A new procedure for sensitivity testing with two stress factors

C.F. Jeff Wu Georgia Institute of Technology

- Sensitivity testing : problem formulation.
- Review of the 3pod (3-phase optimal design) procedure with one stress factor.
- A new procedure for two stress factors, partly inspired by 3pod; not a trivial extension.
- An illustration.
- Comments and further work.
 (joint work with Dianpeng Wang, Beijing Inst. of Technology)

Sensitivity testing

- Stress/stimulus level x: launching velocity, drop height
- Response/nonresponse y = 1 or 0: penetrate, explode

X=unknown critical level (a random quantity)

Quantal response curve

• Quantal response curve $F(x) = \text{prob } (y = 1 \mid x)$; interested in estimating the p-th quantile x_p with $F(x_p) = p$, p typically high, e.g., p = 0.9, 0.99, 0.999. Useful for certification or quantification of test items. Common in military and heavy industry applications

- Choice of *F*: probit, logit, or skewed version
- Problem/challenge: find a sequential design procedure to estimate x_p efficiently and for small samples

Three-phase optimal design

- A trilogy of search-estimate-approximate:
 I. (search) to generate y = 1 and y = 0, to "close-in" on region of interest and to obtain overlapping data pattern
 - II. (estimate) use D-optimality criterion to generate design points; spread out design points III. (approximate) Taking $\hat{\mu} + F^{-1}(p)\hat{\sigma}$, where $\hat{\mu}, \hat{\sigma}$ are MLE of μ, σ based on data in I-II, as the starting value, use the Robbins-Monro-Joseph (RMJ) procedure to generate design points
- 3-phase optimal design, dubbed as 3pod (for its steady performance ©)
 Wu-Tian (2014, JSPI)

Phase I of 3pod

- It has three stages I1, I2, I3
- I1. (quickly obtain y=1 and y=0). Choose (μ_{\min} , μ_{\max}) for location parameter μ and $\sigma_{\rm g}$ as guessed value of scale parameter σ and μ_{\max} $\mu_{\min} \geq 6\sigma_{\rm g}$. Take y_1 and y_2 at $x_1 = \frac{3}{4}\mu_{\min} + \frac{1}{4}\mu_{\max}$, $x_2 = \frac{1}{4}\mu_{\min} + \frac{3}{4}\mu_{\max}$. Four cases result:
 - (i) $y_1 = y_2 = 0 \longrightarrow x_1$, x_2 to the left of μ ; take $x_3 = \mu_{\text{max}} + 1.5\sigma_{\text{g}}$. If $y_3 = 1$, move to I2. If $y_3 = 0$, take $x_4 = \mu_{\text{max}} + 3\sigma_{\text{g}}$. If $y_4 = 1$, move to I2. If $y_4 = 0$, range not large; increase x by $1.5\sigma_{\text{g}}$ until y=1.

Phase I of 3pod (continued)

(ii)
$$y_1$$
= y_2 = 1, do the mirror image of (i)
(iii) y_1 = 0, y_2 = 1: good! Move to I2
(iv) y_1 = 1, y_2 = 0: range too narrow around μ , expand it by taking x_3 = μ_{min} -3 σ_{g} , x_4 = μ_{max} +3 σ_{g} ; move to I2

 Note: I1 is like "dose ranging" in dose-response studies

Trapped in separation?

- Let M_0 = largest x value with y = 0, m_1 = smallest x value with y = 1. Overlapping iff $M_0 > m_1$; separation iff $M_0 \le m_1$
- Running test within the separation interval $[M_0, m_1]$ will forever be *trapped in separation* -. \Longrightarrow When the interval is small, get out to avoid logjam

12: stage 2 of phase I

- If overlapping in data from I1, move to I3. Otherwise, take next level at $\hat{\mu}$ (=MLE assuming probit and $\sigma_{\rm g}$); if overlapping, move to I3. If no overlapping, update M_0 , m_1 , $\hat{\mu}$, take next level at $\hat{\mu}$ until m_1 - M_0 <1.5 $\sigma_{\rm g}$. Then choose x levels outside the separation interval $[M_0, m_1]$. See next.
- Take next run at m_1 +0.3 σ_g ; if y = 0, overlapping, move to I3. If y = 1, next run at M_0 -0.3 σ_g ; if y = 1, overlapping, move to I3. Otherwise it suggests σ_g is too large, reduce it to $\frac{2}{3}\sigma_g$, repeat I2 until seeing overlapping.

