Human Reliability, Error, and Human Factors in Engineering Maintenance

with Reference to Aviation and Power Generation

Human Reliability, Error, and Human Factors in Engineering Maintenance

with Reference to Aviation and Power Generation

B.S. Dhillon

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business

CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2009 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1

International Standard Book Number-13: 978-1-4398-0383-7 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Dhillon, B. S.

Human reliability, error, and human factors in engineering maintenance : with reference to aviation and power generation / B.S. Dhillon.

p. cm.

"A CRC title."

Includes bibliographical references and index.

ISBN 978-1-4398-0383-7 (hardcover : alk. paper)

1. Human engineering. 2. Human-machine systems. 3. Errors--Prevention. 4. Reliability (Engineering) 5. Fallibility. 6. Airplanes--Maintenance and repair--Quality control. 7. Electric power plants--Maintenance and repair--Quality control. I. Title.

TA167.D468 2009 620'.0046--dc22

2009005529

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

Dedication

This book is affectionately dedicated to all my schoolteachers, including Mr. C. Bell and Mr. G. B. Gill at the Dale School for Boys, Derby, England, for their inspirational comments and constant encouragement.

Contents

Auth	or Biogr	aphy	XV
Cha	pter 1		
			1
1.1	Backg	round	1
1.2		у	
	1.2.1	Human Factors	1
	1.2.2	Human Reliability and Error	2
	1.2.3	Engineering Maintenance	2
1.3	Huma	n Reliability, Error, and Human Factors in Engineering	
	Mainte	enance–Related Facts and Figures	2
1.4	Terms	and Definitions	4
1.5		Information on Human Reliability, Error,	
	and H	uman Factors in Engineering Maintenance	
	1.5.1	Publications	
		1.5.1.1 Books	
		1.5.1.2 Technical Reports	
		1.5.1.3 Conference Proceedings	
		1.5.1.4 Journals	
	1.5.2	Data Sources	
	1.5.3	Organizations	
1.6		of the Book	
1.7		ems	
Refe	rences		10
Cha	pter 2		
		natical Concepts	13
2.1	Introd	uction	13
2.2	Boolea	an Algebra Laws and Probability Properties	13
2.3	Useful Definitions		16
	2.3.1	Probability	
	2.3.2	Cumulative Distribution Function Type I	
	2.3.3	Probability Density Function Type I	
	2.3.4	Probability Density Function Type II	
	2.3.5	Cumulative Distribution Function Type II	
	2.3.6	Reliability Function	
	2.3.7	Hazard Rate Function	
	2.3.8	Expected Value Type I	
	2.3.9	Expected Value Type II	18

	2.3.10	Laplace Transform	18
	2.3.11	Laplace Transform: Final-Value Theorem	19
2.4	Probability Distributions		
	2.4.1	Poisson Distribution	20
	2.4.2	Binomial Distribution	21
	2.4.3	Geometric Distribution	21
	2.4.4	Exponential Distribution	22
	2.4.5	Normal Distribution	23
	2.4.6	Gamma Distribution	23
	2.4.7	Rayleigh Distribution	24
	2.4.8	Weibull Distribution	24
2.5	Solving	g First-Order Differential Equations	
	Using I	Laplace Transforms	25
2.6	Probler	ns	26
Refer	ences		27
Chap			
Intro		Human Factors, Reliability, and Error Concepts	
3.1	Introdu	ection	29
3.2		Factors Objectives and Man–Machine System Types	
	and Co	mparisons	29
3.3	Human Sensory Capacities and Typical Human Behaviors		
	and Th	eir Corresponding Design Considerations	31
	3.3.1	Touch	31
	3.3.2	Sight	31
	3.3.3	Vibration	32
	3.3.4	Noise	32
3.4	Human	Factors–Related Formulas	33
	3.4.1	Formula for Estimating Inspector Performance	33
	3.4.2	Formula for Estimating Rest Period	33
	3.4.3	Formula for Estimating Character Height	33
	3.4.4	Formula for Estimating Glare Constant	34
3.5	Useful	Human Factors Guidelines and Data Collection Sources	34
3.6	Human	Performance Effectiveness and Operator Stress	
	Characteristics		35
3.7	Occupa	ational Stressors and General Stress Factors	36
3.8	Human	Performance Reliability and Correctability Functions	37
	3.8.1	Human Performance Reliability Function	
	3.8.2	Human Performance Correctability Function	
3.9	Human	Error Occurrence Reasons, Consequences, Ways,	
	and Classifications		39
3.10	Human	Reliability and Error Data Collection Sources	
		antitative Data	40
3.11	-	ns	
Refer	ences		42

