

รายงาน เรื่อง โปรแกรม BUBBLE SORT

จัดทำโดย

นายพงษ์พันธุ์ เลาวพงศ์ รหัสนักศึกษา 66543206019-2

เสนอ

อาจารย์ปิยพล ยืนยงสถาวร

รายงานนี้เป็นส่วนหนึ่งของวิชา

ENGCE124

โครงสร้างข้อมูลและขั้นตอนวิธี

(Data Structures and Algorithms)

หลักสูตร วศ.บ.วิศวกรรมคอมพิวเตอร์

สาขาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์

มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา ภาคพายัพ เชียงใหม่
ภาคเรียนที่ 1 ปีการศึกษา 2567

รายงาน

เรื่อง โปรแกรม BUBBLE SORT

จัดทำโดย

นายพงษ์พันธุ์ เลาวพงศ์ รหัสนักศึกษา 66543206019-2

เสนอ

อาจารย์ปิยพล ยืนยงสถาวร

รายงานนี้เป็นส่วนหนึ่งของวิชา

ENGCE124

โครงสร้างข้อมูลและขั้นตอนวิธี

(Data Structures and Algorithms)

หลักสูตร วศ.บ.วิศวกรรมคอมพิวเตอร์

สาขาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์

มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา ภาคพายัพ เชียงใหม่
ภาคเรียนที่ 1 ปีการศึกษา 2567

คำนำ

รายงานฉบับนี้เป็นส่วนหนึ่งของรายวิชา ENGCE124 โครงสร้างข้อมูลและขั้นตอนวิธี (Data Structures and Algorithms) หลักสูตร วศ.บ.วิศวกรรมคอมพิวเตอร์ สาขาวิศวกรรมไฟฟ้า คณะวิศวกรรมศาสตร์มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา ภาคพายัพ เชียงใหม่ ในระดับปริญญาตรีปีที่ 2 โดยมีจุดประสงค์ในการอธิบายโค้ดของโปรแกรม BUBBLE SORT รวมถึงอธิบายหลักการทำงานของโปรแกรม BUBBLE SORT

ผู้จัดทำรายงานหวังว่า รายงานฉบับนี้จะเป็นประโยชน์กับผู้ที่สนใจ หรือนักศึกษาทุกท่าน ที่กำลังหา ศึกษาในหัวข้อของโปรแกรม BUBBLE SORT หากมีข้อแนะนำหรือข้อผิดพลาดประการใด ผู้จัดทำขอน้อมรับ ไว้ และขออภัยมา ณ ที่นี้

ผู้จัดทำ

นายพงษ์พันธุ์ เลาวพงศ์ วันที่ 22/09/2567

สารบัญ

	หน้า
คำนำ	ก
สารบัญ	ข
โค้ดของโปรแกรม BUBBLE SORT พร้อมคำอธิบาย	1
หลักการทำงานของโปรแกรม BUBBLE SORT	5
ผลลัพธ์การใช้งานโปรแกรม BUBBLE SORT	11
บรรณานุกรม	13

โค้ดของโปรแกรม BUBBLE SORT พร้อมคำอธิบาย

```
#include <stdio.h> //ใช้ printf
#include <conio.h> //ใช้ getch
#include <stdlib.h> //lv random
#include <time.h> //lð time
#define MaxData 100 // กำหนดจำนวนข้อมูลสูงสุด
int Data[MaxData];
int N;
void PrepareRawData(int N)
{
   int i;
   srand(time(NULL)); //สำหรับการสุ่มตัวเลขที่แตกต่างใน rand()
   for (i=1; i<=N; i++)
      Data[i] = 1 + rand() % 99; //สุ่มตัวเลขที่แตกต่างกันตั้งแต่ 1 ถึง 99
}
void DispData(int N)
{
   int i;
   for(i=1; i \le N; i++)
      printf("%2d ", Data[i]);
   printf("\n");
}
```

โค้ดของโปรแกรม BUBBLE SORT พร้อมคำอธิบาย (ต่อ)

```
void BubbleSort(int N)
  int i, j, temp;
   printf(" i ");
  for(i=1; i \le N; i++)
      printf(" (%2d)", i);
   printf("\n");
  for(i=1; i<=N-1; i++) //วนซ้ำไปข้างหน้า
  {
      if(Data[i] > Data[i+1]) //หากตำแหน่งไม่ถูกต้อง
      {
         printf("%2d. ", i+1);
         DispData(N);
         j = i + 1; //วนซ้ำไปข้างหลัง
         while(Data[j] < Data[j-1]) //ขณะที่ยังมี bubble ค้างอยู่
         {
            temp = Data[j-1]; //สลับข้อมูล
            Data[j-1] = Data[j];
            Data[j] = temp;
```

