UNCLASSIFIED

AD 400 340

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

PRINCETON UNIVERSITY

Princeton University ONR Contract Nonr 1858(27) NR-014-203

Technical Report No. 13

INTERMOLECULAR POTENTIAL IN SOLID METHANE.

I. INFLUENCE ON THE VIBRATIONAL SPECTRUM

AND THE CRYSTAL STRUCTURE.

bу

S. Kimel, A. Ron, and D. F. Hornig

February 1963

INTRODUCTION

The infrared spectra of crystalline CH₄ and CD₄ in all phases have recently been studied by Savitsky and Hornig¹. In the low-temperature phase II spectra of

1. G. B. Savitsky and D. F. Hornig, J. Chem. Phys. 36, 2634 (1962).

pure CH₄ or CD₄ they observed fine structure in the bending region v_4 (three peaks separated by two intervals of $\frac{1}{4}$ cm⁻¹ each, the peak at the lowest frequency being extremely weak) and essentially a single peak in the stretching region, v_3 . The spectra of dilute solid solutions of both isotopic species in one another consist of single bands with half widths ≤ 3 cm⁻¹. The relevant spectra are reproduced in Figure 1.

These observations indicate that the splittings in the spectra of the pure crystals arise from dynamic intermolecular interactions rather than from static interactions which would show up also in dilute solutions.

There are many structures for methane crystals that would split an F mode into two or three infrared active components. The D_{2d}^2 and D_{2d}^3 space groups with 2 molecules per unit cell, or the D_{2d}^{11} space group having the same packing with one molecule per unit cell were found to be the most probable structures since they represent the most efficient hydrogen packing.

All present calculations apply to the D_{2d}^2 as well as the D_{2d}^3 structure. The latter is less likely since it would allow the molecular A and E modes to become active in the crystal and they have not been observed.

It may seem that in these structures both molecules in the unit cell are parallel (see Figure 2) thus yielding a structure with one molecule per unit cell, namely D_{2d}^{11} . However, small distortions are sufficient to retain the model of two molecules per unit cell. In the D_{2d}^{11} structure the molecular F modes are split into doublets rather than into triplets. This fact, taken alone, does not invalidate the D_{2d}^{11} structure since one peak in the observed spectra is so weak as to be uncertain.

Intermolecular Potential in Solid Methane

I. Influence on the Vibrational Spectrum and the Crystal Structure

by

S. Kimel*, A. Ron, and D. F. Hornig Frick Chemical Laboratory, Princeton University, Princeton, N. J.

ABSTRACT

The spectrum of the low-temperature phase of crystalline methane has been calculated using a model of atom-atom interactions consisting of repulsive, attractive, and electrostatic parts V_R , V_A , and V_E . Detailed calculations were carried out for the D_{2d}^2 and D_{2d}^{11} structures previously suggested for phase II of crystalline methane. Using potentials derived from other sources, it is possible to infer a potential for methane which yields partial agreement between the calculated and observed spectra. In accordance with observations it is found that the calculated coupling splitting in the stretching region and all site splittings are small enough to be included in the experimental band widths. In the bending region of the pure crystal spectrum the calculated spacings between the lines in the triplet agree with experiment but the model fails to account for the intensity pattern and also for the frequency shifts of the solid solutions in either region.

*On leave of absence: Weizmann Institute of Science, Rehovoth, Israel.

According to group theory each structure predicts the same number of infrared active bands for both F modes in pure crystals as well as solid solutions (See Table I).

To reconciliate the group theoretical predictions with experimental results it is required that the numerical results for the splittings should be such that the coupling splittings in the bending region are larger than in the stretching region and also larger than all site splittings.

In this study the site and coupling splittings are calculated for the D_{2d}^2 and D_{2d}^{11} structures. The calculations are based on a model of atom-atom interactions recently introduced by Dows^{2,3,4}.

- 2. D. A. Dows, J. Chem. Phys. 32, 1342 (1960).
- 3. D. A. Dows, J. Chem. Phys. 35, 282 (1961).
- 4. D. A. Dows, J. Chem. Phys. 36, 2836 (1962).

GENERAL CONSIDERATIONS

In this section the calculation of absorption frequencies of molecular crystals is outlined and applied to the case of methane. Intermolecular force constants for the vibrational modes in the crystal are derived for an appropriate intermolecular potential and the secular equation for the unit cell is solved.

The following simplifications are made:

- No mixing of stretching and bending modes, e.g. the hydrogens move along or perpendicular to the C-H bonds.
- 2. No librations.
- 3. The methane molecules in the crystal have essentially $\mathbf{T}_{\mathbf{d}}$ symmetry.
- 4. The tetragonal unit cell is based on a face-centered cubic symmetry.

These assumptions enable us to solve the problem in a first approximation without computational difficulties.⁵ At this stage it does not seem justified to

^{5.} All calculations were carried out without explicitly taking into account carbon recoil. In a later section, however, the influence of carbon recoil on the calculated spectrum is discussed qualitatively.

refine the model before more information is available about forces acting in molecular crystals. We are currently investigating the influence on the spectrum of a change in the symmetry of the molecules and also of the unit cell.

Symmetry Coordinates

Symmetry coordinates, S^{CT} , for the doubly occupied D^2_{2d} unit cell are built from normal coordinates, Q, of individual methane molecules. With the assumption of "no mixing", molecular normal coordinates are simply proportional to molecular symmetry coordinates with proportionality factors L_{33} for the stretching mode and L_{44} for the bending mode.

Results for the singly occupied D_{2d}^{11} unit cell can be obtained in a trivial way from the D_{2d}^2 structure. Therefore the formalism will not be worked out separately.

From group theoretical considerations it follows that each F mode of the individual molecules gives rise to three infrared active modes in the crystal, as summarized in Table I.

Correlation of the Isolated Tetrahedron and the Tetrahedron in the Crystal*

Molecular Symmetry Site Symmetry Space Group Symmetry

Td D2 D2

2d

T _d	D ₂	D 2 2d
	B ₁ (z)>	A ₂ (z)
	<u> </u>	$\underline{B_2}$ (z)
<u>F_2</u>	B ₂ (y)	<u>2E</u> (x,y)
	<u>B</u> ₃ (x) ————	<u>=</u> (,),

^{*}Underlined species are infrared active.

If we denote the two molecules in the unit cell as p and q (see Figure 2), then the symmetry coordinates, S^{cr} , for the unit cell may formally be written as

$$S^{cr}(B_{2}) = \{Q_{p}(F_{z}) + Q_{q}(F_{z})\}2^{-1/2}$$

$$S^{cr}(A_{2}) = \{Q_{p}(F_{z}) - Q_{q}(F_{z})\}2^{-1/2}$$

$$S^{cr}(E_{+}) = \{Q_{p}(F_{x,y}) + Q_{q}(F_{x,y})\}2^{-1/2}$$

$$S^{cr}(E_{-}) = \{Q_{p}(F_{x,y}) - Q_{q}(F_{x,y})\}2^{-1/2}$$
(1)

There are two sets of coordinates: one built from the bending modes F_x , F_y , F_z and another set from the stretching modes F_x , F_y , F_z . In the free molecule the F_x , F_y , and F_z modes are degenerate but in a non-cubic crystal they may be different. As indicated in Equations (1) the $S^{CT}(E)$ modes can be built either from $Q(F_x)$ or from $Q(F_y)$.

Shifts and Splittings

In order to calculate the frequencies of the unit cell modes the force constant matrix for the unit cell is introduced

$$\mathbf{f}_{pq}$$
 \mathbf{f}_{pq} \mathbf{f}_{pq}

The G matrix in this notation is the identity matrix. Solving the secular equation for λ we obtain for the F stretching and bending modes

$$\lambda(B_{2}) = \lambda_{0} + f_{pp}[Q(F_{z})] + f_{pq}[Q(F_{z})]$$

$$\lambda(A_{2}) = \lambda_{0} + f_{pp}[Q(F_{z})] - f_{pq}[Q(F_{z})]$$

$$\lambda(E_{+}) = \lambda_{0} + f_{pp}[Q(F_{x,y})] + f_{pq}[Q(F_{x,y})]$$

$$\lambda(E_{-}) = \lambda_{0} + f_{pp}[Q(F_{x,y})] - f_{pq}[Q(F_{x,y})].$$
(2)

Here $\lambda_0 = 4\pi^2 e_0^2 v_0^2$ for the isolated molecule and thus contains all intramolecular interactions,

$$t_{pp} = \frac{\partial Q_p}{\partial Q_p} + \frac{\partial Q_p}{\partial Q_p}, \tag{3}$$

and

$$\mathbf{f}_{\mathbf{p}\mathbf{q}} = \frac{\partial^2 \mathbf{v}}{\partial \mathbf{Q}_{\mathbf{p}} \partial \mathbf{Q}_{\mathbf{q}}} . \tag{4}$$

V is the intermolecular potential, which corresponds to the term $\Sigma_i \Sigma_j V_{ij}$ in the general expression for the potential energy given by Hornig⁶. This part of the

6. W. Vedder and D. F. Hornig, Advances in Spectroscopy 2, 189 (1961).

potential contains cross terms between internal coordinates of all molecules.

