HLA Epitopes-Special Seminar

Sydney, Australia March 5-6, 2015

HLA Antibodies in Transplantation

- HLA antibodies cause allograft rejection and transplant failure
- HLA antibodies recognize epitopes

Therefore

HLA epitopes are important in transplantation

Antibody Responses to HLA Affect Transplant Outcome

- Class I HLA antigens
 - HLA-A and HLA-B
 - HLA-C
 - MICA
- Class II HLA antigens
 - DRB1
 - DRB3, 4, 5
 - DQB and DQA
 - DPB and DPA

HLA Antigens Have Multiple Epitopes

- "Private" epitopes and "public" epitopes shared between cross-reacting antigens (CREGs)
- Epitopes defined by polymorphic amino acid residues
- Structurally based matching with HLAMatchmaker
 - Original version (2002): "triplets", i.e. linear threeresidue sequences
 - New version (2006): "eplets", i.e. patches of residues within a 3 Angstrom radius of a polymorphic residue on the molecular surface.

What Do We Need to Know about HLA Epitopes?

- Structure and topography of epitopes on mismatched HLA antigens
- Structural interactions of HLA antigenantibody complexes
- Epitope <u>antigenicity</u>: reactivity with antibody in vivo and in different assays
- Epitope <u>immunogenicity</u>: ability to induce specific antibodies

Objectives

- Structural concepts of HLA epitopes
 - Triplets, eplets, HLAMatchmaker, structural epitopes
 - Website-based International Registry of HLA-A,B,C, DR, DQ, DP and MICA epitopes
- HLA epitope antigenicity
 - HLAMatchmaker analysis of sera with antibodies
 - Epitope specificities of HLA antibodies tested in different assays
 - Mismatch acceptability for sensitized patients

Objectives (continued)

- HLA epitope immunogenicity
 - Epitope loads and HLA antibody responses
 - Physiochemical characteristics of HLA epitopes
 - Nonself-self paradigm
 - Mismatch permissibility for non-sensitized patients
- Clinical relevance of HLA matching at the epitope level
 - Solid organ transplantation
 - Platelet transfusion
 - Stem cell transplantation
- Future plans for HLA epitopes

Duquesnoy's Presentations

More than 350 Powerpoint slides

 References to almost 100 publications about HLA epitopes since 2002 (List will be provided)

Lecture 1

Basic Aspects of HLA Epitope Structure

How Do Antibodies React with HLA Molecules?

Consider the structure of

- HLA molecules
- Antibodies
- Epitope-Paratope Interphase

Fotoğraf: George Steinmetz © 2005 National Geographic Society. Her hakkı saklıdır. Dev Develer National Geographic Türkiye, Şubat 2005

Binding of Antibody to an Epitope

Antigen-Antibody Complex

How Do Antibodies Bind to Epitopes on Proteins?

CDRs of Antibody

Antigen-Antibody Complex

- Complementarity Determining Regions H1, H2, H3, on heavy chain and L1, L2 and L3 on light chain represent the "binding face" or "paratope" of an antibody
 - The antibody specificity is often determined by a centrally located loop (CDR-H3) that binds to a short amino acid sequence of the protein antigen
 - Other CDRs serve as contact sites to stabilize binding to antigen (they play a role in the affinity of antibody)

MMDB Database

http://www.ncbi.nih.gov/Structure

- Large database of crystal structures
 - Complexes of protein antigens and antibody domains
 - Class I and class II HLA molecules
 - MHC-T-Cell Receptor complexes
- Cn3D molecular viewer
 - "Space-fill" command identifies surface-exposed amino acid residues
 - "Select by distance" command permits an assessment of epitope size and the distance between residues
- Basic Local Alignment Search Tool (BLAST)
 - Identifies sequence differences between antigen proteins and homologous self-proteins of the antibody producer

Commonly Studied Protein Antigens

- Hen Egg Lysozyme (HEL)
- Horse Cytochrome C
- Human Interferon-γ Receptor

With HLAMatchmaker on my mind I have analyzed data in more than 100 publications

Mouse Monoclonal Antibodies Against Hen Egg Lysozyme

What are the differences between mouse and hen egg lysozyme?

Sequence Differences between HEL and Mouse Lysozymes

intestinal milk HEL	1 K K -	2 V V	3 Y Y F	4 N E G	5 R R	6 C C	7 E E	8 L F	9 A A	10 R R A	11 T A	12 L L M	13 K K	14 R R	15 N N H	16 G G	17 M M L	18 D A	19 G G N	20 Y Y	21 R Y	22 G G	23 V V Y	24 K S S	25 L L	
intestinal milk HEL	26 A A G	27 D D N	28 W W	29 V V	30 C C	31 L L A	32 A A	33 Q Q K	34 H H F	35 E E	36 S S	37 N N	38 Y Y F	39 N N	40 T T	41 R R Q	42 A A	43 T T	44 N N	45 Y Y R	46 N N	47 R R T	48 D D	49 R Q G	50 S S	
intestinal milk HEL	51 T T	52 D D	53 Y Y	54 G G	55 -	56 F F L	57 Q Q	58 -	59 N N	60 S S	61 R R	62 Y Y W	63 W W	64 C C	65 N N	66 D D	67 G G	68 K K R	69 T T	70 P P	71 R R G	72 S A	73 K V R	74 N N	75 A A L	
intestinal milk HEL	76 C C	77 G G N	78 -	79 N N P	80 C C	81 S S	82 A A	83 L L	84 L L	85 Q Q S	86 D D S	87 D D	88 -	89 T T	90 A A	91 A A S	92 	93 Q Q N	94 C C	95 A A	96 K K	97 R R K	98 V V I	99 V V	100 R R S	
intestinal milk HEL	101 D D	102 P P G	103 Q Q N	104 G G	105 	106 R R N	107 A A	108 W W	109 V V	110 A A	111 W W	112 R R	113 T A N	114 Q H R	115 C C	116 Q Q K	117 N N G	118 R R T	119 D D	120 L L V	121 S S Q	122 Q Q A	123 Y Y W	124 -	125 R R	126 N N G

Which Residues are Critical for Antigen-Antibody Contact?

Antibody reactivity with natural variants

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	
Mouse intest	K	V	Υ	Ν	R	С	Ε	L	Α	R		L	K	R	Ν	G	M	D	G	Υ	R	G	V	K	L	Α	D	
Mouse milk	K	V	Υ	E	R	С	Ε	F	Α	R	Т	L	K	R	Ν	G	M	Α	G	Υ	Υ	G	V	S	L	Α	D	
HEL			F	G						Α	Α	M			Н		L		Ν				Υ	S		G	Ν	
Cal Quail			F	G						Α	Α	M			Н		L		Ν				Υ	S		G	Ν	
BW Quail			F	G						Α	Α	M			Н		L		Ν				Υ	S		G	N	
Jap Quail				G						Α	Α	M			Н		L		K		Q		Υ	S		G	N	
Turkey				G						Α	Α	M			L		L		Ν				Υ	S		G	N	
RN Pheasant	G			G						Α	Α	M			M		L		Ν				Υ	S		G	N	
Chachalaca		-1		K						Α	Α	M			Υ		L		Ν				Υ	S		G	N	
Duck A										Α	Α	M			L		L		Ν				Υ	S		G	N	
Guinea Fowl			F	G						Α	Α	M			Н		L		Ν				Υ	S		G	N	
		45						51		53	54	55		57	58	59	60	61	62	63	64	65	66	67	68	69	70	
Mouse intest	Ν	Υ	Ν	R	D	R	S	Т	D	Υ	G		F	Q	ı	Ν	S	R	Y	W	C	N	D	G	K	Т	Р	
Mouse milk	Ν	Υ	Ν	R	D	Q	S	Т	D	Υ	G		F	Q	l	N	S	R	Y	W	С	N	D	G	K	Т	Р	
HEL		R		Т		G							L						W						R			
Cal Quail		R		Τ		G						V	L						W						R			
BW Quail		R		T		G						V	L						W									
Jap Quail		R		T		G							L						W						R			
Turkey		R		Т		G							L						W						R			
RN Pheasant		R		Т		G							L						W						R			
Chachalaca		R	S	Ν		G							E						W						R			
Duck A		R		Т		G						V	L						W									
Guinea Fowl		R		Т		G							L						W						R			
	87	88	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	
Mouse intest	D	L	Т	Α	A	L	Q	C	A	K	R	V	V	R	D	P	Q	G	L	R	Α	W	V	Α	W	R	T	
Mouse milk	D	i.	Ť	Α	Α	i.	Q	C	Α	K	R	V	V	R	D	P	Q	G	i i	R	Α	W	V	Α	W	R	A	
HEL	_				S	V	N	_	-	-	K	i		S	_	G	N	_	M	N						-	N	
Cal Quail					Т	V	N				K	i_		S		Ğ	N		M	N							N	
BW Quail					Ť	V	N				K			S		G	N		M	N							N	
Jap Quail					s	V	N				K			S		V	Ĥ		M	N							N	
Turkey					S	V	N				K		Α	S	G	Ġ	N		M	N							N	
RN Pheasant					S	V	N				K		_	S	-	G	N		M	N						K	H	
Chachalaca		Α	Р		S	V	R				_			S		G	N		M	N						K	H	
Duck A		_	F		-	V	R							S		G	N		M	N						_	N	
Guinea Fowl			-	Т	Т	Å	N				K			S		G	N		M	N						K	Н	

3D molecular analysis of the paratope-epitope interface

A "Structural Epitope" consists of amino acid residues that contact all six CDRs of antibody

It involves 15-25 residues

Which Residues are Critical for Antigen-Antibody Contact?

