РАБОЧАЯ ПРОГРАММА ЭЛЕКТИВНОГО КУРСА ПО МАТЕМАТИКЕ «ВНЕВПИСАННАЯ ОКРУЖНОСТЬ».

Пояснительная записка

Рабочая программа элективного курса по математике «Вневписанная окружность» составлена в соответствии с положением о рабочей программе педагога МБОУ «Лицей № 3» г. Курчатова Курской области (введено в действие приказом №120/A от 30. 08. 2016 г.).

Программа ориентирована на обучающихся восьмого класса, изучающих математику на углубленном уровне. Освоение содержания курса целесообразно предложить школьникам, интересующимся математикой, параллельно изучению темы «Вписанные и описанные окружности», а также при итоговом повторении курса геометрии в 9 и 11 классах естественно-математического, физико-химического и экономического профиля.

Целью профильного обучения, как одного из направлений модернизации математического образования, является обеспечение углубленного изучения предмета для приобретения обучающимися знаний, умений и навыков, необходимых для успешной сдачи экзамена в форматах ОГЭ и ЕГЭ и дальнейшего обучения в профильных учебных заведениях.

Анализ результатов итоговой аттестации последних лет показал, что наибольшие затруднения у выпускников вызывают планиметрические задачи, в частности, на применение конструкции «треугольник – окружность».

Геометрические ситуации, предлагаемые условиями задач тренировочных и диагностических тестов ОГЭ и ЕГЭ, содержат различные конфигурации, в которых участвуют треугольник и окружность. Знание наиболее распространенных комбинаций и их свойств позволяет получать короткие и красивые решения сложных на первый взгляд задач. К таким конструкциям относятся «треугольник и описанная окружность», «треугольник и вписанная окружность», которые довольно подробно изучаются в школьном курсе геометрии. Встречающиеся в задачах №25, №26 (ОГЭ) и №16 (ЕГЭ), конструкции «треугольник и вневписанная окружность», «треугольник и окружность, проходящая через две его вершины»,

«треугольник и окружность, касающаяся двух его сторон» и другие, выходят за рамки программы.

В связи с этим возникла необходимость в разработке и проведении элективного курса по теме «Вневписанная окружность».

Вневписанная окружность представляется в некотором смысле изысканным элементом геометрии треугольника, который интересен не только сам по себе, но и как вспомогательный элемент в решении задач на треугольники.

Изучение этой геометрической фигуры дает обучающимся возможность поновому посмотреть на хорошо знакомый материал, обогатив его новыми знаниями, укрепив их через практическое применение в решении задач.

Цель курса:

Познакомить обучающихся с конструкцией «треугольник — вневписанная окружность» и ее свойствами, научить видеть изучаемую конструкцию в ходе анализа условия задачи и использовать ее свойства в процессе моделирования решения.

Задачи курса:

- создать условия, обеспечивающие формирование у обучающихся четкого представления конструкции «треугольник вневписанная окружность», способствующие осознанному усвоению ее свойств;
- содействовать формированию у обучающихся умений находить изучаемую конструкцию в ходе исследования условий задачи, анализировать вариативность возможных в данной геометрической ситуации реализаций, применять свойства конструкции для получения решения; развитию в процессе проектирования решения задачи пространственного воображения, аналитического и логического мышления, совершенствованию устной и письменной математической речи;
- организовать ситуации, способствующие развитию у обучающихся навыков проектирования самостоятельной образовательной деятельности, формированию опыта творческой деятельности обучающихся через исследовательскую деятельность при решении нестандартных задач;

способствовать формированию потребности в новых знаниях и содействовать развитию навыков поиска информации с использованием интернет - ресурсов;

• обеспечить условия для воспитания положительного интереса к изучению математики, содействия развитию умений обучающихся работать в группе, овладения навыками самоконтроля, взаимоконтроля, взаимопомощи и адекватной самооценки.

Программа данного курса рассчитана на 8 часов.

Для реализации целей и задач курса применяются элементы технологии уровневой дифференциации, личностно ориентированное обучение, обучение с применением компетентстно — ориентированных заданий, которые подбираются для каждого урока, а также следующие методы и формы обучения и контроля:

- формы работы: фронтальная работа, индивидуальная работа, коллективная работа, групповая работа.
- методы обучения: рассказ, объяснение, лекция, беседа, применение наглядных пособий, дифференцированные задания, самостоятельная работа, взаимопроверка, решение проблемно-поисковых задач.
- формы промежуточной и итоговой аттестации: текущий контроль (фронтальный опрос, индивидуальный опрос, самостоятельная работа); итоговый контроль (зачет, индивидуальная и групповая проектная деятельность).

Содержание курса:

- определение вневписанной окружности;
- теорема о центре вневписанной окружности;
- теорема о касательной к вневписанной окружности;
- теорема об отрезке касательной вневписанной окружности;
- соотношение между радиусом вневписанной окружности и периметром треугольника;
- соотношение между радиусом вневписанной окружности, площадью и периметром треугольника;

- дополнительные соотношения с радиусами вневписанной окружности.

Результаты обучения:

Результаты обучения представлены в Требованиях к уровню подготовки и задают систему итоговых результатов обучения, которых должны достичь все обучающиеся, прослушавшие данный курс. Эти требования структурированы по трем компонентам: знать, уметь, использовать приобретенные знания и умения в практической деятельности и повседневной жизни.

Требования к уровню усвоения содержания курса:

По завершении освоения курса обучающиеся должны

знать:

- понятие вневписанной окружности, ее свойства и формулы связи с элементами треугольника;
- ряд вспомогательных понятий (биссектриса угла, внешний угол треугольника, высота треугольника, вписанная и описанная окружности, касательная к окружности и др.), их свойства, формулы для вычисления площади треугольника;

уметь:

- устанавливать, какие из изученных конструкций возникают в данной геометрической ситуации;
- анализировать вариативность возможных в данной геометрической ситуации реализаций;
- применять подходящие свойства изученных конструкций для поиска решения;
- выполнять необходимые построения с помощью циркуля и линейки;
- проводить аргументированное обоснование правильности выбранного решения;
- осуществлять анализ полученных в процессе решения результатов; использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;
- вычисления длин, площадей и объемов реальных объектов при решении практических задач, используя при необходимости справочники и вычислительные устройства.

