

第三章 运输问题

2. 表上作业法求解运输问题

2.1 运输问题求解的基本思路

- 1. 建立运输问题表格
- 2. 找出初始解
 - 最小元素法 Intuitive Lowest Cost Method
 - 西北角法 Northwest Corner Method
 - 一 伏格尔法 Vogel Approximation Method
- 3. 从初始解到最优解 闭回路调整法
 - 判別:是否为最优解?
 - 一 调整、改进,直到求得最优解。

2.1 运输问题求解的基本思路

- 产销平衡的运输问题有 $m \times n$ 个变量,m + n 1个独立约束。
- 产销平衡的运输问题一定有解。
- 如果运输问题中的参数均是整数,则其任意基本解中各变量的取值均为整数。
- 初始解中基变量的个数应当为m+n-1个,对应表中的数字格。
- 剩下的为非基变量,值均为0,对应空格。

1. 最小元素法 Intuitive Lowest-Cost (ILC) Method

- 从单位运价表中最小的运价开始确定供销关系, 然后次小……
- 即 $\min\{c_{ij}\}=c_{pq}$,从 A_p 供应 B_q
- 若 $a_p > b_q$,则 B_q 的需求全部满足,划去q列尚有余量 $a_p b_q$ 供应给其他的销地
- 若 $a_p < b_q$,则 B_q 需求不能全部满足,划去p行,不足部分 $b_q a_p$ 需由其他的产地供应

国 五京大<u>漠 工程管理学院</u> 2.2 初始基可行解 lowest cost lowest cost lowest cost 最小元素法 To \mathbf{C} Α Supply From 5 100 100 D 8 3 200 100 300 E 9 7 5 300 300 F 300 200 700 200 Demand

- 1. 先找运价最小的单元格
- 2. 尽可能分配最多的运量,但不超出产量或销量的限制
- 3. 划去满足的行或列
- 4. 从剩下格子中再找最小运价
- 5. 重复上述1~4步

1. 最小元素法 Intuitive Lowest-Cost (ILC) Method

To From	A	В	С	Supply
D	5	4	100	100
Е	8	200 4	100	300
F	300	7	5	300
Demand	300	200	200	700

总成本 = 100*3+200*4+100*3+300*9 = 4100

最小元素法练习:

Northwest west-Corner (NWC) Rule

Northwest corner	A	В	С	Supply
D	00 5	4	3	100
Е	200 8	100	3	300
F	9	100 7	200 5	300
Demand	300	200	200	700

$$x_{AD} = min (A, D) = min (300, 100) = 100$$

$$x_{AE} = min (A-100, E) = min (300-100, 300) = 200$$

2. 西北角法 Northwest-Corner (NWC) Rule

To From	A	В	С	Supply
D	100	4	3	100
Е	200	100	3	300
F	9	100 7	200 5	300
Demand	300	200	200	700

总成本 = 100*5+200*8+100*4+100*7+200*5 = 4200

- 3. 伏格尔法 Vogel Approximation Method (VAM)
- 计算各行和各列的最小运费和次小运费的差额,填入 表中
- 从行和列差额中选出最大者,选择它所在行或列中最小元素,以此确定供应关系,划去满足的行或列
- 对未划去的元素再进行差额计算,重复上述步骤

最大

差额

• 分别计算各行各列的最小运费和 该行最小 差额

• 再计算未划去各行各列的最小运 单位运价 费的差额

产量 行差额 **B3 B**4 **B**1 B2 **A3 A**1 供应 **B2** A2 9 该列最 销量 3 6 小单位 运价 该列最小单 列差额 位运价

最大差额

最大差额

该列最小单位运价

最大差额

Xu Wei @ NJU / P11

✓ 最小元素法:

$$3 * 1 + 6 * 4 + 4 * 3 + 1 * 2 + 3 * 10 + 3 * 5 = 86$$

✓ 伏格尔法:

$$3 * 1 + 6 * 4 + 5 * 3 + 2 * 10 + 1 * 8 + 3 * 5 = 85$$

初始解 哪一个更优呢?

