

MPRI 2.18.1 (2019/20): Distributed algorithms for networks, 2nd part

Lecture 3: Rumor Spreading in Realistic Networks

Benjamin Doerr, LIX

Outline:

Homeworks:

Hypercubes = nice networks

Random geometric graphs = wireless sensor network (next lecture)

Preferential attachment graphs = social networks (next lecture)

Contents of This and Next Lecture

- 3 important networks classes
 - hypercubes: regular, logarithmic degree, logarithmic diameter, many paths between any two vertices
 - random geometric graphs: model for radio networks, connectivity threshold, giant component threshold
 - preferential attachment graphs: model for real networks, low diameter, power-law degree distribution
- Rumor spreading in such networks
 - hypercubes: RRS takes logarithmic time (=diameter)
 - cool proof: backward spreading of non-information
 - random geometric graphs: RRS takes time approx. diameter. Argument: Take a sufficiently sparse grid, then RRS is roughly like in the grid graph
 - preferential attachment: push takes long, push-pull takes logarithmic time, push-pull without double-calls takes approx. diameter

Homework 2.1: Rumor Spreading in the 4-Cycle

- Let G be the graph that forms a cycle of 4 vertices. Assume that you run the randomized rumor spreading protocol in this graph: the rumor starts in an arbitrary node and then in each round, each node calls a random neighbor (not including itself). Compute precisely the expected time it takes until all vertices are informed.
- Solution "Markov chain thinking": Let T_i be the expected time to inform all nodes when starting with i informed nodes (forming a connected piece on the cycle)
 - $T_4 = 0$
 - $T_3 = 1 + \frac{1}{4}T_3 + \frac{3}{4}T_4$ "after one round, w.p. $\frac{1}{4}$ you still have 3 informed vertices and w.p. $\frac{3}{4}$ you have 4 informed vertices" $\rightarrow T_3 = \frac{4}{3}$.
 - $T_2 = 1 + \frac{1}{4}T_2 + \frac{1}{2}T_3 + \frac{1}{4}T_4 = \frac{20}{9}.$
 - $T_1 = 1 + T_2 = \frac{29}{9}.$

Homework 2.2: Path Lemmas Can Overestimate Runtimes

 Give an example showing the path lemmas can greatly over-estimate the time it takes to inform a vertex. Why?

- Example: Complete graph on n vertices.
 - Rumor spreading time: $\Theta(\log n)$
 - Path lemmas:
 - Path_lenght \times degree = $1 \times (n-1)$
- Reason: There are many paths from the source to a give target, hence the time to traverse a particular path is much higher than the time to traverse any path.

Homework 2.4: Lower Bound Tree

- Prove a lower bound of $\Omega(hk \log k) = \Omega(k \log n)$ for the rumor spreading time in a k-regular tree of height h.
- Proof 1 (adaptive path argument): Assume the rumor starts in the root x_0 .
- Given that some x_i is defined, let x_{i+1} be the child of x_i which is called last by x_i . This defines inductively a path from the root to a leaf.
- By a coupon collector argument, the expected time it takes until a node has called all its children (and hence the last child) is $\Omega(k \log k)$.
- Hence the expected time for the rumor to reach the end of the path is $\Omega(hk \log k)$.

Homework 2.4: Lower Bound Tree (2) $(1-\frac{1}{k+1})^k \ge \frac{1}{e}$

- Proof 2 (uninformed leaves): Assume that all nodes except the leaves are informed.
- The probability that a particular leaf is uninformed after $T=0.2~k\ln n$ rounds is $\left(1-\frac{1}{k+1}\right)^T \geq \exp(-0.2\ln n) = n^{-0.2}$, hence the expected number of uninformed nodes is at least $\frac{1}{2}n^{0.8}$ note that at least half the nodes are leaves.
- We now use the method of bounded differences to argue that with high probability, not all nodes are informed after T rounds:
 - Let X be the vector of random decisions in these T rounds. Then X consists of at most $nT = \Theta(n \log n)$ independent random decisions.
 - Denote by f(X) the number of uninformed leaves after T rounds. Note that changing a single random decision in X changes f(X) by at most 1.
 - Hence $\Pr\left[f(X) \le E[f(x)] \frac{1}{4}n^{0.8}\right] \le \exp\left(2\left(\frac{1}{4}n^{0.8}\right)^2\left(\Theta(n\log n)\right)^{-1}\right)$

