Towards a Dataset for the Discrimination of Warranted and Unwarranted Spam

Eric Burton Samuel Martin Advisor: Indrakshi Ray Co-Advisor: Hossein Shirazi

Goals:

- Increase the effectiveness of current spam filters that rely on user-feedback
 - Decrease malicious spam from bypassing filters

Rays Cyber Research Lab

- Decrease spam filter bias against commercial correspondence
- Produce a model that can discriminate between warranted and unwarranted spam

Motivation:

Affiliate marketing and survey-based spam has been bypassing modern spam filters

"Affiliate marketing and survey-based spam have been consistently bypassing our corporate spam filters"

What incentive do spammers have to send these?

- To collect affiliate commissions, obtain and sell user-data, and can deploy malware Brands associated with these unsolicited spam emails
 - Risk tarnished reputations and begin to be perceived as 'spammy'

Background on Spam:

"unsolicited", "irrelevant", "inappropriate", "unwanted", "commercial messages", "advertising material"

There are numerous definitions of spam, but here is Merriam-Webster's definition :

ˈspam ◄》

: unsolicited usually commercial messages (such as emails, text messages, or Internet postings) sent to a large number of recipients or posted in a large number of places

Most perceived "spam" is solicited and benign:

- A significant portion of emails perceived as spam are messages that recipients have, in some manner, consented (explicitly or implicitly) to receive
 - Explicit consent (signing up to a newsletter)
 - Implicit consent (terms and conditions, making online purchases, etc.)
- These emails, although unwanted, often abide by the country of origins spam laws

Unsolicited spam is a risk to individuals and businesses:

 Unsolicited spam can be used to carry out phishing attacks, distribute malware, perpetuate scams and fraud, collect user-data for identity theft, and to collect affiliate commissions

Conjecture:

Why spam filters that rely on user-feedback to train their models may be the cause of this issue

Gives Walmart Email for

Recieves Email from Walmart

10% Off

Reliance on User Feedback

- Users tend to flag solicited emails as spam rather than unsubscribe
- Risk of introducing noise to spam filter model due to incorrect spam labeling
- Potential to over-weight patterns of authentic commercial correspondence
- Here is how Google's spam filters claim to work:

Simply put, to protect users at scale, we rely on machine learning powered by user feedback to catch spam and help us identify patterns in large data sets-making it easier to adapt quickly to everchanging spam tactics. Gmail employs a number of AI-driven filters that determine what gets marked as spam. These filters look at a variety of signals, including characteristics of the IP address, domains/subdomains, whether bulk senders are authenticated, and user input. User feedback, such as when a user marks a certain email as spam or signals they want a sender's emails in their inbox, is key to this filtering process, and our filters learn from user actions. [1]

Bias in Training Data

- Model effectiveness tied to data quality
- Bias against legitimate emails due to user misreporting
- Leads to higher false positive rates for commercial mail

Impact on Spam Detection Effectiveness

- Risk of creating blind spots in detection
- Over-tuning to user-reported spam can miss subtle spam cues
- Real malicious unsolicited spam may slip through due to learned biases

Nuanced Approach for Effective Spam Detection

- Introduce two new classification labels for spam 'warranted' and 'unwarranted'
- Generate a model to distinguish between these two classifications
 - Classify all user-flagged spam as 'warranted' or 'unwarranted'
 - If warranted, do not use to update spam-filter model, add rule to filter
 - If unwarranted, use in future spam-filter model updates

'Warranted' Spam and 'Unwarranted' Spam:

Introducing nuanced classification for spam

To aid in the discrimination of unsolicited and solicited spam, we introduce two labels:

'Warranted' Spam:

Legitimate communications that recipients have consensually opted into, knowingly or not, that originate from a credible source, and that provide clear and safe opt-out methods.

'Unwarranted' Spam:

Unsolicited and often malicious messages sent without the recipient's consent, where attempts to unsubscribe may be futile or may even exacerbate the problem.

There exists a public dataset that matches the unwarranted spam definition, the Spam Archive by Bruce Guenter [2]. But there is no warranted spam dataset. So, we made one.