โค้ดของโปรแกรม BUBBLE SORT พร้อมคำอธิบาย (ต่อ)

```
j--; //นับถอยหลัง j
         printf("%2d. ", i+1);
         DispData(N);
      } //สิ้นสุด while
    } //สิ้นสุด if
  } //สิ้นสุด for
} //สิ้นสุดฟังก์ชัน
int main()
{
  printf("ASCENDING BUBBLE SORT\n");
  N = 12;
  PrepareRawData(N);
  printf("Raw Data : ");
  DispData(N);
  printf("-----\n");
  printf("Processing Data...\n");
  BubbleSort(N);
  printf("Sorted Data : ");
  DispData(N); //ข้อมูลที่ถูกจัดเรียง
```

โค้ดของโปรแกรม BUBBLE SORT พร้อมคำอธิบาย (ต่อ)

getch();	
return(0);	
} //สิ้นสุด main	

หลักการทำงานของโปรแกรม BUBBLE SORT

โปรแกรม BUBBLE SORT ใช้เทคนิค Ascending Bubble Sort นี้มีการทำงานหลักในการสุ่มข้อมูล ตัวเลข จัดเรียงข้อมูลให้เป็นลำดับจากน้อยไปหามาก และแสดงข้อมูลทั้งก่อนและหลังการจัดเรียง

1. การนำเข้าไลบรารี

```
#include <stdio.h> //ใช้ printf

#include <conio.h> //ใช้ getch

#include <stdlib.h> //ใช้ random

#include <time.h> //ใช้ time
```

ในส่วนของการนำเข้าไลบรารี (#include) จะมีรายละเอียดดังนี้

- <stdio.h> : ไลบรารีนี้ใช้สำหรับฟังก์ชันการรับและแสดงผลข้อมูล เช่น printf() ที่ใช้ในการพิมพ์ ข้อความออกทางหน้าจอ และ scanf() ที่ใช้สำหรับการรับข้อมูลจากผู้ใช้
- <conio.h> : ไลบรารีนี้ใช้ในการทำงานกับการอินพุตจากคีย์บอร์ดในรูปแบบที่ง่ายขึ้น เช่น getch() ซึ่งใช้เพื่อรอให้ผู้ใช้กดปุ่มก่อนที่จะดำเนินการต่อ
- <stdlib.h> : ไลบรารีนี้มีฟังก์ชันที่เกี่ยวข้องกับการจัดการหน่วยความจำ การแปลงค่า และการสุ่ม เช่น rand() ที่ใช้สำหรับสร้างค่าตัวเลขสุ่ม
- <time.h> : ไลบรารีนี้มีฟังก์ชันที่เกี่ยวข้องกับเวลาและวันที่ เช่น time() ที่ใช้เพื่อรับค่าชั่วโมง นาที และวินาทีในรูปแบบ timestamp

2 การกำหนดค่าคงที่

```
#define MaxData 100 // กำหนดข้อมูลสูงสุด
```

ในส่วนของการกำหนดค่าคงที่ จะมีรายละเอียดดังนี้

#define MaxData 100 : การใช้คำสั่ง #define นี้ใช้เพื่อกำหนดค่าคงที่ (constant) ในโปรแกรม
 โดย MaxData กำหนดค่าที่ 100 ซึ่งเป็นการกำหนดขนาดสูงสุดของอาร์เรย์ Data[] ในโปรแกรม
 ค่าคงที่นี้สามารถถูกใช้ในหลายส่วนของโปรแกรม เช่น การวนลูปหรือจัดการข้อมูล เพื่อให้แน่ใจว่า
 อาร์เรย์ Data[] จะไม่เกินขนาดที่กำหนด (100 ข้อมูล)

