Optimization of the CMB-galaxy cross-correlation signal for studying the Integrated Sachs-Wolfe effect

Arthur Diniz Meirelles

Advisor: Edivaldo Moura Santos Coadvisor: Ronaldo Carloto Batista

> Institute of Physics Universidade de São Paulo

> > 15/08/2024

- Theoretical Aspects
- 2 Optimized Galaxy Survey
- 3 Data Processing
- 4 Analysis and Results
- **6** Conclusions

1 Theoretical Aspects

Theoretical Aspects

- 3 Data Processing
- 4 Analysis and Results

Introduction

Theoretical Aspects

- The integrated Sachs-Wolfe (ISW) effect occurs due to time changes in gravitational potentials;
- During periods of transition from or to matter-dominated eras of the Universe, potentials change more rapidly;
- Naturally, a statistical correlation between CMB temperature maps and gravitational potentials is expected.

Figure 2: Illustration of the ISW effect. In this case, the gravity wells flattened, leaving a net blueshift.

The ΛCDM Model

Theoretical Aspects

To build the theoretical framework used, it is assumed

- The Universe is homogeneous and isotropic at large scales;
- Initial conditions are obtained by assuming an inflationary period when the Universe was very compact and energetic;
- The Universe is composed of baryonic matter, radiation, neutrinos, cold dark matter and a dark energy component described by a cosmological constant Λ;

The homogeneous and isotropic background is first set up, and linear perturbations are added to it.

The Perturbed Metric

Theoretical Aspects

000000000000000

We express the perturbed metric with two functions $\Psi(\mathbf{x},t)$ and $\Phi(\mathbf{x},t)$

$$\begin{cases} g_{00} = -1 - 2\Psi(\mathbf{x}, t), \\ g_{0i} = g_{i0} = 0, \\ g_{ij} = a^{2}(t)\delta_{ij}[1 + 2\Phi(\mathbf{x}, t)]. \end{cases}$$
 (1)

The ΛCDM Model

Theoretical Aspects

The Cosmic Microwave Background

The temperature of the Cosmic Microwave Background (CMB) can be expressed by

$$T(\mathbf{x}, \hat{\mathbf{p}}, t) = \bar{T}(t)[1 + \Theta(\mathbf{x}, \hat{\mathbf{p}}, t)]. \tag{2}$$

The temperature perturbation Θ can be expressed in Fourier space according to

$$\Theta(\hat{\mathbf{k}}, \mu) = \sum_{\ell=0}^{\infty} (2\ell + 1)(-i)^{\ell} \Theta_{\ell}(\hat{\mathbf{k}}) \mathscr{P}_{\ell}(\mu), \tag{3}$$

where $\mu = \hat{\mathbf{k}} \cdot \hat{\mathbf{p}}$ and \mathscr{P}_{ℓ} are Legendre polynomials.

Theoretical Aspects

0000000000000000

Analytical Approximation

Theoretical Aspects

000000000000000

Working with first-order equations and the tightly coupled limit, and assuming recombination to be an instantaneous process happening at conformal time $\eta = \eta *$, we can obtain

$$\Theta_{\ell}(k,\eta_{0}) \approx [\Theta_{0}(k,\eta_{*}) + \Psi(k,\eta_{*})] j_{\ell}[k(\eta_{0} - \eta_{*})]
+ i \nu_{b}(k,\eta_{*}) \left\{ j_{\ell}[k(\eta_{0} - \eta_{*})] - (\ell + 1) \frac{j_{\ell}[k(\eta_{0} - \eta_{*})]}{k(\eta_{0} - \eta_{*})} \right\}
+ \int_{0}^{\eta_{0}} d\eta e^{-\tau} [\Psi'(k,\eta) - \Phi'(k,\eta)] j_{\ell}[k(\eta_{0} - \eta)].$$
(4)

Here, the third term in the equation describes the Integrated Sachs-Wolfe effect.