- 判断是否为最优解, 关键是看检验数;
- 由于数字格为基变量, 其检验数始终为 0;
- 故只要看空格的检验数,如何求此检验数?
 - ➤ 闭回路法 (Cycle Method)
 - ➤ 对偶变量法 (Dual Variable Method)
- 运输问题的目标函数要求为最小,即当检验数 $\sigma_{ij} \geq 0$ 时为最优。

1. 闭回路法 Cycle Method

- 在初始解上,对每个空格找一条闭回路
- 以某个空格为起点,用水平或垂直线向前划, 每碰到一个数字格转90度,继续前进,直接回 到起始空格为止。
- 从每一空格出发一定存在和可以找到唯一的闭 回路。
- 可能有时要跳过某个数字格

闭回路法

检验数

	B1 •	B2	В3	B4	产量
A1	(1) 3	11	4 (-1)	3 10	7
A2	3	9	1 (+1)	8	4
A3	7	6	10	3	9
销量	3	6	5	6	

	B1	B2	В3	B4	产量
A1	(1)	(2) 11	3 (-1) <u>10</u>	7
A2	3	9	1	8	4
A3	7	6(-1)	10 (+	-1) 5	9
销量	3	6	5	6	

	B1	B2	В3	B4	产量
A1	(1)	(2) 11	4	3 10	7
A2	3	9	1 2	(-1)	4
A3	7	6	$(12^{\frac{10}{2}})$	3 5	9
销量	3	6	5	6	

	B1	B2	В3	B4	产量
A1	(1) 3	(2) 11	4(-1)	3 (+1) 7
A2	3 (-1)	9 (-	+1)	(-1) ⁸	4
A3	(10)	6	(12 ¹⁰)	3 (-1)	9
销量	(+1)	6	5	6	

	B1	B2	В3	B4	产量
A1	(1) 3	(2) 11	4(+1)	3 (-1)	7
A2	3	(1)	(-1)	(-1) ⁸	4
A3	(10)	6	$(12)^{10}$	3 (+1	9
销量	3	6	5	6	

闭回路法: 空格检验数有负数, 未达最优

	B1	B2	В3	B4	产量
A1	(1)	(2) 11	4	3 10	7
A2	3	(1)	1	(-1) ⁸	4
A3	(12)	6	$(12)^{10}$	3 5	9
销量	3	6	5	6	

运输问题的对偶问题:

设 $u_i, v_j, i = 1, 2, \dots, m, j = 1, 2, \dots, n$, 为运输问题的对偶变量,则运输问题的对偶问题如下:

max
$$w = \sum_{i=1}^{m} a_i u_i + \sum_{j=1}^{n} b_j v_j$$

s.t. $u_i + v_j \le c_{ij} (i = 1, \dots, m; j = 1, \dots, n)$
 u_i, v_j 自由变量

2. 对偶变量法(位势法)

• 检验数计算公式:

$$\sigma_{ij} = c_{ij} - (u_i + v_j)$$

- 对基变量(数字格)有 $\sigma_{ij}=0$,共m+n-1个
- $\Rightarrow u_1 = 0$
- 从此m + n 1个方程中可以解出 u_i 和 v_j 的值
- 由此 u_i 和 v_j 再来计算空格检验数的值 σ_{ij}

位势法

To From	A	В	С	Supply	Dual u
D	(-1) $\frac{5}{}$	(0)	100 3	100	0
Е	(2)	200 4	100 3	300	0
F	300	0 7	(-1) $\frac{5}{}$	300	3
Demand	300	200	200		
Dual v	6	4	3		

检验数计算公式: $\sigma_{ij} = c_{ij} - (u_i + v_j)$

闭回路调整法

• 确定进基变量

ho 检查非基变量 x_{ij} 的检验数 σ_{ij} ,按 $\min\{\sigma_{ij} | \sigma_{ij} < 0\} = \sigma_{lk}$ 确定 x_{lk} 进基。

• 确定离基变量

- ▶ 非基变量*x_{lk}*进基之后,能让它的运量增加多少呢? 调整后它所在行和列的运量要保持**产销平衡**
- ▶ 奇偶点: 始点是奇点,依次奇偶相间标注; 奇点标 "+",表示运量增加量; 偶点标 "-",表示运量减少量。
- 调整量:最小可减少的运量,即偶点运量的最小值。 偶点运量的最小值所在格的基变量离基。

调整

To From	Α	В	С	供应量
D	(1-d) 5 +	4	100	100
E	8	200 4	200	300
F	300	000 7	5	300
需求量	300	200	200	700