Chapter	4
---------	---

	nious for reflorining fluman Kenaomity and Error Ana	
	ngineering Maintenance	
4.1	Introduction	
4.2	Failure Modes and Effect Analysis (FMEA)	
4.3	Man-Machine Systems Analysis	
4.4	Root Cause Analysis (RCA)	
4.5	Error-Cause Removal Program (ECRP)	49
4.6	Cause-and-Effect Diagram (CAED)	49
4.7	Probability Tree Method	
4.8	Fault Tree Analysis (FTA)	53
	4.8.1 Fault Tree Symbols	
	4.8.2 Steps for Performing FTA	54
	4.8.3 Probability Evaluation of Fault Trees	54
4.9	Markov Method	57
4.10	Problems	60
Refe	erences	60
	apter 5	
	nan Error in Maintenance	
5.1	Introduction	
5.2	Facts, Figures, and Examples	
5.3	Occurrence of Maintenance Error in Equipment Li	
	and Elements of a Maintenance Person's Time	
5.4	Maintenance Environment and Causes for the Occu	
	of Maintenance Errors	
	5.4.1 Noise	
	5.4.2 Poor Illumination	
	5.4.3 Temperature Variations	
5.5	Types of Maintenance Errors and Typical Maintena	
	Errors	
5.6	Common Maintainability Design Errors and Useful	l Design
	Improvement Guidelines to Reduce Equipment	
	Maintenance Errors	67
5.7	Maintenance Work Instructions	
5.8	Maintenance Error Analysis Methods	
	5.8.1 Probability Tree Method	
	5.8.2 Pontecorvo Method	
	5.8.3 Pareto Analysis	
	5.8.4 Markov Method	74
5.9	Problems	76
Refe	erences	76
_	npter 6	
	nan Factors in Aviation Maintenance	
6.1	Introduction	79

6.2	The Need for Human Factors in Aviation Maintenance and How	
	Human Factors Impact Aircraft Engineering and Maintenance	79
6.3	Human Factors Challenges in Aviation Maintenance	80
6.4	Practical Human Factors Guide for the Aviation Maintenance	
	Environment	80
6.5	Integrated Maintenance Human Factors Management System (IMMS).	
6.6	Aviation Maintenance Human Factors Training Program and Human	
	Factors Training Areas for Aviation Maintenance Personnel	84
6.7	Common Human Factors–Related Aviation Maintenance Problems	
6.8	Problems	
	rences	
	pter 7	
Hum	an Factors in Power Plant Maintenance	
7.1	Introduction	89
7.2	Human Factors Engineering Maintenance–Related Deficiencies	
	in Power Plant Systems	89
7.3	Desirable Human Factors Engineering Maintenance–Related	
	Attributes of Well-Designed Systems in Power Generation	90
7.4	Power Generation Plant Performance Goals That Drive Decisions	
	about Human Factors	91
7.5	Study of Human Factors in Power Plants	92
7.6	Human Factors Approaches for Assessing and Improving	
	Power Plant Maintainability	93
	7.6.1 Task Analysis	93
	7.6.2 Maintainability Checklist	94
	7.6.3 Potential Accident/Damage Analyses	94
	7.6.4 Structured Interviews	
	7.6.5 Critical Incident Technique	95
	7.6.6 Surveys	
7.7	Benefits of Human Factors Engineering Applications	
	in Power Generation	96
7.8	Problems	
Refe	rences	
	pter 8	
	an Error in Aviation Maintenance	
	Introduction	
8.2	Facts, Figures, and Examples	99
8.3	Causes of Human Error in Aviation Maintenance and Major	
	Categories of Human Errors in Aviation Maintenance	
	and Inspection Tasks	100
8.4	Types of Human Error in Aircraft Maintenance	
	and Their Frequency	
8.5	Common Human Errors in Aircraft Maintenance Activities	101
8.6	Aircraft Maintenance Error Analysis Methods	101

