Business Report Capstone Project LI_BFSI_01+Life+Insurance+Sales

Final Report submission

Date: 20-Jan-2023

Created by Amit Jain

Table of Contents

List of	Figure	4
1.	Introduction of the business Problem	5
1.1	Defining Problem Statement:	5
1.2	Need of the study/project:	5
2.	Data Export :	5
2.1	Visual inspection of data (rows, columns, descriptive details):	5
2.2	Understanding of attributes (variable info, renaming if required):	6
3.	Exploratory data analysis	7
3.1	Addition of new variables (if required)	7
3.2	Missing Value treatment (if applicable)	8
3.3	Duplicate checks:	9
3.4	Removal of unwanted variables (if applicable).	9
3.5	Outlier removal (if applicable):	10
3.6	Univariate Analysis	10
3.6.1	Taking counts for each Categorical field:	10
3.6.2	Merge similar categorical values:	11
3.6.3	Generate Histogram and Boxplot for Sample data:	13
3.6.4	Check data skewness:	14
3.7	Bivariate Analysis	15
3.8	Multivariate Analysis	19
4.	Data Preparation (Variable transformation / Split the data)	21
4.1	Numeric Variable Transformation:	21
4.2	Categorical Variable Transformation (Encoding)	21
4.3	Data Split: Split the data into train and test (70:30)	22
5.	Model building and interpretation:	22
5.1	SKLearn Linear Model:	22
5.1.1	Action:	22
5.1.2	Equation:	23
5.1.3	Performance parameters:	23
5.1.4	Feature importance	23
5.2	Building Linear Model with Scaled parameters :	24
5.2.1	Action:	24

5.2.2	Equation:	24
5.2.3	Performance parameters:	24
5.3	Building Stats Model:	25
5.3.1	Action:	25
5.3.2	Performance parameters:	26
5.3.3	Feature Importance:	26
5.4	Building Multiple Stats Model to eliminate non affecting fields:	26
5.4.1	Stats Model for fields with lower value of VIF:	26
5.4.1.1	Performance parameters:	27
5.4.1.2	Stats Model for fields with Lower P value and remove other fields:	28
5.4.1.3	3 Action:	28
5.4.1.4	Performance parameters:	29
5.4.1.5	5 Equation and interpretation:	29
5.5	Decision Tree Model	29
5.5.1	Action:	29
5.5.2	Feature Importance :	30
5.5.3	Performance parameters:	30
5.6	Random Forest Regressor Model	31
5.6.1	Action:	31
5.6.2	Feature Importance:	31
5.6.3	Performance parameters:	32
5.7	Artificial Neural Network Regressor	32
5.7.1	Action:	32
5.7.2	Feature Importance:	32
5.7.3	Performance parameters:	32
ó.	Model Tuning and business implication.	32
5.1	Bagging Regressor (Random Forest should be applied for Bagging)	33
5.1.1	Action:	33
5.1.2	Feature Importance:	33
5.1.3	Performance parameters:	33
5.2	Hyper parameter tuning for random forest	33
5.2.1	Action:	33
5.2.2	Feature Importance :	33

6.2.3	Performance parameters:	34
6.3	Hyper parameter tuning for Decision Tree Regressor	34
6.3.1	Action:	34
6.3.2	Feature Importance :	34
6.3.3	Performance parameters:	35
7.	Interpretation of the most optimum model and its implication on the business	35
8.	Business insights , Recommendations	36
8.1	Business insights from EDA	37
8.2	Business benefits:	37
8.3	Improvement Area and recommendations:	37
	List of Figure	
Figu	re 1 Boxplot	10
Figu	re 2 : Histogram and Boxplot	13
Figu	re 3 Mean, Count and Sum graph for categorical fields	15
_	re 4 heat Map	
Figu	re 5 pair plot against AgentBonus per policy	20
Figu	re 6 Scatter plot for Prediction on Test data Figure 7 Scatter plot for Prediction on Train data	23
Figu	re 8 Scatter plot for Prediction on Scaled Test data Figure 9 Scatter plot for Prediction on Scaled train data	24
Figu	re 10 Scatter Plot for Predicted values on Test data set	26
Figu	re 11 Decision Tree Feature Importance	30
Figu	re 12 Random Forest Feature Importance	31
Figu	re 13 Best Param Random Forest Feature Importance	33
Figu	re 14 Best feature Decision Tree Tunned Param	34

1. Introduction of the business Problem

Introduction: This report explains the business requirements and provide the detailed solution based on the data provided for each problem statement. given in the assignment.

1.1 Defining Problem Statement:

"The dataset belongs to a leading life insurance company. The company wants to predict the bonus for its agents so that it may design appropriate engagement activity for their high performing agents and upskill programs for low performing agents are most important."

Dataset for Problem: Sales.xlsx

To understand the problem, Life insurance Company has given randomly collected sample of 4520 Customer records data in the sales.xlsx file, which have pattern of the Customer information about, their purchased Insurance Plans, their tenure with Insurance company, Sum insured and some more information about customer. Company has also given information about AgentBonus given to insurance company Agents who made customer purchase their plans.

Insurance company wants to analyze this sample data and Predict Bonus for their agents, based on past sample data, so that they can understand more about internal Agents, who bring sell to the Company. Company also want to know, if there are any low performing Agents, which requires any special training to increase growth or if they need any assistance. Company also want to build environment to encourage Agents, who are very good in selling plans, and motivate others by example of giving rewards to good performing Agents.

1.2 Need of the study/project:

It is very important for any company to know their Customers, at the same time its equally important to know their own employees, who serve end Customers. This is a very generic problem as well as requirement, specially in Insurance and Sales sectors to know their own employees, identifying good performing Agents/Sales person and low performing employees. So that they can know own capacity and can plan for the future growth. And based on this analysis, they can deploy their good performing Agents/Sales person in tough market and plan for good trainings to up scaling low performing employees.

2. Data Export:

2.1 Visual inspection of data (rows, columns, descriptive details):

Import the data: Imported the data using Python notebooks and analyzed the effects of Education and Occupations over salary field. This is how the data look like:

	CustID	AgentBonus	Age	CustTenure	Channel	Occupation	EducationField	Gender	ExistingProdType	Designation	NumberOfPolicy	Marital Status	D
0	7000000	4409	22.0	4.0	Agent	Salaried	Graduate	Female	3	Manager	2.0	Single	
1	7000001	2214	11.0	2.0	Third Party Partner	Salaried	Graduate	Male	4	Manager	4.0	Divorced	
2	7000002	4273	26.0	4.0	Agent	Free Lancer	Post Graduate	Male	4	Exe	3.0	Unmarried	
3	7000003	1791	11.0	NaN	Third Party Partner	Salaried	Graduate	Fe male	3	Executive	3.0	Divorced	
4	7000004	2955	6.0	NaN	Agent	Small Business	UG	Male	3	Executive	4.0	Divorced	

Data dictionary:

CustID =>Unique customer ID

AgentBonus =>Bonus amount given to each agents in last month

Age =>Age of customer

CustTenure =>Tenure of customer in organization

Channel =>Channel through which acquisition of customer is done

Occupation =>Occupation of customer

EducationField =>Field of education of customer

Gender =>Gender of customer

ExistingProdType =>Existing product type of customer

Designation =>Designation of customer in their organization

NumberOfPolicy =>Total number of existing policy of a customer

MaritalStatus =>Marital status of customer

MonthlyIncome =>Gross monthly income of customer

Complaint =>Indicator of complaint registered in last one month by customer

ExistingPolicyTenure =>Max tenure in all existing policies of customer

SumAssured =>Max of sum assured in all existing policies of customer

Zone =>Customer belongs to which zone in India. Like East, West, North and South

PaymentMethod =>Frequency of payment selected by customer like Monthly, quarterly, half yearly and yearly

LastMonthCalls =>Total calls attempted by company to a customer for cross sell

CustCareScore => Customer satisfaction score given by customer in previous service call

