Проективные многообразия и раздутия

22 декабря 2023 года

Раздутие плоскости в точке

ПРЕДЛОЖЕНИЕ: Отображение **гладких** кривых, задающее изоморфизм на полях функций, есть **открытое вложение.** ■

ПРИМЕР: Рассмотрим отображение поверхностей $B = \{x = yz\} \subset A^3 \xrightarrow{\pi} A^2$, $(x,y,z) \mapsto (x,y)$. Оно определяет изоморфизм на полях функций, но слой над нулем — целая прямая.

ЗАМЕЧАНИЕ: Образ отображения π ни открыт, ни замкнут: это объединение открытого множества $y \neq 0$ и замкнутого x = y = 0. С точки зрения алгебраической геометрии, такой пропуск прямой неестествен. Заметим, что асимптотически B пересекает бесконечность как раз по прямой y = 0.

ОПРЕДЕЛЕНИЕ: Рассмотрим поверхности $B = \{x = yz\} \subset \mathsf{A}^3, B' = \{y = xz'\} \subset \mathsf{A}^{3'}$. Склеим их по отображению $z'(x,y,z) = z^{-1}$, определенному и биективному при $z,z' \neq 0$. Склеенная поверхность B_0 допускает проекцию на A^2 , биективную вне нуля и стягивающая **проективную прямую** над нулем. Она называется **раздутием** A^2 в нуле, и не является аффинной поверхностью.

Проективные многообразия

ОПРЕДЕЛЕНИЕ: Пусть V-k-векторное пространство. Множество прямых в нем называется **проективизацией** V и обозначается $\mathsf{P}_k(V)$. Проективизация k^{n+1} называется n-мерным **проективным пространством** и обозначается P^n .

ЗАМЕЧАНИЕ: Множество прямых в $k^{n+1} = \{(x_0, \dots, x_n)\}$, не лежащих в гиперплоскости $x_i = 0$, можно отождествить с A^n : $(x_0, \dots, x_n) \mapsto \left(\frac{x_0}{x_i}, \dots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \dots, \frac{x_n}{x_i}\right)$. Таким образом, P^n имеет покрытие n+1 аффинной картой. Итак, проективные пространства алгебраичны.

ЗАМЕЧАНИЕ: P^1 есть две копии A^1 , склеенные по $z\mapsto z^{-1}$. P^2 есть три копии A^2 , склеенные по отображениям $(x,y)\mapsto (x/y,1/y)$ и тому подобным.

ОПРЕДЕЛЕНИЕ: Проективным подмногообразием называется замкнутое подмногообразие в P^n (замкнутое в каждой карте). Проективным многообразием называется многообразие, изоморфное какомуто проективному подмногообразию. Квазипроективным многообразием называется дополнение проективного многообразия до проективного подмногообразия.

Аффинные многообразия и проективные

ПРИМЕР: Пусть $C \subset A^2$ — плоская кривая с уравнением f(x,y) = 0, скажем $y^2 = x^3 + ax + b$. Дополним новой переменной z все мономы до старшей степени: $y^2z = x^3 + axz^2 + bz^3$. Это однородное уравнение в k^3 , а потому определяет кривую в P^2 , которая в карте $A^2 = \{z \neq 0\}$ выглядит как C. Итак, аффинные многообразия квазипроективны.

ПРЕДЛОЖЕНИЕ: Пусть $X \subset P^n$ — проективное многообразие. Тогда многообразие $\{0\} \cup \{v \in k^{n+1} : \langle v \rangle \in X \subset P^n\}$ аффинно. Иначе говоря, проективные многообразия задаются системами однородных уравнений.

Градуированная алгебра

ОПРЕДЕЛЕНИЕ: Градуированным кольцом называется кольцо A с разложением $A = A_0 \oplus A_1 \oplus \ldots$, где A_i — подгруппы по сложению, удовлетворяющие $A_i A_j \subset A_{i+j}$.

ОПРЕДЕЛЕНИЕ: Градуированным модулем над градуированным кольцом A называется A-модуль M с разложением в прямую сумму абелевых групп $M = M_0 \oplus M_1 \oplus \ldots$ такую, что $A_i M_j \subset M_{i+j}$. Градуированный подмодуль самого градуированного кольца A называется **однородным иде**алом. Если I — однородный идеал, $a = a_0 + a_1 + \ldots$, $a_i \in A_i$, то $\forall i : a_i \in I$.

ПРИМЕР: Пусть A — какое-либо кольцо, и M — A-модуль. Симметрической алгеброй $\mathrm{Sym}_A(M)$ называется кольцо, порожденное A и выражениями вида $m_1 \cdot m_2 \cdot \ldots \cdot m_k$ с соотношениями $m \cdot m' = m' \cdot m$, $am \cdot m' = m \cdot am'$, $(m \cdot m') \cdot m'' = m \cdot (m' \cdot m'')$. Это градуированное кольцо.

