Contents

0.1	Практика 1		
	0.1.1	Завдання1:	2
	0.1.2	Завдання 2:	٩
	0.1.3	Завдання 3:	
	0.1.4	Завдання 4:	Ę
	0.1.5	Завдання 5:	6
	0.1.6	Завдання 6:	7
0.2	Практ	гика 2	Ć
	0.2.1	Завдання1:	Ć
	0.2.2	Завдання 2:	Ć
	0.2.3	Завдання 3:	1(
	0.2.4	Завдання 4:	1(
	0.0 5	٧	1 1

0.1 Практика 1

0.1.1 Завдання1:

Рівняння Вольтера-Лотки (еволюційне рівняння) в динаміці популяцій <хижак-жертва>:

$$\begin{cases} \frac{dy}{dt} = -cy + pxy\\ \frac{dx}{dt} = ax - byx \end{cases} \tag{1}$$

знайти особливі точки $(M(0,0),\ N(\frac{c}{p},\frac{a}{b}))$

Потрібно прирівняти рівняння (1) до нуля і розв'язати: $\begin{cases} -cy + pxy = 0 \\ ax - byx = 0 \end{cases}$

- 1. Припустимо, що x = 0, тоді y = 0
- 2. Припустимо, що $x \neq 0$, тоді з другого рівняння випливає:

$$x(a - by) = 0 \Longrightarrow a - by = 0 \Longrightarrow y = \frac{a}{b}$$

відповідно:

$$-c\frac{a}{b} + px\frac{a}{b} \Longrightarrow x = \frac{c}{p}$$

2

написати рівняння фазових траєкторій

$$\frac{dy}{dx} = \frac{y(-c+px)}{x(a-by)} \cdot \frac{\frac{1}{xy}}{\frac{1}{xy}}$$

$$\frac{dy}{dx} = \frac{\frac{-c+px}{x}}{\frac{a-by}{y}}$$

$$dy \frac{a-by}{y} = dx \frac{-c+px}{x}$$

$$a \ln y - by = -c \ln x + px + C \quad |b = p = 1$$

$$x+y-c\ln x-a\ln y=C$$
: Інтеграл руху (еволюції)

Довести тотожність:

$$x + y - c \ln x - a \ln y = C$$

$$\frac{d}{dt}(x+y-c\ln x - a\ln y) = \frac{d}{dt}C$$

$$ax - yx - cy + xy - \frac{c}{x}(ax - yx) - \frac{a}{y}(-cy + xy) = 0$$

$$ax - xy - cy + xy - ac + cy + ac - ax = 0$$

Знайти $\operatorname{div} \overrightarrow{v}$

$$\operatorname{div} \overrightarrow{v} = \frac{\partial v_1}{\partial x} + \frac{\partial v_2}{\partial y} = a - by - c + px = a - c - by + px$$

Знайти Г

$$\ln \Gamma = (a - c - by + px)t + C$$

$$\Gamma(t) = \Gamma(0)e^{(a-c-by+px)t}$$

0.1.2 Завдання 2:

$$\begin{cases} \dot{y} = x + \mu y \\ \dot{x} = \mu x - y \end{cases}$$

Перейти у сферичні координати

$$\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases}$$

$$\begin{cases} \dot{y} = \dot{r}\sin\varphi + \dot{\varphi}r\cos\varphi \\ \dot{x} = \dot{r}\cos\varphi - \dot{\varphi}r\sin\varphi \end{cases}$$

$$\begin{cases} \dot{r}\sin\varphi + \dot{\varphi}r\cos\varphi = r\cos\varphi + \mu r\sin\varphi \\ \dot{r}\cos\varphi - \dot{\varphi}r\sin\varphi = \mu r\cos\varphi - r\sin\varphi \end{cases}$$

$$\begin{cases} \dot{r} = \frac{r\cos\varphi + \mu r\sin\varphi - \dot{\varphi}r\cos\varphi}{\sin\varphi} = r\operatorname{ctg}\varphi + \mu r - \dot{\varphi}r\operatorname{ctg}\varphi \\ \dot{\varphi} = \frac{\dot{r}\cos\varphi + r\sin\varphi - \mu r\cos\varphi}{r\sin\varphi} = \frac{\dot{r}\operatorname{ctg}\varphi}{r} + 1 - \mu\operatorname{ctg}\varphi \end{cases}$$

