COMPONENT-GRAPHER User Guide

Mars 2016 / version 1.0

Table of contents

1. Pre-requisites	4
2. Quickstart	4
2.1 Input files	5
2.2 Command-line and options	6
2.3 Output file	7
2.3.1 Network files (_complete.txt, _1.txt, _2.txt, _3.txt, _4.txt)	10
2.3.2 Global network files (global_complete.txt, global_1.txt, global_2.txt,)	10
2.3.3 Node identification (_id.txt)	11
2.3.4 Statistic file (_stat.txt)	11
2.3.5 Summary files (_summary.txt, _degree.txt)	12
3. Miscellaneous	13
3.1 External node annotation file	13
3.2 Compiling	15
3.3 Citation	15
4. References	15

COMPONENT-GRAPHER is a multi-platform java program which eases the creation of character-states networks from character matrices in NEXUS or PHYLIP format. This command-line tool also allows the characterization of the resulting networks by searching for global and local articulation points, the numbers of connected component (CC), betweenness, and other network related statistics. The software and its source code are provided at https://github.com/etiennelord/COMPONENT-GRAPHER using a GPL3 license. This work was developed as a collaboration between the Université de Montréal (UdeM), Université du Québec à Montréal (UQAM) and Sorbonne Universités, UPMC Paris 6.

1. Pre-requisites

The software COMPONENT-GRAPHER is implemented as a multi-platform java program. It requires Java SE5 (JDK 5) or later versions of Java. For large matrices (>2000 characters), a fair amount of RAM is required, and should be specified before launching the tool.

Example for large matrices with allocation of 6 gb of memory [-Xmx6g]:

```
java -Xmx6g -jar COMPONENT-GRAPHER.jar large matrix.nex
```

2. Quickstart

Given an input matrix, the software COMPONENT-GRAPHER will generate character-state networks *i.e.* for each state (e.g. 0,1) of a character, a new node is created (see also table 1 - section 2.3). The created edges will then reflect some characteristics between the character-state nodes (see also table 2 - section 2.3). For example, given a matrix with one character (*Char.1*) and two states (0,1), this will result in 2 nodes (character|state):

The edges represent the link between pair of nodes. For example, four type of links can exists if we add another character to this matrix (*Char.2*)

	Тур				e 2			e 3		Тур	
	Ident	icai		Inclu	sion		Ove	erlap		DIS	ioint
	Char. 1	Char 2.		Char. 1	Char 2.		Char. 1	Char 2.		Char. 1	Char 2.
Α	-	-	Α	-	-	Α	-	*	Α	-	*
В	-	-	В	-	-	В	-	*	В	-	*
c	-	-	l c	-	*	С	-	*	С	-	*
D	¥	-	D	-	*	D	-	*	D	-	*
E	*	*	E	*	*	E	*	*	E	*	-
F	*	*	F	*	*	F	*	-	F	*	-
G	*	*	G	*	*	G	*	-	G	*	-
Н	-	-	Н	-	*	н	-	-	Н	-	-

The complete network is then composed of the link of types 1 to 3.

2.1 Input files

The software requires as input either a character matrix either in Phylip format [1] or a character matrix in NEXUS format [2] with <u>only one</u> morphological MATRIX tag.

Phylip format (Sample.phy):

```
5 6
A 110110
B 110000
C 100110
D 001001
E 001110
```

Nexus format (Sample.nex):

```
#NEXUS
[Note: this is a sample matrix]
begin data;
  dimensions ntax=5;
  dimensions nchar=6;
  format datatype=standard gap=- missing=? Interleave=no;
         110110
   Α
   В
        110000
    С
         100100
    D
         001001
         001110
    Ε
end;
```

*Note that multiple states at one position in the matrix are supported (e.g. {0,1}, (0 1), (0,1,2,3)) as well as interleaves for the NEXUS format. Also note that **undefined states symbol** (e.g. ?, -, *) **are not processed in this version**. For the NEXUS format, column and specific states information can be specified using the CHARSTATELABELS, STATELABELS or CHARLABELS annotation specific to NEXUS format [2].

