专题 3-4 二次函数选填压轴 7 类常考热点问题

01

颢型•解读

【题型1】二次函数图象与系数的关系(给出对称轴)

2023 年湖南省娄底市中考真题

2023 年四川省达州市中考真题

2023年山东省烟台市中考真题

2023 年四川省遂宁市中考真题

2022 年辽宁省丹东市中考真题

【题型 2】二次函数图象与系数的关系(给出对称轴和交点坐标)

2023 年黑龙江省牡丹江市中考真题

2023 年四川省乐山市中考真题

2023 年四川省眉山市中考真题

2023年辽宁省营口市中考真题

2023 年黑龙江省齐齐哈尔市中考真题

2023 年四川省广安市中考真题

2023年辽宁省丹东市中考真题

2023 武汉市华中科技大学附属中学二模

2022 年内蒙古呼伦贝尔市、兴安盟中考真题

2022 黑龙江省牡丹江市中考真题

【题型3】二次函数图象与系数的关系(题目没给出图像)

2022·四川凉山中考真题

2023·湖北武汉中考真题

2023·湖北黄冈中考真题

2023.青海西宁·中考真题

2023 年湖南省邵阳市中考真题

【淘宝店铺: 向阳百分百】

2023 年湖北省黄石市中考真题

2023 年内蒙古呼和浩特市中考真题

【题型4】二次函数实际应用

2022·四川广安中考真题

2023·湖北襄阳中考真题

2023.吉林长春中考真题

2022.四川南充·中考真题

【题型5】求参数的值或范围

2022 年吉林省长春市中考真题

2023·湖北十堰中考真题

2022.内蒙古呼和浩特中考真题

2023 年福建省中考真题

2022·湖南湘西中考真题

2022·江苏盐城中考真题

2023年四川省南充市中考真题

2023·浙江衢州中考真题

2023 年四川省泸州市中考真题

2022:山东济南中考真题

2022·湖北荆门中考真题

【题型6】二次函数新定义问题

2023年山东省菏泽市中考真题

2023.四川巴中中考真题

2023 年四川省乐山市中考真题

【题型7】二次函数中的规律探究问题

2023.山东东营.九年级校考

广东梅州·九年级统考

02

满分•技巧

二次函数图像与系数 a, b, c 的关系

如图,二次函数 $y=ax^2+bx+c$ 的图象关于直线 x=1 对称,与 x 轴交于 $A(x_1,0)$, $B(x_2,0)$ 两点,若 $-2 < x_1 < -1$

考法	解决方法	本题结果
① a, b, c	a:二次函数图像开口向上时, a>0;	a> 0
	开口向下,则 a<0,	b <0
	b: 和a共同决定了函数对称轴的位	c<0
	置,"左同右异"	
	c: c 为图像和 y 轴交点的纵坐标	
	两个交点: $b^2-4ac<0$	$b^2 - 4ac < 0$
$b^2 - 4ac$	一个交点: $b^2-4ac=0$	
	没有交点: $b^2-4ac>0$	
3a+b+c	用特殊值进行判断:	a+b+c<0
a-b+c	a+b+c 即为当 $x=1$ 时的函数值;	a-b+c<0
4a+2b+c	4a-2b+c 为当 $x=-2$ 时的函数值	
(4) 3a+2b	只有 a, b 时, 用对称轴代换, 消去	$\therefore -\frac{b}{2a} = 1 \; , \; \therefore b = -2a \; ,$
	一个未知数进行判断	
		3a+2b=3a-4a=-a>0
⑤c+a	只有 a , c 或只有 b , c 时, 先用对	
	称轴代换, 消去一个未知数, 然后	$\therefore b = -2a < 0, \therefore a + c < 0$
	利用④中的结果判断结果	

	若 c 的系数不是 1, 可以先化成 1 再	$b = -2a \mid b + 2c = 2(-a + c)$
⊚ b+2c	进行计算,或这把③中的某个式子	而 $-a=a+b$,
	中的 c 的系数变成题里的形式	2(-a+c)=2(a+b+c)<0
$\bigcirc am^2 + bm$	同时加上 c , am^2+bm+c , $a+b+c$	$am^2+bm\geqslant a+b$
和a+b的	第一个式子是当 x=m 时的函数值,	
大小关系	第二个式子是当 x=1 时的函数值;	
	由图可知, x=1 时函数取最小值	
	$(a+c)^2 - b^2 = (a+b+c)(a+c-b)$	$(a+c)^2-b^2=(a+b+c)(a+c-b)>0$
$9 b^2 - 4ac$	可以把代数式变成顶点的纵坐标公	假如定点纵坐标小于-1,
和4a的大	式,顶点坐标 $\left(-\frac{b}{2a}, \frac{4ac-b^2}{4a}\right)$	$\mathbb{P}\left(\frac{4ac-b^2}{4a} < -1, \ 4ac-b^2 < -4a,\right)$
小关系		b^2 – $4ac$ > $4a$
⑩若给出 x1	a,c的数量关系可以知道,	可以判断关于a,b, c任意式子的正负
的值		, , , , , , , , , , , , , , , , , , ,
	即 $x_1x_2 = \frac{c}{a}$, 进而可知 a,b,c 的关系	也可以求出以a,b, c为参数的方程的根

03 / 核心•题型

【题型1】二次函数图象与系数的关系(给出对称轴)

2023 年湖南省娄底市中考真题

1. 已知二次函数 $y = ax^2 + bx + c$ 的图象如图所示,给出下列结论: ① abc < 0; ② 4a - 2b + c > 0; ③ a - b > m(am + b) (m 为任意实数); ④若点($-3, y_1$)和点($3, y_2$)在该图象上,则 $y_1 > y_2$. 其中正确的结论是(___)

【淘宝店铺:向阳百分百】

【答案】D

【分析】由抛物线的开口向下,与 y 轴交于正半轴,对称轴在 y 轴的左边,可得 a<0 , c>0 , b<0 , 故①不符合题意; 当 x=0 与 x=-2 时的函数值相等,可得 4a-2b+c=c>0 , 故②符合题意; 当 x=-1 时函数值最大,可得 $a-b\geq m(am+b)$,故③不符合题意; 由点 $(-3,y_1)$ 和点 $(3,y_2)$ 在该图象上,而 3-(-1)=4>(-1)-(-3)=2 ,且离抛物线的对称轴越远的点的函数值越小,可得④符合题意.

【详解】解: ∵抛物线的开口向下, 与 ν 轴交于正半轴, 对称轴在 ν 轴的左边,

:
$$a < 0$$
, $c > 0$, $x = -\frac{b}{2a} < 0$,

 $\therefore b < 0$

∴ abc > 0, 故①不符合题意;

 \therefore 对称轴为直线 x=-1.

∴当x=0与x=-2时的函数值相等,

∴ 4a-2b+c=c>0, 故②符合题意;

∵当x=-1时函数值最大.

 $a-b+c \ge am^2+bm+c$

∴ a-b≥m(am+b); 故③不符合题意;

∴点(-3,y₁)和点(3,y₂)在该图象上,

而3-(-1)=4>(-1)-(-3)=2, 且离抛物线的对称轴越远的点的函数值越小,

∴ y₁ > y₂. 故④符合题意;

故选: D.

2023 年四川省达州市中考真题

2. 如图,拋物线 $y = ax^2 + bx + c$ (a,b,c 为常数) 关于直线 x = 1 对称. 下列五个结论: ① abc > 0; ② 2a + b = 0; ③ 4a + 2b + c > 0; ④ $am^2 + bm > a + b$; ⑤ 3a + c > 0. 其中正确的有 ()

A. 4个

B. 3个

C. 2个

D. 1个

【答案】B

【分析】由抛物线的开口方向、与y轴交点以及对称轴的位置可判断a、b、c 的符号,由此可判断①正确;由抛物线的对称轴为x=1,得到 $-\frac{b}{2a}=1$,即可判断②;可知x=2 时和x=0 时的y 值相等可判断③正确;由图知x=1 时二次函数有最小值,可判断④错误;由抛物线的对称轴为x=1 可得【淘宝店铺:向阳百分百】

b=-2a, 因此 $y=ax^2-2ax+c$, 根据图像可判断⑤正确.

【详解】①:: 抛物线的开口向上,

 $\therefore a > 0$.

·· 抛物线与 y 轴交点在 y 轴的负半轴上.

 $\therefore c < 0.$

由 $-\frac{b}{2a} > 0$ 得,b < 0,

 $\therefore abc > 0$,

故①正确:

②: 抛物线的对称轴为x=1,

$$\therefore -\frac{b}{2a} = 1,$$

 $\therefore b = -2a$

 $\therefore 2a+b=0$, 故②正确;

③由抛物线的对称轴为x=1. 可知x=2时和x=0时的 ν 值相等.

由图知x=0时, y<0,

 $\therefore x = 2 \text{ H}, y < 0$

 $\mathbb{P} 4a + 2b + c < 0$.

故③错误:

④由图知 x=1时二次函数有最小值,

 $\therefore a+b+c \leq am^2+bm+c,$

 $\therefore a+b \leq am^2+bm$,

 $a+b \le m(ax+b)$,

故④错误;

⑤由抛物线的对称轴为x=1可得 $-\frac{b}{2a}=1$,

 $\therefore b = -2a$

 $\therefore y = ax^2 - 2ax + c,$

4x = -1 H, y = a + 2a + c = 3a + c.

由图知 x=-1 时 y>0,

 $\therefore 3a+c>0.$

故⑤正确.

综上所述:正确的是①②⑤,有3个,

故选: B

2023 年山东省烟台市中考真题

3. 如图,抛物线 $y = ax^2 + bx + c$ 的顶点 A 的坐标为 $\left(-\frac{1}{2}, m\right)$,与 x 轴的一个交点位于 0 合和 1 之间,则以下结论: ① abc > 0;② 2b + c > 0;③若图象经过点 $\left(-3, y_1\right)$, $\left(3, y_2\right)$,则 $y_1 > y_2$;④若关于 x 的一元二次方程 $ax^2 + bx + c - 3 = 0$ 无实数根,则 m < 3 . 其中正确结论的个数是()

A. 1

B. 2

C. 3

D. 4

【答案】C

【分析】根据图象,分别得出a、b、c 的符号,即可判断①;根据对称轴得出a=b,再根据图象得出当x=1时,y=a+b+c<0,即可判断②;分别计算两点到对称轴的距离,再根据该抛物线开口向下,在抛物线上的点离对称轴越远,函数值越小,即可判断③;将方程 $ax^2+bx+c-3=0$ 移项可得 $ax^2+bx+c=3$,根据该方程无实数根,得出抛物线 $y=ax^2+bx+c$ 与直线y=3没有交点,即可判断④.

【详解】解: ①::该抛物线开口向下, : a<0,

∵该抛物线的对称轴在y轴左侧, ∴b<0,

: 该抛物线于y 轴交于正半轴, : c>0, : abc>0,

故①正确,符合题意;

②: $A\left(-\frac{1}{2},m\right)$, : 该抛物线的对称轴为直线 $x=-\frac{b}{2a}=-\frac{1}{2}$, 则 a=b,

当 x=1 时, y=a+b+c, 把 a=b 得: 当 x=1 时, y=2b+c,

由图可知: 当x=1时, y<0, ∴ 2b+c<0,

故②不正确,不符合题意;

③:该抛物线的对称轴为直线 $x = -\frac{1}{2}$,

 \therefore (-3, y_1) 到对称轴的距离为 $-\frac{1}{2}$ - (-3) = $\frac{5}{2}$, (3, y_2) 到对称轴的距离为 3 - $\left(-\frac{1}{2}\right)$ = $\frac{7}{2}$,

:: 该抛物线开口向下, :. 在抛物线上的点离对称轴越远, 函数值越小,

$$\therefore \frac{5}{2} < \frac{7}{2}$$
, $\therefore y_1 > y_2$, 故③正确, 符合题意;

④将方程 $ax^2 + bx + c - 3 = 0$ 移项可得 $ax^2 + bx + c = 3$,

 $\therefore ax^2 + bx + c - 3 = 0$ 无实数根, ∴ 抛物线 $y = ax^2 + bx + c$ 与直线 y = 3 没有交点,

$$\therefore A\left(-\frac{1}{2}, m\right), \quad \therefore m < 3.$$
 故④正确

综上: 正确的有: ①③④, 共三个.

故选: C.

2023 年四川省遂宁市中考真题

4. 抛物线 $y = ax^2 + bx + c$ ($a \neq 0$) 的图象如图所示,对称轴为直线 x = -2. 下列说法: ① abc < 0;

②c-3a>0;③ $4a^2-2ab \ge at(at+b)(t)$ 为全体实数);④若图象上存在点 $A(x_1,y_1)$ 和点 $B(x_2,y_2)$,

当 $m < x_1 < x_2 < m + 3$ 时,满足 $y_1 = y_2$,则 m 的取值范围为-5 < m < -2. 其中正确的个数有 ()

A. 1个

B. 2个

C. 3 个 D. 4 个

【答案】C

【分析】开口方向,对称轴,与y轴的交点位置判断①,特殊点判断②,最值判断③,对称性判断

【详解】: 她物线的开口向下,对称轴为直线 $x = -\frac{b}{2a} = -2 < 0$, 她物线与y轴交点位于负半轴,

a < 0, b < 0, c < 0

 $\therefore abc < 0$.

故①正确:

由图象可知, a-b+c>0, 根据对称轴, 得b=4a,

 $\therefore a-4a+c>0$

 $\therefore c-3a>0$

故②正确:

∵ 抛物线的开口向下, 对称轴为直线 $x = -\frac{b}{2a} = -2 < 0$,

∴ 抛物线的最大值为 y = 4a - 2b + c.

