

## MICROBIOLOGY OF EXTREME ENVIRONMENTS

# EXTREMES OF LIFE



Donato Giovannelli donato.giovannelli@unina.it www.donatogiovannelli.com



@donatogiovannelli













# HOW DO WE DEFINE EXTREME ENVIRONMENTS?



<u>Anthropocentric</u>: An extreme environment is a habitat characterized by harsh environmental conditions, beyond the optimal range for the development and survival of humans



<u>Anthropocentric</u>: An extreme environment is a habitat characterized by harsh environmental conditions, beyond the optimal range for the development and survival of humans

<u>Common-life based</u>: An extreme environment is a habitat characterized by harsh environmental conditions, beyond the optimal range for survival of life



<u>Anthropocentric</u>: An extreme environment is a habitat characterized by harsh environmental conditions, beyond the optimal range for the development and survival of humans

<u>Common-life based</u>: An extreme environment is a habitat characterized by harsh environmental conditions, beyond the optimal range for survival of life

<u>Environmental norm</u>: An extreme environment is a habitat characterized by environmental conditions that deviates from average conditions present in common ecosystems



<u>Anthropocentric</u>: An extreme environment is a habitat characterized by harsh environmental conditions, beyond the optimal range for the development and survival of humans

<u>Common-life based</u>: An extreme environment is a habitat characterized by harsh environmental conditions, beyond the optimal range for survival of life

<u>Environmental norm</u>: An extreme environment is a habitat characterized by environmental conditions that deviates from average conditions present in common ecosystems



Anthropocentric: An extreme, environment is a habitat characterized by harsh environ

Strongly biased by Human physiology

and survival of humans

<u>Common-life based</u>: An extreme environment is a habitat characterized by harsh environmental conditions, beyond the optimal range for survival of life

<u>Environmental norm</u>: An extreme environment is a habitat characterized by environmental conditions that deviates from average conditions present in common ecosystems



Anthropocentric: An extreme, environment is a habitat characterized by harsh environ

Strongly biased by Human physiology

and survival of humans

Common-life based: An extreme environment is a habitat characterized Strongly biased by multicellular life and the optimal range for survivar or me

<u>Environmental norm</u>: An extreme environment is a habitat characterized by environmental conditions that deviates from average conditions present in common ecosystems



Anthropocentric: An extreme environment is a habitat characterized by harsh environ

Strongly biased by Human physiology

ange for the development and survival of humans

Common-life based: An extreme environment is a habitat characterized Strongly biased by multicellular life and the optimal range for survivar or me

**Environmenta**Characterized

Strongly biased by Human Experience

conditions present in common ecosystems



Anthropocentric: An extreme environment is a habitat characterized by harsh environ

Strongly biased by Human physiology

development and survival of humans

Common-life based: An extreme environment is a habitat characterized Strongly biased by multicellular life and the optimal range for survivar or me

Environmenta Strongly biased by Human Experience strongly biased by Human Experience conditions present in common ecosystems

Limit-of-Life beard. An autroma anvironment a habitat characterized by having one of Strongly limited by our knowledge of Life to be near the limits of Life



**TABLE 1** | Extremophiles nomenclature and ranges.

| pH                    | $Low 	o High^a$                                                                                                  |                                                                                  |                                    |                         |                                   |  |  |  |  |
|-----------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------|-------------------------|-----------------------------------|--|--|--|--|
|                       | Hyperacidophile                                                                                                  | Acidophile                                                                       | Neutrophile                        | Alkaliphile             | Hyperalkaliphile                  |  |  |  |  |
|                       | ( <ph 3)<="" td=""><td>(<ph 5)<="" td=""><td>(pH 5-9)</td><td>(&gt;pH 9)</td><td>(&gt;pH 11)</td></ph></td></ph> | ( <ph 5)<="" td=""><td>(pH 5-9)</td><td>(&gt;pH 9)</td><td>(&gt;pH 11)</td></ph> | (pH 5-9)                           | (>pH 9)                 | (>pH 11)                          |  |  |  |  |
| Temperature           |                                                                                                                  | Psychrophile                                                                     | Mesophile                          | Thermophile             | Hyperthermophile                  |  |  |  |  |
|                       |                                                                                                                  | (<20°C)                                                                          | (20-45°C)                          | (45-80°C)               | (>80°C)                           |  |  |  |  |
| Salinity <sup>b</sup> |                                                                                                                  | Non-halophile                                                                    | Halotolerant                       | Halophile               | Extreme halophile                 |  |  |  |  |
|                       |                                                                                                                  | (<1.2%)                                                                          | $(1.2-2.9\%; tolerate \le 14.6\%)$ | (>8.8%)                 | (>14.6%, cannot grow < 8.8%)      |  |  |  |  |
| Pressure              |                                                                                                                  |                                                                                  | Piezotolerant or barotolerant      | Piezophile or barophile | Hyperpiezophile or hyperbarophile |  |  |  |  |
|                       |                                                                                                                  |                                                                                  | (0.1–10 MPa)                       | (10-50 MPa)             | (>50 MPa)                         |  |  |  |  |
| Water activity        |                                                                                                                  |                                                                                  | Xerophile ( $a_W < 0.7$ )          |                         |                                   |  |  |  |  |
| Polyextremophile      | xtremophile Tolerance or preference for multiple parameters combined                                             |                                                                                  |                                    |                         |                                   |  |  |  |  |

<sup>&</sup>lt;sup>a</sup>The distinction between an extremotolerant microbe and an extremophile is based on the location of the optimum along the specific parameter range. See main text for discussion. <sup>b</sup>Salinity expressed as percent of NaCl (w/v). Specific resistance to more chaotropic salts has been tested for some strains, for instance in the presence of MgCl<sub>2</sub>.