Illustrative Example

(0,22), probit, μ =10, σ =1, σ_g =3, $x_{0.99}$ =11.2816

Problem formulation with two stress factors

- Two stress factors, $x = (x_1, x_2)$, which are not independent. Example: temperature and voltage in detonation of ammunition.
- The outcome is binary data, y = 1 or y = 0.
- P(y=1) = G[f(x)], where $G(\cdot)$ is a location-scale distribution function with μ , σ , and f(x) is an unknown latent function of x. G is a standard choice like logit, probit, or a skewed version.
- Each quantile is a curve, $\zeta_p = \{x = (x_1, x_2) \in \mathbb{R}^2 | f(x) = G^{-1}(p) \}.$

Two-step procedure for approximating the quantile curve

- The proposed two-step procedure is inspired by some ideas in the 3pod procedure.
- The clue comes from the ideas in phase I, whose goal is to achieve an *overlapping* pattern.
- Note that step I(1) of 3pod is to determine the region of interest by using a modified binary search and step I(2) is to break the separation pattern.

Two-step procedure: further details

- The new procedure has two steps:
 - (I) search for an overlapping pattern,
 - (II) approximate the quantile curves of interest.
- For two dimensions, an overlapping pattern means that the levels with y=1 and the levels with y=0 cannot be separated by a straight line.

Step I: search for overlapping pattern

- Assume that the investigators can make a guess of the region, $[x_{1L}, x_{1U}] \times [x_{2L}, x_{2U}]$, in which both outcomes can occur with high probability.
- Run tests at the four corners of the rectangles, $(x_{1L}, x_{2L}), (x_{1L}, x_{2U}), (x_{1U}, x_{2L}), (x_{1U}, x_{2U}).$
- There are three situations according to the types of the outcomes.

Only one type of outcome (i.e., y = 0 only, or y = 1 only) is observed

- This implies that the region of rectangle is too small or too large.
- Run additional tests both inside and outside the rectangle, until both y = 1 and y = 0 are observed.
- To choose additional tests outside the rectangle, we double the sides of the rectangle and keep the same center.
- To choose the tests inside the rectangle, we halve the sides of the rectangle and keep the same center.

Both y = 0 and y = 1 are observed but can be separated by a straight line

SVM (Support Vector Machine) is used to exploring the middle region

- Denote C_0 as the mean of support vectors with y=0, C_1 the mean of support vectors with y=1. Denote k_0 as the number of tests with y=0, k_1 the number of tests with y=1.
- If $D_{margin} > D_g$ and $k_0 > k_1$, choose two tests on the separator with the projection of C_1 as its center.
- If $D_{margin} > D_g$ and $k_0 \le k_1$, choose two tests on the separator with the projection of C_0 as its center.
- The distance between these two tests is $D_{margin}/2$.

Exploring the middle region (continued)

- If $D_{margin} \leq D_g$, it implies that the margin is too narrow.
- Choose tests outside the margin to avoid being trapped in a wrong region.
- Choose one point at each side of the margin. The projection of the test, which is chosen from the side with y = 1 (and resp. y = 0), on the separator is C_1 (and resp. C_0).
- The distances between the new tests and the separator are both D_{margin} .
- Continue the SVM steps until the overlapping pattern is obtained.

Overlapping pattern is achieved

- This indicates two red dots on the diagonal and two green dots on the off-diagonal (or vice versa), which usually suggests that the initial guess of the region is too narrow.
- Add four tests outside the rectangle to get more information.
- Keep the center (i.e., the mean) of the new tests as before, and set the length of the sides to be 1.5 times the length of the initial sides and *rotate* it 45 degrees.

Step II: approximating the curve of interest

- $X = \{x^1, x^2, \dots, x^n\}, Y = \{y^1, y^2, \dots, y^n\}$ and $f = \{f^1, f^2, \dots, f^n\}$, where $f^i = f(x_i)$. Recall f(x) is a latent function in P(y = 1) = G[f(x)], which connects binary y with continuous x.
- We employ a binary Gaussian process: $f \sim GP(0, K(x, x'))$, where covariance function $K(x, x') = \sigma^2 \exp\{-\|x x'\|^2/2l\}$.
- Let $\theta = (\sigma, l)$. The posterior distribution of f: $p(f|X,Y,\theta) = \frac{N(f;0,K|X,\theta)}{p(Y|X,\theta)} \prod_{i=1}^{n} G(f^{i}).$

