

Introduction to Audio Content Analysis

module 11.0: audio fingerprinting

alexander lerch

introduction overview

corresponding textbook section

chapter 11

■ lecture content

- introduction to audio fingerprinting
- in-depth example for fingerprint extraction and retrieval

learning objectives

- discuss goals and limitations of audio fingerprinting systems as compared to watermarking or cover song detection systems
- describe the processing steps of the Philips fingerprinting system

introduction overview

Georgia Center for Music Tech Technology

corresponding textbook section

chapter 11

■ lecture content

- introduction to audio fingerprinting
- in-depth example for fingerprint extraction and retrieval

learning objectives

- discuss goals and limitations of audio fingerprinting systems as compared to watermarking or cover song detection systems
- describe the processing steps of the Philips fingerprinting system

audio fingerprinting introduction

objective:

- represent a recording with a compact and unique digest (→ fingerprint, perceptual hash)
- allow quick matching between previously stored fingerprints and an extracted fingerprint

applications:

- broadcast monitoring: automate verification for royalties/infringement claim
- value-added services: offer information and meta data

audio fingerprinting introduction

objective:

- represent a recording with a compact and unique digest (→ fingerprint, perceptual hash)
- allow quick matching between previously stored fingerprints and an extracted fingerprint

applications:

- broadcast monitoring: automate verification for royalties/infringement claims
- value-added services:
 offer information and meta data

audio fingerprinting introduction

objective:

- represent a recording with a compact and unique digest (→ fingerprint, perceptual hash)
- allow quick matching between previously stored fingerprints and an extracted fingerprint

applications:

- broadcast monitoring: automate verification for royalties/infringement claims
- value-added services: offer information and meta data

audio fingerprinting fingerprinting vs. watermarking

■ fingerprinting:

• identifies recording (but not musical content)

■ watermarking:

- embeds perceptually "unnoticeable" data block in the audio
- identifies *instance* of recording

Property	Fingerprinting	Watermarking
Allows Legacy Content Indexing		
Allows Embedded (Meta) Data		
Leaves Signal Unchanged		
Identification of	Recording	User or Interaction

audio fingerprinting fingerprinting vs. watermarking

fingerprinting:

• identifies recording (but not musical content)

watermarking:

- embeds perceptually "unnoticeable" data block in the audio
- identifies *instance* of recording

Property	Fingerprinting	Watermarking
Allows Legacy Content Indexing	+	_
Allows Embedded (Meta) Data	_	+
Leaves Signal Unchanged	+	_
Identification of	Recording	User or Interaction

verview intro requirements approaches philips shazam summar
○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

audio fingerprinting fingerprint requirements

accuracy & reliability: minimize false negatives/positives

- robustness & security: robust against distortions and attacks
- granularity: quick identification in a real-time context
- versatility: independent of file format, etc
- scalability: good database performance
- complexity: implementation possible on embedded devices

- accuracy & reliability: minimize false negatives/positives
- robustness & security: robust against distortions and attacks
- granularity: quick identification in a real-time context
- versatility: independent of file format, etc.
- scalability: good database performance
- complexity: implementation possible on embedded devices

- accuracy & reliability: minimize false negatives/positives
- robustness & security: robust against distortions and attacks
- granularity: quick identification in a real-time context
- versatility: independent of file format, etc.
- scalability: good database performance
- complexity: implementation possible on embedded device

- accuracy & reliability: minimize false negatives/positives
- robustness & security: robust against distortions and attacks
- granularity: quick identification in a real-time context
- versatility: independent of file format, etc.
- scalability: good database performance
- complexity: implementation possible on embedded device

- accuracy & reliability: minimize false negatives/positives
- robustness & security: robust against distortions and attacks
- granularity: quick identification in a real-time context
- versatility: independent of file format, etc.
- scalability: good database performance
- complexity: implementation possible on embedded device

- accuracy & reliability: minimize false negatives/positives
- robustness & security: robust against distortions and attacks
- granularity: quick identification in a real-time context
- versatility: independent of file format, etc.
- scalability: good database performance
- complexity: implementation possible on embedded devices

audio fingerprinting general fingerprinting system

audio fingerprinting brainstorm

Georgia Center for Music Tech Technology

How does it work? MD5?

audio fingerprinting brainstorm

Georgia Center for Music Tech Technology

How does it work? MD5?

system example: philips extraction 1/3

- pre-processing: downmixing & downsampling (5 kHz)
- **2 STFT**: K = 2048, overlap $\frac{31}{32}$
- 3 log frequency bands:
 - freq derivative: 33 bands
- **5** time derivative: 32 bands
- 6 quantization

$$v_{\mathrm{FP}}(k,n) = \begin{cases} 1 & \text{if } (\Delta E(k,n) - \Delta E(k,n-1)) > 0 \\ 0 & \text{otherwise} \end{cases}$$