2.2 Understanding of attributes (variable info, renaming if required):

Data description:

	count	unique	top	freq	mean	std	min	25%	50%	75%	max
CustID	4520.0	NaN	NaN	NaN	7002259.5	1304.955938	7000000.0	7001129.75	7002259.5	7003389.25	7004519.0
AgentBonus	4520.0	NaN	NaN	NaN	4077.838274	1403.321711	1605.0	3027.75	3911.5	4867.25	9608.0
Age	4251.0	NaN	NaN	NaN	14.494707	9.037629	2.0	7.0	13.0	20.0	58.0
CustTenure	4294.0	NaN	NaN	NaN	14.469027	8.963671	2.0	7.0	13.0	20.0	57.0
Channel	4520	3	Agent	3194	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Occupation	4520	5	Salaried	2192	NaN	NaN	NaN	NaN	NaN	NaN	NaN
EducationField	4520	7	Graduate	1870	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Gender	4520	3	Male	2688	NaN	NaN	NaN	NaN	NaN	NaN	NaN
ExistingProdType	4520.0	NaN	NaN	NaN	3.688938	1.015769	1.0	3.0	4.0	4.0	6.0
Designation	4520	6	Manager	1620	NaN	NaN	NaN	NaN	NaN	NaN	NaN
NumberOfPolicy	4475.0	NaN	NaN	NaN	3.565363	1.455926	1.0	2.0	4.0	5.0	6.0
MaritalStatus	4520	4	Married	2268	NaN	NaN	NaN	NaN	NaN	NaN	NaN
MonthlyIncome	4284.0	NaN	NaN	NaN	22890.309991	4885.600757	16009.0	19683.5	21606.0	24725.0	38456.0
Complaint	4520.0	NaN	NaN	NaN	0.287168	0.452491	0.0	0.0	0.0	1.0	1.0
ExistingPolicyTenure	4336.0	NaN	NaN	NaN	4.130074	3.346386	1.0	2.0	3.0	6.0	25.0
SumAssured	4366.0	NaN	NaN	NaN	619999.699267	246234.82214	168536.0	439443.25	578976.5	758236.0	1838496.0
Zone	4520	4	West	2566	NaN	NaN	NaN	NaN	NaN	NaN	NaN
PaymentMethod	4520	4	Half Yearly	2656	NaN	NaN	NaN	NaN	NaN	NaN	NaN
LastMonthCalls	4520.0	NaN	NaN	NaN	4.626991	3.620132	0.0	2.0	3.0	8.0	18.0
CustCareScore	4468.0	NaN	NaN	NaN	3.067592	1.382968	1.0	2.0	3.0	4.0	5.0

Insights:

- 1. Agent Bonus: Bonus given to Agents, as well as Target variable. Minimum bonus given as 1605 and Max is 9608
- 2. Age: Customers of all age group from 2 years to 58 years, there are also customers with 0 Age, needs to be corrected
- 3. Customer Tenure: Many customers associated with Company from their Birth
- 4. Existing Prod Type: There are only 6 insurance products
- 5. Number of Policy: Customer can have multiple policies, from insurance company, for their family members or Self, if it is blank, that needs to be corrected
- 6. Monthly income Ranging between about 16K to 38K, if it is blank, needs to be corrected
- 7. Complaint: 0 to 1 complaint in last one month
- 8. Gender showing as 3; this needs to be corrected
- 9. Occupation: Different Occupations, there can be multiple business with same name, needs to be corrected
- 10. Education: can have similar names of degrees, needs to be corrected
- 11. Designation: can be duplicate
- 12. existing Policy tenure. if it is blank needs to be corrected
- 13. Sum Assured: if it is blank needs to be corrected
- 14. Customer care score. needs to be corrected if it is blank
- 15. Customer id can be removed from data, as it will not be required for Bonus prediction
- 16. Channel, occupation, Education, Gender, Designation, Marital Status and all other Object type fields should be converted to Numeric format in order to use it in prediction Model.

3. Exploratory data analysis

3.1 Addition of new variables (if required)

AgentBonus is the amount of Bonus given to Insurance agents based, what policy he/she has sold to customers, and what profit Company might have taken. Since one customer can buy multiple policies together, so it will not be fare to Compare AgentBonus amount of one agent with another.

May be AgentBonus for one agent is more (because hist Customer bought 5 policies together). but Average of per policy of that bonus amount can be lower than Single Policy of bigger SumAssured.

> So lets create additional Field, "AgentBonus Per Policy", which should be calculated by:

```
AgentBonus Per Policy = AgentBonus/NumberOfPolicy
```

Also lets create a new field called SumAssured Per Policy, which should be calculated by:

```
SumAssured Per Policy = SumAssured/NumberOfPolicy
```

Now we have got this list of fields, which in new data set:

3.2 Missing Value treatment (if applicable)

We have taken NULL counts for all of our attributes and NULL value counts are as follows:

CustID	0
AgentBonus	0
Age	269
CustTenure	226
Channel	0
Occupation	0
EducationField	0
Gender	0
ExistingProdType	0
Designation	0
NumberOfPolicy	45
MaritalStatus	0
MonthlyIncome	236
Complaint	0
ExistingPolicyTenure	184
SumAssured	154
Zone	0
PaymentMethod	0
LastMonthCalls	0
CustCareScore	52
AgentBonus_Per_Policy	45
SumAssured_Per_Policy	199
dtype: int64	

```
Total NULL values in data: 1410
Total data elements in Sample data are: 99440
```

1410 is the total Null counts, which includes NULL counts for our 2 newly created fields as well, which are:

```
AgentBonus_Per_Policy 45
SumAssured Per Policy 199
```

If we subtract this count, then actual total number of missing values count is 1166

NULL Treatment one by one for each NULL field:

- > Treating NULL Age: Age should be Greater than or Equals to Customer Tenure as well as Existing Policy Tenure. So let's give first preference to Customer Tenure and then existing Policy Tenure for correcting NULL "Age". There were total 269 NULL records in Age field. We will consider Policy Started, as child gets Birth and Age should be replaced with "CustomerTenure" and then "ExistingPolicyTenure".
- Treating NULL CustomerTenure: We will replace NULL "CustomerTenure" field with "ExistingPolicyTenure" and if "ExistingPolicyTenure" is also not available then we should replace "CustomerTenure" with "Age" field.
- > Treating "Existing Policy tenure": Similarly, if Cust "Existing Policy tenure" is NULL, then replace it with "Customer Tenure" and second preference will be to replace it with "Age"
- > Treating "NumberOfPolicy": Best way to Treat this field is to replace NULL with Mode.
- Treating NULLs for "AgentBonus_Per_Policy": Since we have already computed NumberOfPolicy Field, then for treating missing values for "AgentBonus_Per_Policy", we will again use our formula for this field. df2['AgentBonus_Per_Policy']=df2['AgentBonus']/df2['NumberOfPolicy'] and NULL has been treated.

- > Treating NULL for "MonthlyIncome" and "SumAssured": Best way to Treat this field is to use KNN Imputers for missing NULL values. I have used KNNImputer from SKLearn library and used this method for imputing missing values for "MonthlyIncome" and "SumAssured".
- > Treating NULL for "CustCareScore": I have used Median for this value and treating missing values for "CustCareScore".

Now we are left with only SumAssured field , which have NULL values, but we will impute this, as we are using SumAssured_per_policy field instead, which we have already corrected and we are going to drop field SumAssured in our next Step.

3.3 Duplicate checks:

We checked duplicity in CustID field, and we did not find any Duplicate records. Total Count for Duplicate records are: 0

3.4 Removal of unwanted variables (if applicable)

Since We have used AgentBonus and SumAssured for building our new field, so we don't need them any more for our analysis, Also We don't need field CustId for our analysis, as it will not add any benefits in our analysis. So we will drop these 3 fields from our data: **AgentBonus**, **SumAssured**, **CustID**

And we have added these 2 fields in our data: AgentBonus_per_policy, SumAssured_per_policy

We will also check for co-relations, in further sections and if we find that any field don't have relation with Target field , then we will drop those fields as well.

	Complaint	LastMonthCalls	CustCareScore
Age	0.019496	0.123837	0.029853
CustTenure	0.00685	0.142982	0.013919
ExistingProdType	-0.003486	0.033191	0.00411
NumberOfPolicy	-0.016014	0.075138	-0.001005
MonthlyIncome	-0.004815	0.34393	0.035751
Complaint	1	-0.02632	-0.003814
ExistingPolicyTenure	-0.005082	0.126951	0.013532
LastMonthCalls	-0.02632	1	0.006386
CustCareScore	-0.003814	0.006386	1
AgentBonus_Per_Policy	0.025091	0.038717	-0.005319
SumAssured_Per_Policy	0.023838	0.03474	-0.013488

We have built co-relation matrix for all the fields and checked it's relation with Targeted field. This is co-relation with AgentBonus:

Complaint: 0.025091 LastMonthCalls: 0.038717 CustCareScore: -0.005319

we have checked that following fields have very minute impact on targeted fields and these can be dropped as well:

3.5 Outlier removal (if applicable):

We have analyzed data from the boxplot:

Figure 1 Boxplot

Action: We do see outliers in about each of the field of sample data, but data scales are different,

Example: Age have limited discrete values, AgentBonus will be always lesser than SumAssured and it will be just a fraction of percentage of SumAssured. Customer Tenure, Existing Policy tenure, and other Age type fields are also discrete in nature. So I would not like to treat outliers, as People have different income slaves and can take multiple or Single Policy as well. And I really want to understand nature of other fields, how they are affecting our target field, AgentBonus, so we will not treat the outliers

