

Head of Visual NLP (Data Scientist)

Alexander Branov

Data Scientist

Aymane Chilah

Data Scientist

Nitin Kumar

Scala Developer (Data Scientist)

Agenda

Main topic	Introduced Concepts	Pages
Introduction	Introduction To Visual NLP	3
Introduction to Dicom	Dicom, Tags, Pixels, Transfer Syntaxes	4 - 10
Dicom Deldentification	Metadata Extraction, Metadata Deid, Metadata Methods, Pixel Deid, Pixel Deid Using Metadata	11 - 13
MIDI-B	MIDI-B Data, Validation Script, Visual NLP MIDI-B Solution	14 -16
MIDI-B Results	Study, PHI, Pixels	17 - 21
Visual NLP Dicom Pipeline	Block Diagram For Dicom Metadata & Pixel Deldentification	22
Dicom Metrics	Dicom Dataset, Databricks/Collab Metrics, Comparison With Presidio	23 - 24
svs	Introduction To SVS, SVS Metadata, Deid Notebook Links	25 - 27

Introduction to Visual NLP

- Visual NLP as a library helps in <u>unblocking</u> textual information from scanned/digital/medical documents.
- Provides high-level capabilities
 - Text Detection
 - o OCR
 - Table Detection/Recognition
 - Entity Extraction
 - VQA
- Entry points into Visual NLP
 - Images
 - PDFs (Digital & Scanned)
 - Document, PPT
 - Dicom
 - o SVS

What is Dicom?

- Dicom (<u>Digital Imaging And Communications in Medicine</u>)
 - International standard for medical information.
 - Allows healthcare professionals to easily view and understand medical information regardless of the <u>equipment/software</u> used to generate it.
- Dicom files have two fundamental parts
 - Pixels (Medical Images)
 - MRIs, CT Scans, X-Rays etc.
 - PHI burned into the pixels.
 - Overlay Pixels
 - Dicom Tags (Metadata)
 - Patient/Physician PHI
 - Equipment/Software-Related Information
 - Examination/Test-Related Information
 - Other Relevant Information (Pixels, Transfer Syntaxes, Compression level)

Dicom Tags

- Dicom Tags are essentially metadata elements associated with a dicom object.
- They carry information about the dicom object, pixels, patient demographics, equipment etc.
- Tag Structure
 - Each Dicom Tag is a unique <u>hexadecimal number</u> in format (XXXX, YYYY)
 - The first four digits (XXXX) represent the group number.
 - The last four digits (YYYY) represent the <u>element number</u>.
- Each Tag also has <u>Value Representation</u> (VR), which denotes the data type and format of the tag's value (String, Integer, Date, Sequence, etc)
- To accommodate <u>vendor-specific</u> needs beyond the standard tags, DICOM supports '<u>private tags</u>', which are always identified by <u>odd</u> group numbers.

Dicom Tag Types

- Dicom Tags can be 5 Specific Types
 - Type 1
 - Must be present and contain valid data.
 - Cannot be null.
 - Type 1C
 - Must be present and contain valid data, if condition applies.
 - If condition does not apply, must not be present
 - Type 2
 - Must be present, can be empty.
 - If redacted, set to ""
 - Type 2C
 - Must be present, if condition applies, can be empty.
 - If redacted, set to ""
 - Type 3
 - Can be present, safe to remove during anonymization.
 - Can be empty.

