GUÍA DE FUNCIONES

- Dada la función $f: \mathbb{R} \{1\} \xrightarrow{x} \mathbb{R}$ $x \xrightarrow{\frac{x-1}{x+1}}$ 1.
 - a) Calcule y simplifique: f(2); $f(a^2 + 1)$; f(f(x)); f(f(f(x)))
 - b) Verifique o refute: f(x + y) = f(x) + f(y)
 - c) Verifique o refute: $f(-x) = \frac{1}{f(x)}$
 - d) Verifique o refute: $f(\frac{1}{x}) = -f(x)$
 - e) Verifique o refute: $f(2x+1) \cdot f(2x-1) = f(x)$
 - f) Halle a tal que: f(a) = 1; f(a) = f(2a)
- 2. Para cada caso halle Dom(f), Rec(f), Gráfica de f.
 - a) $f(x) = x^2 + 2$
- b) $f(x) = -x^2 2x + 3$
- c) $f(x) = 3x^2 + 12x 3$ d) $f(x) = -2x^2 + 6x$

- e) $f(x) = \frac{\sqrt{x-2}}{4}$ g) $f(x) = -2 + \sqrt{1-x}$ f) $f(x) = 3 + \sqrt{x}$ h) $f(x) = 3 \sqrt{2x-3}$
- i) $f(x) = -1 2\sqrt{3-x}$ j) $f(x) = \frac{3+\sqrt{2-x}}{6}$
- **3.** Determine el dominio y codominio de las siguientes funciones.
 - g) $f(x) = \frac{\sqrt{2x+1}}{x}$

- h) $f(x) = \frac{2x^2 + 5x 1}{3x + 1}$
- i) $f(x) = \sqrt{(x+1)^2 (3x-2)}$ j) $f(x) = \sqrt{\sqrt{2x-3} + 1}$

k) $f(x) = \sqrt{\frac{x}{x-2}}$

- 1) $f(x) = \sqrt{|x+2|-1}$
- 4. Determine el máximo dominio y recorrido para que las siguientes funciones sean biyectivas. Determine en cada caso f^{-1}
 - a) $f: \mathbb{R} \longrightarrow]-\infty, 4$
- $f(x) = -x^2 2x + 3$
- b) $f: \mathbb{R} \{-5\}$ $\longrightarrow \mathbb{R}$; $f(x) = \frac{x-1}{x+5}$

- c) $f(x) = x^2 6x 7$
- d) $f(x) = 2 \sqrt{4 x^2}$
- e) $f(x) = \sqrt{3 x^2}$
- f) $f(x) = \sqrt{\frac{x}{2x+3}}$
- Defina en cada caso defina $(f \circ g) \ y \ (g \circ f)$ determinando dominio y codominio 5.
 - a) $f(x) = \frac{1}{x+6}$
- ; $g(x) = 2(x^2 3x 1)$
- b) $f(x) = \sqrt{2x+1}$
- ; g(x) = x 6

c)
$$f(x) = \sqrt{x+2} + x$$
 ; $g(x) = \frac{2}{4-x}$

d)
$$f(x) = \frac{\sqrt{1-x}}{\sqrt{x^2-4}}$$
 ; $g(x) = \frac{1}{x}$

RESPUESTAS

1. a)
$$\frac{1}{3}$$
; $\frac{a^2}{a^2+2}$; $\frac{-1}{x}$; x b) Falso

e) Verdadero f)
$$\neq$$
; 0

2. a)
$$Dom(f) = \mathbb{R}$$
; $Rec(f) = [2, +\infty[$

b)
$$Dom(f) = \mathbb{R};$$
 $Rec(f) =]-\infty, 4]$

c)
$$Dom(f) = \mathbb{R};$$
 $Rec(f) = [-15, +\infty[$

d)
$$\operatorname{Dom}(f) = \mathbb{R};$$
 $\operatorname{Rec}(f) =]-\infty, \frac{9}{2}]$

e)
$$Dom(f) = [2, +\infty[; Rec(f) = [0, +\infty[$$

f)
$$Dom(f) = [0, +\infty[; Rec(f) = [3, +\infty[$$

g)
$$Dom(f) = [-\infty, 1];$$
 $Rec(f) = [-2, +\infty[$

h)
$$Dom(f) = [\frac{3}{2}, +\infty[; Rec(f) =] -\infty, 3]$$

i)
$$Dom(f) =]-\infty, 3]; Rec(f) =]-\infty, -1]$$

j)
$$\operatorname{Dom}(f) =]-\infty, 2]; \operatorname{Rec}(f) = [\frac{1}{2}, +\infty[$$