3.6 Univariate Analysis

3.6.1 Taking counts for each Categorical field:

We have taken counts for all the Categorical fields in Sample data set and this is the result for it:

```
Field name is
               CHANNEL: and Count for this categories are 3
Online
                         468
                         858
Third Party Partner
                        3194
Agent
               OCCUPATION: and Count for this categories are
Field name is
Free Lancer
                      2
Laarge Business
                    153
                    255
Large Business
Small Business
                   1918
Salaried
                   2192
Field name is EDUCATIONFIELD: and Count for this categories are
MBA
                    74
UG
                   230
```

```
252
Post Graduate
Engineer
                  408
Diploma
                  496
Under Graduate
                 1190
Graduate
                 1870
Field name is GENDER: and Count for this categories are 3
Fe male
          325
         1507
Female
Male
          2688
Field name is DESIGNATION: and Count for this categories are 6
Exe
                  127
                  226
VP
AVP
                  336
Senior Manager
                  676
Executive
                 1535
Manager
                 1620
Field name is MARITALSTATUS: and Count for this categories are
Unmarried 194
Divorced
            804
Single
            1254
Married
           2268
Field name is ZONE : and Count for this categories are
          6
South
East
          64
North
        1884
        2566
West
Field name is PAYMENTMETHOD: and Count for this categories are
Quarterly
               76
               354
Monthly
              1434
Yearly
Half Yearly 2656
```

Insights:

- 1. Channel as "Agent" has maximum count of 3194, and least no of channel is Online. with 468
- 2. OCCUPATION: Maximum Policy Holder are Salaried Employees, where as free Lancer and Large business people are very less in Insurance.
- 3. OCCUPATION: "Laarge Business" and "Large Business" are same, it needs to be merged.
- 4. EDUCATIONFIELD: "UG" and "Under Graduate" are same category and needs to merged.
- 5: EDUCATIONFIELD: Highest Policy holders are Graduate and Least are MBA degree Holder.
- 6: GENDER: "Fe male" and "Female" are same, and needs to merge into one category
- 7. Maximum policy Holders are male with 2688 Count.
- 8. DESIGNATION: Exe and Executive are same and can be merge into one Category.
- 9. South Zone and followed by east zone have very less number of customers, need to work in that area
- 10. Customers like to pay half yearly and yearly payments method most for the payment of their premiums.

3.6.2 Merge similar categorical values:

From taking counts of each Categorical field, we have seen that , there are some values, which we can merge into Single value. Example:

OCCUPATION: "Laarge Business" and "Large Business can be merged into Single field "Large business"

EDUCATIONFIELD: "UG" and "Under Graduate" can be merged into "Under graduate" GENDER: "Fe male" and "Female" are same and should be merged into "Female" DESIGNATION: Exe and Executive are same and should be merged into "Executive"

Taking counts for each Categorical fields after merging similar values:

```
Field name is CHANNEL: and Count for this categories are
Online
                       468
Third Party Partner
                       858
                      3194
Agent
Name: Channel, dtype: int64
Field name is OCCUPATION: and Count for this categories are
Free Lancer
                    2
Large Business
                  408
Small Business
                 1918
Salaried
                 2192
Field name is EDUCATIONFIELD: and Count for this categories are
MBA
                   74
                  252
Post Graduate
Engineer
                  408
Diploma
                 496
Under Graduate
                1420
Graduate
                 1870
Field name is GENDER: and Count for this categories are 2
Female 1832
         2688
Male
Field name is DESIGNATION: and Count for this categories are 5
VP
                  226
AVP
                  336
Senior Manager
                  676
                 1620
Manager
Executive
                 1662
Field name is MARITALSTATUS: and Count for this categories are 4
Unmarried
            194
Divorced
            804
           1254
Single
Married
           2268
Field name is ZONE: and Count for this categories are 4
South
          6
East
          64
North
       1884
West 2566
Field name is PAYMENTMETHOD: and Count for this categories are 4
Quarterly
              76
               354
Monthly
Yearly
              1434
Half Yearly
              2656
```

Insights:

- 1. Maximum number of policies sold by Agents and very less policies sold by Online channel.
- 2. Maximum number of policy holders are Salaried with count of 2192 records and least number of Policy holders are free Lancer.
- 3. Maximum number of policy holders are Graduate in Education with count of 1870 records, and MBA holders are least with no of 74.
- 4. Male are Maximum number of policy holders as compared to female records.

- 5. Married people are Maximum number of policy holders whereas unmarried people don't prefer taking Insurance policy.
- 6. There are maximum policies sold in West region of the country, whereas South reason have very less 6 policies sold
- 7. Maximum number of policy holders prefer to pay Half yearly premiums .

3.6.3 Generate Histogram and Boxplot for Sample data:

Figure 2: Histogram and Boxplot

Insights:

- 1. Data is not 100% normally distributed.
- Age: we can have any range of Age for customer, maximum Age is 58 years in data, which is valid.
- CustomerTenure is about similar to Age field, Customertenure can also range from 1 year to Maximum of Age limit of the customer.
- Number of Policy is a discrete field, which have 6 possible values in it, maximum customers have taken 4 policies.
- Monthly Income field is a continuous field, and its ranging from 15K to about 40k, which is normal. Data is right Skewed.
- Existing Policy tenure shows maximum Customer are part of under 10 years and there are a very few customers from 10 to 58 years of existing Policies.
- AgentBonus_per_policy and SumAssured_per_policy is Continuous fields, and have similar distribution of data, this data is also right skewed.
- 2. About all the fields have some outliers.

3.6.4 Check data skewness:

Age	0.960101
CustTenure	0.928995
ExistingProdType	-0.401100
NumberOfPolicy	-0.108161
MonthlyIncome	1.373508
ExistingPolicyTenure	3.440053
AgentBonus_Per_Policy	2.144651
SumAssured_Per_Policy	2.373659
dtype: float64	

Insights:

- 1. data is not 100% Normally distributed
- 2. About all data have Outliers, and which is possible because, insurance Policies, can be different for many customers, depending on their Need, worth and sum insured.
- 3. All data is Slightly Right Skewed .

Figure 3 Mean, Count and Sum graph for categorical fields

I have performed, Bivariate analysis of all other the fields, with respect to Agent Bonus per policy as this is our target variable, and take Mean, Counts and Sum of Categorical fields.

```
Field name is CHANNEL: and Distinct Count for this Column is 3
and it's distinct categories are ['Agent' 'Third Party Partner' 'Online']
Average AgentBonus for each categories of this Column are: Channel
Third Party Partner
                     1419.576690
Agent
                      1453.390106
Online
                      1456.468768
Total sum value of AgentBonus for each category for Column are : Channel
                     6.816274e+05
Third Party Partner 1.217997e+06
                      4.642128e+06
Agent
Field name is OCCUPATION: and Distinct Count for this Column is 4
and it's distinct categories are ['Salaried' 'Free Lancer' 'Small Business' 'La
rge Business']
Average AgentBonus for each categories of this Column are: Occupation
Free Lancer 1174.416667
Large Business 1337.526348
Small Business 1426.108568
Salaried 1486.503817
Salaried
                1486.503817
Total sum value of AgentBonus for each category for Column are : Occupation
Free Lancer 2.348833e+03
Large Business 5.457107e+05
Small Business 2.735276e+06
Salaried
                3.258416e+06
Field name is EDUCATIONFIELD: and Distinct Count for this Column is 6
and it's distinct categories are ['Graduate' 'Post Graduate' 'Under Graduate' '
Engineer' 'Diploma' 'MBA']
Average AgentBonus for each categories of this Column are: EducationField
Engineer
                1306.026511
Under Graduate 1416.263650
MBA
                1432.172297
                1454.777688
Diploma
                 1491.099947
Graduate
Post Graduate 1515.442857
Total sum value of AgentBonus for each category for Column are: EducationField
MBA
                1.059808e+05
Post Graduate 3.818916e+05
Engineer
                5.328588e+05
                 7.215697e+05
Diploma
Under Graduate 2.011094e+06
Graduate
                2.788357e+06
Field name is GENDER: and Distinct Count for this Column is 2
and it's distinct categories are ['Female' 'Male']
Average AgentBonus for each categories of this Column are: Gender
Female 1432.857442
        1457.126990
Male
Total sum value of AgentBonus for each category for Column are : Gender
Female 2.624995e+06
Male 3.916757e+06
```

```
Field name is DESIGNATION: and Distinct Count for this Column is 5
and it's distinct categories are ['Manager' 'Executive' 'VP' 'AVP''Senior Manag
Average AgentBonus for each categories of this Column are: Designation
Executive 1234.364811
Manager
                1405.986770
Senior Manager 1607.296031
                1897.170685
AVP
VP
                2161.760324
Total sum value of AgentBonus for each category for Column are : Designation
                4.885578e+05
AVP
                 6.374494e+05
Senior Manager 1.086532e+06
Executive
                2.051514e+06
                2.277699e+06
Manager
Field name is MARITALSTATUS: and Distinct Count for this Column is 4
and it's distinct categories are ['Single' 'Divorced' 'Unmarried' 'Married']
Average AgentBonus for each categories of this Column are: MaritalStatus
           1213.452177
Divorced
           1348.409622
Unmarried
Single
            1452.517145
Married
           1535.753380
Total sum value of AgentBonus for each category for Column are : MaritalStatus
Unmarried 2.615915e+05
Divorced
           9.756155e+05
           1.821456e+06
Single
Married
           3.483089e+06
Field name is ZONE: and Distinct Count for this Column is 4
and it's distinct categories are ['North' 'West' 'East' 'South']
Average AgentBonus for each categories of this Column are: Zone
South 1337.038889
North 1423.996665
East 1427.593229
West 1465.141959
Total sum value of AgentBonus for each category for Column are : Zone
South 8.022233e+03
       9.136597e+04
East
North 2.682810e+06
West 3.759554e+06
Field name is PAYMENTMETHOD: and Distinct Count for this Column is 4
and it's distinct categories are ['Half Yearly' 'Yearly' 'Quarterly' 'Monthly']
Average AgentBonus for each categories of this Column are: PaymentMethod
             1148.781579
Quarterly
Yearly
              1438.049361
Monthly
             1443.254661
Half Yearly 1461.359130
Total sum value of AgentBonus for each category for Column are : PaymentMethod
Quarterly 8.730740e+04
             5.109121e+05
Monthly
Yearly
             2.062163e+06
Half Yearly 3.881370e+06
```