Dicom Pixels

- Active <u>Photometric Interpretation</u> (0028,0004)
 - Monochrome 1 & Monochrome 2
 - Palette ColorRGB
 - YBR FULL, YBR FULL 422, YBR PARTIAL 420, YBR RCT, YBR ICT
- <u>Pixel Representation</u> (0028,0103) denotes whether the pixel values are signed/unsigned.
- <u>Bits Allocated</u> (0028,0100) is the number of bits allocated for each pixel.
- <u>Bits Stored</u> (0028,0101) is the actual number of bits used to represent pixel value.
- Image Pixel Data (7FE0,0010)
 Uncompressed Transfer Syntaxes
 - Oncompressed transfer Syntaxes
 Compressed Transfer Syntaxes (Lossy / Lossless)
- Visual NLP does not alter the Photometric Interpretation / Color Space of DICOM pixels in any way. The final DICOM file retains the same characteristics as the input.


```
Dataset.file_meta -
(0002,0000) File Meta Information Group Length UL: 186
(0002,0001) File Meta Information Version
                                                 OB: b'\x00\x01'
(0002,0002) Media Storage SOP Class UID
                                                 UI: Digital X-Ray Image Storage - For Presentation
(0002,0003) Media Storage SOP Instance UID
                                                 UI: 2.25.463628102274132074849128424375172598
(0002,0010) Transfer Syntax UID
                                                 UI: Explicit VR Little Endian
(0002,0012) Implementation Class UID
                                                 UI: 1.3.6.1.4.1.22213.1.143
(0002,0013) Implementation Version Name
                                                 SH: '0.5'
(0002,0016) Source Application Entity Title
                                                 AE: 'POSDA'
(0008,0005) Specific Character Set
                                                 CS: 'ISO IR 100'
(0008,0008) Image Type
                                                 CS: ['ORIGINAL', 'PRIMARY', '']
(0008,0016) SOP Class UID
                                                 UI: Digital X-Ray Image Storage - For Presentation
(0008.0018) SOP Instance UID
                                                 UI: 2.25.463628102274132074849128424375172598
(0008,0020) Study Date
                                                 DA: '20010705'
(0008.0021) Series Date
                                                 DA: '20010705'
(0008,0022) Acquisition Date
                                                 DA: '20010705'
(0008,0023) Content Date
                                                 DA: '20010705'
(0008,0024) Overlay Date
                                                 DA: '20010705'
(0008,0025) Curve Date
                                                 DA: '20010705'
                                                 DT: '20010705'
(0008,002A) Acquisition DateTime
(0008,0030) Study Time
                                                 TM: ''
(0008,0032) Acquisition Time
                                                 TM: ''
(0008,0033) Content Time
(0008,0050) Accession Number
                                                 SH: '20010706E403961'
(0008,0060) Modality
                                                 CS: 'DX'
(0008.0070) Manufacturer
                                                 LO: 'GE MEDICAL SYSTEMS'
(0008,0080) Institution Name
                                                 LO: 'Mccoy Medical Clinic'
(0008,0081) Institution Address
                                                 ST: '45166 Morgan Walks Suite 852 East Aaron, KS 93919'
(0008,0090) Referring Physician's Name
                                                 PN: 'EATON^WILLIAM'
(0008,0092) Referring Physician's Address
                                                 ST: '12148 Donna Overpass Apt. 115 North Sherry, TN 60972'
(0008,0094) Referring Physician's Telephone Num SH: '752.671.3789x973'
(0008,1050) Performing Physician's Name
                                                 PN: 'ELLIS^PAUL'
(0008,1090) Manufacturer's Model Name
                                                 LO: 'Revolution XQi ADS_28.4'
(0008,1155) Referenced SOP Instance UID
                                                 UI: 2.25.181816462680784373513761473735268351478
(0009,0010) Private Creator
                                                 LO: 'GEMS IDEN 01'
(0009,1027) [Image actual date]
                                                 SL: 20000101
(0010,0010) Patient's Name
                                                 PN: 'MARTIN^CHAD'
(0010.0020) Patient ID
                                                 LO: '339833062'
(0010,0030) Patient's Birth Date
                                                 DA: ''
(0010,0040) Patient's Sex
(0010,1010) Patient's Age
(0010,1040) Patient's Address
                                                 LO: '68265 Mark Bridge Suite 049 Robinsonville, OK 55335'
(0010,21D0) Last Menstrual Date
                                                 DA: '20010705'
(0013,0010) Private Creator
                                                 LO: 'CTP'
(0013,1010) Private tag data
                                                 LO: 'Pseudo-PHI-DICOM-Data'
(0013,1013) Private tag data
                                                 LO: '87009668'
(0018,0015) Body Part Examined
                                                 CS: 'CHEST'
(0018,0060) KVP
                                                 DS: '125'
(0018,1020) Software Versions
                                                 LO: 'Ads Application Package VERSION ADS 28.4'
(0018,1110) Distance Source to Detector
                                                 DS: '1800'
(0018.1111) Distance Source to Patient
                                                 DS: '1750'
(0018,1150) Exposure Time
                                                 IS: '43'
```


Transfer Syntaxes

- Transfer Syntaxes are the language translators of Dicom objects, ensuring different systems understand each other.
- They dictate how data is stored and transmitted within Dicom objects.
- Without correct transfer syntax, data, especially pixel data can be misinterpreted, leading to processing errors.
- Compression Options:
 - Lossless preserves all image details, with no reduction in dicom object size.
 - JPEG-LS, RLE, JPEG 2000 Lossless
 - Lossy reduces file size but with some quality loss.
 - JPEG, JPEG 2000
- There are limitations to using a specific transfer syntax.
 - Not all Transfer Syntaxes support variations in Photometric Interpretation, Bits Stored, Pixel Representation, or their combinations.

