UNIVERSITÉ LAVAL

ÉCOLE D'ACTUARIAT

David Beauchemin

17 février 2017

Version 4

Table des matières

Preface			3
1	Pro	visions	4
	1.1	Cas particulier 1 : (diapo 8)	4
	1.2	Cas particulier 2 : (diapo 9)	5
	1.3	exemple 7.1 : (diapo 10)	6
	1.4	Exemple 7.2 : (diapo 11)	7
	1.5	Réserves pour primes non-nivelées : (diapo 12)	8
	1.6	Exemple 7.3 : (diapo 14)	9
	1.7	Relations récursives pour réserves sans frais	9
	1.8	Exemple 7.4 : (diapo 17)	10
	1.9	Exemple 7.5 : (diapo 18)	10
	1.10	Réserve et primes par principe d'équivalence (rétrospective) :	
		(diapo 19)	11
	1.11	Cas particuliers : Contrat d'assurance vie mixte n années :	
		(diapo 20)	11
	1.12	D'autres formules pour le contrat d'assurance vie entière (diapo	
		21):	13
	1.13	Exemple 7.6 : (diapo 22)	14
		Exemple 7.7 : (diapo 25)	15
		Approximation de la réserve à $h + s$: (diapo 27)	15
		Exemple 7.8 : (diapo 28)	15
		Contrats d'assurance-vie entière continus	16
	1.18	Exemple 7.9 : (diapo 31)	16
	1.19	Exemple 7.10 : (diapo 32)	20
		Exemple 7.11 : (diapo 34)	21
		Le profit annuel :(diapo 36)	22
		Exemple 7.12 : (diapo 38)	24
		Exemple 7.14 : (diapo 42)	25

1.24	Exemple 7.15 : (diapo 43)	26
1.25	Équations différentielles de Thiele pour les réserves en temps	
	continu	27
1.26	Exemple 7.17 : (diapo 48)	27
1.27	Notions sur les rachats d'assurances	30
1.28	Exemple 7.18 : (diapo 54)	31
1.29	Exemple 7.19 : (diapo 55)	32
1.30	Exemple 7.20 : (diapo 56)	33
1.31	Exemple 7.21 (diapo 57)	35
1.32	Frais d'acquisition reportés (DAC)	37
1.33	Exemple 7.22 : (diapo 60)	38
1 34	Exemple 7.23 · (diano 63)	39

Preface

Modification à la version 3 :

Correction d'une erreur à l'exemple 7.11 Clarification de l'exemple 7.12 Correction erreur du montant de la prime exemple 7.15

Provisions

1.1 Cas particulier 1 : (diapo 8)

Remarque: $T_{x+t} = \{T_x - t | T_x > t\}$

Preuve:

$$Y = \{T_x - t | T_x > t\}$$

$$S_{y}(s) = P(y > s)$$

$$= P(T_{x} - t > s | T_{x} > t)$$

$$= P(T_{x} > t + s | T_{x} > t)$$

$$= \frac{P(T_{x} > t + s)}{P(T_{x} > t)}$$

$$= \frac{t + x P_{x}}{t P_{x}}$$

$$= \frac{t P_{x} P_{(t+x)}}{t P_{x}}$$

$$= s P_{x+t}$$

Donc,

$$S_y(s) = P(y > s)$$

$$= {}_s P_{x+t}$$

$$= P(T_{x+t} > s)$$

$$= S_{T_{x+t}}(s)$$

Alors,

$$Y = T_{x+t}$$
$$_t V = E[_t L]$$

On obtient le résultat suivant,

$$bA_{x+t} - \pi \ddot{a}_{x+t} \Longleftrightarrow {}_{t}L = bv^{K_{x+t}+1} - \pi \ddot{a}_{K_{x+t}+1}$$

$$\tag{1.1}$$

Maintenant, on regarde la variance :

$$Z_t = M v^{K_{x+t}+1}$$
$$Y_t = \pi \ddot{a}_{K_{x+t}+1}$$

On définit donc $_tL$ comme suit :

$$_{t}L = Mv^{K_{x+t}+1} - \pi \ddot{a}_{K_{x+t}+1}$$
 (1.2)

On développe pour trouver la variance :

$$tL = Mv^{K_{x+t}+1} - \pi \ddot{a}_{\overline{K_{x+t}+1}|}$$

$$= Mv^{K_{x+t}+1} - \pi \frac{1 - v^{K_{x+t}+1}}{d}$$

$$= \left(m + \frac{\pi}{d}\right)v^{K_{x+t}+1} - \frac{\pi}{d}$$

$$Var(tL) = Var\left(\left(m + \frac{\pi}{d}\right)v^{K_{x+t}+1} - \frac{\pi}{d}\right)$$

$$= \left(m + \frac{\pi}{d}\right)^{2}var\left(v^{K_{x+t}+1}\right)$$

$$= \left(m + \frac{\pi}{d}\right)^{2}\left(2A_{x+t} - A_{x+t}^{2}\right)$$

1.2 Cas particulier 2: (diapo 9)

a) Prime équivalence

$$VP_{@0}(\text{prestation}) = VP_{@0}(\text{primes à recevoir}) \Leftrightarrow VP_{@0}(\text{prestation}) - VP_{@0}(\text{primes}) = 0$$

$$M \times A_x = \pi \ddot{a}_{x:\overline{m}}$$

$$\pi \Rightarrow M \times \frac{A_x}{\ddot{a}_{x:\overline{m}}}$$

Démonstration :

$$Z = M \times v^{K_n + 1} \tag{1.3}$$

$$Y = \begin{cases} \pi \times \ddot{a}_{\overline{K_x + 1}} &, \text{si } K_x \in \{0, 1, ..., n - 1\} \\ \pi \times \ddot{a}_{\overline{n}} &, \text{si } K_x \in \{n, n + 1, ...\} \end{cases}$$
(1.4)

b) Calculer les réserves aux temps (t):

t < n

À partir des équations 1.3 et 1.4, on obtient :

$${}_tL = {}_hZ - {}_hY = \left\{ \begin{array}{cc} M \times v^{K_{x+t}+1} - \pi \times \ddot{a}_{\overline{K_{x+t}+1}|} & , \text{si } T_{x+t} < n-t \Leftrightarrow K_{x+t}\varepsilon\{0,1,...,n-t-1\} \\ M \times v^{K_{x+t}+1} - \pi \times \ddot{a}_{\overline{n-t}|} & , \text{si } T_{x+t} > n-t \Leftrightarrow K_{x+t}\varepsilon\{n-t,n-t+1,...\} \end{array} \right.$$

On obtient donc,

$$\begin{split} _{t}V &= E[_{t}L] = M \times A_{x+t} - \pi \times \ddot{a}_{x+t:\overline{n-t}|} \\ &= M \times A_{x+t} - M \times \frac{A_{x}}{\ddot{a}_{x}\cdot\overline{m}|} \times \ddot{a}_{x+t:\overline{n-t}|} \end{split}$$

 $\mathbf{t}\,\geq\,\mathbf{n}$

$$tV = E[tL] = M \times v^{K_n + 1}$$
$$= M \times A_{x+t}$$

1.3 exemple 7.1 : (diapo 10)

Même démarche que le cas particulier à 1.2.

- · M\$ à K_{x+1}
- \cdot π début d'année pour n
 années

a) Prime principe d'équivalence :

$$M \times A_x = \pi \ddot{a}_{x:\overline{n}|} \Rightarrow \pi = \frac{M \times A_x}{\ddot{a}_{x:\overline{n}|}}$$

b) Calcul réserve au temps t :

 $_tV = VP_{@0}$ (prestation à payer) - $VP_{@0}({\rm primes}$ à recevoir) cas $1:{\rm t}<{\rm n}$

$$_{t}V=M\times A_{x+t}-\pi \ddot{a}_{x+t:\overline{n-t}|}\Rightarrow M\times A_{x+t}-\frac{M\times A_{x}}{\ddot{a}_{x:\overline{n}|}}\times \ddot{a}_{x+t:\overline{n-t}|}$$

