

Universidade Federal do Paraná

Aprendizado não supervisionado

Eduardo Vargas Ferreira

Supervisionado vs não supervisionado

UNSUPERVISED MACHINE LEARNING SUPERVISED MACHINE LEARNING

Fonte: Proofreader's Whimsy

Análise de Componentes Principais (ACP)

• A primeira componente principal de um conjunto de características X_1, X_2, \ldots, X_p é a combinação linear normalizada $(\sum_{i=1}^p \phi_{i1}^2 = 1)$

$$Z_1 = \phi_{11}X_1 + \phi_{21}X_2 + \dots + \phi_{p1}X_p$$

= $\phi_1^{\dagger}X$

• Que maximiza a $Var(Z_1) = \phi_1^t \Sigma \phi_1$, com $\Sigma =$ matriz de covariância de X;

A segunda componente principal φ₂^tX maximiza Var(φ₂^tX), sujeito a restrição φ₂^tφ₂ = 1 e Cov(φ₁^tX, φ₂^tX) = 0.

Exemplo: USAarrests data

 Os dados contém o número de prisões por 100.000 residentes nos 50 estados dos Estados Unidos;

• $Z_1 = \phi_{1i} \mathbf{UrbanPop} + \phi_{2i} \mathbf{Rape} + \phi_{3i} \mathbf{Assault} + \phi_{4i} \mathbf{Murder}$

Escalando as variáveis

 Se as variáveis estão em diferentes unidades é recomendável escalar cada uma para se ter um desvio padrão igual a 1.

Cálculo das componentes principais

A k-ésima componente principal de um conjunto de características
X₁, X₂,..., X_p é a combinação linear

$$Z_k = \phi_{1k} X_1 + \phi_{2k} X_2 + \ldots + \phi_{pk} X_p,$$

• Que maximiza a $Var(\phi_k^t X)$, i.e.:

$$\underset{\phi_{1k}, \ldots, \phi_{pk}}{\operatorname{argmax}} \ \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{p} \phi_{jk} x_{ij} \right)^{2}, \quad \text{sujeito a} \ \begin{cases} \phi_{k}^{t} \phi_{k} = 1 \\ \operatorname{Cov}(\phi_{g}^{t} \boldsymbol{X}, \phi_{k}^{t} \boldsymbol{X}) = 0, \forall g < k \end{cases}$$

• Lembrando que $Var(Z) = E(Z^2) - [E(Z)]^2$ e $E(X_i) = 0, \forall i \in \{1, ..., p\}$.

Proporção da variância explicada

• A variância total presente nos dados é definida como

$$\sum_{j=1}^p extstyle extstyle Var(extstyle Z_j) = \lambda_1 + \lambda_2 + \ldots + \lambda_p$$

 Assim, a proporção da variância explicada pela j-ésima componente principal é dada por

$$\frac{\lambda_j}{\lambda_1 + \lambda_2 + \ldots + \lambda_p}$$

Abaixo, a proporção da variância explicada nos dados USAarrests;

Exemplo: clientes em atraso

9

- Clustering refere-se ao conjunto de técnicas para encontrar subgrupos (ou clusters) a partir dos dados;
- Buscamos partições em grupos distintos, tal que observações dentro de cada grupo sejam similares entre si e diferentes dos demais;

- Veremos três métodos:
 - M-means clustering;
 - Mierarchical clustering;
 - OBSCAN

- Clustering refere-se ao conjunto de técnicas para encontrar subgrupos (ou clusters) a partir dos dados;
- Buscamos partições em grupos distintos, tal que observações dentro de cada grupo sejam similares entre si e diferentes dos demais;

- Veremos três métodos:
 - M-means clustering;
 - Mierarchical clustering;
 - **3** DBSCAN.

- Clustering refere-se ao conjunto de técnicas para encontrar subgrupos (ou clusters) a partir dos dados;
- Buscamos partições em grupos distintos, tal que observações dentro de cada grupo sejam similares entre si e diferentes dos demais;

- Veremos três métodos:
 - M-means clustering;
 - Mierarchical clustering;
 - OBSCAN

- Clustering refere-se ao conjunto de técnicas para encontrar subgrupos (ou clusters) a partir dos dados;
- Buscamos partições em grupos distintos, tal que observações dentro de cada grupo sejam similares entre si e diferentes dos demais;

- Veremos três métodos:
 - M-means clustering;
 - Mierarchical clustering;
 - OBSCAN

K-means

K-means

Exemplo simulado

 Os dados simulados consistem em 150 observações. Os painéis representam os resultados de K-means para diferentes K's;

Detalhes do algoritmo

- Seja C₁, C₂,..., C_K respectivos grupos contendo os índices das observações, satisfazendo as seguintes propriedades:
 - * $C_1 \cup C_2 \cup \ldots \cup C_K = \{1, \ldots, n\}$. Em outras palavras, cada observação pertence à pelo menos um grupo;
 - * $C_k \cap C_{k'} = \emptyset$. Ou seja, as observações não pertencem a mais de um grupo ao mesmo tempo.
- A variação dentro do cluster C_k (within-cluster variation) é medida por

$$WCV(C_k) = \frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^{p} (x_{ij} - x_{i'j})^2,$$

em que $|C_k|$ denota o número de observações no k-ésimo cluster.

