

# **TensorFlow Research Models**

This directory contains code implementations and pre-trained models of published research papers.

The research models are maintained by their respective authors.

#### **Table of Contents**

- TensorFlow Research Models
  - Table of Contents
  - Modeling Libraries and Models
  - Models and Implementations
    - Computer Vision
    - Natural Language Processing
    - Audio and Speech
    - Reinforcement Learning
    - Others
    - Old Models and Implementations in TensorFlow 1
  - Contributions

#### **Modeling Libraries and Models**

| Directory        | Name                                                         | Description                                                                                                                                                                                                                                                                     | Maintainer(s)                 |
|------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| object detection | TensorFlow<br>Object<br>Detection API                        | A framework that makes it easy to construct, train and deploy object detection models  A collection of object detection models pre-trained on the COCO dataset, the Kitti dataset, the Open Images dataset, the AVA v2.1 dataset, and the iNaturalist Species Detection Dataset | jch1,<br>tombstone,<br>pkulzc |
| <u>slim</u>      | TensorFlow-<br>Slim Image<br>Classification<br>Model Library | A lightweight high-level API of TensorFlow for defining, training and evaluating image classification models  • Inception V1/V2/V3/V4  • Inception-ResNet-v2  • ResNet V1/V2  • VGG 16/19  • MobileNet V1/V2/V3  • NASNet-A_Mobile/Large  • PNASNet-5_Large/Mobile              | sguada,<br>marksandler2       |

# **Models and Implementations**

# **Computer Vision**

| Directory             | Paper(s)                                                                                                                                                                                                                                                                                                                                                                                              | Conference                                                                   | Maintainer(s)                        |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------|
| attention ocr         | Attention-based Extraction of Structured Information from Street View Imagery                                                                                                                                                                                                                                                                                                                         | ICDAR<br>2017                                                                | xavigibert                           |
| <u>autoaugment</u>    | <ul> <li>[1] <u>AutoAugment</u></li> <li>[2] <u>Wide Residual Networks</u></li> <li>[3] <u>Shake-Shake regularization</u></li> <li>[4] <u>ShakeDrop Regularization for Deep Residual Learning</u></li> </ul>                                                                                                                                                                                          | [1] CVPR<br>2019<br>[2] BMVC<br>2016<br>[3] ICLR<br>2017<br>[4] ICLR<br>2018 | barretzoph                           |
| <u>deeplab</u>        | [1] DeepLabv1: Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs [2] DeepLabv2: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [3] DeepLabv3: Rethinking Atrous Convolution for Semantic Image Segmentation [4] DeepLabv3+: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation | [1] ICLR<br>2015<br>[2] TPAMI<br>2017<br>[4] ECCV<br>2018                    | aquariusjay,<br>yknzhu               |
| delf                  | [1] DELF (DEep Local Features): Large-Scale Image Retrieval with Attentive Deep Local Features [2] Detect-to-Retrieve: Efficient Regional Aggregation for Image Search [3] DELG (DEep Local and Global features): Unifying Deep Local and Global Features for Image Search [4] GLDv2: Google Landmarks Dataset v2 A Large-Scale Benchmark for Instance-Level Recognition and Retrieval                | [1] ICCV<br>2017<br>[2] CVPR<br>2019<br>[4] CVPR<br>2020                     | andrefaraujo                         |
| Istm object detection | Mobile Video Object Detection with  Temporally-Aware Feature Maps                                                                                                                                                                                                                                                                                                                                     | CVPR 2018                                                                    | yinxiaoli,<br>yongzhe2160,<br>lzyuan |
| marco                 | MARCO: <u>Classification of crystallization</u> <u>outcomes using deep convolutional neural</u> <u>networks</u>                                                                                                                                                                                                                                                                                       |                                                                              | vincentvanhoucke                     |
| <u>vid2depth</u>      | Unsupervised Learning of Depth and Ego-<br>Motion from Monocular Video Using 3D<br>Geometric Constraints                                                                                                                                                                                                                                                                                              | CVPR 2018                                                                    | rezama                               |

#### **Natural Language Processing**

| Directory        | Paper(s)                                                                                                                                             | Conference                           | Maintainer(s)        |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------|
| adversarial text | <ul> <li>[1] Adversarial Training Methods for Semi-Supervised</li> <li>Text Classification</li> <li>[2] Semi-supervised Sequence Learning</li> </ul> | [1] ICLR<br>2017<br>[2] NIPS<br>2015 | rsepassi, a-<br>dai  |
| cvt text         | Semi-Supervised Sequence Modeling with Cross-View Training                                                                                           | EMNLP<br>2018                        | clarkkev,<br>Imthang |

## **Audio and Speech**

| Directory       | Paper(s)                                                                                                                                                                 | Conference     | Maintainer(s) |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------|
| <u>audioset</u> | <ul><li>[1] <u>Audio Set: An ontology and human-labeled dataset for audio events</u></li><li>[2] <u>CNN Architectures for Large-Scale Audio Classification</u></li></ul> | ICASSP<br>2017 | plakal, dpwe  |
| deep speech     | Deep Speech 2                                                                                                                                                            | ICLR 2016      | yhliang2018   |

#### **Reinforcement Learning**

| Directory                       | Paper(s)                                                                                                                                                                                                                                                      | Conference                                               | Maintainer(s) |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------|
| <u>efficient-</u><br><u>hrl</u> | [1] <u>Data-Efficient Hierarchical Reinforcement Learning</u> [2] <u>Near-Optimal Representation Learning for Hierarchical Reinforcement Learning</u>                                                                                                         | [1] NIPS<br>2018<br>[2] ICLR<br>2019                     | ofirnachum    |
| <u>pcl rl</u>                   | <ul> <li>[1] Improving Policy Gradient by Exploring Under-appreciated Rewards</li> <li>[2] Bridging the Gap Between Value and Policy Based Reinforcement Learning</li> <li>[3] Trust-PCL: An Off-Policy Trust Region Method for Continuous Control</li> </ul> | [1] ICLR<br>2017<br>[2] NIPS<br>2017<br>[3] ICLR<br>2018 | ofirnachum    |

#### Others

| Directory    | Paper(s)                                                                             | Conference | Maintainer(s)           |
|--------------|--------------------------------------------------------------------------------------|------------|-------------------------|
| <u>lfads</u> | LFADS - Latent Factor Analysis via Dynamical Systems                                 |            | jazcollins,<br>sussillo |
| rebar        | REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models | NIPS 2017  | gjtucker                |

## Old Models and Implementations in TensorFlow 1

:warning: If you are looking for old models, please visit the Archive branch.

# **Contributions**

If you want to contribute, please review the <u>contribution guidelines</u>.