Тематическое планирование:

N₂	Темы занятий	Кол-во
п/п		часов
1.	Вневписанная окружность	1
	- определение вневписанной окружности;	
	- теорема о центре вневписанной окружности;	
	- демонстрационные задачи 1, 2.	
2.	Касательная к вневписанной окружности	1
	- теорема о касательной к вневписанной окружности;	
۷.	- теорема об отрезке касательной вневписанной окружности;	
	- демонстрационная задача 3.	
	Формулы для вычисления радиусов вневписанных	
3.	окружностей	1
	- соотношение между радиусом вневписанной окружности и	
	периметром треугольника;	
	- соотношение между радиусом вневписанной окружности,	
	площадью и периметром треугольника;	
	- демонстрационная задача 4.	
	Некоторые соотношения с радиусами вневписанной	
	окружности:	
4.	• $r_a + r_b + r_c = r + 4R\left(r_a + r_b + r_c - r = \frac{abc}{S}\right)$;	1
	$\bullet \frac{1}{r_a} + \frac{1}{r_b} + \frac{1}{r_c} = \frac{1}{r};$	1
	$\bullet r_a r_b + r_a r_c + r_b r_c = p^2;$	
	$\bullet r_a r_b r_c = r p^2;$	

	$\bullet S = \frac{r_a r_b r_c}{p};$	
	$\bullet S = \sqrt{r_a r_b r_c r};$	
	$\bullet \frac{1}{h_a} = \frac{1}{2} \left(\frac{1}{r_b} + \frac{1}{r_c} \right), \frac{1}{h_b} = \frac{1}{2} \left(\frac{1}{r_a} + \frac{1}{r_c} \right), \frac{1}{h_c} = \frac{1}{2} \left(\frac{1}{r_a} + \frac{1}{r_b} \right);$	
	• демонстрационная задача 5.	
5-6.	Решение задач с использованием вневписанной окружности	2
7.	Зачет	1
	Итоговое занятие	
8.	- защита мини-проектов;	1
	- анализ результатов зачета.	
	Итого	8

Основной теоретический материал и демонстрационные задачи, представлены в программе в виде электронного интернет пособия, используемого в режиме демонстрации, а также в виде презентации. Презентация может быть использована педагогами непосредственно на занятиях или в качестве источника при подготовке урока. Обучающиеся могут использовать интернет-пособие для самостоятельного изучения темы.

Программа содержит сборник задач с подсказками и решениями, в котором преподаватель, в соответствие с уровнем подготовки обучающихся и временными рамками имеет возможность подобрать задачи (на доказательство, построение и вычисление) для работы на уроке, для зачета, для индивидуальной творческой работы.

Теоретические основы по теме «Вневписанная окружность».

Окружность называется *вневписанной* в треугольник, если она касается одной из сторон треугольника и продолжений двух других сторон.

Для каждого треугольника существуют три вневписанные окружности, их радиусы будем обозначать r_a , r_b и r_c в зависимости от того, какой стороны треугольника они касаются.

Теорема 1: Центр вневписанной в треугольник окружности есть точка пересечения биссектрисы внутреннего угла треугольника (противолежащего стороне треугольника, которой касается окружность) и биссектрис двух внешних углов треугольника.

Доказательство:

Т.к. окружность касается сторон $\angle CAK$, то центр окружности O равноудален от сторон этого угла, следовательно, он лежит на биссектрисе $\angle CAK$.

Аналогично, точка O лежит на биссектрисе $\angle ACN$.

Т.к. окружность касается прямых BA и BC, то она вписана в $\angle ABC$, а значит её центр лежит на биссектрисе $\angle ABC$.

Ч.т.д.

Теорема 2: Расстояние от вершины угла треугольника до точек касания вневписанной окружности со сторонами этого угла равны полупериметру данного треугольника (AK = AN = p).

Доказательство:

Так как касательные, проведенные к окружности из одной точки, равны между собой, то AK = AN, BK = BM, CM = CN.

Значит,

$$2p = (AC + CM) + (AB + BM) =$$
 $= (AC + CN) + (AB + BK) =$
 $= AN + AK = 2AN = 2AK$
T.e. $AK = AN = p$.

Ч.т.д

Теорема 3: Если K — точка касания вневписанной окружности со стороной AB $AK = \frac{CB + BA - AC}{2}$ треугольника САВ, то длина отрезка касательной

Доказательство:

$$AK = AM = x$$
, тогда,

$$BK = BN = c - x$$
, $CM = CN$.

Имеем уравнение:
$$b + x = a + (c - x)$$
. Откуда $x = \frac{a + c - b}{2}$,

Откуда
$$x = \frac{a+c-b}{2}$$
,

$$AK = \frac{CB + BA - AC}{2}$$

Ч.т.д.

Теорема 4: Радиус вневписанной окружности, касающейся сторон данного внутреннего угла треугольника, равен произведению полупериметра треугольника на тангенс половины этого угла:

$$r_a = p \cdot tg \frac{\alpha}{2}$$
, $r_b = p \cdot tg \frac{\beta}{2}$, $r_c = p \cdot tg \frac{\gamma}{2}$

Доказательство:

AO – биссектриса $\angle BAC$. В

прямоугольном треугольнике $\Delta AOK \ r_a$ и p — длины катетов,

$$\angle OAK = \frac{\alpha}{2} \Rightarrow r_a = p \cdot tg \frac{\alpha}{2}.$$

Ч.т.д.

<u>Следствие</u>: Радиус вневписанной окружности, касающейся гипотенузы прямоугольного треугольника, равен полупериметру этого треугольника:

Доказательство:

$$r_c = p \cdot tg \frac{90^{\circ}}{2} = p \cdot tg45^{\circ} = p.$$

Ч.т.д.

Теорема 5: Радиус вневписанной окружности, касающейся данной стороны треугольника, равен отношению площади треугольника к разности полупериметра и этой стороны. т.е.

$$r_a = \frac{S}{p-a}$$
, $r_b = \frac{S}{p-b}$, $r_c = \frac{S}{p-c}$.

Доказательство:

Имеем

$$S = S_{ABC} = S_{AOC} + S_{BOA} = \frac{1}{2} \cdot OC_1 \cdot AC + \frac{1}{2} \cdot OB_1 \cdot AB - \frac{1}{2} \cdot OK \cdot BC$$
$$= \frac{1}{2} \cdot r_a \cdot (b + c - a) = r_a \cdot (p - a), \quad \text{T. e. } r_a = \frac{S}{p - a}.$$

Ч.т.д.

