LaPIS Diagnostic Test Workbook - Mathematics

Name : Inthirajith T

Class: 7

Section : C

School : AKV Public School

Login ID : AKV172

Inthirajith T's Performance Report

Score: 15/40 Percentage: 37.5%

Inthirajith T's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sig
		Teacher's Fe	edback to Student		
	Class Teacher S		——————————————————————————————————————	pal Signature	

Basic arithmetic

Topics to be Improved			
Types of angles	Identification of types of angles		

Hi, here in this video you will learn Types of Angles

Question: 1

Find the angles.

Answer:

The angle ranges from ____° to ____°.

The angle perpendicular to 0° is $___{\circ}$.

The straight line measures $__$ °.

Question: 2

The angle formed between the directions

(i) West and East is _____ angle.

(ii) North and East is angle.
(iii) East and South is angle.
Answer:
The angle formed between West and East is° and it is called angle.
The angle formed between North and East is° and it is called angle.
The angle formed between East and South is° and it is called angle.
$\underline{\textit{Question: 3}}$
The addition of straight angle and right angle is angle.
Answer:
The measurement of straight angle is°
The measurement of right angle is°.
Straight angle + Right angle = + =
It is called as angle.

Mensuration

Topics to be Improved		
Perimeter Perimeter of triangle		
Area of rectangle		

.....

Hi, here in this video you will learn **Perimeter**

Question: 4

Highlight the perimeter in the given image.

A	ne	211	01	n.
\mathbf{H}	เมอ	TU)	e:	

Perimeter is the _____ (outer / inner) boundary of the shape

 $\underline{Question: 5}$

Find the perimeter of the given figure.

Answer:

Sides of the given shape = _____

Perimeter of a shape is _____ (sum / difference) of _____ (all/ opposite) sides.

Perimeter of the given shape = _____ Question: 6 Find the length of the rectangular floor if its perimeter is 60 ft and breadth is 3 ft. Answer: Perimeter = ____ | Breadth = ____ Shape of the floor is _____ and its perimeter formula is _____. Given: floor perimeter = ______, and breadth = ______. Therefore, length of the rectangular floor is ______. Hi, here in this video you will learn **Area** Question: 7 Find which of the shaded portion in the given shape represent it's area. Answer: Given figure is ______ in shape. Area is the _____ (inside/ outside/ boundary) of a shape. Find the area of a rectangular garden whose dimension is 25 ft in length and 20 ft in breadth.

Answer:

The garden is in shape.	
Length of garden is and breadth of gard	den is
Formula for area of the shape =	
The area of garden $=$ $\underline{\hspace{1cm}}$ x $\underline{\hspace{1cm}}$ $=$ $\underline{\hspace{1cm}}$	$\underline{\qquad} cm^2$
Question: 9	
Shade the possible dimension of the door whose	e area is $500 m^2$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\boxed{25\ m\ \times\ 20\ m}$

$\underline{Answer:}$

Door is _____ in shape. Area of the _____ shaped door is ____.

Dimensions	Length	Breadth	Area
$50 \text{m} \times 10 \text{m}$			
$25 \text{m} \times 25 \text{m}$			
$25 \text{m} \times 20 \text{m}$			
$30 \text{m} \times 20 \text{m}$			

Therefore, possible dimension of the door whose area is 500 m^2 is/are _____

Data handling

Topics to be Improved		
Chance of probability Basis of probability		
Arithmetic mean, mode and median	Mean, Median and Mode	
Range	Finding the range	

Hi, here in this video you will learn Basics of probability	
<i>Question:</i> 10	
Identify the sure events and impossible events	
(i) The sun rises in the west.	
(ii) Water is colourless.	
(iii) Clock rotates in clock wise direction.	
(iv) Ball is square in shape.	
Answer:	
Events that always occur are called (sure/ impossible) events. Events that cannot occur are called (sure/ impossible) events. Here, The sun rises in the west is event. Water is colourless is event. Clock rotates in clock wise direction is event. Ball is square in shape is event.	
Question: 11	
Probability of sure events is (greater / smaller) than probability of impossible even	ts.
Answer:	
Probability of sure event =(0/ 1/ any number). Probability of impossible event = (0/ 1/ any number). Therefore, Probability of sure event Probability of impossible event.	
Question: 12	
Raju has pencil, an eraser, a scale, sharpener, colour pencil and protractor in his box. What is the	ne

probability of getting a pen from his box.