	8.6.1 Cause-and-Effect Diagram	101
	8.6.2 Error-Cause Removal Program (ECRP)	
	8.6.3 Fault Tree Analysis	104
8.7	Maintenance Error Decision Aid (MEDA)	106
8.8	Useful Guidelines for Reducing Human Error	
	in Aircraft Maintenance Activities	107
8.9	Case Studies in Human Error in Aviation Maintenance	109
	8.9.1 Continental Express Embraer 120 Accident	109
	8.9.2 Air Midwest Raytheon (Beechcraft) 1900D Accident	
	8.9.3 British Airways BAC1-11 Accident	
8.10	Problems	
Refer	ences	110
Chap	oter 9	
Huma	an Error in Power Plant Maintenance	113
9.1	Introduction	113
9.2	Facts and Figures	113
9.3	Causes of Human Error in Power Plant Maintenance	114
9.4	Maintenance Tasks Most Susceptible to Human Error	
	in Power Generation	116
9.5	Methods for Performing Maintenance Error Analysis	
	in Power Generation	116
	9.5.1 Fault Tree Analysis	116
	9.5.2 Markov Method	119
	9.5.3 Maintenance Personnel Performance Simulation (MAPPS)	
	Model	122
9.6	Steps for Improving Maintenance Procedures in Power Generation	
	and Useful Guidelines for Human Error Reduction and Prevention	
	in Power Generation Maintenance	122
9.7	Problems	
Refer	rences	124
Chap	oter 10	
Safet	y in Engineering Maintenance	127
10.1	Introduction	127
10.2	Facts, Figures, and Examples	127
10.3	· · · · · · · · · · · · · · · · · · ·	
	for Dubious Safety Reputation in Maintenance Activity	128
10.4	Factors Influencing Safety Behavior and Safety Culture	
	in Maintenance Personnel	129
10.5	Good Safety-Related Practices during Maintenance Work and	
	Maintenance-Related Safety Measures concerning Machinery	129
10.6	Maintenance Safety-Related Questions for Engineering Equipment	
	Manufacturers	131
10.7	Guidelines for Engineering Equipment Designers to Improve Safety	201
	in Maintenance	132

10.8	Mathematical Models	132
10.9	Problems	135
Refer	ences	136
Chap	ter 11	
Math	ematical Models for Performing Human Reliability	
and E	rror Analysis in Engineering Maintenance	139
11.1	Introduction	139
11.2	Models for Predicting Maintenance Personnel Reliability	
	in Normal and Fluctuating Environments	139
	11.2.1 Model I	140
	11.2.2 Model II	141
	11.2.3 Model III	145
11.3	Models for Performing Single Systems Maintenance Error Analysis	147
	11.3.1 Model I	148
	11.3.2 Model II	150
11.4	Models for Performing Redundant Systems Maintenance	
	Error Analysis	
	11.4.1 Model I	153
	11.4.2 Model II	156
11.5	Problems	158
Refer	ences	159
Anne	ndix	161

Preface

Each year billions of dollars are spent to maintain engineering systems throughout the world. For example, U.S. industry spends over \$300 billion on plant maintenance and operation annually. It is estimated that about 80 percent of this amount is spent to rectify the chronic failure of systems, machines, and humans.

Over the years, the occurrence of human errors in maintenance activities has been following an upward trend due to various factors, and the resulting consequences can be very serious. Two examples of these consequences are the Three Mile Island nuclear accident and the crash of a DC-10 aircraft at O'Hare Airport in Chicago.

Over the years, a large number of journal and conference proceedings articles on human reliability, error, and human factors in engineering maintenance have appeared, but to the best of this author's knowledge, there is no book that covers these three topics and includes maintenance safety within its framework. This causes a great deal of difficulty for engineering maintenance professionals because they have to consult many different and diverse sources.

Thus, the main objective of this book is to combine these topics into a single volume and eliminate the need to consult many diverse sources in obtaining desired information. The sources of most of the material presented are listed in the reference section at the end of each chapter. These will be useful to readers if they desire to delve more deeply into a specific area or topic of interest.

The book contains a chapter on mathematical concepts and another chapter on introductory material to human factors, reliability, and error, which are useful for understanding materials presented in subsequent chapters. Furthermore, another chapter is devoted to methods considered useful for performing human reliability and error analysis in engineering maintenance.

The topics covered in the book are treated in such a manner that the reader will require no previous knowledge to understand the contents. At appropriate places the book contains examples along with their solutions, and at the end of each chapter there are numerous problems to test the reader's comprehension. An extensive list of publications dating from 1929 to 2007, directly or indirectly on human reliability, error, and human factors in engineering maintenance, is provided at the end of this book to give readers a view of the intensity of developments in the area.

