Assignment 3

Suggested test cases (not the marking test cases)

Dear Students,

Hello! In order to help your work on assignment 3, I present the test cases that will use to mark your assignment 3 here. Please note that I may use another dataset to test your work, but will basically follow the following 13 test cases. I have also made a VPL for you to submit and test your work.

Please feel free to let me know if you have any doubt in the test case requirements. I am very happy to help you \odot

Best regards,

Kit.

You can check your program according to the following test cases:

1. We will call the InsertNode function in ascending order of the node ID. The following input is the same as the running example used in the specification.

Input 1	(Run the executable)
	InsertNode 0 Library_Building
	<pre>InsertNode 1 Hui_Oi_Chow_Science_Building</pre>
	InsertNode 2 University_Street
	<pre>InsertNode 3 Kadoorie_Biological_Sciences_Building</pre>
	InsertNode 4 Haking_Wong_Building
	<pre>InsertNode 5 Chow_Yei_Ching_Building</pre>
Output 1	(No screen output, the nodes are inserted into the graph.)

2. We will call the ${\tt InsertNode}$ function in any random order of the node ID.

	2. We will call the Insert enough function in any full doll of the flowers.	
Input 2	(Run the executable)	
	InsertNode 1 Hui_Oi_Chow_Science_Building	
	InsertNode 5 Chow_Yei_Ching_Building	
	InsertNode 0 Library_Building	
	InsertNode 3 Kadoorie_Biological_Sciences_Building	
	InsertNode 2 University_Street	
	InsertNode 4 Haking_Wong_Building	
Output 2	(No screen output, the nodes are inserted into the graph.)	

3. We will call the InsertNode function with node ID not starting from 0.

Input 3	(Run the executable)
	InsertNode 10 Hui_Oi_Chow_Science_Building
	InsertNode 22 Chow_Yei_Ching_Building
	InsertNode 32 Library_Building
	InsertNode 25 Kadoorie_Biological_Sciences_Building
	InsertNode 11 University_Street
	InsertNode 9 Haking_Wong_Building
Output 3	(No screen output, the nodes are inserted into the graph.)

4. We will call the InsertNode function with duplicate node ID, the node will not be inserted into the graph. The InsertNode function will output "ID exists.", followed by an endl on screen. The program should continue to process any upcoming commands after displaying the error message.

```
Input 4

(Run the executable)

InsertNode 0 Library_Building

InsertNode 1 Hui_Oi_Chow_Science_Building

InsertNode 2 University_Street

InsertNode 3 Kadoorie_Biological_Sciences_Building

InsertNode 4 Haking_Wong_Building

InsertNode 5 Chow_Yei_Ching_Building

InsertNode 5 Main Building

Output 4

ID exists.
```

- Note that in the above test case the graph is built for the first 6 calls of InsertNode function.
- The program is still active to receive upcoming commands.
- 5. We will call the InsertEdge(x, y) function with both x and y exist in the graph.

Input 5	Assume that we continue with the inputs of test case 1.
	InsertEdge 0 1
	InsertEdge 1 0
	InsertEdge 1 2
	InsertEdge 2 1
	InsertEdge 0 3
	InsertEdge 3 0
	InsertEdge 2 4
	InsertEdge 4 2
	InsertEdge 3 4
	InsertEdge 4 3
	InsertEdge 4 5
	InsertEdge 5 4
Output 5	(No screen output, the edges are inserted into the graph.)

6. We will call the InsertEdge(x,y) function with either x or y, or both does not exists in the graph. InsertEdge(x,y) should output "No such node." once, followed by an endl on screen.

Input 6a	Assume that we continue with the inputs of test case 1.
	InsertEdge 100 1
Output 6a	No such node.
Input 6b	Assume that we continue with the inputs of test case 1.
	InsertEdge 1 100
Output 6b	No such node.
Input 6c	Assume that we continue with the inputs of test case 1.
	InsertEdge 100 100
Output 6c	No such node.

7. We will call the CommonNeighbor(x,y) function where node x and y have common neighbors. If there are more than one common neighbors, output them in ascending order of the node ID, line by line.

