elements separator

descriptive letter (females)

$$\mathbb{N} := \{1, 2, 3, ...\} \text{ natural numbers } \mathbb{N}_0 := \frac{2}{2} \ \mathbb{P}_1, 2, 3,$$

$$\mathbb{Z} := \{..., -2, -1, 0, 1, 2, ...\} \text{ integers}$$
 Operators on sets

Jane
$$\in$$
 F "set inclusion operator" "element of operator"

It's either true or false. As convention, we or statements that are true. E.g. we never writ Bob \notin F "not element of"

$$G = F$$
 (set equality) defined as $G \subseteq F \& F \subseteq G$
{Jane, Mary} $\neq F$ (set inequality)

FYI: =, \subseteq , \notin , etc are "predicate functions \notin (A, B) RETURN ${Jane} \subset F$, ${Jane} \in F$

singleton set: a set with one element

If $A \cap B = \emptyset$, then "A and B are 'mutually exclusive'". Can two infinitely large sets be "mutually exclusive"?

Can two infinitely large sets be "mutually exicustion
$$E = \{2, 4, 6, ...\}, O = \{1, 3, 5, ...\}, E \cap O = \emptyset$$

 $\varnothing \subset \mathsf{F}$, this is called "vacuously true"

Can you find a situation where $A \setminus B = B \setminus A$?

A and B being mutually exclusive e.g.
$$A = \{2, 4\}, B = \{1, 3\}, A \setminus B = \{2, 4\} = A$$

 $A = \{2, 4\}, B = \{1, 3\}, A \setminus B = \{2, 4\} = A$

$$A = \{2, 4\}, B = \{2, 4\},$$

$$A \setminus B = \emptyset$$

$$B \setminus A = \emptyset$$

 $A \setminus B = B \setminus A$

$$\lozenge \setminus \varnothing = \varnothing$$

A $\not\subset$ B, A \setminus B = \varnothing

elements

F/m ≠ m/F