МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

Факультет информационных технологий и программирования

Кафедра информационных систем

Методы оптимизации Лабораторная работа № 3

> Выполнили студенты группы M33051: Ефимов Вячеслав Иосифович Мелентьев Петр Алексеевич

САНКТ-ПЕТЕРБУРГ

2021

LU-разложение

Матрица А

6	-3	5	0	2	0	0
-4	0	7	-3	0	2	0
0	9	-3	-6	0	7	1
5	-2	0	0	1	7	-3
-1	0	0	5	0	2	0
9	-8	7	0	2	3	0
3	0	-4	1	9	0	5

Матрица L

1.0	0.0	0.0	0.0	0.0	0.0	0.0
-0.667	1.0	0.0	0.0	0.0	0.0	0.0
0.0	-4.5	1.0	0.0	0.0	0.0	0.0
0.833	-0.25	-0.036	1.0	0.0	0.0	0.0
-0.167	0.25	-0.04	-3.402	1.0	0.0	0.0
1.5	1.75	-0.427	2.11	3.526	1.0	0.0
0.5	-0.75	0.029	0.472	-59.368	-15.245	1.0

Матрица U

6.0	-3.0	5.0	0.0	2.0	0.0	0.0
0.0	-2.0	10.333	-3.0	1.333	2.0	0.0
0.0	0.0	43.5	-19.5	6.0	16.0	1.0
0.0	0.0	0.0	-1.46	-0.115	8.082	-2.964
0.0	0.0	0.0	0.0	-0.15	29.636	-10.041
0.0	0.0	0.0	0.0	0.0	-115.228	42.088
0.0	0.0	0.0	0.0	0.0	0.0	51.914

Матрица L * U

6.0	-3.0	5.0	0.0	2.0	0.0	0.0
-4.002	0.001	6.998	-3.0	-0.001	2.0	0.0
0.0	9.0	-2.998	-6.0	0.002	7.0	1.0
4.998	-1.999	0.016	-0.008	1.002	7.006	-3.0
-1.002	0.001	0.008	4.997	0.0	2.001	0.003
9.0	-8.0	7.008	-0.004	1.999	2.99	0.002
3.0	0.0	-3.988	0.995	9.025	-0.0	5.027

Нахождение обратной матрицы

Матрица А

```
3
   -5
             2
                     8
        0
                  0
        2
                     3
                 4
4
   1
             0
1
   -1
        3
                 2
                     0
             0
                 5
0
        9
                     0
   1
             -2
7
   -4
        -5
                 6
                    -3
             0
        2
             8
                     7
   -4
                 0
0
```

Матрица А-1

```
[-0.065]
          0.275
                  1.12 - 0.492 - 0.147 - 0.107
 [-0.117 \quad 0.218 \quad -0.04 \quad -0.076 \quad -0.069
                                         0.01 l
                  0.647 - 0.172 - 0.112 - 0.034
 [-0.034
          0.06
                  0.266 - 0.147 - 0.022
 [-0.149]
          0.083
                                         0.1261
                                  0.207
 [ 0.026 -0.119 -1.05
                          0.467
                                         0.11
          0.012 - 0.511
                          0.174
                                  0.017
                                          0.015]]
 [ 0.114
```

Матрица A * A⁻¹

```
[[ 1.000e+00  0.000e+00
                        0.000e+00
                                   0.000e+00 0.000e+00
                                                          5.551e-17]
 [ 1.110e-16
             1.000e+00
                        4.441e-16 -2.220e-16 -4.163e-17
                                                          2.776e-17]
 [ 1.388e-17 -2.776e-17
                        1.000e+00 -2.776e-17 4.163e-17
                                                          1.735e-181
 [ 1.110e-16 -3.469e-17
                                  1.000e+00 -6.939e-17 -5.551e-17]
                        3.331e-16
 [ 4.996e-16 -2.220e-16 -1.776e-15 4.441e-16 1.000e+00
                                                          3.331e-16]
 [ 6.800e-16 -5.135e-16
                        1.332e-15 -3.220e-15 -3.886e-16
                                                          1.000e+00]]
```

