

INTERPOLAÇÃO POLINOMIAL

Interpolar uma função f(x) consiste em aproximar essa função por outra função g(x), escolhida entre uma classe de funções definida a priori e que satisfaça algumas propriedades. A função g(x) é então usada em substituição à função f(x).

A necessidade de se efetuar esta substituição surge em várias situações, como por exemplo:

- são conhecidos somente os valores numéricos da função para um conjunto de pontos e é necessário calcular o valor da função em um ponto não tabelado;
- a função em estudo tem uma expressão tal que operações como a diferenciação e a integração são difíceis (ou mesmo impossíveis) de serem realizadas.

Interpretação geométrica

Considere (n + 1) pontos distintos $x_0, x_1, ..., x_n$, chamamos *nós da interpolação*, e os valores de f(x) nesses pontos: $f(x_0), f(x_1), ..., f(x_n)$.

A forma de interpolação de f(x) consiste em se obter uma determinada função g(x) tal que:

$$\begin{cases} g(x_0) = & f(x_0) \\ g(x_1) = & f(x_1) \\ g(x_2) = & f(x_2) \\ & & & \vdots \\ \vdots & & & \vdots \\ g(x_n) = & f(x_n) \end{cases}$$

Para n = 4 (05 nós), temos a representação:

Interpolação Polinomial

A interpolação por meio de polinômios consiste em, dados (n+1) pontos distintos $(x_0,f(x_0)), (x_1,f(x_1)), ..., (x_n,f(x_n)),$ aproximar f(x) por um polinômio de grau \leq n, $p_n(x)$, tal que:

$$f(x_i) = p_n(x_i), i = 0,...,n$$

A representação de $p_n(x)$ é dada por:

$$p_n(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n$$
.

Desta forma, obter $p_n(x)$ consiste em obter os coeficientes a_0 , a_1 , a_2 , ..., a_n . Da condição $p_n(x_k) = f(x_k)$, $\forall k = 0, 1, 2, ..., n$, temos o seguinte sistema linear:

$$\begin{cases} a_0 + a_1x_0 + a_2x_0^2 + \cdots + a_nx_0^n &= f(x_0) \\ a_0 + a_1x_1 + a_2x_1^2 + \cdots + a_nx_1^n &= f(x_1) \\ \vdots &\vdots &\vdots &\vdots \\ a_0 + a_1x_n + a_2x_n^2 + \cdots + a_nx_n^n &= f(x_n) \end{cases}$$

com (n + 1) equações e (n + 1) variáveis: $a_0, a_1, ..., a_n$.

A matriz dos coeficientes do sistema é dada por:

$$\mathbf{A} = \begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{pmatrix}$$

Esta matriz é conhecia como matriz de Vandermonde e, portanto, desde que $x_0, x_1, ..., x_n$ sejam pontos distintos, temos det (A) $\neq 0$ e, então, o sistema linear admite solução única.

Teorema: Existência e unicidade do Polinômio Interpolador

Seja f(x) definida em $x_0, x_1, ..., x_n$, (n + 1) pontos distintos de um intervalo [a, b]. Então existe um único polinômio p(x) de grau menor ou igual a n tal que $p(x_i) = f(x_i) = y_i, i = 0,...,n$.

Forma de Lagrange do Polinômio de Interpolação

Seja f(x) definida um intervalo [a, b] e sejam $x_0, x_1, ..., x_n$, (n + 1) pontos distintos em [a, b] e $y_i = f(x_i)$, i = 0, ..., n.

