IIT Hyderabad

SHANTANU YADAV, EE20MTECH12001

ASSIGNMENT 1

Lines and Planes

Problem Statement

Find the equations of the lines which intercepts on the both the axes and whose sum and product are 1 and -6 respectively.

Solution

The equation of line in terms of vector notations can be written as

$$\mathbf{n}^T \mathbf{x} = b$$
 where $\mathbf{n} = \begin{pmatrix} n_{11} \\ n_{12} \end{pmatrix}$ (1)

or

$$\begin{pmatrix} n_{11} & n_{12} \end{pmatrix} \mathbf{x} = b \tag{2}$$

Let the intercepts be $\begin{pmatrix} a \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ b \end{pmatrix}$, respectively.

Given that:

$$a+b=1,$$
 and $ab=-6$

$$\implies b = \frac{-6}{a} \implies a^2 - a - 6 = 0 \implies (a - 3)(a + 2) = 0$$

$$\implies (a, b) = (3, -2) \text{ and } (-2, 3)$$
(3)

When the line passes through $\begin{pmatrix} 3 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ -2 \end{pmatrix}$, respectively, we get, upon substitution in (2):

$$3n_{11} = b \qquad \Longrightarrow \qquad n_{11} = \frac{b}{3}$$
$$-2n_{12} = b \qquad \Longrightarrow \qquad n_{12} = -\frac{b}{2}$$

Therefore, the equation of first line is

$$\left(\frac{b}{3} \quad \frac{-b}{2}\right)\mathbf{x} = b$$

$$\left(\frac{1}{3} \quad \frac{-1}{2}\right)\mathbf{x} = 1$$
(4)

 \Longrightarrow

Figure 1:

Similarly, the equation of second line, which passes through $\begin{pmatrix} -2\\0 \end{pmatrix}$ and $\begin{pmatrix} 0\\3 \end{pmatrix}$ is

$$\left(\frac{-1}{2} \quad \frac{1}{3}\right)\mathbf{x} = 1\tag{5}$$