Algorithme CYK Malory Marin

Algorithme de Cocke-Younger-Kasami

Référence: 131 Développements pour l'oral, D. Lesesvre

Introduction. L'algorithme CYK permet de résoudre le problème du mot pour les grammaires algébriques. On dit qu'une grammaire $G = (V, \Sigma, R, S)$ est sous forme normale de Chomsky si elle ne contient que des règle de la forme $A \to a$ (avec $a \in Sigma$ et $A \in V$), ou $A \to A_1A_2$ $(A_1, A_2 \in V)$.

Définition 1 (Problème de mot). Étant donné un mot $w = w_1...w_n$ et une grammaire G sous forme normale de Chomsky, a-t-on $w \in L(G)$?

Algorithme CYK. On utilisera de la programmation dynamique. Pour tous les indices $1 \le i \le j \le n$, on note

$$E_{i,j} = \{ A \in V, A \rightarrow^* w_i ... w_j \}$$

Ainsi, $w \in L(G)$ ssi $S \in E_{1,n}$. On va donc calculer $E_{1,n}$ par programmation dynamique.

Initialisation. Montrons que pour tout $1 \le i \le n$, on a

$$E_{i,i} = \{ A \in V : A \to w_i \in R \}$$

En effet, si $A \in E_{i,i}$, alors $A \to^* w_i$. Or, puisque G est sous forme normale de Chomsky, on a jamais $X \to^* \epsilon$ pour $X \in V$. Ainsi, la première règle de $A \to^* w_i$ n'est pas de la forme $A \to A_1A_2$ qui donnerait un mot d'au moins 2 lettres. On en déduit qu'on applique une règle de la forme $A \to a$, et donc $a = w_i$. Ainsi, $A \to w_i \in R$.

L'autre inclusion est triviale.

Récurrence. Soit $1 \le i < j \le n$, montrons

$$E_{i,j} = \bigcup_{k=i}^{j-1} \bigcup_{\substack{B \in E_{i,k} \\ C \in E_{k+1,j}}} \{A \in V : A \to BC \in R\}$$

Montrons l'inclusion indirecte. Soit $A \in V$ tel qu'il existe k tel que $i \leq k \leq j-1$, $B \in E_{i,k}$ et $C \in E_{k+1,j}$ avec $A \to BC \in R$.

On a alors $B \to^* w_i...w_k$, et $C \to^* w_{k+1}...w_i$. Ainsi, on a :

$$A \to BC \to^* w_i...w_kC \to^* w_i...w_j$$

Ainsi, $A \in E_{i,j}$.

Réciproquement, soit $A \in E_{i,j}$, c'est-à-dire $A \to^* w_i...w_j$. On a au moins deux lettres dans le mot $w_i...w_j$, la première règle appliquée est donc de la forme $A \to BC$. On utilise alors l'arbre de dérivation de $A \to^* w_i...w_j$, A est la racine et a deux enfants, B et C. Pour exhiber k, il suffit de prendre le nombre l de feuilles dans l'arbre enraciner en B, et on pose k = i + l - 1. Ainsi, on a $B \to^* w_i...w_k$ et $C \to^* w_{k+1}...w_i$. Cela conclut la preuve.

Algorithme. L'algorithme va donc d'abord calculer les $A_{i,i}$ et remonter jusqu'à l'ensemble $E_{1,n}$ en calculant diagonale par diagonale.

Algorithme CYK Malory Marin

Algorithme 1 : CYK(w,G)

```
\begin{array}{l} \mathbf{pour} \ 1 \leqslant i \leqslant j \leqslant n \ \mathbf{faire} \\ & \sqsubseteq E_{i,j} \leftarrow \varnothing; \\ \mathbf{pour} \ i = 1...n \ \mathbf{faire} \\ & \sqsubseteq \mathbf{pour} \ A \rightarrow a \in R \ \mathbf{faire} \\ & \sqsubseteq \mathbf{si} \ a = w_i \ \mathbf{alors} \\ & \sqsubseteq A_{i,i} \leftarrow E_{i,i} \cup \{A\}; \\ \mathbf{pour} \ d = 2...n \ \mathbf{faire} \\ & \sqsubseteq \mathbf{pour} \ (i,j) \ sur \ la \ d\text{-}diagonale \ sup\'erieure \ \mathbf{faire} \\ & \sqsubseteq \mathbf{pour} \ k = i...j - 1 \ \mathbf{faire} \\ & \sqsubseteq \mathbf{pour} \ A \rightarrow B_1 B_2 \ \mathbf{faire} \\ & \sqsubseteq \mathbf{si} \ B_1 \in E_{i,k} \ et \ B_2 \in E_{k+1,j} \ \mathbf{alors} \\ & \sqsubseteq E_{i,j} \rightarrow E_{i,j} \cup \{A\}; \\ \mathbf{retourner} \ S \in E_{1,n}; \end{array}
```

Implémentation et complexité. On veut pouvoir ajouter et vérifier rapidement si des nonterminaux appartiennent à un ensemble $E_{i,j}$. On peut alors, pour tout $1 \le i \le j \le n$, utiliser un tableau booléen de taille |V| pour avoir les deux opérations en temps constant.

On a alors une complexité temporelle en $\mathcal{O}(|R| \times n^3)$, pour la complexité spatiale, on a besoin de $\frac{n(n+1)}{2}$ tableaux de taille |V|, donc un $\mathcal{O}(n^2|V|)$.

Commentaires. Il fait d'abord transformer une grammaire pour la mettre sous forme normale de Chomsky. Cette transformation peut faire exploser la taille de la grammaire. Il faut aussi vérifier qu'on a bien $\epsilon \notin L(G)$, ce qui peut se faire par saturation.