DISCRETE MATHEMATICS - SOLUTIONS TO EXAM 2010-12-20

1. The characteristic polynomial is $r^2 + r - 6 = (r+3)(r-2)$. Therefore, the solutions to the homogeneous, and particular equations are of the form

$$a_n^{(h)} = \alpha(-3)^n + \beta 2^n$$

 $a_n^{(p)} = \delta 3^n + \gamma 2^n n.$

After some computations, we should arrive at the solution

$$a_n = 3(-3)^n - 2^{n+1} + 3^{n+1} + 2^n n = 3^{n+1}(1 + (-1)^n) + 2^n(n-2).$$

2. Compute xG for $x = \in \mathbb{Z}_2^3$ to obtain the list of all code-words and their weights:

x	xG	weight
000	0000000	0
100	1000111	4
010	0101101	4
001	0011011	4
110	1101010	4
101	1011100	4
011	0110110	4
111	1110001	4

Since the smallest weight is equal to the Hamming separation d(C) of the code, we get d(C) = 4. Also, it is clear that 1101010 is in the code, and 1010100 is not. The code-word 1011100 is the unique code-word at a Hamming distance of 1 from 1010100, and is therefore its correction.

3. Following the scheme of the Chinese Remainder theorem, we let $N_1 = 28, N_2 = 21, N_3 = 12$, and solve

$$s_1 28 \equiv 1 \pmod{3}$$
 $s_1 \equiv 1 \pmod{4}$ \Longrightarrow $s_2 \equiv 1 \pmod{4}$ $s_1 12 \equiv 1 \pmod{7}$ \Longrightarrow $s_2 \equiv 1 \pmod{4}$ $s_3 \equiv 3 \pmod{7}$

The smallest positive x satisfying this is then

$$x = 1 \cdot 28 \cdot 2 + 1 \cdot 21 \cdot 3 + 3 \cdot 12 \cdot 3 = 227 \equiv 59 \pmod{84}$$
.

4. We use the principle of inclusion and exclusion. Let N=6! denote the number of ways to arrange 1,2,3,4,5,6 along a line, and consider the conditions

$$c_1 = 12$$
 appears,
 $c_2 = 23$ appears,
 $c_3 = 34$ appears.

We calculate

$$N(c_1) = N(c_2) = N(c_3) = 5!$$

 $N(c_1c_2) = N(c_2c_3) = N(c_1c_3) = 4!$
 $N(c_1c_2c_3) = 3!.$

In the calculation of $N(c_1)$, say, we treat '12' as being one object. In the calculation of $N(c_1c_2)$ we have to treat '123' as one object, while in the calculation of $N(c_1c_3)$ we treat each of '12' and '34' as one object.

So, by the principle of inclusion and exclusion, our answer is

$$N(\overline{c}_1\overline{c}_2\overline{c}_3) = N - [N(c_1) + N(c_2) + N(c_3)] + [N(c_1c_2) + N(c_1c_3) + N(c_2c_3)] - N(c_1c_2c_3)$$

$$= 6! - 3 \cdot 5! + 3 \cdot 4! - 3! = 426.$$

5.

a. We check that $p(x) = x^4 + 2x^3 + x^2 + 1$ is a prime polynomial. First, we exclude the possibility of it having a linear factor by observing that it has no zeroes: p(0) = 1, p(1) = 2, p(2) = 1 in \mathbb{Z}_3 . The only possibility for it to be reducible is if it is a product of two irreducible polynomials of degree 2.

