O variabilă aleatoare (v.a.) este o funcție ce atribuie un număr real fiecărui rezultat din spațiul tuturor realizărilor unui experiment aleator.

$$X:\Omega \to \mathbb{R}$$

Variabilă aleatoare discretă: are valori într-o mulțime finită sau infinit numărabilă

număr de biți transmiși cu eroare într-un canal de comunicație

Variabilă aleatoare continuă: poate lua orice valoare dintr-un interval din. \mathbb{R} (mărginit sau nu)

- timpul de execuție a unui program
- durata de viață a unei componente electronice
- frecvența de acces în traficul pe WEB
- dimensiunea pachetelor de date în FTP (File Transfer Protocol)

distribuția de probabilitate este definită de o densitate de probabilitate (p.d.f.), f_X.

$$P(x < a) = \sum_{x \in a} i$$
 $P(x \in J) = \int_{x \in a} f(x) dx$
 $J = aria de subgrafic, x \in J$
 $x - v \cdot a \cdot continuã$

Function de reportitie a unei v.a.x $F_{\times}(\mathcal{X}) = \int_{-\infty}^{\infty} f(t) dt = P(\times \leq \mathcal{X}) = F_{\times}(\mathcal{X}) = P(\times \leq \mathcal{X}) = F_{\times}(\mathcal{X}) =$

Denutatea de probabilitate

Ne interesează: $P(X \in I)$, unde

 $I = [a, b], (a, b), (a, b], (a, b); (-\infty, b], (-\infty, b), [a, \infty), (a, \infty)$

Relația dintre p.d.f. și probabilitatea unui eveniment:

$$P(X \in I) = \int_I f_X(x) dx$$

Interpretare geometrică: $\int_I f_X(x) dx$ = aria domeniului de sub graficul lui f

Figure: Aria domeniului hașurat reprezintă $P(a \le X \le b)$

Observație:
$$P(X = a) = P(X \in [a, a]) = \int_a^a f_X(x) dx = 0$$
.

Use:
$$\{(x) = \{0\}$$
, $x < 0$
 $\frac{1}{2}$ $e^{-\frac{x}{2}}$, $x \ge 0$
 $f(x) \ge 0$

Proprietăți

Pentru o variabilă aleatoare continuă, funcția de repartiție este:

- continuă
- nedescrecătoare
- $\lim_{x \to -\infty} F_X(x) = 0$
- $\lim_{x \to \infty} F_X(x) = 1$

Observație:

$$P(X \in I) = \int_a^b f(x) dx = \int_{-\infty}^b f(x) dx - \int_{-\infty}^a f(x) dx =$$

= $F(b) - F(a)$

În cazul în care una dintre extremitățile intervalului este $\pm \infty$ notăm $F(-\infty) = \lim_{x \to -\infty} F(x) = 0, F(\infty) = \lim_{x \to \infty} F(x) = 1$

0,1)

Proprietate: Alegând orice subinterval [x, x + L) de lungime L din [a, b), avem $P(x \le X < x + L) == \frac{L}{b-a}$, adică această probabilitate nu depinde de capetele intervalului, ci doar de lungimea lui.

Valorile lui X sunt "uniform distribuite" în subintervalele din [a, b] de aceeași lungime.

Cazul a=0, b=1: de interes pentru algoritmii de generare de numere (pseudo)aleatoare folosind v.a. U, $U \sim \text{Unif}[0,1)$.

Densitatea de probabilitate/funcția de repartiție este:

$$f_U(x) = \left\{ egin{array}{ll} 1 & ext{dacă} \ x \in [0,1) \\ 0 & ext{în rest}, \end{array}
ight., \quad F_U(x) = \left\{ egin{array}{ll} 0 & ext{dacă} \ x < 0 \\ x & ext{dacă} \ x \in [0,1) \\ 1 & ext{dacă} \ x \geq 1 \end{array}
ight.$$

