Mesure de la performance du modèle Pierre Massé

June 11, 2020

1 Mesure de la performance du modèle

L'objet de ce notebook est d'illustrer la méthodologie de mesure de la performance du modèle.

1.1 Préambule technique

```
[1]: # setting up sys.path for relative imports
    from pathlib import Path
    import sys
    project_root = str(Path(sys.path[0]).parents[1].absolute())
    if project_root not in sys.path:
        sys.path.append(project_root)
```

```
[2]: # imports and customization of diplay
     from functools import partial
     import numpy as np
     from scipy.stats import linregress
     import pandas as pd
     pd.options.display.min_rows = 6
     pd.options.display.width=108
     from sklearn.feature_extraction.text import CountVectorizer
     from sklearn.model_selection import train_test_split
     from sklearn.model_selection import cross_val_score, cross_validate
     from sklearn.pipeline import Pipeline
     from matplotlib import pyplot as plt
     import matplotlib.ticker as mtick
     import seaborn as sns
     from src.pimest import ContentGetter
     from src.pimest import PathGetter
     from src.pimest import PDFContentParser
     from src.pimest import BlockSplitter
     from src.pimest import SimilaritySelector
     from src.pimest import custom_accuracy
     from src.pimest import text_sim_score
     from src.pimest import text_similarity
     from src.pimest import build_text_processor
```

```
[4]: # monkeypatch _repr_latex_ for better inclusion of dataframes output in report

def _repr_latex_(self, size='scriptsize',):
    return(f"\\resizebox{{\\linewidth}}{{!}}{{\\begin{{\size}}}\\centering{{{\self.to_latex()}}}\\ndering{{\size}}}\\ndering{{\size}}}\\ndering{{\self.to_latex()}}}\\ndering{{\size}}}\\ndering{\ndering{\self.to_latex()}}}\\ndering{\ndering{\self.to_latex()}}}\\ndering{\ndering{\self.to_latex()}}}\\ndering{\ndering{\self.to_latex()}}}\\ndering{\ndering{\ndering{\self.to_latex()}}}\\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering{\ndering
```

1.2 Acquisition des données

On récupère les données manuellement étiquetées et on les intègre dans un dataframe

```
],
verbose=True)

texts_df = acqui_pipe.fit_transform(ground_truth_df)
texts_df['ingredients'] = texts_df['ingredients'].fillna('')
texts_df.sample(4)
```

[Pipeline] ... (step 1 of 3) Processing PathGetter, total= 0.1s [Pipeline] ... (step 2 of 3) Processing ContentGetter, total= 0.6s Launching 8 processes. [Pipeline] ... (step 3 of 3) Processing ContentParser, total= 37.0s

On splitte les textes en blocs de manière basique.

```
[6]: def splitter(text):
    return(text.split('\n\n'))

split_transfo = BlockSplitter(splitter_func=splitter)
splitted_df = split_transfo.fit_transform(texts_df)
splitted_df.sample(4)
```

Launching 8 processes.

161:							
2-2-		designation	ingredients	path	content	text	blocks
	uid						
		Riz long Indica étuvé en sac 10 kg EPISAVEURS			b'%PDF-1.4 Sharp Scanned ImagePDF\n%Sharp Non		0
		INFUSION ROOTHOS 20 PYRAMIDES EN SACHETS FRAIC			b'%PDF=1.7\r\m2\xb5\xb5\xb5\xb5\r\m1 0 obj\r\m		[Infusion Rooibos , 20 pyram
		DEUPS PRALINÉ AMANDES FONDANT 1.25KG Blé dur pécuit en sac 5 kg VIVIEN PAILLE	Chocolat su lait (sucre, beurre de cacao, LAIT			Révillon Chocolatier \n\n \n\n180 rue Clément ELE DUR PRECUIT\n\nRéférence PQG007-6.6.7\nVer	

1.3 Train/Test split, entraı̂nement et tranformation

On effectue classiquement les étapes de train/test split, on entraîne le modèle sur le set d'entraînement et on le lance sur le set de test.

ingredients predicted

uid

de22b1fa-039d-479e-b36e-608946b75bb8 6bdb201d-5879-423b-96b8-3ae88b857818 7f622727-e4ad-45cc-9af4-4509acf91154 194419d0-d9f2-4799-81ac-d9e3aa77fd27 Pommes de terre, eau, sel.

ingredients predicted

NOISETTES entières décortiquées. Les noisettes décortiquées entières sont les f... Liste d'ingrédients : vinaigre d'alcool, pimen... Liste d'ingrédients : vinaigre d'alcool, pimen... Une sauce onctueuse et savoureuse avec un équi... Pommes de terre, eau, sel. Anhydride sulfureux et sulfites en \nconcentra...

