

EPICLIN 9, Montpellier, mai 2015

Analyse longitudinale de la qualité de vie en cancérologie par modèles à équations structurelles et à effets aléatoires

M. Tami¹, A. Barbieri¹², X. Bry¹, D. Azria², S. Gourgou², C. Mollevi², C. Lavergne¹

¹Institut de Mathématiques et de Modélisation de Montpellier, Université de Montpellier ²Institut régional du Cancer de Montpellier - Val d'Aurelle

Plan

- Cadre et Problème : Analyse de la Qualité de Vie (QdV)
 - Données de QdV
 - Analyse classique de la QdV
 - ▶ Proposition d'une nouvelle approche en 2 étapes
- Étape 1 : Analyse transversale
 - Modèles à Équations Structurelles (SEM)
 - Estimation du SEM via algorithme EM : reconstruction des facteurs
- Étape 2 : Analyse longitudinale
 - Modèles linéaires mixtes
- Application sur données de l'essai CO-HO-RT¹
 - Présentation des données
 - Résultats
- Conclusion et discussion

1COncomitant HOrmono RadioTherapy

Cadre et problème : analyse de la QdV

Données de QdV

- But : Analyse de la QdV relative à la santé.
- QdV non mesurable directement : multidimensionnelle, subjective, dynamique (change au cours du temps).
- → Utilisation de questionnaire de QdV.

Cadre et problème : analyse de la QdV

Données de OdV

Pour chaque visite v et n patients.

- Procédure de scoring par dimension :
 - → Pour les dimensions fonctionnelles : un score élevé ↔ un haut niveau de QdV.
 - → Pour les dimensions symptomatiques : un score élevé ↔ un faible niveau de OdV

Cadre et problème : analyse de la QdV

Analyse classique : longitudinale, multidimensionnelle

- Procédure classique :
 - Analyse longitudinale dimension par dimension de QdV.
- ⇒ Nouvelle approche : QL2 indicateur de la QdV globale.
 - Résumer les dimensions observées de QdV par la reconstruction d'un petit nombre de facteurs (latents) à chaque visite.
 - Réaliser une analyse longitudinale.

Proposition d'une approches en deux étapes : protocole et outils

 Objectif: Modéliser le statut global de santé (QL2) par un facteur fonctionnel et un facteur symptomatique.

	Protocole	Outils				
Étape 1	Étude transversale	SEM, facteurs				
	À chaque visite fixée :	\rightarrow 2 facteurs f^1 (resp. f^2)				
	reconstruction de deux facteurs	résumant les dimensions fonctionnelles				
	expliquant le QL2.	(resp. symptomatiques).				
Étape 2	Étude longitudinale	LMM				
	Expliquer QL2 à partir des f^1 et f^2	fondé sur les facteurs f ¹ , f ²				
	reconstruits à chaque visite.	plus covariables.				

• Avantage : L'étude n'est plus faite dimension par dimension.

6/18

M. Tami et al. (I3M-ICM) EPICLIN 9 Mai 2015

SEM pour chaque visite

Spécification du SEM

Spécification du modèle à équations structurelles

$$\left\{ \begin{array}{l} X^1 = R^1 D^1 + f^1 a_1' + \varepsilon^{X^1} \\ X^2 = R^2 D^2 + f^2 a_2' + \varepsilon^{X^2} \\ y = R d + f^1 c_1 + f^2 c_2 + \varepsilon^y \end{array} \right\} \text{Modèle de mesure}$$

Hypothèses

Observations indépendantes et gaussiennes $i \in \{1, ..., n\}$

- Modèle structurel :
 - ► $f^p \sim \mathcal{N}(0, Id_n)$, $p \in \{1, 2\}$ nombre de facteurs explicatifs.
 - f^1 , f^2 mutuellement indépendants.
- Modèle de mesure :
 - $arepsilon_i^{m{y}} \sim \mathcal{N}(0,\,\sigma_{m{y}}^2)\;; arepsilon_i^{m{X}^p} \sim \mathcal{N}(0,\,\sigma_{m{p}}^2 Id_{q_p})$
 - q_p le nombré de variable de X^p .

