# Abordagens de BD

Carlos A. Heuser 2006 Abordagem de SGBD

□ Abordagem = tipo de modelo lógico

☐ Em muitos livros, também chamado modelo

☐ Tipos de abordagens:

O Navegacional - Caminhos de acesso explícitos

modelo de dados em árvore

-abordagem hierárquica (histórica)

-abordagem XML

• modelo de dados em grafo

-abordagem em **rede** (histórica)

-abordagem orientada a objetos

O Associativa - Sem caminhos de acesso

abordagem relacional

02/2

## Histórico das abordagens (1)

Desde o fim da década de 60 diversos SGBD comerciais foram construídos. Algumas abordagens estabeleceram-se na prática.

## □ Abordagem hierárquica

• Origem: SGBD da IBM (IMS)

 Largamente utilizado durante a década de 70 e início da década de 80

## **□** Abordagem em rede

• Grande família de SGBDs baseada em um padrão ANSI

• Originário do IDMS (BF Goodrich, depois Culinane)

• Exemplos: IDMS, IDS/2

• Década de 70

## Histórico das abordagens (2)

## □ Abordagem relacional

02/1

- Embasamento teórico: trabalhos de Codd (IBM) procurando um modelo lógico independente de detalhes de implementação
- Década de 70: pesquisa e construção de diversos protótipos.
   Mais importantes são:

System R (IBM), precursor do DB2

**INGRES** (Stonebraker, Universidade da Califórnia), precursor do produto comercial de mesmo nome

Década de 80: surgimento de produtos comerciais:
 DB2 (IBM), Oracle, Informix, Sybase (SQL/Server)

O Domínio do mercado

O Padrão ISO

#### Histórico das abordagens (3)

#### □ Abordagem orientada a objetos

- Abordagem relacional não é completamente adequada para programação orientada a objetos
- Década de 90: surgimento de SGBDs orientados a objetos:
   O2, Gemstone, Objectsore, Jasmine, ...
- O Padrão ODMG
- O Modelo de dados semelhante ao modelo em rede

### □ Abordagem XML

- Abordagem voltada ao intercâmbio de dados e representação de documentos
- Não foi concebida para armazenamento (exceção: SGBD Tamino)
- Fim da década de 90: padrão W3C
- Modelo de dados semelhante ao modelo hierárquico

#### Comparação entre abordagens - Aspectos

- □ Comparação da estrutura de dados
  - Construções que compõe uma base de dados na abordagem
- ☐ Comparação das instruções de acesso a dados
  - DML fictícia mínima destinada apenas a comparar as abordagens
  - DML opera registro-a-registro (não há operações que tratam conjuntos de dados)
- ☐ Comparação das instruções de alteração
  - Será verificado como alterações são implementadas em cada modelo lógico
- ☐ Comparação da independência de dados

02/6

## **Exemplo usado**

- ☐ Informações armazenadas:
  - Para cada peça: código, nome, cor, peso e cidade em que se encontra
  - O Para cada fornecedor: código, nome, status e cidade
  - Para cada embarque: fornecedor que fez o embarque, peça embarcada, quantidade embarcada
- □ Operações consideradas:
  - Buscar os nomes dos produtos embarcados por um fornecedor de código dado.
  - Buscar os nomes dos fornecedores que embarcaram um produto de código dado.
  - O Incluir um produto e um fornecedor
  - O Excluir um produto e um fornecedor
  - Alterar os nome de um produto e o nome de um fornecedor

## Abordagem hierárquica

- ☐ Importância:
  - IBM teve IMS (DL/1), largamente utilizado durante a década de 70 e início da década de 80
  - O Própria IBM adaptou o IMS para modelo semelhante a rede
- □ Poucos produtos além de IMS
- ☐ Ainda aparece em sistemas legados

### Abordagem hierárquica - estrutura de dados

- ☐ Um BD hierárquico é uma floresta composta de árvores de registros
- ☐ Há dois tipos básicos de construção:
  - o registro (chamado segmento em IMS)
  - Oligação pai-filho entre os registros

Restrição:

um determinado registro somente pode possuir um registro pai (caracteriza uma árvore e não um grafo)

## Esquema gráfico de um BD hierárquico



02/10

### Um estado da base de dados IMS



Um possível conteúdo da base de dados IMS de produtos e fornecedores (instância, ocorrência da base de dados).

