Sequences of Real Numbers- part 1

Exercise 1: Study the monotonicity, boundedness and convergence of the sequence $(x_n)_{n\in\mathbb{N}}$ of real numbers, having the general term:

a)
$$x_n = \frac{2^n + 7^n}{9^n}$$
, b) $x_n = \frac{(-1)^n}{n}$, c) $x_n = \frac{5^n}{n!}$, d) $x_n = \frac{3n}{4n^2 + 1}$.

Exercise2: Using the characterising theorem with ε prove that

a)
$$\lim_{n \to \infty} \frac{3n}{4n^2 + 1} = 0$$
 b) $\lim_{n \to \infty} \frac{5n^2}{-7n + 4} = -\infty$.

Exercise 3: Compute the limit of the sequences of real numbers having the following general terms:

a)
$$\frac{4^n+1}{9^n+1}$$
, b) $\frac{8^n+(-4)^n}{8^{n-1}+4}$, c) $\left(\sin\frac{5\pi}{109}\right)^n$, $d(\sqrt{9n^2+2n+1}-3n)$

e)
$$\left(9 + \frac{1 - 5n^3}{6n^4 + 2}\right)^2$$
, f) $\sqrt[3]{n^3 + n + 3} - \sqrt[3]{n^3 + 1}$, g) $\left(\frac{n^3 + 5n + 1}{n^2 - 1}\right)^{\frac{1 - 7n^4}{9n^4 + 1}}$,

$$h$$
) $\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\ldots\left(1-\frac{1}{n}\right)$.

Exercise 4: Let $t \in \mathbb{R}$.

- a) Prove that there exists an decreasing sequence of rational numbers converging to t.
- b) Prove that there exists a increasing sequence of irrational numbers converging to t.

Exercise 5: Let a > 0 and let $x_0 \in \mathbb{R}$ be such that $0 < x_0 < \frac{1}{a}$. Consider the sequence $(x_n)_{n \in \mathbb{N}}$ of real numbers, defined recursively by:

$$x_{n+1} = 2x_n - ax_n^2, \forall n \in \mathbb{N}.$$

Study the convergence of the sequence by following the next steps:

- a) Prove by induction that $x_n < \frac{1}{a}, \forall n \in \mathbb{N}$.
- b) Prove by induction that $0 < x_n, \forall n \in \mathbb{N}$.
- c) By using a) and b) prove that $(x_n)_{n\in\mathbb{N}}$ is increasing.
- d) Compute the limit of the sequence.