информационных технологий, механики и оптики УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа	M3209	_К работе допущен	9.12.2020 16:24
Студент	Бабурин Тимур	_Работа выполнена	9.12.2020 23:50
Преподаватель	ь Ефремова Е. А.	Отчет принят	

Рабочий протокол и отчет по виртуальной лабораторной работе №3.11V

Вынужденные электромагнитные колебания в последовательном колебательном контуре

- **1.** Цель работы: Изучение вынужденных колебаний и явления резонанса напряжений в последовательном колебательном контуре.
- 2. Объект исследования: колебательный контур с LRC элементами.
- 3. Метод экспериментального исследования:
 - Построение колебательного контура.
 - Измерение амплитуд напряжений элементов при заданной частоте двигателя.
- 4. Измерительные приборы:

No	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Осцилограф	Электронный	-	0,00005 B

- 5. Рабочие формулы и исходные данные.
 - $f = \frac{1}{2\pi\sqrt{LC}}$ резонансная частота (1)
 - $\Omega = 2\pi f$ частота собственных свободных колебаний в LC-контуре без затухания (2)
 - $Q = \frac{1}{R} \sqrt{\frac{L}{c}}$ добротность контура (3)
 - $\Delta\Omega=\Omega_1-\Omega_2$ ширина резонансной кривой (5)
 - $\beta = \frac{R}{2L}$ коэффициент затухания (4)

6. Схема установки

Рис. 1 Схема экспериментальной установки

Основными частями экспериментальной установки (рис.1) являются:

- Источник переменного тока;
- Конденсатор (С = 200 нФ);
- Катушка индуктивности ($L = 10 \text{ мк}\Gamma\text{н}$);
- Резистор;
- Заземление.

7. Результаты прямых измерений и их обработки при R = 1 (Ом).

No	f , к Γ ц	Ω, крад/с	$U_{\rm C},{ m B}$	$U_{\rm L},{ m B}$	$U_{ m R},{ m B}$
1	10	62,832	5,039	0,39	0,63
2	19	119,381	5,145	0,146	0,122
3	28	175,929	5,326	0,329	0,187
4	37	232,478	5,599	0,605	0,26
5	46	289,027	5,99	1,002	0,346
6	55	345,575	6,546	1,566	0,452
7	64	402,124	7,344	2,381	0,591
8	73	458,673	8,546	3,608	0,785
9	82	515,221	10,459	5,564	1,08
10	91	571,770	13,837	9,096	1,537
11	101,5	637,743	22,543	18,464	2,884
12	103	647,168	24,575	20,727	3,192
13	106	666,018	29,264	26,15	3,912
14	109	684,867	33,785	31,935	4,646
15	110,5	694,292	35,149	34,154	4,9
16	112	703,717	35,377	35,323	5
17	113,5	713,142	34,365	35,245	4,922
18	115	722,566	32,351	34,05	4,695
19	116,5	731,991	29,781	32,194	4,379
20	118	741,416	27,062	30,021	4,031
21	119,5	750,841	24,459	27,833	3,69
22	121	760,265	22,093	25,752	3,375
23	125,5	788,540	16,544	20,853	2,63
24	130	816,814	12,963	17,487	2,129
25	134,5	845,088	10,495	15,165	1,784
26	139	873,363	8,756	13,496	1,535
27	143,5	901,637	7,433	12,248	1,349
28	148	929,911	6,412	11,287	1,205
29	152,5	958,186	5,645	10,506	1,09
30	160	1005,310	4,628	9,511	0,938

Tаблица 1. 3начение амплитуд напряжений при R = 1 (O_M)

Максимум достигается при f=112к Γ ц, $U_{C_{res}}=35,377$ В.

I. Расчетная резонансная частота f_{pacy} :

$$f_{\text{расч}} = \frac{1}{2\pi\sqrt{LC}} = \frac{1}{2*3.14*\sqrt{10*10^{-6}*200*10^{-9}}} = 112539$$
Гц

В окрестности $f_{\rm pac q}$ достигается максимум амплитуды ЭДС источника.

II. Теоретическая добротность контура $Q_{\text{расч}}$:

$$Q_{\text{pac4}} = \frac{1}{R} \sqrt{\frac{L}{C}} = Q = \frac{1}{1} \sqrt{\frac{10 * 10^{-6}}{200 * 10^{-9}}} = 7,07107$$

III. Экспериментальная добротность контура Q:

$$Q = \frac{U_{C_{res}}}{\varepsilon_0} = \frac{35,377}{5} = 7,0754$$

Значения добротности, полученные с помощью данной формулы совпадают с экспериментальными и теоретическими результатами из предыдущего пункта. Формула применима.

Экспериментальная и теоретическая добротность отличаются на 0.01, такая связь сильна при малых затуханиях.

IV. Κοэффициент затухания β:

$$\beta = \frac{R}{2L} = \frac{1}{2 * 10 * 10^{-6}} = 50000 \text{ рад/с}$$

Сравним его с:

$$\Omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{10*200*10^{-15}}} = 707106 \,\mathrm{pag/c}$$

 $eta < \Omega_0$ поэтому можно считать, что могут быть малые затухания, и воспользуемся формулой:

$$Q = \frac{\Omega_0}{\Lambda Q} = \frac{707106}{750841 - 647168} = 6.82$$

Добротность контура схожа с теоретической и экспериментальной. Формула применима.

8. Результаты прямых измерений и их обработки при R=4 (Ом).

№	f , к Γ ц	Ω, крад/с	$U_{\rm C},{ m B}$	$U_{\mathrm{L}},\mathrm{B}$	$U_{\mathrm{R}},\mathrm{B}$
1	10	62,832	5,033	0,39	0,253
2	19	119,381	5,122	0,146	0,489
3	28	175,929	5,271	0,326	0,742
4	37	232,478	5,488	0,593	1,021
5	46	289,027	5,785	0,967	1,339
6	55	345,575	6,177	1,478	1,709
7	62,5	392,699	6,587	2,037	2,072
8	65,5	411,549	6,775	2,301	2,233
9	68,5	430,398	6,975	2,592	2,405
10	71,5	449,248	7,19	2,911	2,588
11	74,5	468,097	7,416	3,262	2,782
12	77,5	486,947	7,653	3,643	2,987
13	80,5	505,796	7,898	4,058	3,202
14	83,5	524,646	8,145	4,503	3,426
15	86,5	543,496	8,375	4,94	3,655
16	89,5	562,345	8,626	5,483	3,89
17	92,5	581,195	8,836	6,002	4,119
18	95,5	600,044	9,013	6,521	4,334
19	98,5	618,894	9,134	7,043	4,54
20	101,5	637,743	9,208	7,54	4,713
21	103	647,168	9,215	7,772	4,767
22	104,5	656,593	9,202	7,991	4,851
23	107,5	675,442	9,118	8,382	4,945
24	110,5	694,292	8,955	8,702	4,993
25	113,5	713,142	8,719	8,942	4,995
26	116,5	731,991	8,421	9,104	4,953
27	119,5	750,841	8,077	9,192	4,874
28	122,5	769,690	7,702	9,212	4,766

29	125,5	788,540	7,305	9,181	4,635
30	128,5	807,389	6,916	9,114	4,491
31	131,5	826,239	6,525	9,012	4,334
32	139	873,363	5,622	8,684	3,953
33	145	911,062	4,988	8,394	3,661
34	152,5	958,186	4,314	8,042	3,332
35	160	1005,310	3,758	7,722	3,047

Tаблица 2. 3начение амплитуд напряжений при R = 4 (Oм)

Максимум достигается при f = 103к Γ ц, $U_{C_{res}} = 9,215$ В.

V. Расчетная резонансная частота f_{pacy} :

$$f_{\text{расч}} = \frac{1}{2\pi\sqrt{LC}} = \frac{1}{2*3.14*\sqrt{10*10^{-6}*200*10^{-9}}} = 112539$$
Гц

В окрестности f_{pacy} достигается максимум амплитуды ЭДС источника.

VI. Теоретическая добротность контура $Q_{\text{расч}}$:

$$Q_{\text{pacq}} = \frac{1}{R} \sqrt{\frac{L}{C}} = Q = \frac{1}{4} \sqrt{\frac{10 * 10^{-6}}{200 * 10^{-9}}} = 1,76777$$

VII. Экспериментальная добротность контура Q:

$$Q = \frac{U_{C_{res}}}{\varepsilon_0} = \frac{9,215}{5} = 1,843$$

Значения добротности, полученные с помощью данной формулы совпадают с экспериментальными и теоретическими результатами из предыдущего пункта. Формула применима.

Экспериментальная и теоретическая добротность отличаются на 0.1, такая связь сильна при малых затуханиях

VIII. Коэффициент затухания β :

$$\beta = \frac{R}{2L} = \frac{4}{2*10*10^{-6}} = 200000 \,\mathrm{pag/c}$$

Сравним его с:

$$\Omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{10*200*10^{-15}}} = 707106 \,\mathrm{pag/c}$$

На Графике 2. можно увидеть, что из-за увеличенного коэффициента затухания резонансные частоты всех величин стали дальше от собственной частоты контура Ω_0 .

 $eta < \Omega_0$ поэтому можно считать, что могут быть малые затухания, и воспользуюемся формулой: $Q = \frac{\Omega_0}{\Delta\Omega} = \frac{707106}{826214 - 392745} = 1,63112$

Добротность контура схожа с теоретической и экспериментальной. Формула применима.

Из-за увеличения сопротивления увеличилась ширина резонансной кривой.

9. Выводы и анализ результатов работы.

В процессе выполнения данной лабораторной работы мной было изучено понятие

вынужденных колебаний, а также явление резонанса напряжений в последовательном колебательном контуре. С помощью виртуальной установки мной были сняты необходимые показания, а именно: значение напряжений на каждом элементе цепи (конденсатор, катушка индуктивности, резистор) при каждом соответствующем значении частоты генератора напряжения. Построили графики напряжений конденсатора, катушки индуктивности и резистора в зависимости от частоты двигателя и показали, что максимум достигается в окрестности $f = \frac{1}{2\pi\sqrt{LC}}$, тем самым доказав, что экспериментальная модель не сильно отличается от теоретической. Доказали влияние ширины резонансной кривой на добротность.

Амплитуда напряжения на модулях (R = 1)

График 1. Зависимость амплитуды напряжения конденсатора, катушки и резистора при сопротивлений R=1~Om.

График 2. Зависимость амплитуды напряжения конденсатора, катушки и резистора при сопротивлений R=4~Om.