WHAT IS CLAIMED IS:

1. A compound of Formula I, or a pharmaceutically acceptable salt or ester or prodrug thereof:

HO 11
$$\frac{D}{A}$$
 $\frac{D}{A}$ $\frac{D}{A}$

5

15

20

wherein:

A is

i) -OH;

ii) '-ORp, where Rp is a hydroxy protecting group;

10 iii) -R₁, where R₁ is aryl, substituted aryl, heteroaryl, or substituted heteroaryl;

iv) -OR1, where R1 is as previously defined;

v) -R2, where R2 is

(a) hydrogen;

(b) halogen;

(c) -C₁-C₆ alkyl containing 0, 1, 2, or 3 heteroatoms selected from O, S or N, optionally substituted with one or more substituents selected from halogen, aryl, substituted aryl, heteroaryl, or substituted heteroaryl;

(d) -C2-C6 alkenyl containing 0, 1, 2, or 3 heteroatoms selected from O, S, or N, optionally substituted with one or more substituents selected from halogen, aryl, substituted aryl, heteroaryl, or substituted heteroaryl; or

(e) -C₂-C₆ alkynyl containing 0, 1, 2, or 3 heteroatoms selected from O, S or N, optionally substituted with one or more substituents selected from halogen, aryl, substituted aryl, heteroaryl, or substituted heteroaryl;

vi) -OR2, where R2 is previously defined;

vii) $-S(O)_nR_{11}$, where n=0, 1 or 2, and R_{11} is R_1 or R_2 , where R_1 and R_2 are as previously defined;

		viii)	-NHC(O)R ₁₁ , where R ₁₁ is as previously defined;		
	•	ix)	-NHC(O)NHR11, where R11 is as previously defined;		
		x)	-NHS(O) ₂ R ₁₁ , where R ₁₁ is as previously defined;		
		xi)	-NR14R15, where R14 and R15 are each independently R11, where R11 is as previously		
5			defined, or		
		xii)	-NHR3, where R3 is an amino protecting group;		
	B is	•			
		i) .	hydrogen;		
10		ii)	deuterium;		
		iii)	halogen;		
		iv)	-OH;		
		v)	-R ₁ , where R ₁ is as previously defined;		
		vi)	-R ₂ , where R ₂ is as previously defined; or		
15		vii)	-ORp, where Rp is as previously defined, provided that when B is halogen, -OH or ORp,		
			A is R ₁ or R ₂ , where R ₁ and R ₂ are previously defined;		
	ly, A and B taken together with the carbon atom to which they are attached are				
		i) .	C=O;		
		ii)	C(OR ₂) ₂ , where R ₂ is as previously defined;		
20		iii)	C(SR ₂) ₂ , where R ₂ is as previously defined;		
		iv)	$C[-O(CH_2)_m]_2$, where m=2 or 3;		
•		v)	C[-S(CH ₂) _m] ₂ , where m is as previously defined;		
		vi)	C=CHR ₁₁ , where R ₁₁ is as previously defined;		
		vii)	C=N-O-R ₁₁ , where R ₁₁ is as previously defined;		
25		viii)	C=NNHR ₁₁ , where R ₁₁ is as previously defined;		
		ix)	C=NNHC(O)R ₁₁ , where R ₁₁ is as previously defined;		
		x)	C=NNHC(O)NHR11, where R11 is as previously defined;		
		xi)	C=NNHS(O) ₂ R ₁₁ , where R ₁₁ is as previously defined;		
		xii)	C=NNHR3, where R3 is as previously defined; or		
30		xiii)	C=NR ₁₁ , where R ₁₁ is as previously defined;		
	L is				
		i)	-CH ₃ ;		
		ii)	-CH ₂ CH ₃ ;		

