LSST16 at Pitts Type II SNe as standard candles : review and LSST prospects

Nicolás Meza Retamal Supervisor: Alejandro Clocchiatti

Insituto de Astrofísica (PUC), Instituto Milenio de Astrofísica (MAS)

Motivation

 \bullet We are not far from reaching $\sim 1\%$ precision in cosmological parameters (Riess et al. 2016)

Need of distance indicators

- Understanding systematics will be crucial if we aim to understand cosmic expansion in a greater detail.
- For this reason it is good to have independent measurements of the cosmological parameters.
- \bullet SN II distances have been proved to be useful and were not too far from la's (Using IR we have \sim 0.1 mag rms in the hubble diagram. Rodriguez Ósmar et al 2016 in prep)

Type II SNe

- The progenitors of type II-P SNe are trust-worthily asocciated to Red Supergiants ($\approx 8 - 16 M_{\odot}$).
- The physics of H dominated atmosphere are simpler to model ... but
- Great variety of observational properties explained from the diversity on the progenitors (+ probably interaction with CSM)

Type II are standarizable!

- Theoretichal aproaches : EPM (Kirshner-Swan, 1974) , SEAM (Baron 2006, Dessart-Hillier 2006)
- Empirical : SCM (Hamuy-Pinto, 2002) , PMM (Rodriguez 2014) , PCM (De Jaegger, 2015)

The basic idea

- The ejecta rapidly achieves homologous expansion
- Well defined photosphere in the optically thick phase
- Remember the Steffan Boltzmann law ... (Black body ? ... why not !)

$$\mathcal{F}_{\lambda} = \left(\frac{R_{ph}}{d_L}\right)^2 I_{\lambda}(T(t)_{ph}, t) = \left(\frac{v_{ph} \cdot (t - t_0)}{d_L}\right)^2 I_{\lambda}$$

$$\rightarrow \mu_{\bar{\lambda}} = \underbrace{m_{corr}}_{\text{rest frame, AKA corrected}} - \underbrace{\mathcal{M}_{\bar{\lambda}}(t)}_{\text{Photospheric Intensity}} - \underbrace{\mathcal{R}_{ph}(t)}_{\text{Size term}}$$

Standard Candle Method (SCM)

- SCM is a la like calibration using the tight luminosity-velocity at the middle plateau (Originally from Hamuy-pinto) relation and a color term
- Already used at reasonable redshifts (up to $z \approx 0.1$ Nugent,D'andrea and Poznaski with SDSS-II sample)

$$M_{X,Y} = -\alpha \log v_{50} + \beta (Y - X) + M_0$$
 (2)

Figure: Left: L-v correlation. Right: Podznaski HD

Photospheric Magnitude Method (PMM)

- \bullet Time based standarization of the photospheric magnitude gives ≈ 0.2 dispersion in the HD.
- Distance can be measured at any time in the plateau given the explosion time and an expansion velocity.

$$\mu_{\bar{\lambda}} = \underbrace{m_{corr}}_{\text{rest frame, AKA corrected}} - \underbrace{\mathcal{M}_{\bar{\lambda}}(t)}_{\text{Photospheric Intensity}} - \underbrace{\mathcal{R}_{ph}(t)}_{\text{Size term}}$$

(3)

Do we need spectra?

- We use spectra to get expansion velocities from optically thin lines.
- De Jaegger et al. (2016, soon to be sent to ApJ) recently showned the Photometric Colour Method (PCM) that relies on the plateau slope (s_2 , see J. Anderson work) and got 0.35 mag dispersion versus 0.27 with SCM, up to z = 0.2 (CSP+SDSS+SNLS).

$$M_{X,Y} = -\alpha \log s_2 + \beta (Y - X) + M_0 \tag{4}$$

LSST prospects

- LSST will have thousands of type II SNe (type II covers the mayority of the fraction of all SNe)
- The larger time scale of a typical type II-P SNe would apparently be favorable for the LSST cadence (which we dont know yet!)
- type II-P are easily identifiable from their light curves versus their H-poor counterparts.
- Sadly we dont have the large sample that la's have and there's a lot to be done! (K-corrections, Simulations)
- We need to do simulations to check the actual contribution of type II cosmology (redshift range of interest, number expected at each bin and follow-up posibilities).

Conclusions

- Type II SNe are standarizable and they promise to be a contribution to cosmology with LSST and the upcoming follow-up facilities.
- To get a live time follow up is best but we already have photometry-only methods to get type II distances.
- A lot of work needs to be done! (Classification issues, Cosmological simulations) We need interest and advise from la people already working on this issues.

The End

