

Elementare Zahlentheorie

gelesen von Prof. Dr. Falko Lorenz

Mitschrift von Phil Steinhorst

Wintersemester 2014/2015

http://wwwmath.uni-muenster.de/u/karin.halupczok/elZTWiSe14/

Vorwort

Der vorliegende Text ist eine Zusammenfassung zur Vorlesung Elementare Zahlentheorie, gelesen von Prof. Dr. Falko Lorenz an der WWU Münster im Wintersemester 2014/2015. Der Inhalt entspricht weitestgehend dem Skript, welches auf der Vorlesungswebsite bereitsgestellt wird, jedoch wird auf Beweise weitestgehend verzichtet. Für die Korrektheit des Inhalts wird keinerlei Garantie übernommen. Bemerkungen, Korrekturen und Ergänzungen kann man folgenderweise loswerden:

- persönlich durch Überreichen von Notizen oder per E-Mail
- durch Abändern der entsprechenden TeX-Dateien und Versand per E-Mail an mich
- direktes Mitarbeiten via GitHub. Dieses Skript befindet sich im latex-wwu-Repository von Jannes Bantje:

https://github.com/JaMeZ-B/latex-wwu

Themenübersicht

Im Sommersemester 2013 wurden folgende Themen behandelt:

- Ein paar algebraische Grundlagen (Gruppen- und Ringtheorie, Ideale)
- Fundamentalsatz der Arithmetik (Satz von der eindeutigen Primfaktorzerlegung)
- Euklidischer Algorithmus, Kettenbruchdarstellung
- · Simultane Kongruenzen, Satz von Euler-Fermat, chinesischer Restsatz
- Restklassengruppen, Hauptsatz über endliche abelsche Gruppen
- Gaußscher Zahlenring ℤ[i]
- · Quadratische Reste, Quadratisches Reziprozitätsgesetz
- Fermat- und Mersenne-Primzahlen
- Zahlentheoretische Funktionen $\varphi \colon \mathbb{N} \longrightarrow \mathbb{C}$
- Satz von Lagrange ("Vier-Quadrate-Satz")

Literatur

- F. Ischebeck: Einladung zur Zahlentheorie
- R. Remmert, P. Ullrich: Elementare Zahlentheorie
- A. Scholz, B. Schöneberg: Einführung in die Zahlentheorie
- K. Halupczok: Skript zur Elementaren Zahlentheorie

Vorlesungswebsite

http://wwwmath.uni-muenster.de/u/karin.halupczok/elZTWiSe14/

Phil Steinhorst p.st@wwu.de

Inhaltsverzeichnis

1 Fundamentalsatz der elementaren Arithmetik	4
2 Der euklidische Algorithmus	10
Index	11

1 Fundamentalsatz der elementaren Arithmetik

Terminologie

^{14.10.} Sei R ein kommutativer Ring mit $1 \neq 0$. R heißt Integritätsring bzw. nullteilerfrei, wenn gilt:

$$a \cdot b = 0 \quad \Rightarrow \quad a = 0 \text{ oder } b = 0.$$

Beispiel 1.1

- Z
- $\mathbb{Z}[\sqrt{2}] := \{a + b\sqrt{2} : a, b \in \mathbb{Z}\} \subseteq \mathbb{R}$ $\mathbb{Z}[i] := \{a + bi : a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$ $\mathbb{Z}[\sqrt{-5}] := \dots$
- K[X] für K Körper $\mathbb{Z}[X]$
- ullet Körper
- $\mathbb{C}\langle z \rangle := \{ \text{konvergente Potenzreihen } \sum_{n=0}^\infty a_n z^n \}$
- Nicht nullteilerfrei ist z.B. $\mathcal{C}[0,1]:=\{f\colon [0,1]\to\mathbb{R} \text{ stetig}\}$

Definition 1.1 (Teilbarkeit)

Seien $a, b \in R$. a heißt ein **Teiler** von b, wenn ein $q \in R$ existiert mit b = qa, und schreiben:

a|b

Ist R nullteilerfrei und $a \neq 0$, so ist q eindeutig bestimmt.

