Devoir 1: Groupes

Exercice 1

Soit l'ensemble $G = \{e^{2i\pi x} \mid x \in \mathbb{Q}\} \subset S^1$, où S^1 désigne le cercle unité dans \mathbb{C} .

- 1) Montrer que G est un sous-groupe de S^1 .
- 2) Montrer que tout élément de *G* est d'ordre fini.
- 3) Montrer que pour tout élément $g \in G$ et tout entier naturel non nul n, il existe $h \in G$ tel que $g = h^n$ (on dit que G est divisible).

Exercice 2

Soit G un groupe, pour tout $h \in G$, on définit l'application :

$$\varphi_h: G \to G, \quad g \mapsto hgh^{-1}.$$

- I) (1) Montrer que, pour tout $h \in G$, $\varphi_h \in \operatorname{Aut}(G)$. Un élément de $\operatorname{Aut}(G)$ de la forme φ_h est appelé un *automorphisme intérieur*.
 - (2) Considérons l'application :

$$\varphi: G \to \operatorname{Aut}(G), \quad h \mapsto \varphi_h.$$

Montrer que φ est un morphisme de groupes. En déduire que $\operatorname{Int}(G) = \{\varphi_h \mid h \in G\}$ est un sous-groupe de $\operatorname{Aut}(G)$ appelé groupe des automorphismes intérieurs.

- (3) Le noyau de φ est appelé le *centre* de G et noté Z(G). Décrire le centre lorsque G est commutatif.
- (4) Montrer que Z(G) est invariant par tout élément de $\operatorname{Aut}(G)$ (on dit que c'est un groupe *caractéristique*).
- (5) Déterminer $Z(GL_n(K))$ où $K = \mathbb{Q}, \mathbb{R}, \mathbb{C}$.
- II) On appelle *commutateur* de x et y l'élément :

$$[x, y] = xyx^{-1}y^{-1}.$$

On appelle sous-groupe dérivé de G, noté D(G), le sous-groupe de G engendré par tous les commutateurs.

- (i) Décrire D(G) lorsque G est commutatif.
- (ii) Montrer que $\mathcal{D}(G)$ est un sous-groupe caractéristique.

Exercice 3

Notation:

- $U := \{ z \in \mathbb{C}; |z| = 1 \}$
- Soit $n \in \mathbb{N}$, on note U_n l'ensemble des racines n-ièmes de l'unité dans \mathbb{C} .

Dans tout le problème, G est un groupe noté multiplicativement de neutre e.

- I) 1) Montrer que U est un groupe.
 - 2) Justifier pour $n \in \mathbb{N}^*$ que U_n est un sous-groupe de U.
 - 3) Soit G un groupe fini, $g \in G$, et $f : \mathbb{Z} \to G$ l'application définie par $f(k) = g^k$. Montrer que f est un morphisme de groupes et que $\ker f = o(g)\mathbb{Z}$.
- II) Soit G un groupe abélien fini d'ordre n, et a un élément de G. On pose $p = \prod_{g \in G} g$.
 - 4) Montrer que l'application $s: G \to G$ définie par s(g) = ag est bijective, et en déduire que $G = \{ag/g \in G\}$.
 - 5) Montrer que $p = a^n p$.
 - 6) En déduire que $a^n = e$.
 - 7) Montrer que o(a) divise n.
- III) 8) Justifier que θ (caractère trivial) est l'élément neutre de \hat{G} .
 - 9) Montrer que \hat{G} est un groupe abélien.
 - 10) Soit $\phi \in \hat{G}$ avec $\phi \neq \theta$.
 - a) Justifier qu'il existe $g_0 \in G$ tel que $\phi(g_0) \neq 1$.
 - b) Montrer que $\sum_{g \in G} \phi(g) = 0$.
- IV) 11) Soit $\phi \in \hat{G}$. Montrer que pour tout $k \in \mathbb{N}$ et $g \in G$, $\phi(g^k) = (\phi(g))^k$.
 - 12) En déduire que $|\phi(g)|=1$ et que $\phi(g^{-1})=\overline{\phi(g)}$.
 - 13) Pour $\phi, \psi \in \hat{G}$, on pose :

$$\langle \phi, \psi \rangle = \frac{1}{|G|} \sum_{g \in G} \phi(g) \overline{\psi(g)}.$$

2

- c) Montrer que $\langle \phi, \phi \rangle = 1$.
- d) Montrer que si $\phi \neq \psi$, alors $\langle \phi, \psi \rangle = 0$.