Теорема 6: Сумма радиусов вневписанных окружностей равна сумме радиуса вписанной окружности и удвоенного диаметра описанной окружности, т. е. $r_a + r_b + r_c = r + 4R$

Доказательство:

Выразим все радиусы через стороны, площадь и полупериметр треугольника:

$$r = \frac{S}{p}, R = \frac{abc}{4S}, r_a = \frac{S}{p-a}, r_b = \frac{S}{p-b}, r_c = \frac{S}{p-c}$$

Значит,

$$r_{a} + r_{b} + r_{c} - r = \frac{S}{p - a} + \frac{S}{p - b} + \frac{S}{p - c} =$$

$$= S \frac{p(p - b)(p - c) + p(p - a)(p - c) + p(p - a)(p - b) - (p - a)(p - b)(p - c)}{p(p - a)(p - b)(p - c)}$$

$$= S \frac{abc}{S^{2}} = \frac{abc}{S} = 4R.$$

Ч.т.д.

<u>Теорема 7</u>: Сумма величин, обратных радиусам вневписанных окружностей, равна величине, обратной радиусу вписанной окружности, т. е.

$$\frac{1}{r_a} + \frac{1}{r_b} + \frac{1}{r_c} = \frac{1}{r}$$

Доказательство:

Используем выражения радиусов через стороны и площадь треугольника:

$$r = \frac{S}{p}$$
, $R = \frac{abc}{4S}$, $r_a = \frac{S}{p-a}$, $r_b = \frac{S}{p-b}$, $r_c = \frac{S}{p-c}$

Значит,

$$\frac{1}{r_a} + \frac{1}{r_b} + \frac{1}{r_c} = \frac{p-a}{S} + \frac{p-b}{S} + \frac{p-c}{S} = \frac{3p-2p}{S} = \frac{p}{S} = \frac{1}{r}.$$

Ч.т.д.

Теорема 8: Сумма всех попарных произведений радиусов вневписанных окружностей равна квадрату полупериметра треугольника, т. е.

$$r_a r_b + r_b r_c + r_c r_a = p^2$$

Доказательство:

Воспользуемся формулами ранее доказанных радиусов через стороны и площадь треугольника:

$$r = \frac{S}{p}$$
, $r_a = \frac{S}{p-a}$, $r_b = \frac{S}{p-b}$, $r_c = \frac{S}{p-c}$

Подставим

$$r_{a}r_{b} + r_{b}r_{c} + r_{c}r_{a} = \frac{S}{p-a} \cdot \frac{S}{p-b} + \frac{S}{p-b} \cdot \frac{S}{p-c} + \frac{S}{p-c} \cdot \frac{S}{p-a}$$

$$= S^{2} \frac{(p-c) + (p-a) + (p-b)}{(p-a)(p-b)(p-c)} = S^{2} \frac{3p-2p}{(p-a)(p-b)(p-c)}$$

$$= S^{2} \frac{p}{(p-a)(p-b)(p-c)}$$

Из формулы Герона следует

$$(p-a)(p-b)(p-c) = \frac{S^2}{p},$$

поэтому

$$r_a r_b + r_b r_c + r_c r_a = S^2 \frac{p^2}{S^2} = p^2$$

Ч.т.д.

Теорема 9: Произведение всех трех радиусов вневписанных окружностей равно произведению радиуса вписанной окружности на квадрат полупериметра треугольника, т.е.

$$r_a r_b r_c = r p^2$$

Доказательство:

Из ранее доказанных формул для радиусов и формулы Герона

$$r_a = \frac{S}{p-a}, r_b = \frac{S}{p-b}, r_c = \frac{S}{p-c}, S = \sqrt{p(p-a)(p-b)(p-c)}$$

Тогда

$$r_a r_b r_c = \frac{S^3}{(p-a)(p-b)(p-c)} = \frac{S^3 p}{S^2} = Sp = pr \cdot p = rp^3$$

<u>Следствие 1</u>: Площадь треугольника равна отношению произведения всех трех радиусов вневписанных окружностей к полупериметру треугольника, т.е.

$$S = \frac{r_a r_b r_c}{p}$$

Доказательство:

Из
$$r_a r_b r_c = r p^2 = p r \cdot p = S \cdot p$$

Следовательно:

$$S = \frac{r_a r_b r_c}{p}$$

Ч.т.д

<u>Следствие 2</u>: Площадь треугольника равна квадратному корню из произведения всех трех радиусов вневписанных окружностей и радиуса вписанной окружности, т.е.

$$S = \sqrt{r_a r_b r_c r}.$$

Доказательство:

Из следствия 1, и равенства S = pr, получаем, перемножая их почленно

$$S^2 = \frac{r_a r_b r_c}{p} \cdot pr = r_a r_b r_c r.$$

Значит

$$S = \sqrt{r_a r_b r_c r}.$$

Ч.т.д

Теорема 10: Величина, обратная высоте треугольника, опущенной на его данную сторону, равна полусумме величин, обратных радиусам вневписанных окружностей, касающихся двух других сторон треугольника, т.е.

$$\frac{1}{h_a} = \frac{1}{2} \left(\frac{1}{r_b} + \frac{1}{r_c} \right) \qquad \frac{1}{h_b} = \frac{1}{2} \left(\frac{1}{r_c} + \frac{1}{r_a} \right) \qquad \frac{1}{h_c} = \frac{1}{2} \left(\frac{1}{r_a} + \frac{1}{r_b} \right)$$

Доказательство:

Воспользуемся формулами

$$r_b = \frac{S}{p-b}, r_c = \frac{S}{p-c}$$

Значит,

$$\frac{1}{r_b} + \frac{1}{r_c} = \frac{p - b}{S} + \frac{p - c}{S} = \frac{2p - b - c}{S} = \frac{a + b + c - b - c}{S} = \frac{a}{\frac{1}{2}ah_a} = \frac{2}{h_a}$$

$$\Rightarrow \frac{1}{h_a} = \frac{1}{2}\left(\frac{1}{r_b} + \frac{1}{r_c}\right)$$

Ч.т.д

Демонстрационные задачи.