当x = t 时, 其函数值为 $y = at^2 + bt + c$,

 $\therefore 4a-2b+c \ge at^2+bt+c$

 $\therefore 4a - 2b \ge at^2 + bt$,

a < 0,

 $\therefore a(4a-2b) \leq a(at^2+bt)$,

 $\therefore 4a^2 - 2ab \leq at(at+b)$,

故③错误:

如图所示, $A(x_1, y_1)$ 和点 $B(x_2, y_2)$ 满足 $y_1 = y_2$,

 $\therefore A(x_1, y_1)$ 和点 $B(x_2, y_2)$ 关于对称轴对称,

$$\therefore x_1 \langle -2, x_2 \rangle - 2$$

 $m < x_1 < x_2 < m + 3$

 $\therefore m < x_1 < -2, -2 < x_2 < m + 3$

解得-5 < m < -2.

故4正确;

故选 C.

2022 年辽宁省丹东市中考真题

5. 如图,抛物线 $y = ax^2 + bx + c$ ($a \neq 0$) 与 x 轴交于点 A (5, 0),与 y 轴交于点 C,其对称轴为直线 x = 2,结合图象分析如下结论:①abc > 0;②b + 3a < 0;③当 x > 0 时,y 随 x 的增大而增大;④ 若一次函数 y = kx + b ($k \neq 0$) 的图象经过点 A,则点 E (k, b) 在第四象限;⑤点 M 是抛物线的 顶点,若 $CM \perp AM$,则 $a = \frac{\sqrt{6}}{6}$. 其中正确的有(

A. 1个

B. 2个

【答案】D

【分析】①正确,根据抛物线的位置判断即可;②正确,利用对称轴公式,可得 b=-4a,可得结论;③错误,应该是 x>2 时,y 随 x 的增大而增大;④正确,判断出 k>0,可得结论;⑤正确,设 抛物线的解析式为 y=a (x+1) (x-5)=a $(x-2)^2-9a$,可得 M (2, -9a),C (0, -5a),过点 M 作 $MH \perp y$ 轴于点 H,设对称轴交 x 轴于点 K. 利用相似三角形的性质,构建方程求出 a 即可.

【详解】解: : 抛物线开口向上,

 $\therefore a > 0$,

:对称轴是直线 x=2,

$$\therefore -\frac{b}{2a} = 2,$$

∴
$$b = -4a < 0$$

∵抛物线交 y 轴的负半轴,

$$\therefore c < 0$$
,

∴abc>0, 故①正确,

$$b = -4a, a > 0,$$

∴b+3a=-a<0, 故②正确,

观察图象可知, 当 $0 < x \le 2$ 时, y 随 x 的增大而减小, 故③错误,

一次函数 y=kx+b ($k\neq 0$) 的图象经过点 A,

b < 0.

 $\therefore k > 0$, 此时 E(k, b) 在第四象限, 故④正确.

∴可以假设抛物线的解析式为 $y=a(x+1)(x-5)=a(x-2)^2-9a$,

$$\therefore M$$
 (2, -9a), C (0, -5a),

过点M作 $MH \perp y$ 轴于点H, 设对称轴交x轴于点K.

$$AM \perp CM$$
,

$$\therefore \angle AMC = \angle KMH = 90^{\circ},$$

$$\therefore \angle CMH = \angle KMA$$
,

$$\therefore \angle MHC = \angle MKA = 90^{\circ},$$

$$\therefore \triangle MHC \hookrightarrow \triangle MKA$$
,

$$\therefore \frac{MH}{MK} = \frac{CH}{AK}$$

$$\therefore \frac{2}{-9a} = \frac{-4a}{3},$$

$$\therefore a^2 = \frac{1}{6},$$

$$:a>0$$
,

$$\therefore a = \frac{\sqrt{6}}{6}$$
, 故⑤正确,

故选: D.

【题型2】二次函数图象与系数的关系(给出对称轴和交点坐标)

2023 年黑龙江省牡丹江市中考真题

6. 如图, 抛物线 $y = ax^2 + bx + c$ 经过点 (-2,0), (3,0). 下列结论: ① $\frac{ab}{c} > 0$; ② c = 2b; ③若抛物

线上有点 $\left(\frac{5}{2},y_1\right)$, $\left(-3,y_2\right)$, $\left(-\frac{1}{2},y_3\right)$, 则 $y_2 < y_1 < y_3$; ④方程 $cx^2 + bx + a = 0$ 的解为 $x_1 = \frac{1}{2}$, $x_2 = -\frac{1}{3}$, 其中正确的个数是 ()

A. 4

B. 3

C. 2

D. 1

【答案】D

【分析】本题考查二次函数,掌握二次函数的性质是解题的关键.

根据二次函数图象可知: a<0 , $-\frac{b}{2a}>0$, c>0 , 得出 $\frac{ab}{c}<0$, 故①不正确;将点(-2,0) , (3,0)代入,得出: a+b=0 , 再求出 c=-6b , 故②不正确;根据函数图象可得 $y_2< y_1< y_3$,故③正确;把 a=-b , c=6b代入方程 $cx^2+bx+a=0$,得 $6bx^2+bx-b=0$,解得 $x_1=-\frac{1}{2}$, $x_2=\frac{1}{3}$,故④不正确.

【详解】解:根据二次函数图象可知:a<0, $-\frac{b}{2a}>0$,c>0,

 $\therefore b > 0$,

 $\therefore \frac{ab}{c} < 0$,故①不正确;

将点(-2,0), (3,0)代入得出: $\begin{cases} 4a-2b+c=0 \\ 9a+3b+c=0 \end{cases}$

②-① 得出: a+b=0,

 $\therefore a = -b$.

再代入①得出: c=6b, 故②不正确;

由图象可知: 抛物线开口向下, 与x轴交点为(-2,0), (3,0).

$$\therefore -3 < -2 < -\frac{1}{2} < 0 < \frac{5}{2} < 3$$
,

 $y_2 < 0$, $y_3 > 0$, $y_1 > 0$,

 \therefore 抛物线对称轴为直线 $x = -\frac{b}{2a} = -\frac{b}{-2b} = \frac{1}{2}$,

$$\because \frac{1}{2} < \frac{5}{2} < 3, \quad \left| -\frac{1}{2} - \frac{1}{2} \right| < \left| \frac{5}{2} - \frac{1}{2} \right|,$$

 $\therefore y_3 > y_1 > 0$

∴ y₂ < y₁ < y₃, 故③正确;

把a = -b, c = 6b代入方程 $cx^2 + bx + a = 0$,

 ${\it \textbf{6}bx}^2 + bx - b = 0$

$$b(2x+1)(3x-1)=0$$

$$\therefore x_1 = -\frac{1}{2}, \quad x_2 = \frac{1}{3},$$

故④不正确;

正确的个数是1个,

故选: D.

2023 年四川省乐山市中考真题

7. 如图,抛物线 $y = ax^2 + bx + c$ 经过点 A(-1,0)、 B(m,0) ,且 1 < m < 2 ,有下列结论: ① b < 0 ; ② a + b > 0 ; ③ 0 < a < -c ; ④若点 $C\left(-\frac{2}{3}, y_1\right)$, $D\left(\frac{5}{3}, y_2\right)$ 在抛物线上,则 $y_1 > y_2$. 其中,正确的结论有(

A. 4个

B. 3个

C. 2个

D. 1个

【答案】B

【分析】抛物线 $y = ax^2 + bx + c$ 经过点 A(-1,0)、 B(m,0) ,且 1 < m < 2 ,可以得到 a > 0 , $0 < -\frac{b}{2a} < \frac{1}{2}$,从而可以得到 b 的正负情况,从而可以判断①;继而可得出 -b < a ,则 a + b > 0 ,即可判断②;由图象可知,当 x = -1 时, y = 0 ,即 a - b + c = 0 ,所以有 a + c = b ,从而可得出 0 < a < -c ,即可判断③;利用 $\left|\frac{1}{2} - \left(-\frac{2}{3}\right)\right| = \left|\frac{5}{3} - \frac{1}{2}\right|$,再根据 $0 < -\frac{b}{2a} < \frac{1}{2}$,所以 $\left|-\frac{b}{2a} - \left(-\frac{2}{3}\right)\right| < \left|\frac{5}{3} - \left(-\frac{b}{2a}\right)\right|$,从而可得 $y_1 < y_2$,即可判断④,

【详解】解: : 地物线 $y = ax^2 + bx + c$ 的图象开口向上, : a > 0,

:: 抛物线 $y = ax^2 + bx + c$ 经过点 A(-1,0)、 B(m,0) , 且 1 < m < 2 ,

$$\therefore 0 < -\frac{b}{2a} < \frac{1}{2}, \therefore b < 0, 故①正确;$$

$$\therefore 0 < -\frac{b}{2a} < \frac{1}{2}, \quad a > 0, \quad \therefore -b < a$$

 $\therefore a+b>0$, 故②正确; 由图象可知, 当x=-1时, y=0, 即a-b+c<0, $\therefore a+c=b$

$$\Rightarrow a > 0$$
, $b < 0$, $\therefore 0 < a < -c$, 故③正确; $\Rightarrow \left| \frac{1}{2} - \left(-\frac{2}{3} \right) \right| = \left| \frac{5}{3} - \frac{1}{2} \right|$,

$$\mathbf{X} : 0 < -\frac{b}{2a} < \frac{1}{2}, \quad \mathbf{\cdot} \left| -\frac{b}{2a} - \left(-\frac{2}{3} \right) \right| < \left| \frac{5}{3} - \left(-\frac{b}{2a} \right) \right|,$$

- :: 抛物线 $y = ax^2 + bx + c$ 的图象开口向上, $\therefore y_1 < y_2$, 故④错误.
- ∴正确的有①②③共3个, 故选: B.

2023 年四川省眉山市中考真题

8. 如图, 二次函数 $y = ax^2 + bx + c(a \neq 0)$ 的图象与 x 轴的一个交点坐标为(1,0), 对称轴为直线 x = -1,

下列四个结论: ① abc<0; ② 4a-2b+c<0; ③ 3a+c=0; ④ 当 -3< x<1 时, $ax^2+bx+c<0$; 其中正确结论的个数为()

- A. 1个
- B. 2个
- C. 3 个 D. 4 个

【答案】D

【分析】根据二次函数开口向上,与y轴交于y轴负半轴,a>0,c<0,根据对称轴为直线x=-1可 得b=2a>0,由此即可判断①;求出二次函数与x轴的另一个交点坐标为(-3,0),进而得到当x=-2时、v<0,由此即可判断②: 根据x=1时、y=0,即可判断③: 利用图象法即可判断④.

【详解】解: ∵二次函数开口向上, 与 v 轴交于 v 轴负半轴,

- $\therefore a > 0, c < 0$
- :二次函数的对称轴为直线 x=-1.
- $\therefore -\frac{b}{2a} = -1$,
- b = 2a > 0
- ∴ abc<0. 故①正确:
- ::二次函数 $y = ax^2 + bx + c (a \neq 0)$ 的图象与 x 轴的一个交点坐标为 (1,0),
- ∴二次函数 $y = ax^2 + bx + c(a \neq 0)$ 的图象与 x 轴的另一个交点坐标为 (-3,0),
- ∴ 当 x = -2 时, y < 0,
- ∴ 4a-2b+c<0, 故②正确;
- $\therefore x = 1$ $\forall y = 0$,
- $\therefore a+b+c=0$.
- ∴ a+2a+c=0, 即 3a+c=0, 故③正确;

由函数图象可知, 当-3<x<1时, $ax^2 + bx + c$ <0, 故④正确;

综上所述, 其中正确的结论有①②③④共4个, 故选 D.

2023 年辽宁省营口市中考真题

9. 如图. 抛物线 $y = ax^2 + bx + c(a \neq 0)$ 与 x 轴交于点 A(-3,0) 和点 B(1,0) ,与 y 轴交于点 C. 下列说法: ① abc<0 ; ②抛物线的对称轴为直线 x=-1 ; ③当-3< x<0 时, $ax^2 + bx + c>0$; ④当 x>1 时,y 随 x 的增大而增大;⑤ $am^2 + bm \le a - b$ (m 为任意实数)其中正确的个数是(

A. 1个

B. 2个

【答案】C

【分析】根据抛物线开口向下,与 y 轴交于正半轴,可得 a < 0, c > 0 ,根据 A(-3,0) 和点 B(1,0) 可得 抛物线的对称轴为直线 x = -1 ,即可判断②;推出 b = 2a < 0 ,即可判断①;根据函数图象即可判断 ③④;根据当 x = -1 时,抛物线有最大值 a - b + c ,即可得到 $am^2 + bm \le a - b$,即可判断⑤.

【详解】解: ∵抛物线开口向下, 与 y 轴交于正半轴,

- $\therefore a < 0, c > 0$
- ∵抛物线与 x 轴交于点 A(-3,0)和点 B(1,0),
- ∴ 抛物线对称轴为直线 $x = \frac{-3+1}{2} = -1$, 故②正确;

$$\frac{b}{a} - \frac{b}{2a} = -1$$
,

- $\therefore b = 2a < 0$,
- ∴ abc > 0, 故①错误;

由函数图象可知, 3-3 < x < 0时, 抛物线的函数图象在x轴上方,

- ∴ 3 3 < x < 0 时, $ax^2 + bx + c > 0$, 故③正确;
- ∵ 抛物线对称轴为直线 x=-1 且开口向下.
- \therefore 当 x > -1 时, y 随 x 的增大而减小, 即当 x > 1 时, y 随 x 的增大而减小, 故④错误;
- ∵抛物线对称轴为直线x=-1且开口向下,
- $am^2 + bm + c \le a b + c$
- $\therefore am^2 + bm \le a b$, 故⑤正确;

综上所述, 正确的有②③⑤,

故选 C.