We consider all polynomials of the form $f(x) = x^2 + \alpha x + \beta$. (Note that a polynomial $2x^2 + \alpha x + \beta$ can be made to be of this form by multiplying with $2^{-1} = 2$.) Such a polynomial is irreducible if and only if it has no zeroes. This implies that $\beta \neq 0$. We make a table

α	β	f(x)	zeroes
0	1	$x^{2} + 1$	
0	2	$x^{2} + 2$	x = 1, x = 2
1	1	$x^2 + x + 1$	x = 1
1	2	$x^2 + x + 2$	
2	1	$x^2 + 2x + 1$	x = 2
2	2	$x^2 + 2x + 2$	

We now compute all products of the irreducible polynomials of degree 2:

$$(x^{2}+1)^{2} = x^{4} + 2x^{2} + 1$$

$$(x^{2}+x+2)^{2} = x^{4} + 2x^{3} + 2x^{2} + x + 1$$

$$(x^{2}+2x+2)^{2} = x^{4} + x^{3} + 2x + 1$$

$$(x^{2}+1)(x^{2}+x+2) = x^{4} + x^{3} + x + 2$$

$$(x^{2}+1)(x^{2}+2x+2) = x^{4} + 2x^{3} + 2x + 2$$

$$(x^{2}+x+2)(x^{2}+2x+2) = x^{4} + 1.$$

As our p(x) is not in this list, and has no zeroes, it has to be irreducible. Hence, $\mathbb{Z}_3[x]/p(x)$ is a field.

b. By the division algorithm, if f(x) is any polynomial, there exists polynomials q(x) and r(x) such that f(x) = q(x)p(x) + r(x), and r(x) has strictly lower degree than p(x). This answers the first question.

To compute the equivalence class of $x^5 + 1$, we use long division to find that $x^5 + 1 = (x+1)(x^4 + 2x^3 + x^2 + 1) + (2x^2 + 2x)$. So $[x^5 + 1] = [2x^2 + 2x]$ in $\mathbb{Z}_3[x]$.

Finally, to compute the inverse of $x^5 + 1$, it is enough to compute the inverse of $2x^2 + 2$. This can be done by using the Euclidean algorithm, and we find (by just one step)

$$(x^4 + 2x^3 + x^2 + 1) = (2x^2 + 2x)(2x^2 + 2x) + 1.$$

Hence $[2x^2 + 2x]^{-1} = -[2x^2 + 2x] = [x^2 + x].$

6.

a. For this problem, we need to find the coefficient of $x^6/6!$ of the exponential generating function $(1+x+x^2/2)(1+x)^5$.

By the binomial theorem, this is the same as

$$\left[\sum_{k=0}^{5} {5 \choose k} x^k\right] (1 + x + x^2/2),$$

and so the answer is

$$6!\left[\binom{5}{5} + \binom{5}{4}\frac{1}{2}\right] = 7!/2 = 2520.$$

b. We first observe that with the letters 'NUNBET' we can construct 6!/2 combinations of length six. To find the remaining combinations, where we all the time use the blank tile, consider 3 cases.

Case 1: The blank tile is none of N, U, B, E, T.

Case 2: The blank tile is one of U, B, E, T.

Case 3: The blank tile is N.

Observe that in all cases we need to assume that the blank tile is used to avoid overcounting!

Case 1: There are 21 such choices for the blank tile. For each choice, the number of combinations where we use the blank tile, is equal to the coefficient of $x^6/6!$ in $x(1+x)^4(1+x+x^2/2)$, which is

 $\left[\binom{4}{4} + \frac{1}{2} \binom{4}{3} \right] 6! = 3 \cdot 6!.$

Case 2: There are 4 such choices. For each, the number of combinations is equal to the coefficient of $x^6/6!$ in $(x^2/2)(1+x)^3(1+x+x^2/2)$, which is

$$\left[\frac{1}{2}\binom{3}{3} + \frac{1}{4}\frac{3}{2}\right]6! = (5/4) \cdot 6!.$$

Case 3: There is only one such choice, and the number of combinations is equal to the coefficient of $x^6/6!$ in $(x^3/3!)(1+x)^4$, which is:

$$\left[\frac{1}{3!} \binom{4}{3}\right] 6! = (2/3) \cdot 6!.$$

The final answer is now (by the rule of sum):

$$6! \cdot \left[\frac{1}{2} + 21 \cdot 3 + 4 \cdot \frac{5}{4} + 1 \cdot \frac{2}{3} \right] = 6! \cdot \frac{415}{6} = 49.800.$$