EC708 Discussion 6 DiD and Clustered SE

Yan Liu

Department of Economics
Boston University

March 17, 2023

Outline

- Difference-in-Difference (DiD)
- Clustered Standard Errors

Table of Contents

Difference-in-Difference (DiD)

2 Clustered Standard Errors

Setup

- Outcome Y_{it} and treatment D_{it} are observed for $i=1,\ldots,N$ and t=1,2.
- Observed outcome is based on potential outcomes $(Y_{it}(1), Y_{it}(0))$ through $Y_{it} = Y_{it}(1)D_{it} + Y_{it}(0)(1 D_{it})$.
- Let $G_i \in \{0,1\}$ indicate groups:
 - $G_i = 1$ (treated group): $D_{i1} = 0, D_{i2} = 1$
 - $G_i = 0$ (control group): $D_{i1} = D_{i2} = 0$
 - $N_1 = \sum_{i=1}^{N} G_i, N_0 = N N_1$

Identification of ATT

Average treatment effect for the treated (ATT):

$$\tau = E[Y_{i2}(1) - Y_{i2}(0)|G_i = 1].$$

Define the selection bias as

$$SB_t = E[Y_{it}(0)|G_i = 1] - E[Y_{it}(0)|G_i = 0], \quad t = 1, 2.$$

If $SB_2 = 0$ (randomized experiments), the ATT is identified as

$$\tau = E[Y_{i2}(1)|G_i = 1] - E[Y_{i2}(0)|G_i = 0]$$
$$= E[Y_{i2}|G_i = 1] - E[Y_{i2}|G_i = 0].$$

However, we may not have a properly designed experiment ...

Yan Liu DiD and Clustered SE March 17, 2023 4/26

Identification of ATT

- Instead of $SB_2 = 0$, we assume the selection bias is stable: $SB_2 = SB_1$.
- This is equivalent to the parallel trend assumption:

$$E[Y_{i2}(0) - Y_{i1}(0)|G_i = 1] = E[Y_{i2}(0) - Y_{i1}(0)|G_i = 0].$$

• Then, the ATT is identified as

$$\tau = E[Y_{i2}(1) - Y_{i2}(0)|G_i = 1]$$

$$= E[Y_{i2}(1) - Y_{i1}(0)|G_i = 1] - E[Y_{i2}(0) - Y_{i1}(0)|G_i = 0]$$

$$= E[Y_{i2} - Y_{i1}|G_i = 1] - E[Y_{i2} - Y_{i1}|G_i = 0].$$

5/26

Yan Liu DiD and Clustered SE March 17, 2023

Estimation of ATT

Under the parallel trend assumption, a consistent estimator for the ATT is

$$\hat{\tau} = \left(\frac{1}{N_1} \sum_{i:G_i=1} Y_{i2} - \frac{1}{N_1} \sum_{i:G_i=1} Y_{i1}\right) - \left(\frac{1}{N_0} \sum_{i:G_i=0} Y_{i2} - \frac{1}{N_0} \sum_{i:G_i=0} Y_{i1}\right).$$

This is called the **difference-in-difference (DiD)** estimator. Consider the linear panel data model with **two-way fixed effects (TWFE)**:

$$Y_{it} = D_{it}\beta + A_i + F_t + U_{it}, i = 1, ..., N, t = 1, 2.$$

It turns out that the OLS estimator $\hat{\beta}$ is numerically equivalent to $\hat{\tau}$.

an Liu DiD and Clustered SE March 17, 2023

Two-Way Fixed Effects (TWFE)

- Unit mean: $\bar{D}_i = \frac{1}{2} \sum_{t=1}^{2} D_{it}$
- Time mean: $\tilde{D}_t = \frac{1}{N} \sum_{i=1}^N D_{it}$
- Full-sample mean: $\tilde{\bar{D}} = \frac{1}{2^N} \sum_{i=1}^N \sum_{t=1}^2 D_{it}$
- Fixed-effects adjusted treatment: $\ddot{D}_{it} = D_{it} \bar{D}_i \tilde{D}_t + \tilde{D}_i$

By the Frisch-Waugh-Lovell theorem,

$$\hat{\beta} = \frac{\frac{1}{2N} \sum_{i=1}^{N} \sum_{t=1}^{2} Y_{it} \ddot{D}_{it}}{\frac{1}{2N} \sum_{i=1}^{N} \sum_{t=1}^{2} \ddot{D}_{it}^{2}}.$$
 (1)

DiD and Clustered SE

Two-Way Fixed Effects (TWFE)

We can calculate

$$\bar{D}_i = \begin{cases} \frac{1}{2} & \text{if } G_i = 1\\ 0 & \text{if } G_i = 0 \end{cases}, \quad \tilde{D}_t = \begin{cases} 0 & \text{if } t = 1\\ \frac{N_1}{N} & \text{if } t = 2 \end{cases}, \quad \tilde{\bar{D}} = \frac{N_1}{2N}.$$

Hence,

$$\ddot{D}_{it} = \begin{cases} 0 - \frac{1}{2} - 0 + \frac{N_1}{2N} = -\frac{N_0}{2N} & \text{if } G_i = 1, t = 1\\ 1 - \frac{1}{2} - \frac{N_1}{N} + \frac{N_1}{2N} = \frac{N_0}{2N} & \text{if } G_i = 1, t = 2\\ 0 - 0 - 0 + \frac{N_1}{2N} = \frac{N_1}{2N} & \text{if } G_i = 0, t = 1\\ 0 - 0 - \frac{N_1}{N} + \frac{N_1}{2N} = -\frac{N_1}{2N} & \text{if } G_i = 0, t = 2 \end{cases}$$

Two-Way Fixed Effects (TWFE)

Numerator for $\hat{\beta}$:

$$\frac{1}{2N} \sum_{i=1}^{N} \sum_{t=1}^{2} Y_{it} \ddot{D}_{it} = \frac{1}{2N} \left[\left(\frac{N_0}{2N} \sum_{i:G_i=1} Y_{i2} - \frac{N_0}{2N} \sum_{i:G_i=1} Y_{i1} \right) - \left(\frac{N_1}{2N} \sum_{i:G_i=0} Y_{i2} - \frac{N_1}{2N} \sum_{i:G_i=0} Y_{i1} \right) \right].$$

Denominator for $\hat{\beta}$:

$$\frac{1}{2N} \sum_{i=1}^{N} \sum_{t=1}^{2} \ddot{D}_{it}^{2} = \frac{1}{2N} \left[2N_{1} \left(\frac{N_{0}}{2N} \right)^{2} + 2N_{0} \left(\frac{N_{1}}{2N} \right)^{2} \right] = \frac{N_{0}N_{1}}{4N^{2}}.$$

Put together,

$$\hat{\beta} = \left(\frac{1}{N_1} \sum_{i:G_i=1} Y_{i2} - \frac{1}{N_1} \sum_{i:G_i=1} Y_{i1}\right) - \left(\frac{1}{N_0} \sum_{i:G_i=0} Y_{i2} - \frac{1}{N_0} \sum_{i:G_i=0} Y_{i1}\right).$$

Yan Liu DiD and Clustered SE Mar

DiD with Variation in Treatment Timing

Suppose there are three groups: $G_i \in \{U, E, L\}$

- ullet U: untreated group
- E: early treatment group, which receives treatment at time t_1
- L: late treatment group, which receives treatment at time $t_2 > t_1$

There are three types of time windows to consider

- $PRE(E) : t < t_1 \text{ and } PRE(L) : t < t_2$
- $POST(E): t \ge t_1 \text{ and } POST(L): t \ge t_2$
- MID : $t_1 \le t < t_2$

