Содержание

T	9 класс.	č
2	10 класс.	4

Плотность. $\rho = \frac{m}{V}$. $[\rho] = \frac{\text{кг}}{\text{м}^3}$.

Bec. P = mg. [P] = H.

Внутренняя энергия. $\sum E_{\text{к. мол.}} + E_{\text{п. взаим.}}$

Количество теплоты через теплоемкость. $Q = C\Delta t$.

Количество теплоты через удельную теплоемкость. $Q = cm\Delta t$.

Количество теплоты через уставкон Ньютона-Рихмана. $P=\alpha(t_{\text{тела}}-t_{\text{окр}}).$

Абсолютная влажность воздуха. $\rho_{\rm a6c} = \frac{\overline{m_{H_2O}}}{V}$. Относительная влажность воздуха. $\varphi = \frac{\rho_{\rm a6c}}{\rho_{\rm HII(t)}} \cdot 100\%$.

Закон Фурье. $P = \frac{\alpha(t_1 - t_2)}{I}$.

Закон Кулона. $F = \frac{k \cdot |q_1 \cdot q_2|}{\varepsilon \cdot R^2}$. $k = 9 \cdot 10^9 \frac{\text{H} \cdot \text{M}^2}{\text{K}.\text{m}^2}$, ε - диэлектрическая проницаемость(в вакууме 1). Напряженность. $E = \frac{F}{q} = \frac{k \cdot q}{r^2}$. $[E] = \frac{\text{B}}{\text{M}} = \frac{\text{H}}{\text{K}.\text{m}}$.

Потенциальная энергия в электрическом поле, действующий на точку. $W = q\varphi$. $[\varphi] = B$.

Напряжение. $U = \varphi_1 - \varphi_2 = I \cdot R = \frac{A}{a}$. [U] = B.

Сила тока. $I = \frac{q}{t} = \frac{U}{R}$. $[I] = A = \frac{K\pi}{c}$. Сопротивление. $R = \frac{U}{I} = \frac{\rho \cdot l}{S}$. $[R] = \frac{B}{A} = O_M$. Закон Ома. $I \sim U$; $I = \frac{U}{R}$.

Последовательное соединение резисторов. $I_{\text{o6}} = I_1 = I_2 = \dots; \ U_{\text{o6}} = U_1 + U_2 + \dots; \ R_{\text{o6}} = U_1 + U_2 + \dots; \ R_$ $R_1 + R_2 + \dots$

Параллельное соединение резисторов. $I_{o6}=I_1+I_2+\ldots;U_{o6}=U_1=U_2=\ldots;rac{1}{R_{o6}}=rac{1}{R_1}+rac{1}{R_2}+\ldots$

Закон Джоуля-Ленца. $Q = I^2 R t = \frac{U^2 t}{R} = I U t$.

Мощность электрического тока. $P = I^2 R = \frac{U^2}{R} = IU$.

ЭДС(Электро-движущая сила). $\varepsilon = \frac{A_{\text{ст}}}{a}$. $[\varepsilon] = B$.

Закон Ома для участка цепи с источником. $\Phi_A - \Phi_B + \varepsilon = I \cdot (R + r)$.

Законы Кирхгофа:

1.
$$\sum_{i} \pm I_{i} = 0$$
.

2.
$$\sum_{i} \pm \varepsilon_{i} = \sum_{i} \pm I_{i} \cdot R_{i} + \sum_{i} \pm I_{i} \cdot r_{i}$$
.

Шунты:

- Амперметр. $R = \frac{R_A}{n-1}$.
- Вольтметр. $R = (n-1) \cdot R_V$.

Емкость конденсатора. $c=rac{q}{U}=rac{arepsilon_0\cdotarepsilon\cdot S}{d}.$ $[c]=rac{\mathrm{K}_{\mathrm{J}}}{\mathrm{B}}=\Phi;\ arepsilon_0$ - электрическая постоянная; arepsilon - диэлектрическая проницаемость, величина, которая показывает во сколько раз диэлектрик ослабевает электрическое поле. $\varepsilon_0 = \frac{1}{4 \cdot \pi \cdot k} = 8.85 \cdot 10^{-12} \frac{\Phi}{M}$

Сила Ампера. $F_A = B \cdot I \cdot l \cdot \sin \alpha$. α - угол между линиями индукции магнитного поля и направлением тока.

Сила Лоренца. $F_{\Pi} = B \cdot q \cdot v \cdot \sin \alpha$. α - угол между линиями индукции магнитного поля и направлением скорости заряда.

Поток вектора магнитной индукции. $\Phi_{\text{\tiny B}} = BS\cos\alpha$. $[\Phi_{\text{\tiny B}}] = B6$.

Индукция магнитного поля. $B = \frac{F_{max}}{I \cdot l}$. [B] = Тл. Закон радиоактивного распада. $N = \frac{N_0}{2^{\frac{1}{T}}}$. T - время полураспада, N_0 - изначальное число атомов, t - прошедшее время.

