DATABASE SYSTEMS

Interfaces & Devices

Mobile Devices

Personal Monitors and Sensors

...and even appliances

We also want to access, share and process our data from all of our devices, anytime, anywhere!

Data is Becoming Critical to Our Lives

Materi Database Systems

- Pengantar Basis Data
- Arsitektur dan Lingkup Basis Data
- Model Database Relasional
- Structure Query Language (SQL)
- Relational Database Management Systems (RDBMS)
- Design Database Model Entity Relationship (ER)
- Teknik Normalisasi
- Proses Perancangan Basis Data dan Studi Kasus
- Database Control
- Object Oriented Database (OOD)
- Distributed Database
- Client Server Database
- Perkembangan Database Saat Ini

Referensi

- Silberschatz A., Korth H. dan Sudarshan, "Database Systems Concepts", McGraw-Hill, 2002
- Date, C.J., "An Introduction to Database System", Addison Wesley Publishing Company, Vol. 7, New York, 2000
- Ramakrishnan and J Gehrke, "Database Management Systems", 4rd edition, Addison Wesley, 2004.
- Elmasri, Ramez; Navathe, Shamkant B., "Fundamentals of Database Systems", The Benjamin/Cummings Publishing Company, Inc., California, 2001
- Connoly, Thomas; Begg, Carolyn; Strachan, Anne, "Database Systems: A Practical Approach to Design, Implementation and Management", 3rd edition, Addison Wesley, 2001.

Definisi & Aspek DB

Sistem Database pada dasarnya adalah komputerisasi sistem penyimpanan data, yang bertujuan memelihara informasi dan agar informasi tersedia pada saat dibutuhkan.

A. Aspek Komputerisasi:

- a. Hardware: Storage, I/O devices, Device Controllers, I/O Channel, Database Machines
- b. Software: Creating, Inserting, Retrieving, Security Control, Integrity Control, Recovery Control dll
- c. Data: Shared, Integrated.

B. Aspek Kebutuhan Informasi :

- a. Pemakai: DBA, Programmer aplikasi, End User.
- b. Pengelola

C. Aspek Penting (dari segi database).

Security, Integrity, Shared, View berbeda, Recovery, Concurrency, Distribusi data, Jaringan komunikasi

Komponen Sistem Database

OPERATING SYSTEM APPLICATION PROGRAM A1 Terminal (Monitor/Keyboard) Control A2A2Disk Storage

Terminal

antarmuka

pengguna

Keuntungan DB

- 1. Mengurangi Redundansi: Data yg sama pada beberapa aplikasi cukup disimpan sekali.
- 2. Integrity: Data yang tersimpan secara akurat.
- 3. Menghindarkan Inkonsistensi: Karena redundansi berkurang, sehingga umumnya Update data hanya sekali.
- 4. Penggunaan data bersama: Data yg sama dpt diakses oleh beberapa User pada saat bersamaan
- 5. Standardisasi: Menyangkut keseragaman penyajian data
- 6. Jaminan sekuriti: Data hanya dapat diakses oleh yang berhak.
- 7. Menyeimbangkan kebutuhan: Dapat ditentukan prioritas suatu operasi, misal antara Update dengan Retrieval.

Kerugian DB

- Diperlukan Hardware tambahan: CPU yang lebih kuat, Terminal yang lebih banyak, Alat untuk komunikasi
- Biaya performance yang lebih besar: Listrik, Personil yang lebih tinggi klasifikasinya, Biaya telekomunikasi antar lokasi / kota
- 3. Sistem tampak lebih komplek : Banyaknya aspek yang harus diperhatikan.
- 4. Rawannya keberhasilan operasi, Karena : Gangguan Listrik., Gangguan Komunikasi.

Contoh Sistem Database

- a. Sistem Perpustakaan, Terdiri atas beberapa Sub-sistem misalnya,
 - Sub sistem retrieving data
 - Sub sistem peminjaman buku.
 - Sub sistem pemesanan buku akan dipinjam.
 - Sub sistem pengembalian buku.
 - Sub sistem laporan untuk manajemen.
- b. Sistem tabungan dengan ATM (Automatic Teller Machine).
 - Nasabah dapat mengambil uang disembarang ATM yang tersedia di berbagai lokasi / kota selama 24 jam.
 - Selain itu Nasabah dapat berhubungan dengan Teller biasa pada jam kerja.
 - Pelayanan bank menjadi memuaskan, sehingga menambah kredibilitas bank.

