

22. Elementary Graph Algorithms

Yu-Shuen Wang, CS, NCTU

22.1 Representations of graphs

- adjacency-matrix representation (dense)
- adjacency-list representation (sparse)

Undirected Graph

$$\begin{split} &V(G_1): \{\,X,\,Y,\,Z,\,W,\,V\,\} \\ &E(G_1): \{\,(X,\,Y),\,(X,\,Z),\,(Y,\,W),\,(Y,\,V),\,(Z,\,W),\,(W,\,V)\,\} \\ &|V|=5\,,\,|E|=6 \end{split}$$

$$V(G_2)$$
: { X, Y, Z, W, V, T }
 $E(G_2)$: { (X, Y), (X, V), (Y, W), (Y, Z), (V, T) }
 $|V| = 6$, $|E| = 5$

Directed Graph

$$V(G_3) : \{ X, Y, Z, W, V \}$$

 $E(G_3) : \{ X \rightarrow Y, W \rightarrow Y, W \rightarrow V, Z \rightarrow X, Z \rightarrow W, V \rightarrow Y \}$
 $|V| = 5, |E| = 6$

$$V(G_4) : \{ X, Y, Z, W \}$$

 $E(G_4) : \{ X \rightarrow Y, Y \rightarrow X, Y \rightarrow Z, Y \rightarrow W, W \rightarrow Z \}$
 $|V| = 4 , |E| = 5$

Graph G

$$V(G) : \{X, Y, Z, W\}$$

$$E(G) : \{X\rightarrow Y, Y\rightarrow X, Y\rightarrow Z, Y\rightarrow W, W\rightarrow Z\}$$

$$|V| = 4$$
, $|E| = 5$

Subgraph of G

$$V(G_1) : \{X, Y, W\}$$

 $E(G_1) : \{X \rightarrow Y, Y \rightarrow X\}$

$$V(G_2) : \{X, Y, Z, W\}$$

$$E(G_2) : \{ Y \rightarrow X, Y \rightarrow Z, Y \rightarrow W \}$$

Weighted

Directed Graph: Strongly Connected

Directed Graph: Not Strongly Connected

The operation of BFS

The operation of BFS

The operation of BFS

22.2 Breadth-first search

```
BFS(G,S)
                                                      while Q
     for each vertex u \in V[G] - \{s\}
                                                      do u ← head[Q]
                                                 10
        do color[u] \leftarrow WHITE
2
                                                           for each v \in Adj[u]
                                                 11
              d[u] \leftarrow \infty
3
                                                                  do if color[v] = WHITE
                                                 12
              \pi[u] \leftarrow NIL
                                                                        then color[v] \leftarrow GRAY
                                                 13
     color[s] \leftarrow GRAY
                                                                             d[v] \leftarrow d[u] + 1
                                                 14
     d[s] \leftarrow 0
                                                                             \pi[v] \leftarrow u
                                                 15
    \pi[s] \leftarrow NIL
                                                                             ENQUEUE(Q, V)
                                                 16
     Q \leftarrow \{s\}
                                                            DEQUEUE(Q)
                                                 17
                                                            color[u] \leftarrow BLACK
                                                 18
```

Analysis: O(V+E)

Chapter 22

Shortest paths

 $\delta(s,v)$: shortest path from s to v

Lemma 22.1. Let G = (V, E) be a directed or undirected graph, and let $s \in V$ be an arbitrary vertex. Then for any edge $(u,v) \in E$, $\delta(s,v) \leq \delta(s,u) + 1$.

Lemma 22.2. Let G = (V, E) be a directed or undirected graph, and suppose that BFS is run on G from a given source $s \in V$. Then upon termination, for each vertex $v \in V$, the value d[v] computed by BFS satisfies $d[v] \ge \delta(s,v)$.

Proof. (Induction on the number of times a vertex is placed in the queue)

Lemma 22.3. Suppose that during the execution of BFS on a graph G = (V, E), the queue Q contains the vertices $\langle v_1, v_2, ..., v_r \rangle$, where v_1 is the head of Q and v_r is the tail. Then $d[v_r] \leq d[v_1] + 1$ and $d[v_i] \leq d[v_{i+1}]$ for i=1,2,...,r-1.

Proof. (induction on the number of queue operations)

Corollary 22.4. Suppose vertices v_i and v_j are enqueued during the execution of BFS, and that v_i is enqueued before v_j is enqueued.

Then $d[v_i] \le d[v_j]$ at the time that v_j is enqueued.

proof Immediate form Lemma 22.3 and the property that each vertex receives a finite d value at most once during the course of BFS.

We can now prove that breadth-first search correctly finds shortest-path distances.

Theorem 22.5

Let G = (V, E) be a directed or undirected graph, and suppose that BFS is run on G from a given source $s \in V$. Then, during its execution, BFS discovers every vertex $v \in V$ that is reachable from the source, and upon termination $d[v] = \delta(s,v)$ for all $v \in V$ Moreover, for any $v \neq s$ that is reachable from s, one of the shortest paths from s to v is the shortest path from s to v is the shortest path from s to v is the shortest path from v to v the shortest path from v to v the shortest path from v to v to v the shortest path from v to v the shortest path f

Proof. By induction.