Seja $p_n(x)$ o polinômio de grau \leq n que interpola f em $x_0, ..., x_n$. Podemos representar $p_n(x)$ na forma

$$p_n(x) = y_0 \ell_0(x) + y_1 \ell_1(x) + ... + y_n \ell_n(x),$$

em que os polinômios $\ell_k(x)$ são de grau n. Para cada i, queremos que a condição $p_n(x_i) = y_i$ seja satisfeita, ou seja:

$$p_n(x) = y_0 \ell_0(x) + y_1 \ell_1(x) + ... + y_n \ell_n(x) = y_i$$

A forma mais simples de se satisfazer esta condição é impor:

$$\ell_{k}(x_{i}) = \begin{cases} 0 & se \ k \neq i \\ 1 & se \ k = i \end{cases}$$

Para satisfazer esta condição, definimos:

$$\ell_{k}(x) = \frac{(x - x_{0})(x - x_{1})...(x - x_{k-1})(x - x_{k+1})...(x - x_{n})}{(x_{k} - x_{0})(x_{k} - x_{1})...(x_{k} - x_{k-1})(x_{k} - x_{k+1})...(x_{k} - x_{n})}.$$

Como o numerador de $\ell_k(x)$ é um produto de n fatores da forma $(x-x_i)$, i=0,...,n, $i\neq k$, então ℓ_k é um polinômio de grau n e, assim, $p_n(x)$ é um polinômio de grau $\leq n$.

A a forma de Lagrange para o polinômio interpolador é dada por:

$$p_{n}(x) = \sum_{k=0}^{n} y_{k} \ell_{k}(x) \text{, em que } \ell_{k}(x) = \frac{\prod_{\substack{j=0 \ j \neq k}}^{n} (x - x_{j})}{\prod_{\substack{j=0 \ j \neq k}}^{n} (x_{k} - x_{j})}.$$

Exemplo:

Seja a tabela:

X	-1	0	3
f(x)	15	8	-1

- a) Determine o polinômio de interpolação de Lagrange.
- **b**) Calcule *f*(1).

Exercício:

Dada a tabela:

X	0	0.5	1	1.5
f(x)	-1	-1.25	-3	-6.25

construir o polinômio de interpolação de Lagrange de f(x) e calcular f(0.6).

Polinômio:
$$p_3(x) = -3x^2 + x - 1$$
 e $p_3(0.6) \approx f(0.6) = -1.48$

Forma de Newton

Para a construção do polinômio de interpolação pelo método de Newton, precisamos do conhecimento de diferença dividida de uma função.

Diferença dividida

Seja f(x) uma função contínua, (n + 1) vezes diferenciável e definida em $x_0, x_1, ..., x_n$ pontos distintos de um intervalo [a, b].

Definimos diferença dividida por:

$$f[x_0] = f(x_0)$$

$$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$(Ordem 1)$$

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$$

$$f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0}$$

$$\vdots$$

$$\vdots$$

$$f[x_0, x_1, x_2, \dots, x_n] = \frac{f[x_1, x_2, \dots, x_n] - f[x_0, x_1, x_2, \dots, x_{n-1}]}{x_n - x_0}$$

$$(Ordem 2)$$

$$(Ordem 3)$$

Podemos tabelar de forma conveniente as diferenças divididas, notando que as diferenças de ordem 1 são calculadas a partir da diferença de ordem zero, as diferenças de ordem 2, a partir da diferença de ordem 1 e, assim sucessivamente, como segue:

\boldsymbol{x}	Ordem 0	Ordem 1	Ordem 2	Ordem 3	•••	Ordem n
x_0	$f[x_0]$					
		$f[x_0, x_1]$				
x_1	$f[x_1]$		$f[x_0, x_1, x_2]$			
		$f[x_1, x_2]$		$f[x_0, x_1, x_2, x_3]$		
x_2	$f[x_2]$		$f[x_1, x_2, x_3]$		•	
		$f[x_2, x_3]$		$f[x_1, x_2, x_3, x_4]$	•	
Y2	$f[x_3]$		fire re rel		•	fire re re r l
<i>X</i> 3	$J[\lambda 3]$	$f[x_3,x_4]$	$f[x_2, x_3, x_4]$	•		$f[x_0, x_1, x_2,, x_n]$
		$J[\lambda 3,\lambda 4]$		•	•	
26.	#T w .1			$f[x_{n-3}, x_{n-2}, x_{n-1}, x_n]$	•	
<i>X</i> 4	$f[x_4]$		<i>(</i> T	$J[\lambda_{n-3}, \lambda_{n-2}, \lambda_{n-1}, \lambda_{n}]$	•	
•	•		$f[x_{n-2}, x_{n-1}, x_n]$			
•	•					
•	·	$f[x_{n-1}, x_n]$				
\mathcal{X}_n	$f[x_n]$					

