

Optimal Control of Microgrid

Brain Hackathon 12-14 March 2021

Collaboration: TrønderEnergi and NTNU CityXChange

The Rye Microgrid

- System to deliver electricity to a small neighbourhood at Rye (1 farm, 3 households)
- Goal to minimise usage of electricity from the grid
- Production units
 - Wind turbine
 - Photovoltaic (PV) panels
- Storage units
 - Battery energy storage system
 - Hydrogen energy storage system

Microgrid: Goal and control

- Purpose is to provide electricity locally and sustainably
- Current control system is myopic and rule based
- Our wish is a smarter and anticipative control system

Control task: requirements

- Minimise cost of imported electricity from the grid
 - Per-unit cost and peak import tariff
- Control actions:
 - Direct: Charge and discharge storages
 - Implicit: Import electricity from grid
 - Implicit last resort action: Curtail / throw away excess production
- Observations:
 - Consumption, Wind production and PV production are stochastic variables
 - (Partly function of the weather)
- Constraints/ Limitations:
 - Consumption must be met at all times, through wind or PV production, discharge from storages or from grid
 - There are limits on storage, as well as charge and discharge limits
 - Energy is lost in the conversion process to the storage
 - · Energy produced in the microgrid cannot be fed into the grid

Control loop - interface controller and simulator

Simulator of Rye microgrid

- Technical details
 - Python
 - Implemented as OpenAI Gym (generic interface for any control system)
 - GitHub repo: https://github.com/TronderEnergi/tronderenergi-ai-hackathon-2021
 - •Includes simulator-code and assignment text

Example random agent

```
def main() -> None:
data = pd.read_csv("data/train.csv", index_col=0, parse_dates=True)
env = RyeFlexEnv(data)
agent = RandomActionAgent(action_space=env.action_space)
plotter = RyeFlexEnvEpisodePlotter()
info = {}
done = False
while not done:
    action = agent.get_action()
    state, reward, done, info = env.step(action)
    plotter.update(info)
print(f"Your score is: {info['cumulative_reward']}")
plotter.plot_episode()
```

• Link: https://github.com/TronderEnergi/tronderenergi-ai-hackathon-2021/blob/main/scripts/random_action.py

Example random agent

Example random agent

Your score is: 41342.76834 NOK

Data

- Simulator uses historical data of consumption, production and spot market prices
- Additional data provided: Weather data
 - NB: It is allowed to use other data sources if desired
- Hourly data
- We have split it into training and testing dataset
 - Training dataset: Used during development (2020 January 2021 January)
 - Test dataset: Used for evaluation and provided on Saturday 18.00

Design of control algorithm

- Your imagination is the only limit!
 - Solution only need to interface with the simulator (and not allowed to change simulator)
 - NB: Allowed/encouraged to do feature engineering and/or reward shaping based on simulator output/data etc.
 - Examples
 - Traditional optimization (LP, QP, LQR, MPC etc.)
 - Greedy algorithms
 - Search algorithms
 - Evolutionary algorithms
 - Deep reinforcement learning
 - Combine several ML and/or optimization-solutions:
 - Create forecasts of certain states to help control-algorithm?

Evaluation

- Score = cumulative reward for test period
 - Reproducibility we can run your code to get the same/similar score
- Methodology
 - Method selection
 - System design
 - System implementation
- Presentation
 - Score
 - Plots with actions and environment state
 - Explanation and justification of choices made

Mentors

Gleb

Gro

Aleksander

Erik

Raquel

The best of luck and good hacking!