ПРИМЕР: Если k — поле, а V — k-векторное пространство, то $\mathrm{Sym}_k(V)$ есть алгебра многочленов.

Проективный спектр

ОПРЕДЕЛЕНИЕ: Идеал $A_+ = \bigoplus_{i=1}^{+\infty} A_i$ градуированного кольца A называется **идеалом аугментации;** идеал, не содержащий идеала аугментации, называется **допустимым.** Проективным спектром градуированного кольца называется множество **допустимых однородных простых** идеалов, он обозначается Proj(A).

ПРИМЕР: Proj A[t] = Spec A.

ΠΡИΜΕΡ: Proj $k[x_0, ..., x_n] = P^n$.

Проективный спектр

ОПРЕДЕЛЕНИЕ: Идеал $A_+ = \bigoplus_{i=1}^{+\infty} A_i$ градуированного кольца A называется **идеалом аугментации;** идеал, не содержащий идеала аугментации, называется **допустимым.** Проективным спектром градуированного кольца называется множество **допустимых однородных простых** идеалов, он обозначается Proj(A).

ПРИМЕР: Proj A[t] = Spec A.

ПРИМЕР: Proj $k[x_0,\ldots,x_n]=\mathsf{P}^n$.

ПРИМЕР: Пусть A = k[x,y], I = (x,y) — идеал нуля. Тогда $Proj(Sym_A(I))$ есть **раздутие плоскости** в нуле.

ЗАМЕЧАНИЕ: Вложение $A \to \operatorname{Sym}_A(I)$ дает отображение $\operatorname{Bl}_0(\mathsf{A}^2) \to \mathsf{A}^2$. Ограничение его на замкнутую точку $\{0\} = V(I)$ есть отображение $k \to \operatorname{Sym}_k\langle x,y\rangle$, **то есть** $\mathsf{P}^1_k \to \operatorname{Spec} k$. Ограничения его на другие точки суть $k \to \operatorname{Sym}_k(k) \cong k$, то есть **изоморфизм**.

ПРИМЕР: Функция $(x,y) \mapsto x/y \in P^1$ после раздутия нуля превращается в **регулярное** отображение в P^1 . Иначе говоря, раздутие $Bl_0(A^2)$ допускает A^1 -расслоение над P^1 .

ПРИМЕР: Функция $(x,y) \mapsto x/y \in P^1$ после раздутия нуля превращается в **регулярное** отображение в P^1 . Иначе говоря, раздутие $Bl_0(A^2)$ допускает A^1 -расслоение над P^1 .

ПРИМЕР: Рассмотрим гиперболоид $\{x^2-y^2+z^2=1\}\subset \mathsf{P}^3$. Его **стереографическая проекция** из точки P=(0;0;1) пишется так: $(x,y,z)\mapsto (x:y:1-z)$. Чтобы она стала регулярной, нужно раздуть p. После этого проекция будет взаимно-однозначной везде, кроме прямых $z=1, x=\pm y$, которые она стягивает в точки $(1:\pm 1:0)$. Итак, **раздутие** P^2 в двух точках есть раздутие квадрики в одной точке.

ПРИМЕР: Функция $(x,y) \mapsto x/y \in P^1$ после раздутия нуля превращается в **регулярное** отображение в P^1 . Иначе говоря, раздутие $Bl_0(A^2)$ допускает A^1 -расслоение над P^1 .

ПРИМЕР: Рассмотрим гиперболоид $\{x^2-y^2+z^2=1\}\subset \mathsf{P}^3$. Его **стереографическая проекция** из точки P=(0;0;1) пишется так: $(x,y,z)\mapsto (x:y:1-z)$. Чтобы она стала регулярной, нужно раздуть p. После этого проекция будет взаимно-однозначной везде, кроме прямых $z=1, x=\pm y$, которые она стягивает в точки $(1:\pm 1:0)$. Итак, **раздутие** P^2 в двух точках есть раздутие квадрики в одной точке.

ПРИМЕР: Раздуем на P^2 три точки, скажем p=(1:0:0), q=(0:1:0) и r=(0:0:1). Тогда прямые pq, qr, rp можно стянуть, и получится другая P^2 . Это преобразование можно записать как $(x:y:z)\mapsto (x^{-1}:y^{-1}:z^{-1})=(yz:zx:xy)$. Оно называется инволюцией Кремоны, матшкольникам его версии известны как изогональное сопряжение и инверсия. Оно переводит прямые в коники, описанные около треугольника pqr.

ПРИМЕР: Функция $(x,y) \mapsto x/y \in P^1$ после раздутия нуля превращается в **регулярное** отображение в P^1 . Иначе говоря, раздутие $Bl_0(A^2)$ допускает A^1 -расслоение над P^1 .

