Recitation 4: Duality

6.255 Optimization Methods

Amine Bennouna

MIT

1 October 2021

Agenda

- Duality: intuition and practice.
- How to take the dual of a problem.
- Using duality to prove a result.

Intuition

Primal:

min
$$\mathbf{c}'\mathbf{x}$$
 s.t. $\mathbf{A}\mathbf{x} \leq \mathbf{b}$

Dual:

$$\begin{array}{ll} \mathsf{max} & \mathbf{p}'\mathbf{b} \\ \mathrm{s.t.} & \mathbf{p}'\mathbf{A} = \mathbf{c}' \\ & \mathbf{p} \leq \mathbf{0} \end{array}$$

- **x** is a primal solution, **p** is a dual solution.
- Dual is the adversary problem of the primal.
- Primal wants to minimize and dual wants to maximize, they meet at the same optimal.

In practice

Primal:

min
$$\mathbf{c}'\mathbf{x}$$
 s.t. $\mathbf{A}\mathbf{x} \leq \mathbf{b}$

Dual:

$$\begin{array}{ll} \mathsf{max} & \mathsf{p'b} \\ \mathrm{s.t.} & \mathsf{p'A} = \mathsf{c'} \\ & \mathsf{p} \leq 0 \end{array}$$

- Weak duality: If x is primal feasible and p dual feasible then $p'b \le c'x$.
- Strong duality: If x is primal optimal and p dual optimal then p'b = c'x.

In practice

■ Complementary slackness: Let x primal feasible and p dual feasible. Then x, p optimal if and only if

$$p_i(\mathbf{a}_i'\mathbf{x}-b_i)=0, \quad \forall i$$

$$x_j(c_j - \mathbf{p}'\mathbf{A}_j) = 0, \quad \forall j$$

- Gives you a free bonus propriety on x,p when you know they are optimal.
- Can be used to check optimality when given an **x** and **p**.

Relations Between Primal and Dual

	Finite opt.	Unbounded	Infeasible
Finite opt.	*		
Unbounded			*
Infeasible		*	*

Computing the dual

"Constraint in primal \leftrightarrow Variable in dual" "Variable in primal \leftrightarrow Constraint in dual"

Primal			Dual	
min	$\mathbf{c}'\mathbf{x}$		max	$\mathbf{p}'\mathbf{l}$
s.t.	$\mathbf{a}_i'\mathbf{x} \geq b_i$	$i \in M_1$	s.t.	pi
	$\mathbf{a}_i'\mathbf{x} \leq b_i$	$i \in M_2$		p_i
	$\mathbf{a}_i'\mathbf{x}=b_i$	$i \in M_3$		pi
	$x_j \geq 0$	$j \in N_1$		\mathbf{p}'
	$x_j \leq 0$	$j \in N_2$		\mathbf{p}'
	x_i free	$j \in N_3$		\mathbf{p}'

Computing the dual

Primal	min	max	dual
	$\geq b_i$	≥ 0	
constraints	$ \leq b_i $	≤ 0	variables
	$ =b_i $	free	
	≥ 0	$\leq c_j$	
variables	≤ 0	$\geq c_j$	constraints
	free	$= c_j$	

Exercise 1

minimize
$$8x_1 + 4x_2 + 2x_3$$

s.t. $2x_1 + x_2 \ge 2$
 $x_1 + x_3 \ge 2$
 $x_1, x_2, x_3 \ge 0$

- 1 Formulate the dual problem.
- 2 Graph the feasible region of the dual problem. Identify the optimal basic feasible solution.
- 3 Using complementary slackness, show that there is a unique optimal basic feasible solution for the primal problem.

