Diagnostic and Value Of Information

Ariana Carnielli Ivan Kachaikin

Plan

- Introduction au Troubleshooting
- État de l'art
- Approches classiques
- Contributions
- Résultats
- Démonstration du logiciel

Le *Troubleshooting*

- Dispositif en panne
- Composantes
- Actions
 - Réparations
 - Observations locales et globales
- Coûts

C'est un problème de minimisation combinatoire : $\operatorname*{argmin} \mathrm{EC}(E_0,S)$

État de l'art

- Théorie de la décision
- Réseaux Bayésiens
- Élicitation et Valeur de l'information

 R_4

 R_2

Approches classiques

D'après [Heckerman, Breese, Rommelse; 1995] :

- Algorithme "simple"
 - \circ Uniquement réparations, Tri par efficacité $rac{p_i}{C_r(c_i)}$
- Algorithme "simple avec observations locales"
 - o Paires "observation-réparation"
- Algorithme "myope"
 - Observations globales, valeur de l'information "myope"

Contributions: Algorithme myope avec elicitation

- Incertitude sur les coûts : $C_r(c_i) \sim Unif([C_{r,min}(c_i), C_{r,max}(c_i)])$
- Utilisation de l'espérance comme coût
- Questions pour diminuer la taille de l'intervalle
 - \circ "Est-ce que le coût de c_i est plus petit que α ?"
- Choix de la question par maximisation de l'EVOI

Contributions: Solutions exactes

- Intraitables en pratique
- Utiles cependant pour tester les heuristiques
- Deux algorithmes :
 - Dénombrement Complet
 - Programmation Dynamique

Contributions : Dénombrement complet

Construire toutes les stratégies possibles et évaluer chacune par son coût espéré

Exemple:

Contributions: Programmation dynamique

Toute sous-stratégie d'une stratégie optimale est elle-même optimale selon la formule de l'espérance du coût que l'on minimise :

$$\begin{split} & \text{EC}(E,S) = P(o_0 \neq \text{normal} \mid E) \cdot \left[\text{coût}(\text{racine}(S)) \right. \\ & \left. + \sum_r \text{EC}(E \cup \{\text{racine}(S) = r, o_0 \neq \text{normal toujours}\}, \text{sous-arbre}(S, \{\text{racine}(S) = r\})) \right] \end{split}$$

Résultats

- Tests sur le problème de réparation de la voiture
- Comparaison des espérances de coût des stratégies calculées par les algorithmes approchés
- Calcul des espérances de coût : méthode de type Monte Carlo
- Coûts incertains
 - Stratégies calculées avec les espérances
 - Espérance de coût total calculée avec les coûts réels

Résultats : Abre créé par l'algorithme exacte

Résultats : Abre créé par l'algorithme myope

Démonstration du logiciel

Merci pour votre attention!