Problem 46

Overview

Chromatin folding is process in biology. We assume that chromatin polymers follow a random walk model. In this model, the two-dimensional distance between two chromatin fibers, R, follows a Raleigh distribution, with density

$$f(r|\theta) = \frac{r}{\theta^2} e^{\frac{-r^2}{2\theta^2}}$$

where $r \geq 0$ and $\theta > 0$.

Estimating Theta

Maximum Likelihood

Derivation of the Estimator

The likelihood function is

$$lik(\theta) = \frac{1}{\theta^{2n}} e^{-\frac{1}{2\theta^2} \sum_{i=1}^n r_i^2} \prod_{i=1}^n r_i$$

The log likelihood is thus

$$l(\theta) = -2n \ln(\theta) + \sum_{i=1}^{n} \ln(r_i) - \frac{1}{2\theta^2} \sum_{i=1}^{n} r_i^2$$

The first-order condition for maximizing the likelihood satisfies

$$0 = \frac{-2n}{\hat{\theta}} + \frac{1}{\hat{\theta}^3} (\sum_{i=1}^n r_i^2)$$

Which, after rearranging, gives the maximum likelihood estimator for θ , $\hat{\theta}_{MLE}$

$$\hat{\theta}_{MLE} = \frac{1}{\sqrt{2}} \sqrt{\frac{1}{n} \sum_{i=1}^{n} r_i^2}$$

Asymptotic Variance

As usual, the asymptotic variance of a maximum likelihood estimator is roughly

$$Var(\hat{\theta}_{MLE}) \approx \frac{1}{nI(\theta)}$$

where under sufficient smoothness conditions that at the level of this textbook we will assume hold,

$$I(\theta) = E \left[\frac{\partial}{\partial \theta} \log(f(x|\theta)) \right]^2 = -E \left[\frac{\partial^2}{\partial \theta^2} \log(f(x|\theta)) \right]$$

$$f(r|\theta) = \frac{r}{\theta^2} e^{\frac{-r^2}{2\theta^2}}$$
, so

$$\frac{\partial}{\partial \theta} \log f(r|\theta) = -\frac{2}{\theta} + \frac{r^2}{\theta^3},$$

$$\frac{\partial^2}{\partial \theta^2} \log f(r|\theta) = \frac{2}{\theta^2} - 3\frac{r^2}{\theta^4},$$

$$I(\theta) = -\frac{2}{\theta^2} + 3\frac{E(R^2)}{\theta^4}$$

The expectation of \mathbb{R}^2 is

$$E(R^2) = \frac{1}{\theta^2} \int_0^\infty r^3 e^{\frac{-r^2}{2\theta^2}} dr = 4\theta^2 \int_0^\infty x^3 e^{-x^2} dx = 2\theta^2 \int_0^\infty u e^{-u} du$$

by making the substitutions $x = \frac{r}{\sqrt{2\theta}}$ and $u = x^2$. Integrating by parts,

$$E(R^{2}) = 2\theta^{2} \left[-ue^{-u}|_{0}^{\infty} + \int_{0}^{\infty} e^{-u} du \right] = -2\theta^{2} (e^{-u})|_{0}^{\infty} = 2\theta^{2}$$

Thus

$$I(\theta) = -\frac{4}{\theta^2},$$

$$Var(\hat{\theta}_{MLE}) \rightarrow \frac{\theta^2}{4n}.$$

Method of Moments

Derivation of the Estimator

The expectation of R is

$$E(R) = \frac{1}{\theta^2} \int_0^\infty r^2 e^{\frac{-r^2}{2\theta^2}} dr = (2\sqrt{2})\theta \int_0^\infty x^2 e^{-x^2} dx$$

by making the substitution $x = \frac{r}{\sqrt{2\theta}}$. Integrating by parts,

$$E(R) = (2\sqrt{2})\theta \left[\frac{1}{2}xe^{-x^2}|_0^\infty + \frac{1}{2}\int_0^\infty e^{-x^2}dx \right] = \sqrt{2}\theta \int_0^\infty e^{-x^2}dx = \theta \sqrt{\frac{\pi}{2}}$$

since $\int_0^\infty e^{-x^2} dx = \sqrt{\pi}$, and the integrand is an even function. Thus

$$\hat{\theta}_{MoM} = \bar{X}\sqrt{\frac{2}{\pi}}$$

Asymptotic Variance

By the Central Limit Theorem, \bar{X} converges to a normal random variable with mean E(R) and variance $\frac{Var(R)}{n}$ as n approaches infinity. From previous results.

$$Var(R) = E(R^2) - E(R)^2 = 2\theta^2 - \frac{\pi}{2}\theta^2 = \frac{4-\pi}{2}\theta^2$$

and the asymptotic variance of the method of moments estimator for θ is

$$Var(\hat{\theta}_{MoM}) \to \left(\frac{4}{\pi} - 1\right) \frac{\theta^2}{n}$$

in which $\frac{4}{\pi} - 1 \approx .273295...$

Data Analysis

```
# Returns the likelihood function for a Rayleigh
# distribution with the given data (formatted as a
# vector).
likeFunc <- function(data) {</pre>
    n = length(data)
    sumLnRi <- sum(log(data))</pre>
    sumRiSquared <- sum(data^2)</pre>
    output <- function(theta) {</pre>
         # Do the exp-log of the likelihood to avoid overflow
         exp(-2 * n * log(theta) + sumLnRi - (sumRiSquared/(2 *
             theta<sup>2</sup>)))
    }
    return(output)
}
# Returns the maximum likelihood estimate and estimated
# variance. output$mle is the estimate, output$var is
# the estimated variance of the MLE estimator
mle <- function(data) {</pre>
    n <- length(data)
    output <- list()</pre>
    output$mle <- sqrt(mean(data^2)/2)</pre>
    output$var <- output$mle/(4 * n)</pre>
    return(output)
}
```

Short Experiment

```
short_mle <- mle(short_data)
short_likeFunc <- likeFunc(short_data)
plot(short_likeFunc, from = 0, to = 2, n = 101, type = "l",
    main = "Likelihood Function for the Short Experimental Data",
    xlab = "Theta", ylab = "Probability")</pre>
```

Likelihood Function for the Short Experimental Data

The MLE estimate is $\hat{\theta}_{MLE} = 1.1237776$, with an estimated variance of 0.0029265.