CALCULUS 2: Exercises MI1121E

Chapter 1: Applications of Differential Calculus in Geometry

References: The list of suggested exercises in MI1121.

1.1 Applications in two-dimensional geometry

- 1. Find equations of the tangent line and the normal line to the curve
 - a) $y = e^{1-x^2}$ at the points of intersection of the curve and the line y = 1
 - b) $\begin{cases} x = 2t \cos(\pi t) \\ y = 2t + \sin(\pi t) \end{cases}$ at the point *A* corresponding to t = 1/2
 - c) $x^{2/3} + y^{2/3}$ at M(8,1)
- **2**. Find the curvature (of the curve at a general point).

(a)
$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases}$$
 (b) $x^{2/3} + y^{2/3} = a^{2/3} \ (a > 0).$ (c) $r = ae^{b\varphi} \ (a, b > 0).$

(b)
$$x^{2/3} + y^{2/3} = a^{2/3} (a > 0)$$
.

(c)
$$r = ae^{b\varphi} (a, b > 0)$$
.

- 3. Find the curvature of the curve $y = \ln x$ at a point $(x, \ln x)$ (where x > 0). At what point does the curve have maximum curvature? What happens to the curvature as $x \to \infty$?
- **4**. Find the envelope of the following family of curves.

(a)
$$y = \frac{x}{c} + c^2$$
.

(c)
$$y = c^2(x - c)^2$$
.

(b)
$$cx^2 - 3y - c^3 + 2 = 0$$
.

(d)
$$4x\sin c + y\cos c = 1.$$

Applications in three-dimensional geometry 1.2

- 5. Suppose that $\vec{p}(t)$, $\vec{q}(t)$, $\alpha(t)$ are differentiable. Show that
 - (a) $\frac{d}{dt}(\vec{p}(t) + \vec{q}(t)) = \frac{d\vec{p}(t)}{dt} + \frac{d\vec{q}(t)}{dt}.$
 - (b) $\frac{d}{dt}(\alpha(t)\vec{p}(t)) = \alpha(t)\frac{d\vec{p}(t)}{dt} + \alpha'(t)\vec{p}(t).$
 - (c) $\frac{d}{dt}(\vec{p}(t) \cdot \vec{q}(t)) = \vec{p}(t) \cdot \frac{d\vec{q}(t)}{dt} + \frac{d\vec{p}(t)}{dt} \cdot \vec{q}(t)$.
 - (d) $\frac{d}{dt}(\vec{p}(t) \times \vec{q}(t)) = \vec{p}(t) \times \frac{d\vec{q}(t)}{dt} + \frac{d\vec{p}(t)}{dt} \times \vec{q}(t).$
- **6**. Let *C* be a curve given by a vector function $\vec{r}(t)$. Suppose that $\vec{r}(t)$ is differentiable and $\vec{r}'(t)$ is always perpendicular to $\vec{r}(t)$. Show that C lies on a sphere with the center at the origin.

7. Find equations of the tangent line and the normal plane of the curve

(a)
$$\begin{cases} x = a \sin^2 t \\ y = b \sin t \cos t \\ z = c \cos^2 t \end{cases}$$
 at the point corresponding to $t = \pi/4$ $(a, b, c > 0)$
$$\begin{cases} x = 4 \sin^2 t \\ y = 4 \cos t \\ z = 2 \sin t + 1 \end{cases}$$
 at the point $M(1, -2\sqrt{3}, 2)$

(b)
$$\begin{cases} x = 4\sin^2 t \\ y = 4\cos t \\ z = 2\sin t + 1 \end{cases}$$
 at the point $M(1, -2\sqrt{3}, 2)$

8. Find the curvature of the curve

(a)
$$\begin{cases} x = \cos t \\ y = \sin t & \text{at the point corresponding to } t = \pi/2 \\ z = t \end{cases}$$

(a)
$$\begin{cases} x = \cos t \\ y = \sin t \quad \text{at the point corresponding to } t = \pi/2 \\ z = t \end{cases}$$
(b)
$$\begin{cases} x = \cos t + t \sin t \\ y = \sin t - t \cos t \quad \text{at the point corresponding to } t = \pi. \\ z = t \end{cases}$$

9. Find the curvature at the point M(1,0,-1) of the curve of intersection of the cylinder $4x^2 + y^2 = 4$ and the plane x - 3z = 4.

2

10. Find equations of the normal line and the tangent plane of the surface

(a)
$$x^2 - 4y^2 + 2z^2 = 6$$
 at $(2, 2, 3)$

(a)
$$x^2 - 4y^2 + 2z^2 = 6$$
 at $(2,2,3)$
 (b) $z = 2x^2 + 4y^2$ at $(2,1,12)$
 (c) $\ln(2x + y^2) + 3z^3 = 3$ at $(0,-1,1)$
 (d) $x^2 + 2y^3 - yz = 0$ at $(1,1,3)$

(b)
$$z = 2x^2 + 4y^2$$
 at $(2, 1, 12)$

(d)
$$x^2 + 2y^3 - yz = 0$$
 at $(1, 1, 3)$

11. Find equations of the tangent line and the normal plane of the curve

(a)
$$\begin{cases} x^2 + y^2 = 10 \\ y^2 + z^2 = 25 \end{cases}$$
 at the point $A(1,3,4)$

(a)
$$\begin{cases} x^2 + y^2 = 10 \\ y^2 + z^2 = 25 \end{cases}$$
 at the point $A(1,3,4)$
(b)
$$\begin{cases} 2x^2 + 3y^2 + z^2 = 47 \\ x^2 + 2y^2 = z \end{cases}$$
 at the point $B(-2,1,6)$