SUPPORT VECTOR MACHINE

Dr. Umarani Jayaraman Assistant Professor

Support Vector Machine (SVM)

Linear classifier

It maximize the margin

Support vector machine

$$a^t X + b = 0$$

For $X \in \omega_1$: $a^t X + b > 0$

For $X \in \omega_2$: $a^t X + b < 0$

 We have infinite number of such linear equation that satisfies the condition

SVM - Intuition

- Among all possible decision boundary which one is best suitable to have
- That's where SVM come into picture
- Lets illustrate this

SVM

■ Margin 1: Margin between the line is given

SVM

■ Margin 2: Margin between the line is given

SVM

■ Margin 3: Margin between the line is given

SVM - Intuition

 Among all possible margin, SVM tries to maximize the margin (Margin 3)

Linear classifier- perceptron

SVM- It tries to maximize the margin

Thank you

Additional slides

Linear Classifier

Linear Classifier

A) Eigen values =
$$\begin{bmatrix} 1.769 \\ 1.927 \\ 1.304 \end{bmatrix}$$
, and Eigen Vectors = $\begin{bmatrix} 0.64 & 0.38 & -0.66 \\ 0.69 & 0.10 & 0.72 \\ -0.34 & 0.91 & 0.20 \end{bmatrix}$, second Eigen value= 1.927, second Eigen vector= = $\begin{bmatrix} 0.38 \\ 0.10 \\ 0.91 \end{bmatrix}$

B) Eigen values =
$$\begin{bmatrix} 1.769 \\ 0.097 \\ 0.034 \end{bmatrix}$$
, and Eigen Vectors = $\begin{bmatrix} 0.64 & 0.38 & -0.66 \\ 0.69 & 0.10 & 0.72 \\ -0.34 & 0.91 & 0.20 \end{bmatrix}$
second Eigen value= 0.097, second Eigen vector= = $\begin{bmatrix} 0.38 \\ 0.10 \\ 0.91 \end{bmatrix}$

C) Eigen values =
$$\begin{bmatrix} 1.769 \\ 0.972 \\ 0.314 \end{bmatrix}$$
, and Eigen Vectors = $\begin{bmatrix} 0.64 & 0.38 & -0.66 \\ 0.69 & 0.10 & 0.72 \\ -0.34 & 0.91 & 0.20 \end{bmatrix}$
second Eigen value= 0.927, second Eigen vector= = $\begin{bmatrix} 0.38 \\ 0.10 \\ 0.91 \end{bmatrix}$

D) Eigen values =
$$\begin{bmatrix} 1.769 \\ 0.927 \\ 0.304 \end{bmatrix}$$
, and Eigen Vectors = $\begin{bmatrix} 0.64 & 0.38 & -0.66 \\ 0.69 & 0.10 & 0.72 \\ -0.34 & 0.91 & 0.20 \end{bmatrix}$
second Eigen value= 0.927, second Eigen vector= = $\begin{bmatrix} 0.38 \\ 0.10 \\ 0.91 \end{bmatrix}$