

Algoritmer og datastrukturer

Kompleksitetsanalyse og tidsmålinger

Helge Hafting Institutt for datateknologi og informatikk 21. august 2018

Dataressurser

- Hvor mye tid, eller plass, går med for å kjøre programmet?
- Viktig når vi har store datamengder
- Avhenger av:
 - Problemet
 - Algoritmen vi bruker
 - Dataene
 - Datamaskinen

Kompleksitetsanalyse

- Finne en formel for mye tid (evt. plass) som går med for å kjøre en gitt algoritme
 - Uavhengig av maskintype!
 - Avhengig av antall data, n
 - Kan avhenge av hvordan dataene «ser ut»
 - Vi kan beregne verste, beste og/eller gjennomsnittlig kjøretid

Uavhengig av maskin?

- En rask maskin blir jo fortere ferdig enn en treg!
- Poenget er hvordan tidsforbruket øker med datamengde:
 - Vil $10 \times$ data ta $10 \times$ tid?
 - Vil 10×data ta 100× tid eller 1000× tid?
 - Vil det ikke være noen forskjell i hastighet?
- Når vi vet dette, kan vi regne ut tidsbruk på en gitt maskin ved å ta tiden på ett datasett.

Tidskompleksitet

- Omtrentlig antall «enkle instruksjoner» som utføres når algoritmen kjøres
 - Operasjoner som:
 - -+, -, ·, ÷
 <, >, ==, !=, =
 - if-test, tabelloppslag
 - Ved metodekall må vi telle med operasjonene i metoden som kalles
 - Vi antar at alle slike operasjoner tar omtrent like lang tid
 - Antall operasjoner gir et tilnærmet uttrykk for hvor lang tid programmet tar
- Eksempler i læreboka, s. 9

```
Programkode
public static int sum(int []t, int n) {
  int sum = 0;
  for (int i = 0; i < n; ++i) {
     sum += t[i];
  }
  return sum;
}</pre>
```

Tid

0 deklarasjon


```
Programkode
public static int sum(int []t, int n) {
  int sum = 0;
  for (int i = 0; i < n; ++i) {
     sum += t[i];
  }
  return sum;
}</pre>
```



```
Programkode
public static int sum(int []t, int n) {
  int sum = 0;
  for (int i = 0; i < n; ++i) {
     sum += t[i];
  }
  return sum;
}</pre>
```

```
Tid
0 deklarasjon
1 tilordning
1+2n 1×tilordning, n×sammenl, n×inkr
```

```
Programkode
public static int sum(int []t, int n) {
  int sum = 0;
  for (int i = 0; i < n; ++i) {
     sum += t[i];
  }
  return sum;
}</pre>
```

```
Tid
0 deklarasjon
1 tilordning
1+2n 1×tilordning, n×sammenl, n×inkr
2n n addisjoner, n tabelloppslag
```

```
Programkode
public static int sum(int []t, int n) {
  int sum = 0;
  for (int i = 0; i < n; ++i) {
     sum += t[i];
  }
  return sum;
}</pre>
```

```
Tid
0 deklarasjon
1 tilordning
1+2n 1×tilordning, n×sammenl, n×inkr
2n n addisjoner, n tabelloppslag
0
```

```
Programkode
public static int sum(int []t, int n) {
  int sum = 0;
  for (int i = 0; i < n; ++i) {
     sum += t[i];
  }
  return sum;
}</pre>
```

```
Tid
0 deklarasjon
1 tilordning
1+2n 1×tilordning, n×sammenl, n×inkr
2n n addisjoner, n tabelloppslag
0
1 1 return
```

- Kjøretid 4n+3
- lineær avhengighet av n

Asymptotisk analyse

- Se på hva som skjer når datamengden går mot uendelig $(n \to \infty)$.
- Asymptotisk analyse gjør analysearbeidet enklere
 - vi teller bare løkker og metodekall
 - heller enn hver eneste enkle operasjon
- Vi kan forenkle eller «runde av» kompliserte uttrykk som $8n^2 + 24n + 17$ til noe enklere, som n^2 .

```
Programkode
public static int sum(int []t, int n) {
  int sum = 0;
  for (int i = 0; i < n; ++i) {
    sum += t[i];
  }
  return sum;
```

