

2022 Marking Scheme

Grade	Mark Required		°/ condidates cabiavina anada	
Awarded	(/ ₁₂₀)	%	% candidates achieving grade	
Α	77+	64.1%	32.6%	
В	62+	51.7%	28.7%	
С	48+	40%	20.7%	
D	33+	27.5%	12.7%	
No award	<33	<27.5%	5.3%	

Section:	Multiple Cho	ice	Extended Answer		Project	
Average Mark:	15.7	/25	50.4	/95	No Project in 2022	

20	22 /	Adv	Higher	Chemis ⁻	try Ma	ırking	Scheme		
MC Qu	Answer	% Pupils Correct		Reasoning					
1	В		☑B Heat energy ☑C Lines are for ☑D More electr	ons dropping down	electrons in el releasing energ levels leads to 1	mission spect y as they dro more intense	op down energy levels lines formed		
2	D			ronic configurat ronic configurat					
3	D		 L⁻ is a bid M²⁺ pairs 	olex ion means M ²⁺ i dentate ligand maki up with 3 L ⁻ bident of complex ion = [M	ng 2 dative cov tate ligands		bonds with ligands. with M ²⁺		
4	A		☑B Adsorption o ☑C A catalyst w	✓ A homogeneous catalysts are in the same state as the reactants B Adsorption of reactive molecules must take place in heterogeneous catalysis C A catalyst will reduce the activation energy for a reaction pathway D catalysts are often transition metals due to unpaired d electrons in mechanism					
5	D		\blacksquare A CI is reduced to CI ⁻ and \blacksquare is oxidised to \blacksquare but are different substance \blacksquare B \blacksquare B \blacksquare is reduced to \blacksquare and \blacksquare is oxidised to \blacksquare but are different substances \blacksquare C CI ₂ is reduced to CI ⁻ and \blacksquare is oxidised to \blacksquare but are different substances \blacksquare D CI ₂ is reduced to CI ⁻ and at the same time CI ₂ is oxidised to CIO ⁻ Reaction Reduction reaction Oxidation Reaction Equation CI ₂ + 2e ⁻ \to 2CI ⁻ CI ₂ + 2H ₂ O \to 2CIO ⁻ + 4H ⁺ + 2e ⁻ Oxidation State 0 -1 0 +1						
6	C		☑B The ionic pro ☑C [H₃O+] = [OH	true at 25°C (298k oduct K _w =[H ₃ O+][Ok H ⁻] is true for any n Ox10 ⁻⁷ at 25°C (298	H ⁻] = 1.01×10 ⁻¹⁴ eutral solution	•			
7	A		☑B Changes to p ☑C Increase in p	 ☑A [SO₃] will increase with an increase in pressure but value of K is unchanged ☑B Changes to pressure do not change the value of the equilibrium constant K ☑C Increase in pressure will favour pressure-reducing forward reaction ∴ ↑ [SO₃] ☑D Increase in pressure will favour pressure-reducing forward reaction ∴ ↑ [SO₃] 					
8	D		enthalpy of formation is the energy change for the formation of 1mol of a substance from its elements in their natural state. A Reactants are ions and not elements in their natural state B Reactants are ions and not elements in their natural state C C (1g) is not the natural state of chlorine C (1z(g))						
9	В		 ☑D Reactants are elements in their natural state and 1 mole of product is formed Rate = k[A]²[B] ∴ [A]² means A is 2nd order (caused by having two particles of A in rate determining step) ∴ [B]¹ means B is 1st order (caused by having one particles of B in rate determining step) ☒A Doubling [A] leads to a quadrupling of reaction rate as A is 2nd order ☒B Doubling [B] leads to a doubling of reaction rate as B is 1st order ☒C Doubling [B] leads to a doubling of reaction rate as B is 1st order ☒D Doubling [A] and [B] would lead to a combined quadrupling of reaction rate. 						
10	D		☑B The order o [®] ☑C The speed o ☑D The individu		ded by the slow nined by the slow mined by expe	vrate detern owest step- rimentally alt			

