

Arquitetura de Computadores

Prof. Marcos Grillo marcos.grillo@aedu.com

Apresentação da Disciplina

PLANO DE ENSINO E APRENDIZAGEM						
CURSO: Ciência da Computação						
Disciplina:	Período Letivo:	Série:	Periodo:	Semestre de	Ano de Ingresso:	
Arquitetura de Computadores	2° sem/2013	6ª Série	Não definido	Ingresso:	2011	
C.H. Teórica:		C.H. Outras: C.H. Total:		tal:		
40	20 60					

Ementa

Arquiteturas RISC e CISC. Pipeline. Paralelismo de Baixa Granularidade. Processadores Superescalares e Superpipeline. Multiprocessadores. Multicomputadores. Arquiteturas Paralelas e não Convencionais. Microprocessadores e Computadores Pessoais. Organização de Memória. Sistemas de Entrada e Saída, Sistemas de vídeo, Som e Outros.

Objetivos

Compreender e assimilar os componentes de dispositivos que compõem o computador. Formas de organização e de comunicação entre os subsistemas computacionais (processador, memória, disco e etc.)

Conhecer a estrutura de funcionamento de uma CPU. conhecer as arquiteturas de computadores do tipo CISC e RISC. Conhecer arquiteturas de computadores pessoalis, multicomputadores e multiprocessadores.

Apresentação da Disciplina

	Cronograma de Aulas				
Semana nº.	Tema				
1	Estrutura básica de um computador pessoal				
2	Estrutura e Funcionamento da CPU: conjunto de instruções				
3	Estrutura e Funcionamento da CPU: ciclo de instruções				
4	Arquitetura RISC e CISC				
5	Registradores: tipos de registradores				
6	Registradores mais utilizados em computadores pessoais				
7	Arquitetura Pipeline				
8	Atividades de Avaliação.				
9	Memorias: principal				
10	Memorias: Secundária, cache				
11	Dispositivos de entradas e saída				
12	Barramento: Tipos, arquitetura, adaptadores				
13	Sistema de video: GPU, Memórias, VGA, HDMI, 3D				
14	Sistema multimídia				
15	Análise de desempenho de computadores (Benchmark)				
16	Arquitetura de computadores com paralelismo: Cluster, Cloud.				
17	Computadores dedicados e embarcados				
18	Prova Escrita Oficial				
19	Exercícios de Revisão.				
20	Prova Substitutiva				

Literatura.

HENNESSY, J. L.. **Arquitetura de Computadores** : Uma Abordagem Quantitativa. 4° ed. São Paulo: Campus - Elsevier, 2009.

Sistema de Avaliação				
1° Avaliação - PESO 4,0	2° Avaliação - PESO 6,0			
Atividades Avaliativas a Critério do Professor	Prova Escrita Oficial			
Práticas: 3	Práticas: 3			
Teóricas: 7	Teóricas: 7			
Total: 10	Total: 10			

Cronograma de Aulas - 1ª etapa.

- Estrutura básica de um computador pessoal
- Estrutura e Funcionamento da CPU: conjunto de instruções
- Estrutura e Funcionamento da CPU: ciclo de instruções
- Arquitetura RISC e CISC
- Registradores: tipos de registradores
- Registradores mais utilizados em computadores pessoais
- Arquitetura Pipeline
- Atividades de Avaliação.

Cronograma de Aulas - 2º etapa.

- Memorias: principal;
- Memorias: Secundária, cache;
- Dispositivos de entradas e saída;
- Barramento: Tipos, arquitetura, adaptadores;
- Sistema de vídeo;
- Sistema multimídia;
- Análise de desempenho de computadores (Benchmark);
- Arquitetura de computadores com paralelismo;
- Computadores dedicados e embarcados;
- Prova Escrita Oficial;
- Exercícios de Revisão;
- Prova Substitutiva;

Paralelismo, Cluster e Cloud

Computação serial

- Convencionalmente executado sequencialmente sendo:
 - Uma instrução executada por vez;
 - Executado em uma unidade de processamento central;
 - Uma instrução por vez;

Paralelismo ou computação paralela

- Instruções executadas em paralelo;
- Múltiplos elementos de processamento;
- Multinúcleo (múltiplos núcleos ou multicore);
- Threads;

Porque?