Correlation Functions

Theoretical Aspects

0000000000000000

To calculate the CMB autocorrelation function C_{ℓ}^{tt} , we expand Θ in spherical harmonics

$$\Theta(\mathbf{x}, \hat{\mathbf{p}}, t) = \sum_{\ell=1}^{\ell_{\text{max}}} \sum_{m=-\ell}^{\ell} a_{\ell m}(\mathbf{x}, t) Y_{\ell m}(\hat{\mathbf{p}}),$$
 (5)

and calculate the autocorrelation between the $a_{\ell m}$ terms:

$$\langle a_{\ell m} a_{\ell' m'}^* \rangle = \delta_{\ell \ell'} \delta_{m m'} C_{\ell}^{tt} \tag{6}$$

Other autocorrelation spectra C_ℓ^{xx} follow the same process. It is common to use $D_\ell^{XX} = \frac{\ell(\ell+1)}{2\pi} C_\ell^{xx}$ for some spectra for better visualization. We can also write

$$C_{\ell}^{tt} = \frac{1}{2\ell + 1} \sum_{m = -\ell}^{\ell} a_{\ell m} a_{\ell' m'}^* \tag{7}$$

Cosmic Variance

The low number of $a_{\ell m}$ coefficients for lower multipoles ℓ leads to a high uncertainty in this region called cosmic variance

$$\left(\frac{\Delta C_{\ell}^{XX}}{C_{\ell}^{XX}}\right)_{CV} = \sqrt{\frac{2}{2\ell+1}}$$
(8)

11 / 58

0000000000000000 Planck 2018

Theoretical Aspects

Figure 3: Planck 2018 CMB temperature power spectrum.

Parameter	Best-fit		
$\Omega_b h^2$	0.02237 ± 0.00015		
$\Omega_c h^2$	0.1200 ± 0.0012		
$100\Theta_{MC}$	1.04092 ± 0.00031		
au	0.0544 ± 0.0073		
$\ln{(10^{10}A_s)}$	3.044 ± 0.014		
n_s	0.9649 ± 0.042		
Ω_m	0.3153 ± 0.0073		
H_0	$67.36 \pm 0.54 \text{ km/s/Mpc}$		
σ_8	0.8111 ± 0.0060		

Table 1: Best-fit values of cosmological parameters reported in Planck 2018 results using TT+TE+EE+lowE and gravitational lensing data.

The Matter Power Spectrum

Theoretical Aspects

0000000000000000

To calculate a cross-correlation function, we need the 3D matter power spectrum P(k, z), defined by

$$\langle \delta(\mathbf{k}, z) \delta^*(\mathbf{k}', z) \rangle = (2\pi)^3 P(k, z) \delta_D(\mathbf{k} - \mathbf{k}')$$

We have used CAMB's implementation of the HALOFIT model to calculate the matter power spectrum.

Figure 4: Matter power spectrum calculated using both a linear approximation and the HALOFIT model.

The Cross-correlation Spectrum

To trace the matter density anisotropies, we used galaxy contrast maps, which can be calculated using

$$\delta_g(\mathbf{n}) = \frac{N_g(\mathbf{n}) - \bar{N}_g}{\bar{N}_g} \tag{9}$$

It is assumed that $\delta_g = b_g \delta$, where b_g is the bias factor, which we assume to be a slowly varying function of redshift.

The galaxy autocorrelation $C_\ell^{\rm gg}$ and cross-correlation function $C_\ell^{\rm tg}$ can then be calculated with

$$\langle a_{\ell m}^t a_{\ell' m'}^g \rangle = C_{\ell}^{tg} \delta_{\ell \ell'} \delta_{mm'} \qquad \langle a_{\ell m}^g a_{\ell' m'}^g \rangle = C_{\ell}^{gg} \delta_{\ell \ell'} \delta_{mm'}$$
 (10)

Theoretical Aspects

0000000000000

Analytical Formula

Theoretical Aspects

0000000000000000

Given fields x and y, representing either the ISW contribution to the CMB temperature (x, y = t) or the galaxy contrast (x, y = g), we can calculate the associated auto- or cross-correlation spectra using [1]

$$C_{\ell}^{xy} = \frac{2}{\pi} \int dk k^2 W_{\ell}^{x}(k) W_{\ell}^{y}(k) P(k), \tag{11}$$

with

$$W_{\ell}^{t} = -3\Omega_{m} \left(\frac{H_{0}}{k}\right)^{2} \int dz \frac{\mathrm{d}[(1+z)D(z)]}{\mathrm{d}z} j_{\ell}[k\chi(z)] \tag{12}$$

$$W_{\ell}^{g} = \int dz b_{g}(z) \frac{\mathrm{d}N}{\mathrm{d}z} D(z) j_{\ell}[k\chi(z)]$$
 (13)

ISW Contribution: Temperature Autocorrelation

Figure 5: CMB autocorrelation comparison between full spectrum and ISW contribution.

Theoretical Aspects Optimized Galaxy Survey Data Processing Analysis and Results Conclusions Extras References

ISW Contribution: Galaxy Autocorrelation and Cross-correlation

Figure 6: Galaxy autocorrelation spectrum (left) and late-ISW contribution to the galaxy-CMB cross-correlation (right).

- 2 Optimized Galaxy Survey
- 3 Data Processing
- 4 Analysis and Results

18 / 58

Selection Function Parametrization

The function $\frac{dN}{dz}$ in equation (13) is called the selection function. We are assuming its parametrization to be [2]

$$\frac{\mathrm{d}N}{\mathrm{d}z} \left(z | \lambda, \beta, z_0 \right) dz = \frac{\beta}{\Gamma(\lambda)} \left(\frac{z}{z_0} \right)^{\beta \lambda - 1} \exp \left[-\left(\frac{z}{z_0} \right)^{\beta} \right] d\left(\frac{z}{z_0} \right) \tag{14}$$

We have explored how to maximize the cross-correlation signal using an idealized selection function.

2MASS Bands Comparison

Band	z_0	β	λ
1	0.043	1.825	1.524
2	0.054	1.800	1.600
3	0.067	1.765	1.636
4	0.084	1.723	1.684

Table 2: Parameter values for the 4 bands of the 2MASS catalog.

Figure 7: Selection function calculated for the 4 bands of the 2MASS catalog.

Exploring the Parameter Space

Figure 8: Selection function calculated for various parameter values.

21 / 58

Null Hypothesis

For the process of finding a galaxy survey with an idealized selection function, we first needed an estimation for the probability of C_ℓ^{tg} being 0, which would be our null hypothesis. The following process was used:

- Synthesize multiple uncorrelated CMB temperature and galaxy contrast maps using HEALPix;
- Calculate the cross-correlation C_ℓ^{tg} for each pair of uncorrelated maps at each multipole;
- For each multipole ℓ , a histogram of C_{ℓ}^{tg} was produced;
- Each histogram was fit with Gaussian distributions with average $\mu=\mu_\ell\approx 0$ and $\sigma^2=\sigma_\ell^2.$

The null hypothesis is compatible with $\Omega_m = 1$.

Synthesized Maps' Histograms

Figure 9: Distribution of cross-correlation values on different multipoles for 10^4 maps synthesized with null cross-correlation.

23 / 58

Null Hypothesis

Theoretical Aspects

For f_ℓ corresponding to the Gaussian fit made for the multipole ℓ

$$f_{\ell}(C_{\ell}^{tg}) = \frac{1}{\sqrt{2\pi\sigma_{\ell}^2}} \exp\left[-\frac{1}{2} \left(\frac{C_{\ell}^{tg} - \mu_{\ell}}{\sigma_{\ell}}\right)^2\right],\tag{15}$$

we have defined the null hypothesis probability distribution to be

$$P_{\text{null}} = \prod_{\ell=2}^{\ell_{\text{max}}} f_{\ell}(C_{\ell}^{tg}) \tag{16}$$

Exploring the Parameter Space

For various points (β, z_0, λ) in the parameter space, we have calculated the ratio $P_{\rm null}(\beta, z_0, \lambda)/P_{\rm null}^{\rm 2MASS}$ and produced the heat maps in Figure 10.

Figure 10: Heat maps used to explore the parameter space.

Minimizer

The heat maps provided initial points to run an algorithm that minimizes $P_{\text{null}}(z_0, \beta, \lambda)$. The point found that minimizes the null hypothesis probability in that region of the parameter space was

$$(\beta, z_0, \lambda) = (3.088, 0.1508, 4.9401) \tag{17}$$

eoretical Aspects Optimized Galaxy Survey Data Processing Analysis and Results Conclusions Extras Reference

Properties of the Minimum

The selection function found is deeper than that of 2MASS band 1. It does not favor galaxies at $z^* = 0.63$, the estimated redshift at which the accelerated expansion started.

Figure 11: Selection functions comparison.

Properties of the Minimum

The selection function found reduces the maximum value of the cross-correlation function, but its peak is at higher redshifts ($\ell \approx 10$), reducing the influence of cosmic variance in the signal.

Figure 12: Theoretical cross-correlation spectrum comparison.

Discussion

Theoretical Aspects

- The ratio $P_{\rm null}(z_0,\beta,\lambda)/P_{\rm null}^{\rm 2MASS}=0.971$ for the minimum;
- Despite the small statistical gain, this optimal selection function yields reasonably better results for constraints on Ω_m , as will be discussed;
- A similar work has reported a small preference towards the non-null signal with changes to the depth of the survey and fainter magnitude limits [3].

- Theoretical Aspects
- Optimized Galaxy Survey
- 3 Data Processing
- 4 Analysis and Results
- 6 Conclusions

WMAP Data

The CMB temperature maps used in this project are the ones provided by WMAP9 [4].

- Three frequency bands were used, which are named bands Q (40GHz), V (60GHz) and W (90GHz);
- The temperature intensity maps' noise power can be well modeled as uncorrelated Gaussian fluctuations;
- Despite having a lower resolution (0.3°) compared to Planck's (0.083°), this project focuses on lower multipoles;
- We have combined both maps' masks and used it for analysing each one, resulting in a fraction $f_{\text{sky}} = 0.7$.

oretical Aspects Optimized Galaxy Survey Data Processing Analysis and Results Conclusions Extras Reference

WMAP Data

Figure 13: Mollweide projection of three (Q, V, W) WMAP9 CMB temperature (in mK) maps in galactic coordinates with an $f_{\rm skv} = 0.70$ mask applied

2MASS Catalog

Wide sky coverage is a very influential aspect of studying cross-correlation spectra, and the 2MASS catalog contains raw imaging data covering 99.998% of the sky [5], which was the dataset used.

- We have used the K_s (2.16 μ m) band of the Extended Source Catalog (XSC);
- The data of the K_s band obtained from a 20 mag aperture (K_{20}) were corrected for galactic extinction, and the remaining data was further divided into 4 bands: Bands 1 (12.0 < K'_{20} < 12.5), 2 (12.5 < K'_{20} < 13.0), 3 (13.0 < K'_{20} < 13.5) and 4 (13.5 < K'_{20} < 14.0);
- Each band has a different selection function, as shown in Figure 7.

heoretical Aspects Optimized Galaxy Survey Data Processing Analysis and Results Conclusions Extras Reference

2MASS Catalog

Figure 14: Mollweide projection of the 2MASS-XSC galaxy contrast maps in galactic coordinates with the combined 2MASS+WMAP mask applied ($f_{skv} = 0.70$).

2MASS Catalog

Figure 15: Mollweide projection of the 2MASS-XSC galaxy contrast maps in galactic coordinates with the combined 2MASS+WMAP mask applied ($f_{skv} = 0.70$).

Correlation Spectra Estimator

To estimate the correlation spectra that describe the pixelized maps d with primordial signal s and noise n (with S and N being the corresponding covariance matrices), we could use the following likelihood function.

$$\mathcal{L} = P(\mathbf{d}|\mathbf{C}) = \frac{1}{(2\pi)^{n_{\text{dim}}/2} |\mathbf{C}|^{1/2}} \exp\left(-\frac{1}{2}\mathbf{d}^T \mathbf{C}^{-1} \mathbf{d}\right), \qquad \mathbf{C} = \mathbf{S} + \mathbf{N}$$
 (18)

With a prior $\pi(S)$ we can use Bayes' Theorem to obtain

$$P(\mathbf{C}|\mathbf{d}) \propto \pi(\mathbf{S})P(\mathbf{d}|\mathbf{C})$$
 (19)

Correlation Spectra Estimator

If we can sample from P(C|s,d) and P(s|C,d). Then we iterate

$$\mathbf{s}^{i+1} \leftarrow P(\mathbf{s}|\mathbf{C}^i, d) \tag{20}$$
$$\mathbf{C}^{i+1} \leftarrow P(\mathbf{C}|\mathbf{s}^{i+1}, d), \tag{21}$$

$$\mathbf{C}^{i+1} \leftarrow P(\mathbf{C}|\mathbf{s}^{i+1}, d), \tag{21}$$

to obtain a sample of $\{(\mathbf{s}^i, \mathbf{C}^i)\}$.

References

The Blackwell-Rao Estimator

We can then use the Blackwell-Rao estimator to obtain an approximation for $P(C_{\ell}|\mathbf{d})$

$$P(C_{\ell}|\mathbf{d}) \approx \frac{1}{N_G} \sum_{i=1}^{N_G} P(C_{\ell}|\sigma_{\ell}^i), \tag{22}$$

where

Theoretical Aspects

$$\sigma_{\ell}^{i} = \frac{1}{2\ell + 1} \sum_{m=-\ell}^{\ell} \mathbf{s}_{\ell m} \mathbf{s}_{\ell m}^{\dagger}.$$
 (23)

We then maximize the probability $P(C_{\ell}|\mathbf{d})$ to obtain the best-fit C_{ℓ} .

Matrices Used

In this work, **s** and **S** are defined by

$$\mathbf{s}^{T} = (s_{00}^{tg}, s_{01}^{tg}, s_{11}^{tg}, \dots, s_{\ell_{max}0}^{tg}, \dots, s_{\ell_{max}\ell_{max}}^{tg}), \tag{24}$$

$$\mathbf{S} = \operatorname{diag}(S_0^{tg}, S_1^{tg}, S_1^{tg}, \dots, S_{\ell_{\max}}^{tg}, \dots, S_{\ell_{\max}}^{tg}), \tag{25}$$

where

$$\mathbf{s}_{\ell m}^{tg} = \begin{pmatrix} a_{\ell m}^{t} \\ a_{\ell m}^{g} \end{pmatrix}, \qquad \mathbf{S}_{\ell}^{tg} = \begin{pmatrix} C_{\ell}^{tt} & C_{\ell}^{tg} \\ C_{\ell}^{tg} & C_{\ell}^{gg} \end{pmatrix}. \tag{26}$$

Correlation Spectra Obtained

Figure 16: Comparison between theoretical correlation spectra and the ones estimated from WMAP and 2MASS.