1.4 Mesure de la performance : Précision

1.4.1 Approche naïve

Dans cette première version, on calculera une précision brute, où seuls les strings parfaitement identiques sont considérés comme ok.

```
[8]: predicted['result'] = (predicted['ingredients'].fillna('') == predicted['predicted'].fillna('')) predicted['result'].value_counts()
```

[8]: False 99
 True 1
 Name: result, dtype: int64

On a une précision très faible, 1%. L'unique liste d'ingrédients du set de test correctement prédite est la suivante :

```
[9]: print(predicted[predicted['result']].iloc[0, 0])
```

Sirop de glucose, sucre, eau, stabilisants (E440i, E440ii, E415), acidifiants (E330, E450i), conversateur (E202).

1.4.2 Cross-validation de l'approche naïve

Pour avoir une vision plus précise de la performance du modèle, on peut effectuer une cross-validation sur le set d'entraînement.

On commence par définir une fonction de scoring, qui pourra être appelée par la fonction standard de cross-validation de scikit-learn. Comme précédemment, il s'agit d'une fonction d'accuracy basique :

```
[10]: def accuracy_scorer(estim, X, y):
    y_pred = estim.predict(X)
    return((y_pred == y).mean())
```

On retrouve évidemment le même score que précédemment lorsqu'on utilise cette fonction sur le set de test :

```
[11]: accuracy_scorer(model, test.reset_index()['blocks'], test.reset_index()['ingredients'])
```

[11]: 0.01

Si on lance la cross-validation avec les paramètres par défaut (cv=5), on obtient le résultat suivant :

Strict accuracy yields a result of 2.00% +/-0.63% [0.02 0.02 0.02 0.01 0.03]

On voit que sur chacun des 5 folds (validation sur 400 produits), l'accuracy varie entre 1 et 3%.

Si on trace l'accuracy et la standard deviation pour plusieurs valeurs de cv, on obtient les résultats suivants :

```
[14]: fig, ax = plt.subplots()
ax.plot(x, mean)
ax.fill_between(x, (mean - std), (mean + std), color='b', alpha=.1)
```

[14]: <matplotlib.collections.PolyCollection at 0x7fa4ac4a66d0>

Il apparaît que l'accuracy se situe aux alentours de 2%, avec un écart type important si on le compare à cette accuracy.

1.4.3 Ajout d'une étape de text-postprocessing

[0.04 0. 0. 0.04 0.02 0.02 0. 0.02 0. 0.04]

On utilise la fonction custom_accuracy définie dans le module pimest pour calculer l'accuracy avec du text processing. Elle prend en paramètre les mêmes attributs que le CountVectorizer de scikit-learn, en plus d'un attribut ``tokenize'' qui va tokenizer le résultat (pour prise en compte des whitespace et de la ponctuation).