Answer:					
Things Raju have Does Raju have pen in his box,	(Yes/ N	(o).			
Then probability of getting pen from h	is box is		(0/1)		
Hi, here in this video you will le	earn M	ean, M	ledian, M	ſode	
Question: 13					
Find the mode of the following data: 5	, 15, 23,	5, 32, 44,	72, 55, 6, 3	8, 5, 65, 45,	67, 24, 19 and 98.
Answer:					
Mode is the number that occursArranging the data in ascending order:					
occurs most number of	f times. T	Then, mo	de of the gi	ven data is ₋	
Question: 14					
Which shape contains median of the gi	ven data	3, 5, 6, 2	2, 7, 9, 6, 4	and 1	
	5) (6	9	
Answer:					
Median is the(first/cen ascending or descending order.	ntral/last)) value of	a data whe	en the data i	is arranged in
Arrange the given data in ascending or	der :				
Central value of the given data is		_ and it	is the	(of a data.
<i>Question:</i> 15					
Marks scored	100	90	80	70	
Number of students	4	5	2	1	
$Mean = \underline{\hspace{1cm}}$, $Median = \underline{\hspace{1cm}}$ and	nd Mode	=			
Answer:					
$\mathrm{Mean} = $					
Here s sum of all observation = Therefore, mean =		, numbe	r of observa	tion =	

Here, $median = \underline{\hspace{1cm}}$, $mode = \underline{\hspace{1cm}}$.	
Hi, here in this video you will learn Range	
Question: 16	
Range of the data =	
Answer:	
The difference between highest value and lowest value is Example: Find the range of 10, 5, 30, 23, 54, 39 and 16 Highest value = , Lowest value = Range = =	
Question: 17	
Circle the correct range for the following data 31, -20, 35, -38, 29	
$-20+51$ $\frac{-38-51}{2}$ $51+38$	$\frac{51+20}{2}$
$-20 + 51$ $\frac{-38 - 51}{2}$ $51 + 38$ Answer:	$\frac{51+20}{2}$
Answer:	$\frac{51+20}{2}$
Answer: Range = Arranging the data in ascending order,	-
Answer: Range = Arranging the data in ascending order, In the given data,	
Answer: Range = Arranging the data in ascending order,	
Answer: Range = Arranging the data in ascending order, In the given data,	
Answer: Range = Arranging the data in ascending order, In the given data, Highest value =, Lowest value =, Range =	
Answer: Range =	

Geometry

Topics to be Improved		
Sum of lengths of two sides of a triangle	Sum of two sides of a triangle	
Transversal angle made by transversal	Basics of Transversal angle	
Angle sum property of triangle	Angle sum property of triangle	
Criteria for congruence of triangle	Idenfication of criteria of congruence of triangles	
Right angle triangle and pythagoras property	Basics of Pythagoras property	
Faces vertex and edges	es Idenfication of faces, edges and vertices	
Related angles Basic of angles		

Hi, here in this video you will learn Sum of the length of sides of the triangle

Question: 19

Find the greatest distance to reach C from A in the given diagram.

Answer:

The sides of the given triangle are _____.

The possible way to reach point C from point A are _____ and AB then to

 $Side AC = \underline{\hspace{1cm}}$

Side AB + BC = _____ + ____ = ____

Therefore, the greatest distance to reach C from A in the given diagram is ______

Question: 20

_____ (Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side.

Answer:

There are ______ sides in a triangle.