Nexus format (Sample matrix with multiple states and annotations):

```
#NEXUS
[Note: this is a sample matrix]
begin data;
  dimensions ntax=5;
  dimensions nchar=6;
  format datatype=standard gap=- missing=? Interleave=no;
  CHARSTATELABELS
  1 Mouth / present, absent, 2 'eyes'/ two, eight, 3 hands / two,
     'more than 2', 4 hairs / present, absent, 5 'eye color' / blue,
     brown, 6 nose / red, normal
   MATRIX
        110110
    Α
    В
        1{0,1}0000
    С
         100100
    D
         00100{0,1}
    Ε
         001110
end;
```

2.2 Command-line and options

Base command-line

java -jar COMPONENT-GRAPHER.jar matrixfile

Command-line options

```
-taxa=list
            : Specify some taxa tagged in the summary file
              (list separated by comma e.g. A,B,C or with a star flag
               e.g. homo* for homo sapiens, homo erectus...).
-mintaxa=9[%]: Specify either the minimum number of common taxa or the
              percent of common taxa to link two nodes in the final
              networks.
-maxiter=999 : Maximum number of iterations to search in case of
              undefined states in the input matrix (e.g. \{1,2,3\}).
              *Note: the first 1000 iterations are ordered and not
               random. (default=1).
-random=999 : Specify the number of random iterations that we want
              in case of undefined states.
-undefined
           : Remove column containing undefined states(e.g. ?,-)
-multiple : Remove column containing multiple states (e.g. {1,2,3}).
-graphml
           : Output graphml file.
-nodeid=file : Provide a node identification file (see section 3.1.1)
-output=file : Specify output file name.
-variation=X : Specify the variation string to use.
```

2.2.1 Base analysis

-summary

java -jar COMPONENT-GRAPHER.jar matrixfile

2.2.2 Base analysis with summary statistic [-summary] (see section 2.3.4)

```
java -jar COMPONENT-GRAPHER.jar matrixfile -summary
```

*This will generate two additional files, a *matrixfile_summary.txt* file containing and a *matrixfile_degree.txt* file containing degree information for each nodes.

: Compute and output summary statistic.

2.2.1 Base analysis with summary containing more information for taxon A and B.

```
java -jar COMPONENT-GRAPHER.jar matrixfile -summary -taxa=A,B
```

2.2.3 Analysis without column containing multiple states and with specified output file [-multiple, -output]

```
java -jar COMPONENT-GRAPHER.jar matrixfile -multiple -output=result
```

2.2.4 Generate the first one hundred possible variations of a multiple states matrix

Phylip format (Sample n.phy) (128 possible variations):

```
5 6
A 210114
B 110{0,1}0{2,3}
C 100112
D {2,3}01001
E 3{0,1}1{1,0}1{1,2,3,4}
```

Given the matrix **Sample n.phy**, this will generate the 100 first variations:

```
java -jar COMPONENT-GRAPHER.jar Sample_n.phy -maxiter=100
```

Alternatively, this will generate 100 random variations (out of the 128 possibles):

```
java -jar COMPONENT-GRAPHER.jar Sample_n.phy -random=100
```

These last two commands will results in the generation of 100 group of files (*see Table 3 below*) in the form: sample_n.phy_XX_complete.txt where XX correspond to this analysis iteration (*e.g.* 1 to 100 in the present case). It is worth mentioning that if there is more than 1,000 possible states, the states will automatically be chosen at random using an Uniform distribution provided by the SSJ java package (https://github.com/umontreal-simul/ssj; Pierre L'Ecuyer's Simulation and Optimization Laboratory, located at the Department of Computer Science and Operations Research of Université de Montréal.).

2.2.5 Use a specific variation [-variation]

```
java -jar COMPONENT-GRAPHER.jar Sample_n.phy -variation=032011
```

Note that the different position in the matrix are visited from left to right, from first taxon to last taxon.

```
5 6
A 210114
B 110{0,1}0{2,3}
C 100112
D {2,3}01001
E 3{0,1}1{1,0}1{1,2,3,4}
```

2.3 Output file

With a matrix as input, the COMPONENT-GRAPHER software will generate five network files (Table 3 - below) for each evaluated matrix in either an *edge list* or *graphml* (Gephi [3] compatible) format, a statistic file (.stat.txt) and a node identification file (.id.txt). In this analysis, each node correspond to a character-state meaning that each state of a particular character, column in the matrix, will be present in the complete network.

