Einführung in die Computergrafik

Matthias B. Hullin
Institut für Informatik II, Universität Bonn

Vorlesungsumfrage

Besonders wichtige Themen/Fragen

- Alles ist potentiell relevant für die Klausur!
- Im Folgenden eine Liste von Themen, die wir im Vorfeld für besonders wichtig halten.

Euklidische Geometrie & Co.

- Vektoren im \mathbb{R}^n
 - Rechenoperationen, Norm
 - Winkel; Skalarprodukt, Kreuzprodukt im R³
- Punkte, Verschiebungen, Richtungen
 - Vektorraum vs. affiner Raum
- Lineare Transformationen
 - Starre Transformationen Eigenschaften?
- Homogene Koordinaten
 - 4x4 Transformationen zusätzliche Freiheitsgrade
- Basen, Koordinatensysteme, Koordinatenwechsel
 - Baryzentrische Koordinaten
- Rotationen
 - Eulertransformationen
 - Rodrigues-Formel
 - Quaternionen

Geometrie repräsentieren

- Implizit vs. explizit
 - Parametrische Darstellung vs. Isoflächen/-kurven
- Boole'sche Geometrie (CSG)
- Polygonnetze, Dreiecksnetze
 - Vertices, Kanten, Flächen
 - Normalen, Flächeninhalt, Orientierung
- Repräsentation von Dreiecksnetzen
 - Vertexlisten
 - Indizierte Dreiecksliste
 - Halbkanten-Datenstruktur
 - Triangle Strips und Fans
 - Kosten hinsichtlich Speicherung, Nachbarschaftsabfragen, usw.
- Topologische und geometrische Eigenschaften
 - Mannigfaltigkeit
 - Orientierbarkeit

Licht

- Strahl, Welle, Teilchen
 - Gemeinsamkeiten und Unterschiede der Modelle
- Radiometrie / Photometrie
 - Raumwinkel
 - Energie und hieraus abgeleitete Größen

Energie Q_e Leistung (Fluss) Φ_e Strahldichte (Radianz) Φ_e Strahldichte (Radianz) Φ_e

- Grundgesetz der Strahlungsübertragung
- Typen von Lichtquellen
- BRDF/BSDF
 - Lambert
 - Oren-Nayar
 - (Blinn-)Phong

Raytracing

- Rendering-Gleichung
 - erkläre!!
- Grundschema Raytracing
 - Augstrahlerzeugung
 - Strahl-Objekt-Schnitt
 - Schattierung
- Rekursives Raytracing (Whitted)
 - "Shading tree" von Sekundärstrahlen
- Beschleunigungsstrukturen
 - BSP
 - kd-Bäume
 - BVH
 - Quadtree/Octree

Rastergrafik-Pipeline

- Erkläre Aufbau der Echtzeit-Grafikpipeline
- Rasterisierung von Linien, Kreisen, usw.
 - DDA
 - Bresenham
 - Mittelpunktalgorithmus
- Rasterisierung von Polygonen
 - Scanline-Algorithmus
 - Pineda
 - Baryzentrische Koordinaten im Screenspace
- Interpolation
 - Gouraud, Phong
 - Perspektivisch korrekte Interpolation
- Dithering

Parametrische Kurven

- Interpolation vs. Approximation
- Parametrisierung
- Ableitungen, Regularität, Tangente, Bogenlänge
- Polynombasen
 - kanonisch (1, t, t², ..., tⁿ)
 - Lagrange-Polynome
 - Hermite-Polynome
 - Bernstein-Polynome
- Bézier-Kurven
- Rationale Bézier-Kurven
- Bézier-Splines
 - Parametrische und geometrische Stetigkeit
- B-Splines

Physikalische Simulation

- Physikalische Größen
 - Masse
 - Position, Geschwindigkeit, Beschleunigung
 - Kraft, Arbeit/Energie
 - Phasenraum
- Newton-Axiome
- Gewöhnliche Differentialgleichungen
 - Modellierung von Partikelsystemen
- Anfangswertprobleme und Lösungsansätze
 - Euler-Verfahren
 - Adaptive Schrittgröße
 - Mittelpunktsregel
 - Runge-Kutta (RK4)

Signalverarbeitung

- Signale; Abtastung und Rekonstruktion
- Frequenzen
- Shannon/Nyquist Abtasttheorem, Aliasing
- Fourier-Analyse periodischer Funktionen mit sin/cos und exp
- Diskrete Fourier-Transformation
- Kontinuierliche Fourier-Transformation
- Fourier-Transformation als Basiswechsel
- Eigenschaften der Fourier-Transformation, Fourier-Paare und Rechenregeln
- Faltung und Faltungssatz (convolution theorem)
- Abtastung eines Signals
- Rekonstruktion eines Signals

Texture Mapping

- Grundprinzipien: Texturkoordinaten, Texturatlanten
- Bilineare Interpolation
- Mipmaps und trilineare Interpolation
- Anisotrope Filterung
 - Summed Area Tables
- Environment Maps
 - Wie verwendet man sie?
 - Diskutiere Parametrisierungen wie Lat-Lon, Cubemaps, ...

Blending

- Transluzenz, Opazität
- Alpha-Blending "back-to-front" und "front-to-back" herleiten können
- Algorithmen zur korrekten Behandlung von Transparenz und Verdeckung
 - Painter's Algorithm
 - Z-Buffer (für opake Szenen)
 - Depth Peeling
- Nebel

Monte-Carlo-Rendering

- Numerische Integration / Quadraturregeln
 - Rechteck, Trapez
 - Fehler und Rechenkomplexität
 - "Curse of Dimensionality"
- Zufallsvariablen
 - Erwartungswert, Varianz, Standardabweichung
 - PMF/PDF, CDF und ihre Eigenschaften
 - Transformation von Zufallsvariablen
 - Erzeugung von Zufallswerten gegebener Verteilung
 - Rejection sampling; Transformationsmethode / CDF⁻¹
- Stochastische Integration / Monte-Carlo-Verfahren
 - Grundprinzip; Primärschätzer, Sekundärschätzer
 - Eigenschaften (Konsistenz, Erwartungstreue, ...)
- Importance Sampling
 - Diskutiere Terme der Reflexionsgleichung

Shadow Mapping

- Physik des Schattenwurfs
- Verfahren zur Schattenerzeugung
 - Raytracing, Schattenvolumen, Shadow Mapping
- Erkläre Shadow Mapping
 - Probleme und Lösungsansätze: Aliasing, "Shadow acne", "light leaking"
- Gefilterte Schatten
 - Percentage Closer Filtering
 - Variance/Moment Shadow Mapping