Simulation Methods Numerical Methods for Ordinary Differential Equations

Joan Carles Tatjer

Departament de Matemàtiques i Informàtica

Universitat de Barcelona

Existence and uniqueness of Solution of the Cauchy Problem I

Consider the one-dimensional differential equation with initial condtion (Cauchy problem):

$$y' = f(x, y), \quad y(x_0) = y_0.$$

To find y(X) we consider a subdivision

$$x_0, x_1, \ldots, x_{n-1}, x_n = X$$

and repalce in each subinterval the solution by the first term of its Taylor series:

$$y_1 = y_0 + (x_1 - x_0)f(x_0, y_0),$$

$$y_2 = y_1 + (x_2 - x_1)f(x_1, y_1),$$

$$\dots$$

$$y_n = y_{n-1} + (x_n - x_{n-1})f(x_{n-1}, y_{n-1}).$$

Existence and uniqueness of Solution of the Cauchy Problem II

We define $h = (h_0, h_1, \dots, h_{n-1})$, where $h_i = x_{i+1} - x_i$, and the **Euler polygon**:

$$y_h(x) = y_i + (x - x_i)f(x_i, y_i)$$
 for $x_i \le x \le x_{i+1}$.

Existence and uniqueness of Solution of the Cauchy Problem III

Lemma

Assume that |f| is bounded by A on

$$D = \{(x,y) \mid x_0 \le x \le X, |y - y_0| \le b\}.$$

If $X - x_0 \le b/A$ then the numerical solution (x_i, y_i) given above, remains in D for every subdivision and we have

$$|y_h(x)-y_0| \leq A|x-x_0|,$$

$$|y_h(x) - (y_0 + (x - x_0)f(x_0, y_0))| \le \epsilon |x - x_0|$$

if $|f(x,y)-f(x_0,y_0)| \leq \epsilon$ on D.

Proof:

Existence and uniqueness of Solution of the Cauchy Problem IV

The lemma is obviously true if $x=x_0$. Therefore, we take $x\in\mathbb{R}$ such that $x_0< x\le X$, and a subdivision. Then, there exists $1< j\le n$ such that $x_{j-1}< x\le x_j$. Then

$$y_{1} - y_{0} = (x_{1} - x_{0})f(x_{0}, y_{0}),$$

$$y_{2} - y_{1} = (x_{2} - x_{1})f(x_{1}, y_{1}),$$

$$...$$

$$y_{j-1} - y_{j-2} = (x_{j-1} - x_{j-2})f(x_{j-2}, y_{j-2}),$$

$$y_{h}(x) - y_{j-1} = (x - x_{j-1})f(x_{j-1}, y_{j-1}).$$

Then, by adding up and using the triangle inequality, we have

$$|y_h(x)-y_0| \leq A(x-x_0),$$

Existence and uniqueness of Solution of the Cauchy Problem V

For the other inequality, if $x_0 \le x \le x_1$ it is trivially true. If $x > x_1$

$$y_{1} - y_{0} = (x_{1} - x_{0})f(x_{0}, y_{0}),$$

$$y_{2} - y_{1} = (x_{2} - x_{1})(f(x_{1}, y_{1}) - f(x_{0}, y_{0})) + (x_{2} - x_{1})f(x_{0}, y_{0}),$$

$$...$$

$$y_{j-1} - y_{j-2} = (x_{j-1} - x_{j-2})(f(x_{j-2}, y_{j-2}) - f(x_{0}, y_{0})) + (x_{j-1} - x_{j-2})f(x_{0}, y_{0}),$$

$$y_{h}(x) - y_{j-1} = (x - x_{j-1})(f(x_{j-1}, y_{j-1}) - f(x_{0}, y_{0})) + (x - x_{j-1})f(x_{0}, y_{0}).$$

$$y_{h}(x) - y_{0} = (x - x_{0})f(x_{0}, y_{0}) + \sum_{k=1}^{j-2} (x_{k+1} - x_{k})(f(x_{k}, y_{k}) - f(x_{0}, y_{0})) + (x_{0}, y_{0}) + (x_{0}, y_{$$

 $+(x-x_{i-1})(f(x_{i-1},y_{i-1})-f(x_0,y_0)).$

Existence and uniqueness of Solution of the Cauchy Problem VI

Finally,

$$|y_h(x)-y_0-(x-x_0)f(x_0,y_0)| \le (x-x_1)\epsilon \le (x-x_0)\epsilon.$$

Using the first formula, we see that the polygon remains in D.

