МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №6

по дисциплине «Организация ЭВМ и систем»

Тема: Организация связи Ассемблера с ЯВУ на примере программы построения частотного распределение попаданий псевдослучайных целых чисел в заданные интервалы.

Студентка гр. 9383		Орлов Д.С.
Преподаватель		Ефремов М.А.
	Санкт-Петербург	

2020

Цель работы.

Научиться реализовывать связь Ассемблера и ЯВУ. Написать программу построения частотного распределения попаданий псевдослучайных чисел в заданные интервалы.

Задание.

На языке высокого уровня (Pascal или C) генерируется массив псевдослучайных целых чисел, изменяющихся в заданном диапазоне и имеющих равномерное распределение.

Необходимые датчики псевдослучайных чисел находятся в каталоге Tasks\RAND_GEN (при его отсутствии программу датчика получить у преподавателя).

Далее должен вызываться ассемблерный модуль(модули) для формирования распределения количества попаданий псевдослучайных целых чисел в заданные интервалы. В общем случае интервалы разбиения диапазона изменения псевдослучайных чисел могут иметь различную длину.

Результирующий массив частотного распределения чисел по интервалам, сформированный на ассемблерном уровне, возвращается в программу, реализованную на ЯВУ, и затем сохраняется в файле и выводится на экран средствами ЯВУ.

Исходные данные.

- 1. Длина массива псевдослучайных целыхчисел NumRanDat (<=16K, K=1024)
- 2. Диапазон изменения массива псевдослучайных целых чисел [Xmin, Xmax], значения могут быть биполярные;
 - 3. Количество интервалов, на которые разбивается диапазон изменения массива псевдослучайных целых чисел NInt (<=24)
- 4. Массив левых границ интервалов разбиения LGrInt (должны принадлежать интервалу [Xmin, Xmax]).

Для бригад с четным номером: подпрограмма формирования распределения количества попаданий псевдослучайных целых чисел в заданные интервалы реализуется в виде двух ассемблерных модулей, первый из которых формирует распределение исходных чисел по интервалам единичной длины и возвращает его в вызывающую программу на ЯВУ как промежуточный результат. Это распределение должно выводиться в текстовом виде для контроля. Затем вызывается второй ассемблерный модуль, который по этому промежуточному распределению формирует окончательное распределение псевдослучайных целых чисел по интервалам произвольной длины (с заданными границами).

Ход работы.

В ходе работы была реализована программа из 3-х модулей, 1 на С++ (ЯВУ) и 2 других на ассемблере.

На ЯВУ написан main.cpp, который собирает от пользователя входную информацию и перенаправляет ее в ассемблерные модули. Так же здесь осуществляется вывод данных в консоль и файл.

На ассемблере написано 2 модуля. Первый реализует распределение чисел по единичным отрезкам. Это сделано с помощью команды loop. Циклически записывается в новый массив количество повторений каждого числа.

Второй модуль формирует распределение тех же чисел, но уже по заданным интервалам. Это происходит благодаря нескольким циклам, в которых левые границы переводятся в неотрицательные числа и сопоставляются числам с таким же индексом из массива, полученного в первом модуле.

Связь между модулями осуществлена с помощью спецификатора extern, который позволяет выполнять раздельную компиляцию модулей.

Исходный код см. в приложении А.

Тестирование.

No	Исходные данные	Результат			
1	NumDatRan=100	No No	Лев.гр. Кол-во чисел		
	xmin=-50	1	-50	4	
	xmax=50	2	-43	14	
	NInt=10	3	-30		
	LGrInt={-50, -43, -30, 0, 10, 12, 15,	4	0	7	
	30, 40, 49 }	5	10	1	
		6	12	6	
		7	15	18	
		8	30	11	
		9	40	11	
		10	49	0	
2	lenArr = 40	No॒	Лев.гр. 1	Кол-во чисел	
	xmin= -20	1	-20	15	
	xmax= 20	2	-10	7	
	NInt= 4	3	0	11	
	LGrInt={-20, -10, 0, 10 }	4	10	7	
3	lenArr =1100	№	Лев.гр. Кол-во чисел		
	xmin=0	1	0	48	
	xmax=100	2	5	211	
	NInt=7	3	23	360	
	LGrInt={0, 5, 23, 56, 70, 75, 90}	4	56	149	
		5	70	56	
		6	75	155	
		7	90	121	
4	lenArr =80	No॒	Лев.гр.	Кол-во чисел	
	xmin=0	1	0	14	

	xmax=10	2	2	13
	NInt=5	3	4	13
	LGrInt={ 0, 2, 4, 6, 8}	4	6	15
		5	8	25
5	lenArr =16000	<u>№</u>	Лев.гр. Кол-во чисел	
	xmin=-8	1	-8	3956
	xmax=8	2	-4	1982
	NInt=6	3	-2	2071
	LGrInt={ -8 -4 -2 0 3 6}	4	0	2983
		5	3	3002
		6	6	2006

Выводы.

