Computer Programming

Training problems for M3 2018 term 2

Ted Szylowiec tedszy@gmail.com

SICP (Structure and Interpretation of Computer Programs) online here:

https://sarabander.github.io/sicp/

Download Racket here:

https://racket-lang.org/

Use Racket online at Tio:

https://tio.run/#racket

Have a look at Racket code:

https://github.com/tedszy/Racketry

1 Lambda

- 1. Use define to define a symbol having an integer value.
- **2.** Use define to define a symbol having a string value.
- 3. Use define to define a symbol having a boolean value.
- **4.** Define a symbol to have a rational value.
- **5.** Define a symbol to have a float value.
- **6.** Use define and lambda to define a symbol having a function value.
- 7. Explain why these give you errors.
 - (a) (define "x" 10)
 - (b) (define 10 5)
 - (c) (define #f a)
 - (d) ("string-append" "good" "night")
 - (e) (define (f "x") (* x x))
 - (f) (define ("f" x) (* x x))
- 8. What is a lambda? Who discovered it? Why is it so interesting in computer science?
- **9.** Give some examples of computer programming languages that have lambda and support lambda-style programming.

2 Lambda

10. Practice arrow notation. What is the result?

```
(a) (x \to x^2 + 1)(3)
```

(b)
$$(x, y \rightarrow 2x + 5y)(3, 7)$$

(c)
$$(x, y, z \to \sqrt{xy} + \sqrt{xz} + \sqrt{yz})(2, 3, 5)$$

(d)
$$(x, y, z \rightarrow |xy| + |xz| + |yz|)(-1, 2, -3)$$

(e)
$$(x, y \to x^2 + y^2)((x \to x + 1)(2), (x \to x - 2)(7))$$

- **11.** Write this as a lambda expression: $x \rightarrow x^2 + 3x + 1$.
- **12.** Write this as a lambda expression: $x \to x^2$ if x is odd, else x^3 . Use Racket's if and odd? function.
- **13.** Write this as a lambda expression: $x, y \to \sqrt{xy}$. Use Racket's sqrt function.
- **14.** Write using lambda: $x, y, z \rightarrow \frac{x^2 + y^2 + z^2}{2}$.
- **15.** The identity function takes x and returns x without any changes: $x \to x$. Write the identity function using lambda.
- **16.** Change lambda expression to arrow (\rightarrow) notation:

$$(lambda (x y) (+ (* 2 x) (* 3 y)))$$

17. Change lambda expression to arrow notation:

- 18. What does Racket return?
 - (a) > (lambda (x) (* x x))
 - (b) > ((lambda (x) (* x x)) 5)
 - (c) > ((lambda (x y) (+ 1 (* x y))) 6 7)
 - (d) > ((lambda (x) (string-append "happy " x)) "halloween")
 - (e) > ((lambda (x) (string-append x "happy ")) "halloween")
- 19. What does Racket return?
 - (a) > ((lambda (x y z) (+ x y z)) 10 21 32)
 - (b) > ((lambda (x y z) (+ (/ x) (/ y) (/ z))) 2 3 5)
 - (c) > ((lambda (x y) (* (+ x y) (- x y))) 7 5)
- 20. What does this expression return?

- **21.** Write a lambda-expression that adds the square roots of 3 and 5.
- **22.** Write a lambda expression that finds the harmonic mean of 2, 5 and 7.
- 23. Write a lambda expression that finds the average of the lengths of these two lists: (list 'a 'b 'c) and (list 1 2 3 4 5). Use the length function to get the length of a list.

LAMBDA 3

24. Let $f: x \to 5x$ and $g: x \to 2x$. Write a one-line lambda expression that does f(3) + g(6).

25. Change this to lambda-style function definition.

```
(define (f x)
(+ (* x x) 5)
```

26. Change to lambda-style function definition.

```
(define (f x)
(if (even? x) (/ x 2) (* x 2)))
```

27. Change to lambda-style definition.

```
(define (g x y)
(/ (+ x y) 2))
```

28. Change to lambda-style definition.

```
(define (h x y z)
(expt (* x y z) 1/3))
```

29. Do this computation with a one-shot expression using a lambda and no definitions.

```
(define (f x)
  (+ (* 2 x) 1))
(f 10)
```

30. Do this as a one-line expression using lambda, without definitions.

```
(define (greetings s)
    (string-append "hello there " s))
(greetings "Jim")
```

31. Rewrite this as one expression using lambda and no definitions.

```
(define a 10)
(define b 25)
(define (f x y) (- (* x y) 5))
(f a b)
```

32. Rewrite all this as a one-line expression using lambda.

```
(define s1 "greetings ")
(define s2 "earthman")
(define (F a b)
    (string-append a b ", take me to your leader"))
(F s1 s2)
```

33. Get rid of all symbol definitions and rewrite this program as a one-line expression using lambda.

4 Map and filter

- **34.** Let $f: x \to x^2$ and $g: x \to x+1$. Write f(g(5)) as one expression using two lambdas. Don't use define or compose.
- **35.** Let $f: x \to 2x + 1$ and $g: x \to 3x + 2$. Write f(g(10)) in Racket using only lambdas.