02/9

## Exemplo de esquema IMS (BD acadêmico)

- ☐ Um registro pai pode possuir filhos de tipos diferentes
- ☐ A hierarquia pode estender-se por diversos níveis



02/11 02/12

### Instruções de acesso a dados

☐ get next root [where <select criteria>]

Esta instrução busca um registro raiz que obedece a determinado critério com base em valores de seus campos

☐ get next child <record name>
[where <select criteria>]

Esta instrução busca um registro que

- 1 é filho do registro corrente
- 2 obedece a determinado critério

### Exemplos de acessos a dados

Consulta 1

02/13

02/15

 Buscar os nomes dos fornecedores que embarcaram o produto de código P2

```
get next root where CodPeça='P2';
do until no more Fornec under this;
  get next child Fornec;
  print NomeFornec;
end;
```

02/14

## **Exemplos de acessos a dados**

- ☐ Consulta 2
  - O Buscar os nomes das peças embarcadas pelo fornecedor F1:

```
do until no more root;
  get next root;
  get next child Fornec
     where CodFornec = 'F1';
  if found then print NomePeça;
end;
```

## Assimetria na abordagem IMS

- □ O problema das peças e fornecedores é simétrico.
- A abordagem IMS força uma assimetria inexistente na realidade modelada.
- □ O modelador tem que escolher um tipo de registro pai com base em considerações de performance.
- ☐ Consultas simétricas são resolvidas de forma diferente
- □ Somente problemas hierárquicos são modelados adequadamente na abordagem hierárquica

## Operações de modificação da base de dados - Inclusão

- ☐ Incluir um novo fornecedor (sem embargues)
  - o criar um registro "fantasma" de peça

#### □ Anomalia de inclusão

Uma operação que do ponto de vista da realidade modelada inclui um único objeto é implementada na base de dados pela inclusão de múltiplos objetos

É consequência da redundância de dados

### Operações de modificação da base de dados - Exclusão

- ☐ A exclusão do último embarque de um fornecedor implica na exclusão de seus dados
- ☐ A exclusão da única peça fornecida por um fornecedor implica na exclusão de seus dados
- ☐ Para resolver o problema, fornecedores sem embargues teriam que ser movidos para baixo de um registro fantasma
- ☐ Anomalia de exclusão

02/17 02/18

## Operações de modificação da base de dados - Alteração

- ☐ A alteração de um campo de um fornecedor implica em busca em toda base de dados
- ☐ Anomalia de alteração

## Análise da abordagem hierárquica

- ☐ Adequada somente para problemas hierárquicos
- ☐ Em caso de problemas não hierárquicos cria:
  - Redundância de dados
    - Resulta em anomalias de atualização ("update anomalies") nas instruções de modificação da base de dados
  - O Assimetrias indesejáveis na representação de dados e na programação
- ☐ Porque abordagem hierárquica foi usada?
  - Performance

Modelava a idéia de armazenar contiguamente um registro pai e seus vários filhos

IBM fez cedo uma reforma introduzindo o conceito de pai-filho lógico

Permitia estabelecer relações entre diferentes árvores e de fato implementar o modelo em rede (ver adiante)

## **Abordagem XML**

- □ Padrão W3C:
  - O Intercâmbio de documentos
  - Representação de conteúdo de documentos (separar apresentação de conteúdo)
  - Em evolução
- ☐ Modelo de dados em árvore, semelhante hierárquico
- ☐ Como modelo de dados de SGBD, mesmos problemas

#### XML - estrutura de dados

- ☐ Banco de dados é um documento XML
- □ Documento XML é composto de um elemento raiz
- □ Elemento raiz pode ser composto por outros elementos e assim recursivamente
- Estrutura em árvores

