

Corrigé des exercices de SIMDI 226

- 1. Comme X est un vecteur gaussien, le vecteur $Y = (X_1, X_2)$ est également gaussien. De plus $\mu_Y = (A_1 \mu_X, A_2 \mu_X)$. Soit $X_c = X \mu_X$. Alors $\Gamma_Y = \mathbb{E}\left(\begin{bmatrix} A_1 \\ A_2 \end{bmatrix} X_c X_c^H [A_1^H A_2^H]\right) = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} \Gamma_X [A_1^H A_2^H]$.
- 2. Enfin, comme X est gaussien, X_1 et X_2 sont indépendants si et seulement si ils sont décorrélés : $A_1\Gamma_XA_2^H=0$.

Exercice 2

1. Soit $t \in \mathbb{R}$:

$$P(Y \le t) = P(\{X \le t\} \cap \{U = 1\}) + P(\{-X \le t\} \cap \{U = 0\})$$

$$= \frac{1}{2}P(X \le t) + \frac{1}{2}P(-X \le t) \text{ car } X \text{ et } U \text{ sont indépendants}$$

$$= P(X \le t) \text{ car } X \text{ et } -X \text{ suivent la même loi}$$

Donc $Y \sim \mathcal{N}(0, 1)$.

- 2. $\operatorname{cov}(X, Y) = \mathbb{E}(XY) = \mathbb{E}\left(X^2 \mathbf{1}_{\{U=1\}} X^2 \mathbf{1}_{\{U=0\}}\right) = \frac{1}{2}\mathbb{E}(X^2) \frac{1}{2}\mathbb{E}(X^2) = 0.$
- 3. a) Preuve 1 : par l'absurde (si X et Y étaient indépendantes, on aurait $P(\{X \le t\} \cap \{Y \le t\}) = P(X \le t)P(Y \le t) = (P(X \le t))^2$, ce qui s'avère faux).
 - b) Preuve 2 : si les variables X et Y étaient indépendantes, alors (X, Y) serait un vecteur gaussien et donc toute combinaison linéaire de X et Y serait gaussienne. En particulier, X + Y serait gaussien. Or $P(X + Y = 0) = P(U = 0) = \frac{1}{2}$, ce qui est impossible pour une loi gaussienne (on aurait P(X + Y = 0) = 0 si la loi admet une densité, sinon P serait un Dirac).
- 4. Soit $Z_t = \varepsilon_t X$, où $X \sim \mathcal{N}(0,1)$, $P(\varepsilon_t = 1) = \frac{1}{2}$ et $P(\varepsilon_t = -1) = \frac{1}{2}$, et la suite ε_t est IID et indépendante de X. Alors Z_t ainsi construit est un bruit blanc faible car :
 - $-\mathbb{E}(Z_t)=0 \ \forall t\in\mathbb{Z};$
 - $\mathbb{E}(Z_t^2) = \mathbb{E}(X^2) = 1 \ \forall t \in \mathbb{Z};$
 - $\mathbb{E}(Z_t Z_{t+h}) = \mathbb{E}(\varepsilon_t \varepsilon_{t+h} X^2) = 0 \ \forall t \in \mathbb{Z} \text{ si } h \neq 0.$

Mais d'après la réponse à la question précédente, Z_t n'est pas un bruit blanc fort.

Variante

1. On distingue deux cas:

- Si
$$|y| < a$$
, $p_{Y_a}(y) = p_X(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}$
- Si $|y| > a$, $p_{Y_a}(y) = p_X(-y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}$
Donc $Y \sim \mathcal{N}(0, 1)$.

2. On a

$$cov(X, Y^{a}) = \mathbb{E}(X^{2}\mathbf{1}_{|X| < a}) - \mathbb{E}(X^{2}\mathbf{1}_{|X| \ge a})$$

$$= 2\mathbb{E}(X^{2}\mathbf{1}_{|X| < a}) - 1$$

$$= \sqrt{\frac{2}{\pi}} \int_{|x| < a} x^{2} e^{-\frac{x^{2}}{2}} dx - 1.$$

Comme la fonction $a \mapsto 2\mathbb{E}(X^2\mathbf{1}_{|X|< a}) - 1$ est continue, strictement croissante, vaut -1 quand a = 0 et tend vers 1 quand a tend vers $+\infty$, il existe une unique valeur $a_0 \in]0, +\infty[$ telle que $\operatorname{cov}(X, Y^{a_0}) = 0$. Les variables X et Y^{a_0} sont alors décorrélées, mais elles ne sont pas indépendantes car dans ce cas $X + Y^{a_0}$ serait une variable aléatoire gaussienne. Cela contredirait le fait que $X + Y^{a_0} = 2X\mathbf{1}_{|X|< a}$ est toujours inférieur à a en valeur absolue.

- On a $\mathbb{E}(Z_t) = \mathbb{E}(X_t) + \mathbb{E}(Y_t) = \mu_X + \mu_Y$.
- On a $cov(Z_t, Z_{t+h}) = cov(X_t + Y_t, X_{t+h} + Y_{t+h}) = \gamma_X(h) + \gamma_Y(h)$ car X_t et X_s sont décorrélés pour tous t et s. Donc Z_t est stationnaire au second d'ordre.
- On en déduit que $v_Z(d\lambda) = v_X(d\lambda) + v_Y(d\lambda)$.

Exercice 4

Rappel (transformation préservant la stationnarité stricte) : Si ε_t est strictement stationnaire et si g est une fonction borélienne, alors $y_t = g(\varepsilon_t, \dots, \varepsilon_{t-k+1})$ est strictement stationnaire.

- 1. On applique le rappel à $g(\varepsilon_t, \varepsilon_{t-1}) = a + b\varepsilon_t + c\varepsilon_{t-1}$.
- 2. On applique le rappel à $g(\varepsilon_t, \varepsilon_{t-1}) = \varepsilon_t \varepsilon_{t-1}$.
- 3. a) y_t est strictement stationnaire si et seulement si la loi de ε_t est symétrique : dans ce cas les variables y_t sont IID et centrées. Dans le cas général, on a $\mathbb{E}(y_t) = 0$ et $\text{cov}(y_t y_{t+h}) = (-1)^h \text{cov}(\varepsilon_t \varepsilon_{t+h}) = \sigma^2 \delta(h)$. Donc y_t est stationnaire au sens faible (c'est un bruit blanc faible).
 - b) On a $z_t = 2\varepsilon_t$ si t est pair, et $z_t = 0$ si t est impair : z_t n'est donc pas stationnaire, ni au sens strict ni au sens faible, dès que $\sigma^2 > 0$.

Exercice 5

- 1. a) On pose $A = \rho \mathbf{1}$ et $\alpha = 1 \rho$; alors $\Sigma_t = \alpha I + A$. Les valeurs propres de A sont $t\rho$ (valeur propre simple) et 0 (valeur propre multiple d'ordre t 1). Donc les valeurs propres de Σ_t sont $1 + (t 1)\rho$ (valeur propre simple) et 1ρ (valeur propre multiple d'ordre t 1).
 - b) Σ_t est une matrice de covariance pour tout t si et seulement si ses valeurs propres sont positives pour tout t, c'est à dire si $\rho \in [0, 1]$.
- 2. On construit X_t sous la forme $X_t = \alpha \varepsilon_t + \beta Z$, où ε_t est un bruit blanc de variance 1 et Z est une variable aléatoire centrée de variance 1, indépendante des ε_t . Alors on identifie $\gamma(h) = \alpha^2 \delta_0(h) + \beta^2$, dont en déduit $\alpha^2 + \beta^2 = 1$ et $\beta^2 = \rho$. On retrouve donc la condition $\rho \in [0, 1]$, et on pose $\beta = \sqrt{\rho}$ et $\alpha = \sqrt{1 \rho}$.

