全国硕士研究生入学统一考试备考用书

考研数学(三)

名师精选全真模拟冲刺题10套

考研辅导名师 陈启浩 编著

依据大纲选题 难易匹配真题 符合命题趋势

不止是模拟, 更接近实战

2016 考研数学 (三) 名师精选 全真模拟冲刺题 10 套

考研辅导名师 陈启浩 编著

机械工业出版社

本书是考研数学冲刺阶段的复习指导书,适用于参加"数学三"考 试的学生. 书中包含了10套精心设计的模拟试题, 题目难度稍高于考研 真题. 这些题目大部分为首次公开发布, 非常适合考生用来检验复习效果 和临考重点复习. 本书的解答部分, 不仅给出了详尽解答, 还特别针对考 试重点和难点进行了扩展复习.

本书可作为考生自学的复习材料,也可作为考研培训班的辅导教材, 还可供大学数学基础课程的教学人员参考.

图书在版编目 (CIP) 数据

2016 考研数学(三)名师精选,全真模拟冲刺题 10 套/ 陈启浩编著. -2 版. -北京: 机械工业出版社, 2015.4

全国硕士研究生入学统一考试备考用书 ISBN 978 - 7 - 111 - 48613 - 8

Ⅰ. ①2… Ⅱ. ①陈… Ⅲ. ①高等数学 - 研究生 - 人 学考试 - 题解 N. 1013 - 44

中国版本图书馆 CIP 数据核字 (2014) 第 269304 号

机械工业出版社(北京市百万庄大街22号 邮政编码100037) 策划编辑:郑 玫 责任编辑:郑 玫

版式设计: 霍永明 责任校对: 胡艳萍

封面设计:路恩中 责任印制:刘 岚

北京京丰印刷厂印刷

2015年4月第2版·第1次印刷

184mm×260mm·12.75 印张·307 千字

0 001-3 000 册

标准书号: ISBN 978-7-111-48613-8

定价: 29.80元

凡购本书, 如有缺页、倒页、脱页, 由本社发行部调换

电话服务 网络服务

服务咨询热线: 010-88361066 机 工 官 网: www. cmpbook. com

读者购书热线: 010-68326294 机 工 官 博: weibo. com/cmp1952

010-88379203 金 书 网: www. golden-book. com

封面无防伪标均为盗版

教育服务网: www. cmpedu. com

前 言

深入地读完我们编写的 2016 全国硕士研究生入学统一考试备考用书(包括认真地推演了其中的每道例题和练习题)的考生,已经具有了较强的分析问题和解决问题的能力,具有了能够从容面对即将来临的研究生考试的实力.但是为了把准备工作做得更充分,为了践行"战前多流汗,战时少流血",应在考试前进行 10 场"实战演习"——认真、独立地做完 10 套模拟试题(各套模拟试题的难度稍高于考研真题),作为最后的冲刺.

书中的10套试题是根据考研的数学大纲和编者的教学经验精心设计的,它既涵盖性强,又重点突出,其中的问题新颖,既有较强的针对性,又有明显的前瞻性.书中给出了这10套试题的详细、规范的解答,每题之后都加有附注,用简明的语言指明了与本题有关的概念、方法等值得注意之点.当然,在"实战演习"时,不应一遇到困难就翻看详解,一定要认真、反复地思索,这样才能达到使用本书冲刺的目的——进一步提高应试能力,向着高分进发.使用本书的实践证明:弄通模拟试题,不想拿高分都难.

衷心祝愿考生们取得骄人的成绩,并欢迎读者对本书提出宝贵意见,可发邮件到 cqhs-huxue@gmail.com,非常感谢!

北京邮电大学教授 陈启浩

目 录

前言	
模拟试题(一)	······ 1
模拟试题(二)	8
模拟试题(三):	
模拟试题(四)·	
模拟试题(五)·	
模拟试题(六)·	
模拟试题(七):	
模拟试题(八)·	
模拟试题(九):	57
模拟试题(十)·	
模拟试题(一)解	F答 ······ 70
模拟试题(二)解	答
模拟试题(三)解	答
模拟试题(四)解	答
模拟试题(五)解	答
模拟试题(六)解	肾答
模拟试题(七)解	P答 ······ 148
模拟试题(八)解	答
模拟试题(九)解	答
模拟试题(十)的	Y

模拟试题(一)

一、选择题: 1~8 小题,每小题4分,共32分.每小题给出的四个选项中,只有一个 选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上.

(A)
$$\frac{1}{2(x-1)^{11}} - \frac{1}{x^{11}} + \frac{1}{2(x+1)^{11}}$$

(A)
$$\frac{1}{2(x-1)^{11}} - \frac{1}{x^{11}} + \frac{1}{2(x+1)^{11}}$$
. (B) $\frac{10!}{2(x-1)^{11}} + \frac{10!}{x^{11}} + \frac{10!}{2(x+1)^{11}}$.

(C)
$$\frac{10!}{2(x-1)^{11}} - \frac{10!}{x^{11}} + \frac{10!}{2(x-1)^{11}}$$
 (D) $\frac{1}{2(x-1)^{11}} + \frac{1}{x^{11}} + \frac{1}{2(x+1)^{11}}$

(D)
$$\frac{1}{2(x-1)^{11}} + \frac{1}{x^{11}} + \frac{1}{2(x+1)^{11}}$$
.

(2) 设函数 y = y(x) 的参数方程为 $\begin{cases} x = \ln^2(1+t), \underline{1} \frac{dy}{dx} \neq t = 0 \text{ 处连续}, \underline{1} \frac{dy}{dx} \end{pmatrix} \Big|_{t=0}$ 为

- (A) 0.
- (B) 1.
- (C) 2.
- (D) 3.

]

(3) 定积分 $\int_{\underline{\pi}}^{\pi} \sin x \sqrt{1 - \sin^2 x} dx =$

- (A) $\frac{3}{4}$.
- (B) $-\frac{1}{4}$. (C) $-\frac{3}{4}$. (D) $\frac{1}{4}$.

f(x)是连续函数,则以下等式正确的是

(A)
$$\iint_{D} [f(x) + f(-x)] d\sigma = 4 \iint_{D} f(x) d\sigma.$$

(B)
$$\iint\limits_{D} [f(x) - f(-x)] d\sigma = 4 \iint\limits_{D_1} [f(x) - f(-x)] d\sigma.$$

(C)
$$\iint_{D} f(x) d\sigma = 2 \iint_{D_1} f(x) d\sigma$$
.

(D)
$$\iint_D f(x^2) d\sigma = 2 \iint_{D_1} f(x^2) d\sigma.$$

(5) 设A 是n(n>2)阶可逆矩阵,则 $(A^*)^*$ 等于

- (A) A.
- (B) A^* .
- (C) $\mid A \mid {}^{n-2}A$. (D) $\mid A \mid {}^{n-1}A$.

Γ

1

(6) 设A, B 都是n 阶正定矩阵,则下列选项中为正定矩阵的是

(A)
$$\mathbf{A}^* + 2\mathbf{B}^*$$
. (B) $\mathbf{A}^* - \mathbf{B}^*$. (C) $\mathbf{A}^* \mathbf{B}^*$. (D) $\begin{pmatrix} \mathbf{A}\mathbf{B} & \mathbf{O} \\ \mathbf{O} & \mathbf{A} + \mathbf{B} \end{pmatrix}$.

(7) 设随机变量 $X \sim N(\mu, \sigma^2)$, $Y \sim N\left(2\mu, \frac{\sigma^2}{2}\right)$. 记 $p_1 = P(X \ge \mu - \sigma)$, $p_2 = P\left(Y \le 2\mu + \frac{\sigma}{2}\right)$,则

(A)
$$p_1 < p_2 < \frac{1}{2}$$
. (B) $\frac{1}{2} < p_1 < p_2$.

(C)
$$p_2 < \frac{1}{2} < p_1$$
. (D) $p_1 = p_2 > \frac{1}{2}$.

(8) 设 X_1 , X_2 , …, X_n 是来自总体 $X \sim N(0, \sigma^2)$ 的简单随机样本,则统计量 $Y = \frac{1}{n}\sum_{i=1}^{n}X_i^2$ 的数学期望与方差分别为

(A)
$$\frac{1}{n}\sigma^2$$
, $\frac{2}{n}\sigma^4$. (B) $\frac{1}{n}\sigma^2$, $\frac{4}{n}\sigma^4$. (C) σ^2 , $\frac{2}{n}\sigma^4$. (D) σ^2 , $\frac{4}{n}\sigma^4$.

二、填空题: $9 \sim 14$ 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上.

$$(\sin x - x) \arctan \frac{1}{x}$$
(9) 极限lim
$$\frac{\ln(1 + x^2)}{\ln(1 + x^2)}$$

(10) 定积分
$$\int_{0}^{1} \arctan \frac{1+x}{1-x} dx =$$
______.

(11) 设函数
$$f(x, y) = \begin{cases} \left(\frac{y}{x}\right)^{\ln x}, & x \ge 1, -\infty < y < +\infty, \\ \ln(x^{\ln 2}) + y^2 - 3, x < 1, -\infty < y < +\infty, \end{cases}$$
 则 $\frac{\partial z}{\partial x}\Big|_{(1,2)} = \underline{\qquad}$.

(12) 差分方程 $2y_{t+1} + 10y_t - 5t = 0$ 的通解为_____.

(13) 设矩阵
$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 & -2 \\ 0 & 0 & -2 & 4 \\ 1 & 2 & -1 & 1 \\ -3 & 2 & 2 & 1 \end{pmatrix}$$
, 则 $r((\mathbf{A}^2)^*) = \underline{\qquad}$.

函数 $F_Y(y) =$.

三、解答题: 15~23 小题, 共94分. 请将解答写在答题纸指定位置上. 解答应写出文字说明、证明过程或演算步骤.

(15) (本题满分10分)

设函数 f(x) 满足 f(0) = 0, f'(0) = 1. 记 $g(t) = \lim_{x \to 0} \left[1 + \sqrt[3]{\sin t} f(x) \right]^{\frac{\sqrt[3]{2}}{\ln(1+x)}}$, 求 g'(0).

(16) (本题满分10分)

(I) 求级数
$$\frac{3}{2} - e^{\frac{1}{2}} + \sum_{n=0}^{\infty} \frac{n^2 - \frac{1}{4}}{2^n \cdot (n+1)!}$$
的和,记为 a ;

(
$$\mathbb{I}$$
) 求微分方程 $y' = e^y - \frac{2}{x}$ 的满足 $y(1) = a$ 的解 $y = y(x)(x > 0)$.

(17) (本题满分10分)

设函数f(x)在[0, 1]上3 阶可导,且f(0)=0,f(1)=1,f'(0)=f'(1)=1. 证明. 存在 $\xi\in(0,1)$,使得 $f^{(3)}(\xi)=0$.

(18) (本题满分10分)

设二元函数 z=z(x, y) 由方程 $2x^2+2y^2+z^2-8z+8=0$ 确定, 求 z=z(x, y) 在 $D=\{(x, y)\mid x\geq 0,\ y\geq 0,\ x+y\leq 1\}$ 上的最大值与最小值.

(19) (本题满分10分)

设二元连续函数 f(x,y) 满足 $f(x,y)=xy+\iint_D f(x,y)\cos x\mathrm{d}\sigma$,其中 $D=\{(x,y)\mid 0\leqslant x\leqslant\pi,0\leqslant y\leqslant\sin x\}$,求 f(x,y) 在 $D_1=\{(x,y)\mid 0\leqslant x\leqslant 1,0\leqslant y\leqslant x^2\}$ 上的平均值.

(20) (本题满分11分)

设
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 2 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 1 & 4 & 0 \\ -1 & 0 & -2 \\ a & b & c \end{pmatrix}, 求使矩阵方程 $\mathbf{AX} = \mathbf{B}$ 有解的常数 $a, b, c, b$$$

并求该方程的所有解.

(21) (本题满分11分)

设 A 是 3 阶实对称矩阵, r(A) = 2, 且 $A\begin{pmatrix} 1 & 1 \\ 0 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 0 & 2 \\ 1 & 2 \end{pmatrix}$. 求正交变换 x = Qy(其

中 $\mathbf{x} = (x_1, x_2, x_3)^T$, $\mathbf{y} = (y_1, y_2, y_3)^T$, \mathbf{Q} 是正交矩阵), 使得二次型 $f(x_1, x_2, x_3) = \mathbf{x}^T A \mathbf{x}$ 在此正交变换下化为标准形, 并求此标准形.

(22) (本题满分11分)

设二维随机变量(X, Y)的概率密度为

$$f(x, y) = \begin{cases} x^2 + \frac{1}{3}xy, & 0 \le x \le 1, \ 0 \le y \le 2, \\ 0, & \text{ i.e. } \end{cases}$$

求(I)
$$DX$$
; (II) $P\left(X^2 + Y^2 \leq 1 \mid Y \geq \frac{1}{2}\right)$.

(23) (本题满分11分)

设 $Z = \ln X \sim N(\mu, \sigma^2)$, 其中 μ , σ^2 是未知参数. 又设 Z_1 , Z_2 , …, Z_n 是来自总体 Z 的简单随机样本. 求 EX 的最大似然估计量.

模拟试题(二)

一、选择题: 1~8 小题,每小题4分,共32分.每小题给出的四个选项中,只有一个 选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上.

$$(1) 函数 f(x) = \begin{cases} \frac{\sin 2x}{(e^{\cos x} - 1) \ln \left(1 + \frac{1}{4}x\right)}, & -\pi < x < 0, \\ (e^{\cos x} - 1) \ln \left(1 + \frac{1}{4}x\right), & \text{的可去间断点个数为} \end{cases}$$

$$(A) 0. \qquad (B) 1. \qquad (C) 2. \qquad (D) 3.$$

(2) 设函数 $f(x) = x \ln(x + a) - \frac{1}{e}$ 仅有单调减少区间 $\left(0, \frac{1}{e}\right)$,则常数 a 等于

- (A) -2.
- (B) -1. (C) 0.

7

]

1

1

(3) 设函数 f(x)连续,且 f(0) = f'(0) = 0,

$$F(x) = \begin{cases} \int_0^x \left(\int_0^u f(t) dt \right) du, & x \leq 0, \\ \int_0^t \ln(1 + f(x+t)) dt, & x > 0, \end{cases}$$

则 F''(0) 为

(A) 1. (B)
$$\frac{1}{2}$$
. (C) $\frac{1}{3}$.

(C)
$$\frac{1}{3}$$
.

(D) 0.

(4) 设 D 是由曲线 $x^2-y^2=1$ 与直线 x=2 围成的平面图形,则二重积分 $\iint (x+y) d\sigma$ 为

- (A) $\sqrt{3}$.
- (B) $2\sqrt{3}$.
- (C) $3\sqrt{3}$.
- (D) 0.

(5) 设 $A \in n(n \ge 2)$ 阶反对称矩阵, $A^* \ne 0$, 则 A^* 为对称矩阵是n为奇数的

(A) 充分而非必要条件.

(B) 必要而非充分条件.

(C) 充分必要条件.

(D) 既非充分又非必要条件.

(6) 设矩阵 $A 与 B = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ 相似,则 $r(A - 2E_3) + r(A - E_3)$ 为

- (A) 2.
- (B) 3.
- (D) 5.

7

(7) 设二维连续型随机变量(X, Y)的分布函数为

$$F(x, y) = \begin{cases} (1 - e^{-x})(1 - e^{-\frac{1}{2}y}), & x > 0, y > 0, \\ 0, & \text{ 其他}, \end{cases}$$

则以下结论不正确的是

- (A) X 与 Y 相互独立.
- (B) EY = 2.
- (C) X 在 Y=y>0 条件下的条件概率密度 $f_{X+Y}(x+y)=e^{-x}$.
- (D) 关于 X 的边缘分布函数 $F_x(x) = \begin{cases} 1 e^{-x}, & x > 0, \\ 0, & x \leq 0. \end{cases}$

(8) 设 X_1 , X_2 , X_3 , X_4 是来自总体 $X \sim N(0, 2^2)$ 的简单随机样本,则统计量 $Z = \frac{1}{20}(X_1-2X_2)^2 + \frac{1}{100}(3X_2-4X_4)^2$ 的方差 D(Z) 为

- (A) 4.
- (B) 3
- (C) 2.
- (D) 1.

二、填空题: 9~14 小题,每小题4分,共24分,请将答案写在答题纸指定位置上.

(9) 极限
$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{(-1)^n \sin\frac{\pi}{n}}$$
_____.

 $(10) 函数 \varphi(x) = \begin{cases} 1-x, & x \leq 1, \\ x \ln x, & x > 1, \end{cases} \psi(x) = \begin{cases} (x-1)^2, & |x| \leq 1 \\ \ln x, & x > 1, \end{cases} 则定积分 \int_{-1}^1 \varphi(\psi(x)) \, \mathrm{d}x$

=____.

(11) 设函数f(u, v)具有连续偏导数,且在点(1, 0)的充分小邻域内,

$$f(u, v) = 1 - u - v + o(\sqrt{(u-1)^2 + v^2}).$$

i已 $g(x, y) = f(e^y, x + y), 则 <math>dg(x, y) \mid_{(0,0)} =$ ______.

(12) 设 f(x, y) 是二元连续函数,则二次积分 $\int_0^{\frac{\pi}{2}} d\theta \int_1^{-\sin\theta+\sqrt{3+\sin^2\theta}} f(r\cos\theta, r\sin\theta) r dr$ 在直角 坐标系中先 x 后 y 的二次积分为______.

(13) 设矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, 则矩阵 $\begin{pmatrix} \mathbf{A}^{-1} & \mathbf{O} \\ \mathbf{B} & \mathbf{C}^* \end{pmatrix}^{-1}$

(14) 设随机变量 X, Y 的概率密度同为 $f(t) = \begin{cases} \frac{3}{8}t^2, & 0 < t < 2, \\ 0, & 其他. \end{cases}$

 $B = \{Y > a\}$ 相互独立, 且 $P(A \cup B) = \frac{3}{4}$, 则常数 $a = _____$.

三、解答题: 15~23 小题, 共94分.请将解答写在答题纸指定位置上.解答应写出文

字说明、证明过程或演算步骤.

(15) (本题满分10分)

求极限
$$\lim_{x\to 0} \left(\frac{2e^{\frac{1}{x}}}{1+e^{\frac{4}{x}}} + \frac{\sin x - |x|}{|x|} \right) \arctan \frac{1}{x}.$$

(16) (本题满分10分)

求由直线 y=x 及曲线 $y=x^2$ 围成的平面图形分别绕直线 y=1 和 y 轴旋转一周而成的旋转体体积.

(17) (本题满分10分)

求 a=1 与 a=2 时微分方程 $y''+a^2y=\sin x+2\cos 2x$ 的通解.

- (18) (本题满分10分)
- (I)证明:当|x|充分小时,有 $0 \le \tan^2 x x^2 \le x^4$;

(
$$II$$
) 设 $x_n = \sum_{k=1}^n \tan^2 \frac{1}{\sqrt{n+k}} (n=1,2,\cdots)$,求极限 $\lim_{n\to\infty} x_n$.

(19) (本题满分10分)

设 f(x, y) 是二重积分 $I = \iint_D r^2 \sin\theta \sqrt{1 - r^2 \cos 2\theta} dr d\theta$ 在直角坐标系中的被积函数,其中 $D = \left\{ (r, \theta) \middle| 0 \le r \le \sec\theta, \ 0 \le \theta \le \frac{\pi}{4} \right\}.$

- (I) 求 f(x, y) 的表达式与 I 的值;

(20) (本题满分11分)

设向量组(A): $\boldsymbol{\alpha}_1 = (1, 0, 1)^T$, $\boldsymbol{\alpha}_2 = (0, 1, 1)^T$, $\boldsymbol{\alpha}_3 = (1, 3, 5)^T$ 与向量组(B): $\boldsymbol{\beta}_1$ = $(1, 1, 1)^T$, $\boldsymbol{\beta}_2 = (1, 2, 3)^T$, $\boldsymbol{\beta}_3 = (3, 4, a)^T$ 等价, 求

- (I) 常数 a;
- (Ⅱ)(*A*)由(*B*)的线性表示式.

(21) (本题满分11分)

设矩阵 $\mathbf{A} = \begin{pmatrix} 0 & -1 & 4 \\ -1 & 3 & a \\ 4 & a & 0 \end{pmatrix}$, 正交变换 $\mathbf{x} = \mathbf{Q}\mathbf{y}$ (其中 $\mathbf{x} = (x_1, x_2, x_3)^{\mathrm{T}}$, $\mathbf{y} = (y_1, y_2, y_3)^{\mathrm{T}}$),将二次 $f(x_1, x_2, x_3) = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}$ 化为标准形,其中正交矩阵 \mathbf{Q} 的第 1 列为 $\frac{1}{\sqrt{6}}(1, 2, 1)^{\mathrm{T}}$,求

- (I) 常数 a 及 f 的标准形;
- (II) A^* 能否正交相似对角化? 如果能写出使 $P^TA^*P = A$ 的正交矩阵 P 及对角矩阵 A; 如果不能,说明理由.

(22) (本题满分11分)

设二维随机变量(X, Y)的概率密度为

$$f(x, y) = \begin{cases} Ax^2y, & (x, y) \in G = \{(x, y) \mid -1 \le x \le 1, x^2 \le y \le 1\}, \\ 0, & \text{ 其他}, \end{cases}$$

求常数 A 及方差 D(2X+3Y).

(23) (本题满分11分)

设随机变量 X 的分布函数为

$$f(x; \alpha) = \begin{cases} 1 - \left(\frac{\alpha}{x}\right)^2, & x > \alpha > 0, \\ 0, & \text{ 其他.} \end{cases}$$

记 $Z = X^2$, Z_1 , Z_2 , … , Z_n 是来自总体 Z 的简单随机样本. 求未知参数 α 的最大似然估计量.

模拟试题(三)

		题,每小题 4 分,共 3 青将选项前的字母填在			日个选项中,	只有一	个
(1)	设函数 $f(x) = \lim_{x \to \infty} f(x)$	$\sqrt[n]{1 + x ^{3n}}$, $\iint f(x)$)在(-∞,	+ ∞)上			
	<i>n→∞</i> 处处可导.			有一个不可	导点.		
(C)	恰好有两个不可导	 异点.	(D) 至少 ⁷	有三个不可	导点.		
						[]
(2)	$i \exists F(x) = \int_0^{2x} \cos x$	(2x-t) dt,则 $F''(x)$)为				
(A)	$4\sin 4x$.		(B) -4si	n4x.			
(C)	$4\cos 4x$.		(D) -4cc	0.84x.			
]
(3)	方程 $\ln x = \frac{x}{e} - \frac{x}{e}$	$\int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \tan^{3} x} \mathrm{d}x \text{ 的正根}$	个数为				
(A)	0.	(B) 1.	(C) 2.		(D) 3.		
]
(4)	设二元函数 $f(z)$	(x, y) 在点 (x_0, y_0)	的某个邻均	或内具有 2	2 阶连续偏	导数,	且
	$(y_0) = f'_y(x_0, y_0) = 0$ E 正确的是	0. $i \exists A = f''_{xx}(x_0, y_0)$), $B = f''_{xy}$	$(x_0, y_0), C$	$C = f''_{yy}(x_0, y)$	y ₀),则	以
•	• •	>0 时, $f(x_0, y_0)$ 是相	汲小值.				
(B)	$\stackrel{\text{def}}{=} C > 0$, $AC - B^2$	$f > 0$ 时, $f(x_0, y_0)$ 是相	汲小值.				
(C)		$, f(x_0, y_0)$ 不是极值.					
		$f(x_0, y_0)$ 不是极值.					
, ,						[]
(5)	设 A 是 2 阶 知	矩阵, B 是 3 阶可	逆矩阵,	且 A	= 2, 则分	} 块 矩	阵
(0	$(2A)^*$	7 7. 4.					
$(3\mathbf{B})^{-1}$	$\begin{pmatrix} (2A)^* \\ O \end{pmatrix}$ 的逆矩	件月					
(A)	$\begin{pmatrix} 0 & \frac{1}{4}\mathbf{A} \\ 3\mathbf{B} & 0 \end{pmatrix}.$		$(B) \begin{pmatrix} 0 \\ \frac{1}{4} \mathbf{A} \end{pmatrix}$	$\begin{pmatrix} 3B \\ O \end{pmatrix}$.			
(C)	$\begin{pmatrix} o & \frac{1}{4}B \\ 3A & O \end{pmatrix}.$		(D) $\begin{pmatrix} 3B \\ O \end{pmatrix}$	$\left(\begin{array}{c} O \\ \frac{1}{4}A \end{array}\right)$.			

[]

(A) t = 6 时, r(P) = 1.

(B) t = 6 时, r(P) = 2.

(C) $t \neq 6$ 时, r(P) = 1.

(D) $t \neq 6$ 时, r(P) = 2.

(7) 已知 10 件产品中有 4 件一等品, 6 件二等品. 现从中任取两次, 每次取一件, 取 后不放回. 已知其中至少有1件是一等品,则两件都是一等品的概率 p 为

- $(A) \frac{1}{5}$.
- (B) $\frac{2}{5}$. (C) $\frac{3}{5}$.
- (D) $\frac{4}{5}$.

(8) 设随机变量序列 X_1 , X_2 , …, X_n , …相互独立且同服从参数为 $\lambda(\lambda>0)$ 的指数分 布, 即它们的概率密度同为 $f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0, \\ 0, & x \leq 0. \end{cases}$ 记 $\Phi(x)$ 为标准正态分布函数,则对任意 实数 x, 下列结论中正确的为

$$(A) \lim_{n \to \infty} P\left(\frac{\lambda \sum_{i=1}^{n} X_i - n}{\sqrt{n}} \leqslant x\right) = \Phi(x).$$

$$(B) \lim_{n \to \infty} P\left(\frac{\sum_{i=1}^{n} X_i - n}{\sqrt{n}} \leqslant x\right) = \Phi(x).$$

(C)
$$\lim_{n \to \infty} P\left(\frac{\lambda \sum_{i=1}^{n} X_i - n}{\sqrt{n}\lambda} \leqslant x\right) = \Phi(x).$$
 (D) $\lim_{n \to \infty} P\left(\frac{\sum_{i=1}^{n} X_i - n}{\sqrt{n}\lambda} \leqslant x\right) = \Phi(x).$

$$\left(\sum_{n\to\infty}^{n} \left(\frac{1}{\sqrt{n}}\right)^{-1} \leq x\right)^{-1} \left(\frac{x}{\sqrt{n}}\right).$$

二、填空题: 9~14 小题,每小题 4分,共 24分,请将答案写在答题纸指定位置上.

- (9) 极限 $\lim_{n\to\infty}\frac{1}{n}[(n+1)(n+2)\cdots(n+n)]^{\frac{1}{n}}$ ______.
- (10) 设函数 f(x) 连续,且满足 $f(x) = x + 2\int_{0}^{\frac{\pi}{2}} f(x) \cos x dx$,则定积分 $\int_{0}^{1} f(x) dx =$ _____
- (11) 设 $z=f(e^x, x^2+y^2)$, 其中二元函数f(u, v)可微, 且y=y(x)是由方程 $e^x+\sin y=y(x)$ x 确定的隐函数,则 $\frac{dz}{dz} =$ ______.
- (12) 二重积分 $\iint f(x,y) d\sigma$ (其中,D 是曲线 $y = x^2$ (≥ 0),直线 x + y = 2 以及 x 轴围成 的平面图形)在极坐标系下, 先r后 θ 的二次积分为
- (13) 设A, B 都是 4 阶矩阵, 它们相似, 且A 的特征值为 -2, 1, 1, 2, 则行列式 $\mid \boldsymbol{B}^* - \boldsymbol{E}_4 \mid = \underline{\hspace{1cm}}$
 - (14) 设随机变量 *X* 的概率密度为 $f(x) = \begin{cases} 2e^{-2x}, & x > 0, \\ 0, & x \le 0 \end{cases}$ Y 的概率分布为 $P(Y=0) = \frac{1}{3}$,

$$P(Y=1) = \frac{2}{3}, \quad \text{M} E(X^3 + 2Y^2) = \underline{\hspace{1cm}}.$$

三、解答题: 15~23 小题, 共94分. 请将解答写在答题纸指定位置上. 解答应写出文字说明、证明过程或演算步骤.

(15) (本题满分10分)

已知函数f(u)在点u=1处可导,f'(u)=1. 求极限

$$\lim_{x \to 0} \frac{f(\ln(1+x^2) + e^x - x) - f(1)}{\tan x \cdot (\sqrt{1+x} - 1)}.$$

(16) (本题满分10分)

求微分方程 $y'' + y = 5e^{2x} + 2\sin x$ 的通解.

(17) (本题满分10分)

设数列 $\{a_n\}$ 由递推式 $a_1=2$, $a_{n+1}=\frac{1}{3}\bigg(2a_n+\frac{1}{a_n^2}\bigg)(n=1\;,\;2\;,\;\cdots)$ 确定,求

- (I) 极限 $\lim_{n\to\infty}a_n(记为 a)$;
- (II) 幂级数 $\sum_{n=0}^{\infty} \frac{a_n}{2^n} x^n$ 的收敛域.

(18) (本题满分10分)

设函数 f(x) 在[0, 1]上可导,且 0 < f(x) < 1,以及 $f'(x) \neq 1$ (0 < x < 1),则存唯一的 $\xi \in (0, 1)$, 使得 $f(\xi) = \xi$.

(19) (本题满分10分)

(19) (本起满分 10 分)
设二元函数
$$f(x, y) = \begin{cases} x \ln x, & x + y \le 1, \ x \ge 0, \ y \ge 0, \\ \frac{1}{(x^2 + y^2)^{\frac{3}{2}}}, & 1 < x + y \le 2, \ x \ge 0, \ y \ge 0, \end{cases}$$

求二重积分 $\iint_{\Omega} f(x,y) d\sigma$, 其中 $D = \{(x, y) \mid x+y \leq 2, x \geq 0, y \geq 0\}.$

(20) (本题满分11分)

已知线性方程组(I) $\begin{cases} x_1 + x_2 - 2x_3 = 1, \\ x_1 - 2x_2 + x_3 = 2, 有两个不同的解, 且 <math>a$ 为系数矩阵的秩, 求其 $ax_1 + bx_2 + cx_3 = 0 \end{cases}$

通解及向量 $\boldsymbol{\xi} = (a, b, c)^{\mathrm{T}}$ 关于向量组 $\boldsymbol{\eta}_1 = (1, 0, -1)^{\mathrm{T}}, \boldsymbol{\eta}_2 = (-1, 1, 1)^{\mathrm{T}}, \boldsymbol{\eta}_3 = (1, 1, 0)^{\mathrm{T}}$ 的线性表示式.

(21) (本题满分11分)

已知 $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + cx_3^2 + 2x_1x_3 + 2x_2x_3 (c \ge 2)$ 与 $g(x_1, x_2, x_3) = x_1^2 - 2x_1x_2 + 4x_2^2 + x_3^2$ 中有且仅有一个是正定二次型,求常数 c,及由可逆线性变换将正定二次型化为的规范形,用正交变换将非正定二次型化为的标准形(需分别求出可逆线性变换与正交变换).

(22) (本题满分11分)

设有随机变量 X, Y, 其中 Y 的概率密度为 $f_Y(y) = \begin{cases} 5y^4, & 0 < y < 1, \\ 0, & \text{其他.} \end{cases}$

下,
$$X$$
的条件概率密度为 $f_{X \vdash Y}(x \vdash y) = \begin{cases} \frac{3x^2}{y^3}, & 0 < x < y, \\ 0, & 其他. \end{cases}$ 其他.

(23) (本题满分11分)

设总体 Z = XY, 其中随机变量 X, Y 相互独立, 且 X 的概率密度 $f_X(x)$

个简单随机样本的观察值, 求未知参数 λ 的最大似然估计值.

模拟试题(四)

一、选择题: 1~8 小题,每小题4分,共32分.每小题给出的四个选项中,只有一个 选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上.

(1) 设函数 g(x)满足 g(1) = 0, g'(1) = -1. 记

$$f(x) = \begin{cases} g(x)\sin\frac{\pi}{2x}, & x \neq 1, \\ 0, & x = 1, \end{cases}$$

则f'(1)为

(A) 0.

(B) 1.

(C) -1.

(D) 不存在.

Γ

]

1

1

(2) 函数 $f(x) = \lim_{n \to \infty} \frac{x^{n+1} - (x^2 - 1)\sin\pi x}{x^n + x^2 - 1}$ 的极大值与极小值分别为

(A) 1, -1. (B) -1, 1.

(C) 不存在, -1. (D) 1, 不存在.

(3) 设二元函数 $\varphi(x,y) = \int_{0}^{\frac{y^2}{x^2}} du \int_{0}^{u} \frac{1}{v^2} f\left(\frac{v}{v}\right) dv$ (其中 f 是连续函数),则 $\frac{\partial^{-2} \varphi}{\partial v^2}$ 为

(A) $\frac{1}{x^2} f\left(\frac{y}{x^2}\right)$.

(B) $\frac{1}{x^2} f\left(\frac{x^2}{x}\right)$.

(C) $\frac{1}{x^4} f\left(\frac{y}{x^2}\right)$.

(D) $\frac{1}{4}f\left(\frac{x^2}{x}\right)$.

(4) 设曲线 y = y(x) 在点 M(0, 1) 处的切线斜率为 $\frac{1}{2}$, 且 y(x) 满足微分方程 $yy'' + (y')^2$ =0,则 $\gamma(x)$ 为

(A) $\sqrt{1+x}$ ($x \ge -1$).

(B) $\sqrt{1+x} \ (x \ge 0)$.

(C) $y^2 = x + 1 \ (x \ge -1)$.

(D) $y^2 = x + 1 \ (x \ge 0)$.

(5) 设 A 是 n 阶矩阵, α 是 n 维非零列向量, 记 $B = \begin{pmatrix} A & \alpha \\ c^T & 0 \end{pmatrix}$, 且 r(A) = r(B), 则线

性方程组

(A) $Ax = \alpha$ 有无穷多解.

(B) $Ax = \alpha$ 有唯一解.

(C) By = 0 有非零解.

(D) By = 0 只有零解.

Γ

1

(6) 设矩阵
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
, 则下列矩阵中与 A 合同且相似的是

$$(A) \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}.$$

$$(B) \begin{pmatrix} -1 & 0 & 0 \\ 0 & \frac{3}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & \frac{3}{2} \end{pmatrix}.$$

(C)
$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & -2 & 1 \end{pmatrix}$$
. (D) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & -\frac{3}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & -\frac{3}{2} \end{pmatrix}$.

(7) 设随机变量 X 服从指数分布、它的概率密度为

$$f(x) = \begin{cases} 2e^{-2x}, & x > 0, \\ 0, & \text{ 其他,} \end{cases}$$

则随机变量 $Y = \max \left\{ X, X^2, \frac{1}{2} \right\}$ 的分布函数

(A) 是连续的.

(B) 只有一个间断点.

(C) 只有两个间断点.

(D) 多于两个间断点.

(8) 设 X_1 , X_2 , …, X_8 是来自总体 $X \sim N(0, \sigma^2)$ 的一个简单随机样本,则统计量 $\frac{(X_1 + X_2 + X_5 + X_6)^2}{(X_3 + X_4 - X_7 - X_8)^2}$ 服从

- (A) F(4, 2). (B) F(4, 4). (C) F(1, 1). (D) F(2, 4).

二、填空题:9~14 小题,每小题4分,共24分,请将答案写在答题纸指定位置上.

- (9) 设函数 f(x) 在点 x = 0 处二阶可导,且 $\lim_{x \to 0} \frac{[f(x) + 1]x^2}{x \sin x} = 2$,则曲线 y = f(x) 在点(0, f(0)) 处的切线方程为
- (10) 由拉格朗日中值定理知,对任意 $x \in (0, 1)$,对应地存在唯一的 $\xi(x) \in (0, x)$, 使得 $\arcsin x = \frac{x}{\sqrt{1-\xi^2(x)}}$,则极限 $\lim_{x\to 0^+} \frac{\xi(x)}{x} = \underline{\hspace{1cm}}$.

(11) 设函数
$$f(x) = \begin{cases} \cos x, & x \leq 1, \\ \ln x, & x > 1, \end{cases}$$
 则定积分 $\int_{-1}^{\pi} e^{2f(x)} \sin x dx = \underline{\qquad}$.

(12) 设二元函数
$$z=\sin(xy)+\varphi\left(x,\frac{x}{y}\right)$$
, 其中 $\varphi(u,v)$ 具有 2 阶偏导数,且满足 $\varphi''_{w}+$

- (13) 设 A 是 $m \times n$ 矩阵,且其列向量组线性无关;B 是 n 阶矩阵,满足 AB = A,则 $r(B^*) =$ _____.
- 三、解答题: 15~23 小题, 共94分. 请将解答写在答题纸指定位置上. 解答应写出文字说明、证明过程或演算步骤.
 - (15) (本题满分10分)

求不定积分 $\int f(x) dx$, 其中函数 f(x) = |x+1| + 2x.

(16) (本题满分10分)

设函数 $f(t) = \begin{cases} 2t^2 + \sin t, & t < 0, \\ y(t), & t \ge 0, \end{cases}$ 其中 y = y(t) 是微分方程 $\frac{\mathrm{d}y}{\mathrm{d}t} + 2y = \mathrm{e}^{-t}$ 满足 y(0) = 0 的解. 求 f''(t).

(17) (本题满分10分)

设 f(x) 是连续函数,且满足 $\int_0^x f(x-t) dt = \sin x \cdot f(x)$,以及 $f\left(\frac{\pi}{2}\right) = 2$. 求 f(x) 在 $\left[\frac{\pi}{3}, \frac{\pi}{2}\right]$ 上的平均值.

(18) (本题满分10分)

求二元函数 $f(x, y) = x^2 + 2y^2 - x^2y^2$ 在闭区域 $D = \{(x, y) \mid x^2 + y^2 \le 1, x \ge \frac{1}{2}, y \ge 0\}$ 上的最大值与最小值.

(19) (本题满分10分)

设二元函数 u=u(x,y) 具有 2 阶连续偏导数,且满足 $u''_{xx}=u''_{yy}$,u(x,2x)=x, $u'_x(x,2x)=x^2$. 又设 D 是由半圆 $x^2+z^2=1(z\geq 0)$,曲线 $z=u''_{xx}(x,2x)$, $z=u''_{xy}(x,2x)$ 围成的平面图形,求 D 的面积.

(20) (本题满分11分)

设向量 $\boldsymbol{\alpha} = (1, 2, 1)^{\mathrm{T}}, \boldsymbol{\beta} = \left(1, \frac{1}{2}, 0\right)^{\mathrm{T}}, \boldsymbol{\gamma} = (0, 0, 8)^{\mathrm{T}}.$ 记 $\boldsymbol{A} = \boldsymbol{\alpha}\boldsymbol{\beta}^{\mathrm{T}}, b = \boldsymbol{\beta}^{\mathrm{T}}\boldsymbol{\alpha}, \bar{x}$ 线性方程组 $2b^2\boldsymbol{A}^2\boldsymbol{x} = \boldsymbol{A}^4\boldsymbol{x} + b^4\boldsymbol{x} + \boldsymbol{\gamma}$ 的通解.

(21) (本题满分11分)

设实对称矩阵 $\mathbf{A} = \begin{pmatrix} 0 & -1 & 4 \\ -1 & 3 & -1 \\ 4 & -1 & 0 \end{pmatrix}$,求使二次型 $f_1(x_1, x_2, x_3) = \mathbf{x}^T \mathbf{A} \mathbf{x} = f_2(x_1, x_2, x_3)$

 $(x_3) = x^T A^* x$ (其中 $x = (x_1, x_2, x_3)^T$)都化为标准形的正交变换 x = Qy(其中 $y = (y_1, y_2, y_3)^T$, Q 是正交矩阵),并写出它们的标准形.

(22) (本题满分11分)

设随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{1}{3}, & -2 < x < 1, \\ 0, &$ 其他.

- (I) 随机变量 $Y = X^2$ 的概率密度 $\varphi(y)$;
- (\mathbb{I}) 求 $E(\mid Y X^4 \mid)$.

(23) (本题满分11分)

设 X_1 , X_2 , …, X_n 是来自总体 X 的简单随机样本, 其中 X 的概率密度为 $f(x;\theta)$ $= \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, & x > 0, \\ 0, & \text{其他}, \end{cases}$ 分布.

模拟试题(五)

- 一、选择题: 1~8 小题,每小题4分,共32分.每小题给出的四个选项中,只有一个 选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上.
 - (1) 设函数 f(x) 可导,
 - (A) 若 f(x) 只有一个零点,则 f'(x) 至少有两个零点.
 - (B) 若f'(x)只有一个零点,则f(x)至少有两个零点.
 - (C) 若 f(x) 没有零点,则 f'(x) 至少有一个零点.
 - (D) 若 f'(x) 没有零点,则 f(x) 至多有一个零点.
 - (2) 对于定积分 $I_1 = \int_0^{\frac{\pi}{2}} \sin(\sin x) dx$, $I_2 = \int_0^{\frac{\pi}{2}} \sin(\cos x) dx$, $I_3 = \int_0^{\frac{\pi}{2}} \cos(\sin x) dx$ 有
 - (A) $I_1 < I_2$.
- (B) $I_1 < I_3$.
- (C) $I_2 < I_2$.

]

- (3) 设二元函数 $f(x, y) = \begin{cases} \frac{x^3y xy^3}{x^2 + y^2}, & (x, y) \neq (0, 0), \\ 0, & (x, y) = (0, 0), \end{cases}$
- (A) $f''_{xx}(0, 0) = f''_{xx}(0, 0)$.
- (B) $f''_{xy}(0, 0) > f''_{yx}(0, 0)$.
- $(C) f''_{xx}(0, 0) < f''_{xx}(0, 0).$
- (D) $f_{xy}''(0, 0)$ 与 $f_{yx}''(0, 0)$ 中至少有一个不存在.

(4) 设二元函数 f(x, y) 连续,记二次积分 $\int_0^1 \mathrm{d}y \int_{1-t}^1 f(x,y) \,\mathrm{d}x + \int_1^2 \mathrm{d}x \int_{1-t}^1 f(x,y) \,\mathrm{d}y$ 对应 的二重积分的积分区域为 D, 则 D 的边界上与直线 $\gamma = x - 1$ 平行的切线方程为

(A)
$$y = x - \frac{3}{4}$$
. (B) $y = x + \frac{3}{4}$. (C) $y = x - \frac{1}{2}$. (D) $y = x + \frac{1}{2}$.

(5) 设向量组 $\boldsymbol{\alpha}_1 = (1, 2, 3, 3)^T$, $\boldsymbol{\alpha}_2 = (-1, -4, 1, 1)^T$, $\boldsymbol{\alpha}_3 = (3, 5, 4, t+2)^T$, $\alpha_4 = (-2, -8, 2, t)^T$ 有以下结论:

- ①t = 2 时, α_1 , α_2 , α_3 , α_4 线性相关. ②t = 2 时, α_1 , α_2 , α_3 , α_4 线性无关.
- ③t = 3 时, α_1 , α_2 , α_3 , α_4 线性相关. ④t = 3 时, α_1 , α_2 , α_3 , α_4 线性无关. 则正确结论为

(A) ①3.

(B) (2)(3).

(C) (1)(4).

(D) (2)(4).

]

(6) 设3 阶矩阵
$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 \\ a & 1 & b \\ 1 & 0 & 0 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} 0 & 0 & 1 \\ a & 1 & -b-1 \\ 0 & 0 & 0 \end{pmatrix}$ 都可相似对角化,则

(A)
$$a = \frac{1}{2}$$
, $b = -\frac{1}{2}$.

(B)
$$a = b = \frac{1}{2}$$
.

(C)
$$a = -\frac{1}{2}$$
, $b = \frac{1}{2}$.

(D)
$$a = b = -\frac{1}{2}$$
.

(7) 设连续型随机变量 X, Y满足 $P(X \ge 0, Y \ge 0) = \frac{3}{7}$, $P(X \ge 0) = P(Y \ge 0) = \frac{4}{7}$, 则 $P(\max\{X, Y\} \cdot X \ge 0)$ 为

(A)
$$\frac{6}{7}$$
.

(B)
$$\frac{4}{7}$$
.

(C)
$$\frac{3}{7}$$
.

(D)
$$\frac{2}{7}$$
.

7

(8) 设总体 $X \sim N(0, \sigma^2)$, X_1 , X_2 , …, X_9 是来自 X 的简单随机样本, 它的均值记为 \overline{X} , 则使得 $P(1 < \overline{X} < 3)$ 为最大的 σ 值是

$$(A) \frac{2}{\sqrt{\ln 3}}.$$

(B)
$$\frac{4}{\sqrt{\ln 3}}$$

(C)
$$\frac{6}{\sqrt{\ln 3}}$$
.

(A)
$$\frac{2}{\sqrt{\ln 3}}$$
 (B) $\frac{4}{\sqrt{\ln 3}}$ (C) $\frac{6}{\sqrt{\ln 3}}$ (D) $\frac{8}{\sqrt{\ln 3}}$

二、填空题: 9~14 小题,每小题 4分,共 24分,请将答案写在答题纸指定位置上.

- (9) 曲线 $y = \frac{x^3}{(x-1)^2} + x^2(e^{\frac{1}{x}} 1)$ 的非铅直渐近线方程为______.
- (10) 设函数 $f(x) = (\sin x^3)^3 + \ln \cos x$,则 $f^{(4)}(0) =$
- (11) 定积分 $\int_{-1}^{1} (|x| e^{-x} + \sin x^3 + \sqrt{1 x^2}) dx = \underline{\hspace{1cm}}$

(12) 设二重积分
$$\iint_D (x + 4y + xy) d\sigma = \frac{\pi}{8} (其中, D = \{(x, y) \mid x^2 + y^2 \leq ax\}, a > 0),$$

则常数 a =

(13) 设A 是 3 阶矩阵, α_1 , α_2 , α_3 是 3 维线性无关列向量组,已知

$$A\alpha_1 = \alpha_2 + \alpha_3$$
, $A\alpha_2 = \alpha_1 + \alpha_3$, $A\alpha_3 = \alpha_1 + \alpha_2$,

则 A 的最大特征值为

(14) 已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱 中仅有3件合格品. 从甲箱中任取3件放入乙箱后,从乙箱中任取3件,则其中的次品数的

平均值为_____.

三、解答题: 15~23 小题, 共94分. 请将解答写在答题纸指定位置上. 解答应写出文字说明、证明过程或演算步骤.

(15) (本题满分10分)

求极限
$$\lim_{x\to 0} \left(\frac{2\cos x + x}{2\sqrt{1+x}}\right)^{\frac{1}{x^2}}$$
.

(16) (本题满分10分)

设函数 f(x)满足 $e^x f(x) + 2e^{\pi - x} f(\pi - x) = 3\sin x$, 求 f(x)(x > 0)的极值.

(17) (本题满分10分)

设二元函数 f(u, v) 在点(1, 1) 处可微,且 f(1, 1) = 1, $f_{u}'(1, 1) = 2$, $f_{v}'(1, 1) = 3$,以及 $\varphi(x) = f(x, f(x, x))$ 是单调函数,求 $\frac{\mathrm{d}}{\mathrm{d}x} \int_{0}^{\varphi(x)} \varphi^{-1}(t) \, \mathrm{d}t \, \Big|_{x=1}$ (其中 φ^{-1} 是 φ 的反函数).

(18) (本题满分10分)

设幂级数 $\sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n \cdot (2n+1)!} x^{2n+1}$ 的和函数为 s(x) ,求反常积分 $\int_0^{+\infty} \mathrm{e}^{-x} s^2(x) \, \mathrm{d}x$.

(19) (本题满分10分)

设函数 f(u) 在[1, + ∞)上具有 2 阶连续偏导数,且 f(1) = 0, f'(1) = 1. 又设函数 $z = (x^2 + y^2) f(x^2 + y^2)$ 满足 $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$. 求

(I) f(u)的表达式;

(II) 二重积分
$$\iint_{D} \frac{\sqrt{x^2+y^2}f(x^2+y^2)}{\ln(x^2+y^2)} d\sigma$$
, 其中 $D \neq D_1 = \{(x, y) \mid x^2+y^2 \ge 1\}$ 与 $D_2 = \{(x, y) \mid (x-1)^2 + y^2 \le 1\}$ 的公共部分.

(20) (本题满分11分)

设矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 5 \\ -1 & 0 & a - 3 \end{pmatrix}$$
 有零特征值,且存在矩阵 $\mathbf{B} = \begin{pmatrix} 2 & 2 & 3 \\ 3 & 4 & 8 \\ b + 1 & c - 2 & - 3 \end{pmatrix}$,使得矩

阵方程 AX = B 有解, 求常数 a, b, c 及该矩阵方程的所有解.

(21) (本题满分11分)

设向量 $\boldsymbol{\beta} = (1, 1, -2)^{T}$ 可由向量组 $\boldsymbol{\alpha}_{1} = (1, 1, a)^{T}$, $\boldsymbol{\alpha}_{2} = (1, a, 1)^{T}$, $\boldsymbol{\alpha}_{3} = (a, 1, 1)^{T}$ 线性表示,但表示式不是唯一的.

- (I) 求常数 a 及线性表示式的一般形式;
- (II) 对矩阵 $A = (\alpha_1, \alpha_2, \alpha_3)$ 及上述算得 a, 求正交变换 x = Qy(其中 $x = (x_1, x_2, x_3)^T$, $y = (y_1, y_2, y_3)^T$, Q 是正交矩阵),使得二次型 $f(x_1, x_2, x_3) = x^T Ax$ 化为标准形,并求此标准形.

(22) (本题满分11分)

设二维随机变量(X, Y)的概率密度为

$$f(x, y) = \begin{cases} \frac{3}{2}x, & 0 < x < 1, 0 < y < 2x, \\ 0, & \text{ 其他,} \end{cases}$$

记 Z = 2X - Y, 求 DZ 和 Z 的概率密度 $f_z(z)$.

(23) (本题满分11分)

设总体 $Z = X^2 + Y$, 其中 $X \sim N(0, \sigma^2)$, Y 的概率分布为 $P = \frac{1}{3} = \frac{2}{3}$

又设 Z_1 , Z_2 , … , Z_n 是来自总体 Z 的简单随机样本 , 求未知参数 σ^2 的矩估计量.

模拟试题(六)

	一、选择题: 1~8	8 小题,每小题4分,	共32分.每小题给出	出的四个选项中	,只有-	一个
选工	顶是符合题目要求的	的,请将选项前的字母	填在答题纸指定位置	上.		
	(1) 方程 2 ^x - x ² -	1=0的不同实根个数	文 为			
	(A) 1.	(B) 2.	(C) 3.	(D) 4.		
					[]
	(2) 设 $M = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{s}{1}$	$\frac{\ln x}{+x^2}\cos^2 x dx, N = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$	$(\sin^3 x + \cos^4 x) \mathrm{d}x, P$	$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x^2 \sin^3 x)$	$-\cos^7 x$	dx
则1	它们的大小次序为					
	(A) $M < N < P$.	(B) $N < M < P$.	(C) $P < M < N$.	(D) $P < N <$: M.	
]
	(3) 收敛半径 R =	1 是幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 不	生点 x = -1 处条件收敛	效的		
	(A) 充分而非必要	要条件.	(B) 必要而非充分	条件.		
	(C) 充分必要条件	‡.	(D) 既非必要又非	充分条件.		
]
	(4) 微分方程 y"+	- y = 2sin x 应有的特解	军形式为			
	(A) $a\cos x + b\sin$	<i>x</i> .	(B) $x(a\cos x + b\sin x)$	n x).		
	(C) $ax\cos x$.		(D) $bx\sin x$.			
					[]
	(5) 设 A 是 n 阶 ī	可逆矩阵, α 是 A 的 δ	对应特征值 λ 的特征	向量,且存在 n	阶可逆矩	矩阵
P ,	使得 $P^{-1}AP = B$,	则				
	(A) B ⁻¹ 有特征值	$\left(\frac{1}{\lambda}$ 及对应的特征向量	$P^{-1}\alpha$.			
	(B) B -1有特征值	$\frac{1}{\lambda}$ 及对应的特征向量	Ρα.			
	(C) B -1有特征值	λ 及对应的特征向量	$(\mathbf{P}^{-1}\boldsymbol{\alpha}.$			
	(D) B -1有特征值	[λ及对应的特征向量	. Ρα.			
					ſ	1

(6) 设n维向量组(I): $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, …, $\boldsymbol{\alpha}_m$ 和(II): $\boldsymbol{\beta}_1$, $\boldsymbol{\beta}_2$, …, $\boldsymbol{\beta}_m$ ($m \leq n$), 记矩阵

 $\pmb{A} = (\pmb{\alpha}_1, \pmb{\alpha}_2, \ \cdots, \ \pmb{\alpha}_m)$ 和 $\pmb{B} = (\pmb{\beta}_1, \ \pmb{\beta}_2, \ \cdots, \ \pmb{\beta}_m)$,则下列命题不正确的是

- (A) 当(I)与(I)等价时.(I)与(I)等秩.
- (B) 当(I)与(I)等秩时,(I)与(I)等价.
- (C) 当A与B等价时, A与B等秩.
- (D) 当A与B等秩时, A与B等价.

]

- Y)的分布函数为 F(x, y),则 F(1, 4)等于
 - (A) $\frac{1}{4}$. (B) $\frac{1}{2}$. (C) $\frac{3}{4}$.
- (D) 1.

- (8) 设 X_1 , X_2 , …, X_n 是来自总体 $X \sim N(0, \sigma^2)$ 的简单随机样本, 则统计量 Y = $\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}\right)^{2}$ 的数学期望为
 - $(A)\frac{4}{n}\sigma^4$.

(B) $\frac{2}{n}\sigma^4$.

(C) $\frac{1+n}{n}\sigma^4$.

 $(D)^{\frac{2+n}{2}}\sigma^4$.

1

- 二、填空题: 9~14 小题,每小题 4分,共 24分,请将答案写在答题纸指定位置上.
- (9) 设函数 $f(x) = \begin{cases} (e^x + \sin x)^{\frac{1}{x}}, & x > 0, \\ a, & x \leq 0 \end{cases}$ 连续,则常数 a =_____.
- (10) 设二元函数f(u, v)可微,则 $\frac{\partial}{\partial x}f\left(e^{xy}, \cos\frac{1}{x}\right) = \underline{\qquad}$
- (11) 级数 $\sum_{n=1}^{\infty} \left[\frac{1}{n(n+1)} + (-1)^{\cos \frac{n\pi}{2}} \frac{1}{2^n} \right]$ 的和为______.
- (12) 设某商品的收益函数为 R(p), 收益弹性为 $1+p+p\ln p$ (其中 p 是价格), 且R(1)=1,则 R(p)=____
 - (13) 设4阶矩阵

$$A = \begin{pmatrix} 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix},$$

则 $A^* =$.

- (14) 某人向同一目标独立重复射击,每次射击命中目标的概率为 p(0 ,记 <math>A 为 "此人第 4 次射击恰好第 2 次命中目标"这一事件,又记 X 为服从参数为 P(A) 的 0-1 分布的随机变量,则 $E(X^2)$ =
- 三、解答题: 15~23 小题, 共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.

(15)(本题满分10分)

求不定积分
$$\int \frac{1 + \sin x}{1 + \cos x} \cdot e^x dx$$
.

(16)(本题满分10分)

已知 $f_n(x)$ 满足 $f'_n(x) = f_n(x) + \frac{1}{(n-1)!} x^{n-1} e^x$,且 $f_n(1) = \frac{e}{n!}$,记 $s(x) = \sum_{n=1}^{\infty} f_n(x)$,求s(x)的表达式并画出函数y = s(x)的简图.

(17) (本题满分10分)

求二元函数 $f(x, y) = 2x^2 + y^2 - 2x^2y^2$ 在闭区域 $D = \{(x, y) \mid x^2 + 2y^2 \le 1, y \ge 0\}$ 上的最大值与最小值.

(18) (本题满分10分)

设函数 $f(x, y) = \begin{cases} xy, & (x, y) \in D_1, \\ 1-x-y, & (x, y) \in D_2, \end{cases}$ 其中 D_1 , D_2 是 $\triangle OAB$ 被曲线 xy+x+y=1

划分成的两部分(见图 6-18),求二重积分 $\iint_{\triangle OAB} f(x,y) d\sigma$.

图 6-18

(19) (本题满分10分)

设函数 f(x) 在 [a, b] 上连续,在 (a, b) 内 2 阶可导,且 $f'_+(a) > 0$,f(b) = 0. 此外存在 $c \in (a, b)$,使得 f(c) = 0,f'(c) < 0. 证明:存在 $\xi \in (a, b)$,使得 $f''(\xi) = 0$.

(20) (本题满分11分)

设向量组 $\boldsymbol{\alpha}_1 = (1, 0, a)^T$, $\boldsymbol{\alpha}_2 = (0, 1, 1)^T$, $\boldsymbol{\alpha}_3 = (b, 3, 5)^T$ 不能由向量组 $\boldsymbol{\beta}_1 = (1, 1, 1)^T$, $\boldsymbol{\beta}_2 = (1, 2, 3)^T$, $\boldsymbol{\beta}_3 = (3, 4, b)^T$ 线性表示,但 $\boldsymbol{\beta}_1$, $\boldsymbol{\beta}_2$, $\boldsymbol{\beta}_3$ 可由向量组 $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2$, $\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3$ 线性表示,求常数 a, b.

(21) (本题满分11分)

设二次型 $f(x_1, x_2, x_3) = \mathbf{x}^T \mathbf{A} \mathbf{x}$ (其中 \mathbf{A} 是 3 阶实对称矩阵, $\mathbf{x} = (x_1, x_2, x_3)^T$) 在正交变换 $\mathbf{x} = \mathbf{Q} \mathbf{y}$ (其中 $\mathbf{y} = (y_1, y_2, y_3)^T$ 以及 \mathbf{Q} 是正交矩阵) 下的标准形为 $y_1^2 + y_2^2 - y_3^2$,且 \mathbf{Q} 的第 3 列为 $\left(\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}\right)^T$,求 \mathbf{A} 的伴随矩阵 \mathbf{A}^* .

(22) (本题满分11分)

设二维随机变量(X, Y)的概率密度为

$$f(x, y) = \begin{cases} \frac{1}{4} (1 - x^3 y - x y^3), & |x| < 1, & |y| < 1, \\ 0, & \text{ 其他}. \end{cases}$$

- (I) 求随机变量 $Z = X^2$ 的概率密度 $f_z(z)$;
- (Ⅱ) 求随机变量 $W = (X Y)^2$ 的数学期望.

(23) (本题满分11分)

设总体 X 的概率密度为 $f(x) = \begin{cases} \sqrt{\theta} x^{\sqrt{\theta}-1}, \ 0 < x < 1, \\ 0, & \text{其中 } \theta > 0 \ \text{是未知参数}, \ x_1, \ x_2, \ \cdots, \end{cases}$

 x_n 是来自总体 X 的一个简单随机样本的观察值,求 θ 的矩估计值与最大似然估计值.

模拟试题(七)

一、选择题: 1~8 小题,每小题4分,共32分.每小题给出的四个选项中,只有一个选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上.

7

7

]

- (1) 设函数 $f(x) = (x-2) \mid x(x-2) \mid$, 则
- (A) f(x)在点 x = 0, 2 处都不可导.
- (B) f(x)在点 x = 0, 2 处都可导.
- (C) f(x) 在点 x=0 处可导,而在点 x=2 处不可导.
- (D) f(x) 在点 x=0 处不可导, 而在点 x=2 处可导.
- (2) 下列等式中不正确的是

(A)
$$\int_0^1 x^2 dx = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \left(\frac{i}{n}\right)^2$$
. (B) $\int_0^1 x^2 dx = \lim_{n \to \infty} \frac{1}{2n} \sum_{i=1}^{2n} \left(\frac{i}{2n}\right)^2$.

(C)
$$\int_0^1 x^2 dx = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \left(\frac{2i-1}{2n} \right)^2$$
. (D) $\int_0^1 x^2 dx = \lim_{n \to \infty} \frac{1}{3n} \sum_{i=1}^n \left(\frac{3i-1}{3n} \right)^2$.

- (3) 设二元函数 $f(x, y) = \begin{cases} \frac{(x+y)^3}{x^2+y^2}, & x^2+y^2 \neq 0, \\ 0, & x=y=0, \end{cases}$
- (A) f(x, y)在点(0, 0)处不连续。
- (B) f(x, y)在点(0, 0)处的两个偏导数都为零.
- (C) f(x, y)在点(0, 0)处的两个偏导数存在但都不为零.
- (D) f(x, y) 在点(0, 0)处可微.

是

(4) 设 $\{a_n\}$ 是单调减少收敛于零的正项数列,则当级数 $\sum_{n=1}^{\infty} a_n$ 发散时,下列结论正确的

- (A) 级数 $\sum_{n=1}^{\infty} a_{2n-1}$ 收敛,而级数 $\sum_{n=1}^{\infty} a_{2n}$ 发散.
- (B) 级数 $\sum_{n=1}^{\infty} a_{2n-1}$ 发散,而级数 $\sum_{n=1}^{\infty} a_{2n}$ 收敛.
- (C) 级数 $\sum_{n=1}^{\infty} (a_{2n-1} + a_{2n})$ 收敛.

Γ 1

- (5) 设向量组 α , β , γ 线性无关, 向量组 α , β , δ 线性相关, 则
- (A) α 不可由 β , γ , δ 线性表示.
- (B) **δ** 可由 **α**, **β**, **γ**线性表示.
- (C) β 不可由 α , γ , δ 线性表示. (D) δ 不可由 α , β , γ 线性表示.

1

- (6) 设A 是n 阶矩阵且有以下命题:
- ① $A \neq n$ 个不同的特征值:
- ② $A \neq n$ 个线性无关的特征向量:
- ③ *A* 是实对称矩阵;
- ④ A 的每个 n_i 重特征值 λ_i 的特征矩阵 $\lambda_i E_n A$ 都满足 $r(\lambda_i E_n A) = n n_i$, 则A可相似对角化的充分必要条件有两类。它们是
 - (A) (1)(2).
- (B) (2)(3).
- (C) 24.
- (D) (1)(4).