Exemplo:

Seja f(x) tabelada:

X	-1	0	1	2	3
f(x)	-2	29	30	31	62

Construção da tabela:

X	Ordem 0	Ordem 1	Ordem 2	Ordem 3	Ordem 4
-1					
0					
1					
2					
3					

Propriedade:

• $f[x_0, x_1, ..., x_n]$ é simétrica nos argumentos, ou seja, $f[x_0, x_1, ..., x_n] = f[x_{j0}, x_{j1}, ..., x_{jn}]$, em que $j_0, j_1, ..., j_n$ é qualquer permutação dos inteiros 0, 1, ..., n. Por exemplo,

$$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0} = \frac{f[x_0] - f[x_1]}{x_0 - x_1} = f[x_1, x_0].$$

Para k = 2 teremos:

$$f[x_0, x_1, x_2] = f[x_0, x_2, x_1] = f[x_1, x_0, x_2] = f[x_1, x_2, x_0] = f[x_2, x_0, x_1] = f[x_2, x_1, x_0].$$

Forma de Newton do Polinômio de Interpolação

Considere uma função f(x) contínua definida em $x_0, x_1, ..., x_n$ (n + 1) pontos distintos de um intervalo [a, b]

Determinando as diferenças divididas de f(x) nos pontos x_0 e x, temos:

$$f[x_0, x] = \frac{f[x] - f[x_0]}{x - x_0} = \frac{f(x) - f(x_0)}{x - x_0} \Rightarrow (x - x_0) f[x_0, x] = f(x) - f(x_0) \Rightarrow$$

$$\Rightarrow f(x) = \underbrace{f(x_0)}_{p_0(x)} + \underbrace{(x - x_0)}_{E_0(x)} f[x_0, x]$$

$$\Rightarrow E_0(x) = f(x) - p_0(x) = (x - x_0)f[x_0, x]$$
 (erro cometido ao aproximar f(x) por $p_0(x)$)

Da mesma forma, considerando os pontos x_0 , x_1 e x, temos:

$$f[x_{0}, x_{1}, x] = f[x_{1}, x_{0}, x] = \frac{f[x_{0}, x] - f[x_{1}, x_{0}]}{x - x_{1}} =$$

$$= \frac{\frac{f(x) - f(x_{0})}{x - x_{0}} - f[x_{1}, x_{0}]}{(x - x_{1})} = \frac{f(x) - f(x_{0}) - (x - x_{0}) f[x_{1}, x_{0}]}{(x - x_{1})(x - x_{0})}$$

$$\Rightarrow f[x_{0}, x_{1}, x] = \frac{f(x) - f(x_{0}) - (x - x_{0}) f[x_{1}, x_{0}]}{(x - x_{0})(x - x_{1})} \Rightarrow$$

$$\Rightarrow f(x) = \underbrace{f(x_{0}) + (x - x_{0}) f[x_{1}, x_{0}]}_{p_{1}(x)} + \underbrace{(x - x_{0})(x - x_{1}) f[x_{0}, x_{1}, x]}_{E_{1}(x)}$$

Verificação: $p_1(x)$ interpola f(x) em x_0 e em x_1 ?

