

Calcul de Primitives et d'Intégrales

Version 1

Dr Euloge KOUAME © UVCI

Novembre 2017

Table des matières

Objecti	fs	5	
I - Primitive d'une fonction			
Α.	Définition		
В.	Relation primitive-intégrale	8	
C.	. Exercice	9	
II - Calcul de Primitive et d'intégrales			
Α.	. Intégration par parties	11	
В.	Changement de variable	12	
C.	. Intégration des fractions rationnelles	13	
D	. Exercice	14	
Solution des exercices			

À la fin de cette leçon, vous serez capable de :

- Calculer les primitive d'une fonction ;
- **Utiliser** les primitives pour calculer les intégrales.

Primitive d'une fonction

Définition	7
Relation primitive-intégrale	8
Exercice	9

A. Définition

Définition

Soit $f:I\to R$ une fonction définie sur un intervalle I quelconque. On dit que $F:I\to R$ est **une primitive** de f sur I si F est une *fonction dérivable* sur I vérifiant F'(x)=f(x) pour tout $x\in I$.

Trouver une primitive est donc l'opération inverse de calculer la fonction dérivée.

Exemple

Soit I = R et f : R \rightarrow R définie par $f(x) = x^2$. Alors F : R \rightarrow R définie par $F(x) = x^3/3$ est une primitive de f . La fonction définie par $F(x) = x^3/3 + 1$ est aussi une primitive de f .

Nous allons voir que trouver une primitive permet de les trouver toutes. En effet

Proposition

Soit $f:I\to R$ une fonction et soit $F:I\to R$ une primitive de f . Toute primitive de f s'écrit G=F+c où

 $c \in R$ est une constante.

Remarque

la notation $\int f(x)d(x)$ désigne une primitive de f(x). (sans préciser de bornes) Ainsi si F est une primitive de f alors il existe c tel que $F = \int f(x)d(x) + c$

Proposition

Soient F une primitive de f et G une primitive de g. Alors F + G est une primitive de f + g. Et si $\lambda \in R$ alors λF est une primitive de λf .

Nous verrons que pour calculer , le plus simple est de trouver une primitive de f . Il faudra donc connaître par cœur un certain nombre de primitives simples.

fonction $(n \in \mathbb{R})$	primitive
x	$\frac{\frac{x^2}{2} + C}{\frac{x^3}{3} + C}$
x^2	$\frac{x^3}{3} + C$
1/x	$\ln(x) + C$
$\sqrt{x} = x^{1/2}$	$\frac{2}{3}x^{3/2} + C$
x^n	$\frac{x^{n+1}}{n+1} + C(\text{si } n \neq -1)$
ln(x)	$x\ln(x) - x + C$
e^{x}	$e^x + C$
$a^x = e^{x \ln(a)}$	$a^x/\ln(a) + C$
$\sin(x)$	$-\cos(x) + C$
$\cos(x)$	$\sin(x) + C$
tan(x)	$-\ln(\cos(x)) + C$
$1/(1+x^2)$	$\arctan(x) + C$

B. Relation primitive-intégrale

Théorème

Soit $f:[a,b] \rightarrow R$ une fonction continue. La fonction $F:I \rightarrow R$ définie par

$$F(x) = \int_{a}^{x} f(t) dt$$
 est une primitive de f, c'est-à-dire F est dérivable et

F'(x) = f(x).

Par conséquent pour une primitive F quelconque de f :

$$\int_{a}^{b} f(t) dt = F(b) - F(a)$$

Notation : On note $\left[F(x)\right]_a^b = F(b) - F(a)$.

Exemple

1. Pour f (x) = e^x, une primitive est F(x) = e^x donc

$$\int_0^1 e^x dx = \left[e^x\right]_0^1 = e^1 - e^0 = e - 1.$$

2. Pour g(x) = x², une primitive est G(x) = x³/3 donc
$$\int_0^1 x^2 dx = \left[\frac{x^3}{3}\right]_0^1 = \frac{1}{3}.$$

- 1. $F(x) = \int_a^x f(t)dt$ est **l'unique primitive de f qui s'annule en a**. 2. On évitera la notation $\int_a^x f(x)dx$ où la variable x est présente à la fois aux bornes et à l'intérieur de l'intégrale. Mieux vaut utiliser la notation $\int_a^x f(t)dt$ pour éviter toute confusion.
 - 3. Une fonction intégrable n'admet pas forcément une primitive. Considérez par exemple les fonctions en escalier que nous avons vu dans le cours précédent.

