Rappresentazione di numeri interi

Argomento:

- Sistema posizionale e cambio di base
- Rappresentazione di interi

Materiale di studio:

- Capitolo 9
- Capitolo 10: Sezioni 10.1-10.3 (esclusa sottosezione "Multiplication")

Rappresentazione delle informazioni

Stringa di 32 bit nella memoria di un elaboratore:

1110000010000010010000000000000

Cosa rappresenta?

Rappresentazione delle informazioni

11100000100000010010000000000000

Un oggetto tra $2^{32} = 4294967296$ possibili oggetti:

- istruzione assembly ARM: add r2, r1, r0
- numero naturale (in base 2): 4034994176₁₀
- numero intero (complemento a 2): -259973120₁₀
- numero razionale (floating point):

 $-74435494641179600000_{10}$

- stringa di 4 caratteri (ASCII): '<son> <nul>
- stringa di 4 caratteri (ASCII estesa): αü <**NUL>**

• ...

Cosa vedremo

- 1. I sistemi di numerazione
 - Decimale, binario, esadecimale...
 - Conversioni di base
- 2. Le informazioni numeriche
 - Numeri naturali (senza segno o "unsigned")
 - Numeri interi (con segno o "signed")
 - Numeri reali (fixed-/floating-point)
- 3. Le informazioni non numeriche
 - Caratteri e stringhe

Sistema posizionale

Sistema posizionale

$$(\dots a_{2}a_{1}a_{0} \cdot a_{-1}a_{-2} \dots)_{b} =$$

$$= \sum_{i=-\infty}^{+\infty} a_{i} \cdot b^{i} = \dots + a_{2} \cdot b^{2} + a_{1} \cdot b^{1} + a_{0} \cdot b^{0} + a_{-1} \cdot b^{-1} + a_{-2} \cdot b^{-2} + \dots$$

- b è la base del sistema di numerazione
- Gli a_i sono le cifre della rappresentazione, con valore in $\{0, ..., b-1\}$
- Le cifre con peso maggiore sono quelle più significative

Il valore di una cifra dipende dalla sua posizione

Cambio base da b a 10

Usiamo la definizione di sistema posizionale

$$(\dots a_2 a_1 a_0 \cdot a_{-1} a_{-2} \dots)_b = \sum_{i=-\infty}^{+\infty} a_i \cdot b^i$$

Il valore in base 10 di (... $a_2a_1a_0 \cdot a_{-1}a_{-2} \cdot ...)_b$ si ottiene svolgendo le operazioni a destra in base 10.

Sistema decimale

- b = 10
- Possibili cifre: {0;1;2;3;4;5;6;7;8;9}

2095.42₁₀=
$$2 \cdot 10^3 + 0 \cdot 10^2 + 9 \cdot 10 + 5 + 4 / 10 + 2 / 10^2$$

Sistema binario

- b = 2
- Possibili cifre: {0;1}

11011.101₂ =
$$1 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2 + 1 \cdot 2^2 + 1 \cdot 2^3 = 27.625_{10}$$

Sistema ottale

- b = 8
- Possibili cifre: {0;1;2;3;4;5;6;7}

$$675.1_8 = 6 \cdot 8^2 + 7 \cdot 8 +$$

$$1/8 = 445.125_{10}$$

Sistema esadecimale

- b=16
- Possibili cifre: {0;1;2;3;4;5;6;7;8;9;A;B;C;D;E;F}

8B9.1₁₆ =
$$\mathbf{8} \cdot 16^2 + \mathbf{11} \cdot 16 + \mathbf{9} + \mathbf{1} / 16 = 2233.0625_{10}$$

Cambio base da 10 a b

Consideriamo la definizione di sistema posizionale

$$(\dots a_{2}a_{1}a_{0}.a_{-1}a_{-2}\dots)_{10} = \sum_{i=-\infty}^{+\infty} a_{i} \cdot 10^{i} = \sum_{i=-\infty}^{+\infty} a'_{i} \cdot b_{i} = (\dots a'_{2}a'_{1}a'_{0}.a'_{-1}a'_{-2}\dots)_{b}$$

La rappresentazione in base b si ottiene estraendo ogni cifra con operazioni di divisione o moltiplicazione per potenze di b.