The expressions (2) for λ show, for each crystal mode, that λ depends on three terms. These are λ_0 , the gas value for that mode, the term f_{pp} which produces a shift and finally a term f_{pq} which produces a splitting,

$$\Delta \lambda_{\text{coupling}} = f_{pq}$$
 (5)

The coefficient f_{pp} in Equation (2) contains two terms. The first (the second derivative with respect to the normal coordinate Q of molecule p) is a static perturbation, while the second or "exchange" term (the derivative with respect to coordinate Q of molecule p and of another molecule p' which is translationally equivalent to p) is a dynamic perturbation. In dilute solid solutions of one isotopic species in another f_{pq} = 0 and also the second term of f_{pp} vanishes, since at low concentrations all neighbors are of the other species and do not cause dynamic perturbations. Hence the values of λ in a solid solution, λ_{gg} , are shifted with respect to the gas value by amounts

$$\lambda_{gg} - \lambda_{o} = \frac{\partial^{2} V}{\partial Q_{o}^{2}}. \tag{6}$$

It should be noted that values for $\Delta\lambda_{\text{coupling}}$ do not occur around λ_{ss} but rather around the (non observable) value λ_{crystal} , which is defined by Equations (3) and (6) as

$$\lambda_{\text{crystal}} = \lambda_{\text{ss}} + \lambda^{2} V / \partial Q_{p} \partial Q_{p}, \qquad (7)$$

For the D_{2d}^{11} structure with one molecule in a unit cell on the D_{2d} site we expect two lines in the solid solution, due to different static shifts in the z and x,y directions

$$\lambda_{ss}(z) = \lambda_0 + \frac{\partial^2 V}{\partial Q^2(F_z)}$$

$$\lambda_{ss}(x,y) = \lambda_0 + \frac{\partial^2 V}{\partial Q^2(F_{x,y})}.$$

In the pure crystal there will now be two lines due to different static plus dynamic shifts in the z and x,y directions

$$\lambda(B_{2}) = \lambda_{0} + \frac{\partial^{2}V}{\partial Q^{2}(F_{z})} + \frac{\partial^{2}V}{\partial Q(F_{z})} \frac{\partial Q^{1}(F_{z})}{\partial Q^{1}(F_{z})}$$

$$\lambda(E) = \lambda_{0} + \frac{\partial^{2}V}{\partial Q^{2}(F_{x,y})} + \frac{\partial^{2}V}{\partial Q(F_{x,y})} \frac{\partial Q^{1}(F_{x,y})}{\partial Q^{1}(F_{x,y})},$$

where Q' indicates a normal coordinate in a neighboring molecule.

The pure crystal lines are the lines $\lambda(B_2)$ and $\lambda(E_+)$ in the D_{2d}^2 structure. The solid solution spectra are identical for both structures.

INTERMOLECULAR POTENTIAL

In methane crystals the intermolecular potential which influences the vibrational frequencies is expected to be mainly due to interactions between non-bonded hydrogens. Furthermore, intermolecular interactions between hydrogens and carbons may contribute considerably to all static shifts.

For this case the intermolecular potential can be written in the form

$$V = \sum_{i,j} V_{i,j} (R_{i,j}) + \sum_{i,k} V_{i,k} (R_{i,k}), \qquad (8)$$

where R, the distance between hydrogen i of a given molecule and hydrogen j or carbon k of a neighboring molecule are expressed in Angstrom units and V in ergs.

The distances R are determined by the geometry of the crystal which is schematically drawn in Figure 2. As an example consider hydrogen 1 of molecule p, or pl. It has four nearest hydrogens, labeled j = 1,2,3,4, at distances $R_{ij} = R_f = 2.77A$; these are q4, q3, (q-a)3, (q-b)4. Furthermore, there are six next-nearest hydrogens, labeled j = 5,6,7,8,9,10, at distances $R_{ij} = R_g = 3.13A$. Two of these hydrogens [q2 and (q-c)2] belong to type q molecules, while the other four hydrogens [(p+a)2, (p+b)4, (p+b)2, (p+b)3] belong to translationally equivalent molecules p' of type p⁷.

The classification of neighbor hydrogens is continued till all hydrogens (69 in total) within a radius of 6A from atom pl are labeled as is shown in Figure 2 and

^{7.} This distinction which exists, of course, only in the D2 or D3 structures is carried through all the calculations. For the D11 structure corresponding terms involving p and q molecules are combined.

Appendix III. Similarly all carbon contacts within a radius of 6A from hydrogen pl (16 in total) were considered (see Appendix 2V). The cut-off at 6A for atomatom interactions contributing to the potential (8) is somewhat arbitrary. However, during the course of the calculations it was seen that although at separations of 6A the interactions in some cases may remain important (see Tables II and III) their contribution to intermolecular force constants become quite small. In the present study index i in Equation (8) goes from 1 to 4, index j from 1 to 69 and index k from 1 to 16.

According to Equations (3) and (4) derivatives of the type $\frac{\partial^2 V}{\partial Q^2}$ have to be calculated. For hydrogen-hydrogen interactions, for example, V is defined in Equation (8) as an explicit function of $R_{i,i}$. Hence we write for any mode Q

$$\frac{\partial^2 V}{\partial Q^2} = \left[\frac{\partial^2 V}{\partial R^2_{1,j}} \left(\frac{\partial \rho_1}{\partial \rho_1}\right)^2 + \frac{\partial R}{\partial Q} \frac{\partial^2 R}{\partial Q^2_{1,j}}\right] \left(\frac{\partial S}{\partial Q} \frac{\partial Q}{\partial Q}\right)^2$$
(9a)

$$\frac{\partial^{2}V}{\partial Q_{p}\partial Q_{q}} = \left[\frac{\partial^{2}V}{\partial R_{1,j}^{2}} \frac{\partial R_{1,j}}{\partial \rho_{1}} \frac{\partial R_{1,j}}{\partial \rho_{1}} + \frac{\partial V}{\partial R_{1,j}} \frac{\partial^{2}R_{1,j}}{\partial \rho_{1}\partial \rho_{1}}\right] \frac{\partial \rho_{1}}{\partial S_{p}} \frac{\partial S_{p}}{\partial Q_{p}} \frac{\partial \rho_{1}}{\partial S_{q}} \frac{\partial S_{q}}{\partial Q_{q}}$$
(9b)

and similarly for 32V/3Q 3Q,...

Here $\overrightarrow{\rho_1}$ and $\overrightarrow{\rho_j}$ are normal displacements of hydrogens i or j. In the approximation of "no mixing" $\overrightarrow{\rho}$ is along the C-H bonds for the stretching mode and for the bending mode $\overrightarrow{\rho}$ is perpendicular to the C-H bond in the proper plane. The factors $\overrightarrow{\rho}/\overrightarrow{\partial}S$ are elements of the matrix $[U^*]$ which transforms molecular symmetry coordinates, S, into internal coordinates $\overrightarrow{\Delta}r$ and $\overrightarrow{\Delta}\alpha d$ (see Appendix I). $\overrightarrow{\Delta}r$ is the change of the C-H bond length in the stretching mode, d=1.093A is the equilibrium C-H bond length and α is the tetrahedral angle. In the calculations it is convenient to express internal coordinates in terms of $\theta=\alpha/2$. The factors $\overrightarrow{S}/\overrightarrow{\partial}Q$ are elements of the matrix [L] which transforms molecular normal coordinates, 0, into symmetry coordinates S.

As mentioned before hydrogen-carbon interactions contribute to the shifts. This can be expressed by terms similar to those in Equation (9a) where all j are replaced by k and where V now stands for the hydrogen-carbon potential.

The intermolecular potential in solid methane can be separated into three contributions. First there is a repulsive potential of the form $V_R = a \exp(-bR)$. The parameters a and b are not known for atom-atom interactions in crystalline methane. V_R^{HH} may be taken from the function calculated by de Boer⁸ for the

8. J. de Boer, Physica 9, 363 (1942).

exchange repulsion between non-bonded H atoms in hydrogen. Since it is derived for a specific case the de Boer function cannot be expected to apply rigorously in solid methane. Nevertheless it has been used with partial success for calculating the vibrational spectra of CH₃Cl^{2,3}, C₂H₄⁴, and paraffin crystals. 9

9. R. Snyder, J. Mol. Spectroscopy 7, 116 (1961).

Another expression used in the calculations for V_R^{HH} , given by Muller 10 , is based on

10. A. Muller, Proc. Roy. Soc. (London) A 178, 227 (1941).

the measured compressibilities of solid paraffins.

The repulsive potential between hydrogens and carbons was estimated to be $(v_R^{CC} \cdot v_R^{HH})^{1/2}$ where the C-C repulsive potential was taken to be equal to that: between two Ne atoms¹¹ v_R^{CC} = 2570 x 10⁻¹² exp (-4.26 R).

11. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (John Wiley and Sons, Inc., New York, 1954).

Using the de Boer function one obtains for the repulsive potential

$$V_R = V_R^{HH} + V_R^{HC}$$

$$= [120 \exp(-5.54 R_{i,i}) + 555 \exp(-5.90 R_{i,k})] \times 10^{-12} \exp (10a)$$

and with the Muller function one obtains

$$V_{R}' = [4400 \exp(-5.0 R_{1.1}) + 3360 \exp(-4.63 R_{1k})] \times 10^{-12} erg$$
 (10b)

Secondly there is an attractive van der Waals type interaction of the form

$$V_A = V_A^{HH} + V_A^{HGT} = -c R_{11}^{-6} - c' R_{1k}^{-6}$$
.

