Các môn học ở kì 3 - UIT

I. Mathematics for Computer Science (Toán cho KHMT - CS115)

1. Assessment Components

Progress	End-term	Final Project
0.3	0.4	0.3

2. Contents

• Week 1-3: Introducing and Revising

- Introduction to Math for Computer Science.
- Revising Calculus.
- Revising Linear Algebra.
- Revising Probability & Statistics.

• Week 4-6: Regression Analysis.

- ► Maximum Likelihood Estimation MLE.
- ► Linear Regression.
- ► Logistic Regression.
- ► Loss Function.

• Week 7-9: Optimization

- ► Introduction about Convex Optimization.
- ▶ Newton's method and Gradient descent.
- ▶ L1, L2, Regularization.
- ► Stochastic gradient descent.
- ► Momentum, Nesterov.
- ► Adagrad, RMSprop, Adadelta, Adam.

• Week 10-12: Introduction to Neural Network

- ► Multi-layer Perceptron.
- Computational Graph.
- ► Chain rule & Backprograpagation.
- Cross-validation.
- ▶ Batch normalization.
- Modifying Hyperparameters.

• Week 13-15: About Final Project and Seminar about other topics

- ► Linear discriminant Analysis(LDA).
- ► Singular Value Decomposition (SVD) & Principal Component Analysis (PCA).
- ► Support Vector Machine (SVM) & Kernels.
- Expectation Maximization.
- Hierarchical Clustering, Spectral Clustering.

٠...

3. References & Materials

- Gibert Strang. Linear Algebra and Learning from Data. Wellesley-Cambridge University Press (2019).
- Mykel Korchenderfer & Tim Wheeler. Algorithms for Optimization. MIT Press(2019).
- Zhang, Lipton, Li & Smola. Dive into Deep Learning.

- Marc Peter Deisenroth, A. Aldo Faisal & Cheng Soon Ong. Mathematics for Machine Learning, Cambridge University Press(2020).
- Kevin Patrick Murphy. Probalistic Machine Learning: An Introduction. MIT Press (2021).

II. Database (Cơ sở dũ liệu - IT004)

1. Assessment Components

Coursework + Practice	Mid-term	End-term
30%	20%	50%

2. Contents

• Chapter 1: Overview of Databases

- ► 1.1. Introduction
- ▶ 1.2. File System
- ▶ 1.3. Defining a Database
- ▶ 1.4. Database Users
- ▶ 1.5. Database Management System (DBMS)
- ▶ 1.6. Components of a Database System
- ▶ 1.7. Data Models
 - Network Data Model (Introduction)
 - ER Model (Entity-Relationship Model)

• Chapter 2: Relational Data Model

- ▶ 2.1. Introduction
- ▶ 2.2. Basic Concepts of the Relational Model
 - Relation
 - Attribute
 - Schema
 - Tuple
 - Domain
- ▶ 2.3. Integrity Constraints
 - Super Key
 - Key
 - Primary Key
 - Foreign Key
 - Referential Integrity
- ▶ 2.4. Properties of Relations
- ► 2.5. Mapping E/R Diagrams to Relational Model

• Chapter 3: Relational Algebra

- ▶ 3.1. Introduction
- ▶ 3.2. Relational Algebra
- ▶ 3.3. Set Operations
- ▶ 3.4. Selection

- ▶ 3.5. Projection
- ▶ 3.6. Cartesian Product
- ► 3.7. Rename
 - Natural Join
 - Theta Join
 - Equi Join
- ▶ 3.8. Division
- ▶ 3.9. Other Operations
 - Aggregation Functions
 - Grouping
 - Outer Join

· Chapter 4: SQL

- ▶ 4.1. Introduction
- ▶ 4.2. Data Definition Language (DDL)
 - Create Table
 - Declare Constraints (Primary, Foreign Keys)
 - Alter Table (Add, Drop, Modify Columns and Constraints)
 - Drop Table
- 4.3. Data Manipulation Language (DML)
 - Insert (Manually, from other tables, or complete copies)
 - Update
 - Delete
- 4.4. SQL Queries
 - General Structure
 - Select From Where
 - WHERE Clause
 - ORDER BY
- ▶ 4.5. Multi-Table Queries
 - GROUP BY
 - HAVING
- ► 4.6. Subqueries
 - Aggregate Functions over Groups
 - String, Date, Numeric Functions

• Chapter 5: Integrity Constraints

- ► 5.1. Definition
- ▶ 5.2. Components of Integrity Constraints
 - Content
 - Syntax, Example
 - Context
 - Affected Scope
 - Classification
- ▶ 5.3. Integrity Constraints over One Relation
 - Value Dependencies, Attribute Dependencies, Tuple Dependencies
- ► 5.4. Integrity Constraints over Multiple Relations
 - Foreign Key (Referential Integrity), Join Dependencies, Aggregate Dependencies