2023 年黑龙江省齐齐哈尔市中考真题

- 10. 如图,二次函数 $y = ax^2 + bx + c(a \neq 0)$ 图像的一部分与 x 轴的一个交点坐标为(3,0),对称轴为直线 x = 1,结合图像给出下列结论:
- ① abc > 0; ② b = 2a; ③ 3a + c = 0;
- ④关于 x 的一元二次方程 $ax^2 + bx + c + k^2 = 0$ ($a \neq 0$) 有两个不相等的实数根;
- ⑤若点 (m, y_1) , $(-m+2, y_2)$ 均在该二次函数图像上,则 $y_1 = y_2$. 其中正确结论的个数是 ()

- A. 4
- B. 3
- C. 2
- D. 1

【答案】B

【分析】根据抛物线的对称轴、开口方向、与y轴的交点确定a、b、c的正负,即可判定①和②;将点(3,0)代入抛物线解析式并结合b=-2a即可判定③;运用根的判别式并结合a、c的正负,判定判别式是否大于零即可判定④;判定点 (m,y_1) , $(-m+2,y_2)$ 的对称轴为x=1,然后根据抛物线的对称性即可判定⑤.

【详解】解:: 地物线开口向上, 与 v 轴交于负半轴.

- $\therefore a > 0, c < 0$
- : 抛物线的对称轴为直线x=1,
- ∴ $-\frac{b}{2a}$ = 1, $\mathbb{P} b$ = -2a < 0, \mathbb{P} ②错误;
- ∴ abc > 0, 即①正确,
- :: 二次函数 $y = ax^2 + bx + c(a \neq 0)$ 图像的一部分与 x 轴的一个交点坐标为 (3,0)
- $\therefore 9a + 3b + c = 0$
- $\therefore 9a+3(-2a)+c=0$, 即 3a+c=0, 故③正确;
- **:** 关于 x 的一元二次方程 $ax^2 + bx + c + k^2 = 0$ ($a \neq 0$), $\Delta = b^2 4a(c + k^2) = b^2 4ac 4ak^2$, a > 0, c < 0,
- \therefore -4ac > 0, -4ak² ≤ 0,
- ∴无法判断 $b^2 4ac 4ak^2$ 的正负,即无法确定关于 x 的一元二次方程 $ax^2 + bx + c + k^2 = 0$ ($a \neq 0$)的根的情况.故④错误:

$$\frac{m+(-m+2)}{2}=1$$

∴点 (m, y_1) , $(-m+2, y_2)$ 关于直线 x=1 对称

:点 (m,y_1) , $(-m+2,y_2)$ 均在该二次函数图像上,

∴ y₁ = y₂, 即⑤正确;

综上, 正确的为①③⑤, 共3个

故选: B.

2023 年四川省广安市中考真题

11. 如图所示,二次函数 $y = ax^2 + bx + c(a, b, c)$ 为常数, $a \neq 0$) 的图象与 x 轴交于点

A(-3,0), B(1,0). 有下列结论: ① abc > 0; ②若点 $(-2, y_1)$ 和 $(-0.5, y_2)$ 均在抛物线上,则 $y_1 < y_2$;

③5a-b+c=0; ④4a+c>0. 其中正确的有 ()

A. 1个

B. 2 个

C. 3 个 D. 4 个

【答案】C

【分析】根据二次函数图像的性质、二次函数图像与系数的关系以及与X轴交点问题逐项分析判断 即可.

【详解】解:由图可知,二次函数开口方向向下,与y轴正半轴交于一点,

 $\therefore a < 0$, c > 0.

$$\because -\frac{b}{2a} < 0$$
,

 $\therefore b < 0$.

 $\therefore abc > 0$.

故①正确.

: A(-3,0), B(1,0) 是关于二次函数对称轴对称,

$$\therefore -\frac{b}{2a} = -1.$$

 \therefore (-2, y_1)在对称轴的左边, (-0.5, y_2)在对称轴的右边, 如图所示,

 $\therefore y_1 < y_2.$

故②正确.

: 图象与x轴交于点A(-3,0),B(1,0),

 $\therefore 9a - 3b + c = 0$, a + b + c = 0.

 $\therefore 10a - 2b + 2c = 0.$

 $\therefore 5a - b + c = 0.$

故③正确.

$$\because -\frac{b}{2a} = -1,$$

 $\therefore b = 2a$.

当 x = 1 时, y = 0,

 $\therefore a+b+c=0$.

 $\therefore 3a + c = 0$

 $\therefore c = -3a$

 $\therefore 4a + c = 4a - 3a = a < 0$.

故4)不正确.

综上所述, 正确的有①②③.

故选: C.

2023年辽宁省丹东市中考真题

12. 抛物线 $y = ax^2 + bx + c(a \neq 0)$ 与 x 轴的一个交点为 A(-3,0),与 y 轴交于点 C,点 D 是抛物线的 顶点,对称轴为直线 x = -1,其部分图象如图所示,则以下 4 个结论: ① abc > 0;② $E(x_1, y_1)$, $F(x_2, y_2)$ 是抛物线 $y = ax^2 + bx(a \neq 0)$ 上的两个点,若 $x_1 < x_2$,且 $x_1 + x_2 < -2$,则 $y_1 < y_2$;③在 $x_2 + bx(a \neq 0)$ 上的两个点, 是 $x_3 + b(x_2)$,但 有一动点 $x_3 + b(x_3)$,但 $x_3 + b(x_3)$

A. 1个

B. 2个

C. 3个

D. 4个

【答案】A

【分析】由图可知a>0,b>0,c<0,即可判断①; 易得 $y=ax^2+bx+c$ 向上平移|c|个到位长度得到

 $y = ax^2 + bx$,则 $y = ax^2 + bx$ 的对称轴也为直线 x = -1,根据 $x_1 + x_2 < -2$,得出 $\frac{x_1 + x_2}{2} < -1$,则 $E(x_1, y_1)$ 离对称轴的距离大于 $F(x_2, y_2)$ 离对称轴的距离,即可判断②;作点 C 关于 x 轴对称的对应点 C',连接 C'D,交 x 轴于点 P,把 A(-3,0)代入 $y = ax^2 + bx + c$ 得到 0 = 9a - 3b + c,根据对称轴得到 b = 2a,则 c = -3a,进而得出 C'(0,3a),把 x = -1 代入 $y = ax^2 + bx + c$ 得出 D(1,-4a),用待定系数法求出直线 C'D 的函数解析式为 y = 7ax + 3a,即可判断③;由图可知,当 2b - 4 < -4a 时,抛物线 $y = ax^2 + bx + c$ 与直线 y = 2b - 4 没有交点,则原方程无实数根,求出 b < 1,结合 b > 0,即可判断④.

【详解】解: 由图可知,

- :: 该抛物线开口向上, 对称轴在 v 轴左侧, 与 v 轴交于负半轴,
- a > 0, b > 0, c < 0
- ∴ abc<0, 故①不正确, 不符合题意;
- $\therefore y = ax^2 + bx + c$ 向上平移 |c| 个到位长度得到 $y = ax^2 + bx$,
- ∴ $y = ax^2 + bx$ 的对称轴也为直线 x = -1,
- $x_1 + x_2 < -2$
- $\therefore \frac{x_1 + x_2}{2} < -1,$
- $x_1 < x_2$
- ∴ $E(x_1, y_1)$ 离对称轴的距离大于 $F(x_2, y_2)$ 离对称轴的距离,
- :: 函数开口向上, 离对称轴越远函数值越大,
- ∴ y₁ > y₂, 故②不正确, 不符合题意;

作点 C 关于 x 轴对称的对应点 C' , 连接 C'D , 交 x 轴于点 P ,

把
$$A(-3,0)$$
 代入 $y = ax^2 + bx + c$ 得: $0 = 9a - 3b + c$.

:: 抛物线 $y = ax^2 + bx + c$ 的对称轴为直线 x = -1,

$$\therefore -\frac{b}{2a} = -1$$
, $\downarrow b = 2a$,

- ∴ 0 = 9a 6a + c, 整理得: c = -3a,
- C(0,-3a) C'(0,3a).

把 x=-1 代入 $y=ax^2+bx+c$ 得: y=a-b+c=a-2a-3a=-4a,

D(1,-4a)

设直线 C'D 的函数解析式为 y = mx + n.

把C'(0,3a), D(-1,-4a)代入得:

$$\begin{cases} 3a = n \\ -4a = -m + n \end{cases}, \quad \text{解得:} \quad \begin{cases} m = 7a \\ n = 3a \end{cases},$$

∴直线 C'D 的函数解析式为 y = 7ax + 3a.

把y=0代入得: 0=7ax+3a,

解得:
$$x = -\frac{3}{7}$$
,

$$\therefore P\left(-\frac{3}{7},0\right)$$
, 故③正确, 符合题意;

方程 $ax^2 + b(x-2) + c = -4(a \neq 0)$ 整理为 $ax^2 + bx + c = 2b - 4$,

D(-1,-4a),

由图可知,当2b-4<-4a时,抛物线 $y=ax^2+bx+c$ 与直线y=2b-4没有交点,则原方程无实数根,

b = 2a.

 $\therefore 2b-4<-2b$.

解得: *b*<1.

b > 0.

∴b的取值范围为0<b<1,故④不正确,不符合题意;

综上: 正确的有③, 共1个,

故选: A.

2023 武汉市华中科技大学附属中学二模

13. 二次函数 $y=ax^2+bx+c$ ($a\neq 0$) 的大致图象如图所示,顶点坐标为(-2, -9a),下列结论: ① abc>0;②16a-4b+c<0;③若方程 $ax^2+bx+c=-1$ 有两个根 x_1 和 x_2 ,且 $x_1< x_2$,则 $-5< x_1< x_2<1$;④若方程 $|ax^2+bx+c|=1$ 有四个根,则这四个根的和为 -8.其中正确结论的是 _____.

【答案】234

【分析】根据抛物线图象判断参数符号判断①,由顶点坐标可得 b=4a、c=-5a,进而判断②;由方程 $ax^2+bx+c=-1$ 有两个根 x_1 和 x_2 ,且 $x_1 < x_2$,即可判断③;讨论 $ax^2+bx+c=\pm 1$,结合根与系数关系求四个根的和判断④.

【详解】解: :: 抛物线的开口向上,则 a>0,对称轴在 y 轴的左侧,则 b>0,交 y 轴的负半轴,则 c<0,

∴abc<0, ①错误;

∵ 抛物线的顶点坐标 (-2, -9a),

$$\therefore -\frac{b}{2a} = -2, \quad \frac{4ac - b^2}{4a} = -9a,$$

- ∴b=4a, c=-5a,
- ∴ 抛物线的解析式为 $v=ax^2+4ax-5a$.
- ∴ 16a 4b + c = 16a 16a 5a = -5a < 0, ②正确;
- : 抛物线 $y=ax^2+4ax-5a$ 交 x 轴于 (-5, 0), (1, 0),
- ∴若方程 a(x+5)(x-1) = -1 有两个根 x_1 和 x_2 ,且 $x_1 < x_2$,则 $-5 < x_1 < x_2 < 1$,③正确;

若方程 $|ax^2+bx+c|=1$ 有四个根,设方程 $ax^2+bx+c=1$ 的两根分别为 x_1 , x_2 ,

则
$$\frac{x_1 + x_2}{2} = -2$$
,可得 $x_1 + x_2 = -4$,

设方程 $ax^2 + bx + c = -1$ 的两根分别为 x_3 , x_4 , 则 $\frac{x_3 + x_4}{2} = -2$, 可得 $x_3 + x_4 = -4$,

所以这四个根的和为-8, ④正确.

2022 年内蒙古呼伦贝尔市、兴安盟中考真题

14. 如图, 抛物线 $y = ax^2 + bx + c$ ($a \neq 0$) 的对称轴为直线 x = 1, 抛物线与 x 轴的一个交点坐标为 (-1,0)),下列结论: ① abc < 0 ; ② 3a + c = 0 ; ③ 当 y > 0 时,x 的取值范围是 $-1 \le x < 3$; ④点 $\left(-2, y_1\right)$, $(2,y_2)$ 都在抛物线上,则有 $y_1 < 0 < y_2$. 其中结论正确的个数是 ()

A. 1个

B. 2个

C. 3个 D. 4个

【答案】C

【分析】根据抛物线的开口,对称轴,特殊值x=-1可判断①②正确,根据图像可得,当y>0时,是 x 轴上方的图像,可判断③错误,求出 $y_1 = 4a - 2b + c$, $y_2 = 4a + 2b + c$,结合①②的结论即可判断出

④正确.

【详解】: 抛物线的开口向下, a<0, 对称轴为 x=1,

$$\therefore -\frac{b}{2a} = 1,$$

- b = -2a > 0
- :: 抛物线交于 y 轴正半轴,
- $\therefore c > 0$.
- ∴ abc<0, 故①正确;
- :: 抛物线与 x 轴交于(-1,0),
- ∴ y = -1 时, a b + c = 0,
- b = -2a.
- ∴ a = -2a 代入a b + c = 0, 得 a + c = 0, 故②正确;

根据图像可得, 当 y>0 时, 是 x 轴上方的图像, 抛物线过点(-1,0), 对称轴为 x=1,

根据抛物线的对称性可得, 抛物线过点(3,0),

- ∴y>0 时, 有-1<x<3, 故③错误;
- :: 抛物线与x轴的两个交点为: (-1,0), (3,0), 对称轴为x=1,

当
$$x=-2$$
 时, $y_1=4a-2b+c$,

当
$$x=2$$
 时, $y_2 = 4a + 2b + c$,

- : b = -2a, 3a+c=0, a<0,
- $y_1 = 4a 2(-2a) + (-3a) = 5a < 0$, $y_2 = 4a + 2(-2a) + (-3a) = -3a > 0$,
- ∴ y₁<0<y₂, 故④正确

2022 黑龙江省牡丹江市中考真题

15. 如图, 抛物线 $y = ax^2 + bx + c(a \neq 0)$ 的对称轴是 x = -2, 并与 x 轴交于 A, B 两点, 若 OA = 5OB,

则下列结论中: ① abc > 0; ② $(a+c)^2 - b^2 = 0$; ③ 9a + 4c < 0; ④若 m 为任意实数,则 $am^2 + bm + 2b \ge 4a$,正确的个数是(

A. 1

B. 2

C. 3

D. 4

【答案】C

【分析】根据函数图像的开口方向,对称轴,图像与y轴的交点,即可判断①;根据对称轴 x=-2,OA=5OB,可得 OA=5,OB=1,点 A (-5, 0),点 B (1, 0),当 x=1 时,y=0 即可判断②;根据对称轴 x=-2 以及 a+b+c=0 得 a 与 c 的关系,即可判断③;根据函数的最小值是当 x=-2 时 y=4a-2b+c 即可判断④.