$$p_1(x_0) = f(x_0)$$

$$p_1(x_1) = f(x_0) + (x_1 - x_0) \frac{f(x_1) - f(x_0)}{x_1 - x_0} = f(x_1).$$

Para construir $p_2(x)$, polinômio de grau ≤ 2 que interpola f(x) em x_0, x_1, x_2 , temos:

$$f[x_0, x_1, x_2, x] = f[x_2, x_1, x_0, x] = \frac{f[x_1, x_0, x] - f[x_2, x_1, x_0]}{x - x_2} =$$

$$= \frac{f[x_0, x] - f[x_1, x_0]}{x - x_1} - f[x_2, x_1, x_0] = \frac{\frac{f(x) - f(x_0)}{(x - x_0)} - f[x_1, x_0]}{\frac{(x - x_0)}{(x - x_1)}} - f[x_2, x_1, x_0] = \frac{f(x) - f(x_0) - (x - x_0)f[x_1, x_0] - (x - x_0)(x - x_1)f[x_2, x_1, x_0]}{(x - x_0)(x - x_1)(x - x_2)} \Rightarrow$$

$$f(x) = f(x_0) + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_1)f[x_0, x_1, x_2] + (x - x_0)(x - x_1)(x - x_2)f[x_0, x_1, x_2, x]$$

Então,

$$p_2(x) = \underbrace{f(x_0) + (x - x_0)f[x_0, x_1]}_{p_1(x)} + \underbrace{(x - x_0)(x - x_1)f[x_0, x_1, x_2]}_{q_2(x)} e$$

$$E_2(x) = (x - x_0)(x - x_1)(x - x_2)f[x_0, x_1, x_2, x].$$

Aplicando sucessivamente o mesmo raciocínio para todos os pontos tabelados, temos a forma de Newton para o polinômio de grau \leq n que interpola f(x) em x_0 , ..., x_n :

$$p_n(x) = f(x_0) + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_1)f[x_0, x_1, x_2] + \dots + \dots + (x - x_0)(x - x_1) \dots (x - x_{n-1})f[x_0, x_1, \dots, x_n]$$

e o erro é dado por:
$$E_n(x) = (x - x_0)(x - x_1) \dots (x - x_n)f[x_0, x_1, \dots, x_n, x]$$

Teorema:

Seja f(x) uma função contínua. Sejam x_0 , x_1 , ..., x_n , (n + 1) pontos distintos de [a, b], então:

$$p_n(x) = f(x_0) + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_1)f[x_0, x_1, x_2] + \dots + \dots + (x - x_0)(x - x_1) \dots (x - x_{n-1})f[x_0, x_1, \dots, x_n]$$

é o polinômio interpolador de Newton para a função f(x) sobre os pontos $x_0, x_1, ..., x_n$.

Exemplo:

Usando a forma de Newton, construir o polinômio que interpola f(x) nos pontos tabelados e calcular f(0.3).

$$\begin{array}{c|ccccc} x & 0 & 0.2 & 0.4 \\ \hline f(x) & 1 & 2 & 4 \\ \end{array}$$

Exercício:

Dada a tabela:

X	0	0.5	1	1.5
f(x)	-1	-1.25	-3	-6.25

construir o polinômio de interpolação de Newton de f(x) e calcular f(0.6).

Forma de Newton-Gregory para o polinômio interpolador.

No caso em que os nós da interpolação x_0 , x_1 , ..., x_n são igualmente espaçados, podemos usar a forma de Newton-Gregory para obter $p_n(x)$.

Seja f(x) uma função contínua no intervalo [a, b] e sejam $x_0, x_1, ..., x_n$ os (n + 1) pontos de [a, b] que se sucedem compasso h, isto é, $x_j = x_0 + j_h$. Chamamos operador de diferenças ordinárias:

$$\Delta^{0} f(x) = f(x)$$

$$\Delta f(x) = f(x+h) - f(x)$$

$$\Delta^{2} f(x) = \Delta f(x+h) - \Delta f(x)$$

$$\vdots$$

$$\Delta^{n} f(x) = \Delta^{n-1} f(x+h) - \Delta^{n-1} f(x)$$

Desde que conhecemos f(x) e seus valores sejam conhecidos em $x_0, x_1, ..., x_n$, podemos construir uma tabela de diferenças ordinárias:

