第十一次习题课

小测讲解、方法提要、习题讲解和内容扩充

助教: 邓先涛

2023年11月27日

小测讲解

小测第1题

有多少个互不同构的 72 阶交换群?

有限交换群结构定理

总结

设 $n = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r}$, n 阶交换群的互不同构类型的数目是 $h(e_1) \cdot h(e_2) \cdots h(e_r)$, 其中 h(e) 表示 e 的整数分拆数.

- ▶ 注意到 $72 = 2^3 \times 3^2$, 初等因子分解 $(2^3, 3^2)$, $(2^3, 3, 3)$ $(2^2, 2, 3^2)$, $(2^2, 2, 3, 3)$ (2, 2, 2, 3, 3)
- ▶ 不变因子分解

$$(2^3 \times 3^2),$$
 $(2^3 \times 3, 3)$
 $(2^2 \times 3^2, 2),$ $(2^2 \times 3, 2 \times 3)$
 $(2 \times 3^2, 2, 2),$ $(2 \times 3, 2 \times 3, 2)$

小测第2题

设 $\alpha \in \mathbb{R}$ 为多项式 $f(x) = x^3 - 3x + 4 \in \mathbb{Q}[x]$ 的 实根, 证明 $[\mathbb{Q}[\alpha] : \mathbb{Q}] = 3$, 将 α^4 和 $(\alpha - 1)^{-1}$ 表示为 $1, \alpha, \alpha^2$ 的 \mathbb{Q} 线性组合.

单扩张扩张次数等于极小多项式次数

思维拓展

你能否对 f(x) 进行变形使得它可以用 Eisenstein 判别法? 你能否找到 $\mathbb Q$ 上的一个不可约多项式 f(x) 使得 $f(\frac{x+a}{b})$ 总是对 Eisenstein 判别法失效?

- ▶ 三次多项式在 F 上不可约当且仅当在 F 上 没有根
- ▶ 验证 f(x) 的可能的根为 ±1, ±2, ±4,均不是多项式的真正的根,因此多项式不可约.
- **>** 设 $(\alpha 1)(a\alpha^2 + b\alpha + c) = 1$,展开得到 $(b a)\alpha^2 + (c b + 3a)\alpha c 4a = 1$.
- \bullet $a=b=-\frac{1}{2}$, c=1.

小测第3题

设 K/F 为域的有限扩张, \overline{F} 为 F 的代数闭包, $\sigma: K \to \overline{F}$ 是 F 嵌入. 证明: $\sigma(K)$ 是 \overline{F}/F 的中间域且 $[\sigma(K):F] = [K:F]$.

有限扩张可以写作单扩张链

思维拓展

利用 K 的内在性质刻画 K 的 F 嵌入 σ 的个数.

- **>** 设 $K = F(\alpha_1, \dots, \alpha_n)$, 且 $F \subset F(\alpha_1) = F_1$ $\subset F(\alpha_1, \alpha_2) = F_2 \subset \dots \subset F(\alpha_1, \dots, \alpha_n) =$ $F_n = K$.
- $ightharpoonup \sigma(K)$ 显然是一个域,且包含 F,因此是中间域。
- ▶ 得到 $\sigma(F_i) \subset \sigma(F_{i+1}) = \sigma(F_i)(\sigma(\alpha_{i+1}))$.
- ▶ $[\sigma(F_{i+1}):\sigma(F_i)] = [F_{i+1}:F_i]$, 命题成立.

重点知识提要

重点知识提要

- ▶ 可分扩张:可分扩张的基本概念;可分扩张的性质;可分闭包和纯不可分扩张的概念.
- ▶ 正规扩张: 正规扩张的基本概念; 正规扩张的刻画和性质; 正规闭包的概念.
- ▶ 扩张所对应的 *F* 自同构映射和嵌入映射

正规扩张

正规扩张

- ▶ 正规扩张: 对于代数扩张 K/F, 若任给 $\alpha \in K$, α 的 F 共轭元也均在 K 中.
- ▶ 有限正规扩张: 对于有限扩张 K/F, K/F 正规当且仅当 K 是 F 上的一个多项式的分裂域.
- ▶ 正规闭包:对于代数扩张 K/F, K/F 的正规闭包是包含 K 的最小的 F 的正规扩张. 注意区分: F 在 K 中的正规闭包和 K/F 的正规闭包.
- ▶ 正规扩张的 F 自同构: 设 K/F 是一个正规扩张,任给 $\alpha \in K$ 和 α 的一个 F-共轭元 α' ,则 F 同构 $\sigma : F(\alpha) \to F(\alpha')$ 可以提升为 K 的自同构.

