

DUAL PHOTOTRANSISTOR OPTOCOUPLERS

MCT6 (20%) MCT62 (100%) NEW DUALS MCT61 (50%) MCT66

PACKAGE DIMENSIONS

DESCRIPTION

The MCT6X optoisolators have two channels for high density applications. For four channel applications, two-packages fit into a standard 16-pin DIP socket. Each channel is an NPN silicon planar phototransistor optically coupled to a gallium arsenide infrared emitting diode.

FEATURES

- Two isolated channels per package
- Two packages fit into a 16 lead DIP socket
- 2500 volt isolation
- Choice of 4 current transfer ratios
- Underwriters Laboratory (U.L.) recognized File E50151

APPLICATIONS

- AC Line/Digital Logic Isolate high voltage transients
- Digital Logic/Digital Logic Eliminate spurious grounds
- Digital Logic/AC Triac Control Isolate high voltage transients
- Twisted pair line receiver Eliminate ground loop feedthrough
- Telephone/Telegraph line receiver Isolate high
- voltage transients High Frequency Power Supply Feedback Control Maintain floating ground
- Relay contact monitor Isolate floating grounds and transients
- Power Supply Monitor Isolate transients

ABSOLUTE MAXIMUM RATINGS

Equivalent Circuit

Storage Temperature55°C to 1 Operating Temperature55°C to 1 Lead Temperature (soldering, 10 sec.) 2	100°C
INPUT DIODE (each channel) Forward current	3.0V
TOTAL INPUT Power dissipation at 25°C ambient 10 Derate linearly from 25°C 1.3m	

OUTPUT TRANSISTOR (each channel) Power dissipation @ 25°C ambient 150mW Derate linearly from 25°C 2mW/°C Collector Current
COUPLED Input to output breakdown voltage
@ 25°C ambient 400mW Derate linearly from 25°C 5.33mW/°C

MCT6 MCT61 MCT62 MCT66

CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
NPUT DIODE Rated forward voltage V _F Reverse voltage V _B	3.0	1.25 25	1,50	V V	I _F = 20mA I _R = 10µA
Reverse current I _R Junction capacitance C ₁	3.0	.001 50	10	μA pF	V _R = 3.0V V _F = 0V
OUTPUT TRANSISTOR (I _F = 0) Breakdown voltage,					-
collector to emitter BV _{CEO} Breakdown voltage,	30	85		V	I _C = 1.0mA
emitter to collector BV _{ECO} Leakage current, collector to emitter I _{CEO} Capacitance collector to emitter C _{CE}	6	13 5 8	100	V nA pF	i _E = 100μΑ V _{CE} = 10V V _{CE} = 0V
COUPLED			-		
DC current transfer ratio (I _C /I _F) = CTR MCT6 MCT61 MCT62 MCT66	20 50 100 6	-		% % %	$V_{CE} = 10V$, $I_F = 10mA$ $V_{CE} = 5 V$, $I_F = 5 mA$ $V_{CE} = 5 V$, $I_F = 5 mA$ $V_{CF} = 10V$, $I_F = 10mA$
Isolation voltage BV _(I-O) Isolation resistance	2500			VRMS	V _{CE} = 10V, I _F = 10mA t = 1 minute
MCT6X- R _(1-O)	1011	1012		Ω	$V_{I-O} = 500VDC$
Breakdown voltage — channel-to-channel MCT6X		500		VDC	Relative humidity = 40% f = 1MHz
Capacitance between channels Saturation voltage — collector to emitter V _{CE (SAT)}	•	0.4	•	рF	
MCT6, 61, 62		0.2	0.4	V	I _C = 2mA, I _F = 16mA
MCT66 Bandwidth B _W	-	0.2 150	0.4	V kHz	$I_C = 2mA$, $I_F = 40mA$ $I_C = 2mA$, $V_{CC} = 10V$, $R_1 = 100\Omega$
WITCHING TIMES, OUPUT TRANSISTOR Non-saturated rise time, fall time (Note 3)		2.4		μs	$I_{C} = 2\text{mA}, V_{CE} = 10V,$ $R_{L} = 100\Omega$
Non-saturated rise time, fall time (Note 3)		15		μs	$I_C = 2mA$, $V_{CE} = 10V$, $R_L = 1K\Omega$
Saturated turn-on time (from 5.0V to 0.8\ Saturated turn-off time (from	/)	5	-	μs	$R_L = 2K\Omega$, $I_F = 40mA$
saturated turn-off time (from		25		μs	$R_L = 2K\Omega$, $I_F = 40mA$

MCT6 TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES

(25°C Free Air Temperature Unless Otherwise Specified)

Fig. 1. I-V Curve of Phototransistor

Fig. 2. I-V Curve in Saturation

Fig. 3. CTR vs. Forward Current

MCT6 MCT61 MCT62 MCT66 88D 03021 DT-41-83

MCT6 TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES (Cont'd) (25°C Free Air Temperature Unless Otherwise Specified)

3890128 GENL INSTR, OPTOELEK

Fig. 4, Current Transfer Ratio vs. Temperature

AMBIENT TEMPERATURE (°C) C861

Fig. 5. I-V Curve of LED vs. Temperature

Fig. 6. Leakage Current vs. Temperature vs. Collector Voltage

Fig. 7. Switching Time vs. Collector Current

Fig. 8. Lifetime vs. Forward Current (Note 1)

MCT66 TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES

(25°C Free Air Temperature Unless Otherwise Specified)

Fig. 1, Detector Output Characteristics

Fig. 2. Input Current vs. Output Current

Fig. 3. Leakage Current vs. Temperature vs. Collector Voltage

MCT6 MCT61 MCT62 MCT66

MCT66 TYPICAL ELECTRO-OPTICAL CHARACTERISTIC CURVES (Cont'd)

(25° C Free Air Temperature Unless Otherwise Specified)

Fig. 4. Current Output vs. Temperature

Fig. 5. Output vs. Frequency

Fig. 6. Switching Time vs. Collector Current

Fig. 7. Lifetime vs. Forward Current

NOTES

- 1. Normalized CTR degradation =
- 1. Normalized CTR degradation = $\frac{}{CTR_0}$ 2. The current transfer ratio (I_C/I_F) is the ratio of the detector collector current to the LED input current with V_{CE} at 10 volts.
- 3. The frequency at which I_C is 3 dB down from the 1 kHz value. 4. Rise time (t_r) is the time required for the collector current to increase from 10% of its final value to 90%. Fall time (t_f) is the time required for the collector current to decrease from 90% of its initial value to 10%.