• Chapter 6: Functional Dependencies and Normal Forms

• 6.1. Functional Dependencies

- Basic Concepts
- Armstrong's Axioms & Closure
- ► 6.2. Normal Forms
 - First Normal Form (1NF)
 - Second Normal Form (2NF)
 - Third Normal Form (3NF)
 - Boyce-Codd Normal Form (BCNF)

• Chapter 7: Review and Practice

3. Coursework

Session	Content		
1	Introduction to tools in Microsoft SQL Server and implementation of data		
	definition language (DDL) in DBMS		
	Understand data types		
	Learn how to manipulate databases, tables, primary keys, and foreign keys using built-in		
	tools in SQL Server Management Studio		
	Commands for creating databases, tables, primary keys, and foreign keys		
	• Introduction to system stored procedures: sp_help, sp_tables, sp_columns, sp_pkeys,		
	sp_fkeys, sp_helpconstraint, sp_helpsql, etc.		
	DROP, ALTER commands		
2, 3	Implementing data manipulation language (DML) and simple SQL queries in SQL		
	Server		
	Data manipulation commands: INSERT, DELETE, UPDATE		
	Query syntax: SELECT FROM WHERE		
	Introduction to SELECT INTO, VIEW		
4, 5	Performing basic query types in SQL Server		
	Subqueries		
	Set operations: UNION, INTERSECT, EXCEPT		
5, 6	Performing advanced queries in SQL Server		
	Division operator		
	Aggregate functions, grouping data		
7, 8	Understand how to declare integrity constraints (ICs)		
	NULL, NOT NULL, RULE, CHECK		
	Using constraints across multiple relations (foreign keys, triggers)		

4. Textbooks

- 1. Slides môn Cơ sở dữ liệu, Khoa hệ thống thông tin, Đại học Công nghệ Thông tin,
 ĐHQG, HCM.
- 2. Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom, Database Systems -

The Complete Book, Prentice Hall, ISBN: 0-13-031995-32002.

• 3. Raghu Ramakrishnan and Johannes Gehrke, Database Management Systems, Third

Edition, McGraw Hill, 2003. ISBN: 0-07-246563-8.

• 4. C. J. Date, An Introduction to Database Systems, Eighth Edition, Addison Wesley,

2003. ISBN 0-321-19784-4

• 5. Ramez Elmasri, Shamkant B. Navathe, Funamentals of Database Systems (SIXTH EDITION).

5. Coursework Apps

• 1. Microsoft SQL Server

III. Introduction to Computer Networks (Nhập môn Mạng máy tính - IT005)

1. Assessment Components

Progress	Mid-term	Coursework	End-term
15%	20%	25%	40%

2. Contents

- Chapter 1: Introduction to Computer Networks and Internet.
 - History of Computer Networks and Internet.
 - Network Edge.
 - Network Core.
 - ► Network latency, Packet loss, Network throughput.
 - ▶ Protocols Layers & Service Models.

• Chapter 2: Application Layer

- Basic Principles of Network Applications.
- ► Web/HTTP Services.
- ► Email/SMTP Services.
- ► DNS Services.
- Socket Programming with TCP and UDP Protocols.

• Chapter 3: Transport Layer

- ► Transport Layer Services.
- Multiplexing and Demultiplexing.
- UDP Protocol.
- Principles of Reliable Data Transfer.
- ► TCP Protocol.
- ▶ Principles of Congestion Control.
- Congestion Control in TCP.

• Chapter 4: Network Layer

- Introduction.
- Virtual-Circuit and Datagram Networks.
- Router Internal Structure.
- ► IP Protocol.
- Routing Algorithms.
- Routing in the Internet.

• Chapter 5: Data Link Layer

- Introduction.
- Error Detection and Correction.
- ► Multiple Access Protocols.
- ► LANs: ARP, Ethernet, Switches, VLANs.
- A General Scenario of a Web Query.

3. Coursework

• Lab 1: Introduction to Wireshark

- Lab 2: HTTP Protocols
- Lab 3: TCP & UDP Protocols
- Lab 4: Crimping Ethernet cables
- Lab 5: Simulating with Packet Tracker
- · Lab 6: Combined Coursework

4. Textbooks

• Jim Kurose, Keith Ross, Computer Networking: A Top Down Approach Featuring the Internet, 8th eidition Pearson.

5. Coursework Apps

- · Wireshark.
- · Packet Tracker.
- Crimping tool, Network cable (Ethernet cable), RJ-45 connector.