第七章第 14 题

设 $F \subset K \subset L$ 是代数扩张链,如果 L/K 和 K/F 均正规, 那么 L/F 是否正规?

证明

正规扩张

- ▶ 取 $F = \mathbb{Q}$, $K = \mathbb{Q}(\sqrt{2})$ 和 $L = \mathbb{Q}(\sqrt[4]{2})$.
- ▶ L/F 不是正规扩张,因为 $i \notin L$.

二次扩张总是正规扩张

思维拓展

设 $F \subset K \subset L$ 是代数扩张链,那么 L/F 是正规扩张能否推出 L/K 是正规扩张? L/F 是正规扩张能 否推出 K/F 是正规扩张?

第七章第 17 题

设 $K, L \in E/F$ 的中间域,若 K/F 和 L/F 均正 规,则 KL/F和 $K \cap L/F$ 也正规.

正规扩张是针对元素的性质

思维拓展

举例说明上述命题的逆命题不成立. 即 KL/F 和 $K \cap L/F$ 均正规推不出 K/F 和 L/F 均正规.

- ▶ K 和 L 是代数扩张,验证 L 和 K 的复合域 为 $KL = \{\sum_i a_i b_i | a_i \in K, b_i \in L\}.$
- ▶ 任给 $\alpha \in KL$ 写作 $\alpha = a_1b_1 + \cdots + a_nb_n$.
- ▶ 设 a_i 的极小多项式为 f_i , b_i 的为 g_i , 则 α 落在 $\prod_{i,j} f_i g_j$ 的分裂域 E' 中.
- ▶ K 和 L 是 F 的正规扩张意味着 $E' \subset KL$. 因此 α 的共轭元在 KL 中.
- ▶ 任给 $\alpha \in K \cap L$, α 的共轭元会在 $K \cap L$ 中, 因此 $K \cap L/F$ 正规. 注:上述证明用映射的 观点来看会更加简洁.

补充题

设 E/F 是正规扩张, $f(x) \in F[x]$ 是不可约的, 则 f(x) 在 E 上可以分解为 $f(x) = [f_1(x) \cdots f_r(x)]^k$, 其 中 f_i 是次数相同的两两互素的不可约多项式,F 特征为 0 时,k=1; F 特征为素数 p 时, $k=p^e$.

映射观点下的正规扩张

- ▶ 任给 i 和 j 存在 E 的 F 自同构 σ 使得 $\sigma(f_i) = f_i$. 故 $\deg(f_i) = \deg(f_i)$ 对一切 $1 \leq i, j \leq r$ 成立.
- ▶ 若是特征 0 域,则没有重根,立刻得到 k=1.
- ▶ 若是特征 p 域,则考察 $f_1 \cdots f_r$ 的系数,它们在任意 σ 作用下不变,因此共轭元只有自己.
- ▶ 考察 f_i 的幂次,同样利用同构进行轮换得到, $f_i^{k_i}$ 变成 $f_i^{k_i}$,推出 $k_i = k_i$ 幂次相同.
- ightharpoonup 设 $h = f_1 \cdots f_r = \sum_{i=0}^m a_i x^i$,有最小的 e 使得 $a_i^{p^e} \in F$ 对一切 $0 \le i \le m$ 成立. 推出 $h^{p^e} \in F[x]$.
- ▶ 由 f 的不可约性 $f(x) \mid h(x)^{p^e}$,由 e 的极小性 $f(x) = h(x)^{p^e}$,因此命题成立.

