Phenocyte, Arabidopsis Segmentation Using SAM

Maxim Popov Braydn Beals

Intro

- Plants: Agriculture & Energy
- Human Selection
 - Phenotyping
 - Tedious Evaluation
- Arabidopsis Thaliana
 - Model Plant
 - Tiny
 - o 4 Parts: Leaf, Stem, Seed, Root
- Automatic Segmentation
 - Predict Plant Part Masks
 - Minimize IoU Against Ground Truth

Existing Solutions

- RhizoVision^[4] & RootPainter^[5]
 - CNN-based
 - Herbaceous Plant Species (not Arabidopsis)
 - Root Finding Only
- Deep Learning-Based Approach for High-Throughput Hypocotyl Phenotyping^[2]
 - CNN-based
 - Arabidopsis Functional
 - Stem/Other Finding Only
- RootNav 2.0^[7]
 - CNN-based
 - Arabidopsis Functional
 - Root Finding Only
- RoAD: Robotic Assay for Drought^[6]
 - Arabidopsis functional
 - Surface Only (no root finding)
 - Expensive

SAM

- Segment Anything 2[3]
 - Full or Partial Image Segmentation
- Point Prompting
- Negative Point Anti-Prompting

Solution 1: Raw SAM

- Full Image Segmentation
- Hyperparameter Search Space
 - Confidence Thresholds
 - Overlap Allowance
 - Segment Size Allowance
 - o Precision
- Unsatisfactory Performance
 - Missing Parts
 - Obfuscating Lines

Solution 2: SAM Adapter

- SAM2 Adapter[1]
 - SAM2 Base
 - Adapter Insertion
- Not Implemented
 - **Training Deemed** Costly
 - **Training Deemed** Time Expensive

the Ablation Study section.

Solution 3: SAM Prompt

- Human-Trivial Prompt Point Selection
 - Algorithmic Prompt Point Selection
 - Strong Part Finding
 - Algorithm Can Tune Mistakes
- Color-Based Point Selection
 - Individually Powerful
 - Difficult on Large Dataset
- Contour-Based Point Selection

Image Input

Provided Images &

Ground Truth Masks

Training / Testing

Management

Preprocessing

Obfuscating Line Removal

Color Bound Calibration

Background Artifacts

SAM Prompt Color Bound Calibration

- Coloration Consistency
 - Intra-Batch False Semblance of Consistency
- Manual Color Bound Tuning
 - Non-Scalable
- Automatic Color Bound Tuning
 - Requires Ground Truth Samples
 - Imperfect Ground Truth
 - Statistical Outlier Removal
- Algorithmic Core
 - Successful in Small Sample
 - Unsuccessful in Large Sample
 - Different Color Scheming
 - Scaling Marginal Differences

SAM Prompt Obfuscating Lines

- Obfuscating Lines
 - Straightness Detection
 - Natural-Looking Removal
- Attempted Removal Strategies
 - Nearby Pixel Color Averaging
 - Color Averaging with Noise
 - Lack of Sufficient Success
- Unimplemented Ideas
 - Out-to-in Noisy Color Averaging
 - Anti-Prompting

SAM Prompt Mask Finding

- Mask Finding: Per Image Per Part
- Color Mask: Color Bounds
 - Maximum Contour
 - Distance-Based Filtration (100 px)
- SAM Prompt Point Selection
 - Part Parameter: Largest x% of contours up to y
 - Single-part: Stem, Seed, Root (x = 100, y = 1)
 - Multi-part & Splotchy: Leaf (x = 50, y = 5)
- Union Mask
 - Exploit SAM Precision
 - Avoid SAM Loss
- Pruned Mask: Single Contour
- Post-Pruned Mask
 - Use Successful Masks

SAM Prompt Results & Analysis

Leaf Results:

Mean IoU: 0.03%

Standard Deviation: 0.16%

Best IoU: 2.08%

Worst IoU: 0%

25th percentile (Q1): 0%

Median (Q2): 0%

75th percentile (Q3): 0%

Seed Results:

Mean IoU: 32.48%

Standard Deviation: 26.11%

Best IoU: 86.79%

Worst IoU: 0%

25th percentile (Q1): 7.11%

Median (Q2): 30.91%

75th percentile (Q3): 56.20%

SAM Prompt Results & Analysis

Root Results:

Mean IoU: 0.36%

Standard Deviation: 0.78%

Best IoU: 4.59%

Worst IoU: 0%

25th percentile (Q1): 0%

Median (Q2): 0%

75th percentile (Q3): 0.26%

Combo Results:

Mean IoU: 27.11%

Standard Deviation: 31.61%

Best IoU: 88.34%

Worst IoU: 0%

25th percentile (Q1): 2.65%

Median (Q2): 10.18%

75th percentile (Q3): 53.68%

SAM Prompt Case Studies: Coloration Success

SAM Prompt Case Studies: Color Filtration Success

SAM Prompt Case Studies: SAM Success

SAM Prompt Case Studies: Color Filtration Failure

SAM Prompt Case Studies: Color Bound Failure

SAM Prompt Case Studies: Obfuscating Line Failure 1

SAM Prompt Case Studies: Obfuscating Line Failure 2

Unet Model & Augmentation

- Intuition
 - Complex image pattern finding: CNN
 - State of the art
 - Unet architecture
 - Resnet34 encoder
- Training/Validation/Testing
 - o 70/15/15
 - Batch Size = 8
- Augmentation

```
A.HorizontalFlip(p=0.5),
A.ShiftScaleRotate(
    scale_limit=0.1,
    rotate_limit=10,
    shift limit=0.05,
    p=1,
    border_mode=0,
A.PadIfNeeded(min_height=672, min_width=288, always_apply=True),
A.RandomCrop(height=672, width=288, always_apply=True),
A. GaussNoise(p=0.1, std range=(0.01, 0.05)),
A.Perspective(p=0.3, scale=(0.005, 0.01)),
A.OneOf(
        A.CLAHE(p=1),
        A.RandomBrightnessContrast(p=1),
        A.RandomGamma(p=1),
    p=0.9.
A.OneOf(
        A. Sharpen (p=1),
        A.Blur(blur_limit=2, p=1),
        A.MotionBlur(blur limit=3, p=1),
    p=0.9,
A.OneOf(
        A.RandomBrightnessContrast(p=1),
        A.HueSaturationValue(p=1),
    p=0.9,
A.ElasticTransform(p=0.2, alpha=1, sigma=10),
```

Unet Model Results

105 Epochs

Overall: 98.42% IOU

Background: 99.25% IOU

Root: 73.77% IOU

Leaf: 80.55% IOU

Stem: 53.25% IOU

Seed: 67.39% IOU

Expected Results from Further Training

○ Stem++

70-80% cap

Epochs 78 - 105

Unet Model Result Case Study - 50 Epochs

Unet Model Result Case Study - 105 Epochs

Conclusion

- SAM
 - High fine precision
 - Misses big segments
 - Training is Necessary
- Unet Model
 - Leaf/Root: satisfactory
 - Seed/Stem: more epochs likely satisfactory
- Superhuman Performance
 - SAM Precision + Trained Consistency
 - SAM Adapter
 - HPC Cluster Resources

Works Cited

- [1] Chen, T., Lu, A., Zhu, L., Ding, C., Yu, C., Ji, D., Li, Z., Sun, L., Mao, P., & Zang, Y. (2024, August 10). Sam2-adapter: Evaluating & Adapting Segment Anything 2 in downstream tasks: Camouflage, Shadow, medical image segmentation, and more. arXiv.org. https://arxiv.org/abs/2408.04579
- [2] Orsolya, D., Horvath, P., Nagy, F., Danka, T., & Viczián, A. (2019, December). Deep learning-based approach for high-throughput Hypocotyl Phenotyping https://academic.oup.com/plphys/article/181/4/1415/6000539
- [3] Ravi, N., Gabeur, V., Hu, Y.-T., Hu, R., Ryali, C., Ma, T., Khedr, H., Rädle, R., Rolland, C., Gustafson, L., Mintun, E., Pan, J., Alwala, K. V., Carion, N., Wu, C.-Y., Girshick, R., Dollár, P., & Feichtenhofer, C. (2024, October 28). Sam 2: Segment anything in images and videos. arXiv.org. https://arxiv.org/abs/2408.00714
- [4] Seethepalli, A., Guo, H., Liu, X., Griffiths, M., Almtarfi, H., Li, Z., Liu, S., Zare, A., Fritschi, F. B., Blancaflor, E. B., Ma, X.-F., & York, L. M. (2020). RhizoVision crown: An integrated hardware and software platform for Root Crown phenotyping. Plant Phenomics, 2020, 3074916. https://doi.org/10.34133/2020/3074916
- [5] Smith, A. G., Han, E., Petersen, J., Olsen, N. A., Giese, C., Athmann, M., Dresbøll, D. B., & Thorup-Kristensen, K. (2022). RootPainter: Deep learning segmentation of biological images with corrective annotation. New Phytologist, 236(2), 774–791. https://doi.org/10.1111/nph.18387
- [6] Xiang, L., Nolan, T. M., Bao, Y., Elmore, M., Tuel, T., Gai, J., Shah, D., Wang, P., Huser, N. M., Hurd, A. M., McLaughlin, S. A., Howell, S. H., Walley, J. W., Yin, Y., & Tang, L. (2021). Robotic assay for drought (road): An automated phenotyping system for Brassinosteroid and drought responses. The Plant Journal, 107(6), 1837–1853. https://doi.org/10.1111/tpj.15401
- [7] Yasrab, R., Atkinson, J. A., Wells, D. M., French, A. P., Pridmore, T. P., & Pound, M. P. (n.d.). Rootnav 2.0: Deep Learning for automatic navigation of Complex Plant Root Architectures gigascience | oxford academic. https://academic.oup.com/gigascience/article/8/11/giz123/5614712