входные данные

Арифметика в кольце вычетов, комбинаторика [7]

А. Степень

1 секунда, 256 мегабайт

Вычислите результат возведения a в степень n по модулю 10^9+7 .

Входные данные

В первой строке вам задано единственное число $T~(1 \le T \le 10^5)$ — количество тестов. В следующих T строках вам заданы тесты в виде пар целых чисел a и

$$n (0 \le a \le 10^9, 0 \le n \le 10^{18}; a + n > 0).$$

Выходные данные

Для каждого теста в отдельной строке выведите результат вычисления a^n по модулю 10^9+7 .

входные данные	
3 2 1 2 2 2 10	
выходные данные	
2 4 1024	

В. Подготовка

1 секунда, 256 мегабайт

Вам заданы два массива из N целых чисел A и P. Пусть числа в массиве P задают вероятности в формате $p_i = P_i/\sum P$. Ваша задача — сопоставить числа из массива A с вероятностями их выбора из массива P, так чтобы математическое ожидание выбора было наибольшим.

Входные данные

В первой строке вам дано единственное целое число N $(1\leqslant N\leqslant 10^5)$ — число элементов в массивах. В следующих двух строках вам заданы сами массивы, сначала A затем P. Массивы задаются набором чисел разделённых пробелом x_i $(1\leqslant x_i\leqslant 10^5)$.

Выходные данные

Выведите ответ на задачу, его абсолютная либо отностительная погрешность не должна превышать $10^{-6}\,$.

входные данные
6 1
выходные данные
3.5000000000000000000

С. Хороводоводы

1 секунда, 64 мегабайта

Хороводоводы собрались водить хоровод. Они решили, что не закончат водить хороводы пока не проведут хоровод в каждой из возможных последовательностей хороводоводов. Так же хороводы они водят в разных напралениях, поэтому хороводы отличающиеся только направлением расстановки танцоров считаются одинаковыми.

Входные данные

Вам дано одно число $N\left(3 \leq N \leq 10^7\right)$ — количество хороводоводов.

Выходные данные

Выведите единственное число, количество различных хороводов состоящих из N хороводоводов по модулю $10^9 + 7$.

```
3
Выходные данные
1
Входные данные
4
Выходные данные
3
```

В первом примере существует только один возможный хоровод 1-2-3-1. Независимо от перестановки танцоров новых хороводов не образуется.

D. Подсчёт анаграмм

2 секунды, 64 мегабайта

Посчитайте количество анаграмм у заданной строки.

Входные данные

Вам задана строка s $(1 \leq |s| \leq 10^5)$, состоящая из строчных латинских букв.

Выходные данные

Выведите количество анаграмм заданной строки по модулю $10^9 + 7$.

word	
выходные данные	
24	

входные данные
cool
выходные данные
12

Е. Геометрическая прогрессия

1 секунда, 256 мегабайт

Вычислите сумму геометрической прогрессии с заданными параметрами по модулю $10^9 + 7$.

Входные данные

В первой строке вам задано количество тестов T $(1 \le T \le 10^5)$. В следующих T строках даны тесты в виде трёх целых чисел b_1, q и n $(0 \leqslant b_1, q, n \leqslant 10^6)$.

Выходные данные

Для каждого теста выведите результат вычисления суммы геометрической прогрессии по заданному модулю в отдельной строке.

входные	данные
2 2 5 4 1 2 10	
выходные	данные
312 1023	

F. Никита и маркеры

1 секунда, 256 мегабайт

Никита работает в институте *М** преподавателем по алгоритмам и структурам данных. Для объяснения он использует доску и маркеры, однако приходится так много писать, что маркера хватает **ровно на одну лекцию.** Сейчас только начало учебного года, поэтому Никита хочет оценить, насколько ему хватит маркеров для проведения занятий.

В лекционной аудитории есть два ящика с маркерами. В каждом ящике находится N одинаковых маркеров. Каждую лекцию Никита равновероятно выбирает ящик и достаёт из него маркер для объяснения очередного алгоритма или структуры данных.

Никита интересуется, какова вероятность того, что когда он в первый раз откроет пустой ящик, в другом будет ровно \boldsymbol{k} маркеров.

Входные данные

В первой строке заданы два целых числа n и k $(1 \leqslant k \leqslant n \leqslant 2000)$ — количество маркеров в ящиках и интересующее Никиту число оставшихся маркеров.

Выходные данные

Выведите единственное число — ответ на задачу. Ответ требуется вывести в следующем виде: пусть искомая вероятность представима в виде несократимой дроби $P=\frac{a}{b}$, тогда ответом будет число $a\cdot b^{-1}\mod(10^9+7)$.