ПРИМЕР: Рассмотрим гиперболоид $\{x^2-y^2+z^2=1\}\subset \mathsf{P}^3$. Его **стереографическая проекция** из точки P=(0;0;1) пишется так: $(x,y,z)\mapsto (x:y:1-z)$. Чтобы она стала регулярной, нужно раздуть p. После этого проекция будет взаимно-однозначной везде, кроме прямых $z=1, x=\pm y$, которые она стягивает в точки $(1:\pm 1:0)$. Итак, **раздутие** P^2 в двух точках есть раздутие квадрики в одной точке.

ПРИМЕР: Раздуем на P^2 три точки, скажем p=(1:0:0), q=(0:1:0) и r=(0:0:1). Тогда прямые pq, qr, rp можно стянуть, и получится другая P^2 . Это преобразование можно записать как $(x:y:z)\mapsto (x^{-1}:y^{-1}:z^{-1})=(yz:zx:xy)$. Оно называется инволюцией Кремоны, матшкольникам его версии известны как изогональное сопряжение и инверсия. Оно переводит прямые в коники, описанные около треугольника pqr.

TEOPEMA: (М. Нетер, Кастельнуово) Если k алгебраически замкнуто, группа бирациональных автоморфизмов P^2_k порождена инволюциями Кремоны для всевозможных троек p,q,r.

Проективность раздутий

ОПРЕДЕЛЕНИЕ: Если P^n — проективное пространство, то двойственное проективное пространство \check{P}^n есть множество гиперплоскостей в нем. Если $P^n = P(V)$, то $\check{P}^n = P(V^*)$. Всякая точка $x \in P^n$ определяет гиперплоскость $\check{x} \subset \check{P}^n$ как $\{H : x \in H\}$.

ОПРЕДЕЛЕНИЕ: Подмногообразие $\mathfrak{I} = \{(x, H) : x \in H\} \subset \mathsf{P}^n \times \check{\mathsf{P}}^n$ называется многообразием инцидентности.

ПРЕДЛОЖЕНИЕ: Для точки $p \in P^n$ рассмотрим гиперплоскость $\check{p} \subset P^n$, и пересечем подмногообразие $P^n \times \check{p} \subset \mathcal{I}$. Проекция этого пересечения на P^n — изоморфизм вне p, а слой в точке p — проективное пространство P^{n-1} . Пересечение $(P^n \times \check{p}) \cap \mathcal{I}$ есть раздутие P^n в точке p.

ЗАМЕЧАНИЕ: Поскольку $P^n \times P^m$ вкладывается в P^{n+m+1} , раздутия проективных многообразий в точках сами проективны.

Алгебра Риса

ПРИМЕР: Пусть A = k[x,y]/(xy), I = (x,y). Как выглядит $Proj(Sym_A I)$? Вне нуля это изоморфизм, но слой над нулем — также $k \to Sym_k\langle x,y\rangle$, то есть P_k^1 . Стало быть, $Proj(Sym_A I)$ есть **цепочка из трех прямых,** а **хотелось бы** получить две непересекающиеся.

ОПРЕДЕЛЕНИЕ: Пусть $I \subset A$ — идеал. Его алгеброй Риса называется сумма $A[It] = \bigoplus_{i=0}^{+\infty} I^i t^i \subset A[t]$ (где $I^0 := A$).

ЗАМЕЧАНИЕ: В нашем случае $\operatorname{Sym}_A I$ содержит ненулевой элемент $xy \in \operatorname{Sym}_A^2 I$ (как произведение $x \cdot y$ элементов из $\operatorname{Sym}_A^1 I$), а алгебра Риса — не содержит. Для точки на плоскости $\operatorname{Sym}_A I$ и A[It] совпадают.

ОПРЕДЕЛЕНИЕ: Раздутием аффинной схемы Spec A в замкнутой подсхеме V(I) называется проективный спектр алгебры Риса $Proj\ A[It]$.

ПРИМЕР: В нашем случае $I^k = \langle x^k, x^{k+1}, \dots, y^k, y^{k+1} \dots \rangle = \langle x^k, x^{k+1}, \dots \rangle \oplus \langle y^k, y^{k+1}, \dots \rangle$. В нуле имеем слой $k \to \operatorname{Sym}_k \langle x \rangle \oplus \operatorname{Sym}_k \langle y \rangle$, то есть $\operatorname{Proj} k[x] \sqcup \operatorname{Proj} k[y] \to \operatorname{Spec} k$ — отображение **из двух точек в одну.**

ЗАМЕЧАНИЕ: В общем случае разница между симметрической алгеброй и алгеброй Риса есть разница между нормальным пространством и нормальным конусом.