[16]: 0.14

L'accuracy est maintenant estimée à 14% (vs. 1%) sur le set de test, après entraînement sur le set d'entraînement. On peut manuellement inspecter les blocks identique, en reproduisant le comportement de la fonction d'accuracy :

```
[17]: def text_processor(text, **kwargs):
    unused_model = CountVectorizer(**kwargs)
    prepro = unused_model.build_preprocessor()
    token = unused_model.build_tokenizer()
    return(' '.join(token(prepro(text))))

partial_processor = partial(text_processor, strip_accents='unicode', lowercase=True)
```

```
prediction = model.predict(test['blocks'].fillna('')).rename('predicted')
       processed_prediction = prediction.apply(partial_processor)
       processed_prediction.sample(3)
[18]: uid
       5a7f235d-eba4-43b2-ab52-2c2b93f68a67
                                                      cette fiche technique pas de valeur contractue...
       b7d7621a-fcdd-4487-9b38-e07fae698c4a
                                                      egoutter ne pas rincer faire sauter minutes av...
       df1caa23-9714-4659-803b-33501d64eead
                                                      liste des ingredients sucre pate de cacao beur...
       Name: predicted, dtype: object
[19]: processed_ground_truth = test['ingredients'].fillna('').apply(partial_processor)
       processed_ground_truth.sample(3)
[19]: uid
       484ac00a-a670-46a9-a9c4-5114174d9e3b
                                                      pommes de terre 59 celeris 40 amidon de mais s...
       63968dc3-6e7c-4056-bd53-820c6cc925be
                                                      carottes eau sucre sel vinaigre alcool acidifi...
       8dec0469-c9f5-4139-be25-efa258959444
                                                      sucre sirop de glucose graisse de palme humect...
       Name: ingredients, dtype: object
       corrects = test.join(prediction).loc[processed_prediction == processed_ground_truth , ['ingredients', 'predicted']]
[20]: _
                                                ingredients
                                                                                                      predicted
       uid
        345591f4-d887-4ddc-bb40-21337fa9269d
                                                Gésier de dinde émincé 50%, graisse de canard ...
                                                                                                      Gésier de dinde émincé 50%, graisse de canard...
        13980d31-9002-457d-8d49-b451f08f473c
c3b6b4df-e586-4f10-8e58-15fbf0816acb
                                                Edulcorants sorbitol, isomalt, sirop de maltit...
                                                                                                      Edulcorants sorbitol, isomalt, sirop de maltit...
                                                mini poivrons jaunes, eau, sucre, sel, affermi...
                                                                                                      mini poivrons jaunes, eau, sucre, sel, affermi...
        0481d91b-9653-42e7-b525-9dc9b87b06f2
                                                Farine de BLE, huile de colza non hydrogénée, ...
                                                                                                      Farine de BLE, huile de colza non hydrogénée, ...
        484ac00a-a670-46a9-a9c4-5114174d9e3b
                                                Pommes de terre 59.5 % - Céleris 40 % - Amidon...
                                                                                                      Pommes de terre 59.5 % - Céleris 40 % - Amidon...
        49b11281-34ea-44b0-a11c-4ae21d4c58e3
                                                                                                      Amidon de maïs* - Lait écrémé* - Sel - Fécule ...
Farine de FROMENT, poudre de LACTOSERUM, sucre...
Eau, maltodextrine, sel, arômes, sucre, arôme ...
        d59d96cb-0230-4090-8220-78ce8496fd91
                                                Amidon de maïs* - Lait écrémé* - Sel - Fécule ...
                                                Farine de FROMENT, poudre de LACTOSERUM, sucre...
Eau, maltodextrine, sel, arômes, sucre, arôme ...
        b8cbe6f9-71d4-4e51-a169-1c163d49a561
        a0492df6-9c76-4303-8813-65ec5ccbfa70
        09e45h38-4da1-4eh5-888a-3ehd437a2291
                                                OEUFS, farine de BLE, sucre, amidon de BLE, st...
                                                                                                      OEUFS, farine de BLE, sucre, amidon de BLE, st...
        4f83306f-66de-4545-9b12-7790b57b61ae
                                                Sirop de glucose, sucre, eau, stabilisants (E4...
                                                                                                      Sirop de glucose, sucre, eau, stabilisants (E4...
        5cee689e-6fb1-493c-b232-1d8fb1f88a57
                                                Flageolets verts. Jus : eau, sel, affermissant...
                                                                                                      Flageolets verts. Jus : eau, sel, affermissant...
        63968dc3-6e7c-4056-bd53-820c6cc925be
                                                Carottes, eau, sucre, sel, vinaigre d'alcool, ...
                                                                                                      Carottes, eau, sucre, sel, vinaigre d'alcool, ...
                                                Légumes 43,2 % (pomme de terre, oignon, carott...
                                                                                                      Légumes 43,2 % (pomme de terre, oignon, carott...
        dc536305-82fd-4afe-a472-5056ca0e21ea
[21]: | with pd.option_context("max_colwidth", 100000):
            tex_str = (
            corrects.replace(r'^\s*$', np.nan, regex=True)
                      .to_latex(index=False,
                                 index_names=False,
                                 column_format='p{7cm}p{7cm}',
                                 na_rep='<rien>',
                                 longtable=False,
                                 header=["Liste d'ingrédients cible", "Liste d'ingrédients prédite"],
                                  # label='tbl:GT_postprocessed_corrects',
                                  # caption="Prédictions identifiées comme correctes après postprocessing",
                       .replace(r'\setminus textbackslash n', r'\setminus newline')
                       .replace(r'\\', r'\\ \hline')
        \begin{tabular}{ll} \# \ with \ open(Path('...') \ / \ 'tbls' \ / \ 'GT_postprocessed\_corrects.tex', \ 'w') \ as \ file: \end{tabular} 
              file.write(tex_str)
```

