mike	Test mode:	Tx mode	
Test Channel:	960 MHz ~ 1 GHz	Polarization:	Vertical	
Test Voltage:	AC 120/60Hz			

Remark:

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Product Name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product Model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	Tx mode
Test Channel:	960 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz		

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Product Name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product Model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	Tx mode
Test Channel:	1000 MHz ~ 1240 MHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz		

Suspected Data List										
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity		
1	1086.8800	13.18	43.28	30.10	54.00	10.72	AV	Vertical		
2	1095.0400	24.39	54.53	30.14	74.00	19.47	PK	Vertical		

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Product Name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product Model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	Tx mode
Test Channel:	1000 MHz ~ 1240 MHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz		

Suspe	Suspected Data List										
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity			
1	1106.800	24.13	54.31	30.18	74.00	19.69	PK	Horizontal			
2	1125.040	13.77	43.97	30.20	54.00	10.03	AV	Horizontal			

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

6.11.4 Emissions in Non-restricted Frequency Bands

Below 1GHz:

Product Name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product Model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz		

Suspec	ted Data Lis	st						
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	75.013	45.83	28.73	-17.10	40.00	11.27	PK	Vertical
2	95.870	43.86	26.93	-16.93	43.50	16.57	PK	Vertical
3	171.634	50.30	33.31	-16.99	43.50	10.19	PK	Vertical
4	500.012	42.40	35.44	-6.96	46.00	10.56	PK	Vertical
5	600.029	39.41	33.93	-5.48	46.00	12.07	PK	Vertical
6	750.103	38.80	35.06	-3.74	46.00	10.94	PK	Vertical

Remark:

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Product Name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product Model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz		

Suspec	Suspected Data List										
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity			
1	72.005	42.66	25.66	-17.00	40.00	14.34	PK	Horizontal			
2	175.417	39.79	22.83	-16.96	43.50	20.67	PK	Horizontal			
3	250.018	42.57	28.78	-13.79	46.00	17.22	PK	Horizontal			
4	399.995	44.70	34.24	-10.46	46.00	11.76	PK	Horizontal			
5	600.029	36.90	31.42	-5.48	46.00	14.58	PK	Horizontal			
6	900.080	36.37	35.00	-1.37	46.00	11.00	PK	Horizontal			

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Above 1GHz:

Product Name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product Model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	Tx mode
Test Frequency:	1 GHz ~ 10 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz		

Suspe	Suspected Data List									
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity		
1	1807.80	54.40	33.43	-20.97	74.00	40.57	PK	Vertical		
2	1807.80	47.68	26.71	-20.97	54.00	27.29	AV	Vertical		
3	2711.70	47.86	30.71	-17.15	54.00	23.29	AV	Vertical		
4	2711.70	54.24	37.09	-17.15	74.00	36.91	PK	Vertical		
5	3615.60	46.56	31.99	-14.57	54.00	22.01	AV	Vertical		
6	3615.60	55.75	41.18	-14.57	74.00	32.82	PK	Vertical		
7	4519.50	46.31	35.52	-10.79	54.00	18.48	AV	Vertical		
8	4519.50	54.30	43.51	-10.79	74.00	30.49	PK	Vertical		
9	5423.40	51.22	45.25	-5.97	74.00	28.75	PK	Vertical		
10	5423.40	44.96	38.99	-5.97	54.00	15.01	AV	Vertical		
11	6327.30	45.02	41.10	-3.92	54.00	12.90	AV	Vertical		
12	6327.30	51.69	47.77	-3.92	74.00	26.23	PK	Vertical		
13	7231.20	44.40	44.33	-0.07	54.00	9.67	AV	Vertical		
14	7231.20	50.65	50.58	-0.07	74.00	23.42	PK	Vertical		
15	8135.10	43.52	44.32	0.80	54.00	9.68	AV	Vertical		
16	8135.10	51.17	51.97	0.80	74.00	22.03	PK	Vertical		
17	9039.00	51.61	53.37	1.76	74.00	20.63	PK	Vertical		
18	9039.00	44.41	46.17	1.76	54.00	7.83	AV	Vertical		

Remark:

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Product Name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product Model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	Tx mode
Test Frequency:	1 GHz ~ 10 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz		

Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	1807.80	55.45	34.48	-20.97	74.00	39.52	PK	Horizontal
2	1807.80	47.77	26.80	-20.97	54.00	27.20	AV	Horizontal
3	2711.70	46.79	29.64	-17.15	54.00	24.36	AV	Horizontal
4	2711.70	55.16	38.01	-17.15	74.00	35.99	PK	Horizontal
5	3615.60	46.22	31.65	-14.57	54.00	22.35	AV	Horizontal
6	3615.60	52.92	38.35	-14.57	74.00	35.65	PK	Horizontal
7	4519.50	46.03	35.24	-10.79	54.00	18.76	AV	Horizontal
8	4519.50	54.23	43.44	-10.79	74.00	30.56	PK	Horizontal
9	5423.40	51.47	45.50	-5.97	74.00	28.50	PK	Horizontal
10	5423.40	44.31	38.34	-5.97	54.00	15.66	AV	Horizontal
11	6327.30	44.48	40.56	-3.92	54.00	13.44	AV	Horizontal
12	6327.30	50.96	47.04	-3.92	74.00	26.96	PK	Horizontal
13	7231.20	44.75	44.68	-0.07	54.00	9.32	AV	Horizontal
14	7231.20	52.36	52.29	-0.07	74.00	21.71	PK	Horizontal
15	8135.10	43.68	44.48	0.80	54.00	9.52	AV	Horizontal
16	8135.10	51.54	52.34	0.80	74.00	21.66	PK	Horizontal
17	9039.00	50.87	52.63	1.76	74.00	21.37	PK	Horizontal
18	9039.00	43.74	45.50	1.76	54.00	8.50	AV	Horizontal

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

----End of report-----