For a graph G = (V, E) with source s, we define the predecessor subgraph of G as $G_{\pi} = (V_{\pi}, E_{\pi})$ where $V_{\pi} = \{v \in V \mid \pi[v] \neq NIL\} \cup \{s\}$, and $E_{\pi} = \{(\pi[v], v) \in E \mid v \in V_{\pi} - \{s\}\}$. The edges in E_{π} are called *tree edges*.

Lemma 22.6. When applied to a directed or undirected graph G = (V, E) procedure BFS constructs π so that the predecessor subgraph $G_{\pi} = (V_{\pi}, E_{\pi})$ is a breadth-first tree.

```
PRINT_PATH(G, s, v)
1 if v = s
      then print s
3
      else if \pi[v]=NIL
           then print "no path from" s "to" v "exist"
5
           else PRINT-PATH(G, s, \pi[v])
              print v
```

Depth first search

Maze Problem

22.3 Depth-First Search

```
DFS(G)
                                                 DFS-VISIT(u)
                                                     color[u] = gray
   for each vertex u \in V[G]
       do color[u] \leftarrow white
                                                 g = d[u] \leftarrow time \leftarrow time + 1
                                                    for each v \in adj[u]
            \pi[v] \leftarrow NIL
3
                                                         do if color[u] = white
    time \leftarrow 0
                                                             then \pi[v] \leftarrow u
   for each vertex u \in V[G]
                                                 5
       do if color[u] = white
                                                 6
                                                                 DFS-VISIT(v)
6
                                                   color[u] = black
            then DFS-VISIT(u)
                                                 8 f[u] \leftarrow time \leftarrow time + 1
```

predecessor subgraph:

depth-first forest, depth-first tree

Time stamps: d(u) discovered

f(u) finished

Complexity: O(V+E)

Depth-First Tree#2

Chapter 22 P.24

Graph G: Depth-First Forest

Depth-First Tree#1

Properties of depth-first search

Theorem 22.6. (Parenthesis theorem)

In any depth-first search of a (directed or undirected) graph G = (V, E) for any two vertices u and v, exactly one of the following conditions holds:

- the intervals [d(u), f(u)] and [d(v), f(v)] are entirely disjoint.
- the interval [d(u), f(u)] is contained entirely within the interval [d(v), f(v)], and u is a descendant of v in the depth-first tree, or
- the interval [d(v), f(v)] is contained entirely within the interval [d(u), f(u)], and v is a descendant of u in the depth-first tree.

Corollary 22.8. (Nesting of descendants' interval) Vertex v is a proper descendant of a vertex u in the depth-first forest for a (directed or undirected) graph G if and only if d(u) < d(v) < f(v) < f(u).

Property of DFS

Theorem 22.9 (white path theorem)

In a depth-first forest of a (directed or undirected) graph G = (V, E), vertex v is a descendant of vertex u if and only if at time d[u] that the search discover u, vertex can be reached from u along a path consisting entirely of white vertices.

Classification of edges:

Tree edges (shaded)

Back edges

Forward edges

Cross edges

Theorem 22.10. In a depth-first search of an undirected graph *G* every edge of *G* is either a tree edge or a back edge.

22.4 Topological sort

A topological sort of a directed acyclic graphs G = (V, E) is a linear ordering of all its vertices such that if G contains an edge (u, v), then u appears before v in the ordering.

TOPOLOGICAL_SORT(G)

- call DFS(G) to compute finishing time f(v) for each vertex v.
- as each vertex is finished, insert it onto the front of a link list.
- 3) return the link list of vertices

Lemma 22.11. A directed graph *G* is acyclic if and only if a depth first search of *G* yields no back edge.

Theorem 22.12. TOPOLOGICAL_SORT(*G*) produces a topological sort of a directed acyclic graph *G*.

22.5 Strongly connected components

DFS(G) on vertex(0)

finish time: 0>1>2>5>4>6>7>8>3

DFS(G^T) in order of decreasing finish time

Chapter 22

22.5 Strongly connected components

- call DFS(G) to compute finishing times f[u] for each vertex u
- compute G^T
- call $DFS(G^T)$, but in the main loop of DFS, consider the vertices in order of decreasing f[u] (as computed in line 1)
- output the vertices of each tree in the depth-first forest of step 3 as a separate strongly connected component

Lemma 22.13. Let C and C be distinct strongly connected components in directed graph G = (V, E), let $u, v \in C$, let u', $v' \in C'$, and suppose that there is a path $u \rightsquigarrow u'$ in G. Then there cannot also be a path $u' \rightsquigarrow v$ in G.

Lemma 22.14. Let C and C be distinct strongly connected components in directed graph G = (V, E). Suppose that there is an edge $(u, v) \in E$, where $u \in C$ and $v \in C$. Then f(C) > f(C').

Corollary 22.15. Let C and C be distinct strongly connected components in directed graph G = (V, E). Suppose that there is an edge $(u, v) \in E^T$, where $u \in C$ and $v \in C$. Then f(C) < f(C').

Theorem 22.16.

STRONGLY-CONNECTED-COMPONENTS(G) correctly computes the strongly connected components of a directed graph *G*.