Candidate's Name:	Index No:
Signature	School
P525/1	
CHEMISTRY	
Paper 1	
July/ August 2019	
2¾ hours	

BUGANDA EXAMINATION COUNCIL MOCKS – 2019 UGANDA ADVANCED CERTIFICATE OF EDUCATION

CHEMISTRY Paper 1 2 Hours 45 minutes

INSTRUCTIONS TO CANDIDATES

Answer all questions in section A and six questions in section B.

All questions must be answered in the spaces provided.

The Periodic Table, with relative atomic masses, is supplied.

Mathematical tables (3-figure table) are adequate or non-programmable scientific electronic calculators may be used.

Illustrate your answers with equations where applicable.

Where necessary, use the following:

Molar gas constant, $R = 8.31 \, \text{JK}^{-1} \text{mol}^{-1}$.

Molar volume of gas at s.t.p is =22.4 litres.

Standard temperature = 273 K

Standard pressure = 101325 Nm^{-2}

For	For Examiners' use Only													
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Section A: (46 marks)

Answer all questions from this section

		Allswei all question	is from this section		
1.	(a) Co	omplete the following equations.			
	(i)	$^{27}_{13}Al + ^{1}_{0}n \rightarrow \beta + \dots \dots \dots$		(01 mark)	
	(ii)	$4^1_1H \rightarrow {}^4_2He + \dots \dots$		(01 mark)	
	(iii)	$^{239}_{92}U \rightarrow ^{239}_{91}U + \dots \dots$		(01 mark)	
	(b) A ₁	n element \mathbf{X} has two naturally occur	ring isotopes with isotop	ic masses and relative	
	` ′	oundances as shown below.			
	Is	otopic mass	Relative atomic mass		
	79	*	50.5		
	81		49.5		
	(i)	State what is meant by the tern	n relative atomic mass.	(01 mark)	
	•••		•••••	•••••	
	•••			•••••	
	(ii) Calculate the average atomic n	nass of X .	(02 marks)	
	•••	-	•••••	,	
	•••		•••••		
	•••		••••	•••••	
	•••			•••••	
	•••		• • • • • • • • • • • • • • • • • • • •	•••••	
	•••			•••••	
	•••		• • • • • • • • • • • • • • • • • • • •	•••••	
	•••			•••••	
2.		equation for the reaction between ho	ot concentrated aqueous	sodium hydroxide	
	(a) A	luminium oxide.		(1½ marks)	
	•••••	•••••	•••••	•••••	
	•••••	•••••	•••••	•••••	
	(b) B	eryllium oxide.		(1½ marks)	
	•••••	•••••	•••••	•••••	
	· · · · · · · ·	4(77.7)	•••••		
	(c) Le	ead(IV) oxide.		(1½ marks)	

3.	An	organic	compound	R	has	the	structure
----	----	---------	----------	---	-----	-----	-----------

	(a) Name	e the functional groups present in R .		(02 marks	,
		e equation for the reaction between R and bromine in tetrachloromethane.	1	(01 mark))
	(ii)	saturated sodium hydrogensulphite sol	ution.	(01 mark)	•••••
	. ,	what would be observed in (b)(i).		(01 mark)	
4.		e the term heat of formation .		(1 mark)	
		enthalpies for formation of some selected	compounds ar	e shown in th	e table
	Entha	pound alpy of formation (kJ <i>mol</i> ⁻¹) alate the enthalpy change for the following	$H_2O(g)$ -242 ag reaction.	CO(g) -111	$C_8H_{18}(g)$ -169
	800($(g) + 17H_2(g) \xrightarrow{Fe/CO \ catalyst} C_8H_{18}(g) - G_8H_{18}(g)$	+ 8H ₂ O(g)	(03 marks)	
	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••

5. Complete the following reaction equations and write the IUPAC names of the main organic product in each case.

Name of product..... $(0\frac{1}{2} \text{ mark})$

Name of product..... $(0\frac{1}{2} \text{ mark})$

Name of product.....(0½ mark)

- 6. Compound **Q** is a green solid which dissolves in water to give a pale green solution. The solution of **Q** formed a red precipitate with butanedionedioxime solution and a reddish brown solution when a few drops of iron(III) chloride solution were added to it. When **Q** was heated with concentrated sulphuric acid, methanoic acid was formed.
 - (a) Identify **Q**......(01 mark)
 - (b) Write equation for the reaction that took place when **Q** was heated with concentrated sulphuric acid. (1½ marks)

.....

(c) Write equation(s) for the reaction(s) that take place when excess ammonia solution is added to a solution of **Q**. (2½ marks)

.....

