

Oleksandr Tarasov (Matrikelnumer: 12310556)

Assignment 1

submitted to Deep Learning [708219,708220,INP31875UF]

Supervisors Özdenizci Ozan

1 Maximum Likelihood Estimation

Consider a classification problem with two classes C_0 and C_1 . For each class C_k , the samples come from a d-dimensional Gaussian distribution with mean vector μ_k and a covariance matrix $\Sigma_k = \sigma_k^2 I_d$, where I_d is the $d \times d$ identity matrix and $\sigma_k \in R^+$. probability of data point vector x conditioned on class k equals:

$$p(x|C_k) = \frac{1}{\sqrt{(2\pi)^d |\Sigma_k|}} \exp\left(-\frac{1}{2}(x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k)\right)$$

Hint: $|\Sigma_k|$ is the determinant of $\Sigma_k = \sigma_k^2 I_d$, and equals σ_k^{2d} .

Your training set consists of samples $X = \langle x^{(1)}, \dots, x^{(n)} \rangle$, where the data points $x^{(m)} \in \mathbb{R}^d$ i.i.d. You have the corresponding binary targets $t = \langle t^{(1)}, \dots, t^{(n)} \rangle$ with $t^{(m)} \in \{0, 1\}$, which indicates the class of the input sample (i.e., $t^{(m)} = 1$ indicates class C_1). You will fit a parameterized model for the data-generating distribution:

$$p(X,t|\theta) = p(t|\theta) \times p(X|t,\theta)$$

Your model includes a prior probability for the occurrence of each class, where class C_0 occurs with probability $P(C_0) = p_0$ and class C_1 occurs with probability $P(C_1) = 1 - p_0$. The parameters of your model are $\theta = \langle p_0, \mu_0, \mu_1, \sigma_0, \sigma_0 \rangle$.

1.1 a

Write the likelihood $p(x^{(m)}, t^{(m)}|\theta)$ of a single example $x^{(m)}, t^{(tm)}$. Accordingly, write the likelihood $p(X, t|\theta)$ of the whole training set X, t and then use this to derive the log-likelihood of the training set.

The probability of a data point conditioned on class:

$$\begin{split} p(x^{m}|C_{t^{m}}) &= \mathcal{N}(x^{m}; \mu_{t^{m}}, \Sigma_{t^{m}}) = \\ &= \frac{1}{\sqrt{(2\pi)^{d}|\Sigma_{t^{m}}|}} \exp\left(-\frac{1}{2}(x - \mu_{t^{m}})^{T} \Sigma_{t^{m}}^{-1}(x - \mu_{t^{m}})\right) = \\ &= \frac{1}{\sqrt{(2\pi)^{d}|\sigma_{t^{m}}^{2d}I|}} \exp\left(-\frac{1}{2}(x - \mu_{t^{m}})^{T}(\sigma_{t^{m}}^{2}I)^{-1}(x - \mu_{t^{m}})\right) \end{split}$$

Considering the fact that we have class labels of the data and $t \in \{0, 1\}$:

$$\begin{split} p(x^{m}, t^{m} = 0 | \theta) &= p(t^{m} = 0 | \theta) p(x^{m} | t^{m} = 0, \theta) \\ &= p_{0} \times \mathcal{N}(x^{m}; \mu_{0}, \Sigma_{0}) \\ p(x^{m}, t^{m} = 1 | \theta) &= p(t^{m} = 1 | \theta) p(x^{m} | t^{m} = 1, \theta) \\ &= (1 - p_{0}) \times \mathcal{N}(x^{m}; \mu_{1}, \Sigma_{1}) \\ p(x^{m}, t^{m} | \theta) &= [p_{0} \times \mathcal{N}(x^{m}; \mu_{0}, \Sigma_{0})]^{(1 - t^{m})} [(1 - p_{0}) \times \mathcal{N}(x^{m}; \mu_{1}, \Sigma_{1})]^{t^{m}} \end{split}$$

The likelihood of a single point (x^m, t^m) :

$$\mathcal{L}(\boldsymbol{\theta}) = p(x^m, t^m | \boldsymbol{\theta})$$

The likelihood of the whole dataset (X, t):

$$\mathcal{L}(\boldsymbol{\theta}) = \prod_{m=1}^{N} p(\boldsymbol{x}^{m}, t^{m} | \boldsymbol{\theta})$$

The negative log-likelihood(NLL):

$$\begin{aligned} NLL(\theta) &= -\sum_{m=1}^{N} \log p(x^{m}, t^{m} | \theta) = \\ &= -\sum_{m=1}^{N} \left[(1 - t^{m}) (\log p_{0} + \log \mathcal{N}(x^{m}; \mu_{0}, \Sigma_{0}) + t^{m} (\log (1 - p_{0}) + \log \mathcal{N}(x^{m}; \mu_{1}, \Sigma_{1}))) \right] \end{aligned}$$

1.2 b

Derive the maximum likelihood estimate of $\mu 1$ for this model.

$$\hat{\theta}_{MLE} = \underset{\theta}{\operatorname{argmin}} \ NLL(\theta)$$

$$\frac{\partial NLL(\theta)}{\partial \mu_1} = 0$$

$$\frac{\partial \left[-\sum_{m=1}^{N} t^m \log \mathcal{N}(x^m; \mu_1, \Sigma_1) \right]}{\partial \mu_1} = 0$$

Let N_1 bet the number of data points from the first class($t^m = 1$):

$$\frac{\partial \left[-\sum_{m=1}^{N} t^{m} \log \mathcal{N}(x^{m}; \mu_{1}, \Sigma_{1})\right]}{\partial \mu_{1}} = \frac{\partial \left[-\sum_{m=1}^{N_{1}} \log \mathcal{N}(x^{m}; \mu_{1}, \Sigma_{1})\right]}{\partial \mu_{1}} = 0$$

Let's consider the derivative of the log $\mathcal{N}(x^m; \mu_1, \Sigma_1)$ expression:

$$\begin{split} \frac{\partial \log \mathcal{N}(\boldsymbol{x}^{m};\boldsymbol{\mu}_{1},\boldsymbol{\Sigma}_{1})}{\partial \boldsymbol{\mu}_{1}} &= \frac{\partial \left[-\frac{1}{2} \log((2\pi)^{d} |\boldsymbol{\Sigma}_{1}|) - \frac{1}{2} (\boldsymbol{x}^{m} - \boldsymbol{\mu}_{1})^{T} \boldsymbol{\Sigma}_{1}^{-1} (\boldsymbol{x}^{m} - \boldsymbol{\mu}_{1}) \right]}{\partial \boldsymbol{\mu}_{1}} \\ &= \frac{\partial \left[-\frac{1}{2} (\boldsymbol{x}^{m} - \boldsymbol{\mu}_{1})^{T} \boldsymbol{\Sigma}_{1}^{-1} (\boldsymbol{x}^{m} - \boldsymbol{\mu}_{1}) \right]}{\partial \boldsymbol{\mu}_{1}} \qquad \left(\boldsymbol{z}_{m} = (\boldsymbol{x}^{m} - \boldsymbol{\mu}_{1}), \frac{\partial \boldsymbol{z}^{m}}{\partial \boldsymbol{\mu}_{1}} = -I \right) \\ &= \frac{\partial}{\partial_{m}} \left(\boldsymbol{z}_{m}^{T} \boldsymbol{\Sigma}_{1}^{-1} \boldsymbol{z}_{m} \right) \frac{\partial \boldsymbol{z}^{m}}{\partial \boldsymbol{\mu}_{1}} \\ &= -2 \boldsymbol{\Sigma}_{1}^{-1} \boldsymbol{z}_{m} \\ &= -2 \boldsymbol{\Sigma}_{1}^{-1} (\boldsymbol{x}^{m} - \boldsymbol{\mu}_{1}) \end{split}$$

