Last Time

What does "Markov" mean in "Markov Decision Process"?

$$P(s_{++1}|s_{+,...,s_o}) = P(s_{++1}|s_{+})$$

 $s_{++1} = s_{+,...,s_o} = s_{+}$

• What is a **Markov decision process**?

- What is a **Markov decision process**?
- What is a **policy**?

- What is a **Markov decision process**?
- What is a **policy**?
- How do we **evaluate** policies?

Decision Network

Decision Network

Decision Network

Chance node

Decision Network

Chance node

Decision Network

Chance node

Decision node

Decision Network

Chance node

Decision node

Decision Network

Chance node

Decision node

Utility node

Decision Network

MDP Dynamic Decision Network

Chance node

Decision node

Utility node

Decision Network

MDP Dynamic Decision Network

Chance node

Decision node

Utility node

Decision Network

Decision node

MDP Dynamic Decision Network

Decision Network

Decision node

MDP Dynamic Decision Network

Decision Network

MDP Dynamic Decision Network

Decision Network

MDP Dynamic Decision Network

$$ext{maximize} \quad \mathrm{E}\left[\sum_{t=1}^{\infty} r_t
ight]$$

Decision Network

Decision node

MDP Dynamic Decision Network

$$ext{maximize} \quad \mathrm{E}\left[\sum_{t=1}^{\infty} r_t
ight] \qquad \mathsf{Not well formulated!}$$

Decision Network

Decision node

MDP Dynamic Decision Network

1. Finite time

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T} r_{t}
ight]$$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T} r_{t}
ight]$$

2. Average reward

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T}r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty} \mathrm{E}\left[rac{1}{n}\sum_{t=0}^n r_t
ight].$$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T} r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty}\!\mathrm{E}\left[rac{1}{n}\sum_{t=0}^n r_t
ight].$$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T}r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty} \mathrm{E}\left[rac{1}{n}\sum_{t=0}^n r_t
ight].$$

$$\mathrm{E}\left[\sum_{t=0}^{\infty}\gamma^{t}r_{t}
ight]$$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T} r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty} \mathrm{E}\left[rac{1}{n}\sum_{t=0}^n r_t
ight].$$

3. Discounting

$$\mathrm{E}\left[\sum_{t=0}^{\infty}\gamma^{t}r_{t}
ight]$$

discount $\gamma \in [0,1)$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T} r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty}\!\mathrm{E}\left[rac{1}{n}\sum_{t=0}^n r_t
ight]$$

$$ext{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t
ight] \qquad egin{aligned} ext{discount } \gamma \in [0,1) \ ext{typically 0.9, 0.95, 0.99} \end{aligned}$$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T} r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty}\!\mathrm{E}\left[rac{1}{n}\sum_{t=0}^n r_t
ight]$$

$$ext{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t
ight] \qquad egin{aligned} ext{discount } \gamma \in [0,1) \ ext{typically 0.9, 0.95, 0.99} \end{aligned}$$

if
$$\underline{r} \leq r_t \leq ar{r}$$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T} r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty}\!\mathrm{E}\left[rac{1}{n}\sum_{t=0}^n r_t
ight]$$

$$ext{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t
ight] \qquad egin{aligned} ext{discount } \gamma \in [0,1) \ ext{typically 0.9, 0.95, 0.99} \end{aligned}$$

if
$$\underline{r} \leq r_t \leq ar{r}$$

$$rac{ar{r}}{1-\gamma} \leq \sum_{t=0}^{\infty} \gamma^t r_t \leq rac{ar{r}}{1-\gamma}$$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T}r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty}\!\mathrm{E}\left[rac{1}{n}\sum_{t=0}^n r_t
ight]$$

3. Discounting

$$ext{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t
ight] \qquad egin{aligned} ext{discount } \gamma \in [0,1) \ ext{typically 0.9, 0.95, 0.99} \end{aligned}$$

if
$$\underline{r} \leq r_t \leq ar{r}$$

4. Terminal States

$$rac{r}{1-\gamma} \leq \sum_{t=0}^{\infty} \gamma^t r_t \leq rac{ar{r}}{1-\gamma}$$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T} r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty}\!\mathrm{E}\left[rac{1}{n}\sum_{t=0}^n r_t
ight]$$