Limitations of Available Spam Datasets:

Currently Available Spam Datasets:

- Outdated, Outdated!
- Aside from the Bruce Guenter dataset, every dataset is unacceptably outdated
- Models trained on these datasets show deteriorated performance when tested on current data. [3]

Dataset	Age of Data
Ling-Spam	2000
SpamAssassin	2000-2006
Enron-Spam	2006
TREC07	2007
CSDMC	2010
Bruce Guenter	1997-2023

May contain Amalgamation of unwarranted and warranted spam

- Can therefore contain user-flagged warranted spam
- The exception is the Bruce Guenter dataset [2]
 - Consists solely of unwarranted spam sent to a bait address

Introducing the Warranted Spam Dataset:

We have created a large dataset consisting of warranted spam

• Up-to-date, Modern, Ever-growing, public facing warranted spam archive [4]

The dataset is comprised of two main email account repositories:

1) PRIMARY@gmail.com

- The primary dataset (meticulously managed and tracked)
- Logs all websites the address is registered with into our website repository
- Employs the '+' feature in Gmail to trace the original source of each email
 - For example, PRIMARY+nike@gmail.com is used to register for Nike.com

2) AD-HOC@gmail.com

- A dataset designed for convenient, ad-hoc signups outside of working hours
- Does not maintain a record of each sign-up
- Does not utilize the '+' feature

Website Repository:

- Spreadsheet containing all websites the primary account has registered with
- 28 categories | > 70 websites per category | Unique email address used per site
 - Category examples are finance, news, retail, cannabis, sports, survey, etc.

	A.D	^ ∟		Α0
Fashion_Company	Fashion_URL	Fashion_Registration_Email	Done	News_Company
Vogue	https://www.vogue.com/	REDACTED+vogue@gmail.com	~	BBC News
Elle	https://www.elle.com/	REDACTED+elle@gmail.com	~	CNN
Harper's Bazaar	https://www.harpersbazaar.com/	REDACTED+harpersbazaar@gmail.com	~	The New York Times

Sign-up Methodology:

- Our team has manually attempted to register to over 2000 websites so far Automation of the sign-up process has been attempted with low success rates

Data Cleansing and Management:

- We have scripts to export, organize, scrub, and zip all email files
- Key metrics are extracted from each raw email for future use
- All mail sent to the Gmail Spam folder is redirected to a 'Labelled Spam' folder

	Primary	Ad-Hoc	Forwarded
Provider	Gmail	Gmail	Outlook
Instantiation	3-May-23	31-Mar-23	18-May-23
GB	14.12	4.93	15 (Max)
Total Emails	164.8K	71.2K	54.4K
Spam	1.4K (2.0%)	1.4K (2.90%)	1.4K (2.60%)

Table 1: Summary of statistics from creation date until 12-Nov-2023 for each email Account used in dataset collection.

Next Steps:

Utilize the dataset and leverage large language modes and NLP

Distinguish between unwarranted and warranted spam:

 Utilize the Bruce Guenter Spam dataset as unwarranted spam and our dataset as warranted spam to train a model to perform classification

Content categorization:

Manufacture of the Control of the Co

• Utilize LLMs and NLP to categorize warranted spam into categories, such as News, Finance, Sports, Fashion, etc.

Sentiment Analysis:

• Compare warranted spam vs unwarranted spam to see similarities and differences

Use Case Scenario:

Harden spam filters against unwarranted spam

When a user flags an email as spam, run it through our classification filter, then:

- If the flagged email is classified as 'warranted spam'
 - Add a rule to prevent this mail from entering the user's inbox
 - Do not use this mail to update the spam-filter machine learning model
- If the flagged email is classified as 'unwarranted spam'
 - Add a rule to prevent this mail from entering the user's inbox Use this mail to update the spam-filter machine learning model

References:

1] https://workspace.google.com/blog/identity-and-security/an-overview-of-gmails-spam-filters

3] Jáñez-Martino, F., Alaiz-Rodríguez, R., González-Castro, V. et al. A review of spam email detection: analysis of spammer strategies and the dataset shift problem. Artif Intell Rev 56, 1145–1173 (2023). [4] [4] https://www.cs.colostate.edu/~ebmartin/warrantedSpamDataSet/