$$\dot{\varphi} = \operatorname{ctg}^2 \varphi + \mu \operatorname{ctg} \varphi - \dot{\varphi} \operatorname{ctg}^2 \varphi + 1 - \mu \operatorname{ctg} \varphi$$

$$\dot{\varphi}(1+\operatorname{ctg}^2\varphi)=1+\operatorname{ctg}^2\varphi \implies \dot{\varphi}=1$$

$$\dot{r} = r \operatorname{ctg} \varphi + \mu r - \dot{\varphi} r \operatorname{ctg} \varphi = \left| \dot{\varphi} = 1 \right| = \mu r$$

$$\begin{cases} \dot{r} = \mu r \\ \dot{\varphi} = 1 \end{cases}$$

Знайти фазову траєкторію в сферичних координатих

$$\begin{cases} \frac{dr}{dt} = \mu r \\ \frac{d\varphi}{dt} = 1 \end{cases}$$

$$\frac{dr}{d\varphi} = \mu r$$

$$\frac{dr}{r} = \mu d\varphi$$

$$\ln r = \mu \varphi + C$$

$$r = e^{\mu \varphi + C}$$

Знайти фазову траєкторію в (х, у)

$$\begin{cases} \dot{y} = x + \mu y \\ \dot{x} = \mu x - y \end{cases}$$

$$\frac{dy}{dx} = \frac{x+\mu y}{\mu x - y} = \frac{1+\mu \frac{y}{x}}{\mu - \frac{y}{x}} = f(\frac{y}{x})$$

шукаємо рішення у вигляді:

$$y(x) = xz(x)$$
 $z = \frac{y}{x}$

$$y' = xz' + z = f(\frac{y}{x})$$

$$z' = \frac{f(z)-z}{x}, \quad \int \frac{dz}{\frac{1+\mu z-\mu z+z^2}{x}} = \frac{dx}{x}$$

тоді

$$\frac{dz\mu}{1+z^2} - \frac{zdz}{1+z^2} = \ln x + C$$

$$\mu \arctan z - \frac{1}{2} \ln(1+z^2) = \ln x + C$$

$$\mu \arctan \frac{y}{x} - \frac{1}{2} \ln(1 + (\frac{y}{x})^2) = \ln x + C$$

help

0.1.3 Завдання 3:

Система Лоренца

$$\begin{cases} \dot{x} = -\sigma x + \sigma y \\ \dot{y} = rx - y - xz \\ \dot{z} = -bz + xy \end{cases}$$

Знайти особливі точки $[M(0,0,0),N_{1,2}(\pm \sqrt{b(r-1)},\pm \sqrt{b(r-1)},r-1)]$

$$\begin{cases}
-\sigma x + \sigma y = 0 \\
rx - y - xz = 0 \\
-bz + xy = 0
\end{cases}$$

Нехай $x \neq 0$ тоді

$$\begin{cases} x = y \\ rx - y - xz = 0 \\ z = \frac{x^2}{b} \end{cases}$$

$$rx - x - \frac{x^3}{b} = 0 \mid \cdot \frac{1}{x}$$

$$b(r-1) = x^2 \implies x = y = \pm \sqrt{b(r-1)}, \ z = r-1$$

Знайти $\Gamma(t)$

$$\operatorname{div} \overrightarrow{\overrightarrow{V}} = -\sigma - 1 - b$$

$$\frac{1}{\Gamma} \frac{d\Gamma}{dt} = {
m div} \; \overrightarrow{V} \; ($$
ф-ла Ейлера)

$$\ln \Gamma = (-\sigma - 1 - b)t + C$$

$$\Gamma(t) = \Gamma(0)e^{-(\sigma+1+b)t}$$

0.1.4 Завдання 4:

Осцилятор без затухання $\gamma=0$

$$\ddot{x} + \omega_0^2 x = 0 \implies \begin{cases} \frac{dx}{dt} = y \\ \frac{dy}{dt} = -\omega_0^2 x \end{cases}$$