For example, processing the sample.phy will result in the following nodes (Table 1):

Sa	ımpl	Le.phy
5	6	
A	0	1 10110
В		1 10000
С		1 00110
D		0 01001
Ε		0 01110

Table 1. Generated nodes from the Sample.phy matrix*

Node ID	Character- state	Character (column)	Associated taxa
0	char. 1 1	char. 1	A,B,C
1	char. 1 0	char. 1	D,E
2	char. 2 1	char. 2	A,B
3	char. 2 0	char. 2	C,D,E
4	char. 3 0	char. 3	A,B,C
5	char. 3 1	char. 3	D,E
6	char. 4 1	char. 4	A,C,E
7	char. 4 0	char. 4	B,D
8	char. 5 1	char. 5	A,C,E
9	char. 5 0	char. 5	B,D
10	char. 6 0	char. 6	A,B,C,E
11	char. 6 1	char. 6	D

^{*} In bold, the nodes created for the first state column.

The different files generated correspond to the types of edges (1, 2, 3, or 4) found between each nodes (Table 2).

Table 2. Type of links (see main publication for more information)

Edge type	Directed /Undirected	Link types	Meaning
1	Undirected	Co-existence / perfect match	Same taxa found in both nodes
2	Directed	Inclusion	One group of taxa is included in the other group of taxa
3	Undirected	Overlap	Overlap between the group of taxa in each node
4*	Undirected	Disjoint	No overlap between the group of taxa for both nodes

^{*}Note: the disjoint edges (type 4) are not included in the complete network.

The generated files (Table 3) for a matrix file **without multiple states** (*e.g.* more than one possible state per position in the matrix) are as follow:

Table 3.Generated networks, node identification and statistics files for a matrix without multiple states

Generated files	Content
Filename_complete.txt	Edge of types: 1,2,3
Filename_1.txt	Edge of types: 1
Filename_2.txt	Edge of types: 2
Filename_3.txt	Edge of types: 3
Filename_4.txt	Edge of types: 4
Filename_id.txt	Node identification
Filename_stat.txt	Summary statistic of the generated networks and command-line options

In case of multiple states per position in the matrix (Table 4), the generated files are has follow:

Table 4. Generated networks, node identification and statistics files for a matrix without multiple states

Generated files	Content
Filename_XX_complete.txt	Edge of type 1,2 and 3 for the XX variation
Filename_XX_1.txt	Edge of type 1 for the XX variation
Filename_XX_2.txt	Edge of type 2 for the XX variation
Filename_ XX_3.txt	Edge of type 3 for the XX variation
Filename_XX_4.txt	Edge of type 4 for the XX variation
Filename_XX_id.txt	Node identification
Filename_ XX_stat.txt	Summary statistic of the generated networks and command-line options
Filename_global_complete.txt	Edge of type 1,2 and 3 and their appearance (count) over all variations
Filename_global_1.txt	Edge of type 1 and their appearance (count) over all variations
Filename_global_2.txt	Edge of type 2 and their appearance (count) over all variations
Filename_global_3.txt	Edge of type 3 and their appearance (count) over all variations
Filename_global_4.txt	Edge of type 4 and their appearance (count) over all variations

Where XX is replaced by the current iteration number. The current evaluated states are listed in the Filename_XX_stat.txt For example, for the Sample_n.phy_2.txt the state string 122011 correspond to the state 2 for the taxon **D** for the column **1** as noted in the statistic file:

```
Sample n.phy
        5 6
      A 210114
      B 110{0,1}0{2,3}
      C 100112
      D {2,3}01001
      E 3{0,1}1{1,0}1{1,2,3,4}
Sample n.phy 2 stat.txt
      Input
                                            : data/sample_n.phy
      Total iterations
                                            : 6 (Number of generated
                                                networks)
      Iteration mode
                                           : random
      N taxa
                                            : 5 (rows)
      N characters
                                            : 6 (columns)
      Total number of multistate characters: 6
      Total number of possible variations : 128 (Total number of
                                                  possible networks)
                                        : 0
      Total undefined column(s)
      Total multiple column(s)
Total undefined char
                                          : 4
      Total undefined char
                                           : 0
      Total multiple char
                                           : 6
      Remove multiple state columns : false
      Remove undefined columns
                                          : false
      States evaluated: 022004
      Taxon->Character(column)|value
      B->4 | 1
      B->6|2
```

