Theoretical Computer Science Cheat Sheet		
	Definitions	Series
f(n) = O(g(n))	iff \exists positive c, n_0 such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$.	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}.$
$f(n) = \Omega(g(n))$	iff \exists positive c, n_0 such that $f(n) \ge cg(n) \ge 0 \ \forall n \ge n_0$.	$ \begin{array}{ccc} & i = 1 & & i = 1 \\ & \text{In general:} & & & \end{array} $
$f(n) = \Theta(g(n))$	iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.	$\sum_{i=1}^{n} i^{m} = \frac{1}{m+1} \left[(n+1)^{m+1} - 1 - \sum_{i=1}^{n} \left((i+1)^{m+1} - i^{m+1} - (m+1)i^{m} \right) \right]$
f(n) = o(g(n))	iff $\lim_{n\to\infty} f(n)/g(n) = 0$.	$\sum_{i=1}^{n-1} i^m = \frac{1}{m+1} \sum_{k=0}^m {m+1 \choose k} B_k n^{m+1-k}.$
$\lim_{n \to \infty} a_n = a$	iff $\forall \epsilon > 0$, $\exists n_0$ such that $ a_n - a < \epsilon$, $\forall n \ge n_0$.	Geometric series:
$\sup S$	least $b \in \mathbb{R}$ such that $b \ge s$, $\forall s \in S$.	$\sum_{i=0}^{n} c^{i} = \frac{c^{n+1} - 1}{c - 1}, c \neq 1, \sum_{i=0}^{\infty} c^{i} = \frac{1}{1 - c}, \sum_{i=1}^{\infty} c^{i} = \frac{c}{1 - c}, c < 1,$
$\inf S$	greatest $b \in \mathbb{R}$ such that $b \le s$, $\forall s \in S$.	$\sum_{i=0}^{n} ic^{i} = \frac{nc^{n+2} - (n+1)c^{n+1} + c}{(c-1)^{2}}, c \neq 1, \sum_{i=0}^{\infty} ic^{i} = \frac{c}{(1-c)^{2}}, c < 1.$
$ \liminf_{n \to \infty} a_n $	$\lim_{n \to \infty} \inf \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$	Harmonic series: $H_n = \sum_{i=1}^n \frac{1}{i}, \qquad \sum_{i=1}^n iH_i = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}.$
$ \limsup_{n \to \infty} a_n $	$\lim_{n \to \infty} \sup \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$	i=1 $i=1$
$\binom{n}{k}$	Combinations: Size k subsets of a size n set.	$\sum_{i=1}^{n} H_i = (n+1)H_n - n, \sum_{i=1}^{n} {i \choose m} H_i = {n+1 \choose m+1} \left(H_{n+1} - \frac{1}{m+1} \right).$
$\begin{bmatrix} n \\ k \end{bmatrix}$	Stirling numbers (1st kind): Arrangements of an n element set into k cycles.	$1. \binom{n}{k} = \frac{n!}{(n-k)!k!}, \qquad 2. \sum_{k=0}^{n} \binom{n}{k} = 2^n, \qquad 3. \binom{n}{k} = \binom{n}{n-k},$
$\left\{ egin{array}{c} n \\ k \end{array} \right\}$	Stirling numbers (2nd kind): Partitions of an n element set into k non-empty sets.	$4. \binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}, \qquad \qquad 5. \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}, \\ 6. \binom{n}{m} \binom{m}{k} = \binom{n}{k} \binom{n-k}{m-k}, \qquad \qquad 7. \sum_{k=0}^{n} \binom{r+k}{k} = \binom{r+n+1}{n}, $