调整后

To From	Α	В	С	供应量
D	100 5	4	3	100
Е	8	100 4	200 3	300
F	200 9	100 7	5	300
需求量	300	200	200	700

总成本: $100 \times 5 + 100 \times 4 + 200 \times 3 + 200 \times 9 +$

 $100 \times 7 = 4000$

重算检验数

To From	Α	В	С	供应量
D	100 5	(1)	(1)	100
E	(2)	100 4	200 3	300
F	200	100 7	(-1) $\frac{5}{2}$	300
需求量	300	200	200	负数!!!
				、

闭回路和检验数:

DB: DB \rightarrow FB \rightarrow FA \rightarrow DA \rightarrow DB 4-7+9-5=1

DC: DC \rightarrow EC \rightarrow EB \rightarrow FB \rightarrow FA \rightarrow DA 3-3+4-7+9-5=1

EA: EA \rightarrow EB \rightarrow FB \rightarrow FA \rightarrow EA 8-4+7-9=2

FC: FC \rightarrow ED \rightarrow FB \rightarrow FC 5-3+4-7=-1

第2次调整一最优

To From	Α	В	С	供应量
D	100 5	4	3	100
E	8	200 4	100	300
F	200	7	100 5	300
需求量	300	200	200	700

总成本: $100 \times 5 + 200 \times 4 + 100 \times 3 + 200 \times 9 + 100 \times 5 = 3900$

用位势法计算调整后的检验数

From To	A	В	С	供应量	Dual u
D	100 5	(2) 4	(2)	100	0
Е	(1)	200 4	100	300	2
F	200 9	(1) 7	100 5	300	4
需求量	300	200	200		
Dual v	5	2	1		

空格检验数计算公式: $\sigma_{ij} = c_{ij} - (u_i + v_j)$

所有空格检验数均非负,达到最优解!

2.4 表上作业法计算中的问题

1. 退化解

当一个基础可行解中 $x_{ij} > 0$ 的基变量的个数小于m+n-1时,称这样的基础可行解为退化的。换言之,退化的基础可行解中至少有一个基变量是0。

为了使基变量保持m+n-1个,又使基解满足供应地和需求地的运量约束,需要增加一个 $x_{ij}=0$ 的基变量,这个基变量在网络图和运输表中不能形成闭回路。

2.4 表上作业法计算中的问题

1. 退化解

- 在用闭回路法调整时,在闭回路上出现两个和两个以上的 具有(-)标记的相等的最小值
- 这时只能选择其中一个作为调入格。而经调整后,得到退化解。这时另一个数字格必须填入一个 0,表明它是基变量

2.4 表上作业法计算中的问题

2. 无穷多最优解

产销平衡的运输问题必定解还是无穷多最优解?

销地加工厂	B ₁	B_2	B_3	B_4	产量
A_1	2		5		7
A_2	1			3	4
A_3		6		3	9
销量	3	6	5	6	

销地 加工厂	B_1	B_2	B_3	B ₄	产量
A_1	0	2	5	2	7
A_2	3-	2	1	1+	4
A_3	9	6	12	3	9
销量	3	6	5	6	

$$\theta = \min(2,3) = 2$$

第三章 运输问题

3. 运输问题的进一步讨论

3.1 产销不平衡的运输问题

- 前面的解法,前提是总产量等于总销量。
- 然而,现实生活中的问题有很多却是产销不平衡的,能 否解决?

产销不平衡的运输问题模型

产大于销时约束条件

$$\sum_{j=1}^{n} x_{ij} \le a_i \quad (i = 1, 2, \cdots, m)$$

$$\sum_{i=1}^{m} x_{ij} = b_j \quad (j = 1, 2, \dots, n)$$

产小于销时约束条件

$$\sum_{i=1}^{n} x_{ij} = a_i \quad (i = 1, 2, \dots, m)$$

$$\sum_{i=1}^{m} x_{ij} \le b_j \quad (j = 1, 2, \dots, n)$$

3.1 产销不平衡的运输问题

- 若总产量大于总销量,就增加虚拟销地dummy destination, 销量为产量的差额。
- 若总产量小于总销量,就增加虚拟产地dummy source,产 量为销量的差额。
- 因为这些差额实际上不会运送,即就地存储或销售,所以 假设它们的单位运价均为0

