Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)» (МФТИ)

Кафедра вакуумной электроники

Лабораторная работа

Конвективная диффузия в молекулярно электронных преобразователях

> Работу выполнили: студенты ФЭФМ группы Б04-906 Махсудов Умар Никитин Вадим Пикулина Екатерина

Содержание

1	Теория			
	1.1 Общие сведения о МЭП			
	1.2 Стационарный случай			
2	Ход эксперимента			
3	Вывод			

Цель работы: познакомиться с работой молекулярно-электронных преобразователей, выполненных на базе электрохимических ячеек, включенных по дифференциальной схеме. Измерить его вольт-амперную и амплитудно-частотную характеристики.

1 Теория

1.1 Общие сведения о МЭП

Наибольшее распространение среди устройств, построенных на явлении конвективной диффузии в растворах электролитов, получили **молекулярно-электронные преобра-зователи** (далее МЭП), выполненные на базе двух электрохимических ячеек. Принципиальная схема МЭП представлена на рис.1.

Рис. 1: Принципиальная схема МЭП

Он представляет собой электродный узел, помещенный в диэлектрическую трубку -1, заполненную раствором электролита -2. Внутри электродного узла установлены четыре плоских сетчатых электрода (аноды -4, катоды -5), разделенные пористыми перегородками -3.

Ток через электрооный узел в значительной степени определяется гидродинамическим движением раствора, вызванным на электродах внешним возмущением.

В преобразователе могут быть использованыразличные бинарные электролиты, обеспечивающие обратимые окислительно-восстановительные реакции, например, йод-йодид, ферри-ферроцианид и др. При этом электроды МЭП изготовляютиз металла, который не участвует в обмене катионами, а осуществляет только электронный обмен, что теоретически позволяет устройству работать бесконечно долгое время без изменения рабочих параметров.

В настоящее время наиболее широкое применение получили **йод-йодидные системы** с платиновыми электродами. Электролит такой системы состоит из высококонцентрированного водного раствора йодида калия КІ (нижняя граница температурного диапазона

−15°C) или йодида лития LiI (нижняя граница температурного диапазона −55°C) и небольшого количества молекулярного йода I2. В избытке йодида йод образует хорошо растворимое комплексное соединение – трийодид – по следующей схеме:

$$I_2 + I^- \to I_3^-. \tag{1}$$

Работа МЭП основана на том, что прохождение тока через МЭП в значительной степени определяется гидродинамическим движением раствора, вызванным действием внешних механических возмущений. В МЭП скорость химической реакции на электродах значительно больше скорости доставки к ним реагирующих веществ. В этом случае при протекании реакции в МЭП возникает градиент концентрации реагирующих веществ и перенос заряда в неподвижном электролите осуществляется с помощью молекулярной диффузии от одного электрода к другому. Если жидкость приходит в движение под воздействием сил инерции, то наряду с молекулярной диффузией возникает конвективный перенос ионов, что резко изменяет скорость доставки реагирующих веществ к электродам и, соответственно, меняется ток, идущий через МЭП.

1.2 Стационарный случай

Величина диффузионного тока, текущего через электрод, определяется выражением

$$I_D = -eSD\nabla n,\tag{2}$$

где S - площадь электродов.

В стационарном случае уравнение диффузии будет иметь вид

$$\Delta n = 0$$

Граничные условия и уравнение электродной кинетики

$$n_a = n(d), \quad n_k = n(-d)$$

$$n_a = n_k exp\left(\frac{eU}{k_6T}\right)$$

$$\int_{-d}^{d} n(x,t)dx = 2dn_0$$

Тогда уравнение диффузии будет иметь решение

$$n(x) = Ax + B$$

где константы определяются из граничных условий:

$$A = \frac{n_0}{d} \cdot th\left(\frac{eU}{2k_6T}\right),$$
$$B = n_0.$$

Подставляя в (2) получим выражение для тока, текущего через катод или анод:

$$I_D = -\frac{eSDn_0}{d} \cdot th\left(\frac{eU}{2k_6T}\right).$$

Тогда предельный ток будет равен

$$I_0 = -\frac{eSDn_0}{d}.$$

1.3 Конвективная диффузия

Если жидкость в МЭП приходит в движение под действием каких-либо внешних сил, то наряду с диффузионным полявляется также конвективный ток, обсуловленный увлечением ионов движущейся жидкостью. В линейном приближении конвективний ток пропорционален скорости движущейся жидкости v и определяется соотношением:

$$I_k = eSnv$$

Конвективная диффузия может быть вызвана как действием на систему разности давлений, так и гравитационным полем. В последнем случае она называется естественной конвекцией.

Таким образом, в основе работы МЭП лежит конвективная диффузия, вызванная действием внешних механических возмущений.

2 Ход эксперимента

После подключения МЭП в схему для получения ВАХ необходимо приложить напряжение, при этом не вызывая механических возмущений (стационарный случай).

Для измерения АЧХ был использован следующий механизм: сила, действующая на магнит, взаимодействующий с катушкой, пропорциональна величине этого тока и силе инерции, то есть ускорению. Так, исследуя зависимость выходного сигнала от тока в катушке, можно получить АЧХ сенсора по усокрению с точностью до постоянного множителя.

U, мВ	I, усл. ед.
1	58447,4
2	112819.8
5	271618.5
10	461188.9
20	567864.0
30	561507.8
40	537361.4
50	537056.4
100	531050.5
150	526342.2

Таблица 1: Зависимость сигнала тока при варьировании напряжения

ν, Гц	Амлитуда на выходе, мВ
0.1	54475
0.2	55524
0.5	52619
1.0	45840
2.0	37769
5.0	22436
10.0	15253
20.0	12025

ν, Гц	Амлитуда на входе, мВ
0.1	50198
0.2	49955
0.5	49552
1.0	49552
2.0	49664
5.0	50036
10.0	49875
20.0	49552

Таблица 2: Зависимости амплитуд выходного и входного сигналов от частоты

Рис. 2: ВАХ молекулярно-электронного преобразователя

Рис. 3: АЧХ молекулярно-электронного преобразователя

3 Вывод

Было изучено явление появления тока засчет конвективной диффузии в молекулярноэлектронных преобразователях. Полученный ВАХ совпал с теоретическими ожиданиями. Также была снята АЧХ, которая немного отличается от теоретической. Это связано с упругостью среды.

Список литературы

- [1] Лабораторная работа "Конвективная диффузия в молекулярно-электронных преобразователях"по курсу "Вакуумная электроника". Долгопрудный: МФТИ, 2021. 16 с.
- [2] Электрохимические преобразователи первичной информации / Бороков В.С., Графов Б.М., Новиков А.А. и др. М.: Машиностроение, 1969. 198 с.
- [3] ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ НА ОСНОВЕ МОЛЕКУЛЯРНО-ЭЛЕКТРОННЫХ ПРЕОБРАЗОВАТЕЛЕЙ / Бугаев А.С., Антонов А.С. и др. М.: 2018. 14 с.