$\langle {n \atop k} \rangle$	1st order Eulerian numbers: Permutations $\pi_1\pi_2\pi_n$ on $\{1, 2,, n\}$ with k ascents.	$8. \ \sum_{k=0}^{n} \binom{k}{m} = \binom{n+1}{m+1}, \qquad \qquad 9. \ \sum_{k=0}^{n-1} \binom{r}{k} \binom{s}{n-k} = \binom{r+s}{n},$
$\binom{n}{k}$ C_n	2nd order Eulerian numbers.	10. $\binom{n}{k} = (-1)^k \binom{k-n-1}{k},$ 11. $\binom{n}{1} = \binom{n}{n} = 1,$
C_n	Catalan Numbers: Binary trees with $n+1$ vertices.	12. $\binom{n}{2} = 2^{n-1} - 1$, 13. $\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1}$,
14. $\begin{bmatrix} n \\ 1 \end{bmatrix} = (n-1)!,$ 15. $\begin{bmatrix} n \\ 2 \end{bmatrix} = (n-1)!H_{n-1},$ 16. $\begin{bmatrix} n \\ n \end{bmatrix} = 1,$ 17. $\begin{bmatrix} n \\ k \end{bmatrix} \ge \begin{Bmatrix} n \\ k \end{Bmatrix},$		
$\begin{bmatrix} 18. \begin{bmatrix} n \\ k \end{bmatrix} = (n-1) \begin{bmatrix} n-1 \\ k \end{bmatrix} + \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}, 19. \begin{bmatrix} n \\ n-1 \end{bmatrix} = \begin{bmatrix} n \\ n-1 \end{bmatrix} = \begin{pmatrix} n \\ 2 \end{pmatrix}, 20. \sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix} = n!, 21. \ C_n = \frac{1}{n+1} \binom{2n}{n},$		
$22. \left\langle {n \atop 0} \right\rangle = \left\langle {n \atop n-1} \right\rangle = 1, \qquad 23. \left\langle {n \atop k} \right\rangle = \left\langle {n \atop n-1-k} \right\rangle, \qquad 24. \left\langle {n \atop k} \right\rangle = (k+1) \left\langle {n-1 \atop k} \right\rangle + (n-k) \left\langle {n-1 \atop k-1} \right\rangle,$		
$25. \ \left\langle \begin{matrix} 0 \\ k \end{matrix} \right\rangle = \left\{ \begin{matrix} 1 & \text{if } k = 0, \\ 0 & \text{otherwise} \end{matrix} \right. $ $26. \ \left\langle \begin{matrix} n \\ 1 \end{matrix} \right\rangle = 2^n - n - 1, $ $27. \ \left\langle \begin{matrix} n \\ 2 \end{matrix} \right\rangle = 3^n - (n+1)2^n + \binom{n+1}{2}, $		
28. $x^n = \sum_{k=0}^n \left\langle {n \atop k} \right\rangle {x+k \choose n}$, 29. $\left\langle {n \atop m} \right\rangle = \sum_{k=0}^m {n+1 \choose k} (m+1-k)^n (-1)^k$, 30. $m! \left\{ {n \atop m} \right\} = \sum_{k=0}^n \left\langle {n \atop k} \right\rangle {k \choose n-m}$,		
$31. \ \left\langle {n \atop m} \right\rangle = \sum_{k=0}^n \left\{ {n \atop k} \right\} {n-k \choose m} (-1)^{n-k-m} k!, \qquad \qquad 32. \ \left\langle {n \atop 0} \right\rangle = 1, \qquad \qquad 33. \ \left\langle {n \atop n} \right\rangle = 0 \text{for } n \neq 0,$		
$34. \; \left\langle $		
$36. \left\{ \begin{array}{c} x \\ x-n \end{array} \right\} = \frac{1}{2}$	$\sum_{k=0}^{n} \left\langle \!\! \left\langle {n \atop k} \right\rangle \!\! \right\rangle \left({x+n-1-k \atop 2n} \right),$	37. $\binom{n+1}{m+1} = \sum_{k} \binom{n}{k} \binom{k}{m} = \sum_{k=0}^{n} \binom{k}{m} (m+1)^{n-k},$