$$\overline{+x_{i,n+1}}$$
 松弛变量

十
$$x_{i,n+1}$$
 松弛变量
产大于销:
$$\sum_{j=1}^{n} x_{ij} \leq a_i \quad (i = 1,2,\dots,m)$$

$$\sum_{j=1}^{m} x_{ij} = b_j \quad (j = 1, 2, \dots, n)$$

min
$$z = \sum_{i=1}^{m} \sum_{j=1}^{n+1} c_{ij} x_{ij}$$

$$c_{i,n+1} = 0$$

$$\sum_{i=1}^{m} x_{ij} = b_j \quad (j = 1, 2, \dots, n) \qquad \sum_{i=1}^{m} x_{i,n+1} = b_{n+1} = \sum_{i=1}^{m} a_i - \sum_{i=1}^{n} b_i$$

3.1 产销不平衡的运输问题

例1

假设D工厂的产量现在是250

To From	A	В	С	Supply
D	5	4	3	260
Е	8	4	3	300
F	9	7	5	300
Demand	300	200	200	700

3.1 产销不平衡的运输问题

产量大于销量150,就要增加一个虚拟销地

To From	A	В	С	Dupphy
D	5	4	3	2500
Е	8	4	3	300
F	9	7	5	300
Demand	300	200	200	8 50

虚拟销地的单位运价均为0,销量为150

3.1 产销不平衡的运输问题

<u>例2</u>. 石家庄北方研究院有一、二、三3个区。每年分别需要用煤3000、1000、2000吨,由山西A县、河北B县两处煤矿负责供应,价格、质量相同。供应能力分别为1500、4000吨,运价为:

销地 产地	- ⊠	二区	三区	产量
山西A县	1.65	1.70	1.75	4000
河北B县	1.60	1.65	1.70	1500
需求量	3000	1000	2000	

由于需大于供,经院研究决定一区供应量可减少0~300吨,二区必须满足需求量,三区供应量不少于1700吨,试求总费用为最低的调运方案。

	- ⊠	— <u>⊠</u> ,	二区	三区	三区,	产量
山西A县	1.65	1.65	1.70	1.75	1.75	4000
河北B县	1.60	1.60	1.65	1.70	1.70	1500
假想生产点	M	0	M	M	0	500
需求量	2700	300	1000	1700	300	

3.1 产销不平衡的运输问题

<u>例3</u>. 有A、B、C三个化肥厂供应1、2、3、4四个地区的农用化肥。假设效果相同,有关数据如下表:

	1区	2区	3⊠	4⊠	产量
A	16	13	22	17	50
В	14	13	19	15	60
С	19	20	23		50
最低需要量	30	70	0	10	
最高需要量	50	70	30	不限	

试求总费用为最低的化肥调拨方案。

	1⊠′	1区"	2⊠	3⊠	4⊠′	4⊠"	产量
A	16	16	13	22	17	17	50
В	14	14	13	19	15	15	60
С	19	19	20	23	M	M	50
D	M	0	M	0	M	0	50
销量	30	20	70	30	10	50	

最低要求必须满足,因此把相应的虚设产地运费取为M,而最高要求与最低要求的差允许按需要安排,因此把相应的虚设产地运费取为0。对应4"的销量50是考虑问题本身适当取的数据,根据产销平衡要求确定D的产量为50。

Transshipment Problem

- 产地与销地之间没有直达路线,需要中间转运。
- 某些产地既输出货物,也吸收一部分货物;某销地既吸收货物,又输出部分货物,即产地或销地也可以起中转站的作用,或者既是产地又是销地。
- 产地与销地虽然有直达路线,但直达运输的费用或运输 距离分别比经过某些中转站还要高或远。

例:腾飞电子仪器公司在大连和广州有两个分厂生产同一种仪器,大连分厂每月生产450台,广州分厂每月生产600台。该公司在上海和天津有两个销售公司负责对南京、济南、南昌、青岛四个城市的仪器供应。另外因为大连距离青岛较近,公司同意大连分厂向青岛直接供货,运输费用如下图,单位是百元。问应该如何调运仪器,可使总运输费用最低?(图中1-广州、2-大连、3-上海、4-天津、5-南京、6-济南、7-南昌、8-青岛)