⇒ 32 bit subfingerprint

system example: philips extraction 1/3

- 1 pre-processing: downmixing & downsampling (5 kHz)
- **2 STFT**: $\mathcal{K}=2048$, overlap $\frac{31}{32}$
- 3 log frequency bands: 33 bands from 300–2000Hz
- 4 freq derivative: 33 bands
- 5 time derivative: 32 bands
- 6 quantization

$$v_{\mathrm{FP}}(k,n) = \begin{cases} 1 & \text{if } (\Delta E(k,n) - \Delta E(k,n-1)) > 0 \\ 0 & \text{otherwise} \end{cases}$$

system example: philips extraction 1/3

- 1 pre-processing: downmixing & downsampling (5 kHz)
- **2 STFT**: $\mathcal{K}=2048$, overlap $\frac{31}{32}$
- 3 log frequency bands: 33 bands from 300–2000Hz
- 4 freq derivative: 33 bands
- 5 time derivative: 32 bands
- 6 quantization

$$v_{\mathrm{FP}}(k,n) = \begin{cases} 1 & \text{if } (\Delta E(k,n) - \Delta E(k,n-1)) > 0 \\ 0 & \text{otherwise} \end{cases}$$

system example: philips extraction 1/3

- 1 pre-processing: downmixing & downsampling (5 kHz)
- **2 STFT**: $\mathcal{K}=2048$, overlap $\frac{31}{32}$
- 3 log frequency bands: 33 bands from 300–2000Hz
- 4 freq derivative: 33 bands
- 5 time derivative: 32 bands
- 6 quantization

$$v_{\mathrm{FP}}(k,n) = \begin{cases} 1 & \text{if } (\Delta E(k,n) - \Delta E(k,n-1)) > 0 \\ 0 & \text{otherwise} \end{cases}$$

system example: philips extraction 1/3

- **1** pre-processing: downmixing & downsampling (5 kHz)
- **2 STFT**: $\mathcal{K}=2048$, overlap $\frac{31}{32}$
- 3 log frequency bands: 33 bands from 300–2000Hz
- 4 freq derivative: 33 bands
- 5 time derivative: 32 bands
- 6 quantization:

$$v_{\mathrm{FP}}(k,n) = \begin{cases} 1 & \text{if } (\Delta E(k,n) - \Delta E(k,n-1)) > 0 \\ 0 & \text{otherwise} \end{cases}$$

system example: philips extraction 1/3

- **1** pre-processing: downmixing & downsampling (5 kHz)
- 2 STFT: $\mathcal{K}=2048$, overlap $\frac{31}{32}$
- 3 log frequency bands: 33 bands from 300–2000Hz
- 4 freq derivative: 33 bands
- 5 time derivative: 32 bands
- 6 quantization:

$$v_{\mathrm{FP}}(k,n) = \begin{cases} 1 & \text{if } (\Delta E(k,n) - \Delta E(k,n-1)) > 0 \\ 0 & \text{otherwise} \end{cases}$$

system example: philips extraction 2/3

fingerprint

• 256 subsequent subfingerprints

• length: 3s

• size: 256 · 4 Byte = 1 kByte

example

• 5 min song

$$1 \,\mathrm{kByte} \cdot \frac{5 \cdot 60 \,\mathrm{s}}{3 \,\mathrm{s}} = 100 \,\mathrm{kByte}$$

database with 1 million songs (avg. length 5 min)

$$10^6 \cdot 256 \cdot \frac{5 \cdot 60s}{3s} = 25.6 \cdot 10^9 \text{ subfingerprint}$$

⇒ 100 GBvte storage

system example: philips extraction 2/3

fingerprint

- 256 subsequent subfingerprints
- \Rightarrow
 - length: 3s
 - size: $256 \cdot 4$ Byte = 1 kByte

example

• 5 min song

$$1 \, \text{kByte} \cdot \frac{5 \cdot 60 \text{s}}{3 \, \text{s}} = 100 \, \text{kByte}$$

database with 1 million songs (avg. length 5 min)

$$10^6 \cdot 256 \cdot \frac{5 \cdot 60s}{3s} = 25.6 \cdot 10^9$$
 subfingerprints

 \Rightarrow 100 GByte storage

system example: philips extraction 2/3

fingerprint

- 256 subsequent subfingerprints
- \Rightarrow
 - *length*: 3s
 - size: 256 · 4 Byte = 1 kByte

example:

• 5 min song

$$1\,\mathrm{kByte} \cdot \frac{5\cdot 60\mathrm{s}}{3\,\mathrm{s}} = 100\,\mathrm{kByte}$$

• database with 1 million songs (avg. length 5 min)

$$10^6 \cdot 256 \cdot \frac{5 \cdot 60s}{3s} = 25.6 \cdot 10^9$$
 subfingerprints

 \Rightarrow 100 GByte storage

system example: philips extraction 2/3

fingerprint

- 256 subsequent subfingerprints
- \Rightarrow
 - length: 3s
 - size: 256 · 4 Byte = 1 kByte

example:

• 5 min song

$$1 \,\mathrm{kByte} \cdot \frac{5 \cdot 60 \mathrm{s}}{3 \,\mathrm{s}} = 100 \,\mathrm{kByte}$$

• database with 1 million songs (avg. length 5 min)

$$10^6 \cdot 256 \cdot \frac{5 \cdot 60s}{3s} = 25.6 \cdot 10^9$$
 subfingerprints

 \Rightarrow 100 GByte storage

verview intro requirements approaches philips shazam summary
○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

audio fingerprinting system example: philips extraction 3/3

Georgia Center for Music Tech Technology

■ original: ◀))

■ low quality encoding: ■

verview intro requirements approaches philips shazam summary
○○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

audio fingerprinting

system example: philips identification 1/3

database

- contains all subfingerprints for all songs
- previous example database: 25 billion subfingerprints

problem

how to identify fingerprint efficiently?

system example: philips identification 1/3

database

- contains all subfingerprints for all songs
- previous example database: 25 billion subfingerprints

problem

how to identify fingerprint efficiently?

system example: philips identification 1/3

database

- contains all subfingerprints for all songs
- previous example database: 25 billion subfingerprints

problem

• how to identify fingerprint efficiently?

verview intro requirements approaches **philips sh**azam summary ○○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

audio fingerprinting

system example: philips identification 2/3

simple system:

- 1 create lookup table with all possible subfingerprints (2^{32}) pointing to occurrences
- 2 assume at least one of the extracted 256 subfingerprints is error-free
- \Rightarrow only entries listed at 256 positions of the table have to be checked
- 3 compute Hamming distance between extracted fingerprint and candidates

verview intro requirements approaches **philips sh**azam summary ○○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

audio fingerprinting system example: philips identification 2/3

simple system:

- \blacksquare create lookup table with all possible subfingerprints (2³²) pointing to occurrences
- 2 assume at least one of the extracted 256 subfingerprints is error-free
- \Rightarrow only entries listed at 256 positions of the table have to be checked
- 3 compute Hamming distance between extracted fingerprint and candidates

verview intro requirements approaches **philips sh**azam summary ○○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

audio fingerprinting system example: philips identification 2/3

simple system:

- \blacksquare create lookup table with all possible subfingerprints (2³²) pointing to occurrences
- 2 assume at least one of the extracted 256 subfingerprints is error-free
- \Rightarrow only entries listed at 256 positions of the table have to be checked
- 3 compute *Hamming* distance between extracted fingerprint and candidates

verview intro requirements approaches **philips shazam summary**○○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

audio fingerprinting

system example: philips identification 3/3

■ variant 1:

- allow *one* bit error
- \Rightarrow workload increase by factor ≈ 33

■ variant 2:

- introduce concept of bit error probability into fingerprint extraction
 - ightharpoonup small energy difference ightarrow high error probability
 - ▶ large energy difference → low error probability
- rank bits per subfingerprint by error probability and check only for bit errors at likely positions

verview intro requirements approaches **philips shazam summary**○○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

audio fingerprinting

system example: philips identification 3/3

■ variant 1:

- allow one bit error
- \Rightarrow workload increase by factor ≈ 33

■ variant 2:

- introduce concept of bit error probability into fingerprint extraction
 - ► small energy difference → high error probability
 - ▶ large energy difference → low error probability
- rank bits per subfingerprint by error probability and check only for bit errors at likely positions

verview intro requirements approaches **philips** shazam summary

○○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

audio fingerprinting

system example: philips identification 3/3

■ variant 1:

- allow one bit error
- \Rightarrow workload increase by factor ≈ 33

variant 2:

- introduce concept of bit error probability into fingerprint extraction
 - ightharpoonup small energy difference ightarrow high error probability
 - ▶ large energy difference → low error probability
- rank bits per subfingerprint by error probability and check only for bit errors at likely positions

erview intro requirements approaches **philips** shazam summary ○○ ○ ○ ○ ○ ○ ○ ○ ○ ○

audio fingerprinting system example: philips identification 3/3

Georgia Center for Music Tech Technology

■ variant 1:

- allow one bit error
- \Rightarrow workload increase by factor ≈ 33

variant 2:

- introduce concept of bit error probability into fingerprint extraction
 - ightharpoonup small energy difference ightarrow high error probability
 - ▶ large energy difference → low error probability
- rank bits per subfingerprint by error probability and check only for bit errors at likely positions

overview intro requirements approaches philips shazam summar 0 00 0 0 00 0 00000 • 0

audio fingerprinting other systems: shazam

¹A. Wang, "An Industrial Strength Audio Search Algorithm," in *Proceedings of the 4th International Conference on Music Information Retrieval (ISMIR)*, Washington, 2003.

plot from¹

summary lecture content

audio fingerprinting

- represent recording with compact, robust, and unique fingerprint
- focus on (perceptual) audio representation rather than "musical" content
- allow efficient matching of this fingerprint with database

often confused with other tasks

- 1 audio watermarking
- 2 cover song detection

