Ш Amendment to the Claims

Claims 1–20 are pending in this Application. Applicant amends claim 1 as shown below, and indicates the status of each of the pending claims as required by the Revised Amendment Practice under 37 C.F.R. 1.121.

- A process for constructing load-bearing structures Claim 1. (currently amended) incorporating drilling cuttings, said process comprising operations of:
- forming a particulate mixture comprising drilling cuttings; and (1)
- at least one of groups (2.1) and (2.2) of suboperations, said group (2.1) comprising (2) suboperations of:
 - (2.1.1) mixing said particulate mixture comprising drilling cuttings in a specified proportion with at least one stabilizer selected from the group consisting of:
 - (A) quicklime;
 - (B) hydrated lime;
 - (C) Portland Cement;
 - (D) Class C fly ash;
 - (E) cement kiln dust;
 - (F) lime kiln dust;
 - (G) Class F fly ash; and
 - (H) other pozzolans

to form a cementitious second mixture, said cementitious mixture having an unconfined compressive strength value after seven days of aging that is not more than 360 psi;

- (2.1.2) forming said cementitous second mixture into the shape and size of the load-bearing structure: and
 - (2.1.3) causing the shaped and sized second mixture formed in suboperation (2.1.2) to undergo a pozzolanic reaction to form said load-bearing structure,

said load-bearing structure having sufficient resistance to rutting that any rut formed in such surface by 10,000 applications of a single axle load of 18,000 pounds will have a depth of rutting that is less than 1 inch;

and said group (2.2) comprising suboperations of:

- (2.2.1) mixing said particulate mixture comprising drilling cuttings with at least one of foamed asphalt and emulsified asphalt to form an asphaltic second mixture;(2.2.2) forming said asphaltic second mixture into the shape and size of the load-bearing structure; and
 - (2.2.3) causing the shaped and sized asphaltic second mixture formed in suboperation (2.2.2) to form the load-bearing structure by curing said shaped asphaltic second mixture.
- Claim 2. (original) A process according to claim 1, wherein at least 10 percent by mass of said particulate mixture are deep drilling cuttings that have been generated by a process comprising the following suboperations:
- (1.1) providing drilling means, drilling driving means that cause the drilling means to operate at the bottom of a borehole, and drilling mud; and
- (1.2) causing said drilling driving means to drive said drilling means while said drilling mud flows into and out of said borehole through separate passageways disposed so as to insure that mud pumped into the borehole must reach the near vicinity of the drilling means that is deepening, widening, and/or otherwise increasing the volume of said borehole before the mud can enter any passageway through which a mixture of mud and cuttings flows out of the borehole during drilling, said mixture of mud and cuttings, optionally after removal therefrom of all or part of the constituents of said mixture that are not cuttings, constituting said deep drilling cuttings.
- Claim 3. (previously presented) A process according to claim 2, wherein at least part of the deep drilling cuttings have been produced by drilling with a water-containing drilling mud.
- Claim 4. (original) A process according to claim 3, said process comprising group (2.1) of suboperations.

Claim 5. (original) A process according to claim 4, wherein said stabilizer is selected from the group consisting of quicklime, hydrated lime, Portland Cement, Class C fly ash, and mixtures of Class C fly ash with Portland Cement.

Claim 6. (original) A process according to claim 5, wherein:

- said stabilizer is a mixture of Class C fly ash with Portland Cement; and
- suboperation (2.1.1) is accomplished in two stages, in the first of which Class C fly ash
 is mixed with said particulate mixture comprising drilling cuttings and in the second of
 which Portland Cement is mixed into the mixture previously formed by mixing Class C fly
 ash with said particulate mixture comprising drilling cuttings.
- Claim 7. (original) A process according to claim 6, wherein, based on the particulate mixture comprising drilling cuttings to be stabilized:
- the amount of Portland Cement used as a stabilizer is at least 1.0%;
- the amount of Class C fly ash used as a stabilizer is at least 2.0%; and
- the ratio of the amount of Class C fly ash used as a stabilizer to the amount of Portland Cement used as a stabilizer is at least 0.50:1.0 but is not more than 10:1.0.
- Claim 8. (previously presented) A process according to claim 2, wherein at least part of the deep drilling cuttings have been produced by drilling with an oil-containing drilling mud.
- Claim 9. (original) A process according to claim 8, said process comprising group (2.1) of suboperations.
- Claim 10. (original) A process according to claim 9, wherein said stabilizer is selected from the group consisting of quicklime, hydrated lime, Portland Cement, Class C fly ash, fluidized bed fly ash, and mixtures of either Class C or fluidized bed fly ash with Portland Cement.

Serial No. 10/037,630; Filing Date: January 3, 202 Examiner Paul D. Marcantoni, Art Unit 1755

Attorney Docket No. 72425.0105

- Claim 11. A process according to claim 10, wherein: (original)
- said stabilizer is a mixture of Class C or fluidized bed fly ash with Portland Cement; and
- suboperation (2.1.1) is accomplished in two stages, in the first of which C fly ash is mixed with said particulate mixture comprising drilling cuttings and in the second of which Portland Cement is mixed into the mixture previously formed by mixing fly ash with said particulate mixture comprising drilling cuttings.