Transfer Syntax	Color Space	Visual NLP Support		
Hansiel Syntax	Color Space	Encoding	Decoding	
RLE Lossless	Monochrome 1, Monochrome 2, PALETTE COLOR, RGB, YBR_FULL	Yes	Yes	
JPEG Baseline 8-Bit	Monochrome 1, Monochrome 2, RGB, YBR_FULL	Yes	Yes	
JPEG 2000	Monochrome 1, Monochrome 2, RGB, YBR_FULL, YBR_RCT, YBR_ICT		Yes	
JPEG 2000 Lossless	Monochrome 1, Monochrome 2, PALETTE COLOR, RGB, YBR_FULL, YBR_RCT	Yes	Yes	
JPEG LS Lossless	Monochrome 1, Monochrome 2, PALETTE COLOR, RGB, YBR_FULL	Yes	Yes	
JPEG LS Near Lossless	Monochrome 1, Monochrome 2, RGB, YBR_FULL	Yes	Yes	
НТЈ2К	Monochrome 1, Monochrome 2, YBR_ICT, YBR_RCT, RGB, YBR_FULL	No	Yes	
HTJ2K Lossless	Monochrome 1, Monochrome 2, PALETTE COLOR, YBR_ICT, YBR_RCT, RGB, YBR_FULL	No	Yes	
HTJ2K Lossless RPCL	Monochrome 1, Monochrome 2, PALETTE COLOR, YBR_ICT, YBR_RCT, RGB, YBR_FULL	No	Yes	

Visual NLP Dicom Pipeline

- Dicom Metadata Only De-Identification Pipeline
 - This pipeline demonstrates how to extract metadata from a DICOM file and apply de-identification techniques specifically on metadata tags.
 - <u>Notebook:</u> Visual_12_Dicom_Metadata_Only.ipynb

• Dicom Pixel De-Identification Pipeline

- This pipeline focuses on de-identifying Protected Health Information (PHI) within the image pixels as well as metadata.
 - It involves extracting metadata, detecting text regions in pixel data, extracting text, performing NER, and finally redacting identified PHI regions and metadata tags.
 - <u>Notebook:</u> Visual_13_Dicom_Deidentification.ipynb

Visual NLP Metadata Deldentification Methods

SL, FD

DA, DT

All VR

All VR

DA, DT, AS

shiftUnixTimeStampRandom

shiftDateRandomNbOfDays

shiftDateFixedNbOfDays

remove

delete

Action	VR	Description
replaceWithRandomName	PN, LO	Fake pair while preserving consistency per input if a seed is provided.
patientHashID	LO	Deterministic, numeric pseudonym based on the original Patient ID.
hashID	UI, LO, SH	Generate a deterministic UID.
ensureTagExists	LO, DS, IS, CS, SS	Create tag if missing.
replaceWithLiteral	All VR	Replace tag with a literal value.

Generates a realistic, shifted past timestamp based on the current UNIX time.

Deterministic date shift by random number of days.

Deterministic date shift by fixed number of days.

Remove tag value, with placeholder.

Delete Tag

Visual NLP Dicom Pipeline (Metadata - Deidentification) John Snow LABS

• Dicom Pixel De-Identification With Metadata Pipeline

- This pipeline focuses on de-identifying Protected Health Information (PHI) within DICOM image pixels using metadata as a supporting source.
- Metadata extracted from the DICOM file is used to generate additional NER entries, which can be combined with entities detected by Healthcare-NLP models.
- This hybrid approach improves PHI detection by capturing entities that may be missed by the models but are present in the metadata.
- The remaining steps follow the standard pixel de-identification process.
- <u>Notebook:</u> Visual_14_Dicom_Deidentification_Using_Metadata.ipynb

Introduction to MIDI-B

- Benchmark dataset for medical imaging de-identification.
- Contains DICOM files with PHI in both metadata and pixel data.
- Dataset available via TCIA:
 - MIDI-B Collection
 - Validation Script
 - TCIA Download Script
- Dataset Structure:
 - Two sets: Validation and Test.
 - Each set includes:
 - i. Synthetic set \rightarrow contains DICOM files with PHI in Pixels and Tags.
 - ii. Curated set \rightarrow same files manually de-identified by TCIA.
- Validation Actions Used in MIDI-B:

```
<date_shifted>, <uid_changed>, <pixels_retained>, <text_removed>, <patid_consistent>,
<text_retained>, <text_notnull>, <pixels_hidden>, <uid_consistent>, <tag_retained>
```