 $cas 2: t \le n$

$$_{t}V = M \times A_{x+t}$$

1.4 Exemple 7.2 : (diapo 11)

- . 30 000 \$
- $\cdot \mathbf{x} = (30)$
- $\cdot \ _{20}\pi =P^{pe}$
- \cdot $\delta = 6 \%$

a) Trouver π

$$\begin{array}{c} 30\ 000 \times A_{30\overline{:}\overline{30}\overline{|}} = P \times \ddot{a}_{30\overline{:}\overline{20}\overline{|}} \\ P = \frac{30\ 000 \times A_{30\overline{:}\overline{30}\overline{|}}}{\ddot{a}_{30\overline{:}\overline{20}\overline{|}}} \\ = \frac{30\ 000 \times 0.200142}{35.281344} = 170.18\$ \end{array}$$

b) Définir L

$$_{10}L = {_{10}Z} - {_{10}Y}$$

$${}_{10}Z = \begin{cases} 30\ 000 \times v^{K_{40}+1} &, \text{si } K_{40} \in \{0, 1, ..., 19\} \\ 0 &, \text{si } K_{40} \{20, 21, ...\} \end{cases}$$
 (1.5)

$${}_{10}Y = \begin{cases} \pi \times \ddot{a}_{\overline{K_{40}+1}|} &, \text{si } K_{40}\varepsilon\{0,1,...,9\} \\ \pi \times \ddot{a}_{\overline{10}|} &, \text{si } K_{40}\{10,11,...\} \end{cases}$$
 (1.6)

À partir des expressions 1.5 et 1.6 :

$${}_{10}L = \begin{cases} 30\ 000 \times v^{K_{40}+1} - \pi \times \ddot{a}_{\overline{K_{40}+1}|} &, \text{si } K_{40}\varepsilon\{0,1,...,9\} \\ 30\ 000 \times v^{K_{40}+1} - \pi \times \ddot{a}_{\overline{10}|} &, \text{si } K_{40}\varepsilon\{10,11,...,19\} \\ 0 - \pi \ddot{a}_{\overline{10}|} &, \text{si } K_{40}\{20,21,...\} \end{cases}$$
(1.7)

De façon similaire on obtient,

$${}_{25}L = \begin{cases} 30\ 000 \times v^{K_{55}+1} &, \text{si } K_{55} \in \{0, 1, ..., 4\} \\ 0 &, \text{si } K_{55} \{5, 6, ...\} \end{cases}$$
 (1.8)

Trouver $_{25}L$ si $T_{30}=28.2$ (sachant que le contrat est en vigueur \Leftrightarrow sachant que $T_{30}>25$)

$$\{T_{30} - 25 | T_{30} > 25\} = T_{55}$$

$$\Rightarrow \text{ si } T_{30} = 28.2 \Rightarrow T_{55} = 3.2$$

$$\Rightarrow \text{ si } K_{55} = 3 \Rightarrow \{_{25}L | T_{30}\} = 28.2$$

$$= 30 \ 000 \times v^4$$

$$= 23 \ 598.84\$$$

Trouver $_{10}L$ si $T_{30} = 14.6$

$$T_{40} = 4.6 \Rightarrow K_{40} = 4$$

 $\Rightarrow {}_{10}L = 30\ 000 \times v^5 - P\ddot{a}_{\overline{5}|}$
 $= 21\ 467.13\$$

c) Calcul de réserve

 $_{10}V = VP_{@10}$ (prestation future à payer) - $VP_{@10}$ (primes futures à recevoir)

$$= 30\ 000 \times A_{40\overline{:}\overline{20}\overline{|}} - P \times \ddot{a}_{40\overline{:}\overline{10}\overline{|}} \\ = 30\ 000 \times 0.28768 - 170.18 \times 22.787631 = 9\ 646,47\$$$

$$_{25}V = 30\ 000 \times A_{55\overline{:5}} - 0 = 30\ 000 \times 0.231449 = 4\ 605,04$$

1.5 Réserves pour primes non-nivelées : (diapo 12)

$$_{h}L = b_{K_{x+h}+h+1} \times v^{K_{x+h}+1} - \sum_{i=0}^{K_{x+h}} \pi_{h+i} \times v^{i}$$

$${}_hV = \sum_{k=0}^{\infty} b_{K_{k+h}h+1} \times v^{k+1} \times {}_kP_{x+h} - \sum_{k=0}^{\infty} \pi_{h+k} \times v^k \times {}_kP_{x+h}$$

1.6 Exemple 7.3 : (diapo 14)

Notes : Je n'arrive pas au même réponse que les notes de cours. J'ai inclus mes réponses.

$$\begin{array}{l}
\cdot \mathbf{x} = (50) \\
\cdot \delta = 6 \% \\
M = \begin{cases}
50 000\$ & , \text{si } T_{50} < 15 \\
10 000\$ & , \text{si } T_{50} > 15
\end{cases} \\
\pi_k = \begin{cases}
5 \times \pi & , \text{si } T_{50} < 15 \\
\pi & , \text{si } T_{50} > 15
\end{cases} \tag{1.9}$$

a) Calculer π

$$\begin{split} \pi &\Rightarrow 50\ 000 \times A_{50\overline{:}\overline{15}} + 10\ 000 \times {}_{15}E_{50} \times A_{65} = 5\pi \ddot{a}_{50\overline{:}\overline{15}} + \pi \times {}_{15}E_{50} \times \ddot{a}_{65} \\ &\Rightarrow 50\ 000 \times A_{50} - 40\ 000 \times {}_{15}E_{50} \times A_{65} = 5\pi \ddot{a}_{50} - 4\pi \times {}_{15}E_{50} \times \ddot{a}_{65} \\ \pi &= \frac{50\ 000 \times A_{50} - 40\ 000 \times {}_{15}E_{50} \times A_{65}}{5 \times \ddot{a}_{50} - 4 \times {}_{15}E_{50} \times \ddot{a}_{65}} \\ &= 119.663\$ \end{split}$$

b) Calculer la réserve à t = 10

$$_{10}V = 50\ 000 \times A_{60} - 40\ 000 \times _5E_{60} \times A_{65} - 5 \times P \times \ddot{a}_{60} - 4 \times P \times _5E_{60} \times \ddot{a}_{65}$$

= 2 949,573 76\$

c) Calculer la réserve à t=20

$$20V = 10\ 000 \times A_{70} - P \times \ddot{a}_{70} = 4\ 124,072$$
\$

1.7 Relations récursives pour réserves sans frais

La réserve au temps h+1 correspond à :

$$_{h+1}V = \frac{(_{h}V + \pi_{h}) \times (1+i) - b_{h+1} \times q_{x+h}}{p_{x+h}}$$
 (1.11)

Accumulation de la réverse déjà accumuler à h+prime versé à h. Il existe deux possibilités :

- 1- Mourir avec prob q_{x+h} et payer la prestation au décès b_{x+h} soit : $-b_{h+1} \times q_{x+h}$
- 2- Survivre avec prob p_{x+h} et on a besoin d'une réserve de $_{h+1}V$ soit : $_{h+1}V\times p_{x+h}.$

1.8 Exemple 7.4 : (diapo 17)

- $\cdot \mathbf{x} = (50)$
- $\cdot M = 1 000$ \$
- \cdot $\pi_k = 13.10\$$ selon le principe d'équivalence
- · De plus, $_{0}V=0$

On cherche,

$$({}_{0}V + \pi) \times (1+i) = b \times q_{x} + p_{x} \times {}_{1}V$$

 $({}_{1}V + \pi) \times (1+i) = b \times q_{x+1} + p_{x+1} \times {}_{2}V$

On résout les équations pour trouver les montants de réserve.

$$1V = \frac{(_{0}V + \pi) \times (1+i) - b \times q_{x}}{p_{x}}$$

$$= \frac{(0+13.1)(1.06) - (0.005 \times 1000)}{0.995}$$

$$= 8.931\$$$

$$2V = \frac{(_{1}V + \pi) \times (1+i) - b \times q_{x+1}}{p_{x+1}}$$

$$= \frac{(8.931 + 13.1)(1.06) - (0.010 \times 1000)}{0.99}$$

$$= 13.488\$$$

1.9 Exemple 7.5 : (diapo 18)

- $\cdot x = (50)$
- $\cdot M = 100 000$ \$
- $\cdot \pi_k = 4$ 156\$ payable au plus 10 ans.
- \cdot i = 5 %

· De plus, $_{9}V = 65~075$ \$

On cherche A_{41} .