Insights:

Based on the Above counts and unique values of Different Categorical fields of the data, we can come to this conclusion:

- 1. Field name is CHANNEL: and Distinct Count for this Column is 3
- and it's distinct categories are ['Agent' 'Third Party Partner' 'Online']
- There are maximum no of insurance taken from Agents with no of 3194, and least no of insurance taken by online channel with count of 468.
- > On an average all three type of channels receiving about similar bonus, there is very slight difference in Bonus amount, if channel is different.
- > maximum total Bonus received by Agents Categories and Online policy giving agents get least amount of Bonus.
- 2. Field name is OCCUPATION: and Distinct Count for this Column is 4
- > it's distinct categories are ['Salaried' 'Free Lancer' 'Small Business' 'Large Business']
- Salaried person are among highest Insurance holder with count of 2192, whereas Free lancer taken very less insurance of only 2 records in sample data
- Again, on an average Bonus remain about same for all agents, who sold policies to any occupation of customer, though Bonus is highest for Salaries Customer.
- Undouble Total bonus for Agents, who sold policy to Salaried Customers are maximum, because Salaried person are maximum in numbers as well.
- 3. Field name is EDUCATIONFIELD: and Distinct Count for this Column is 6
- and it's distinct categories are ['Graduate' 'Post Graduate' 'Under Graduate' 'Engineer' 'Diploma' 'MBA']
- there are maximum Customers are Graduate, whereas MBA holder are least.
- 4. Field name is GENDER: and Distinct Count for this Column is 2
- and it's distinct categories are ['Female' 'Male']
- Maximum Customers are Male
- 5. Field name is DESIGNATION: and Distinct Count for this Column is 5
- > and it's distinct categories are ['Manager' 'Executive' 'VP' 'AVP' 'Senior Manager']
- Counts are each categories of this column are :
- > maximum customers are Executives and least customers are on VP post, this is obvious data.
- 6. Maximum Average bonus given to Agents, who sold policies to VP, it seems, VP takes most Sum insured, thats why Bonus is high for them.
- 7. Field name is MARITALSTATUS: and Distinct Count for this Column is 4
- > and it's distinct categories are ['Single' 'Divorced' 'Unmarried' 'Married']
- > Counts are each categories of this column are :
- Married person baught maximum policies.
- 8. Field name is ZONE: and Distinct Count for this Column is 4
- and it's distinct categories are ['North' 'West' 'East' 'South']
- > Counts are each categories of this column are :
- maximum customers belong to West region of Country with the count of 2566, whereas there are only 6 customers from South region, this is interesting data to analyze, why we have very less customers from south. Also customers from east region are also very less with no of 64.
- 9. Field name is PAYMENTMETHOD: and Distinct Count for this Column is 4
- > and it's distinct categories are ['Half Yearly' 'Yearly' 'Quarterly' 'Monthly']
- Counts are each categories of this column are :
- > Customers like to give EMI for policy maximumm is half yearly and then yearly.

3.8 Multivariate Analysis

Heat Map:

Figure 4 heat Map

Co-relation Matrix:

	Age	CustTenure	${\bf Existing Prod Type}$	NumberOfPolicy	MonthlyIncome	ExistingPolicyTenure	AgentBonus_Per_Policy	SumAssu
Age	1.000000	0.359631	0.076609	0.053143	0.347942	0.263640	0.211933	
CustTenure	0.359631	1.000000	0.115561	0.066859	0.368522	0.347473	0.207415	
ExistingProdType	0.076609	0.115561	1.000000	0.149862	0.191194	0.009800	-0.085003	
NumberOfPolicy	0.053143	0.066859	0.149862	1.000000	0.128328	0.021839	-0.733911	
MonthlyIncome	0.347942	0.368522	0.191194	0.128328	1.000000	0.410641	0.163630	
ExistingPolicyTenure	0.263640	0.347473	0.009800	0.021839	0.410641	1.000000	0.188274	
AgentBonus_Per_Policy	0.211933	0.207415	-0.085003	-0.733911	0.163630	0.188274	1.000000	
SumAssured_Per_Policy	0.197145	0.193545	-0.072151	-0.683045	0.154269	0.185564	0.937796	
4								+

Insights:

- 1. AgentBonus Per Policy have very strong relationship with about all of the other fields
- 2. As Sum insured of the Customer increases, Bonus also increases.
- 3. Bonus increased with the experience of the Age of the Customer, Customer tenure, Monthly income of the Customer, as well as Existing policy tenure,
- 4. There is very minute positive relationship between Agent Bonus with Existing Prod type, Number of Policies, and Customer care Score.
- 5. CustCareScore, LastMonthCalls and Compaint dont have any relation with any other field, its almost 0 corelation with every other field. So we have dropped them in initial steps

Pair plot:

Figure 5 pair plot against AgentBonus per policy

insights:

1. there is clear separation of Bonus for Agents, as all variables increasing, Bonus also increasing.

4. Data Preparation (Variable transformation / Split the data)

We have seen the scale from data description, that data have different kind of Scales for fields in the data set. So, in order to build a Linear Regression Model, we can Scale the variables using different methods available. Variable transformation is a way to make the data work better in your model. Data variables can have two types of form: numeric variable and categorical variable, and their transformation should have different approaches.

4.1 Numeric Variable Transformation:

Numeric Variable Transformation is turning a numeric variable to another numeric variable. Typically it is meant to change the scale of values and/or to adjust the skewed data distribution to Gaussian-like distribution through some "monotonic transformation".

There are many ways, we can achieve Numeric variable transformation or Scale them:

Min-max scaling, Logarithmic transformation, Standardization, RankGauss etc

In our Model, we have built 2 separate data set:

df_scaled for Transformed numeric fields

df_new for another data set for Non transformation of existing Numeric fields, basically use as is.

I have used z-score from Sklearn libraries for transforming all Numeric fields. And once this is done, we will us it in Linear transformation, and we will check, if transformation is reducing noise from the Model or not.

4.2 Categorical Variable Transformation (Encoding)

Categorical variable transformation is turning a categorical variable to a numeric variable. Categorical variable transformation is mandatory for most of the machine learning models because they can handle only numeric values. It is also called encoding,

In machine learning, we usually deal with datasets that contain multiple labels in one or more than one column. These labels can be in the form of words or numbers. To make the data understandable or in human-readable form, the training data is often labelled in words.

Label Encoding refers to converting the labels into a numeric form so as to convert them into the machine-readable form. Machine learning algorithms can then decide in a better way how those labels must be operated. It is an important preprocessing step for the structured dataset in supervised learning.

