Merge the Tools!

Consider the following:

- A string, s, of length n where $s = c_0 c_1 \dots c_{n-1}$.
- An integer, k, where k is a factor of n.

We can split s into $\frac{n}{k}$ subsegments where each subsegment, t_i , consists of a contiguous block of k characters in s. Then, use each t_i to create string u_i such that:

- ullet The characters in u_i are a subsequence of the characters in t_i .
- Any repeat occurrence of a character is removed from the string such that each character in u_i occurs exactly once. In other words, if the character at some index j in t_i occurs at a previous index < j in t_i , then do not include the character in string u_i .

Given s and k, print $rac{n}{k}$ lines where each line i denotes string u_i .

Input Format

The first line contains a single string denoting s.

The second line contains an integer, k, denoting the length of each subsegment.

Constraints

- $1 \leq n \leq 10^4$, where n is the length of s
- $1 \le k \le n$
- It is guaranteed that n is a multiple of k.

Output Format

Print $rac{n}{k}$ lines where each line i contains string u_i .

Sample Input

AABCAAADA 3

Sample Output

AB CA AD

Explanation

String s is split into $\frac{n}{k}=\frac{9}{3}=3$ equal parts of length k=3. We convert each t_i to u_i by removing any subsequent occurrences non-distinct characters in t_i :

1.
$$t_0 = \texttt{"AAB"} \rightarrow u_0 = \texttt{"AB"}$$

2.
$$t_1 = \texttt{"CAA"} \rightarrow u_1 = \texttt{"CA"}$$

3.
$$t_2 = \texttt{"ADA"} o u_2 = \texttt{"AD"}$$

We then print each u_i on a new line.