DiD with Variation in Treatment Timing

It turns out that the TWFE estimator is an average of 2×2 DiD estimators (Goodman-Bacon, 2021):

$$\label{eq:beta_general} \hat{\beta} = \sum_{g \in \{E,L\}} s_{gU} \hat{\beta}_{gU}^{2\times 2} + s_{EL}^E \hat{\beta}_{EL}^{2\times 2,E} + s_{EL}^L \hat{\beta}_{EL}^{2\times 2,L},$$

where

$$\begin{split} \hat{\beta}_{gU}^{2\times2} &= (\bar{Y}_g^{\text{POST}(g)} - \bar{Y}_g^{\text{PRE}(g)}) - (\bar{Y}_U^{\text{POST}(g)} - \bar{Y}_U^{\text{PRE}(g)}), \\ \hat{\beta}_{EL}^{2\times2,E} &= (\bar{Y}_E^{\text{MID}} - \bar{Y}_E^{\text{PRE}(E)}) - (\bar{Y}_L^{\text{MID}} - \bar{Y}_L^{\text{PRE}(E)}), \\ \hat{\beta}_{EL}^{2\times2,L} &= (\bar{Y}_L^{\text{POST}(L)} - \bar{Y}_L^{\text{MID}}) - (\bar{Y}_E^{\text{POST}(L)} - \bar{Y}_E^{\text{MID}}). \end{split}$$

March 17, 2023

DiD with Variation in Treatment Timing

DiD with Variation in Treatment Timing

What does each 2×2 DiD estimator capture? Define

- \bullet $Y_{it}(E)/Y_{it}(L)$: potential outcome if treated early/late
- $Y_{it}(0)$: untreated potential outcome

Two parameters for causal interpretation:

• For $g \in \{E, L\}$ and a date range W, define the group-time ATT as

$$ATT_g(W) = \frac{1}{T_W} \sum_{t \in W} E[Y_{it}(g) - Y_{it}(0) | G_i = g].$$

• For $g \in \{U, E, L\}$ and two date ranges W_1, W_0 , define the difference over time in average untreated potential outcomes as

$$\Delta Y_g^0(W_1, W_0) = \frac{1}{T_{W_1}} \sum_{t \in W_1} E[Y_{it}(0)|G_i = g] - \frac{1}{T_{W_0}} \sum_{t \in W_0} E[Y_{it}(0)|G_i = g].$$

n Liu DiD and Clustered SE March 17, 2023 13/26

DiD with Variation in Treatment Timing

We can show that

$$\begin{split} \operatorname{plim}_{N \to \infty} & \hat{\beta}_{gU}^{2 \times 2} = \operatorname{ATT}_g(\operatorname{POST}(g)) \\ & + [\Delta Y_g^0(\operatorname{POST}(g), \operatorname{PRE}(g)) - \Delta Y_U^0(\operatorname{POST}(g), \operatorname{PRE}(g))], \\ \operatorname{plim}_{N \to \infty} & \hat{\beta}_{EL}^{2 \times 2, E} = \operatorname{ATT}_E(\operatorname{MID}) \\ & + [\Delta Y_E^0(\operatorname{MID}, \operatorname{PRE}(E)) - \Delta Y_L^0(\operatorname{MID}, \operatorname{PRE}(E))], \\ \operatorname{plim}_{N \to \infty} & \hat{\beta}_{EL}^{2 \times 2, L} = \operatorname{ATT}_L(\operatorname{POST}(L)) \\ & + [\Delta Y_L^0(\operatorname{POST}(L), \operatorname{MID}) - \Delta Y_E^0(\operatorname{POST}(L), \operatorname{MID})] \\ & - [\operatorname{ATT}_E(\operatorname{POST}(L)) - \operatorname{ATT}_E(\operatorname{MID})]. \end{split}$$

Two sources of bias:

- Timing groups' differential trends
- Changes in ATT over time ⇒ negative weights

Yan Liu DiD and Clustered SE

DiD with Variation in Treatment Timing

Liu DiD and Clustered SE March 17, 2023

DiD with Variation in Treatment Timing

New estimators for staggered timing:

- Consider as building blocks the group-time ATT, $ATT_{g,t}$:

 De Chaisemartin and d'Haultfoeuille (2020); Callaway and Sant'Anna (2021); Sun and Abraham (2021)
- Run a stacked regression (match each treated unit to "clean" controls):
 Cengiz et al. (2019); Deshpande and Li (2019)

n Liu DiD and Clustered SE March 17, 2023 16/26

Table of Contents

Difference-in-Difference (DiD)

Clustered Standard Errors

Variance Inflation for OLS

Consider a setting in which each unit ℓ belongs to a cluster $C_{\ell} \subset \{1, \dots, N\}$.

- each household belongs to some geographical area (e.g., state)
- each individual can be viewed as a cluster in panel data

For simplicity, begin with OLS

$$Y_{\ell} = X_{\ell}'\beta + U_{\ell}.$$

Suppose U_ℓ are homoskedastic and equicorrelated within the cluster:

$$E[U_{\ell}U_m] = \begin{cases} 0 & C_{\ell} \neq C_m \\ \rho_u \sigma^2 & C_{\ell} = C_m, \ell \neq m \\ \sigma^2 & \ell = m \end{cases}$$

17/26

Yan Liu DiD and Clustered SE March 17, 2023

Variance Inflation for OLS

We can calculate

$$\operatorname{Var}\Big(\sum_{\ell} X_{\ell} U_{\ell} \Big| X_{1}, \dots, X_{N}\Big) = \sigma^{2} \sum_{\ell} X_{\ell} X_{\ell}' + \rho_{u} \sigma^{2} \sum_{\substack{\ell \neq m: \\ C_{\ell} = C_{m}}} X_{\ell} X_{m}'.$$

If we further assume

- constant cluster size L,
- $X_{\ell} = X_m$ if $C_{\ell} = C_m$ (within-group-constant explanatory variable),

the variance of the OLS estimator is

$$\operatorname{Var}(\hat{\beta}|X_1,\ldots,X_N) = \sigma^2(\mathbf{X}'\mathbf{X})^{-1}[1 + \rho_u(L-1)].$$

/an Liu DiD and Clustered SE March 17, 2023 18/26

Variance Inflation for OLS

More generally, for the kth regressor, the default OLS variance estimate based on $s^2(\mathbf{X}'\mathbf{X})^{-1}$ should be inflated by

$$\tau_k \simeq 1 + \rho_{x_k} \rho_u(\bar{N}_g - 1),$$

where

- ullet ho_{x_k} : measure of within-cluster correlation of the kth regressor
- ρ_u : within-cluster error correlation
- \bar{N}_g : average cluster size

DiD: Setup

Consider estimating the average effect of a binary policy d_{it} on outcome y_{it} :

$$y_{it} = \gamma d_{it} + w'_{it}\beta + \alpha_i + \delta_t + u_{it}.$$

- d_{it} varies by state and over time
 - For "treated states", $d_{it}=0$ for $t \leq t^*$ and $d_{it}=1$ for $t>t^*$
 - For "control states", $d_{it} = 0$ for all t
- w_{it} : vector of additional controls
- α_i, δ_t : state and year fixed effects

DiD: Robust Inference

Bertrand et al. (2004) demonstrated the importance of using cluster-robust standard errors in DiD settings.

- d_{it} is highly serially correlated within each cluster by construction
- u_{it} may also be correlated within the cluster.
- Clustering should be on state, assuming error independence across states.

DiD: Robust Inference

Let units be ordered by cluster. Consider the covariance matrix of the relevant error vector

$$V = \begin{bmatrix} \Omega_1 & 0 & 0 & \dots & 0 \\ 0 & \Omega_2 & 0 & \dots & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & \dots & \dots & 0 & \Omega_N \end{bmatrix}.$$

For conducting robust inference, one does not need to know the form of Ω_i .