3. Discounting

$$\mathrm{E}\left[\sum_{t=0}^{\infty}\gamma^{t}r_{t}
ight] \qquad egin{aligned} \mathsf{discount}\ \gamma\in[0,1) \ \mathsf{typically}\ 0.9,\,0.95,\,0.99 \end{aligned}$$

if
$$\underline{r} \leq r_t \leq ar{r}$$

4. Terminal States

Infinite time, but a terminal state (no reward, no leaving) is always reached with probability 1.

$$rac{ar{r}}{1-\gamma} \leq \sum_{t=0}^{\infty} \gamma^t r_t \leq rac{ar{r}}{1-\gamma}$$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T} r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty}\!\mathrm{E}\left[rac{1}{n}\sum_{t=0}^n r_t
ight]$$

3. Discounting

$$ext{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t
ight] ext{discount } \gamma \in [0,1) \ ext{typically 0.9, 0.95, 0.99}$$

if
$$\underline{r} \leq r_t \leq ar{r}$$

4. Terminal States

Infinite time, but a terminal state (no reward, no leaving) is always reached with probability 1.

$$rac{ar{r}}{1-\gamma} \leq \sum_{t=0}^{\infty} \gamma^t r_t \leq rac{ar{r}}{1-\gamma}$$

MDP "Tuple Definition"

 (S, A, T, R, γ)

 (S, A, T, R, γ) (and b in some contexts)

• S (state space) - set of all possible states

 (S, A, T, R, γ) (and b in some contexts)

ullet S (state space) - set of all possible states

 $\{1, 2, 3\}$

 (S, A, T, R, γ) (and b in some contexts)

ullet S (state space) - set of all possible states

 $\{1, 2, 3\}$

 $\begin{pmatrix} x \\ y \\ z \\ u \\ y \end{pmatrix}$

 (S, A, T, R, γ) (and b in some contexts)

ullet S (state space) - set of all possible states

 $\{1, 2, 3\}$

 (S, A, T, R, γ) (and b in some contexts)

ullet S (state space) - set of all possible states

$$\{1,2,3\}$$
 \mathbb{R}^2 $\{0,1\} imes\mathbb{R}^4$

$$(S, A, T, R, \gamma)$$
 (and b in some contexts)

• S (state space) - set of all possible states

$$\{1,2,3\} \qquad (x,y) \in \mathbb{R}^2 \quad \{0,1\} imes \mathbb{R}^4$$

 (S, A, T, R, γ) (and b in some contexts)

ullet S (state space) - set of all possible states

$$\{1,2,3\} \hspace{0.1in} (x,y) \in \mathbb{R}^2 \hspace{0.1in} \{0,1\} imes \mathbb{R}^4$$
 {healthy, pre-cancer, cancer} $(s,i,r) \in \mathbb{N}^3$

- ullet S (state space) set of all possible states
- $\{1,2,3\} \hspace{0.1in} (x,y) \in \mathbb{R}^2 \hspace{0.1in} \{0,1\} imes \mathbb{R}^4$ {healthy, pre-cancer, cancer} $(s,i,r) \in \mathbb{N}^3$
- *A* (action space) set of all possible actions

- ullet S (state space) set of all possible states $\{1,2,3\} \quad (x,y) \in \mathbb{R}^2 \quad \{0,1\} imes \mathbb{R}^4 \}$
- A (action space) set of all possible actions $\{1,2,3\}$

 (S, A, T, R, γ) (and b in some contexts)

- ullet S (state space) set of all possible states
- A (action space) set of all possible actions $\{1,2,3\}$

$$\{1,2,3\} \qquad (x,y) \in \mathbb{R}^2 \quad \left\{0,1
ight\} imes \mathbb{R}^4$$

{healthy, pre-cancer, cancer} $(s,i,r) \in \mathbb{N}^3$

 (S, A, T, R, γ) (and b in some contexts)

- ullet S (state space) set of all possible states
- ullet A (action space) set of all possible actions $\{1,2,3\}$ \mathbb{R}^2

{healthy, pre-cancer, cancer} $(s,i,r) \in \mathbb{N}^3$

 (S, A, T, R, γ) (and b in some contexts)