Now, we want to obtain an estimate for the change of $y_h(x)$, when the initial value is changed:

Lemma

For a fixed subdivision h let $y_h(x)$ and $z_h(x)$ be the Euler polygons corresponding to the initial values y_0 and z_0 , respectively. If

$$\left|\frac{\partial f}{\partial y}(x,y)\right| \le L$$

in a convex region which contains $(x, y_h(x))$ and $(x, z_h(x))$ for all $x_0 \le x \le X$, then

$$|z_h(x)-y_h(x)| \le e^{L(x-x_0)}|z_0-y_0|.$$

Proof:

We have

$$y_1 - y_0 = (x_1 - x_0)f(x_0, y_0),$$

 $z_1 - z_0 = (x_1 - x_0)f(x_0, z_0),$

Substracting the second equation from the first, we get

$$z_1 - y_1 = z_0 - y_0 + (x_1 - x_0)(f(x_0, z_0) - f(x_0, y_0)).$$

Now, by the Mean Value Theorem:

$$|f(x,z)-f(x,y)|\leq L|x-y|,$$

and, therefore,

$$|z_1-y_1| \leq (1+(x_1-x_0)L)|z_0-y_0| \leq e^{L(x_1-x_0)}|z_0-y_0|.$$

If we do the same for $z_2 - y_2$, we obtain

$$|z_2-y_2| \le e^{L(x_2-x_1)}|z_1-y_1| \le e^{L(x_2-x_0)}|z_0-y_0|.$$

Repeating the same argument, we obtain the result.

If $|h|=\max_{i=0,\dots,n-1}h_i\to 0$, the Euler polygons converge to the solution of the Cauchy problem:

Theorem

Let f(x, y) be continuous, and |f| be bounded by A and satisfy the Lipschitz condition

$$|f(x,z)-f(x,y)|\leq L|z-y|$$

on

$$D = \{(x,y) \mid x_0 \le x \le X, |y - y_0| \le b\}.$$

If $X - x_0 \le b/A$, then we have:

- For $|h| \to 0$ the Euler polygons $y_h(x)$ converge uniformly to a continuous function $\varphi(x)$.
- ② $\varphi(x)$ is continuously differentiable and solution of the Cauchy Problem (CP). on $x_0 \le x \le X$.
- **3** There exists no other solution of the CP on $x_0 \le x \le X$.

Proof:

a) Take $\epsilon > 0$. Since f is uniformly continuous on the compact set D, $\exists \, \delta > 0 \text{ s.t.}$

$$|u_1-u_2| \leq \delta$$
 and $|v_1-v_2| \leq A\delta$ \Rightarrow $|f(u_1,v_1)-f(u_2,v_2)| \leq \epsilon$.

Suppose that the subdivision satisfies

$$|x_{i+1}-x_i|\leq \delta$$
, that is $|h|\leq \delta$.

Consider a subdivision h(1), which is obtained by adding new points only to the first subinterval. From Lemma 1 (applied to the first interval)

$$|y_{h(1)}(x_1)-y_h(x_1)|\leq \epsilon|x_1-x_0|.$$

Since the subdivisions h and h(1) are identical on $x_1 \le x \le X$, we can apply Lemma 2 to obtain

$$|y_{h(1)}(x) - y_h(x)| \le e^{L(x-x_1)}(x_1 - x_0)\epsilon$$
 for $x_1 \le x \le X$.

Let h(2) be a subdivision obtained adding to h(1) points in (x_1, x_2) . Then

$$|y_{h(2)}(x_2) - y_{h(1)}(x_2)| \le \epsilon |x_2 - x_1|$$

and

$$|y_{h(2)}(x) - y_{h(1)}(x)| \le e^{L(x-x_2)}(x_2 - x_1)\epsilon$$
 for $x_2 \le x \le X$.