11	С	 ■ A there are no changes of state in this graph (indicated by vertical sections) ■ B there are no changes of state in this graph (indicated by vertical sections) ☑ C Evaporation (2nd vertical section) gives a bigger increase in entropy than melting
12	С	 ED Evaporation (2nd vertical section) gives a bigger increase in entropy than melting ■ A diagram shows sp³ hybridisation as one 2s and three 2p orbitals have hybridised ■ B diagram shows sp² hybridisation as one 2s and two 2p orbitals have hybridised ■ C diagram shows sp hybridisation as one 2s and one 2p orbitals have hybridised ■ D none of the three 2p orbitals have hybridised in this diagram
13	В	$ \begin{array}{ c c c c c c c c c } \hline Answer & A & B & C & D \\ \hline Formula & C_2H_4 & H_2O & O_2 & N_2 \\ \hline Bonds & 4x \ C-H \ 1x \ C=C & 2x \ O-H & 1x \ O=O & 1x \ N\equiv N \\ \hline Sigma Bonds & 5 & 2 & 1 & 1 \\ \hline Pi Bonds & 1 & 0 & 1 & 2 \\ \hline \end{array} $
14	A	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
15	D	A phenyl group is a benzene ring attached as a side-group. Benzene has a formula of C_6H_6 side group has a formula of $-C_6H_5$
16		H H H H
17	В	ethoxy- side group on C1 3-methylbutane main chain
18	D	 ☑A H atom available on right side to rearrange C=O group to form -OH group ☑B H atom available on right side to rearrange C=O group to form -OH group ☑C H atom available on left side to rearrange C=O group to form -OH group ☑D no H atoms available on either side to rearrange C=O group to form -OH group

19	В	H N-C-C A chiral carbon is a call with four different grattached. This leads to superimposable mirrimages in three dimen	roups o non- H ₂ N-	CH3 -C-C H	ООН				
		☑A Formula C ₄ H ₄	Element	С	Н				
		EX FORMula C4F14	Mass or %	0.12g 0.12	0.02g 0.02				
		☑B Formula C4H6	No. of moles	12	1				
20	C		(divide % by gfm)	= 0.01	= 0.02				
		☑C Formula C ₄ H ₈ fits empirical formula CH ₂	Mole ratio	0.01	0.02				
			(divide through by smallest value)	0.01	0.01				
		⊠D Formula C ₄ H ₁₀	Empirical Formula	= 1	= 2 H ₂				
		☑ A C ₃ H ₈ O ₂ has gfm= (3×12)+(8×1)+(2×16) = 36+8+3	<u>'</u>		12				
21	D	\square B $C_3H_6O_2$ has gfm= (3x12)+(6x1)+(2x16) = 36+6+3							
21	В	$\mathbb{E}C\ C_3H_8O$ has gfm= $(3\times12)+(8\times1)+(1\times16)=36+8+1$							
		\blacksquare D C_3H_8O has gfm= $(3\times12)+(8\times1)+(1\times16)=36+8+1$.6 = 72						
		no. of mol = $\frac{\text{mass}}{\text{afm}} = \frac{6.7}{134}$	no. of mol = $\frac{\text{mass}}{\text{qfm}} = \frac{6.7}{134} = 0.05 \text{mol}$						
22		sodium carbonate + malic acid sodium malate + water + carbon diox							
22	A	Na ₂ CO ₃ + C ₄ H ₆ O ₅ → Na ₂ C ₄ H	Na ₂ CO ₃ + C ₄ H ₆ O ₅ → Na ₂ C ₄ H ₄ O ₅ + H ₂ O + CO ₂						
		1mol 1mol							
		0.05mol 0.05mol 0.05mol $qfm CaCl_2 \cdot 2H_2O = (1x40.1) + (2x35.5) + (4x1) + (2x16) = 40.1$.71.1.22 - 1/7 1 ₀						
		qfm CaCl2 = (1x40.1)+(2x35.5)+(4x1)+(2x16) = 40.1-(2x35.5) = 40.1-(2x35.5)	-						
			را ما ا						
23	В	$CaCl_2 \cdot 2H_2O \longrightarrow Ca$	$Cl_2 + 2H_2$	O					
23	D	1mol 1m							
		147.1g 111	9						
			.1g x ^{2.52} / _{147.1} 90q						
		✓A Distillation will identify the boiling point of co		ırifyina c	ompound				
21	Λ	☑B Recrystallisation will purify a compound but no	•		•				
24	A	■C Solvent Extraction will purify a compound but	•	•	•				
		☑D Melting Point Determination will identify a con	npound but not p	ourify con	npound				
		☑A Impurities could move same distance as spot ☑B There is no reactant left (R) and only the prod	luct snot (S) is r	nresent					
25	В	⊠ C More than one chemical could be present in the	•) 636III					
		☑D Some reactions at equilibrium neve reach comp	•						