- 1 Theoretical Aspects
- 2 Optimized Galaxy Survey
- 3 Data Processing
- 4 Analysis and Results
- **5** Conclusions

Monte Carlo Markov Chains

Theoretical Aspects

By defining the likelihood $\mathcal{L}(C_\ell|\theta)$ and the prior $p(\theta)$, one can use Markov chains to obtain samples of each parameter in θ following the posterior

$$P(\theta|C_{\ell}) = \mathcal{L}(C_{\ell}|\theta)p(\theta) \tag{27}$$

Joint posteriors can be easily obtained from each parameter sample, strongly simplifying data analysis for multiple parameter models.

Planck Likelihoods

Figure 17: Joint posterior distributions of cosmological parameters using Planck's CMB temperature (T) and polarization (E) data.

References

Likelihood Profiling

Theoretical Aspects

The likelihood of each point in the spectrum was assumed to be Gaussian

$$\mathcal{L}(C_{\ell, \text{ theo}}^{xy} | C_{\ell, \text{ data}}^{xy}) = \frac{1}{\sigma_{\ell} \sqrt{2\pi}} \exp \left[-\frac{1}{2} \left(\frac{C_{\ell, \text{ data}}^{xy} - C_{\ell, \text{ theo}}^{xy}}{\sigma_{\ell}} \right)^{2} \right]. \tag{28}$$

We are varying only Ω_m , so $C_{\ell, \, \text{theo}}^{xy}$ is a functions of only Ω_m . The likelihood of a full spectrum is

$$\mathcal{L}(\Omega_m | C_{\text{data}}^{\text{xy}}) = \prod_{\ell=2}^{\ell_{\text{max}}} \mathcal{L}(C_{\ell, \text{ theo}}^{\text{xy}} | C_{\ell, \text{ data}}^{\text{xy}}). \tag{29}$$

The $C^{tg} + C^{gg}$ joint-likelihood is

$$\mathcal{L}(\Omega_m|C_{\text{data}}^{tg}, C_{\text{data}}^{\text{gg}}) = \mathcal{L}(\Omega_m|C_{\text{data}}^{tg})\mathcal{L}(\Omega_m|C_{\text{data}}^{\text{gg}}). \tag{30}$$

eoretical Aspects Optimized Galaxy Survey Data Processing Analysis and Results Conclusions Extras Reference

Results for 2MASS

- All curves are compatible with Planck;
- Not much constraining power on Ω_m ;
- Bands 3 and 4 which have the deepest selection functions – have the most constraining power amongst all 4.

Figure 18: C^{tg} only likelihood profiles.

al Aspects Optimized Galaxy Survey Data Processing Analysis and Results Conclusions Extras Reference

Results for 2MASS

- All likelihoods are compatible with Planck;
- Very high constraining power on Ω_m when C^{gg} is introduced, comparable to Planck's;
- No significant difference in constraining power between each band.

Figure 19: Joint likelihood profiles

Optimized Galaxy Survey Data Processing Analysis and Results Conclusions Extras References

Forecast for the Optimized Band

To estimate the behavior of a survey that follows our idealized selection function in this analysis, we have produced two synthetic cross-correlation spectra using that selection function. Both use the Λ CDM model with Planck's best-fit parameters, only differing in Ω_m :

- One of the datasets was produced using Plancks best-fit of $\Omega_m = 0.3153$;
- The other dataset was produced using $\Omega_m = 0.188$, the value that maximizes the likelihood of band 4 for the C^{tg} only likelihood.

Band 4's errors were used as estimated for both synthetic datasets.

Theoretical Aspects

Forecast for the Optimized Band

- Constraining power still low;
- Reasonable improvement in the constraining power.

Discussion

Theoretical Aspects

- The optimized band being deeper than 2MASS means errors on the spectra should be lower, meaning the errors used are overestimated, which indicates the constraints could be better for a real survey following our optimized selection function;
- The optimized band was not found by optimizing the Ω_m constraints, but rejecting the null cross-correlation hypothesis. $\Omega_m = 1$ leads to $C_\ell^{tg} = 0$, and the fast decrease in likelihood for higher Ω_m is noticeable.

- 1 Theoretical Aspects
- 2 Optimized Galaxy Survey
- 3 Data Processing
- 4 Analysis and Results
- **5** Conclusions

Optimized Galaxy Survey Data Processing Analysis and Results Conclusions Extras References

Conclusions

- We have obtained the likelihood profiles for Ω_m obtained from cross-correlation data by studying the ISW effect;
- The constraints obtained using only C^{tg} were not strong, but can be used as a complement to other datasets for a combined analysis;
- In the 2MASS catalog, the 2 deepest bands bands 3 and 4 yielded better constraining power;
- The Planck collaboration also studied the ISW effect using the cross-correlation spectrum[6], obtaining significantly better results with deeper surveys (SDSS[7] and Planck's Kappa map).

Optimized Galaxy Survey Data Processing Analysis and Results **Conclusions** Extras References

Conclusions

- An optimized band capable of maximizing the ISW signal was obtained, prioritizing galaxies at higher redshifts and increasing the cross-correlation signal in a region less affected by cosmic variance;
- The likelihoods obtained for artificial data calculated using the optimized band improved the constraints on Ω_m ;
- Combining different matter tracers leads to improved results overall.

ects Optimized Galaxy Survey Data Processing Analysis and Results Conclusions **Extras** References

Extra Content

Discussão de Future prospects

Extra Content

More extras

Bibliography I

Theoretical Aspects

- [1] E. Moura-Santos et al. "A Bayesian Estimate of the CMB-large-scale Structure Cross-correlation". In: *The Astrophysical Journal* 826.2 (July 2016), p. 121. DOI: 10.3847/0004-637X/826/2/121. URL: https://dx.doi.org/10.3847/0004-637X/826/2/121.
- [2] Niayesh Afshordi, Yeong-Shang Loh, and Michael A. Strauss. "Cross-correlation of the cosmic microwave background with the 2MASS galaxy survey: Signatures of dark energy, hot gas, and point sources". In: *Phys. Rev. D* 69 (8 Apr. 2004), p. 083524. DOI: 10.1103/PhysRevD.69.083524. URL: https://link.aps.org/doi/10.1103/PhysRevD.69.083524.

Optimized Galaxy Survey Data Processing Analysis and Results Conclusions Extras **References**

Bibliography II

- [3] Caroline L. Francis and John A. Peacock. "Integrated Sachs-Wolfe measurements with photometric redshift surveys: 2MASS results and future prospects". In:

 Monthly Notices of the Royal Astronomical Society 406.1 (July 2010), pp. 2–13. ISSN: 0035-8711. DOI: 10.1111/j.1365-2966.2010.16278.x. eprint: https://academic.oup.com/mnras/article-pdf/406/1/2/3673745/mnras0406-0002.pdf.URL: https://doi.org/10.1111/j.1365-2966.2010.16278.x.
- [4] M. R. Greason et al. Wilkinson Microwave Anisotropy Probe (WMAP): Nine-Year Explanatory Supplement. Available in electronic form at http://lambda.gsfc.nasa.gov/.NASA/GSFC. Greenbelt, MD, 2012.
- [5] M. F. Skrutskie et al. "The Two Micron All Sky Survey (2MASS)". In: The Astronomical Journal 131.2 (Feb. 2006), p. 1163. DOI: 10.1086/498708. URL: https://dx.doi.org/10.1086/498708.

Bibliography III

Theoretical Aspects

- [6] Planck Collaboration et al. "Planck 2015 results XXI. The integrated Sachs-Wolfe effect". In: *A&A* 594 (2016), A21. DOI: 10.1051/0004-6361/201525831. URL: https://doi.org/10.1051/0004-6361/201525831.
- [7] J. J. Condon et al. "The NRAO VLA Sky Survey". In: *The Astronomical Journal* 115.5 (May 1998), p. 1693. DOI: 10.1086/300337. URL: https://dx.doi.org/10.1086/300337.