1.4.4 Cross-validation de l'approche avec text processing

On fait tourner une cross-validation sur l'ensemble du dataset. On définit d'abord la fonction qui va permettre de calculer le score avec l'ensemble des fonctionnalités de text processing : - retrait des accents - remplacement des whitespaces par des espaces simples - retrait de la ponctution - mise en minuscule

```
print(cross_val['test_score'])
       Processed accuracy yields a result of 16.40% +/-2.15% [0.19 0.15 0.17 0.13 0.18]
[23]: x = [3, 5, 8, 10, 15, 20, 30, 50, 70, 100]
        mean = np.array([])
std = np.array([])
        for n_cv in x:
             cross_val = cross_validate(model,
                                              X=splitted_df['blocks'].fillna(''),
y=splitted_df['ingredients'].fillna(''),
                                               scoring=processed_accuracy,
                                               cv=n_cv,
                                             )
             mean = np.append(mean, [np.mean(cross_val['test_score'])], axis=0)
std = np.append(std, [np.std(cross_val['test_score'])], axis=0)
        print('mean:', mean, '\nstandard dev:', std)
       mean: [0.16994926 0.164
                                           0.16199437 0.162
                                                                      0.15787285 0.158
        0.15772059 0.158
                                  0.15739796 0.158
       standard dev: [0.0193811 0.02154066 0.04252373 0.034
                                                                                0.06292686 0.07639372
        0.09256313 0.12343419 0.13740531 0.16320539]
[24]: fig, ax = plt.subplots() ax.plot(x, mean)
```

[24]: <matplotlib.collections.PolyCollection at 0x7fa4ac6de9d0>

ax.fill_between(x, (mean - std), (mean + std), color='b', alpha=.1)

1.5 Mesure de la performance : Similarité

1.5.1 Mesures

On peut également mesurer la similarité plutôt qu'uniquement l'accuracy. Cela permet de valoriser les textes qui ``ressemblent'' aux listes d'ingrédients cibles plutôt que les compter comme des erreurs.

```
Similarity with levenshtein similarity is 47.88% Similarity with damerau-levenshtein similarity is 47.88% Similarity with jaro similarity is 63.30% Similarity with jaro-winkler similarity is 65.28%
```

Les similarités de Levenshtein et Damerau-Levenshtein donnent des résultats identiques, à presque 50% de similarité moyenne. Celles basées sur Jaro tournent aux alentours de 65%, comme on s'y attendait dans la mesure où elle est très ``indulgente'' sur les textes longs.

Si on effectue des cross validations sur chacune de ces distances sur le dataset complet, on obtient :

```
Model evaluated with levenshtein similarity a result of 48.96\% +/-3.95% Model evaluated with damerau-levenshtein similarity a result of 48.97\% +/-3.94% Model evaluated with jaro similarity a result of 62.34\% +/-3.39% Model evaluated with jaro-winkler similarity a result of 63.81\% +/-3.39%
```