Задача 1: Основание AC равнобедренного ΔABC равно 10. Окружность радиуса 7,5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в ΔABC .

Решение:

Центры F — вписанной и O — вневписанной окружностей лежат на биссектрисе $\angle ABC$.

Т.к. ΔABC — равнобедренный, то BT — медиана, биссектриса, высота.

CF — биссектриса $\angle ACB$, CO — биссектриса $\angle ACP$.

Углы ∠ACB и ∠ACP — смежные ∠FCO = 90°. △FCO — прямоугольный ⇒

$$CT^2 = TO \cdot FT, 5^2 = 7,5 \cdot r,$$

$$r = \frac{25}{7,5} = \frac{10}{3}.$$

Ответ: $\frac{10}{3}$.

<u>Задача 2</u>: В $\triangle ABC$ проведены биссектрисы AL_1 и BL_2 . Найдите $\angle CAB$, если известно, что L_1L_2 – биссектриса $\angle AL_1C$.

Решение:

 ΔABL_1 : L_2 — точка пересечения биссектрисы внутреннего $\angle ABL_1$ и биссектрисы внешнего $\angle AL_1C$ ΔABL_1 L_2 — центр вневписанной в ΔABL_1 окружности.

Следовательно, AL_2 — биссектриса внешнего $\angle PAL_1 \ \Delta ABL_1$.

Несложно заметить, что

$$\angle PAC = \angle CAL_1 = \angle L_1AB = 60^{\circ} \Rightarrow$$

 $\angle CAB = 120^{\circ}.$

Ответ: ∠CAB = 120°.

Задача 3: Дана трапеция ABCD с основаниями BC = 44, AD = 100, AB = CD = 35. Окружность, касающаяся прямых AD и AC, касается стороны CD в точке К.Найдите длину отрезка CK.

Решение:

$$AE = \frac{100 - 44}{2} = 28$$

$$BE = \sqrt{35^2 - 28^2} = 21$$

$$AC = \sqrt{AF^2 + CF^2} = \sqrt{72^2 + 21^2}$$

$$= 75$$

Возможны две геометрические конфигурации:

- 1) окружность вписана в $\triangle ACD$.
- 2) Окружность является вневписанной для $\triangle ACD$.

$$CK = \frac{AC + CD - AD}{2} = \frac{75 + 35}{2} = 5$$

Задача 4 (ЕГЭ, С4, 2012): Радиусы двух вневписанных окружностей прямоугольного треугольника равны 7 и 23. Найдите расстояние между их центрами.

Решение:

Возможные случаи:

1) окружности касаются катетов.

 CO_a и CO_b — биссектрисы внешних вертикальных углов ΔABC , значит точки C, O_a и O_b лежат на одной прямой.

$$O_a O_b = O_a C + C O_b = r_a \sqrt{2} + r_b \sqrt{2} =$$

= $7\sqrt{2} + 23\sqrt{2} = 30\sqrt{2}$

2) одна из окружностей касается катета, другая – гипотенузы:

$$r_c = p, r_a = p \cdot tg \frac{\alpha}{2}, \frac{\alpha}{2} < 45^\circ \implies tg \frac{\alpha}{2} < 1$$
 значит $r_c > r_a \implies r_c = 23, \; r_a = 7.$ $O_a F = O_a K + KF = r_a + r_c = 7 + 23 =$

$$O_c F = O_c N - F N = r_c - r_a = 23 - 7 =$$

 $\left| \begin{array}{c} O_a \\ O_a \end{array} \right| = 16$ $\Delta O_a O_c F$ — прямоугольный:

$$O_a O_c = \sqrt{O_a F^2 + O_c F^2} = \sqrt{30^2 + 16^2} =$$

= 34

Ответ: $30\sqrt{2}$, 34.

Задача 5 (ЕГЭ, С4, 2010): Найдите произведение радиусов всех вневписанных окружностей треугольника со сторонами 4, 5, 6.

 $\it 3амечание:$ $\it 3адачу$ можно легко решить, не делая чертеж, воспользовавшись формулой $\it r_a\it r_b\it r_c=\it rp^2$

Решение:

$$p = \frac{a+b+c}{2} \Rightarrow p = \frac{4+5+6}{2} = \frac{15}{2},$$

$$S^{2} = p(p-a)(p-b)(p-c) \Rightarrow$$

$$S^{2} = \frac{15}{2} \cdot \frac{15-8}{2} \cdot \frac{15-10}{2} \cdot \frac{15-12}{2} = \frac{15 \cdot 7 \cdot 5 \cdot 3}{2} \cdot = \frac{15^{2} \cdot 7}{2^{4}} \Rightarrow S = \frac{15\sqrt{7}}{4}$$

$$r = \frac{S}{p} = \frac{\frac{15\sqrt{7}}{4}}{\frac{15}{2}} = \frac{\sqrt{7}}{2} \Rightarrow r_{a}r_{b}r_{c} = \frac{\sqrt{7}}{2} \cdot \left(\frac{15}{2}\right)^{2} = \frac{225\sqrt{7}}{8}.$$

Ответ: $\frac{225\sqrt{7}}{8}$

Сборник задач

Задача № 1.

Сколько существует точек, равноудаленных от трех попарно пересекающихся прямых?

Задача № 2.

Дан равнобедренный $\triangle ABC$ с основанием AC. Доказать, что конец D отрезка BD, выходящего из вершины B, параллельного основанию и равного боковой стороне треугольника, является центром вневписанной окружности треугольника.

Задача № 3.

В $\triangle ABC \angle B = 120^{\circ}$. AA_1 , BB_1 , CC_1 - биссектрисы углов треугольника.

- a) Найти $\angle A_1B_1C_1$.
- b) Найти $\angle B_1C_1C$.

Подсказка: доказать, что A_1 — центр вневписанной в ΔAB_1C_1 окружности, C_1 — центр вневписанной в ΔA_1B_1C окружности.

Задача № 4.

Пусть O_1 , O_2 и O_3 — центры вневписанных окружностей ΔABC , касающихся сторон BC, AC и AB соответственно. Докажите, что точки A, B и C — основания высот $\Delta O_1 O_2 O_3$.

Подсказка: угол между биссектрисами смежных углов равен 90°.

Задача № 5.

Пусть O_1 , O_2 и O_3 — центры вневписанных окружностей $\triangle ABC$,

касающихся сторон BC, AC и AB соответственно. Постройте $\triangle ABC$.

