

Aufgaben zur Linearen Algebra - Blatt 7

elektronische Abgabe im OLAT Kurs des Proseminars (z.B. bis So. 22. November 2020, 23:59 Uhr)

Aufgabe 25

Bestimmen Sie alle Matrizen $X \in \text{Mat}_{3,2}(\mathbb{C})$ mit

$$\begin{pmatrix} i & -1 & 1 \\ 1 & 1 & -i \\ 0 & 2 & 1 \end{pmatrix} \cdot X = \begin{pmatrix} 1 & 1 \\ 0 & i \\ -i & 1 \end{pmatrix}.$$

 $L\ddot{o}sung$: Wir fassen das Problem als zwei inhomogene Gleichungssysteme auf, deren zwei Lösungsspalten dann die Matrix X ergeben. Wir lösen beide simultan:

$$\begin{pmatrix} i & -1 & 1 & 1 & 1 \\ 1 & 1 & -i & 0 & i \\ 0 & 2 & 1 & -i & 1 \end{pmatrix} \xrightarrow{2Z+i\cdot 1Z} \begin{pmatrix} i & -1 & 1 & 1 & 1 \\ 0 & 1-i & 0 & i & 2i \\ 0 & 2 & 1 & -i & 1 \end{pmatrix}$$

$$\stackrel{(1+i)\cdot 2Z}{\leadsto} \begin{pmatrix} i & -1 & 1 & 1 & 1 \\ 0 & 2 & 0 & i-1 & 2i-2 \\ 0 & 2 & 1 & -i & 1 \end{pmatrix} \xrightarrow{3Z-2Z} \begin{pmatrix} i & -1 & 1 & 1 & 1 \\ 0 & 2 & 0 & i-1 & 2i-2 \\ 0 & 0 & 1 & 1-2i & 3-2i \end{pmatrix}$$

$$\stackrel{\frac{1}{2}\cdot 2Z}{\leadsto} \begin{pmatrix} i & -1 & 1 & 1 & 1 \\ 0 & 1 & 0 & \frac{i-1}{2} & i-1 \\ 0 & 0 & 1 & 1-2i & 3-2i \end{pmatrix} \xrightarrow{1Z-3Z} \begin{pmatrix} i & -1 & 0 & 2i & 2i-2 \\ 0 & 1 & 0 & \frac{i-1}{2} & i-1 \\ 0 & 0 & 1 & 1-2i & 3-2i \end{pmatrix}$$

$$1Z+2Z \begin{pmatrix} i & 0 & 0 & \frac{5i-1}{2} & 3i-3 \\ 0 & 1 & 0 & \frac{i-1}{2} & i-1 \\ 0 & 0 & 1 & 1-2i & 3-2i \end{pmatrix} \xrightarrow{(-i)\cdot 1Z} \begin{pmatrix} 1 & 0 & 0 & \frac{5+i}{2} & 3+3i \\ 0 & 1 & 0 & \frac{i-1}{2} & i-1 \\ 0 & 0 & 1 & 1-2i & 3-2i \end{pmatrix}$$

Beide Gleichungssysteme haben also genau eine Lösung, also gibt es genau eine solche Matrix X. Wir können sie direkt ablesen:

$$X = \begin{pmatrix} \frac{5+i}{2} & 3+3i\\ \frac{-1+i}{2} & -1+i\\ 1-2i & 3-2i \end{pmatrix}.$$

Man sieht hier auch, dass die Koeffizientenmatrix auf der linken Seite invertierbar ist. Man hätte also auch die inverse Matrix bestimmen und die Ausgangsgleichung von links damit multiplizieren können. \Box

Häufige Probleme bei Aufgabe 25:

- Um Rechenfehler zur entdecken empfiehlt sich eine Probe des Ergebnisses.
- \bullet Idealerweise formen Sie alle komplexen Zahlen in die Normalform a+bi um, verwenden also keine imaginären Zahlen im Nenner.