2 Map and filter

36. What does this expression return?

```
(map (lambda (x) (* x x))
(list 1 2 3 4 5 6 7))
```

37. What does this expression return?

```
(map (lambda (x y) (* (+ x 3) (- y 2)))
(list 1 2 3 4 5 6 7)
(list 7 6 5 4 3 2 1))
```

- **38.** Write a one-shot expression that takes the numbers from 0 to 99, squares them if they are odd, and cubes them if they are even. Use map, lambda, if, odd? and range.
- **39.** What do these expressions do?
 - (a) (map even? (range 10))
 - (b) (filter even? (range 10))
 - (c) (map odd? (list 1 2 3 4 5 6 7))
 - (d) (filter odd? (list 1 2 3 4 5 6 7))
 - (e) (filter even? (list 1 2 3 4 5 6 7))
 - (f) (filter (lambda (x) (= (remainder x 3) 0)) (list 1 2 3 4 5 6 7))
- **40.** What does this expression do?

```
(filter (lambda (x) (> x 2))
(list -2 5 -8 3 2 1 9 8 -1 0))
```

- **41.** How many numbers from 0 to 999 are divisible by 7? Write a Racket expression to calculate this. Use length, filter, lambda, range, = and remainder.
- **42.** Write a Racket expression that takes (list 0 -3 6 -8 7 9 -4 2) keeps only the elements > 1, and then squares them. Use filter, map and lambda.
- **43.** Write Racket expression that calculates how many numbers from 0 to 999 are divisible by 2, 3 and 7. Use length, filter, lambda, if, and, remainder, = and range.
- **44.** Map the function $x \to 1/\sqrt{x}$ onto the list of numbers 1,2,... 10. Then filter the result to keep all the ones that are bigger than 1/3. Use map, filter, > and lambda.

45. The crystal ball says "tomorrow you will *not* eat an apple". If we let p be "you will eat an apple", then we can write what the crystal ball predicts as $\neg p$.

Draw some cartoons for what can happen tomorrow. When is the crystal ball right? When is it wrong? When is $\neg p$ true and when is it false?

46. The crystal ball says "tomorrow you will either eat an apple or see an alien but not both." If we let p be "you will eat an apple" and q be "you will see an alien" then we can write the crystal ball prediction as $p \oplus q$. This is called *xor* or *exclusive or*. Either p can be true or *q* can be true but not both.

Draw cartoons for what can happen tomorrow. When is the crystal ball right and when is it wrong? Use this to figure out when $p \oplus q$ is false and when it is true.

47. Fill in these logic tables.

\wedge	Т	F
Т		
F		

V	T	F
Т		
F		

\rightarrow	Т	F
Т		
F		

48. Fill in these logic tables.

\Leftrightarrow	Т	F
Т		
F		

49. Figure out the truth values.

$$(c)$$
 $\neg\neg\neg\neg\neg$

(c)
$$\neg \neg \neg \neg F$$
. (d) $\neg \neg \neg \neg \neg T$.

50. Figure out the truth values. Work from the inside out, like the way you evaluate Racket expressions.

(a)
$$(\neg F \wedge T) \vee (F \wedge \neg F)$$
.

(b)
$$(F \rightarrow T) \rightarrow (\neg T \lor F)$$
.

$$\text{(a)} \ \ (\neg F \wedge T) \vee (F \wedge \neg F). \qquad \qquad \text{(b)} \ \ (F \to T) \to (\neg T \vee F). \qquad \qquad \text{(c)} \ \ \neg (T \to F) \wedge (F \to \neg T).$$

51. Figure out the truth values.

(a)
$$(\neg T \oplus F) \Leftrightarrow (T \oplus T)$$
.

