

第19届中国 Linux内核开发者大会

變助单位

龙芯中科

支持单位

迪捷软件

支持社区&媒体

CSDN

云巅论剑

InfoQ

51CTO

开源江湖

2024年10月 湖北•武汉

2024

玄铁是阿里巴巴达摩院旗下品牌,致力于推动RISC-V架构的前沿研究和建立在该架构基础上的开源生态的建立和发展,是国际 RISC-V 生态引领者,为数字化时代提供强大、智能、安全、开放的新型计算架构。

自成立以来,团队持续深耕 RISC-V 技术研发及生态建设,并陆续推出了一系列玄铁处理器,可满足高中低全系列性能需求。玄铁积极拥抱开源,坚持开放创新,已逐渐构建起以 RISC-V 为核心的生态体系,与生态伙伴协同推动 RISC-V 芯片、开发工具、操作系统、应用解决方案等不同层面的软硬一体化发展,全力推进 RISC-V 软硬全栈技术 多领域发展落地,加速实现智能时代的万物互联!

RISC-V IOMMU 的 Scalable 提案 (GIPC) 及 Linux 技术路线

在 IO 虚拟化场景中,处理 PASID 的不同技术流派

郭任

阿里巴巴达摩院 高级技术专家

1 什么是 PASID?
PCI-e TLP - 从 RID 到 PASID

目录 •• Contents

Scalable Mode 提案
GIPC - Guest page table In Process Context

Linux 技术路线 RISC-V IOMMU、emulated-IOMMU 和 virtio-IOMMU

十么是 PASID? PCI-e TLP - 从 RID 到 PASID

从 PCI-e TLP 开始

	Transaction Layer Packet

RX TX

Address Space	Transaction Types	Basic Usage
Memory	Read Request/Completion, Write Request, Deferrable Write Request/Completion, AtomicOp Request/Completion	Transfer data to/from a memory-mapped location
I/O	Read Request/Completion, Write Request/Completion	Transfer data to/from an I/O-mapped location
Configuration	Read Request/Completion, Write Request/Completion	Device Function enumerating
Message	Baseline (including Vendor-Defined)	MSI IRQ

- TLP Prefixes 可选
- TLP Header 必选
- Data Payload 可选
- ECRC/Digest 可选

Header: Routing and Addressing Rules

ID routing is used with Configuration Requests, with ID Routed Messages, and with Completions.

Header Format for Configuration Transactions

Header Format for Completion Transactions

(ID +) Address routing is used with **Memory**, **I/O Requests**:

Header Format for Memory Request Transactions

RID 的限制

- Function 是 PCI-e 基于 RID 路由与寻址方式的最小设备单位。
- RID[16]: 最多 256 条总线, 每条总线最多 256 个 Functions。
- 当 Extended Tag Field Enable = 1 时, 位宽缩减 RID[13]。
- Function 在总线枚举阶段就已确定,每个 PF/VF 必须占用配置空间。
- · 基于上述 Function 枚举原则的 SR-IOV (2006) 虚拟设备的成本高,且数量受限。

因此,基于 TLP Requester-ID 的 Scalable 方案正在起草: DRAFT PCI-SIG ECR - Scalable I/O Virtualiztion (by ArchProto WG, AMD, Ampere, Arm, Broadcom, Intel, Microsoft, NVIDIA, RedHat/IBM) (不兼容 SR-IOV) https://members.pcisig.com/wg/PCIe-Protocol/document/21183

PASID TLP Prefix (Non-Flit Mode)

PASID 结合 RID 用于识别请求的地址空间:

- 带有地址类型的 TLP 请求。
- ATS 请求 (MRd with AT=01b), ATS INV, ATS PRI 相关 Messages。

PASID TLP Prefix (Non-Flit Mode)

PASID 结合 RID 用于识别请求的地址空间:

- 带有地址类型的 TLP 请求。
- ATS 请求 (MRd with AT=01b), ATS INV, ATS PRI 相关 Messages。

各家 TA 对 PASID 的处理形成两大技术流派:

- 1. Intel VT-d 的 Scalable Mode 方案
- 2. ARM-SMMU 和 AMD-Vi 的方案

每一个 PASID Entry 拥有独立的 First-Stage Page Table 和 Second-Stage Page Table, 拥有完整的两级地址空间。

Intel VT-d **Scalable Mode** Address Translation

June 2018, Intel VT-d Revision 3.0:

• Added support for scalable-mode translation for DMA Remapping, that enables PASID-granular first-level, second-level, nested and pass-through translation functions.

Intel VT-d **Scalable Mode** Address Translation

June 2018, Intel VT-d Revision 3.0:

• Added support for scalable-mode translation for DMA Remapping, that enables PASID-granular first-level, second-level, nested and pass-through translation functions.

Scalable I/O Virtualization Revision 1.0

Version 1.3

June 2022

Authors:

Intel Corporation (Contact Point: Tom Stachura)

Microsoft Corporation (Contact Point: Renee L'Heureux)

June 2018: v1.0 by Intel June 2022: v1.3 by OCP

PASID based ADI (Assignable Device Interfaces) 兼容 SR-IOV

Intel VT-d **Scalable Mode** Address Translation

June 2018, Intel VT-d Revision 3.0:

• Added support for scalable-mode translation for DMA Remapping, that enables PASID-granular first-level, second-level, nested and pass-through translation functions.

Scalable I/O Virtualization Spec: 7.3 ADIs Using Shared Work Queues

VT-d Scalable Mode 让同一个 Func 中的 VDEVs 可以自由分配给属于不同虚机的 进程和容器。

Intel VT-d **Scalable Mode** Address Translation

June 2018, Intel VT-d Revision 3.0:

Added support for scalable-mode translation for DMA Remapping, that enables PASID-granular first-level, second-level, nested and pass-through translation functions.

Scalable I/O Virtualization Spec: 7.3 ADIs Using Shared Work Queues

VT-d Scalable Mode 让同一个 Func 中的 VDEVs 可以自由分配给属于不同虚机的 进程和容器。

对于同一个 Function 中的 VDEVs 进行跨虚机分配, ARM 和 AMD 有不同的见解 ...

When TA = ARM SMMUv3

StreamID Table -> PCI-e RID (B/D/F) index, Root Table

SubstreamID Table -> PCI-e PASID Directory

整张 SubstreamID (PASID) 表的 GPA-> PA 翻译,被绑定在 STE.S2TTB 上, 因此无法跨虚拟机分配 PASID。

Scalable Mode 提案 (RISC-V) • 02

GIPC - Guest page table In Process Context

RISC-V IOMMU 表项设计

The PPN of the root device-directory-table is held in a memory-mapped register called the device-directory-table pointer (ddtp):

Three-level device directory with extended format DC.

每一个 PCI-e Function,对应 Device-Directory-Talbe (DDT)中的一个 Device-Context (DC):

- Process-directory table pointer (pdtp) PASID Table
- IO hypervisor guest address translation and protection (iohgatp) - Guest Page Table (GPA -> PA)

RISC-V IOMMU 表项设计

类似 ARM-SMMU & AMD-Vi:

- 客户机管理整张 PASID 表
- PASID 表基于 GPA 寻址
- IOMMU 遍历 PASID 表需要类似 VS-stage 页表的二级地址翻译。

GIDC - Guest page table In Device Context

GIPC - Guest page table In Process Context

RISC-V Scalable 提案: GIPC

- 达摩院玄铁团队参与 RISC-V IOMMU Architecture Specification 初版制定,被列入贡献者名单。
- 如今,为满足高密 IO 场景需求,再次提出 Scalable 模式,以完善 RISC-V IOMMU 功能。

https://github.com/riscv-non-isa/riscv-iommu/pull/413

Authors:

Hao Ziyi hao Ziyi hao Ren quarenee zhuo hao Xiang hao Xiang haoziyi@zhcomputinux.alibaba.com Hao Xiang haoziyi@zhcomputinux.alibaba.com

XuanTie RISC-V Virtualization Solution

in Virtual Machines ~ 0%

DMA Performance Overhead < 5%

Scalable IOMMU - Extension to Meet the Demands of High-Density I/O Scenarios

· Implementation of Scalable IOMMU

from core binding < 1%

- · IRQ-Remapping
- · RISC-V virtio-IOMMU

03 Linux 技术路线 RISC-V IOMMU、emulated-IOMMU和 virtio-IOMMU

RISC-V IOMMU & Linux Driver

Offset	Name	Size	Description	Is Optional?
0	capabilities	8	Capabilities of the IOMMU	No
8	fctl	4	Features control	No
12	custom	4	Designated For custom use	
16	ddtp	8	Device directory table pointer	No •
24	cqb	8	Command-queue base	No
32	cqh	4	Command-queue head	No
36	cqt	4	Command-queue tail	No
40	fqb	8	Fault-queue base	No
48	fqh	4	Fault-queue head	No
52	fqt	4	Fault-queue tail	No
56	pqb	8	Page-request-queue base	if capabilities.ATS==0
64	pqh	4	Page-request-queue head	if capabilities.ATS==0
68	pqt	4	Page-request-queue tail	if capabilities.ATS==0
72	cqcsr	4	Command-queue CSR	No
76	fqcsr	4	Fault-queue CSR	No
80	pqcsr	4	Page-request-queue CSR	if capabilities.ATS==0
84	ipsr	4	Interrupt pending status register	No
88	iocntovf	4	HPM counter overflows	if capabilities.HPM==0
92	iocntinh	4	HPM counter inhibits	if capabilities.HPM==0
96	iohpmcycles	8	HPM cycles counter	if capabilities.HPM==0
104	iohpmctr1-31	248	HPM event counters	if capabilities.HPM==0
352	iohpmevt1-31	248	HPM event selector	if capabilities.HPM==0
600	tr_req_iova	8	Translation-request IOVA	if capabilities.DBG==0
608	tr_req_ctl	8	Translation-request control	if capabilities.DBG==0
616	tr_response	8	Translation-request response	if capabilities.DBG==0
624	Reserved	64	Reserved for future use (WPRI)	
688	custom	72	Designated for custom use (WARL)	
760	icvec	8	Interrupt cause to vector register	No
768	msi_cfg_tbl	256	MSI Configuration Table	if capabilities.IGS==WSI
1024	Reserved	3072	Reserved for standard use	

- Data Structures (DDT, DC, PDT, PC ...)
- In-memory queue interface (CQ, FQ, PQ)
- Memory-mapped register interface

[PATCH v10 0/7] Linux RISC-V IOMMU Support by Tomasz Jeznach <tjeznach@rivosinc.com> https://lore.kernel.org/linux-riscv/cover.1729059707.git.tjeznach@rivosinc.com/

- Support platform device driver
- Support PCIe device driver

Emulated-IOMMU

- Guest 对 Memory-mapped register 访问,
 都会陷入 Hypervisor 处理
- QEMU 后端填充/读取 CQ, FQ, PQ。

[RFC PATCH v2 00/10] RISC-V IOMMU HPM and nested IOMMU support by Zong Li <zong.li@sifive.com> https://lore.kernel.org/lkml/20240614142156.29420-1-zong.li@sifive.com/

- Support GPA -> SPA (Tested)
- Support nested iommu (Not ready for Test)

但是,尚未给出 QEMU backend 代码,所以暂时无法测试 nested-translation。

缺点:

- 访问 Memory-mapped 寄存器效率低,产生 VM exit。
- Guest 复用 RISC-V IOMMU 驱动, Nested 设计增加驱动复杂性。
- 各个架构都要实现自己的 Qemu 后端驱动,工作量大,且不统一。 短期不会支持 GIPC,我们认为有更好的选择:

Virtio-IOMMU

Virtio-iommu specification

With page table extensions 06 October 2023

5.13.6.4 DETACH_ATTACH_TABLE request

5.13.7.1.1 PROBE property for Arm SMMUv3 5.13.7.1.2 ATTACH TABLE request for Arm SMMUv3 . . 5.13.7.1.3 INVALIDATE request for Arm SMMUv3 5.13.7.2.1 PROBE property for VT-d page tables 5.13.7.2.2 ATTACH_TABLE request for VT-d page table . 5.13.7.2.3 INVALIDATE request for VT-d page table 5.13.7.3.1 PROBE properties for RISC-V IOMMU 5.13.7.3.2 ATTACH_TABLE request for RISC-V IOMMU . 5.13.7.3.3 INVALIDATE request for RISC-V IOMMU 5.13.7.4.1 PROBE properties for AMD GCR3 table 5.13.7.4.2 ATTACH_TABLE request for AMD GCR3 table 5.13.7.4.3 ATTACH TABLE request for AMD page table .

5.13.7.3.2 ATTACH_TABLE request for RISC-V IOMMU

```
struct virtio iommu req attach table riscv {
 struct virtio_iommu_req_head head;
 le32 domain;
 le32 endpoint;
       format;
       reserved[3];
 le64 tc;
 le64 ta;
  le64 fsc;
       reserved[84];
struct virtio iommu req tail tail;
#define VIRTIO_IOMMU_HW_RISCV_TC_PDTV
                                              (1 << 5)
                                              (1 << 8)
#define VIRTIO_IOMMU_HW_RISCV_TC_SADE
#define VIRTIO_IOMMU_HW_RISCV_TC_DPE
                                              (1 << 9)
#define VIRTIO IOMMU HW RISCV TC SBE
                                              (1 << 10)
                                              (1 << 11)
#define VIRTIO IOMMU HW RISCV TC SXL
#define VIRTIO_IOMMU_HW_RISCV_TA_PSCID_SHIFT 12
#define VIRTIO_IOMMU_HW_RISCV_TA_PSCID_MASK
                                             0xfffff
#define VIRTIO IOMMU_HW_RISCV_FSC_MODE_SHIFT 60
#define VIRTIO IOMMU HW RISCV FSC MODE MASK
#define VIRTIO IOMMU_HW_RISCV_FSC_PPN_MASK
                                              0xfffffffffff
/* When VIRTIO IOMMU HW RISCV TC PDTV == 0 */
#define VIRTIO_IOMMU_HW_RISCV_FSC_MODE_SV39
#define VIRTIO IOMMU HW RISCV FSC MODE SV48
#define VIRTIO IOMMU HW RISCV FSC MODE SV57
#define VIRTIO_IOMMU_HW_RISCV_FSC_MODE_SV32
/* When VIRTIO_IOMMU_HW_RISCV_TC_PDTV == 1 */
#define VIRTIO_IOMMU_HW_RISCV_FSC_MODE_PD8
#define VIRTIO IOMMU_HW_RISCV_FSC_MODE_PD17
#define VIRTIO_IOMMU_HW_RISCV_FSC_MODE_PD20
```

iommu: Add virtio-iommu driver (2019.1)
Author: Jean-Philippe Brucker
<jean-philippe@linaro.org>

优势:

- Linux 五年前已支持 virtio-IOMMU
- QEMU 后端框架已实现
- 无需模拟 RISC-V IOMMU 实现
- virtio 命令队列更高效
- 跨 CPU ISA 支持
- 支持 GIPC 和 GIDC

总结

- RISC-V IOMMU 仅支持 GIDC
- GIPC 提案使 RISC-V IOMMU 可以同时支持 GIPC 和 GIDC 的混合部署。
- 支持 Emulated-IOMMU
- 支持 Virtio-IOMMU(欢迎一起共建)

Thank you

玄铁中文站

玄铁海外站

