12. INTRODUCTION TO 3-DIMENSIONAL GEOMETRY

SYNOPSIS

COORDINATE AXES AND COORDINATE PLANES

- In three dimensions, the coordinate axes of a rectangular Cartesian coordinate system are three mutually perpendicular lines. The axes are called the *x*, *y* and *z*-axes.
- The three planes determined by the pair of axes are the coordinate planes, called XY, YZ and ZX-planes.
- The three coordinate planes divide the space into eight parts known as *octants*

COORDINATES OF A POINT

• The coordinates of a point P in three-dimensional geometry is always written in the form of triplet like (x, y, z). Here x, y and z are the distances from the YZ, ZX and XY-planes. The coordinates of the origin O are (0,0,0).

Octants Coordinates	I	II	III	IV	V	VI	VII	VIII
×	+	-	ı	+	+	-	_	+
У	+	+	_	_	+	+	_	_
Z	+	+	+	+	_	_	_	_

• The sign of the coordinates of a point determine the octant in which the point lies. The following table shows the signs of the coordinates in eight octants.

Coordinates of points lying on different axes

- (i) Any point on x-axis is of the form (x, 0, 0)
- (ii) Any point on y-axis is of the form (0, y, 0)
- (iii) Any point on z-axis is of the form (0, 0, z).

Coordinates of points lying in different planes

- (i) The coordinates of any point in the YZ-plane will be as (0, y, z).
- (ii) The coordinates of any point in the XY-plane will be as (x, y, 0).
- (iii) The coordinates of any point in the ZX-plane will be as (x, 0, z).

- Distance between two points P (x_1, y_1, z_1) and Q (x_2, y_2, z_2) is given by $PQ = (x_2 x_1^2) + (y_2 y_1^2) + (z_2 z_1^2)$. This is known as **distance formula.**
- The coordinates of the point R which divides the line segment joining two points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ internally and externally in the ratio m: n are given by

$$\left(\frac{mx_2 \pm nx_1}{m+n}, \frac{my_2 \pm ny_1}{m+n}, \frac{mz_2 \pm nz_1}{m+n}\right)$$

This is known as section formula.

• The coordinates of the mid point of the line joining the points P (x_1, y_1, z_1) and Q (x_2, y_2, z_2) is given by $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2}\right)$

This is known as midpoint formula

• The coordinates of the centroid of the triangle, whose vertices are (x_1, y_1, z_1) , (x_2, y_2, z_2) and (x_3, y_3, z_3) is $\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}, \frac{z_1 + z_2 + z_3}{3}\right)$

INTRODUCTION TO 3-D GEOMETRY

SECTION A (1 MARK)

MCQ

1.	The length of	the foot of the prpendicular	drawn from the point $P(3, 4, 5)$	on the Y axis is
a)	10	$b)\sqrt{34}$	c) $\sqrt{113}$	d) $5\sqrt{2}$

- 2. What is the perpendicular distance of the point P(6, 7, 8) from XY plane?
- a) 8

b) 7

c) 6

- d) None of these
- 3. L is the foot of the perpendicular drawn from a point P (6, 7, 8) On the XY plane. What are coordinates of L?
- a) (6, 7, 0)
- b) (0, 7, 0)

c) (0, 0, 8)

d) None of these

- 4. What is the locus of a point for which y = 0, z = 0?
- a) X axis
- b) Y axis

c) Z axis

- d) None of these
- 5. L is the foot of the perpendicular drawn from a point P(3, 4, 5) on the XZ plane. What are the coordinates of L?
- a) (3, 0, 0)
- b) (0, 4, 5)

c) (3, 0, 5)

- d) (3, 4, 0)
- 6. The ratio in which the line joining (2. 4. 5) and (3. 5. -9) is divided by the YZ plane is
- a) 2:3

