COMP9313: Big Data Management

Lecturer: Xin Cao

Course web site: http://www.cse.unsw.edu.au/~cs9313/

Chapter 5.1: Spark III

Part 1: Spark Structured APIs

A Brief Review of RDD

- The RDD is the most basic abstraction in Spark. There are three vital characteristics associated with an RDD:
 - Dependencies (lineage)
 - When necessary to reproduce results, Spark can recreate an RDD from the dependencies and replicate operations on it. This characteristic gives RDDs resiliency.
 - Partitions (with some locality information)
 - Partitions provide Spark the ability to split the work to parallelize computation on partitions across executors
 - Reading from HDFS—Spark will use locality information to send work to executors close to the data
 - Compute function: Partition => Iterator[T]
 - An RDD has a compute function that produces an Iterator[T] for the data that will be stored in the RDD.

Compute Average Values for Each Key

Assume that we want to aggregate all the ages for each name, group by name, and then compute the average age for each name

```
pairs = sc.parallelize([(1, 2), (3, 1), (3, 6), (4,2)])
            pairs1 = pairs.mapValues(lambda x: (x, 1))
pairs2 = pairs1.reduceByKey(lambda x, y: (x[0] + y[0], x[1]+y[1]))
    avg = pairs2.mapValues(lambda x: x[0]/x[1]).collect()
                [(1, 2.0), (3, 3.5), (4, 2.0)]
```

Problems of RDD Computation Model

- The compute function (or computation) is opaque to Spark
 - Whether you are performing a join, filter, select, or aggregation, Spark only sees it as a lambda expression

```
pairs1 = pairs.mapValues(lambda x: (x, 1))
```

- Spark has no way to optimize the expression, because it's unable to inspect the computation or expression in the function.
- Spark has no knowledge of the specific data type in RDD
 - To Spark it's an opaque object; it has no idea if you are accessing a column of a certain type within an object

Spark's Structured APIs

- Spark 2.x introduced a few key schemes for structuring Spark,
- This specificity is further narrowed through the use of a set of common operators in a DSL (domain specific language), including the Dataset APIs and DataFrame APIs
 - These operators let you tell Spark what you wish to compute with your data
 - It can construct an efficient query plan for execution.
- Structure yields a number of benefits, including better performance and space efficiency across Spark components

Spark's Structured APIs

E.g, for the average age problem, using the DataFrame APIs:

```
from pyspark.sql.functions import avg

data_df = spark.createDataFrame([("Brooke",
20), ("Denny", 31), ("Jules", 30),("TD", 35),
  ("Brooke", 25)], schema = 'name string, age
  int')

data_df.groupBy("name").agg(avg("age")).show()
```


Spark's Structured APIs

- Spark now knows exactly what we wish to do: group people by their names, aggregate their ages, and then compute the average age of all people with the same name.
- Spark can inspect or parse this query and understand our intention, and thus it can optimize or arrange the operations for efficient execution.

Datasets and DataFrames

- A Dataset is a distributed collection of data
 - provides the benefits of RDDs (e.g., strong typing) with the benefits of Spark SQL's optimized execution engine
 - A Dataset can be constructed from JVM objects and then manipulated using functional transformations (map, flatMap, etc.)
- ❖ A DataFrame is a Dataset organized into named columns
 - It is conceptually equivalent to a table in a relational database or a data frame in R/Python, but with richer optimizations
 - An abstraction for selecting, filtering, aggregating and plotting structured data
 - A DataFrame can be represented by a Dataset of Rows
 - Scala: DataFrame is simply a type alias of Dataset[Row]
 - Java: use Dataset<Row> to represent a DataFrame

DataFrame API

- Spark DataFrames are like distributed in-memory tables with named columns and schemas, where each column has a specific data type.
- When data is visualized as a structured table, it's not only easy to digest but also easy to work with

Id (Int)	First (String)	Last (String)	Url (String)	Published (Date)	Hits (Int)	Campaigns (List[Strings])
1	Jules	Damji	https:// tinyurl.1	1/4/2016	4535	[twitter, LinkedIn]
2	Brooke	Wenig	https:// tinyurl.2	5/5/2018	8908	[twitter, LinkedIn]
3	Denny	Lee	https:// tinyurl.3	6/7/2019	7659	[web, twitter, FB, LinkedIn]
4	Tathagata	Das	https:// tinyurl.4	5/12/2018	10568	[twitter, FB]