The sum of the two sides of a triangle is _____ than the other side of the triangle.

The difference of the two sides of a triangle is _____ than the other side of the triangle.

Example: In triangle XYZ,

Question: 21

The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall?

Answer:

- 1. The sum of the two sides of a triangle is ______ than the third side of the triangle. Therefore, the third side should be _____ (less/ greater) than sum of other two sides. Here, sum of the two sides = _____ + ___ = ____ Therefore, the length of the third side is less than _____
- 2. The difference of the two sides of a triangle is ______ than the third side of the triangle.

 Therefore, the third side should be ______(less/ greater) than sum of other two sides.

 Here, difference of the two sides = _____ ___ = _____

 Therefore, the length of the third side is greater than ______

Therefore, length of the third side is greater than ______ but less than _____.

Hi, here in this video you will learn Basics of Transversal angle

Question: 22

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

Angle that lies on different vertices and on the opposite sides of transversal is _____ angles.

Angle that lies on different vertices and on the same sides of transversal is _____ angles. Therefore, $\angle 1$ and $\angle 7$ are _____

Question: 23

Find the transversal, alternate angles and corresponding angles in a given diagram.

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

In a given diagram, _____ is a transversal line. (BF/AD/CE)

Alternate angles	Corresponding angles
$\angle a$ and $\angle g$, $\angle b$ and $\angle h$,	\angle a and \angle e, \angle b and \angle f,

Question: 24

Find $\angle e$ and $\angle g$ if $\angle a = 30^{\circ}$.

Answer:

When parallel lines cut by a transversal,

- (i) Alternate angles are _____ (equal / not equal).
- (ii) Corresponding angles are _____ (equal / not equal).

Here, alternate angle of $\angle a$ is _____ and its value is ____. Corresponding angle of $\angle a$ is _____ and its value is _____.

 Hi , here in this video you will learn $\operatorname{\mathbf{Angle}}$ $\operatorname{\mathbf{sum}}$ $\operatorname{\mathbf{property}}$

Question: 25

Sum of the angles of triangle is ______.

 $\underline{Answer:}$

 $\angle A + \angle B + \angle C = \underline{\hspace{1cm}}$

Angle sum formula = $(n-2) \times 180^{\circ}$, n = number of sides

Triangle has _____ sides.

Sum of the angles of triangle = $(\underline{} - 2) \times 180^{\circ} = \underline{}$

Question: 26

Which of the following triangle satisfy the angle sum property.

Answer:

Angle sum property of triangle: sum of the angles of a triangle is _	
In $\triangle ABC$, Sum of the angles $= \angle A + \angle B + \angle C =$	=
In $\triangle PQR$, Sum of the angles = =	=
In $\triangle KLM$, Sum of the angles = =	. =
In $\triangle XYZ$, Sum of the angles = =	=
Therefore, the triangles that satisfy the angle sum property are $=$ $_{-}$	

Question: 27

Find the angles of triangle, if their angles are in the ratio 8:6:4.

Answer:

Ratio of angles in the triangle is
Let's consider the angles of triangle be $8x$, and
We know sum of the angles of a triangle is
Therefore, $8x + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = 180^{\circ}$. The value of $x = \underline{\hspace{1cm}}$
The angles of the triangle are

Hi, here in this video you will learn **Criteria of congruence**

Question: 28

Circle the groups that contain congruent images.

Answer:

Two geometrical shapes are said to be congruent if	they are
(identical/non-identical) in shapes and size.	
Example: Square and Rectangle are	_ (congruent/not congruent).

<u>Question: 29</u>

If the three sides of the triangle are equal to the corresponding sides of the other triangle, then two triangles are congruent under $____$ (SSS/ASA/SAS) criteria .

