

Virtual Evolution Of 2D Soft Robots

Naudé Conradie Supervisor: Dr MP Venter

Department of Mechanical and Mechatronic Engineering, Stellenbosch University

22 November 2019

• Project scope

- Project scope
- Background

- Project scope
- Background
- Methodology

- Project scope
- Background
- Methodology
- Results And Conclusions

• Automate design of shape-changing soft robots

- Automate design of shape-changing soft robots
 - Change internal pressure

- Automate design of shape-changing soft robots
 - Change internal pressure
- Non-linear FEM

- Automate design of shape-changing soft robots
 - Change internal pressure
- Non-linear FEM
 - Restricted to two dimensions

- Automate design of shape-changing soft robots
 - Change internal pressure
- Non-linear FEM
 - Restricted to two dimensions
 - Modelled with real material properties

• Computationally efficient

- Computationally efficient
 - Use recursive grammatical encodings

- Computationally efficient
 - Use recursive grammatical encodings
 - L-systems for cellular level

- Computationally efficient
 - Use recursive grammatical encodings
 - L-systems for cellular level
 - CPPNs for organism level

- Computationally efficient
 - Use recursive grammatical encodings
 - L-systems for cellular level
 - CPPNs for organism level
- Evolve a population to obtain best model

• Soft robotics

- Soft robotics
 - Modelling soft bodies is computationally expensive

- Soft robotics
 - Modelling soft bodies is computationally expensive
- Lindenmayer systems (L-systems)

- Soft robotics
 - Modelling soft bodies is computationally expensive
- Lindenmayer systems (L-systems)
 - Recursive grammatical encodings

- Soft robotics
 - Modelling soft bodies is computationally expensive
- Lindenmayer systems (L-systems)
 - Recursive grammatical encodings
 - Built from axiom, variables, constants and rules
- Compositional Pattern-Producing Network -NeuroEvolution of Augmenting Technologies (CPPN-NEAT)

- Soft robotics
 - Modelling soft bodies is computationally expensive
- Lindenmayer systems (L-systems)
 - Recursive grammatical encodings
 - Built from axiom, variables, constants and rules
- Compositional Pattern-Producing Network -NeuroEvolution of Augmenting Technologies (CPPN-NEAT)
 - Neural networks

- Soft robotics
 - Modelling soft bodies is computationally expensive
- Lindenmayer systems (L-systems)
 - Recursive grammatical encodings
 - Built from axiom, variables, constants and rules
- Compositional Pattern-Producing Network -NeuroEvolution of Augmenting Technologies (CPPN-NEAT)
 - Neural networks
 - Evolved with topology augmentation

- Commercial software
- Support

- Commercial software
- Support
- High level of control
- Robust

- Commercial software
- Support
- High level of control
- Robust

• Unit cell

- Unit cell
 - Square

- Unit cell
 - Square
 - Modelled with Mold Star 15

- Unit cell
 - Square
 - Modelled with Mold Star 15
 - Predefined behaviours

- Unit cell
 - Square
 - Modelled with Mold Star 15
 - Predefined behaviours

- Complete soft body
 - Constructed from unit cells

- Unit cell
 - Square
 - Modelled with Mold Star 15
 - Predefined behaviours

- Complete soft body
 - Constructed from unit cells
 - Recursive grammatical encodings

• L-systems

- L-systems
 - Refer to unit cells

- L-systems
 - Refer to unit cells
 - Construct soft body

- L-systems
 - Refer to unit cells
 - Construct soft body
 - Genotype

Recursive Encodings

- L-systems
 - Refer to unit cells
 - Construct soft body
 - Genotype
- CPPN-NEAT

Recursive Encodings

- L-systems
 - Refer to unit cells
 - Construct soft body
 - Genotype
- CPPN-NEAT
 - Refer to whole body

Recursive Encodings

• L-systems

- Refer to unit cells
- Construct soft body
- Genotype

• CPPN-NEAT

- Refer to whole body
- Phenotype

• Use material properties obtained from standard testing

- Use material properties obtained from standard testing
- Manufacture physical model

- Use material properties obtained from standard testing
- Manufacture physical model
 - Unit cell and whole body

- Use material properties obtained from standard testing
- Manufacture physical model
 - Unit cell and whole body
 - Print at some thickness

- Use material properties obtained from standard testing
- Manufacture physical model
 - Unit cell and whole body
 - Print at some thickness
 - Place between glass plates

- Use material properties obtained from standard testing
- Manufacture physical model
 - Unit cell and whole body
 - Print at some thickness
 - Place between glass plates
 - Apply internal pressure

- Use material properties obtained from standard testing
- Manufacture physical model
 - Unit cell and whole body
 - Print at some thickness
 - Place between glass plates
 - Apply internal pressure
 - Observe behaviour

• Improve computing time required

- Improve computing time required
- Prove practicality of recursive encodings

- Improve computing time required
- Prove practicality of recursive encodings
- Replicable

- Improve computing time required
- Prove practicality of recursive encodings
- Replicable
- Adaptable

- Improve computing time required
- Prove practicality of recursive encodings
- Replicable
- Adaptable
 - -3D

- Improve computing time required
- Prove practicality of recursive encodings
- Replicable
- Adaptable
 - -3D
 - Different objective functions

Questions?