

STATISTICAL MODELLING: Theory and practice

Project 3: Financial data

GOALS: ASSIGNMENT 1

- Present the data
- Fit and asses normal model
- Present a new hypothetically better model
- Discuss which model is better

The financial data set

Weekly returns from Exchange Traded Fund (EFT)

$$weekly \ returns = \frac{f \ inal \ price}{initial \ price} - 1$$

Data set

	time	SLV
1	2006-5-5	0.01376
2	2006-5-12	0.03286
3	2006-5-19	-0.12863

452	2015-4-24	-0.03213
453	2015-5-1	0.02722
454	2015-5-8	0.01875

Summary statistics of weekly returns

SLV
-0.238893
-0.026350
0.002226
0.001468
0.033122
0.267308

Fit to normal distribution

$$\log L(\mu, \sigma^2) = -\frac{n}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \sum_i (x_i - \mu)^2,$$

Theoretical Quantiles

Normal distribution

$$f_0(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$

$$\log L(\mu, \sigma^2) = -\frac{n}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \sum_{i} (x_i - \mu)^2,$$

Normal Model

	Est.	2.5%	97.5%
mu	0.001467	-0.00297	0.00591
sigma	0.04830	0.04385	0.05274

New model hypothesis: Cauchy

Cauchy distribution for heavy tails

$$f_0(x) = \frac{1}{\pi(1+x^2)}$$

$$L(\mu, \sigma) = \prod_{i} \frac{1}{\sigma} \left\{ 1 + \frac{(x_i - \mu)^2}{\sigma^2} \right\}^{-1}$$

Cauchy Model

	Est.	2.5%	97.5%
mu	0.002653	-0.00144	0.00579
sigma	0.027	0.0229	0.0301

NORMAL vs CAUCHY

Model	AIC
Normal	-1460
Cauchy	-1363.414

Cauchy distribution could be more suitable for finance data analysis because of the heavy tails probabilities, which decay much more slowly.

This would need further analysis in order to make a final decision on the model.

GOALS: ASSIGNMENT 3

Mixture models

- 1) Fit a normal mixture model:
 - 2 components
 - 3 components
- 2) Compare models
- 3) Report **confidence interval** for the parameters
- 4) **Profile likelihood** of one of the variance parameters.
- 5) **Reparametrize** the model to obtain one maximum

HMM models

- Fit normal Hidden Markov Model with 2 and 3 states
- 2) Find CI 95% for working parameters and report natural parameters and their CI 95%
- Plot long term distribution and 1-step ahead distribution - Forecasting
- 4) Discuss how to do short term prediction

MIXTURE MODELS

Fit a normal mixture model

Unconstrained optimizer: nlm

Natural parameters

$$\sigma_i = \exp(\rho_i), i = 1, ..., m$$

$$\delta_i = \frac{\exp(\tau_i)}{1 + \sum_{j=2}^m \exp(\tau_i)}, i = 2, ..., m$$

$$\delta_1 = 1 - \sum_{j=2}^m \delta_j$$

Working parameters

$$\sigma_{i} = \exp(\rho_{i}), i = 1, ..., m$$

$$\delta_{i} = \frac{\exp(\tau_{i})}{1 + \sum_{j=2}^{m} \exp(\tau_{i})}, i = 2, ..., m$$

$$\delta_{1} = 1 - \sum_{j=2}^{m} \delta_{j}$$

$$\rho_{i} = \log(\sigma_{i}), i = 1, ..., m$$

$$\tau_{i} = \log\left(\frac{\delta_{i}}{1 - \sum_{j=2}^{m} \delta_{j}}\right), i = 2, ..., m$$

2 Components:

$$\delta_1 N(\mu_1, \sigma_1^2) + \delta_2 N(\mu_2, \sigma_2^2)$$

3 Components:

$$\delta_1 N(\mu_1, \sigma_1^2) + \delta_2 N(\mu_2, \sigma_2^2) + \delta_3 N(\mu_3, \sigma_3^2)$$

Likelihood (m components)

$$logL(\theta; y) = \sum_{i} log \sum_{m=1}^{M} \delta_{m} N_{m}(y_{i} | \mu_{m}, \sigma_{m}^{2})$$