D->1|2 E->2|0 E->4|1 E->6|1

2.3.1 Network files (_complete.txt, _1.txt, _2.txt, _3.txt, _4.txt)

The result edge list files are zero-based tab-separated value (tsv) files. Each line corresponds to one edge with a source id (src_id), destination id (dest_id), the edge type and the number of common taxa between each node:

Source node ID Destination node ID Type of edge Number of common taxa Percent of common tax		Source node ID	Destination node ID	Type of edge	Number of common taxa	Percent of common taxa
---	--	-------------------	---------------------	--------------	-----------------------	------------------------

#src_id(tab\	t)dest_id(tab\t) edge_type (ta	ab\t) number_common_taxa(tab\t)percent
2 –	_ 0	_2		1.0
0	3	3	1	0.5
0	4	1	3	1.0
0	6	3	2	0.75

^{*}Note: that there is no fourth and fifth columns (Number of common taxa, percent of common taxa) for the type 4 network.

2.3.2 Global network files (global_complete.txt, global_1.txt, global_2.txt,...)

These contain the resulting edges of multiple variations i.e. if the original matrix contains multiple states at some positions and the [-maxiter] or [-random] command-line options are used to compute more than one possible variation of the matrix.

These result edge list files are zero-based tab-separated value (tsv) files. Each line corresponds to one edge with a source id (src_id), destination id (dest_id), the edge type and the percent of appearance over all variations:

Source	Destination	Type of odge	Percent of appearance
node ID	node ID	Type of edge	refeelit of appearance

#src_id(tab\t)dest_id(tab\t)	edge_type(ta	b\t)percent
2	_ 0	_2	0.10
0	3	3	1.00
0	4	1	0.75
0	6	3	0.66

^{*}Note: that there is no fourth and fifth columns (Number of common taxa, percent of common taxa) for the type 4 network.

2.3.3 Node identification (_id.txt)

The result node identification file (tab-separated values) contains information about each node in the networks.

Node ID	Name	Char. Label	State label	Encoded State	Edge count	In edge count	Out edge count	Number of taxa	Taxa
0 1	char.1 1 char.1 0	char.1	1 0	1	8 8	1 1	7 7	3 2	A,B,C D,E

2.3.4 Statistic file (_stat.txt)

This file contains the command-line arguments for this particular run, as well as some results such as the number of edges in each network and the number of total nodes.

Example for the file Sample n.nex 100.stat.txt

```
: data/sample_n.phy -random=100
Command line options
Input.
                                    : data/sample n.phy
N taxa
                                    : 5 (rows)
N characters
                                    : 6 (columns)
Total number of multistate characters: 6
                                              (Positions in the matrix with multi-states)
Total number of possible variations : 128
Total variations tested : 100
                                              (Number of possible matrices)
                                              (Total variation of matrices tested)
Iteration mode
                                   : random (Either in order or random)
                                              (Number of undefined characters.)
Total undefined char
                                   : 0
Total multiple char
                                   : 6
                                              (Number of multistate characters)
Total undefined column(s) : 0
Total multiple column(s) : 4
                                              (Number of column with undefined char.)
                                   : 4
                                              (Number of column with multistate char.)
Remove multiple state columns : false
                                              (Remove column with multistate char.)
Remove undefined columns
                                   : false
                                              (Remove column with undefined char.)
Total treated column : 6
Total possible nodes : 15
______
Current iteration: 100/100 (Current variation number.)
States variations: 023004 (Current variation string)
(saving to: data/sample n.phy 100 complete.txt)
______
Results:
______

: 6051 (Total edges in complete network)
: 281 (Total edges in type 1 network)
: 2367 (Total edges in type 2 network)

Edges (total)
Edges type 1 (perfect)
Edges type 2 (inclusion)
Edges type 3 (overlap)
Edges type 4 (disjoint)
                                : 3403 (Total edges in type 3 network)
                                : 3149 (Total edges in type 4 network)
                                : 15 (Total generated character-state nodes)
Total nodes evaluated
                                 : 14 (Total nodes included in the networks)
Total nodes
                                : 1 (Total nodes that are not in any network)
Node (unassigned)
Node type 1 (perfect)
                                : 4 (Nodes in type 1 network)
Node type 2 (inclusion)
                                : 14 (Nodes in type 2 network)
Node type 3 (overlap)
                                 : 12 (Nodes in type 3 network)
Node type 4 (disjoint)
                                 : 15 (Nodes in type 4 network)
______
```

