Machine Learning

Neural Network

Dr. Shuang LIANG

Today's Topics

- Neural Network Introduction
- Neural Network Structure
- How Neural Network Works
- Backpropagation

Today's Topics

- Neural Network Introduction
- Neural Network Structure
- How Neural Network Works
- Backpropagation

Neural networks are a hot topic

The **Mark I Perceptron** machine was the first implementation of the perceptron algorithm.

The machine was connected to a camera that used 20×20 cadmium sulfide photocells to produce a 400-pixel image.

recognized letters of the alphabet

update rule:

$$w_i(t+1) = w_i(t) + \alpha(d_j - y_j(t))x_{j,i}$$

 $f(x) = \begin{cases} 1 & \text{if } w \cdot x + b > 0 \\ 0 & \text{otherwise} \end{cases}$

SEQUENCE INDICATORS

SEQUENCE INDICATORS

SEQUENCE INDICATORS

SEQUENCE INDICATORS

START LITTORS

START LITTOR

This image by Rocky Acosta is licensed under CC-BY 3.0

Frank Rosenblatt, ~1957: Perceptron

Widrow and Hoff, ~1960: Adaline/Madaline

These figures are reproduced from <u>Widrow 1960</u>, <u>Stanford Electronics Laboratories Technical Report</u> with permission from <u>Stanford University Special Collections</u>.

Rumelhart et al., 1986: First time back-propagation became popular

[Hinton and Salakhutdinov 2006]

Reinvigorated research in Deep Learning

Illustration of Hinton and Salakhutdinov 2006 by Lane McIntosh, copyright CS231n 2017

First strong results

Acoustic Modeling using Deep Belief Networks
Abdel-rahman Mohamed, George Dahl, Geoffrey Hinton, 2010

Context-Dependent Pre-trained Deep Neural Networks for Large Vocabulary Speech Recognition
George Dahl, Dong Yu, Li Deng, Alex Acero, 2012

Illustration of Dahl et al. 2012 by Lane McIntosh, copyright CS231n 2017

Imagenet classification with deep convolutional neural networks Alex Krizhevsky, Ilya Sutskever, Geoffrey E Hinton, 2012

Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Ups and downs of Neural Networks

- 1958: Perceptron (linear model)
- 1969: Perceptron has limitation
 - 1980s: Multi-layer perceptron
 - 1986: Backpropagation
- 1989: 1 hidden layer is "good enough", why deep?
 - 2006: RBM initialization

Ups and downs of Neural Networks

- 2009: GPU
- 2011: Start to be popular in speech recognition
 - 2012: win ILSVRC image competition
- 2015.2: Image recognition surpassing human-level performance
 - 2016.3: Alpha GO beats Lee Sedol
 - 2016.10: Speech recognition system as good as humans
 - Now: Transformer, BERT, Autopilot...

Neural Networks

(**Before**) Linear score function

$$f = Wx$$

(Now) 2-layer Neural Network
$$f = W_2 \max(0, W_1 x)$$

Biological neuron

This image by Fotis Bobolas is licensed under CC-BY 2.0

Artificial neuron

Activation Function

Sigmoid $\sigma(x) = \frac{1}{1+e^{-x}}$ tanh $\tanh(x)$ represents the second stank $\tan h(x)$ tanh $\tan h(x)$ represents the second stank $\tan h(x)$ represents the second stan

commonly used

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

Biological v.s. Artificial

From biological neuron to artificial neuron (perceptron)

Biological v.s. Artificial

From biological neuron network to artificial neuron networks

Be very careful with your brain analogies!

Biological Neurons

- Many different types
- Dendrites can perform complex non-linear computations
- Synapses are not a single weight but a complex non-linear dynamical system
- Rate code may not be adequate
- We can ignore whether the neural network actually simulates a biological neural network, and just think of a neural network as a mathematical model with many parameters

Today's Topics

- Neural Network Introduction
- Neural Network Structure
- How Neural Network Works
- Backpropagation

Perceptron

• It consists of two layers of neurons, the **input layer** and the **output layer**.

