Evaluación de fuerza de cartas de los superamigos por simulación

Las cartas de los superamigos son un juego en el que mediante selección de ciertas características de las cartas, se ralizan combates. La carta con el valor más alto es la ganadora. La pregunta es ¿Cuáles son las mejores cartas?

Una posibilidad para contestar esta pregunta es, si conocemos como es la distribución de cada variable, se podría rankear a cada carta. Como resultado obtendríamos que tan buena es cada carta en una "disciplina" determinada. Con estos rankings podríamos construir un ranking general como combinación de todas ellas.

```
In [5]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import copy
import random
from IPython.display import Image
plt.rcParams['figure.figsize'] = [15, 10]
%matplotlib inline
In [6]: f = pd.read_csv('/Users/dbikiel/Dropbox/proyectos de programacion/cart
as superamigos/listado_DC.csv')
```

La lista de las cartas se puede ver a continuación

In [11]: Image("DC2.jpg")

Out[11]:

In [183]:

| f

Out[183]:

LETRA NUMERO

NOMBRE ALTURA PESO FUERZA PELEAS VELOCIDAD

0	Α	1	Superman	1.92	102	2000	990	400
1	Α	2	Shazam	1.95	110	2000	700	300
2	Α	3	Aquaman	1.86	92	1000	725	110
3	Α	4	Martian Manhunter	2.04	136	1900	750	200
4	В	1	Batman	1.89	95	500	910	70
5	В	2	Flash	1.83	89	450	700	500
6	В	3	Flecha Verde	1.89	89	450	780	55
7	В	4	Lobo	2.05	139	1750	525	100
8	С	1	Mujer Maravilla	1.88	89	1800	890	100
9	С	2	Hombre Halcon	1.95	114	1100	750	100
10	С	3	Linterna Verde	1.83	91	1200	730	170
11	С	4	Gatubela	1.80	61	300	250	60
12	D	1	Joker	1.83	73	300	150	40
13	D	2	Lex Luthor	1.88	95	400	110	42
14	D	3	Doomsday	2.47	416	2000	125	350
15	D	4	Darkseid	2.71	825	2000	425	200
16	E	1	Robin	1.72	68	350	615	65
17	E	2	Acertijo	1.72	76	250	60	28
18	E	3	Pingüino	1.58	99	80	176	10
19	E	4	Bane	2.10	180	650	300	70
20	F	1	Batichica	1.76	55	300	513	60
21	F	2	Gorilla Grodd	2.51	365	1200	301	60
22	F	3	Black Adam	1.83	114	1800	500	300
23	F	4	Brainiac	1.98	285	800	215	55
24	G	1	Dr. Fate	2.00	100	600	750	100
25	G	2	Tornado Rojo	1.90	295	800	716	200
26	G	3	Mujer Halcon	1.77	65	650	540	100
27	G	4	Siniestro	1.83	93	830	354	170
28	Н	1	Canario Negro	1.70	55	400	616	65
29	Н	2	Zatana	1.73	62	350	725	53
30	Н	3	Atomo	1.82	82	340	680	50
31	Н	4	Cyborg	2.00	1335	700	716	85

Para construir el ranking de cada variable y el ranking general, normalizamos todas las variables a través de los valores máximos y mínimos. De esta forma cada variable tiene un rango que va de 0.0 para la peor carta en esa variable a 1.0 para la mejor.

```
In [184]: f norm = copy.copy(f)
          f norm.ALTURA = (f.ALTURA - np.min(f.ALTURA))/(np.max(f.ALTURA - np.mi
          n(f.ALTURA)))
          f norm.PESO = (f.PESO - np.min(f.PESO))/(np.max(f.PESO - np.min(f.PESO
          )))
          f norm.FUERZA = (f.FUERZA - np.min(f.FUERZA))/(np.max(f.FUERZA - np.mi
          n(f.FUERZA)))
          f norm.PELEAS = (f.PELEAS - np.min(f.PELEAS))/(np.max(f.PELEAS - np.mi
          n(f.PELEAS)))
          f norm.VELOCIDAD = (f.VELOCIDAD - np.min(f.VELOCIDAD))/(np.max(f.VELOC
          IDAD - np.min(f.VELOCIDAD)))
In [185]:
          fig = plt.figure(figsize=(12, 10), dpi= 80, facecolor='w', edgecolor='
          k')
          plt.subplot(3,2,1)
          plt.hist(f norm.ALTURA)
```

```
In [185]: fig = plt.figure(figsize=(12, 10), dpi= 80, facecolor='w', edgecolor='k')
    plt.subplot(3,2,1)
    plt.hist(f_norm.ALTURA)
    plt.xlabel('Altura Normalizada')
    plt.subplot(3,2,2)
    plt.hist(f_norm.PESO)
    plt.xlabel('Peso Normalizado')
    plt.subplot(3,2,3)
    plt.hist(f_norm.FUERZA)
    plt.xlabel('Fuerza Normalizada')
    plt.subplot(3,2,4)
    plt.hist(f_norm.PELEAS)
    plt.xlabel('Peleas Normalizada')
    plt.subplot(3,2,5)
    plt.hist(f_norm.VELOCIDAD)
    plt.xlabel('Velocidad Normalizada')
    plt.show()
```


Se puede observar que en cada variable hay algunas cartas con caracteristicas superiores a las demas. Se puede obtener una idea general con estos rankings? Por ejemplo, que pasaría si construimos una nueva variabla llamada SUMA que sea la suma de los 5 rankings.

	LETRA	NUMERO	NOMBRE	ALTURA	PESO	FUERZA	PELEAS	VELOCIDAD	SUN
15	D	4	Darkseid	1.000000	0.601562	1.000000	0.392473	0.387755	3.3817
0	Α	1	Superman	0.300885	0.036719	1.000000	1.000000	0.795918	3.1335
14	D	3	Doomsday	0.787611	0.282031	1.000000	0.069892	0.693878	2.8334

1	Α	2	Shazam	0.327434	0.042969	1.000000	0.688172	0.591837	2.6504
31	Н	4	Cyborg	0.371681	1.000000	0.322917	0.705376	0.153061	2.5530
3	Α	4	Martian Manhunter	0.407080	0.063281	0.947917	0.741935	0.387755	2.5479
8	С	1	Mujer Maravilla	0.265487	0.026562	0.895833	0.892473	0.183673	2.2640
22	F	3	Black Adam	0.221239	0.046094	0.895833	0.473118	0.591837	2.2281
5	В	2	Flash	0.221239	0.026562	0.192708	0.688172	1.000000	2.1286
7	В	4	Lobo	0.415929	0.065625	0.869792	0.500000	0.183673	2.0350
21	F	2	Gorilla Grodd	0.823009	0.242188	0.583333	0.259140	0.102041	2.0097
25	G	2	Tornado Rojo	0.283186	0.187500	0.375000	0.705376	0.387755	1.9388
10	С	3	Linterna Verde	0.221239	0.028125	0.583333	0.720430	0.326531	1.8796
9	С	2	Hombre Halcon	0.327434	0.046094	0.531250	0.741935	0.183673	1.8303
2	Α	3	Aquaman	0.247788	0.028906	0.479167	0.715054	0.204082	1.6749
24	G	1	Dr. Fate	0.371681	0.035156	0.270833	0.741935	0.183673	1.6032
4	В	1	Batman	0.274336	0.031250	0.218750	0.913978	0.122449	1.5607
6	В	3	Flecha Verde	0.274336	0.026562	0.192708	0.774194	0.091837	1.3596
27	G	4	Siniestro	0.221239	0.029687	0.390625	0.316129	0.326531	1.2842
19	E	4	Bane	0.460177	0.097656	0.296875	0.258065	0.122449	1.2352
26	G	3	Mujer Halcon	0.168142	0.007812	0.296875	0.516129	0.183673	1.1726
23	F	4	Brainiac	0.353982	0.179688	0.375000	0.166667	0.091837	1.1671
30	Н	3	Atomo	0.212389	0.021094	0.135417	0.666667	0.081633	1.1171
29	Н	2	Zatana	0.132743	0.005469	0.140625	0.715054	0.087755	1.0816
16	E	1	Robin	0.123894	0.010156	0.140625	0.596774	0.112245	0.9836
28	Н	1	Canario Negro	0.106195	0.000000	0.166667	0.597849	0.112245	0.9829
20	F	1	Batichica	0.159292	0.000000	0.114583	0.487097	0.102041	0.8630
11	С	4	Gatubela	0.194690	0.004687	0.114583	0.204301	0.102041	0.6203
13	D	2	Lex Luthor	0.265487	0.031250	0.166667	0.053763	0.065306	0.5824

