Algorithm Outline

Omar Elsabrout

May 15, 2018

This document is a scratch book to formalize algorithms and preparing arguments for the internship report. It is meant to keep and update the insights and findings during the research process.

1 Preliminaries

 $X \subset \mathbb{R}^d$ denotes the instance space.

 $Y = \{-1, +1\}$ denotes the label space.

 $D_S(x,y)$ is the source distribution which is labeled.

 X_S is the set of instances in D_S .

 $D_T(x)$ is the target distribution which is not labeled.

 X_T is the set of instances in D_T .

 h_D^* represents the hypothesis proposed by the DALC algorithm with the least possible validation risk.

 $h_s^*(x) = \{-1, +1\}$ denotes the domain separator hypothesis to classify the points as X_S or X_T which is a linear classifier with +1 for source and -1 for target distribution. Y_T target labels.

2 Algorithm

```
Result: Y_T initialization;

Compute h_D^* on D_S(x,y) and D_T(x);

Compute h_s^* on X_S and X_T;

while size(Y_T) != size(X_T) do

instructions;

if \exists x_T where h_s^*(x_T) = +1 then

\begin{vmatrix} y_T &= h_D^*(x_T) \\ y_T &\in Y_T \end{vmatrix}

else

\begin{vmatrix} y_T &= h_D^*(x_T) \\ y_T &= h_D^*(x_T) \end{vmatrix}

end

Update h_s^*(x) = minH_S with the lowest classification errors;

Update h_D^* on D_S(x,y) and the new D_T(x);

end
```

Algorithm 1: Enforcing active learning on the DALC Algorithm