Aufgabe 26

Gegeben seien die folgenden Matrizen über \mathbb{R} :

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix}, \quad C = \begin{pmatrix} 6 \\ 5 \end{pmatrix}$$
$$D = \begin{pmatrix} 6 & 5 & 4 \\ 3 & 2 & 1 \end{pmatrix}, \quad E = \begin{pmatrix} 3 & -4 \end{pmatrix}, \quad F = \begin{pmatrix} 3 & 7 \\ 0 & -1 \end{pmatrix}.$$

Berechnen Sie von den folgenden Produkten alle, die definiert sind:

$$AB, BA, AC, CD, ED, DE, CE, EC, AF, FF.$$

Lösung:

$$AB: \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix} = \begin{pmatrix} 2a & -3b \\ 2c & -3d \end{pmatrix}$$
$$BA: \quad \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 2a & 2b \\ -3c & -3d \end{pmatrix}$$

Wir beobachten: Multiplikation mit der Diagonalmatrix von rechts führt zu Reskalierung der Spalten und von links zu Reskalierung der Zeilen.

$$AC: \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} 6 \\ 5 \end{pmatrix} = \begin{pmatrix} 6a + 5b \\ 6c + 5d \end{pmatrix} \qquad CD: \quad \text{ex. nicht}$$

$$ED: \quad \begin{pmatrix} 3 & -4 \end{pmatrix} \cdot \begin{pmatrix} 6 & 5 & 4 \\ 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 6 & 7 & 8 \end{pmatrix} \quad DE: \quad \text{ex. nicht}$$

Wir beobachten: Multiplikation mit einem Spaltenvektor von rechts führt zu einer gewichteten Addition der Spalten (Linearkombination), Multiplikation mit einem Zeilenvektor von links führt zu einer Linearkombination der Zeilen.

$$CE: \quad \left(\begin{array}{cc} 6 \\ 5 \end{array}\right) \cdot \left(\begin{array}{cc} 3 & -4 \end{array}\right) = \left(\begin{array}{cc} 18 & -24 \\ 15 & -20 \end{array}\right) \quad EC: \quad \left(\begin{array}{cc} 3 & -4 \end{array}\right) \cdot \left(\begin{array}{cc} 6 \\ 5 \end{array}\right) = -2$$

Wir beobachten: Zeilenvektor mal Spaltenvektor ergibt eine Zahl, Spaltenvektor mal Zeilenvektor eine Matrix.

$$AF: \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} 3 & 7 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 3a & 7a - b \\ 3c & 7c - d \end{pmatrix}$$
$$FF: \quad \begin{pmatrix} 3 & 7 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 3 & 7 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 9 & 14 \\ 0 & 1 \end{pmatrix}$$

Aufgabe 27

Berechnen Sie die inverse Matrix der beiden folgenden Matrizen, jeweils im gegebenen Matrixring:

$$A = \begin{pmatrix} 2 & 1-i & 1 \\ -2i & -i & -2i \\ 0 & -3 & 1+2i \end{pmatrix} \in \operatorname{Mat}_{3}(\mathbb{C}) \text{ und } B = \begin{pmatrix} 1 & 4 & 3 \\ 1 & 0 & 6 \\ 3 & 2 & 2 \end{pmatrix} \in \operatorname{Mat}_{3}(\mathbb{Z}/7\mathbb{Z}).$$

Lösung:

$$\begin{pmatrix} 2 & 1-i & 1 & 1 & 0 & 0 \\ -2i & -i & -2i & 0 & 1 & 0 \\ 0 & -3 & 1+2i & 0 & 0 & 1 \end{pmatrix} \xrightarrow{i\cdot1Z+2Z} \begin{pmatrix} 2 & 1-i & 1 & 1 & 0 & 0 \\ 0 & 1 & -i & i & 1 & 0 \\ 0 & -3 & 1+2i & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{3\cdot2Z+3Z} \begin{pmatrix} 2 & 1-i & 1 & 1 & 0 & 0 \\ 0 & 1 & -i & i & 1 & 0 \\ 0 & 0 & 1-i & 3i & 3 & 1 \end{pmatrix}$$