02/21

## XML - exemplo de documento

```
<pecas>
  <peca>
       <codpeca>P1</codpeca>
       <nomepeca>Eixo</nomepeca>
       <corpeca>Cinza</corpeca>
       <pesopeca>10</pesopeca>
       <cidadepeca>PoA</cidadepeca>
       <embarques>
               <fornec>
                       <codfornec>F1</codfornec>
               </fornec>
               <fornec>
                       <codfornec>F2</codfornec>
               </fornec>
        </embarques>
  </peca>
</pecas>
```

#### XML - assimetria das consultas

- Modelo hierárquico implica em assimetria de consultas
- Exemplos em Xpath (linguagem para referenciar partes de um documento - faz parte do padrão XML)
- □ Consulta 1

Buscar os nomes dos fornecedores que embarcaram o produto de código P2

/pecas/peca[codpeca="P2"]/embarques/fornec/nomefornec

☐ Consulta 2

Buscar os nomes das peças embarcadas pelo fornecedor F1:

/pecas/peca[embarques/fornec[codfornec="F1"]]/nomepeca

## Buscar os nomes dos fornecedores que embarcaram o produto de código P2

```
<pecas>
  <peca>
       <codpeca>P1</codpeca>
      <nomepeca>Eixo</nomepeca>
      <corpeca>Cinza</corpeca>
      <pesopeca>10</pesopeca>
      <cidadepeca>PoA</cidadepeca>
      <embarques>
             <fornec>
                    <codfornec>F1</codfornec>
             </fornec>
             <fornec>
                    <codfornec>F2</codfornec>
             </fornec>
       </embarques>
  </peca>
</pecas>
/pecas/peca[codpeca="P2"]/embarques/fornec/nomefornec
```

Buscar os nomes das peças embarcadas pelo fornecedor F1

```
<pecas>
  <peca>
         <codpeca>P1</codpeca>
        <nomeneca>Eixo</nomeneca>
        <corpeca>Cinza</corpeca>
        <pesopeca>10</pesopeca>
        <cidadepeca>PoA</cidadepeca>
        <embarques>
                 <fornec>
                          <codfornec>F1</codfornec>
                 </fornec>
                 <fornec>
                          <codfornec>F2</codfornec>
                 </fornec>
         </embarques>
  </peca>
</pecas>
```

/pecas/peca[embarques/fornec[codfornec="F1"]]/nomepeca

02/26

## Abordagem em rede

- ☐ Grande família de SGBDs baseada em um padrão estabelecido na década de 70
  - Padrão CODASYL/DBTG
- ☐ Tentativa de padronizar modelos de dados de SGBD
- □ Precursores foram sistemas de gerência de arquivos em listas encadeadas como TOTAL
- ☐ Originário do IDMS (BF Goodrich, depois Culinane)
- □ Depois adotado por muitos fornecedores de Hardware

## Abordagem em rede: estrutura de dados

- □ BD em rede é um **grafo:** 
  - o nós = registros
  - o arcos = ligações entre registros
- ☐ Há dois tipos básicos de construção:
  - oregistro ("record type")
  - oligação pai-filho entre os registros ("set type")

Não há a restrição da abordagem hierárquica: um determinado registro pode possuir diversos registros pai, desde que em diferentes ligações pai-filho.

A única restrição é que, em um tipo de ligação, um registro somente pode participar uma vez

# Esquema gráfico de um BD em rede - Exemplo dos fornecedores e peças



## Conteúdo da base de dados em rede (Peças e Fornecedores)



02/39 02/30

## Exemplo de esquema em rede do BD acadêmico



## Instruções de acesso a dados - abordagem em rede (1)

Na abordagem de rede são necessárias duas instruções de acesso a dados semelhantes às da abordagem hierárquica:

☐ get next <record name> where <select criteria>

Esta instrução busca um registro de um tipo (<record name>) que obedece a determinado critério (<select criteria>) com base em valores de seus campos

Não está restrita a registros raiz

☐ get next child <record name> via <set name> where <select criteria>

Esta instrução busca um registro de um tipo (<record name>) que obedece a determinado critério (<select criteria>) e que é filho do registro corrente dentro da ligação (<set name>) indicada.