An alternative: curve approximation by GLM

- An alternative to the GP model is the use of GLM, i.e., logit or probit regression.
- Let $f^i = (x_1^i, x_2^i, x_1^{i,2}, x_2^{i,2}, x_1^i x_2^i)\beta$, where $\beta = (\beta_1, \beta_2, \beta_3, \beta_4, \beta_5)^T$.
- $p(y^i = 1 | x^i) = G(f^i)$, where G is a logit or probit.
- $\hat{\beta}$ can be obtained based on the observations.
- Given a new point x^* , f^* can be predicted by using $(x_1^*, x_2^*, x_1^{*,2}, x_2^{*,2}, x_1^* x_2^*) \hat{\beta}$.

Step II (continued)

- Given a new point x^* , the posterior distribution of f^* can be predicted by using the density $p(f^*|x^*, X, Y, \theta) = \int p(f^*|f, x^*, X, \theta)p(f|X, Y, \theta)df$.
- Choose two new tests at

$$x^{c_1} = x^c + a_1(1,0)', x^{c_2} = x^c + a_2(0,1)'.$$

- a_1 and a_2 are chosen such that $E(f(x^{c_i})) = G^{-1}(p)$, i = 1, 2.
- Let the new center point be $x^c = (x^{c_1} + x^{c_2})/2$.
- In the beginning, choose $x^c = x^s$, whose latent value $f(x^s) = G^{-1}(0.5)$.
- If x^{c_1} and x^{c_2} are very close, choose the new x^s from $\mathbb{R}\setminus U$, where U is a given neighborhood of the previous starting point.
- After N samples are completed, update the estimation of θ and using the GP or logit model to approximate the curves.

An Illustrative example

- prob(y = 1|x) = G(f(x)).
- $\bullet \quad G(z) = \frac{1}{1 + \exp\{-z\}}.$
- $f(x) = \frac{1}{50}(x_1^2 + x_2^2 4x_1x_2 + 3x_1).$
- The true contour of p(y = 1) is given in the left figure.

Initial guess about the experimental region

- The investigators can make a guess of the region of interest, [8, 14.5] × [8,14.5].
- Run tests at the four corners of the rectangles,
 (8,8), (8,14.5), (14.5,8), (14.5,14.5).

Only non-response results are observed

- This implies that the region of rectangle is too small or too large.
- Run additional tests both inside and outside the rectangle, until both y=1 and y=0 are observed.

Only non-response results are observed

- This implies that the region of rectangle is too small or too large.
- Run additional tests both inside and outside the rectangle, until both y=1 and y=0 are observed.

Both results are observed

 Both response (y = 1) and non-response (y = 0) are observed but can be separated by a straight line.

Both results are observed

- Both response (y = 1) and non-response (y = 0) are observed but can be separated by a straight line.
- SVM (Support Vector Machine) is used to exploring the middle region.
- Choose additional tests (black points) in the middle region.

Overlapping pattern is achieved

- Runs with (y = 0) and (y = 1) cannot be separated by a straight line.
- The overlapping pattern is achieved.

 Fit GLM based on observed data in step I.

- Fit GLM based on observed data in step I.
- The contours of quantiles based on GLM (color dash curves)
- Choose two new tests (black points).

- Fit GLM based on observed data in step I.
- The contours of quantiles by GLM (color dash lines)
- Choose two tests (black points).
- Run tests at the new locations.

 Re-fit the GLM based on current data.

- Re-fit the GLM based on current data.
- Choose new tests (black).

- Re-fit the GLM based on current data.
- Choose new tests.
- Run tests at the new locations.

An interim summary

- No information outside current experimental region.
- GLM over-fits observed data.
- Tests trapped in local region.

 Choose four tests (black) outside the current region.

- Choose tests outside the current region.
- Run tests at the new locations.

- Choose tests outside the current region.
- Run tests at the new locations.
- Fit GLM again and choose new tests (black).

- Choose tests outside the current region.
- Run tests at the new locations.
- Fit GLM again and choose new tests.
- Run tests.

Final fit: curve (left) approximation by GLM (true curve on the right)

Comments and further work

- As far as we know, there is no known procedure for sensitivity testing with two or more stress factors. But the problems are encountered in practice. A good procedure is sorely needed!
- The ideas in the proposed procedure are still preliminary, need to be fine-tuned and modified.
- Need a small numerical or simulation study to understand its performance; then do a field test.
- Extension to 3 or more factors.