Then

$$|y_{h(2)}(x)-y_h(x)| \leq e^{L(x-x_1)}(x_1-x_0)\epsilon + e^{L(x-x_2)}(x_2-x_1)\epsilon, \text{ for } x_2 \leq x \leq X.$$

If we denote by \hat{h} the final refinement, we obtain for $x_i < x \le x_{i+1}$

$$|y_{\hat{h}}(x) - y_h(x)| \le \epsilon (e^{L(x-x_1)}(x_1 - x_0) + \dots + e^{L(x-x_i)}(x_i - x_{i-1})) + \epsilon (x - x_i) \le \epsilon \int_{-\infty}^{\infty} e^{L(x-s)} ds = \frac{\epsilon}{L} (e^{L(x-x_0)} - 1),$$

where we add the term $\epsilon(x-x_i)$ in order to be the inequality true also in the case i=0.

If we now have two subdivisions h and \tilde{h} s.t. $|h| \leq \delta$ and $|\tilde{h}| \leq \delta$, let \hat{h} be a subdivision which is a refinement of both subdivisions. Then

$$|y_h(x)-y_{\tilde{h}}(x)|\leq 2\frac{\epsilon}{L}(e^{L(x-x_0)}-1).$$

This implies uniform convergence of y_h , when $|h| \to 0$, and therefore convergence to a continuous function $\varphi(x)$.

b) Let

$$\epsilon(\delta) = \sup\{|f(u_1, v_1) - f(u_2, v_2)| / |u_1 - u_2| \le \delta, |v_1 - v_2| \le A\delta, (u_i, v_i) \in D\}$$

be the modulus of continuity. If x belongs to the subdivision h then we obtain from Lemma 1, replacing (x_0, y_0) by $(x, y_h(x))$ and x by $x + \delta$,

$$|y_h(x+\delta)-y_h(x)-\delta f(x,y_h(x))|\leq \epsilon(\delta)\delta.$$

Taking the limit |h| o 0 we get

$$|\varphi(x+\delta)-\varphi(x)-\delta f(x,\varphi(x))|\leq \epsilon(\delta)\delta.$$

Since $\epsilon(\delta) \to 0$ for $\delta \to 0$, this proves the differentiability of $\varphi(x)$ and $\varphi'(x) = f(x, \varphi(x))$.

c) Let $\psi(x)$ be a second solution and suppose that $|h| \leq \delta$. We then denote by $y_h^{(i)}(x)$ the Euler polygon to the initial value $(x_i, \psi(x_i))$ (it is defined for $x_i \leq x \leq X$). we have

$$\psi(x) = \psi(x_i) + \int_{x_i}^x f(s, \psi(s)) ds$$

and

$$|\psi(x) - y_h^{(i)}(x)| = \left| \int_{x_i}^x f(s, \psi(s)) \, ds - (x - x_i) f(x_i, \psi(x_i)) \right| =$$

$$= \left| \int_{x_i}^x (f(s, \psi(s)) - f(x_i, \psi(x_i)) \, ds \right| \le \epsilon |x - x_i| \text{ for } x_i \le x \le x_{i+1}.$$

In particular, $y_h^{(0)} = y_h$. Therefore, taking the limits $|h| \to 0$ and $\epsilon \to 0$, we obtain $|\psi(x) - \varphi(x)| \le 0$, for $x \in [x_0, x_1]$. If we repeat the argument for all i, we see that $\psi(x) = \varphi(x)$, for all $x_0 \le x \le X$.

Comment

In the proof of part a) of the theorem, we see that

$$|y_{\tilde{h}}(x)-y_h(x)|\leq \frac{\epsilon}{L}(e^{L(x-x_0)}-1).$$

If we take the limit $|\tilde{h}| \to 0$, we obtain the following error estimate

$$|y(x)-y_h(x)|\leq \frac{\epsilon}{L}(e^{L(x-x_0)}-1),$$

for the Euler polygon ($|h| \le \delta$). Here y(x) stands for the exact solution of the Cauchy problem.

