Функциональные последовательности и ряды

Рассмотрим последовательность функций $\{f_n(x)\}$, определённых на X.

Определение. Пусть для любого $x_0 \in X$ существует предел *числовой* последовательности $\{f_n(x_0)\}$:

$$\exists \lim_{n \to \infty} f_n(x_0) =: f(x_0).$$

Тогда функция f(x) называется поточечным пределом последовательности $\{f_n(x)\}$, а последовательность $\{f_n(x)\}$ сходится κ функции f(x) поточечно на множестве X.

Пример.
$$f_n(x) = x^n, X = (-1, 1].$$

Определение. Последовательность $\{f_n(x)\}$ сходится κ функции f(x) равномерно на множестве X, если

$$\forall \varepsilon > 0 \ \exists N_{\varepsilon} \in \mathbb{N} \ \forall n > N_{\varepsilon} \ \forall x \in X \ |f_n(x) - f(x)| < \varepsilon.$$

При этом функция f(x) называется равномерным пределом последовательности $\{f_n(x)\}$.

Обозначения: $f_n(x) \stackrel{X}{\Longrightarrow} f(x)$.

Утверждение. Равномерная сходимость \Rightarrow поточечная сходимость. Обратное неверно.

Примеры: a)
$$f_n(x) = \frac{n}{1 + n^2 x^2}$$
, $X = \mathbb{R}$; б) $f_n(x) = \frac{nx}{1 + n^2 x^2}$, $X = \mathbb{R}$.

Рассмотрим последовательность функций $\{u_n(x)\}$, определённых на X, и ряд $\sum_{n=1}^{\infty} u_n(x)$.

Определение. Пусть для любого $x_0 \in X$ числовой ряд $\sum_{n=1}^{\infty} u_n(x_0)$ сходится:

$$\exists S(x_0) := \sum_{n=1}^{\infty} u_n(x_0).$$

Тогда говорят, что функциональный ряд $\sum_{n=1}^{\infty} u_n(x)$ *сходится поточечно на множестве* X, а функция S(x) называется *суммой ряда*:

$$S(x) = \sum_{n=1}^{\infty} u_n(x), \quad x \in X.$$

Определение. Функциональный ряд $\sum_{n=1}^{\infty} u_n(x)$ *сходится равномерно на множестве* X, если последовательность его частичных сумм сходится на X равномерно: $S_n(x) \stackrel{X}{\Longrightarrow} S(x)$.

Замечания:

- $\sum_{n=1}^{\infty} u_n(x)$ сходится равномерно на $X \iff R_n(x) \stackrel{X}{\rightrightarrows} 0$.
- Сходимость последовательности можно свести к изучению сходимости ряда:

$$u_1(x) := f_1(x), \quad u_{n+1}(x) := f_{n+1}(x) - f_n(x) \quad \Rightarrow \quad S_n(x) = f_n(x) \quad \text{if} \quad S(x) = \sum_{n=1}^{\infty} u_n(x) = f(x)$$

Теорема (критерий Коши равномерной сходимости функциональной последовательности). Для того, чтобы последовательность $\{f_n(x)\}$ сходилась на множестве X равномерно, необходимо и достаточно, чтобы

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} \ \forall n, p \in \mathbb{N} \ \forall x \in X \ (n > N(\varepsilon) \Rightarrow |f_n(x) - f_{n+p}(x)| < \varepsilon).$$

Теорема (критерий Коши равномерной сходимости функционального ряда). Для того, чтобы ряд $\sum_{n=1}^{\infty} u_n(x)$ сходился на множестве X равномерно, необходимо и достаточно, чтобы

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} \ \forall n, p \in \mathbb{N} \ \forall x \in X \ (n > N(\varepsilon) \ \Rightarrow \ |\sum_{i=n+1}^{n+p} u_i(x)| < \varepsilon).$$

Следствие. Если ряд $\sum_{n=1}^{\infty} u_n(x)$ равномерно сходится на множестве X, а функция v(x) ограничена на X, то ряд $\sum_{n=1}^{\infty} u_n(x)v(x)$ также сходится равномерно на X.

Теорема (критерий равномерной сходимости функциональной последовательности). Для того, чтобы последовательность $\{f_n(x)\}$ сходилась к функции f(x) равномерно на множестве X, необходимо и достаточно, чтобы числовая последовательность $r_n := \sup_{x \in X} |f(x) - f_n(x)|$ сходилась к нулю.

Примеры: a)
$$f_n(x) = \frac{n}{1 + n^2 x^2}$$
, $X = \mathbb{R}$; б) $f_n(x) = \frac{nx}{1 + n^2 x^2}$, $X = \mathbb{R}$.

Признаки равномерной сходимости

Теорема 1 (признак Вейерштрасса). Пусть $|u_n(x)| \le c_n, x \in X$, и ряд $\sum_{n=1}^{\infty} c_n$ сходится. Тогда ряд $\sum_{n=1}^{\infty} u_n(x)$ сходится на множестве X равномерно и абсолютно.

Пример.
$$\sum_{r=1}^{\infty} \frac{\sin nx}{n^s}, \ s > 1.$$

Теорема 2 (признак Абеля). Пусть

- $\sum_{n=1}^{\infty} a_n(x)$ сходится равномерно на X,
- $\forall x \in X \quad \{b_n(x)\}$ монотонна,
- $\{b_n(x)\}$ равномерно ограничена на X.

Тогда ряд $\sum_{n=1}^{\infty} a_n(x)b_n(x)$ сходится на множестве X равномерно.

Теорема 3 (признак Дирихле). Пусть

- последовательность частичных сумм $A_n = \sum_{i=1}^n a_i(x)$ равномерно ограничена на X,
- $\forall x \in X \quad \{b_n(x)\}$ монотонна,
- $b_n(x) \stackrel{X}{\Longrightarrow} 0$.

Тогда ряд $\sum_{n=1}^{\infty} a_n(x)b_n(x)$ сходится на множестве X равномерно.

Пусть $\sum_{n=1}^{\infty} a_n$ сходится абсолютно, а $\sum_{n=1}^{\infty} b_n$ сходится условно.

Что можно сказать о сходимости/расходимости (в том числе абсолютной) ряда $\sum_{n=1}^{\infty} a_n b_n$?