Exercice 6

Soit P la matrice 2×2 de coefficients p_{ij} et Π_0^T le vecteur ligne de coefficients $\Pi_0(0)$ et $\Pi_0(1)$. Il faut d'abord remarquer que $\forall m \geq 1$, les coefficients de la matrice P^m valent $\mathbb{P}(X_{n+m} = j | X_n = i)$.

1. On a

$$\mathbb{P}(X_n = x_n, \dots, X_{n+k} = x_{n+k}) = \mathbb{P}(X_n = x_n) \prod_{l=1}^k \mathbb{P}(X_{n+l} = x_{n+l} | X_{n+l-1} = x_{n+l-1})$$

$$= \Pi_0^T \times (\mathbf{P}^n)_{(:,x_n)} \times \prod_{l=1}^k p_{x_{n+l-1},x_{n+l}}$$

- 2. Plus généralement, $\mathbb{P}(X_{n_0} = x_{n_0}, \dots, X_{n_k} = x_{n_k}) = \prod_{l=1}^{T} \times (\boldsymbol{P}^{n_0})_{(:,x_{n_0})} \times \prod_{l=1}^{k} (\boldsymbol{P}^{n_l-n_{l-1}})_{(x_{n_{l-1}},x_{n_l})}$
- 3. Si $\Pi_0 = \Pi$, on en déduit que $\mathbb{P}(X_{n_0} = x_{n_0}, \dots, X_{n_k} = x_{n_k}) = \Pi_0(x_{n_0}) \times \prod_{l=1}^k (\boldsymbol{P}^{n_l n_{l-1}})_{(x_{n_{l-1}}, x_{n_l})}$. Cette expression ne dépend plus que des valeurs x_{n_0}, \dots, x_{n_k} et des différences entre les instants n_0, \dots, n_k . La loi est donc invariante par translation : le processus X est strictement stationnaire.

Rappels:

- Fonctions d'autocovariance et mesures spectrales : $\gamma(h) = \int_{-\pi}^{\pi} e^{ih\lambda} \nu(d\lambda)$ et $f(\lambda) = \frac{1}{2\pi} \sum_{h \in \mathbb{Z}} \gamma(h) e^{-ih\lambda}$.
- Formules de trigonométrie :
 - $-\cos(a)\cos(b) = \frac{1}{2}(\cos(a-b) + \cos(a+b)),$
 - $-\sin(a)\sin(b) = \frac{1}{2}(\cos(a-b) \cos(a+b)),$ \cos(a)\sin(b) = \frac{1}{2}(\sin(a+b) \sin(a-b)).
- 1. a) $\mathbb{E}(X_t) = a \ \forall t \in \mathbb{Z}$;
 - b) $cov(X_t, X_{t+h}) = |b|^2 \sigma^2 < +\infty \ \forall t \in \mathbb{Z}$
 - c) Donc X_t est stationnaire et $v(d\lambda) = |b|^2 \sigma^2 \delta_0(d\lambda)$.
- 2. a) $\mathbb{E}(X_t) = 0 \ \forall t \in \mathbb{Z}$;
 - b) $cov(X_t, X_{t+h}) = \sigma^2 cos(ct) cos(c(t+h)) = \frac{\sigma^2}{2} (cos(ch) + cos(c(2t+h)));$
 - c) $cov(X_t, X_{t+h})$ dépend de t donc X_t n'est pas stationnaire.
- 3. a) $\mathbb{E}(X_t) = a \ \forall t \in \mathbb{Z}$;
 - b) $cov(X_t, X_{t+h}) = \sigma^2((|b|^2 + |c|^2)\delta(h) + bc(\delta(h+1) + \delta(h-1)) \ \forall t \in \mathbb{Z}$
 - c) Donc X_t est stationnaire et $f(\lambda) = \frac{1}{2\pi}(|b|^2 + |c|^2 + 2bc\cos(\lambda))$.
- 4. a) $\mathbb{E}(X_t) = 0 \ \forall t \in \mathbb{Z}$;
 - b) $\operatorname{cov}(X_t, X_{t+h}) = \sigma^2(\operatorname{cos}(ct)\operatorname{cos}(c(t+h)) + \sin(ct)\sin(c(t+h))) = \sigma^2\operatorname{cos}(ch) \ \forall t \in \mathbb{Z}$
 - c) Donc X_t est stationnaire et $\nu(d\lambda) = \frac{\sigma^2}{2} (\delta_c(d\lambda) + \delta_{-c}(d\lambda))$.
- 5. a) $\mathbb{E}(X_t) = 0 \ \forall t \in \mathbb{Z}$;
 - b) $cov(X_t, X_{t+h}) = \sigma^2(cos(ch)\delta(h) + \frac{sin(c(2t+h)) + sin(ch)}{2}\delta(h-1) + \frac{sin(c(2t+h)) sin(ch)}{2}\delta(h+1))$
 - c) $cov(X_t, X_{t+h})$ dépend de t donc X_t n'est pas stationnaire.

Exercice 8

- 1. En développant le déterminant suivant la première colonne de Γ_k , on obtient d(k+1) = d(k) $\rho^2 d(k-1)$.
- 2. a) Méthode 1. Rappel (théorème d'Herglotz) : une suite $\gamma(h)$ est de type positif si et seulement si il existe une unique mesure positive ν telle que $\gamma(h) = \int e^{ih\lambda} \nu(d\lambda)$. Ici, on calcule $f(\lambda) = \int e^{ih\lambda} \nu(d\lambda)$ $\frac{1}{2\pi}\sum_{h\in\mathbb{T}^2}\gamma(h)e^{-ih\lambda}=\frac{1}{2\pi}(1+2\rho\cos(\lambda))$, qui est positive si et seulement si $|\rho|\leq\frac{1}{2}$.
 - b) Méthode 2. La relation de récurrence est associée au polynôme du second degré $X^2 X + \rho^2 = 0$. Deux cas sont à distinguer :
 - son discriminant est négatif $(1-4\rho^2 \le 0 \Leftrightarrow \rho \ge \frac{1}{2})$. Dans ce cas la suite d(k) s'exprime comme une sinusoïde et prend donc des valeurs négatives ou nulles ; les matrices Γ_k ne sont donc pas définies positives pour tout k.
 - son discriminant est strictement positif $(\rho < \frac{1}{2})$. Alors on en déduit (par le calcul) que d(k) > $0 \ \forall k \geq 1$, ce qui prouve que toutes les matrices Γ_k sont définies positives.
- 3. Soit ε_t un bruit blanc faible. On pose $X_t = \alpha \varepsilon_t + \beta \varepsilon_{t-1}$. Alors X_t est stationnaire au sens faible, et sa fonction d'autocovariance est $\gamma_X(h) = \text{cov}(X_t, X_{t+h}) = \text{cov}(\alpha \varepsilon_t + \beta \varepsilon_{t-1}, \alpha \varepsilon_{t+h} + \beta \varepsilon_{t+h-1}) =$ $(\alpha^2 + \beta^2)\delta(h) + \alpha\beta(\delta(h+1) + \delta(h-1))$. Par identification, on en déduit $\alpha^2 + \beta^2 = 1$ et $\alpha\beta = \rho$. On retrouve donc la condition $|\rho| \le \frac{1}{2}$, et on pose $\alpha = \frac{\sqrt{1+2\rho} + \sqrt{1-2\rho}}{2}$ et $\beta = \frac{\sqrt{1+2\rho} - \sqrt{1-2\rho}}{2}$

On calcule $\gamma(h) = \int e^{ih\lambda} \nu(d\lambda) = \int_{-f_0}^{f_0} e^{ih\lambda} d\lambda = 2f_0 \text{sinc}(f_0h)$. Cette fonction d'autocovariance n'est pas de module sommable (s'il elle l'avait été, cela aurait impliqué une densité spectrale continue).