4	ns	211	or	
\boldsymbol{A}	$I \iota S$	w	er	•

Two triangle are _____ (congruent/not congruent) if they are identical in shapes and size. Criteria for congruence of triangles are SSS, _____ and ____.

- 1. In SSS Congruence criteria (2/3/5) sides of the triangle are (equal/1) not equal) to the three corresponding sides of the other triangle.
- 2. In SAS Congruence criteria (2/3/5) sides and (one/two) angle between them are equal to the corresponding sides and the included angle of the other triangle.
- 3. In ASA Congruence criteria (2/3/5) angles and (one/two) side between them are equal to the corresponding angles and the included side of the other triangle.

SSS	sides and angles are equal
SAS	sides and angles are equal
ASA	sides and angles are equal

Question: 30

The triangles LNM and PRQ are congruent by SAS criteria. Then find the side PR

Answer:

The given two triangles satisfy ______ criteria of congruence. By SAS congruence criteria, MN = _____, ___ and $\angle N$ = _____ The side MN=8 cm in ΔLNM is equal to the side _____ in ΔPRQ The common included angle in Δ LNM and ΔPRQ are _____ The side PR is equal to the side in _____ ΔLNM . Therefore, length of side PR = _____

Hi, here in this video you will learn Pythagoras property

Question:	31
-----------	----

In a right angled triangle, square of the $\underline{\hspace{1cm}}$ = sum of the squares of the legs.

Answer:

Pythagoras theorem is only applicable for ______ triangle.

Longest side of the triangle is ______ (hypotenuse/ legs) and other two sides are called _____ (hypotenuse/ legs).

.....

Pythagoras theorem states that _____

Question: 32

Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.

Answer:

Pythagoras theorem states that square of the _____ = sum of the squares of its

 $Given: Base = \underline{\hspace{1cm}}, Altitude = \underline{\hspace{1cm}},$

Base and altitude are _____ (hypotenuse/legs) of the triangle.

By Pythagoras theorem, $(____)^2 = (____)^2 + (____)^2$

Therefore, hypotenuse of the triangle is _____.

Question: 33

Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.

Answer:

Pythagoras theorem states that square on the _____ = sum of the squares on

Is Pythagoras theorem applicable in rectangle? $_$ (yes/ no).

Given: breadth = _____, length of diagonal = _____

By Pythagoras theorem,	()^2 :	= ($(-1)^2 + (-1)^2$.)2
	_	_		

Therefore, diagonal of the rectangle is _____

Hi, here in this video you will learn Basics of 3D model

Question:	31
Juesuon.	04

A point at which two or more lines segments meet is called _____(Vertex/ edges/ faces).

.....

Answer:

has two end point (line/line segment/ray).

A ______is a point where two or more line segments meet(Vertex/ edges/ faces). Mark the vertices in the diagram,

Question: 35

Mark and find the number of vertices, edges and faces in a cube.

.....

Answer:

Mark the vertex, edges and faces in a cube.

			es and faces in a cu —— edges and ——		
Que	stion: 36				
How	many vertice	es, edges and fa	ces does dices have	?	
Ans	wer:				
	-	e is vertices,	 edges and	faces.	
Hi,	here in th	is video you	will learn Relat	ed Angles	
Que	stion: 37				
(i)		rays of an angle angle .	are perpendicular,	then the angle formed	between them is a
(ii)		rays of an angle angle .	are in opposite side	es, then the angle form	ned between them is a
Ans	wer:				
Α		$_{-}$ (line segment	/ray) begins from	one point and travels	endlessly in a direction.
(i)	The angle for angle.	ormed between	two perpendicular	rays is° and it is c	alled

(ii) If two rays starting at same point moves in opposite direction, they form a _____ (straight / perpendicular) line. The measure of the angle formed is ____ and it is called ____ angles.

