	F	t	v*10^6	λ*10^2	Pr		-			
		100	20,8	3,12	0,7					
		200	31,6	4	0,67					
		300	43,8	4,82	0,65					
		400	57,8	5,68	0,64					
		500	73 89,4 107 126 146	6,54 7,4 8,25 9,13 9,99	0,62 0,61 0,6 0,59 0,58					
		600								
		700								
		900 900								
		1000	167	10,87	0,58					
		1100	188	11,72	0,57					
		1200	211	12,53	0,56					
		1300	234	13,46	0,55					
		1400	258	14,38	0,54					
		1500	282	15,31	0,53					
		1600	307	16,24 17,28 18,1 18,91 19,84 20,65 21,58	0,52 0,51 0,5 0,49 0,49 0,48 0,47					
		1700	333 361 389 419 450 482							
		1800 1900 2000 2100								
		2200								
			$tx_{\partial \varepsilon} := exc$			$\lambda x_{\partial \varepsilon} := 0$	excel			
	20									
	Вывод		$vx_{\partial \varepsilon} := exc$	cel		Prx _{de} :=	= exce	(D2:D26"		
				B2.B20				D2.D20		
		1.	c) (\					
$v_{\partial \varepsilon}(temp) := \frac{\text{inter}}{\varepsilon}$	p (regress	$s(tx_{\partial z}, v)$	$(x_{\partial \varepsilon}, 5), tx_{\varepsilon}$	$_{\partial \varepsilon},vx_{\partial \varepsilon},ter$	np)					
02 (1)		1	.06							
$\lambda_{\partial z}(temp) := \frac{\text{inter}}{}$	n (regress	s(tx)	$(x_1, 5)$	λx ter	nn					
$\lambda_{\partial \varepsilon}(temp) := \frac{11101}{1100}$	00	Je 1 02 , tol	7/							
		1	.00							
Dr. (town) - inte	(maama	na / to	Dana 5\	tu Dun	torer	\				
$Pr_{\partial z}(temp) := interest$	rp (regre	ss $(ix_{\partial z},$	$Prx_{\partial z}, 3),$	$ix_{\partial \varepsilon}, Frx_{\partial \varepsilon}$, temp	,				