12	D	1	Joker	0.221239	0.014063	0.114583	0.096774	0.061224	0.5078
17	Е	2	Acertijo	0.123894	0.016406	0.088542	0.000000	0.036735	0.2655
18	Е	3	Pingüino	0.000000	0.034375	0.000000	0.124731	0.000000	0.1591

Con este nuevo ranking podemos ordenar las cartas. ¿Cómo es la distribución de SUMA?

Suma

```
In [189]: plt.hist(f_norm.SUMA)
  plt.xlabel('Suma')
  plt.show()
```

El problema de usar suma como indicador de la fuerza total de una de las cartas es que en un combate en particular se utiliza una única de las variables. Más aun, no importa el valor de la misma, sólo cual es mayor. Dicho esto, en realidad sólo importa la posición en el ranking normalizado y no el valor. Por ejemplo, es claro que Superman y Darkseid son cartas poderosas porque en dos de las categorías tienen los valores más altos y por lo tanto le ganan a todas las cartas en 2 de 5 variables. Por otro lado, el pingüino es la peor carta porque en dos de las 5 variables es la peor carta.

Una cosa que podríamos hacer es en vez de sumar el valor normalizado, sumar la posición del ranking. Por ejemplo, si ordenamos peleas:

```
In [190]:    peleas = list(f_norm['PELEAS'])
    peleas_ranking = list(map({j: i for i, j in enumerate(sorted(set(pelea s)))}.get, peleas))
    plt.plot(peleas_ranking,peleas,'.')
    plt.show()
```



```
altura = list(f norm['ALTURA'])
In [191]:
          altura ranking = list(map({j: i for i, j in enumerate(sorted(set(altur
          a)))}.get, altura))
          peso = list(f norm['PESO'])
          peso ranking = list(map({j: i for i, j in enumerate(sorted(set(peso)))
          }.get, peso))
          fuerza = list(f norm['FUERZA'])
          fuerza ranking = list(map({j: i for i, j in enumerate(sorted(set(fuerz
          a)))}.get, fuerza))
          velocidad = list(f norm['VELOCIDAD'])
          velocidad ranking = list(map({j: i for i, j in enumerate(sorted(set(ve)))
          locidad)))}.get, velocidad))
          ranking = np.array(altura ranking) + np.array(peso ranking) + np.array
          (fuerza ranking) + np.array(peleas ranking) + np.array(velocidad ranki
          ng)
          f norm['RANKING'] = ranking
```

Usando la nueva variable RANKING, podemos ver como se relaciona con SUMA. Nuevamente, cuanto mayor es la variable RANKING, mayor es la fuerza de la carta.

```
In [192]: plt.plot(f_norm.RANKING, f_norm.SUMA,'.')
    plt.xlabel('Ranking')
    plt.ylabel('Suma')
    plt.show()
```


Otra forma de evaluar la fuerza de una carta, es simular el combate de las mismas. Para ello, construimos una función fight, que dada la base de datos de las cartas y dos cartas al azar, elige al azar una de las variables de las cartas y devuelve [1.0, 0.0] si la primera carta es la ganadora, [0.0, 1.0] si es la segunda o [0.5, 0.5] si hay empate.

Para simular los combates y que haya igual combates para todas las cartas, dividimos el mazo en dos en forma aleatoria y repetimos los 16 posibles combates reps = 10000 veces. Cada combate modifica el valor de una variable POINTS en la base de datos. Al finalizar las repeticiones, divide POINTS por la cantidad de combates realizados, con lo que POINTS pasa a ser una especie de probabilidad de triunfo de cada carta.

```
In [194]: f_norm['POINTS'] = 0.0
    reps = 10000
    for i in range(reps):
        cartas = np.arange(32)
        random.shuffle(cartas)
        partida = cartas.reshape(16,2)
        for j in range(16):
            v1, v2 = fight(f_norm,partida[j][0],partida[j][1])
            f_norm.loc[partida[j][0],'POINTS'] = f_norm.loc[partida[j][0],
            'POINTS'] + v1
            f_norm.loc[partida[j][1],'POINTS'] = f_norm.loc[partida[j][1],
            'POINTS'] + v2

f_norm['POINTS'] = f_norm['POINTS']/reps
```

Podemos ver si nuestra función de ranking refleja lo obtenido en las simulaciones

```
In [195]: plt.plot(f_norm.RANKING, f_norm.POINTS,'.')
    plt.xlabel('Ranking')
    plt.ylabel('Probabilidad de Triunfo')
    plt.show()
```


Como puede observarse, la función de ranking describe bastante bien la probabilidad de triunfo de cada carta.

```
In [196]: f_norm.sort_values(by = 'POINTS', ascending= False)
Out[196]:
    LETRA NUMERO NOMBRE ALTURA PESO FUERZA PELEAS VELOCIDAD SUM
```