Question: 38

Find the angle of $\angle DBE$

Answer:

BA and BC are _____ (parallel / perpendicular) rays. The angle formed between this rays is ____, $\angle ABC =$ ____.

$$\angle ABC = \angle ABE + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= 30^{\circ} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= \underline{\hspace{1cm}}$$
Therefore, $\angle DBE = \underline{\hspace{1cm}}$

Question: 39

Find the complementary angles in the given diagram.

Answer:

Two angles are said be complementary if sum of their angles is equal to _____.

 $\angle AOB =$ ______, and its complement angle is ______.

 $\angle BOC = \underline{\hspace{1cm}}$, and its complement angle is $\underline{\hspace{1cm}}$.

 $\angle COD =$ _____, and its complement angle is _____.

 $\angle DOE = \underline{\hspace{1cm}}$, and its complement angle is $\underline{\hspace{1cm}}$.

Therefore, in the given figure the complementary angles are $\angle AOB$, _____ and $\angle BOC$, _____

Number system

Topics to be Improved		
Operations on rational numbers Subtraction of rational numbers		
Fractions	Division of fraction, Multiplication of fractions	
Exponents	Solving exponents	
Introduction to rational numbers	Basics of rational numbers	
Integers	Basics of integers	
Positive and negative rational numbers	Identification of positive rational numbers	

Hi, here in this video you will learn **Operation on rational numbers**

Question: 40

Solve: $\frac{-3}{3} + \frac{1}{3}$

Answer:

Fractions with same denominators are called ______ (like/ unlike) fractions. Fraction can be added only if they are ______ (like/ unlike) fractions.

$$\frac{-3}{3} + \frac{1}{3} = \frac{-3}{3} = \frac{1}{3}$$

Question: 41

Find the addition of shaded part of box A and shaded part of box B.

Answer:

Total number of square in box $A = \underline{\hspace{1cm}}$.

Number of shaded square in box $A = \underline{\hspace{1cm}}$

Shaded part of box A in fraction = _____

Total number of square in box $B = \underline{\hspace{1cm}}$.

Number of shaded square in box $B = \underline{\hspace{1cm}}$.

Shaded part of box B in fraction = $_$

Shaded part of box A + Shaded part of box B = $_$ + $_$ = $_$

Question: 42

Find the missing values in the given figure.

.....

Answer:

Given: $1 = \frac{7}{10} +$ _____ Transposing $\frac{7}{10}$ to other sides, 1 _____ $\frac{7}{10} =$ ______

Therefore, result is _____.

Hi, here in this video you will learn Division on fractions

Question: 43

Find the shape which contains the improper fraction of $5\frac{2}{7}$.

10	
35	

.....

Answer:

 $5\frac{2}{7}$ is a _____ (proper/mixed) fraction. Here, 5 is ____ , 2 is ____ and 7 is __

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \text{--}}{\text{(Whole} \times \text{--})}$

Question:	44
-----------	----

Solve: $\frac{1}{3} \div \frac{14}{3}$

Answer:

To divide a fraction by another fraction, multiply the dividend by $___$ (same / reciprocal) of the divisor. Here, dividend = $__$ and divisor = $__$.

$$\frac{1}{3} \div \frac{14}{3} = \frac{1}{3} \times \square = \square$$

......

Question: 45

Find the half of the fraction $\frac{12}{40}$.

Answer:

To find half of a number, divide the number by _____

$$\frac{12}{40} \div \underline{} = \frac{12}{40} \times \underline{} = \underline{}$$

Then the answer is _____

Hi, here in this video you will learn Exponents and power

.....

Question: 46

Find the exponential form of 1000.

Answer:

_____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

Exponents is also called as _____ (Base / Power).

1000 can be written as =
$$10 \times$$
 ____ \times ____ 10 is raised to the power of ___ = (10)

Question: 47

......

Find the value of $(-2)^3$.

Answer:

_____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

In this exponential form
$$(-2)^3$$
 , base = ____, power = ____. $(-2)^3$ = ____ × ___ = ___.

.....