Input 7	Assume that we continue with the inputs of test case 5.
	InsertEdge 1 3
	InsertEdge 3 1
	CommonNeighbor 2 3
Output 7	1 Hui_Oi_Chow_Science_Building
	4 Haking_Wong_Building

8. We will call the CommonNeighbor(x,y) function where node x and y do not have common neighbors. The function outputs "No common neighbor.", followed by an endl on screen.

Input 8	Assume that we continue with the inputs of test case 5.
	CommonNeighbor 1 5
Output 8	No common neighbor.

9. We will call the CommonNeighbor(x, y) function where node x and y are the same.

Input 9	Assume that we continue with the inputs of test case 5.
	CommonNeighbor 0 0
Output 9	1 Hui_Oi_Chow_Science_Building
	3 Kadoorie_Biological_Sciences_Building

10. We will call the CommonNeighbor(x,y) function with x or y or both does not exists in the graph. CommonNeighbor(x,y) should output "No such node." once, followed by an endl on screen.

Input 10a	Assume that we continue with the inputs of test case 1.
	CommonNeighbor 100 0
Output 10a	No such node.
Input 10b	Assume that we continue with the inputs of test case 1.
	CommonNeighbor 0 100
Output 10b	No such node.
Input 10c	Assume that we continue with the inputs of test case 1.
	CommonNeighbor 100 100
Output 10c	No such node.

11. We will call the ShortestPath(x,y) function where node x and y have a path to return. If there are more than one shortest paths, output any one of them.

Input 11a	Assume that we continue with the inputs of test case 5.
	ShortestPath 0 4
Output 11a	0 Library_Building
	3 Kadoorie_Biological_Sciences_Building
	4 Haking_Wong_Building
Input 11b	Assume that we continue with the inputs of test case 5.
	ShortestPath 1 5
Output 11b	1 Hui_Oi_Chow_Science_Building
	2 University_Street
	4 Haking_Wong_Building
	5 Chow_Yei_Ching_Building
Input 11c	Assume that we continue with the inputs of test case 5.
	ShortestPath 5 0
Output 11c	5 Chow_Yei_Ching_Building
	4 Haking_Wong_Building
	3 Kadoorie_Biological_Sciences_Building
	0 Library_Building

12. We will call the ShortestPath(x,y) function where node x and y are not connected in the graph (i.e., there are no path to reach from x to y in the graph.). In this case, ShortestPath(x,y) outputs "No path found.", followed by an endl on screen.

Input 12a	Assume that we continue with the inputs of test case 5.
Input 12a	InsertNode 6 University Hall
	ShortestPath 0 6
Outravet 12a	No path found.
Output 12a	
Input 12b	Assume that we continue with the inputs of test case 5.
	InsertNode 7 Clinical_Pathology_Building
	<pre>InsertNode 8 Faculty_of_Medicine_Building</pre>
	InsertEdge 7 8
	InsertEdge 8 7
	ShortestPath 8 0
Output 12b	No path found.
Input 12c	Assume that we continue with the inputs of test case 5.
	<pre>InsertNode 7 Clinical_Pathology_Building</pre>
	<pre>InsertNode 8 Faculty_of_Medicine_Building</pre>
	InsertEdge 7 8
	InsertEdge 8 7
	InsertEdge 3 8
	ShortestPath 7 0
Output 12c	No path found.
Input 12d	Assume that we continue with the inputs of test case 5.
(say, if we	<pre>InsertNode 7 Clinical_Pathology_Building</pre>
have a one	<pre>InsertNode 8 Faculty_of_Medicine_Building</pre>
way shuttle	InsertEdge 7 8
from KBS to	InsertEdge 8 7
Medicine	InsertEdge 3 8
building)	ShortestPath 0 7
Output 12d	0 Library_Building
	3 Kadoorie_Biological_Sciences_Building
	8 Faculty_of_Medicine_Building
	7 Clinical_Pathology_Building

13. We will call the ShortestPath(x,y) function where node x and y are the same node.

Input 13a	Assume that we continue with the inputs of test case 5.
	ShortestPath 0 0
Output 13a	0 Library_Building
Input 13b	Assume that we continue with the inputs of test case 5.
	ShortestPath 4 4
Output 13b	4 Haking_Wong_Building

I wish you like this assignment and get a good grade in this task \odot - Kit