0	Α	1	Superman	0.300885	0.036719	1.000000	1.000000	0.795918	3.1335
3	Α	4	Martian Manhunter	0.407080	0.063281	0.947917	0.741935	0.387755	2.5479
15	D	4	Darkseid	1.000000	0.601562	1.000000	0.392473	0.387755	3.3817
14	D	3	Doomsday	0.787611	0.282031	1.000000	0.069892	0.693878	2.8334
1	Α	2	Shazam	0.327434	0.042969	1.000000	0.688172	0.591837	2.6504
25	G	2	Tornado Rojo	0.283186	0.187500	0.375000	0.705376	0.387755	1.9388
9	С	2	Hombre Halcon	0.327434	0.046094	0.531250	0.741935	0.183673	1.8303
31	Н	4	Cyborg	0.371681	1.000000	0.322917	0.705376	0.153061	2.5530
7	В	4	Lobo	0.415929	0.065625	0.869792	0.500000	0.183673	2.0350
24	G	1	Dr. Fate	0.371681	0.035156	0.270833	0.741935	0.183673	1.6032
8	С	1	Mujer Maravilla	0.265487	0.026562	0.895833	0.892473	0.183673	2.2640
21	F	2	Gorilla Grodd	0.823009	0.242188	0.583333	0.259140	0.102041	2.0097
22	F	3	Black Adam	0.221239	0.046094	0.895833	0.473118	0.591837	2.2281
10	С	3	Linterna Verde	0.221239	0.028125	0.583333	0.720430	0.326531	1.8796
2	Α	3	Aquaman	0.247788	0.028906	0.479167	0.715054	0.204082	1.6749
19	E	4	Bane	0.460177	0.097656	0.296875	0.258065	0.122449	1.2352
4	В	1	Batman	0.274336	0.031250	0.218750	0.913978	0.122449	1.5607
5	В	2	Flash	0.221239	0.026562	0.192708	0.688172	1.000000	2.1286
23	F	4	Brainiac	0.353982	0.179688	0.375000	0.166667	0.091837	1.1671
27	G	4	Siniestro	0.221239	0.029687	0.390625	0.316129	0.326531	1.2842
6	В	3	Flecha Verde	0.274336	0.026562	0.192708	0.774194	0.091837	1.3596
26	G	3	Mujer Halcon	0.168142	0.007812	0.296875	0.516129	0.183673	1.1726
13	D	2	Lex Luthor	0.265487	0.031250	0.166667	0.053763	0.065306	0.5824
30	Н	3	Atomo	0.212389	0.021094	0.135417	0.666667	0.081633	1.1171
29	Н	2	Zatana	0.132743	0.005469	0.140625	0.715054	0.087755	1.0816
16	E	1	Robin	0.123894	0.010156	0.140625	0.596774	0.112245	0.9836
28	Н	1	Canario Negro	0.106195	0.000000	0.166667	0.597849	0.112245	0.9829

```
20
        F
                       Batichica 0.159292 0.000000 0.114583 0.487097
                                                                          0.102041 0.8630
                   1
11
        С
                       Gatubela 0.194690 0.004687 0.114583 0.204301
                                                                          0.102041 0.6203
12
                   1
        D
                          Joker 0.221239 0.014063 0.114583 0.096774
                                                                          0.061224 0.5078
18
        Ε
                   3
                        Pingüino 0.000000 0.034375 0.000000 0.124731
                                                                          0.000000 0.1591
17
        Ε
                        Acertijo 0.123894 0.016406 0.088542 0.000000
                                                                          0.036735 0.2655
```

Ahora vamos a construir una función para simular un partido entre dos jugadores. Para ello, mezclaremos las cartas y repartiremos la mitad a cada jugador. El jugador que tenga A1 comenzará y elegirá (al azar) una de las variables. Si gana, se lleva ambas cartas y las pone en el fondo de su mazo. El partido dura hasta que uno de los jugadores se queda sin cartas. Si hay empate, se elige un ganador al azar.

```
In [18]: def mezclar(n):
    cartas = np.arange(n)
    random.shuffle(cartas)
    return cartas.reshape(int(n/2),2)
```

Dado que el juego es completamente al azar, vamos a evaluar la ventaja de tener la carta A1. En este caso, el jugador con A1 se convierte en el jugador 1.

```
In [161]:
          def partido(empieza A1):
               mazos = mezclar(32)
               if empieza_A1:
                   if 0 in mazos[:,0]:
                       mazo1 = list(mazos[:,0])
                       mazo2 = list(mazos[:,1])
                   else:
                       mazo1 = list(mazos[:,1])
                       mazo2 = list(mazos[:,0])
               else:
                   if random.random() < 0.5:</pre>
                       mazo1 = list(mazos[:,0])
                       mazo2 = list(mazos[:,1])
                   else:
                       mazo1 = list(mazos[:,1])
                       mazo2 = list(mazos[:,0])
               fin partida = len(mazo1)*len(mazo2)
               while fin partida != 0:
                   carta1 = mazo1.pop()
                   carta2 = mazo2.pop()
```

```
v1, v2 = fight(f norm,carta1,carta2)
        if v1 > v2:
            mazo1 = [carta1, carta2] + mazo1
        elif v1 < v2:
            mazo2 = [carta1, carta2] + mazo2
        else:
            if random.random() < 0.5:</pre>
                mazo1 = [carta1, carta2] + mazo1
            else:
                mazo2 = [carta1, carta2] + mazo2
        fin partida = len(mazo1)*len(mazo2)
        if fin partida == 0:
            break
    if len(mazo1) == 0:
        return [0,1]
    else:
        return [1,0]
rep = 10000
juegos = []
for i in range(rep):
    juegos.append(partido(True))
print('Empieza el jugador 1 y tiene Al:', list(np.sum(np.array(juegos)
, axis=0)/rep))
juegos = []
for i in range(rep):
    juegos.append(partido(False))
print('Empieza el jugador 1:', list(np.sum(np.array(juegos), axis=0)/r
ep))
Empieza el jugador 1 y tiene A1: [0.5535, 0.4465]
Empieza el jugador 1: [0.4965, 0.5035]
```

Dado que los jugadores eligen aleatoriamente la variable, empezar no deberia dar una ventaja. Al parecer,

Construyamos un jugador que juegue óptimamente, en vez de al azar. Para ello, este jugador sabe exactamente cual de las 5 variables es la mejor para cada carta.

tener A1 si da una pequeña ventaja jugando aleatoriamente.

```
In [197]: variables = ['ALTURA', 'PESO', 'FUERZA', 'PELEAS', 'VELOCIDAD']
MEJOR = []
for i in range(32):
    tmp = np.array(f_norm.loc[i][3:8])
    MEJOR.append(variables[np.argmax(tmp)])

#Superman es el mejor absoluto en peleas y Darkseid en altura
MEJOR[0] = 'PELEAS'
MEJOR[15] = 'ALTURA'
f_norm['MEJOR'] = MEJOR
```

In [198]: f_norm.sort_values(by = 'POINTS', ascending= False)

Out[198]:

	LETRA	NUMERO	NOMBRE	ALTURA	PESO	FUERZA	PELEAS	VELOCIDAD	SUN
0	А	1	Superman	0.300885	0.036719	1.000000	1.000000	0.795918	3.1335
3	Α	4	Martian Manhunter	0.407080	0.063281	0.947917	0.741935	0.387755	2.5479
15	D	4	Darkseid	1.000000	0.601562	1.000000	0.392473	0.387755	3.3817
14	D	3	Doomsday	0.787611	0.282031	1.000000	0.069892	0.693878	2.8334
1	Α	2	Shazam	0.327434	0.042969	1.000000	0.688172	0.591837	2.6504
25	G	2	Tornado Rojo	0.283186	0.187500	0.375000	0.705376	0.387755	1.9388
9	С	2	Hombre Halcon	0.327434	0.046094	0.531250	0.741935	0.183673	1.8303
31	Н	4	Cyborg	0.371681	1.000000	0.322917	0.705376	0.153061	2.5530
7	В	4	Lobo	0.415929	0.065625	0.869792	0.500000	0.183673	2.0350
24	G	1	Dr. Fate	0.371681	0.035156	0.270833	0.741935	0.183673	1.6032
8	С	1	Mujer Maravilla	0.265487	0.026562	0.895833	0.892473	0.183673	2.2640
21	F	2	Gorilla Grodd	0.823009	0.242188	0.583333	0.259140	0.102041	2.0097
22	F	3	Black Adam	0.221239	0.046094	0.895833	0.473118	0.591837	2.2281
10	С	3	Linterna Verde	0.221239	0.028125	0.583333	0.720430	0.326531	1.8796
2	Α	3	Aquaman	0.247788	0.028906	0.479167	0.715054	0.204082	1.6749
19	Е	4	Bane	0.460177	0.097656	0.296875	0.258065	0.122449	1.2352
4	В	1	Batman	0.274336	0.031250	0.218750	0.913978	0.122449	1.5607
5	В	2	Flash	0.221239	0.026562	0.192708	0.688172	1.000000	2.1286

```
F
23
                  4
                      Brainiac 0.353982 0.179688 0.375000 0.166667
                                                                     0.091837 1.1671
27
        G
                  4
                      Siniestro 0.221239 0.029687 0.390625 0.316129
                                                                     0.326531 1.2842
                       Flecha
                  3
        В
                              0.274336  0.026562  0.192708  0.774194
                                                                     0.091837 1.3596
                        Verde
                        Mujer
                              26
        G
                                                                     0.183673 1.1726
                       Halcon
                  2 Lex Luthor 0.265487 0.031250 0.166667 0.053763
13
        D
                                                                     0.065306 0.5824
30
        Н
                  3
                       Atomo 0.212389 0.021094 0.135417 0.666667
                                                                     0.081633 1.1171
29
        Н
                  2
                       Zatana 0.132743 0.005469 0.140625 0.715054
                                                                     0.087755 1.0816
16
        Ε
                  1
                        Robin 0.123894 0.010156 0.140625 0.596774
                                                                     0.112245 0.9836
                       Canario
28
        Н
                  1
                              0.112245 0.9829
                        Negro
20
        F
                      Batichica 0.159292 0.000000 0.114583 0.487097
                                                                     0.102041 0.8630
        С
                      Gatubela 0.194690 0.004687 0.114583 0.204301
11
                                                                     0.102041 0.6203
12
        D
                  1
                        Joker 0.221239 0.014063 0.114583 0.096774
                                                                     0.061224 0.5078
        Ε
18
                  3
                      Pingüino 0.000000 0.034375 0.000000 0.124731
                                                                     0.000000 0.1591
17
        Ε
                  2
                       Acertijo 0.123894 0.016406 0.088542 0.000000
                                                                     0.036735 0.2655
```

```
In [129]: def fight_optimo(database, card1, card2, jugador):
    if jugador == 0:
        variable = database.loc[card1,'MEJOR']

else:
        variable = database.loc[card2,'MEJOR']

v1 = database.loc[card1,variable]
    v2 = database.loc[card2,variable]
    if v1 > v2:
        return [1,0]
    elif v1 < v2:
        return [0,1]
    else:
        return [0.5, 0.5]
    return v1, v2</pre>
```

```
In [163]: def partido_optimo_vs_azar():
    mazos = mezclar(32)

if 0 in mazos[:,0]:
    mazo1 = list(mazos[:,0])
    mazo2 = list(mazos[:,1])

else:
    mazo1 = list(mazos[:,1])
```

```
mazo2 = list(mazos[:,0])
    fin partida = len(mazo1)*len(mazo2)
    #Empieza el jugador 1, que juega optimamente
    turno = 0
    while fin partida != 0:
        carta1 = mazo1.pop()
        carta2 = mazo2.pop()
        if turno == 0:
            v1, v2 = fight optimo(f norm, carta1, carta2, turno)
        else:
            v1, v2 = fight(f norm,carta1,carta2)
        if v1 > v2:
            mazo1 = [carta1, carta2] + mazo1
            turno = 0
        elif v1 < v2:
            mazo2 = [carta1, carta2] + mazo2
            turno = 1
        else:
            if random.random() < 0.5:</pre>
                mazo1 = [carta1, carta2] + mazo1
                turno = 0
            else:
                mazo2 = [carta1, carta2] + mazo2
                turno = 1
        fin partida = len(mazo1)*len(mazo2)
        if fin partida == 0:
            break
    if len(mazo1) == 0:
        return [0,1]
    else:
        return [1,0]
rep = 10000
juegos = []
for i in range(rep):
    juegos.append(partido optimo vs azar())
print('Empieza el jugador 1 con A1 optimamente :', list(np.sum(np.arra
y(juegos), axis=0)/rep))
```

Empieza el jugador 1 con Al optimamente : [0.9993, 0.0007]

Si el jugador que empieza juega óptimamente, gana el 99.9% de las veces.

```
In [164]: def partido_optimo_vs_azar2():
```

```
mazos = mezclar(32)
    if 0 in mazos[:,0]:
        mazo1 = list(mazos[:,0])
        mazo2 = list(mazos[:,1])
    else:
        mazo1 = list(mazos[:,1])
        mazo2 = list(mazos[:,0])
    fin partida = len(mazo1)*len(mazo2)
    #Empieza el jugador 2, que juega al azar
    turno = 0
    while fin partida != 0:
        carta1 = mazo1.pop()
        carta2 = mazo2.pop()
        if turno == 0:
            v1, v2 = fight(f_norm,carta1,carta2)
        else:
            v1, v2 = fight optimo(f norm,carta1,carta2,turno)
        if v1 > v2:
            mazo1 = [carta1, carta2] + mazo1
            turno = 0
        elif v1 < v2:
            mazo2 = [carta1, carta2] + mazo2
            turno = 1
        else:
            if random.random() < 0.5:</pre>
                mazo1 = [carta1, carta2] + mazo1
                turno = 0
            else:
                mazo2 = [carta1, carta2] + mazo2
                turno = 1
        fin partida = len(mazo1)*len(mazo2)
        if fin partida == 0:
            break
    if len(mazo1) == 0:
        return [0,1]
    else:
        return [1,0]
rep = 10000
juegos = []
for i in range(rep):
    juegos.append(partido_optimo_vs_azar2())
print('Empieza el jugador 1 con A1 al azar :',list(np.sum(np.array(jue
gos), axis=0)/rep))
```

```
Empieza el jugador 1 con Al al azar : [0.0042, 0.9958]
```

La ventaja de tener A1 es mínima, si el jugador juega al azar contra otro que juega óptimamente.

```
def partido optimo vs optimo(empieza A1):
In [169]:
               mazos = mezclar(32)
               if empieza A1:
                   if 0 in mazos[:,0]:
                       mazo1 = list(mazos[:,0])
                       mazo2 = list(mazos[:,1])
                   else:
                       mazo1 = list(mazos[:,1])
                       mazo2 = list(mazos[:,0])
               else:
                   if random.random() < 0.5:</pre>
                       mazo1 = list(mazos[:,0])
                       mazo2 = list(mazos[:,1])
                   else:
                       mazo1 = list(mazos[:,1])
                       mazo2 = list(mazos[:,0])
               fin partida = len(mazo1)*len(mazo2)
               #Empieza el jugador 1, que juega optimamente
               turno = 0
               while fin partida != 0:
                   carta1 = mazo1.pop()
                   carta2 = mazo2.pop()
                   v1, v2 = fight optimo(f norm, carta1, carta2, turno)
                   if v1 > v2:
                       mazo1 = [carta1, carta2] + mazo1
                       turno = 0
                   elif v1 < v2:
                       mazo2 = [carta1, carta2] + mazo2
                       turno = 1
                   else:
                       if random.random() < 0.5:</pre>
                           mazo1 = [carta1, carta2] + mazo1
                           turno = 0
                       else:
                           mazo2 = [carta1, carta2] + mazo2
                           turno = 1
                   fin partida = len(mazo1)*len(mazo2)
                   if fin partida == 0:
                       break
```

```
if len(mazo1) == 0:
        return [0,1]
    else:
        return [1,0]
rep = 10000
juegos = []
for i in range(rep):
    juegos.append(partido optimo vs optimo(True))
print('Empieza el jugador 1 y tiene A1: ', list(np.sum(np.array(juegos
), axis=0)/rep))
juegos = []
for i in range(rep):
    juegos.append(partido_optimo_vs_optimo(False))
print('Empieza el Jugador 1: ', list(np.sum(np.array(juegos), axis=0)/
rep))
Empieza el jugador 1 y tiene Al: [0.6952, 0.3048]
Empieza el Jugador 1: [0.5623, 0.4377]
```