- Can realize logical AND, OR, NOT operation
- Only the neurons in the output layer perform activation function processing, and the learning ability is very limited
- Can't solve problems that are not linear separable, like XOR.

Multi-layer Network

Hidden layer and output layer neurons are *functional neurons* with activation functions

Multi-layer Network

The learning process of the neural network is to adjust the "connection weight" between neurons and the threshold of each functional neuron according to the training data

Deep Neural Network

7.3%

Deep = Many hidden layers

Now the commonly used **ResNet** has reached **152** layers

8 layers

AlexNet (2012)

Today's Topics

- Neural Network Introduction
- Neural Network Structure
- How Neural Network Works
- Backpropagation

Matrix Operation

Function Nesting

Function Nesting

$$y = f(x)$$

Using parallel computing techniques to speed up matrix operation

As a multi-class classifier

Input

Output

Each dimension represents the confidence of a digit.

You need to decide the network structure to let a good function in your function set.

How many layers? How many neurons for each layer?

Trial and Error

+

Intuition

Today's Topics

- Neural Network Introduction
- Neural Network Structure
- How Neural Network Works
- Backpropagation

Neural Network Optimization

- We have already learned to optimize the learner using the gradient descent method
- Can neural networks also be optimized using gradient descent?

Case: CNN (AlexNet)

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Case: Neural Turing Machine

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

Why we need BP

 If we use gradient descent directly Network parameters $\theta = \{w_1, w_2, \dots, b_1, b_2, \dots\}$

Starting Parameters

$$\theta^0 \longrightarrow \theta^1 \longrightarrow \theta^2 \longrightarrow \dots$$

$$\nabla L(\theta)$$

$$= \begin{bmatrix} \partial L(\theta)/\partial w_1 \\ \partial L(\theta)/\partial w_2 \\ \vdots \\ \partial L(\theta)/\partial b_1 \\ \partial L(\theta)/\partial b_2 \end{bmatrix}$$
Compute
$$\nabla L(\theta^0)$$

$$\theta^1 = \theta^0 - \eta \nabla L(\theta^0)$$

$$\theta^2 = \theta^1 - \eta \nabla L(\theta^1)$$
Millions of parameters
$$To compute the gradients efficiently we use backgroung action.$$

Compute
$$\nabla L(\theta^0)$$
 $\theta^1 = \theta^0 - \eta \nabla L(\theta^0)$

Compute
$$\nabla L(\theta^1)$$
 $\theta^2 = \theta^1 - \eta \nabla L(\theta^1)$

To compute the gradients efficiently, we use **backpropagation**.

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Chain rule:

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y}$$

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Chain rule:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x}$$

iviachine Learning

Dr. Shuang LIANG, Tongji

$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(x) = e^x \qquad o \qquad rac{df}{dx} = e^x \ f_a(x) = ax \qquad o \qquad rac{df}{dx} = a$$

$$f(x)=rac{1}{x} \qquad \qquad \qquad rac{df}{dx}=-1/x^2 \ f_c(x)=c+x \qquad \qquad \qquad \qquad rac{df}{dx}=1$$

$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(x) = e^x \qquad o \qquad rac{df}{dx} = e^x \ f_a(x) = ax \qquad o \qquad rac{df}{dx} = e^x \$$

$$f(x)=rac{1}{x} \qquad \qquad \qquad rac{df}{dx}=-1/x^2 \ f_c(x)=c+x \qquad \qquad \qquad \qquad rac{df}{dx}=1$$

$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(x) = e^x \qquad o \qquad rac{df}{dx} = e^x \ f_a(x) = ax \qquad o \qquad rac{df}{dx} = e^x \$$

$$f(x)=rac{1}{x} \qquad \qquad \qquad rac{df}{dx}=-1/x^2 \ f_c(x)=c+x \qquad \qquad \qquad \qquad rac{df}{dx}=1$$