02/31 02/32

### Instruções de acesso a dados - abordagem em rede (2)

- □ Adicionalmente, aparece uma instrução própria da abordagem em rede para buscar um registro pai (<record name>) de um filho em uma cadeia dada (<set name>):
  - O get parent <record name> via <set name>

## Exemplos de acessos a dados -abordagem em rede

- ☐ Consulta 1
  - Buscar os nomes dos fornecedores que embarcaram o produto de código P2

```
get next Peça where CodPeça='P2';
do until no more Embarq under this in Peça-Embarq;
  get next child Embarq via Peça-Embarq;
  get parent Fornec via Fornec-Embarq;
  print NomeFornec;
end;
```

02/33

## Exemplos de acessos a dados - abordagem em rede

- ☐ Consulta 2
  - O Buscar os nomes das peças embarcadas pelo fornecedor F1

```
get next Fornec where CodFornec='F1';
do until no more Embarq under this in Fornec-Embarq;
  get next child Embarq via Fornec-Embarq;
  get parent Peça via Peça-Embarq;
  print NomePeça;
end;
```

## Simetria na abordagem em rede

- □ O problema das peças e fornecedores que é simétrico do ponto de vista da realidade implementada
  - O tratado de forma simétrica na abordagem em rede
- □ A abordagem em rede modela o problema e as consultas simetricamente.

02/36

## Operações de modificação da base de dados - abordagem em rede

- □ Na abordagem em rede, não aparecem as anomalias de alteração que podem aparecer na abordagem hierárquica
- □ Para incluir um novo fornecedor (sem embarques) é necessário criar apenas um registro de fornecedor
- □ A exclusão do último embarque de um fornecedor não implica na exclusão de seu registro
- □ A exclusão de uma peça não implica na exclusão de seus fornecedores (apenas de seus embarques)
- □ A alteração de um campo de um fornecedor implica em alteração de um registro somente

Abordagem orientada a objetos

- ☐ Década de 90: estabelecimento da programação orientada a objetos
- ☐ Linguagens de programação OO não implementam persistência
  - Objeto persistente é aquele que sobrevive à execução do processo que o criou
- ☐ Programadores escrevem código que traz objetos da memória persistente e que devolve objetos à memória persistente
  - Solução trabalhosa
  - Solução sujeita a erros
- □ SGBD OO (orientado a objetos)
  - Programador escreve o código como se objetos estivessem na memória (quase como)

02/38

- ☐ Modelo de dados semelhante ao modelo em grafo
- □ Caminhos de acesso explícitos

## Análise das abordagens com caminhos de acesso explícitos

- □ Todas abordagens mostradas tem caminhos de acesso explícitos
- ☐ Significa: programador inclui referências explícitas a caminhos de acesso dentro do código das consultas
- ☐ São chamadas de abordagens navegacionais
- □ Independência de dados fica prejudicada:
  - criação/eliminação de ligações implica em alteração do código das consultas
- Solução proposta:
  - Não permitir que o programador faça referência a caminhos de acesso
  - Abordagem associativa
  - O Base do desenvolvimento da abordagem relacional

## **Abordagem relacional**

02/37

- Abordagem baseada em um formalismo matemático
  - o combinação de teoria de conjuntos com lógica de predicados
- ☐ Primeiro, formalismo foi desenvolvido (Codd, anos 70)
- ☐ Depois, protótipos de SGBD foram implementados
- ☐ Finalmente, produtos foram lançados

02/39 02/4

## Abordagem relacional: estrutura de dados

- ☐ Um BD relacional é composto por um único tipo de construção:
  - Tabela: composta por linhas (tuplas) e colunas (atributos).
  - As ligações entre linhas de diferentes tabelas são feitas através do uso de valores de atributos.