(b)
$$(T \Leftrightarrow F) \oplus \neg (\neg T \Leftrightarrow F)$$

(a)
$$(\neg T \oplus F) \Leftrightarrow (T \oplus T)$$
. (b) $(T \Leftrightarrow F) \oplus \neg (\neg T \Leftrightarrow F)$. (c) $((F \Leftrightarrow T) \Leftrightarrow (\neg T \Leftrightarrow T)$.

- **52.** Make truth tables.
 - (a) Make a truth table for $p \rightarrow q$.
 - (b) Make a truth table for $\neg p \lor q$. Is it the same as in (a)?
 - (c) Make a truth table for $(p \to q) \Leftrightarrow (\neg p \lor q)$. Is it a tautology?
- **53.** Make truth tables.
 - (a) Make a truth table for $\neg(p \land q)$.
 - (b) Make a truth table for $\neg p \lor \neg q$. Is it the same as in (a)?
 - (c) Make a truth table for $\neg(p \land q) \Leftrightarrow (\neg p \lor \neg q)$. Is it a tautology?
- **54.** Make truth tables.
 - (a) Make a truth table for $\neg p \oplus \neg q$.

- (b) Make a truth table for $\neg(p \Leftrightarrow q)$. Is it the same as in (a)?
- (c) Make a truth table for $(\neg p \oplus \neg q) \Leftrightarrow \neg (p \Leftrightarrow q)$. Is it a tautology?
- 55. Make truth tables.
 - (a) Make a truth table for $p \Leftrightarrow q$.
 - (b) Make a truth table for $(p \to q) \land (q \to p)$. Is it the same as in (a)?
 - (c) Make a truth table for $(p \Leftrightarrow q) \Leftrightarrow ((p \to q) \land (q \to p))$. Is it a tautology?
- **56.** Make a truth table for the expression

$$((\neg p \to q) \land (\neg p \to \neg q)) \to p.$$

Is this expression a tautology?

57. Make a truth table for the expression

$$\neg((p \land q) \land \neg r).$$

It has three variables, so the table with have 8 rows. Is the expression a tautology?

58. Make a truth table for

$$((p \rightarrow q) \land (p \rightarrow r)) \rightarrow r.$$

Is this a tautology?

59. Make a truth table for

$$((p \land q) \land (p \to r)) \lor (\neg(p \lor q) \lor \neg(p \to r))$$

Is it a tautology?

- **60.** Racket has not, and, or, #t and #f built into the language. Translate the following logic propositions into Racket and evaluate them.
 - (a) $(\neg T \land \neg F) \lor \neg (T \lor \neg F)$.
 - (b) $\neg (T \lor F) \land ((T \lor F) \land (F \lor F)).$
 - (c) $(\neg(T \land F) \lor (F \land F)) \lor \neg(T \land T)$.
- **61.** Make a truth table and show that $p \to q$ is the same as $\neg p \lor q$.
- **62.** Let F and G be two logic expressions. Another way we can show that F is the same as G is to make a truth table for $F \Leftrightarrow G$ and show that it is a tautology. Do this with $F = p \to q$ and $G = \neg p \lor q$.
- **63.** Define a Racket function called implies that does $p, q \longrightarrow p \rightarrow q$. Use the idea that $p \rightarrow q$ is the same as $\neg p \lor q$.
- **64.** Translate these logic propositions into Racket and evaluate them.
 - (a) $(T \rightarrow (T \land F)) \lor \neg (F \rightarrow T)$.
 - (b) $((F \land F) \rightarrow (T \lor F)) \rightarrow (F \lor T)$.
 - (c) $\neg (T \rightarrow F) \rightarrow \neg (F \rightarrow T)$.
- **65.** Make a truth table and show that $p \Leftrightarrow q$ can be expressed as $(p \to q) \land (q \to p)$.
- **66.** Let $F = p \Leftrightarrow q$ and $G = p \to q \land q \to p$. Show that F and G are the same by making a truth table and showing that $F \Leftrightarrow G$ is a tautology.

67. Define a Racket function called iff (if and only if) that does $p, q \longrightarrow p \Leftrightarrow q$. Use the idea that $p \Leftrightarrow q$ is the same as $(p \to q) \land (q \to p)$.