3. การประกาศตัวแปร

```
int Data[MaxData];
int N;
```

ในส่วนของการประกาศตัวแปร จะมีรายละเอียดดังนี้

- int Data[MaxData] : ตัวแปร Data[] คืออาร์เรย์ชนิดจำนวนเต็ม (int) ที่สามารถเก็บข้อมูลได้มากถึง 100 ตัวเลข (เนื่องจาก MaxData = 100) ซึ่งตัวเลขในอาร์เรย์นี้จะถูกใช้ในกระบวนการสุ่ม, แสดงผล, และเรียงลำดับข้อมูลในโปรแกรม
- int N : ตัวแปร N ถูกใช้เพื่อเก็บจำนวนข้อมูลที่ต้องการให้โปรแกรมจัดการ ตัวอย่างเช่น หากเรา ต้องการให้โปรแกรมทำงานกับข้อมูล 12 ค่า เราจะกำหนดค่า N=12 เพื่อให้โปรแกรมทราบว่าควรสุ่ม และเรียงลำดับข้อมูลกี่ค่า โดยตัวแปร N จึงเป็นตัวแปรสำคัญที่ถูกใช้ในหลายฟังก์ชันเพื่อตัดสินใจ จำนวนข้อมูลที่โปรแกรมต้องทำงานด้วย

4. ฟังก์ชัน PrepareRawData

```
void PrepareRawData(int N)
{
    int i;
    srand(time(NULL)); //สำหรับการสุ่มตัวเลขที่แตกต่างใน rand()
    for (i=1; i<=N; i++)
    Data[i] = 1 + rand() % 99; //สุ่มตัวเลขที่แตกต่างกันตั้งแต่ 1 ถึง 99
}
```

ฟังก์ชัน PrepareRawData ทำหน้าที่ในการเตรียมข้อมูลเริ่มต้น โดยสุ่มตัวเลขจำนวนเต็มในช่วง 1 ถึง 99 และ เก็บไว้ใน Array Data ที่มีขนาด N ตัว โดยฟังก์ชันนี้ใช้ไลบรารี stdlib.h และ time.h ในการสุ่มตัวเลข และ สร้างผลลัพธ์ที่แตกต่างกันทุกครั้งที่เรียกใช้ฟังก์ชัน โดยหลักการทำงานเริ่มต้นด้วยการเรียกใช้คำสั่ง srand(time(NULL)) ซึ่งเป็นการกำหนดค่า seed ให้กับฟังก์ชัน rand() เพื่อให้การสุ่มตัวเลขมีความ หลากหลายทุกครั้งที่รันโปรแกรม จากนั้นใช้ลูป for เพื่อวนรอบตั้งแต่ i=1 ถึง i=N โดยในแต่ละรอบจะใช้

rand() สุ่มตัวเลข และนำผลลัพธ์ที่ได้บวกกับ 1 เพื่อให้ค่าที่สุ่มได้อยู่ในช่วง 1 ถึง 99 (เพราะ rand() % 99 จะ ให้ค่าที่น้อยกว่า 99) สุดท้ายตัวเลขสุ่มแต่ละตัวจะถูกเก็บใน Array Data[]

5. ฟังก์ชัน DispData

```
void DispData(int N)
{
    int i;
    for(i=1; i<=N; i++)
        printf("%2d ", Data[i]);
    printf("\n");
}</pre>
```

ฟังก์ชัน DispData ทำหน้าที่แสดงข้อมูลใน Array Data โดยแสดงตัวเลขที่เก็บใน Array ออกมาเป็นแถว เดียวกัน พร้อมจัดรูปแบบให้มีช่องว่างระหว่างตัวเลข โดยหลักการทำงานเริ่มต้นจาก ใช้ลูป for เพื่อวนรอบ แสดงตัวเลขที่เก็บใน Array ตั้งแต่ตำแหน่งที่ 1 ถึงตำแหน่งที่ N โดยในแต่ละรอบ จะใช้ printf("%2d ", Data[i]) เพื่อแสดงตัวเลขในตำแหน่ง i ของ Array โดยใช้ %2d เพื่อจัดรูปแบบให้ตัวเลขมีความกว้าง 2 หลัก และเมื่อแสดงครบทุกตัวแล้ว จะแสดง \n เพื่อขึ้นบรรทัดใหม่

6. ฟังก์ชัน BubbleSort

```
void BubbleSort(int N)

{
    int i, j, temp;
    printf("-----\n");

    printf(" i ");

    for(i=1; i<=N; i++)

        printf(" (%2d)", i);
</pre>
```