可分扩张

可分扩张

- ▶ 可分扩张:对于代数扩张 K/F,若 K 中元素的极小多项式均没有重根. 有限可分扩张扩张等价刻画:对于有限代数扩张 K/F,K/F 是可分扩张当且仅当恰有 [K:F] 个 F 嵌入 $K \to \overline{F}$.
- ightharpoonup 可分闭包:对于代数扩张 K/F,K 中的所有可分元构成的集合是一个子域,称为可分闭包.
- ▶ 可分扩张的性质: 若 K/F 为有限可分扩张,则存在 $\gamma \in K$ 使得 $K = F(\gamma)$.
- ▶ 纯不可分扩张: 对于代数扩张 K/F,若它的可分闭包是 F,则称 K/F 是纯不可分扩张.
- ▶ 纯不可分元: 称 α 是纯不可分元, 若 $F(\alpha)/F$ 是纯不可分扩张.

可分元的性质

设 K/F 为域扩张, $\alpha \in K$ 是可分元,则 $F(\alpha)/F$ 是可分扩张.

可分扩张的等价定义

思维拓展

设 K/F 是有限扩张, $K^p:=\{x^p|x\in K\}$. 证明 K/F 是可分扩张当且仅当 $K=F(K^p)$.

- ▶ 设 α 次数为 n, 则 $[F(\alpha):F]=n$.
- ▶ 设 α 的共轭元为 $\alpha = \alpha_1, \alpha_2, \cdots, \alpha_n$.
- ▶ $\sigma_i : F(\alpha) \to F(\alpha_i) \subset \overline{F}$ 为两两不同 F 嵌入
- ▶ 等价定义表明 $F(\alpha)/F$ 是可分扩张.

纯不可分元的刻画

设 F 的特征为 p, $\alpha \in \overline{F}$ 且 $\alpha \notin F$, α 是纯不可分元当且仅当存在正整数 $n \geq 1$ 使得 $\alpha^{p^n} \in F$.

纯不可分扩张的定义和特征 p 域上的不可约多项式

思维拓展

设 t 为未定元,p 为奇素数, \mathbb{F}_p 特征为 p 的素域, $f(x)=x^{2p}-tx^p+1$, $K/\mathbb{F}_p(t)$ 为 f(x) 在域 $\mathbb{F}_p(t)$ 上的分裂域,求出 $K/\mathbb{F}_p(t)$ 的可分闭包.

- ► 若存在 n 使得 $\alpha^{p^n} \in F$,任给 $\beta \in F(\alpha)$ 写作 $\beta = f(\alpha)$,有 $\beta^{p^n} \in F$.
- ▶ β 在 F 上的零化多项式为 $(x-\beta)^{p^n}$,因此要么在 F 上,要么不可分.
- 若 α 是纯不可分元,则 F(α)/F 是纯不可分扩张.
- ▶ 设 α 的极小多项式为 f(x) 写作 $g(x^{p^n})$, 则 g(x) 不可约,且 $g(\alpha^{p^n}) = 0$.
- ▶ $F(\alpha^{p^n})$ 为可分扩张推出 $\alpha^{p^n} \in F$.

可分扩张

推论

设 F 是特征 p 域,K/F 为域扩张, $\alpha \in K$ 是代数元,则存在正整数 n 使得 α^{p^n} 为可分元.

极小多项式的性质和可分元的性质

- ▶ 设 α 的极小多项式为 f(x) 写作 $g(x^{p^n})$, 其中 g(x) 是 F 上的不可约多项式.
- ▶ 同样道理, g(x) 没有重根, 因此 g(x) 是可分多项式.
- ▶ α^{p^n} 的极小多项式是 g(x), 因此是可分元.

第七章第 26 题

设域扩张 K/F 中的非零元素 α 和 β 分别是 F 上的可分元和纯不可分元,证明

$$F(\alpha, \beta) = F(\alpha + \beta) = F(\alpha\beta).$$

纯不可分元的等价刻画

思维拓展

题中纯不可分条件是否必要? 即是否存在非零元素 α 和 β 分别是 F 上的可分元和不可分元,使得 $F(\alpha,\beta) \neq F(\alpha+\beta)$?

- ▶ β 纯不可分意味着存在 n 使得 $\beta^{p^n} \in F$, 这 里素数 p 是 F 的特征.
- ▶ α^{p^n} 的极小多项式没有重根,且 $x^{p^n} \alpha^{p^n}$ 可以零化 α .
- ▶ α 在 $F(\alpha + \beta)$ 上的极小多项式为 $x \alpha$. 推出 $\alpha \in F(\alpha + \beta)$.
- ► $F(\alpha, \beta) = F(\alpha\beta)$ 同理可得.