The coefficients c and c' were taken from a calculation by Pitzer and Catalano¹²

12. K. S. Pitzer and E. Catalano, J. Am. Chem. Soc. 78, 4844 (1956).

based on the dispersion force formulation of constituent atoms in hydrocarbons

$$V_{A} = [-3.42 R_{1.1}^{-6} - 8.68 R_{1k}^{-6}] \times 10^{-12} \text{ (erg)}.$$
 (11)

A value of c, about twice as large, is found from calculation of the dispersion interaction between two H atoms¹³ but it should be noted that this is quite a

13. C. Marroyannis and M. J. Stephen, Mol. Phys. 5, 629 (1962).

different case.

In addition to the short-range potential of the Corner-Buckingham type¹¹, represented by Equations (10) plus (11), there are also long-range interactions arising from the charge distribution in the methane molecules. This may be regarded as an electrostatic interaction of the form $V_E = e_{eff}^2 R^{-1}$ between electrical charges on non-bonded atoms.¹⁴

14. D. F. Hornig and G. L. Hiebert, J. Chem. Phys. 27, 752 (1957).

C. Haas and D. F. Hornig, J. Chem. Phys. 32, 1763 (1960).

Usually this type of interaction is treated as a transition-dipole interaction 2,3,4,9,15,16

- 15. J. C. Decius et al, J. Chem. Phys. 22, 1941, 1946 (1954); 23, 1290 (1955) 25,1184 (1956).
- 16. R. M. Hexter, J. Chem. Phys. <u>33</u>, 1833 (1960).

The effective charges, e_{eff} , can be estimated from intensities of infrared absorption bands in the solid state, which for methane have not been measured. For the gas phase the average values of e_{eff} derived from absolute band intensities 17

J. Heicklen, Spectrochim. Acta 17, 201 (1961).

^{17.} R. Rollefson and R. Havens, Phys. Rev. 57, 710 (1940).
A. M. Thorndike, J. Chem. Phys. 15, 868 (1947).

H. L. Welsh et al, J. Chem. Phys. 19, 340 (1951); 20, 1646 (1952).

Spectrochim. Acts 16, 840 (1960).

are about 0.12 e and about 0.06 e for vs and v4 respectively, where e is the electronic charge. It is often observed that in going from the gas phase to the solid phase the intensities of infrared absorptions increase, particularly for the bending modes. This has been demonstrated for the case of benzene18 and ethylene19.

18. J. L. Hollenberg and D. A. Dows, J. Chem. Phys., in press.

19. G. M. Wieder and D. A. Dows, J. Chem. Phys. 37, 2990 (1962).

While Savitsky and Hornig¹ did not measure absolute intensities, Γ , of the infrared bands in solid methane it can be seen from their spectra that the ratio of intensities, $\Gamma(v_4)/\Gamma(v_3)$, measured on the same samples is larger than the ratio for intensities in the gas phase. The value e of = 0.1 e was initially chosen for both modes in methane. Hence

$$V_{E} = V_{E}^{HH} + V_{E}^{HC}$$

$$= [(0.1 e)^{2}R_{11}^{-1} - (0.1 e)(0.4 e)R_{1k}^{-1}]10^{+8} (erg), \qquad (12)$$

In addition calculations were made with $e_{eff} = 0.07$ e and also with $e_{eff} = 0.14$ e to compensate for the lack of an experimental value for e aff in the solid state.

The first and second derivatives with respect to R of the specific potentials (10, 11, 12) are numerical constants depending only on R. They are listed in Tables II and III for all interatomic contacts in crystalline methane for which R < 6A.

CALCULATIONS AND RESULTS

The numerical values for the individual factors in Equations (9) will now be discussed in detail.

a) The factors 30/38.

We choose a coordinate system for the methane molecule such that the x, y, and z ... coordinates coincide with the three 2-fold axes in the molecule. In the approximation of "no mixing" the molecular symmetry coordinates are

$$S^{st}(A) = (\Delta r_1 + \Delta r_2 + \Delta r_3 + \Delta r_4)2^{-1}$$

$$S^{bd}(A) = d(\Delta \alpha_{12} + \Delta \alpha_{13} + \Delta \alpha_{14} + \Delta \alpha_{23} + \Delta \alpha_{24} + \Delta \alpha_{34})6^{-1/2}$$

$$S^{bd}(E_a) = d(2\Delta \alpha_{12} - \Delta \alpha_{13} - \Delta \alpha_{14} - \Delta \alpha_{23} - \Delta \alpha_{24} + 2\Delta \alpha_{34})12^{-1/2}$$

$$S^{bd}(E_b) = d(-\Delta \alpha_{13} + \Delta \alpha_{14} + \Delta \alpha_{23} - \Delta \alpha_{24})2^{-1}$$

$$S^{st}(F_x) = (\Delta r_1 - \Delta r_2 + \Delta r_3 - \Delta r_4)2^{-1}$$

$$S^{st}(F_y) = (\Delta r_1 - \Delta r_2 - \Delta r_3 + \Delta r_4)2^{-1}$$

$$S^{st}(F_z) = (\Delta r_1 + \Delta r_2 - \Delta r_3 - \Delta r_4)2^{-1}$$

$$S^{bd}(F_x) = d(\Delta \alpha_{13} - \Delta \alpha_{24})2^{-1/2}$$

$$S^{bd}(F_y) = d(\Delta \alpha_{14} - \Delta \alpha_{23})2^{-1/2}$$

$$S^{bd}(F_y) = d(\Delta \alpha_{12} - \Delta \alpha_{34})2^{-1/2}$$

The factors $\partial \rho / \partial S$ are elements of the matrix [U'] which is given in Appendix I. b) The factors $\partial S / \partial Q$.

The factors $\partial S/\partial Q$ are elements of the matrix [L]. In the approximation of no mixing

$$L = (\lambda/F)^{1/2} = G^{1/2} , \qquad (13)$$

where F and G have the usual meaning in the Wilson notation. 20 This results in

20. E. B. Wilson, J. C. Decius, and P. C. Cross, Molecular Vibrations, McGraw-Hill, Inc., New York, 1955.

$$L_{33} = (\mu_{H} + 4\mu_{c}/3)^{1/2} = 1.050 \text{ (amu)}^{-1/2}$$

$$L_{44} = (2\mu_{H} + 16\mu_{c}/3)^{1/2} = 1.558 \text{ (amu)}^{-1/2}.$$

More accurate values may be obtained by inverting the complete matrix [L⁻¹] given by Mills²¹. This results in

21. I. M. Mills, Mol. Phys. 1, 107 (1958).

 $\begin{bmatrix} I \end{bmatrix}_{F_2}$ $\begin{bmatrix} Q_3 & Q_4 \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$

The "no mixing" assumption seems to be justified by the smallness of the off-diagonal terms and by the numerical agreement between the diagonal elements in the [L] matrix and the values for L_{33} and L_{44} obtained with Equation (13).

c) The derivatives of R_{i,j} and R_{ik}

Calculations of the derivatives $\partial R/\partial \rho$, $\partial^2 R/\partial \rho_1^2$ and $\partial^2 R/\partial \rho_1 \partial \rho_2$ involved most of the computational work. The expressions for the distances R_{ij} between atom pl and 69 neighboring hydrogens were differentiated with respect to Δr_i , Δr_j , ΔQ_{12} , ΔQ_{13} , ΔQ_{12} (or ΔQ_{24}), ΔQ_{13} (or ΔQ_{24}) resulting in 414 values for $\partial R_{ij}/\partial \rho$ and also 414 values for the second derivatives which are collected in Appendices III and IV respectively.²²

22. Δr_i and $\Delta \theta$ d are normal displacements of atom pl, while Δr_i and $\Delta \theta$ d are normal displacements of hydrogens in neighboring molecules.

The carbon neighbors contribute mainly to the static shifts. Hence the expressions for the distances R_{ik} between hydrogen pl and 16 neighboring carbons were differentiated with respect to Δr_i , $\Delta \theta_{12}$, and $\Delta \theta_{13}$ resulting in 48 values for $\partial R_{ik}/\partial \rho_i$ and also 48 values for $\partial^2 R_{ik}/\partial \rho_i^2$. These are collected in Appendix V.

A convenient way² to calculate derivatives of this type is through the following trigonometric relations

$$\frac{\partial R_{i,j}}{\partial \rho_i} = \cos \left(\overrightarrow{R_{i,j}}, \overrightarrow{\rho_i} \right) = \frac{\overrightarrow{R_{i,j}}, \overrightarrow{\rho_i}}{|R_{i,j}||\rho_i|}$$
(14)

and

$$\frac{\partial^{2} R_{i,j}}{\partial r_{i} \partial \rho_{j}} = \frac{\sin(\vec{R}_{i,j}, \vec{\rho}_{i}) \sin(\vec{R}_{i,j}, \vec{\rho}_{j}) \cos\gamma}{|\vec{P}_{i,j}|}$$

$$= \frac{(\vec{\rho}_{i}^{2} \times \vec{R}_{i,j}^{2}) \cdot (\vec{R}_{i,j}^{2} \times \vec{\rho}_{j}^{2})}{|\vec{R}_{i,j}|^{3} |\vec{\rho}_{i}| |\vec{\rho}_{j}|}, \qquad (15)$$

where γ is the dihedral angle formed by the three vectors $\overrightarrow{R_{ij}}$, $\overrightarrow{\rho_i}$, and $\overrightarrow{\rho_j}$.