Calcoliamo parte intera e parte frazionaria separatamente, e poi concateniamo i risultati

Da base 10 a base b: parte intera

Parte intera: si prendono i resti delle divisioni successive per b

Esempio: $2009_{10} = 7D9_{16}$

2009/16 = 125 resto: 9 125/16 = 7 resto: $13=D_{16}$ 7/16 = 0 resto: 7

L'ultima cifra è la più significativa

Il procedimento si arresta

Da base 10 a base b: parte frazionaria

Parte frazionaria: si prendono le parti intere delle moltiplicazioni successive per b

Esempio: $0.6875_{10} = 0.1011_2$

$$0.6875 \cdot 2 = 1.375$$
 parte in

$$0.375 \cdot 2 = 0.75$$

$$0.75 \cdot 2 = 1.5$$

$$0.5 \cdot 2 = (1)$$

parte intera: 1

parte intera: 0

parte intera: 1

parte intera: 1

La prima cifra è la più significativa

15

Il procedimento si arresta

Da base 10 a base b: parte frazionaria (2)

Parte frazionaria: il procedimento può anche essere infinito!

Esempio:
$$0.3_{10} = 0.0\overline{1001}_2$$

0.3·2 =	0.6	parte intera: 0
0.6.2 =	1.2	parte intera: 1
0.2.2 =	0.4	parte intera: 0
0.4.2 =	0.8	parte intera: 0
0.8.2 =	1.6	parte intera: 1
0.6.2 =	1.2	parte intera: 1

Cambi di base: bin, oct, hex

- Da ottale/esadecimale a binario: espansione di ogni cifra in una terna/quaterna di cifre binarie.
- Da binario a ottale/esadecimale: raggruppamento in terne/quaterne di cifre e sostituzione di ciascuna terna/quaterna con l'opportuna cifra ottale/esadecimale.

Cambi di base: bin, oct, hex

Una cifra ottale è rappresentata da 3 cifre binarie:

$$100111101_2 = 675_8 = 445_{10}$$

Una cifra esadecimale è rappresentata da 4 cifre binarie:

8

В

9

 $100010111001_2 = 8B9_{16} = 2233_{10}$

Decimal (base 10)	Binary (base 2)	Hexadecimal (base 16)
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	А
11	1011	В
12	1100	С
13	1101	D
14	1110	Е
15	1111	F
16	0001 0000	10
17	0001 0001	11
18	0001 0010	12
31	0001 1111	1F
100	0110 0100	64
255	1111 1111	FF
256	0001 0000 0000	100

Rappresentazione finita negli elaboratori

Rappresentazione negli elaboratori

- L'elemento base per la rappresentazione delle informazioni è il BInary digiT o più semplicemente BIT (Tukey, 1947).
- · Un bit può assumere uno tra due possibili valori.
 - I valori possono essere rappresentati con 0 o 1, Vero o Falso, ...
 - Un bit può essere realizzato in modi diversi: carica elettrica, campo magnetico, ...
- Qualsiasi informazione in un elaboratore è rappresentata con un numero finito di bit.

Rappresentazione finita vs posizionale

- In un sistema posizionale binario, un numero viene rappresentato tramite
 - •Cifre {0,1},
 - Segno per numeri negativi
 - Virgola (o punto) per separare parte intera e parte frazionaria
- In un elaboratore, sono disponibili solo bit e non simboli come segno, virgola, cifre.
- Un bit e una cifra binaria sono simili, ma rappresentano concetti diversi.

Rappresentazione finita

 Numeri naturali, interi, frazionari si rappresentano solo con sequenze di bit.