- ullet S (state space) set of all possible states
- *A* (action space) set of all possible actions

$$\{1,2,3\} \qquad (x,y) \in \mathbb{R}^2 \quad \{0,1\} imes \mathbb{R}^4$$

 $\{ ext{healthy, pre-cancer, cancer}\} \qquad (s,i,r) \in \mathbb{N}^3$

$$\{1,2,3\}$$
 \mathbb{R}^2 $\{0,1\} imes\mathbb{R}^2$

 (S, A, T, R, γ) (and b in some contexts)

• S (state space) - set of all possible states $\begin{cases} \{1,2,3\} & (x,y) \in \mathbb{R}^2 \quad \{0,1\} \times \mathbb{R}^4 \\ \{\text{healthy, pre-cancer, cancer}\} & (s,i,r) \in \mathbb{N}^3 \end{cases}$ • A (action space) - set of all possible actions $\{1,2,3\} \qquad \mathbb{R}^2 \qquad \{0,1\} \times \mathbb{R}^2$

{test, wait, treat}

ullet T (transition distribution) - explicit or implicit ("generative") model of how the state changes

- ullet S (state space) set of all possible states $\{1,2,3\} \quad (x,y) \in \mathbb{R}^2 \quad \{0,1\} imes \mathbb{R}^4 \ \ \{ ext{healthy, pre-cancer, cancer} \} \quad (s,i,r) \in \mathbb{N}^3$
- ullet A (action space) set of all possible actions $\{1,2,3\}$ \mathbb{R}^2 $\{0,1\} imes\mathbb{R}^2$
- T (transition distribution) explicit or implicit ("generative") $T(s'\mid s,a)$ model of how the state changes

- ullet S (state space) set of all possible states $\{1,2,3\} \quad (x,y) \in \mathbb{R}^2 \quad \{0,1\} imes \mathbb{R}^4 \}$
- ullet A (action space) set of all possible actions $\{1,2,3\}$ \mathbb{R}^2 $\{0,1\} imes\mathbb{R}^2$
- *T* (transition distribution) explicit or implicit ("generative") model of how the state changes

$$T(s' \mid s, a)$$

Explicit

$$s', r = G(s,a)$$

- ullet S (state space) set of all possible states $egin{cases} \{1,2,3\} & (x,y) \in \mathbb{R}^2 & \{0,1\} imes \mathbb{R}^4 \ & \{ \mathrm{healthy, pre-cancer, cancer} \} & (s,i,r) \in \mathbb{N}^3 \end{cases}$
- ullet A (action space) set of all possible actions $\{1,2,3\}$ \mathbb{R}^2 $\{0,1\} imes\mathbb{R}^2$
- T (transition distribution) explicit or implicit ("generative") $T(s'\mid s,a)$ model of how the state changes
- ullet R (reward function) maps each state and action to a reward

$$s', r = G(s, a)$$

 (S, A, T, R, γ) (and b in some contexts)

- *S* (state space) set of all possible states
- *A* (action space) set of all possible actions
- T (transition distribution) explicit or implicit ("generative") model of how the state changes 51~T(5,a)
- \bullet R (reward function) maps each state and action to a reward

$$\{1,2,3\} \qquad (x,y) \in \mathbb{R}^2 \quad \left\{0,1
ight\} imes \mathbb{R}^4$$

 $\{ ext{healthy, pre-cancer}, ext{cancer}\} \qquad (s,i,r) \in \mathbb{N}^3$

 $\{1, 2, 3\}$

$$(s,i,r)\in\mathbb{N}^3$$

$$\{1,2,3\}$$
 \mathbb{R}^2 $\{0,1\} imes\mathbb{R}^2$

$$T(s'\mid s,a)$$

$$R(s,a) = E[R(s,a,s)]$$

$$R(s,a)$$
 or

$$s', r = G(s, a)$$

 (S, A, T, R, γ) (and b in some contexts)

