Homework Section 1.2

Mark Petersen

Exercises: 4,5,7,8,9

06/22/2020

Exercise 1.1. Produce an infinite collection of sets A_1, A_2, A_3, \ldots with the property that every A_i has an infinite number of elements, $A_i \cap A_j = \emptyset$ for all $i \neq j$, and $\bigcup_{i=1}^{\infty} A_i = \mathbb{N}$.

Let $P=\{1,2,3,5,7,\ldots\}$ be the set of all prime numbers including $1,A_i\subseteq\mathbb{N}$, be the subset of the natural numbers whose elements have a factorization consisting of i distinct elements of the set P, and 1 is never multiplied by a prime. For example, let $a\in A_k$, then $a=p_1^{b_1}p_2^{b_2}\cdots p_k^{b_k}$ where $p_1,p_2,\ldots,p_k\in P,b_1,b_2,\ldots,b_k\in\mathbb{N},$ $p_1< p_2<\cdots< p_k$ and if $k\geq 2$, then $p_1,p_2,\ldots,p_k\neq 1$. We need to show that $A_i\cap A_j=\emptyset$ for all $i\neq j$, the collection is infinite, each set is infinite, and $\bigcup_{i=1}^\infty A_i=\mathbb{N}$.

Proof: Suppose directly that A_i is the set as defined above. Let $m \in A_m$, then $m = p_1^{b_1} p_2^{b_2} \cdots p_m^{b_m}$. In other words, it is composed of m distinct primes. Thus $m \not\in A_n$, where $m \neq n$, since n is composed of n distinct primes. Thus $A_m \cap A_n = \emptyset$ for all $m \neq j$. Since there is an infinite number of primes, there is an infinite collection of sets A_i . Since the power of each prime can be any natural number, each set must contain an infinite number of elements. Since every natural number, other than 1, has a unique prime factorization, $\mathbb{N} \subseteq \bigcup_{i=1}^\infty A_i$, and since the product of primes is a natural number, $\bigcup_{i=1}^\infty A_i \subseteq \mathbb{N}$, thus $\bigcup_{i=1}^\infty A_i = \mathbb{N}$. Therefore, $A_i \cap A_j = \emptyset$ for all $i \neq j$, the collection is infinite, each set is infinite, and $\bigcup_{i=1}^\infty A_i = \mathbb{N}$.

Exercise 1.2. Let A and B be subsets of \mathbb{R} .

- a) If $x \in (A \cap B)^c$, explain why $x \in A^c \cup B^c$. This shows that $(A \cap B)^c \subseteq A^c \cup B^c$.
 - a) If $x \in (A \cap B)^c$, then $x \notin (A \cap B)$. In other words, $x \notin A$ or $x \notin B$, which is equivalent to $x \in A^c \cup B^c$.
- b) Prove the reverse inclusion $(A \cap B)^c \supseteq A^c \cup B^c$, and conclude that $(A \cap B)^c = A^c \cup B^c$.
 - *Proof:* We suppose directly that $x \in A^c \cup B^c$, then $x \in A^c$ or $x \in B^c$. In other words, $x \notin A$ or $x \notin B$. This means that $x \notin A \cap B$, which is equivalent to $x \in (A \cap B)^c$. Therefore, $(A \cap B)^c \supseteq A^c \cup B^c$. Combining the results of part a) and b) shows that $(A \cap B)^c = A^c \cup B^c$.
- c) Show $(A \cup B)^c = A^c \cap B^c$ by demonstrating inclusion both ways. *Proof:* To show that two sets are equal, we must show that $(A \cup B)^c \subseteq A^c \cap B^c$ and $(A \cup B)^c \supseteq A^c \cap B^c$.
 - (\subseteq) : We suppose directly that $x \in (A \cup B)^c$, then $x \notin A \cup B$. Which means that $x \in A^c$ and $x \in B^c$. Thus $x \in A^c \cap B^c$, and $(A \cup B)^c \subseteq A^c \cap B^c$.
 - (\supseteq) : We suppose directly that $x \in A^c \cap B^c$, then $x \notin A$ and $x \notin B$, thus $x \notin A \cup B$, which is equivalent to $x \in (A \cup B)^c$. Hence, $(A \cup B)^c \supseteq A^c \cap B^c$.

Since both inclusions hold, we have that $(A \cup B)^c = A^c \cap B^c$.