4 D > 4 P > 4 E > 4 E > E E 9 Q 0

9/18

Le modèle pour chacune des visites

$$\begin{cases} X^{1} = R^{1}D^{1} + f^{1}a_{1}' + \varepsilon^{X^{1}} \\ X^{2} = R^{2}D^{2} + f^{2}a_{2}' + \varepsilon^{X^{2}} \\ y = R d + f^{1}c_{1} + f^{2}c_{2} + \varepsilon^{y} \end{cases}$$

- Objectifs à chaque visite :
 - ► Estimation des paramètres $\theta = \{d, D^1, D^2, a_1, a_2, c_1, c_2, \sigma_y^2, \sigma_1^2, \sigma_2^2\}$
 - ▶ **Reconstruction des facteurs** f^1 et f^2 par patient résumant chacun des blocs de variables fonctionnelles (X^1) et symptomatiques (X^2) .
- → Outils: l'algorithme EM (Dempster et al., 1977; Bry X., Lavergne C., Tami M. 2015, EM estimation of a Structural Equation Model).
 - Obtention des estimations pour chaque visite des :
 - * paramètres θ .
 - * facteurs $(\widetilde{f_{iv}^1})_{v=1,...,8}, (\widetilde{f_{iv}^2})_{v=1,...,8}$ (séries longitudinales).

Approche longitudinale

- Outils : Modèle linéaire mixte (LMM)
- Avantage :
 - Prendre en compte la variabilité induite par les données répétées dans le temps pour un même patient.
 - Quantifier la part d'information apportée par les variables explicatives.

$$y_{iv} = \alpha + \underbrace{\mathbf{x}'_{iv}\boldsymbol{\beta}}_{partie\ fixe(\widetilde{f}^p_{iv} + covariables)} + \underbrace{\mathbf{u}'_{i}\boldsymbol{\xi}_{i}}_{partie\ aleatoire(individu,intercept,visite)} + \varepsilon_{iv}$$

Hypothèses

- $\varepsilon_{iv} \sim \mathcal{N}(0, \sigma^2)$, indépendants des facteurs ;
- $\mathbf{\xi}_{i} \sim \mathcal{N}(\mathbf{0}, \Sigma)$

4 ロ ト 4 周 ト 4 三 ト 4 目 ト 9 Q Q

Mai 2015

11 / 18

Essai CO-HO-RT

- Étude de phase 2 randomisée évaluant les toxicités cutanées d'un traitement par radiothérapie-létrozole concomitant ou radiothérapie suivie par létrozole en situation adjuvante de cancer du sein.
- Nombre d'observations par visites (questionnaires entièrement remplis) pour un total de 121 patientes restantes :

Visite v (mois)	0	3	6	12	15	18	21	24
n_{v}	113	106	102	100	102	84	91	90

Données issues des guestionnaires QLQ-C30 et QLQ-BR23.

◆□▶ ◆률▶ ◆불▶ ◆불▶ 출발 외약

Les données

Étape 1 : résultats

- Influence du traitement par visite
 - Corrélation entre $f_R^{\bar{p}}$ avec la covariable traitement (abscisse) et $\tilde{f}^{\bar{p}}$ sans la covariable (ordonnée) (p = 1, 2) aux 8 visites.

Figure : Corrélations entre $\widetilde{f_R^1}$ et $\widetilde{f^1}$ pour 73 patientes traitées par "radiothérapie-létrozole concomitant" et 70 par "radiothérapie suivie par létrozole".

▶ Pour certaines visites il y a une légère influence du traitement.

Étape 2 : analyse longitudinale

 Après une procédure de choix de modèle au sens du BIC, on conserve le modèle :

$$y_{iv} = \alpha + \beta_1 \widetilde{f}_{iv}^1 + \beta_2 \widetilde{f}_{iv}^2 + \xi_i + \varepsilon_{iv}$$

 Prise en compte des facteurs reconstruits sans covariable de traitement.