To end this introduction, we can give a general theorem of existence and uniqueness of the solution of the Cauchy problem y' = f(x, y), $y(x_0) = x_0$:

Theorem

Let f(x,y) be continuous, |f| be bound by A and satisfy the Lipschitz condition $|f(x,z)-f(x,y)| \leq L|z-y|$ on

$$D = \{(x,y) | x_0 \le x \le X, |y-y_0| \le b\}.$$

If $X - x_0 \le b/A$, then we have

- For $|h| \to 0$ the Euler polygons $y_h(x)$ converge uniformly to a continuous function $\varphi(x)$.
- ② $\varphi(x)$ is continuously differentiable and solution of the Cauchy problem on $x_0 \le x \le X$.
- **3** There exists no other solution on $x_0 \le x \le X$.
- If we suppose, moreover, that $|\partial f/\partial y| \leq L$, $|\partial f/\partial x| \leq M$ then

$$|y(x)-y_h(x)| \leq \frac{M+AL}{L}(e^{L(x-x_0)}-1)|h|,$$

provided that |h| is sufficiently small.

Proof:

It remains only to prove item d). For $|u_1 - u_2| \le |h|$ and $|v_1 - v_2| \le A|h|$ we obtain the estimate

$$|f(u_1, v_1) - f(u_2.v_2)| \leq (M + AL)|h|.$$

When we insert $\epsilon = (M + AL)|h|$ in the proof of the previous theorem, we obtain the desired result.

Comment

In the case we have a system of ordinary differential equations, that is $f = (f_1, \ldots, f_n)$, $y = (y_1, \ldots, y_n)$ we obtain the same theorem, replacing absolute values by norms.

Overview of single step methods of integration I

We want to solve the Cauchy Problem (CP):

$$\left. egin{array}{lcl} \dot{x} & = & f(t,x) \\ x(t_0) & = & x_0 \end{array}
ight\}, \qquad x,f \in \mathbb{R}^n, \quad t \in \mathbb{R}.$$

Given a sequence $t_0 < t_1 < \cdots$, we want to approximate the solution of the CP at these values. Let $x(t) = \phi(t; t_0, x_0)$ be its solution. We look for approximations of the table:

$$\begin{array}{c|cc} t & x \\ \hline t_0 & x_0 = \phi(t_0, t_0, x_0) \\ t_1 & x_1 = \phi(t_1, t_0, x_0) \\ t_2 & x_2 = \phi(t_2, t_0, x_0) \\ \vdots & \vdots \\ \end{array}$$

Overview of single step methods of integration II

that is

$$\begin{array}{c|c} t & x \\ \hline t_0 & x_0 \\ t_1 & \tilde{x}_1 \\ t_2 & \tilde{x}_2 \\ \vdots & \vdots \end{array}.$$

We call $h_n = t_{n+1} - t_n$ the *n*-th **step size**.

Overview of single step methods of integration III

Let $\varphi(h; t, x) = \phi(t + h; t, x)$ be the map which gives the solution with initial condition x(t) = x after h time units. Then, we can write:

$$\begin{cases} t_{n+1} = t_n + h_n, \\ x_{n+1} = \varphi(h_n; t_n, x_n) \end{cases}$$

We replace φ (unknown) by and approximation $\tilde{\varphi}(h;t,x)$, s. t. $\tilde{\varphi}(0;t,x)=\varphi(0;t,x)=x$. Then $(t_0,\tilde{x}_0)=(t_0,x_0)$ and for $n\geq 0$:

$$\begin{array}{rcl} t_{n+1} & = & t_n + h_n, \\ \tilde{x}_{n+1} & = & \tilde{\varphi}(h_n; t_n, \tilde{x}_n) \end{array}$$

Comment

The map $\tilde{\varphi}(h;t,x)$ completely determines the numerical method. As $\tilde{\varphi}$ only uses (t_n,\tilde{x}_n) and h_n to compute $(t_{n+1},\tilde{x}_{n+1})$,, we call this kind of numerical methods, one (or single) step methods.