Задача № 6.

Дан $\triangle ABC$. Центры вневписанных окружностей O_1 , O_2 и O_3 соединены прямыми. Доказать, что $\triangle O_1O_2O_3$ — остроугольный.

Задача № 7.

Пусть вневписанные окружности треугольника, касающиеся сторон AC и BC, касаются прямой AB в точках P и Q соответственно. Докажите, что середина стороны AB совпадает с серединой отрезка PQ.

Задача № 8.

Пусть r — радиус окружности, касающейся гипотенузы и продолжения катетов прямоугольного треугольника со сторонами a, b, c.

Докажите, что
$$r = \frac{a + b + c}{2} = p$$
.

Подсказка: четырёхугольник, образованный прямыми, содержащими катеты и радиусами, проведёнными в точки касания с продолжениями катетов, —квадрат.

Задача № 9.

В прямой угол с вершиной C вписаны две окружности, которые не пересекаются. К этим окружностям проведена общая касательная, которая пересекает угол в точках A и B. Найдите площадь ΔABC , если радиусы окружностей равны R_1 и R_2 .

Задача № 10.

Дан квадрат ABCD со стороной a. На сторонах BC и CD даны точки M и N такие, что периметр ΔCMN равен 2a. Найдите $\angle MAN$.

Задача № 11.

Докажите, что катет прямоугольного треугольника равен сумме радиуса вписанной окружности и радиуса вневписанной окружности, касающейся этого катета.

Подсказка: Пусть BC — катет прямоугольного $\triangle ABC$ ($\angle C = 90^{\circ}$).

Докажите, что расстояние от вершины B до точки касания гипотенузы с вписанной окружностью равно радиусу вневписанной окружности, касающейся катета BC.

Задача № 12.

На одной стороне угла с вершиной O взята точка A, а на другой — точки B и C, причём точка B лежит между O и C. Проведена окружность с центром O_1 , вписанная в ΔOAB , и окружность с центром O_2 , касающаяся стороны AC и продолжений сторон OA и OC ΔAOC .

Докажите, что если $O_1A = O_2A$, то $\triangle ABC$ – равнобедренный.

Подсказка: Докажите, что
$$\angle A O_1 O_2 = \frac{1}{2} \angle A B C$$
 И $\angle A O_2 O_1 = \frac{1}{2} \angle A C B$

Задача № 13.

В $\Delta PQR \angle QRP = 60^\circ$. Найдите расстояние между точками касания со стороной QR окружности радиуса 2, вписанной в треугольник, и окружности радиуса 3, касающейся продолжений сторон PQ и PR.

Подсказка: центр окружности, вписанной в угол, лежит на биссектрисе этого угла.

Задача № 14.

Окружность радиуса 3, вписанная в $\triangle ABC$, касается стороны BC в точке D. Окружность радиуса 4 касается продолжения сторон AB и AC и касается стороны BC

в точке E. Найдите ED, если $\angle BCA = 120^{\circ}$.

Задача № 15.

В $\triangle ABC$ с $\angle C = 90^\circ$ и $\angle A = 30^\circ$, вписана окружность радиуса R. Вторая окружность, лежащая вне треугольника, касается стороны BC и продолжений двух других сторон. Найдите расстояние между центрами этих окружностей.

Подсказка: пусть O_1 и O_2 — центры данных окружностей, C — вершина прямого угла $\triangle ABC$. Тогда $\triangle O_1CO_2$ — прямоугольный. Найдите его углы.

Задача № 16.

В $\triangle ABC$ с периметром 2p острый угол BAC равен α . Окружность с центром в точке O касается стороны BC и продолжения сторон AB и AC в точках K и L соответственно. Точка D лежит внутри отрезка AK, AD = a. Найдите площадь ΔDOK .

Подсказка: отрезки касательных, проведённых из одной точки к окружности, равны между собой.

Задача № 17.

В трапеции ABCD основание BC равно 13, а $\angle BAD$ острый и вдвое больше $\angle ADC$. Окружность с центром на прямой BC касается прямых AC, AD и отрезка CD.

Найдите площадь трапеции ABCD, если известно, что радиус окружности равен 5. **Подсказка:** докажите, что AC — биссектриса $\angle BAD$ и найдите $\cos \angle BAD$.

Задача № 18.

Докажите формулу Герона для площади треугольника $S = \sqrt{p(p-a)(p-b)(p-c)}$.

Задача № 19.

Продолжение биссектрисы $\angle B \triangle ABC$ пересекает описанную окружность в точке M;

O — центр вписанной окружности, O_1 — центр вневписанной окружности, касающейся стороны AC. Докажите, что точки A, C, O и O_1 лежат на окружности с центром в точке M.

Подсказка: докажите, что ΔOMA и ΔAMO_1 — равнобедренные.

Задача № 20.

Докажите, что отрезок, соединяющий центры вписанной и вневписанной окружностей треугольника, делится описанной окружностью пополам.

Подсказка: пусть вневписанная окружность касается стороны AB ΔABC . Точки A, B и центры O_1 и O_2 вписанной и вневписанной окружностей лежат на окружности с центром в середине отрезка O_1O_2

Задача № 21.

Найдите произведение сторон треугольника, если известно, что радиусы его вневписанных окружностей равны 9,18 и 21.

Задача №22.

Доказать соотношения:

а) сумма радиусов вневписанных окружностей равна сумме радиуса вписанной окружности и удвоенному и удвоенного диаметра описанной окружности:

$$r_a + r_b + r_c = r + 4R$$
;

b) сумма величин, обратных радиусам вневписанных окружностей, равна величине,

обратной радиусу вневписанной окружности: $\frac{1}{r_a} + \frac{1}{r_b} + \frac{1}{r_c} = \frac{1}{r}$;

- c) площадь треугольника равна отношению произведения всех трех радиусов вневписанных окружностей к полупериметру треугольника: $s = \frac{r_a r_b r_c}{p}$;
- d) сумма всех попарных произведений радиусов вневписанных окружностей равна квадрату полупериметра треугольника: $r_a r_b + r_b r_c + r_c r_a = p^2$;
- e) произведение всех трех радиусов вневписанных окружностей равно произведению радиуса вписанной окружности на квадрат полупериметра треугольника: $r_a r_b r_c = rp^2$;
 - f) площадь треугольника равна квадратному корню из произведения всех трех радиусов вневписанных окружностей и радиуса вписанной окружности:

$$S = \sqrt{r_a r_b r_c r} ;$$

g) величина, обратная высоте треугольника, опущенной на его данную сторону, равна полусумме величин, обратных радиусам вневписанных окружностей, касающихся двух других сторон треугольника:

$$\frac{1}{h_a} = \frac{1}{2} \left(\frac{1}{r_b} + \frac{1}{r_c} \right), \quad \frac{1}{h_b} = \frac{1}{2} \left(\frac{1}{r_c} + \frac{1}{r_a} \right), \quad \frac{1}{h_c} = \frac{1}{2} \left(\frac{1}{r_a} + \frac{1}{r_b} \right);$$

Решения

Задача № 1.