Étape 2 : analyse longitudinale

$$y_{iv} = \alpha + \beta_1 \widetilde{f}_{iv}^1 + \beta_2 \widetilde{f}_{iv}^2 + \xi_i + \varepsilon_{iv}$$

Part d'information portée par les différents éléments du modèle :

	Complet	Sans \tilde{f}_{iv}^2	Sans \tilde{f}_{iv}^1	Sans ξ_i	Sans $(\widetilde{f_{iv}}^1, \widetilde{f_{iv}}^2)$
BIC	6440.4	6481.6	6516.2	6568.2	6823.0
Différence		41.2	75.8	127.8	382.7

- Le facteur fonctionnel $(\widetilde{f_{iv}^1})$ apporte environ deux fois plus d'information que le facteur symptomatique $(\widetilde{f_{iv}^2})$.
- La part individuelle du modèle (ξ_i) apporte de l'information pour expliquer la variable réponse (QL2).
- ► Attention : les facteurs sont fortement corrélés (-0.8) ⇒ leur présence dans le modèle a du sens.

Conclusion de l'application

- Effet de la covariable "Traitement" :
 - L'information issue de cette covariable portée par les facteurs est faible pour chaque visite.
 - Pour certaines visites : un groupe traité a une légère meilleure QdV mais ça se compense durant les visites (SEM).
 - Pas d'effet du traitement (LMM).
- Éléments influençant QL2 :
 - Le facteur associé aux dimensions fonctionnelles est deux plus porteur d'information que celui lié aux symptômes.
 - La variabilité individuelle explique le QL2 mais la présence des facteurs est importante.

Conclusion et discussion

 But : analyser la QdV de manière globale et non spécifique (dimension par dimension).

Approche en 2 étapes :

- Éviter les tests multiples : résumer l'information des différentes dimensions de QdV via des facteurs (SEM).
- Évaluation de l'impact de covariable par visite (SEM) et au cours du temps (LMM).
- Évaluer l'impact des différents facteurs sur la QdV globale (représentée par le QL2) (LMM).
- Évaluer l'apport d'information individuelle expliquant la QdV globale (LMM).

Ouverture :

- L'hypothèse d'indépendance entre les facteurs est forte.
- → Supposer un lien entre les deux facteurs ?

MERCI À TOUS POUR VOTRE ATTENTION

Bibliographie

- [1] Kenneth A. Bollen (1989), Structural Equations With Latent Variables.
- [2] Rivera, P. et Satorra, A. (2002), Latent Variable and Latent Structure Models, Marcoulides, G. et Moustaki, I., New Jersey, 85–102.
- [3] Jakobowicz, E. (2007), Contributions aux modèles d'équations structurelles à variables latentes, Thèse, Paris, 81–99.
- [4] Bacher, F. (1987), Les modèles structuraux en psychologie présentation d'un modèle : LISREL, Le travail humain, 347–370.
- [5] Jöreskog, K. (1970). A general method for analysis of covariance structure. Biometrika.
- [6] Fox, J. (2002), Structural Equation Models,
- http://cran.r-project.org/doc/contrib/Fox-Companion/appendix-sems.pdf.
- [7] Ésposito Vinzi, V. et Trinchera, L. (2008), Modèles à équations structurelles, approches basée sur les composantes, URL: http://www.academia.edu/390381/Modeles_a_equations_structurelles_approches_basees_sur_les_composantes. Naples.
- [8] Stan, V. et Saporta, G. (2006). Une comparaison expérimentale entre les approches PLS et LISREL, Paris,
- [9] Saidane, M. (2006), Modèles à facteurs conditionnellement hétéroscédastiques et à structure markoviene cachée pour les séries financières. Thèse. Montpellier.
- [10] Foulley, J-L. (2002), Algorithme EM: Theorie et application au modèle mixte, Journal de la Société Française de Statistique, Jouven-Josas.
- [11] Fayers PM, Aaronson NK., Bjordal K., Groenvold M., Curran D., Bottomley A. (2001), on behalf of the EORTC Quality of Life Group. EORTC QLQ-C30 Scoring Manual (3rd edition). Brussels: EORTC, 2001, ISBN: 2-9300 64-22-6.
- [12] CC. Huang, HH. Lien, SH. Tu, CS. Huang, JY. Jeng, HL. Chao, HL. Sun, et WC. Chie (2010), Quality of life in Taiwanese breast cancer survivors with breast-conserving therapy. Journal of the Formosan Medical Association, vol. 109, pp. 493–502.
- [13] Lei, P-W. et Wu, Q. (2007), Introduction to Structural Equation Modeling: Issues and Practical Considerations. Educational Measurement: Issues and Practice, vol. 26, pp. 33–43.