6. ฟังก์ชัน BubbleSort (ต่อ)

```
printf("\n");
   for(i=1; i<=N-1; i++) //วนซ้ำไปข้างหน้า
   {
      if(Data[i] > Data[i+1]) //หากตำแหน่งไม่ถูกต้อง
      {
         printf("%2d. ", i+1);
         DispData(N);
         j = i + 1; //วนซ้ำไปข้างหลัง
         while(Data[j] < Data[j-1]) //ขณะที่ยังมี bubble ค้างอยู่
         {
            temp = Data[j-1]; //สลับข้อมูล
             Data[j-1] = Data[j];
             Data[j] = temp;
            j--; //นับถอยหลัง j
             printf("%2d. ", i+1);
             DispData(N);
         } //สิ้นสุด while
      } //สิ้นสุด if
   } //สิ้นสุด for
} //สิ้นสุดฟังก์ชัน
```

6. ฟังก์ชัน BubbleSort (ต่อ)

ฟังก์ชัน BubbleSort ทำหน้าที่ในการจัดเรียงข้อมูลแบบ Bubble Sort โดยเป็นการจัดเรียงตัวเลขจากน้อยไป หามาก พร้อมกับแสดงรายละเอียดของแต่ละขั้นตอนในการจัดเรียง โดยหลักการทำงานเริ่มต้นด้วยการแสดง ข้อมูลหัวข้อ โดยใช้เครื่องหมายขีด (-) เพื่อแบ่งการแสดงผลออกจากส่วนอื่น จากนั้นจะมีการแสดงตัวเลขดัชนี (i) ของแต่ละตำแหน่งใน Array เพื่อให้ผู้ใช้สามารถติดตามว่าข้อมูลถูกเปลี่ยนแปลงที่ตำแหน่งใด โดยโปรแกรม จะใช้ลูป for โดยวนรอบจาก i=1 ถึง i=N-1 เพื่อจัดเรียงข้อมูลในแต่ละรอบ ซึ่งภายในลูปจะมีการตรวจสอบ เงื่อนไขว่า Data[i] > Data[i+1] หากตัวเลขที่ตำแหน่ง i มีค่ามากกว่าตัวเลขที่ตำแหน่งถัดไป (i+1) หมายความ ว่าตัวเลขไม่เรียงกันถูกต้อง จึงต้องมีการสลับตำแหน่ง จากนั้น จะใช้ลูป while วนถอยหลัง (j=i+1) เพื่อ ตรวจสอบและสลับตัวเลขเรื่อย ๆ จนกว่าตัวเลขจะเรียงกันถูกต้อง ในทุกครั้งที่สลับตัวเลขเสร็จ ฟังก์ชัน DispData(N) จะถูกเรียกใช้เพื่อแสดงผลลัพธ์ของแต่ละขั้นตอนให้ผู้ใช้เห็น สุดท้ายกระบวนการนี้จะทำซ้ำไป เรื่อย ๆ จนกว่าตัวเลขกังหมดจะถูกจัดเรียงอย่างถูกต้อง

7. ฟังก์ชัน main

```
int main()

{

    printf("ASCENDING BUBBLE SORT\n");

    printf("========\n");

    N = 12;

    PrepareRawData(N);

    printf("Raw Data : ");

    DispData(N);

    printf("-----\n");

    BubbleSort(N);

    printf("----\n");
```

7. ฟังก์ชัน main (ต่อ)

```
printf("Sorted Data : ");

DispData(N); //ข้อมูลที่ถูกจัดเรียง

getch();

return(0);

} //สิ้นสุด main
```