......

Question: 48

- (i) Tenth power of 100 is $((10)^{100})$ or $(100)^{10}$).
- (ii) k is raised to the power of 5 is $((k)^5)$ or $(5)^k$.

Answer:

Exponential form = (Base)—

- (i) Tenth power of 100: Base = ____, Power/Exponents = ____, exponential form = ____.
- (ii) k is raised to the power of 5: Base = ____, Power/Exponent = ____, exponential form = ____.

Hi, here in this video you will learn Basics of rational numbers

Question: 49

The numbers in the diagram represents_____.

Answer:

0, 4,5,2,3,1 are _____ numbers.

-1,-2, -3, -4 are _____ numbers.

The combination of these circles are called ______.

 $\frac{1}{49}$, $\frac{1}{2}$, $\frac{8}{27}$, $\frac{11}{5}$, $\frac{13}{75}$ are ______.

Combination of all three circles are called as _____ numbers.

Question: 50

Shade the correct form of rational numbers.

Answer:

Rational number can be expressed as ______, where both numerator and denominator are _____ (integer/ not a integer),

.....

denominator is equal to _____(zero/ one/ any integer other than zero).

Question: 51

Circle the number which is not a rational number.

$$\frac{-5}{-8}$$

$$\frac{-3}{2}$$

$$\frac{12}{-6}$$

$$\frac{4}{0}$$

Answer:

Rational number can be expressed as ______, where both numerator and denominator are ______(integer/ not a integer), denominator is equal to ______ (zero/ one/ any integer other than zero).

Here, _____ is/are rational number and _____ is/are not a rational number.

Hi, here in this video you will learn Multiplication on fractions

Question: 52

Fill the boxes

$$2+4+\frac{6}{2} = \frac{2}{\square} + \frac{4}{\square} + \frac{3}{\square} = \frac{\square}{\square} = 9$$

Answer:

The whole number can be expressed in fraction with denominator equal to _____ (zero/one).

Therefore, 2 can be written as _____ in fraction.

4 can be written as _____ in fraction.

$$2 + 4 + \frac{6}{2} = \frac{2}{1} + \frac{4}{\square} + \dots = \frac{2}{1} + \frac{4}{\square} + \frac{3}{\square} = \frac{\square}{\square} = 9$$

Question: 53

There are 400 students in a school. Find the number of girls, if three sixteenth of the students are girls.

Answer:

Total number of students = _____

Fraction of students who are girls = _____

Number of girls = $\qquad \qquad =$ $\qquad =$ $\qquad =$

Question: 54

Solve: $2\frac{7}{4} \times \frac{2}{3}$

Answer:

 $2\frac{7}{4}$ is a _____ (proper / mixed) fraction. Here, 2 is _____, 7 is ____ and 4 is ____.

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$ Improper fraction of $2\frac{7}{4} =$

 $2\frac{7}{4} \times \frac{2}{3} = \times \frac{2}{3} =$

Hi, here in this video you will learn Basics of integers

Question: 55

Highlight the ring that contains whole numbers.

A	ns	w	er	:
		w	\sim	•

The numbers inside the inner ring $(1, 2, 3, \ldots)$ are _____ numbers. The numbers inside the middle ring are _____ numbers. The numbers inside the outer ring are negative numbers, positive numbers and zero and they are called as _____.

Question: 56

Colour the frame of the box which contains the number 1, 4 and -10

Negative numbers

.....

.....

.....

Naturals numbers

Answer:

Whole number consists of 0,1,2,3,4,.... Negative number consists of ______. Natural numbers consists of ______. Integers consists of ______. Now, 1, 4, -10 are in ______.

Question: 57

State whether the statement is true or false.

Every positive number is an integer.

Answer:

Positive numbers are ______. Integers consists of ______.

Therefore, positive numbers are ______ (in/not in) integers.