目标函数:

$$\min f = 2x_{13} + 3x_{14} + 3x_{23} + x_{24} + 4x_{28} + 2x_{35} + 6x_{36} + 3x_{37} + 6x_{38} + 4x_{45} + 4x_{46} + 6x_{47} + 5x_{48}$$

约束条件:

$$s.t.$$
 $x_{13} + x_{14} \le 600$ (广州分厂供应量限制) $x_{23} + x_{24} + x_{28} \le 450$ (大连分厂供应量限制) $-x_{13} - x_{23} + x_{35} + x_{36} + x_{37} + x_{38} = 0$ (上海销售公司,转运站) $-x_{14} - x_{24} + x_{45} + x_{46} + x_{47} + x_{48} = 0$ (天津销售公司,转运站) $x_{35} + x_{45} = 200$ (南京的销量) $x_{36} + x_{46} = 150$ (济南的销量) $x_{37} + x_{47} = 350$ (南昌的销量) $x_{38} + x_{48} + x_{28} = 300$ (青岛的销量) $x_{38} + x_{48} + x_{28} = 300$ (青岛的销量)

能否转化成一个等价的产销平衡运输问题,再用表上作业法求出最优调运方案?

- 假定m个产地和n个销地都可以作为中间转运站,则产地、销地均有m + n个,则可得到扩大的运输问题。
- 产销平衡(总产量 = 总销量 = Q)
- 原产地在新表中的产量均加Q
- 原销地在新表中的产量均为 Q
- 原销地在新表中的销量均加 Q
- 原产地在新表中的销量均为 Q
- 新表中对角线处运价为转运费用的负值

- 因为从产地到销地不是直通,就要转运,这样中间经过的点 既可以是产地又可以是销地;而这些地点之间两两都可以通 过转运来到达,故每个地点都可以作为潜在产地和销地。
- 自己到自己没有转运费即为0;若有,则取负值表示更多的 是就地存储以减少总运费。
- 通过每个地点的货物数量既包括该地点作为销地的需求量, 也包括其作为产地的供应量。因为这一数量事先不知道,只 好设一个上界,再在需求约束中加入松弛变量x_{ii}来平衡。
- 这个上界取总运量Q最方便,因为运量再大也不会超过此值。
- 每个转运地实际转运量为 $Q x_{ii}$ 。

设有m个产地 $A_1, A_2, ..., A_m$ 和n个目的地 $B_1, B_2, ..., B_n$,都可以作为中间转运站使用,因此发送和接受货物的地点有m+n个。

 a_i : 第i个产地的产量; b_i : 第j个目的地的需求量

 x_{ij} : 第i个产地运到第j个目的地的货物量

 c_{ii} : 第i个产地运到第j个目的地的单位运价

 t_i : 第i个地点转运货物的数量;

 c_i : 第i个地点转运货物的单位费用

$$\min S = \sum_{\substack{i=1\\i\neq j}}^{m+n} \sum_{j=1}^{m+n} c_{ij} x_{ij} + \sum_{i=1}^{m+n} c_i t_i$$

在四组等式约束条件两边均加上Q

$$\begin{cases} x_{i1} + x_{i2} + \dots + x_{i,i-1} + x_{i,i+1} + \dots + x_{i,m+n} - t_i = a_i & (i = 1, 2, \dots, m) \\ x_{i1} + x_{i2} + \dots + x_{i,i-1} + x_{i,i+1} + \dots + x_{i,m+n} - t_i = 0 & (i = m+1, m+2, \dots, m+n) \\ x_{1j} + x_{2j} + \dots + x_{j-1,j} + x_{j+1,j} + \dots + x_{m+n,j} - t_j = 0 & (j = 1, 2, \dots, m) \\ x_{1j} + x_{2j} + \dots + x_{j-1,j} + x_{j+1,j} + \dots + x_{m+n,j} - t_j = b_j & (j = m+1, m+2, \dots, m+n) \\ x_{ij} \ge 0 & (i \ne j) \end{cases}$$

$$\min S = \sum_{\substack{i=1\\i\neq j}}^{m+n} \sum_{j=1}^{m+n} c_{ij} x_{ij} + \sum_{i=1}^{m+n} c_i t_i$$