	iii)	-CH(OH)CH3;				
	iv)	-C ₁ -C ₆ alkyl, optionally substituted with one or more substituents selected from aryl,				
	•	substituted aryl, heteroaryl, or substituted heteroaryl;				
	v)	-C2-C6 alkenyl, optionally substituted with one or more substituents selected from aryl,				
5		substituted aryl, heteroaryl, or substituted heteroaryl; or				
	vi)	-C2-C6 alkynyl, optionally substituted with one or more substituents selected from aryl,				
	,	substituted aryl, heteroaryl, or substituted heteroaryl;				
	D is -CH2N(Q)-, $-C(O)N(R')$ -, or $-C(OR')=N$ -, wherein R' is R_{11} as previously defined;				
10						
	Q is					
	i)	hydrogen; -C ₁ -C ₁₂ -alkyl, C ₃ -C ₁₂ -alkenyl, or C ₃ -C ₁₂ -alkynyl, all optionally substituted with				
-	ii)					
		one, two or three substituents independently selected from:				
15		(a) halogen; (b) -OR6, wherein R6 is selected from:				
		(b) -OR6, wherein R6 is selected from: 1. hydrogen;				
		2. —C ₁ -C ₁₂ -alkyl containing 0, 1, 2, or 3 heteroatoms selected				
		from O, S or N, optionally substituted with one, two, or three				
20		substituents independently selected from aryl, substituted aryl,				
20		heteroaryl, or substituted heteroaryl;				
		3. aryl;				
		4. substituted aryl;				
		5. heteroaryl; and				
25		6. substituted heteroaryl;				
		(c) -NR4R5, where R4 and R5 are each independently R6, where R6 is as				
		previously defined, or in the alternative R4 and R5, together with the atom to				
	,	which they are attached, form a heterocycloalkyl or substituted heterocycloalkyl				
		moiety;				
30		(d) -N-O-R ₆ , where R ₆ is as previously defined;				
		(e) -R ₁ , where R ₁ is as previously defined;				
		(f) -C3-C8 -cycloalkyl;				
		(g) substituted -C3 -C8 -cycloalkyl;				

heterocycloalkyl;

(h)

	(i)	substituted heterocycloalkyl; -NHC(O)R6, where R6 is as previously defined;
		-NHC(O)OR7, where R7 is selected from:
	(K)	1C1 -C12 -alkyl containing 0, 1, 2, or 3 heteroatoms selected
		from O, S or N, optionally substituted with one, two, or three
		substituents independently selected from aryl, substituted aryl,
		heteroaryl, or substituted heteroaryl;
		2. aryl;
		3. substituted aryl;
		4. heteroaryl; or
		5. substituted heteroaryl;
	(1)	-NHC(O)NR4R5, where R4 and R5 are as previously defined;
	(m)	-OC(O)NR4R5, where R4 and R5 are as previously defined;
	(n)	-OC(O)R7, where R7 is as previously defined;
	(o)	-OC(O)OR7, where R7 is as previously defined;
	(p)	-OC(O)NR4R5, where R4 and R5 are as previously defined,
	(q)	-C(O)R ₆ , where R ₆ is as previously defined,
	(r)	-CO ₂ R ₆ , where R ₆ is as previously defined, or
	(s)	-C(O)NR4R5, where R4 and R5 are as previously defined;
X is hydrogen	i ;	
Y is		
i)	hydro	gen;
ii)	-OH;	
iii)		, where R _p is as previously defined;
iv)		1, where R ₁₁ is as previously defined;
v)		O)R ₁₁ , where R ₁₁ is as previously defined;
vi)		O)NHR11, where R11 is as previously defined;
vii)	-S(O)	$_{ m n}$ R $_{11}$, where n and R $_{11}$ are as previously defined;
	Y is i) ii) iii) iv) v) vi)	(j) (k) (l) (m) (n) (o) (p) (q) (r) (s) X is hydrogen; Y is i) hydro ii) -OH; iii) -ORp iv) -OR1 v) -OC(v vi) -OC(v

viii)

(1) where R_3 " is hydrogen or methyl; R_4 " is hydrogen or R_p , where R_p is as previously defined;

5 ix)

(1) where R_{3} is as previously defined; R_{5} is NH2 or R_{am} , where R_{am} is protected amino;

or, in the alternative, X and Y are combined together to form oxo;

Z is

- i) hydrogen;
- ii) methyl; or
- 15 iii) halogen; and

 R_2 is hydrogen or R_p , where R_p , is as previously defined.

2. A compound according to claim 1, or a pharmaceutically acceptable salt or ester or prodrug thereof, wherein D is -CH₂N(Q)-.

