COUNTER WITH EXTERNAL INPUT

LAB 05 REPORT

Task Assigned:

- Identify the functionality of the 3 bit counter according to the state diagram given and construct it's excitation table using D flipflop's excitation table.
- Using Karnaugh maps, obtain the simplified logic expression for each bit in the counter.
- Design and develop the counter in Vivado software according to following steps:
 - 1. Develop a source code for a D flipflop in VHDL and verify it's functionality via a simulation.
 - 2. Develop a source code for a slow clock in VHDL and verify it's functionality via a simulation.
 - 3. Combining above two circuits (a slow clock and 3 D flipflops), develop a source code for the 3 bit counter and verify it's functionality via a simulation

Excitation table for the 3 bit counter:

I	Current Stage (Qt)			Next Stage (Q _{t+1})			D ₂	D_1	D_0
(Button)	Q_2	Q_1	Q_0	Q_2	Q_1	Q_0			
0	0	0	0	0	0	1	0	0	1
0	0	0	1	0	1	1	0	1	1
0	0	1	0	X	Χ	X	X	X	X
0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	0	0	0	0
0	1	0	1	Χ	Χ	Χ	X	X	X
0	1	1	0	1	0	0	1	0	0
0	1	1	1	1	1	0	1	1	0
1	0	0	0	1	0	0	1	0	0
1	0	0	1	0	0	0	0	0	0
1	0	1	0	X	Χ	X	X	X	X
1	0	1	1	0	0	1	0	0	1
1	1	0	0	1	1	0	1	1	0
1	1	0	1	Χ	Χ	Χ	X	X	X
1	1	1	0	1	1	1	1	1	1
1	1	1	1	0	1	1	0	1	1

Derived Karnaugh maps & simplified logic expressions:

IQ ₂	<u>, ००</u>	01	11	10	
00	(1	1	1	X	
01	0	X	0	0	
11	0	×	1	1	
10	0	0	1	X	

VHDL Codes:

01) VHDL SOURCE CODE FOR D FLIPFLOP

02) VHDL SOURCE CODE FOR SLOW CLOCK

03) VHDL SOURCE CODE FOR 3 BIT COUNTER ø 🝌 Lab5 - [C:/Users/PC-LIFE/Documents/Lab5/Lab5.xpr] - Vivado 2018.2 <u>File Edit Flow Iools Reports Window Layout View Run Help</u> Q- Quick Access Ready □ ← → □ □ × ▶ □ □ × Σ ± ∅ ⅓ | ← ▶ 10 us v <u>₹</u> II C E Default Layout $\textbf{SIMULATION} \qquad \text{Behavioral Simulation - Functional - sim_1 - Counter_Sim} \qquad \times \left| \begin{array}{ccc} \textbf{Behavioral Simulation - Functional - sim_1 - D_FF_Sim} & \times \\ \end{array} \right|$? X D_FF.vhd × Slow_Clk.vhd * × Counter.vhd * × D_FF_Sim.vhd × Untitled 8 × C:/Users/PC-LIFE/Documents/Lab5/Lab5.srcs/sources 1/new/Counter.vhd Q | 🕍 | ♣ | ઋ | ¾ | 🛅 | 🛍 | 🗶 | // | 🖼 | ♀ ٥ -- Uncomment the following library declaration if using -- arithmetic functions with Signed or Unsigned values --use IEEE.NUMERIC_STD.ALL; -- Uncomment the following library declaration if instantiating - any Kilinx leef cells in this code. --library UNISIM; --use UNISIM.VComponents.all; 30 - entity Counter is Port (Dir : in STD_LOGIC; Clk : in STD_LOGIC; Res : in STD_LOGIC; Q0 : out STD_LOGIC; Q1 : out STD_LOGIC; Q2 : out STD_LOGIC); 37 end Counter; 41 © component D_FF 42 Port (D : in STD_LOGIC; 43 Res : in STD_LOGIC; 44 Clk : in STD_LOGIC; Q : out STD_LOGIC; Qbar : out STD_LOGIC); Lab5 - [C:/Users/PC-LIFE/Documents/Lab5/Lab5.xpr] - Vivado 2018.2 o E Default Layout SIMULATION Behavioral Simulation - Functional - sim_1 - Counter_Sim × | Behavioral Simulation - Functional - sim_1 - D_FF_Sim × | ? × D_FF.vhd × Slow_Clk.vhd * × Counter.vhd * × D_FF_Sim.vhd × Untitled 8 × ? 🗆 🖰 C:/Users/PC-LIFE/Documents/Lab5/Lab5.srcs/sources_1/new/Counter.vhd Q | **11** | ♠ | → | ¾ | **15** | **11** | **11** | **12** | **1** ٥ 49 component Slow_Clk 50 Port (Clk_in : in STD_LOGIC; 51 Clk_out : out STD_LOGIC); 52 - end component; 52 | thu to p. | 1, D2 : STD_LOGIC; 53 | SIGNAL D0,D1,D2 : STD_LOGIC; 55 | SIGNAL Q0,Q1,Q2 : STD_LOGIC; 56 | SIGNAL Clk_slow : STD_LOGIC; Slow Clk0 : Slow Clk port map (Clk_in => Clk, Clk_out => Clk_slow); D_FF_0 : D_FF PORT MAP(D => D0, D => DO, Res => Res, Clk => Clk_slow, Q => Q_0); D_FF_1 : D_FF PORT MAP(D => DI, Res => Res, Clk => Clk_slow, O => O => O Q => Q_1); D_FF_2 : D_FF PORT MAP(D => D2, Res => Res, Clk => Clk_slow, DO <= (Q_1 AND Dir) OR (NOT Dir)AND NOT (Q_2)); D1 <= (Q_0 AND NOT (Dir)) OR (Dir AND Q_2); D2 <= (Q_1 AND NOT (Dir)) OR (Dir AND NOT (Q_0)); 90 end Behavioral; Tcl Console Messages Log O 📲 🚯 📳 🍌 🌣 🔼 Type here to search

Timing Diagrams:

01)TIMING DIAGRAM FOR D FLIPFLOP

02)TIMING DIAGRAM FOR SLOW CLOCK

03)TIMING DIAGRAM FOR 3 BIT COUNTER

Test bench codes for simulation:

01)TB FOR D FLIPFLOP'S SIMULATION

02)TB FOR SLOW CLOCK'S SIMULATION

03)TB FOR 3 BIT COUNTER'S SIMULATION

Conclusions:

 Sequential logic circuits (We used D flipflops for the lab) allow it's output to be depend not only on the external input given but also on the past sequence of outputs.

In the lab, a 3 bit counter is developed using 3 D flipflops which could maintain a memory of past outputs and also could response to the external input on the counting direction whether it's clockwise or anticlockwise.

- Clock divider (Slow_Clk in our lab) allows to take an input signal of frequency f_{in} and generate an output signal of a frequency $f_{out} = \frac{fin}{n}$ where n is an integer.
- Vivado's simulation allows to verify the functionality of the source codes of the circuits designed.