Homework 2.5: Rumor Spreading in Arbitrary Graphs

- Theorem: For any connected graph G = (V, E), a rumor starting in an arbitrary vertex s with high probability reaches all vertices within $O(n \log n)$ rounds.
- Definition: Consider a path $P: x_0, x_1, ..., x_k$ in G. Assume that x_0 is informed at the start of round T_1 . We say that the *rumor traverses the path* P in the time interval $[T_1, T_2]$ if there are $T_1 \le t_0 < t_1 < \cdots < t_{k-1} \le T_2$ such that for all $i \in [0..k-1]$ vertex x_i calls x_{i+1} in round t_i .
 - Note: This implies that all nodes on the path are informed after round T₂
- Degree-Lemma: If P is a shortest path, then $\sum_{i=0}^{k-1} \deg x_i \leq 3n$
- Proof: Let z be a vertex not on P. Let $N_P(z)$ be the set of neighbors of z that lie on P. Then $N_P(z) \subseteq \{x_{i-1}, x_i, x_{i+1}\}$ for some $i \in [1..k-1]$ otherwise there would be a shorter path from x to y.
 - Hence $\sum_{i=0}^{k-1} \deg x_i = \sum_z |N_P(z)| + 2(k-1) \le 3(n-k) + 2k \le 3n$.

Homework 2.5: Rumor Spreading in Arbitrary Graphs (2)

- Path lemma & degree lemma: If P is a shortest path, then the first T_2 such that the rumor traverses P in the interval $[T_1, T_2]$ satisfies $E[T_2] \le T_1 + 3n 1$
- Markov's inequality: The probability that the rumor does not traverse the shortest path P in the interval $[T_1, T_1 + 6n 1]$, is at most 1/2.
- Restart argument: the probability that the rumor does not traverse the shortest path in $[T_1, T_1 + 6kn 1]$, is at most 2^{-k}
 - proof: consider the intervals $[T_1 + 6(i-1)n, T_1 + 6in 1], i \in [1..k]$
 - for each interval, the probability that the rumor does not traverse the path in this interval, is at most 1/2
 - by the Markov property of rumor spreading, the probability is at most 2^{-k} that all these k intervals fail to let the rumor traverse the path
 - hence 2^{-k} is an upper bound for the probability that the rumor does not traverse the path in $[T_1, T_1 + 6kn 1]$

Homework 2.5: Rumor Spreading in Arbitrary Graphs (3)

- Let $v \in V \setminus \{s\}$. Then the probability that v is not informed after $12 n \log_2(n)$ rounds, is at most $1/n^2$
 - Proof: choose a shortest path from s to v. The probability that the rumor does not this path in the time interval $[0, 12 n \log_2(n) 1]$ is at most $1/n^2$.
- Union bound: With probability at most 1/n, there is a vertex that is not informed after $12 n \log_2(n)$ rounds.

Homework 2.5: Rumor Spreading in Arbitrary Graphs (4)

- Alternative proof:
- The probability that a node x has not called its neighbor y within $T_x = 3 \deg(x) \ln(n)$ rounds after becoming informed is $(1 1/\deg(x))^T \le \exp(-3\ln(n)) = n^{-3}$.
- Union bound: The probability that x has not called all neighbors within that time is n^{-2} .
- Union bound: The probability that there is such an x is n^{-1} .
- Hence with probability at least $1 n^{-1}$, all nodes x call all their neighbors within T_x rounds after becoming informed.
- Assuming this, the rumor traverses any path in time at most 3 ln(n) times
 its degree sum. Hence the claim follows from the fact that all shortest paths
 have a degree sum of at most 3n

- Rumor spreading in "relevant" networks:
 - nice man-made communication networks = hypercube,
 - wireless sensor networks = random geometric graphs,
 - social networks = preferential attachment graphs

Part 1: Rumor Spreading in Hypercubes H_d

- **Definition**: The d-dimensional hypercube is a graph H_d having
 - $V = \{0,1\}^d$ as vertex set (hence $n := |V| = 2^d$), and
 - two vertices are adjacent if they differ in exactly one position.

- Maximum degree: $\Delta(G) = d = \log n$
- Distances in H_d : d(u, v) = "number of positions u and v differ in".
- Diameter (max. distance between vertices): $diam(G) = d = \log n$,
- Good communication network: Small diameter, relatively few edges, high connectivity (d disjoint paths between any two vertices)

Rumor Spreading in Hypercubes

- The degree-diameter bound gives a rumor spreading time of $O(\Delta \max\{\operatorname{diam}(H_d), \log n\}) = O(\log^2 n)$
- Might be overly pessimistic, because there are many path between any pair of vertices:
 - d! different shortest paths between (0, ..., 0) and (1, ..., 1)
 - so there might be one path where we are much more lucky than what the expectation tell us.
- Theorem: With probability 1 1/n, a rumor started in an arbitrary node of the hypercube has reached all nodes after $O(\log n)$ rounds.
 - beautiful proof (next couple of slides)
 - major open problem to determine the leading constant

