Παράδοση έως 07/11/2021

ΤΜΗΜΑ ΗΛΕΚΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ

ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (7.021)

Ασκήσεις πράξεων θεωρίας

ΜΕΛΑΚΗΣ ΝΙΚΟΛΑΟΣ ΤΠ4726

Email: nick melakis@yahoo.gr

ΕΛΛΗΝΙΚΟ ΜΕΣΟΓΕΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΗΛΕΚΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (7.021)

ΠΕΡΙΕΧΟΜΕΝΑ

ΕΞΩΨΥΛΟ	
ПЕРІЕХОМЕNА	σελίδα 1
Άσκηση 1	σελίδα 2
Άσκηση 2	σελίδα 3
Άσκηση 3	σελίδα 4
ΛΙΣΤΑ ΠΙΝΑΚΩΝ	
Table 1.1	σελίδα 2
Table 1.2	σελίδα 2
	σελίδα 2
	σελίδα 3
	σελίδα 3
	σελίδα 4
T.I.I. 2.2	

Άσκηση 1

Έστω οι παρακάτω τύποι οι οποίοι είναι ταυτολογίες, p και q είναι προτασιακές μεταβλητές, T και F αναπαριστούν τις τιμές Αληθής και Ψευδής αντίστοιχα. Να μετατρέψετε τους τύπους σε σχήματα, αντικαθιστώντας το p με το φ και το q με το ψ.

- p → T
- $F \rightarrow p$
- $(p \land (p \rightarrow q)) \rightarrow q$

Συνεπώς αντικαθιστώ τα: p= φ και q=ψ.

Т	Т
T	T
	T

(Table1.1)

ф	ψ	φ->ψ	φ^(φ->ψ)	(φ^(φ->ψ)) →φ
Т	Т	Ţ	Т	Т
Т	F	F	F	Т
F	Т	T	F	Т
F	F	Т	F	Т

(Table 1.2)

Στη συνέχεια, να κάνετε για κάθε ένα από αυτούς του τύπους σχήματα ένα στιγμιότυπο αντικαθιστώντας το ϕ με τον τύπο $(p1^p2) \rightarrow p3$ και το ψ με τον τύπο $-p1 \rightarrow (p1^p2) \rightarrow p3$. Να αποδείξετε με τη μέθοδο των πινάκων ότι οι τύποι, τα στιγμιότυπα, που δημιουργήθηκαν είναι ταυτολογίες.

 Φ Ψ Φ -> Ψ Φ ^(Φ -> Ψ)

p1	p2	р3	¬p1	p1^p2	(p1^p2)-> p3	¬p1->(p1^p2)->p3	((p1^p2->p3) ->(¬p1->(p1^p2) ->p3))	((p1^p2)->p3) ^ ((p1^p2->p3) ->(¬p1->(p1^p2) ->p3))
Т	Т	Т	F	T	Т	Т	Т	Т
Т	T	F	F	Т	F	F	Т	F
Т	F	Т	F	F	Т	Т	Т	Т
Т	F	F	F	F	Т	F	F	F
F	Т	Т	Т	F	Т	Т	Т	Т
F	Т	F	Т	F	Т	Т	Т	Т
F	F	Т	Т	F	Т	Т	Т	Т
F	F	F	Т	F	Т	Т	Т	Т

(Table 1.3)

ΕΛΛΗΝΙΚΟ ΜΕΣΟΓΕΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΗΛΕΚΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (7.021)

$$(\phi^{\wedge}(\phi \rightarrow \psi)) \rightarrow \phi$$

(((p1^p2)->p3) ^ ((p1^p2->p3) ->(¬p1->(p1^p2) ->p3))) -> (p1^p2)->p3
Т
Т
Т
Т
Т
Т
Т
Т

(Table 1.3)

Ο πίνακας Table 1.3 αποδεικνύει την ορθότητα και με τον κανόνα της απόσπασης (modus pones) αποδείξαμε ότι οι τύποι που δημιουργήθηκαν είναι ταυτολογίες.

