XAI eXplainable Artificial Intelligence IA explicable

Cours 5 - mardi 17 octobre 2023

Marie-Jeanne Lesot Christophe Marsala Jean-Noël Vittaut Gauvain Bourgne

LIP6, Sorbonne Université

Au programme du jour

- 1. Logique floue
 - valeurs de vérité
 - conjonction, disjonction, implication
 - raisonnement : Modus Ponens Généralisé
- 2. Interrogation flexible de bases de données

Le raisonnement naturel

- Connaissances imparfaites
 - règles imprécises
 - si vitesse élevée et obstacle proche alors freiner fort
 - et non : si $v \ge 42.0$ km/h et $d \le 31.58$ m alors f = 9.6N
 - connaissances incertaines
 - il est à peu près sûr que le métro arrive dans 2 mn
 - et non : la probabilité que le métro arrive dans 2 mn est 0.742
- Faits ne correspondant pas tout à fait aux règles
 - si le livre vaut moins de 10 euros, alors l'acheter
 - mais le livre vaut 10.25 euros
- Raisonner avec des connaissances imprécises et incertaines
 - la vérité des propositions n'est souvent pas binaire
 - \Longrightarrow plus ou moins vrai, plus ou moins faux

Principe de la logique floue

- Structure $M = \langle \mathcal{D}, \bullet^M \rangle$, $\mathcal{D} = |M|$
 - sens d'un prédicat : P^M sous-ensemble flou de $\mathcal{D} \times \dots \mathcal{D}$ défini par sa fonction d'appartenance

$$P^M: \mathcal{D} \times \dots \mathcal{D} \longrightarrow [0, 1]$$

- Valeur de vérité de $F: [F]_v^M \in [0,1]$
 - formule atomique si $F=P(t_1,\ldots t_n)$, alors $[F]_v^M=P^M([t_1]_v^M,\ldots,[t_n]_v^M)$
 - formule avec connecteur : utilisation des opérateurs flous si $F = F_1 \oplus F_2$, alors $[F]_v^M = op_{\oplus}([F_1]_v^M, [F_2]_v^M)$
 - formule avec quantificateur:
 utilisation du sup pour ∃
 du inf pour ∀

Opérateurs flous : problème considéré

• Logique classique :

p	q	$\neg p$	$p \lor q$	$p \wedge q$	$p \longrightarrow q$
0	0	1	0	0	1
0	1	1	1	0	1
1	0	0	1	0	0
1	1	0	1	1	1

• En logique floue, comment évaluer ??

				$p \wedge q$	$p \longrightarrow q$
0.8	0.9	??	??	??	??
8.0	0.1	??	??	??	??
α	β	??	?? ?? ??	??	??

Opérateurs flous

- Etant donné
 - une t-norme ⊤ et une t-conorme ⊥ duales
- Négation : $[\neg F]^M = 1 [F]^M$
- Conjonction : $[F \wedge G]^M = \top ([F]^M, [G]^M)$
- Disjonction : $[F \vee G]^M = \bot([F]^M, [G]^M)$
- Implication : $[F \to G]^M = op_{\to}([F]^M, [G]^M)$
 - pleins de variations !

Classes d'implications floues

- Trois classes principales : selon l'interprétation de $F \longrightarrow G$
 - 1. $\neg F \lor G$ on note $u = [F]^M$ et $v = [G]^M$
 - Łukasiewicz : $op_{\rightarrow L}(u, v) = \min(1 u + v, 1)$
 - Kleene-Dienes : $op_{\rightarrow KD}(u,v) = \max(1-u,v)$
 - Reichenbach : $op_{\rightarrow R}(u, v) = 1 u + u \cdot v$
 - 2. $\neg F \lor (F \land G)$
 - Willmott : $op_{\rightarrow W}(u, v) = \max(1 u, \min(u, v))$
 - 3. $[F]^M \leq [G]^M$
 - Brouwer-Gödel : $op_{\rightarrow BG}(u,v) = \left\{ \begin{array}{ll} 1 & \text{si } u \leq v \\ v & \text{sinon} \end{array} \right.$
 - Goguen : $op_{\rightarrow G}(u,v) = \left\{ \begin{array}{ll} 1 & \text{si } u = 0 \\ \min(\frac{v}{z},1) & \text{sinon} \end{array} \right.$
 - Rescher-Gaines : $op_{\rightarrow RG}(u,v) = \left\{ \begin{array}{ll} 1 & \text{si } u \leq v \\ 0 & \text{sinon} \end{array} \right.$

Au programme du jour

- 1. La théorie des sous-ensembles flous
 - fonction d'appartenance et éléments caractéristiques
 - opérations ensemblistes
 - principe d'extension
- 2. Logique floue
 - valeurs de vérité
 - conjonction, disjonction, implication
 - raisonnement : Modus Ponens Généralisé

Principe et puissance

Modus Ponens classique

```
implication : si V est A alors U est B
```

observation : V est A

conclusion : U est B

• Généralisation : l'observation n'est pas exactement la prémisse

```
implication : \operatorname{si} \operatorname{V} \operatorname{est} A alors \operatorname{U} \operatorname{est} B
```

observation : $V \operatorname{est} A'$

conclusion : U est ??

→ on peut déclencher la règle quand même !

Formellement

implication : si V est A alors U est B

observation : V est A' conclusion : U est $\ref{eq:V}$?

- Connaissant
 - f_A , f_B et l'implication op_{\rightarrow} entre A et B
 - $f_{A'}$ l'observation
- **Déduire** $f_{B'}$: pour tout $y \in X_U$

$$f_{B'}(y) = \sup_{x \in X_V} \top_{op} \big(f_{A'}(x), op_{\rightarrow}(f_A(x), f_B(y)) \big)$$

- \top_{op} choisi en fonction de op_{\rightarrow} pour garantir la compatibilité dans le cas crisp (cf formulaire)

TD sur le MPG

• voir feuille jointe

Exemples : cas d'observation précise

Exemples : cas d'observation précise

• En dehors de la prémisse : $f_A(x_0) = 0$

Exemples : cas d'observation précise

• Complètement dans la prémisse : $f_A(x_0) = 1$