Proof: Preparations

- We assume that the rumor starts in s = (0, ..., 0). [symmetry]
- We show that for any $\beta > 0$ there is a K > 0 such that after $K \log n$ rounds, the vertex t = (1, ..., 1) is informed with probability $1 n^{-\beta}$
 - similar arguments work for any target t
 - a union bound shows that all vertices are informed w.p. $1 n^{-\beta+1}$
- Two technical assumptions that do not change how the rumor spreads, but help in the proof
 - all-work assumption: We assume that in each round every node calls a random neighbor – if the caller is not informed, nothing happens
 - everything-predefined assumption: We assume that before the process starts, each node has already fixed whom to call in which round

Expansion Phase

- Observation: The rumor quickly moves away from s = (0, ..., 0), but it is increasingly difficult to argue that the rumor truly approaches the target.
- Plan: Show that you get at least close to the target!
 - for reasons that will become clear later, we show that we get close to any target we want.
- Expansion Lemma: Let $\alpha > 0$. Let $v \in V$. Let $C \ge 2$. After Cd/α rounds, with probability at least $1 \exp(-Cd/8)$ there is an informed vertex w such that $d(v, w) \le \alpha d$.
 - "in $\Theta(d)$ rounds the rumor reaches v apart from at most the last αd steps (and apart from an $O(n^{-\Omega(1)})$ failure probability"

Proof: Expansion Lemma

- Similar to the analysis how rumors traverse a path.
- Let d_t denote the distance of v to the closest informed vertex after round t.
- Define binary random variables X_t (counting true/artificial progress) as follows
 - if $d_{t-1} > \alpha d$, then $X_t = 1$ if and only if $d_{t-1} > d_t$
 - if $d_{t-1} \le \alpha d$, then $X_t = 1$ with probability α (independent of everything)
- $\Pr[X_t = 1] \ge \alpha$ for all t
- Note: $X^T \coloneqq \sum_{t=1}^T X_t \ge d(s, v) \alpha d$ if and only if $d_T \le \alpha d$ (our aim)
- The X_t are not independent, but we have $\Pr[X_t = 1 | X_1 = x_1, ..., X_{t-1} = x_{t-1}] \ge \alpha$ for all $x_1, ..., x_{t-1} \in \{0,1\}$. Hence X^T dominates a sum Y^T of T independent random variables that are 1 with probability exactly α (Lemma 1.18 in book chapter).
- For $T = Cd/\alpha$ we have

$$\Pr[X^T \le d] \le \Pr[Y^T \le d] \le \Pr\left[Y^T \le \frac{1}{2}E[Y^T]\right] \le \exp\left(-\frac{E[Y^T]}{8}\right) \le \exp\left(-\frac{Cd}{8}\right)$$

by the multiplicative Chernoff bound.

Backward Phase

- Plan: Do something "dual": starting in t and going backward in time, spread "uninformedness"
- Recall that we assumed that all nodes call in each round.
- Assume that our target node t is uninformed after some round T.
 - if some node x calls t in round T, then x must be uninformed after round T-1
 - iterate this argument to construct a path ending in t such that if the start of the path was informed at some time T - i then t would be informed at time T
- Here we use the all-work and all-predetermined assumptions!

Backward Phase - Some Details

- Lemma: Let T be large. Let $\alpha > 0$. Let $v \in V$. Then with probability at least $1 \exp(-Cd/8)$ there is a $w \in V$ such that $d(w, v) \le \alpha d$ and if w is informed after round $T Cd/(1 \exp(-\alpha))$, then t is informed after round T.
- Proof:
 - For i = 0,1,2 ... let d_i be the smallest d(v,x) of a node x having the property that if x is informed at the end of round T i, then t is informed after round T.
 - $d_0 = d(v, t) \le d$
 - if $d_i > \alpha d$, then $\Pr[d_{i+1} = d_i 1] \ge 1 (1 1/d)^{\alpha d} \ge 1 \exp(-\alpha)$
 - Use an analogous "artificial progress counting" argument as before
 - $X_i = 1$ if $d_i < d_{i-1}$ and $d_{i-1} > \alpha d$, otherwise independent random bit that is 1 with prob. $1 \exp(-\alpha)$
 - ...

