Práctica 1. Estimación de errores en el análisis numérico

Universidad Nacional del Comahue Centro Regional Universitario Bariloche

Agosto de 2016

Sistemas numéricos: decimal, binario, octal y hexadecimal

- 1) Dados los siguientes valores:
- a) $1101_{(2)}$ b) $1011110_{(2)}$ c) $100000_{(2)}$ d) $11100101_{(2)}$ e) $74_{(8)}$ f) $26_{(8)}$ g) $41_{(8)}$ h) $162_{(10)}$ i) $47_{(10)}$ j) $31_{(10)}$ k) CAFE₍₁₆₎ l) AFA₍₁₆₎ m) FF₍₁₆₎, indicar su valor en las representaciones: decimal, binaria, octal y hexadecimal. Realizar los cálculos en papel y verificar a, e, h y k en python.

Aritmética computacional y errores[1]

- 2) Calcular el error absoluto y relativo al aproximar x por \hat{x} de:
 - a) $x = \pi$, $\hat{x} = 3.1416$
 - **b)** $x = \sqrt{2}, \hat{x} = 1.414$
- c) Cuál tipo de error cree más conveniente para determinar si el resultado es razonable. Por qué?
- 3) Suponga que aproximamos x con un error relativo de 10^{-3} , determinar el intervalo más grande al que \hat{x} puede pertenecer, para:
 - a) x = 90, a) x = 150, a) x = 900, a) x = 1500,
- 4) Utilice aritmética de redondeo a tres dígitos para relizar los siguiente cálculos computacionales. Determine además los errores relativos y absolutos para obtener valores con al menos cuatro dígitos.
- a) 133 + 0.921, b) 133 0.499, c) (121 0.327) 119, d) (121 119) 0.327, e) $\frac{\frac{13}{14} \frac{6}{7}}{2e 5, 4}$, f) $(\frac{2}{9})(\frac{9}{7})$
- 5) Utilice formato de 64-bits (IEEE 754) para encontrar el decimal equivalente de los siguiente número de punto flotante:
- c) Calcule los números en formato decimal más próximos por encima y por debajo de los números dados en a y b.
- 6) Dadas las siguientes ecuaciones para una recta que pasa por los puntos (x_0, y_0) y (x_1, y_1) con $y_0 \neq y_1$,

$$x = \frac{x_0 y_1 - x_1 y_0}{y_1 - y_0} \tag{1}$$

$$x = x_0 - \frac{(x_1 - x_0)y_0}{y_1 - y_0} \tag{2}$$

Utilice aritmética de redondeo con tres dígitos para obtener el valor de x con $(x_0, y_0) = (1,31,3,24)$ y $(x_1, y_1) = (1.93, 4.76)$. Cuál ecuación da un valor más preciso?

Algoritmos y convergencia[1]

7) Utilice aritmética de tres dígitos con redondeo para sumar $\sum_{i=1}^{10} \frac{1}{i^2}$ en orden $(1 + \frac{1}{4} + \cdots + \frac{1}{100})$

y en orden reverso $(\frac{1}{100} + \cdots + \frac{1}{4} + 1)$. Qué método es más preciso y por qué? Utilice las funciones lambda en python para realizar el cálculo de la suma hasta un N arbitrario.

8) La serie de Maclaurin para la función arcotangente converge para $-1 \le x \le 1$ dada por

$$\arctan(x) = \lim_{x \to \infty} P_n(x) = \lim_{x \to \infty} \sum_{i=1}^n (-1)^{i+1} \frac{x^{2i-1}}{2i-1}$$
 (3)

- a) Utilizando la relación $\tan\left(\frac{\pi}{4}\right) = 1$ determinar el número n de términos necesarios en la suma para que se cumpla $|4P_n(1) - \pi| < 10^{-3}$. b) Cuántos términos de la serie de necesitan para definir π con una presición de 10^{-10} .
- 9) Determinar la tasa de convergencia para la siguiente secuencia
 - a) $\lim_{n\to\infty}\sin(\frac{1}{n})$

y la siguiente función cuando $h \to 0$ **b)** $\lim_{h\to 0} \frac{\sin(h)}{h}$

Referencias

[1] Richard L. Burden, J. Douglas Faires, Annette M. Burden, Numerical Analysis. Cengage Learning 10th Edition (2015). ISBN-13: 978-1305253667, ISBN-10: 1305253663