Exercice 10

- 1. Soit $k = \max\{l \in \mathbb{N} / X_1 \dots X_l \text{ est libre}\}$. D'après l'énoncé, $k < +\infty$. Alors soit k = 0 et dans ce cas $\gamma(0) = 0$, soit $1 \le k < +\infty$.
- 2. Comme Γ_k est définie positive, on a $\lambda_{\min}(\Gamma_k) > 0$.
- 3. Le résultat se démontre par récurrence (chaque X_p est combinaison linéaire des k précédents).
- 4. On a $\gamma(0) = \mathbb{E}(|X_{k+p}|^2) = \boldsymbol{\phi}_p^H \Gamma_k \boldsymbol{\phi}_p$. Or $\boldsymbol{\phi}_p^H \Gamma_k \boldsymbol{\phi}_p \ge ||\boldsymbol{\phi}_p||^2 \lambda_{\min}(\Gamma_k)$ pour tout p. Donc $\forall p \ge 1$, $||\boldsymbol{\phi}_p||^2 \le \frac{\gamma(0)}{\lambda_{\min}(\Gamma_k)} < +\infty$.
- 5. On a $\gamma(0) = \text{cov}(X_{k+p}, \sum_{l=1}^k \phi_{p,l} X_l) = \sum_{l=1}^k \phi_{p,l} \gamma(k+p-l)$. Or la suite $\phi_{p,l}$ est bornée d'après la question précédente, et $\gamma(k+p-l) \to 0$ quand $p \to +\infty$. Donc par passage à la limite $\gamma(0) = 0$.

Exercice 11

Si x, vecteur de dimension n, est un vecteur propre de Γ_n associé à une valeur propre $\lambda \geq 0$, alors $\Gamma_n x = \lambda x \Rightarrow x^H \Gamma_n x = \lambda ||x||^2$, c'est à dire

$$\sum_{p=1}^{n} \sum_{q=1}^{n} x_p^* \gamma(p-q) x_q = \lambda ||x||^2$$

$$\sum_{p=1}^{n} \sum_{q=1}^{n} x_p^* \left(\int_{-\pi}^{+\pi} e^{i(p-q)\omega} f(\omega) d\omega \right) x_q = \lambda ||x||^2$$

$$\int_{-\pi}^{+\pi} f(\omega) \left(\sum_{p=1}^{n} x_p e^{-ip\omega} \right)^* \left(\sum_{q=1}^{n} x_q e^{-iq\omega} \right) d\omega = \lambda ||x||^2$$

$$\int_{-\pi}^{+\pi} f(\omega) |X(\omega)|^2 d\omega = \frac{\lambda}{2\pi} \int_{-\pi}^{+\pi} |X(\omega)|^2 d\omega$$

Puisque $m \le f(\omega) \le M$, nous en déduisons que $2\pi m \le \lambda \le 2\pi M$.

Exercice 12

1. On note $X_{t,k_1} = \sum_{k=0}^{k_1} \psi_k \epsilon_{t-k}$. Comme ϵ_t est un bruit blanc faible centré de variance σ^2 et comme $(\psi_k)_{k\geq 0} \in l^2(\mathbb{Z})$, on a

$$\forall k_2 \ge k_1 \ge 0, ||X_{t,k_2} - X_{t,k_1}||^2 = \left\| \sum_{k=k_1+1}^{k_2} \psi_k \epsilon_{t-k} \right\|^2 = \sigma^2 \sum_{k=k_1+1}^{k_2} |\psi_k|^2 \underset{k_1 \to +\infty}{\longrightarrow} 0$$

Ainsi, à t fixé, la suite $(X_{t,k})_{k\geq 0}$ est une suite de Cauchy dans $L^2(\Omega,\mathcal{F},\mathbb{P})$. Elle admet donc une limite $X_t = \sum_{k=0}^{+\infty} \psi_k \epsilon_{t-k} \in L^2(\Omega,\mathcal{F},\mathbb{P})$.

2. a) Prouvons que $\underline{\epsilon_t}$ est purement non déterministe. Il s'agit de démontrer que $\mathcal{H}^{\epsilon}_{-\infty} = \cap_{t=-\infty}^{+\infty} \mathcal{H}^{\epsilon}_t = \{0\}$, où $\mathcal{H}^{\epsilon}_t = \overline{\text{Vect}(\epsilon_s, s \leq t)}$. Soit $Y \in \mathcal{H}^{\epsilon}_{-\infty}$. Alors $\forall t \in \mathbb{Z}$, $Y \in \mathcal{H}^{\epsilon}_{t-1}$, donc $Y \perp \varepsilon_t$ (puisque ε_t est un bruit blanc). On en déduit que Y = 0. Nous avons donc prouvé que $\mathcal{H}^{\varepsilon}_{-\infty} = \{0\}$, ce qui signifie que ε_t est purement non déterministe.

b) Prouvons maintenant que X_t est purement non déterministe. Soit $Y \in \mathcal{H}_{-\infty}^X$. Cela signifie que $\forall t \in \mathbb{Z}, Y \in \mathcal{H}_t^X$. Or l'équation (1) montre que $\forall t \in \mathbb{Z}, \mathcal{H}_t^X \subset \mathcal{H}_t^{\varepsilon}$. Donc $\forall t \in \mathbb{Z}, Y \in \mathcal{H}_t^{\varepsilon}$, ce qui montre que $Y \in \mathcal{H}_{-\infty}^{\varepsilon} = \{0\}$, donc Y = 0. Nous avons donc prouvé que $\mathcal{H}_{-\infty}^X = \{0\}$, ce qui signifie que X_t est purement non déterministe.