2022 Adv Higher Chemistry Marking Scheme					
Long Qu	Answer	Reasoning			
1 a(i)	∞ figure of 8 shape	Subshell Type s p d Angular Momentum Quantum number (l) l = 0 l = 1 l = 2 Shape(s)			
1 a(ii)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	n 2p subshell is in 2^{nd} shell and has a value for Principal quantum number (n) of n=2 l p subshells have an angular momentum quantum number (l) of l=1 m p subshells have a magnetic quantum number (m_l) of -l to +l \therefore -1, 0, +1 ms All electrons either have a spin magnetic quantum number of either $+\frac{1}{2}$ or $-\frac{1}{2}$			
1b	Removing electron from oxygen creates a half-filled 2p orbital requires less energy as a half-filled p subshell is more stable. Or Removing an electron from nitrogen breaks a more stable half-filled 2p orbital which required more energy to break	Electronic configuration before electron removal Electronic configuration after electron removal Reasoning Reasoning Electronic configuration after electron removal Nitrogen atom has a half-filled 2p orbital and this is more stable electron configuration than the N' ion with 2 electrons in the 2p orbital. More energy required to remove an electron subshell by removing an electron. Oxygen O 1s² 2s² 2p⁴ 1s² 2s² 2p⁴ 1s² 2s² 2p⁴ 1s² 2s² 2p³ Oxygen atom has 4 electrons in 2p orbitals and losing an electron to become O* ion creates the more stable half-filled subshell. Electronic configuration after electron removal Nitrogen N Oxygen O 1s² 2s² 2p⁴ 1s² 2s² 2p⁴ Oxygen atom has 4 electrons in 2p orbitals and losing an electron to become O* ion creates the more stable half-filled subshell. Electronic configuration after electron removal			
1c	1.05 × 10 ⁻¹⁶	$E = R \times Z^{2} \times (1 - \frac{1}{n^{2}})$ $= 2.18 \times 10^{-18} \times (8)^{2} \times (1 - \frac{1}{2^{2}})$ $= 2.18 \times 10^{-18} \times 64 \times (1 - 0.25)$ $= 2.18 \times 10^{-18} \times 64 \times (0.75)$ $= 1.0464 \times 10^{-16} \text{ J}$			
2a	Reaction not feasible at 298K as ∆G=+86.6kJ mol ⁻¹	$ \Delta H^{\circ} = \Sigma \Delta H_{f^{\circ}(products)} - \Sigma \Delta H_{f^{\circ}(reactants)} $ $ = (1x90.3) - (\frac{1}{2}x0) + (\frac{1}{2}x0) $ $ = 90.3 \text{ J mol}^{-1} $ $ \Delta S^{\circ} = \Sigma S^{\circ}(products) - \Sigma S^{\circ}(reactants) $ $ = (1x211) - (\frac{1}{2}x192) + (\frac{1}{2}x205) $ $ = 211 - (96 + 102.5) $ $ = 211 - 198.5 $ $ = 12.5 \text{ J K}^{-1} \text{ mol}^{-1} $ $ \Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ} = 90.3 - (298x \frac{12.5}{1000}) = 90.3 - (3.725) = +86.6 \text{ kJ mol}^{-1} $			
2b	600mg or 0.6g	5 litres per minute = 300 litres per hour 2ppm = 2mg per litre 1litre = 2mg 300 litres = 2mg × 300/1 = 600 mg			
2c	+2 +4 +3	NO total oxidation state from $O = 1 \times -2 = -2$. Oxidation state of $N = +2$ NO2 total oxidation state from $O = 2 \times -2 = -4$. Oxidation state of $N = +4$ N2O3 total oxidation state from $O = 3 \times -2 = -6$. Oxidation State of $N = +6/2 = +3$			