The direction cosines of R_{ij} can be expressed straightforwardly in terms of the parameters h, d, and θ (see Figure 2). The direction cosines of ρ are elements of the molecular matrix [D] which transforms cartesian coordinates into

internal coordinates and which is given in Appendix II.

d) Results

We now substitute into Equations (9) the values obtained above for the various factors (except $\partial S/\partial Q = L$) and take the appropriate sums over all contacts as listed in Appendices VI - IX.

Intermolecular force constants for H-H and H-C interactions obtained with the three types of potentials considered in the foregoing section are listed in Table IV. The terms involving $\partial V/\partial R$ and $\partial^2 V/\partial R^2$ are listed separately in order to show that they are of about equal importance. For the repulsive potential (10) it may seem that the terms with $\partial V/\partial R$ are smaller by a factor $bR \sim 10$. For this and other reasons terms with $\partial V/\partial R$ have not been included in previous calculations:

Results for the shifts and splittings (in cm⁻¹) are obtained from the force constants f through the relation

$$\Delta v = fL^2/(8\pi^2 c^2 v_0) .$$
(16)

In the stretching region ($v_3 = 3019 \text{ cm}^{-1}$) 100 dyne cm⁻¹ is equivalent to 0.31 cm⁻¹, while in the bending region ($v_4 = 1306 \text{ cm}^{-1}$) 100 dyne cm⁻¹ is equivalent to 1.56 cm⁻¹.

From Equation (16) it follows that for a given value of f the resulting value of Δv in the bending region will be larger than in the stretching region by a trivial factor $(F_{33}G_{44}/F_{44}G_{33})^{1/2}$ which for v_4 and v_3 of methane equals about 5.

Final results for calculated shifts and splittings are listed in Table V. Here we considered all combinations of the three types of intermolecular potentials given above. For the repulsive potential these are: the deBoer potential V_R and the Muller potential V_R . For the electrostatic potential these are V_E , $2V_E$ and $V_E/2$. For completeness the attractive potential was varied between V_R and V_R although the latter value V_R was derived for a considerably different system.

The sum of all attractive and repulsive atom-atom interactions may be

regarded as a measure of the lattice energy. This can be compared to the known value of the heat of sublimation for crystalline methane which is 23

23. Handbook of Chemistry and Physics, Chemical Rubber Publishing Co., Cleveland, O.

2240 cal/mole = 1700×10^{-16} erg/molecule.

Good agreement is obtained for the combinations $(V_R + V_A)$ and $(V_{R'} + V_A)$ yielding respectively 1660 and 2080 x 10^{-16} erg/molecule. The combinations involving $2V_A$ yield values for the lattice energy which are too large by a factor 2 or more. Due to symmetry considerations the electrostatic potential V_E does not contribute to the lattice energy. This was checked numerically for the 12 neighbors arranged cubically around molecule p and indeed it was found that $V_E^{HH} + V_E^{CC} = -V_E^{HC}$.

DISCUSSION OF RESULTS

We now summarize the results obtained with the present calculations and compare them with experiment.

In good agreement with the observations are the following results:

- 1) In the bending region the calculated site splitting for all cases (except 7) are small enough so they may very well be included in the band widths.

 In the stretching region the site splitting is identically zero.
- 2) The coupling splitting in the stretching region in all cases is also small enough to be accounted for by the measured band widths.
- The coupling splitting in the bending region is of about the right magnitude for cases 5, 6 or 10 if we assume two molecules per unit cell. For one molecule per unit cell the additional combinations 2 and 12 become applicable.

However, the positions of the two components B_2 and E_+ are not in agreement with the previous assignment¹. The latter was based on intensity considerations in the observed spectrum, according to which B_2 should be on the low-frequency side of E_- .

The partial agreement between experimental and calculated results seems to verify the basic assumptions made at the start of this work about the packing in methane crystals and about the possibility of interpreting the observed spectra using a model of atom-atom interactions.

The present treatment does not allow us to draw definite conclusions about the parameters in the intermolecular potential. Out of the combinations 2, 5, 6, 10, and 12 which yield reasonable splittings for CH_4 , 5 gives the best result for the lattice energy. The fact that the calculated site splitting for this case is only barely acceptable can easily be rectified by increasing V_{Δ} somewhat.

Very little can be said at this stage about the shifts. Both the observed and calculated solid solution shifts for CH₄ show (for cases 1, 3, 5, 7, 9, and 11) that the shifts in the stretching region are about 6 cm⁻¹ toward the red compared to the corresponding shifts in the bending region (see Table V). The experimental shifts may be obtained by adding to the calculated values, red shifts of about 8 cm⁻¹ for the stretching as well as the bending mode. These may be due to various factors such as carbon-carbon interactions, the dielectric medium or anharmonic effects which are poorly known.^{4,21}

21. D. F. Ball and D. C. McKean, Spectrochim. Acta 18,1029 (1962).

Deutero-methane

We now apply the present calculations to the case of deutero-methane. In comparing CH_4 with CD_4 we first assume the crystal structure, the force field and the geometrical factors to be identical. The different masses of H and D give rise to different gas frequencies, ν_0 , and also to different elements in the matrix [L], which in turn enter the results through Equation (16). If we neglect the carbon movements in the lattice, then the matrices [D] for the isotopic species are identical. In this approximation all calculated shifts and splittings for CD_4 will be smaller than for CH_4 by a factor

$$(L_D^2/L_H^2)(v_0^H/v_0^D) = (G_D/G_H^2)^{1/2}.$$
 (17)

For the bending region this results in a 23 % odecrease of all calculated values. For the solid solution frequency of CD₄ this decrease amounts to an extra red shift of about 2 cm⁻¹ relative to the solid solution shift of CH₄ (Table V; cases 1, 3, 5, 7, 9, 11). Experimentally we observe for CD₄ a red shift of 3 cm⁻¹ compared to a blue shift of 0.5 cm⁻¹ for CH₄. Half of this difference is accounted for. There is another effect which produces a relative red shift of CD₄. This is the weak coupling between, for example, the frequencies of CH₄ and the frequencies of CD₄ of the host lattice. This will push the energy levels of CH₄ to higher energies. Similarly the levels of CD₄ in a host lattice of CH₄ will be pushed to lower energies.

A simple model of one C-H bond in between C-D bonds or vice versa results in:

$$v_{\rm H}^{\rm O} - v_{\rm H} = 4 \left\{ (\Delta v_{\rm coupling})^2 / v_{\rm H} \right\} (1 - \mu_{\rm H} / \mu_{\rm D})^{-1}$$

$$v_{\rm D}^{\rm O} - v_{\rm D} = 4 \left\{ (\Delta v_{\rm coupling})^2 / v_{\rm D} \right\} (1 - \mu_{\rm D} / \mu_{\rm H})^{-1}, \qquad (18)$$

where v^{O} denotes the frequency without this particular effect and $\Delta v_{\rm coupling}$ is the coupling splitting defined in Equation (5). Substituting in (18) the observed values for $\Delta v_{\rm coupling}$ yields shifts in the bending region of -0.05 cm⁻¹ and 0.16 cm⁻¹ for CH₄ and CD₄ respectively which account for only a fraction of the difference in the measured shifts.

In the stretching retion the difference between the observed solid solution shifts of CH₄ and CD₄ cannot be explained by Equations (17,18).

The observed splittings in the CD₄ bending region are about 15 $^{\circ}$ /o larger than in the CH₄ spectrum. In order to obtain this result the intermolecular force constants associated with the splitting in the CD₄ spectrum must be about 50 $^{\circ}$ /o larger than the corresponding force constants in CH₄. This difference must be caused by mass effects.

The first mass effect we consider here involves the movements of carbon atoms-up till now neglected--which are relatively more important in CD₄ than in CH₄. A consequence of the carbon recoil during a normal vibration is a decrease of the movements of hydrogens with respect to a coordinate system fixed

in the crystal. For the in-phase crystal modes the carbon movements will not influence intermolecular interactions and hence will not affect the spacing between E₊ and B₂. Therefore this qualitative explanation fails to account for the increased splitting observed in the CD₄ spectrum. (For the out-of-phase crystal modes recoil will cause a decrease of the atom-atom interactions and consequently a decrease of the spacing between E₊ and E₋).

Another mass effect is the change in the crystal dimensions because of the difference in the zero point amplitudes of CH₄ and CD₄. Also one might consider the change in each C-H bond length upon isotopic substitution. This arises from the difference in the zero-point energy levels of CH₄ and CD₄ together with the anharmonicity in the (common) intramolecular potential curve. However, the latter two mass effects are known to be small and it does not seem likely that they are resported for the increase of 50 $^{\circ}$ /o in the intermolecular force constants in going from CH₄ to CD₄.

ACKNOWLEDGMENT

We should like to acknowledge the support of The Office of Naval Research.