3. aa)
$$\operatorname{Dom}(f) = [-\frac{1}{2}, +\infty[-\{0\}; \quad codom(f) = \mathbb{R}]$$

bba)
$$\operatorname{Dom}(f) = \mathbb{R} - \left\{ -\frac{1}{3} \right\};$$
 $\operatorname{codom}(f) = \mathbb{R}$

cca)
$$Dom(f) = \mathbb{R};$$
 $codom(f) = \mathbb{R}$

da)
$$Dom(f) = [\frac{3}{2}, +\infty];$$
 $codom(f) = \mathbb{R}$

ea)
$$\text{Dom}(f) =]-\infty, 0] \cup]2, +\infty[; \quad codom(f) = \mathbb{R}$$

fa)
$$Dom(f) = [-3, -1];$$
 $codom(f) = \mathbb{R}$

4. a)
$$f^{-1}:]-\infty, 4] \longrightarrow [-1, +\infty[$$
 ; $f^{-1}(x) = -1 + \sqrt{4-x}]$ b) $f^{-1}: \mathbb{R} - \{1\} \longrightarrow \mathbb{R} - \{-5\}$; $f^{-1}(x) = \frac{5x+1}{1-x}$ c) $f^{-1}: [-16, +\infty[\longrightarrow [3, +\infty[$; $f^{-1}(x) = 3 + \sqrt{x+16}]$ d) $f^{-1}: [0, 2] \longrightarrow [0, 2]$; $f^{-1}(x) = 2 + \sqrt{4-x^2}$ e) $f^{-1}: [0, \sqrt{3}] \longrightarrow a[0, \sqrt{3}]$; $f^{-1}(x) = \sqrt{3-x^2}$ f) $f^{-1}: \mathbb{R}_0^+ \longrightarrow]-\infty, 0] \cup]-\frac{3}{2}, +\infty[$; $f^{-1}(x) = \frac{3y^2}{2y^2-1}$

$$f^{-1}: \mathbb{R} - \{1\} \longrightarrow \mathbb{R} - \{-5\} \qquad ; \qquad f^{-1}(x) = \frac{5x+1}{1-x}$$

c)
$$f^{-1}: [-16, +\infty[\longrightarrow [3, +\infty[$$
 ; $f^{-1}(x) = 3 + \sqrt{x + 16}]$

d)
$$f^{-1}:[0,2] \longrightarrow [0,2]$$
 ; $f^{-1}(x) = 2 + \sqrt{4 - x^2}$

e)
$$f^{-1}: [0, \sqrt{3}] \longrightarrow a[0, \sqrt{3}]$$
 ; $f^{-1}(x) = \sqrt{3} - x^2$
f) $f^{-1}: \mathbb{P}^+$ $\longrightarrow a[0, \sqrt{3}]$; $f^{-1}(x) = a^{3y^2}$

5. a)
$$f \circ g : \mathbb{R} - \{1, 2\} \longrightarrow \mathbb{R}$$
 $g \circ f : \mathbb{R} \longrightarrow \frac{\mathbb{R}}{x \longrightarrow \frac{-2x^2 - 30x - (x + 6)^2}{(x + 6)^2}}$

a)
$$f \circ g : \mathbb{R} - \{1, 2\} \longrightarrow \mathbb{R}$$

 $x \longrightarrow \frac{1}{2x^2 - 6x + 4}$
b) $f \circ g : [\frac{13}{2}, +\infty[\longrightarrow \mathbb{R}$
 $x \longrightarrow \sqrt{2x - 11}$
 $g \circ f : \mathbb{R} \longrightarrow \mathbb{R}$
 $g \circ f : \mathbb{R} \longrightarrow \mathbb{R}$
 $x \longrightarrow \sqrt{2x + 1} - 6$

c)
$$f \circ g :]-\infty, 4[\cup [5, +\infty[\longrightarrow \mathbb{R}$$
 $g \circ f : \mathbb{R} - \{2\} \longrightarrow \mathbb{R}$ $x \xrightarrow{\frac{10-2x}{4-x}} + \frac{2}{4-x}$

d)
$$f \circ g :] - \frac{1}{2}, 0[\longrightarrow \mathbb{R}$$
 $g \circ f :] - \infty, -2[\longrightarrow \mathbb{R}$ $x \longrightarrow \frac{\sqrt{1 - \frac{1}{x}}}{\sqrt{\frac{1}{x^2} - 4}}$