- ullet S (state space) set of all possible states $egin{cases} \{1,2,3\} & (x,y) \in \mathbb{R}^2 & \{0,1\} imes \mathbb{R}^4 \ & \{ \mathrm{healthy, pre-cancer, cancer} \} & (s,i,r) \in \mathbb{N}^3 \end{cases}$
- ullet A (action space) set of all possible actions $\{1,2,3\}$ \mathbb{R}^2 $\{0,1\} imes\mathbb{R}^2$
- T (transition distribution) explicit or implicit ("generative") $T(s'\mid s,a)$ model of how the state changes
- ullet R (reward function) maps each state and action to a reward

• γ : discount factor

$$s^\prime, r = G(s,a)$$

R(s,a) or

R(s, a, s')

 (S, A, T, R, γ) (and b in some contexts)

- ullet S (state space) set of all possible states $egin{cases} \{1,2,3\} & (x,y) \in \mathbb{R}^2 & \{0,1\} imes \mathbb{R}^4 \ & \{ \mathrm{healthy, pre-cancer, cancer} \} & (s,i,r) \in \mathbb{N}^3 \end{cases}$
- ullet A (action space) set of all possible actions $\{1,2,3\}$ \mathbb{R}^2 $\{0,1\} imes\mathbb{R}^2$
- ullet T (transition distribution) explicit or implicit ("generative") $T(s'\mid s,a)$ model of how the state changes
- ullet R (reward function) maps each state and action to a reward R(s,a) or
- γ : discount factor

 $s^\prime, r = G(s,a)$

R(s, a, s')

• b: initial state distribution

MDP Example

Imagine it's a cold day and you're ready to go to work. You have to decide whether to bike or drive.

MDP Example

Imagine it's a cold day and you're ready to go to work. You have to decide whether to bike or drive.

• If you drive, you will have to pay \$15 for parking; biking is free.

MDP Example

Imagine it's a cold day and you're ready to go to work. You have to decide whether to bike or drive.

- If you drive, you will have to pay \$15 for parking; biking is free.
- On 1% of cold days, the ground is covered in ice and you will crash if you bike, but you can't discover this until you start riding. After your crash, you limp home with pain equivalent to losing \$100.

Policies and Simulation

Policies and Simulation

- A *policy*, denoted with π , as in $a_t = \pi(s_t)$ is a function mapping every state to an action.
- When a policy is combined with a Markov decision process, it becomes a Markov stochastic process with

$$P(s' \mid s) = T(s' \mid s, \pi(s))$$

Break

Suggest a policy that you think is optimal for the icy day problem

$$0.99.0 + 0.01(-100 - 15) = -1.15$$

P

Utility

A>B: prefer A+0B

A~B: indifferent

A>B: prefer A or indifferent

[A>B: prefer A or indifferent]

Lottery: [Sipi, Szipz, ... Sripa]

Completeness: Exactly 1 holds: A>B B>A A>B

Transitivity! If AZB and BZC the AZC

Continuity: If A≥C≥B then ∃p st.

[A:p; B:1-p]~C

Independence: If A>B then

 $[A:p;C:l-p] \geq [B:p;C:l-p]$

ヨ U s.t.

U(A) > U(B) iff A > BU(A) = U(B) iff $A \sim B$

U([Sipi] = 5 pi Si

Policy Evaluation

$$U(\pi) = \left[\sum_{t=0}^{\infty} {}^{t} R(s_{t}, a_{t}) \mid a_{t} = \pi(s_{t}) \right]$$

$$U(\pi) = \sum_{t=0}^{\infty} Y^{t} P^{\pi}(s_{t}) R(s_{t}, \pi(s_{t}))$$

$$P^{\pi}(s_{t}) = \sum_{s_{t+1}} T(s_{t} | s_{t-1}, \pi(s_{t-1})) P^{\pi}(s_{t-1})$$

Value Function-Based Policy Evaluation

 Running a large number of simulations and averaging the accumulated reward is called *Monte Carlo Evaluation*

• Running a large number of simulations and averaging the accumulated reward is called *Monte Carlo Evaluation*

 Running a large number of simulations and averaging the accumulated reward is called *Monte Carlo Evaluation*

Let
$$au = (s_0, a_0, r_0, s_1, \ldots, s_T)$$
 be a *trajectory* of the MDP

• Running a large number of simulations and averaging the accumulated reward is called *Monte Carlo Evaluation*