C. Exercice

Question

Solution n°1 p 17

Calculer les intégrales suivantes :
$$\int_0^1 x^3 dx$$
 , $\int_0^1 \frac{1}{1+x^2} dx$,

$$\int_0^1 4x^3 + \frac{1}{1+x^2} dx \, .$$

Intégration par parties	11
Changement de variable	12
Intégration des fractions rationnelles	13
Exercice	14

Nous allons voir différentes techniques pour calculer des primitives et des intégrales à partir des primitives simples que nous connaissons déjà.

A. Intégration par parties

Théorème

Soient u et v deux fonctions de classe \mathscr{C}^1 sur un intervalle [a, b].

$$\int_a^b u(x) v'(x) dx = \left[uv \right]_a^b - \int_a^b u'(x) v(x) dx$$

La formule d'intégration par parties (IPP) pour les primitives est la même mais

sans les bornes :
$$\int u(x)v'(x) dx = [uv] - \int u'(x)v(x) dx.$$

Remarque

La difficulté lorsqu'on utilise la formule d'IPP est de choisir les deux fonctions f(x) et g'(x) de telle sorte que la nouvelle intégrale f'(x)g(x)dx soit plus facile à calculer ! Logiquement le facteur g'(x) doit être une fonction dont on connaît une primitive, l'autre facteur f(x) sera ensuite dérivé et devra faire apparaître une simplification.

Exemple

1. Calcul de $\int_0^1 xe^x dx$

On pose u(x) = x et $v'(x) = e^x$. Nous aurons besoin de savoir que u'(x) = 1 et qu'une primitive de v' est simplement $v(x) = e^x$. La formule d'intégration par parties donne :

$$\int_{0}^{1} x e^{x} dx = \int_{0}^{1} u(x) v'(x) dx
= \left[u(x) v(x) \right]_{0}^{1} - \int_{0}^{1} u'(x) v(x) dx
= \left[x e^{x} \right]_{0}^{1} - \int_{0}^{1} 1 \cdot e^{x} dx
= \left(1 \cdot e^{1} - 0 \cdot e^{0} \right) - \left[e^{x} \right]_{0}^{1}
= e - (e^{1} - e^{0})
= 1$$

2. Calcul de $\int x^2 e^x dx$

On pose u = x2 et v' = ex pour obtenir :

$$\int x^2 e^x \, dx = \left[x^2 e^x \right] - 2 \int x e^x \, dx$$

On refait une deuxième intégration par parties pour calculer

$$\int xe^x dx = [xe^x] - \int e^x dx = (x-1)e^x + c$$

D'où
$$\int x^2 e^x dx = (x^2 - 2x + 2)e^x + c.$$

B. Changement de variable

Théorème

Soit f une fonction définie sur un intervalle I et $\phi: J \to I$ une bijection de classe C1. Pour tout $a, b \in J$

$$\int_{\varphi(a)}^{\varphi(b)} f(x) \, dx = \int_{a}^{b} f(\varphi(t)) \cdot \varphi'(t) \, dt$$

Remarque

Voici un moyen simple de s'en souvenir. En effet si l'on note $x=\phi(t)$ alors par dérivation on obtient

 $dx/dt = \varphi'(t)$ donc $dx = \varphi'(t)$ dt. D'où la substitution

$$\int_a^b f(\varphi(t)) \, \varphi'(t) \, dt.$$

Calcul de
$$\int_0^{1/2} \frac{x}{(1-x^2)^{3/2}} dx$$
.
Soit le changement de variable $u = \varphi(x) = 1-x^2$. Alors $du = \varphi'(x) dx = -2x dx$. Pour $x = 0$ on a $u = \varphi(0) = 1$ et pour $x = \frac{1}{2}$ on a $u = \varphi(\frac{1}{2}) = \frac{3}{4}$. Comme $\varphi'(x) = -2x$, φ est une bijection de $[0, \frac{1}{2}]$ sur $[1, \frac{3}{4}]$. Alors
$$\int_0^{1/2} \frac{x dx}{(1-x^2)^{3/2}} = \int_1^{3/4} \frac{-du}{u^{3/2}} = -\frac{1}{2} \int_1^{3/4} u^{-3/2} du$$

$$= -\frac{1}{2} [-2u^{-1/2}]_1^{3/4} = [\frac{1}{\sqrt{u}}]_1^{3/4} = \frac{1}{\sqrt{\frac{3}{4}}} - 1 = \frac{2}{\sqrt{3}} - 1.$$

C. Intégration des fractions rationnelles

On souhaite d'abord intégrer les fractions rationnelles $f(x) = \frac{\alpha x + \beta}{\alpha x^2 + b x + c}$

avec a, β , a, b, $c \in R$, $a \ne 0$ et $(a, \beta) \ne (0, 0)$.