Exercice 13

- 1. $\mathbb{E}(Y_t) = \beta t + \mu_S + \mu_X$ dépend de t, donc Y_t n'est pas stationnaire au second ordre.
- 2. $\gamma_S(h+4) = \text{cov}(S_t, S_{t+h+4}) = \text{cov}(S_t, S_{t+h}) = \gamma_S(h)$, donc γ_S est périodique de période 4. De plus, on remarque que $(1-B)\overline{S}_t = (1-B^4)S_t = 0$, donc $\forall t \in \mathbb{Z}, \overline{S}_t = \overline{S}_0$.
- 3. On a $Z_t = (1 B^4)(\beta t + S_t + X_t) = 4\beta + X_t X_{t-4}$. Donc $\mathbb{E}(Z_t) = 4\beta$ ne dépend pas de t, et $\operatorname{cov}(Z_t, Z_{t+h}) = \operatorname{cov}(X_t X_{t-4}, X_{t+h} X_{t+h-4}) = 2\gamma_X(h) \gamma_X(h-4) \gamma_X(h+4)$ ne dépend pas de t, donc Z_t est stationnaire au second ordre et $\gamma_Z(h) = 2\gamma_X(h) \gamma_X(h-4) \gamma_X(h+4)$.
- 4. Puisque $\gamma_S(h)$ est réel, de période 4, symétrique et de type positif, on peut écrire $\gamma_S(h) = a + b\cos(\frac{\pi}{2}h) + c(-1)^h$, avec $a, b, c \ge 0$. De plus, $\nu_S(d\omega) = a\delta_0(d\omega) + \frac{b}{2}\delta_{\frac{\pi}{2}}(d\omega) + \frac{b}{2}\delta_{-\frac{\pi}{2}}(d\omega) + c\delta_{\pi}(d\omega)$.
- 5. Comme $\gamma_Z(h) = 2\gamma_X(h) \gamma_X(h-4) \gamma_X(h+4)$, on a $f_Z(\omega) = f_X(\omega)(2-2\cos(4\omega)) = 4f_X(\omega)\sin^2(2\omega)$.

Exercice 14

- 1. On remarque que $\mathbb{E}(Z_t) = 0$. De plus, comme $Z_t \perp \tilde{X}_t$, l'égalité de Pythagore induit $\mathbb{E}(Z_t^2) = \mathbb{E}(X_t^2) \mathbb{E}(\tilde{X}_t^2)$, qui est constant par stationnarité de X_t . Enfin, $\forall s < t, Z_s \in \mathcal{H}_s \subset \mathcal{H}_{t-1}$ et $Z_t \perp \mathcal{H}_{t-1}$, donc $Z_s \perp Z_t$, ce qui signifie que $\text{cov}(Z_s, Z_t) = 0$. Donc Z_t est un bruit blanc faible.
- 2. Il s'agit de démontrer que $\forall s \leq t-q-1, X_s \perp X_t$. Or en effet, $\operatorname{cov}(X_t, X_s) = \gamma_X(t-s) = 0$ car t-s > q.
- 3. D'après ce qui précède, X_t appartient au complémentaire orthogonal de \mathcal{H}_{t-q-1} dans \mathcal{H}_t , qui est égal à $\text{Vect}(Z_t \dots Z_{t-q})$.
- 4. D'après la question précédente, on peut écrire $X_t = \sum_{p=0}^q \theta_{t,p} Z_{t-q}$. Mais X_t et Z_t sont conjointement stationnaires, donc $\text{cov}(X_t, Z_{t-p})$ ne dépend que de p. Donc $\theta_{t,p} = \theta_p$ ne dépend que de p, ce qui prouve que X_t est un processus MA(q).

Exercice 15

- 1. On applique le théorème de filtrage des processus aux deux membres de l'égalité $(1-2B)X_t=(1+4B)\varepsilon_t$. On en déduit que $|1-2e^{-i\omega}|^2f_X(\omega)=|1+4e^{-i\omega}|^2f_\varepsilon(\omega)$, donc $f_X(\omega)=\frac{\sigma^2}{2\pi}\frac{|1+4e^{-i\omega}|^2}{|1-2e^{-i\omega}|^2}$.
- 2. L'égalité $(1-2B)X_t = (1+4B)\varepsilon_t$ se réécrit $(1-\frac{1}{2}B^{-1})X_t = -2(1+\frac{1}{4}B^{-1})\varepsilon_t$. La représentation canonique (c'est à dire causale et inversible) de X_t est donc la solution de l'équation récurrente $(1-\frac{1}{2}B)X_t = -2(1+\frac{1}{4}B)\eta_t$, c'est à dire $X_t \frac{1}{2}X_{t-1} = -2\eta_t \frac{1}{2}\eta_{t-1}$, où on a posé $\eta_t = \frac{1-\frac{1}{2}B}{1-\frac{1}{2}B^{-1}}\frac{1+\frac{1}{4}B^{-1}}{1+\frac{1}{4}B}\varepsilon_t$, ce qui signifie que η_t est un bruit blanc, de même variance σ^2 que ε_t , obtenu par application d'un filtre passe-tout à ε_t . On vérifie de plus que les polynômes $1-\frac{1}{2}z$ et $1+\frac{1}{4}z$ ne s'annulent pas pour $|z| \le 1$.
- 3. Comme la représentation canonique vérifie $X_t = \frac{1}{2}X_{t-1} 2\eta_t \frac{1}{2}\eta_{t-1}$, par orthogonalité de η_t par rapport à \mathcal{H}_{t-1} , on a $\tilde{X}_t = \frac{1}{2}X_{t-1} \frac{1}{2}\eta_{t-1}$, donc l'innovation est $Z_t = X_t \tilde{X}_t = -2\eta_t$: la variance de l'innovation est donc égale à $4\sigma^2$.
- 4. Si on utilise la représentation non canonique de l'énoncé, on obtient $-2B(1-\frac{1}{2}B^{-1})X_t = (1+4B)\epsilon_t$, donc

$$X_{t} = -\frac{1}{2}(4 + B^{-1})\sum_{k=0}^{+\infty} \frac{1}{2^{k}}B^{-k}\epsilon_{t} = \sum_{k=0}^{+\infty} -\frac{1}{2^{k+1}}(4\epsilon_{t+k} + \epsilon_{t+k+1}) = -2\epsilon_{t} + \sum_{k=1}^{+\infty} -\frac{3}{2^{k}}\epsilon_{t+k}$$

- 1. On remarque que X_t est stationnaire au second ordre, centré, et que $\gamma_X(h) = 0 \ \forall |h| > q$. De même, Y_t est stationnaire au second ordre, centré, et $\gamma_Y(h) = 0 \ \forall |h| > p$. Par conséquent, Z_t est stationnaire au second ordre, centré, et $\gamma_Z(h) = 0 \ \forall |h| > \max(p,q)$. En appliquant le résultat de l'exercice 14, on en conclut que Z_t est un processus MA($\max(p,q)$).
- 2. Comme $X_t = (1 + \theta_1 B)\varepsilon_t$ avec $|\theta_1| < 1$, on a $\varepsilon_t = \frac{1}{1+\theta_1 B}X_t = \sum_{k=0}^{+\infty} (-\theta_1)^k X_{t-k}$. De même, $\eta_t = \sum_{k=0}^{+\infty} (-\rho_1)^k Y_{t-k}$. Comme X_t et Y_t sont décorrélés, on en déduit que ε_t et η_t sont également décorrélés.
- 3. Si $\theta_1 = \rho_1$, on remarque que $Z_t = (\varepsilon_t + \eta_t) + \theta_1(\varepsilon_{t-1} + \eta_{t-1})$. On en déduit que le processus des innovations de Z_t est $\varepsilon_t + \eta_t$.
- 4. Dans le cas où $\theta_1 = \rho_1$, comme ε_t et η_t sont décorrélés, la variance de l'innovation de Z_t est $\sigma_{\varepsilon}^2 + \sigma_{\eta}^2$. Abordons maintenant le cas général. La densité spectrale du processus Z_t vérifie

$$2\pi f_Z(\omega) = \sigma_{\varepsilon}^2 |1 + \theta_1 e^{-i\omega}|^2 + \sigma_n^2 |1 + \rho_1 e^{-i\omega}|^2 = \left(\sigma_{\varepsilon}^2 (1 + |\theta_1|^2) + \sigma_n^2 (1 + |\rho_1|^2)\right) + 2Re\left(\left(\sigma_{\varepsilon}^2 \theta_1 + \sigma_n^2 \rho_1\right) e^{-i\omega}\right)$$

