Hidden Markov Model

Prediction of Traffic based on sequential speed data of EV

Markov Process

A markov chain is a model that tells us something about the probabilities of sequences of random variables.

A markov chain makes a very strong assumption that if we want to predict the future in the sequence, all that matters is the current state.

► The states before the current state have no impact on the future except via the current state

Markov Model

Figure A.1 A Markov chain for weather (a) and one for words (b), showing states and transitions. A start distribution π is required; setting $\pi = [0.1, 0.7, 0.2]$ for (a) would mean a probability 0.7 of starting in state 2 (cold), probability 0.1 of starting in state 1 (hot), etc.

Markov Assumption: $P(q_i = a | q_1...q_{i-1}) = P(q_i = a | q_{i-1})$

Terminologies

$Q = q_1 q_2 \dots q_N$	a set of N states
$A = a_{11}a_{12}\dots a_{n1}\dots a_{nn}$	a transition probability matrix A , each a_{ij} representing the probability of moving from state i to state j , s.t. $\sum_{j=1}^{n} a_{ij} = 1 \forall i$
$\pi=\pi_1,\pi_2,,\pi_N$	an initial probability distribution over states. π_i is the probability that the Markov chain will start in state i . Some states j may have $\pi_j = 0$, meaning that they cannot be initial states. Also, $\sum_{i=1}^{n} \pi_i = 1$

Hidden Markov Model

- A Markov chain is useful when we need to compute a probability for a sequence of observable events.
- In many cases, however, the events we are interested in are hidden (we don't observe them directly).
- ▶ HMM allows us to compute probabilities of both hidden and visible states
- Ex: Prediction of weather based upon number of ice-cream
- In Our case, Prediction of Traffic based on sequential speed data.

Terminologies

$Q = q_1 q_2 \dots q_N$	a set of N states
$A = a_{11} \dots a_{ij} \dots a_{NN}$	a transition probability matrix A , each a_{ij} representing the probability of moving from state i to state j , s.t. $\sum_{j=1}^{N} a_{ij} = 1 \forall i$
$O = o_1 o_2 \dots o_T$	a sequence of T observations , each one drawn from a vocabulary $V =$
	$v_1, v_2,, v_V$
$B = b_i(o_t)$	a sequence of observation likelihoods , also called emission probabilities , each expressing the probability of an observation o_t being generated from a state i
$\pi=\pi_1,\pi_2,,\pi_N$	an initial probability distribution over states. π_i is the probability that the Markov chain will start in state i . Some states j may have $\pi_j = 0$, meaning that they cannot be initial states. Also, $\sum_{i=1}^{n} \pi_i = 1$

Assumptions in HMM

The probability of a particular state depends only on the previous state(First Order Markov Process)

Markov Assumption:
$$P(q_i|q_1...q_{i-1}) = P(q_i|q_{i-1})$$

The probability of an output observation Oi depends only on the state that produced the observation qi and not on any other states or any other observations.

Output Independence: $P(o_i|q_1...q_i,...,q_T,o_1,...,o_i,...,o_T) = P(o_i|q_i)$

How we can apply HMM to our data?

- Given a sequence of observations O (each an integer representing the number of ice creams eaten on a given day) find the 'hidden' sequence Q of weather states (H or C) which caused Jason to eat the ice cream.
- Note: Both hidden and visible state must discrete.
 - Discretizing Speed into certain number of buckets and predicting traffic i.e High, Low, Medium
- ► Given a sequence of observation O (each an integer representing the speed bucket) find the 'hidden' sequence Q of Traffic states (H or L or M) which caused change in speed.

Learned Parameters of HMM

Problem 1 (Likelihood): Given an HMM $\lambda = (A, B)$ and an observation se-

quence O, determine the likelihood $P(O|\lambda)$.

Problem 2 (Decoding): Given an observation sequence O and an HMM $\lambda =$

(A,B), discover the best hidden state sequence Q.

Problem 3 (Learning): Given an observation sequence *O* and the set of states

in the HMM, learn the HMM parameters A and B.

So, Problem 2 is what we need!