F1.1 (Triviale Teilbarkeitsregeln)

- (i) a|0,1|a,a|a
- (ii) $a|b,b|c \Rightarrow a|c$
- (iii) $a|b,a|c \Rightarrow a|b+c,a|b-c$
- (iv) $a_1|b_1,a_2|b_2 \Rightarrow a_1a_2|b_1b_2$
- (v) $ac|bc \Rightarrow a|b$, falls $c \neq 0$ und R nullteilerfrei.

Definition 1.2 (Einheit, assoziiert)

- (i) $e \in R$ heißt eine **Einheit** in R, falls e|1 gilt, d.h. falls ein $f \in R$ existiert mit ef = 1. f ist eindeutig bestimmt. Wir setzen $e^{-1} := f$ und schreiben auch $\frac{1}{e}$ für e^{-1} . Wir bezeichnen die **Einheitengruppe** von R mit $R^{\times} := \{x \in R : x \text{ ist Einheit in } R\}$.
- (ii) $a \in R$ heißt **assoziiert** zu $b \in R$, falls a|b und b|a gilt. Schreibe: a = b.

Beispiel 1.2

1) Sei K ein Körper, dann ist $K^\times = K \setminus \{0\}$. $\mathbb{Z}^\times = \{1, -1\}$, $K[X]^\times = K^\times$, $\mathcal{C}[0, 1]^\times = \{f \in \mathcal{C}[0, 1] : f(x) \neq 0 \text{ für alle } x \in [0, 1]\}$, $\mathbb{Z}[\sqrt{2}]^\times = \{\pm (1 + \sqrt{2})^k : k \in \mathbb{Z}\}$ $\mathbb{Z}[X]^\times = \{1, -1\}$ $\mathbb{C}\langle z \rangle^\times = \{\sum a_n z^n \in \mathbb{C}\langle z \rangle : a_0 \neq 0\}$

2) $e \in R^{\times} \Leftrightarrow e|a \text{ für jedes } a \in R.$

F1.2

Sei R ein Integritätsring, $a, b \in R$ und $b \neq 0$. Dann gilt:

$$a \stackrel{.}{=} b \quad \Leftrightarrow \quad \exists e \in R^{\times} \text{ mit } b = ea$$

Beweis

"
$$\Leftarrow$$
": $a|b, e^{-1}b = a, b|a$

" \Rightarrow ": Da a|b und b|a, existieren $e, f \in R$, sodass b=ea und $a=fb. \Rightarrow b=efb \Rightarrow ef=1$, da $b \neq 0$ und R nullteilerfrei

Ab jetzt ist, wenn nichts anderes gesagt, R ein Integritätsring!

Definition 1.3 (unzerlegbar, irreduzibel, zusammengesetzt)

Sei $a \in R \setminus R^{\times}$. a heißt unzerlegbar oder irreduzibel in R, wenn gilt:

$$a = bc \text{ in } R \implies b \in R^{\times} \text{ oder } c \in R^{\times}.$$

Andernfalls heißt a zerlegbar, zusammengesetzt oder reduzibel.

Bemerkung

a unzerlegbar \Leftrightarrow jeder Teiler von a ist Einheit oder assoziiert zu a

a zerlegbar \iff a hat echten Teiler, d.h. einen Teiler, der weder eine Einheit ist noch assoziiert zu a

Definition 1.3 (Primzahl)

Ein $p \in \mathbb{Z}$ heißt **Primzahl**, wenn $p \in \mathbb{N}$ und p unzerlegbar in \mathbb{Z} . Wir beziechnen mit \mathbb{P} die Menge der Primzahlen von \mathbb{Z} . a unzerlegbar in $\mathbb{Z} \Leftrightarrow a = p$ oder a = -p mit $p \in \mathbb{P}$.