Exercise 1.3. Given a function f and a subset A of its domain, let f(A) represent the rang of f over the set A; that is, $f(A) = \{f(x) : x \in A\}$.

- a) Let $f(x) = x^2$. If A = [0, 2] and B = [1, 4], find f(A) and f(B). Does $f(A \cap B) = f(A) \cap f(B)$ in this case? Does $f(A \cup B) = f(A) \cup f(B)$?
 - a) Since f is a continuous, non-decreasing function, f(A) = [f(0), f(2)] = [0, 4], and f(B) = [f(1), f(4)] = [1, 16].
 - b) $f(A \cap B) = f([1,2]) = [f(1), f(2)] = [1,4] = [0,4] \cap [1,16] = f(A) \cap f(B)$, thus $f(A \cap B) = f(A) \cap f(B)$
 - c) $f(A \cup B) = f([0, 4]) = [0, 16] = [0, 4] \cup [1, 16] = f(A) \cup f(B)$
- b) Find two sets A and B for which $f(A \cap B) \neq f(A) \cap f(B)$.
 - a) Let A = [-2, -1] and B = [1, 2], then $f(A \cap B) = f(\emptyset) = \emptyset$, and $f(A) \cap f(B) = [4, 1] \cap [4, 1] = [4, 1]$.
- c) Show that, for an arbitrary function $g: \mathbb{R} \to \mathbb{R}$, it is always true that $g(A \cap B) \subseteq g(A) \cap g(B)$.
 - *Proof:* We suppose directly that $x \in A \cap B$, then $x \in A$ and $x \in B$. Thus $g(x) \in g(A)$ and $g(x) \in g(B)$. In other words, $g(x) \in g(A) \cap g(B)$. Therefore, $g(A \cap B) \subseteq g(A) \cap g(B)$.
- d) Form and prove a conjecture about the relationship between $g\left(A\cup B\right)$ and $g\left(A\right)\cup g\left(B\right)$.

Conjecture: Let $g: \mathbb{R} \to \mathbb{R}$, and $A, B \subseteq \mathbb{R}$, then $g(A \cup B) \subseteq g(A) \cup g(B)$.

Proof: We suppose directly that $g : \mathbb{R} \to \mathbb{R}$, and $A, B \subseteq \mathbb{R}$. Let $x \in A \cup B$, then $x \in A$ and/or $x \in B$. This means that $g(x) \in g(A)$ and/or $g(x) \in g(B)$, thus $g(x) \in g(A) \cup g(B)$. Therefore, $g(A \cup B) \subseteq g(A) \cup g(B)$.

Exercise 1.4. Here are two important definitions related to a function $f: A \to B$. The function f is injective if $a_1 \neq a_2$ in A implies that $f(a_1) \neq f(a_2)$ in B. The function f is surjective if, given any $b \in B$, it is possible to find an element $a \in A$ for which f(a) = b. Give an example of each or state that the request is impossible.

- a) $f: \mathbb{N} \to \mathbb{N}$ is injective but not surjective.
 - a) Define f as f(x) = x + 1.
- b) $f: \mathbb{N} \to \mathbb{N}$ is surjective but not injective.
 - a) Define f as

$$f(x) = \begin{cases} x & \text{if } x < 20\\ x - 1 & \text{else} \end{cases}$$

- c) $f: \mathbb{N} \to \mathbb{N}$ that is bijective.
 - a) $f = id_A$. That is the identity map. It is defined as f(x) = x.

Exercise 1.5. Given a function $f:D\to\mathbb{R}$ and a subset $B\subseteq\mathbb{R}$, let $f^{-1}(B)$ be the preimage of B.

- a) Let $f(x) = x^2$. If A is the closed interval [0,4] and B is the closed interval [-1,1], find $f^{-1}(A)$ and $f^{-1}(B)$. Does $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$ in this case? Does $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$.
 - a) Since the domain D is arbitrary, I cannot explicitly find the preimages of A and B, thus I will leave them generic. $f^{-1}(A) = \{x \in D : f(x) \in A\}$, and $f^{-1}(B) = \{x \in D : f(x) \in B\}$. Under the assumption that $D \subseteq \mathbb{R}$, then $f^{-1}(A) = [0,2]$ and $f^{-1}(B) = [-1,1]$.
 - b) We want to show that $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$. We will show this for the function $f: D \subseteq \mathbb{R} \to \mathbb{R}$ and arbitrary sets $A, B \subseteq \mathbb{R}$. *Proof:* Since this is an equality statement, we must show inclusion both ways.