- Antibody reactivity with natural variants
- Effect of residue substitutions on antigen-antibody binding
 - Site mutagenesis (alanine scanning)
 - Identification of "energetic" contact residues ("hot spots")
 - Which energetic residues are non-self?

Two Types of Residues in a Structural Epitope

Most residues of a structural epitope can be replaced by other residues without impairing its binding with antibody

Some residues cannot replaced without causing a major loss in binding activity, they constitute the "hot spot" or "functional" part of the epitope.

Energetic Residues of Functional HEL-D1.3 Epitope, the Corresponding Functional Paratope and in the Epitope-Paratope Interface

HEL-D1.3 Ep

HyHEL-D1.3 CDR

Interface

119D, 124I and 125R are within 3.0 Angstroms from 121Q^{NS}

Functional HEL-5 Epitope

HEL-5 Ep

HyHEL-5 CDR

Interface

45R^{NS} and 68R^{NS} are 3.5 Angstroms apart

All functional epitope residues are within 3.0-3.5 Angstroms from each other

These functional epitopes ("hot spots") are represented by patches of few residues that are 3.0-3.5 Angstroms apart

Residues are in linear or discontinuous sequences

Other epitopes are represented by two distinct patches

Examples of HEL Epitopes Defined by a Pair of Patches

HEL-F9.13.7 Ep

HEL-F9.13.7 CDRs

Interface

HyHEL-10 Ep

HyHEL-10 CDRs

Patch 1: 73R^{ns}
Patch 2: 20Y and 96K^{ns}
Distance: 13 Angstroms

Patch 1: 93N^{NS} and 97K^{NS} Patch 2: 20Y and 21R (self) Distance: 7.5 Angstroms

Two-Patch Shape of an Epitope on Horse Cytochrome C Recognized by a Mouse Monoclonal Antibody

hCytC-E8 Ep

hCYTC-E8 CDR

Interface

Patch 1: 60K^{NS} and 62E^{NS}
Patch 2: 103N and 104E (self)
Patches are 11.5 Angstroms apa

105

Only Six Non-Self Residues on Horse Cytochrome C

Horse:

- 2 GDVEKGKKIFVQKCAQCHTVEKGGKHKTGPNLHGLFGRKTGQA**P**GF**T**YTDANKNKGITW**K** 61
- Mouse:
- 2 GDVEKGKKIFVQKCAQCHTVEKGGKHKTGPNLHGLFGRKTGQAAGFSYTDANKNKGITWG 61

Horse

- 62 EETLMEYLENPKKYIPGTKMIFAGIKKKTEREDLIAYLKKATNE 105
- Mouse
- 62 EDTLMEYLENPKKYIPGTKMIFAGIKKKGERADLIAYLKKATNE

How Do Antibodies Bind to Epitopes?

- So-called "structural" epitopes on protein antigens have 15-25 surface residues that can make contact with all six CDRs of antibody
- These residues cover an area of 700-900 square Ångstroms
- Within each lies a centrally located "functional" epitope with a few residues and which binds to CDR-H3 plays a dominant role in specific recognition

CDRs of Antibody

- Complementarity Determining Regions H1, H2, H3, on heavy chain and L1, L2 and L3 on light chain represent the "binding face" or "paratope" of an antibody
- **Antigen-Antibody Complex**

- The antibody specificity is often determined by a centrally located loop (CDR-H3) that binds to a short amino acid sequence of the protein antigen
 - Other CDRs serve as contact sites to stabilize binding to antigen (they play a role in the affinity of antibody)

How Do Antibodies Bind to Epitopes on Proteins?

- So-called "structural" epitopes on protein antigens have 15-25 surface residues that can make contact with all six CDRs of antibody
- These residues cover an area of 700-900 square Ångstroms
- Within each lies a centrally located "functional" epitope with a few residues and which binds to CDR-H3 plays a dominant role in specific recognition

Antigen-Antibody Complex

CDRs of Antibody

Structural Aspects of Complexes with HLA Molecules

- Crystal models of MHC-TCR complexes
- Crystal structure of antibody-HLA + peptide complex

T-Cell Receptor-HLA Complex

Crystal Structure of HLA-A1-MAGE-A1 Complex with Antibody Fab-Hyb3

- Structural epitope: 4 peptide residues + 9 HLA-A1 residues in α helices
- Paratope: 11 VH and 4 VL residues
- Predominant role of CDR-H2 and H3 in peptide contact

Molecular modeling of the crystalline structure of human monoclonal antibody Hyb3 complexed with HLA-A1-MAGE-A1 as reported by Ziegler's group*

Antigen-Antibody Complex

Structural paratope of Hyb3

Structural epitope of HLA-A1-MAGE-A1

Contact residues are within a molecular surface of about 900 Å²

Crystal Structure of HLA-A1-MAGE-A1 Complex with Antibody Fab-Hyb3

- Structural epitope: 4 peptide residues + 9 HLA-A1 residues in α helices
- Paratope: 11 VH and 4 VL residues
- Predominant role of CDR-H2 and H3 in peptide contact
- Functional epitope:
 - Contact sites: 65R and 72Q of HLA-A1
 - Antibody does not react with MAGE-A1 presented by HLA-A3 (only difference is contact residue 76A)
 - Antibody does not react with MAGE-A3 which has three residue differences
 - No mutagenesis information

Hulsmeyer et al J. Biol. Chem. 280: 2972-2790, 2005 (Andrew Ziegler's lab at Humboldt University, Berlin)

Prominent residues of the structural MAGE-A1-HLA-A1-Hyb3 epitope and their interface with the Hyb3 paratope

(adapted from Hulsmeyer et al, 2005)

epitope

A65R A720 **A76A** P5T P7HP8S

paratope

Patches are 6-8 Angstroms away

How do we describe HLA epitopes?

 Public and private HLA determinants (Cross-Reacting Groups, CREG)

Polymorphic Residues on Class I Antigens

How do we describe HLA epitopes?

- Public and private HLA determinants (Cross-Reacting Groups, CREG)
- Single amino acid residues
- HLAMatchmaker: Triplets (2002)
- HLAMatchmaker: Eplets (2006)

Concepts about Antibody-Antigen Interactions

- Contact areas of CDR loops of antibody and epitopes on protein antigens (paratope-epitope interface)
- Determination of "structural" epitopes
- Identification of "functional" epitopes
- Determine the sizes and shapes of functional epitopes

Apply concepts to eplet version of HLAMatchmaker

Functional epitopes are represented by patches of few residues that are 3.0-3.5 Angstroms apart

In HLAMatchmaker: Eplets are patches consisting of a polymorphic residue and residues within a 3.0-3.5 Angstrom radius

Recent Update: Designing Epitope Repertoires for HLAMatchmaker and the HLA Epitope Registry

Reference:

Update of the HLA Class I Eplet Database in the Website Based Registry of Antibody-Defined HLA Epitopes, Tissue Antigens, 83:382-390, 2014

Eplets

- Essential components of HLA epitopes recognized by antibody
- Amino acid configurations within a 3 Angstrom radius of surface-exposed polymorphic residues
- Parts of "structural" HLA epitopes that contact the CDRs of antibody

Design

1. With Cn3D modelling of HLA molecules identify all combinations of polymorphic residues within a 3 Ångstrom radius

There are 116 configurations for exposed residues and 21 configurations solely defined by hidden polymorphic residues

exposed	seq seq seq	exposed			seq	exposed	seq	seq	seq	hidden	seq	seq
1	1	73	73	74	76	149		151		4	4	
14	14 17	73	73	76		150		151	152	6	6	
16	16	73	73	76	77	150		151		9	9	
19	19	73	73			150	150			11	11	12
41	41	76	76	77		151	151			21	21	
44	44 45 46	76	76	77	79	151		152		24	24	
45	45 46	76	76	79		156	156			30	30	
56	56	76	76	77	80	156		158		32	32	
62	62 63	76	76	80		158	158			35	35	
62	62 63 65	76	76	79	80	161	161			49	49	
62	62 63 66	76	76			162		163	167	67	67	
62	62 65	77	77	79	80	163	163			70	70	
62	62 65 66	80	80	81	82	163		166		74	74	
62	62 66	80	80			163	163	166	167	94	94	95
62	62	80	80	81		166		167		97	97	
63	63 65	80	80	82	83	166	166			99	99	
63	63 66	82	81	82	83	170	170	171		113		114
63	63 65 66	82	82	83		173	173			116	116	
65	65 66	82	82			177	177			152	152	
65	65 66 67	90	90	91		177		178		156	156	
65	65 66 69	102	102	103		180	180			199	199	
65	65 69	105	105			182		183	184			
65	65	107	107			186	186					
66	66 67	109	109			193		194				
66	66 67 69	127	127			193	193					
66	66 69	131	131			194	194					
66	66 69 70	138	138			207	207					
66	66	138	138			211	211					
69	69 70 71	142		143	144	219	219					
69	69 70	142		145		245		246				
69	69 70 73	144		145		247	247					
69	69 71	144		149		248	248					
69	69 73	144	144			249	249					
69	69 73 77	145		149		253	253					
69	69	145	145			261		270				
70	70 73	147	147			211	211	212				
70	70	149		150	151	273	273					
71	71 73 77	149	149	150		275	275	276				
73	73 74	149	149									

Configurations of polymorphic sequence positions on class I HLA molecules

Design

- 1. With Cn3D modelling of HLA molecules identify all combinations of polymorphic residues within a 3 Ångstrom radius
- There are 116 configurations for exposed residues and 21 configurations solely defined by hidden polymorphic residues
- 2. With HLAPatch Generator (developed by Dr. Grzegorz Dudek (now at Czestchowa University of Technology, Poland). determine polymorphic residue compositions of 3 Ångstrom patches from amino acid sequences of 107 HLA alleles in commercially available Luminex panels

Results: 616 patches were identified, 82 of them are monomorphic for one or two ABC loci and they were ruled out as potential epitopes. Many of the remaining 534 patches are shared by identical groups of Luminex alleles.