Знайти Г

$$\operatorname{div} \overrightarrow{\overrightarrow{V}} = 0$$

$$\frac{1}{\Gamma} \frac{d\Gamma}{dt} = 0$$

$$\Gamma = \mathrm{const}$$

0.1.5 Завдання 5:

$$\ddot{x} + 2\gamma \dot{x} + \omega_0^2 x = 0 \implies \begin{cases} \frac{dy}{dt} = -2\gamma y - \omega_0^2 x \\ \frac{dx}{dt} = y \end{cases}$$

Знайти Г

$$\operatorname{div} \overrightarrow{V} = -2\gamma$$

$$\ln \Gamma = -2\gamma t + C$$

$$\Gamma(t) = \Gamma(0)e^{-2\gamma t}$$

Записати в полярних координатах

$$\begin{cases} \frac{dy}{dt} = -2\gamma y - \omega_0^2 x \\ \frac{dx}{dt} = y \end{cases}$$

$$\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases}$$

$$\begin{cases} \dot{r}\sin\varphi + \dot{\varphi}r\cos\varphi = -2\gamma r\sin\varphi - \omega_0^2 r\cos\varphi \\ \dot{r}\cos\varphi - \dot{\varphi}r\sin\varphi = r\sin\varphi \end{cases}$$

$$\begin{cases} -\dot{r} = \dot{\varphi}r \operatorname{ctg} \varphi + 2\gamma r + \omega_0^2 r \operatorname{ctg} \varphi \\ \dot{\varphi} = \frac{\dot{r} \operatorname{ctg} \varphi}{r} - 1 \end{cases}$$

$$-\dot{\varphi} = \dot{\varphi}\operatorname{ctg}^2\varphi + 2\gamma\operatorname{ctg}\varphi + \omega_0^2\operatorname{ctg}^2\varphi + 1$$

$$-\dot{\varphi}(1+\operatorname{ctg}^2\varphi) = 2\gamma\operatorname{ctg}\varphi + \omega_0^2\operatorname{ctg}^2\varphi + 1\mid 1+\operatorname{ctg}^2\varphi = \frac{1}{\sin^2\varphi}$$

 $\dot{\varphi}=-2\gamma\cos\varphi\sin\varphi-\omega_0^2\cos^2\varphi-\sin^2\varphi=-\gamma\sin2\varphi-\omega_0^2\cos^2\varphi-\sin^2\varphi\dots$ несіть ружо, я хочу закосплеїть Курта Кобейна

0.1.6 Завдання 6:

$$\begin{cases} \dot{x} = -y + x(x^2 + y^2) \\ \dot{y} = x + y(x^2 + y^2) \end{cases}$$

Перейти до сферичних координат:

$$x = r \cos \varphi$$

$$y = r \sin \varphi$$

$$\begin{cases} \dot{r}\cos\varphi - r\dot{\varphi}\sin\varphi = -r\sin\varphi + r^3\cos\varphi \\ \dot{r}\sin\varphi + r\dot{\varphi}\cos\varphi = r\cos\varphi + r^3\sin\varphi \end{cases}$$

$$\begin{cases} \dot{r} = r\dot{\varphi} \operatorname{tg} \varphi - r \operatorname{tg} \varphi + r^{3} \\ \dot{\varphi} = -\dot{r} \frac{\operatorname{tg} \varphi}{r} + 1 + r^{2} \operatorname{tg} \varphi \end{cases}$$

$$\dot{\varphi} = -(r\dot{\varphi}\operatorname{tg}\varphi - r\operatorname{tg}\varphi + r^3)\frac{\operatorname{tg}\varphi}{r} + 1 + r^2\operatorname{tg}\varphi = -\dot{\varphi}\operatorname{tg}^2\varphi + \operatorname{tg}^2\varphi - r^2\operatorname{tg}\varphi + 1 + r^2\operatorname{tg}\varphi \Longrightarrow \dot{\varphi}(1 + \operatorname{tg}^2\varphi) = 1 + \operatorname{tg}^2\varphi$$

