CS 381

Dynamic Programming

Knapsack problem.

- Given n objects and a "knapsack."
- Item i weighs $w_i > 0$ pounds and has value $v_i > 0$.
- Knapsack has capacity of W pounds.
- Goal: fill knapsack so as to maximize total value.

Example:

#	value	weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

W = 11

Knapsack problem.

- Given n objects and a "knapsack."
- Item i weighs $w_i > 0$ pounds and has value $v_i > 0$.
- Knapsack has capacity of W pounds.
- Goal: fill knapsack so as to maximize total value.

Example:

#	value	weight	
1	1	1	
2	6	2	
3	18	5	11
4	22	6	W = 11
5	28	7	

Greedy: repeatedly add item with maximum ratio v_i / w_i provided the capacity constraint is met.

Q: Is this solution optimal?

Knapsack problem.

- Given n objects and a "knapsack."
- Item i weighs $w_i > 0$ pounds and has value $v_i > 0$.
- Knapsack has capacity of W pounds.
- Goal: fill knapsack so as to maximize total value.

Example:

#	value	weight	
1	1	1	
2	6	2	
3	18	5	11
4	22	6	W = 11
5	28	7	

Greedy: repeatedly add item with maximum ratio v_i / w_i provided the capacity constraint is met.

Ex: $\{5, 2, 1\}$ achieves only value = $35 \Rightarrow \text{greedy not optimal.}$

Knapsack problem.

- Given n objects and a "knapsack."
- Item i weighs $w_i > 0$ pounds and has value $v_i > 0$.
- Knapsack has capacity of W pounds.
- Goal: fill knapsack so as to maximize total value.

Example:

#	value	weight	
1	1	1	
2	6	2	
3	18	5	11
4	22	6	W = 11
5	28	7	

Greedy: repeatedly add item with maximum ratio v_i / w_i provided the capacity constraint is met.

Ex: $\{5, 2, 1\}$ achieves only value = $35 \Rightarrow$ greedy not optimal.

6 Another combination: { 3, 4 } has value 40.

Dynamic Programming

How do we define the subproblems and use them to solve the whole instance?

7

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, ..., i with weight limit w.

- Case 1: OPT does not select item i.
 - OPT selects best of { 1, 2, ..., i-1 } using weight limit w
- Case 2: OPT selects item i.
 - new weight limit = w wi
 - OPT selects best of { 1, 2, ..., i-1 } using this new weight limit

$$OPT(i, w) = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i-1, w) & \text{if } w_i > w \\ \max\{OPT(i-1, w), v_i + OPT(i-1, w-w_i)\} & \text{otherwise} \end{cases}$$

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

```
Input: n, W, w<sub>1</sub>,...,w<sub>N</sub>, v<sub>1</sub>,...,v<sub>N</sub>

for w = 0 to W
    M[0, w] = 0

for i = 1 to n
    for w = 1 to W
        if (w<sub>i</sub> > w)
            M[i, w] = M[i-1, w]
        else
            M[i, w] = max {M[i-1, w], v<sub>i</sub> + M[i-1, w-w<sub>i</sub>]}

return M[n, W]
```

Knapsack Algorithm

			W + 1										
		0	1	2	3	4	5	6	7	8	9	10	11
	ф	0	0	0	0	0	0	0	0	0	0	0	0
	{1}	0	1	1	1	1	1	1	1	1	1	1	1
n + 1	{ 1, 2 }	0	1	6	7	7	7	7	7	7	7	7	7
	{1,2,3}	0	1	6	7	7	18	19	24	25	25	25	25
	{1,2,3,4}	0	1	6	7	7	18	22	24	28	29	29	40
↓	{1,2,3,4,5}	0	1	6	7	7	18	22	28	29	34	34	40

Item	Value	Weight	W = 11
1	1	1	OPT: { 4, 3 }
2	6	2	value = 22 + 18 = 40
3	18	5	
4	22	6	
5	28	7	

Knapsack Problem: Running Time

Running time. $\Theta(n W)$.

- Not polynomial in input size!
 - Only need $log_2 W$ bits to encode each weight
 - Problem can be encoded with $O(n \log_2 W)$ bits
- "Pseudo-polynomial."
- Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a poly-time algorithm that produces a feasible solution that has value within 0.01% of optimum. [Section 11.8]