【详解】解: ①观察图像可知 a>0, b>0, c<0,

 $\therefore abc < 0$.

故①错误

- ②: 对称轴为直线 x=-2, OA=5OB, 可得 OA=5, OB=1
- ∴点 A (-5, 0), 点 B (1, 0)
- ∴ 当 x=1 时, y=0 即 a+b+c=0
- $(a+c)^2-b^2=(a+b+c)(a+c-b)=0$

故②正确

- ③抛物线的对称轴为直线 x=-2,即 $-\frac{b}{2a}=-2$
- ∴*b*=4*a*
- a+b+c=0
- $\therefore 5a+c=0$
- $\therefore c = -5a$
- $\therefore 9a + 4c = -11a < 0$,

故③正确

④ 当 x=-2 时函数有最小值 y=4a-2b+c,

当 x=m 时, $am^2+bm+c \ge 4a-2b+c$

整理得, 若 m 为任意实数, 则 $am^2+bm+2b\geq 4a$,

故④正确

故选C

【题型3】二次函数图象与系数的关系(题目没给出图像)

2022·四川凉山中考真题

- 16. 已知抛物线 $y=ax^2+bx+c$ ($a\neq 0$) 经过点 (1, 0) 和点 (0, -3),且对称轴在 y 轴的左侧,则下列结论错误的是 ()
 - A. a > 0
 - B. a+b=3
 - C. 抛物线经过点(-1,0)
 - D. 关于x的一元二次方程 $ax^2+bx+c=-1$ 有两个不相等的实数根

【答案】C

【分析】根据抛物线的图像与性质, 根据各个选项的描述逐项判定即可得出结论.

【详解】解: A、根据抛物线 $y=ax^2+bx+c$ ($a\neq 0$) 经过点 (1, 0) 和点 (0, -3), 且对称轴在 y 轴的左侧可知 a>0, 该说法正确, 故该选项不符合题意;

B、由抛物线 $y=ax^2+bx+c$ ($a\neq 0$) 经过点 (1, 0) 和点 (0, -3) 可知 $\begin{cases} a+b+c=0 \\ c=-3 \end{cases}$,解得 a+b=3 ,该说法正确,故该选项不符合题意:

- C、由抛物线 $y=ax^2+bx+c$ ($a\neq 0$) 经过点 (1, 0), 对称轴在 y 轴的左侧, 则抛物线不经过 (-1, 0), 该说法错误, 故该选项符合题意;
- D、关于x的一元二次方程 $ax^2+bx+c=-1$ 根的情况,可以转化为抛物线 $y=ax^2+bx+c$ ($a\neq 0$)与直线y=-1的交点情况,根据抛物线 $y=ax^2+bx+c$ ($a\neq 0$)经过点 (1,0) 和点 (0,-3),-3<-1<0,结合抛物线开口向上,且对称轴在y轴的左侧可知抛物线 $y=ax^2+bx+c$ ($a\neq 0$)与直线y=-1的有两个不同的交点,该说法正确,故该选项不符合题意;故选:C.

2023·湖北武汉中考真题

- 17. 抛物线 $y = ax^2 + bx + c$ (a,b,c 是常数,c < 0) 经过 (1,1),(m,0),(n,0) 三点,且 $n \ge 3$. 下列四个结论:
- ① b < 0;
- (2) $4ac b^2 < 4a$:
- ③当n=3时, 若点(2,t)在该抛物线上, 则t>1;
- ④若关于x的一元二次方程 $ax^2 + bx + c = x$ 有两个相等的实数根,则 $0 < m \le \frac{1}{3}$.

其中正确的是____(填写序号).

【答案】②③④

【分析】①根据图象经过(1,1), c<0, 且抛物线与x轴的一个交点一定在(3,0)或(3,0)的右侧, 判断出抛物线的开口向下, a<0, 再把(1,1)代入 $y=ax^2+bx+c$ 得a+b+c=1, 即可判断①错误:

②先得出抛物线的对称轴在直线 x=1.5 的右侧,得出抛物线的顶点在点(1,1) 的右侧,得出 $\frac{4ac-b^2}{4a}>1$,根据 4a<0,即可得出 $4ac-b^2<4a$,即可判断②正确:

③先得出抛物线对称轴在直线x=1.5的右侧,得出(1,1)到对称轴的距离大于(2,t)到对称轴的距离,根据a<0,抛物线开口向下,距离抛物线越近的函数值越大,即可得出③正确:

④根据方程有两个相等的实数解,得出 $\Delta = (b-1)^2 - 4ac = 0$,把(1,1)代入 $y = ax^2 + bx + c$ 得a + b + c = 1,即1 - b = a + c,求出a = c,根据根与系数的关系得出 $mn = \frac{c}{a} = 1$,即 $n = \frac{1}{m}$,根据 $n \ge 3$,得出 $\frac{1}{m} \ge 3$,求出m的取值范围,即可判断④正确.

【详解】解:①图象经过(1,1), c<0, 即抛物线与y轴的负半轴有交点, 如果抛物线的开口向上,则抛物线与x轴的两个交点都在(1,0)的左侧,

- $(n,0) \neq n \geq 3$,
- ∴ 抛物线与x轴的一个交点一定在(3,0)或(3,0)的右侧,
- ∴ 抛物线的开口一定向下, 即 a < 0,

把
$$(1,1)$$
代入 $y = ax^2 + bx + c$ 得 $a + b + c = 1$,

$$\mathbb{P} b = 1 - a - c$$
.

- a < 0, c < 0,
- ∴b>0,故①错误:
- 2: a < 0, b > 0, c < 0,

$$\therefore \frac{c}{a} > 0,$$

- ∴方程 $ax^2 + bx + c = 0$ 的两个根的积大于 0, 即mn > 0,
- $n \ge 3$,
- $\therefore m > 0$

$$\therefore \frac{m+n}{2} > 1.5,$$

即抛物线的对称轴在直线 x=1.5 的右侧,

∴ 抛物线的顶点在点(1,1)的右侧,

$$\frac{4ac-b^2}{4a} > 1,$$

- $\therefore 4a < 0$.
- ∴ 4ac-b² < 4a, 故②正确;
- (3): m > 0.
- ∴ 抛物线对称轴在直线 x=1.5 的右侧,
- ∴(1,1) 到对称轴的距离大于(2,t) 到对称轴的距离,

- ∵a<0, 抛物线开口向下,
- :. 距离抛物线越近的函数值越大,
- ∴ t>1, 故③正确;
- ④方程 $ax^2 + bx + c = x$ 可变为 $ax^2 + (b-1)x + c = x$,
- :方程有两个相等的实数解,
- $\therefore \triangle = (b-1)^2 4ac = 0$
- $\therefore (a+c)^2 4ac = 0,$

 $p^2 a^2 + 2ac + c^2 - 4ac = 0$

- $\therefore (a-c)^2 = 0,$
- $\therefore a-c=0$

 $\mathbb{P} a = c$.

- ∵(*m*,0),(*n*,0) 在抛物线上.
- ∴ m, n 为方程 $ax^2 + bx + c = 0$ 的两个根,
- $\therefore mn = \frac{c}{a} = 1$,
- $\therefore n = \frac{1}{m}$,
- $n \ge 3$
- $\frac{1}{m} \ge 3$,
- $\therefore 0 < m \le \frac{1}{3}$, 故④正确;

综上分析可知, 正确的是234.

故答案为: ②③④.

2023·湖北黄冈中考真题

18. 已知二次函数 $y = ax^2 + bx + c(a < 0)$ 的图象与 x 轴的一个交点坐标为(-1,0), 对称轴为直线 x = 1,

下列论中: ①a-b+c=0; ②若点 $(-3,y_1),(2,y_2),(4,y_3)$ 均在该二次函数图象上,则 $y_1 < y_2 < y_3$;

③若 m 为任意实数,则 $am^2 + bm + c \le -4a$;④方程 $ax^2 + bx + c + 1 = 0$ 的两实数根为 x_1, x_2 ,且 $x_1 < x_2$,

则 $x_1 < -1, x_2 > 3$. 正确结论的序号为()

- A. 123
- B. 134
- C. 234
- D. (1)(4)

【答案】B

【分析】将(-1,0)代入 $y=ax^2+bx+c$,可判断①;根据抛物线的对称轴及增减性可判断②;根据抛物线的顶点坐标可判断③;根据 $y=ax^2+bx+c+1$ 的图象与x轴的交点的位置可判断④.

【详解】解: 将(-1,0)代入 $y = ax^2 + bx + c$, 可得a - b + c = 0,

故①正确:

- :二次函数图象的对称轴为直线x=1,
- \therefore 点 $(-3, y_1), (2, y_2), (4, y_3)$ 到对称轴的距离分别为: 4, 1, 3,
- : a < 0.
- . 图象开口向下, 离对称轴越远, 函数值越小,
- $\therefore y_1 < y_3 < y_2,$

故②错误:

- :: 二次函数图象的对称轴为直线 $x = -\frac{b}{2a} = 1$,
- $\therefore b = -2a$

 $\mathbf{X} : a - b + c = \mathbf{0}$

- $\therefore a+2a+c=0$
- $\therefore c = -3a$.
- ∴ 当 x=1 时,y 取最大值,最大值为 y=a+b+c=a-2a-3a=-4a,

即二次函数 $y = ax^2 + bx + c(a < 0)$ 的图象的顶点坐标为(1,-4a),

∴若 m 为任意实数,则 $am^2 + bm + c \le -4a$

故③正确:

- ::二次函数图象的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),
- \therefore 与x轴的另一个交点坐标为(3,0)。
- $\therefore y = ax^2 + bx + c(a < 0)$ 的图象向上平移一个单位长度, 即为 $y = ax^2 + bx + c + 1$ 的图象,
- $\therefore v = ax^2 + bx + c + 1$ 的图象与 x 轴的两个交点一个在 (-1,0) 的左侧,另一个在 (3,0) 的右侧,
- ∴ 若方程 $ax^2 + bx + c + 1 = 0$ 的两实数根为 x_1, x_2 , 且 $x_1 < x_2$, 则 $x_1 < -1, x_2 > 3$,

故④正确;

综上可知, 正确的有①③④

2023·青海西宁·中考真题

- 19. 直线 $y_1 = ax + b$ 和抛物线 $y_2 = ax^2 + bx$ (a, b 是常数,且 $a \neq 0$) 在同一平面直角坐标系中,直线 $y_1 = ax + b$ 经过点(-4,0). 下列结论:
- ①抛物线 $y_2 = ax^2 + bx$ 的对称轴是直线 x = -2
- ②抛物线 $y_2 = ax^2 + bx$ 与 x 轴一定有两个交点
- ③关于 x 的方程 $ax^2 + bx = ax + b$ 有两个根 $x_1 = -4$, $x_2 = 1$
- ④若a > 0, 当x < -4或x > 1时, $y_1 > y_2$

其中正确的结论是()

- A. 1234 B. 123 C. 23
- D. (1)(4)

【答案】B

【分析】①可得-4a+b=0,从而可求b=4a,即可求解;②可得 $\Delta=b^2-4ac=b^2\geq 0$,由 $a\neq 0$,可得 $\Delta=b^2>0$,即可求解;③可判断抛物线也过(-4,0),从而可得方程 $ax^2+(b-a)x-b=0$ 的一个根为 x=-4 ,可求 抛 物 线 $y_3=ax^2+(b-a)x-b$ 的 对 称 轴 为 直 线 $x=-\frac{3}{2}$,从 而 可 得 抛 物 线 $y_3=ax^2+(b-a)x-b$ 的 对 称 轴 为 直 线 $x=-\frac{3}{2}$,从 而 可 得 抛 物 线 $y_3=ax^2+(b-a)x-b$ 与 x 轴的另一个交点为(1,0),即可求解;④当a>0,当-4< x<1时, $y_1< y_2$,即可求解.

【详解】解: ①: 直线 $y_1 = ax + b$ 经过点 (-4,0),

$$\therefore -4a+b=0$$

$$\therefore b = 4a$$
.

抛物线的对称轴为直线 $x = -\frac{b}{2a} = -\frac{4a}{2a} = -2$,

故①正确:

$$2\Delta = b^2 - 4ac = b^2 \ge 0$$
,

由①
$$4b = 4a$$
.

$$: a \neq 0$$

$$\therefore b \neq 0$$
.

$$\therefore \Delta = b^2 > 0$$

:. 抛物线
$$y_2 = ax^2 + bx$$
 与 x 轴一定有两个交点,

故②正确:

③当x = -4时,

$$y = 16a - 4b$$

$$=16a-16a=0$$

由
$$ax^2 + bx = ax + b$$
 得

∴ 方程
$$ax^2 + (b-a)x - b = 0$$
.

:. 方程的一个根为
$$x = -4$$
.

