ECE 449/590 – OOP and Machine Learning Lecture 18 Stochastic Gradient Descent

Professor Jia Wang
Department of Electrical and Computer Engineering
Illinois Institute of Technology

October 26, 2022

Outline

Gradient-Based Optimization

Stochastic Gradient Descent

Reading Assignment

▶ This lecture: Deep Learning 4.3, 5.9, 8.1.3, 8.3, 8.4

► Next lecture: Deep Learning 6

Outline

Gradient-Based Optimization

Unconstrained Optimization

- ▶ Minimize some function f(x) by altering x.
 - ▶ Use -f(x) if you would like to maximize f(x).
 - f(x) is the <u>objective function</u>, a.k.a. <u>criterion</u>, <u>cost function</u>, loss function, and error function.
- ▶ The optimal solution $x^* = \arg\min f(x)$.
 - ightharpoonup Does x^* exist?
 - ▶ How to find it? What do we know/can we compute about f?
 - What if we cannot find it?

Critical Points

(Goodfellow 2017)

- ▶ Consider the 1-D case to minimize y = f(x).
- ▶ Critical points $\frac{dy}{dx} = f'(x) = 0$.
 - Not necessary a minimum.

Gradient Descent (1-D)

- ▶ First order Taylor expansion: $f(x + \epsilon) \approx f(x) + \epsilon f'(x)$
- ▶ If f'(x) < 0, increase x; if f'(x) > 0, decrease x.
 - For small enough ϵ , f(x) will decrease.
- ▶ Iterative optimization: apply multiple steps
 - In each step, update x to $x + \epsilon$ by a small enough ϵ .
 - ightharpoonup Eventually f(x) is minimized.
- Challenges
 - ▶ What if f'(x) = 0 (or too small)?
 - ▶ How large should ϵ take?
 - ▶ How to compute f'(x)?
 - ▶ What if f(x) has no minimum?

Gradient Descent

Figure 4.1

Approximate Optimization

Figure 4.3

Gradient Descent

First order Taylor expansion:

$$f(\boldsymbol{x} + \delta \boldsymbol{x}) \approx f(\boldsymbol{x}) + \delta \boldsymbol{x}^{\top} \nabla_{\boldsymbol{x}} f(\boldsymbol{x})$$

- ▶ f(x) will decrease for small enough δx with $\delta x^\top \nabla_x f(x) < 0$.
- Let $\delta x = \alpha u$ for scalar α and unit vector u.
- ► Can we minimize $u^{\top}\nabla_{x}f(x)$ as a function of u?
 - For a small enough fixed α , make $\delta x^{\top} \nabla_x f(x)$ as small as possible in order to make $f(x + \delta x)$ as small as possible.
- lacksquare Gradient descent: $oldsymbol{u}^* = -rac{
 abla_x f(x)}{||
 abla_x f(x)||}$
 - A.k.a. method of steepest descent.
- For machine learning, usually we skip to compute the norm for u^* and choose $\delta x = -\epsilon \nabla_x f(x)$.
 - $ightharpoonup \epsilon$: learning rate
 - ▶ Do we need to find the best ϵ for each step?

Gradient Descent and Poor Conditioning

Figure 4.6

(Goodfellow 2017)

▶ If for each step we could find ϵ^* to minimize $f(x - \epsilon \nabla_x f(x))$, it may still take a lot of steps to reach the minimal f.

Beyond Gradient Descent

Second order Taylor expansion:

$$f(\boldsymbol{x} + \delta \boldsymbol{x}) \approx f(\boldsymbol{x}) + \delta \boldsymbol{x}^{\top} \nabla_{\boldsymbol{x}} f(\boldsymbol{x}) + \frac{1}{2} \delta \boldsymbol{x}^{\top} \boldsymbol{H}_{\boldsymbol{x}} f(\boldsymbol{x}) \delta \boldsymbol{x}$$

- lacksquare The Hessian matrix: $m{H_x}f(m{x})_{i,j}=rac{\partial^2}{\partial x_i\partial x_j}f(m{x})$
- ▶ Best step size for gradient descent $\delta x = -\epsilon^* \nabla_x f(x)$:

$$\epsilon^* = \frac{\nabla_{\boldsymbol{x}} f(\boldsymbol{x})^\top \nabla_{\boldsymbol{x}} f(\boldsymbol{x})}{\nabla_{\boldsymbol{x}} f(\boldsymbol{x})^\top \boldsymbol{H}_{\boldsymbol{x}} f(\boldsymbol{x}) \nabla_{\boldsymbol{x}} f(\boldsymbol{x})}$$

- Newton's method: $\delta x^* = -(H_x f(x))^{-1} \nabla_x f(x)$
 - ▶ Allow to move in a different direction than gradient descent.
 - Still, there are issues related with non-minimum critical points and $H_xf(x)$ being too close to 0.
- ▶ Practical challenges for machine learning
 - How to calculate $H_x f(x)$?
 - How to store $H_x f(x)$?