After performing Encoding . this is how the data looks like for categorical fields :

```
Columns is: Channel
['Agent', 'Third Party Partner', 'Online']
Categories (3, object): [0 2 1]
Columns is: Occupation
['Salaried', 'Free Lancer', 'Small Business', 'Large Business']
Categories (4, object): [2 0 3 1]
Columns is: EducationField
['Graduate', 'Post Graduate', 'Under Graduate', 'Engineer', 'Diploma', 'MBA']
Categories (6, object): [2 4 5 1 0 3]

Columns is: Gender ['Female', 'Male']
Categories (2, object): [0 1]
Columns is: Designation ['Manager', 'Executive', 'VP', 'AVP', 'Senior Manager']
Categories (5, object): [2 1 4 0 3]

Columns is: MaritalStatus ['Single', 'Divorced', 'Unmarried', 'Married']
Categories (4, object): [2 0 3 1]
```

```
Columns is: Zone ['North', 'West', 'East', 'South']
Categories (4, object): [1 3 0 2]

Columns is: PaymentMethod ['Half Yearly', 'Yearly', 'Quarterly', 'Monthly']
Categories (4, object): [0 3 2 1]
```

Sample looks like this:

	Ag	e CustTenure	Channel	Occupation	EducationField	Gender	ExistingProdType	Designation	NumberOfPolicy	Marital Status	MonthlyIncome	Existing
	0 22.	4.0	0	2	2	0	3	2	2.0	2	20993	
	1 11.	2.0	2	2	2	1	4	2	4.0	0	20130	
	2 26.	4.0	0	0	4	1	4	1	3.0	3	17090	
	3 11.	2.0	2	2	2	0	3	1	3.0	0	17909	
	4 6.	4.0	0	3	5	1	3	1	4.0	0	18468	
4												.

4.3 Data Split: Split the data into train and test (70:30)

We need to split a dataset into train and test sets to evaluate how well our machine learning model performs. The train set is used to fit the model, and the statistics of the train set are known. The second set is called the test data set, this set is solely used for predictions.

Dependent variable: AgentBonus Per Policy After performing train test split, We have got 4 parts:

```
Shape for X_train is (3164, 15)
Shape for X_test is (1356, 15)
Shape for y_train is (3164, 1)
Shape for y_test is (1356, 1)
```

5. Model building and interpretation:

5.1 SKLearn Linear Model:

5.1.1 Action:

We have performed linear regression techniques from Sklearn LinearRegression library.

Following is co-efficient of Determination:

```
The coefficient for Age is 4.789430368850247
The coefficient for CustTenure is 4.759701081772676
The coefficient for Channel is -8.882960541752864
The coefficient for Occupation is 7.510211001225475
The coefficient for EducationField is -5.507046975671935
The coefficient for Gender is 2.1343057926728486
The coefficient for ExistingProdType is -15.273396744099568
The coefficient for Designation is 4.737994566790387
The coefficient for NumberOfPolicy is -159.7092491616902
The coefficient for MaritalStatus is 14.788341883378328
The coefficient for ExistingPolicyTenure is 2.6087386706276594
The coefficient for Zone is -5.627466691687209
The coefficient for PaymentMethod is 1.6127186348940015
The coefficient for SumAssured Per Policy is 0.004765571407328226
```

5.1.2 Equation:

AgentBonus_per_policy = Age * 4.789430368850247 + CustTenure * 4.759701081772676 + Channel * -8.882960541752864 + Occupation * 7.510211001225475 + EducationField * -5.507046975671935 + Gender * 2.1343057926728486 + ExistingProdType * -15.27339 6744099568 + Designation * 4.737994566790387 + NumberOfPolicy * -159.709249161690 2 + MaritalStatus * 14.788341883378328 + MonthlyIncome * 0.008683193446440198 + ExistingPolicyTenure * 2.6087386706276594 + Zone * -5.627466691687209 + PaymentMet hod * 1.6127186348940015 + SumAssured_Per_Policy * 0.004765571407328226 + 671.715 0861205953

The intercept for the model is 671.7150861205953. Intercept is the point on Y Axis, when all values of X are Zero. basically when we say, what should be the value of Y when all params are Zero

5.1.3 Performance parameters:

performance		
Param	Train Data	test Data
MAE	220.3210069	222.51949
MSE	100795.7474	100257.7218
MAPE	0.17072418	0.171265321
EVS	0.906776345	0.896495227
RMSE	316.6349977	317.48346

This is how data points look like for predicted variables:

Figure 6 Scatter plot for Prediction on Test data Train data

Figure 7 Scatter plot for Prediction on

5.1.4 Feature importance

We fit a LinearRegression model on the regression dataset and retrieve the coeff_ property that contains the coefficients found for each input variable. These coefficients can provide the basis for a crude feature importance score. This assumes that the input variables have the same scale or have been scaled prior to fitting a model.

In regression analysis, the magnitude of coefficients is not necessarily 100% related to their importance. The most common criteria to determine the importance of independent variables in regression analysis are **p-values**.

Small p-values imply high levels of importance, whereas high p-values mean that a variable is not statistically significant.

We can only use the magnitude of coefficients as a measure for feature importance when our model is penalizing variables. sklearn does not report p-values though.

5.2 Building Linear Model with Scaled parameters :

We have Scaled numeric fields from Sklearn's z-score library and built new data frame df_scaled. We used this new data frame for building Linear regression model and will check, how the model performs.

Decision tree-based models are less sensitive to scale and skew than these techniques may not contribute a lot, but for other models (e.g. neural net, SVM, linear model etc.), they could be a game changer, or for some cases even mandatory, such as the case you use penalization terms with L1/L2 norm.

5.2.1 Action:

We have performed linear regression techniques from Sklearn LinearRegression library . Following is co-efficient of Determination :

```
The coefficient for Age is 42.83962224334871
The coefficient for CustTenure is 43.253731727586946
The coefficient for Channel is -7.047067651864262
The coefficient for Occupation is 4.781586127409858
The coefficient for EducationField is -9.566226806308082
The coefficient for Gender is 1.047841452593378
The coefficient for ExistingProdType is -15.512531622244383
The coefficient for Designation is 4.601985548114451
The coefficient for NumberOfPolicy is -231.44126984310716
The coefficient for MaritalStatus is 11.3843211448863
The coefficient for MonthlyIncome is 41.482235158809694
The coefficient for ExistingPolicyTenure is 13.43519903309641
The coefficient for Zone is -5.700509672207306
The coefficient for PaymentMethod is 2.205000719314816
The coefficient for SumAssured Per Policy is 772.295331497455
```

5.2.2 Equation:

Age * 42.83962224334871 + CustTenure * 43.253731727586946 + Channel * -7.04706765 1864262 + Occupation * 4.781586127409858 + EducationField * -9.566226806308082 + Gender * 1.047841452593378 + ExistingProdType * -15.512531622244383 + Designation * 4.601985548114451 + NumberOfPolicy * -231.44126984310716 + MaritalStatus * 11.3 843211448863 + MonthlyIncome * 41.482235158809694 + ExistingPolicyTenure * 13.435 19903309641 + Zone * -5.700509672207306 + PaymentMethod * 2.205000719314816 + Sum Assured Per Policy * 772.295331497455 + 1447.1195249943657

5.2.3 Performance parameters:

The coefficient of determination R^2 of the prediction on Train set 0.9067763446568196 The coefficient of determination R^2 of the prediction on Test set 0.8964948926865648 The intercept for the model is 1447.1195249943657

Figure 8 Scatter plot for Prediction on Scaled Test data

Figure 9 Scatter plot for Prediction on Scaled train data

performance		
Param	Train Data	test Data
MAE	220.3210069	222.51949
MSE	100795.7474	100257.7218
MAPE	0.17072418	0.171265321
EVS	0.906776345	0.896495227
RMSE	317.48346	316.6349977

5.3 **Building Stats Model:**

5.3.1 Action:

OLS model works on only train and Test data set, it does not need separation of Dependent and Independent variables . We just need to specify during model building, which variable is Dependent. but Sample data don't need a separation in it. So, we have merged X and Y variables and built separate Train and Test data set .

							==
Dep. Variable: Ag	entBonus_Per_					0.9	
Model:		OLS		lj. R-squared:		0.9	
Method:				statistic:		204	
Date:				ob (F-statist		0.	
Time:	21			g-Likelihood:		-2271	
No. Observations:		3164		C:		4.546e+	
Df Residuals:		3148		C:		4.556e+	04
Df Model:		15					
Covariance Type:	nor						
		std		t		[0.025	
Intercept	671.7151	46.	634	14.404	0.000	580.280	763.15
Age .	4.7894	ø.	712	6.729	0.000	3.394	6.18
CustTenure	4.7597	ø.	726	6.559	0.000	3.337	6.18
Channel	-8.8830	7.	170	-1.239	0.215	-22.941	5.17
Occupation	7.5102	10.	200	0.736	0.462	-12.489	27.50
EducationField	-5.5070	3.	704	-1.487	0.137	-12.770	1.75
Gender	2.1343	11.	518	0.185	0.853	-20.449	24.71
ExistingProdType	-15.2734	6.	635	-2.302	0.021	-28.283	-2.26
Designation	4.7380	6.	455	0.734	0.463	-7.918	17.39
NumberOfPolicy	-159.7092	5.	825	-27.418	0.000	-171.130	-148.28
MaritalStatus	14.7883	7.	443	1.987	0.047	0.195	29.38
MonthlyIncome	0.0087	0.	002	5.480	0.000	0.006	0:01
ExistingPolicyTenure	2.6087	1.	260	2.070	0.039	0.138	5.08
Zone	-5.6275			-1.004		-16.619	5.36
				0.337		-7.772	
SumAssured_Per_Policy						0.005	0.00
 Omnibus:	1340			n-Watson:		1.952	
Prob(Omnibus):						11352.537	
Skew:		794				0.00	
Kurtosis:			Cond.			2.29e+06	

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified [2] The condition number is large, 2.29e+06. This might indicate that there are strong multicollinearity or other numerical problems.