X	f(x)	$\Delta f(x)$	$\Delta^2 f(x)$
<i>X</i> 0	$f(x_0)$		
		$\Delta f(x_0)$	
x_1	$f(x_1)$		$\Delta^2 f(x_0)$
		$\Delta f(x_1)$	

χ_2	$f(x_2)$		$\Delta^2 f(x_1)$
		$\Delta f(x_2)$	
		•	•
<i>X</i> 3	$f(x_3)$	•	
•		•	
•	•		
•			

Exemplo:

Construir a tabela de diferenças ordinárias da função f(x) a partir da tabela:

	<u>x</u>	-1	0	1	2
	f(x)	1	2	3	-1
X	f(x)	$\Delta f(x)$	$\Delta^2 f($	x)	$\Delta^3 f(x)$
-1					
0					
1					
2					

Teorema:

Seja f(x) uma função contínua e (n+1) vezes diferenciável em um intervalo [a, b]. Sejam $x_0, x_1, ..., x_n$ os (n+1) pontos distintos e igualmente espaçados em [a, b]. Então

$$f[x_0, x_1, ..., x_n] = \frac{\Delta^n f(x_0)}{h^n n!}.$$

Demonstração (por indução)

Para n = 1

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{f(x_0 + h) - f(x_0)}{h} = \frac{\Delta f(x_0)}{h(1!)}$$

Supondo que f[x₀, x₁, ..., x_{n-1}] =
$$\frac{\Delta^{n-1} f(x_0)}{h^{(n-1)}(n-1)!}$$
, temos

$$f[x_0, x_1, ..., x_n] = \frac{f[x_1, x_2, ..., x_n] - f[x_0, x_1, ..., x_{n-1}]}{x_n - x_0} =$$

$$=\frac{\frac{\Delta^{n-1}f(x_1)}{h^{n-1}(n-1)!}-\frac{\Delta^{(n-1)}f(x_0)}{h^{n-1}(n-1)!}}{nh}=\frac{\Delta^{n-1}f(x_0+h)-\Delta^{n-1}f(x_0)}{h^{n-1}f(n-1)!nh}=\frac{\Delta^nf(x_0)}{h^nn!}$$

Polinômio interpolador de Newton-Gregory

O polinômio interpolador de Newton-Gregory é dado por:

$$p_{n}(x) = f(x_{0}) + (x - x_{0}) \frac{\Delta f(x_{0})}{h} + (x - x_{0})(x - x_{1}) \frac{\Delta^{2} f(x_{0})}{2h^{2}} + \dots + (x - x_{0})(x - x_{1}) \dots (x - x_{n-1}) \frac{\Delta^{n} f(x_{0})}{h^{n} n!}.$$

OBS: A forma de Newton-Gregory para $p_n(x)$ pode ser simplificada, se usarmos uma mudança de variáveis:

$$s = \frac{x - x_0}{h} \implies x = sh - x_0$$

como os pontos são equidistantes, $x_j = x_0 + j_h$. Desta forma, temos:

$$(x - x_j) = sh + x_0 - (x_0 + jh) = (s - j)h.$$

Assim, temos a seguinte forma geral para $p_n(x)$:

$$p_{n}(s) = f(x_{0}) + s \Delta f(x_{0}) + s(s-1) \frac{\Delta^{2} f(x_{0})}{2} + \dots + s(s-1) \dots (s-n+1) \frac{\Delta^{n} f(x_{0})}{n!}.$$

Exemplo:

Determine o polinômio de interpolação de Newton-Gregory da função tabelada e calcule f(0.5):

X	-2	-1	0	1	
f(x)	4	3	1	-1	
X	f(x))	$\Delta f(x)$	$\Delta^2 f(x)$	$\Delta^3 f(x)$
-2					
-1					
0					
1					

Exercício:

Determine o polinômio de interpolação de Newton-Gregory da função tabelada e avalie f(0.35):

$$p_3(s) = 0.00017s^3 + 0.0099s^2 + 0.0284s + 1.01 e f(0.35) = 1.1694$$

Interpolação Linear

A interpolação linear, é um caso particular de interpolação, pois ocorre em apenas 2 pontos distintos.

