Resumen de funciones

Tomás Pitinari

Funciones

Definiciones básicas:

Sean A, B conjuntos no vacíos, una función de A en B es una relación de A en B que verifica que cada elemento de A es exactamente una vez primera componente de una par ordenado de la relación. Se denota como $f: A \to B$.

- 1. Para cada $a \in A$ existe $b \in B$ tal que (a, b) está enla relación.
- 2. No puede haber dos pares (a, b_1) y (a, b_2) con $b_1 \neq b_2$ en la relación.

Si la relación que es función es un subconjunto de $A \times B$ diremos que el dominio de la función f es A y el codominio de f es B. Escribimos Dom(f) y Codom(f) respectivamente. La imagen de A se define como: $f(A) = \{b \in B : b = f(a)/a \in A\}.$

Definición: $f: A \to B$ es *inyectiva* si cada elemento de B aparece a lo sumo una vez como segunda componente, osea no pueden haber dos imagenes distintas para una misma preimagen.

1 Teorema

 $f: A \to B, A_1, A_2 \subseteq A$

1.
$$f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$$

2.
$$f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$$

2 Teorema

Sea $f: A \to B$,

$$\forall X_1, X_2 \subseteq A, f(X_1 \cap X_2) = f(X_1) \cap f(X_2) \leftrightarrow f \ inyectiva$$

Definición: $f: A \rightarrow B, A_1 \subseteq A$

- 1. $f\Big|_{A_1}: A_1 \to B$ es tal que $f\Big|_{A_1}(a) = f(a)$ si $a \in A_1$. Es **LA** restricción de f a A_1 .
- 2. Para $A \subseteq A_2, g: A_2 \to B$ tal que g(a) = f(a) si $a \in A$. Es **UNA** extensión de f a A_2 .

Definición: Dada una función $f: A \to B$ y $B_1 \subseteq B$, la *preimagen* de B_1 por medio de f, notada como $f^{-1}(B_1)$, es el conjunto:

$$f^{-1}(B_1) = \{x\epsilon A : f(a)\epsilon B_1\}.$$

datazo: La preimagen de un conjunto siempre es otro conjunto.

3 Teorema:

 $f: A \to B, B_1, B_2 \subseteq B$, entonces:

1.
$$f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$$

2.
$$f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$$

3.
$$f^{-1}(\overline{B_1}) = \overline{f^{-1}(B_1)}$$

Definición: Decimos que $f: A \to B$ es suryectiva si cada elemento de B aparece una vez como segunda componente de los pares ordenados de la relación. Osea, B = Im(f) o que dado $y \in B$, $e \in A$: f(x) = y.

Definición: Una función es biyectiva si es inyectiva y suryectiva.

Definición: Sean f y g dos funciones tales que $Im(f) \cap Dom(g) \neq \emptyset$. Se define la composición de g con f, y se la nota como $g \circ f$, a la función con dominio:

$$Dom(g \circ f) = \{x \in Dom(f) : f(x) \in Dom(g)\}.$$

Tips:

- 1. Si $Im(f) \cap Dom(g) \neq \emptyset$, entonces $g \circ f$ es posible.
- 2. La composición no siempre es conmutativa, es decir, hay ejemplos en donde $g \circ f \neq f \circ g$.
- 3. La composición es asociativa, es decir, dadas las funciones f,g y h, si $(f \circ (g \circ h))$ entonces es equivalente a decir $((f \circ g) \circ h)$.

4 Teorema:

Si $f:A\to B$ y $g:B\to C$ es inyectectiva (resp. survectiva) entonces $g\circ f:A\to C$ es inyectiva (resp. survectiva) también.

Definición: Una función $f: A \to B$ es *inversible* si existe una función $g: B \to A$ tal que $gf = id_A$ y $f \circ g = id_B$. Si f es inversible, g también lo es.

5 Teorema:

Si $f:A\to B$ es inversible y $g:B\to A$ es una inversa de f, entonces es única.

6 Teorema:

 $f:A\to B$ es inversible si y sólo si es biyectiva.

7 Teorema:

Si $f: A \to B$ y $g: B \to C$ son inversibles, entonces $g \circ f$ es inversible y $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

8 Teorema:

 $f: A \to B, A \neq B$ finites, |A| = |B|. Entonces son equivalentes:

- 1. f inyectiva.
- 2. f suryectiva.
- 3. f inversible.

Operaciones

Definición: Dados A y B no vacios, una función $f: AxA \to B$ es una operación binaria en A. Si además, $Im(f) \subseteq A$ la operación es cerrada en A.

Definición: Si $g: A \to A$ entonces g es una operación monaria (unaria) en A.

Definición: Dada $f: AxA \to B$ operación binaria en A.

- 1. f es conmutativa si $f(a_1, a_2) = f(a_2, a_1)$ para todo $(a_1, a_2) \in A \times A$.
- 2. Si f es cerrada, entonces f es asociativa si f(f(a,b),c)=f(a,f(b,c)) para todo $a,b,c\in A$.

Definición: Dada $f: AxA \to A$, una operación binaria en A (cerrada). Decimos que la operación posee neutro si existe $a_0 \in A$ tal que $f(a, a_0) = f(a_0, a) = a, \forall a \in A$.

Para demostrar la existencia del mismo, hay que exhibir un elemento que cumpla la definición.

9 Teorema:

Si $f: A \times A \to A$ posee neutro, este es único.

Definición: Dada $f: AxA \to A$ una operación binaria en A (cerrada). Si f posee un elemento neutro $x \in A$, se dice que la operación posee inversos si para cada $a \in A$ existe $a' \in A$ tal que f(a, a') = f(a', a) = x.

10 Teorema:

Si $f: AxA \to A$ es una operación asociativa, con elemento neutro $x \in A$ que posee inversos, entonces, cada elemento posee un *único inverso*.