- PHI Formats in Pixel Data:
 - Typical structure: *FirstName LastName [Gender] Date\nDate*
 - Other PHI: JT, SWU, JKR, MWF, ICG, NKF, YH, TJN

Validation Run

A . 47	Total	E-114
Action	Total	Failed
<tag_retained></tag_retained>	1,101,091	0
<text_notnull></text_notnull>	618,539	0
<date_shifted></date_shifted>	139,774	0
<uid_changed></uid_changed>	234,418	0
<pre><pre><pre><pre>pixels_retained></pre></pre></pre></pre>	23,886	0
<uid_consistent></uid_consistent>	234,418	0
<pre><patid_consistent></patid_consistent></pre>	23,921	0
<pre><pixels hidden=""></pixels></pre>	35	5

Test Run

Action	Passed	Failed
<tag_retained></tag_retained>	1,325,259	0
<text_notnull></text_notnull>	741,498	0
<date_shifted></date_shifted>	171,930	0
<uid_changed></uid_changed>	280,275	0
<pre><pixels_retained></pixels_retained></pre>	29,633	0
<uid_consistent></uid_consistent>	280,275	0
<pre><patid_consistent></patid_consistent></pre>	29,660	0
<pre><pixels_hidden></pixels_hidden></pre>	27	0

Visual NLP MIDIB Pixel Deldentification

- The DICOM files originate from the MIDI-B dataset, which contains several studies; among these, 25 files were identified as having meaningful PHI within the pixel data such as patient names, gender, or dates of birth.
- A new pixel de-identification pipeline was developed and optimized specifically for these cases.
- Additionally, Excel report files have been shared for both test and validation sets using the MIDI-B PHI validation script.
 - dicom/validation report
- Examples of PHI text that were not successfully redacted in the Validation Set:
 - o ACO, JKR, TJN, JGR, YH
- <u>Notebook:</u> Visual_15_Dicom_Midib.ipynb

Set	Total	Passed	Failed	Score
Test Set	27	27	0	1.00
Validation Set	35	30	5	0.87

<u>UID:</u> 2.3.957.1.1.1204841.4.221.1244497244821555782 <u>MIDIB ORIGINAL PHI:</u> HAYES JESSICA [F] 01.03.2012 DOB: 12.15.1986

<u>UID:</u> 2.1.239.0.1.5573651.5.438.2234045507897739313 <u>MIDIB ORIGINAL PHI:</u> JOHNSON LARRY [M] 03.09.2019 DOB: 01.30.1968

<u>UID:</u> 2.4.569.0.1.8829737.8.747.1088525486356273997 <u>MIDIB ORIGINAL PHI:</u> JONES ERIN [F] 01.12.2019 DOB: 11.12.1937

<u>UID:</u> 3.4.732.1.3.0861594.8.259.2531881142306101964 <u>MIDIB ORIGINAL PHI:</u> MOODY BRENT [M] 08.06.2010 DOB: 06.01.1922

<u>UID:</u> 3.3.608.1.1.2993058.8.105.1343059462659162280 <u>MIDIB ORIGINAL PHI:</u> GARCIA MEAGAN [F] 03.30.2013 DOB: 02.24.1967

Visual NLP Dicom Pipeline

Dicom Metrics

- Repo Link https://github.com/JohnSnowLabs/dicom-deid-dataset
- Google Collab
 - CPU HIGH RAM [8 Cores] 0.18 Credits/hr
 - GPU HIGH RAM [8 Cores] 1 X A100 GPU (40 GB) 7.62 Credits/hr

Databricks

- Cluster
 - CPU Driver 64 GB [16 Cores] m4.4xlarge, with minimum & maximum 8 Executors 32GB [8 Cores] m4.2xlarge <u>15 dbu/h</u>
 - GPU Driver 64 GB Single GPU g4dn.4xLarge[T4], with minimum & maximum 2 Executors 16GB Single GPU g4dn.xLarge[T4] 4.27 dbu/h

Standalone

- CPU Driver 64 GB [16 Cores] m4.4xlarge <u>3 dbu/h</u>
- GPU Driver 64 GB Single GPU g4dn.4xLarge[T4] 2.85 dbu/h