Bemerkung

 $a \in \mathbb{Z}$ sei zerlegbar, $a \neq 0$. Dann gibt es eine Primzahl p mit p|a und $p \leq \sqrt{|a|}$.

Definition 1.4 (Zerlegung in unzerlegbare Faktoren)

Wir sagen, $a \in R$ besitzt in R eine **Zerlegung in unzerlegbare Faktoren**, wenn

$$a = ep_1p_2 \dots p_r \text{ mit } e \in R^{\times} \text{ und } p_1, \dots, p_r \text{ unzerlegbar}$$
 (1.1)

(1.1) heißt eine Zerlegung von a in unzerlegbare Faktoren. Auch r=0 ist erlaubt.

F1.3

In $\mathbb Z$ besitzt jedes $a\neq 0$ eine Zerlegung in unzerlegbare Faktoren.

F1.3

Jede natürliche Zahl a>1 besitzt eine Zerlegung $a=p_1p_2\dots p_r$ mit Primzahlen p_1,\dots,p_r und $r\geq 1$.

Bemerkung

1) Die Aussage F1.3 gilt auch für die Beispiele zu Beginn, mit Ausnahme von $\mathcal{C}[0,1].$

- 2) Sei R ein Integritätsring, der die **Teilbarkeitsbedingung für Hauptideale** erfüllt, so besitzt jedes $a \neq 0$ aus R eine Zerlegung in unzerlegbare Faktoren.
- 3) Primzahlen sind die multiplikativen Bausteine (Atome) von \mathbb{N} .
- 4) Im Beispiel $\mathbb{C}\langle z\rangle$ von oben gibt es (bis auf Assoziiertheit) nur das einzige unzerlegbare Element z. Dieses ist ein **Primelement** (der Begriff folgt weiter unten).

Satz 1.1 (Existenz unendlich vieler Primzahlen)

Es gibt unendlich viele Primzahlen.

Bemerkungen

Es sei p_1, p_2, \ldots die aufsteigend sortierte Folge der Primzahlen.

- 1) $a_n := p_1 p_2 \dots p_n + 1$ ist Primzahl für $n \le 5$, aber z.B. nicht für n = 6. Unklar ist, ob unendlich viele a_n Primzahlen oder keine Primzahlen sind.
- 2) Für $x \in \mathbb{R}_{>0}$ definieren wir:

$$\pi(x) := \#\{p \in \mathbb{P} : p \le x\}$$

Primzahlsatz (Gauß, Legendre)

$$\pi(x) \sim \frac{x}{\log x}, \text{ d.h. } \lim_{x \to \infty} \frac{\pi(x)}{x/\log x} = 1$$

$$\pi(x) \sim \int_2^x \frac{1}{\log t} dt =: \operatorname{li}(x)$$

$$\pi(x) > \frac{x}{\log x} \text{ für alle } x \geq 17$$

$$\pi(n) > \frac{n}{\log n} \text{ für alle } n \in \mathbb{N}, n \geq 11$$

Definition 1.5 (eindeutige Zerlegung)

Sei R ein kommutativer Ring mit $1 \neq 0$. Wir sagen, $a \in R \setminus \{0\}$ hat eine **eindeutige Zerlegung in unzerlegbare** Faktoren, wenn a eine Zerlegung

$$a = ep_1p_2 \dots p_r$$

in unzerlegbare Faktoren besitzt und eine solche im folgendem Sinne eindeutig ist: Ist auch

$$a = e'p'_1p'_2 \dots p'_{r'}$$

eine solche Zerlegung, so gilt r=r' und nach Umnummerierung $p_i' = p_i$ für alle $1 \le i \le r$.

F1.4

In dem Integritätsring R besitze jedes Element $a \neq 0$ eine Zerlegung in unzerlegbare Faktoren. Dann sind äquivalent:

- (i) Jedes $a \neq 0$ aus R hat eindeutige Zerlegung in unzerlegbare Faktoren.
- (ii) Ist p unzerlegbar, so gilt: $p|ab \Rightarrow p|a$ oder p|b.