Detalhes do algoritmo

• Sendo assim, queremos resolver o seguinte problema

$$\underset{C_{1},...,C_{K}}{\text{argmin}} \left\{ \sum_{k=1}^{K} \frac{1}{|C_{k}|} \sum_{i,i' \in C_{k}} \sum_{j=1}^{p} (x_{ij} - x_{i'j})^{2} \right\} \\ = \underset{C_{1},...,C_{K}}{\text{argmin}} \left\{ \sum_{k=1}^{K} 2 \sum_{i \in C_{k}} \sum_{j=1}^{p} (x_{ij} - \bar{x}_{kj})^{2} \right\},$$

em que $\bar{x}_{kj} = \frac{1}{|\mathcal{C}_k|} \sum_{i \in \mathcal{C}_k} x_{ij}$ é a média da característica j no cluster \mathcal{C}_k .

Algoritmo

- Step 1: Atribua, aleatoriamente, cada observação em um dos K clusters (este é o chute inicial);
- Step 2: Itere até que os clusters se estabilizem:
 - (a) Para cada K cluster, calcule seu centroide;
 - (b) Atribua cada observação ao cluster mais próximo (menor distância Euclideana).

Atenção para o chute inicial

Hierarchical

Hierarchical Clustering

 Hierarchical clustering é uma abordagem alternativa, que não exige comprometimento com a escolha de K;

 A ideia do cluster aglomerativo é construir um dendrograma com folhas que se agrupam até chegar ao tronco.

Ideia do algoritmo

- Iniciamos com cada ponto sendo seu próprio cluster;
- Identificamos os dois clusters mais próximos e os agrupamos;
- Repetimos este processo até restar um cluster.

Exemplo

• Temos 45 observações, e 3 classes distintas (separadas por cores);

Exemplo

 Abaixo, três dendrogramas com diferentes alturas de corte (que resulta em clusters distintos);

Tipo de Linkage

Tipo de Linkage

Complete

 Calculamos a máxima dissimilaridade entre os clusters.

$$L(r,s) = \max(D(x_{ri}, x_{si}))$$

Single

 Calculamos a mínima dissimilaridade entre os clusters.

$$L(r,s) = \min(D(x_{ri}, x_{si}))$$

Average

 Calculamos a dissimilaridade média entre os clusters.

$$L(r,s) = \frac{1}{n_r n_s} \sum_{i=1}^{n_r} \sum_{j=1}^{n_s} D(x_{ri}, x_{sj})$$

Exemplo

 Em geral, average e complete linkage tendem a produzir agrupamentos mais equilibrados.

Correlation-based distance

• Trata-se de alternativa para a distância Euclideana.

 Ela considera duas observações similares se suas características são altamente correlacionadas.

Outros tipos de clusters

ClusteringDBSCAN

DBSCAN

 Os métodos que vimos anteriormente são adequados para encontrar agrupamentos esféricos, em regiões bem definidas e ausentes de outliers.

 Entretanto, no mundo real, os clusters podem ter formas arbitrárias (oval, em forma de "S" etc.), e virem com outliers e ruídos.

DBSCAN

DBSCAN (Density-Based Spatial Clustering and Application with Noise)
é um algoritmo de cluster baseado em densidade;

Clusters são regiões densas, separadas por regiões de menor densidade.

Como o método funciona

- Temos dois parâmetros de tuning:
 - * eps: que define o raio, ϵ , em torno do ponto x;
 - * MinPts: número mínimo de vizinhos dentro do raio ϵ .

- Qualquer ponto x, com uma quantidade de vizinhos maior ou igual a MinPts é considerado core:
- O ponto pertence a fronteira se o número de vizinhos < MinPts, mas está contido no raio de algum core;
- Finalmente, se o ponto não é interior nem de fronteira, ele é considerado como ruído ou outlier.

Prós e contras do método

Vantagens

- Não requer um número predefinido de clusters;
- Podem ser de gualquer forma, incluindo não esféricos;
- A técnica é capaz de identificar dados de ruído (outliers).

Desvantagem

- Pode falhar se não houver queda de densidade entre clusters;
- É sensível aos parâmetros que definem a densidade de tuning;
- A configuração adequada pode exigir conhecimento e domínio.

K-means vs DBSCAN

 No exemplo abaixo, comparamos DBSCAN com o k-means, através de um conjunto de dados simulados.

K-means vs DBSCAN

 No exemplo abaixo, comparamos DBSCAN com o k-means, através de um conjunto de dados simulados.

K-means vs DBSCAN

 No exemplo abaixo, comparamos DBSCAN com o k-means, através de um conjunto de dados simulados.

Exemplo Iris

Exemplo Iris

Referências

- James, G., Witten, D., Hastie, T. e Tibshirani, An Introduction to Statistical Learning, 2013;
- Hastie, T., Tibshirani, R. e Friedman, J., The Elements of Statistical Learning, 2009;
- Lantz, B., Machine Learning with R, Packt Publishing, 2013;
- Tan, Steinbach, and Kumar, Introduction to Data Mining, Addison-Wesley, 2005;
- Some of the figures in this presentation are taken from "An Introduction to Statistical Learning, with applications in R" (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani