Trabalho 2 – Disciplina Mineração de Dados

Utilizando Python e R para Mineração de Dados

Universidade Federal Fluminense Instituto de Computação Aluno: Clayton Escouper das Chagas

Utilizando Python e R para Mineração de Dados

Sumário

- 1. Motivação
- 2. Python para Mineração de Dados
- 3. R para Mineração de Dados
- 4. Comparação
- 5. Demonstrações
- 6. Conclusão
- 7. Referências

1. Motivação

- Ferramentas de Mineração de Dados vs. Programação de Mineração de Dados

Fonte: www.kdnuggets.com (16th annual KDnuggets Software Poll – mais de 3000 votos entre comunidade e empresas)

- 1. R*, 46.9% share (38.5% in 2014) /FO
- 2. RapidMiner**, 31.5% (44.2% in 2014) /C Java
- 3. SQL*, 30.9% (25.3% in 2014)
- 4. Python*, 30.3% (19.5% in 2014) /FO
- 5. Excel**, 22.9% (25.8% in 2014) /C
- 6. KNIME**, 20.0% (15.0% in 2014) /FO Java
- 7. Hadoop**, 18.4% (12.7% in 2014) /FO Java
- 8. Tableau**, 12.4% (9.1% in 2014) /C C++
- 9. SAS**, 11.3 (10.9% in 2014) /C C
- 10. Spark**, 11.3% (2.6% in 2014) /FO Java, Python, Scala e R
- 11. Weka*, 11.2% (17.0% in 2014) / FO Java

Ferramentas de DM em ascensão (dados de 2016/2017): H2O/FO, Orange/FO, Mahout/FO

** - Ferramentas ou suites com DM

/FO – free e/ou open souce

/C - comercial

^{* -} Linguagens

1. Motivação

- Ferramentas de Mineração de Dados

- > Vantagens:
 - >> Curva de aprendizado mais rápida
 - >> Mais completas (tarefas e completude)
 - >> Contratação de suporte
- > Desvantagens:
 - >> Custo (das mais completas)

- Programação de Mineração de Dados

- > Vantagens:
 - >> Flexibilidade
 - >> Possibilidade de embarcar DM a softwares
 - >> Baixo custo
 - >> Simplicidade
- > Desvantagens
 - >> Curva de aprendizado mais lenta (...mas nem tanto :-)
 - >> Maior dificuldade de contratação de suporte

1. Motivação

Utilização de linguagens de programação para experimentos científicos

61%

of the respondents* have Python among their preferred/more often used tools to run experiments

*Survey sent to AMC@UvA (Olabarriaga), UFRJ (Mattoso), DATAONE (newsletter), DBBras (mailing list), FIOCRUZ (Davila), USP (Traina), INRIA-Montpellier (Zenith group), LNCC (Ocana), PW 2016 TPC, SciPyLA (Telegram), Software Carpentry (mailing list), U. Nantes (Gaignard), UPENN (Davidson), receiving 85 answers.

- TIOBE Index

Nov 2017	Nov 2016	Programming Language	Ratings	
1	1	Java	13.231%	
2	2	С	9.293%	
3	3	C++	5.343%	
4	5	Python	4.482%	
5	4	C#	3.012%	
6	8	JavaScript	2.972%	
7	6	Visual Basic .NET	2.909%	
8	7	PHP	1.897%	
9	16	Delphi/Object Pascal	1.744%	
10	9	Assembly language	1.722%	
11	19	R	1.605%	
12	15	MATLAB	1.604%	
13	14	Ruby	1.593%	
14	13	Go	1.570%	
15	10	Perl	1.562%	
16	26	Scratch	1.550%	

- Consigo implementar tudo de Mineração de Dados (pré-processamento, manipulação dos dados, algoritmos de mineração, visualização, etc) em Python "do zero"?
- R: Até dá...mas vai dar um trabalho!!! 👸
- Solução mais viável:
 - > Caixa de Ferramentas Python para Mineração de Dados

- Caixa de Ferramentas Python para Mineração de Dados (instalação + import das bibliotecas):
 - > Python 2.x ou 3.x: LP fácil, eficiente e rápida
- > **NumPy**: biblioteca de extensão para computação científica com suporte a arrays e matrizes multidimensionais, com funções matemáticas especializadas para estas estruturas
- > **SciPy**: biblioteca que estende as funcionalidades do NumPy (pré-requisito), para trabalhar de forma otimizada e com mais funções para manipulação e visualização de computação científica, principalmente manipulação de arrays multidimensionais
- > **Pandas**: pacote com estruturas especializadas para dados relacionais ou não estruturados, tornando esta manipulação mais fácil e flexível