ฟังก์ชัน main() เป็นฟังก์ชันหลักของโปรแกรมที่เรียกใช้งานฟังก์ชันอื่น ๆ และควบคุมลำดับการทำงานทั้งหมด ของโปรแกรม โดยหลักการทำงานเริ่มต้นด้วยการแสดงชื่อโปรแกรมและขีดเส้นแบ่งส่วน (=) จากนั้นกำหนดค่า N = 12 เพื่อใช้เป็นขนาดของ Array Data[] เมื่อกำหนดค่าแล้วจะเรียกฟังก์ชัน PrepareRawData(N) เพื่อสุ่ม ข้อมูลตัวเลขที่มีขนาด N ตัว และเรียกฟังก์ชัน DispData(N) เพื่อแสดงข้อมูลที่สุ่มได้ก่อนการจัดเรียง จากนั้น จะแสดงข้อความ "Processing Data..." เพื่อแจ้งผู้ใช้ว่าข้อมูลกำลังถูกจัดเรียง เมื่อแสดงข้อความแล้วจะเรียก ฟังก์ชัน BubbleSort(N) เพื่อจัดเรียงข้อมูลด้วยวิธี Bubble Sort เมื่อการจัดเรียงเสร็จสิ้น จะแสดงข้อมูลที่ถูก จัดเรียงแล้วโดยเรียกฟังก์ชัน DispData(N) อีกครั้ง สุดท้ายโปรแกรมจะหยุดรอการกดปุ่มจากผู้ใช้ด้วยคำสั่ง getch() และจากนั้นจะจบการทำงานของโปรแกรม

ผลลัพธ์การใช้งานโปรแกรม BUBBLE SORT

โปรแกรม Bubble Sort เป็นอัลกอริทึมการจัดเรียงข้อมูลแบบง่ายๆ ที่จัดเรียงข้อมูลจากน้อยไปมาก โดยทำการเปรียบเทียบและสลับตำแหน่งของตัวเลขในแต่ละขั้นตอน โปรแกรมจะเริ่มต้นด้วยการสุ่มตัวเลข แล้วจัดเรียงและแสดงผลการจัดเรียงในแต่ละขั้นตอนอย่างละเอียด

1. การเริ่มต้นการทำงานของโปรแกรม

ทันทีที่โปรแกรมเริ่มทำงาน ระบบจะแสดงชื่อโปรแกรมและเส้นแบ่ง เพื่อให้ผู้ใช้ทราบว่าโปรแกรมนี้ ทำงานเกี่ยวกับการจัดเรียงข้อมูลด้วย Bubble Sort โดยจะแสดงข้อความ "ASCENDING BUBBLE SORT" แสดงหัวข้อหลักของโปรแกรม พร้อมเส้นแบ่ง (====) ที่ช่วยให้หน้าจอดูเป็นระเบียบและแยกส่วนต่าง ๆ ออกจากกันชัดเจน

2. การแสดงข้อมูลดิบที่เกิดจากการสุ่ม (Raw Data)

ต่อมา โปรแกรมจะสุ่มตัวเลขจำนวน 12 ตัว (ตามที่กำหนดในโค้ด) และแสดงข้อมูลดิบที่ยังไม่ได้ถูก จัดเรียงออกมาทางหน้าจอ ตัวเลขเหล่านี้ถูกสุ่มจากช่วง 1 ถึง 99 ซึ่งจะเป็นข้อมูลที่จะใช้ในการจัดเรียงด้วย Bubble Sort โดยตัวเลขที่สุ่มขึ้นมา จะเป็นข้อมูลดิบที่โปรแกรมจะทำการจัดเรียงในขั้นตอนถัดไป

Raw Data : 1 88 10 8 31 60 89 63 47 32 65 83
--

3. แสดงขั้นตอนการจัดเรียง (Bubble Sort)

เมื่อโปรแกรมเริ่มต้นการจัดเรียงข้อมูล จะแสดงรายละเอียดการเปรียบเทียบและสลับตำแหน่งของ ตัวเลขในแต่ละรอบ ผู้ใช้จะเห็นตัวเลขในแต่ละตำแหน่ง (i) ที่กำลังถูกพิจารณา และจะแสดงข้อมูลที่ถูกสลับ หลังจากแต่ละการเปรียบเทียบ นอกจากนี้จะมีการแสดงขั้นตอนการจัดเรียงทุกครั้งที่เกิดการสลับตำแหน่ง เพื่อให้ผู้ใช้เห็นการเปลี่ยนแปลงของข้อมูล ในการแสดงผลลัพธ์ ตัวเลขที่ตำแหน่งที่ 1 (ค่า 23) มีค่ามากกว่า ตัวเลขที่ตำแหน่งที่ 2 (ค่า 21) ดังนั้นโปรแกรมจะสลับตำแหน่งของทั้งสองตัวเลข หลังจากการสลับ โปรแกรม จะแสดงผลข้อมูลใหม่ให้ผู้ใช้เห็นทันที ซึ่งการแสดงตัวเลข 2. บนหน้าจอหมายถึงการตรวจสอบในรอบที่ 2 โดย แต่ละรอบจะตรวจสอบว่า ค่าปัจจุบันมีค่ามากกว่าค่าถัดไปหรือไม่ ถ้ามีจะเกิดการสลับตำแหน่ง และการ แสดงผลแต่ละครั้งจะแสดงการเปลี่ยนแปลงของข้อมูลใน Array หลังจากที่มีการสลับตัวเลข ในการแสดงข้อมูล ฟังก์ชัน DispData(N) ถูกเรียกใช้อย่างต่อเนื่องเพื่อแสดงสถานะของข้อมูลในแต่ละรอบการเปรียบเทียบ เมื่อ การเปรียบเทียบและสลับตำแหน่งในรอบนั้นเสร็จสิ้น โปรแกรมจะวนช้ำกลับไปตรวจสอบข้อมูลถัดไป