Multiple patches shared between the same group of Luminex alleles

Patch	Luminex A	Alleles					
73TAN	A*01:01	A*26:01	A*29:01	A*29:02	A*36:01	A*43:01	A*80:01
73TA	A*01:01	A*26:01	A*29:01	A*29:02	A*36:01	A*43:01	A*80:01
76ANG	A*01:01	A*26:01	A*29:01	A*29:02	A*36:01	A*43:01	A*80:01
76AGT	A*01:01	A*26:01	A*29:01	A*29:02	A*36:01	A*43:01	A*80:01
76AG	A*01:01	A*26:01	A*29:01	A*29:02	A*36:01	A*43:01	A*80:01
76AT	A*01:01	A*26:01	A*29:01	A*29:02	A*36:01	A*43:01	A*80:01
76A	A*01:01	A*26:01	A*29:01	A*29:02	A*36:01	A*43:01	A*80:01
76AN	A*01:01	A*26:01	A*29:01	A*29:02	A*36:01	A*43:01	A*80:01
76ANT	A*01:01	A*26:01	A*29:01	A*29:02	A*36:01	A*43:01	A*80:01

Patches shared between the same group of Luminex alleles

Patch	Luminex A	Alleles					
73TAN	A*01:01	A*26:01	A*29:01	A*29:02	A*36:01	A*43:01	A*80:01
73TA	A*01:01	A*26:01	A*29:01	A*29:02	A*36:01	A*43:01	A*80:01
76ANG	A*01:01	A*26:01	A*29:01	A*29:02	A*36:01	A*43:01	A*80:01
76AGT	A*01:01	A*26:01	A*29:01	A*29:02	A*36:01	A*43:01	A*80:01
76AG	A*01:01	A*26:01	A*29:01	A*29:02	A*36:01	A*43:01	A*80:01
76AT	A*01:01	A*26:01	A*29:01	A*29:02	A*36:01	A*43:01	A*80:01
76A	A*01:01	A*26:01	A*29:01	A*29:02	A*36:01	A*43:01	A*80:01
76AN	A*01:01	A*26:01	A*29:01	A*29:02	A*36:01	A*43:01	A*80:01
76ANT	A*01:01	A*26:01	A*29:01	A*29:02	A*36:01	A*43:01	A*80:01

Eplet: 76ANT Residue description: 73T76A77N79G80T

Patches shared between A*01:01 and A*36:01

Patch	Luminex	Alleles
44KM	A*01:01	A*36:01
149AVH	A*01:01	A*36:01
149AV	A*01:01	A*36:01
150V	A*01:01	A*36:01
150VH	A*01:01	A*36:01
150VHA	A*01:01	A*36:01
156RV	A*01:01	A*36:01
158V	A*01:01	A*36:01

Patches shared between A*01:01 and A*36:01

Patch	Luminex	Alleles
44KM	A*01:01	A*36:01
149AVH	A*01:01	A*36:01
149AV	A*01:01	A*36:01
150V	A*01:01	A*36:01
150VH	A*01:01	A*36:01
150VHA	A*01:01	A*36:01
156RV	A*01:01	A*36:01
158V	A*01:01	A*36:01

Eplet: 44KM₃ Description: 44K45M(149A150V151H152A)(156R158V)

Overlapping eplets that are shared between similar but not identical groups of Luminex alleles

Example: six 62R-related eplets on Luminex alleles

<u>Eplet</u>	Residues	A*25:01	A*26:01	A*33:01	A*33:03	A*34:01	A*34:02	A*66:01	A*66:02	A*68:01	A*68:02	A*69:01	B*15:16	<u>Other</u>
62RR	62R65R	+	+	+	+	+	+	+	+	+	+	+	+	
62RNR	62R63N65R	+	+	+	+	+	+	+	+	+	+	+	has 63E	
62RN	62R63N	+	+	+	+	+	+	+	+	+	+	+	has 63E	32 HLA-B alleles
62RRN	62R65R66N	+	+	+	+	has 66K	+	+	+	+	+	+	+	
62RTN	62R64T66N	+	+	+	+	has 66K	+	+	+	+	+	+	+	C*07:01, C*15:02
63NN	62R63N65R66N	+	+	+	+	has 66K	+	+	+	+	+	+	has 63E	

Design

- 1. With Cn3D modelling of HLA molecules identify all combinations of polymorphic residues within a 3 Ångstrom radius
- There are 116 configurations for exposed residues and 21 configurations solely defined by hidden polymorphic residues
- 2. With HLAPatch Generator (developed by Dr. Grzegorz Dudek, Czestchowa University of Technology, Poland) determine polymorphic residue compositions of 3 Ångstrom patches from amino acid sequences of 107 HLA alleles in commercially available Luminex panels

Results: 616 patches were identified, 82 of them are monomorphic for one or two class I loci and were ruled out as potential epitopes. Many of the remaining 534 patches are shared by identical groups of Luminex alleles

3. Annotations of 219 eplets defined by polymorphic residues on the molecular surface and 51 eplets defined solely by polymorphic residues in antibody-inaccessible positions

219 Eplets in antibody-accessible positions on the molecular surface of HLA-A, B, C antigens

Eplet	#A	#B	#C	Total	Eplet	#A	#B	#C	Total	Eplet	#A	#B	#C	Total	Eplet	<u>#A</u>	#B	#C	Total	<u>Eplet</u>	#A	#B	#C	Total	Eplet	<u>#A</u>	#B	#C	Total
1C	0	0	17	17	71ATN	0	4	4	8	145KHA	7	0	0	7	63NN	10	0	0	10	76VDT	20	0	0	20	163T	25	16	17	58
16S	0	0	3	3	71ATS	Ō	11	8	19	145RT	7	ō	Ō	7	65GK	4	0	0	4	76VRN	0	2	13	15	163TEW	22	16	17	55
17RS	2	ō	0	2	71HS	22	0	ō	22	147L	Ö	3	4	7	65QIA	0	13	0	13	76VS	0	1	13	14	163TG	3	0	0	3
17WR	0	Ō	1	1	71KA	0	4	0	4	149AH	14	0	Ö	14	65QKR	0	1	21	22	77NGT	8	0	0	8	166DG	5	1	0	6
19K	1	Ō	ō	1	71QS	13	0	0	13	149TAH	8	Ô	0	8	65QNR	0	0	2	2	77SRN	0	38	13	51	166ES	0	5	0	5
41T	ō	13	Ō	13	71SA	0	4	ň	4	150AAH	12	Ô	ō	12	65RA	30	4	0	34	79GT	28	0	0	28	170RH	1	9	0	10
43RRM	2	0	0	2	71STN	12	0	0	12	150AH	20	Ô	0	20	65RK	6	0	0	6	801	6	12	0	18	170RY	35	50	16	99
44KM ₃	2	Ö	Ö	2	71TTD	0	2	0	2	151AHA	2	Ô	Õ	2	65RNA	24	4	0	28	80K	0	0	10	10	173K	0	0	3	3
44RM	33	12	0	45	71TTN	ō	12	0	12	151AHE	9	0	0	9	66I	0	54	0	54	80N	0	39	13	52	177DK	0	5	0	5
44RMA	0	11	Ō	11	71TTS	Ō	27	0	27	151AHV	9	Ô	0	9	66IC	0	13	0	13	80T	28	8	0	36	177DT	0	3	0	3
44RME	33	0	0	33	72QTD	25	22	12	59	151ARV	9	35	0	44	66ICT	0	9	0	9	AT08	0	4	0	4	177KT	0	0	4	4
44RT	0	10	Ō	10	73ID	3	0	0	3	151H	22	0	0	22	66IF	0	8	0	8	80TL	28	4	0	32	180E	0	8	0	8
45EE	n	26	Ō	26	73AN	o	0	6	6	152HA	4	Ô	0	4	66IS	0	22	0	22	80TLR	0	8	0	8	182TDP	15	0	0	15
45KE	n	11	0	11	73AS	ō	Ō	5	5	152RA	0	Ô	4	4	66IY	0	11	0	11	81ALR	6	16	0	22	184A	19	0	0	19
	1	0	0	1	73TD	17	4	0	21	152RE	Ö	24	18	42	66IYT	0	2	0	2	82LR	6	20	0	26	184H	0	0	19	19
56E₄ 56R	3	Ō	Ō	3	73TDA	6	0	0	6	152RR	2	0	0	2	66K	10	1	21	32	90AR	0	0	1	1	184R ₃	0	0	1	1
62EE	5	n	Ö	5	73TDE	7	20	n	27	152RT	Õ	ň	1	1	66KA	10	0	0	10	90D	11	1	8	20	186R	1	0	0	1
62GE	5	3	0	8	73TDV	12	2	12	26	152RW	1	Ô	ō	1	66KAH	9	0	0	9	102DV	33	42	3	78	193AV	23	0	0	23
62GK ₂	5	Ō	Ö	5	73TN	12	16	4	32	156DA	ō	8	1	9	66N	24	4	2	30	102HV	1	0	0	1	193LV	0	0	1	1
62GRN	n	3	0	3	73TS	2	37	9	48	156LA	16	40	8	64	66NAH	12	0	0	12	103L	0	16	20	36	193PI	12	51	0	63
62LQ	3	0	0	3	73TV	17	2	12	31	156QA	4	0	1	5	66NAQ	12	0	0	12	103M ₂	0	1	0	1	193PL ₃	0	0	3	3
62QE	10	0	0	10	73TVD	17	ō	0	17	156RA	ō	3	8	11	66NM	2	4	0	6	105S	21	0	0	21	193PV	0	8	19	27
62REN	0	1	2	3	73TVN	0	ñ	4	4	156WA	12	4	5	21	66NV	23	0	0	23	107W	6	0	0	6	194V	22	8	20	50
62RER	0	1	ō	1	73TVS	Ō	1	8	9	158T	0	4	0	4	66RKQ	1	0	0	1	109F	32	0	0	32	207S	23	0	0	23
62RK	1	1	21	23	73TY	Ō	37	0	37	161D	1	0	0	1	69AA	0	17	0	17	109FE	31	0	0	31	211T	0	0	1	1
62RN	11	32	0	43	76ANT	7	0	0	7	162DLS	ō	1	0	1	69AQT	13	9	0	22	127K	12	0	0	12	219W	0	0	9	9
62RNQ	0	32	Ō	32	76ED	ó	4	0	4	162GLS	Ō	4	Ö	4	69AT	31	17	0	48	1315	0	47	0	47	245AS	14	0	0	14
62RNR	11	0	Ō	11	76EG	1	0	0	1	163E	2	14	3	19	69ATD	17	2	0	19	138K	0	0	2	2	245TA	0	2	0	2
62RR	11	1	0	12	76EN	ŝ	16	0	21	163EW	1	14	3	18	69ATN	12	4	0	16	138MI	26	0	0	26	245VA	2	0	0	2
62RRN	10	1	0	11	76ENI	4	12	0	16	163L	ō	29	3	32	69ATS	2	10	0	12	142ITQ	18	56	22	96	248M	0	0	1	1
62RTN	10	1	2	13	76ENR	4	16	0	20	163LE	0	28	3	31	69RA	0	0	11	11	143S	0	3	1	4	253Q	22	1	4	27
63EI	0	22	0	22	76ENT	1	4	0	5	163LG	0	1	0	1	69RT	0	1	12	13	144K	16	U	U	16	267PE	1	U	19	20
63EK	9	1	21	31	76ES	2	37	0	39	163LW	0	23	3	26	69TNT	0	41	0	41	144KA	15	0	U	15	267QE	0	1	4	5
63EN	11	1	2	17	76ESI	2	0	0	2	163EVV 163R	7	0	0	7	70HT	18	0	0	18	144QL	0	2	0	2	270C	0	1	1	2
63ER		4	0	20	76ESN	0	-	0	37	163RG	1	0	0	1	70IAQ	0	9	0	9	144TKH	8	0	0	8	275EL	7	0	0	7
	16	4					37	-			1	0	-		70QT	13	10	12	35	144KR	8	0	0	8	275G	0	0	3	3
63ERN	12	4	0	16	76ET	1	8	0	9	163RW	6	0	0	6	71ATD	0	2	0	2	145HT	1	0	0	1	275K	0	1	5	6

51 Eplets based solely on residue polymorphisms in antibody-inaccessible sequence positions

Eplet	<u>#A</u>	#B	#C	<u>Total</u>	<u>Eplet</u>	#A	#B	#C	<u>Total</u>	<u>Eplet</u>	<u>#A</u>	#B	#C	<u>Total</u>
9D	0	1	6	7	94IL	0	0	1	1	113HD	0	16	1	17
9F	10	0	1	11	94TF	0	0	1	1	113HN	0	26	0	26
9H	0	14	0	14	94TI	25	1	1	27	113YD	0	4	14	18
9S	6	0	2	8	94TL	6	31	17	54	113YH	11	4	0	15
9T	5	0	0	5	94TV	4	0	0	4	113YN	0	9	8	17
9Y	14	44	14	72	94TW	0	16	0	16	113YQ	12	0	0	12
11AM	0	37	0	37	97I	9	0	0	9	113YR	10	0	0	10
11AV	0	3	20	23	97M	13	0	0	13	116D	22	6	0	28
11SM	1	0	0	1	97N	0	3	0	3	116F	0	10	9	19
11SV	34	19	3	56	97R	13	32	18	63	116L	0	11	1	12
21H	0	0	7	7	97S	0	9	0	9	116S	0	15	10	25
24S	0	21	7	28	97T	0	11	0	11	116Y	11	17	3	31
24T	0	17	0	17	97V	0	2	0	2	152A	4	0	4	8
30G	0	1	0	1	97W	0	2	5	7	152E	9	24	18	51
32L	0	14	0	14	99F	4	3	5	12	152V	19	35	0	54
35Q	1	0	3	4	99S	0	1	1	2	156L	17	44	8	69
9411	0	11	3	14	99Y	31	55	13	99	156R	2	3	8	13
										199V	0	2	0	2

Eplets on Non-Luminex Alleles

Comparisons of relevant amino acid configurations between 76ANT-carrying Luminex alleles and non-Luminex alleles

Selected		73	76	77	79	80	Selected	73	3	76	77	79	80	Selected		73	76	77	79	80
Alleles							Alleles		_					Alleles						
A*01:01	LUM	Т	Α	N	G	Т	A*26:06	Т	<u> </u>	V	D	G	Т	A*26:37		Т	Α	N	G	Т
A*01:02		Т	Α	N	G	Т	A*26:07	Т		Α	N	G	Т	A*29:01	LUM	Т	Α	N	G	Т
A*01:03		Т	Α	N	G	Т	A*26:08	Т		Α	N	G	Т	A*29:02	LUM	Т	Α	N	G	Т
A*01:06		Т	_A_	N	G	Т	A*26:09	Т		Α	N	G	Т	A*29:03		Т	Α	N	G	Т
A*01:07		Т	Е	N	G	Т	A*26:10	Т	•	Α	N	G	Т	A*29:04		Т	Α	N	G	Т
A*01:08		Т	Α	N	G	Т	A*26:12	Т	•	Α	N	G	Т	A*29:05		Т	Α	N	G	Т
A*01:09		Т	Α	N	G	Т	A*26:13	Т	•	Α	N	G	Т	A*29:06		Т	Α	N	G	Т
A*01:10		Т	Α	N	G	Т	A*26:14	Т	•	Α	N	G	Т	A*29:07		Т	Α	N	G	Т
A*01:12		Т	Α	N	G	Т	A*26:15	Т	•	Α	N	G	Т	A*29:09		Т	Α	N	G	Т
A*01:13		Т	V	D	G	Т	A*26:16	Т		Α	N	G	Т	A*29:10		Т	Α	N	G	Т
A*01:14		Т	Α	N	G	Т	A*26:17	Т		Α	N	G	Т	A*29:11		Т	Α	N	G	Т
A*01:17		Т	Α	N	G	Т	A*26:18	Т	•	Α	N	G	Т	A*29:12		Т	Α	N	G	T
A*01:19		Т	Α	N	G	Т	A*26:19	Т	•	Α	N	G	Т	A*29:13		Т	Е	S	R	-1
A*01:20		Т	Α	N	G	Т	A*26:20	Т	_	Α	N	G	Т	A*29:14		Т	Α	N	G	Т
A*01:21		Т	Α	N	G	Т	A*26:21	Т	۱ ا	V	D	G	Т	A*29:15		Т	Α	N	G	Т
A*01:23		Т	Α	N	G	T	A*26:22	Т		Α	N	G	Т	A*29:16		Т	Α	N	G	T
A*01:24		Т	Α	N	G	Т	A*26:23	Т		Α	N	G	Т	A*29:17		Т	Α	N	G	Т
A*01:25		Т	Α	N	G	Т	A*26:24	Т	•	Α	N	G	Т	A*29:18		Т	Α	N	G	Т
A*01:26		Т	Α	N	G	Т	A*26:26	Т		Α	N	G	Т	A*29:19		Т	٧	D	G	Т
A*01:28		Т	V	D	G	T	A*26:27	Т		Α	N	G	Т	A*36:01	LUM	Т	Α	N	G	Т
A*01:29		Т	Α	N	G	Т	A*26:28	Т		Α	N	G	Т	A*36:02		Т	Α	N	G	Т
A*01:30		Т	Α	N	G	Т	A*26:29	Т		Α	N	G	Т	A*36:03		Т	Α	N	G	T
A*01:32		Т	Α	N	G	Т	A*26:30	Т	٠ [٧	D	G	Т	A*36:04		Т	Α	N	G	Т
A*01:33		Т	Α	N	G	Т	A*26:31	Т	•	Α	N	G	Т	A*43:01	LUM	Т	Α	N	G	Т
A*26:01	LUM	Т	Α	N	G	T	A*26:32	Т	•	Α	N	G	Т	A*80:01	LUM	Т	Α	N	G	Т
A*26:02		Т	Α	N	G	Т	A*26:33	- 1		Α	N	G	Т	A*11:17		Т	Α	N	G	Т
A*26:03		Т	V	D	G	Т	A*26:34	Т		Α	N	G	Т	A*11:40		Т	Α	N	G	Т
A*26:04		Т	Α	N	G	Т	A*26:35	Т		Α	N	G	Т	A*24:04		Т	Α	N	G	Т
A*26:05		Т	Е	N	G	Т	A*26:36	Т		Α	N	G	Т	A*74:10		Т	Α	N	G	Т