		no. of mol in slow step	Order of Reactant	Effect on Reactant	Rate Equation			
2d(i)A	Rate = $k [NO]^2 [H_2]$	2mol NO 1mol H ₂	2 nd order 1 ^{s†} order	[NO] ² [H ₂]	Rate = k [NO]² [H₂]			
2d(i)B	9.94×10 ⁻³ or 0.0099	$[NO]^{2} = \frac{Rate}{K[H_{2}]} = \frac{0.0040}{2.7 \times 10^{3} \times 0.015} = 9.87 \times 10^{-5}$ $[NO] = 9.94 \times 10^{-3} \text{ mol } I^{-1}$						
2d(ii)	Equation showing:	2N	2NO + 2H ₂ → N ₂ + 2H ₂ O					
3a	acid partially dissociates into ions	Strong acids are acids which fully dissociates into ions Weak acids are acids with partially dissociate into ions.						
3b(i)	1.298		$pH = \frac{1}{2}(3.17)$		(5)			
3b(ii)	7.5%				gfm = 3.75 × 20 = 75g × 100 = 7.5%			
3b(iii)	tetrahedral	2 bonding 3 bonding 4	bonding 3 bonding 2 lone pairs + 2 l	2 bonding 5 bonding 3 2 lone pairs + 2 Cl F Cl Trigonal	5 6 ron pairs electron pairs bonding 6 bonding 1 4 bonding 1 2 lone pairs 1 2 lone pairs F F F F F F F F F F F F F F F F F F F			
4a(i)A	Heating under reflux	an extended period • a round-bot to reduce b	of time without tomed flask is u umping of react	volatile substand sed containing ar ants in the flask	nti-bumping granules			
4a(i)B	Anti-bumping granules	mixture vap • flask is hea	oour and prevent ted using an app	nser to allow cond s escape of volat ropriate heat sou ole reactant/proc	ırce e.g. heating			
4 a(ii)	Answer to include:	side of the sodium salt concentrat at equilibri reassociati 	acid. lies well to the equation. s are fully solul ion of weak acid um of the weak	molecule side co ble and there wil d ions than there acid.	ompared to the ions			

