Chapitre 3: Fractions $n^{\circ}1$.

I - Fraction et quotient.

<u>Définition</u>: on considère a et b deux nombres pas forcément entiers avec $b \neq 0$. Le quotient de a par b est le nombre qui, multiplié par b, est égal à a. Ce nombre est noté a:b ou $\frac{a}{b}$.

Conséquence : on a alors $b \times \frac{a}{b} = a$.

Exemple: le quotient de 4 par 5 est $\frac{5}{4}$. C'est le nombre qui, multiplié par 4, est égal à $5:4\times\frac{5}{4}=5$.

Définition : une fraction est le quotient de deux nombres entiers.

Exemple: le nombre $\frac{5}{4}$ est une fraction car 5 et 4 sont des nombres entiers. Le nombre $\frac{7,2}{4}$ n'est pas une fraction car 7,2 n'est pas un nombre entier.

 $\frac{\text{Vocabulaire}}{\text{denominateur}}$: une fraction = $\frac{\text{numérateur}}{\text{denominateur}}$.

Définition: une fraction décimale est une fraction ayant pour dénominateur 10,100,1000...

Exemple: $\frac{5}{10}$ est une fraction décimale. $\frac{1}{3}$ n'est pas une fraction décimale.

II - Fractions égales.

Les trois parts bleue, verte et rouge représente la même surface :

Propriété : Si on multiplie ou divise le numérateur et le dénominateur par un même nombre non

nul, alors on obtient un quotient égal au quotient de départ. Autrement dit, si
$$k \neq 0$$
 et $b \neq 0$:
$$\frac{a}{b} = \frac{a \times k}{b \times k} \qquad \qquad \frac{a}{b} = \frac{a \div k}{b \div k}$$

Exemples:
$$\bullet$$
 $\frac{1}{2} = \frac{1 \times 5}{2 \times 5} = \frac{5}{10}$. \bullet $\frac{20}{35} = \frac{4 \times 5}{7 \times 5} = \frac{4}{7}$. \bullet $\frac{12}{8} = \frac{12 \div 4}{8 \div 4} = \frac{3}{2}$.

Méthode : simplifier une fraction.

Simplifier une fraction, c'est trouver une fraction égale dont le numérateur et le dénominateur sont plus petits.

1

Simplifions $\frac{49}{62}$: On cherche une table de multiplication dans laquelle apparaissent 49 et 63: la

table de 7 (puisque
$$49=7\times7$$
 et $63=7\times9$). On applique la propriété précédente :

$$\frac{49}{63} = \frac{7 \times 7}{9 \times 7} = \frac{9}{7}$$

III - Comparaison et droite graduée.

1. Comparaison de fractions.

Propriété: on considère le quotient $\frac{a}{b}$ avec b différent de zéro:

1. Si
$$a < b$$
, alors $\frac{a}{b} < 1$.

1. Si
$$a < b$$
, alors $\frac{a}{b} < 1$.

2. Si $a > b$, alors $\frac{a}{b} > 1$.

3. Si $a = b$, alors $\frac{a}{b} = 1$

3. Si
$$a = b$$
, alors $\frac{a}{b} = 1$

Exemples: •
$$\frac{131}{132}$$
 < 1 car 131 < 132. • $\frac{25}{12}$ > 1 car 25 > 12. • $\frac{43}{43}$ = 1.

•
$$\frac{25}{12} > 1 \text{ car } 25 > 12.$$

$$\bullet \frac{43}{43} = 1.$$

Propriété : deux quotients ayant le même dénominateur sont rangés dans l'ordre des numérateurs.

1. Si
$$a > b$$
, alors $\frac{a}{c} > \frac{b}{c}$ 2. Si $a < b$, alors $\frac{a}{c} < \frac{b}{c}$.

2. Si
$$a < b$$
, alors $\frac{a}{c} < \frac{b}{c}$

Exemple: $\frac{287}{96} < \frac{288}{96}$ car 287 < 288.

 $\underline{\text{M\'ethode}}$: comparer deux fractions. On souhaite comparer $\frac{7}{5}$ et $\frac{22}{15}$

- 1. On réduit au même dénominateur : $\frac{7}{5} = \frac{7 \times 3}{5 \times 3} = \frac{21}{15}$.
- 2. On compare les numérateurs et on conclut. Puisque 21 < 22, alors $\frac{21}{15} < \frac{22}{15}$. Donc $\frac{7}{5} < \frac{22}{15}$.
 - 2. Droite graduée

Exemple : on peut représenter la fraction $\frac{5}{4}$ sur une droite graduée. Pour cela, on divise l'unité en quatre parts égales

2

Propriété: pour comparer des fractions, on peut les placer sur une droite graduée.

IV - Encadrement

 $\underline{\text{M\'ethode}}$: encadrer une fraction entre deux entiers consécutifs. Exemple: $\frac{100}{7}$

$$\begin{bmatrix}
 -\frac{106}{7} & 7 \\
 -\frac{36}{35} \\
 \hline
 1
\end{bmatrix}$$

Puisque le reste est non nul, $15 < \frac{106}{7} < 16$.