1. 전압, 전류, 저항의 개념

- 전압 (Voltage): 전압은 전기 에너지가 흐르는 힘입니다. 전압은 두 지점 사이의 전기적 위치 에너지 차이를 나타내며, 단위는 볼트(V)입니다. 전압이 높을수록 전기 에너지를 더 많이 밀어낼 수 있습니다.
- 전류 (Current): 전류는 전기 에너지가 흐르는 양을 의미합니다. 전기 회로에서 전자의 흐름을 나타내며, 단위는 암페어(A)입니다. 물이 흐르는 것처럼, 전류도 회로를 따라 흐릅니다.
- **저항** (Resistance): 저항은 전류의 흐름을 방해하는 정도를 나타냅니다. 단위는 옴(Ω)입니다. 저항이 클수록 전류가 흐르기 어렵고, 저항이 작을수록 전류가 쉽게 흐릅니다.

2. 옴의 법칙

• **옴의 법칙 (Ohm's Law)**: 전압(V), 전류(I), 저항(R) 사이의 관계를 나타내는 법칙입니다. 수 식으로는 V = I * R 로 표현됩니다. 예를 들어, 전압이 5V이고 저항이 10Ω인 회로에서는 전류가 0.5A가 흐릅니다.

3. 직렬 및 병렬 회로

- 직렬 회로 (Series Circuit): 전기 부품이 연속적으로 연결된 회로입니다. 전류는 하나의 경로를 통해 흐릅니다. 직렬 회로에서는 저항이 더해집니다. (R_total = R1 + R2 + ...)
- 병렬 회로 (Parallel Circuit): 전기 부품이 여러 갈래로 나뉘어 연결된 회로입니다. 전류는 여러 경로로 나뉘어 흐릅니다. 병렬 회로에서는 저항이 반비례로 합쳐집니다. (1/R_total = 1/R1 + 1/R2 + ...)

기본 전자 부품

1. 저항 (Resistor)

• 전류의 흐름을 방해하는 부품입니다. 색 띠로 저항 값을 표시합니다.

2. 커패시터 (Capacitor)

• 전기를 저장하는 부품입니다. 전압이 변할 때 에너지를 방출하거나 흡수하여 회로를 안정 화시킵니다.

3. 다이오드 (Diode)

• 전류를 한 방향으로만 흐르게 하는 부품입니다. 전류의 흐름을 제어하거나 역전류를 방지하는 데 사용됩니다.

4. 트랜지스터 (Transistor)

• 전류를 증폭하거나 스위치처럼 작동하는 반도체 소자입니다. 전기 신호를 제어하거나 증폭하는 데 사용됩니다.

5. LED (Light Emitting Diode)

• 전류가 흐를 때 빛을 발하는 다이오드입니다. 표시등이나 조명에 사용됩니다.

6. 스위치 (Switch)

• 회로를 개폐하는 장치입니다. 전류의 흐름을 끊거나 연결할 수 있습니다.

7. 푸시버튼 (Push Button)

• 눌렀다 떼면 다시 원래 상태로 돌아오는 스위치입니다. 일시적으로 회로를 연결하거나 끊는 데 사용됩니다.

회로 설계 및 제작

1. 브레드보드 사용법

• 브레드보드 (Breadboard): 회로를 임시로 구성할 수 있는 도구입니다. 납땜 없이 부품을 연결할 수 있습니다. 브레드보드에는 가로와 세로로 구멍이 있으며, 특정 구멍들은 내부적으로 연결되어 있습니다.

2. 기본 회로 설계

• 간단한 회로를 설계하려면 전원 공급, 전기 부품의 연결 방법, 신호의 흐름 등을 고려해야 합니다. 예를 들어, LED와 저항을 직렬로 연결하여 전원을 공급하면 LED가 빛을 발합니다.

3. 회로도 그리기

• 회로도 (Circuit Diagram): 전기 회로를 그림으로 표현한 것입니다. 각 부품은 기호로 나타 내며, 부품 간의 연결은 선으로 표시합니다. Fritzing과 같은 도구를 사용하면 쉽게 회로도 를 그릴 수 있습니다.

예제 프로젝트: LED 깜빡이기

1. 부품 준비

- 아두이노 보드
- \circ LED
- ο 저항 (220Ω)
- 점퍼 케이블
- ㅇ 브레드보드

2. 회로 구성

- LED의 긴 다리(양극)를 저항과 연결
- 저항의 다른 쪽을 아두이노의 디지털 핀(예: 13번 핀)에 연결
- LED의 짧은 다리(음극)를 아두이노의 GND 핀에 연결

3. 코딩

```
void setup() {
pinMode(13, OUTPUT); // 13번 핀을 출력으로 설정

void loop() {
digitalWrite(13, HIGH); // 13번 핀에 HIGH 신호를 보내 LED 켜기 delay(1000); // 1초 대기
digitalWrite(13, LOW); // 13번 핀에 LOW 신호를 보내 LED 끄기 delay(1000); // 1초 대기
```

결과

• 아두이노 보드에 업로드하면 LED가 1초 간격으로 깜빡입니다.