ER Diagram (Entity Relationships)

Enterprise adalah Organisasi mandiri yang bergerak dalam bidang komersial, sains, teknik, dan lainnya.

Contoh: Bank, Rumah Sakit, Universitas, Departemen

Entity adalah Object dalam enterprise yang akan disajikan di dalam database.

Contoh: Supplier, Part, Project, Gudang, Lokasi, Pegawai

Attribute adalah Bagian dari suatu entity.

Entity Mhs atribut: NPM, Nama, Alamat, JK

Entity Pasien atribut: NoPas, Nama, Alamat, Tgl_Lhr

Relationship adalah Suatu asosiasi atau hubungan diantara 2 (dua) atau lebih entity.

Bentuk Relationship: One to One, One to Many, Many to many

Contoh Diagram ER

Enterprise: Rumah sakit

Entity Atribut

Kamar No_Kamar, Lantai_Ke, Departemen

Pasien No_Pas, Nama_Pas, Alamat, Tgl_lahir

Dokter No_Dok, Nama_Dok, Alamat, Spesialisasi

Independensi Data

- Pemisahan antara bagaimana cara data disimpan dari prosedure untuk memproses data tersebut
- Untuk memudahkan, karena DATA DEPENDENT berarti sulit merubah storage structure atau strategi access tanpa harus merubah program aplikasi.
- 2 (dua) alasan data dependent harus dihindari :
- 1. Beberapa aplikasi memerlukan sejumlah penampilan data yangberbeda atas data yang sama
- 2. Database administrator (DBA) harus memiliki kebebasan untuk merubah "storage structure" atau "access strategy".

Kemungkinan Perubahan Storage

- 1. Penyajian data numerik
 - Basis (Binari, desimal)
 - Scale (Fixed, floating point)
 - Mode (Real, Complex)
- 2. Penyajian data character : ASCII atau EBCDIC
- 3. Unit dari pada data numerik
- 4. Data Coding
- 5. Struktur "stored record"Misal: Struktur 2 (dua) record dilebur atau kebalikannya.
- 6. Structure dari "stored files".

Model-Model Database

> Model Hirarki

> Model Network

> Model Relational

<u>NIM</u>	<i>NAMA</i>	JUR	THN MASUK
880100	BUDI	TK	1988
880125	MARDINO	TK	1988
890150	KURNIA	TK	1989
900200	JULIA	TK	1990
900250	HARJONO	\mathbf{MI}	1990
900300	WILLIAM	\mathbf{MI}	1990
900333	HERNAWATY	TI	1990
910431	MURYANI	TI	1991

Database Administrator

- Menentukan "Information Content" dari database.
- Menentukan "Storage Structure" dan "Access strategy".
- Melayani User.
- Menentukan pengecekan "security" dan "integrity".
- Menentukan strategy untuk "backup" dan "recovery".
- Memantau unjukkerja sistem database.

Arsitektur Database (1)

External Level (Individual User View)

Conceptual Level (Community Users View)

Internal Level (Storage View)

Arsitektur Database (2)

- Eksternal level: Level yang terdekat dengan pengguna, dalam arti bagaimana cara dapat disajikan/dipandang oleh pengguna.
- 2. Konseptual Level: Level yang menghubungkan antara kedua level diatas dan memberikan gambaran menyeluruh dari database secara logika
- 3. Internal Level: Level yang terdekat dengan penyimpanan fisik, yaitu bagaimana pengorganisasian data yang tersimpan dalam peralatan penyimpan sekunder (harddisk).

Implementasi 3 Level

```
EXTERNAL (PL/I)
                                       EXTERNAL (COBOL)
DCL
      1 EMPP,
                                       01 EMPC
      2 EMP# CHAR(6)
                                       02 EMPNO PIC X(6).
      2 SAL FIXED BIN(31);
                                      02 DEPTNO PIC X(4).
CONCEPTUAL
EMPLOYEE
      EMPLOYEE NUMBER
                                       CHARACTER (6)
      DEPARTMENT_NUMBER
                                       CHARACTER (4)
      SALARY
                                      NUMERIC (5)
INTERNAL
                                       LENGTH=18
      STORED EMP
      PREFIX
                                       TYPE=BYTE (6), OFFSET=0
      EMP#
                                       TYPE=BYTE (6), INDEX=EMPX
                                       TYPE=BYTE (4), OFFSET=12
      DEPT#
      PAY
                                       TYPE=FULLWORD, OFFSET=16
```

The Architecture of a Relational DBMS

Detail Arsitektur Database

