

COPENHAGEN BUSINESS ACADEMY

Classification and geospatial analysis

Jens Egholm Pedersen <jeep@cphbusiness.dk>

Recap

- Populations and samples
- Distributions
- Regression functions
- Linear regression
 - Multivariate regression
- Polynomial regression
- Fitting
- Vectors, matrices and tensors
- Dimensionality and dimension reduction

Hand-in 5

Good work

• Linear regression

• MAE vs. MSE vs. Pearson's r

Answering what you're being asked

Guest lecturer + next week

- We invited a guest lecturer
 - Still happening next Tuesday

- .. But I'm travelling!
 - Suggestion: final lecture on Friday 1st

Goal of this block

- Have a basic understanding and knowledge of various terms, models and tests in statistics.
- Compute basic statistics on data using the Python's scientific stack and the Sklearn library.
- Develop an informed guess of when to choose a certain model to answer a concrete type of question and apply technology appropriately.

Goal for today

- Hand-in debriefing
- Gradient descent
- Clustering
- Classification
 - Text analysis
- Geospatial data analysis

Types of machine learning

- Is it trained by a human
 - Supervised / unsupervised
- Can they learn on the fly?
 - Online learning / offline (batch) learning
- Do they include new data?
 - Instance-based / model-based
- Today: supervised, offline model-learning
 - And unsupervised, instance based!

See also: Géron: Hands-on machine learning (book)

Model optimisation

How did we get our linear model?

Let's have a look at the model

$$y = ax + b$$

 $E(y) = ax+b$

How would you optimise this?

See also: Gradient descent on Wikipedia

Let's have a look at the model

$$y = ax + b$$

 $E(y) = ax+b$

- How would you optimise this?
- Least squares method
 - scipy.linalg.lstsq
 - Used in your Linear Regression
- Naive approach: Try many different a and b
 - If the error value is better
 - = gradient descent

See also: Gradient descent on Wikipedia, scipy.linalg.lstsq

• E(y) = ax + b

- E(y) = ax + b
 - If a/b are too small: bigger errors
 - If a/b are too big: bigger errors

- E(y) = ax + b
- Problem: Local minima

Large learning rate: Overshooting.

Small learning rate: Many iterations until convergence and trapping in local minima.

Stochastic gradient descent

- E(y) = ax + b
- Problem: Local minima
- Solution: Randomise "jump" distance
 - Trade-off: Overshooting versus local minima

Large learning rate: Overshooting.

Small learning rate: Many iterations until convergence and trapping in local minima.

More about vectors

- Vectors are just arrays
 - One number in the array represent one dimension
 - -[0, 0]
 - [1, 1]
 - **-** [-2, 2]
 - -[0, 0, 0]
 - [1, 1, 1]
 - [-2, 2, 3

More about vectors

- Vectors are just arrays
- What if the vector has more than three numbers?
 - Hard to visualise
 - Maybe hard to model?

See also: sklearn on clustering

More about classification

What if you don't have a clear answer?

- Supervised learning
 - Input data (X)
 - Training and testing with predicting data (y)
- Unsupervised learning
 - Input data (X)
 - Is there a pattern?

See also: sklearn on clustering

Recognising faces

What defines an image?

Can you think of the pixels in a different way?

See also: Face recognition

Recognising faces

- Take an array of pixels
 - Flatten them, so each pixel value is one dimension
- Clustering
 - "Groups" of numbers

See also: Face recognition

Cluster analysis

4) Predicting == which is closest?

1) Take a list of points in (high-dimensional) space

2) Plot them

3) See how many

"groups" you can make

See also: Face recognition

Clustering

- "Grouping" into *n* classes
 - K-means clustering

```
from sklearn.cluster import Kmeans
kmeans = KMeans(n_clusters=6)
kmeans.fit(X)
kmeans.cluster_centers_
```

See also: sklearn on clustering

Recap

- Gradient descent
- Clustering
- Classification
 - Text analysis
- Geospatial data analysis

Text analysis

- What is text?
 - Letters? Books? DNA?

• String : [Char]

- For us:
 - Sequence of letters containing semantic meaning

NLTK

Natural Language ToolKit (NLTK) in Python

- Seriously cool toolkit
 - Text parsing
 - Machine translation
 - Semantic parsing
 - Sentiment analysis
 - Etc.

We will use semantic analysis only

See also: http://www.nltk.org/

Semantics

Linguistic and philosophical study of meaning

Primarily concerned with relationships

- Happy vs sad
- Angry vs satisfied
- Etc...

nltk.sentiment.vader

- Sentiment analysis tool
 - Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014.

nltk.sentiment.vader

nltk.sentiment.vader

```
import nltk.sentiment.vader
nltk.download('vader_lexicon')
```

```
model = SemtimentIntensityAnalyzer()
model.polarity_scores()
```

Text analysis

• What is happy? Or sad?

What is meaning?

• How do we "measure" words?

- Sentiment analysis helps us to "rate" words on predefined dimensions
 - Based on a pre-known dictionary

Text analysis

- Sentiment analysis helps us to "rate" words on predefined dimensions
 - Based on a pre-known dictionary

What if we let the machine decide?

Word/term frequency

- "I'm very very very happy"
- "Ice cream, ice cream everybody wants ice cream"

- Term frequency
 - The number of times a word occurs in a document

Word weight

"I'm very very very happy"

"I'm happy"

How much information does "happy" provide?

- Inverse document frequency
 - Is the word common across all documents?
 - Measures how much information is in a word

TF/IDF

- Term frequency
 - The number of times a word occurs in a document
- Inverse document frequency
 - Is the word common across all documents?
 - Measures how much information is in a word
- TF/IDF
 - Reflects how important a word is in the document
 - Now only for words

TF/IDF

- Term frequency
 - The number of times a word occurs in a document
- Inverse document frequency
 - Is the word common across all documents?
 - Measures how much information is in a word
- TF/IDF
 - Reflects how important a word is in the document
 - Not only for words

TF/IDF in sklearn

from sklearn.feature_extraction.text import
TfidfVectorizer

```
model = TfidfVectorizer()
model.fit(<list of text>)
model.transform(<list of text>)
model.fit_transform(<list of text>)
```


Recap

- Gradient descent
- Clustering
- Classification
 - Text analysis
- Geospatial data analysis

Geospatial data

Geospatial data

Basically a coordinate (x, y)

- ... But the earth is a sphere
 - Airplanes don't fly straight lines
 - Haversine distance metric

- What kinds of analysis can we do with them?
 - Finding close and cheap pizzas!

See also: Haversine formula

Geospatial information

Folium

Map

- import folium
- m = folium.Map(location=[x, y])

Markers

- folium.Marker([x, y], popup="Hullu Bullu").add_to(m)
- Heatmap
 - from folium.plugins import HeatMap
 - HeatMad(data).add_to(m)

See al\so: Folium documentation

Next hand-in: Assignment 7

Deadline: 26th of November 23:59:59

 Text classification using VADER sentiment analysis and KMeans neighbouring cluster

 Geospatial analysis and prediction of best place to buy housing

Next hand-in: Assignment 7

- Deadline: 26th of November 23:59:59
- The hand-in (on Moodle) should be a link to a GitHub release containing a single file with the code and written text for the assignment parts

- This can either be a .ipynb, .py, .pdf or .md file
- The file must be clearly identifiable. Please name it accordingly. (for instance report.pdf)