- Caixa de Ferramentas Python para Mineração de Dados (instalação + import das bibliotecas):
- > Matplotlib: biblioteca rica em recursos para construção de gráficos (plot), com API que dá suporte a GUI, Qt, GTK e OpenGL
- > **iPython**: pacote para programação/interpretação interativa via linha de comando
 - > **Jupyter**: extensão do iPython, com notebook interativo web
- > **Scikit-learn**: (<u>Sci</u>Py Tool<u>kit</u>) biblioteca padrão Python com implementações para Mineração de Dados e Aprendizado de Máquina

- **Scikit-learn**: v 0.19.0 (Ago17, desde Jun07)

- Scikit-learn

- > Escrito em Python e Cython
- > Ampla documentação e suporte comunitário
- > Funções para:
 - >> Manipulação dos dados
 - >> Pré-processamento
 - >> Tratamento estatístico
 - >> Métricas (ROC, acurácia, matriz de confusão, etc)
 - >> Classificação (árvore de decisão, k-NN, randon forest, Naive Bayes, etc)
 - >> Regressão
 - >> Clusterização (k-means, DBSCAN, etc)
 - >> Redes neurais

- Scikit-learn

5	API 1	PI Reference				
	5.1	sklearn.base: Base classes and utility functions	. 1183			
	5.2	sklearn.calibration: Probability Calibration	. 1189			
	5.3	sklearn.cluster: Clustering	. 1193			
	5.4	sklearn.cluster.bicluster: Biclustering	. 1231			
	5.5	sklearn.covariance: Covariance Estimators				
	5.6	sklearn.cross_decomposition: Cross decomposition	. 1267			
	5.7	sklearn.datasets: Datasets				
	5.8	sklearn.decomposition: Matrix Decomposition				
	5.9	sklearn.discriminant_analysis: Discriminant Analysis				
	5.10	sklearn.dummy: Dummy estimators				
	5.11	sklearn.ensemble: Ensemble Methods				
	5.12	sklearn.exceptions: Exceptions and warnings	. 1426			
	5.13					
		sklearn.feature_selection: Feature Selection				
		sklearn.gaussian_process: Gaussian Processes				
		sklearn.isotonic: Isotonic regression	. 1527			
	5.17	sklearn.kernel_approximation Kernel Approximation	. 1531			
	5.18	sklearn.kernel_ridge Kernel Ridge Regression				
	5.19	sklearn.linear_model: Generalized Linear Models				
	5.20	sklearn.manifold: Manifold Learning	. 1642			
	5.21					
		sklearn.mixture: Gaussian Mixture Models				
	5.23					
	5.24	sklearn.multiclass: Multiclass and multilabel classification				
	5.25	sklearn.multioutput: Multioutput regression and classification				
	5.26	sklearn.naive_bayes: Naive Bayes				
	5.27	sklearn.neighbors: Nearest Neighbors				
	5.28	sklearn.neural_network: Neural network models				
	5.29	sklearn.pipeline: Pipeline				
	5.30	sklearn.preprocessing: Preprocessing and Normalization				
	5.31	sklearn.random_projection: Random projection				
	5.32					
	5.33	sklearn.svm: Support Vector Machines				
	5.34					
	5.35	sklearn.utils: Utilities				
	5.36	Recently deprecated	. 2019			

- **Anaconda**: distribuição com solução completa para Python e R *data science* (core, packages, IDEs, notebooks, gerenciador de pacotes, etc)

- MLlib

- > Módulo do Apache Spark com implementações de Mineração de Dados e Aprendizado de Máquina
- > Faz parte da arquitetura Spark (processamento de dados em grande escala)


```
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.classification.DecisionTreeClassificationModel
import org.apache.spark.ml.classification.DecisionTreeClassifier
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.ml.feature.{IndexToString, StringIndexer, VectorIndexer}

// Load the data stored in LIBSVM format as a DataFrame.
val data = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")
```

- Basic statistics
- Pipelines
- Extracting, transforming and selecting features
- Classification and Regression
- Clustering
- · Collaborative filtering
- · Frequent Pattern Mining
- · Model selection and tuning
- Advanced topics

- Orange

- Orange

Discretization

Continuization

Normalization

Randomization

Feature selection

Logistic Regression Random Forest Simple Random Forest

Softmax Regression k-Nearest Neighbors

Classification (classification)