|                    |                  |        | Tabela Dept |             |                 |                         |   |
|--------------------|------------------|--------|-------------|-------------|-----------------|-------------------------|---|
|                    |                  |        |             | CódigoDepto | NomeDepto       |                         |   |
| atributo ou coluna |                  |        |             |             | D1<br>D2        | Marketing<br>Engenharia |   |
|                    |                  |        |             |             | D3              | Financeiro              |   |
|                    | Tabela E         |        |             |             |                 |                         |   |
|                    | Código           | Nome   | CódigoDepto | Cat         | egFuncional     |                         |   |
|                    | E5               | Souza  | D1          |             | C5              |                         |   |
|                    | E3               | Santos | D2          |             | C5              | linha ou tupla          |   |
|                    | E2               | Silva  | D1          |             | C2              |                         |   |
|                    | <u>E1</u>        | Soares | D1          |             | C6              |                         |   |
| cl                 | nave <i>prii</i> | mária  | chave 6     | estrai      | ngeira ou impor | tada da tabela Dep      | t |

### Definição matemática de relação

Sejam  $D_1$ ,  $D_2$ ,...,  $D_n$  conjuntos não necessariamente disjuntos de valores atômicos

R é uma relação sobre estes conjuntos (os domínios de R) se

R é um conjunto de n-uplas (tuplas) ordenadas  $< d_1, d_2, ..., d_n >$  de tal forma que, para i=1,2,...,n

 $d_i$  pertence a  $D_i$ 

02/42

## **Terminologias**

| profissional   | acadêmica         |  |
|----------------|-------------------|--|
| tabela         | relação           |  |
| linha          | tupla             |  |
| coluna         | atributo          |  |
| valor de campo | valor de atributo |  |

#### Tabela



### **Características de tabelas**

- ☐ Uma tabela é um **conjunto** no sentido matemático da palavra:
  - O Não há ordenação de linhas
  - O Uma mesma linha pode aparecer somente uma vez
    - esta restrição foi afrouxada nos SGBD comerciais
    - trabalham com multi-conjuntos ("multi-set" ou "bag")
- □ Tabela está na primeira forma normal (conceito detalhado adiante)
  - Valor de campo é:
    - atômico
    - monovalorado

#### Chave

- Conceito usado para especificar restrições de integridade básicas de um SGBD relacional
- ☐ Três tipos:
  - o chave **primária**
  - o chave alternativa
  - o chave estrangeira

02/46

## Chave primária

□ Uma **chave primária** é uma coluna ou uma combinação de colunas cujos valores distinguem uma linha das demais dentro de uma tabela

## Chave primária

02/45

Dependente

| Dependente |         |       |        |          |  |  |
|------------|---------|-------|--------|----------|--|--|
| CódigoEmp  | NoDepen | Nome  | Tipo   | DataNasc |  |  |
| E1         | 01      | João  | Filho  | 12/12/91 |  |  |
| E1         | 02      | Maria | Esposa | 01/01/50 |  |  |
| E2         | 01      | Ana   | Esposa | 05/11/55 |  |  |
| E6         | 01      | Paula | Esposa | 04/07/60 |  |  |
| E6         | 02      | José  | Filho  | 03/02/85 |  |  |

chave primária

## **Chave estrangeira**

- ☐ Uma coluna ou uma combinação de colunas, cujos valores aparecem necessariamente na chave primária de uma tabela
- ☐ Mecanismo que permite a implementação de relacionamentos em um banco de dados relacional

## DEPTO No

| CodigoDepto | NomeDepto  |  |
|-------------|------------|--|
| D1          | Compras    |  |
| D2          | Engenharia |  |
| D3          | Vendas     |  |

CodigoDepto em EMP é uma chave estrangeira em relação a tabela DEPTO

| EMP |           |        |             |                |                |  |
|-----|-----------|--------|-------------|----------------|----------------|--|
|     | CodigoEmp | Nome   | CodigoDepto | CategFuncional | CIC            |  |
|     | E1        | Souza  | D1          | -              | 132.121.331-20 |  |
|     | E2        | Santos | D2          | C5             | 891.221.111-11 |  |
|     | E3        | Silva  | D2          | C5             | 341.511.775-45 |  |
|     | E5        | Soares | D1          | C2             | 631.692.754-88 |  |