Residue configurations of non-Luminex alleles in relation to an eplet annotated as 44KM₃ and shared between A*01:01 and A*36:01

Alleles		44	45	149	150	151	152	156	158
A*01:01 LUM	44KM ₃	K	M	Α	V	Н	Α	R	V
A*36:01 LUM	44KM ₃	K	M	Α	V	Н	Α	R	V
A*01:02	44KM ₃	K	M	Α	V	Н	Α	R	V
A*01:03	44KM ₃	K	M	Α	V	Н	Α	R	V
A*01:06		K	M	Α	V	Н	Α	L	Α
A*01:07	44KM ₃	K	M	Α	V	Н	Α	R	V
A*01:08	44KM ₃	K	M	Α	V	Н	Α	R	V
A*01:09	44KM ₃	K	M	Α	V	Н	Α	R	V
A*01:10		K	M	Α	Α	R	R	R	V
A*01:12		K	M	Α	Α	Н	V	Q	Α
A*01:13	44KM ₃	K	M	Α	V	Н	Α	R	V
A*01:14	44KM ₃	K	M	Α	V	Н	Α	R	V
A*01:17	44KM ₃	K	M	Α	V	Н	Α	R	V
A*01:19		K	M	Α	Α	Н	V	Q	Α
A*01:20	44KM ₃	K	M	Α	V	Н	Α	R	V
A*01:21		K	M	Α	Α	Н	V	R	V
A*01:23	44KM ₃	K	M	Α	V	Н	Α	R	V
A*01:24	44KM ₃	K	M	Α	V	Н	Α	R	V
A*01:25		K	M	Α	V	Н	Α	Q	V
A*01:26		K	M	Α	Α	Н	Α	R	V
A*01:28	44KM ₃	K	M	Α	V	Н	Α	R	V
A*01:29	44KM ₃	K	M	Α	V	Н	Α	R	V
A*01:30	44KM ₃	K	M	Α	V	Н	Α	R	V
A*01:32	44KM ₃	K	M	Α	V	Н	Α	R	V
A*01:33	44KM ₃	K	M	Α	V	Н	Α	R	V
A*01:35	44KM ₃	K	M	Α	V	Н	Α	R	V
A*36:02		K	M	Α	V	Н	Α	R	Α
A*36:03	44KM ₃	K	M	Α	V	Н	Α	R	٧
A*36:04	44KM ₃	K	M	Α	V	Н	Α	R	V
A*03:18		R	M	Α	V	Н	Α	R	V
A*68:41		R	М	Α	V	Н	V	W	Α

Residue configurations of non-Luminex alleles in relation to the 76ED and 80TLL eplets shared between Luminex alleles B*27:03, B*27:05, B*37:01 and B*47:01

<u>Alleles</u>	76ED/80TLL Eplet	<u>76</u>	<u>77</u>	<u>80</u>	<u>81</u>	<u>82</u>
B*27:03 LUM	76ED and/or 80TLL	E	D	Т	L	L
B*27:05 LUM	76ED and/or 80TLL	E	D	T	L	L
B*37:01 LUM	76ED and/or 80TLL	E	D	T	L	L
B*47:01 LUM	76ED and/or 80TLL	E	D	T	L	L
B*27:07/09/10/13/14/16/17/19/27/28/	76ED and/or 80TLL	E	D	т	L	L
29/32/34/35/37/38/39/41/43/45/46/50	76ED and/or 80TLL	E	D	T	L	L
B*37:02/04/06/07/08/09/12/13, B*47:05	76ED and/or 80TLL	E	D	T	L	L
B*07:27, B*15:43,B*38:17, B*53:03	76ED and/or 80TLL	E	D	T	L	L
B*27:42, B*37:05	76ED only	E	D	N	L	R
B*27:04/06/11/15/20/21/23/24/25/31/36	80TLL only	E	S	Т	L	L
B*27:08 LUM	not76ED/80TLL	E	s	N	L	R
B*27:12/18/26/33/40/44, B*37:11, B*47:02	not76ED/80TLL	E	S	N	L	R
B*37:34, B*47:03	not76ED/80TLL	E	s	N	L	L
B*27:01/02/30, B*37:10, B*47:04	not 76ED/80TLL	E	N	Т	Α	L

Distance between 76D and 82L is 7 Ångstroms

HLAMatchmaker: Examples of Eplets in Class I Sequence Positions

	44	62	65	69	77	 163	184	193	248
A*0101	44KM	62QE	65RNM	66RNH	77ANT	163RG	184P	193PI	248VK
A*0201	44RM	62GE	65RKV	70KAH	77VDT	163TW	184A	193AV	248VK
A*0202	44RM	62GE	65RKV	70KAH	77VDT	163TW	184A	193AV	248VK
A*0203	44RM	62GE	65RKV	70KAH	77VDT	163TW	184A	193AV	248VK
A*0205	44RM	62GE	65RKV	70KAH	77VDT	163TW	184A	193AV	248VK
A*0301	44RM	62QE	65RNV	66RNQ	77VDT	163TW	184P	193PI	248VK
A*0302	44RM	62QE	65RNV	66RNQ	77VDT	163TW	184P	193PI	248VK
A*1101	44RM	62QE	65RNV	66RNQ	77VDT	163RW	184P	193PI	248VK
A*1102	44RM	62QE	65RNV	66RNQ	77VDT	163RW	184P	193PI	248VK
A*2301	44RM	62EE	66GKH	70KAH	77ENI	163TG	184P	193PI	248VK
A*2402	44RM	62EE	66GKH	70KAH	77ENI	163TG	184P	193PI	248VK
A*2403	44RM	62EE	66GKH	70KAH	77ENI	163TW	184P	193PI	248VK
A*2501	44RM	62RN	65RNV	66RNH	77ESI	163RW	184A	193AV	248VK
A*2601	44RM	62RN	65RNV	66RNH	77ANT	163RW	184A	193AV	248VK
A*2901	44RM	62LQ	65RNV	66RNQ	77ANT	163TW	184A	193AV	248VK
A*2902	44RM	62LQ	65RNV	66RNQ	77ANT	163TW	184A	193AV	248VK
A*3001	44RM	62QE	65RNV	66RNQ	77VDT	163TW	184P	193PI	248VK
A*3002	44RM	62QE	65RNV	66RNH	77ENT	163TW	184P	193PI	248VK
A*3101	44RM	62QE	65RNV	66RNH	77VDT	163TW	184P	193AV	248VK

HLA Epitopes

- HLAMatchmaker considers eplets as equivalents to functional epitopes
- Amino acid residues within a 15 Ångstrom radius of eplets can contribute structural HLA epitopes

Four Examples on HLA-A2 molecules

Two strategies to determine the antibody-verified HLA epitope repertoire

- HLAMatchmaker is a theoretical algorithm that predicts HLA epitopes on the HLA molecular surface from stereochemical modeling of epitope-paratope interfaces of antigen-antibody complexes
- 2. An empirical method to analyze antibody reactivity with HLA-typed panels and the identification of amino acid configurations shared between reactive alleles

Two strategies to determine the HLA epitope repertoire

- HLAMatchmaker is a theoretical algorithm that predicts HLA epitopes on the HLA molecular surface from stereochemical modeling of epitope-paratope interfaces of antigen-antibody complexes
- 2. An empirical method to analyze antibody reactivity with HLA-typed panels and the identification of amino acid configurations shared between reactive alleles

Terasaki and his group used single allele Luminex panels tested with mouse monoclonal antibodies and (absorbed/eluted) alloantibodies

They reported 103 HLA-A,B.C epitopes annotated with a numbering system (El-Awar et al.: *Transplantation* 84:532-540, 2007)

How do "Terasaki's" epitopes correspond to eplets?