Ответ: 4.

Центр вписанной в треугольник окружности и три центра вневписанных окружностей.

Задача № 2.

Опустим перпендикуляры DE, DF и DG к прямым, содержащим стороны AB, BC и AC ΔABC .

Тогда $\angle DBE = \angle DBC = \angle ACB$.

 $\Delta EBD = \Delta FBD$ (по гипотенузе и острому

углу) \Rightarrow DE = DF.

 $\angle BDC = \angle BCD$ ($\triangle CBD$ - равнобедренный).

 $\angle BDC = \angle DCG$ (накрест лежащие при секущей CD).

Следовательно, $\angle BCD = \angle DCG$.

Тогда DF = DG, но это и значит, что D является центром вневписанной окружности треугольника.

Задача № 3.

a) Ответ: 90°.

 $\angle CBK = 60^{\circ}$ (как внешний угол при вершине *B*),

 $\angle CBB_1 = 60^\circ$ (т.к. BB_1 — биссектриса $\angle ABC = 120^\circ$). Поэтому, BC — биссектриса $\angle B_1BK$.

 A_1 — точка пересечения биссектрисы BC внешнего угла B_1BK и внутреннего угла A треугольника ABB_1 значит A_1 — центр вневписанной окружности треугольника ABB_1 . Аналогично, C_1 — центр вневписанной окружности треугольника BCB_1 .

Следовательно, B_1A_1 и B_1C_1 —биссектрисы смежных углов, а значит, угол между ними равен 90. Итак, $\angle A_1B_1C_1 = 90^\circ$

b) Ответ: 30°.

Из доказанного следует, что точка P пересечения CC_1 и B_1A_1 является пересечением биссектрис ΔBCB_1 .

Следовательно,
$$\angle B_1 P C = 180^{\circ} - (\angle P B_1 C + \angle P C B_1) = 180^{\circ} - \frac{\angle B B_1 C + \angle B C B_1}{2} = 120^{\circ}$$
.

Так как $\angle B_1PC$ — внешний для прямоугольного треугольника PB_1C_1 , то $\angle B_1C_1C = \angle B_1PC - 90^\circ = 30^\circ$.

Задача № 4.

 $\angle O_1 A O_3$ — угол между биссектрисами смежных углов.

Следовательно, $O_1A \perp O_3A$.

Аналогично, $O_1A \perp O_2A$.

Поэтому, O_1A — высота $\Delta O_1O_2O_3$.

Точно так же докажем, что O_2B и O_3C — высоты $\Delta O_1O_2O_3$.

Задача № 5. (воспользоваться результатом задачи № 4)

Построение:

- 1. $\Delta O_1 O_2 O_3$.
- 2. O_1A , O_2B , O_3C высоты $\Delta O_1O_2O_3$.
- 3. *∆АВС* искомый.

Задача № 6. (воспользоваться рисунком задачи № 4)

Центр O_1 вневписанной окружности, касающейся стороны BC, является точкой пересечения биссектрис внешних углов при вершинах B и C.

$$\Pi \text{O9TOMY, } \angle O_{1}CB = \frac{180^{\circ} - \angle C}{2} < 90^{\circ}, \angle O_{1}BC = \frac{180^{\circ} - \angle B}{2} < 90^{\circ},$$

$$\angle BO_{1}C = \frac{180^{\circ} - \angle A}{2} < 90^{\circ}$$
.

 $\Delta O_1 O_2 O_3$ — остроугольный.

Задача № 7.

Обозначим AB = c, BC = a, CA = b. Известно, что AP = BQ = p, где p – полупериметр треугольника. Тогда, если T – середина PQ, то

$$PT = \frac{1}{2}PQ = \frac{1}{2}(QA + AB + BP) = \frac{1}{2}((p-c) + c + (p-c)) = \frac{1}{2}$$

$$= \frac{1}{2}(2p-c) = \frac{1}{2}(a+b+c-c) = \frac{a+b}{2} \text{ 3Haчит,}$$
 $BT = PT - BP = \frac{a+b}{2} - (p-c) = \frac{a+b}{2} - \frac{a+b-c}{2} = \frac{c}{2},$
т.е. T — середина AB .

Задача № 8.

Обозначим вершины треугольника, противолежащие сторонам a, b, c, через A, B, C (C — вершина прямого угла), а точки касания — через A_1, B_1, C_1 соответственно. Если O — центр данной окружности, то

 OA_1CB_1 — квадрат со стороной, равной r.

Поэтому
$$CA_1 = r$$
, $BC_1 = BA_1 = r$ - a , $AC_1 = AB_1 = r$ - b ,

$$c = AB = AC_1 + C_1B = 2r - a - b.$$

Следовательно,
$$r = \frac{a+b+c}{2}$$
.

Задача № 9.

Ответ: R_1R_1 .

Отрезок CT_1 (T_1 — точка касания прямой CB и окружности радиуса R_2) равен R_2 .

Окружность радиуса R_2 является вневписанной окружностью ΔABC , значит, $R_2=p$.

Площадь треугольника находим как произведение радиуса вписанной окружности на полупериметр:

$$S = rp = R_1 R_2.$$

Задача № 10.

Ответ: 45°.

Расстояния от вершины $C \Delta CMN$ до точек B и D равны его полупериметру. Значит, B и D — точки касания вневписанной окружности, центр которой находится в вершине A квадрата ABCD. Тогда, AM и AN — биссектрисы $\angle BMN$ и $\angle MND$ соответственно. $\angle CMN + \angle CNM = 90^\circ$,

ЗНАЧИТ,
$$\angle AMN + \angle MNA = 180^{\circ} - \frac{\angle CMN + \angle CNM}{2} = 135^{\circ}$$
.