Была реализована связь модуля на ЯВУ и модулей на Ассемблере.

приложение А.

ИСХОДНЫЙ КОД ПРОГРАММЫ.

```
Название файла: lab6.cpp
#include <iostream>
#include <fstream>
#include <random>
using namespace std;
extern "C" void first(int* numbers, int numbers_size, int* result, int xmin); extern "C" void second(int* array, int array_size, int xmin, int* intervals, int intervals_size, int* result);
int main()
        setlocale(0, "Russian");
        setrocare(0, Russran );
srand(time(NULL));
ofstream result("result.txt");
        int numbers_size;
int* numbers;
int xmin, xmax;
        int intervals_size;
        int* intervals;
int* intervals2;
int* mod1_result;
int* mod2_result;
        cout << "Введите количество чисел:\n";
        cin >> numbers_size;
        if (numbers_size > 16 * 1024)
                cout << "Количество чисел должно быть меньше или равно, чем 16*1024\n";
                return 0;
        cout << "Введите xmin и xmax:\n";
        cin >> xmin >> xmax;
        cout << "Введите число границ:\n";
        cin >> intervals_size;
        if (intervals_size > 24)
                cout << "Число интервалов должно быть меньше или равно 24\n";
        }
        numbers = new int[numbers_size];
        intervals = new int[intervals_size];
        intervals2 = new int[intervals_size];
        int len_asm_mod1_res = abs(xmax - xmin) + 1;
mod1_result = new int[len_asm_mod1_res];
for (int i = 0; i < len_asm_mod1_res; i++)</pre>
        {
                mod1\_result[i] = 0;
        }
        mod2_result = new int[intervals_size+1];
        for (int i = 0; i < intervals_size+1; i++)</pre>
                mod2_result[i] = 0;
        }
        cout << "Введите все границы:\n";
        for (int i = 0; i < intervals_size; i++)
```

```
{
              cin >> intervals[i];
              intervals2[i] = intervals[i];
       }
       for (int i = 0; i < numbers_size; i++)</pre>
              numbers[i] = xmin + rand() % (xmax - xmin + 1) ;
       }
       first(numbers, numbers_size, mod1_result, xmin);
       second(mod1_result, numbers_size, xmin, intervals, intervals_size,
mod2_result);
       cout << "Результат:\n";
       result << "Результат:\n";
       cout << "№\tГраница\tКоличество чисел" << endl;
       result << "№\tГраница\tКоличество чисел" << endl;
       for (int i = 1; i < intervals\_size + 1; i++)
              if (i != intervals_size)
                     cout << i << "\t" << intervals2[i-1] << '\t' << mod2_result[i]</pre>
<< end1;
                     result << i << "\t" << intervals2[i-1] << '\t' << mod2_result[i]</pre>
<< endl:
              else
                     cout << i << "\t" << xmax << '\t' << mod2_result[i] << endl;
result << i << "\t" << xmax << '\t' << mod2_result[i] << endl;</pre>
              }
       }
      delete[] numbers;
delete[] intervals;
delete[] intervals2;
      delete[] mod1_result;
delete[] mod2_result;
       return 0;
}
   Название файла: first.asm
.586p
.MODEL FLAT, C
. CODE
PUBLIC C first
first PROC C array: dword, arraysize: dword, res: dword, xmin: dword
push esi
push edi
mov edi, array ;исходный массив
mov ecx, arraysize
mov esi, res ; массив на выход
for_numbers:
      mov eax, [edi]
sub eax, xmin
mov ebx, [esi + 4*eax]
       inc ebx
       mov [esi + 4*eax], ebx
       add edi, 4
```

```
loop for_numbers
pop edi
pop esi
first ENDP
   Название файла: second.asm
   .586p
   .MODEL FLAT, C
   .CODE
   PUBLIC C second
   second PROC C array: dword, array_size: dword, xmin: dword, borders: dword,
intN: dword, result: dword
   push esi
   push edi
   push ebp
   mov edi, array
   mov esi, borders
   mov ecx, intN
   for_borders:
      mov eax, [esi]
      sub eax, xmin
      mov [esi], eax
      add esi, 4
      loop for_borders
   mov esi, borders
   mov ecx, intN
   mov ebx, 0
   mov eax, [esi]
   for_loop:
```

```
push ecx
  mov ecx, eax
  push esi
  mov esi, result
    for_array:
         cmp ecx, 0
         je end_for
        mov eax, [edi]
        add [esi + 4*ebx], eax
        add edi, 4
        loop for_array
end_for:
    pop esi
    inc ebx
  mov eax, [esi]
  add esi, 4
  sub eax, [esi]
  neg eax
  pop ecx
  loop for_loop
mov esi, result
mov ecx, intN
mov eax, 0
fin_for:
  add eax, [esi]
  add esi, 4
  loop fin_for
mov esi, result
sub eax, array_size
neg eax
```

```
add [esi + 4*ebx], eax

pop ebp
pop edi
pop esi

ret
second ENDP
```

END