On commence par trouver la réserve à 10 :

$$(9V + \pi)(1+i) = 10\ 000q_{39} + {}_{10}Vp_{39}$$
$$(65\ 070 + 4\ 156)(1.05) = 100\ 000 \times 0.011 + {}_{10}V(1 - 0.011)$$
$${}_{10}V = 72\ 383,52\$$$

Et pour t = 11:

$$(10V + 0)(1+i) = 10\ 000q_{40} + {}_{11}Vp_{40}$$
$$(72\ 383,52)(1.05) = 100\ 000 \times 0.012 + {}_{11}V(1-0.012)$$
$${}_{10}V = 75\ 711,2\$$$

Donc,

$$a_{11}V = 100\ 000 \times A_{41}$$

$$A_{41} = \frac{V_{11}}{100\ 000}$$

$$= 0.757112$$

1.10 Réserve et primes par principe d'équivalence (rétrospective) : (diapo 19)

Si on utilise une prime par le principe d'équivalence $_{0}V=0$. Alors,

$${}_hV = \frac{VP_{@0}(\text{primes reçues avant }h) - VP_{@0}(\text{prestation à payer avant }h)}{{}_hE_x}$$

1.11 Cas particuliers : Contrat d'assurance vie mixte n années : (diapo 20)

$$\cdot x = (50)$$

 $\cdot M = 1$ \$

i)

D'abord on trouve P par le principe d'équivalence, qui correspond à :

$$P = \frac{A_{x:\overline{h}|}}{\ddot{a}_{x:\overline{h}|}} \tag{1.12}$$

Et puis pour trouver la réserve à h, avec la méthode rétrospective :

$${}_hV = \frac{VP_{@0}(\text{primes recues avant temps h}) - VP_{@0}(\text{prestations payés avant h})}{{}_hE_x}$$

$$= \frac{P\ddot{a}_{x:\overline{h}|} - A_{x:\overline{h}|}}{{}_hE_x} \text{ ,où P} = 1.12$$

ii)

 $_hV=VP_{@0}(\text{prestations futures à payer de h à n})-VP_{@0}(\text{primes futures à recevoir de h à n})$ $=A_{x+h:\overline{n-h}|}-P\ddot{a}_{x+h:\overline{n-h}|}$

On substituant P par l'équation 1.12, pour les 2 méthodes, on obtient :

$$A_{x+h:\overline{n-h}|} - \frac{A_{x:\overline{h}|}}{\ddot{a}_{x:\overline{h}|}} \ddot{a}_{x+h:\overline{n-h}|} \tag{1.13}$$

$$\frac{A_{x:\overline{h}|}}{\ddot{a}_{x:\overline{h}|}} \left(\frac{\ddot{a}_{x:\overline{h}|} - A_{x:\overline{h}|}}{{}_{h}E_{x}} \right) \tag{1.14}$$

On prouve l'égalité entre les 2 méthodes. On débute on posant les égalités suivantes :

$$\begin{split} \ddot{a}_{x:\overline{n}|} &= \ddot{a}_{x:\overline{h}|} + {}_{h}E_{x}\ddot{a}_{x+h:\overline{n-h}|} \\ \ddot{a}_{x+h:\overline{n-h}|} &= \frac{\ddot{a}_{x:\overline{n}|} - \ddot{a}_{x:\overline{h}|}}{{}_{h}E_{x}} \\ A_{x:\overline{n}|} &= A_{x:\overline{h}|} + {}_{h}E_{x}A_{x+h:\overline{n-h}|} \\ A_{x+h:\overline{n-h}|} &= \frac{A_{x:\overline{n}|} - A_{x:\overline{h}|}}{{}_{h}E_{x}} \end{split}$$

On trouve par la suite:

$$\begin{split} {}_{h}V = & A_{x+h:\overline{n-h}|} - \frac{A_{x:\overline{n}|}}{\ddot{a}_{x:\overline{n}|}} \ddot{a}_{x+h:\overline{n-h}|} \\ = & \frac{A_{x:\overline{n}|} - A_{x:\overline{h}|}}{{}_{h}E_{x}} - \frac{A_{x:\overline{n}|}}{\ddot{a}_{x:\overline{n}|}} \left(\frac{\ddot{a}_{x:\overline{n}|} - \ddot{a}_{x:\overline{h}|}}{{}_{h}E_{x}} \right) \\ = & - \frac{A_{x:\overline{n}|}}{\ddot{a}_{x:\overline{n}|}} + \frac{A_{x:\overline{n}|}\ddot{a}_{x:\overline{h}|}}{\ddot{a}_{x:\overline{n}|} \times {}_{h}E_{x}} \\ = & {}_{h}V(\text{avec la forme rétrospective}) \end{split}$$

iii)

On cherhce la variance de $_{h}L$. On définit L comme suit :

$$_{h}L = _{h}Z - _{h}Y \tag{1.15}$$

$${}_{h}Z = \begin{cases} 1 \times v^{K_{x+h}} &, \text{ si } K_{x+h} < n-h-1\\ 1 \times v^{K_{n+h}} &, \text{ si } K_{x+h} \ge n-h \end{cases}$$
 (1.16)

$${}_{h}Y = \begin{cases} \pi \ddot{a}_{K_{x+h}+1} & \text{si } K_{x+h} < n-h-1 \\ \pi \ddot{a}_{n-h} & \text{si } K_{x+h} \ge n-h \end{cases}$$
 (1.17)

On déduit que :

$$hZ = v^{\min\{K_{x+h}+1, n-h\}}$$
$$hY = \pi \ddot{a}_{\min(K_{x+h}+1, n-h)}$$

Et on obtient pour L:

$$hL = {}_{h}Z - {}_{h}Y$$

$$= v^{min\{K_{x+h}+1,n-h} - \pi \ddot{a}_{min(K_{x+h}+1,n-h)}$$

$$= \left(1 + \frac{\pi}{d}\right)v^{min\{K_{x+h}+1,n-h} - \frac{\pi}{d}$$

$$var(hL) = \left(1 + \frac{\pi}{d}\right)^2 \left(2A_{x+h:\overline{n-h}} - A_{x+h:\overline{n-h}}^2\right)$$
(1.18)

1.12 D'autres formules pour le contrat d'assurance vie entière (diapo 21) :

Remarques : Pour un contrat d'assurance vie entière et prime selon principe d'équivalence.

 $_{h}V=MA_{x+h}-\pi\ddot{a}_{x+h}$ où, π est définie selon le principe d'équivalence

On obtient donc,

$$hV = MA_{x+h} - M\frac{A_x}{\ddot{a}_x}\ddot{a}_{x+h}$$

$$= MA_{x+h} - M\frac{A_x}{\ddot{a}_x}\ddot{a}_{x+h}$$

$$= M\left(A_{x+h} - \frac{A_x}{\ddot{a}_x}\ddot{a}_{x+h}\right)$$

$$= M\left(1 - d\ddot{a}_{x+h} - \frac{(1 - d\ddot{a}_x)\ddot{a}_{x+h}}{\ddot{a}_x}\right)$$

$$= M\left(1 - d\ddot{a}_{x+h} - \frac{\ddot{a}_{x+h}}{\ddot{a}_x} + \frac{d\ddot{a}_x\ddot{a}_{x+h}}{\ddot{a}_x}\right)$$

On obtient la formule suivante :

$$_{h}V = M\left(1 - \frac{\ddot{a}_{x+h}}{\ddot{a}_{x}}\right) \tag{1.19}$$

Notes:

$$\ddot{a}_x = \frac{1 - A_x}{d}$$

$$A_x = 1 - d\ddot{a}_x$$

$$A_{x+h} = 1 - d\ddot{a}_{x+h}$$

1.13 Exemple 7.6 : (diapo 22)

$$\cdot x = (40)$$

 $\cdot M = 10\ 000$ \$

Avec l'équation 1.19, on obtient :

$$10V = M \left(1 - \frac{\ddot{a}_{x+10}}{\ddot{a}_x} \right)$$
$$= 10\ 000 \left(1 - \frac{17.0245}{18.4578} \right)$$
$$= 776.53\$$$

1.14 Exemple 7.7 : (diapo 25)

$$\begin{split} & \cdot \, \mathbf{x} = (40) \\ & \cdot \, \mathbf{i} = 5\% \\ & \cdot \, \mathbf{M} = 10 \ 000\$ \\ & \cdot \, \pi = \text{principe d'équivalence} \\ & \cdot \, e_0 = 50 \ \text{et} \ e_k = 20, \ \mathbf{k} = 1, 2, \dots \\ & \cdot \, _0 V = 0 \end{split}$$

D'abord on trouve la prime π :

$$10\ 000A_{40} + 50 + 20a_{40} = \pi \ddot{a}_{40}$$
$$= 87.2125$$

Rappel : $A_x = 1 - d\ddot{a}_x$ On cherche $_2V$:

$${}_{1}V = \frac{({}_{0}V + \pi - e_{0}) - Mq_{40}}{p_{40}}$$

$$= \frac{(0 + 87.2125 - 50)(1.05) - 10\ 000 \times (\frac{0.52722}{1\ 000})}{1 - (\frac{0.52722}{1\ 000})}$$

$$= 33.819\$$$

$${}_{2}V = \frac{({}_{1}V + \pi - e_{1}) - Mq_{41}}{p_{41}}$$

$$= \frac{(33.819 + 87.2125 - 20)(1.05) - 10\ 000 \times (\frac{0.56531}{1\ 000})}{1 - (\frac{0.56531}{1\ 000})}$$

$$= 100.49\$$$

1.15 Approximation de la réserve à h+s: (diapo 27)

$$_{h+s}V = (_{h}V + \pi_{h} - e_{h})(1-s) + (_{\lfloor h+1 \rfloor}V(s))$$
 (1.20)