Definition 1.6 (Primelement)

Sei R ein kommutativer Ring mit $1 \neq 0$. Ein $p \in R \setminus R^{\times}$ heißt **Primelement** von R, wenn für alle $a, b \in R$ gilt:

$$p|ab \Leftrightarrow p|a \text{ oder } p|b$$
 (1.2)

Bemerkung

- 1) 0 ist Primelement in $R \Leftrightarrow R$ ist Integritätsring
- 2) In einem Integritätsring R gilt: Jedes Primelement $p \neq 0$ ist unzerlegbar.

Lemma 1.1

Seien $a,b\in\mathbb{N}$. Sei $m=\mathrm{kgV}(a,b)\in\mathbb{N}$. Dann gilt:

$$a|c \text{ und } b|c \implies m|c$$

m ist also auch minimal bzgl. der Teilbarkeitsrelation |.

F1.5 (Satz von Euklid)

Jede Primzahl p ist ein Primelement von \mathbb{Z} , d.h. es gilt stets (1.2). (Das gleiche gilt für -p, also für jedes unzerlegbare Element von \mathbb{Z} .)

Fundamentalsatz der elementaren Arithmetik

In \mathbb{Z} hat jedes $a \neq 0$ eine eindeutige Zerlegung in unzerlegbare Faktoren.

Bemerkung

Eindeutige Zerlegung in unzerlegbare Faktoren hat man zum Beispiel auch für die Ringe $\mathbb{Z}[\sqrt{2}], \mathbb{Z}[i], K[X]$ und K für K Körper, $\mathbb{Z}[X]$ und $\mathbb{C}\langle z \rangle$, nicht aber für $\mathbb{Z}[\sqrt{-5}]$:

$$3 \cdot 3 = 9 = (2 + \sqrt{-5})(2 - \sqrt{-5})$$

Dies sind zwei wesentlich verschiedene Zerlegungen in unzerlegbare Faktoren.

Definition 1.7 (Exponent)

Sei p eine Primzahl und $a \in \mathbb{Z} \setminus \{0\}$. Dann heißt

$$w_p(a) := \max\{k \in \mathbb{N}_0 : p^k | a\}$$

der **Exponent** von p in a. Wir setzen $w_p(0) := \infty$.

F1.6 (Eigenschaften der Exponentfunktion)

Die Funktion $w_p \colon \mathbb{Z} \to \mathbb{N}_0 \cup \{\infty\}$ hat folgende Eigenschaften:

- (i) $w_p(a+b) \ge \min(w_p(a), w_p(b))$ und Gleichheit, falls $w_p(a) \ne w_p(b)$.
- (ii) $w_p(ab) = w_p(a) + w_p(b)$

Satz 1.2 (Fundamentalsatz der elementaren Arithmetik)

Für jedes $a \in \mathbb{Z} \setminus \{0\}$ gilt $w_p(a) > 0$ nur für endlich viele p. Es ist

$$a = \operatorname{sgn}(a) \cdot \prod_{p} p^{w_p(a)} \tag{1.3}$$

Bemerkung

1) w_p lässt sich eindeutig zu einer Abbildung $w_p\colon \mathbb{Q} \to \mathbb{Z} \cup \{\infty\}$ fortsetzen, sodass (ii) für alle $a,b\in \mathbb{Q}$ gilt. Es gilt dann auch (i). Für $a\in \mathbb{Q}\setminus \{0\}$ ist $w_p(a)\neq 0$ nur für endlich viele p, und die Formel (1.3) gilt entsprechend. Ferner gilt: $a\in \mathbb{Z} \Leftrightarrow w_p(a)\geq 0$ für alle p.

