Dashboard Overlay - Documentação Completa

- 1 Dashboard Overlay README
- 1.1 1) Requisitos
- 1.1.1 Dependências (modo simulação qualquer computador)
- 1.1.2 Dependências extras (modo Raspberry Pi opcional)
- 1.2 2) Arquivo principal
- 1.3 3) Como rodar (simulação valores aleatórios controlados por teclado)
- 1.4 4) Alternar entre Simulação e Raspberry Pi
- 1.5 5) Controles (teclado)
- 1.5.1 Selecionar variável: teclas 1–8 (na ordem exibida/na lista abaixo)
- 1.5.2 Ajustar o valor base da variável selecionada:
- 1.5.3 Ruído global (intensidade de variação):
- 1.5.4 Min/Max:
- 1.5.5 Ajuda:
- 1.5.6 Sair:
- 1.6 6) Posicionamento dos valores na imagem
- 1.7 7) Gráficos e efeitos visuais
- 1.8 8) Pinagem e notas (para uso futuro no RPi)
- 1.9 9) Problemas comuns & soluções
- 1.9.1 Janela "Gráficos"/"Painel" não abre
- 1.9.2 Imagem não carrega
- 1.9.3 Nada muda ao mexer no teclado
- 1.9.4 Raspberry Pi não lê sensores
- 1.10 10) Roadmap rápido (se quiser evoluir)

1 Dashboard Overlay – README

Projeto em Python para simular e/ou ler dados (Raspberry Pi) e sobrepor valores em pontos de uma imagem (ex.: fluxograma da planta). Inclui uma segunda janela com gráficos (barras com min/max e "flash" quando bate novos extremos).

1.11) Requisitos

- **Python 3.9+** (recomendado 3.10/3.11)
- Sistema: macOS, Windows ou Linux (Raspberry Pi opcional)

1.1.1 Dependências (modo simulação – qualquer computador)

```
pip install opencv-python
```

Se você usa virtualenv:

```
python -m venv .venv
source .venv/bin/activate  # macOS/Linux
# .venv\Scripts\activate  # Windows
pip install opencv-python
```

1.1.2 Dependências extras (modo Raspberry Pi – opcional)

No Raspberry Pi (Bullseye/Bookworm):

```
sudo apt update
sudo apt install python3-opencv python3-pip -y
pip install RPi.GPIO
```

Se for usar termopares (ex.: MAX6675):

```
# Exemplo: instale a lib do seu módulo de termopar
# (use a biblioteca compatível com seu hardware)
pip install max6675 # ou a lib equivalente que você utiliza
```

Habilite interfaces se precisar:

- **SPI/I2C** (para alguns conversores/ADCs): sudo raspi-config → Interface Options → habilitar
- Evite conflito de GPIO 2 e 3 (SDA/SCL) se forem usados por sensores

1.2 2) Arquivo principal

O projeto é um único arquivo:

dashboard_overlay.py

Coloque a sua imagem de fundo (jpg/png) em uma pasta do projeto.

1.3 3) Como rodar (simulação – valores aleatórios controlados por teclado)

```
python dashboard_overlay.py --img "/caminho/para/sua_imagem.jpg" --scale 1.0
```

Parâmetros: - -img: caminho da imagem de fundo (obrigatório) - --scale: escala da janela principal (opcional). Ex.: 0.8, 1.0, 1.2

Na janela **Painel**, você verá os valores sobrepostos nos campos verdes da sua imagem. Na janela **Gráficos**, você vê os cartões com barras, min/max e o efeito visual quando atingir novo mínimo/máximo.

1.4 4) Alternar entre Simulação e Raspberry Pi

No topo do arquivo dashboard_overlay.py existe a chave:

- False: modo simulação (valores gerados a partir dos "bases" com ruído)
- True: tenta inicializar GPIO e leitura de termopares (se a biblioteca estiver instalada)

Se não conseguir, faz fallback para simulação e mostra um aviso.

