试卷标题

班级	姓名	学 早
1)I. ()X	好 . 石	子与

注意事项:

- 1. 答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码.
- 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.
 - 3. 考试结束后,将本试卷和答题卡一并交回.
- 一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
 - 1. 椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > 0, b > 0)$ 的长轴长为 $2\sqrt{985}$,短轴长为 $2\sqrt{211}$.则 a^2 的值为.(

A. 985

- B. 3940 或 844
- C. 844
- D. 985 或 211
- 2. 若集合 $A = \{1, 3, 5, 7, 9, 11, 13, 15, 17, 19\}, B = \{21, 23, 25, 27, 29, 31, 33, 35, 37, 39\}, C = \{x + y | x \in A, y \in B\}, 则|C|为($

A. 16

- B. 17
- C. 18
- D. 19
- 3. 如下左图,山西晋祠博物馆,是集中国古代祭祀建筑、园林、雕塑、壁画、碑刻艺术为一体的历史文化遗产,也是世界建筑、园林、雕刻艺术中极为辉煌壮美、璀璨绚烂的篇章.晋祠博物馆位于山西省,是一处蜚声中外的风景名胜区.就单建筑而言,晋祠是中国古代建筑艺术的集约载体,国内宋元明清至民国本体建筑类型、时代序列完整的孤例,附属彩塑壁画碑碣均为国宝.这片建筑群是在经过了千年的风雨后流传下来的,有浓厚的历史文化底蕴.如下右图,将晋祠中的某建筑简化为两底面均为矩形的四棱台,尺寸已经标注在图上(单位: m),则体积(单位: m³)为.(

A. $\frac{175\sqrt{47}}{16}$

- B. $\frac{875\sqrt{47}}{12}$
- C. $\frac{512\sqrt{47}}{9}$
- D. $\frac{96\sqrt{47}}{5}$

4. 在直四棱柱 $ABCD - A_1B_1C_1D_1$ 中, $|C_1D_1| = |C_1B_1| = 1$, $|CC_1| = 2$.M,N 在线段 D_1B_1 上且 $|MN| = \frac{\sqrt{2}}{2}$.相对于 N,M 更靠近 D_1 .则 $\overrightarrow{CM} \cdot \overrightarrow{BN}$ 的最小值为(

A. $\frac{15}{4}$

B. 4

- C. $\frac{19}{4}$
- D. $\frac{21}{4}$

5.				l父拱十个数中位直不同的两个 A、B 与交换 B、A 视为同种)
	A. 2 种	B. 4 种	C. 5 种	D. 6 种
6.	P 0.1 0.2 0	1 2 3 .15 0.3 0.25 内 ℝ 且处处可导.已知	知对于任意 $x \in \mathbb{R}$,有 $f'(x)$ -	$+ af(x) > 0 (a \ge 0)$.下列说法正
	A. $a = 0$ 时,对于 B. $a = 2$ 时, $\frac{f(0)}{100}$ C. $a = 2$ 时, $\frac{f(\ln 2)}{f(1)}$	$(\frac{e^2}{4})$	有 $\frac{f(x_1)-f(x_2)}{x_2-x_1} < 0.$ $\frac{1}{2}$ },则函数 $f(x) = \frac{e^x}{x}$ 满足要:	求.
7.	数列 {a _n } 满足: a	$a_1 = 2 - \sqrt{3}, \frac{a_n}{a_{n-1}} =$	$2+a_n\cdot a_{n-1} (n\geq 2)$. 下列说法	去正确的是.()
	A. $\{a_n\}$ 是单调数死	\vec{n} B. $a_1 = a_{2021}$	C. $a_2 = a_{2022}$	D. $a_3 = a_{2023}$
8.	虚部 $\geq \frac{3}{5}$ 的三个复则 $ z_1 + z_2 + z_3 $ 的		$ z_1 = z_2 = z_3 = 1, z_1\overline{z_2} = z$	$ z_2\overline{z_3} , \;\; ext{if} \;\; 2 z_3-z_1 = z_3-\overline{z_1} ,$
	A. $[1+\sqrt{3},1+\frac{4}{5}\sqrt{3}]$	(5) B. $[1+\sqrt{3},1-$	$+\frac{5}{6}\sqrt{5}$] C. $[1+\frac{3}{4}\sqrt{5},1+\sqrt{5}]$	$\sqrt{3}$] D. $\left[1 + \frac{2}{3}\sqrt{5}, 1 + \sqrt{3}\right]$
题目	要求.全部选对的		对的得2分,有选错的得0	出的选项中,有多项符合 0分.
	A. $a^2b + ab^2 + 2a^2$	$+2b^2 + 5ab \le \frac{5}{2}$	B. $a^2b \le \frac{1}{8}$	
	C. $\frac{a^4 + a^2 + 1}{a^2 + b} \in (1, 3)$	2	D. $\ln a \cdot \ln b < \frac{1}{2}$	
10.	312211.可以看出, 看有 x 个连续的 y 后的结果相连组成 1 个连续的 1,则质	从第二项开始,每一 ,则将 x 和 y 相连 了后一项。例如: 对 后一项为 312211.可能	一项都在"描述"前一项.具体 (x 为高位, y 为低位)作为 寸于 111221,从左到右看,它	为 1,则前几项为 1,11,21,1211,111221 体而言,若前一项从高位往低位 切后一项的一部分.多个 x,y 相连 (有3个连续的1,2 个连续的 2, 超过了一位数;也依照正常规则
	C. 若首项为1,则x	位为4,否则数列中	题中的"特殊情况"不可能出	4现.
11.	已知函数 $f(x) = \frac{1}{2}$	$\frac{+\ln x }{e^x}, g(x) = f^2(x)$	+af(x)+1.则方程 $g(x)=0$	的实根可能有()个.()
	A. 2	В. 3	C. 4	D. 5
12.	_	$\frac{1}{a} + y^2 = 1.A,B$ 分别 = a .下列若干说法,」		点 Q 不与 A,B 重合.F 为右焦