1. 전원 공급 회로 (Power Supply Circuit)

원리

임베디드 시스템은 적절한 전원 공급이 필요합니다. 전원 공급 회로는 외부 전원(배터리, 어댑터등)을 임베디드 시스템이 필요로 하는 적절한 전압으로 변환합니다.

주요 부품

- 레귤레이터 (Regulator): 고정된 출력 전압을 제공하는 장치입니다. LM7805는 5V 출력, LM317은 가변 출력 등을 제공합니다.
- **디커플링 커패시터 (Decoupling Capacitor)**: 전원 라인에 노이즈를 제거하고 안정화 시킵니다.

예시

입력 전압(9V) -> 레귤레이터(LM7805) -> 출력 전압(5V)

2. 풀업 및 풀다운 회로 (Pull-up and Pull-down Circuits)

원리

디지털 입력 핀의 안정적인 신호를 위해 풀업 또는 풀다운 저항을 사용합니다. 이는 핀의 불안정한 상태를 방지합니다.

주요 부품

• 저항 (Resistor): 입력 핀을 VCC 또는 GND로 연결하는데 사용됩니다.

예시

풀업 회로: 입력 핀 -> 저항 -> VCC

풀다운 회로: 입력 핀 -> 저항 -> GND

3. 디지털 및 아날로그 신호 처리 회로 (Digital and Analog Signal Processing Circuits)

원리

디지털 신호는 0 또는 1로 표현되며, 아날로그 신호는 연속적인 값을 가집니다. 임베디드 시스템에서 다양한 센서와 액추에이터를 사용하기 위해서는 신호 처리가 필요합니다.

주요 부품

- ADC (Analog-to-Digital Converter): 아날로그 신호를 디지털 신호로 변환합니다.
- DAC (Digital-to-Analog Converter): 디지털 신호를 아날로그 신호로 변환합니다.

예시

아날로그 센서 -> ADC -> 마이크로컨트롤러

마이크로컨트롤러 -> DAC -> 아날로그 액추에이터

4. 인터럽트 회로 (Interrupt Circuit)

원리

인터럽트는 마이크로컨트롤러가 특정 이벤트에 즉시 반응하도록 합니다. 인터럽트 회로는 이벤트 발생 시 인터럽트 핀에 신호를 보냅니다.

주요 부품

• 인터럽트 소스 (Interrupt Source): 버튼, 센서 등

예시

버튼 -> 인터럽트 핀

5. 타이머 회로 (Timer Circuit)

원리

타이머 회로는 특정 시간 간격으로 이벤트를 발생시키거나, 시간 측정을 위해 사용됩니다.

주요 부품

• **타이머 IC (Timer IC)**: 555 타이머 등

예시

555 타이머 -> 출력 핀 -> LED

6. 통신 회로 (Communication Circuit)

원리

임베디드 시스템 간, 또는 임베디드 시스템과 다른 장치 간의 데이터 통신을 위해 사용됩니다. 시

리얼, SPI, I2C 등이 대표적인 통신 방법입니다.

주요 부품

- UART (Universal Asynchronous Receiver/Transmitter): 시리얼 통신을 처리합니다.
- SPI (Serial Peripheral Interface): 빠른 동기식 통신을 처리합니다.
- I2C (Inter-Integrated Circuit): 여러 장치 간의 통신을 처리합니다.

예시

마이크로컨트롤러 -> UART -> PC

마이크로컨트롤러 -> I2C -> 센서

7. 모터 제어 회로 (Motor Control Circuit)

원리

모터의 속도와 방향을 제어하는 회로입니다. PWM (Pulse Width Modulation) 신호를 사용하여 속도를 제어할 수 있습니다.

주요 부품

- **모터 드라이버 (Motor Driver)**: 모터를 구동시키는 데 필요한 전력을 제공합니다. L298N 등이 대표적입니다.
- H-브리지 (H-Bridge): 모터의 방향을 제어합니다.

예시

마이크로컨트롤러 -> 모터 드라이버 -> DC 모터

8. 센서 인터페이스 회로 (Sensor Interface Circuit)

원리

다양한 센서를 임베디드 시스템에 연결하고 데이터를 읽어들이는 회로입니다. 센서의 신호를 적절히 변환하여 마이크로컨트롤러가 이해할 수 있도록 합니다.

주요 부품

• 저항 분배기 (Voltage Divider): 센서의 출력을 적절한 전압 범위로 변환합니다.

• **증폭기 (Amplifier)**: 신호를 증폭하여 읽기 쉽게 만듭니다.

예시

온도 센서 -> 증폭기 -> ADC -> 마이크로컨트롤러