After building OLS Model, this is the co-efficient of determinations:

Intercept	671.715086
Age	4.789430
CustTenure	4.759701
Channel	-8.882961
Occupation	7.510211
EducationField	-5.507047
Gender	2.134306
ExistingProdType	-15.273397
Designation	4.737995

NumberOfPolicy	-159.709249
MaritalStatus	14.788342
MonthlyIncome	0.008683
ExistingPolicyTenure	2.608739
Zone	-5.627467
PaymentMethod	1.612719
SumAssured Per Policy	0.004766

5.3.2 Performance parameters:

performance		
Param	Train Data	test Data
MAE	220.3210069	222.51949
MSE	100795.7474	100257.7218
MAPE	0.17072418	0.171265321
EVS	0.906776345	0.896495227
RMSE	316.6349977	317.48346

Figure 10 Scatter Plot for Predicted values on Test data set

5.3.3 Feature Importance:

In regression analysis, the magnitude of coefficients is not necessarily 100% related to their importance. The most common criteria to determine the importance of independent variables in regression analysis are p-values.

Small p-values imply high levels of importance, whereas high p-values mean that a variable is not statistically significant. We can only use the magnitude of coefficients as a measure for feature importance when our model is penalizing variables. sklearn does not report p-values though. But Stats model does give p-values .

From Stats model summary , we can see that there are high P value for many of the fields from our data set. So we can consider High Importance features are :

Age, CustomerTenure, NumberofPolicy, MonthlyIncome and SumAssured_Per_Policy And less affecting features are: PaymentMethod, Gender, Occupation, Designation etc.

5.4 Building Multiple Stats Model to eliminate non affecting fields:

5.4.1 Stats Model for fields with lower value of VIF:

With the help of calculating VIF for each Field and based on VIF value, we decide, which column can be eliminated. VIF (variance inflation factor) is used for checking multicollinearity in regression Model. its Values can range between 1 to Infinite.

We have checked VIF for each field, and taken threshold to 5. Fields with more than value of 5, can be consider to eliminate that field. We have done this exercise in a For Loop, Out of 16 fields, we have consider only these 10 fields, which have VIF value less than 5: Index(['CustTenure', 'Channel', 'EducationField', 'Gender', 'Designation', 'MaritalStatus', 'ExistingPolicyTenure', 'Zone', 'PaymentMethod', 'SumAssured Per Policy'],

VIF Values for all of above fields are:

```
VIF for CustTenure --> 3.7649121302806456

VIF for Channel --> 1.351814184733024

VIF for EducationField --> 3.013828674898219
```

```
VIF for Gender --> 2.23880673655966
VIF for Designation --> 3.6622884417664836
VIF for MaritalStatus --> 2.9365604234253677
VIF for ExistingPolicyTenure --> 2.182083152055937
VIF for Zone --> 4.306208853382339
VIF for PaymentMethod --> 1.5613624945213813
VIF for SumAssured Per Policy --> 2.890013748992411
```

Co-efficient of determination:

Intercept	97.578366
CustTenure	2.490252
Channel	-5.525502
EducationField	-3.716762
Gender	12.087670
Designation	9.399802
MaritalStatus	16.199391
ExistingPolicyTenure	2.282474
Zone	1.504290
PaymentMethod	-5.626124
SumAssured_Per_Policy	0.005840

OLS Regression Results

Dep. Variable:	AgentBonus_Per_Policy	R-squared:	0.884
Model:	OLS	Adj. R-squared:	0.883
Method:	Least Squares	F-statistic:	2397.
Date:	Thu, 22 Dec 2022	Prob (F-statistic):	0.00
Time:	21:46:42	Log-Likelihood:	-23065.
No. Observations:	3164	AIC:	4.615e+04
Df Residuals:	3153	BIC:	4.622e+04
Df Model:	10		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	97.5784	26.937	3.622	0.000	44.763	150.394
CustTenure	2.4903	0.760	3.277	0.001	1.000	3.980
Channel	-5.5255	7.992	-0.691	0.489	-21.196	10.145
EducationField	-3.7168	3.618	-1.027	0.304	-10.810	3.376
Gender	12.0877	12.840	0.941	0.347	-13.089	37.264
Designation	9.3998	6.596	1.425	0.154	-3.533	22.332
MaritalStatus	16.1994	8.264	1.960	0.050	-0.003	32.402
ExistingPolicyTenure	2.2825	1.309	1.743	0.081	-0.285	4.850
Zone	1.5043	6.246	0.241	0.810	-10.742	13.751
PaymentMethod	-5.6261	4.639	-1.213	0.225	-14.721	3.469
SumAssured_Per_Policy	0.0058	3.95e-05	147.880	0.000	0.006	0.006

Omnibus:	1424.436	Durbin-Watson:	1.955
Prob(Omnibus):	0.000	Jarque-Bera (JB):	11772.840
Skew:	1.945	Prob(JB):	0.00
Kurtosis:	11.612	Cond. No.	1.21e+06

5.4.1.1 Performance parameters:

performance		
Param	Train Data	test Data
MAE	238.5418755	244.1418631
MSE	125701.4253	125006.6391
MAPE	0.17557449	0.179677876
EVS	0.883741659	0.870964891
RMSE	353.5627796	354.543968

5.4.1.2 Stats Model for fields with Lower P value and remove other fields:

Based on the OLS Summary, form above model, we have come to this conclusion that,, there are many fields, with High P -value, the Higher the P Value, Lower the chance it will affect the Predictions. This is the list of P value for all the fields:

	coef	P> t
Intercept	97.5784	0
CustTenure	2.4903	0.001
Channel	-5.5255	0.489
EducationField	-3.7168	0.304
Gender	12.0877	0.347
Designation	9.3998	0.154
MaritalStatus	16.1994	0.05
ExistingPolicyTenure	2.2825	0.081
Zone	1.5043	0.81
PaymentMethod	-5.6261	0.225
SumAssured_Per_Policy	0.0058	0

5.4.1.3 Action:

We have removed fields one by one and re-generated OLS model and checked P values for fields again and again, until each field importance came below 0.05.

We started with these fields:

- Model Build by removing field name "Zone": Since Zone has Highest P-Value, so we dropped this field and Built our Model, on top of Step 4.3.1, where we eliminated fields with higher VIF.

 After building Model without field "Zone", We still saw that there were many fields with High P-Value.
- Model Build by removing field name "Channel": Since Channel, has Highest P-Value, so we dropped this field and Built our Model on top of above model. We still saw that there were many fields with High P-Value.
- Model Build by removing field name "**Gender**": Since Gender, has Highest P-Value, so we dropped this field and Built our Model on top of above model. We still saw that there were many fields with High P-Value.
- Model Build by removing field name "EducationField": Since EducationField, has Highest P-Value, so we dropped this field and Built our Model on top of above model. We still saw that there were many fields with High P-Value.
- Model Build by removing field name "PaymentMethod": Since PaymentMethod, has Highest P-Value, so we dropped this field and Built our Model on top of above model. We still saw that there were many fields with High P-Value.
- Model Build by removing field name "**Designation**": Since **Designation**, has Highest P-Value, so we dropped this field and Built our Model on top of above model. We still saw that there were many fields with High P-Value.
- Model Build by removing field name "MaritalStatus": Since MaritalStatus, has Highest P-Value, so we dropped this field and Built our Model on top of above model. We still saw that there were many fields with High P-Value.