$$\begin{cases} x_{i1} + x_{i2} + \dots + x_{i,i-1} + x_{i,i+1} + \dots + x_{i,m+n} \\ x_{i1} + x_{i2} + \dots + x_{i,i-1} + x_{i,i+1} + \dots + x_{i,m+n} \\ x_{i1} + x_{i2} + \dots + x_{j-1,j} + x_{j+1,j} + \dots + x_{m+n,j} \\ x_{ij} + x_{2j} + \dots + x_{j-1,j} + x_{j+1,j} + \dots + x_{m+n,j} \\ x_{ij} \geq 0 \quad (i \neq j) \end{cases} = Q + a_i (i = 1, 2, \dots, m)$$

$$\min S = \sum_{\substack{i=1\\i\neq j}}^{m+n} \sum_{j=1}^{m+n} c_{ij} x_{ij} + \sum_{i=1}^{m+n} c_i t_i \qquad \qquad \Rightarrow x_{ii} = Q - t_i, x_{jj} = Q - t_j$$

$$\begin{cases} x_{i1} + x_{i2} + \dots + x_{i,i-1} + x_{i,i+1} + \dots + x_{i,m+n} + x_{ij} = Q + a_i (i = 1, 2, \dots, m) \\ x_{i1} + x_{i2} + \dots + x_{i,i-1} + x_{i,i+1} + \dots + x_{i,m+n} + x_{ij} = Q + 0 \ (i = m+1, m+2, \dots, m+n) \end{cases}$$

$$s.t. \begin{cases} x_{i1} + x_{i2} + \dots + x_{i,i-1} + x_{i,i+1} + \dots + x_{i,m+n} + x_{ij} = Q + 0 \ (i = m+1, m+2, \dots, m+n) \end{cases}$$

$$x_{1j} + x_{2j} + \dots + x_{j-1,j} + x_{j+1,j} + \dots + x_{m+n,j} + x_{jj} = Q + b_j (j = m+1, m+2, \dots, m+n)$$

$$x_{ij} \geq 0 \ (i \neq j)$$

$$\min S = \sum_{\substack{i=1\\i\neq j\\i\neq j}}^{m+n} \sum_{j=1}^{m+n} c_{ij} x_{ij} + \sum_{i=1}^{m+n} c_i (Q - x_{ii}) = \sum_{\substack{i=1\\i\neq j}}^{m+n} \sum_{j=1}^{m+n} c_{ij} x_{ij} + \sum_{i=1}^{m+n} c_i Q$$

$$= \sum_{\substack{i=1\\j\neq j}}^{m+n} \sum_{j=1}^{m+n} c_{ij} x_{ij} + \sum_{i=1}^{m+n} c_i Q$$

$$\sum_{j=1}^{m+n} x_{ij} = Q + a_i (i = 1, 2, ..., m)$$

$$\sum_{j=1}^{m+n} x_{ij} = Q (i = m+1, m+2, ..., m+n)$$

$$\sum_{i=1}^{m+n} x_{ij} = Q + b_j (j = m+1, m+2, ..., m+n)$$

$$x_{ij} \ge 0 (i, j = 1, 2, ..., m+n)$$

3.2 转运问题 — 例题

例:如图,有两个产地1、2,两个销地4、5,以及一个转运地3, 已知

- $a_1 = 10$, $a_2 = 40$, $a_3 = a_4 = a_5 = 0$
- $b_1 = b_2 = b_3 = 0, b_4 = 30, b_5 = 20$
- Q = 10 + 40 = 30 + 20 = 50
- $c_1 = 4$, $c_2 = 1$, $c_3 = 3$, $c_4 = 3$, $c_5 = 5$

现已平衡, 再求解。

						2 3	5/6
	接收	产	地	转运	销	地	30
发送	美	1	2	3	4	5	发送量
产	1	-4	5	3	2	M	60
地	2	5	-1	2	M	4	90
转运	3	3	2	-3	5	5	50
销	4	2	M	5	-3	6	50
地	5	M	4	5	6	-5	50
接收	女量	50	50	50	80	70	300