Coupling Phase

- So far: For any $v \in V$, with probability $1 \exp(\Omega(d))$ [as large as we want]
 - there is an $A_v \in V$ such that $d(v, A_v) \le \alpha d$ and s informs A_v within O(d) rounds
 - there is a $B_v \in V$ such that $d(v, B_v) \le \alpha d$ and "the rumor would go from B_v to t in O(d) rounds"
- Remains to do: Get the rumor from A_v to B_v !
 - Problem: Very hard to get the rumor exactly somewhere (we need already d rounds to call a particular neighbor)
 - Solution: Take many v as above, sufficiently far apart, and play this game many times in parallel once we will be lucky \odot

Quickly From A_v to B_v With Small (but Large Enough) Probability

- Let $B := B(v, 2\alpha d) := \{u \in V | d(u, v) \le 2\alpha d\}$ " $2\alpha d$ ball around v"
- Target: Get the rumor from A_v to B_v , but only using nodes in B
 - needed later to ensure that processes for different v don't interact
- Lemma: The probability that the rumor moves inside B from A_v to B_v in time at most $2\alpha d$, is at least $(2\alpha/e)^{2\alpha d}$.
- Proof: Send the rumor along a direct path with speed one! $(d' := d(A_v, B_v))$
 - Probability that the rumor moves closer to B_v in every round:

$$\prod_{i=1}^{d'} \frac{i}{d} \ge \prod_{i=1}^{2\alpha d} \frac{i}{d} = \frac{(2\alpha d)!}{d^{2\alpha d}} \ge \frac{(2\alpha d/e)^{2\alpha d}}{d^{2\alpha d}} = \left(\frac{2\alpha}{e}\right)^{2\alpha d}$$

Small exercise: Any such path remains in B

Many v's that are far apart

- Target: Find a large set of v's such that the distance of any two is more than $4\alpha d$ so the $2\alpha d$ -balls around them do not intersect.
- Lemma: There is a set $S \subseteq V$ such that $|S| = \exp(d/32) =: m$ and for all $x, y \in S$ with $x \neq y$ we have $d(x, y) \geq d/4$.
- Proof: Take a random set!
 - Let $x_1, ..., x_m$ be random vertices.
 - For $i \neq j$, we have $E[d(x_i, x_j)] = d/2$
 - $d(x_i, x_j)$ is a sum of d independent $\{0,1\}$ random variables
 - Chernoff bound: $p := \Pr[d(x_i, x_j) \le d/4] \le \exp(-d/16)$
 - Union bound: $\Pr[S \text{ bad}] \leq \sum_{i,j} \Pr[d(x_i, x_j) \leq d/4] < m^2 p \leq 1$
 - Consequently, there is such a set S

Proof: Putting Everything Together

- Choose α small enough so that $(2\alpha/e)^{2\alpha} > \exp(-1/32)$ and $\alpha d < d/4$
 - note that $(2\alpha/e)^{2\alpha}$ tends to one for $\alpha \to 0$
- Choose the set S as on the previous slide.
- Apply expansion lemma with C large enough and union bound to show that with probability $1 n^{-\beta}$ for all $v \in S$ there is an $A_v \in B(v, \alpha d)$ that is informed after $T_1 = O(d)$ rounds
- Apply backward lemma with C large enough and union bound to show that with probability $1 n^{-\beta}$ for all $v \in S$ there is a $B_v \in B(v, \alpha d)$ such that if B_v is informed after $T_2 := T_1 + 2\alpha d$ rounds, then t is informed after $T_2 + O(d)$ rounds
- Coupling phase: The probability that for no $v \in S$ the rumor goes (inside $B(v, 2\alpha d)$ from A_v to B_v is at most

$$\left(1 - (2\alpha/e)^{2\alpha d}\right)^{\exp(d/32)} \le \exp\left(-\left((2\alpha/e)^{2\alpha} \exp(1/32)\right)^{d}\right) = \exp\left(-n^{\Theta(1)}\right)$$

• Hence apart from a failure prob. of $2n^{-\beta} + \exp(-n^{\Theta(1)})$, t is informed....

Summary Part 1

- Result: A rumor spreads in a hypercube in time $O(\log n)$ w.p. 1 1/n
- Proof in a picture (but with different constants, so ignore these)

ÉCOLE POLYTECHNIQUE

Homework

- Carefully study the analysis of randomized rumor spreading in hypercubes.
 Then answer the following two questions:
- Homework 3.1: Consider the following rumor spreading process in the hypercube. The rumor starts in s = (0, ..., 0) and our only target is to get the rumor to the opposite node t = (1, ..., 1).
- We run the classic randomized rumor spreading protocol with the following modification: In each round, each informed node selects a random neighbor. If this neighbor is closer to t than itself, then the node actually calls this neighbor. If the selected neighbor is further away from t, then the node does nothing in this round.
- How long does this process need to get t informed? Why?

ÉCOLE POLYTECHNIQUE

Homework 3.2

- Consider the classic randomized rumor spreading process in the hypercube started at vertex s=(0,...,0) as regarded in the lecture. Together with the insight from the previous problem, we have shown that with probability at least $1-n^{-\Omega(1)}$ the rumor traverses a shortest path from s to t=(1,...,1) in O(d) time.
- Discuss whether the same property is true for all target vertices t.