Mask R-CNN

Mask Region-based Convolutional Neural Network for Instance Segmentation

Group 5

ID	Name Tasks			
19127191	Ngô Văn Anh Kiệt	Research paper: Backbone, Head Architecture; Presentation script	100%	
19127005	Trần Phan Thanh Hải	Model coding: train, test, deploy (primary role)	100%	
19127505	Triệu Nguyên Phát	Research paper: Mask RCNN results and comparisons.	100%	
19127511	La Ngọc Hồng Phúc	Research paper: Mask RCNN for Human Pose Estimation Video editing	100%	
19127575	Nguyễn Thái Tiến	Research paper: Rol Align, Mask branch	100%	

Backbone Architecture

- A backbone architecture is for extracting regions of interest from an image.
- Mask RCNN uses a backbone similar to Faster RCNN: ResNet/ResNeXt
- It's recommended in the paper that Mask RCNN should be used with ResNet-FPN backbone for good accuracy and speed.

- The output of the backbone is a collection of possible regions in the image that can contain an object.
- These regions are the raw forms of the bounding boxes we see in the final output of Mask RCNN.
- Each of these region will be forwarded to the later layers.

Feature Pyramid Network (FPN)

- An important modification of Mask RCNN to the backbone of Faster RCNN.
- The regions of interest generated by the backbone will be fed into the FPN for feature extraction.

- The bottom-up pathway: convolutional network for feature extraction. As we go up, the spatial resolution decreases, higher-level structures detected, and the semantic value for each layer increases.
- o The top-down pathway reconstructs higher resolution layers from a semantic rich layer.

- In the backbone architecture, FPN is used along with a Region Proposal Network (RPN).
- This helps extracts RoI features from different levels of the feature pyramid according to their scale.
- Then the RPN will also predict whether the extracted region contains an object.

- IoU = Area of Intersection / Area of Union
- Regions that have their bounding boxes satisfy IoU >= 0.5 will be forwarded to the next layer.

- To fix the misalignment between the Rol and the extracted features, we propose a simple, quantization-free layer, called RolAlign
- Mask R-CNN, extends Faster R-CNN by adding a branch for predicting segmentation masks on each Region of Interest (RoI). The mask branch is a small FCN

- RolAlign layer that removes the harsh quantization of RolPool, properly aligning the extracted features with the input.
- Rol Align is not using quantization for data pooling.

- ROI align divides each coordinate by k: \mathbf{x} / \mathbf{k} and does NOT round it to integer.
- Nevertheless, cropped part is also divided into grid, but for defining concrete
 values in these bins ROI align choose regularly 4 points in each bin
 using bilinear interpolation (as shown in picture above). And from these 4
 points maximum or average value from each bin is taken. are used to reduce
 the dimensions of the feature maps

RolAlign improves mask accuracy by relative 10% to 50%, show bigger gains under stricter localization metrics

- The mask branch is a small FCN applied to each Rol, predicting a segmentation mask in a pixel-to-pixel manner.
- Represent a mask as m x m matrix. Use binary loss to train the network.

- \cdot Use sigmoid to predict probability for each pixel . L_{mask} mean binary crossentropy
- · We just simply need to use a few extra convolutional layers on each region of interest

Head architecture

- With the additional of the fully convolutional mask branch, the head architecture has 3 branches:
 - o The bounding box regression branch
 - The classification branch
 - o The mask branch
- So how do these branches work together to make the final output?

Task 2:

Proposal classification

2000 object proposals

~20 object detections

- Multiple overlapping bounding boxes will be reduced into 1 bounding box that tries to cover all of the object.
- This is done by the Non-Maximum Suppression algorithm.

Then the bounding box regression head will readjust the predicted bounding box so that it will fully cover the object.

- The mask branch will predict the mask shapes separately for each class.
- Depending on the class label the classification branch predicts, the mask corresponding to that class will be apply on the image.

- At the end, we have 3 separated outputs: the bounding boxes, the labels and the masks.
- The final output is visualized by applying all 3 of the above on the original input image.