Hi, here in this video you will learn **Positive and Negative rational numbers**

Question: 58

Segregate positive and negative rational number.

$\underline{Answer:}$

• If both the numerator and the denominator of a rational number are
(positive/negative), then it is positive rational number.
• If either the numerator and the denominator of a rational number are negative, then it is (positive/negative) rational number.
In the given circle, positive rational numbers are and negative rational numbers are
$Question: \ 59$
$\frac{-3}{-4}$ is a (positive /negative / neither positive nor negative) rational number.
$\underline{Answer:}$
-3 is a number, -4 is a number.
-3 is a number, -4 is a number. Division of $\frac{-3}{-4} = \boxed{}$ and this rational number.
(Positive / Negative / Neither positive nor negative rational number)
$Question: \ 60$
The product of a positive rational number and a negative rational number isrational number. (Positive/ Negative/ neither positive nor negative)
$\underline{Answer:}$
Examples for positive rational numbers: Examples for negative rational numbers: Positive rational number × Negative rational number = × = and this is rational number

Comparing Quantities

Topics to be Improved							
Conversion of fraction into percentage	Conversion of fraction into percentage						
Percentage	Basic of percentage						
Equivalent ratios	Basic of proportion						

Hi,	here	in	this	video	you	will	learn	${\bf Converting}$	${\bf fraction}$	into
per	cent	age	е							

Question:	61
a account.	$\boldsymbol{o}_{\boldsymbol{I}}$

Complete the box in the given equation.

$$5\% = \frac{5}{}$$

Answer:

Percentage are the fraction with the denominator _____.

Therefore, 5% can be expressed as _____

.....

Question: 62

Mark the correct conversion form of fraction $\frac{1}{2}$ to percentage.

(i)
$$\frac{1}{2} \times \frac{50}{50} = \frac{50}{100} = 50\%$$

(ii)
$$\frac{1}{2} \times \frac{100}{100} = \frac{100}{200} = 200\%$$

(iii)
$$\frac{1}{2} \times 100 = \frac{100}{2} = 50\%$$

Answer:

To convert fraction into percentage, the value of ______ (denominator / numerator)should be 100 or _____ (multiply / divide) the fraction with 100 %. Therefore, correct conversion form is _____

Question: 63

Find the percentage of shaded part of square.

A	nsi	me	r

The square shape is divided into ______ parts. Number of shaded part of square is _____.

Shaded part of square in fraction is _____.

To Convert	into percentage,	x 100

Hi, here in this video you will learn Basics of percentage

Question: 64

2% can be written as

Answer:

Percentages are numerators of fractions with denominator_____

$$2\% = \frac{\square}{\square}$$

Question: 65

Arun attended the LaPIS test for 100 marks and got 75% marks. What is the mark scored by Arun?

Answer:

Arun attended LaPIS test for _____ marks. He got ____ marks. 75 % can be written in fraction form ____

Then the mark scored by Arun = Total mark	x × 75% =	× 🗌	=
Then the mark scored by Than Total man			
Question: 66			
There are 25 apples in a basket in which 10 of apples.	them are rotten.	. Find the perc	entage of rotten
Answer:			
There are apples in a basket. Number of rotten apples are			
Fraction form of rotten apples in a basket =			
Convert it into a percent= x	_% =		
Hi, here in this video you will learn B	asics of prop	portion	
Question: 67			
If a:b and c:d are equivalent ratio, then it can	be expressed as .		
Answer:			
A (proportion / ratio) is used to express proportion is	`	e/two) equivale:	nt ratios.
Question: 68			
Find the ratio of shaded part to unshaded par	t of A and B. Ar	e the two ration	s equivalent?
A			
		В	
Answer:			
Shaded part of $A = \underline{\hspace{1cm}}$, Unshaded part of Ratio of shaded to unshaded parts of A is $\underline{\hspace{1cm}}$ Shaded part of $B = \underline{\hspace{1cm}}$, Unshaded part of $B = \underline{\hspace{1cm}}$.		form =	

