

行业现金流的领先滞后结构 是股票市场的定价因子吗? ——来自中国A股市场的证据

邓皓天

母从明

杨金强

目录

- 1. 研究内容
- 2. 理论模型
- 3. 变量构建

- 4. 实证分析
- 5. 稳健检验
- 6. 研究结论

问题引入: 宏观经济变量面对外生冲击的反应速度不同 → 领先-滞后结构

数据来源: CSMAR

文献综述: 行业领先-滞后结构 → (网络结构 or 公司规模) Versus 现金流结构

注:由于时间限制,关于实证部分的文献综述(例如刘煜辉和熊鹏通过市值和交易量对行业的领先滞后效应研究等)不在此过多展示

投资现金流模型:对外生冲击的延迟调整 → 提前信息溢价

外生冲击:
$$K \to K(1+\Delta_2)$$

$$K = (T-I)I \cdot e^{(T-I)r}$$

$$0 \qquad 1 \qquad 2 \qquad \cdots \qquad T-1 \qquad T \text{ (项目完成)}$$
 领先行业: $I_1^{Lead} \qquad I_2^{Lead} \qquad \cdots \qquad I_{T-1}^{Lead}$ 滞后行业:
$$I_2^{Lag} \qquad \cdots \qquad I_{T-1}^{Lag}$$

$$\begin{cases} I_{t}^{Lead} = I_{1}^{Lead} \cdot e^{(t-1)r} = I \cdot e^{(t-1)r} \\ I_{t}^{Lag} = \left[(T-1)/(T-2) \right] I \cdot e^{(t-1)r} \end{cases} \begin{cases} \frac{I'_{2}^{Lead}}{I \cdot e^{r}} = \frac{(T-1)\Delta_{2} + (T-2)}{T-2} \\ \frac{\Delta I_{2}^{Lead}}{I \cdot e^{r}} = \frac{I_{2}^{Lead} - I'_{2}^{Lead}}{I \cdot e^{r}} = \frac{T-1}{T-2}\Delta_{2} \end{cases}$$

投资现金流模型:对外生冲击的延迟调整 → 提前信息溢价

$$K \to K(1 + \Delta_t)$$

领先行业调整投资现金流
$$L^{Lead} = \sum_{t=2}^{T-1} \Delta I_t^{Lead} \cdot e^{-(t-1)r} \cdot \eta(t-1)$$
 不同时刻调整在1时刻的贴现和 $L^{Lead} = \sum_{t=2}^{T-1} \Delta I_t^{Lead} \cdot e^{-(t-1)r} \cdot \eta(t-1)$ 不同时刻调整(增函数)

$$\Delta L = L^{Lead} - L^{Lag}$$
 (领先与滞后行业调整投资现金流的成本之差)

$$\frac{\Delta L}{(T-1)I} = \sum_{t=2}^{T-1} \left[\frac{\Delta_t - \Delta_{t-1}}{T-t} \cdot \eta(t-1) - \frac{T-1}{T-2} \cdot \frac{\Delta_t - \Delta_{t-1}}{T-t+1} \cdot \eta(t-2) \right]$$

投资现金流模型: 领先溢价 → 对 "提前信息" 的补偿

设任意
$$t = 2, 3, \dots, T-1 \rightarrow \Delta_t - \Delta_{t-1} = \Delta$$

$$\frac{\varDelta L}{(T-1)I\cdot \varDelta} = \sum_{t=2}^{T-1} \left[\frac{\eta(t-1)}{T-t} - \frac{T-1}{T-2} \cdot \frac{\eta(t-2)}{T-t+1} \right]$$

$$\geqslant \sum_{t=2}^{T-1} \left[\frac{\eta(t-1)}{T-t} - \frac{\eta(t-2)}{T-t+1} \right] = \eta(T-2)$$

$$\varDelta L \geqslant (T-1)I\cdot \varDelta \cdot \eta(T-2) > 0$$
投资项目的 外生冲击的 调整投资现

持续周期 变化幅度 金流的成本

行业领先-滞后程度指标构建:行业现金流与GDP的交叉相关系数

$$\begin{cases} CF_{j,t} = \sum_{i=1}^{N_{j,t}} EBITDA_{i,j,t} \\ CF_{j,t-1} = \sum_{i=1}^{N_{j,t}} EBITDA_{i,j,t-1} \end{cases}$$

$$\Rightarrow \begin{cases} \Delta CF_{j,t} = CF_{j,t} - CF_{j,t-1} \\ \Delta GDP_t = GDP_t - GDP_{t-1} \end{cases}$$

$$LL_{j,t,k} = \operatorname{argmax} \{ \rho^{|m-k|} \} = \operatorname{argmax} \{ |\rho_{j,t,k}| \}$$

$$\begin{cases} LL_{j,t,k} = \frac{\sum_{k=-K}^{K} k \cdot |\rho_{j,t,k}|}{\sum_{k=-K}^{K} |\rho_{j,t,k}|} \\ LL_{j,t,k} = \sum_{k=-K}^{K} \frac{k \cdot |\rho_{j,t,k}|}{\sum_{j=1}^{N} |\rho_{j,t,k}|} \end{cases}$$

$$\rho_{j,t,k} = corr_{\{t-T \to t\}} (\Delta CF_{j,t-k}, \Delta GDP_t) \quad k = -K, \dots, 0, \dots, K$$

