What's happening today?

- Maths & Biodiversity (Robin)
- Morning/Afternoon Tea
- Modelling Queues (Sarah)

Dr Sarah Marshall

9 - 20 January 2023

Rotary Science and Technology Forum

Auckland University of Technology

A bit about me ...

- Grew up in Napier
- Studied Conjoint BSc/BCA and MSc at Victoria University of Wellington
- Studied PhD at University of Edinburgh, UK
- Been at AUT since 2014
- I love using maths to model systems
- I teach on the analytics and mathematical modelling and computation majors on the BSc at AUT

Who has been stuck in this kind of queue?

http://www.geograph.ie/photo/3414308

.... or this kind of queue?

Source: Sarah's Phone

.... or this kind of queue?

http://en.wikipedia.org/wiki/File:Waiting_in_line_at_a_food_store.JPG

How can we describe this queue?

http://en.wikipedia.org/wiki/File:Waiting_in_line_at_a_food_store.JPG

- Arrival Process
 - Probability distribution for time between customer arrivals (interarrival time)

- Service Process
 - Number of Servers
 - Probability distribution for service time

- Queueing Discipline
 - First-come-first-served
 - Last-come-first-served
 - Priority-based service
 - Service in random order

• Type of queues (one vs several lines)

Probability distributions

In queueing: needs distributions with values that are ≥ 0 .

M/M/1 Queue

- Arrival: interarrival time is exponentially distributed
- Service: service time is exponentially distributed
- Number of servers is 1

Exponential distribution

Measuring Performance of a Queue

- Number of customers in the:
 - Queue, Lq
 - Service, L_s
 - System, L
- Time spent in the:
 - Queue, W_q
 - Service, W_s
 - System, W

Questions of interest

- What happens if customers arrive faster than they are being served?
- If a queue has 3 servers, is it better to have individual queues or one queue?

R Simulation Activity

See handout

Designing your own supermarket checkout

- Two types of customers
 - Express (12 items or less)
 - Arrival rate 4 per minute
 - Service rate 1 per minute (service time = 1 min)
 - Regular (more than 12 items)
 - Arrival rate 1 per minute
 - Service rate 0.2 per minute (service time = 5 min)
- Two types of checkouts
 - Self-checkout (12 items or less) cost = \$10
 - Staffed-checkout (any number of items) cost = \$100

Designing your own supermarket checkout

Find a configuration of self and staffed checkouts which:

- Costs \$700 or less
- Average waiting time in the queue is less than the average service time
 - Express customers average time in queue less than 1 minute
 - Regular customers average time in queue less than 5 minutes

R Simulation Activity

See handout