General overview of the game we play in machine learning.

- Nature generates data according to some function $f: x \to y$ we don't know
- In machine learning we want a good approximation of f on out of sample data.
- We start with set of possible functions(Hypothesis space H) and try to pick a function \hat{f} best approximating true f(which we don't know)
 - Complex H means good chance of approximating f but hard to find approximation?
 - Simple H means good generalization on out of sample data.

Bias variance analysis effectively asks following questions.

- How well H can approximate f overall.
- Given the sample how good is our approximation.

Let's use square error analysis on linear regression Let's say f is true function and \hat{f} is our choice of target function based on sample dataset D in hypothesis space H Then

$$E_{out}(\hat{f}_{D}) = E_{x}(\hat{f}_{D}(x) - f(x))^{2}$$

This depends on a particular sample D. If we take another same number of sample this will change. To do error anlysis we need to get rid of a particular sample D choice.

Let's take expectation with respect to distriution over D

$$\begin{split} \mathbf{E}_{\mathrm{D}}(E_{out}(\hat{f}_{\mathrm{D}})) &= \mathbf{E}_{\mathrm{D}}\mathbf{E}_{x}(\hat{f}_{\mathrm{D}}(x) - f(x))^{2} \\ &= \mathbf{E}_{x}\mathbf{E}_{\mathrm{D}}(\hat{f}_{\mathrm{D}}(x) - f(x))^{2} \end{split}$$

Define average hypothesis

$$\bar{f} = E_D(\hat{f}_D(x))$$

$$\begin{split} \mathbf{E}_{\mathrm{D}}(\hat{f}_{\mathrm{D}}(x) - f(x))^2 &= \mathbf{E}_{\mathrm{D}}[\hat{f}_{\mathrm{D}}(x) - \bar{f}(x) + \bar{f}(x) - f(x)]^2 \\ &= \mathbf{E}_{\mathrm{D}}[(\hat{f}_{\mathrm{D}}(x) - \bar{f}(x))^2 + (\bar{f}(x) - f(x))^2) + 2(\hat{f}_{\mathrm{D}}(x) - \bar{f}(x))(\bar{f}(x) - f(x))] \\ &= \mathbf{E}_{\mathrm{D}}[(\hat{f}_{\mathrm{D}}(x) - \bar{f}(x))^2] + [\bar{f}(x) - f(x)]^2 \end{split}$$

$$\underbrace{\mathbf{E}_{\mathbf{D}}[(\hat{f}_{\mathbf{D}}(x) - \bar{f}(x))^{2}] + \underbrace{[\bar{f}(x) - f(x)]^{2}}_{\text{bias}(x)}}_{\text{bias}(x)}$$

bias = a measure of best we can do in our hypothesis set

variance = how far our hypothesis based on D is away from average

$$\begin{split} \mathbf{E}_{x}\mathbf{E}_{\mathrm{D}}(\hat{f}_{\mathrm{D}}(x)-f(x))^{2} &= \mathbf{E}_{x}[\mathbf{E}_{\mathrm{D}}[(\hat{f}_{\mathrm{D}}(x)-\bar{f}(x))^{2}]+[\bar{f}(x)-f(x)]^{2}] \\ &= \mathbf{E}_{x}[bias^{2}(x)+variance(x)] \\ &= bias^{2}+variance \end{split}$$

BIAS VARIANCE TRADEOFF

- _ High bias
- Low variance

- High variance

Evaluation of Learning algorithms

We need a way to measure how well learning algorithm perfroms. Till now we have seen follwoing measures

- Accuracy
- Precision, Recall, ROC curve

let's make it more formal

- Given an Hypothesis space H, using training data D we select a hypothesis $\hat{f} \in H$
- Given a feature vector x we predict using h as $\hat{y} = \hat{f}(x)$. Let say true value is y.

For Regresssion

- MAE (Mean absolute error) $\frac{\sum_{i}^{N} |\hat{f}(x_i) y_i|}{\sum_{i}^{N} |\hat{f}(x_i)|^{N}}$
- MSE (Mean square error) $\frac{\sum_{i}^{N} \|\hat{f}(x_{i}) y_{i}\|^{2}}{\frac{N}{N}}$ ## For Classification
 - Miss classification error = $\frac{\sum_{i=1}^{N} I(f(x_i) \neq y_i)}{N}$
 - Build Confusion matrix, Remember TP, TN, FP, FN for binary calssification. You can build confusion matrix for K class classification too.
 - ROC

Confusion Matrix for a particular value of threshold au

	y = 1	y = 0	
ŷ=1	TP	FP	$\hat{N}_{+} = TP + FN$
ŷ=0	FN	TN	$\hat{N}_{-} = TN + FN$
	::	:	:
	$N_+ = TP + FN$	$N_{-} = TN + FP$	N= TP+FN +TN+FP

$$precision = \frac{TP}{TP + FP}$$

recall = True positive rate(**TPR**) =
$$\frac{TP}{N_+} \approx p(\hat{y} = 1 \mid y = 1)$$

false positive rate (**FPR**)(type I error rate) =
$$\frac{FP}{N_-} \approx p(\hat{y} = 1 \mid y = 0)$$

Sample error vs True Error(In classification setting)

Sample error: The sample error of a hypothesis $\hat{f}(x)$ with respect to true function(target) f on a sample $D = \{x_i, y_i = f(x_i)\}_{i=1}^{i=N}$ is miss classification error $\frac{\sum_{i=1}^{N} \hat{I}(\hat{f}(x_i) \neq f(x_i))}{N}$

True Error The true error of a hypothesis $\hat{f}(x)$ with respect to true function(target) f and distribution P, is the probability of mis classifying a random sample from distribution P, $Pr_{x \sim P}[\hat{f}(x) \neq f(x)]$

We need good True Error

Evaluation of hypothesis under limited sample data

• Split the samples into train and test

What if train set is too small

- we have small samples size.
- Can't touch test set
- · Can we use data in validation for training too?

yes. Procedure is calls k -fold cross validation