1.16 Exemple 7.8 : (diapo 28)

$$\cdot x = (65)$$

 $\cdot i = 6\%$

- $\cdot M = 1$ \$
- $\cdot \pi = \text{principe d'équivalence} = 0.044444$
- $\cdot _{0}V=0$
- $\cdot \, _1V = 0.002635$ (trouver à partir des informations précédentes)

On cherche $_{0.25}V$, on utilise l'estimation 1.20:

$$0.25V = (_{0}V + \pi_{h})(1 - 0.25) + (_{1}V(0.25))$$

$$\approx (0 + 0.044444)(0.75) + 0.002635 \times 0.25$$

1.17 Contrats d'assurance-vie entière continus

Pour des contrats d'assurance-vie continus, on obtient les formules suivantes

$$\begin{split} {}_hL &= M v^{T_{x+h}} - \pi \overline{a}_{\overline{T_{x+h}}} \\ &= M v^{T_{x+h}} - \pi \frac{1 - v^{T_{x+h}}}{\delta} \\ &= \left(M + \frac{\pi}{\delta}\right) v^{T_{x+h}} - \frac{\pi}{\delta} \\ {}_hV &= E[{}_hL] \\ &= M \overline{A}_{x+h} - \pi \times \overline{a}_{x+h} \\ \mathrm{Var}({}_hL) &= \left(M + \frac{\pi}{\delta}\right)^2 \left[{}^2 \overline{A}_{x+h} - \overline{A}_{x+h}^2\right] \end{split}$$

De plus, si les primes sont selon le principe d'équivalence, on obtient les relations suviantes

$${}_{h}V = M \left(1 - \frac{\overline{a}_{x+h}}{\overline{a}_{x}} \right)$$
$$= M \left(\frac{\overline{A}_{x+h} - \overline{A}_{x}}{1 - \overline{A}_{x}} \right)$$

1.18 Exemple 7.9 : (diapo 31)

- $\cdot x = (65)$
- $\delta \cdot \delta = 6\%$
- $\cdot b = 10 000$ \$
- $\cdot \pi$ payable 10 ans
- $\cdot \mu_{50+t} = 0.04$

a)

On cherche la prime π selon le principe d'équivalence :

$$\pi = \frac{10\ 000A_{50:\overline{201}}}{\overline{a}_{50:\overline{101}}}$$

$$\overline{A}_{50:\overline{201}} = \int_{t=0}^{20} 1 \times e^{-\delta \times t} \times f_{T_{50}}(t)dt$$

$$= \int_{t=0}^{20} 1 \times e^{-\delta \times t} \times {}_{t}P_{50} \times \mu_{50+t}dt$$

$$= \int_{t=0}^{20} 1 \times e^{-0.05 \times t} \times e^{-0.04t}(0.04)dt$$

$$= 0.04 \left(\frac{e^{-0.09 \times 20} - 1}{0.09}\right)(-1)$$

$$= 0.371$$

$$\begin{split} \overline{a}_{50:\overline{10}|} &= \int_{t=0}^{10} 1 \times e^{-\delta \times t} \times_t p_x dt \\ &= \int_{t=0}^{20} 1 \times e^{-0.05 \times t} \times e^{-0.04t} dt \\ &= \left(\frac{1 - e^{-0.09 \times 10}}{0.09}\right) (-1) \\ &= 6.5937 \end{split}$$

On obtient donc la prime suivante :

$$\pi = \frac{1\ 000 \times 0.371}{6.5937}$$
$$= 562.66\$$$

b)

$${}_{5}L = \left\{ \begin{array}{ll} 10\ 000v^{T_{55}} - \pi \overline{a}_{T_{55}} & , \text{si } T_{55} < 5 \\ & 10\ 000v^{T_{55}} - \pi \overline{a}_{5} & , \text{si } 5 < T_{55} \leq 15 \\ & & 0 - \pi \overline{a}_{5} & , \text{si } T_{55} > 15 \end{array} \right.$$

On obtient les valeurs suivantes,

$$10\ 000v^{T_{55}} - \pi \overline{a}_{5}$$

$$10\ 000e^{-0.05 \times 5} - 562.66 \times \frac{1 - e^{-0.05 \times 5}}{0.05}$$

$$= 5\ 298,80\$$$

$$10\ 000v^{15} - \pi \overline{a}_5$$

$$10\ 000e^{-0.05 \times 15} - 562.66 \times \frac{1 - e^{-0.05 \times 5}}{0.05}$$

$$= 2\ 234,47\$$$

$$0 - \pi \overline{a}_5$$

$$0 - 562.66 \times \frac{1 - e^{-0.05 \times 5}}{0.05}$$

$$= -2 489,20$$
\$

c)

i)

On cherche $_5L$ si $T_{50} = 14.1$, soit :

$$\{T_{50}|T_{50} > 5\} = T_{55}$$

soit, $T_{55} = 9.1$

$$_5L = 10\ 000v^{9.1} - \pi \overline{a}_5$$

=10\ 000e^{-0.05 \times 9.1} - 562.66 \times \frac{1 - e^{-0.05 \times 5}}{0.05}
=3\ 855,28

ii)

On cherche $_5L$ si $T_{55}=3.2$,

$$5L = 10\ 000v^{3.2} - \pi \overline{a}_{3.2}$$

=10\ 000e^{-0.05 \times 3.2} - 562.66 \times \frac{1 - e^{-0.05 \times 3.2}}{0.05}
=6\ 857,58

 \mathbf{d}

$$\begin{split} & _5L = & 10\ 000\overline{A}_{55:\overline{15}|} - \pi \overline{a}_{55:\overline{5}|} \\ & = & 10\ 000\int_{t=0}^{15} e^{-\delta \times t}{}_t p_{55} \mu_{55+t} dt - 562.66\int_{t=0}^{5} e^{-\delta \times t}{}_t p_{55} dt \\ & = & 10\ 000\int_{t=0}^{15} e^{-0.05 \times t} e^{-0.04 \times t} (0.04) dt - 562.66\int_{t=0}^{5} e^{-0.05 \times t} e^{-0.04 \times t} dt \\ & = & 1\ 026,80\$ \end{split}$$

$$\begin{split} {}_{15}L = &10\ 000\overline{A}_{65;\overline{5}|} - 0 \\ = &10\ 000\int_{t=0}^{15} e^{-\delta\times t}{}_{t}p_{55}\mu_{55+t}dt \\ = &10\ 000\int_{t=0}^{15} e^{-0.05\times t}e^{-0.04\times t}(0.04)dt \\ = &1\ 610,54\$ \end{split}$$

 $\mathbf{e})$

On sait que ${}_5L$ est une fonction monotone décroissante.

$$P(L_5 < 3\ 000) = P(T_{55} > t^*)$$

, où t^* est la solution de l'expression 10 $000v^{t^*} - \pi \overline{a}_5 = 3$ 000

$$-\delta \times t^* = \ln\left(\frac{3\ 000 + \pi \overline{a}_5}{10\ 000}\right)$$
$$= \frac{-1}{\delta} \ln\left(\frac{3\ 000 + \pi \overline{a}_5}{10\ 000}\right)$$
$$t^* = 11.996$$

Alors,

$$P(L_5 < 3\ 000) = {}_{11.996}P_{55} = e^{-0.05 \times 11.996} = 0.619$$

1.19 Exemple 7.10 : (diapo 32)

- x = (65)
- $\delta = 4\%$
- $b_t = 1\ 000e^{0.04t}$
- $\mu_{50+t} = 0.04$
- $\mu_{65+t} = 0.02$

On débute en trouvant la prime π , soit $VP_{@0}(primesrecevoir) = VP_{@0}(prestationspayer)$:

$$\pi \overline{a}_{65} = \int_{t=0}^{\infty} b_t e^{-\delta \times t} p_{65} \mu_{65+t} dt$$

$$\pi \overline{a}_{65} = \int_{t=0}^{\infty} b_t e^{-\delta \times t} p_{65} dt$$

$$= \frac{1}{\mu + \sigma} \mu \text{ est constant}$$

$$= \frac{1}{0.06}$$

$$\int_{t=0}^{\infty} b_t e^{-\delta \times t} {}_t p_{65} \mu_{65+t} dt = \int_{t=0}^{\infty} 1 \ 000 e^{0.04t} e^{-0.04 \times t} {}_t p_{65} e^{-0.02t} (0.02) dt$$
$$= \frac{20}{0.02} = 1000$$

On obtient,

$$\frac{\pi}{0.06} = 1000$$
 $\pi = 60$ \$

On résout maintenant,

$$2V = \int_{t=0}^{\infty} b_t e^{-\delta \times t} p_{67} \mu_{67+t} dt - \pi \overline{a}_{67}$$

$$= \int_{t=0}^{\infty} 1000 e^{0.04(t+2)} e^{-0.04 \times t} e^{-0.02 \times t} (0.02) dt - \frac{60}{0.06}$$

$$= 83.29\$$$

1.20 Exemple 7.11: (diapo 34)

- $x = ([40])^{1}$
- i = 5%
- b = 100\$
- On utilise la table Standars Select Survival Model
- On utilise l'hypothèse DUD, $\overline{A}_x = \frac{i}{\delta} A_x$

Notes sur les tables de mortalités sélect :

$${}_{1}p_{[25]} = \frac{l_{[25]+1}}{l_{[25]}} = \frac{99\ 842,38}{99\ 865,69} = 0.9999766587$$
$${}_{1}p_{[24]+1} = \frac{l_{[24]+2} = l_{26}}{l_{[24]+1}} = \frac{99\ 843,80}{99\ 869,70} = 0.999740662$$
$${}_{1}p_{25} = \frac{l_{26}}{l_{24}} = \frac{99\ 843,80}{99\ 871.08} = 0.999726848$$

$${}_{2}p_{[25]} = \frac{l_{[25]+2} = l_{27}}{l_{[25]}}$$

$${}_{3}p_{[25]+1} = \frac{l_{28}}{l_{[25]}}$$

$${}_{3}p_{[24]+1} = \frac{l_{[24]+1+3}}{l_{[24]+1}}$$

^{1.} Les [] signifie que l'assuré à fait un examen médical (table sélect)

On cherche $_5V$.

$$_5V = 100\overline{A}_{45} - \pi \ddot{a}_{45} \tag{1.21}$$

On sait que $\overline{A}_x = \frac{i}{\delta}A_x$, on possède seulement une table de rente. Alors, on utilise la relation suviante :

$$\overline{A}_{45} = \frac{i}{\delta} A_{45} = \frac{i}{\delta} (1 - d\ddot{a}_{45})$$
$$= \frac{0.05}{\ln(1.05)} \left(1 - \frac{0.05}{1.05} (17.81621) \right)$$

On peut donc trouver π ,

$$\pi = \frac{100\overline{A}_{[40]}}{\ddot{a}_{[40]}}$$

$$= \frac{100\frac{1.05}{\ln(1.05)} \left(1 - \frac{0.05}{1.05}(18.45956)\right)}{18.45956}$$

$$= 0.671593$$

On peut résoudre l'équation 1.21 :

$$_5V = 100 \frac{0.05}{\ln(1.05)} \left(1 - \frac{0.05}{1.05} (17.81621) \right) - 0.671593 \times 17.81621$$

= 3.5716\$

1.21 Le profit annuel :(diapo 36)

Rappel : e_k représente les frais associés au prime au temps k et E_k représente les frais associés à la prestation à payer à la fin de l'année de décès ². On considère la réserve espected(E) entre la période k et k+1 soit

$$_{k+1}V^E = N_k \Big(_k V + G + e_k \Big) (1+i) - \Big(b_{k+1} + E_{k+1} - {}_{k+1}V \Big) N_k q_{x+k}$$

^{2.} Voir notes powerpoint diapo 23

Preuve:

$$\begin{split} N_k \Big(_k V + G + e_k \Big) (1+i) &= \Big(b_{k+1} + E_{k+1} \Big) q_{x+k} + -_{k+1} V p_{x+k} \\ &= \Big(b_{k+1} + E_{k+1} \Big) q_{x+k} + _{k+1} V (1 - q_{x+k}) \\ &= \Big(b_{k+1} + E_{k+1} \Big) - _{k+1} V) q_{x+k} + _{k+1} V q_{x+k} \\ k_{+1} V &= \Big(_k V + G + e_k \Big) (1+i) - \Big(b_{k+1} + E_{k+1} - _{k+1} V \Big) q_{x+k} \\ N_{kk+1} V &= N_k \Big(_k V + G + e_k \Big) (1+i) - \Big(b_{k+1} + E_{k+1} - _{k+1} V \Big) N_k q_{x+k} \end{split}$$

Si on modifie les hypotèse de taux d'intérêt, des frais et/ou du taux de mortalité on se retrouvre avec la réserve actual(A)

$$N_{kk+1}V^{A} = N_{k} \left({}_{k}V + G + e'_{k} \right) (1 + i') - \left(b_{k+1} + E'_{k+1} - {}_{k+1}V \right) N_{k} q'_{x+k}$$

Si on soustrait la réserve actual à la réserve expected, on obtient le profit de l'assureur pour l'année k+1 sur l'intérêt, les frais et le taux de mortalité

$$\begin{split} k_{+1}V^A - {}_{k+1}V^E &= \\ N_k \Big({}_k V + G - e_k^{'}\Big)(1+i^{'}) - \\ \Big(b_{k+1} + E_{k+1}^{'} - {}_{k+1}V\Big)N_k q_{x+k}^{'} - \\ N_k \Big({}_k V + G - e_k\Big)(1+i) - \\ \Big(b_{k+1} + E_{k+1} - {}_{k+1}V\Big)N_k q_{x+k} \end{split}$$

Si on s'intéresse au profit(Υ) par section, on obtient... Si seulement l'intérêt change,

$$\Upsilon_{k} = N_{k} \left({}_{k}V + G - e_{k}^{'} \right) (i^{'} - i)$$

Si seulement les frais e_k ou E_k change,

$$\Upsilon_k = N_k \left(e_k - e'_k \right) (1+i) + N_k q_{x+k} \left(E_{k+1} - E'_{k+1} \right)$$

Si seulement la force de mortalité change,

$$\Upsilon_{k} = \left(b_{k+1} + E_{k+1} - k_{k+1}V\right) \left(N_{k}q_{x+k} - N_{k}q'_{x+k}\right)$$

Exemple 7.12 : (diapo 38) 1.22

L'énoncé est une traduction du livre. Il ne s'agit pas de l'exemple 7.3 des notes de coours.

- Assurance vie mixte 20 ans
- G = 5 200\$
- b = 100 000\$
- i = 5%
- Standard Select Survival Model
- $e_0 = 0.1 \times G$, $e_1 = e_2 = \dots = 0.05 \times G$
- $E_{k+1} = 200$ \$

À l'aide de l'exemple 7.3 du livre de référence, on obtient les informations suivantes

- $_5V = 29~068$ \$
- $_6V = 35 \ 324\$$

À l'aide de l'énoncé et de la table de mortalité, on obtient les informations suivantes

- $q_{65} = 1 \frac{l_{66}}{l_{65}} = 0.005915$
- $N_5 = 100 \Rightarrow$ le porte feuille comprend 100 assurés
- $e_{5}^{'} = 0.1 \times G = e_{5}$ $i^{'} = 0.065$
- $N_5 q_{65} = 1 \Rightarrow \left(\frac{1}{100} = 0.01 \times 100\right) \Rightarrow q'_{65} = 0.01$
- $E_6' = 250$ \$

a)

$$\begin{split} {}_{6}V^{A} - {}_{6}V^{E} = \\ &100 \Big(29068 + 5200 - 0.06 \times 5\ 200 \Big) (1.065) - \\ &\Big(100\ 000 + 250 - 35\ 324 \Big) (1) - \\ &\Big[100 \Big(29068 + 5200 - 0.05 \times 5\ 200 \Big) (1.05) - \\ &\Big(100\ 000 + 200 - 35\ 324 \Big) 100 (0.005915) \Big] \\ &= 18\ 922,15\$ \end{split}$$

b1)

Le profit/perte perte sur la mortalité correspond à

$$= (b_6 + E_6 - {}_6V) - (N_5q_{65} - N_5q'_{65})$$

= (100 000 + 200 - 35324)(0.05915 - 1)
= -26 501,85\$

b2)

Le profit/perte sur l'intérêt (mortalité déjà changée)

$$= N_5(_5V + G - e_5)(i' - i)$$

= 100(29 068 + 5 200 - 0.05 × 5 200)(0.065 - 0.05)
= 51 012\$

b3)

