

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1-20 (Canceled)

21. (Previously presented) A method of transferring a DNA or RNA polynucleotide into a eukaryotic cell *in vivo* or *in vitro*, the method comprising contacting the cell with a DNA or RNA polynucleotide and a compound of formula (I):

wherein Y_1 and Y_2 , which may be the same or different, are carbohydrate groups;
 R_1 and R_2 , which may be the same or different, are selected from the group consisting of:
hydrogen,
 $C_{(1-24)}$ alkyl group,
 $C_{(1-24)}$ alkyl carboxy group, and
a carbon chain of 2 to 24 carbon atoms having one or more carbon/carbon double bonds;
and n is from 1 to 10;
or a pharmaceutically acceptable salt thereof.

22. (Previously presented) The method of claim 21 wherein the carbohydrate groups Y_1 and Y_2 are sugars.

23. (Previously presented) The method of claim 21 wherein R_1 and R_2 are alkyl groups of chain-length $C_{(10-20)}$ and n is between 2 and 8.

24. (Previously presented) The method of claim 23 wherein R₁ and R₂ are alkyl groups of chain-length C(12-18) and n is 4 or 6.

25. (Previously presented) The method of claim 21 wherein R₁ and R₂ are carbon chains of 2 to 24 carbon atoms having one or more carbon/carbon double bonds.

26. (Previously presented) The method of claim 25 wherein the carbon chains have 18 carbon atoms.

27. (Previously presented) The method of claim 21 wherein the compound is symmetrical, that is the groups R₁ and R₂ are the same, and Y₁ and Y₂ are the same.

28-30 (Canceled)

31. (Previously presented) The method of claim 21 wherein the polynucleotide is transferred into the cell in culture.

32. (Currently amended) A compound of formula (I):

wherein Y₁ and Y₂, which may be the same or different, are carbohydrate groups; one of R₁ and R₂; is selected from the group consisting of hydrogen, a C(1-24) alkyl group, a C(1-24) alkylcarboxy group, and a carbon chain of 2 to 24 carbon atoms having one or more carbon/carbon double bonds; the other of R₁ and R₂ is selected from the group consisting of hydrogen, a C(1-24) alkyl group, and a carbon chain of 2 to 24 carbon atoms having one or more carbon/carbon double bonds; and n is from 1 to 10; or a pharmaceutically acceptable salt thereof.

33. (Previously presented) The compound of claim 32 wherein R₁ and R₂ are alkyl groups of chain-length C₍₁₀₋₂₀₎ and n is between 2 and 8.

34. (Currently amended) The compound of claim 33 32 wherein R₁ and R₂ are alkyl groups of chain length each C₍₁₂₋₁₈₎ oleyl, C₁₂-alkyl, C₁₄-alkyl, C₁₆-alkyl, or C₁₈-alkyl; Y₁ and Y₂ are each glucitol; and n is 4 or 6.

35. (Previously presented) The compound of claim 32 wherein the compound is a gemini compound where R₁ and R₂ are the same and Y₁ and Y₂ are the same.

36. (Previously presented) The compound of claim 35 which has the formula (II):

wherein Glu is glucose in open chain form (glucitol).

37. (Previously presented) The compound of claim 32 wherein one of R₁ and R₂ is an alkyl group of chain-length C₍₁₋₂₄₎, and the other of R₁ and R₂ is a C₍₁₋₂₄₎ alkyl carboxy group.

38. (Previously presented) The compound of claim 32 wherein R₁ and R₂ are carbon chains of 2 to 24 carbon atoms having one or more carbon/carbon double bonds.

39. (Previously presented) The compound of claim 38 wherein the carbon chain has 18 carbon atoms.

40-41 (Canceled)