注:现金流和GDP数据经过CPI调整和季节性调整(虚拟变量法)

数据来源: CSMAR (后续PPT中表格数据均来源于CSMAR)

单变量组合分析

每季度调整一次组合

每年调整一次组合

	LL(average)	LL(industry)	LL(average)	LL(industry)
Lead	0.017***	0.018***	0.014**	0.012**
Mid	0.011*	0.013***	0.011*	0.011*
Lag	0.007*	0.009	0.008	0.008*
Lead-Lag	0.007***	0.008***	0.006***	0.004**
Lead-Lag Strong	0.006***	0.006***	0.005***	0.004**
Volatility	0.028	0.034	0.026	0.026
Sharpe	0.257	0.263	0.220	0.143

注: ***、**和*分别代表在1%、5%和10%水平下显著。

Newey和West滞后期数的选取

采用Bartlett核方法,代入T=150, α=2/9

 $4(T/100)^{\alpha} = 4(150/100)^{2/9} \approx 4.38$

样本选取

2010年10月-2023年3月沪深A股上市公司

时间跨度: 150个月

(剔除上市第一年、金融业、ST、无效数据等)

■ 累计对数超额收益: 127% 300.00% Lag 月度超额收益: 0.83% --- Lead 月度超额收益的标准差:

Fama和Macbeth回归分析: 平均横截面回归

$$r_{i,t+1} = \delta_{0,t} + \delta_{1,t} L L_{i,t} + \delta_{2,t} eta_{i,t} + \delta_{3,t} size_{i,t} + \delta_{4,t} B M_{i,t} + \delta_{5,t} O P_{i,t} + \delta_{6,t} R O E_{i,t} + arepsilon_{i,t+1}$$

	(1)	(2)	(3)	(4)	(5)
截距	-0.001	0.005	-0.001	0.005	-0.002
LL(average)		0.020***	0.018***		
$LL\left(industry ight)$		\		0.018***	0.014***
β	0.008***		0.008***		0.008***
size	-0.000		-0.000		-0.000
BM	0.002		0.002		0.002
OP	-0.000		-0.000		-0.000
ROE	0.017***		0.016***		0.015***
R方	0.051	0.008	0.058	0.005	0.057
样本容量	144897	144897	144897	144897	144897

注: ***、**和*分别代表在1%、5%和10%水平下显著。

定价误差分析: GMM估计

序列自相关 or 异方差

$$egin{align} R_{i,t}^{ex} = lpha_i + eta_i \cdot F_t + egin{bmatrix} ar{arepsilon_{i,t}} & t = 1 \,, \, \cdots, T \ & E_T [R_i^{ex}] = \hat{lpha}_i + \hat{eta}_i \cdot \hat{\lambda} & \end{split}$$

	(1)	(2)	(3)	(4)	(5)
$\lambda_{LL(average)}$		0.0042***	0.0042***)
$\lambda_{LL(industry)}$		\		0.0038***	0.0038***
λ_{MKT}	0.0007		0.0007		0.0007
λ_{SMB}	0.0057		0.0055		0.0057
λ_{HML}	-0.0010		-0.0010		-0.0010
$\lambda_{\scriptscriptstyle RMW}$	0.0009		0.0010		0.0009
λ_{CMA}	-0.0015		-0.0014		-0.0015
R方	0.1497	0.1805	0.4262	0.1247	0.3115
J统计量	127.21	368.78	74.75	434.01	87.35

注: ***、**和*分别代表在1%、5%和10%水平下显著。

稳健性检验:公司特征差异分析+收益分析

其他稳健性检验

- (1) 替换现金流衡量指标: 营业利润 / 利润总额 / 净利润
- (2) 按照总市值加权
- (3) 分市场检验
- (4) 采用未缩尾数据检验

	Lead	Lag	Lead-Lag	T 值	P值
β	1.172	1.189	-0.017	-1.045	0.296
size	15.404	15.410	-0.007	-0.122	0.903
BM	0.684	0.726	-0.042	-1.417	0.157
OP	0.619	0.435	0.184	0.904	0.366
ROE	0.043	0.057	-0.014	0.366	0.332

每季度调整一次组合 每年调整一次组合

	LL(average)	LL(industry)	LL(average)	LL(industry)
α	0.006***	0.009***	0.005***	0.003**
$eta_{ extit{ iny{MKT}}}$	-0.043	-0.020	0.029	0.049
$eta_{ extit{SMB}}$	0.138	-0.011	0.146	0.103
$eta_{{\scriptscriptstyle HML}}$	-0.038	-0.037	0.110	0.060
$eta_{ extit{ iny RMW}}$	0.065	0.056	-0.024	0.037
$eta_{\it CMA}$	0.210	0.395	-0.055	0.067

注: ***、**和*分别代表在1%、5%和10%水平下显著。

研究结论

组合分析:

年均8.7%领先溢价

1

其他公司特征:

不由其他因子决定

收益分析:

风险调整后仍显著

FM回归:

1%水平下显著正相关关系

定价误差:

提高模型定价能力

新的定价因子: 行业领先溢价

(对"提前信息"的补偿)

谢谢