 Dificuldades do aumento de capacidade de processamento.

Máquinas MIMD (Multiple Instruction Multiple Data) são arquiteturas caracterizadas pela execução simultânea de múltiplos fluxos de instruções.

Arquitetura SMP

Arquitetura NUMA

SMP x NUMA

SMP Architecture

NUMA Architecture

O que são clusters?

- Cluster pode ser definido como um sistema onde dois ou mais computadores trabalham de maneira conjunta para realizar processamento pesado;
- Os computadores dividem as tarefas de processamento e trabalham como se fossem um único computador;
- Mascara o ambiente como único;
- Utilizam o conceito nó ou nodo;
- Custo mais acessível que computadores de grande porte.

Clusters

High Availability (HA) and Failover

- Se um nó do cluster falhar, outro poderá assumir os trabalhos (alta disponibilidade);
- Aplicação precisa ser escrita para prever casos de interrupções de algum nó;
- Utilizado em serviços de missão crítica:
 - Servidores de arquivos;
 - Correio eletrônico;
 - Banco de dados;
 - WEB.

Load Balancing

- As requisições são distribuídas entre os computadores do cluster;
- Distribui o trafego entre os computadores que formam o cluster;
- Distribui o processamento entre os nodos;
- Largamente utilizado em fazendas de servidores WEB (farm WEB).
- Exemplo:
 - Mosix (Multicomputer Operating System for UnIX).

Load Balancing + HA

- Se um nó falhar outro deverá assumir as requisições atribuídas a quem falhou;
- Aumenta a disponibilidade do sistema, sendo que se algum nó falhar outros nós terão a capacidade de continuar a requisição;

- Ex:
 - VMWARE, XEN(Citrix), HiperV

Alto desempenho

 Vários computadores dividindo as tarefas em fragmentos;

• Uma grande tarefa dividida em "pedaços",

onde cada nó executa um pequeno

pedaço da aritmética;

• Exemplo:

• Cluster da Unicamp com 12 PS3.

- GNU Linux;
- Escalável;
- Máquinas não especializadas;
- Alta Disponibilidade (HA- High Availability);
- Alta Performance (HPC- High Performance Computing);
- Um nó controla todo o cluster;

- Interação automática com o serviço, sem precisar de interação humana (suporte);
- Cobrado por utilização;
- Elástico;
- Geograficamente distribuído;
- Plataformas heterogenias.

Software as a Service (SaaS)

- O cliente n\u00e3o precisa de investimento em infraestrutura;
- Flexibilidade de implantação (aumento de licenças e usuários sob demanda);
- Pouca dependência da equipe técnica;
- Modular, podendo haver versões diferentes de software, e habilitar funções diretamente na plataforma;
- Elasticidade de licenciamento (aumento ou diminuição de licenças).

Platform as a Service (PaaS)

- Adição de novos plug-ins para desenvolvedores;
- Ambiente uniforme de desenvolvimento;
- Aplicação publicada na plataforma (não instalada);
- Plataforma como serviço (Google Apps)

- EX.
- Amazon, Windows Azure e Google APPS

Data Base as a Service (DBaaS)

- Serviço de banco de dados na nuvem;
- Custos menores (estâncias, tecnicos);
- Agilidade da implantação;
- Performance (Ambiente controlado e monitorado);
- Alta disponibilidade;
- Qualidade das informações.

- Servidores virtuais;
- Desktop virtual;
- Roteadores e VPNs;
- Redes Virtuais;
- Backup as a service;

Referências

- http://g1.globo.com/Noticias/Tecnologia/0,, MUL146410-6174,00-UNICAMP+USA+PLAYSTATION+PARA+REALIZA R+PESQUISAS.html
- http://openmosix.sourceforge.net/linuxkongress_2003_openMosix.pdf
- http://www.hardware.com.br/termos/openm osix