抛物线
$$y_3 = ax^2 + (b-a)x - b$$
,

$$x = -\frac{b-a}{2a} = -\frac{4a-a}{2a} = -\frac{3}{2}$$
,

:. 抛物线
$$y_3 = ax^2 + (b-a)x - b$$
 的对称轴为直线 $x = -\frac{3}{2}$,

与x轴的一个交点为(-4,0),

$$\therefore x - \left(-\frac{3}{2}\right) = -\frac{3}{2} - \left(-4\right),$$

解得: x=1,

:. 抛物线
$$y_3 = ax^2 + (b-a)x - b = x$$
 轴的另一个交点为 (1,0).

$$\therefore$$
 关于 x 的方程 $ax^2 + bx = ax + b$ 有两个根 $x_1 = -4$, $x_2 = 1$,

故③正确:

④ 当 a > 0 , 当 -4 < x < 1 时, $y_1 < y_2$,

故④错误:

故选: B.

2023 年湖南省邵阳市中考真题

- 20. 已知 $P_1(x_1, y_1), P_2(x_2, y_2)$ 是抛物线 $y = ax^2 + 4ax + 3$ (a 是常数, $a \neq 0$)上的点,现有以下四个结 论:①该抛物线的对称轴是直线x = -2;②点(0,3)在抛物线上;③若 $x_1 > x_2 > -2$,则 $y_1 > y_2$; ④若 $y_1 = y_2$,则 $x_1 + x_2 = -2$ 其中,正确结论的个数为 ()
- A. 1个
- B. 2 个 C. 3 个 D. 4 个

【答案】B

【分析】根据对称轴公式 $x = -\frac{b}{2a} = -\frac{4a}{2a} = -2$ 可判断①; 当x = 0 时, y = 3, 可判断②; 根据抛物线 的增减性,分两种情况计算可判断③;利用对称点的坐标得到 $\frac{x_1+x_2}{2}=-2$,可以判断④.

【详解】解: : 抛物线 $y = ax^2 + 4ax + 3$ (a 是常数, $a \neq 0$),

$$\therefore x = -\frac{b}{2a} = -\frac{4a}{2a} = -2,$$

故①正确:

∴点(0,3)在抛物线上,

故②正确;

当 a > 0 时, $y_1 > y_2$,

当 a < 0 时、 $y_1 < y_2$ 、

故③错误:

根据对称点的坐标得到 $\frac{x_1 + x_2}{2} = -2$,

 $x_1 + x_2 = -4$,

故④错误.

故选 B.

2023 年湖北省黄石市中考真题

21. 已知二次函数 $y = ax^2 + bx + c(a \neq 0)$ 的图像经过三点 $A(x_1, y_1), B(x_2, y_2), C(-3, 0)$, 且对称轴为直 线 x=-1. 有以下结论: ① a+b+c=0; ② 2c+3b=0; ③当 $-2 < x_1 < -1$, $0 < x_2 < 1$ 时, 有 $y_1 < y_2$; ④对于任何实数 k > 0,关于 x 的方程 $ax^2 + bx + c = k(x+1)$ 必有两个不相等的实数根. 其中结论 正确的有()

A. 1个

B. 2个

C. 3个

D. 4个

【答案】C

【分析】根据二次函数图像的对称轴为x=-1,且过C(-3,0),结合抛物线的对称轴即可求解.

【详解】解: ::二次函数 $y = ax^2 + bx + c(a \neq 0)$ 的对称轴为 x = -1, 且图像经过 C(-3,0),

$$\therefore -\frac{b}{2a} = -1, \quad \mathbb{R}^p b = 2a,$$

∴点(1,0) 在抛物线上,

 $\therefore a+b+c=0$, 故结论①正确;

由结论①正确可得,a+b+c=0,且b=2a,则 $a=\frac{b}{2}$

$$\therefore \frac{b}{2} + b + c = 0$$
, 则 $2c + 3b = 0$, 故结论②正确;

:. 点A离对称轴更近,

当a > 0时, $y_1 < y_2$; 当a < 0时, $y_1 > y_2$; 故结论③错误;

由
$$ax^2 + bx + c = k(x+1)$$
 得, $ax^2 + (b-k)x + c - k = 0$,

: 结论①正确可得, a+b+c=0, 结论②正确可得, 2c+3b=0,

$$\therefore b = -\frac{2}{3}c, \quad a = -\frac{1}{3}c,$$

k > 0.

$$\therefore \Delta = \frac{16}{9}c^2 + k^2 > 0,$$

∴该方程有两个不相等的实根,故结论④正确;

综上所述, 正确的有(1)(2)(4), 3个,

故选: C.

2023 年内蒙古呼和浩特市中考真题

- 22. 关于x的二次函数 $y = mx^2 6mx 5(m \neq 0)$ 的结论
- ①对于任意实数a,都有 $x_1 = 3 + a$ 对应的函数值与 $x_2 = 3 a$ 对应的函数值相等.

②若图象过点
$$A(x_1,y_1)$$
,点 $B(x_2,y_2)$,点 $C(2,-13)$,则当 $x_1 > x_2 > \frac{9}{2}$ 时, $\frac{y_1 - y_2}{x_1 - x_2} < 0$.

③若
$$3 \le x \le 6$$
,对应的 y 的整数值有 4 个,则 $-\frac{4}{9} < m \le -\frac{1}{3}$ 或 $\frac{1}{3} \le m < \frac{4}{9}$.

④当m > 0且 $n \le x \le 3$ 时, $-14 \le y \le n^2 + 1$,则n = 1.

其中正确的结论有()

A. 1个

B. 2个

C. 3个

D. 4个

【答案】B

【分析】先求出该函数对称轴为直线 x=3,再得出 $x_1=3+a$ 和 $x_2=3-a$ 关于直线 x=3 对称,即可判断①;把 C(2,-13) 代入 $y=mx^2-6mx-5$ ($m\neq 0$),求出 m=1,则当 x>3 时,y随 x 的增大而增大,得出 $x_1-x_2>0$, $y_1-y_2>0$,即可判断②;根据 $y=mx^2-6mx-5=m(x-3)^2-5-9m$,然后进行分类讨论:当 m>0 时,当 m<0 时,即可判断③;根据当 m>0 且 $n\leq x\leq 3$ 时,得出 y 随 x 的增大而减小,根据 x=3 时,y=-5-9m=-14,求出 m=1,则当 x=n 时, $y=n^2-6n-5=n^2+1$,求出 n 的值,即可判断④,

【详解】解: ①: 二次函数 $y = mx^2 - 6mx - 5(m \neq 0)$,

- ∴该函数的对称轴为直线 $x = -\frac{-6m}{2m} = 3$,
- $x_1 = 3 + a$, $x_2 = 3 a$,
- $\therefore \frac{x_1 + x_2}{2} = 3$, 即 (x_1, y_1) 和 (x_2, y_2) 关于直线 x = 3对称,
- ∴ $x_1 = 3 + a$ 对应的函数值与 $x_2 = 3 a$ 对应的函数值相等,故①正确,符合题意;
- ②把C(2,-13)代 $y=mx^2-6mx-5(m\neq 0)$ 得: -13=4m-12m-5,

解得: m=1,

- ∴二次函数表达式为 $y = x^2 6x 5$,
- $\therefore a=1>0$,该函数的对称轴为直线x=3,
- ∴当x>3时,y随x的增大而增大,
- $x_1 > x_2 > \frac{9}{2}$,
- $\therefore y_1 > y_2$
- $x_1 x_2 > 0, y_1 y_2 > 0$
- $\therefore \frac{y_1 y_2}{x_1 x_2} > 0$, 故②不正确, 不符合题意;
- $3 : y = mx^2 6mx 5 = m(x 3)^2 5 9m,$
- ∴ $\pm x = 3$ 时, y = -5 9m. $\pm x = 6$ 时, y = -5.

当m > 0时.

- $3 \le x \le 6$
- $\therefore v$ 随 x 的增大而增大,
- $:: 3 \le x \le 6$, 对应的y的整数值有4个,
- ∴四个整数解为: -5,-6,-7,-8.
- ∴ $-9 < -5 9m \le -8$, 解得: $\frac{1}{3} \le m < \frac{4}{9}$,

- $3 \le x \le 6$.
- $\therefore y$ 随 x 的增大而减小,
- $∴3 \le x \le 6$, 对应的y的整数值有4个,
- ∴四个整数解为: -5,-4,-3,-2.

∴ $-2 \le -5 - 9m < -1$, 解得: $-\frac{4}{9} < m \le -\frac{1}{3}$,

综上: $-\frac{4}{9} < m \le -\frac{1}{3}$ 或 $\frac{1}{3} \le m < \frac{4}{9}$, 故③正确, 符合题意;

④当m>0且 $n\leq x\leq 3$ 时, y随x的增大而减小,

 \therefore -14 \le y \le n² +1,

∴ 当 x = 3 时, y = -5 - 9m = -14, 解得: m = 1,

 $v = x^2 - 6x - 5$,

当 x=n时, $y=n^2-6n-5=n^2+1$,

解得: n=-1, 故4)不正确, 不符合题意;

综上: 正确的有①③, 共2个,

故选: B.

【题型4】二次函数实际应用

2022·四川广安中考真题

23. 如图是抛物线形拱桥, 当拱顶离水面 2 米时, 水面宽 6 米, 水面下降_____米, 水面宽 8 米.

【答案】 $\frac{14}{9}$

【分析】根据已知得出直角坐标系,通过代入A点坐标(-3, 0),求出二次函数解析式,再根据把x=4代入抛物线解析式得出下降高度,即可得出答案.

【详解】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过 画图可得知O为原点,由题意可得:AO=OB=3米,C坐标为(0, 2),

通过以上条件可设顶点式 $y=ax^2+2$, 把点 A 点坐标 (-3, 0) 代入得,

$$\therefore 9a + 2 = 0$$
,

$$\therefore a = -\frac{2}{9},$$

∴ 抛物线解析式为: $y = -\frac{2}{9}x^2 + 2$;

当水面下降,水面宽为8米时,有

把
$$x = 4$$
 代入解析式,得 $y = -\frac{2}{9} \times 4^2 + 2 = -\frac{2}{9} \times 16 + 2 = -\frac{14}{9}$;

∴水面下降 14 9 米; 故答案为: 14 9

2023·湖北襄阳中考真题

- 24. 如图,一位篮球运动员投篮时,球从 A 点出手后沿抛物线行进,篮球出手后距离地面的高度 y(m) 与篮球距离出手点的水平距离 x(m) 之间的函数关系式是 $y = -\frac{1}{5}(x \frac{3}{2})^2 + \frac{7}{2}$. 下列说法正确的是(填序号).
- ①篮球行进过程中距离地面的最大高度为3.5m;②篮球出手点距离地面的高度为2.25m.

【答案】①

【分析】先求 $y = -\frac{1}{5}(x - \frac{3}{2})^2 + \frac{7}{2}$ 的顶点为(1.5,3.5), 再求 x = 0 时y 的值即可判断.

【详解】解: 由
$$y = -\frac{1}{5}(x - \frac{3}{2})^2 + \frac{7}{2}$$
 的顶点为 (1.5,3.5),

得篮球行进过程中距离地面的最大高度为3.5m,即①正确;

由
$$y = -\frac{1}{5}(x - \frac{3}{2})^2 + \frac{7}{2}$$
 当 $x = 0$ 时, $y = -0.2 \times 2.25 + 3.5 = 3.05$,即②不正确;

故答案为: ①.

2023·吉林长春中考真题

25. 2023年5月8日,C919商业首航完成——中国民商业运营国产大飞机正式起步. 12时31分航班抵达北京首都机场,穿过隆重的"水门礼"(寓意"接风洗尘"、是国际民航中高级别的礼仪). 如图①,在一次"水门礼"的预演中,两辆消防车面向飞机喷射水柱,喷射的两条水柱近似看作形状相同的地物线的一部分. 如图②,当两辆消防车喷水口 A、B的水平距离为80米时,两条水柱在物线的顶点 H 处相遇,此时相遇点 H 距地面 20米,喷水口 A、B 距地面均为 4米. 若两辆消防车同时后退10米,两条水柱的形状及喷水口 A′、B′到地面的距离均保持不变,则此时两条水柱相遇点 H′距地面 米.

【答案】19

【分析】根据题意求出原来抛物线的解析式,从而求得平移后的抛物线解析式,再令x=0求平移后的抛物线与y轴的交点即可。

【详解】解: 由题意可知:

$$A(-40,4)$$
, $B(40,4)$, $H(0,20)$,

设抛物线解析式为: $v = ax^2 + 20$.

将A(-40,4)代入解析式 $y = ax^2 + 20$,

解得:
$$a = -\frac{1}{100}$$
,

$$\therefore y = -\frac{x^2}{100} + 20$$
,

消防车同时后退10米, 即抛物线 $y = -\frac{x^2}{100} + 20$ 向左(右) 平移10米,

平移后的抛物线解析式为: $y = -\frac{(x+10)^2}{100} + 20$,

> x = 0 , 解得: y = 19 ,

故答案为: 19.

2022·四川南充·中考真题

【答案】8

【分析】由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,则当喷头高 2.5m 时,可【淘宝店铺:向阳百分百】

设 $y=ax^2+bx+2.5$, 将 (2.5, 0) 代入解析式得出 2.5a+b+1=0; 喷头高 4m 时,可设 $y=ax^2+bx+4$,将 (3, 0) 代入解析式得 9a+3b+4=0,联立可求出 a 和 b 的值,设喷头高为 h 时,水柱落点距 O 点 4m,则此时的解析式为 $y=ax^2+bx+h$,将 (4, 0) 代入可求出 h.

【详解】解:由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,

当喷头高 2.5m 时, 可设 $y=ax^2+bx+2.5$,

将(2.5, 0)代入解析式得出 2.5a+b+1=0①,

喷头高 4m 时, 可设 $y=ax^2+bx+4$,

将(3,0)代入解析式得9a+3b+4=0②,

联立可求出 $a = -\frac{2}{3}$, $b = \frac{2}{3}$,

设喷头高为 h 时, 水柱落点距 O 点 4m,

∴此时的解析式为 $y = -\frac{2}{3}x^2 + \frac{2}{3}x + h$,

将 (4, 0) 代入可得 $-\frac{2}{3} \times 4^2 + \frac{2}{3} \times 4 + h = 0$,

解得 h=8.