Откуда,
$$\angle MAN = 180^{\circ} - (\angle AMN + \angle MNA) = 45^{\circ}$$
.

Задача № 11.

Пусть O — центр вписанной окружности прямоугольного треугольника ABC,

P — точка касания этой окружности с катетом BC, r — радиус этой окружности.

Пусть также окружность с центром в точке O_1 и радиусом R касается катета BC в точке Q и, кроме того, касается продолжений катета AC и гипотенузы AB.

Отрезок OO_1 виден из точек C и B под прямым углом. Поэтому точки B и C лежат на окружности с диаметром OO_1 .

Следовательно, $\angle BOO_1 = \angle BCO_1 = 45^{\circ}$.

Тогда $OB = O_1B$.

Пусть M и N точки касания окружностей с прямой AB (AM < AN).

Тогда ΔOMB и ΔBNO_1 равны по гипотенузе и острому углу.

Поэтому $BM = O_1 N = R$.

Следовательно, BC = BP + PC = BM + PC = R + r.

Задача №12.

Поскольку центр окружности, вписанной в угол, лежит на биссектрисе этого угла, то точки O, O_1 и O_2 лежат на одной прямой. Пусть углы при вершинах O и A ΔOAB равны соответственно α и β . По теореме о внешнем угле треугольника

$$\angle A O_1 O_2 = \angle A O O_1 + \angle O A O_1 = \frac{\alpha}{2} + \frac{\beta}{2} = \frac{1}{2} (\alpha + \beta) = \frac{1}{2} (\angle A O B + \angle O A B) = \frac{1}{2} \angle A B C.$$

Пусть угол при вершине A треугольника OAC равен β' , а окружность с центром O_2 касается луча OA в точке D. Тогда

$$\angle A O_{2}O_{1} = \angle D A O_{2} - \angle A O O_{2} = \frac{1}{2}(180^{\circ} - \beta') - \frac{\alpha}{2} = \frac{1}{2}(180^{\circ} - \beta' - \alpha) = \frac{1}{2} \angle A C O = \frac{1}{2} \angle A C B.$$

Из условия задачи следует, что $\angle AO_1O_2 = \angle AO_2O_1$, значит, $\angle ABC = \angle ACB$. Следовательно, $\triangle ABC$ — равнобедренный.

Задача № 13.

Ответ: $\sqrt{3}$.

Пусть O_1 и O_2 — центры окружностей радиусов 2 и 3 соответственно, M и N — их точки касания со стороной RQ. Тогда, $RM = \frac{O_1 M}{tg \ 30^\circ} = \frac{2}{\sqrt{3}} = 2\sqrt{3}$, $RN = \frac{O_2 N}{tg \ 60^\circ} = \frac{3}{\sqrt{3}} = \sqrt{3}$.

Поэтому, $M N = R M - R N = 2\sqrt{3} - \sqrt{3} = \sqrt{3}$.

Задача № 14. (смотрите решение задачи № 13)

Ответ: $3\sqrt{3}$.

Задача № 15.

Ответ: $2R\sqrt{2}$.

Пусть O_1 и O_2 — центры данных окружностей (R — радиус первой), C — вершина прямого угла. Тогда треугольник O_1CO_2 — прямоугольный. Поскольку точки O_1 и O_2 расположены на биссектрисе угла A, то $\angle O_1O_2C=75^\circ$ - $45^\circ=30^\circ$.

 O_1C — диагональ квадрата со стороной R, значит $o_{_1}c=R\sqrt{2}$.

Следовательно, $O_1O_2 = 2O_1C = 2R\sqrt{2}$.

Задача № 16.

Omsem: $\frac{1}{2}p(p-a)tg\frac{\alpha}{2}$.

1 способ:

Пусть M — точка касания данной окружности со стороной BC. Тогда KB = BM, LC = CM, 2p = AB + BC + AC = AK + AL, а т.к. AK = AL, то AK = p.

Ποэτοму, $OK = AK \cdot tg \frac{\alpha}{2} = p \cdot tg \frac{\alpha}{2}$.

Следовательно, $S_{DOK} = \frac{1}{2}DK \cdot OK = \frac{1}{2}p(p-a)tg\frac{\alpha}{2}$.

2 способ:

AK = p (теорема о касательной к вневписанной окружности), $o \ \kappa = p \cdot tg \frac{\alpha}{2}$ (соотношение между радиусом вневписанной окружности и периметром треугольника).

$$S_{DOK} = \frac{1}{2} D K \cdot O K = \frac{1}{2} p (p - a) tg \frac{\alpha}{2}$$
.

Задача № 17.

Omeem: $\frac{315}{2}$.

Данная окружность — вневписанная окружность треугольника CAD, касающаяся стороны CD и продолжений сторон AC и AD. Пусть

 $\angle ADC = \alpha$, $\angle BAD = 2\alpha$. O — центр окружности, P и Q — проекции вершин B и C меньшего основания трапеции на AD, M — точка касания с прямой AD, K — с прямой AC.

Поскольку СО — биссектриса угла КСО, то

$$\angle BCA = \angle KCO = \angle OCD = \angle CDA = \angle CAD = \angle BAC = \alpha$$
, $\triangle ABC$ is $\triangle ACD$ —

равнобедренные. Тогда AB = BC = 13, BP = OM = 5, $AP = \sqrt{AB^2 - BP^2} = \sqrt{13^2 - 5^2} = 12$,

$$\cos 2\alpha = \cos \angle BAP = \frac{AP}{AB} = \frac{12}{13}, \ tg \angle CDA = tg \alpha = \sqrt{\frac{1 - \cos 2\alpha}{1 + \cos 2\alpha}} = \frac{1}{5},$$

$$DQ = CO \cdot ctg \alpha = 5 \cdot 5 = 25,$$

$$AD = AP + PQ + QD = 12 + 13 + 25 = 50.$$

Следовательно,
$$S_{ABCD} = \frac{1}{2}(AD + DC) \cdot BP = \frac{1}{2}(50 + 13) \cdot 5 = \frac{315}{2}$$
.

Задача № 18.

