Taxonomy Enrichment without candidates

Alsu Vakhitova

Skoltech, DS Alsu.Vakhitova@skoltech.ru

Andreea Dogaru

Skoltech, DS Andreea.Dogaru@skoltech.ru

Timotei Ardelean

Skoltech, DS Timotei.Ardelean@skoltech.ru

Gabriel Rozzonelli

Skoltech, DS Gabriel.Rozzonelli@skoltech.ru

Overview

- Motivation
- Problem Description
- Dataset
- Approaches
- Results
- Conclusion

Motivation

- Lexical resources, such as WordNet [2.], are important for the NLP community
- Such datasets are static, when languages are naturally dynamic
- Updating them is rather costly

- Recent breakthroughs in the area of language models
- Rather efficient at addressing masked token prediction

[CLS] this project is [MASK] [SEP]

amazing breathtaking

• •

Problem description

- Taxonomies can be represented as graphs
 - Nodes → synsets
 - Edges → hypernymies (is-a relationships)
- Each synset has **lemmas**

Given that a synset lies at a certain position in the taxonomy, what are the lemmas which are more likely to be part of it?

Dataset

- Based on WordNet [2.] taxonomy
 - Train: 70999 entries
 - of which 10% for validation
 - Test: 3375 entries
- Subgraphs are centered on the target (query) node

Graph relations

Dataset

An entry contains the lemmas for the target node, the lemmas of the neighboring synsets, and the graph relations between the nodes in the subgraph

Input data representation

- Token IDs
 - produced by the tokenizer; vocabulary indices of the word pieces
- Level IDs
 position relative to the central node within the taxonomic subgraph
- Synset IDs mark the appartenance of tokens to a particular synset
- Highway
 boolean indicator for tokens that belong to a synset name

Tokens	[MASK]	[MASK]	[MASK]	sensation	est	##hesis	sense	experience	perception	aroma	fragrance	perfume	scent	mu	#sk	incense	ni	#ff	po	##ng	ac	#rid	##ity
Token IDs	103	103	103	8742	9765	24124	3168	3325	10617	23958	24980	17013	6518	14163	6711	28647	9152	4246	13433	3070	9353	14615	3012
Level IDs	0	0	0	1	1	1	1	1	2	3	3	3	3	4	4	4	4	4	4	4	3	3	3
Synset IDs	0	0	0	1	1	1	1	1	2	3	3	3	3	4	4	5	6	6	6	6	7	7	7
Highway	1	1	1	1	0	0	0	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	1

Approaches

- Fixed-Vocabulary Baseline
- KBERT
- KBERT + GAT

Baseline

- Uses a fixed vocabulary for possible lemmas suggestions
- Relies on word embeddings pre-trained on large corpora to represent the meaning.
- Tasked to predict the embedding for the query node in the taxonomy
- Ranks the words in the taxonomy based on cosine similarity

KBERT

- Based on BERT masked language model
- Supports enriched input data with additional lemmas of the neighboring nodes
- Prevents knowledge noise issue through a "visibility matrix" that restricts attention in the Multi-Head Attention layers

KBERT

TaxoEmbedder

- BERTBASE encoder (12 layers with 768 hidden size)
- Classification head (2 linear transformations)

KBERT-GAT

- Extends the K-BERT solution
 - Same embedder
 - Same encoder
- Replaced classification head with Graph Attention
 Network (GAT)
- Our novelty: use graph visible matrix instead of a simple adjacency matrix in a multi-head attention
 - All lemmas within one synset can attend each other
 - Only highway lemmas that have adjacent levels can attend each other

13

Baseline Results

Embedding	Vocab Size	Lemma Coverage	Precision@10	MRR	MAP
fasttext-wiki-300	999K	0.382	0.0003	0.00094	0.00095
glove-wiki-300	400K	0.338	0.0058	0.02587	0.02575
glove-twitter-200	1193K	0.235	0.0002	0.00169	0.00169

MRR (logscale) for different embeddings.

Legend:

Glove-Wiki-300, Glove-Twitter-200, Fasttext-300

KBERT Results

Encoder	Head	Precision@10	MRR	MAP	
=	-	0.00028	0.0010	0.0010	Legend:
+	:	0.00030	0.0011	0.0011	- trained from scratch
+	+	0.00038	0.0011	0.0011	+ pre-trained
+	+*	0.00038	0.0014	0.0014	* frozen

KBERT-GAT Results

Base Model	Embeddings	Precision@10	MRR	MAP	
BERT	Frozen	0.00018	0.00097	0.00097	
BertForMaskedLM	Trainable	0.00025	0.00094	0.00094	

ValidationMRR tag: ValidationMRR

ValidationPrecision@10 tag: ValidationPrecision@10

Legend: BERT, BertForMaskedLM

Conclusion

- We propose a new approach to address the task of taxonomy enrichment without candidates
- In this regard, we implemented two systems based on KBERT: with and without GAT
- Results indicate that candidate-free taxonomy enrichment is relevant and feasible

References

- 1. Atish Pawar, Vijay Mago. 2018. Calculating the similarity between words and sentences using a lexical database and corpus statistics.
- 2. George A Miller. 1998. WordNet: An electronic lexical database. MIT press.

Resources

• GitHub repository: https://github.com/palette-knife25/candidate-free-te