故答案为: 8.

【题型5】求参数的值或范围

2022 年吉林省长春市中考真题

27. 已知二次函数 $y = -x^2 - 2x + 3$, 当 $a \cdot x \cdot \frac{1}{2}$ 时,函数值 y 的最小值为 1,则 a 的值为_____.

【答案】 $-1-\sqrt{3}$

【分析】先把函数解析式化为顶点式可得当x<-1时,y随x的增大而增大,当x>-1时,y随x的增大而减小,然后分两种情况讨论:若 $a\ge-1$;若a<-1,即可求解.

【详解】解: $y = -x^2 - 2x + 3 = -(x+1)^2 + 4$,

∴ 3x < -1时、y 随 x 的增大而增大、3x > -1 时、y 随 x 的增大而减小、

此时当 $x = \frac{1}{2}$ 时,函数值y最小,最小值为 $\frac{7}{4}$,不合题意,

$$-a^2 - 2a + 3 = 1$$

解得: $a = -1 - \sqrt{3}$ 或 $-1 + \sqrt{3}$ (含去):

综上所述, a 的值为 $-1-\sqrt{3}$.

故答案为: $-1-\sqrt{3}$

2023·湖北十堰中考真题

28. 已知点 $A(x_1, y_1)$ 在直线 y = 3x + 19 上,点 $B(x_2, y_2)$, $C(x_3, y_3)$ 在抛物线 $y = x^2 + 4x - 1$ 上,若 $y_1 = y_2 = y_3$ 且 $x_1 < x_2 < x_3$,则 $x_1 + x_2 + x_3$ 的取值范围是()

A.
$$-12 < x_1 + x_2 + x_3 < -9$$

B.
$$-8 < x_1 + x_2 + x_3 < -6$$

C.
$$-9 < x_1 + x_2 + x_3 < 0$$

D.
$$-6 < x_1 + x_2 + x_3 < 1$$

【答案】A

【分析】设直线 y=3x+19 与抛物线 $y=x^2+4x-1$ 对称轴左边的交点为 P,设抛物线顶点坐标为 Q,求得其坐标的横坐标,结合图象分析出 x_1 的范围,根据二次函数的性质得出 $x_2+x_3=2\times (-2)=-4$,进而即可求解.

【详解】解:如图所示,设直线 y=3x+19 与抛物线 $y=x^2+4x-1$ 对称轴左边的交点为 P ,设抛物线 顶点坐标为 Q

联立
$$\begin{cases} y = 3x + 19 \\ y = x^2 + 4x - 1 \end{cases}$$

解得:
$$\begin{cases} x = -5 \\ y = 4 \end{cases} \begin{cases} x = 4 \\ y = 31 \end{cases}$$

 $\therefore P(-5,4)$,

由 $y = x^2 + 4x - 1 = (x + 2)^2 - 5$, 则 Q(-2, -5), 对称轴为直线 x = -2,

设 $m = y_1 = y_2 = y_3$, 则点A, B, C在y = m上,

 $y_1 = y_2 = y_3 \perp x_1 < x_2 < x_3$

∴ A 点在 P 点的左侧,即 $x_1 < -5$, $x_2 < -2 < x_3$,

对于y=3x+19, 当y=-5, x=-8, 此时 $x_1=-8$,

 $\therefore x_1 > -8$

∴ $-8 < x_1 < -5$

∵对称轴为直线 x = -2, 则 $x_2 + x_3 = 2 \times (-2) = -4$,

∴ $x_1 + x_2 + x_3$ 的取值范围是 $-12 < x_1 + x_2 + x_3 < -9$,

2022·内蒙古呼和浩特中考真题

29. 在平面直角坐标系中,点C和点D的坐标分别为(-1,-1)和(4,-1),抛物线

 $y=mx^2-2mx+2(m\neq 0)$ 与线段 CD 只有一个公共点,则 m 的取值范围是_____.

【答案】
$$m = 3$$
 或 $-1 < m \le -\frac{3}{8}$

【分析】根据抛物线求出对称轴 x=1, y 轴的交点坐标为 (0,2),顶点坐标为 (1,2-m),直线 CD 的表达式 y=-1,分两种情况讨论: 当 m>0 时,当 m<0 时,利用抛物线的性质可知,当 a 越大,则抛物线的开口越小,即可求解.

【详解】解: 抛物线的对称轴为: $x=-\frac{-2m}{2m}=1$, 当 x=0 时, y=2, 故抛物线与 y 轴的交点坐标为

(0,2), 顶点坐标为(1,2-m), 直线 CD 的表达式y=-1,

当m>0时,且抛物线过点D(4,-1)时,

$$16m-8m+2=-1$$
, 解得 $m=-\frac{3}{8}$ (舍去),

当m>0, 抛物线 $y=mx^2-2mx+2(m\neq 0)$ 与线段 CD 只有一个公共点时,

即顶点在直线 CD 上,则 2-m=-1,解得 m=3,

当m < 0时,且抛物线过点D(4,-1)时,

$$16m-8m+2=-1$$
, 解得 $m=-\frac{3}{8}$,

当抛物线过点(-1,-1)时,

m + 2m + 2 = -1

解得, m=-1

由抛物线的性质可知, 当 a 越大,则抛物线的开口越小,且抛物线与线段 CD 只有一个公共点,

$$-1 < m \le -\frac{3}{8}$$
,

综上所述, m的取值范围为m=3或 $-1< m \le -\frac{3}{8}$,

故答案为
$$m = 3$$
或 $-1 < m \le -\frac{3}{8}$.

2023 年福建省中考真题

【答案】-1<n<0

【分析】根据题意,可得抛物线对称轴为直线 x=1,开口向上,根据已知条件得出点 A 在对称轴的【淘宝店铺: 向阳百分百】

右侧, 且火, <火, 进而得出不等式, 解不等式即可求解.

【详解】解: $v = ax^2 - 2ax + b$, a > 0

∴ 抛物线的对称轴为直线 $x = -\frac{-2a}{2a} = 1$, 开口向上,

 $A(2n+3,y_1),B(n-1,y_2)$ 分别位于抛物线对称轴的两侧,

假设点B在对称轴的右侧,则n-1>1,解得n>2,

$$\therefore 2n+3-(n-1)=n+4>0$$

∴A点在B点的右侧,与假设矛盾,则点A在对称轴的右侧,

$$\therefore \begin{cases} 2n+3>1 \\ n-1<1 \end{cases}$$

解得: -1 < n < 2

 $\mathbf{X} : \mathbf{y}_1 < \mathbf{y}_2$,

$$|(2n+3)-1| < |1-(n-1)|$$

$$2n+2 < 2-n$$
.

解得: *n* < 0

 $\therefore -1 < n < 0$

故答案为: -1<n<0.

2022·湖南湘西中考真题

31. 已知二次函数 $y=-x^2+4x+5$ 及一次函数 y=-x+b,将该二次函数在 x 轴上方的图象沿 x 轴翻折到 x 轴下方,图象的其余部分不变,得到一个新图象(如图所示),当直线 y=-x+b 与新图象有 4 个交点时,b 的取值范围是 _____.

【答案】
$$-\frac{29}{4} < b < -1$$

【分析】解方程 $-x^2+4x+5=0$ 得 A(-1,0), B(5,0), 再利用折叠的性质求出折叠部分的解析式 为 y=(x+1)(x-5) ,即 $y=x^2-4x-5$ ($-1 \le x \le 5$),然后求出直线 y=-x+b 经过点 A(-1,0) 时 b 的值和当直线 y=-x+b 与抛物线 $y=x^2-4x-5$ ($-1 \le x \le 5$) 有唯一公共点时 b 的值,从而得到当直线 y=-x+b 与新图象有 4 个交点时,b 的取值范围.

【详解】解:如图所示:

当 y=0 时, $-x^2+4x+5=0$,解得 $x_1=-1$, $x_2=5$,则 A(-1,0),B(5,0),

将该二次函数在x轴上方的图象沿x轴翻折到x轴下方的部分图象的解析式为y=(x+1)(x-5),

 $\mathbb{P}_{v} = x^2 - 4x - 5 \quad (-1 \le x \le 5),$

当直线 y = -x + b 经过点 A(-1, 0) 时,1 + b = 0,解得 b = -1;

当直线 y = -x+b 与抛物线 $y = x^2 - 4x - 5$ ($-1 \le x \le 5$) 有唯一公共点时,方程 $x^2 - 4x - 5 = -x + b$,即 $x^2 - 3x - 5 - b = 0$ 有相等的实数解,即 $\Delta = 3^2 - 4 \times 1 \times (-5 - b) = 0$

解得
$$b = -\frac{29}{4}$$
,

所以当直线 y = -x + b 与新图象有 4 个交点时,b 的取值范围为 $-\frac{29}{4} < b < -1$,

故答案为: -29 < b < -1.

2022·江苏盐城中考真题

32. 若点 P(m,n) 在二次函数 $y=x^2+2x+2$ 的图象上,且点 P 到 Y 轴的距离小于 2,则 n 的取值范围

是_____.

【答案】1≤n<10

【分析】先判断 -2 < m < 2,再根据二次函数的性质可得: $n = m^2 + 2m + 2 = (m+1)^2 + 1$,再利用二次函数的性质求解 n 的范围即可.

【详解】解: : 点 P 到 V 轴的距离小于 2.

- $\therefore -2 < m < 2$
- \therefore 点 P(m,n) 在二次函数 $v=x^2+2x+2$ 的图象上,
- $\therefore n = m^2 + 2m + 2 = (m+1)^2 + 1$,
- ∴ 当 m = -1 时, n 有最小值为 1.

当 m=2 时, $n=(2+1)^2+1=10$,

 $\therefore n$ 的取值范围为 $1 \le n < 10$.

2023 年四川省南充市中考真题

33. 抛物线 $y = -x^2 + kx + k - \frac{5}{4}$ 与 x 轴的一个交点为 A(m,0),若 $-2 \le m \le 1$,则实数 k 的取值范围是()

A.
$$-\frac{21}{4} \le k \le 1$$

B.
$$k \le -\frac{21}{4} \vec{\boxtimes} k \ge 1$$

C.
$$-5 \le k \le \frac{9}{8}$$

D.
$$k \le -5$$
 或 $k \ge \frac{9}{8}$

【答案】B

【分析】根据抛物线有交点,则 $-x^2+kx+k-\frac{5}{4}=0$ 有实数根,得出 $k\leq -5$ 或 $k\geq 1$,分类讨论,分别求得当x=-2和x=1时k的范围,即可求解.

【详解】解: :: 抛物线 $y = -x^2 + kx + k - \frac{5}{4}$ 与 x 轴有交点,

∴
$$-x^2 + kx + k - \frac{5}{4} = 0$$
 有实数根,

$$\Delta = b^2 - 4ac \ge 0$$

$$\operatorname{Ep} k^2 + 4\left(k - \frac{5}{4}\right) = k^2 + 4k - 5 = \left(k + 2\right)^2 - 9 \ge 0$$

解得: $k \le -5$ 或 $k \ge 1$,

当k≤-5时,如图所示,

依题意, 当 x = -2 时, $-4 - 2k + k - \frac{5}{4} \ge 0$,

解得: $k \le -\frac{21}{4}$,

当 x=1 时, $-1+k+k-\frac{5}{4} \le 0$,解得 $k \le \frac{9}{8}$,

 $\operatorname{PP} k \leq -\frac{21}{4},$

当 $k \ge 1$ 时,

当
$$x = -2$$
 时, $-4 - 2k + k - \frac{5}{4} \le 0$,

解得: $k \ge -\frac{21}{4}$

 $\therefore k \ge 1$

综上所述, $k \le -\frac{21}{4}$ 或 $k \ge 1$, 故选: B.

2023·浙江衢州中考真题

34. 已知二次函数 $y = ax^2 - 4ax$ (a 是常数, a < 0) 的图象上有 $A(m, y_1)$ 和 $B(2m, y_2)$ 两点. 若点 A,

B 都在直线 y = -3a 的上方,且 $y_1 > y_2$,则 m 的取值范围是 ()

A.
$$1 < m < \frac{3}{2}$$

B.
$$\frac{4}{3} < m < 2$$

A.
$$1 < m < \frac{3}{2}$$
 B. $\frac{4}{3} < m < 2$ C. $\frac{4}{3} < m < \frac{3}{2}$ D. m>2

【答案】C

【分析】根据已知条件列出不等式,利用二次函数与x轴的交点和二次函数的性质,即可解答.

【详解】解: : a < 0,

 $\therefore y = -3a > 0$

:: 点A, B都在直线 y = -3a 的上方, 且 $y_1 > y_2$,

可列不等式: $4am^2 - 8am > -3a$,

:: a < 0.

可得 $4m^2-8m+3<0$,

设抛物线 $y_1 = 4m^2 - 8m + 3$, 直线 $x_1 = 0$,

 $\therefore 4m^2 - 8m + 3 < 0$ 可看作抛物线 $y_1 = 4m^2 - 8m + 3$ 在直线 $x_1 = 0$ 下方的取值范围,

当 $y_1 = 0$ 时, 可得 $0 = 4m^2 - 8m + 3$,

解得 $m_1 = \frac{1}{2}, m_2 = \frac{3}{2}$,

 $\therefore 4 > 0$

 $\therefore y_1 = 4m^2 - 8m + 3$ 的开口向上,

∴ $4m^2 - 8m + 3 < 0$ 的解为 $\frac{1}{2} < m < \frac{3}{2}$,

根据题意还可列不等式: $am^2 - 4am > 4am^2 - 8am$,

:: a < 0.