Or d'après la question 1, Z_t est un processus MA(1), sa représentation canonique s'écrit donc sous la forme $Z_t = \varphi_t + \alpha_1 \varphi_{t-1}$, où φ_t est un bruit blanc qui constitue l'innovation de Z_t . Ainsi la densité spectrale du processus Z_t s'écrit aussi sous la forme

$$2\pi f_Z(\omega) = \sigma_{\varphi}^2 |1 + \alpha_1 e^{-i\omega}|^2 = \sigma_{\varphi}^2 (1 + |\alpha_1|^2) + 2Re\left(\sigma_{\varphi}^2 \alpha_1 e^{-i\omega}\right)$$

Par identification, on en déduit que $\sigma_{\varepsilon}^2(1+|\theta_1|^2)+\sigma_{\eta}^2(1+|\rho_1|^2)=\sigma_{\varphi}^2(1+|\alpha_1|^2)$ et $\sigma_{\varepsilon}^2\theta_1+\sigma_{\eta}^2\rho_1=\sigma_{\varphi}^2\alpha_1$. Par conséquent, $\alpha_1=\frac{\sigma_{\varepsilon}^2\theta_1+\sigma_{\eta}^2\rho_1}{\sigma_{\varphi}^2}$, on obtient donc par substitution

$$\sigma_{\omega}^4 - (\sigma_{\varepsilon}^2 (1 + |\theta_1|^2) + \sigma_n^2 (1 + |\rho_1|^2)) \sigma_{\omega}^2 + |\sigma_{\varepsilon}^2 \theta_1 + \sigma_n^2 \rho_1|^2 = 0$$

En résolvant cette équation de degré 2, on obtient finalement :

$$\sigma_{\varphi}^{2} = \frac{1}{2} \left(\sigma_{\varepsilon}^{2} (1 + |\theta_{1}|^{2}) + \sigma_{\eta}^{2} (1 + |\rho_{1}|^{2}) + \sqrt{\sigma_{\varepsilon}^{4} (1 - |\theta_{1}|^{2})^{2} + \sigma_{\eta}^{4} (1 - |\rho_{1}|^{2})^{2} + 2\sigma_{\varepsilon}^{2} \sigma_{\eta}^{2} \left(|1 - \overline{\theta_{1}} \rho_{1}|^{2} | + |\theta_{1} - \rho_{1}|^{2} \right) \right)$$

On vérifie qu'on retrouve bien la relation $\sigma_{\varphi}^2 = \sigma_{\varepsilon}^2 + \sigma_{\eta}^2$ si $\theta_1 = \rho_1$.

Exercice 17

- 1. Comme $(1-aB)X_t = \varepsilon_t$ et $(1-bB)Y_t = \eta_t$, on a $(1-aB)(1-bB)Z_t = (1-bB)\varepsilon_t + (1-aB)\eta_t$, ce qui s'écrit $Z_t (a+b)Z_{t-1} + abZ_{t-2} = (\varepsilon_t b\varepsilon_{t-1}) + (\eta_t a\eta_{t-1})$. Le membre de droite de cette dernière égalité étant la somme de deux processus MA(1), nous avons démontré dans l'exercice 16 qu'il est lui-même un processus MA(1). Il peut donc s'écrire sous la forme $\xi_t \theta \xi_{t-1}$ avec $|\theta| < 1$.
- 2. Comme $(1 \theta B)\xi_t = (1 bB)\varepsilon_t + (1 aB)\eta_t$ avec $|\theta| < 1$, on peut écrire $\xi_t = (1 bB)\sum_{k=0}^{+\infty} \theta^k B^k \varepsilon_t + (1 aB)\sum_{k=0}^{+\infty} \theta^k B^k \eta_t$, d'où le résultat.
- 3. En utilisant les résultats des questions 1 et 2, on décompose Z_{t+1} sous la forme $Z_{t+1} = \widetilde{Z}_{t+1} + \varepsilon_{t+1} + \eta_{t+1}$, où

$$\widetilde{Z}_{t+1} = (a+b)Z_t - abZ_{t-1} - \theta \xi_t + (\theta - b) \sum_{k=0}^{+\infty} \theta^k \varepsilon_{t-k} + (\theta - a) \sum_{k=0}^{+\infty} \theta^k \eta_{t-k}.$$

Or si X_s et Y_s sont connus jusqu'à l'instant t, alors ε_s , η_s , Z_s et ξ_s sont également connus jusqu'à l'instant t, mais ε_{t+1} et η_{t+1} ne le sont pas. Donc la prévision de Z_{t+1} est \widetilde{Z}_{t+1} , et l'innovation est $\varepsilon_{t+1} + \eta_{t+1}$.

4. En utilisant le résultat de la question 1, on décompose Z_{t+1} sous la forme $Z_{t+1} = \widetilde{Z}_{t+1} + \xi_{t+1}$, où

$$\widetilde{Z}_{t+1} = (a+b)Z_t - abZ_{t-1} - \theta \xi_t.$$

Or si Z_s est connu jusqu'à l'instant t, alors ξ_s est également connu jusqu'à l'instant t, mais ξ_{t+1} ne l'est pas. Donc la prévision de Z_{t+1} est \widetilde{Z}_{t+1} , et l'innovation est ξ_{t+1} .

5. Dans la question 4, la variance de l'erreur de prédiction est σ^2 . Dans la question 3, la variance de l'erreur de prédiction est $\sigma_{\varepsilon}^2 + \sigma_{\eta}^2$, car ε_t et η_t sont décorrélés. Or le résultat de la question 2 montre que

$$\sigma^2 = \sigma_{\varepsilon}^2 \left(1 + \frac{|\theta - b|^2}{1 - |\theta|^2} \right) + \sigma_{\eta}^2 \left(1 + \frac{|\theta - a|^2}{1 - |\theta|^2} \right).$$

Ainsi, $\sigma^2 \ge \sigma_{\varepsilon}^2 + \sigma_{\eta}^2$, et $\sigma^2 = \sigma_{\varepsilon}^2 + \sigma_{\eta}^2$ si et seulement si a = b (dans ce cas $\theta = a = b$).

Exercice 18

- 1. Comme $|\phi| < 1$, la solution de l'AR(1) est causale et s'écrit sous la forme $X_t = \sum_{k \geq 0} \psi_k \varepsilon_{t-k}$, où $\psi(z) = \sum_{k \geq 0} \psi_k z^k$ est le développement en série entière de la fonction $\psi(z) = \frac{1}{1-\phi z}$. On en déduit $\psi_k = \phi^k \ \forall k \geq 0$.
- 2. On applique le théorème de filtrage des processus : ε_t est un bruit blanc et la réponse impulsionnelle $(\psi_k)_{k\in\mathbb{Z}}$ est sommable, donc X_t est un processus stationnaire au sens faible de fonction d'autocovariance $\gamma_X(h) = \sigma^2 \sum_{k\geq 0} \overline{\psi}_k \psi_{h+k}$. En substituant le résultat de la question précédente, on obtient, pour tout $h\geq 0$, $\gamma_X(h) = \sigma^2 \phi^h \sum_{k\geq 0} |\phi|^{2k} = \sigma^2 \frac{\phi^h}{1-|\phi|^2}$.

