Informed search algorithms

Outline

- Best-first search
- Greedy best-first search
- A* search
- Heuristics
- Local search algorithms
- Hill-climbing search
- Simulated annealing search
- Local beam search
- Genetic algorithms

Review: Tree search

- \input{\file{algorithms}{tree-search-shortalgorithm}}
- A search strategy is defined by picking the order of node expansion

Best-first search

- Idea: use an evaluation function f(n) for each node
 - estimate of "desirability"
 - → Expand most desirable unexpanded node
 - \rightarrow
- <u>Implementation</u>:
 - Order the nodes in fringe in decreasing order of desirability
- Special cases:
 - greedy best-first search
 - A* search

Romania with step costs in km

traight-line distanc	ē
Bucharest	
rad	366
ucharest	0
raiova	160
)obreta	242
forie	161
agaras Siurgiu	176
äurgiu	77
lirsova	151
a si	226
ugoj	244
[ehadia	241
eam t	234
)radea	380
itesti	10
limnicu Vilcea	193
ibiu	253
imi s oara	329
rziceni	80
aslui	199
erind	374

Greedy best-first search

- Evaluation function f(n) = h(n) (heuristic)
- estimate of cost from n to goal
- e.g., h_{SLD}(n) = straight-line distance from n to Bucharest
- Greedy best-first search expands the node that appears to be closest to goal

Properties of greedy best-first search

- Complete? No can get stuck in loops,
 e.g., lasi → Neamt → lasi → Neamt →
- <u>Time?</u> O(b^m), but a good heuristic can give dramatic improvement
- Space? O(b^m) -- keeps all nodes in memory
- Optimal? No

A* search

- Idea: avoid expanding paths that are already expensive
- Evaluation function f(n) = g(n) + h(n)
- $g(n) = \cos t \sin t \cos r = \cosh n$
- h(n) = estimated cost from n to goal
- f(n) = estimated total cost of path through
 n to goal

Admissible heuristics

- A heuristic h(n) is admissible if for every node n, h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal state from n.
- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic
- Example: $h_{SLD}(n)$ (never overestimates the actual road distance)
- Theorem: If h(n) is admissible, A* using TREE-SEARCH is optimal

Optimality of A* (proof)

• Suppose some suboptimal goal G_2 has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

•

•
$$f(G_2) = g(G_2)$$

•
$$g(G_2) > g(G)$$

•
$$f(G) = g(G)$$

•
$$f(G_2) > f(G)$$

since
$$h(G_2) = 0$$

since G₂ is suboptimal

since
$$h(G) = 0$$

from above

Optimality of A* (proof)

 Suppose some suboptimal goal G₂ has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

•

- $f(G_2)$ > f(G) from above
- $h(n) \le h^*(n)$ since h is admissible
- $g(n) + h(n) \le g(n) + h^*(n)$
- $f(n) \leq f(G)$

Hence $f(G_2) > f(n)$, and A* will never select G_2 for expansion

Consistent heuristics

A heuristic is consistent if for every node n, every successor n' of n generated by any action a,

$$h(n) \le c(n,a,n') + h(n')$$

If h is consistent, we have

$$f(n')$$
 = $g(n') + h(n')$
= $g(n) + c(n,a,n') + h(n')$
 $\ge g(n) + h(n)$
= $f(n)$

- i.e., f(n) is non-decreasing along any path.
- Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is optimal

Optimality of A*

- A* expands nodes in order of increasing f value
- Gradually adds "f-contours" of nodes
- Contour i has all nodes with f=f_i, where f_i < f_{i+1}

•

Properties of A\$^*\$

- Complete? Yes (unless there are infinitely many nodes with f ≤ f(G))
- <u>Time?</u> Exponential
- Space? Keeps all nodes in memory
- Optimal? Yes

Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n)$ = number of misplaced tiles
- $h_2(n)$ = total Manhattan distance

(i.e., no. of squares from desire

- $h_1(S) = ?$
- $h_2(S) = ?$

Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n)$ = number of misplaced tiles
- $h_2(n)$ = total Manhattan distance

