Лабораторная работа №4. (часть1) Решение задачи Коши для обыкновенного дифференциального уравнения

Задача. Реализовать метод Рунге-Кутты 2ого порядка. Решить задачу Коши для различных значений точности с использованием адаптивного шага. Построить графики ошибки и числа итераций от заданной точности

Задача Коши в простейшем случае ставится для дифференциального уравнения первого порядка с начальным условием

$$y' = f(x, y)$$
 $x \in [a, b]$ $y(a) = y_a$

Строится равномерная сетка ($x_0 = a$, $x_n = b$) на отрезке [a,b]

Методы Рунге-Кутты 2 порядка

$$ilde{y}_{i+1} = y_i + h_i f(x_i, y_i), \quad y_{i+1} = y_i + rac{h_i}{2} ig[f(x_i, y_i) + f(x_i + h_i, ilde{y}_{i+1}) ig], \quad \text{метод Эйлера} - Коши (Хойна)$$
 $ilde{y}_{i+1} = y_i + rac{h_i}{2} f(x_i, y_i), \quad y_{i+1} = y_i + h_i f(x_i + rac{h_i}{2}, ilde{y}_{i+1}), \quad \text{модифицированный метод Эйлера (средней точки)}$

БАЗА (0) Запрограммировать метод для фиксированного шага. Построить графики решения и ошибки на отрезке и график ошибки от шага

- Построить равномерную сетку на отрезке
- Для каждого узла сетки вычислить значение решения по формуле метода
- Построить графики (№1) точного и приближенного решений и графики ошибки на отрезке для двух значений шага (0,1 и 0,05)
- В цикле меняя значение шага от 0,1 до 1е-8 (8 значений), вычислить норму ошибки
- Построить зависимость (№2) ошибки от шага. На график нанести линию **h**² (почему?)

МИНИМУМ (+1) Применение правила Рунге для достижения заданной точности

- Изменить цикл по шагу на цикл по точности. Шаг выбирать по правилу Рунге двойного просчета
- Построить зависимость ошибки (№3) и числа разбиений (№4) от заданной точности

ДОСТАТОЧНО (+1) Адаптивный выбор шага для заданной точности

Алгоритм действий для получения значения решения в следующей точке \mathbf{x}_{i+1} :

- 1. Вычислить y_{i+1} с помощью y_i с шагом $h=x_{i+1}-x_i$
- 2. Вычислить $\mathbf{y_{i+1}}$ с помощью $\mathbf{y_i}$ с шагом $^{\mathrm{h}}/_{\mathrm{2}}$ (от точки $\mathbf{x_i}$ необходимо сделать два шага до точки $\mathbf{x_{i+1}}$)
- 3. Вычислить поправку $\frac{y_{i+1}^h y_{i+1}^{\frac{h}{2}}}{2^k 1}$ (здесь \mathbf{k} порядок метода) и сравнить ее с точностью
- 4. Если точность больше поправки, то повторить действия начиная с п.2., уменьшив шаг в 2 раза.
- 5. Если поправка меньше точности, то перейти к следующей точке.
- Нанести на графики №3 и №4 полученные значения ошибок и числа разбиений для метода с адаптивным выбором шага

МАКСИМУМ (+1) Релизация метода Рунге-Кутты Зего или 4 порядков

Схемы методов Рунге-Кутты Зего и 4ого порядков

Bo BCEX CXEMAX $k_1 = f(x_i, y_i)$

Схемы Зего порядка		Схемы 4ого порядка	
1/2	1/3	1/2	1/3
$y_{i+1} = y_i + \frac{h}{6}(k_1 + 4k_2 + k_3)$	$y_{i+1} = y_i + \frac{h}{4}(k_1 + 3k_3)$	$y_{i+1} = y_i + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)$	$y_{i+1} = y_i + \frac{h}{8}(k_1 + 3k_2 + 3k_3 + k_4)$
$k_2 = f(x_{i+\frac{1}{2}}, y_i + \frac{hk_1}{2})$	$k_2 = f(x_{i+\frac{1}{3}}, y_i + \frac{hk_1}{3})$	$k_2 = f(x_{i+\frac{1}{2}}, y_i + \frac{hk_1}{2})$	$k_2 = f(x_{i+\frac{1}{3}}, y_i + \frac{hk_1}{3})$
$k_3 = f(x_{i+1}, y_i - hk_1 + 2hk_2)$		_	$k_3 = f(x_{i+\frac{2}{3}}, y_i - \frac{hk_1}{3} + hk_2)$
		$k_4 = f(x_{i+1}, y_i + hk_3)$	$k_4 = f(x_{i+1}, y_i + hk_1 - hk_2 + hk_3)$

[–] Построить графики №1 - №4 для одной из схем (по варианту)

1.
$$y' + y \lg x = \sec x$$
, $x \in [0, 1.5]$, $y = \sin x + \cos x$

2.
$$x^2y' + yx + 1 = 0$$
, $x \in [1,3]$, $xy = 1 - \ln|x|$

3.
$$(2x+1)y' = 4x+2y$$
, $x \in [0,4]$, $y = (2x+1)\ln|2x+1|+1$

4.
$$x(y' + y) = e^x$$
, $x \in [1,3]$, $y = e^x(\ln|x| + 1)$

5.
$$y = x(y' - x\cos x), \quad x \in [\frac{\pi}{2}, 2\pi], \quad y = x\sin x$$

6.
$$y' = 2x(x^2 + y)$$
, $x \in [1, 2]$, $y = e^{x^2} - x^2 - 1$

7.
$$(xy'-1)\ln x = 2y$$
, $x \in [1,3]$, $y = \ln^2 x - \ln x$, $y'(1) = -1$

8.
$$xy' + (x+1)y = 3x^2e^{-x}$$
, $x \in [1,5]$, $y = x^2e^{-x}$

9.
$$y' + 2y = y^2 e^x$$
, $x \in [-1,1]$, $y = e^{-x}$

10.
$$(x+1)(y'+y^2) = -y$$
, $x \in [1,5]$, $y(x+1)\ln|x+1| = 1$

11.
$$xy^2y' = x^2 + y^3$$
, $x \in [1.1,3]$, $y^3 = 3x^2(x-1)$

12.
$$xy' - 2x^2 \sqrt{y} = 4y$$
, $x \in [1, 2]$, $y = x^4 (\ln x + 1)^2$

13.
$$xy' + 2y + x^5y^3e^x$$
, $x \in [1,2]$, $2y^2x^4e^x = 1$

14.
$$2y' - \frac{x}{y} = \frac{xy}{x^2 - 1}$$
, $x \in [1.1, 4.1]$, $y^2 = x^2 - 1$

15.
$$(x^2+1)y'-2xy=(x^2+1)^2$$
, $x \in [0,2]$, $y = x(x^2+1)$