$$\dot{\varphi} = 1$$

$$\begin{cases} \dot{r} = r^3 \\ \dot{\varphi} = 1 \end{cases}$$

Знайти розв'язок системи:

$$\int \frac{dr}{r^3} = \int dt$$

$$-\frac{1}{2}r^{-2} = t + C \Longrightarrow \left| r(t=0) = r_0 \right| C = -\frac{1}{2r_0^2}$$

$$-\frac{1}{2}r^{-2} = t - \frac{1}{2r_0^2} = \frac{t^2r_0^2 - 1}{2r_0^2}$$

$$r^2 = \frac{r_0^2}{1 - 2tr_0^2}$$

$$r = \frac{r_0}{\sqrt{1 - 2tr_0^2}}$$

0.2 Практика 2

0.2.1 Завдання1:

$$\begin{cases} \dot{x}_1 = -x_1 \\ \dot{x}_2 = -2x_2 \end{cases}$$

Початкові умови $\overrightarrow{x_0} = \begin{bmatrix} x_{01} \\ x_{02} \end{bmatrix}$

Знайти оператор еволюції

$$\frac{dx_1}{dt} = -x_1 \qquad \frac{dx_2}{dt} = -2x_2$$

$$\int \frac{dx_1}{x_1} = -\int dt \qquad \int \frac{dx_2}{x_2} = -2\int dt$$

$$\ln x_1 = -t + C_1 \qquad \ln x_2 = -2t + C_2$$

$$x_1 = e^{-t}C_1 \mid C_1 = x_{01} \qquad x_2 = e^{-2t}C_2 \mid C_2 = x_{02}$$

$$x_1 = e^{-t}x_{01} \qquad x_2 = e^{-2t}x_{02}$$

$$\overrightarrow{x}(t) = F^t \overrightarrow{x_0}$$

$$F^t = \begin{bmatrix} e^{-t} & 0 \\ 0 & e^{-2t} \end{bmatrix}$$

0.2.2 Завдання 2:

$$\frac{dx}{dt} = x^2$$
$$x(t=0) = x_0$$

Знайти оператор еволюції

$$\int \frac{dx}{x^2} = \int dt$$

$$-\frac{1}{x} = t + C \implies -\frac{1}{x_0} = t = 0 + C \implies C = -\frac{1}{x_0}$$

$$-x = \frac{1}{t - \frac{1}{x_0}} \mid \cdot -\frac{x_0}{x_0}$$

$$x = \frac{x_0}{1 - x_0 t}$$

$$x(t) = F^t(x_0) = \frac{x_0}{1 - x_0 t}$$

$$F^t = \frac{x}{1 - xt}$$

0.2.3 Завдання 3:

$$\frac{dx}{dt} = x - x^2$$

Знайти оператор еволюції

$$\int \frac{dx}{x - x^2} = \int dt$$

$$\int \frac{dx}{x(1-x)} = \int dt = \left| \frac{A}{x} + \frac{B}{1-x} = \frac{A-Ax+Bx}{x(1-x)} = \frac{1}{x(1-x)} \Longrightarrow A + x(B-A) = 1 \Longrightarrow \begin{cases} A = 1 \\ B - A = 0 \end{cases} \Longrightarrow \begin{cases} A = 1 \\ B = 1 \end{cases} = \int \frac{dx}{x} + \int \frac{dx}{1-x} = \int dt$$

$$\int \frac{dx}{x} - \int \frac{d(1-x)}{1-x} = \int dt$$

$$\ln|x| - \ln|1 - x| = t + C$$

$$\ln\left|\frac{x}{1-x}\right| = t + C \implies C = \ln\frac{x_0}{1-x_0}$$

$$\frac{x}{1-x} = e^{t+C}$$

$$x = \frac{e^{t+C}}{1+e^{t+C}} \mid C = \ln \frac{x_0}{1-x_0}$$

$$x(0) = \frac{e^t \frac{x_0}{1 - x_0}}{1 + e^t \frac{x_0}{1 - x_0}} \mid \cdot \frac{1 - x_0}{1 - x_0}$$

$$x(0) = \frac{e^t x_0}{1 - x_0 + e^t x_0}$$

$$F^t = \frac{e^t x}{1 + x(e^t - 1)}$$

У Кравцова чомусь ров'язок вийшов $-\ln \left| \frac{x}{1-x} \right| = t + C$, тому там оператор $F^t = \frac{xe^{-t}}{1+x(e^{-t}-1)}$