States variations: 023004 (Current variation string, see beginning of section)

Taxon->Character(column) | Value (Corresponding matrix position)

B->4 | 0

B->6 | 2

D->1 | 3

E->2 | 0

E->4 | 0

E->6 | 4

2.3.5 Summary files (_summary.txt, _degree.txt)

If the [-summary] option is selected, the software will compute some statistics for each resulting networks. Two files are generated. The first one (_degree.txt) contains node's degree information for the 3 types of networks in a tab-separated value format (tsb).

degree.txt files

Node ID	In degree type 1	Out degree type 1	In degree type 2	Out degree type 2	In degree type 3	Out degree type 3
0	1	1	1	1	_	_
U	Τ	Τ	Τ	Τ	5	5
1	1	1	1	1	5	5
2	0	0	0	3	4	4
3	0	0	3	0	7	7

summary.txt files

The (summary.txt) summary file contains 31 fields in the following order:

nodeid,contains_taxa,found_in_type_1,found_in_type_2,found_in_type_3,found_in_complete,column,e ncoded_state,char.|states,cc_type1,cc_complete,local_ap_type3,global_ap_type3,local_ap_complete,global_ap_complete,in_degree_type2,norm_indegree_type2,betweenness_type3,closeness_type3,triplet_type3,per_triplet_type3,triplet_complete,Per_triplet_complete,max_shortest_path_type3,max_shortest_path_complete,convergence,progressive_transition_total,progressive_transition_end_node,contains_taxa,percent_contained,taxa

Field	Fields	Description	Networks
0	nodeid	Node numbering (zero-based)	na
1	contains_taxa	If the [-taxa=] option is set, indicate if this node contains those particular taxon. (Presence indicate by a x)	na
2	found_in_type_1	Node is found in type 1 network (Presence indicate by a x)	1
3	found_in_type_2	Node is found in type 2 network (Presence indicate by a x)	2
4	found_in_type_3	Node is found in type 3 network (Presence indicate by a x)	3
5	found_in_complete	Node is found in complete network (If present, indicate by a x)	complete
6	column	Column in the matrix (starting at index 1)	na
7	encoded_state	Encoded state in the matrix (<i>e.g.</i> 0,1)	na
8	char_states	If provided in the matrix, the full description of this character and its associated state (e.g. red nose present)	na
9	cc type1	The connected component associated with this	1

		1. 1. 1. 1 1 1 1	
	1	node in the type 1 network	
10	cc_complete	The connected component associated with this	complete
		node in the complete network	_
11	local_ap_type3	In the type 3 network, is this node a local	3
		articulation point? If present, indicated as a x.	
12	global_ap_type3	In the type 3 network, is this node a global	3
		articulation point? If present, indicated as a x.	
13	local_ap_complete	In the complete network, is this node a local	complete
		articulation point? If present, indicated as a x.	
14	global_ap_complete	In the complete network, is this node a global	complete
		articulation point? If present, indicated as a x.	
15	in degree type2	This node "in" degree in the directed type 2	2
		network.	
16	norm indegree type2	This node normalized "in" degree in the directed	2
	_ = 0 = 2.1	type 2 network.	
17	betweenness type3	Betweenness of node in type 3 network.	3
18	closeness type3	Closeness of node in type 3 network.	3
19	triplet type3	Number of triplets in the type 3 network containing	3
-	F	this node. Here, triplet stands for a linear series of	
		3 nodes where the terminal nodes are unconnected.	
20	per triplet type3	Percent of those triplets over the total number of	3
		triplets in the type 3 network.	
21	triplet complete	Number of triplets in the complete network	complete
		containing this node.	•
22	per triplet complete	Percent of those triplets over the total number of	complete
		triplets in the complete network.	•
23	max shortest path type3	Maximum length of the shortest path for this node	3
		in the type 3 network.	
24	max shortest path complete	Maximum length of the shortest path for this node	complete
		in the complete network.	•
25	convergence	The ratio of total loop on length 3 and 4 divided by	3
		the total number of length 4 in the type 3 network.	
26	progressive_transition	Progressive trantition stands for short paths of	3/complete
		length greater than 2 in type 3 network that are not	1
		smaller in the complete network.	
27	progressive_transition_end_node	List of the terminal node of the progressive	na
		transition.	
28	contains taxa	Duplicate of column 1	na
29	percent contained	Ratio of the contains taxa over the total number of	na
		taxa for this node	
30	taxa	The taxa included in this node	na
	1		