On transforme en tableau latex pour insertion dans le rapport.

```
[28]: result_strings = dict()
      for similarity in similarity_kinds:
          result_strings[similarity] = {'train/test set': sim_dict[similarity],
                                        'cross validation': f'{np.mean(cross_vals[similarity]["test_score"]):.2%} '
                                                            f'+/-{np.std(cross_vals[similarity]["test_score"]):.2%}'}
      result_df = pd.DataFrame(result_strings).T
      print(result_strings)
      labs = {'levenshtein': 'Levenshtein',
               'damerau-levenshtein': 'Damerau-Levenshtein',
              'jaro': 'Jaro',
              'jaro-winkler': 'Jaro-Winkler',
      \# (result\_df.rename(labs)
                  .to_latex(Path('..') / 'tbls' / 'similarities_result.tex',
      #
                          column_format='lcc',
                           bold rows=True,
```

```
# )
      {'levenshtein': {'train/test set': '47.88%', 'cross validation': '48.96% +/-3.95%'}, 'damerau-levenshtein':
     'train/test set': '47.88%', 'cross validation': '48.97% +/-3.94%'}, 'jaro': {'train/test set': '63.30%', 'cross validation': '62.34% +/-3.39%'}, 'jaro-winkler': {'train/test set': '65.28%', 'cross validation':
      '63.81% +/-3.39%'}}
      1.5.2 Illustration
      On illustre les différents niveaux de similarité sur le set de test après entrainement sur le set d'entrainement.
       y_pred = model.predict(test['blocks']).rename('predicted')
       comp_df = pd.concat([test['ingredients'].fillna(''), y_pred], axis=1)
       processed_df = comp_df.applymap(build_text_processor())
       # computing similarities and ranks
       sim_funcs = {sim: partial(text_similarity, similarity=sim) for sim in similarity_kinds}
       for sim in similarity_kinds:
           processed_df[sim] = processed_df.apply(lambda x: sim_funcs[sim](x['ingredients'], x['predicted']), axis=1)
processed_df[sim + '_rank'] = processed_df[sim].rank(axis=0, method='first', ascending=False)
.loc[(processed_df['ingredients'] != '') & (processed_df['predicted'] != '')]
       ).sample(4)
Γ317:
[32]:
       processed_df.sort_values('levenshtein_rank')
                    .loc[(processed_df['ingredients'] != '') &
                          (processed_df['predicted'] != '') &
                         (processed_df['predicted'].apply(len) <=300)]</pre>
                     .join(comp_df, lsuffix='_')
                    .iloc[np.r_[0:3, 47:50, -3:0]]
Γ321 :
[33]:
       # outputing to latex
       with pd.option_context("max_colwidth", 100000):
           tex_str = (processed_df.sort_values('levenshtein_rank')
                                     .loc[(processed_df['ingredients'] != '') &
                                          (processed_df['predicted'] != '') &
                                          (processed_df['predicted'].apply(len) <=300)]</pre>
                                     .join(comp_df, lsuffix='_')
.iloc[np.r_[0:3, 47:50, -3:0]]
                                    .to_latex(columns=['ingredients', 'predicted', 'levenshtein', # 'levenshtein_rank',
                                                         'damerau-levenshtein', 'jaro',
                                                         'jaro-winkler'],
                                               index=False.
                                               index_names=False,
                                               column_format='p{5cm}p{5cm}cccc',
                                               formatters={'levenshtein': lambda x: f'{x:.2%}',
       #
                                                              'levenshtein\_rank': lambda x: f'{x:1.0f}',
                                                             'damerau-levenshtein': lambda x: f'{x:.2%}',
                                                             \#'damerau-levenshtein_rank': lambda x: f'\{x:1.0f\}',
                                                             'jaro': lambda x: f'{x:.2%}',
                                                             \#'jaro\_rank': lambda x: f'\{x:1.0f\}',
                                                             'jaro-winkler': lambda x: f'{x:.2%}',
                                                             \#'jaro-winkler\_rank': lambda x: f'{x:1.0f}',
                                               header=["Listes d'ingrédients cibles", "Listes d'ingrédients prédites",
                                                        'Lev', 'Dam-Lev', 'Jaro', 'Jaro-Win'],
                                               na_rep = '<rien>',
           ).replace(r'\textbackslash n', r' \newline ').replace(r'\\', r'\\ \hline')
       # with open(Path('..') / 'tbls' / 'similarity_illustration.tex' , 'w') as file:
             file.write(tex_str)
```

1.6 Similarité vs. longueur des listes d'ingrédients

On compare le score de similarité obtenu par rapport à la longueur des listes d'ingrédients cibles.

```
[34]: fig, ax = plt.subplots(figsize=(8, 5))
ax.scatter(y=processed_df['levenshtein'], x=processed_df['ingredients'].apply(len))
```

[34]: <matplotlib.collections.PathCollection at 0x7fa4963cfac0>

On a des outliers qui vont avoir trop d'importance sur les résultats. On va les filtrer.

[37]: (-0.1, 1.1)

Relation entre longueur de la liste d'ingrédients et performance du modèle (r²=34.0%)