(i.e., no. of squares from desire 7 2 4 1 2 3 4 5 8 3 1 6 7 8

•
$$h_1(S) = ?$$
 8

•
$$h_2(S) = ? 3+1+2+2+3+3+2 = 18$$

Dominance

- If $h_2(n) \ge h_1(n)$ for all n (both admissible)
- then h₂ dominates h₁
- h₂ is better for search

Typical search costs (average number of nodes expanded):

d=12 IDS = 3,644,035 nodes
 A*(h₁) = 227 nodes
 A*(h₂) = 73 nodes
 d=24 IDS = too many nodes
 A*(h₁) = 39,135 nodes
 A*(h₂) = 1,641 nodes

Relaxed problems

 A problem with fewer restrictions on the actions is called a relaxed problem

•

 The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem

•

 If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then h₁(n) gives the shortest solution

•

 If the rules are relaxed so that a tile can move to any adjacent square, then h₂(n) gives the shortest solution

Local search algorithms

 In many optimization problems, the path to the goal is irrelevant; the goal state itself is the solution

State space = set of "complete" configurations

- Find configuration satisfying constraints, e.g., nqueens
- In such cases, we can use local search algorithms
- keep a single "current" state, try to improve it

Example: *n*-queens

 Put n queens on an n × n board with no two queens on the same row, column, or diagonal

Hill-climbing search

"Like climbing Everest in thick fog with amnesia"

```
function Hill-Climbing (problem) returns a state that is a local maximum inputs: problem, a problem local variables: current, a node neighbor, \text{ a node} current \leftarrow \text{Make-Node}(\text{Initial-State}[problem]) loop do neighbor \leftarrow \text{ a highest-valued successor of } current if \text{Value}[\text{neighbor}] \leq \text{Value}[\text{current}] then return \text{State}[current] current \leftarrow neighbor
```

Hill-climbing search

 Problem: depending on initial state, can get stuck in local maxima

Hill-climbing search: 8-queens problem

18	12	14	13	13	12	14	14
14	16	13	15	12	14	12	16
14	12	18	13	15	12	14	14
15	14	14	♛	13	16	13	16
₩	14	17	15	₩	14	16	16
17	≝	16	18	15	₩	15	₩
18	14	₩	15	15	14	₩	16
14	14	13	17	12	14	12	18

- h = number of pairs of queens that are attacking each other, either directly or indirectly
- h = 17 for the above state

Hill-climbing search: 8-queens problem

• A local minimum with h = 1

Simulated annealing search

 Idea: escape local maxima by allowing some "bad" moves but gradually decrease their frequency

```
function Simulated-Annealing (problem, schedule) returns a solution state inputs: problem, a problem schedule, a mapping from time to "temperature" local variables: current, a node next, a node T, a "temperature" controlling prob. of downward steps  \begin{array}{c} current \leftarrow \text{Make-Node}(\text{Initial-State}[problem]) \\ \text{for } t \leftarrow 1 \text{ to} \infty \text{ do} \\ T \leftarrow schedule[t] \\ \text{if } T = 0 \text{ then return } current \\ next \leftarrow \text{a randomly selected successor of } current \\ \Delta E \leftarrow \text{Value}[next] - \text{Value}[current] \\ \text{if } \Delta E > 0 \text{ then } current \leftarrow next \\ \text{else } current \leftarrow next \text{ only with probability } e^{\Delta E/T} \end{array}
```

Properties of simulated annealing search

 One can prove: If T decreases slowly enough, then simulated annealing search will find a global optimum with probability approaching 1

Widely used in VLSI layout, airline scheduling, etc

Local beam search

- Keep track of k states rather than just one
- Start with k randomly generated states
- At each iteration, all the successors of all k states are generated
- If any one is a goal state, stop; else select the k
 best successors from the complete list and
 repeat

Genetic algorithms

- A successor state is generated by combining two parent states
- Start with k randomly generated states (population)
- A state is represented as a string over a finite alphabet (often a string of 0s and 1s)
- Evaluation function (fitness function). Higher values for better states.
- Produce the next generation of states by selection, crossover, and mutation

Genetic algorithms

- Fitness function: number of non-attacking pairs of queens (min = 0, max = $8 \times 7/2 = 28$)
- 24/(24+23+20+11) = 31%
- 23/(24+23+20+11) = 29% etc

Genetic algorithms

