(High School) Vector

李宏毅

Hung-yi Lee

Vectors

• A vector **v** is a set of numbers

$$\mathbf{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \qquad \mathbf{v} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$
Row vector

Column vector

In this course, the term **vector** refers to a **column vector** unless being explicitly mentioned otherwise.

Vectors

$$\mathbf{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

- components: the entries of a vector.
 - The i-th component of vector **v** refers to v_i
 - $v_1=1$, $v_2=2$, $v_3=3$

• If a vector only has less than four components, you can visualize it.

http://mathinsight.org/vectors_carte sian coordinates 2d 3d#vector3D

Scalar Multiplication

Vector Addition

http://mathinsight.org/vectors_carte sian coordinates 2d 3d#vector3D

Vector Set
$$\begin{cases} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}, \begin{bmatrix} 6 \\ 8 \\ 9 \end{bmatrix}, \begin{bmatrix} 9 \\ 0 \\ 2 \end{bmatrix} \end{cases}$$
 A vector set with 4 elements

A vector set can contain infinite elements

Vector Set

• \Re^n : We denote the set of all vectors with n entries by \Re^n .

Properties of Vector

The objects have the following 8 properties are "vectors".

- For any vectors \mathbf{u} , \mathbf{v} and \mathbf{w} in $\mathbf{\mathcal{R}}^n$, and any scalars a and b
 - u + v = v + u
 - (u + v) + w = u + (v + w)
 - There is an element $\mathbf{0}$ in \mathcal{R}^n such that $\mathbf{0} + \mathbf{u} = \mathbf{u}$
 - There is an element \mathbf{u}' in \mathcal{R}^n such that $\mathbf{u}' + \mathbf{u} = 0$
 - 1u = u
 - (ab)u = a(bu)
 - a(u+v) = au + av
 - (a+b)u = au + bu

$$\mathbf{0} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} \text{ zero vector}$$

u' is the additive inverse of u

More Properties of Vector

$$0 + u = u$$

 $u' + u = 0$

- For any vectors \mathbf{u} , \mathbf{v} and \mathbf{w} in $\mathbf{\mathcal{R}}^n$, and any scalar a
 - If u + v = w + v, then u = w
 - If **u** + **v** = **u** + **w**, then **v** = **w**
 - The zero vector $\mathbf{0}$ is unique. It is the only vector in $\mathbf{\mathcal{R}}^n$ that satisfies $\mathbf{0} + \mathbf{u} = \mathbf{u}$
 - Each vector in \mathcal{R}^n has exactly one \mathbf{u}'
 - 0u = 0
 - a0 = 0
 - u' = -1(u) = -u
 - (-a)u = a(-u) = -(au)