Do Now: Graphing inequalities

For graphs, use a pencil and straight edge. Label each line.

1. Fill in or circle the appropriate values, then graph the two inequalities.

$$y \le -\frac{1}{2}x + 5$$

$$y > x - 1$$

- (a) y-intercept b =
- (a) y-intercept b =
- (b) Slope m =_____
- (b) Slope m =_____
- (c) Line: Solid (=) Dashed (\neq)
- (c) Line: Solid (=) Dashed (\neq)
- (d) Shading: Above (y >) Below (y <)
- (d) Shading: Above (y >) Below (y <)

Mark the solution set with a capital "S".

2. Solve for y, then graph the two inequalities.

$$x + y \ge 2$$

$$-2x + y < -7$$

Mark each ordered pair on the graph, then determine whether it is a solution of the system of inequalities. (circle Yes or no)

(a)
$$(7,1)$$
 Yes No

(c)
$$(6, -4)$$
 Yes No

(b)
$$(-3,7)$$
 Yes No

$$(d)$$
 $(4,3)$ Yes No

Name:

Do Now: Graphing inequalities

Show your work. For graphs, use a pencil and straight edge. Graph the inequality after filling in the values in the blanks and circling the correct types.

$$1. \ \frac{3}{2}x - 2y \le +2$$

y-intercept b =

Line:

Solid (=)Dashed (\neq)

Slope

 $m = \underline{\hspace{1cm}}$

Shading:

Above (y >) Below (y <)

2. Solve for y, then complete. $\frac{3}{2}x - 3y \ge 6$

y-intercept b =

Line:

Solid (=)

Dashed (\neq)

Slope

 $m = \underline{\hspace{1cm}}$

Shading:

Above (y >) Below (y <)

3. Graph the two inequalities after filling in the values in the blanks.

$$y \ge -3x + 1$$

$$y < -\frac{3}{2}x - 2$$

(a) y-intercept
$$b =$$
 (a) y-intercept $b =$

(a)
$$y$$
-intercept $b =$

(b) Slope
$$m =$$

(b) Slope
$$m = _{----}$$

Rate of change

4. Find the slope of the function from the ratio of the line differences.

(a)	x	f(x)
	-2	-2
	-1	0
	0	2
	1	4
	2	6

	x	f(x)
	-4	9
(b)	-2	6
(0)	0	3
	2	0
	4	-3

Change in $y = \underline{\hspace{1cm}}$

Change in y =

Change in $x = \underline{\hspace{1cm}}$

Change in x =

Slope $m = \underline{\hspace{1cm}}$

Slope $m = \underline{\hspace{1cm}}$

5. Find the slope of the function. If the rate of change is not constant, write, "Non-linear. The rate of change is not constant."

	x	$\int f(x)$
	-4	7
(h)	-2	5
(b)	0	3
	2	5
	4	7

Slope $m = \underline{\hspace{1cm}}$

Slope $m = \underline{\hspace{1cm}}$

Graphing quadratic functions

6. Given the quadratic function $f(x) = x^2 - 2$, find the row differences.

x	f(x)
-3	7
-2	2
-1	-1
0	-2
1	-1
2	2
3	7

Graph the function as a line over the domain $-3 \le x \le 3$.

Name:

Pop Quiz: Graphing inequalities

Fill in the values in the blanks and circling the correct types.

1.
$$y < \frac{1}{2}x + 3$$

y-intercept b =

Line:

Solid (=) Dashed (\neq)

Slope

 $m = \underline{\hspace{1cm}}$

Shading:

Above (y >) Below (y <)

Graph the inequality (use a pencil and straight edge - 1 point)

2. Solve for y, then complete. $2x + y \ge -4$

y-intercept b =

Line:

Solid (=)

Dashed (\neq)

Slope

 $m = \underline{\hspace{1cm}}$

Shading:

Above (y >) Below (y <)

3. Graph the two lines after filling in the values in the blanks.

$$y = x - 2$$

$$y = -\frac{1}{2}x$$

- (a) y-intercept b = (a) y-intercept b =

$$m = \underline{\hspace{1cm}}$$

(b) Slope
$$m =$$
_____(b) Slope $m =$ _____

Homework: Graphing systems of equations

1. Graph the two lines after filling in the values in the blanks.

$$y = x - 2$$

$$y = -\frac{1}{2}x$$

(a) y-intercept
$$b =$$
 (a) y-intercept $b =$

(a) y-intercept
$$b =$$

(b) Slope
$$m = _{----}$$

(b) Slope
$$m =$$

Name:

Classwork: Happy New Year! Due at the end of the period.

Fill in the values in the blanks and circling the correct types.

$$1. \ y \le \frac{2}{3}x + 1$$

y-intercept b =

Line:

Solid (=)

Dashed (\neq)

Slope

 $m = \underline{\hspace{1cm}}$

Shading:

Above (y >) Below (y <)

Graph the inequality (use a pencil and straight edge - 1 point)

2. Solve for y, then complete. x + 2y > 3

y-intercept b =

Line:

Solid (=) Dashed (\neq)

Slope

 $m = \underline{\hspace{1cm}}$

Shading:

Above (y >) Below (y <)

3. Graph the two lines after filling in the values in the blanks.

$$y = 2x - 3$$

$$y = -\frac{1}{3}x + 4$$

- (a) y-intercept b = (a) y-intercept b =

$$m = \underline{\hspace{1cm}}$$

(b) Slope
$$m =$$
_____(b) Slope $m =$ _____

Graphing quadratic functions

4. Given the quadratic function $f(x) = x^2 - 3$, find the row differences.

x	f(x)
-3	6
-2	1
-1	-2
0	-3
1	-2
2	1
3	6

Graph the function as a line over the domain $-3 \le x \le 3$.

5. Graph the two lines after filling in the values in the blanks.

$$y = x - 3$$

$$x + y = 1$$

- (a) y-intercept b = (a) y-intercept b =

$$m =$$

(b) Slope
$$m =$$
_____(b) Slope $m =$ _____