Values for the First and Second Derivatives of the Hydrogen-Hydrogen

Potential in Methane Crystals (Units: dyne x 10⁻⁸ and dyne cm⁻¹ Respectively)

	Repu	ılsive P	otential		Attra	ctive	Elect	rostatic
	de Bo	per	Mul	ler	Poten	tial	Poten	tial
R _{ij}	$\frac{\partial V_{\mathbf{R}}}{\partial \mathbf{R_{i}}}$	∂ ² V _R	$\frac{\partial V_{R^{\dagger}}}{\partial R_{i,j}}$	a²v _R , ;	δR _{ij}	$\frac{\partial^2 V_A}{\partial R_{ij}^2}$	$\frac{\partial V_E}{\partial R_{i,j}}$	$\frac{\partial^2 V_E}{\partial R^2}$ ij
2.77	-235	8 32	-216	1079	164	-416	-301	217
3.13	-65	229	- 35	173	69	-155	-235	150
4.06	· - 3	9	0	2	11	-20	-140	69
4.13	-2	7	0	1	10	-17	-135	65
4.25	-1	4			. 8	-13	-128	60
4.50	-1	2	.		6	- 9	-114	51
4.74	0	1	:		4	- 6	-103	44
5.18					2	-3	-86	33
5.57	!				1	-2	-75	27
5.80			•		1	-1.	-69	54

TABLE III

Values for the First and Second Derivatives of the Hydrogen-Carbon Potential
in Methane Crystals (Units: dyne x 10⁻⁸ and dyne cm⁻¹ Respectively)

	Rep	ulsive P	otential		Attra	ctive	Elect	rostatio
	de B	oer	Mul	ler	Poten	tial	Poten	tial
R _{ik}	$\frac{\partial V_R}{\partial R_{1k}}$	∂ ² V _R ∂R ² _{1k}	$\frac{\partial V_{R}}{\partial R_{ik}}$	∂²V _{R¹}	$\frac{\partial V_{A}}{\partial R_{1k}}$	o²V _A	$\frac{\partial V_{E}}{\partial R_{ik}}$	a ² V _E
3.06	-143	55 8	-112	517	208	-477	987	-645
3.61	-17	65	-9	40	65	-126	708	-392
3.82	-7	29	-3	15	44	-81	634	- 332
4.09	-3	10	-1	4	27	-47	552	-270
.45	-1	3	• • •		15	-24	467	-210
.68	•	!			11	- 16	421	-180
.84	•				8	-12	393	-162
+.99	•	İ	 				371	-149
5.21	į				•		340	-130
5.29				i			330	-125
5.94	;				•		261	-88

TABLE IV A

Intermolecular Force Constants in Solid Methane* (Units: dyne cm⁻¹)

	Repulsiv	e Forces	Attractive	Electrostatic	Total
Bending Region	de Boer	Muller	Forces	Forces	a) de Boer
					b) Muller
Solid solution shift	1356+92	1400+60	-900-220	1398-1210	a) 414
z	<u>-343-54</u> 1051	<u>-281-39</u> 1140	302+114 -704	-1434+1313 67	b) 503
Solid solution shift	1613+112	1725+68	-1029-263	1467-1255	a) 560
х, у	<u>-317- 53</u> 1355	<u>-258-40</u> 1495	<u>-900</u>	<u>-1399+1292</u> 105	ბ) 700
Crystal shift	1149+92	1244+60	-749-220	1155-1210	a) 468
Z	-317-54 870	<u>-158-39</u> 1107	<u>-593</u>	<u>-1067+1313</u> 191	b) 705
Crystal shift	1116+112	1357+68	-655-263	865-1255	a) 51.
х, у	<u>-310- 53</u> 865	<u>-255-40</u> 1130	<u>253+108</u> - 557	<u>-1159+1292</u> 257	b) 316
Coupling splitting	-425	-381	305	-487	a) - 3
2	206 -219	190 -191	<u>-155</u> 150	551 64	b) 25
Coupling splitting	-208	-273	156	-381	a) 242
х, у	<u> 182</u> -26	151 -122	<u>-156</u> 0	649 268	b) 146

^{*}See footnote in TABLE IV B.

TABLE IV B

Intermolecular Force Constants in Solid Methane* (Units: dyne cm⁻¹)

	Repulsiv	e Forces	Attractive	Electrostatic	Total
Stretching Region	de Boer	Muller	Forces	Forces	a) de Boer
					b) Muller
Solid solution shift	1790+548 -294- 15	2135+502 -227- 8	-1053 - 502 280+ 71	1391-1350 -1436+1307	a) 737
х, у, г	5059	2402	-1204	-88	ь) 1110
Crystal shift	1788+548 -293- 15		-1049-502 268+ 71	1347-1350 -1.198+1307	a) 922
z	2028	2402	-1212	106	ъ) 1296
Crystal shift	1735+548		-984-502 263+ 71	1161-1350 -1282+1307	a) 669
x, y	<u>-283- 15</u> 1985	2377	-1152	-164	ъ) 1061
Coupling splitting	372	-400	243	-376	a) -276
Z	<u>-304</u>	<u>68</u> -332	-51 192	<u>212</u> -164	ъ)-304
Coupling splitting	74	67	-16	-149	a) 190
х, у	25 99	1 <u>2</u> 79	<u>-39</u> -55	295° 146	ъ) 170
			1		

*The four entries are arranged as follows

Upper left: $(\partial^2 V^{HH}/\partial R_{i,j}^2)$ $(\partial R_{i,j}/\partial S)^2$

Lower left: $(\partial V^{HH}/\partial R_{ij})$ $(\partial^2 R_{ij}/\partial S^2)$

Upper right: $(\partial^2 V^{HC}/\partial R_{ik}^2)$ $(\partial R_{ik}/\partial S)^2$

Lower right: $(\partial V^{HC}/\partial R_{ik})$ $(\partial^2 R_{ik}/\partial S^2)$

TABLE V Shifts and Splittings for Various Combinations of the Three Intermolecular Interactions V_R^* , V_A and V_E in Solid Methane (All Entries in cm⁻¹)

		BEI	NDING	REGI	O N	STRET	HING REG	ION
		Solid	Site			Solid		
	Interaction	Solution	Splitting	Coupling	Splitting	Solution	Coupling	Splitting
		Shift				Shift		
		(x;y+z)/2	х,у-г	B ₂ -E ₊	E ₊ -E ₋	(x,y+z)/2	B2-E ₊	EE_
1	$V_R + V_A + V_E$	7.6	2.2	2.6	7•5	2.2	-0.6	1.1
	$V_R + 2V_A + V_E$	-4.9	-0.7	4.4	7•5	-1.4	0.1	0.8
	V _R +V _A +2V _E	8.9	2.8	6.5	15.9	2.0	-0.7	2.0
14	$v_R^{+2}v_A^{+2}v_E$	-3.5	-0.1	8.2	15.9	-1.7	-0.2	1.7
.5	v_{R} + v_{A} + v_{E}	9.4	3.0	4.1	4.5	3.4	-0.7	1.0
6	$V_{R^{\dagger}} + 2V_{A} + V_{E}$	-3.1	0.0	5•9	4.5	-0.3	-0.1	0.7
7	$V_{R} + V_{A} + 2V_{E}$	10.7	3.6	6.4	12.9	3.1	-0.8	1.9
8	$V_{R} + 2V_{A} + 2V_{E}$	-1.8	0.6	9•7	12.9	-0.5	-0.2	1.6
9	$v_R + v_A + v_E / 2$	6.9	1.9	0.8	3.3	2.4	-0.6	0.7
10	$v_R + 2v_A + v_E/2$	-5.5	-1.0	2.5	3.3	-1.3	0.0	0.3
11	$V_{R} + V_A + V_E/2$	8.7	2.7	2.3	0.3	3.5	-0.6	0.6
12	$V_{R} + 2V_{\Lambda} + V_{E}/2$	-3. 8	0.0	4.2	0.3	-0.1	-0.1	0.2
CH4	Observed	0.5	<3	-3.9	4.1	-7.6	<4	<4
CD4	Observed	-3•9	4	-4-3	4.9	-7,2	<4	<4

APPENDIX I

The [U'] Matrix for Molecular Methane

	\$(A ₁ st)	$s(\mathbf{r}_{\mathbf{x}}^{\mathtt{st}})$	s(F _y st)	$S(F_z^{st})$	$s(\mathbf{F}^{\mathrm{bd}}_{\mathbf{x}})$	$s(\mathbf{r}_{\mathbf{y}}^{\mathrm{bd}})$	$S(\mathbf{F}_{\mathbf{z}}^{\mathrm{bd}})$	$S(E_{\mathbf{a}}^{\mathrm{bd}})$	s(E _b bd)	$S(A_1^{bd})$
Δrı	2-1	5_1	5_7	2-1						·
Δr_2	5_1	-2-1	-2"1	2-1			•			
Δr ₃	2-1	5_1	-2-1	-2-1						
Δr ₄	2-1	-5_1	5_1	-2-1						
										·
Δα ₁₂ d					0	0	2-1/2	3-1/2	0	6-1/2
Δα ₃₄ d					0	0	-2-1/2	3-1/2	0	6-1/2
$\Delta \alpha_{13}$ d					2-1/2	0	0	-12-1/	2 -2-1	6-1/2
Δα 24 d	Í				-2-1/2	0	0	-12-1/3	2 -2-1	6-1/2
$\Delta \alpha_{14} d$					0	2-1/2	0	-12-1/	2 2-1	6 - 1/5
Δα ₂₃ d					0	-2-1/2	0	-12-1/	2 2-1	6-1/2

APPENDIX II
The [D] Matrix for Molecular Methane*

Internal Coordi- nates	Normali- zation Factor	Δx ₁	Δу1	Δz ₁	Δx2	Δy <u>2</u>	Δz ₂	Δxs	Δуз	Δzs	Δx4	Δy4	Δz ₄
\r ₁	3-1/2	1	1	1	0	0	0	0	0	0	0	0	0
۵r ₂ ا	3-1/2	0	0	0	-1	-1	1	0	0	0	0	0	0
Δrs	3-1/2	0	0	0	0	0	0	1	-1	-1	0	0	0
Δr ₄	3-1/2	0	0	0	0	0	0	0	0	0	-1	1	-1
Δα ₁₂ d	6-1/2	1	1	-2	-1	-1	-2	0	0	0	0	0	0
Δα ₃₄ d	6-1/2	0	0	0	0	0	0	1	-1	2	-1	ı	2
ρα _{ls} α	6-1/2	-2	ı	1	0	0	0	-2	-1	-1	0	0	0
Δα ₂₄ a	6-1/5	0	0	0	2	-1	1	0	0	0	2	1	-1
Δα ₂₄ α	6-1/2	ı	-2	1	0	0	0	0	0	0	-1	-2	-1
Δα _{ε3} α	6-1/s	0	0	0	-1	5	1	1	2	-1	0	0	0

*Six rows for the conditions of no translation and rotation are omitted; so are the columns for the three coordinates of the carbon atom and one for the redundancy condition.