Considere uma função f(x) definida em dois pontos x_0 e x_1 . Seja $(x_0, f(x_0))$ e $(x_1, f(x_1))$ dois pontos distintos, assim, n = 1 e, por isto, a interpolação por dois pontos é chamada *interpolação linear*.

Usando a forma de Lagrange podemos construir o polinômio interpolador de grau \leq 1, que é dado por:

$$p_1(x) = y_0 \ell_0(x) + y_1 \ell_1(x)$$

em que

$$\ell_0(x) = \frac{(x - x_1)}{(x_0 - x_1)},$$
 $\ell_1(x) = \frac{(x - x_0)}{(x_1 - x_0)}.$

Assim,
$$p_1(x) = y_0 \frac{(x - x_1)}{(x_0 - x_1)} + y_1 \frac{(x - x_0)}{(x_1 - x_0)}$$
, ou seja, $p_1(x) = \frac{(x - x_1)y_0 + (x - x_0)y_1}{(x_1 - x_0)}$

que é exatamente a equação da reta que passa por $(x_0, f(x_0))$ e $(x_1, f(x_1))$.

Exemplo 1:

Considere a função
$$f(x) = \frac{1}{x+1}$$
 tabelada nos pontos:

Determine o polinômio interpolador e avalie f(1.5).

Exemplo 2:

Utilize interpolação polinomial para calcular um valor aproximado de $\ln(3.7)$. Faça interpolação sobre 2 e 3 pontos.

X	1	2	3	4
ln(x)	0	0.6931	1.0986	1.3863

Estudo do erro na Interpolação

Embora o polinômio interpolador p(x) coincida com a função nos pontos de interpolação, x_0 , x_1 , ..., x_n , espera-se que $p(\overline{x}) \cong f(\overline{x})$ para $\overline{x} \neq x_i$, i = 0, 1, ..., n, ou seja, estimando f(x) pelo polinômio interpolador cometemos um erro nesta aproximação dado por:

$$E(\overline{x}) = f(\overline{x}) - p_n(\overline{x})$$

Teorema: Resto de Lagrange

Seja f(x) uma função definida em x_0 , x_1 , ..., x_n , (n + 1) pontos distintos de um intervalo [a, b] e (n + 1) vezes diferenciável. Se p(x) interpola f(x) nesses pontos, então o erro cometido E(x) é dado por:

$$E_n(x) = f(x) - p_n(x) = (x - x_0)(x - x_1)(x - x_2) \dots (x - x_n) \frac{f^{(n+1)}(\xi_x)}{(n+1)!}$$

em que $\xi_x \in (x_0, x_n)$.

Limitante Superior para o erro

Na expressão do erro, $(E_n(x))$ o parâmetro ξ_x nunca é conhecido no intervalo $I = [x_0, x_n]$ e, portanto, não é possível calcular o valor numérico de $f^{(n+1)}(\xi)$. Desta forma, um limitante superior para o erro é dado por:

$$|E_n(x)| = |f(x) - p_n(x)| \le |(x - x_0)(x - x_1)...(x - x_n)| \frac{M_{n+1}}{(n+1)!}$$

em que $M_{n+1} = \frac{m\acute{a}x}{x \in I} |f^{(n+1)}(x)|$.