0.2.4 Завдання 4:

$$\begin{cases} \dot{x} = x + y - x(x^2 + y^2) \\ \dot{y} = -x + y - y(x^2 + y^2) \end{cases}$$

Перейти в полярні координати:

$$x = r\cos\varphi$$

$$y = r\sin\varphi$$

$$\begin{cases} \dot{r}\cos\varphi - r\dot{\varphi}\sin\varphi = r\cos\varphi + r\sin\varphi - r^3\cos\varphi \\ \dot{r}\sin\varphi + r\dot{\varphi}\cos\varphi = -r\cos\varphi + r\sin\varphi - r^3\sin\varphi \end{cases}$$

$$\begin{cases} \dot{r} = r\dot{\varphi}\operatorname{tg}\varphi + r + r\operatorname{tg}\varphi - r^3 \\ \dot{\varphi} = -\dot{r}\frac{\operatorname{tg}\varphi}{r} - 1 + \operatorname{tg}\varphi - r^2\operatorname{tg}\varphi \\ \\ \dot{\varphi} = -(r\dot{\varphi}\operatorname{tg}\varphi + r + r\operatorname{tg}\varphi - r^3)\frac{\operatorname{tg}\varphi}{r} - 1 + \operatorname{tg}\varphi - r^2\operatorname{tg}\varphi = \\ \\ = -\dot{\varphi}\operatorname{tg}^2\varphi - \operatorname{tg}\varphi - \operatorname{tg}^2\varphi + r^2\operatorname{tg}\varphi - 1 + \operatorname{tg}\varphi - r^2\operatorname{tg}\varphi \Longrightarrow \dot{\varphi} + \dot{\varphi}\operatorname{tg}^2\varphi = -\operatorname{tg}^2\varphi - 1 \\ \dot{\varphi} = -1 \\ \dot{r} = -r\operatorname{tg}\varphi + r + r\operatorname{tg}\varphi - r^3 = r(1 - r^2) \\ \begin{cases} \dot{r} = r(1 - r^2) \\ \dot{\varphi} = -1 \end{cases} \end{cases}$$

Знайти точний розв'язок

$$\frac{dr}{r(1-r^2)} = dt \mid \cdot \frac{r}{r}$$

$$\frac{1}{2} \frac{dr^2}{r^2(1-r^2)} = \left| r^2 = R \right| = \frac{1}{2} \frac{dR}{R(1-R)} = dt$$

$$\ln \left| \frac{R}{1-R} \right| = 2t + C$$
 (див. (0.2.3))

 $R(t=0)=R_0\Longrightarrow C=rac{R_0}{1-R_0}\Longrightarrow \beta=rac{1}{C}=rac{1}{R_0}-1$ чому? бо я так хочу (але всеодно потрібно загуглить uomy?)

$$\frac{R}{1-R} = 2t + C$$

 $R=rac{e^{2t+C}}{1+e^{2t+C}}=rac{1}{1+e^{-(2t+C)}}=rac{1}{1+e^{-(2t+rac{R_0}{1-R_0})}}=rac{1}{1+e^{-(2t+rac{R_0}{1-R_0})}}$ я звісно не експерт, але порівняно із розв'язком Кравцова у мене щось пішло не по плану ; розв'язок Кравцова: $rac{1}{1+e^{-teta}}$

0.2.5 Завдання 5:

$$\begin{cases} \dot{x}_1 = -x_2 + x_1(x_1^2 + x_2^2) \\ \dot{x}_2 = x_1 + x_2(x_1^2 + x_2^2) \end{cases}$$

Знайти точний розв'язок:

$$r = \frac{r_0}{\sqrt{1 - 2tr_0^2}}$$
 (див. $(0.1.6)$)