Exercise 1: dual

minimize
$$8x_1 + 4x_2 + 2x_3$$

s.t. $2x_1 + x_2 \ge 2$
 $x_1 + x_3 \ge 2$
 $x_1, x_2, x_3 \ge 0$

Exercise 1: slackness

minimize
$$8x_1 + 4x_2 + 2x_3$$
 | maximize $2p_1 + 2p_2$
s.t. $2x_1 + x_2 \ge 2$ | s.t. $2p_1 + p_2 \le 8$
 $x_1 + x_3 \ge 2$ | $p_1 \le 4$
 $x_1, x_2, x_3 \ge 0$ | $p_2 \le 2$
 $p_1, p_2 \ge 0$
 $p_i(\mathbf{a}_i'\mathbf{x} - b_i) = 0, \ \forall i; \ x_i(c_i - \mathbf{p}'\mathbf{A}_i) = 0, \ \forall j$

Bonus: Exercice 2

$$\label{eq:continuous_continuous$$

Formulate the dual problem.

$$\label{eq:constraints} \begin{array}{ll} \text{max} & \textbf{p}'\textbf{b} + \textbf{q}'\textbf{h} \\ \text{s.t.} & \textbf{A}'\textbf{p} + \textbf{D}'\textbf{q} \leq \textbf{c} \\ & \textbf{p} \leq 0 \end{array}$$

Exercise 3

Let **A** be a given matrix. Show that exactly one the following alternatives must hold.

- 1 There exists some $\mathbf{x} \neq 0$ such that $\mathbf{A}\mathbf{x} = 0$, $\mathbf{x} \geq 0$.
- **2** There exists some **p** such that $\mathbf{p}^{\top}\mathbf{A} > \mathbf{0}^{\top}$.

Exercise 3: solution

In order to show that we need to show both of the following:

- If 1 is true then 2 is false.
- If 1 is false then 2 is true.

Let us show the first point. Suppose 1 is true. Let $\mathbf{x} \neq 0$ such that $\mathbf{A}\mathbf{x} = 0$ and $\mathbf{x} \geq 0$. Then, $\mathbf{A}(\theta \mathbf{x}) = 0$ and $\theta \mathbf{x} \geq 0$ for all $\theta \geq 0$. Thus, the following LP is unbounded:

$$\begin{array}{ll} \text{min} & -\mathbf{e}'\mathbf{x} \\ \text{s.t.} & \mathbf{A}\mathbf{x} = 0 \\ & \mathbf{x} \geq 0 \end{array}$$

By weak duality, this implies that the dual problem is infeasible.

$$\label{eq:constraints} \begin{array}{ll} \text{max} & \mathbf{0} \\ \text{s.t.} & \mathbf{p}^{\top} \mathbf{A} \mathbf{x} \leq -\mathbf{e} \end{array}$$

Exercise 3: solution

Since there is no ${\bf p}$ that satisfies ${\bf p}^{\top}{\bf A} \le -{\bf e}$, then there is no ${\bf p}$ that satisfies ${\bf p}^{\top}{\bf A} \ge {\bf e}$, which implies there is no ${\bf p}$ that satisfies ${\bf p}^{\top}{\bf A} \ge \theta {\bf e}$ for any $\theta > 0$. Hence, there is no such ${\bf p}$ that satisfies ${\bf p}^{\top}{\bf A} > 0$. Let us now show the second point. Suppose that 1 is false, ie, there exists no ${\bf x} \ne 0$ such that ${\bf A}{\bf x} = 0$, ${\bf x} \ge 0$. Then, the only solution to ${\bf A}{\bf x} = 0$, ${\bf x} \ge 0$ is ${\bf x} = 0$. Hence, the following LP has objective value of 0:

$$\begin{array}{ll} \text{min} & -\mathbf{e}'\mathbf{x} \\ \text{s.t.} & \mathbf{A}\mathbf{x} = 0 \\ & \mathbf{x} \geq 0 \end{array}$$

This implies that the dual is feasible. Therefore, there exists a \mathbf{p} such that $\mathbf{p}^{\top}\mathbf{A} \leq -\mathbf{e}$. Hence there exists a \mathbf{p} such that $\mathbf{p}^{\top}\mathbf{A} \geq \mathbf{e} > 0$.