$$(1+i)\cdot3Z,2\cdot2Z,2\cdot1Z \begin{pmatrix} 4 & 2-2i & 2 & 2 & 0 & 0 \\ 0 & 2 & -2i & 2i & 2 & 0 & 0 \\ 0 & 0 & 2 & 3i-3 & 3i+3 & 1+i \end{pmatrix}$$

$$1Z-3Z,2Z+i\cdot3Z \begin{pmatrix} 4 & 2-2i & 0 & 5-3i & -3-3i & -1-i \\ 0 & 2 & 0 & 3i-3 & 3i+3 & 1+i \end{pmatrix}$$

$$1Z-(1-i)\cdot3Z \begin{pmatrix} 4 & 0 & 0 & 9-5i & -5-7i & -1-3i \\ 0 & 0 & 2 & 3i-3 & 3i+3 & 1+i \end{pmatrix}$$

$$1Z-(1-i)\cdot3Z \begin{pmatrix} 4 & 0 & 0 & 9-5i & -5-7i & -1-3i \\ 0 & 0 & 2 & 3i-3 & 3i+3 & 1+i \end{pmatrix}$$

$$A^{-1} = \frac{1}{4} \cdot \begin{pmatrix} 9-5i & -5-7i & -1-3i \\ -6-2i & -2+6i & 2i-2 \\ 6i-6 & 6i+6 & 2+2i \end{pmatrix}$$

$$\begin{pmatrix} 1 & 4 & 3 & 1 & 0 & 0 \\ 1 & 0 & 6 & 0 & 1 & 0 \\ 3 & 2 & 2 & 0 & 0 & 1 \end{pmatrix}$$

$$3Z+4\cdot1Z \begin{pmatrix} 1 & 4 & 3 & 1 & 0 & 0 \\ 0 & 3 & 3 & 6 & 1 & 0 \\ 0 & 4 & 0 & 4 & 0 & 1 \end{pmatrix}$$

$$3Z+2Z \begin{pmatrix} 1 & 4 & 3 & 1 & 0 & 0 \\ 0 & 3 & 3 & 6 & 1 & 0 \\ 0 & 4 & 0 & 4 & 0 & 1 \end{pmatrix}$$

$$3Z+4\cdot1Z \begin{pmatrix} 1 & 4 & 3 & 1 & 0 & 0 \\ 0 & 3 & 3 & 6 & 1 & 0 \\ 0 & 4 & 0 & 4 & 0 & 1 \end{pmatrix}$$

$$3Z+4\cdot1Z \begin{pmatrix} 1 & 4 & 3 & 1 & 0 & 0 \\ 0 & 3 & 3 & 6 & 1 & 0 \\ 0 & 4 & 0 & 4 & 0 & 1 \end{pmatrix}$$

$$3Z+4\cdot1Z \begin{pmatrix} 1 & 4 & 3 & 1 & 0 & 0 \\ 0 & 1 & 1 & 2 & 5 & 0 \\ 0 & 0 & 1 & 1 & 5 & 5 \end{pmatrix}$$

$$2Z+6\cdot3Z \begin{pmatrix} 1 & 4 & 3 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 & 5 & 5 \end{pmatrix}$$

$$1Z+4\cdot3Z \begin{pmatrix} 1 & 4 & 0 & 5 & 6 & 6 \\ 0 & 1 & 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 & 5 & 5 \end{pmatrix}$$

$$1Z+4\cdot3Z \begin{pmatrix} 1 & 4 & 0 & 5 & 6 & 6 \\ 0 & 1 & 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 & 5 & 5 \end{pmatrix}$$

$$1Z+4\cdot3Z \begin{pmatrix} 1 & 4 & 0 & 5 & 6 & 6 \\ 0 & 1 & 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 & 5 & 5 \end{pmatrix}$$

$$1Z+3\cdot2Z \begin{pmatrix} 1 & 0 & 0 & 1 & 6 & 5 \\ 0 & 1 & 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 & 5 & 5 \end{pmatrix}.$$

Häufige Probleme bei Aufgabe 27:

- Um Rechenfehler zur entdecken empfiehlt sich eine Probe des Ergebnisses.
- Idealerweise formen Sie alle komplexen Zahlen in die Normalform a + bi um, verwenden also keine imaginären Zahlen im Nenner.

