Term project (Ver 1.0)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Term project (1)

- Due: AM08:00, <u>December 17</u> (No delayed submission)
- Your code and report should be submitted.
- There are many steps in the term project.
 - Nonlinear Poisson
 - Drift-diffusion
 - Schrödinger
 - Boltzmann

Term project (2)

- Double-gate
 - 5-nm-thick silicon & 0.5-nm-thick oxide at both sides
 - 40-nm-long gate (Workfunction: 4.3 eV)

Term project (3)

- Solve the nonlinear Poisson equation for the double-gate structure.
- $V_S = V_D = 0$ and V_G varies from 0 V to 1 V. (0.1 V step)
- Draw ϕ and n. (3D plot)

Term project (4)

- Solve the drift-diffusion equation for the double-gate structure.
- Self-consistent simulation is mandatory.
- $-V_{S}=0$
- V_G varies from 0 V to 1 V. (0.1 V step)
- V_D varies from 0 V to 1 V. (0.1 V step)
- For each V_G , draw the drain current (I_D) as a function of V_D .
- The electron mobility is assumed to be 1430 cm²/V sec.

Term project (5)

- Solve the Schrödinger equation.
- Use ϕ obtained in Step2.
- (Non-self-consistent simulation)
- $-V_{S}=0$
- Consider V_G of 0.1 V and 0.5 V.
- Consider V_D of 0.1 V and 0.5 V.
- Consider three different valleys.
- Calculate the lowest subband for each slab.

Term project (6)

- Solve the Boltzmann equation. (Scatterings are neglected.)
- For each valley, only the lowest subband is considered.
- Use ϕ obtained in Step2.
- (Non-self-consistent simulation)
- $-V_{S}=0$
- Consider V_G of 0.1 V and 0.5 V.
- Consider V_D of 0.1 V and 0.5 V.
- Calculate the drain current (I_D) for the four cases.
- For each case, draw f_0 of each valley. (3D plot)