A New Potential Field-Based Algorithm for Path Planning

PLANIFICACIÓN DE TAREAS Y MOVIMIENTOS DE ROBOTS

MÁSTER EN ROBÓTICA Y AUTOMATIZACIÓN

Chao Chen <chao.chen@alumnos.uc3m.es> Raúl Pérula Martínez <raul.perula@uc3m.es>

Contenido

- 1. Introducción
- 2. Planteamiento del problema
- 3. Algoritmo
- 4. Ejemplo y Resultados
- 5. Conclusiones

Introducción

Introducción

- Métodos de mapas de rutas
- Métodos de descomposición de celdas
- o Métodos de control óptimo

Introducción

Métodos de campo de potencial

- Depende de la información local de la fuerza resultante debido a un potencial artificial inducido por los obstáculos y la posición objetivo.
- o Robot representado mediante un punto de masa.
- o Potencial:
 - Definido sobre un espacio libre.
 - La suma de potencial atractivo hacia la posición objetivo y potencial repulsivo hacia fuera de los obstáculos.

Planteamiento del problema

Planteamiento del problema

• Problema:

o Encontrar el camino óptimo para ir de un punto a otro evitando los obstáculos que se pudiesen encontrar en el camino.

• Propiedades función potencial artificial de repulsión:

- O Debería tener simetría esférica para largas distancias desde el obstáculo para que no se cree un mínimo local cuando este potencial se añada a otros potenciales.
- O Debería imitar la superficie del obstáculo a una corta distancia así como maximizar el espacio libre del robot.
- Su rango de influencia debería estar limitado a la vecindad del obstáculo así como no afectar a los movimientos de los robots que se encuentran lejos de los obstáculos.
- Debería ser una función continuamente diferenciable de clase C^m
 [0, ∞) donde m ≥ 2.

Aplicaciones

Robot soccer

Algoritmo

Algoritmo

$$V_{Atracción}(x,y) = \frac{1}{2}K_a[(x-x_a)^2 + (y-y_a)^2]$$

Potencial Artificial

$$V_{Repulsión}(x,y) = \frac{K_r}{\sqrt{(x-x_r)^2 + (y-y_r)^2}}$$

Algoritmo

Ejemplos y Resultados

$$f_x(x,y) = -\frac{\partial V}{\partial x}$$

$$f_x(x,y) = -\frac{\partial V}{\partial x}$$

 $f_y(x,y) = -\frac{\partial V}{\partial y}$

Resultado

Conclusiones

CONCLUSIONES

Conclusiones

- Estudiados artículos de referencia relacionados con la planificación de trayectorias mediante campos de potencial artificial.
- Realizada comparativa entre métodos para poder tener un criterio al elegir uno u otro en función de las características deseadas.
- Implementación del algoritmo y pruebas bastante satisfactorias de rendimiento.

Conclusiones

Ventajas

- Algoritmos basados en campos de potencial artificial
 - **Elegantes.**
 - × Eficientes sin requerir un modelo de los obstáculos a priori..
 - Bastante rápidos.
 - Se pueden utilizar en planificación de trayectorias globales.

Inconvenientes

o Problema con mínimos locales cuando el robot se encuentra en un entorno con demasiados obstáculos.

A New Potential Field-Based Algorithm for Path Planning

¿PREGUNTAS?

Chao Chen <chao.chen@alumnos.uc3m.es>
Raúl Pérula Martínez <raul.perula@uc3m.es>