This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

AMENDMENTS TO THE SPECIFICATION

Replace page 6 last full paragraph with the following new paragraph:

According to the maraging steel, oxide-base non-metallic inclusions can be reduced in size and amount (i.e. the amount is that of large oxide inclusions each having a size of more than 20 µm). It is also possible to reduce the size of nitride-base non-metallic inclusions such as TiC and TiCN such as TiN and TiCN. Thus, the maraging steel has an improved fatigue strength.

Replace page 33, first full paragraph with the following new paragraph:

From the above-described results, it has been seen that in the maraging steel of the present invention, the oxide-base non-metallic inclusions can be reduced in size and amount and that it is also possible to reduce the sizes of the nitride-base non-metallic inclusions such as TiC and TiCN such as TiN and TiCN and that the maraging steel has a superior fatigue strength.

Replace page 33, last full paragraph with the following new paragraph:

When the method of producing the maraging steel of the present invention is applied, the oxide-base non-metallic inclusions can be reduced in size and amount, it is also possible to reduce the sizes of the nitride-base non-metallic inclusions such as TiC and TiCNsuch as TiN and TiCN, and the present invention is optimum for the application requiring a strict fatigue strength. The present invention is optimum for the representative application such as the component for the continuously variable transmission of the automobile engine.