EM algorithm for mixture models

MIXTURE MODELS

Fit a normal mixture model

Unconstrained optimizer: nlm

Natural parameters

$$\sigma_i = \exp(\rho_i), i = 1, ..., m$$

$$\delta_i = \frac{\exp(\tau_i)}{1 + \sum_{j=2}^m \exp(\tau_i)}, i = 2, ..., m$$

$$\delta_1 = 1 - \sum_{j=2}^m \delta_j$$

Working parameters

$$\sigma_{i} = \exp(\rho_{i}), i = 1, ..., m$$

$$\delta_{i} = \frac{\exp(\tau_{i})}{1 + \sum_{j=2}^{m} \exp(\tau_{i})}, i = 2, ..., m$$

$$\delta_{1} = 1 - \sum_{j=2}^{m} \delta_{j}$$

$$\rho_{i} = \log(\sigma_{i}), i = 1, ..., m$$

$$\tau_{i} = \log\left(\frac{\delta_{i}}{1 - \sum_{j=2}^{m} \delta_{j}}\right), i = 2, ..., m$$

AIC Model m -1460 Normal Normal -1489.644 Normal -1484.256

2 Components:

$$\delta_1 N(\mu_1, \sigma_1^2) + \delta_2 N(\mu_2, \sigma_2^2)$$

3 Components:

$$\delta_1 N(\mu_1, \sigma_1^2) + \delta_2 N(\mu_2, \sigma_2^2) + \delta_3 N(\mu_3, \sigma_3^2)$$

Likelihood (m components)

$$logL(\theta; y) = \sum_{i} log \sum_{m=1}^{M} \delta_{m} N_{m}(y_{i} | \mu_{m}, \sigma_{m}^{2})$$

Estimated normal distributions

MIXTURE MODELS Compare models and report Cl

Model	m	AIC
Normal	1	-1460
Normal	2	-1489.644
Normal	3	-1484.256

Parameter estimation and CI for m=2

Wald confidence intervals of working parameters:

$$CI(\sigma_i) = \exp\left(\hat{\rho}_i \pm z_{1-\frac{\alpha}{2}} \cdot se\left(\hat{\rho}_i\right)\right), i = 1,...,k$$

Wald interval simulation from distribution

$$\hat{\boldsymbol{\theta}} \sim N(\boldsymbol{\theta}, \mathcal{I}^{-1}(\boldsymbol{\theta}))$$

CI from quantiles of 100.000 samples from $N(\hat{\theta}, I^{-1}(\hat{\theta}))$ Transformed back to natural deltas.

	Parameter(N)	Confidence interval (0.025 - 0.975)
$\mu_{\scriptscriptstyle 1}$	0.0039	[-0.0007570256 , - 0.0086514630]
μ_2	-0.0251	[-0.06722030 , 0.01692244]
$\sigma_{_1}$	0.04046	[0.03592759 , 0.04557654]
$\sigma_{_{2}}$	0.09472	[0.06251529 , 0.14351169]
$\boldsymbol{\delta}_{1}$	0.9147814	[0.7210504 , 0.9778096]
δ_2	0.08521855	[0.02219040 , 0.27894959]

10

MIXTURE MODELS Profile Likelihood and reparametrization

Profile Likelihood - Nuissance parameter

$$log L(\hat{\mu}_1, \hat{\mu}_2, \sigma_1^2, \hat{\sigma}_2^2; y) =$$

$$\sum_{i} log \delta_{1} N(y_{i} | \hat{\mu}_{1}, \sigma_{1}^{2}) + log \delta_{2} N(y_{i} | \hat{\mu}_{2}, \hat{\sigma}_{2}^{2})$$

15 December 2020 DTU Compute

MIXTURE MODELS Profile Likelihood and reparametrization

Profile Likelihood - Nuissance parameter

$$log L(\hat{\mu}_1, \hat{\mu}_2, \sigma_1^2, \hat{\sigma}_2^2; y) =$$

$$\sum_{i} log \delta_{1} N(y_{i} | \hat{\mu}_{1}, \sigma_{1}^{2}) + log \delta_{2} N(y_{i} | \hat{\mu}_{2}, \hat{\sigma}_{2}^{2})$$