Problem 1: forward algorithm

Computing Likelihood: Given an HMM Model = (A,B) and an observation sequence O, determine the likelihood P(O)

$$P(O|Q) = \prod_{i=1}^{T} P(o_i|q_i)$$

$$P(O,Q) = P(O|Q) \times P(Q) = \prod_{i=1}^{T} P(o_i|q_i) \times \prod_{i=1}^{T} P(q_i|q_{i-1})$$

$$P(3 \ 1 \ 3, \text{hot hot cold}) = P(\text{hot}|\text{start}) \times P(\text{hot}|\text{hot}) \times P(\text{cold}|\text{hot})$$

$$\times P(3|\text{hot}) \times P(1|\text{hot}) \times P(3|\text{cold})$$

$$P(O) = \sum_{O} P(O,Q) = \sum_{O} P(O|Q)P(Q)$$

 $P(3 \ 1 \ 3) = P(3 \ 1 \ 3, \text{cold cold cold}) + P(3 \ 1 \ 3, \text{cold cold hot}) + P(3 \ 1 \ 3, \text{hot hot cold}) + \dots$

Dynamic Approach

$$P(O|\lambda) = \sum_{i=1}^{N} \alpha_{T}(i)$$

Problem 2 : Decoding

► Given the visible sequence (speed buckets), the task is to determine hidden stated corresponding to each visible state

- ▶ (INPUT) SPEED : HIGH LOW MID HIGH LOW MID
- ▶ (OUTPUT) TRAFFIC : LOW HIGH HIGH LOW HIGH HIGH

Viterbi Algorithm

Problem 3: Forward Backward Algorithm

- ► Goal: To learn matrices A (Transition Matrix) and B (Emission matrix)
- Input: The input to such a learning algorithm would be an unlabeled sequence of observations O and a vocabulary of potential hidden states Q.
- ► The standard algorithm for HMM training is forward backward algorithm, it's an iterative algorithm.
- ► The algorithm will let us train both the transition probabilities A and the emission probabilities B of the HMM.
- We will start with an estimate for the transition and observation probabilities and then use these estimated probabilities to derive better and better probabilities.

Backward Algorithm

$$\beta_t(i) = P(o_{t+1}, o_{t+2} \dots o_T | q_t = i, \lambda)$$
 (A.15)

It is computed inductively in a similar manner to the forward algorithm.

1. Initialization:

$$\beta_T(i) = 1, 1 \le i \le N$$

2. Recursion

$$\beta_t(i) = \sum_{j=1}^N a_{ij} b_j(o_{t+1}) \beta_{t+1}(j), \quad 1 \le i \le N, 1 \le t < T$$

3. Termination:

$$P(O|\lambda) = \sum_{j=1}^{N} \pi_j b_j(o_1) \beta_1(j)$$

$\hat{a}_{ij} = \frac{\text{expected number of transitions from state } i \text{ to state } j}{\text{expected number of transitions from state } i}$

$$\xi_t(i,j) = P(q_t = i, q_{t+1} = j | O, \lambda)$$

$$P(X|Y,Z) = \frac{P(X,Y|Z)}{P(Y|Z)}$$

not-quite-
$$\xi_t(i, j) = P(q_t = i, q_{t+1} = j, O | \lambda)$$

not-quite-
$$\xi_t(i,j) = \alpha_t(i) a_{ij} b_j(o_{t+1}) \beta_{t+1}(j)$$

$$P(O|\lambda) = \sum_{j=1}^{N} \alpha_{t}(j)\beta_{t}(j)$$

$$\xi_{t}(i,j) = \frac{\alpha_{t}(i) a_{ij} b_{j}(o_{t+1}) \beta_{t+1}(j)}{\sum_{j=1}^{N} \alpha_{t}(j) \beta_{t}(j)}$$

$$\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \sum_{k=1}^{N} \xi_t(i,k)}$$

 $\hat{b}_j(v_k) = \frac{\text{expected number of times in state } j \text{ and observing symbol } v}{\text{expected number of times in state } j}$

$$\gamma_t(j) = P(q_t = j|O,\lambda)$$

$$\gamma_t(j) = \frac{P(q_t = j,O|\lambda)}{P(O|\lambda)}$$

$$\hat{b}_{j}(v_{k}) = \frac{\sum_{t=1}^{T} s.t.O_{t} = v_{k}}{\sum_{t=1}^{T} \gamma_{t}(j)}$$

Initialize the transition and emission matrix and go on correcting them till they get converged

Thank you!