40

2

10 4

最优解

						10 1 3	3 3 5 4	5 20
	接收	产	地	转运	销	地	30	
发送	差	1	2	3	4	5	发送量	
产	1	50 -4	5	3	10 2	M	60	
地	2	5	50 -1	20 2	M	20 4	90	
转运	3	3	2	30 -3	20 5	5	50	
销	4	2	M	5	50 -3	6	50	
地	5	M	4	5	6	50 -5	50	
接收	女量	50	50	50	80	70	300	

第三章 运输问题

4. 应用问题举例

某厂按合同规定须于当年每个季度末分别提供15、20、25、20台同一规格的柴油机。已知该厂各季度的生产能力及生产每台柴油机的成本如右表。如果生产出来的柴油机当季不交货,每台每积压一个季度需储存、维护等费用0.1万元。试求在完成合同的情况下,使该厂全年

生产总费用为最小的决策方案。

obj: min
$$z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

	生产能力(台)	单位成本 (万元)
一季度	25	12.0
二季度	35	11.0
三季度	30	11.5
四季度	20	12.5

解:设 x_{ij} 为第i季度生产的第j季度交货的柴油机数目,那么应满足:

交货:
$$x_{11} = 15$$

 $x_{12} + x_{22} = 20$
 $x_{13} + x_{23} + x_{33} = 25$
 $x_{14} + x_{24} + x_{34} + x_{44} = 20$

生产:
$$x_{11} + x_{12} + x_{13} + x_{14} \le 25$$

 $x_{22} + x_{23} + x_{24} \le 35$
 $x_{33} + x_{34} \le 30$
 $x_{44} \le 20$

第i季度生产第j季度交货的每台柴油机所消耗的费用 c_{ij} 如下表:

	第一季度	第二季度	第三季度	第四季度	
第一季度	12.0	12.1	12.2	12.3	
第二季度		11.0	11.1	11.2	\leftarrow c_{ij}
第三季度			11.5	11.6	
第四季度				12.5	

把第 i 季度生产的柴油机数目看作第 i个生产厂的产量; 把第 j 季度交货的柴油机数目看作第 j 个销售点的销量; 成本加储存、维护等费用看作运费。可构造下列产销平衡问题:

	第一季度	第二季度	第三季度	第四季度	Dummy	产量
第一季度	12.0	12.1	12.2	12.3	0	25
第二季度	M	11.0	11.1	11.2	0	35
第三季度	M	M	11.5	11.6	0	30
第四季度	M	M	M	12.5	0	20
销量	15	20	25	20	30	

光明仪器厂生产电脑绣花机是以产定销的。已知1至6月份各月的生产能力、 合同销量和单台电脑绣花机平均生产费用见下表:

	正常生产能力 (台)	加班生产能力 (台)	销量 (台)	单位费用 (万元)
1月份	60	10	104	15
2月份	50	10	75	14
3月份	90	20	115	13.5
4月份	100	40	160	13
5月份	100	40	103	13
6月份	80	40	70	13.5

已知上年末库存103台绣花机,如果当月生产出来的机器当月不交货,则需要运到分厂库房,每台增加运输成本0.1万元,每台机器每月的平均仓储费、维护费为0.2万元。在7~8月份销售淡季,全厂停产1个月,因此在6月份完成销售合同后还要留出库存80台。加班生产机器每台增加成本1万元。问应如何安排1~6月份的生产,可使总的生产费用(包括运输、仓储、维护)最少?

产销平衡运价表:

	1月	2月	3月	4月	5月	6月	虚销地	正常产量	加班产量
0	0.3	0.5	0.7	0.9	1.1	1.3	0	103	
1	15	15.3	15.5	15.7	15.9	16.1	0	60	
1'	16	16.3	16.5	16.7	6.9	17.1	0		10
2	M	14	14.3	14.5	14.7	14.9	0	50	
2'	M	15	15.3	15.5	15.7	15.9	0		10
3	M	M	13.5	13.8	14.0	14.2	0	90	
3'	M	M	14.5	14.8	15.0	15.2	0		20
4	M	M	M	13.0	13.3	13.5	0	100	
4'	M	M	M	14.0	14.3	14.5	0		40
5	M	M	M	M	13.0	13.3	0	100	
5'	M	M	M	M	14.0	14.3	0		40
6	M	M	M	M	M	13.5	0	80	
6'	M	M	M	M	M	14.5	0		40
销量	104	75	115	160	103	150	36		