Lecture 6 Carry-Lookahead Adders

Unrolling the Carry Recurrence

$$\begin{aligned} c_1 &= g_0 + p_0 c_0 \\ c_2 &= g_1 + p_1 c_1 = g_1 + p_1 (g_0 + p_0 c_0) = g_1 + p_1 g_0 + p_1 p_0 c_0 \\ c_3 &= g_2 + p_2 c_2 = g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 c_0 \\ c_4 &= g_3 + p_3 c_3 = g_3 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0 + p_3 p_2 p_1 p_0 c_0 \\ &\vdots \end{aligned}$$

Alternatives to Full Carry Lookahead

- Full carry lookahead is impractical for wide addition
- Tree Networks
 - less circuitry than full lookahead at the expense of increased latency
- Kinds of Tree Networks
 - High-radix addition (radix must be power of 2)
 - Multi-level carry lookahead (technique most used in practice)

4-bit Propagate & Generate

$$g_{[i,i+3]} = g_{i+3} + g_{i+2}p_{i+3} + g_{i+1}p_{i+2}p_{i+3} + g_{i}p_{i+1}p_{i+2}p_{i+3}$$

$$p_{[i,i+3]} = p_{i}p_{i+1}p_{i+2}p_{i+3}$$

$$g_{i+3}p_{i+3}g_{i+2}p_{i+2}g_{i+1}p_{i+1}g_{i}p_{i}$$

$$g_{i+3}p_{i+3}g_{i+2}p_{i+2}g_{i+1}g_{i+1}g_{i}p_{i}$$

$$c_{i+4} = g_{[i,i+3]} + p_{[i,i+3]} \cdot c_i$$
 4-bit Lookahead Carry Generator
$$c_{i+4} = g_{[i,i+3]} + p_{[i,i+3]} \cdot c_i$$

Worst Case Latency

- Producing the g and p for individual bit positions (1 gate delay)
- Producing the g and p signals for 4-bit blocks (2 gate delays)
- Predicting the carry-in signal c_4 , c_8 , c_{12} for the blocks (2 gate delays)
- Predicting the internal carries within each 4-bit block (2 gate delays)
- Computing the sum bits (2 gate delays)

Worst Case Latency

• The delay of a *k*-bit carry-lookahead adder based on 4-bit lookahead blocks is:

$$Time = 4 \log_4 k + 1$$
 gate delays

Final
$$c_{\text{out}} = c_k$$

- Last carry is not used to compute any sums
- Needed in many situations
 - Overflow computation, for example
- Three ways to compute it:
 - $c_k = g_{[0,k-1]} + c_0 p_{[0,k-1]}$
 - $c_k = g_{k-1} + c_{k-1} p_{k-1}$
 - $c_k = x_{k-1}y_{k-1} + \overline{s}_{k-1}(x_{k-1} + y_{k-1})$

Ling Adder [1981]

$$\begin{split} c_i &= g_{i-1} + c_{i-1} p_{i-1} = g_{i-1} + c_{i-1} t_{i-1} = \\ &= g_{i-1} + g_{i-2} t_{i-1} + g_{i-3} t_{i-2} t_{i-1} + g_{i-4} t_{i-3} t_{i-2} t_{i-1} + c_{i-4} t_{i-4} t_{i-3} t_{i-2} t_{i-1} \end{split}$$

Ling's idea was to propagate $h_i = c_i + c_{i-1}$ instead of c_i

$$h_i = g_{i-1} + g_{i-2} + g_{i-3}t_{i-2} + g_{i-4}t_{i-3}t_{i-2} + h_{i-4}t_{i-4}t_{i-3}t_{i-2}$$

The carry chain is somewhat simpler, however, the sum equation is slightly more complex:

$$S_i = (t_i \oplus h_{i+1}) + h_i g_i t_{i-1}$$

Parallel Prefix Computations

The "parallel prefix problem" is:

Given:

- 1. Inputs: $x_0, x_1, x_2, \dots, x_{k-1}$, and
- 2. An associative (but not necessarily commutative) operater: +

Compute:

$$x_0$$

 $x_0 + x_1$
 $x_0 + x_1 + x_2$
 \vdots
 $x_0 + x_1 + x_2 + \dots + x_{k-1}$

Carry Computation is a Parallel Prefix Computation

Inputs:
$$(g_0, p_0), (g_1, p_1), (g_2, p_2), \dots, (g_{k-1}, p_{k-1})$$

Operator: ¢

$$(g, p) = (g', p') \notin (g'', p'') = (g'' + g' \cdot p'', p' \cdot p'')$$

Compute:

$$(g_{[0,0]}, p_{[0,0]}) = (g_0, p_0)$$

 $(g_{[0,1]}, p_{[0,1]}) = (g_1, p_1) \notin (g_0, p_0)$
 \vdots

$$(g_{[0,k-1]}, p_{[0,k-1]}) = (g_{k-1}, p_{k-1}) \notin \cdots \notin (g_1, p_1) \notin (g_0, p_0)$$

Combining (*g*, *p*) of Overlapping Blocks

(g, p) Networks

- Any design for a parallel prefix problem can be adapted to a carry computation network.
- Pairs of inputs can be combined in any way (re-associated according to the associative property) to compute block (*g*, *p*) signals.
- (*g*, *p*) signals have additional flexibility: overlapping blocks can be combined.

Recursive Prefix Sum Network

Delay recurrence: $D(k) = D(k/2) + 1 = \log_2 k$

Cost recurrence: $C(k) = 2C(k/2) + k/2 = (k/2) \log_2 k$

Divide and Conquer I

Delay recurrence: $D(k) = D(k/2) + 2 = 2 \log_2 k - 1$

Cost recurrence: $C(k) = C(k/2) + k - 1 = 2k - 2 - \log_2 k$

Divide and Conquer II Brent-Kung Parallel Prefix

Network Comparisons

Network	Max Delay	Cost	Fan Out
Divide & Conquer I	$\log_2 k$	$(k/2) \operatorname{Log}_2 k$	High
Brent - Kung	$2 \operatorname{Log}_2 k - 1$	$2k - 2 - \operatorname{Log}_2 k$	Low
Kogge - Stone	$\log_2 k$	$k \operatorname{Log}_2 k - k + 1$	Low
Hybrid B-K / K-S	$Log_2 k + 1$	$[(k/2) \operatorname{Log}_2 k]$	Low

Cost is not a good estimate of Si area for these networks. Regularity and interconnect are large factors.