 Utilizzando un numero di bit finito si può rappresentare solo una quantità finita di numeri.

n. di bit	quantità		
4	24		
10	210		
20	2 ²⁰		
30	2 ³⁰		
М	2 ^M		

Rappresentazione di numeri naturali

- Si rappresenta un numero intero con la sua rappresentazione nel sistema posizionale a base 2
- Non si possono rappresentare numeri la cui rappresentazione (esclusi gli 0 più significativi) eccede il numero di bit disponibili.
 - k bits -> 0, 1, ..., 2^{k-1}

Rappresentazione di numeri naturali

Esempio di rappresentazione con M=4 bit:

Rappresentazione		Numero in base 2		Numero in base 10
0000	\Leftrightarrow	00002	\Leftrightarrow	0 ₁₀
0001	\Leftrightarrow	00012	\Leftrightarrow	1 ₁₀
0010	\Leftrightarrow	00102	\Leftrightarrow	2 ₁₀
0011	\Leftrightarrow	00112	\Leftrightarrow	3 ₁₀
0100	\Leftrightarrow	01002	\Leftrightarrow	4 ₁₀
1110	\Leftrightarrow	11102	\Leftrightarrow	14 ₁₀
1111	\Leftrightarrow	1111 ₂	\Leftrightarrow	15 ₁₀

I numeri maggiori di 15 non sono rappresentabili.

Encoding: da numero naturale a stringa di bit

Un numero naturale n è rappresentato dalla stringa di bit $R_{N,k}(n) = (x_{k-1}, ... x_0)$ data dalle k cifre binarie meno significative della rappresentazione di n in base 2.

- Potrebbe essere necessario aggiungere bit a 0 nella parte più significative.
- Sono rappresentabili solo i numeri naturali:

$$n \in \{0, ..., 2^k - 1\}$$

Decoding: da stringa di bit a numero naturale

La stringa di bit $x = (x_{k-1}, ... x_0)$ rappresenta il numero naturale:

$$R_{N,k}^{-1}(x) = \sum_{i=0}^{k-1} x_i \cdot 2^i$$

Rappresentazione di numeri interi

Ci sono vari modi di rappresentare numeri interi su un numero finito di bit

- Ampiezza e segno
- Eccesso P
- Complemento a 1
- Complemento a 2

Ampiezza e segno

Il primo bit (quello più significativo) viene utilizzato per indicare il segno

$$1111_2 \leftrightarrow -7_{10}$$

$$1110_2 \leftrightarrow -6_{10}$$

$$1101_2 \leftrightarrow -5_{10}$$

...

2 rappresentazioni dello 0

$$1001_2 \leftrightarrow -1_{10}$$

$$1000_2 \leftrightarrow -0_{10}$$

$$0000_2 = +0_{10}$$

Discontinuità tra -0 e 0

I restanti bit sono usati per la rappresentazione del valore assoluto

$$0001_2 = +1_{10}$$

...

$$0110_2 = +6_{10}$$

$$0111_2 = +7_{10}$$

Si riduce il numero di interi positivi rappresentabili

Encoding: da numero intero a ampiezza e segno

Un numero intero q è rappresentato dalla stringa di bit $R_{AS,k}(q) = (x_{k-1}, \dots x_0)$ con

$$x_{k-1} \begin{cases} 1 \text{ se } q < 0 \\ 0 \text{ altrimenti} \end{cases}$$
$$x_{k-2} \dots x_0 = R_{N,k}(|q|)$$

Sono rappresentabili solo i numeri interi:

$$q \in \{-2^{k-1} + 1, ..., 0, ..., 2^{k-1} - 1\}$$

Decoding: da ampiezza e segno a numero intero

La stringa di bit $x = (x_{k-1}, ... x_0)$ rappresenta il numero intero:

$$R_{AS,k}^{-1}(x) = (1 - 2 \cdot x_{k-1}) \cdot \sum_{i=0}^{k-2} x_i \cdot 2^i$$