Overview of single step methods of integration IV

Euler's Method

As

$$\dot{x}(t) = f(t, x(t)),$$

and

$$\dot{x}(t) pprox rac{x(t+h)-x(t)}{h},$$

we have that

$$x(t+h) \approx x(t) + hf(t,x(t)).$$

Then, we define $\tilde{\varphi}(h; t, x) = x + hf(t, x)$. The corresponding method is

$$\begin{array}{rcl}
t_{n+1} & = & t_n + h_n, \\
\tilde{x}_{n+1} & = & \tilde{x}_n + h_n f(t_n, \tilde{x}_n)
\end{array}$$

Overview of single step methods of integration V

Consistency

We say that a single-step method with map $\tilde{\varphi} = \tilde{\varphi}(h;t,x)$ is **consistent** if

$$\frac{\partial \tilde{\varphi}}{\partial h}(0;t,x)=f(t,x).$$

Comment

4s

$$\frac{\partial \varphi(h;t,x)}{\partial h} = f(t+h,\varphi(h;t,x)),$$

we have

$$\frac{\partial \varphi}{\partial h}(0;t,x) = f(t,x).$$

2 The Euler's method is consistent.

Overview of single step methods of integration VI

Local truncation error

The **local truncation error** in the *n*-th step of a single-step method associated to the function $\tilde{\varphi}(h;t,x)$ is

$$\tilde{x}_n - \phi(t_n; t_{n-1}, \tilde{x}_{n-1}).$$

Global truncation error

The **global truncation error** is

$$\tilde{x}_n - \phi(t_n; t_0, x_0).$$

Local order of convergence

If $h = h_n$, for all n and $\tilde{x}_n - \phi(t_n; t_{n-1}, \tilde{x}_{n-1}) = O(h^m)$ we say that the **local order of convergence** is m.

Overview of single step methods of integration VII

Global order of convergence

If $h = h_n$, for all n and $\tilde{x}_n - \phi(t_n; t_0, \tilde{x}_0) = O(h^m)$ we say that the **global order of convergence** is n.

Comment

In general, one can prove that if the local order of convergence is m+1 then the corresponding global order is m, when $h \to 0$. We have the same behaviour when we compare the simple and composite methods in numerical integration.

Orders of convergence of the Euler's method I

We write

$$t_{n} = t_{n-1} + h_{n-1},$$

$$\tilde{x}_{n} = \tilde{\varphi}(h_{n-1}, t_{n-1}, \tilde{x}_{n-1}),$$

$$x_{n} = \varphi(h_{n-1}, t_{n-1}, \tilde{x}_{n-1}).$$

Therefore, if we write $h = h_{n-1}$, $x = \tilde{x}_{n-1}$, $t = t_{n-1}$:

$$\tilde{x}_n - x_n = \tilde{\varphi}(h; t, x) - \varphi(h; t, x).$$

Now we perform the Taylor expansion at h = 0, taking into account that

$$\tilde{\varphi}(h;t,x) = x + hf(t,x), \qquad \varphi(h;t,x) = \phi(t+h;t,x).$$

We have

$$\tilde{\varphi}(0; t, x) = \varphi(0; t, x) = x,$$

Orders of convergence of the Euler's method II

$$\frac{\partial \tilde{\varphi}}{\partial h}(0;t,x) = \frac{\partial \varphi}{\partial h}(0;t,x) = f(t,x) \quad \text{(consistency)},$$

and

$$\frac{\partial^2 \tilde{\varphi}}{\partial h^2}(0;t,x) = 0, \qquad \frac{\partial^2 \varphi}{\partial h^2}(0;t,x) = \frac{\partial f}{\partial t}(t,x) + \frac{\partial f}{\partial x}(t,x)f(t,x).$$

We obtain the latter derivative when we differentiate the expression

$$\frac{\partial \varphi}{\partial h}(h;t,x) = f(t+h,\varphi(h;t,x)),$$

with respect to h, and take h=0. The two derivatives are different in general, which means that the local order of convergence is $\mathbf{2}$. We have seen before that the global order of convergence is $\mathbf{1}$.