Le profit sur les frais(mortalité et intérêt déjà changés) correspond à

$$= N_5(e_5 - e_5')(1 + i') + (E_6 - E_6')N_5q_{65}'$$

$$= 100(0.05 \times 5\ 200 - 0.06 \times 5\ 200)(1.065) + (200 - 250)(1)$$

$$= -5\ 588\$$$

Remarque : - 26 501,85\\$ + 51 012\\$ - 5 588\\$ = 18 922,15\\$

1.23 Exemple 7.14: (diapo 42)

- G = 100\$
- b = 1000\$
- P = 80\$
- i = 10%
- $e_0 = 0.4 \times G = 40$ \$
- ${}_{1}V^{*} = 40$ \$ (pour un contrat sans frais)
- $_{0}AS = 0$ \$

On définit le quote-part de l'actif comme suit

$$AS_{k+1} = \frac{(AS_k + G - e_k)(1+i) - (b+E_k)q_{x+k}}{p_{x+k}}$$
 (1.22)

$$AS_{1} = \frac{(AS_{0} + G - e_{0})(1+i) - (b+E_{0})q_{x}}{p_{x}}$$

$$= \frac{(0+100-40)(1.10) - 1\ 000q_{x}}{p_{x}}$$

$$= \frac{(60)(1.10) - 1\ 000 \times 0.05}{0.95}$$

$$= 16.8$$

Où q_x est trouver ainsi, (Pour un contrat sans frais)

$${}_{1}V^{*} = \frac{({}_{0}V^{*} + P)(1+i) - bq_{x}}{p_{x}}$$

$$40 = \frac{(0+80)(1.1) - 1000q_{x}}{1-q_{x}}$$

$$q_{x} = 0.05$$

1.24 Exemple 7.15: (diapo 43)

- G = 100\$
- b = 10 000\$
- P = 80\$
- $\bullet \ i=5\%$
- $e_0 = 0.1 \times G + 20$
- $e_1 = e_2 = \dots = 0.02 \times G + 5$
- $_{0}AS = 0$ \$
- $_1AS = 400$ \$
- $q_x = 0.02$
- $q_{x+1} = 0.025$

$$AS_{1} = \frac{(AS_{0} + G - e_{0})(1+i) - bq_{x}}{p_{x}}$$

$$400 = \frac{(0+G-0.10G-20)(1.05) - 10\ 000 \times 0.02}{0.98}$$

$$G = 648.68\$$$

$$AS_{2} = \frac{(AS_{1} + G - e_{1})(1+i) - bq_{x+1}}{p_{x+1}}$$

$$= \frac{(AS_{1} + G - 0.02G - 5)(1.05) - 10\ 000 \times 0.025}{0.975}$$

$$= \frac{(400 + (0.98)648.68 - 5)(1.05) - 250}{0.975}$$

$$= 853.58\$$$

1.25 Équations différentielles de Thiele pour les réserves en temps continu

$$\frac{d}{dt}(tV) = \delta_t(tV) + G_t - e_t + {}_tV\mu_{[x]+t} - (b_t + E_t)\mu_{[x]+t}$$
 (1.23)

Οù

- 1) $\frac{d}{dt}(_tV)=$ au taux instantené d'accroissement de $_tV$ en fonction de t.
- 2) $\delta_t(tV) = \text{au rendement instantné d'intérêt sur la réserve}$
- 3) $G_t e_t = \text{au taux de la prime moins les frais.}$
- 4) ${}_tV\mu_{[x]+t}$ = au taux instantané de la libération de la réserve suite à un décès d'assuré.
- 5) $(b_t + E_t)\mu_{[x]+t} = \text{au taux de versement de la prestation (avec les frais) de décès.}$

Notes : Les points 2, 3 et 4 sont des sources d'augmentation de la réserve et le point 4 est une source de dépense de la réserve. En utilisant le théorème d'Euler on obtient l'équation suivante

1.26 Exemple 7.17 : (diapo 48)

• Une assurance vie mixte 20 années pour x = (30)

- $G_t = 2 500$ \$
- b = 10 000\$
- P = 80\$
- $\delta = 4\%$
- $\bullet \ e_t = E_t = 0$
- Standard Select Survival Model

a)

** Notes : je n'arrive pas à la même chose que le prof, mais en comparant avec d'autres j'ai les mêmes réponsent. On cherche $_{10}V$, soit $VP_{@0}$ (prestation future à payer) – $VP_{@0}$ (primes à recevoir).

$$\begin{split} _{10}V &= 100\ 000\overline{A}_{40:\overline{10}|} - 2\ 500\overline{a}_{40:\overline{10}|} \\ &= 100\ 000 \Big(1 - \delta\overline{A}_{40:\overline{10}|}\Big) - 2\ 500\overline{a}_{40:\overline{10}|} \\ &= 100\ 000 - \Big(100\ 000\delta + 2\ 500\Big)\overline{a}_{40:\overline{10}|} \\ &= 100\ 000 - \Big(100\ 000 \times 0.04 + 2\ 500\Big)8.2167 \\ &= 46\ 591\$ \end{split}$$

En utilisant l'approximation de Woolhouse 3 et une table de mortalité pour $\overline{a}_{40:\overline{10}}$, on obtient le développement suivant

$$\overline{a}_{40:\overline{10}} \approx \ddot{a}_{40:\overline{10}} - \frac{1}{2} (1 - {}_{10}E_{40}) - \frac{1}{12} \left(\delta + \mu_{40} + {}_{10}E_{40} (\delta + \mu_{40+10}) \right) \quad (1.25)$$

^{3.} voir notes supplémentaires plus loin.

οù

$$\begin{split} _{10}E_{40} &= v^{10}{}_{10}p_{40} \\ &= v^{10}\frac{l_{40+10}}{l_{40}} \\ &= v^{10}\frac{98576.37}{99338.26} \\ &= 0.665178924 \\ \mu_{40} &= A + B \times c^x \\ &= 0.00022 + 2.7 \times 10^{-6} \times 1.12440 \\ &= 0.00050975 \\ \mu_{50} &= 0.00022 + 2.7 \times 10^{-6} \times 1.12450 \\ &= 0.001152565 \\ \ddot{a}_{40\overline{:}\overline{10}|} &= \ddot{a}_{40} - {}_{10}E_{40} \times \ddot{a}_{50} \\ &= 18.45776 - 0.665178924 \times 17.02453 \\ &= 7.133401455 \end{split}$$

À partir de l'équation 1.25, on obtient

$$\overline{a}_{40:\overline{10}} \approx \ddot{a}_{40:\overline{10}} - \frac{1}{2}(1 - {}_{10}E_{40}) - \frac{1}{12}\left(\delta + \mu_{40} + {}_{10}E_{40}(\delta + \mu_{40+10})\right)$$

$$= 7.133401455 - \frac{1}{2}(1 - 0.665178924) - \frac{1}{12}(0.04 + 0.00050975 - 0.665178924(0.04 - 0.001152565))$$

$$= 7.133401455 - 0.167410538 - 0.001222438$$

$$= 6.964768479$$

b)

$$\begin{cases} \mu_{[x]+s} = 0.9^{2-s} \mu_{x+s} & \text{, si } 0 \le s \le 2\\ \mu_{[x]+s} = \mu_{x+s} & \text{, si } s > 2 \end{cases}$$

où $\mu_{x+s}=A+Bc^x$, avec A = 0.00022, B = (2.7) * 10⁻⁶ et c = 1.124 Si n = 20 et h = 0.05, alors n - h = 19.95.

Selon l'équation de Thiele pour t = n - h,

$${}_{n-h}V = \frac{{}_{n}V - h\left[G - 0 - b\mu_{[30]+n-h}\right]}{1 + h\delta_{n-h} + h\mu_{[30]+n-h}}$$
$${}_{19.95}V = \frac{{}_{20}V - 0.05\left[2\ 500 - 100\ 000\mu_{[30]+19.95}\right]}{1 + 0.05 \times 0.04 + 0.05\mu_{[30]+19.95}}$$

On sait que:

$$\begin{array}{c} {}_{20}V=b=100\ 000\ {\rm car}\ {\rm il}\ {\rm s'agit}\ {\rm d'une}\ {\rm assurance}\ {\rm mixte}\\ \mu_{[30]+19.95}=\mu_{49.95}=0.00022+[2.7\times 10^{-6}](1.124)^{49.95}=0.001147131\\ {}_{19.95}V=\frac{100\ 000-0.05\big[2\ 500-100\ 000(0.001147131)\big]}{1+0.05\times 0.04+0.05(0.001147131)}\\ -99\ 676 \end{array}$$

et on continue jusqu'à $_{10}V\dots$

Approximation de Woolhouse

$$\ddot{a}_{x}^{(m)} = \alpha(m)\ddot{a}_{x} - \beta(m)$$

$$= \frac{id}{i^{(m)}d^{(m)}}\ddot{a}_{x} - \frac{i - i^{(m)}}{i^{(m)}d^{(m)}}$$

On peut aussi approximer l'approximation de Woolhouse ainsi :

$$\ddot{a}_x^{(m)} \approx \ddot{a}_x - \frac{m-1}{2m} - \frac{m^2 - 1}{12m^2} (\delta + \mu_x)$$