Eccesso P

La rappresentazione di z coincide con quella del numero naturale z+P

•
$$P=2^{k-1}$$
 o $P=2^{k-1}-1$

Esempio con k=4 e P=8

Dissimmetria

$$0000_{2}$$
 \leftrightarrow $-8_{10} = 0_{10}-8_{10}$
 0001_{2} \leftrightarrow $-7_{10} = 1_{10}-8_{10}$
 0010_{2} \leftrightarrow $-6_{10} = 2_{10}-8_{10}$
...
 0111_{2} \leftrightarrow -1_{10} Unitary rappresents

 \leftrightarrow 1₁₀

Unica rappresentazione dello 0

1001₂

$$1110_2 \leftrightarrow 6_{10}$$

$$1111_2 \leftrightarrow 7_{10}$$

Encoding: da numero intero a eccesso P

• Un numero intero q è rappresentato dalla stringa di bit $R_{E,P,k}(q)=(x_{k-1},...x_0)$ con

$$(x_{k-1}... x_0) = R_{N,k}(q+P)$$

Sono rappresentabili solo i numeri:

$$q \in \{-P, ..., 0, ..., P - 1\}$$

Decoding: da eccesso P a numero intero

La stringa di bit $x = (x_{k-1}, ... x_0)$ rappresenta il numero intero:

$$R_{E,P,k}^{-1}(x) = -P + \sum_{i=0}^{k-1} x_i \cdot 2^i$$

Complemento a 1

- La rappresentazione di un intero positivo coincide con quella del corrispondente numero naturale.
- · La rappresentazione di un intero negativo si ottiene con il complemento bit a bit del suo valore assoluto.

Encoding: da numero intero a complemento a 1

Un numero intero q è rappresentato dalla stringa di bit $R_{C1,k}(q) = (x_{k-1}, ... x_0)$ con

- Se $q \ge 0$: $(x_{k-1}...x_0) = R_{N,k}(q)$
- Se q < 0: $(x_{k-1} \dots x_0) = NOT(R_{N,k}(-q))$
- NOT(x): inversione di tutti i bit della stringa

Sono rappresentabili solo i numeri interi:

$$q \in \{-2^{k-1} + 1, ..., 0, ..., 2^{k-1} - 1\}$$

Decoding: da complemento a 1 a numero intero

La stringa di bit $x = (x_{k-1}, ... x_0)$ rappresenta il numero intero:

$$R_{C1,k}^{-1}(x) = -x_{k-1}(2^{k-1}-1) + \sum_{i=0}^{k-1} x_i \cdot 2^i$$

Complemento a 2

- La rappresentazione di un intero positivo coincide con quella del corrispondente numero naturale.
- La rappresentazione di un intero negativo si ottiene sommando 1 al complemento a 1.

$$1000_{2}$$
 \leftrightarrow -8_{10}
 1001_{2} \leftrightarrow -7_{10}
 \cdots
 1111_{2} \leftrightarrow -1_{10}
 0000_{2} = 0_{10}
 0001_{2} = $+1_{10}$
 \cdots
 0110_{2} = $+6_{10}$
 0111_{2} = $+7_{10}$

Encoding: da numero intero a complemento a 2

Un numero intero q è rappresentato dalla stringa di bit $R_{C2,k}(q) = (x_{k-1}, ... x_0)$ con

Se
$$q \ge 0$$
: $(x_{k-1}...x_0) = R_{N,k}(q)$
Se $q < 0$: $(x_{k-1}...x_0) = NOT(R_{N,k}(-q)) + 1$

• NOT(x): inversione di tutti i bit della stringa

Sono rappresentabili solo i numeri interi:

$$q \in \{-2^{k-1}, ..., 0, ..., 2^{k-1} - 1\}$$

Decoding: da complemento a 2 a numero intero

La stringa di bit $x = (x_{k-1}, ... x_0)$ rappresenta il numero intero:

$$R_{C2,k}^{-1}(x) = -x_{k-1}2^{k-1} + \sum_{i=0}^{k-1} x_i \cdot 2^i$$

Utilizzo

- Segno & ampiezza: IBM 704, 709 (anni '50)
- Complemento 1: CDC, PDP (i.e., minicomputer), UNIVAC (anni '60)
- Eccesso P: usata nelle rappresentazioni floating point e double point (Microsoft Binary format, IEEE 754,...)
- **Complemento 2:** x86, Power Architecture, MIPS, SPARC, ARM, Itanium, ...