Решение СЛАУ

Матрица коэффициентов А

10	-7	2	-3	0	0
-3	4	6	0	5	4
5	-1	5	-9	2	8
0	1	-6	3	2	
0	0	0	5	-9	3
6	0	4	7	-2	0

Вектор свободных членов b

$$[-15, 23, -3, -34, 27, 8]$$

Вектор х

$$[-4.178 -2.749 5.308 1.026 -2.326 0.311]$$

Вектор А * х

Задание 3

3. Провести исследование реализованного метода на матрицах, число обусловленности которых регулируется за счет изменения диагонального преобладания (т.е. оценить влияние увеличения числа обусловленности на точность решения). Для этого необходимо решить последовательность СЛАУ

$$A^k x^k = F^k, \quad k = 0, 1, 2, ...,$$

где матрицы A^k строятся следующим образом:

$$a_{ij} = \begin{cases} -\sum_{i \neq j} a_{ij}, i > 1, \\ -\sum_{i \neq j} a_{ij} + 10^{-k}, i > 1, \end{cases},$$

и $a_{ij} \in 0, -1, -2, -3, -4$ выбираются достаточно произвольно, а правая часть F_k получается умножение матрицы A^k на вектор x*=(1,...,n). Для каждого k, для которого система вычислительно разрешима, оценить погрешность найденного решения.

k	Норма	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	0	1														
2	0	1	2													
3	0	1	2	3												
4	0	1	2	3	4											
5	0	1	2	3	4	5										
6	0	1	2	3	4	5	6									
7	0	1	2	3	4	5	6	7								
8	0	1	2	3	4	5	6	7	8							
9	0	1	2	3	4	5	6	7	8	9						
10	0	1	2	3	4	5	6	7	8	9	10					
11	0	1	2	3	4	5	6	7	8	9	10	11				
12	0.02	1	2	3	4	5	6	7	8	9	10	11	12			
13	0.16	1.04	2.04	3.04	4.04	5.04	6.04	7.04	8.04	9.04	10.04	11.04	12.04	13.04		
14	1.07	0.71	1.71	2.71	3.71	4.71	5.71	6.71	7.71	8.71	9.71	10.71	11.71	12.71	13.71	
15	3.87	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

Задание 4

4. Провести аналогичные исследования на матрицах Гильберта различной размерности.

Матрицы Гильберта размерности k строится следующим образом:

$$a_{ij} = \frac{1}{i+j-1}, i, j = 1..k.$$

k	Норма	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	0	1														
2	0	1	2													
3	0	1	2	3												
4	0	1	2	3	4											
5	0	1	2	3	4	5										
6	0	1	2	3	4	5	6									
7	0	1	2	3	4	5	6	7								
8	0	1	2	3	4	5	6	7	8							
9	0	1	2	3	4	5	6	7	8	9						
10	0	1	2	3	4	5	6	7	8	9	10					
11	0.03	1	2	3	4	5	6	7	8	9	10	11				
12	3.9	1	2	3	4.01	4.91	6.41	5.86	10.01	6.6	11.76	10.27	12.13			
13	357.9	1	2	2.98	4.33	2.01	22.19	-49	138.7	-194	220.2	-127	64.38	4.3		
14	195.9	1	2	3	4.01	5.02	4.96	14.58	-21.4	80.01	-102	126.7	-63.4	41.2	9.37	
15	242.3	1	2	3	3.97	5.33	3.57	18.52	-29	91.64	-119	152.1	-92.9	63.5	-0.2	16.7

Вывод

В результате проведения лабораторной работы были изучены различные методы хранения матриц, а также реализованы методы LU-разложения матриц, решение СЛАУ и отыскание обратной матрицы с помощью данного разложения. Как выяснилось, этот вид разложения удобен тем, что позволяет во многих ситуациях значительно упростить процесс решения задачи. Написав собственную реализацию на языке Python LU-разложения, мы ее протестировали на случайных матрицах из задания 3 и матрицах Гильберта из задания 4 для различных размеров матриц $k \times k$. Логичным фактом, который мы заметили, оказалось то, что для больших значений k увеличивается погрешность получаемого решения СЛАУ для данных матриц. Вместе с этим такая же тенденция наблюдается и у числа обусловленности: с увеличением k оно также растет.