2) Sei

$$\mathbb{N}_0^{(\mathbb{P})} := \{ (e_p)_{p \in \mathbb{P}} : e_p \in \mathbb{N}_0, e_p = 0 \text{ für fast alle } p \}.$$

Nach Satz 1.2 sind (\mathbb{N},\cdot) und $(\mathbb{N}_0^{(\mathbb{P})},+)$ zwei zueinander isomorphe Halbgruppen. Nach Bemerkung 1) sind \mathbb{Q}^\times und $\{1,-1\}\times\mathbb{Z}^{(\mathbb{P})}$ sogar zwei zueinander isomorphe Gruppen.

Definition 1.8 (faktorieller Ring, Vertretersystem für Primelemente)

Ein Integritätsring R heißt **faktoriell**, wenn jedes $a \in R \setminus \{0\}$ eine eindeutige Zerlegung in unzerlegbare Faktoren hat. Man spricht dann auch von eindeutiger Primfaktorzerlegung in R.

P heißt Vertretersystem für die Primelemente $\neq 0$ von R, wenn:

- (1) Zu jedem Primelement $q \neq 0$ von R gibt es ein $p \in P$ mit $q \triangleq p$.
- (2) Für $p, p' \in P$ mit $p \triangleq p'$ gilt p = p', d.h. p in (1) ist eindeutig bestimmt durch q.

 $\operatorname{Für} R = \mathbb{Z} \operatorname{nehme} \operatorname{man} \operatorname{stets} P = \mathbb{P}. \operatorname{Für} K \operatorname{K\"{o}rper} \operatorname{und} R = K[X] \operatorname{nimmt} \operatorname{man} P = \{ p \in K[X] : p \operatorname{irreduzibel} \operatorname{und} \operatorname{normiert} \}.$

F1.7

Sei R faktoriell und P ein Vertretersystem für Primelemente. Es gibt zu jedem $p \in P$ eine Funktion $w_p \colon R \to \mathbb{N}_0 \cup \{\infty\}$ mit den Eigenschaften (i) und (ii) aus F1.6, sodass gilt:

- a) Für jedes $a \in R \setminus \{0\}$ ist $w_p(a) > 0$ nur für endlich viele $p \in P$.
- b) Für jedes $a \in R \setminus \{0\}$ gilt

$$a = e \prod_{p \in P} p^{w_p(a)}$$

mit eindeutigem $e \in \mathbb{R}^{\times}$.

Definition 1.9 (ggT und kgV)

Sei R ein kommutativer Ring mit $1 \neq 0$. Gegeben $a_1, \ldots, a_n \in R$.

- a) Ein $d \in R$ heißt ein **größter gemeinsamer Teiler** (ggT) von a_1, \ldots, a_n , falls:
 - 1. $d|a_i$ für alle i

- 2. $t|a_i$ für alle $i \Rightarrow t|d$
- b) Ein $m \in R$ heißt ein kleinstes gemeinsames Vielfaches (kgV) von a_1, \ldots, a_n , falls:
 - 1. $a_i|m$ für alle i

2. $a_i|c$ für alle $i \Rightarrow m|c$

Bemerkung

- 1) $d, d' \text{ ggT von } a_1, \dots, a_n \Rightarrow d = d' \text{ und } m, m' \text{ kgV von } a_1, \dots, a_n \Rightarrow m = m'$
- 2) Im Allgemeinen ist die Existenz eines ggT und kgV nicht gesichert. In faktoriellen Ringen existieren sie aber immer, siehe dazu folgende Feststellung.

F1.8

21.10. Sei R faktoriell, P wie oben. Es gelten:

(i) $a|b \Leftrightarrow w_p(a) \leq w_p(b)$ für alle $p \in P$.

(ii) Für $a_1, \ldots, a_n \in R$ setze:

$$d := \prod_{p \in P} p^{\min(w_p(a_1), \dots, w_p(a_n))} =: (a_1, \dots, a_n)$$

$$m := \prod_{p \in P} p^{\max(w_p(a_1), \dots, w_p(a_n))} =: [a_1, \dots, a_n]$$

Hierbei setze $p^{\infty}=0$. Dann ist d ein ggT von a_1,\dots,a_n und m ein kgV von a_1,\dots,a_n .