Пусть R — радиус вневписанной окружности, r — радиус вписанной. ΔCMO_1 ~

$$\Delta CKO$$
, значит, $\frac{CM}{R} = \frac{r}{CK}$, $CK = p - c$, $CM = p - AC = p - b$.

Откуда,
$$\frac{p-b}{R} = \frac{r}{p-c}$$
 или $rR = (p-c)(p-b)$.

$$Ho_R = \frac{S}{p-a}, r = \frac{S}{p}, 3haum r_R = \frac{S}{p-a} \cdot \frac{S}{p} = (p-c)(p-b).$$

Отсюда следует формула Герона $S = \sqrt{p(p-a)(p-b)(p-c)}$.

Задача № 19.

Поскольку, $\angle AOM = \angle ABO + \angle OAB = \angle ACM + \angle OAB = \angle CAM + \angle OAC = \angle OAM$, то $\triangle OMA$ — равнобедренный, MO = MA. Аналогично докажем, что MO = MC. $\angle OAO_1$ — прямой как угол между биссектрисами смежных углов.

Обозначим $\angle AOM = \angle OAM = \varphi$, тогда $\angle MAO_1 = 90^\circ$ - φ

Поэтому ΔAMO_1 — равнобедренный и $MA = MO_1$. Следовательно, $MA = MO = MC = MO_1$. Поэтому точки A, O, C, O_1 лежат на окружности с центром в точке M.

Задача № 20.

Пусть вневписанная окружность касается стороны $AB \Delta ABC$;

$$\angle ABC = \alpha$$
, $\angle CAB = \beta$, $\angle CBA = \gamma$.

 O_1, O_2 — центры вписанной и вневписанной окружностей соответственно,

M — середина O_1O_2 . Поскольку отрезок O_1O_2 виден из точек A и B под прямым углом, то M — центр окружности, описанной около четырёхугольника AO_1BO_2 . Тогда

$$\angle AO_{2}B = \angle AO_{2}O_{1} + \angle BO_{2}O_{1} = \angle O_{1}BA + \angle O_{1}AB = \frac{\gamma}{2} + \frac{\beta}{2} = 90^{\circ} - \frac{\alpha}{2},$$
 $\angle AMB = 2\angle AO_{2}B = 180^{\circ} - \alpha.$

Следовательно, точки A, C, B и M лежат на одной окружности, т.е. на окружности, описанной около треугольника ABC.

Задача № 21.

Ответ: 5460.

Применяя соотношение 2:
$$\frac{1}{r_a} + \frac{1}{r_b} + \frac{1}{r_c} = \frac{1}{r}$$
, имеем $\frac{1}{9} + \frac{1}{18} + \frac{1}{21} = \frac{1}{r}$, $r = \frac{14}{3}$.

Используя соотношение 6: $S = \sqrt{r_a r_b r_c r}$, получаем $S = \sqrt{9 \cdot 18 \cdot 21 \cdot \frac{14}{3}} = 126$.

Ответ на вопрос задачи получим, воспользовавшись соотношением 1:

$$r_a + r_b + r_c - r = \frac{abc}{S}$$
, то есть $abc = (r_a + r_b + r_c - r) \cdot S$. Итак,

$$abc = (9 + 18 + 21 - \frac{14}{3}) \cdot 126 = 5460$$
.

Задача № 22.

а) выразим все радиусы через стороны, площадь и полупериметр треугольника:

$$r = \frac{S}{p}, R = \frac{abc}{4S}, r_a = \frac{S}{p-a}, r_b = \frac{S}{p-b}, r_c = \frac{S}{p-c}.$$

Значит,
$$r_a + r_b + r_c - r = \frac{S}{p-a} + \frac{S}{p-b} + \frac{S}{p-c} - \frac{S}{p} =$$

$$= S \cdot \frac{p(p-b)(p-c) + p(p-a)(p-c) + p(p-a)(p-b) - (p-a)(p-b)(p-c)}{p(p-a)(p-b)(p-c)} =$$

$$= S \cdot \frac{abc}{S^2} = \frac{abc}{S} = 4R \implies r_a + r_b + r_c = r + 4R.$$

b) воспользуемся формулами $r_a = \frac{S}{p-a}, r_b = \frac{S}{p-b}, r_c = \frac{S}{p-c},$ имеем

$$\frac{1}{r_a} + \frac{1}{r_b} + \frac{1}{r_c} = \frac{p-a}{S} + \frac{p-b}{S} + \frac{p-c}{S} = \frac{3p-(a+b+c)}{S} = \frac{3p-2p}{S} = \frac{p}{S} = \frac{1}{r}.$$

Итак,
$$\frac{1}{r_a} + \frac{1}{r_b} + \frac{1}{r_c} = \frac{1}{r}$$
.

C)
$$M3 r_a r_b r_c = rp^2 = rp \cdot p = Sp$$
.

Следовательно:
$$S = \frac{r_a r_b r_c}{p}$$
.

d) используя формулы (b), (c) и S = pr имеем:

$$\frac{1}{r_a} + \frac{1}{r_b} + \frac{1}{r_c} = \frac{r_a r_b + r_b r_c + r_a r_c}{r_a r_b r_c} = \frac{r_a r_b + r_b r_c + r_a r_c}{Sp} = \frac{p}{S}.$$

Следовательно: $r_a r_b + r_b r_c + r_a r_c = p^2$.

- e) используя формулу (c) и S = pr, имеем $r_a r_b r_c = Sp = rp^2$.
- f) используя формулу (c) и S=pr, имеем $S=rac{r_a r_b r_c}{p}=rac{r_a r_b r_c}{rac{S}{p}}$ или $S^2=r_a r_b r_c r$.

Следовательно: $S = \sqrt{r_a r_b r_c r}$.

g) воспользуемся формулами $r_b = \frac{S}{p-b}, \ r_c = \frac{S}{p-c}$

Значит,
$$\frac{1}{r_b} + \frac{1}{r_c} = \frac{p-b}{S} + \frac{p-c}{S} = \frac{2p-b-c}{S} = \frac{a+b+c-b-c}{S} = \frac{a}{S} = \frac{a}{\frac{1}{2}ah_a} = \frac{2}{h_a}$$
,

$$\frac{1}{h_a} = \frac{1}{2} \left(\frac{1}{r_b} + \frac{1}{r_c} \right).$$