Algorithme EM (Dempster et al., 1977)

- Principe
 - ▶ Maximiser l'espérance de la log-vraisemblance des données observées $z = (y, X^1, X^2)$ complétée des facteurs $h = (f^1, f^2)$.
- Algorithme EM, à chaque itération [s] :
 - ► Étape E : "Expectation"

$$\mathbb{E}_z^h\left[\mathcal{L}(\theta;z,h)\right]$$

Étape M : "Maximization" Maximisation de l'espérance conditionnelle

$$\theta^{[s+1]} = \underset{\theta}{\operatorname{argmax}} \ \mathbb{E}^h_{z} \left[\mathcal{L}(\theta; z, h) \right]$$

- Obtention des estimations pour chaque visite des :
 - ▶ paramètres θ .
 - ▶ facteurs $(\widetilde{f_{iv}^1})_{v=1,...,8}$, $(\widetilde{f_{iv}^1})_{v=1,...,8}$ (séries longitudinales).

La log vraisemblance complétée

- Notations
 - ▶ $\theta \in \Theta$: paramètres
 - $ightharpoonup z = (y, X^1, X^2)$: les variables observées
 - $h = (f^1, f^2)$: facteurs: variables latentes
 - \triangleright $p(z, h; \theta)$ fonction de densité $(p(z, h; \theta) = p(z|h; \theta) p(h; \theta))$
- La log vraisemblance complétée à maximiser:

$$\begin{split} \mathcal{L}(\theta;z,h) &= -\frac{1}{2} \sum_{i=1}^{n} \{q_{Y} ln(\sigma_{Y}^{2}) + q_{1} ln(\sigma_{X^{1}}^{2}) + q_{2} ln(\sigma_{X^{2}}^{2}) \\ &+ \sigma_{y}^{-2} (y_{i} - t_{i} d - f_{i}^{1} c_{1} - f_{i}^{2} c_{2})^{2} \\ &+ \sigma_{1}^{-2} (x_{i}^{1} - T_{i}^{1} D^{1} - f_{i}^{1} a_{1})' (x_{i}^{1} - T_{i}^{1} D^{1} - f_{i}^{1} a_{1}) \\ &+ \sigma_{2}^{-2} (x_{i}^{2} - T_{i}^{2} D^{2} - f_{i}^{2} a_{2})' (x_{i}^{2} - T_{i}^{2} D^{2} - f_{i}^{2} a_{2}) \\ &+ (f_{i}^{1})^{2} + (f_{i}^{2})^{2} \} + cte \end{split}$$

21 / 18

Algorithme

- Choix de $\theta^{[0]}$ Pour tout itération [it],
- **②** Étape E : avec la valeur courante $\theta^{[it]}$,
 - \rightarrow Calcul de la distribution h|z.
 - ightarrow Reconstruction des facteurs, $\forall p$ via $\widetilde{g} = \mathbb{E}^h_z[g]$, $\widetilde{f}^p = \mathbb{E}^h_z[f^p]$.
 - ightarrow Calcul des $\widetilde{\gamma} = \mathbb{E}^h_z[g^2]$, $\widetilde{\phi}^r = \mathbb{E}^h_z[(f^p)^2]$.
- **Solution Étape M**: on actualise $\theta^{[it+1]}$ en injectant les \widetilde{g} , $\widetilde{f^p}$, $\widetilde{\gamma}$, $\widetilde{\phi^p}$ dans les formules solutions de

$$\frac{\partial}{\partial \theta} \mathbb{E}_{z}^{h} [\mathcal{L}(\theta; z, h)] = 0 \tag{1}$$

.