A compound according to claim 1, or a pharmaceutically acceptable salt or ester 3. or prodrug thereof, wherein D is -CH2N(Q)-; X is hydrogen; and Y is

wherein R3", R4" and R5" are each as defined in claim 1.

5

A compound according to claim 3, or a pharmaceutically acceptable salt or ester or prodrug thereof, wherein Y is

10

- A compound according to claim 1, or a pharmaceutically acceptable salt or ester or prodrug thereof, wherein D is -N(Q)CH2 - and X and Y taken together are oxo.
- A compound according to claim 1, or a pharmaceutically acceptable salt or ester 6. or prodrug thereof, wherein D is -N=CH(OR')-, wherein R' is as defined in claim 1.

15

A compound according to claim 1, or a pharmaceutically acceptable salt or ester or prodrug thereof, wherein D is -C(O)N(R')-, wherein R' is as defined in claim 1.

A compound according to claim 1, or a pharmaceutically acceptable salt or ester or prodrug thereof, selected from the group consisting of: 20

WO 2005/072204 PCT/US2005/001647

(i) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached is C=CH₂, D is -CH₂N(Q)-, Q = X = Z = H, Y = OH, L = CH₂CH₃, R₂' = Ac;

- (ii) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached is $C=CH_2$, D=-CHN(Q)-, Q=Z=H, X and Y taken together are oxo, $L=CH_2CH_3$, $R_2'=H$;
- (iii) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached are $C=CH_2$, $D=-CH_2N(Q)-$, $Q=CH_3$, X=Z=H, Y=OH, $L=CH_2CH_3$, $R_2'=H$.
- (iv) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached are C=CH₂, D = -CH₂N(Q)-, Q = CH₃, Z = H, X and Y taken together are oxo, L = CH₂CH₃, R₂' = H;
 - (v) a compound of Formula I, wherein A = H, $B = CH_3$, $D = -CH_2N(Q)$ -, Q = X = Z = H, Y = OH, L = CH₂CH₃, R₂' = Ac;
 - (vi) a compound of Formula I, wherein A = H, $B = CH_3$, $D = -CH_2N(Q)$ -, Q = X = Z $= H, Y = OH, L = CH_2CH_3, R_2' = H;$
 - (vii) a compound of Formula I, wherein A = H, $B = CH_3$, D = -CHN(Q)-, Q = Z = H, X and Y taken together are oxo, $L = CH_2CH_3$, $R_2' = H$;
 - $(viii) \quad a \ compound \ of \ Formula \ I, \ wherein \ A=H, \ B=CH_3, \ D=-CH_2N(Q)-, \ Q=CH_3, \\ X=Z=H, \ Y=OH, \ L=CH_2CH_3, \ R_2'=H;$
- 20 (ix) a compound of Formula I, wherein A = H, $B = CH_3$, D = -CHN(Q)-, $Q = CH_3$, Z = H, X and Y taken together are oxo, $L = CH_2CH_3$, $R_2' = H$;
 - (x) a compound of Formula I, wherein A = H, $B = CH_3$, D = -(C=NOH)-, X = Z = H, $Y = CH_3$

25 $L = CH_2CH_3, R_2' = Ac;$

5

15

(xi) a compound of Formula I, wherein A = H, $B = CH_3$, $D = -C(=O)NH_-$, X =

Z = H, Y =

 $L = CH_2CH_3$, $R_2' = Ac$;

(xii) a compound of Formula I, wherein A = H, $B = CH_3$, $D = -C(=0)NH_-$, X = Z =

5 H, Y =

10

 $L = CH_2CH_3$, $R_2' = H$;

(xiii) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached = $C=CH_2$, D=-CHN(Q)-, $Q=CH_2$ -Ph, Z=X=H, Y=OH, $L=CH_2CH_3$, $R_2'=H$;