Tissue Antigens, 74:117-133, 2009; 74:134-146, 2009

Results

50/103 Terasaki's class I epitopes correspond to eplets

Examples of Terasaki's epitopes that correspond to eplets ^a

TerEp	Antibody Reactive Antigens	Residue Description of TerEp	<u>Eplet</u>
#19	A2,23,24,68,69	127K	127K
#3	A23, 24	65G	65GKA
#28	A23,24,80	62E	62EE
#14	A1,23,2402,80; B76	166D/ 167G	167DG
#24	A23,24,25,32; B13,2705,37,38,	82L/ 83R	82LR
	44,47,49,51,52,53,57,58,59,63,77		
#23	A23,24,25,32; B38,49,51, 52,53,57,58,59,63,77	80I	79RI
#217	B13,2705,37,44,47	76E+80T/ 79R+80T/ 80T+82L/ 80T+83R	79RT
#245	B35,4005,46,49,50,51,52,53,56,	163L+167W	163LW
	57,58,62,63,71,72,75, 77,78; Cw9,w10		
#35	B18,35,37,51,52,53,58,78	45T	44RT
#222	A6602; B7,13,27,47,48,60,61,73,81; Cw2,w17	163E+166E/ 163E+167W	163EW
#39	Cw2,w9,w10,w15	21H	21H
#246	B46,73; Cw1,w7,w8,w9,w10,w12,w14,w16	76V+80N/ 73T+76V+79R	80VRN
#421	B46; Cw1,w8,w9,w10,w14,w16	(73T)+76V+80N+90A	77TVS

^a These epitopes are on A24, B57 and Cw3

Molecular locations of Terasaki's epitopes and corresponding eplets

Epitopes Defined by Eplet Pairs

 Duquesnoy, Mulder, et al: HLAMatchmaker-Based Analysis of Human Monoclonal Antibody Reactivity Demonstrates the Importance of an Additional Contact Site for Specific Recognition of Triplet-Defined Epitopes Human Immunology 66: 749-761 2005

Antibody Producer: A2,A68; B7,B27; Cw2,Cw7
Mismatched triplets on immunizing A3:
62QE,142MI,144TKR,151AHE,163DT

Hu mAb	Specific epitope		
OK2H12	62QE + self 56G		
OK4F9 and OKF10	142MI + self 79GTLRG		
OK5A3	144TKR + self 151H		

Reactivity of mAb OK2H12 with 62Qe-carrying alleles

			Lymphocytotoxicity		Antigen-Binding	
Allele	Triplets shared with HLA-A3	Ν	%Pos Rx	Rx Strength	Flow Beads	Elisa
A*0301	62Qe ,142ml,144tKr,151aHe,163dT	103	99%	7.6	++	++
A*0101	62Qe ,142ml,144tKr	61	100%	7.6	++	+
A*0103	62Qe ,142ml,144tKr	4	75%	6.3	nd	nd
A*1101	62Qe ,142ml,144tKr	83	96%	7.7	++	++
A*3201	62Qe ,142ml	29	100%	7.8	++	++
A*3601	62Qe ,142ml,144tKr	6	83%	6.5	nd	+
A*7401	62Qe ,142ml	8	100%	7.5	nd	++
A*3001	62Qe ,142ml	12	0%	1.0	Neg	Neg
A*3002	62Qe ,142ml	16	0%	1.0	nd	nd
A*3101	62Qe ,142ml	38	8%	1.6	Neg	Neg
A*2301	142ml	31	0%	1.0	Neg	Neg
A*2402	142ml,144tKr	107	4%	1.2	nd	nd
A*2403	142ml,144tKr	4	0%	1.0	Neg	nd
A*2407	142ml,144tKr	6	0%	1.0	nd	nd
A*2501	142ml,151aHe	11	0%	1.0	Neg	Neg
A*2601	142ml,151aHe	36	6%	1.3	Neg	Neg
A*2901	142ml	24	4%	1.2	Neg	Neg
A*3301	142ml	15	0%	1.0	Neg	Neg
A*3303	142ml	16	0%	1.0	nd	Neg
A*3401	142ml,151aHe	22	3%	1.2	nd	Neg
A*3402	142ml,151aHe	11	9%	1.7	Neg	nd
A*6601	142ml,151aHe	14	0%	1.0	Neg	Neg
A*8001	142ml,144tKr	6	0%	1.0	Neg	Neg
A2/A28	none	67	1%	1.1	Neg	Neg

56G is the only residue shared between HLA-A3 and 62Qe-carrying alleles that react with OK2H12

Shared Polymorphic Amino Acids in the 62Qe-Defined Specificity Site

Shared Polymorphic Amino Acids in the 62Qe-Defined Specificity Site

Shared Polymorphic Amino Acids in the 62Qe-Defined Specificity Site

Many Residue Substitutions on HLA do not affect Reactivity with Alloantibody

Permissive Residue Substitutions that Do Not Inhibit Reactivity of the 62Qe+56G-Specific mAb

	Rx	9	17	35	44	45	<u>56</u>	62	63	65	66	67	70	73	74	76	77	79	80	81	82	83
A*0301	Pos	F	R	R	R	М	<u>G</u>	Q	E	R	N	V	Q	Т	D	V	D	G	Т	L	R	G
A*0101	Pos	F	R	R	K	M	G	Q	E	R	N	M	Н	T	D	A	\overline{N}	G	T	L	R	G
A*0103	Pos	F	R	R	K	M	G	Q	E	R	N	M	Н	Т	D	Α	Ν	G	T	L	R	G
A*1101	Pos	Y	R	R	R	M	<u>G</u>	Q	E	R	N	V	Q	T	D	V	D	G	T	L	R	G
A*3201	Pos	F	R	R	R	M	G	Q	E	R	N	V	Н	Т	D	E	S	R	T	Α	L	R
A*3601	Pos	F	R	R	K	M	G	Q	E	R	N	M	Н	T	D	Α	Ν	G	T	L	R	G
A*7401	Pos	F	R	R	R	M	<u>G</u>	Q	E	R	N	V	Н	Т	D	V	D	G	T	L	R	G
A*3001	Neg	S	S	R	R	М	R	Q	Е	R	N	V	Q	Т	D	V	D	G	Т		R	G
A*3002	Neg	S	S	R	R	M	R	Q	Ē	R	N	V	Н	Ť	D	Ė	N	G	÷	ī	R	G
A*3101	Neg	T	R	R	R	M	R	Q	Ē	R	N	V	н	Ť	D	V	D	G	÷	Ť	R	G
, , , , , ,				• •	- `		<u></u>					•		•		_			•	_	• •	$\ddot{}$
		100	111	116	107	120	4.40	142	111	115	140	150	151	150	150	150	161	162	166	167	171	104
		109	114	116			142	143			149	150	151	152	156	158	161	163	166		171	184
A*0301	Pos	109 F	114 R	116 D	127 N	138 M	142 	143 T	144 K	145 R	149 A	150 A	151 H	152 E	156 L	158 A	161 D	163 T		167	171 Y	184 P
A*0301 A*0101	Pos Pos						142 	143 T T							156 L R	158 A V	161 D E	163 T R			171 Y Y	
		F	R		Ν	M	142 	143 T T T	K	R	Α				156 L R R	158 A V V	161 D E E	163 T R R		W	171 Y Y Y	Р
A*0101	Pos	F F	R R		N N	M	142 	143 T T T	K K	R R	A A				156 L R R Q	158 A V V	161 D E E E	163 T R R R		W	171 Y Y Y Y	P P
A*0101 A*0103	Pos Pos	F F	R R R		N N	M	142 	143 T T T T	K K	R R R	A A A	A V V			156 R R Q	A V V A A	161 D E E E	163 T R R R R		W	171 Y Y Y Y Y Y Y	P P P
A*0101 A*0103 A*1101	Pos Pos Pos	F F	R R R		Z Z Z Z	M M M	142 	143 T T T T T	K K	R R R R	A A A A	A V V A			L R R Q L	A V V A A	DEE	163 T R R R T		W	171 Y Y Y Y Y Y Y Y Y Y	P P P
A*0101 A*0103 A*1101 A*3201	Pos Pos Pos Pos	F F F	R R R R		Z Z Z Z	M M M M	142 	143 T T T T T T	K K K K	R R R R	A A A A	A V V A			156 R R Q L	A V V A A V	DEE	163 T R R R T T		W	171 Y Y Y Y Y Y Y Y Y Y Y	P P P A
A*0101 A*0103 A*1101 A*3201 A*3601 A*7401	Pos Pos Pos Pos Pos	F F F L F	R R R R Q R	D D D D D	X	M M M M M M	142 	143 T T T T T T	K K K Q K	R R R R R R	A A A A A A	A V A A V	H H R R	EAAAVAV	156 R R Q L R	A V V A A V		TRRRRTTTT		W G W W W W	171 Y Y Y Y Y Y Y Y Y Y Y Y	P P P A P A
A*0101 A*0103 A*1101 A*3201 A*3601 A*7401	Pos Pos Pos Pos Pos Neg	F F F L F	R R R R	D D D D D	Z Z Z Z Z Z Z	M M M M M M	142 	143 T T T T T T	K K K K	R R R R R R R R	A A A A A A A	A V A A A			156 R R Q L R	A V A A V A	DEE	TRRRRTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT		W G W W W W	171 Y Y Y Y Y Y Y Y Y Y Y	PPPPAPAPAPA
A*0101 A*0103 A*1101 A*3201 A*3601 A*7401	Pos Pos Pos Pos Pos	F F F L F	R R R R Q R	D D D D D	X	M M M M M M	142 	143 T T T T T T T	K K K Q K	R R R R R R	A A A A A A	A V A A V	H H R R	EAAAVAV	156 R R Q L R L	A V V A A V A A		TRRRRTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT		W G W W W W	171 Y Y Y Y Y Y Y Y Y Y Y Y Y	P P P A P A