Then the whole expression:

$$\frac{\partial \left[-\sum_{m=1}^{N_1} \log \mathcal{N}(x^m; \mu_1, \Sigma_1)\right]}{\partial \mu_1} = 0$$

$$-\sum_{m=1}^{N_1} \left[-2\Sigma_1^{-1}(x^m - \mu_1)\right] = 0$$

$$2\Sigma_1^{-1} \sum_{m=1}^{N_1} x^m - 2N_1\Sigma_1^{-1}\mu_1 = 0$$

$$\mu_1 = \frac{\sum_{m=1}^{N_1} x^m}{N_1}$$

So the MLE estimation for the μ_1 is the mean of all data points that are related to C_1 class.

1.3 c

Derive the maximum-likelihood estimate of p_0 for this model.

$$\frac{\partial NLL(\theta)}{\partial p_0} = 0$$

$$\frac{\partial \left[-\sum_{m=1}^{N} (1 - t^m) \log p_0 + t^m \log (1 - p_0) \right]}{\partial p_0} = 0$$

$$-\sum_{m=1}^{N} \left[\frac{1 - t^m}{p_0} - \frac{t^m}{1 - p_0} \right] = 0$$

$$-\sum_{m=1}^{N} \left[1 - p_0 - t^m + p_0 t^m - p_0 t^m \right] = 0$$

$$\sum_{m=1}^{N} t^m + N p_0 - N = 0$$

$$p_0 = 1 - \frac{\sum_{m=1}^{N} t^m}{N}$$

1.4 d

Let's say we are interested in classifying samples by minimizing expected loss, where the loss matrix L will be expressed as:

$$L = \begin{bmatrix} 0 & 20 \\ 1 & 0 \end{bmatrix}$$

Firstly, using Bayes' rule, express $p(C_0|x)$ and $p(C_1|x)$ in terms of p_0 . Then use these to derive an expression for the loss, for each possible classification outcome (i.e., correct C_0 , correct C_1 , false C_0 , false C_1).

Let's first consider the Bayes' rule:

$$\begin{split} p(C_0|x) &= \frac{p(x|C_0)p(C_0)}{P(x)} \\ &= \frac{p(x|C_0)p(C_0)}{p(x|C_0)p(C_0) + p(x|C_1)p(C_1)} \\ &= \frac{p_0\mathcal{N}(x,\mu_0,\Sigma_0)}{p_0\mathcal{N}(x,\mu_0,\Sigma_0) + (1-p_0)\mathcal{N}(x,\mu_1,\Sigma_1)} \\ p(C_1|x) &= \frac{(1-p_0)\mathcal{N}(x,\mu_1,\Sigma_1)}{p_0\mathcal{N}(x,\mu_0,\Sigma_0) + (1-p_0)\mathcal{N}(x,\mu_1,\Sigma_1)} \end{split}$$

Let's define losses:

$$\begin{split} Loss(correct \ C_0) &= L_{1,1} P(C_0|x) = 0 \times P(C_0|x) \\ Loss(correct \ C_1) &= L_{2,2} P(C_1|x) = 0 \times P(C_1|x) \\ Loss(false \ C_0) &= L_{2,1} P(C_0|x) \\ &= 1 \times \frac{p_0 \mathcal{N}(x, \mu_0, \Sigma_0)}{p_0 \mathcal{N}(x, \mu_0, \Sigma_0) + (1 - p_0) \mathcal{N}(x, \mu_1, \Sigma_1)} \\ Loss(false \ C_1) &= L_{1,2} P(C_1|x) \\ &= 20 \times \frac{(1 - p_0) \mathcal{N}(x, \mu_1, \Sigma_1)}{p_0 \mathcal{N}(x, \mu_0, \Sigma_0) + (1 - p_0) \mathcal{N}(x, \mu_1, \Sigma_1)} \end{split}$$