- (xiv) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached = $C=CH_2$, $D=-CH_2N(Q)$ -, $Q=CH_2$ -Ph, Z=H, X and Y are taken together are oxo, $L=CH_2CH_3$, $R_2'=H$;
- (xv) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached = C=CH₂, D = -CH₂N(Q)-, Q = CH₂-(2-pyridyl), Z = X = H, Y = OH, L = CH₂CH₃, R₂' = H;
 - (xvi) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached = $C=CH_2$, $D=-CH_2N(Q)$ -, $Q=CH_2$ -(2-pyridyl), Z=H, X and Y taken together are oxo, $L=CH_2CH_3$, $R_2'=H$;
- 20 (xvii) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached = C=CH₂, D=-CH₂N(Q)-, Q = CH₂-(3-quinolyl), Z=H, X and Y taken together are oxo, L = CH₂CH₃, R₂' = H;

(xviii) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached = $C=CH_2$, $D=-CH_2N(Q)$ -, $Q=CH_2$ -(3-quinolyl), Z=H, X and Y taken together are oxo, $L=CH_2CH_3$, $R_2'=H$;

(xix) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached = C=CH₂, D = -CH₂N(Q)-, Q = CH₂(CH=CH)-Ph, Z = X = H, Y = OH, L = CH₂CH₃, R₂' = H;

5

15

20

25

30

- (xx) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached = $C=CH_2$, D=-CHN(Q)-, $Q=CH_2(CH=CH)$ -Ph, Z=H, X and Y taken together are oxo, $L=CH_2CH_3$, $R_2'=H$;
- 10 (xxi) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached = C=CH₂, D = -CH₂N(Q)-, Q = CH₂CH=CH-(2-pyridyl), Z = X=H, Y = OH, L = CH₂CH₃, R₂' = H;
 - (xxii) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached = $C=CH_2$, D=-CHN(Q)-, $Q=CH_2CH=CH$ -(2-pyridyl), Z=H, X and Y taken together are oxo, $L=CH_2CH_3$, $R_2'=H$;
 - (xxiii) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached = $C=CH_2$, $D=-CH_2N(Q)-$, $Q=CH_2C=C-(3-quinolyl)$, Z=H, X and Y taken together are oxo, $L=CH_2CH_3$, $R_2'=H$;
 - (xxiv) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached = $C=CH_2$, $D=-CH_2N(Q)$ -, $Q=CH_2C=C$ -(3-quinolyl), Z=H, X and Y taken together are oxo, $L=CH_2CH_3$, $R_2'=H$;
 - (xxv) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached = C=CH-CH=CH-Ph, D = -CH₂N(Q)-, Q = CH₃, Z = H, X and Y taken together are oxo, $L = CH_2CH_3$, $R_2' = H$;
 - (xxvi) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached = C=CH-CH=CH-(3- pyridyl), $D = -CH_2N(Q)$ -, $Q = CH_3$, Z = H, X and Y taken together are oxo, $L = CH_2CH_3$, $R_2' = H$;
 - (xxvii) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached = C=CH-CH=CH-(3-quinolyl), $D = -CH_2N(Q)$ -, $Q = CH_3$, Z = H, X and Y taken together are oxo, $L = CH_2CH_3$, $R_2' = H$;
 - (xxviiii) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached = C=CH-(3-quinolyl), $D = -CH_2N(Q)$ -, $Q = CH_3$, Z = H, X and Y taken together are oxo, $L = CH_2CH_3$, $R_2' = H$; and

WO 2005/072204 · PCT/US2005/001647

(xxix) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached = C=CH-Ph, D = -CHN(Q)-, Q = CH3, Z = H, X and Y taken together are oxo, $L = CH_2CH_3$, $R_2' = H$.

(xxx) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached is C=CH₂, D is -CH₂N(Q)-, Q = X = Z = H, Y= OH, L = CH₂CH₂CH₃, R₂' = H;

