Electronic Devices

Lecture 4
P-N Junction

Dr. Roaa Mubarak

Diode symbol

• Diode current voltage Relation :

$$I_D = I_S \left(e^{\frac{V_D}{\eta V_T}} - 1 \right)$$

V_D: Voltage across diode

I_D : Diode current

 I_{S} : Reverse sturation current

V_T: Thermal voltage

η: Ideality Factor Constant (Si η=2, Ge η=1)

V-I Characteristics

V-I Characteristics

Temperature Effects

- Since I_s , V_T are function of temperature, So diode Char. Also vary with temperature.
- For silicon the charge is approximately 2mv/°C
- The change in I_S is 7 percent /°C
- The value of I_s is doubled every 10 °C rise in temperature.

$$I_{s2} = I_{s1} \times 2^{\left(\frac{T_2 - T_1}{10}\right)}$$

Example: I_{S1} = 1 μ A ----- then I_{S2} = $(1.07)^{10} \approx 2 \mu$ A

Temperature Effects

Diode Models

The diode as a circuit elements:

- Ideal Diode Model
- Large Signal model
- Small Signal model

The Ideal Diode Model

- The diode is designed to allow current to flow in only one direction.
- The perfect diode would be a perfect conductor in one direction (Forward bias) and a perfect insulator in the other direction (reverse bias). I_D

Reverse biased

$$V_D$$
 < 0 , I_D = 0
Open Circuit

Forward biased

$$V_D = 0$$
 , $I_D > 0$ Short Circuit ON

The Ideal Diode Model

Ideal V-I Characteristic Curve (blue)

The Ideal Diode Model

Example:

Assume the diode in circuit below is ideal.

Determine the value I_D if:

a)
$$Vs = 5 V$$
 b) $Vs = -5V$

b)
$$Vs = -5V$$

Sol:

a) With Vs =5V, Diode is forward, for Ideal Model it replaced by short circuit.

$$I_D = \frac{Vs}{R} = \frac{5}{50} = 100mA$$

b) With Vs =-5V, Diode is Reverse, for Ideal Model it replaced by open circuit.

$$I_D = 0$$