Bonus - Exercise 4: Exercise 4.6 of [BT]

Let $A \in \mathbb{R}^{m \times n}$ be a matrix and let $b \in \mathbb{R}^m$ be a vector. We consider the problem of minimizing $||Ax - b||_{\infty}$ over all $x \in \mathbb{R}^n$. Here, $||\cdot||_{\infty}$ is the vector norm defined by $||y||_{\infty} := \max_i |y_i|$. Let ν be the optimal cost of this regression problem.

Let p be any vector in \mathbb{R}^m : $\sum_{i=1}^m |p_i| = 1$, $A^\top p = 0$. Show that $p^\top b \leq \nu$.

Exercise 4: Exercise 4.6 of [BT]

Let $A \in \mathbb{R}^{m \times n}$ be a matrix and let $b \in \mathbb{R}^m$ be a vector. We consider the problem of minimizing $||Ax - b||_{\infty}$ over all $x \in \mathbb{R}^n$. Here, $||\cdot||_{\infty}$ is the vector norm defined by $||y||_{\infty} := \max_i |y_i|$. Let ν be the optimal cost of this regression problem.

Let p be any vector in \mathbb{R}^m : $\sum_{i=1}^m |p_i| = 1$, $A^\top p = 0$. Show that $p^\top b \leq \nu$.

Hint: To show that a cost is bounded from above by some optimal cost, we need weak duality.

Exercise 4: Exercise 4.6 of [BT]: Solution part 1

Let $A \in \mathbb{R}^{m \times n}$ be a matrix and let $b \in \mathbb{R}^m$ be a vector. We consider the problem of minimizing $||Ax - b||_{\infty}$ over all $x \in \mathbb{R}^n$. Here, $||\cdot||_{\infty}$ is the vector norm defined by $||y||_{\infty} := \max_i |y_i|$. Let ν be the optimal cost of this regression problem.

1 Let p be any vector in \mathbb{R}^m : $\sum_{i=1}^m |p_i| = 1$, $A^\top p = 0$. Show that $p^\top b \leq \nu$.

Our primal is:

min z, s.t.
$$Ax - ez \le b$$
, $Ax + ez \ge b$,

And its dual is:

max
$$b^{\top}(p+q)$$

s.t. $A^{\top}(p+q)=0, \ e^{\top}(q-p)=1,$
 $q\geq 0, \ p\leq 0.$

Therefore, result follows from weak duality.

Exercise 4: Exercise 4.6 of [BT]: Part 2

Let $A \in \mathbb{R}^{m \times n}$ be a matrix and let $b \in \mathbb{R}^m$ be a vector. We consider the problem of minimizing $||Ax - b||_{\infty}$ over all $x \in \mathbb{R}^n$. Here, $||\cdot||_{\infty}$ is the vector norm defined by $||y||_{\infty} := \max_i |y_i|$. Let ν be the optimal cost of this regression problem.

- Let p be any vector in \mathbb{R}^m : $\sum_{i=1}^m |p_i| = 1$, $A^\top p = 0$. Show that $p^\top b \leq \nu$.
 - Use weak duality.
- **2** Show that the optimal cost of your dual problem is ν .

Exercise 4: Exercise 4.6 of [BT]: Part 2

Let $A \in \mathbb{R}^{m \times n}$ be a matrix and let $b \in \mathbb{R}^m$ be a vector. We consider the problem of minimizing $||Ax - b||_{\infty}$ over all $x \in \mathbb{R}^n$. Here, $||\cdot||_{\infty}$ is the vector norm defined by $||y||_{\infty} := \max_i |y_i|$. Let ν be the optimal cost of this regression problem.

- **1** Let p be any vector in \mathbb{R}^m : $\sum_{i=1}^m |p_i| = 1$, $A^\top p = 0$. Show that $p^\top b \leq \nu$.
 - Use weak duality.
- 2 Show that the optimal cost of your dual problem is ν .
 - Follows from strong duality.