Output comparison

Original

FCN prediction

Mask R-CNN Prediction

Output comparison

Mask R-CNN Prediction

Intersection over Union

IoU measures how much the predicted boundary overlaps with the ground truth (the real object boundary).

Average Precision

AP	$IoU \ge 0.5$: 0.05: 0.95 (primary challenge metric)
AP ₅₀	IoU ≥ 0.5 (PASCAL VOC metric)
AP ₇₅	IoU ≥ 0.5 (strict metric)
AP_S	For small objects: $area < 32^2$
AP_m	For medium objects: $32^2 < area < 96^2$
AP_l	For large objects: $area > 96^2$

Results on Cityscapes dataset

	Training data	AP[val]	AP	AP ₅₀	person	rider	car	truck	bus	train	mcycle	bicycle
InstanceCut	fine + coarse	15.8	13.0	27.9	10.0	8.0	23.7	14.0	19.5	15.5	9.3	4.7
DWT	fine	19.8	15.6	30.0	15.1	11.7	32.9	20.4	20.4	15.0	7.9	4.9
SAIS	fine	-	17.4	36.7	14.6	12.9	35.7	23.2	23.2	19.0	10.3	7.8
DIN	fine + coarse	-	20.0	38.8	16.5	16.7	25.7	30.0	30.0	23.4	17.1	10.1
SGN	fine + coarse	29.2	25.0	44.9	21.8	20.1	39.4	33.2	33.2	30.8	17.7	12.4
Mask R-CNN	fine	31.5	26.2	49.9	30.5	23.7	46.9	32.2	32.2	18.6	19.1	16.0
Mask R-CNN	fine + COCO	36.4	32.0	58.1	34.8	27.0	49.1	40.9	40.9	30.9	24.1	18.7

Cityscapes dataset

Results on Cityscapes dataset

	Training data	AP[val]	AP	AP ₅₀	person	rider	car	truck	bus	train	mcycle	bicycle
InstanceCut	fine + coarse	15.8	13.0	27.9	10.0	8.0	23.7	14.0	19.5	15.5	9.3	4.7
DWT	fine	19.8	15.6	30.0	15.1	11.7	32.9	20.4	20.4	15.0	7.9	4.9
SAIS	fine	-	17.4	36.7	14.6	12.9	35.7	23.2	23.2	19.0	10.3	7.8
DIN	fine + coarse	-	20.0	38.8	16.5	16.7	25.7	30.0	30.0	23.4	17.1	10.1
SGN	fine + coarse	29.2	25.0	44.9	21.8	20.1	39.4	33.2	33.2	30.8	17.7	12.4
Mask R-CNN	fine	31.5	26.2	49.9	30.5	23.7	46.9	32.2	32.2	18.6	19.1	16.0
Mask R-CNN	fine + COCO	36.4	32.0	58.1	34.8	27.0	49.1	40.9	40.9	30.9	24.1	18.7

Comparison in Internal features

	APkp	AP ₅₀ kp	AP ₇₅ ^{kp}	AP _M kp	AP _L kp	
			66.7		67.4	
RoIAlign	64.2	86.6	69.7	58.7	73.0	RolAlign vs. RolPool for keypoint detection.

	AP _{person} bb	AP _{person} mask	APkp
Faster R-CNN	52.5	-	-
Mask R-CNN, mask-only	53.6	45.8	-
Mask R-CNN, keypoint-only	50.7	-	64.2
Mask R-CNN, keypoint & mask	52.0	45.1	64.7

Multi-task learning of box, mask, and keypoint about the *person* category

Mask R-CNN for Human Pose Estimation

Keypoint R-CNN

In human pose estimation, a **keypoint represent a body part** (nose, left eye, right elbow, ...) location in the image. Treat individual keypoint as a one-hot $m \times m$ binary mask. For COCO dataset, 1 person can have up to 17 masks

Keypoint example

Example output with binary classification

Keypoint example

COCO Keypoint

Index	Key point Nose			
0				
1	Left-eye			
2	Right-eye			
3	Left-ear			
4	Right-ear			
5	Left-shoulder			
6	Right-shoulder			
7	Left-elbow			
8	Right-elbow			
9	Left-wrist			
10	Right-wrist			
11	Left-hip			
12	Right-hip			
13	Left-knee			
14	Right-knee			
15	Left-ankle			
16	Right-ankle			

Experiment results

	AP ^{kp}	AP^{kp}_{50}	AP^{kp}_{75}	AP_M^{kp}	AP_L^{kp}
CMU-Pose+++	61.8	84.9	67.5	57.1	68.2
G-RMI	62.4	84.0	68.5	59.1	68.1
Mask R-CNN,	62.7	87.0	68.4	57.4	 71.1
keypoint-only					
Mask R-CNN,	63.1	87.3	68.7	57.8	71.4
keypoint & mask	05.1	07.3	00.7	37.0	/ 1. 4

Mask R-CNN (ResNet-50-FPN) with COCO test-dev

8

Mask RCNN Demonstration

Project Annotation View Help < ≔ > @ @ Home

Region Shape

Project

Name: via_project_20Dec2021_

All files

v regular expression

[1] 126700562_8e27720147_b.jpg

[2] 155815494_800fc9aa32_b.jpg

[3] 4864857993_edb62f16ef_b.jpg

[4] car_noun_001_02258.jpg

[5] ferrari-laferrari.jpg

[6] 2917282960_06beee649a0_b.jpg

[7] 5555705118 3390d70aobe b.jpg

[8] 332344155_71be3a3b22_b.jpg

[9] 351678851 e2aeebdafd_b.jpg

[10] 485227412_e335662bb5_b.jpg

[11] 489752654_777853a0ba_b.jpg

[12] 518678836 94d58e3839 b.jpg

[13] 699765866 abaad7274d b.jpg

[14] 873768102_7d931e5fa3_b.jpg

[15] 1297451346_5b92bdac08_b.jpg

[16] 2311771643_f46392fcc0_b.jpg

[17] 2354829160 3f65a6bf6f b.jpg

[18] 2685563244_b0d5f7eb67_b.jpg

[19] 2937599387 80e7d6e050 b.jpg

[20] 3342804367_f43682bb80_b.jpg

[21] 3646097131 e3e1215843 b.jpg

[22] 3927754171_9011487133_b.jpg

[23] 4057490235, 2ffdf7d68h, h ind

Add Files Add URL Remove


```
▶ ferrari-laferrari.jpg48867 {4}
         2917282960_06beee649a0_b.jpg81894 {4}
  ▼ 5555705118_3390d70aobe_b.jpg265602 {4}
  filename: 5555705118 3390d70aobe b.jpg
              size: 265602
            ▼ regions [3]
               ▼ 0 {2}
11
                  ▼ shape_attributes {3}
                        name: polygon
                     ▶ all_points_x [40]
**
                     ▶ all_points_y [40]
                  ▼ region_attributes {1}
                        names : person
               ▼ 1 {2}
                  ▶ shape_attributes {3}
                  ▶ region_attributes {1}
               ▼ 2 {2}
                  ▶ shape_attributes {3}
111
  ▶ region_attributes {1}
```

```
config = InferenceConfig()
 config.display()
Configurations:
BACKBONE SHAPES
                              [[256 256]
 [128 128]
  64 64]
 [ 32 32]
 [ 16 16]]
BACKBONE_STRIDES
                               [4, 8, 16, 32, 64]
BATCH SIZE
BBOX STD DEV
                               [ 0.1 0.1 0.2 0.2]
DETECTION_MAX_INSTANCES
                               100
                              0.5
DETECTION MIN CONFIDENCE
DETECTION_NMS_THRESHOLD
                              0.3
                               1
GPU_COUNT
                               1
IMAGES_PER_GPU
IMAGE_MAX_DIM
                              1024
IMAGE MIN DIM
                               800
IMAGE_PADDING
                               True
IMAGE SHAPE
                               [1024 1024
                                            3]
LEARNING_MOMENTUM
                               0.9
LEARNING_RATE
                              0.002
MASK POOL SIZE
                              14
                               [28, 28]
MASK_SHAPE
MAX GT INSTANCES
                               100
MEAN_PIXEL
                               [ 123.7 116.8 103.9]
                               (56, 56)
MINI MASK SHAPE
NAME
                               coco
NUM_CLASSES
                               81
                               7
POOL_SIZE
                              1000
POST_NMS_ROIS_INFERENCE
POST_NMS_ROIS_TRAINING
                               2000
                              0.33
ROI_POSITIVE_RATIO
RPN_ANCHOR_RATIOS
                               [0.5, 1, 2]
RPN ANCHOR SCALES
                               (32, 64, 128, 256, 512)
RPN_ANCHOR_STRIDE
                               [ 0.1 0.1 0.2 0.2]
RPN BBOX STD DEV
RPN TRAIN ANCHORS PER IMAGE
                               256
                              1000
STEPS PER EPOCH
                              128
TRAIN_ROIS_PER_IMAGE
USE MINI MASK
                              True
                              True
USE_RPN_ROIS
VALIDATION_STEPS
                               50
                              0.0001
WEIGHT DECAY
```

Epoch 17/20


```
Processing 1 images
image
                        shape: (1024, 1024, 3)
                                                    min:
                                                            0.00000
                                                                     max: 255.00000
                                                                                      uint8
molded images
                        shape: (1, 1024, 1024, 3)
                                                    min: -123.70000
                                                                                      float64
                                                                           151.10000
                                                                     max:
                        shape: (1, 15)
image metas
                                                    min:
                                                            0.00000
                                                                     max: 1024.00000
                                                                                      int32
anchors
                        shape: (1, 261888, 4)
                                                    min:
                                                           -0.35390
                                                                     max:
                                                                             1.29134 float32
the actual length of the ground truth vect is: 10
the actual length of the predicted vect is: 10
Average precision of this image: 0.5
The actual mean average precision for the whole images 0.875
Processing 1 images
image
                        shape: (1024, 1024, 3)
                                                    min:
                                                             0.00000
                                                                     max:
                                                                           255.00000
                                                                                      uint8
                        shape: (1, 1024, 1024, 3)
molded images
                                                    min: -123.70000
                                                                     max:
                                                                           148.10000
                                                                                      float64
image metas
                        shape: (1, 15)
                                                    min:
                                                            0.00000
                                                                     max: 1024.00000
                                                                                      int32
anchors
                        shape: (1, 261888, 4)
                                                    min:
                                                           -0.35390
                                                                     max:
                                                                             1.29134 float32
the actual length of the ground truth vect is: 12
the actual length of the predicted vect is : 12
Average precision of this image: 0.25
The actual mean average precision for the whole images 0.7857142857142857
Processing 1 images
image
                        shape: (1024, 1024, 3)
                                                    min:
                                                             0.00000
                                                                           255.00000
                                                                                      uint8
                                                                     max:
molded images
                        shape: (1, 1024, 1024, 3)
                                                    min: -123.70000
                                                                           151.10000
                                                                                      float64
                                                                     max:
image metas
                        shape: (1, 15)
                                                    min:
                                                            0.00000
                                                                     max: 1024.00000
                                                                                      int32
anchors
                        shape: (1, 261888, 4)
                                                    min:
                                                           -0.35390 max:
                                                                             1.29134 float32
the actual length of the ground truth vect is: 15
the actual length of the predicted vect is: 15
Average precision of this image: 0.25
The actual mean average precision for the whole images 0.71875
Drococcing 1 images
```

Deploy model on Streamlit

References

- Mask R-CNN on Keras and TensorFlow (github.com)
 [https://github.com/matterport/Mask_RCNN]
- facebookresearch/Detectron (github.com)
 [https://github.com/facebookresearch/Detectron]
- Mask R-CNN Explained | Papers With Code [https://paperswithcode.com/method/mask-r-cnn]
- Human Pose Estimation using Keypoint RCNN
 [https://learnopencv.com/human-pose-estimation-using-keypoint-rcnn-in-pytorch/]
- Human Pose Detection DebuggerCafe
 [https://debuggercafe.com/human-pose-detection-using-pytorch-keypoint-rcnn/]