∴ 可得 $m^2 - 4m < 4m^2 - 8m$,

整理得 $-3m^2+4m<0$,

设抛物线 $y_2 = -3m^2 + 4m$, 直线 $x_2 = 0$,

 $\therefore -3m^2 + 4m < 0$ 可看作抛物线 $y_2 = -3m^2 + 4m$ 在直线 $x_2 = 0$ 下方的取值范围,

当 $y_2 = 0$ 时, 可得 $0 = -3m^2 + 4m$,

解得 $m_1 = 0, m_2 = \frac{4}{3}$,

Q - 3 < 0.

:. 抛物线 $y_2 = -3m^2 + 4m$ 开口向下,

∴ $-3m^2 + 4m < 0$ 的解为 m < 0 或 $m > \frac{4}{3}$,

综上所述, 可得 $\frac{4}{3} < m < \frac{3}{2}$,

故选: C.

2023 年四川省泸州市中考真题

- 35. 已知二次函数 $y = ax^2 2ax + 3$ (其中 x 是自变量),当 0 < x < 3 时对应的函数值 y 均为正数,则 a 的取值范围为 (
- A. 0 < a < 1

B. a < -1 或 a > 3

C. -3 < a < 0 或 0 < a < 3

D. $-1 \le a < 0$ 或 0 < a < 3

【答案】D

【分析】首先根据题意求出对称轴 $x = -\frac{-2a}{2a} = 1$,然后分两种情况: a > 0 和 a < 0 ,分别根据二次函数的性质求解即可.

【详解】::二次函数 $y = ax^2 - 2ax + 3$,

∴ 对称轴 $x = -\frac{-2a}{2a} = 1$,

当a > 0时。

- ∵当0<x<3时对应的函数值У均为正数,
- \therefore 此时抛物线与x轴没有交点.
- $\therefore \Delta = (-2a)^2 4a \times 3 < 0,$
- ∴解得0<a<3;

当 a<0 时,

- :: 30 < x < 3 时对应的函数值y均为正数,
- ∴ $\exists x = 3$ 时, $y = 9a 6a + 3 \ge 0$.
- ∴解得 $a \ge -1$,
- $\therefore -1 \le a < 0$
- ::综上所述,

当0 < x < 3 时对应的函数值y均为正数,则a的取值范围为 $-1 \le a < 0$ 或0 < a < 3.

故选: D.

2022·山东济南中考真题

36. 抛物线 $v = -x^2 + 2mx - m^2 + 2$ 与 v 轴交于点 C, 过点 C 作直线 l 垂直于 v 轴, 将抛物线在 v 轴右 侧的部分沿直线 l 翻折,其余部分保持不变,组成图形 G,点 $M(m-1,y_1)$, $N(m+1,y_2)$ 为图形 G上两点,若 $y_1 < y_2$,则m的取值范围是()

A.
$$m < -1$$
 或 $m > 0$ B. $-\frac{1}{2} < m < \frac{1}{2}$ C. $0 \le m < \sqrt{2}$ D. $-1 < m < 1$

$$C. \quad 0 \le m < \sqrt{2}$$

D.
$$-1 < m < 1$$

【答案】D

【分析】求出抛物线的对称轴、C点坐标以及当 x=m-1 和 x=m+1 时的函数值,再根据 m-1 < m+1, 判断出M点在N点左侧,此时分类讨论:第一种情况,当N点在V轴左侧时,第二种情况,当M点在y轴的右侧时,第三种情况,当y轴在M、N点之间时,来讨论,结合图像即可求解。

【详解】抛物线解析式 $y = -x^2 + 2mx - m^2 + 2$ 变形为: $y = 2 - (x - m)^2$,

即抛物线对称轴为x=m,

当 x=m-1 时,有 $y=2-(m-1-m)^2=1$.

当 x=m+1 时,有 $y=2-(m+1-m)^2=1$,

设(m-1.1)为 A 点, (m+1.1)为 B 点,

即点 A(m-1,1)与 B(m+1,1)关于抛物线对称轴对称,

当 x=0 时,有 $y=2-(0-m)^2=2-m^2$,

∴C点坐标为(0,2-m²),

当 x=m 时,有 $y=2-(m-m)^2=2$,

∴ 抛物线顶点坐标为(m,2),

: 直线 *l*⊥v 轴,

∴直线 l 为 $y = 2 - m^2$,

: m-1 < m+1.

:M 点在 N 点左侧,

此时分情况讨论:

第一种情况, 当N点在y轴左侧时, 如图,

由图可知此时M、N点分别对应A、B点,即有 $y_1 = y_2 = 1$,

∴此时不符合题意:

第二种情况, 当 M 点在 y 轴的右侧时, 如图,

由图可知此时M、N点满足 $y_1 = y_2$,

∴此时不符合题意;

第三种情况, 当y轴在M、N点之间时, 如图,

由图可知此时M、N点满足 $y_1 < y_2$,

∴此时符合题意:

此时由图可知: m-1 < 0 < m+1,

解得-1<m<1,

综上所述:m的取值范围为:-1 < m < 1

2022·湖北荆门中考真题

37. 如图,函数 $y = \begin{cases} x^2 - 2x + 3(x < 2) \\ -\frac{3}{4}x + \frac{9}{2}(x \ge 2) \end{cases}$ 的图象由抛物线的一部分和一条射线组成,且与直线 y = m(m

为常数)相交于三个不同的点 $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)(x_1 < x_2 < x_3)$. 设 $t = \frac{x_1y_1 + x_2y_2}{x_3y_3}$,

则 t 的取值范围是 _____.

【答案】 $\frac{3}{5} < t < 1$

【分析】根据 A、B 关于对称轴 x=1 对称, 可知 $x_1+x_2=2$, 由直线 y=m (m 为常数) 相交于三个不 同的点,可得 $v_1=v_2=v_3=m$,求出 x_3 的范围,进而求出t的范围.

【详解】解:由二次函数 $y=x^2-2x+3$ (x<2) 可知:图象开口向上,对称轴为 x=1,

∴ 当 x=1 时函数有最小值为 2, $x_1+x_2=2$,

由一次函数 $y = -\frac{3}{4}x + \frac{9}{2}$ (x ≥ 2) 可知当 x = 2 时有最大值 3, 当 y = 2 时 $x = \frac{10}{3}$,

:直线 y=m (m 为常数) 相交于三个不同的点 A (x_1 , y_1), B (x_2 , y_2), C (x_3 , y_3) ($x_1 < x_2 < x_3$), $v_1 = v_2 = v_3 = m$, 2 < m < 3,

$$\therefore 2 < x_3 < \frac{10}{3},$$

$$\therefore t = \frac{x_1 + x_2}{x_3} = \frac{2}{x_3},$$

$$\therefore \frac{3}{5} < t < 1.$$

故填: $\frac{3}{5} < t < 1$

【题型6】二次函数新定义问题

2023 年山东省菏泽市中考真题

- 38. 若一个点的纵坐标是横坐标的 3 倍,则称这个点为"三倍点",如:A(1,3),B(-2,-6),C(0,0)等都 是三倍点",在-3 < x < 1的范围内,若二次函数 $v = -x^2 - x + c$ 的图象上至少存在一个"三倍点", 则 c 的取值范围是 ()

- A. $-\frac{1}{4} \le c < 1$ B. $-4 \le c < -3$ C. $-\frac{1}{4} < c < 5$ D. $-4 \le c < 5$

【答案】D

【分析】由题意可得:三倍点所在的直线为y=3x,根据二次函数 $y=-x^2-x+c$ 的图象上至少存在 一个"三倍点"转化为 $y=-x^2-x+c$ 和 y=3x 至少有一个交点, 求 $\Delta \geq 0$, 再根据 x=-3 和 x=1 时两个 函数值大小即可求出.

【详解】解:由题意可得:三倍点所在的直线为y=3x,

在-3 < x < 1的范围内, 二次函数 $y = -x^2 - x + c$ 的图象上至少存在一个"三倍点",

即在-3 < x < 1的范围内, $y = -x^2 - x + c$ 和 y = 3x 至少有一个交点,

则 $\Delta = b^2 - 4ac = (-4)^2 - 4 \times (-1) \times c = 16 + 4c \ge 0$, 解得 $c \ge -4$,

$$x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \times (-1)c}}{2 \times (-1)} = -\frac{4 \pm \sqrt{16 + 4c}}{2},$$

$$x_1 = -2 + \sqrt{4+c}$$
, $x_2 = -2 - \sqrt{4+c}$

$$3 < -2 + \sqrt{4+c} < 1 < -3 < -2 - \sqrt{4+c} < 1$$

当
$$-3 < -2 + \sqrt{4+c} < 1$$
 时, $-1 < \sqrt{4+c} < 3$,即 $0 \le \sqrt{4+c} < 3$,解得 $-4 \le c < 5$,

当
$$-3 < -2 - \sqrt{4+c} < 1$$
 时, $-3 < \sqrt{4+c} < 1$,即 $0 \le \sqrt{4+c} < 1$,解得 $-4 \le c < -3$,

综上, c 的取值范围是 $-4 \le c < 5$,

故选: D.

2023.四川巴中中考真题

39. 规定: 如果两个函数的图象关于 y 轴对称, 那么称这两个函数互为"Y 函数". 例如: 函数 y=x+3 与 y=-x+3 互为"Y 函数". 若函数 $y=\frac{k}{4}x^2+(k-1)x+k-3$ 的图象与 x 轴只有一个交点,则它的 "Y 函数"图象与 x 轴的交点坐标为

【答案】 C(3,0) 或 C(4,0)

【分析】根据题意 $y = \frac{k}{4}x^2 + (k-1)x + k - 3$ 与 x 轴的交点坐标和它的"Y 函数"图象与 x 轴的交点坐标关于 y 轴对称,再进行分类讨论,即 k = 0 和 $k \neq 0$ 两种情况,求出 $y = \frac{k}{4}x^2 + (k-1)x + k - 3$ 与 x 轴的交点坐标,即可解答.

【详解】解: ①当k=0时, 函数的解析式为y=-x-3,

此时函数的图象与 x 轴只有一个交点成立.

y=0时,可得0=-x-3,解得x=-3,

∴ y = -x - 3 与 x 轴的交点坐标为 (-3,0),

根据题意可得,它的"Y函数"图象与x轴的交点坐标为(3,0);

①当 $k \neq 0$ 时,

:: 函数
$$y = \frac{k}{4}x^2 + (k-1)x + k - 3$$
 的图象与 x 轴只有一个交点,

:.
$$b^2 - 4ac = 0$$
, $\mathbb{P}^2(k-1)^2 - 4 \times \frac{k}{4} \times (k-3) = 0$,

解得k = -1,

∴函数的解析式为
$$y = -\frac{1}{4}x^2 - 2x - 4$$
,

当
$$y=0$$
 时, 可得 $0=-\frac{1}{4}x^2-2x-4$,

解得x = -4,

根据题意可得,它的"Y函数"图象与x轴的交点坐标为(4,0),

综上所述,它的"Y函数"图象与x轴的交点坐标为C(3,0)或C(4,0),

故答案为: C(3,0) 或 C(4,0).

2023 年四川省乐山市中考真题

- (1) 若 P(3,m) 是"和谐点",则 m= .
- (2) 若双曲线 $y = \frac{k}{r} (-3 < x < -1)$ 存在"和谐点",则 k 的取值范围为______.

【答案】 -7 3<k<4

【分析】(1) 根据"和谐点"的定义得到 $3^2 = 4m + t$, $m^2 = 4 \times 3 + t$, 整理得到 $m^2 + 4m - 21 = 0$, 解得 $m_1 = -7$, $m_2 = 3$ (不合题意, 含去), 即可得到答案;

(2) 设点 (a,b) 为双曲线 $y=\frac{k}{x}(-3 < x < -1)$ 上的"和谐点",根据"和谐点"的定义整理得到 (a-b)(a+b+4)=0,由 a^{-1} b 得到 a+b+4=0,则 b=-a-4,由 $b=\frac{k}{a}(-3 < a < -1)$ 进一步得到 $k=-(a+2)^2+4$,且 -3 < a < -1,根据二次函数的图象和性质即可得到 k 的取值范围.

【详解】解: (1) 若 P(3,m) 是"和谐点",则 $3^2 = 4m + t, m^2 = 4 \times 3 + t$,

$$\sqrt{3^2-4m}=t, m^2-12=t$$

$$3^2 - 4m = m^2 - 12$$
.

 $p_{m^2+4m-21=0}$, 解得 $m_1=-7, m_2=3$ (不合题意、舍去).

$$m = -7$$

故答案为: -7

(2) 设点
$$(a,b)$$
为双曲线 $y = \frac{k}{x}(-3 < x < -1)$ 上的"和谐点",

$$a^2 = 4b + t, b^2 = 4a + t, b = \frac{k}{a}(-3 < a < -1),$$

$$pa^2 - 4b = b^2 - 4a$$

$$\therefore (a+b)(a-b)+4(a-b)=0,$$

$$\mathbb{N}(a-b)(a+b+4)=0$$

$$a^1 b$$
,

$$a+b+4=0$$
.

$$\mathbb{P} b = -a - 4$$
.

:
$$b = \frac{k}{a}(-3 < a < -1)$$
,

$$k = ab = a(-a-4) = -a^2 - 4a = -(a+2)^2 + 4$$
, $1 - 3 < a < -1$,

对抛物线 $k = -(a+2)^2 + 4 来说,$

 $\cdot \cdot -1 < 0$.

∴开口向下,

a = -1 H, $k = -(-1+2)^2 + 4 = 3$,

4 = -3 H, $k = -(-3+2)^2 + 4 = 3$,

∵对称轴为a = -2, -3 < a < -1,

∴ a = -2 时, k 取最大值为 4.

::k的取值范围为3 < k < 4,

故答案为: 3<k<4

【题型7】二次函数中的规律探究问题

2023.山东东营·九年级校考

41. 如图,一段抛物线: $y = -x(x-3) (0 \le x \le 3)$,记为 C_1 ,它与x轴交于点O, A_1 ;将 C_1 绕点A旋转 180° 得 C_2 ,交x轴于点 A_2 ;将 C_2 绕点 A_2 旋转 180° 得 C_3 ,交x轴于点 A_3 ;…如此进行下去,直至得 C_{10} .若P(28,m)在第 10 段抛物线 C_{10} 上,则 $m = ______$.