We usually don't even reach a local minimum

(Goodfellow 2017)

For many machine learning problems, we don't even need f'(x) to approach 0.

13/21

For simplicity, just think about to minimize $f(x) = \log(|x - c|)$

Outline

Stochastic Gradient Descent

Loss Function Revisited

For training, loss function is the average of individual ones.

$$J(\boldsymbol{\theta}) = \mathbb{E}_{\boldsymbol{x}, y \sim p_{data}} L(\boldsymbol{x}, y; \boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} L(\boldsymbol{x}^{(i)}, y^{(i)}; \boldsymbol{\theta})$$

▶ The gradient can be computed as the average too.

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\boldsymbol{\theta}} L(\boldsymbol{x}^{(i)}, y^{(i)}; \boldsymbol{\theta})$$

- ▶ But this will be too time consuming for gradient descent.
 - ▶ Need to visit every training exmaple for each step.

Stochastic Gradient Descent (SGD)

- Instead of computing the gradient $\nabla_{\theta} J(\theta)$ from all training examples, we may approximate it by sampling.
 - ▶ Indeed, $\frac{1}{m}\sum_{i=1}^{m}L(\boldsymbol{x}^{(i)},y^{(i)};\boldsymbol{\theta})$ is an approximation of the actual loss function $\mathbb{E}_{\boldsymbol{x},y\sim p_{data}}L(\boldsymbol{x},y;\boldsymbol{\theta})$.
 - For machine learning, finding the actual minimum is not as important as reducing the loss function.
- Stochastic Gradient Descent (SGD) and Minibatch
 - Sample m' examples $\mathbb{B}=\{x^{(1)},\dots,x^{(m')}\}$ with a fixed m'<< m no matter how large m is.
- In practice, training of neural network models are organized into epochs.
 - ▶ The epoch begins by randomly shuffling training examples.
 - ▶ Then each step consumes m' examples.
 - ▶ The epoch ends after $\frac{m}{m'}$ steps when all examples are consumed once.

Discussions on Minibatch Algorithms

- ► Larger batches provide a more accurate estimate of the gradient, but with less than linear returns.
- Multicore architectures are usually underutilized by extremely small batches.
- Typically, all examples need to be available from the memory so that they could be processed in parallel. This may limit batch size in certain hardware.
- ➤ Some kinds of hardware, especially GPUs, achieve better runtime with specific sizes of arrays, e.g. powers of 2.
- Small batches introducing noises to the training process may benefit learning as a whole because they may work as regularization to reduce generalization errors.

The Learning Rate

- ▶ It is common for SGD to use different learning rates ϵ_k for different steps k.
- ▶ In theory, for SGD to converge, it is sufficient that

$$\sum_{k=1}^{\infty} \epsilon_k = \infty, \text{ and } \sum_{k=1}^{\infty} \epsilon_k^2 < \infty$$

- ▶ In practice, reduce learning rates as training progresses.
 - Larger rates help to update weights faster in the beginning.
 - ▶ Smaller rates help to keep what have already been learned.
 - ▶ E.g. linear decay until step τ : $\epsilon_k = (1 \frac{k}{\tau})\epsilon_0 + \frac{k}{\tau}\epsilon_\tau$

Momentum

- Noisy gradients due to minibatch or poorly conditioned Hessian may cause gradient descent to to follow a zig-zaging path.
 - Lead to slow convergence as steps are cancelling each other.
- Momentum: use an exponentially decaying moving average of past gradients to update weights.
 - ▶ Velocity updates: $v \leftarrow \alpha v \frac{\epsilon}{m'} \sum_{i=1}^{m'} \nabla_{\theta} L(x^{(i)}, y^{(i)}; \theta)$
 - Weights updates: $oldsymbol{ heta} \leftarrow oldsymbol{ heta} + oldsymbol{v}$
- ► The actual step sizes are large to accelerate learning if past gradients are aligned.

Parameter Initialization Strategies

- ▶ While SGD takes multiple steps to reduce $J(\theta)$, if a good θ is chosen for the first step, the iterative process may take less steps to converge.
 - In extreme cases, bad initial θ 's may prevent SGD to converge to a reasonable minimum.
- Symmetry in neural network models
 - Many nodes in neural network models have identical inputs and drive the same output.
 - ► The training process is expected to assign different weights to such nodes so they would learn different features.
 - However, if their weights are the same in the beginning, gradient descent will compute the same gradient for them and they will remain the same through the learning process.
- "Break symmetry": initialize parameters randomly

Summary

- Machine learning introduces many unique challenges to optimization.
- SGD with minibatch works well when training neural network models.
 - ► Choices of learning rate, momentum, and initialization may still affect the efficiency of the learning process.