Se os pontos forem igualmente espaçados, ou seja, $x_1 - x_0 = x_2 - x_1 = \dots = x_n - x_{n-1} = h$, então

$$|f(x)-p_n(x)| < \frac{h^{n+1}M_{n+1}}{4(n+1)}.$$

Exemplo:

Seja $f(x) = e^x + x - 1$ tabelada abaixo. Obter f(0.7) por interpolação linear e um LS para o erro.

$$x$$
 0
 0.5
 1.0
 1.5

 $f(x)$
 0.0
 1.1487
 2.7183
 4.9811

Estimativa para o erro

Se a função f(x) é dada na forma de tabela, o valor absoluto do erro $|E_n(x)|$ só pode ser estimado, pois, não é possível calcular M_{n+1} . Entretanto, se construirmos a tabela de diferenças divididas até ordem n+1, podemos usar o maior valor (em módulo) destas diferenças como uma aproximação para $\frac{M_{n+1}}{(n+1)!}$ no intervalo $[x_0, x_n]$.

Neste caso, dizemos que:

$$|E_n(x)| \approx |(x-x_0)(x-x_1)\cdots(x-x_n)|$$
 (máx | diferenças divididas de ordem n + 1|)

Exemplo: Seja f(x) dada na forma:

X	0.2	0.34	0.4	0.52	0.6
f(x)	0.16	0.22	0.27	0.29	0.32

- a) Obter f(0.47) usando um polinômio de grau 2.
- b) estimar o erro.

X	Ordem 0	Ordem 1	Ordem 2	Ordem 3	Ordem 4
0.2					
0.34					
0.4					
0.52					

0.6

Exercícios

- 1 Calcule um valor aproximado para cos(0,52) utilizando a Fórmula de Lagrange para os pontos -1, 0, 1 e 2.
- 2 Considere a função y = f(x) definida pela tabela:

X	-2	0	1	2	3
f(x)	1,3	2	-2,3	-1,3	2,5

Calcule um valor aproximado para f(0,16).

3 As densidades do sódio para três temperaturas são dadas a seguir:

i	$\begin{array}{c} Temperatura \\ T_i \end{array}$	Densidade \Box_i
0	94°C	929 kg/m^3
1	205°C	902 kg/m^3
2	371°C	860 kg/m^3

Utilizando a Fórmula de Interpolação de Lagrange, estime o valor aproximado da densidade para $T=247^{\circ}C$.

4 Um pára-quedista realizou seis saltos, saltando de alturas distintas em cada salto. Foi testada a precisão de seus saltos em relação a um alvo de raio de 5m, de acordo com a altura. A distância apresentada na tabela abaixo é relativa a circunferência.

ALTURA (m)	DISTÂNCIA DO ALVO (m)
1º salto: 1500	35
2º salto: 1250	25
3º salto: 1000	15
4º salto: 750	10
5° salto: 500	7

Levando em consideração os dados acima, a que provável distância do alvo cairia o páraquedista se ele saltasse de uma altura de 900m?

5 Um veículo de fabricação nacional, após vários testes, apresentou os resultados a seguir, quando se analisou o consumo de combustível de acordo com a velocidade média imposta ao veículo. Os testes foram realizados em rodovia em operação normal de tráfego, numa distância de 76 km.

Velocidade (km/h)	Consumo (km/h)
55	14,08
70	13,56
85	13,28
100	12,27
120	11,30
140	10,40

Verifique o consumo aproximado para o caso de ser desenvolvida a velocidade de 80 km/h.

6 Seja f(x) dada na forma tabelar

X	0,20	0,34	0,40	0,52	0,60	0,72
f(x)	0,16	0,22	0,27	0,29	0,32	0,37

Obtenha f(0,50) usando um polinômio de grau 2.

7 Dada a tabela

X	0	0,1	0,2	0,3	0,4	0,5
$y = e^x$	1	1,1052	1,2214	1,3499	1,4918	1,6487

Obtenha x, tal que $e^x = 1,3651$.

8 Construa uma tabela para a função f(x) = sen(x) usando os pontos 0,8; 0,9; 1,0; 1,1; 1,2; 1,3. Estime o valor de sen(1,15) usando um polinômio de 3° grau.