- **68.** Translate these logic propositions into Racket and evaluate them.
 - (a) $(T \Leftrightarrow (F \to T)) \lor \neg (F \Leftrightarrow (T \to F))$.
 - (b) $((T \Leftrightarrow F) \to (T \land T)) \Leftrightarrow (T \to F)$.
 - (c) $((T \lor F) \Leftrightarrow (F \land T)) \Leftrightarrow (F \to F)$.
- **69.** Make a truth table and show that $p \oplus q$ is the same as $\neg(p \Leftrightarrow q)$.
- **70.** Let $F = p \oplus q$ and $G = \neg(p \Leftrightarrow q)$. Make a truth table and show that $F \Leftrightarrow G$ is a tautology.
- **71.** Define a Racket function called xor (exclusive or) that does $p, q \longrightarrow p \oplus q$. Use the idea that $p \oplus q$ is the same as $\neg(p \Leftrightarrow q)$.
- **72.** Translate these logic propositions into Racket and evaluate them.
 - (a) $(T \oplus F) \Leftrightarrow (T \oplus T)$.
 - (b) $(F \Leftrightarrow (T \oplus F)) \vee (F \oplus (F \Leftrightarrow T))$.
 - (c) $((T \Leftrightarrow F) \oplus (T \to F)) \oplus (T \to F)$.
- **73.** Find a way to express $p \Leftrightarrow q$ using only \land , \lor and \neg .
- **74.** Find a way to express $p \oplus q$ using only \land , \lor and \neg .
- **75.** Save your definitions for implies, iff and xor in a file called logic.rkt. Make sure it works by loading it in Racket.
- **76.** Define a Racket function $F: p, q \longrightarrow ((p \rightarrow q) \Leftrightarrow (q \oplus p))$ and use it to evaluate $F(\mathsf{T}, \mathsf{T})$, $F(\mathsf{F}, \mathsf{F})$.
- 77. Define a Racket function $F: p, q \longrightarrow ((p \oplus (p \vee q)) \land (|q \rightarrow p))$ And use it to build a truth table for F by calculating F(F, F), F(F, T), F(T, F) and F(T, T).
- **78.** Define a Racket function $F: p, q \longrightarrow (p \oplus (\neg q \land (q \rightarrow p)))$. Use it to build a truth table for F.
- **79.** Define a Racket function $G: p, q, r \longrightarrow ((p \rightarrow q) \Leftrightarrow r) \oplus ((r \rightarrow p) \Leftrightarrow q)$ and use it (and Racket) to help you quickly build a truth table for G.
- 80. What do these expressions evaluate into and which ones give errors (and why)?
 - (a) (+ 1 2 3 4 5)
 - (b) (+ (list 1 2 3 4 5))
 - (c) (apply + (list 1 2 3 4 5))
 - (d) (apply sqrt 16)
 - (e) (apply sqrt (list 16))
 - (f) (sqrt (list 16))
 - (g) (remainder 33 10)
 - (h) (remainder (list 33 10))
 - (i) (apply remainder (list 33 10))
 - (j) (* (list 1 2 3 4))
 - (k) (apply * (list 1 2 3 4))
 - (1) (* 1 2 3 4)

81. Given the code:

```
(define mydata (list 10 20 50))
(define (average x y z) (/ (+ x y z) 3))
```

- (a) Use car and cdr and average to find the average of mydata
- (b) Use apply and average to do the same job much more easily.
- **82.** Suppose you did six experiments and you have your experimental results packed into a list of lists.

- (a) Write a Racket function that finds the geometric mean of three arguments. Use expt.
- (b) Use map, apply and lambda to write one expression that calculates the geometric mean of each one of your experimental results and returns the answers in a list.
- **83.** You did four experiments. Each experiment gave you a list of five numbers as a result. All this data is packed into a list of lists.

```
(define mydata (list (list 4 1 11 7 21)
(list 8 19 21 7 5)
(list 3 12 22 9 15)
(list 21 5 16 8 9)))
```

We want to divide the product of the numbers of one experiment by their sum. And we want to do that for each experimental result. Write a one-shot expression in Racket that does the job. Use map, lambda, apply, etc.

84. Add these to your logic.rkt library and save it.

We will use them to quickly build truth tables.

- **85.** Use Racket to quickly build a truth table for $F(p) = ((p \oplus \neg p) \to p) \lor p$.
 - (a) Define *F* in Racket.
 - (b) Use map, F and pvalues to build a truth table.

86. Let
$$F(p,q) = (p \vee \neg q) \rightarrow (p \oplus (p \wedge \neg q)).$$

(a) Define *F* in Racket.

(b) Use F, map, lambda, apply and pqvalues to quickly build a truth table with a one-shot expression.

87. Let
$$F(p,q,r) = ((r \rightarrow q) \Leftrightarrow (p \oplus r)) \vee \neg (p \rightarrow r)$$

- (a) Define *F* in Racket.
- (b) Use F, map, lambda, apply and pqrvalues to quickly build a truth table.