On repasse alors à l'étape E puis M, et ainsi de suite.

(ロ) (型) (注) (注) (注) (注)

- Trois niveaux d'indice :
 - **1** Indice des individus: $i \in [1, n]$ à visite fixée, où $n \in [100, 500]$.
 - 2 Indice des visites: $v \in [1, V]$, où $V \in [1, 8]$.
 - Indice des items: j.

- Trois niveaux d'indice :
 - Indice des individus: $i \in [1, n]$ à visite fixée, où $n \in [100, 500]$.
 - 2 Indice des visites: $v \in [1, V]$, où $V \in [1, 8]$.
 - Indice des items: j.
 - \hookrightarrow Regroupés en dimensions (dim) comportant $J \in [1, 5]$ items.

- Trois niveaux d'indice :
 - Indice des individus: $i \in [1, n]$ à visite fixée, où $n \in [100, 500]$.
 - ② Indice des visites: $v \in [1, V]$, où $V \in [1, 8]$.
 - Indice des items: j.
 - \hookrightarrow Regroupés en dimensions (dim) comportant $J \in [1, 5]$ items.
 - \hookrightarrow Chaque dim comporte $M \in [2, 7]$ modalités de réponses (pour tous ses items j)

23 / 18

- Trois niveaux d'indice :
 - Indice des individus: $i \in [1, n]$ à visite fixée, où $n \in [100, 500]$.
 - ② Indice des visites: $v \in [1, V]$, où $V \in [1, 8]$.
 - Indice des items: j.
 - \hookrightarrow Regroupés en dimensions (dim) comportant $J \in [1, 5]$ items.
 - \hookrightarrow Chaque dim comporte $M \in [2, 7]$ modalités de réponses (pour tous ses items j)
- Exemple : dim "symptôme de douleur"

Durant la semaine dernière	Pas du tout	Un peu	Assez	Beaucoup
9. Have you had pain ?	1	2	3	4
19. Did pain interfere with your daily activities ?	1	2	3	4

 \hookrightarrow 2 items j = 9, 19

- Trois niveaux d'indice :
 - Indice des individus: $i \in [1, n]$ à visite fixée, où $n \in [100, 500]$.
 - 2 Indice des visites: $v \in [1, V]$, où $V \in [1, 8]$.
 - Indice des items: j.
 - \hookrightarrow Regroupés en dimensions (dim) comportant $J \in [1, 5]$ items.
 - \hookrightarrow Chaque dim comporte $M \in [2, 7]$ modalités de réponses (pour tous ses items j)
- Exemple : dim "symptôme de douleur"

Durant la semaine dernière	Pas du tout	Un peu	Assez	Beaucoup
9. Have you had pain ?	1	2	3	4
19. Did pain interfere with your daily activities?	1	2	3	4

- \hookrightarrow 2 items j = 9, 19
- \hookrightarrow 4 modalités : M = 4

- Trois niveaux d'indice :
 - Indice des individus: $i \in [1, n]$ à visite fixée, où $n \in [100, 500]$.
 - 2 Indice des visites: $v \in [1, V]$, où $V \in [1, 8]$.
 - Indice des items: j.
 - \hookrightarrow Regroupés en dimensions (dim) comportant $J \in [1, 5]$ items.
 - \hookrightarrow Chaque dim comporte $M \in [2, 7]$ modalités de réponses (pour tous ses items j)
- Exemple : dim "symptôme de douleur"

Durant la semaine dernière	Pas du tout	_	Assez	Beaucoup
9. Have you had pain ?	1	2	3	4
19. Did pain interfere with your daily activities ?	1	2	3	4

- \hookrightarrow 2 items i = 9, 19
- \hookrightarrow 4 modalités : M = 4
- Données observées : $\tilde{y}^j \in \{1, 2, ..., M\}$ catégorielles.