Tid

Skjer 1 gang


```
Programkode
public static int sum(int []t, int n) {
  int sum = 0;
  for (int i = 0; i < n; ++i) {
     sum += t[i];
  }
  return sum;
}</pre>
Tid

Skjer 1 gang

Skjer 1 gang

Skjer n ganger
```



```
Programkode
public static int sum(int []t, int n) {
  int sum = 0;
  for (int i = 0; i < n; ++i) {
     sum += t[i];
  }
  return sum;
}</pre>
```

```
Skjer 1 gang

Skjer n ganger

Mer av det som skjer 1 gang
```

```
Programkode
public static int sum(int []t, int n) {
  int sum = 0;
  for (int i = 0; i < n; ++i) {
     sum += t[i];
  }
  return sum;
}</pre>
```

- Kjøretid *n*
- lineær avhengighet av n

Tid

Skjer 1 gang

Skjer n ganger

Mer av det som skjer 1 gang

Praktisk betydning

- Program med lineær kjøretid, n
 - dobbel datamengde gir dobbel kjøretid
 - tidobbel datamengde gir tidobbel kjøretid
- Kvadratisk kjøretid, n²
 - dobbel datamengde: 2² = 4 ganger kjøretid
 - tidobbel datamengde: $10^2 = 100$ ganger kjøretid
- Kubisk kjøretid, n³
 - dobbel datamengde: 2³ = 8 ganger kjøretid
 - tidobbel datamengde: $10^3 = 1000$ ganger kjøretid

Asymptotisk analyse, matematikken bak

- O, den øvre grensen, «verre blir det ikke»
 - $f(n) \in O(g(n)) \Rightarrow g(n)$ er en øvre grense for f(n)
 - Eks: $f(n) = n^2 2n + 4 \in O(n^2)$. Her er n^2 øvre grense
 - Se side 11 i læreboka
- Ω , den nedre grensen, «ikke bedre enn dette»
 - $f(n) \in \Omega(g(n)) \Rightarrow g(n)$ er en nedre grense for f(n)
 - Se side 12
- $-- \Theta(n)$, felles øvre og nedre grense.
 - Brukes når O og Ω har samme uttrykk.
 - Se side 13

Asymptotisk analyse

- Vanlige kompleksiteter:
 - O(1), O(n), $O(n^2)$, $O(n^3)$, $O(n^4)$, $O(n^5)$, ...
 - $O(\log n), O(n \log n), O(2^n)$
- Korte greie uttrykk, som er lette å sammenligne.
- Vi kan finne ut hvilke programmer som er raskest på store datamengder

Måleteknikk

- Bruk minst 3, men helst 4–5 ulike verdier for *n*.
- Varier *n* systematisk, f.eks. n = 10000, n = 33333, n = 100000
- Kjør målinger flere ganger, unngå avvik
- Sett opp tabell som viser tidsforbruk ved ulike n
- Ikke ha utskrift/grafikk/filbehandling inni målingen!
- For små n-verdier kan gi avvik. Vi undersøker hva som skjer når $n \to \infty$.
- For stor *n* kan gi avvik i form av swapping
- Annen programvare kan forstyrre...
- Maskinklokka har ikke høy nok oppløsning for svært korte kjøringer

Eksempel 1

n	Tid
100	0,00525 ms
1000	0,0249 ms
10 000	0,197 ms
100 000	1,94 ms

Eksempel 2

n	Tid
100	0,037 ms
1000	0,45 ms
10 000	44 ms
100 000	4,3 s

Håndtere korte kjøringer

```
Date start = new Date();
int runder = 0;
double tid;
Date slutt:
do {
  r = testdata.algoritme();
  slutt = new Date();
  ++runder;
} while (slutt.getTime()-start.getTime() < 1000);</pre>
tid = (double)
      (slutt.getTime()-start.getTime()) / runder;
System.out.println("Millisekund pr. runde:" + tid);
```


Tips om objektorientering

- Ikke gi klassen navn etter algoritmen
- Algoritmer implementeres som metoder
 - metoden får navn etter algoritmen den implementerer
- Klasser får navn etter hva de inneholder av data, ikke etter hva vi kan gjøre med dem.