02/49

### Chave estrangeira - validação pelo SGBD (1)

- Quando da inclusão de uma linha na tabela que contém a chave estrangeira:
  - o valor da chave estrangeira deve aparecer na coluna da chave primária referenciada
- ☐ Quando da alteração do valor da chave estrangeira:
  - o novo valor de uma chave estrangeira deve aparecer na coluna da chave primária referenciada

02/50

## Chave estrangeira - validação pelo SGBD (2)

- ☐ Quando da **exclusão** de uma linha da tabela que contém a chave primária referenciada pela chave estrangeira:
  - o na coluna chave estrangeira não deve aparecer o valor da chave primária que está sendo excluída

## Chave estrangeira nem sempre é "estrangeira"

| Emp            |        |             |                  |
|----------------|--------|-------------|------------------|
| CódigoEmp Nome |        | CodigoDepto | CodigoEmpGerente |
| E5             | Souza  | D1          | _                |
| E3             | Santos | D2          | E5               |
| E2             | Silva  | D1          | E5               |
| E1             | Soares | D1          | E2               |
|                |        |             |                  |

Chave estrangeira referencia chave primária na própria tabela

02/51 02/52

### **Chave alternativa**

- ☐ Mais de uma coluna ou combinações de colunas podem servir para distinguir uma linha das demais
- □ Uma das colunas (ou combinação de colunas) é escolhida como chave primária
- As demais colunas ou combinações são denominadas chaves alternativas
- □ No padrão SQL, é chamada de chave única

#### **Chave alternativa**

Emp

| CodigoEmp | Nome   | CodigoDepto | CategFuncional | CIC            |
|-----------|--------|-------------|----------------|----------------|
| E1        | Souza  | D1          | -              | 132.121.331-20 |
| E2        | Santos | D2          | C5             | -              |
| E3        | Silva  | D2          | C5             | 341.511.775-45 |
| E5        | Soares | D1          | C2             | 631.692.754-88 |

chave alternativa

02/53

### Domínio de coluna

Conjunto de valores que podem aparecer em uma coluna (atributo)

## Valor vazio (NULL)

- ☐ Um valor de campo pode assumir o valor especial **vazio** ("**NULL**" em inglês)
- Colunas nas quais não são admitidos valores vazios são chamadas de colunas obrigatórias
- □ Colunas nas quais podem aparecer campos vazios são chamadas de colunas **opcionais**
- Abordagem relacional:
  - todas colunas que compõem a chave primária devem ser obrigatórias
  - demais chaves podem conter colunas opcionais (inclusive chaves estrangeiras/alternativas)

## Restrições de integridade

- □ Objetivo primordial de um SGBD:
  - ogarantir a consistência de dados
- ☐ Para garantir a consistência de um banco de dados:
  - SGBD oferecem o mecanismo de garantia de restrições de integridade
- □ Uma restrição de integridade é uma regra de consistência de dados que é garantida pelo próprio SGBD
- □ Regra de consistência que não é implementada pelo SGBD deve ser implementada dentro dos programas:
  - O Possível redundância de código

Tipos básicos de restrição de integridade

- ☐ Integridade de domínio
- □ Integridade de vazio
- ☐ Integridade de chave
- □ Integridade referencial
- □ Restrições acima
  - o garantidas automaticamente por um SGBD relacional
- □ Não é exigido que o programador escreva procedimentos para garanti-las explicitamente

02/57

## Restrição de integridade semântica

- ☐ Há muitas outras restrições de integridade que não se encaixam nas categorias básicas
- □ Essas restrições são chamadas de **restrições semânticas** (ou regras de negócio "bussiness rules")
- □ Exemplos de restrições semânticas:
  - Um empregado do departamento denominado "Finanças" não pode ter a categoria funcional "Engenheiro".
  - Um empregado n\u00e3o pode ter um sal\u00e1rio maior que seu superior imediato.

