

Parking System Proyek Akhir PSD

Kelompok BP03

Anggota Kelompok

- 01 2206059401 Nakita Rahma Dinanti
- O2 2206809841 Kamal Makarim Iskandar
- O3 2206813353 Naufal Rusyda Santosa
- **04** 2206814186 Fathin Umara Aero

Deskripsi Parking System

Proyek kami disini akan merepresentasikan parking system dimana ada 3 unit yang akan digunakan, yaitu **Memory, Interface Masuk, Interface Keluar** dan **CPU.**

Memory akan menyimpan kapan waktu masuk, ID kartu, dan balance dari kartu. Inteface Masuk akan menerima id kartu, menghitung kapan waktu masuk dari clock, kemudian menyimpannya di memory. Interface Keluar akan menerima id kartu dan balance, mengeluarkan balance baru ketika balancenya cukup, kalau balance kurang palang akan tetap tertutup. CPU akan mengatur semua alur kegiatan.

Tujuan Proyek

Tujuan kami dengan membuat **Parking System** ini adalah untuk memudahkan proses pembayaran parkir dengan menggunakan kartu e-Money. Serta kita juga dapat mengetahui berapa lama waktu parkir.

CPU

 Registers masing-masing 64 bit

 Reg Number
 bit
 Reserved for

 0
 000
 Timestamp

 1
 001
 Used parked spot

 2
 010

 3
 011

 4
 100

 5
 101

 6
 110

 7
 111

CPU adalah unit yang mengatur dan menjaga segala kegiatan agar tetap berjalan lancar. CPU memiliki total 7 buah instruksi yang masing-masing terdiri dari 3-bit opcode.

Inst	Instructions					
No	Name	Opcode	Bits	data_in		
1	remove	000	Opcode (3bit)	(31 downto 0) id kartu		
2	sub RA, RB	001	Opcode (3bit) + mode(2 bit) + Opperand A(3 bit) + Opperand B (3 bit)	Tergantung mode		
3	mul RA, RB	010	Opcode (3bit) + mode (2 bit) + Opperand A(3 bit) + Opperand B (3 bit)	Tergantung mode		
4	mov A, B	011	Opcode (3bit) + mode(2 bit) + Opperand A(3 bit) + Opperand B (3 bit)	Tergantung mode		
5	save	100	Opcode (3bit)			
6	div RA, RB	101	Opcode (3bit) + mode (2 bit) + Opperand A(3 bit) + Opperand B (3 bit)	(31 downto 0) new time		
7	Inc RA	110	Opcode (3bit) + dont care (2 bit) + Opperand A (3 bit)			
8	Dec RA	111	Opcode(3bit) + dont care (2bit) + Opperand A (3 bit)			

Mod	Mode (mov)					
no	mode	bit	A (3 bit)	B (3 bit)		
1	data_out, reg	00	XXX	Reg B		
2	reg, mem	01	Reg A	Mem[Reg B]		
3	reg, data_in	10	Reg A	XXX		
4	mem, reg	11	Mem[Reg A]	Reg B		

Mode (aritmatika)				
no	mode	bit	A (3 bit)	B (3 bit)
1	data_out, reg	00	XXX	Reg B
2	reg, mem	01	Reg A	Mem[Reg B]
3	reg, data_in	10	Reg A	XXX
4	reg, reg	11	Reg A	Reg B

Interface Masuk

Pada unit Interface Masuk, kami membuat program yang akan membaca ID dari kartu pengguna yang hendak parkir. Kemudian program akan membaca waktu masuk menggunakan Unix Timestamps dengan format Year-Month-Day-Hour-Minute-Second.

Selanjutnya, Card ID dan Timestamps akan digabungkan dan disimpan ke dalam **Memory**

	M <= Card id(32 bit) + timetstamp (32bit)	Instruction :
Get_timestamp	MOV data_out, R0	011 00 000 000
cardid_timestamp	datain(63 downto 32) <= data_out	
	datain(31 downto 0) <= card_id	
move_toreg	MOV R2, data_in	011 10 010 000
move_tomem	MOV M[R1], R2	011 11 001 010
	Inc R0	110 001 00000

Memory

Unit **Memory** berfungsi untuk menyimpan Card ID dan waktu scan pada **Interface Masuk** serta menyimpan balance kartu ketika di-scan pada **Interface Keluar.**

Interface Keluar

Unit Interface Masuk akan membaca kembali CardID dari pengguna yang hendak keluar, kemudian membaca balance dari kartunya. Apabila balance nya cukup, maka akan dipotong sesuai dengan tarif parkir.

	interfaceKeluar	
set_0_r2	data_in <= others 0	
	mov R2, data_in	011 10 010 000
card id to data_in	data_in(31 downto 0) <= card_id	
mov R3 data_in	mov R3, data_in	011 10 011 000
mov R4 M[R2]	mov R4, M[R2]	011 01 100 010
mov data_out R4 1	mov data_out, R4	011 00 000 100
remove timestamp	data_in(31 downto 0) <= data_out(63 downto 32)	
	data_in(63 downto 32) <= others 0	
mov R4 data_in	mov R4 data_in	011 10 100 000
sub R4 R3	sub R4, R3	001 11 100 011
mov data_out R4 2	mov data_out, R4	011 00 000 100
check data_out	if data_out = 0, next_state = mov R3 MR2	
	else, inc R2 ,next_state = mov R4 M[R2]	110 010 00000
mov R3 MR2	mov R3, M[R2]	011 01 011 010
mov data_out R3	mov data_out R3	011 00 000 011
remove cardid	data_in(63 downto 32) <= others 0	
	data_in(31 downto 0) <= data_out(31 downto 0)	
mov R3 data_in	mov R3, data_in	011 10 011 000
get_timestamp	mov data_out , R0	011 00 000 000
mov R4 data_in	data_in <= data_out	
	mov r4, data_in	011 10 100 000
sub R4 R3	sub R4, R3	001 11 100 011
div R4, data_in	data_in <= 60 * 60	
	div R4, data_in	101 10 100 000
mul R4 data_in	data_in <= 3000	
	mul R4, data_in	010 10 100 000
mov balance to reg	data_in <= balance	
	mov R5, data_in	011 10 101 000
sub R5 R4	sub R5, R4	001 11 101 100
mov data_out R5	mov data_out R5	011 00 000 101
check_balance	if data_out >= 0, balance<=data_out	
	else report uang tidak cukup	
save		100 00000000

Sintesis RTL

Simulasi ModelSim

Terima Kasih