4a(iii)A	Buchner funnel with vacuum filtration	Vacuum filtration: filtration under reduced pressure • faster means of separating a precipitate from a filtrate Buchner, Hirsch or sintered glass funnel can be used.				
4a(iii)B	To purify the hippuric acid	Recrystallisation: purify an impure solid with: • dissolving an impure solid gently in a minimum volume of a hot solvent • hot filtration of resulting mixture to remove any insoluble impurities • cooling the filtrate slowly to allow crystals of the pure compound to form, leaving soluble impurities dissolved in the solvent • filtering, washing and drying the pure crystals solvent for recrystallisation is chosen so that the compound being purified is completely soluble at high temperatures and only sparingly soluble at lower temperatures.				
4b(i)	Different atoms types in bonds and different strengths of bonds decides which wavelengths/ wavenumbers of infrared are absorbed.	When infrared radiation is absorbed by organic compounds, bonds within the molecule vibrate/stretch/bend • wavelengths of infrared radiation absorbed depend on the type of atoms that make up the bond and the strength of the bond • infrared radiation is passed through a sample of the organic compound and then into a detector that measures the intensity of the transmitted radiation at different wavelengths. The absorbance of infrared radiation is measured in wavenumbers, measured in cm ⁻¹				
4b(ii)	3340 to 3400	Information found in data booklet.				
4 c(i)	6	1 Grouping ArH (9.0-6.9) Amide link (9.4-5.0) R-CH ₂ - (2) R-CH ₂ -COOH (2.7-2.0)				
4c(ii)	doublet	singlet Doublet Triplet quartet quintet no adjacent 1 adjacent 2 adjacent 3 adjacent 4 adjacent hydrogens hydrogens hydrogens hydrogens				
4c(iii)	1 st mark: Hydrogen nuclei flip to align with magnetic field 2 nd mark: Different energy for different hydrogen environments	 ¹H nuclei behave like tiny magnets and in a strong magnetic field some align with the field (lower energy), whilst the rest align against it (higher energy). • Absorption of radiation in the radio frequency region of the electromagnetic spectrum causes the 1H nuclei to 'flip' from the lower to the higher energy alignment. • As they fall back from the higher to the lower energy alignment the emitted radiation is detected and plotted on a spectrum. • In a 1H NMR spectrum the chemical shift, δ, (peak position) is related to the environment of the 1H atom and is measured in parts per million (ppm). 				
4d	Open Question to include:	3 mark answer 2 mark answer 1 mark answer Demonstrates a good Demonstrates a reasonable understanding of the chemistry understanding of the chemistry understanding of the chemistry				

5a	Repulsion from electrons/lone pair	Ligands may be negative ions or molecules with non-bonding pairs of electrons that they donate to the central metal atom or ion, forming dative covalent bonds. Electrons in approaching ligands cause the splitting of d orbitals into higher and lower energies as the electrons along the axes to be repelled. • ligands that cause a large difference in energy between subsets of d orbitals are strong field ligands. • weak field ligands cause a small energy difference. • spectrochemical series is a list of ligands placed in order of their ability to split d orbitals				
5b(i)	Orbitals fill orbitals in order of increasing energy	Aufbau Principle: Electrons fill up in order of increasing energy: 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d 7p 8s 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d 7p 8s 5s 5p 5d 5f 6s 6p 6d 7s 7p				
5b(ii) <i>A</i>	Both conclusions required:	Conclusion 1 Complex Ion $[Co(OH_2)_2]^2$ $[CoF_3]^3$ $[Co(OH_2)_2]^3$ $[Co(OH_2)_3]^3$				
5b(ii)B	Hexafluoridocobaltate (III)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
5b(ii) <i>C</i>		Electronic Configuration Low Spin state of Co ³⁺ High Spin State of Co ³⁺ Element Cobalt Configuration: 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁷ 4s ² Cobalt Co ³⁺ Ion Configuration: 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁶				
6a(i)	Circled region of alternating C=C double bonds and C-C single bond.	NH HN O OH				
6a(ii)	Antibonding molecular orbitals are higher in energy	Electrons fill bonding molecular orbitals, leaving nigher energy antibonding molecular orbitals unfilled.				
6b(i)	Answer to include:	C=C double bonds to not rotate around their axis to geometric isomers exist depending on the position of side groups in relation to C=C double bond. -CH3 methyl groups are on opposite sides of the C=C double bond H3C H3C CH3 H3C CH3 CH3 CH3 CH				

	1					
6b(ii)	Dotted lines on diagram showing:	Dotted lines must be between: H of an N-H or O-H bond and O of a O-H bond or N of N-H bond	NH ON HE OF THE OWNER OWNER OF THE OWNER	OH O		
6c(i)	Blue light provides enough energy to break bonds in bilirubin	Blue light has shorter wavelength than red light and has more energy.				
6c(ii)	257.5	$E = \frac{L \times h \times c}{\lambda} = \frac{6.02 \times 10^{23} \text{ mol}^{-1} \times 6.63 \times 10^{-34} \text{ J s} \times 3 \times 10^{8} \text{ m s}^{-1}}{465 \times 10^{-9} \text{m}}$ $= 257501 \text{ J mol}^{-1}$ $= 257.5 \text{ kJ mol}^{-1}$				
7a(i)	Answer to include:	Place empty weighing bottle or weighing boat on balance. Record the mass of the empty item on balance. Add substance to boat/bottle on balance (careful not to spill any onto the top of balance). Record mass and subtract the empty mass to get mass of substance.				
7a(ii)	0.0204	Absorbance = 0.42 :: $[MnO_4^-] = 2.1 \times 10^{-4}$ mol l^{-1} no. of mol = volume × concentration = 0.1 litres × 2.1×10^{-4} mol l^{-1} = 0.000021 mol gfm = 54.9 g mass = no. of mol × gfm = 0.000021 mol × 54.9 g mol = 0.00115 g % mass = $\frac{0.00115}{5.66}$ × 100 = 0.0204 %				
7b(i)	one from:	high state of purity be stable when solid and in solution	be soluble	reasonably high GFM		
7b(ii)	0.358	no. of mol $Cr_2O_7^{2^-}$ = volume × concentration = 0.0214_{litres} × 0.005_{mol} = 0.000107 mol 6Fe^{2^+} + $Cr_2O_7^{2^-}$ + 14H^+ \longrightarrow 6Fe^{3^+} + $2Cr^{3^+}$ + 7H_2O 6mol 1mol 0.000642 mol 0.000107 mol 25cm^3 Fe $^{2^+}$ solution = 0.000642 mol 250cm^3 Fe $^{2^+}$ solution = 0.00642 mol 9fm Fe = 55.89				
71		mass = no. of mol x gfm = 0	1mar Green waveleng	k		
7b(iii)	Answer to contain:	Green wavelengths absorbed turning HOMO into LUMO	∴ red + blue wavelengt purple light	ths transmitted and		
8a	H ₃ PO ₃ (any order of elements)	3CH ₃ COOH + PCl ₃ → 3CH ₃ COCl + H ₃ PO ₃				
8b(i)	Negatively charged ions/neutral molecules that are electron rich	 Nucleophiles are negatively charged ions or neutral molecules which are electron rich attracted towards atoms bearing a partial δ+ or full positive charge capable of donating an electron pair to form a new covalent bond				
8b(ii)	Curly arrow from O on alcohol going to C of acid chloride group	H — C — CI	H O H H	I Н 		

8b(iii)	Diagram showing:	H H O H CH3 H H			
8b(iv)	HCI	Condensation reactions join two molecules together and remove a small molecule as they join. Water is the most likely small molecule removed but hydrogen chloride HCl is removed in the condensation of alcohols and acid chloride to form esters.			
8b(v)	Faster reaction or catalyst not required	As the equilibrium lies more to the product side in this reaction then more ester is produced at equilibrium			
8c(i)	Secondary	Primary Amine Secondary Amine Tertiary Amine H—N—C ₃ H ₇ H ₃ C—N—C ₂ H ₅ H ₃ C—N—CH ₃ H Carbon attached to the Nitrogen 2 Carbons attached to the Nitrogen 3 Carbons attached to the Nitrogen			
8c(ii)	amide	Amide links have a carbonyl group attached to a nitrogen which can have one or two carbon groups attached to the nitrogen.			
8d(i)	Electrophilic substitution	$AlCl_3$ catalyst polarises the C-Cl bond in benzoyl chloride and the carbon end joins the benzene ring by electrophilic substitution.			
8d(ii)	65.2%	Benzoyl chloride no. of mol = $\frac{\text{mass}}{\text{gfm}}$ = $\frac{21.8}{140.5}$ = 0.155mol no. of mol = $\frac{\text{mass}}{\text{gfm}}$ = $\frac{18.4}{182}$ = 0.101mol senzoyl chloride + benzene benzophenone + hydrogen chloride 1 mol 0.155mol (theoretical) % Yield = $\frac{\text{Actual}}{\text{Theoretical}} \times 100$ = $\frac{0.101\text{mol}}{0.155\text{mol}} \times 100$ = 65.2%			
9	Open Question to include:	Demonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem. 2 mark answer Demonstrates a reasonable understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood. Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.			
10a	Antagonist binds to receptor preventing the natural substrate from binding and stops natural response.	agonist An agonist mimics the natural compound and binds to the receptor molecules to produce a response similar to the natural active compound. An antagonist prevents the natural compound from binding to the receptor, and so blocks the natural response from occurring.			
10b(i)	5cm ³	A one in one hundred dilution requires a 5cm³ of eucalyptol transferred by pipette into a 500cm³ standard/volumetric flask and the filled up to the mark with deionised water.			
10b(ii)	0.0598	mass = density x Volume = $0.921g \text{ cm}^{-3} \times 5 \text{ cm}^3 = 4.605g$ no. of mol = $\frac{\text{mass}}{\text{gfm}} = \frac{4.605 \text{ g}}{154 \text{ g mol}^{-1}} = 0.0299 \text{mol}$ concentration = $\frac{\text{no. of mol}}{\text{Volume}} = \frac{0.0299 \text{ mol}}{0.500 \text{ litres}} = 0.0598 \text{mol l}^{-1}$			
10b(iii)	6	no. of mol = Volume × concentration = 1_{litre} × $9.97 \times 10^{-24}_{\text{mol }}$ t = $9.97 \times 10^{-24}_{\text{mol}}$ mol = 6.02×10^{23} molecules 9.97×10 ⁻²⁴ mol = 6.02×10^{23} molecules × 9.97×10^{-24}			

		1 = 6.00 molecules				
11a(i)	C ₈ H ₁₀ N ₄ O ₂ (any order of elements)	H-C-H N-C-H N-C-H N-C-H N-C-H H-C-H N-C-H H-C-H Skeletal Structure Full Structural Formula				
11a (ii)	Molecules must have similar shape to bind to same receptor protein	Pharmacologically active molecules must have a similar shape to fit the same receptor molecule. This common shape is called the pharmacophore. Agonists fit the receptor and produce the same biological response as the natural substrate. Antagonist fit the receptor but do not cause the biological response inside the cell.				
11b(i)A	1 st mark: separating funnel 2 nd mark: Shake/mix Leave to separate Run off lower layer	The steps of recrystallisation to purify an impure solid include: • dissolving an impure solid gently in a minimum volume of a hot solvent • hot filtration of the resulting mixture to remove any insoluble impurities • cooling the filtrate slowly to allow crystals of the pure compound to form, leaving soluble impurities dissolved in the solvent • filtering, washing and drying the pure crystals The solvent used for recrystallisation is chosen so that the compound being purified is completely soluble at high temperatures and only sparingly soluble at lower temperatures. The solvent used should be: • immiscible with the liquid mixture or solution (usually water) • one in which the solute is more soluble in than the liquid mixture or solution				
11b(i)B	4.61	• unreactive with the solute $K = \frac{\text{[caffeine]}_{\text{dichloromethane}}}{\text{[caffeine]}_{\text{water}}} = \frac{\frac{23.5}{60}}{8.5/100} = \frac{0.392}{0.085} = 4.61$				
11b(ii)	Do extraction in three separate volumes of 20cm ³	The quantity of caffeine extracted is greater if a number of extractions using smaller volumes of solvent are carried out rather than a single extraction using a large volume of solvent.				
11c	Diagram completed as shown:	N N O				