باسمه تعالي

درس معماری کامپیوتر

فصل ۴ از کتاب مانو (انتقال ثبات ها و ریزعمل ها) مدرس دکتر سریانی

مباحث

- زبان انتقال ثبات
 - انتقال ثبات
- · انتقالهای گذرگاهی و حافظهای
 - ریزعملهای حسابی
 - ریزعملهای منطقی
 - و ریزعملهای شیفت
 - واحد حساب، منطق و شیفت

7 6 5 4 3 2 1 0

R1

ب) نشان دادن بیت های مختلف

الف) ثبات R

15

8 7

0

15

 \cap

PC(H)

PC(L)

R2

د) تقسیم به دو قسمت

ج) شماره گذاری بیت ها

شکل ۱-۴

4/27

مثال	شرح	نماد
R2, MAR	یک ثبات را مشخص میکند	حروف (و ارقام)
R2(L), R2(0-7)	بخشی از یک ثبات را مشخص می کند	پرانتز()
R2 <- R1	انتقال اطلاعات را مشخص می کند	پیکان ->
R1 <- R2, R2 <- R1	دو ریز عمل را از هم جدا می کند	کاما ,

شکل ۴–۴ شکل

شرح	نمایش نمادین
محتوای R1 به علاوه ی R2 به R3 منتقل می شود	R3 <- R1 + R2
محتوای R1 منهای R2 به R3 منتقل می شود	R3 <- R1 - R2
محتوای R2 متمم می شود (متمم ۱)	R2 <- R2'
محتوای R2 متمم ۲ می شود (منفی می شود)	R2 <- R2' + 1
R1 به علاوه ی متمم دو R2 (تفریق)	R3 <- R1 + R2' + 1
یک واحد افزایش محتوای R1	R1 <- R1 + 1
یک واحد کاهش محتوای R1	R1 <- R1 - 1

جدول ۳-۴ ریز عمل های حسابی

S = 0 : S = A + B

S = 1 : S = A + B' + 1 = A - B

شکل ۹-۴ افزایش دهنده دودویی ۴ بیتی

S1	SO	C _{in}	Y	$D = A + Y + C_{in}$	ريز عمل
0	0	0	В	D = A + B	جمع
0	0	1	В	D = A + B + 1	جمع با نقلی
0	1	0	B'	D = A + B'	تفریق با قرض
0	1	1	B'	D = A + B' + 1	تفريق
1	0	0	0	D = A	انتقال A
1	0	1	0	D = A + 1	افزایش ۸
1	1	0	1	D = A - 1	کاهش ۵
1	1	1	1	D = A	انتقال 🗚

جدول ۴-۴عملکرد مدار حساب ۴ بیتی

جدول ۴-۵: ۱۶ تابع دو متغیره برای یک تراشه نوعی که عملیات منطقی را انجام می دهد. این جدول ۱۶ کد ۴ بیتی مختلف را که می توانند روی دو ورودی x و ۷ اعمال شوند نشان می دهد. هر کد مطابق جدول صفحه بعد باعث یک ریز عمل منطقی می شود.

X	Y	F0	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12	F13	F14	F15
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

۴-۵ جدول

جدول ۴-۶ شانزده ریزعمل منطقی برای یک تراشه نوعی

6,7,7,		
شرح	ريزعمل	تابع بولى
صفر کردن	F ← 0	F0 = 0
AND	F ← A AND B	F1 = xy
	F ←A AND B'	F2 = xy'
انتقال 🗚	F ← A	F3 = x
	F ← A' AND B	F4 = x'y
انتقال B	F ← B	F5 = y
XOR	F ← XOR B	F6 = x XOR y
OR	F ← A OR B	F7 = x + y
NOR	F ← (A OR B)'	F8 = (x + y)'
XNOR	$F \leftarrow (A XOR B)'$	F9 = (x XOR y)'
2's Complement of B	F ← B'	F10 = y'
	F ← A OR B'	F11 = x + y'
2's Complement of A	F ← A′	F12 = x'
	F ← A' OR B	F13 = x' + y
NAND	F ← (A AND B)'	F14 = (xy)'
همه ی بیتها برابر ۱	F ← 1	F15 = 1

S ₁	S ₀	خروج <i>ی</i>	عمل
0	0	E = A AND B	AND
0	1	E = A OR B	OR
1	0	E = XOR B	XOR
1	1	E = A'	متمم

(ب) جدول تابع

(الف) نمودار منطقی

شکل ۲۱-۴ یک طبقه از واحد منطقی

شکل ۱۲-۴ جا به جاگر ترکیبی ۴ بیتی

Types of Shifts

- Logical
- Arithmetic
- Circulate(Rotate)

Logical Shift

Source: 11010001

0

To Left

C

1 0 0 2⁶ 2⁵ 2³ 2² 2⁴ 2¹ 20

result: 10100010

0

2⁶

2⁵

2³

2⁴

2²

0 2⁰

2¹

To Right

result: 0111000

Since we don't consider this as a number, we don't care about the result. We can store the shifted number in Carry or just ignore it

Arithmetic Shift Left

Through arithmetic shit left the number is going to be multiplied by 2, also if overflow happens we can use double precision to fix the issue

Arithmetic Shift Right

Source Number: 11010001

result Number: 11101000

Source Number: 01010001

result Number: 00101000

Through arithmetic shit right the number is divided by 2 and the sign should not change, In fact the sign is shifted to right and also copied to itself

Circulate(Rotate) "To Carry"

C

Source Number: 11010001

To Left

result Number: 10100011

To Right

result Number: 11101000

In Circulate(rotate) to carry we do not care about initial value of Carry

Circulate(Rotate) Right "Through Carry"

Source Number: 11010001

C=0

result Number: 01101000

0

C=1

result Number: 11101000

C

1

Before circulate(rotate) through carry, The carry is set/reset by the programmer

Circulate(Rotate) Left "Through Carry"

Source Number: 11010001

C=1

result Number: 10100011

1

C=0

result Number: 10100010

0

C

Before circulate(rotate) through carry, The carry is set/reset by the programmer

شکل ۱۳-۴ یک طبقه از واحد حساب و منطق و جابجایی

S ₃	S ₂	S ₁	S ₀	C _{in}	عمل	تابع
0	0	0	0	0	F = A + B	جمع
0	0	0	0	1	F = A + B + 1	جمع با نقلی
0	0	0	1	0	F = A + B'	تفریق با قرض
0	0	0	1	1	F = A + B' + 1	تفريق
0	0	1	0	0	F = A	انتقال A
0	0	1	0	1	F = A + 1	افز ایش ۸
0	0	1	1	0	F = A - 1	کاهش A
0	0	1	1	1	F = A	انتقال A
0	1	0	0	X	F = A AND B	AND
0	1	0	1	X	F = A OR B	OR
0	1	1	0	X	F = A XOR B	XOR
0	1	1	1	X	F = A'	متمم کردن A
1	0	X	Х	X	F = shr A	شیفت A به راست و به داخل F
1	1	x	x	x	F = shl A	شیفت A به چپ و به داخل F

جدول ۸-۴ جدول تابع برای واحد حساب ، منطق و جابجایی