2019年度^春 中間試験問題・解答

試験実施日 2019 年 6 月 7 日 5 時限

出題者記入欄

			(
試 験 科 目 名 微分方程式		出題者名佐藤弘康			
試 験 時 間 <u>60</u> 分	平常授業	美日<u>金</u>曜日<u>5</u>時限			
持ち込みについて 可	√(\ □)	可、不可のいずれかに○印をつけ 持ち込み可のものを○で囲んでください			
教科書 ・ 参考書 ・ ノート (手書きのみ ・ コピーも可) ・ 電卓 ・ 辞書 その他 ()					
本紙以外に必要とする用紙 解答用紙 <u>0</u> 枚 計算用紙 <u>0</u> 枚					
通信欄 p.4 に線形微分方程式と完全微分方程式の一般解の公式を記載した.					

受験者記入欄

学 科	学 年		学	籍	番	号	氏	名
		1						

採点者記入欄

	3 1 3 A A A A A A A A A A A A A A A A A
採 点 欄	評価

問題 以下の5つの微分方程式について, $1 \sim 5$ の問に答えなさい.

- ($\mathbf{\mathcal{P}}$) (y+1) dx + (1-x) dy = 0
- (1) $(3xy^2 + 2y + 1) dx + (2x^2y + x) dy = 0$
- (ウ) $(y e^x) dx + x dy = 0$
- (**I**) $(x^2 + y^2) dx + xy dy = 0$
- (π) $(6x + y^3) dx + 3xy^2 dy = 0$
- 1 次に該当するものを (ア)~(オ) の中から選びなさい. 【各 2 点】
 - (1) 変数分離形微分方程式を選びなさい.

解答欄

(2) 同次形微分方程式をすべて選びなさい.

解答欄

(3) 線形微分方程式をすべて選びなさい.

解答欄

(4) ベルヌーイの微分方程式を**すべて**選びなさい(ただし,変数分離形微分方程式,線形微分方程式,同次形 微分方程式は除く).

解答欄

(5) 完全微分方程式をすべて選びなさい.

解答欄

- **2** 次の間に答えなさい.【各5点】
 - (1) y = -2x + 1 が, $\boxed{1}$ (1) で選択した微分方程式の解であることを示しなさい.

(2) $\boxed{1}$ (2) で選択した微分方程式の中から 1 つ選び、 $v=\frac{y}{x}$ とおくことにより, v と x の変数分離形微分 方程式に変換しなさい.

(3) $\boxed{1}$ (4) で選択した微分方程式の中から 1 つ選び, $z=y^k$ とおくことにより, z と x の線形微分方程式に変換しなさい.

(4) $\boxed{1}$ (1) \sim (5) のどれにも該当しない選択肢がただ 1 つだけある. $\lambda = x$ が, その微分方程式の積分因子であることを示しなさい.

- **3** 次の問に答えなさい.【各5点】
 - (1) **(ア)~(オ)** の中から 1 つ選び, その一般解を求めな さい.
- (2) **(ア)~(オ)** の中から 1 つ選び、初期条件 (x,y)=(2,2) を満たす特殊解を求めなさい。ただし、3 (1) で選んだものを除く。