- (iii) $a,b\in R$. Dann ist $a,b = [a,b]\cdot (a,b)$ und $m = \frac{ab}{(a,b)}$, wenn a,b nicht beide 0.
- (iv) a_1,\ldots,a_n paarweise teilerfremd, d.h. $(a_i,a_j)=1$ für $i\neq j\Leftrightarrow [a_1,\ldots,a_n]\simeq a_1a_2\ldots a_n$.
- (v) $(a_i, b) = 1$ für $1 \le i \le n \Rightarrow (a_1 a_2 \dots a_n, b) = 1$
- (vi) $(a_1 f, \dots, a_n f) \simeq (a_1, \dots, a_n) f, [a_1 f, \dots, a_n f] \simeq [a_1, \dots, a_n] f$
- (vii) $((a_1,\ldots,a_n),a_{n+1})=(a_1,\ldots,a_n,a_{n+1}),[[a_1,\ldots,a_n],a_{n+1}]=[a_1,\ldots,a_n,a_{n+1}]$

Bemerkung (Verallgemeinerung von (iii)

Seien $a_1,\ldots,a_n\in R$ gegeben. Wähle q_1,\ldots,q_n und c aus R mit

$$a_1q_1 = a_2q_2 = \ldots = a_nq_n = c$$

(z.B.
$$c=a_1a_2\dots a_n, q_i=\prod\limits_{j
eq i}a_j$$
). Dann gilt

$$c \triangleq (a_1, \dots, a_n)[q_1, \dots, q_n]$$

F1.9

Sei $n \in \mathbb{N}, a \in \mathbb{Z}$. Ist $X^n = a$ lösbar in \mathbb{Q} , so ist $X^n = a$ auch lösbar in \mathbb{Z} . Anders ausgedrückt: Ist $a \in \mathbb{Z}$ keine n-te Potenz in \mathbb{Z} , so ist a auch keine n-te Potenz in \mathbb{Q} .

Anwendung

 $\sqrt{2}$ ist irrational, denn 2 ist kein Quadrat in $\mathbb Z$ aus Größengründen, also ist 2 nach F1.9 auch kein Quadrat in $\mathbb Q$, d.h. $\sqrt{2} \in \mathbb Q$.

Korollar

Sei $n \in \mathbb{N}$, $a \in \mathbb{N}$. Dann sind äquivalent:

- (i) a ist n-te Potenz in \mathbb{Z} .
- (ii) $n|w_p(a)$ für alle p.
- (iii) a ist n-te Potenz in \mathbb{Q} .

F1.10 (Verallgemeinerung von F1.9)

Gegeben sei ein normiertes Polynom $f(X) \in \mathbb{Z}[X]$. Ist dann b eine Nullstelle von f mit $b \in \mathbb{Q}$, so ist notwendigerweise $b \in \mathbb{Z}$ und außerdem ist b ein Teiler des Absolutkoeffizienten a_0 von f.

2 Der euklidische Algorithmus

Sei R kommutativer Ring mit $1 \neq 0$. Für beliebiges $a \in R$ betrachte man die Menge der Vielfachen von $a \in R$, also

$$Ra := xa : x \in R = b \in R : a|b$$

Die Teilmenge I=Ra hat folgende Eigenschaften:

- (i) $0 \in I$
- (ii) $b_1, b_2 \in I \Rightarrow b_1 + b_2 \in I$
- (iii) $c \in R, b \in I \Rightarrow cb \in I$

Definition 2.1 (Ideal, Hauptideal)

Eine Teilmenge I von R heißt ein **Ideal** in R, falls die Eigenschaften (i), (ii), (iii) erfüllt sind. I heißt **Hauptideal**, wenn es ein $a \in R$ gibt mit I = Ra. Wir verwenden die Bezeichnung

$$(a) := Ra$$

und nennen (a) das von $a \in R$ erzeugte Hauptideal.