Дефект масс. $\Delta m = M_{\text{\tiny H}} + M_{\text{\tiny H}} - M_{\text{\tiny H}}$.

Формула фокусного расстояния линз. $\pm \frac{1}{F} = \pm \frac{1}{d} \pm \frac{1}{f}$;

F-фокусное расстояние, d- расстояние от объекта до линзы, f- расстояние от изображения до

 \pm перед $\frac{1}{F}$ — собирающая/рассеивающая линза, \pm перед $\frac{1}{d}$ — действительный/мнимый предмет, \pm перед $\frac{1}{f}$ — действительное/ мнимое изображение.

Диоптрия. $D = \frac{1}{F}$. $[D] = Дптр. D_{06} = D_1 + D_2 + \dots$

Закон Снелиуса. $n_1 \sin \alpha = n_2 \sin \beta$.

1 9 класс.

Скорость. $V = \frac{S}{t}$. $[V] = \frac{M}{c}$. Ускорение. $a = \frac{\Delta V}{\Delta t}$. $[a] = \frac{M}{c^2}$. Формулы с ускорением

- $V_x = V_{0x} + a_x t$.
- $S_x = V_{0x}t \pm \frac{a_x t^2}{2}$.
- $x = x_0 + V_{0x}t + \frac{a_x t^2}{2}$.

Нормальное ускорение. $a_{\rm H}=\frac{V^2}{R}$. Углова скорость. $\omega=\lim_{\Delta t\to 0}\frac{\Delta \varphi}{\Delta t}$. $[\omega]=\frac{{\rm pag}}{{\rm c}}$.

Период. $T = \frac{2\pi R}{V} = \frac{2\pi}{\omega}$. [T] = c.

Формула связи линейной скорости с угловой. $V=\omega R.$

Частота. $\nu = \frac{1}{T}$. $[\nu] = \Gamma$ ц.

Преобразование Галилея. $\vec{V_{\mathrm{afc}}} = \vec{V_{\mathrm{othoc}}} + \vec{V_{\mathrm{nep}}}$.

Второй закон Ньютона. $\sum \vec{F} = m\vec{a}$.

Сила трения. $F_{\text{\tiny TD}} = N\mu$.

Закон Гука. $F_{\text{упр}} = -k\Delta x$.

Параллельное соединение пружин. $k_{\text{o}6}=k_1+k_2+\dots$ Последовательное соединение пружин. $\frac{1}{k_{\text{o}6}}=\frac{1}{k_1}+\frac{1}{k_2}+\dots$

Кинетическая энергия. $E_{\kappa}=\frac{mV^2}{2}$.

Потенциальная энергия. $E_{\pi} = mgh$.

Потенциальная энергия пружины. $E_{\text{п}}=-\frac{k\Delta x^2}{2}$. Механическое напряжение. $\sigma=\frac{F}{S}=\varepsilon\cdot\frac{kl_0}{S}=E\cdot|\varepsilon|$. $[\sigma]=\frac{\text{H}}{\text{M}^2}=\Pi \text{a}$.

Модуль Юнга. $E = \frac{kl_0}{S}$. $[E] = \Pi a$.

Закон всемирного тяготения. $F_{\text{грав}} = \frac{GM_1M_2}{R^2}$. Ускорение свободного падения. $F = G\frac{Mm}{R^2} \to G\frac{M}{R^2} = g = 9.8$. $G = 6.67 \cdot 10^{-11} \frac{\text{H} \cdot \text{m}^2}{\text{кг}^2}$.

Сила инерции. $\vec{F}_{\scriptscriptstyle \rm H} = -m \cdot \vec{a}_{\scriptscriptstyle \rm nep}$.

Импульс. $p = m \cdot V; [p] = \frac{\text{кг·м}}{c}$

Второй закон Ньютона в импульсной форме. $\vec{F}\Delta t = \Delta \vec{p} \rightarrow \vec{F} = \frac{\Delta \vec{p}}{\Delta t}$.

Закон изменения импульса системы. $\Delta \vec{p}_{ ext{cuc}} = \vec{F}_{ ext{внеш}} \cdot \Delta t$.

Уравнение Мещерского. $\vec{F_p} = -\mu \vec{u}$.

Механическая работа. $A = Fl \cdot \cos \alpha = \vec{F} \cdot \vec{l}$. α — угол между силой и вектором перемещения. [A] =

Мощность. $P = \frac{A}{L} = FV \cdot \cos \alpha = \vec{F} \cdot \vec{V}$. $[P] = B_T$.