Locations of Permissive Polymorphic Residues for 62Qe+s56G-Specific mAb Reactivity

Human Monoclonal Antibody Reactivity with HLA Class I Epitopes Defined by Pairs of Mismatched Eplets and Self Eplets

Rene Duquesnoy¹ Marilyn Marrari¹, Justin Mostecki², Arend Mulder³, Frans Claas³ and Ivan Balazs²

¹ University of Pittsburgh Medical Center ²Gen-Probe Transplant Diagnostics, Stamford, CT ³ Leiden University Medical Center, The Netherlands

Monoclonal: HDG11G Antibody Producer: A2, 24; B7,40;Cw7,-Immunizer: B35 Mismatched eplets: 44RT,63NQIN,65QIF,131S,163LW,193PV

Monoclonal: HDG11G Antibody Producer: A2, 24; B7,40;Cw7,-Immunizer: B35 Mismatched eplets: 44RT,63NQIN,65QIF,131S,163LW,193PV

62QRI is a self eplet on B7 and B40 of the antibody producer

Monoclonal: WK1D12 Antibody producer A1,-; B8,-;Cw7,-Immunizer: B27 Mismatched eplets: 32L,62REI,65QIA,71KA,76EDT,79ERT,82LR,131S,**163EW**

73TE is a self eplet on B8 of the antibody producer

This antibody reacts with all Bw4 antigens except A25 and B13
Monoclonal VDK8F7 Antibody producer: A3, 31; B35,-;Cw4,Immunizer: B37 Mismatched eplets:
62REI,66QIN,65QIS,73TTD,76EDT,79ERT,82LR,156DA

145RAA is a self eplet on the alleles of the antibody producer

Marrari M, Mostecki J, Mulder A, Balazs I, Claas F, Duquesnoy R. Human Monoclonal Antibody Reactivity with HLA Class I Epitopes Defined by Pairs of Mismatched Eplets and Self Eplets. Transplantation 2010; 90:1468-72

	HLA type		Eplet		
Antibody	Antibody producer	lmm	Specificity	Distance	Reactive Antigens
HDG4B1	A2, 24; B7, 60; Cw7, w10	A32	65RNA+s79ERI	11 Å	A25/A32/B17/B63
MUL9E11	A2, 25; B18, 51; Cw12, 15	B55	69AA-s76E	8 Å	B7/B*27/B42/B54/B55/B56/B57/B58/B63/B67/B81/B82
MUL9F4	A2, 25; B18, 51; Cw12, 15	B55	65QIA-s76ES	7 Å	B7/B*2708/B42/B54/B55/B56/B67/B81/B82
MUL4C8	A2, 25; B18, 51; Cw12, 15	A11	144KR+s151H	7 Å	A1/A3/A11/A24/A36
BRO11F6	A26, 68; B38, 44; Cw7	??	144KR+s151H	7 Å	A1/A3/A11/A24/A36
OK2H12	A2, 28; B7, 27; Cw2, w7	А3	62QE-s56G	11 Å	A1/A3/A11/A32/A36/A74
OK4F10	A2, 28; B7, 27; Cw2, w7	А3	142MI+s79GT	13 Å	A1/A3/A11/A26/A29/A30/A31/A33/A34/A36/A43/A66/A74/A80
OK 4F9	A2, 28; B7, 27; Cw2, w7	А3	142MI+s79GT	13 Å	A1/A3/A11/A26/A29/A30/A31/A33/A34/A36/A43/A66/A74/A80
VDK8C7	A3, 31; B35,-; Cw4,-	B37	82LR-s145RAA	14 Å	All Bw4 except A25 and B13
WK1D12	A1,-; B8,-; Cw7,-	?	163EW+s73TE	16 Å	B7/B13/B27/B47/B48/B40/B81
HA5C2	A1, 32; B8, 61; Cw2, w7	A2?	L42TKH-149AAF	· 3 Å	A2 (not A*0203)/A28
HDG11G12	2A2, 24; B7, 60; Cw7, w10	B35	163LW+s62RQI	8 Å	B15/B35/B49/B50/B51/B52/B53/B56/B78
			Average	10 Å	

Summary of Terasaki's epitopes and their corresponding eplets

Locus	TerEps	Eplets	Eplet pairs	Eplets with substitutions	No eplets
ABCa	103	50	31	12	10
DRb	60	45	3	12	2
DQ ^b	18	13	1	3	1

^a Duquesnoy RJ and Marrari M, *Tissue Antigens*, 74:117-133, **2009**.

b Marrari M and Duquesnoy RJ, Tissue Antigens, 74:134-146, 2009.

16th International Workshop Project International Registry of HLA Epitopes

http://www.epregistry.com.br

Duquesnoy RJ, Marrari M, da M Sousa LCD, de M. Barroso JRP, de SE Aita KM, da Silva AS and do Monte SJH: 16th IHIW: a website for the antibody-defined HLA epitope registry. Int J. Immunogenetics, 40: 54-59, 2013

Databases for HLA-ABC, HLADRB1/3/4/5, HLA-DQA-B, HLA-DPA-B and MICA

The HLA Epitope Registry has now the updated class I eplet repertoire

Recording Antibody-Defined Epitopes in Registry

- Each database in the HLA Epitope Registry comprises a list of potential epitopes that can be predicted to serve as recognition sites for specific antibodies
- The intention is to document epitopes that have been verified experimentally with informative specific antibodies

Recording Antibody-Defined Epitopes in Registry

- Each database in the HLA Epitope Registry comprises a list of potential epitopes that can be predicted to serve as recognition sites for specific antibodies
- The intention is to document epitopes that have been verified experimentally with informative specific antibodies
- Depending on the completeness of antibody reactivity information, there are two categories of antibody-defined epitopes: "confirmed" or "provisional"
- Analogous to the original serological assignments of HLA antigens during the early international workshops, the provisional status will be upgraded to confirmed if sufficient additional verification becomes available

Recording Antibody-Defined Epitopes in Registry

- Each database in the HLA Epitope Registry comprises a list of potential epitopes that can be predicted to serve as recognition sites for specific antibodies
- The intention is to document epitopes that have been verified experimentally with informative specific antibodies
- Depending on the completeness of antibody reactivity information, there are two categories of antibody-defined epitopes: "confirmed" or "provisional"
- Analogous to the original serological assignments of HLA antigens during the early international workshops, the provisional status will be upgraded to confirmed if sufficient additional verification becomes available
- For each antibody-defined epitope a link on the webpage leads to detailed information about antibody reactivity patterns

Antibody Verification of HLA Epitopes

- Duquesnoy RJ, Marrari M, Mulder A, da M. Sousa LCD, Da Silva AS, do Monte SJH.
 'First Report on the Antibody Verification of HLA-ABC Epitopes Recorded in the HLA Epitope Registry'. *Tissue Antigens* 83:391-400, 2014
 - 97 HLA-ABC antibody-verified epitopes have been recorded, 62 correspond to eplets and
 35 are defined by eplets paired with other residue configurations
- Duquesnoy RJ, Marrari M, Tambur A, da Mata Sousa LCD, Da Silva AS, do Monte SJH. 'First Report on the Antibody Verification of HLA-DR, HLA-DQ and HLA-DP Epitopes Recorded in the HLA Epitope Registry' *Human Immunology* 75:1097-1103, 2014
 - 24 HLA-DRB1/3/4/5, 15 DQB, 3 DQA and 8 DPB antibody-verified epitopes
- Duquesnoy RJ, Marrari M, Mostecki J, Da Silva AS, da Mata Sousa LCD, do Monte SJH. 'First Report on the Antibody Verification of MICA Epitopes Recorded in the HLA Epitope Registry ' Int J Immunogenetics 41: 370-377, 2014
 - 21 MICA epitopes verified with antibodies which have primarily been tested in Luminex assays with single alleles

Antibody-verified HLA-ABC Epitopes corresponding to Eplets and Recorded in the Registry (October 2014)