9 Determine o valor aproximado de f(0,4), usando todos os pontos tabelados da função f(x). Utilize a Fórmula de Interpolação de Newton.

X	y
0,0	1,008
0,2	1,064
0,3	1,125
0,5	1,343
0,6	1,512

10 Dada a tabela abaixo, calcule e^{2,91} usando um polinômio de interpolação sobre três pontos.

X	2,4	2,6	2,8	3,0	3,2	3,4	3,6	3,8
e ^x	11,02	13,46	16,44	20,08	24,53	29,96	36,59	44,70

11 Durante três dias consecutivos foi tomada a temperatura (em °C) numa região de uma cidade, por quatro vezes no período das 6 às 12 horas. Determine, usando todos os dados da tabela abaixo, a média das temperaturas dos três dias às 9 horas.

	Dia			
Hora	1	2	3	
6	18	17	18	
8	20	20	21	
10	24	25	22	
12	28	27	23	

12 Determine, usando todos os valores conhecidos das funções F(x) e G(x), o valor de F(G(0,23)).

X	$\mathbf{F}(\mathbf{x})$
1,0	0,00
1,1	0,21
1,3	0,69
1,6	1,56
2,0	3,00

X	G(x)
0,0	1,001
0,2	1,083
0,4	1,645
0,6	3,167
0,8	6,129

13 Um automóvel percorreu 160 km numa rodovia que liga duas cidades e gastou, neste trajeto, 2 horas e 20 minutos. A tabela abaixo dá o tempo gasto e a distância percorrida em alguns pontos entre as duas cidades.

Tempo	Distância
(min)	(km)
0	0
10	8
30	27
60	58
90	100
120	145
140	160

Determine:

- a) Qual foi aproximadamente à distância percorrida pelo automóvel nos primeiros 45 minutos de viagem, considerando apenas os quatro primeiros pontos da tabela?
- b) Quantos minutos o automóvel gastou para chegar à metade do caminho?
- 14 Construa a tabela de log(x), usando 6 pontos igualmente espaçados, de tal forma que $x_0=2$ e $x_5=3$. Determine o valor aproximado de x tal que log(x)=0,45.
- 15 Na tabela abaixo está assinalado o número de habitantes de Belo Horizonte nos censos de 1950, 1960, 1970 e 1980. Determine o número aproximado de habitantes de Belo Horizonte em 1975.

Ano	1950	1960	1970	1980
Nº de habitantes	352.724	683.908	1.235.030	1.814.990

16 Seja a função $\frac{2 \operatorname{sen}^2 x}{x+1}$. Determine:

a) $f(\pi/16)$ b) $f(11\pi/18)$

utilizando apenas os valores disponíveis na tabela abaixo:

i	Xi	sen(x _i)
0	0	0,00
1	$\pi/6$	0,50
2	$\pi/4$	0,71
3	$\pi/3$	0,87
4	$\pi/2$	1,00

- 17 Use os valores de $e^{0.0}$, $e^{0.2}$, $e^{0.4}$ para determinar o valor aproximado de $e^{0.1}$.
- 18 A velocidade v (m/s) de um foguete lançado do solo foi medida quatro vezes, t segundos após o lançamento, e os dados foram registrados na tabela abaixo. Calcule usando um

polinômio de 4º grau, a velocidade aproximada do foguete após 25 segundos do lançamento.

Tempo (s)	0	8	20	30	45
Velocidade (m/s)	0,000	52,032	160,450	275,961	370,276

19 Na tabela abaixo, D é a distância, em metros, que uma bala percorre ao longo do cano de um canhão em t segundos. Determine a distância percorrida pela bala 3 segundos após ter sido disparada, usando todos os dados abaixo.

Tempo (s)	0	2	4	6	8
D (m)	0,000	0,049	0,070	0,087	0,103