Et pour $\overline{a}_{x:\overline{n}}$

$$\overline{a}_{x\overline{:}\overline{n}|} \approx \ddot{a}_{x\overline{:}\overline{n}|} - \frac{1}{2}(1 - {_nE_x}) - \frac{1}{12}\Big(\delta + \mu_x + {_nE_x}(\delta + \mu_{x+n}\Big)$$

1.27 Notions sur les rachats d'assurances

- 1) Annulation du contrat avant son terme. L'assureur verse la valeur de rachat CV_t au client.
- 2) Assurance libérée: Montant réduit d'assurance sans prime à payer
- 3) Prolongation d'assurance : Prolongation de la protection d'assurance avec la même valeur de prestation de décès sans prime à payer.

$$CV_t = VP_{@t}(\text{Prestations à payer}) - VP_{@t}(\text{Primes ajustées à recevoir})$$
(1.26)

1.28 Exemple 7.18 : (diapo 54)

- Une assurance vie entière pour x = (40)
- b = 10 000\$
- $\bullet \ i=6\%$
- table ILT

On définit la valeur de rachat CV_t comme suit

$$CV_t = \begin{cases} 0, & \text{si } t < 2 \\ (0.9)(tV) - 10, & \text{si } t \ge 2 \end{cases}$$

La prime correspond à

$$P = 10\ 000 \frac{A_{40}}{\ddot{a}_{40}}$$

$$= 10\ 000 \times (0.010888)$$

$$= 108.88\$$$

$$_{10}V = 10\ 000A_{50} - P\ddot{a}_{50}$$

$$= 10\ 000 \times 0.24905 - 108.88 \times 13.2668$$

$$= 1\ 046,04\$$$

$$CV_{10} = 0.9 \times {}_{10}V - 10$$

$$= 0.9 \times 1\ 046,04 - 10$$

$$= 931.435\$$$

a)

$$CV_{10} = R \times A_{50}$$

$$R = \frac{CV_{10}}{A_{50}}$$

$$= \frac{931.435}{0.24905}$$

$$= 3739.95\$$$

b)

$$\begin{split} CV_{10} &= 10\ 000A_{\frac{1}{50:k}} \\ 931.44 &= 10\ 000A_{\frac{1}{50:k}} \\ A_{\frac{1}{50:k}} &= 0.093144 \\ A_{\frac{1}{50:k}} &= A_{50} - {}_{k}E_{50}A_{50+k} = 0.093144 \\ A_{\frac{1}{50:k}} &= A_{50} - {}_{20}E_{50}A_{50+20} = 0.130369 > 0.093144 \Rightarrow k < 20 \\ A_{\frac{1}{50:10}} &= A_{50} - {}_{10}E_{50}A_{50+10} = 0.0604947 < 0.093144 \Rightarrow k > 10 \\ A_{\frac{1}{50:15}} &= A_{50} - {}_{15}E_{50}A_{50+15} = 00.0945867 > 0.093144 \Rightarrow k > 10 \end{split}$$

$$\begin{split} A_{\stackrel{1}{50:\overline{15}|}} &= \sum_{0}^{14} v^{k+1}{}_{k} p_{50} q_{50+k} \\ &= \sum_{0}^{13} v^{k+1}{}_{k} p_{50} q_{50+k} + v^{15}{}_{14} p_{50} q_{50+14} \\ 0.0945867 &= A_{\stackrel{1}{50:\overline{14}|}} + v^{15}{}_{14} p_{50} q_{50+14} \\ A_{\stackrel{1}{50:\overline{14}|}} &= 0.08759 \end{split}$$

Alors, k $\varepsilon(14,15)$ soit un contrat temporaire 14 années avec prestation de 10 000.

1.29 Exemple 7.19 : (diapo 55)

- b = 1 000\$
- $AS_4 = 396.63$ \$
- $AS_5 = 694.50$ \$
- G = 281.77\$
- $CV_5 = 572.12$ \$
- $(\text{frais})_4 = c_4 \times G + e_4 = 0.05G + 7$
- $q_{x+4}^{(1)} = 0.09$ (probabilité de décès)
- $q_{x+4}^{(2)} = 0.26$ (probabilité d'annuler le contrat)

On cherche le taux i, on utilise l'équation 1.22 qui représente le quote-part de l'actif en ajoutant le coût de la valeur de rachat.

$$\left(AS_4 + G_4 - (\text{frais})_4\right)(1+i) = 1\ 000q_{x+4}^{(1)} + (CV_5)q_{x+4}^{(2)} + (AS_5)(1 - q_{x+4}^{(1)} - q_{x+4}^{(2)})$$

$$\left(396.63 + 281.77(0.95) - 7\right)(1+i) = 1\ 000 \times 0.09 + (572.12)(0.26) + 694.50(1 - 0.09 - 0.26)$$

$$i = 0.05$$

1.30 Exemple 7.20 : (diapo 56)

- Contrat temporaire 10 and pour x = [50]
- b = 500 000\$ à la fin du mois du décès
- \bullet P = 460\$ en début de chaque 3 mois pour une durée de 5 ans
- SSSM
- i = 5%
- frais sur la prime : $e = 0.10 \times P$

•

a)

$$2.75V = 500\ 000A_{\overline{52.75:7.25}}^{(12)} - 4(P - e)\ddot{a}_{52.75:\overline{2.25}}^{(4)}$$

$$= 500\ 000 \times 0.01327 - 4 \times (460 - 0.1 \times 460)2.14052$$

$$= 3\ 091,02$$

b)

$$_3V = VP_{@3} \text{(prestation au décès)} + VP_{@3} (frais) - VP_{@3} \text{(primes à recevoir)}$$
 $= VP_{@3} \text{(prestation futures au décès)} - VP_{@3} \text{(primes à recevoir - frais futures)}$
 $= 500\ 000A_{\frac{1}{53:7|}}^{(12)} - 4(P-e)\ddot{a}_{53:2|}^{(4)}$
 $= 500\ 000 \times 0.013057 - 4 \times (460 - 0.1 \times 460)1.91446$
 $= 3\ 357.94$

c)

$$_{6.5}V = 500\ 000A_{1}^{(12)} - 0$$

= $500\ 000 \times 0.008532$
= $4\ 265,63$

Remarques:

- Pour trouver les valeurs de $A^{(12)}_{x:\overline{m}|}$ et $\ddot{a}^{(4)}_{x:\overline{m}|}$:

 1) Pour trouver/estimer $\ddot{a}^{(4)}_{53:\overline{2}|}$ on peut utiliser deux méthodes :
 - a) En utilisant la définition suivante

$$\ddot{a}_{53:2}^{(4)} = \sum_{k=0}^{7} \frac{1}{4} v^{\frac{k}{4}} p_{53}$$

$$= \frac{1}{4} \left(v^{\frac{1}{4}} p_{53} + \dots + v^{\frac{7}{4}} p_{53} \right)$$

Οù

$$_{t}p_{53} = e^{\int_{s=0}^{t} \mu_{x+s} ds}$$

= $e^{\int_{s=0}^{t} (A+Bc^{x+s}) ds}$
= $e^{At-Bc^{x}(c^{t}-1)/ln(c)}$

Avec A = 0.00022, $B = 2.7 \times 10^{-6}$, c = 1.124

- b) Ou par l'approximation suivante
 - Trouver $\ddot{a}_{53\overline{2}}$
 - Puis en utilisant une méthode d'approximation tel que Woolhouse (1.26), classique... on peut trouver $\ddot{a}_{53:21}^{(4)}$
- 2) Pour trouver/estimer $\ddot{a}_{52.75:2.25}^{(4)}$ on peut utiliser deux méthodes :
 - a) En utilisant la définition suivante

$$\ddot{a}_{52.75\overline{:2.25}|}^{(4)} = \sum_{k=0}^{8} \frac{1}{4} v^{\frac{k}{4}} {}_{\frac{k}{4}} p_{52.75}$$

- b) Ou par l'approximation suivante
 - Trouver $\ddot{a}_{53\overline{2}}$
 - $\ddot{a}_{52.75\overline{:2.25}} = \frac{1}{4} + \ddot{a}_{53\overline{:2}} \times v^{\frac{1}{4}} {}_{\frac{1}{4}} p_{52.75}$
- 3) Pour trouver/estimer $A_{1}^{(12)}$ on peut utiliser les méthodes suivantes : $\frac{53.7}{5}$
 - a) Utiliser la définition suivante

$$A_{\frac{53.7}{1}}^{(12)} = \sum_{k=0}^{83} v^{\frac{k+1}{12}} \frac{1}{12} p_{53} q_{53 + \frac{k}{12}}$$