第七章第 28 题

设 F 的特征为素数 p, 若不可约多项式 f(x) 满足 $p \nmid \deg(f(x))$, 则 f(x) 可分. 特别的,若扩域 K 满足 $p \nmid [K:F]$, 则 K/F 是可分扩张.

不可约多项式的性质

思维拓展

设域为 F,给出 F 不可分多项式存在的充分必要条件.

- ▶ $p \nmid \deg(f(x))$ 意味着 $f'(x) \neq 0$.
- ▶ 因此 gcd(f(x), f(x)) = 1 推出 f(x) 无重根.
- ▶ 任给 $\alpha \in K$, $p \nmid [F(\alpha) : F]$.
- ▶ α 的极小多项式没有重根,因此可分.

第七章第 29 题

设域的特征为 p, K/F 为域扩张, $\alpha \in K$ 是代数 且可分的充要条件是 $F(\alpha) = F(\alpha^{p^n})$ 对一切正 整数 $n \ge 1$ 成立.

可分元的极小多项式无重根

思维拓展

如果只是说存在一个 $n \ge 1$ 使得 $F(\alpha) = F(\alpha^{p^n})$,那么能否推出 α 是代数可分元吗?

- ▶ 前推后: 显然有 $F(\alpha^{p^n}) \subset F(\alpha)$
- ▶ α 在 $F(\alpha^{p^n})$ 上的零化多项式 $x^{p^n} \alpha^{p^n}$,因此极小多项式为 $x \alpha$,推出 $\alpha \in F(\alpha^{p^n})$.
- ► 后推前: 代数是显然的, 否则 $\alpha \notin F(\alpha^p)$.
- ▶ 取 n 使得 α^n 为可分元,则 $\alpha \in F(\alpha^n)$ 为可分元.

单代数扩张的刻画

单代数扩张

- ▶ 单代数扩张: 对于代数扩张 K/F, 称 K/F 是单代数扩张, 若存在 $\gamma \in K$ 使得 $K = F(\gamma)$.
- ▶ 设 K/F 是有限可分扩张,则 K/F 是单代数扩张. 特别的,有限域的有限扩张均为单代数扩张.
- ▶ 单代数扩张的性质: 若 $K = F(\alpha)$ 是单代数扩张,则 [K: F] 等于 α 的次数.

单代数扩张的刻画

设 F 是无限域, 若代数扩张 K/F 只有有限多个 中间域,则 K/F 是单扩张.

鸽笼原理

思维拓展

如何有效判断一个无限域的扩张只有有限多个 中间域呢?

- ▶ 有限多个中间域表明是有限扩张. 因此可 以令 $K = F(\alpha_1, \dots, \alpha_n)$.
- ▶ F 是无限域, $F(\alpha_1 + x\alpha_2)$ 作为中间域只有 有限多种可能,因此存在 $x \neq y$ 使得 $F(\alpha_1 + x\alpha_2) = F(\alpha_1 + y\alpha_2)$
- ▶ 取 $\gamma = \alpha_1 + x\alpha_2$, 有 $F(\alpha_1, \alpha_2) = F(\gamma)$.
- ▶ $K = F(\gamma, \alpha_3, \dots, \alpha_n)$, 以此类推即可.

单代数扩张的刻画

若代数扩张 K/F 是一个单扩张,则 K/F 只有 有限多个中间域.

极小多项式与扩张次数

思维拓展

利用该思路写出 $\mathbb{Q}(\sqrt{2}+\sqrt{3})$ 的所有中间域.

- ▶ 设 $K = F(\gamma)$, $f(x) \in F[x]$ 为 γ 在 F 上的极 小多项式、L 为中间域。
- ▶ $\mathcal{L}_L = x^m + a_{m-1}x^{m-1} + \cdots + a_0 \in L[x]$ 为 γ 在 L 上的极小多项式.
- ▶ 则 $L' = F(a_0, \dots, a_{m-1}) \subset L$, 且极小多项 式 $f_L(x)$ 也是 L' 上的不可约多项式.
- ► $K = L'(\gamma) \subset L(\gamma) = K$, 有 $[K:L] = \deg(f_L) = [K:L']$, 因此 L = L'
- ▶ $f_L \mid f$ 在 F 的代数闭包中只有有限多中选择, 因此 L 只有有限多种可能.