Si ambos juegan óptimamente, el jugador que tiene la carta A1 tiene ventaja (porque es la mejor y porque empieza). Jugando óptimamente, empezar otorga una ventaja. Si además se tiene la mejor carta, la ventaja es mayor.

Matrices de victorias por variable

Otra forma de evaluar cada carta es determinando la cantidad de cartas a las que les gana, pierde o empata en cada variable.

```
In [316]:
          def victorias empates derrotas(database, card, variable):
              v = 0
              e = 0
              d = 0
              for i in range(32):
                  if database.iloc[i][variable] != database.iloc[card][variable]
                       if database.iloc[i][variable] < database.iloc[card][variab</pre>
          le1:
                           v += 1
                       elif database.iloc[i][variable] > database.iloc[card][vari
          able]:
                           d += 1
                       else:
                           e += 1
              return [v,e,d]
          def indice variable(ved):
              return (ved[0] - ved[1] + 0.5*ved[2])/31
          indice altura = []
In [319]:
          indice peso = []
          indice fuerza = []
          indice peleas = []
          indice velocidad = []
          for i in range(32):
              indice altura.append(indice variable(victorias empates derrotas(f
          norm,i,'ALTURA')))
               indice peso.append(indice variable(victorias empates derrotas(f no
          rm, i, 'PESO')))
               indice fuerza.append(indice variable(victorias empates derrotas(f
          norm,i,'FUERZA')))
              indice peleas.append(indice variable(victorias empates derrotas(f
          norm,i,'PELEAS')))
              indice velocidad.append(indice variable(victorias empates derrotas
          (f norm,i,'VELOCIDAD')))
In [320]: f_norm['I_ALTURA'] = indice_altura
          f norm['I PESO'] = indice peso
          f norm['I FUERZA'] = indice fuerza
          f norm['I PELEAS'] = indice peleas
          f norm['I VELOCIDAD'] = indice velocidad
In [322]: | f_norm.sort_values(by = 'I_PELEAS', ascending=False)
Out[322]:
              LETRA NUMERO NOMBRE ALTURA
                                               PESO FUERZA PELEAS VELOCIDAD
                                                                               SUN
```

0	Α	1	Superman	0.300885	0.036719	1.000000	1.000000	0.795918	3.1335
4	В	1	Batman	0.274336	0.031250	0.218750	0.913978	0.122449	1.5607
8	С	1	Mujer Maravilla	0.265487	0.026562	0.895833	0.892473	0.183673	2.2640
6	В	3	Flecha Verde	0.274336	0.026562	0.192708	0.774194	0.091837	1.3596
10	С	3	Linterna Verde	0.221239	0.028125	0.583333	0.720430	0.326531	1.8796
24	G	1	Dr. Fate	0.371681	0.035156	0.270833	0.741935	0.183673	1.6032
3	Α	4	Martian Manhunter	0.407080	0.063281	0.947917	0.741935	0.387755	2.5479
9	С	2	Hombre Halcon	0.327434	0.046094	0.531250	0.741935	0.183673	1.8303
2	Α	3	Aquaman	0.247788	0.028906	0.479167	0.715054	0.204082	1.6749
29	Н	2	Zatana	0.132743	0.005469	0.140625	0.715054	0.087755	1.0816
25	G	2	Tornado Rojo	0.283186	0.187500	0.375000	0.705376	0.387755	1.9388
31	Н	4	Cyborg	0.371681	1.000000	0.322917	0.705376	0.153061	2.5530
30	Н	3	Atomo	0.212389	0.021094	0.135417	0.666667	0.081633	1.1171
5	В	2	Flash	0.221239	0.026562	0.192708	0.688172	1.000000	2.1286
1	Α	2	Shazam	0.327434	0.042969	1.000000	0.688172	0.591837	2.6504
28	Н	1	Canario Negro	0.106195	0.000000	0.166667	0.597849	0.112245	0.9829
16	Е	1	Robin	0.123894	0.010156	0.140625	0.596774	0.112245	0.9836
26	G	3	Mujer Halcon	0.168142	0.007812	0.296875	0.516129	0.183673	1.1726
7	В	4	Lobo	0.415929	0.065625	0.869792	0.500000	0.183673	2.0350
20	F	1	Batichica	0.159292	0.000000	0.114583	0.487097	0.102041	0.8630
22	F	3	Black Adam	0.221239	0.046094	0.895833	0.473118	0.591837	2.2281
15	D	4	Darkseid	1.000000	0.601562	1.000000	0.392473	0.387755	3.3817
27	G	4	Siniestro	0.221239	0.029687	0.390625	0.316129	0.326531	1.2842
21	F	2	Gorilla Grodd	0.823009	0.242188	0.583333	0.259140	0.102041	2.0097
19	Е	4	Bane	0.460177	0.097656	0.296875	0.258065	0.122449	1.2352
11	С	4	Gatubela	0.194690	0.004687	0.114583	0.204301	0.102041	0.6203
23	F	4	Brainiac	0.353982	0.179688	0.375000	0.166667	0.091837	1.1671

18	Е	3	Pingüino	0.000000	0.034375	0.000000	0.124731	0.000000	0.1591
12	D	1	Joker	0.221239	0.014063	0.114583	0.096774	0.061224	0.5078
14	D	3	Doomsday	0.787611	0.282031	1.000000	0.069892	0.693878	2.8334
13	D	2	Lex Luthor	0.265487	0.031250	0.166667	0.053763	0.065306	0.5824
17	Е	2	Acertijo	0.123894	0.016406	0.088542	0.000000	0.036735	0.2655

Se puede ver, que el ordenamiento de que variable es la mejor, es mucho más clara con este nuevo indice. Por ejemplo, la mujer maravilla es mejor en peleas que en fuerza, mientras que usando solo la normalizacion nos daba al reves.