This book is composed of 11 chapters. Chapter 1 presents historical developments in human factors, human reliability and error, and engineering maintenance; important human reliability, error, and human factors in engineering maintenance—related facts, figures, terms, and definitions; and sources for obtaining useful information on human reliability, error, and human factors in engineering maintenance.

Chapter 2 reviews mathematical concepts considered useful to understanding subsequent chapters. Some of the topics covered in the chapter are Boolean algebra, probability properties, probability distributions, and useful definitions. Chapter 3 presents various introductory human factors, reliability, and error concepts.

Chapter 4 presents a total of eight methods considered useful for performing human reliability and error analysis in engineering maintenance. These methods are failure modes and effect analysis, man—machine systems analysis, root cause analysis, error-cause removal program, the cause-and-effect diagram, the probability tree method, fault tree analysis, and the Markov method. Chapter 5 is devoted to human error in maintenance. Some of the topics covered in this chapter are the maintenance environment, causes for the occurrence of maintenance errors, types of maintenance errors, typical maintenance errors, and useful design improvement guidelines to reduce equipment maintenance errors.

Chapters 6 and 7 present various important aspects of human factors in aviation maintenance and power plant maintenance, respectively. Chapter 8 is devoted to human error in aviation maintenance. It covers topics such as human error occurrence causes in aviation maintenance, types of human errors in aircraft maintenance, common human errors in aircraft maintenance activities, maintenance error decision aid (MEDA), and useful guidelines for reducing human error in aircraft maintenance activities.

Chapter 9 presents various important aspects of human error in power plant maintenance, including facts and figures, causes of human error in power plant maintenance, maintenance tasks most susceptible to human error in power generation, and steps for improving maintenance procedures in power generation. Chapter 10 is devoted to safety in engineering maintenance. Some of the topics covered in the chapter are facts and figures, maintenance safety problem causes, factors influencing safety behavior and safety culture in maintenance personnel, and guidelines for engineering equipment designers to improve safety in maintenance.

Finally, Chapter 11 presents a total of seven mathematical models for performing human reliability and error analysis in engineering maintenance.

The book will be useful to many individuals, including engineering professionals working in the area of engineering maintenance; maintenance engineering administrators; engineering undergraduate and graduate students; maintenance engineering researchers and instructors; maintainability, safety, human factors, and psychology professionals; and design engineers and associated engineering professionals.

The author is deeply indebted to many individuals, including friends, colleagues, and students for their invisible input. I thank my children, Jasmine and Mark, for their patience and intermittent disturbances that resulted in many coffee breaks! Last, but not least, I thank my wife, Rosy, my other half and friend, for typing various portions of this book and for her timely help in proofreading.

B.S. Dhillon *Ottawa, Ontario*

Author Biography

Dr. B. S. Dhillon is a professor of engineering management in the Department of Mechanical Engineering at the University of Ottawa. He has served as chairman/director of the Mechanical Engineering Department/Engineering Management Program for over ten years at the same institution. He has published over 340 articles (199 journal and 141 conference proceedings) on reliability, safety, and engineering management. He is or has been on the editorial boards of nine international scientific journals. In addition, Dr. Dhillon has written thirty-four books on various aspects of reliability, design, safety, quality, and engineering management published by Wiley (1981), Van Nostrand (1982), Butterworth (1983), Marcel Dekker (1984), Pergamon (1986), and so on. His books are being used in over 85 countries, and many of them have been translated into languages such as German, Russian, and Chinese. He served as general chairman of two international conferences on reliability and quality control held in Los Angeles and Paris in 1987.

Professor Dhillon has served as a consultant to various organizations and bodies and has many years of experience in the industrial sector. At the University of Ottawa, he has been teaching reliability, quality, engineering management, design, and related areas for over 29 years. He has also lectured in over 50 countries, including giving keynote addresses at various international scientific conferences held in North America, Europe, Asia, and Africa. In March 2004, Dr. Dhillon was a distinguished speaker at the Conference/Workshop on Surgical Errors (sponsored by the White House Health and Safety Committee and the Pentagon), held on Capitol Hill (1 Constitution Avenue, Washington, D.C.).

Professor Dhillon attended the University of Wales, where he received a BS in electrical and electronic engineering and an MS in mechanical engineering. He received a PhD in industrial engineering from the University of Windsor.