1.5 5) Controles (teclado)

1.5.1 Selecionar variável: teclas 1-8 (na ordem exibida/na lista abaixo)

- 1. Temp Forno
- 2. Velocidade
- 3. Temp Tanque
- 4. Temp Saída Gases
- 5. Pressão Gases
- 6. Torre Nível 1
- 7. Torre Nível 2
- 8. Torre Nível 3

1.5.2 Ajustar o valor base da variável selecionada:

- Seta ↑: + passo pequeno
- Seta ↓: passo pequeno
- Q: + passo grande
- A: passo grande

1.5.3 Ruído global (intensidade de variação):

-] (colchete direito): aumentar ruído
- [(colchete esquerdo): diminuir ruído

1.5.4 Min/Max:

• R: resetar mínimos/máximos observados

1.5.5 Ajuda:

• H: mostrar/ocultar ajuda rápida na tela

1.5.6 Sair:

• ESC ou Ctrl+C: fecha sem traceback

Observação: os valores só mudam quando você mexe nos controles (teclado). Não há "tick" automático por tempo no modo simulação (evita variações indesejadas).

1.6 6) Posicionamento dos valores na imagem

As posições dos 8 campos são proporcionais à imagem (0.0–1.0) e ficam em:

```
"Torre Nível 3": (0.75, 0.38),
}
```

Para ajustar: 1. Ative o modo de ajuda do mouse (já vem ativo) 2. Mova o cursor sobre a imagem; no canto superior esquerdo aparecem as coordenadas normalizadas (x, y) 3. Copie esse par para o campo correspondente no dicionário POSITIONS_NORM

1.7 7) Gráficos e efeitos visuais

- A janela Gráficos mostra cartões com barra horizontal para cada variável
- Quando um valor atinge um novo mínimo ou novo máximo, o cartão "pisca":
 - o Novo Máximo: flash azulado + marcador no fim da barra
 - o Novo Mínimo: flash avermelhado + marcador no início da barra

Os ranges (escalas) podem ser ajustados em:

1.8 8) Pinagem e notas (para uso futuro no RPi)

Constantes definidas no topo do arquivo:

```
# Termopares (CLK, CS, D0) - ajuste conforme seu módulo/conexão
THERMO_TORRE_1 = (25, 24, 18)
THERMO_TORRE_2 = (7, 8, 23)
THERMO_TORRE_3 = (21, 20, 16)
THERMO_TANQUE = (4, 3, 2) # ATENÇÃO: 2/3 são SDA/SCL (I2C)
THERMO_GASES = (22, 27, 17)
THERMO_FORNO = (11, 9, 10)

# Sensores de pressão (ex.: via ADC I2C/SPI; placeholders)
PRESSAO_1_PIN = 2
```

```
PRESSAO_2_PIN = 3

# Atuadores

PIN_VENTILADOR = 14

PIN_RESISTENCIA = 26

PIN_MOTOR_ROSCA = 12

PIN_TAMBOR_DIR = 13

PIN_TAMBOR_PUL = 19
```

Importante: Se você usar I2C (GPIO 2/3) para ADC/sensores, não reutilize-os para outra função ao mesmo tempo. Ajuste a pinagem conforme o seu hardware.

1.9 9) Problemas comuns & soluções

1.9.1 Janela "Gráficos"/"Painel" não abre

 Verifique se opencv-python está instalado e se há suporte a GUI (em servidores, use uma máquina com desktop)

1.9.2 Imagem não carrega

• Confira o caminho passado em ——img e a extensão (png/jpg)

1.9.3 Nada muda ao mexer no teclado

- Clique uma vez na janela Painel para garantir foco
- Use as teclas listadas na seção Controles

1.9.4 Raspberry Pi não lê sensores

- Confirme USE_RPI=True
- Instale a/lib correta do seu termopar (MAX6675 ou equivalente)
- Habilite SPI/I2C se necessário e ajuste a pinagem

1.10 10) Roadmap rápido (se quiser evoluir)

- Conectar leituras reais (termopares, ADC de pressão)
- ☐ Adicionar lógica de controle (ex.: ligar ventilador/resistência por setpoint com histerese)
- □ Persistir logs (CSV) dos valores e min/max

8/2025, 13:56 Dashboard Overlay - Documentação Completa Página web local (Flask/FastAPI) para monitoramento remoto					
Qualquer ajuste fino (repronto no arquivo.	anges, passos de tec	la, layout dos cart	ões ou posições),	me diga que já de	eixo