Complemento a 2: proprietà

È il metodo di rappresentazione più diffuso, perché è l'unico tra quelli visti con tutte le seguenti proprietà.

- 1. Ha una sola rappresentazione dello 0.
- 2. Il bit più significativo indica il segno
- 3. Ha una struttura ciclica: aggiungendo 1 al massimo numero rappresentabile si ottiene il minimo numero rappresentabile.

Complemento a 2: proprietà (2)

4. Consente le operazioni aritmetiche con i numeri negativi usando le **stesse regole** valide per i numeri positivi. Esempi:

```
0011 +3 0011 +3
0100 +4 1100 -4
0111 +7 1111 -1
```

Complemento a 2: struttura ciclica

Complemento a 2: overflow

- Nell'eseguire un'operazione aritmetica, bisogna verificare che il risultato sia rappresentabile con il numero di bit a disposizione.
 - Se ciò non è vero (**overflow**), l'esito dell'operazione è privo di significato.
- Come riconoscere l'overflow?
 - Se sommo due numeri positivi e ottengo un numero negativo
 - Se sommo due numeri negativi e ottengo un numero positivo
 - No overflow con un numero negativo e uno positivo

Overflow: esempi

	010	1	+5
--	-----	---	----

<u>0010</u> +2

0111 + 7

Rip. bit segno	Rip. SX bit segno	Esito
No	No	OK

1011 -5

<u>1110</u> <u>-2</u>

1←1001 -7

Rip. bit	Rip. SX bit	Esito
segno	segno	
Si	Si	OK

Overflow: esempi

0011 ± 3	00	11	+3
--------------	----	----	----

<u>0110</u> +6

1001 + 9

Rip. bit segno	Rip. SX bit segno	Esito
Si	No	OVERFLOW

1011 -5

<u>1010</u> <u>-6</u>

1←0101 -11

Rip. bit	Rip. SX bit	Esito
segno	segno	
No	Si	OVERFLOW

L'overflow si verifica quando bit di segno e bit di riporto sono diversi

Confronto delle rappresentazioni su 4 bit

Decimal Representation	Sign-Magnitude Representation	Twos Complement Representation	Biased Representation
+8	_	_	1111
+7	0111	0111	1110
+6	0110	0110	1101
+5	0101	0101	1100
+4	0100	0100	1011
+3	0011	0011	1010
+2	0010	0010	1001
+1	0001	0001	1000
+0	0000	0000	0111
-0	1000	_	_
-1	1001	1111	0110
-2	1010	1110	0101
-3	1011	1101	0100
-4	1100	1100	0011
-5	1101	1011	0010
-6	1110	1010	0001
- 7	1111	1001	0000
-8	_	1000	_

Eccesso $2^3-1=7$

Estensione del numero di bit (ampiezza e segno)

- Per aumentare l'intervallo di numeri è sufficiente aumentare il numero di bit
 - Un bit in più raddoppia l'intervallo
- Con rappresentazione ampiezza e segno:
 - Si sposta il bit di segno nel nuovo bit più significativo
 - Si mettono a 0 i rimanenti bit non impostati

Esempio passando da 4 a 8 bit

```
1011 \rightarrow 1000 \ 0011 0110 \rightarrow 0000 \ 0110 (valore -3) (valore 6)
```

Estensione del numero di bit (complemento a 2)

- La procedure precedente non vale con il complemento a due di numeri negativi
- Regola: estensione del segno
 - I nuovi bit vengono impostati come il bit di segno

Esempio passando da 4 a 8 bit

```
1101 \rightarrow 11111101 0110 \rightarrow 0000 0110 (valore -3) (valore 6)
```