Problem 1

Order the following function by growth rate. n!, $n^2 + \sqrt{n} \log^{10} n$, $n^{1/3}$, $\log^{100} n$, n^3 , 2^n , $10^{\sqrt{n}}$, $2^{\log n}$, $2^{2\log n}$, $2^{\sqrt{\log n}}$, 128, 128n. Indicate which functions at the same rate (all logarithms are base 2). For example, if you are asked to order n, 2n, $2n^2$, then your answer should be " $n = \Theta(2n)$, $2n = o(2n^2)$ ".

1. 128

$$\lim_{n \to \infty} (\frac{128}{\log^{100} n}) = 0, \ 128 = \mathcal{O}(\log^{100} n)$$

2. $log^{100}n$

$$\lim_{n\to\infty}(\frac{\log^{100}n}{2^{\sqrt{\log n}}})=0,\ \log^{100}n=\mathcal{O}(2^{\sqrt{\log n}})$$

3. $2^{\sqrt{logn}}$

$$\lim_{n \to \infty} (\frac{2^{\sqrt{\log n}}}{n^{1/3}}) = 0, \ 2^{\sqrt{\log n}} = \mathcal{O}(n^{1/3})$$

4. $n^{1/3}$

$$\lim_{n \to \infty} \left(\frac{n^{1/3}}{128n}\right) = 0, n^{1/3} = \mathcal{O}(128n)$$

5. 128n and 2^{logn}

Problem 2

Solve the following recurrence equations, expressing the answer in Big-Oh notation. Assume that Tn is constant for sufficiently small n.

(a)
$$T(n) = T(n/2) + 100$$

(b)
$$T(n) = 8T(n/2) + n^2$$

(c)
$$T(n) = 8T(n/2) + n^3$$

(d)
$$T(n) = 8T(n/2) + n^4$$

(e)
$$T(n) = T(n-1) + log n$$

(f)
$$T(n) = T(n-3) + n$$

Problem 3

You implemented a quadratic time algorithm for a problem P. On a test run, your algorithm takes 50 seconds for inputs of size 1000. Your classmate found a clever algorithm solving the same problem with a running time $O(n^{3/2})$. However, the faster algorithm takes 150 seconds for input of size 1000. Explain how can this happen. If you need to solve a problem of size 4000, which algorithm you should use? What about input of size 10,000? Explain your answers (assume low-order terms are negligible).

Problem 4

Recall that in the testing safe height to drop a cellphone problem we discussed in the class, the goal is to find out the maximum safe height to drop a cellphone without breaking it. In the class we saw that if the maximum safe height is n, then in the worst case we can perform n tests if there is only one cellphone and $2\sqrt{n}$ tests if there are two cellphones. Give an algorithm to minimize the number of tests if there are k cellphones available (assume k is constant). How many tests do you need to perform?

Problem 5

You are given a set of n numbers. Give an $O(n^2)$ algorithm to decide if there exist three numbers a, b, and c in the set such that a + b = c (Hint: sort the numbers first).