## Esquema gráfico de um BD relacional Exemplo dos fornecedores e peças



02/59 02/60

## Conteúdo da base de dados relacional (Peças e Fornecedores)

 Peça
 CodPeça
 NomePeça
 CorPeça
 PesoPeça
 CidadePeça

 P1
 Eixo
 Cinza
 10
 PoA

 P2
 Rolamento
 Preto
 16
 Rio

 P3
 Mancal
 Verde
 30
 SãoPaulo

| Embarq  |           |            |  |  |  |  |
|---------|-----------|------------|--|--|--|--|
| CodPeça | CodFornec | QtdeEmbarc |  |  |  |  |
| P1      | F1        | 300        |  |  |  |  |
| P1      | F2        | 400        |  |  |  |  |
| P1      | F3        | 200        |  |  |  |  |
| P2      | F1        | 300        |  |  |  |  |
| P2      | F4        | 350        |  |  |  |  |

| Fornec    |            |              |              |  |  |  |  |
|-----------|------------|--------------|--------------|--|--|--|--|
| CodFornec | NomeFornec | StatusFornec | CidadeFornec |  |  |  |  |
| F1        | Silva      | 5            | SãoPaulo     |  |  |  |  |
| F2        | Souza      | 10           | Rio          |  |  |  |  |
| F3        | Álvares    | 5            | SãoPaulo     |  |  |  |  |
| F4        | Tavares    | 8            | Rio          |  |  |  |  |

02/61

### Esquema textual

☐ Esquema mínimo (para exercícios)

Emp (CodigoEmp,Nome,CodigoDepto,CategFuncional,CIC)
CodigoDepto referencia Dept
Dept (CodigoDepto,Nome)

definição de chave estrangeira
sublinhado indica chave primária

### Exemplo de esquema relacional do BD acadêmico



### Consulta a base de dados

- Acesso por quaisquer critérios envolvendo os campos de uma ou mais linhas
- □ Programadores escrevem consultas sem considerar a existência de caminhos de acesso

02/62

- □ Caminho de acesso:
  - o estrutura auxiliar (índice, cadeia de ponteiros,...)
  - o acelera a recuperação de registros por determinados critérios
  - o evita a leitura exaustiva de todos registros de um arquivo

### Instruções de acesso a dados - abordagem relacional

□ Como na abordagem relacional há somente um tipo de construção (a tabela), apenas uma instrução de acesso a dados é necessária:

```
get next  where <select criteria>
```

Esta instrução busca uma linha (tupla) da tabela () que obedece a determinado critério (<select criteria>) com base em valores de seus atributos

Exemplos de acessos a dados - abordagem relacional

- □ Consulta 1
  - Buscar os nomes dos fornecedores que embarcaram o produto de código P2

```
do until no more Embarq;
  get next Embarq where CodPeça='P2';
  get next Fornec
    where
    Fornec.CodFornec=Embarq.CodFornec;
  print NomeFornec;
end;
```

02/66

#### Exemplos de acessos a dados - abordagem relacional

- ☐ Consulta 2
  - O Buscar os nomes das peças embarcadas pelo fornecedor F1

```
do until no more Embarq;
  get next Embarq where CodFornec='F1';
  get next Peça
    where
    Peça.CodPeça=Embarq.CodPeça;
  print NomePeça;
end;
```

## Simetria na abordagem relacional

- □ O problema das peças e fornecedores é simétrico.
- □ A abordagem relacional modela o problema e as consultas simetricamente.

02/67

02/65

## Operações de modificação da base de dados - abordagem relacional

Na abordagem relacional não aparecem as anomalias de alteração que podem aparecer na abordagem hierárquica:

- □ Para incluir um novo fornecedor (sem embarques) é necessário criar apenas uma linha na tabela de fornecedores.
- □ A exclusão do último embarque de um fornecedor não implica na exclusão de sua linha da tabela de fornecedores.
- ☐ A exclusão de uma peça não implica na exclusão de seus fornecedores (apenas de seus embarques).
- □ A alteração de um campo de um fornecedor implica em alteração de uma linha somente.

### Análise da abordagem relacional

□ Não está restrita a problemas hierárquicos.

□ Não há ligações explícitas.

☐ Independência de dados aumenta, pois programas não são influenciados pela existência ou não de caminhos de acesso.