Introduction of a Biologically Plausible Color Descriptor to a Neurodynamical Model of the Primary Visual Cortex

Sean Thomas Connolly

Master Thesis Defense September 2014

Advisor: Xavier Otazu

Introduction of a Biologically Plausible Color Descriptor to a Neurodynamical Model of the Primary Visual Cortex

Introduction of a Biologically Plausible Color Descriptor to a Neurodynamical Model of the Primary Visual Cortex

how can color be represented as data?

how does the **brain** represent color?

Introduction of a Biologically Plausible
Color Descriptor to a Neurodynamical Model
of the Primary Visual Cortex

how can color be represented as data?

how does the **brain** represent color?

Introduction of a Biologically Plausible
Color Descriptor to a Neurodynamical Model
of the Primary Visual Cortex

how does the brain process color?

how can color be represented as **data**?

how does the **brain** represent color?

Introduction of a Biologically Plausible
Color Descriptor to a Neurodynamical Model

of the Primary Visual Cortex

how does the brain **process** color?

how can color be represented as **data**?

...at a very **early** stage of visual processing.

Overview

- What is color?
- Color in biology
- Color descriptor(s)
- Neurodynamical model
- Results
- Conclusions
- Discussion

Color,

Light has wavelength.

Light sources have spectral power distributions.

Objects have spectral reflectance properties.

Organisms perceive color.

The perceived color of an object is defined by the illuminant, the object's physical properties, and its context

...let's see how.

Receptive Fields

Single-Opponent Neurons

Double-Opponent Neurons

Single-Opponent & Double-Opponent

Stimulus Response Patterns

Single-Opponent & Double-Opponent Characteristics

	Single-Opponent Cells	Double-Opponent Cells	
Cone Opponency:	Yes	Yes	
Spatial Opponency:	No	Yes	
Achromatic Selectivity:	Yes	Yes	
Chromatic Selectivity:	Yes	Yes	
Orientation Selectivity:	No*	Yes	
Spatial Frequency Selectivity:	Yes	Yes	

Single-opponent neurons respond best to regions of color.

Double-opponent neurons respond best to the **boundaries** between.

Opponent processing of single and double-opponent receptive fields will describe color, in it's context, in a biologically plausible manner.

Double-opponent receptive fields modeled with off-center Gaussians.

Opponent color processing...

Neurodynamical Model

Penacchio *et al.* 2013 (based on work by Z Li 1998)

Model of the dynamic interactions between neurons over time.

Neurodynamical Model

Penacchio et al. 2013 (based on work by Z Li 1998)

..of a 5-dimensional matrix: positions x & y, decomposed Into 6 color channels at s scales and 4 orientations.

Receptive fields specific to cells' orientation selectivities.

Receptive fields specific to cells' (a)chromatic selectivities.

Receptive fields specific to cells' (a)chromatic selectivities.

to from	Light	Dark	Red	Green	Blue	Yellow
Light	+	-	+	+	+	+
Dark	-	+	+	+	+	+
Red	+	+	+	-	+	+
Green	+	+	-	+	+	+
Blue	+	+	+	+	+	-
Yellow	+	+	+	+	_	+

Results.

Input images were scaled to ~150px wide.

3 scales (spatial frequencies) were used.

Each experiment was run for 20 time steps, with 10 iterations of neural interaction at each step.

We averaged neural activity at each time step.

Subtracted opponent color channels from each other.

Red+

Blue+

Light+ Dark-

Red+ Green-

Blue⁺ Yellow

Light⁺ Dark⁻ Red⁺ Green⁻ Blue⁺ Yellow⁻

Conclusions

- Color Description
 - ✓ Biologically plausible representation of color in V1.
 - Better understanding of light & dark receptive fields needed.
 - Tweaking of receptive field dimensions suggested.
- Neurodynamical Model
 - \checkmark Biologically plausible model of feature processing in V1.
 - Analysis of inter-color connections/weights needed.
- Way forward...

Systematic analysis of behavior:

- Analysis of evolution of neurodynamical model.
- Analysis of effects of parameters.
- 3. Comparison with psychophysical metrics.

Discussion