5

15

20

- (xxxi) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached is C=CH₂, D is -CH₂N(Q)-, Q = CH₂CH₂CH₃, X = Z = H, Y= OH, L = CH₂CH₃, R₂' = H;
- 10 (xxxii) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached is C=CH₂, D is -CH₂N(Q)-, Q = CH₂CH₂CH₃, Z = H, X and Y taken together are oxo, L = CH₂CH₃, R₂' = H;
 - (xxxiii) a compound of Formula I, wherein A = H, $B = CH_3$, $D = -CH_2N(Q)$ -, $Q = CH_2CH_3$, Z = H, X and Y taken together are oxo, $L = CH_2CH_3$, $R_2' = H$;
 - (xxxiv) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached is C=O, D is -CH₂N(Q)-, Q = Z = H, X and Y taken together are oxo, L = CH₂CH₃, R₂' = H;
 - (xxxv) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached is C=O, D is -CH₂N(Q)-, Q = CH₃, Z = H, X and Y taken together are oxo, L = CH₂CH₃, R₂' = H;
 - (xxxvi) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached is C=O, D is -CH₂N(Q)-, Q = CH₂CH₂CH₃, Z = H, X and Y taken together are oxo, L = CH₂CH₃, R₂' = H;
- (xxxvii)a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached is C=N-OH, D is -CH₂N(Q)-, Q = Z = H, X and Y taken together are oxo, L = CH₂CH₃, R₂' = H;
 - (xxxviii) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached is C=N-OH, D is -CH₂N(Q)-, Q = CH₃, Z = H, X and Y taken together are oxo, L = CH₂CH₃, R₂' = H;
- 30 (xxxix) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached is C=N-OH, D is -CH₂N(Q)-, Q = CH₂CH₂CH₃, Z = H, X and Y taken together are oxo, L = CH₂CH₃, R₂' = H;

(xl) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached is C=N-O-R₁₁, $R_{11} = [5-(6-aminopyrid-2-yl)thien-2-yl]methyl, D is -CH₂N(Q)-, Q = Z = H, X and Y taken together are oxo, L = CH₂CH₃, <math>R_2' = H$;

- (xli) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached is C=N-O-R₁₁, $R_{11} = [5-(6-\text{aminopyrid-2-yl})\text{thien-2-yl}]\text{methyl}$, D is -CH₂N(Q)-, Q = CH₃, Z = H, X and Y taken together are oxo, L = CH₂CH₃, R_2 ' = H;
- (xlii) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached is C=N-O-R₁₁, R_{11} =[5-(6-aminopyrid-2-yl)thien-2-yl]methyl, D is -CH₂N(Q)-, Q = CH₂CH₂CH₃, Z = H, X and Y taken together are oxo, L = CH₂CH₃, R_2 ' = H;
- 10 (xliii) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached is C=N-O-R₁₁, R₁₁ = [2-(pyrazol-1-yl)pyrid-5-yl]methyl, D is -CH₂N(Q)-, Q = Z = H, X and Y taken together are oxo, L = CH₂CH₃, R₂' = H;
 - (xliv) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached is C=N-O-R₁₁, $R_{11} = [2-(pyrazol-1-yl)pyrid-5-yl]methyl$, D is -CH₂N(Q)-, Q = CH₃, Z = H, X and Y taken together are oxo, L = CH₂CH₃, $R_2' = H$;
 - (xlv) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached is C=N-O-R₁₁, R_{11} = 5-[2-(pyrazol-1-yl)pyrid-5-yl]methyl, D is -CH₂N(Q)-, Q = CH₂CH₂CH₃, Z = H, X and Y taken together are oxo, L = CH₂CH₃, R_2 ' = H;
- (xlvi) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached is C=CH₂, D is -CH₂N(Q)-, Q = X = Z = H, Y =

 $L = CH_2CH_3$, $R_2' = H$;

5

15

(xlvii) a compound of Formula I, wherein A and B taken together with the carbon

atom to which they are attached is C=CH₂, D is -CH₂N(Q)-, Q = CH₃, X = Z = H, Y =

 $L = CH_2CH_3$, $R_2' = H$;

(xlviii) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached is C=CH₂, D is -CH₂N(Q)-, Q = CH₂CH₂CH₃, X = Z = H, Y =

 $L = CH_2CH_3$, $R_2' = H$;

(xlix) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached is C=N-O-R₁₁, $R_{11} = [5-(6-aminopyrid-2-yl)thien-2-yl]methyl, D is$

10 -CH₂N(Q)-,
$$Q = X = Z = H$$
, $Y =$

 $L = CH_2CH_3$, $R_2' = H$;