- $(\subseteq): \text{Let } x \in f^{-1}\left(A \cap B\right) \text{, then } f\left(x\right) \in A \text{ and } f\left(x\right) \in B \text{, thus } f\left(x\right) \in A \cap B \text{, which means that } x \in f^{-1}\left(A \cap B\right) \text{. Thus } f^{-1}\left(A \cap B\right) \subseteq f^{-1}\left(A\right) \cap f^{-1}\left(B\right).$
- (\supseteq): Let $y \in f^{-1}(A) \cap f^{-1}(B)$, then $y \in f^{-1}(A)$ and $y \in f^{-1}(B)$, thus there exists an $a \in A$ and $b \in B$ such that f(y) = a and f(y) = b. Since a function maps elements in the domain to a unique element in the codomain, it must be that f(y) = f(y), which means that a = b. Thus $a \in A$ and $a \in B$. Hence, $y \in f^{-1}(A \cap B)$. This means that $f^{-1}(A \cap B) \supseteq f^{-1}(A) \cap f^{-1}(B)$.
- Since inclusion holds both ways, we have that $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.
- c) We want to show that $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$. *Proof:* Since this is an equality statement, we must show inclusion both ways.
 - $(\subseteq): \text{Let } y \in f^{-1}\left(A \cup B\right), \text{ then } f\left(y\right) \in A \cup B. \text{ This means that } f\left(y\right) \in A \text{ and/or } f\left(y\right) \in B. \text{ Thus } y \in f^{-1}\left(A\right) \text{ and/or } y \in f^{-1}\left(B\right). \text{ Thus } y \in f^{-1}\left(A\right) \subseteq f^{-1}\left(B\right). \text{ Therefore, } f^{-1}\left(A \cup B\right) = f^{-1}\left(A\right) \cup f^{-1}\left(B\right). \\ (\supseteq): \text{Let } y \in f^{-1}\left(A\right) \cup f^{-1}\left(B\right), \text{ then } f\left(y\right) \in A \text{ and/or } f\left(y\right) \in B. \\ \text{In other words, } f\left(y\right) \in A \cup B, \text{ which means that } y \in f^{-1}\left(A \cup B\right). \\ \text{Therefore, } f^{-1}\left(A \cup B\right) \supseteq f^{-1}\left(A\right) \cup f^{-1}\left(B\right). \\ \text{Since both inclusions hold, we have that } f^{-1}\left(A \cup B\right) = f^{-1}\left(A\right) \cup f^{-1}\left(A\right) \cup f^{-1}\left(A\right). \\ \text{Since both inclusions hold, we have that } f^{-1}\left(A \cup B\right) = f^{-1}\left(A\right) \cup f^{-1}\left(A\right). \\ \text{Since both inclusions hold, we have that } f^{-1}\left(A \cup B\right) = f^{-1}\left(A\right) \cup f^{-1}\left(A\right). \\ \text{Since both inclusions hold, we have that } f^{-1}\left(A \cup B\right) = f^{-1}\left(A\right) \cup f^{-1}\left(A\right). \\ \text{Since both inclusions hold, we have that } f^{-1}\left(A \cup B\right) = f^{-1}\left(A\right) \cup f^{-1}\left(A\right). \\ \text{Since both inclusions hold, we have that } f^{-1}\left(A \cup B\right) = f^{-1}\left(A\right) \cup f^{-1}\left(A\right). \\ \text{Since both inclusions hold.}$
- $f^{-1}(B)$.

 d) Using the proofs done above. In the case that $f^{-1}(A) = [0,2]$ and $f^{-1}(B) = [-1,1]$. We have that $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B) = [0,1]$. And $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B) = [-2,2]$.
- [0,1]. And f ⁻¹(A∪B) = f ⁻¹(A)∪f ⁻¹(B) = [-2,2].
 b) The good behavior of preimages demonstrated in part a) is completely general. Show that for an arbitrary function g: ℝ → ℝ, it is always true that g⁻¹(A∩B) = g⁻¹(A)∩(B) and g⁻¹(A∪B) = g⁻¹(A)∪g⁻¹(B)
 - *Proof:* With no loss in generality, see the proof in part a) with the domain $D = \mathbb{R}$, and codomains $A, B \subseteq \mathbb{R}$.

for all sets $A, B \subseteq \mathbb{R}$.