Aufgabe 28

Für eine (reelle oder komplexe) 2×2 -matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ wird die Zahl $\det(A) := ad - bc$

die Determinante von A genannt. Zeigen Sie, dass für je zwei solcher Matrizen A und B stets gilt

$$\det(AB) = \det(A) \cdot \det(B).$$

Dann zeigen Sie: eine 2×2 -Matrix A ist genau dann invertierbar wenn $\det(A) \neq 0$ gilt.

Lösung:

Teil 1: Wir schreiben $A = (a_{ij})_{ij}$ und $B = (b_{ij})_{ij}$.

$$AB = \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right) \cdot \left(\begin{array}{cc} b_{11} & b_{12} \\ b_{21} & b_{22} \end{array}\right) = \left(\begin{array}{cc} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{array}\right).$$

Daraus folgt

$$\det(AB) = (a_{11}b_{11} + a_{12}b_{21})(a_{21}b_{12} + a_{22}b_{22}) - (a_{11}b_{12} + a_{12}b_{22})(a_{21}b_{11} + a_{22}b_{21})$$

$$= a_{11}b_{11}a_{21}b_{12} + a_{11}b_{11}a_{22}b_{22} + a_{12}b_{21}a_{21}b_{12} + a_{12}b_{21}a_{22}b_{22}$$

$$- a_{11}b_{12}a_{21}b_{11} - a_{11}b_{12}a_{22}b_{21} - a_{12}b_{22}a_{21}b_{11} - a_{12}b_{22}a_{22}b_{21}$$

$$= a_{11}b_{11}a_{22}b_{22} - a_{11}b_{12}a_{22}b_{21} + a_{12}b_{21}a_{21}b_{12} - a_{12}b_{22}a_{21}b_{11}$$

$$= a_{11}a_{22}(b_{11}b_{22} - b_{12}b_{21}) + a_{12}a_{21}(b_{12}b_{21} - b_{11}b_{22})$$

$$= (a_{11}a_{22} - a_{12}a_{21})(b_{11}b_{22} - b_{12}b_{21}) = \det(A) \det(B).$$

Teil 2: Wir zeigen, wenn det(A) = 0, dann ist A nicht invertierbar, und wenn $det(A) \neq 0$, ist A invertierbar.

Nehmen wir also an $\det(A) = 0$. Wenn A invertierbar wäre, gäbe es also eine 2×2 -Matrix B mit $AB = I_2$. Durch Anwenden der Determinante und dem Ergebnis aus Teil 1 würde folgen

$$0 = 0 \cdot \det(B) = \det(A) \det(B) = \det(AB) = \det(I_2) = 1,$$

ein Widerspruch. Also ist A nicht invertierbar.

Man kann dasselbe auch so zeigen: Wir unterscheiden dazu zwei Fälle, nämlich a=0 und $a\neq 0$. Im Fall a=0 folgt aus $\det(A)=0$, dass bc=0, also gilt entweder b=0 oder c=0. Falls b=0, hat A ein Nullzeile und ist daher nicht invertierbar. Falls c=0, hat A ein Nullspalte und ist daher ebenfalls nicht invertierbar.

Im Fall $a \neq 0$, folgt aus $\det(A) = 0$, dass ad = bc oder $d = \frac{cb}{a}$, also

$$A = \left(\begin{array}{cc} a & b \\ c & \frac{cb}{a} \end{array}\right) = \left(\begin{array}{cc} a & b \\ \frac{c}{a} \cdot a & \frac{c}{a} \cdot b \end{array}\right).$$

Die zweite Zeile ist also ein Vielfaches der ersten Zeile und damit ist A nicht invertierbar.