Parameter (W) Confidence interval (0.025 - 0.975) -3.2073[-3.326250, -3.088362] -2.3568[-2.475785, -2.237898] Profile likelihood 0.0 -3 -2 0

Profile Likelihood - Reparametrization

$$logL(\hat{\mu}_{1}, \hat{\mu}_{2}, \sigma_{1}^{2}, \hat{\sigma}_{2}^{2}; y) = logL(\hat{\mu}_{1}, \hat{\mu}_{2}, \sigma_{1}^{2}, \hat{\sigma}_{2}^{2} + \sigma_{1}^{2}; y)$$

$$\sum_{i} log\delta_{1}N(y_{i}|\hat{\mu}_{1}, \hat{\sigma}_{1}^{2}) + log\delta_{2}N(y_{i}|\hat{\mu}_{2}, \hat{\sigma}_{2}^{2}) \qquad \sum_{i} log\delta_{1}N(y_{i}|\hat{\mu}_{1}, \sigma_{1}^{2}) + log\delta_{2}N(y_{i}|\hat{\mu}_{2}, \hat{\sigma}_{2}^{2} + \sigma_{1}^{2})$$

HMM Normal models

Natural to working parameters

$$\mu_{t} = \mu$$

$$\sigma_{t} = \log(\sigma)$$

$$\tau_{ij} = \log\left(\frac{\gamma_{ij}}{1 - \sum_{k \neq i} \gamma_{ik}}\right), i = 1, ..., m, j = 2, ..., m$$

Working to natural parameters

$$\begin{split} \mu &= \mu_t \\ \sigma &= \exp(\sigma_t) \\ \gamma_{ij} &= \frac{\rho_{ij}}{1 + \sum_{k \neq i} \exp(\tau_{ik})}, i,j = 1,...,m \\ \text{where} \\ \rho_{ij} &= \begin{cases} \exp(\tau_{ik}) & i \neq j \\ 1 & i = j \end{cases} \end{split}$$

# states	Degrees of freedom	Log-Likelihood	AIC
1	2	731.9998	-1460.000
2	6	756.4172	-1500.834
3	12	768.0791	-1512.158
4	20	774.2719	-1508.544

HMM Normal models

```
norm.HMM.mllk <- function(parvect,x,m,...)
       print(parvect)
 if(m==1) return(-sum(dnorm(x, parvect[1], exp(parvect[2]), log=TRUE)))
             <- length(x)
  n
             <- norm.HMM.pw2pn(m,parvect)</pre>
 pn
 allprobs
            <- matrix(nrow = n, ncol = m)
 for (j in 1:m){
    allprobs[,j] = dnorm(x, pn$mu[j], pn$sigma2[j])
 allprobs
             <- ifelse(!is.na(allprobs),allprobs,1)
 lscale
             <- 0
             <- pn$delta
 foo
 for (i in 1:n)
           <- foo%*%pn$gamma*allprobs[i,]</pre>
    foo
    sumfoo <- sum(foo)</pre>
    lscale <- lscale+log(sumfoo)</pre>
    foo
           <- foo/sumfoo
 mllk
             <- -lscale
 mllk
```


# states	Degrees of freedom	Log-Likelihood	AIC
1	2	731.9998	-1460.000
2	6	756.4172	-1500.834
3	12	768.0791	-1512.158
4	20	774.2719	-1508.544

14

HMM Model with 3 states

Working parameters

Estimate	2.5%	97.5%
		37.370
0.0119	0.0039	0.01993
-0.0026	-0.0078	0.0026
-0.0332	-6.634e-02	-5.89e-05
-3.1104	-3.268	-2.9528
-3.5034	-3.6368	-3.37
-2.4825	-2.7552	-2.21
-28.3362	NaN	NaN
-1.018	-2.1914	0.1555
-4.0342	-5.3756	-2.6927
-19.4691	-21.3123	-17.626
-3.0867	-4.908	-1.2654
-3.8643	-5.271	-2.4576
	-0.0026 -0.0332 -3.1104 -3.5034 -2.4825 -28.3362 -1.018 -4.0342 -19.4691 -3.0867	-0.0026 -0.0078 -0.0332 -6.634e-02 -3.1104 -3.268 -3.5034 -3.6368 -2.4825 -2.7552 -28.3362 NaN -1.018 -2.1914 -4.0342 -5.3756 -19.4691 -21.3123 -3.0867 -4.908