APPENDIX III

First Derivatives of the Intermolecular Hydrogen Distances in Crystalline Methane*

						or	∂R _{ij} d ⁻¹ or
Neighbor	j	R _{ij}	$\frac{\partial R_{i,j}}{\partial r_i} = \frac{\partial R_{i,j}}{\partial r_j}$	∂R _{1Jd} -1		0.15	0013
Hydrogen	, "	1)	ar _i ar _j	9012	3013	$\frac{\partial R_{1,j}}{\partial \theta, \frac{1}{2}} d^{-1}$	∂R ₁ j _d -1
<u>q4</u>	1	2.77	-0.944 -0.08	3 0.066	-0.312	0.675	0.297
q 3	2	2.77	-0.944 -0.08	3 0.066	0.246	0.675	-0.972
(q-a)3	3	2.77	-0.083 -0.94	4 0.675	-0.972	0.066	0.246
(q-b)4	4	2.77	-0.083 -0.94	4 0.675	0.297	0.066	-0.312
q 2	5	3.13	-0.834 0.24	2 0.552	-0.276	-0.970	0.485
(q-c)2	6	3,13	0.242 -0.83	4 -0.970	0.485	0.552	-0.276
(p+a)2	7	3.13	-0.296 -0.29	6 -0.209	0.912	-0.209	0.912
(p+a)4	8	3.13	-0.296 -0.29	6 -0.703	0.912	-0.703	0.912
(p+b)2	9	3.13	-0.296 -0.29	6 -0.209	-0.703	-0.209	-0.703
(p+b)3	1.0	3.13	-0.296 -0.29	6 -0.703	-0.209	-0.703	-0.209
(p+a+b)2	11	4.06	-0.816 -0.81	6 -0.577	0.289	-0.577	0.289
ql	12	4.13	-0.986 0.98	6 0.169	-0.085	-0.169	0.085
(q-c)l	13	4.13	-0.169 0.16	9 -0.986	0.493	0.986	-0.493
(q-b)1	14	4.13	-0.406 0.40	8 0.577	0.324	-0.577	-0.324
(q-b-c)1	15	4.13	0.408 -0.40	8 -0.577	0.901	0.577	-0.901
(q-a-b)l	16	4.13	0.169 -0.16	9 0.986	-0.493	-0.986	0.493
(q-a-b-c)1	17	4.13	0.986 -0.98	6 -0.169	0.085	0.169	-0.085
(q-a)1	18	4.13	-0.408 0.40	8 0.577	-0.901	-0.577	0.901
(q-a-c)1	19	4.13	0.408 -0.40	8 -0.577	-0.324	0.577	0.324
(p+a)1	20	4.13	-0.577 0.57	7 -0.408	0.816	0.408	-0.816
(p-b)1	21	4.13	0.577 -0.57	7 0.408	0.408	-0.408	-0.408
(p-a)1	22	4.13	0.577 -0.57	7 0.408	-0.816	-0.408	0.816
(p+b)l	23	4.13	-0.577 0.57	7 -0.408	-0.408	0.408	0.408

APPENDIX III (Continued)

First Derivatives of the Intermolecular Hydrogen Distances in Crystalline Methane*

Neighbor			$\frac{\partial R_{ij}}{\partial r_i} = \frac{\partial R_{ij}}{\partial r_i}$	^{∂R} ij _d -1	^{∂R} 1j _d -1	$\frac{\partial R_{1j}}{\partial \theta_{12}} d^{-1}$ or	$\frac{\partial R_{1,1}}{\partial \theta_{1,3}} a^{-1}$ or
Hydrogen	j	R _{ij}	$\frac{\partial R_{ij}}{\partial r_i} \frac{\partial R_{ij}}{\partial r_j}$	9015	<u>θθ13</u>	$\frac{\partial R_{i,j}}{\partial \theta_{i,j}} d^{-1}$	$\frac{\partial R_{1j}}{\partial \theta \dot{z}_4} d^{-1}$
(q-b)3	24	4.25	-0.054 0.507	0.439	0.557	0.836	-0.237
(q-a)4	25	4.25	-0.054 0.507	0.439	-0.996	0.836	-0.599
(q-a-b)3	26	4.25	0.507 -0.054	0.836	-0.237	0.439	0.557
(q-a-b)4	27	4.25	0.507 -0.054	0.836	-0.599	0.439	-0.996
(q-b)2	28	4.50	-0.051 0.699	0.759	0.182	-0.301	0.712
(q-b-c)2	29	4.50	0.699 -0.051	-0.301	0.712	0.759	0.182
(q-a)2	3 0	4.50	-0.051 0.699	0.759	-0.941	-0.301	-0.411
(q-a-c)2	31	4.50	0.699 -0.051	-0.301	-0.411	0.759	-0.941
(p+a)3	3 2	4.50	-0.206 0.854	-0.489	0.979	0.260	-0.520
(p+b)}	33	4.50	-0.206 0.854	-0.489	-0.489	0.260	0.260
(p-a)3	34	4.50	0.854 -0.206	0.260	-0.520	-0.489	0.979
(p-b)4	35	4.50	0.854 -0.206	0.260	0.260	-0.489	-0.489
(q-c)3	3 6	4.73	0.161 0.664	-0.969	0.647	-0.613	-0.065
(q-c)4	37	4.73	0.161 0.664	-0.969	0.322	-0.613	0.678
(q-b-c)4	38	4.73	0.664 0.161	-0.613	0.678	-0.969	0.322
(q-a-c)	39	4.73	0.664 0.161	-0.613	-0.065	-0.969	0.647
(p+a+b)3	40	5.18	-0.639 0.281	-0.750	0.524	-0.099	-0.777
(p+a+b)4	1+1	5.18	-0.639 0.281	-0.750	0.225	-0.099	0.376
(p+a-b)4	42	5.18	0.281 -0.639	-0.099	0.876	-0.750	0.225
(p-a+b)3	43	5.18	0.281 -0.639	-0.099	-0.777/	-0.750	0.524
(p-a)2	44	5.54	0.694 0.694	0.491	-0.702	0.491	-0.702
(p-b)2	45	5.54	0.694 0.694	0.491	0.211	0.491	0.211
(p-a)4	46	5•54	0.694 0.694	0.211	-0.702	0.211	-0.702
(p-b)3	47	5.54	0.694 0.694	0.211	0.491	0.211	0.491

APPENDIX III (Continued)

First Derivatives of the Intermolecular Hydrogen Distances in Crystalline Methane*

							7. D	20
Neighbor			∂R, ,	∂R, ,	∂R ₁₁	∂R danda-1	$\frac{\partial R_{ij}}{\partial \theta Iz} d^{-1}$ or	$\frac{\partial R_{1j}}{\partial \theta \mid s} d^{-1}$ or
Hydrogen	j	R _{ij}	∂r _i	ar _j	∂R ij _d -1 ∂θ ₁₂	3013 ^d	$\frac{\partial R_{1,j}}{\partial \theta \dot{\theta} \dot{\theta}} d^{-1}$	$\frac{\partial R_{1j}}{\partial \theta_{24}} d^{-1}$
(q-a-b)2	48	5.54	0.390	0.998	0.921	-0.461	0.060	-0.030
(q-a-b-c)2	49	5.54	0.998	0.390	0.060	-0.030	0.921	-0.461
(q+a)4	50	5.60 -	0.893	-0.466	-0.269	0.447	0.033	0.749
(q+b)3	51	5.60 -	0.893	-0.466	-0.269	-0.179	0.033	-0.782
(q+a-b)14	52	5.60 -	0.466	-0.893	0.033	0.749	-0.269	0.447
(q-a+b)3	53	5.60 -	0.466	-0.893	0.033	-0.782	-0.269	-0.179
(q-b-c)3	54	5•73	0.549	0.965	-0.506	0.829	-0.212	0.241
(q-a-b-c)3	55	5.73	0.965	0.549	-0.212	0.241	-0.506	0.829
(q-a-b-c)4	56	5•73	0.965	0.549	-0.212	-0.029	-0.506	-0.323
(q-a-c)4	57	5•73	0.549	0.965	-0.506	-0.323	-0.212	-0.029
(q+b)2	5 8	5•79 -	0.863	-0.281	0.007	-0.441	-0.316	-0.029
(q+a)2	59	5•79 -	0.863	-0.281	0.007	0.434	-0.816	0.845
(q+b-c)2	60	5•79 -	0.281	-0.363	-0.816	-0.029	0.007	-0.441
(q+a-c)2	61	5.79 -	0.281	-0.863	-0.816	0.845	0.007	0.434
(p+a+b)1	62	5.84 -	0.816	0.816	-0.577	0.289	0.577	-0.289
(p+a-b)1	63	5.84	0	0	0	0.866	0	-0.866
(p-a-b)1	64	5.84	0.816	-0.816	0.577	-0.289	-0.577	0.289
(p=a+b)1	65	5.84	0	0	0	-0.866	0	0.866
+(p-c)1	66	5.84	0.577	-0.577	-0.816	0.408	0.816	-0.408
+(p+c)1	67	5.84 -	0.577	0.577	0.816	-0.408	-0.816	0.408
+(p+c)3	68	4,75 -	0.403	-0.403	0.896	-0.285	0.896	-0.285
+(p+c)4	69	4.75 -	0.403	-0.403	0.896	-0.611	0.896	-0.611