- A. 过Q作 $QM \perp l$ 交 l 于 M.若恒有 $\frac{|QF|}{|QM|} = \frac{\sqrt{3}}{2}$,则 $a = \frac{4\sqrt{3}}{3}$.
- B. $k_{BQ} \cdot k_{AQ} = -\frac{1}{4}$.
- C. 若 $a = \frac{4\sqrt{3}}{3}$,直线 FQ 交 C 于另一点G,交l于R,且 $|FQ| = \frac{5}{4}$, $|FG| = \frac{5}{16}$,则 $|GR| = \frac{25}{48}$. D. 若 $S(1, \frac{\sqrt{3}}{2})$,L 为 C 上另一动点,则 $|SL|_{max} = \frac{8}{3}$.

三、填空题:本题共4小题,每小题5分,共20分.

- 13. 已知 $a > 0, (x^2 + ax + 1)^5$ 的展开式中 x^8 的系数为 10, 则 a =______.
- 14. 三角形 APB 的边 AB 及平面上一点 Q 满足 |AB|=4, |AQ|=3, |BQ|=1.若 PQ 平分 $\angle APB$, 则 $S_{\triangle APB}$ 的最大值为 ______.
- 15. 写出一个函数 $f(x) = A \sin(\omega x + \varphi)$, 满足条件:
 - (1) f(0) = f(1) = 1, f(2) = f(3) = -1;
 - (2) x = 2 不是 y = f(x) 的对称轴.

16. 一条河上有一座桥.桥由若干树干拼接成,这些树干组成了 $n \times (n-1)(n \ge 1)$ 的网格,人只能从树干 上经过,通过方向不受限制,下图(a)是 n=3 的情形.由于地震,每条树干有 $\frac{1}{5}$ 的概率断裂,每条 树干是否断裂相互独立.当且仅当有至少一条由完好的树干组成的通路时人才能过河(如下图(b)的 绿色路径,红色×表示此处的树干断裂了).则人能过河的概率为__

四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.

17. (10分)

在三角形 ABC 中, $\sin A = \frac{1}{\tan C}$.

- (1) 若 $A = \frac{\pi}{6}$, 求 $\sin B$.
- (2) 若 $\cos B = \frac{1}{\tan C}$,求 $\sin B$.

18. (12分)

有一个无穷大的方格表.用(i,j)表示第i行第j列.现在在这些格子里填数,满足:从(k,1)斜向上到(1,k)的 每个格子中填 $2^{1-k}(k \ge 1)$.填好如下图.