/.	20 cm of a hydrocarbon $\mathbb{Z}(C_x H_y)$ was exploded with 200 cm of oxygen. On cooling to
	room temperature, the residual gases occupied 160 cm ³ . When the residual gases were
	passed through sodium hydroxide solution, the volume reduced to 20 cm ³ .
	(a) (i) Write equation for the reaction between Z and oxygen. (01 mark)
	(ii) Determine the molecular formula of Z . (2½ marks)
	•••••••••••••••••••••••••••••••••••••••
	••••••
	4.3
	(b) Compound Z burns with a sooty flame. When Z was treated with hot alkaline
	potassium managnate(VII) solution followed by dilute hydrochloric acid, compound
	T was formed. T reacts with magnesium ribbon liberating hydrogen gas.
	(i) Identify: (1 mark)
	•••••••••••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••••••••••
	(ii) Write equation to show how Z can be can obtained from an alkyne.
	(1½ marks)
	(172 marks)
8.	(a) State what is meant by the term an ideal solution . (01 mark)

	at 293K.	pectively
	Assuming that the mixture of the two liquids behaves as an ideal solution an	d that it
	contains 0.88 mole fraction of water.	
	Calculate the:	
	(i) vapour pressure of the mixture. (2½ marks)	
	••••••	•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
	(ii) percentage of methanol in the vapour. (01 mark)	
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
9.	During the manufacture of sulphuric acid by Contact process, sulphur dioxide is catalytically oxidized to sulphur trioxide according to the following equation: $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_2(g), \Delta H^{\theta} = -197 \text{ kJ mol}^{-1}$	s
	The sulphur trioxide formed is then absorbed in 98% sulphuric acid to form con	npound T
	(a) State the industrial conditions used to obtain maximum yield of sulphur trior	xide. marks)
		,
		•••••
		•••••
		•••••

(b)	Write	e equation to show how compound T can be converted into s	(01 mark)
••••	• • • • • • •		
(c)	Write	e equation for the reaction between hot concentrated sulphur	ic acid and
	(i)	carbon.	(01 mark)
	 (ii)	hydrogen iodide.	
	•••••		
(d)	State	what would be observed in (c)(i).	(0½ marks)
	•••••		
		Section B: (54 marks) Answer six questions from this section. Additional questions will not be marked.	
0.Sta		at would be observed and write equation for the reaction that	t would take place
(a)) a mix	ature of acidified potassium manganate(VII) and sodium etha	anedioate is heated. (2½ marks)
	Equa	tion	
	•••••	•••••••••••••••••••••••••••••••••••••••	•••••
	Obse	rvations	
	•••••	•••••••••••••••••••••••••••••••••••••••	• • • • • • • • • • • • • • • • • • • •
	•••••		•••••
	•••••		
	•••••		•••••

(b)	acidified potassium chromate(VI) solution is added to hydrogen peroxic	de. (2½ marks)
	Equation	(272 marks)
		•••••
		•••••
	Observations	
		•••••
		•••••
		•••••
		•••••
(c)	3-4 drops of bromine water is added to phenylamine.	(02 marks)
	Equation	
		•••••
		•••••
	Observations	
		•••••
		•••••
(\mathbf{d})	benzoic acid is added to a saturated solution of sodium hydrogencarbon	ate.(02 marks)
	Equation	
		•••••
		•••••
	Observations	
		•••••
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •

	-	point con			()
••••••	• • • • • • •			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	••••
The table below shows the freezi	ng poin	t of variou	is concen	trations o	f a non-v	volati
o) The table below shows the freezing solute D in water at 760 mmHg.	ng poin	t of variou	is concen	trations o	f a non–v	volati
,	ng poin	t of variou	is concen	trations o	f a non-v	volat

Plot a graph of freezing point depression against concentration of D. (Use the graph paper provided) (

(04marks)

((c) Det	ermine the	
	(i)	slope of the graph you have drawn in (b).	(1½ marks)
	••••	•••••••••••••••••••••••••••••••••••••••	•••••
	••••		•••••
	••••	•••••••••••••••••••••••••••••••••••••••	•••••
	••••	••••••	•••••
	(ii)	relative molecular mass of D.	(2½marks)
	••••		•••••
	••••		•••••
	••••		•••••
	••••	•••••••••••••••••••••••••••••••••••••••	•••••
	••••		•••••
	••••		•••••
	••••	•••••••••••••••••••••••••••••••••••••••	•••••
	••••	•••••••••••••••••••••••••••••••••••••••	•••••
12.	Write a	mechanism for the reaction that occurs between a mixture of	
((a) etha	anol and concentrated sulphuric acid at 140°C.	(2½marks)
•		•••••••••••••••••••••••••••••••••••••••	
•		•••••••••••••••••••••••••••••••	
	• • • • • • •	•••••••••••••••••••••••••••••••••••••••	
	• • • • • • •		
((b) boil	ling methylbenzene and chlorine in the presence of ultraviolet light.	
Ì		gy oz www oz az ez processo oz wistwiczen zigen	
	• • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •
	• • • • • • •		• • • • • • • • • • • • • • • • • • • •
			• • • • • • • • • • • • • • • • • • • •
	• • • • • • • •		• • • • • • • • • • • • • • • • • • • •
	• • • • • • • •		• • • • • • • • • • • • • • • • • • • •