The table-like format of a DataFrame

Difference between DataFrame and RDD

DataFrame more like a traditional database of two-dimensional form, in addition to data, but also to grasp the structural information of the data, that is, schema

- RDD[Person] although with Person for type parameters, but the Spark framework itself does not understand internal structure of Person class
- DataFrame has provided a detailed structural information, making Spark SQL can clearly know what columns are included in the dataset, and what is the name and type of each column. Thus, Spark SQL query optimizer can target optimization

DataFrame Data Sources

- Spark SQL's Data Source API can read and write DataFrames using a variety of formats.
 - E.g., structured data files, tables in Hive, external databases, or existing RDDs

Create DataFrames with Schema

- A PySpark DataFrame can be created via pyspark.sql.SparkSession.createDataFrame typically by passing a list of lists, tuples, dictionaries and pyspark.sql.Rows, a pandas DataFrame and an RDD consisting of such a list.
- You can Create a PySpark DataFrame with an explicit schema.

```
// Given a list of pairs including names and ages
data = [("Brooke", 20), ("Denny", 31), ("Jules", 30),("TD", 35),
  ("Brooke", 25)]

// Create DataFrame' from a list
dataDF = spark.createDataFrame(data, schema = "name string, age
int")
```

You can create a PySpark DataFrame from an RDD consisting of a list of tuples.

```
// Given a pair RDD including name and age
data = sc.parallelize([("Brooke", 20), ("Denny", 31), ("Jules",
30),("TD", 35), ("Brooke", 25)])

// Create DataFrame' from an RDD
dataDF = spark.createDataFrame(data, schema=["name","age"])
```

Create DataFrames with Schema

You can also create a PySpark DataFrame from a list of rows

```
from pyspark.sql import Row

// Given a list of rows containing names and ages
data = [Row(name = "Brooke", age = 20), Row(name = "Denny", age =
31), Row(name = "Jules", age = 30), Row(name = "TD", age = 35),
Row(name = "Brooke", age = 25)]

// Create DataFrame' from a list of Rows
dataDF = spark.createDataFrame(data)
```

You can print out the schema of a DataFrame

```
>>> dataDF.printSchema()
root
|-- name: string (nullable = true)
|-- age: long (nullable = true)
```

All the DataFrame APIs are listed here:
https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/dataframe.html

- The top rows of a DataFrame can be displayed using DataFrame.show().
- PySpark DataFrame show() is used to display the contents of the DataFrame. By default, it shows only 20 Rows, and the column values are truncated at 20 characters.

```
>>> dataDF.show()
+----+
| name|age|
+----+
|Brooke| 20|
| Denny| 31|
| Jules| 30|
| TD| 35|
|Brooke| 25|
+----+
```

Schemas in Spark

- A schema in Spark defines the column names and associated data types for a DataFrame
- Defining a schema up front offers three benefits
 - You relieve Spark from the onus of inferring data types.
 - You prevent Spark from creating a separate job just to read a large portion of your file to ascertain the schema, which for a large data file can be expensive and time-consuming.
 - You can detect errors early if data doesn't match the schema.
- Define a DataFrame programmatically with three named columns, author, title, and pages

```
from pyspark.sql.types import *
schema = StructType([StructField("author", StringType(), False),
StructField("title", StringType(), False),
StructField("pages", IntegerType(), False)])
```

StructType & StructField

- PySpark StructType & StructField classes are used to programmatically specify the schema to the DataFrame and create complex columns like nested struct, array, and map columns.
- StructType is a collection of StructField's that defines column name, column data type, boolean to specify if the field can be nullable or not and metadata.

```
from pyspark.sql.types import *
schema = StructType([StructField("author", StringType(), False),
StructField("title", StringType(), False),
StructField("pages", IntegerType(), False)])

data = [("book1", "author1",300), ("book2", "author2",600),
  ("book3", "author3",900)]

dataDF = spark.createDataFrame(data, schema)
```

```
>>> dataDF.printSchema()
root
  |-- author: string (nullable = false)
  |-- title: string (nullable = false)
  |-- pages: integer (nullable = false)
```

```
>>> dataDF.show()
+----+
|author| title|pages|
+----+
| book1|author1| 300|
| book2|author2| 600|
| book3|author3| 900|
```