【答案】-2

【分析】本题主要考查了二次函数图象旋转,总结归纳出据图象的旋转后解析式规律是解题的关键. 根 据 图 象 的 旋 转 变 化 规 律 总 结 归 纳 出 旋 转 后 C_n 的 解 析 式 为 $y=(-1)^n(x-3n+3)(x-3n)\left(3n-3\leq x\leq 3n\right)$,进而求出抛物线 C_{10} 的解析式,再把P(28,m)代入,求出m的值即可.

【详解】解: :一段抛物线 C_1 : $y = -x(x-3) (0 \le x \le 3)$ 与 x 轴交于点 O, A_1 ,

- ∴ 图象与 x 轴交点坐标为: O(0,0), $A_1(3,0)$,
- : 将 C₁ 绕点 A₂ 旋转 180° 得 C₂, 交 x 轴于点 A₂
- $A_{2}(6,0)$:
- ∴ C, 的解析式为 $y = (x-3)(x-6)(3 \le x \le 6)$,
- ∵将C,绕点A,旋转180°得C₃,交x轴于点A₃;
- $A_3(9,0)$:
- ∴ C_3 的解析式为 $y = -(x-6)(x-9)(6 \le x \le 9)$,

.

:. C_n 的解析式为 $y = (-1)^n (x - 3n + 3)(x - 3n) (3n - 3 \le x \le 3n)$,

∴ C_{10} 的解析式为 $y = (x-27)(x-30)(27 \le x \le 30)$,

x = 28 pt, $m = (28 - 27) \times (28 - 30) = -2$

2023·四川达州·统考二模

42. 如图, 已知点 $A_1, A_2, ..., A_{2024}$ 在函数 $y = 2x^2$ 位于第二象限的图像上, 点 $B_1, B_2, ..., B_{2024}$ 在函数 $y = 2x^2$ 位于第一象限的图像上,点 C_1 , C_2 ,..., C_{2024} 在Y轴的正半轴上,若四边形

 $O_1A_1C_1B_1, C_1A_2C_2B_2, ..., C_{2023}A_{2024}C_{2024}B_{2024}$ 都是正方形,则正方形 $C_{2023}A_{2024}C_{2024}B_{2024}$ 的边长为()

A. 1012

B. $1012\sqrt{2}$

C. $\frac{2023}{2}$ D. $\frac{2023}{2}\sqrt{2}$

【答案】B

【分析】根据正方形对角线平分一组对角可得 OB_1 与Y轴的夹角为 45° ,然后表示出 OB_1 的解析式, 再与抛物线解析式联立求出点 B_1 的坐标,然后求出 OB_1 的长,再根据正方形的性质求出 OC_1 ,表示 出 C_1B_2 的解析式,与抛物线联立求出 B_2 的坐标,然后求出 C_1B_2 的长,再求出 C_1C_2 的长,然后表示出 C_2B_3 的解析式,与抛物线联立求出 B_3 的坐标,然后求出 C_2B_3 的长,从而根据边长的变化规律解答即 可.

【详解】解: $:OA_{1}C_{1}B_{1}$ 是正方形,

 $: OB_1 与 Y 轴的夹角为 45°,$

 $:: OB_1$ 的解析式为 y = x,

联立方程组得: $\begin{cases} y = x \\ y = 2x^2 \end{cases}$

解得
$$\begin{cases} x_1 = 0 \\ y_1 = 0 \end{cases}$$
, $\begin{cases} x_2 = \frac{1}{2} \\ y_2 = \frac{1}{2} \end{cases}$.

 $\therefore B$ 点的坐标是: $(\frac{1}{2}, \frac{1}{2})$,

$$\therefore OB_1 = \sqrt{(\frac{1}{2})^2 + (\frac{1}{2})^2} = \frac{\sqrt{2}}{2} = 1 \times \frac{\sqrt{2}}{2};$$

同理可得: 正方形 $C_1A_2C_2B_2$ 的边长 $C_1B_2 = 2 \times \frac{\sqrt{2}}{2}$;

. . .

依此类推,正方形 $C_{2023}A_{2024}C_{2024}B_{2024}$ 的边长是为 $2024 \times \frac{\sqrt{2}}{2} = 1012\sqrt{2}$. 故选 B.

广东梅州·九年级统考

43. 二次函数 $y=\frac{2}{3}x^2$ 的图象如图所示,点 A_0 位于坐标原点, A_1 , A_2 , A_3 , ..., A_{2023} 在 y 轴的正半轴上, B_1 , B_2 , B_3 , ..., B_{2023} 在二次函数 $y=\frac{2}{3}x^2$ 第一象限的图象上,若 $\Delta A_0B_1A_1$, $\Delta A_1B_2A_2$, $\Delta A_2B_3A_3$,..., $\Delta A_{2022}B_{2023}A_{2023}$ 都是等边三角形,则 $\Delta A_{2022}B_{2023}A_{2023}$ 的周长是(

- A. 6069
- B. 6066
- C. 6063
- D. 6060

【答案】A

【分析】根据等边三角形的性质可得 $\angle A_1A_0B_1$ =60°,然后表示出 A_0B_1 的解析式,与二次函数解析式 联立求出点 B_1 的坐标,再根据等边三角形的性质求出 A_0A_1 ,同理表示出 A_1B_2 的解析式,与二次函数解析式联立求出点 B_2 的坐标,再根据等边三角形的性质求出 A_1A_2 ,同理求出 B_3 的坐标,然后求出 A_2A_3 ,从而得到等边三角形的边长为从1 开始的连续自然数,与三角形所在的序数相等,进而求得三角形的周长.

【详解】解: $^{::} \triangle A_0 B_1 A_1$ 是等边三角形,

 $\therefore \angle A_1 A_0 B_1 = 60^{\circ}$

 $\therefore A_0B_1$ 的解析式为 $y=\frac{\sqrt{3}}{3}x$,

联立
$$\begin{cases} y = \frac{\sqrt{3}}{3}x \\ y = \frac{2}{3}x^2 \end{cases}$$

解得:
$$\begin{cases} x = \frac{\sqrt{3}}{2} \\ y = \frac{1}{2} \end{cases} \begin{cases} x = 0 \\ y = 0 \end{cases}$$

$$\therefore B_1 \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right),$$

∴等边 $\triangle A_0B_1A_1$ 的边长为 $\frac{1}{2}$ ×2=1,

同理, A_1B_2 的解析式为 $y=\frac{\sqrt{3}}{3}x+1$,

联立
$$\begin{cases} y = \frac{\sqrt{3}}{3}x + 1\\ y = \frac{2}{3}x^2 \end{cases}$$

解得
$$\begin{cases} x = \sqrt{3} \\ y = 2 \end{cases} \stackrel{\checkmark}{\Rightarrow} \begin{cases} x = -\frac{\sqrt{3}}{2} \\ y = \frac{1}{2} \end{cases}$$

 $\therefore B_2 (\sqrt{3}, 2),$

∴等边 $\triangle A_1B_2A_2$ 的边长 $A_1A_2=2\times(2^{-1})=2$,

同理可求出 B_3 ($\frac{3\sqrt{3}}{2}$, $\frac{9}{2}$),

所以,等边 $\triangle A_2B_3A_3$ 的边长 $A_2A_3=2\times (\frac{9}{2}-1-2)=3$,

...,

以此类推,系列等边三角形的边长为从1开始的连续自然数,

 $\triangle A_{2022}B_{2023}A_{2023}$ 的边长为 2023,

∴ △A2022B2023A2023 的周长是 6069.

故选: A.

2023 下·河北石家庄·九年级统考阶段练习

44. 二次函数 $y=x^2$ 的图象如图. 点 A_0 位于坐标原点,点 A_1 , A_2 , A_3 , ..., A_n 在 y 轴的正半轴上,点 B_1 , B_2 , B_3 , ..., B_n 在二次函数位于第一象限的图象上,点 C_1 , C_2 , C_3 , ..., C_n 在二次函数位于第二象限的图象上,四边形 $A_0B_1A_1C_1$,四边形 $A_1B_2A_2C_2$,四边形 $A_2B_3A_3C_3$,..., 四边形. $A_{n-1}B_nA_nC_n$ 都是菱形, $\angle A_0B_1A_1=\angle A_1B_2A_2=\angle A_2B_3A_3=\cdots=\angle A_{n-1}B_nA_n=60^\circ$,则 $\triangle A_0B_1A_1$ 的边长为_____,菱形 $A_{n-1}B_nA_nC_n$ 的周长为_____.

【答案】 $\frac{2}{3}$ $\frac{8n}{3}$

【分析】过点 B_1 作 B_1D_1 垂直 x 轴于点 D_1 ,过点 B_2 作 B_2D_2 垂直 x 轴于点 D_2 ,过点 B_3 作 B_3D_3 垂直 x 轴 于点 D_3 ,过点 $A_1E_1 \perp B_2D_2$ 于点 E_1 ,过点 $A_2E_2 \perp B_3D_3$ 于点 E_2 ,根据四边形 $A_0B_1A_1C_1$,四边形 $A_1B_2A_2C_2$,四 边 形 $A_2B_3A_3C_3$, … , 四 边 形 . $A_{n-1}B_nA_nC_n$ 都 是 菱 形 , $\angle A_0B_1A_1 = \angle A_1B_2A_2 = \angle A_2B_3A_3 = \dots = \angle A_{n-1}B_nA_n = 60^\circ$,得到 $\triangle A_0B_1A_1$ 是等边三角形,设点 B_1 坐标为 (x,y) ,则: $y=x^2$,在 $Rt_1 \Delta B_1D_1A_0$ 中, $tan_1 \angle B_1A_0D_1 = \frac{\sqrt{3}}{3} = \frac{y}{x}$,求出点 B_1 的坐标,进而求出 $\triangle A_0B_1A_1$ 的 边长,菱形 $A_0B_1A_1C_1$ 的周长,同法求出菱形 $A_1B_2A_2C_2$ 的周长,菱形 $A_2B_3A_3C_3$ 的周长上,进而推出菱形 $A_{n-1}B_nA_nC_n$ 的周长.

【详解】过点 B_1 作 B_1D_1 垂直x轴于点 D_1 ,过点 B_2 作 B_2D_2 垂直x轴于点 D_2 ,过点 B_3 作 B_3D_3 垂直x轴于点 D_3 ,过点 $A_1E_1 \perp B_2D_2$ 于点 E_1 ,过点 $A_2E_2 \perp B_3D_3$ 于点 E_2 ,

: 四边形 $A_0B_1A_1C_1$, 四边形 $A_1B_2A_2C_2$, 四边形 $A_2B_3A_3C_3$, ..., 四边形 . $A_{n-1}B_nA_nC_n$ 都是菱形 , $\angle A_0B_1A_1=\angle A_1B_2A_2=\angle A_2B_3A_3=\cdots=\angle A_{n-1}B_nA_n=60^\circ$,

∴ $\triangle A_0 B_1 A_1$ 是等边三角形;

设点 B_1 坐标为 (x,y), 则: $y=x^2$,

- $\therefore \angle A_0 B_1 A_1 = 60^{\circ}$,
- $\angle B_1 A_0 D_1 = 30^{\circ}$,

 $\stackrel{\longleftarrow}{\epsilon} \operatorname{Rt} \triangle B_1 D_1 A_0 \stackrel{\longleftarrow}{\bullet}, \quad \tan \angle B_1 A_0 D_1 = \frac{\sqrt{3}}{3} = \frac{y}{x},$

$$\therefore x^2 = \frac{\sqrt{3}}{3} x,$$

解得: $\begin{cases} x_1 = 0 \\ y_1 = 0 \end{cases}$ (含去) 或 $\begin{cases} x_2 = \frac{\sqrt{3}}{3} \\ y_2 = \frac{1}{3} \end{cases}$

$$\therefore B_1\left(\frac{\sqrt{3}}{3},\frac{1}{3}\right),$$

$$\therefore A_0 B_1 = \sqrt{\left(\frac{\sqrt{3}}{3}\right)^2 + \left(\frac{1}{3}\right)^2} = \frac{2}{3},$$

$$\therefore \triangle A_0 B_1 A_1$$
 的边长为 $\frac{2}{3}$,

∴ 菱形
$$A_0B_1A_1C_1$$
 的周长 = $\frac{2}{3}$ × 4 = $\frac{8}{3}$;

设点 B_2 坐标为 (x,y), 在 $Rt \triangle B_2 E_1 A_1$ 中, $tan \angle B_2 A_1 E_1 = \frac{\sqrt{3}}{3} = \frac{y - \frac{2}{3}}{x}$,

$$\mathbf{1} y = x^2,$$

$$\therefore x^2 = \frac{\sqrt{3}}{3}x + \frac{2}{3},$$

$$\therefore B_2\left(\frac{2\sqrt{3}}{3},\frac{4}{3}\right),$$

$$: OA_1 = \frac{2}{3},$$

$$A_1\left(0,\frac{2}{3}\right)$$
,

$$\therefore A_1 B_2 = \sqrt{\left(\frac{2\sqrt{3}}{3}\right)^2 + \left(\frac{4}{3} - \frac{2}{3}\right)^2} = \frac{4}{3},$$

∴ 菱形
$$A_1B_2A_2C_2$$
 的周长 = $\frac{4}{3} \times 4 = \frac{16}{3}$;

同法可得: 菱形 $A_2B_3A_3C_3$ 的周长 = $\frac{24}{3}$;

Ĺ

∴菱形 $A_{n-1}B_nA_nC_n$ 的周长为: $\frac{8n}{3}$;

故答案为: $\frac{2}{3}$, $\frac{8n}{3}$.