

MeetingQA: Extractive Question-Answering on Meeting Transcripts

Archiki Prasad¹, Trung Bui², Seunghyun Yoon², Hanieh Deilamsalehy², Franck Dernoncourt², Mohit Bansal¹ ¹University of North Carolina at Chapel Hill, ²Adobe Research

Motivation & Contributions

- Abundance of meeting transcripts typically domain-specific & information-rich long documents for building NLP systems.
- Prior works focus on summarization and extracting action items, underutilizing significant QA components of meetings.
- We introduce *MeetingQA*, an extractive QA dataset comprising questions asked by participants during a meeting and corresponding answer spans from relevant discussions.
- Questions asked by participants in MeetingQA are longer, open-ended, and discussion-seeking including interesting scenarios such as rhetorical questions, multi-span answers and/or answers contributed by multiple speakers.
- Despite high human performance (F1=84.6), the best QA models yield F1 of 57.3 making MeetingQA a challenging dataset with substantial room for improvement.

MeetingQA: Details and Analysis

Data Collection and Annotation

- Annotate public meetings from AMI (Augmented Multi-party Interaction) corpus with ~100 hours manually transcribed meetings.
- Question Selection: based on punctuation and number of words.
- Answer Annotation: Recruit annotators to label which sentences from the transcript answer each question along with meta-data.
- High inter-annotator agreement with Krippendorff's α of 0.73, obtaining annotations for 166 meetings at \$61 per meeting.

Dataset Information and Analysis

• Total of 7,735 questions split across train, dev, and test sets.

	Train	Dev	Test
Number of Meetings	64	48	54
Number of Questions w/ No Answer w/ Multi-Span Answers w/ Multi-Speaker Answers	3007 956 787 1016	2252 621 548 737	2476 764 663 840
Avg. Questions per Meeting	46.98	46.92	45.85

- Question Types: Even questions framed in 'yes/no' manner are information-seeking and elicit detailed responses, ~50% of questions are opinion-seeking and ~20% are framed rhetorically.
- Answer Types: 30% of questions are unanswerable, 40% of answers are multi-span (non-consecutive sentences) and 48% involve multiple speakers. Nearly 70% of multi-speaker answers contain some level of disagreement among participants.
- Length Distribution: Average length of a transcript, question, and corresponding answer is 5.9K, 12, and 35 words, respectively.
- Human Performance: F1=84.6 on 250 questions from the test set.

Methods and Experimental Results

Finetuned Performance

Model	Overall F1	No Ans. F1	Answerable F1		
			All	M-Span	M-Speaker
RoBERTa-base Longformer-base	56.5 55.6	41.0 46.1	63.1 59.9	60.8 55.3	64.1 59.4
RoBERTa-base Longformer-base	54.0 53.8	41.1 39.4	59.8 60.3		60.9 62.0
Human Performance	84.6	80.7	86.3	88.1	87.7

- Short-context models: Context (that fits in model's input) retrieved from transcript based on location of the question.
- Single-span models: Predict single-span from first to last relevant sentence.
- Multi-span models: QA as token-classification. **Results:**
- Short-context models slightly outperform longcontext models by 1-2 F1 points.
- Multi-span models have comparable or less performance than single-span models.
- (iii) ≥ 25 F1 points gap with human performance.

Zero-shot Performance

Model	Inter. Data	Overall F1
RoBERTa-base	SQuADv2 + silver	27.9 34.6
Longformer-base	SQuADv2 + silver	15.1 32.5
FLAN-T5 XL FLAN-T5 XL (self ans)	_	33.8 34.0
Human performance	70 <u></u>	84.6

• Silver Data Augmentation: Augment training data with automatically annotated answer spans for interviews from MediaSum dataset.

Results:

- All models exhibit poor zero-shot performance (~50 F1 point gap).
- Augmenting with silver data improves zero-shot performance.
- (iii) Larger instruction-tuned LMs (Flan-T5) yield comparable performance.

Error Analysis

- Models struggle at identifying rhetorical questions, especially in zero-shot.
- Single-span predictions contain a greater fraction of irrelevant sentences.
- Models struggle to identify which speakers answer a question, especially in zero-shot setting.

Contact: archiki@cs.unc.ed