Spark's Basic Data Types (Python)

Spark supports basic internal data types, which can be declared in your Spark application or defined in your schema

Data type	Value assigned in Python	API to instantiate	
ByteType	int	DataTypes.ByteType	
ShortType	int	DataTypes.ShortType	
IntegerType	int	DataTypes.IntegerType	
LongType	int	DataTypes.LongType	
FloatType	float	DataTypes.FloatType	
DoubleType	float	DataTypes.DoubleType	
StringType	str	DataTypes.StringType	
BooleanType	bool	DataTypes.BooleanType	
DecimalType	decimal.Decimal	DecimalType	

Structured and Complex Data Types (Python)

For complex data analytics, you'll need Spark to handle complex data types, such as maps, arrays, structs, dates, timestamps, fields, etc.

Data type	Value assigned in Python	API to instantiate	
BinaryType	bytearray	BinaryType()	
Timestamp Type	datetime.datetime	TimestampType()	
DateType	datetime.date	DateType()	
ArrayType	List, tuple, or array	ArrayType(dataType, [nullable])	
МарТуре	dict	MapType(keyType, valueType, [nullable])	
StructType	List or tuple	StructType([fields])	
StructField	A value type corresponding to the type of this field	StructField(name, dataType, [nullable])	

Columns

- Each column describe a type of field
- We can list all the columns by their names, and we can perform operations on their values using relational or computational expressions
 - List all the columns

```
>>> dataDF.columns
['name', 'age']
```

Access a particular column with col and it returns a Column type

```
>>> dataDF.name
Column<'name'>
```

We can also use logical or mathematical expressions on columns

Columns

withColumn() returns a new DataFrame by adding a column or replacing the existing column that has the same name

```
>>> from pyspark.sql.functions import upper
>>> dataDF.withColumn("name_upper", upper(dataDF.name)).show()
+----+
| name|age|name_upper|
+----+
|Brooke| 20| BR00KE|
| Denny| 31| DENNY|
| Jules| 30| JULES|
| TD| 35| TD|
|Brooke| 25| BR00KE|
+----+
```

```
>>> dataDF.withColumn("name", upper(dataDF.name)).show()
+----+
| name|age|
+----+
|BR00KE| 20|
| DENNY| 31|
| JULES| 30|
| TD| 35|
|BR00KE| 25|
+----+
```

All the Columns APIs are listed here:

https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/column.html

Rows

- A row in Spark is a generic Row object, containing one or more columns
- Row is an object in Spark and an ordered collection of fields, we can access its fields by an index starting at 0
- Row objects can be used to create DataFrames. A DataFrame can be collected as a list of Rows

Grouping Data

❖ DataFrame also provides a way of handling grouped data by using the common approach, split-apply-combine strategy. It groups the data by a certain condition applies a function to each group and then combines them back to the DataFrame.

```
>>> df.show()
 color| fruit| v1| v2|
   red|banana|
               2| 20|
  blue|banana|
               3 j 30 j
   red|carrot|
               4 | 40
  blue| grape|
               5 | 50 |
   red|carrot|
 black|carrot|
               6| 60|
   red|banana|
               7| 70|
   red| grape|
```

Grouping and then applying the avg() function to the resulting

groups

Transformations, Actions, and Lazy Evaluation

- Spark DataFrame operations can also be classified into two types: transformations and actions.
 - All transformations are evaluated lazily their results are not computed immediately, but they are recorded or remembered as a lineage
 - An action triggers the lazy evaluation of all the recorded transformations

Narrow and Wide Transformations

- Transformations can be classified as having either narrow dependencies or wide dependencies
 - Any transformation where a single output partition can be computed from a single input partition is a narrow transformation, like filter()
 - Any transformation where data from other partitions is read in, combined, and written to disk is a wide transformation, like groupBy()

