Problem F. Quiz Master

Time limit 2000 ms **Mem limit** 262144 kB

A school has to decide on its team for an international quiz. There are n students in the school. We can describe the students using an array a where a_i is the smartness of the i-th ($1 \le i \le n$) student.

There are m topics $1, 2, 3, \ldots, m$ from which the quiz questions will be formed. The i-th student is considered proficient in a topic T if $(a_i \mod T) = 0$. Otherwise, he is a rookie in that topic.

We say that a team of students is collectively proficient in all the topics if for every topic there is a member of the team proficient in this topic.

Find a team that is collectively proficient in all the topics such that the maximum difference between the smartness of any two students in that team is **minimized**. Output this difference.

Input

Each test contains multiple test cases. The first line contains the number of test cases t ($1 \le t \le 10^4$). The description of the test cases follows.

The first line of each test case contains n and m ($1 \le n, m \le 10^5$).

The second line of each test case contains n integers a_1, a_2, \ldots, a_n ($1 \le a_i \le 10^5$).

It is guaranteed that the sum of n over all test cases does not exceed 10^5 .

It is guaranteed that the sum of m over all test cases does not exceed 10^5 .

Output

For each test case, print the answer on a new line. If there is no solution, output -1.

Sample 1

Input	Output
3	-1
2 4	Θ
3 7	3
4 2	
4 2 3 7 2 9	
5 7	
6 4 3 5 7	

Note

In the first test case, we have participants with smartnesses 3 and 7, and m=4. Thus, there is no student with smartness divisible by 2. Since $2 \le m$, there is no way to choose a team.

In the second test case, we can select the participant with smartness 2 to be the only one on the team. This way the team will be collectively proficient in both topics 1 and 2.

In the third test case, consider the team with participants of smartnesses 4, 5, 6, 7. This way the team will be collectively proficient in all topics $1, 2, \ldots, 7$.