Работа силы упругости. $A = -\Delta E_{\pi} = \frac{k(\Delta x)^2}{2}$

Потенциальная энергия силы тяготения. $E_{\Pi} = \frac{GM_1M_2}{R}$. Формула координаты центра масс. $x_c = \frac{\sum\limits_i m_i x_i}{m} = \frac{\sum\limits_i m_i x_i}{\sum\limits_i m_i}$. $y_c = \frac{\sum\limits_i m_i y_i}{m} = \frac{\sum\limits_i m_i y_i}{\sum\limits_i m_i}$. $z_c = \frac{\sum\limits_i m_i z_i}{m} = \frac{\sum\limits_i m_i z_i}{\sum\limits_i m_i}$.

$$\vec{r_c} = \frac{\sum\limits_i m_i \vec{r_i}}{m} = \frac{\sum\limits_i m_i \vec{r_i}}{\sum\limits_i m_i}.$$

KПД. $\eta = \frac{A_{\text{пол}}}{A_{\text{зат}}} \cdot 100\%$.

Теорема о движении центра масс. $m\vec{a}_c = \vec{F}_{\text{внеш}}$

Момент. M = Fl.

Основное уравнение динамики вращательного движения. $I(\kappa_{\Gamma} \cdot {\bf M}^2) \cdot \beta(\frac{{\rm pag}}{c^2}) = \sum M({\bf H} \cdot {\bf M}).$

Энергия вращательного движения тела. $E=\frac{I\omega^2}{2}$. Гармонические колебания. Толкнули: $x=A\sin(\frac{2\pi}{T}t)$; отпустили: $x=A\cos(\frac{2\pi}{T}t)$.

Период математического маятника. $T=2\pi\sqrt{\frac{l}{g}}$

Период для пружинного маятника. $T = 2\pi \sqrt{\frac{m}{k}}$

Длина волны. $\lambda = VT$.

Давление. $p = \frac{F}{S}$. $[p] = \Pi a$.

Давление столба жидкости. $p = \rho q h$.

Сила Архимеда. $F_{\rm apx} = \rho g V$.

Уравнение неразрывности струи (для несжимаемой жидкости). $S_1V_1=S_2V_2$.

Закон Бернулли. $p_1 + \frac{\rho V_1^2}{2} + \rho g h_1 = p_2 + \frac{\rho V_2^2}{2} + \rho g h_2 = const.$

Скорость воды с помощью двух сапожков. $V = \sqrt{\frac{2(p_2 - p_1)}{\rho}}$

Вязкое трение. $F = \frac{\eta VS}{h}$, $[\eta] = \frac{\kappa \Gamma}{CM}$.

2 10 класс.

Относительная молекулярная масса. $M_r = \frac{m_0}{\frac{1}{12}m_{0C}} = \text{aem.}$

Количество вещества. $\nu = \frac{N}{N_a}, \ N_a = 6.02 \cdot 10^{23} \, \mathrm{moj} \, \mathrm{mol}^{-1}.$

Основное уравнение МКТ. $p = \frac{1}{3}m_0 n \overline{V^2}$, $[n] = M^{-3}$.

Следствие из основного уравнения МКТ (основное уравнение МКТ в энергетической форме). $p = \frac{2}{2}n\overline{E}$.

Формула связи средней кинетической энергии молекулы с температурой. $\overline{E}=\frac{3}{2}kT,\ k=$ $1.38 \cdot 10^{-23} \frac{\text{Дж}}{\text{K}}.$

Формула среднеквадратичной скорости молекул. $\overline{\mathcal{V}^2} = \frac{3kT}{m}$.

Уравнением состояния идеального газа в молекулярной форме. p = nkT.

Уравнение Менделеева-Клапейрона. $pV = \nu RT$.

Функция распределения Максвелла. $\Delta N = N \cdot f(\mathcal{V}_x, \mathcal{V}_y, \mathcal{V}_z) \cdot \Delta \mathcal{V}_x \Delta \mathcal{V}_y \Delta \mathcal{V}_z$. Функция распределения по вектору скорости. $f(\mathcal{V}_x, \mathcal{V}_y, \mathcal{V}_z) = \left(\frac{m_0}{2\pi kT}\right)^{\frac{3}{2}} \cdot e^{-\frac{m_0(\mathcal{V}_x^2 + \mathcal{V}_y^2 + \mathcal{V}_z^2)}{2kT}}$.

Распределение по модулю скорости. $\Delta N = N \cdot 4\pi \mathcal{V}^2 \left(\frac{m_0}{2\pi LT}\right)^{\frac{3}{2}} \cdot e^{-\frac{m_0\mathcal{V}^2}{2kT}} \cdot \Delta \mathcal{V}.$

Наиболее вероятная скорость. $\mathcal{V} = \sqrt{\frac{2kT}{m_0}}$.

Уравнение Ван дер Вальса. $(p + \frac{a}{V^2})(V - b) = \nu RT$.

Абсолютная плотность воздуха. $ho_{
m a6c}=rac{m_{H_2O}}{V}.$

Относительная влажность. $\varphi = \frac{\rho_{\text{aбc}}}{\rho_{\text{н}\pi(t)}} \cdot 100\% = \frac{p_{H_2O}}{p_{\text{н}\pi(t)}} \cdot 100\%.$