Premier cas. Le dénominateur $ax^2 + bx + c$ possède deux racines réelles distinctes $x_1, x_2 \in \mathbb{R}$. Alors f(x) s'écrit aussi $f(x) = \frac{ax + \beta}{a(x - x_1)(x - x_2)}$ et il existe des nombres $A, B \in \mathbb{R}$ tels que $f(x) = \frac{A}{x - x_1} + \frac{B}{x - x_2}$. On a donc

$$\int f(x) \, dx = A \ln|x - x_1| + B \ln|x - x_2| + c$$

sur chacun des intervalles $]-\infty, x_1[,]x_1, x_2[,]x_2, +\infty[$ (si $x_1 < x_2$).

Deuxième cas. Le dénominateur $ax^2 + bx + c$ possède une racine double $x_0 \in \mathbb{R}$.

Alors $f(x) = \frac{\alpha x + \beta}{\alpha (x - x_0)^2}$ et il existe des nombres $A, B \in \mathbb{R}$ tels que $f(x) = \frac{A}{(x - x_0)^2} + \frac{B}{x - x_0}$. On a alors

$$\int f(x) \, dx = -\frac{A}{x - x_0} + B \ln|x - x_0| + c$$

sur chacun des intervalles $]-\infty, x_0[,]x_0, +\infty[$

Troisième cas. Le dénominateur $ax^2 + bx + c$ ne possède pas de racine réelle. Voyons comment faire sur un exemple.

Exemple : Calcul de $I = \int_0^1 \frac{2x}{x^2 + x + 1} dx$.

La fraction rationnelle $\frac{2x}{x^2+x+1}$ est un élément simple de seconde espèce.

$$I = \int_0^1 \frac{2x}{x^2 + x + 1} dx = \int_0^1 \frac{2x + 1 - 1}{x^2 + x + 1} dx = \int_0^1 \frac{2x + 1}{x^2 + x + 1} dx - \int_0^1 \frac{1}{x^2 + x + 1} dx$$

Nous avons:
$$\int_0^1 \frac{2x+1}{x^2+x+1} dx = \left[\ln(x^2+x+1) \right]_0^1 = \ln(3).$$

Pour le calcul de $J = \int_0^1 \frac{1}{x^2 + x + 1} dx$.

$$J = \int_0^1 \frac{1}{x^2 + x + 1} dx = \int_0^1 \frac{1}{\left(x + \frac{1}{2}\right)^2 + \frac{3}{4}} dx = \int_0^1 \frac{1}{\frac{3}{4} \left(\frac{4}{3} \left(x + \frac{1}{2}\right)^2 + 1\right)} dx = \frac{4}{3} \int_0^1 \frac{1}{\left(\left(\frac{2x + 1}{\sqrt{3}}\right)^2 + 1\right)} dx$$

$$= \frac{4}{3} \int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{1}{(u^2 + 1)} \frac{\sqrt{3}}{2} dx = \frac{2}{\sqrt{3}} \int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{1}{(u^2 + 1)} dx = \frac{2}{\sqrt{3}} \left[\arctan(u) \right]_{\frac{1}{\sqrt{3}}}^{\sqrt{3}}.$$

Conclusion:
$$I = \int_0^1 \frac{2x}{x^2 + x + 1} dx = \ln(3) - \frac{2}{\sqrt{3}} \left(2 \arctan\left(\sqrt{3}\right) - \frac{\pi}{2} \right) = \ln(3) - \frac{2}{\sqrt{3}} \left(2 \frac{\pi}{3} - \frac{\pi}{2} \right).$$

$$I = \ln(3) - \frac{\pi}{3\sqrt{3}}.$$

Remarque

En résumé une primitive d'une fraction rationnelle est une combinaison de polynômes, fractions rationnelles, logarithmes et fonctions arc-tangentes.

D. Exercice

Question 1

Solution n°2 p 17

Calcul de primitive de : x^3 ; $3x^4$; $x\sqrt{x}$; $1/\sqrt{x}$; $2/x^4$

Question 2

Solution n°3 p 17

calculer la primitive de $(2 \times + 1)^3$

Question 3

[Solution n°4 p 18]

Calculer $\int_{1}^{2} x ln(x) dx$.