Claim 12. (original) The process according to claim 11, wherein said load-bearing structure has an unconfined compressive strength of at least 100 psi and has a thickness of:

- at least 8 inches if constructed on a subgrade with a resilient modulus that is at least 15.0 kpsi;
- at least 12 inches if constructed on a subgrade with a resilient modulus that is at least 10.0 kpsi but less than 15.0 kpsi; and
- at least 16 inches if constructed on a subgrade with a resilient modulus that is at least 5.0 kpsi but less than 10.0 kpsi.

Claim 13. A process according to claim 10, wherein said load-bearing (original) structure has an unconfined compressive strength of at least 100 psi and has a thickness of:

- at least 8 inches if constructed on a subgrade with a resilient modulus that is at least 15.0 kpsi;
- at least 12 inches if constructed on a subgrade with a resilient modulus that is at least 10.0 kpsi but less than 15.0 kpsi; and
- at least 16 inches if constructed on a subgrade with a resilient modulus that is at least 5.0 kpsi but less than 10.0 kpsi.

Claim 14. A process according to claim 7, wherein said load-bearing (original) structure has an unconfined compressive strength of at least 100 psi and has a thickness of:

at least 8 inches if constructed on a subgrade with a resilient modulus that is at least 15.0 kpsi;

Serial No. 10/037,630; Filing Date: January 3, 202 Examiner Paul D. Marcantoni, Art Unit 1755

- Attorney Docket No. 72425.0105
- at least 12 inches if constructed on a subgrade with a resilient modulus that is at least 10.0 kpsi but less than 15.0 kpsi; and
- at least 16 inches if constructed on a subgrade with a resilient modulus that is at least 5.0 kpsi but less than 10.0 kpsi.
- A process according to claim 6, wherein said load-bearing Claim 15. (original) structure has an unconfined compressive strength of at least 100 psi and has a thickness of:
- at least 8 inches if constructed on a subgrade with a resilient modulus that is at least 15.0 kpsi;
- at least 12 inches if constructed on a subgrade with a resilient modulus that is at least 10.0 kpsi but less than 15.0 kpsi; and
- at least 16 inches if constructed on a subgrade with a resilient modulus that is at least 5.0 kpsi but less than 10.0 kpsi.
- Claim 16. A process according to claim 5, wherein said load-bearing (original) structure has an unconfined compressive strength of at least 100 psi and has a thickness of:
- at least 8 inches if constructed on a subgrade with a resilient modulus that is at least 15.0 kpsi;
- at least 12 inches if constructed on a subgrade with a resilient modulus that is at least 10.0 kpsi but less than 15.0 kpsi; and
- at least 16 inches if constructed on a subgrade with a resilient modulus that is at least 5.0 kpsi but less than 10.0 kpsi.
- Claim 17. (original) A process according to claim 4, wherein said load-bearing structure has an unconfined compressive strength of at least 100 psi and has a thickness of:
- at least 8 inches if constructed on a subgrade with a resilient modulus that is at least 15.0 kpsi;
- at least 12 inches if constructed on a subgrade with a resilient modulus that is at least 10.0 kpsi but less than 15.0 kpsi; and

at least 16 inches if constructed on a subgrade with a resilient modulus that is at least
 5.0 kpsi but less than 10.0 kpsi.

Claim 18. (original) A process according to claim 3, wherein said load-bearing structure has an unconfined compressive strength of at least 100 psi and has a thickness of:

- at least 8 inches if constructed on a subgrade with a resilient modulus that is at least
 15.0 kpsi;
- at least 12 inches if constructed on a subgrade with a resilient modulus that is at least
 10.0 kpsi but less than 15.0 kpsi; and
- at least 16 inches if constructed on a subgrade with a resilient modulus that is at least
 5.0 kpsi but less than 10.0 kpsi.

Claim 19. (original) A process according to claim 2, wherein said load-bearing structure has an unconfined compressive strength of at least 100 psi and has a thickness of:

- at least 8 inches of constructed on a subgrade with a resilient modulus that is at least
 15.0 kpsi;
- at least 12 inches if constructed on a subgrade with a resilient modulus that is at least
 10.0 kpsi but less than 15.0 kpsi; and
- at least 16 inches if constructed on a subgrade with a resilient modulus that is at least
 5.0 kpsi but less than 10.0 kpsi.

Claim 20. (original) A process according to claim 1, wherein said load-bearing structure has an unconfined compressive strength of at least 100 psi and has a thickness of:

- at least 8 inches if constructed on a subgrade with a resilient modulus that is at least
 15.0 kpsi;
- at least 12 inches if constructed on a subgrade with a resilient modulus that is at least
 10.0 kpsi but less than 15.0 kpsi; and
- at least 16 inches if constructed on a subgrade with a resilient modulus that is at least
 5.0 kpsi but less than 10.0 kpsi.