Abitur 2020 Mathematik Infinitesimalrechnung I

Gegeben ist die Funktion $h: x \mapsto x \cdot \ln(x^2)$ mit maximalem Definitionsbereich D_h .

Teilaufgabe Teil A 1a (2 BE)

Geben Sie D_h an und zeigen Sie, dass für den Term der Ableitungsfunktion h' von h gilt: $h'(x) = \ln(x^2) + 2$.

Teilaufgabe Teil A 1b (3 BE)

Bestimmen Sie die Koordinaten des im II. Quadranten liegenden Hochpunkts des Graphen von h.

Die Abbildung 1 zeigt den Graphen $G_{f'}$ der Ableitungsfunktion f' einer in \mathbb{R} definierten ganzrationalen Funktion f. Nur in den Punkten $\left(-4|f'(-4)\right)$ und $\left(5|f'(5)\right)$ hat der Graph $G_{f'}$ waagrechte Tangenten.

Teilaufgabe Teil A 2a (2 BE)

Begründen Sie, dass f genau eine Wendestelle besitzt.

Teilaufgabe Teil A 2b (2 BE)

Es gibt Tangenten an den Graphen von f, die parallel zur Winkelhalbierenden des I. und III. Quadranten sind. Ermitteln Sie anhand des Graphen $G_{f'}$ der Ableitungsfunktion f' in der Abbildung 1 Näherungswerte für die x-Koordinaten derjenigen Punkte, in denen der Graph von f jeweils eine solche Tangente hat.

Gegeben sind die in \mathbb{R} definierten Funktionen $f: x \mapsto x^2 + 4$ und $g_m: x \mapsto m \cdot x$ mit $m \in \mathbb{R}$. Der Graph von f wird mit G_f und der Graph von g_m mit G_m bezeichnet.

Teilaufgabe Teil A 3a (3 BE)

Skizzieren Sie G_f in einem Koordinatensystem. Berechnen Sie die Koordinaten des gemeinsamen Punkts der Graphen G_f und G_4 .

Teilaufgabe Teil A 3b (2 BE)

Es gibt Werte von m, für die die Graphen G_f und G_m jeweils keinen gemeinsamen Punkt haben. Geben Sie diese Werte von m an.

Gegeben ist die Funktion g mit $g(x) = 0, 7 \cdot e^{0,5x} - 0, 7$ und $x \in \mathbb{R}$. Die Funktion g ist umkehrbar. Die Abbildung 2 zeigt den Graphen G_g von g sowie einen Teil des Graphen G_h der Umkehrfunktion h von g.

Teilaufgabe Teil A 4a (2 BE)

Zeichnen Sie in die Abbildung 2 den darin fehlenden Teil von \mathcal{G}_h ein.

Teilaufgabe Teil A 4b (2 BE)

Betrachtet wird das von den Graphen G_g und G_h eingeschlossene Flächenstück. Schraffieren Sie den Teil dieses Flächenstücks, dessen Inhalt mit dem Term $2 \cdot \int\limits_0^{2,5} (x-g(x)) \ \mathrm{d}x$ berechnet werden kann.

Teilaufgabe Teil A 4c (2 BE)

Geben Sie den Term einer Stammfunktion der in \mathbb{R} definierten Funktion $k: x \mapsto x - g(x)$ an.

Gegeben ist die in \mathbb{R} definierte Funktion $f: x \mapsto \frac{x^2 - 1}{x^2 + 1}$; die Abbildung 1 (Teil B) zeigt ihren Graphen G_f .

Teilaufgabe Teil B 1a (5 BE)

Bestätigen Sie rechnerisch, dass G_f symmetrisch bezüglich der y-Achse ist, und untersuchen Sie anhand des Funktionsterms das Verhalten von f für $x \to +\infty$. Bestimmen Sie diejenigen x-Werte, für die f(x) = 0,96 gilt.

Teilaufgabe Teil B 1b (4 BE)

Untersuchen Sie rechnerisch das Monotonieverhalten von G_f .

(zur Kontrolle:
$$f'(x) = \frac{4x}{(x^2 + 1)^2}$$
)

Teilaufgabe Teil B 1c (4 BE)

Bestimmen Sie rechnerisch eine Gleichung der Tangente t an G_f im Punkt (3|f(3)). Berechnen Sie die Größe des Winkels, unter dem t die x-Achse schneidet, und zeichnen Sie t in die Abbildung 1 (Teil B) ein.

Nun wird die in \mathbb{R} definierte Integralfunktion $F: x \mapsto \int_0^x f(t)$ dt betrachtet; ihr Graph wird mit G_F bezeichnet.

Teilaufgabe Teil B 2a (5 BE)

Begründen Sie, dass F in x = 0 eine Nullstelle hat, und machen Sie mithilfe des Verlaufs von G_f plausibel, dass im Intervall [1; 3] eine weitere Nullstelle von F liegt. Geben Sie an, welche besondere Eigenschaft G_F im Punkt (-1|F(-1)) hat, und begründen Sie Ihre Angabe.

Teilaufgabe Teil B 2b (2 BE)

Die Gerade mit der Gleichung y=x-1 begrenzt gemeinsam mit den Koordinatenachsen ein Dreieck. Geben Sie den Flächeninhalt dieses Dreiecks und den sich daraus ergebenden Näherungswert für F(1) an.

Teilaufgabe Teil B 2c (5 BE)

Die Abbildung 2 (Teil B) zeigt den Graphen G_f sowie den Graphen G_g der in $\mathbb R$ definierten Funktion $g: x \mapsto -\cos\left(\frac{\pi}{2}x\right)$. Beschreiben Sie, wie G_g aus dem Graphen der in \mathbb{R} definierten Funktion $x \mapsto \cos x$ her-

vorgeht, und berechnen Sie durch Integration von g einen weiteren Näherungswert für F(1).

(zur Kontrolle: $F(1) \approx -\frac{2}{\pi}$)

Teilaufgabe Teil B 2d (4 BE)

Berechnen Sie das arithmetische Mittel der beiden in den Aufgaben 2b und 2c berechneten Näherungswerte. Skizzieren Sie den Graphen von F für $0 \le x \le 3$ unter Berücksichtigung der bisherigen Ergebnisse in der Abbildung 1 (Teil B).

Für jeden Wert k > 0 legen die auf G_f liegenden Punkte P_k (-k|f(-k)) und Q_k (k|f(k))gemeinsam mit dem Punkt R(0|1) ein gleichschenkliges Dreieck P_kQ_kR fest.

Teilaufgabe Teil B 3a (5 BE)

Berechnen Sie für k=2 den Flächeninhalt des zugehörigen Dreiecks P_2Q_2R (vgl. Abbildung 3).

Zeigen Sie anschließend, dass der Flächeninhalt des Dreiecks P_kQ_kR allgemein durch den Term $A(k)=\frac{2k}{k^2+1}$ beschrieben werden kann.

Teilaufgabe Teil B 3b (6 BE)

Zeigen Sie, dass es einen Wert von k>0 gibt, für den A(k) maximal ist. Berechnen Sie diesen Wert von k sowie den Flächeninhalt des zugehörigen Dreiecks P_kQ_kR .