Vata processing for lot

Sandor Markon Kobe Institute of Computing

What to do with your data in the cloud?

- * Pata: capture send collect now what???
- * Convert "data" into "information"
- * Convert "information" into "knowledge"
- * Convert "knowledge" into "action"

Temporal data

Time series: evidence of some process going on Usual task: prediction

What to do with time series?

- * Clean up the dirty data:
 noise
 outliers
 missing data
- * Visualize it
- * Predict the future

Vata with outliers

Pata with outliers

The spikes are not real data

Why can we predict?

- * Pata is generated by some process
- * Usual assumption: deterministic + noise

Time series in Python

- * Numerics: numpy, scipy
- * Plotting: matplotlib
- * Time series: pandas http://pandas-docs.github.io/pandas-docs-travis/
- * Prediction (statistical): pyflux http://www.pyflux.com
- * Prediction (Al): FB Prophet

https://arnesund.com/2017/02/26/using-facebook-prophet-forecasting-library-to-predict-the-weather/

Healthy

Image data

Photos, videos: evidence of some status Usual task: classification

ICTP Workshop on Open Source Solutions for the Internet of Things, Jun 25-29, 2017

Images + Python + Al

- * Basics: OpenCV
- * Image features: Mahotas
- * Classification: milk

(or scikit-learn: http://scikit-learn.org/stable/)

Simple Al for images

- * Generate numerical feature vectors
- * Select part of the images as a training set:

 Np positive samples

 Nn negative samples
- * Train a classifier with the training set
- * Test it with the rest of the data

negatives

Features

positives

Features

positives

Neural network

- * Feed features to input layer
- * Calculate hidden and output layer activations through connection weights
- * Compare output with known correct output
- * Adjust weights until output becomes correct for all input samples

Classification

- * After training, the neural network classifies correctly the training samples
- * Hopefully it will also correctly classify unknown data
- * Some common problems (and many others...):
 - * overfitting (can classify only the training set)
 - * poor flexibility (too simple for the task)