# Composition of Semantic Web Service on Cloud : A QoS View

#### Ratnesh Kushwaha

(M.E.) Computer Engg. SGSITS Indore

Guided By Prof. L. Purohit (I.T. Department)

June 26, 2013

#### Table of contents

- Problem Domain
- 2 Introduction
- 3 Problem with Simple Web Service
- Proposed Approach
- System Architecture
- 6 Results
- Screenshots
- 8 Conclusions
- ¶ Future Work
- References

#### Problem Domain

- Different service provider provide different service through cloud.
- Selection of service are done on basis of cost cost.
- Ignore the other QoS of services.
- No proper definition and calculation QoS of cloud is available.

#### Introduction

- Purpose of research
  - Virtualization support to cloud service.
  - Define and Calculate QoS of Cloud Service.
  - Customized selection and Composition of Cloud Service.
- Searching service on cloud using Cloud Ontology Description.
- Details of service using semantic description for full potential semantic web service.

#### Cloud Definition

#### Cloud computing is

- ubiquitous
- convenient
- on-demand network

a model for enabling access to a shared pool of configurable computing resources

#### Three Service Model

- IaaS(Infrastructure as a Service)- basic computing and storage resources Ex. Amazon EC2, vCloud
- SaaS(Software as a Service)- cloud applications Ex. Office 365, Gmail
- PaaS(Platform as a Service)- cloud application infrastructure Ex.
   Salesforce.com, Windows Azure

| Available        | Standalone<br>Servers | IaaS | PaaS | SaaS |
|------------------|-----------------------|------|------|------|
| Applications     | No                    | No   | No   | Yes  |
| Runtimes         | No                    | No   | Yes  | Yes  |
| Database         | No                    | No   | Yes  | Yes  |
| Operating System | No                    | No   | Yes  | Yes  |
| Virtualization   | No                    | Yes  | Yes  | Yes  |
| Server           | No                    | Yes  | Yes  | Yes  |
| Storage          | No                    | Yes  | Yes  | Yes  |
| Networking       | No                    | Yes  | Yes  | Yes  |

Figure: Comparison

6 / 27

## Life Cycle of Cloud Service

| Service Requirement | Functinal Requirement<br>Technical Requirement<br>Budgetary Requirement |
|---------------------|-------------------------------------------------------------------------|
| Service Discovery   | Cloud Service matches with requirement                                  |
| Service Negotiation | Messages exchanged to establish SLA                                     |
| Service Composition | Combination of set of services (single virtualized service)             |
| Service Consumption | Delivery of service                                                     |

Figure: Cloud Life Cycle

7 / 27

## Problem with Simple Web Service

- It specifies appearance, not meaning.
- It is fine if interaction is with human, but if you want your agents to be able to process the information, they need to be able understand what is on a web page.
- UDDI do not provide complete description.

## Semantic Web Composition



Figure: Semantic Web Composition

- Ontology- A set of statements (and usually rules for reasoning)about the world
- E.g.: Publications (e.g., books, magazines, articles) and their properties (e.g., titles, authors, reviews, reprintings)

## Approach Details

- Oevelop a cloud.
- Creation of semantic web service.
- Oeployed it to virtual servers.
- Searching and Composition of service.
- Oalculate cloud QoS and comparing results.

## System Architecture



Figure: System Architecture

## QoS Definition and Comparison

In this method, three level of QoS of cloud services are calculated they are

- On cloud software components on which cloud is developed.
- Infrastructure of instance on which service is deployed.
- Service level response time.

## Cloud Level QoS (Level1)

```
[root@cloud ~]# euca-describe-groups
GROUP
        742113722717
                        default default group
PERMISSION
                742113722717
                                default ALLOWS tcp
                                                                 22
                                                         22
                                                                         FROM
GROUP
        742113722717
                        MySecurityGroup Ping,http,ssh
PERMISSION
                742113722717
                                MySecurityGroup ALLOWS
                                                                 8080
                                                         tcp
                                                                         8080
                                MySecurityGroup ALLOWS
PERMISSION
                742113722717
                                                         icmp
                                                                 -1
                                                                         -1
PERMISSION
                                MySecurityGroup ALLOWS
               742113722717
                                                         tcp
                                                                 22
                                                                         22
[root@cloud ~]#
```

Figure: Security Groups

## Instance QoS(Level 2)

The infrastructure used by instances describe its QoS which includes the CPU, Disk space and number of CPU.

Table: Service with their Instance

| S.No. | Instance  | PublicIP     | RAM  | DiskSpace | CPU |
|-------|-----------|--------------|------|-----------|-----|
| 1     | Instance1 | 10.1.175.110 | 512  | 5GB       | 1   |
| 2     | Instance2 | 10.1.175.111 | 512  | 5GB       | 1   |
| 3     | Instance3 | 10.1.175.112 | 1024 | 10GB      | 2   |

## Service Response Time (Level3)

Response Time = Time of receiving Response - Time of making the request

Table: Service with their Instance

| ServiceName | InstanceUse                                   |
|-------------|-----------------------------------------------|
| HotelA      | Instance1                                     |
| HotelB      | Instance2                                     |
| TrainA      | Instance1                                     |
| TrainB      | Instance2                                     |
| BusA        | Instance1                                     |
| BusB        | Instance2                                     |
| FlightA     | Instance1                                     |
| FLightB     | Instance2                                     |
|             | HotelA HotelB TrainA TrainB BusA BusB FlightA |

#### Cloud



Figure: CloudHomePage

## CloudInstances and Images



Figure: Eucalyptus Commands

#### Instances Comparison



Figure: Eucalyptus Commands

## HomePage



Figure: HomePage

#### SearchResult



Figure: SearchResult

## ResponseTimeGraph1



Figure: Graph1

## ResponseTimeGraph2



Figure: Graph2

#### Conclusion and Limitation

- The experimental results show that ontological description is best for searching cloud services.
- To describe QoS we need three level of comparison.
   Limitations
- Limitation of ontology (Updating Problem).
- Limitation OWL API.

#### **Future Work**

The present work uses ontologies to describe web service. The agents uses this description for composition of web service within a cloud using cloud instance. The work can be enhanced by composing service on different clouds. These clouds should be developed using different technologies for better comparison and results.

#### References

- Introduction to WSDL,w3schools, Available at:http://www.w3schools.com/wsdl/wsdl\_intro.asp.
- Cloud Computing Nariman (nmirzaei@indiana.edu) Fall 2008
- Apache Axis Website http://axis.apache.org/axis2/java/core/
- Apache JUDDI Website http://ws.apache.org/juddi/
- Protege Website http://protege.stanford.edu/
- Eucalyptus Open Source, Eucalyptus, http: //www.eucalyptus.com/eucalyptus-cloud
- "SOAP Introduction,w3schools,Available at http://www.w3schools.com/soap/soap\_intro.asp.

#### References

- Wang Qing-Ming, Tang Yong, Zhang Zan-Bo, Research in Enterprise Applications of Dynamic Web Service Composition Methods And Models, Preceding of Second International Symposium on Electronic Commerce and Security, IEEE 2009, pp 146-150.
- Kwang Mong Sim. Agent based cloud computing. IEEE TRANSACTIONS ON SERVICES COMPUTING, 2010.
- Sandeep Kumar and Nikos E Mastorakis. Novel models for multi-agent negotiation based semantic webservice composition. WSEAS TRANSACTIONS on COMPUTERS,, 2010.
- Peter Mell, Timothy Grance, NIST Definition of CLoud, NIST SpecialPublication 800-145 2011.

## **Thank You**

Presentation Prepared Using LATEX