b) 3:2

c) -2:3

d) 4:-3

7. If P(0, 1, 2), Q(4, -2, 1) and O(0, 0, 0), then $\angle POQ$ is equal to

	a)	6	b) $\frac{n}{4}$	c) $\frac{\pi}{3}$	d) $\frac{n}{2}$
		If the extremities of to $\sqrt{6}$	the diagonal of a square are b) $\sqrt{3}$	(1, -2, 3) and $(2, -3, 5)c) \sqrt{5}$	then the length of the side is d) $\sqrt{7}$
			ne join of (2, 3, 1) and (6, 7,		
	a)	3:7	b) 2:7	c) -3;7	d) -2:7
	10.	The points (5, -4, 2),	(4, -3, 1), (7, 6, 4) and (8, -	7, 5) are the vertices of	f
		A rectangle	b) a square	c) a parallelogram	
Fil	l in	the blanks:			
	11.	A line is parallel to Σ	XY plane if all the points on	the line have equal	
	12.	He equation $x = b$ re	presents a plane parallel to	plane.	
			istance of the point P(3, 5, 6		
					5) on the ZX plane are
			ot of the perpendicular from		
	16.			wo of its vertices are ()	(1, 2, -3) and $(3, 0, 1)$ then the third
	17	vertex is If the midpoints of		$(1 \ 2 \ -3) \ (3 \ 0 \ 1)$ ar	nd (-1, 1, -4) then the centroid is
	17.		the sides of a triangle are	(1, 2, 3), (3, 6 1) th	ia (1, 1, 1) then the centrola is
T 7	C A				
V	SA 10	Find the distance bety	ween P (-2, 4, 1) and Q (1, 2	2 5)	
					c) is origin. Find the value of a, b,
	1).	c.	whose vertices are (a, 1, 3)	(-2, 0, -3) and $(-7, 7, 0)$	c) is origin. I ma the value of a, b,
	20.		arallelogram ABCD are A (3, 4, 6), B (-1, 0, 6) and	d C (5, 2, 0). Find coordinates of
	21.	Find the ratio in which	ch line segment joining the J	points A (1, 4, 6) and I	3 (-4, -3, 5) is divided by <i>yz</i> -
	22	plane.	truces (4.5 m) and (7.1.1	2) : . 12	
	22.	Find p , if distance before	tween $(4, 5, p)$ and $(7, 1, -1)$	3) 18 13.	
			SECTION B	3 (2 MARKS)	
			= 1, then the point $(x, y, \sqrt{1})$ rallelogram ABCD are A (1)		stance from the origin. d C (2, 3, 2) find the fourth vertex
	25.		e foot of the perpendicular f	from the point P (3, 4, 5	5) on y-axis?
		_	en the point $(a, 0, 1)$ and $(0, 0, 1)$	-	·
			int $(6,5,-3)$ is at a distance of		nt (x,-7,0)

SECTION C (4 MARKS)

- 28. If L is the foot of the perpendicular drawn from a point (3, 4, 5) on X-axis, find the coordinates of L.
- 29. Find the coordinates of the points which trisect the line-segment joining the points P (4, 2, -6) and Q (10, -16, 6).
- 30. Find the ratio in which the line-segment joining the point A (1, 2, 3) and B(-4, 5, -2) is divided by the plane x+2y-z=4.
- 31. A (5, 4,6) ,B (1,-1,3) and C (4,3,2) are three points forming \triangle ABC. AD bisector of angle BAC meeting BC at D. Find the coordinates of D.
- 32. Given that P (3, 2, -4), Q (5, 4, -6) and R (9, 8, -10) are collinear. Find the ratio in which Q divides the joining of P and R.

SECTION D (6 MARKS)

- 33. Find the coordinates of a point equidistant from four points (a, 0, 0), (0, b, 0),
 - a. (0, 0, c) and (0,0,0).
- 34. Find the ratio in which the line-segment joining the points (2, 4, -3) and (-3, 5, 4) is divided by
 - i. The *xy*-plane
 - ii. The plane x + y + z = 8
- 35. Find the distance of the point (1, 2, 0) from the point where the line joining A (2, -3, 1) and B (3, -4, -5) cuts the plane 2x + y + z = 7.
- 36. Show that the points (3, 2, 2), (-1, 1, 3), (0, 5, 6) and (2, 1, 2) lie on a sphere whose centre is (1, 3, 4). Find the radius of sphere.
- 37. Prove that the lines joining the vertices of a tetrahedron to the centroids of the opposite faces are concurrent.

VALUE BASED QUESTION

38. Three students are standing in a park with sign boards "SAVE ENVIRONMENT", "DON'T LITTER" and "KEEP YOUR PLACE CLEAN". Their positions are marked by the points A(0, 7, 10), B(-1, 6, 6) and C(-4, 9, 6). The three are holding green colored ribbon together. Does the ribbon form the sides of a right-angled triangle? Do you feel the need to promote what is written on sign boards?

HOTS

39. Two vertices of a parallelogram are (2,5, -3), (3, 7, -5) and its diagonal meet in (4, 3, 3). Find the remaining vertices of a parallelogram.

SCORING KEY

1	b
2	a
3	a
4	a
5	c
6	c
7	d
8	b
9	c
10	a
11	z coordinates
12	YZ plane
13	$\sqrt{45}$ units
14	(3, 0, 5)
15	$\sqrt{a^2+b^2}$
16	(-2, -2, -1)
17	(1, 1, -2)
20	(9, 6, 0)
21	1:4
22	-25 or 1
24	(4, 7, 6)
25	$\sqrt{34}$
26	±5
27	x = 2 or 10
28	(3, 0, 0)

29	(6, -4, -2) (8, -10, 2)
30	1:3
31	
32	1:2
33	$\left(\frac{a_2',b_2',c_2'}{2}\right)$
34	i)3:4 ii) -5:2
35	$\sqrt{65}$
36	3
38	Yes there is need for immediate attention.
39	(6, 1, 9) & (5, -1, 11)