входные данные	
1 1	
выходные данные	
500000004	

входные данные
2 1
выходные данные
375000003

входные данные)
2 2	
выходные данны	le .
250000002	

В первом тесте искомая вероятность $P=2\cdot\frac{1}{4}=\frac{1}{2}$, тогда ответ равен $1\cdot2^{-1}\mod(10^9+7)\equiv500000004\mod(10^9+7)$.

Во втором тесте вероятность $P=rac{3}{8}$.

В третьем тесте вероятность $P=\frac{1}{4}$.

G. Странные кости

2 секунды, 64 мегабайта

У вас есть две кости, каждая из которых описывается количеством своих граней и значениями, написанными на каждой грани. Каждая грань кости может выпасть с одинаковой верятностью. Рассчитайте вероятность того, что сумма значений выпавших на костях после броска будет лежать в заданном промежутке.

Входные данные

Задачи - Codeforces

В первой строке вам заданы два числа N и M $(1 \leq N, M \leq 10^5)$ — количество граней у первой и второй кости соответственно. Во второй строке через пробел заданы N значений написанных на гранях первой кости a_i . В третьей строке через пробел заданы M значений написанных на гранях второй кости b_j $(1 \leq a_i, b_j \leq 10^6)$. В последней строке вам заданы два числа l и h $(1 \leq l \leq h \leq 10^6)$ — верхняя и нижняя границы интервала соответственно.

Выходные данные

Выведите ответ на задачу с абсолютной либо относительной погрешностью не больше $10^{-9}\,$.

Входные данные 6 6 1 2 3 4 5 6 1 2 3 4 5 6 7 7 Выходные данные 0.16666666666666665741

Н. Кольцо вычетов

1 секунда, 256 мегабайт

Множество всех чисел, сравнимых с a по модулю m, $\{m\cdot k+a\}$, называется классом вычетов a по модулю m. Таким образом, сравнение $a\equiv b\mod m$ равносильно равенству классов вычетов a и b по модулю m.

Множество всех классов вычетов по модулю m называется кольцом вычетов и обозначается \mathbb{Z}_m .

Вам даны два числа, a и m. Ваша задача — найти минимальный неотрицательный элемент b в кольце вычетов \mathbb{Z}_m такой, что $a\cdot b\equiv 1\mod m$.

Входные данные

В единственной строке вам дано два целых неотрицательных числа a и $m~ \left(-10^9\leqslant a\leqslant 10^9, 2\leqslant m\leqslant 10^9\right)$.

Выходные данные

Выведите ответ на поставленную задачу, либо -1, если ответа не существует.

входные данные			
2 5			
выходные данные			
3			

Расстановки ладей

1 секунда, 64 мегабайта

Посчитайте количество различных способов расставить k ладей на доске размером n imes n так, чтобы они не били друг друга.

Входные данные

В одной строке вам даны два числа n и $k~(1 \leq n, k \leq 100)$ - размер доски и количество ладей.

Выходные данные

Выведите ответ на задачу по модулю $10^9 + 7$.

входные	данные		
8 1			

Выходные данные 1 1 2 3 5 8 13 21 34 55

Ј. Черепашка в безопасности

1 секунда, 256 мегабайт

Черепашка живёт на прямоугольном поле и хочет добраться из точки (0,0) в точку (n,m). Передвигается она таким образом, что из точки с координатами (i,j) может попасть только в точки (i+1,j) и (i,j+1). Помогите черепашке определить, сколькими путями она сможет добраться до пункта назначения. Так как ответ может быть очень большой, выведите его по модулю 10^9+7

Входные данные

В первой строке вам даны два числа n и $m \ \left(0 \leq n, m \leq 10^7 \right)$ — пункт назначения.

Выходные данные

Выведите единственное число — ответ на задачу

входные данные			
4 4			
выходные данные			
70			

К. Быстрый Фибоначчи

1 секунда, 8 мегабайт

Обратите внимание на нестандартное ограничение по памяти.

Последовательность чисел Фибоначчи определяется следующим образом: $F_1=1,\,F_2=1,\,F_n=F_{n-1}+F_{n-2}$ для $3\leqslant n.$

Ваша задача вычислить n число Фибоначчи. Так как ответ может быть очень большим, выведите его по модулю 10^9+7 .

Входные данные

На первой строке находится число T ($1\leqslant T\leqslant 10^4$) — число запросов в тесте. Каждый тест описывается единственным числом n ($1\leqslant n\leqslant 10^{12}$).

Выходные данные

На каждый тестовый случай выведите единственное число — ответ на задачу.

входные данные					
10					
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					

05.05.2023, 15:55

Codeforces (c) Copyright 2010-2023 Михаил Мирзаянов Соревнования по программированию 2.0