Antibody	Antibody	Antibody	Antibody	Antibody	Antibody	Antibody
Eplet Verified	Eplet Verified	Eplet Verified	Eplet Verified	Eplet Verified	Eplet Verified	Eplet Verified
9D	62RN	69ATS	76ES	102HV	151AHE	173K Confirmed
9F	62RNQ	69RA	76ESI Confirmed	103L	151AHV	177DK
9Н	62RNR Provisional	69RT	76ESN Confirmed	103M ₂	151ARV	177DT
98	62RR Provisional	69TNT Provisional	76ET	1058	151H	177KT Provisional
9T	62RRN	70HT	76VDT	107W Confirmed	152A	180E Confirmed
9Y	62RTN	70IAQ Provisional	76VRN Provisional	109F	152E	182TDP
11AM	63EI	70QT	76VS	109FE	152HA	184A
11AV	63EK	71ATD Provisional	77NGT	113HD	152RA	184H
11SM	63EN	71ATN	77SRN	113HN	152RE	184R₃
16S	63ER	71ATS	79GT	113YD	151RR Provisional	186R
17RS Provisional	63ERN	71HS	80I Confirmed	113YH	152RT	193AV
17WR	63NN	71KA	80K Provisional	113YN	152RW Provisional	193LV
19K	65GK Confirmed	71QS	80N Confirmed	113YQ	152V	193PI
1 C	65QIA Confirmed	71SA Confirmed	80T	113YR	156DA Provisional	193PL₃ Confirmed
21H Confirmed	65QKR	71STN	AT08	116D	156L	193PV Provisional
245	65QNR	71TTD	80TL	116F	156LA	194V
24T	65RA	71TTN	80TLR Provisional	116L	156QA	199V
30G	65RK	71TTS Provisional	81ALR	1168	156R	2075
32L	65RNA	72QTD	82LR Confirmed	116Y	156RA	211T
35Q	661	73AN	90AR	11SV	156WA	219W Confirmed
41T Confirmed	66IC	73AS	90D Provisional	127K Confirmed	158T Confirmed	245AS
43RRM	66ICT	73ID	9411	1315	161D Confirmed	245TA
44KM₃ Confirmed	66IF	73TD	94IL	138K Provisional	162DLS	245VA
44RG	66IS	73TDA	94TF	138MI	162GLS	248M
44RM	66IY	73TDE	94TI	142ITQ	163E	253Q Provisional
44RMA Confirmed	66IYT	73TDV	94TL	1435	163EW Confirmed	267PE
44RME	66K	73TN	94TV	144K Provisional		267QE Provisional
44RT Provisional	66KA	73TS	94TW	144KA	163LE	270C
45EE 45KE	66KAH	73TV	97I 97M	144KR Confirmed	163LG 163LW Confirmed	275EL 275G
45KE 56R Confirmed	66N 66NAH	73TVD 73TVN	97M 97N	144QL Confirmed 144TKH	163LW Confirmed 163R Provisional	275G 275K
62EE Provisional	66NAQ	73TVS Provisional	97N 97R	1441KH 145HT	163RG Confirmed	2/3N
62GE Confirmed	66NM	73TY	97K 97S	145HA Provisional		
62GK ₂ Confirmed	66NV	76ANT Confirmed	97T	145RT Provisional	163T	
62GRN Confirmed	66RKQ	76ED	971 97V	145L Confirmed		
62LQ Confirmed	69AA Confirmed	76ED 76EG	97V 97W	145L Confirmed	163TEW	
62QE	69AQT	76EG 76EN	97W 99F	149AH 149TAH Confirmed	166DG Confirmed	
62REN	69AQT	76ENI	99F 99S	149AAH Confirmed	166ES	
62RER	69ATD	76ENR	99Y	150AH	170RH	
62RK	69ATN	76ENT	102DV	151AHA Confirmed	170RY	

Antibody-verified HLA-ABC Epitopes corresponding to Eplet Pairs and Recorded in the Registry (October 2014)

HLA-A,B,C Epitope	Polymorphic Residue Description	HLA-A,B,C Epitope	Polymorphic Residue Description
44RT+69TNT	44R45T46E paired with 69T70N71T	82LR+138T	79R82L83R paired with 138T
62QE+56G	62Q63E65R66N paired with self56G	82LR+144Q	79R82L83R paired with 144Q
62QE+151H	62Q63E65R66N paired with self151H	82LR+144QR	79R82L83R paired with 144Q145R
62RN+163TW	62R63N paired with 163T166W	82LR+145R	79R82L83Rpaired with 145R
65QIA+76ESN	65Q66I69A paired with 76E77S80N	82LR+145RA	79R82L83R paired with145R149A
65QK+76VS	62R65Q66K67Y69R paired with self 76VS	90D+138M	90D91G paired with 138M
65RNA+80I	65R66N69A paired with self80I82L83R	131S+163LW	131S paired with 163L166W
66IF+163TW	66I67F69T paired with 163T166W	131S+163T	131S paired with 163T166W
69AA+80N	69A71A paired with self80N	138MI+79GT	138M142I143T145R paired with 79G80T
69TNT+80N	69T70N71T paired with 80N	143S+76ESN	142I143S144Q145R paired with self 76ESN
76ENI+62RE	76E77N79R80I paired with 62R62E	144K+76DVT	144K paired with 76DVT
79GT+19E	79G80T81L82R83G paired with 19E	144KR+151H	142I143T144K145R paired with self151H
80I+65QI	79R80I81A82L83R paired with 65Q66I	163EW+73TE	162G163E166E167W paired with 73T76E
80I+90A	79R80I81A82L83R paired with 90A or 145T	163LW+65QI	162G163L166E167Wpaired with self 65Q66I
80I+151RE	79R80I81A82L83R paired with 151R152E	163TEW+65QI	163T166E167W paired with 65Q66i
82LR+90A	79R82L83R paired with 90A	163TEW+103L	163T166E167Wpaired with 103L
82LR+138M	79R82L83R paired with 138M		

Example of a record of an antibody-verified HLA-A epitope

PANEL	OL MFI	GP MFI
Positive control	9935	15973
Negative control	31	127
Immunizing allele: 144TKH+ A*02:01	16165	17273
144TKH+ A*02:02	nt	17579
144TKH+ A*02:03	21200	17606
144TKH+ A*02:05	nt	18235
144TKH+ A*02:06	22505	nt
144TKH+ A*68:01	17886	18358
144TKH+ A*68:02	18034	17741
144TKH+ A*69:01	19158	12210
Self Alleles	35 ± 16	70 ± 21
Other 144TKH-negative Alleles	31 ± 10	89 ± 30

Example of a record of an antibody-verifiedHLA-B epitope

Epitope: 41T (confirmed) on B13,B40,B41,B44,B45,B47,B49,B50

Report Date: 21Feb2012

Duquesnoy et al *Human Immunology* 73: 267-77, 2012

Pregnancy induced human monoclonal antibody ROU9A6 (IgG) from Arend Mulder (Leiden):

Antibody producer: HLA-A1, A25; B8, B18; Cw7. Immunizer: HLA-A2; B44, B60; Cw5, w10.

PANEL OL MFI GP MFI Positive control 9488 nt Negative control 9 nt 15174 41T+ B*13:01 nt 41T+ B*13:02 19404 18245 41T+ B*40:01 10610 22974 41T+ B*40:02 18522 21031 41T+ B*40:06 16626 nt 20733 41T+ B*41:01 21957 41T+ B*44:02 18295 7464 Immunizing allele: 41T+ B*44:03 18305 14695 21450 19061 41T+ B*45:01 41T+ B*47:01 17208 20014 41T+ B*49:01 13830 15192 41T+ B*50:01 17934 12216 Self Alleles 11±2 68 ± 12 Other 41T-negative Alleles 76 ±232 81 ± 41

El-Awar et al, Human Immunology 68: 170-180, 2007: Serum eluate W7248.BO (absorbed with B*44:02 cells, no

information on HLA types of antibody producer/immunizer)
Equivalent to TerEp #21

Fernandez-Vina et al, in Immunobiology of the Human MHC vol. I, J.A. Hansen (Ed), pp 890-931, 2006:

ROU9A6 (13-WS 0120) positive with HLA-B*13:01, *13:02, *13:04, *40:01, *40:02, *40:04, *40:06, *40:11, *40:19, *40:30, *41:01, *41:02, *44:02, *44:03, *44:04, *44:21, *45:01, *47:01, *47:02, *47:03, *49:01, *50:01, *50:02 in CDC assays in 13th IHWS.

Example of a record of an antibody-verified HLA-C epitope

PANEL	OL MFI	GP MFI
Positive control	nt	nt
Negative control	10	1
219W+ C*01:02	13483	7444
219W+ C*03:02	11733	nt
Immunizing allele: 219W+ C*03:03	13204	9740
219W+ C*03:04	14135	10896
219W+ C*04:01	7073	4549
219W+ C*04:03	nt	7939
219W+ C*14:02	12176	10036
219W+ C*18:01	nt	10985
219W+ C*18:02	12659	nt
Self Alleles	83 ± 110	11 ± 1
Other 219W-negative Alleles	109 ± 259	9 ± 3

Newly Antibody-Verified Epitopes

- For a successful registry we need contributions by HLA professionals who have identified antibodies specific for new and not so well described epitopes
- From the website one can download instructions how to submit information about epitope-specific antibody reactivity