3. Miscellaneous

3.1 External node annotation file

If needed, you can supply a list of character-state annotation if none is provided in the NEXUS matrix or if you use a Phylip matrix file. To do so, include a list of node character-states with the option [-nodeid=].

Example command-line with the sample.phy matrix

```
java -jar COMPONENT-GRAPHER.jar sample.phy -nodeid=sample_nodeid.txt
```

This file should be a **tab-separated value** with four columns: column number (character position starting at 1), encoded state, new character label, new state label:

		Character label	
Column	State	Character label	State lahel
Column	State	Character label	State label

sample nodeid.txt

1	0	Mouth opening orientation	Terminal
1	1	Mouth opening orientation	Ventral
2	0	Pre-oral chamber	Absent
2	1	Pre-oral chamber	Present
3	0	Radially arranged circumoral structures	Absent
3	1	Radially arranged circumoral structures	Present
4	0	Differentiated circumoral structures	undifferentiated plates
4	1	Differentiated circumoral structures	three or four enlarged plates
5	0	Pharynx differentiated from midgut	not differentiated
5	1	Pharynx differentiated from midgut	differentiated
6	0	Pharynx reversible	permanently inverted
6	1	Pharynx reversible	completely reversible

These annotations will be reflected in the **node identification file** $(_id.txt)$ and in the **summary file** $(_summary.txt)$.

sample.phy_id.txt (before)

Node				
id	complete_name	char_label	state_label	
0	char. 1 1	char. 1	1	
1	char. 1 0	char. 1	0	
2	char. 2 1	char. 2	1	•••
3	char. 2 0	char. 2	0	
			Ť	

sample.phy_id.txt (after provided annotations)

Node				
id	complete_name	char_label	state_label	
		Mouth opening		
0	Mouth opening orientation ventral	orientation	ventral	
	Mouth opening	Mouth opening		
1	orientation terminal	orientation	terminal	
2	Pre-oral chamber present	Pre-oral chamber	present	
3	Pre-oral chamber absent	Pre-oral chamber	absent	
4	Radially arranged circumoral	Radially arranged	absent	

	structures absent	circumoral structures		
	Radially arranged circumoral	Radially arranged		
5	structures present	circumoral structures	present	
	Differentiated circumoral			
	structures three or four enlarged	Differentiated		
6	plates	circumoral structures	three or four enlarged plates	
	Differentiated circumoral	Differentiated		
7	structures undifferentiated plates	circumoral structures	undifferentiated plates	
	Pharynx differentiated from	Pharynx differentiated		
8	midgut differentiated	from midgut	differentiated	
	Pharynx differentiated from	Pharynx differentiated		
9	midgut not differentiated	from midgut	not differentiated	
	Pharynx reversible permanently			
10	inverted	Pharynx reversible	permanently inverted	
	Pharynx reversible completely			
11	reversible	Pharynx reversible	completely reversible	

3.2 Compiling

The java source code provided is a Netbeans (https://netbeans.org) project. To compile the source code, download the Netbeans IDE, open the project file and build the project. The required library SSJ.jar can be downloaded from (https://github.com/umontreal-simul/ssj) but is also provided with the software release.

3.3 Citation

4. References

- [1] Felsenstein, J. 2005. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle.
- [2] Maddison DR, Swofford DL, Maddison WP. 1997. NEXUS: an extensible file format for systematic information. Syst Biol. 46(4):590-621.
- [3] Bastian M., Heymann S., Jacomy M. 2009. Gephi: an open source software for exploring and manipulating networks. International AAAI Conference on Weblogs and Social Media.