(l) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached is $C=N-O-R_{11}$, $R_{11}=[5-(6-aminopyrid-2-yl)thien-2-yl]methyl$,

PCT/US2005/001647

D is $-CH_2N(Q)$ -, Q = CH₃, X = Z = H, Y =

 $L = CH_2CH_3, R_2' = H;$

WO 2005/072204

(li) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached is C=N-O-R₁₁, R₁₁ = [5-(6-aminopyrid-2-yl)thien-2-yl]methyl, D is -CH₂N(Q)-, Q = CH₂CH₂CH₃, X = Z = H, Y =

 $L = CH_2CH_3, R_2' = H;$

(lii) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached is C=N-O-R₁₁, $R_{11} = [2-(pyrazol-1-yl)pyrid-5-yl]methyl$, D is -CH₂N(Q)-, Q = X = Z = H, Y =

 $L = CH_2CH_3$, $R_2' = H$;

(liii) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached is C=N-O-R₁₁, R₁₁ = [2-(pyrazol-1-yl)pyrid-5-yl]methyl, D is

 $-CH_2N(Q)-, Q = CH_3, X = Z = H, Y =$

 $L = CH_2CH_3, R_2' = H;$

(liv) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached is C=N-O-R₁₁, R₁₁ = [2-(pyrazol-1-yl)pyrid-5-yl]methyl, D is -CH₂N(Q)-, Q = CH₂CH₂CH₃, X = Z = H, Y =

 $L = CH_2CH_3$, $R_2' = H$;

(lv) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached is C=N-O-R₁₁, $R_{11} = [5-(6-aminopyrid-2-yl)]$ thien-2-yl]methyl, D is -CH₂N(Q)-, Q = X = Z = H, Y =

 $L = CH_2CH_3$, $R_2' = H$;

(lvi) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached is C=N-O-R₁₁, R₁₁ = 2-[5-(6-aminopyrid-2-yl)thien-2-

PCT/US2005/001647

yl]methyl, D is -CH₂N(Q)-, $Q = CH_3$, X = Z = H, Y =

 $L = CH_2CH_3, R_2' = H;$

(lvii) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached is C=N-O-R₁₁, R₁₁ = [5-(6-aminopyrid-2-yl)thien-2-yl]methyl, D is -CH₂N(Q)-, Q = CH₂CH₂CH₃, X = Z = H, Y =

 $L = CH_2CH_3, R_2' = H;$

(lviii) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached is C=N-O-R₁₁, $R_{11} = 5$ -[2-(pyrazol-1-yl)pyrid-5-yl]methyl, D is -CH₂N(Q)-, Q = X = Z = H, Y =

 $L = CH_2CH_3$, $R_2' = H$;

(lix) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached is C=N-O-R₁₁, R₁₁ = [2-(pyrazol-1-yl)pyrid-5-yl]methyl, D is

PCT/US2005/001647

 $-CH_2N(Q)_-, Q = CH_3, X = Z = H, Y =$

 $L = CH_2CH_3$, $R_2' = H$; and

(lx) a compound of Formula I, wherein A and B taken together with the carbon atom to which they are attached is C=N-O-R₁₁, R₁₁ = [2-(pyrazol-1-yl)pyrid-5-yl]methyl, D is -CH₂N(Q)-, Q = CH₂CH₂CH₃, X = Z = H, Y =

 $L = CH_2CH_3$, $R_2' = H$.

9. A compound according to claim 1, or a pharmaceutically acceptable salt or ester or prodrug thereof, selected from the group consisting of:

$$H_2N$$
 H_2N
 H_2N
 H_2N
 H_2N
 H_3N
 H_4N
 H_4N

5

- 10. A pharmaceutical composition comprising:
- (i) a compound of Formula I as defined in claim 1, or a pharmaceutically acceptable salt or ester or prodrug thereof, in an amount effective for treating or preventing a bacterial infection; and
 - (ii) a pharmaceutically acceptable carrier.