Άσκηση 2

Να μετατρέψετε τον παρακάτω τύπο του διαζευκτικού συλλογισμού σε σχήμα αντικαθιστώντας τις προτασιακές μεταβλητές p και q με φ και ψ αντίστοιχα.

Τύπος: ((p ∨ q) ^ ¬ p)→q

ф	ψ	φνψ	¬ф	(φ ∨ ψ) ^ ¬ φ	((φ ∨ ψ) ^ ¬ φ)→ψ
Т	Т	T	F	F	Т
Т	F	Т	F	F	Т
F	T	T	Т	Т	Т
F	F	F	Т	F	Т

(Table 2.1)

Ο πίνακας Table 2.1 αποδεικνύει την ορθότητα και με τον κανόνα της απόσπασης (modus pones) αποδείξαμε ότι ο τύπος $((p \lor q) \land \neg p) \rightarrow q$ είναι ταυτολογία.

Στη συνέχεια να φτιάξετε ένα στιγμιότυπο για το σχήμα του διαζευκτικού συλλογισμού αντικαθιστώντας το φ με τον τύπο p1^ p2 και το ψ με τον τύπο p1→ p2. Τέλος, να αποδείξετε με τη μέθοδο των πινάκων ότι ο τύπος που δημιουργήθηκε είναι ταυτολογία.

 $\varphi \qquad \qquad \psi \qquad \qquad \neg \varphi \qquad \qquad (\varphi \lor \psi) \land \neg \ \varphi \qquad \qquad ((\varphi \lor \psi) \land \neg \ \varphi) \rightarrow \psi$

р1	p2	p1^p2	p1->p2	(p1^p2) \('p1->p2)	¬(p1^p2)	((p1^p2)\(p1->p2)) ^ (¬(p1\(p2))	((p1^p2)\(p1->p2)) ^ (-(p1\(p2)) -> p1->p2
						(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(br bz// > br > bz
Т	Т	Т	Т	Т	F	F	Т
Т	F	F	F	F	Т	F	Т
F	Т	F	Т	Т	Т	Т	Т
F	F	F	T	Т	Т	Т	T

(Table 2.2)

ΕΛΛΗΝΙΚΟ ΜΕΣΟΓΕΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΗΛΕΚΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (7.021)

Ο πίνακας Table 2.2 αποδεικνύει την ορθότητα και με τον κανόνα της απόσπασης (modus pones) αποδείξαμε ότι ο τύπος που δημιουργήθηκε είναι ταυτολογία.

Άσκηση 3

Να κάνετε την άσκηση 5 από σελίδα 599 του βιβλίου (ή από τις σημειώσεις την άσκηση 5 από ενότητα 2.5).

Αποδείξετε χρησιμοποιώντας πίνακες αληθείας ότι η πρόταση (p->q)<->($(\neg p)$ \lor q) είναι ταυτολογία

р	q	p->q	¬р	(¬p) ∨ q	$(p->q) \leftrightarrow ((-p) \lor q$
Т	Т	Т	F	T	Т
Т	F	F	F	F	Т
F	Т	Т	Т	T	Т
F	F	Т	Т	Т	Т

(Table 3.1)

Ο πίνακας Table 3.1 αποδεικνύει την ορθότητα και με τον κανόνα της απόσπασης (modus pones) αποδείξαμε ότι ο τύπος $(p-q)^{-}(-p)^{-}q)$ είναι ταυτολογία.

και η πρόταση **(p ^v q) <-> (¬p [^] ¬q)** είναι αντίφαση.

р	q	p V q	¬p	¬q	(¬p) ^(¬q)	$(p \lor q) \longleftrightarrow ((\neg p)^{\wedge}(\neg q))$
Т	Т	Т	F	F	F	F
Т	F	Т	F	Т	F	F
F	Т	Т	T	F	F	F
F	F	F	Т	T	Т	F

(Table 3.2)

Ο πίνακας Table 3.2 δεν αποδεικνύει ορθότητα και με τον κανόνα της απόσπασης (modus pones) να μην επαληθεύεται εδώ αποδείξαμε ότι ο τύπος ($\mathbf{p} \lor \mathbf{q}$) <-> ($\neg \mathbf{p} \land \neg \mathbf{q}$) είναι αντίφαση.