En los problemas 11-14, determine el momento de inercia alrededor del eje x de la lámina que tiene la forma y densidad indicadas.

11.
$$x = y - y^2, x = 0; \quad \rho(x, y) = 2x$$

12.
$$y = x^2, y = \sqrt{x}; \quad \rho(x, y) = x^2$$

13.
$$y = \cos x, -\pi/2 \le x \le \pi/2, y = 0;$$

 $\rho(x, y) = k \text{ (constante)}$

14.
$$y = \sqrt{4 - x^2}$$
, $x = 0$, $y = 0$, primer cuadrante; $\rho(x, y) = y$ En los problemas 23-26, encuentre el momento de inercia polar I_0 de la lámina que tiene la forma y la densidad dadas. El **momento de inercia polar** de una lámina con respecto al origen se define como

$$I_0 = \iint_R (x^2 + y^2) \rho(x, y) dA = I_x + I_y.$$

- **24.** $y = x^2, y = \sqrt[3]{x}; \quad \rho(x, y) = x^2$ [*Sugerencia*: Vea los problemas 12 y 16.]
- **25.** $x = y^2 + 2$, $x = 6 y^2$; densidad ρ en un punto P inversamente proporcional al cuadrado de la distancia a partir del origen.
- **34.** Evalúe $\iint_R (x + y) dA$ sobre la región que se muestra en la FIGURA 14.5.6.

- **6.** Encuentre el área de la superficie de las porciones de la esfera $x^2 + y^2 + z^2 = 2$ que están dentro del cono $z^2 = x^2 + y^2$.
- 7. Encuentre el área de la superficie de aquella porción de la esfera $x^2 + y^2 + z^2 = 25$ que está arriba de la región en el primer cuadrante acotada por las gráficas x = 0, y = 0, $4x^2 + y^2 = 25$. [Sugerencia: Integre primero con respecto a x.]
- 8. Encuentre el área de la superficie de aquella porción de la gráfica de $z = x^2 y^2$ que está en el primer octante dentro del cilindro $x^2 + y^2 = 4$.

En los problemas 21 y 22, evalúe $\int_C (x^2 + y^2) dx - 2xy dy$ sobre la curva C dada.

21.

En los problemas 23 y 24, evalúe $\int_C x^2 y^3 dx - xy^2 dy$ sobre la curva C dada.

23.

En los problemas 19 y 20, encuentre el trabajo realizado por la fuerza $\mathbf{F}(x, y) = (2x + e^{-y})\mathbf{i} + (4y - xe^{-y})\mathbf{j}$ a lo largo de la curva indicada.

19.

En los problemas 23 y 24, evalúe la integral de línea dada donde $C = C_1 \cup C_2$ es la frontera de la región sombreada R.

23.
$$\oint_C (4x^2 - y^3) \, dx + (x^3 + y^2) \, dy$$

24.
$$\oint_C (\cos x^2 - y) \, dx + \sqrt{y^2 + 1} \, dy$$

En los problemas 29 y 30, emplee el teorema de Green para el trabajo realizado por la fuerza **F** dada alrededor de la curva cerrada en la **FIGURA 15.4.14**.

29.
$$\mathbf{F} = (x - y)\mathbf{i} + (x + y)\mathbf{j}$$
 30. $\mathbf{F} = -xy^2\mathbf{i} + x^2y\mathbf{j}$