Explicit and implicit one-step methods

The methods we have seen are **explicit methods**. Suppose that we have the following method:

$$\begin{array}{rcl}
t_{n+1} & = & t_n + h_n, \\
\tilde{x}_{n+1} & = & \hat{\varphi}(h_n; t_n, \tilde{x}_n, \tilde{x}_{n+1})
\end{array}$$

beginning with the initial condition $(t_0, \tilde{x}_0) = (t_0, x_0)$. This is an **implicit method** and can be transformed into an explicit one if we can isolate \tilde{x}_{n+1} from the last equation, that is the function $\tilde{\varphi}$ satisfies:

$$\tilde{\varphi}(h; t, x) = \hat{\varphi}(h; t, x, \tilde{\varphi}(h; t, x)).$$

The Implicit Euler's Method I

We take

$$\dot{x}(t) \approx \frac{x(t) - x(t-h)}{h},$$

then, as $\dot{x}(t) = f(t, x(t))$, we have that

$$\frac{x(t)-x(t-h)}{h}\approx f(t,x(t)),$$

or

$$x(t+h) \approx x(t) + hf(t+h,x(t+h)).$$

Now, we can define the method generated by the function

$$\tilde{\varphi}(h; t, x) = x + hf(t + h, \tilde{\varphi}(h; t, x)).$$

Therefore, we have

$$\begin{array}{rcl}
t_{n+1} & = & t_n + h_n \\
\tilde{x}_{n+1} & = & \tilde{x}_n + h_n f(t_{n+1}, \tilde{x}_{n+1})
\end{array}$$
 (Implicit Euler's Method)

The Implicit Euler's Method II

Implementation of the Implicit Euler's Method

To compute \tilde{x}_{n+1} we have to solve a (in general) nonlinear equation. In each step:

- Obtain an approximation $\tilde{x}_{n+1}^{(0)}$ of \tilde{x}_{n+1} , using the (explicit) Euler's Method.
- Define the sequence $(\tilde{x}_{n+1}^{(i)})_i$, such that

$$\tilde{x}_{n+1}^{(i+1)} = \tilde{x}_n + h_n f(t_{n+1}, \tilde{x}_{n+1}^{(i)}), \quad i \geq 0,$$

and take $\tilde{x}_{n+1} = \tilde{x}_{n+1}^{(j)}$, for some j small.

The Implicit Euler's Method III

Comment

Note that the function $F(x) = \tilde{x}_n + hf(t_{n+1}, x)$ is a contraction if |h| is small enough, which implies that if $f : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ is continuous and Lipschitz with respect to x, then $\tilde{x}_{n+1}^{(i)} \to \tilde{x}_{n+1}$ when $i \to \infty$. However, in the practical use of this method we will only consider a small number of iterations.

Comment

This implementation is called a predictor-corrector method.

Order of convergence of the Implicit Euler's Method I

We have

$$\tilde{\varphi}(h;t,x)=x+hf(t,\tilde{\varphi}(h;t,x)).$$

Then we write

$$\tilde{\varphi}(h;t,x)=c_0+c_1h+c_2h^2+\cdots,$$

where $c_i = c_i(t, x)$.

- We insert this identity in the previous equation and take h = 0, we obtain that $c_0 = x$.
- Then we write

$$c_1 + c_2 h + O(h^2) = f(t, x + c_1 h + c_2 h^2 + O(h^2)) =$$

= $f(t, x) + D_2 f(t, x) c_1 h + O(h^2).$

obtaining $c_1 = f(t, x)$.

Order of convergence of the Implicit Euler's Method II

Finally,

$$f(t,x) + c_2h + O(h^2) = f(t,x + f(t,x)h + c_2h^2 + O(h^2)) =$$

$$f(t,x) + D_2f(t,x)f(t,x)h + O(h^2),$$

which implies that $c_2 = D_2 f(t, x) f(t, x)$ and

$$\tilde{\varphi}(h;t,x) = x + f(t,x)h + \frac{\partial f}{\partial x}(t,x)f(t,x)h^2 + O(h^3).$$

As

$$\varphi(h;t,x) = x + f(t,x)h + \frac{1}{2}\left(\frac{\partial f}{\partial t}(t,x) + \frac{\partial f}{\partial x}(t,x)f(t,x)\right)h^2 + O(h^3)$$

then

$$\tilde{\varphi}(h; t, x) - \varphi(h; t, x) = O(h^2).$$

Therefore, the local error is of order 2, and the global error is of order 1.