 After dropping MaritalStatus, we Built our Final Stats Model with these features:

No Field have VIF value more than 5

No field have higher p-Value than 0.05

And we are left with only these 3 fields, which are most important feature to determine the targeted values: CustTenure, ExistingPolicyTenure and SumAssured per policy

OLS Regression Results

						=
Dep. Variable:	AgentBonus_Per_I	Policy	R-squared:		0.88	3
Model:		OLS	Adj. R-squared:	:	0.88	3
Method:	Least So	quares	F-statistic:		7980	
Date:	Thu, 22 Dec	2022	Prob (F-statist	tic):	0.0	9
Time:	21	:46:44	Log-Likelihood:	:	-23070	
No. Observations:		3164	AIC:		4.615e+0	4
Df Residuals:		3160	BIC:		4.617e+0	4
Df Model:		3				
Covariance Type:	noni	robust				
	coef	std er	rr t	P> t	[0.025	0.975]
Intercept	121.5852	13.38	9.085	0.000	95.346	147.824
CustTenure	2.5282	0.75	3.356	0.001	1.051	4.005
ExistingPolicyTenur			36 1.745	0.081	-0.282	4.841
SumAssured_Per_Poli	cy 0.0058	3.93e-6	35 148.868	0.000	0.006	0.006
Omnibus:	1424.8	359 Du	urbin-Watson:		1.950	
Prob(Omnibus):	0.0	300 Ja	arque-Bera (JB):		11780.897	
Skew:	1.9	946 Pr	rob(JB):		0.00	
Kurtosis:	11.6	515 Co	ond. No.		5.84e+05	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.84e+05. This might indicate that there are strong multicollinearity or other numerical problems.

5.4.1.4 Performance parameters:

performance		
Param	Train Data	test Data
MAE	238.6871961	243.2984073
MSE	126072.975	124328.2579
MAPE	0.175542533	0.178755565
EVS	0.883398022	0.871675897
RMSE	352.602124	355.0675639

5.4.1.5 Equation and interpretation:

We can use below formula for determining the targeted value:

```
AgentBonus_per_policy = (121.59) + (2.53) * CustTenure + 2.28) * ExistingPolicyTenure + (0.01) * SumAssured Per Policy
```

We can see from the equation, if all of the Independent parameters are Zero, then also Agent will receive a Bonus of Rs 121.59, which is very good. Also there is clear that 1% of total amount of SumAssured goes into Agent Bonus, because co-efficient is 0.01

5.5 Decision Tree Model

5.5.1 Action:

Again, decision tree works on Separate group of dependent variable and independent variables of train and test data. So we will use our Old sub groups of train and test split data set: After performing train test split, we have got 4 parts:

```
Shape for X_train is (3164, 15)
Shape for X_test is (1356, 15)
Shape for y_train is (3164, 1)
Shape for y test is (1356, 1)
```

We have used Sklearn DecisionTreeRegressor library for our model building and created Model.

5.5.2 Feature Importance :

After building decision tree Model, this is the list of features with their importance weightage

SumAssured Per Policy	0.879796
NumberOfPolicy -	0.041685
MonthlyIncome	0.023623
Age	0.018812
CustTenure	0.014237
ExistingPolicyTenure	0.008178
Designation	0.002733
MaritalStatus	0.001986
Occupation	0.001936
ExistingProdType	0.001746
EducationField	0.001732
Zone	0.000928
PaymentMethod	0.000918
Gender	0.000906
Channel	0.000786

Figure 11 Decision Tree Feature Importance

5.5.3 Performance parameters:

performance		
Param	Train Data	test Data
MAE	0	239.3569322
MSE	0	136407.9355
MAPE	0	0.173310575
EVS	1	0.85928434
RMSE	0	369.33

Decision Tree model always give a clear separation on Train data set, that's why it gives value of 0 for all the performance parameters, When we checked for test data, then actual errors comes, and RMSE for DTree is 369.33

5.6 Random Forest Regressor Model

5.6.1 Action:

Random forest is similar to decision tree, which works on Separate group of dependent variable and independent variables of train and test data. So we will use our Old sub groups of train and test split data set: After performing train test split, we have got 4 parts:

```
Shape for X_train is (3164, 15)
Shape for X_test is (1356, 15)
Shape for y_train is (3164, 1)
Shape for y test is (1356, 1)
```

We have used Sklearn RandomForestRegressor library for our model building and created Model .

5.6.2 Feature Importance :

After building Renadom Forest Model, this is the list of features with their importance weightage

SumAssured Per Policy	0.891987
NumberOfPolicy	0.038844
Age	0.016303
MonthlyIncome	0.015429
CustTenure	0.014407
ExistingPolicyTenure	0.008537
EducationField	0.002414
Designation	0.002192
ExistingProdType	0.001839
MaritalStatus	0.001773
Occupation	0.001504
Gender	0.001254
Channel	0.001195
PaymentMethod	0.001186
Zone	0.001135

Figure 12 Random Forest Feature Importance

5.6.3 Performance parameters:

performance		
Param	Train Data	test Data
MAE	65.6953956	178.3392298
MSE	10394.93254	73391.11693
MAPE	0.047686458	0.128212037
EVS	0.990386047	0.924232288
RMSE	101.96	270.91

5.7 Artificial Neural Network Regressor

5.7.1 Action:

We have used Grid search to find the best parameters used in our prediction model. We have used following params for grid search:

```
param_grid = { 'hidden_layer_sizes': [50,100], 'activation':['logistic','relu'], 'max_iter': [250,],
   'solver': ['adam','sgd'], 'tol': [0.1,0.01], }
```

We want our Model to check between 50 and 100 hidden layers, the more number of hidden layers you apply, more time it will take to execute. The activation function generates an output based on input signals. Logistic/Segmoid are same. After using grid search these are the Parameters, we have received:

```
{'activation': 'logistic', 'hidden_layer_sizes': 100, 'max_iter': 250,
  'solver': 'sgd', 'tol': 0.1}
```

5.7.2 Feature Importance :

We cannot get the values of list of best parameters used for prediction Model , because it all comes under Hidden layers.

5.7.3 Performance parameters:

performance		
Param	Train Data	test Data
MAE	4972.297786	4990.048298
MSE	25833654.25	25943347.91
MAPE	5.255688936	5.291987651
EVS	-0.09295335	-0.09990145
RMSE	5082.68	5093.46

6. Model Tuning and business implication

There are many ways we can Tune our Model:

- 1. We can use bagging/Boosting regressors
- 2. We can Tune and search for best Hyper parameters.
- 3. We can KFold our data and do testing

I have used above methods and built following models:

6.1 Bagging Regressor (Random Forest should be applied for Bagging)

6.1.1 Action:

I have used Random Forest regressor for base_estimator and then used base_estimator parameters of Random Forest into Bagging Algorithm. I have used Sklearn BaggingRegressor library for our model building.

6.1.2 Feature Importance:

Bagging don't give List of best features. 'BaggingRegressor' object has no attribute 'feature_importances_' So we cannot say, which Attribute of Sample data set is more contributing in prediction model

6.1.3 Performance parameters:

performance		
Param	Train Data	test Data
MAE	106.4755604	180.5024494
MSE	24820.70797	72519.0362
MAPE	0.07690298	0.129403588
EVS	0.977045693	0.925136857
RMSE	157.55	269.29

This model is Overfit, because train results are giving very good numbers but Test RMSE value is very large as compared to Train results.

6.2 Hyper parameter tuning for random forest

6.2.1 Action:

We have used following parameters and tested in gridSearch algorithm .

```
param_grid = { 'max_depth': [8,10,12], 'max_features': [3,4,5],
   'min_samples_leaf': [30,60,90], 'min_samples_split': [100,180,250], 'n_estimators': [100,200] }
Final List of parameters after testing:
{ 'max_depth': 10, 'max_features': 5, 'min_samples_leaf': 30,
'min_samples_split': 100, 'n_estimators': 200}
```

6.2.2 Feature Importance :

SumAssured_Per_Policy NumberOfPolicy CustTenure Age MonthlyIncome ExistingPolicyTenure Designation ExistingProdType MaritalStatus PaymentMethod Zone EducationField Gender	0.541611 0.376927 0.024193 0.021406 0.015970 0.010595 0.003730 0.003584 0.000875 0.000409 0.000235 0.000172 0.000128
Gender Occupation Channel	0.000128
0110111101	o. 00000

Figure 13 Best Param Random Forest Feature Importance

6.2.3 Performance parameters:

performance		
Param	Train Data	test Data
MAE	106.4755604	180.5024494
MSE	24820.70797	72519.0362
MAPE	0.07690298	0.129403588
EVS	0.977045693	0.925136857
RMSE	157.55	269.29

This model is Overfit, because train results are giving very good numbers but Test RMSE value is very large as compared to Train results.

6.3 Hyper parameter tuning for Decision Tree Regressor

6.3.1 Action:

We have used following parameters and tested in gridSearch algorithm.

```
param_grid = { 'criterion': ['squared_error', 'friedman_mse', 'absolute_error'], 'max_depth': [8,10,12], 'min_samples_leaf': [100,150,200], 'min_samples_split': [300,450,600], }
```

Final List of parameters after testing:

```
DecisionTreeRegressor(max_depth=8, min_samples_leaf=100,
min samples split=300, random state=1)
```

6.3.2 Feature Importance :

Figure 14 Best feature Decision Tree Tunned Param

We can clearly see that except 3 fields, there is no contribution by any other fields. Those important fields are:

```
SumAssured_Per_Policy 0.973447
NumberOfPolicy 0.026164
MonthlyIncome 0.000388
```

6.3.3 Performance parameters:

performance		
Param	Train Data	test Data
MAE	199.2841341	211.1718127
MSE	109990.864	108965.4742
MAPE	0.147676561	0.156464175
EVS	0.898272185	0.887532443
RMSE	331.65	330.1

This model is Perfect fit, because Train and Test result RMSE values are and all other parameters are in about same range. This is a sign of good modelling .