- 11. A pharmaceutical combination of
- (i) a compound of Formula I as defined in claim 1, or a pharmaceutically acceptable salt or ester or prodrug thereof, and
- (ii) an antibacterial agent other than a compound of Formula I or a salt, ester or prodrug thereof;

wherein the compound of Formula I or its pharmaceutically acceptable salt or ester or prodrug and the antibacterial agent are each employed in an amount that renders the combination effective for treating or preventing a bacterial infection.

10

5

12. A method for treating or preventing a bacterial infection in a subject in need thereof, which comprises administering to the subject a therapeutically or prophylactically effective amount of a compound according to claim 1, or a pharmaceutically acceptable salt or ester or prodrug thereof.

15

13. A method for treating or preventing a bacterial infection in a subject in need thereof, which comprises administering to the subject a therapeutically or prophylactically effective amount of a pharmaceutical composition according to claim 10.

20

- 14. A method for treating or preventing a bacterial infection in a subject in need thereof, which comprises administering to the subject a therapeutically or prophylactically effective amount of a pharmaceutical combination according to claim 11.
 - 15. A process for the preparation of a compound of formula:

25

wherein Q and R2' are each as defined in claim 1, which comprises:

(1) reacting a compound of formula:

with an alkylating agent of formula:

in the presence of a phosphine ligand and Pd(O) catalyst under reflux conditions to prepare a compound of the Formula:

wherein: Rg is

15

a. hydrogen,
b. -CH₂O(CH₂)₂OCH₃,
c. -CH₂O(CH₂O)_nCH₃ where n is zero, 1 or 2;

d. -C₁-C₁₂ alkyl, optionally substituted with one or more substituents selected from aryl, substituted aryl, heteroaryl and substituted heteroaryl;

e. -C3-Cl2 cycloalkyl; f. -C(O)-C1-C12 alkyl; g. -C(O)-C3-C12 cycloalkyl;

h. -C(0)-R₁, where R₁ is as previously defined; or

i. $-Si(R_a)(R_b)(R_c)$, wherein R_a , R_b and R_c are each independently selected from C_1-C_{12} alkyl, aryl and substituted aryl;

R2' and R4" are as previously defined in claim 1; and

5

15

R₁₁ is as defined in claim 1 and R₁₂ is C₁-C₁₂ alkyl;

10 (2) treating the compound obtained in step (1) with an aqueous base to obtain the Z-oxime of formula:

(3) reacting the compound prepared in step (2) with an oxime activating agent and quenching with methanol to prepare a compound of formula:

(4) reacting the compound prepared in step (3) with a reducing agent to prepare compound of formula:

(5) reacting the compound prepared in step (4) with a mild acid to prepare a compound of formula:

(6) reacting the compound prepared in step (5) with an agent containing the group Q selected from the group consisting of an alkylating agent, an alkyl halide in the presence of a base, and an aldehyde via reductive amination in the presence of NaCNBH3 to prepare a compound of formula:

10 (7) oxidizing the hydroxyl in the 3 position of the compound prepared in step (6) via Dess-Martin oxidation, Corey-Kim oxidation, or a Moffat oxidation to prepare a

compound of formula:

16. A process of preparing compounds of formula:

5

which comprises

(a) reacting a compound of formula:

with CH2=CH-R₁₁ in the presence of a ruthenium catalyst;

wherein Q, R_2 ', and R_{11} are each as defined in claim 1.

17. A process of preparing compounds of formula:

which comprises

(a) reacting a compound of formula:

5

with R₁₁-halide under Heck coupling conditions using a palladium catalyst optionally with a phosphine ligand;

wherein Q and R2' are each as defined in claim 1; and R₁₁ is aryl, substituted aryl, or C₁-C₆ alkyl substituted with aryl or substituted aryl.

18. A process of preparing a compound of the Formula:

which comprises:

(a) performing ozonolysis on a compound of formula:

wherein Q and R_2 ' are each as defined in claim 1.

19. A process of preparing a compound of formula:

which comprises:

10 (a) reacting a compound of formula:

with a phosphoylid under Wittig conditions;

wherein Q, R_{2} , and R_{11} are as defined in claim 1.

15

20. A process of preparing a compound of formula:

which comprises:

5

(a) reacting a compound of formula:

with a Grignard reagent containing the R₁₁ group;

wherein Q, R2', and R11 are as defined in claim 1.