- (1) 记所有格子中的数字的和为S.证明: S < 4.
- (2) 一开始在(1,1)处有一枚棋子.小明可以进行如下操作:如果(i,j)处有棋子,而(i+1,j)和(i,j+1)处都没有棋子,则小明可以把(i,j)处的棋子拿走,并在(i+1,j)和(i,j+1)处各放置一枚棋子.一个格子最多只能放置一枚棋子.证明:无论小明如何操作,左上角的 3×3 区域内一定会有棋子.

	1	1/2	1/4	1/8	1/16
	1/2	1/4	1/8	1/16	
	1/4	1/8	1/16		
	1/8	1/16			
Ī	1/16				
L					

19. (12分)

四棱锥 P-ABCD 中,底面 ABCD 是梯形, $AB \parallel CD, AB=4, AD=2, DC=2$,平面 $PAB \perp ABCD$,且 P 到平面 ABCD 的距离为 $4, |PB|=\sqrt{17}.$ 三棱锥 P-ABC 的体积为 $\frac{8\sqrt{3}}{3}$. (1) 求 BC.

(2) Q 是 PB 的中点, 过 Q 作 QR || BC 交 PC 于 R.求平面 AQR 和平面 DQR 所成角的余弦值.

20. (12分)

某校校长为改善学生在校的生活与学习体验,计划拨款 \mathbf{x} (单位:千元) 翻新校内包括宿舍、体育器具、教室电器在内的各项设施。下表给出了拨款金额 \mathbf{x} 和学生的幸福指数 \mathbf{y} 的对应关系.

- (1) 由表中数据得知,在 $x \le 500$ 时可用线性回归模型拟合 y 与 x 的关系.请用相关系数加以说明,并建立 y 关于 x 的经验回归方程.
- (2) 由表中数据得知,在 x 较大时,(1)中的线性回归模型拟合效果不佳.若取拟合函数为 $y=\frac{ax}{b+x}$,试估计 a 与 b 的值.

(备注: 记实际的 a, b 分别为 a_0, b_0 ,求得的 a, b 分别为 a_1, b_1 .若满足 $|a_0 - a_1| < 0.2, |b_0 - b_1| < 50$,则可判对.)

参考数据及公式:

$$\sum_{i=1}^{5} x_i = 1500, \sum_{i=1}^{5} x_i^2 = 550000, \sum_{i=1}^{5} y_i = 237.28, \sum_{i=1}^{5} y_i^2 = 13126.96$$

$$\widehat{b} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}, \widehat{a} = \overline{y} - \widehat{b}\overline{x}, r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

X	100	200	300	400	500	1000	2000	3000	4000	5000
У	18.53	34.75	49.06	61.78	73.16	115.83	163.53	189.55	205.93	217.19

21. (12分)

已知函数 $f(x) = 2 \ln x + x^2, g(x) = ax - 3.$

- (1) 若 $f(x) \ge g(x)$ 对于 $\forall x \ge 1$ 恒成立,求 a 的取值范围.
- (2) 对于任意正整数 n, 证明:

$$\ln 2 \cdot \ln \frac{3}{2} \cdot \ln \frac{4}{3} \cdot \ln \frac{5}{4} \cdot \dots \cdot \ln \frac{2n}{2n-1} \cdot \ln \frac{2n+1}{2n} > \frac{C_{4n-1}^{2n}}{2^{4n-1} \cdot (2n)!}$$

22. (12分)

已知抛物线 $E: y^2 = 2px(p>0)$.过 K(-4,0) 作两条切线交 E 于 A,B,且 $\overrightarrow{KA} \cdot \overrightarrow{KB} = 48$.

- (1) 求 E 的方程.
- (2) 如下图.点 P(a,0)(a<0) 是 x 轴负半轴上一点.过 P 作直线 l 与 E 交于不重合的 M, N 两点,再过 M、N 作垂直于 l 的直线 MS、NT 分别交 E 于 S、T.直线 ST 交 x 轴于 Q(b,0).对于每个确定的点 P,
- Q 的横坐标 b 会随着 l 斜率的变化而变化,从而有一个左开右开的连续取值范围,即
- $b \in (L(a), R(a))$.试求 R(a) L(a).