Probabilitatea ca U, $U \sim \text{Unif}[0,1)$, să ia valori într-un subinterval $[c,d) \subset [0,1)$ este egală cu lungimea, d-c, a intervalului:

$$P(c \le U < d) = F(d) - F(c) = d - c$$

Distributia exponentialà

V. a. X ce are densitatea de probabilitate f, definită prin:

$$f(x) = \begin{cases} 0 & \text{dacă } x < 0 \\ \frac{1}{\theta}e^{-x/\theta} & \text{dacă } x \geq 0 \end{cases}, \quad \theta > 0 \text{ se numește v. a. cu distribuție}$$
 exponențială, de parametru θ . $(X \sim \mathsf{Exp}(\theta))$

Funcția de repartiție a unei variabile $X \sim \mathsf{Exp}(\theta)$ este:

$$F(x) = \left\{ egin{array}{ll} 0 & ext{dacă} \ x < 0 \ 1 - e^{-x/ heta} & ext{dacă} \ x \geq 0 \end{array}
ight. ,$$

V. a. exponențial distribuite se folosesc ca modele pentru:

- Durata servirii unui client, de către un server dintr-un sistem coadă;
- Intervalul de timp dintre două sosiri consecutive ale clienților la coadă;
- Durata de viată a componentelor electronice;

Media
$$x_i$$
 disposition x_i distribute exp.

M(x) = $\int_{-\infty}^{\infty} x \cdot f(x) dx$

= $\int_{0}^{\infty} x \cdot \frac{1}{2} e^{-\frac{x}{2}} dx$ (integrate prin positi)

 $f = x = \int_{0}^{\infty} e^{\frac{x}{2}} = \int_{0}^{\infty} e^{\frac{x}{2}} = 0$
 $g = \frac{1}{2}e^{-\frac{x}{2}} = \int_{0}^{\infty} e^{-\frac{x}{2}} dx$

$$x \sim \log (\theta = 2)$$
, $M(x) = 0$

=> M(x) = 2

Fie X o v.a. exponențial distribuită de parametru, $\theta > 0$:

$$f(x) = \begin{cases} \frac{1}{\theta} e^{-x/\theta} & \text{dacă } x > 0\\ 0 & \text{în rest} \end{cases}$$

Avem:
$$M(X) = \int_{-\infty}^{\infty} xf(x) dx = \int_{-\infty}^{0} x \cdot 0 dx + \int_{0}^{\infty} x \frac{1}{\theta} e^{-x/\theta} dx = \theta$$
.

Observație: Există variabile aleatoare care nu au valoare medie.

De exemplu, X-o v.a. cu distribuția de probabilitate Cauchy:

$$f(x) = \frac{1}{\pi} \frac{1}{1+x^2}, x \in \mathbb{R}$$
, integrala $\int_{-\infty}^{\infty} xf(x) dx$ este divergentă.

Fie X v.a. cu densitatea de probabilitate f.

Dacă $g: \mathbb{R} \to \mathbb{R}$ este o funcție continuă sau cu un număr finit de puncte de discontinuitate de speța întâi, atunci Y = g(X) este o variabilă aleatoare.

Dacă $\int_{-\infty}^{\infty} |g(x)| f(x) dx < \infty$, atunci Y = g(X) are media

$$M(g(X)) = \int_{-\infty}^{\infty} g(x)f(x) dx$$

Dispersia unei variabile aleatoare continue X ce are media m = M(X) este, ca și în cazul variabilelor discrete, numărul notat $\sigma^2(X)$ sau $D^2(X)$, și egal cu:

$$\sigma^2(X) = M((X - m)^2)$$

Notând cu g funcția definită prin $g(X) = (X - m)^2$, avem

$$\sigma^2(X) = \int_{-\infty}^{\infty} (x - m)^2 f(x) \, dx.$$

Proprietăți:

- $M(aX+b) = aM(X) + b, \forall a, b \in \mathbb{R}$
- $\sigma^2(X) = M(X^2) (M(X))^2$

Observație: Fie X o v.a. de medie m și abatere standard σ .

Variabila aleatoare asociată, $Y = \frac{X - m}{\sigma}$, se numește v.a. **standardizată**.

Avem $M(Y) = 1, \sigma^2(Y) = 0.$