

Master of Science in Analytics

Classification

Machine Learning 1

Classification

- Response (Y) is qualitative i.e. an enumerated class
- Examples:
 - Which candidate will win the 2016 presidential election?
 - What language is the following: 狗不喜欢吃蔬菜
- Algorithm grab bag
 - Now: Logistic Regression, Linear Discriminant Analysis (QDA), K
 Nearest Neighbours
 - Later: generalised additive models, trees, random forests, SVM
- Why not modify regression?
 - Yes, it's possible to enumerate classes and perform regression
 - But it's inadvisable
 - Ordering of classes may not be "natural"
 - Regression may predict value outside enumerated range

Logistic Regression

- Given features, determine the probability that Y belongs to one of the defined categories
- Shares same theory as linear regression:

 - Use maximum likelihood b/c probabilities must be in interval [0 .. 1]:

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

- Maximum likelihood is a manipulation of (log) odds / SLR basis:
 - Odds

$$\frac{p(X)}{1 - p(X)} = e^{\beta_0 + \beta_1 X}$$

Log odds

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X.$$

Example: Default data

- Data from <u>ISLR dataset</u>, including a person's:
 - Default status ("Yes" or "No")
 - Student status ("Yes" or "No")
 - o Balance
 - Income
- Unbalanced data set
 - Total = 10K instances
 - Most people (96.67%) do not default (3.33% baseline error rate)
 - Bimodal income amounts
- Bayesian

Implementation in weka

- Coerce the data into <u>ARFF format</u> (eg. <u>Default</u>)
- In weka:
 - Explorer > [Preprocess] > Open file...
 - b) [Classify] > [Choose] (function)
 - Test options (test set / Cross-validation)

Default dataset

2.68% classification error

=== Confusion Matrix === h <-classifie Sensitivity / Specificity F-Measure 0.986 No 0.439

Yes

Linear Discriminant Analysis

- Useful when:
 - Number of classes, K ≥ 1
 - Classes are well-separated
 - Distribution of each class is approximately normal
- Bayesian basis:

$$\Pr(Y = k | X = x) = \frac{\pi_k f_k(x)}{\sum_{l=1}^K \pi_l f_l(x)}$$

- \circ π_k : Prior probability
- o $f_k(X) = Pr(X=x \mid Y=k)$: Density function
- Intuitively, looking for a class separator:

Implementation in scikit-learn

- 1) Import data
 - a) If necessary, split data into train, test sets
- 2) Coerce data into:
 - a) test_x, train_x = List-of-lists / numpy matrix: all features
 - b) test_y, test_y = List / numpy vector: all targets

```
#3) LDA
```

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

```
prior_vector = [0.2, 0.8]
```

```
algo = LinearDiscriminantAnalysis (priors=prior_vector) # "priors" vector is optional
algo.fit (train_x, train_y)
hypotheses = algo.predict (test_x)
```

4) Perform analysis on hypotheses

LDA Decision Boundary

Class separator is formally called "Decision Boundary"

$$\delta_k(x) = x \cdot \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log(\pi_k)$$

Calculation is tractable for p > 1 & k > 2

When you care about minorities...

- Sometimes minority performance is more important:
 - Disease detection
 - Credit card fraud
- Many functions increase performance this way
 - Assigns observations to class with highest posterior probability
 - Default 50% (or higher) will be assigned to majority class
 - Can change that threshold; see improvement in confusion matrix

Making the tradeoffs visible

ROC curve

- Shows both errors for all possible thresholds
- Defines AUC = .95?
- Curve ideally hugs top left corner

Non-linear classification

- Quadratic Discriminative Analysis
 - Relaxes assumptions:
 - Each class has a unique (Gaussian) distribution (μ_k, \sum_k)
 - Assigns label which is the max of:

$$\delta_{k}(x) = -\frac{1}{2}(x - \mu_{k})^{T} \mathbf{\Sigma}_{k}^{-1}(x - \mu_{k}) + \log \pi_{k}$$

$$= -\frac{1}{2}x^{T} \mathbf{\Sigma}_{k}^{-1} x + x^{T} \mathbf{\Sigma}_{k}^{-1} \mu_{k} - \frac{1}{2}\mu_{k}^{T} \mathbf{\Sigma}_{k}^{-1} \mu_{k} + \log \pi_{k}$$

- Ouadratic?
 - Note "x" is quadratic function
 - Class boundaries may be non-linear
- K Nearest Neighbours
 - Assigns label according to majority (plurality) of neighbours
 - Can produce highly non-linear boundaries