(c) propanal and phenylhydrazine.	$(3\frac{1}{2} \text{ marks})$
	•••••
	•••••
•••••	•••••
	•••••
	•••••
	•••••
	••••••
	••••••
13. Write equations to show how each of chlorine and iodine react w	ith:
(a) sodium iodide solution.	
(i) Chlorine.	(1½ marks)
••••••	••••••
(ii) Iodine.	(1½ marks)
•••••	•••••
(b) sodium thiosulphate solution.	
(i) Chlorine.	(1½ marks)
	•••••
	•••••
(ii) Iodine.	(1½ marks)
	•••••
•••••	•••••
(c) hot concentrated potassium hydroxide solution.	
(i) Chlorine.	(1½ marks)
(1) Chiormo.	
(ii) Iodine.	(1½ marks)
(ii) louine.	(1/2 marks)
••••••	•••••••••

determine	d.	salt may be (01 mark)		
(b) Copper(II) iodate is sparingly soluble in water. Write				
(i)	an equation for the solubility of copper(II) iodate.	(01 mark		
(ii)	an expression for the solubility product, K_{sp} , of copper(II) i	odate. (0½ ma		
(c) The so	slubility product of copper(II) iodate at 25°C is 1.4×10^{-7} most ate the solubility in grams per litre at 25°C of copper(II) ioda	$ol^{-3}dm^{-9}.$		
(i)	water.	(2½ marks		
•••••				
•••••				
•••••		••••••		
•••••		•••••		
(ii)	a 0.1 M potassium iodate.	$(2\frac{1}{2} \text{ mar})$		
		••••••		
•••••	•••••••••••••••••••••••••••••••••••••••	•••••		
(d)Comm	nent on your answer in (c) above.	(1½ mark		
•••••	••••••	•••••		

15. Write equations to show how the following compounds can be synthesize	d Indicate the
condition(s) for the reaction(s).	a. maicate the
(a) O_2N NH NH CHCH ₃ from ethene NO_2	(02 marks)
NO ₂	• • • • • • • • • • • • • • • • • • • •
••••••	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	•••••
••••••	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
(b) from phenylmethanol.	(2½ marks)
	••••••••
	• • • • • • • • • • • • • • • • • • • •
	•••••
	•••••
	•••••
	••••••
•••••••••••••••••••••••••••••••••••••••	•••••••
(c) from ethyne	(4.5 marks)
••••••	••••••
	••••••

16. (a)) State how the following anhydrous chlorides can be prepared.		
(i)	Tin(II) chloride.	(01 mark)	
. ,	Tin(IV) chloride.	(01 mark)	
	State why tin(IV) chloride is formed but tin(IV) bromide is not.	(02 marks)	
•••			
•••			
(c)	Write equation for the reaction between water and the chloride in (a)		
	(i) tin(II) chloride.	(01 mark)	
	(ii) tin(IV) chloride.	(01 mark)	
		•••••	
(d) (i) State what would be observed and write equation for the reaction that would ta			
	place when tin(II) chloride is added to acidified aqueous solution of so dichromate(VII).	odium	
	Observation.	(01 mark)	
		• • • • • • • • • • • • • • • • • • • •	
		(11/ 1)	
	Equation.	(1½ marks)	
		• • • • • • • • • • • • • • • • • • • •	
	(ii) Circa annual faranana annual in (4)(i)	(01/	
	(ii) Give a reason for your answer in (d)(i).	(0½ mark)	
	(ii) Give a reason for your answer in (d)(i).		

17.(a) Rubber is a natural polymer whose monomer is 2—methylbuta—1,3 Write the structure of	-diene.
(i) the monomer of rubber.	(0½ mark)
(ii) the structural formula of rubber.	(01 mark)
(b) Name the type of polymerization involved in the formation of rubb	er. (0½ mark)
(c) State how	•••••
(i) vulcanization of natural rubber is carried out.	(01 mark)
	•••••
(ii) vulcanization improves the properties of natural rubber.	,
••••••	•••••••
	•••••
	•••••
(d) The structural formula of a polymer R is	
- $ -$	
The osmotic pressure of a solution containing 5.5 $g \ dm^{-3}$ of R in b	penzene is 106.39
Pa at 20°C. (i) Calculate the relative molecular mass of R.	(02 marks)
••••••	•••••
(ii) Determine the number of monomers that formed the polymore.	er R. (01 mark)
••••••	END