Natural parameters

$$\mu_1 = 0.0119 \ \mu_2 = -0.0026 \ \mu_3 = -0.0332$$

$$\sigma_1 = 0.0446 \ \sigma_2 = 0.03 \ \sigma_3 = 0.0835$$

$$\delta = [0.4915 \ 0.3982 \ 0.1103]$$

$$T_1 = \begin{pmatrix} 0.9404 & 0.0166 & 0.0429 \\ 0.0000 & 0.9795 & 0.0205 \\ 0.2654 & 0.0000 & 0.7346 \end{pmatrix}$$

15

HMM Model with 3 states

NATURAL PARAMETERS CI 95% BOOTSTRAP WITH K= 3000

	MLE	2.5%	97.5%
σ_1	0.04458	0.0198	0.0389
σ_2	0.03	0.0291	0.0534
σ_{3}	0.08353	0.034	0.1082

	MLE	2.5%	97.5%
μ_1	0.01193	-0.0110	0.0119
μ_2	-0.00258	-0.0048	0.0311
μ_3	-0.03319	-0.1495	0.0088

STEPS:

- Generate a sample from the MLE
- 2. Fit new model to the sample
- 3. Store the MLE of the parameters estimated in the new distribution

Repeat 1-3 k times

Make short term predictions

- Using Viterbi algorithm to decode state sequence until now, and predict next week's state
- Look at previous observations which were observed after the same state transition as the upcoming one

References

Pawitan Y. In All Likelihood: Statistical Modelling and Inference Using Likelihood. OUP Oxford; 2001. (Oxford science publications)

Code for the project can be found at <u>Statistical Modelling</u>

15 December 2020 DTU Compute Project 2: Financial data

18

DTU

Long term and 1-step ahead model forecast

```
normal.HMM.forecast <- function(xf, h=1, m, x, mod){
 n <- length (x)
 nxf <- length (xf)</pre>
 dxf <- matrix (0, nrow =h, ncol = nxf)</pre>
 foo <- mod\$delta * dnorm (x[1], mod\$mu, mod\$sigma2)
  sumfoo <- sum (foo)
  lscale <- log ( sumfoo )</pre>
 foo <- foo / sumfoo
 for (i in 2:n){
    foo <- foo %*% mod$gamma * dnorm(x[i], mod$mu, mod$sigma2)
    sumfoo <- sum( foo)</pre>
    lscale <- lscale + log ( sumfoo )</pre>
    foo<- foo / sumfoo
for (i in 1:h)
    foo <- foo %*% mod$gamma
    for (j in 1: m ) dxf[i ,] <- dxf[i ,] +
      foo [j]* dnorm (xf , mod$mu[j], mod$sigma2)
 return ( dxf)
```

We wanted to do 1-step ahead with the function on the left, to compute the marginal distribution of the data.

To do 1-step ahead we would set the h=1, 1 year ahead and we would use our 3-states model (mod3s) with the argument stationary = TRUE.

On the other hand to do the the long term prediction, we use our initial 3-state model, this time not taking the stationary argument (fit3). We use our mu, and sigma2 and extract the marginal distribution with the code below:

```
m < -3
xf <- 0:45
mu <- fit3$mu
sigma2 <- fit3$sigma2
delta <- solve (t( diag (m)- fit3$gamma +1) ,rep (1,m))
dstat <- numeric ( length (xf))
for (j in 1:m) dstat <- dstat + delta [j]* dnorm(xf , mu[j], sigma2[j])</pre>
```


Long term and 1-step ahead model forecast

Financial series: forecast distribution for 455

1 step ahead

Long term prediction

21