推论:第七章第 40 题

单代数扩张的中间域也是单代数扩张.

K/F 是单代数扩张当且仅当 K/F 只有有限多个中间域

思维拓展

是否存在代数扩张不是单代数扩张,但是它的 真的中间域均是单扩张呢?

- ▶ 设 K/F 是单代数扩张, L/F 是中间域.
- ▶ L/F 的中间域均是 K/F 的中间域,只有有限多个.
- ► L/F 只有有限多中间域, 因此单扩张.

第七章第 31 题

设 $\mathbb{F}_p[x,y]$ 是 \mathbb{F}_p 上二元多项式环,K 为其商域, $F=K^p:=\{a^p|a\in K\}$. 则 $F=\mathbb{F}_p(x^p,y^p)$ 且 K/F 不是单代数扩张.

单代数扩张的次数刻画

思维拓展

试找出 K/F 的可分闭包,并思考可分闭包在单代数扩张中扮演的角色.

- ▶ 直接验证 $F = \mathbb{F}_p(x^p, y^p)$, 故 $[K: F] = p^2$.
- ▶ 设 K = F(f(x, y)), 则 t^p (f(x, y))^p 是二元
 多项式 f(x, y) 在 F 上的零化多项式.
- ▶ 推出 $[K: F] \le p$ 与 $[K: F] = p^2$ 矛盾.
- ► *K/F* 不是单扩张推出 *K/F* 有无限多个中间域,且中间域扩张次数是素数,手动找出.
- ▶ \diamondsuit $f_n(x) = x + y^{np+1} \notin F$, \diamondsuit $F_n = F(f_n)$.
- ▶ 若 $F_n = F_m(n \neq m)$, 则 $f_n f_m \in F_n$, 推出 $y(y^{np} y^{mp}) \in F_n$, 推出 $y \in F_n$ 矛盾.

单代数扩张的基本事实

- ▶ 单代数扩张在可分部分的性质: 设 F 是无限域,对于有限扩张 K/F,记 K_s 为 K/F 的可分闭 包,则 K/F 是单代数扩张当且仅当 K/K_s 为单代数扩张. 推论: 对于有限扩张 K/F,若 K 可以写作 $K=F(\alpha_1,\cdots,\alpha_n,\beta)$,其中 β 是 F 上的代数元,同
 - 时 α_i 是 $F(\beta)$ 上的可分元,则 K/F 是单代数扩张.
- ▶ 完全域上的一元函数域: 设 F 是特征 p 的完全域,即 $F^p := \{x^p | x \in F\} = F$. 设 t 为未定元,则有理函数域 F(t) 上的有限扩张均为单代数扩张.
- ▶ 特征 p 域上的单代数扩张: 设 F 是特征 p 域,K/F 是有限扩张,则 K/F 是单代数扩张当且仅 当 $[K:F(K^p)] \le p$.

问题补充和方法扩张

问题 1

可分扩张的正规闭包是否还是可分的?正规扩张的可分闭包是否还是正规的?

简要说明

- ▶ 注意到可分扩张的刻画: K/E/F 是代数扩张, K/F 可分当且仅当 K/E 和 E/F 均可分,因此第一个论断正确.
- ▶ 后者直接用元素去说明即可.

问题 2

设 F 是一个域, K_i/F 为有限扩张,则 K_i 均可以作为 F 线性空间,那么 $\dim_F(K_1+K_2+\cdots+K_n)$ 应该如何有效计算?

简要说明

- $lack \operatorname{dim}(K_1 + K_2) = \operatorname{dim}(K_1) + \operatorname{dim}(K_2) \operatorname{dim}(K_1 \cap K_2)$
- $ightharpoonup \dim(K_1+K_2+K_3) = \dim(K_1) + \dim(K_2+K_3) \dim(K_1\cap(K_2+K_3))$
- ▶ 是否总有 $\dim(K_1 \cap (K_2 + K_3)) = \dim(K_1 \cap K_2 + K_1 \cap K_3)$? 在 $F = \mathbb{Q}$ 情况下举反例说明.