Ecole Supérieure de la statistique et de l'analyse de l'information de Tunis

Examen pratique du logiciel Statistique SAS Enseignant : Wajdi Ben Saad

Niveau : 1^{ère} Année || Année : 2015-2016 Durée de l'épreuve : 45 minutes

Le Rendu doit être : cette feuille remplie et le code SAS complet, enregistré dans un dossier sur le bureau du PC et nommé :

EXAM_SAS_Nom_Prenom_Groupe, le fichier du code SAS doit être nommé : **Code_Nom_Prenom_Groupe**

Le code rendu doit être commenté en expliquant chaque commande utilisée.

Votre nom, prénom et groupe doivent être mentionnés dans la première ligne du code SAS en commentaire.

Questions: Tester le code suivant :

%let lib_name = 'C:/'; %let library_name = &lib_name ; libname DATA_lib &library_name;

1. Quelle sera l'emplacement de la librairie **Data_lib** ?

L'emplacement est : 'C:/' . 0.5 pt

2. Ajouter la table suivante à la librairie Data_lib déclarée avec le code utilisé ci-dessus.

Country	Pop	Language	Revenu
Algeria	40,775,000	Ar	\$100248
Cameroon	84,264,000	Fr	\$451863
Niger	107,155,000	Eg	\$236817
Rwanda	38,390,000	Fr	\$541009
Somalia	64,510,000	Ar	\$412693
Eritrea	31,487,000	Ar	\$754812

```
Data Data lib.Exam SAS Data;
informat
                                                                                   1 pt
Country $char12.
Pop Comma10.
Language $char10.
Revenu Dollar10.
input Country
                        Language $
                $ Pop
                                         Revenu;
Datalines;
                                                                                  1 pt
Algeria 40,775,000 Ar $100248
Cameroon 84,264,000 Fr $451863
Niger 107,155,000 Eg $236817
Rwanda 38,390,000 Fr $541009
Somalia 64,510,000 Ar $412693
Eritrea 31,487,000 Ar $754812
run;
```

3. Quels sont les informats utilisés pour saisir cette table dans SAS?

Country \$char12.	0.5pt
Pop Comma10.	
Language \$char10.	
Revenu Dollar10.	

4. Changer les *formats* de la variable *Language* tels que :

Ar =Arabic, Fr= French, Eg =English

5. Donner une macro SAS qui calcule la fonction de répartition de la loi normale de la variable racine carré du Revenu sur 900 000 (New_Revenu = $(\sqrt{Revenu})/900~000$) pour Language ='Arabic' et donner les valeurs trouvées

(La table finale sera composée de : Product, Type, New_Revenu, Normal_Curve) (Remplir cette table ci-dessous)

Product	Туре	Revenu	New_Revenu	Normal_Curve
Algeria	Arabic	100248	.000351800	742.16
Somalia	Arabic	412693	.000713791	1284.65
Eritrea	Arabic	754812	.000965332	835.72

2 pts

(Indication : utiliser la fonction ci-dessous. La constante π doit être remplacée par la valeur **3.14** dans l'équation, la fonction exponentiel de SAS peut être utilisée : $e^{x} = \exp(x)$).

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}$$

```
Data Data_lib.Exam_SAS_Data_2;
set Data_lib.Exam_SAS_Data_1;
New_Revenu = (Revenu**0.5)/900000;
                                                                                                   2 pts
where language = "Ar";
run;
proc means data= Data lib.Exam SAS Data 2;
var New_Revenu;
                                                                                                   2 pts
run;
/*********/
%let m = 0.000689298;
                                                                                                   2 pts
%let stan div = 0.000215625
%macro Loi_Normale (m,stan_div);
Data Data_lib.Normal_Dist_3;
Set Data lib.Exam SAS Data 2;
                                                                                                   3 pts
keep Country Language Revenu New_Revenu normal_curve;
normal_curve = (1/( &stan_div *(2*3.14)**0.5 ))*exp( -0.5*( (New_Revenu - &m)/ &stan_div)**2 );
                                                                                                   4 pts
run;
Proc print data=Data_lib.Normal_Dist_3;
                                                                                                    1 pt
run;
%mend;
%loi_normale(&m, &stan_div);
+ 1 pt si le code : avec commentaires et fonctionne sans messages d'erreurs
```