Preprocessors

Remove

- H2O

Unsupervised Learning		
Generalized Low Rank Models (GLRM)	Tutorial	Reference
K-Means Clustering	Tutorial	Reference
Principal Components Analysis (PCA)	Tutorial	Reference

Supervised Learning								
Generalized Linear Modeling (GLM)	Tutorial	Booklet	Reference	Tuning				
Gradient Boosting Machine (GBM)	Tutorial	Booklet	Reference	Tuning				
Deep Learning	Tutorial	Booklet	Reference	Tuning				
Distributed Random Forest	Tutorial	Booklet	Reference	Tuning				
Naive Bayes	Tutorial	Booklet	Reference	Tuning				
Stacked Ensembles	Tutorial	Booklet	Reference	Tuning				
XGBoost	Tutorial	Booklet	Reference	Tuning				

- H2O

- > Suporte a processamento distribuído
- > Suporte a aceleração com GPU
- > Interfaces para Python (H2O-Python) e R (H2O-R)

```
import h2o
import imp
from h2o.estimators.kmeans import H2OKMeansEstimator

# Start a local instance of the H2O engine.
h2o.init();

iris = h2o.import_file(path="https://github.com/h2oai/h2o-3/raw/master/h2o-r/h2o-package/inst/e
xtdata/iris_wheader.csv")

results = [H2OKMeansEstimator(k=clusters, init="Random", seed=2, standardize=True) for clusters
in range(2,13)]
for estimator in results:
    estimator.train(x=iris.col_names[0:-1], training_frame = iris)
```


- Tensor Flow

- > Biblioteca de código aberto para Mineração de Dados e Aprendizado de Máquina da Google Brain
- > Foco em redes Neurais
- > Interfaces para Python, C++, Java e Go
- > TensorFlow Lite (mobile)
- > Alguns algoritmos:
 - >> K-means clustering
 - >> Random Forests
 - >> Support Vector Machines
 - >> Gaussian Mixture Model clustering
 - >> Linear/logistic regression
- > Outros algoritmos como contribuição
- > Scikit-learn + TensorFlow = Scikit Flow

- R para mineração de dados

- > R é uma linguagem de programação GPL e ambiente de desenvolvimento integrado para cálculos estatísticos e gráficos
- > Simples
- > Ambiente integrado de desenvolvimento completo (RStudio)
- > Repositório de bibliotecas unificado, organizado e "intuitivo": **CRAN** The **C**omprehensive **R A**rchive **N**etwork

python

- Pacotes R para mineração de dados

- > Todos no repositório **CRAN**, bibliotecas para:
 - >> Mineração de Dados, Aprendizado de Máquina e Análise Estatística
 - >> Análise de Cluster e Modelos Finitos
 - >> Análise de Séries Temporais
 - >> Estatística Multivariada
 - >> Análise de Dados Espaciais
- > Pacotes mais utilizados por tarefas:
 - >> <u>Classificação</u>
 - >>> Árvore de Decisão: rpart, party
 - >>> Random Forest: randomForest, party
 - >>> SVM: e1071, kernlab
 - >>> Redes Neurais: nnet, neuralnet, RSNNS
 - >>> Avaliação de Performance e Métricas: ROCR

- Pacotes R para mineração de dados

> Pacotes mais utilizados por tarefas:

>> Clusterização

- >>> k-means: kmeans, kmeansruns
- >>> k-medoids: pam, pamk
- >>> Cluster hierárquico: hclust, agnes, diana
- >>> DBSCAN: fpc
- >>> BIRCH: birch
- >>> Validação de Cluster validation: clv, clValid, NbClust

>> Regras de Associação

- >>> Regras de Associação: arules (apriori e eclat)
- >>> Padrões Sequenciais: arulesSequence
- >>> Visualização de Associações: arulesViz

- Pacotes R para mineração de dados

> Pacotes mais utilizados por tarefas:

>> Mineração de Texto

- >>> Mineração de texto: tm
- >>> Modelagem de tópicos: topicmodels, Ida
- >>> Nuvem de palavras: wordcloud
- >>> Acesso a dados do Twitter: twitteR

>> Análise de Séries Temporais

- >>> Decomposição de Séries Temporais: decomp, decompose, arima,stl
- >>> Previsão de Séries Temporais: forecast
- >>> Clusterização de Séries Temporais: TSclust
- >>> Deformação de Tempo Dinâmico (DTW): dtw

