

(19) World Intellectual Property Organization International Bureau



(43) International Publication Date  
28 October 2004 (28.10.2004)

PCT

(10) International Publication Number  
**WO 2004/092351 A2**

- (51) International Patent Classification<sup>7</sup>: C12N Avigenics, Inc., 111 Riverbend Road, Athens, GA 30606 (US).
- (21) International Application Number: PCT/US2004/009253 (74) Agent: YESLAND, Kyle; Legal Department, Avigenics, Inc., 111 Riverbend Road, Athens, GA 30606 (US).
- (22) International Filing Date: 26 March 2004 (26.03.2004)
- (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (26) Publication Language: English
- (30) Priority Data:
- |            |                              |    |
|------------|------------------------------|----|
| 60/458,014 | 27 March 2003 (27.03.2003)   | US |
| 60/490,452 | 28 July 2003 (28.07.2003)    | US |
| 60/536,677 | 15 January 2004 (15.01.2004) | US |
| 10/790,455 | 1 March 2004 (01.03.2004)    | US |
- (71) Applicant: AVIGENICS, INC. [US/US]; Legal Department, 111 Riverbend Road, Athens, GA 30606 (US).
- (72) Inventors: RAPP, Jeffrey; Avigenics, Inc., 111 Riverbend Road, Athens, GA 30606 (US). CHRISTMANN, Leandro; Avigenics, Inc., 111 Riverbend Road, Athens, GA 30606 (US). HARVEY, Alex; Avigenics, Inc., 111 Riverbend Road, Athens, GA 30606 (US). LEAVITT, Markley;
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK,

*[Continued on next page]*

(54) Title: PRODUCTION OF A TRANSGENIC AVIAN BY CYTOPLASMIC INJECTION



WO 2004/092351 A2

(57) Abstract: The invention provides methods for integrating a heterologous polynucleotide into the genome of an avian cell. The methods deliver to an avian cell a polynucleotide and a source of integrase activity that mediates recombination between the polynucleotide and the genomic DNA of the avian cell. The invention provides modified avian or artificial chromosomes as vectors to shuttle transgenes or gene clusters into an avian genome. Another aspect of the invention are avian cells genetically modified with a transgene vector. One cell line for the delivery and integration of a transgene comprises a heterologous attP site and, optionally, a region for expressing the integrase. Methods are also included for the production of a heterologous polypeptide by transgenic avian tissue involve integrating a heterologous polynucleotide into the avian genome. The present invention also relates to methods of producing transgenic chickens which include introducing into an avian cell a nucleic acid comprising a transgene and an integrase activity in addition to a cationic polymer and/or a nuclear localization signal and introducing the avian cell into a recipient avian wherein the recipient avian produces an offspring which includes the transgene. Also included are methods of dispersing a nucleic acid in a cell.



TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,  
ML, MR, NE, SN, TD, TG).

*For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.*

**Published:**

- *without international search report and to be republished upon receipt of that report*

## PRODUCTION OF A TRANSGENIC AVIAN BY CYTOPLASMIC INJECTION

The present application claims priority from U.S. Patent Application No. 5 10/790,455, filed March 1, 2004; U.S. provisional patent application Serial No. 60/490,452, filed July 28, 2003; U.S. provisional patent application Serial No. 60/536,677, filed January 15, 2004; and U.S. provisional patent application Serial No. 60/458,014, filed March 27, 2003.

10

### Field of the Invention

The present invention relates to the field of biotechnology, and more specifically to the field of avian genome modification. Disclosed herein are compositions, vectors, and methods of use thereof, for the generation of genetically transformed avian cells and transgenic birds.

15

### Background

Transgenic technology to convert animals into "bioreactors" for the production of specific proteins or other substances of pharmaceutical interest (Gordon *et al.*, 1987, *Biotechnology* 5: 1183-1187; Wilmut *et al.*, 1990, 20 *Theriogenology* 33: 113-123) offers significant advantages over more conventional methods of protein production by gene expression. Recombinant nucleic acid molecules, for instance, have been engineered and incorporated into transgenic animals so that an expressed heterologous protein may be joined to a protein or peptide that allows secretion of the transgenic expression product into milk or urine, 25 from which the protein may then be recovered. These procedures, however, may require lactating animals, with the attendant costs of maintaining individual animals or herds of large species, such as cows, sheep, or goats.

Historically, transgenic animals have been produced almost exclusively by microinjection of the fertilized egg. The pronuclei of fertilized eggs are 30 microinjected *in vitro* with foreign, i.e., xenogeneic or allogeneic, heterologous DNA or hybrid

DNA molecules. The microinjected fertilized eggs are then transferred to the genital tract of a pseudopregnant female (e.g., Krimpenfort *et al.*, U.S. Pat. No. 5,175,384).

One system that holds potential is the avian reproductive system. The production of an avian egg begins with formation of a large yolk in the ovary of the hen. The unfertilized oocyte or ovum is positioned on top of the yolk sac. After ovulation, the ovum passes into the infundibulum of the oviduct where it is fertilized if sperm are present, and then moves into the magnum of the oviduct, which is lined with tubular gland cells. These cells secrete the egg-white proteins, including ovalbumin, lysozyme, ovomucoid, conalbumin and ovomucin, into the lumen of the magnum where they are deposited onto the avian embryo and yolk. The hen oviduct offers outstanding potential as a protein bioreactor because of the high levels of protein production, the promise of proper folding and post-translation modification of the target protein, the ease of product recovery, and the shorter developmental period of chickens compared to other potential animal species.

One method for creating permanent genomic modification of a eukaryotic cell is to integrate an introduced DNA into an existing chromosome. Only retroviruses have so far provided efficient integration. However, retroviral integration is directed to a number, albeit limited, of insertion sites within the recipient genome so that positional variation in heterologous gene expression can be evident. Unpredictability as to which insertion site is targeted introduces an undesirable lack of control over the procedure. An additional limitation of the use of retroviruses is that the size of the nucleic acid molecule encoding the virus and heterologous sequences is restricted to about 8 kb. Although wild-type adeno-associated virus (AAV) often integrates at a specific region in the human genome, vectors derived from AAV do not integrate site-specifically due to the deletion of the toxic *rep* gene. Other well-known methods for genomic modification of animal cells include transfection of DNA using calcium phosphate co-precipitation, electroporation, lipofection, microinjection, protoplast fusion and particle bombardment, all of which methods typically produce random integration and at low frequency. Homologous recombination produces site-specific integration, but the frequency of such integration usually is very low.

An alternative method that has been considered for driving the integration of heterologous nucleic acid fragments into a chromosome is the use of a site-specific recombinase (integrase) that can catalyze the insertion or excision of nucleic acid fragments. These enzymes recognize relatively short unique nucleic acid sequences  
5 that serve for both recognition and recombination. Examples include Cre (Sternberg & Hamilton, 1981, *J. Mol. Biol.* 150: 467-486, 1981), Flp (Broach *et al.*, 1982, *Cell* 29: 227-234, 1982) and R (Matsuzaki *et al.*, 1990, *J. Bact.* 172: 610-618, 1990).

A novel class of phage integrases that includes the integrase from the phage phiC31 can mediate highly efficient integration of transgenes in mammalian cells both  
10 *in vitro* and *in vivo* (Thyagarajan *et al.*, *Mol. Cell Biol.* 21: 3926-3934 (2001)). Constructs and methods of using recombinase to integrate heterologous DNA into a plant, insect or mammalian genome are described by *Calos* in U.S. Patent Serial No. 6,632,672.

The phiC31 integrase is a member of a subclass of integrases, termed serine  
15 recombinases, that include R4 and TP901-1. Unlike the phage lambda integrases, which belong to a tyrosine class of recombinases, the serine integrases do not require cofactors such as integration host factor. The phiC31 integrase normally mediates integration of the phiC31 bacteriophage into the genome of *Streptomyces* via recombination between the attP recognition sequence of the phage genome and the  
20 attB recognition sequence within the bacterial genome. When a plasmid is equipped with a single attB site, phiC31 integrase will detect and mediate crossover between the attB site and a pseudo-attP site within the mammalian genome. Such pseudo-attP integration sites have now been identified in the mouse and human genomes. If the heterologous DNA is in a circular or supercoiled form, the entire plasmid becomes  
25 integrated with *attL* and *attR* arms flanking the nucleic acid insert. PhiC31 integrase is not able to mediate the integration into genomic DNA of sequences bearing attP sites.

PhiC31 integrase-mediated integration results in the destruction of the  
recognition or recombination sites themselves so that the integration reaction is  
30 irreversible. This will bypass the primary concern inherent with other recombinases,  
i.e., the reversibility of the integration reaction and excision of the inserted DNA.

It has been estimated that there are 50 to 100 pseudo-attP sites in mammalian genomes (mouse and human) and some sites are apparently preferred for integration over others. The chicken genome, however, is only about one-third the size of mammalian genomes, and it was unknown whether there would be a sufficient 5 number of pseudo attP sites in the chicken genome to allow efficient integrase-mediated integration.

We have found that the phiC31 integrase is active in avian cells, increasing the rate of integration over that of a non-integrase-mediated integration. Furthermore, we have determined that the phiC31 integrase works well at both 37° Celsius and 41° 10 Celsius, showing that it will function in the environment of a developing avian embryo.

A need still exists, however, for methods by which avian chromosomes can be permanently modified in an efficient and site-specific manner and the genetically transformed cells used to generate transgenic birds.

15

#### Summary of the Invention

Integration of a transgene into a defined chromosomal site is useful to improve the predictability of expression of the transgene, which is particularly advantageous when creating transgenic avians. Transgenesis by methods that randomly insert a 20 transgene into an avian genome is often inefficient since the transgene may not be expressed at the desired levels or in desired tissues.

A novel class of phage integrases, and in particular the integrase from phage phiC31, can mediate the efficient integration of transgenes into target cells both *in vitro* and *in vivo*. When a plasmid is equipped with a single attB site, phiC31 25 integrase detects attP homologous sequences, termed pseudo-attP sites, in a target genome and mediates crossover between the attB site and a pseudo attP site.

The present invention provides novel methods and recombinant polynucleotide molecules for transfecting and integrating a heterologous nucleic acid molecule into the genome of an avian cell. The methods of the invention deliver to an avian cell 30 population a first nucleic acid molecule that comprises a region encoding a bacterial

recombination site. A source of integrase activity also delivered to the avian cell can be an integrase-encoding nucleic acid sequence and its associated promoter included in the first nucleic acid molecule or as a region of a second nucleic acid molecule that may be co-delivered with the polynucleotide molecule. Alternatively, integrase 5 protein itself can be delivered directly to the target cell.

The recombinant nucleic acid molecules of the present invention may further comprise a heterologous nucleotide sequence operably linked to a promoter so that the heterologous nucleotide sequence, when integrated into the genome DNA of a recipient avian cell, can be expressed to yield a desired polypeptide. The nucleic acid 10 molecule may also include a second transcription initiation site, such as an internal ribosome entry site (IRES), operably linked to a second heterologous polypeptide-encoding region desired to be expressed with the first polypeptide in the same cell.

The heterologous nucleic acid molecule of the present invention may include a cassette for the expression in a recipient avian cell of a desired heterologous 15 polypeptide. Optionally, the nucleic acid molecules may further comprise a marker such as, but not limited to, a puromycin resistance gene, a luciferase gene, EGFP-encoding gene, and the like.

Once delivered to a recipient avian cell, the phiC31 integrase mediates recombination between the att site within the nucleic acid molecule and a 20 bacteriophage attachment site within the genomic DNA of the avian cell. Both att sites are disrupted and the nucleic acid molecule, with partial att sequences at each end, is stably integrated into the genome attP site. The phiC31 integrase, by disrupting the att sites of the incoming nucleic acid and of the recipient site within the avian cell genome, precludes any subsequent reverse recombination event that would 25 excise the integrated nucleic acid and reduce the overall efficiency of stable incorporation of the heterologous nucleic acid.

Following delivery of the nucleic acid molecule and a source of integrase activity into an avian cell population and integrase-mediated recombination, the cells may be returned to an embryo. Late stage blastodermal cells may be returned to a 30 hard shell egg, which is resealed for incubation until hatching. Stage I embryos may be directly microinjected with the polynucleotide and source of integrase activity,

isolated, transfected and returned to a stage I embryo which is reimplanted into a hen for further development. Alternatively, the transfected cells may be maintained *in vitro* culture.

The present invention further provides modified isolated avian or artificial chromosomes useful as vectors to shuttle transgenes or gene clusters into the avian genome. By delivery to the modified chromosome to an isolated recipient cell, the target cell, and progeny thereof, become trisomic. The additional or trisomic chromosome will not affect the subsequent development of the recipient cell and/or an embryo, nor interfere with the reproductive capacity of an adult bird developed from such cells or embryos. The chromosome will also be stable within chicken cells. The invention provides methods to isolate a population of chromosomes for delivery into chicken embryos or early cells.

The method comprises inserting a lac-operator sequence into an isolated chromosome and, optionally, inserting a desired transgene sequence within the same chromosome. The lac operator region is typically a concatamer of a plurality of lac operators for the binding of multiple lac repressor molecules. A recombinant DNA molecule is constructed that includes an identified region of the target chromosome, a recombination site such as attB or attP, and the lac-operator concatamer. The recombinant molecule is delivered to an avian cell, and homologous recombination will integrate the heterologous polynucleotide and the lac-operator concatamer into the targeted chromosome. A tag-polypeptide, such as the GFP-lac-repressor fusion protein, binds to the lac-operator sequence for identification and isolation of the genetically modified chromosome. The tagged mitotic chromosome can be isolated using, for instance, flow cytometry.

Another aspect of the present invention is an avian cell genetically modified with a transgene vector by the methods of the invention. For example, in one embodiment, the transformed cell can be a chicken early stage blastodermal cell or a genetically transformed cell line, including a sustainable cell line. The transfected cell may comprise a transgene stably integrated into the nuclear genome of the recipient cell, thereby replicating with the cell so that each progeny cell receives a copy of the transfected nucleic acid. A particularly useful cell line for the delivery and integration

of a transgene comprises a heterologous attP site that can increase the efficiency of integration of a polynucleotide by phiC31 integrase and, optionally, a region for expressing the integrase.

Another aspect of the present invention is methods of expressing a heterologous polypeptide in an avian cell by stably transfected a cell by using site-specific integrase-mediation and a recombinant nucleic acid molecule, as described above, and culturing the transfected cell under conditions suitable for expression of the heterologous polypeptide under the control of the avian transcriptional regulatory region.

Yet another aspect of the present invention concerns transgenic birds, such as chickens, comprising a recombinant nucleic acid molecule and which preferably (though optionally) express a heterologous gene in one or more cells in the animal. Embodiments of the methods for the production of a heterologous polypeptide by the avian tissue involve providing a suitable vector and introducing the vector into embryonic blastodermal cells together with an integrase, preferably phiC31 integrase, so that the vector can integrate into the avian genome. A subsequent step involves deriving a mature transgenic avian from the transgenic blastodermal cells by transferring the transgenic blastodermal cells to an embryo and allowing that embryo to develop fully, so that the cells become incorporated into the bird as the embryo is allowed to develop. An alternative is to transfer a transfected nucleus to an enucleated recipient cell which may then develop into a zygote and ultimately an adult bird. The resulting chick is then grown to maturity.

In various embodiments of the transgenic bird of the present invention, the expression of the transgene may be restricted to specific subsets of cells, tissues or developmental stages utilizing, for example, *trans*-acting factors acting on the transcriptional regulatory region operably linked to the polypeptide-encoding region of interest of the present invention and which control gene expression in the desired pattern. Tissue-specific regulatory sequences and conditional regulatory sequences can be used to control expression of the transgene in certain spatial patterns. Moreover, temporal patterns of expression can be provided by, for example,

conditional recombination systems or prokaryotic transcriptional regulatory sequences.

The invention can be used to express, in large yields and at low cost, a wide range of desired proteins including those used as human and animal pharmaceuticals, diagnostics, and livestock feed additives. Proteins such as growth hormones, cytokines, structural proteins and enzymes including human growth hormone, interferon, lysozyme, and  $\beta$ -casein are examples of proteins which are desirably expressed in the oviduct and deposited in eggs according to the invention.

The present invention includes methods of producing transgenic avians, for example, transgenic chickens, which employ the use of integrase, cationic polymers and/ nuclear localization signals. The present invention also includes the transgenic avians produced by these methods and other methods disclosed herein. The invention also includes the eggs produced by the transgenic avians produced by these methods and other methods disclosed herein.

In one embodiment, the methods of the invention include introducing into an avian cell: 1) a nucleic acid comprising a transgene; 2) an integrase activity; and 3) a cationic polymer. Such methods provide for an increased efficiency of transgenic avian production relative to identical methods without the cationic polymer.

In another embodiment, the methods include introducing into an avian cell: 1) a nucleic acid comprising a transgene; 2) an integrase activity; and 3) and a nuclear localization signal. Such methods provide for an increased efficiency of transgenic avian production relative to identical methods without the nuclear localization signal.

In another embodiment, the methods include introducing into an avian cell: 1) a nucleic acid comprising a transgene; 2) an integrase activity; 3) a cationic polymer; and 4) a nuclear localization signal. Such methods provide for an increased efficiency of transgenic avian production relative to identical methods without the cationic polymer or without the nuclear localization signal.

In one embodiment, the avian cell is a cell of an avian embryo. For example, the avian cell may be a cell of an early stage embryo comprising a germinal disc. The avian cell may be, for example, a cell of a stage I avian embryo, a cell of a stage II avian embryo, a cell of a stage III avian embryo, a cell of a stage IV avian embryo, a

cell of a stage V avian embryo, a cell of a stage VI avian embryo, a cell of a stage VII avian embryo, a cell of a stage VIII avian embryo, a cell of a stage IX avian embryo, a cell of a stage X avian embryo, a cell of a stage XI avian embryo or a cell of a stage XII avian embryo. In one particularly useful embodiment, the avian cell is a cell of a 5 stage X avian embryo.

The methods provide for the introduction of nucleic acid into the avian cell by any suitable technique known to those of skill in the art. For example, the nucleic acid may be introduced into the avian cell by microinjecting, transfection, electroporation or lipofection. In one particularly useful embodiment, the introduction 10 of the nucleic acid is done by microinjecting.

The nucleic acid which includes a transgene may be DNA or RNA or a combination of RNA and DNA. The nucleic acid may comprise a single strand or may comprise a double strand. The nucleic acid may be a linear nucleic acid or may be an open or closed circular nucleic acid and may be naturally occurring or synthetic.

15       Integrase activity may be introduced into the avian cell in any suitable form. In one embodiment, an integrase protein is introduced into the avian cell. In another embodiment, a nucleic acid encoding an integrase is introduced into the avian cell. The nucleic acid encoding the integrase may be double stranded DNA, single stranded DNA, double stranded RNA, single stranded RNA or a single or double stranded 20 nucleic acid which includes both RNA and DNA. In one particularly useful embodiment, the nucleic acid is mRNA. Integrase activity may be introduced into the avian cell by any suitable technique. Suitable techniques included those described herein for introducing the nucleic acid encoding a transgene into an avian cell. In one useful embodiment, the integrase activity is introduced into the avian cell with the 25 nucleic acid encoding the transgene. For example, the integrase activity may be introduced into the avian cell in a mixture with the nucleic acid encoding the transgene.

In one embodiment, a nuclear localization signal (NLS) is associated with the 30 nucleic acid which includes a transgene. For example, the NLS may be associated with the nucleic acid by a chemical bond. Examples of chemical bonds by which an NLS may be associated with the nucleic acid include an ionic bond, a covalent bond,

hydrogen bond and Van der Waal's force. In one particularly useful embodiment, the nucleic acid which includes a transgene is associated with an NLS by an ionic bond. NLS may be introduced into the avian cell by any suitable technique. Suitable techniques included those described herein for introducing the nucleic acid encoding a transgene into an avian cell. In one useful embodiment, the NLS is introduced into the avian cell with the nucleic acid encoding the transgene. For example, the NLS may be introduced into the avian cell while associated with the nucleic acid encoding the transgene.

Cationic polymers may be employed to facilitate the production of transgenic avians. For example, the cationic polymers may be employed in combination with integrase and/or NLS. Any suitable cationic polymer may be used. For example, and without limitation, one or more of polyethylenimine, polylysine, DEAE-dextran, starburst dendrimers and starburst polyamidoamine dendrimers may be used. In a particularly useful embodiment, the cationic polymer includes polyethylenimine. The cationic polymer may be introduced into the avian cell by any suitable technique. Suitable techniques included those described herein for introducing the nucleic acid encoding a transgene into an avian cell. In one useful embodiment, the cationic polymer is introduced into the avian cell in a mixture with the nucleic acid encoding the transgene. For example, the cationic polymer may be introduced into the avian cell while associated with the nucleic acid encoding the transgene.

In one particularly useful embodiment of the invention, the transgene includes a coding sequence which is expressed in a cell of the transgenic avian producing a peptide or a polypeptide (e.g., a protein). The coding sequence may be expressed in any or all of the cells of the transgenic avian. For example, the coding sequence may be expressed in the blood, the magnum and/or the sperm of the transgenic avian. In a particularly useful embodiment of the invention, the polypeptide is present in an egg, for example, in the egg white, produced by the transgenic avian.

The methods of the invention include introducing the avian cell into a recipient avian, for example, a hen, wherein the recipient avian produces an offspring which includes the transgene. The avian cell may be introduced into a recipient avian by any suitable technique.

The present invention also includes methods of dispersing nucleic acid in a cell, for example an avian cell (e.g., an avian embryo cell). These methods include introducing into a cell a nucleic acid and a dispersing agent, for example, a cationic polymer (e.g., polyethylenimine, polylysine, DEAE-dextran, starburst dendrimers and/or starburst polyamidoamine dendrimers) in an amount that will disperse the nucleic acid in a cell. In one embodiment, the methods include introducing an avian cell into a recipient avian wherein the recipient avian produces an offspring which includes the transgene,

In one embodiment, the nucleic acid includes a transgene. NLS or integrase activity may also be introduced into the cell.

Typically, the dispersing of the nucleic acid is a homogeneous dispersing.

Any combination of features described herein are included within the scope of the present invention provided that the features included in any such combination are not mutually inconsistent as will be apparent from the context, this specification, and the knowledge of one of ordinary skill in the art.

Additional objects and aspects of the present invention will become more apparent upon review of the detailed description set forth below when taken in conjunction with the accompanying figures, which are briefly described as follows.

20

#### Brief Description of the Figures

Fig. 1 illustrates phage integrase-mediated integration. A plasmid vector bearing the transgene includes the attB recognition sequence for the phage integrase. The vector along with integrase-coding mRNA, a vector expressing the integrase, or the integrase protein itself, are delivered into cells or embryos. The integrase recognizes DNA sequences in the avian genome similar to attP sites, termed pseudo-attP, and mediates recombination between the attB and pseudo-attP sites, resulting in the permanent integration of the transgene into the avian genome.

Fig. 2 illustrates the persistent expression of luciferase from a nucleic acid molecule after phiC31 integrase-mediated integration into chicken cells.

30

Fig. 3 illustrates the results of a puromycin resistance assay to measure phiC31 integrase-mediated integration into chicken cells.

Fig. 4 illustrates phiC31 integrase-mediated integration into quail cells. Puromycin resistance vectors bearing attB sites were cotransfected with phiC31 integrase, or a control vector, into QT6 cells, a quail fibrosarcoma cell line. One day after transfection, puromycin was added. Puromycin resistant colonies were counted  
5 12 days post-transfection.

Figs. 5A and 5B illustrate that phiC31 integrase can facilitate multiple integrations per avian cell. A puromycin resistance vector bearing an attB site was cotransfected with an enhanced green fluorescent protein (EGFP) expression vector bearing an attB site, and a phiC31 integrase expression vector. After puromycin selection, many puromycin resistant colonies expressed EGFP in all of their cells.  
10 Figs. 5A and 5B are the same field of view with EGFP illuminated with ultraviolet light (Fig. 5A) and puromycin resistant colonies photographed in visible light (Fig. 5B). In Fig. 5B, there are 4 puromycin resistant colonies, two of which are juxtaposed at the top. One of these colonies expressed EGFP.

15 Fig. 6 shows maps of the small vectors used for integrase assays.

Fig. 7 shows integrase promotes efficient integration of large transgenes in avian cells.

Fig. 8 shows maps of large vectors used for integrase assays.

20 Fig. 9 illustrates the nucleotide sequence of the integrase-expressing plasmid pCMV-31int (SEQ ID NO: 1).

Fig. 10 illustrates the nucleotide sequence of the plasmid pCMV-luc-attB (SEQ ID NO: 2).

Fig. 11 illustrates the nucleotide sequence of the plasmid pCMV-luc-attP (SEQ ID NO: 3).

25 Fig. 12 illustrates the nucleotide sequence of the plasmid pCMV-pur-attB (SEQ ID NO: 4).

Fig. 13 illustrates the nucleotide sequence of the plasmid pCMV-pur-attP (SEQ ID NO: 5).

30 Fig. 14 illustrates the nucleotide sequence of the plasmid pCMV-EGFP-attB (SEQ ID NO: 6).

Fig. 15 illustrates the nucleotide sequence of the plasmid p12.0-lys-LSPIPNNM-CMV-pur-attB (SEQ ID NO: 7).

Fig. 16 illustrates the nucleotide sequence of the plasmid pOMIFN-Ins-CMV-pur-attB (SEQ ID NO: 8).

5 Fig. 17 illustrates the nucleotide sequence of the integrase-expressing plasmid pRSV-Int (SEQ ID NO: 9).

Fig. 18 illustrates the nucleotide sequence of the plasmid pCR-XL-TOPO-CMV-pur-attB (SEQ ID NO: 10).

10 Fig. 19 illustrates the nucleotide sequence of the attP containing polynucleotide SEQ ID NO: 11.

15 Fig. 20 illustrates in schematic form the integration of a heterologous att recombination site into an isolated chromosome. The attB sequence is linked to selectable marker such as a puromycin expression cassette and is flanked by sequences found in the target site of the chromosome to be modified. The DNA is transfected into cells containing the chromosome and stable transfectants are selected by drug resistance. Site specific integration may be confirmed by several techniques including PCR.

20 Fig. 21 illustrates the persistent expression of luciferase from a nucleic acid molecule after phiC31 integrase-mediated integration into chicken cells bearing a wild-type attP sequence.

Fig. 22 illustrates the distribution of plasmid DNA in a stage I embryo.

Fig. 23 illustrates the distribution of plasmid DNA in a stage I embryo in the presence of low molecular weight polyethylenimine.

25 Fig. 24 illustrates the distribution of plasmid DNA in a stage I embryo in the presence of low molecular weight polyethylenimine.

#### **Detailed Description of the Preferred Embodiments**

This description uses gene nomenclature accepted by the Cucurbit Genetics Cooperative as it appears in the *Cucurbit Genetics Cooperative Report* 18:85 (1995),  
30 which are incorporated herein by reference in its entirety. Using this gene nomenclature, genes are symbolized by italicized Roman letters. If a mutant gene is

recessive to the normal type, then the symbol and name of the mutant gene appear in italicized lower case letters.

The disclosures of publications, patents, and published patent specifications referenced in this application are hereby incorporated by reference into the present disclosure to more fully describe the state of the art to which this invention pertains.

Definitions

For convenience, definitions of certain terms employed in the specification, examples, and appended claims are collected here.

As used in this specification and the appended claims, the singular forms "a," "an" and "the" include plural references unless the content clearly dictates otherwise. Thus, for example, reference to "an antigen" includes a mixture of two or more such agents.

The term "avian" as used herein refers to any species, subspecies or race of organism of the taxonomic class *ava*, such as, but not limited to chicken, turkey, duck, 15 goose, quail, pheasants, parrots, finches, hawks, crows and ratites including ostrich, emu and cassowary. The term includes the various known strains of *Gallus gallus*, or chickens, (for example, White Leghorn, Brown Leghorn, Barred-Rock, Sussex, New Hampshire, Rhode Island, Australorp, Minorca, Amrox, California Gray), as well as strains of turkeys, pheasants, quails, duck, ostriches and other poultry commonly bred 20 in commercial quantities. It also includes an individual avian organism in all stages of development, including embryonic and fetal stages. The term "avian" also may denote "pertaining to a bird", such as "an avian (bird) cell."

The term "nucleic acid" as used herein includes any natural or synthetic linear and sequential array of nucleotides and nucleosides, for example cDNA, genomic 25 DNA, mRNA, tRNA, oligonucleotides, oligonucleosides and derivatives thereof. For ease of discussion, such nucleic acids may be collectively referred to herein as "constructs," "plasmids," or "vectors." The term "nucleic acid" further includes modified or derivatized nucleotides and nucleosides such as, but not limited to, halogenated nucleotides such as, but not only, 5-bromouracil, and derivatized 30 nucleotides such as biotin-labeled nucleotides.

The terms "polynucleotide," "oligonucleotide," and "nucleic acid sequence" are used interchangeably herein and include, but are not limited to, coding sequences (polynucleotide(s) or nucleic acid sequence(s) which are transcribed and translated into polypeptide *in vitro* or *in vivo* when placed under the control of appropriate regulatory or control sequences); control sequences (e.g., translational start and stop codons, promoter sequences, ribosome binding sites, polyadenylation signals, transcription factor binding sites, transcription termination sequences, upstream and downstream regulatory domains, enhancers, silencers, and the like); and regulatory sequences (DNA sequences to which a transcription factor(s) binds and alters the activity of a gene's promoter either positively (induction) or negatively (repression)). No limitation as to length or to synthetic origin are suggested by the terms described above.

As used herein the terms "peptide," "polypeptide" and "protein" refer to a polymer of amino acids in a serial array, linked through peptide bonds. A "peptide" typically is a polymer of at least two to about 30 amino acids linked in a serial array by peptide bonds. The term "polypeptide" includes proteins, protein fragments, protein analogues, oligopeptides and the like. The term "polypeptides" contemplates polypeptides as defined above that are encoded by nucleic acids, produced through recombinant technology (isolated from an appropriate source such as a bird), or synthesized. The term "polypeptides" further contemplates polypeptides as defined above that include chemically modified amino acids or amino acids covalently or noncovalently linked to labeling moieties.

The terms "percent sequence identity" or "percent sequence similarity" as used herein refer to the degree of sequence identity between two nucleic acid sequences or two amino acid sequences as determined using the algorithm of Karlin & Atschul, *Proc. Natl. Acad. Sci.* 87: 2264-2268 (1990), modified as in Karlin & Atschul, *Proc. Natl. Acad. Sci.* 90: 5873-5877 (1993). Such an algorithm is incorporated into the NBLAST and XBLAST programs of Atschul *et al.*, 1990, *T. Mol. Biol.* Q15: 403-410. BLAST nucleotide searches are performed with the NBLAST program, score = 100, word length = 12, to obtain nucleotide sequences homologous to a nucleic acid molecule of the invention. BLAST protein searches are performed with the XBLAST

program, score = 50, word length = 3, to obtain amino acid sequences homologous to a reference polypeptide. To obtain gapped alignments for comparison purposes, Gapped BLAST is utilized as described in Atschul *et al.*, *Nucl. Acids Res.* 25: 3389-3402 (1997). When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g. XBLAST and NBLAST) are used. Other algorithms, programs and default settings may also be suitable such as, but not only, the GCG-Sequence Analysis Package of the U.K. Human Genome Mapping Project Resource Centre that includes programs for nucleotide or amino acid sequence comparisons. Examples of preferred algorithms are FASTA and BESTFIT.

10       The terms “recombinant nucleic acid” and “recombinant DNA” as used herein refer to combinations of at least two nucleic acid sequences that are not naturally found in a eukaryotic or prokaryotic cell. The nucleic acid sequences may include, but are not limited to, nucleic acid vectors, gene expression regulatory elements, origins of replication, suitable gene sequences that when expressed confer antibiotic resistance, protein-encoding sequences and the like. The term “recombinant polypeptide” is meant to include a polypeptide produced by recombinant DNA techniques. A recombinant polypeptide may be distinct from a naturally occurring polypeptide either in its location, purity or structure. Generally, a recombinant polypeptide will be present in a cell in an amount different from that normally observed in nature.

15       The term “gene” or “genes” as used herein refers to nucleic acid sequences that encode genetic information for the synthesis of a whole RNA, a whole protein, or any portion of such whole RNA or whole protein. Genes that are not naturally part of a particular organism’s genome are referred to as “foreign genes,” “heterologous genes” or “exogenous genes” and genes that are naturally a part of a particular organism’s genome are referred to as “endogenous genes”. The term “gene product” refers to an RNA or protein that is encoded by the gene. “Endogenous gene products” are RNAs or proteins encoded by endogenous genes. “Heterologous gene products” are RNAs or proteins encoded by “foreign, heterologous or exogenous genes” and are, therefore, 20      not naturally expressed in the cell.

25       The term “expressed” or “expression” as used herein refers to the transcription

from a gene to give an RNA nucleic acid molecule at least complementary in part to a region of one of the two nucleic acid strands of the gene. The term "expressed" or "expression" as used herein may also refer to the translation from an RNA molecule to give a protein, a polypeptide or a portion thereof.

5        The term "operably linked" refers to an arrangement of elements wherein the components so described are configured so as to perform their usual function. Control sequences operably linked to a coding sequence are capable of effecting the expression of the coding sequence. The control sequences need not be contiguous with the coding sequence, so long as they function to direct the expression thereof. For  
10 example, intervening untranslated yet transcribed sequences can be present between a promoter sequence and the coding sequence and the promoter sequence can still be considered "operably linked" to the coding sequence.

15      The term "transcription regulatory sequences" as used herein refers to nucleotide sequences that are associated with a gene nucleic acid sequence and which regulate the transcriptional expression of the gene. Exemplary transcription regulatory sequences include enhancer elements, hormone response elements, steroid response elements, negative regulatory elements, and the like.

20      The term "promoter" as used herein refers to the DNA sequence that determines the site of transcription initiation by an RNA polymerase. A "promoter-proximal element" is a regulatory sequence generally within about 200 base pairs of the transcription start site.

25      The term "internal ribosome entry sites (IRES)" as used herein refers to a region of a nucleic acid, most typically an RNA molecule, wherein eukaryotic initiation of protein synthesis occurs far downstream of the 5' end of the RNA molecule. A 43S pre-initiation complex comprising the elf2 protein bound to GTP and Met-tRNA<sub>i</sub><sup>Met</sup>, the 40S ribosomal subunit, and factors elf3 and 3lf1A may bind to an "IRES" before locating an AUG start codon. An "IRES" may be used to initiate translation of a second coding region downstream of a first coding region, wherein each coding region is expressed individually, but under the initial control of a single upstream promoter. An "IRES" may be located in a eukaryotic cellular mRNA.  
30

The term "coding region" as used herein refers to a continuous linear

arrangement of nucleotides which may be translated into a polypeptide. A full length coding region is translated into a full length protein; that is, a complete protein as would be translated in its natural state absent any post-translational modifications. A full length coding region may also include any leader protein sequence or any other 5 region of the protein that may be excised naturally from the translated protein.

The terms "vector" or "nucleic acid vector" as used herein refer to a natural or synthetic single or double stranded plasmid or viral nucleic acid molecule (RNA or DNA) that can be transfected or transformed into cells and replicate independently of, or within, the host cell genome. The term "expression vector" as used herein refers to 10 a nucleic acid vector that comprises a transcription regulatory region operably linked to a site wherein is, or can be, inserted, a nucleotide sequence to be transcribed and, optionally, to be expressed, for instance, but not limited to, a sequence coding at least one polypeptide.

The term "transfection" as used herein refers to the process of inserting a 15 nucleic acid into a host cell. Many techniques are well known to those skilled in the art to facilitate transfection of a nucleic acid into an eukaryotic cell. These methods include, for instance, treating the cells with high concentrations of salt such as a calcium or magnesium salt, an electric field, detergent, or liposome mediated transfection, to render the host cell competent for the uptake of the nucleic acid 20 molecules, and by such methods as micro-injection into a pro-nucleus, sperm-mediated and restriction-mediated integration.

The terms "recombinant cell" and "genetically transformed cell" refer to a cell comprising a combination of nucleic acid segments not found in a single cell with each other in nature. A new combination of nucleic acid segments can be introduced 25 into an organism using a wide array of nucleic acid manipulation techniques available to those skilled in the art. The recombinant cell may harbor a vector that is extragenomic, i.e. that does not covalently insert into the cellular genome, including a non-nuclear (e.g. mitochondrial) genome(s). A recombinant cell may further harbor a vector or a portion thereof that is intragenomic, i.e. covalently incorporated within the 30 genome of the recombinant cell.

As used herein, a "transgenic avian" is any avian, as defined above, including the chicken and quail, in which one or more of the cells of the avian contain heterologous nucleic acid introduced by manipulation, such as by transgenic techniques. The nucleic acid may be introduced into a cell, directly or indirectly, by

5 introduction into a precursor of the cell by way of deliberate genetic manipulation, such as by microinjection or by infection with a recombinant virus. Genetic manipulation also includes classical cross-breeding, or *in vitro* fertilization. A recombinant DNA molecule may be integrated within a chromosome, or it may be extrachromosomally replicating DNA.

10 The terms "chimeric animal" or "mosaic animal" are used herein to refer to animals in which the recombinant gene is found, or in which the recombinant is expressed, in some but not all cells of the animal. The term "tissue-specific chimeric animal" indicates that the recombinant gene is present and/or expressed in some tissues but not others.

15 As used herein, the term "transgene" means a nucleic acid sequence that is partly or entirely heterologous, i.e., foreign, to the transgenic animal or cell into which it is introduced, or, is homologous to an endogenous gene of the transgenic animal or cell into which it is introduced, but which is designed to be inserted, or is inserted, into the animal's genome in such a way as to alter the genome of the cell into which it  
20 is inserted (e.g., it is inserted at a location which differs from that of the natural gene or its insertion results in a knockout).

The term "cytokine" as used herein refers to any secreted polypeptide that affects a function of cells and modulates an interaction between cells in the immune, inflammatory or hematopoietic response. A cytokine includes, but is not limited to,  
25 monokines and lymphokines. Examples of cytokines include, but are not limited to, interferon  $\alpha$ 2b, Interleukin-1 (IL-1), Interleukin-6 (IL-6), Interleukin-8 (IL-8), Tumor Necrosis Factor- $\alpha$  (TNF- $\alpha$ ) and Tumor Necrosis Factor  $\gamma$  (TNF- $\gamma$ ).

The term "antibody" as used herein refers to polyclonal and monoclonal antibodies and fragments thereof, and immunologic binding equivalents thereof.  
30 Antibodies may include, but are not limited to polyclonal antibodies, monoclonal antibodies (mAbs), humanized or chimeric antibodies, single chain antibodies, Fab

fragments, F(ab')<sub>2</sub> fragments, fragments produced by a Fab expression library, anti-idiotypic (anti-Id) antibodies, and epitope-binding fragments of any of the above.

The term "immunoglobulin polypeptide" as used herein refers to a constituent polypeptide of an antibody or a polypeptide derived therefrom. An "immunological polypeptide" may be, but is not limited to, an immunological heavy or light chain and may include a variable region, a diversity region, joining region and a constant region or any combination, variant or truncated form thereof. The term "immunological polypeptides" further includes single-chain antibodies comprised of, but not limited to, an immunoglobulin heavy chain variable region, an immunoglobulin light chain variable region and optionally a peptide linker.

The terms "integrase" and "integrase activity" as used herein refer to a nucleic acid recombinase of the serine recombinase family of proteins.

The term "source of integrase activity" as used herein refers to a polypeptide or multimeric protein having serine recombinase (integrase) activity in an avian cell. The term may further refer to a polynucleotide encoding the serine recombinase, such as an mRNA, an expression vector, a gene or isolated gene that may be expressed as the recombinase-specific polypeptide or protein.

The term "recombination site" as used herein refers to a polynucleotide stretch comprising a recombination site normally recognized and used by an integrase. For example,  $\lambda$  phage is a temperate bacteriophage that infects *E. coli*. The phage has one attachment site for recombination (attP) and the *E. coli* bacterial genome has an attachment site for recombination (attB). Both of these sites are recombination sites for  $\lambda$  integrase. Recombination sites recognized by a particular integrase can be derived from a homologous system and associated with heterologous sequences, for example, the attP site can be placed in other systems to act as a substrate for the integrase.

The term "pseudo-recombination site" as used herein refers to a site at which an integrase can facilitate recombination even though the site may not have a sequence identical to the sequence of its wild-type recombination site. For example, a phiC31 integrase and vector carrying a phiC31 wild-type recombination site can be placed into an avian cell. The wild-type recombination sequence aligns itself with a sequence

in the avian cell genome and the integrase facilitates a recombination event. When the sequence from the genomic site in the avian cell, where the integration of the vector took place, is examined, the sequence at the genomic site typically has some identity to, but may not be identical with, the wild-type bacterial genome recombination site.

5     The recombination site in the avian cell genome is considered to be a pseudo-recombination site (e.g., a pseudo-attP site) at least because the avian cell is heterologous to the normal phiC31 phage/bacterial cell system. The size of the pseudo-recombination site can be determined through the use of a variety of methods including, but not limited to, (i) sequence alignment comparisons, (ii) secondary structural comparisons, (iii) deletion or point mutation analysis to find the functional limits of the pseudo-recombination site, and (iv) combinations of the foregoing.

10    10

A nucleic acid fragment of interest may be a trait-producing sequence, by which it is meant a sequence conferring a non-native trait upon the cell in which the protein encoded by the trait-producing sequence is expressed. The term "non-native" 15 when used in the context of a trait-producing sequence means that the trait produced is different than one would find in an unmodified organism which can mean that the organism produces high amounts of a natural substance in comparison to an unmodified organism, or produces a non-natural substance. For example, the genome of a bird could be modified to produce proteins not normally produced in birds such 20 as, for instance, human or mouse antibodies, human cytokines, etc. Other useful traits include disease resistance, meat flavor, animal size, and the like.

A nucleic acid fragment of interest may additionally be a "marker nucleic acid" or expressed as a "marker polypeptide". Marker genes encode proteins that can be easily detected in transformed cells and are, therefore, useful in the study of those 25 cells. Examples of suitable marker genes include  $\beta$ -galactosidase, green or yellow fluorescent proteins, enhanced green fluorescent protein, chloramphenicol acetyl transferase, luciferase, and the like. Such regions may also include those 5' noncoding sequences involved with initiation of transcription and translation, such as the enhancer, TATA box, capping sequence, CAAT sequence, and the like

30     The term "transformed" as used herein refers to a heritable alteration in a cell resulting from the uptake of a heterologous DNA.

The term "trisomic" as used herein refers to a cell or animal, such as an avian cell or bird that has a  $2n+1$  chromosomal complement, where  $n$  is the haploid number of chromosomes, for the animal species concerned.

Techniques useful for isolating and characterizing the nucleic acids and proteins of the present invention are well known to those of skill in the art and standard molecular biology and biochemical manuals may be consulted to select suitable protocols without undue experimentation. See, for example, Sambrook et al., 1989, "Molecular Cloning: A Laboratory Manual", 2nd ed., Cold Spring Harbor, the content of which is herein incorporated by reference in its entirety.

10

Abbreviations

Abbreviations used in the present specification include the following: aa, amino acid(s); bp, base pair(s); kb, kilobase; att, bacterial recombination attachment site; IU, infectious units.

15 In the standard method of integrase mediated-transgenesis, a serine recombinase integrase mediates recombination between an attB site on a transgene vector and a pseudo attP site on a chromosome. In the method of the invention for integrase-mediated transgenesis, a heterologous wild-type attP site can be integrated into an avian nuclear genome to create a transgenic cell line or bird. A serine recombinase (integrase) and an attB-bearing transgene vector are then introduced into 20 cells harboring the heterologous attP site, or into embryos derived from birds which bear the attP recombination site. The locations of attP and attB may be reversed such that the attB site is inserted into an avian chromosome and the attP sequence resides in an incoming transgene vector. In either case, the att site of the introduced vector 25 would then preferentially recombine with the integrated heterologous att site in the genome of the recipient cell.

The methods of the invention are based, in part, on the discovery that there exist in avian genomes a number of specific nucleic acid sequences, termed pseudo-recombination sites, the sequences of which may be distinct from wild-type 30 recombination sites but which can be recognized by a site-specific integrase and used

- to promote the efficient insertion of heterologous genes or polynucleotides into the targeted avian nuclear genome. The inventors have identified pseudo-recombination sites in avian cells capable of recombining with a recombination site, such as an attB site within a recombinant nucleic acid molecule introduced into the target avian cell.
- 5 The invention is also based on the prior integration of a heterologous att recombination site, typically isolated from a bacteriophage or a modification thereof, into the genome of the target avian cell.

Integration into a predicted chromosomal site is useful to improve the predictability of expression, which is particularly advantageous when creating  
10 transgenic avians. Transgenesis by methods that result in insertion of the transgene into random positions of the avian genome is unpredictable since the transgene may not express at the expected levels or in the predicted tissues.

The invention as disclosed herein, therefore, provides methods for site-specifically genetically transforming an avian nuclear genome. In general, an avian  
15 cell having a first recombination site in the nuclear genome is transformed with a site-specific polynucleotide construct comprising a second recombination sequence and one or more polynucleotides of interest. Into the same cell, integrase activity is introduced that specifically recognizes the first and second recombination sites under conditions such that the polynucleotide sequence of interest is inserted into the nuclear  
20 genome via an integrase-mediated recombination event between the first and second recombination sites.

The integrase activity, or a source thereof, can be introduced into the avian cell prior to, or concurrent with, the introduction of the site-specific construct. The integrase can be delivered to a cell as a polypeptide, or by expressing the integrase  
25 from a source polynucleotide such as an mRNA or from an expression vector that encodes the integrase, either of which can be delivered to the target avian cell before, during or after delivery of the polynucleotide of interest. Any integrase that has activity in an avian cell may be useful in the present invention, including HK022 (Kolot *et al.*, *Biotechnol. Bioeng.*, 84: 56-60 (2003)). Preferably, the integrase is a serine recombinase as described, for example, by Smith & Thorpe, in *Mol. Microbiol.*,  
30 44: 299-307 (2002). More preferably, the integrase is a bacteriophage integrase such

as, but not limited to, TP901-1 (Stoll *et al.*, *J. Bact.*, 184: 3657-3663 (2002); Olivares *et al.*, *Gene*, 278:167-176 (2001). Most preferably, the integrase is from the phage phiC31.

5       The nucleotide sequence of the junctions between an integrated transgene into the attP (or attB site) would be known. Thus, a PCR assay can be designed by one of skill in the art to detect when the integration event has occurred. The PCR assay for integration into a heterologous wild-type attB or attP site can also be readily incorporated into a quantitative PCR assay using TAQMANTM or related technology so that the efficiency of integration can be measured.

10      The minimal attB and attP sites able to catalyze recombination mediated by the phiC31 integrase are 34 and 39 bp, respectively. In cell lines that harbor a heterologous integrated attP site, however, integrase has a preference for the inserted attP over any pseudo-attP sites of similar length, because pseudo-attP sites have very low sequence identity (between 10 to 50% identity) compared to the more efficient 15 wild-type attP sequence. It is within the scope of the methods of the invention, however, for the recombination site within the target avian genome to be a pseudo-att site such as a pseudo-attP site or an attP introduced into an avian genome.

20      The sites used for recognition and recombination of phage and bacterial DNAs (the native host system) are generally non-identical, although they typically have a common core region of nucleic acids. The bacterial sequence is generally called the attB sequence (bacterial attachment) and the phage sequence is called the attP sequence (phage attachment). Because they are different sequences, recombination will result in a stretch of nucleic acids (called attL or attR for left and right) that is neither an attB sequence or an attP sequence, and likely is functionally unrecognizable 25 as a recombination site to the relevant enzyme, thus removing the possibility that the enzyme will catalyze a second recombination reaction that would reverse the first.

30      The integrase may recognize a recombination site where sequence of the 5' region of the recombination site can differ from the sequence of the 3' region of the recombination sequence. For example, for the phage phiC31 attP (the phage attachment site), the core region is 5'-TTG-3' the flanking sequences on either side are represented here as attP5' and attP3', the structure of the attP recombination site is,

accordingly, attP5'-TTG-attP3'. Correspondingly, for the native bacterial genomic target site (attB) the core region is 5'-TTG-3', and the flanking sequences on either side are represented here as attB5' and attB3', the structure of the attB recombination site is, accordingly, attB5'-TTG-attB3'. After a single-site, phiC31 integrase-mediated 5 recombination event takes place between the phiC31 phage and the bacterial genome, the result is the following recombination product: attB5'-TTG-attP3'{phiC31 vector sequences}attP5'-TTG-attB3'. In the method of invention, the attB site will be within a recombinant nucleic acid molecule that may be delivered to a target avian cell. The corresponding attP (or pseudo-attP) site will be within the avian cell nuclear genome. 10 Consequently, after phiC31 integrase mediated recombination, the recombination product, the nuclear genome with the integrated heterologous polynucleotide will have the sequence attP5'-TTG-attB3'{heterologous polynucleotide}-attB5'-TTG-attP3'. Typically, after recombination the post-recombination recombination sites are no longer able to act as substrate for the phiC31 integrase. This results in stable 15 integration with little or no integrase mediated excision.

While the preferred recombination site to be included in the recombinant nucleic acid molecules and modified chromosomes of the present invention is the attP site, it is contemplated that any attP-like site may be used if compatible with the attB site. For instance, any pseudo-attP site of the chicken genome may be identified 20 according to the methods of Example 7 below and used as a heterologous att recombination site. Such attP-like sites may have a sequence that is at least 25% identical to SEQ ID NO: 11 as shown in Fig. 19, such as described in Groth *et al.*, *Proc. Natl. Acad. Sci. U.S.A.* 97: 5995-6000 (2000) incorporated herein by reference in its entirety. Preferably the selected site will have at least the same degree of 25 efficiency of recombination as the attP site (SEQ ID NO: 11) itself.

In the methods of the present invention, the recipient avian cell population may be an isolated avian cell line such as, for example, DF-1 chicken fibroblasts, chicken DT40 cells or a cell population derived from an early stage embryo such as a chicken stage I or stage X embryo. A particularly useful avian cell population is 30 blastodermal cells isolated from a stage X avian embryo. The methods of the present invention, therefore, include steps for the isolation of blastodermal cells that are then

suspended in a cell culture medium or buffer for maintaining the cells in a viable state, and which allows the cell suspension to contact the nucleic acids of the present invention. It is also within the scope of the invention for the nucleic acid construct and the source of integrase activity to be delivered directly to an avian embryo such as  
5 a blastodermal layer, or to a tissue layer of an adult bird such as the lining of an oviduct.

When the recipient avian cell population is isolated from an early stage avian embryo, the embryos must first be isolated. For stage I avian embryos from, for example, a chicken, a fertilized ovum is surgically removed from a bird before the  
10 deposition of the outer hard shell has occurred. The nucleic acids for integrating a heterologous nucleic acid into a recipient avian cell genome may then be delivered to isolated embryos by lipofection, microinjection (as described in Example 6 below) or electroporation and the like. After delivery of the nucleic acid, the transfected embryo and its yolk may be deposited into the infundibulum of a recipient hen for the  
15 deposition of egg white proteins and a hard shell, and laying of the egg. Stage X avian embryos are obtained from freshly laid fertilized eggs and the blastodermal cells isolated as a suspension of cells in a medium, as described in Example 4 below. Isolated stage X blastodermal cell populations, once transfected, may be injected into recipient stage X embryos and the hard shell eggs resealed according to the methods  
20 described in U.S. Patent No. 6,397,777.

In the methods of the invention, once a heterologous nucleic acid is delivered to the recipient avian cell, the integrase activity is expressed. The expressed integrase (or injected integrase polypeptide) then mediates recombination between the att site of the heterologous nucleic acid molecule, and the att (or pseudo att) site within the  
25 genomic DNA of the recipient avian cell.

It is within the scope of the present invention for the integrase-encoding sequence and a promoter operably linked thereto to be included in the delivered nucleic acid molecule and that expression of the integrase activity occurs before integration of the heterologous nucleic acid into the avian cell genome. Preferably,  
30 the integrase-encoding nucleic acid sequence and associated promoter are in an

expression vector that may be co-delivered to the recipient avian cell with the heterologous nucleic acid molecule to be integrated into the recipient genome.

One suitable integrase expressing expression vector for use in the present invention is pCMV-C31int (SEQ ID NO: 1) as shown in Fig. 9, and described in 5 Groth *et al.*, *Proc. Natl. Acad. Sci. U.S.A.* 97: 5995-6000 (2000), incorporated herein by reference in its entirety. In pCMV-C31int, expression of the integrase-encoding sequence is driven by the CMV promoter. However, any promoter may be used that will give expression of the integrase in a recipient avian cell, including operably linked avian-specific gene expression control regions of the avian ovalbumin, 10 lysozyme, ovomucin, ovomucoid gene loci, viral gene promoters, inducible promoters, the RSV promoter and the like.

The recombinant nucleic acid molecules of the present invention for delivery of a heterologous polynucleotide to the genome of a recipient avian cell may comprise a nucleotide sequence encoding the attB attachment site of *Streptomyces ambofaciens* 15 as described in Thorpe & Smith, *Proc. Natl. Acad. Sci. U.S.A.* 95: 5505-5510 (1998). The nucleic acid molecule of the present invention further comprises an expression cassette for the expression in a recipient avian cell of a heterologous nucleic acid encoding a desired heterologous polypeptide. Optionally, the nucleic acid molecules may further comprise a marker such as, but not limited to, a puromycin resistance 20 gene, a luciferase gene, EGFP, and the like.

It is contemplated that the expression cassette for introducing a desired heterologous polypeptide comprises a promoter operably linked to a nucleic acid encoding the desired polypeptide and, optionally, a polyadenylation signal sequence. Exemplary nucleic acids suitable for use in the present invention are more fully 25 described in the examples below.

In the methods of the present invention, following delivery of the nucleic acid molecule and a source of integrase activity into an avian cell population, the cells are maintained under culture conditions suitable for the expression of the integrase and/or for the integrase to mediate recombination between the recombination site of the 30 nucleic acid and recombination site in the genome of the recipient avian cell. When the recipient avian cell is cultured *in vitro*, such cells may be incubated at 37° Celsius

if the cells are chicken early stage blastodermal cells. They may then be injected into an embryo within a hard shell, which is resealed for incubation until hatching. Alternatively, the transfected cells may be maintained in *in vitro* culture.

5    Site-Specific Nucleic Acid Constructs and Methods of Delivery to an Avian Cell

The present invention provides methods for the site-specific insertion of a heterologous nucleic acid molecule into the nuclear genome of an avian cell by delivering to a target avian cell that has a recombination site in its nuclear genome, a source of integrase activity, a site-specific construct that has another recombination site and a polynucleotide of interest, and allowing the integrase activity to facilitate a recombination event between the two recombination sites, thereby integrating the polynucleotide of interest into the avian nuclear genome.

(a) *Expression vector nucleic acid molecules:* A variety of recombinant nucleic acid expression vectors are suitable for use in the practice of the present invention. The site-specific constructs described herein can be constructed utilizing methodologies well known in the art of molecular biology (see, for example, *Ausubel* or *Maniatis*) in view of the teachings of the specification. As described above, the constructs are assembled by inserting into a suitable vector backbone a recombination site such as an attP or an attB site, a polynucleotide of interest operably linked to a gene expression control region of interest and, optionally a sequence encoding a positive selection marker. Polynucleotides of interest can include, but are not limited to, expression cassettes encoding a polypeptide to be expressed in the transformed avian cell or in a transgenic bird derived therefrom. The site-specific constructs are typically circular and may also contain selectable markers, an origin of replication, and other elements.

25    Any of the vectors of the present invention may also optionally include a sequence encoding a signal peptide that directs secretion of the polypeptide expressed by the vector from the transgenic cells, for instance, from tubular gland cells of the oviduct. This aspect of the invention effectively broadens the spectrum of exogenous proteins that may be deposited in the whites of avian eggs using the methods of the invention. Where an exogenous polypeptide would not otherwise be secreted, the vector bearing the coding sequence can be modified to comprise, for instance, about

60 bp encoding a signal peptide. The DNA sequence encoding the signal peptide is inserted in the vector such that the signal peptide is located at the N-terminus of the polypeptide encoded by the vector.

The expression vectors of the present invention can comprise an avian transcriptional regulatory region for directing expression of either fusion or non-fusion proteins. With fusion vectors, a number of amino acids are usually added to the desired expressed target gene sequence such as, but not limited to, a polypeptide sequence for thioredoxin. A proteolytic cleavage site may further be introduced at a site between the target recombinant protein and the fusion sequence. Additionally, a region of amino acids such as a polymeric histidine region may be introduced to allow binding of the fusion protein to metallic ions such as nickel bonded to a solid support, for purification of the fusion protein. Once the fusion protein has been purified, the cleavage site allows the target recombinant protein to be separated from the fusion sequence. Enzymes suitable for use in cleaving the proteolytic cleavage site include, but are not limited to, Factor Xa and thrombin. Fusion expression vectors that may be useful in the present invention include pGex (Amrad Corp., Melbourne, Australia), pRIT5 (Pharmacia, Piscataway, NJ) and pMAL (New England Biolabs, Beverly, MA), that fuse glutathione S-transferase, protein A, or maltose E binding protein, respectively, to a desired target recombinant protein.

Epitope tags are short peptide sequences that are recognized by epitope specific antibodies. A fusion protein comprising a recombinant protein and an epitope tag can be simply and easily purified using an antibody bound to a chromatography resin, for example. The presence of the epitope tag furthermore allows the recombinant protein to be detected in subsequent assays, such as Western blots, without having to produce an antibody specific for the recombinant protein itself. Examples of commonly used epitope tags include V5, glutathione-S-transferase (GST), hemagglutinin (HA), the peptide Phe-His-His-Thr-Thr, chitin binding domain, and the like.

Preferred gene expression control regions for use in avian cells include, but are not limited to, avian specific promoters such as the chicken lysozyme, ovalbumin, or ovomucoid promoters, and the like. Particularly useful are tissue-specific promoters

such as avian oviduct promoters that allow for expression and delivery of a heterologous polypeptide to an egg white.

Viral promoters serve the same function as bacterial or eukaryotic promoters and either provide a specific RNA polymerase in trans (bacteriophage T7) or recruit 5 cellular factors and RNA polymerase (SV40, RSV, CMV). Viral promoters may be preferred as they are generally particularly strong promoters. A preferred promoter for use in avian cells is the RSV promoter.

Selection markers are valuable elements in expression vectors as they provide a means to select for growth of only those cells that contain a vector. Common 10 selectable marker genes include those for resistance to antibiotics such as ampicillin, puromycin, tetracycline, kanamycin, bleomycin, streptomycin, hygromycin, neomycin, ZEOCINT<sup>TM</sup>, and the like.

Another element useful in an expression vector is an origin of replication. Replication origins are unique DNA segments that contain multiple short repeated 15 sequences that are recognized by multimeric origin-binding proteins and that play a key role in assembling DNA replication enzymes at the origin site. Suitable origins of replication for use in expression vectors employed herein include *E. coli* oriC, colE1 plasmid origin, and the like.

A further useful element in an expression vector is a multiple cloning site or 20 polylinker. Synthetic DNA encoding a series of restriction endonuclease recognition sites is inserted into a vector, for example, downstream of the promoter element. These sites are engineered for convenient cloning of DNA into the vector at a specific position.

Elements such as the foregoing can be combined to produce expression vectors 25 suitable for use in the methods of the invention. Those of skill in the art will be able to select and combine the elements suitable for use in their particular system in view of the teachings of the present specification.

(b) *Genetically modified avian and artificial chromosomes:* The present invention further provides modified chromosomes, either isolated avian or artificial 30 chromosomes, are useful vectors to shuttle transgenes or gene clusters into the avian genome. By delivering the modified or artificial chromosome to an isolated recipient

cell, the target cell, and progeny thereof, become trisomic. Preferably, an additional or triosomic chromosome will not affect the subsequent development of the recipient cell and/or an embryo, nor interfere with the reproductive capacity of an adult bird developed from such cells or embryos. The chromosome also should be stable within 5 chicken cells. An effective method is also required to isolate a population of chromosomes for delivery into chicken embryos or early cells.