^{*} Δr_j and $\Delta \theta d$ are normal displacements of atom pl, while Δr_j and $\Delta \theta$ d are normal displacements of hydrogens in neighboring molecules. +not indicated in Figure 2

APPENDIX IV
Second Derivatives of the Intermolecular Hydrogen Distances in Crystalline Methane*

					-		
Neighbor		∂²R.,	∂²R.,	∂ ² R	∂ ² R112	32R _{1,1} d-2 or	θ ² R _{ij} d ⁻² or
Hydrogen	j	dr _i ²	$\frac{1j}{\partial \mathbf{r_i} \partial \mathbf{r_j}}$	<u>θθίε</u>	9013 d 2	$\frac{\partial^2 R_{ij}}{\partial \theta_{12} \partial \theta_{34}^2} d^{-2}$	3811 d-2
q14	1	0.039	0.092	0.360	0.326	0.225	0.274
93	2	0.039	0.092	0.360	0.339	0.225	-0.034
(q-a)3	3	0.359	0.092	0.197	0.020	0.225	-0.034
(q-a)4	4	0.359	0.092	0.197	0.330	0 .2 25	0.274
q 2	5	0.097	0.171	0.222	0.295	0.065	0.255
(q-c)2	6	0.300	0.171	0.019	0.244	0.065	0.255
(p+a)2	7	0.291	0.078	0.305	0.054	-0.120	-0.053
(p+a)4	8	0.291	0.078	0.162	0.054	0.055	-0.053
(p+b)2	9	0.291	0.078	0.305	0.162	-0.120	0.055
(p+b)3	10	0.291	0.078	0.162	0.305	0.055	-0.120
(p+a+b)2	11	0.082	-0.082	0.164	v . 226	-0.164	0.144
ql	12	0.007	-0.007	0.235	0.240	-0.235	-0.240
(q-c)l	13	0.235	-0.235	0.007	0.183	-0.007	-0.183
(q-b)1	14	0.202	-0.202	0.162	0.217	-0.162	-0.217
(q-b-c)l	15	0.202	-0.202	0.162	0.046	-0.162	-0.046
(q-a-b)1	16	0.235	- 0.235	0.007	0.183	-0.007	-0.183
(q-a-b-c)1	17	0.007	-0.007	0.235	0.240	-0.235	-0.240
(q-a)1	1.8	0.202	-0.202	0.162	0.046	-0.162	-0.046
(q-a-c)1	19	0.202	-0.202	0.162	0.217	-0.162	-0.217
(p+a)1	2 0	0.162	-0.162	0.202	0.081	-0.202	-0.081
(p-b)l	21	0.162	-0.162	0.202	0.202	-0.202	-0.202
(p-a)l	22	0.162	-0.162	0.202	0.081	-0,202	-0.081
(b+p)1	23	0.162	-0.162	0.202	0.202	-0.202	-0.202

APPENDIX IV (Continued)
Second Derivatives of the Intermolecular Hydrogen Distances in Crystalline Methane*

become be	TIVA	63. V G B O J	t the Int	ermorecu (a	ir nyuroger	Distances in Cry	stalline Methane*
Neighbor		∂ ² R; ,	∂²R,,	∂ ² R,	o ² Rijd-2	32R _{1J} d ² 2 or	^{θ2} R _{1,1} d ⁻² or
Hydrogen	j	ਹਿਤੂ ਹਿਤੂ	ər _i ər _j	∂θ12 ∂θ12	9013	$\frac{\partial^2 R_{ij}}{\partial \theta_{12} \partial \theta_{34}} d^{-2}$	$\frac{\partial^2 R_{1,1}}{\partial \theta_{1,3} \partial \theta_{2,4}} d^{-2}$
(q-b)3	24	0.234	0.085	0.190	0.162	0.070	-0.047
(q-a)4	25	0.234	0.085	0.190	0.002	0.070	0.016
(q-a-b)3	26	0.175	0.085	0.071	0.222	0.070	-0.047
(q-a-b)4	27	0.175	0.085	0.071	0.151	0.070	0.016
(q-b)2	28	0.222	0.082	0.094	0.215	-0.058	0.119
(q-b-c)2	29	0.114	0.082	0.202	0.110	-0.058	0.119
(q-a)2	30	0.222	0.082	0.094	0.026	-0.058	0.062
(q-a-c)2	51	0.114	0.082	0.202	0.185	- 0.058	0.062
(p+a)3	32	0.213	0.113	0.169	0.009	0.177	0.039
(p+b)4	33	0.213	0.113	0.169	0.169	0.177	0.177
(p-a)3	34	0.060	0.113	0.207	0.162	0.177	0.039
(p-b)4	35	0.060	0.113	0.207	0.207	0.177	0.177
(q-c)3	36	0.206	0.042	0.019	0.123	0.015	-0.062
(q-c)4	37	0.206	0.042	0.014	0.189	0.015	0.095
(d-p-c)/t	38	0.118	0.042	0.139	0.114	0.015	0.095
(q-a-c)3	39	0.118	0.042	0.139	0.210	0.015	-0.062
(p+a+b)3	40	0.114	0.099	0.084	0.140	0.114	0.014
(р+а+ъ)4	41	0.114	0.099	0.084	0.183	0.114	0.091
(p+a-b)4	115	0.178	0.099	0.191	0.045	- 0.114	0.091
(p-a+b)3	43	0.178	0.099	0.191	0.076	0.114	0.014
(p-a)2	44	0.094	-0.027	0.137	0.092	-0.103	0.031
(p-b)2	45	0.094	-0.027	0.137	0.172	-0.103	0.112
(p-a)4	46	0.094	-0.027	3.172	0.092	0.112	0.031
(p-b)3	47	0.094	-0.027	0.172	0.137	0.112	-0.103

APPENDIX IV (Continued)
Second Derivatives of the Intermolecular Hydrogen Distances in Crystalline Methane*

Neighbor	j	ار آ محک	$\frac{\partial^2 R_{ij}}{\partial r_i \partial r_j}$	02R 11d-2	o ² R _{ijd} -2	$\frac{\partial^2 R_{ij}}{\partial \theta_{12} \partial \theta_{12}} d^{-2} \text{ or }$	$\frac{\partial^2 R_{i,j}}{\partial \theta_{13} \partial f_3} d^{-2} \text{ or }$ $\frac{\partial^2 R_{i,j}}{\partial \theta_{13} \partial f_3} d^{-2}$
Hydrogen		~ i	-1°-j		~13	1j 0θ120θ34	θ ₁₃ δθ ₂₄
(q-a-b)2	48	0.153	-0.010	0.027	0.142	-0.070	0.118
(q-a-b-c)2	49	0.001	-0.010	0.180	0.180	-0.070	0.118
(n+a)4	50	0.036	-0.015	0.166	0.143	0.121	0.059
(q+b)3	51	0.036	-0.015	0.166	0.173	0.121	0.070
(q+a-b)4	52	0.140	-0.015	0.178	0.078	0.121	0.059
(q-a+b)3	53	0.140	-0.015	0.178	0.069	0.121	0.070
(q-b-c)3	54	0.122	-0.034	0.130	0.054	0.098	-0.093
(q-a-b-c)3	55	0.012	-0.034	0.167	0.073	0.098	-0.093
(q-a-b-c)4	56	0.012	-0.034	0.167	0.174	0.098	0.115
(q-a-c)4	57	0.122	-0.034	0.130	0.156	0.098	0.115
2(d+p)	58	0.044	0.016	0.173	0.139	-0.056	0.113
(q+a)2	59	0.044	0.016	0.173	0.140	-0.056	0.052
(q+b-c)2	60	0.159	0.016	0.058	0.173	-0.056	0.113
(q+a-c)2	61	0.159	0.016	0.058	0.049	-0.056	0.052
(p+a+b)1	б2	0.057	-0.057	0.114	0.157	-0.114	-0.157
(p+a-b)1	63	0.171	-0.171	0.171	0.043	-0.171	-0.043
(p-a-b)1	64	0.057	-0.057	0.114	0.157	-0.114	-0.157
(p-a+b)1	65	0.171	-0.171	0.171	0.043	-0.171	-0.043
-(p-c)l	66	0.114	-0.114	0.057	0.143	-0.057	-0.143
-(p+c)l	67	0.114	-0.1114	0.057	0.143	-0.057	-0.143
+(p+c)3	68	0.176	0.036	0.041	0.194	-0.029	-0.087
+(p+c) ¹ +	69	0.176	0.036	0.041	0.132	-0.029	0.062

^{*} Λr_i and $\Delta \theta d$ are normal displacements of atom pl, while Δr_i and $\Delta \theta d$ are normal displacements of hydrogens in neighboring molecules. +not indicated in Figure 2.