# SO WHAT DEFINITION SHOULD WE USE?



<u>Anthropocentric</u>: An extreme environment is a habitat characterized by harsh environmental conditions, beyond the optimal range for the development and survival of humans

<u>Common-life based</u>: An extreme environment is a habitat characterized by harsh environmental conditions, beyond the optimal range for survival of life

<u>Environmental norm</u>: An extreme environment is a habitat characterized by environmental conditions that deviates from average conditions present in common ecosystems



# ARE EXTREME ENVIRONMENTS COMMONPLACE ON EARTH?



The majority of our planet (surface and subsurface) is <u>extreme</u>, in one or more parameter



The majority of our planet (surface and subsurface) is <u>extreme</u>, in one or more parameter



70 % of the surface is covered by Oceans, with an average depth of 3,682 meters and an average temperature of 4 °C

The majority of our planet (surface and subsurface) is <u>extreme</u>, in one or more parameter



70 % of the surface is covered by Oceans, with an average depth of 3,682 meters and an average temperature of 4 °C

Habitable subsurface environments extend to ~10-20 km depth and to a hypothetical isotherm of 150 °C

The majority of the history of our planet the conditions were extreme in one or more parameter







# WHAT ARE THE LIMITS OF LIFE?

TABLE 3 | Limits of life as identified by (poly) extremophilic organisms in pure cultures.

| Strain                                   | Domain   | Extremophile<br>Type | Isolation<br>ecosystem           | Temperature<br>(°C)     | рН                      | Pressure<br>(Mpa)    | Salinity<br>(%)     | Water<br>activity<br>(a <sub>w</sub> ) |
|------------------------------------------|----------|----------------------|----------------------------------|-------------------------|-------------------------|----------------------|---------------------|----------------------------------------|
| Picrophilus<br>oshimae KAW 2/2           | Archaea  | Hypercidophile       | Hot springs, Solfataras          | 47-65 (60) <sup>a</sup> | <b>-0.06-</b> 1.8 (0.7) | nr                   | 0–20                | nr                                     |
| Serpentinomonas<br>sp. B1                | Bacteria | Alkaliphile          | Serpentinizing system<br>(water) | 18–37 (30)              | 9- <b>12.5</b> (1 1)    | nr                   | 0-0.5 (0)           | nr                                     |
| Methanopyrus<br>kandleri 116             | Archaea  | Hyperthermophile     | Deep-sea hydrothermal<br>vent    | 90 <b>–122</b> (105)    | (6.3-6.6)               | 0.4–40               | 0.5-4.5 (3.0)       | nr                                     |
| Planococcus<br>halocryophilus Or1        | Bacteria | Halopsychrophile     | Sea ice core                     | <b>-18-37</b> (25)      | nr (7-8)                | nr                   | 0-19 (2)            | nr                                     |
| Halarsenatibacter<br>silvermanii SLAS-1  | Bacteria | Haloalkaliphile      | Soda lake                        | 28–55 (44)              | 8.7-9.8 (9.4)           | nr                   | 20–35 ( <b>35</b> ) | nr                                     |
| Thermococcus<br>piezophilus CDGS         | Archaea  | Piezothermophile     | Deep-sea hydrothermal<br>vent    | 60–95 (75)              | 5.5-9 (6)               | 0.1 <b>–125</b> (50) | 2-6 (3)             | nr                                     |
| Haloarchaeal<br>strains<br>GN-2 and GN-5 | Archaea  | Xerophile            | Solar salterns (brine)           | nr                      | nr                      | nr                   | nr                  | 0.635                                  |

<sup>&</sup>lt;sup>a</sup>Data presented as range (optimum) for each parameter, nr, not reported in the original publication. Current limits are highlighted in bold.









**FIGURE 2** The temperature, pressure, pH, and salinity boundaries observed for life on Earth compared to the phase space observed on planetary bodies discussed in the main text. Polygon charts are designed to represent ranges in multidimensional space. Each edge represents the range for the specific variables Single values (e.g., when min = max) are represented by a single vertex on an axis, while missing values (e.g., NA or NR) are represented by the absence of the corresponding polygon edge on the corresponding axis.



Expedition 370 will head to the Nankai Trough (latitude/longitude 32.3423, 134.9564) off the coast of Japan to find the temperature limit of Earth-style life. Credit: Deep Carbon Observatory



D/V Chikyu, the world's largest scientific research vessel, at sea during International Ocean Discovery Program (IODP) Expedition 337. Credit: Luc Riolon/JAMSTEC





# THIS WEAK READ

Merino, N., Aronson, H. S., Bojanova, D. P., Feyhl-Buska, J., Wong, M. L., Zhang, S., et al. (2019). Living at the Extremes: Extremophiles and the Limits of Life in a Planetary Context. Front. Microbiol. 10. doi:10.3389/fmicb.2019.00780.