IV. Operating Systems (Hệ Điều Hành - IT007)

1. Assessment Components

Progress	Mid-term	Coursework	End-term
15%	15%	20%	50%

2. Contents

• Chapter 1: Introduction to Operating Systems

- ▶ 1.1 Definition of Operating System
- ▶ 1.2 Components of a Computer System
- ► 1.3 Operating System Types
- ▶ 1.4 Interaction with the Operating System

• Chapter 2: System Structure

- ▶ 2.1 Types of System Calls
- ▶ 2.2 Types of Operating Systems
- ► 2.3 System Call Errors
- ▶ 2.4 System Software
- ▶ 2.5 System Structure

• Chapter 3: Process Management

- ▶ 3.1 Basic Concepts
- ▶ 3.2 Process Control Block (PCB)
- ▶ 3.3 Process States
- ▶ 3.4 Process Scheduling
- ► 3.5 Context Switching
- ► 3.6 Process Communication
- ► 3.7 Process Creation
- ► 3.8 Threads

• Chapter 4: CPU Scheduling

- ▶ 4.1 Basic Concepts
- ▶ 4.2 Scheduling Criteria
- 4.3 Scheduling Algorithms
 - FCFS

- SJF
- SRTF
- Priority
- Round Robin (RR)
- HRRN
- Multilevel Queue
- Multilevel Feedback Queue

• Chapter 5: Process Synchronization

- ▶ 5.1 Introduction to Race Condition
- ▶ 5.2 Critical Section Problem
- ► 5.3 Solutions
- ▶ 5.4 Synchronization Tools
 - Mutex
 - Semaphore
 - Monitor
 - Liveness
- ► 5.5 Classical Problems
 - Producer-Consumer
 - Readers-Writers
 - Dining Philosophers

• Chapter 6: Deadlock

- ▶ 6.1 Definition
- ► 6.2 Models
- ► 6.3 Deadlock Handling
 - Prevention
 - Avoidance
 - Detection
 - Recovery

• Chapter 7: Memory Management

- ▶ 7.1 Basic Concepts
- ► 7.2 Types of Memory Addresses
- ► 7.3 Address Translation
- ► 7.4 Memory Allocation Models with Contiguous Allocation
- ► 7.4.1 Static Partitioning
- ▶ 7.4.2 Dynamic Partitioning
- ▶ 7.5 Paging Mechanism
- ► 7.6 Swapping Mechanism
- ► 7.7 Exercises

• Chapter 8: Virtual Memory

- ▶ 8.1 Overview of Virtual Memory
- ▶ 8.2 Virtual Memory Implementation
- ▶ 8.2.1 Demand Paging
- ▶ 8.2.2 Page Replacement
- ▶ 8.3 Page Replacement Algorithms
- ▶ 8.4 Frame Allocation Problem
- ▶ 8.5 Thrashing Problem
- ► 8.6 Exercises

• Chapter 9: Linux and Windows OS

- ▶ 9.1 Linux
 - Components
 - Process Management
 - Memory Management
 - Scheduling
 - Interprocess Communication
- ▶ 9.2 Windows
 - Components
 - Process Management
 - Memory Management
 - Scheduling
 - Interprocess Communication

3. Coursework

- Lab 1: Guide to installing VirtualBox, installing Ubuntu OS, and practicing basic commands in the Linux shell.
- Lab 2: Programming in the Ubuntu shell environment.
- Lab 3: Practicing operations related to processes in the Ubuntu operating system.
- Lab 4: Programming to simulate CPU scheduling algorithms learned in theory, such as: First Come First Served (FCFS), Round Robin (RR), Shortest Job First (SJF), Shortest Remaining Time (SRT).
- Lab 5: Working with threads. Using semaphore and mutex libraries to perform synchronization between processes and threads.
- Lab 6: Summary exercises.

4. Textbooks

- Textbook:
 - ► Trần Hạnh Nhi, Lê Khắc Nhiên Ân (2005). Operating Systems Textbook. Publisher: Vietnam National University Ho Chi Minh City.
- Reference Materials:
 - ► Silberschatz, Galvin, Gagne. Operating System Concepts, 10th edition, John Wiley & Sons, 2018.
 - ► Nguyễn Phú Trường. Operating Systems Textbook. Can Tho University, 2005.

5. Coursework Apps

- Oracle (October 10th, 2022/VirtualBox 7.0.0 released). VirtualBox.
- Ubuntu 22.04 LTS.

V. Political Economics of Marxism and Leninism (Kinh Tế Chính Trị Marx - Lenin - SS008); History of Vietnamese Communist Party (Lịch Sử ĐCS VN - SS010)

Progress	Mid-term	End-term
30%	20%	50%