7. Interpretation of the most optimum model and its implication on the business

We have built multiple models . List of all of these models are:

- Linear regression
- Stats Model And Stats model with Reduced parameters after VIF score and Higher P-Value
- > Decision tree Model And Hyper parameters tuning for decision tree
- > Random forest Model And Hyper parameters tuning for Random forest
- Random Forest Model with Bagging regressor

We have captured multiple performance matrix parameters:

- MAE (Mean Absolute error)
- MSE (Mean squared error)
- MAPE (mean absolute percentage error)
- > EVS (Explained variance)
- > RMSE (Root Mean Square Error)

And we have gathered all performance parameters from all the models and put it in a data frame

	Train RMSE	Test RMSE	Train MAE	Test MAE	Train MSE	Test MSE	Train MAPE	Test MAPE	Train EVS	Test E\
Linear Regression	317.48346	316.634998	220.321007	222.51949	100795.74739	100257.72178	0.170724	0.171265	0.906776	0.8964
Linear Reg Scaled Data	317.48346	316.634998	220.321007	222.51949	100795.74739	100257.72178	0.170724	0.171265	0.906776	0.8964
Stats Model 1	317.48346002535055	316.63499771886285	220.321007	222.51949	100795.74739	100257.72178	0.170724	0.171265	0.906776	0.8964
Stats Model 2	354.54396801961036	353.56277958413546	238.541875	244.141863	125701.425259	125006.639107	0.175574	0.179678	0.883742	0.8709
Stats Model 3	354.5472293235076	353.5568690941128	238.571656	244.150994	125703.737821	125002.459684	0.175633	0.179681	0.88374	0.870
Stats Model 4	354.57408724890837	353.35723000116565	238.559194	244.031095	125722.783348	124861.331994	0.175619	0.17965	0.883722	0.8711
Stats Model 5	354.6259691021416	353.20780003269664	238.722552	243.744927	125759.577962	124755.750004	0.175782	0.179249	0.883688	0.8712
Stats Model 6	354.6848065841537	353.0174978354055	238.752834	243.6696	125801.312022	124621.353778	0.17576	0.179242	0.883649	0.8713
Stats Model 7	354.7636336409267	352.8757950057764	238.73769	243.744927	125857.235754	124521.326701	0.175744	0.179435	0.883598	0.8714
Stats Model 8	354.8816410065518	352.68578464437667	238.760798	243.458747	125940.979124	124387.26269	0.175876	0.179265	0.88352	0.8716
Stats Model 9	355.0675639410347	352.60212402026525	238.687196	243.298407	126072.974963	124328.257864	0.175543	0.178756	0.883398	0.8716
Decision Tree	0.0	374.135915	0.0	242.624459	0.0	139977.682604	0.0	0.174629	1.0	0.8559
Random Forest	101.955542	270.907949	65.695396	178.33923	10394.932541	73391.11693	0.047686	0.128212	0.990386	0.9242
ANN Model	5082.681797	5093.46129	4972.297786	4990.048298	25833654.247346	25943347.91466	5.255689	5.291988	-0.092953	-0.0999
Random Forest Bagging Model	157.545892	269.293587	106.47556	180.502449	24820.707968	72519.036197	0.076903	0.129404	0.977046	0.9251
Random Forest Tunned Param	157.545892	269.293587	106.47556	180.502449	24820.707968	72519.036197	0.076903	0.129404	0.977046	0.9251
decission_tree tunned param	331.648706	330.099188	199.284134	211.171813	109990.863964	108965.474203	0.147677	0.156464	0.898272	0.8875

Comparison:

There are multiple ways we can compare our models. I have done comparison with Lowest RMSE values and Lower MAPE values. RMSE gives us Error in the model and MAPE gives good result in percentage wise.

Lowest RMSE:

With Lowest RMSE Random forest Model with Bagging regressor and Random forest model with Tunned Hyper Parameters, both giving same results. But there are big difference in train and test values of RMSE, which indicates overfitting of the model. In this case, we will consider 4th Lowest RMSE Model is the best one, which is "Linear Regression" Model. It has about same values of RMSE value

Lowest MAPE: Random forest related all 3 models have lowest MAPE model. But again, those seems over fitting the model, because train and test values have big difference. Whereas Decision tree with tunned hyper parameters, Linear Regression, Linear Regression with scaled data and Stats Model seems best model among all, which are giving similar results for both train and test data set. Giving 14.7% for decision tree and 17% for Linear and stats model of MAPE value.

8. Business insights, Recommendations

We have given data set with Agent Bonus for Total SumAssured for N number of policies purchases by any csutomers, so for building good prediction model, we have created 2 new fields, which are

AgentBonus_per_policy SumAssured_per_Policy

And we have used NumberOfPolicy field for generating above fields.

Some of requirements of doing this are as follows:

- This is very important to know what is Bonus given for each Customers, irrespective of how many policies Customer purchased.
- We need to know, how is SumAssured affected AgenBonus, but if we not created new field SumAsuured_per_policy (This is actually a average of Totsl SumAssured / Number of Policy), Our model wont be able to understand, this relations.
- For an example, if Customer purchased 4 policy of total 1000 Rs, and AgentBonus is 400 Rs, which means Bonus is 1000/(400*4) = 6.25% per policy Bonus
 - And for any other Customer purchased Single Policy of amount 1000 and his Agent get 250 Rs Bonus, which means, he received 1000/250 = 40% Bonus,
 - so for making them all on same Scale, we need to create above listed both variable to know Average of AgentBonus per Policy as well as Average of SumAssured per policy.
- We have also checked for the co-relation between all the fields and targeted field, which is AgentBonus and we found that their co-relation coefficient was very low and we dropped those fields.

Complaint: 0.025091 LastMonthCalls: 0.038717 CustCareScore: -0.005319

we have checked that following fields have very minute impact on targeted fields and these can be dropped.

8.1 Business insights from EDA

We performed following actions on our data:

- Added new fields, dropped not-necessary fields. Imputed NULLs, Univariate, Bi-variate and Multivariate Analysis.
- Checked individual column's distribution, their counts, in it's category, mean and Sum of values. Checked outliers, distribution and checked normality of data.
- I have also done Co-relation check, data skewness and checked distribution of all the fields against target variable.

Based on above analysis, following are business insights:

- We can see clear co-relation between SumAssured_per_policy and AgentBonus_per_policy field with co-relation of 0.94, which means, as Sumassured increases, AgentBonus also increases.
- AgentBonus also have good positive co-relation with field Age, CustomerTenure and existingPolicyTenure of with Positive 0.2 with each field mentioned.
- AgentBonus have very minute relation with fields Complaint and LastMonthCalls, which makes sense.

8.2 Business benefits:

- Company would know strength of their own employees.
- > They can easily segregate good Salesperson and low performing Agents.
- Company can give clear criteria, by informing Salesperson, how they can achieve good incentives.
- It will remove partiality and bad judgements of the top-level managements
- It will create good environment among all employees for fare justifications of the Bonus amounts.
- Company can encourage good performing Sales-persons
- Company can also provide Trainings or build any special program to assist bad Agents.
- Additional steps can be taken by Company by accompanying good Agent with low performing Agents, so that they can learn from good resources.

8.3 Improvement Area and recommendations:

- South Zone have least number of Customers, so good salesperson should deploy to tough market
- There can be some discount offer or Less policy premium campaign can be run in South and East regions, where policy Holders are very less.
- There is good opportunity to attract more Large business holders, they have deep pockets and Company can make good money from them.
- Maximum number of policies sold by Agents and very less policies sold by Online channel. So we can provide some sort of discounts and promotions for Online Agents, in order for making good online business, Online channels are very powerful nowadays and it has reach to every single customers, so make it powerful.
- ➤ Maximum number of policy holders are Salaried with count of 2192 records and least number of Policy holders are free Lancer. Insurance company can reach to more and more Free Lancing Customers, as they are very less from the Sample customers.
- Maximum number of policy holders are Graduate in Education with count of 1870 records, and MBA holders are least with no of 74. Insurance company can reach to more and more MBA professionals as they very less from the Sample customers.
- Insurance company can reach to more female customers for buying policies and do not and give some promotions to women. As Male are Maximum number of policy holders as compared to female records.
- Married people are Maximum number of policy holders whereas unmarried people don't prefer taking Insurance policy. So Company can run campaign and encourage more youths for knowing about policies and how important is insurance nowadays.