$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(x) = e^x \qquad o \qquad rac{df}{dx} = e^x$$
 $f_a(x) = ax \qquad o \qquad rac{df}{dx} = e^x$

$$f(x)=rac{1}{x} \qquad \qquad \qquad rac{df}{dx}=-1/x^2 \ f_c(x)=c+x \qquad \qquad \qquad \qquad rac{df}{dx}=1$$

$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(x)=e^x \qquad \qquad o \qquad \qquad rac{df}{dx}=e^x \ f_a(x)=ax \qquad \qquad o \qquad \qquad rac{df}{dx}=a$$

$$f(x)=rac{1}{x} \qquad \qquad
ightarrow \qquad rac{df}{dx}=-1/x^2 \ f_c(x)=c+x \qquad \qquad
ightarrow \qquad rac{df}{dx}=1$$

$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(x) = e^x \qquad o \qquad rac{df}{dx} = e^x \ f_a(x) = ax \qquad o \qquad rac{df}{dx} = a$$

$$f(x)=rac{1}{x} \qquad \qquad
ightarrow \qquad rac{df}{dx}=-1/x^2 \ f_c(x)=c+x \qquad \qquad
ightarrow \qquad rac{df}{dx}=1$$

$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(x) = e^x \qquad o \qquad rac{df}{dx} = e^x \ f_a(x) = ax \qquad o \qquad rac{df}{dx} = a$$

$$f(x)=rac{1}{x} \qquad \qquad
ightarrow \qquad rac{df}{dx}=-1/x^{2} \ f_{c}(x)=c+x \qquad \qquad
ightarrow \qquad rac{df}{dx}=1$$

$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(x) = e^x \qquad o \qquad rac{df}{dx} = e^x \ f_a(x) = ax \qquad o \qquad rac{df}{dx} = a$$

$$f(x)=rac{1}{x} \qquad \qquad
ightarrow \qquad rac{df}{dx}=-1/x \ f_c(x)=c+x \qquad \qquad
ightarrow \qquad rac{df}{dx}=1$$

$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

Machine Learning

Dr. Shuang LIANG, Tongji

$$f(w,x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}}$$
[local gradient] x [upstream gradient]
$$[1] \times [0.2] = 0.2$$

$$[1] \times [0.2] = 0.2 \text{ (both inputs!)}$$

$$w_1 = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}}$$

$$[1] \times [0.2] = 0.2 \text{ (both inputs!)}$$

$$w_1 = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}}$$

$$[1] \times [0.2] = 0.2 \text{ (both inputs!)}$$

 $egin{aligned} rac{df}{dx} = e^x & f(x) = rac{1}{x} &
ightarrow \ rac{df}{dx} = a & f_c(x) = c + x & - \end{aligned}$

Machine Learning

 $f(x) = e^x$

 $f_a(x) = ax$

Dr. Shuang LIANG, Tongji

Machine Learning

$$f(w,x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}} \quad \sigma(x) = \frac{1}{1 + e^{-x}}$$
 sigmoid function

$$\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1+e^{-x})^2} = \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right) \left(\frac{1}{1+e^{-x}}\right) = (1-\sigma(x))\sigma(x)$$

Machine Learning

Dr. Shuang Liang, Tongji

$$f(w,x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}} \quad \sigma(x) = \frac{1}{1 + e^{-x}}$$
 sigmoid function

$$\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1+e^{-x})^2} = \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right) \left(\frac{1}{1+e^{-x}}\right) = (1-\sigma(x))\sigma(x)$$

Summary

- Neuron
 - Input and output
- Neural Networks
 - Perceptron
 - Multi-layer network
 - Deep neural networks
- How Neural Network Works
 - Calculation process
 - Work as a multi-class classifier
- Backpropagation

Thinking

- Are more layers in a neural network better?
- Why shouldn't we use linear function as activation function of neural network?