In [332]: f_norm

Out[332]:

	LETRA	NUMERO	NOMBRE	ALTURA	PESO	FUERZA	PELEAS	VELOCIDAD	SUN
0	А	1	Superman	0.300885	0.036719	1.000000	1.000000	0.795918	3.1335
1	Α	2	Shazam	0.327434	0.042969	1.000000	0.688172	0.591837	2.6504
2	Α	3	Aquaman	0.247788	0.028906	0.479167	0.715054	0.204082	1.6749
3	Α	4	Martian Manhunter	0.407080	0.063281	0.947917	0.741935	0.387755	2.5479
4	В	1	Batman	0.274336	0.031250	0.218750	0.913978	0.122449	1.5607
5	В	2	Flash	0.221239	0.026562	0.192708	0.688172	1.000000	2.1286
6	В	3	Flecha Verde	0.274336	0.026562	0.192708	0.774194	0.091837	1.3596
7	В	4	Lobo	0.415929	0.065625	0.869792	0.500000	0.183673	2.0350
8	С	1	Mujer Maravilla	0.265487	0.026562	0.895833	0.892473	0.183673	2.2640
9	С	2	Hombre Halcon	0.327434	0.046094	0.531250	0.741935	0.183673	1.8303
10	С	3	Linterna Verde	0.221239	0.028125	0.583333	0.720430	0.326531	1.8796

11	С	4	Gatubela	0.194690	0.004687	0.114583	0.204301	0.102041	0.6203
12	D	1	Joker	0.221239	0.014063	0.114583	0.096774	0.061224	0.5078
13	D	2	Lex Luthor	0.265487	0.031250	0.166667	0.053763	0.065306	0.5824
14	D	3	Doomsday	0.787611	0.282031	1.000000	0.069892	0.693878	2.8334
15	D	4	Darkseid	1.000000	0.601562	1.000000	0.392473	0.387755	3.3817
16	Е	1	Robin	0.123894	0.010156	0.140625	0.596774	0.112245	0.9836
17	Е	2	Acertijo	0.123894	0.016406	0.088542	0.000000	0.036735	0.2655
18	E	3	Pingüino	0.000000	0.034375	0.000000	0.124731	0.000000	0.1591
19	Е	4	Bane	0.460177	0.097656	0.296875	0.258065	0.122449	1.2352
20	F	1	Batichica	0.159292	0.000000	0.114583	0.487097	0.102041	0.8630
21	F	2	Gorilla Grodd	0.823009	0.242188	0.583333	0.259140	0.102041	2.0097
22	F	3	Black Adam	0.221239	0.046094	0.895833	0.473118	0.591837	2.2281
23	F	4	Brainiac	0.353982	0.179688	0.375000	0.166667	0.091837	1.1671
24	G	1	Dr. Fate	0.371681	0.035156	0.270833	0.741935	0.183673	1.6032
25	G	2	Tornado Rojo	0.283186	0.187500	0.375000	0.705376	0.387755	1.9388
26	G	3	Mujer Halcon	0.168142	0.007812	0.296875	0.516129	0.183673	1.1726
27	G	4	Siniestro	0.221239	0.029687	0.390625	0.316129	0.326531	1.2842
28	Н	1	Canario Negro	0.106195	0.000000	0.166667	0.597849	0.112245	0.9829
29	Н	2	Zatana	0.132743	0.005469	0.140625	0.715054	0.087755	1.0816
30	Н	3	Atomo	0.212389	0.021094	0.135417	0.666667	0.081633	1.1171
31	Н	4	Cyborg	0.371681	1.000000	0.322917	0.705376	0.153061	2.5530

Simulemos nuevamente. Jugador óptimo vs azar:

```
In [335]: def fight_optimo2(database, card1, card2, jugador):
    if jugador == 0:
        variable = database.loc[card1,'I_MEJOR']
    else:
        variable = database.loc[card2,'I_MEJOR']

v1 = database.loc[card1,variable]
    v2 = database.loc[card2,variable]
```

```
if v1 > v2:
        return [1,0]
    elif v1 < v2:
        return [0,1]
    else:
        return [0.5, 0.5]
    return v1, v2
def partido_optimo_vs_azar():
    mazos = mezclar(32)
    if 0 in mazos[:,0]:
        mazo1 = list(mazos[:,0])
        mazo2 = list(mazos[:,1])
    else:
        mazo1 = list(mazos[:,1])
        mazo2 = list(mazos[:,0])
    fin partida = len(mazo1)*len(mazo2)
    #Empieza el jugador 1, que juega optimamente
    turno = 0
    while fin partida != 0:
        carta1 = mazo1.pop()
        carta2 = mazo2.pop()
        if turno == 0:
            v1, v2 = fight optimo2(f norm,carta1,carta2,turno)
        else:
            v1, v2 = fight(f norm,carta1,carta2)
        if v1 > v2:
            mazo1 = [carta1, carta2] + mazo1
            turno = 0
        elif v1 < v2:
            mazo2 = [carta1, carta2] + mazo2
            turno = 1
        else:
            if random.random() < 0.5:</pre>
                mazo1 = [carta1, carta2] + mazo1
                turno = 0
            else:
                mazo2 = [carta1, carta2] + mazo2
                turno = 1
        fin partida = len(mazo1)*len(mazo2)
        if fin partida == 0:
            break
    if len(mazo1) == 0:
        return [0,1]
    else:
```

```
return [1,0]

rep = 10000
juegos = []
for i in range(rep):
    juegos.append(partido_optimo_vs_azar())
print('Empieza el jugador 1 con Al optimamente :', list(np.sum(np.arra y(juegos), axis=0)/rep))
```

Empieza el jugador 1 con A1 optimamente : [0.9994, 0.0006]

```
In [336]:
          def partido optimo vs azar2():
              mazos = mezclar(32)
               if 0 in mazos[:,0]:
                   mazo1 = list(mazos[:,0])
                   mazo2 = list(mazos[:,1])
               else:
                   mazo1 = list(mazos[:,1])
                   mazo2 = list(mazos[:,0])
               fin partida = len(mazo1)*len(mazo2)
               #Empieza el jugador azaroso
               turno = 0
              while fin partida != 0:
                   carta1 = mazo1.pop()
                   carta2 = mazo2.pop()
                   if turno == 0:
                       v1, v2 = fight(f norm, carta1, carta2)
                   else:
                       v1, v2 = fight optimo2(f norm,carta1,carta2,turno)
                   if v1 > v2:
                       mazo1 = [carta1, carta2] + mazo1
                       turno = 0
                   elif v1 < v2:
                       mazo2 = [carta1, carta2] + mazo2
                       turno = 1
                   else:
                       if random.random() < 0.5:</pre>
                           mazo1 = [carta1, carta2] + mazo1
                           turno = 0
                       else:
                           mazo2 = [carta1, carta2] + mazo2
                           turno = 1
                   fin partida = len(mazo1)*len(mazo2)
                   if fin partida == 0:
```

```
break
if len(mazo1) == 0:
    return [0,1]
else:
    return [1,0]

rep = 10000
juegos = []
for i in range(rep):
    juegos.append(partido_optimo_vs_azar2())
print('Empieza el jugador 1 con A1 (al azar):',list(np.sum(np.array(ju egos), axis=0)/rep))
```