A number of artificial chromosomes are useful in the methods of the invention, including, for instance, a human chromosome modified to work as an artificial chromosome in a heterologous species as described, for example, for mice 10 (Tomizuka *et al.*, *Proc. Natl. Acad. Sci. U.S.A.* 97: 722-727 (2000); for cattle (Kuroiwa *et al.*, *Nat. Biotechnol.* 20: 889-894 (2002); a mammalian artificial chromosome used in mice (Co *et al.*, *Chromosome Res.* 8: 183-191 (2000).

Chickens that are trisomic for microchromosome 16 have been described 15 (Miller *et al.*, *Proc. Natl. Acad. Sci. U.S.A.* 93: 3958-3962 (1996); Muscarella *et al.*, *J. Cell Biol.* 101: 1749-1756 (1985). In these cases, triploidy and trisomy occurred naturally, and illustrate that an extra copy of one or more of the chicken chromosomes 20 is compatible with normal development and reproductive capacity.

A useful chromosome isolation protocol can comprise the steps of inserting a lac-operator sequence (Robinett *et al.* *J. Cell Biol.* 135: 1685-1700 (1996) into an 25 isolated chromosome and, optionally, inserting a desired transgene sequence within the same chromosome. Preferably, the lac operator region is a concatamer of a plurality of lac operators for the binding of multiple lac repressor molecules. Insertion can be accomplished, for instance, by identifying a region of known nucleotide sequence associated with a particular avian chromosome. A recombinant DNA molecule may be constructed that comprises the identified region, a recombination site such as attB or attP and a lac-operator concatamer. The recombinant molecule is delivered to an isolated avian cell, preferably, but not limited to, chicken DT40 cells 30 that have elevated homologous recombination activity compared to other avian cell lines, whereupon homologous recombination will integrate the heterologous recombination site and the lac-operator concatamer into the targeted chromosome as shown in the schema illustrated in Fig. 20. A tag-polypeptide comprising a label

domain and a lac repressor domain is also delivered to the cell, preferably by expression from a suitable expression vector. The nucleotide sequence coding for a GFP-lac-repressor fusion protein (Robinett *et al.*, *J. Cell Biol.* 135: 1685-1700 (1996)) may be inserted into the same chromosome as the lac-operator insert. The lac  
5 repressor sequence, however, can also be within a different chromosome. An inducible promoter may also be used to allow the expression of the GFP-lac-repressor only after chromosome is to be isolated.

Induced expression of the GFP-lac-repressor fusion protein will result in specific binding of the tag fusion polypeptide to the lac-operator sequence for  
10 identification and isolation of the genetically modified chromosome. The tagged mitotic chromosome can be isolated using, for instance, flow cytometry as described in de Jong *et al.* *Cytometry* 35: 129-133 (1999) and Griffin *et al.* *Cytogenet. Cell Genet.* 87: 278-281 (1999).

A tagged chromosome can also be isolated using microcell technology  
15 requiring treatment of cells with the mitotic inhibitor colcemid to induce the formation of micronuclei containing intact isolated chromosomes within the cell. Final separation of the micronuclei is then accomplished by centrifugation in cytochalasin as described by Killary & Fournier in *Methods Enzymol.* 254: 133-152 (1995). Further purification of microcells containing only the desired tagged  
20 chromosome could be done by flow cytometry. It is contemplated, however, that alternative methods to isolate the mitotic chromosomes or microcells, including mechanical isolation or the use of laser scissors and tweezers, and the like.

Delivery of a Site-Specific Nucleic Acid to a Recipient Avian Cell or Embryo.  
25 (a) *Delivery of polynucleotide constructs.*

Most non-viral methods of gene transfer rely on normal mechanisms used by eukaryotic cells for the uptake and intracellular transport of macromolecules. In preferred embodiments, non-viral gene delivery systems of the present invention rely on endocytic pathways for the uptake of the subject transcriptional regulatory region  
30 and operably linked polypeptide-encoding nucleic acid by the targeted cell. Exemplary gene delivery systems of this type include liposomal derived systems,

poly-lysine conjugates, and artificial viral envelopes. Modified chromosomes as described above may be delivered to isolated avian embryonic cells for subsequent introduction to an embryo.

In a representative embodiment, a nucleic acid molecule can be entrapped in 5 liposomes bearing positive charges on their surface (e.g., lipofectins) and (optionally) which are tagged with antibodies against cell surface antigens of the target tissue (Mizuno *et al.*, 1992, *NO Shinkei Geka* 20: 547-551; PCT publication WO91/06309; Japanese patent application 1047381; and European patent publication EP-A-43075, all of which are incorporated herein by reference in their entireties).

10 In similar fashion, the gene delivery system can comprise an antibody or cell surface ligand that is cross-linked with a gene binding agent such as polylysine (see, for example, PCT publications WO93/04701, WO92/22635, WO92/20316, WO92/19749, and WO92/06180, all of which are incorporated herein by reference in their entireties). It will also be appreciated that effective delivery of the subject 15 nucleic acid constructs via receptor-mediated endocytosis can be improved using agents which enhance escape of genes from the endosomal structures. For instance, whole adenovirus or fusogenic peptides of the influenza HA gene product can be used as part of the delivery system to induce efficient disruption of DNA-containing endosomes (Mulligan *et al.*, 1993, *Science* 260:926; Wagner *et al.*, 1992, *Proc. Natl. Acad. Sci.* 89:7934-7938; and Christiano *et al.*, 1993, *Proc. Natl. Acad. Sci.* 90:2122-2126, all of which are incorporated herein by reference in their entireties). It is further contemplated that a recombinant nucleic acid molecule of the present invention may 20 be delivered to a target host cell by other non-viral methods including by gene gun, microinjection, sperm-mediated transfer, or the like.

25 In yet another embodiment of the invention, an expression vector that comprises a heterologous attB recombination site and a region encoding a polypeptide deposited into an egg white are delivered to oviduct cells by in vivo electroporation. In this method, the luminal surface of an avian oviduct is surgically exposed. A buffered solution of the expression vector and a source of integrase activity such as a 30 second expression vector expressing integrase (for example pCMV-int) is deposited on the luminal surface. Electroporation electrodes are then positioned on either side

of the oviduct wall, the luminal electrode contacting the expression vector solution. After electroporation, the surgical incisions are closed. The electroporation will deliver the expression vectors to some, if not all, treated recipient oviduct cells to create a tissue-specific chimeric animal. Expression of the integrase allows for the 5 integration of the heterologous polynucleotide into the genome of recipient oviduct cells. While this method may be used with any bird, a preferred recipient is a chicken due to the size of the oviduct. More preferred is a transgenic bird that has a transgenic attP recombinant site in the nuclear genomes of recipient oviduct cells, thus increasing the efficiency of integration of the expression vector.

10 The attB/P integrase system is preferred in the in vivo electroporation method to allow the formation of stable genetically transformed oviduct cells that otherwise progressively lose the heterologous expression vector.

15 The stably modified oviduct cells will express the heterologous polynucleotide and deposit the resulting polypeptide into the egg white of a laid egg. For this purpose, the expression vector will further comprise an oviduct-specific promoter such as ovalbumin or ovomucoid operably linked to the desired heterologous polynucleotide.

*(b) Delivery of chromosomes to avian cells.*

Another aspect of the invention is the generation of a trisomic avian cell 20 comprising a genetically modified extra chromosome. The extra chromosome may be an artificial chromosome or an isolated avian chromosome that has been genetically modified. Introduction of the extra chromosome to an avian cell will generate a trisomic cell with  $2n+1$  chromosomes, where n is the haploid number of chromosomes of a normal avian cell.

25 Delivery of an isolated chromosome into an isolated avian cell or embryo can be accomplished in several ways. Isolated mitotic chromosomes or a micronucleus containing an interphase chromosome can be injected into early stage I embryos by cytoplasmic injection. The injected zygote would then be surgically transferred to a recipient hen for the production and laying of a hard shell egg. This hard shell egg 30 would then be incubated until hatching of a chick.

Isolated microcells can be fused to primordial germ cells (PGCs) isolated from

the blood stream of late stage 15 embryos as described by Killary & Fournier in *Methods Enzymol.* 254: 133-152 (1995). The PGC/microcell hybrids can then be transplanted into the blood stream of a recipient embryo to produce germline chimeric chickens. (See Naito *et al.*, *Mol. Reprod. Dev.* 39: 153-161 (1994)). The manipulated eggs would then incubated until hatching of the bird.

Blastodermal cells isolated from stage X embryos can be transfected with isolated mitotic chromosomes. Following *in vitro* transfection, the cells are transplanted back into stage X embryos as described, for example, in Etches *et al.*, *Poult. Sci.*, 72: 882-829 (1993), and the manipulated eggs are incubated to hatching.

Stage X blastodermal cells can also be fused with isolated microcells and then transplanted back into to stage X embryos or fused to somatic cells to be used as nuclear donors for nuclear transfer as described by Kuroiwa *et al.*, *Nat. Biotechnol.* 20: 889-894 (2002).

Chromosomal vectors, as described above, may be delivered to a recipient avian cell by, for example, microinjection, liposomal delivery or microcell fusion.

In the methods of the invention, a site-specific integrase is introduced into an avian cell whose genome is to be modified. Methods of introducing functional proteins into cells are well known in the art. Introduction of purified integrase protein can ensure a transient presence of the protein and its activity. Thus, the lack of permanence associated with most expression vectors is not expected to be detrimental.

The integrase used in the practice of the present invention can be introduced into a target cell before, concurrently with, or after the introduction of a site-specific vector. The integrase can be directly introduced into a cell as a protein, for example, by using liposomes, coated particles, or microinjection, or into the blastodermal layer of an early stage avian embryo by microinjection. A source of the integrase can also be delivered to an avian cell by introducing to the cell an mRNA encoding the integrase and which can be expressed in the recipient cell as an integrase polypeptide. Alternately, a DNA molecule encoding the integrase can be introduced into the cell using a suitable expression vector.

The present invention provides novel nucleic acid vectors and methods of use that allow the phiC31 integrase to efficiently integrate a heterologous nucleic acid into

an avian genome. A novel finding is that the phiC31 integrase is remarkably efficient in avian cells and increases the rate of integration of heterologous nucleic acid at least 30-fold over that of random integration. Furthermore, the phiC31 integrase works equally well at 37°C and 41°C, indicating that it will function in the environment of  
5 the developing avian embryo, as shown in Example 1.

It is important to note that the present invention is not bound by any mechanism or theory of operation. For example, the mechanism by which integrase, or any other substance described herein, facilitates transgenesis is unimportant. Integrase, for example, may facilitate transgenesis by mediating the integration of  
10 DNA into the genome of a recipient cell or integrase may facilitate transgenesis by facilitating the entry of the DNA into the cell or integrase may facilitate transgenesis by some other mechanism.

The site-specific vector components described above are useful in the construction of expression cassettes containing sequences encoding an integrase. One  
15 integrase-expressing vector useful in the methods of the invention is pCMV-C31int (SEQ ID NO: 1 as shown in Fig. 9) where the phiC31 integrase is encoded by a region under the expression control of the strong CMV promoter. Another preferred promoter generally useful in avian cells is the RSV promoter as used in SEQ ID NO: 9 shown in Fig. 17. Expression of the integrase is typically desired to be transient.  
20 Accordingly, vectors providing transient expression of the integrase are preferred. However, expression of the integrase can be regulated in other ways, for example, by placing the expression of the integrase under the control of a regulatable promoter (i.e., a promoter whose expression can be selectively induced or repressed).

Delivery of the nucleic acids introduced into avian cells, for example,  
25 embryonic avian cells, using methods of the invention may also be enhanced by mixing the nucleic acid to be introduced with a nuclear localization signal (NLS) peptide prior to introduction, for example, microinjection, of the nucleic acid. Nuclear localization signal (NLS) sequences are a class of short amino acid sequences which may be exploited for cellular import of linked cargo into a nucleus. The  
30 present invention envisions the use of any useful NLS peptide, including but not limited to, the NLS peptide of SV40 virus T-antigen.

An NLS of the invention is an amino acid sequence which mediates nuclear transport into the nucleus, wherein deletion of the NLS reduces transport into the nucleus. In certain embodiments, an NLS is a cationic peptide, for example, a highly cationic peptide. The present invention includes the use of any NLS sequence, 5 including but not limited to, SV40 virus T-antigen. NLSs known in the art include, but are not limited to those discussed in Cokol *et al.*, 2000, *EMBO Reports*, 1(5):411-415, Boulikas, T., 1993, *Crit. Rev. Eukaryot. Gene Expr.*, 3:193-227, Collas, P. *et al.*, 1996, *Transgenic Research*, 5: 451-458, Collas and Alestrom, 1997, *Biochem. Cell Biol.* 75: 633-640, Collas and Alestrom, 1998, *Transgenic Research*, 7: 303-309, 10 Collas and Alestrom, *Mol. Reprod. Devel.*, 1996, 45:431-438. The disclosure of each of these references is incorporated by reference herein in its entirety.

Not to be bound by any mechanism of operation, DNA is protected and hence stabilized by cationic polymers. The stability of DNA molecules in the cytoplasm of cells may be increased by mixing the DNA to be introduced, for example, 15 microinjected with cationic polymers (for example, branched cationic polymers), such as polyethylenimine (PEI), polylysine, DEAE-dextran, starburst dendrimers, starburst polyamidoamine dendrimers, and other materials that package and condense the DNA molecules (Kukowska-Latallo *et al.*, 1996, *Proc. Natl. Acad. Sci. USA* 93:4897-4902).

Once the DNA molecules are delivered to the cytoplasm of cells, they migrate 20 into the cell's endocytotic vesicles. Furthermore, migration into the cell's endosome is followed by fast inactivation of DNA within the endolysosomal compartment in transfected or injected cells, both *in vitro* and *in vivo* (Godbey, W, *et al.* 1999, *Proc Natl Acad Sci U S A* 96: 5177-81; and Lechardeur, D, *et al.* 1999, *Gene Ther* 6: 482-97; and references cited therein). Accordingly, in certain embodiments, DNA uptake 25 is enhanced by the receptor-mediated endocytosis pathway using transferrin-polylysine conjugates or adenoviral-mediated vesicle disruption to effect the release of DNA from endosomes. However, the invention is not limited to this or any other theory or mechanism of operation referred to herein.

Buffering the endosomal pH using endosomal-scaping elements also protects 30 DNA from degradation (Kircheis, R, *et al.* 2001, *Adv Drug Deliv Rev* 53: 341-58 ; Boussif, O, *et al.* 1995, *Proc Natl Acad Sci U S A* 92: 7297-301; and Pollard, H, *et al.*

1998, *J Biol Chem* 273: 7507-11; and references cited therein). Thus, in certain embodiments, DNA complexes are delivered with polycations or cationic polymers that possess substantial buffering capacity below physiological pH, such as polyethylenimine, lipopolyamines and polyamidoamine polymers. In certain 5 embodiments, DNA condensing compounds, such as the ones described above, are combined with viruses (Curiel, D, et al. *Proc Natl Acad Sci USA* 88: 8850-4, 1991; Wagner, E, et al. *Proc Natl Acad Sci USA* 89: 6099-103, 1992 and Cotten, M, et al., 1992, *Proc Natl Acad Sci USA* 89: 6094-8), viral peptides (Wagner, E, et al. 1992, *Proc Natl Acad Sci USA* 89: 7934-8; Plank, C, et al. 1994, *J Biol Chem* 269: 12918-10 10 24) and subunits of toxins (Uherek, C, et al., 1998, *J Biol Chem* 273: 8835-48). These materials significantly enhance the release of DNA from endosomes. In certain embodiments, viruses, viral peptides, toxins or subunits of toxins may be coupled to DNA/polylysine complexes via biochemical means or specifically by a streptavidin-biotin bridge (Wagner et al., 1992, Proc. Natl. Acad. Sci. USA 89:6099-6103; Plank et 15 al., 1994, *J. Biol Chem.* 269(17):12918-12924). In other certain embodiments, the virus that is complexed with the DNA may be adenovirus, retrovirus, vaccinia virus, or parvovirus. The viruses may be linked to PEI or another cationic polymer associated with the nucleic acid. In certain embodiments, the virus may be alphavirus, orthomyxovirus, or picornavirus. In certain embodiments, the virus is defective or 20 chemically inactivated. The virus may be inactivated by short-wave UV radiation or the DNA intercalator psoralen plus long-wave UV. The adenovirus may be coupled to polylysine, either enzymatically through the action of transglutaminase or biochemically by biotinylation adenovirus and streptavidinylating the polylysine moiety. Transferrin may also be useful in combination with cationic polymers, 25 adenoviruses and/or other materials disclosed herein to produce transgenic avians. For example, DNA complexes containing PEI, PEI-modified transferrin, and PEI-bound influenza peptides may be used to enhance transgenic avian production.

In other certain embodiments, complexes containing plasmid DNA, transferrin-PEI conjugates, and PEI-conjugated peptides derived from the N-terminal 30 sequence of the influenza virus hemagglutinin subunit HA-2 may be used to produce transgenic chickens. In certain embodiments, the PEI-conjugated peptide may be a

amino-terminal amino acid sequence of influenza virus hemagglutinin which may be elongated by an amphipathic helix or by carboxyl-terminal dimerization.

The present invention provides for methods of dispersing or distributing nucleic acid in a cell, for example, in an avian cell. The avian cell may be, for 5 example, and without limitation, a cell of a stage I avian embryo, a cell of a stage II avian embryo, a cell of a stage III avian embryo, a cell of a stage IV avian embryo, a cell of a stage V avian embryo, a cell of a stage VI avian embryo, a cell of a stage VII avian embryo, a cell of a stage VIII avian embryo, a cell of a stage IX avian embryo, a cell of a stage X avian embryo, a cell of a stage XI avian embryo or a cell of a stage 10 XII avian embryo. In one particularly useful embodiment, the avian cell is a cell of a stage X avian embryo.

In one aspect of the present invention, cationic polymers are useful to distribute, for example, homogeneously distribute, nucleic acid introduced into a cell, for example, an embryonic avian cell. The present invention contemplates the use of 15 cationic polymers including, but not limited to, those disclosed herein.

However, substances other than cationic polymers also capable of distributing or dispersing nucleic acids in a cell are included within the scope of the present invention.

The concentration of cationic polymer used is not critical though, preferably, 20 enough cationic polymer is present to coat the nucleic acid to be introduced into the avian cell. The cationic polymer may be present in an aqueous mixture with the nucleic acid to be introduced into the cell at a concentration in a range of an amount equal to about the weight of the nucleic acid to a concentration wherein the solution is saturated with cationic polymer. In one useful embodiment, the cationic polymer is 25 present in an amount in a range of about 0.01% to about 50 %, for example, about 0.1% to about 20% (e.g., about 5%). The molecular weights of the cationic polymers can range from a molecular weight of about 1,000 to a molecular weight of about 1,000,000. In one embodiment, the molecular weight of the cationic polymers range from about 5,000 to about 100,000 for example, about 20,000 to about 30,000.

30 In one particularly useful aspect of the invention, procedures that are effective to facilitate the production of a transgenic avian may be combined to provide for an

enhanced production of a transgenic avian wherein the enhanced production is an improved production of a transgenic avian relative to the production of a transgenic avian by only one of the procedures employed in the combination. For example, one or more of integrase activity, NLS, cationic polymer or other technique useful to enhance transgenic avian production disclosed herein can be used in the same procedure to provide for an enhanced production of transgenic avians relative to an identical procedure which does not employ all of the same techniques useful to enhance transgenic avian production.

10    **Transgenic Avian Cells.**

Another aspect of the present invention is an avian cell genetically modified with a transgene vector according to the present invention and described above. For example, in one embodiment, the transformed cell can be a chicken early stage blastodermal cell or a genetically transformed cell line, including a sustainable cell line. The transfected cell according to the present invention may comprise a transgene stably integrated into the nuclear genome of the recipient cell, thereby replicating with the cell so that each progeny cell receives a copy of the transfected nucleic acid. A particularly useful cell line for the delivery and integration of a transgene comprises a heterologous attP site that can increase the efficiency of integration of a polynucleotide by phiC31 integrase and, optionally, a region for expressing the integrase.

A retroviral vector can be used to deliver the att site into the avian genome since an attP or attB site is less than 300 bp. For example, the attP site can be inserted into the NLB retroviral vector, which is based on the avian leukosis virus genome. A lentiviral vector is a particularly suitable vector because lentiviral vectors can transduce non-dividing cells, so that a higher percentage of cells will have an integrated attP site.

The lacZ region of NLB is replaced by the attP sequence. A producer cell line would be created by transformation of, for example, the Isolde cell line capable of producing a packaged recombinant NLB-attP virus pseudo-typed with the envA envelope protein. Supernatant from the Isolde NLB-attP line is concentrated by

centrifugation to produce high titer preparations of the retroviral vector that can then be used to deliver the attP site to the genome of an avian cell, as described in Example 9 below.

- An attP-containing line of transgenic birds are a source of attP transgenic embryos and embryonic cells. Fertile zygotes and oocytes bearing a heterologous attP site in either the maternal, paternal, or both, genomes can be used for transgenic insertion of a desired heterologous polynucleotide. A transgene vector bearing an attB site, for example, would be injected into the cytoplasm along with either an integrase expression plasmid, mRNA encoding the integrase or the purified integrase protein.
- 5      The oocyte or zygote is then cultured to hatch by *ex ovo* methods or reintroduced into a recipient hen such that the hen lays a hard shell egg the next day containing the injected egg.
- 10

In another example, fertile stage VII-XII embryos hemizygous or homozygous for the heterologous attP sequence, are used as a source of blastodermal cells. The 15 cells are harvested and then transfected with a transgene vector bearing an attB site along with a source of integrase. The transfected cells are then injected into the subgerminal cavity of windowed fertile eggs. The chicks that hatch will bear the transgene integrated into the attP site in a percentage of their somatic and germ cells. To obtain fully transgenic birds, chicks are raised to sexual maturity and those that are 20 positive for the transgene in their semen are bred to non-transgenic mates.

In various embodiments, the genetically engineered cells of the invention may contain an integrase specifically recognizing recombination sites and which is introduced into genetically engineered cells containing a nucleic acid construct of the invention under conditions such that the nucleic acid sequence(s) of interest will be 25 inserted into the nuclear genome. Methods for introducing such an integrase into a cell are described above.

In some embodiments, the site-specific integrase is introduced into the cell as a polypeptide. In alternative embodiments, the site-specific integrase is introduced into the transgenic cell as a polynucleotide encoding the integrase, such as an expression 30 cassette optionally carried on a transient expression vector, and comprising a polynucleotide encoding the recombinase.

In one embodiment, the invention is directed to methods of using a vector for site-specific integration of a heterologous nucleotide sequence into the genome of an avian cell, the vector comprising a circular backbone vector, a polynucleotide of interest operably linked to a promoter, and a first recombination site, wherein the 5 genome of the cell comprises a second recombination site and recombination between the first and second recombination sites is facilitated by phiC31 integrase. In certain embodiments, the integrase facilitates recombination between a bacterial genomic recombination site (attB) and a phage genomic recombination site (attP).

In another embodiment, the invention is directed to an avian cell having a 10 transformed genome comprising an integrated heterologous polynucleotide of interest whose integration, mediated by phiC31 integrase, was into a recombination site native to the avian cell genome and the integration created a recombination-product site comprising the polynucleotide sequence. In yet another embodiment, integration of the polynucleotide was into a recombination site not native to the avian cell genome, 15 but instead into a heterologous recombination site engineered into the avian cell genome.

In further embodiments, the invention is directed to transgenic birds comprising a modified cell and progeny thereof as described above, as well as methods of producing the same.

20 Cells genetically modified to carry a heterologous attB or attP site by the methods of the present invention can be maintained under conditions that, for example, keep them alive but do not promote growth, promote growth of the cells, and/or cause the cells to differentiate or dedifferentiate. Cell culture conditions may be permissive for the action of the integrase in the cells, although regulation of the 25 activity of the integrase may also be modulated by culture conditions (e.g., raising or lowering the temperature at which the cells are cultured).

One aspect of the invention is a method for generating a genetically modified avian cell, and progeny thereof, using a tagged chromosome, the method comprising the steps of providing an isolated modified chromosome comprising a lac operator 30 region and a first recombination site, delivering the modified chromosome to a avian cell, thereby generating a trisomic avian cell, delivering to the avian cell a source of a

tagged polypeptide comprising a fluorescent domain and a lac repressor domain, delivering a source of integrase activity to the avian cell, delivering a polynucleotide comprising a second recombination site and a region encoding a polypeptide to the avian cell, maintaining the avian cell under conditions suitable for the integrase to  
5 mediate recombination between the first and second recombination sites, thereby integrating the polynucleotide into the modified chromosome and generating a genetically modified avian cell, expressing the tag polypeptide by the avian cell, allowing the tag polypeptide to bind to the modified chromosome so as to label the modified chromosome, and isolating the modified chromosome by selecting modified  
10 chromosomes having a tag polypeptide bound thereto.

In one embodiment of the invention, the second avian cell is selected from the group consisting of a stage VII-XII blastodermal cell, a stage I embryo, a stage X embryo; an isolated primordial germ cell, an isolated non-embryonic cell, and an oviduct cell.

15 In various embodiments, the isolated modified chromosome is an avian chromosome or an artificial chromosome.

In other embodiments of the invention, the step of providing an isolated modified chromosome comprising a lac operator region and a first recombination site comprises the steps of generating a trisomic avian cell by delivering to an isolated  
20 avian cell an isolated chromosome and a polynucleotide comprising a lac operator and a second recombination site, maintaining the trisomic cell under conditions whereby the heterologous polynucleotide is integrated into the chromosome by homologous recombination, delivering to the avian cell a source of a tag polypeptide to label the chromosome, and isolating the labeled chromosome.

25 In one embodiment of the invention, the lac operator region is a concatamer of lac operators. In other embodiments of the invention, the tag polypeptide is expressed from an expression vector.

In one embodiment of the invention, the tag polypeptide is microinjected into the cell. In various embodiments of the invention, the method of delivery of a  
30 chromosome to an avian cell is selected from the group consisting of liposome

delivery, microinjection, microcell, electroporation and gene gun delivery, or a combination thereof.

In embodiments of the invention, the fluorescent domain of the tag polypeptide is GFP.

5 In another embodiment of the invention, the method further comprises the step of delivering the second avian cell to an avian embryo. The embryo may be maintained under conditions suitable for hatching as a chick.

In one embodiment of the invention, the second avian cell is maintained under conditions suitable for the proliferation of the cell, and progeny thereof.

10 In various embodiments of the invention, the source of integrase activity is delivered to a first avian cell as a polypeptide or expressed from a polynucleotide, said polynucleotide being selected from an mRNA and an expression vector.

15 In one embodiment of the invention, the tag polypeptide activity is delivered to the avian cell as a polypeptide or expressed from a polynucleotide operably linked to a promoter. In another embodiment of the invention, the promoter is an inducible promoter. In yet another embodiment of the invention, the integrase is phiC31 integrase and in various embodiments of the invention, the first and second recombination sites are selected from an attB and an attP site, but wherein the first and second sites are not identical.

20

Expression of Heterologous Proteins by Site-Specific Genetic Transformation of Avian Cells.

Another aspect of the present invention is a method of expressing a heterologous polypeptide in an avian cell by stably transfecting a cell by using site-specific integrase-mediation and a recombinant nucleic acid molecule, as described above, and culturing the transfected cell under conditions suitable for expression of the heterologous polypeptide under the control of the avian transcriptional regulatory region.

30 The protein of the present invention may be produced in purified form by any known conventional techniques. For example, chicken cells, an egg or an egg white may be homogenized and centrifuged. The supernatant may then be subjected to

sequential ammonium sulfate precipitation and heat treatment. The fraction containing the protein of the present invention is subjected to gel filtration in an appropriately sized dextran or polyacrylamide column to separate the proteins. If necessary, the protein fraction may be further purified by HPLC or other methods well known in the art of protein purification.

The methods of the invention are useful for expressing nucleic acid sequences that are optimized for expression in avian cells and which encode desired polypeptides or derivatives and fragments thereof. Derivatives include, for instance, polypeptides with conservative amino acid replacements, that is, those within a family of amino acids that are related in their side chains (commonly known as acidic, basic, nonpolar, and uncharged polar amino acids). Phenylalanine, tryptophan, and tyrosine are sometimes classified jointly as aromatic amino acids and other groupings are known in the art (see, for example, "Biochemistry", 2nd ed, L. Stryer, ed., W.H. Freeman & Co., 1981). Peptides in which more than one replacement has taken place can readily be tested for activity in the same manner as derivatives with a single replacement, using conventional polypeptide activity assays (e.g. for enzymatic or ligand binding activities).

Regarding codon optimization, if the recombinant nucleic acid molecules are transfected into a recipient chicken cell, the sequence of the nucleic acid insert to be expressed can be optimized for chicken codon usage. This may be determined from the codon usage of at least one, and preferably more than one, protein expressed in a chicken cell according to well known principles. For example, in the chicken the codon usage could be determined from the nucleic acid sequences encoding the proteins such as lysozyme, ovalbumin, ovomucin and ovotransferrin of chicken. Optimization of the sequence for codon usage can elevate the level of translation in avian eggs.

The present invention provides methods for the production of a protein by an avian cell comprising the steps of maintaining an avian cell, transfecting with a first expression vector and, optionally, a second expression vector, under conditions suitable for proliferation and/or gene expression and such that an integrase will mediate site specific recombination at att sites. The expression vectors may each have

a transcription unit comprising a nucleotide sequence encoding a heterologous polypeptide, wherein one polypeptide is an integrase, a transcription promoter, and a transcriptional terminator. The cells may then be maintained under conditions for the expression and production of the desired heterologous polypeptide(s).

5       The present invention further relates to methods for gene expression by avian cells from nucleic acid vectors, and transgenes derived therefrom, that include more than one polypeptide-encoding region wherein, for example, a first polypeptide-encoding region can be operatively linked to an avian promoter and a second polypeptide-encoding region is operatively linked to an Internal Ribosome Entry Sequence (IRES). It is contemplated that the first polypeptide-encoding region, the IRES and the second polypeptide-encoding region of a recombinant DNA of the present invention may be arranged linearly, with the IRES operably positioned immediately 5' of the second polypeptide-encoding region. This nucleic acid construct, when inserted into the genome of an avian cell or a bird and expressed therein, will generate individual polypeptides that may be post-translationally modified and combined in the white of a hard shell bird egg. Alternatively, the expressed polypeptides may be isolated from an avian egg and combined *in vitro*.

20      The invention, therefore, includes methods for producing multimeric proteins including immunoglobulins, such as antibodies, and antigen binding fragments thereof. Thus, in one embodiment of the present invention, the multimeric protein is an immunoglobulin, wherein the first and second heterologous polypeptides are immunoglobulin heavy and light chains respectively. Illustrative examples of this and other aspects of the present invention for the production of heterologous multimeric polypeptides in avian cells are fully disclosed in U.S. Patent Application No. 25 09/877,374, filed June 8, 2001, by *Rapp*, published as US-2002-0108132-A1 on August 8, 2002, and U.S. Patent Application No. 10/251,364, filed September 18, 2002, by *Rapp*, both of which are incorporated herein by reference in their entirety.

Accordingly, the invention further provides immunoglobulin and other multimeric proteins that have been produced by transgenic avians of the invention.

30      In various embodiments, an immunoglobulin polypeptide encoded by the transcriptional unit of at least one expression vector may be an immunoglobulin heavy

chain polypeptide comprising a variable region or a variant thereof, and may further comprise a D region, a J region, a C region, or a combination thereof. An immunoglobulin polypeptide encoded by an expression vector may also be an immunoglobulin light chain polypeptide comprising a variable region or a variant thereof, and may further comprise a J region and a C region. The present invention also contemplates multiple immunoglobulin regions that are derived from the same animal species, or a mixture of species including, but not only, human, mouse, rat, rabbit and chicken. In preferred embodiments, the antibodies are human or humanized.

In other embodiments, the immunoglobulin polypeptide encoded by at least one expression vector comprises an immunoglobulin heavy chain variable region, an immunoglobulin light chain variable region, and a linker peptide thereby forming a single-chain antibody capable of selectively binding an antigen.

Examples of therapeutic antibodies that may be produced in methods of the invention include but are not limited to HERCEPTIN™ (Trastuzumab) (Genentech, CA) which is a humanized anti-HER2 monoclonal antibody for the treatment of patients with metastatic breast cancer; REOPRO™ (abciximab) (Centocor) which is an anti-glycoprotein IIb/IIIa receptor on the platelets for the prevention of clot formation; ZENAPAX™ (daclizumab) (Roche Pharmaceuticals, Switzerland) which is an immunosuppressive, humanized anti-CD25 monoclonal antibody for the prevention of acute renal allograft rejection; PANOREX™ which is a murine anti-17-IA cell surface antigen IgG2a antibody (Glaxo Wellcome/Centocor); BEC2 which is a murine anti-idiotype (GD3 epitope) IgG antibody (ImClone System); IMC-C225 which is a chimeric anti-EGFR IgG antibody (ImClone System); VITAXIN™ which is a humanized anti- $\alpha$ V $\beta$ 3 integrin antibody (Applied Molecular Evolution/MedImmune); Campath 1H/LDP-03 which is a humanized anti CD52 IgG1 antibody (Leukosite); Smart M195 which is a humanized anti-CD33 IgG antibody (Protein Design Lab/Kanebo); RITUXANTM which is a chimeric anti-CD20 IgG1 antibody (IDEC Pharm/Genentech, Roche/Zettyaku); LYMPHOCIDE™ which is a humanized anti-CD22 IgG antibody (Immunomedics); ICM3 is a humanized anti-ICAM3 antibody (ICOS Pharm); IDEC-114 is a primate anti-CD80 antibody (IDEC).

Pharm/Mitsubishi); ZEVALIN™ is a radiolabelled murine anti-CD20 antibody (IDE/C Schering AG); IDEC-131 is a humanized anti-CD40L antibody (IDE/Eisai); IDEC-151 is a primatized anti-CD4 antibody (IDE/C); IDEC-152 is a primatized anti-CD23 antibody (IDE/C Seikagaku); SMART anti-CD3 is a humanized anti-CD3 IgG (Protein Design Lab); 5G1.1 is a humanized anti-complement factor 5 (CS) antibody (Alexion Pharm); D2E7 is a humanized anti-TNF- $\alpha$  antibody (CATIBASF); CDP870 is a humanized anti-TNF- $\alpha$  Fab fragment (Celltech); IDEC-151 is a primatized anti-CD4 IgG1 antibody (IDE/C Pharm/SmithKline Beecham); MDX-CD4 is a human anti-CD4 IgG antibody (Medarex/Eisai/Genmab); CDP571 is a humanized anti-TNF- $\alpha$  IgG4 antibody (Celltech); LDP-02 is a humanized anti- $\alpha$ 4 $\beta$ 7 antibody (LeukoSite/Genentech); OrthoClone OKT4A is a humanized anti-CD4 IgG antibody (Ortho Biotech); ANTOVA™ is a humanized anti-CD40L IgG antibody (Biogen); ANTEGRENT™ is a humanized anti-VLA-4 IgG antibody (Elan); and CAT-152 is a human anti-TGF- $\beta$ 2 antibody (Cambridge Ab Tech).

15

Production of Heterologous Protein by Transgenic Avians

One aspect of the present invention, therefore, concerns transgenic birds, such as chickens, comprising a recombinant nucleic acid molecule and which preferably (though optionally) express a heterologous gene in one or more cells in the animal.

20 Suitable methods for the generation of transgenic avians having heterologous DNA incorporated therein are described, for example, in WO 99/19472 to Ivarie et al.; WO 00/11151 to Ivarie et al.; and WO 00/56932 to Harvey et al., all of which are incorporated herein by reference in their entirety.

25 Embodiments of the methods for the production of a heterologous polypeptide by the avian tissue such as the oviduct and the production of eggs which contain heterologous protein involve providing a suitable vector and introducing the vector into embryonic blastodermal cells together with an integrase, preferably phiC31 integrase, so that the vector can integrate into the avian genome. A subsequent step involves deriving a mature transgenic avian from the transgenic blastodermal cells produced in the previous steps. Deriving a mature transgenic avian from the blastodermal cells optionally involves transferring the transgenic blastodermal cells to

an embryo and allowing that embryo to develop fully, so that the cells become incorporated into the bird as the embryo is allowed to develop. Another alternative is to transfer a transfected nucleus to an enucleated recipient cell which may then develop into a zygote and ultimately an adult bird. The resulting chick is then grown  
5 to maturity.

In an alternative embodiment, the cells of a blastodermal embryo are transfected or transduced with the vector and integrase directly within the embryo. It is contemplated, for example, that the recombinant nucleic acid molecules of the present invention may be introduced into a blastodermal embryo by direct  
10 microinjection of the DNA into a stage X or earlier embryo that has been removed from the oviduct. The egg is then returned to the bird for egg white deposition, shell development and laying. The resulting embryo is allowed to develop and hatch, and the chick allowed to mature.

In one embodiment, a transgenic bird of the present invention is produced by  
15 introducing into embryonic cells such as, for instance, isolated avian blastodermal cells, a nucleic acid construct comprising an attB recombination site capable of recombining with a pseudo-attP recombination site found within the nuclear genome of the organism from which the cell was derived, and a nucleic acid fragment of interest, in a manner such that the nucleic acid fragment of interest is stably integrated  
20 into the nuclear genome of germ line cells of a mature bird and is inherited in normal Mendelian fashion. It is also within the scope of the invention that the targeted cells for receiving the transgene have been engineered to have a heterologous attP recombination site integrated into the nuclear genome of the cells, thereby increasing the efficiency of recognition and recombination with a heterologous attB site.

25 In either case, the transgenic bird produced from the transgenic blastodermal cells is known as a “founder”. Some founders can be chimeric or mosaic birds if, for example, microinjection does not deliver nucleic acid molecules to all of the blastodermal cells of an embryo. Some founders will carry the transgene in the tubular gland cells in the magnum of their oviducts and will express the heterologous  
30 protein encoded by the transgene in their oviducts. If the heterologous protein

contains the appropriate signal sequences, it will be secreted into the lumen of the oviduct and onto the yolk of an egg.

Some founders are germ-line founders. A germ-line founder is a founder that carries the transgene in genetic material of its germ-line tissue, and may also carry the transgene in oviduct magnum tubular gland cells that express the heterologous protein. Therefore, in accordance with the invention, the transgenic bird will have tubular gland cells expressing the heterologous protein and the offspring of the transgenic bird will also have oviduct magnum tubular gland cells that express the selected heterologous protein. (Alternatively, the offspring express a phenotype determined by expression of the exogenous gene in a specific tissue of the avian.)

The invention can be used to express, in large yields and at low cost, a wide range of desired proteins including those used as human and animal pharmaceuticals, diagnostics, and livestock feed additives. Proteins such as growth hormones, cytokines, structural proteins and enzymes including human growth hormone, interferon, lysozyme, and  $\beta$ -casein are examples of proteins which are desirably expressed in the oviduct and deposited in eggs according to the invention. Other possible proteins to be produced include, but are not limited to, albumin,  $\alpha$ -1 antitrypsin, antithrombin III, collagen, factors VIII, IX, X (and the like), fibrinogen, hyaluronic acid, insulin, lactoferrin, protein C, erythropoietin (EPO), granulocyte colony-stimulating factor (G-CSF), granulocyte macrophage colony-stimulating factor (GM-CSF), tissue-type plasminogen activator (tPA), feed additive enzymes, somatotropin, and chymotrypsin. Immunoglobulins (shown, for example in Example 10 below) and genetically engineered antibodies, including immunotoxins which bind to surface antigens on human tumor cells and destroy them, can also be expressed for use as pharmaceuticals or diagnostics.

In various embodiments of the transgenic bird of the present invention, the expression of the transgene may be restricted to specific subsets of cells, tissues or developmental stages utilizing, for example, *trans*-acting factors acting on the transcriptional regulatory region operably linked to the polypeptide-encoding region of interest of the present invention and which control gene expression in the desired pattern. Tissue-specific regulatory sequences and conditional regulatory sequences

can be used to control expression of the transgene in certain spatial patterns. Moreover, temporal patterns of expression can be provided by, for example, conditional recombination systems or prokaryotic transcriptional regulatory sequences.

5       The stably modified oviduct cells will express the heterologous polynucleotide and deposit the resulting polypeptide into the egg white of a laid egg. For this purpose, the expression vector will further comprise an oviduct-specific promoter such as ovalbumin or ovomucoid operably linked to the desired heterologous polynucleotide.

10      Another aspect of the present invention provides a method for the production in an avian of an heterologous protein capable of forming an antibody suitable for selectively binding an antigen. This method comprises a step of producing a transgenic avian incorporating at least one transgene, the transgene encoding at least one heterologous polypeptide selected from an immunoglobulin heavy chain variable region, an immunoglobulin heavy chain comprising a variable region and a constant region, an immunoglobulin light chain variable region, an immunoglobulin light chain comprising a variable region and a constant region, and a single-chain antibody comprising two peptide-linked immunoglobulin variable regions.

15      In one embodiment of this method, the isolated heterologous protein is an antibody capable of selectively binding to an antigen and which may be generated by combining at least one immunoglobulin heavy chain variable region and at least one immunoglobulin light chain variable region, preferably cross-linked by at least one disulfide bridge. The combination of the two variable regions generates a binding site that binds an antigen using methods for antibody reconstitution that are well known in  
20     the art.

25      The present invention also encompasses immunoglobulin heavy and light chains, or variants or derivatives thereof, to be expressed in separate transgenic avians, and thereafter isolated from separate media including serum or eggs, each isolate comprising one or more distinct species of immunoglobulin polypeptide. The  
30     method may further comprise the step of combining a plurality of isolated heterologous immunoglobulin polypeptides, thereby producing an antibody capable of

selectively binding to an antigen. In this embodiment, for instance, two or more individual transgenic avians may be generated wherein one transgenic produces serum or eggs having an immunoglobulin heavy chain variable region, or a polypeptide comprising such, expressed therein. A second transgenic animal, having a second 5 transgene, produces serum or eggs having an immunoglobulin light chain variable region, or a polypeptide comprising such, expressed therein. The polypeptides from two or more transgenic animals may be isolated from their respective sera and eggs and combined in vitro to generate a binding site capable of binding an antigen.

The present invention is further illustrated by the following examples, which 10 are provided by way of illustration and should not be construed as limiting. The contents of all references, published patents and patents cited throughout the present application are hereby incorporated by reference in their entireties.

It will be apparent to those skilled in the art that various modifications, combinations, additions, deletions and variations can be made in the present invention 15 without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used in another embodiment to yield a still further embodiment. It is intended that the present invention covers such modifications, combinations, additions, deletions and variations as come within the scope of the appended claims and their equivalents.

20

**Example 1: Phage phiC31 integrase functions in avian cells.**

(a) A luciferase vector bearing either an attB (SEQ ID NO: 2 shown in Fig. 10) or attP (SEQ ID NO: 3 shown in Fig. 11) site was co-transfected with an integrase expression vector CMV-C31int (SEQ ID NO: 1) into DF-1 cells, a chicken fibroblast cell line. 25 The cells were passaged several times and the luciferase levels were assayed at each passage.

Cells were passaged every 3-4 days and one third of the cells were harvested and assayed for luciferase. The expression of luciferase was plotted as a percentage of the expression measured 4 days after transfection. A luciferase expression vector 30 bearing an attP site as a control was also included.

As can be seen in Fig. 2, in the absence of integrase, luciferase expression from a vector bearing attP or attB decreased to very low levels after several days. However, luciferase levels were persistent when the luciferase vector bearing attB was co-transfected with the integrase expression vector, indicating that the luciferase 5 vector had stably integrated into the avian genome.

(b) A drug-resistance colony formation assay was used to quantitate integration efficiency. The puromycin resistance expression vector pCMV-pur was outfitted with an attB (SEQ ID NO: 4 shown in Fig. 12) or an attP (SEQ ID NO: 5 shown in Fig. 13) sites. Puromycin resistance vectors bearing attB sites were cotransfected with phiC31 10 integrase or a control vector into DF-1 cells. One day after transfection, puromycin was added. Puromycin resistant colonies were counted 12 days post-transfection.

In the absence of co-transfected integrase expression, few DF-1 cell colonies were observed after survival selection. When integrase was co-expressed, multiple DF-1 cell colonies were observed, as shown in Fig. 3. Similar to the luciferase 15 expression experiment, the attB sequence (but not the attP sequence) was able to facilitate integration of the plasmid into the genome. Fig. 3 also shows that phiC31 integrase functions at both 37° Celsius and 41° Celsius. Integrase also functions in quail cells using the puromycin resistance assay, as shown in Fig. 4.

(c) The CMV-pur-attB vector (SEQ ID NO: 4) was also contransfected with an 20 enhanced green fluorescent protein (EGFP) expression vector bearing an attB site (SEQ ID NO: 6 shown in Fig. 14) into DF-1 cells and the phiC31 integrase expression vector CMV-C31int (SEQ ID NO: 1). After puromycin selection for 12 days, the colonies were viewed with UV light to determine the percentage of cells that expressed EGFP. Approximately 20% of puromycin resistant colonies expressed 25 EGFP in all of the cells of the colony, as shown in Fig. 5, indicating that the integrase can mediate multiple integrations per cell.

(d) PhiC31 integrase promoted the integration of large transgenes into avian 30 cells. A puromycin expression cassette comprising a CMV promoter, puromycin resistance gene, polyadenylation sequence and the attB sequence was inserted into a vector containing a 12.0 kb lysozyme promoter and the human interferon  $\alpha$ 2b gene (SEQ ID NO: 7 shown in Fig. 15) and into a vector containing a 10.0 kb ovomucoid

promoter and the human interferon  $\alpha$ 2b gene (SEQ ID NO: 8) as shown in Fig. 16.

DF-1 cells were transfected with donor plasmids of varying lengths bearing a puromycin resistance gene and an attB sequence in the absence or presence of an integrase expression plasmid. Puromycin was added to the culture media to kill those  
5 cells which did not contain a stably integrated copy of the puromycin resistance gene. Cells with an integrated gene formed colonies in the presence of puromycin in 7-12 days. The colonies were visualized by staining with methylene blue and the entire 60 mm culture dish was imaged.

PhiC31 integrase mediated the efficient integration of both vectors as shown in  
10 Fig. 7.

#### Example 2: Cell culture methods.

DF-1 cells were cultured in DMEM with high glucose, 10% fetal bovine serum, 2 mM L-glutamine, 100 units/ml penicillin and 100  $\mu$ g/ml streptomycin at 37°  
15 Celsius and 5% CO<sub>2</sub>. A separate population of DF-1 cells was grown at 41° Celsius. These cells were adapted to the higher temperature for one week before they were used for experiments.

Quail QT6 cells were cultured in F10 medium (Gibco) with 5% newborn calf serum, 1% chicken serum heat inactivated (at 55° Celsius for 45 mins), 10 units/ ml  
20 penicillin and 10  $\mu$ g/ml streptomycin at 37° Celsius and 5% CO<sub>2</sub>.

#### Example 3: Selection and Assay Methods

(a) *Puromycin selection assay:* About  $0.8 \times 10^6$  DF-1 (chicken) or QT6 (quail) cells were plated in 60 mm dishes. The next day, the cells were transfected as follows:  
25 10 to 50 ng of a donor plasmid and 1 to 10  $\mu$ g of an Integrase-expressing plasmid DNA were mixed with 150  $\mu$ l of OptiMEM. 15  $\mu$ l of DMRIE-C was mixed with 150  $\mu$ l of OptiMEM in a separate tube, and the mixtures combined and incubated for 15 mins. at room temperature.

While the liposome/DNA complexes were forming, the cells were washed  
30 with OptiMEM and 2.5 ml of OptiMEM was added. After 15 minutes, 300  $\mu$ l of the DNA-lipid mixture was added drop wise to the 2.5 ml of OptiMEM covering the cell

layers. The cells were incubated for 4-5 hours at either 37° Celsius or 41° Celsius, 5% CO<sub>2</sub>. The transfection mix was replaced with 3 mls of culture media. The next day, puromycin was added to the media at a final concentration of 1 ug/ml, and the media replaced every 2 to 4 days. Puromycin resistant colonies were counted or imaged 10-12 days after the addition of puromycin.

5 (b) *Luciferase assay*: Chicken DF-1 or quail QT6 cells ( $0.8 \times 10^6$ ) were plated in 60 mm dishes. Cells were transfected as described above. The cells from a plate were transferred to a new 100 mm plate when the plate became confluent, typically on day 3-4, and re-passaged every 3-4 days.

10 At each time point, one-third of the cells from a plate were replated, and one-third were harvested for the luciferase assay. The cells were pelleted in an eppendorf tube and frozen at -70°C.

The cell pellet was lysed in 200 µl of lysis buffer (25 mM Tris-acetate, pH7.8, 2mM EDTA, 0.5% Triton X-100, 5% glycerol). Sample (5µl) was assayed using the 15 Promega BrightGlo reagent system.

(c) *Visualization of EGFP*: EGFP expression was visualized with an inverted microscope with FITC illumination [Olympus IX70, 100 W mercury lamp, HQ-FITC Band Pass Emission filter cube, exciter 480/40 nm, emission 535/50 nm, 20X phase contrast objective (total magnification was 2.5 x 10 x 20)].  
20 (d) *Staining of cell colonies*: After colonies had formed, typically after 7-12 days of culture in puromycin medium, the cells were fixed in 2% formaldehyde, 0.2% glutaraldehyde for 15 mins, and stained in 0.2% methylene blue for 30 mins. followed by several washes with water. The plates were imaged using a standard CCD camera in visible light.  
25

**Example 4: Production of genetically transformed avian cells.**

Avian stage X blastodermal cells are used as the cellular vector for the transgenes. Stage X embryos are collected and the cells dispersed and mixed with plasmid DNA. The transgenes are then introduced to blastodermal cells via 30 electroporation. The cells are immediately injected back into recipient embryos.

The cells are not cultured for any time period to ensure that they remain capable of contributing to the germline of resulting chimeric embryos. However, because there is no culture step, cells that bear the transgene cannot be identified. Typically, only a small percentage of cells introduced to an embryo will bear a stably integrated transgene (0.01 to 1%). To increase the percentage of cells bearing a transgene, therefore, the transgene vector bears an attB site and is co-electroporated with a vector bearing the CMV promoter driving expression of the phiC31 transgene (CMV-C31int (SEQ ID NO: 1)). The integrase then drives integration of the transgene vector into the nuclear genome of the avian cell and increases the percentage of cells bearing a stable transgene.

- (a) *Preparation of avian stage X blastodermal cells:*
- i) Collect fertilized eggs from Barred Rock or White leghorn chickens (*Gallus gallus*) or quail (*Japonica cotonix*) within 48 hrs. of laying;
  - ii) Use 70% ethanol to clean the shells;
  - 15 iii) Crack the shells and open the eggs;
  - iv) Remove egg whites by transferring yolks to opposite halves of shells, repeating to remove most of the egg whites;
  - v) Put egg yolks with embryo discs facing up into a 10cm petri dish;
  - vi) Use an absorbent tissue to gently remove egg white from the embryo discs;
  - 20 vii) Place a Whatman filter paper 1 ring over the embryos;
  - viii) Use scissors to cut the membranes along the outside edge of the paper ring while gently lifting the ring/embryos with a pair of tweezers;
  - ix) Insert the paper ring with the embryos at a 45 degrees angle into a petri dish containing PBS-G solution at room temperature;
  - 25 x) After ten embryo discs are collected, gently wash the yolks from the blastoderm discs using a Pasteur pipette under a stereo microscope;
  - xi) Cut the discs by a hair ring cutter (a short piece of human hair is bent into a small loop and fastened to the narrow end of a Pasteur pipette with Parafilm);
  - 30 xii) Transfer the discs to a 15 ml sterile centrifuge tube on ice;

- xiii) Place 10 to 15 embryos per tube and allow to settle to the bottom (about 5 mins.);
  - xiv) Aspirate the supernatant from the tube;
  - xv) Add 5 mls of ice-cold PBS without Ca<sup>++</sup> and Mg<sup>++</sup>, and gently pipette 4 to 5 times using a 5 mls pipette;
  - xvi) Incubate in ice for 5-7 mins. to allow the blastoderms to settle, and aspirate the supernatant;
  - xvii) Add 3 mls of ice cold 0.05% trypsin/0.02% EDTA to each tube and gently pipette 3 to 5 times using a 5 ml pipette;
  - 10 xviii) Put the tube in ice for 5 mins. and then flick the tube by finger 40 times. Repeat;
  - xix) Add 0.5 mls FBS and 3-5 mls BDC medium to each tube and gently pipette 5-7 times using a 5 ml pipette;
  - xx) Spin at 500 rpm (RCF 57 x g) at 4° Celsius for 5 mins;
  - 15 xxi) Remove the supernatant and add 2 mls ice cold BDC medium into each tube; and
  - xxii) Resuspend the cells by gently pipetting 20-25 times; and
  - xxiii) Determine the cell titer by hemacytometer and ensure that about 95% of all BDCs are single cells, and not clumped.
- 20 (b) *Transfection of linearized plasmids into blastodermal cells by small scale electroporation:*
- i) Centrifuge the blastodermal cell suspension from step (xxiii) above at RCF 57 x g, 4° Celsius, for 5 mins;
  - 25 ii) Resuspend cells to a density of 1-3 x 10<sup>6</sup> per ml with PBS without Ca<sup>2+</sup> and Mg<sup>2+</sup>;
  - iii) Add linearized DNA, 1-30 µg per 1-3 x 10<sup>5</sup> blastodermal cells in an eppendorf tube at room temperature. Add equimolar molar amounts of the non-linearized transgene plasmid bearing an attB site, and an integrase expression plasmid;
  - 30 iv) Incubate at room temperature for 10 mins;

- v) Aliquot 100 µl of the DNA-cell mixture to a 0.1 cm cuvette at room temperature;
- vi) Electroporate at 240 V and 25 µFD (or 100 V and 125 µFD for quail cells) using, for example, a Gene Pulser II™ (BIO-RAD).
- 5 vii) Incubate the cuvette at room temperature for 1-10 mins.
- viii) Before the electroporated cells are injected into a recipient embryo, they are transferred to a eppendorf tube at room temperature. The cuvette is washed with 350 µl of media, which is transferred to the eppendorf, spun at room temperature and re-suspended in 0.01-0.3 ml medium;
- 10 ix) Inject 1-10 µl of cell suspension into the subgerminal cavity of an non-irradiated or, preferably, an irradiated (e.g., with 300-900 rads) stage X egg. Shell and shell membrane are removed and, after injection, resealed according to U.S. Patent No. 6,397,777 incorporated herein by reference in its entirety; and
- 15 x) The egg is then incubated to hatching.

(c) *Blastodermal Cell Culture Medium:*

- i) 409.5 mls DMEM with high glucose, L-glutamine, sodium pyruvate, pyridoxine hydrochloride;
- ii) 5 mls Men non-essential amino acids solution, 10 mM;
- 20 iii) 5 mls Penicillin-streptomycin 5000 U/ml each;
- iv) 5 mls L-glutamine, 200 mM;
- v) 75 mls fetal bovine serum; and
- vi) 0.5 mls β-mercaptoethanol, 11.2mM.

25 **Example 5: Transfection of stage X embryos with attB plasmids**

- (a) *DNA-PEI:* Twenty-five µg of a phage phiC31 integrase expression plasmid (pCMV-int), and 25 µg of a luciferase-expressing plasmid (pβ-actin-GFP-attB) are combined in 200 µl of 28 mM Hepes (pH 7.4). The DNA/Hepes is mixed with an equal volume of PEI which has been diluted 10-fold with water. The DNA/Hepes/PEI is incubated at room temperature for 15 mins Three to seven µl of the complex are injected into the subgerminal cavity of windowed stage X white leghorn eggs which

are then sealed and incubated as described in U.S. Patents No. 6,397,777. The complexes will also be incubated with blastodermal cells isolated from stage X embryos which are subsequently injected into the subgerminal cavity of windowed irradiated stage X white leghorn eggs. Injected eggs are sealed and incubated as  
5 described above.

(b) *Adenovirus-PEI*:

Two  $\mu$ g of a phage phiC31 integrase expression plasmid (pCMV-int), 2  $\mu$ g of a GFP expressing plasmid (p $\beta$ -actin-GFP-attB) and 2  $\mu$ g of a luciferase expressing plasmid (pGLB) were incubated with 1.2  $\mu$ l of JetPEI<sup>TM</sup> in 50  $\mu$ l of 20 mM Hepes buffer  
10 (pH7.4). After 10 mins at 25°C,  $3 \times 10^9$  adenovirus particles (Ad5-Null, Qbiogene) were added and the incubation continued for an additional 10 mins. Embryos are transfected *in ovo* or *ex ovo* as described above.

**Example 6: Stage I cytoplasmic injection**

15 Production of transgenic chickens by cytoplasmic DNA injection using DNA injection directly into the germinal disk as described in Sang *et al.*, *Mol. Reprod. Dev.*, 1: 98-106 (1989); Love *et al.*, *Biotechnology*, 12: 60-63 (1994) incorporated herein by reference in their entireties.

In the method of the present invention, fertilized ova, and preferably stage I  
20 embryos, are isolated from euthanized hens 45 mins. to 4 hrs. after oviposition of the previous egg. Alternatively, eggs were isolated from hens whose oviducts have been fistulated according to the techniques of Gilbert & Wood-Gush, *J. Reprod. Fertil.*, 5: 451-453 (1963) and Pancer *et al.*, *Br. Poult. Sci.*, 30: 953-7 (1989) incorporated herein in their entireties.

25 An isolated ovum was placed in dish with the germinal disk upwards. Ringer's buffer medium was then added to prevent drying of the ovum. Any suitable microinjection assembly and methods for microinjecting and reimplanting avian eggs are useful in the method of cytoplasmic injection of the present invention. A particularly suitable apparatus and method for use in the present invention is described  
30 in U.S. Patent Application Serial No: 09/919,143 ("the '143 Application) and incorporated herein by reference in its entirety. The avian microinjection system

described in the '143 Application allowed the loading of a DNA solution into a micropipette, followed by prompt positioning of the germinal disk under the microscope and guided injection of the DNA solution into the germinal disk. Injected embryos could then be surgically transferred to a recipient hen as described, for  
5 example, in Olsen & Neher, *J. Exp. Zool.*, 109: 355-66 (1948) and Tanaka *et al.*, *J. Reprod. Fertil.*, 100: 447-449 (1994). The embryo was allowed to proceed through the natural *in vivo* cycle of albumin deposition and hard-shell formation. The transgenic embryo is then laid as a hard-shell egg which was incubated until hatching of the chick. Preferably, injected embryos were surgically transferred to recipient  
10 hens via the ovum transfer method of Christmann *et al.* in PCT/US01/26723, the contents of which are incorporated by reference in its entirety, and hard shell eggs were incubated and hatched.

Approximately 25 nl of DNA solution (about 60ng/ $\mu$ l) with either integrase mRNA or protein were injected into a germinal disc of stage I White Leghorn  
15 embryos obtained 90 minutes after oviposition of the preceding egg. Typically the concentration of integrase mRNA used was 100 ng/ $\mu$ l, and the concentration of integrase protein was 66 ng/ $\mu$ l.

To synthesize the integrase mRNA, a plasmid template encoding the integrase protein was linearized at the 3' end of the transcription unit. mRNA was synthesized,  
20 capped and a polyadenine tract added using the mMESSAGE mMACHINE T7 Ultra Kit<sup>TM</sup> (Ambion, Austin, TX). The mRNA was purified by extraction with phenol and chloroform and precipitated with isopropanol. The integrase protein was expressed in *E. coli* and purified as described by Thorpe *et al.*, *Mol. Microbiol.*, 38: 232-241 (2000).

25 A plasmid encoding for the integrase protein is transfected into the target cells. However, since the early avian embryo transcriptionally silent until it reaches about 22,000 cells, injection of the integrase mRNA or protein was expected to result in better rates of transgenesis, as shown in the Table 2 below.

The chicks produced by this procedure were screened for the presence of the  
30 injected transgene using a high throughput PCR-based screening procedure as described in Harvey *et al.*, *Nature Biotech.*, 20: 396-399 (2002).