Shifts and Splittings for Various Combinations of the Three Intermolecular Interactions V_R^* , V_A and V_E in Solid Methane (All Entries in cm⁻¹)

n A B									
		BE	DING	REGI	O N	STRETCHING REGION			
		Solid	Site			Solid			
	Interaction	Solution	Splitting	Coupling	Splitting	Solution	Coupling	Splitting	
		Shift				Shift			
		(x,y+z)/2	x,y-z	B2-E	EE_	(x,y+z)/2	B2-E.	EE_	
				- +	* -		- +	+ -	
1	$v_R^+v_A^-+v_E^-$	7.6	2.2	2.6	7•5	2.2	-0.6	1.1	
2	$v_R^{+2}v_A^{+}v_E$	-4.9	-0.7	4.4	7•5	-1.4	0.1	0.8	
3	$v_R^{+}v_A^{+}2v_E^{-}$	8.9	2.8	6.5	15.9	2.0	-0.7	2.0	
4	$v_R^{+2}v_A^{+2}v_E$	-3•5	-0.1	8.2	15.9	-1.7	-0.2	1.7	
5	$v_R + v_A + v_E$	9.4	3.0	4.1	4.5	3.4	-0.7	1.0	
6	$V_{R^{\dagger}} + 2V_{A} + V_{E}$	-3.1	0.0	5•9	4.5	-0.3	-0.1	0.7	
7	$V_{R^{\dagger}} + V_{A} + 2V_{E}$	10.7	3. 6	6.4	12.9	3.1	-0.8	1.9	
8	v _R ,+2v _A +2v _E	-1.8	0.6	9•7	12.9	O _• 5	-0.2	1.6	
9	$V_R + V_A + V_E / 2$	6.9	1.9	0.8	3-3	2.4	-0.6	0.7	
10	$v_R + 2v_A + v_E/2$	-5•5	-1.0	2.5	3.3	-1.3	0.0	0.3	
11	$V_{R} + V_{A} + v_{E}/2$	8.7	2.7	2.3	0.3	3.5	-0.6	0.6	
12	V _{R1} +2V _A +V _E /2	-3.8	0.0	4.2	0.3	-0.1	-0.1	0•2	
CH4	Observed	0.5	<3	-3.9	4.1	-7.6	<4	<4	
CD4	Observed	-3.9	a	-4-3	4.9	-7.2	<4	<4	
	•	•						•	

j	R _{ij}	Туре	STRETCH x, y, z	BEND z	BEND x, y
1 - 4	2.77	ď	1.796	0.920	1.191
5 - 10	3.13	p,q	1.107	2.322	2.513
11	4.06	p	0.666	0.333	0.084
12 - 23	4.13	p,q	4.000	4.000	4.000
24 - 27	4.25	q	0.520	1.783	1.717
28 - 35	4.50	p,q	2.526	1.948	3.129
36 - 39	4.73	q	0.934	2.630	0.987
40 - 43	5.18	p	0.974	1.146	1.697
44 - 49	5.54	p,q	3.066	1.424	1.485
50 - 53	5.60	q	2.028	0.146	1.405
54 - 57	5.73	q	2.464	0.602	1.373
58 - 61	5.79	q	1.648	1.332	1.097
62 - 67	5.84	p	2.000	2.000	2.000
68 - 69	4.75	р	0.324	1.606	0.454

^{*}In each case the summation is extended over all terms for which $|R_{ij}|$ are equal.

j	R ₁ j	Type of molecule	STRETCH Z	STRETCH x, y	BEND z	BEND x, y
7 - 10	3.13	р	0	-0.175	-0.901	-2.114
11	4.06	p	0.666	-0.666	0.333	-0.084
20 - 23	4.13	p	-1.333	-1.333	-0.666	-1.667
32 - 3 5	4.50	p	0.704	0	0.509	-0.764
40 - 43	5.18	p	0.718	0	-0.297	-1.208
44 - 47	5.54	p	0	-0.963	0.393	-1.271
62 - 67	5.84	p	-2.000	-2.000	-2.000	-2.000
68 - 69	4.75	p	-0.325	o	-1.606	-0.292
1 - 4	2.77	q	-0.313	· O	-0.178	-0.293
5 - 6	3.13	q	-0.404	0.404	-1.070	0.267
12 - 19	4.13	Q	-2.667	-2.667	-3.333	-2.333
24 - 27	4.25	q	0.055	0	1.468	-1.457
28 - 31	4.50	q	-0.143	0.143	-0.914	-1.033
36 - 3 9	4.73	q	-0.429	O	-2.376	-1.041
48 - 49	5.54	q	0.778	-0.778	0.111	-0.027
50 - 53	5.60	q	-1.665	o	0.036	-0.399
54 - 57	5.73	q	-2.119	0	-0.429	0.380
58 - 61	5.79	q	0.970	-0.970	0.023	-0.759

In each case the summation is extended over all terms for which $|R_{i,j}|$ are equal; where necessary sums for p and q type molecules are given separately.

j	R _{ij}	Type of Molecule	STRETCH x, y, z	BEND z·	BEND x, y	-
1 - 4	2.77	q	0.796	1.114	1.015	-
5 - 10	3.13	p,q	1.561	1.175	1.114	
11	4.06	p	0.082	0.164	0.226	
12 - 23	4.13	p,q	1.940	1.940	1.940	
24 - 27	4.25	q	0.818	0.522	0.537	
28 - 35	4.50	p,q	1.218	1.344	1.083	
36 - 3 9	4.73	q	0.648	0.388	0.962	
40 - 43	5.18	p	0.584	0.550	0.444	
144 - 49	5.54	p,q	0.530	0.825	0.815	
50 - 53	5.60	ď	0.352	0.688	0.463	
54 - 57	5.73	q	0.268	0.594	0.457	
58 - 61	5.79	q	0.406	0.462	0.501	
62 - 67	5.84	p	0.684	0.684	0.684	
68 - 69	4.75	p	0.352	0.082	0.326	

^{*} In each case the summation is extended over all terms for which $\left|R_{i,j}\right|$ are equal.

j	R _{ij}	Type of molecule	STRETCH z	STRETCH x, y	BEND z	BEND x, y
7 - 10	3.13	р	0	-0.156'	-0.350	-0.069
11	4.06	р	-0.082	0.082	-0.164	-0.144
20 - 23	4.13	р	-0.644	-0.644	-0.808	-0.566
32 - 35	4.50	р	-0.452	O ·	-0.708	-0.276
40 - 43	5.18	р	-0.396	0	-0.456	-0.154
44 - 47	5.54	p	0	0.054	-0.430	-0.277
62 - 67	5.84	P	-0.684	-0.684	-0.684	-0.684
68 - 69	4.75	p	-0.072	0	0.058	-0.149
1 - 4	2.77	đ	-0.368	0	-0.900	-0.616
5 - 6	3.13	q	0.342	-0.342	0.130	-0.510
12 - 19	4.13	q	-1.292	-1.292	-1.128	-1.372
24 - 27	4.25	Р	-0.340	0	-0.280	-0.126
28 - 31	4.50	q	0.328	-0.328	-0.232	-0.362
36 - 39	4.73	q	-0.168	0	-0.060	-0.314
48 - 49	5.54	q	-0.020	0.020	-0.140	-0.236
50 - 53	5.60	q	0.060	0	-0.484	0.022
54 - 57	5.73	q	0.136	0	-0.392	-0.416
58 - 61	5.79	đ	0.064	-0.064	-0.224	-0.330

In each case the summation is extended over all terms for which $|R_{i,j}|$ are equal; where necessary sums for p and q type molecules are given separately.

Captions for the Figures

Figure 1 A. The absorption spectra of the low-temperature phase II of crystalline CH_4 and CD_4 in the v_3 and v_4 regions.

Figure 1 B. The absorption spectra in the v_4 region of 2 $^{\circ}$ /o solutions of both isotopic species taken in phase II of the solvent species. The numbers inside the bands indicate the line width in cm⁻¹.

Figure 2. Schematic representation of the D²_{2d} crystal structure suggested for methane in phase II. The carbon atoms of type q molecules (indicated by a circle at the carbon atom) are 1/2 unit cell above or below plane of figure. Two edges of each tetrahedron are parallel to figure plane; the upper edge is shown as a solid line.

One face of the crystallographic unit cell (f.c.c.) is formed by the five molecules q, $q\pm a$, $q\pm b$. The primitive unit cell contains just the molecules p and q.

The lattice constant in the f.c.c. cell is h = 5.84 A. In the tetragonal unit cell the lattice constants are

$$c = h = 5.84$$
 A and $a = b = h.2^{-1/2} = 4.13$ A

The intermolecular hydrogen contacts to atom pl for which $R_{ij} < 6A$ are indicated in the Figure. Hydrogens belonging to molecules q which are below plane of figure are marked with a circle.

$R_{f} = 2.77 A$	$R_1 = 4.25 A$	$R_{s} = 5.54 A$
$R_g \approx 3.13 A$	$R_{\rm m} = 4.50 \text{ A}$	$R_t = 5.60 A$
$R_h = 4.06 A$	$R_n = 4.73 A$	$R_{u} = 5.73 \text{ A}$
$R_{k} = 4.13 A$	$R_o = 5.18 A$	$R_{v} = 5.79 A$
		$R_{\rm cr} = 5.84 \text{ A}$

FIGURE 2.