

Team Monba ETC3250 Project

Methodology

- 1. Partitioning: 80/20 split of training data.
- 2. Sample Code: Used to establish a baseline.
- 3. Visualisation: Investigating most important variables from random forest model.

Correlation Plot

Parallel Coordinates Plot

Methodology

- **4. Model Selection:** XGBoost used for final model.
- 5. Feature Engineering:
 - rally.calc = rally shotinrally
 - $rally.prop = \frac{rally-shotinrally}{rally}$
 - $\overline{}$ speed.calc = speed previous.speed
- **6. Tuning:** Final parameters:

max_depth	min_child_weight	gamma	subsample	colsample_bytree	eta (learning rate)
6.000	1.000	0.000	0.975	1.000	0.200

<u>Results</u>

Model	Score
QDA	0.77963
SVM	0.81706
Random Forest	0.90864
Boost	0.90916
XGBoost	0.91867
XGBoost (with features)	0.92104
XGBoost (with features and tuning)	0.92349

Kaggle Public Scores for Different Models

<u>Improvements</u>

- Data preparation: More time spent cleaning and filtering dataset.
- Alternative models and software: Neural networks, TensorFlow, other boosting algorithms (AdaBoost, Gradient Boosting).
- Feature engineering is key:
 - Further investigation into additional, highly significant variables.
 - Exploration into automatic feature engineering using deep feature synthesis and other automation methods.