1)

- 2a) FSL the intersection of two FSL is an FSL
- 2b) Unknown no information is provided of C. If C is a Non-FSL then definitely not since the intersection of a FSL and non-FSL is not an FSL.
- 2c)
 Unknown no information is provided of C. If C is a Non-FSL then definitely not since the union of a FSL and non-FSL is not an FSL.
- 2d)
 Non-FSL the union of two FSL is an FSL. Since A is a FSL and the union is not, X cannot be an FSL
- 2e)
 Unknown the empty set is clearly a FSL, but X could also be "intersection of B with some Non-FSL"

The powerset of the states of N are Q_D = {p, q, r, s, pq, pr, ps, qr, qs, rw, pqr, pqs, prs, qrs, pqrs, Null}. The start state of D is p. The accept states are all states in Q_D containing q or s. Starting from p in Q_N , I computed all states reachable using 0 and all states reachable using, taking their respective unions and adding the transition to δ' . I repeated this process until all states in the DFA had two outputs meaning the DFA had been fully specified.

- 4a)
 Yes, go q2 on ab* using a, go to q1 on a* using null, go to q_{accept} on b* using b
- 4b)
 Yes, go to w2 on ab* using a, go to q1 on a* using a, go to q_{accept} on b* using bb
- 5) (aUb)*a(aUb)a(aUb) U (aUb)*b(aUb)b(aUb)

6c)

Left tree: $E \rightarrow ExE \rightarrow E+ExE \rightarrow a+ExE \rightarrow a+axE \rightarrow a+axa$ Right tree: $E \rightarrow E+E \rightarrow a+E \rightarrow a+ExE \rightarrow a+axE$ pp> a+axa

- 7) E \rightarrow 01 | 10 | 0R1 | 1R0 | 0E0 | 1E1 R \rightarrow 0R0 | 1R1 | 00 | 11 (Start symbol is E, variables are E and R)
- 8) The given language is a FSL as demonstrated by the following NFA:

