Final Report

Feature Preprocessing and Clustering

Feature Preprocessing:

In feature preprocessing, we implemented,

- 1) Feature Selection
- 2) Kernels
- 3) Principal Component Analysis

1) Feature Selection:

In feature selection we successfully selected subset of features which either maintained the original accuracy or increased the accuracy.

In feature selection we implemented,

- a) Sequential Forward Selection
- b) Sequential Backward Selection

For both the algorithms we use Fisher's Discriminant Ratio as the criterion function.

2) Kernels

In kernels we successfully got the similarity in the higher dimensions which helped us in increasing the accuracy.

In kernels, we implemented,

- a) Gaussian Kernel
- b) Polynomial Kernel

Various degrees of polynomial kernels are tried and the accuracy increases by increasing its degree.

Gaussian kernel, the most famous kernel increased the accuracy by 3%.

3) Principal Component Analysis

In Principal Component Analysis, we successfully visualised Iris dataset and Internet Advertisement dataset by projecting them to 2 dimension.

We also projected the entire data into lower dimension which captures about 90% of the data.

Clustering:

In Clustering, we implemented,

- 1) K-Means Clustering
- 2) DBSCAN Clustering
- 3) Adaptive DBSCAN

1) K-Means Clustering:

In K-Means we successfully clustered the given data using the euclidean distance

Here, we also implemented cluster validity indices such as,

- a) DB Index
- b) Dunn Index

Both the cluster validity indices helped us in detecting the best value of k.

2) DBSCAN Clustering:

In DBSCAN we successfully clustered the given data based on the density. Here we successfully detected the outlier points and the data points.

Adaptive DBSCAN:

But the hard part in DBSCAN is getting the value of epsilon and minimum points.

We solved this by implementing the paper [1].

Here, we automatically find the epsilon value and the minimum points value using the algorithm given in [1] which successfully worked.

Feature Selection and Clustering:

Now, after applying both feature selection and clustering on the datasets. We combined both the methods which also worked similar to the original one or more accurate than the original one whose results are attached below.

Results:

a. K Means Algorithm.

Dataset	Method Number of Features Selected		Minimum DB Index		Maximum Dunn Index	
			К	DB Value	K	Dunn Value
Arrhythmi a	Feature Selection	100	16	1.029	2	0.939
Arrhythmi a	Feature Selection	110	8	0.8164	2	0.9286
Arrhythmi a	Feature Selection	120	6	0.9141	2	0.9746
Arrhythmi a	Feature Selection	130	14	0.0947	4	0.7960
Arrhythmi a	Feature Selection	140	16	0.9620	2	0.8902
Arrhythmi a	Feature Selection	150	14	1.0082	2	0.8858
Arrhythmi a	Feature Selection	160	16	0.9656	2	0.8409
Arrhythmi a	Feature Selection	170	16	1.0014	2	0.8357
Arrhythmi a	Feature Selection	180	11	1.0947	2	0.7453
Arrhythmi a	Feature Selection	190	14	1.3120	2	0.7290
Arrhythmi a	Feature Selection	200	14	1.296	2	0.7300
Arrhythmi a	Polynomial Kernel	452	15	1.0580	2	0.7300
Arrhythmi a	Gaussian Kernel	452	14	1.186	2	0.7302

Dataset	Method	Number of Features Selected	Minimum DB Index		Maximum Dunn Index	
			K	DB Value	K	Dunn Value
Internet Advertisement	Feature Selection	100	13	0.2542	2	4.1337
Internet Advertisement	Feature Selection	200	15	0.0845	2	4.1335
Internet Advertisement	Feature Selection	300	15	0.0129	2	4.1330
Internet Advertisement	Feature Selection	400	6	0.2745	2	4.0809
Internet Advertisement	Feature Selection	500	14	0.2285	2	4.0879
Internet Advertisement	Feature Selection	550	16	0.0061	2	4.0805
Internet Advertisement	Feature Selection	600	8	0	2	4.0803
Internet Advertisement	Feature Selection	650	9	0.2341	2	4.0801
Internet Advertisement	Feature Selection	700	8	0	2	4.0800
Internet Advertisement	Feature Selection	750	12	0.2785	2	4.0799
Internet Advertisement	Feature Selection	800	8	0.2643	2	4.0798
Internet Advertisement	Feature Selection	850	9	0.2294	2	4.0795
Internet Advertisement	Feature Selection	900	16	0.2296	2	4.0794

Internet Advertisement	Feature Selection	950	14	0.2591	2	4.0793
Internet Advertisement	Feature Selection	1000	7	0.3130	2	4.0792
Internet Advertisement	PCA	435	11	0.2370	2	4.0809
Internet Advertisement	Gaussian Kernel	100	8	0	2	4.0792
Internet Advertisement	Gaussian Kernel	200	6	0.2262	2	4.0792

b. Adaptive DBSCAN :

Dataset	Method	Number of Features Selected	Epsilon	Min - Points	Number of Clusters formed
Arrhythmia	-	-	379	2	2
Arrhythmia	-	-	418.77	2	2
Arrhythmia	-	-	413	19	1
Internet Advertisement	Feature Selection	400	35.99	57	2
			40.27	160	2
			44.24	78	2
Internet Advertisement	Feature Selection	450	48.14	49	2
			45.76	36	2

			44.76	5	2
Internet Advertisement	Feature Selection	500	35.9	57	2
			40.2	160	2
			44.2	78	2
Internet Advertisement	Feature Selection	550	48.14	49	2
			45.7	36	2
			44.4	5	2
Internet Advertisement	Feature Selection	600	35.99	56	2
			40.30	161	2
			44.26	78	2
Internet Advertisement	Feature Selection	650	35.99	56	2
			40.321	162	2
			44.27	78	2
Internet Advertisement	Feature Selection	700	35.99	56	2
			40.32	162	2
			44.27	78	2
Internet Advertisement	Feature Selection	750	33.59	56	2
			40.32	162	2
			44.2	78	2
Internet Advertisement	Feature Selection	800	35.99	56	2
			40	162	2

			44.2	78	2
Internet Advertisement	Feature Selection	850	36.02	55	2
			40.33	163	2
Internet Advertisement	Feature Selection	900	36	55	2
			49	163	2
			44.2	78	2
Internet Advertisement	Feature Selection	950	36.00	55	2
			40.343	163	2
			44.28	78	2
Internet Advertisement	Feature Selection	1000	36.01	55	2
			40.35	163	2
			44.28	78	2
Internet Advertisement	PCA	435	36.012	55	2
			40.35	163	2
			44.26	78	2
Internet Advertisement	Gaussian Kernel	100	36.0122	55	2
			40.357	163	2
			44.28	78	2
Internet Advertisement	Gaussian Kernel	200	1.6324	140	2
			1.93	108	2