1

- (7) 下列命题不正确的是
- (A) 设二维随机变量(X, Y) 在矩形区域 $\{(x, y) \mid a \leq x \leq b, c \leq y \leq d\}$ 上服从均匀分
 - (B) 设二维随机变量(X, Y)的概率密度

$$f(x, y) = \begin{cases} abe^{-(ax+by)}, & x > 0, y > 0, \\ 0, & \text{ide} \end{cases}$$
(其中 a, b 都是正数),

则 X 与 Y 相互独立.

- (C) 设二维随机变量(X, Y)在圆域 $\{(x, y) \mid x^2 + y^2 \le R^2\}$ 上服从均匀分布(其中 R 是 正数),则X与Y相互独立.
- (D) 设 X_1, X_2, X_3, X_4 是来自同一总体的简单随机样本,则随机变量 $X = f_1(X_1, X_2)$ 与 $Y = f_2(X_3, X_4)$ (其中 f_1, f_2 都是连续函数)相互独立.

1

- (8) 设随机变量 $t \sim t(n)$, 对 $\alpha \in (0, 1)$, $t_{\alpha}(n)$ 为满足 $P(t > t_{\alpha}(n)) = \alpha$ 的实数,则满 足P(| t | ≤b) = α的b等于
 - (A) $t_{\frac{\alpha}{2}}(n)$. (B) $t_{1-\frac{\alpha}{2}}(n)$. (C) $t_{\frac{1-\alpha}{2}}(n)$. (D) $t_{\frac{1+\alpha}{2}}(n)$.

]

- 二、填空题:9~14 小题,每小题4分,共24分,请将答案写在答题纸指定位置上.
- (9) 函数 y = y(x) 由微分方程 $x^2y' + y + x^2e^{\frac{1}{x}} = 0$ 及 y(1) = 0 确定,则曲线 y = y(x) 的非

铅直渐近线方程为_____.

(10) 设
$$a$$
 是常数,则 $I = \int_0^{+\infty} \frac{1}{(1+x^a)(1+x^2)} dx =$ _____.

(11) 设二元函数 f(x, y) 在点(0, 0) 处可微, 且

$$f'_{x}(0,0) = 1, f'_{y}(0,0) = -1,$$

则极限 $\lim_{t\to 0} \frac{f(2t, 0) + f(0, \sin t) - 2f(t, t)}{t} = \underline{\hspace{1cm}}.$

(12) 函数 $f(x) = xe^{x+1} + \frac{1}{2}$ 在(- ∞ , + ∞)上的零点个数为_____.

(13) 已知 3 阶矩阵 $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}$, 记它的伴随矩阵为 A^* , 则行列式

$$\left| \left(\frac{1}{2} A^2 \right)^{-1} - 3A^* \right| = \underline{\qquad}.$$

(14) 设 X 是离散型随机变量, 其分布函数为

$$F(x) = \begin{cases} 0, & x < 0, \\ \frac{1}{4}, & 0 \le x < 1, \\ \frac{1}{2}, & 1 \le x < 2, \\ 1, & x \ge 2. \end{cases}$$

又设 Y 是连续型随机变量,其概率密度为 $\varphi(t)=\begin{cases} \mathrm{e}^{-t},\ t>0,\\ 0,\ \mathrm{jtd}. \end{cases}$ 记 a=P(X=1),则概率 $P(Y\geqslant a)=$

三、解答题: 15~23 小题, 共94分. 请将解答写在答题纸指定位置上. 解答应写出文字说明、证明过程或演算步骤.

(15)(本题满分10分)

求极限 $\lim_{x\to 0} (e^x + \sin x)^{\frac{\sin x}{\ln(1+x^2)}}$

(16)(本题满分10分)

设 $D=\{(x,y)\mid 0\leq x\leq 2,\ \sqrt{2x-x^2}\leq y\leq \sqrt{4-x^2}\}$,分别求 D 绕 x 轴和 y 轴旋转一周 而成的旋转体体积 V_x 和 V_y .

(17) (本题满分10分)

计算二次积分
$$\int_0^1 \mathrm{d}y \int_y^1 \frac{\sin x}{x} \mathrm{d}x + \int_1^{\sqrt{2}} \mathrm{d}r \int_0^{\arccos \frac{1}{r}} r \sin^2 \theta \mathrm{d}\theta.$$

(18) (本题满分10分)

求微分方程 $y'' + 2y' + y = e^{-x} + \sin 2x \cos x$ 的通解.

(19) (本题满分10分)

求幂级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n(2n-1)} x^{2n}$ 的收敛域与和函数.

(20) (本题满分11分)

设方程组 $Ax = \beta$ 有解 $(1, 2, 2, 1)^T$ 和 $(1, -2, 4, 0)^T$,其中矩阵 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 的秩为 3,且 α_1 , α_2 , α_3 , α_4 , β 都是 4 维列向量,求方程组 $By = \alpha_1 + 2\alpha_2$ 的通解,其中矩阵 $B = (\alpha_3, \alpha_2, \alpha_1, \beta - \alpha_4)$.

(21) (本题满分11分)

设
$$f(x_1, x_2, x_3) = \mathbf{x}^T \mathbf{A} \mathbf{x}$$
, 其中 $\mathbf{x} = (x_1, x_2, x_3)^T$, $\mathbf{A} = \begin{pmatrix} 1 & 2b & 0 \\ 0 & a & 1 \\ 2 & 1 & 1 \end{pmatrix}$. 求二次型 $f(x_1, x_2, x_3)^T$

 $(x_3) = x^T B x$ (其中 (x_1, x_2, x_3) 的矩阵 (x_1, x_2, x_3) 的矩阵 (x_1, x_2, x_3) 的重及可逆线性变换 (x_1, x_2, x_3) 化为规范形.

(22) (本题满分11分)

设二维随机变量(X, Y)的概率密度为 $f(x, y) = \begin{cases} e^{-y}, & 0 < x < y, \\ 0, & \text{其他}. \end{cases}$

- (I) 求关于 X 与 Y 的边缘概率密度;
- (Ⅱ) 求概率 $P(Y \ge EX)$ 和条件概率 $P(X > 2 \mid Y < 4)$.

(23) (本题满分 11 分) 设总体 *X* 的概率分布为

X	0	1	2	3	$(0 < \theta < \frac{1}{2})$
P	θ^2	$2\theta(1-\theta)$	θ^2	$1-2\theta$	$(0 < \theta < \frac{1}{2}).$

- (I) 试用总体 X 的简单随机样本值 3, 1, 3, 0, 3, 1, 2, 3, 求 θ 的矩估计值 $\stackrel{\wedge}{\theta}$.
- (II) 设 X_1 , X_2 , …, X_n 是来自 X(其未知参数 θ 为(I)中确定的 $\overset{\wedge}{\theta}$)的简单随机样本,则由中心极限定理知,当 n 充分大时取值为 2 的样本个数 Y 近似地服从正态分布 $N(\mu,\sigma^2)$,求它的两个参数 μ,σ^2 .

模拟试题(八)

一、选择题: 1~8 小题,每小题4分,共32分.每小题给出的四个选项中,只有一个

(A) 0.		(B) 1.		(C) 2.		(D) 3.		
]
(2) 设	$F(x) = \int_0^x \mathbf{m}$	$\operatorname{ax} \left\{ \operatorname{e}^{-t}, \operatorname{e}^{t} \right\} \mathrm{d}t$, 则					
(A) F($x) = \begin{cases} 1 - e^{-x} \\ e^{x} - 1 \end{cases}$	x^{x} , $x < 0$, $x \ge 0$.		(B) $F(x)$	$ = \begin{cases} e^{-x} - 1 \\ e^x - 1 \end{cases} $	$x < 0,$ $x \ge 0.$		
	$x) = \begin{cases} 1 - e^{-x} \\ 1 - e^{x} \end{cases}$				$ = \begin{cases} e^{-x} - 1 \\ 1 - e^{x} \end{cases} $			
	(1-e	, x = 0.			(1-6	$, x \geq 0.$	ſ]
(3) 已经	和幂级数 $\sum_{n=1}^{\infty}$	$(-1)^{n-1}\frac{1}{n}$	$(x-a)^n$	在 x > 0 时	发散,在点	(x=0 处收敛	女,则	
(A) a =	:1.			(B) $a = -$	-1.			
(C) -1	$\leq a < 1$.			(D) -1	< a ≤ 1.			
							[]
(4) 设	$y_1 = e^x - e^{-x} s$	$\sin x, \ y_2 = e^x$	$+e^{-x}\cos x$	κ 是 2 阶常	了系数非齐德	欠线性微分方	ī程 y" +	<i>py'</i> +
qy = f(x)的两	两个解,则 f((x)为						
$(A) e^{5x}$	•	(B) e^{3x} .		(C) e ^x .		(D) e^{-x} .		
]
(5) 设	A , B 都是 n	阶实矩阵,	且齐次线	性方程组	Ax = 0 = 1	8x = 0 有相同	引的基础	比解系
$\boldsymbol{\xi}_1$, $\boldsymbol{\xi}_2$,则为	5程组①(A →	-B) $x = 0$, (2)	$(\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{x}=0$, ③ B *x=	=0 以及④	$\binom{A}{B}x = 0 + \sqrt{3}$	马以 姜 1,	ξ 2 为
基础解系的是	己							
(A) ①	2.	(B) 24.		(C) 34).	(D) ①3.		
]
(6) 矩队		$ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}^{3} \begin{pmatrix} 1 & 0 \\ 0 & 4 \\ 0 & 0 \end{pmatrix} $	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}$	0 \	か特征値 対	Ы		
	(0 0	1) (0 0	J/(U I	<i>U</i>				

^{————·} (12)设某产品的需求函数为 Q=Q(P),其对价格 P 的弹性 $arepsilon_P=0.2$,则当需求量为

100 000件时, 价格增加 1 元会使产品收益增加 元.

(13) 设 A, B 分别为 2 阶与 4 阶矩阵, 且 r(A) = 1, r(B) = 2, A^* , B^* 分别是 A = B 的伴随矩阵, 则

$$r\begin{pmatrix} O & A^* \\ B^* & O \end{pmatrix} = \underline{\hspace{1cm}}.$$

(14) 设随机变量 X 与 Y 相互独立,都服从参数为 1 的指数分布,即它们的概率密度为 $f(t) = \begin{cases} e^{-t}, & t > 0, \\ 0, & \text{其他}. \end{cases}$ 以 $P(\max\{X, Y\} \leq 1) = \underline{\qquad}$.

三、解答题: 15~23 小题, 共 94 分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.

(15)(本题满分10分)

求不定积分
$$\int \frac{1}{\sin x \cos x \sqrt{\sin^4 x + \cos^4 x}} \mathrm{d}x.$$

(16)(本题满分10分)

求函数
$$f(x) = \begin{cases} \frac{2}{x^2} (1 - \cos x), & -\frac{\pi}{2} < x < 0, \\ 1, & x = 0, \\ \frac{1}{x} \int_0^x \cos t^2 dt, & 0 < x < \sqrt{\frac{\pi}{2}} \end{cases}$$
的极值.

(17)(本题满分10分)

求函数 $f(x, y) = x^2 + y^2$ 在圆域 $D = \{(x, y) \mid (x-1)^2 + (y-1)^2 \le 2\}$ 上的最大值与最小值.

(18) (本题满分10分)

(19) (本题满分10分)

设二元函数
$$f(x, y) = \begin{cases} xy, & (x, y) \in D_1, \\ \frac{2y}{x^2 + y^2 + 1}, & (x, y) \in D_2, \end{cases}$$
其中 D_1, D_2 是 $D = \{(x, y) \mid x^2 + y^2 \in D_2, x \in D_2$

≤4, x≥0, y≥0} 被圆 $(x-1)^2+y^2=1$ 划分成的两部分,如图 8-19 所示.求二重积分 $\iint f(x,y) \, \mathrm{d}\sigma$.

(20) (本题满分11分)

已知线性方程组(A):
$$\begin{cases} x_1 & +2x_2 & +x_3 & =3,\\ 2x_1 & +(a+4)x_2 & -5x_3 & =6, 有无穷多解.\\ -x_1 & -2x_2 & +ax_3 & =-3 \end{cases}$$

- (I) 求常数 $a(a \neq 0)$ 的值;
- (II) 对上述算得的 a 值,求方程组(A)与(B): $\begin{cases} x_1 + x_2 + x_3 = 0, \\ 2x_1 + \lambda x_2 = 1 \end{cases}$ 有公共解时的 λ 值及公共解.

(21)(本题满分11分)

设A是3阶实对称矩阵,A*是它的伴随矩阵,其满足

$$A^* \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 0 & 0 \\ 1 & 1 \end{pmatrix},$$

且二次型 $f(x_1, x_2, x_3) = \mathbf{x}^T \mathbf{A} \mathbf{x}$ 在正交变换 $\mathbf{x} = \mathbf{Q} \mathbf{y} ($ 其中, $\mathbf{x} = (x_1, x_2, x_3)^T$, $\mathbf{y} = (y_1, y_2, y_3)^T$, \mathbf{Q} 是正交矩阵)下的标准形为 $y_1^2 + y_2^2 - y_3^3$, 求 \mathbf{Q} 及 \mathbf{A}^* .

(22) (本题满分11分)

设二维随机变量(U, V)的概率密度为

$$f(u,v) = \begin{cases} 1, & 0 < u < 1, 0 < v < 2u, \\ 0, & \text{ 其他 } . \end{cases}$$

又设 X 与 Y 都是离散型随机变量,其中 X 只取 -1,0,1 三个值,Y 只取 -1,1 两个值,且 EX=0.2,EY=0.4, $P(X=-1,Y=1)=P(X=1,Y=-1)=P(X=0,Y=1)=\frac{1}{3}P\Big(V\leqslant\frac{1}{2} \ \Big|\ U\leqslant\frac{1}{2}\Big)$. 求

- (I) (X, Y) 的概率分布;
- (\blacksquare) Cov(X, Y).

(23) (本题满分11分)

设二维随机变量(X, Y)的概率密度为

$$f(x,y) = \begin{cases} \frac{3}{\theta^3} x^2 e^{-(y-\theta)}, & 0 < x < \theta, y > \theta, \\ 0, & \text{ 其他,} \end{cases}$$

其中 θ 是未知参数.设 X_1 , X_2 , … , X_n 是来自总体 X 的简单随机样本.求 θ 的矩估计量 $\overset{\wedge}{\theta}$ 和它的方差 $D(\overset{\wedge}{\theta})$.

模拟试题(九)

- 一、选择题: 1~8 小题,每小题4分,共32分.每小题给出的四个选项中,只有一个 选项是符合题目要求的,请将选项前的字母填写在答题纸指定位置上.
 - (1) 设函数 $y = \frac{1}{(x+1)^2}$, 则 $y^{(n)}$ 为

(A)
$$(-1)^n \frac{n!}{(x+1)^n}$$
.

(B)
$$(-1)^n \frac{n!}{(x+1)^{n+1}}$$
.

(C)
$$(-1)^n \frac{(n+1)!}{(x+1)^{n+1}}$$
.

(D)
$$(-1)^n \frac{(n+1)!}{(x+1)^{n+2}}$$
.

(2) 设二元函数 f(x, y) 在点 (x_0, y_0) 处的三个 2 阶偏导数 $f''_{xx}(x, y)$, $f''_{xy}(x, y)$, $f''_{xx}(x, y)$ 存在,则必有

- (A) $f''_{xx}(x_0, y_0) = f''_{xx}(x_0, y_0)$.
- $(B) f'_{x}(x, y)$ 在点 (x_0, y_0) 处可微.
- $(C) f'_*(x, y)$ 在点 (x_0, y_0) 处连续. $(D) f'_*(x, y_0)$ 在点 x_0 处可微.

(3) 级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \int_{0}^{\frac{1}{n}} \frac{x^{\alpha}}{\sqrt{1+x^{2}}} dx (-1 < \alpha < 0)$

(A) 绝对收敛.

(B) 条件收敛.

(C) 发散.

(D) 收敛或发散与 α 取值有关.

Γ

]

(4) 设 y_1 , y_2 是非齐次线性微分方程y' + p(x)y = q(x)的两个特解, 若常数 λ , μ 使 λy_1 $+\mu y_2$ 是该方程的解, $\lambda y_1 - \mu y_2$ 是该方程对应的齐次方程的解,则

(A)
$$\lambda = \frac{1}{2}, \ \mu = \frac{1}{2}.$$

(B)
$$\lambda = \frac{1}{2}, \ \mu = -\frac{1}{2}.$$

(C)
$$\lambda = \frac{2}{3}, \ \mu = \frac{1}{3}.$$

(D)
$$\lambda = \frac{1}{3}, \ \mu = \frac{2}{3}$$
.

(5) 设矩阵方程 AX = B(其中 $A \neq m \times n$ 矩阵, $B \neq m \times l$ 矩阵, $X \neq n \times l$ 未知矩阵), 则该方程有无穷多解的充分必要条件为

- (A) r(A : B) = r(A) = n.
- (B) r(A : B) = r(A) < n.

(C) r(A : B) > r(A).

(D) r(A : B) = r(A).

1

- (6) 设A, B 都是n 阶实对称矩阵,则A与B合同的充分必要条件为
- (A) r(A) = r(B).
- $(B) \mid A \mid = \mid B \mid.$
- (C) **A**, **B** 的特征值相同.

(D) 分别以 A, B 为矩阵的二次型有相同的规范形.

 $(7) 设 X, Y 是随机变量,其中 X ~ N(1, 1),概率密度为 f_1(x), Y 的概率密度为 f_2(x) = \begin{cases} e^{-(x-1)}, & x \ge 1, \\ 0, & x < 1. \end{cases}$ 记 $f(x) = \begin{cases} af_1(x), & x < 0, \\ bf_2(x), & x \ge 0, \end{cases}$ 则当 f(x)是概率密度时,a,b 应满足

(A)
$$a + \frac{1}{2}b = 1$$
.

(B)
$$\frac{1}{2}a + b = 1$$
.

(C)
$$a + \frac{1}{2}b = 0$$
.

(D)
$$\frac{1}{2}a + b = 0$$
.

(8) 设 X_1 , X_2 , …, X_n 是来自总体 X 的简单随机样本, 其中 X 服从参数 λ 的指数分布. 记样本均值为 \overline{X} , 方差为 S^2 , 则当 $(4-a)S^2-2a$ \overline{X}^2 为 $\frac{1}{\lambda^2}$ 的无偏估计量时, 常数 a 为

(B)
$$\frac{3n}{3n+1}$$
.

(C)
$$\frac{3n}{3n+2}$$
.

(D)
$$\frac{n}{n+1}$$
.

]

二、填空题: 9~14 小题,每小题 4 分,共 24 分.请将答案写在答题纸指定位置上.

(9)
$$\lim_{n\to\infty} \left[\frac{1}{1+e^{nx}} + (1+\sqrt{1+n}-\sqrt{n})^{\sqrt{2+n}} \right] = \underline{\hspace{1cm}}.$$

$$(10) \int \frac{1}{x \sqrt{4x^2 - 1}} dx = \underline{\qquad}.$$

- (11) 设二元函数 f(u, v) 可微,则 $\frac{\partial}{\partial x} f(e^{xy}, \sin x^2) = \underline{\qquad}$
- (12) 幂级数 $\sum_{n=1}^{\infty} \frac{n^n}{(n+1)^{n+1}} x^{2n}$ 的收敛域为______.
- (13) 设矩阵 $\mathbf{A} = \begin{pmatrix} 1 & 0 & -1 \\ 2 & \lambda & 1 \\ 1 & 2 & 1 \end{pmatrix}$ 及 3 阶矩阵 \mathbf{B} ,它们满足 $r(\mathbf{B}) = 2$, $r(\mathbf{AB}) = 1$,则 $\lambda = 1$

(15) (本题满分10分)

设函数 $y = \varphi(\psi(x))$, 其中 $\varphi(x) = \begin{cases} x, & x \leq 0, \\ \sin x, & x > 0, \end{cases} \psi(x) = \begin{cases} x^2 + x, & x \leq 0, \\ xe^x, & x > 0, \end{cases}$ 求 $\varphi'(\psi(x)) \Big|_{x=0} = [\varphi(\psi(x))]'\Big|_{x=0}$.

⁽¹⁴⁾ 设 A , B , C 是相互独立事件,且 P(A) = 0.4 , P(B) = P(C) = 0.5 ,则概率 $P(A - C \mid AB \cup C) =$

三、解答题: 15~23 小题, 共 94 分. 请将解答写在答题纸指定位置上. 解答应写出文字说明、证明过程或演算步骤.

(16) (本题满分10分)

已知二元连续函数 f(x, y) 满足 $f(x,y) = y + \int_0^x f(x-t,y) dt$,求二重积分 $\int_D \sqrt{x} f(x,y^2) d\sigma$,其中 D 是由曲线 $x = y^2$ 和直线 x = 1 围成的区域.

(17) (本题满分10分)

某厂家生产的一种产品同时在 A , B 两个市场销售,每件产品售价分别为 p_1 和 p_2 , 需求 函数分别为 q_1 = 3 - 0. $5p_1$ 和 q_2 = 2 - $3p_2$, 总成本函数为 C = $5+2\left(q_1+\frac{41}{12}q_2\right)$ 如果 A 市场的价格对 B 市场的价格弹性为 2 ,且 p_2 = 1 时, p_1 = $\frac{3}{16}$ 试问:厂家如何确定两个市场的售价,能使其获得的总利润最大?

(18) (本题满分10分)

设f(x)是[0,1]上非负、单调减少的连续函数,证明:

$$\int_0^a \!\! f(x) \, \mathrm{d} x \, > \frac{a}{b} \int_a^b \!\! f(x) \, \mathrm{d} x (\, \mbox{\rlap/μ} \mbox{\rlap/μ} \, 0 \, < \, a \, < \, b \, < \, 1 \,).$$

(19) (本题满分10分)

设幂级数
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} x^{2n+1}$$
,求

- (I) 该幂级数的和函数 s(x) 及其定义域;
- (\mathbb{I}) 方程 $s(x) = \frac{1}{2}$ 的实根个数.

(20) (本题满分11分)

设A 是三阶矩阵, α_1 , α_2 , α_3 是线性无关的三维列向量组. 已知

$$A\alpha_1 = \alpha_2 + \alpha_3$$
,
 $A\alpha_2 = \alpha_1 + a\alpha_3$,
 $A\alpha_3 = \alpha_1 + \alpha_2$,

问: a 为何值时, A 不能相似对角化?

(21) (本题满分11分)

设二次型 $f(x_1, x_2, x_3) = \mathbf{x}^T \mathbf{A} \mathbf{x}$ (其中 $\mathbf{x} = (x_1, x_2, x_3)^T$, \mathbf{A} 是 3 阶实对称矩阵) 经正交 变换 $\mathbf{x} = \mathbf{Q} \mathbf{y}$ (其中 $\mathbf{y} = (y_1, y_2, y_3)^T$, \mathbf{Q} 是正交矩阵) 化为标准形 $2y_1^2 - y_2^2 - y_3^2$. 又设 $\mathbf{A}^* \boldsymbol{\alpha} = \boldsymbol{\alpha}$ (其中 $\mathbf{A}^* \in \mathbf{A}$ 的伴随矩阵, $\boldsymbol{\alpha} = (1, 1, -1)^T$). 求

(I) **Q**及A;

(II) 可逆线性变换 $\mathbf{x} = \mathbf{C}\mathbf{z}($ 其中 $\mathbf{z} = (z_1, z_2, z_3)^{\mathrm{T}}$, \mathbf{C} 是可逆矩阵),它将 $f(x_1, x_2, x_3)$ 化为规范形.

(22) (本题满分11分)

设随机变量 X 是连续型的,它的概率密度为 $f_X(x)=\begin{cases} \mathrm{e}^{-x}, & x>0, \\ 0, & x\leqslant 0; \end{cases}$ 的,它的概率分布为

Y	- 1	0	1
P	1/3	1/3	1/3

- (I) 当X与Y相互独立时,求Z = XY的分布函数 $F_Z(z)$;
- (\mathbb{I}) 求 Cov(X, X^2).

(23) (本题满分11分)

设 X_1 , X_2 , … , X_n 是来自总体 $X \sim N(0, 1)$ 的简单随机样本 , \overline{X} , S^2 分别是它的均值与方差 , 求

- $(I) E(\overline{X}^2S^4);$
- $(\ \ \ \ \ \ \ \ \ \ \ D(\overline{X}^2).$

模拟试题(十)

一、选择题	: 1 ~ 8	小题,	每小题4分	,共32分.	每小题给出的四个选项中,	只有一个
选项是符合题目	要求的,	请将进	选项前的字	母填在答题组	低指定位置上.	

- (1) 已知函数 f(x) 在($-\infty$, $+\infty$)上二阶可导,且 f''(x) > 0, $\lim_{x \to 1} \frac{f(x)}{x-1} = 0$,则当 x > 1时, f(x)
 - (A) 单调减少且大于零.

(B) 单调减少目小于零.

(C) 单调增加且大于零.

(D) 单调增加目小于零.

(2) 设二元函数 z=z(x,y)满足 $\frac{\partial^2 z}{\partial x \partial y}=x+y$, 且 $z(x,0)=x^2$, z(0,y)=y, 则 z(x,y)

(A)
$$\frac{1}{2}x^2y + \frac{1}{2}xy^2 + x^2 + y$$
.

(B)
$$\frac{1}{2}x^2y + \frac{1}{2}xy^2 - x^2 + y$$
.

(C)
$$\frac{1}{2}x^2y - \frac{1}{2}xy^2 + x^2$$
.

(D)
$$\frac{1}{2}x^2y + \frac{1}{2}xy^2 + x^2$$
.

(3) 设 $\varphi(x)$ 是 [0,1] 上的正值连续函数, a,b 为常数,则当区域 $D=\{(x,y)\mid x^2+x^2\}$ $y^2 \le 1$ | By, $\iint_{\Omega} \frac{a\varphi(x) + b\varphi(y)}{\varphi(x) + \varphi(y)} d\sigma =$

 $(A) \pi a.$

为

- (B) πb .
- (C) $\pi(a+b)$. (D) $\frac{\pi}{2}(a+b)$.

(4) 设级数 $\sum_{n=1}^{\infty} a_n$ 和 $\sum_{n=1}^{\infty} b_n$,则

- (A) 如果 $\lim_{n\to\infty} a_n b_n = 0$,则 $\sum_{n=1}^{\infty} a_n$ 和 $\sum_{n=1}^{\infty} b_n$ 中至少有一收敛.
- (B) 如果 $\lim_{n\to\infty} a_n b_n = 1$,则 $\sum_{n=1}^{\infty} a_n$ 和 $\sum_{n=1}^{\infty} b_n$ 中至少有一发散.
- (C) 如果 $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$,则由 $\sum_{n=1}^{\infty} a_n$ 收敛可推得 $\sum_{n=1}^{\infty} b_n$ 收敛.
- (D) 如果 $\lim_{n\to\infty} \frac{a_n}{h} = \infty$,则由 $\sum_{n\to\infty} b_n$ 发散可推得 $\sum_{n=0}^{\infty} a_n$ 发散.

(5) 设A 是n 阶实矩阵,则方程组Ax = 0 有解是方程组 $A^{T}Ax = 0$ 有解的

(A) 必要而非充分条件.

(B) 充分而非必要条件.

(C) 充分必要条件.

(D) 既非充分又非必要条件.

1

(6) 设 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 是 4 阶实对称矩阵, A^* 是它的伴随矩阵. 如果(1, 1, 0, $(0)^{\mathrm{T}}$, $(1, 0, 1, 0)^{\mathrm{T}}$ 和 $(0, 0, 1, 1)^{\mathrm{T}}$ 是方程组 $A^{*}z = 0$ 的一个基础解系,则二次型 $f(x_{1}, 0, 1, 0)^{\mathrm{T}}$ x_2 , x_3 , x_4) = $\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}$ (其中 $\mathbf{x} = (x_1, x_2, x_3, x_4)^{\mathrm{T}}$ 的标准形应形如

(A)
$$a_1y_1^2 + a_2y_2^2 + a_3y_3^2$$
.

(B) $b_1 v_1^2 + b_2 v_2^2$.

(C)
$$c_1 y_1^2$$
.

(D) $d_1 y_1^2 + d_2 y_2^2 + d_3 y_3^2 + d_4 y_4^2$.

(其中 a_1 , a_2 , a_3 , b_1 , b_2 , c_1 , d_1 , d_2 , d_3 , d_4 都是非零常数).

(7) 设随机变量 X 与 Y 相互独立,都在(0, a)上服从均匀分布,则随机变量 Z = $\max\{X, Y\}$ 的概率密度为

(A)
$$f(z) = \begin{cases} \frac{2z}{a^2}, & 0 < z < a, \\ 0, & 其他. \end{cases}$$

(B)
$$f(z) = \begin{cases} \frac{2}{a} \left(1 - \frac{z}{a}\right), & 0 < z < \epsilon \\ 0, & 其他. \end{cases}$$

$$(C) f(z) = \begin{cases} 0, & z \leq 0, \\ \left(\frac{z}{a}\right)^2, & 0 < z < a, \\ 1, & z \geq a. \end{cases}$$

$$(A) f(z) = \begin{cases} \frac{2z}{a^2}, & 0 < z < a, \\ 0, & \sharp \text{th}. \end{cases}$$

$$(B) f(z) = \begin{cases} \frac{2}{a} \left(1 - \frac{z}{a}\right), & 0 < z < a, \\ 0, & \sharp \text{th}. \end{cases}$$

$$(C) f(z) = \begin{cases} 0, & z \le 0, \\ \left(\frac{z}{a}\right)^2, & 0 < z < a, \\ 1, & z \ge a. \end{cases}$$

$$(D) f(z) = \begin{cases} 0, & z \le 0, \\ 1 - \left(1 - \frac{z}{a}\right)^2, & 0 < z < a, \\ 1, & z \ge a. \end{cases}$$

(8) 设 $X \sim N(a, \sigma^2)$, $Y \sim N(b, \sigma^2)$, 且相互独立. 现分别从总体 X 和 Y 中各抽取容 量为9和11的简单随机样本,记它们的方差分别为 S_x^2 和 S_y^2 ,并记 $S_{12}^2 = \frac{1}{2}(S_x^2 + S_y^2)$, $S_{xy}^2 = \frac{1}{2}(S_x^2 + S_y^2)$ $\frac{1}{18}(8S_X^2+10S_Y^2)$,则上述四个统计量 S_X^2 , S_Y^2 , S_{12}^2 和 S_{XY}^2 中方差最小者为

- (A) S_{v}^{2} . (B) S_{v}^{2} . (C) S_{12}^{2} .

- 二、填空题: 9~14 小题,每小题4分,共24分.请将答案写在答题纸指定位置上.
- (9) 已知 f(x) 是连续函数,且满足

$$\int_{0}^{x} [5f(t) - 2] dt = f(x) - e^{5x},$$

则 f''(0) = .

(10) 设二元可微函数 z = z(x, y) 由方程 $\int_{y}^{z} e^{t^2} dt + xy + yz = 0$ 确定,则 $\frac{\partial^2 z}{\partial x \partial y}\Big|_{\substack{x=0 \ y=0}} =$

 $(11) \lim_{n \to \infty} \left(\frac{1}{n^2 + n + 1} + \frac{2}{n^2 + n + 2} + \dots + \frac{n}{n^2 + n + n} \right) = \underline{\qquad}.$

- (12) 设 2 阶常系数齐次线性微分方程 y'' + py' + qy = 0 有特解 $y_1 = e^x \cos x$, $y_2 = e^x \sin x$, 则 2 阶常系数非齐次线性微分方程 $y'' + py' + qy = \cos x$ 的通解为 .
 - (13) 设 n 阶矩阵 A 满足 $AA^{T} = E_{n}$, |A| < 0, 则 $|A + E_{n}| =$
- (14) 设存在常数 a, $b(b\neq 0)$, 使得 P(Y=a+bX)=1, 则随机变量 X 与 Y 的相关系数 $\rho =$.

三、解答题: $15 \sim 23$ 小题, 共 94 分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.

(15) (本题满分10分)

设函数 y = f(x) 在[0, + ∞)上有连续的导数,且满足

$$y(x) = 1 + x + 2 \int_0^x (x - t)y(t)y'(t) dt,$$

求 $y^{(n)}(x)$.

(16) (本题满分10分)

设二元函数
$$f(x, y) = \begin{cases} x + 2x^2y, & 0 \le x \le a, |y| \le a, \\ 0, & \text{其他}. \end{cases}$$

求二重积分
$$I(a) = \iint_D f(x,y) d\sigma$$
, 其中 $D: x^2 + y^2 \ge ax(a > 0)$.

(17) (本题满分10分)

设 $a_0=1$, $a_1=-2$, $a_2=\frac{7}{2}$, $a_{n+1}=-\left(1+\frac{1}{n+1}\right)\!a_n$ ($n\geqslant 2$) ,求幂级数 $\sum\limits_{n=0}^\infty a_nx^n$ 的收敛域与和函数 s(x) .

(18) (本题满分10分)

设函数f(x)在[0,1]上连续,证明:

- (I) 存在 $\xi \in (0,1)$, 使得 $f(\xi)(1-\xi) = \int_0^\xi \! f(x) \, \mathrm{d} x$;
- (\mathbb{I}) 当f(x)在(0, 1)内可导且满足(1-x)f'(x) > 2f(x)时,(\mathbb{I})中的 ξ 是唯一的.

(19) (本题满分10分)

某厂制造某种电器,固定成本为 400 万元,每生产一件产品成本增加 0.8 万元,总收益 R(单元:万元)是月产量 x(单位:件)的函数

$$R(x) = \begin{cases} 30x - \frac{1}{4}x^2, & 0 \le x \le 60, \\ 900, & x > 60, \end{cases}$$

并且总纳税金 T(单位: 万元) 是 x 的函数

$$T(x) = \begin{cases} 0.2x, & 0 \le x \le 60, \\ 900 \cdot 1\% + \frac{1}{20}x, & x > 60. \end{cases}$$

求该厂月产量 x 为多大时总利润最大, 并求最大总利润.

(20) (本题满分11分)

设 α_1 , α_2 , α_3 , α_4 为 4 维列向量组, 其中 α_1 , α_2 , α_3 线性无关, α_4 = α_1 + α_2 + 2 α_3 . 已 知方程组

$$(\boldsymbol{\alpha}_1 - \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3, -\boldsymbol{\alpha}_1 + a\boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3)x = \boldsymbol{\alpha}_4$$

有无穷多解.

- (I) 求常数 a 的值:
- (II) 对(I) 中求得的 a 值, 计算方程组的通解.

(21) (本题满分11分)

已知矩阵
$$A = \begin{pmatrix} 2 & 2 & 0 \\ 8 & 2 & 0 \\ 0 & a & 6 \end{pmatrix}$$
 可相似对角化.

- (I) 求常数 a 的值;
- (II) 对(I) 中求得的 a 值,求正交变换 $\mathbf{x} = \mathbf{Q}\mathbf{y}$ (其中 $\mathbf{x} = (x_1, x_2, x_3)^{\mathsf{T}}$, $\mathbf{y} = (y_1, y_2, y_3)^{\mathsf{T}}$, \mathbf{Q} 是正交矩阵),将二次型 $f(x_1, x_2, x_3) = \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}$ 化为标准形.

(22) (本题满分11分)

设二维随机变量(X, Y)的概率密度为

$$f(x, y) = \begin{cases} xe^{-y}, & 0 < x < y, \\ 0, & \text{其他}. \end{cases}$$

记 $Z = \min\{X, Y\}$, 求 Z^2 的数学期望 $E(Z^2)$.

(23) (本题满分11分)

设总体 X 的概率密度为 $f(x) = \begin{cases} (1+\theta)x^{\theta}, & 0 < x < 1, \\ 0, & \text{其他}, \end{cases}$ 其中 $\theta > -1$ 为未知参数, X_1 ,

 X_2 , …, X_n 为来自 X 的一个简单随机样本. 求

- (I) θ 的矩估计量;
- (Ⅱ) θ 的最大似然估计量.

模拟试题(一)解答

一、选择题

(1) 由于
$$y = \frac{1}{2x} \left(\frac{1}{x-1} - \frac{1}{x+1} \right) = \frac{1}{2} \left[\frac{1}{x(x-1)} - \frac{1}{x(x+1)} \right]$$

$$= \frac{1}{2} \left[\left(\frac{1}{x-1} - \frac{1}{x} \right) - \left(\frac{1}{x} - \frac{1}{x+1} \right) \right] = \frac{1}{2} \left(\frac{1}{x-1} + \frac{1}{x+1} - \frac{2}{x} \right),$$
所以, $y^{(10)} = \frac{1}{2} \left[(-1)^{10} \frac{10!}{(x-1)^{11}} + (-1)^{10} \frac{10!}{(x+1)^{11}} - 2(-1)^{10} \frac{10!}{x^{11}} \right]$

$$= \frac{10!}{2(x-1)^{11}} + \frac{10!}{2(x+1)^{11}} - \frac{10!}{x^{11}}.$$
 因此选 (C).

附注 应记住公式对:对于 $a \neq 0$,

$$\left(\frac{1}{ax+b}\right)^{(n)} = \left(-1\right)^n \frac{a^n \cdot n!}{\left(ax+b\right)^{n+1}}.$$

(2) 由于
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2e^{t}(e^{t}-1)}{2(1+t)(1+t)} = \frac{e^{t}(1+t)(e^{t}-1)}{\ln(1+t)},$$
 并且由题设知
$$\frac{dy}{dx}\Big|_{t=0} = \lim_{t\to 0} \frac{dy}{dx} = \lim_{t\to 0} \frac{e^{t}(1+t)(e^{t}-1)}{\ln(1+t)} = \lim_{t\to 0} \frac{e^{t}-1}{t} = 1,$$
所以, $\frac{d}{dt}\Big(\frac{dy}{dx}\Big)\Big|_{t=0} = \lim_{t\to 0} \frac{\frac{dy}{dx} - \frac{dy}{dx}\Big|_{t=0}}{t} = \lim_{t\to 0} \frac{e^{t}(1+t)(e^{t}-1)}{t} - 1$

$$= \lim_{t\to 0} \frac{e^{t}(1+t)(e^{t}-1) - \ln(1+t)}{t^{2}}$$

$$= \lim_{t\to 0} \frac{e^{2t} - e^{t} - \ln(1+t) + e^{t}t(e^{t}-1)}{t^{2}}$$

$$= \lim_{t\to 0} \frac{2e^{2t} - e^{t} - \frac{1}{1+t}}{2t} + 1$$

$$= \lim_{t\to 0} \frac{2(e^{2t}-1) - (e^{t}-1) - \left(\frac{1}{1+t}-1\right)}{2t} + 1 = 3.$$

因此选(D).

附注 由于在点
$$x = 0$$
 的某个邻域内 $\frac{\mathrm{d}y}{\mathrm{d}x} = \begin{cases} \frac{\mathrm{e}^t(1+t)(\mathrm{e}^t-1)}{\ln(1+t)}, & t \neq 0, \\ 1, & t = 0 \end{cases}$ 是分段函数,所以用

导数定义计算 $\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)\Big|_{t=0}$.

$$(3) \int_{\frac{\pi}{4}}^{\pi} \sin x \sqrt{1 - \sin^2 x} dx = \int_{\frac{\pi}{4}}^{\pi} \sin x | \cos x | dx = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin x \cos x dx - \int_{\frac{\pi}{2}}^{\pi} \sin x \cos x dx$$
$$= \frac{1}{2} \sin^2 x \Big|_{\frac{\pi}{4}}^{\frac{\pi}{2}} - \frac{1}{2} \sin^2 x \Big|_{\frac{\pi}{2}}^{\frac{\pi}{2}} = \frac{3}{4}.$$
 因此选 (A).

附注 题解中应注意的是: 在 $\left[\frac{\pi}{4}, \pi\right]$ 上, $\sqrt{1-\sin^2 x} \neq \cos x$, 而应 $\sqrt{1-\sin^2 x} = |\cos x|$.

(4) 由于 D 关于 y 轴对称, 而 $f(x^2)$ 在对称点处的值彼此相等, 所以 $\iint_D f(x^2) d\sigma = 2 \iint_{D_1} f(x^2) d\sigma$. 因此选(D).

附注 在计算二重积分时,应充分利用积分区域的对称性,适当地化简二重积分.

(5) 对于 n > 2 有

$$(A^*)^* = (|A|A^{-1})^* = |A|^{n-1}(A^{-1})^* = |A|^{n-1}(A^*)^{-1}$$

= $|A|^{n-1}(|A|A^{-1})^{-1} = |A|^{n-1} \cdot \frac{1}{|A|}A = |A|^{n-2}A.$

因此选(B).

附注 当 A 不可逆时,本题结论仍成立. 这是因为,当 A 不可逆,即 |A|=0 时, $|A|^{n-2}A=0$. 另一方面,当 |A|=0 时, $r(A^*)=1$,或 0,即 $r(A^*)< n-1$. 从而 $r((A^*)^*)=0$,由此得到 $(A^*)^*=0$.

故仍有 $(\mathbf{A}^*)^* = |\mathbf{A}|^{n-2}|\mathbf{A}|$.

(6) 由 A 是正定矩阵知 A 是实对称矩阵,故 A^* 也是实矩阵,并且,由 $A^T = A$ 得 $(A^*)^T = (A^T)^* = A^*$,所以 A^* 也是对称的,从而 A^* 也是实对称矩阵. 此外由 A 的特征值 λ_1 , λ_2 ,…, λ_n 全为正的知, A^* 的特征值 $\frac{|A|}{\lambda_1}$, $\frac{|A|}{\lambda_2}$,…, $\frac{|A|}{\lambda_n}$ 也全为正的. 因此 A^* 是正定矩阵. 同样可得 B^* 是正定矩阵.

于是,对于任意 x(n 维非零列向量),有 $x^TA^*x>0$, $x^TB^*x>0$,由此可知 $x^T(A^*+2B^*)x>0$,即 A^*+2B^* 是正定矩阵,因此选(A).

附注 应记住以下结论:

设 A , B 都是 n 阶正定矩阵,则 A + B , $A^{T} + B^{T}$, $A^{-1} + B^{-1}$, $A^{*} + B^{*}$ 都是正定矩阵,但 A - B , AB , $A^{T}B^{T}$, $A^{-1}B^{-1}$, $A^{*}B^{*}$ 等未必是正定矩阵.

(7) 由题设知
$$\frac{X-\mu}{\sigma} \sim N(0, 1)$$
, $\frac{Y-2\mu}{\frac{\sigma}{\sqrt{2}}} \sim N(0, 1)$, 所以
$$p_1 = P(X \geqslant \mu - \sigma) = P\left(\frac{X-\mu}{\sigma} \geqslant -1\right) = P\left(\frac{X-\mu}{\sigma} \leqslant 1\right) = \Phi(1) > \frac{1}{2},$$

$$p_2 = P\left(Y \leqslant 2\mu + \frac{\sigma}{\sqrt{2}}\right) = P\left(\frac{Y-2\mu}{\frac{\sigma}{\sqrt{2}}} \leqslant 1\right) = \Phi(1)$$
, (其中 $\Phi(x)$ 是标准正态分布函

数)

所以 $p_2 = p_2 > \frac{1}{2}$. 因此选 (D).

附注 由
$$\frac{X-\mu}{\sigma} \sim N(0, 1)$$
知 $P\left(\frac{X-\mu}{\sigma} \leqslant 0\right) = \Phi(0) = \frac{1}{2}$,所以有 $P\left(\frac{X-\mu}{\sigma} \leqslant 1\right) > \frac{1}{2}$.

(8) 由于 $Y = \frac{\sigma^2}{n} \cdot \sum_{i=1}^{n} \left(\frac{X_i}{\sigma}\right)^2$,

其中由 X_1 , X_2 , …, Y_n 相互独立,且 $\frac{X_i}{\sigma} \sim N(0, 1)$ (i = 1, 2, …, n) 知, $\sum_{i=1}^n \left(\frac{X_i}{\sigma}\right)^2 \sim \chi^2(n)$,所以

$$EY = \frac{\sigma^2}{n} \cdot n = \sigma^2$$
, $DY = \frac{\sigma^4}{n^2} \cdot 2n = \frac{2\sigma^4}{n}$.

因此选 (C).

附注 应记住以下结论:

设 ξ_1 , ξ_2 , …, ξ_n 相互独立且都服从N(0, 1)的随机变量,则 $\eta = \sum_{i=1}^n \xi_i^2 \sim \chi^2(n)$,且 $E\eta = n$, $D\eta = 2n$.

二、题空题

$$(9) \lim_{x\to 0} \frac{(\sin x - x) \arctan \frac{1}{x}}{\ln(1 + x^2)} = \lim_{x\to 0} \frac{(\sin x - x) \arctan \frac{1}{x}}{x^2} = \lim_{x\to 0} \frac{\sin x - x}{x^3} \cdot \lim_{x\to 0} \arctan \frac{1}{x},$$

$$\lim_{x \to 0} \frac{(\sin x - x) \arctan \frac{1}{x}}{\ln(1 + x^2)} = -\frac{1}{6} \times 0 = 0.$$

附注 由 $x \to 0$ 时, x 是无穷小, $\left|\arctan\frac{1}{x}\right| < \frac{\pi}{2}$, 所以 $\lim_{x \to 0} x \arctan \frac{1}{x} = 0$. 类似地有

 $\lim_{x\to 0} x \sin x \frac{1}{x} = 0.$

$$(10) \int_0^1 \arctan \frac{1-x}{1+x} dx = \int_0^1 (\arctan 1 - \arctan) dx = \frac{\pi}{4} - \int_0^1 \arctan x dx$$
$$= \frac{\pi}{4} - \left(x \arctan x \Big|_0^1 - \int_0^1 \frac{x}{1+x^2} dx \right) = \frac{1}{2} \ln(1+x^2) \Big|_0^1 = \frac{1}{2} \ln 2.$$

附注 应记住初等数学公式:

$$\arctan \frac{a+x}{1-ax} = \arctan a + \arctan x,$$

$$\arctan \frac{a-x}{1+ax} = \arctan a - \arctan x.$$

(11)
$$\exists \exists \lim_{x \to 1^{+}} \frac{z(x, 2) - z(1, 2)}{x - 1} = \lim_{x \to 1^{+}} \frac{\left(\frac{2}{x}\right)^{\ln x} - 1}{x - 1}$$

$$= \lim_{x \to 1^{+}} \frac{e^{\ln x(\ln 2 - \ln x)} - 1}{x - 1} = \lim_{x \to 1^{+}} \left[\frac{\ln x}{x - 1} \cdot (\ln 2 - \ln x)\right] = \ln 2 \lim_{x \to 1^{+}} \frac{\ln x}{x - 1} = \ln 2,$$

$$\lim_{x \to 1^{-}} \frac{z(x, 2) - z(1, 2)}{x - 1} = \lim_{x \to 1^{-}} \frac{\left[\ln (x^{\ln 2}) + 1\right] - 1}{x - 1} = \ln 2 \lim_{x \to 1^{-}} \frac{\ln x}{x - 1} = \ln 2,$$

所以 $\frac{\partial z}{\partial x}\Big|_{(1,2)} = \ln 2.$

附注 由于 $\frac{\partial z}{\partial x}\Big|_{(1,2)} = \frac{\mathrm{d}z(x,2)}{\mathrm{d}x}\Big|_{x=1}$,而 z(x,2)是分段点为 x=1 的分段函数,所以按定义计算 $\frac{\mathrm{d}z(x,2)}{\mathrm{d}x}\Big|_{x=1}$.

(12) 所给差分方程可改写成

$$y_{t+1} + 5y_x = \frac{5}{2}t. (1)$$

式(1)对应的齐次线性差分方程的通解为 $y_e(t) = c(-5)^t$. 此外,式(1)有特解 $y_t^* = at + b$. 将它代入式(1)得 $a = \frac{5}{12}$, $b = -\frac{5}{72}$, 所以 $y_t^* = \frac{5}{12} \left(t - \frac{1}{6} \right)$.

因此式(1),即所给的差分方程的通解为

附注 常系数线性差分方程 $y_{t+1} + ay_t = f(t)$ 的通解可按以下步骤计算

- (I) 算出对应的齐次差分方程 $y_{\iota+1}$ + ay_{ι} = 0 通解 $y_{\iota}(t)$,
- (II) 计算所给差分方程 y_{t+1} + ay_t = f(t) 的一个特解 y_t^* ,则所求的通解为 y_t = $y_c(t)$ + y_t^* .
 - (13) 由于

$$A^{2} = \begin{pmatrix} 0 & 0 & 1 & -2 \\ 0 & 0 & -2 & 4 \\ 1 & 2 & -1 & 1 \\ -3 & 2 & 2 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 & -2 \\ 0 & 0 & -2 & 4 \\ 1 & 2 & -1 & 1 \\ -3 & 2 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 7 & -2 & -5 & -1 \\ -14 & 4 & 10 & 2 \\ -4 & 0 & 0 & 6 \\ -1 & 6 & -7 & 17 \end{pmatrix}$$

$$\xrightarrow{\text{ 7 7 2 4 }} \begin{pmatrix} 7 & -2 & -5 & -1 \\ 0 & 0 & 0 & 0 \\ 4 & 0 & 0 & 6 \\ -1 & 6 & -7 & 17 \end{pmatrix},$$

所以 4 阶矩阵 A^2 的秩 $r(A^2) = 3$,从而 $r((A^2)^*) = 1$

附注 本题是利用以下公式(应记住)计算的:

设A 是n 阶矩阵,则

$$r(A^*) = \begin{cases} n, & r(A) = n, \\ 1, & r(A) = n-1, \\ 0, & r(A) < n-1. \end{cases}$$

(14)
$$F_{\gamma}(y) = P(Y \le y) = P(X^2 \le y)$$
, 其中, $y \le 0$ 时, $P(X^2 \le y) = 0$; $y > 0$ 时, $P(X^2 \le y) = P(-\sqrt{y} \le X \le \sqrt{y}) = P(0 \le X \le \sqrt{y})$
$$\begin{cases} \int_0^{\sqrt{y}} x dx, & 0 < y \le 1, \\ \int_0^1 x dx + \int_1^y (2 - 2) dx, & 1 < y \le 4, \\ \int_0^1 x dx + \int_1^2 (2 - x) dx, & y > 4 \end{cases}$$

$$= \begin{cases} \frac{1}{2}y, & 0 < y \le 1, \\ -1 + 2\sqrt{y} - \frac{1}{2}y, & 1 < y \le 4, \\ 1, & y > 4. \end{cases}$$
所以 $F_{\gamma}(y) = \begin{cases} 0, & y \le 0, \\ \frac{1}{2}y, & 0 < y \le 1, \\ -1 + 2\sqrt{y} - \frac{1}{2}y, & 1 < y \le 4, \\ 1, & y > 4. \end{cases}$

附注 $F_{y}(y)$ 也可以按以下方法计算.

记 $g(x) = x^2$,则 g(x) 在 $\{x \mid f(x) \neq 0\} = (0, 2)$ 内单调增加,记它的反函数为 x = h(y),则 $h(y) = \sqrt{y}$, $h'(y) = \frac{1}{2\sqrt{y}}(0 < y < 4)$. 所以

$$= \begin{cases} 0, & y \leq 0, \\ \frac{1}{2}y, & 0 < y \leq 1, \\ -1 + 2\sqrt{y} - \frac{1}{2}y, & 1 < y \leq 4, \\ 1, & y > 4. \end{cases}$$

三、解答题

(15) 由于
$$g(t) = \lim_{x \to 0} \left[1 + \sqrt[3]{\sin t} f(x) \right]^{\frac{\sqrt[3]{2}}{\ln(1+x)}} = e^{\lim_{x \to 0} \frac{\sqrt[3]{2} \cdot \ln\left[1 + \sqrt[3]{\sin t} f(x)\right]}{\ln(1+x)}},$$

$$\lim_{x \to 0} \frac{\sqrt[3]{t^2} \cdot \ln\left[1 + \sqrt[3]{\sin t} f(x)\right]}{\ln(1+x)} = \sqrt[3]{t^2 \sin t} \lim_{x \to 0} \frac{f(x)}{x}$$

$$= \sqrt[3]{t^2 \sin t} \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \sqrt[3]{t^2 \sin t} f'(0) = \sqrt[3]{t^2 \sin t}.$$

所以, $g(t) = e^{\sqrt[3]{t^2 \sin t}}$. 因此

$$g'(0) = \lim_{t \to 0} \frac{g(x) - g(0)}{x} = \lim_{x \to 0} \frac{e^{\frac{3}{2}t^2 \sin t}}{t} - 1 = \lim_{t \to 0} \frac{e^{\frac{3}{2}t^2 \sin t}}{t} = 1.$$

附注 题解中有两点值得注意:

(I) 由于 f(x) 仅在点 x = 0 处可导,所以极限 $\lim_{x\to 0} \frac{f(x)}{x}$ 必须按导数定义计算.

(Ⅱ) g'(0)也可以按以下方法计算:

由于
$$t \neq 0$$
 时, $g'(t) = e^{3\sqrt[3]{t^2 \sin t}} \left(\frac{2}{3} t^{-\frac{1}{3}} \sin^{\frac{1}{3}} t + \frac{1}{3} t^{\frac{2}{3}} \sin^{-\frac{2}{3}} t \cos t \right)$

且
$$\lim_{x\to 0} g'(t) = \lim_{t\to 0} e^{\frac{3}{\sqrt{t^2 \sin t}}} \cdot \lim_{t\to 0} \left[\frac{2}{3} \left(\frac{\sin t}{t} \right)^{\frac{1}{3}} + \frac{1}{3} \left(\frac{t}{\sin t} \right)^{\frac{2}{3}} \cos t \right] = \frac{2}{3} + \frac{1}{3} = 1,$$
所以, $g'(0) = \lim_{t\to 0} g'(t) = 1.$

(16) (I)
$$a = \frac{3}{2} - e^{\frac{1}{2}} + \sum_{n=0}^{\infty} \frac{n(n+1) - (n+1) + \frac{3}{4}}{2^n \cdot (n+1)!}$$

$$= \frac{3}{2} - e^{\frac{1}{2}} + \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{(n-1)!} \left(\frac{1}{2}\right)^{n-1} - \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{1}{2}\right)^n + \frac{3}{4} \cdot 2 \sum_{n=0}^{\infty} \frac{1}{(n+1)!} \left(\frac{1}{2}\right)^{n+1}$$

$$= \frac{3}{2} - e^{\frac{1}{2}} + \frac{1}{2} e^{\frac{1}{2}} - e^{\frac{1}{2}} + \frac{3}{2} \left[\sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{1}{2}\right)^n - 1\right]$$

$$= \frac{3}{2} - \frac{3}{2} e^{\frac{1}{2}} + \frac{3}{2} (e^{\frac{1}{2}} - 1) = 0.$$

(Ⅱ) 所给微分方程可以改写成

$$e^{-y}\frac{dy}{dx} + \frac{2}{x}e^{-y} = 1$$
, $\mathbb{E}\left[\frac{de^{-y}}{dx} - \frac{2}{x}e^{-y} = -1\right]$

所以

$$e^{-y} = e^{\int_{x}^{2} dx} \left(C + \int (-1) \cdot e^{-\int_{x}^{2} dx} dx \right) = x^{2} \left(C - \int \frac{1}{x^{2}} dx \right)$$
$$= x^{2} \left(C + \frac{1}{x} \right) = Cx^{2} + x. \tag{1}$$

将 y(1) = a = 0 代入式(1) 得 C = 0, 所以 $e^{-y} = x$, 从而

$$y = y(x) = -\ln x(x > 0).$$

附注 题解中有两点值得注意:

- (I) 利用公式 $e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n (-\infty < x < +\infty)$ 计算题中所给级数之和.
- (Ⅱ)将所给微分方程改写成

$$e^{-y}\frac{dy}{dx} + \frac{2}{x}e^{-y} = 1$$
, $\mathbb{E}\left[\frac{de^{-y}}{dx} - \frac{2}{x}e^{-y}\right] = -1$,

得到以 e^{-y} 为未知函数的线性微分方程,由此算出 y = y(x).

(17) 记 F(x) = f(x) - x,则 F(x) 在[0, 1]上可导,且 F(0) = F(1) (=0),所以由罗尔定理知,存在 $\eta \in (0, 1)$,使得 $F'(\eta) = 0$. 于是由 F'(x) 在[0, η]上可导,且 $F'(0) = F'(\eta)$,所以由罗尔定理知,存在 $\eta_1 \in (0, \eta)$,使得 $F''(\eta_1) = 0$. 同样可知,存在 $\eta_2 \in (\eta, 1)$,使得 $F''(\eta_2) = 0$.

由此可知,F''(x)在[η_1 , η_2]上满足罗尔定理条件,因此存在 $\xi \in (\eta_1, \eta_2) \subset (0, 1)$,使得 $F^{(3)}(\xi) = 0$,即 $f^{(3)}(\xi) = \xi$.

附注 罗尔定理的高阶导数形式有各种叙述,例如,

设f(x)在[a, b]上2阶可导,且f(a) = f(c) = f(b)(其中 $c \in (a, b)$),则存在 $\xi \in (a, b)$,使得 $f''(\xi) = 0$.

设 f(x) 在 [a, b] 上 3 阶可导,且 $f(a) = f(x_1) = f(x_2) = f(b)$ (其中 $a < x_1 < x_2 < b$),或 $f'(a) = f'(\eta) = f'(b)$ (其中 $\eta \in (a, b)$),则存在 $\xi \in (a, b)$,使得 $f^{(3)}(\xi) = 0$.

(18) 所给方程两边对 x 求偏导数得

$$2x + z \frac{\partial z}{\partial x} - 4 \frac{\partial z}{\partial x} = 0$$
, $\mathbb{R} \mathbb{I} \frac{\partial z}{\partial x} = \frac{2x}{4 - z}$.

同样可得 $\frac{\partial z}{\partial y} = \frac{2y}{4-z}$. 由于方程组 $\begin{cases} \frac{\partial z}{\partial x} = 0, & \text{pp} \\ \frac{\partial z}{\partial y} = 0, & \text{在 } D \text{ 内部无解, 所以 } z = z(x, y) \text{ 在 } D \end{cases}$

内无可能极值点.

D有边界 $I: y=0(0 \le x \le 1)$, $II: x=0(0 \le y \le 1)$ 以及 $III: x+y=1(0 \le x \le 1)$.

在 I 上, 所给方程式为 $2x^2 + z^2 - 8z + 8 = 0$, 即

$$z = 4 \pm \sqrt{8 - 2x^2}$$
 $(0 \le x \le 1)$.

它有最大值 $4+2\sqrt{2}$,最小值 $4-2\sqrt{2}$. 同样可以算出 z 在 II 上有最大值 $4+2\sqrt{2}$,最小值 $4-2\sqrt{2}$.

在Ⅲ上, 所给方程成为

$$2x^2 + 2(1 - x^2) + z^2 - 8z + 8 = 0$$
,

$$z = 4 \pm \sqrt{7 - 4\left(x - \frac{1}{2}\right)^2} (0 \le x \le 1).$$

它有最大值 $4+\sqrt{7}$, 最小值 $4-\sqrt{7}$.

综上所述, z = z(x, y)在 D 上的

最大值 =
$$\max\{4+2\sqrt{2}, 4+\sqrt{7}\}=4+2\sqrt{2},$$

最小值 =
$$\min\{4-2\sqrt{2}, 4-\sqrt{7}\}=4-2\sqrt{2}$$
.

附注 在 $D \perp z \neq 4$ (这是因为 z = 4 时,所给方程成为 $x^2 + y^2 = 4$,这在 $D \perp$ 是不可能

的),所以 z=z(x,y) 在 D 的内部的可能极值点仅来自方程组 $\begin{cases} \frac{\partial z}{\partial x}=0\,,\\ \frac{\partial z}{\partial y}=0 \end{cases}$ 的解. 因此当它在 D

内无解时, z = z(x, y) 在 D 的内部无可能极值点.

(19) 记
$$A = \iint_{D} f(x,y) \cos x d\sigma$$
,则

$$f(x, y) = xy + A. \tag{1}$$

从丽
$$A = \iint_D f(x,y) \cos x d\sigma = \iint_D (xy + A) \cos x dx.$$

$$= \int_0^{\pi} dx \int_0^{\sin x} (xy + A) dy = \int_0^{\pi} \left(\frac{1}{2}x\sin^2 x + A\sin x\right) dx$$

$$= \int_0^{\pi} \frac{1}{4} x (1 - \cos 2x) \, dx + 2A$$

$$=\frac{1}{4}\int_{0}^{\pi}xd\left(x-\frac{1}{2}\sin 2x\right)+2A$$

$$= \frac{1}{4} \left[x \left(x - \frac{1}{2} \sin 2x \right) \right]_0^{\pi} - \int_0^{\pi} \left(x - \frac{1}{2} \sin 2x \right) dx + 2A$$

$$= \frac{\pi^2}{4} - \frac{1}{4} \left(\frac{1}{2} x^2 + \frac{1}{4} \cos 2x \right) \Big|_{0}^{\pi} + 2A = \frac{\pi^2}{8} + 2A,$$

即 $A = \frac{\pi^2}{8} + 2A$. 所以 $A = -\frac{\pi^2}{8}$. 将它代人式(1)得 $f(x, y) = xy - \frac{\pi^2}{8}$. 因此

$$f(x,y)$$
 在 D_1 上的平均值 $B = \frac{1}{D_1$ 的面积 $\iint_{D_1} f(x,y) d\sigma$,

其中, D_1 的面积 = $\int_0^1 x^2 dx = \frac{1}{3}$,

$$\iint_{D_1} f(x,y) d\sigma = \iint_{D_1} \left(xy - \frac{\pi^2}{8} \right) d\sigma = \int_0^1 dx \int_0^{x^2} \left(xy - \frac{\pi^2}{8} \right) dy$$
$$= \int_0^1 \left(\frac{1}{2} x^5 - \frac{\pi^2}{8} x^2 \right) dx = \frac{2 - \pi^2}{24}.$$

因此
$$B = \frac{\frac{2-\pi^2}{24}}{\frac{1}{3}} = \frac{2-\pi^2}{8}.$$

附注 函数 f(x) 在 [a, b] 上的平均值为 $\frac{1}{b-a} \int_a^b f(x) dx$, 其中 f(x) 是连续函数.

二元函数 f(x, y) 在 D 上的平均值为 $\frac{1}{D}$ 的面积 $\iint_D f(x, y) d\sigma$, 其中, f(x, y) 是连续函数, D 是平面区域,它的面积不为零.

(20) 使矩阵方程 AX = B 有解,必须

$$r(A) = r(A \mid B).$$
由于 $(A \mid B) = \begin{pmatrix} 1 & 1 & 2 & 1 & 4 & 0 \\ -1 & 1 & 0 & -1 & 0 & -2 \\ 1 & 0 & 1 & a & b & c \end{pmatrix}$

$$\frac{\text{初等行变换}}{(以下同)} \begin{pmatrix} 1 & 1 & 2 & 1 & 4 & 0 \\ 0 & 2 & 2 & 0 & 4 & -2 \\ 0 & -1 & -1 & a-1 & b-4 & c \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} 1 & 1 & 2 & 1 & 4 & 0 \\ 0 & 1 & 1 & 0 & 2 & -1 \\ 0 & -1 & -1 & a-1 & b-4 & c \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} 1 & 1 & 2 & 1 & 4 & 0 \\ 0 & 1 & 1 & 0 & 2 & -1 \\ 0 & 0 & 0 & a-1 & b-2 & c-1 \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} 1 & 0 & 1 & 1 & 2 & 1 \\ 0 & 1 & 1 & 0 & 2 & -1 \\ 0 & 0 & 0 & a-1 & b-2 & c-1 \end{pmatrix},$$

所以,使式(1)成立的 a, b, c 满足 $\begin{cases} a-1=0, \\ b-2=0, & \text{\mathbb{D}} \ a=1, \ b=2, \ c=1. \\ c-1=0, \end{cases}$

当 a=1, b=2, c=1 时, 所给的矩阵方程与

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} X = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 2 & -1 \end{pmatrix}$$
 (2)

同解. 记 $X = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix}$,则式(1)等价于以下三个线性方程组

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_{11} \\ x_{21} \\ x_{31} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \tag{3}$$

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_{12} \\ x_{22} \\ x_{32} \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}, \tag{4}$$

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_{13} \\ x_{23} \\ x_{33} \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}. \tag{5}$$

式(3)的通解为(x_{11} , x_{21} , x_{31})^T = C_1 (-1, -1, 1)^T + (1, 0, 0)^T = (- C_1 +1, - C_1 , C_1)^T,

式(4)的通解为 $(x_{12}, x_{22}, x_{32})^{T} = C_{2}(-1, -1, 1)^{T} + (2, 2, 0)^{T} = (-C_{2}+2, -C_{2}+2, C_{2})^{T},$

式(5)的通解为 $(x_{13}, x_{23}, x_{33})^{\mathrm{T}} = C_3 (-1, -1, 1)^{\mathrm{T}} + (1, -1, 0)^{\mathrm{T}} = (-C_3 + 1, -C_3 - 1, C_3)^{\mathrm{T}}.$

所以,式(2),即所给矩阵方程的所有解为

$$X = \begin{pmatrix} -C_1 + 1 & -C_2 + 2 & -C_3 + 1 \\ -C_1 & -C_2 + 2 & -C_3 - 1 \\ C_1 & C_2 & C_3 \end{pmatrix}$$
 (其中 C_1 , C_2 , C_3 为任意常数).

附注 (I)设矩阵方程 $AX = B(其中 A, B 分别为 m \times n, m \times l$ 矩阵),则

AX = B 有解的充分必要条件为 $r(A \mid B) = r(A)$.

特别, AX = B 有唯一解的充分必要条件为 $r(A \mid B) = r(A) = n$; AX = B 有无穷多解的充分必要条件为 $r(A \mid B) = r(A) < n$.

($\|$) 当矩阵方程 AX = B 有解时,可按以下方法求解。

如果 A 可逆(此时 m=n),则 $X = A^{-1}B$:

如果 A 不可逆,则如题解中那样,将 AX = B 表示成若干个线性方程组,然后逐一计算各个方程组的通解,即可得到 X.

所以,A 有特征值 -1, 2, 它们对应的特征向量分别为 $\boldsymbol{\xi}_1 = (1, 0, -1)^T$, $\boldsymbol{\xi}_2 = (1, 1, 1)^T$. 由于 r(A) = 2, 所以A 还有特征值0, 设它对应的特征向量为 $\boldsymbol{\xi}_3 = (a, b, c)^T$, 则由A 是实对称矩阵知 $\boldsymbol{\xi}_3$ 满足

$$\begin{cases} (\xi_3, \xi_1) = 0, & \text{for } (a - c = 0, \\ (\xi_3, \xi_2) = 0, \end{cases}$$

取它的基础解系数 ξ_3 , 即 $\xi_3 = (1, -2, 1)^T$.

显然, ξ_1 , ξ_2 , ξ_3 是正交向量组, 现将它们单位化:

$$\eta_{1} = \frac{\xi_{1}}{\|\xi_{1}\|} = \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right)^{T},$$

$$\eta_{2} = \frac{\xi_{2}}{\|\xi_{2}\|} = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)^{T},$$

$$\eta_{3} = \frac{\xi_{3}}{\|\xi_{3}\|} = \left(\frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)^{T}.$$

$$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{3}} \frac{1}{\sqrt{6}}$$

$$0 \frac{1}{\sqrt{3}} - \frac{2}{\sqrt{6}}$$

$$-\frac{1}{\sqrt{2}} \frac{1}{\sqrt{3}} \frac{1}{\sqrt{6}}$$
(正交矩阵),则正交变换 $y = Cx$ 将

 $f(x_1, x_2, x_3)$ 化为标准形 $-y_1^2 + 2y_2^2$.

附注 应熟练掌握用正交变换或可逆线性变换(即配平方方法)将二次型化为标准形的方法.

(22) 记(X, Y)关于 X与 Y的边缘概率密度分别为 $f_X(x)$ 与 $f_Y(y)$,则

$$f_{X}(x) = \int_{-\infty}^{+\infty} f(x,y) \, \mathrm{d}y = \begin{cases} \int_{0}^{2} \left(x^{2} + \frac{1}{3}xy\right) \, \mathrm{d}y, & 0 \le x \le 1, \\ 0, & \text{ 其他} \end{cases}$$

$$= \begin{cases} 2x^{2} + \frac{2}{3}x, & 0 \le x \le 1, \\ 0, & \text{ 其他}; \end{cases}$$

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x,y) \, \mathrm{d}x = \begin{cases} \int_{0}^{1} \left(x^{2} + \frac{1}{3}xy\right) \, \mathrm{d}x, & 0 \le y \le 2, \\ 0, & \text{ 其他} \end{cases}$$

$$= \begin{cases} \frac{1}{3} + \frac{1}{6}y, & 0 \le y \le 2, \\ 0, & \text{ 其他}. \end{cases}$$

$$(I) \oplus EX = \int_{-\infty}^{+\infty} x f_{X}(x) \, \mathrm{d}x = \int_{0}^{1} x \left(2x^{2} + \frac{2}{3}x\right) \, \mathrm{d}x = \frac{13}{18} \, \text{fl}$$

$$DX = E(x^{2}) - (EX)^{2} = \int_{-\infty}^{+\infty} x^{2} f_{X}(x) \, \mathrm{d}x - \left(\frac{13}{18}\right)^{2}$$

$$= \int_{0}^{1} x^{2} \left(2x^{2} + \frac{2}{3}x\right) dx - \left(\frac{13}{18}\right)^{2} = \frac{17}{30} - \left(\frac{13}{18}\right)^{2} = \frac{73}{1620}.$$

$$(II) P(X^{2} + Y^{2} \le 1 \mid Y \ge \frac{1}{2}) = \frac{P\left(X^{2} + Y^{2} \le 1, Y \ge \frac{1}{2}\right)}{P\left(Y \ge \frac{1}{2}\right)},$$

$$(1)$$

其中
$$P(X^2 + Y^2 \le 1, Y \ge \frac{1}{2}) = \iint_D \left(x^2 + \frac{1}{3}xy\right) d\sigma \left(D = \left\{(x,y) \mid x^2 + y^2 \le 1, y \ge \frac{1}{2}\right\}\right)$$

$$= \int_0^{\frac{\sqrt{3}}{2}} dx \int_{\frac{1}{2}}^{\sqrt{1-x^2}} \left((x^2 + \frac{1}{3}xy\right) dy = \int_0^{\frac{\sqrt{3}}{2}} \left[x^2 \sqrt{1-x^2} + \frac{1}{6}x(1-x^2) - \frac{1}{2}x^2 - \frac{1}{24}x\right] dx$$

$$= \int_0^{\frac{\sqrt{3}}{2}} x^2 \sqrt{1-x^2} dx + \frac{3}{128} - \frac{\sqrt{3}}{16} \xrightarrow{\text{exersin}\theta} \int_0^{\frac{\pi}{3}} \frac{1}{8} (1-\cos 4\theta) d\theta + \frac{3}{128} - \frac{\sqrt{3}}{16}$$

$$= \frac{\pi}{24} - \frac{5\sqrt{3}}{64} + \frac{3}{128}, \qquad (2)$$

$$P\left(y \ge \frac{1}{2}\right) = \int_{\frac{1}{2}}^{+\infty} f_y(y) dy = \int_{\frac{1}{2}}^{2} \left(\frac{1}{3} + \frac{1}{6}y\right) dy = \frac{13}{16}. \qquad (3)$$

将式(2),式(3)代入式(1)得

$$P\left(x^2 + y^2 \le 1 \mid y \ge \frac{1}{2}\right) = \frac{\frac{\pi}{24} - \frac{5\sqrt{3}}{64} + \frac{3}{128}}{\frac{13}{16}} = \frac{2\pi}{39} - \frac{5\sqrt{3}}{52} + \frac{3}{104}.$$

附注 题解中需注意的是

$$\int_{-\infty}^{+\infty} f(x,y) \, \mathrm{d}y = \begin{cases} \int_{0}^{2} \left(x^{2} + \frac{1}{3}xy\right) \, \mathrm{d}y, & 0 \le x \le 1, \\ 0, & \text{ if th.} \end{cases}$$

而不是 $\int_{-\infty}^{+\infty} f(x,y) \, \mathrm{d}y = \int_{0}^{2} \left(x^2 + \frac{1}{3}xy\right) \! \mathrm{d}y (0 \le x \le 1).$ 对 $\int_{-\infty}^{+\infty} f(x,y) \, \mathrm{d}x$ 也有同样的说法.

(23) 设 Z 的简单随机样本 Z_1 , Z_2 , … , Z_n 的观察值为 z_1 , z_2 , … , z_n , 则似然函数为

$$\begin{split} L(\mu,\sigma^2) &= \frac{1}{\sqrt{2\pi}\sigma} \mathrm{e}^{-\frac{(z_1-\mu)^2}{2\sigma^2}} \cdots \frac{1}{\sqrt{2\pi}\sigma} \mathrm{e}^{-\frac{(z_n-\mu)^2}{2\sigma^2}} \\ &= \left(\frac{1}{\sqrt{2\pi}}\right)^n (\sigma^2)^{-\frac{n}{2}} \mathrm{e}^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (z_i-\mu)^2}, \end{split}$$

取对数得

$$\ln L = \ln \left(\frac{1}{\sqrt{2\pi}}\right)^n - \frac{n}{2}\ln\sigma^2 - \frac{1}{2\sigma^2}\sum_{i=1}^n (z_i - \mu)^2.$$

$$\frac{\partial \ln L}{\partial \mu} = \frac{1}{\sigma^2}\sum_{i=1}^n (z_i - \mu),$$

$$\frac{\partial \ln L}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4}\sum_{i=1}^n (z_i - \mu)^2.$$
由最大似然估计法,令
$$\begin{cases} \frac{\partial \ln L}{\partial \mu} = 0, \\ \frac{\partial \ln L}{\partial \mu} = 0. \end{cases}$$
解此方程组得 $\mu = \frac{1}{n}\sum_{i=1}^n z_i = \frac{\Box}{z}, \sigma^2 = \frac{1}{n}\sum_{i=1}^n (z_i - \bar{z})^2,$

所以 μ,σ^2 的最大似然估计量分别为

所以有

$$\begin{split} \hat{\mu} &= \frac{1}{n} \sum_{i=1}^{n} Z_{i} \stackrel{\overrightarrow{\text{id}}}{===} \overline{Z}, \quad \hat{\sigma}^{2} = \frac{1}{n} \sum_{i=1}^{n} (Z_{i} - \overline{Z})^{2}. \\ \\ \dot{\underline{\text{d}}} &\mp EX = E(e^{Z}) = \int_{-\infty}^{+\infty} e^{z} \sigma \sqrt{2\pi} e^{-\frac{(z-\mu)^{2}}{2\sigma^{2}}} dz \\ \stackrel{\stackrel{\text{def}}{===}}{===} e^{\mu} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{\sigma t - \frac{t^{2}}{2}} dt \\ &= e^{\mu + \frac{1}{2}\sigma^{2}} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{(t-\sigma)^{2}}{2}} dt = e^{\mu + \frac{1}{2}\sigma^{2}}, \end{split}$$

所以,由最大似然估计量的不变性得 EX 的最大似然估计量为

$$\stackrel{\wedge}{EX} = e^{\stackrel{\wedge}{\mu} + \frac{1}{2} \stackrel{\wedge}{\sigma^2}} = e^{\overline{Z} + \frac{1}{n} \sum_{i=1}^{n} (Z_i - \overline{Z})^2}.$$

附注 (I) 应记住,设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \cdots, X_n 是来自 X 的简单随机样本,则 μ 的矩估计量 = μ 的最大似然估计量 $\hat{\mu} = \frac{1}{n} \sum_{i=1}^n X_i = \overline{X}$,

 σ^2 的矩估计量 = μ 的最大似然估计量 $\overset{\wedge}{\sigma^2} = \frac{1}{n}\sum_{i=1}^n{(X_i - \overline{X})^2}$.

(Ⅱ)最大似然估计量的不变性是:

设 θ 是未知参数, θ 的函数 $u=u(\theta)$ 有单值反函数, 则当 $\hat{\theta}$ 是 θ 的最大似然估计量时, $\hat{u}=u(\hat{\theta})$ 是 $u(\theta)$ 的最大似然估计量.

模拟试题(二)解答

一、选择题

 答案
 (1)
 (2)
 (3)
 (4)
 (5)
 (6)
 (7)
 (8)

 B
 C
 D
 B
 C
 D
 C
 A

(1) 在(
$$-\pi$$
, 0)内 $f(x)$ 仅有间断点 $x = -\frac{\pi}{2}$. 由于

$$\lim_{x \to -\frac{\pi}{2}} f(x) = \lim_{x \to -\frac{\pi}{2}} \frac{\sin 2x}{\left(e^{\cos x} - 1\right) \ln\left(1 + \frac{1}{4}x\right)}$$
$$= \frac{1}{\ln\left(1 - \frac{\pi}{8}\right)^{x \to -\frac{\pi}{2}} \cos x} = -\frac{2}{\ln\left(1 - \frac{\pi}{8}\right)},$$

所以 $x = -\frac{\pi}{2}$ 是 f(x) 的可去间断点.

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{\sin 2x}{\left(e^{\cos x} - 1\right) \ln\left(1 + \frac{1}{4}x\right)} = \frac{1}{e - 1} \lim_{x \to 0^{-}} \frac{2x}{\frac{1}{4}x}$$
$$= \frac{8}{e - 1} \neq 0 = \lim_{x \to 0^{+}} f(x),$$

所以 x = 0 不是 f(x) 的可去间断点.

由此可知, f(x)的可去间断点个数为 1. 因此选 (B).

附注 寻找分段函数的间断点,除各个分段区间内的间断点外,还应通过考虑函数在分段点处的连续性,确定它是否为间断点.

(2) a = -2, -1 时, f(x) 在 $\left(0, \frac{1}{e}\right]$ 上无定义,所以选项(A),(B) 应排除. 当 a = 0 时, $f(x) = x \ln x - \frac{1}{e}$,且由

$$f'(x) = \ln x + 1 \begin{cases} <0, & 0 < x < \frac{1}{e}, \\ =0, & x = \frac{1}{e}, \\ >0, & x > \frac{1}{e} \end{cases}$$

知, f(x)的单调减少区间仅为 $\left(0, \frac{1}{e}\right]$. 因此选(C).

本题是对选项逐一检验,直到得到正确的选项为止. 这是求解单项选择题的常用 方法之一.

得 $F'(x) = \ln(1 + f(x))$. 此外,由

$$F'_{-}(0) = \lim_{x \to 0^{-}} F'(x) = \lim_{x \to 0^{-}} \int_{0}^{x} f(t) dt = 0,$$

$$F'_{+}(0) = \lim_{x \to 0^{+}} F'(x) = \lim_{x \to 0^{-}} \ln(1 + f(u)) = \ln(1 + f(0)) = 0$$

知 F'(0) = 0. 所以由

$$F''(0) = \lim_{x \to 0^{-}} \frac{F'(x) - F'(0)}{x} = \lim_{x \to 0^{-}} \frac{\int_{0}^{x} f(t) dt}{x}$$

$$= \frac{\frac{A \times \pm x}{2} \lim_{x \to 0^{-}} f(x)}{\lim_{x \to 0^{+}} f(x)} = f(0) = 0,$$

$$F''(0) = \lim_{x \to 0^{+}} \frac{F'(x) - F'(0)}{x} = \lim_{x \to 0^{+}} \frac{\ln(1 + f(x))}{x}$$

$$= \lim_{x \to 0^{+}} \frac{f(x)}{x} = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x} = f'(0) = 0$$

得 F''(0) = 0. 因此选 (D).

附注 题解中 $F'_{-}(0) = \lim_{x \to 0^{-}} F'(x)$ 与 $F'_{+}(0) = \lim_{x \to 0^{+}} F'(x)$ 是根据以下结论: 设函数 $\varphi(x)$ 在点 x = 0 处连续,在 $(-\delta, 0)$ ($\delta > 0$) 内可导,且 $\lim_{x \to 0} \varphi'(x)$ 存在,则 $\varphi'_{-}(0) = \lim_{x \to 0^{-}} \varphi'(x);$

设函数 $\psi(x)$ 在点 x=0 处连续,在 $(0,\delta)(\delta>0)$ 内可导,且 $\lim_{x\to 0} \psi(x)$ 存在,则 $\psi_{+1}'(0)$ $= \lim_{x \to 0^+} \psi'(x).$

第二个结论是 2009 年考研真题, 第一个结论的证明与第二个相似。因此上述这些结论 都可作为定理用于解题.

(4)
$$\iint_{D} (x + y) d\sigma = \iint_{D_{1}} 2x d\sigma \left(\text{由于 } D \not \in \exists x \text{ 轴对称}, y \text{ 在对称点处的值互为相反数}, x \text{ 在对称点处} \right)$$

$$= \int_{1}^{2} dx \int_{0}^{\sqrt{x^{2}-1}} 2x dy = \int_{1}^{2} 2x \sqrt{x^{2}-1} dx$$

$$= \frac{2}{3} (x^{2}-1)^{\frac{3}{2}} \Big|_{1}^{2} = 2\sqrt{3}. \quad \text{因此选(B)}.$$

附注 计算二重积分应充分利用积分区域的对称性: 当D 具有某种对称性时,

$$\iint\limits_{D} f(x,y) \, \mathrm{d}\sigma = \begin{cases} 0, & \exists f(x,y) \text{ 在对称点处的值互为相反数} \\ 2 \iint\limits_{D_1} f(x,y) \, \mathrm{d}\sigma, & \exists f(x,y) \text{ 在对称点处的值彼此相等,} \end{cases}$$

其中 D_1 是D按这种对称性划分成的两部分之一.

(5) 由(\mathbf{A}^*)^T = (\mathbf{A}^T)^{*} = ($-\mathbf{A}$)^{*} = ($-\mathbf{1}$)ⁿ⁻¹ \mathbf{A}^* 知, n 为奇数时, 有(\mathbf{A}^*)^T = \mathbf{A}^* . 即 \mathbf{A}^* 是对称矩阵. 反之, 当 \mathbf{A}^* 是对称矩阵,即(\mathbf{A}^*)^T = \mathbf{A}^* 时,由以上计算得($-\mathbf{1}$)ⁿ⁻¹ = 1,即 n 为奇数.

所以 A^* 为对称矩阵是n为奇数的充分必要条件,因此选(C).

附注 对于 $n(n \ge 2)$ 阶矩阵 A, $A^* = 0$ 的充分必要条件是 r(A) < n-1. 因此 $A^* \ne 0$ 的充分必要条件是 r(A) = n 或 n-1.

(6) 由于 $A \sim B$, 所以存在 3 阶可逆矩阵 P, 使得

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P}=\mathbf{B}.$$

于是, $r(A-2E_3) = r(P^{-1}(A-2E_3)P) = r(B-2E_3)$. 由于

$$|\mathbf{B} - 2\mathbf{E}_3| = \begin{vmatrix} -2 & 0 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -2 \end{vmatrix} = -3 \neq 0,$$

所以 $r(A-2E_3) = r(B-2E_3) = 3$.

同样有 $r(\mathbf{A} - \mathbf{E}_3) = r(\mathbf{B} - \mathbf{E}_3)$. 由于

$$| \mathbf{B} - \mathbf{E}_3 | = \begin{pmatrix} -1 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & -1 \end{pmatrix} = 0$$
,但 $\mathbf{B} - \mathbf{E}_3$ 的 2 阶子式 $\begin{vmatrix} -1 & 1 \\ 1 & 0 \end{vmatrix} = -1 \neq 0$,

所以, $r(\mathbf{A} - \mathbf{E}_3) = r(\mathbf{B} - \mathbf{E}_3) = 2$.

从而 $r(\mathbf{A} - 2\mathbf{E}_3) + r(\mathbf{A} - \mathbf{E}_3) = 5$. 因此选 (D).

附注 本题也可按以下方法计算:

$$r(A-2E_3) + r(A-E_3) = r(B-2E_3) + r(B-E_3) = r\begin{pmatrix} B-2E_3 & O \\ O & B-E_3 \end{pmatrix},$$

其中
$$\left(\begin{array}{c|ccccc} \mathbf{B} - 2\mathbf{E}_3 & \mathbf{O} \\ \hline \mathbf{O} & \mathbf{B} - \mathbf{E}_3 \end{array} \right) = \begin{pmatrix} -2 & 0 & 1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 & 0 \\ \hline 1 & 0 & -2 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & -1 \end{pmatrix}$$

所以, $r(A-2E_3) + r(A-E_3) = 5$.

(7) 由关于
$$X$$
 的边缘分布函数 $F_X(x) = \lim_{y \to +\infty} F(x, y) = \begin{cases} 1 - e^{-x}, & x > 0, \\ 0, & \text{其他;} \end{cases}$

分布函数 $F_Y(y) = \lim_{x \to +\infty} F(x, y) = \begin{cases} 1 - e^{-\frac{1}{2}y}, & y > 0, \text{知 } F(x, y) = F_X(x) F_Y(y) \\ 0, & \text{其他} \end{cases}$

 $(-\infty < x < +\infty, -\infty < y < +\infty)$,所以X 与 Y相互独立,从而

$$f_{X \vdash Y}(x \vdash y) = f_X(x) = \frac{\mathrm{d}}{\mathrm{d}x} F_X(x) = \begin{cases} \mathrm{e}^{-x}, & x > 0, \\ 0, & \text{ i.e. } \end{cases}$$

由此可知选项(C)不正确. 因此选(C).

附注 题解中,实际上已给出选项(A),(D)都正确. 选项(B)也是正确的,这是因为

关于
$$Y$$
 的边缘概率密度 $f_Y(y) = \frac{\mathrm{d}F_Y(y)}{\mathrm{d}y} \begin{cases} \frac{1}{2} \mathrm{e}^{-\frac{1}{2}y}, & y > 0, \\ 0, & \text{其他.} \end{cases}$

(8) 由题设知, X_1 , X_2 , X_3 , X_4 相互独立, 因此

$$E(X_1 - 2X_2) = 0$$
, $D(X_1 - 2X_2) = D(X_1) + 4D(X_2) = 20$,
 $E(3X_3 - 4X_4) = 0$, $D(3X_3 - 4X_4) = 9D(X_3) + 16D(X_4) = 100$.

于是 $\frac{1}{\sqrt{20}}(X_1-2X_2)\sim N(0,1)$, $\frac{1}{\sqrt{100}}(3X_3-4X_4)\sim N(0,1)$,且它们相互独立,所以,

$$\frac{1}{20}(X_1-2X_2)^2+\frac{1}{100}(3X_3-4X_4)^2\sim\chi^2(2)$$
. 从而 $D(Z)=4$. 因此选 (A).

附注 设 X_1 , X_2 , …, X_n 是来自总体 $X \sim N(\mu, \sigma^2)$ 的简单随机样本,则

其中
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
.

二、填空题

(9)
$$\boxplus \exists \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{(-1)^n \sin n} = e_{n \to \infty}^{\lim_{n \to \infty} (-1)^n \sin n \cdot \ln \left(1 + \frac{1}{n} \right)},$$

其中, |
$$(-1)^n \sin n$$
 | $<1(n=1, 2, \cdots)$, $\lim_{n\to\infty} \ln\left(1+\frac{1}{n}\right)=0$,所以
$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{(-1)^n \sin n} = e^0 = 1.$$

附注 设 $\alpha(x)$ 是有界函数, $\beta(x)$ 是某个极限过程中的无穷小,则在这个极限过程中有 $\lim \alpha(x)\beta(x) = 0$.

(10) 由于 $x \in [-1, 1]$ 时, $\psi(x) = (x-1)^2$, 显然 $x \in [-1, 0)$ 时, $\psi(x) > 1$; $x \in [0, 1]$ 时, $\psi(x) \le 1$, 所以

$$\varphi(\psi(x)) = \begin{cases} \psi(x) \ln \psi(x) \,, & x \in [-1, \ 0) \,, \\ 1 - \psi(x) \,, & x \in [0, \ 1] \end{cases} = \begin{cases} (1 - x)^2 \ln(1 - x)^2 \,, & x \in [-1, \ 0) \,, \\ 1 - (x - 1)^2 \,, & x \in [0, \ 1]. \end{cases}$$

于是
$$\int_{-1}^{1} \varphi(\psi(x)) dx = \int_{-1}^{0} (1-x)^{2} \ln(1-x)^{2} dx + \int_{0}^{1} [1-(x-1)^{2}] dx$$
,其中

$$\int_{-1}^{0} (1-x)^{2} \ln(1-x)^{2} dx = -\frac{2}{3} \left[(1-x)^{3} \ln(1-x) \right]_{-1}^{0} + \int_{-1}^{0} (1-x)^{2} dx = \frac{16}{3} \ln 2 - \frac{14}{9},$$

$$\int_0^1 \left[1 - (x - 1)^2 \right] \mathrm{d}x = 1 - \frac{1}{3} (x - 1)^3 \Big|_0^1 = \frac{2}{3},$$

所以
$$\int_{-1}^{1} \varphi(\psi(x)) dx = \left(\frac{16}{3} \ln 2 - \frac{14}{9}\right) + \frac{2}{3} = \frac{16}{3} \ln 2 - \frac{8}{9}$$
.

附注 平时应练习分段函数的复合运算.

(11) 由题设f(u, v) = 1 - u - 2v + o

$$(\sqrt{(u-1)^2+v^2}) = -(u-1)-2(v-0)+o(\sqrt{(u-1)^2+(v-0)^2})$$

$$f(1, 0) = 0, f'_u(1, 0) = -1, f'_v(1, 0) = -2.$$

记 $u = e^y$, v = x + y, 则g(x, y) = f(u, v), 且

$$g'_{x}(x, y) = f'_{v}(u, v), g'_{y}(x, y) = f'_{u}(u, v)e^{y} + f'_{v}(u, v).$$

所以 $dg(x, y) \mid_{(0,0)} = g'_x(0, 0) dx + g'_y(0, 0) dy = f'_v(1, 0) dx + [f'_u(1, 0) + f'_v(1, 0)] dy$ = -2dx - 3dy.

附注 本题获解的关键是由 $f(u, v) = 1 - u - 2v + o(\sqrt{(u-1)^2 + (v-0)^2})$ 得到 $f'_u(1, 0) = -1, f'_v(1, 0) = -2$.

$$(12) \int_{0}^{\frac{\pi}{2}} d\theta \int_{1}^{-\sin\theta + \sqrt{3 + \sin^2\theta}} f(r\cos\theta, r\sin\theta) r dr = \iint_{D} f(x, y) d\sigma, 其中$$

$$D = \left\{ (r, \theta) \mid 1 \le r \le -\sin\theta + \sqrt{3 + \sin^2\theta}, \ 0 \le \theta \le \frac{\pi}{2} \right\}.$$

它是由曲线 I : $r=1\left(0 \leq \theta \leq \frac{\pi}{2}\right)$, II : $r=-\sin\theta_1+\sqrt{3+\sin^2\theta}\left(0 \leq \theta \leq \frac{\pi}{2}\right)$ 及 III : $\theta=0$ 围成.

显然 I 的方程为 $x = \sqrt{1-y^2} (0 \le y \le 1)$. 由于 II 的方程可改写成

 $r^2 = -r\sin\theta + \sqrt{3r^2 + r^2\sin^2\theta}$, 即 $x^2 + y^2 + y = \sqrt{3x^2 + 4y^2}$, 或者, $x^2 + y^2 + 2y - y = \sqrt{3x^2 + 4y^2}$, 两边平方后得

$$(x^2 + y^2 + 2y)^2 - (2y + 3)(x^2 + y^2 + 2y) + 3 \cdot 2y = 0,$$

$$\mathbb{E}[(x^2 + y^2)(x^2 + y^2 + 2y - 3)] = 0.$$

由此得到 II 的方程为 $x^2 + y^2 + 2y = 3$, 即 $x = \sqrt{4 - (y+1)^2}(0 \le y \le 1)$. III 的方程为 y = 0. 于是 D 如图答 2-12 阴影部分所示,所以有

图答 2-12

$$\iint_{D} f(x,y) d\sigma = \int_{0}^{1} dy \int_{1-y^{2}}^{\sqrt{4-(y+1)^{2}}} f(x,y) dx,$$

上式右边即为所求的先x后y的二次积分.

附注 对某个二次积分 I ,要改变它的积分次序或积分坐标系,总是先写出与 I 相对应的二重积分(实际上,只要写出它的积分区域即可),然后再将这个二重积分转化为所要求的二次积分.

$$(13) \begin{pmatrix} A^{-1} & O \\ B & C^* \end{pmatrix}^{-1} = \begin{pmatrix} (A^{-1})^{-1} & O \\ -(C^*)^{-1}B(A^{-1})^{-1} & (C^*)^{-1} \end{pmatrix}$$

$$= \begin{pmatrix} A & O \\ -\frac{1}{|C|}CBA & \frac{1}{|C|}C \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} & \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ -\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}\begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & -1 & 0 & 1 \end{pmatrix} .$$

附注 这里利用了分块矩阵的求逆公式:

设A, D 都是可逆矩阵, 则

$$\begin{pmatrix} \mathbf{A} & \mathbf{O} \\ \mathbf{C} & \mathbf{D} \end{pmatrix}^{-1} = \begin{pmatrix} \mathbf{A}^{-1} & \mathbf{O} \\ -\mathbf{D}^{-1}\mathbf{C}\mathbf{A}^{-1} & \mathbf{D}^{-1} \end{pmatrix}.$$

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{0} & \mathbf{D} \end{pmatrix}^{-1} = \begin{pmatrix} \mathbf{A}^{-1} & -\mathbf{A}^{-1}\mathbf{B}\mathbf{D}^{-1} \\ \mathbf{O} & \mathbf{D}^{-1} \end{pmatrix}.$$

(14) 由题设知 P(A) = P(B), 于是由 $P(A \cup B) = \frac{3}{4}$ 得

由此可知 0 < a < 2 (这是因为,如果 $a \le 0$,则 P(A) = 1,这与 $P(A) = \frac{1}{2}$ 矛盾;如果 $a \ge 2$,

则 P(A) = 0, 这也与 $P(A) = \frac{1}{2}$ 矛盾). 于是由式(1)得

$$\frac{1}{2} = P(A) = \int_{a}^{2} \frac{3}{8} t^{2} dt = 1 - \frac{1}{8} a^{3}, \text{ If } a = \sqrt[3]{4}.$$

附注 根据题设推出 P(A) = P(B) 以及 0 < a < 2 是本题获解的关键.

三、解答题

(15) 由于
$$\lim_{x \to 0^{-}} \left(\frac{2 + e^{\frac{1}{x}}}{1 + e^{\frac{4}{x}}} + \frac{\sin x - |x|}{|x|} \right) = \lim_{x \to 0^{-}} \left(\frac{2 + e^{\frac{1}{x}}}{1 + e^{\frac{4}{x}}} - \frac{\sin x}{x} - 1 \right) = \frac{2 + 0}{1 + 0} - 1 - 1 = 0,$$

$$\lim_{x \to 0^{+}} \left(\frac{2 + e^{\frac{1}{x}}}{1 + e^{\frac{4}{x}}} + \frac{\sin - |x|}{|x|} \right) = \lim_{x \to 0^{+}} \left(\frac{2e^{-\frac{4}{x}} + e^{-\frac{3}{x}}}{e^{-\frac{4}{x}} + 1} + \frac{\sin x}{x} - 1 \right) = \frac{0 + 0}{0 + 1} + 1 - 1 = 0,$$
所以 $\lim_{x \to 0} \left(\frac{2 + e^{\frac{1}{x}}}{1 + e^{\frac{4}{x}}} + \frac{\sin x - |x|}{|x|} \right) = 0.$ 此外 $\left| \arctan \frac{1}{2} \right| < \frac{\pi}{2},$ 因此
$$\lim_{x \to 0} \left(\frac{2 + e^{\frac{1}{x}}}{1 + e^{\frac{4}{x}}} + \frac{\sin x - |x|}{|x|} \right) = 0.$$

附注 由于 $\frac{2 + e^{\frac{1}{x}}}{1 + e^{\frac{4}{x}}} + \frac{\sin x - |x|}{|x|}$ 是以 x = 0 为分段点的分段函数,所以计算 $x \to 0$ 的极限

时,应从计算左、右极限入手. 在计算时还应注意到 $\lim_{x\to 0^+} \mathrm{e}^{\frac{1}{x}} = + \infty$, $\lim_{x\to 0^-} \mathrm{e}^{\frac{1}{x}} = 0$.

(16) 记D绕直线y=1旋转一周而成的旋转体体积为V,则

$$V = \pi \left[\int_0^1 (1 - x^2)^2 dx - \int_0^1 (1 - x)^2 dx \right]$$
$$= \pi \int_0^1 (x^4 - 3x^2 + 2x) dx = \frac{\pi}{5}.$$

记D绕y轴旋转一周而成的旋转体体积为 V_y ,则

$$V_{y} = 2\pi \left(\int_{0}^{1} x \cdot x dx - \int_{0}^{1} x \cdot x^{2} dx \right)$$
$$= 2\pi \int_{0}^{1} (x^{2} - x^{3}) dx = \frac{\pi}{6}.$$

附注 应记住以下公式:

设平面图形 $D_1 = \{(x, y) \mid a \le x \le b, f_1(x) \le y \le f_2(x) \le k\}$ 绕直线 y = k 旋转一周而成的旋转体体积

$$V_k = \pi \Big\{ \int_a^b [k - f_1(x)]^2 dx - \int_a^b [k - f_2(x)]^2 dx \Big\}.$$

设平面图形 $D_2=\{(x,y)\mid c\leqslant a\leqslant x\leqslant b,\ f_1(x)\leqslant y\leqslant f_2(x)\}$ 绕直线 x=c 旋转一周而成的旋转体体积

$$V_{c} = 2\pi \left[\int_{a}^{b} (x - c) f_{2}(x) dx - \int_{a}^{b} (x - c) f_{1}(x) dx \right].$$
(17) 所给微分方程 $y'' + a^{2}y = \sin x + 2\cos 2x$ (1)

对应的齐次方程的通解为

$$Y = C_1 \cos ax + C_2 \sin ax$$
 (其中, C_1 , C_2 , 是任意常数).

当 a=1 时,式(1)有特解

$$\gamma^* = x(A_1\sin x + B_1\cos x) + (A_2\sin x + B_2\cos 2x).$$

将它代入a=1时的式(1)得

$$2A_1\cos x - 2B_1\sin x - 3A_2\sin 2x - 3B_2\cos 2x = \sin x + 2\cos 2x$$
.

由此得到 $A_1 = 0$, $B_1 = -\frac{1}{2}$, $A_2 = 0$, $B_2 = -\frac{2}{3}$. 故

$$y^* = -\frac{1}{2}x\cos x - \frac{2}{3}\cos 2x.$$

因此, 当a=1时, 式(1)的通解为

$$y = Y + y^* = C_1 \cos x + C_2 \sin x - \frac{1}{2}x \cos x - \frac{2}{3}\cos 2x.$$

当 a = 2 时,式(1)有特解

$$y^* = A_1 \sin x + B_1 \cos x + x (A_2 \cos x + B_2 \sin 2x).$$

将它代入a=2时的式(1)得

$$3A_1 \sin x + 3B_1 \cos x - 4A_2 \sin 2x + 4B_2 \cos 2x = \sin x + 2\cos 2x.$$

由此得到 $A_1 = \frac{1}{3}$, $B_1 = 0$, $A_2 = 0$, $B_2 = \frac{1}{2}$. 故

$$y^* = \frac{1}{3} \sin x + \frac{1}{2} x \sin 2x.$$

因此, 当a=2时, 式(1)的通解为

$$y = Y + y^* = C_1 \cos 2x + C_2 \sin 2x + \frac{1}{3} \sin x + \frac{1}{2} x \sin 2x.$$

附注 设有2阶线线微方程

$$y'' + ay' + by = e^{\alpha x} (a_1 \cos \beta x + b_1 \sin \beta x)$$
 (*)

(其中a, b, a, b, α , β 都是常数),则式(*)有特解

$$y^* = x^k e^{\alpha x} (A\cos\beta x + B\sin\beta x),$$

其中 $k = \begin{cases} 0, & \text{当 } \alpha + \mathrm{i}\beta \text{ 是方程 } \lambda^2 + a\lambda + b = 0 \text{ 的 } 0 \text{ 重根}, \\ 1, & \text{当 } \alpha + \mathrm{i}\beta \text{ 是方程 } \lambda^2 + a\lambda + b = 0 \text{ 的 } 1 \text{ 重根}, \end{cases}$ 常数 A, B 可由 y^* 代入式(*)确定.

所以,在点x=0的充分小去心邻域内有

$$0 < \frac{\tan^2 x - x^2}{x^4} < 1.$$

由此证得, 当 |x| 充分小时, $x^2 \le \tan^2 x \le x^2 + x^4$.

(II) 由(I)知, 当n 充分大时,

$$\frac{1}{n+k} = \left(\frac{1}{\sqrt{n+k}}\right)^2 \leqslant \tan^2 \frac{1}{\sqrt{n+k}} \leqslant \left(\frac{1}{\sqrt{n+k}}\right)^2 + \left(\frac{1}{\sqrt{n+k}}\right)^4 = \frac{1}{n+k} + \frac{1}{(n+k)^2},$$
所以 $\sum_{k=1}^n \frac{1}{n+k} \leqslant \sum_{k=1}^n \tan^2 \frac{1}{\sqrt{n+k}} \leqslant \sum_{k=1}^n \frac{1}{n+k} + \sum_{k=1}^n \frac{1}{(n+k)^2} \quad (n=1,2,\cdots).$
由于 $\lim_{n\to\infty} \sum_{k=1}^n \frac{1}{n+k} = \lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^n \frac{1}{1+\frac{k}{n}} = \int_0^1 \frac{1}{1+x} dx = \ln 2,$

$$\lim_{n\to\infty} \left[\sum_{k=1}^n \frac{1}{n+k} + \sum_{k=1}^n \frac{1}{(n+k)^2} \right] = \ln 2 + \lim_{n\to\infty} \left[\frac{1}{n} \cdot \frac{1}{n} \sum_{k=1}^n \frac{1}{\left(1+\frac{k}{n}\right)^2} \right]$$

$$= \ln 2 + 0 \cdot \int_0^1 \frac{1}{(1+x)^2} dx = \ln 2,$$
所以,由数列极限存在准则 I 知Iimx = $\lim_{n\to\infty} \sum_{k=1}^n \tan^2 \frac{1}{1+k} = \ln 2.$

所以,由数列极限存在准则 I 知 $\lim_{n\to\infty} x_n = \lim_{n\to\infty} \sum_{k=1}^n \tan^2 \frac{1}{\sqrt{n+k}} = \ln 2$.

附注 数列极限存在准则有两个:

设有数列 $\{x_n\}$, $\{y_n\}$ 及 $\{z_n\}$, 如果它们满足

$$y_n \leq x_n \leq z_n (n = 1, 2, \cdots),$$

 $\coprod_{n\to\infty} y_n = \lim_{n\to\infty} z_n = A, \quad \iiint_{n\to\infty} x_n = A.$

* 准则 \blacksquare 设数列 $\{x_n\}$ 单调不减有上界,或单调不增有下界,则 $\lim_{n\to\infty}x_n$ 存在.

(19) (I)
$$\boxplus \exists \int_{D} r^{2} \sin\theta \sqrt{1 - r^{2} \cos 2\theta} dr d\theta = \int_{D} r \sin\theta \sqrt{1 - r^{2} (\cos^{2}\theta - \sin^{2}\theta)} \cdot r dr d\theta$$

$$= \int_{D} y \sqrt{1 - x^{2} + y^{2}} d\sigma,$$

所以,
$$f(x, y) = y \sqrt{1 - x^2 + y^2}$$
, 此外,

$$D = \left\{ (r, \theta) \middle| 0 \leqslant r \leqslant \sec \theta, 0 \leqslant \theta \leqslant \frac{\pi}{4} \right\} =$$

 $\{(x, y) \mid 0 \le x \le 1, 0 \le y \le x\}$ 如图答 2-19 阴影部分所示, 所以

$$I = \int_0^1 dx \int_0^x y \sqrt{1 - x^2 + y^2} dy$$

$$= \int_0^1 \frac{1}{3} (1 - x^2 + y^2)^{\frac{3}{2}} \Big|_{y=0}^{y=x} dx$$

$$= \frac{1}{3} \int_0^1 \left[1 - (1 - x^2)^{\frac{3}{2}} \right] dx = \frac{1}{3} - \frac{1}{3} \int_0^1 (1 - x^2)^{\frac{3}{2}} dx$$

$$\frac{\Rightarrow x = \sin t}{3} \frac{1}{3} - \frac{1}{3} \int_0^{\frac{\pi}{2}} \cos^4 t dt = \frac{1}{3} - \frac{1}{3} \int_0^{\frac{\pi}{2}} \left(\frac{3}{8} + \frac{1}{2} \cos 2t + \frac{1}{8} \cos 4t \right) dt$$

$$= \frac{1}{3} - \frac{1}{3} \times \frac{3}{8} \times \frac{\pi}{2} = \frac{1}{3} - \frac{\pi}{16}.$$

(II) 由于
$$g(x, y) = f(x + y, \sqrt{2xy}) = \sqrt{2xy} \sqrt{1 - x^2 - y^2} = \sqrt{2(xy - x^3y - xy^3)}$$
, 所以
$$\frac{\partial g}{\partial x} = \frac{y - 3x^2y - y^3}{\sqrt{2}\sqrt{xy - x^3y - xy^3}},$$
从而

$$\frac{\partial^2 y}{\partial x \partial y} = \frac{(1 - 3x^2 - 3y^2) \sqrt{xy - x^3y - xy^3} - \frac{(y - 3x^2y - y^3)(x - x^3 - 3xy^2)}{2 \sqrt{xy - x^3y - xy^3}}}{\sqrt{2}(xy - x^3y - xy^3)}$$

$$= \frac{xy - 4x^3y - 4xy^3 + 3x^5y + 2x^3y^3 + 3xy^5}{2\sqrt{2}(xy - x^3y - xy^3)^{\frac{3}{2}}}$$

$$= \frac{x - 4x^3 - 4xy^2 + 3x^5 + 2x^3y^2 + 3xy^4}{2\sqrt{2}\sqrt{y}(x - x^3 - xy^2)^{\frac{3}{2}}}$$

附注 如题解中那样,在直角坐标系中计算二重积分 I,比直接在极坐标系中计算 I 简 捷得多.

(20) (I) 由(A)与(B)等价知, $r(\beta_1, \beta_2, \beta_3) = r(\alpha_1, \alpha_2, \alpha_3)$. 由于

$$(1) 由(A) 与(B) 等价知, r(\beta_1, \beta_2, \beta_3) = r(\alpha_1, \alpha_2, \alpha_3). 由于$$

$$|(\alpha_1, \alpha_2, \alpha_3)| = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 3 \\ 1 & 1 & 5 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 3 \\ 0 & 1 & 4 \end{vmatrix} \neq 0, 即 r(\alpha_1, \alpha_2, \alpha_3) = 3,$$

所以
$$r(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3) = 3$$
,即 $0 \neq | (\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3) | = \begin{vmatrix} 1 & 1 & 3 \\ 1 & 2 & 4 \\ 1 & 3 & a \end{vmatrix} = \begin{vmatrix} 1 & 1 & 3 \\ 0 & 1 & 1 \\ 0 & 2 & a - 3 \end{vmatrix} = a - 5$. 由

此得到 $a \neq 5$.

(II) 当 $a \neq 5$ 时,由

$$(\boldsymbol{\beta}_{1}, \, \boldsymbol{\beta}_{2}, \, \boldsymbol{\beta}_{2} \mid \boldsymbol{\alpha}_{1}, \, \boldsymbol{\alpha}_{2}, \, \boldsymbol{\alpha}_{3}) = \begin{pmatrix} 1 & 1 & 3 & 1 & 0 & 1 \\ 1 & 2 & 4 & 0 & 1 & 3 \\ 1 & 3 & a & 1 & 1 & 5 \end{pmatrix}$$

$$\xrightarrow{\text{N}$\%$f7$\underline{v}\underline{w}$} \begin{pmatrix} 1 & 1 & 3 & 1 & 0 & 1 \\ 0 & 1 & 1 & -1 & 1 & 2 \\ 0 & 2 & a - 3 & 0 & 1 & 4 \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} 1 & 0 & 2 & 2 & -1 & -1 \\ 0 & 1 & 1 & -1 & 1 & 2 \\ 0 & 0 & a - 5 & 2 & -1 & 0 \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} 1 & 0 & 2 & 2 & -1 & -1 \\ 0 & 1 & 1 & -1 & 1 & 2 \\ 0 & 0 & 1 & a - 5 & -1 & a - 5 & 0 \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} 1 & 0 & 0 & \frac{2a-14}{a-5} & \frac{-a+7}{a-5} & -1 \\ 0 & 1 & 0 & \frac{-a+3}{a-5} & \frac{a-4}{a-5} & 2 \\ 0 & 0 & 1 & \frac{2}{a-5} & -\frac{1}{a-5} & 0 \end{pmatrix}$$

知, (A)由(B)的线性表示式为

$$\begin{cases} \boldsymbol{\alpha}_{1} = \frac{2a - 14}{a - 5} \boldsymbol{\beta}_{1} + \frac{-a + 3}{a - 5} \boldsymbol{\beta}_{2} + \frac{2}{a - 5} \boldsymbol{\beta}_{3}, \\ \boldsymbol{\alpha}_{2} = \frac{-a + 7}{a - 5} \boldsymbol{\beta}_{1} + \frac{a - 4}{a - 5} \boldsymbol{\beta}_{2} - \frac{1}{a - 5} \boldsymbol{\beta}_{3}, \\ \boldsymbol{\alpha}_{3} = -\boldsymbol{\beta}_{1} + 2\boldsymbol{\beta}_{2}. \end{cases}$$
(1)

附注 将初等行变换后的矩阵 $\begin{pmatrix} 1 & 0 & 0 & \frac{2a-14}{a-5} & \frac{-a+7}{a-5} & -1 \\ 0 & 1 & 0 & \frac{-a+3}{a-5} & \frac{a-4}{a-5} & 2 \\ 0 & 0 & 1 & \frac{2}{a-5} & -\frac{1}{a-5} & 0 \end{pmatrix}$

的列向量由左至右顺序记为 $\boldsymbol{\beta}_1'$, $\boldsymbol{\beta}_2'$, $\boldsymbol{\beta}_3'$; $\boldsymbol{\alpha}_1'$, $\boldsymbol{\alpha}_2'$, $\boldsymbol{\alpha}_3'$, 容易看到

$$\begin{cases} \boldsymbol{\alpha}_{1}' = \frac{2a - 14}{a - 5} \boldsymbol{\beta}_{1}' + \frac{-a + 3}{a - 5} \boldsymbol{\beta}_{2}' + \frac{2}{a - 5} \boldsymbol{\beta}_{3}', \\ \boldsymbol{\alpha}_{2}' = \frac{-a + 7}{a - 5} \boldsymbol{\beta}_{1}' + \frac{a - 4}{a - 5} \boldsymbol{\beta}_{2}' - \frac{1}{a - 5} \boldsymbol{\beta}_{3}', \\ \boldsymbol{\alpha}_{3}' = -\boldsymbol{\beta}_{1}' + 2\boldsymbol{\beta}_{2}'. \end{cases}$$
(2)

由于"初等行变换不改变列向量之间的线性表示关系"(记住这一结论),因此由式(2)直接得到式(1),即(A)由(B)的线性表示式.

附注 (A)由(B)的线性表示式也可以用以下方法计算:

$$i \exists \quad \boldsymbol{e}_1 = (1, 0, 0)^T, \ \boldsymbol{e}_2 = (0, 1, 0)^T, \ \boldsymbol{e}_3 = (0, 0, 1)^T,$$

則 由(
$$\boldsymbol{\beta}_{1}$$
, $\boldsymbol{\beta}_{2}$, $\boldsymbol{\beta}_{3}$) = (\boldsymbol{e}_{1} , \boldsymbol{e}_{2} , \boldsymbol{e}_{3}) $\begin{pmatrix} 1 & 1 & 3 \\ 1 & 2 & 4 \\ 1 & 3 & a \end{pmatrix}$ $\begin{pmatrix} \boldsymbol{e}_{1}$, \boldsymbol{e}_{2} , \boldsymbol{e}_{3}) = ($\boldsymbol{\beta}_{1}$, $\boldsymbol{\beta}_{2}$, $\boldsymbol{\beta}_{3}$) $\begin{pmatrix} 1 & 1 & 3 \\ 1 & 2 & 4 \\ 1 & 3 & a \end{pmatrix}^{-1}$ $\begin{pmatrix} 2 - \frac{2}{a - 5} & -1 + \frac{4}{a - 5} & -\frac{2}{a - 5} \\ -1 - \frac{1}{a - 5} & 1 + \frac{2}{a - 5} & -\frac{1}{a - 5} \end{pmatrix}$.

于是
$$(\boldsymbol{\alpha}_{1}, \, \boldsymbol{\alpha}_{2}, \, \boldsymbol{\alpha}_{3}) = (\boldsymbol{e}_{1}, \, \boldsymbol{e}_{2}, \, \boldsymbol{e}_{3}) \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 3 \\ 1 & 1 & 5 \end{pmatrix}$$

$$= (\boldsymbol{\beta}_{1}, \, \boldsymbol{\beta}_{2}, \, \boldsymbol{\beta}_{3}) \begin{pmatrix} 2 - \frac{2}{a - 5} & -1 + \frac{4}{a - 5} & -\frac{2}{a - 5} \\ -1 - \frac{1}{a - 5} & 1 + \frac{2}{a - 5} & -\frac{1}{a - 5} \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 3 \\ 1 & 1 & 5 \end{pmatrix}$$

$$= (\boldsymbol{\beta}_{1}, \, \boldsymbol{\beta}_{2}, \, \boldsymbol{\beta}_{3}) \begin{pmatrix} \frac{2a - 14}{a - 5} & \frac{-a + 7}{a - 5} & -1 \\ -\frac{a + 3}{a - 5} & \frac{a - 4}{a - 5} & 2 \\ \frac{2}{a - 5} & -\frac{1}{a - 5} & 0 \end{pmatrix},$$

它即为式(1).

(21) (\overline{I})由于 $\frac{1}{\sqrt{6}}$ (1, 2, 1)^T 是 A 的一个特征向量,记它对应的特征值为 λ_1 ,则有

$$\begin{pmatrix} \lambda_1 & 1 & -4 \\ 1 & \lambda_1 - 3 & -a \\ -4 & -a & \lambda_1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = 0, \quad \exists J \begin{cases} \lambda_1 - 2 = 0, \\ 1 + 2(\lambda_1 - 3) - a = 0, \\ -4 - 2a + \lambda_1 = 0. \end{cases}$$

解此方程组得 $\lambda_1 = 2$, a = -1

将 a = -1 代入 A. 得 A 的特征方程

$$\begin{vmatrix} \lambda & 1 & -4 \\ 1 & \lambda - 3 & 1 \\ -4 & 1 & \lambda \end{vmatrix} = \begin{vmatrix} \lambda - 3 & 1 & -4 \\ \lambda - 1 & \lambda - 3 & 1 \\ \lambda - 3 & 1 & \lambda \end{vmatrix} = \begin{vmatrix} \lambda - 3 & 1 & -4 \\ \lambda - 1 & \lambda - 3 & 1 \\ 0 & 0 & \lambda + 4 \end{vmatrix} = (\lambda - 2)(\lambda - 5)(\lambda + 4),$$

它的根除 $\lambda_1 = 2$ 外, 还有 $\lambda_2 = 5$, $\lambda_3 = -4$, 所以, $f(x_1, x_2, x_3)$ 的标准形为 $2y_1^2 + 5y_2^2 - 4y_3^2$.

(II)由于 A^* 是实对称矩阵,所以它能正交对角化为对角形矩阵A. 由于 A^* 的特征值

下面计算使得 $P^TA^*P = \Lambda$ 的正交矩阵P.

由题设知, \boldsymbol{A} 的对应 $\boldsymbol{\lambda}_1 = 2$ 的特征向量为 $\boldsymbol{\xi}_1 = (1, 2, 1)^T$.

设对应 $\lambda_2 = 5$ 的特征向量为 $\xi_2 = (u_1, u_2, u_3)^T$,则 ξ_2 满足

所以,式(1)与 $\begin{cases} u_2 + u_3 = 0, \\ u_1 + u_2 = 0 \end{cases}$ 同解,它的基础解系为 $(1, -1, 1)^T$,故取 $\boldsymbol{\xi}_2 = (1, -1, 1)^T$.

设对应 $\lambda_3 = -4$ 的特征向量为 $\xi_3 = (v_1, v_2, v_3)^T$,则由 A 是实对称矩阵知,

$$\begin{cases} (\boldsymbol{\xi}_3, \ \boldsymbol{\xi}_1) = 0, \\ (\boldsymbol{\xi}_3, \ \boldsymbol{\xi}_2) = 0, \end{cases} \begin{cases} v_1 + 2v_2 + v_3 = 0, \\ v_1 - v_2 + v_3 = 0, \end{cases}$$

它的基础解系为 $(1, 0, -1)^{T}$, 故取 $\xi_{3} = (1, 0, -1)^{T}$.

显然, ξ_1 , ξ_2 , ξ_3 是正交向量组. 现将它的单位化得

$$\boldsymbol{\xi}_{1}^{0} = \frac{\boldsymbol{\xi}_{1}}{\|\boldsymbol{\xi}_{1}\|} = \left(\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)^{T}, \quad \boldsymbol{\xi}_{2}^{0} = \frac{\boldsymbol{\xi}_{2}}{\|\boldsymbol{\xi}_{2}\|} = \left(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)^{T}, \quad \boldsymbol{\xi}_{3}^{0} = \frac{\boldsymbol{\xi}_{3}}{\|\boldsymbol{\xi}_{3}\|} = \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right)^{T}.$$

记 $P = (\xi_1^0, \xi_2^0, \xi_3^0)$,则P即为所求的正交矩阵.

附注 设 A 是可逆实对称矩阵,且有特征值 λ 及与之对应的特征向量 ξ ,则 A^* 有特征值 $\mu = \frac{|A|}{\lambda}$ 及对应的特征向量 ξ . 所以当 $P^TAP(P)$ 是正交矩阵) 为对角矩阵时, P^TA^*P 也是对角矩阵,且对角线上的元素都是 A^* 的特征值.

(22)
$$\lim \iint_{xO_y \neq \overline{m}} f(x,y) d\sigma = 1$$
, $\iint_G Ax^2 y d\sigma = 1$ $\stackrel{\text{H}}{\rightleftharpoons}$

$$A = \frac{1}{\iint_G x^2 y d\sigma} = \frac{1}{\int_{-1}^1 dx \int_{x^2}^1 x^2 y dy} = \frac{1}{\int_{-1}^1 \frac{1}{2} x^2 (1 - x^4) dx} = \frac{21}{4},$$

所以,
$$f(x, y) = \begin{cases} \frac{21}{4}x^2y, & (x, y) \in G, \\ 0, & 其他. \end{cases}$$

$$D(2X+3Y) = E[(2X+3Y)^{2}] - [E(2X+3Y)]^{2},$$

其中
$$E[(2X+3Y)^2] = \iint_{xOy=m} (2x+3y)^2 f(x,y) d\sigma$$

$$= \iint_{C} (2x + 3y)^{2} \cdot \frac{21}{4}x^{2}y d\sigma = \frac{21}{4} \iint_{C} (4x^{4}y + 12x^{3}y^{2} + 9x^{2}y^{3}) d\sigma$$

$$= \frac{21}{4} \cdot 2 \iint_{C_{1}} (4x^{4}y + 9x^{2}y^{3}) d\sigma \text{ (由于 } G \text{ 关于 } y \text{ 轴对称 } , 4x^{4}y + 9x^{2}y^{3} \text{ 在对}$$
称点处的值彼此相等,而 $12x^{3}y^{2}$ 的值互

为相反数, D_1 是 D 的第一象限部分)

$$\begin{split} &=\frac{21}{2}\int_0^1 (2x^4y^2 + \frac{9}{4}x^2y^4) \Big|_{y=x^2}^{y=1} \mathrm{d}x \\ &=\frac{21}{2}\int_0^1 \left(\frac{9}{4}x^2 + 2x^4 - 2x^8 - \frac{9}{4}x^{10}\right) \mathrm{d}x = \frac{2506}{165}, \\ E(2X+3Y) &= \iint\limits_{x0y \neq \text{ifff}} (2x+3y)f(x,y) \, \mathrm{d}\sigma = \iint\limits_{C} (2x+3y) \cdot \frac{21}{4}x^2y \, \mathrm{d}\sigma \\ &=\frac{21}{2}\iint\limits_{C_1} 3x^2y^2 \, \mathrm{d}\sigma = \frac{21}{2}\int_0^1 \mathrm{d}x \int_{x^2}^1 3x^2y^2 \, \mathrm{d}y \\ &=\frac{21}{2}\int_0^1 (x^2-x^8) \, \mathrm{d}x = \frac{7}{3}. \end{split}$$

附注 应记住随机变量 的方差计算公式:

于是, $D(2X+3Y) = \frac{2506}{165} - \left(\frac{7}{3}\right)^2 = \frac{4921}{477}$.

$$DX = E(X^2) - (EX)^2.$$

(23) 由于
$$X$$
 的概率密度 $f(x) = \begin{cases} \frac{2\alpha^2}{x^3}, & x > \alpha, \\ 0, & \exists z = x^2, \\ 0, & \exists \omega. \end{cases}$ 则它在 $f(x) \neq 0$ 的区间 (α, β, α)

 $+\infty$)上单调增加,反函数 $x = h(z) = \sqrt{z}(z > \alpha^2)$,于是 Z 的概率密度为

记样本观察值为 z_1 , z_2 , …, z_n (由于现在是计算最大似然估计量,可认为它们都大于 α^2),故有似然函数为

$$L(\alpha^{2}) = \frac{\alpha^{2}}{z_{1}^{2}} \cdot \frac{\alpha^{2}}{z_{2}^{2}} \cdots \frac{\alpha^{2}}{z_{3}^{2}} = \frac{(\alpha^{2})^{n}}{z_{1}^{2} z_{2}^{2} \cdots z_{n}^{2}}.$$

由于 $\frac{\mathrm{d}L(\alpha^2)}{\mathrm{d}\alpha^2} = \frac{n(\alpha^2)^{n-1}}{z_1^2 z_2^2 \cdots z_n^2} > 0$,所以 α^2 的最大似然估计值为 $\min\{z_1, z_2, \cdots, z_n\}$. 从

而 α^2 的最大似然计量为 $\hat{\alpha^2}$ = min $\{Z_1, Z_2, \cdots, Z_n\}$.

由最大似然值估计量的不变性得 α 的最大似然估计量为

$$\hat{\alpha} = \sqrt{\hat{\alpha}^2} = \sqrt{\min\{Z_1, Z_2, \dots, Z_n\}}.$$

附注 本题也可计算如下:

由于 X 的概率密度 $f(x; \alpha) = \begin{cases} \frac{2\alpha^2}{x^3}, & x > \alpha, \\ 0, & \text{其他}, \end{cases}$ 且 X 有简单随机样本观察值 $\sqrt{z_1}, \sqrt{z_2}, \cdots,$

 $\sqrt{z_n}$ (它们都大于 α), 所以有似然函数

$$L(\alpha) = \frac{2\alpha^{2}}{z_{1}^{\frac{3}{2}}} \cdot \frac{2\alpha^{2}}{z_{2}^{\frac{3}{2}}} \cdots \frac{2\alpha^{2}}{z_{n}^{\frac{3}{2}}} = \frac{2^{n}}{(z_{1}z_{2}\cdots z_{n})^{\frac{3}{2}}} \alpha^{2n} (\sqrt{z_{1}} > \alpha, \sqrt{z_{2}} > \alpha, \cdots, \sqrt{z_{n}} > \alpha)$$

于是由 $\frac{\mathrm{d}L(\alpha)}{\mathrm{d}\alpha}=\frac{2^n\cdot 2n}{(z_1z_2\cdots z_n)^{\frac{3}{2}}}\alpha^{2n-1}>0$ 知, α 的最大似然估计值为 $\min\{\sqrt{z_1},\ \sqrt{z_2},\ \cdots,\ \sqrt{z_n}\}=0$

 $\sqrt{\min\{z_1,\ z_2,\ \cdots,\ z_n\}}. \ \ \text{所以}\ \alpha \ \text{的最大似然估计量}\ \hat{\alpha} = \sqrt{\min\{Z_1,\ Z_2,\ \cdots,\ Z_n\}}.$

模拟试题(三)解答

一、选择题

 答案
 (1)
 (2)
 (3)
 (4)
 (5)
 (6)
 (7)
 (8)

 C
 B
 C
 C
 B
 C
 A
 A

(1)
$$\exists |x| \leq 1$$
 $\exists f$, $\exists f = \sqrt[n]{1 + |x|^{3n}} \leq \sqrt[n]{2} (n = 1, 2, \dots)$ $\exists f = 0, \dots$

当
$$|x| > 1$$
 时, $f(x) = |x|^3 \lim_{n \to \infty} \sqrt{1 + \left|\frac{1}{x}\right|^{3n}} = |x|^3$,

所以

$$f(x) = \begin{cases} 1, & |x| \le 1, \\ |x|^3 & |x| > 1. \end{cases}$$

显然 f(x) 在($-\infty$, -1) \cup (-1, 1) \cup (1, $+\infty$) 上可导, 但由

$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = 0, \quad \lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{+}} \frac{x^{3} - 1}{x - 1} = 3$$

知, f(x)在点 x=1 处不可导. 此外, 由 f(x) 是偶函数知 f(x) 在点 x=-1 处也不可导. 因此选 (C).

附注 由于 f(x) 是由数列极限确定的,所以要讨论它的可导性,首先要通过数列极限计算,确定 f(x) 的解析表达式.

(2) 由于
$$F(x) = \int_0^{2x} \cos^2(2x - t) dt$$
 $\frac{\Leftrightarrow u = 2x - t}{\int_0^{2x} \cos^2 u du}$,所以 $F'(x) = 2\cos^2(2x)$, $F''(x) = -4\sin(4x)$.

因此选 (B).

附注 要计算 $\frac{\mathrm{d}}{\mathrm{d}x} \int_a^{\varphi(x)} f(t,x) \, \mathrm{d}t$ 时,首先应将被积函数中的 x 移到积分号外,或移到积分限中去.

(3)
$$i \exists f(x) = \ln x - \frac{x}{e} + \int_0^{\frac{\pi}{2}} \frac{1}{1 + \tan^2 x} dx$$
, $y = \int_0^{\frac{\pi}{2}} \frac{1}{1 + \tan^2 x} dx$, $y = \int_0^{\frac{\pi}{2}}$

知 f(x) 的最大值 $f(e) = \int_0^{\frac{\pi}{2}} \frac{1}{1 + \tan^3 x} dx > 0$,以及 $\lim_{x \to 0^+} f(x) = -\infty$, $\lim_{x \to +\infty} f(x) = -\infty$,所以方程 f(x) = 0,即方程 $\ln x = \frac{x}{e} - \int_0^{\frac{\pi}{2}} \frac{1}{1 + \tan^3 x} dx$ 的正根个数为 2. 因此选(C)

附注 由于曲线 y = f(x) 的概图如图答 3-3 所示,所以方程 f(x) = 0 有两个正根.

(4) 由于当 $AC - B^2 = 0$ 时, $f(x_0, y_0)$ 可能是极值, 也可

能不是极值, 所以选项(C)不正确. 因此选(C)

附注 (C)的不正确性可用下列例子以明之:

设
$$f_1(x, y) = x^3 + y^3$$
,记 $(x_0, y_0) = (0, 0)$,则
$$f'_x(x_0, y_0) = f'_y = (x_0, y_0) = 0,$$

且 $AC - B^2 = 0$. 此时, $f(x_0, y_0) = 0$ 不是 f(x, y) 的极值. 设 $f_2(x, y) = x^4 + y^4$, 记 $(x_0, y_0) = (0, 0)$, 则 $f'_*(x_0, y_0) = f'_*(x_0, y_0) = 0$,

图答 3-3

且
$$AC - B^2 = 0$$
. 此时, $f(x_0, y_0) = 0$ 是 $f(x, y)$ 的极值.

(5)
$$\exists \exists \exists \left(\begin{array}{ccc} \mathbf{O} & (2\mathbf{A})^* \\ (3\mathbf{B})^{-1} & \mathbf{O} \end{array}\right) = \left(\begin{array}{ccc} \mathbf{O} & |2\mathbf{A}|(2\mathbf{A})^{-1} \\ (3\mathbf{B})^{-1} & \mathbf{O} \end{array}\right) = \left(\begin{array}{ccc} \mathbf{O} & 8(2\mathbf{A})^{-1} \\ (3\mathbf{B})^{-1} & \mathbf{O} \end{array}\right),$$

所以,
$$\begin{pmatrix} \mathbf{O} & (2\mathbf{A})^* \\ (3\mathbf{B})^{-1} & \mathbf{O} \end{pmatrix}^{-1} = \begin{pmatrix} \mathbf{O} & ((3\mathbf{B})^{-1})^{-1} \\ (8(2\mathbf{A})^{-1})^{-1} & \mathbf{O} \end{pmatrix} = \begin{pmatrix} \mathbf{O} & 3\mathbf{B} \\ \frac{1}{4}\mathbf{A} & \mathbf{O} \end{pmatrix}$$
. 因此选 (B)

附注 题解中应用了以下公式(应记住):

设 $A \neq n$ 阶矩阵,则 $|A^*| = |A|^{n-1} (n \ge 2)$, $|kA| = k^n |A| (k 是常数)$.

设A 是n 阶可逆矩阵,则 $A^* = |A|A^{-1}$.

设
$$A$$
, B 分别是 m , n 阶可逆矩阵, 则 $\begin{pmatrix} O & A \\ B & O \end{pmatrix} = \begin{pmatrix} O & B^{-1} \\ A^{-1} & O \end{pmatrix}$.

(6) 由题设知 $r(P) + r(Q) \le 3$. 由于当 $t \ne 6$ 时,r(Q) = 2,所以此时 $r(P) \le 1$. 此外,由 P 是非零矩阵知, $r(P) \ge 1$. 从而 r(P) = 1. 因此选 (C).

附注 本题也可按以下方法计算.

当 $t \neq 6$ 时, $r(\mathbf{Q}^T) = 2$,所以齐次线性方程组 $\mathbf{Q}^T \mathbf{x} = \mathbf{0}$ 的基础解系中包含 3 - 2 = 1 个线性 无关的解向量. 从而由 $\mathbf{Q}^T \mathbf{P}^T = \mathbf{0}$ 知,非零矩阵 \mathbf{P}^T 的线性无关列向量个数为 1,即得 $r(\mathbf{P}) = r(\mathbf{P}^T) = 1$.

(7)
$$iA_1 = {第一次取到的是一等品},$$

 $A_2 = {第二次取到的是一等品},$

则
$$p = P(A_1A_2 | A_1 \cup A_2) = \frac{P(A_1A_2(A_1 \cup A_2))}{P(A_1 \cup A_2)}$$
, 其中

$$P(A_1A_2(A_1 \cup A_2)) = P(A_1A_2) = P(A_1)P(A_2|A_1) = \frac{4}{10} \times \frac{3}{9} = \frac{2}{15},$$

$$P(A_1 \cup A_2) = 1 - P(\overline{A_1}\overline{A_2}) = 1 - P(\overline{A_1})P(\overline{A_2}|\overline{A_1}) = 1 - \frac{6}{10} \times \frac{5}{9} = \frac{2}{3},$$

所以
$$p = \frac{\frac{2}{15}}{\frac{2}{3}} = \frac{1}{5}$$
 因此选 (A).

附注 题解中的 $P(A, \cup A_s)$ 也可按加法公式计算:

$$\begin{split} P(A_1 \cup A_2) &= P(A_1) + P(A_2) - P(A_1 A_2) = P(A_1) + P(\overline{A_1} A_2) \\ &= P(A_1) + P(\overline{A_1}) P(A_2 | \overline{A_1}) = \frac{4}{10} + \frac{6}{10} \times \frac{4}{9} = \frac{2}{3}. \end{split}$$

显然, 它没有题解中的计算简捷.

(8) 由于 $E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{\lambda}$, $D\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n\lambda^{2}}$, 所以由列维 — 林德柏格中心极限定理得

$$\lim_{n\to\infty} P\left(\frac{\lambda \sum_{i=1}^{n} X_i - n}{\sqrt{n}} \le x\right) = \lim_{n\to\infty} P\left(\frac{\frac{1}{n} \sum_{i=1}^{n} X_i - \frac{1}{\lambda}}{\sqrt{\frac{1}{n\lambda^2}}} \le x\right) = \Phi(x).$$

因此选 (A).

附注 列维—林德伯格中心极限定理是:

设 X_1 , X_2 , …, X_n , …是相互独立同分布的随机变量序列, 它们的数学期望都为 μ , 方 差都为 σ^2 , 则对任意实数x, 有

$$\lim_{n\to\infty} P\left(\frac{\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu}{\sigma/\sqrt{n}} \leq x\right) = \Phi(x),$$

其中, $\Phi(x)$ 是标准正态分布函数.

二、填空题

(9) 由于
$$\lim_{n\to\infty} \frac{1}{n} [(n+1)(n+2)\cdots(n+n)]^{\frac{1}{n}}$$

$$= \lim_{n\to\infty} \left[\left(1 + \frac{1}{n} \right) \left(1 + \frac{2}{n} \right) \cdots \left(1 + \frac{n}{n} \right) \right]^{\frac{1}{n}}$$

$$= e^{\lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + \frac{i}{n}\right)},$$
其中, $\lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + \frac{i}{n}\right) = \int_{0}^{1} \ln(1+x) \, dx = x \ln(1+x) \, \Big|_{0}^{1} - \int_{0}^{1} \frac{x}{1+x} \, dx$

$$= \ln 2 - \int_{0}^{1} \left(1 - \frac{1}{1+x} \right) dx = \ln 2 - \left[x - \ln(1+x) \right] \, \Big|_{0}^{1} = 2 \ln - 1.$$

所以
$$\lim_{n\to\infty}\frac{1}{n}[(n+1)(n+2)\cdots(n+n)]^{\frac{1}{n}}=e^{2\ln 2-1}=\frac{4}{e}.$$

附注 $\ln(1+x)$ 是[0,1] 上的连续函数,而 $\frac{1}{n}\sum_{i=1}^{n}\ln\left(1+\frac{i}{n}\right)$ 是它的一个积分和式,所以有

$$\int_0^{\frac{\pi}{2}} f(x) \cos x dx = \int_0^{\frac{\pi}{2}} x \cos x dx + 2A \int_0^{\frac{\pi}{2}} \cos x dx,$$

$$A = \int_0^{\frac{\pi}{2}} x \cos x dx + 2A. 所以$$

即

$$A = -\int_{0}^{\frac{\pi}{2}} x \cos x dx = -\int_{0}^{\frac{\pi}{2}} x d \sin x = -\left(x \sin x \Big|_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \sin x dx\right) = 1 - \frac{\pi}{2}.$$

于是 $f(x) = x + 2 - \pi$, 从而

$$\int_0^1 f(x) \, \mathrm{d}x = \int_0^1 (x + 2 - \pi) \, \mathrm{d}x = \frac{5}{2} - \pi.$$

附注 本题获解的关键,是注意到 $\int_{-1}^{\frac{\pi}{2}} f(x) \cos x dx$ 是常数 A.

附注 计算 $\frac{dy}{dx}$ 时,要注意 y 是 x 的函数,而 $\frac{dy}{dx}$ 可由方程 $e^x + \sin y = x$ 两边对 x 求导得到.

(12) D 如图答 3-12 阴影部分所示. 它的极坐表示为

$$D = \left\{ (r, \theta) \mid \frac{\sin \theta}{\cos^2 \theta} \le r \le \frac{2}{\cos \theta + \sin \theta}, \ 0 \le \theta \le \frac{\pi}{4} \right\}, \ \text{所以,}$$

$$\iint f(x,y) \, d\sigma \text{ 的先 } r \in \theta \text{ 的二次积分为}$$

$$\iint_{\Omega} f(x,y) d\sigma = \int_{0}^{\frac{\pi}{4}} d\theta \int_{\frac{\sin\theta}{\sin\theta}}^{\frac{2}{\cos\theta\sin\theta}} f(r\cos\theta, r\sin\theta) r dr.$$

附注 顺便写出所给二重积分的先 y 后 x 与先 x 后 y的二次积分:

图答 3-12

$$\iint_{D} f(x,y) d\sigma = \int_{0}^{1} dx \int_{0}^{x^{2}} f(x,y) dy + \int_{1}^{2} dx \int_{0}^{2-x} f(x,y) dy (£ y ∈ x é) = \sum_{0}^{1} dy \int_{-\infty}^{2-y} f(x,y) dx (£ x ∈ y é) = (x,y) dx$$

(13) 由于 $A \sim B$, 所以B有特征值-2, -1, 1, 2, 从而 B^* 有特征值

$$\frac{|\mathbf{B}|}{-2} = -2, \ \frac{|\mathbf{B}|}{-1} = -4, \ \frac{|\mathbf{B}|}{1} = 4, \ \frac{|\mathbf{B}|}{2} = 2, \$$
由此可知 $\mathbf{B}^* \sim \begin{pmatrix} -2 & & \\ & -4 & \\ & & 4 \\ & & 2 \end{pmatrix}.$

所以
$$|\mathbf{B}^* - \mathbf{E}_4| = \begin{vmatrix} -2 & & \\ & -4 & \\ & & 4 \\ & & 2 \end{vmatrix} - \begin{pmatrix} 1 & & \\ & 1 & \\ & & 1 \\ & & & 1 \end{vmatrix} = 45.$$

所以

附注 题解有两点值得注意:

- (I) 设A 是可逆矩阵,有特征值 λ ,则 A^* 对应有特征值 $\frac{|A|}{\lambda}$.
- (II) 设A, B 是相似的n 阶矩阵, 则 $|A E_n| = |B E_n|$.

(14) 由于
$$E(X^3 + 2Y^2) = E(X^3) + 2E(Y^2)$$
, 其中

$$E(X^{3}) = \int_{-\infty}^{+\infty} x^{3} f(x) dx = \int_{0}^{+\infty} x^{3} \cdot 2e^{-2x} dx = -\int_{0}^{+\infty} x^{3} de^{-2x}$$

$$= -\left(x^{3} e^{-2x} \Big|_{0}^{+\infty} - \frac{3}{2} \int_{0}^{+\infty} x^{2} \cdot 2e^{-2x} dx\right) = \frac{3}{2} E(X^{2})$$

$$= \frac{3}{2} \left[DX + (EX)^{2}\right] = \frac{3}{2} \left(\frac{1}{4} + \frac{1}{4}\right) = \frac{3}{4},$$

$$E(Y^{2}) = 0^{2} \times \frac{1}{3} + 1^{2} \times \frac{2}{3} = \frac{2}{3}.$$

所以, $E(X^3 + 2Y^2) = \frac{3}{4} + \frac{2}{3} = \frac{17}{12}$.

附注 在 $E(X^3)$ 的计算中,对于 $\int_0^{+\infty} x^2 \cdot 2e^{-2x} dx$ 不必再作积分计算,这是因为它可按 $\int_0^{+\infty} x^2 \cdot 2e^{-2x} dx = \int_{-\infty}^{+\infty} x^2 f(x) dx = E(X^2) = DX + (EX)^2, 直接得到.$

三、解答题

$$(15) \lim_{x \to 0} \frac{f(\ln(1+x^2) + e^x - x) - f(1)}{\tan x \cdot (\sqrt{1+x} - 1)} = \lim_{x \to 0} \frac{f(\ln(1+x^2) + e^x - x) - f(1)}{\frac{1}{2}x^2}$$

$$= \lim_{x \to 0} \left[\frac{f(1 + (\ln(1+x^2) + e^x - x - 1)) - f(1)}{\ln(1+x^2) + e^x - x - 1} \cdot \frac{\ln(1+x^2) + e^x - x - 1}{\frac{1}{2}x^2} \right]$$

$$= \lim_{x \to 0} \frac{f(1 + (\ln(1+x^2) + e^x - x - 1)) - f(1)}{\ln(1+x^2) + e^x - x - 1} \cdot 2 \lim_{x \to 0} \frac{\ln(1+x^2) + e^x - x - 1}{x^2}$$

其中
$$\lim_{x\to 0} \frac{f(1+(\ln(1+x^2)+e^x-x-1))-f(1)}{\ln(1+x^2)+e^x-x-1}$$

$$\frac{\Rightarrow u = \ln(1+x^2)+e^x-x-1}{\lim_{n\to 0} \frac{f(1+u)-f(1)}{u}} = f'(1) = 1,$$

$$\lim_{x\to 0} \frac{\ln(1+x^2)+e^x-x-1}{x^2} = \left[\lim_{x\to 0} \frac{\ln(1+x^2)}{x^2} + \lim_{x\to 0} \frac{e^x-x-1}{x^2}\right] = 1 + \lim_{x\to 0} \frac{e^x-x-1}{x^2}$$

$$\frac{\text{洛必达法则}}{2x} 1 + \lim_{x\to 0} \frac{e^x-1}{2x} = 1 + \frac{1}{2} = \frac{3}{2}.$$

所以,
$$\lim_{x\to 0} \frac{f(\ln(1+x^2)+e^x-x)-f(1)}{\tan x\cdot (\sqrt{1+x}-1)} = 1\times 2\times \frac{3}{2} = 3.$$

附注 由于 f(u) 仅在点 u=1 处可导,因此对所给极限不能直接应用洛必达法则计算,而只能利用导数定义计算.

(16) 所给微分方程
$$y'' + y = 5e^{2x} + 2\sin x$$
 (1)

对应的齐次微分方程 y'' + y = 0 的通解为

$$Y = C_1 \cos x + C_2 \sin x.$$

式(1)有特解 $\gamma^* = Ae^{2x} + x(B_1\cos x + B_2\sin x)$, 将它代入式(1)得

$$5Ae^{2x} - 2B_1\sin x + 2B_2\cos x = 5e^{2x} + 2\sin x.$$

由此得到 A=1 , $B_1=-1$, $B_2=0$. 所以 $y^*=\mathrm{e}^{2x}-x\mathrm{cos}x$. 从而式(1)的通解为 $y=Y+y^*=$ $C_1\cos x + C_2\sin x + e^{2x} - x\cos x.$

附注 应熟练掌握常系数线性微分方程的解法.

(17) (I) 显然 $\{a_n\}$ 是正项数列,且由

$$a_{n+1} = \frac{1}{3} \left(2a_n + \frac{1}{a_n^2} \right) = \frac{1}{3} \left(a_n + a_n + \frac{1}{a_n^2} \right) \geqslant \sqrt[3]{a_n \cdot a_n \cdot \frac{1}{a_n^2}} = 1 \ (n = 1, 2, \dots)$$

知, $\{a_n\}$ 有下界. 此外,

知, $\{a_n\}$ 单调不增. 从而由数列极限存在准则知, $\lim_{n\to\infty}a_n$ 存在,记为 a. 对递推式两边取极 限得 $a = \frac{1}{3} \left(2a + \frac{1}{a^2} \right)$, 所以 a = 1, 即 $\lim_{n \to \infty} a_n = 1$.

(II) 由于
$$\lim_{n\to\infty} \frac{\frac{a_{n+1}}{2^{n+1}}}{\frac{a_n}{2^n}} = \frac{1}{2} \lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \frac{1}{2}$$
,所以所给幂级数的收敛半径 $R=2$.

当 x = 2, -2, 所给幂级数分别成为 $\sum_{n=0}^{\infty} a_n$ 与 $\sum_{n=0}^{\infty} (-1)^n a_n$, 显然它们的通项极限都不为 零,所以所给幂级数在点 x=2, -2 处都是发散的,故收敛域为(-1, 1).

附注 计算幂级数 $\sum_{n=0}^{\infty} c_n x^n$ 的收敛域步骤如下:

- (I) 计算 $\sum_{n=0}^{\infty} c_n x^n$ 的收敛半径,记为 R.
- (II) 当 $R = +\infty$ 时, $\sum_{n=0}^{\infty} c_n x^n$ 的收敛域为($-\infty$, $+\infty$);当 R = 0 时, $\sum_{n=0}^{\infty} c_n x^n$ 收敛域为

 $\{0\}$; 当 R 为正数时, $\sum_{n=0}^{\infty} c_n x^n$ 的收敛域为(-R,R) 与其收敛端点之并集.

(18) 作辅助函数 F(x) = f(x) - x, 则 F(x) 在[0, 1]上连续, 且 F(0) F(1) =f(0)[f(1)-1]<0,所以由零点定理知,存在 $\xi\in(0,1)$,使得 $F(\xi)=0$,即

$$f(\xi) = \xi. \tag{1}$$

下面用反证法证明式(1)的 ξ 的唯一性. 设另有 $\eta \in (0, 1)$, 使得 $f(\eta) = \eta$, 不妨设 η $<\xi$,则

$$f(\xi) - f(\eta) = \xi - \eta.$$

由拉格朗日中值定理知,存在 $\theta \in (\eta, \xi) \subset (0, 1)$, 使得

$$f'(\theta)(\xi-\eta) = \xi-\eta$$
, $\mathbb{H} f'(\theta) = 1$.

这与题设 $f'(x) \neq 1(x \in (0, 1))$ 矛盾. 因此满足式(1)的 ξ 是唯一的.

附注 唯一性问题,往往用反证法证明.本题就是如此.

(19) 用直线 x + y = 1 将 D 划分成 D_1 与 D_2 两部分(如图答 3-19),则

斯内
$$(x,y) d\sigma = \iint_{D_1} x \ln x d\sigma + \iint_{D_2} \frac{1}{(x^2 + y^2)^{\frac{3}{2}}} d\sigma,$$
其中 $\iint_{D_1} x \ln d\sigma = \int_0^1 dx \int_0^{1-x} x \ln x dy$

$$= \int_0^1 (x - x^2) \ln x dx = \int_0^1 \ln x d\left(\frac{1}{2}x^2 - \frac{1}{3}x^3\right)$$

$$= \left[\ln x \cdot \left(\frac{1}{2}x^2 - \frac{1}{3}x^3\right)\right] \Big|_0^1 - \int_0^1 \left(\frac{1}{2}x - \frac{1}{3}x^2\right) dx$$

$$= -\left(\frac{1}{4}x^2 - \frac{1}{9}x^3\right) \Big|_0^1 = -\frac{5}{36},$$

$$\iint_{D_2} \frac{1}{(x^2 + y^2)^{\frac{3}{2}}} d\sigma \xrightarrow{\frac{\partial \psi}{\partial x}} \int_0^{\frac{\pi}{2}} d\theta \int_{\frac{1}{\cos\theta + \sin\theta}}^{\frac{\pi}{2}\cos\theta + \sin\theta} \frac{1}{r^3} \cdot r dr$$

$$= \int_0^{\frac{\pi}{2}} \left(-\frac{1}{r}\right) \Big|_{\frac{1}{\cos\theta + \sin\theta}}^{\frac{2}{\cos\theta + \sin\theta}} d\theta = \frac{1}{2} \int_0^{\frac{\pi}{2}} (\cos\theta + \sin\theta) d\theta = 1.$$

所以, $\iint_D f(x, y) d\sigma = -\frac{5}{36} + 1 = \frac{31}{36}.$

$$x+y=2$$
,或 $r=\frac{2}{\cos\theta+\sin\theta}$
 $x+y=1$,或 $r=\frac{1}{\sin\theta+\cos\theta}$

图答 3-19

附注 $D_1 与 D_2$ 都是角域的一部分,但是 $\iint_{D_1} x \ln x d\sigma$ 按直角坐标计算,而 $\iint_{D_2} \frac{1}{(x^2 + y^2)^{\frac{3}{2}}} d\sigma$ 按极坐标计算,这主要是由于后者的被积函数是 $x^2 + y^2$ 的函数.

$$(20) \ \text{h} \mp \begin{pmatrix} 1 & 1 & -2 & 1 \\ 1 & -2 & 1 & 2 \\ a & b & c & 0 \end{pmatrix} \xrightarrow{\text{disfive}} \begin{pmatrix} 1 & 1 & -2 & 1 \\ 0 & -3 & 3 & 1 \\ 0 & b - a & c + 2a & -a \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} 1 & 1 & -2 & 1 \\ 0 & 1 & -1 & -\frac{1}{3} \\ 0 & b - a & c + 2a & -a \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & -1 & \frac{4}{3} \\ 0 & 1 & -1 & -\frac{1}{3} \\ 0 & 0 & a + b + c & -\frac{4}{3}a + \frac{1}{3}b \end{pmatrix},$$

所以由题设知,
$$\begin{cases} a+b+c=0,\\ -\frac{4}{3}a+\frac{1}{3}b=0, & \text{即 } a=2, b=8, c=-10. \\ a=2 \end{cases}$$
 此时所给方程组与(\mathbb{I})

$$\left(\frac{4}{3}, -\frac{1}{3}, 0\right)^{T}$$
, 所以(I)的通解为

$$(x_1, x_2, x_3)^T = C(1, 1, 1)^T + \left(\frac{4}{3}, -\frac{1}{3}, 0\right)^T$$
 (其中 C 是任意常数),

对上述算得的 a, b, c 知, $\xi = (2, 8, -10)^{T}$.

设 ξ 关于向量组 η_1 , η_2 , η_3 的线性表示式为

$$\boldsymbol{\xi} = y_1 \boldsymbol{\eta}_1 + y_2 \boldsymbol{\eta}_2 + y_3 \boldsymbol{\eta}_3 = (\boldsymbol{\eta}_1, \ \boldsymbol{\eta}_2, \ \boldsymbol{\eta}_3) \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} (其中矩阵(\boldsymbol{\eta}_1, \ \boldsymbol{\eta}_2, \ \boldsymbol{\eta}_3) 可逆),$$

即

$$\begin{pmatrix} 2 \\ 8 \\ -10 \end{pmatrix} = (\boldsymbol{\eta}_1, \ \boldsymbol{\eta}_2, \ \boldsymbol{\eta}_3) \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix},$$

所以.

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = (\boldsymbol{\eta}_1, \ \boldsymbol{\eta}_2, \ \boldsymbol{\eta}_3)^{-1} \begin{pmatrix} 2 \\ 8 \\ -10 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ -1 & 1 & 0 \end{pmatrix}^{-1} \begin{pmatrix} 2 \\ 8 \\ -10 \end{pmatrix}$$
$$= \begin{pmatrix} -1 & 1 & -2 \\ -1 & 1 & -1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 8 \\ -10 \end{pmatrix} = \begin{pmatrix} 26 \\ 16 \\ -8 \end{pmatrix}.$$

因此所求的线性表示为

$$\xi = 26\eta_1 + 16\eta_2 - 8\eta_3$$
.

附注 由所给方程组有两个不同解可得,这个方程组对应的齐次线性方程有非零解,所以系数矩阵的秩≤2,此外由系数矩阵本身可知,其秩≥2. 因此系数矩阵的秩 = 2. 从而有

$$\begin{cases} a+b+c=0, \\ -\frac{4}{3}a + \frac{1}{2}b = 0, \\ a = 2. \end{cases}$$

(21) 由于
$$g(x_1, x_2, x_3) = (x_1 - x_2)^2 + 3x_2^2 + x_3^2$$
 在
$$\begin{cases} y_1 = x_1 - x_2, \\ y_2 = \sqrt{3}x_2, & \text{即可逆线性变换} \\ y_3 = x_3, \end{cases}$$

$$\begin{cases} x_1 = y_1 + \frac{1}{\sqrt{3}} y_2, \\ x_2 = \frac{1}{\sqrt{3}} y_2, & \text{下成为 } y_1^2 + y_2^2 + y_3^2, & \text{所以 } g(x_1, x_2, x_3) \\ x_3 = y_3 & \text{ 下成为 } y_3 \end{cases}$$

下化成的规范形为 $y_1^2 + y_2^2 + y_3^2$.

由于 $f(x_1, x_2, x_3)$ 是非正定二次型,所以,它的矩阵

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & c \end{pmatrix}$$

的顺序主子式不全为正,故有 $c \le 2$. 从而由题设 $c \ge 2$ 得 c = 2. 于是 $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}$.

由于
$$|\lambda E_3 - A| = \begin{vmatrix} \lambda - 1 & 0 & -1 \\ 0 & \lambda - 1 & -1 \\ -1 & -1 & \lambda - 2 \end{vmatrix} = (\lambda - 1)^2 (\lambda - 2) - 2(\lambda - 1) = \lambda (\lambda - 1) (\lambda - 1)$$

3), 所以 A 的特征值 $\lambda = 0, 1, 3$

设**A** 的对应 $\lambda = 0$ 的特征向量为 $\boldsymbol{\xi} = (a_1, a_2, a_3)^{\mathrm{T}}$,则它满足

$$\begin{pmatrix} -1 & 0 & -1 \\ 0 & -1 & -1 \\ -1 & -1 & -2 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \mathbf{0}, \quad \mathbb{R} \mathbb{P} \begin{cases} a_1 & +a_3 = 0, \\ a_2 + a_3 = 0. \end{cases}$$

可取它的基础解系数为 ξ , 即 $\xi = (-1, -1, 1)^T$

设 \boldsymbol{A} 的对应 $\boldsymbol{\lambda} = 1$ 的特征向量为 $\boldsymbol{\eta} = (b_1, b_2, b_3)^{\mathrm{T}}$,则它满足

$$\begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & -1 \\ -1 & -1 & -1 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \mathbf{0}, \quad \mathbb{BI} \begin{Bmatrix} b_3 = 0, \\ b_1 + b_2 + b_3 = 0, \end{Bmatrix}$$

可取它的基础解系为 η , 即 $\eta = (1, -1, 0)^{T}$

设 \mathbf{A} 的对应 $\lambda = 3$ 的特征量为 $\mathbf{\zeta} = (c_1, c_2, c_3)^{\mathrm{T}}$,则由 \mathbf{A} 是实对称矩阵知

$$\begin{cases} (\boldsymbol{\zeta}, \ \boldsymbol{\xi}) = 0, \\ (\boldsymbol{\xi}, \ \boldsymbol{\eta}) = 0, \end{cases} \begin{vmatrix} -c_1 - c_2 + c_3 = 0, \\ c_1 - c_2 = 0, \end{vmatrix}$$

可取它的基础解系为 ζ , 即 $\zeta = (1, 1, 2)^{T}$.

显然, ξ , η , ζ 是正交向量组, 现将它们单位化:

$$\boldsymbol{\xi}^{0} = \frac{\boldsymbol{\xi}}{\|\boldsymbol{\xi}\|} = \left(-\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)^{T},$$

$$\boldsymbol{\eta}^{0} = \frac{\boldsymbol{\eta}}{\|\boldsymbol{\eta}\|} = \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right)^{T},$$

$$\boldsymbol{\xi}^{0} = \frac{\boldsymbol{\zeta}}{\|\boldsymbol{\zeta}\|} = \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right)^{T}.$$

 $(x_1, x_2, x_3)^{\mathrm{T}}, \mathbf{z} = (z_1, z_2, z_3)^{\mathrm{T}})$ 将 $f(x_1, x_2, x_3)$ 化为标准形 $z_2^2 + 3z_3^3$.

附注 由于 $\varphi(x_1, x_2, x_3) = (x_1, x_2, x_3)^T A(x_1, x_2, x_3) (A$ 是实对称矩阵) 为正定二次型的充分必要条件是它的矩阵 A 的顺序主子式都大于零. 故当题中 $f(x_1, x_2, x_3)$ 不是正

定二次型时,它的矩阵
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & c \end{pmatrix}$$
的顺序主子式 1, $\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1$, $|A| = c - 2$ 不全大于

零. 于是有 $c \leq 2$

(22) 由于
$$f(x, y) = \begin{cases} f_Y(y)f_{X+Y}(x+y), & f_Y(y) > 0, f_{X+Y}(x+y) > 0, \\ 0, & \text{其他}, \end{cases}$$

$$= \begin{cases} 5y^4 \cdot \frac{3x^2}{y^3}, & 0 < y < 1, 0 < x < y \\ 0, & \text{其他}, \end{cases}$$

所以,
$$f_X(x) = \int_{-\infty}^{+\infty} f(x,y) \, \mathrm{d}y = \begin{cases} \int_x^1 15x^2y \, \mathrm{d}y, & 0 < x < 1, \\ 0, & 其他 \end{cases}$$
$$= \begin{cases} \frac{15}{2}(x^2 - x^4), & 0 < x < 1, \\ 0, & 其他. \end{cases}$$

于是由
$$EX = \int_{-\infty}^{+\infty} x f_X(x) \, dx = \int_0^1 x \cdot \frac{15}{2} (x^2 - x^4) \, dx = \frac{5}{8}$$
 得
$$DX = E(X^2) - (EX)^2 = \int_{-\infty}^{+\infty} x^2 f_X(x) \, dx - \left(\frac{5}{8}\right)^2$$

$$= \int_0^1 x^2 \cdot \frac{15}{2} (x^2 - x^4) \, dx - \frac{25}{64} = \frac{3}{7} - \frac{25}{64} = \frac{17}{448}.$$
此外,由 $EY = \int_{-\infty}^{+\infty} y f_Y(y) \, dy = \int_0^1 5 y^5 \, dy = \frac{5}{6}$ 得
$$Cov(X, Y) = E(XY) - EX \cdot EY$$

$$= \iint_{x0y \to m} xyf(x,y) d\sigma - \frac{5}{8} \times \frac{5}{6}$$

$$= \iint_{\Delta} xy \cdot 15x^2y d\sigma - \frac{25}{48} \quad (\sharp \oplus \Delta = \{(x,y) \mid 0 < x < y < 1\})$$

$$= \int_{0}^{1} dx \int_{x}^{1} 15x^3y^2 dy - \frac{25}{48} = \frac{15}{28} - \frac{25}{48} = \frac{5}{336}$$

附注 当已知 $f_y(y)$, $f_{x+y}(x+y)$ 时, 可按以下公式计算f(x, y):

$$f(x, y) = \begin{cases} f_Y(y)f_{X+Y}(x \mid y), & f_Y(y) > 0, f_{X+Y}(x \mid y) > 0, \\ 0, & \text{ 其他;} \end{cases}$$

同样当已知 $f_X(x)$, $f_{Y|X}$ 时, 可按以下公式计算f(x, y):

$$f(x, y) = \begin{cases} f_X(x)f_{Y \mid X}(y \mid x), & f_X(x) > 0, f_{Y \mid X}(y \mid x) > 0, \\ 0, & \text{ 其他.} \end{cases}$$

(23) 记Z的分布函数为F(z). 则

$$\begin{split} F(z) &= P(Z \leqslant z) = P(XY \leqslant z) \\ &= P(Y = -1)P(X \geqslant -z \mid Y = -1) + P(Y = 1)P(X \leqslant z \mid Y = 1) \\ &= \frac{1}{2}P(X \geqslant -z) + \frac{1}{2}P(X \leqslant z)(\text{利用 } X \leftrightarrows Y \text{相互独立}) \\ &= \begin{cases} \frac{1}{2}\int_{-z}^{+\infty} \lambda \, \mathrm{e}^{-\lambda x} \mathrm{d}x, & z \leqslant 0, \\ \frac{1}{2}\int_{0}^{+\infty} \lambda \, \mathrm{e}^{-\lambda x} \mathrm{d}x + \frac{1}{2}\int_{0}^{z} \lambda \, \mathrm{e}^{-\lambda x} \mathrm{d}x, & z > 0. \end{cases} \end{split}$$

所以,Z的概率密度为

$$f(z) = \frac{\mathrm{d}F(z)}{\mathrm{d}z} = \begin{cases} \frac{1}{2}\lambda e^{\lambda z}, & z \leq 0, \\ \frac{1}{2}\lambda e^{-\lambda z}, & z > 0 \end{cases} = \frac{1}{2}\lambda e^{-\lambda + z + (-\infty < z < +\infty)}.$$

由此得到似然函数

$$L(\lambda) = \frac{1}{2} \lambda e^{-\lambda |z_1|} \cdot \frac{1}{2} \lambda e^{-\lambda |z_2|} \cdots \frac{1}{2} \lambda e^{-\lambda |z_n|}$$
$$= \frac{1}{2^n} \lambda^n e^{-\lambda \sum_{i=1}^n |z_i|},$$

$$\mathbb{E} \int \ln L(\lambda) = \ln \frac{1}{2^n} + n \ln \lambda - \lambda \sum_{i=1}^n |z_i|.$$

上式两边对 λ 求导得

$$\frac{\mathrm{dln}L(\lambda)}{\mathrm{d}\lambda} = \frac{n}{\lambda} - \sum_{i=1}^{n} |z_i|,$$

于是由
$$\frac{\mathrm{dln}L(\lambda)}{\mathrm{d}\lambda}$$
 = 0 得 λ 的最大似然估计值为 $\hat{\lambda} = \frac{n}{\sum_{i=1}^{n} \mid z_i \mid}$.

附注 应熟练掌握参数点估计的两种方法:矩估计法与最大似然估计法.

模拟试题(四)解答

一、选择题

答案	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	С	A	С	A	С	В	В	С

$$(1) f'(1) = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{g(x) \sin \frac{\pi}{2x}}{x - 1}$$
$$= \lim_{x \to 1} \frac{g(x)}{x - 1} = \lim_{x \to 1} \frac{g(x) - g(1)}{x - 1} = g'(1) = -1.$$

因此选(C)

附注 计算分段函数在分段点处的导数,总是从导数定义出发.

(2) 由于

$$|x| < 1 \text{ Hz}, \lim_{n \to \infty} \frac{x^{n+1} - (x^2 - 1)\sin\pi x}{x^n + x^2 - 1} = -\sin\pi x;$$

$$|x| > 1 \text{ Hz}, \lim_{n \to \infty} \frac{x^{n+1} - (x^2 - 1)\sin\pi x}{x^n + x^2 - 1} = x;$$

$$x = 1 \text{ Hz}, \lim_{n \to \infty} \frac{x^{n+1} - (x^2 - 1)\sin\pi x}{x^n + x^2 - 1} = 1;$$

$$x = -1 \text{ Hz}, \lim_{n \to \infty} \frac{x^{n+1} - (x^2 - 1)\sin\pi x}{x^n + x^2 - 1} = -1,$$

所以, $y = f(x) = \begin{cases} -\sin \pi x, & |x| < 1, \\ x, & |x| \ge 1 \end{cases}$ 的图形如图答 4-2 所

示,由图可知,f(x)的极大值为 $f\left(-\frac{1}{2}\right)=1$,极小值为

$$f\left(\frac{1}{2}\right) = -1$$
. 因此选(A)

附注 画图得到正确选项,是解选择题常用的方法之一.

(3) 由于
$$\varphi(x,y) = \int_{0}^{\frac{y^{2}}{2}} du \int_{0}^{u} \frac{1}{y^{2}} f\left(\frac{v}{y}\right) dv$$

$$= \frac{v}{y} \int_{0}^{\frac{y^{2}}{2}} \frac{1}{y} du \int_{0}^{\frac{u}{y}} f(t) dt = \frac{v}{y} \int_{0}^{\frac{y}{2}} dz \int_{0}^{z} f(t) dt,$$

从而
$$\frac{\partial^2 \varphi}{\partial \gamma^2} = \frac{1}{x^4} f\left(\frac{y}{x^2}\right)$$
. 因此选(C).

图答 4-2

附注 要对 $\int_0^{\frac{v^2}{x^2}} du \int_0^u \frac{1}{y^2} f\left(\frac{v}{y}\right) dv$ 关 y 求偏导数,应首先把被积函数 $\int_0^u \frac{1}{y^2} f\left(\frac{v}{y}\right) dv$ 中的 y 移 到外层积分限或移出外层积分号. 本题题解就是如比处理的.

(4) 由题设知 y(0) = 1, $y'(0) = \frac{1}{2}$.

对于选项(A)的 $y = \sqrt{1+x}$, 显然它有 y(0) = 1, $y'(0) = \frac{1}{2}$, 且满足 $yy'' + (y')^2 = 0$, 并且 $y = \sqrt{1+x}$ 的定义域为 $[-1, +\infty)$. 因此选(A).

附注 $y = \sqrt{1+x}$ $(x \ge -1)$ 也可直接计算得到, 具体如下:

 $yy'' + (y')^2 = (yy')'$,所以由所给微分方程得 $yy' = C_1$,将 y(0) = 1, $y'(0) = \frac{1}{2}$ 代入得 $C_1 = \frac{1}{2}$. 从而 $yy' = \frac{1}{2}$,即 $\frac{\mathrm{d}y^2}{\mathrm{d}x} = 1$. 所以 $y^2 = x + C_2$,将 y(0) = 1 代入得 $C_2 = 1$. 因此, $y^2 = x + 1$,即 $y = \sqrt{1+x}$ (舍去了不合题意的 $y = -\sqrt{1+x}$).由于 $\sqrt{1+x}$ 的定义域为[-1, $+\infty$).所以所求的 y = y(z)为 $y = \sqrt{1+x}(x \ge -1)$.

(5) 由于选项(C)与(D)有且仅有一个是正确的,因此只要考虑这两个选项即可.由 $r(B) = r(A) \le n < n + 1$ 知, By = 0 有非零解.因此选(C).

附注 设A是 $m \times n$ 矩阵,则

- r(A) = n 是齐次线性方程组 Ax = 0 只有零解的充分必要条件;
- r(A) < n 是齐次线性方程组 Ax = 0 有非零解的充分必要条件.

(6)
$$A$$
 有特征值 -1, 1, 2. 由 $\begin{pmatrix} \lambda + 1 & 0 & 0 \\ 0 & \lambda - 1 & -2 \\ 0 & -2 & \lambda - 1 \end{pmatrix} = (\lambda - 3)(\lambda + 1)^2$ 知,选项(A)的

矩阵 $\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}$ 有特征值 $\lambda = 3$, -1(二重), 它与 A 有不同的特征值, 故不与 A 相似, 从

而不能选(A).

对选项(B)的矩阵
$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & \frac{3}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & \frac{3}{2} \end{pmatrix}, \quad \text{由} \begin{pmatrix} \lambda+1 & 0 & 0 \\ 0 & \lambda-\frac{3}{2} & -\frac{1}{2} \\ 0 & -\frac{1}{2} & \lambda-\frac{3}{2} \end{pmatrix} = (\lambda+1)(\lambda-1)(\lambda-2)$$

知,它有特征值 -1, 1, 2, 即与 A 有相同的特征值,所以这个实对称矩阵与 A 相似且合同. 因此选(B).

附注 (I) 设 A 与 B 都 是 n 阶矩阵,则 A 与 B 相似的充分必要条件有以下两类:

- (i)存在 n 阶可逆矩阵 P, 使得 $P^{-1}AP = B$;
- (ii) A 与 B 有相同的特征多项式,或者 A 与 B 有相同的特征值 $(n_i$ 重以 n_i 个计算).
- (Π) 设A与B都是n阶实对称矩阵,则A与B合同的充分必要条件有以下三类:

- (i) 存在 n 阶可逆矩阵 C, 使得 $C^{T}AC = B$:
- (ii) 二次型 $\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} = \mathbf{x}^{\mathsf{T}} \mathbf{B} \mathbf{x}$ (其中 $\mathbf{x} = (x_1, x_2, \dots, x_n)^{\mathsf{T}}$) 有相同的规范形,或者二次型 $\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} = \mathbf{x}^{\mathsf{T}} \mathbf{B} \mathbf{x}$ 有相同的正惯性指数,也有相同的负惯性指数.
 - (iii) A 与 B 有相同的特征值(n_i 重的以 n_i 个计算),
 - (7) 记 Y 的分布函数为 $F_{\nu}(\gamma)$,则

$$\begin{split} F_{Y}(y) &= P(Y \leqslant y) = P\bigg(\max \bigg\{X,\ X^{2},\ \frac{1}{2}\bigg\} \leqslant y\bigg) \\ &= P\bigg(X \leqslant y,\ X^{2} \leqslant y,\ \frac{1}{2} \leqslant y\bigg) \\ &= \begin{cases} 0, & y < \frac{1}{2}, \\ P(X \leqslant y,\ -\sqrt{y} \leqslant X \leqslant \sqrt{y}), & y \geqslant \frac{1}{2} \end{cases} \\ 0, & y < \frac{1}{2}, \end{cases} \\ &= \begin{cases} 0, & y < \frac{1}{2}, \\ P(-\sqrt{y} \leqslant X \leqslant y), & \frac{1}{2} \leqslant y \leqslant 1, \\ P(-\sqrt{y} \leqslant X \leqslant \sqrt{y}), & y > 1 \end{cases} \\ 0, & y < \frac{1}{2}, \end{cases} \\ &= \begin{cases} 0, & y < \frac{1}{2}, \\ \int_{0}^{y} 2e^{-2x} dx, & \frac{1}{2} \leqslant y \leqslant 1, \\ \int_{0}^{\sqrt{y}} 2e^{-2x} dx, & y > 1 \end{cases} \\ &= \begin{cases} 0, & y < \frac{1}{2}, \\ 1 - e^{-2y}, & \frac{1}{2} \leqslant y < 1, \\ 1 - e^{-2\sqrt{y}}, & y \geqslant 1. \end{cases} \end{split}$$

所以, Y的分布函数 $F_Y(y)$ 只有一个间断点 $y = \frac{1}{2}$. 因此选(B).

附注 由于
$$\sqrt{y} = \begin{cases} > y, & \frac{1}{2} \le y < 1, \\ \le y, & y \ge 1, \end{cases}$$

所以 $P(X \le y, -\sqrt{y} \le X \le \sqrt{y}) = \begin{cases} P(-\sqrt{y} \le X \le y), & \frac{1}{2} \le y < 1, \\ P(-\sqrt{y} \le X \le \sqrt{y}), & y \ge 1. \end{cases}$

(8) 记 $U=X_1+X_2+X_5+X_6$, $V=X_3+X_4-X_7-X_8$, 则 $U\sim N(0,4\sigma^2)$, $V\sim N(0,4\sigma^2)$, 所以, $\frac{U}{2\sigma}$, 型相互独立,且都服从 N(0,1). 由此得到

$$\frac{(X_1 + X_2 + X_5 + X_6)^2}{(X_3 + X_4 - X_7 - X_8)^2} = \frac{\frac{U^2}{4\sigma^2}}{\frac{V^2}{4\sigma^2}} \sim F(1, 1).$$
 因此选(C).

附注 $F(n_1, n_2)$ 分布定义如下:

设 $X \sim \chi^2(n_1)$, $Y \sim \chi^2(n_2)$, 且X 与 Y相互独立, 则 $\frac{X}{Y} \sim F(n_1, n_2)$.

二、填空题

(9) 由
$$2 = \lim_{x \to 0} \frac{[f(x) + 1]x^2}{x - \sin x} = \lim_{x \to 0} \frac{\frac{f(x) + 1}{x}}{\frac{x - \sin x}{x^3}}$$
 知
$$\lim_{x \to 0} \frac{f(x) + 1}{x} = 2 \lim_{x \to 0} \frac{x - \sin x}{x^3} = \frac{\text{洛必达法则}}{2} 2 \lim_{x \to 0} \frac{1 - \cos x}{3x^2} = \frac{1}{3},$$

所以, f(0) = -1, $f'(0) = \frac{1}{3}$. 因此所求的切线方程为

$$y-(-1)=\frac{1}{3}(x-0)$$
, $\mathbb{F} y=\frac{1}{3}x-1$.

附注 设 f(x) 在点 x_0 处连续,且 $\lim_{x\to 0} \frac{f(x)-k}{x-x_0} = A(A, k 是常数),则 <math>f(x_0) = k$, $f'(x_0) = A$.

(10) 由
$$\arcsin x = \frac{x}{\sqrt{1 - \xi^2(x)}}$$
 得 $\xi(x) = \frac{\sqrt{\arcsin^2 x - x^2}}{\arcsin x}$,所以
$$\lim_{x \to 0^+} \frac{\xi(x)}{x} = \lim_{x \to 0^+} \frac{\sqrt{\arcsin^2 x - x^2}}{x \arcsin x} \stackrel{\diamondsuit{t = \arcsin x}}{= \arcsin x} \lim_{t \to 0^+} \frac{\sqrt{t^2 - \sin^2 t}}{t \sin t}$$

$$= \lim_{t \to 0^+} \sqrt{\frac{t + \sin t}{t}} \cdot \lim_{t \to 0^+} \sqrt{\frac{t - \sin t}{t^3}},$$
其中, $\lim_{t \to 0^+} \sqrt{\frac{t + \sin t}{t}} = \sqrt{\lim_{t \to 0^+} \frac{t + \sin t}{t}} = \sqrt{2},$

其中,
$$\lim_{t \to 0^{+}} \sqrt{\frac{t - \sin t}{t}} = \sqrt{\lim_{t \to 0^{+}} \frac{t - \sin t}{t}} = \sqrt{2}$$
,
$$\lim_{t \to 0^{+}} \sqrt{\frac{t - \sin t}{t^{3}}} = \sqrt{\lim_{t \to 0^{+}} \frac{t - \sin t}{t^{3}}} \frac{$$
洛必达法则
$$\sqrt{\lim_{t \to 0^{+}} \frac{1 - \cos t}{3t^{2}}} = \frac{1}{\sqrt{6}}$$
,

所以,
$$\lim_{x\to 0^+} \frac{\xi(x)}{x} = \sqrt{2} \cdot \frac{1}{\sqrt{6}} = \frac{1}{\sqrt{3}}$$
.

附注 只有对 $x \in (0, 1)$,存在唯一的 ξ 时, ξ 才是 x 的函数,才可以写成 $\xi(x)$. 下面证明上述的 ξ 是唯一的.

对函数 $\arcsin t$ 在 $[0, x](x \in (0, 1))$ 上应用拉格朗日中值定理,如果在(0, x)内存在两个 ξ_1, ξ_2 ,使得

$$\arcsin x = \frac{x}{\sqrt{1 - \xi_1^2}}, \quad \arcsin x = \frac{x}{\sqrt{1 - \xi_2^2}}$$

则 $\xi_1 = \xi_2$. 由此证明了唯一性.

$$(11) \int_{-1}^{\pi} e^{2f(x)} \sin x dx = \int_{-1}^{1} e^{2f(x)} \sin x dx + \int_{1}^{\pi} e^{2f(x)} \sin x dx$$

$$= \int_{-1}^{1} e^{\cos x} \sin x dx + \int_{1}^{\pi} x^{2} \sin x dx = -\int_{1}^{\pi} x^{2} d\cos x$$

$$= -\left(x^{2} \cos x \Big|_{1}^{\pi} - \int_{1}^{\pi} 2x \cos x dx\right)$$

$$= \pi^{2} + \cos 1 + \int_{1}^{\pi} 2x d\sin x$$

$$= \pi^{2} + \cos 1 + \left(2x \sin x \Big|_{1}^{\pi} - 2\int_{1}^{\pi} \sin x dx\right)$$

$$= \pi^{2} - \cos 1 - 2\sin 1 - 2.$$

附注 由于 $e^{\cos x} \sin x$ 是奇函数,所以题解中 $\int_{-1}^{1} e^{\cos x} \sin x dx = 0$.

(12) 由于
$$z'_{xy} = \cos(xy) \cdot y + \varphi'_{u} + \varphi'_{v} \cdot \frac{1}{y}$$
, 所以
$$z''_{xy} = -\sin(xy) \cdot xy + \cos(xy) + \varphi''_{uv} \cdot \left(-\frac{x}{y^{2}}\right) + \varphi''_{vv} \cdot \left(-\frac{x}{y^{2}}\right) \cdot \frac{1}{y} + \varphi'_{v} \cdot \left(-\frac{1}{y^{2}}\right)$$

$$= -xy\sin(xy) + \cos(xy) - \frac{x}{y^{2}} \left(\varphi''_{uv} + \frac{1}{y}\varphi''_{vv}\right) - \frac{1}{y^{2}}\varphi'_{v}$$

$$= -xy\sin(xy) + \cos(xy) - \frac{1}{y^{2}}\varphi'_{v}.$$

附注 要熟练掌握二元复合函数的1、2 阶偏导数的计算.

(13) 由于
$$r(\mathbf{A}) = r(\mathbf{AB}) \leq r(\mathbf{B})$$
,即 $r(\mathbf{A}) \leq r(\mathbf{B})$. (1) 此外,由 $r(\mathbf{A}) = n$ 及 $r(\mathbf{A}) + r(\mathbf{B}) - n \leq r(\mathbf{AB}) \leq r(\mathbf{A})$ 得 $r(\mathbf{B}) \leq r(\mathbf{A})$. (2) 所以 $r(\mathbf{B}) = r(\mathbf{A}) = n$. 从而 $r(\mathbf{B}^*) = n$.

附注 题解中利用了关于矩阵秩的以下结论:

(I) 设A 是 $m \times n$ 矩阵,B 是 $n \times l$ 矩阵,则 $r(A) + r(B) - n \le r(AB) \le \min \{r(A), r(B)\}.$

(Ⅱ)设A是n阶矩阵,则

$$r(\mathbf{A}^*) = \begin{cases} n, & r(\mathbf{A}) = n, \\ 1 & r(\mathbf{A}) = n - 1, \\ 0 & r(\mathbf{A}) < n - 1. \end{cases}$$

(14) 由题设知, X 与 Y 相互独立, 从而 X 与 Y^2 相互独立, 且 X 的概率密度为 $f_{X}(x)$

$$= \begin{cases} e^{-x}, & x > 0, \\ 0, & \text{其他}, \end{cases} Y 的概率密度为 f_Y(y) = \begin{cases} 2e^{-2y}, & y > 0, \\ 0, & \text{其他}. \end{cases}$$
 所以 $D(X + Y^2) = DX + D(Y^2)$, 其中
$$DX = 1, \ EY = \frac{1}{2}, \ DY = \frac{1}{4}, \ E(Y^2) = DY + (EY)^2 = \frac{1}{2}, \ \text{并且}$$

$$D(Y^{2}) = E(Y^{4}) - [E(Y^{2})]^{2} = \int_{0}^{+\infty} y^{4} \cdot 2e^{-2y} dy - \left(\frac{1}{2}\right)^{2}$$

$$= -\int_{0}^{+\infty} y^{4} de^{-2y} - \frac{1}{4}$$

$$= -\left(y^{4}e^{-2y}\Big|_{0}^{+\infty} - \int_{0}^{+\infty} y^{3} \cdot 4e^{-2y} dy\right) - \frac{1}{4}$$

$$= -2\int_{0}^{+\infty} y^{3} de^{-2y} - \frac{1}{4}$$

$$= -2\left(y^{3}e^{-2y}\Big|_{0}^{+\infty} - \int_{0}^{+\infty} 3y^{2} \cdot e^{-2y} dy\right) - \frac{1}{4}$$

$$= 3\int_{0}^{+\infty} y^{2} \cdot 2e^{-2y} dy - \frac{1}{4} = 3E(Y^{2}) - \frac{1}{4}$$

$$= 3 \times \frac{1}{2} - \frac{1}{4} = \frac{5}{4}.$$

因此, $D(X+Y^2)=1+\frac{5}{4}=\frac{9}{4}$.

附注 记住: 服从参数为 $\lambda(\lambda > 0)$ 的指数分布的随机变量 X 的概率密度 $f_{x}(x)$

$$= \begin{cases} \lambda e^{-\lambda x}, & x > 0, EX = \frac{1}{\lambda}, DX = \frac{1}{\lambda^2}, E(X^2) = \frac{2}{\lambda^2}. \end{cases}$$

三、解答题

(15) 由于
$$f(x) = \begin{cases} x-1, & x \le -1, \\ 3x+1, & x > -1 \end{cases}$$
,所以
$$\int f(x) \, \mathrm{d}x = \int_{-1}^{x} f(t) \, \mathrm{d}t + C,$$
其中, $\int_{-1}^{x} f(t) \, \mathrm{d}t = \begin{cases} \int_{-1}^{x} (t-1) \, \mathrm{d}t, & x \le -1, \\ \int_{-1}^{x} (3t+1) \, \mathrm{d}t, & x > -1, \end{cases} = \begin{cases} \frac{1}{2}x^2 - x - \frac{3}{2}, & x \le -1, \\ \frac{3}{2}x^2 + x - \frac{1}{2}, & x > -1. \end{cases}$
因此 $\int f(x) \, \mathrm{d}x = \begin{cases} \frac{1}{2}x^2 - x - \frac{3}{2} + C, & x \le -1, \\ \frac{3}{2}x^2 + x - \frac{1}{2} + C, & x > -1. \end{cases}$

附注 分段函数 f(x)的不定积分,应用以下公式计算是比较快捷的:

$$\int f(x) dx = \int_{x_0}^x f(t) dt + C,$$

其中 x_0 是f(x)是最靠左边的分段点.

(16)
$$ext{d} ext{$ \mathcal{F}$ } y(t) = e^{-\int_{-1}^{2} dt} \left(C + \int_{-1}^{2} e^{-t} \cdot e^{\int_{-1}^{2} dt} dt \right) = C e^{-2t} + e^{-t}.$$

将
$$y(0) = 0$$
 代入上式得 $C = -1$. 所以 $y(t) = -e^{-2t} + e^{-t} (t \ge 0)$.
当 $t < 0$ 时, $f'(t) = (2t^2 + \sin t)' = 4t + \cos t$,

当 t > 0 时, $f'(t) = y'(t) = (-e^{2t} + e^{-t})' = 2e^{-2t} - e^{-t}$. 由于 $\lim_{t \to 0^{-t}} f'(t) = 1$, $\lim_{t \to 0^{+t}} f'(t) = 1$, 所以f'(0) = 1. 因此

$$f'(t) = \begin{cases} 4t + \cos t, & t < 0, \\ 2e^{-2t} - e^{-t}, & t \ge 0. \end{cases}$$

由此可得,t < 0 时, $f''(t) = 4 - \sin t$; t > 0 时, $f''(t) = -4e^{-2t} + e^{-t}$. 由于 $\lim_{t \to 0^{-t}} f''(t) = 4$, $\lim_{t \to 0^{+t}} f''(t) = -3$,所以f''(0)不存在,因此

$$f''(t) = \begin{cases} 4 - \sin t, & t < 0, \\ -4e^{-2t} + e^{-t}, & t > 0. \end{cases}$$

附注 f'(0) = 1 与 f''(0) 不存在也可证明如下:

由于
$$f(t) = \begin{cases} 2t^2 + \sin t, & t < 0, \text{ 所证} \\ -e^{-2t} + e^{-t}, & t \ge 0, \end{cases}$$

$$f'_{-}(0) = \lim_{t \to 0^{-}} \frac{f(t) - f(0)}{t} = \lim_{t \to 0^{-}} \frac{2t^2 + \sin t}{t} = 1,$$

$$f'_{+}(0) = \lim_{t \to 0^{+}} \frac{f(t) - f(0)}{t} = \lim_{t \to 0^{+}} \frac{-e^{-2t} + e^{-t}}{t} = 1,$$

从而f'(0) = 1.

由于
$$f'(t) = \begin{cases} 4t + \cos t, & t < 0, \\ 2e^{-2t} - e^{-t}, & t \ge 0, \end{cases}$$

$$f''_{-}(0) = \lim_{t \to 0^{-}} \frac{f'(t) - f'(0)}{t} = \lim_{t \to 0^{+}} \frac{4t + \cos t - 1}{t} = 4,$$

$$f''_{+}(0) = \lim_{t \to 0^{+}} \frac{f'(t) - f'(0)}{t} = \lim_{t \to 0^{+}} \frac{2e^{-2t} - e^{-t} - 1}{t} = -3.$$

从而f''(0)不存在.

(17) 令
$$u = x - t$$
, 则 $\int_0^x f(x - t) dt = \sin x \cdot f(x)$ 成为
$$\int_0^x f(u) du = \sin x \cdot f(x). \tag{1}$$

式(1)的两边对x求导得

$$f(x) = \sin x \cdot f'(x) + \cos x \cdot f(x),$$

即 $f'(x) + \frac{\cos x - 1}{\sin x} f(x) = 0$ (齐次线性微分方程), 所以

$$f(x) = Ce^{-\int \frac{\cos x - 1}{\sin x} dx} = Ce^{\int \frac{\sin \frac{x}{2}}{\cos x} dx} = Ce^{-2\ln\cos \frac{x}{2}},$$
即 $f(x) = \frac{C}{\cos^2 \frac{x}{2}}$. 将 $f\left(\frac{\pi}{2}\right) = 2$ 代入得 $C = 1$. 所以 $f(x) = \frac{1}{\cos^2 \frac{x}{2}}$. 从而, $f(x)$ 在 $\left(\frac{\pi}{3}, \frac{\pi}{2}\right]$ 上

的平均值为

$$\frac{1}{\frac{\pi}{2} - \frac{\pi}{3}} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} f(x) \, \mathrm{d}x = \frac{6}{\pi} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{1}{\cos^2 \frac{x}{2}} \, \mathrm{d}x = \frac{12}{\pi} \tan \frac{x}{2} \left| \frac{\pi}{\frac{\pi}{3}} \right| = \frac{4}{\pi} (3 - \sqrt{3}).$$

附注 如果计算 f(x) 在 $\left[0, \frac{\pi}{2}\right]$ 上的平均值,则不需算出 f(x) 的表达式. 这是因为在式

$$\int_0^{\frac{\pi}{2}} f(x) dx = \sin \frac{\pi}{2} \cdot f\left(\frac{\pi}{2}\right) = 2.$$

所以, f(x)在 $\left[0, \frac{\pi}{2}\right]$ 上的平均值为

$$\frac{1}{\frac{\pi}{2} - 0} \int_0^{\frac{\pi}{2}} f(x) \, \mathrm{d}x = \frac{4}{\pi}.$$

(18) 由于
$$\frac{\partial f}{\partial x} = 2x(1-y^2)$$
, $\frac{\partial f}{\partial y} = 2y(2-x^2)$, 所以方程组
$$\begin{cases} \frac{\partial f}{\partial x} = 0, \\ \frac{\partial f}{\partial y} = 0, \end{cases}$$
即 $\begin{cases} 2x(1-y^2) = 0, \\ 2y(2-x^2) = 0 \end{cases}$

的内部无可能极值点.

$$D$$
 有边界 $I: y = \sqrt{1-x^2} (0 \le x \le 1)$, $II: x = \frac{1}{2} \left(0 \le y \le \frac{\sqrt{3}}{2}\right)$, $II: y = 0 \left(\frac{1}{2} \le x \le 1\right)$,如图答 4-18 $II: x = \frac{1}{2} (0 \le y \le \frac{\sqrt{3}}{2})$,所示.

在 $I \perp$, f(x, y)成为

$$g_1(x) = 2 - 2x^2 + x^4 \left(\frac{1}{2} \le x \le 1\right).$$

由于 $g_1'(x) = 4x(x^2 - 1) < 0$, 所以 $g_1(x)$ 在 I 上的

最大值
$$g_1\left(\frac{1}{2}\right) = \frac{25}{16}$$
,最小值 $g_1(1) = 1$.

 $[]: x = \frac{1}{2}(0 \le y \le \frac{\sqrt{3}}{2})$ $O \qquad \qquad \downarrow 2 \qquad \downarrow 3$ $0 \qquad \qquad \downarrow 3$

图答 4-18

在 II 上, f(x, y) 成为 $g_2(y) = \frac{1}{4} + \frac{7}{4}y^2 \left(0 \le y \le \frac{\sqrt{3}}{2}\right)$. 所以 $g_2(y)$ 在 II 上的最大值 $g_2\left(\frac{\sqrt{3}}{2}\right) = \frac{23}{8}$, 最小值 $g_2(0) = \frac{1}{4}$.

在III上,f(x, y)成为 $g_3(x) = x^2 \left(\frac{1}{2} \le x \le 1\right)$,所以 $g_3(x)$ 在III上的最大值 $g_3(1) = 1$,最小值 $g_3\left(\frac{1}{2}\right) = \frac{1}{4}$.

综上所述, f(x,y) 在 D 上的最大值 = $\max\left\{\frac{25}{16}, \frac{23}{8}, 1\right\} = \frac{23}{8}$, 最小值 = $\min\left\{1, \frac{1}{4}, \frac{1}{4}\right\} = \frac{1}{4}$.

附注 有界闭区域 D 上的二元连续函数 f(x, y) 的最值,可按以下步骤计算:

- (I) 计算 f(x, y) 在 D 内部的可能极值点,记为 (x_1, y_1) , (x_2, y_2) ,…, (x_n, y_n) ;
- (II) 计算 f(x, y) 在 D 的边界上的最大值与最小值(分别记为 M_1 , m_1)则 $f(x_1, y_1)$, $f(x_2, y_2)$,…, $f(x_n, y_n)$, M_1 , m_1 中的最大者(最小者)为 f(x, y) 在 D 上的最大值(最小值).
 - (19) u(x, 2x) = x 两边对 x 求导得

$$u_x' = u_x(x, 2x) + 2u_x'(x, 2x) = 1$$
,

再对 x 求导得[$u''_{xx}(x, 2x) + 2u''_{xy}(x, 2x)$] + 2[$u''_{yx}(x, 2x) + 2u''_{yy}(x, 2x)$] = 0. 利用 $u''_{xx} = u''_{yy}$, $u''_{xy} = u''_{xx}$ 化简后得

$$5u_{xx}''(x, 2x) + 4u_{xy}''(x, 2x) = 0. (1)$$

 $u'(x, 2x) = x^2$ 两边对 x 求导得

$$u_{xx}''(x, 2x) + 2u_{xy}''(x, 2x) = 2x.$$
 (2)

曲式(1), 式(2)得
$$u_{xx}(x, 2x) = -\frac{4}{3}x$$
, $z = -\frac{4}{3}x$ 或 $\theta = \pi - \arctan \frac{4}{3}$

 $u''_{xy}(x, 2x) = \frac{5}{3}x$. 于是 D 如图答 4-19 的阴影部

分所示,所以D的面积为

$$\iint_{D} d\sigma = \int_{\arctan\frac{5}{3}}^{\pi - \arctan\frac{4}{3}} d\theta \int_{0}^{1} r dr$$
$$= \frac{1}{2} \left(\pi - \arctan\frac{4}{3} - \arctan\frac{5}{3} \right).$$

图答 4-19

附注 本题获解的关键是利用题设从 u(x, 2x) = x, $u_x'(x, 2x) = x^2$ 中算出 $u''_{xx}(x, 2x)$ 与 $u''_{xy}(x, 2x)$ 的表达式.

(20)
$$\exists \exists \mathbf{\beta}^{\mathrm{T}} \boldsymbol{\alpha} = \left(1, \frac{1}{2}, 0\right) \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = 2, b^{4} = 16,$$

$$2b^{2}\boldsymbol{A}^{2} = 2 \cdot 2^{2} (\boldsymbol{\alpha}\boldsymbol{\beta}^{T}) = 8\boldsymbol{\alpha}(\boldsymbol{\beta}^{T}\boldsymbol{\alpha})\boldsymbol{\beta}^{T} = 16\boldsymbol{A} = 16 \begin{pmatrix} 1 & \frac{1}{2} & 0 \\ 2 & 1 & 0 \\ 1 & \frac{1}{2} & 0 \end{pmatrix},$$

$$\boldsymbol{A}^{4} = (\boldsymbol{\alpha}\boldsymbol{\beta}^{\mathrm{T}})(\boldsymbol{\alpha}\boldsymbol{\beta}^{\mathrm{T}})(\boldsymbol{\alpha}\boldsymbol{\beta}^{\mathrm{T}})(\boldsymbol{\alpha}\boldsymbol{\beta}^{\mathrm{T}}) = \boldsymbol{\alpha}(\boldsymbol{\beta}^{\mathrm{T}}\boldsymbol{\alpha})^{3}\boldsymbol{\beta}^{\mathrm{T}} = 8\boldsymbol{A},$$

所以, 所给的方程组成为

$$(8\mathbf{A} - 16\mathbf{E}_3)\mathbf{x} = \mathbf{\gamma}, \quad \mathbb{H}^{\mathsf{I}}(\mathbf{A} - 2\mathbf{E}_3)\mathbf{x} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix},$$

$$\begin{pmatrix} -1 & \frac{1}{2} & 0 \\ 2 & -1 & 0 \\ 1 & \frac{1}{2} & -2 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}. \tag{1}$$

由于
$$\begin{pmatrix} -1 & \frac{1}{2} & 0 & 0 \\ 2 & -1 & 0 & 0 \\ 1 & \frac{1}{2} & -2 & 1 \end{pmatrix}$$
 初等行变换 $\begin{pmatrix} -1 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & -2 & 1 \end{pmatrix}$ \leftarrow $\begin{pmatrix} -2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & -2 & 1 \end{pmatrix}$,

所以,式(1)与方程组
$$\begin{cases} -2x_1 + x_2 &= 0, \\ x_2 - 2x_3 &= 1 \end{cases}$$
 (2)

同解. 式(2)的导出组的通解为 $C(1, 2, 1)^{\mathrm{T}}$,此外式(2)有特解 $\left(0, 0, -\frac{1}{2}\right)^{\mathrm{T}}$,所以,式(2),即式(1)的通解 $\mathbf{x} = (x_1, x_2, x_3)^{\mathrm{T}} = C(1, 2, 1)^{\mathrm{T}} + \left(0, 0, -\frac{1}{2}\right)^{\mathrm{T}}$ (其中,C是任意常数).

附注 设 α , β 都是n 维列向量,则 $\alpha^T\beta$ 是一个常数,记为c; $\alpha\beta^T$ 是n 阶矩阵,记为A,则 $r(A) \leq 1$,且对正整数k,有

$$(21) \ \oplus \exists |\lambda E_3 - A| = \begin{vmatrix} \lambda & 1 & -4 \\ 1 & \lambda - 3 & 1 \\ -4 & 1 & \lambda \end{vmatrix} = \begin{vmatrix} \lambda - 3 & 1 & -4 \\ \lambda - 1 & \lambda - 3 & 1 \\ \lambda - 3 & 1 & \lambda \end{vmatrix}$$

$$= \begin{vmatrix} \lambda - 3 & 1 & -4 \\ \lambda - 1 & \lambda - 3 & 1 \\ 0 & 0 & \lambda + 4 \end{vmatrix} = (\lambda + 4) [(\lambda - 3)^2 - (\lambda - 1)]$$

$$= (\lambda - 2)(\lambda - 5)(\lambda + 4),$$

所以 A 有特征值 $\lambda = 2$, 5, -4.

设对应 $\lambda = 2$ 的特征向量为 $\boldsymbol{a} = (a_1, a_2, a_3)^T$,则 \boldsymbol{a} 满足

$$\begin{pmatrix} 2 & 1 & -4 \\ 1 & -1 & 1 \\ -4 & 1 & 2 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \mathbf{0}. \tag{1}$$

$$\begin{pmatrix} 2 & 1 & -4 \\ 1 & -1 & 1 \\ -4 & 1 & 2 \end{pmatrix} \xrightarrow{\text{institution}} \begin{pmatrix} 0 & 3 & -6 \\ 1 & -1 & 1 \\ 0 & -3 & 6 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 0 & 1 & -2 \\ 1 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & -2 \\ 1 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix},$$

由于

所以,式(1)与方程组 $\begin{cases} a_2-2a_3=0,\\ a_1-a_3=0 \end{cases}$ 同解,故可取**a**为它的基础解系,即**a**=(1,2,1)^T.

设对应 $\lambda = 5$ 的特征向量为 $\boldsymbol{b} = (b_1, b_2, b_3)^{\mathrm{T}}$,则 \boldsymbol{b} 满足

$$\begin{pmatrix} 5 & 1 & -4 \\ 1 & 2 & 1 \\ -4 & 1 & 5 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \mathbf{0}.$$
 (2)

由于

$$\begin{pmatrix}
5 & 1 & -4 \\
1 & 2 & 1 \\
-4 & 1 & 5
\end{pmatrix}
\xrightarrow{\text{institution}}
\begin{pmatrix}
0 & -9 & -9 \\
1 & 2 & 1 \\
0 & 9 & 9
\end{pmatrix}$$

$$\rightarrow \begin{pmatrix}
0 & 1 & 1 \\
1 & 2 & 1 \\
0 & 0 & 0
\end{pmatrix}
\rightarrow \begin{pmatrix}
0 & 1 & 1 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix},$$

所以式(2)与方程组 $\begin{cases} b_2 + b_3 = 0, \\ b_1 + b_2 = 0 \end{cases}$ 同解,故可取 \boldsymbol{b} 为它的基础解系,即 $\boldsymbol{b} = (1, -1, 1)^{\mathrm{T}}.$

设对应 $\lambda = -4$ 的特征向量为 $\boldsymbol{c} = (c_1, c_2, c_3)^T$,则由 \boldsymbol{A} 是实对称矩阵知, \boldsymbol{c} 与 \boldsymbol{a} , \boldsymbol{b} 都正交,所以有

$$\begin{cases} (\boldsymbol{c}, \boldsymbol{a}) = 0, & \text{th} \\ (\boldsymbol{c}, \boldsymbol{b}) = 0, & \text{th} \\ c_1 - c_2 + c_3 = 0. & \text{th} \\ \end{array}$$

同解,故可取 c 为它的基础解系,即 $c = (1, 0, -1)^{T}$.

显然 a, b, c 是正交向量组, 现将它们单位化:

$$\boldsymbol{\xi} = \frac{\boldsymbol{a}}{\|\boldsymbol{a}\|} = \left(\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)^{\mathrm{T}},$$

$$\boldsymbol{\eta} = \frac{\boldsymbol{b}}{\|\boldsymbol{b}\|} = \left(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)^{\mathrm{T}},$$

$$\boldsymbol{\zeta} = \frac{\boldsymbol{c}}{\|\boldsymbol{c}\|} = \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right)^{\mathrm{T}}.$$

正交变换 $\mathbf{x} = \mathbf{Q}\mathbf{y}$ 下, $f(x_1, x_2, x_3) = 2y_1^2 + 5y_2^2 - 4y_3^2$ (标准形).

知,在正交变换x = Qy下,

$$f_{2}(x_{1}, x_{2}, x_{3}) = \mathbf{x}^{T} \mathbf{A}^{*} \mathbf{x} = \mathbf{y}^{T} (\mathbf{Q}^{T} \mathbf{A}^{*} \mathbf{Q}) \mathbf{y}$$

$$= \mathbf{y}^{T} \begin{pmatrix} -20 \\ -8 \\ 10 \end{pmatrix} \mathbf{y} = -20y_{1}^{2} - 8y_{2}^{2} + 10y_{3}^{2} (\text{标准形}).$$

附注 由题解可知,如果 A 是 n 阶可逆实对称矩阵,则当正交变换 x = Qy 将二次型 $f_1(x_1, x_2, \dots, x_n) = x^T A x$ (其中 $x = (x_1, x_2, \dots, x_n)^T$, $y = (y_1, y_2, \dots, y_n)^T$) 化为标准形 $\lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2$ (其 λ_1 , λ_2 , \dots , λ_n 是 A 的特征值) 时,必将二次型 $f_2(x_1, x_2, \dots, x_n) = x^T A^* x$ 化为标准形 $\mu_1 y_1^2 + \mu_2 y_2^2 + \dots + \mu_n y_n^2$ (其中 μ_1 , μ_2 , \dots , μ_n 是 A^* 的特征值).

(22) (I)记Y的分布函数为 $F_v(\gamma)$,则

$$F_Y(y) = P(Y \leq y) = P(X^2 \leq y).$$

当 $y \le 0$ 时, $P(X^2 \le y) = 0$;

当
$$0 < y \le 1$$
 时, $P(X^2 \le y) = P(-\sqrt{y} \le X \le \sqrt{y}) = \int_{-\sqrt{y}}^{\sqrt{y}} \frac{1}{3} dx = \frac{2}{3} \sqrt{y};$

当
$$1 < y \le 4$$
 时, $P(X^2 \le y) = P(-\sqrt{y} \le X \le \sqrt{y}) = \int_{-\sqrt{y}}^{1} \frac{1}{3} dy = \frac{1}{3} (1 + \sqrt{y});$

当
$$y > 4$$
时, $P(X^2 \le y) = P(-\sqrt{y} \le X \le \sqrt{y}) = \int_{-2}^{1} \frac{1}{3} dy = 1$,

所以,
$$F_{Y}(y) = \begin{cases} 0, & y \leq 0, \\ \frac{2}{3}\sqrt{y}, & 0 < y \leq 1, \\ \frac{1}{3}(1+\sqrt{y}), & 1 < y \leq 4, \\ 1, & y > 4. \end{cases}$$

$$\varphi(y) = \frac{\mathrm{d}F_{\gamma}(y)}{\mathrm{d}y} = \begin{cases} \frac{1}{3\sqrt{y}}, & 0 < y \leq 1, \\ \frac{1}{6\sqrt{y}}, & 1 < y \leq 4, \\ 0, & 其他. \end{cases}$$

$$(II) E(| Y - X^4 |) = E(| X^2 - X^4 |) = E(X^2 | 1 - X^2 |)$$

$$= \int_{-\infty}^{+\infty} x^2 | 1 - x^2 | f(x) dx = \frac{1}{3} \int_{-2}^{1} x^2 | 1 - x^2 | dx$$

$$= \frac{1}{3} \Big[\int_{-2}^{-1} x^2 (x^2 - 1) dx + \int_{-1}^{1} x^2 (1 - x^2) dx \Big]$$

$$= \frac{1}{3} \Big[\Big(\frac{1}{5} x^5 - \frac{1}{3} x^3 \Big) \Big|_{-2}^{-1} + \Big(\frac{1}{3} x^3 - \frac{1}{5} x^5 \Big) \Big|_{-1}^{1} \Big]$$

$$= \frac{1}{3} \Big(\frac{58}{15} + \frac{4}{15} \Big) = \frac{62}{45}.$$

附注 $\varphi(\gamma)$ 也可以按以下方法计算:

由于 $y = x^2$ 在 $f(x) \neq 0$ 的区间(-2, 0]与(0, 1)上都是单调的,且 $y = x^2$ 在(-2, 0)内的反函数 $x = h_1(y) = -\sqrt{y}(0 < y \leq 4)$,在(0, 1)内的反函数 $x = h_2(y) = \sqrt{y}(0 < y \leq 1)$,所以

$$\begin{split} \varphi(y) &= \begin{cases} \frac{1}{3} \left| h_1'(y) \right|, & 0 < y \leqslant 4, \\ 0, & \text{ 其他 } \end{cases} + \begin{cases} \frac{1}{3} \left| h_2'(y) \right|, & 0 < y \leqslant 1, \\ 0, & \text{ 其他 } \end{cases} \\ &= \begin{cases} \frac{1}{3\sqrt{y}}, & 0 < y \leqslant 1, \\ \frac{1}{6\sqrt{y}}, & 1 < y \leqslant 4, \\ 0, & \text{ 其他 } \end{cases} \end{split}$$

(23) 设所给的简单随机样本的观察值为 x_1 , x_2 , …, x_n . 为了计算 θ 的最大似然估计量,可认为 x_1 , x_2 , …, x_n 全为正的. 故似然函数为

$$L(\theta) = \frac{1}{\theta} e^{-\frac{x_1}{\theta}} \cdot \frac{1}{\theta} e^{-\frac{x_2}{\theta}} \cdots \frac{1}{\theta} e^{-\frac{x_n}{\theta}} = \frac{1}{\theta^n} e^{-\frac{1}{\theta} \sum_{i=1}^n x_i},$$

即 $\ln L(\theta) = -n \ln \theta - \frac{\sum_{i=1}^{n} x_i}{\theta}$. 于是由

$$\frac{\mathrm{dln}L(\theta)}{\mathrm{d}\theta} = -\frac{n}{\theta} + \frac{\sum_{i=1}^{n} x_i}{\theta^2} = 0$$

得 θ 的最大似然估计值为 $\frac{1}{n}\sum_{i=1}^{n}x_{i}$, 从而 θ 的最大似然估计量为 $\hat{\theta}=\frac{1}{n}\sum_{i=1}^{n}X_{i}$.

由于 $EX = \theta$, $DX = \theta^2$, 所以由

$$P(\hat{\theta} \leq y) = P\left(\frac{1}{n} \sum_{i=1}^{n} X_{i} \leq y\right) = P\left(\frac{\frac{1}{n} \sum_{i=1}^{n} X_{i} - \theta}{\sqrt{\frac{\theta^{2}}{n}}} \leq \frac{y - \theta}{\sqrt{\frac{\theta^{2}}{n}}}\right)$$

$$\approx \int_{-\infty}^{\frac{y-\theta}{n}} \frac{1}{\sqrt{2n}} e^{-\frac{t^{2}}{2}} dt \ (其中, y 是任意实数)$$

由此可知 $\hat{\theta}$ 近似 $N\left(\theta, \frac{\theta^2}{n}\right)$.

附注 设 Y 是随机变量,如果对于任意实数 y 有 $P(Y \le y) = \int_{-\infty}^{\frac{y-a}{\sigma}} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$,则 Y ~ $N(a, \sigma^2)$;如果对任意实数 y 有 $P(Y \le y) \approx \int_{-\infty}^{\frac{y-a}{\sigma}} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$,则 Y $\stackrel{\text{iff}}{\sim} N(a, \sigma^2)$.

模拟试题(五)解答

一、选择题

答案	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	D	В	С	A	С	A	A	С

(1) 设 f(x) = x,则 f(x) 只有一个零点,但 f'(x) 没有零点.表明选项(A)不正确.设 $f(x) = x^2$,则 f'(x) 只有一个零点,f(x) 也只有一个零点,表明选项(B)不正确.设 $f(x) = e^x$ 则 f(x) 没有零点,f'(x) 也没有零点.表明选项(C)不正确.因此选(D).

附注 (D)的结论可用反证法证明其正确,具体如下:

设 f(x) 至少有两个零点,设其中两个为 x_1 , $x_2(x_1 < x_2)$ 则由罗尔定理知,存在 $\xi \in (x_1, x_2)$,使得 $f'(\xi) = 0$,这与 f'(x) 没有零点相矛盾。从而 f(x) 至多有一个零点。

(2) 在 $\left[0, \frac{\pi}{2}\right]$ 上, $\sin(\sin x) \leq \sin x$ (仅在点 x = 0 处取等号), $\cos(\sin x) \geq \cos x$ (仅在点 x = 0 处取等号), 所以

$$\int_{0}^{\frac{\pi}{2}} \sin(\sin x) \, \mathrm{d}x < \int_{0}^{\frac{\pi}{2}} \sin x \, \mathrm{d}x = 1, \int_{0}^{\frac{\pi}{2}} \cos(\sin x) \, \mathrm{d}x > \int_{0}^{\frac{\pi}{2}} \cos x \, \mathrm{d}x = 1.$$

故有 $I_1 < I_3$. 因此选 (B).

附注 选项(A)是不正确的,这是由于

$$\begin{split} I_1 - I_2 &= \int_0^{\frac{\pi}{2}} \big[\sin(\sin x) - \sin(\cos x) \big] \, \mathrm{d}x \\ &= \int_0^{\frac{\pi}{4}} \big[\sin(\sin x) - \sin(\cos x) \big] \, \mathrm{d}x + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \big[\sin(\sin x) - \sin(\cos x) \big] \, \mathrm{d}x \\ &= \int_0^{\frac{\pi}{4}} \big[\sin(\sin x) - \sin(\cos x) \big] \, \mathrm{d}x + \int_0^{\frac{\pi}{4}} \big[\sin(\cos t) - \sin(\sin t) \big] \, \mathrm{d}t \\ &= \int_0^{\frac{\pi}{4}} \big[\sin(\sin x) - \sin(\cos x) \big] \, \mathrm{d}x + \int_0^{\frac{\pi}{4}} \big[\sin(\cos x) - \sin(\sin x) \big] \, \mathrm{d}x = 0 \,, \end{split}$$

所以, $I_1 = I_2$.

由此也证明选项(C)是不正确的.

(3) 当 $(x, y) \neq (0, 0)$ 时,

$$f'_x(x, y) = \frac{(3x^2y - y^3)(x^2 + y^2) - (x^3y - xy^3)2x}{(x^2 + y^2)^2} = \frac{x^4y + 4x^2y^3 - y^5}{(x^2 + y^2)^2},$$

$$f'_y(x, y) = \frac{(x^3 - 3xy^2)(x^2 + y^2) - (x^3y - xy^3)2y}{(x^2 + y^2)^2} = \frac{x^5 - 4x^3y^2 - xy^4}{(x^2 + y^2)^2},$$

并且
$$f'_x(0, 0) = \lim_{x\to 0} \frac{f(x, 0) - f(0, 0)}{x} = 0$$
, $f'_y(0, 0) = \lim_{y\to 0} \frac{f(0, y) - f(0, 0)}{y} = 0$,

所以,
$$f''_{xy}(0, 0) = \lim_{y \to 0} \frac{f'_x(0, y) - f'_x(0, 0)}{y} = \lim_{y \to 0} \frac{\frac{-y^3}{y^4}}{y} = -1$$
,

$$f_{yx}''(0, 0) = \lim_{x \to 0} \frac{f_{y}'(x, 0) - f_{y}'(0, 0)}{x} = \lim_{x \to 0} \frac{\frac{x^{2}}{x}}{x} = 1.$$

故 $f_{xx}''(0,0) < f_{xx}''(0,0)$. 因此选(C).

附注 在已算出 $f'_x(x, y)$ 时,可按以下方法快捷算出 $f'_y(x, y)$ (这是因为当 f(y, x) = -f(x, y) 时, $f'_y(x, y) = -f'_x(y, x)$):

$$f'_y(x,y) = -f'_x(y,x) = -\frac{x^4y + 4x^2y^3 - y^5}{(x^2 + y^2)^2} \Big|_{x = y \neq \pm \frac{1}{2}} = \frac{x^5 - 4x^2y^2 - xy^4}{(x^2 + y^2)^2}.$$

(4) $D = \{(x, y) \mid 1 - y \le x \le 1, 0 \le y \le 1\} + \{(x, y) \mid 1 \le x \le 2, \sqrt{x - 1} \le y \le 1\}$, 如图 答 5-4 的阴影部分所示.

D 的边界由 I , II , II 三部分组成. 显然 II , II 上的任一点的切线都为它们自己,从而不能与直线 y = x - 1 平行.

1, 即 $y_0 = \frac{1}{2} \left($ 对应地有 $x_0 = \frac{5}{4} \right)$. 从而所求的切线方

图合 3-4

程为

$$y - \frac{1}{2} = x - \frac{5}{4}$$
, $\exists I \ y = x - \frac{3}{4}$.

因此选(A).

附注 要计算 I 上的与直线 y = x - 1 平行的切线方程, 应先确定切点的坐标.

(5) 由于
$$(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$$
 $=$ $\begin{vmatrix} 1 & -1 & 3 & -2 \\ 2 & -4 & 5 & -8 \\ 3 & 1 & 4 & 2 \\ 3 & 1 & t+2 & t \end{vmatrix}$ $=$ $\begin{vmatrix} 1 & -1 & 3 & -2 \\ 0 & -2 & -1 & -4 \\ 0 & 4 & -5 & 8 \\ 0 & 4 & t-7 & t+6 \end{vmatrix}$ $=$ $\begin{vmatrix} -2 & 2 & 4 \\ 0 & -7 & 0 \\ 0 & t-9 & t-2 \end{vmatrix}$ $= 14(t-2)$,

所以, t = 2 时, $| (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4) | = 0$, 即 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4$ 线性相关; t = 3 时, $| (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4) | \neq 0$, 即 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4$ 线性无关. 由此可知, 结论①④正确, 因此选 (C).

附注 确定 $n \wedge n$ 维列向量 $\alpha_1, \alpha_2, \dots, \alpha_n$ 的线性相关性的好方法是计算行列式 D =

 $\mid (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \dots, \boldsymbol{\alpha}_n) \mid$. 如果 D = 0, 则 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \dots, \boldsymbol{\alpha}_n$ 线性相关; 如果 $D \neq 0$, 则 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \dots, \boldsymbol{\alpha}_n$ 线性无关.

(6) 由
$$|\lambda E_3 - A| = \begin{vmatrix} \lambda & 0 & -1 \\ -a & \lambda - 1 & -b \\ -1 & 0 & \lambda \end{vmatrix} = (\lambda - 1)^2 (\lambda + 1)$$
知, A 的特征值为 $\lambda = 1$ (二

重), $\lambda = -1$.

由于A 可相似对角化,所以 $r(1 \cdot E_3 - A) = 3 - 2 = 1$,即

$$r\begin{pmatrix} 1 & 0 & -1 \\ -a & 0 & -b \\ -1 & 0 & 1 \end{pmatrix} = r\begin{pmatrix} 1 & 0 & -1 \\ -a & 0 & -b \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & -a-b \\ 0 & 0 & 0 \end{pmatrix} = 1, \ \text{Min} -a = b. \tag{1}$$

用 -b-1 代替 b, A 就成为 B, 所以由 B 可相似对角化得

$$-a = -b - 1. \tag{2}$$

由式(1),式(2)得 $a = \frac{1}{2}$, $b = -\frac{1}{2}$. 因此选(A).

附注 设 A 是 n 阶矩阵,则 A 可相似对角化的充分必要条件有较多种表述,其中常用的有:

设 A 有特征值 λ_1 , λ_2 , …, λ_s , 它们的重数分别为 n_1 , n_2 , …, $n_s(n_1+n_2+\dots+n_s=n)$, 则 A 可相似对角化充分必要条件有

$$r(\lambda_i \boldsymbol{E}_n - \boldsymbol{A}) = n - n_i (i = 1, 2, \dots, s).$$

(7)
$$\exists P(X \ge 0, Y \ge 0) = \frac{3}{7}, P(X \ge 0) = P(Y \ge 0) = \frac{4}{7}$$
 得

$$P(X \ge 0, Y < 0) = P(X \ge 0) - P(X \ge 0, Y \ge 0) = \frac{1}{7},$$

$$P(X < 0, Y \ge 0) = P(Y \ge 0) - P(X < 0, Y \ge 0) = \frac{1}{7},$$

$$P(X<0, Y<0) = 1 - P(X \ge 0, Y \ge 0) - P(X \ge 0, Y<0) - P(X<0, Y \ge 0) = \frac{2}{7},$$

所以 $P(\max\{X, Y\}X \ge 0) = P(\max\{X, Y\} \ge 0, X \ge 0) + P(\max\{X, Y\} \le 0, X \le 0)$

$$=P(X \ge 0)P(\max\{X, Y\} \ge 0 \mid X \ge 0) + P(X \le 0, Y \le 0, X \le 0)$$

$$=P(X\geq 0) + P(X\leq 0, Y\leq 0) = \frac{4}{7} + \frac{2}{7} = \frac{6}{7}$$
. 因此本题选 (A).

附注 题解中有两点值得注意:

- (I) 由于 X, Y 是连续型随机变量, 所以 $P(X \le 0, Y \le 0) = P(X < 0, Y < 0)$.
- (II) 由于 $X \ge 0$ 时,必有 $\max\{X, Y\} \ge 0$,所以 $P(\max\{X, Y\} \ge 0 \mid X \ge 0) = 1$.

(8) 由题设知
$$\overline{X} \sim N\left(0, \frac{\sigma^2}{9}\right)$$
, 所以

$$P(1 < \overline{X} < 3) = P\left(\frac{3}{\sigma} < \frac{\overline{X} - 0}{\frac{\sigma}{3}} < \frac{9}{\sigma}\right) = \int_{\frac{3}{\sigma}}^{\frac{9}{\sigma}} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dA \xrightarrow{\stackrel{!}{\longleftarrow}} f(\sigma).$$

$$\begin{split} & \boxplus \mp \frac{\mathrm{d}f}{\mathrm{d}\sigma} = \frac{1}{\sqrt{2\pi}} \mathrm{e}^{-\frac{81}{2\sigma^2}} \left(-\frac{9}{\sigma^2} \right) - \frac{1}{\sqrt{2\pi}} \mathrm{e}^{-\frac{9}{2\sigma^2}} \left(-\frac{3}{\sigma^2} \right) \\ & = -\frac{3}{\sqrt{2\pi}\sigma^2} \mathrm{e}^{-\frac{9}{2\sigma^2}} (3\mathrm{e}^{-\frac{36}{\sigma^2}} - 1) \begin{cases} >0 \,, & 0 < \sigma < \frac{6}{\sqrt{\ln 3}}, \\ =0 \,, & \sigma = \frac{6}{\sqrt{\ln 3}}, \\ <0 \,, & \sigma > \frac{6}{\sqrt{\ln 3}}, \end{cases} \end{split}$$

所以,使得 $P(1 < \overline{X} < 2)$ 为最大的 $\sigma = \frac{6}{\sqrt{\ln 3}}$. 因此选(C).

附注 应记住以下结论:

设 X_1 , X_2 , …, X_n 是来自总体 X 的简单随机样本,记 μ = EX, σ^2 = DX, \overline{X} = $\frac{1}{n}\sum_{i=1}^n X_i$ (样本均值),则

$$E\overline{X} = \mu$$
, $D\overline{X} = \frac{\sigma^2}{n}$.

于是, 当 $X \sim N(\mu, \sigma^2)$ 时, $\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$.

二、填空题

(9) 由于
$$\lim_{x \to \infty} \frac{y}{x} = \lim_{x \to \infty} \frac{\frac{x^3}{(x-1)^2} + x^2(e^{\frac{1}{x}} - 1)}{x} = \lim_{x \to \infty} \frac{x^2}{(x-1)^2} + \lim_{x \to \infty} \frac{e^{\frac{1}{x}} - 1}{\frac{1}{x}} = 1 + 1 = 2,$$

$$\lim_{x \to \infty} (y - 2x) = \lim_{x \to \infty} \left[\frac{x^3}{(x-1)^2} + x^2(e^{\frac{1}{x}} - 1) - 2x \right]$$

$$= \lim_{x \to \infty} \left[\frac{x^3}{(x-1)^2} - x \right] + \lim_{x \to \infty} \left[x^2(e^{\frac{1}{x}} - 1) - x \right]$$

$$= 2 + \lim_{x \to \infty} \left[x^2(e^{\frac{1}{x}} - 1) - x \right]$$

$$\stackrel{\text{\frac{\psi}t = \frac{1}{x}}}{=} 2 + \lim_{x \to \infty} \frac{e^t - 1 - t}{t^2}$$

$$\stackrel{\text{\text{\text{\text{\text{\text{\text{\text{$\psi}t$}\text{\text{$\psi}t$}}}}{=} 2 + \lim_{x \to \infty} \frac{e^t - 1}{2t} = 2 + \frac{5}{2},$$

所以,所给出曲线的非铅直渐近线方程为 $y = 2x + \frac{5}{2}$.

附注 对于曲线 y = f(x) ,如果极限 $\lim_{x \to \infty} \frac{y}{x}$ 存在为 a ,极限 $\lim_{x \to \infty} (y - ax)$ 存在为 b ,则该曲线的非铅直渐近线方程为 y = ax + b .

(10) 由于 $(\sin x^3)^3$ 是奇函数, 所以它在点 x = 0 处的 4 阶导数为 0.

由于
$$(\ln\cos x)' = -\tan x$$
, $(\ln\cos x)'' = (-\tan x)' = -\sec^2 x$, $(\ln\cos x)^{(3)} = (-\sec^2 x)' = -2\sec^2 x \tan x$,

所以,
$$(\ln\cos x)^{(4)}$$
 $\Big|_{x=0} = \lim_{x\to 0} \frac{(\ln\cos x)^{(3)} - (\ln\cos x)^{(3)}}{x} \Big|_{x=0} = \lim_{x\to 0} \frac{-2\sec^2 x \tan x}{x} = -2.$

从而

$$f^{(4)}(0) = 0 + (-2) = -2$$

附注 设 f(x) 在点 x = 0 处任意阶可导,则

当f(x)是奇函数时, $f^{(2k)}(0) = 0(k=0, 1, 2, \cdots)$;

当f(x)是偶函数时, $f^{(2k+1)}(0) = 0(k=0, 1, 2, \cdots)$.

$$(11) \int_{-1}^{1} (|x| e^{-x} + \sin x^{3} + \sqrt{(1 - x^{2})}) dx = \int_{-1}^{1} |x| e^{-x} dx + \int_{-1}^{1} \sqrt{1 - x^{2}} dx$$

$$= \int_{-1}^{0} -x e^{-x} dx + \int_{0}^{1} x e^{-x} dx + \frac{\pi}{2} = \int_{-1}^{0} x d e^{-x} - \int_{0}^{1} x d e^{-x} + \frac{\pi}{2}$$

$$= \left(x e^{-x} \Big|_{0}^{0} - \int_{0}^{0} e^{-x} dx\right) - \left(x e^{-x} \Big|_{0}^{1} - \int_{0}^{1} e^{-x} dx\right) + \frac{\pi}{2} = 2 - \frac{2}{e} + \frac{\pi}{2}.$$

附注 利用定积分几何意义,有

$$\int_{-1}^{1} \sqrt{1 - x^2} dx = 上半单位圆的面积 = \frac{\pi}{2}.$$

(12) 由于
$$\iint_{D} (x + 4y + xy) d\sigma = \iint_{D} x d\sigma + \iint_{D} (4y + xy) d\sigma$$

$$=2\iint_{D_1}x\mathrm{d}\sigma\left(\begin{array}{c}\mathrm{由}\mp D\not\Xi\mp x\,\mathrm{轴对称},\mathrm{m}\,4y+xy\,\mathrm{在对称点处的值互为相反数},\mathrm{m}\\ \bigcup_D (4y+xy)\,\mathrm{d}\sigma=0;x\,\mathrm{在对称点处的值彼此相等},\mathrm{m}\bigcup_D x\mathrm{d}\sigma=\\ 2\iint_{D_1}x\mathrm{d}\sigma,D_1\not\equiv D\,\mathrm{的第}-\mathrm{象限部分}\end{array}\right)$$

$$\begin{split} &=2\int_{0}^{\frac{\pi}{2}} \mathrm{d}\theta \int_{0}^{a\cos\theta} r \cos\theta \cdot r \mathrm{d}r = \frac{2}{3} a^{3} \int_{0}^{\frac{\pi}{2}} \cos^{4}\theta \mathrm{d}\theta \\ &=\frac{2}{3} a^{3} \int_{0}^{\frac{\pi}{2}} \left[\frac{1}{2} (1+\cos 2\theta)\right]^{2} \mathrm{d}\theta \\ &=\frac{1}{6} a^{3} \int_{0}^{\frac{\pi}{2}} \left(\frac{3}{2}+2\cos 2\theta+\frac{1}{2}\cos 4\theta \mathrm{d}\theta\right) = \frac{\pi}{8} a^{3}. \end{split}$$

所以, 由题设得 $\frac{\pi}{8}a^3 = \frac{\pi}{8}$, 即 a = 1.

附注 计算二重积分时,首先应利用积分区域的对称性,化简二重积分,然再进行计算.

(13) 由题设得

$$\boldsymbol{A}(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}) = (\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}) \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}. \tag{1}$$

记 $P = (\alpha_1, \alpha_2, \alpha_3)$,则由 $\alpha_1, \alpha_2, \alpha_3$ 线性无关知P可逆,且式(1)可以表示为

$$P^{-1}AP = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
 记 B , 所以 $A \sim B$. 从而 $A \ni B$ 有相同的特征值.

由
$$|\lambda E_3 - B| = \begin{vmatrix} \lambda & -1 & -1 \\ -1 & \lambda & -1 \\ -1 & -1 & \lambda \end{vmatrix} = (\lambda - 2)(\lambda + 1)^2$$
 知, B 的最大特征值为 2,从而 A

的最大特征值为2.

附注 设A与B都是n阶矩阵,如果它们相似,则

- (I) |A| = |B|.
- (II) r(A) = r(B), 从而 A 与 B 等价.
- (Ⅲ) A, B 有相同的特征值.
- $(V) A^* \sim B^*$.
- (V) 当 \boldsymbol{A} 可逆时, \boldsymbol{B} 也可逆, 且 $\boldsymbol{A}^{-1} \sim \boldsymbol{B}^{-1}$.
- (14) 记X = Z箱中的次品数,

Y =从乙箱中取出的次品数,

$$\begin{split} \mathbb{M}P(Y=1) = & P(X=1)P(Y=1\mid X=1) + P(X=2)P(Y=1\mid X=2) + P(X=3)P(Y=1\mid X=3) \\ = & \frac{C_3^1C_3^2}{C_6^3} \cdot \frac{C_1^1C_5^2}{C_6^3} + \frac{C_3^2C_3^1}{C_6^3} \cdot \frac{C_2^1C_4^2}{C_6^3} + \frac{C_3^3C_3^0}{C_6^3} \cdot \frac{C_3^1C_3^2}{C_6^3} = \frac{207}{400}, \end{split}$$

$$P(Y=2) = P(X=2) (Y=2 | X=2) + P(X=3) P(Y=2 | X=3)$$

$$= \frac{C_3^2 C_3^1}{C_6^3} \cdot \frac{C_2^2 C_4^1}{C_6^3} + \frac{C_3^3 C_3^0}{C_6^3} \cdot \frac{C_3^2 C_3^1}{C_6^3} = \frac{45}{400},$$

$$P(Y=3) = P(X=3)P(Y=3 \mid X=3) = \frac{C_3^3 C_3^0}{C_6^6} \cdot \frac{C_3^3 C_3^0}{C_6^6} = \frac{1}{400}.$$

所以, 所求的平均值 = $EY = 0 \cdot P(Y = 0) + 1 \cdot P(Y = 1) + 2 \cdot P(Y = 2) + 3 \cdot P(Y = 3)$

$$=\frac{207}{400} + \frac{90}{400} + \frac{3}{400} = \frac{3}{4}.$$

附注 由于 Y 可能取的值为 0, 1, 2, 3, 所以

$$EY = 0 \cdot P(Y = 0) + 1 \cdot P(Y = 1) + 2 \cdot P(Y = 2) + 3 \cdot P(Y = 3)$$

但是,在具体计算时,P(Y=0)是不必算出的.

三、解答题

其中,
$$\lim_{x\to 0} \frac{\ln\left(\cos x + \frac{x}{2}\right) - \frac{1}{2}\ln(1+x)}{x^2} = \frac{\ln\left(\cos x + \frac{x}{2}\right) - \frac{1}{2}\ln(1+x)}{\ln\left(\cos x + \frac{x}{2}\right) - \cos x - \frac{x}{2}} = \frac{1}{4}\lim_{x\to 0} \frac{-2(1+x)\sin x + (1-\cos x) + \frac{x}{2}}{x}$$

$$= \lim_{x\to 0} \frac{2(1+x)\left(-\sin x + \frac{1}{2}\right) - \cos x - \frac{x}{2}}{4x(1+x)\left(\cos x + \frac{x}{2}\right)} = \frac{1}{4}\lim_{x\to 0} \frac{-2(1+x)\sin x + (1-\cos x) + \frac{x}{2}}{x}$$

$$= \frac{1}{4}\left[\lim_{x\to 0} \frac{-2(1+x)\sin x}{x} + \lim_{x\to 0} \frac{1-\cos x}{x} + \frac{1}{2}\right] = \frac{1}{4}\left(-2+0+\frac{1}{2}\right) = -\frac{3}{8}.$$

所以
$$\lim_{x\to 0} \left(\frac{2\cos x + x}{2\sqrt{1+x}}\right)^{\frac{1}{x^2}} = e^{-\frac{3}{8}}.$$

附注 计算 0^0 , 1^∞ , ∞^0 型未定式极限 $\lim_{x\to a} [f(x)]^{g(x)}$ 时, 总是先将函数指数化,即 $[f(x)]^{g(x)} = \mathrm{e}^{g(x)\ln f(x)}$. 然后计算 $\lim_{x\to a} (x)\ln f(x)$ (它是 $0\cdot\infty$ 型未定式极限可转换或 $\frac{0}{0}$ 或 $\frac{\infty}{\infty}$ 型 未定式极限进行计算),记此极限为 A,则

$$\lim_{x \to a} [f(x)]^{g(x)} = \begin{cases} 0, & A = -\infty, \\ e^{A}, & A \neq \emptyset, \\ +\infty, & A = +\infty. \end{cases}$$

(16) 在所给等式

$$e^{x} f(x) + 2e^{\pi - x} f(\pi - x) = 3\sin x$$
 (1)

中今 $x = \pi - t$ 得

 $e^{\pi^{-t}}f(\pi - t) + 2e^{t}f(t) = 3\sin t,$ $2e^{\pi^{-x}}f(\pi - x) + 4e^{x}f(x) = 6\sin x.$ (2)

即 式(1)-式(2)得

$$e^x f(x) = \sin x$$
, $\iint f(x) = e^{-x} \sin x$.

由于 y = f(x) (x > 0) 的概图如图答 5-16 所示,所以,由图可知,函数 f(x) 在 $(0, +\infty)$ 上的极大值为 $f\left(2n\pi + \frac{\pi}{2}\right) = e^{-2n\pi - \frac{\pi}{2}}(n=0, 1, 2, \cdots)$,极小值为 $f\left(2n\pi - \frac{\pi}{2}\right) = e^{-2n\pi + \frac{\pi}{2}}(n=1, 2, \cdots)$.

附注 画出函数的概图后,往往可以利用函数 极值定义,得到该函数的极值.这比用导数方法计 算函数极值快捷.

(17) 由 $\varphi(x)$ 单调知,它的反函数 $\varphi^{-1}(x)$ 存

图答 5-16

在,于是由 $\varphi(x)$ 可导得

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{0}^{\varphi(x)} \varphi^{-1}(t) \, \mathrm{d}t = \varphi^{-1}(\varphi(x)) \, \frac{\mathrm{d}\varphi}{\mathrm{d}x}$$

$$= x \left[f'_u(x, f(x, x)) + f'_v(x, f(x, x)) (f'_u(x, x) + f'_v(x, x)) \right],$$

$$\mathbb{M} \overrightarrow{\mathrm{m}} \frac{\mathrm{d}}{\mathrm{d}x} \int_{0}^{\varphi(x)} \varphi^{-1}(t) \, \mathrm{d}t \, \bigg|_{x=1} = f'_u(1, 1) + f'_v(1, 1) \left[f'_u(1, 1) + f'_v(1, 1) \right]$$

$$= f'_u(1, 1) + f'_v(1, 1) (2 + 3) = 2 + 3(2 + 3) = 17.$$

附注 题解中应注意的是: $\varphi^{-1}(\varphi(x)) = x$.

(18) 由于

$$s(x) = \sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n (2n+1)!} x^{2n+1} = \sqrt{2} \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)!} \left(\frac{x}{\sqrt{2}}\right)^{2n+1}$$
$$= \sqrt{2} \sin \frac{x}{\sqrt{2}} (-\infty < x < +\infty),$$

所以
$$\int_0^{+\infty} e^{-x} s^2(x) dx = \int_0^{+\infty} e^{-x} 2\sin^2 \frac{x}{\sqrt{2}} dx$$

= $\int_0^{+\infty} e^{-x} (1 - \cos \sqrt{2}x) dx = \int_0^{+\infty} e^{-x} dx - \int_0^{+\infty} e^{-x} \cos \sqrt{2}x dx$, (1)

其中, $\int_0^{+\infty} e^{-x} dx = 1$, 此外由

$$\int_0^{+\infty} e^{-x} \cos \sqrt{2}x dx = -\int_0^{+\infty} \cos \sqrt{2}x de^{-x} = -\left(e^{-x} \cos \sqrt{2}x \Big|_0^{+\infty} + \int_0^{+\infty} e^{-x} \sqrt{2} \sin \sqrt{2}x dx\right)$$

$$= 1 + \sqrt{2} \int_0^{+\infty} \sin \sqrt{2}x de^{-x}$$

$$= 1 + \sqrt{2} \left(e^{-x} \sin \sqrt{2}x \Big|_0^{+\infty} - \int_0^{+\infty} e^{-x} \sqrt{2} \cos \sqrt{2}x dx\right)$$

$$= 1 - 2 \int_0^{+\infty} e^{-x} \cos \sqrt{2}x dx$$

得 $\int_0^{+\infty} e^{-x} \cos \sqrt{2x} dx = \frac{1}{3}$. 将以上计算代入式(1) 得

$$\int_0^{+\infty} e^{-x} s^2(x) dx = 1 - \frac{1}{3} = \frac{2}{3}.$$

附注 应记住 sinx, cosx 的麦克劳林展开式.

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)!} x^{2n+1} (-\infty < x < +\infty),$$

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n)!} x^{2n} (-\infty < x < +\infty).$$

本题就是按此公式快捷算得所给幂级数的和函数 s(x).

(19) (I) 令
$$u = x^2 + y^2$$
, 则 $z = uf(u)$. 于是
$$\frac{\partial z}{\partial x} = 2xf(u) + 2xuf'(u),$$

$$\frac{\partial^2 z}{\partial x^2} = 2f(u) + 8x^2 f'(u) + 2uf'(u) + 4x^2 uf''(u).$$

同样可得

$$\frac{\partial^2 z}{\partial y^2} = 2f(u) + 8y^2 f'(u) + 2uf'(u) + 4y^2 uf'(u).$$

从而,由 $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$ 得

$$u^{2}f''(u) + 3uf'(u) + f(u) = 0$$

即 $[u^2f'(u) + uf(u)]' = 0$. 由此得到

$$u^{2}f'(u) + uf(u) = C_{1}$$
 (1)

将f(1) = 0, f'(1) = 1 代入式(1) 得 $C_1 = 1$, 所以式(1)成为

$$u^2 f'(u) + u f(u) = 1$$
, $\mathbb{D} f'(u) + \frac{1}{u} f(u) = \frac{1}{u^2} ($ 线性微分方程 $)$.

它的通解为 $f(u) = e^{-\int_{u}^{1} du} \left(C_2 + \int \frac{1}{u^2} e^{\int_{u}^{1} du} \right)$

$$= \frac{1}{u} \left(C_2 + \int \frac{1}{u} du \right) = \frac{C_2}{u} + \frac{\ln u}{u}. \tag{2}$$

将 f(1) = 0 代入式(2) 得 $C_2 = 0$. 所以 $f(u) = \frac{\ln u}{u} (u \ge 1)$

(II) D 如图答 5-19 的阴影部分所示,所以,

$$\begin{split} &\iint\limits_{D} \frac{\sqrt{x^2 + y^2} f(x^2 + y^2)}{\ln(x^2 + y^2)} \mathrm{d}\sigma \\ &= 2 \iint\limits_{D_1} \frac{\sqrt{x^2 + y^2} f(x^2 + y^2)}{\ln(x^2 + y^2)} \mathrm{d}\sigma \quad (D_1 \not\equiv D \text{ 的第一条限部分}) \\ &= \frac{\text{极坐标}}{2} \int_0^{\frac{\pi}{3}} \mathrm{d}\theta \int_1^{2\cos\theta} \frac{f(r^2)}{\ln r^2} \cdot r \mathrm{d}r = 2 \int_0^{\frac{\pi}{3}} \mathrm{d}\theta \int_1^{2\cos\theta} \mathrm{d}r \\ &= 2 \int_0^{\frac{\pi}{3}} (2\cos\theta - 1) \, \mathrm{d}\theta = (4\sin\theta - 2\theta) \Big|_0^{\frac{\pi}{3}} = 2 \sqrt{3} - \frac{2}{3}\pi. \end{split}$$

附注 由于 D 是角域的一部分,而且被积函数是 $x^2 + y^2$ 的函数,所以题解中用极坐标计算所给的二重 积分.

(20) 由 A 有零特征值知

$$|A| = \begin{vmatrix} 1 & 0 & 2 \\ 2 & 1 & 5 \\ -1 & 0 & a-3 \end{vmatrix} = a-1=0, \quad \exists I \ a=1.$$

要使矩阵方程 AX = B 有解,必须 r(A : B) = r(A). 于是由

图答 5-19

$$(A:B) = \begin{pmatrix} 1 & 0 & 2 & 2 & 2 & 3 \\ 2 & 1 & 5 & 3 & 4 & 8 \\ -1 & 0 & -2 & b+1 & c-2 & -3 \end{pmatrix} (已将 a = 1 代人)$$

$$\xrightarrow{\text{初等行变换}} \begin{pmatrix} 1 & 0 & 2 & 2 & 2 & 3 \\ 0 & 1 & 1 & -1 & 0 & 2 \\ 0 & 0 & 0 & b+3 & c & 0 \end{pmatrix}$$

知 $\begin{cases} b+3=0, \\ c=0, \end{cases}$ 即 b=-3, c=0.

设
$$\boldsymbol{X} = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix}$$
,并将 $a=1$, $b=-3$, $c=0$ 代入,则矩阵方程

$$\mathbf{AX} = \mathbf{B} \stackrel{\text{Li}}{=} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} = \begin{pmatrix} 2 & 2 & 3 \\ -1 & 0 & 2 \end{pmatrix}$$
 (1)

同解,而式(1)即为以下三个线性方程组

$$\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_{11} \\ x_{21} \\ x_{31} \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \tag{2}$$

$$\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_{12} \\ x_{22} \\ x_{32} \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \tag{3}$$

$$\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_{13} \\ x_{23} \\ x_{33} \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}. \tag{4}$$

显然,式(2)的通解为 $C_1(2,1,-1)^T+(2,-1,0)^T=(2C_1+2,C_1-1,-C_1)^T$,式(3)的通解为 $C_2(2,1,-1)^T+(2,0,0)^T=(2C_2+2,C_2,-C_2)^T$,式(4)的通解为 $C_3(2,1,-1)^T+(3,2,0)^T=(2C_3+3,C_3+2,-C_3)^T$,

所以,
$$X = \begin{pmatrix} 2C_1 + 2 & 2C_1 + 2 & 2C_3 + 3 \\ C_1 - 1 & C_2 & C_3 + 2 \\ -C_1 & -C_2 & -C_3 \end{pmatrix}$$
(其中, C_1 , C_2 , C_3 是任意常数).

附注 矩阵方程 AX = B 的解法见模拟试题(二)(20)的解答.

(21) (I)由于
$$|(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3)| = \begin{vmatrix} 1 & 1 & a \\ 1 & a & 1 \\ a & 1 & 1 \end{vmatrix} = (a+2)(a-1)^2, 所以, |\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3|$$

=0的解为a=1, -2.

知, β 不能由 α_1 , α_2 , α_3 线性表示.

知, β 可由 α_1 , α_2 , α_3 线性表示. 设表示式为 $\beta = x\alpha_1 + y\alpha_2 + z\alpha_3$, 即

$$(\boldsymbol{\alpha}_1, \ \boldsymbol{\alpha}_2, \ \boldsymbol{\alpha}_3) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \boldsymbol{\beta}.$$
 (1)

由以上的初等行变换知,该方程组与 $\begin{cases} x - z = 1, \\ y - z = 0 \end{cases}$ 同解。它对应的齐次线性方程组的通解为 $C(1, 1, 1)^{\mathrm{T}}$,且有特解 $(1, 0, 0)^{\mathrm{T}}$. 所以式(1)的通解为 $(x, y, z)^{\mathrm{T}} = C(1, 1, 1)^{\mathrm{T}} + (1, 0, 0)^{\mathrm{T}} = (C+1, C, C)^{\mathrm{T}}$. 从而对所求的a = -2,线性表示式的一般形式为 $\beta = (C+1)\alpha_1 + C\alpha_2 + C\alpha_3$ (其中C是任意常数).

(II) 由于a = -2时,

$$|\lambda E_3 - A| = \begin{pmatrix} \lambda - 1 & -1 & 2 \\ -1 & \lambda + 2 & -1 \\ 2 & -1 & \lambda - 1 \end{pmatrix} = \begin{pmatrix} \lambda & -1 & 2 \\ \lambda & \lambda + 2 & -1 \\ \lambda & -1 & \lambda - 1 \end{pmatrix} = \begin{pmatrix} \lambda & -1 & 2 \\ 0 & \lambda + 3 & -3 \\ 0 & 0 & \lambda - 3 \end{pmatrix}$$
$$= \lambda (\lambda - 3) (\lambda + 3),$$

所以 A 有特征值 $\lambda = 0$, 3, -3.

设对应 $\lambda = 0$ 的特征向量为 $\boldsymbol{a} = (a_1, a_2, a_3)^T$,则 \boldsymbol{a} 满足

$$\begin{pmatrix} -1 & -1 & 2 \\ -1 & 2 & -1 \\ 2 & -1 & -1 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \mathbf{0}.$$
 (1)

由于
$$\begin{pmatrix} -1 & -1 & 2 \\ -1 & 2 & -1 \\ 2 & -1 & -1 \end{pmatrix}$$
 初等行变换 $\begin{pmatrix} -1 & -1 & 2 \\ 0 & 3 & -3 \\ 0 & 0 & 0 \end{pmatrix}$ \rightarrow $\begin{pmatrix} -1 & -1 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$ \rightarrow $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$,

所以式(1)与方程组 $\begin{cases} a_1 & -a_3 = 0, \\ a_2 - a_3 = 0 \end{cases}$ 同解,故**a**可取它的基础解系,即**a** = $(1, 1, 1)^T$.

设对应 $\lambda = 3$ 的特征向量为 $\boldsymbol{b} = (b_1, b_2, b_3)^{\mathrm{T}}$,则 \boldsymbol{b} 满足

$$\begin{pmatrix} 2 & -1 & 2 \\ -1 & 5 & -1 \\ 2 & -1 & 2 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \mathbf{0}.$$
 (2)

由于
$$\begin{pmatrix} 2 & -1 & 2 \\ -1 & 5 & -1 \\ 2 & -1 & 2 \end{pmatrix}$$
 $\xrightarrow{\text{初等行变换}}$ $\begin{pmatrix} 2 & -1 & 2 \\ -1 & 5 & -1 \\ 0 & 0 & 0 \end{pmatrix}$ \rightarrow $\begin{pmatrix} 0 & 9 & 0 \\ -1 & 5 & -1 \\ 0 & 0 & 0 \end{pmatrix}$ \rightarrow $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, 所以

式(2)与方程组 $\begin{cases} b_1 + b_3 = 0, \\ b_2 = 0 \end{cases}$ 同解,故 \boldsymbol{b} 可取它的基础解系,即 $\boldsymbol{b} = (1, 0, -1)^T.$

设对应 $\lambda = -3$ 的特征向量为 $\mathbf{c} = (c_1, c_2, c_3)^T$,则由 \mathbf{A} 是实对称矩阵知, $\mathbf{c} = \mathbf{a}$, \mathbf{b} 都正交,所以有 $\begin{cases} c_1 + c_2 + c_3 = 0, \\ c_1 & -c_3 = 0, \end{cases}$ 故 \mathbf{c} 可取它的基础解系,即 $\mathbf{c} = (1, -2, 1)^T$.

a, b, c 是正交向量组, 现将它们单位化得

$$\boldsymbol{\xi} = \frac{\boldsymbol{a}}{\|\boldsymbol{a}\|} = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)^{\mathrm{T}},$$

$$\boldsymbol{\eta} = \frac{\boldsymbol{b}}{\|\boldsymbol{b}\|} = \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right)^{\mathrm{T}},$$

$$\boldsymbol{\zeta} = \frac{\boldsymbol{c}}{\|\boldsymbol{c}\|} = \left(\frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{\sqrt{6}}}, \frac{1}{\sqrt{6}}\right)^{\mathrm{T}}.$$

$$\label{eq:Q} \begin{split} \mathbf{\mathcal{Q}} = (\boldsymbol{\xi},\ \boldsymbol{\eta},\ \boldsymbol{\zeta}) = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \\ \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \end{pmatrix} (\, \mathbf{E} \, \boldsymbol{\mathcal{D}} \, \mathbf{E} \, \boldsymbol{\mathcal{P}} \, \boldsymbol{\mathcal{Y}} \, \boldsymbol$$

 (x_3) 化为标准形 $3y_2^2 - 3y_3^2$.

附注 由于当 $\mid (\boldsymbol{\alpha}_1, \, \boldsymbol{\alpha}_2, \, \boldsymbol{\alpha}_3) \mid \neq 0$,即 $\boldsymbol{\alpha}_1, \, \boldsymbol{\alpha}_2, \, \boldsymbol{\alpha}_3$ 线性无关时, $\boldsymbol{\beta}$ 必可由 $\boldsymbol{\alpha}_1, \, \boldsymbol{\alpha}_2, \, \boldsymbol{\alpha}_3$ 唯一线性表示。因此题解从 $\mid (\boldsymbol{\alpha}_1, \, \boldsymbol{\alpha}_2, \, \boldsymbol{\alpha}_3) \mid = 0$ 入手。

得
$$DZ = E(Z^2) - (EZ)^2$$

$$= \iint_{x0, y \to f_0} (2x - y)^2 f(x, y) d\sigma - \frac{9}{16} = \iint_{\Delta} (2x - y)^2 \cdot \frac{3}{2} x d\sigma - \frac{9}{16}$$

$$= \int_0^1 dx \int_0^{2x} (2x - y)^2 \cdot \frac{3}{2} x dy - \frac{9}{16} = \int_0^1 \frac{3}{2} x \cdot \left[-\frac{1}{3} (2x - y)^3 \right] \Big|_{y=0}^{y=2x} dx - \frac{9}{16}$$

$$= \int_0^1 4x^4 dx - \frac{9}{16} = \frac{19}{80}.$$

由 Z = 2X - Y 得

$$f_{Z}(z) = \int_{-\infty}^{+\infty} f(x, 2x - z) \frac{1}{|-1|} dx = \int_{-\infty}^{+\infty} f(x, 2x - z) dx,$$
其中 $f(x, 2x - z) = \begin{cases} \frac{3}{2}x, & 0 < x < 1, & 0 < 2x - z < 2x, \\ 0, & \text{其他} \end{cases}$

$$= \begin{cases} \frac{3}{2}x, & 0 < x < 1, & 0 < z < 2x, \\ 0, & \text{其他} \end{cases} = \begin{cases} \frac{3}{2}x, & 0 < z < 2, & \frac{z}{2} < x < 1, \\ 0, & \text{其他} \end{cases}$$
因此
$$f_{Z}(z) = \int_{-\infty}^{+\infty} f(x, 2x - z) dx = \begin{cases} \int_{-\frac{z}{2}}^{1} \frac{3}{2}x dx, & 0 < z < 2, \\ 0, & \text{其他} \end{cases}$$

$$= \begin{cases} \frac{3}{4} \left(1 - \frac{1}{4}z^{2}\right), & 0 < z < 2, \\ 0, & \text{其他} \end{cases}$$

附注 记住以下公式:

设二维随机变量(X, Y)的概率密度为f(x, y),则随机变量 Z = aX + bY + c(a, b, c) 常数)的概率密度可按以下公式计算:

当
$$a \neq 0$$
 时, $f_Z(z) = \int_{-\infty}^{+\infty} f\left(\frac{z - by - c}{a}, y\right) \frac{1}{|a|} dy$,
当 $b \neq 0$ 时, $f_Z(z) = \int_{-\infty}^{+\infty} f\left(x, \frac{z - ax - c}{b}\right) \frac{1}{|b|} dx$.
(23) 由于 $EZ = E(X^2) + EY$,

其中, $E(X^2) = DX + (EX)^2 = \sigma^2$, $EY = \frac{1}{3}$. 所以 $EZ = \sigma^2 + \frac{1}{3}$. 因此由矩估计法令 $EZ = \frac{1}{n}\sum_{i=1}^{n}Z_i = \overline{Z}$. 从而 σ^2 的矩估计量为

$$\hat{\sigma}^2 = \overline{Z} - \frac{1}{3}.$$

附注 顺便在 X 与 Y 相互独立的条件下计算 Z 的分布函数 $F_Z(z)$: 记 X 的分布函数为 $F(x),则 F(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}\sigma} \mathrm{e}^{-\frac{t^2}{2\sigma^2}} \mathrm{d}t.$ 于是 $F_Z(z) = P(Z \leqslant z) = P(X^2 + Y \leqslant z)$ $= P(Y = -1)P(X^2 + Y \leqslant z \mid Y = -1) + P(Y = 1)P(X^2 + Y \leqslant z \mid Y = 1)$

$$= \frac{1}{3} P(X^2 \le z + 1) + \frac{2}{3} P(X^2 \le z - 1) (利用 X^2 与 Y 相互独立)$$

$$= \begin{cases} 0, & z \leq -1, \\ \frac{1}{3}P(-\sqrt{z+1} \leq X \leq \sqrt{z+1}), & -1 < z \leq 1, \\ \frac{1}{3}P(-\sqrt{z+1} \leq X \leq \sqrt{z+1}) + \frac{2}{3}P(-\sqrt{z-1} \leq X \leq \sqrt{z-1}), & z > 1 \end{cases}$$

$$= \begin{cases} 0, & z \leq -1, \\ \frac{1}{3}[F(\sqrt{z+1}) - F(-\sqrt{z+1})], & -1 < z \leq 1, \\ \frac{1}{3}[F(\sqrt{z+1}) - F(-\sqrt{z+1})] + \frac{2}{3}[F(\sqrt{z-1}) - F(-\sqrt{z-1})], & z > 1. \end{cases}$$

模拟试题(六)解答

一、选择题

答案	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	С	С	В	В	A	В	С	D

(1) 显然 x = 0, 1 都是方程的实根. 记 $f(x) = 2^x - x^2 - 1$, 则 f(x) 连续, 且 f(2)· $\lim_{x \to \infty} f(x) < 0$,所以由零点定理(推广形式)知方程 f(x) = 0 在(2, + ∞)上有实根,记为 x_0 .

如果 f(x) = 0 还有不同实根 x_1 ,不妨设 $x_1 > x_0$,则由 f(x)3 阶可导,且 $f(0) = f(1) = f(x_0) = f(x_1)$ 及罗尔定理(高阶导数形式)知,存在 $\xi \in (0, x_1)$,使得

$$f^{(3)}(\xi) = 0. (1)$$

另一方面, 计算 f(x) 的 3 阶导数得

$$f^{(3)}(\xi) = 2^{\xi} (\ln 2)^3 \neq 0. \tag{2}$$

由式(1)与式(2)矛盾知,方程f(x)=0,即 $2^x-x^2-1=0$ 除 0,1, x_0 外,别无其他实根.因此选(C).

附注 (I) 零点定理的一种推广形式

设函数 f(x) 在 $[a, +\infty)$ 上连续,且 f(a) · $\lim_{x \to +\infty} f(x) < 0$,则存在 $\xi \in (a, +\infty)$,使得 $f(\xi)$ = 0.

(II) 罗尔定理的一种高阶导数形式

设函数 f(x) 在 [a, b] 上连续,在 (a, b) 内 3 阶可导,且存在 $x_1, x_2 \in (a, b)$ (其中 $x_1 < x_2$),使得 $f(a) = f(x_1) = f(x_2) = f(b)$,则存在 $\xi \in (a, b)$,使得 $f^{(3)}(\xi) = 0$.

(2) 利用对称区间上定积分性质可得

$$M = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin x}{1+x^2} \cos^2 x \mathrm{d}x = 0 \ (由于被积函数是奇函数) \,,$$

$$N = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\sin^3 x + \cos^4 x) \, \mathrm{d}x = 2 \int_{0}^{\frac{\pi}{2}} \cos^4 x \, \mathrm{d}x > 0 \left[\begin{array}{c} \mathrm{d} \, \mp \, \sin^3 x \, \, \text{是奇函数}, \cos^4 x \, \, \text{是偶函数,} \, \, \text{在} \\ \left[0, \frac{\pi}{2} \right] \, \text{上} \cos^4 x \geq 0, \, \text{且仅在点}x = \frac{\pi}{2} \, \text{处取等号} \end{array} \right],$$

$$P = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x^2 \sin^3 x - \cos^7 x) dx = -2 \int_0^{\frac{\pi}{2}} \cos^7 x dx < 0 \left[\begin{array}{c} \text{由于 } x^2 \sin^3 x \text{ 是奇函数}, \cos^7 x \text{ 是偶函数, 在} \\ \left[0, \frac{\pi}{2} \right] \text{上} \cos^7 x \ge 0, \text{且仅在点} x = \frac{\pi}{2} \text{处取} \end{array} \right],$$
 等号

所以,P < M < N. 因此选(C).

附注 应记住对称区间上定积分的性质: 设f(x)在[-a, a]上连续,则

$$\int_{-a}^{a} f(x) dx = \begin{cases} 2 \int_{0}^{a} f(x) dx, & f(x) \text{ 是偶函数,} \\ 0, & f(x) \text{ 是奇函数.} \end{cases}$$

此外, 当f(x) 是非奇非偶函数时, 有

$$\int_{-a}^{a} f(x) dx = \int_{0}^{a} \left[f(x) + f(-x) \right] dx.$$

(3) 当 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径为1时,它在点x=-1处可能是条件收敛 $\left(\sum_{n=0}^{\infty} \frac{1}{n+1} x^n\right)$,也可能

不是条件收敛 $\left(\sum_{n=0}^{\infty}x^{n}\right)$ 或 $\sum_{n=0}^{\infty}\frac{1}{(n+1)^{2}}x^{n}$, 但当 $\sum_{n=0}^{\infty}a_{n}x^{n}$ 在点 x=-1 处条件收敛时,它的收敛半

径必为 1. 于是收敛半径为 1 是 $\sum_{n=0}^{\infty} a_n x^n$ 在点 x=-1 处条件收敛的必要而非充分条件,因此选(B).

附注 对于幂级数 $\sum_{n=0}^{\infty} a_n x^n$, 当其收敛半径为R(正数) 时,必在(-R,R) 内绝对收敛,但在端点 x = -R,R处可能收敛(条件收敛或绝对收敛),也可能发散,应视{ a_n } 而定.

(4) 由于所给的微分方程右端函数

$$2\sin x = e^{\alpha x} (0 \cdot \cos \beta x + 2 \cdot \sin \beta x) (\sharp \dot{+} \alpha = 0, \beta = 1),$$

而 $\alpha + \beta$ i = i 是对应的齐次线性微分方程 y'' + y = 0 的特征方程之根,所以 $y'' + y = 2\sin x$ 应有的特解形式为 $x(a\cos x + b\sin x)$. 因此选(B).

附注 对于常系数非齐次线性微分方程

$$y'' + py' + qy = e^{\alpha x} [P_l(x)\cos \beta x + Q_m(x)\sin \beta x]$$

(式中 $P_l(x)$, $Q_m(x)$ 分别是l与m次多项式)应有如下形式的特解:

$$y^* = x^k e^{\alpha x} \left[R_n^{(1)}(x) \cos \beta x + R_n^{(2)}(x) \sin \beta x \right]$$

(式中 $R_n^{(1)}(x)$, $R_n^{(2)}(x)$ 都是n次多项式, $n = \max\{l, m\}$,k = 0, 1, 视 $\alpha + i\beta$ 是否为y'' + py' + qy = 0的特征方程 $r^2 + pr + q = 0$ 的根而定).

(5) 当A 可逆时, $\lambda \neq 0$,且 A^{-1} 有特征值 $\frac{1}{\lambda}$ 及对应的特征向量 α , $B = P^{-1}AP$ 有特征值 λ 及对应的特征向量 A^{-1} 0。从而 A^{-1} 0,有特征值 A^{-1} 2。及对应的特征向量 A^{-1} 2。因此选(A).

附注 设 A 是 n 阶矩阵,有特征值 λ 及对应的特征向量 α ,则 $B = P^{-1}AP$ (P 是 n 阶可 逆矩阵) 有特征值 λ 及对应的特征向量 $P^{-1}\alpha$. 此外,当 A 可逆时, A^{-1} 与 A^* 分别有特征值 $\frac{1}{\lambda}$ 与 $\frac{|A|}{\lambda}$ 以及对应的特征向量 α .

(6) 由于当(I)与(II)等价时, (I)与(II)等秩; 当A与B等价时, A与B等秩, 反之也对. 所以选项(A)、(C)、(D)都正确。因此选(B).

附注 当(I)与(I)等秩时,未必等价.例如, $\alpha_1 = (1, 0, 0)^T$, $\alpha_2 = (0, 1, 0)^T$, $\beta_1 = (1, 0, 0)^T$, $\beta_2 = (0, 0, 1)^T$.显然 $r(\alpha_1, \alpha_2) = r(\beta_1, \beta_2)$,但是 α_2 不能由 β_1 , β_2 线性表示,即 α_1 , α_2 与 β_1 , β_2 不等价.

由本题可知, 题中的(I)、(II)等价与A、B等价是有区别的, 应注意这一点.

(7)
$$F(1,4) = P(X \le 1, Y \le 4) = P(X \le 1, X^2 \le 4) = P(-2 \le X \le 1)$$

= $\int_{-2}^{1} f(x) dx = \int_{-2}^{-1} 0 dx + \int_{-1}^{0} \frac{1}{2} dx + \int_{0}^{1} \frac{1}{4} dx = \frac{3}{4}$.

因此选(C).

附注 顺便计算 X 的分布函数 $G(x) = P(X \le x)$:

当
$$x > 2$$
时, $P(X \le x) = \int_{-\infty}^{x} f(t) dt = \int_{-\infty}^{+\infty} f(t) dt = 1.$

所以,
$$G(x) = \begin{cases} 0, & x \le -1, \\ \frac{1}{2}(x+1), & -1 < x \le 0, \\ \frac{1}{2}\left(\frac{1}{2}x+1\right), & 0 < x \le 2, \\ 1, & x > 2. \end{cases}$$

(8) 由于
$$Y = \sum_{i=1}^{n} \frac{X_{i}^{2}}{\sigma^{2}} \sim \chi^{2}(n)$$
,所以
$$E\left[\left(\frac{1}{n}\sum_{i=1}^{n} X_{i}^{2}\right)^{2}\right] = \frac{\sigma^{4}}{n^{2}}E(Y^{2}) = \frac{\sigma^{4}}{n^{2}}\left[DY + (EY)^{2}\right]$$

$$= \frac{\sigma^{4}}{2}(2n + n^{2}) = \frac{2 + n}{n^{2}}\sigma^{4}.$$

因此选(D).

附注 应记住以下结论:

设 X_1, X_2, \cdots, X_n 是来自总体 $N(\mu, \sigma^2)$ 的简单随机样本,记 $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$,则

$$\sum_{i=1}^{n} \frac{(X_i - \overline{X})^2}{\sigma^2} \sim \chi^2(n-1), \quad \sum_{i=1}^{n} \frac{(X_i - \mu)^2}{\sigma^2} \sim \chi^2(n).$$

此外,设 $X \sim \chi^2(n)$,则EX = n,DX = 2n.

二、填空题

(9) 由 f(x) 在点 x = 0 处连续知

$$a = \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} (e^{x} + \sin x)^{\frac{1}{x}} = e^{\lim_{x \to 0^{+}} \frac{\ln (e^{x} + \sin x)}{x}},$$
 (1)

其中,
$$\lim_{x\to 0^+} \frac{\ln (e^x + \sin x)}{x} = \frac{$$
 洛必达法则 $\lim_{x\to 0^+} \frac{e^x + \cos x}{e^x + \sin x} = 2.$ (2)

将式(2)代入式(1)得 $a = e^2$.

附注 计算 0^0 , 1^{∞} , ∞^0 型未定式极限 $\lim[f(x)]^{g(x)}$ 时, 应首先将函数指数化, 即 $[f(x)]^{g(x)} = e^{g(x)\ln f(x)}$. 于是

$$\lim[f(x)]^{g(x)} = e^{\lim g(x) \ln f(x)} = \begin{cases} e^A, & \lim g(x) \ln f(x) = A(\sharp \mathfrak{Y}), \\ 0, & \lim g(x) \ln f(x) = -\infty, \\ +\infty, & \lim g(x) \ln f(x) = +\infty. \end{cases}$$

$$(10) \frac{\partial}{\partial x} f\left(e^{xy}, \cos\frac{1}{x}\right) = f'_u \cdot \frac{\partial}{\partial x} e^{xy} + f'_v \cdot \frac{\partial}{\partial x} \cos\frac{1}{x} = y e^{xy} f'_u + \frac{1}{x^2} \sin\frac{1}{x} f'_v.$$

附注 计算多元复合函数的偏导数时,应先画出该函数与自变量之间的复合关系图,例 如本题的关系图为

$$z = f\left(e^{xy}, \cos \frac{1}{x}\right) \underbrace{\qquad \qquad }_{v = x}^{u < x}$$

然后按关系图计算有关的偏导数,

所以,
$$\sum_{n=1}^{\infty} \left[\frac{1}{n(n+1)} + (-1)^{\cos \frac{n\pi}{2}} \frac{1}{2^n} \right] = 1 + \frac{1}{3} = \frac{4}{3}.$$

附注 应记住
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$$
. 顺便计算 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n(n+1)}$.
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} + \sum_{n=1}^{\infty} (-1)^{n} \frac{1}{n+1}$$

$$= 2 \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} - 1 = 2 \ln (1+x) \Big|_{x=1} - 1$$

$$= 2 \ln 2 - 1.$$

(12) 由题设知

$$\frac{p}{R} \frac{dR}{dp} = 1 + p + p \ln p \quad \text{即} \quad \frac{d \ln R}{dp} = \frac{1 + p + p \ln p}{p} = \frac{1}{p} + 1 + \ln p,$$
所以,
$$\ln R(p) - \ln R(1) = \int_{1}^{p} \left(\frac{1}{t} + 1 + \ln t\right) dt$$

$$= \left(\ln t + t \ln t\right) \Big|_{1}^{p} = \ln p + p \ln p = \ln p^{1+p}.$$

将 R(1) = 1 代入上式得

$$R(p) = p^{1+p}.$$

附注 由于 R(p) 是 p 的单调增加函数,所以 R(p) 的弹性为 $\frac{p}{R}$ $\frac{dR}{dp}$.

(13) 由于 $A^* = |A|A^{-1}$,以及

$$|A| = \begin{vmatrix} 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} \cdot \begin{vmatrix} 1 & 0 \\ 1 & -1 \end{vmatrix} = 1,$$

所以
$$\mathbf{A}^* = \mathbf{A}^{-1} = \begin{pmatrix} 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & 0 & \begin{pmatrix} 1 & 0 \\ 0 & 0 & \begin{pmatrix} 0 & -1 \end{pmatrix} \\ \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}^{-1} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 2 & 0 & 0 \\ 1 & -1 & 0 & 0 \end{pmatrix}.$$

附注 如果记住以下公式,将快捷地算出 A^* .

设A, B 都是n 阶可逆矩阵, 则

$$\begin{pmatrix} A & O \\ O & B \end{pmatrix}^* = \begin{pmatrix} \mid B \mid A^* & O \\ O & \mid A \mid B^* \end{pmatrix},$$

$$\begin{pmatrix} O & A \\ B & O \end{pmatrix}^* = \begin{pmatrix} O & \mid A \mid B^* \\ \mid B \mid A^* & O \end{pmatrix}.$$

(14) 由于
$$P(A) = C_3^1 p (1-p)^2 \cdot p = 3p^2 (1-p)^2$$
,则 X 的概率分布为

X	0	1
P	$1-3p^2(1-p)^2$	$3p^2(1-p)^2$

所以, $E(X^2) = 1^2 \cdot 3p^2(1-p)^2 = 3p^2(1-p)^2$.

附注 服从参数为 λ 的0-1分布的随机变量X的概率分布为

(0 <) < 1)	1	0	X
$(0 < \lambda < 1)$	λ	1 – λ	P

由此可算出X的数字特征,例如

$$EX = E(X^2) = \lambda$$
, $DX = \lambda(1 - \lambda)$.

三、解答题

$$(15) \int \frac{1+\sin x}{1+\cos x} \cdot e^x dx = \int \frac{1+\sin x}{1+\cos x} de^x$$

$$= \frac{1+\sin x}{1+\cos x} \cdot e^x - \int e^x \cdot \frac{1+\cos x+\sin x}{(1+\cos x)^2} dx$$

$$= \frac{1+\sin x}{1+\cos x} \cdot e^x - \left[\int \frac{1}{1+\cos x} \cdot e^x dx + \int \frac{\sin x}{(1+\cos x)^2} \cdot e^x dx \right]$$

$$= \frac{1 + \sin x}{1 + \cos x} \cdot e^{x} - \left(\int \frac{1}{1 + \cos x} \cdot e^{x} dx + \int \frac{1}{1 + \cos x} \right)$$

$$= \frac{1 + \sin x}{1 + \cos x} \cdot e^{x} - \left(\int \frac{1}{1 + \cos x} \cdot e^{x} dx + \frac{e^{x}}{1 + \cos x} - \int \frac{1}{1 + \cos x} \cdot e^{x} dx \right)$$

$$= \frac{\sin x}{1 + \cos x} \cdot e^{x} + C.$$

附注 当 $\int f(x) dx$ 不易计算时,有时可采用以下方法计算,即将不定积分 $\int f(x) dx$ 改写成两个不定积分之和:

$$\int f(x) dx = \int f_1(x) dx + \int f_2(x) dx,$$

并且对其中一个,例如对 $\int f_1(x) dx$ 施行分部积分法消去 $\int f_2(x) dx$. 本题的 $\int e^x \cdot \frac{1 + \cos x + \sin x}{(1 + \cos x)^2} dx$ 就是如此计算的.

(16) 由于 $f_n(x)$ 满足

$$f'_{n}(x) - f_{n}(x) = \frac{1}{(n-1)!} x^{n-1} e^{x},$$

$$f_{n}(x) = e^{\int dx} \left[C + \int \frac{1}{(n-1)!} x^{n-1} e^{x} \cdot e^{\int -dx} dx \right] = e^{x} \left(C + \frac{1}{n!} x^{n} \right).$$

将 $f_n(1)=\frac{\mathrm{e}}{n!}$ 代入上式得C=0,所以 $f_n(x)=\frac{1}{n!}x^n\mathrm{e}^x(n=1,2,\cdots)$. 从而s(x)=

$$\sum_{n=1}^{\infty} f_n(x) = e^x \sum_{n=1}^{\infty} \frac{1}{n!} x^n = e^x (e^x - 1) (-\infty < x < +\infty).$$

知函数 y = s(x) 有唯一零点 x = 0,在 $(-\infty,0)$ 上 s(x) < 0,在 $(0,+\infty)$ 上 s(x) > 0.

知函数 y=s(x) 在($-\infty$, $-\ln 2$] 上单调减少,在[$-\ln 2$, $+\infty$) 上单调增加, $s(-\ln 2)=-\frac{1}{4}$ 是极小值,无极大值.

$$\exists s''(x) = 4e^{x} \left(e^{x} - \frac{1}{4} \right) \begin{cases} <0, & x < -2\ln 2, \\ =0, & x = -2\ln 2, \\ >0, & x > -2\ln 2, \end{cases}$$

知曲线 y = s(x) 在($-\infty$, $-2\ln 2$] 上是凸的, 在[$-2\ln 2$, $+\infty$) 上是凹的,

$$\left(-2\ln 2, -\frac{3}{16}\right)$$
是拐点.

由 $\lim_{x\to -\infty} s(x) = \lim_{x\to -\infty} e^x(e^x - 1) = 0$ 知曲线 y = s(x) 有水平渐近线 y = 0. 所以 y = s(x) 的图形如图答 6-16 所示.

附注 作函数 y = f(x) 的简图时,应确定 y = f(x) 取正值与负值的区间(零点),单调增加与单调减少区间(极值),曲线 y = f(x) 的凹凸区间(拐点)以及渐近线.本题——计算了这些要素后,作出了简图.

图答 6-16

(17) 由
$$f'_x = 4x - 4xy^2$$
, $f'_y = 2y - 4x^2y$ 知方程组 $\begin{cases} f'_x = 0, \\ f'_y = 0 \end{cases}$ 即 $\begin{cases} 4x(1-y^2) = 0, \\ 2y(1-2x^2) = 0 \end{cases}$ 在 D 的内部无所,即 $f(x, y)$ 在 D 的内部无可能极值点.

D 的边界由 C_1 : $x^2 + 2y^2 = 1$ ($y \ge 0$) 与 C_2 : y = 0($-1 \le x \le 1$)组成.

$$f(x, y) \mid_{c_1} = \frac{1}{2} + \frac{1}{2}x^2 + x^4 \xrightarrow{\stackrel{il}{\longleftarrow}} \varphi(x) \left(-1 \leqslant x \leqslant 1 \right), 且 \varphi(x)$$
在点 $x = 0$ 处取最小值 $\frac{1}{2}$,

在 x = -1 或 1 处取最大值 2, 即 f(x, y) 在 C_1 上的最小值为 $\frac{1}{2}$, 最大值为 2.

 $f(x, y) \mid_{c_2} = 2x^2(-1 \le x \le 1)$,在点 x = 0 处取到最小值 0,在点 x = -1,1 处取到最大值 2,即 f(x, y) 在 C_2 上的最小值为 0,最大值为 2.

因此, f(x, y) 在 D 上的最小值为 0, 最大值为 2.

附注 设函数 f(x, y) 在有界闭区域 D 上连续,则它在 D 上必有最小值与最大值,它们可按以下步骤计算:

(I) 计算 f(x, y) 在 D 的内部的所有可能极值点,记为

$$(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n);$$

- (\mathbb{I}) 计算 f(x, y) 在 D 的边界上的最小值和最大值,记为 m_1 与 M_1 ;
- (**II**) 比较 $f(x_1, y_1)$, $f(x_2, y_2)$, …, $f(x_n, y_n)$, m_1 , M_1 , 其中最小者(最大者)即为 f(x, y)在 D 上的最小值(最大值).

(18)
$$\iint_{\triangle OAB} f(x,y) d\sigma = \iint_{D_1} xy d\sigma + \iint_{D_2} (1 - x - y) d\sigma,$$

其中,
$$D_1 = \left\{ (x, y) \mid 0 \le x \le 1, \ 0 \le y \le \frac{1-x}{1+x} \right\}; \ D_2 = \left\{ (x, y) \mid 0 \le x \le 1, \ \frac{1-x}{1+x} \le y \le 1-x \right\}.$$

于是
$$\iint_{\triangle OAB} f(x,y) d\sigma = \int_{0}^{1} dx \int_{0}^{\frac{1-x}{1+x}} xy dy + \int_{0}^{1} dx \int_{\frac{1-x}{1+x}}^{1-x} (1-x-y) dy$$
$$= \int_{0}^{1} \left[\frac{1}{2} xy^{2} \Big|_{y=0}^{y=\frac{1-x}{1+x}} - \frac{1}{2} (1-x-y)^{2} \Big|_{y=\frac{1-x}{1+x}}^{y=1-x} \right] dx$$
$$= \frac{1}{2} \int_{0}^{1} \left[x \left(\frac{1-x}{1+x} \right)^{2} + x^{2} \left(\frac{1-x}{1+x} \right)^{2} \right] dx$$

$$= \frac{1}{2} \int_0^1 \frac{x(1-x)^2}{1+x} dx = \frac{\Rightarrow t = 1+x}{2} \frac{1}{2} \int_1^2 \left(-\frac{4}{t} + 8 - 5t + t^2\right) dt$$
$$= \frac{17}{12} - 2\ln 2.$$

附注 计算分块函数的二重积分,必须根据函数的分块将积分区域分成若干小块,并逐一计算各小块上的二重积分后相加,即得所求的二重积分.

(19) c 将[a, b]分成两个小区间[a, c]与[c, b].

由于 $f'_+(a) = \lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} > 0$,所以存在 $x_1 \in (a, c)$,使得 $f(x_1) > f(a)$.由于 $f'(c) = \lim_{x \to c^-} \frac{f(x) - f(c)}{x - c} < 0$,所以存在 $x_2 \in (x_1, c)$,使得 $f(x_2) > f(c)$.因此f(x)在[a, c]上的最大值在(a, c)内取到.于是由费马引理知存在 $\eta_1 \in (a, c)$,使得 $f'(\eta_1) = 0$.

此外,由f(c) = f(b)知f(x)在[c, b]上满足罗尔定理条件,所以存在 $\eta_2 \in (c, b)$,使 得 $f'(\eta_2) = 0$.

由题设及以上证明知, f'(x)在[η_1 , η_2]上满足罗尔定理条件, 所以存在 $\xi \in (\eta_1, \eta_2)$ $\subset (a, b)$, 使得 $f''(\xi) = 0$.

附注 当函数 f(x) 在 [a, c] 上有连续导数,且 $f'(a) \cdot f'(c) < 0$,则容易知道,存在 $\xi \in (a, c)$,使得 $f'(\xi) = 0$. 但是,从本题的证明可知,"当 f(x) 在 [a, c] 上可导(未必有连续导数),且 $f'(a) \cdot f'(c) < 0$,则存在 $\xi \in (a, c)$,使得 $f'(\xi) = 0$,"记住这个结论,有助于快速解题.

(20) 由于
$$\boldsymbol{\alpha}_1$$
, $\boldsymbol{\alpha}_2$, $\boldsymbol{\alpha}_3$ 不能由 $\boldsymbol{\beta}_1$, $\boldsymbol{\beta}_2$, $\boldsymbol{\beta}_3$ 线性表示, 所以矩阵方程 $(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3)X = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3)$

无解,从而

$$r(\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\boldsymbol{\beta}_{3} \mid \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\boldsymbol{\alpha}_{3}) > r(\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\boldsymbol{\beta}_{3}).$$
由于($\boldsymbol{\beta}_{1}$, $\boldsymbol{\beta}_{2}$, $\boldsymbol{\beta}_{3} \mid \boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{2}$, $\boldsymbol{\alpha}_{3}$) =
$$\begin{pmatrix} 1 & 1 & 3 & 1 & 0 & b \\ 1 & 2 & 4 & 0 & 1 & 3 \\ 1 & 3 & b & a & 1 & 5 \end{pmatrix}$$

$$\xrightarrow{\text{初等行变换}} \begin{pmatrix} 1 & 1 & 3 & 1 & 0 & b \\ 0 & 1 & 1 & -1 & 1 & 3 - b \\ 0 & 2 & b - 3 & a - 1 & 1 & 5 - b \end{pmatrix}$$

$$\xrightarrow{\text{0}} \begin{pmatrix} 1 & 1 & 3 & 1 & 0 & b \\ 0 & 1 & 1 & -1 & 1 & 3 - b \\ 0 & 0 & b - 5 & a + 1 & -1 & b - 1 \end{pmatrix}.$$

所以,b=5 时, $r(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3 \mid \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) = 3 > 2 = r(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3)$,即此时 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 不能由 $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3$ 线性表示.

由于 β_1 , β_2 , β_3 可由 α_1 , $\alpha_1 + \alpha_2$, $\alpha_1 + \alpha_2 + \alpha_3$ 线性表示, 所以矩阵方程

$$(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3) Y = (\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3)$$

有解,从而

 $r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3 \mid \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3) = r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3).$ 将 b = 5 代入得

$$(\boldsymbol{\alpha}_{1}, \ \boldsymbol{\alpha}_{1} + \boldsymbol{\alpha}_{2}, \ \boldsymbol{\alpha}_{1} + \boldsymbol{\alpha}_{2} + \boldsymbol{\alpha}_{3} \mid \boldsymbol{\beta}_{1}, \ \boldsymbol{\beta}_{2}, \ \boldsymbol{\beta}_{3}) = \begin{pmatrix} 1 & 1 & 6 & 1 & 1 & 3 \\ 0 & 1 & 4 & 1 & 2 & 4 \\ a & a+1 & a+6 & 1 & 3 & 5 \end{pmatrix}$$

所以, $a \neq \frac{2}{5}$ 时, $r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3 \mid \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3) = r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3)$ (=3),即此时 $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3$ 可由 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3$ 线性表示.

附注 题解中有两点值得注意:

(I) 矩阵方程 AX = B 有解的充分必要条件是

$$r(A \mid B) = r(A)$$
.

而无解的充分必要条件是

$$r(A \mid B) > r(A)$$
.

(II) 设有两个 n 维向量组(A): $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, …, $\boldsymbol{\alpha}_r$, (B): $\boldsymbol{\beta}_1$, $\boldsymbol{\beta}_2$, …, $\boldsymbol{\beta}_s$, 则向量组(A)可由向量组(B)线性表示,且表示式是唯一的充分必要条件是矩阵方程

$$(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_s) X = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_r)$$
 (1)

有唯一解;向量组(A)可由向量组(B)线性表示,但表示式不唯一的充分必要条件是矩阵方程(1)有无穷多解;向量组(A)不可由向量组(B)线性表示的充分必要条件是矩阵方程(1)无解.

(21) 由于 $f(x_1, x_2, x_3)$ 在正交变换 $\mathbf{x} = \mathbf{Q}\mathbf{y}$ 下的标准形为 $y_1^2 + y_2^2 - y_3^2$, 所以, \mathbf{A} 有特征 值 $\lambda_1 = \lambda_2 = 1$, $\lambda_3 = -1$, 且对应 $\lambda_3 = -1$ 的特征向量为 $\boldsymbol{\alpha}_3 = \left(\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}\right)^T$.

设对应 $\lambda_1 = \lambda_2 = 1$ 的特征向量为 $\alpha = (a_1, a_2, a_3)^T$,则由 A 是实对称矩阵知, α 与 α_3 正交,即

$$a_1 + a_3 = 0$$
.

它的基础解系为 $\boldsymbol{\alpha}_1 = (0, 1, 0)^T$, $\boldsymbol{\alpha}_2 = (-1, 0, 1)^T$, 它们可取为 \boldsymbol{A} 的对应 $\boldsymbol{\lambda}_1 = \boldsymbol{\lambda}_2 = 1$ 的特征向量. $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, $\boldsymbol{\alpha}_3$ 是正交向量组, 现将其单位化:

$$\boldsymbol{\xi}_{1} = \boldsymbol{\alpha}_{1} = (0, 1, 0)^{\mathrm{T}},$$

$$\boldsymbol{\xi}_{2} = \frac{\boldsymbol{\alpha}_{2}}{\parallel \boldsymbol{\alpha}_{2} \parallel} = \left(-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)^{\mathrm{T}},$$

$$\boldsymbol{\xi}_{3} = \boldsymbol{\alpha}_{3} = \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)^{\mathrm{T}}.$$

 A^* 的特征值为

$$\mu_1 = \frac{|A|}{\lambda_1} = -1, \ \mu_2 = \frac{|A|}{\lambda_2} = -1, \ \mu_3 = \frac{|A|}{\lambda_3} = 1,$$

它们对应的特征向量分别为 ξ_1 , ξ_2 , ξ_3 , 记 $Q = (\xi_1, \xi_2, \xi_3)$ (正交矩阵), 则

$$\boldsymbol{Q}^{\mathrm{T}}\boldsymbol{A}^{*}\boldsymbol{Q} = \begin{pmatrix} -1 & & \\ & -1 & \\ & & 1 \end{pmatrix},$$

附注 题解中有两点值得注意:

- (I) 设A 是 n 阶可逆矩阵,有特征值 λ 及对应的特征向量 ξ ,则 A^* 有特征值 $\frac{|A|}{\lambda}$ 及对应的特征向量 ξ .
- (II) 设 A 是可逆实对称矩阵,正交矩阵 Q 使它正交相似对角化,则 Q 也使 A^* 正交相似对角化.
 - (22)(I) 关于 X 的边缘概率密度

$$f_{X}(x) = \int_{-\infty}^{+\infty} f(x,y) \, \mathrm{d}y = \begin{cases} \int_{-1}^{1} \frac{1}{4} (1 - x^{3}y - xy^{3}) \, \mathrm{d}y, | x | < 1, \\ 0, & \text{ 其他} \end{cases}$$

$$= \begin{cases} \frac{1}{2}, & |x| < 1, \\ 0, & \text{其他} \end{cases}$$
 (即 X 在(-1,1) 内服从均匀分布).

记 Z 的分布函数为 F(z), 则 $F(z) = P(Z \le z)$.

当
$$z < 0$$
时, $P(Z \le z) = P(X^2 \le z) = 0$;

当
$$0 \le z < 1$$
 时, $P(Z \le z) = P(X^2 \le z) = P(-\sqrt{z} \le X \le \sqrt{z}) = \int_{-\sqrt{z}}^{\overline{z}} \frac{1}{2} \mathrm{d}x = \sqrt{z};$

当
$$z \ge 1$$
时, $P(Z \le z) = P(X^2 \le z) = P(-\sqrt{z} \le X \le \sqrt{z}) = \int_{-1}^{1} \frac{1}{2} \mathrm{d}x = 1$,

所以,
$$F(z) = \begin{cases} 0, & z < 0, \\ \sqrt{z}, & 0 \leq z < 1, = \\ 1, & z \geq 1 \end{cases} \begin{cases} 0, & z \leq 0, \\ \sqrt{z}, & 0 < z < 1, 从而 \\ 1, & z \geq 1, \end{cases}$$

$$f_Z(z) = \begin{cases} \frac{1}{2\sqrt{z}}, & 0 < z < 1, \\ 0, & \text{ 其他.} \end{cases}$$

$$(II) E(X-Y)^2 = E(X^2) + E(Y^2) - 2E(XY)$$
,

其中
$$E(X^2) = D(X^2) + (EX)^2 = \frac{1}{12} \times 2^2 + 0 = \frac{1}{3}$$
. 同样可得 $E(Y^2) = \frac{1}{3}$. 此外,

$$E(XY) = \iint_{xOy \text{ ψ fin}} xyf(x,y) d\sigma = \iint_{\substack{|x| < 1 \\ |y| < 1}} xy \cdot \frac{1}{4} (1 - x^3y - xy^3) d\sigma$$

$$= \frac{1}{4} \left(\iint_{\substack{|x| < 1 \\ |y| < 1}} xyd\sigma - 2 \iint_{\substack{|x| < 1 \\ |y| < 1}} x^4y^2 d\sigma \right)$$

$$= \frac{1}{4} \left(0 - 2 \cdot \frac{1}{5} x^5 \Big|_{-1}^{1} \cdot \frac{1}{3} y^3 \Big|_{-1}^{1} \right) = -\frac{2}{15},$$

所以,
$$E(X-Y)^2 = \frac{1}{3} + \frac{1}{3} - 2 \cdot \left(-\frac{2}{15}\right) = \frac{14}{15}$$
.

附注 $E(X-Y)^2$ 也可按公式直接计算:

$$E(X - Y)^{2} = \iint_{xO_{y} \neq \text{ini}} (x - y)^{2} f(x, y) d\sigma = \iint_{\substack{|x| < 1 \\ |y| < 1}} (x - y)^{2} \cdot \frac{1}{4} (1 - x^{3}y - xy^{3}) d\sigma$$

$$= \frac{1}{4} \int_{-1}^{1} dx \int_{-1}^{1} (x - y)^{2} (1 - x^{3}y - xy^{3}) dy$$

$$= \frac{1}{4} \int_{-1}^{1} dx \int_{-1}^{1} (x^{2} + y^{2} + 2x^{4}y^{2} + 2x^{2}y^{4} - 2xy - 2x^{3}y^{3} - x^{5}y - xy^{5}) dy$$

$$= \frac{1}{2} \int_{-1}^{1} dx \int_{0}^{1} (x^{2} + y^{2} + 2x^{4}y^{2} + 2x^{2}y^{4}) dy$$

$$= \frac{1}{2} \int_{-1}^{1} \left(\frac{1}{3} + \frac{2}{3} x^4 + \frac{7}{5} x^2 \right) dx = \int_{0}^{1} \left(\frac{1}{3} + \frac{2}{3} x^4 + \frac{7}{5} x^2 \right) dx$$
$$= \frac{14}{15}.$$

(23) 由于
$$EX = \int_{-\infty}^{+\infty} x f(x) dx = \int_{0}^{1} x \cdot \sqrt{\theta} x^{\sqrt{\theta} - 1} dx = \frac{\sqrt{\theta}}{\sqrt{\theta} + 1}$$
, 所以由矩估计法令

$$EX = \overline{x} \left(= \frac{1}{n} \sum_{i=1}^{n} x_i \right)$$

得
$$\frac{\sqrt{\theta}}{\sqrt{\theta}+1}=\bar{x}$$
,即 $\theta=\frac{\bar{x^2}}{(1-\bar{x})^2}$. 所以 θ 的矩估计值 $\hat{\theta_1}=\frac{\bar{x^2}}{(1-\bar{x})^2}$.

似然函数 $L(\theta)=f(x_1)f(x_2)\cdots f(x_n)$ 的最大值只能当 $0< x_1,\ x_2,\ \cdots,\ x_n< 1$ 时取到,所以取

$$\begin{split} L(\theta) &= \sqrt{\theta} x_1^{\sqrt{\theta}-1} \cdot \sqrt{\theta} x_2^{\sqrt{\theta}-1} \cdot \dots \cdot \sqrt{\theta} x_n^{\sqrt{\theta}-1} \\ &= \theta^{\frac{n}{2}} (x_1 x_2 \dots x_n)^{\sqrt{\theta}-1} (0 < x_1, x_2, \dots, x_n < 1). \end{split}$$

取对数得

$$\ln L(\theta) = \frac{n}{2} \ln \theta + (\sqrt{\theta} - 1) \ln(x_1 x_2 \cdots x_n).$$

由
$$\frac{\mathrm{dln}L(\theta)}{\mathrm{d}\theta} = \frac{n}{2\theta} + \frac{1}{2\sqrt{\theta}} \ln(x_1 x_2 \cdots x_n)$$
 知 $\frac{\mathrm{dln}L(\theta)}{\mathrm{d}\theta} = 0$ 的解为

$$\theta = \frac{n^2}{\ln^2(x_1 x_2 \cdots x_n)},$$

所以,
$$\theta$$
 的最大似然估计值为 $\overset{\wedge}{\theta_2} = \frac{n^2}{\ln^2(x_1x_2\cdots x_n)}$.

附注 应熟练掌握总体未知参数的两种点估计法:矩估计法与最大似然估计法.

模拟试题(七)解答

一、选择题

答案	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
合采	D	D	С	D	В	С	С	С

(1) 由于 $f(x) = |x| \cdot (x-2) |x-2|$, 所以 f(x) 在点 x = 0 处不可导, 在点 x = 2 处可导, 因此选(D).

附注 应记住以下结论:

函数 |x-a| 在点 x=a 处不可导,而函数 (x-a)|x-a| 在点 x=a 处可导.

(2) 由于 x^2 在[0, 1]上连续,选项(A),(B),(C)的右边都是 x^2 在[0, 1]的积分和式的极限,它们都等于 $\int_0^1 x^2 dx$,即选项(A),(B),(C)都正确.因此选(D).

附注 也可通过直接计算,确认选项(D)不正确:

$$\lim_{n \to \infty} \frac{1}{3n} \sum_{i=1}^{n} \left(\frac{3i-1}{3n} \right)^{2} = \lim_{n \to \infty} \frac{1}{27n^{3}} \sum_{i=1}^{n} \left(9i^{2} - 6i + 1 \right)$$

$$= \lim_{n \to \infty} \frac{1}{27n^{3}} \left[\frac{9}{6} n(n+1) \left(2n+1 \right) - \frac{6}{2} n(n+1) + n \right]$$

$$= \frac{1}{9} \neq \frac{1}{3} = \int_{0}^{1} x^{2} dx.$$

(3)
$$f_x'(0, 0) = \lim_{x \to 0} \frac{f(x, 0) - f(0, 0)}{x} = \lim_{x \to 0} \frac{\frac{x^3}{x^2}}{x} = 1$$
,

同样, $f_{x}'(0, 0) = 1$. 因此选(C).

附注 f(x, y)在点(0, 0)连续但不可微,证明如下:

由于
$$|f(x,y) - f(0,0)| = \left| \frac{(x+y)^3}{x^2 + y^2} \right| = \frac{(x+y)^2}{x^2 + y^2} |x+y|$$

 $\leq 2|x+y| \to 0 ((x,y) \to (0,0)),$

所以, f(x, y)在点(0, 0)处连续.

由于
$$\lim_{\substack{(x,y)\to(0,0)\\ \exists y=x}} \frac{f(x,y)-f(0,0)-f_x'(0,0)x-f_y'(0,0)y}{\sqrt{x^2+y^2}}$$

$$= \lim_{\substack{(x,y)\to(0,0)\\ \exists y=x}\\ \exists y=x}} \frac{\frac{(x+y)^3}{x^2+y^2}-x-y}{\sqrt{x^2+y^2}} = \lim_{x\to 0} \frac{\sqrt{2}x}{|x|}$$
 不存在,

所以, f(x, y)在点(0, 0)处不可微.

(4) 由 $\{a_n\}$ 是单调减少收敛于零的正项数列知, $\sum\limits_{n=1}^{\infty} (-1)^{n-1}a_n$ 收敛,所以对它两项两项地加括号所得级数

$$\sum_{n=1}^{\infty} (a_{2n-1} - a_{2n})$$

收敛. 因此选(D).

附注 本题获解的关键是,按莱布尼茨定理确定 $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ 收敛. 此外应记住以下的收敛级数性质:

设 $\sum\limits_{n=1}^\infty c_n$ 收敛,则对它任意加括号所得级数仍收敛.但反之未必正确,即当级数 $\sum\limits_{n=1}^\infty b_n$ 任意加括号后所得的级数收敛时, $\sum\limits_{n=1}^\infty b_n$ 未必收敛.

(5) 由 α , β , γ 线性无关知 α , β 线性无关, 由 α , β , δ 线性相关知 δ 可由 α , β 线性表示, 即 δ 可由 α , β , γ 线性表示. 因此选(B).

附注 关于向量组的线性相关性的以下结论应记住:

(I) 设向量组(A): $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, …, $\boldsymbol{\alpha}_m$.

如果(A)线性无关,则它的任一部分组也线性无关;

如果(A)的任一部分组线性相关,则(A)线性相关.

(Ⅱ) 设向量组(A): α_1 , α_2 , …, α_m , β .

如果(A)线性相关,则至少存在一个向量可由其余向量线性表示;如果(A)线性相关,但 α_1 , α_2 , …, α_m 线性无关,则 β 可由 α_1 , α_2 , …, α_m 线性表示,且表示式是唯一的.

(6) ②④都是 A 可相似对角化的充分必要条件,而①③都是 A 可相似对角化的充分而非必要条件. 因此选(C).

附注 应记住以下的结论:

设 A 是 n 阶矩阵,则"A 有 n 个线性无关的特征向量",或"A 的每个 n_i 重特征值 λ_i 的特征矩阵 $\lambda_i E_n - A$ 都满足 $r(\lambda_i E_n - A) = n - n_i$ ",都是 A 可相似对角化的充分必要条件,而"A 有 n 个不同的特征值",或"A 是实对称矩阵",则是 A 可相似对角化的充分而非必要条件.

(7) 对于选项(C), (X, Y)的概率密度 $f(x,y) = \begin{cases} \frac{1}{\pi R^2}, & x^2 + y^2 \leq R^2, \\ 0, & 其他, \end{cases}$

的边缘概率密度分别为

$$f_{X}(x) = \int_{-\infty}^{+\infty} f(x, y) \, \mathrm{d}y = \begin{cases} \int_{-\sqrt{R^{2} - x^{2}}}^{\sqrt{R^{2} - x^{2}}} \frac{1}{\pi R^{2}} \mathrm{d}y, & -R \leq x \leq R, \\ 0, & \text{ 其他} \end{cases}$$

$$= \begin{cases} \frac{2}{\pi R^{2}} \sqrt{R^{2} - x^{2}}, & -R \leq x \leq R, \\ 0, & \text{ 其他}, \end{cases}$$

$$f_{Y}(y) = \begin{cases} \frac{2}{\pi R^{2}} \sqrt{R^{2} - y^{2}}, & -R \leq y \leq R, \\ 0, & \text{ 其他}. \end{cases}$$

显然, $f_X(x)f_Y(y)=f(x,y)$ 不是几乎处处成立的, 所以 X 与 Y 不相互独立. 因此选(C).

附注 应记住选项(A),(B),(D)的结论.

(8) 由于随机变量 t 的概率密度曲线关于纵轴对称,所以由

$$\alpha = P(\mid t \mid \leq b) = 1 - P(\mid t \mid > b) = 1 - P(t > b) - P(t < -b) = 1 - 2P(t > b)$$

得 $P(t>b) = \frac{1-\alpha}{2}$. 从而由 $t_{\alpha}(n)$ 的定义得 $b = t_{\frac{1-\alpha}{2}}(n)$. 因此选(C).

附注 应当记住:

当 $X \sim N(0, 1)$ 时,满足 $P(\mid X \mid \leq b) = \alpha$ 的 $b = u_{\frac{1-\alpha}{2}}$ (其中 u_{α} 为满足 $P(X > u_{\alpha}) = \alpha$ 的 实数);

当 $X \sim t(n)$ 时,满足 $P(\mid X \mid \leq b) = \alpha$ 的 $b = t_{\frac{1-\alpha}{2}}(n)$ (其中 $t_{\alpha}(n)$ 为满足 $P(X > t_{\alpha}(n)) = \alpha$ 的实数).

二、填空题

(9) 所给微分方程 $x^2y' + y + x^2e^{\frac{1}{x}} = 0$ 可以改写成

$$y' + \frac{1}{x^2}y = -e^{\frac{1}{x}},$$

它的通解为 $y(x) = e^{-\int_{x^2}^{1} dx} \left(C + \int -e^{\frac{1}{x}} \cdot e^{\int_{x^2}^{1} dx} dx \right) = e^{\frac{1}{x}} (C - x).$

将 y(1) = 0 代入得 C = 1. 所以 $y(x) = e^{\frac{1}{x}}(1-x)$. 从而由

$$a = \lim_{x \to \infty} \frac{y}{x} = \lim_{x \to \infty} \left(e^{\frac{1}{x}} \cdot \frac{1-x}{x} \right) = -1,$$

$$b = \lim_{x \to \infty} (y - ax) = \lim_{x \to \infty} [e^{\frac{1}{x}} (1 - x) + x]$$

$$= \lim_{x \to \infty} \left(e^{\frac{1}{x}} - \frac{e^{\frac{1}{x}} - 1}{\frac{1}{x}} \right) = 1 - 1 = 0$$

得曲线 y = y(x) 的非铅直渐近线方程 y = -x.

附注 计算曲线 y = f(x) 的非铅直渐近线方程时,总是要先计算

$$a = \lim_{x \to \infty} \frac{f(x)}{x}$$
 $\notin A$ $= \lim_{x \to \infty} [f(x) - ax].$

如果这两个极限中至少有一个不存在,则计算

$$a_1 = \lim_{x \to +\infty} \frac{f(x)}{x} \Re b_1 = \lim_{x \to +\infty} [f(x) - a_1 x];$$

$$a_2 = \lim_{x \to \infty} \frac{f(x)}{x} \neq \lim_{x \to \infty} [f(x) - a_2 x].$$

(10)由于在[0, +∞)上

$$0 < \frac{1}{(1+x^a)(1+x^2)} < \frac{1}{1+x^2},$$

且 $\int_0^{+\infty} \frac{1}{1+x^2} dx$ 收敛,所以 $\int_0^{+\infty} \frac{1}{(1+x^a)(1+x^2)} dx$ 是收敛的反常积分,从而有

$$\int_0^{+\infty} \frac{1}{(1+x^a)(1+x^2)} dx = \frac{x^a}{-1} \int_0^{+\infty} \frac{t^a}{(1+t^a)(1+t^2)} dt = \int_0^{+\infty} \frac{x^a}{(1+x^a)(1+x^2)} dx,$$

$$\mathbb{E} \mathbb{I} \quad 2 \int_0^{+\infty} \frac{1}{(1+x^a)(1+x^2)} dx = \int_0^{+\infty} \frac{1}{(1+x^a)(1+x^2)} dx + \int_0^{+\infty} \frac{x^a}{(1+x^a)(1+x^2)} dx$$
$$= \int_0^{+\infty} \frac{1}{1+x^2} dx = \arctan x \Big|_0^{+\infty} = \frac{\pi}{2}.$$

所以,
$$\int_0^{+\infty} \frac{1}{(1+x^a)(1+x^2)} dx = \frac{\pi}{4}$$
.

附注 对收敛的反常积分,可以与定积分那样施行变量代换法与分部积分法.

(11) 由于
$$\lim_{t \to 0} \frac{f(2t, 0) + f(0, \sin t) - 2f(t, t)}{t}$$

$$= 2 \lim_{t \to 0} \frac{f(2t, 0) - f(0, 0)}{2t} + \lim_{t \to 0} \left[\frac{f(0, \sin t) - f(0, 0)}{\sin t} \cdot \frac{\sin t}{t} \right] -$$

$$2 \lim_{t \to 0} \frac{f(t, t) - f(0, 0)}{t}, \tag{1}$$

其中,
$$\lim_{t\to 0} \frac{f(2t,0)-f(0,0)}{2t} = f_x'(0,0) = 1$$
,

$$\lim_{t\to 0} \left[\frac{f(0,\sin t) - f(0,0)}{\sin t} \cdot \frac{\sin t}{t} \right] = f_y'(0,0) \cdot 1 = -1,$$

$$\lim_{t \to 0} \frac{f(t, t) - f(0, 0)}{t} = \lim_{t \to 0} \frac{f_x'(0, 0)t + f_y'(0, 0)t + o(|t|)}{t}$$

$$= f_{x}'(0,0) + f_{x}'(0,0) = 0.$$

将它们代入式(1)得

$$\lim_{t \to 0} \frac{f(2t, 0) + f(0, \sin t) - 2f(t, t)}{t} = 2 \times 1 + (-1) - 2 \times 0 = 1.$$

附注 由于 f(x, y) 仅在点(0, 0) 处可微,所以需用偏导数与全微分的定义计算本题的极限.

由于f(x, y)在点(0, 0)处可微, 所以有

$$f(x, y) - f(0, 0) = f'(0, 0)x + f'(0, 0)y + o(\sqrt{x^2 + y^2})$$

特别当x = y = t时,上式成为

$$f(t, t) - f(0, 0) = [f_x'(0, 0) + f_y'(0, 0)]t + o(|t|).$$

计算 $\lim_{t\to 0} \frac{f(t, t) - f(0, 0)}{t}$ 时就利用了上式.

(12) 由于
$$f'(x) = e^{x+1}(x+1)$$

$$\begin{cases} <0, & x<-1, \\ =0, & x=-1, \text{所以 } f(x) \text{ 有最小值 } f(-1) = -\frac{1}{2}, \\ >0, & x>-1, \end{cases}$$

所以,由零点定理(推广形式)及f(x)的单调性(即f(x)在($-\infty$, -1)上单调减少,在 (-1, $+\infty$)上单调增加)知,f(x)在($-\infty$, -1)与(-1, $+\infty$)上各仅有一个零点,故 f(x)在($-\infty$, $+\infty$)上的零点个数为 2.

附注 当函数 f(x) 在 [a, b] 上连续,且 $f(a) \cdot f(b) < 0$ 时,f(x) 在 [a, b] 上有零点;当函数 f(x) 在 [a, b] 上连续、单调,且 $f(a) \cdot f(b) < 0$ 时,f(x) 在 [a, b] 上有且仅有一个零点.

上述的区间换为无穷区间,结论仍成立.

(13) 由 | A | = 2 得

$$\left(\frac{1}{2}A^{2}\right)^{-1}-3A^{*}=2(A^{-1})^{2}-3|A|A^{-1}=(A^{-1})^{2}\cdot 2(E_{3}-3A),$$

所以,
$$\left| \left(\frac{1}{2} \mathbf{A}^2 \right)^{-1} - 3\mathbf{A}^* \right| = \left| \mathbf{A}^{-1} \right|^2 \cdot 8 \left| \mathbf{E}_3 - 3\mathbf{A} \right|$$

= $\left(\frac{1}{2} \right)^2 \times 8 \begin{vmatrix} -2 & -3 & 0 \\ 0 & -2 & -3 \\ -3 & -3 & -5 \end{vmatrix} = -58.$

附注 计算矩阵的行列式时,以下结论是常用的:

设A, B 都是n 阶矩阵, 则

$$|AB| = |A| |B|$$
, $|kA| = k^n |A| (k 是常数)$, $|A^*| = |A|^{n-1} (n>1)$.

当A 可逆时, $|A^{-1}| = \frac{1}{|A|}$.

(14) 由于
$$a = P(X = 1) = F(1) - F(1^{-}) = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$$
,所以
$$P(Y \ge a) = P\left(Y \ge \frac{1}{4}\right) = \int_{\frac{1}{4}}^{+\infty} \varphi(t) dt = \int_{\frac{1}{4}}^{+\infty} e^{-t} dt = e^{-\frac{1}{4}}.$$

附注 由于 F(x) 有间断点 x = 0, 1, 2,所以 X 的概率分布为

X	0	1	2
P	$F(0) - F(0^{-})$	F(1) - F(1 ⁻)	$F(2) - F(2^{-})$
即			

X	0	1	2
P	$\frac{1}{4}$	1/4	1/2

三、解答题

$$(15) \lim_{x \to 0} (e^x + \sin x)^{\frac{\sin x}{\ln(1+x^2)}} = e^{\lim_{x \to 0} \frac{\sin x \ln(e^x + \sin x)}{\ln(1+x^2)}},$$
(1)

其中. $x\rightarrow 0$ 时

$$\sin x \ln(e^x + \sin x) = \sin x \ln[1 + (e^x - 1 + \sin x)] \sim x(e^x - 1 + \sin x),$$

 $\ln(1 + x^2) \sim x^2.$

所以
$$\lim_{x\to 0} \frac{\sin x \cdot \ln(e^x + \sin x)}{\ln(1 + x^2)} = \lim_{x\to 0} \frac{x(e^x - 1 + \sin x)}{x^2} = \lim_{x\to 0} \left(\frac{e^x - 1}{x} + \frac{\sin x}{x}\right) = 2.$$

将它代入式(1)得

$$\lim_{x \to 0} (e^x + \sin x)^{\frac{\sin x}{\ln(1+x^2)}} = e^2.$$

附注 本题题解中有两点值得注意:

(I) 计算 0^{0} , 1^{∞} , ∞^{0} 型未定式极限 $\lim_{x \to \infty} [f(x)]^{g(x)}$ 时, 应先指数化, 即 $\lim_{x \to \infty} [f(x)]^{g(x)}$ = $e^{\lim_{x \to \infty} (x) \ln f(x)}$.

(II) 计算 $\frac{0}{0}$ 型未定式极限 $\lim \frac{f(x)}{g(x)}$ 时,应先进行化简,其中f(x),g(x)分别用它们的等价无穷小代替是化简的重要手段之一.

(16) D 如图答 7-16 的阴影部分所示, 所以

$$V_{x} = \pi \int_{0}^{2} \left[(\sqrt{4 - x^{2}})^{2} - (\sqrt{2x - x^{2}})^{2} \right] dx$$
$$= \pi \int_{0}^{2} (4 - 2x) dx = 4\pi.$$

$$V_{y} = 2\pi \int_{0}^{2} x(\sqrt{4 - x^{2}} - \sqrt{2x - x^{2}}) dx$$
$$= 2\pi \left(\int_{0}^{2} x \sqrt{4 - x^{2}} dx - \int_{0}^{2} x \sqrt{2x - x^{2}} dx \right),$$

其中
$$\int_0^2 x \sqrt{4-x^2} dx = -\frac{1}{3}(4-x^2)^{\frac{3}{2}}\Big|_0^2 = \frac{8}{3}$$
,

$$\int_0^2 x \sqrt{2x - x^2} dx = \int_0^2 x \sqrt{1 - (x - 1)^2} dx$$

$$\frac{t = x - 1}{2} \int_{-1}^{1} (t + 1) \sqrt{1 - t^2} dt = \int_{-1}^{1} \sqrt{1 - t^2} dt = \frac{\pi}{2}.$$

于是,
$$V_y = 2\pi \left(\frac{8}{3} + \frac{\pi}{2}\right) = \frac{16}{3}\pi + \pi^2$$
.

附注 应记住以下公式:

设 $f_1(x)$, $f_2(x)$ 都是连续函数,且 $0 \le f_1(x) \le f_2(x) (0 \le a \le x \le b)$,设 $D = \{(x, y) \mid 0 \le a \le x \le b, f_1(x) \le y \le f_2(x)\}, 则$

D 绕 x 轴旋转一周而成的旋转体体积

$$V_{x} = \pi \int_{a}^{b} \left[f_{2}^{2}(x) - f_{1}^{2}(x) \right] dx,$$

D 绕 y 轴旋转一周而成的旋转体体积

$$V_y = 2\pi \int_a^b x [f_2(x) - f_1(x)] dx.$$

(17)
$$\exists D_1 = \{(x, y) \mid 0 \le y \le 1, y \le x \le 1\} = \{(x, y) \mid 0 \le y \le x, 0 \le x \le 1\},$$

$$D_2 = \left\{ (r, \theta) \middle| 1 \le r \le \sqrt{2}, 0 \le \theta \le \arccos \frac{1}{r} \right\}$$
$$= \left\{ (r, \theta) \middle| \frac{1}{\cos \theta} \le r \le \sqrt{2}, 0 \le \theta \le \frac{\pi}{4} \right\},$$

则 D_1 与 D_2 如图 7-17 所示,于是由

$$\int_0^1 \mathrm{d}y \int_y^1 \frac{\sin x}{x} \mathrm{d}x = \iint_{D_1} \frac{\sin x}{x} \mathrm{d}\sigma = \int_0^1 \mathrm{d}x \int_0^x \frac{\sin x}{x} \mathrm{d}y$$

$$= \int_0^1 \sin x \mathrm{d}x = 1 - \cos 1,$$

$$\int_1^{\sqrt{2}} \mathrm{d}r \int_0^{\arccos \frac{1}{r}} r \sin^2 \theta \mathrm{d}\theta = \iint_{D_2} \sin^2 \theta \mathrm{d}\sigma = \int_0^{\frac{\pi}{4}} \mathrm{d}\theta \int_{\frac{1}{\cos \theta}}^{\frac{\pi}{2}} r \sin^2 \theta \mathrm{d}r$$

$$= \int_0^{\frac{\pi}{4}} \left(\sin^2 \theta - \frac{1}{2} \tan^2 \theta \right) \mathrm{d}\theta = \int_0^{\frac{\pi}{4}} \left(1 - \frac{1}{2} \cos 2\theta - \frac{1}{2} \sec^2 \theta \right) \mathrm{d}\theta$$

$$= \left(\theta - \frac{1}{4} \sin 2\theta - \frac{1}{2} \tan \theta \right) \Big|_0^{\frac{\pi}{4}} = \frac{\pi}{4} - \frac{3}{4}$$

得到

$$\int_0^1 dy \int_y^1 \frac{\sin x}{x} dx + \int_1^{\sqrt{2}} dr \int_0^{\arccos \frac{1}{r}} r \sin^2 \theta d\theta$$
$$= (1 - \cos 1) + \left(\frac{\pi}{4} - \frac{3}{4}\right) = \frac{1}{4} - \cos 1 + \frac{\pi}{4}.$$

附注 对 $\int_0^1 \mathrm{d}y \int_y^1 \frac{\sin x}{x} \mathrm{d}x$, 只有改变积分次序才能算出其值,但是,对于 $\int_1^{\sqrt{2}} \mathrm{d}r \int_0^{\arccos \frac{1}{r}} r \sin^2 \theta \mathrm{d}\theta$,不改变积分次序,同样可以算出其值. 具体如下:

$$\int_{1}^{\sqrt{2}} dr \int_{0}^{\arccos \frac{1}{r}} r \sin^{2} \theta d\theta = \frac{1}{2} \int_{1}^{\sqrt{2}} r (\theta - \sin \theta \cos \theta) \Big|_{0}^{\theta = \arccos \frac{1}{r}} dr$$

$$= \frac{1}{2} \int_{1}^{\sqrt{2}} r \left(\arccos \frac{1}{r} - \frac{1}{r} \sqrt{1 - \frac{1}{r^{2}}} \right) dr$$

$$\frac{\frac{1}{2} \frac{1}{r} = \cos t}{2} \frac{1}{2} \int_{0}^{\frac{\pi}{4}} \sec t (t - \cos t \sin t) \sec t \tan t dt$$

$$= \frac{1}{2} \left(\int_{0}^{\frac{\pi}{4}} t \tan t d \tan t - \int_{0}^{\frac{\pi}{4}} \tan^{2} t dt \right)$$

$$= \frac{1}{2} \left(\int_{0}^{\frac{\pi}{4}} \frac{1}{2} t d \tan^{2} t - \int_{0}^{\frac{\pi}{4}} \tan^{2} t dt \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} t \tan^{2} t \right) \Big|_{0}^{\frac{\pi}{4}} - \frac{1}{2} \int_{0}^{\frac{\pi}{4}} \tan^{2} t dt - \int_{0}^{\frac{\pi}{4}} \tan^{2} t dt \right)$$

$$= \frac{\pi}{16} - \frac{3}{4} \int_{0}^{\frac{\pi}{4}} (\sec^{2} t - 1) dt$$

$$= \frac{\pi}{16} - \frac{3}{4} (\tan t - t) \Big|_{0}^{\frac{\pi}{4}} = \frac{\pi}{4} - \frac{3}{4}.$$

显然,现在的计算比题解中的计算复杂得多.

(18) 所给微分方程可以改写成

$$y'' + 2y' + y = e^{-x} + \frac{1}{2}\sin x + \frac{1}{2}\sin 3x.$$
 (1)

式(1)的齐次线性微分方程

$$y'' + 2y' + y = 0 (2)$$

的特征方程之根为二重根-1. 所以式(2)的通解为

$$Y = (C_1 + C_2 x) e^{-x}.$$

此外,式(1)有特解

$$y^* = Ax^2 e^{-x} + (A_1 \cos x + B_1 \sin x) + (A_2 \cos 3x + B_2 \sin 3x).$$
 (3)

将式(3)代入式(1)得

$$A = \frac{1}{2}, A_1 = -\frac{1}{4}, B_1 = 0, A_2 = -\frac{3}{100}, B_2 = -\frac{1}{25},$$

从而有

$$y^* = \frac{1}{2}x^2e^{-x} - \frac{1}{4}\cos x - \frac{3}{100}\cos 3x - \frac{1}{25}\sin 3x.$$

因此, 所给方程的通解为

$$y = Y + y^*$$

$$= (C_1 + C_2 x) e^{-x} + \frac{1}{2} x^2 e^{-x} - \frac{1}{4} \cos x - \frac{3}{100} \cos 3x - \frac{1}{25} \sin 3x.$$

附注 题解中有两点值得注意:

- (I) 由于式(2)的特征方程的根为r = -1(二重),所以它的通解为($C_1 + C_2 x$) e^{-x} .
- (II) 由于式(1)的右边有 $e^{Ax}=e^{-x}$ 的项,这里的 $\lambda=-1$ 是式(2)的特征方程之二重根,所以式(1)的特解中有 Ax^2e^{-x} 的项.

(19)
$$"i = (-1)^{n-1} \frac{1}{n(2n-1)} x^{2n}, "ij$$

$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n \to \infty} \frac{\frac{x^{2n+2}}{(n+1)(2n+1)}}{\frac{x^{2n}}{n(2n-1)}} = x^2.$$

所以, 所给幂级数的收敛区间为 $\{x \mid x^2 < 1\} = (-1, 1)$. 当 x = -1, 1 时, 幂级数成为

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n(2n-1)},$$

它是收敛的, 所以所给幂级数的收敛域为[-1,1].

对 $x \in [-1, 1]$ 得

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n(2n-1)} x^{2n} = x \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n(2n-1)} x^{2n-1}$$

$$= x \sum_{n=1}^{\infty} \int_{0}^{x} (-1)^{n-1} \left[\frac{1}{n(2n-1)} t^{2n-1} \right]' dt = x \int_{0}^{x} \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} t^{2n-2} dt$$

$$= x \int_0^x \frac{1}{t^2} \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} (t^2)^n dt = x \int_0^x \frac{\ln(1+t^2)}{t^2} dt$$

$$= -x \int_0^x \ln(1+t^2) d \frac{1}{t} = -x \left[\frac{\ln(1+t^2)}{t} \Big|_0^x - \int_0^x \frac{2}{1+t^2} dt \right]$$

$$= -\ln(1+x^2) + 2x \arctan x.$$

所以所给幂级数的和函数

$$s(x) = -\ln(1 + x^2) + 2x\arctan x \ (x \in [-1,1]).$$

附注 题解中以下两点值得注意:

(I)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} (t^2)^n = \ln(1+t^2)(-1 \le t \le 1)$$
是按公式

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} x^{n} (-1 < x \le 1)$$

得到的.

成为

(
$$II$$
) 由于 $\lim_{t\to 0} \frac{\ln(1+t^2)}{t^2} = 1$,所以 $\int_0^x \frac{\ln(1+t^2)}{t^2} \mathrm{d}t$ 是定积分而不是反常积分.

(20) 由题设知 $(1, 2, 2, 1)^{T} - (1, -2, 4, 0)^{T} = (0, 4, -2, 1)^{T}$ 是方程组 $\mathbf{A}\mathbf{x} = \mathbf{0}$ 的解,所以有

$$4\boldsymbol{\alpha}_2 - 2\boldsymbol{\alpha}_3 + \boldsymbol{\alpha}_4 = \mathbf{0}$$
, $\mathbb{P} \boldsymbol{\alpha}_4 = -4\boldsymbol{\alpha}_2 + 2\boldsymbol{\alpha}_3$.

由题设 $(1, -2, 4, 0)^{T}$ 是方程组 $Ax = \beta$ 的解得

$$\boldsymbol{\beta} = \boldsymbol{\alpha}_1 - 2\boldsymbol{\alpha}_2 + 4\boldsymbol{\alpha}_3,$$

于是方程组 $\mathbf{B}\mathbf{y} = \boldsymbol{\alpha}_1 + 2\boldsymbol{\alpha}_2$, 即

$$(\boldsymbol{\alpha}_3, \ \boldsymbol{\alpha}_2, \ \boldsymbol{\alpha}_1, \ \boldsymbol{\beta} - \boldsymbol{\alpha}_4) y = \boldsymbol{\alpha}_1 + 2\boldsymbol{\alpha}_2,$$

$$(\boldsymbol{\alpha}_3, \ \boldsymbol{\alpha}_2, \ \boldsymbol{\alpha}_1, \ \boldsymbol{\alpha}_1 + 2\boldsymbol{\alpha}_2 + 2\boldsymbol{\alpha}_3) y = \boldsymbol{\alpha}_1 + 2\boldsymbol{\alpha}_2.$$
(1)

由 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 的秩为 3 知 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,由此得到式(1)的系数矩阵的秩为 3,于是对应的齐次方程组的解(2, 2, 1, -1)^T 即为这个齐次方程组的基础解系. 此外式(1)有特解(0, 2, 1, 0)^T. 所以,式(1),即方程组 $By = \alpha_1 + 2\alpha_2$ 的通解为

$$y = C(2, 2, 1, -1)^T + (0, 2, 1, 0)^T (C)$$
 为任意常数).

附注 要记住: 齐次线性方程 $Ax = \mathbf{0}$ (其中 A 是 $m \times n$ 矩阵, x 是 n 维未知列向量)的基础解系中所包含的线性无关的解向量个数为 n - r(A).

(21) 由于

$$f(x_1, x_2, x_3) = \mathbf{x}^{\mathrm{T}} A \mathbf{x} = x_1^2 + 2bx_1x_2 + 2x_1x_3 + ax_2^2 + 2x_2x_3 + x_3^2$$
$$= \mathbf{x}^{\mathrm{T}} \begin{pmatrix} 1 & b & 1 \\ b & a & 1 \\ 1 & 1 & 1 \end{pmatrix} \mathbf{x},$$

所以二次型
$$f(x_1, x_2, x_3)$$
的矩阵 $\mathbf{B} = \begin{pmatrix} 1 & b & 1 \\ b & a & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

由题设知

$$\begin{cases} \begin{vmatrix} -1 & -b & -1 \\ -b & -a & -1 \\ -1 & -1 & -1 \end{vmatrix} = 0(因为 B 有特征值 $\lambda = 0$),
$$\begin{cases} -1 & -b & -1 \\ -1 & -1 & -1 \\ -b & 1-a & -1 \\ -1 & -1 & 0 \end{cases} = 0(因为 B 有特征值 $\lambda = 1$),
$$\mathbb{P} \begin{cases} -2b+1+b^2=0, \\ -2b-(1-a)=0. \end{cases}$$
解此方程组得 $a=3$, $b=1$.$$$$

于是, $f(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 + 2x_1x_3 + 3x_2^2 + 2x_2x_3 + x_3^2 = (x_1 + x_2 + x_3)^2 + 2x_2^2$.

附注 题解中的以下两点值得注意:

- $(I) f(x_1, x_2, x_3) = \mathbf{x}^T A \mathbf{x}$ 中的 \mathbf{A} 不是实对称矩阵,所以它不是二次型 $f(x_1, x_2, x_3)$ 的矩阵,只有写成 $f(x_1, x_2, x_3) = \mathbf{x}^T \mathbf{B} \mathbf{x}$ (其中 \mathbf{B} 是实对称矩阵)时, \mathbf{B} 才是 $f(x_1, x_2, x_3)$ 的 矩阵.
- (II) 计算 $f(x_1, x_2, x_3)$ 在可逆线性变换 x = Cy (其中 C 是可逆矩阵, $x = (x_1, x_2, x_3)$ $(x_3)^T$, $y = (y_1, y_2, y_3)^T$)下的规范形,总是对 $f(x_1, x_2, x_3)$ 施行配平方方法.
 - (22) (I)关于 X 的边缘概率密度

$$f_{X}(x) = \int_{-\infty}^{+\infty} f(x,y) \, \mathrm{d}y = \begin{cases} \int_{x}^{+\infty} e^{-y} \, \mathrm{d}y, & x > 0, \\ 0, & \text{ 其他}, \end{cases} = \begin{cases} e^{-x}, & x > 0, \\ 0, & \text{ 其他}, \end{cases}$$

关于 Y 的边缘概率密度

$$f_{y}(y) = \int_{-\infty}^{+\infty} f(x,y) dx = \begin{cases} \int_{0}^{y} e^{-y} dx, & y > 0, \\ 0, & \text{ 其他.} \end{cases} = \begin{cases} ye^{-y}, & y > 0, \\ 0, & \text{ 其他.} \end{cases}$$

(Ⅱ) 由于 *EX* = 1, 所以

$$\begin{split} P(Y \ge EX) &= P(Y \ge 1) = \int_{1}^{+\infty} f_{Y}(y) \, \mathrm{d}y = \int_{1}^{+\infty} y \mathrm{e}^{-y} \mathrm{d}y = \\ &- \int_{1}^{+\infty} y \mathrm{d}\mathrm{e}^{-y} = -y \mathrm{e}^{-y} \left| \frac{+\infty}{1} + \int_{1}^{+\infty} \mathrm{e}^{-y} \mathrm{d}y \right| = \frac{2}{\mathrm{e}}. \end{split}$$

由于
$$P(X > 2 \mid Y < 4) = \frac{P(X > 2, Y < 4)}{P(Y < 4)},$$

其中,
$$P(X > 2, Y < 4) = \iint_{\substack{x > 2 \\ y < 4}} f(x, y) d\sigma$$
$$= \iint_{\Lambda} e^{-y} d\sigma \text{ (其中 } \Delta \text{ 是如图答 7-22 阴影部分所示的三角形)}$$

$$= \int_{2}^{4} dx \int_{x}^{4} e^{-y} dy = \frac{1}{e^{2}} - \frac{3}{e^{4}}.$$

附注 关于 $f_X(x)$ 的以下计算是错误的:

$$f_X(x) = \int_{-\infty}^{+\infty} f(x,y) \, dy = \int_{x}^{+\infty} e^{-y} dy = e^{-x} (x > 0).$$

这一点应注意,关于 $f_v(y)$ 的计算也有同样说法.

(23) (I) 由于 $EX = 0 \cdot \theta^2 + 1 \cdot 2\theta(1 - \theta) + 2 \cdot \theta^2 + 3 \cdot (1 - 2\theta) = 3 - 4\theta$,

并且, 样本值的平均值 $\bar{x} = \frac{1}{8}(3+1+3+0+3+1+2+3) = 2$,

所以, 由矩估计法, 令 EX = x, 即 3 $-4\theta = 2$ 得 θ 的矩估计值 $\theta = \frac{1}{4}$.

(II) 由题设知 $Y \sim B(n, \stackrel{\wedge}{\theta^2}) = B\left(n, \frac{1}{16}\right)$. 当 n 充分大时,由中心极限定理(具体是棣莫弗-拉普拉斯定理)得

$$P(Y \le y) = P\left(\frac{Y - \frac{n}{16}}{\sqrt{n \times \frac{1}{16} \times \frac{15}{16}}} \le \frac{y - \frac{n}{16}}{\frac{\sqrt{15n}}{16}}\right)$$

$$\stackrel{\text{if (II)}}{\sim} \int_{-\infty}^{\frac{y - \frac{n}{16}}{\sqrt{15n}/16}} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx,$$

因此, 所求的参数为 $\mu = \frac{n}{16}$, $\sigma^2 = \frac{15n}{16^2}$.

附注 计算关于随机变量 $X \sim N(\mu, \sigma^2)$ 的概率问题时,总是引入标准化随机变量 $X^0 = \frac{x - \mu}{\sigma}$,则 $X^0 \sim N(0, 1)$ (标准正态分布). 于是 X 的分布函数

$$F(x) = \Phi\left(\frac{x-\mu}{\sigma}\right) (其中 \, \Phi(u) 是标准正态分布函数) \, ,$$

即

$$P(X \leqslant x) = \int_{-\infty}^{\frac{x-\mu}{\sigma}} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt.$$

由此可知, 当 $P(X \le x) = \int_{-\infty}^{\frac{x-a}{b}} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$ 时, $X \sim N(a, b^2)$. 本题中的参数就是如此得到的.

模拟试题(八)解答

一、选择题

 答案
 (1)
 (2)
 (3)
 (4)
 (5)
 (6)
 (7)
 (8)

 B
 A
 B
 A
 B
 B
 B
 B

(1) $f(x) = x | e^x - 1 | \cdot | x - 1 |$ 的可能不可导点为 x = 0, 1.

由在点x=0的某个去心邻域内,

$$f(x) = -x \mid x \mid \cdot \left| \frac{e^x - 1}{x} \right| (x - 1) = -x \mid x \mid \cdot \frac{e^x - 1}{x} (x - 1)$$

知
$$\lim_{x\to 0} \frac{f(x)}{x} = \lim_{x\to 0} \left[-|x| \cdot \frac{e^x - 1}{x} (x - 1) \right] = 0$$
,所以 $f(x)$ 在点 $x = 0$ 处可导.

由于在点x=1的某个邻域内, $f(x)=x(e^x-1)|x-1|$, 而

$$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \left[x(e^x - 1) \cdot \frac{|x - 1|}{x - 1} \right]$$
 不存在,所以 $f(x)$ 在点 $x = 1$ 处不可导.

因此本题选(B).

附注 应记住函数 $|x-x_0|$ 在点 x_0 处不可导,但函数 $(x-x_0)$ $|x-x_0|$ 在点 x_0 处可导.

(2) 由于
$$\max\{e^{-t}, e^{t}\} = \begin{cases} e^{-t}, & t < 0, \\ e^{t}, & t \ge 0. \end{cases}$$
 所以
$$F(x) = \int_{0}^{x} \max\{e^{-t}, e^{t}\} dt = \begin{cases} \int_{0}^{x} e^{-t} dt, & x < 0, \\ \int_{0}^{x} e^{t} dt, & x \ge 0 \end{cases}$$
 因此选(A).

附注 同样可以计算 $\int_{-\infty}^{x} \min\{e^{-t}, e^{t}\} dt$,具体如下:

由于
$$\min\{e^{-t}, e^t\} = \begin{cases} e^t, t \leq 0, \\ e^{-t}, t > 0, \end{cases}$$

$$\int_{-\infty}^{x} \min \left\{ e^{-t}, e^{t} \right\} dt = \begin{cases} \int_{-\infty}^{x} e^{t} dt, & x \leq 0, \\ \int_{-\infty}^{0} e^{t} dt + \int_{0}^{x} e^{-t} dt, & x > 0 \end{cases} = \begin{cases} e^{x}, & x \leq 0, \\ 2 - e^{-x}, & x > 0. \end{cases}$$

(3) 由 $\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} x^n (-1 < x \le 1)$ 知, $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} (x-a)^n$ 的收敛 域为 $a-1 < x \le a+1$, 即 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} (x-a)^n$ 在点 x=a+1 处收敛,而 x>a+1 发散. 所以由题设得 a+1=0,即 a=-1. 因此选(B).

附注 记住 $\ln(1+x)$, $\ln(1-x)$ 的麦克劳林展开式,即

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} x^n \quad (-1 < x \le 1),$$

$$\ln(1-x) = -\sum_{n=1}^{\infty} \frac{1}{n} x^n \quad (-1 \le x < 1),$$

对计算幂级数的收敛域与和函数等是十分有用的.

(4) 容易看到
$$y_2 - y_1 = e^{-x}(\cos x + \sin x)$$
是 $y'' + py' + qy = 0$ 的特解,从而 $p = -\left[(-1+i) + (-1-i) \right] = 2$, $q = (-1+i)(-1-i) = 2$. 此外,由题设知 e^x 是 $y'' + py' + qy = f(x)$,即 $y'' + 2y' + 2y = f(x)$ 的特解,所以 $f(x) = (e^x)'' + 2(e^x)' + 2e^x = 5e^x$.

因此选(A).

由于微分方程 y'' + py' + qy = f(x) 有解 $y_2 = e^x + e^{-x}\cos x$, 其中, $e^{-x}\cos x$ 是 y'' + py' + qy = 0 的特解, 所以由线性微分方程解的构造知, e^x 是 y'' + py' + qy = f(x) 的解.

(5) 由于 $A^TAx = 0$ 与Ax = 0是同解方程组,所以 ξ_1 , ξ_2 必是 $A^TAx = 0$ 的基础解系,即②正确.

由于Ax = 0与Bx = 0都有基础解系 ξ_1 , ξ_2 , 所以 ξ_1 , ξ_2 也是 $\begin{pmatrix} A \\ B \end{pmatrix} x = 0$ 的基础解系,即④正确. 因此选(B).

附注 ξ_1 , ξ_2 未必是(A+B)x=0 的基础解系,例如 $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}x=0$ 与 $\begin{pmatrix} -1 & 0 \\ -1 & 0 \end{pmatrix}x=0$ 有相同的基础解系 $(0, 1)^T$,但它不是 $\begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} -1 & 0 \\ -1 & 0 \end{pmatrix} \end{bmatrix}x=0$ 的基础解系,所以(A)与(D)都不能选.

そ1、**冬**2 也未必是 **B*** 的基础解系,例如
$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 $\mathbf{x} = \mathbf{0}$ 有基础解系(0, 1, 0)^T, (0, 0, 1)^T, 但它不是 $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ * $\mathbf{x} = \mathbf{0}$ 的基础解系. 这是因为 $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ 的秩 1 < 3 - 1,所以 $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ 的秩为 0. 从而 $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ * $\mathbf{x} = \mathbf{0}$ 无基础解系. 因此(C)不能选. (6)由于 $\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

$$= \begin{pmatrix} 0 & 4 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}^{4} = \begin{pmatrix} 0 & 4 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix},$$

所以, $|\lambda E_3 - A| = \begin{vmatrix} \lambda & -4 & 0 \\ -1 & \lambda & 0 \\ 0 & 0 & \lambda - 3 \end{vmatrix} = 0$ 有解 $\lambda = -2$, 2, 3, 从而 A 的最小特征值为

-2,因此选(B).

附注 题解中,由于注意到 $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ 和 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ 都是初等矩阵,它们的三次方与四

次方分别左乘、右乘于 $\mathbf{B} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ 表明,对 \mathbf{B} 施行三次"交换第一、二行"的初等变换

后,再施行四次"交换第二、三列"的初等变换,所以很快获解.

(7) 记 $C_i = \{ \% i \rangle$ 次取球取到的是白球 $\{ (i=1, 2), \emptyset \}$

$$A = \overline{C}_1 C_2$$
, $B = \overline{C}_1 C_2 \cup C_1 C_2$,

所以,
$$P(A) = P(\overline{C_1}C_2) = P(\overline{C_1})P(C_2 | \overline{C_1}) = \frac{4}{7} \times \frac{3}{6} = \frac{2}{7}$$
,

$$P(B) = P(\overline{C}_1C_2) + P(C_1C_2) = P(\overline{C}_1C_2) + P(C_1)P(C_2 \mid C_1) = \frac{2}{7} + \frac{3}{7} \times \frac{2}{6} = \frac{3}{7}.$$

因此选(B).

附注 本题有两点值得注意:

- (I) A 与 B 这两个随机事件是有区别的.
- (Π) 随机事件 $\{$ 第i次取球取到的是白球 $\}$ (i=1,2,3)的概率是相等的,都为 $\frac{3}{7}$.

$$(8) E(\overline{X} + S^2) = E(\overline{X}) + E(S^2) = EX + DX, \tag{1}$$

其中 $EX = \int_{-\infty}^{+\infty} x f(x) dx = 0$ (由于 x f(x) 是奇函数),

$$DX = \int_{-\infty}^{+\infty} (x - EX)^2 f(x) dx = \int_{-\infty}^{+\infty} x^2 f(x) dx$$
$$= 2 \int_{0}^{+\infty} x^2 \cdot \frac{1}{2} e^{-x} dx = \int_{0}^{+\infty} x^2 e^{-x} dx$$

 $= E(T^2)$ (其中 T 是服从参数为 1 的指数分布,即它的概率密度为

$$f_T(t) = \begin{cases} e^{-t}, & t > 0, \\ 0, & t \leq 0 \end{cases}$$

$$= D(T) + (ET)^2 = 1 + 1 = 2.$$

将它们代入式(1) 得 $E(\overline{X} + S^2) = 0 + 2 = 2$. 因此选(B).

附注 应记住以下结论:

设 X_1, X_2, \dots, X_n 是来自总体X的简单随机样本,其平均值 $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$,方差 $S^2 =$

$$\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}$$
,则

$$E(\overline{X}) = EX, E(S^2) = DX.$$

二、填空题

(9)
$$\lim_{x\to 0} \frac{\ln(1+x) - x + \frac{1}{2}x^2 - \frac{1}{3}x^3}{x^3} = \lim_{x\to 0} \frac{\ln(1+x) - x + \frac{1}{2}x^2}{x^3} - \frac{1}{3}$$

(9) $\lim_{x\to 0} \frac{\ln(1+x) - x + \frac{1}{2}x^2}{x^3} - \frac{1}{3} = 0.$

由于f(x) 在点x = 0 处连续,所以

$$a = \lim_{x \to 0} \left[e^{\frac{\ln(1+x) - x + \frac{1}{2}x^2 - \frac{1}{3}x^3}{x^3}} - 2 \right] = e^0 - 2 = -1.$$

附注 本题题解的关键是先计算 $\lim_{x\to 0} \frac{\ln(1+x) - x + \frac{1}{2}x^2 - \frac{1}{3}x^3}{x^3}$.

(10) 由于
$$f(x) = \frac{1}{(x-1)(x+2)} = \frac{1}{3} \left(\frac{1}{x-1} - \frac{1}{x+2} \right)$$
, 所以
$$f^{(5)}(x) = \frac{1}{3} \left[(-1)^5 \frac{5!}{(x-1)^6} - (-1)^5 \frac{5!}{(x+2)^6} \right] = \frac{5!}{3} \left[\frac{1}{(x+2)^6} - \frac{1}{(x-1)^6} \right].$$
从而 $f^{(5)}(0) = \frac{5!}{3} \left(\frac{1}{2^6} - 1 \right) = -\frac{315}{8}.$

附注 $f^{(5)}(0)$ 也可以利用麦克劳林公式计算:

所以,
$$f^{(5)}(0) = 5! \cdot \frac{1}{3} \left(\frac{1}{2^6} - 1 \right) = -\frac{315}{8}$$
.

(11) 方程两边对 x 求偏导数得

$$\frac{1}{z}\frac{\partial z}{\partial x} + \cos(xy) \cdot y + z + x\frac{\partial z}{\partial x} = 0,$$

所以, $\frac{\partial z}{\partial x} = -\frac{yz\cos(xy) + z^2}{1 + xz}$.

附注 如果要同时计算 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$, 则从对方程两边求全微分入手,具体如下:

$$\frac{1}{z}dz + \cos(xy)(ydx + xdy) + zdx + xdz = 0,$$

$$dz = -\frac{yz\cos(xy) + z^2}{1 + xz}dx - \frac{xz\cos(xy)}{1 + xz}dy,$$

所以
$$\frac{\partial z}{\partial x} = -\frac{yz\cos(xy) + z^2}{1 + xz}, \frac{\partial z}{\partial y} = -\frac{xz\cos(xy)}{1 + xz}.$$

(12) 由于
$$\frac{P}{Q(P)} \frac{dQ(P)}{dP} = \varepsilon_p = 0.2$$
,所以由增益函数 $R(P) = PQ(P)$ 得

$$\begin{split} \frac{\mathrm{d}R(P)}{\mathrm{d}P} \, \Big|_{Q = 100\,000} &= \left[\, Q(P) \, + P \, \frac{\mathrm{d}Q(P)}{\mathrm{d}P} \, \right]_{Q = 100\,000} \\ &= \left\{ Q(P) \, + Q(P) \, \left[\frac{P}{Q(P)} \, \frac{\mathrm{d}Q(P)}{\mathrm{d}P} \, \right] \right\}_{Q = 100\,000} \\ &= 100\,\,000 \, + 100\,\,000 \, \times 0.\,\, 2 \, = 120\,\,000 \, . \end{split}$$

即当需求量为100000件时,价格每增加1元会使产品收益增加120000元.

附注 要记住函数弹性的定义,并理解它在经济学上的意义.

(13)
$$ext{diff} r \begin{pmatrix} \mathbf{O} & \mathbf{A}^* \\ \mathbf{B}^* & \mathbf{O} \end{pmatrix} = r(\mathbf{A}^*) + r(\mathbf{B}^*),$$
 (1)

其中, 由 r(A) = 1, 即 r(A) = A 的阶数 -1 知 $r(A^*) = 1$; 由 r(B) = 2, 即 r(B) < B 的阶数 -1 知 $r(B^*) = 0$. 将它们代入式(1)得

$$r\begin{pmatrix} \boldsymbol{O} & \boldsymbol{A}^* \\ \boldsymbol{B}^* & \boldsymbol{O} \end{pmatrix} = 1 + 0 = 1.$$

附注 应记住以下公式:

设A 是n 阶矩阵, A* 是它的伴随矩阵, 则

$$r(A^*) = \begin{cases} n, & r(A) = n, \\ 1, & r(A) = n - 1, \\ 0, & r(A) < n - 1. \end{cases}$$

(14)
$$P(\max\{X,Y\} \le 1) = P(X \le 1, Y \le 1)$$

= $P(X \le 1)P(Y \le 1) = \left(\int_{-\infty}^{1} f(t) dt\right)^{2} = \left(\int_{0}^{1} e^{-t} dt\right)^{2} = (1 - e^{-1})^{2}.$

附注 应记住以下公式:

设随机变量 $X \setminus Y$ 相互独立,它们的分布函数分别为 $F_{x}(x)$ 与 $F_{y}(y)$,则

$$Z_1 = \max\{X, Y\}$$
 的分布函数 $F_{Z_1}(z) = F_X(z)F_Y(z)$;

$$Z_2 = \min\{X, Y\}$$
的分布函数 $F_{Z_2}(z) = 1 - [1 - F_X(z)][1 - F_Y(z)].$

三、解答题

$$(15) \int \frac{1}{\sin x \cos x} \frac{1}{\sqrt{\sin^4 x + \cos^4 x}} dx = \int \frac{1}{\frac{1}{2} \sin 2x} \frac{1}{\sqrt{1 - \frac{1}{2} \sin^2 2x}} dx$$
$$= \int \frac{1}{\sqrt{\csc^2 2x - \frac{1}{2}}} \frac{d2x}{\sin^2 2x} = -\int \frac{1}{\sqrt{\cot^2 2x + \frac{1}{2}}} d\cot 2x$$

附注 可考虑类似的不定积分 $\int \frac{\sin x}{\sqrt{2 + \sin 2x}} dx$, 解答如下:

$$\int \frac{\sin x}{\sqrt{2 + \sin 2x}} dx = \frac{1}{2} \int \frac{\cos x + \sin x}{\sqrt{2 + \sin 2x}} dx - \frac{1}{2} \int \frac{\cos x - \sin x}{\sqrt{2 + \sin 2x}} dx$$

$$= \frac{1}{2} \int \frac{1}{\sqrt{3 - (\sin x - \cos x)^2}} d(\sin x - \cos x) - \frac{1}{2} \int \frac{1}{\sqrt{1 + (\sin x + \cos x)^2}} d(\sin x + \cos x)$$

$$= \frac{1}{2} \arcsin \frac{\sin x - \cos x}{\sqrt{3}} - \frac{1}{2} \ln(\sin x + \cos x + \sqrt{2 + \sin 2x}) + C.$$

(16)
$$\lim_{x\to 0^-} \frac{2}{x^2} (1-\cos x) = 1$$
, \mathbb{Z}

$$\lim_{x\to 0^+} \frac{1}{x} \int_0^x \cos t^2 dt = \frac{\text{\&B.W.B.M.}}{\text{\&B.M.}} \lim_{x\to 0^+} \cos x^2 = 1$$

知
$$\lim_{x\to 0^{-}} f(x) = \lim_{x\to 0^{+}} f(x) = f(0)$$
, 所以 $f(x)$ 在 $\left(-\frac{\pi}{2}, \sqrt{\frac{\pi}{2}}\right)$ 内连续. 由于 $-\frac{\pi}{2} < x < 0$ 时,

$$f'(x) = 2 \cdot \frac{x \sin x - 2(1 - \cos x)}{x^3} = 2 \sin x \cdot \frac{x - 2 \tan \frac{x}{2}}{x^3} > 0,$$

$$0 < x < \sqrt{\frac{\pi}{2}}$$
 Iff,

$$f'(x) = \frac{x \cos x^2 - \int_0^x \cos t^2 dt}{x^2} = \frac{\int_0^x (\cos t^2 - 2t^2 \sin t^2 - \cos t^2) dt}{x^2} < 0,$$

因此 $f(x)\left(-\frac{\pi}{2} < x < \sqrt{\frac{\pi}{2}}\right)$ 仅有极大值f(0) = 1,无极小值,

(17) 由 $f'_x = 2x$, $f'_y = 2y$ 知方程组 $\begin{cases} f'_x = 0, \\ f'_y = 0 \end{cases}$ 在 D 的内部无解,即 f(x, y) 在 D 的内部无可

能极值点. 下面计算 f(x, y) 在 D 的边界 $C: (x-1)^2 + (y-1)^2 = 2$ 上的最值.

记
$$F(x, y) = x^2 + y^2 + \lambda [(x-1)^2 + (y-1)^2 - 2]$$
,则
$$F'_x = 2x + 2\lambda (x-1), \qquad F'_y = 2y + 2\lambda (y-1).$$

于是,由拉格朗日乘数法令

$$\begin{cases} F'_{x} = 0, \\ F'_{y} = 0, \\ (x-1)^{2} + (y-1)^{2} = 2, \end{cases} \quad \exists \mathbb{J} \begin{cases} (1+\lambda)x - \lambda = 0, \\ (1+\lambda)y - \lambda = 0, \\ (x-1)^{2} + (y-1)^{2} = 2, \end{cases}$$

解此方程组得 x = y = 0, x = y = 2. 由于

$$f(0, 0) = 0, f(2, 2) = 8,$$

所以, f(x, y) 在 C 上的最小值,即在 D 上的最小值为 f(0, 0) = 0,在 C 上的最大值,即在 D 上的最大值为 f(2, 2) = 8.

附注 二元连续函数在闭区域上的最值计算方法见模拟试题(一)(18)解答中的附注.

$$x^{2} \tan^{2} \frac{x}{2} \sim \frac{1}{4} x^{4},$$

$$1 - (1+x)^{\sin^{3}x} = -\left[e^{\sin^{3}x \ln(1+x)} - 1\right] \sim -\sin^{3}x \ln(1+x) \sim -x^{4},$$

$$\Re \lim_{x \to 0} \frac{x^{2} \tan^{2} \frac{x}{2}}{1 - (1+x)^{\sin^{3}x}} = \lim_{x \to 0} \frac{\frac{1}{4} x^{4}}{-x^{4}} = -\frac{1}{4}.$$

考虑幂级数 $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} x^{n+1}$. 由于

$$\lim_{n\to 0} \frac{\frac{1}{(n+1)(n+2)}}{\frac{1}{n(n+1)}} = 1,$$

所以上述幂级数的收敛半径为1,从而收敛区间为(-1,1),记其和函数为s(x),则

$$s'(x) = \sum_{n=1}^{\infty} \frac{1}{n} x^n = -\ln(1-x)(-1 < x < 1),$$

所以,
$$s(x) = s(0) - \int_0^x \ln(1-t) \, dt = -\int_0^x \ln(1-t) \, dt$$
$$= -\left[t\ln(1-t) \Big|_0^x - \int_0^x \frac{-t}{1-t} \, dt\right]$$
$$= -x\ln(1-x) + x + \ln(1-x)(-1 < x < 1),$$

即 $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} x^{n+1} = -x \ln(1-x) + x + \ln(1-x)(-1 < x < 1).$ 从而 $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} \sin^{n+1} \alpha = \left[-x \ln(1-x) + x + \ln(1-x) \right] \Big|_{x = \sin \alpha = -\sin \frac{1}{4}}$

$$= \sin \frac{1}{4} \cdot \ln \left(1 + \sin \frac{1}{4} \right) - \sin \frac{1}{4} + \ln \left(1 + \sin \frac{1}{4} \right).$$

附注 幂级数 $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} x^{n+1}$ 的和函数 s(x) 也可以用以下方法计算: 在(-1, 1)内有

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} x^{n+1} = \sum_{n=1}^{\infty} \frac{1}{n} x^{n+1} - \sum_{n=1}^{\infty} \frac{1}{n+1} x^{n+1}$$

$$= x \sum_{n=1}^{\infty} \frac{1}{n} x^{n} - \sum_{m=2}^{\infty} \frac{1}{m} x^{m} = -x \ln(1-x) - \sum_{m=1}^{\infty} \frac{1}{m} x^{m} + x$$

$$= -x \ln(1-x) + \ln(1-x) + x.$$

(19)
$$\iint_{D} f(x,y) d\sigma = \iint_{D_{1}} xy d\sigma + \iint_{D_{2}} \frac{2y}{x^{2} + y^{2} + 1} d\sigma, \qquad (1)$$

其中,
$$\iint_{D_1} xy d\sigma = \int_0^2 dx \int_{\sqrt{2x-x^2}}^{\sqrt{4-x^2}} xy dy = \int_0^2 \frac{1}{2} xy^2 \Big|_{y=\sqrt{2x-x^2}}^{y=\sqrt{4-x^2}} dx$$

$$= \int_0^2 (2x - x^2) dx = \frac{4}{3}, \tag{2}$$

$$\iint\limits_{D_2} \frac{2y}{x^2 + y^2 + 1} d\sigma = \frac{w + k}{2} \int_0^{\frac{\pi}{2}} d\theta \int_0^{2\cos\theta} \frac{2r\sin\theta}{r^2 + 1} \cdot r dr$$

$$= \int_{0}^{\frac{\pi}{2}} 2(r - \arctan r) \Big|_{0}^{2\cos\theta} \cdot \sin\theta d\theta$$

$$= \int_{0}^{\frac{\pi}{2}} 4\sin\theta \cos\theta d\theta - \int_{0}^{\frac{\pi}{2}} 2\arctan(2\cos\theta) \cdot \sin\theta d\theta$$

$$= 2 + \int_{0}^{\frac{\pi}{2}} \arctan(2\cos\theta) \cdot d2\cos\theta$$

$$= 2 + \left[\arctan(2\cos\theta) \cdot 2\cos\theta\right] \Big|_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \frac{2\cos\theta}{1 + 4\cos^{2}\theta} d2\cos\theta$$

$$= 2 - 2\arctan2 - \frac{1}{2}\ln(1 + 4\cos^{2}\theta) \Big|_{0}^{\frac{\pi}{2}}$$

$$= 2 - 2\arctan2 + \frac{1}{2}\ln5. \tag{3}$$

将式(2)、式(3)代入式(1)得

$$\iint_{D} f(x,y) d\sigma = \frac{4}{3} + 2 - 2\arctan 2 + \frac{1}{2} \ln 5 = \frac{10}{3} - 2\arctan 2 + \frac{1}{2} \ln 5.$$

附注 $\iint f(x,y) d\sigma$ 也可计算如下:

$$\iint_{D} f(x,y) d\sigma = \iint_{D_{1}} xy d\sigma + \iint_{D_{2}} \frac{2y}{x^{2} + y^{2} + 1} d\sigma,$$

$$= \iint_{D} xy d\sigma + \iint_{D_{2}} \left(\frac{2y}{x^{2} + y^{2} + 1} - xy\right) d\sigma,$$
(4)

其中,
$$\iint_D xy d\sigma = \frac{W + \sqrt{\pi}}{\sqrt{2}} \int_0^{\frac{\pi}{2}} d\theta \int_0^2 r^2 \sin\theta \cos\theta \cdot r dr$$

$$= \int_{0}^{\frac{\pi}{2}} 4\sin\theta\cos\theta d\theta = 2\sin^{2}\theta \Big|_{0}^{\frac{\pi}{2}} = 2,$$

$$\iint_{D_{2}} \left(\frac{2y}{x^{2} + y^{2} + 1} - xy\right) d\sigma \xrightarrow{\frac{\partial \Phi}{\partial \sigma}} \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{2\cos\theta} \left(\frac{2r\sin\theta}{r^{2} + 1} - r^{2}\sin\theta\cos\theta\right) r dr$$

$$= \int_{0}^{\frac{\pi}{2}} 2(r - \arctan r) \Big|_{0}^{2\cos\theta} \sin\theta d\theta - \int_{0}^{\frac{\pi}{2}} 4\cos^{5}\theta\sin\theta d\theta$$

$$= \int_{0}^{\frac{\pi}{2}} 4\sin\theta\cos\theta d\theta - \int_{0}^{\frac{\pi}{2}} 2\arctan(2\cos\theta)\sin\theta d\theta - \frac{2}{3}$$

$$= 2 + \int_{0}^{\frac{\pi}{2}} \arctan(2\cos\theta) d2\cos\theta - \frac{2}{3}$$
(5)

$$= \frac{4}{3} + \arctan(2\cos\theta)2\cos\theta \Big|_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \frac{2\cos\theta}{1 + 4\cos^{2}\theta} d2\cos\theta$$

$$= \frac{4}{3} - 2\arctan 2 - \frac{1}{2} \int_0^{\frac{\pi}{2}} \frac{1}{1 + 4\cos^2 \theta} d(1 + 4\cos^2 \theta)$$

$$= \frac{4}{3} - 2\arctan 2 - \frac{1}{2}\ln(1 + 4\cos^2\theta)\Big|_{0}^{\frac{\pi}{2}}$$

$$= \frac{4}{3} - 2\arctan 2 + \frac{1}{2}\ln 5. \tag{6}$$

将式(5)、式(6)代入式(4)得

$$\iint_{D} f(x,y) d\sigma = \frac{10}{3} - 2\arctan 2 + \frac{1}{2} \ln 5.$$

(20)(I)方程组(A)的增广矩阵

$$\overline{A} = \begin{pmatrix} 1 & 2 & 1 & 3 \\ 2 & a+4 & -5 & 6 \\ -1 & -2 & a & -3 \end{pmatrix} \xrightarrow{\text{institute}} \begin{pmatrix} 1 & 2 & 1 & 3 \\ 0 & a & -7 & 0 \\ 0 & 0 & a+1 & 0 \end{pmatrix}.$$

由于方程组(A)有无穷多解,所以 $r(A) = r(\overline{A}) < 3$ (其中 A 是方程组(A)的系数矩阵),从而有 a+1=0,即 a=-1.

(Ⅱ) 当 a = -1 时,方程组(A)与(B)组成的方程组为

(C)
$$\begin{cases} x_1 + 2x_2 + x_3 = 3, \\ 2x_1 + 3x_2 - 5x_3 = 6, \\ -x_1 - 2x_2 - x_3 = -3, \\ x_1 + x_2 + x_3 = 0, \\ 2x_1 + \lambda x_2 = 1. \end{cases}$$

对方程组(C)的增广矩阵 \overline{C} 施行初等行变换:

$$\overline{C} = \begin{pmatrix}
1 & 2 & 1 & 3 \\
2 & 3 & -5 & 6 \\
-1 & -2 & -1 & -3 \\
1 & 1 & 1 & 0 \\
2 & \lambda & 0 & 1
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
1 & 1 & 1 & 0 \\
2 & 3 & -5 & 6 \\
-1 & -2 & -1 & -3 \\
1 & 2 & 1 & 3 \\
2 & \lambda & 0 & 1
\end{pmatrix}$$

$$\longrightarrow
\begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & 1 & -7 & 6 \\
0 & -1 & 0 & -3 \\
0 & 1 & 0 & 3 \\
0 & \lambda -2 & -2 & 1
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 3 \\
0 & \lambda -2 & -2 & 1
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 3 \\
0 & \lambda -2 & -2 & 1
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 3 \\
0 & \lambda -2 & -2 & 1
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 3 \\
0 & \lambda -2 & -2 & 1
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 3 \\
0 & \lambda -2 & -2 & 1
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
1 & 0 & 0 & -\frac{18}{7} \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & -\frac{3}{7} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{43}{21} - \lambda
\end{pmatrix}$$

由此可知,方程(A)与(B)有公共解,即方程组(C)有解时, $r(C) = r(\overline{C})$ (其中 C 是方

程组(C)的系数矩阵),因此所求的 $\lambda = \frac{43}{21}$,并且此时的公共解 $x_1 = -\frac{18}{7}$, $x_2 = 3$, $x_3 = -\frac{3}{7}$.

附注 设方程组 $A_1x = b_1$, $A_2x = b_2$ (其中 A_1 , A_2 分别是 $m_1 \times n$ 与 $m_2 \times n$ 的矩阵, b_1 , b_2 , 分别是 m_1 维与 m_2 维列向量),则这两个方程组有公共解的充分必要条件为方程组

$$\begin{cases} A_1 x = b_1 \\ A_2 x = b_2 \end{cases}$$

有解.

(21) 由 A 是 3 阶实对称矩阵知, A^* 也是 3 阶实对称矩阵. 由题设知 $A^*\begin{pmatrix} 1\\0\\-1\end{pmatrix}$ =

 $-\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, A^* \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, 所以A^* 有特征值 \mu_1 = -1, \mu_3 = 1, 且它们对应的特征向量分别为$ $\alpha_1 = (1, 0, -1)^T, \alpha_2 = (1, 0, 1)^T.$

由于 $f(x_1, x_2, x_3) = \mathbf{x}^T \mathbf{A} \mathbf{x}$ 在正交变换 $\mathbf{x} = \mathbf{Q} \mathbf{y}$ 下的标准形为 $y_1^2 + y_2^2 - y_3^2$,所以 \mathbf{A} 的特征值为 $\lambda_1 = \lambda_2 = 1$, $\lambda_3 = -1$, $|\mathbf{A}| = \lambda_1 \cdot \lambda_2 \cdot \lambda_3 = -1$,因此 \mathbf{A}^* 的特征值除 $\mu_1 = \frac{|\mathbf{A}|}{\lambda_1} = -1$, $\mu_3 = \frac{|\mathbf{A}|}{\lambda_3} = 1$ 外,还有 $\mu_2 = \frac{|\mathbf{A}|}{\lambda_2} = -1$,记它对应的特征向量为 $\boldsymbol{\alpha}_2 = (a_1, a_2, a_3)^T$,则它分别与 $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_3$ 正交,于是有

$$\begin{cases} a_1 & -a_3 = 0, \\ a_1 & +a_3 = 0, \end{cases}$$

其基础解系为 $(0, 1, 0)^{T}$,故可取 $\boldsymbol{\alpha}_{2} = (0, 1, 0)^{T}$. 由于 \boldsymbol{A} 的对应 $\boldsymbol{\lambda}_{i}$ 的特征向量即为 \boldsymbol{A}^{*} 的对应 $\boldsymbol{\mu}_{i}$ 的特征向量(i=1, 2, 3),所以 \boldsymbol{A} 对应 $\boldsymbol{\lambda}_{1} = 1$, $\boldsymbol{\lambda}_{2} = 1$, $\boldsymbol{\lambda}_{3} = -1$ 的特征向量分别为 $\boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{2}$, $\boldsymbol{\alpha}_{3}$.

显然 α_1 , α_2 , α_3 是正交向量组, 现将它们单位化:

且

$$A^* = \mathbf{Q} \begin{pmatrix} -1 & & & \\ & -1 & & \\ & & 1 \end{pmatrix} \mathbf{Q}^{\mathrm{T}}$$

$$= \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} -1 & & \\ & -1 & \\ & & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$= \begin{pmatrix} -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & -1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

附注 题解中有以下三点值得注意:

(I) 当用正交变换 $\mathbf{x} = \mathbf{Q}\mathbf{y}(\mathbf{x} + \mathbf{x} = (x_1, x_2, \dots, x_n)^T, \mathbf{y} = (y_1, y_2, \dots, y_n)^T, \mathbf{Q}$ 是正交矩阵)将二次型 $f(x_1, x_2, \dots, x_n) = \mathbf{x}^T \mathbf{A} \mathbf{x}(\mathbf{x} + \mathbf{A} + \mathbf{B} \mathbf{n})$ 所实对称矩阵)化为标准形

$$\lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2$$

时, λ_1 , λ_2 , …, λ_n 必都为 A 的特征值, 从而

$$\lambda_1 + \lambda_2 + \cdots + \lambda_n = \text{tr} A$$
, $\lambda_1 \lambda_2 \cdots \lambda_n = |A|$.

(II) 设 A 是 n 阶可逆矩阵, α 是 A 的对应特征值 λ 的特征向量,则 A^* 有特征值 μ = $\frac{|A|}{\lambda}$,且 α 是 A^* 的对应 μ 的特征向量.

(**Ⅲ**) **A*** 也可计算如下:

由于
$$Q^{T}AQ = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & -1 \end{pmatrix}$$
, 所以
$$A = Q \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & -1 \end{pmatrix} Q^{T}$$
$$= \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & -1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ -\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix},$$

因此,由 \mathbf{A}^* 的定义可得 $\mathbf{A}^* = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$.

(22) (I) 由于(U, V) 关于 U 的边缘概率密度为

$$f_{U}(u) = \int_{-\infty}^{+\infty} f(u, v) \, dv = \begin{cases} \int_{0}^{2u} dv, 0 < u < 1, \\ 0, & \text{##} \text{ i.e.} \end{cases} = \begin{cases} 2u, 0 < u < 1, \\ 0, & \text{##} \text{ i.e.} \end{cases}$$

$$P\left(V \leq \frac{1}{2} \mid U \leq \frac{1}{2}\right) = \frac{P\left(U \leq \frac{1}{2}, V \leq \frac{1}{2}\right)}{P\left(U \leq \frac{1}{2}\right)}, \tag{1}$$

所以,

其中, $P\left(U \leq \frac{1}{2}, V \leq \frac{1}{2}\right) = \int\limits_{\substack{u \leq \frac{1}{2} \\ v \leq \frac{1}{2}}} f(u,v) d\sigma$ $= \int\limits_{\Delta} d\sigma (其中 \Delta \text{ 如图答 8-22 的带阴影}$ 梯形所示) $= \frac{1}{2} \times \frac{1}{2} \times \left(\frac{1}{2} + \frac{1}{4}\right) = \frac{3}{16},$

$$P(U \le \frac{1}{2}) = \int_{-\infty}^{\frac{1}{2}} f_U(u) du = \int_{0}^{\frac{1}{2}} 2u du = \frac{1}{4}.$$

图答 8-22

将它们代入式(1)得

$$\frac{1}{3}P\left(V \leqslant \frac{1}{2} \mid U \leqslant \frac{1}{2}\right) = \frac{\frac{1}{16}}{\frac{1}{4}} = 0.25.$$

于是, P(X = -1, Y = 1) = P(X = 1, Y = -1) = P(X = 0, Y = 1) = 0.25. 记(X, Y)的概率分布为

Y X	-1	1
-1	p_1	0. 25
0	P_2	0. 25
1	0. 25	p_3

則
$$\begin{cases} p_1 + p_2 + p_3 + 0.75 = 1, \\ (-1) \cdot (p_1 + 0.25) + 0 \cdot (p_2 + 0.25) + 1 \cdot (0.25 + p_3) = 0.2, \\ (-1) \cdot (p_1 + p_2 + 0.25) + 1 \cdot (0.25 + 0.25 + p_3) = 0.4, \end{cases}$$
 即
$$\begin{cases} p_1 + p_2 + p_3 = 0.25, \\ -p_1 + p_3 = 0.2, \text{解此方程组得 } p_1 = 0, p_2 = 0.05, p_3 = 0.2. \\ -p_1 - p_2 + p_3 = 0.15. \end{cases}$$

因此, (X, Y)的概率分布为

Y X	-1	1
– 1	0	0. 25
0	0. 05	0. 25
1	0. 25	0. 2

(
$$\coprod$$
) Cov(X , Y) = $E(XY) - EX \cdot EY$,

其中,
$$E(XY) = (-1) \times (-1) \times 0 + (-1) \times 1 \times 0.25 + 0 \times (-1) \times 0.05 + 0 \times 1 \times 0.25 + 1 \times (-1) \times 0.25 + 1 \times 1 \times 0.2$$

= -0.3.

所以, $Cov(X, Y) = -0.3 - 0.2 \times 0.4 = -0.38$.

附注 本题是连续型随机变量与离散型随机变量结合的综合题,需计算许多量值,因此 对题目审视后应确定计算各个量值的先后顺序:

先计算 $P\left(V \leq \frac{1}{2} \mid U \leq \frac{1}{2}\right)$, 为此需先算出关于 U 的边缘概率密度 $f_U(u)$; 然后确定 (X,Y) 的概率分布表,将已知的概率填入,对未知的概率用 p_1 , p_2 , p_3 等表示,并利用已知条件逐一确定这些未知概率;最后根据(X,Y)的概率分布算出 Cov(X,Y).

(23) 由于关于 X 的边缘概率密度为

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) \, \mathrm{d}y = \begin{cases} \int_{\theta}^{+\infty} \frac{3}{\theta^3} x^2 \mathrm{e}^{-(y-\theta)} \, \mathrm{d}y, 0 < x < \theta, \\ 0, & \sharp \text{th}, \end{cases}$$

其中,
$$\int_{\theta}^{+\infty} \frac{3}{\theta^3} x^2 e^{-(y-\theta)} dy = -\frac{3}{\theta^3} x^2 e^{-(y-\theta)} \Big|_{y=\theta}^{y=+\infty} = \frac{3}{\theta^3} x^2$$
, 所以,

$$f_X(x) = \begin{cases} \frac{3}{\theta^3} x^2, & 0 < x < \theta, \\ 0, & \text{ 其他.} \end{cases}$$

由于 $EX = \int_{-\infty}^{+\infty} x f_X(x) dx = \int_0^{\theta} \frac{3}{\theta^3} x^3 dx = \frac{3}{4} \theta$,所以由矩估计法, 令 $EX = \frac{1}{n} \sum_{i=1}^n X_i = \overline{Z}$

即 $\frac{3}{4}\theta = \overline{X}$. 由此得到 θ 的矩估计量 $\hat{\theta} = \frac{4}{3}\overline{X}$.

于是,
$$D(\hat{\theta}) = D\left(\frac{4}{3}\overline{X}\right) = \frac{16}{9}D\overline{X} = \frac{16}{9n}DX$$

$$= \frac{16}{9n} \left[E(X^2) - (EX)^2 \right] = \frac{16}{9n} \left[\int_{-\infty}^{+\infty} x^2 f_X(x) \, \mathrm{d}x - \frac{9}{16} \theta^2 \right]$$
$$= \frac{16}{9n} \int_{0}^{\theta} \frac{3}{\theta^3} x^4 \, \mathrm{d}x - \frac{1}{n} \theta^2 = \frac{16}{15n} \theta^2 - \frac{1}{n} \theta^2 = \frac{1}{15n} \theta^2.$$

附注 要记住以下结论:

设 X_1 , X_2 , …, X_n 是来自总体 X(具有数学期望与方差)的简单随机样本,则它的均值 $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ 与方差 $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$ 满足 $E(\overline{X}) = EX$, $D(\overline{X}) = \frac{1}{n} DX$, $E(S^2) = D(X)$.

模拟试题(九)解答

一、选择题

 答案
 (1)
 (2)
 (3)
 (4)
 (5)
 (6)
 (7)
 (8)

 D
 D
 B
 A
 B
 D
 B
 C

(1)
$$y^{(n)} = \left[\frac{1}{(x+1)^2}\right]^{(n)} = -\left[\left(\frac{1}{x+1}\right)'\right]^{(n)} = -\left(\frac{1}{x+1}\right)^{(n+1)}$$
$$= -\left(-1\right)^{n+1} \frac{(n+1)!}{(x+1)^{n+2}} = \left(-1\right)^n \frac{(n+1)!}{(x+1)^{n+2}}.$$

所以选(D).

附注 应记住公式

$$\left(\frac{1}{ax+b}\right)^{(n)} = (-1)^n \frac{n! \ a^n}{(ax+b)^{n+1}} \ (a \neq 0).$$

(2) 由于 $f''_{xx}(x_0, y_0) = \frac{\mathrm{d}}{\mathrm{d}x} f'_x(x, y_0) \Big|_{x=x_0}$, 所以由 $f''_{xy}(x, y)$ 在点 (x_0, y_0) 处存在知, $f'_x(x, y_0)$ 在点 (x_0, y_0) 处存在知,

附注 当题中所给的三个 2 阶偏导数在点 (x_0, y_0) 处连续时,选项(A),(B),(C)都正确,但仅假定这三个 2 阶偏导数在点 (x_0, y_0) 处存在,未必能推出这三个选项正确.

(3) 记 $a_n = \int_0^{\frac{1}{n}} \frac{x^{\alpha}}{\sqrt{1+x^2}} dx$, 则 $a_n > 0$ $(n = 1, 2, \cdots)$,且 $\{a_n\}$ 单调减少并且收敛于零,所以所给级数收敛.但是由于 $-1 < \alpha < 0$ 时,由 $a_n > \frac{1}{\sqrt{2}} \int_0^{\frac{1}{n}} x^{\alpha} dx = \frac{1}{\sqrt{2}(\alpha+1)} \left(\frac{1}{n}\right)^{\alpha+1} (n = 1, 2, \cdots)$ 及 $\sum_{n=1}^{\infty} \left(\frac{1}{n}\right)^{\alpha+1}$ 发散,知 $\sum_{n=1}^{\infty} \left| (-1)^{n-1} \int_0^{\frac{1}{n}} \frac{x^{\alpha}}{\sqrt{1+x^2}} dx \right| = \sum_{n=1}^{\infty} a_n$ 发散,从而所给级数条件收敛.因此选(B).

附注 由莱布尼茨定理判定交错级数 $\sum_{n=1}^{\infty} (-1)^{n-1} a_n (其中\{a_n\} 是正项数列) 为收敛时,其可能是绝对收敛,也可能是条件收敛.为了确定它们,必须考虑正项级数 <math>\sum_{n=1}^{\infty} a_n$ 的收敛性.

(4) 欲使
$$\lambda y_1 + \mu y_2$$
 是 $y' + p(x)y = q(x)$ 的解,必须
$$(\lambda y_1 + \mu y_2)' + p(x)(\lambda y_1 + \mu y_2) = q(x),$$

即 $\lambda[y'_1+p(x)y_1]+\mu[y'_2+p(x)y_2]=q(x)$. 由此得到

$$(\lambda + \mu)q(x) = q(x)$$
(这里利用 $y_1, y_2 \neq y' + p(x)y = q(x)$ 的两个特解),

$$\lambda + \mu = 1$$
(由于 $q(x)$ 不恒为零). (1)

此外, 欲使 $\lambda y_1 - \mu y_2$ 是 y' + p(x)y = 0 的解, 与上同样可得

$$\lambda - \mu = 0. \tag{2}$$

由式(1),式(2)得 $\lambda = \mu = \frac{1}{2}$.因此选(A).

附注 应记住一阶线性微分方程 y' + p(x)y = q(x) 的通解公式:

$$y = e^{-\int p(x) dx} (C + \int q(x) e^{\int p(x) dx} dx),$$

其中,不定积分都表示被积函数的一个原函数.

(5) 矩阵方程 AX = B 有无穷多解的充分必要条件为

$$r(\mathbf{A} : \mathbf{B}) = r(\mathbf{A}) < n.$$

因此选(B).

附注 应记住:对矩阵方程 AX = B 来说, r(A : B) = r(A) = n, r(A : B) = r(A) < n, 以及 r(A : B) > r(A) 分别是该矩阵方程有唯一解,有无穷多解,以及无解的充分必要条件。

(6) 实对称矩阵 A, B 合同的充分必要条件是分别以 A, B 为矩阵的二次型有相同的规范形.因此选(D).

附注 (I)选项(A)是A与B合同的必要条件而不是充分条件,而选项(B),(C)既不是必要条件,也不是充分条件。

- (\blacksquare) 两个 n 阶实对称矩阵 A, B 合同的充分必要条件有两种:
- (i) A, B 的正、负特征值个数分别相等(当某个特征值有 k 重时, 按 k 个计算):
- (ii) 以 A , B 为矩阵的二次型有相同的规范形.
- (7) 由于f(x)是概率密度,所以 $\int_{-\infty}^{+\infty} f(x) dx = 1$,即

$$a \int_{-\pi}^{1} f_1(x) dx + b \int_{1}^{+\infty} f_2(x) dx = 1.$$
 (1)

由 $f_1(x)$ 是 $X \sim N(1, 1)$ 的概率密度知, $\int_{-\infty}^1 f_1(x) dx = \frac{1}{2}$. 由 $f_2(x)$ 是Y的概率密度知 $\int_{1}^{+\infty} f_2(x) dx = 1$. 将它们代入式(1)得 $\frac{1}{2}a + b = 1$. 因此选(B).

附注 题解中利用了以下结论:

(I)设 $X \sim N(a, \sigma^2)$,则它的概率密度 f(x)满足

$$\int_{-\infty}^{a} f(x) dx = \int_{a}^{+\infty} f(x) dx = \frac{1}{2}.$$

(II)设X的概率密度为f(x) = $\begin{cases} \lambda e^{-\lambda(x-a)}, & x \ge a, \\ 0, & x < a \end{cases}$ $\int_a^{+\infty} f(x) dx = 1.$

(8) 由于 $EX = \frac{1}{\lambda}$, $DX = \frac{1}{\lambda^2}$, 所以,当 $(4-a)S^2 - 2a\overline{X}^2$ 为 $\frac{1}{\lambda^2}$ 的无偏估计量时,a 必须

满足

$$E[(4-a)S^2 - 2a\overline{X}^2] = \frac{1}{\lambda^2}, \tag{1}$$

其中,
$$E[(4-a)S^2 - 2a\overline{X}^2] = (4-a)E(S^2) - 2aE(\overline{X}^2)$$

 $= (4-a)D(X) - 2a[D(\overline{X}) + (E\overline{X})^2]$
 $= (4-a)\frac{1}{\lambda^2} - 2a[\frac{1}{n}D(X) + (EX)^2]$
 $= (4-a)\frac{1}{\lambda^2} - 2a(\frac{1}{n\lambda^2} + \frac{1}{\lambda^2}).$ (2)

将式(2)代入式(1)得

$$(4-a)\frac{1}{\lambda^2} - 2a\left(\frac{1}{n\lambda^2} + \frac{1}{\lambda^2}\right) = \frac{1}{\lambda^2}, \quad \text{If } a = \frac{3n}{3n+2}.$$

因此选(C).

附注 要记住以下的结论.

设 X_1 , X_2 , …, $X_n(n>1)$ 是来自总体 X(数学期望 EX 与方差 DX 都存在) 的简单随机样本,记其均值为 \overline{X} ,方差为 S^2 ,即 $\overline{X}=\frac{1}{n}\sum_{i=1}^n X_i$, $S^2=\frac{1}{n-1}\sum_{i=1}^n (X_i-\overline{X})^2$,则

$$E(\overline{X}) = EX$$
, $D(\overline{X}) = \frac{1}{n}DX$, $E(S^2) = DX$.

二、填空题

(9)
$$\lim_{n \to \infty} \frac{1}{1 + e^{nx}} = \begin{cases} 1, & x < 0, \\ \frac{1}{2}, & x = 0, \\ 0, & x > 0. \end{cases}$$
 (1)

此外, $\lim_{n \to \infty} (1 + \sqrt{1 + n} - \sqrt{n})^{\sqrt{2 + n}} = e^{\lim_{n \to \infty} \frac{\ln(1 + \sqrt{1 + n} - \sqrt{n})}{\sqrt{2 + n}}}$,

其中,
$$\lim_{n\to\infty} \frac{\ln(1+\sqrt{1+n}-\sqrt{n})}{\frac{1}{\sqrt{2+n}}} = \lim_{n\to\infty} \frac{\sqrt{1+n}-\sqrt{n}}{\frac{1}{\sqrt{2+n}}} = \lim_{n\to\infty} \frac{\sqrt{2+n}}{\sqrt{1+n}+\sqrt{n}} = \lim_{n\to\infty} \frac{\sqrt{n}}{2\sqrt{n}} = \frac{1}{2}$$
,

所以

$$\lim_{n \to \infty} (1 + \sqrt{1+n} - \sqrt{n})^{\sqrt{2+n}} = e^{\frac{1}{2}},$$
 (2)

于是由式(1),式(2)得

$$\lim_{n\to\infty} \left[\frac{1}{1+e^{nx}} + (1+\sqrt{1+n}-\sqrt{n})^{\sqrt{2+n}} \right] = \begin{cases} 1+e^{\frac{1}{2}}, & x<0, \\ \frac{1}{2}+e^{\frac{1}{2}}, & x=0, \\ e^{\frac{1}{2}}, & x>0. \end{cases}$$

附注 由于极限 $\lim_{n\to\infty}\frac{1}{1+e^{nx}}$ 与 x 取值有关,所以应分 x<0,x=0 以及 x>0 三种情况计算

这个极限.

(10)
$$\int \frac{1}{x\sqrt{4x^2 - 1}} dx = \frac{\Rightarrow t = \frac{1}{x}}{-1} - \int \frac{1}{\sqrt{4 - t^2}} dt = -\arcsin\frac{t}{2} + C$$
$$= -\arcsin\frac{1}{2x} + C.$$

附注 本题是无理函数积分, 也可以令 $2x = \sec t$ 进行计算:

$$\int \frac{1}{x \sqrt{4x^2 - 1}} dx = \int \frac{1}{\frac{1}{2} \sec t \tan t} \cdot \frac{1}{2} \sec t \tan t dt$$
$$= \int dt = t + C = \arccos \frac{1}{2x} + C.$$

(11)
$$\frac{\partial}{\partial x} f(e^{xy}, \sin x^2) = f'_u \cdot \frac{\partial}{\partial x} e^{xy} + f'_v \cdot \frac{\mathrm{d}}{\mathrm{d}x} \sin x^2 = y e^{xy} \cdot f'_u + 2x \cos x^2 \cdot f'_v.$$

附注 计算多元复合函数的偏导数时,应先画出该函数与自变量之间的复合关系图,例 如本题的关系图为

$$z = f(e^{xy}, \sin x^{2}) = f(u, v)$$

$$v = \frac{n^{n}}{(n+1)^{n+1}} x^{2n}, \quad \text{M}$$

$$\lim_{n \to \infty} \left| \frac{u_{n+1}(x)}{u_{n}(x)} \right| = \lim_{n \to \infty} \left| \frac{\frac{(n+1)^{n+1}}{(n+2)^{n+2}} x^{2n+2}}{\frac{n^{n}}{(n+1)^{n+1}} x^{2n}} \right|$$

$$= \lim_{n \to \infty} \left[\frac{\left(1 + \frac{1}{n}\right)^{n} (n+1)}{\left(1 + \frac{1}{n+1}\right)^{n+1} (n+2)} \right] x^{2} = \frac{e}{e} \cdot 1 \cdot x^{2} = x^{2},$$

所以,所给幂级数的收敛区间为 $\{x \mid x^2 < 1\} = (-1, 1)$.

当
$$x = -1$$
, 1 时,所给幂级数成为级数 $\sum_{n=1}^{\infty} \frac{n^n}{(n+1)^{n+1}}$. 由于 $\lim_{n \to \infty} \frac{\frac{n^n}{(n+1)^{n+1}}}{\frac{1}{n}} =$

$$\lim_{n\to\infty} \left[\frac{1}{\left(1+\frac{1}{n}\right)^n} \cdot \frac{n}{n+1} \right] = \frac{1}{e}, \text{而} \sum_{n=1}^{\infty} \frac{1}{n}$$
 发散,所以 $\sum_{n=1}^{\infty} \frac{n^n}{(n+1)^{n+1}}$ 发散.从而所给幂级数的收敛域为(-1,1).

附注 所给幂级数是缺项幂级数. 对于缺项幂级数 $\sum_{n=1}^{\infty} u_n(x)$ 的收敛域可按以下步骤计算:

$$(\ I\)\ 计算 \lim_{n\to\infty} \left|\frac{u_{n+1}(x)}{u_n(x)}\right|,$$
设其值为 $R(x)$,则 $\sum\limits_{n=1}^{\infty} u_n(x)$ 的收敛区间为 $\{x\mid R(x)<1\}$ =====

(-a,a).

(
$${\rm II}$$
) 确定 $\sum\limits_{n=1}^\infty u_n(x)$ 在点 $x=-a,a$ 处的收敛性,即判定级数 $\sum\limits_{n=1}^\infty u_n(-a)$ 和 $\sum\limits_{n=1}^\infty u_n(a)$ 的

收敛性,则 $\sum_{n=1}^{\infty} u_n(x)$ 的收敛域为(-a,a) 及收敛的点 x = -a 或 x = a 之并集.

(13) 由
$$r(A) + r(B) - 3 \le r(AB)$$
 得 $r(A) \le 2$,所以

$$|A| = \begin{vmatrix} 1 & 0 & -1 \\ 2 & \lambda & 1 \\ 1 & 2 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & -1 \\ 0 & \lambda & 3 \\ 0 & 2 & 2 \end{vmatrix} = 2(\lambda - 3) = 0.$$

因此 $\lambda = 3$.

附注 应记住关于矩阵秩的以下两个不等式:

(I) 设 $A \setminus B$ 都是 $m \times n$ 矩阵,则

$$r(\mathbf{A} + \mathbf{B}) \leq r(\mathbf{A}) + r(\mathbf{B}).$$

(II) 设 $A \setminus B$ 分别是 $m \times n$ 和 $n \times l$ 矩阵.则

$$r(\mathbf{A}) + r(\mathbf{B}) - n \leq r(\mathbf{A}\mathbf{B}) \leq \min\{r(\mathbf{A}), r(\mathbf{B})\}.$$

$$(14)\ P(A-C\mid AB\cup C)=\frac{P((A-C)(AB\cup C))}{P(AB\cup C)},$$

其中,
$$P((A-C)(AB\cup C)) = P(A\overline{C}(AB\cup C))$$
$$= P(AB\overline{C}) = P(A)P(B)(1-P(C)) = 0.1,$$
$$P(AB\cup C) = P(AB) + P(C) - P(ABC)$$
$$= P(A)P(B) + P(C) - P(A)P(B)P(C) = 0.6.$$

所以 $P(A-C \mid AB \cup C) = \frac{0.1}{0.6} = \frac{1}{6}$.

附注 对于比较复杂的随机事件概率,总是利用简单随机事件概率和概率计算公式计算,概率计算公式主要有:

设A, B都是事件,则

$$P(\overline{A}) = 1 - P(A)$$
; (逆概公式)
 $P(A \cup B) = P(A) + P(B) - P(AB)$, (加法公式)

特别当A, B 互不相容时, $P(A \cup B) = P(A) + P(B)$

$$P(AB) = \begin{cases} P(A)P(B \mid A), & P(A) > 0, \\ P(B)P(A \mid B), & P(B) > 0. \end{cases} (\text{乘法公式})$$

设 A_1 , A_2 , …, A_n 是一个完全事件组,则当 $P(A_i) > 0$ (i = 1, 2, ..., n) 时,对任意随 机事件 B 有

$$P(B) = \sum_{i=1}^{n} P(A_i) P(B \mid A_i), (全概率公式)$$

三、解答题

(15) 由于
$$\varphi'(\psi(x))\Big|_{x=0} = \varphi'(\psi(0)) = \varphi'(0)$$
,

且
$$\lim_{x\to 0^{-}} \frac{\varphi(x) - \varphi(0)}{x} = \lim_{x\to 0^{-}} \frac{x}{x} = 1,$$

$$\lim_{x\to 0^{+}} \frac{\varphi(x) - \varphi(0)}{x} = \lim_{x\to 0^{+}} \frac{\sin x}{x} = 1,$$
所以,
$$\varphi'(\psi(x)) \Big|_{x=0} = \varphi'(0) = 1.$$

$$\left[\varphi(\psi(x))\right]' \Big|_{x=0} = \varphi'(\psi(x)) \Big|_{x=0} \cdot \psi'(x) \Big|_{x=0}$$

$$= \psi'(0) (这里利用以上的计算结果 \varphi'(\psi(x)) \Big|_{x=0} = 1).$$
由于
$$\lim_{x\to 0^{-}} \frac{\psi(x) - \psi(0)}{x} = \lim_{x\to 0^{-}} \frac{x^{2} + x}{x} = 1,$$

$$\lim_{x\to 0^{+}} \frac{\psi(x) - \psi(0)}{x} = \lim_{x\to 0^{+}} \frac{xe^{x}}{x} = 1,$$
所以,
$$\left[\varphi(\psi(x))\right]' \Big|_{x=0} = \psi'(0) = 1.$$

附注 题解中,以下两点值得注意:

 $(I) \varphi(x)$ 与 $\psi(x)$ 都是分段函数,但现在仅计算在点 x = 0 处的复合函数的导数,所以不必写出复合函数的具体表达式.

 $(II) \varphi'(\psi(x))$ 与 $[\varphi(\psi(x))]'$ 是两个不同的概念,应予以区分.

(16) 由于
$$\int_0^x f(x-t, y) dt = \int_0^x f(u,y) du$$
 (其中 $u = x - t$),所以所给等式成为
$$f(x, y) = y + \int_0^x f(u,y) du.$$

由此可得f(0, y) = y, $f'_{x}(x, y) = f(x, y)$, 所以 $f(x, y) = ye^{x}$. 于是

$$\iint_{D} \sqrt{x} f(x, y^{2}) d\sigma = \iint_{D} \sqrt{x} \cdot y^{2} e^{x} d\sigma$$

$$= \int_{0}^{1} dx \int_{-\sqrt{x}}^{\sqrt{x}} \sqrt{x} e^{x} \cdot y^{2} dy = \int_{0}^{1} \sqrt{x} e^{x} \cdot \frac{1}{3} y^{3} \Big|_{y = -\sqrt{x}}^{y = \sqrt{x}} dx$$

$$= \frac{2}{3} \int_{0}^{1} x^{2} e^{x} dx = \frac{2}{3} \int_{0}^{1} x^{2} de^{x} = \frac{2}{3} \left(x^{2} e^{x} \Big|_{0}^{1} - 2 \int_{0}^{1} x e^{x} dx \right)$$

$$= \frac{2e}{3} - \frac{4}{3} \int_{0}^{1} x de^{x} = \frac{2e}{3} - \frac{4}{3} \left(x e^{x} \Big|_{0}^{1} - \int_{0}^{1} e^{x} dx \right)$$

$$= -\frac{2e}{3} + \frac{4}{3} (e - 1) = \frac{2e}{3} - \frac{4}{3}.$$

附注 我们多次求解过方程 $y(x) = \int_0^x g(x, y(t)) dt + h(x)$ (其中, g, h 都是已知的连续函数), 题中所给的

$$f(x,y) = y + \int_{0}^{x} f(x - t, y) dt$$

也是同种类型的方程(但其中的未知函数是二元函数f(x, y)),因此可用同样的方法求解,

只需用求偏导数代替求导数即可.

(17) 由题设"A市场的价格对B市场的价格弹性为2"得

$$\frac{p_2}{p_1} \cdot \frac{\mathrm{d}p_1}{\mathrm{d}p_2} = 2$$
, $\exists P_1 = kp_2^2$.

将
$$p_1 \mid_{p_2=1} = \frac{3}{16}$$
代人上式得 $k = \frac{3}{16}$,所以 $p_1 - \frac{3}{16}p_2^2 = 0$.

总利润函数为

$$\begin{split} L(p_1,\ p_2) &= q_1 p_1 + q_2 p_2 - C \\ &= (3 - 0.5p_1)p_1 + (2 - 3p_2)p_2 - 5 - 2\left[3 - 0.5p_1 + \frac{41}{12}(2 - 3p_2)\right] \\ &= -0.5p_1^2 + 4p_1 - 3p_2^2 + \frac{45}{2}p_2 - \frac{74}{3}. \end{split}$$

于是本题即为在约束条件 $p_1 - \frac{3}{16}p_2^2 = 0$ 下,计算 $L(p_1, p_2)$ 的最大值问题,故采用拉格朗日乘数法.

作拉格朗目函数

$$\begin{split} F(p_1, p_2) &= L(p_1, p_2) + \lambda \left(p_1 - \frac{3}{16} p_2^2 \right) \\ &= -0.5 p_1^2 + 4 p_1 - 3 p_2^2 + \frac{45}{2} p_2 - \frac{74}{3} + \lambda \left(p_1 - \frac{3}{16} p_2^2 \right), \end{split}$$

由式(1),式(3)得 $\lambda = p_1 - 4 = \frac{3}{16}p_2^2 - 4$,代人式(2)得

$$-6p_2 + \frac{45}{2} - \frac{3}{8} \left(\frac{3}{16} p_2^2 - 4 \right) p_2 = 0,$$

即 $p_2^3+64p_2-320=0$,或 $(p_2-4)(p_2^2+4p_2+80)=0$,所以 $p_2=4$,代人式(3)得 $p_1=3$.

由以上计算, $L(p_1, p_2)$ 在约束条件 $p_1 - \frac{3}{16}p_2^2 = 0$ 下有唯一的可能极值点,而根据问题的实际意义知,在约束条件 $p_1 - \frac{3}{16}p_2^2 = 0$ 下, $L(p_1, p_2)$ 必有最大值。因此,A市场产品售价为3,B市场产品售价为4时,总利润最大。

附注 (I)要弄清一个变量 γ 对另一个变量 α 的弹性 ϵ 的概念:

$$\varepsilon = \frac{x}{y} \cdot \frac{\mathrm{d}y}{\mathrm{d}x}.$$

(Ⅱ)要熟练掌握计算多元函数条件极值的拉格朗日乘数法.

(18)
$$\[illet F(x) = \int_0^x f(t) \, \mathrm{d}t - \frac{x}{b} \int_x^b f(t) \, \mathrm{d}t, \] \[F(x) \in [0, b] \] \] \[\text{Lieign}, \[\alpha(0, b) \in [$$

(由于f(u) 单调减少,所以 $f(x) - f(t) \ge 0$,且仅在t = x处取等号,所以 $\int_{x}^{b} [f(x) - f(t)] dt > 0$,此外 $\frac{2x}{b} f(x) \ge 0$),即函数F(x)在[0, b]上单调增加,所以

$$F(\,a)\,>F(\,0)\,=0\,, \\ \mathbb{H}\!\int_0^a\!\!f(\,x\,)\,\mathrm{d} x\,>\,\frac{a}{b}\int_a^b\!\!f(\,x\,)\,\mathrm{d} x\,\,(\,0\,<\,a\,<\,b\,<\,1\,).$$

附注 以下是证明定积分不等式的常用方法:

将某个定积分的上限及与此上限相同的字母都换成 x, 转化为函数不等式, 然后用导数方法证明这个函数不等式, 由此推得所给的定积分不等式.

(19) (I) 由于
$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} x^n (x \in (-1,1]),$$
所以
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} x^{2n+1} = x \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} (x^2)^n = x \ln(1+x^2),$$

且其成立范围为[-1,1]

由此可知,和函数 $s(x) = x \ln(1 + x^2)$,它的定义域为[-1,1].

(II)记
$$F(x) = s(x) - \frac{1}{2}$$
,则 $F(x)$ 在[-1,1]上连续,在(-1,1)内可导且

$$F'(x) = \ln(1+x^2) + \frac{2x^2}{1+x^2} > 0,$$

此外, $F(-1) = -\ln 2 - \frac{1}{2} < 0$, $F(1) = \ln 2 - \frac{1}{2} > 0$,所以方程 F(x) = 0,即 $s(x) = \frac{1}{2}$ 在 [-1,1]有且仅有一个实根.

附注 题解中有以下两点值得注意:

- (I) 题中利用公式 $\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} x^n (-1 < x \le 1)$ 计算幂级数的和函数, 并确定和函数的定义域、十分快捷、
- (II) 当函数 f(x) 在[a, b] 上连续,且 f(a)f(b) < 0,则方程 f(x) = 0 在(a, b) 内至少有一个实根;

当函数 f(x) 在 [a, b] 上连续,在 (a, b) 内单调,且 f(a) f(b) < 0 时,方程 f(x) = 0 在 (a, b) 内有且只有一个实根.

$$(20)(I) 曲 A(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}) = (\boldsymbol{\alpha}_{2} + \boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{1} + \boldsymbol{a}\boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{1} + \boldsymbol{\alpha}_{2})$$

$$= (\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}) \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & a & 0 \end{pmatrix}.$$

$$\Box \boldsymbol{P} = (\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}), \quad \boldsymbol{M} \boldsymbol{P} \, \boldsymbol{\Pi} \, \boldsymbol{B}, \quad \boldsymbol{B} \boldsymbol{P}^{-1} \boldsymbol{A} \boldsymbol{P} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & a & 0 \end{pmatrix}, \quad \boldsymbol{B} \boldsymbol{P} \, \boldsymbol{B} \, \boldsymbol{B}.$$

$$\boldsymbol{A} \sim \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & a & 0 \end{pmatrix} \stackrel{\boldsymbol{\Box}}{=} \boldsymbol{B}.$$

知,方程 $f(\lambda)=0$ 不可能有三重根.这是因为,如有三重根、则

$$(\lambda + 1)[\lambda^2 - \lambda - (1 + a)] = (\lambda + 1)^3,$$

但 $\lambda^2 - \lambda - (1+a) = (\lambda+1)^2$ 是不可能的. 所以只需考虑方程 $f(\lambda) = 0$ 有二重根的情形:

(1) $\lambda = -1$ 是方程 $f(\lambda) = 0$ 的二重根,则 $\lambda = -1$ 必是 $\lambda^2 - \lambda - (1+a) = 0$ 的根,由此推出 a = 1. 于是

所以此时B可相似对角化,由于 $A \sim B$,所以此时A可相似对角化.

(2) $\lambda = -1$ 不是方程 $f(\lambda) = 0$ 的二重根,则 $\lambda^2 - \lambda - (1 + a) = 0$ 有二重根.由此推出 $a = -\frac{5}{4}$.此时方程 $f(\lambda) = 0$ 的二重根为 $\lambda = \frac{1}{2}$.于是

$$r(\frac{1}{2}E - B) = \begin{pmatrix} \frac{1}{2} & -1 & -1 \\ -1 & \frac{1}{2} & -1 \\ -1 & \frac{5}{4} & \frac{1}{2} \end{pmatrix}$$
的秩 = 2 \neq 3 - 2(即矩阵 B 的阶数与 \lambda = \frac{1}{2} 重数之差),

所以此时B不可相似对角化,由于 $A \sim B$,所以此时A不可相似对角化.

综上所述, $a = -\frac{5}{4}$ 时, A 不可相似对角化.

附注 设A 是n 阶矩阵,则A 可相似对角化的充分必要条件有下列两种:

- (I) A 有 n 个线性无关的特征向量:
- (Π) A 的每个特征值 λ_i (即特征方程 $|\lambda E_n A| = 0$ 的根) 都满足 $r(\lambda_i E_n A) = n n_i$ (其中 n_i 是 λ_i 的重数).

本题的求解,就是从利用(Ⅱ)入手的.

(21) (I) 由题设知, *A* 有特征值 $\lambda_1 = 2$, $\lambda_2 = \lambda_3 = -1$, 从而与 λ_1 对应的 A^* 的特征值 $\mu_1 = \frac{|A|}{\lambda_1} = 1$, 所以由 $A^* \alpha = \alpha$ 知 $\mu_1 = 1$ 对应的 A^* 的特征向量为 $\alpha = (1, 1, -1)^T$. 由此可知 *A* 的对应 $\lambda_1 = 2$ 的特征向量为 α .

设 \boldsymbol{A} 的对应 $\boldsymbol{\lambda}_2 = \boldsymbol{\lambda}_3 = -1$ 的特征向量为 $\boldsymbol{\beta} = (b_1, b_2, b_3)^T$,则由 \boldsymbol{A} 是实对称矩阵知 $\boldsymbol{\beta}$ 与 $\boldsymbol{\alpha}$ 正交,即

$$b_1 + b_2 - b_3 = 0.$$

故可取 β 为这个方程的基础解系,即

$$\boldsymbol{\beta}_1 = (-1,1,0)^T, \boldsymbol{\beta}_2 = (1,0,1)^T.$$

将 $\boldsymbol{\alpha}$, $\boldsymbol{\beta}_1$, $\boldsymbol{\beta}_2$ 正交化:

$$\eta_{1} = \alpha = (1,1,-1)^{T},$$
 $\eta_{2} = \beta_{1} = (-1,1,0)^{T},$
 $\eta_{3} = \beta_{2} - \frac{(\beta_{2},\eta_{2})}{(\eta_{2},\eta_{2})} \eta_{2} = (\frac{1}{2},\frac{1}{2},1)^{T},$

将 η_1, η_2, η_3 单位化:

$$\boldsymbol{\xi}_{1} = \frac{\boldsymbol{\eta}_{1}}{\parallel \boldsymbol{\eta}_{1} \parallel} = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right)^{T},$$

$$\boldsymbol{\xi}_{2} = \frac{\boldsymbol{\eta}_{2}}{\parallel \boldsymbol{\eta}_{2} \parallel} = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)^{T},$$

$$\boldsymbol{\xi}_3 = \frac{\boldsymbol{\eta}_3}{\parallel \boldsymbol{\eta}_3 \parallel} = \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right)^{\mathrm{T}}.$$

它们是 A 的分别对应 $\lambda_1 = 2$, $\lambda_2 = \lambda_3 = -1$ 的特征向量,于是所求的正交矩阵

$$Q = (\xi_1, \xi_2, \xi_3) = \begin{pmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \end{pmatrix}.$$

由于

$$\boldsymbol{Q}^{\mathrm{T}}\boldsymbol{A}\boldsymbol{Q} = \begin{pmatrix} 2 & & \\ & -1 & \\ & & -1 \end{pmatrix},$$

所以,
$$A = \mathbf{Q} \begin{pmatrix} 2 & & \\ & -1 & \\ & & -1 \end{pmatrix} \mathbf{Q}^{\mathrm{T}}$$

$$= \begin{pmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \end{pmatrix}^{2} -1 -1 \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{2}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ -\frac{2}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}.$$

(II) $f(x_1, x_2, x_3)$ 在正交变换 $\mathbf{x} = \mathbf{Q}\mathbf{y}$ 下的标准形为 $2y_1^2 - y_2^2 - y_3^2$,

 $2y_1^2 - y_2^2 - y_3^2 = z_1^2 - z_2^2 - z_3^2$ (规范形).

从而, $f(x_1, x_2, x_3)$ 在可逆线性变换

$$x = Qy = \begin{pmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & & \\ & 1 & \\ & & 1 \end{pmatrix} z = \begin{pmatrix} \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}} & 0 & \frac{2}{\sqrt{6}} \end{pmatrix} z$$

下, 化为规范形, 即

$$f(x_1, x_2, x_3) = z_1^2 - z_2^2 - z_3^2$$
.

附注 (I) 设A 是 n 阶可逆矩阵,有特征值 λ 及对应的特征向量 α ,则 A 的伴随矩阵 A^* 有特征值 $\frac{|A|}{\lambda}$ 及对应的特征向量 α .

(Ⅱ)要熟练掌握用正交变换化二次型为标准形的方法及由正交变换与标准形计算二次型矩阵的方法.

(22) (I) 由于
$$F_Z(z) = P(Z \le z)$$
,
其中, $P(Z \le z) = P(XY \le z)$
= $P(Y = -1)P(XY \le z \mid Y = -1) + P(Y = 0)P(XY \le z \mid Y = 0) + P(Y = 1)P(XY \le z \mid Y = 1)$

$$\begin{aligned}
&= \frac{1}{3} \left[P(X \ge -z) + P(0 \le z) + P(X \le z) \right] (\text{利用 } X = \text{ } Y \text{ } \text{相互独立}) \\
&= \begin{cases} \frac{1}{3} \int_{-z}^{+\infty} e^{-x} dx, & z < 0, \\ \frac{1}{3} \left(\int_{0}^{+\infty} e^{-x} dx + 1 + \int_{0}^{z} e^{-x} dx \right), & z \ge 0 \end{cases} \\
&= \begin{cases} \frac{1}{3} e^{z}, & z < 0, \\ 1 - \frac{1}{3} e^{-z}, & z \ge 0. \end{cases}
\end{aligned}$$

所以,
$$F_{z}(z) = \begin{cases} \frac{1}{3}e^{z}, & z < 0, \\ 1 - \frac{1}{3}e^{-z}, & z \ge 0. \end{cases}$$

(II) $Cov(X, X^2) = E(X^3) - EX \cdot E(X^2)$,

其中, EX = 1, $E(X^2) = D(X) + (EX)^2 = 1 + 1^2 = 2$,

$$E(X^{3}) = \int_{-\infty}^{+\infty} x^{3} f_{X}(x) dx = \int_{0}^{+\infty} x^{3} e^{-x} dx = -\int_{0}^{+\infty} x^{3} de^{-x}$$
$$= -\left(x^{3} e^{-x} \Big|_{0}^{+\infty} - 3 \int_{0}^{+\infty} x^{2} e^{-x} dx\right) = 3 \int_{0}^{+\infty} x^{2} e^{-x} dx$$
$$= 3 \int_{-\infty}^{+\infty} x^{2} f_{X}(x) dx = 3 E(X^{2}).$$

所以, $Cov(X, X^2) = 3E(X^2) - E(X^2) = 2E(X^2) = 4$.

附注 由于 Z = XY 是连续型随机变量与离散型随机变量之积,所以要计算它的分布函数应从定义出发,即从计算概率

$$P(Z \le z) = P(XY \le z)$$

入手.

(23) (\overline{I}) 由于 \overline{X} 与 S^2 相互独立,所以 \overline{X}^2 与 S^4 相互独立,因此

$$E(\overline{X}^2S^4) = E(\overline{X}^2)E(S^4), \qquad (1)$$

其中, 由 $E(\overline{X}) = EX = 0$, $D(\overline{X}) = \frac{1}{n}D(X) = \frac{1}{n}$ 得

$$E(\overline{X}^2) = D(\overline{X}) + (E\overline{X})^2 = \frac{1}{n} + 0 = \frac{1}{n}.$$
 (2)

此外,
$$E(S^2) = D(X) = 1$$
, 且由 $(n-1)S^2 \sim \chi^2(n-1)$ 知 $D(S^2) = \frac{1}{(n-1)^2}D((n-1)S^2)$

$$=\frac{1}{(n-1)^2}\cdot 2(n-1)=\frac{2}{n-1}, \text{ 所以}$$

$$E(S^4) = D(S^2) + [E(S^2)]^2 = \frac{2}{n-1} + 1^2 = \frac{n+1}{n-1}.$$
 (3)

将式(2),式(3)代入式(1)得

$$E(\overline{X}^2S^4) = \frac{1}{n} \cdot \frac{n+1}{n-1} = \frac{n+1}{n(n-1)}.$$

其中,由于 $\overline{X} \sim N\left(0, \frac{1}{n}\right)$,所以

$$E(\overline{X}^{4}) = \int_{-\infty}^{+\infty} t^{4} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{t^{2}}{2 \cdot \frac{1}{n}}} dt = \frac{\frac{t}{\sqrt{1/n}}}{n^{2}} \frac{1}{n^{2}} \int_{-\infty}^{+\infty} u^{4} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{u^{2}}{2}} du$$

$$= -\frac{1}{n^{2}} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} u^{3} de^{-\frac{u^{2}}{2}} = -\frac{1}{n^{2}} \left(\frac{1}{\sqrt{2\pi}} u^{3} e^{-\frac{u^{2}}{2}} \right) \Big|_{-\infty}^{+\infty} -3 \int_{-\infty}^{+\infty} u^{2} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{u^{2}}{2}} du$$

$$= \frac{3}{n^{2}} \int_{-\infty}^{+\infty} u^{2} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{u^{2}}{2}} du = \frac{3}{n^{2}} E(U^{2}) \left(\cancel{\ddagger} + U \sim N(0,1) \right)$$

$$= \frac{3}{n^{2}} \left[DU + (EU)^{2} \right] = \frac{3}{n^{2}}.$$

$$(5)$$

将式(5)代入式(4)得

$$D(\overline{X}^2) = \frac{3}{n^2} - \frac{1}{n^2} = \frac{2}{n^2}.$$

附注 应记住以下结论:

设 X_1, X_2, \cdots, X_n 是来自总体 $X \sim N(\mu, \sigma^2)$ 的简单随机样本,记

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2,$$

则
$$X \sim N\left(\mu, \frac{\sigma^2}{n}\right), \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1),$$
 并且.

$$E(\overline{X}) = \mu, D(\overline{X}) = \frac{\sigma^2}{n},$$

$$E(S^2) = \sigma^2, D(S^2) = \frac{2}{n-1}\sigma^4.$$

模拟试题(十)解答

一、选择题

答案

-	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	С	A	D	В	С	A	A	D

(1) 由 f(x) 在点 x = 1 处连续及 $\lim_{x \to 1} \frac{f(x)}{x - 1} = 0$ 知 f(1) = f'(1) = 0. 于是,由 f''(x) > 0 知 f'(x) > f'(1) = 0(x > 1),且 f(x) > f(1) = 0(x > 1).从而,当 x > 1 时,f(x) 单调增加且大于零.因此选(C).

附注 应记住以下结论:

设函数 f(x) 在点 x_0 处连续,且 $\lim_{x\to x_0} \frac{f(x)}{x-x_0} = A$,则

$$f(x_0) = 0, f'(x_0) = A.$$

(2) 对 $\frac{\partial^2 z}{\partial x \partial y} = x + y$ 两边关于 y 积分得

$$\frac{\partial z}{\partial x} = xy + \frac{1}{2}y^2 + \varphi(x), \qquad (1)$$

特别有

$$z_x'(x,0) = \varphi(x). \tag{2}$$

对 $z(x, 0) = x^2$ 两边关于x 求导得

$$z_x'(x,0) = 2x. (3)$$

于是,由式(2),式(3)得 $\varphi(x)=2x$,将它代入式(1)得

$$\frac{\partial z}{\partial x} = xy + \frac{1}{2}y^2 + 2x.$$

从而,上式两边关于x积分得

$$z = \frac{1}{2}x^2y + \frac{1}{2}xy^2 + x^2 + \psi(y), \qquad (4)$$

特别有 $z(0, y) = \psi(y)$,故由题设 z(0, y) = y 得 $\psi(y) = y$. 将它代入式(4) 得 $z(x, y) = \frac{1}{2}x^2y + \frac{1}{2}xy^2 + x^2 + y$. 因此选(A).

附注 在不定积分中, 对 f(x) 的原函数 F(x) 有

$$\int f(x) dx = F(x) + C \quad (其中 C 是任意常数).$$

对 g(x, y) 关于 x 的原函数 $G_1(x, y)$ 有

$$\int_{\mathcal{G}} (x, y) dx = G_1(x, y) + \varphi(y) (其中 \varphi(y) 是 y 的任意函数).$$

同样,对g(x, y)关于y的原函数 $G_2(x, y)$ 有

$$\int g(x,y) \, \mathrm{d}y = G_2(x,y) + \psi(x) \, (其中\psi(x) \, 是 \, x \, \mathrm{的任意函数}).$$

(3) 由于D关于直线 $\gamma = x$ 对称,所以

$$\iint_{D} \frac{a\varphi(x) + b\varphi(y)}{\varphi(x) + \varphi(y)} d\sigma = \iint_{D} \frac{a\varphi(y) + b\varphi(x)}{\varphi(y) + \varphi(x)} dx, \tag{1}$$

$$2 \iint_{D} \frac{a\varphi(x) + b\varphi(y)}{\varphi(x) + \varphi(y)} d\sigma = \iint_{D} \frac{a\varphi(x) + b\varphi(y)}{\varphi(x) + \varphi(y)} d\sigma + \iint_{D} \frac{a\varphi(y) + b\varphi(x)}{\varphi(y) + \varphi(x)} d\sigma$$

$$= \iint_{C} (a + b) d\sigma = \pi(a + b),$$

所以 $\iint_D \frac{a\varphi(x) + b\varphi(y)}{\varphi(x) + \varphi(y)} d\sigma = \frac{\pi}{2}(a+b)$. 因此本题选(D).

附注 式(1)证明如下:

由于 D 关于直线 y=x 对称,函数 $\frac{a\varphi(x)+b\varphi(y)}{\varphi(x)+\varphi(y)}-\frac{a\varphi(y)+b\varphi(x)}{\varphi(y)+\varphi(x)}$ 在对称点 (x,y) 与 (y,x) 处的值互为相反数,所以

$$\iint\limits_{D} \left[\frac{a\varphi(x) + b\varphi(y)}{\varphi(x) + \varphi(y)} - \frac{a\varphi(y) + b\varphi(x)}{\varphi(y) + \varphi(x)} \right] \mathrm{d}\sigma = 0 \,,$$

$$\iint\limits_{D} \frac{a\varphi(x) + b\varphi(y)}{\varphi(x) + \varphi(y)} \mathrm{d}\sigma = \iint\limits_{D} \frac{a\varphi(y) + b\varphi(x)}{\varphi(y) + \varphi(x)} \mathrm{d}\sigma.$$

从而

选.

即

(4) 考虑选项(B). 如果 $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} b_n$ 都收敛, 则

$$\lim_{n\to\infty} a_n b_n = \lim_{n\to\infty} a_n \cdot \lim_{n\to\infty} b_n = 0,$$

这与 $\lim_{n\to\infty}a_nb_n=1$ 矛盾,故 $\sum_{n=1}^\infty a_n$ 与 $\sum_{n=1}^\infty b_n$ 中至少有一发散. 因此选(B).

附注 可用例子说明选项(A)、(C)及(D)都不能选.

设 $a_n = b_n = \frac{1}{n}$,则 $\lim_{n \to \infty} a_n b_n = 0$,但 $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ 都发散,所以(A)不能选.

设 $a_n = (-1)^{n-1} \frac{1}{n}$, $b_n = \frac{1}{\sqrt{n}}$, 则 $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$, 但 $\sum_{n=1}^{\infty} a_n$ 收敛,而 $\sum_{n=1}^{\infty} b_n$ 发散,所以(C)不能

设 $a_n = (-1)^{n-1} \frac{1}{\sqrt{n}}, \ b_n = \frac{1}{n}, \ \lim_{n \to \infty} \frac{a_n}{b_n} = \infty$,但 $\sum_{n=1}^{\infty} b_n$ 发散,而 $\sum_{n=1}^{\infty} a_n$ 收敛,所以(D) 不能选.

(5) 显然, Ax = 0 的解 x_0 可使 $A^TAx_0 = 0$, 即 x_0 也是方程组 $A^TAx = 0$ 的解. 反之, 设 $A^TAx = 0$ 有解 ξ , 则

$$\boldsymbol{\xi}^{\mathrm{T}} \boldsymbol{A}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{\xi} = \boldsymbol{0}, \mathbb{P}(\boldsymbol{A} \boldsymbol{\xi})^{\mathrm{T}} (\boldsymbol{A} \boldsymbol{\xi}) = \boldsymbol{0}. \tag{1}$$

设 $A\xi = (b_1, b_2, \dots, b_n)^T$, 则由 A 是实矩阵, ξ 是实向量知 b_1, b_2, \dots, b_n 都是实数. 于是由式(1)得

$$b_1^2 + b_2^2 + \dots + b_n^2 = 0$$
, \emptyset $\overrightarrow{\Pi}$ $b_1 = b_2 = \dots = b_n = 0$, \emptyset $A\xi = 0$.

由此可知, ξ 也是方程 Ax = 0 的解.

因此选(C).

附注 题解中,证明了以下结论:

设 A 是 n 阶实矩阵,则 Ax = 0 与 $A^{T}Ax = 0$ 是同解方程组,由此也推得 $r(A^{T}A) = r(A)$. 这结论可推广为:

设 $A \not\equiv m \times n$ 矩阵, $B \not\equiv n \times l$ 矩阵,则 Bx = 0 与 ABx = 0 是同解方程组的充分必要条件 是 r(AB) = r(B).

(6) 由题 $r(A^*)=4-3=1$,从而 r(A)=4-1=3. 所以 A 的特征值中有且仅有三个不为零. 由此推得 $f(x_1, x_2, x_3, x_4)$ 的标准形应形如 $a_1y_1^2+a_2y_2^2+a_3y_3^2(a_1, a_2, a_3)$ 全不为零). 因此选(A).

附注 题解中利用了以下两个结论:

(I) 设 $A \in n$ 阶矩阵, A^* 是它的伴随矩阵, 则

$$r(A^*) = \begin{cases} n, r(A) = n, \\ 1, r(A) = n - 1, \\ 0, r(A) < n - 1. \end{cases}$$

- (II) 设 A 是实对称矩阵,则 A 可正交相似对角化,且对角矩阵的对角线上元素都是 A 的特征值.
 - (7) 记 X 的分布函数为 G(x),则

$$G(x) = \begin{cases} 0, & x \le 0, \\ \frac{x}{a}, & 0 < x < a, \\ 1, & x \ge a, \end{cases}$$

记Z的分布函数为F(z).则

$$F(z) = P(Z \le z) = P(\max\{X,Y\} \le z)$$

$$= P(X \le z, Y \le z)$$

$$= P(X \le z)P(Y \le z)(由于 X 与 Y 相互独立)$$

$$= G^{2}(z)(由于 X 与 Y 有相同的分布函数 G(z))$$

$$= \begin{cases} 0, & z \le 0, \\ \left(\frac{z}{a}\right)^{2}, & 0 < z < a, \end{cases}$$

所以 Z 的概率密度

$$f(z) = \begin{cases} \frac{2z}{a^2}, & 0 < z < a, \\ 0, & \text{其他}. \end{cases}$$

因此选(A).

附注 顺便指出,选项(B),(D)分别是随机变量 $min\{X,Y\}$ 的概率密度与分布函数.

(8) 由于
$$\frac{8}{\sigma^2}S_x^2 \sim \chi^2(8)$$
, $\frac{10}{\sigma^2}S_y^2 \sim \chi^2(10)$,所以

$$D(S_X^2) = \frac{\sigma^4}{8^2} D(\frac{8}{\sigma^2} S_X^2) = \frac{\sigma^4}{64} \times 2 \times 8 = \frac{1}{4} \sigma^4,$$

 $D(S_Y^2) = \frac{\sigma^4}{10^2} D\left(\frac{10}{\sigma^2} S_Y^2\right) = \frac{\sigma^4}{10^2} \times 2 \times 10 = \frac{1}{5} \sigma^4,$ $D(S_{12}^2) = \frac{1}{4} \left[D(S_X^2) + D(S_Y^2)\right] = \frac{9}{80} \sigma^4,$ $D(S_{XY}^2) = \frac{1}{18^2} \left[64D(S_X^2) + 100D(S_Y^2)\right] = \frac{1}{9} \sigma^4.$

所以,四个统计量中方差最小者为 S_{xy}^2 ,因此选(D).

附注 记住以下结论:

设 X_1, X_2, \dots, X_n 是来自总体 $X \sim N(\mu, \sigma^2)$ 的简单随机样本,记

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \ S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2,$$

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1), \ E(S^2) = \sigma^2, \ D(S^2) = \frac{2\sigma^4}{n-1}.$$

则

并且

二、填空题

(9) 由
$$\int_0^x [5f(t) - 2] dt = f(x) - e^{5x}$$
 得
$$f(0) = 1, 5f(x) - 2 = f'(x) - 5e^{5x} 以及 f'(0) = 8,$$
 有
$$\frac{f'(x) - 8}{x} = \frac{5[f(x) - f(0)] + 5(e^{5x} - 1)}{x}.$$

所以有

所以,

$$f''(0) = 5f'(0) + 5 \times 5 = 65.$$

附注 本题也可解答如下:由于

5 $f(x) - 2 = f'(x) - 5e^{5x}$, $\mathbb{H} y' - 5y = -2 + 5e^{5x}$ (其中 y = f(x)), $y = e^{5x} [C + \int (-2 + 5e^{5x}) e^{-5x} dx]$ $= e^{5x} [C + \int (-2e^{-5x} + 5) dx]$ $= e^{5x} (C + \frac{2}{5}e^{-5x} + 5x).$

将 $y \mid_{x=0} = 1$ 代入上式得 $C = \frac{3}{5}$,所以

$$y = e^{5x} \left(\frac{3}{5} + \frac{2}{5} e^{-5x} + 5x \right) = \frac{3}{5} e^{5x} + \frac{2}{5} + 5x e^{5x},$$

$$y' = 8e^{5x} + 25x e^{5x},$$

$$y'' = 65e^{5x} + 125x e^{5x}.$$

由此得到 $f''(0) = y''|_{x=0} = 65.$

(10) 显然,x = y = 0 时,所给方程成为 $\int_0^z e^{t^2} dt = 0$,从而 z(0, 0) = 0. 此外,所给方程 两边对 x 求偏导数得

$$\mathrm{e}^{z^2}\,\frac{\partial\,z}{\partial\,x} + y + y\,\frac{\partial\,z}{\partial\,x} = 0\,,\;\; \{ \mathbb{I}\}\frac{\partial\,z}{\partial\,x} = \frac{-\,y}{\mathrm{e}^{z^2}\,+\,y},\;\; [\pm\frac{\partial\,z(\,0\,,0\,)}{\partial\,x} \,=\,0.$$

$$\iint \overline{\Pi} \qquad \frac{\partial^2 z}{\partial x \partial y} \Big|_{\substack{x=0 \ y=0}} = \frac{\mathrm{d}}{\mathrm{d}y} \left(\frac{\partial z(0, y)}{\partial x} \right) \Big|_{y=0} = \lim_{y \to 0} \frac{\frac{\partial z(0, y)}{\partial x} - \frac{\partial z(0, 0)}{\partial x}}{y} \\
= \lim_{y \to 0} \frac{\frac{-y}{e^{z^2(0, y)} + y} - 0}{y} = -\lim_{y \to 0} \frac{1}{e^{z^2(0, y)} + y} = -\frac{1}{1 + 0} = -1.$$

附注 $\frac{\partial^2 z}{\partial x \partial y}\Big|_{\substack{x=0\\y=0}}$ 也可以由 $\frac{\partial z}{\partial x}$ 对 y 求偏导数算出 $\frac{\partial^2 z}{\partial x \partial y}$, 然后将 x=y=0 代入计算得到. 但

题解中由 $\frac{\partial z}{\partial x}$ 按定义计算 $\frac{\partial^2 z}{\partial x \partial y}\Big|_{x=0}$ 更加快捷些.

并且, $\lim_{n\to\infty}\frac{1}{2}=\lim_{n\to\infty}\frac{n+1}{2(n+2)}=\frac{1}{2}$, 所以由数列极限存在准则知

$$\lim_{n \to \infty} \left(\frac{1}{n^2 + n + 1} + \frac{2}{n^2 + n + 2} + \dots + \frac{n}{n^2 + n + n} \right) = \frac{1}{2}.$$

附注 这里的数列极限存在准则是:

设数列 $\{x_n\}$, $\{y_n\}$ 以及 $\{z_n\}$ 满足 $y_n \leq x_n \leq z_n (n=1, 2, \dots)$, 且

$$\lim_{n\to\infty} y_n = \lim_{n\to\infty} z_n = A,$$

则有 $\lim_{n\to\infty} x_n = A$.

(12) 由于 y_1 与 y_2 是 y'' + py' + qy = 0 的两个线性无关的特解, 所以其通解为 $Y = e^x(C_1\cos x + C_2\sin x)$. 此外, y'' + py' + qy = 0 对应的特征方程有根 1 + i 与 1 - i,从而

$$p = -[(1+i) + (1-i)] = -2, q = (1+i)(1-i) = 2.$$

由于 $y'' + py' + qy = \cos x$, 即 $y'' - 2y' + 2y = \cos x$ 应有特解

$$y^* = A\cos x + B\sin x$$
,

将它代入这个非齐次线性微分方程得

$$(A-2B)\cos x + (2A+B)\sin x = \cos x$$
,

于是有 $\begin{cases} A-2B=1\\ 2A+B=0 \end{cases}$,即 $A=\frac{1}{5}$, $B=-\frac{2}{5}$, 因此 $y^*=\frac{1}{5}\cos x-\frac{2}{5}\sin x$. 从而这个非齐次线性微分方程的通解为

$$y = Y + y^* = e^x (C_1 \cos x + C_2 \sin x) + \frac{1}{5} \cos x - \frac{2}{5} \sin x.$$

附注 本题获解的关键是,由 y'' + py' + qy = 0 的两个线性无关的特解确定其通解及方程中的系数 p, q 的值. 它们都是按 2 阶常系数齐次线性微分方程的解的性质得到的.

(13) 由 $AA^{T} = E_{n}$ 知 A 可逆,且 $A^{-1} = A^{T}$,此外对 $AA^{T} = E_{n}$ 的两边取行列式得 $|A|^{2} = 1$,所以由 |A| < 0 得 |A| = -1.

由于
$$A + E_n = A(E_n + A^{-1}) = A(E_n + A^{T}) = A(E_n + A)^{T}$$
,
所以, $|A + E_n| = |A| + (E_n + A)^{T}| = |A| + |E_n + A| = -|E_n + A|$,即
$$|A + E_n| = 0.$$

附注 题中的 $A \in \mathbb{R}$ 阶正交矩阵. 正交矩阵有以下性质:

设A, B 都是n 阶正交矩阵, 则

- (I) |A| = 1 或 -1:
- (Ⅱ) A 是可逆矩阵, 且 A⁻¹ = A^T;
- (Ⅲ) A 的行向量组与列向量组都是正交单位向量组;
- (**IV**) **A** ⁻¹, **A** [∗] 都是正交矩阵;
- (V) AB 是正交矩阵.
- (14) 由于存在常数 a, $b(b \neq 0)$, 使得 P(Y = a + bX) = 1. 所以

$$\rho = \begin{cases} 1, & b > 0, \\ -1, & b < 0, \end{cases} \quad \exists \exists \rho = \frac{b}{\mid b \mid}.$$

附注 关于随机变量 X = Y 的相关系数 ρ 的性质:

- $(I) | \rho | \leq 1;$
- (II) | ρ | =1 的充分必要条件是,存在常数 a, b(b≠0),使得

$$P(Y = a + bX) = 1,$$

且当 b > 0 时 $\rho = 1$, b < 0 时 $\rho = -1$.

三、解答题

(15) y(0) = 1, 此处,

曲
$$y(x) = 1 + x + 2x \int_0^x y(t)y'(t) dt - 2 \int_0^x ty(t)y'(t) dt$$
 得
$$y' = 1 + 2 \int_0^x y(t)y'(t) dt = 1 + y^2 - y^2(0) = y^2,$$

所以 $\frac{d}{dx}\left(\frac{1}{y}\right) = -1$,从而 $\frac{1}{y} = -x + C$. 将 y(0) = 1 代入得 C = 1. 因此 $y = \frac{1}{1-x}$. 从而 $y^{(n)} = \frac{n!}{(1-x)^{n+1}}$.

附注 对 $\int_0^x (x-t)y(t)y'(t)dt$ 求导时,必须首先将被积函数中的 x 移到积分号之外,故将它改写成

$$x \int_0^x y(t) y'(t) dt - \int_0^x t y(t) y'(t) dt.$$

(16) 由于
$$I(a) = \iint_{D} f(x,y) d\sigma$$

$$= \iint_{D_{1}+D_{2}} (x + 2x^{2}y) d\sigma(D_{1} + D_{2},$$
如图答 10-16 阴影部分所示)

$$= 2\iint_{D} x d\sigma$$
 (1)

(这是由于 D_1 与 D_2 关于 x 轴对称,在对称点处 x 的值彼此相等,而 $2x^2y$ 的值互为相反数,故

$$\iint_{D_1+D_2} x d\sigma = 2 \iint_{D_1} x d\sigma, \quad \iint_{D_1+D_2} 2x^2 y d\sigma = 0),$$

$$\iiint_{D_1+D_2} x dy = 2 \int_0^a x (a - \sqrt{ax - x^2}) dx$$

$$= 2 \int_0^a ax dx - 2 \int_0^a x \sqrt{\left(\frac{a}{2}\right)^2 - \left(x - \frac{a}{2}\right)^2} dx$$

$$= a^3 - 2 \int_{-\frac{a}{2}}^{\frac{a}{2}} \left(t + \frac{a}{2}\right) \sqrt{\left(\frac{a}{2}\right)^2 - t^2} dt \left(\cancel{\cancel{\bot}} + t = x - \frac{a}{2} \right)$$

$$= a^3 - a \int_{-\frac{a}{2}}^{\frac{a}{2}} \sqrt{\left(\frac{a}{2}\right)^2 - t^2} dt = a^3 - a \cdot \frac{\pi}{2} \left(\frac{a}{2}\right)^2$$

$$= \left(1 - \frac{\pi}{8}\right) a^3.$$

附注 $\iint_{\Omega} x d\sigma$ 也可计算如下:

$$\iint_{D_1} x d\sigma = \iint_{S} x d\sigma - \iint_{D_3} x d\sigma,$$

其中, S是正方形 $OABC = \{(x, y) \mid 0 \le x \le a, 0 \le y \le a\}$,

$$D_3 = \{(x, y) \mid 0 \le x \le a, \ 0 \le y \le \sqrt{ax - x^2}\} = \{(r, \theta) \mid 0 \le r \le a\cos\theta, \ 0 \le \theta \le \frac{\pi}{2}\}. \text{ fill}$$

$$\iint_{D_1} x d\sigma = \int_0^a dx \int_0^a x dy - \int_0^{\frac{\pi}{2}} d\theta \int_0^{a\cos\theta} r\cos\theta \cdot r dr$$

$$= \frac{1}{2} a^3 - \frac{1}{3} a^3 \int_0^{\frac{\pi}{2}} \cos^4\theta d\theta = \frac{1}{2} a^3 - \frac{1}{3} a^3 \cdot \frac{3 \cdot 1}{4 \cdot 2} \cdot \frac{\pi}{2}$$

$$= \left(\frac{1}{2} - \frac{\pi}{16}\right) a^3.$$

(17) 由于
$$a_n = -\left(1 + \frac{1}{n}\right)a_{n-1} = (-1)^2\left(1 + \frac{1}{n}\right)\left(1 + \frac{1}{n-1}\right)a_{n-2}$$

 $= \dots = (-1)^{n-2}\left(1 + \frac{1}{n}\right)\left(1 + \frac{1}{n-1}\right)\dots\frac{4}{3}a_2$
 $= (-1)^{n-2}\frac{7}{6}(n+1) = (-1)^n\frac{7}{6}(n+1)(n=3, 4, \dots),$

所以, $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\lim_{n\to\infty}\frac{n+2}{n+1}=1$,即 $\sum_{n=0}^{\infty}a_nx^n$ 的收敛半径为 1.

由于
$$x = -1$$
, 1 时, $\sum_{n=0}^{\infty} a_n x^n = 1 - 2x + \frac{7}{2}x^2 + \sum_{n=3}^{\infty} (-1)^n \frac{7}{6}(n+1)x^n$ 分别成为
$$\frac{13}{2} + \sum_{n=3}^{\infty} \frac{7}{6}(n+1) = \frac{5}{2} + \sum_{n=3}^{\infty} (-1)^n \frac{7}{6}(n+1),$$

它们都是发散的,因此 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛域为(-1,1). 对任意 $x \in (-1,1)$ 有

$$s(x) = \sum_{n=0}^{\infty} a_n x^n = 1 - 2x + \frac{7}{2} x^2 + \sum_{n=3}^{\infty} (-1)^n \frac{7}{6} (n+1) x^n$$

$$= 1 - 2x + \frac{7}{2} x^2 - \frac{7}{6} \frac{d}{dx} \sum_{n=3}^{\infty} (-x)^{n+1}$$

$$= 1 - 2x + \frac{7}{2} x^2 - \frac{7}{6} \frac{d}{dx} \left(\frac{x^4}{1+x} \right)$$

$$= 1 - 2x + \frac{7}{2} x^2 - \frac{7}{6} \frac{d}{dx} \left(x^3 - x^2 + x - 1 + \frac{1}{x+1} \right)$$

$$= -\frac{1}{6} + \frac{1}{3} x + \frac{7}{6(x+1)^2}.$$

附注 计算幂级数的和函数 s(x)时,应先算出该幂级数的收敛域,即确定 s(x)的定义域.

(18) (I)作辅助函数

$$F(x) = (1 - x) \int_0^x f(t) dt.$$

显然它在[0,1]上可导,且 F(0)=F(1)(=0),所以由罗尔定理知存在 $\xi\in(0,1)$,使得 $F'(\xi)=0, \text{即}\,f(\xi)(1-\xi)=\int_0^\xi f(x)\,\mathrm{d}x.$

(II) 记 $G(x) = f(x)(1-x) - \int_0^x f(x) dt$. 由(I) 的证明知方程 G(x) = 0 在(0,1) 有实根 ξ ,此外,由题设得

$$G'(x) = f'(x)(1-x) - 2f(x) > 0(x \in (0,1)),$$

即函数 G(x) 在(0,1) 内单调增加,所以方程 G(x) = 0 在(0,1) 内的实根是唯一的,即(I) 中的 \mathcal{E} 是唯一的.

附注 (I) 的证明中,辅助函数 F(x) 是按以下方法得到的:

首先将欲证等式中的 ξ 改为x得

$$f(x)(1-x) = \int_0^x f(t) dt, \, \exists I \frac{d}{dx} \left((1-x) \int_0^x f(t) dt \right) = 0,$$

所以所作辅助函数为 $F(x) = (1-x) \int_{x}^{x} f(t) dt$.

(19) 总成本函数 C(x) = 0.8x + 400, 所以总利润函数为

$$L(x) = R(x) - C(x) - T(x)$$

$$= \begin{cases} 29x - \frac{1}{4}x^2 - 400, & 0 \le x \le 60, \\ 491 - 0,85x, & x > 60. \end{cases}$$

显然 L(x) 在(0, + ∞) 上连续且

$$L'(x) = \begin{cases} 29 - \frac{1}{2}x, & 0 < x < 60, \\ -0.85, & x > 60 \end{cases}$$

所以 L(x) 的最大值,在[0, + ∞) 上的唯一极值点 x = 58 处取到,值为 L(58) = 441. 于是当该厂月产量 x = 58 件时,总利润 L(x) 最大,其值为 441 万元.

附注 y = L(x) 的图形如图答 10-19 所示.

(20)(I)由于所给方程组

$$(\boldsymbol{\alpha}_1 - \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3, -\boldsymbol{\alpha}_1 + a\boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3) \boldsymbol{x} - \boldsymbol{\alpha}_4,$$

$$(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) \begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & a \\ 0 & 1 & 1 \end{pmatrix} \boldsymbol{x} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix},$$

于是,由 $\alpha_1,\alpha_2,\alpha_3$ 线性无关得,

$$\begin{pmatrix} 1 & 0 & -1 \\ -1 & 1 & a \\ 0 & 1 & 1 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}. \tag{1}$$

图答 10-19

对式(1) 的增广矩阵

$$\overline{A} = \begin{pmatrix} 1 & 0 & -1 & 1 \\ -1 & 1 & a & 1 \\ 0 & 1 & 1 & 2 \end{pmatrix}$$

施行初等行变换:

$$\overline{A} \to \begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & a - 1 & 2 \\ 0 & 1 & 1 & 2 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 0 & a - 2 & 0 \\ 0 & 1 & 1 & 2 \end{pmatrix}. \tag{2}$$

所以,当所给方程组有无穷多解时,r(A) = r(A) < 3(其中,A 是式(1)的系数矩阵),于是由式(2)知 a-2=0,即 a=2.

(II) 当 a=2 时,式(1),即所给方程组与方程组

$$\begin{cases} x_1 & -x_3 = 1, \\ x_2 + x_3 = 2 \end{cases}$$
 (3)

同解,它对应的导出组通解为 $C(1, -1, 1)^{T}$,且式(3)有特解 $(1, 2, 0)^{T}$. 所以,式(3),即所给方程组的通解为

$$x = C(1, -1, 1)^{T} + (1, 2, 0)^{T} (C 是任意常数).$$

附注 本题获解的关键是,根据 α_1 , α_2 , α_3 线性无关,将所给的方程组化简为同解方程组(1).

(21) (I)由

$$\begin{vmatrix} \lambda \mathbf{E}_3 - \mathbf{A} \end{vmatrix} = \begin{vmatrix} \lambda - 2 & -2 & 0 \\ -8 & \lambda - 2 & 0 \\ 0 & -a & \lambda - 6 \end{vmatrix} = (\lambda + 2)(\lambda - 6)^2$$

知, A 有特征值 $\lambda = -2$, 6 (二重), 所以 A 可相似对角化时, 必有

$$r(6E_3 - A) = 3 - 2 = 1, (1)$$

其中,
$$6E_3 - A = \begin{pmatrix} 4 & -2 & 0 \\ -8 & 4 & 0 \\ 0 & -a & 0 \end{pmatrix} \xrightarrow{\text{初等行变换}} \begin{pmatrix} 4 & -2 & 0 \\ 0 & 0 & 0 \\ 0 & -a & 0 \end{pmatrix}.$$

因此满足式(1)的 a=0. 即 A 可相似对角化时, a=0.

(II)
$$a = 0$$
 时, $A = \begin{pmatrix} 2 & 2 & 0 \\ 8 & 2 & 0 \\ 0 & 0 & 6 \end{pmatrix}$, 所以

$$f(x_1, x_2, x_3) = \mathbf{x}^{\mathrm{T}} A \mathbf{x} = 2x_1^2 + 10x_1x_2 + 2x_2^2 + 6x_3^2 = \mathbf{x}^{\mathrm{T}} \begin{pmatrix} 2 & 5 & 0 \\ 5 & 2 & 0 \\ 0 & 0 & 6 \end{pmatrix} \mathbf{x}.$$

记
$$\mathbf{B} = \begin{pmatrix} 2 & 5 & 0 \\ 5 & 2 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$
 (实对称矩阵),则

$$|\lambda E_3 - B| = \begin{vmatrix} \lambda - 2 & -5 & 0 \\ -5 & \lambda - 2 & 0 \\ 0 & 0 & \lambda - 6 \end{vmatrix} = (\lambda + 3)(\lambda - 6)(\lambda - 7),$$

所以, **B** 有特征值 $\lambda = -3$, 6, 7.

设对应 $\lambda = -3$ 的特征向量为 $\alpha = (a_1, a_2, a_3)^T$,则 α 满足

$$\begin{pmatrix} -5 & -5 & 0 \\ -5 & -5 & 0 \\ 0 & 0 & -9 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \mathbf{0}, \quad \exists \mathbb{I} \begin{cases} a_1 + a_2 = 0, \\ a_3 = 0. \end{cases}$$

于是取 α 为它的基础解系,即 $\alpha = (-1, 1, 0)^{T}$.

设对应 $\lambda = 6$ 的特征向量为 $\boldsymbol{\beta} = (b_1, b_2, b_3)^{\mathrm{T}}$,则 $\boldsymbol{\beta}$ 满足

$$\begin{pmatrix} 4 & -5 & 0 \\ -5 & 4 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \mathbf{0}, \quad \exists \mathbf{I} \begin{bmatrix} 4b_1 - 5b_2 = 0, \\ -5b_1 + 4b_2 = 0. \end{bmatrix}$$

于是取 β 为它的基础解系,即 $\beta = (0, 0, 1)^{T}$.

设对应 λ = 7 的特征向量为 γ = $(c_1, c_2, c_3)^{\mathrm{T}}$,则 γ 与 α , β 都正交,即

$$\begin{cases} -c_1 + c_2 = 0, \\ c_3 = 0. \end{cases}$$

于是取 γ 为它的基础解系,即 $\gamma = (1, 1, 0)^{\mathrm{T}}$. α , β , γ 为正交向量组,现将它们单位化:

$$\boldsymbol{\xi}_{1} = \frac{\boldsymbol{\alpha}}{\parallel \boldsymbol{\alpha} \parallel} = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)^{T},$$

$$\boldsymbol{\xi}_{2} = \boldsymbol{\beta} = (0, 0, 1)^{T},$$

$$\boldsymbol{\xi}_{3} = \frac{\boldsymbol{\gamma}}{\parallel \boldsymbol{\gamma} \parallel} = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)^{T}.$$

记 $Q = (\xi_1, \xi_2, \xi_3)$ (正交矩阵),则所求的正交变换为

$$\mathbf{x} = \mathbf{Q}\mathbf{y} = \begin{pmatrix} -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \end{pmatrix} \mathbf{y},$$

它将二次型 $f(x_1, x_2, x_3)$ 化为标准形 $-3y_1^2 + 6y_2^2 + 7y_3^2$.

附注 用正交变换将二次型 $f(x_1, x_2, x_3)$ 化为标准形,首先要将该二次型表示成 $\mathbf{x}^T \mathbf{B} \mathbf{x}$ (其中 \mathbf{B} 是实对称矩阵),这是本题获解的关键.此外应熟练掌握用正交变换化二次型 $f(x_1, x_2, \dots, x_n) = \mathbf{x}^T \mathbf{B} \mathbf{x}$ (其中 $\mathbf{x} = (x_1, x_2, \dots, x_n)^T$, \mathbf{B} 是 n 阶实对称矩阵)为标准形的方法.

(22)
$$E(Z^{2}) = \iint_{xOy \oplus m} (\min\{x,y\})^{2} f(x,y) d\sigma = \iint_{0 < x < y} (\min\{x,y\})^{2} x e^{-y} d\sigma$$

$$= \iint_{0 < x < y} x^{2} \cdot x e^{-y} d\sigma = \int_{0}^{+\infty} e^{-y} dy \int_{0}^{y} x^{3} dx = \frac{1}{4} \int_{0}^{+\infty} y^{4} e^{-y} dy = -\frac{1}{4} \int_{0}^{+\infty} y^{4} de^{-y} dy$$

$$= -\frac{1}{4} \left(y^{4} e^{-y} \Big|_{0}^{+\infty} - 4 \int_{0}^{+\infty} y^{3} e^{-y} dy \right) = \int_{0}^{+\infty} y^{3} e^{-y} dy = -\int_{0}^{+\infty} y^{3} de^{-y} dy$$

$$= -\left(y^{3} e^{-y} \Big|_{0}^{+\infty} - 3 \int_{0}^{+\infty} y^{2} e^{-y} dy \right) = 3 \int_{0}^{+\infty} y^{2} e^{-y} dy$$

$$= 3E(T^{2}) \left(\cancel{\ddagger} + \cancel{\ddagger} , \cancel{\dagger} , \cancel{\dagger}$$

附注 由于在区域 $D = \{(x,y) \mid 0 < x < y\}$ 上, $(\min\{x,y\})^2 = x^2$,所以,用定义计算数学期望 $E(Z^2)$,这里顺便计算 EZ 与 DZ:

$$EZ = \iint_{xO_{y} \neq \overline{\square}} \min\{x, y\} f(x, y) d\sigma = \iint_{0 < x < y} \min\{x, y\} x e^{-y} d\sigma$$

$$= \iint_{0 < x < y} x \cdot x e^{-y} d\sigma = \int_{0}^{+\infty} e^{-y} dy \int_{0}^{y} x^{2} dx$$

$$= \frac{1}{3} \int_{0}^{+\infty} y^{3} e^{-y} dy = -\frac{1}{3} \int_{0}^{+\infty} y^{3} de^{-y}$$

$$= -\frac{1}{3} \left(y^{3} e^{-y} \Big|_{0}^{+\infty} - 3 \int_{0}^{+\infty} y^{2} e^{-y} dy \right)$$

$$= \int_{0}^{+\infty} y^{2} e^{-y} dy = E(T^{2}) = DT + (ET)^{2} = 1 + 1^{2} = 2.$$

 $DZ = E(Z^2) - (EZ)^2 = 6 - 2^2 = 2.$

(23) (I) X 的数学期望

$$EX = \int_{-\infty}^{+\infty} x f(x) dx = \int_{0}^{1} x \cdot (1 + \theta) x^{\theta} \cdot dx = \frac{1 + \theta}{2 + \theta}.$$

根据矩估计法,令

$$EX = \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}, \exists \frac{1+\theta}{2+\theta} = \overline{X}.$$

解此方程得 θ 的矩估计量 $\hat{\theta} = \frac{1-2\overline{X}}{\overline{X}-1}$.

(II) 记 X_1, X_2, \dots, X_n 的观察值为 x_1, x_2, \dots, x_n ,由于计算最大似然估计量,所以可以认为 $0 < x_1, x_2, \dots, x_n < 1$.于是有似然函数

$$L(\theta) = (1 + \theta)x_1^{\theta} \cdot (1 + \theta)x_2^{\theta} \cdot \cdots \cdot (1 + \theta)x_n^{\theta},$$

$$= (1 + \theta)^n (x_1 x_2 \cdots x_n)^{\theta}.$$

取对数 $\ln L(\theta) = n \ln(1 + \theta) + \theta \ln(x_1 x_2 \cdots x_n)$,则由

$$\frac{\mathrm{dln}L(\theta)}{\mathrm{d}\theta} = \frac{n}{1+\theta} + \ln(x_1x_2\cdots x_n) = 0$$

得

$$\theta = -\frac{n}{\ln(x_1 x_2 \cdots x_n)} - 1(0 < x_1, x_2, \cdots, x_n < 1).$$

所以,
$$\theta$$
 的最大似然估计量为 $\hat{\theta} = -\frac{n}{\ln(X_1X_2\cdots X_n)} - 1(0 < X_1, X_2, \cdots, X_n < 1).$

附注 应熟练掌握总体未知参数点估计的两种方法:矩估计法与最大似然估计法.