DiD and Clustered SF

DiD: Robust Inference

- Let T_i denote the number of units that belong to cluster i.
- Let X_i be a $T_i \times k$ matrix stacking $1 \times k$ vectors x'_ℓ for all ℓ such that $C_\ell = i$.
- Consider asymptotics under which $N \to \infty$ with T_i being finite for all i Many estimators $\sqrt{N}(\hat{\beta}-\beta)$ are asymptotically normal with asymptotic variance

$$\begin{split} \operatorname{AsyVar}(\hat{\beta}) &= Q^{-1} \lim_{N \to \infty} \Big(\frac{1}{N} \sum_{i=1}^{N} E[X_i' \Omega_i X_i] \Big) Q^{-1} \\ &= Q^{-1} \lim_{N \to \infty} \Big(\frac{1}{N} \sum_{i=1}^{N} \sum_{\ell: C_\ell = i} \sum_{m: C_m = i} E[v_{\ell,m} x_\ell x_m'] \Big) Q^{-1} \end{split}$$

for some $k \times k$ matrix Q, where $v_{\ell,m}$ is the (ℓ, m) component of V.

Liu DiD and Clustered SE March 17, 2023

Estimated version:

$$\widehat{\mathrm{AsyVar}}(\hat{\beta}) = \hat{Q}^{-1} \Big(\frac{1}{N} \sum_{i=1}^{N} \sum_{\ell: C_{\ell} = i} \sum_{m: C_m = i} \hat{\epsilon}_{\ell} \hat{\epsilon}_m x_{\ell} x_m' \Big] \Big) \hat{Q}^{-1}.$$

- Balanced clusters (T_i is the same for all i): consistency shown by White (1984, p.134–142)
- Unbalanced clusters: consistency shown by Liang and Zeger (1986)
- Performance of the approximation relies on N and T_i

'an Liu DiD and Clustered SE March 17, 2023 24/26

DiD: Small Number of Clusters

Consider the case with no within-group varying explanatory variables:

$$Y_{ig} = a + X_g \beta + \alpha_g + \varepsilon_{ig}.$$

Donald and Lang (2007) propose a two-step estimator:

- Take group means: $\hat{d}_g = \frac{1}{N_g} \sum_{i=1}^{N_g} Y_{ig}$
- **2** Calculate the "between-groups" estimator of β by regressing \hat{d}_a on X_a

The second-stage becomes

$$\hat{d}_g = \bar{Y}_g = a + X_g \beta + \underbrace{\alpha_g + \bar{\varepsilon}_g}_{=\eta_g}.$$

DiD and Clustered SE

DiD: Small Number of Clusters

Rewrite the second-stage as

$$\tilde{Y}_g = \tilde{X}_g \beta + \tilde{\eta}_g,$$

where \sim denotes a deviation from the mean. The t-statistic is

$$t_{\beta} = \frac{\hat{\beta} - \beta}{\hat{\sigma}_{\eta}(\sum_{g} \tilde{X}_{g}^{2})^{1/2}}, \quad \hat{\sigma}_{\eta}^{2} = \frac{1}{G - 2} \sum_{g=1}^{G} (\tilde{Y}_{g} - \tilde{X}_{g}\hat{\beta})^{2}.$$

For t_{β} to (approximately) have a t(G-2) distribution, it is sufficient that $\tilde{\eta}_a \sim N(0, \sigma_n^2)$. Some possibilities:

- Finite N_a : $\alpha_a \sim N(0, \sigma_\alpha^2)$, $\varepsilon_{ia} \sim N(0, \sigma_\varepsilon^2)$ and $N_a \equiv N$
- Large N_a :
 - $\alpha_a \sim N(0, \sigma_\alpha^2), \, \varepsilon_{iq} \text{ satisfy LLN}$
 - $\alpha_a \sim N(0, \sigma_\alpha^2/N_a), \varepsilon_{ia}$ satisfy CLT, $N_{a'}/N_a \rightarrow 1$ for $g' \neq g$

DiD and Clustered SE