- b) À l'aide de la relation suivante

 - Trouver $\ddot{a}_{53:\overline{7}|}$ Trouver $A_{53:\overline{7}|}^{(12)}$ à l'aide de la relation suivante

$$A_{53:7}^{(12)} = 1 - d \times \ddot{a}_{53:7}$$

Et ainsi

$$A_{\frac{53.77}{53.77}}^{(12)} = A_{\frac{53.77}{1}}^{(12)} - {}_{7}E_{53}$$

4) Sachant $A_{\frac{1}{53:7}}^{(12)}$, on peut trouver $A_{\frac{1}{52.75:7.25}}^{(12)}$

$$\begin{split} A_{\frac{1}{52.75:7.25|}}^{(12)} = & v^{\frac{1}{12}} \times \frac{1}{12} q_{52.75} + \\ & \frac{1}{12} p_{52.75} \times \frac{1}{12} q_{52 + \frac{10}{12}} \times v^{\frac{2}{12}} + \\ & \frac{2}{12} p_{52.75} \times \frac{1}{12} q_{52.75 + \frac{11}{12}} \times v^{\frac{3}{12}} + \\ & \frac{3}{12} p_{52.75} \times v^{\frac{3}{12}} \times A_{\frac{12}{53:7|}}^{(12)} \end{split}$$

Exemple 7.21 (diapo 57) 1.31

On reprend l'exemple 7.20 (1.30). Trouver les réserves :

a)

Notes:

 $VP_{@2.833}(\text{primes moins les frais à recevoir}) \neq 4(P-e)\ddot{a}_{52.833\overline{:2.167}}$

Parce qu'il n'y a pas de prime au temps 2.833, les primes sont payées chaque 3 mois.

b)

$$_{2 \text{ ans et } 9.5 \text{ mois}}V \Rightarrow _{52.792}V$$

Ni prime ni prestation au décès au temps 2.792. On peut utiliser 2 méthodes pour trouver le montant de réserve

1)

$$({}_{2.792}V + 0)(1+i)^{0.5/12} = 500\ 000 \times {}_{\frac{0.5}{12}}q_{52.792} + {}_{\frac{0.5}{12}}p_{52.792} \times {}_{2.833}V$$

= 3 480.99\$

2)

$$\begin{array}{l} {}_{2\; \mathrm{ans}\; \mathrm{et}\; 9.5\; \mathrm{mois}} V \approx \Big(1 - \frac{0.5}{3}\Big) \Big(2\; \mathrm{ans}\; \mathrm{et}\; 9\; \mathrm{mois} V + P - e\Big) + \Big(\frac{0.5}{3}\Big)_{3} V \\ = 3\; 480.51\$ \end{array}$$

Remarque

On peut utiliser une relation récursive pour trouver $_3V$ en sachant $_{2.75}V$

$$\begin{aligned} &(2.75V + P - e)(1+i)^{1/12} = 500\ 000 \times \frac{1}{12}q_{52.75} + \frac{1}{2.75 + \frac{1}{12}}V \times \frac{1}{12}p_{52.75} \\ &(2.833V + 0)(1+i)^{1/12} = 500\ 000 \times \frac{1}{12}q_{52.833} + 2.917V \times \frac{1}{12}p_{52.833} \\ &(2.917V + 0)(1+i)^{1/12} = 500\ 000 \times \frac{1}{12}q_{52.917} + 3V \times \frac{1}{12}p_{52.917} \\ \Rightarrow &(2.75V + P - e)(1+i)^{0.25} = 500\ 000 \times \left[\frac{1}{12}q_{52.75} \times (1+i)^{2/12} + \frac{1}{12}p_{52.75} \times \frac{1}{12}q_{52.75 + \frac{1}{12}} \times (1+i)^{1/12} + \frac{2}{12}p_{52.75} \times \frac{1}{12}q_{52.75 + \frac{2}{12}}\right] + \\ &3V \times \frac{2}{12}p_{52.75} \end{aligned}$$

1.32 Frais d'acquisition reportés (DAC)

$$DAC_t = {}_tV^g - {}_tV^n = {}_tV^e \tag{1.27}$$

Οù

 $_tV^g$ est la réserve pour un contrat avec des primes brutes (avec frais), $_tV^n$ est la réserve avec primes pires (sans frais) et $_tV^e$ est la réserve des frais répartit sur le contrat

Remarque:

Si
$$e_0 = e_1 = e_2 = ... \Rightarrow {}_tV^g = {}_tV^n \Rightarrow \mathrm{DAC}_t = 0$$

$$\begin{aligned} \mathrm{DAC}_t(tV^e) &= {}_tV^g - {}_tV^n \\ &= \Big[VP_{@t}(\mathrm{prestation} + \mathrm{frais}) - VP_{@t}(\mathrm{primes\ brutes}) \Big] - \\ & \Big[VP_{@t}(\mathrm{prestation}) - VP_{@t}(\mathrm{primes\ brutes}) \Big] \\ &= VP_{@t}(\mathrm{frais}) - VP_{@t}(\mathrm{chargements\ pour\ les\ frais}) \\ &= VP_{@t}(\mathrm{frais}) - P^e \\ &= VP_{@t}(\mathrm{frais}) - (P^g - P^n) \end{aligned}$$

Remarque:

$$DAC_t = 0 \text{ si } e_0 = e_k, k = 1, 2, ...$$

$$\text{DAC}_t < 0 \text{ si } e_0 > e_k, \text{ k} = 1,2,...$$

 $\text{DAC}_t > 0 \text{ si } e_0 < e_k, \text{ k} = 1,2,...$

1.33 Exemple 7.22 : (diapo 60)

- Contrat vie entière discret pour x = [50]
- b = 100 000\$
- LA prime nivelée $P^g(P^n)$
- \bullet SSSM
- i = 4%
- frais sur la prime : $e_0=0.50P^g+250$ et $e_0=0.03P^g+25$
- a) Trouver P^n et P^g
- b) Trouver $_{10}V^e;_{10}V^n;_{10}V^g$

a)

$$\begin{split} P^g \ddot{a}_{[50]} &= 100\ 000 A_{[50]} + 25 \ddot{a}_{[50]} + 225 + 0.03 P^g \ddot{a}_{[50]} + 0.47 P^g \\ P^g &= \frac{100\ 000 A_{[50]} + 25 \ddot{a}_{[50]} + 225}{0.97 \ddot{a}_{[50]} - 0.47} \\ &= 1435.89 \\ P^n &= \frac{100\ 000 A_{[50]}}{\ddot{a}_{[50]}} \\ &= 1321.31 \\ P^e &= p^g - p^n = 114.58 \end{split}$$

b)

$$10V^{e} = 25\ddot{a}_{60} + 0.03P^{g}\ddot{a}_{60} - P^{e}\ddot{a}_{60}$$

$$= -46.50\ddot{a}_{60}$$

$$= -770.14$$

$$10V^{n} = 100\ 000A_{60}P^{n}\ddot{a}_{60}$$

$$= 14\ 416,12$$

$$10V^{g} = 100\ 000A_{60} + 25\ddot{a}_{60} - 0.97P^{g}\ddot{a}_{60}$$

$$= 13\ 645,98$$

1.34 Exemple 7.23 : (diapo 63)

On utilise les mêmes informations que l'exemple 7.22 à la section 1.33. On cherche les primes FTP et les réserves à différents moments.

a)

$$\begin{split} \pi_0^{FTP} &= 100\ 000 \times v \times q_{[50]} \\ &= 99.36 \\ \pi &:= \pi_1^{FTP} = \pi_2^{FTP} = \dots \\ &= \frac{100\ 000 A_{[50]+1}}{\ddot{a}_{[50]+1}} \\ &= 1\ 387,89 \end{split}$$

b)

Au temps t = 0

$$\begin{split} {}_0V^n &= {}_0V^g = 0 \text{ (Prime principe d'équivalence)} \\ {}_0V^{FTP} &= 100 \ 000 A_{[50]} - \pi_0^{FTP} - (\pi^{FTP} \times v \times p_{[50]}) \ddot{a}_{[50]+1} \\ &= 100 \ 000 (vq_{[50]} + v \times p_{[50]} A_{[50]+1} - 100 \ 000 \times v \times q_{[50]} - \frac{100 \ 000 A_{[50]+1}}{\ddot{a}_{[50]+1}} \times v \times p_{[50]} \ddot{a}_{[50]+1} \end{split}$$