Exercice 19

- 1. Il faut et il suffit que $|\phi_1| < 1$ (le pôle $z^* = -1/\phi_1$ doit être à l'extérieur du cercle unité). On a alors une solution causale.
- 2. La solution causale de l'ARMA(1,1) s'écrit alors sous la forme $X_t = \sum_{k\geq 0} \psi_k Z_{t-k}$. Nous avons démontré dans l'exercice précédent que sa fonction d'autocovariance est, pour tout $h \geq 0$, $\gamma_X(h) = \sigma^2 \sum_{k\geq 0} \overline{\psi}_k \psi_{h+k}$.
- 3. Par un développement en série entière, on obtient :

$$\psi(z) = \frac{1+\theta_1 z}{1+\phi_1 z}$$

$$= (1+\theta_1 z) \sum_{k\geq 0} (-\phi_1 z)^k$$

$$= 1+\sum_{k\geq 1} (-\phi_1)^{k-1} (\theta_1-\phi_1) z^k$$

$$= \sum_{k\geq 0} \psi_k z^k$$

Par identification, on en déduit $\psi_0 = 1$ et $\psi_k = (-\phi_1)^{k-1}(\theta_1 - \phi_1) \ \forall k \ge 1$.

4. Par substitution, on obtient, pour tout $h \ge 0$,

$$\begin{array}{rcl} \gamma_X(h) & = & \sigma^2 \sum_{k \geq 0} \overline{\psi}_k \psi_{h+k} \\ & = & \sigma^2 \left(\psi_h + |\theta_1 - \phi_1|^2 (-\phi_1)^h \sum_{k \geq 0} |\phi_1|^{2k} \right) \\ & = & \sigma^2 \left(\psi_h + |\theta_1 - \phi_1|^2 \frac{(-\phi_1)^h}{1 - |\phi_1|^2} \right) \end{array}$$

En particulier, on en déduit $\gamma_X(0) = \sigma^2 \frac{1 + |\theta_1|^2 - 2Re(\overline{\theta}_1\phi_1)}{1 - |\phi_1|^2}$ et, pour tout $h \ge 1$, $\gamma_X(h) = \sigma^2 (-\phi_1)^{h-1} (\theta_1 - \phi_1) \frac{1 - \overline{\theta}_1\phi_1}{1 - |\phi_1|^2}$.

Dans cet exercice, on ne considère que des processus réels.

- 1. On a $X_t \in \mathcal{H}_t^Z$ pour tout t si et seulement si $|\phi_1| < 1$ (solution causale).
- 2. Soit $k \ge 2$. On obtient $\mathbb{E}(X_t X_{t-k} + \phi_1 X_{t-1} X_{t-k}) = \mathbb{E}(Z_t X_{t-k} + \theta_1 Z_{t-1} X_{t-k})$. Comme la solution est causale, cette égalité est équivalente à $\gamma(k) + \phi_1 \gamma(k-1) = 0$, d'où la récurrence $\gamma(k) = -\phi_1 \gamma(k-1)$.
- 3. En multipliant l'équation (2) par Z_t et en prenant l'espérance, on obtient $\mathbb{E}(X_tZ_t + \phi_1X_{t-1}Z_t) = \mathbb{E}(Z_t^2 + \theta_1Z_{t-1}Z_t)$. Comme la solution est causale, cette égalité est équivalente à $\mathbb{E}(X_tZ_t) = \sigma^2$. En multipliant ensuite l'équation (2) par Z_{t-1} et en prenant l'espérance, on obtient $\mathbb{E}(X_tZ_{t-1} + \phi_1X_{t-1}Z_{t-1}) = \mathbb{E}(Z_tZ_{t-1} + \theta_1Z_{t-1}^2)$. Cette égalité est équivalente à $\mathbb{E}(X_tZ_{t-1}) + \phi_1\sigma^2 = \theta_1\sigma^2$. On en déduit $\mathbb{E}(X_tZ_{t-1}) = (\theta_1 \phi_1)\sigma^2$
- 4. En multipliant l'équation (2) par X_t et en prenant l'espérance, on obtient $\mathbb{E}(X_t^2 + \phi_1 X_{t-1} X_t) = \mathbb{E}(Z_t X_t + \theta_1 Z_{t-1} X_t)$. En utilisant le résultat de la question précédente, on en déduit $\gamma(0) + \phi_1 \gamma(1) = \sigma^2(1 + \theta_1(\theta_1 \phi_1))$. En multipliant ensuite l'équation (2) par X_{t-1} et en prenant l'espérance, on obtient $\mathbb{E}(X_t X_{t-1} + \phi_1 X_{t-1}^2) = \mathbb{E}(Z_t X_{t-1} + \theta_1 Z_{t-1} X_{t-1})$. En utilisant le résultat de la question précédente, on en déduit $\gamma(1) + \phi_1 \gamma(0) = \sigma^2 \theta_1$. On peut donc déterminer $\gamma(0)$ et $\gamma(1)$ en résolvant un système linéaire de deux équations à deux inconnues. On retrouve ainsi $\gamma(0) = \sigma^2 \frac{1 + \theta_1^2 2\phi_1 \theta_1}{1 \phi_1^2}$ et $\gamma(1) = \sigma^2(\theta_1 \phi_1) \frac{1 \theta_1 \phi_1}{1 \phi_1^2}$. En utilisant la réponse à la question 2, on en déduit $\gamma(h) = \sigma^2(-\phi_1)^{h-1}(\theta_1 \phi_1) \frac{1 \theta_1 \phi_1}{1 \phi_1^2}$ $\forall h \geq 1$.

Exercice 21

Dans cet exercice, on ne considère que des processus réels. Dans le cas du processus MA(1), on calcule aisément la fonction d'autocovariance : $\gamma(0) = (1 + |\theta|^2)\sigma^2$, $\gamma(1) = \theta\sigma^2$, et $\gamma(h) = 0 \ \forall h > 1$.

1. Posons $\hat{X}_3 = \alpha X_2 + \beta X_1$. On veut minimiser $\mathbb{E}((\hat{X}_3 - X_3)^2)$. On sait que la solution vérifie $\hat{X}_3 - X_3 \perp X_2$ et $\hat{X}_3 - X_3 \perp X_1$, ce qui est équivalent au système linéaire de deux équations à deux inconnues :

$$\begin{cases} \gamma(0)\alpha + \gamma(1)\beta &= \gamma(1) \\ \gamma(1)\alpha + \gamma(0)\beta &= 0 \end{cases}$$

dont les solutions sont $\alpha = \frac{\gamma(1)(\gamma(0))}{\gamma(0)^2 - \gamma(1)^2}$ et $\beta = \frac{-\gamma(1)^2}{\gamma(0)^2 - \gamma(1)^2}$. En substituant l'expression de γ , on en déduit $\alpha = \frac{\theta + \theta^3}{1 + \theta^2 + \theta^4}$ et $\beta = -\frac{\theta^2}{1 + \theta^2 + \theta^4}$.