Empieza el jugador 1 con A1 al azar : [0.0024, 0.9976]

```
In [337]:
          def partido optimo vs optimo(empieza A1):
              mazos = mezclar(32)
               if empieza A1:
                   if 0 in mazos[:,0]:
                       mazo1 = list(mazos[:,0])
                       mazo2 = list(mazos[:,1])
                   else:
                       mazo1 = list(mazos[:,1])
                       mazo2 = list(mazos[:,0])
               else:
                   if random.random() < 0.5:</pre>
                       mazo1 = list(mazos[:,0])
                       mazo2 = list(mazos[:,1])
                   else:
                       mazo1 = list(mazos[:,1])
                       mazo2 = list(mazos[:,0])
               fin partida = len(mazo1)*len(mazo2)
               #Empieza el jugador 1, que juega optimamente
               turno = 0
              while fin partida != 0:
                   carta1 = mazo1.pop()
                   carta2 = mazo2.pop()
                   v1, v2 = fight optimo2(f norm, carta1, carta2, turno)
                   if v1 > v2:
                       mazo1 = [carta1, carta2] + mazo1
                       turno = 0
                   elif v1 < v2:
                       mazo2 = [carta1, carta2] + mazo2
                       turno = 1
                   else:
```

```
if random.random() < 0.5:</pre>
                mazo1 = [carta1, carta2] + mazo1
                turno = 0
            else:
                mazo2 = [carta1, carta2] + mazo2
                turno = 1
        fin partida = len(mazo1)*len(mazo2)
        if fin partida == 0:
            break
    if len(mazo1) == 0:
        return [0,1]
    else:
        return [1,0]
rep = 10000
juegos = []
for i in range(rep):
    juegos.append(partido optimo vs optimo(True))
print('Empieza el jugador 1 y tiene Al: ', list(np.sum(np.array(juegos
), axis=0)/rep))
juegos = []
for i in range(rep):
    juegos.append(partido optimo vs optimo(False))
print('Empieza el Jugador 1: ', list(np.sum(np.array(juegos), axis=0)/
rep))
Empieza el jugador 1 y tiene A1: [0.6497, 0.3503]
Empieza el Jugador 1: [0.5524, 0.4476]
```

Asumiendo que conocemos cual es la mejor condicion para atacar (I_MEJOR), el índice de defensa es un promedio de todas sus características. En otras palabras, el indice defensivo es aleatorio, el ofensivo es óptimo (asumiendo que desconocemos el contrincante)

In [346]: f_norm

Out[346]:

	LETRA	NUMERO	NOMBRE	ALTURA	PESO	FUERZA	PELEAS	VELOCIDAD	SUN
0	Α	1	Superman	0.300885	0.036719	1.000000	1.000000	0.795918	3.1335
1	Α	2	Shazam	0.327434	0.042969	1.000000	0.688172	0.591837	2.6504
2	Α	3	Aquaman	0.247788	0.028906	0.479167	0.715054	0.204082	1.6749
3	Α	4	Martian Manhunter	0.407080	0.063281	0.947917	0.741935	0.387755	2.5479
4	В	1	Batman	0.274336	0.031250	0.218750	0.913978	0.122449	1.5607
5	В	2	Flash	0.221239	0.026562	0.192708	0.688172	1.000000	2.1286
6	В	3	Flecha Verde	0.274336	0.026562	0.192708	0.774194	0.091837	1.3596
7	В	4	Lobo	0.415929	0.065625	0.869792	0.500000	0.183673	2.0350
8	С	1	Mujer Maravilla	0.265487	0.026562	0.895833	0.892473	0.183673	2.2640
9	С	2	Hombre Halcon	0.327434	0.046094	0.531250	0.741935	0.183673	1.8303
10	С	3	Linterna Verde	0.221239	0.028125	0.583333	0.720430	0.326531	1.8796
11	С	4	Gatubela	0.194690	0.004687	0.114583	0.204301	0.102041	0.6203
12	D	1	Joker	0.221239	0.014063	0.114583	0.096774	0.061224	0.5078
13	D	2	Lex Luthor	0.265487	0.031250	0.166667	0.053763	0.065306	0.5824
14	D	3	Doomsday	0.787611	0.282031	1.000000	0.069892	0.693878	2.8334
15	D	4	Darkseid	1.000000	0.601562	1.000000	0.392473	0.387755	3.3817
16	Е	1	Robin	0.123894	0.010156	0.140625	0.596774	0.112245	0.9836
17	Е	2	Acertijo	0.123894	0.016406	0.088542	0.000000	0.036735	0.2655
18	Е	3	Pingüino	0.000000	0.034375	0.000000	0.124731	0.000000	0.1591
19	Е	4	Bane	0.460177	0.097656	0.296875	0.258065	0.122449	1.2352
20	F	1	Batichica	0.159292	0.000000	0.114583	0.487097	0.102041	0.8630
21	F	2	Gorilla Grodd	0.823009	0.242188	0.583333	0.259140	0.102041	2.0097
22	F	3	Black Adam	0.221239	0.046094	0.895833	0.473118	0.591837	2.2281
23	F	4	Brainiac	0.353982	0.179688	0.375000	0.166667	0.091837	1.1671
24	G	1	Dr. Fate	0.371681	0.035156	0.270833	0.741935	0.183673	1.6032

25	G	2	Tornado Rojo	0.283186	0.187500	0.375000	0.705376	0.387755	1.9388
26	G	3	Mujer Halcon	0.168142	0.007812	0.296875	0.516129	0.183673	1.1726
27	G	4	Siniestro	0.221239	0.029687	0.390625	0.316129	0.326531	1.2842
28	Н	1	Canario Negro	0.106195	0.000000	0.166667	0.597849	0.112245	0.9829
29	Н	2	Zatana	0.132743	0.005469	0.140625	0.715054	0.087755	1.0816
30	Н	3	Atomo	0.212389	0.021094	0.135417	0.666667	0.081633	1.1171
31	Н	4	Cyborg	0.371681	1.000000	0.322917	0.705376	0.153061	2.5530

```
In [348]: plt.plot(f_norm.I_ATAQUE,f_norm.I_DEFENSA,'.')
    plt.xlabel('I_ATAQUE')
    plt.ylabel('I_DEFENSA')
    plt.show()
```



```
In [353]: plt.plot(f_norm.I_DEFENSA,f_norm.POINTS,'.')
   plt.xlabel('I_DEFENSA')
   plt.ylabel('POINTS')
   plt.show()
```


Evaluación de la probabilidad de triunfo de cada combinación de cartas

Dado que tenemos pocas cartas y solo 5 variables, si una carta es mayor que la otra en las 5, ganará el 100% de las veces. En vez de simular, podemos calcular la probabilidad de triunfo directamente:

```
In [355]: def triunfo_empate_derrota(database,card1,card2):
    triunfo = 0
    empate = 0
    derrota = 0

for i in ['ALTURA','PESO','FUERZA','PELEAS','VELOCIDAD']:
    if database.iloc[card1][i] > database.iloc[card2][i]:
        triunfo += 1
    elif database.iloc[card1][i] < database.iloc[card2][i]:
        derrota += 1
    else:
        empate += 1
    return [triunfo/5.0, empate/5.0, derrota/5.0]</pre>
```

```
In [390]: | I TRIUNFO = []
          I\_EMPATE = []
          for i in range(32):
              i triunfo = 0.0
              i_empate = 0.0
              for j in range(32):
                   if i != j:
                       t, e, d = triunfo empate derrota(f norm,i,j)
                       i triunfo += t
                       i empate += e
              I_TRIUNFO.append(i_triunfo)
              I EMPATE.append(i empate)
          I TRIUNFO = np.array(I TRIUNFO)/31.0
          I EMPATE = np.array(I EMPATE)/31.0
          f norm['I TRIUNFO'] = I TRIUNFO
          f_norm['I_EMPATE'] = I_EMPATE
```

In [397]: f_norm

Out[397]:

	LETRA	NUMERO	NOMBRE	ALTURA	PESO	FUERZA	PELEAS	VELOCIDAD	SUN
0	А	1	Superman	0.300885	0.036719	1.000000	1.000000	0.795918	3.1335
1	Α	2	Shazam	0.327434	0.042969	1.000000	0.688172	0.591837	2.6504
2	Α	3	Aquaman	0.247788	0.028906	0.479167	0.715054	0.204082	1.6749
3	Α	4	Martian Manhunter	0.407080	0.063281	0.947917	0.741935	0.387755	2.5479
4	В	1	Batman	0.274336	0.031250	0.218750	0.913978	0.122449	1.5607
5	В	2	Flash	0.221239	0.026562	0.192708	0.688172	1.000000	2.1286
6	В	3	Flecha Verde	0.274336	0.026562	0.192708	0.774194	0.091837	1.3596
7	В	4	Lobo	0.415929	0.065625	0.869792	0.500000	0.183673	2.0350
8	С	1	Mujer Maravilla	0.265487	0.026562	0.895833	0.892473	0.183673	2.2640
9	С	2	Hombre Halcon	0.327434	0.046094	0.531250	0.741935	0.183673	1.8303
10	С	3	Linterna Verde	0.221239	0.028125	0.583333	0.720430	0.326531	1.8796
11	С	4	Gatubela	0.194690	0.004687	0.114583	0.204301	0.102041	0.6203
12	D	1	Joker	0.221239	0.014063	0.114583	0.096774	0.061224	0.5078
13	D	2	Lex Luthor	0.265487	0.031250	0.166667	0.053763	0.065306	0.5824

14	D	3	Doomsday	0.787611	0.282031	1.000000	0.069892	0.693878	2.8334
15	D	4	Darkseid	1.000000	0.601562	1.000000	0.392473	0.387755	3.3817
16	Е	1	Robin	0.123894	0.010156	0.140625	0.596774	0.112245	0.9836
17	Е	2	Acertijo	0.123894	0.016406	0.088542	0.000000	0.036735	0.2655
18	Е	3	Pingüino	0.000000	0.034375	0.000000	0.124731	0.000000	0.1591
19	Е	4	Bane	0.460177	0.097656	0.296875	0.258065	0.122449	1.2352
20	F	1	Batichica	0.159292	0.000000	0.114583	0.487097	0.102041	0.8630
21	F	2	Gorilla Grodd	0.823009	0.242188	0.583333	0.259140	0.102041	2.0097
22	F	3	Black Adam	0.221239	0.046094	0.895833	0.473118	0.591837	2.2281
23	F	4	Brainiac	0.353982	0.179688	0.375000	0.166667	0.091837	1.1671
24	G	1	Dr. Fate	0.371681	0.035156	0.270833	0.741935	0.183673	1.6032
25	G	2	Tornado Rojo	0.283186	0.187500	0.375000	0.705376	0.387755	1.9388
26	G	3	Mujer Halcon	0.168142	0.007812	0.296875	0.516129	0.183673	1.1726
27	G	4	Siniestro	0.221239	0.029687	0.390625	0.316129	0.326531	1.2842
28	Н	1	Canario Negro	0.106195	0.000000	0.166667	0.597849	0.112245	0.9829
29	Н	2	Zatana	0.132743	0.005469	0.140625	0.715054	0.087755	1.0816
30	Н	3	Atomo	0.212389	0.021094	0.135417	0.666667	0.081633	1.1171
31	Н	4	Cyborg	0.371681	1.000000	0.322917	0.705376	0.153061	2.5530

32 rows × 22 columns

```
In [394]: plt.plot(f_norm.POINTS,f_norm.I_TRIUNFO+0.5*f_norm.I_EMPATE,'.')
    plt.xlabel('POINTS')
    plt.ylabel('I_TRIUNFO + 0.5 * I_EMPATE')
    plt.show()
```


In [396]: f_norm.sort_values(by = 'I_TRIUNFO', ascending=False)

Out[396]:

	LETRA	NUMERO	NOMBRE	ALTURA	PESO	FUERZA	PELEAS	VELOCIDAD	SUN
0	А	1	Superman	0.300885	0.036719	1.000000	1.000000	0.795918	3.1335
3	А	4	Martian Manhunter	0.407080	0.063281	0.947917	0.741935	0.387755	2.5479
15	D	4	Darkseid	1.000000	0.601562	1.000000	0.392473	0.387755	3.3817
14	D	3	Doomsday	0.787611	0.282031	1.000000	0.069892	0.693878	2.8334
1	Α	2	Shazam	0.327434	0.042969	1.000000	0.688172	0.591837	2.6504
25	G	2	Tornado Rojo	0.283186	0.187500	0.375000	0.705376	0.387755	1.9388
31	Н	4	Cyborg	0.371681	1.000000	0.322917	0.705376	0.153061	2.5530
7	В	4	Lobo	0.415929	0.065625	0.869792	0.500000	0.183673	2.0350
9	С	2	Hombre Halcon	0.327434	0.046094	0.531250	0.741935	0.183673	1.8303
21	F	2	Gorilla Grodd	0.823009	0.242188	0.583333	0.259140	0.102041	2.0097
24	G	1	Dr. Fate	0.371681	0.035156	0.270833	0.741935	0.183673	1.6032
8	С	1	Mujer Maravilla	0.265487	0.026562	0.895833	0.892473	0.183673	2.2640

22	F	3	Black Adam	0.221239	0.046094	0.895833	0.473118	0.591837	2.2281
2	Α	3	Aquaman	0.247788	0.028906	0.479167	0.715054	0.204082	1.6749
10	С	3	Linterna Verde	0.221239	0.028125	0.583333	0.720430	0.326531	1.8796
19	E	4	Bane	0.460177	0.097656	0.296875	0.258065	0.122449	1.2352
4	В	1	Batman	0.274336	0.031250	0.218750	0.913978	0.122449	1.5607
5	В	2	Flash	0.221239	0.026562	0.192708	0.688172	1.000000	2.1286
23	F	4	Brainiac	0.353982	0.179688	0.375000	0.166667	0.091837	1.1671
27	G	4	Siniestro	0.221239	0.029687	0.390625	0.316129	0.326531	1.2842
6	В	3	Flecha Verde	0.274336	0.026562	0.192708	0.774194	0.091837	1.3596
26	G	3	Mujer Halcon	0.168142	0.007812	0.296875	0.516129	0.183673	1.1726
30	Н	3	Atomo	0.212389	0.021094	0.135417	0.666667	0.081633	1.1171
13	D	2	Lex Luthor	0.265487	0.031250	0.166667	0.053763	0.065306	0.5824
29	Н	2	Zatana	0.132743	0.005469	0.140625	0.715054	0.087755	1.0816
16	Е	1	Robin	0.123894	0.010156	0.140625	0.596774	0.112245	0.9836
28	Н	1	Canario Negro	0.106195	0.000000	0.166667	0.597849	0.112245	0.9829
20	F	1	Batichica	0.159292	0.000000	0.114583	0.487097	0.102041	0.8630
11	С	4	Gatubela	0.194690	0.004687	0.114583	0.204301	0.102041	0.6203
12	D	1	Joker	0.221239	0.014063	0.114583	0.096774	0.061224	0.5078
18	Е	3	Pingüino	0.000000	0.034375	0.000000	0.124731	0.000000	0.1591
17	Е	2	Acertijo	0.123894	0.016406	0.088542	0.000000	0.036735	0.2655

32 rows × 22 columns

In []: