

Building Healthcare NLP Agents with LLMs

Certification Trainings, John Snow Labs July 17th, 2024

Veysel Kocaman, PhD

Head of Data Science
John Snow Labs

Healthcare NLP by John Snow Labs

Spark NLP for Healthcare vs ChatGPT (GPT 3.5) on Clinical Entities

Oncology NER (JSL vs GPT-4)

VOP (Voice of Patient) NER (JSL vs GPT-4)

Medication NER (JSL vs GPT-4)

Healthcare NLP by John Snow Labs


```
# Annotator that transforms a text column from dataframe into an Annotation ready for NLP
documentAssembler = DocumentAssembler()\
    .setInputCol("text")\
    .setOutputCol("document")
sentenceDetector =
SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare","en","clinical/models")\
    .setInputCols(["document"])\
    .setOutputCol("sentence")
tokenizer = Tokenizer()\
    .setInputCols(["sentence"])\
   .setOutputCol("token")
word_embeddings = WordEmbeddingsModel.pretrained("embeddings clinical", "en", "clinical/models")\
    .setInputCols(["sentence","token"])\
    .setOutputCol("embeddings")
clinical_ner = MedicalNerModel.pretrained("ner_clinical_large", "en", "clinical/models")\
    .setInputCols(["sentence","token","embeddings"])\
    .setOutputCol("ner")\
    .setLabelCasing("upper") #decide if we want to return the tags in upper or lower case
ner converter = NerConverterInternal()\
    .setInputCols(["sentence","token","ner"])\
    .setOutputCol("ner_chunk")
nlpPipeline = Pipeline(
    stages=[
        documentAssembler.
        sentenceDetector,
        tokenizer,
        word embeddings,
        clinical_ner,
        ner converter
empty_data = spark.createDataFrame([[""]]).toDF("text")
```

model = nlpPipeline.fit(empty_data)

t.ext. = '''

A 28-year-old female with a history of gestational diabetes mellitus diagnosed eight years prior to presentation and subsequent type two diabetes mellitus (T2DM), one prior episode of HTG-induced pancreatitis three years prior to presentation, and associated with an acute hepatitis, presented with a one-week history of polyuria, poor appetite, and vomiting.''

agent_result = process_command_SingleAgent(f"Can you
extract Problem, Test and Treatment entities from the
following text: {text}")

Agent found: SNLP4HC_general_Tool_func

	chunk	begin	end	entity_label	confidence
0	gestational diabetes mellitus	39	67	PROBLEM	0.91976666
1	subsequent type two diabetes mellitus	117	153	PROBLEM	0.75924003
2	T2DM	156	159	PROBLEM	0.9917
3	HTG-induced pancreatitis	184	207	PROBLEM	0.97535
4	an acute hepatitis	264	281	PROBLEM	0.9440667
5	polyuria	321	328	PROBLEM	0.9728
6	poor appetite	331	343	PROBLEM	0.9934
7	vomiting	350	357	PROBLEM	0.9854

spark-nlp-workshop / tutorials / Certification_Trainings / Applied_Generative_AI /

Thank you!

Veysel Kocaman, PhD

Head of Data Science
John Snow Labs

Understanding OMOP CDM

(Observational Medical Outcomes Partnership - Common Data Model)

Enhancing Healthcare through Data

Foundation: Part of the Observational Health Data Sciences and Informatics (OHDSI) initiative.

Objective: Utilize open-source data solutions to improve human health via large-scale analysis.

Purpose: Standardize the structure and content of observational healthcare data.

Features:

- Enables efficient, reliable evidence production through analysis.
- Incorporates a common vocabulary and standards for clinical data management.

Focus: Centered on patient outcomes and includes recorded healthcare events.

Community: An open community data standard, fostering collaboration and innovation in healthcare data utilization.

OOP-CDM is a data model that allows clinical information to be presented in a standardized and reusable way for research