Nehmen wir nun umgekehrt an, dass $\det(A) \neq 0$. Wir unterscheiden wieder die zwei Fälle a=0 und $a\neq 0$. Im Fall a=0 folgt aus $\det(A)\neq 0$, dass $bc\neq 0$ und damit, dass sowohl $b\neq 0$ also auch $c\neq 0$. Wir können also umformen

$$\begin{pmatrix} 0 & b & 1 & 0 \\ c & d & 0 & 1 \end{pmatrix} \xrightarrow{b \neq 0} \begin{pmatrix} c & d & 0 & 1 \\ 0 & 1 & \frac{1}{b} & 0 \end{pmatrix}$$

$$\sim \begin{pmatrix} c & 0 & -\frac{d}{b} & 1 \\ 0 & 1 & \frac{1}{b} & 0 \end{pmatrix} \xrightarrow{c \neq 0} \begin{pmatrix} 1 & 0 & -\frac{d}{cb} & \frac{1}{c} \\ 0 & 1 & \frac{1}{b} & 0 \end{pmatrix}$$

und bekommen

$$A^{-1} = \frac{1}{(-bc)} \left(\begin{array}{cc} d & -b \\ -c & 0 \end{array} \right).$$

Im Fall $a \neq 0$ formen wir um

$$\begin{pmatrix} a & b & 1 & 0 \\ c & d & 0 & 1 \end{pmatrix} \xrightarrow{a \neq 0} \begin{pmatrix} 1 & \frac{b}{a} & \frac{1}{a} & 0 \\ c & d & 0 & 1 \end{pmatrix}$$

$$\rightsquigarrow \begin{pmatrix} 1 & \frac{b}{a} & \frac{1}{a} & 0 \\ 0 & \frac{da - bc}{ac} & -\frac{c}{a} & 1 \end{pmatrix} \xrightarrow{\det(A) \neq 0} \begin{pmatrix} 1 & \frac{b}{a} & \frac{1}{a} & 0 \\ 0 & 1 & -\frac{c}{da - bc} & \frac{a}{da - bc} \end{pmatrix}$$

$$\left[\frac{1}{a} + \frac{b}{a} \frac{c}{da - bc} = \frac{da - bc + bc}{a(da - bc)}\right] \qquad \rightsquigarrow \qquad \begin{pmatrix} 1 & 0 & \frac{d}{da - bc} & -\frac{b}{da - bc} \\ 0 & 1 & -\frac{c}{da - bc} & \frac{a}{da - bc} \end{pmatrix}$$

und bekommen

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Ein Vergleich mit oben zeigt, dass diese Formel auch für den Fall a=0 richtig ist.

Häufige Probleme bei Aufgabe 28:

• Wenn Sie bei elementaren Zeilenumformungen beispielsweise mit a multiplizieren (oder durch a dividieren wollen), müssen Sie den Fall a=0 getrennt betrachten, also eine Fallunterscheidung machen.

Aufgabe *

Seien K ein Körper und $A, B \in \operatorname{Mat}_m(K)$. Es gelte $AB = I_m$. Zeigen Sie, dass dann auch $BA = I_m$ gilt.

Hinweis: Wenn Sie die Invertierbarkeit von A oder B verwenden wollen, müssen Sie sie zuerst zeigen.

Lösung: Wir bringen A durch elementare Zeilentransformationen auf reduzierte Zeilenstufenform Z. Es gibt also $T \in \mathrm{GL}_m(K)$ mit TA = Z. Wir multiplizieren die Gleichung $AB = I_m$ von links mit T und erhalten

$$ZB = TAB = T \in GL_m(K).$$

Es kann nun Z keine Nullzeile enthalten, da sonst auch T eine Nullzeile enthielte, was bei einer invertierbaren Matrix niemals der Fall ist. Als quadratische Matrix in reduzierter Zeilenstufenform ohne Nullzeilen muss $Z = I_m$ gelten. Somit haben wir $B = T \in \mathrm{GL}_m(K)$ gezeigt und damit existiert B^{-1} . Wenn wir nun die Gleichung $AB = I_m$ von rechts mit B^{-1} und von links mit B multiplizieren, erhalten wir $BA = I_m$.

Häufige Probleme bei Aufgabe *:

• Bevor Sie die Gleichung mit A^{-1} oder B^{-1} multiplizieren dürfen, müssen Sie die Invertierbarkeit von A bzw. B zeigen. Die Voraussetzung $AB = I_m$ besagt das noch nicht, dafür muss ja gerade auch noch $BA = I_m$ gelten!