Model	Precisi on	Recall	F1-Score	Google Collab GPU (s)	Databricks Cluster CPU (s)	Databricks Cluster GPU (s)
ImageTextDetector + ImageToTextV2 (Base)	0.871	0.800	0.834	3.63	2.94	2.76
ImageTextDetector + ImageToTextV2 (Large)	0.892	0.822	0.856	4.06	3.59	3.2
ImageTextDetector + ImageToTextV3	0.741	0.433	0.547	0.68	1.83	1.0
ImageToText	0.436	0.289	0.348	0.31	0.85	0.89
Presidio (CPU Only)	0.07	0.128	0.091	0.54	N/A	N/A

SVS (Scanned Virtual Slide)

- SVS (Scanned Virtual Slide) is a proprietary Whole Slide Image (WSI) format developed by Aperio.
- Each image level is stored as a separate TIFF image directory (IFD) with metadata.
- It's used in digital pathology to store extremely high-resolution scanned microscope slides.
 - File Extension: .svs
 - MIME Type: image/tiff (it's a specialized multi-page TIFF)
 - **Compression:** JPEG or JPEG2000 compression inside TIFF tiles
 - Storage: Pyramidal TIFF structure (multi-resolution levels for zooming)
- Structure of an SVS File
 - Level 0 (Full-resolution scan): Base level, 40× magnification
 - Level 1 (Used for faster visualization): Downsampled, 20× magnification
 - Level 2 (For overviews): Thumbnail-level, 10x magnification
 - Level 3 (Low resolution preview): Macro image, 1x magnification
 - Level N

SVS Metadata

Category	Example Key	Description
Magnification	Aperio.AppMag	Objective magnification (20× / 40×)
Pixel Scale	Aperio.MPP	Microns per pixel
Scanner Info	Aperio.ScanScopeID	Device ID of scanner
Image Size	ImageWidth , ImageLength	Full slide dimensions
Tile Size	TileWidth , TileLength	Patch size used during scanning
Compression	Compression=JPEG	Compression type per tile
Color Model	PhotometricInterpretation=RGB	Color encoding used
Specimen ID	Aperio.Barcode , Aperio.SlideId	Links slide to specimen
Date & Time	Aperio.Date , Aperio.Time	Scan timestamp

SVS Pixel & Metadata DeIdentification

- SVS Pretrained Pipeline : <u>Link</u>
- Sagemake Listing: <u>Link</u>
- Notebooks:
 - SparkOcrWSIDeidentification_folder.ipynb : <u>Link</u>
 - SparkOcrWSIDeidentification.ipynb : <u>Link</u>

Next Steps

- Addressing text_retained and text_removed tags.
- The actions <text_retained> and <text_removed> require enhanced handling through the
 addition of NER stages, Regex rules, and LLM-based metadata de-identification, all integrated
 within Spark processing stages.
- While Regex rules are effective for structured or pattern-based PHI, they are limited when
 dealing with unstructured text or contextual entities. To achieve comprehensive coverage, the
 pipeline should leverage Named Entity Recognition (NER) and Large Language Models (LLMs)
 for detecting and redacting sensitive information within textual DICOM metadata fields.
- To streamline this process, pretrained de-identification pipelines can be developed combining both pixel-level and tag-level de-identification into a unified Spark workflow. These pipelines would ensure consistent, scalable, and fully in-Spark processing for both structured metadata and embedded image PHI.

Questions and Answers

Resources

- Visual NLP:
 - https://www.johnsnowlabs.com/visual-nlp/
- Visual NLP Workshop:
 - https://github.com/JohnSnowLabs/visual-nlp-workshop/tree/master
- Healthcare NLP Workshop:
 - https://github.com/JohnSnowLabs/spark-nlp-workshop/tree/master/healthcare-nlp
- Spark NLP Workshop:
 - https://github.com/JohnSnowLabs/spark-nlp-workshop
- Visual NLP Pipeline Components:
 - https://nlp.johnsnowlabs.com/docs/en/ocr_pipeline_components
- Visual NLP Speed Benchmarks:
 - https://nlp.johnsnowlabs.com/docs/en/ocr_benchmark
- Visual NLP Helpers:
 - https://nlp.johnsnowlabs.com/docs/en/ocr_structures
- Dicom Deidentification Metrics:
 - https://github.com/JohnSnowLabs/dicom-deid-dataset