Pro	cessir	ng Dat	 ta									
i	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
2.	23	21	22	26	70	6	22	57	97	90	62	65
2.	21	23	22	26	70	6	22	57	97	90	62	65
3.	21	23	22	26	70	6	22	57	97	90	62	65
3.	21	22	23	26	70	6	22	57	97	90	62	65
6.	21	22	23	26	70	6	22	57	97	90	62	65
6.	21	22	23	26	6	70	22	57	97	90	62	65
6.	21	22	23	6	26	70	22	57	97	90	62	65
6.	21	22	6	23	26	70	22	57	97	90	62	65
6.	21	6	22	23	26	70	22	57	97	90	62	65
6.	6	21	22	23	26	70	22	57	97	90	62	65
7.	6	21	22	23	26	70	22	57	97	90	62	65
7.	6	21	22	23	26	22	70	57	97	90	62	65
7.	6	21	22	23	22	26	70	57	97	90	62	65
7.	6	21	22	22	23	26	70	57	97	90	62	65
8.	6	21	22	22	23	26	70	57	97	90	62	65
8.	6	21	22	22	23	26	57	70	97	90	62	65
10.	6	21	22	22	23	26	57	70	97	90	62	65
10.	6	21	22	22	23	26	57	70	90	97	62	65
11.	6	21	22	22	23	26	57	70	90	97	62	65
11.	6	21	22	22	23	26	57	70	90	62	97	65
11.	6	21	22	22	23	26	57	70	62	90	97	65
11.	6	21	22	22	23	26	57	62	70	90	97	65
12.	6	21	22	22	23	26	57	62	70	90	97	65
12.	6	21	22	22	23	26	57	62	70	90	65	97
12.	6	21	22	22	23	26	57	62	70	65	90	97
12.	6	21	22	22	23	26	57	62	65	70	90	97

4. แสดงผลข้อมูลที่จัดเรียงเสร็จแล้ว

หลังจากโปรแกรมทำการจัดเรียงข้อมูลจนครบทุกขั้นตอน ข้อมูลทั้งหมดใน Array จะถูกเรียงจากน้อย ไปมากแล้ว โปรแกรมจะแสดงข้อมูลที่จัดเรียงเรียบร้อยแล้วในส่วนท้ายของผลลัพธ์ สุดท้ายข้อมูลที่จัดเรียง เสร็จสมบูรณ์ในที่นี้คือ 6, 21, 22, 23, 26, 57, 62, 65, 70, 90, และ 97 ซึ่งแสดงว่าการจัดเรียงข้อมูลด้วย เทคนิค Bubble Sort สำเร็จเรียบร้อยแล้ว

Sorted Data :	6	21	22	22	23	26	57	62	65	70	90	97

5. การรอการกดปุ่มก่อนปิดโปรแกรม

โปรแกรมจะไม่ปิดตัวลงทันทีหลังจากแสดงข้อมูลที่จัดเรียงเสร็จแล้ว มันจะรอจนกว่าผู้ใช้จะกดปุ่มใดๆ จากคีย์บอร์ด ก่อนที่โปรแกรมจะปิดการทำงาน ฟังก์ชัน getch() ทำหน้าที่นี้ เพื่อให้ผู้ใช้มีเวลาสังเกตผลลัพธ์ สุดท้ายก่อนออกจากโปรแกรม

บรรณานุกรม

ChatGPT. (-). Bubble Sort: Step-by-Step Explanation with Output. สืบค้น 22 กันยายน 2567, จาก https://chatgpt.com/