

Numerická analýza transportních procesů - NTP2

Přednáška č. 8

Úvod do přesnosti MKP, generace sítí a metod řešení soustav lineárních rovnic

Úvod do přesnosti metody konečných prvků

Úvod do přesnosti metody konečných prvků

Sít' konečných prvků

- Metoda konečných prvků je založena na diskretizaci původní spojité konstrukce soustavou prvků (nebo obecněji na diskretizaci slabé formulace řídicích rovnic)

 výsledkem je přibližné řešení
- Přesnost přibližného řešení závisí na
 - volbě typu konečných prvků
 - velikosti jednotlivých prvků
 - na průběhu slabého řešení
 - u časově závislých problémů na typu časové diskretizace a algoritmu řešení
- MKP je silně ovlivněna konstrukcí sítě konečných prvků (obecně bázových funkcí)

Úvod do přesnosti metody konečných prvků Kovergence metody konečných prvků

- Teorie je velmi propracovaná pro úlohy mechaniky (lineární statika) poznatky jsou využívány pro řešení transportních procesů (stacionární → nestacionární)
- Pojem kovergence (Cauchyho koncepce): Řekněme, že posloupnost reálných čísel a_n konverguje k limitě a, pokud pro libovolné $\epsilon > 0$ můžeme najít takové n_0 , že pro každé $n \geq n_0$ platí $|a a_n| \leq \epsilon$. Pak píšeme:

$$\lim_{n \to \infty} a_n = a$$

- Předchozí definice jinými slovy tvrdí, že dokážeme posloupností a_n aproximovat limitu a s libovolnou přesností $\epsilon>0$
- V MKP jde o to, zda lze slabé řešení dané úlohy $u^{\rm ex}$ aproximovat s libovolnou přesností konečněprvkovým řešením $u_n^{\rm mkp}$:

$$u_n^{\mathrm{mkp}}(x) \to u^{\mathrm{ex}}$$

Úvod do přesnosti metody konečných prvků

Kovergence metody konečných prvků

- V MKP nás zajímá konvergence funkcí
- Příklad: tažený tlačený prut

Úvod do přesnosti metody konečných prvků Kovergence metody konečných prvků

ullet Zavádíme tzv. *energetickou normu* funkce u

$$||u(x)||^2 = \int_L E(x)A(x)\left(\frac{\mathrm{d}u}{\mathrm{d}x}\right)^2 \mathrm{d}x,$$

která má fyzikální význam energie konstrukce, udělíme-li ji daný posun \boldsymbol{u}

• Zkoumáme, zda platí:

$$||u_n^{\mathrm{mkp}}(x)|| \to ||u^{\mathrm{ex}}(x)||$$

- V MKP jednotlivá řešení paramterizujeme rozměrem prvku h místo počtem prvků n
- V ideálním případě by mělo platit:

$$\lim_{h \to 0} \|u_h^{\text{mkp}}(x)\| \to \|u^{\text{ex}}(x)\|$$

Úvod do přesnosti metody konečných prvků Kovergence metody konečných prvků

• Tedy pro zvolenou přesnost $\epsilon>0$ jsme schopni najít takovou velikost prvku h, že platí:

$$||u_h^{\text{mkp}}(x) - u^{\text{ex}}(x)|| < \epsilon$$

jsme tedy schopni aproximovat slabé řešení s *libovolnou přesností* v *energetické normě*

Úvod do přesnosti metody konečných prvků

Kovergence metody konečných prvků

Bázové funkce musí splňovat podmínky:

- dostatečné hladkosti: funkce mají derivace řádu o jeden vyšší než se objevuje ve slabém řešení
- spojitosti: funkce musí být spojité jak uvnitř prvku, tak na hranici
- úplnosti: např. pro teorii pružnosti:
 - musí popstat konstantní stav deformace
 - a musí reprezentovat přemístění prvku jako tuhého tělesa bez vzniku deformací
- Prvek jehož bázové funkce splňují jak podmínky spojitosti, tak úplnosti se nazývá konformní → monotónní konvergence
- Pokud je splněna podmínka úplnosti, ale není podmínka spojitosti, prvek se nazývá nekonformní
- U nekonformních prvků je analýza splnění podmínky úplnosti velmi komplikovaná, proto je pro kontrolu správnosti řešení využíván tzv. PATCH TEST

Úvod do přesnosti metody konečných prvků

Kovergence metody konečných prvků

PATCH TEST

Úvod do přesnosti metody konečných prvků Adaptivní techniky v MKP

- Adaptivní techniky v MKP se zabývají zjemňováním sítí a zvyšováním stupně polynomu aproximačních funkcí, rychlostí konvergence
- Rychlost konvergence lze ovlivnit
 - zjemňováním sítě $h \rightarrow 0$ tzv. h konvergence
 - zvyšováním stupně polynomické aproximace tzv. p konvergence
 - kombinací obou přístupů tzv. hp konvergence
- Z výpočetního hlediska je výhodné provádět zjemňování sítě resp. zvyšováním stupně polynomu tam, kde přibližné řešení dobře nevystihuje přesné řešení → adaptivní varianta MKP.
 - např. v místech koncentrace napětí, v místech extrémních gradinetů teplot a vhlkostí, ...

Úvod do přesnosti metody konečných prvků Adaptivní techniky v MKP

• Pro libovolnou adaptivní techniku je nutné znát chybu přibližného řešení

$$e(x) = u^{\text{mkp}}(x) - u^{\text{ex}}(x) \tag{1}$$

respektive

$$||e(x)|| = ||u^{\text{mkp}}(x) - u^{\text{ex}}(x)||$$
 (2)

Názornější veličinou je relativní chyba řešení

$$\eta = \frac{\|e\|}{\|u\|} \tag{3}$$

Úvod do přesnosti metody konečných prvků Adaptivní techniky v MKP

- Přesné řešení $u^{\rm ex}$ není obecně známé, je nutné se spokojit "pouze" s odhadem chyby $^0\|e\|$ nebo relativní chyby $^0\eta$
- Metody odhadu chyby
 - metoda ZZ (navržená Zienkiewiczem a Zhuem) vhodná pro h adaptivní metodu
 - O. C. Zienkiewicz and J. Z. Zhu, A simple error estimator and adaptive procedure for practical engeneering analysis, International Journal for Numerical Methods in Engineering 24 (1987), 337-357.

Úvod do automatického generování sítí

viz stránky předmětu NTP2 nebo

http://ksm.fsv.cvut.cz/~dr/t3d.html - internetové stránky T3D

• Hledáme řešení

$$Ax = b (4)$$

kde počet rovnic je velký (10^6) a matice \boldsymbol{A} je řídká

Ochranná obálka JE

► Počet uzlů: 14970

Počet prvků: 11764

▶ Počet rovnic: 43875

Profil: 67 600 240, po přečíslování 5 866 165

Metody ukládání řídkých matic

Pásová matice

Metody ukládání řídkých matic

Skyline

Souřadnicové ukládání - vhodné pro iterační řešiče

Metody řešení

Přímé metody

- Idea: faktorizace (rozklad) matice na součin matic, které jsou snadněji invertovatelné (trojúhelníkové) s možnou permutací pro dosažení stability
- ullet Příklad: LU dekompozice $oldsymbol{A} = oldsymbol{L} oldsymbol{U}$, kde $oldsymbol{L}$ a $oldsymbol{U}$ jsou dolní, resp. horní trojúhelníkové matice. Pokud je rozklad k dispozici, řešení je pak:

$$oldsymbol{Ax} = (oldsymbol{LU})oldsymbol{x} = oldsymbol{L}(oldsymbol{Ux}) = oldsymbol{b}, \ oldsymbol{Ly} = oldsymbol{b}, \ oldsymbol{Ux} = oldsymbol{y}, \ oldsymbol{Ux} = oldsymbol{y},$$

 Výhoda rozkladu spočívá ve snadném řešení obou podproblémů (dopředná a zpětná substituce)

Metody řešení

Přímé metody

- Výhody:
 - garantovaný počet operací
 - schopnost řešit velké 2D a 3D úlohy
 - rychlost robustnost
- Nevýhody:
 - nutnost sestavit matici soustavy může znamenat značné komplikace

Metody řešení

Iterační metody

- Dva hlavní typy iteračních algoritmů: relaxační (Jacobi, Gauss-Seidel) a projekční (Krylovovy metody: CG, GMRES)
- Idea: generovat posloupnost aproximací řešení $x_0, x_1, \ldots x_n$ tak, aby lim $x_n \to x^*$, kde x^* je přesné řešení
- Narozdíl od přímých řešičů můžeme řešení předčasně ukončit pomocí vhodného kritéria
- Výhody:
 - nemusí vyžadovat explicitní sestavení matice soustavy
 - velmi nízké paměťové nároky
 - efektivní pro velmi řídké systémy, zejména ve 3D
- Nevýhody:
 - často vyžadují velký počet iterací
 - často nutné efektivní předpodmínění

Metody řešení

Hybriní metody

• multigridní metody

Paralelní řešení soustav rovnic

- Velikost řešeného problému je na jednom počítači vždy omezena (rychlost CPU, velikost paměti) → paralelní, distribuované výpočty na moderních paralelních počítačích nebo počítačových svazcích (PC clusters)
- Architektury:
 - sdílená paměť
 - distrubuovaná paměť
 - hybridní systémy

- Programovací modely:
 - vlákna (threads) sdílená paměť (POSIX, OpenMP)
 - Message passing interface distribuované i sdílené systémy (MPI)
 - Paralelní datový model sdílená paměť (F90, HPF)

Paralelní řešení soustav rovnic

- Princip: rozdělení problému na podproblémy, které mohou být řešeny na individuálních uzlech, vzájemná závislost vynucuje vzájemnou komunikaci
- V MKP se používá tzv. doménová dekompozice = rozdělení oblasti na podoblasti - pro efektivní zpracování je nutný paralelní distribuovaný řešič
- Požadavky na dekompozici: rovnoměrná distribuce práce (počet prvků), minimální rozhraní mezi subdoménami (komunikace)
- Metody řešení:
 - 1. primární doménová dekompozice Metoda Schurových doplňků
 - 2. duální doménová dekompozice metodat FETI (Finite Element Tearing and Interconnecting method)
- Load Ballancing distribuce práce mezi uzly (statická, dynamická) je důležitá pro efektivní výpočet

Příklad dekompozice

Úvod do přesnosti MKP, generace sítí a metod řešení soustav lineárních rovnic

Témata přednášky jsou převztata z předmětu NAK1 Doc. Dr. Ing. Bořka Patzáka a z přednášek Doc. Dr. Ing. Daniela Rypla.