

Departamento Académico de Economía Matemáticas III (30651) Primer Semestre 2015 Profesores Diego Winkelried, Eduardo Mantilla, Jorge Rodas y Jorge Cortéz

Examen Parcial SECCIÓN I

1. Vectores y sus ángulos (5 ptos)

Sean θ_1 y θ_2 dos números reales tales que $0 < \theta_1 < \theta_2$. Defina los vectores de \mathbb{R}^2

$$\mathbf{v}_1 = \begin{bmatrix} \cos(\theta_1) \\ \sin(\theta_1) \end{bmatrix}$$
 \mathbf{v} $\mathbf{v}_2 = \begin{bmatrix} \cos(\theta_2) \\ \sin(\theta_2) \end{bmatrix}$.

Sean \mathbf{u}_1 y \mathbf{u}_2 otros dos vectores en \mathbb{R}^2 definidos como $\mathbf{u}_1 = \mathbf{Q}\mathbf{v}_1$ y $\mathbf{u}_2 = \mathbf{Q}\mathbf{v}_2$, donde \mathbf{Q} es la matriz

$$Q = \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{bmatrix}$$

para $\alpha > 0$. Finalmente, las siguientes Figuras grafican los vectores previamente definidos:

- a) (2 ptos) Encuentre los ángulos a_1 , b_1 y c_1 de la Figura 1 en términos de θ_1 y θ_2 .
- b) (2 ptos) Encuentre los ángulos a_2 , b_2 y c_2 de la Figura 2 en términos de θ_1 , θ_2 y α .
- c) (1 pto) Comente sobre la relación existente entre los vectores $\{v_1, v_2\}$ y $\{u_1, u_2\}$.

 $Ayuda: \text{Recuerde que } \cos(\omega_1 \pm \omega_2) = \cos(\omega_1)\cos(\omega_2) \mp \sin(\omega_1)\sin(\omega_2) \text{ y } \sin(\omega_1 \pm \omega_2) = \sin(\omega_1)\cos(\omega_2) \pm \cos(\omega_1)\sin(\omega_2).$

Matemáticas III (30651) - Examen Parcial

2. Matrices y sus propiedades (6 ptos)

Sean A_1 y A_2 dos matrices cuadradas de dimensión $n \times n$, con las siguientes características:

- A_1 y A_2 son simétricas e idempotentes.
- A_1 y A_2 son complementarias: $A_1 + A_2 = I_n$.
- A_1 y A_2 son mutuamente ortogonales: $A_1A_2 = A_2A_1 = \mathbf{0}_n$.
- rango(A_1) = $r_1 > 0$ y rango(A_2) = $r_2 > 0$.

Defina, además, la matriz

$$\boldsymbol{B} = \theta_1 \boldsymbol{A}_1 + \theta_2 \boldsymbol{A}_2,$$

donde θ_1 y θ_2 son dos escalares distintos de cero.

Utilizando estas propiedades,

- a) (1 pto) Verifique que $r_2 = n r_1$. Luego, responda ¿son A_1 y A_2 matrices singulares?
- b) (1 pto) Encuentre los valores de θ_1 y θ_2 para los que B sea idempotente.
- c) (1 pto) La inversa de \boldsymbol{B} tiene la forma $\boldsymbol{B}^{-1} = \alpha_1 \boldsymbol{A}_1 + \alpha_2 \boldsymbol{A}_2$. Halle α_1 y α_2 .
- d) (2 ptos) Muestre que los valores propios de \boldsymbol{B} pueden ser iguales únicamente a θ_1 o a θ_2 .
- e) (1 pto) Finalmente, muestre que $\det(\mathbf{B}) = (\theta_1)^{r_1}(\theta_2)^{r_2}$.