WordCount using DataFrame

```
fileRDD =
    spark.sparkContext.textFile("file:///home/comp9313/inputText")

wordsDF = fileRDD.flatMap(lambda x: x.split(" ")).map(lambda x:
    (x, )).toDF("word string")

#or
    # from pyspark.sql.types import StringType
    # wordsDF = spark.createDataFrame(fileRDD.flatMap(lambda x:
    x.split(" ")), StringType()).withColumnRenamed("value", "word")

countDF = wordsDF.groupBy("word").count()
countDF.show()
```

```
>>> countDF = wordsDF.groupBy(wordsDF.word).count()
>>> countDF.show()
+----+
| word|count|
+----+
| World| 1|
| Hello| 2|
| Bye| 1|
|Hadoop| 2|
```

DataSet

Spark 2.0 unified the DataFrame and Dataset APIs as Structured APIs with similar interfaces

- The Datasets are strong typed, and so the typed errors can be detected during compile-time, providing better type safety and reliability.
- In most cases, DataFrames are sufficient unless you have special requirements or a need for stronger type safety.

Part 2: Running on a Cluster

WordCount (RDD)

Standalone code

```
from pyspark import SparkContext, SparkConf

conf = SparkConf()
conf.setMaster("local").setAppName("wordcount")
sc = SparkContext(conf=conf)

#Or you can do the below directly
#sc = SparkContext('local', wordcount')

text = sc.textFile("text.txt")
count = text.flatMap(lambda line: line.split()).map(lambda word: (word, 1)).reduceByKey(lambda a, b : a + b)
count.saveAsTextFile("results")
sc.stop()
```

- Refer to the document of <u>SparkConf</u> and <u>SparkContext</u>
- Use spark-submit to run the code in a cluster:
 - spark-submit wordcount.py

WordCount (DataFrame)

```
from pyspark.sql import Sparksession
from pyspark.sql.functions import *

spark =
    SparkSession.builder.appName("WordCount").master("local").getOrCreate()

fileDF = spark.read.text("text.txt")

wordsDF = fileDF.select(explode(split(fileDF.value, " ")).alias("word"))

countsDF = wordsDF.groupBy("word").agg(count("*").alias("count"))

countsDF.write.format("csv").save("results")

spark.stop()
```

Set Master

- Set the cluster master URL to connect to
- Parameters for setMaster:
 - local(default) run locally with only one worker thread (no parallel)
 - local[k] run locally with k worker threads
 - spark://HOST:PORT connect to Spark standalone cluster URL
 - mesos://HOST:PORT connect to Mesos cluster URL
 - yarn connect to Yarn cluster URL
 - Specified in SPARK_HOME/conf/yarn-site.xml
- setMaster parameters configurations:
 - In source code
 - SparkConf().appName("wordCount").master("local")
 - spark-submit
 - spark-submit --master local
 - In SPARK_HOME/conf/spark-default.conf
 - Set value for spark.master

Deploying Applications in Spark

spark-submit

Common flags	Explanation	
master	Indicates the cluster manager to connect to	
name	A human-readable name for your application. This will be displayed in Spark's web UI.	
executor-memory	The amount of memory to use for executors, in bytes. Suffixes can be used to specify larger quantities such as "512m" (512 megabytes) or "15g" (15 gigabytes)	
driver-memory	The amount of memory to use for the driver process, in bytes.	

```
spark-submit --master spark://hostname:7077 \
    --executor-memory 2g \
    YOUR_Python "options" "go here"
```

Launching a Program

- Spark provides a single script you can use to submit your program to it called spark-submit
 - The user submits an application using spark-submit
 - spark-submit launches the driver program and invokes the main() method specified by the user
 - The driver program contacts the cluster manager to ask for resources to launch executors
 - The cluster manager launches executors on behalf of the driver program
 - The driver process runs through the user application. Based on the RDD actions and transformations in the program, the driver sends work to executors in the form of tasks
 - Tasks are run on executor processes to compute and save results
 - If the driver's main() method exits or it calls SparkContext.stop(), it will terminate the executors and release resources from the cluster manager

In-Memory Can Make a Big Difference

Two iterative Machine Learning algorithms:

References

- http://spark.apache.org/docs/latest/index.html
- Spark SQL guide: http://spark.apache.org/docs/latest/sql-programming-guide.html
- https://spark.apache.org/docs/3.3.0/api/scala/org/apache/spark/index. html
- https://spark.apache.org/docs/3.3.0/api/python/getting_started/index.ht ml
- Learning Spark. 2nd edition
- Spark SQL Functions: https://sparkbyexamples.com/spark/spark-sql-functions/

End of Chapter 5.1