- 2. Posons $\hat{X}_3 = \alpha X_4 + \beta X_5$. On veut minimiser $\mathbb{E}((\hat{X}_3 X_3)^2)$. On sait que la solution vérifie $\hat{X}_3 X_3 \perp X_4$ et $\hat{X}_3 X_3 \perp X_5$, ce qui conduit au même système d'équations que dans la question 1. On retrouve donc la même solution (α, β) que précédemment.
- 3. Comme $\gamma(h) = 0 \ \forall |h| \geq 2$, les espaces $\text{vect}(X_1, X_2)$ et $\text{vect}(X_4, X_5)$ sont orthogonaux. Donc $\text{vect}(X_1, X_2, X_4, X_5) = \text{vect}(X_1, X_2) \overset{\perp}{\oplus} \text{vect}(X_4, X_5)$. Par conséquent, $\hat{X}_3 = \text{proj}(X_3|\text{vect}(X_1, X_2, X_4, X_5)) = \text{proj}(X_3|\text{vect}(X_1, X_2)) + \text{proj}(X_3|\text{vect}(X_4, X_5))$. On trouve donc la somme des deux prédicteurs précédents.

Exercice 22

- 1. Le processus Z_t est obtenu en filtrant le bruit blanc η_t par un filtre AR1 causal. Pour que Z_t soit un processus stationnaire au sens faible, il faut que le filtre soit stable, c'est à dire $|\phi| < 1$. De plus, $\sigma_0^2 = \text{var}(Z_0) = \frac{\sigma^2}{1-|\phi|^2}$ (variance d'un processus AR(1), calculée dans l'exercice 18).
- 2. Z_t est alors un processus AR(1), et $Y_t \phi Y_{t-1} = \eta_{t-1} + \varepsilon_t \phi \varepsilon_{t-1}$. Le membre de droite de cette égalité est un processus MA(1), comme somme d'un processus MA(0) et d'un processus MA(1) (d'après l'exercice 14). Donc Y_t est un processus ARMA(1,1).

- 3. a) On a $\hat{Z}_{t+1|t} = \operatorname{proj}(Z_{t+1}|H_{t,t}^Y) = \phi \operatorname{proj}(Z_t|H_{t,t}^Y) + \operatorname{proj}(\eta_t|H_{t,t}^Y)$. Or $\operatorname{proj}(Z_t|H_{t,t}^Y) = \hat{Z}_{t|t}$ et $\operatorname{proj}(\eta_t|H_{t,t}^Y) = 0$ car $H_{t,t}^Y \subset H_{t,t}^Z \stackrel{\perp}{\oplus} H_{t,t}^\varepsilon$ et η_t est orthogonal à $H_{t,t}^Z$ et $H_{t,t}^\varepsilon$. Donc $\hat{Z}_{t+1|t} = \phi \hat{Z}_{t|t}$.
 - b) De plus, $P_{t+1,t} = \mathbb{E}(|Z_{t+1} \hat{Z}_{t+1|t}|^2) = \mathbb{E}(|\phi(Z_t \hat{Z}_{t|t}) + \eta_t|^2) = |\phi|^2 P_{t|t} + \sigma^2 + 2Re(\phi \operatorname{cov}(\eta_t, Z_t \hat{Z}_{t|t})).$ Or $Z_t \hat{Z}_{t|t} \in H_{t,t}^Z \stackrel{\perp}{\oplus} H_{t,t}^{\varepsilon}$ et η_t est orthogonal à $H_{t,t}^Z$ et $H_{t,t}^{\varepsilon}$, donc $\operatorname{cov}(\eta_t, Z_t \hat{Z}_{t|t})) = 0$. On en déduit $P_{t+1,t} = |\phi|^2 P_{t|t} + \sigma^2$.
- 4. On a $I_{t+1} = Y_{t+1} \text{proj}(Y_{t+1}|H_{t,t}^Y) = Y_{t+1} \text{proj}(Z_{t+1}|H_{t,t}^Y) \text{proj}(\varepsilon_{t+1}|H_{t,t}^Y)$. Or $\text{proj}(Z_{t+1}|H_{t,t}^Y) = \hat{Z}_{t+1|t}$, et $\text{proj}(\varepsilon_{t+1}|H_{t,t}^Y) = 0$, puisque ε_t est un bruit blanc. Donc $I_{t+1} = Y_{t+1} \hat{Z}_{t+1|t}$.
- 5. On a $\mathbb{E}(|I_{t+1}|^2) = \mathbb{E}(|(Z_{t+1} \hat{Z}_{t+1|t}) + \varepsilon_{t+1}|^2) = P_{t+1|t} + \rho^2 + 2Re(\text{cov}(\varepsilon_{t+1}, Z_{t+1} \hat{Z}_{t+1|t}))$. Or $Z_{t+1} \hat{Z}_{t+1|t} \in H^Z_{t+1,t+1} + H^{\varepsilon}_{t,t}$ et $\varepsilon_{t+1} \perp (H^Z_{t+1,t+1} \stackrel{\perp}{\oplus} H^{\varepsilon})_{t,t}$, donc $\text{cov}(\varepsilon_{t+1}, Z_{t+1} \hat{Z}_{t+1|t}) = 0$. On en déduit que $\mathbb{E}(|I_{t+1}|^2) = P_{t+1|t} + \rho^2$.
- 6. a) Comme (I_t) est le processus des innovations de (Y_t) , on a $H_{t1+,t+1}^Y = H_{t,t}^Y \stackrel{\perp}{\oplus} \text{vect}(I_{t+1})$. Par conséquent, $\hat{Z}_{t+1|t+1} = \text{proj}(Z_{t+1}|H_{t+1,t+1}^Y) = \text{proj}(Z_{t+1}|H_{t,t}^Y) + \text{proj}(Z_{t+1}|\text{vect}(I_{t+1}))$. Or $\text{proj}(Z_{t+1}|H_{t,t}^Y) = \hat{Z}_{t+1|t}$ et $\text{proj}(Z_{t+1}|\text{vect}(I_{t+1}))$ s'exprime sous la forme $k_{t+1}I_{t+1}$, où $k_{t+1} \in \mathbb{C}$. Donc $\hat{Z}_{t+1|t+1} = \hat{Z}_{t+1|t} + k_{t+1}I_{t+1}$.
 - b) En multipliant cette égalité par \overline{I}_{t+1} et en prenant l'espérance mathématique, on obtient $\mathbb{E}(\hat{Z}_{t+1|t+1}\overline{I}_{t+1}) = \mathbb{E}(\hat{Z}_{t+1|t}\overline{I}_{t+1}) + k_{t+1}\mathbb{E}(|I_{t+1}|^2)$. Or $\mathbb{E}(\hat{Z}_{t+1|t}\overline{I}_{t+1}) = 0$ car $\hat{Z}_{t+1|t} \in H^Y_{t,t} \perp \text{vect}(I_{t+1})$, et $\mathbb{E}(\hat{Z}_{t+1|t+1}\overline{I}_{t+1}) = \mathbb{E}(Z_{t+1}\overline{I}_{t+1})$, car $Z_{t+1} \hat{Z}_{t+1|t+1} \perp H^Y_{t+1,t+1} \supset \text{vect}(I_{t+1})$. On en déduit $k_{t+1} = \frac{\mathbb{E}(Z_{t+1}\overline{I}_{t+1})}{\mathbb{E}(|I_{t+1}|^2)}$.
- 7. a) On a $\mathbb{E}(Z_{t+1}\overline{I}_{t+1}) = \text{cov}(I_{t+1}, Z_{t+1}) = \text{cov}(\overline{I}_{t+1}, Z_{t+1} \hat{Z}_{t+1,t}) \text{ car } \hat{Z}_{t+1,t} \in H_{t,t}^Y \perp I_{t+1}$. Donc $\mathbb{E}(Z_{t+1}\overline{I}_{t+1}) = \text{cov}(Y_{t+1} \hat{Z}_{t+1,t}, Z_{t+1} \hat{Z}_{t+1,t}) = \text{cov}(Z_{t+1} \hat{Z}_{t+1,t} + \varepsilon_{t+1}, Z_{t+1} \hat{Z}_{t+1,t}) = P_{t+1,t} \text{ car } Z_{t+1} \hat{Z}_{t+1,t} \in H_{t+1,t+1}^Z \otimes H_{t,t}^Y \text{ et } \varepsilon_{t+1} \text{ est orthogonal à } H_{t+1,t+1}^Z \text{ et } H_{t,t}^Y.$
 - b) D'après la question 6), on a $k_{t+1} = \frac{\mathbb{E}(Z_{t+1}\overline{I}_{t+1})}{\mathbb{E}(|I_{t+1}|^2)}$. En utilisant les questions 5) et 7) a), on en déduit que $k_{t+1} = \frac{P_{t+1,t}}{P_{t+1,t}+\rho^2}$.
- 8. a) On a $P_{t+1,t+1} = \mathbb{E}(|Z_{t+1} \hat{Z}_{t+1,t+1}|^2) = \mathbb{E}(|(Z_{t+1} \hat{Z}_{t+1,t}) k_{t+1}I_{t+1}|^2) = P_{t+1,t} + \mathbb{E}(|k_{t+1}I_{t+1}|^2) 2Re(\text{cov}(Z_{t+1} \hat{Z}_{t+1,t}, k_{t+1}I_{t+1}))$. Or $\text{cov}(Z_{t+1}, k_{t+1}I_{t+1}) = k_{t+1}P_{t+1,t}$ d'après la question 7), et $\text{cov}(\hat{Z}_{t+1,t}, k_{t+1}I_{t+1}) = 0$ car $\hat{Z}_{t+1|t} \in H_{t,t}^Y \perp \text{vect}(I_{t+1})$. On obtient donc $P_{t+1,t+1} = P_{t+1,t} + \mathbb{E}(|k_{t+1}I_{t+1}|^2) 2k_{t+1}P_{t+1,t}$. Or d'après les questions 6)b) et 7)a), $k_{t+1}P_{t+1,t} = k_{t+1}\mathbb{E}(Z_{t+1}\overline{I}_{t+1}) = \mathbb{E}(|k_{t+1}I_{t+1}|^2)$. On obtient donc finalement $P_{t+1,t+1} = P_{t+1,t} \mathbb{E}(|k_{t+1}I_{t+1}|^2)$.
 - b) Rappelons que $k_{t+1} = \frac{\mathbb{E}(Z_{t+1}\overline{I}_{t+1})}{\mathbb{E}(|I_{t+1}|^2)} = \frac{P_{t+1,t}}{\mathbb{E}(|I_{t+1}|^2)}$ d'après les questions 6)b) et 7)a). Donc $\mathbb{E}(|I_{t+1}|^2) = \frac{P_{t+1,t}}{k_{t+1}}$. En substituant cette expression dans l'égalité $P_{t+1|t+1} = P_{t+1|t} \mathbb{E}(|k_{t+1}I_{t+1}|^2)$, on obtient $P_{t+1|t+1} = (1 k_{t+1})P_{t+1|t}$.
- 9. Conditions initiales : $\hat{Z}_{0|0} = 0$, $P_{0,0} = \sigma_0^2$. Procédé itératif :
 - 1) $\hat{Z}_{t+1|t} = \phi \hat{Z}_{t|t}$
 - 2) $P_{t+1,t} = |\phi|^2 P_{t|t} + \sigma^2$
 - 3) $I_{t+1} = Y_{t+1} \hat{Z}_{t+1,t}$
 - 4) $k_{t+1} = \frac{P_{t+1,t}}{P_{t+1,t} + \rho^2}$
 - 5) $\hat{Z}_{t+1|t+1} = \hat{Z}_{t+1|t} + k_{t+1}I_{t+1}$
 - 6) $P_{t+1|t+1} = (1 k_{t+1})P_{t+1|t}$
- 10. On a $0 \le P_{t+1|t+1} = \rho^2 \frac{P_{t+1|t}}{P_{t+1,t}+\rho^2} = \rho^2 \frac{|\phi|^2 P_{t|t}+\sigma^2}{|\phi|^2 P_{t|t}+\sigma^2+\rho^2} \le \rho^2$, donc la suite $P_{t,t}$ est bornée. Elle possède donc une sous-suite convergente. Soit P_{∞} la limite de cette sous-suite. Par continuité et passage à