Ratio of shaded to unshaded parts of B is Fractional form = Fraction form of A (equal/ not equal) to Fraction form of B.
Question: 69
If a: b:: c: d is proportion, shade the correct expression $\boxed{a = \frac{bc}{d}} \boxed{c = \frac{ad}{b}} \boxed{ad=cd}$ $\boxed{Answer:}$
Two equivalent ratio which are proportion, it can be written as a : b :: c : d
or $\underline{\hspace{1cm}} = \underline{\hspace{1cm}} $ (in fraction) .
First and fourth term are called and second and third term are called
In proportion, product of extreme terms is (equal to/ not equal to) product of middle

terms.

Therefore, $a \times d = \underline{\hspace{1cm}}$,

then $a = \underline{\hspace{1cm}}$ and $c = \underline{\hspace{1cm}}$

Algebra

	Topics to be Improved
Monomials, binomials, trinomials and polynomials	Types of algebraic expression
subtraction of algebraic expressions	subtraction of algebraic expressions

	Hi,	here i	in	this	video	you	will	learn	Types	\mathbf{of}	expression
--	-----	--------	----	------	-------	-----	------	-------	--------------	---------------	------------

Question: 70

There are _____ terms in the expression 7x + 3y + m + 5.

Answer:

In algebraic expression, _____ (variables/ terms) are connected together with operations of addition.

......

.....

The terms in the expression are _______, ______, and _______.

Therefore, there are _____ terms in the expression.

Question: 71

Classify the following expression into monomial, binomial and polynomial.

- 1. 7m + n + 2
- 2. $8x^2 + 0$
- 3. 7xy + 4m

Answer:

- 1. The terms in expression $8x^2 + 0$ are _____. Here, expression has _____ term and it is a _____.
- 2. The terms in expression 7xy + 4m are _____. Here, expression has _____ term and it is a _____.
- 3. The terms in expression 7m + n + 2 are _____. Here, expression has ____ term and it is a _____.

Que	$stion: 72 \dots$				
$5m^2$	+ m + 0 is a	expression	. (Monomial/B	inomial/ Trinomial)	
\underline{Ans}	wer:				
The terms in expression $5m^2 + m + 0$ are Here, the expression has terms and it is called a					expression.
Hi, here in this video you will learn Subtraction on expression					
<i>Question:</i> 73					
Find the sum of two expressions $a + b + c$ and $b + c + d$					
Answer:					
The given two expressions are and The two terms will get added only if they are (Like/ Unlike) terms. The sum of two expressions = + The answer is					
Question: 74					
			School A	School B	
		Number of boys	100b	250b	
		Number of girls	150g	200g	
		Number of teachers	25t	45t	
(i)	(i) Total number of boys in school A and B is				
(ii)	Total number of students in school B is				
(iii)	How many more teachers are there in school B than school A?				
\underline{Ans}	wer:				
(i)	Number of boys in school $A = \underline{\hspace{1cm}}$, Number of boys in school $B = \underline{\hspace{1cm}}$. Total number of boys in school A and school B is $\underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.				
(ii)	Number of boys in school $B = \underline{\hspace{1cm}},$ Number of girls in school $B = \underline{\hspace{1cm}},$ Total number of students in school B is $\underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}.$				

(iii) Number of teachers more in school B than school A = Teachers in school B - Teachers in school A = $_$

Question: 75

Solve the following:

$$\begin{array}{c}
13x + \underline{\hspace{1cm}} \\
(+) \quad 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{ccc}
 & 3a - 5b \\
 & 5a - 7b \\
\hline
 & -2a - \underline{\hspace{1cm}}
\end{array}$$

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{r}
 3a - 5b \\
 \hline
 (-) \quad 5a - 7b \\
 \hline
 -2a - \underline{\hspace{1cm}}
 \end{array}$$