Theorem: Angle Sum of a Triangle

The sum of the interior Angles of any Triangle equals 180° (or π radians).

Statement

For any triangle $\triangle ABC$ with interior angles α , β , and γ :

$$\alpha + \beta + \gamma = 180^{\circ}$$

Proof (Euclidean Geometry)

Given triangle $\triangle ABC$:

- 1. Through vertex A, construct a Line parallel to side \overline{BC}
- 2. This creates two additional angles adjacent to $\angle BAC$
- 3. By the parallel postulate and properties of transversals:
 - One angle equals $\angle ABC$ (alternate interior angles)
 - The other equals $\angle BCA$ (alternate interior angles)
- 4. The three angles at vertex A form a straight angle, summing to 180°
- 5. Therefore: $\angle BAC + \angle ABC + \angle BCA = 180^{\circ}$

Consequences

This theorem has several important implications:

- 1. No triangle can have two right angles: If two angles were 90° each, the third would be 0°
- 2. Exterior angle theorem: An exterior angle equals the sum of the two non-adjacent interior angles
- 3. Classification constraint: In any triangle, at most one angle can be obtuse

Generalizations

- In hyperbolic geometry, the angle sum is less than 180°
- In spherical geometry, the angle sum is greater than 180°
- The difference from 180° relates to the curvature of the space

Applications

- Navigation and surveying
- Determining if three angles can form a triangle
- Solving for unknown angles in geometric problems
- Foundation for trigonometry

Dependency Graph

Local dependency graph