CSC 349A: Numerical Analysis
Assignment 2

Instructor: Rich Little

Question #1 - 8 marks.

Consider a base 5 normalized, floating-point number system. Assume that a hypothetical computer using this system has the following floating-point representation: sm f1 f2 f3 f4 se e1 e2 where sm is the sign of the mantissa, se is the sign of the exponent (1 for negative, 0 for positive), fi are the digits of the mantissa, and ej are the digits of the exponent.

(a) Consider the base 5 number, given using the above representation, 02003004. What exact decimal value does it represent?

(b) What decimal value does 11004003 represent?

(c) What is the smallest positive, non-zero, number that can be represented in this system? Give the answer in the above form (i.e. as 8 base-5 digits.) and in decimal.

(d) What is the size of the gap between any two consecutive numbers in the interval 25(10) and 125(10) in this floating-point representation system? Your answer should be in decimal.

Instructor: Rich Little

3	5 53 - 6 - 10 - 10 - 10 - 10 - 10 - 10 - 10
0,	Size of interval = 5? - 5a = 100 4-1 the of sub-interval = (b-1) bk-1 = (b-1)(5) = 500
	AT OF OUR MININGS (C. 2.2)
	Sine of gap = bt-K = b3-9 = 53-9 = 51 = 1/5 = 0.2.

Question #2 - 6 Marks.

The polynomial $P(x) = x \ 2 - 83.12x + 3.123$ has two roots, at approximately 0.0375892 and 83.0824. The roots of a quadratic polynomial ax2 + bx + c can be computed by (i) $-b \pm \sqrt{b} \ 2 - 4ac$ 2a or equivalently (ii) $-2c \ b \pm \sqrt{b} \ 2 - 4ac$. Using floating-point arithmetic, one of these formulas is often much more accurate than the other. For example, if $(-b + \sqrt{b} \ 2 - 4ac)/(2a)$ is used to compute one of the roots of $P(x) = x \ 2 - 83.12x + 3.123 = 0$ with base b = 10, precision k = 4, idealized chopping arithmetic, the results are as follows: $fl(b \ 2) = fl(()6908.9344) = 6908$ or 0.6908×104 . fl(4a) = 4 or 0.4000×101 . $fl(4ac) = fl(4 \times 3.123) = fl(12.492) = 12.49$ $fl(b \ 2 - 4ac) = fl(()6908 - 12.49) = fl(()6895.51) = 6895$ $fl(\sqrt{b} \ 2 - 4ac) = fl(\sqrt{b} \ 6895) = fl(83.036136 \cdots) = 83.03$ $fl(-b + \sqrt{b} \ 2 - 4ac) = fl(83.12 + 83.03) = fl(166.15) = 166.1$ fl(2a) = 2 $fl(-b + \sqrt{b} \ 2 - 4ac$ 2a $= fl(-b + \sqrt{b} \ 2 - 4ac) = fl(-b + \sqrt{b} \ 2 - 4ac$ 2b which is very accurate. The relative error is about 0.00039 or 0.039%. On the other hand, it can be shown (similar to the above) that fl(-2c) = fl(-b) = fl(-b)

(a) Use base b = 10, precision k = 4, idealized chopping arithmetic and each of the mathematically equivalent formulas -2c b - V b 2 - 4ac and -b - V b 2 - 4ac 2a to compute an approximation to one root of P(x) = 1.2x 2 - 78.99x + 1.234 = 0. As above, specify each step of the computation. Note that many of the computations for the two formulas are identical, and need only be done once. Use your calculator to do this, not MATLAB.

(a) FI(b) = FI(18.99°) = FI(6239, 4201) = 6239 or 0.6239 ×104
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
11 (b-40c) = fl (0333) = fl (18,9498 3124) = 78,94
FI (10-400) = FI (-1899-18.94) = -157.9.
\$1(h-10-400)= f(1-2x1,234)= f(1-2,468)=-2.468.
T
(b-15x-4ac) (-151.9)
FI (15-40C) = 78.94
f(-1) - (-1) - (-1) = f(-1) - (-1)
9(120) = FILAXIA) = FI (204) = 204 OF D.2400X10
$f(1-b-1b^240c)-f(0.05)=f(0.020833)=f(0.0208)=0.02083$
20.02085

Instructor: Rich Little

(b) Compute the relative errors of each of the approximations in (a) using the fact that the exact value of the root is $0.01562594 \cdots$. Give at least 2 significant digits.

(c) One of the two zeros of a quadratic polynomial ax2 + bx + c can be computed using either the formula (i) -b + V b 2 - 4ac 2a or (ii) -2c b + V b 2 - 4ac For each of the specified polynomials in the table below, place an X in the appropriate box to indicate which of these formulas is more accurate in precision k = 4 floatingpoint arithmetic. Put exactly one X in each row of the table. (No justification for your answers is required. It is NOT necessary to do any floating-point computation to answer this question.)

Instructor: Rich Little

Question #3 - 6 Marks

(a) Determine the second order (n = 2) Taylor series expansion for $f(x) = \sqrt{x} + 3$ expanded about a = 1 including the remainder term. Leave your answer in terms of factors (x - 1) (that is, do not simplify). Show all your work.

(b) Use the polynomial approximation in (a) (without the remainder term) to approximate $f(1.12) = \sqrt{4.12}$. Use either hand computation, your calculator or MATLAB. Give an exact answer. 3

Leoza Kabir V00840048 Instructor: Rich Little

CSC 349A: Numerical Analysis Assignment 2

2018-09-30

c) Determine a good upper bound for the truncation error of the Taylor polynomial approximation in

(a) for all values of x such that $1 \le x \le 1.2$ by bounding the remainder term.

$$R_{a} = \frac{1}{10(E_{0} + 3)^{5/2}} (x - 1)^{3} \cdot E_{0} = [1, 1, 2]$$

$$= \frac{(1.2 - 1)^{3}}{10(1 + 3)^{5/2}} = 0.000015625$$

$$|E_{1}| \leq |R_{3}| = 0.000015625$$