Graph Neural Networks

Thomas Bonald and Tiphaine Viard

2020 - 2021

Outline

- 1. Sparse matrices
- 2. PageRank
- 3. Clustering
- 4. Embedding

Graph embedding

How to transform **graph data** into **vector data**, so as to preserve the **proximity** between nodes?

Graph embedding

How to transform **graph data** into **vector data**, so as to preserve the **proximity** between nodes?

We first assume that the graph is undirected

Getting inspiration from language processing: word2vec

Goal: Predict contextual words

How? Extract vector representations of words in a text

$$cos(x,y) = \frac{x \cdot y}{\|x\| \|y\|} \in [-1,1]$$

Two models: CBOW vs skip-gram

Trick: train a neural net, but without an end task

On graphs: node2vec

Text: A special graph

 $\mathsf{Voyez} \to \mathsf{ce} \to \mathsf{koala} \to \mathsf{fou} \to \mathsf{qui} \to \mathsf{mange} \to \mathsf{des} \to \mathsf{journaux}...$

Solution: random walks, again!

Node2vec

Actually, biased random walks

- Walk length: How many nodes are in each random walk
- p: return parameter
- q: Breadth-depth parameter

Node2vec

Actually, biased random walks

- ▶ Walk length: How many nodes are in each random walk
- p: return parameter
- q: Breadth-depth parameter

Objective:

$$\max_{f} \sum_{u} \log Pr(N(u)|f(u))$$

i.e. similar nodes will be in each others' neighbourhood

Motivation for graph neural networks

Why are embeddings not enough?

- ▶ We want to recreate deep learning, but for graphs
- Embeddings are costly to compute (no shared parameters!)
- Embeddings cannot generalize to new graphs
- Can we use regular neural networks?
- Features vs propagating on the graph
- Some say reasoning uses a graph-like structure

But first, let's take a step back...

The perceptron

(Rosenblatt, 1957)

Multilayer perceptron

"universal approximator"

- proof of existence: it does not say how
- curse of dimensionality

Curse of dimensionality

aka how much data do I need?

$$V = rac{\pi^{d/2}}{\Gamma(rac{d}{2}+1)\cdot 2^d} pprox \mathcal{O}(\epsilon^{-d})$$

In general, to approximate a function $f:\mathbb{R}^d \to \mathbb{R}$, you need $\mathcal{O}(\epsilon^{-d})$ points

But we are not in general

Curse of dimensionality

aka how much data do I need?

In general, to approximate a function $f: \mathbb{R}^d \to \mathbb{R}$, you need $\mathcal{O}(\epsilon^{-d})$ points

But we are not in general

Let's forget a bit about general neural networks...

Convolutional Neural Networks

Two ideas: convolution and pooling

Fixed number of neighbours for each node, **strong locality**, very **scalable**

Shift invariance, shared weights

Able to find mesoscale structures

From graphs to images

Single CNN layer with 3x3 filter:

One update:

- ► Transform each pixel W_ih_i
- ▶ Sum it up $\sum_i W_i h_i$

Full update:

$$m{h}_4^{(I+1)} = \sigma(m{W}_0^{(I)}m{h}_0^{(I)} + m{W}_1^{(I)}m{h}_1^{(I)}) + \cdots + m{W}_8^{(I)}m{h}_8^{(I)}$$

Onto general graphs

Graphs and grids are not that different

Consider this undirected graph: Calculate update for node in red:

Update rule:
$$\mathbf{h}_i^{(l+1)}$$

$$\begin{array}{ll} \text{Update} & \mathbf{h}_i^{(l+1)} = \sigma \left(\mathbf{h}_i^{(l)} \mathbf{W}_0^{(l)} + \sum_{j \in \mathcal{N}_i} \frac{1}{c_{ij}} \mathbf{h}_j^{(l)} \mathbf{W}_1^{(l)} \right) \end{array}$$

- ightharpoonup Shift invariance \rightarrow permutation invariance
- Still scalable
- Still shared weights

Graph Convolutional Networks

Kipf and Welling, ICLR 2017

Main idea: pass messages between nodes and aggregate

$$oldsymbol{h}_i^{(l+1)} = \sigma \left(oldsymbol{h}_i^{(l)} oldsymbol{W}_0^{(l)} + \sum_{j \in N(i)} rac{1}{c_{ij}} oldsymbol{h}_j^{(l)} oldsymbol{W}_j^{(l)}
ight)$$

N(i): neighbours of node i c_{ij} : constant, trainable

Real-world problems with GNNs

Input: Features $m{X} \in \mathbb{R}^{\mathbb{N} \times \mathbb{E}}$, adjacency matrix $\hat{m{A}}$

Node classification? $softmax(\mathbf{z}_n)$

Graph classification? $softmax(\sum_{n} \mathbf{z}_{n})$

Link prediction? $p(A_i j) = \sigma(\mathbf{z}_i^T \mathbf{z}_j)$

figure by Thomas Kipf

Graph Neural Networks

(Zhou et al., 2019)

Some perspectives

Graph neural networks are **generalizations** of traditional neural networks

i.e. GCN on a grid is a CNN

They scale very well thanks to sampling

What are the consequences?

What happens in the dynamic case?

Should we generalize LSTMs? Bridge with link streams and dynamic graphs?

Summary

Many data have a graph structure, which requires suitable data structures and algorithms:

- sparse matrices
- PageRank
- Louvain
- spectral embedding
- node embeddings

See scikit-network and Deep Graph Library