Bemerkung

- (1) $(b) \subseteq (a) \Leftrightarrow a|b$
- (2) $a = b \Leftrightarrow (a) = (b)$
- (3) c ist gemeinsames Vielfaches von $a_1, \ldots, a_n \Leftrightarrow (c) \subseteq (a_1) \cap \ldots \cap (a_n)$
- (4) m ist ein kgV von $a_1, \ldots, a_n \Leftrightarrow (a_1) \cap \ldots \cap (a_n) = (m)$
- (5) d ist ein gemeinsamer Teiler von $a_1, \ldots, a_n \Leftrightarrow (a_i) \subseteq (d)$ für $1 \le i \le n$
- (6) d ist ein gemeinsamer Teiler von $a_1, \ldots, a_n \Leftrightarrow Ra_1 + Ra_2 + \ldots + Ra_n \subseteq (d)$
- (7) d ist ein ggT von $a_1, \ldots, a_n \Leftrightarrow (d)$ ist das kleinste Hauptideal mit $Ra_1 + \ldots Ra_n \subseteq (d)$.

Ein ggT lässt sich also idealtheoretisch nicht so einfach charakterisieren wie oben ein kgV durch (4). Am schönsten wäre es, wenn $Ra_1 + \ldots + Ra_n$ ein Hauptideal wäre, dann würde (7) übergehen in:

$$d$$
 ist ein ggT von $a_1, \ldots, a_n \Leftrightarrow Ra_1 + Ra_2 + \ldots + Ra_n = (d)$

Definition 2.2 (Hauptidealring)

Ein Integritätsring R heißt ein **Hauptidealring**, wenn jedes Ideal I von R ein Hauptideal ist.

Bezeichnung

Für Elemente a_1,\ldots,a_n in einem beliebigen kommutativen Ring R mit $1\neq 0$ setze

$$(a_1, \dots, a_n) := Ra_1 + \dots + Ra_n$$

Man nennt (a_1, \ldots, a_n) das von a_1, \ldots, a_n erzeugte Ideal in R.

Index

assoziiert, 4

Einheit, 4

Einheitengruppe, 4

Exponent, 7

faktoriell, 8

Fundamentalsatz der elementaren Arithmetik, 7

größter gemeinsamer Teiler, 8

Hauptideal, 10

Hauptidealring, 10

Ideal, 10

Integritätsring, 4

irreduzibel, 5

kleinstes gemeinsames Vielfaches, 8

Nullteiler, 4

Primelement, 6, 8

Primzahl, 5

Satz von Euklid, 7

Teilbarkeitsbedingung für Hauptideale, 6

Teiler, 4

unzerlegbar, 5

Vertretersystem, 8

Zerlegung in unzerlegbare Faktoren, 5, 6

Liste der Sätze und Definitionen

Definition 1.1	Teilbarkeit	4
F1.1	Triviale Teilbarkeitsregeln	4
Definition 1.2	Einheit, assoziiert	4
Definition 1.3	unzerlegbar, irreduzibel, zusammengesetzt	5
Definition 1.3	Primzahl	5
Definition 1.4	Zerlegung in unzerlegbare Faktoren	5
Satz 1.1	Existenz unendlich vieler Primzahlen	6
Definition 1.5	eindeutige Zerlegung	6
Definition 1.6	Primelement	6
F1.5	Satz von Euklid	7
Definition 1.7	Exponent	7
F1.6	Eigenschaften der Exponentfunktion	7
Satz 1.2	Fundamentalsatz der elementaren Arithmetik	7
Definition 1.8	faktorieller Ring, Vertretersystem für Primelemente	8
Definition 1.9	ggT und kgV	8
F1.10	Verallgemeinerung von F1.9	9
Definition 2.1	Ideal, Hauptideal	10
Definition 2.2	Hauntidealring	10