Let $au = (s_0, a_0, r_0, s_1, \ldots, s_T)$ be a *trajectory* of the MDP

$$U(\pi)pprox rac{1}{m}\sum_{i=1}^m R(au^{(i)})$$

 Running a large number of simulations and averaging the accumulated reward is called *Monte Carlo Evaluation*

Let $au = (s_0, a_0, r_0, s_1, \dots, s_T)$ be a *trajectory* of the MDP

$$U(\pi)pprox rac{1}{m}\sum_{i=1}^m R(au^{(i)})$$

$$U(\pi)pprox ar{u}_m=rac{1}{m}\sum_{i=1}^m \hat{u}^{(i)}$$

where $\hat{u}^{(i)}$ is generated by a rollout simulation

• Running a large number of simulations and averaging the accumulated reward is called *Monte Carlo Evaluation*

Let $au = (s_0, a_0, r_0, s_1, \dots, s_T)$ be a *trajectory* of the MDP

$$U(\pi)pprox rac{1}{m}\sum_{i=1}^m R(au^{(i)})$$

$$U(\pi)pprox ar{u}_m = rac{1}{m}\sum_{i=1}^m \hat{u}^{(i)}$$

where $\hat{u}^{(i)}$ is generated by a rollout simulation

How can we quantify the accuracy of \bar{u}_m ?

• Running a large number of simulations and averaging the accumulated reward is called *Monte Carlo Evaluation*

Let $au = (s_0, a_0, r_0, s_1, \dots, s_T)$ be a *trajectory* of the MDP

$$U(\pi)pprox rac{1}{m}\sum_{i=1}^m R(au^{(i)})$$

$$U(\pi)pproxar{u}_m=rac{1}{m}\sum_{i=1}^m\hat{u}^{(i)}$$

where $\hat{u}^{(i)}$ is generated by a rollout simulation

How can we quantify the accuracy of \bar{u}_m ?

• Running a large number of simulations and averaging the accumulated reward is called *Monte Carlo Evaluation*

Let $au = (s_0, a_0, r_0, s_1, \dots, s_T)$ be a *trajectory* of the MDP

$$U(\pi)pproxar{u}_m=rac{1}{m}\sum_{i=1}^m\hat{u}^{(i)}$$

How can we quantify the accuracy of \bar{u}_m ?

C.L.T.

where $\hat{u}^{(i)}$ is generated by a rollout simulation

• Running a large number of simulations and averaging the accumulated reward is called *Monte Carlo Evaluation*

Let $au = (s_0, a_0, r_0, s_1, \dots, s_T)$ be a *trajectory* of the MDP

$$U(\pi)pprox rac{1}{m}\sum_{i=1}^m R(au^{(i)})$$

$$U(\pi)pproxar{u}_m=rac{1}{m}\sum_{i=1}^m\hat{u}^{(i)}$$

where $\hat{u}^{(i)}$ is generated by a rollout simulation

How can we quantify the accuracy of \bar{u}_m ?

C.L.T.
$$rac{ar{u}_m - U(\pi)}{\sigma_m/\sqrt{m}} \stackrel{d}{ o} \mathcal{N}(0,1)$$
 CLT not on exam

 Running a large number of simulations and averaging the accumulated reward is called *Monte Carlo Evaluation*

Let $au = (s_0, a_0, r_0, s_1, \dots, s_T)$ be a *trajectory* of the MDP

$$U(\pi)pprox rac{1}{m}\sum_{i=1}^m R(au^{(i)})$$

$$U(\pi)pproxar{u}_m=rac{1}{m}\sum_{i=1}^m\hat{u}^{(i)}$$

where $\hat{u}^{(i)}$ is generated by a rollout simulation

How can we quantify the accuracy of \bar{u}_m ?

C.L.T.
$$\dfrac{ar{u}_m - U(\pi)}{\sigma_m/\sqrt{m}} \overset{d}{ o} \mathcal{N}(0,1)$$
 CLT not on exam

$$ext{s.e.m.} = rac{ ext{std}(\hat{u})}{\sqrt{m}}$$

• What is a **Markov decision process**?

- What is a **Markov decision process**?
- What is a **policy**?

- What is a **Markov decision process**?
- What is a **policy**?
- How do we **evaluate** policies?