- Trois niveaux d'indice :
 - Indice des individus: $i \in [1, n]$ à visite fixée, où $n \in [100, 500]$.
 - 2 Indice des visites: $v \in [1, V]$, où $V \in [1, 8]$.
 - Indice des items: j.
 - \hookrightarrow Regroupés en dimensions (dim) comportant $J \in [1, 5]$ items.
 - \hookrightarrow Chaque dim comporte $M \in [2, 7]$ modalités de réponses (pour tous ses items j)
- Exemple : dim "symptôme de douleur"

Durant la semaine dernière	Pas du tout	_	Assez	Beaucoup
9. Have you had pain ?	1	2	3	4
19. Did pain interfere with your daily activities ?	1	2	3	4

- \hookrightarrow 2 items i = 9, 19
- \hookrightarrow 4 modalités : M = 4
- Données observées : $\tilde{y}^j \in \{1, 2, ..., M\}$ catégorielles.
- \hookrightarrow qu'on ordonne et note $\tilde{y}^{(j)}$

Traitement des données : Procédure de scoring (EORTC)

• Pour chaque dim, à partir des J données observées $(\tilde{y}_{iv}^{(1)},...,\tilde{y}_{iv}^{(J)})$ \rightarrow un score S est associé noté y_{iv}

$$y_{iv} = \begin{cases} S: (\tilde{y}_{iv}^{(1)},...,\tilde{y}_{iv}^{(J)}) \rightsquigarrow y_{iv} \text{ tel que,} \\ \frac{(\frac{1}{J}\sum_{j=1}^{J}\tilde{y}_{iv}^{(j)})-1}{M-1} \times 100 \text{ , pour les dim symptomatiques} \\ \left(1 - \frac{(\frac{1}{J}\sum_{j=1}^{J}\tilde{y}_{iv}^{(j)})-1}{M-1}\right) \times 100 \text{ , pour les dim fonctionnelles} \end{cases}$$

Traitement des données : Procédure de scoring (EORTC)

• Pour chaque dim, à partir des J données observées $(\tilde{y}_{iv}^{(1)},...,\tilde{y}_{iv}^{(J)})$ \rightarrow un score S est associé noté y_{iv}

$$y_{iv} = \begin{cases} S: (\tilde{y}_{iv}^{(1)},...,\tilde{y}_{iv}^{(J)}) \rightsquigarrow y_{iv} \text{ tel que,} \\ \frac{(\frac{1}{J}\sum_{j=1}^{J}\tilde{y}_{iv}^{(j)})-1}{M-1} \times 100 & \text{, pour les dim symptomatiques} \\ \left(1 - \frac{(\frac{1}{J}\sum_{j=1}^{J}\tilde{y}_{iv}^{(j)})-1}{M-1}\right) \times 100 & \text{, pour les dim fonctionnelles} \end{cases}$$

- Interprétation:
- → Pour les dim fonctionnelles : un score élevé représentera un haut niveau de QdV.
- → Pour les dim symptomatiques : un score faible représentera un haut niveau de QdV.

(ロ) (個) (注) (注) (注) (2)

Traitement des données : Procédure de scoring (EORTC)

• Pour chaque dim, à partir des J données observées $(\tilde{y}_{iv}^{(1)},...,\tilde{y}_{iv}^{(J)})$ \rightarrow un score S est associé noté y_{iv}

$$y_{iv} = \begin{cases} S: (\tilde{y}_{iv}^{(1)},...,\tilde{y}_{iv}^{(J)}) \rightsquigarrow y_{iv} \text{ tel que,} \\ \frac{(\frac{1}{J}\sum_{j=1}^{J}\tilde{y}_{iv}^{(j)})-1}{M-1} \times 100 & \text{, pour les dim symptomatiques} \\ \left(1 - \frac{(\frac{1}{J}\sum_{j=1}^{J}\tilde{y}_{iv}^{(j)})-1}{M-1}\right) \times 100 & \text{, pour les dim fonctionnelles} \end{cases}$$

- Interprétation:
- → Pour les dim fonctionnelles : un score élevé représentera un haut niveau de QdV.
- ightarrow Pour les dim symptomatiques : un score faible représentera un haut niveau de QdV.
- ⇒ Données traitées utilisées : yiv (les scores).