Question 4

[Solution n°5 p 18]

$$\int_0^1 \left(\frac{1}{3x+1}\right) dx$$

Calcul de Primitive et d'intégrales

Question 5

[Solution n°6 p 18]

Calculer une primitive de
$$f(x) = \frac{x+1}{2x^2+x+1}$$

Question 6

[Solution n°7 p 18]

calculer
$$\int_2^3 \frac{2}{x^2 - 1} dx$$

O

Solution des exercices

> Solution n°1 (exercice p. 9)

 $\int_0^1 x^3 dx = \left[\frac{x^4}{4} \right]_0^1 = \frac{1}{4} - 0 = \frac{1}{4}$

ou encore:

 $\int_0^1 \frac{1}{1+x^2} dx = \left[\arctan(x)\right]_0^1 = \arctan(1) - \arctan(0) = \frac{\pi}{4} - 0 = \frac{\pi}{4}$

On peut combiner ces résultats par linéarité :

$$\int_0^1 4x^3 + \frac{1}{1+x^2} dx = \left[x^4 + \arctan(x) \right]_0^1$$

$$= 1 + \arctan(1) - (0 + \arctan(0)) = 1 + \frac{\pi}{4}$$

$$\int_0^1 4x^3 + \frac{1}{1+x^2} dx = 4 \int_0^1 x^3 dx + \int_0^1 \frac{1}{1+x^2} dx$$

$$= 4 \times \frac{1}{4} + \frac{\pi}{4} = 1 + \frac{\pi}{4}$$

> Solution n°2 (exercice p. 14)

Utiliser la formule de la primitive du monôme x^n en choisissant convenablement n dans chaque cas.

> Solution n°3 (exercice p. 14)

Utiliser la formule generale suivante (ce qui revient a faire un changement de variable) que vous devez retenir :

$$\int f'(ax+b)dx = \frac{f(ax+b)}{a} + C$$
Ainsi, $f(x) = (1/4)$. x^4

> Solution n°4 (exercice p. 14)

faire une intégration par parties en posant : u'(x) = x et v(x) = lnx

> Solution n°5 (exercice p. 14)

Faire un changement de variable en posant t = 3x+1

> Solution n°6 (exercice p. 15)

 $f(x) = \frac{(4x+1)\frac{1}{4} - \frac{1}{4} + 1}{2x^2 + x + 1} = \frac{1}{4} \cdot \frac{4x+1}{2x^2 + x + 1} + \frac{3}{4} \cdot \frac{1}{2x^2 + x + 1}$

On peut intégrer la fraction -

$$\int \frac{4x+1}{2x^2+x+1} \, dx = \int \frac{u'(x)}{u(x)} \, dx = \ln \left| 2x^2 + x + 1 \right| + c$$

Occupons nous de l'autre partie $\frac{1}{2x^2+x+1}$, nous allons l'écrire sous la forme $\frac{1}{u^2+1}$ (dont une primitive est arctan u).

$$\frac{1}{2x^2 + x + 1} = \frac{1}{2(x + \frac{1}{4})^2 - \frac{1}{8} + 1} = \frac{1}{2(x + \frac{1}{4})^2 + \frac{7}{8}}$$
$$= \frac{8}{7} \cdot \frac{1}{\frac{8}{7}2(x + \frac{1}{4})^2 + 1} = \frac{8}{7} \cdot \frac{1}{\left(\frac{4}{\sqrt{7}}(x + \frac{1}{4})\right)^2 + 1}$$

On pose le changement de variable $u = \frac{4}{\sqrt{7}}(x + \frac{1}{4})$ (et donc $du = \frac{4}{\sqrt{7}}dx$) pour trouver

$$\int \frac{dx}{2x^2 + x + 1} = \int \frac{8}{7} \frac{dx}{\left(\frac{4}{\sqrt{7}}(x + \frac{1}{4})\right)^2 + 1} = \frac{8}{7} \int \frac{du}{u^2 + 1} \cdot \frac{\sqrt{7}}{4}$$
$$= \frac{2}{\sqrt{7}} \arctan u + c = \frac{2}{\sqrt{7}} \arctan \left(\frac{4}{\sqrt{7}}(x + \frac{1}{4})\right) + c.$$

Finalement:

$$\int f(x) \, dx = \frac{1}{4} \ln \left(2x^2 + x + 1 \right) + \frac{3}{2\sqrt{7}} \arctan \left(\frac{4}{\sqrt{7}} \left(x + \frac{1}{4} \right) \right) + c$$

> Solution n°7 (exercice p. 15)

utiliser la décomposition en éléments simples suivante :

$$\frac{2}{x^2 - 1} = \frac{1}{x - 1} - \frac{1}{x + 1}$$