la limite, on a $P_{\infty}=\rho^2\frac{|\phi|^2P_{\infty}+\sigma^2}{|\phi|^2P_{\infty}+\sigma^2+\rho^2}$. P_{∞} est donc une racine positive du polynôme $|\phi|^2P_{\infty}^2+(\sigma^2+\rho^2(1-|\phi|^2))P_{\infty}-\rho^2\sigma^2=0$. On en déduit

$$\begin{array}{lcl} P_{\infty} & = & \frac{-(\sigma^2 + \rho^2(1-|\phi|^2)) + \sqrt{(\sigma^2 + \rho^2(1-|\phi|^2))^2 + 4|\phi|^2\rho^2\sigma^2}}{2|\phi|^2} \\ & = & \frac{2|\phi|^2}{(\sigma^2 + \rho^2(1-|\phi|^2)) + \sqrt{(\sigma^2 + \rho^2(1-|\phi|^2))^2 + 4|\phi|^2\rho^2\sigma^2}} \end{array}$$

Comme la suite $P_{t,t}$ vit dans un compact et admet une unique valeur d'adhérence, c'est toute cette suite qui converge vers P_{∞} .

Contexte académique } sans modifications

Par le téléchargement ou la consultation de ce document, l'utilisateur accepte la licence d'utilisation qui y est attachée, telle que détaillée dans les dispositions suivantes, et s'engage à la respecter intégralement.

La licence confère à l'utilisateur un droit d'usage sur le document consulté ou téléchargé, totalement ou en partie, dans les conditions définies ci-après, et à l'exclusion de toute utilisation commerciale.

Le droit d'usage défini par la licence autorise un usage dans un cadre académique, par un utilisateur donnant des cours dans un établissement d'enseignement secondaire ou supérieur et à l'exclusion expresse des formations commerciales et notamment de formation continue. Ce droit comprend :

- le droit de reproduire tout ou partie du document sur support informatique ou papier,
- le droit de diffuser tout ou partie du document à destination des élèves ou étudiants.

Aucune modification du document dans son contenu, sa forme ou sa présentation n'est autorisée. Les mentions relatives à la source du document et/ou à son auteur doivent être conservées dans leur intégralité. Le droit d'usage défini par la licence est personnel et non exclusif. Tout autre usage que ceux prévus par la licence est soumis à autorisation préalable et expresse de l'auteur : sitepedago@telecom-paristech.fr