*Table 2: Summary of cytoplasmic injection results using different integrase strategies*

| Experimental group | Ovum transfers | Hard shells produced (%) | Chicks hatched (%) * | Transgenic chicks (%) ‡ |
|--------------------|----------------|--------------------------|----------------------|-------------------------|
| No Integrase       | 5164           | 3634 (70%)               | 500 (14%)            | 58 (11.6%)              |
| Integrase mRNA     | 1109           | 833 (75%)                | 115 (13.8%)          | 19 (16.5%)              |
| Integrase protein  | 374            | 264 (70.6%)              | 47(17.8%)            | 16 (34%)                |

\* : Percentages based on the number of hard shells

‡ : Percentages based on the number of hatched birds

5    **Example 7: Characterization of phiC31 integrase-mediated integration sites in the chicken genome.**

To characterize phiC31-mediated integration into the chicken genome, a plasmid rescue method was used to isolate integrated plasmids from transfected and selected chicken fibroblasts. Plasmid pCR-XL-TOPO-CMV-pur-attB (SEQ ID NO: 10, shown in Fig. 18) does not have *BamH I* or *Bgl II* restriction sites. Genomic DNA from cells transformed with pCR-XL-TOPO-CMV-pur-attB was cut with *BamH I* or *Bgl II* (either or both of which would cut in the flanking genomic regions) and religated so that the genomic DNA surrounding the integrated plasmid would be captured into the circularized plasmid. The flanking DNA of a number of plasmids 15 were then sequenced.

DF-1 cells (chicken fibroblasts),  $4 \times 10^5$  were transfected with 50 ng of pCR-XL-TOPO-CMV-pur-attB and 1  $\mu$ g of pCMV-int. The following day, the culture medium was replaced with fresh media supplemented with 1  $\mu$ g/ml puromycin. After 10 days of selection, several hundred puromycin-resistant colonies were evident. 20 These were harvested by trypsinization, pooled, replated on 10 cm plates and grown to confluence. DNA was then extracted.

Isolated DNA was digested with *BamH I* and *Bgl II* for 2-3 hrs, extracted with phenol:chloroform:isoamyl alcohol chloroform:isoamyl alcohol and ethanol precipitated. T4 DNA ligase was added and the reaction incubated for 1 hr at room

temperature, extracted with phenol:chloroform:isoamyl alcohol and chloroform:isoamyl alcohol, and precipitated with ethanol. 5 µl of the DNA suspended in 10µl of water was electroporated into 25 µl of Genehogs™ (Invitrogen) in an 0.1 cm cuvette using a GenePulser II (Biorad) set at 1.6 kV, 100 ohms, 25 uF 5 and plated on Luria Broth (LB) plates with 5 µg/ml phleomycin (or 25 µg/ml zeocin) and 20 µg/ml kanamycin. Approximately 100 individual colonies were cultured, the plasmids extracted by standard miniprep techniques and digested with *Xba* I to identify clones with unique restriction fragments.

Thirty two plasmids were sequenced with the primer attB-for (5'-  
10 TACCGTCGACGATGTAGGTACGGTC-3') (SEQ ID NO: 12) which allows sequencing across the crossover site of attB and into the flanking genomic sequence. All of plasmids sequenced had novel sequences inserted into the crossover site of attB, indicating that the clones were derived from plasmid that had integrated into the chicken genome via phiC31 integrase-mediated recombination.

15 The sequences were compared with sequences at GenBank using Basic Local Alignment Search Tool (BLAST). Most of the clones harbored sequences homologous to *Gallus* genomic sequences in the TRACE database.

**Example 8: Insertion of a wild-type attP site into the avian genome augments  
20 integrase-mediated integration and transgenesis.**

The chicken B-cell line DT40 cells (Buerstedde *et al.*, *E.M.B.O. J.*, 9: 921-927 (1990)) are useful for studying DNA integration and recombination processes (Buerstedde & Takeda, *Cell*, 67:179-88 (1991)). DT40 cells were engineered to harbor a wild-type attP site isolated from the *Streptomyces* phage phiC31. Two 25 independent cell lines were created by transfection of a linearized plasmid bearing an attP site linked to a CMV promoter driving the resistance gene to G418 (DT40-NLB-attP) or bearing an attP site linked to a CMV promoter driving the resistance gene for puromycin (DT40-pur-attP). The transfected cells were cultured in the presence of G418 or puromycin to enrich for cells bearing an attP sequence stably integrated into 30 the genome.

A super-coiled luciferase vector bearing an attB (SEQ ID NO: 2 shown in Fig. 10) was co-transfected, together with an integrase expression vector CMV-C31int (SEQ ID NO: 1) or a control, non-integrase expressing vector (CMV-BL) into wild-type DT40 cells and the stably transformed lines DT40-NLB-attP and DT40-pur-attP.

5 Cells were passaged at 5, 7 and 14 days post-transfection and about one third of the cells were harvested and assayed for luciferase. The expression of luciferase was plotted as a percentage of the expression measured 5 days after transfection. As can be seen in Fig. 21, in the absence of integrase, or in the presence of integrase but in the DT40 cells lacking an inserted wild-type attP site, luciferase expression from a  
10 vector bearing attB progressively decreased to very low levels. However, luciferase levels were persistent when the luciferase vector bearing attB was co-transfected with the integrase expression vector into the attP bearing cell lines DT40-NLB-attP and DT40-pur-attP. Inclusion of an attP sequence in the avian genome augments the level of integration efficiency beyond that afforded by the utilization of endogenous  
15 pseudo-attP sites.

**Example 9: Generation of attP transgenic cell line  
and birds using an NLB vector**

The NLB-attP retroviral vector can be injected into stage X chicken embryos  
20 laid by pathogen-free hens. A small hole is drilled into the egg shell of a freshly laid egg, the shell membrane cut away and the embryo visualized by eye. With a drawn needle attached to a syringe, 1 to 10 µl of concentrated retrovirus, approximately 2.5 x 10<sup>5</sup> IU, is injected into the subgerminal cavity of the embryo. The egg shell is resealed with a hot glue gun. Suitable methods for the manipulation of avian eggs, including  
25 opening and resealing hard shell eggs are described in U.S. Patent Serial Nos: 5,897,998 and 6,397,777 which are herein incorporated by reference in their entireties.

Typically, 25% of embryos hatch 21 days later. The chicks are raised to sexual maturity and semen samples are taken. Birds that have a significant level of the transgene in sperm DNA will be identified, typically by a PCR-based assay. Ten to  
30 25% of the hatched roosters will be able to give rise to G1 transgenic offspring, 1 to 20% of which may be transgenic. DNA extracted from the blood of G1 offspring is

analyzed by PCR and Southern analysis to confirm the presence of the intact transgene. Several lines of transgenic roosters, each with a unique site of attP integration, are then bred to non-transgenic hens, giving 50% of G2 transgenic offspring. Transgenic G2 hens and roosters from the same line can be bred to produce  
5 G3 offspring homozygous for the transgene. Homozygous offspring will be distinguished from hemizygous offspring by quantitative PCR. The same procedure can be used to integrate an attB or attP site into transgenic birds.

**Example 10: Expression of immunoglobulin chain polypeptides by transgenic chickens**

Bacterial artificial chromosomes (BACs) containing a 70 kbp segment of the chicken ovomucoid gene with the light and heavy chain cDNAs for a human monoclonal antibody inserted along with an internal ribosome entry site into the 3' untranslated region of the ovomucoid gene were equipped with the attB sequence.  
15 The heavy and light chain cDNAs were inserted into separate ovomucoid BACs such that expression of an intact monoclonal antibody requires the presence of both BACs in the nucleus.

Several hens produced by coinjection of the attB-bearing ovomucoid BACs and integrase-encoding mRNA into stage I embryos produced intact monoclonal antibodies in their egg white.. One hen, which had a high level of the light chain ovomucoid BAC in her blood DNA as determined by quantitative PCR particularly expressed the light chain portion of the monoclonal antibody in the egg white at a concentration of 350 nanograms per ml, or approximately 12 µg per egg.  
20

**Example 11: Stage I cytoplasmic injection with integrase activity and PEI**

Production of transgenic chickens by cytoplasmic DNA injection directly into the germinal disk was done as described in Example 6.

Approximately 25 nl of aqueous DNA (about 60ng/µl) which includes a transgene is placed in solution with integrase mRNA or integrase protein was mixed  
30 with an equal volume of PEI that had been diluted ten fold. The mixture was injected into a germinal disc of stage I White Leghorn embryos obtained about 90 minutes

after oviposition of the preceding egg. Typically the concentration of integrase mRNA used was about 100 ng/μl, and the concentration of integrase protein was about 66 ng/μl. The integrase mRNA was synthesized according to Example 6.

Transgenic chicks produced by this procedure using: integrase mRNA/PEI and  
5 integrase protein/PEI showed positive results for the presence of heterologously expressed protein in the blood, semen and egg white.

**Example 12: Stage I cytoplasmic injection with integrase activity and NLS**

Production of transgenic chickens by cytoplasmic DNA injection directly into  
10 the germinal disk was done as described in Example 6.

DNA which includes a transgene was suspended in 0.25 M KCl and SV40 T antigen nuclear localization signal peptide (NLS peptide, amino acid sequence CGGPKKKRKVG (SEQ ID NO: 13)) was added to achieve a peptide DNA molar ratio of 100:1. The DNA (about 60ng/μl) was allowed to associate with the SV40 T antigen NLS peptide by incubating at 25 degrees C for about 15 minutes.  
15

Integrase mRNA or integrase protein was added to approximately 25 nl of an aqueous DNA/NLS solution, typically, to produce a final concentration of integrase mRNA of about 50 ng/μl, or an integrase protein concentration of about 33 ng/μl. The mixture was injected into a germinal disc of stage I White Leghorn embryos obtained  
20 about 90 minutes after oviposition of the preceding egg. The integrase mRNA was synthesized as according to Example 6.

Transgenic chicks produced by this procedure using: integrase mRNA/NLS and integrase protein/NLS showed positive results for the presence of heterologously expressed protein in blood, semen and egg white.  
25

**Example 13: Dispersing of plasmid DNA in avian stage I embryos**

DNA samples are Cy3 labeled with a Cy3 ULS labeling kit (Amersham Pharmacia Biotech). Briefly, plasmid DNA (1 μg) is first sheared to approximately 100 to 500 bp fragments by sonication. Resulting DNA is incubated at 65°C for 15 min in Cy3 ULS labeling solution and unincorporated Cy3 dye is removed by spin column chromatography (CentriSep, Princeton Separations). The distribution of the  
30

DNA in stage I avian embryos was visualized after introduction into the stage I avian embryo. Enough high molecular weight or low molecular weight PEI was added to the DNA to coat the DNA. Typically, PEI was added to the DNA to a concentration of about 5%.

5       Figure 22 shows an avian stage one embryo containing Cy3 labeled naked DNA. In Figure 22 it can be seen that the DNA is localized to certain areas of the embryo. Figure 23 and Figure 24 show an avian stage one embryo containing Cy3 labeled DNA coated with low molecular (22 kD) weight PEI (Figure 23) and high molecular weight (25 kD) PEI (Figure 24). In Figures 23 and 24, it can be seen that  
10      the DNA is dispersed throughout the embryos.

These experiments show that DNA/PEI conjugates are distributed more uniformly in the cytoplasm of injected embryos when compared with naked DNA

15      While this invention has been described with respect to various specific examples and embodiments, it is to be understood that the invention is not limited thereto and that it can be variously practiced with the scope of the following claims.

**What is Claimed Is:**

1. A method of producing a transgenic avian comprising:
  - introducing into an avian cell a nucleic acid comprising a transgene, an integrase activity and a cationic polymer;
  - 5 introducing the avian cell into a recipient avian wherein the recipient avian produces an offspring which includes the transgene,  
thereby producing a transgenic avian.
- 10 2. The method of claim 1 wherein introducing the nucleic acid is done by a method selected from the group consisting of microinjecting, transfection, electroporation and lipofection.
3. The method of claim 1 wherein introducing the nucleic acid is done by microinjecting.  
15 4. The method of claim 1 wherein an integrase protein is introduced into the cell.
5. The method of claim 1 wherein a nucleic acid encoding an integrase is introduced into the cell.  
20 6. The method of claim 5 wherein the nucleic acid encoding integrase is mRNA.  
25 7. The method of claim 1 wherein a nuclear localization signal is introduced into the cell.  
8. The method of claim 7 wherein the nuclear localization signal is associated with the nucleic acid comprising a transgene.  
30

9. The method of claim 7 wherein the nuclear localization signal is associated with the nucleic acid comprising a transgene by a chemical bond.

10. The method of claim 7 wherein the localization signal is associated  
5 with the nucleic acid comprising a transgene by an ionic bond.

11. The method of claim 1 wherein the transgene comprises a coding sequence which is expressed in a cell of the transgenic avian producing a polypeptide.

10 12. The method of claim 11 wherein the coding sequence is expressed in the blood of the transgenic avian.

13. The method of claim 11 wherein the coding sequence is expressed in the sperm of the transgenic avian.

15 14. The method of claim 11 wherein the polypeptide is present in egg white produce by the transgenic avian.

20 15. The method of claim 11 wherein the coding sequence is for a light chain or a heavy chain of an antibody.

16. The method of claim 15 wherein the antibody is a human antibody.

25 17. The method of claim 11 wherein the coding sequence is for a cytokine.

18. The method of claim 17 wherein the cytokine is interferon.

19. The method of claim 1 wherein the avian cell is an avian embryo cell.

30 20. The method of claim 1 wherein the avian cell is a cell of an early stage avian embryo comprising a germinal disc.

21. The method of claim 1 wherein the avian cell is an avian embryo cell selected from the group consisting of stage I avian embryo, stage II avian embryo, stage III avian embryo, stage IV avian embryo, stage V avian embryo, stage VI avian embryo, stage VII avian embryo, stage VIII avian embryo, stage IX avian embryo, stage X avian embryo, stage XI avian embryo and stage XII avian embryo.

10 21. The method of claim 1 wherein the avian cell is a cell of a stage X avian embryo.

22. The method of claim 1 wherein the cationic polymer comprises one or more compounds selected from the group consisting of polyethylenimine, polylysine, DEAE-dextran, starburst dendrimers and starburst polyamidoamine dendrimers.

15 23. The method of claim 1 wherein the cationic polymer comprises polyethylenimine.

24. The method of claim 1 wherein the avian is a chicken.

20 25. The transgenic avian produced according to claim 1.

26. An egg produced by a transgenic avian of claim 1.

25 27. The method of claim 1 wherein the method has an increased efficiency of transgenic avian production relative to an identical method without the integrase or cationic polymer.

30 28. A method of producing a transgenic avian comprising:  
introducing into an avian cell a nucleic acid comprising a transgene, an integrase activity and a nuclear localization signal;

introducing the avian cell into a recipient avian wherein the recipient avian produces an offspring which includes the transgene,  
thereby producing a transgenic avian.

5        29.      The method of claim 28 wherein introducing the nucleic acid is done by a method selected from the group consisting of microinjecting, transfection, electroporation and lipofection.

10       30.      The method of claim 28 wherein introducing the nucleic acid is done by microinjecting.

31.      The method of claim 28 wherein an integrase protein is introduced into the cell.

15       32.      The method of claim 28 wherein a nucleic acid encoding an integrase is introduced into the cell.

20       33.      The method of claim 32 wherein the nucleic acid encoding integrase is mRNA.

34.      The method of claim 28 wherein a nuclear localization signal is introduced into the cell.

25       35.      The method of claim 34 wherein the nuclear localization signal is associated with the nucleic acid comprising a transgene.

36.      The method of claim 34 wherein the nuclear localization signal is associated with the nucleic acid comprising a transgene by a chemical bond.

30       37.      The method of claim 34 wherein the localization signal is associated with the nucleic acid by an ionic bond.

38. The method of claim 28 wherein the transgene comprises a coding sequence which is expressed in a cell of the transgenic avian producing a polypeptide.

5 39. The method of claim 38 wherein the coding sequence is expressed in the blood of the transgenic avian.

40. The method of claim 38 wherein the coding sequence is expressed in the sperm of the transgenic avian.

10

41. The method of claim 38 wherein the polypeptide is present in egg white produce by the transgenic avian.

15

42. The method of claim 38 wherein the coding sequence is for a light chain or a heavy chain of an antibody.

43. The method of claim 42 wherein the antibody is a human antibody.

20

44. The method of claim 38 wherein the coding sequence is for a cytokine.

45. The method of claim 44 wherein the cytokine is interferon.

46. The method of claim 28 wherein the cell is an avian embryo cell.

25

47. The method of claim 28 wherein the avian cell is a cell of an early stage avian embryo comprising a germinal disc.

30

48. The method of claim 1 wherein the avian cell is an avian embryo cell selected from the group consisting of stage I avian embryo, stage II avian embryo, stage III avian embryo, stage IV avian embryo, stage V avian embryo, stage VI avian

embryo, stage VII avian embryo, stage VIII avian embryo, stage IX avian embryo, stage X avian embryo, stage XI avian embryo and stage XII avian embryo.

49. The method of claim 28 wherein the avian cell is a cell of a stage X  
5 avian embryo.

50. The method of claim 28 wherein the cationic polymer comprises one or more compounds selected from the group consisting of polyethylenimine, polylysine, DEAE-dextran, starburst dendrimers and starburst polyamidoamine dendrimers.

10 51. The method of claim 28 wherein the cationic polymer comprises polyethylenimine.

52. The method of claim 28 wherein the avian is a chicken.

15 53. The transgenic avian produced according to claim 28.

54. An egg produced by a transgenic avian of claim 28.

20 55. The method of claim 28 wherein the method has an increased efficiency of transgenic avian production relative to an identical method without the integrase or nuclear localization signal.

25 56. A method of dispersing nucleic acid in a cell comprising:  
introducing into a cell a nucleic acid and a dispersing agent in an amount that will disperse the nucleic acid in a cell  
thereby dispersing nucleic acid in a cell.

57. The method of claim 56 wherein the cell is an avian cell.

30 58. The method of claim 56 wherein the cell is an embryo cell

59. The method of claim 56 wherein the nucleic acid includes a transgene.

60. The method of claim 56 wherein NLS or integrase activity is  
5 introduced into the cell.

61. The method of claim 57 including introducing the avian cell into a recipient avian wherein the recipient avian produces an offspring which includes the transgene,

10

62. The method of claim 56 wherein the dispersing is a homogeneous dispersing.

15

63. The method of claim 56 wherein the dispersing agent is a cationic polymer.

64. The method of claim 56 wherein the cationic polymer comprises one or more compounds selected from the group consisting of polyethylenimine, polylysine, DEAE-dextran, starburst dendrimers and starburst polyamidoamine dendrimers.

20

65. The method of claim 56 wherein the dispersing agent is polyethylenimine.

25



Fig. 1



Fig. 2



*Fig. 3*



***Fig. 4***



*Fig. 5*



*Fig. 6*



***Fig. 7***



*Fig. 8*

**pCMV-C31int (SEQ ID NO: 1)**

CATTCGCCATTCAAGGCTCGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTTCGCTATT  
ACGCCAGCCAATACGAAACCGCCTCTCCCCCGCGTGGCCGATTCAATAATGCAGGATCG  
ATCCAGACATGATAAGATAACATTGATGAGTTGGACAAACCACAACTAGAATGCAGTGAAAA  
AAATGCTTATTGTGAAATTGTGATGCTATTGCTTATTGTAACCATTATAAGCTGCAA  
TAAACAAGTTAACAAACAATTGCAATTCTACAAATGTGGTATGGCTGATTATGATCATGAACAG  
AGGTTTTAACAGCAAGTAAAACCTCTACAAATGTGGTATGGCTGATTATGATCATGAACAG  
ACTGTGAGGACTGAGGGCCTGAAATGAGCCTTGGGACTGTGAATCTAAAATACACAAACAA  
TTAGAATCACTAGCTCCTGTGTATAATATTTCATAAATCATACTCAGTAAGCAAAACCTCTC  
AAGCAGCAAGCATATGCAGCTAGTTAACACATTACACTTAAAATTATTTACCTT  
AGAGCTTAAATCTGTAGGTAGTTGTCCAATTATGTACACCACAGAAGTAAGGTTCCCT  
TCACAAAGATCCCAAGCTAGCTTATAATACGACTCACTATAGGGAGAGAGCTATGACGTCGC  
ATGCACCGCGTAAGCTTGGGCCCTCGAGGGATCCGGGTGTCGCTACGCCGCTACGTCTTC  
CGTGCCTCCTGGCGTCTCGTCTCGTCTCGGTGGCGCTCGCCACGTGATCGAAG  
CGCCTCTCGATGGCGTTCCCTGCCCGTAGTCGACTTCGTGACAACAGATCTT  
TCTACGAAGAGCCGACGAACACCGCTTGTGCTACTGACGCGGCCACCACGACTT  
AGGGCCGGTCGGGTAGCGTCGGCGTCTCGGGGAACCATTGGTCAAGGGGAAGCTCGGG  
CTTCGGGGCTCAAGTTGGCAAGCCGCTTCCGCGTGGCGAGCGTACGCCGCTGCCGCGCG  
GCCTGTGCTTCCGGAAGTGTCTCTGCCAACGGGTCGCTGAGCTTCCGCGTACGCCGCTGCCGCG  
TTCGTACAGCTCTCAAGGGCGTTAGGGCGTCGGCGCTCCGCAACAAAGGTTGCCCCT  
CGCCGCTCTCTCAGGCGCTCAGTGAGCTTCCGCAAGCGTCCGGCGTCCACAGAAGC  
GCCAACGTCTCTCGTCGCTTCGGCGTGCCTGATCTTGTGAAGATGCGTCCGCAACGAA  
CTTGTGAGTGCCCATGCTGACGTTGACGTGCTCGTGTGCTGCCAGGTGCGGACGGT  
CGACCACTTCCGGCGACGGCAGCGGTAAGAGTCCTGATCGATTCTCCCGCGCTTCGAA  
GTCATGACGGGCCACACTCGCAGTACAGCTTGTCCATGGCGACAGAAATGGCTGCCCG  
GGAAAGCCCCCTGCCGCCCGGCCCTGCCGTCCAACCACGCCGAAGCTCATACACTCAGCGG  
GCTCGATGATCGTCCGCAATCAAGCTCGACGGCGAGCGTGATCGGTGCGCTGAATG  
CGGTAACCCCTCAATCTTGTGGTCCGCGTCCGGCTTCTTGTAGATCACCTCAGC  
GGCGAAGCCCGCAATACGCGGGTCCGAAGGATTCGCATAACGGTTGCCGGTCCAGGCG  
TTGAAGCGGTCTTCCAATCGTCTGCCCGGGTCCGGCACGGCGTACCGTCCATGCG  
TTACAAAGCCCCGTGATGCTGCCGGGTGAATGGCGCTTGACTGCCGGCTTGAAGGGAAAG  
GTGTTGTGCGTCTTGATCTCACGCCACCACCGGATTACGTCCGGCTCGAACCTCGAAGG  
GTCCGGTAAGGGAGTGGTCGAGTGCACAGCTTGTGATGACGACATTGACCATTGGCCG  
TTGCGCGTGTCTCCCTCGTCTCGAAACAAGCTCGAAGCGTAAGGCCCTCCGCCGAC  
GTACCCGCCAATTGCGCTGAAGGTTCTCGTGTGAGAATCTCGCCACTCAGCGAAG  
ATTCTTGTGCGACCGCTCGAGCCGATAATCAGGTGAATCAGGTCCATGACGTTCCCTGC  
CGGAAGACGCCCTCGAGTGGAAACAATCGTACGCCAGGGCGAGCAATTCCGAGACAAT  
CGGAATCGCGTCATGACCTCAGCGCGAGAACCGCGACACGTCAAGACAATGATCATGT  
TGAGCCGCCGGCGGCATTGTTAGGATGCGTTGCAACTCCGGCGCTCCGCCGCTCCG  
AACGCCGACGTGCCGGCTTCGCTGAAATGCCGACGAACCTGAACCGGCCCGTCGCG  
CTCGACTTCGCGCTGAAAGTCGGCGCCCTTGCTTGTGCTGGCGTACGCTGTGTCGCTGGC  
TTGCTGCGCTCGAATTCTCGCGCTCGCGACTGACGGTGTGAAAGCACCCCGTACGTGTCC  
ACCCCGGTACAACCCCTGTGTGATGTCGGCGACCCCTACGACTAGTGAGCTCGTCAACCC  
GGAATTCCGGACCGGTACCTGCAGCGTACCTCTATAGTGTACCTAAATAGCTTTGCA  
AAAGCCTAGGCTAGAGTCGGAGGCTGGATCGGTCCGGTGTCTCTATGGAGGTCAAAACA  
GCGTGGATGGCGTCTCCAGGCGATCTGACGGTTCAATAACGAGCTCTGCTTATAGACCT  
CCCACCGTACACGCCCTACGCCATTGCGTCAATGGGCGGAGTTGTTACGACATTGGA  
AAGTCCCCTGAGTTGGTCCAAAACAACACTCCCATTGACGTCATGGGTGGAGACTTGG  
AAATCCCCGTGAGTCAAACCGCTATCCACGCCATTGATGTTACTGCCAAAACCGCATCACCA  
TGGTAATAGCGATGACTAATACGTAGATGTTACTGCCAAGTAGGAAAGTCCATAAGGTCTG  
TACTGGGCATAATGCCAGGCGGGCATTACCGTCATTGACGTCATAGGGGGCGTACTTGG  
CATATGATACACTTGATGTTACTGCCAAGTGGCAGTTACCGTAAATACTCCACCCATTGAC  
GTCAATGGAAAGTCCCTATTGGCGTTACTATGGGAACATACGTCAATTGACGTCATGG  
CGGGGGCGTGTGGCGGTAGCCAGGCAGGGCATTACCGTAAGTTATGTAACGACCTGCA

GATGCTTCCGTGAAATTGTTATCCGCTCACAAATTCCACACATTACGAGCCGGAA  
 GCTATAAAGTGTAAAGCCTGGGTGCCTAATGAGTGAAGGGCCTCGTATACGCCATT  
 ATAGGTTAATGTCATGATAATAATGGTTCTAGACGTCAGGTGGCACTTTGGGGAAATG  
 TGCGCGAACCCCTATTGTTATTCTAAATACATTCAAATATGTATCCGCTATGAGA  
 CAATAACCCTGATAATGCTCAATAATATTGAAAAACGCGGAATTGCAAGCTCTGCATTA  
 ATGAATCGGCCAACGCGGGGAGAGGGCGTTGCGTATTGGCGCTCTCCGCTTCGC  
 TCACTGACTCGCTCGCTCGGCTGGCTGCGCGAGCGGTATCAGCTCACTCAAAGGCG  
 GTAATACGGTTATCCACAGAATCAGGGATAACGCAAGGAAAGAACATGTGAGCAAAGGCCA  
 GCAAAAGGCCAGAACCGTAAAAAGGCCGTTGCTGGCGTTTCCATAGGCTCCGCCCC  
 CTGACGAGCATCACAAAATGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAA  
 AGATACCAAGGCCTTCCCCCTGGAAGCTCCCTCGTGCCTCTCGTTCCGACCCCTGCCGCT  
 TACCGGATAACCTGTCGCCTTCTCCCTCGGAAGCGTGGCGCTTCTCAATGCTCACGCT  
 GTAGGTATCTCAGTTCGGTGTAGGTCGTTGCTCCAAGCTGGCTGTGTCACGAACCCCC  
 GTTCAGCCGACCGCTGCCCTATCCGTAACATCGTCTTGAGTCCAACCCGTAAGACA  
 CGACTTATGCCACTGGCAGCAGCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCG  
 GTGCTACAGAGTCTTGAAGTGGGGCTAACTACGGCTACACTAGAAGGACAGTATTGGT  
 ATCTGCGCTCTGCTGAAGCCAGTTACCTCGGAAAAGAGTGGTAGCTTGATCCGCA  
 ACAAAACCACCGCTGGTAGCGGTGGTTTTGTTGCAAGCAGCAGATTACGCGCAGAAAAA  
 AAGGATCTCAAGAAGATCCTTGATCTTCTACGGGTCTGACGCTCAGTGGAAACGAAAAC  
 TCACGTTAAGGGATTTGGTCACTGCCATAACTCGTATAGCATACATTACGAAGTTATGG  
 CATGAGATTATCAAAAAGGATCTCACCTAGATCCTTAAATTAAAATGAAGTTTAAAT  
 CAATCTAAAGTATATATGAGTAAACTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCA  
 CCTATCTCAGCGATCTGCTATTCGTTCATCCATAGTGCCTGACTCCCCGTCGTAGAT  
 AACTACGATAACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATAACCGCAGACCCAC  
 GCTCACCGCTCCAGATTATCAGCAATAAACAGCCAGCCGAAGGGCCGAGCCAGAAGT  
 GGTCTGCAACTTATCCGCTCCATCCAGTCTATTAAATTGTTGCCGGGAAGCTAGAGTAAG  
 TAGTCGCCAGTTAATAGTTGCGAACGTTGCTATTGCTACAGGCATCGTGGTGTAC  
 GCTCGCTTGGTATGGCTTCATTCACTGGCTCCACCGATCAAGGCAGTTACATGA  
 TCCCCCATGTTGCAAAAAGCGGTTAGCTCCTCGGTCTCGATCGTTGTAGAAGTAA  
 GTTGGCCGAGTGTATCACTCATGGTTATGGCAGCAGTCATAATTCTCTACTGTCATGC  
 CATCCGTAAGATGCTTCTGTGACTGGTGTACTCAACCAAGTCATTGAGAATAGTGT  
 ATGCGGCACCGAGTTGCTCTGCCCGCTCAATACGGGATAATACCGGCCACATAGCAG  
 AACTTAAAGTGTCTCATATTGAAAACGTTCTCGGGCGAAAACCTCAAGGATCTTAC  
 CGCTGTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTCAGCATCTT  
 ACTTCACCAGCGTTCTGGGTGAGCAAAACAGGAAGGCAAATGCCAAAAAGGGAAT  
 AAGGGCGACACGAAATGTTGAATACTCATACTCTCCCTTTCAATATTATTGAAGCATT  
 ATCAGGGTTATTGTCATGCCAGGGTGGCACACATATTGATACCAGCGATCCCTACAC  
 AGCACATAATTCAATGCACTCCCTATCGCACATCTAGACCTTATTCTCCCTCCAGC  
 ACACATCGAAGCTGCCAGCAAGCCGTTCTCACAGCTCAAGACCTGGCATGAGCGGATACA  
 TATTGAATGTATTAGAAAATAACAAATAGGGTTCCGCGCACATTCCCCAAAAGTG  
 CCACCTGAAATTGTAACGTTAATATTGTTAAAATTGCGTTAAATTGTTAAATCAG  
 CTCATTGTTAACCAATAGGCCAATCGGCAAATCCCTTATAAATCAAAGAATAGACCG  
 AGATAGGGTTGAGTGTGTTCCAGTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTCC  
 AACGTCAAAGGGCAAAACCGTCTATCAGGGCGATGGCCACTACGTGAACCATCACCCTA  
 ATCAAGTTTTGGGTGAGGTGCCGTAAGCACTAAATCGAACCCCTAAAGGAGCCCC  
 GATTAGAGCTTGACGGGAAAGCCGGCAACGTGGCGAGAAAGGAAGGGAAGAAAGCGAAA  
 GGAGCGGGCGCTAGGGCGCTGGCAAGTGTAGCGGTACGCTGCGCTAACACCACACCCGC  
 CGCGCTTAATGCGCCGCTACAGGGCGCGTC

***Fig. 9***

**pCMV-luc-attB (SEQ ID NO: 2)**

CTCTATCGATAGGTACCGAGCTCTACGCGTCTAGCCCTCGAGCAGGA TCTATA CATTGAA  
 TCAATATTGGCAATTAGCCATATTAGTCATTGGTTATAGCATAAATCAATATTGGCTATT  
 GGCCATTGCATACGTTGTATCTATATCATAATATGTACATTATATTGGCTCATGTCCAATA  
 TGACCGCCATGTTGACATTGATTATTGACTAGTTATTAA TAGTAATCAATTACGGGTCTT  
 AGTTCATAGCCCATAATGGAGTTCCCGTACATAACTACGTAAATGGCCCGCTGGCT  
 GACCGCCCAACGACCCCCGCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCA  
 ATAGGGACTTCCATTGACGTCAATGGGTGGAGTATTACGGTAAACTGCCACTGGCAGT  
 ACATCAAGTGTATCATATGCCAAGTCCGCCCTATTGACGTCAATGACGGTAAATGGCCCG  
 CCTGGCATTATGCCAGTACATGACCTTACGGGACTTCCACTTGGCAGTACATCTACGTA  
 TTAGTCATCGCTATTACCATGGTGATGCGGTTTGGCAGTACATCAATGGCGTGATAGCG  
 GTTTGACTCACGGGATTCCAAGTCTCACCCATTGACGTCAATGGGAGTTGTTTGGC  
 ACCAAAATCAACGGGACTTCCAAAATGTCGAACAACCTCCGCCATTGACGCAAATGGG  
 GGTAGGCGTGTACGGTGGGAGGTCTATAAAGCAGAGCTCGTTAGTGAACC GTCAAGATCGC  
 CTGGAGACGCCATCCACGCTGTTTGACCTCCATAGAACAGACACCGGACCGATCCAGCCTCC  
 CCTCGAAGCTCGACTCTAGGGGCTCGAGATCTGCATCTAAGTAAGCTTGGCATTCCGGTAC  
 TGTGGTAAAGCACCATTGGAAGACGCCAAAAACATAAAGAAAGGCCGGCGCATTCTATC  
 CGCTGGAAAGATGGAACCGCTGGAGAGCAACTGCATAAGGCTATGAAGAGATA GCCTGGGTT  
 CCTGGAACAATTGCTTTACAGATGCACATATCGAGGTGGACATCACTTACGCTGAGTACTT  
 CGAAAATGTCGTTGGCAGAAGCTATGAAACGATATGGCTGAATACAAATCACAGAA  
 TCGTCGTATGCACTGAAAACCTCTTCATTCTTATGCCGGTGTGGCGCGTTATTATC  
 GGAGTTGCAGTTGCGCCCGGAAGCACATTATAATGAAACGTGAATTGCTCAACAGTATGG  
 CATTTCGAGCCTAACCGTGGTGTTCGTTCCAAAAGGGGTTGCAAAAATTTGAAACGTGC  
 AAAAAGCTCCAATCACCAAAATTATTATCATGGATTCTAAAACGGATTACCAAGGGA  
 TTTCAGTCGATGTACACGTTCGTCACATCTCATCTACCTCCCCTTTAATGAATACGATT  
 TGTGCCAGAGTCCTCGATAGGGACAAGACAATTGCACTGATCATGAACCTCTGGATCTA  
 CTGGTCTGCCTAAAGGTGCGCTGCTCATAGAACCTGCCTGCGTGAGATTCTGCATGCC  
 AGAGATCCTATTGGCAATCAAATCATCCGGATACTGCGATTAAAGTGTGTTCCATT  
 CCATCACGGTTTGGAAATGTTACTACACTCGGATATTGATATGTGGATTTCGAGTCGTCT  
 TAATGTATAGATTGAAAGAAGAGCTGTTCTGAGGAGCCTCAGGATTACAAGATTCAAAGT  
 GCGCTGCTGGTGCCAACCTATTCTCCTCTCGCCAAAAGCACTCTGATTGACAAATACGA  
 TTTATCTAATTACACGAAATTGCTCTGGTGGCGCTCCCTCTAAGGAAGTCGGGAAG  
 CGGTTGCCAAGAGGTTCCATCTGCCAGGTATCAGGCAAGGATATGGCTCACTGAGACTACA  
 TCAGCTATTCTGATTACACCCGAGGGGGATGATAAACCGGGCGCGTGGTAAAGTTGTTCC  
 ATTGTTGAAGCGAAGGTGTGGATCTGGATACCGGAAAACGCTGGCGTTAATCAAAGAG  
 GCGAAGTGTGTGAGAGGTCTATGATTATGTCGGTTATGTAACAAATCCGGAAGCGACC  
 AACGCCCTGATTGACAAGGATGGATGGCTACATTCTGGAGACATAGCTTACTGGACGAAGA  
 CGAACACTTCTCATCGTGACCGCTGAAGTCTCTGATTAAGTACAAAGGCTATCAGGTGG  
 CTCCCGCTGAATTGAACTCATCTGCTCCAACACCCCAACATCTCGACGCAGGTGTCGCA  
 GGTCTTCCGACGATGACGCCGGTGAACCTCCGCCCGTTGTTGGAGCACGGAAA  
 GACGATGACGGAAAAGAGATCGTGGATTACGTCGCCAGTCAAGTAACAACCGCGAAAAGT  
 TCGCGGGAGGAGTTGTGTTGTGGACGAAGTACCGAAAAGGTCTTACCGGAAAACCTGACGCA  
 AGAAAAATCAGAGAGATCCTCATAAAGCCAAGAAGGGCGGAAAGATGCCGTGTAATTCTA  
 GAGTCGGGGCGGCCGGCGCTCGAGCAGACATGATAAGATACTTGTGAGTTGGACAAA  
 CCACAACTAGAATGCACTGAAAAAAATGCTTATTGTGAAATTGTGATGCTATTGCTTTA  
 TTTGTAACCATTATAAGCTGCAATAAACAGTTAACACAACAAATTGCAATTCTATTGTT  
 TCAGGTTCAAGGGGAGGTGTGGAGGTTTTAAAGCAAGTAAAACCTCTACAAATGTGGTA  
 AAATCGATAAGGATCAATTGCGCTCAGGTACCGTCAGCATGTTAGGTACGGTCTCGAAGC  
 CGCGGTGCGGGTGCCAGGGCGTGCCTTGGCTCCCCGGCGCGTACTCCACCTCACCCATC  
 TGGTCCATCATGATGAACGGTCGAGGTGGCGGTAGTTGATCCGGCGAACGGCGGGC  
 CGGGAAAGCCCTGCCCTCGAAACCGCTGGCGCGTGGTCACGGTGAGCACGGGACGTGCGA  
 CGGCCTCGGGGTGCGGATACGGGGGAGCGTCAGCGGGTTCTCGACGGTCACGGCGGGC  
 ATGTCGACAGCGAATTGATCCGTCGACCGATGCCCTGAGAGCCTTCAACCCAGTCAGCTC  
 CTTCCGGTGGCGCGGGCATGACTATGTCGCCGCATTGACTGTCTTATCATGC

AACTCGTAGGA CAGGTGCCGG CAGCGCTCTCCGCTTCTCGCTCACTGACTCGCTGCGCTC  
GGTCGTTGGCTGC GGCGAGCGGTATCAGCTCACTCAAAGGCGGTAAATACGGTTATCCACAG  
AATCAGGGATAACGCAGGAAAGAACATGTGAGCAAAGGCCAGCAAAAGGCCAGGAACCGT  
AAAAAGGCCGGTTGGCTGGCGTTTCCATAGGCTCCGCCCCCTGACGAGCATCACAAAAA  
TCGACGCTCAAGTCAGAGGTGGCGAACCCGACAGGACTATAAAGATAACCAAGGCCGGTTCC  
CTGGAAGCTCCCTCGTGCCTCTCTGTTCCGACCCCTGCCGCTTACCGGATACCTGTCCGCC  
TTTCTCCCTCGGGAAAGCGTGGCGTTCTCAATGCTCACGCTGTAGGTATCTCAGTTGGT  
GTAGGTGTTGCTCCAAGCTGGGCTGTGCAACGACCCCGTTCAGCCGACCGCTGCG  
CCTTATCCGTAACATCGTCTTGAGTCAACCCGTAAGACACGACTTATCGCCACTGGCA  
GCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTGAA  
GTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGC  
CAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTGATCCGGAAACAAACCACCGCTGGTAGC  
GGTGGTTTTTGTGCAAGCAGCAGATTACGCGCAGAAAAAAAAGGATCTCAAGAAGATCC  
TTTGATCTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAACGGATTTGG  
TCATGAGATTATCAAAAGGATCTCACCTAGATCCTTTAAATTAAAATGAAGTTTAAA  
TCAATCTAAAGTATATGAGTAAACTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGC  
ACCTATCTCAGCGATCTGCTATTGTTCATCCATAGTGCCTGACTCCCCGTGTTAGA  
TAACTACGATAACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCA  
CGCTCACCGGCTCCAGATTATCAGCAATAAACAGCCAGCCGGAAAGGGCCGAGCGCAGAAG  
TGGTCTGCAACTTATCCGCTCCATCCAGTCTATTAAATTGTTGCCGGAAAGCTAGAGTAA  
GTAGTTGCCAGTTAATAGTTGCCAACGTTGTCATTGCTACAGGCATCGTGGTGTCA  
CGCTCGTGTGGTATGGCTTCATTGCTCCGGTCCCAACGGATCAAGGCAGTTACATG  
ATCCCCCATGTTGTGCAAAAAGCGGTTAGCTCCTCGGTCTCCGATGTTGTCAAGAGTA  
AGTTGGCCGAGTGTATCACTCATGGTTATGGCAGCACTGCATAATTCTTACTGTCATG  
CCATCCGTAAGATGCTTCTGTGACTGGTAGTACTCAACCAAGTCATTCTGAGAATAGTG  
TATGCCGGCACCGAGTTGCTCTGCCGGCTCAATACGGGATAATACCGGCCACATAGCA  
GAACTTAAAAGTGTCTCATATTGAAAACGTTCTCGGGCGAAAACCTCAAGGATCTTA  
CCGCTGTTGAGATCCAGTTGATGTAACCCACTCGTCACCCAACTGATCTCAGCATCTT  
TACTTTCACCAGCGTTCTGGGTGAGCAAAACAGGAAGGCAAAATGCCGAAAAAGGGAA  
TAAGGGCGACCGGAAATGTTGAATACTCATACTCTTCTTTCAATATTATGAGCATT  
TATCAGGGTTATTGTCATGAGCGGATACATATTGAAATGTATTAGAAAAAAACAAAT  
AGGGGTTCCGCCACATTCCCCGAAAAGTGCCACCTGACGCCCTGTAGCGGCCATTAA  
GCGCGGCGGGGTGGTGTACGCGCAGCGTGACCGCTACACTTGCAGCGCCCTAGCGCCC  
GCTCCTTCGCTTCTCCCTTCTGCCACGTTGCGCCGCTTCCCGTCAAGCTCT  
AAATCGGGGGCTCCCTTAGGGTCCGATTAGTGTCTTACGGCACCTCGACCCAAAAAC  
TTGATTAGGGTGTGGTCACGTAGTGGGCATGCCCTGATAGACGGTTTTCGCCCTTG  
ACGTTGGAGTCCACGTTCTTAATAGTGGACTCTGTTCCAAACTGGAACAACACTCAACCC  
TATCTCGGTCTATTCTTTGATTATAAGGGATTTGCCGATTGCGCTATTGGTAAAAAA  
ATGAGCTGATTAAACAAAAATTAAACGCAATTAAACAAATATTAAACGTTACAAATTCC  
CATTGCCATTCAAGGCTCGCAACTGTTGGGAAGGGCGATGGTGCAGGCCCTTGCCTATT  
ACGCCAGCCCAAGCTACCATGATAAGTAAGTAATATTAAAGTACGGGAGGTACTTGGAGCGG  
CCGCAATAAAATCTTATTTCATTACATCTGTTGGTTTTGTGTGAATCGATAG  
TACTAACATACGCTCTCCATCAAACAAAACGAAACAAACTAGCAGAAATAGGCTGTC  
CCCAGTGCAAGTGCAGGTGCCAGAACATT

*Fig. 10*

**pCMV-luc-attP (SEQ ID NO: 3)**

CTCTATCGATAGGTACCGAGCTTACCGTCTAGCCCTCGAGCAGGATCTACATTGAA  
TCAATATTGGCAATTAGCCATATTAGTCATTGGTTATATAGCATAAATCAATATTGGCTATT  
GGCCATTGCATACGTTGTATCTATATCATAATATGTACATTATATTGGCTATGTCCAATA  
TGACCGCCATGTTGACATTGACTAGTTATTAAATAGTAATCAATTACGGGTCATT  
AGTTCATAGCCATATATGGAGTCCCGTACATAACTACGGTAAATGGCCCGCTGGCT  
GACCGCCCAACGACCCCCGCCATTGACGTCAATAATGACGTATGTTCCATAGTAACGCCA  
ATAGGGACTTCCATTGACGTCAATGGGTGGAGTATTACGGTAAACTGCCCACTTGGCAGT  
ACATCAAGTGTATCATATGCCAAGTCCGCCCTATTGACGTCAATGACGGTAAATGGCCCG  
CCTGGCATTATGCCAGTACATGACCTTACGGGACTTCCACTTGGCAGTACATCTACGTA  
TTAGTCATCGCTATTACCATGGTGATGCGGTTTGGCAGTACATCAATGGCGTGGATAGCG  
GTTTGACTCACGGGATTCCAAGTCTCCACCCATTGACGTCAATGGGAGTTGTTGGC  
ACCAAAATCAACGGGACTTCCAAAATGTCGAACAACACTCCGCCATTGACGAAATGGG  
GGTAGGGGTGTACGGTGGGAGGTCTATATAAGCAGAGCTCGTTAGTGAACCGTCAGATCGC  
CTGGAGACGCCATCCACGCTGTTTGACCTCCATAGAACAGACACCAGGACGATCCAGCCTCC  
CCTCGAAGCTCGACTCTAGGGCTCGAGATCTGCGATCTAAGTAAGCTTGGCATTCCGGTAC  
TGTGGTAAAGCCACCATGGAAGACGCCAAAAACATAAAAGAAAGGCCGGCGCATTCTATC  
CGCTGGAAGATGGAACCGCTGGAGAGCAACTGCATAAGGCTATGAAGAGATACGCCCTGGT  
CCTGGAAACAATTGCTTTACAGATGCACATATCGAGGGTGACATCACTACGCTGAGTACTT  
CGAAATGTCGCTCGGTTGGCAGAAGCTATGAAACGATATGGGCTGAATACAAATCACAGAA  
TCGTCGTATGCACTGAAAACCTCTTCATCTTATGCCGGTGGCGCTTATTTATC  
GGAGTTGCAGTTGCGCCCGGAACGACATTATAATGAACGTGAATTGCTAACAGTATGGG  
CATTTCGACGCCAACCGTGGTGTTCGTTCCAAAAAGGGGTTGCAAAAAATTGAAACGTGC  
AAAAAAAGCTCCAATCATCCAAAAAATTATTATCATGGATTCTAAAACGGATTACAGGGA  
TTTCAGTCGATGTACACGTTCGTCACATCTCATCTACCTCCGGTTTAATGAATACGATT  
TGTGCCAGAGTCCTCGATAGGGACAAGACAATTGCACTGATCATGAACCTCTGGATCTA  
CTGGTCTGCCTAAAGGTGCGCTCGCCTCATAGAACCTGCCTGAGATTCTCGCATGCC  
AGAGATCCTATTGGCAATCAAATCATTCCGGATACTGCGATTAAAGTGTGTTCCATT  
CCATCACGGTTTGGAATGTTACTACACTCGGATATTGATATGTGGATTTCGAGTCGTCT  
TAATGTATAGATTGAAAGAAGAGCTGTTCTGAGGAGCCTCAGGATTACAAGATTCAAAGT  
GCGCTGCTGGTGCCTAACCCATTCTCCTCTCGCCAAAAGCACTCTGATTGACAAATACGA  
TTTATCTAATTACACGAAATTGCTCTGGCGCTCCCTCTCTAAGGAAGTCGGGAAG  
CGGTTGCCAACGGGTTCCATCTGCCAGGTACAGGCAAGGATATGGGCTACTGAGACTACA  
TCAGCTATTCTGATTACACCCGAGGGGATGATAAAACGGGCGGTCGGTAAGTTGTTCC  
ATTTTTGAAGCGAAGGTTGTGGATCTGGATACCGGAAAACGCTGGCGTTAATCAAAGAG  
GCGAAGTGTGTGAGAGGTCCTATGATTATGTCCGGTTATGAAACAATCCGGAAGCGACC  
AACGCCTTGATTGACAAGGATGGATGGCTACATTCTGGAGACATAGCTACTGGACGAAGA  
CGAACACTCTCATCGTGACCGCCTGAAGTCTCTGATTAAGTACAAAGGCTATCAGGTGG  
CTCCCGCTGAATTGGAAATCCATCTGCTCCACACCCCAACATCTCGACGCAGGTGTCGCA  
GGTCTTCCCGACGATGACGCCGGTGAACCTCCGCCGCTTGTGTTGGAGCACGGAAA  
GACGATGACGGAAAAAGAGATCGTGGATTACGTCGCCAGTCAGTAACAACCGCGAAAAAGT  
TGCCTGGAGGAGTTGTGTTGTGGACGAAGTACCGAAAGGCTTACGGAAAACCTGACGCA  
AGAAAAAATCAGAGAGATCCTCATAAAGGCCAAGAAGGGCGGAAAGATGCCGTGTAATTCTA  
GAGTCGGGGCGGCCGGCGCTTCGAGCAGACATGATAAGATAATTGATGAGTTGGACAAA  
CCACAACTAGAATGCACTGAAAAAAATGCTTATTGTGAAATTGTGATGCTATTGCTTTA  
TTTGTAACCATTATAAGCTGCAATAAAACAAGTTACAACACAATTGCAATTCTCATTTATGTT  
TCAGGTTCAAGGGGAGGTGTGGAGGTTTTAAAGCAAGTAAACCTCTACAAATGTGGTA  
AAATCGATAAGGATCAATTGCGCTCGACTAGTACTGACGGACACACCGAACGCCCGCG  
AACCCCTCAGCGGATGCCCGGGGCTTCACGTTTCCAGGTCAAAGCGGTTTCCGGAGTA  
GTGCCCAACTGGGTAACCTTGAGTTCTCAGTTGGGGCGTAGGGTCGCCACATGAC  
ACAAGGGGTTGTGACCGGGTGGACACGTACGCCGGTGTACGACCGTCAGTCGCCGAGC  
GCGACTAGTACAAGCCGAAATTGATCCGTCACCGATGCCCTTGAGAGCCTCAACCCAGTC  
GCTCCTCCGGTGGCGCGGGCATGACTATCGTCGCCGACTTATGACTGTCTCTTATC  
ATGCAACTCGTAGGACAGGTGCCGGCAGCGCTTCCGCTTCGACTCGCTGC

GCTCGGTCGGTCCGGCTGCCGCAGCGGTATCAGCTCACTCAAAGGCGTAATACGGTTATCC  
ACAGAACATCAGGGATAACCGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAA  
CCGTAAAAAGGCCGCGTTGCTGGCGTTTCCATAGGCTCCGCCCTGACGAGCATCACA  
AAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAAGCGTT  
CCCCCTGGAAGCTCCCTCGTCGCTCTCCTGTTCCGACCCCTGCCGTTACCGGATACCTGTC  
CGCCTTCTCCCTCGGGAAGCGTGGCGTTCTCAATGCTCACGCTGTAGGTATCTCAGTT  
CGGTGTAGGTGTTGCTCCAAGCTGGCTGTGACGAACCCCCGTTAGCCGACCGC  
TGCGCCTTATCCGTAACATCGTCTTGAGTCCAACCCGTAAGACACGACTTATGCCACT  
GGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCT  
TGAAGTGGTGGCTAACTACGGCTACACTAGAAGGACAGTATTGGTATCTGCGCTCTGCTG  
AAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTTGTACCGGAAACAAACCACCGCTGG  
TAGCGGTGGTTTTGCAAGCAGCAGATTACCGCAGAAAAAAAGGATCTCAAGAAAG  
ATCCTTGATCTTTCTACGGGTCTGACGCTCAGTGGAACGAAAACACTACGTTAAGGGATT  
TTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTAAATTAAAATGAAGTT  
TAAATCAATCTAAAGTATATGAGTAAACCTGGTCTGACAGTTACCAATGCTTAATCAGTG  
AGGCACCTATCTCAGCGATCTGCTATTGTTCATCCATAGTTGCTGACTCCCCGTCGTG  
TAGATAACTACGATAACGGGAGGGCTTACCATCTGGCCCCAGTGTGCAATGATACCGCGAGA  
CCCACGCTCACCGGCTCCAGATTATCAGCAATAAACAGCCAGCCAGCGGAAGGGCCAGCGCA  
GAAGTGGTCTGCAACTTATCCGCTCATCCAGTCTATTAAATTGTTGCCATTGCTACAGGCATGTT  
GTAAGTAGTCGCCAGTTAATAGTTGCGCAACGTTGTTGCCATTGCTACAGGCATGTT  
GTCACGCTCGTCTGGTATGGCTTCACTCAGCTCCGGTCCCAACGATCAAGGCAGTT  
CATGATCCCCATGTTGCAAAAAAGCGTTAGCTCCTCGGTCTCCGATCGTTGTCAGA  
AGTAAGTTGGCCGAGTGTATCACTCATGTTATGGCAGCAGTGCATAATTCTTACTGT  
CATGCCATCCGTAAGATGCTTTCTGTGACTGGTAGTACTCAACCAAGTCATTGAGAAAT  
AGTGTATGCGGCGACCGAGTTGCTCTGCCCGCGTCAATAACGGATAATACCGGCCACAT  
AGCAGAACTTAAAAGTGTCTCATATTGAAAACGTTCTCGGGCGAAAACCTCTCAAGGAT  
CTTACCGCTGTTGAGATCAGTCGATGTAACCCACTCGTCACCCAACTGATCTCAGCAT  
CTTTTACTTCACCAGCGTTCTGGGTGAGCAAAACAGGAAGGCAAAATGCCGAAAAAG  
GGAATAAGGGCGACACGAAATGTTGAATACTCATACTCTTCTTTCAATATTGAAAG  
CATTTATCAGGGTTATTGTCATGAGCGGATACATATTGAATGTTAGAAAAAATAAAC  
AAATAGGGTTCCGCGCACATTCCCCGAAAAGTGCACCTGACGCCCTGTAGCGCGCA  
TTAAGCGCGCGGGTGTGGTTACGCGCAGCGTACACTGCCCCCTAGC  
GCCGCTCCTTCGCTTCTTCCCTTCTGCCACGTTGCCCCCTTCCCGTCAAG  
CTCTAAATCGGGGCTCCCTTAGGGTTCCGATTAGTGTCTTACGGCACCTCGACCCCAA  
AAACTGATTAGGGTGTGGTTACGTTAGTGGCATCGCCCTGATAGACGGTTTTCGCCC  
TTGACGTTGGAGTCCACGTTCTTAATAGTGGACTCTGTTCCAAACTGGAACAAACTCA  
ACCCATCTCGGTCTATTCTTTGATTATAAGGGATTGCGATTGCGCTATTGGTTA  
AAAAATGAGCTGATTAAACAAAATTAAACGAAATTAAACAAATATTACGTTACAAT  
TTCCCATTCGCCATTCAAGGCTGCGCACTGTTGGGAAGGGCGATCGGTGCGGGCTCTTCGC  
TATTACGCCAGCCAAAGCTACCATGATAAGTAAGTAAATTAAAGGTACGGGAGGTACTTGG  
GCGGCCGCAATAAAATCTTATTTCATTACATCTGTGTTGGTTTTGTGTAATCG  
ATAGTACTAACATACGCTCTCCATCAAAACAAAACAAACAAACTAGCAAAATAGGC  
TGTCCCCAGTGCAGTGCCAGGAGCAGACATT

**Fig. 11**

**pCMV-pur-attB (SEQ ID NO: 4)**

CTAGAGTCGGGGCGGCCGCGCTCGAGCAGACATGATAAGATAACATTGATGAGTTGGAC  
AAACCAACAATAGAACATGCAAGTAAAAAATGCTTATTGTGAATTGTGATGCTATTGCT  
TTATTGTAAACCATTATAAGCTGCAATAAACAAAGTTAACAAACAATTGCATTCAATTAT  
GTTTCAGGTTCAAGGGGAGGTGTGGGAGGTTTTAAAGCAAGTAAAACCTCTACAAATGTG  
GTAAAATCGATAAGGATCAATTGGCTTCAGGTACCGTCGACGATGTAGGTACCGTCTCGA  
AGCCCGGGTGCAGGGTGCCAGGGCTGCCCTGGGCTCCCCGGCGTACTCCACCTCACCC  
ATCTGGTCCATCATGATGAAACGGGTCGAGGTGGCGGTAGTTGATCCCGGAACCGCGGGCG  
CACCGGGAAAGCCCTCGCCCTCGAAACCGCTGGGCGGGTGGTCACGGTGAGCACGGGACGTG  
CGACGGCGTCGGCGGGTGCGGATAACGCGGGCAGCGTCAGCGGTTCTCGACGGTACGGCG  
GGCATGTCGACAGCGAAATTGATCCGTCGACCGATGCCCTGAGAGGCCTCAACCCAGTCAG  
CTCCTTCCGGTGGCGCGGGCATGACTATCGTCGCCGCACTTATGACTGTCTTATCA  
TGCAACTCGTAGGGACAGGTGCCGGCAGCGCTCTTCCGCTTCCTCGCTACTGACTCGCTGCG  
CTCGGTCGTTGGCTGCCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCA  
CAGAACATCAGGGATAACCGCAGGAAAGAACATGTGAGCAGAAAAGGCCAGAAAAGGCCAGGAAC  
CGTAAAAAGGCCGCGTTGCTGGCTTTCCATAGGCTCCGCCCCCTGACGAGCATCACAA  
AAATCGACGCTCAAGTCAGAGGTGGCAAACCCGACAGGACTATAAGATAACCAGGCCTTC  
CCCCTGGAAGCTCCCTCGCGCTCTCCTGTTCCGACCCCTGCCGTTACCGATAACCTGTCC  
GCCTTCTCCCTCGGGAAAGCGTGGCGCTTCTCAATGCTCACGCTGTAGGTATCTCAGTT  
GGTAGGTGTCGCTCAAGCTGGCTGTGTCACGAAACCCCGTTGAGCCGACCGCT  
GCGCCTTATCCGTAACATATCGTCTGAGTCCAACCCGTAAGACACGACTTATGCCACTG  
GCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGAGGGCTGCTACAGAGTTCT  
GAAGTGGTGGCTTAACTACGGCTACACTAGAAGGACAGTATTGGTATCTGCGCTTGCTGA  
AGCCAGTTACCTCGGAAAAAGAGTTGGTAGCTCTGATCCGCAAACAAACCACCGCTGGT  
AGCGGTGGTTTTGTTGCAAGCAGCAGATTACGCGCAGAAAAAGGATCTAAGAAGA  
TCCTTGATCTTCTACGGGCTGACGCTCAGTGGAAACGAAAACACTACGTTAAGGGATT  
TGGTCATGAGATTATCAAAAAGGATCTCACCTAGATCCTTTAAATTAAAAATGAAGTTT  
AAATCAATCTAAAGTATATGAGAAACTGGTCTGACAGTTACCAATGCTTAATCAGTGA  
GGCACCTATCTCAGCGATCTGCTATTCGTTATCCATAGTTGCGCTGACTCCCCGTCGTGT  
AGATAACTACGATAACGGGAGGGCTTACCATCTGGCCCCAGTGTGCAATGATACCGCGAGAC  
CCACGCTCACCGGCTCCAGATTATCAGCAATAAACCCAGCCAGCGGAAGGCCAGCGCAG  
AAGTGGCCTGCAACTTATCCGCTCCATCCAGTCTATTAAATTGTTGCCGGGAAGCTAGAG  
TAAGTAGTTGCCAGTTAATAGTTGCGCAACGTTGCTACAGGCTCGGGT  
TCACGCTCGTGTGTTGGTATGGCTTCATTCACTCCGGTTCCCAACGATCAAGGCAGTTAC  
ATGATCCCCATGTTGCAAAAAAGCGGTAGCTCTCGGTCTCCGATCGTTGTCAGAA  
GTAAGTTGCCAGTTAATAGTTGCGCAACGTTGCTACAGGCTACAGGCTCGGGT  
ATGCCATCCGTAAGATGCTTTCTGTGACTGGTGAAGTACTCAACCAAGTCATTCTGAGAATA  
GTGTATGCCGACCGAGTTGCTCTGCCCGCGTCAATACGGATAATACCGGCCACATA  
GCAGAACTTTAAAGTCTCATTTGAAAAACGTTCTCGGGCGAAAACCTCAAGGATC  
TTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTCGACCCAACTGATCTCAGCATC  
TTTACTTCACCAGCGTTCTGGGTGAGCAAAACAGGAAGGCCAAATGCCGAAAAAGG  
GAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCAATTATTGAAGC  
ATTATCAGGGTTATTGTCATGAGCGGATACATATTGAATGTTAGAAAAATAAACAA  
AATAGGGTTCCCGCACATTCCCCGAAAAGTGCCACCTGACGCCCTGTAGCGCGCAT  
TAAGCGGGCGGGGTGGTTACGCGCAGCGTACCGCTACACTTGCCAGGCCCTAGCG  
CCCGCTCCTTCGCTTCCCTCCCTAGGGTCCGATTAGTGTGCTTACGGCACCTCGACCCAAAA  
AACTGATTAGGGTGTGGTCACGCTAGTGGCCATGCCCTGATAGACGGTTTCGCCCT  
TTGACGTTGGAGTCCACGTTAATAGTGGACTCTTGTGTTCAAACGGAAACAACACTCAA  
CCCTATCTCGGTCTATTCTTGTATTATAAGGGATTGCGGATTTGCCCTATTGGTTAA  
AAAATGAGCTGATTTAACAAAATTAAACCGAATTAAACAAATATTAAACGTTACAATT  
TCCCATTGCCATTAGGCTGCCAACGTTGCGGAGGGCGATCGGTGCCCTCTCGCT  
ATTACGCCAGCCAAGCTACCATGATAAGTAAGTAATATTAAAGGTACGGGAGGTACTGGAG  
CGGCCGAATAAAATATCTTATTTCATTACATCTGTGTTGGTTTGTGAATCGA

TAGTACTAACATACGCTCTCCATCAAAACAAAACGAAACAAAACAAACTAGCAAAATAGGCT  
GTCCCCAGTCAAGTGCAGGTGCCAGAACATTCTATCGATAGGTACCGAGCTTTACGC  
GTGCTAGCCCTCGAGCAGGATCTATACATTGAATCAATATTGGCAATTAGCCATATTAGTC  
TTGGTTATATAGCATAAATCAATATTGGCTATTGGCATTGCATACGTTGTATCTATATCAT  
AATATGTACATTATATTGGCTCATGTCCAATATGACCGCCATGTTGACATTGATTATTGAC  
TAGTTATTAATAGTAATCAATTACGGGTCAATTAGTTCATAGCCCATAATGGAGTTCCGCG  
TTACATAACTACGGTAAATGGCCCGCTGGCTGACGCCAACGACCCCCGCCATTGACG  
TCAATAATGACGTATGTTCCCATAGAACGCCAATAGGGACTTCCATTGACGTCAATGGGT  
GGAGTATTTACGGTAAACTGCCACTGGCAGTACATCAAGTGTATCATATGCCAAGTCCGC  
CCCCTATTGACGTCAATGACGGTAAATGGCCCGCTGGCATTATGCCAGTACATGACCTTA  
CGGGACTTCCACTTGGCAGTACATCTACGTATTAGTCATCGTATTACCATGGTGATGCG  
GTTTGGCAGTACATCAATGGCGTGGATAGCGGTTGACTCACGGGAGTTCCAAGTCTCC  
ACCCCATTGACGTCAATGGGAGTTGTTTGGCACAAAATCAACGGGACTTCCAAAATGT  
CGTAACAACCTCCGCCCCATTGACGCAAATGGCGGTAGCGTGTACGGGGAGGTCTATAT  
AAGCAGAGCTCGTTAGTGAACCGTCAGATCGCTGGAGACGCCATCCACGCTGTTTGACC  
TCCATAGAAGACACCGGGACCGATCCAGCCTCCCTCGAAGCTCGACTCTAGGGCTCGAGA  
TCTGCGATCTAAGTAAGCTTGCATGCCTGCAGTCGGCCGCCACGACCGGTGCCACCAC  
CCCCTGACCCACGCCCTGACCCCTCACAGGAGACGCCCTTCATGACCGAGTACAAGCCC  
ACGGTGCGCCTGCCACCCGCGACGACGTCCCCGGCGTACGCACCCCTGCCGCCCGT  
CGCCGACTACCCGCCACCGCGCACACCGTCGACCCGGACCGCCACATCGAGCGGTCACCG  
AGCTGCAAGAACACTTCCACGCCGTGGCTCGACATCGGCAAGGTGTGGGTGCGGGAC  
GACGGGCCGCGGTGGCGGTCTGGACCACGCCGGAGAGCGTCAAGCGGGGGCGGTTCGC  
CGAGATCGGCCCGCGCATGGCGAGTTGAGCGGTTCCCGCTGGCGCGCAGCAACAGATGG  
AAGGCCCTCTGGCGCCGACCGGCCAACGGGCCAACGGAGCCCGCGTGGTTCCCTGGCCACCGTCGGCGTC  
TCGCCGACCAAGGGCAAGGGCTGGGCAGCGCCGTGCTCCCCGGAGTGGAGGCGGC  
CGAGCGCGCCGGGTGCCGCTTCCCTGGAGACCTCCCGCCCCGCAACCTCCCCTCTACG  
AGCGGCTCGGTTACCGTCACCGCCACGTCGAGGTGCCCAGAGGACCGCGCACCTGGTG  
ATGACCCGCAAGCCGGTGCCTGACGCCGCCCCACGACCCGAGCGCCGACCGAAAGGAG  
CGCACGACCCCATGGCTCCGACCGAAGCCGACCCGGCGGGCCCCGCCGACCCGACCCGCC  
CCCGAGGCCACCGACT

**Fig. 12**

**pCMV-pur-attP (SEQ ID NO: 5)**

CTAGAGTCGGGGCGGCCGCGCTTCGAGCAGACATGATAAGATAACATTGATGAGTTGGAC  
 AAACCACAACATAGAATGCAGTGAAAAAAATGCTTATTGTGAAATTGTGATGCTATTGCT  
 TTATTTGTAACCATTATAAGCTGAATAAACAGTTAACACAACAATTGCATTCACTTAT  
 GTTCAGGTTCAGGGGGAGGTGTGGAGGTTTTAAAGCAAGTAAAACCTCTACAAATGTG  
 GTAAAATCGATAAGGATCAATTGGCTCGACTAGTACTGACGGACACACCGAAGCCCCGGC  
 GGCAACCCCTCAGCGGATGCCCGGGGCTCACGTTTCCCAGGTAGAAGCGGTTTCGGGA  
 GTAGTGCCTCAACTGGGTAACCTTGAGTTCTCAGTTGGGGCGTAGGGTCGCCGACAT  
 GACACAAGGGTTGTGACCGGGTGGACACGTACGCGGTGCTTACGACCGTCAGTCGCG  
 AGCGCGACTAGTACAAGCGAATTGATCCGTCGACCGATGCCCTGAGAGCCTCAACCCAG  
 TCAGCTCCTTCCGGTGGCGGGCATGACTATCGTCGCCGACTTATGACTGTCTCTT  
 ATCATGCAACTCGTAGGACAGGTGCCGCAGCGCTCTCCGTTCTCGCTCACTGACTCGC  
 TCGCTCGGTGTTGGCTCGGGAGCGGTATCAGCTCACTCAAAGGCGTAATAACGTTA  
 TCCACAGAATCAGGGATAACGAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAG  
 GAACCGTAAAAGGCCGCGTTGCTGGCGTTTCCATAGGCTCCGCCCCCTGACGAGCATIC  
 ACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAGATAACAGGCG  
 TTTCCCCCTGGAAGCTCCCTCGTGCCTCTCTGTTCCGACCCCTGCCGCTTACCGGATACCT  
 GTCCGCCTTCTCCCTCGGGAAAGCGTGGCGCTTCTCAATGCTCACGCTGTAGGTATCTCA  
 GTTCGGTGTAGGTGCTTCGCTCCAAGCTGGGCTGTGTCAGAACCCCCCGTTAGCCCGAC  
 CGCTGCCCTTATCCGTAACTATCGTCTGAGTCCAACCCGGTAAGACACGACTTATGCC  
 ACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTTAGGCCGCTACAGAGT  
 TCTTGAAGTGGTGGCCTAATCAGGCTACACTAGAAGGACAGTATTGGTATCTGGCTCTG  
 CTGAAGCCAGTTACCTTGGAAAAAGAGTTGGTAGCTTGTGATCCGGAAACAAACCACCGC  
 TGGTAGCGGTGGTTTTGTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAG  
 AAGATCCTTGATCTTCTACGGGCTGACGCTCAGTGGAAACGAAACTCACGTTAAGGG  
 ATTTGGTCACTGAGATTACAAAAGGATCTCACCTAGATCCTTTAAATTAAAATGAAG  
 TTTAAATCAATCTAAAGTATATGAGTAAACTGGCTGACAGTTACCAATGCTTAATCA  
 GTGAGGCACCTATCTCAGCGATCTGCTATTGCTCATCCATAGTGCCTGACTCCCCGTC  
 GTGTAGATAACTACGATAACGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATAACCGCG  
 AGACCCACGCTCACCGGCTCCAGATTATCAGCAATAAACAGCCAGCGGAAGGGCGAGC  
 GCAGAAGTGGTCTGCAACTTATCCGCCTCATCCAGTCTATTAAATTGTTGCCGGGAAGCT  
 AGAGTAAGTAGTCGCCAGTTAATAGTTGCCAACGTTGTTGCCATTGCTACAGGCATCGT  
 GGTGTCACGCTCGTGTGGTATGGCTTCATTAGCTCCGGTCCAAAGGATCAAGGCAG  
 TTACATGATCCCCATGTTGTGCAAAAAAGGGTTAGCTCCTCGGTCTCGATCGTTGTC  
 AGAAGTAAGTGGCCGAGTGTATCACTCATGGTTATGGCAGCAGTCATAATTCTCTTAC  
 TGTGATGCCATCCGTAAGATGCTTTCTGTGACTGGTAGTACTCAACCAAGTCATTGAG  
 AATAGTGTATGCCGAGCCGAGTTGCTCTGCCGGCTCAATACGGGATAATACCGCGCCA  
 CATAGCAGAACTTAAAGTGTCTCATCTGGAAAAGCTTCTCGGGCGAAAACCTCTCAAG  
 GATCTTACCGCTGTTGAGATCCAGTGTGATGTAACCCACTCGTCACCCACTGATCTCAG  
 CATCTTACTTCAACCAGCTTCTGGGTGAGCAAAACAGGAAGGCAAAATGCCGCAAA  
 AAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCTTCAATATTATTG  
 AAGCATTATCAGGGTTATTGTCTCATGAGCGGACATATTGAATGTTAGAAAAATA  
 AACAAATAGGGTTCGGCAGCATTTCCCCAAAAGGCCACCTGACGCCCTGTAGCGGC  
 GCATTAAGCGCGCGGGTGTGGTGGTACGCGCAGCGTACCGCTACACTGCCAGCGCC  
 AGCGCCCGCTCTTCGCTTCTCCCTTCTCGCCACGTTGCCGGCTTCCCGTC  
 AAGCTCTAAATCGGGGCTCCCTTAGGGTCCGATTAGTGTGCTTACGGCACCTCGACCC  
 AAAAAGCTGATTAGGGTGTGGTACGTTGAGTGGACTCTTGTGCTTCAAAACTGGAAACAC  
 CCCTTGACGTTGGAGTCCACGTTTAATAGTGGACTCTTGTGCTTCAAAACTGGAAACAC  
 TCAACCCATCTCGGTCTATTCTTGTGATTATAAGGGATTGCGATTTCGGCCTATTGG  
 TTAAAAAAATGAGCTGATTAAACAAAATTAAACGCGAATTAAACAAAATTAAACGTTAC  
 AATTCCCATCGCCATTCAAGGCTGCGCAACTGTTGGGAAGGGCGATGGTGCAGGGCTCTT  
 CGCTATTACGCCAGCCAAAGCTACCATGATAAGTAAGTAATATTAAAGGTACGGGAGGTACTT  
 GGAGCGGCCGCAATAAAATCTTATTTCATTACATCTGTGTTGGTTTGTGAA  
 TCGATAGTACTAACATACGCTCTCCATCAAAACAAACAAACTAGCAAAATA

GGCTGTCCCCAGTGCAAGTGCAGGTGCCAGAACATTCTATCGATAGGTACCGAGCTCTT  
ACCGTGCTAGCCCTCGAGCAGGATCTATAACATTGAATCAATATTGGCAATTAGCCATATTA  
GTCATTGGTTATATAGCATAAATCAATATTGGCTATTGGCATTGCATACGTTGTATCTATA  
TCATAATATGTACATTATATTGGCTCATGTCCAATATGACC GCCATGGTACATTGATTAT  
TGACTAGTTATTAATAGTAATCAATTACGGGTCTTAGTCATAGCCCATAATGGAGTTC  
CGCGTTACATAACTACGGTAAATGGCCCGCTGGCTGACCGCCAAACGACCCCCGCCATT  
GACGTCAATAATGACGTATGTTCCATAGTAACGCCAATAGGGACTTCCATTGACGTCAAT  
GGGTGGAGTATTACGGTAAACTGCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGT  
CCGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCTGGCATTATGCCAGTACATGAC  
CTTACGGGACTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGA  
TGC GGTTTGGCAGTACATCAATGGCGTGGATAGCGGTTGACTCACGGGATTCCAAGT  
CTCCACCCCATTGACGTCAATGGGAGTTGTTGGCACCAAATCAACGGGACTTCCAAA  
ATGTCGTAACAACCTCCGCCATTGACGCAAATGGCGGTAGGGTGTACGGTGGGAGGTCT  
ATATAAGCAGAGCTCGTTAGTGAACCGTCAGATCGCCTGGAGACGCCATCCACGCTGTTT  
GACCTCCATAGAAGACACCGGACCGATCCAGCCTCCCTCGAAGCTGACTCTAGGGGCTC  
GAGATCTCGGATCTAAGTAAGCTTGATGCCCTGCAGGTCGGCCACGACCGGTGCCGCA  
CCATCCCCTGACCCACGCCCTGACCCCTCACAGGAGACGACCTTCCATGACCGAGTACAA  
GCCCACGGTGCCTGCCACCGCGACGACGTCCCCGGCCGTACGCCACCGGCCACATGAGCGGGTC  
ACCGAGCTGCAAGAACTCTTCCTCACGCGCTCGGGCTCGACATGGCAAGGTGTGGGTCGC  
GGACGACGGGCCGGTGGCGGTCTGGACACGCCGGAGAGCGTCGAAGCGGGCGGTGT  
TCGCCGAGATCGGCCCGCATGGCGAGTTGAGCGGTTCCCGCTGGCCGCGCACAG  
ATGGAAGGCCTCTGGCGCCGACCGGCCAACGGAGGCCCGTGGTTCTGGCCACCGTCGG  
CGTCTGCCGACCAACCAGGGCAAGGGCTGGCAGCGCCGTCGTGCTCCCGGAGTGGAGG  
CGGCCGAGCGCGCCGGGTGCCCTCCCTGGAGACCTCCGCGCCCCGCAACCTCCCCTTC  
TACGAGCGGCTCGGCTTACCGTCACCGCCACGTCAGGTGCCGAAGGACCGCGCACCTG  
GTGCATGACCCGCAAGCCGGTGCCTGACGCCGCCACGACCCGCAAGCGCCGACCGAAA  
GGAGCGCACGACCCATGGCTCCGACCGAAGCCGACCCGGGGCCCCGCCGACCCGCACC  
CGCCCCCGAGGCCACCGACT

**Fig. 13**

**pCMV-EGFP-attB (SEQ ID NO: 6)**

CTAGAGTCGGGCGGCCGCTCGAGCAGACATGATAAGATAACATTGATGAGTTGGAC  
AAACCACAACATAGAACATGCAGTAAAAAAATGCTTATTGTGAAATTGTGATGCTATTGCT  
TTATTTGTAACCAATTATAAGCTGCAATAAACAGTTAACACAACAATTGCTATTGCT  
GTTTCAGGTTCAAGGGGAGGTGTGGGAGGTTTTAAAGCAAGTAAAACCTCTACAAATGTG  
GTAAAATCGATAAGGATCAATTCGGCTTCAGGTACCGTCAGCATGTAGGTACGGTCTCGA  
AGCCGGGTGCGGGTGCAGGGCGTGCCCTGGCTCCCCGGCGTACTCCACCTCACCC  
ATCTGGTCCATCATGATGAACGGGTCGAGGTGGCGTAGTTGATCCCGCGAACGGCGGGCG  
CACCGGGAAGCCCTCGCCCTCGAAACCGCTGGCGCGGTGGTCACGGTGAGCACGGGACGTG  
CGACGGCGTCGGCGGGTGCAGGATACGCGGGCAGCGTCAGCGGGTCTCGACGGTACGGCG  
GGCATGTGACAGCGAACATTGATCGTCGACCGATGCCCTGAGAGCCTAACCCAGTCAG  
CTCCTCCGGTGGCGCGGGCATGACTATCGTCGCCGCACTTATGACTGTCTTATCA  
TGCAACTCGTAGGACAGGTGCCGAGCGCTTCCGCTTCGCTCACTGACTCGCTGCG  
CTCGGTCGTTCGGCTGCCGAGCGGTATCAGCTCACTCAAAGGCGGTAAACGGTTATCCA  
CAGAACATCAGGGATAACGCGAGGAAGAACATGTGAGCAGAAAAGGCCAGCAAAGGCCAGGAAC  
CGTAAAAGGCCGTTGCTGGCTTTCCATAGGCTCCGCCCGTACGAGCATCACAA  
AAATCGACGCTCAAGTCAGAGGTGGCAGAACCCGACAGGACTATAAGATAACAGGCGTTTC  
CCCCTGGAAGGCTCCCTCGCCTCTCCTGAGTCCGACCCCTGCCGCTTACCGGATACTGTCC  
GCCTTCTCCCTCGGAAGCGTGGCTTCTCAATGCTCACGCTGTAGGTATCTCAGTT  
GGTAGGTCGTTGCTCCAAGCTGGCTGTGACGAACCCCCGTTAGGCCGACCGCT  
GCGCCTATCCGTAACTATCGCTTGAGTCCAACCCGGTAAGACACGACTATGCCACTG  
GCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGAGGCGGTCTACAGAGTTCT  
GAAGTGGTGGCTAACACTACGGCTACACTAGAACAGTATTGGTATCTCGCTCTGCTGA  
AGCCAGTTACCTCGGAAAAAGAGTTGGTAGCTCTGATCCGCAAACAAACCACCGCTGGT  
AGCGGTGGTTTTTGTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTAAGAAGA  
TCCTTGATCTTCTACGGGCTGACGCTCAGTGAACGAAAACACGTTAACGGATT  
GGTCATGAGATTATCAAAAGGATCTCACCTAGATCCTTAAATTAAAAATGAAGTTT  
AAATCAATCTAAAGTATATATGAGTAAACTGGTCTGACAGTTACCAATGCTTAATCAGTGA  
GGCACCTATCTCAGCGATCTGCTATTGTTCATCCATAGTTGCCCTGACTCCCCGCTGT  
AGATAACTACGATACGGAGGGCTTACCATCTGGCCCCAGTGTGCAATGATAACCGCAGAC  
CCACGCTCACCGGCTCCAGATTATCAGCAATAAACAGCCAGCCGGAAAGGGCCAGCGCAG  
AAAGTGGCCTGCAACTTATCCGCTCCATCCAGTCTATTAAATTGTTGCCGGAAAGCTAGAG  
TAAGTAGTCGCCAGTTAATAGTTGCGCAACGTTGCTACAGGCATCGTGGTG  
TCACGCTCGTCTGGTATGGCTCATTCAAGCTCCGGTCCAAACGATCAAGGCAGTTAC  
ATGATCCCCATGTTGTGCAAAAAAGCGGTAGCTCTCGGCTCCGATGTTGTCAGAA  
GTAAGTTGCCGAGTGTATCAGTGTGACTGGTAGACTCAACCAAGTCATTCTGAGAATA  
ATGCCATCGTAAGATGCTTTCTGTGACTGGTAGACTCAACCAAGTCATTCTGAGAATA  
GTGTATGCCGAGGTTGCTCTGGCTCAATACGGATAATACCGGCCACATA  
GCAGAACTTAAAGTGTCTCATATTGGAAACGTTCTCGGGCGAAAACCTCTAAGGATC  
TTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCACTGATCTCAGC  
TTTACTTCAACAGCGTTCTGGGTGAGCAAAACAGGAAGGAAATGCCGAAAAAGG  
GAATAAGGGCAGCGAACGGAAATGTTGAATACTCATACTCTCCTTTCAATATTGAGC  
ATTATCAGGTTATTGCTCATGAGCGGATACATATTGAAATGTATTAGAAAATAACA  
AATAGGGTTCCGCGCACATTCCCCGAAAAGTGCCACCTGACGCCCTGAGCGCGCAT  
TAAGCGCGGGGTGTGGTACCGCAGCGTGACCGCTACACTTGCACGCCCTAGCG  
CCCGCTCCTTCTGCTTCTCCCTCCTTCTCGCCACGTTGCCGGCTTCCCGTCAAGC  
TCTAAATGGGGGCTCCCTTAGGGTTCCGATTTAGTGTCTTACGGCACCTGACCCAAA  
AACTGATTAGGGTGTAGGTTACGTAGTGGGCCATGCCCTGATAGACGGTTTCGCCCT  
TTGACGTTGGAGTCCACGTTCTTAATAGTGGACTCTTGTCAAACGAAACAACACTCAA  
CCCTATCTCGGTCTATTCTTTGATTATAAGGGATTGCGGATTTCCGCTATTGGTTAA  
AAAATGAGCTGTTAACAAAATTAAACCGAATTAAACAAAATTAAACGTTACAATT  
TCCCATTGCCATTCAAGGCTGCCACTGTGGGAAGGGCGATGGTGGGGCTTCTCGCT  
ATTACGCCAGCCAAAGCTACCATGATAAGTAAGTAAATTAAAGGTACGGGAGGTACTTGGAG  
CGGCCGAATAAAATCTTATTTCATTACATCTGTGTGGTTTGTGAATCGA

TAGTACTAACATACGCTCTCCATCAAAACAAAACGAAACAAACTAGCAAATAGGCT  
GTCCCCAGTGCAGTGCCAGAACATTCTCTATCGATAGGTACCGAGCTCTACGC  
GTGCTAGCCCTCGAGCAGGATCTATACATTGAATCAATATTGCCAATTAGCCATTAGTC  
TTGGTTATATAGCATAAATCAATATTGGCTATTGCCATTGCATACGTTGTATCTATATCAT  
AATATGTACATTATATTGGCTATGTCCAATATGACGCCATGTTGACATTGATTATTGAC  
TAGTTATTAATAGTAATCAATTACGGGGTCAATTAGTCATAGCCATATATGGAGTTCCGCG  
TTACATAACTTACGGTAATGGCCCGCTGGCTGACCGCCAACGACCCCCGCCATTGACG  
TCAATAATGACGTATGTTCCCATACTAAGCACAATAGGGACTTCCATTGACGTCAATGGGT  
GGAGTATTTACGGTAAACTGCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTCCGC  
CCCCTATTGACGTCAATGACGGTAAATGGCCCGCTGGCATTATGCCAAGTACATGACCTTA  
CGGGACTTCCACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTATGCG  
GTTTGGCAGTACATCAATGGCGTGGATAGCGGTTGACTCACGGGATTCCAAGTCTCC  
ACCCCATTGACGTCAATGGGAGTTGTTGGCACCAAAATCAACGGGACTTCCAAAATGT  
CGTAACAACTCCGCCCCATTGACGAAATGGCGGTAGGCAGTACGGTGGGAGGTCTATAT  
AAGCAGAGCTCGTTAGTGAACCGTCAGATCGCCTGGAGACGCCATCCACGCTTTGACC  
TCCATAGAAGACACCGGGACCGATCCAGCCTCCCTCGAAGCTCGACTCTAGGGCTCGAGA  
TCCCCGGGTACCGGTGCCACCATGGTGGAGCAAGGGCGAGGAGCTGTTACCGGGGTGGTGC  
CCATCCTGGTCGAGCTGGACGGCGACGTAACGCCACAAGTTCAAGCGTGTCCGGCGAGGGC  
GAGGGCGATGCCACCTACGGCAAGCTGACCCCTGAAGTTCACTGCACCAACCGCAAGCTGCC  
CGTGCCTGGCCACCTCGTGGACCCCTGACCTACGGCGTGCAGTGCCTCAGCCGCTACC  
CCGACCAACATGAAGCAGCACGACTTCTCAAGTCCGCCATGCCGAAGGCTACGTCCAGGAG  
CGCACCATCTTCTCAAGGACGACGGCAACTACAAGACCCGCCAGGTGAAGTTGAGGG  
CGACACCCCTGGTAACCGCATCGAGCTGAAGGGCATCGACTCAAGGAGGACGGCAACATCC  
TGGGGCACAAGCTGGAGTACAACACTACAACAGCCACAACGTCTATATCATGGCCACAAGCAG  
AAGAACGGCATCAAGGTGAACCTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCT  
CGCCGACCACTACCAGCAGAACACCCCCATGGCGACGGCCCGTGCCTGCCCACAACC  
ACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCAAACGAGAACGCGCATCACATGGTC  
CTGCTGGAGTTCGTGACGCCGCCGGACTACTCTGGCATGGACGAGCTGTACAAGTAAAG  
CGGCCGCTCGAGCATGCAT

*Fig. 14*

**p-12.0-lys-LSP1FNMM-CMV-pur-attB (SEQ ID NO: 7)**

GGGCTGCAGGAATTGATTGCCGCCTCTTGATATTCACTCTGTTGTATTCATCTCTTCT  
TGCCGATGAAAGGATATAACAGTCGTATAACAGTCGTGAGGAAACTTGGTATTCCTTC  
TGATCAGTGTGTTATAAGTAATGTTGAATATTGGATAAGGCTGTGTCCTTGTCTGGG  
AGACAAAGCCCACAGCAGGTGGTGGTGGTGGCAGCTCAGTGACAGGAGAGGTTTT  
TTGCCTGTTTTTTTTTTTTAAGTAAGGTGTTCTTTCTTAGTAAATTCT  
CTACTGGACTGTATGTTGACAGGTAGAACACATTCTCAAAGAACCTTGGAAA  
CTGTACAGCCCTTCTTCATTCCCTTTGCTTCTGTGCCAATGCCCTGGTCTGATT  
GCATTATGGAAAACGTTGATCGGAACCTGAGGTTTTATTTATAGTGTGGCTTGAAGCTTG  
GATAGCTGTTGTTACACGAGATACCTTATAAGTTAGGCCAGCTGATGCTTATTTTC  
CCTTGAAAGTAGTGAGCCTCTCGGTTTTCTGAAACTGGTGAGGCTTAGATTTT  
CTAATGGGATTTTACCTGATGATCTAGTGCATACCCAAATGCTGTAAATGTTTCTTA  
GTTAACATGTTGATAACTCGGATTACATGTTGATATACTTGCATCTGTGTTCTAGTA  
AAAATATATGGCATTATAGAAATACGTAATTCCCTGATTTCTTTTTATCTATGCT  
CTGTGTGTACAGGTCAAACAGACTCACTCTATTATTTATAGAATTATGAGTC  
TGTGTTGGTCTGTGTTGTAAGGATACAGCCTTAAATTCTAGAGCGATGCTCAGTAAG  
GCGGGTTGTCACATGGGTCAAATGTAACACGGGACGTTGGCTGTCCTCCGAGATC  
CAGGACACTAAACTGCTCTGCACTGAGGTATAAATCGCTTCAGATCCCAGGGAAAGTGCAGA  
TCCACGTGCATATTCTAAAGAAGAATGAAACTCTAAATATTGGCATAGGAAGCAA  
GCTGCATGGATTGTTGGGACTTAAATTATTTGGTAACGGAGTGCATAGGTTAAACAC  
AGTTGCAGCATGCTAACGAGTCACAGCCTTATGCAGAAGTGTGATGCCTGGATGCCTGTC  
GCTGTTACGGCACTGCCTGCACTGAGCATTGCAGATAGGGTGGGTGCTTGTGTC  
TTCCCACACGCTGCCACACAGCCACCTCCCGAACACATCTCACCTGCTGGTACTTTCAA  
ACCACATCTTAGCAGTAGTAGATGAGTTACTATGAAACAGAGAACGTTCTCAGTTGGATATTCT  
CATGGGATGTCTTTCCATGTTGGCAAAGTATGATAAAGCATTCTATTTGAAATT  
TGCACCTGTTAGTTCTGAATCCTTCTATAGCACCATTGAGCAGGTGAGGCTCTG  
GTGTGGCTGTGCTGTTCAATCTTAAAGCTTCTTGGAAATACACTGACTGATTG  
AAAGTCTCTTGAAGATAGTAAACAGTACTTACCTTGTGATCCAATGAAATCGAGCATTCTAGT  
TGTAAAAGAATTCCGCCTATTCAACCATGTAATGTAATTACACCCCCAGTGCAGACT  
TTGGAATATATTCAAGTAATAGACTTGGCCTCACCCCTTGTGACTGTATTGAAATAG  
AAAATTTAAACTGTGCATATGATTATTACATTATGAAAGAGACATTCTGCTGATCTTCA  
AATGTAAGAAAATGAGGAGTGCCTGCTTTATAAATACAAGTGTGAAATTAGTGCAG  
GTGTCCCTAAAAAAAAAGTAATATAAAAGGACCAGGTGTTTACAAGTGAAT  
ACATTCTATTGGTAAACAGTTACATTGAAAGATTACAGCGCTGCTGACTTTCTAA  
ACATAAGGCTGTATTGTCCTGACCATTGCATTCCCTCATCCCAATTGCACAAGGAT  
GTCTGGTAAACTATTCAAGAAATGGCTTGAAATACAGCATGGAGCTGTGAGTTGGA  
ATGCAGAGTTGCACTGCAAATGTCAGGAAATGGATGTCAGAATGCCAACTCCAAAG  
GATTTATATGTTATAGTAAGCAGTTCTGATTCCAGCAGGCCAAAGAGTCTGCTGAA  
TGTGTTGGTGCAGGAGACCTGTATTCTCAACAAGGTAAGATGGTATCCTAGCAACTGCGGA  
TTTAATACATTTCAGCAGAAGTACTTAGTTAATCTCACCTTGGATGTTCATCAT  
TTTAGATGTTACTTGAAGAAATGACCTTGTGAAACTTGTGCTGCAACTTGTGAGGCT  
CCTTGGAGACTGTTAAGCAATTGCTGCTCAACTTTGTGTTGGCTTAAACTGCAATAG  
TAGTTACCTGTATTGAAGAAATAAGACCATTGTTATTAATTTGTTGCTGTC  
TTCATTGACTGTCATCCTGCACTGCCCATTATGTCAGTTCTGTCAGATATTCA  
ACATCAAAACTTAACGTGAGCTCAGTGGAGTTACAGCTGCGGTTTGATGCTGTTATT  
CTGAAACTAGAAATGATGTTGTCATCTGCTCATCAAACACTTCATGCAGAGTGTAAAGGC  
TAGTGAGAAATGCATACATTATTGATACTTTAAAGTCAACTTTTATCAGATT  
TTCATTGGAAATATATTGTTCTAGACTGCACTGCTGAAATGCAAGTCTGAT  
TGGCATGAAGAACGACAGCACTCTCATCTTAAACTTCATTTGGAAATGAAGGAAGTT  
AAGCAAGGGCACAGGTCCATGAAATAGAGACAGTGCCTCAGGAGAAAGTGAACCTGGATT  
CTTGCTAGTGTCTAAATCTGAGTGAGGAAAGTAACACCCGATTCTGAAAGGGCTCC  
AGCTTAAATGCTCCAAATTGAAGGTGGCAGGCAACTTGGCCACTGGTATTACTGCATTA  
TGTCTCAGTTCCGAGCTAACCTGGCTTCTCCACTATTGAGCATGGACTATAGCCTGGCTTC  
AGAGGCCAGGTGAAGGTTGGATGGGTGAAGGAGTGTGGCTGGCTGGGGACTGTG

GGGACTCCAAGCTGAGCTGGGTGGGCAGCACAGGGAAAAGTGTGGTAACTATTTTAAG  
TACTGTGTTGCAAACGTCATCTGCAAATACGTAGGGTGTACTCTCGAAGATTAAACAGT  
GTGGGTCAGTAATATATGGATGAATTACAGTGGAACATTCAAGGGTAGATCATCTAACG  
ACACCAGATCATCAAGCTATGATTGGAGCGGTATCAGAAGAGCGAGGAAGGTAAGCAGTCT  
TCATATGTTCCCTCACGTAAGCAGTCTGGAAAGTAGCAGCCCCTGAGCAGAGACAAG  
GAAATAATTCAAGGAGCATGTGCTAGGAGAACTTCTGCTGAATTCTACTTGCAAGAGCTTT  
GATGCCCTGGCTTCTGGTGCCTCTGCAGCACCTGCAGGCCAGAGCCTGTGGTGAGCTGG  
GGGAAAGATTCTGCTCAAGTCCAAGCTCAGCAGGTATTGCTTGCTTCTCCCCCAGCA  
CTGTGCAGCAGAGTGGAACTGATGTCAGGCCCTGCAACTACCTGCTGCTGCAGGCAGA  
CTGCTCTCAGAAAAAAGAGAGCTAACTCTATGCCATAGTCTGAAGGTAATGGGTTTTAAAA  
AAGAAAACACAAAGGCAAAACCGGCTGCCCATGAGAAGAAAGCAGTGGTAACATGGTAGA  
AAAGGTGCAGAAGCCCCCAGGCAGTGTGACAGGCCCTCTGCCACCTAGAGGCGGGAAACAA  
GCTTCCCTGCCTAGGGCTCTGCCCGAAGTGCCTGTTCTTGGTGGGTTTGTGTTGGCGT  
TTGGTTTGAGATTAGACACAAGGGAAAGCCTGAAAGGAGGTGTTGGCACTATTTGGTT  
GTAAAGCCTGTACTTCAAATATATTTGTGAGGGAGTGTAGCGAATTGGCAATTAAAAA  
TAAAGTTGCAAGAGATTGAAGGCTGAGTAGTTGAGAGGGTAACACGTTAATGAGATCTTCT  
GAAACTACTGCTCTAAACACTTGTGTTGAGTGGTGAGACCTTGGATAGGTGAGTGCCTTGT  
TACATGTCTGATGCACTTGCTTGTCTTCCATCCACATCCATGCATTCCACATCCACGCA  
TTTGTCACTTATCCCATACTGTCAATATCTGACATACTGTCTTGTCACTTGGTCAGAA  
GAAACAGATGTGATAATCCCCAGCCGCCAAGTTGAGAAGATGGCAGTTGCTTCTTCCC  
TTTTCTGCTAAGTAAGGATTCTCCTGGCTTGACACCTCACGAAATAGTCTCCTGCCCC  
TTACATTCTGGCATTATTCAAATATCTTGGAGTGCCTGCTCTCAAGTTGTCTTCC  
TACTCTAGAGTGAATGCTCTAGAGTGAAGAGAGAAGGAGAGAAGATGTTGGCCAGTTC  
TCTGATGAACACACCTCTGAATAATGGCAAAGGTGGGTTCTGAGGAACGGGAG  
CGTTTGCCCTGAAAGCAAGGAGCTCTGGAGTTGAGTTGAGTTGAGGAGTGGAA  
CTGGTGCCTAAAGCAGATCCCTAGGTTCCCTGCTACTCTTCTTCTTGGCAGTCAGTT  
TATTCCTGACAGACAAACAGCCACCCCCACTGCAGGCTTAGAAAGTATGTGGCTGCCTGG  
GTGTGTTACAGCTCTGCCCTGGTGAAAGGGATTAAACGGGCACCATTCACTCCAAACAGG  
ATCCTCATTCTGGATCAAGCTGTAAGGAACCTGGCTCCAACCTCAAACATTAATTGGAG  
TACGAATGTAATTAAAACAGCATTCTGCATTCTTAAGTCATTAGTCTGGACTCTGCAGCA  
TGTAGGTCGGCAGCTCCACTTCTCAAAGACCCTGATGGAGGAGTAGTAAAATGGAGAC  
CGATTCAAGAACCAACGGAGTGTGCCAGAAACTGATGAAATAATGCATGAATTGTG  
TGGTGGACATTTTAAATACATAACTTCAAATGAGGTGGAGAAGGTGAGTGT  
TATTAGCAGCCATAAAACAGGTGAGCGAGTACCATTTCTACAAGAAAACGATTCTG  
AGCTCTCGCTAAGTATAAGTTCTCATAGCGCTGAAAGCTCCCCCTGGCTGCCATCT  
CAGCTGGAGTGCAGTGCCTTGGGTTCTCCTACAGCAGTAATGGACAATACTTC  
ACAAAAATTCTTCTTCTGTCACTGTGGGATCCCTACTGTGCCCTCTGGTTACGTTA  
CCCCCTGACTGTCCATTAGCGGTTGGAAAGAGAAAAGAATTGGAAATAACATGTC  
TACGTTATCACCTCCTCCAGCATTGGTTTAATTATGTCAATAACTGGCTTAGATTGG  
AAATGAGAGGGGTTGGGTGATTACCGAGGAACAAAGGAAGGCTTATATAACTCAAGTCT  
TTTATTAGAGAACTGGCAAGCTGCAAAAACAAAAAGGCTTACCAACAAATTAAAGTGAAT  
AGCCGCTATAGCCAGCAGGCCAGCACGAGGGATGGTGCAGTGCCTGGCAACTATGCCACGGCC  
TGCTTGACTCTGAGAGCAACTGCTTGGAAATGACAGCAGTGGTGCATTTCTGGTT  
TCAGAATGCGTAGAGCGTGTGCTGGCGACAGTTCTAGTTAGGCCACTCTTTCT  
TCTCTCTCATTCTCTTAAGCATGTCTCATGGTAATCCAGTCAGTGAACGTTCAA  
CAATGAATCCATACTGTAGGATTCTCGTGGTGAATCAATTCTGTGAGGTCTATAAAAT  
ATGGAAGCTTATTATTTCTGTTCTCATACGTTCTCTATGACAATTACACATCCAC  
CACAGCAAATTAAAGGTGAAGGAGGCTGGTGGGATGAAGAGGGTCTTAGCTTACGTTCT  
TCCTTGCAGGCCACAGGAAAATGCTGAGAGCTGAGAATAACAGCCTGGGTAAGAAGTCA  
GTCTCCCTGCTGGGACAGCTAACCGCATCTTATAACCCCTCTGAGACTCATCTTAGGACCA  
ATAGGGTCTATCTGGGTTTTGTTCTGCTGTTCTGGAAGGCTATCTCACTATTTC  
CTGCTCCCACGGTTACAAACCAAGAGTACAGCCTGAATTCTAGGTTCTAGGCCACATTACATAAA  
TTGACCTGGTACCAATTGTTCTATAGTTATTCTCCTCCCCACTGTGTTAACCCC  
TTAAGGCATTAGAACACTAGAACATAGAATGGTTGGATTGGAAGGGCCTAAACATC

ATCCATTCCAACCCCTGCCATGGCTGCCACCCACTGGCTCAGGCTGCCAGGGCC  
CCATCCAGCCTGCCCTGAGCACCTCCAGGGATGGGCACCCACAGCTCTGGCAGCCT  
GTGCCAACACCTCACCCTCTGGTAAAGAATTCTCTTTAACATCTAATCTAAATCTCT  
TCTCTTTAGTTAACGCATTCCCTTTCCCCTGCTATCTGTCCAAGAAATGTGTATT  
GGTCTCCCTCTGCTTATAAGCAGGAAGTACTGGAGGCTGCAGTGAGGTCTCCCCACAGCC  
TTCTCTCTCCAGGCTGAACAAGCCCAGCTCCTCAGCCTGTCTCGTAGGAGATCATCTTA  
GTGGCCCTCCTCTGGACCCATTCCAACAGTTCACGGCTTCTGTGGAGCCCCAGGTCTGG  
ATGCAGTACTTCAGATGGGCCTTACAAAGGCAGAGCAGATGGGACAATCGCTTACCCCTC  
CCTGCTGGCTGCCCTGTTGATGCAGCCCAGGGTACTGTTGGCCTTCAGGCTCCCAGAC  
CCCTTGCTGATTGTGTCAAGCTTTCATCCACCAGAACCCACGCTTCTGGTTAATACTTC  
TGCCTCACTTCTGTAAGCTTCAAGGAGACTTCCATTCTTAGGACAGACTGTGTACA  
CCTACCTGCCCTATTCTGCATATATACTTCAGTTCATGTTCTGTAACAGGACAGAAT  
ATGTATTCCCTCTAACAAAATACATGCAGAATTCTCTAGTGCCTACAGTAGGGTTTCATG  
GCAGTATTAGCACATAGTCATTTGCTGCAAGTACCTTCAAGCTGCCACTCCATAAATC  
CTGTATTGGATCAGTTACCTTGGTAAAGCTTTGTATCTGCAGAGAACCTGGGTT  
CTGATGTGCTTCAGCTCTGCTCTGACTGCACCATTCTAGATCACCCAGTTGTTCC  
TGTACAACCTCCTGCTCCATCCTTCCCAGCTGTATCTTGACAAATACAGGCCTATT  
TTTGTGTTGCTTCAGCAGCCATTAAATTCTCAGTGTATCTGTTCTGTTGATGCCACTG  
GAACAGGATTTCAGCAGTCTGCAAAGAACATCTAGCTGAAAACCTTCTGCCATTCAATAT  
TCTTACCAAGTTCTTCTGTTGAGGTGAGCCATAAATTACTAGAACCTCGTCACTGACAAGT  
TTATGCATTTATTACTCTATTATGTACTTACTTGCACATAACACAGACACGCACATATT  
TGCTGGGATTCACAGTGTCTCTGCTCCTCACATGGTTTACTGTCATACTCCGTTAT  
AACCTGGCAATCTGCCAGCTGCCATCACAAGAAAAGAGATTCTTTATTACTTCTC  
TTCAGCCAATAAACAAAATGTGAGAAGGCCAACAGAACACTGTGGGGCAGGCTGCCATCAA  
GGGAGAGACAGCTGAAGGGTTGTGTAGCTCAATAGAACATTAAGAACATAAAAGCTGTGT  
ACAGTTTGCTGATTATACAGGCACGCCAACAGCAGAGAGGGCTGTGCCAAGGCCACC  
TTGCAGTCCTGTTGTAAGATAAGTCATAGGAACTTTCTGGTGAATTGCGTGGAGAAT  
CATGATGGCAGTCTGCTGTTACTATGGTAAGATGCTAAAGTAGGAGACAGCAAAGTAAC  
ACTTGCTGCTGTAGGTGCTCTGCTATCCAGACAGCGATGGCACTCGCACACCAAGATGAGGG  
ATGCTCCAGCTGACGGATGCTGGGCAGTAACAGTGGTCCCATGCTGCCCTGCTCATTAGC  
ATCACCTCAGCCCTACCAGCCCATTAGAAGGATCATCCAAAGCTGAGGAAAGTTGCTCATC  
TTCTCACATCAAAACCTTGGCCTGACTGATGCCCTCCGGATGCTAAATGTGGTCACT  
GACATCTTATTCTATGATTCAAGTCAGAACCTCCGGATCAGGAGGGAACACATAGTG  
GGAATGTACCCCTAGCTCAAGGCCAGATCTCCTCAATGATCATGCTACTTAGGAA  
GGTGTGTGTGAATGTAGAATTGCTTTGTTATTCTCCTGCTGTAGGAACACATT  
TTGAATACCAGAGAAAAAGAAAAGCTCTCTGGCATGGAGGAGTTGTCACACTGCAA  
ATAAAAGGATGCAGTCCAAATGTTCATATCTCAGGGTCTGAAGGAGGATCAGAAACTGTG  
TATACAATTCTAGGCTCTGTAATGCAGCTTGAAAGCTGTTCTGGCCAGGCAGTACT  
AGTCAGAACCCCTGGAAACAGGAACAAATGTCTCAAGGTGCAGCAGGAGGAAACACCTTGC  
CCATCATGAAAGTGAATAACCACGCTGCCCTGAAGGAATCCAGCTCTGTTGAGCAGGTGCT  
GCACACTCCCACACTGAAACACAGTTCATTTTATAGGACTTCCAGGAAGGATCTCTTCT  
TAAGCTCTTAATTATGGTACATCTCAGTTGGCAGATGACTATGACTACTGACAGGAGAAT  
GAGGAACCTAGCTGGAAATATTCTGTAATTGAAAGCAGGAGTTAGCGAAGATCTCATTCTCCATG  
TTGGTACAGCACAGTCTGGCTATGAAAGTCTGCTTACAAGGAAGAGGATAAAATCATAG  
GGATAATAAAATCTAAGTTGAAGACAATGAGGTTTAGCTGCATTGACATGAAGAAATTGA  
GACCTCTACTGGATAGCTATGGTATTACGTGTCTTTGCTTAGTTACTTATTGACCCAG  
CTGAGGTCAAGTATGAACCTCAGGTCTCTGGCTACTGGCATGGATTGATTACATACAAC  
TAATTTAGCAGTGATTTAGGTTATGAGTACTTTGCAGTAAATCATAGGGTAGTAATG  
TTAATCTAGGGAAAAAAAAAGCCAACCCCTGACAGACATCCCAGCTCAGGTGGAAATC  
AAGGATCACAGCTCAGTGGCTCCAGAGAACACAGGGACTCTCTCTAGGACCTTATG  
ACAGGGCCTCAAGATAACTGATGTTAGTCAGAACACTTCCATTCTGGCCACAGTTCAGCTG  
AGGCAATCCTGGAATTCTCTCCGCTGCACAGTTCAAGTCTGACAGTTCTGACAGTTCTG  
GCACCTTTGGGTAGGCCGTATCCAAGGAGCAGAACAGTCCAGCTATGGTCAGGGAGTGCC

TGACCGTCCCAACTCACTGCACTCAAACAAAGGCAGAACACCACAAGAGTGGCTTTGTTGAAA  
TTGCAGTGTGGCCCAGAGGGCTGCACCACTGGATTGACCACGAGGAACATTAATCCT  
CAGCAAGTGCATTGAGCCATTAAATTGAACACTAATGACTACAAATGCAATCAGTATCA  
ACAAGTGGTTGGCTTGGAAAGATGGAGTCTAGGGCTCTACAGGAGTAGCTACTCTCTAATG  
GAGTTGCATTTGAAGCAGGACACTGTGAAAAGCTGGCCTCTAAAGAGGCTGCTAAACATT  
AGGGTCATTTCCAGTGCACCTTCAGTGTCTGCAGTTCCCCATGCAAAGCTGCCAAA  
CATAGCACTTCCAATTGAATACAATTATGCAGGCGTACTGCTTCTGCCAGCACTGCTC  
TCTCAATGAACCTCAACAAACAATTCAAAGTCTAGTAGAAAGTAACAAAGCTTGAAATGTCA  
TTAAAAAGTATATCTGCTTCAGTAGTTCACTTATGCCCCACTAGAAACATCTTGTAC  
AAGCTGAACACTGGGGCTCAGATTAGTGGTAAAACCTACTTATACAATCATAGAATCATA  
GAATGGCCTGGGTTGGAAGGGACCCAAAGGATCATGAAGATCCAACACCCCCGCCAGGGCA  
GGGCCACCAACCTCCAGATCTGGTACTAGACCAGGCAGGCCAGGGCTCCATCCAACCTGGCC  
ATGAACACCTCCAGGGATGGAGCATCCACAACCTCTGGGCAGCCTGTGCCAGCACCTCAC  
CACCCCTCTGTGAAGAACCTTCCCTGACATCCAATCTAAGCCTCCCTCCTTGAGGTTAG  
ATCCACTCCCCCTGTGCTATCACTGTCTACTTTGAAAAAGTTGATTCTCCTCCTTTTG  
GAAGGTTGCAATGAGGCTCCTTGAGCCTTCTCTGAGGATGAACAAGGCCAGCT  
CCCTCAGCCTGCTTTATAGGAGAGGTGCTCCAGCCCTCTGATCATCTTGTGGCCCTCCTC  
TGGACCCGCTCCAAGAGCTCCACATCTTCTGTACTGGGGGCCAGGCCTGAATGCAGTA  
CTCCAGATGGGGCCTCAAAAGAGCAGAGTAAAGAGGGACAATCACCTCCTCACCCCTGCTGG  
CCAGCCCTCTCTGATGGAGCCCTGGATACAACACTGGCTTCTGAGCTGCAACTTCTCCTTAT  
CAGTTCCACTATTAAAACAGGAACAATACAACAGGTGCTGATGGCCAGTGCAGAGTTTCA  
CACTTCTCATTCTGGTAGATCTTAGATGAGGAACGTTGAAGTTGTGCTTCTGCGTGTGCTT  
CTTCTCTCTCAAATACTCTGCTGATACCTCACCCACCTGCCACTGAATGGCTCCATGGC  
CCCCTGCAGCCAGGGCCCTGATGAACCCGGCACTGCTCAGATGCTGTTAATAGCACAGTA  
TGACCAAGTTGCACCTATGAATACACAAACATGTGTTGCATCCTCAGCACTTGAGAAGAA  
GAGCAAATTGCAATTGTCAGGAAATGGTTAGTAATTCTGCCAATTAAACTTGTATCT  
ACCATGGCTTTTATGGCTTTAGTAGTGGTACACTGATGATGAACAATGGCTATGCAGT  
AAAATCAAGACTGTAGATATTGCAACAGACTATAAAATTCTCTGTGGCTTAGCCAATGTGG  
TACTTCCCACATGTATAAGAAATTGGCAAGTTAGAGCAATGTTGAAGTGTGGAAAT  
TTCTGTATACTCAAGAGGGCTTTGACAACACTGTAGAACAGAGGAATCAAAGGGGTGGG  
AGGAAGTTAAAAGAAGAGGCAGGTGCAAGAGAGCTGCAAGTCCCCTGTGTACGACACTG  
GCAACATGAGGTCTTGCTAATCTTGGCTTTGCTTCCCTGGCTGCCTTAGGGTGC  
GATCTGCCCTCAGACCCACAGCCTGGCAGCAGGAGGACCTGATGCTGCTGGCTCAGATGAG  
GAGAACATCAGCCTGTTAGCTGCTGAAGGATAGGCACGATTGGCTTCTCAAGAGGAAT  
TTGGCAACCAGTTAGAACAGGCTGAGACCATCCCTGTGCTGCAGAGATGATCCAGCAGATC  
TTAACCTGTTAGCACCAAGGATAGCAGCGCTGCTGGATGAGACCCCTGCTGGATAAGTT  
TTACACCGAGCTGTACCAAGCAGCTGAACGATCTGGAGGCTTGCCTGATCCAGGGCTGGCG  
TGACCGAGACCCCTGTGAAGGAGGATAGCATTGGCTGTGAGGAAGTACTTCAAGGAG  
ATCACCTGTACCTGAAGGAGAAGAAGTACAGCCCTGCGCTGGGAAGTCGTGAGGGCTGA  
GATCATGAGGAGCTTAGCCTGAGCACCAACCTGCAAGAGAGCTGAGGGCTAAGGAGTAA  
AAGTCTAGAGTCGGGGCGGCCGCTCGAGCAGACATGATAAGATAACATTGATGAGTT  
GGACAAACCACAACATGAGTAAAAAAATGCTTATTGAAATTGTGATGCTAT  
TGCTTATTGTAACCATTATAAGCTGCAATAAACAAAGTTAACAAACAATTGCTTCAATT  
TTATGTTCAAGGTTAGGGGAGGTGTTGGAGGTTTTAAAGCAAGTAAACCTCTACAAA  
TGTGGTAAAATGATAAGGATCCGTCAGCGATGCCCTTGAGAGGCCTCAACCCAGTCAGCT  
CCTTCCGGTGGCGCGGGCATGACTATCGTCGCCACTTATGACTGCTTCTTATCATG  
CAACTCGTAGGACAGGTGCCGGCAGCGCTTCCGCTTCCGCTCACTGACTCGCTGCC  
CGGTGTTCGGCTGCCGGAGCGGTATCAGCTCAACTCAAAGCGGTAAACGGTTATCCACA  
GAATCAGGGATAACGCAGGAAAGAACATGTGAGCAGGAAAGGCCAGGAAACCG  
AAAAAGGCCGCTTGTGGCTTTCCATAGGCTCGCCCCCTGACGAGCATCACAAA  
ATCGACGCTCAAGTCAGAGGTGGCAAACCCGACAGGACTATAAAGATAACAGGGTTTCCC  
CCTGGAAGCTCCCTCGTGCCTCTCCGTGTTCCGACCTGCGCTTACCGGATACCTGTCCGC  
CTTCTCCCTCGGAAGCGTGGCGCTTCTCAATGCTCACGCTGTAGGTATCTCAGTTG  
TGTAGGTCGTTGCTCCAAGCTGGCTGTGCAAGAACCCCCGTTGAGCCGCTGC

GCCTTATCCGTAACATCGTCTGAGTCCAACCCGTAAGACACGACTATGCCACTGGC  
AGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGA  
AGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTGGTATCTGCGCTTGCTGAAG  
CCAGTTACCTTCGGAAAAAGAGTTGGTAGCTTGTACCGGAAACAAACCACCGCTGGTAG  
CGGTGGTTTTGTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTAAGAAGATC  
CTTGATCTTCTACGGGTCTGACGCTCAGTGGAACGAAAACACGTTAACGGATTTG  
GTCATGAGATTATCAAAAAGGATCTCACCTAGATCCTTAAATTAAAAATGAAGTTAA  
ATCAATCTAAAGTATATGAGTAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGG  
CACCTATCTCAGCGATCTGCTATTGTTCATCCATAGTTGCCTGACTCCCCGTCGTGAG  
ATAACTACGATAACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATAACCGCGAGACCC  
ACGCTCACCGGCTCCAGATTATCAGCAATAAACAGCCAGCCAGGGAGGCAGCGCAGAA  
GTGGTCTGCAACTTATCCGCCTCATCCAGTCTATTAAATTGTTGCCGGGAAGCTAGAGTA  
AGTAGTCGCCAGTTAATAGTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGT  
ACGCTCGTCGTTGGTATGGCTTCACTCAGCTCCGGTCCAAAGCATCAAGGCGAGTTACAT  
GATCCCCATGTTGTCGAAAAAAAGCGGTTAGCTCCTCGGTCTCGATCGTTGTCAGAAGT  
AAGTTGCCGCAGTGTATCACTCATGGTTATGGCAGCAGTCATAATTCTCTTACTGTCAT  
GCCATCCGTAAGATGCTTTCTGTGACTGGTAGTACTCAACCAAGTCATTGAGAAATAGT  
GTATGCCGCACCGAGTTGCTCTGCCCGCGTCAATACGGGATAATACCGGCCACATAGC  
AGAACTTTAAAAGTGTCACTCATGGAAAACGTTCTCGGGGGAAAACCTCTAAGGATCTT  
ACCGCTGTTGAGATCCAGTTGATGTAACCCACTCGTGACCCAACTGATCTCAGCATCTT  
TTACTTTCACCAGCGTTCTGGGTGAGCAAAAACAGGAAGGAAAATGCCGAAAAAGGGA  
ATAAGGGCACACGGAAATGTTGAATACTCATACTCTCCCTTTCAATATTATTGAAGCAT  
TTATCAGGGTTATTGTCATGAGCGGATACATATTGAATGTATTAGAAAATAACAAA  
TAGGGGTTCCGCCACATTCCCCAAAAGTGCCACCTGACGCCCTGTAGCGGCCATT  
AGCGCGGCCGGGTGTGGTGGTTACGCGCAGCGTACACTGCCAGCGGCCAGCGCC  
CGCTCCTTCGCTTCTCCCTTCTCGCCACGTTGCCGGCTTCCCCGTCAAGCTC  
TAAATCGGGGGCTCCCTTAGGGTCCGATTAGTGTCTTACGGCACCTCGACCCAAAAAA  
CTTGATTAGGGTGTGGTTACGTTAGTGTGACTGGGAAAGGGGATCGGTGCGGCCCTTCGCTAT  
GACGTTGGAGTCCACGTTCTTAATAGTGGACTCTGTTCAAACCTGGAACACACTCAACC  
CTATCTCGGTCTATTCTTGTGATTATAAGGGATTGCCCATTGCGCTATTGCGCTATTGTTAAA  
AATGAGCTGATTAAACAAAATTAAACGCAATTAAACAAAATTAAACGTTACAATTTC  
CCATTGCCATTAGGCTCGCAACTGTTGGGAAGGGGATCGGTGCGGCCCTTCGCTAT  
TACGCCAGCCAAAGCTACCATGATAAGTAAGTAATATTAAAGTACGGGAGGTACTGGAGCG  
GCCGCTAGAACTAGTGGATCCCCGGCGCAATAAAATATCTTATTTCATTACATCTG  
TGTGTTGGTTTTGTGTGAATCGATAGTACTAACATACGCTCTCCATCAAACAAAACGAA  
ACAAAACAAACTAGCAAAATAGGCTGCCCCAGTGCAAGTGCAGGTGCCAGAACATTCTCT  
ATCGATAGGTACCGAGCTTACGCGTGTAGCCCTCGAGCAGGATCTACATATTGAATCAA  
TATTGGCAATTAGCCATTAGTCATTGGTTATAGCATAAAATCAATTGGCTATTGGC  
ATTGCATACGTTGTATCTATATCATAATATGTACATTATATTGGCTCATGTCATATGAC  
GCCCATGTTGACATTGATTAGTACTAGTTATTAAATAGTAATCAATTACGGGTCTTAGT  
CATAGCCCATATATGGAGTTCCGCCATTACATAACTACGGTAATGGCCCTGGCTGACC  
GCCCAACGACCCCGCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAG  
GGACTTCCATTGACGTCAATGGGTGGAGTATTACGGTAAACTGCCACTGGCAGTACAT  
CAAGTGTATCATATGCCAAGTCCGCCCTATTGACGTCAATGACGGTAATGGCCGCTG  
GCATTATGCCAGTACATGACCTTACGGACTTCTACTGGCAGTACATCTACGTATTAG  
TCATCGCTATTACCATGGTGTGCGGTTTGGCAGTACATCAATGGCGTGGATAGCGGTT  
GACTCACGGGATTCCAAGTCTCACCCATTGACGTCAATGGGAGTTGTTGGCACC  
AAATCAACGGGACTTCCAAAATGTCGTAAACAACCTCCGCCATTGACGCAAATGGCGGT  
GGCGTGTACGGTGGAGGTCTATAAAGCAGAGCTCGTTAGTGAACCGTCAGATCGCCTGG  
AGACGCCATCCACGCTGTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCCCTC  
GAAGCTCGACTCTAGGGCTCGAGATCTGCGATCTAAGTAAGCTGCAATGCCAGGTGG  
CCGCCACGACGGTGCCACCATTCCCTGACCCAGGCCCTGACCCCTCACAAAGGAGACG  
ACCTTCCATGACCGAGTACAAGCCCACGGTGCCTGCCACCGCGACGACGTCCCCGG  
CCGTACCGCACCTCGCCGCCGTTGCCACTACCCGCCACCGGCCACCGTCGACCCCG

GACCGCCACATCGAGCGGGTCAACCGAGCTGCAAGAACTCTTCCTCACGCCGTGGGCTCGA  
CATCGGAAGGTGTGGGTCGGGACGACGGGCCGCGGTGGCGGTCTGGACCACGCCGGAGA  
GCGTCGAAGCGGGGGCGGTGTTCGCCGAGATCGGCCCGCATGGCGAGTTGAGCGGGTCC  
CGGCTGCCGCGCAGCAACAGATGAAAGGCCTCTGGCGCCGACCGGCCAAGGAGCCCAG  
GTGGTTCTGGCCACCGTCGGCGTCTGCCCGACCACCAGGGCAAGGGTCTGGGAGCGCCG  
TCGTGCTCCCCGGAGTGGAGGCGGCCGAGCGCGCCGGGTGCCCGCTTCCTGGAGACCTCC  
GCGCCCGCAACCTCCCCCTCTACGAGCGGCTCGGCTTACCGTCACCGCCACGTCGAGGT  
GCCCGAAGGACCGCGCACCTGGTGATGACCCGCAAGCCCAGGCTGACGCCGCCCCACG  
ACCCGCAAGCGCCGACCGAAAGGAGCGCACCGACCCATGGCTCCGACCGAAGCCGACCCGG  
CGGCCCCCGCACCCGACCGCCCCGAGGCCCACCGACTTAGAGTCGGGGCGGCCGGC  
CGCTTCGAGCAGACATGATAAGATAACATTGATGAGTTGGACAAACCACAACATAGAATGCAG  
TGAAAAAAATGCTTATTGTGAAATTGTGATGCTATTGCTTATTGTAACCATTATAAG  
CTGCAATAAACAAAGTTAACAAACAATTGCAATTGATTCACTTTATGTTTCAGGTTCAGGGGGAGG  
TGTGGGAGGTTTTAAAGCAAGTAAAACCTCTACAAATGTGGTAAATCGATAAGGATCAA  
TTCGGCTTCAGGTACCGTCGACGATGTAGGTACGGTCTGACGGCGGTGCGGGTGCCAG  
GGCGTGCCTGGCTCCCGGGCGTACTCCACCTCACCCATCTGGTCCATCATGATGAA  
CGGGTCGAGGTGGCGGTAGTTGATCCCGCGAACGCGCGCGCACCGGGAAAGCCCTCGCCCT  
CGAAACCGCTGGCGCGGTGGTCACGGTGAGCACGGACGTGCGACGGCGTCGGCGGTGCG  
GATACCGGGGCGCGTCAGGGTTCTGACGGTCACGGCGGGCATGTCGACAGCGAATT  
GATCCGTCGACCGATGCCCTTGAGAGCCTCAACCCAGTCAGCTCCTCCGGTGGCGCGGG  
GCATGACTATCGTCGCCGCACTTATGACTGTCTTATCATGCAACTCGTAGGACAGGTG  
CCGGCAGCGCTCTCCGCTTCGCTCACTGACTCGCTGCGCTCGGTGTTGGCTGCGGC  
GAGCGGTATCAGCTCACTCAAAGCGGTAATACGGTTATCCACAGAATCAGGGATAACGCA  
GGAAAGAACATG

**Fig. 15**

**pOM IFN-Ins-CMV-pur-attB (SEQ ID NO: 8)**

GGCCGCCACCGCGGTGGAGCTCCAATTGCCCTATAGTGAGTCGTATTACAATTCACTGGCC  
GTCGTTTACAACGTCGTGACTGGAAAACCCCTGGCGTTACCCAACCTTAATGCCCTGCAGC  
ACATCCCCCTTCGCCAGCTGGCGTAATAGCGAAGAGGCCGACCGATGCCCTTCCCAAC  
AGTTGCGCAGCCTGAATGGCAATGGACGCCCTGTAGCGCGCATTAAGCGCGGGGT  
GTGGTGGTTACCGCAGCGTACACTGCCAGCGCTTCCCGTCAAGCTCTAAATCGGGGGC  
TTCTCCCTCCTCGCCACGTTGCCGGCTTCCCGTCAAGCTCTAAATCGGGGGC  
TCCCTTAGGGTCCGATTAGTGCTTACGGCACCTCGACCCAAAAACTGATTAGGGT  
GATGGTCACGTAGTGGCCATGCCCTGATAGACGGTTTCGCCCTTGACGTTGGAGTC  
CACGTTCTTAATAGTGGACTCTGTTCAAACCTGGAACAAACACTCAACCCTATCTCGGTCT  
ATTCTTTGATTATAAGGGATTTGCCGATTGCCCTATTGGTAAAAATGAGCTGATT  
TAACAAAAATTTAACCGAATTTAACAAATATTAACGCTTACAATTAGGTGGCACTTT  
CGGGGAAATGTGCGCGAACCCCTATTGTTATTCTAAATACATTCAAATATGTATCC  
GCTCATGAGACAATAACCCGTATAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTA  
TTCAACATTCGGTGTGCCCTTATTCCCTTTGCCGATTTCGCCCTCTGTT  
CACCCAGAAACGCTGGTGAAGTAAAAGATGCTGAAGATCAGTGGGTGCACGAGTGGGTTA  
CATCGAAGTGGACTCAACAGCGGTAAAGATCCTTGAGAGGTTGCCCGAAGAACGTTTC  
CAATGATGAGCACTTTAAAGTTCTGCTATGTGGCGGGTATTATCCCGTATTGACGCCGGG  
CAAGAGCAACTCGGTGCCGATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGT  
CACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGAGCTGCTGCCATAACCA  
TGAGTGATAACACTGCGGCCACTTACTTCTGACAACGATGGAGGACCGAACGGAGCTAAC  
GCTTTTGACAAACATGGGGATCATGTAACTGCCCTGATGTTGGAACCGGAGCTGAA  
TGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCCTGAGCAATGGCAACACGTTGC  
GCAAACATTAAACTGGGAACACTACTACTCTAGCTCCCGAACAAATTAAATAGACTGGATG  
GAGGCGGATAAAAGTTGAGGACCACTCTCGCCTCGGCCCTCCGGCTGGTTATTGC  
TGATAAATCTGGAGCGGTGAGCGTGGGTCTCGCGGTATCATTGAGCAGTGGGCCAGATG  
GTAAGCCCTCCGTATCGTAGTTACTACACGACGGGAGTCAGGCAACTATGGATGAACGA  
AATAGACAGATCGCTGAGATAGGTGCCTACTGATTAAGCATTGTAACTGTCAGACCAAGT  
TTACTCATATATACTTAGATTGATTAAACTTCATTAAATTAAAAGGATCTAGGTGA  
AGATCCTTTGATAATCTCATGACCAAAATCCCTAACGTGAGTTTCGTTCCACTGAGCG  
TCAGACCCGTAGAAAAGATCAAAGGATCTCTTGAGATCCTTTCTCGCGTAATCTG  
CTGCTTGCAAACAAAAAACACCACCGCTACCAGCGGTGGTTGCGGATCAAGAGCTAC  
CAACTCTTTCCGAAGGTAACTGGCTCAGCAGAGCGCAGATAACAAACTGTCCTCTA  
GTGTAGCCGTAGTTAGGCCACCACTCAAGAACACTCTGAGCACCGCCTACATACCTCGCTCT  
GCTAATCCTGTTACCAGTGGCTGCCAGTGGCGATAAGTCGTGCTTACCGGGTTGGACT  
CAAGACGATAGTTACCGGATAAGGCGCAGCGGTGGCTGAACGGGGGTTCGCACACAG  
CCCAGCTGGAGCGAACGACCTACACCGAACCTGAGATAACCTACAGCGTAGCTATGAGAAAG  
CGCCACGCTCCGAAGGGAGAAAGGCGGACAGGTATCCGTAAGCGGCAGGGTCGGAACAG  
GAGAGCGCACGAGGGAGCTCCAGGGGAAACGCGCTGGTATCTTATAGTCCTGCGGTT  
CGCCACCTCTGACTTGAGCGTCGATTGAGCTGCTCGTCAGGGGGCGGAGCCTATGAA  
AACGCGCAGCAACGCGGCCCTTTACGGTCTGCCCTTTGCTGGCCTTGCTCACATGT  
TCTTCTCGGTATCCCTGATTCTGAGGATAACCGTATTACCGCCTTGAGTGAGCTGAT  
ACCGCTCGCCGAGCCGAAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCG  
CCCAATACGCAAACCGCCTCTCCCGCGCTGGCCGATTCTTAATGAGCTGGCACGACA  
GGTTCCGACTGGAAAGCGGGAGTGAGCGCAACGCAATTATGTGAGTTAGCTCACTCAT  
TAGGCACCCAGGCTTACACTTATGCTCCGGCTCGTATGTTGTGAGGATTGTGAGCGG  
ATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGCCAAGCTCGAAATTAAACCTC  
ACTAAAGGAAACAAAGCTGGTACCGGGCCCCCTCGACTAGAGGGACAGCCCCCCCCCA  
AAGCCCCCAGGGATGTAATTACGTCCTCCCCCGCTAGGGGGAGCAGCGAGCGCCGGGG  
CTCCGCTCCGGTCCGGCGCTCCCCCGCATCCCGAGCGGGAGCGTGCAGGGGACAGCCCGG  
GCACGGGAAGGTGGCACGGGATCGCTTCTGAAACGCTCTCGCTGCTCTTGAGCGCT  
CAGACACCTGGGGGATACGGGAAAAAGCTTACGGCTGAAAGAGAGATTAGAATGACAGA  
ATCATAGAACGCCCTGGTTGCAAAGGAGCACAGTGCTCATCCAGATCCAACCCCTGCTAT  
GTGCAGGGTCAACCAGCAGCCAGGCTGCCAGGCCACATCCAGCCTGGCCTGAATG

CCTGCAGGGATGGGCATCCACAGCCTCTGGCAACCTGTTAGTCAGTCGTCACCACCCCTCT  
GGGGAAAAACTGCCTCCTCATATCCAACCAAACCTCCCCTGTCTCAGTGTAAAGCCATT  
CCCCTTGTCCTATCAAGGGGGAGTTGCTGTGACATTGTTGGTCTGGGGTACACATGTTG  
CCAATTAGTGCATCACGGAGAGGAGATCTGGGGATAAGGAAGTGCAGGACAGCATGGAC  
GTGGGACATGCAGGTGTTGAGGGCTCTGGGACACTCTCCAAGTCACAGCGTTCAGAACAGCC  
TTAAGGATAAGAAGATAGGATAGAAGGACAAGAGCAAGTTAAAACCCAGCATGGAGAGGAG  
CACAAAAGGCCACAGACACTGCTGGTCCCTGTGAGCCTGCATGTTGATGGTGTCTG  
GATGCAAGCAGAAGGGTGGAGAGCTTGCTGGAGAGATAACAGCTGGGTAGTAGGACTGG  
GACAGGCAGCTGGAGAATTGCCATGTAGATGTCATACAATCGTCAAATCATGAAGGCTGG  
AAAGCCTCCAAGATCCCCAAGACCAACCCCAACCCACCCACCGTGCCTGACCTGGCCATGTCC  
CTCAGTGCACATCCCCACAGTTCATCACCTCCAGGGACGGTGACCCCCCACCTCCGT  
GGCAGCTGTGCCACTGCAGCACCGCTCTGGAGAAGTAAATCTGCTAAATCCAGCCCG  
ACCCCTCCCTGGCACAACTGTAAGGCCATTATCTCATCCAACCTCCAGGACGGAGTCAGTGA  
GGATGGGGCTCTAGTCGAGGTCGACGGTATCGATAAGCTTGATTAGGCAGAGCAATAGGACT  
CTCAACCTCGTAGTATGGCAGCATGTTAACTCTGCACTGGAGTCCAGCGTGGAAACAATC  
TGCCTTGACATGAGTCTCGTGGCCAATATTCCCCAACGGTTTCCTCAGCTGTCTTG  
TCTCCTAAGCTCTAAAACACCTTTGGTAATAAAACTCACTGGCAACGTTATCTGTCT  
TACCTTAGTGTACGTTCATCCATTCCCCCTTCTCCTCCGTGTGGTACACAGTGGT  
GCACACTGGTTCTCTGTGATGTTCTGCTCTGACAGCCAATGTGGTAAAGTTCTCCTGC  
CACGTGTCTGTGTTCACTTCAAAAGGGCCCTGGGCTCCCTGGAGGCTCTCAGGCA  
TTTCCTTAATCATCACAGTCACGCTGGCAGGATTAGTCCCTCTAAACCTTAGAATGACCTG  
AACGTGTGCTCCCTTTGTAGTCAGTGCAGGGAGACGTTGCCTCAAGATCAGGGTCCATC  
TCACCCACAGGGCATTCCAAGATGAGGTGGATGGTTACTCTCACAAAAGTTCTTAT  
GTTGGCTAGAAAGGAGAACTCACTGCCTACCTGTGAATTCCCTAGTCCCTGGTCTGCTGC  
CACTGCTGCCTGTGAGCCTGCCCAGGAGGGCAGCAACTGCTGTACAAAGGTGATCC  
CACCTGTCTCCACTGAAATGACCTCAGTGCACGTGTTGATAGGGTATAAGTACGGGAG  
GGGGATGCCCGGCTCCCTCAGGGTTGCAGAGCAGAACGTGTGTATAGAGTGTCTTA  
ATCTATTAATGTAACAGAACAACTCAGTCTAGTGTGTTGTGGGCTGGAATTGCCATGTG  
GTAGGGACAGGCCTGCTAAATCACTGCAATGCCATTGTTCTGAAGGTATTGGAAAGAAA  
GGGATTGGGGATTGCCGTGATGGCTTAATTGAATGGCAAATCACAGGAAAGCAGTT  
TGCTCAACAGTTGGTTTCAGCCAATTCTGCAGGCAAAGAGCCGGGTGCCAGCGATAT  
AATAGTGTCACTTGTGCTGTGATGGATGACAGGGAGGTAGGGTACCTGAGGACCACCTC  
CAGCTCTGCTAGCGTAGGTACAGTCACCACCTCCAGCTCCACACGAGTCCATCGTGGTT  
ACCAAAGAAAACAATTATTGGACCAGTTGAAAGTCACCCGCTGAAATTGTGAGGCTAGA  
TTAATAGAGCTGAAGAGCAAATGTCCTAACCTGGAGATACTAGTTGGTATTAGTATCAGAG  
GAACAGGGCCATAGCACCTCCATGTATTAGATTCCGGCTGGCATGACTTTCAAGATGAT  
TTGTAACTAACAATGGCTTATTGTGCTTGTCTTAAGTCTGTGCTTAATGTAATGTTCTT  
TGGTTATATAACCTTCTGCCATTGCTCTCAGGTGTTCTGCAGAACACTGGCTGCTTT  
AATCTAGTTAACTGTTGCTGATTATTCTTAGGGATAAGATCTGAATAAAACTTTTGTCGGC  
TTTGGCAGACTTAGCTGGGCTTAGCTCCACATTAGCTTTGCTGCCTTCTGTGAAGC  
TATCAAGATCCTACTCAATGACATTAGCTGGTGCAGGTGTACCAAATCCTGCTGTGGAA  
CACATTGTCTGATGATACCGAAGGCAAACGTGAACCTAAAGAGGCACAGAGTTAAGAAGAAG  
TCTGTGCAATTCAAGAGGAAAAGCCAAAGTGGCATTAGACACACTTCCATGCAGCATTG  
CAGTAGGTTCATATAAAACTACAAAATGGAATAAACCAACTACAAATGGGAAAGCCTGATA  
CTAGAATTAAATATTCAACCCAGGCTCAAGGGGTGTTCATGGAGTAATATCACTCTATAAA  
AGTAGGGCAGCCAATTATTCAACAGACAAAGCTTTTTCTGTGCTGCAGTGCTGTTTT  
CGGCTGATCCAGGGTTACTTATTGTGGGCTGAGAGCTGAATGATTCTCCTGTGCTGATG  
TGGTGAAGGAGATATGCCAGGGGAGATGAGCATGTTCAAGAGGAAACGTTGCATTGGT  
GGCTTGGGAGAAAGGTAGAACGATACAGGTCATAGTGTCACTAACAGAGATCTGAAGGATGG  
TTTACAGAACAGTTGACTTGGCTGGGTGCAAGCTGGCTGTAATGGATGGAAGGATGGAC  
AGATGGGTGGACAGAGATTCTGTGCAAGGAGATCATCTCCTGAGCTCGGTGCTGACAGACT  
GCAGATCCATCCATAACCTCTCAGCATGAGAGCGGGGAGCTTGGTACTGTTCAAGTC  
TGCTGCTTGTGCTTCCTGGGTGACAGTGGTATTCTTACTCACACAGGGAAAAACCT  
GAGCAGCTCAAAGTGAACAGGTTGCTCATAGGCCATTCAAGTTGTCAAGATGAGGTTTT

GGTTTCTTGTAAAGGTGGGAAGAACGACTGAAGGATCAGTTGCGAGGGCAGGGTTA  
GCACTGTCAGAGAAGTCTATTAACTCCTCTCATGAACAAAAGAGATGCAGGTGCAGA  
TTCTGGCAAGCATGCAGTAAGGAGAAAGCCCTGAATTCTGATATATGTGCAATGTTGGC  
ACCTAACATTCCCCGCTGAAGCACAGCAGCTCCAGCTCCATGCAGTACTCACAGCTGGTCA  
GCCCTCGGCTCAGGGCTGAGCAGTGCTGGACTCACAGAGGTTCCATGTCTTCACACTGA  
TAATGGTCCAATTCTGGAATGGGTGCCATCCTGGAGGTCCCCAAGGCCAGGCTGGCTGC  
GTCTCCGAGCAGCCGATCTGGTGGTAGCCAGCCATGGCAGGAGTTAGAGCCTGATG  
GTCTTAAAGGTCCCTCAACCTAACGCATCCTACGATTCTAGGAATCATGACTTGTGAGTG  
TGTATTGAGAGGCAATATTAAAGTTATAAATGTTCTCCCTTGTGTTGCAAAG  
TTATCTGATGCCATTACATGCTTGGAGTCTCCAGTCATTCTTACAMAAAAAGA  
GGAGGAAGAATGAAGAGAACATTAATTCTGATTGAATAGTAGGATTCAAGAGCTGTA  
CGTAATGCCGTCCTTGATCGAGCTGTAAGGTTCTCATCATCTACAGTCTGTACCTAA  
ACATCGCTCAGACTCTTACCAAAAAAGCTATAGGTTAAAACATCTGCTGATAATT  
GCCTTGTAGCTCTCCATATGCTGCGTTGTGAGAGGTGCGTGGATGGCCTAAAC  
TCTCAGCTGAGCTGATGGGTGCTTAAGAATGAAGCAGTCACTGCTGAAACTGTTTCA  
TTTCACAGGAATGTTAGTGGATTGTTATAACTACATATTCTCAGATAAATGAAAT  
CCAGAAATAATTATGCAAACACTGCATCCGTTGACAGGTCTTATCTGCTAGCAAAGGA  
AATAATTGGGGATGGCAAAACATTCTCAGACATCTATATTAAAGGAATATAATTCTG  
GTACCCACCCACTCATCCCTCATTATGTCACACTCAGAGATACTCATTCTTGTGTTA  
TCATTTGATAGCGTTTCTTGGTCTTGCACGCTCTGGCTATGGCTGCACGCTCTGCA  
CTGATCAGCAAGTAGATGCGAGGGAAAGCAGCAGTGAGAGGGCTGCCCTCAGCTGGCACCC  
GCCGCTCAGCCTAGGAGGGGACCTGCTTCCACCAGCTGAGGTGCGAGCCCTACAAGCTA  
CACGTGCTGCGAGCAGGTGAGCAAAGGGAGTCTCATGGTGTGTTCTGCTGCCGGAAGC  
AAAACTTACTTCATTCACTCCCTTGAGAACATGAGGAATGTTGGAAACGGACTGCTTAA  
CGTTCAATTCTCTCCCTTAAGGCTCAGCCAGGGCATTGCTGAGGACGGCATCGGG  
GCCCTGGACCAATCTGTCAGATGGTTCACCTACATCAGTGGATGTGGATCTGC  
GCCTGTAATGTGCTCTGAAGGAAGAACGTGCGCTTCCAAGTGCCAGCCCCACAGCCCC  
AGCCCTCCCTGTGCTGCTCCAATTCTCCTCTCCTCTCCCTTGCTGTTGTG  
TCGGGTAGAAATCATGAAGATTAGAAGAGAAAACAAATACTGGAGTGGAAACCCAGGTG  
ATGCAGTCATTCACTGTCAGGTTGCTGCTATAGGTCTGATCAGAGATGCTARC  
ACCACTTGCTGCGGTCTTAACCTGGGTAACCTCCCTCACTGCATCATTGCGGGCC  
TTATTACATCCCCAGCATCCATTACCCCTGGAAAATGGCGCACTGGATCTCTAATGGA  
AGACTTCCCTTTCAAGAGCTGTTGAGAACGTGAGCAGTGACAAAGAAACGTGGAGGGCTGAGC  
AGCAGCACTGCCCGAGGGAGCAGGAGCGGATGCCATGGTGGCAGCATTCCAAATGATGTC  
AGCGGATGCTGAGCAGGCAGCGAACGGACAGAACGATGCGTACACCTCTGTTGACA  
TGGTATTGGCAGCGATTAAACACTCGCTCCTAGTCTGCTATTCTCACAGGCTGCATT  
AAATGAACGAAGGGAAAGGGAGGAAAAAGATGCAAAATCCGAGACAAGCAGCAGAAATATT  
CTTCGCTACGGAAGCGTGCACAAACACCTCTCCAACAGCACCAGAACAGACAGCGTAAC  
CTTTTCAAGACCAGAAAAGAAATTCAAAAGCCTCTGTTGAGTACCGCGCGTTCAGCTCT  
CCTGATAGCAGATTCTGTCAGGTTGCGAATGGGTATGGTGCAGGAGGTGCGAGGACCA  
TATGATCATATAACAGCACAGCAGTCATTGTCATGTATTAATATATTGAGTAGCAGTGT  
ACTTGCACAAAGCAATAGTTCAAGAGATGAGTCCTGCTGCATAACCTCTATCTAAAACACT  
TATAAATAGTAAACCTCTCAGTCAGCCACGTGCTCCTCTGTCAGCACCAATGGTGT  
TCGCCTGCAACCCAGCTGCAAGGAATCAGCCCGTGAATCTCATTAAACACTCAGCTCTGCA  
AAATTAGATTGTCAGCTACAGAAAACGTCTCCATGCAGTCCCTCTGCGCCAGCAAACGTC  
GGTCCTAATTGTCAGCTACAGAAAACGTCTCCATGCAGTCCCTCTGCGCCAGCAAACGTC  
CAGGCTATAGCACCCTGATGCATGCTACCTCTCACTCCATCCTCTTCCCACCCAGG  
GAGAGCTGTTGTTCACTCTCAGCCACTCTGAACAAACCAAACGTCAGCAGCAGC  
CCTCGGAAAGAGAACATCCCTGTTGCTTTTATTACAGGATCCTCTTAAAAGCAGACC  
ATCATTCACTGCAAACCCAGAGCTTCATGCCTCTCCTCCACAAACGAAAACAGCCGGCTTC  
ATTTGTCTTTAAATGCTGTTTCCAGGTGAATTGGCCAGCGTGTGGCTGAGATCCA  
GGAGCACGTGTCAGCTCTGCTCATGCTCCTGCAATTGCCCTTTCTGGGTT  
CCAAGAGGGGGAGACTTGCAGGGGATGAGATAATGCCCTTTCTAGGGTGGCTGCT

GGGCAGCAGAGTGGCTGGGTCACTGTGGCACCAATGGGAGGCACCAGTGGGGGTGTGTT  
TGTGCAGGGGGAAAGCATTCACAGAATGGGCTGATCCTGAAGCTTGAGCTCAAGGCTTG  
TCTGTGTACCCAGTGAAACTCCTCCTCTGTACATAAAAGCCCAGATAGGACTCAGAAATGTA  
GTCATTCCAGCCCCCTCTCCTCAGATCTGGAGCAGCACTTGTGAGCTCAGCAGTCCTCCCC  
AAAATGCACAGACACCTCGCCAGTGGAGGGAGATGTAACAGCGAAGGTTAATTACCTCCTTG  
TCAAAAACACTTGTGGTCCATAGATGTTCTGTCAATCTACAAAACAGAACCGAGAGGCA  
GCGAGCACTGAAGAGCGTGTCCCATGCTGAGTTAATGAGACTTGGCAGCTCGCTGTGAGA  
GATGATCCCTGTGCTTCATGGGAGGCTGTAACCTGTCTCCCCATGCCCTCACACCGCAGTG  
CTGTCTGGACACCTCACCCCTCAAAGCTGTAGGATGAGCTGCCAGGGATCAAGAGACT  
TTTCCTAAGGCTCTTAGGACTCATCTTGCCGCTCAGTAGCGTGCAGCAATTACTCATCCCA  
ACTATACTGAATGGGTTCTGCCAGCTCTGCTGTTGTCAATAAGCATTTCTTCATTTGC  
CTCTAAGTTCTCAGCAGCACCGCTCTGGGTGACCTGAGTGGCCACCTGGAACCCGAGGG  
GCACAGCCACCACTCCCTGTTGCTGCTCCAGGGACTCATGTGCTGCTGGATGGGGGA  
AGCATGAAGTCCCTACCCAGACACCTGGGTTGCAATGGCTGAGCGTGTCTTCTGGTAT  
GCAGATTGTTCCAGCATTACTGTAGAAATGTGCTGAGCCCTTGTATCTCTTCT  
GTGCCCTTCAGCAAAGCTGTGGAAAGCTCTGAGGCTGCTTCTGGGTGAGGAAAT  
TGTATGTTCTCTTAACAAAATTATCCTTAGGAGAGAGCAGTGTGCAAGCATGTGAC  
ATAAAACAATTCAAGGTTGAAAGGGCTCTGGAGGTTCCAGCCTGACTACTGCTCGAAGCA  
AGGCCAGGTTCAAAGATGGCTCAGGATGCTGTGCTGCCACCAATG  
GAGGAGATTACAGCCACTCTGCTTCCCGTGCACACTCATGGAGAGGAATATTCCCTATATT  
CAGATAGAATGTTATCCTTAGCTCAGCCTCCCTATAACCCCATGAGGGAGCTGCAGATCC  
CCATACTCTCCCTCTGGGTGAAGGCCGTGCCCCCAGCCCCCTTCCACCCCTGTGC  
CTTAAGCAGCCCGCTGGCTCTGCTGGATGTTGCTATATGTCATGCTGTGCTTCAGT  
CCAGCCTGGGACATTAAATTCACTCACCAGGTAATGTTGAAACTGTCATCTCCCTGCA  
GGTACAAAGTTCTGCACGGGCTTTCGGTTCAAGAAAACCTCACTGGTGTACCTGAAT  
CAAGCTCTATTAAAGTTCATAAAGCACATGGATGTTCTAGAGATACTGTTAATG  
GTATCAGTGAATTATTGCTTGTGCTTACTCAAACAGTGCCTTGGCAGGAGGTGA  
GGGACGGGTCTGCCGTTGGCTCTGAGTGAATTCTCAGGCGTGTGGCTCAGGTAGATAGT  
GGTCACTCTGTGGCCAGAAGAAGACAAAGATGGAAATTGCAAGATTGAGTCACGTTAAGCAG  
GCATCTGGAGTGATTGAGGCAGTTCATGAAAGAGCTACGACCACTTATTGTTGTT  
CCTTTACAACAGAAGTTTCACTAAAATAACGTGGCAAAGCCAGGAATGTTGGAAAAG  
TGTAGTTAAATGTTGTAATTCAATTGTCGGAGTGCTACCAGCTAAGAAAAAGTCCTACC  
TTTGGTATGGTAGTCCTGCAGAGAAATACAACATCAATTAGTTGGAAAAAAACACCA  
CCACCAGAAACTGTAATGGAAAATGAAACCAAGAAAATTCTGGTAAGAGAGAAAGGATG  
TCGTATACTGGCCAAGTCTGCCAGCTGTCAGCCTGCTGACCTCTGCAGTCAGGACCAT  
GAAACGTGGCACTGTAAGACGTGTCCCCTGCCTTGCTGCCACAGATCTGCCTTG  
CTGACTCCTGCACACAAGAGCATTCCTGTAGCCAAACAGCGATTAGCCATAAGCTGCACC  
TGACTTGGAGGATAAGAGTTGCAATTAAAGTGGATTGAGCAGGAGATCAGTGGCAGGGTT  
GCAGATGAAATCCTTCTAGGGTAGCTAAGGGCTGAGCAACCTGTCTACAGCACAAGCC  
AAACCAGCCAAGGGTTCTCTGTGCTTCAAGAGGCAGGGCCAGCTGGAGCTGGAGGAGG  
TTGTGCTGGACCCCTCTCCCTGTGCTGAGAATGGAGTGATTCTGGGTGCTGTTCTGTGG  
CTTGCACTGAGCAGCTCAAGGGAGATCGGTGCTCCTCATGCAGTGCCAAAACCTGTTGA  
TGCAGAAAGATGGATGTCACCTCCCTCTGCTAATGAGCCGTGAGCTTATGAAGGCAATG  
AGCCCTCAGTGCAGCAGGAGCTGAGTCACCTGTAGGTGCTAGGGAAAATCTCTGGTTC  
CCAGGGATGCATTCAAGGGCAATATATCTGAGGCTGCCAAATCTTCTGAAATATT  
ATCGTGTCCCTAATTATAGAAACAAACAGCAGAATAATTATTCCAATGCCTCCCC  
CGAAGGAAACCCATATTCCATGTAAGAAATGTAACCTATATACACACAGCCATGCTGCATCC  
TTCAGAACGTGCCAGTGCTCATCTCCATGGAAAATACTACAGGTATTCTCACTATGTTGG  
ACCTGTGAAAGGAACCATGTAAGAAACTCGGTTAAAGGTATGGCTGCAAAACTACTCATA  
CCAAAACAGCAGAGCTCCAGACCTCCTCTAGGAAAGAGCCACTTGGAGAGGGATGGTGTGA  
AGGCTGGAGGTGAGAGACAGAGCCTGCCCAGTTCTGTCTATTCTGAAACGTTG  
CAGGAGGAAAGGACAACGTGACTTTCAAGGCTAGCTGGTGCCTCACGTTAAATAAGTCCCC  
GAACTCTGTGTCAATTGTTCTTAAGATGCTTGGCAGAACACTTGTAGTCATTGCTTAA  
CTGTGACTAGGTCTGAAATAAGTGTCCCTGCTGATAAGGTTCAAGTGCACATTAGTGG

TATTTGACAGCATTACCTTCAAGTCTTACCAAGCTCTTCTATACTTAAGCAGTG  
AAACCGCCAAGAAACCCTCCTTTATCAAGCTAGTGCTAAATACCATTAACTTCATAGGTT  
AGATACGGTGTGCCAGCTCACCTGGCAGTGGTGGTCAGTCTGCTGGTGACAAAGCCTC  
CCTGGCCTGTGCTTACCTAGAGGTGAATATCCAAGAACATGCAGAACACTGCATGGAAAGCAGA  
GCTGCAGGCACGATGGTGTGAGCCTAGCTGCTTCTGCTGGGAGATGTGGATGCAGAGAC  
GAATGAAGGACCTGTCCCTACTCCCCTCAGCATTCTGTGCTATTAGGGTCTACCAGAGT  
CCTTAAGAGGTTTTTTGGTCAAAGTCTGTTGGTTGACCACTGAGA  
GCATGTGACACTGTCTCAAGCTATTAAACCAAGTGTCCAGCAGAAAATCAATTGCCCTGGGAGA  
CGCAGACCATTACCTGGAGGTCAAGACCTCAATAAATATTACCAAGCCTCATTGTGCCGTGA  
CAGATTCACTGGCTGCCGTCCAGTCAACAGTTCGGACGCCACGTTGTATATATT  
TGCAGGCAGCCTCGGGGGACCATCTCAGGAGCAGACACCAGCAGCCCTGCAGAGCCGG  
GCAGTACCTCACCATGGCTTGACCTTGCCTTACTGGTGGCTCTGGCTGAGCTGCA  
AGAGCAGCTGCTCTGTGGGCTGCATCTGCCCTCAGACCCACAGCCTGGCAGCAGGAGGACC  
CTGATGCTGCTGGCTCAGATGAGGAGAATCAGCCTGTTAGCTGCCCTGAAGGATAGGCACGA  
TTTGGCTTCCTCAAGAGGAGTTGGCAACCAGTTCAGAAGGCTGAGACCATCCCTGTGC  
TGCACGAGATGATCCAGCAGATCTTAACCTGTTAGCACCAAGGATAGCAGCGCTGCTTGG  
GATGAGACCTGCTGGATAAGTTTACACCGAGCTGTACAGCAGCTGAACGATCTGGAGGC  
TTGCGTGTGATCCAGGGCGTGGCGTGACCGAGACCCCTCTGATGAAGGAGGATAGCATCCTGG  
CTGTGAGGAAGTACTTCAGAGGATCACCCCTGTACCTGAAGGAGAAGAAGTACAGCCCCTGC  
GCTTGGGAAGTCGTGAGGGCTGAGATCATGAGGAGCTTAGCCTGAGCACCAACCTGCAAGA  
GAGCTTGAGGTCTAAGGGAGTAAAAGTCTAGAGTCGGGGCGGCCGCTCGAGCAGACA  
TGATAAGATACTTGATGAGTTGGACAAACCACAACATAGAATGCACTGAAAAAAATGCTT  
ATTTGTGAAATTGTGATGCTATTGCTTATTGTAACCATTATAAGCTGCAATAAACAAAGT  
TAACAAACAACAATTGCATTTCATTTATGTTTCAGGTTCAAGGGGAGGTGTGGGAGGTTTT  
AAAGCAAGTAAAACCTCTACAAATGTGGTAAAATCGATACCGTCGACCTCGACTAGAGCGGC  
CACTAACATA CGCTCTCCATCAAAACAAAAGAAACAAACTAGCAAAATAGGCTGTC  
CCCAGTGCAAGTGCAGGTGCCAGAACATTCTCTATCGATAGGTACCGAGCTTACCGTG  
CTAGCCCTCGAGCAGGATCTACATTGAATCAATTGGCAATTAGCCATATTAGTCATTG  
GTTATATAGCATAAAATCAATATTGGCTATTGGCATTGCAACGTTGTATCTATATCATAAT  
ATGTACATTATATTGGCTCATGTCCAATATGACCGCCATGTTGACATTGATTATTGACTAG  
TTATTAAATGTAATCAATTACGGGTCATTAGTTCATAGCCATATATGGAGTTCCCGCTTA  
CATAACTTACGGTAAATGGCCCGCCTGGCTGACGCCAACGACCCCCCGCCATTGACGTCA  
ATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTCATTGACGTCAATGGTGG  
GTATTTACGGTAAACTGCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTCCGCC  
CTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCAGTACATGACCTTACGG  
GACTTCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTATGCGGTT  
TTGGCAGTACATCAATGGCGTGGATAGCGTTGACTCACGGGATTCCAAGTCTCACC  
CCATTGACGTCAATGGAGTTGGCACC AAAATCAACGGGACTTTCCAAAATGTCGT  
AACAACTCCGCCATTGACGCAAATGGCGGTAGCGTGTACGGTGGGAGGTCTATATAAG  
CAGAGCTCGTTAGTGAACCGTCAGATCGCCTGGAGACGCCATCCACGCTGTTGACCTCC  
ATAGAAGACACCGGGACCGATCCAGCCTCCCTCGAAGCTCGACTCTAGGGCTCGAGATCT  
GCGATCTAAGTAAGCTTGCATGCCCTGCAGGTGGCCACGACCGGTGCCACCATCCC  
CTGACCCACGCCCTGACCCCTCACAAAGGAGACGACCTCCATGACCGAGTACAAGCCCACG  
GTGCGCCTCGCCACCCCGCACGACGTCCCCGGCGTACGCACCCCTGCCCGCGTTCGCG  
CGACTACCCGCCACCGCCACACCGTCGACCCGGACCGCCACATCGAGCGGGTCAACGAGC  
TGCAAGAACTCTCCTCACCGCGTGGCGTCTGGACCGACGCCGGAGAGCGTCAAGCAGG  
GGCGCCCGGGTGGCGGTCTGGACCGACGCCGGAGAGCGTCAAGCAGGCGGGGCGGTGTTG  
GATCGGCCCGCGCATGGCGAGTTGAGCGTTCCCGCTGGCGCAGCAACAGATGGAAG  
GCCTCCTGGCGCCGACCCGGCCAAGGAGCCCGTGGTTCCCTGGCACCCTGCCGCGTCTCG  
CCCGACCACCAAGGGCAAGGGTCTGGCAGCGCCGTGCTCCCGGAGTGGAGGGCGCCGA  
GCGCGCCGGGTGCCCCGCTTCTGGAGACCTCCGCCGCCGCAACCTCCCCTTACGAGC  
GGCTCGGCTTACCGTCACCGCCGACGTCAGGTGCCGAAGGAGCCGACGCCGACCGA  
ACCCGCAAGCCGGTGCCTGACGCCGCCCCACGACCCGCAAGCAGGCCGACCGA  
ACGACCCCATGGCTCCGACCGAAGCCGACCCGGCGGCCGACCCGCCGACCCGCC

GAGGCCACCGACTCTAGAGTCGGGCGGCCGCTCGAGCAGACATGATAAGATAACAT  
TGATGAGTTGGACAAACCACAACCTAGAATGCAGTAAAAAAATGCTTATTTGTGAAATT  
GTGATGCTATTGCTTATTGTAAACCATTATAAGCTGCAATAAACAAAGTTAACAAACAAT  
TGCATTCACTTATGTTCAGGTTCAGGGGAGGGTGGGAGGTTTTAAAGCAAGTAAA  
CCTCTACAAATGTGGTAAAATCGATAAGGATCAATTGGCTCAGGTACCGTCGACGATGTA  
GGTCACGGTCTCGAAGCCGCGGTGCGGGTGCCAGGGCGTGCCTTGGGCTCCCCGGCGCGT  
ACTCCACCTCACCCATCTGGTCCATCATGATGAACGGGTCGAGGTGGCGGTAGTTGATCCCG  
GCGAACGCGCGCGCACCGGAAGCCCTGCCCTCGAAACCGCTGGGCGCGTGGTCACGGT  
GAGCACGGGACGTGCGACGGCGTGGCGGGTGGGATACGCGGGCAGCGTCAGCGGTTCT  
CGACGGTCACGGCGGGCATGTCGACAGCCGAATTGATCCGTGACCGATGCCCTGAGAGCC  
TTCAACCCAGTCAGCTCCTCCGGTGGGCGGGGCATGACTATCGTCGCCGACTTATGAC  
TGTCTTCTTATCATGCAACTCGTAGGACAGGTGCCGGCAGC

*Fig. 16*

**pRSV-C31int (SEQ ID NO: 9)**

CTGCATTAATGAATCGGCCAACGCGCGGGAGAGGCGGTTGCGTATTGGCGCTTCC  
GCTTCCTCGCTCACTGACTCGCTCGCTCGTTCGGCTGCGCGAGCGGTATCAGCT  
CACTCAAAGGCCGTAATAACGGTTATCCACAGAATCAGGGATAACGCAGGAAAGAACATG  
TGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAGGCCGTTGCTGGCGTTTC  
CATAGGCTCCGCCCCCTGACGAGCATCACAAAATCGACGCTCAAGTCAGAGGTGGCGA  
AACCCGACAGGACTATAAAGATAACCAGCGTTCCCGCTGGAAGGCTCCCTCGCGCTCT  
CCTGTTCCGACCCCTGCCGCTTACCGGATACTGTCGCCCTTCTCCCTCGGAAGCGTG  
GCGCTTCTCAATGCTCACGCTGTAGGTATCTCAGTCGGTAGGTCGTTCGCTCCAAG  
CTGGGCTGTGTCACGAACCCCCGTTCAGCCGACCGCTGCCCTTATCCGGTAACATAT  
CGTCTGAGTCCAACCCGTAAGACACGACTATGCCACTGGCAGCAGCCACTGGTAAC  
AGGATTAGCAGAGCAGGGTATGTAAGCGGCTACAGAGTTCTGAAGTGGTGGCTAAC  
TACGGCTACACTAGAAGGACAGTATTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTC  
GGAAAAAGAGTGGTAGCTCTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTT  
TTTGTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTAAGAAGATCCTTGATC  
TTTCTACGGGTCTGACGCTCAGTGGAACGAAACTCACGTTAAGGGATTTGGTCATG  
AGATTATCAAAAGGATCTCACCTAGATCTTTAAATTAAAAATGAAGTTAAATCA  
ATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCA  
CCTATCTCAGCGATCTGCTATTGCGTCATCCATAGTGCCTGACTCCCCGTCGTGAG  
ATAACTACGATAACGGAGGGCTTACCATCTGGCCCAGTGCCTGCAATGATAACCGCGAGAC  
CCACGCTCACGGCTCCAGATTATCAGCAATAAACAGCCAGCCAGCCGAAGGGCCGAGCGC  
AGAAGTGGTCTGCAACTTATCCGCTCCATCCAGTCTATTAAATTGTCGCCGGAAAGCT  
AGAGTAAGTAGTTGCCAGTTAATAGTTGCGAACGTTGCTGCACTGCTACAGGCATC  
GTGGTGTACGCTCGTGTGGTATGGCTTCATTAGCTCCGGTCCCAACGATCAAGG  
CGAGTTACATGATCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTCGGTCTCGATC  
GTTGTCAGAAGTAAGTTGGCCGAGTGTATCACTCATGGTTATGGCAGCAGTCATAAT  
TCTCTACTGTCATGCCATCCGTAAGATGCTTCTGTGACTGGTAGTACTCAACCAAG  
TCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTGCCGGCTCAATACGGAT  
AATACCGGCCACATAGCAGAACTTTAAAAGTGTCTCATCATTGAAAACGTTCTCGGGG  
CGAAAACCTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTGCTGATGTAACCCACTCGCA  
CCCAACTGATCTCAGCATCTTACTTCAACAGCTTCTGGGTGAGCAAAACAGGA  
AGGCAAAATGCCGAAAAAAAGGAATAAGGGCACACGGAAATGTTGAATACTCATACTC  
TTCCTTTTCAATATTATTGAAGCATTATCAGGGTTATTGTCATGAGCGGATACATA  
TTTGAATGTATTAGAAAAATAACAAATAGGGTCCCGCAGATTCCCCGAAAAGTG  
CCACCTGACGTCGACGGATCGGGAGATCTCCGATCCCTATGGTCGACTCTCAGTACAA  
TCTGCTCTGATGCCGATAGTTAAGCCAGTATCTGCTCCCTGCTGTGTTGGAGGTGCG  
CTGAGTAGTGCAGCAGCAAAATTAAAGCTACAACAAGGCAAGGCTTGACCGACAATTGCA  
TGAAGAATCTGTTAGGGTTAGCGCTTGCCTCGCGATGTAACGGCCAGATATA  
CGCGTGTAGGGTCTAGGATCGATTCTAGGAATTCTCTAGCCCGGTCTAGGGATCCCG  
GCGCGTATGGTGCAGTCTCAGTACAATCTGCTCTGATGCCGATAGTTAAGCCAGTATCT  
GCTCCCTGCTTGTGTTGGAGGTGCTGAGTAGTGCAGCAGCAAAATTAAAGCTACAAC  
AAGGCAAGGCTTGACCGACAATTGCATGAAGAATCTGTTAGGGTTAGCGCTTGCCT  
GCTTCGCGATGTAACGGCCAGATATAACCGTATCTGAGGGACTAGGGTGTGTTAGGCG  
AAAAGCGGGCTCGGTTGTCAGCGGTTAGGAGTCCCTCAGGATATAGTTGCTT  
TTGCTAGGGAGGGGAAATGTAGTCTTATGCAATAACACTTGTAGTCTGCAACATGGTA  
ACGATGAGTTAGCAACATGCCCTACAAGGAGAGAAAAGCACCGTGCATGCCGATTGGTG  
GAAGTAAGGTGGTACGATCGCTTATTAGGAAGGCAACAGACAGGCTGACATGGATT  
GGACGAACCACTGAATTCCGCATTGCGAGAGATAATTGATTTAAGTGCCTAGCTCGATAC  
AATAACGCCATTGACCATTCACCAATTGGTGTGCACCTCCAAGCTTGCATGCCGATGCA  
GGTACCGGTCCGAATTCCGGTGCAGCAGGCTCACTAGTCGTAGGGTCGCCGACATGAC  
ACAAGGGTTGTGACCGGGTGGACACGTACGCGGGTGCCTACGACCGTCAGTCGCGCGA  
GCGCGAGAATTGAGCGCAGCAAGCCCAGCGACACAGCGTAGCGCCAACGAAGACAAGGC  
GGCCGACCTTCAGCGCGAAGTCGAGCGCAGCGGGCCGGTTAGGTTGTCGGCGATTT  
CAGCGAAGCGCCGGCACGTCGGCGTTCGGGACGGCGGAGCGCCGGAGTTGACGCGAT

CCTGAAACGAATGCCGCCGGCGGCTAACATGATCATTGTCTATGACGTGTCGCCTT  
CTCGCGCCTGAAGGTCAATGGACCGATTCCGATTGTCTCGGAATTGCTGCCCTGGCGT  
GACGATTGTTTCACTCAGGAAGGCCTTCCGGCAGGGAAACGTCATGGACCTGATTCA  
CCTGATTATGCCGCTCGACCGTCGACAAGAACATCTCGCTGAAGTCGGCGAAGATTCT  
CGACACGAAGAACCTTCAGCGCAATTGGCGGGTACGTCGGCGGAAGGCGCCTTACGG  
CTTCGAGCTTGGTGGAGACGAAGGAGATCACCGCAACGGCGAATGGTCAATGTCGT  
CATCAACAAGCTTGCGCACTCGACCACTCCCCTTACGGACCCCTCGAGTTGAGCCCCGA  
CGTAATCCGGTGGTGGCGTGGAGATCAAGACGCACAAACACCTTCCCTCAAGCCGGG  
CAGTCAAGCCGCCATTCACCCGGCAGCATCACGGGCTTGTAAAGCGCATGGACGCTGA  
CGCCGTGCCGACCCGGGGCGAGACGATTGGGAAGAAGACCGCTTCAAGCGCTGGGACCC  
GGCAACCGTTATGCAATCCTCGGGACCCCGTATTGCGGGCTTCGCCGCTGAGGTGAT  
CTACAAGAAGAACCGGACGGCACGCCGACCGAACGAGATTGAGGGTACCGCATTAGCG  
CGACCCGATCACGCTCCGGCGGTGAGCTGATTGCGGACCGATCATCGAGCCCCTGA  
GTGGTATGAGCTTCAGCGTGGTGGACGGCAGGGGGCGCGGCAAGGGGCTTCCCGGGG  
GCAAGCCATTCTGCCATGGACAAGCTGTACTGCGAGTGTGGCGCCGTATGACTTC  
GAAGCGGGGAAGAACATCGATCAAGGACTCTTACCGCTGCCGTGCCGGAAGGTGGTCGA  
CCCGTCCGCACCTGGGCAGCACGAAGGCACGTGCAACGTCAGCATGGCGGACTCGACAA  
GTTCGTTGCCAACGCATCTTCAACAAGATCAGGCACGCCGAAAGCGACGAAGAGACGTT  
GGCGCTTCTGTGGGAAGCCGCCAGCCTCGGCAAGCTCACTGAGGCCCTGAGAAGAG  
CGCGAACGGCGAACCTTGTGCGGAGCGCGCCACGCCCTGAACGCCCTGAAGAGCT  
GTACGAAGACCGCGCGCAGGCGCGTACGACGGACCCGTTGGCAGGAAGCAGCTCCGAA  
GCAACAGGCAGCGCTGACGCTCCGGCAGCAAGGGGCGGAAGAGCGGCTTGCCTGA  
AGCCGCCGAAGCCCCGAAGCTTCCCTTGACCAATGTTCCCGAAGACGCCGACGCTGA  
CCGACCGGCCCTAACGTCGTGGTGGGGCGCGCTCAGTAGACGACAAGCGCTGTTCGT  
CGGGCTCTCGTAGACAAGATCGTTGTCAGAACGTCAGACTACGGCAGGGGGCAGGGAAAC  
GCCCATCGAGAACGCGCTTCGATCACGTGGCGAAGCCGCCACCGACGACGA  
CGACGCCAGGACGGCACCGAACGCTAGCGTAGCGAGAACCCGGATCCCTCGAGG  
GGCCCTATTCTATAGTCACCTAAATGCTAGAGCTCGCTGATCAGCCTCGACTGTGCCT  
TCTAGTTGCCAGCCATCTGTTGCTTGCCTCCCGTGCCTTGCCTGA  
GCCACTCCACTGTCCTTCCAATAAAAATGAGGAATTGCATCGCATTGTCTGAGTAGG  
TGTCAATTCTATTCTGGGGGTGGGGTGGGGCAGGACAGCAAGGGGAGGATTGGGAAGAC  
AATAGCAGGCATGCTGGGGATGCCGTGGCTATGGCTCTGAGGCCGAAAGAACCCAGG  
TGCCCAGTCATGCCAATAGCCTCTCCACCAAGCGGCCGGAGAACCTGCGTGCAATCC  
ACTGGGGCGCG

*Fig. 17*

**pCR-XL-TOPO-CMV-PUR-attB (SEQ ID NO: 10)**

AGCGCCCCAATACGCAAACGCCCTCTCCCGCGCTGGCCGATTCAATTAAATGCAGCTGGC  
 ACGACAGGTTCCCGACTGGAAAGCGGGCAGTGAAGCGCAACGCAATTAAATGTGAGTTAGC  
 TCACTCATAGGCACCCAGGCTTACACTTATGCTTCGGCTCGTATGTTGTGGAA  
 TTGTGAGGGATAACAATTACACAGGAAACAGCTATGACCATGATTACGCCAAGCTAT  
 TTAGGTGACCGGTTAGAATACTCAAGCTATGCATCAAGCTTGGTACCGAGCTCGGATCCA  
 CTAGTAACGGCCGCCAGTGTGCTGGAATTGCCCTGGCCGAATAAAATATCCTTATTT  
 TCATTACATCTGTGTGTTGGTTTGTAATCGATAGTACTAACATACGCTCTCCAT  
 CAAAACAAAACGAAACAAAACAAACTAGAAAATAGGCTGTCCCCAGTGCAGTGCAGGT  
 GCCAGAACATTCTATCGATAGGTACCGAGCTTACGCCGCTAGGCCCTCGAGCAGG  
 ATCTATACATTGAATCAATATTGGCAATTAGCCATATTAGTCATTGGTTATATAGCATAA  
 ATCAATATTGGCTATTGCCATTGCATACGTTGTATCTATATCATAATATGTACATTAT  
 ATTGGCTCATGTCCAATATGACCGCCATGTTGACATTGATTATTGACTAGTTATTAAAG  
 TAATCAATTACGGGTCTTACGGTACAGCTTACGCCATATATGGAGTTCCGCTTACATAACTT  
 ACGGTAATGGCCGCCCTGGCTGACGCCAACGACCCCCGCCATTGACGTCAATAATG  
 ACGTATGTTCCCCTAGTAACGCCAACAGGACTTTCCATTGACGTCAATGGGTGGAGTAT  
 TTACGGTAACACTGCCACTTGGCAGTACATCAAGTGTATCATATGCCAACGTCCGCCCCCT  
 ATTGACGTCAATGACGGTAAATGGCCGCCCTGGCATTATGCCAGTACATGACCTTACGG  
 GACTTTCTACTTGGCAGTACATCTACGTATTAGTCATCGCTTACCATGGTGTGCGG  
 TTTGGCAGTACATCAATGGCGTGGTAGCGGTTGACTCACGGGATTCCAAGTCTC  
 CACCCCATGACGTCATGGAGTTGGCACAAAATCAACGGGACTTCCAAAAA  
 TGTCGTAACAACACTCCGCCCCATTGACGCAAATGGCGGTAGGGTGTACGGTGGGAGGT  
 TATATAAGCAGAGCTGTTAGTGAACCGTCAGATGCCCTGGAGACGCCATCCACGCTGT  
 TTTGACCTCCATAGAAGACACCGGACCGATCCAGCCTCCCTCGAAGCTGACTCTAGG  
 GGCTCGAGATCTGCATCTAAGTAAGCTGATGCCCTGAGTCGGCCACGACCGGT  
 GCCGCCACCCTGCCCTGACCCACGCCCTGACCCCTCACAGGAGACGACCTCCATGAC  
 CGAGTACAAGCCCACGGTGCCTCGCCACCCGCCAGACGTCACGGGCGTACGCAC  
 CCTCGCCGCCGCGTTCGCGACTACCCGCCACGCCACACCGTCGACCCGGACGCCA  
 CATCGAGGGTACCGGAGCTGCAAGAACCTTCCACGCCGTCGGCTCGACATCGG  
 CAAGGTGTGGGTGCGGGACGACGGGCCGGTGGCGGTCTGGACCACGCCGGAGAC  
 CGAAGCGGGGGCGGTGTTGCGCGAGATCGGCCGCCATGGCGAGTTGAGCGGTTCCCG  
 GCTGGCCCGCAGAACAGATGGAAGGCTCCTGGCGCCGACCGGCCAACGGAGCCG  
 GTGGTTCTGGCCACCGTCGGCGTCTGCCGACCAAGGGCAAGGGTCTGGCAGCGC  
 CGTCGTGCTCCCCGAGTGGAGGCGGCCAGCGCCGGGGTGCCCGCCTCTGGAGAC  
 CTCCGCCCCCGAACCTCCCCCTACGAGCGGTGGCTCACCCTCACGCGACGT  
 CGAGGTGCCGAAGGACCGCGCACCTGGTGCATGACCGCAAGCCGGTGCCTGACGCC  
 GCCCACGACCCGACGCCGACGCCAACGACCCATGGCTCCGACCGAAC  
 CCGACCCGGCGGCCCGGCCACCCGACCCGCCCGAGGCCACCGACTCTAGAGTC  
 GGGCGGGCGGCCCTCGAGCAGACATGATAAGATACTTGATGAGTTGGACAAACCA  
 CAACTAGAATGCACTGAAAAAAATGTTATTGTGAAATTGATGCTATTGCTTAT  
 TTGTAACATTATAAGCTGCAATAAACAAAGTTAACAAACAATTGCAATTATG  
 TTCAGGTCAGGGGGAGGTGTTAAAGCAAGTAAACCTCTACAAATGTG  
 GTAAAATCGATAAGGATCAATTGCGCTCAGGTACCGTCAGCATGTTAGGTCAAGGTCTC  
 GAAGCCGCGGTGCGGGTGCAGGGCTGCCCTGGCTCCCGGGCGCGTACTCCACCTC  
 ACCCATCTGGTCCATCATGATGAAACGGTCAGGGTGGCGGTAGTTGATCCCGCAACGC  
 GCGCGCACGGGAAGCCCTGCCCTGAAACCGCTGGCGCGGTACGGTACGGC  
 GGGACGTGCGACGGCGTGGCGGTGCGGATACGCCGGGAGCGTCAGCGGTTCTCGAC  
 GGTACGGCGGCATGTCGACAGCGAATTGATCCGTCACCGATGCCCTGAGAGCCTT  
 CAACCCAGTCAGCTCTCCGGTGGCGGGCATGACTATGTCGCCGCACTTATGAC  
 TGTCTCTTATCATGCAACTCGTAGGACAGGTGCCGGCAGCGCTCTCCGCTTCTCGC  
 TCACTGACTCGCTCGCCTCGTCGTTGGCTGCCGAGCGGTATCAGCTCACTCAAAGG  
 CGGTAATACGGTTATCCACAGAACAGGGGATAACGCCAGGAAAGAACATGAAGGGCAAT  
 TCTGCAGATATCCATCACACTGGCGCCGTCGAGCATGCACTAGAGGGCCAATTGCG  
 CCTATAGTGAAGTCGTTACCAATTCACTGGCGCTGTTACAACGTCGTGACTGGAAA  
 ACCCTGGCGTTACCCAACCTTAATGCCCTGCAAGCACATCCCCCTTCGCCAGCTGGCGTA  
 ATAGCGAAGAGGCCCGCACCGATGCCCTCCAAACAGTTGCGCAGCCTATACGTACGGC  
 AGTTAAAGGTTACACCTATAAAAGAGAGAGGCCGTTATCGTCTGTTGTGGATGTACAGA  
 GTGATATTATTGACACGCCGGCGACGGATGGTGTACCCCTGGCCAGTGCACGTCTGC

TGTCAGATAAAAGTCTCCGTGAACTTACCCGGTGGTCATATCGGGGATGAAAGCTGGC  
 GCATGATGACCACCGATATGGCCAGTGTGCCGGTCTCCGTTATCGGGGAAGAAGTGGCTG  
 ATCTCAGCCACCGCGAAAATGACATCAAAAACGCCATTAAACCTGATGTTCTGGGGAAATAT  
 AAATGTCAGGCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTCACGTAGAAAG  
 CCAGTCCCGAGAAACGGTGTGACCCCGATGAATGTCAGCTACTGGGCTATCTGGACAA  
 GGGAAAACGCAAGCGCAAAGAGAAAAGCAGGTAGCTGCACTGGGCTTACATGGCGATAGC  
 TAGACTGGCGGTTTATGGACAGCAAGCGAACCGGAATTGCCAGCTGGGCGCCCTCTG  
 GTAAGGTGGGAAGCCCTGCAAAGTAAACTGGATGGCTTCTGCCGCCAAGGATCTGAT  
 GGCGCAGGGGATCAAGCTCTGATCAAGAGACAGGGATGAGGATCGTTCCGATGATTGAAC  
 AAGATGGATTGCACCGCAGGTTCTCCGGCCGTTGGGAGAGGCTATTGGCTATGACT  
 GGGCACAAACAGACAATCGGCTGCTCTGATGCCGCCGTGTTCCGGCTGTCAAGCGCAGGGG  
 GCCCGGTTCTTTGTCAGAACCGACCTGTCCGGTGCCCTGAATGAACTGCAAGACGAGG  
 CAGCGCGGCTATCGTGGCTGGGCCACGACGGGCGTTCCCTGCGCAGCTGTGCTGACGTTG  
 TCACTGAAGCGGGAAAGGACTGGCTGCTATTGGCGAAGTGGCGGGCAGGATCTCCTGT  
 CATCTCACCTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCAATGCCGGCTGC  
 ATACGCTTGTACCGGCTACCTGCCATTGACCAAGCGAAACATGCCATCGAGCGAG  
 CACGTACTCGGATGGAAGCCGGTCTGTGATCAGGATGATCTGGACGAAGAGCATCAGG  
 GGCTCGGCCAGCCGAACTGTCGCCAGGCTCAAGCGAGCATGCCGACGGCGAGGATC  
 TCGTCGTGACCCATGGCGATGCCCTGCGAATATCATGGTGGAAAATGCCGTTT  
 CTGGATTCATCGACTGTGGCCGGCTGGGTGTGGCGGACCGCTATCAGGACATAGCGTTGG  
 CTACCCGTGATATTGCTGAAGAGCTGGCGCGAATGGGCTGACCGCTCCTCGTGTGTT  
 ACGGTATGCCGCTCCGATTCGACGCCATGCCCTCTATGCCCTTGTGACGAGTTCT  
 TCTGAATTATTAACGCTTACAATTCTGATGCGGTATTTCCTCTACGCATCTGTGCG  
 GTATTTCACACCGCATAAGGTGGCACTTTGGGAAATGTGCGCGAACCCCTATTTG  
 TTTATTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCGTAAAT  
 GCTTCATAATAGCACGTGAGGAGGGCACCAGGCCAAGTGTGACCGAGTGGCTCCGGT  
 GCTCACCGCGCGCAGTCGCCGGAGCGGTGAGTTCTGGACCGACCGGCTGGGTTCTC  
 CGGGACTCTGTGGAGGACGACTTCGCCGTGTGGTCCGGACGACGTGACCCCTGTTCAT  
 CAGCGCGGTCCAGGACCAAGGTGGTGCAGGACAACACCCCTGGCCTGGGTGTGGGCG  
 CCTGGACGAGCTGTACGCCAGTGGTCGGAGGTGTCCACGAACCTCCGGACGCCCTC  
 CGGGCGGCCATGACCGAGATCGCGAGCCGAGCTGGGAGGAGCAGGACTGACACGTGCTAAACT  
 TCATTTTAATTAAAAGGATCTAGGTGAGATCCTTTGATAATCTCATGACCAAAAT  
 CCCTTAACGTGAGTTCTGTTCCACTGAGCGTCAGACCCGTAGAAAAGATCAAAGGATC  
 TTCTTGAGATCCTTTCTGCGCTAATCTGCTGCTGCAAACAAAAAACCCGCT  
 ACCAGCGGTGGTTGCGGATCAAGAGCTACCAACTCTTCCGAAGGTAACGG  
 CTTCAGCAGAGCGCAGATACCAAATACTGTCTCTAGTGTAGCCGTAGTTAGGCCACCA  
 CTTCAAGAAACTCTGTAGCACCCTACATACTCGCTCTGCTAATCCTGTTACCGTGGC  
 TGCTGCCAGTGGCGATAAGTCGTCCTAACGGGTTGGACTCAAGACGATAGTTACCGGA  
 TAAGGCGAGCGGTGGCTGAACGGGGGTTCTGTCACACAGCCCAGCTGGAGCGAAC  
 GACCTACACCGAAGTGGATACCTACAGCGTGAGCTATGAGAAAAGCGCCACGCTCCGA  
 AGGGAGAAAAGCGGACAGGTATCCGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAG  
 GGAGCTCCAGGGGAAACGCTGGTATCTTATAGTCCTGTCGGGTTTCGCCACCTCTG  
 ACTTGAGCGTCGATTGATGCTCGTCAGGGGGCGGAGCCTATGGAAAAACGCCAG  
 CAACCGCGCTTTTACGGTTCTGGCTTTGCTGGCTTTGCTCACATGTTCTTCC  
 TGGCTTATCCCCCTGATTCTGGATAACCGTATTACCGCCTTGAGTGTGAGCTGATACCGC  
 TCGCCGAGCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAG

**FIG. 18**

**SEQ ID NO: 11**

GACTAGTACTGACGGACACACCGAAGCCCCGGCGGCAACCCCTCAGCGGATGCCCGGGCTT  
CACGTTTCCCAGGTAGAACGGTTTCGGGAGTAGTGCCCCAACTGGGTAACCTTGAG  
TTCTCTCAGTTGGGGCGTAGGGTCGCCGACATGACACAAGGGTTGTGACCGGGTGGACA  
CGTACGCGGTGCTTACGACCGTCAGTCGCGCGAGCGCGACTAGTACA

*Fig. 19*



*Fig. 20*



*Fig. 21*



Fig. 22



Fig. 23



Fig. 24

025CIP SEQ List.txt  
SEQUENCE LISTING

<110> AviGenics, Inc  
<120> Avian Integrase-mediated Transformation  
<130> A181 1080.1  
<160> 12  
<170> PatentIn version 3.2  
<210> 1  
<211> 6230  
<212> DNA  
<213> Plasmid pCMV-31int

<400> 1  
cattcgccat tcaggctgcg caactgttgg gaagggcgat cggtgccggc ctcttcgcta 60  
ttacgccagc caatacgcaa accgcctctc cccgcgcgtt ggccgattca ttaatgcagg 120  
atcgatccag acatgataag atacattgat gagtttggac aaaccacaac tagaatgcag 180  
tgaaaaaaaaat gctttatttg tgaaatttgt gatgctattg ctttatttgt aaccattata 240  
agctgcaata aacaagttaa caacaacaat tgcattcatt ttatgttca ggttcagggg 300  
gaggtgtggg aggttttta aagcaagtaa aacctctaca aatgtggtat ggctgattat 360  
gatcatgaac agactgtgag gactgagggg cctgaaaatga gccttgggac tgtgaatcta 420  
aaatacacaa acaatttagaa tcactagctc ctgtgtataa tattttcata aatcataactc 480  
agtaagcaaa actctcaagc agcaagcata tgcagctagt ttaacacatt atacacttaa 540  
aaattttata tttaccttag agctttaaat ctctgttaggt agtttgccttca attatgtcac 600  
accacagaag taaggttcct tcacaaagat cccaaagctag cttataatac gactcactat 660  
agggagagag ctatgacgac gcatgcacgc gtaagcttgg gcccctcgag ggatccgggt 720  
gtctcgctac gccgctacgt cttccgtgcc gtcctggcg tcgtcttcgt cgtcgtcggt 780  
cgccggcttc gcccacgtga tcgaagcgcg cttctcgatg ggcgttccct gccccctgcc 840  
cgtagtcgac ttcgtgacaa cgatcttgc tacgaagagc ccgacgaaca cgccgttgc 900  
gtctactgac gccgcgcccc accacgactt agggccggtc gggtcagcgt cggcgttttc 960  
ggggAACCAT tggtaaggg gaagcttcgg ggcttcggcg gcttcaagtt cggcaagccg 1020  
ctcttccgcc ctttgctgcc ggagcgtcag cgctgcctgt tgcttccgga agtgccttc 1080  
gccaacgggt ccgtcgtagc cgcctgccgc gcggtcttcg tacagcttta caagggcggt 1140  
cagggcgctcg gcgcgtcccg caacaaggtt cggccgttcg cgcctttct caggcgccctc 1200  
agtgagcttgc cggaaagcgac gggcggcttc ccacagaagc gccaacgtct cttcgcc 1260  
ttccggcgtagc ctgatcttgt tgaagatgcg ttccgcaacg aacttgcga gtgcccggcat 1320  
gctgacgttg cacgtgcctt cgtgctgccc aggtgcggac gggtcgacca cttccggcg 1380

## 025CIP SEQ List.txt

|              |                                              |                  |      |
|--------------|----------------------------------------------|------------------|------|
| acggcagcgg   | taagagtccctgatcgattttccccgcgttcgaagtca       | tgacggcgcc       | 1440 |
| acactcgcag   | tacagcttgcgttccatggcgacagaatggct             | tgccccggaaagcccc | 1500 |
| gccgcgc(ccc) | ctgcccgtccaccacgcctgaagctcatacacactcagcg     | gctcgatgat       | 1560 |
| cggtccgcaa   | tcaagctcgaccggccggagcgtgatcgggtcgctgaa       | tgcggttaacc      | 1620 |
| ctcaatcttc   | gtggtcggcgtgccgtccggcttcttcttagatcacct       | cagcggcgaa       | 1680 |
| gcccccaata   | cgcgggtccccgaaggattcgataacgggtgccgggtccc     | aggcgcttga       | 1740 |
| agcggtcttc   | ttcccaatcg tctcgc(ccc)ggtcggcacgcgtcagcgt    | ccatgcgcctt      | 1800 |
| acaaagcccc   | gtgatgctgc ccgggtgaat ggcggcttga ctgcccggct  | tgaagggaag       | 1860 |
| gtgtttgtgc   | gtcttgcattcacgcacca ccaccggatt acgtcgggct    | cgaactcgaa       | 1920 |
| gggtccggta   | aggggagtgg tcgagtcgc aagcttggtagacgacat      | tgaccattcg       | 1980 |
| gccgttgcgc   | gtgatctccttcgtctccga aacaagctcg aagccgtaag   | gcccgttccc       | 2040 |
| gccgacgtac   | ccgcccatt cgcgtgaag gttttcgcttcgagaaatct     | tcgcccactt       | 2100 |
| cagcgaagat   | tcttgcgcg acgcgtcgag ccgcataatc aggtgaatca   | ggtccatgac       | 2160 |
| gtttccctgc   | cggaagacgc cttcctgagt ggaaacaatc gtcacgccc   | ggcgagcaa        | 2220 |
| ttccgagaca   | atcgaaatcg cgtccatgac cttcaggcgc gagaagcgcg  | acacgtcata       | 2280 |
| gacaatgatc   | atgttgcgcg cccggcgcgcattcgaggatgcgtt         | cgaactccgg       | 2340 |
| gcgcgtccgc   | gtcccgaacgcgcgttgcc cggcgcttcgctgaaatgcc     | cgacgaaacct      | 2400 |
| gaaccggccc   | ccgtcgcgct cgacttcgcg ctgaaggctggcccttgt     | cttcgttggc       | 2460 |
| gctacgctgt   | gtcgctgggc ttgctgcgtcgaattctcg cgctcgcgcg    | actgacggtc       | 2520 |
| gtaagcaccc   | gcgtacgttgcgcgttgcgcgttgcgcgttgcgcgttgcgcgtt | cggtgcaccct      | 2580 |
| acgacttagtgc | agctcgtcgaccggattccggaccggtagtgcgcgttgcgcgtt | gtaccttcta       | 2640 |
| tagtgcacc    | taaatagcttttgcaaaag cctaggctag agtccggagg    | ctggatcggt       | 2700 |
| cccggtgtct   | tctatggagg tcaaaacagc gtggatggcg tctccaggcg  | atctgacgg        | 2760 |
| tcactaaacg   | agctctgcattatagacccaccgtac acgcctaccgc       | cccatttgcg       | 2820 |
| tcaatggggc   | ggagttgtta cgacatttg gaaaatccc ttgatttgg     | tgccaaaaca       | 2880 |
| aactcccatt   | gacgtcaatgggtggagac ttggaaatcc cctgtgagtca   | aaccgctatc       | 2940 |
| cacgcccatt   | gatgtactgc caaaaccgcataccatggtaatagcgatg     | actaatacg        | 3000 |
| agatgtactgc  | ccaagtagga aagtccata aggtcatgtatggcataaa     | tgccaggcgg       | 3060 |
| gccatttacc   | gtcattgacgtcaatagggg gcgtacttgg catatgatac   | acttgatgt        | 3120 |
| ctgccaagtgc  | ggcagtttac cgtaaataact ccacccattgcgtcaatgg   | aaagtcctaa       | 3180 |
| ttggcgttac   | tatgggaaca tacgtcatta ttgacgtcaa tggcgcccc   | tcgttggcg        | 3240 |

## 025CIP SEQ List.txt

|                                                                    |      |
|--------------------------------------------------------------------|------|
| gtcagccagg cgggccattt accgtaagtt atgtaacgac ctgcacgatg ctgtttcctg  | 3300 |
| tgtgaaattg ttatccgctc acaattccac acattatacg agccggaagc tataaagtgt  | 3360 |
| aaagcctggg gtgcctaatg agtgaaggg cctcgatac gcctattttt ataggttaat    | 3420 |
| gtcatgataa taatggtttc ttagacgtca ggtggcactt ttcggggaaa tgtgcgcgga  | 3480 |
| acccttattt gtttattttt ctaaatacat tcaaataatgt atccgctcat gagacaataa | 3540 |
| ccctgataaa tgcttcaata atattaaaa acgcgcgaat tgcaagctct gcattaatga   | 3600 |
| atcggccaac gcgcggggag aggccgttg cgtattggc gctctccgc ttcctcgctc     | 3660 |
| actgactcgc tgcgctcggt cggtcgctg cggcgagcgg tatcagctca ctcaaaggcg   | 3720 |
| gtaatacggt tatccacaga atcagggat aacgcaggaa agaacatgtg agcaaaaggc   | 3780 |
| cagcaaaagg ccaggaaccg taaaaaggcc gcgttgctgg cgttttcca taggctccgc   | 3840 |
| ccccctgacg agcatcacaa aaatcgacgc tcaagtcaga ggtggcggaa cccgacagga  | 3900 |
| ctataaagat accaggcggt tccccctgga agctccctcg tgcgctctcc tggccgacc   | 3960 |
| ctgcccctta ccggataacct gtccgcctt ctcccttcgg gaagcgtggc gctttctcaa  | 4020 |
| tgctcacgct gtaggtatct cagttcggtg taggtcggtc gctccaagct gggctgtgt   | 4080 |
| cacgaacccc ccgttcagcc cgaccgctgc gccttatccg gtaactatcg tcttgagtcc  | 4140 |
| aacccggtaa gacacgactt atcgccactg gcagcagcca ctggtaacag gattagcaga  | 4200 |
| gcgaggtatg taggcggtgc tacagagttc ttgaagtggt ggcctaacta cggctacact  | 4260 |
| agaaggacag tatttggtat ctgcgctctg ctgaagccag ttaccttcgg aaaaagagtt  | 4320 |
| ggtagctctt gatccggcaa acaaaccacc gctggtagcg gtggttttt tggccaaag    | 4380 |
| cagcagatta cgccagaaa aaaaggatct caagaagatc ctttgatctt ttctacgggg   | 4440 |
| tctgacgctc agtggAACGA aaactcacgt taagggattt tggtcatgcc ataacttcgt  | 4500 |
| atagcataca ttatcgaag ttatggcatg agattatcaa aaaggatctt cacctagatc   | 4560 |
| cttttaaatt aaaaatgaag ttttaaatca atctaaagta tatatgagta aacttggct   | 4620 |
| gacagttacc aatgcttaat cagtgaggca cctatctcag cgatctgtct atttcgttca  | 4680 |
| tccatagttg cctgactccc cgctgtgtat ataactacga tacgggaggg cttaccatct  | 4740 |
| ggccccagtg ctgcaatgat accgcgagac ccacgctcac cggctccaga tttatcagca  | 4800 |
| ataaaccagc cagccggaag ggccgagcgc agaagtggtc ctgcaacttt atccgcctcc  | 4860 |
| atccagtcta ttaattgttg ccggaaagct agagtaagta gttcgccagt taatagtttgc | 4920 |
| cgcaacgttg ttgccattgc tacaggcatc gtgggtgtcac gctcgctgtt tggatggct  | 4980 |
| tcattcagct ccgggtccca acgtcaagg cgagttacat gatccccat gttgtgcaaa    | 5040 |
| aaagcggta gctcccttcgg tcctccgatc gttgtcagaa gtaagttggc cgcagtgttta | 5100 |
| tcactcatgg ttatggcagc actgcataat tctcttactg tcatgccatc cgtaagatgc  | 5160 |

## 025CIP SEQ List.txt

|            |             |            |            |            |            |      |
|------------|-------------|------------|------------|------------|------------|------|
| ttttctgtga | ctggtgagta  | ctcaaccaag | tcattctgag | aatagtgtat | gcggcgaccg | 5220 |
| agttgctctt | gcccgccgtc  | aatacgggat | aataccgcgc | cacatagcag | aactttaaaa | 5280 |
| gtgctcatca | ttggaaaacg  | ttcttcgggg | cggaaactct | caaggatctt | accgctgttg | 5340 |
| agatccagtt | cgtatgtacc  | cactcgtgca | cccaactgat | cttcagcatc | ttttactttc | 5400 |
| accagcgttt | ctgggtgagc  | aaaaacagga | aggcaaaatg | ccgcaaaaaa | gggaataagg | 5460 |
| gcgacacgga | aatgttgaat  | actcatactc | ttcccttttc | aatattattt | aagcatttat | 5520 |
| cagggttatt | gtctcatgcc  | aggggtgggc | acacatattt | gataccagcg | atccctacac | 5580 |
| agcacataat | tcaatgcac   | ttccctctat | cgcacatctt | agacctttat | tctccctcca | 5640 |
| gcacacatcg | aagctgccga  | gcaagccgtt | ctcaccagtc | caagacctgg | catgagcgga | 5700 |
| catatattt  | aatgtatttt  | aaaaaataaa | caaatagggg | ttccgcgcac | atttccccga | 5760 |
| aaagtgccac | ctgaaattgt  | aaacgttaat | attttgttaa | aattcgcgtt | aaatttttgt | 5820 |
| taaatcagct | catttttaa   | ccaataggcc | gaaatcgca  | aaatccctta | taaatcaaaa | 5880 |
| gaatagaccg | agatagggtt  | gagtgttgtt | ccagtttgg  | acaagagtcc | actattaaag | 5940 |
| aacgtggact | ccaacgtcaa  | agggcgaaaa | accgtctatc | agggcgatgg | cccactacgt | 6000 |
| gaaccatcac | cctaattcaag | ttttttgggg | tcgaggtgcc | gtaaagcact | aaatcggaac | 6060 |
| cctaaaggga | gcccccgatt  | tagagcttga | cggggaaagc | cggcgaacgt | ggcgagaaag | 6120 |
| gaagggaga  | aagcgaaagg  | agcggcgct  | agggcgctgg | caagtgtagc | ggtcacgctg | 6180 |
| cgcgtAACCA | ccacacccgc  | cgcgttaat  | gcgcgcgtac | agggcgcg   |            | 6230 |

<210> 2  
<211> 5982  
<212> DNA  
<213> Plasmid pCMV-luc-attB

|         |            |             |             |             |             |            |     |
|---------|------------|-------------|-------------|-------------|-------------|------------|-----|
| <400> 2 | ctctatcgat | aggtaaccgag | ctcttacgcg  | tgcttagccct | cgagcaggat  | ctatacattt | 60  |
|         | aatcaatatt | ggcaatttagc | catatttagtc | attggttata  | tagcataaaat | caatattggc | 120 |
|         | tattggccat | tgcatacgtt  | gtatctatat  | cataatatgt  | acatttatat  | tggctcatgt | 180 |
|         | ccaatatgac | cgcgcatttg  | acattgatta  | ttgactagtt  | attaatagta  | atcaattacg | 240 |
|         | gggtcattag | ttcatagccc  | atatatggag  | ttccgcgtta  | cataacttac  | ggtaaatggc | 300 |
|         | ccgcctggct | gaccgccccaa | cgaccccccgc | ccattgacgt  | caataatgac  | gtatgttccc | 360 |
|         | atagtaacgc | caatagggac  | tttccattga  | cgtcaatggg  | tggagtattt  | acggtaaact | 420 |
|         | ccccacttgg | cagtacatca  | agtgtatcat  | atgccaagtc  | cgcgcctat   | tgacgtcaat | 480 |
|         | gacggtaaat | ggcccgccctg | gcattatgcc  | cagtacatga  | ccttacggga  | ctttcctact | 540 |
|         | tggcagtaca | tctacgtatt  | agtcatcgct  | attaccatgg  | tgatgcgggtt | ttggcagtac | 600 |

## 025CIP SEQ List.txt

|                                                                      |      |
|----------------------------------------------------------------------|------|
| atcaatgggc gtggatagcg gtttactca cggggatttc caagtctcca ccccattgac     | 660  |
| gtcaatggga gtttgttttgc acacaaaaat caacgggact ttccaaaatgc tcgtaacaac  | 720  |
| tccgccccat tgacgcaa at gggcggtagg cgtgtacggt gggaggtcta tataaggcaga  | 780  |
| gctcgtagt tgaaccgtca gatcgccctgg agacgccatc cacgctgtt tgacctccat     | 840  |
| agaagacacc gggaccgatc cagcctcccc tcgaagctcg actctagggg ctcgagatct    | 900  |
| gcgatctaag taagcttggc attccggtac tgttggtaaa gccaccatgg aagacgcca     | 960  |
| aaacataaaag aaaggcccg cgccattcta tccgctggaa gatggaaccg ctggagagca    | 1020 |
| actgcataag gctatgaaga gatacgcctt ggttcctggaa acaattgc ttacagatgc     | 1080 |
| acatatcgag gtggacatca cttacgctga gtacttcgaa atgtccgttc ggttggcaga    | 1140 |
| agctatgaaa cgatatgggc tgaatacataa tcacagaatc gtcgtatgca gtgaaaactc   | 1200 |
| tcttcaattc tttatgccgg tggtggcgc gttatttac ggagttgcag ttgcgcccgc      | 1260 |
| gaacgacatt tataatgaac gtgaattgc caacagtatg ggcatttcgc agcctaccgt     | 1320 |
| ggtgttcgtt tccaaaaagg ggttgcaaaa aattttgaac gtgaaaaaaaa agctccaaat   | 1380 |
| catccaaaaa attattatca tggattctaa aacggattac cagggatttc agtcgatgt     | 1440 |
| cacgttcgac acatctcatc tacctccgg ttttaatgaa tacgattttg tgccagagtc     | 1500 |
| cttcgatagg gacaagacaa ttgcactgat catgaactcc tctggatcta ctggcttgcc    | 1560 |
| taaaggtgtc gctctgcctc atagaactgc ctgcgtgaga ttctcgatg ccagagatcc     | 1620 |
| tatTTTGGC aatcaaatac ttccggatac tgcgattta agtggatcc cattccatca       | 1680 |
| cggTTTGGA atgtttacta cactcgata tttgatatgt ggatttcgag tcgtcttaat      | 1740 |
| gtatagattt gaagaagagc tgTTTGTAG gagccttcag gattacaaga ttcaaagtgc     | 1800 |
| gctgctggtg ccaaccctat tctccttctt cgccaaaagc actctgattt acaaatacga    | 1860 |
| tttatctaattt ttacacgaaa ttgcttctgg tggcgctccc ctctctaagg aagtcgggaa  | 1920 |
| agcggTTGCC aagaggttcc atctgccagg tatcaggcaa ggatatggc tcactgagac     | 1980 |
| tacatcagct attctgatta cacccgaggg ggatgataaa ccggcgcgg tcggtaaagt     | 2040 |
| tgttccatTTT ttgaagcga aggttgga tctggatacc gggaaaacgc tggcgtaaa       | 2100 |
| tcaaagaggc gaactgtgtg tgagaggcctc tatgattatg tccggttatg taaacaatcc   | 2160 |
| ggaagcgcacc aacgccttga ttgacaagga tggatggcta cattctggag acatagctt    | 2220 |
| ctgggacgaa gacgaacact tcttcattgt tgaccgcctg aagtctctga ttaagtacaa    | 2280 |
| aggctatcag gtggctcccgt ctgaattggaa atccatcttgc tccaaacacc ccaacatctt | 2340 |
| cgacgcaggc gtgcaggc ttcccgacga tgacgcccgtt gaaactcccg ccggcgttgt     | 2400 |
| tgttttggag cacggaaaga cgatgacgga aaaagagatc gtggattacg tcgcccgtca    | 2460 |

## 025CIP SEQ List.txt

|            |             |             |             |             |             |      |
|------------|-------------|-------------|-------------|-------------|-------------|------|
| agtaacaacc | gcgaaaaagt  | tgcgcggagg  | agttgtgtt   | gtggacgaag  | taccgaaagg  | 2520 |
| tcttaccgga | aaactcgacg  | caagaaaaat  | cagagagatc  | ctcataaagg  | ccaagaaggg  | 2580 |
| cggaaagatc | gccgtgtaat  | tctagagtcg  | gggcggccgg  | ccgcttcgag  | cagacatgat  | 2640 |
| aagatacatt | gatgagttt   | gacaaaccac  | aactagaatg  | cagtaaaaaa  | aatgctttat  | 2700 |
| ttgtgaaatt | tgtgatgcta  | ttgcttattt  | tgttaaccatt | ataagctgca  | ataaaacaagt | 2760 |
| taacaacaac | aattgcattc  | attttatgtt  | tcaaggttcag | ggggaggtgt  | gggaggtttt  | 2820 |
| ttaaagcaag | taaaacctct  | acaaatgtgg  | taaaatcgat  | aaggatcaat  | tcggcttcag  | 2880 |
| gtaccgtcga | cgatgttaggt | cacggctcgc  | aagccgcgg   | gcgggtgcca  | ggcgtgccc   | 2940 |
| ttgggctccc | cgggcgcgta  | ctccacctca  | cccatcttgtt | ccatcatgat  | gaacgggtcg  | 3000 |
| aggtggcggt | agttgatccc  | ggcgaacgcg  | cggcgcaccg  | ggaagccctc  | gccctcgaaa  | 3060 |
| ccgctggcg  | cggtggtcac  | ggtgagcacg  | ggacgtgcga  | cggcgtcggc  | gggtgcggat  | 3120 |
| acgcggggca | gcgtcagcgg  | gttctcgacg  | gtcacggcg   | gcatgtcgac  | agccgaattt  | 3180 |
| atccgtcgac | cgatgccc    | ttttagcctt  | gagagccttc  | aacctagtca  | gctccttccg  | 3240 |
| ggcatgacta | tcgtcgccgc  | acttatgact  | gtcttcttta  | tcatgcaact  | cgtaggacag  | 3300 |
| gtgccggcag | cgctcttccg  | tttcctcgct  | cactgactcg  | ctgcgctcgg  | tcgttcggct  | 3360 |
| gcggcgagcg | gtatcagctc  | actcaaaggc  | ggtaataacgg | ttatccacag  | aatcaggggaa | 3420 |
| taacgcagga | aagaacatgt  | gagcaaaagg  | ccagcaaaag  | gccaggaacc  | gtaaaaaggc  | 3480 |
| cgcgttgctg | gcgtttttcc  | ataggctccg  | ccccctgac   | gagcatcaca  | aaaatcgacg  | 3540 |
| ctcaagtca  | aggggcgaa   | acccgacagg  | actataaaga  | taccaggcgt  | ttccccctgg  | 3600 |
| aagctccctc | gtgcgctctc  | ctgttccgac  | cctgcccgtt  | accggatacc  | tgtccgcctt  | 3660 |
| tctcccttcg | ggaagcgtgg  | cgctttctca  | atgctcacgc  | tgttaggtatc | tcaagttcggt | 3720 |
| gtaggtcgtt | cgctccaagc  | tgggctgtgt  | gcacgaaccc  | cccggtcagc  | ccgaccgctg  | 3780 |
| cgccttatcc | ggtaactatc  | gtcttgagtc  | caacccggta  | agacacgact  | tatgccact   | 3840 |
| ggcagcagcc | actggtaaca  | ggatttagcag | agcgaggtat  | gtagggcgtg  | ctacagagtt  | 3900 |
| cttgaagtgg | tggcctaact  | acggctacac  | tagaaggaca  | gtatttggta  | tctgcgtct   | 3960 |
| gctgaagcca | gttaccttcg  | gaaaaagagt  | tggtagctct  | tgatccggca  | aacaaaccac  | 4020 |
| cgctggtagc | ggtggttttt  | ttgtttgcaa  | gcagcagatt  | acgcgcagaa  | aaaaaggatc  | 4080 |
| tcaagaagat | cctttgatct  | tttctacggg  | gtctgacgct  | cagtggAACG  | aaaactcact  | 4140 |
| ttaagggatt | ttggtcatga  | gattatcaa   | aaggatctt   | acctagatcc  | ttttaaatta  | 4200 |
| aaaatgaagt | tttaaatcaa  | tctaaagtat  | atatgatcaa  | acttggtctg  | acagttacca  | 4260 |
| atgcttaatc | agtgaggcac  | ctatctcagc  | gatctgtcta  | tttcgttcat  | ccatagttgc  | 4320 |
| ctgactcccc | gtcgtgtaga  | taactacgat  | acgggagggc  | ttaccatctg  | gcccccagtgc | 4380 |

## 025CIP SEQ List.txt

|            |             |             |             |             |             |      |
|------------|-------------|-------------|-------------|-------------|-------------|------|
| tgcaatgata | ccgcgagacc  | cacgctcacc  | ggctccagat  | ttatcagcaa  | taaaccagcc  | 4440 |
| agccggaagg | gccgagcgca  | gaagtggtcc  | tgcaacttta  | tccgcctcca  | tccagtctat  | 4500 |
| taattgttgc | cggaaagcta  | gagtaagttag | ttcgccagtt  | aatagttgc   | gcaacgttgt  | 4560 |
| tgccattgct | acaggcatcg  | tggtgtcacg  | ctcgtcgtt   | ggtatggctt  | cattcagctc  | 4620 |
| cgttcccaa  | cgatcaaggc  | gagttacatg  | atccccatg   | tttgcaaaa   | aagcggttag  | 4680 |
| ctccttcggt | cctccgatcg  | ttgtcagaag  | taagttggcc  | gcagtgttat  | cactcatggt  | 4740 |
| tatggcagca | ctgcataatt  | ctcttactgt  | catgccatcc  | gtaagatgct  | tttctgtgac  | 4800 |
| tggtgagtac | tcaaccaagt  | cattctgaga  | atagtgtatg  | cggcgaccga  | gttgctcttg  | 4860 |
| cccggcgtca | atacgggata  | ataccgcgc   | acatagcaga  | actttaaaag  | tgctcatcat  | 4920 |
| tggaaaacgt | tcttcggggc  | gaaaactctc  | aaggatctta  | ccgctgttga  | gatccagttc  | 4980 |
| gatgtAACCC | actcgtgcac  | ccaaactgatc | ttcagcatct  | tttactttca  | ccagcgttc   | 5040 |
| tgggtgagca | aaaacaggaa  | ggcaaaatgc  | cgaaaaaaag  | ggaataaggg  | cgacacggaa  | 5100 |
| atgttgaata | ctcatactct  | tccttttca   | atattattga  | agcatttatac | agggttattg  | 5160 |
| tctcatgagc | ggatacatat  | ttgaatgtat  | tttagaaaaat | aaacaaatag  | gggttcccg   | 5220 |
| cacatttccc | cgaaaagtgc  | cacctgacgc  | gccctgttagc | ggcgcattaa  | gcgcggcggg  | 5280 |
| tgtggtggtt | acgcgcagcg  | tgaccgctac  | acttgccagc  | gccctagcgc  | ccgctcctt   | 5340 |
| cgtttcttc  | ccttccttcc  | tcgcccacgtt | cggccggctt  | ccccgtcaag  | ctctaaatcg  | 5400 |
| ggggctccct | ttagggttcc  | gatttagtgc  | tttacggcac  | ctcgacccca  | aaaaacttga  | 5460 |
| ttagggtgat | ggttcacgta  | gtgggccatc  | gccctgatag  | acggttttc   | gccctttgac  | 5520 |
| gttggagtcc | acgttcttta  | atagtggact  | cttggccaa   | actggAACAA  | caactcaACCC | 5580 |
| tatctcggtc | tattcttttgc | atttataagg  | gatTTGCCC   | atTTGGCCT   | atTGGTTAAA  | 5640 |
| aaatgagctg | atttaacaaa  | atttaacgc   | gaatttaac   | aaaatattaa  | cgtttacaat  | 5700 |
| ttcccattcg | ccattcaggc  | tgcgcaactg  | ttgggaaggg  | cgatcggtgc  | gggcctcttc  | 5760 |
| gctattacgc | cagcccaagc  | taccatgata  | agtaagtaat  | attaaggtac  | gggaggtact  | 5820 |
| tggagcggcc | gcaataaaaat | atcttattt   | tcattacatc  | tgtgtgttgg  | ttttttgtgt  | 5880 |
| gaatcgatag | tactaacata  | cgctctccat  | caaaacaaaa  | cgaaacaaaa  | caaactagca  | 5940 |
| aaataggctg | tccccagtgc  | aagtgcaggt  | gccagaacat  | tt          |             | 5982 |

<210> 3  
 <211> 5924  
 <212> DNA  
 <213> Plasmid pCMV-luc-attP

<400> 3  
 ctctatcgat aggtaccgag ctcttacgcg tgcttagccct cgagcaggat ctatacattg 60  
 Page 7

## 025CIP SEQ List.txt

|                                                                     |      |
|---------------------------------------------------------------------|------|
| aatcaatatt ggcaattagc catattagtc attggttata tagcataaat caatattggc   | 120  |
| tattggccat tgcatacggt gtatctatat cataatatgt acatttatat tggctcatgt   | 180  |
| ccaatatgac cgccatgtt acattgatta ttgacttagtt attaatagta atcaattacg   | 240  |
| gggtcattag ttcatalogcc atatatggag ttccgcgtt cataacttac ggtaaatggc   | 300  |
| ccgcctggct gaccgccccaa cgacccccgc ccattgacgt caataatgac gtatgttccc  | 360  |
| atagtaacgc caataggac tttccattga cgtcaatggg tggagtattt acggtaaact    | 420  |
| gcccacttgg cagtagatca agtgtatcat atgccaagtc cgcccccstat tgacgtcaat  | 480  |
| gacggtaaat ggccgcctg gcattatgcc cagtagatga ctttacggga ctttcctact    | 540  |
| tggcagtgaca tctacgtatt agtcatcgct attaccatgg tcatgcgtt ttggcagtgac  | 600  |
| atcaatgggc gtggatagcg gtttactca cggggatttc caagtctcca ccccattgac    | 660  |
| gtcaatggga gtttggggat gcacaaaaat caacgggact ttccaaaatg tcgtaacaac   | 720  |
| tccgccttgc tgacgcaaat gggcggtagg cgtgtacggt gggaggtcta tataaggcaga  | 780  |
| gctcgtttag tgaaccgtca gatgccttgg agacgccatc cacgctgttt tgacctccat   | 840  |
| agaagacacc gggaccgatc cagcctcccc tcgaagctcg actctagggg ctcgagatct   | 900  |
| gcgatctaag taagcttggc attccggtagc tggatggtaaa gccaccatgg aagacgcca  | 960  |
| aaacataaaag aaaggccccgg cgccattcta tccgctggaa gatggAACCG ctggagagca | 1020 |
| actgcataag gctatgaaga gatacgccct gtttgcgtt acaattgctt ttacagatgc    | 1080 |
| acatatcgag gtggacatca cttacgctga gtacttcgaa atgtccgttc gtttggcaga   | 1140 |
| agctatgaaa cgatatgggc tgaataaaaa tcacagaatc gtcgtatgca gtgaaaactc   | 1200 |
| tcttcatttc ttatgcgg tggatggcgc gttatgttgc ggagttgcag ttgcgcggc      | 1260 |
| gaacgacatt tataatgaac gtgaattgct caacagtatg ggcatttcgc agcctaccgt   | 1320 |
| ggtgttcgtt tccaaaaagg gtttgcaaaa aattttgaac gtgaaaaaaa agctcccaat   | 1380 |
| catccaaaaa attattatca tggattctaa aacggattac cagggatttc agtcgtatgt   | 1440 |
| cacgttcgtc acatctcatc tacctccgg tttatgaa tacgatgg tgccagagtc        | 1500 |
| cttcgatagg gacaagacaa ttgcactgat catgaactcc tctggatcta ctggctgcc    | 1560 |
| taaagggtgtc gctctgcctc atagaactgc ctgcgtgaga ttctcgatg ccagagatcc   | 1620 |
| tatTTTGGC aatcaaatac ttccggatac tgcgatTTA agtgtgttc cattccatca      | 1680 |
| cggTTTGGG atgtttacta cactcgata tttgatgtt ggatttcgag tcgtcttaat      | 1740 |
| gtatagattt gaagaagagc tgTTTCTGAG gagcTTCAg gattacaaga ttCAAAGTGC    | 1800 |
| gctgctggtg ccaaccctat tctccttctt cgccaaaagc actctgattt acaaatacga   | 1860 |
| tttatctaatttacacgaaa ttgcttctgg tggcgctccc ctctctaagg aagtcggggaa   | 1920 |

## 025CIP SEQ List.txt

|             |             |             |             |            |             |      |
|-------------|-------------|-------------|-------------|------------|-------------|------|
| agcggttgc   | aagaggttcc  | atctgccagg  | tatcaggcaa  | ggatatgggc | tcactgagac  | 1980 |
| tacatcagct  | attctgatta  | cacccgaggg  | ggatgataaa  | ccgggcgcgg | tcggtaaagt  | 2040 |
| tgttccattt  | tttgaagcga  | aggtgtgga   | tctggatacc  | gggaaaacgc | tggcgtaaa   | 2100 |
| tcaaagaggc  | gaactgtgtg  | tgagaggtcc  | tatgattatg  | tccggttatg | taaacaatcc  | 2160 |
| ggaagcgacc  | aacgccttga  | ttgacaagga  | tggatggcta  | cattctggag | acatagctta  | 2220 |
| ctgggacgaa  | gacgaacact  | tcttcatcgt  | tgaccgcctg  | aagtctctga | ttaagtacaa  | 2280 |
| aggctatcag  | gtggctcccg  | ctgaatttga  | atccatcttgc | ctccaacacc | ccaacatctt  | 2340 |
| cgacgcaggt  | gtcgcaggtc  | ttcccgacga  | tgacgcccgt  | gaacttcccg | ccgcccgttgt | 2400 |
| tgttttggag  | cacggaaaga  | cgatgacgga  | aaaagagatc  | gtggattacg | tcgcccagtca | 2460 |
| agtaacaacc  | gcgaaaaagt  | tgcgccggagg | agttgtgttt  | gtggacgaag | taccgaaagg  | 2520 |
| tcttaccgga  | aaactcgacg  | caagaaaaat  | cagagagatc  | ctcataaagg | ccaagaaggg  | 2580 |
| cggaaagatc  | gccgtgtaat  | tctagagtgc  | gggcggccgg  | ccgcttcgag | cagacatgat  | 2640 |
| aagatacatt  | gatgagtttgc | gacaaaccac  | aactagaatg  | cagtaaaaaa | aatgctttat  | 2700 |
| ttgtgaaatt  | tgtgatgcta  | ttgctttatt  | tgttaaccatt | ataagctgca | ataaaacaagt | 2760 |
| taacaacaac  | aattgcattc  | attttatgtt  | tcaggttcag  | ggggaggtgt | gggaggtttt  | 2820 |
| ttaaagcaag  | taaaacctct  | acaaatgtgg  | taaaatcgat  | aaggatcaat | tcggcttcga  | 2880 |
| ctagtactga  | cggacacacc  | gaagccccgg  | cggcaaccct  | cagcggatgc | cccggggctt  | 2940 |
| cacgtttcc   | caggtcagaa  | gcgggtttcg  | ggagtagtgc  | cccaactggg | gtaacctttg  | 3000 |
| agttctctca  | gttggggcg   | tagggtcgcc  | gacatgacac  | aaggggttgt | gaccggggtg  | 3060 |
| gacacgtacg  | cgggtgctta  | cgaccgtcag  | tcgcgcgagc  | gcgactagta | caagccgaat  | 3120 |
| tgatccgtcg  | accgatgccc  | ttgagagcct  | tcaaccagt   | cagctccttc | cggtgggcgc  | 3180 |
| ggggcatgac  | tatcgctgcc  | gcacttatga  | ctgtcttctt  | tatcatgcaa | ctcgttaggac | 3240 |
| aggtgccggc  | agcgctttc   | cgcttcctcg  | ctcaactgact | cgctgcgctc | ggtcgttcgg  | 3300 |
| ctgcggcgag  | cgttatcagc  | tcactcaaag  | gcggtaatac  | ggttatccac | agaatcaggg  | 3360 |
| gataacgcag  | gaaagaacat  | gtgagaaaa   | ggccagcaa   | aggccaggaa | ccgtaaaaag  | 3420 |
| gccgcgttgc  | tggcgaaaa   | ccataggctc  | cgccccccctg | acgagcatca | aaaaatcga   | 3480 |
| cgctcaagtc  | agaggtggcg  | aaacccgaca  | ggactataaa  | gataccaggc | gtttccccct  | 3540 |
| ggaagctccc  | tcgtgcgctc  | tcctgttccg  | accctgccgc  | ttaccggata | cctgtccgcc  | 3600 |
| tttctccctt  | cggaaagcgt  | ggcgcttct   | caatgctcac  | gctgttaggt | tctcagttcg  | 3660 |
| gtgttaggtcg | ttcgctccaa  | gctgggctgt  | gtgcacgaac  | cccccggtca | gcccgaccgc  | 3720 |
| tgccgccttat | ccggtaacta  | tcgtcttgag  | tccaaacccgg | taagacacga | cttatcgcca  | 3780 |
| ctggcagcag  | ccactggtaa  | caggattagc  | agagcgaggt  | atgtaggcgg | tgctacagag  | 3840 |

## 025CIP SEQ List.txt

|                                                                       |      |
|-----------------------------------------------------------------------|------|
| ttcttgaagt ggtggcctaa ctacggctac actagaagga cagtatttg tatctgcgt       | 3900 |
| ctgctgaagc cagttacctt cgaaaaaaga gttggtagct cttgatccgg caaacaaacc     | 3960 |
| accgctggta gcggtggtt ttttgttgc aagcagcaga ttacgcgcag aaaaaaaagga      | 4020 |
| tctcaagaag atcctttgat cttttctacg gggctgacg ctcagtggaa cgaaaactca      | 4080 |
| cgttaaggga ttttggtcat gagattatca aaaaggatct tcacctagat cttttaaat      | 4140 |
| taaaaaatgaa gttttaaatc aatctaaagt atatatgagt aaacctggtc tgacagttac    | 4200 |
| caatgcttaa tcagtgaggc acctatctca gcgatctgtc tatttcgttc atccatagtt     | 4260 |
| gcctgactcc ccgtcgtgta gataactacg atacgggagg gcttaccatc tggccccagt     | 4320 |
| gctgcaatga taccgcgaga cccacgctca cccggctccag atttatcagc aataaaccag    | 4380 |
| ccagccggaa gggccgagcg cagaagtggt cctgcaactt tatccgcctc catccagtct     | 4440 |
| attaatttgtt gccgggaagc tagagtaagt agttcgccag ttaatagttt gcgcaacgtt    | 4500 |
| gttgccattg ctacaggcat cgtggtgtca cgctcgtcgt ttggtatggc ttcattcagc     | 4560 |
| tccggttccc aacgatcaag gcgagttaca tgatccccca tgttgtcaa aaaagcggtt      | 4620 |
| agctccttcg gtccctccgat cgttgcaga agtaagttgg ccgcagtgtt atcactcatg     | 4680 |
| gttatggcag cactgcataa ttctcttact gtcatgccat ccgtaagatg cttttctgt      | 4740 |
| actggtgagt actcaaccaa gtcattctga gaatagtgt a tgcggcgacc gagttgctct    | 4800 |
| tgcggcggtt caatacggga taataccgcg ccacatagca gaactttaaa agtgcgtcatc    | 4860 |
| attggaaaac gttttcgaa gcgaaaactc tcaaggatct taccgctgtt gagatccagt      | 4920 |
| tcgatgtaac ccactcgtgc acccaactga tcttcagcat ctttacttt caccagcg        | 4980 |
| tctgggttag caaaaacagg aaggcaaaat gccgaaaaaa agggataaag ggcgacacgg     | 5040 |
| aatgttgaa tactcataact cttcctttt caatattatt gaagcattta tcagggttat      | 5100 |
| tgtctcatga gcggatacat atttgaatgt atttagaaaa ataaacaaat aggggttccg     | 5160 |
| cgcacattc cccggaaagt gccacctgac gcgcctgta gcggcgcatt aagcgcggcg       | 5220 |
| ggtgtggtag ttacgcgcag cgtgaccgct acacttgcca gcgccttagc gcccgcct       | 5280 |
| ttcgctttct tcccttcctt tctcgccacg ttgcggct ttccccgtca agctctaaat       | 5340 |
| cgggggctcc ctttagggtt ccgatttagt gcttacggc acctcgaccc caaaaaactt      | 5400 |
| gattagggtg atggttcacg tagtggcca tcgcctgtat agacggttt tcgcctttg        | 5460 |
| acgttggagt ccacgttctt taatagtggc ctcttgcgttcc aaactggAAC aacactcaac   | 5520 |
| cctatctcggtt ctttattttt tgatttataa gggatttgc cgatttcggc ctattggta     | 5580 |
| aaaaatgagc tgatTTAACA AAAATTAAAC gcgaattttt aaaaaatatt aacgtttaca     | 5640 |
| atTTCCCAATT CGCCATTCAAG gctgcgcAAC tgTTGGGAAG ggcgcattcggt gcgggcctct | 5700 |

## 025CIP SEQ List.txt

|                                                                    |      |
|--------------------------------------------------------------------|------|
| tcgcttattac gccagccaa gctaccatga taagtaagta atattaaggta acgggaggta | 5760 |
| cttggagcgg ccgcaataaa atatctttat tttcattaca tctgtgtgtt ggtttttgtt  | 5820 |
| gtgaatcgat agtactaaca tacgctctcc atcaaaacaa aacgaaacaa aacaaactag  | 5880 |
| caaaaataggc tgtccccagt gcaagtgcag gtgccagaac attt                  | 5924 |

<210> 4  
<211> 5101  
<212> DNA  
<213> Plasmid pCMV-pur-attB

|                                                                             |      |
|-----------------------------------------------------------------------------|------|
| <400> 4<br>ctagagtcgg ggcggccggc cgttcgagc agacatgata agatacattt atgagtttgg | 60   |
| acaaaaccaca actagaatgc agtaaaaaaaa atgctttattt tgtgaaattt gtgtatgctat       | 120  |
| tgctttattt gtaaccatta taagctgcaa taaacaagtt aacaacaaca attgcattca           | 180  |
| ttttatgttt caggttcagg gggaggtgtg ggaggttttt taaagcaagt aaaacctcta           | 240  |
| caaatagttgtt aaaatcgata aggatcaatt cggcttcagg taccgtcgac gatgttaggtc        | 300  |
| acggtctcgaa agccgcgtg cgggtgccag ggcgtccct tgggctcccc gggcgcgtac            | 360  |
| tccacacctcac ccatctggtc catcatgatg aacgggtcgaa ggtggcggta gttgatcccc        | 420  |
| gcgaacgcgc ggcgcaccgg gaagccctcg ccctcgaaac cgctggcgc ggtggtcacg            | 480  |
| gtgagcacgg gacgtgcgac ggcgtcgccg ggtgcggata cgcggggcag cgtcagcggg           | 540  |
| ttctcgacgg tcacggcggg catgtcgaca gccgaatttga tccgtcgacc gatgcccttg          | 600  |
| agagccctca acccagtcag ctccctccgg tgggcgcggg gcatgactat cgtcgcgc             | 660  |
| cttatgactg tcttctttat catgcaactc gtaggacagg tgccggcagc gctttccgc            | 720  |
| ttcctcgctc actgactcgc tgcgctcggt cgttcggctg cggcgagcgg tatcagctca           | 780  |
| ctcaaaggcg gtaatacggt tatccacaga atcagggat aacgcaggaa agaacatgtg            | 840  |
| agaaaaaggc cagaaaaagg ccaggaaccg taaaaaggcc gcgttgctgg cgttttcca            | 900  |
| taggctccgc cccctgacg agcatcaca aaatcgacgc tcaagtcaga ggtggcgaaa             | 960  |
| cccgacagga ctataaagat accaggcggt tccccctgga agctccctcg tgcgctctcc           | 1020 |
| tgttccgacc ctgccgctta ccggataacct gtccgccttt ctcccttcgg gaagcgtggc          | 1080 |
| gctttctcaa tgctcacgct gtaggtatct cagttcgggt taggtcggtc gctccaagct           | 1140 |
| gggctgtgtg cacaaccccc ccgttcagcc cgaccgctgc gccttatccg gtaactatcg           | 1200 |
| tcttgagtcc aacccggtaa gacacgactt atcgccactg gcagcagcca ctggtaacag           | 1260 |
| gattagcaga gcgaggatag taggcgggtgc tacagagttc ttgaagtgtt ggcctaacta          | 1320 |
| cggctacact agaaggacag tatttggat ctgcgctctg ctgaagccag ttaccttcgg            | 1380 |
| aaaaagagtt ggtagctttt gatccggcaa acaaaccacc gctggtagcg gtggtttttt           | 1440 |

## 025CIP SEQ List.txt

|                                                                     |      |
|---------------------------------------------------------------------|------|
| tgtttgcaag cagcagatta cgcgacaaaa aaaaggatct caagaagatc ctttgatctt   | 1500 |
| ttctacgggg tctgacgctc agtggAACGA aaactcacgt taaggattt tggtcatgag    | 1560 |
| attatcaaaa aggatcttca cctagatcct ttAAATTAA aaatgaagtt ttAAATCAAT    | 1620 |
| ctaaagtata tatgagtaaa ctggTCTGA cagttaccaa tgcttaatca gtgaggcacc    | 1680 |
| tatctcagcg atctgtctat ttCGTTCATC catagttgcc tgactccccg tcgtgttagat  | 1740 |
| aactacgata cgggagggct taccatctgg ccccagtgc gcaatgatac cgcgagaccc    | 1800 |
| acgctcaccg gctccagatt tatcagcaat aaaccAGCCA gccggaaaggg ccgagcgcag  | 1860 |
| aagtggtcct gcaactttat ccgcctccat ccagtctatt aattttGCC gggaaagctag   | 1920 |
| agtaagtagt tcGCCAGTTA atagtttgcg caacgttgtt gccattgcta caggcatcgt   | 1980 |
| ggtgtcacgc tcgtcgTTG gtatggCTTC attcagctcc ggTTCCAAAC gatcaaggcg    | 2040 |
| agttacatga tccccatgt tgtcaaaaaa agcggtagc tccttcggc ctccgatcgt      | 2100 |
| tgtcagaagt aagtggccg cagtgttATC actcatggtt atggcagcac tgcataattc    | 2160 |
| tcttactgtc atGCCATCCG taagatgctt ttctgtgact ggtgagtaCT caaccaagtc   | 2220 |
| attctgagaa tagtgtatgc ggcgaccgag ttgctcttgc ccggcgtCAA tacggataa    | 2280 |
| taccgcGCCa catagcagaa ctAAAAGT gctcatcatt ggAAAACGTT ctccggggcg     | 2340 |
| aaaactctca aggatcttac cgctgttgcg atccagttcg atgtAACCCA ctcgtgcacc   | 2400 |
| caactgatct tcagcatctt ttactttcac cagcTTCTC gggtgagcaa aaacaggaag    | 2460 |
| gcaAAATGCC gcaAAAAAGG gaataaggGC gacacggAAA tggtaatac tcatactctt    | 2520 |
| ccttttcaa tattattgaa gcatttatca gggTTATTGT ctcatgagcg gatacatatt    | 2580 |
| tgaatgtatt tagaaaaata aacaaatagg ggTTCCGCG acatttcccc gaaaagtGCC    | 2640 |
| acctgacgcg ccctgttagcg gcgcattaaAG cgcggcgggt gtggTGGTTA cgcgacgcgt | 2700 |
| gaccgctaca cttGCCAGCG ccctAGCGCC cgCTCCTTTC gCTTCTTCC ctccCTTCT     | 2760 |
| cgccacgttc gcccgtttc cccgtcaAGC tctAAATCGG gggctccctt tagggTTCCG    | 2820 |
| atttagtgt ttacggcacc tcgACCCAA AAAACTTGAT tagggTGTAG gttcacgtAG     | 2880 |
| tggGCCATCG ccctgataga cggTTTTCG ccctttgacg ttggagtcca cgTTCTTAA     | 2940 |
| tagtggactc ttgttccAAA ctggAACAAc ACTCAACCCT atctcggtct attctttGA    | 3000 |
| tttataaggg attttGCCGA tttcggccta ttggTTAAA AATGAGCTGA ttAAACAAA     | 3060 |
| atTTAACGCG aattttAAACA aaatattaAC gtttacaatt tcccattcgc cattcaggct  | 3120 |
| gCGCAACTGT tggGAAGGGC gatcggtgcg ggCCTTTCG ctattacGCC agcccaagct    | 3180 |
| accatgataa gtaagtaata ttaaggtacg ggaggtactt ggagcggccg caataAAATA   | 3240 |
| tctttatTTT cattacatct gtgtgttggT ttttGTGTG AATCGATAGT actaacatac    | 3300 |
| gctctccatc AAAACAAAAC gaaacAAAAC AAACtAGCAA AATAGGCTGT ccccaagtGCA  | 3360 |

## 025CIP SEQ List.txt

|                                                                     |      |
|---------------------------------------------------------------------|------|
| agtgcaggtg ccagaacatt tctctatcga taggtaccga gctcttacgc gtgctagccc   | 3420 |
| tcgagcagga tctatacatt gaatcaatat tggcaattag ccatattagt cattggttat   | 3480 |
| atagcataaa tcaatattgg ctattggcca ttgcatacgt tgtatctata tcataaatatg  | 3540 |
| tacatttata ttggctcatg tccaatatga ccgccatgtt gacattgatt attgactagt   | 3600 |
| tattaatagt aatcaattac ggggtcatta gttcatagcc catatatgga gttccgcgtt   | 3660 |
| acataactta cggttaatgg cccgcctggc tgaccgccc acgaccccg cccattgacg     | 3720 |
| tcaataatga cgtatgttcc catagtaacg ccaataggga ctttccattg acgtcaatgg   | 3780 |
| gtggagtatt tacggtaaac tgcccacttg gcagtagatc aagtgtatca tatgccaagt   | 3840 |
| ccgcccccta ttgacgtcaa tgacggtaaa tggccgcct ggcattatgc ccagtacatg    | 3900 |
| accttacggg actttcctac ttggcagttac atctacgtat tagtcatcgc tattaccatg  | 3960 |
| gtgatgcgtt tttggcagta catcaatggg cgtggatagc ggtttactc acggggattt    | 4020 |
| ccaagtctcc accccattga cgtcaatggg agtttgtttt ggcaccaaaa tcaacgggac   | 4080 |
| tttccaaaat gtcgtaacaa ctccgcucca ttgacgcaaa tggcggttag gcgtgtacgg   | 4140 |
| tgggagggtct atataagcag agtcgttta gtgaaccgtc agatgcctg gagacgccc     | 4200 |
| ccacgctgtt ttgacctcca tagaagacac cgggaccgat ccagcctccc ctcgaagctc   | 4260 |
| gactctaggg gctcgagatc tgcgatctaa gtaagcttgc atgcctgcag gtcggccgccc  | 4320 |
| acgaccgggtg cggccaccat cccctgaccc acgcccctga cccctcacaa ggagacgacc  | 4380 |
| ttccatgacc gagtacaagc ccacggtgcg cctcgccacc cgacgacgacg tccccgggc   | 4440 |
| cgtacgcacc ctcgcccgg cgttcgccga ctaccccgcc acgcccaca cctgcgaccc     | 4500 |
| ggaccgcccac atcgagcggg tcaccgagct gcaagaactc ttcctcacgc gcgtcggtct  | 4560 |
| cgacatcggc aagggtgtgg tcgcggacga cggcgccgcgt gtggcggtct ggaccacgcc  | 4620 |
| cgagagcgtc gaagcgggggg cgggtttcgc cgagatcggc cggcgcacgg cggagtttag  | 4680 |
| gggttcccggtt ctggccgcgc agcaacagat ggaaggcctc ctggcgccgc accggccaa  | 4740 |
| cgagcccgccg tggttccctgg ccaccgtcgg cgtctcgccc gaccaccagg gcaagggtct | 4800 |
| ggcagcgtcc gtcgtgctcc cggagtgga ggcggccgag cgcgcgggg tgcccgccctt    | 4860 |
| ctggagacc tccgcgcccc gcaacctccc cttctacgag cggctcggtct tcaccgtcac   | 4920 |
| gcccacgtc gaggtgcccgg aaggaccgcg cacctggtgc atgacccgca agcccggtgc   | 4980 |
| tgacgcccgg ccccacgacc cgcagcgcgc gaccgaaagg agcgcacgc cccatggctc    | 5040 |
| gaccgaagc cgaccgggc ggcccccggc accccgcacc cggcccccggag gcccaccgac   | 5100 |
|                                                                     | 5101 |

## 025CIP SEQ List.txt

<211> 5043  
<212> DNA  
<213> Plasmid pCMV-pur-attP

|                                                                      |      |
|----------------------------------------------------------------------|------|
| <400> 5                                                              |      |
| ctagagtccgg ggcggccggc cgcttcgagc agacatgata agatacattt atgagtttgg   | 60   |
| acaaaaccaca actagaatgc agtgaaaaaa atgctttatt tgtgaaattt gtgtatgttat  | 120  |
| tgctttatgtt gtaaccatta taagctgcaa taaacaaggta aacaacaaca attgcattca  | 180  |
| ttttatgttt caggttcagg gggaggtgtg ggagggtttt taaagcaagt aaaacctcta    | 240  |
| caaatgttgtt aaaatcgata aggatcaatt cggcttcgac tagtactgac ggacacaccg   | 300  |
| aagccccggc ggcaaccctc agcggatgcc ccggggcttc acgtttccc aggtcagaag     | 360  |
| cggttttcgg gagtagtgcc ccaactgggg taaccttga gttctctcag ttggggcggt     | 420  |
| agggtcggccg acatgacaca aggggttgtg accgggggtgg acacgtacgc gggtgcttac  | 480  |
| gaccgtcagt cgcgcgagcg cgactagtac aagccgaatt gatccgtcga ccgtatccct    | 540  |
| tgagagcctt caacccagtc agctccttcc ggtgggcgcg gggcatgact atcgtcggccg   | 600  |
| cacttatgac tgtcttcttt atcatgcaac tcgttaggaca ggtgccggca ggcgtcttcc   | 660  |
| gcttcctcgc tcactgactc gctgcgctcg gtcgttcggc tgccggcgcg ggtatcagct    | 720  |
| cactcaaagg cggtaatacg gttatccaca gaatcagggg ataacgcagg aaagaacatg    | 780  |
| ttagcaaaaag gccagcaaaa ggccaggaac cgtaaaaagg ccgcgttgct ggcgttttc    | 840  |
| cataggctcc gccccctga cgagcatcac aaaaatcgac gctcaagtca gaggtggcga     | 900  |
| aacccgacag gactataaag ataccaggcg tttccccctg gaagctccct cgtgcgcct     | 960  |
| cctgttccga ccctgcccgt taccggatac ctgtccgcct ttctcccttc gggaaagcgtg   | 1020 |
| gcgctttctc aatgctcacf ctgttaggtat ctcagttcggt tgtaggtcggt tcgctccaag | 1080 |
| ctgggctgtg tgacacgaacc ccccggttcag cccgaccgct gcgccttatac cgtaactat  | 1140 |
| cgtcttgagt ccaacccgggt aagacacgcac ttatcgccac tggcagcagc cactggtaac  | 1200 |
| aggattagca gaggcaggta tgtaggcggt gctacagagt tcttgaagtg gtggcctaacc   | 1260 |
| tacggctaca ctagaaggac agtatttggt atctgcgcctc tgctgaagcc agttaccc     | 1320 |
| ggaaaaagag ttggtagctc ttgatccggc aaacaaacca ccgctggtag cgggttttt     | 1380 |
| tttggggca agcagcagat tacgcgcaga aaaaaaggat ctcaagaaga tcctttgatc     | 1440 |
| ttttctacgg ggtctgacgc tcagtggAAC gaaaactcac gttaaggat tttgggtcatg    | 1500 |
| agattatcaa aaaggatctt cacctagatc cttttaaatt aaaaatgaag ttttaaatca    | 1560 |
| atctaaagta tatatgagta aacttggctc gacagttacc aatgcctaat cagtgaggca    | 1620 |
| cctatctcag cgatctgtct atttcgttca tccatagttg cctgactccc cgtcgtgttag   | 1680 |
| ataactacga tacgggaggc cttaccatct ggccccagtg ctgcaatgat accgcgagac    | 1740 |

## 025CIP SEQ List.txt

|            |             |             |             |             |             |      |
|------------|-------------|-------------|-------------|-------------|-------------|------|
| ccacgctcac | cggctccaga  | tttatcagca  | ataaacccagc | cagccggaag  | ggccgagcgc  | 1800 |
| agaagtggtc | ctgcaacttt  | atccgcctcc  | atccagtcta  | ttaattgttg  | ccggaaagct  | 1860 |
| agagtaagta | gttcgccagt  | taatagttt   | cgcaacgtt   | ttgccattgc  | tacaggcatc  | 1920 |
| gtgggtcac  | gctcgtcgtt  | tggatggct   | tcattcagct  | ccggttccca  | acgatcaagg  | 1980 |
| cgagttacat | gatccccat   | gttgtgcaaa  | aaagcggtt   | gctccttcgg  | tcctccgatc  | 2040 |
| gttgtcagaa | gtaagttggc  | cgcagtgtt   | tcactcatgg  | ttatggcagc  | actgcataat  | 2100 |
| tctcttactg | tcatgccatc  | cgtaagatgc  | tttctgtga   | ctggtgagta  | ctcaaccaag  | 2160 |
| tcattctgag | aatagtgtat  | gcggcgaccg  | agttgctctt  | gcccggcgtc  | aatacggat   | 2220 |
| aataccgcgc | cacatagcag  | aactttaaaa  | gtgctcatca  | ttggaaaacg  | ttcttcgggg  | 2280 |
| cgaaaactct | caaggatctt  | accgctgtt   | agatccagtt  | cgatgttaacc | cactcgtgca  | 2340 |
| cccaactgat | cttcagcatc  | tttactttc   | accagcgttt  | ctgggtgagc  | aaaaacagga  | 2400 |
| aggcaaaatg | ccgcaaaaaaa | gggaataagg  | gchgacacgga | aatgttgaat  | actcataactc | 2460 |
| ttccttttc  | aatattattt  | aagcatttat  | cagggttatt  | gtctcatgag  | cggatacata  | 2520 |
| tttgaatgta | tttagaaaaaa | taaacaaata  | ggggttccgc  | gcacatttcc  | ccgaaaagtg  | 2580 |
| ccacctgacg | cgcctgttag  | cggcgcatta  | agcgcggcgg  | gtgtgggtgt  | tacgcgcagc  | 2640 |
| gtgaccgcta | cacttgccag  | cgccttagcg  | cccgctcctt  | tcgctttctt  | cccttccttt  | 2700 |
| ctcgccacgt | tcgcccggctt | tccccgtcaa  | gctctaaatc  | gggggctccc  | tttagggttc  | 2760 |
| cgatttagtg | cttacggca   | cctcgaccccc | aaaaaacttg  | attagggtga  | tggttcacgt  | 2820 |
| agtggccat  | cgcctgata   | gacggttttt  | cgcctttga   | cgttggagtc  | cacgttcttt  | 2880 |
| aatagtggac | tcttgttcca  | aactggaaca  | acactcaacc  | ctatctcggt  | ctattcttt   | 2940 |
| gatttataag | ggattttgcc  | gatttcggcc  | tattggttaa  | aaaatgagct  | gatttaacaa  | 3000 |
| aaatttaacg | cgaattttaa  | caaaatatta  | acgtttacaa  | tttcccatc   | gccattcagg  | 3060 |
| ctgcgcaact | gttgggaagg  | gcatcggtg   | cgggcctctt  | cgctattacg  | ccagcccaag  | 3120 |
| ctaccatgat | aagtaagtaa  | tattaaggta  | cgggaggtac  | ttggagcggc  | cgcaataaaa  | 3180 |
| tatcttatt  | ttcattacat  | ctgtgtgtt   | gtttttgtg   | tgaatcgata  | gtactaacat  | 3240 |
| acgctctcca | tcaaaacaaa  | acgaaacaaa  | acaaactagc  | aaaataggct  | gtccccagtg  | 3300 |
| caagtgcagg | tgccagaaca  | tttctctatc  | gataggtacc  | gagctttac   | gcgtgctagc  | 3360 |
| cctcgagcag | gatctataca  | ttgaatcaat  | attggcaatt  | agccatatta  | gtcattggtt  | 3420 |
| atatagcata | aatcaatatt  | ggctattggc  | cattgcatac  | gttgtatcta  | tatcataata  | 3480 |
| tgtacattta | tattggctca  | tgtccaatat  | gaccgccatg  | ttgacattga  | ttattgacta  | 3540 |
| gttattaata | gtaatcaatt  | acggggtcat  | tagttcatag  | cccatatatg  | gagttccgcg  | 3600 |
| ttacataact | tacggtaaat  | ggccgcctg   | gctgaccgccc | caacgaccccc | cgcattga    | 3660 |

## 025CIP SEQ List.txt

|              |               |              |               |               |              |              |      |
|--------------|---------------|--------------|---------------|---------------|--------------|--------------|------|
| cgtcaataat   | gacgtatgtt    | cccatagtaa   | cgc当地atagg    | gactttccat    | tgacgtcaat   | 3720         |      |
| gggtggagta   | tttacggtaa    | actgcccact   | tggc当地gtaca   | tcaagtgtat    | catatgccaa   | 3780         |      |
| gtccgcccc    | tattgacgtc    | aatgacggta   | aatggcccgc    | ctggc当地tatt   | gccc当地gtaca  | 3840         |      |
| tgaccttacg   | ggactttcct    | acttggc当地gt  | acatctacgt    | attagtc当地tac  | gctattacca   | 3900         |      |
| tggt当地gtcg   | gtttggcag     | tacatcaatg   | ggc当地gtggata  | gc当地gtttgac   | tcac当地gggat  | 3960         |      |
| ttccaagtct   | ccacccccatt   | gacgtcaatg   | ggagtttgtt    | ttggcaccaa    | aatcaacggg   | 4020         |      |
| actttccaaa   | atgtc当地taac   | aactccgccc   | cattgacgca    | aatgggc当地gt   | aggc当地gtgtac | 4080         |      |
| ggt当地gggaggt | ctatataagc    | agagctc当地gtt | tagtgaaccg    | tc当地atcgcc    | tggagacgcc   | 4140         |      |
| atccacgctg   | ttttgacctc    | catagaagac   | accgggaccg    | atccagc当地tc   | ccctc当地gaagc | 4200         |      |
| tc当地actctag  | gggctc当地gaga  | tctgc当地atct  | aagtaagctt    | gcatgc当地tgc   | aggc当地ggccg  | 4260         |      |
| ccacgaccgg   | tgccgccc当地acc | atccc当地tgac  | ccacgcccc     | gacc当地ctcac   | aaggagacga   | 4320         |      |
| c当地ttccatga  | ccgagtacaa    | gcccacggtg   | c当地cctc当地gcca | ccc当地cgacga   | c当地tccccgg   | 4380         |      |
| gccgtacgca   | ccctc当地gccc   | c当地gttc当地gcc | gactacc       | ccacglocalgca | caccgtc当地ac  | 4440         |      |
| ccggaccgccc  | acatcgagcg    | ggtcaccgag   | ctgcaagaac    | tcttcc当地tac   | gc当地gc当地tgg  | 4500         |      |
| ctcgacatcg   | gcaagggtgt    | ggtc当地gccc   | gacggc当地ccg   | c当地gtggc当地gt  | ctggaccacg   | 4560         |      |
| ccggagagcg   | tc当地aagc当地ggg | ggc当地gtgtt   | gccgagatcg    | gccc当地cgcat   | ggccgagtt    | 4620         |      |
| agc当地ggttccc | ggctggccc     | gc当地agcaacag | atggaaggcc    | tccctggc当地cc  | gc当地accggcc  | 4680         |      |
| aaggagcccg   | c当地tgttcc     | ggccaccg     | tc当地gtctcg    | ccgaccacca    | ggc当地aagggt  | 4740         |      |
| ctggc当地agcg  | ccgtc当地gtct   | ccccggagtg   | gaggc当地ggccg  | agc当地cgccg    | ggtgccc当地cc  | 4800         |      |
| ttc当地ctggaga | c当地tcccgcc    | ccgcaacc     | cccttctacg    | agc当地ggctcg   | ctt当地accgtc  | 4860         |      |
| accgccc当地acg | tc当地gagggt    | c当地gaaggaccg | c当地cacctgg    | gcatgacc      | caagccc当地gt  | 4920         |      |
| gc当地ctgacg   | ccccc当地acga   | c当地cgacg     | c当地gaccgaaa   | ggagc当地gcacg  | acc当地ccatgg  | 4980         |      |
| tccgaccgaa   | gccgacc       | ccg          | cgaccc        | ccc当地gca      | ccgcccc      | aggccc当地accg | 5040 |
| act          |               |              |               |               |              | 5043         |      |

<210> 6  
<211> 5041  
<212> DNA  
<213> Plasmid pCMV-EGFP-attB

|            |          |        |             |              |            |            |                |            |       |     |
|------------|----------|--------|-------------|--------------|------------|------------|----------------|------------|-------|-----|
| <400> 6    | ctagagt  | cg     | ggccggccggc | cgcttc当地gagc | agacatgata | agatacatt  | tgagtttgg      | 60         |       |     |
| acaaaccaca | actagaat | gc     | agtaaaaaa   | atgctt       | tatt       | tgtgaaat   | ttt gtgatgctat | 120        |       |     |
| tgctt      | tat      | ttt    | gtaaccatta  | taagctg      | caa        | taaacaagtt | aacaacaaca     | attgcattca | 180   |     |
| tttatgtt   | cagg     | ttcagg | gggaggt     | gtg          | ggaggtt    | ttt        | taaagcaag      | aaaac      | ctcta | 240 |

## 025CIP SEQ List.txt

|             |             |             |             |             |             |      |
|-------------|-------------|-------------|-------------|-------------|-------------|------|
| caaatgttgt  | aaaatcgata  | aggatcaatt  | cggcttcagg  | taccgtcgac  | gatgttaggtc | 300  |
| acggtctcga  | agccgcggtg  | cgggtgccag  | ggcgtgccct  | tgggctcccc  | gggcgcgtac  | 360  |
| tccacacctac | ccatctggtc  | catcatgatg  | aacgggtcga  | ggtggcggta  | gttcatcccc  | 420  |
| gcgaacgcgc  | ggcgcaccgg  | gaagccctcg  | ccctcgaaac  | cgctgggcgc  | ggtggtcacg  | 480  |
| gtgagcacgg  | gacgtgcgac  | ggcgtcggcg  | ggtgcggata  | cgcggggcag  | cgtcagcggg  | 540  |
| ttctcgacgg  | tcacggcggg  | catgtcgaca  | gccgaattga  | tccgtcgacc  | gatgcccttg  | 600  |
| agagccttca  | acccagtcag  | ctccttccgg  | tggggcgcggg | gcatgactat  | cgtcgccgca  | 660  |
| cttatgactg  | tcttctttat  | catgcaactc  | gtaggacagg  | tgccggcagc  | gctcttccgc  | 720  |
| ttcctcgctc  | actgactcgc  | tgcgctcggt  | cgttcggctg  | cggcgagcgg  | tatcagctca  | 780  |
| ctcaaaggcg  | gtaatacggt  | tatccacaga  | atcagggat   | aacgcaggaa  | agaacatgtg  | 840  |
| agcaaaaggc  | cagaaaaagg  | ccaggaaccg  | taaaaaggcc  | gcgttgctgg  | cgttttcca   | 900  |
| taggctccgc  | ccccctgacg  | agcatcacaa  | aaatcgacgc  | tcaagtcaaga | ggtggcgaaa  | 960  |
| cccgacagga  | ctataaagat  | accaggcggt  | tccccctgga  | agctccctcg  | tgcgctctcc  | 1020 |
| tgttccgacc  | ctgccgctta  | ccggataacct | gtccgccttt  | ctcccctcgg  | gaagcgtggc  | 1080 |
| gctttctcaa  | tgctcacgct  | gtaggtatct  | cagttcggtg  | taggtcggtc  | gctccaagct  | 1140 |
| gggctgtgtg  | cacgaacccc  | ccgttcagcc  | cgaccgctgc  | gccttatccg  | gtaactatcg  | 1200 |
| tctttagtcc  | aaccggtaa   | gacacgactt  | atcgccactg  | gcagcagcca  | ctggtaacag  | 1260 |
| gattagcaga  | gcgaggtatg  | taggcgtgc   | tacagagttc  | ttgaagtgg   | ggcctaacta  | 1320 |
| cggctacact  | agaaggacag  | tatttggtat  | ctgcgctctg  | ctgaagccag  | ttaccttcgg  | 1380 |
| aaaaagagtt  | ggtagctctt  | gatccggcaa  | acaaaccacc  | gctggtagcg  | gtggttttt   | 1440 |
| tgtttgcaag  | cagcagatta  | cgcgagaaa   | aaaaggatct  | caagaagatc  | ctttgatctt  | 1500 |
| ttctacgggg  | tctgacgctc  | agtggAACGA  | aaactcacgt  | taagggattt  | tggcatgag   | 1560 |
| attatcaaaa  | aggatctca   | cctagatcct  | tttaaattaa  | aatgaagtt   | ttaaatcaat  | 1620 |
| ctaaagtata  | tatgagtaaa  | cttggctctga | cagttaccaa  | tgcttaatca  | gtgaggcacc  | 1680 |
| tatctcagcg  | atctgtctat  | ttcggtcatc  | catagttgcc  | tgactccccg  | tcgtgttagat | 1740 |
| aactacgata  | cgggaggggct | taccatctgg  | ccccagtgc   | gcaatgatac  | cgcgagaccc  | 1800 |
| acgctcaccg  | gctccagatt  | tatcagcaat  | aaaccagcca  | gccggaaggg  | ccgagcgcag  | 1860 |
| aagtggtcct  | gcaactttat  | ccgcctccat  | ccagtctatt  | aattgttgcc  | gggaagctag  | 1920 |
| agtaagttagt | tcgcccagtta | atagttgcg   | caacgttgg   | gccattgcta  | caggcatcgt  | 1980 |
| ggtgtcacgc  | tcgtcggtt   | gtatggcttc  | attcagctcc  | ggttcccaac  | gatcaaggcg  | 2040 |
| agttacatga  | tccccatgt   | tgtgaaaaaa  | agcggttagc  | tccttcggtc  | ctccgatcgt  | 2100 |

## 025CIP SEQ List.txt

|                                                                     |      |
|---------------------------------------------------------------------|------|
| tgtcagaagt aagttggccg cagtgttac actcatggg atggcagcac tgcataattc     | 2160 |
| tcttactgtc atgccatccg taagatgctt ttctgtgact ggtgagtaact caaccaagtc  | 2220 |
| attctgagaa tagtgtatgc ggcgaccgag ttgctcttgc ccggcgtcaa tacgggataa   | 2280 |
| taccgcgcca catagcagaa cttaaaaagt gctcatcatt ggaaaacggtt cttcgggncg  | 2340 |
| aaaactctca aggatcttac cgctgttgag atccagttcg atgtaaccca ctcgtgcacc   | 2400 |
| caactgatct tcagcatctt ttactttcac cagcgttct gggtgagcaa aaacaggaag    | 2460 |
| gcaaaatgcc gcaaaaaagg gaataagggc gacacggaaa tggtgaatac tcataactctt  | 2520 |
| ccttttcaa tattattgaa gcatttatca gggttattgt ctcatgagcg gatacatatt    | 2580 |
| tgaatgtatt tagaaaaata aacaaatagg gggtccgcgc acatttcccc gaaaagtgcc   | 2640 |
| acctgacgcg ccctgttagcg gcgcattaag cgccgggggt gtgggtggta cgccgcagcgt | 2700 |
| gaccgctaca cttgccagcg ccctagcgcc cgctccttgc gctttcttcc cttccttct    | 2760 |
| cgccacgttc gccggcttcc cccgtcaagc tctaaatcg gggctccctt tagggttccg    | 2820 |
| atttagtgtt ttacggcacc tcgacccaa aaaacttgat tagggtgatg gttcacgtag    | 2880 |
| tgggcatcg cccgtataga cggttttcg cccttgacg ttggagtcca cgttctttaa      | 2940 |
| tagtgactc ttgttccaaa ctggaacaac actcaaccct atctcggtct attctttga     | 3000 |
| tttataaggg attttgcga tttcgcccta ttggtaaaaa aatgagctga tttaaacaaaa   | 3060 |
| atttaacgcg aattttaca aatatattaac gtttacaatt tcccattcg cattcaggct    | 3120 |
| gcgcaactgt tgggaagggc gatcggtgcg ggctcttcg ctattacgcc agcccaagct    | 3180 |
| accatgataa gtaagtaata ttaaggtacg ggaggtactt ggagcggccg caataaaata   | 3240 |
| tctttatattt cattacatct gtgtgttgtt tttttgtgt aatcgatagt actaacatac   | 3300 |
| gctctccatc aaaacaaaac gaaacaaaac aaactagcaa aataggctgt ccccagtgc    | 3360 |
| agtgcaggtg ccagaacatt tctctatcga taggtaccga gctttacgc gtgctagccc    | 3420 |
| tcgagcagga tctatacatt gaatcaatat tggcaattag ccatattagt cattggtitat  | 3480 |
| atagcataaa tcaatattgg ctattggcca ttgcatacgt tgtatctata tcataatatg   | 3540 |
| tacatttata ttggctcatg tccaatatga ccggcatgtt gacattgatt attgactagt   | 3600 |
| tattaatagt aatcaattac ggggtcatta gttcatagcc catatatgga gttccgcgtt   | 3660 |
| acataactta cggtaaatgg cccgcctggc tgaccgccc acgacccccc cccattgacg    | 3720 |
| tcaataatga cgtatgttcc catagtaacg ccaataggga ctttccattt acgtcaatgg   | 3780 |
| gtggagtatt tacggtaaac tgcccacttgc gcaatcattc aagtgtatca tatgccaagt  | 3840 |
| ccggcccccta ttgacgtcaa tgacggtaaa tggccgcctt ggcattatgc ccagtacatg  | 3900 |
| accttacggg actttcctac ttggcagttac atctacgtat tagtcatcg tattaccatg   | 3960 |
| gtgatgcgtt tttggcagta catcaatggg cgtggatagc gggttgactc acggggattt   | 4020 |

## 025CIP SEQ List.txt

|              |              |             |            |             |              |      |
|--------------|--------------|-------------|------------|-------------|--------------|------|
| ccaagtctcc   | accccattga   | cgtcaatggg  | agtttgtttt | ggcaccaaaa  | tcaacgggac   | 4080 |
| tttccaaaat   | gtcgtaacaa   | ctccgccccca | ttgacgcaaa | tgggcggtag  | gcgtgtacgg   | 4140 |
| tgggagggtct  | atataagcag   | agctcgtttta | gtgaaccgtc | agatcgccctg | gagacgcccatt | 4200 |
| ccacgctgtt   | ttgacctcca   | tagaagacac  | cgggaccgat | ccagcctccc  | ctcgaagctc   | 4260 |
| gactctaggg   | gctcgagatc   | cccgggtacc  | ggtcgccacc | atggtgagca  | agggcgagga   | 4320 |
| gctgttcacc   | ggggtgtgtc   | ccatcctgggt | cgagctggac | ggcgaacgtaa | acggccaccaa  | 4380 |
| gttcagcgtg   | tccggcgagg   | gcgagggcga  | tgccacctac | ggcaagctga  | ccctgaagtt   | 4440 |
| catctgcacc   | accggcaagc   | tgcccggtcc  | ctggcccacc | ctcgtgacca  | ccctgaccta   | 4500 |
| cggcgtcag    | tgcttcagcc   | gctaccccga  | ccacatgaag | cagcacgact  | tcttcaagtc   | 4560 |
| cgcgcattcccc | gaaggctacg   | tccaggagcg  | caccatcttc | ttcaaggacg  | acggcaacta   | 4620 |
| caagaccgc    | gccgaggtga   | agttcgaggg  | cgacaccctg | gtgaaccgca  | tcgagctgaa   | 4680 |
| gggcacatcgac | ttcaaggagg   | acggcaacat  | cctggggcac | aagctggagt  | acaactacaa   | 4740 |
| cagccacaac   | gtctatatatca | tggccgacaa  | gcagaagaac | ggcatcaagg  | tgaacttcaa   | 4800 |
| gatccgccccac | aacatcgagg   | acggcagcgt  | gcagctcgcc | gaccactacc  | agcagaacac   | 4860 |
| ccccatcgcc   | gacggccccc   | tgctgctgcc  | cgacaaccac | tacctgagca  | cccagtccgc   | 4920 |
| cctgagcaaa   | gaccccaacg   | agaagcgcga  | tcacatggtc | ctgctggagt  | tcgtgaccgc   | 4980 |
| cgccgggatc   | actctcggca   | tggacgagct  | gtacaagtaa | agcggccgct  | cgagcatgca   | 5040 |
| t            |              |             |            |             |              | 5041 |

<210> 7  
 <211> 18116  
 <212> DNA  
 <213> Plasmid p12.01ys-LSPIPNMM-CMV-pur-attB

|         |              |              |             |              |              |               |     |
|---------|--------------|--------------|-------------|--------------|--------------|---------------|-----|
| <400> 7 | gggctgcagg   | aattcgatttgc | ccgccttctt  | tgtatattcac  | tctgttgtat   | ttcatctctt    | 60  |
|         | cttgcgcgt    | aaaggatata   | acagtctgtat | taacagtctg   | tgagggaaata  | cttggtatttt   | 120 |
|         | cttctgtatca  | gtgtttttat   | aagtaatgtt  | aatatttggat  | taaggctgtg   | tgtcctttgt    | 180 |
|         | cttgggagac   | aaagcccaca   | gcaggtgggt  | gttgggggtgg  | tggcagctca   | gtgacaggag    | 240 |
|         | aggttttttt   | gcctgtttttt  | ttttttttttt | ttttttttttaa | gttaagggtttt | ctttttttttttt | 300 |
|         | agtaaaattttt | ctactggact   | gtatgttttgc | acaggtcaga   | aacatttctt   | caaagaaga     | 360 |
|         | accttttggat  | aactgtacag   | cccttttctt  | tcattccctt   | tttgctttct   | gtgccaatgc    | 420 |
|         | ctttgggttct  | gattgcatta   | tggaaaacgt  | tgatcggaaac  | ttgaggtttt   | tatttatagt    | 480 |
|         | gtggcttggaa  | agcttggata   | gctgttgttta | cacgagatac   | tttattaaatgt | ttaggccagc    | 540 |
|         | ttgatgtttt   | attttttccc   | tttgaagtag  | ttagcgttct   | ctggtttttt   | tcctttgaaa    | 600 |

## 025CIP SEQ List.txt

|                                                                     |      |
|---------------------------------------------------------------------|------|
| ctggtgaggc ttagattttt ctaatggat ttttacctg atgatctagt tgcataccca     | 660  |
| aatgcttcta aatgtttcc tagttaacat gttgataact tcggatttac atgttgtata    | 720  |
| taccttgcatt ctgtgttct agtaaaaata tatggcattt atagaaaatac gtaattcctg  | 780  |
| atttcctttt ttttatctc tatgctctgt gtgtacaggt caaacagact tcactcctat    | 840  |
| ttttatttat agaattttat atgcagtctg tcgttggttc ttgttgtta aggatacagc    | 900  |
| cttaaatttc ctagagcgat gctcagtaag gcgggttgc acatgggttc aaatgtaaaa    | 960  |
| cgggcacgtt tggctgctgc cttcccaga tccaggacac taaactgctt ctgcactgag    | 1020 |
| gtataaaatcg cttcagatcc cagggaaagtg cagatccacg tgcatattct taaagaagaa | 1080 |
| tgaataacttt ctAAAatatt ttggcatagg aagcaagctg catggatttgc tttggactt  | 1140 |
| aaattttttt ggtaacggag tgcataggtt ttaaacacag ttgcagcatg ctaacgagtc   | 1200 |
| acagcgttta tgcagaagtg atgcctggat gcctgttgc gctgtttacg gcactgcctt    | 1260 |
| gcagtgagca ttgcagatag ggggtgggtg ctttgtgtcg tgTTcccaca cgctgccaca   | 1320 |
| cagccacctc ccggaacaca tctcacctgc tgggtacttt tcaaaccatc ttagcagtag   | 1380 |
| tagatgagtt actatgaaac agagaagttc ctcagttgga tattctcatg ggatgtctt    | 1440 |
| tttcccattgt tggcaaaagt atgataaagc atctctattt gtaaattatg cacttggtag  | 1500 |
| ttcctgaatc cttctatag caccacttgc tgcagcagggt gtaggctctg gtgtggcctg   | 1560 |
| tgtctgtgct tcaatctttt aaagcttctt tggaaataca ctgacttgat tgaagtctct   | 1620 |
| tgaagatagt aaacagtact taccttgat cccaatgaaa tcgagcattt cagttgtaaa    | 1680 |
| agaattccgc ctattcatac catgtaatgt aattttacac ccccagtgc gacactttgg    | 1740 |
| aatatattca agtaatagac tttggcctca ccctcttgc tactgtat tptaatagaa      | 1800 |
| aatattttaa actgtgcata tgattattac attatgaaag agacattctg ctgatcttca   | 1860 |
| aatgtaaagaa aatgaggagt gcgtgtgc ttataaatac aagtgattgc aaatttagtgc   | 1920 |
| aggtgtcctt aaaaaaaaaa aaaaaaaagta atataaaaag gaccaggtgt tttacaagtgc | 1980 |
| aaatacattc ctatTTggta aacagttaca ttttatgaa gattaccagc gctgctgact    | 2040 |
| ttctaaacat aaggctgtat tgtcttcctg taccattgca tttcctcatt cccaaatttgc  | 2100 |
| acaaggatgt ctggtaaac tattcaagaa atggcttgc aatacagcat gggagcttgc     | 2160 |
| ctgagttgga atgcagagtt gcactgcaaa atgtcaggaa atggatgtct ctcagaatgc   | 2220 |
| ccaactccaa aggattttat atgtgtat agtaagcagt ttccctgattc cagcaggcca    | 2280 |
| aagagtctgc tgaatgttgc gttgccccag acctgtattt ctcaacaagg taagatggta   | 2340 |
| tccttagcaac tgcggatttt aatacatttt cagcagaagt acttagttaa tctctaccc   | 2400 |
| tagggatcgt ttcatcattt ttagatgtta tacttgaaat actgcataac ttttagctt    | 2460 |

## 025CIP SEQ List.txt

|            |             |             |             |             |             |            |      |
|------------|-------------|-------------|-------------|-------------|-------------|------------|------|
| catgggttcc | ttttttcag   | cctttaggag  | actgttaagc  | aatttgctgt  | ccaacttttgc | 2520       |      |
| tgttgtctt  | aaactgcaat  | agtagttac   | cttgtattga  | agaaataaag  | accatttta   | 2580       |      |
| tattaaaaaa | tactttgtc   | tgtcttcatt  | ttgacttgc   | tgatatccctt | gcagtgc     | 2640       |      |
| ttatgtcagt | tctgtcagat  | attcagacat  | caaaacttaa  | cgtgagctca  | gtggagttac  | 2700       |      |
| agctgcgtt  | ttgatgctgt  | tattatttct  | gaaactagaa  | atgatgttgc  | cttcatctgc  | 2760       |      |
| tcatcaaaca | cttcatgcag  | agtgttaaggc | tagtgagaaa  | tgcatacatt  | tattgatact  | 2820       |      |
| tttttaaagt | caacttttta  | tcagatttt   | tttcatttt   | gaaatataatt | gttttctaga  | 2880       |      |
| ctgcatacg  | tctgaatctg  | aatgcagtc   | tgattggcat  | gaagaagcac  | agcactcttc  | 2940       |      |
| atcttactta | aacttcattt  | tggaatgaag  | gaagttaagc  | aagggcacag  | gtccatgaaa  | 3000       |      |
| tagagacagt | gcgc        | tcagga      | gaaagtgaac  | ctggatttct  | ttggctagtg  | 3060       |      |
| gtagtgagga | aagtaaacacc | cgattccttgc | aaaggc      | ctcc        | agcttaatgc  | 3120       |      |
| gaaggtggca | ggcaacttgg  | ccactggta   | tttactgcat  | tatgtctc    | tttcgcagct  | 3180       |      |
| aacctggctt | ctccactatt  | gagcatggac  | tatagccttgc | cttc        | cagaggc     | 3240       |      |
| ttgggatggg | tggaaggagt  | gctggctgt   | ggctgggggg  | actgtgggg   | ctccaaactg  | 3300       |      |
| agcttgggtt | gggcagcaca  | gggaaaagt   | tggtaacta   | tttttaagta  | ctgtgttgca  | 3360       |      |
| aacgtctcat | ctgcaaatac  | gtagggtgt   | tactctcgaa  | gattaacagt  | gtgggttcag  | 3420       |      |
| taatatatgg | atgaattcac  | agtggaa     | ttcaagggt   | gatcatctaa  | cgacaccaga  | 3480       |      |
| tcatcaagct | atgattggaa  | gcggtatcag  | aagagcgagg  | aaggtaagca  | gtcttcata   | 3540       |      |
| gtttccctc  | cacgtaaagc  | agtctggaa   | agtagcaccc  | cttgagcaga  | gacaaggaaa  | 3600       |      |
| taattcagga | gcatgtgcta  | ggagaactt   | cttgctgaat  | tctacttgca  | agagcttga   | 3660       |      |
| tgcctggctt | ctgggc      | ctgc        | tgcaaggccc  | agagcctgt   | gtgagctgga  | 3720       |      |
| gggaaagatt | ctgctcaagt  | ccaagctca   | gcaggtcatt  | gtcttgc     | tttcccc     | 3780       |      |
| cactgtgcag | cagagtggaa  | ctgatgtcga  | agcctcctgt  | ccactac     | ttgctgcagg  | 3840       |      |
| cagactgctc | tcagaaaaag  | agagctaact  | ctatgccata  | gtctgaaggt  | aaaatgggtt  | 3900       |      |
| ttaaaaaaaa | aaacacaaaag | gcaaaaccgg  | ctgccccatg  | agaagaaagc  | agtggtaaac  | 3960       |      |
| atggtagaaa | aggtgcagaa  | gcccccaggc  | agtgtacag   | gccc        | ctc         | ccacctagag | 4020 |
| gcgggaacaa | gctccctgc   | ctagggctct  | gcccgcgaag  | tgcgtgtt    | tttgg       | 4080       |      |
| tttggggc   | gtttggttt   | gagattt     | cacaaggaa   | gcctgaaagg  | aggtgttgg   | 4140       |      |
| cactattttg | gtttgtaaag  | cctgtacttc  | aaatataat   | tttgtgaggg  | agtgtacgca  | 4200       |      |
| attggccaat | ttaaaaataaa | gttgc       | agag        | attgaaggct  | gagtagttga  | gagggtaa   | 4260 |
| cgtttaatga | gatcttctga  | aactactgct  | tctaaacact  | tgtttgagtg  | gtgagac     | 4320       |      |
| ggataggta  | gtgctttgt   | tacatgtctg  | atgcacttgc  | ttgtcc      | tttccacat   | 4380       |      |

## 025CIP SEQ List.txt

|                                                                     |      |
|---------------------------------------------------------------------|------|
| ccatgcattc cacatccacg catttgcac ttatcccata tctgtcatat ctgacatacc    | 4440 |
| tgtctcttcg tcacttggtc agaagaaaaca gatgtgataa tccccagccg ccccaagttt  | 4500 |
| gagaagatgg cagttgcttc tttcccttt tcctgctaag taaggatttt ctcctggcct    | 4560 |
| tgacacctca cgaaatagtc ttccctgcctt acattctggg cattatttca aatatcttg   | 4620 |
| gagtgcgtg ctctcaagtt tgtgtcttcc tactcttaga gtgaatgctc ttagagtcaa    | 4680 |
| agagaaggaa gagaagatgt tggccgcagt tctctgtatg acacacctct gaataatggc   | 4740 |
| caaagggtggg tgggtttctc tgaggaacgg gcagcgttt cctctgaaag caaggagctc   | 4800 |
| tgcggagttg cagttatTTT gcaactgatg gtggaaactgg tgcttaaagc agattcccta  | 4860 |
| ggttccctgc tacttctttt cttcttggc agtcagttt tttctgacag acaaacagcc     | 4920 |
| accccccactg caggcttaga aagtatgtgg ctctgcctgg gtgtgttaca gctctgcct   | 4980 |
| ggtgaaaggg gattaaaacg ggcaccattc atcccaaaca ggatcctcat tcatggatca   | 5040 |
| agctgttaagg aacttgggct ccaacctcaa aacattaatt ggagtacgaa tgtaattaaa  | 5100 |
| actgcattct cgcattccta agtcatttag tctggactct gcagcatgta ggtcggcagc   | 5160 |
| tcccactttc tcaaagacca ctgatggagg agtagtaaaa atggagaccg attcagaaca   | 5220 |
| accaacggag tggccgaa gaaactgatg gaaataatgc atgaattgtg tggggacat      | 5280 |
| ttttttaaa tacataaact acttcaaattt aggtcggaga aggtcagtgt tttattagca   | 5340 |
| gccataaaac caggtgagcg agtaccattt ttctctacaa gaaaaacgat tctgagctct   | 5400 |
| gcgttaagtat aagttctcca tagcggctga agctcccccc tggctgcctg ccatctcagc  | 5460 |
| tggagtgcag tgccatttcc ttggggtttc tctcacagca gtaatggac aataacttcac   | 5520 |
| aaaaattctt tctttcctg tcatgtggg tccctactgt gccctcctgg ttttacgtt      | 5580 |
| ccccctgact gttccattca gcggtttggaa aagagaaaaaa gaatttggaa ataaaacatg | 5640 |
| tctacgttat caccccttcc agcattttgg ttttaatta tgtcaataac tggcttagat    | 5700 |
| ttggaaatga gagggggttt ggtgttattac cgaggaacaa aggaaggctt atataaactc  | 5760 |
| aagtcttttta tttagagaac tggcaagctg tcaaaaaacaa aaaggcctta ccaccaaatt | 5820 |
| aagtgaatag ccgctatacg cagcaggccc agcacgaggg atggtcact gctggcacta    | 5880 |
| tgccacggcc tgcttgtgac tctgagagca actgctttgg aaatgacagc acttggtgca   | 5940 |
| atttcctttt tttcagaatg cgtagagcgt gtgcttggcg acagtttttc tagttaggcc   | 6000 |
| acttctttt tccttctctc ctcattctcc taagcatgtc tccatgctgg taatcccagt    | 6060 |
| caagtgaacg ttcaaacaat gaatccatca ctgtaggatt ctcgtggta tcaaatctt     | 6120 |
| gtgtgaggtc tataaaaatat ggaagcttatt ttatTTTcg ttcttccata tcagtcttct  | 6180 |
| ctatgacaat tcacatccac cacagcaaattaaaggtgaa ggaggctggt gggatgaaga    | 6240 |

| 025CIP SEQ List.txt                                                  |      |
|----------------------------------------------------------------------|------|
| gggtcttcta gctttacgtt cttccttgca aggccacagg aaaatgctga gagctgtaga    | 6300 |
| atacagcctg gggtaagaag ttcatgttcc tgctggaca gctaaccgca tcttataacc     | 6360 |
| ccttctgaga ctcatcttag gaccaaatacg ggtctatctg gggttttgt tcctgctgtt    | 6420 |
| cctcctggaa ggctatctca ctatttact gctcccacgg ttacaaacca aagatacagc     | 6480 |
| ctgaattttt tctaggccac attacataaa tttgacctgg taccaatatt gttctctata    | 6540 |
| tagttatttc cttccccact gtgttaacc ccttaaggca ttcagaacaa ctagaatcat     | 6600 |
| agaatggttt ggattggaag gggccttaaa catcatccat ttccaaccct ctgccatggg    | 6660 |
| ctgcttgcca cccactggct caggctgccc agggcccat ccagcctggc cttgagcacc     | 6720 |
| tccagggatg gggcacccac agcttctctg ggcagcctgt gccaacacct caccactctc    | 6780 |
| tgggtaaaga attctctttt aacatcta at ctaaatctct tctcttttag tttaaagcca   | 6840 |
| ttcctctttt tcccgttgc atctgtccaa gaaatgtgta ttggctccc tcctgcttat      | 6900 |
| aagcaggaag tactggaagg ctgcagttag gtctccac acccttctt tctccaggct       | 6960 |
| gaacaagccc agctccttca gcctgtcttc gtaggagatc atcttagtgg ccctccttg     | 7020 |
| gaccattcc aacagttcca cggcttctt gtggagcccc aggtctggat gcagtacttc      | 7080 |
| agatggggcc ttacaaaggc agagcagatg gggacaatcg cttacccttc cctgctggct    | 7140 |
| gcccctgttt tgatgcagcc caggtaactg ttggccttcc aggtcccag accccttgct     | 7200 |
| gatttgcgtc aagctttca tccaccagaa cccacgcttc ctggtaata cttctgccc       | 7260 |
| cacttctgtt agcttgcgttcc agagacttc cattctttag gacagactgt gttacaccta   | 7320 |
| cctgccttat tcttgcatat atacatttca gttcatgttt cctgtaacag gacagaatat    | 7380 |
| gtattcctct aacaaaata catgcagaat tccttagtgcc atctcagtag ggtttcatg     | 7440 |
| gcagtattag cacatagtca atttgcgtca agtaccttcc aagctgcggc ctccataaa     | 7500 |
| tcctgtatTTT gggatcagtt acctttggg gtaagctttt gtatctgcag agaccctggg    | 7560 |
| ggttctgatg tgcttcagct ctgctctgtt ctgactgcac cattttctag atcacccagt    | 7620 |
| tgttcctgtt caacttcctt gtcctccatc ctttcccagc ttgtatctt gacaaataca     | 7680 |
| ggcctatTTT tgtgtttgtt tcagcagcca ttttaattttt cagtgcatc ttgttctgtt    | 7740 |
| gatgccactg gaacaggatt ttcatgttc ttgcaaagaa catctagctg aaaactttct     | 7800 |
| gccattcaat attcttacca gttcttctt tttgagggtga gccataaatt actagaactt    | 7860 |
| cgtcactgac aagtttatgc attttattac ttcttattatg tacttacttt gacataacac   | 7920 |
| agacacgcac atatTTTgtt gggatttcca cagtgctct gtgtccttca catggttta      | 7980 |
| ctgtcataact tccgttataaa ctttggcaat ctgcccagct gcccattcaca agaaaagaga | 8040 |
| ttcctttttt attacttctc ttcatgttccaa aaacaaaatg tgagaagccc aaacaagaac  | 8100 |
| tttgtggggca ggctgcctatc aagggagaga cagctgaagg gttgtgttagc tcaatagaat | 8160 |

## 025CIP SEQ List.txt

|                                                                     |       |
|---------------------------------------------------------------------|-------|
| taagaaataa taaaagctgtg tcagacagtt ttgcctgatt tatacaggca cgccccaa    | 8220  |
| cagagaggct gtctgccaag gccacccgtc agtccttggt ttgtaagata agtcataggt   | 8280  |
| aactttctg gtgaattgcg tggagaatca tgatggcagt tcttgctgtt tactatggta    | 8340  |
| agatgctaaa ataggagaca gcaaagtaac acttgctgct gtaggtgctc tgctatccag   | 8400  |
| acagcgatgg cactcgcaca ccaagatgag ggatgctccc agctgacgga tgctgggca    | 8460  |
| gtaacagtgg gtcccatgct gcctgctcat tagcatcacc tcagccctca ccagcccatc   | 8520  |
| agaaggatca tcccaagctg aggaaagttt ctcatcttct tcacatcatc aaaccttgg    | 8580  |
| cctgactgat gcctcccgga tgcttaatg tggtcactga catcttatt tttctatgat     | 8640  |
| ttcaagtca aacctccgga tcaggagggaa acacatagt ggaatgtacc ctcagctcca    | 8700  |
| aggccagatc ttccctcaat gatcatgcat gctacttagg aaggtgtgtg tgtgtgaatg   | 8760  |
| tagaattgcc tttgttattt tttcttcctg ctgtcaggaa cattttgaat accagagaaa   | 8820  |
| aagaaaagtg ctcttcttgg catggagga gttgtcacac ttgcaaaata aaggatgcag    | 8880  |
| tcccaaatgt tcataatctc agggtctgaa ggaggatcag aaactgtgta tacaatttca   | 8940  |
| ggcttctctg aatgcagctt ttgaaagctg ttccctggccg aggcagtact agtcagaacc  | 9000  |
| ctcggaaaca ggaacaaatg tcttcaaggt gcagcaggag gaaacacctt gcccatcatg   | 9060  |
| aaagtgaata accactgccg ctgaaggaaat ccagctcctg tttgagcagg tgctgcacac  | 9120  |
| tcccacactg aaacaacagt tcatttttat aggacttcca ggaaggatct tcttcttaag   | 9180  |
| cttcttaatt atggtacatc tccagttggc agatgactat gactactgac aggagaatga   | 9240  |
| ggaactagct gggatatattt ctgtttgacc accatggagt cacccatttc tttactgta   | 9300  |
| tttggaaata ataattctga attgcaaagc aggagttgc gaagatcttcc atttcttcca   | 9360  |
| tgttgtgac agcacagttc tggctatgaa agtctgctta caaggaagag gataaaaatc    | 9420  |
| ataggataa taaatctaag tttgaagaca atgaggtttt agctgcattt gacatgaaga    | 9480  |
| aattgagacc tctactggat agctatggta tttacgtgtc ttttgctta gttacttatt    | 9540  |
| gaccccagct gaggtcaagt atgaactcag gtctctcggg ctactggcat ggattgatta   | 9600  |
| catacaactg taattttagc agtgatttag ggtttatgag tactttgca gtaaatcata    | 9660  |
| gggttagtaa tgttaatctc agggaaaaaa aaaaaaaagcc aaccctgaca gacatcccag  | 9720  |
| ctcaggtgga aatcaaggat cacagctcag tgcggtccc gagaacacag ggactttct     | 9780  |
| cttaggaccc ttatgtacag ggcctaaga taactgatgt tagtcagaag actttccatt    | 9840  |
| ctggccacag ttcaagttctg gcaatccctgg aattttctct ccgctgcaca gttccagtca | 9900  |
| tcccagttt tacagttctg gcacttttg ggtcaggccg tgatccaagg agcagaagtt     | 9960  |
| ccagctatgg tcagggagtg cctgaccgtc ccaactcact gcactcaaac aaaggcgaaa   | 10020 |

## 025CIP SEQ List.txt

|                        |                        |                        |       |
|------------------------|------------------------|------------------------|-------|
| ccacaagagt ggctttgtt   | gaaattgcag tgtggccag   | aggggctgca ccagtactgg  | 10080 |
| attgaccacg aggcaacatt  | aatcctcagc aagtgcatt   | tgcagccatt aaattgaact  | 10140 |
| aactgatact acaatgcatt  | cagtatcaac aagtggtttg  | gcttggaga tggagtctag   | 10200 |
| gggctctaca ggagtagcta  | ctctctaattg gagttgcatt | ttgaagcagg acactgtgaa  | 10260 |
| aagctggcct cctaaagagg  | ctgctaaaca ttagggtcaa  | ttttccagtg cactttctga  | 10320 |
| agtgtctgca gttccccatg  | caaagctgcc caaacatagc  | acttccaatt gaatacaatt  | 10380 |
| atatgcaggg gtactgcttc  | ttgccagcac tgccttctc   | aatgaactc aacaaacaat   | 10440 |
| ttcaaagtct agtagaaaagt | aacaagctt gaatgtcatt   | aaaaagtata tctgctttca  | 10500 |
| gtagttcagc ttatattatgc | ccactagaaa catcttgtac  | aagctgaaca ctggggctcc  | 10560 |
| agattagtgg taaaacctac  | tttatacat catagaatca   | tagaatggcc tgggttgaa   | 10620 |
| gggaccccaa ggatcatgaa  | gatccaacac ccccgccaca  | ggcaggggcca ccaacctcca | 10680 |
| gatctggta tagaccaggc   | agcccaggc tccatccaac   | ctggccatga acacctccag  | 10740 |
| ggatggagca tccacaacct  | ctctggcag cctgtgccag   | cacccacca ccctctctgt   | 10800 |
| gaagaacttt tccctgacat  | ccaatctaag ccttccctcc  | ttgaggttag atccactccc  | 10860 |
| ccttgccta tcactgtcta   | ctctgtaaa aagttgattc   | tcctcccttt tggaaggtag  | 10920 |
| caatgaggtc tccttgcagc  | cttctctct tctgcaggat   | gaacaagccc agccctcca   | 10980 |
| gcctgtcttt ataggagagg  | tgctccagcc ctctgatcat  | ctttgtggcc ctcctctgga  | 11040 |
| cccgctccaa gagctccaca  | tcttcctgt actgggggcc   | ccaggcctga atgcagtact  | 11100 |
| ccagatgggg cctcaaaaga  | gcagagtaaa gagggacaat  | caccccttc accctgctgg   | 11160 |
| ccagccctct tctgatggag  | ccctggatac aactggcttt  | ctgagctgca acttctccct  | 11220 |
| atcagttcca ctattaaac   | aggaacaata caacaggtgc  | tgatggccag tgcagagttt  | 11280 |
| ttcacacttc ttcatttcgg  | tagatcttag atgaggaacg  | ttgaagttgt gcttctgcgt  | 11340 |
| tgcttcttc ctcccaaata   | actccctgcct gatacctcac | cccacctgcc actgaatggc  | 11400 |
| tccatggccc cctgcagcca  | ggccctgtat gaacccggca  | ctgcttcaga tgctgtttaa  | 11460 |
| tagcacagta tgaccaagtt  | gcacccatga atacacaaac  | aatgtgttgc atccttcagc  | 11520 |
| acttgagaag aagagccaaa  | tttgcattgt cagggaaatgg | tttagtaatt ctgccaatta  | 11580 |
| aaacttgttt atctaccatg  | gctgtttta tggctgttag   | tagtggtaca ctgatgatga  | 11640 |
| acaatggcta tgcagtaaaa  | tcaagactgt agatattgca  | acagactata aaattcctct  | 11700 |
| gtggcttagc caatgtggta  | cttcccacat tgtataagaa  | atttggcaag ttttagagcaa | 11760 |
| tgtttgaagt gttggaaat   | ttctgtatac tcaagaggc   | ttttttgaca actgtagaac  | 11820 |
| agaggaatca aaagggggtg  | ggaggaagtt aaaagaagag  | gcaggtgcaa gagagcttgc  | 11880 |
| agtcccgctg tgttacgac   | actggcaaca tgaggtctt   | gctaattttt gtgctttgct  | 11940 |

## 025CIP SEQ List.txt

tcctgcccct ggctgcctta gggtgcgatc tgccctcagac ccacagcctg ggcagcagga 12000  
ggaccctgat gctgctggct cagatgagga gaatcagcct gtttagctgc ctgaaggata 12060  
ggcacgattt tggcttcct caagaggagt ttggcaacca gtttcagaag gctgagacca 12120  
tccctgtgct gcacgagatg atccagcaga tcttaacct gtttagcacc aaggatagca 12180  
gcbcgtctg ggatgagacc ctgctggata agtttacac cgagctgtac cagcagctga 12240  
acgatctgga ggcttgcgtg atccagggcg tggcgtgac cgagacccct ctgatgaagg 12300  
aggatagcat cctggctgtg aggaagtact ttcagaggat caccctgtac ctgaaggaga 12360  
agaagtacag cccctgcgtc tggaaagtgc tgagggctga gatcatgagg agctttagcc 12420  
tgagcaccaa cctgcaagag agcttgaggt ctaaggagta aaaagtctag agtcgggvcg 12480  
gccggccgct tcgagcagac atgataagat acattgatga gtttggacaa accacaacta 12540  
aatgcagtg aaaaaaatgc tttatttgta aaatttgta tgctattgct ttatttgtaa 12600  
ccattataag ctgcaataaa caagttaca acaacaattt cattcatttt atgtttcagg 12660  
ttcaggggga ggtgtggag gtttttaaa gcaagtaaaa cctctacaaa tgtggtaaaa 12720  
tcgataagga tccgtcgacc gatgccctt agagccttca acccagtcag ctccctccgg 12780  
tggcgcggg gcatgactat cgtcgccgca cttatgactg tcttctttat catgcaactc 12840  
taggacagg tgccggcagc gctctccgc ttccctcgctc actgactcgc tgcgctcggt 12900  
cgttcggctg cggcgagcgg tatcagctca ctcaaaggcg gtaatacggt tatccacaga 12960  
atcaggggat aacgcaggaa agaacatgtg agcaaaaggc cagcaaaagg ccaggaaccg 13020  
taaaaaggcc gcgttgcgtgg cgttttcca taggctccgc cccctgacg agcatcacaa 13080  
aaatcgacgc tcaagtccaga ggtggcggaa cccgacagga ctataaagat accaggcg 13140  
tccccctgga agctccctcg tgcgctctcc tggccgacc ctgcccctta ccggataacct 13200  
gtccgcctt ctcccttcgg gaagcgtggc gctttctcaa tgctcacgct gtaggtatct 13260  
cagttcggtg taggtcggtc gctccaagct gggctgtgtg cacgaacccc ccgttcagcc 13320  
cgaccgctgc gccttatccg gtaactatcg tcttgcgtcc aacccggtaa gacacgactt 13380  
atcgccactg gcagcagcca ctggtaacag gattagcaga gcgaggtatg taggcgggtgc 13440  
tacagagttc ttgaagtggc ggcctaacta cggctacact agaaggacag tattttgtat 13500  
ctgcgctctg ctgaagccag ttaccttcgg aaaaagagtt ggtagctctt gatccggcaa 13560  
acaaccacc gctggtagcg gtggttttt tggcaag cagcagatta cgccgcggaaa 13620  
aaaaggatct caagaagatc ctttgatctt ttctacgggg tctgacgctc agtggAACGA 13680  
aaactcacgt taagggattt tggcatgag attatcaaaa aggatctca cctagatcct 13740  
tttaaattaa aaatgaagtt ttaaatcaat ctaaagtata tatgagtaaa cttggctctga 13800

## 025CIP SEQ List.txt

|             |            |             |            |             |             |       |
|-------------|------------|-------------|------------|-------------|-------------|-------|
| cagttaccaa  | tgcttaatca | gtgaggcacc  | tatctcagcg | atctgtctat  | ttcgttcatc  | 13860 |
| catagttgcc  | tgactccccg | tcgtgttagat | aactacgata | cgggagggct  | taccatctgg  | 13920 |
| ccccagtgc   | gcaatgatac | cgcgagaccc  | acgctcaccc | gctccagatt  | tatcagcaat  | 13980 |
| aaaccagcca  | gccggaaggg | ccgagcgcag  | aagtggtcct | gcaactttat  | ccgcctccat  | 14040 |
| ccagtctatt  | aattgttgcc | gggaagctag  | agtaagtagt | tcgcccagtta | atagttgcg   | 14100 |
| caacgttgtt  | gccattgcta | caggcatcgt  | ggtgtcacgc | tcgtcgtttg  | gtatggcttc  | 14160 |
| attcagctcc  | ggttcccaac | gatcaaggcg  | agttacatga | tccccatgt   | tgtgcaaaaa  | 14220 |
| agcggtagc   | tccttcggtc | ctccgatcgt  | tgtcagaagt | aagtggccg   | cagtgttatac | 14280 |
| actcatggtt  | atggcagcac | tgcataattc  | tcttactgtc | atgcacatccg | taagatgctt  | 14340 |
| ttctgtgact  | ggtgagtagt | caaccaagtc  | attctgagaa | tagtgtatgc  | ggcgaccgag  | 14400 |
| ttgctctgc   | ccggcgtcaa | tacggataa   | taccgcgcca | catagcagaa  | ctttaaaagt  | 14460 |
| gctcatcatt  | ggaaaacgtt | cttcggggcg  | aaaactctca | aggatcttac  | cgctgttgag  | 14520 |
| atccagttcg  | atgtaaccca | ctcgtgcacc  | caactgatct | tcagcatctt  | ttactttcac  | 14580 |
| cagcgtttct  | gggtgagcaa | aaacaggaag  | gcaaaatgcc | gcaaaaaagg  | gaataaggc   | 14640 |
| gacacggaaa  | tgttgaatac | tcatactctt  | ccttttcaa  | tattattgaa  | gcatttatca  | 14700 |
| gggttattgt  | ctcatgagcg | gatacatatt  | tgaatgtatt | tagaaaaata  | aacaaatagg  | 14760 |
| ggttccgcgc  | acatttcccc | gaaaagtgcc  | acctgacgcg | ccctgtagcg  | gcgcattaag  | 14820 |
| cgccgggggt  | gtgggtgtta | cgcgcagcgt  | gaccgctaca | cttgcgcagcg | ccctagcgcc  | 14880 |
| cgctccccc   | gctttcttcc | cttccttct   | cgcacgttc  | gccggctttc  | cccgtaagc   | 14940 |
| tctaaatcgg  | gggctccctt | tagggttccg  | atttagtgct | ttacggcacc  | tcgaccccaa  | 15000 |
| aaaacttgat  | tagggtgatg | gttcacgtag  | tgggccatcg | ccctgataga  | cggttttcg   | 15060 |
| cccttgacg   | ttggagtc当地 | cgttcttaa   | tagtgactc  | ttgttccaaa  | ctgaaacaac  | 15120 |
| actcaaccct  | atctcggtct | attctttga   | tttataaggg | atttgccga   | tttcggccta  | 15180 |
| ttggttaaaa  | aatgagctga | tttaacaaaa  | athtaacgcg | aatttaaca   | aaatattaac  | 15240 |
| gtttacaatt  | tcccattcgc | cattcaggct  | gcgcactgt  | tgggaagggc  | gatcggtgc当地 | 15300 |
| ggcctcttcg  | ctattacgcc | agcccaagct  | accatgataa | gtaagtaata  | ttaaggtacg  | 15360 |
| ggaggtactt  | ggagcggccg | ctctagaact  | agtggatccc | ccggccgcaa  | taaaatatct  | 15420 |
| ttatTTTcat  | tacatctgt  | tgttggttt   | ttgtgtgaat | cgatagtagt  | aacatacgct  | 15480 |
| ctccatcaa   | acaaaacgaa | acaaaacaaa  | ctagcaaaat | aggctgtccc  | cagtgc当地    | 15540 |
| gcaggtgc当地  | gaacatttct | ctatcgatag  | gtaccgagct | cttacgcgt   | ctagccctcg  | 15600 |
| agcaggatct  | atacattgaa | tcaatattgg  | caattagcca | tattagtc当地  | tggttatata  | 15660 |
| gcataaaatca | atattggcta | ttggccattt  | catacggt   | atctatatac  | taatatgtac  | 15720 |

## 025CIP SEQ List.txt

|                                                                       |       |
|-----------------------------------------------------------------------|-------|
| atttatattt gctcatgtcc aatatgaccg ccatgttgac attgatttatt gactagttat    | 15780 |
| taatagtaat caattacggg gtcatttagtt catagcccat atatggagtt ccgcgttaca    | 15840 |
| taacttacgg taaatggccc gcctggctga ccgccccaaacg acccccggcc attgacgtca   | 15900 |
| ataatgacgt atgttcccat agtaacgcca atagggactt tccattgacg tcaatgggtg     | 15960 |
| gagtatttac ggtaaactgc ccacttggca gtacatcaag tgttatcatat gccaagtccg    | 16020 |
| ccccctattt acgtcaatga cggttaaatgg cccgcctggc attatgccca gtacatgacc    | 16080 |
| ttacgggact ttcttacttg gcagttacatc tacgtatttag tcattcgctat taccatggtg  | 16140 |
| atgcggtttt ggcagtacat caatgggcgt ggatagcggt ttgactcactg gggatttcca    | 16200 |
| agtctccacc ccattgacgt caatgggagt ttgtttggc accaaaatca acgggacttt      | 16260 |
| ccaaaatgtc gtaacaactc cgccccattt acgcaaatttgg gcggtaggcg tgtacggtgg   | 16320 |
| gaggtctata taagcagagc tcgttttagt aaccgtcaga tcgcctggag acgcccattca    | 16380 |
| cgcgttttgc acctccatag aagacaccgg gaccgatcca gcctccctc gaagctcgac      | 16440 |
| tctaggggct cgagatctgc gatctaagta agcttgcattt cctgcaggc ggccgcccacg    | 16500 |
| accgggtccg ccaccatccc ctgaccacacg cccctgaccc ctcacaagga gacgacccctc   | 16560 |
| catgaccgag tacaagccca cgggtgcgcct cggccaccccg gacgacgtcc cccgggcccgt  | 16620 |
| acgcaccctc gcccgcgcgt tcgcccacta cccccccacg cgccacacccg tcgacccgg     | 16680 |
| ccgcccacatc gagcgggtca ccgagctgca agaactcttc ctcacgcgcg tcgggctcga    | 16740 |
| catcggtcaag gtgtgggtcg cggacgacgg cggccgcggcgt gcggcttggc ccacgcccgg  | 16800 |
| gagcgtcgaa gcgggggcgg tgttcgccga gatcggcccg cgcatggccg agttgagcgg     | 16860 |
| ttcccggtcg gccgcgcagc aacagatgg aaggcctcctg gcgccgcacc ggcccaagga     | 16920 |
| gccccgcgtgg ttccctggcca ccgtcgccgt ctgcggccgac caccagggca agggtctgg   | 16980 |
| cagcgccgtc gtgtcccccgg gagtggaggc ggccgagcgc gcccgggtgc ccgccttcct    | 17040 |
| ggagacctcc gcccgcgcac acctccctt ctacgagcgg ctgcgttca ccgtcaccgc       | 17100 |
| cgacgtcgag gtgcccgaag gaccgcgcac ctgggtcatg acccgcaagc ccgggtccgt     | 17160 |
| acgccccccc cacgaccgc acgcgcgcac cggaaaggagc gcacgacccc atggctccga     | 17220 |
| ccgaagccga cccggggcggc cccgcccacc cgcacccgc ccccgaggcc caccgactct     | 17280 |
| agagtcgggg cggccggccg cttcgagcag acatgataag atacattgtat gagtttggac    | 17340 |
| aaaccacaac tagaatgcag tgaaaaaaat gctttatttgc tggaaatttgt gatgctatttgc | 17400 |
| ctttatttgtt aaccattata agctgcaata aacaagttaa caacaacaat tgcatttatttgc | 17460 |
| ttatgtttca ggttcagggg gaggtgtggg aggtttttta aagcaagtaa aacctctaca     | 17520 |
| aatgtggtaa aatcgataag gatcaattcg gcttcaggta ccgtcgcacgatgttaggtcac    | 17580 |

## 025CIP SEQ List.txt

|                                                                    |       |
|--------------------------------------------------------------------|-------|
| ggtctcgaaag ccgcgggtcg ggtgccagg cgcccttg ggctccccgg gcgcgtactc    | 17640 |
| cacctcaccc atctggtcca tcatgatgaa cgggtcgagg tggcggtagt tgatcccgcc  | 17700 |
| gaacgcgcgg cgacccggga agccctcgcc ctgcggaaaccg ctgggcgcgg tggtcacgg | 17760 |
| gagcacggga cgtgcgacgg cgtcggcggt tgccggatacg cggggcagcg tcagcggg   | 17820 |
| ctcgacggtc acggcgggca tgtcgacagc cgaattgatc cgatcgaccga tgcccttgag | 17880 |
| agccttcaac ccagtcagct cttccgggt ggcgcggggc atgactatcg tcgcccgcact  | 17940 |
| tatgactgtc ttctttatca tgcaactcgt aggacaggtg cggcagcgc tcctccgctt   | 18000 |
| cctcgctcac tgactcgctg cgctcggtcg ttccggctg gcgagcggta tcagctcact   | 18060 |
| caaaggcggt aatacggtta tccacagaat cagggataa cgcaggaaag aacatg       | 18116 |

<210> 8  
<211> 17402  
<212> DNA  
<213> Plasmid pOMIFN-Ins-CMV-pur-attB

|                                                                               |      |
|-------------------------------------------------------------------------------|------|
| <400> 8<br>ggccgccacc gcgggtggagc tccaattcgc cctatagtga gtcgtattac aattcactgg | 60   |
| ccgtcgaaaa acaacgtcgt gactggaaa accctggcgt tacccaaactt aatcgccctg             | 120  |
| cagcacatcc cccttcgccc agctggcgta atagcgaaga ggccgcacc gatcgccctt              | 180  |
| cccaacagtt gcgcagcctg aatggcgaat gggacgcgcct ctgtagcggc gcattaagcg            | 240  |
| cggcgggtgt ggtggttacg cgacgtcgt ccgcgtacact tgccagcgcctt ctagcgcccg           | 300  |
| ctcccttcgc tttttccct tcctttctcg ccacgttcgc cggctttccc cgtcaagctc              | 360  |
| taaatcgggg gctccctta gggttccgat ttatgtctt acggcacctc gaccccaaaa               | 420  |
| aacttgatta gggtgatggt tcacgtatgt ggcgcgcgc ctgatagacg gttttcgcc               | 480  |
| ctttgacgtt ggagtccacg ttcttaata gtggactctt gttccaaact ggaacaacac              | 540  |
| tcaaccctat ctcggtctat tctttgatt tataaggat tttgccatt tcggcctatt                | 600  |
| ggttaaaaaaa tgagctgatt taacaaaaat ttaacgcgaa ttttaacaaa atattaacgc            | 660  |
| ttacaattta ggtggactt ttcggggaaa tgtgcgcgg acccctattt gtttattttt               | 720  |
| ctaaatacat tcaaataatgt atccgctcat gagacaataa ccctgataaa tgcttcaata            | 780  |
| atattgaaaa aggaagagta tgagtattca acatttccgt gtcgcctta ttccctttt               | 840  |
| tgcggcattt tgccttcctg ttttgctca cccagaaacg ctggtaaaag taaaagatgc              | 900  |
| tgaagatcag ttgggtgcac gagtggtta catcgaactg gatctcaaca gcggtaagat              | 960  |
| ccttgagagt ttccggcccg aagaacgttt tccaatgatg agcaattttt aagttctgct             | 1020 |
| atgtggcgcg gtattatccc gtattgacgc cgggcaagag caactcggtc gccgcataca             | 1080 |
| :tattctcag aatgacttgg ttgagttactc accagtcaca gaaaagcatc ttacggatgg            | 1140 |

## 025CIP SEQ List.txt

|                                                                     |      |
|---------------------------------------------------------------------|------|
| catgacagta agagaattat gcagtgcgtc cataaccatg agtataaca ctgcggccaa    | 1200 |
| cttacttctg acaacgatcg gaggaccgaa ggagctaacc gctttttgc acaacatgg     | 1260 |
| ggatcatgta actcgccctg atcggtggga accggagctg aatgaagcca taccaaacga   | 1320 |
| cgagcgtgac accacgatgc ctgttagcaat ggcaacaacg ttgcgcaaac tattaactgg  | 1380 |
| cgaactactt actcttagctt cccggcaaca attaatagac tggatggagg cgatggaaagt | 1440 |
| tgcaggacca cttctgcgct cggcccttcc ggctggctgg tttattgctg ataaatctgg   | 1500 |
| agccggtgag cgtgggtctc gcggtatcat tgcagcactg gggccagatg gtaagccctc   | 1560 |
| ccgtatcgta gttatctaca cgacggggag tcaggcaact atggatgaac gaaatagaca   | 1620 |
| gatcgctgag ataggtgcct cactgattaa gcattggtaa ctgtcagacc aagtttactc   | 1680 |
| atataactt tagattgatt taaaacttca ttttaattt aaaaggatct aggtgaagat     | 1740 |
| ccttttgat aatctcatga cccaaatccc ttaacgtgag ttttcgttcc actgagcgctc   | 1800 |
| agaccccgta gaaaagatca aaggatctc ttgagatcct tttttctgc gcgtaatctg     | 1860 |
| ctgcttgcaa acaaaaaaaaac caccgctacc agcggtggtt tggtgccgg atcaagagct  | 1920 |
| accaactctt tttccgaagg taactggctt cagcagagcg cagataccaa atactgtcct   | 1980 |
| tctagtgtag ccgtagttag gccaccactt caagaactct gtacaccgc ctacataacct   | 2040 |
| cgctctgcta atcctgttac cagtggctgc tgccagtggc gataagtctgt gtcttaccgg  | 2100 |
| gttggactca agacgatagt taccggataa ggcgcagcgg tcgggctgaa cgggggggttc  | 2160 |
| gtgcacacag cccagcttgg agcgaacgac ctacaccgaa ctgagatacc tacagcgtga   | 2220 |
| gctatgagaa agccccacgc ttcccaagg gagaaaggcg gacaggtatc cggtaagcgg    | 2280 |
| cagggtcgga acaggagagc gcacggggaa gcttccaggg ggaaacgcct ggtatctta    | 2340 |
| tagtcctgtc gggtttcgccc acctctgtact tgagcgtcga tttttgtat gctcgtcagg  | 2400 |
| ggggcggagc ctatggaaaa acgccagcaa cgcggccttt ttacggttcc tggccttttgc  | 2460 |
| ctggcctttt gctcacatgt tcttcctgc gttatcccct gattctgtgg ataaccgtat    | 2520 |
| taccgccttt gagtgagctg ataccgctcg ccgcagccga acgaccgagc gcagcgtgc    | 2580 |
| agtgagcgtg gaagcggaaag agcgccaaat acgcaaaaccg cctctccccg cgcgttggcc | 2640 |
| gattcattaa tgcagctggc acgacaggtt tcccgactgg aaagcggca gtgagcgc当地    | 2700 |
| cgcaattaat gtgagttgc tcactcatta ggcacccag gctttacact ttatgcttcc     | 2760 |
| ggctcgtatg ttgtgtggaa ttgtgagcgg ataacaattt cacacaggaa acagctatga   | 2820 |
| ccatgattac gccaagctcg aaattaaccc tcactaaagg gaacaaaagc tgggtaccgg   | 2880 |
| gccccccctc gactagaggg acagcccccc cccaaagccc ccaggatgt aattacgtcc    | 2940 |
| ctccccccgtc agggggcagc agcgagccgc ccggggctcc gctccggtcc ggcgtcccc   | 3000 |
| ccgcattcccc gagccggcag cgtgcgggaa cagccccggc acggggaaagg tggcacggaa | 3060 |

## 025CIP SEQ List.txt

|            |           |           |         |          |      |
|------------|-----------|-----------|---------|----------|------|
| tcgcttcctt | ctgaacgc  | tttggac   | cagacac | ggggata  | 3120 |
| ggaaaaa    | gtttagg   | atagaat   | gaatcat | acggc    | 3180 |
| ttgcaaagg  | gcacagt   | catccagat | caacccc | ctatgtc  | 3240 |
| cagcagcc   | ggctgccc  | agccacat  | agcctgg | tgaatgc  | 3300 |
| gcatccac   | cctcctt   | caacc     | tgttc   | agtgcgt  | 3360 |
| gcctcctc   | atccaaccc | aac       | ccctt   | gtctcag  | 3420 |
| tatcaagg   | gagtt     | tgacatt   | ggtctgg | gacacat  | 3480 |
| gtgcac     | gagagg    | caga      | tctggg  | aggaa    | 3540 |
| catgcagg   | ttgagg    | gctc      | ggacact | tcac     | 3600 |
| ggataaga   | ataggat   | aggaca    | gcaagtt | acccag   | 3660 |
| caaaaagg   | acagac    | ctgg      | ccctg   | tgtctg   | 3720 |
| atgtcaag   | gaaggg    | ttgc      | tgag    | atgg     | 3780 |
| gggacagg   | gctgg     | gagaat    | tgccat  | atgtcata | 3840 |
| tggaaaag   | ctccaag   | atc       | cccaag  | acc      | 3900 |
| atgtcc     | gtgcc     | acatc     | cccac   | ttc      | 3960 |
| acctcc     | gcag      | ctgt      | actgc   | tttgc    | 4020 |
| atccagcc   | acc       | ccctcc    | ggcac   | acgt     | 4080 |
| cggagt     | gaggat    | gggg      | ctctag  | tcga     | 4140 |
| agagcaat   | gact      | ctcaac    | ctcg    | ttag     | 4200 |
| agcgtgg    | acaat     | ctg       | tgc     | atcg     | 4260 |
| ttcc       | ttgt      | ttgtc     | tcctaa  | ggctt    | 4320 |
| ttgg       | caac      | gtt       | tttgc   | tttgc    | 4380 |
| cctcc      | gtgt      | gtac      | acgt    | tttgc    | 4440 |
| caatgt     | aaagt     | tttc      | ctg     | tgtgtt   | 4500 |
| tggg       | ctcc      | ttgg      | ccat    | tttgc    | 4560 |
| agtcc      | cttc      | aaac      | tttgc   | tttgc    | 4620 |
| gagacgtt   | cctcaag   | atgac     | ctgc    | tca      | 4680 |
| ggatgg     | tttta     | aagt      | tttct   | tttgc    | 4740 |
| tacctgt    | ttccc     | tttgc     | tttgc   | tttgc    | 4800 |
| tggagg     | gggc      | tttgc     | tttgc   | tttgc    | 4860 |
| tcagtgc    | tttgc     | tttgc     | tttgc   | tttgc    | 4920 |

025CIP SEQ List.txt

|                                                                       |      |
|-----------------------------------------------------------------------|------|
| ggttgcagag cagaagtgtc tgtgtataga gtgtgtctta atctattaat gtaacagaac     | 4980 |
| aacttcagtc cttagtgtttt gtgggctgga attgccatg tggtagggac aggccctgcta    | 5040 |
| aatcaactgca atcgccatag ttctgaaggt atttggaaa gaaaggatt tgggggatttg     | 5100 |
| cctgtgattg gcttaattt aatggcaa at cacagggaa ag cagttctgct caacagttgg   | 5160 |
| ttgtttcagc caattcttgc agccaaagag ccgggtgccc agcgatataa tagttgtcac     | 5220 |
| ttgtgtctgt atggatgaca gggaggtagg gtgacctgag gaccaccctc cagcttctgc     | 5280 |
| tagcgttaggt acagtcacca cctccagctc cacacgagtc ccacgtggt ttaccaaaga     | 5340 |
| aacacaat ta ttggaccag tttggaaagt cacccgctga attgtgaggc tagattaata     | 5400 |
| gagctgaaga gcaa atgttc ccaacttgg a gatactgat tt ggtattagta tcagaggaac | 5460 |
| aggcccatag caccctccatg ctattagatt ccggctggca tgtactttc aagatgattt     | 5520 |
| gtaactaaca atggcttattt gtgcttgc taagtctgtg tccta atgtta aatgttcctt    | 5580 |
| tggtttat aaccccttg ccatttgc ttcaggtgtt ctgcagaac actggctgct           | 5640 |
| ttaatctagt ttaactgttg cttgattatt cttagggata agatctgaat aaacttttg      | 5700 |
| tggctttggc agactttagc ttggccttag ctccccacatt agctttgct gcctttctg      | 5760 |
| tgaagctatc aagatcctac tcaatgacat tagctgggtg caggtgtacc aaatcctgct     | 5820 |
| ctgtggaaaca cattgtctga tgataccgaa ggcaaacgtg aactcaaaga ggcacagagt    | 5880 |
| taagaagaag tctgtcaat tcagagggaa agccaaagtg gccattagac acactttcca      | 5940 |
| tgcagcattt gccagtaggt ttcataaaaa actacaaaat ggaataaacc actacaaaatg    | 6000 |
| gaaaaagcct gatactgaa tttaatattt cacccaggct caaggggtgt ttcatggagt      | 6060 |
| aatatcactc tataaaaatgta gggcagccaa ttattcacag acaaagctt ttttttctg     | 6120 |
| tgctgcagtg ctgttttcg gctgatccag gttacttat tgtgggtctg agagctgaat       | 6180 |
| gatttctcct tggcatgt tggtgaagga gatatggcca gggggagatg agcatgttca       | 6240 |
| agaggaaaacg ttgcattttg gtggcttggg agaaaaggtag aacgatatac ggtccatagt   | 6300 |
| gtcactaaga gatctgaagg atggtttac agaacagttg acttggctgg gtgcaggctt      | 6360 |
| ggctgtaaat ggttggagg atggacagat ggggtggacag agattctgt gcaggagatc      | 6420 |
| atctccctgag ctcggtgctt gacagactgc agatccatcc cataaccttc tccagcatga    | 6480 |
| gagcgcgggg agcttggta ctgttcagtc tgctgcttgc tgcttcctgg gtgcacagtg      | 6540 |
| gtgattttct tactcacaca gggcaaaaac ctgagcagct tcaaagtcaa caggttgctc     | 6600 |
| tcataggcca ttcatgttgc aagatgaggt tttgggttc ttgtttgtt aggtggaaag       | 6660 |
| agcactgaa ggatcagttg cgagggcagg gtttagcac tggtcagaga agtcttattt       | 6720 |
| aaactcctct catgaacaaa aagagatgca ggtgcagatt ctggcaagca tgcagtgaag     | 6780 |
| gaaaaagccc tgaatttctg atatatgtgc aatgttggc accta acatt ccccgctgaa     | 6840 |

## 025CIP SEQ List.txt

|                                                          |             |      |
|----------------------------------------------------------|-------------|------|
| gcacagcagc tccagctcca tgcagtactc acagctggtg cagccctcg    | ctccagggtc  | 6900 |
| tgagcagtgc tgggactcac gaggttccat gtcttcaca ctgataatgg    | tccaatttct  | 6960 |
| ggaatgggtg cccatccttg gaggtccccca aggccaggct ggctgcgtct  | ccgagcagcc  | 7020 |
| cgtatctggtg gtgagtagcc agcccatggc aggagttaga gcctgatggt  | ctttaaggtc  | 7080 |
| ccttccaacc taagccatcc tacgattcta ggaatcatga cttgtgagtg   | tgtattgcag  | 7140 |
| aggcaatatt ttaaagttat aaatgttttc tccccttcct tgtttgtcaa   | agttatcttg  | 7200 |
| atgccttat caatgctttt ggagtctcca gtcatttttc ttacamcaaa    | aagaggagga  | 7260 |
| agaatgaaga gaatcattta atttcttgat tgaatagtag gattcagaaa   | gctgtacgta  | 7320 |
| atgccgtctc tttgtatcga gctgtaaggt ttctcatcat ttatcagcgt   | ggtacatatc  | 7380 |
| agcacttttc catctgatgt ggaaaaaaaaa atccttatca tctacagtct  | ctgtacctaa  | 7440 |
| acatcgctca gactcttac caaaaaagct ataggtttta aaactacatc    | tgctgataat  | 7500 |
| ttgccttgtt ttagctttc ttccatatgc tgcgtttgt agaggtgcgt     | ggatgggcct  | 7560 |
| aaactctcag ctgctgagct ttaggggtgc ttaagaatga agcactca     | ctgtgaaactg | 7620 |
| ttttcatttc acaggaatgt tttagtggca ttgtttttat aactacatat   | tcctcagata  | 7680 |
| aatgaaatcc agaaataatt atgcaaactc actgcattcg ttgcacaggt   | ctttatctgc  | 7740 |
| tagcaaagga aataatttgg ggatggcaaa aacattcctt cagacatcta   | tattnaaagg  | 7800 |
| aatataatcc tggtacccac ccacttcattc cctcattatg ttcacactca  | gagatactca  | 7860 |
| ttctcttgtt gttatcattt gatagcgttt tctttggttc tttgccacgc   | tctgggttat  | 7920 |
| ggctgcacgc tctgcactga tcagcaagta gatgcgaggg aagcagcagt   | gagagggct   | 7980 |
| gccctcagct ggcacccagc cgctcagcct aggaggggac cttgccttcc   | caccagctga  | 8040 |
| ggtcagcccc tacaagctta cacgtctgc gagcaggtga gcaaaggag     | tcttcatggt  | 8100 |
| gtgtttcttg ctgccccggaa gcaaaacttt actttcattc attccccttg  | aagaatgagg  | 8160 |
| aatgtttgga aacggactgc tttacgttca atttctctc tccctttaag    | gctcagccag  | 8220 |
| gggccattgc tgaggacggc atcggggccc cctggaccaa atctgtggca   | cagatggttt  | 8280 |
| cacttacatc agtggatgtg ggatctgcgc ctgtaatgtg tccttctgaa   | ggaaggaacg  | 8340 |
| tgccttccaa gtgccagccc cacagcccc agcccccctt tgtgctgctc    | caattcatct  | 8400 |
| cctcttcctc cttctccctt tgctgtttgt gctcgggtag aaatcatgaa   | gatttagaag  | 8460 |
| agaaaaacaaa ataactggag tggaaaccca ggtgatgcag ttcattcagc  | tgtcataggt  | 8520 |
| ttgtcgttgc tataggtctg tatcagagat gctarcacca ctttgctgtc   | ggtgcttaac  | 8580 |
| tcgggtgaac tctccttcac tcgcatcatt tgccggcctt atttacatcc   | ccagcatcca  | 8640 |
| tcaccctctg ggaaaatggg cgcaactggat ctctaattgga agactttccc | tctttcagag  | 8700 |

025CIP SEQ List.txt

|             |             |             |             |             |            |       |
|-------------|-------------|-------------|-------------|-------------|------------|-------|
| cctgtggat   | gtgcagtgac  | aagaaacgtg  | gaggggctga  | gcagcagcac  | tgccccagg  | 8760  |
| gagcaggagc  | ggatgccatc  | ggtggcagca  | tcccaaatga  | tgtcagcgg   | tgctgagcag | 8820  |
| gcagcgacg   | aacggacaga  | agcgatgcgt  | acaccctctg  | ttgacatgg   | atttggcagc | 8880  |
| gatttaacac  | tcgcttccta  | gtcctgctat  | tctccacagg  | ctgcattcaa  | atgaacgaag | 8940  |
| ggaagggagg  | caaaaagatg  | caaaatccga  | gacaaggcgc  | agaaatattt  | cttcgctacg | 9000  |
| gaagcgtgcf  | caaacaacct  | tctccaacag  | caccagaaga  | gcacagcgta  | accttttca  | 9060  |
| agaccagaaa  | aggaaattca  | caaagcctct  | gtggatacca  | gcgcgttcag  | cttcctgtat | 9120  |
| agcagattt   | ttgtcagggtt | gcgaatgggg  | tatggtgcca  | ggaggtgcag  | ggaccatatg | 9180  |
| atcatataca  | gcacagcagt  | cattgtgcat  | gtattaatat  | atattgagta  | gcagtgttac | 9240  |
| tttgc当地     | caatagttca  | gagatgagtc  | ctgctgcata  | cctctatctt  | aaaactaact | 9300  |
| tataaatagt  | aaaaccttct  | cagttcagcc  | acgtgctcct  | ctctgtcagc  | accaatggtg | 9360  |
| cttcgc当地    | acccagctgc  | aaggaatcag  | cccgtgatct  | cattaacact  | cagctctgca | 9420  |
| ggataaatta  | gattgttcca  | ctctctttt   | ttgttaatta  | cgacggaaca  | attgttcagt | 9480  |
| gctgatggtc  | ctaattgtca  | gctacagaaa  | acgtctccat  | gcagttcctt  | ctgcgc当地   | 9540  |
| aaactgtcca  | ggctatagca  | ccgtgatgca  | tgctacact   | cactccatcc  | ttcttctctt | 9600  |
| tcccaccagg  | gagagctgt   | tgtttcact   | ctcagccact  | ctgaacaata  | ccaaactgct | 9660  |
| acgcactgcc  | tccctcgaa   | agagaatccc  | cttggcctt   | ttttatattac | aggatccttc | 9720  |
| taaaaagca   | gaccatcatt  | caactgaaac  | ccagagcttc  | atgcctctcc  | ttccacaacc | 9780  |
| aaaaacagcc  | ggcttcattt  | gtcttttta   | aatgtgttt   | tccaggtgaa  | tttggccag  | 9840  |
| cgtgttggct  | gagatccagg  | agcacgtgtc  | agctttctgc  | tctcattgct  | cctgttctgc | 9900  |
| attgcctctt  | tctggggttt  | ccaagagggg  | gggagacttt  | gcgcgggat   | gagataatgc | 9960  |
| ccctttctt   | agggtggctg  | ctggcagca   | gagtggctct  | gggtcactgt  | ggcaccaatg | 10020 |
| ggaggcacca  | gtgggggtgt  | gttttgtc    | ggggggaaagc | attcacagaa  | tggggctgat | 10080 |
| cctgaagctt  | gcagtccaag  | gctttgtctg  | tgtacccagt  | gaaatccttc  | ctctgttaca | 10140 |
| taaagcccag  | ataggactca  | gaaatgttagt | cattccagcc  | cccctcttcc  | tcagatctgg | 10200 |
| agcagcactt  | gtttgcagcc  | agtccccc    | aaaatgcaca  | gacctcgccg  | agtggaggga | 10260 |
| gatgtaaaca  | gcgaaggta   | attacccct   | tgtcaaaaac  | actttgtggt  | ccatagatgt | 10320 |
| ttctgtcaat  | cttacaaaac  | agaaccgaga  | ggcagcagc   | actgaagagc  | gtgttccat  | 10380 |
| gctgagttaa  | ttagacttgg  | cagctcgctg  | tgcagagatg  | atccctgtgc  | ttcatggag  | 10440 |
| gctgttaacct | gtctccccat  | cgccttcaca  | ccgcagtgt   | gtcctggaca  | cctcaccctc | 10500 |
| cataagctgt  | aggatgcagc  | tgcccaggga  | tcaagagact  | tttcctaagg  | ctcttaggac | 10560 |
| tcatcttgc   | cgctcagtag  | cgtgcagcaa  | ttactcatcc  | caactatact  | gaatgggttt | 10620 |

## 025CIP SEQ List.txt

ctgccagctc tgcttgtttgc tcaataagca tttcttcatt ttgcctctaa gtttctctca 10680  
 gcagcaccgc tctgggtgac ctgagtgcc acctggaaacc cgaggggcac agccaccacc 10740  
 tccctgttgc tgctgctcca gggactcatg tgctgctgga tgggggaaag catgaagttc 10800  
 ctcacccaga cacctgggtt gcaatggctg cagcgtgctc ttcttggtat gcagattgtt 10860  
 tccagccatt acttgttagaa atgtgctgtg gaagcccttt gtatctctt ctgtggccct 10920  
 tcagcaaaag ctgtggaaa gctctgaggc tgctttctt ggtcgtggag gaattgtatg 10980  
 ttcccttctt aacaaaaatt atccttagga gagagcactg tgcaagcatt gtgcacataa 11040  
 aacaattcag gttgaaaggc ctctctggag gtttccagcc tgactactgc tcgaagcaag 11100  
 gccaggttca aagatggctc aggatgctgt gtgccttctt gattatctgt gccaccaatg 11160  
 gaggagattc acagccactc tgcttccgt gccactcatg gagaggaata ttcccttata 11220  
 ttcagataga atgttattcct ttagctcagc cttccctata accccatgag ggagctgcag 11280  
 atccccatac tctcccttc tctgggtga aggccgtgtc ccccagcccc cttcccccacc 11340  
 ctgtgcccta agcagccgc tggcctctgc tggatgtgtg cctatatgtc aatgcctgtc 11400  
 cttgcagtcc agcctggac atttaattca tcaccagggt aatgtggAAC tgtgtcatct 11460  
 tccccctgcag ggtacaaagt tctgcacggg gtccttcgg ttcaggaaaa ccttcactgg 11520  
 tgctacctga atcaagctct atttaataag ttcataagca catggatgtg tttccctaga 11580  
 gatacgttt aatggtatca gtgattttta tttgctttgt tgcttacttc aaacagtgcc 11640  
 tttggcagg aggtgaggga cgggtctgcc gttggctctg cagtgatttc tccaggcgtg 11700  
 tggctcaggt cagatagtgg tcactctgtg gccagaagaa ggacaaagat ggaaattgca 11760  
 gattgagtcg cgttaagcag gcatcttggaa gtgatttgag gcagtttcat gaaagagcta 11820  
 cgaccactta ttgttggttt cccctttac aacagaagtt ttcataaaaa taacgtggca 11880  
 aagcccagga atgttggaa aaagtgtagt taaatgtttt gtaattcatt tgtcggagtg 11940  
 ctaccagcta agaaaaaaagt cctaccttgc gtatggtagt cctgcagaga atacaacatc 12000  
 aatattagtt tggaaaaaaaaa caccaccacc accagaaact gtaatggaaa atgtaaacca 12060  
 agaaattcct tggtaagag agaaaggatg tcgtatactg gccaagtccct gcccagctgt 12120  
 cagcctgctg accctctgca gttcaggacc atgaaacgtg gcactgttaag acgtgtcccc 12180  
 tgcccttgct tgcccacaga tctctgccc tggctgtact cctgcacaca agagcatttc 12240  
 cctgtagcca aacagcgatt agccataagc tgcacctgac tttgaggatt aagagttgc 12300  
 aattaagtgg attgcagcag gagatcagtg gcaggggtgc agatgaaatc cttttcttagg 12360  
 ggttagctaag ggctgagcaa cctgtcctac agcacaagcc aaaccagcca agggtttcc 12420  
 tgtgctgttc acagaggcag ggccagctgg agctggagga ggttgtgctg ggacccttct 12480

## 025CIP SEQ List.txt

|            |             |             |             |            |            |       |
|------------|-------------|-------------|-------------|------------|------------|-------|
| ccctgtgctg | agaatggagt  | gatttctggg  | tgctgttcct  | gtggcttgca | ctgagcagct | 12540 |
| caagggagat | cggtgctcct  | catgcagtgc  | caaaaactcgt | gtttgatgca | gaaagatgga | 12600 |
| tgtgcacctc | cctcctgcta  | atgcagccgt  | gagcttatga  | aggcaatgag | ccctcagtgc | 12660 |
| agcaggagct | gtagtgcact  | cctgttaggtg | ctagggaaaaa | tctctggttc | ccagggatgc | 12720 |
| attcataagg | gcaatatatc  | ttgaggctgc  | gccaaatctt  | tctgaaatat | tcatgcgtgt | 12780 |
| tcccctaatt | tatagaaaca  | aacacagcg   | aataattatt  | ccaatgcctc | ccctcgaagg | 12840 |
| aaacccatat | ttccatgttag | aatgtacc    | tatatacaca  | cagccatgct | gcatccttca | 12900 |
| gaacgtgcca | gtgctcatct  | cccatggcaa  | aatactacag  | gtattctcac | tatgttggac | 12960 |
| ctgtgaaagg | aaccatggta  | agaaacttcg  | gttaaaggtt  | tggctgcaaa | actactcata | 13020 |
| ccaaaacagc | agagctccag  | acccctctt   | aggaaagagc  | cactggaga  | gggatggtgt | 13080 |
| gaaggctgga | ggtgagagac  | agagcctgtc  | ccagtttcc   | tgtctctatt | ttctgaaacg | 13140 |
| tttgcaggag | gaaaggacaa  | ctgtactttc  | aggcatagct  | ggtgccctca | cgtaaataag | 13200 |
| ttccccgaac | ttctgtgtca  | tttgttctta  | agatgctttt  | gcagaacact | ttgagtcaat | 13260 |
| tcgcttaact | gtgacttaggt | ctgtaaataa  | gtgctccctg  | ctgataaggt | tcaagtgaca | 13320 |
| tttttagtgg | tatgtacag   | catttacatt  | gctttcaagt  | cttctaccaa | gctcttctat | 13380 |
| acttaagcag | tgaaaccgccc | aagaaaccct  | tcctttatc   | aagctagtgc | taaataccat | 13440 |
| taacttcata | ggttagatac  | ggtgctgcca  | gcttcacctg  | gcagtggttg | gtcagttctg | 13500 |
| ctggtgacaa | agccctccctg | gcctgtgctt  | ttacctagag  | gtgaatatcc | aagaatgcag | 13560 |
| aactgcatgg | aaagcagagc  | tgcaggcacf  | atggtgctga  | gccttagctg | cttcctgctg | 13620 |
| ggagatgtgg | atgcagagac  | gaatgaagga  | cctgtccctt  | actccctca  | gcattctgtg | 13680 |
| ctatTTAGGG | ttctaccaga  | gtccttaaga  | ggTTTTTTT   | ttttttggtc | caaaagtctg | 13740 |
| tttggTTGgt | tttgaccact  | gagagcatgt  | gacacttgc   | tcaagctatt | aaccaagtgt | 13800 |
| ccagccaaaa | tcaattgcct  | gggagacgca  | gaccattacc  | tggaggtcag | gacctcaata | 13860 |
| aatattacca | gcctcattgt  | gccgctgaca  | gattcagctg  | gctgctccgt | gttccagtcc | 13920 |
| aacagttcgg | acgccacgtt  | tgtatataatt | tgcaggcagc  | ctcgggggga | ccatctcagg | 13980 |
| agcagagcac | cggcagccgc  | ctgcagagcc  | gggcagtacc  | tcaccatggc | tttgaccttt | 14040 |
| gccttactgg | tggctctcct  | ggtgctgagc  | tgcaagagca  | gctgctctgt | gggctgcgat | 14100 |
| ctgcctcaga | cccacagcct  | gggcagcagg  | aggaccctga  | tgctgctggc | tcagatgagg | 14160 |
| agaatcagcc | tgtttagctg  | cctgaaggat  | aggcacgatt  | ttggctttcc | tcaagaggag | 14220 |
| tttggcaacc | agtttcagaa  | ggctgagacc  | atccctgtgc  | tgcacgagat | gatccagcag | 14280 |
| atctttaacc | tgttttagcac | caaggatagc  | agcgctgctt  | gggatgagac | cctgctggat | 14340 |
| aagttttaca | ccgagctgta  | ccagcagctg  | aacgatctgg  | aggcttgcgt | gatccagggc | 14400 |

## 025CIP SEQ List.txt

gtgggcgtga ccgagacccc tctgatgaag gaggatagca tcctggctgt gaggaagtac 14460  
tttcagagga tcaccctgta cctgaaggag aagaagtaca gccctgcgc ttggaaagtc 14520  
gtgagggctg agatcatgag gagcttagc ctgagcacca acctgcaaga gagcttgagg 14580  
tctaaggagt aaaaagtcta gagtcggggc ggccggccgc ttcgagcaga catgataaga 14640  
tacattgatg agtttggaca aaccacaact agaatgcagt gaaaaaaaaatg ctttatttgt 14700  
gaaatttgtg atgctattgc tttattgta accattataa gctgcaataa acaagttaac 14760  
aacaacaatt gcattcattt tatgttcag gttcaggggg aggtgtggg ggtttttaa 14820  
agcaagtaaa acctctacaa atgtggtaaa atcgataccg tcgacctcga ctagagcggc 14880  
cactaacata cgctctccat caaaacaaaaa cgaaacaaaaa caaactagca aaataggctg 14940  
tccccagtgc aagtgcaggt gccagaacat ttctctatcg ataggtaccg agctcttacg 15000  
cgtgctagcc ctcgagcagg atctatacat tgaatcaata ttggcaatta gccatattag 15060  
tcattggta tatagcataa atcaatattt gctattggcc attgcatacg ttgtatctat 15120  
atcataatat gtacatttat attggctcat gtccaatatg accgccatgt tgacattgt 15180  
tattgactag ttataatag taatcaatta cgggtcatt agttcatagc ccatatatgg 15240  
agttccgcgt tacataactt acggtaaatg gcccgcctgg ctgaccgccc aacgaccccc 15300  
gcccattgac gtcaataatg acgtatgttc ccatagtaac gccaataggg actttccatt 15360  
gacgtcaatg ggtggagttat ttacggtaaa ctgcccactt ggcagttacat caagtgtatc 15420  
atatgccaag tccgccccctt attgacgtca atgacggtaa atggcccgcc tggcattatg 15480  
cccagtacat gacccctacgg gacttcccta cttggcagta catctacgta ttagtcatcg 15540  
ctattaccat ggtgatgcgg ttttggcagt acatcaatgg gcgtggatag cggtttgact 15600  
cacggggatt tccaaagtctc cacccatttgc acgtcaatgg gagtttggtt tggcaccaaa 15660  
atcaacggga ctttccaaaaa tgtcgtaaca actccgcccc attgacgcaa atgggcggta 15720  
ggcgtgtacg gtgggaggtc tatataagca gagctcgaaa agtgaaccgt cagatgcct 15780  
ggagacgcca tccacgctgt tttgacccctcc atagaagaca ccgggaccga tccagcctcc 15840  
cctcgaagct cgactctagg ggctcgagat ctgcgatcta agtaagcttgcatgcctgca 15900  
ggtcggccgc cacgaccggcgt gcccgcacca tcccctgacc cacgccccctg acccctcaca 15960  
aggagacgac cttccatgac cgagtacaag cccacggtgc gcctgcaccc cccgcac 16020  
gtccccccggg ccgtacgcac cctcgccgccc gcgttcgccc actacccgcgac cccgcac 16080  
accgtcgacc cggaccgcca catcgagcgg gtcacccgacg tgcaagaact cttccctcag 16140  
cgcgtcgccc tcgacatcggtt caaggtgtgg gtcgcggacg acggccgcgc ggtggcggtc 16200  
tggaccacgc cggagacggtt cgaagcgggg gcggtgttcg ccgagatcgccgcac 16260

## 025CIP SEQ List.txt

|             |             |             |            |             |             |       |
|-------------|-------------|-------------|------------|-------------|-------------|-------|
| gccgagttga  | gcgggttcccg | gctggccgcg  | cagcaacaga | tggaggcct   | cctggcgccg  | 16320 |
| caccggccca  | aggagcccgc  | gtggttcctg  | gccaccgtcg | gcgtctcgcc  | cgaccaccag  | 16380 |
| ggcaagggtc  | tggcagcgc   | cgtcgtgctc  | cccggagtgg | aggcggccga  | gcgcgccccgg | 16440 |
| gtgcccgcct  | tcctggagac  | ctccgcgccc  | cgcaacctcc | ctttctacga  | gcggctcggc  | 16500 |
| ttcacccgtca | ccgcccgtcgt | cgaggtgccc  | gaaggaccgc | gcacctggtg  | catgaccgc   | 16560 |
| aagcccggtg  | cctgacgccc  | gccccacgac  | ccgcagcgc  | cgaccgaaag  | gagcgcacga  | 16620 |
| ccccatggct  | ccgaccgaag  | ccgaccgggg  | cggcccccgc | gacccgcac   | ccgcccccg   | 16680 |
| ggcccaccga  | ctctagagtc  | ggggcggccg  | gccgcttcga | gcagacatga  | taagatacat  | 16740 |
| tgtatgatgtt | ggacaaacca  | caactagaat  | gcagtaaaaa | aatgctta    | tttgtgaaat  | 16800 |
| ttgtatgatct | attgctttat  | ttgttaaccat | tataagctgc | aataaacaag  | ttaacaacaa  | 16860 |
| caattgcatt  | catttatgt   | ttcaggttca  | gggggaggtg | tgggaggtt   | tttaaagcaa  | 16920 |
| gtaaaacctc  | tacaaatgtg  | gtaaaatcga  | taaggatcaa | ttcggcttca  | gttaccgtcg  | 16980 |
| acgatgttagg | tcacggtctc  | gaagccgcgg  | tgcgggtgcc | agggcgtgcc  | cttgggctcc  | 17040 |
| ccgggcgcgt  | actccacctc  | accatctgg   | tccatcatga | tgaacgggtc  | gaggtggcgg  | 17100 |
| tagttgatcc  | cggcgaacgc  | gcggcgacc   | ggaaagccct | cgccctcgaa  | accgctggc   | 17160 |
| gcggtggtca  | cggtgagcac  | gggacgtcg   | acggcgtcgg | cgggtgcgga  | tacgcggggc  | 17220 |
| agcgtcagcg  | ggttctcgac  | ggtcacggcg  | ggcatgtcg  | cagccgaatt  | gatccgtcg   | 17280 |
| ccgatgcctt  | tgagagcctt  | caacccagtc  | agctccttcc | ggtggcgcg   | gggcattgact | 17340 |
| atcgtcgccc  | cacttatgac  | tgtttttt    | atcatgcaac | tcgttaggaca | ggtgccggca  | 17400 |
| gc          |             |             |            |             |             | 17402 |

<210> 9  
<211> 5172  
<212> DNA  
<213> Plasmid pRSV-Int

|            |            |             |             |            |            |     |
|------------|------------|-------------|-------------|------------|------------|-----|
| <400> 9    |            |             |             |            |            |     |
| ctgcattaat | gaatcgccca | acgcgcgggg  | agaggcggtt  | tgcgtattgg | gcgcctttcc | 60  |
| gcttcctcgc | tcactgactc | gctgcgtcg   | gtcggtcg    | tgcggcgagc | ggtatcagct | 120 |
| cactcaaagg | cggtaatacg | gttatccaca  | aatcagggg   | ataacgcagg | aaagaacatg | 180 |
| tgagcaaaag | gccagcaaaa | ggccaggaac  | cgtaaaaagg  | ccgcgttgct | ggcgcccccc | 240 |
| cataggctcc | gccccctga  | cgagcatcac  | aaaaatcgcac | gctcaagtca | gaggtggcga | 300 |
| aacccgacag | gactataaag | ataccaggcg  | tttccccctg  | gaagctccct | cgtgcgtct  | 360 |
| cctgttccga | ccctgcccgt | taccggatac  | ctgtccgcct  | ttctcccttc | gggaagcgtg | 420 |
| gcgtttctc  | aatgctcacf | ctgttaggtat | ctcagttcgg  | tgttaggtcg | tcgctccaag | 480 |

## 025CIP SEQ List.txt

|             |             |            |             |             |             |      |
|-------------|-------------|------------|-------------|-------------|-------------|------|
| ctgggctgtg  | tgcacgaacc  | ccccgttcag | cccgaccgct  | gcgccttatac | cgtaactat   | 540  |
| cgtcttgagt  | ccaacccggt  | aagacacgac | ttatcgccac  | tggcagcagc  | cactggtaac  | 600  |
| aggatttagca | gagcgaggt   | tgttaggcgg | gctacagagt  | tcttgaagt   | gtggcctaac  | 660  |
| tacggctaca  | ctagaaggac  | agtatttgg  | atctgcgctc  | tgctgaagcc  | agttaccttc  | 720  |
| ggaaaaagag  | tttgttagctc | ttgatccggc | aaacaaacca  | ccgctggtag  | cggtggttt   | 780  |
| tttggttgca  | agcagcagat  | tacgcgcaga | aaaaaaaggat | ctcaagaaga  | tcctttgatc  | 840  |
| ttttctacgg  | ggtctgacgc  | tcagtggAAC | gaaaactcac  | gttaaggat   | tttggtcatg  | 900  |
| agatttatcaa | aaaggatctt  | cacctagatc | cttttaaatt  | aaaaatgaag  | tttttaaatca | 960  |
| atctaaagta  | tatatgagta  | aacttggtct | gacagttacc  | aatgcttaat  | cagtgaggca  | 1020 |
| cctatctcag  | cgatctgtct  | atttcggtca | tccatagtt   | cctgactccc  | cgtcgtgtag  | 1080 |
| ataactacga  | tacgggaggg  | cttaccatct | ggccccagtg  | ctgcaatgat  | accgcgagac  | 1140 |
| ccacgctcac  | cggctccaga  | tttatcagca | ataaaaccagc | cagccggaag  | ggccgagcgc  | 1200 |
| agaagtggtc  | ctgcaacttt  | atccgcctcc | atccagtcta  | ttaattgtt   | ccgggaagct  | 1260 |
| agagtaagta  | gttcgccagt  | taatagttt  | cgcaacgtt   | ttgccattgc  | tacaggcatc  | 1320 |
| gtgggtcac   | gctcgctgtt  | tggtatggct | tcattcagct  | ccgggtccca  | acgatcaagg  | 1380 |
| cgagttacat  | gatccccat   | gttgtgcaaa | aaagcggta   | gctccttcgg  | tcctccgatc  | 1440 |
| gttgtcagaa  | gtaagttggc  | cgcagtgtt  | tcactcatgg  | ttatggcagc  | actgcataat  | 1500 |
| tctcttactg  | tcatgccatc  | cgtaagatgc | ttttctgtga  | ctggtgagta  | ctcaaccaag  | 1560 |
| tcattctgag  | aatagtgtat  | gcggcgaccg | agttgctctt  | gcccggcgtc  | aatacggat   | 1620 |
| aataccgcgc  | cacatagcag  | aactttaaaa | gtgctcatca  | ttggaaaacg  | ttcttcgggg  | 1680 |
| cggaaaactct | caaggatctt  | accgctgtt  | agatccagtt  | cgatgttaacc | cactcgtrca  | 1740 |
| cccaactgat  | cttcagcatc  | ttttactttc | accagcgtt   | ctgggtgagc  | aaaaacagga  | 1800 |
| aggcaaaatg  | ccgaaaaaaaa | gggataaagg | gacgacacgga | aatgttgaat  | actcataactc | 1860 |
| ttcccttttc  | aatatttattt | cagggttatt | gtctcatgag  | cggatacata  |             | 1920 |
| tttgaatgt   | tttagaaaaaa | taaacaaata | ggggttccgc  | gcacatttcc  | ccgaaaaagt  | 1980 |
| ccacctgacg  | tcgacggatc  | gggagatctc | ccgatcccct  | atggtcact   | ctcagtacaa  | 2040 |
| tctgctctga  | tgccgcata   | ttaagccagt | atctgctccc  | tgcttgtgt   | ttggaggtcg  | 2100 |
| ctgagtagtg  | cgcagcaaa   | attnaagcta | caacaaggca  | aggcttgacc  | gacaattgca  | 2160 |
| tgaagaatct  | gcttagggtt  | aggcgttt   | cgctgcttcg  | cgatgtacgg  | gccagatata  | 2220 |
| cgcgtctag   | gggtcttag   | tcgattctag | gaattctct   | gccgcggct   | aggatcccg   | 2280 |
| gcgcgtatgg  | tgcactctca  | gtacaatctg | ctctgatgcc  | gcatagttaa  | gccagtatct  | 2340 |
| gctccctgct  | tgtgtgttgg  | aggtcgctga | gtagtgcgcg  | agcaaaattt  | aagctacaac  | 2400 |

## 025CIP SEQ List.txt

|                                                                      |      |
|----------------------------------------------------------------------|------|
| aaggcaaggc ttgaccgaca attgcatgaa gaatctgctt agggtaggc gtttgcgt       | 2460 |
| gcttcgcgat gtacgggcc aatacgcg tatctgaggg gactagggtg tgtttaggcg       | 2520 |
| aaaagcgaaa cttcggttgt acgcggtag gagtcccctc aggatatagt agttcgctt      | 2580 |
| ttgcataggg aggggaaat gtatcttat gcaatacact tgttagtctt caacatggta      | 2640 |
| acgatgagtt agcaacatgc cttacaagga gagaaaaagc accgtgcgt ccgattggtg     | 2700 |
| gaagtaaggt ggtacgatcg tgccttatta ggaaggcaac agacaggctc gacatggatt    | 2760 |
| ggacgaacca ctgaattccg cattgcagag ataattgtat ttaagtgcct agctcgat      | 2820 |
| aataaacgcc atttgaccat tcaccacatt ggtgtgcacc tccaagctt catgcctgca     | 2880 |
| ggtaccggtc cggaattccc gggtcgacga gctcaactg cgttagggtcg ccgacatgac    | 2940 |
| acaaggggtt gtgaccgggg tggacacgta cgcgggtgct tacgaccgtc agtcgcgcg     | 3000 |
| gcgcgagaat tcgagcgcag caagcccagc gacacagcgt agcgcacacg aagacaaggc    | 3060 |
| ggccgaccc cagcgcgaag tcgagcgcga cggggccgg ttcaggttcg tcggcattt       | 3120 |
| cagcgaagcg ccgggcacgt cggcggtcg gacggcggag cgccggagt tcgaacgcatt     | 3180 |
| cctgaacgaa tgccgcgccc ggcggctcaa catgatcatt gtctatgacg tgtcgcgtt     | 3240 |
| ctcgccctg aaggtcatgg acgcgattcc gattgtctcg gaattgctcg ccctggcgt      | 3300 |
| gacgattgtt tccactcagg aaggcgtctt cccgcaggaa aacgtcatgg acctgattca    | 3360 |
| cctgattatg cggctcgacg cgtcgacaa agaatcttgc ctgaagtcgg cgaagattct     | 3420 |
| cgacacgaag aacttcagc gcgaattggg cgggtacgtc ggcggaaagg cgccttacgg     | 3480 |
| ttcgagctt gttcggaga cgaaggagat cacgcgcaac ggccgaatgg tcaatgtcgt      | 3540 |
| catcaacaag cttgcgcact cgaccactcc ccttaccgga cccttcgagt tcgagcccga    | 3600 |
| cgtaatccgg tgggtgtggc gtgagatcaa gacgcacaaa cacctccct tcaagccggg     | 3660 |
| cagtcaagcc gccattcacc cgggcagcat cacggggctt tgtaagcgca tggacgctga    | 3720 |
| cgcctgtccg accccggcg agacgattgg gaagaagacc gcttcagcg cctggaccc       | 3780 |
| ggcaaccgtt atgcgaatcc ttcgggaccc gcgtattgcg ggcttcgcgc ctgaggtgat    | 3840 |
| ctacaagaag aagccggacg gcacgcgcac cacgaagatt gagggttacc gcattcagcg    | 3900 |
| cgaccgcac acgctccggc cggtcgagct tgattgcgg ccgatcatcg agccgcgtga      | 3960 |
| gtggtatgag cttcaggcgt ggttggacgg cagggggcgc ggcaaggggc tttccgggg     | 4020 |
| gcaagccatt ctgtccgcca tggacaagct gtactgcgag tgtggcgcgc tcatgacttc    | 4080 |
| gaagcgcggg gaagaatcga tcaaggactc ttaccgctgc cgtcgccgg aggtggtcga     | 4140 |
| cccgccgcac cctggcagc acgaaggcac gtcaacgtc agcatggcgg cactcgacaa      | 4200 |
| gttcgttgcg gaacgcacatct tcaacaagat caggcacgccc gaaggcgacg aagagacgtt | 4260 |

## 025CIP SEQ List.txt

|             |            |            |             |             |            |      |
|-------------|------------|------------|-------------|-------------|------------|------|
| ggcgcttctg  | tgggaagccg | cccgacgctt | cgccaagctc  | actgaggcgc  | ctgagaagag | 4320 |
| cggcgaacgg  | gcgaaccttg | ttgcggagcg | cggccgacgcc | ctgaacgccc  | ttgaagagct | 4380 |
| gtacgaagac  | cgcgcggcag | gcgcgtacga | cggaccgcgtt | ggcaggaagc  | acttccggaa | 4440 |
| gcaacaggca  | gcgctgacgc | tccggcagca | aggggcggaa  | gagcggcttg  | ccgaacttga | 4500 |
| agccgcccga  | gccccgaagc | ttccccttga | ccaatggttc  | cccgaagacg  | ccgacgctga | 4560 |
| cccgaccggc  | cctaagtcgt | ggtggggcg  | cgcgtcagta  | gacgacaagc  | gcgtttcgt  | 4620 |
| cgggctttc   | gtagacaaga | tcgttgcac  | gaagtgcact  | acgggcaggg  | ggcagggAAC | 4680 |
| gccccatcgag | aagcgcgctt | cgatcacgtg | ggcgaagccg  | ccgaccgacg  | acgacgaaga | 4740 |
| cgacgcccag  | gacggcacgg | aagacgtagc | ggcgtagcga  | gacacccgga  | tccctcgagg | 4800 |
| ggccctattc  | tatagtgtca | cctaaatgct | agagctcgct  | gatcagcctc  | gactgtgcct | 4860 |
| tctagttgcc  | agccatctgt | tgtttgcccc | tcccccgtgc  | tttccttgac  | cctggaaggt | 4920 |
| gccactccca  | ctgtcctttc | ctaataaaat | gaggaaattt  | catcgatttgc | tctgagtagg | 4980 |
| tgtcattcta  | ttctgggggg | tgggtgggg  | caggacagca  | agggggagga  | ttgggaagac | 5040 |
| aatagcaggc  | atgctgggg  | tgcggggc   | tctatggctt  | ctgaggcgg   | aagaaccagg | 5100 |
| tgcccagtca  | tagccgaata | gcctctccac | ccaagcggcc  | ggagaacctg  | cgtcaatcc  | 5160 |
| actggggcg   | cg         |            |             |             |            | 5172 |

<210> 10  
 <211> 6233  
 <212> DNA  
 <213> Plasmid pCR-XL-TOPO-CMV-pur-attB

|          |             |             |            |             |             |             |     |
|----------|-------------|-------------|------------|-------------|-------------|-------------|-----|
| <400> 10 | acgcaccaat  | acgcaaaccg  | cctctccccg | cgcgttggcc  | gattcattaa  | tgcagctggc  | 60  |
|          | acgacagggtt | tcccgactgg  | aaagcgggca | gtgagcgcaa  | cgcaattaat  | gtgagtttagc | 120 |
|          | tcactcatta  | ggcacccca   | gttttacact | ttatgcttcc  | ggctcgtatg  | ttgtgtggaa  | 180 |
|          | tttgtgacgg  | ataacaattt  | cacacaggaa | acagctatga  | ccatgattac  | gccaagctat  | 240 |
|          | tttaggtgacg | cgttagaata  | ctcaagctat | gcatcaagct  | tggtaccgag  | ctcgatcca   | 300 |
|          | ctagtaacgg  | ccgcccagtgt | gctggattc  | gcccttggcc  | gcaataaaaat | atctttatTTT | 360 |
|          | tcattacatc  | tgtgtgttgg  | ttttttgtgt | gaatcgatag  | tactaacata  | cgctctccat  | 420 |
|          | aaaaacaaaa  | cgaacaaaaa  | caaactagca | aaataggctg  | tccccagtgc  | aagtgcaggt  | 480 |
|          | gccagaacat  | ttctctatcg  | ataggtaccg | agctcttacg  | cgtgctagcc  | ctcgagcagg  | 540 |
|          | atctatacat  | tgaatcaata  | ttggcaatta | gccatattag  | tcattggta   | tatgcataaa  | 600 |
|          | atcaatattg  | gctattggcc  | attgcatacg | ttgttatctat | atcataatat  | gtacatttat  | 660 |
|          | attggctcat  | gtccaaatatg | accgccatgt | tgacattgat  | tattgactag  | ttattaatag  | 720 |

## 025CIP SEQ List.txt

|                                                                     |      |
|---------------------------------------------------------------------|------|
| taatcaatta cgggttcatt agttcatagc ccatatatgg agttccgcgt tacataactt   | 780  |
| acggtaaatg gcccgcctgg ctgaccgccc aacgacccccc gcccattgac gtcaataatg  | 840  |
| acgttatgttc ccatagtaac gccaataggg actttccatt gacgtcaatg ggtggagtat  | 900  |
| ttacggtaaaa ctgcccactt ggcagtagat caagtgtatc atatgccaag tccgccccct  | 960  |
| attgacgtca atgacggtaa atggcccgcc tggcattatg cccagtagat gaccttacgg   | 1020 |
| gactttccta cttggcagta catctacgta ttagtcatcg ctattaccat ggtgatgcgg   | 1080 |
| ttttggcagt acatcaatgg gcgtggatag cggtttgact cacggggatt tccaagtctc   | 1140 |
| caccccattt acgtcaatgg gagtttgtt tggcaccaaa atcaacggga ctttccaaaa    | 1200 |
| tgtcgtaaca actccgcccc attgacgcaa atgggcggta ggcgtgtacg gtgggaggtc   | 1260 |
| tatataagca gagtcgttt agtgaaccgt cagatcgct ggagacgcca tccacgctgt     | 1320 |
| tttgacctcc atagaagaca ccgggaccga tccagcctcc cctcgaagct cgactctagg   | 1380 |
| ggctcgagat ctgcgatcta agtaagctt catgcctgca ggtcgccgc cacgaccggt     | 1440 |
| gccgccccca tcccctgacc cacgccccctg acccctcaca aggagacgac cttccatgac  | 1500 |
| cgagtacaag cccacggtgc gcctcgccac cgcgcgac gttcccccggg ccgtacgcac    | 1560 |
| cctcgccgcc gcgttcgccc actaccccgac cacgcgcac accgtcgacc cggaccgcca   | 1620 |
| catcgagcgg gtcaccgagc tgcaagaact cttcctcacf cgctcgccgc tcgacatcg    | 1680 |
| caagggtgtgg gtcgcggacg acggcgccgc ggtggcggtc tggaccacgc cggagagcgt  | 1740 |
| cgaaggcggg gcgggtttcg ccgagatcg ccgcgcacatg gccgagttga gcggttcccg   | 1800 |
| gctggccgcg cagcaacaga tggaaaggcct cctggcgccc caccggccca aggagccgc   | 1860 |
| gtggttccctg gccaccgtcg gcgtctcgcc cgaccaccag ggcaagggtc tggcagcgc   | 1920 |
| cgtcgtgtc cccggagtgg aggccggcga gcgcgcggg gtgcccgcct tcctggagac     | 1980 |
| ctccgcgcac cgaacacctcc ctttctacga gcggctcgcc ttccacgtca ccggcgcacgt | 2040 |
| cgagggtgccc gaaggaccgc gcacccgttg catgacccgc aagccgggtg cctgacgccc  | 2100 |
| gccccacgac ccgcagcgcc cgaccgaaag gagcgcacga ccccatggct ccgaccgaag   | 2160 |
| ccgacccggg cggcccccgc gacccgcac ccgcggccga ggcccaccga ctctagagtc    | 2220 |
| ggggcgcccg gccgcttcga gcagacatga taagatacat tgatgagttt ggacaaacca   | 2280 |
| caactagaat gcagtaaaaaa aaatgcttta tttgtgaaat ttgtgatgct attgctttat  | 2340 |
| ttgtaaccat tataagctgc aataacaag ttaacaacaa caattgcatt cattttatgt    | 2400 |
| ttcaggttca gggggaggtg tgggaggtt tttaaagcaa gtaaaacctc tacaatgtg     | 2460 |
| gtaaaatcga taaggatcaa ttccggcttca ggtaccgtcg acgatgtagg tcacggtctc  | 2520 |
| gaagccgcgg tgcgggtgcc agggcgtgcc cttgggctcc ccggcgcgt actccacctc    | 2580 |
| accatctgg tccatcatga tgaacgggtc gaggtggcgg tagttgatcc cggcgaacgc    | 2640 |

## 025CIP SEQ List.txt

|             |             |            |             |             |             |      |
|-------------|-------------|------------|-------------|-------------|-------------|------|
| gcggcgccacc | gggaagccct  | cgcctcgaa  | accgctgggc  | gcggtggtca  | cggtgagcac  | 2700 |
| gggacgtgcg  | acggcgtcgg  | cgggtgcgga | tacgcggggc  | agcgtcagcg  | ggttctcgac  | 2760 |
| ggtcacggcg  | ggcatgtcga  | cagccgaatt | gatccgtcga  | ccgatgccct  | tgagagcctt  | 2820 |
| caacccagtc  | agtccttcc   | ggtgggcgcg | gggcatgact  | atcgtcgcgc  | cacttatgac  | 2880 |
| tgtcttcttt  | atcatgcaac  | tcgtaggaca | ggtgcccggca | gchgctttcc  | gcttcctcgc  | 2940 |
| tcactgactc  | gctgcgctcg  | gtcggtcggc | tgcggcgagc  | ggtatcagct  | cactcaaagg  | 3000 |
| cggtaatacg  | gttatccaca  | gaatcagggg | ataacgcagg  | aaagaacatg  | aagggcgaat  | 3060 |
| tctgcagata  | tccatcacac  | tggcggccgc | tcgagcatgc  | atctagaggg  | cccaattcgc  | 3120 |
| cctatacgta  | gtcgtagttac | aattcactgg | ccgtcgaaaa  | acaacgtcgt  | gactggaaa   | 3180 |
| accctggcgt  | tacccaactt  | aatgccttg  | cagcacatcc  | cccttcgccc  | agctggcgta  | 3240 |
| atagcgaaga  | ggcccgccacc | gatgccttcc | cccaacagtt  | gchgagccta  | tacgtacggc  | 3300 |
| agtttaaggt  | ttacacccat  | aaaagagaga | gccgttatcg  | tctgtttgtg  | gatgtacaga  | 3360 |
| gtgatattat  | tgacacgccc  | gggcgacgg  | tggtgatccc  | cctggccagt  | gcacgtctgc  | 3420 |
| tgtcagataa  | agtctccgt   | gaactttacc | cggtggtgca  | tatcggggat  | gaaagctggc  | 3480 |
| gcatgatgac  | caccgatatg  | gccagtggtc | cggtctccgt  | tatcggggaa  | gaagtggctg  | 3540 |
| atctcagcca  | cccgaaaaat  | gacatcaaaa | acgcattaa   | cctgatgttc  | tggggatat   | 3600 |
| aaatgtcagg  | catgagatta  | tcaaaaagga | tcttcaccta  | gatccttttc  | acgtagaaag  | 3660 |
| ccagtccgca  | gaaacgggtgc | tgaccccgga | tgaatgtcag  | ctactggct   | atctggacaa  | 3720 |
| gggaaaacgc  | aagcgaaag   | agaaagcagg | tagttgcag   | tgggcttaca  | tggcgatagc  | 3780 |
| tagactgggc  | ggttttatgg  | acagcaagcg | aaccggatt   | gccagctggg  | gchccctctg  | 3840 |
| gtaagggtgg  | gaagccctgc  | aaagtaaact | ggatggcttt  | ctcgccgcca  | aggatctgat  | 3900 |
| ggcgcagggg  | atcaagctct  | gatcaagaga | caggatgagg  | atcgtttcgc  | atgattgaac  | 3960 |
| aagatggatt  | gcacgcaggt  | tctccggccg | cttgggtgga  | gaggctattc  | ggctatgact  | 4020 |
| gggcacaaca  | gacaatcgcc  | tgctctgat  | ccggcgtgtt  | ccggcgtca   | gchcaggggc  | 4080 |
| gccccggttct | tttgtcaag   | accgacctgt | ccggtgccct  | aatgaactg   | caagacgagg  | 4140 |
| cagcgcggct  | atcgtggctg  | gccacgacgg | gcgttccctt  | cgcagctgt   | ctcgacgtt   | 4200 |
| tcactgaagc  | gggaagggac  | tggctgctat | tgggcaagt   | gccggggcag  | gatctccctgt | 4260 |
| catctcacct  | tgctcctgccc | gagaaagtat | ccatcatggc  | tgtatgcaatg | cgccggctgc  | 4320 |
| atacgcttga  | tccggctacc  | tgcccattcg | accaccaagc  | gaaacatcgc  | atcgagcgag  | 4380 |
| cacgtactcg  | gatggaagcc  | ggtttgtcg  | atcaggatga  | tctggacgaa  | gagcatcagg  | 4440 |
| ggctcgcc    | agccgaactg  | ttcgccaggc | tcaaggcag   | catgccccgac | ggcgaggatc  | 4500 |

## 025CIP SEQ List.txt

|                                                                    |      |
|--------------------------------------------------------------------|------|
| tcgtcgac ccatggcgat gcctgcttgc cgaatatcat ggtggaaaat ggccgcttt     | 4560 |
| ctggattcat cgactgtggc cggctgggtg tggcggaccg ctatcaggac atagcgttgg  | 4620 |
| ctacccgtga tattgctgaa gagcttggcg gcgaatgggc tgaccgcttc ctcgtgcttt  | 4680 |
| acggtatcgc cgctcccgat tcgcagcgca tcgccttcta tcgccttctt gacgagttct  | 4740 |
| tctgaattat taacgcttac aatttcctga tgcgttattt tctccttacg catctgtgcg  | 4800 |
| gtatttcaca ccgcatacag gtggcacttt tcggggaaat gtgcgcggaa cccctatttg  | 4860 |
| tttatttttc taaatacatt caaatatgta tccgctcatg agacaataac cctgataaaat | 4920 |
| gcttcaataa tagcacgtga ggagggccac catggccaag ttgaccagtg ccgttccggt  | 4980 |
| gctcaccgcg cgcgacgtcg ccggagcggg cgagttctgg accgaccggc tcgggttctc  | 5040 |
| ccgggacttc gtggaggacg acttcgcgg tgggtccgg gacgacgtga ccctgttcat    | 5100 |
| cagcgcggtc caggaccagg tgggtccgga caacaccctg gcctgggtgt gggtgcgcgg  | 5160 |
| cctggacgag ctgtacgccc agtggtcgga ggtcgtgtcc acgaacttcc gggacgcctc  | 5220 |
| cgggcccccc atgaccgaga tcggcgagca gccgtggggg cgggagttcg ccctgcgcga  | 5280 |
| cccgccggc aactgcgtgc acttcgtggc cgaggagcag gactgacacg tgctaaaact   | 5340 |
| tcattttaa tttaaaagga tctaggtgaa gatcctttt gataatctca tgacaaaaat    | 5400 |
| cccttaacgt gagtttcgt tccactgagc gtcagacccc gtagaaaaaga tcaaaggatc  | 5460 |
| ttcttgagat ctttttttc tgcgctaat ctgctgcttg caaacaaaaa aaccaccgct    | 5520 |
| accagcgggtg gttgtttgc cggatcaaga gctaccaact cttttccga aggttaactgg  | 5580 |
| tttcagcaga gcgcagatac caaatactgt cttcttagtg tagccgtatg taggccacca  | 5640 |
| cttcaagaac tctgttagcac cgcctacata cctcgctctg ctaatcctgt taccagtggc | 5700 |
| tgctgccagt ggcgataagt cgtgtcttac cgggttggac tcaagacgt agttaccgga   | 5760 |
| taaggcgcag cggtcgggct gaacgggggg ttcgtgcaca cagccagct tggagcgaac   | 5820 |
| gacctacacc gaactgagat acctacagcg tgagctatga gaaagcgcca cgcttccga   | 5880 |
| agggagaaaag gcggacaggt atccggtaag cggcagggtc ggaacaggag agcgcacgag | 5940 |
| ggagttcca gggggaaacg cctggtatct ttatagtcct gtcgggtttc gccacctctg   | 6000 |
| acttgagggt cgattttgt gatgctcgtc agggggcgg agcctatgga aaaacgcccag   | 6060 |
| caacgcggcc ttttacggt tcctggctt ttgctggcct tttgctcaca ttttcttcc     | 6120 |
| tgcgttatcc cctgattctg tggataaccg tattaccgcc tttgagtgag ctgataccgc  | 6180 |
| tcgcccgcagc cgaacgaccg agcgcagcga gtcagtgagc gaggaagcgg aag        | 6233 |

<210> 11  
<211> 234  
<212> DNA  
<213> artificial

## 025CIP SEQ List.txt

<220>  
<223> attP containing polynucleotide  
  
<400> 11  
gactagtact gacggacaca ccgaagcccc ggcggcaacc ctcagcggat gccccggggc 60  
ttcacgtttt cccaggttag aagcggtttt cgggagtagt gcccccaactg gggtaacctt 120  
tgagttctct cagttggggg cgtagggtcg ccgacatgac acaagggggtt gtgaccgggg 180  
tggacacgta cgcggtgct tacgaccgtc agtcgcgcga gcgcgactag taca 234  
  
<210> 12  
<211> 26  
<212> DNA  
<213> artificial  
  
<220>  
<223> Primer attB-for  
  
<400> 12  
taccgtcgac gatgttaggtc acggtc 26  
  
<400> 13  
  
Cys Gly Gly Pro Lys Lys Lys Arg Lys Val Gly  
1 5 10  
  
<210> 13  
<211> 20  
<212> DNA  
<213> Artificial sequence  
  
<220>  
<223> Lys051