- Pacotes R para mineração de dados

- > Pacotes mais utilizados por tarefas:
 - >> Análise de Redes Sociais
 - >>> Pacotes básicos: igraph, sna
 - >>> Medidas de Centralidade: degree, betweenness, closeness, transitivity
 - >>> Clusterização: clusters, no.clusters
 - >>> Cliques: cliques, largest.cliques, maximal.cliques, clique.number
 - >>> Detecção de comunidades: fastgreedy.community, spinglass.community
 - >>> Base de Dados de Grafos com Neo4j: RNeo4j

24

- Pacotes R para mineração de dados

- > Pacotes mais utilizados por tarefas:
 - >> Suporte a Big Data
 - >>> Hadoop: RHadoop, RHIPE
 - >>> Spark: SparkR
 - >>> H2O: h2o-r
 - >>> MongoDB: rmongodb, RMongo

- Comparação Python e R para mineração de dados

Comparação Python e R para mineração de dados R

>> Vantagens

- >>> Pacotes de visualização especializados
- >>> Ecosistema R: repositório (CRAN, cran.r-project.org), IDE (Rstudio, rstudio.com) e documentação (rdocumentation.org)
- >>> Linguagem desenvolvida por estatísticos e para estatísticos

>> Desvantagens

- >>> Performance: "R foi feita para facilitar a vida do estatístico, não do computador"
- >>> "A curva de aprendizado do R não é trivial" (palavras de estatísticos que não sabem/gostam de programar, acostumados a ferramentas estatísticas visuais e baseadas em workflows.

- Comparação Python e R para mineração de dados

- > Python
 - >> Vantagens
 - >>> Programação/execução interativa com os Notebooks (IPython/Jupyter)
 - >>> Linguagem de propósito geral/multipropósito

>> Desvantagens

- >>>Visualização: escolha complexa, apresentação pouco rica e quantidade de pacotes muito numerosa
- >>> Ainda está atrás do R se levarmnos em conta a relação quantidade/qualidade/organização dos pacotes, fazendo com que quem já utiliza o R, não o abandone em prol do Python

- Comparação Python e R para mineração de dados

- > R versus Python
 - >> R é mais funcional, Python é mais orientada a objetos
 - >> R tem mais funções de mineração embutidas e facilmente encontradas/importadas de seu repositório, Python exige uma análise mais cuidadosa para escolha e tem mais pacotes
 - >> R tem melhor suporte à estatística em geral, Python tem mais facilidade para tarefas computacionais

5. Demonstrações

- Algoritmos vistos em sala
- > Classificação: árvore de decisão, k-NN, Naive Bayes
 - > Clusterização: K-means
- Datasets Mushroom e Iris
- Vídeo: mineracao.mp4

5. Demonstrações

- Códigos do vídeo e projeto em: github.com/claytonchagas

5. Demonstrações

- k-NN no Rstudio (biblioteca class: 41 linhas!)

6. Conclusão

- R vs Python vs Tools
- -R
- > Computação *standalone* ou análise individualizada de dados
- > Trabalhos exploratórios e tipos de dados heterogêneos
- > Cenários instáveis e que precisam ser resolvidos rapidamente
 - > Utilize o RStudio e abuse do CRAN

6. Conclusão

- R vs Python vs Tools
- Python
 - > Integração web ou a outros softwares
 - > Integração a banco de dados em produção
 - > Customizações de algoritmos para produção
 - > Se ambiente a uma boa caixa de ferramentas
- > Desenvolva utilizando os notebooks (IPython/Jupyter)

34

6. Conclusão

- R vs Python vs Tools
- DM Tools
- > Apesar de tudo que foi descrito, vale muito a pena investir no aprendizado de uma ferramenta completa de Mineração de Dados, principalmente com tantas opções gratuitas
- > Os números apenas traduzem uma questão cultural e/ou comportamental, do ponto de vista de produtividade, do ponto de vista corporativo, utilizar as ferramentas faz mais sentido

7. Referências

- → www.kdnuggets.com
- → www.analyticsvidhya.com
- → www.www.dataquest.io
- → scikit-learn.org
- → www.dataconomy.com
- → www.guidetodatamining.com
- → docs.orange.biolab.si
- → www.machinelearningmastery.com
- → www.r-project.org
- → cran.r-project.org
- → www.rdocumentation.org
- → www.bioconductor.org
- → www.rdatamining.com
- → www.datacamp.com

