Binary Classification

Let
$$y_i \in \{-1, +1\}$$

Binary Classification

Let
$$y_i \in \{-1, +1\}$$

Why not just use LLS? If f(x)>0, report class "+1" Otherwise, report class "-1"

$$w = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$w = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
$$x = \begin{bmatrix} -0.4 \\ 0.75 \end{bmatrix}$$
$$y = +1$$

$$w = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
$$x = \begin{bmatrix} -0.4 \\ 0.75 \end{bmatrix}$$
$$y = +1$$

$$w = \begin{bmatrix} 1 - 0.4 \\ -1 + 0.75 \end{bmatrix}$$
$$x = \begin{bmatrix} -0.4 \\ 0.75 \end{bmatrix}$$
$$y = +1$$

$$w = \begin{bmatrix} 0.6 \\ -0.25 \end{bmatrix}$$

$$w = \begin{bmatrix} 0.6 \\ -0.25 \end{bmatrix}$$
$$x = \begin{bmatrix} 0 \\ -0.5 \end{bmatrix}$$
$$y = +1$$

$$w = \begin{bmatrix} 0.6 \\ -0.25 \end{bmatrix}$$

$$w = \begin{bmatrix} 0.6 \\ -0.25 \end{bmatrix}$$
$$x = \begin{bmatrix} 0.2 \\ 0.45 \end{bmatrix}$$
$$y = -1$$

$$w = \begin{bmatrix} 0.6 \\ -0.25 \end{bmatrix}$$
$$x = \begin{bmatrix} 0.2 \\ 0.45 \end{bmatrix}$$
$$y = -1$$

$$w = \begin{bmatrix} 0.6 - 0.2 \\ -0.25 - 0.45 \end{bmatrix}$$
$$x = \begin{bmatrix} 0.2 \\ 0.45 \end{bmatrix}$$
$$y = -1$$

$$w = \begin{bmatrix} 0.4 \\ -0.7 \end{bmatrix}$$

$$w = \begin{bmatrix} 0.4 \\ -0.7 \end{bmatrix}$$
$$x = \begin{bmatrix} 0.1 \\ 0.2 \end{bmatrix}$$
$$y = -1$$

$$w = \begin{bmatrix} 0.4 \\ -0.7 \end{bmatrix}$$

$$w = \begin{bmatrix} 0.4 \\ -0.7 \end{bmatrix}$$
$$x = \begin{bmatrix} 0.5 \\ -0.1 \end{bmatrix}$$
$$y = -1$$

$$w = \begin{bmatrix} 0.4 \\ -0.7 \end{bmatrix}$$
$$x = \begin{bmatrix} 0.5 \\ -0.1 \end{bmatrix}$$
$$y = -1$$

$$w = \begin{bmatrix} 0.4 - 0.5 \\ -0.7 + 0.1 \end{bmatrix}$$
$$x = \begin{bmatrix} 0.5 \\ -0.1 \end{bmatrix}$$
$$y = -1$$

$$w = \begin{bmatrix} -0.1 \\ -0.6 \end{bmatrix}$$

$$w = \begin{bmatrix} -0.1 \\ -0.6 \end{bmatrix}$$
$$x = \begin{bmatrix} -1.25 \\ -0.25 \end{bmatrix}$$
$$y = +1$$

$$w = \begin{bmatrix} -0.1 \\ -0.6 \end{bmatrix}$$

$$w = \begin{bmatrix} -0.1 \\ -0.6 \end{bmatrix}$$
$$x = \begin{bmatrix} 1.25 \\ 0 \end{bmatrix}$$
$$y = -1$$

$$w = \begin{bmatrix} -0.1 \\ -0.6 \end{bmatrix}$$

$$w = \begin{bmatrix} -0.1 \\ -0.6 \end{bmatrix}$$
$$x = \begin{bmatrix} -0.2 \\ -0.6 \end{bmatrix}$$
$$y = +1$$

$$w = \begin{bmatrix} -0.1 \\ -0.6 \end{bmatrix}$$

$$w = \begin{bmatrix} -0.1 \\ -0.6 \end{bmatrix}$$
$$x = \begin{bmatrix} -0.5 \\ 0.5 \end{bmatrix}$$
$$y = +1$$

$$w = \begin{bmatrix} -0.1 \\ -0.6 \end{bmatrix}$$
$$x = \begin{bmatrix} -0.5 \\ 0.5 \end{bmatrix}$$
$$y = +1$$

$$w = \begin{bmatrix} -0.1 - 0.5 \\ -0.6 + 0.5 \end{bmatrix}$$
$$x = \begin{bmatrix} -0.5 \\ 0.5 \end{bmatrix}$$
$$y = +1$$

$$w = \begin{bmatrix} -0.6 \\ -0.1 \end{bmatrix}$$

Perceptron Learning Algorithm

- lacktriangle Let w be a random vector
- 2 Let η be a positive scalar
- 3 While not done

() April 14, 2017

Perceptron Convergence

Perceptron Convergence Theorem:

If the data are linearly separable,

the perceptron learning algorithm will find a separating hyperplane in a finite number of steps.

If the data are not linearly separable,

it will run forever.

Perceptron Convergence

Perceptron Convergence Theorem:

If the data are linearly separable,
the perceptron learning algorithm will find a separating
hyperplane in a finite number of steps.

If the data are not linearly separable,
it will run forever.

No way to tell the difference until it stops.

Perceptron as Loss Minimization

The Perceptron learning algorithm is trying to minimize

$$L = \sum_{i=1}^{m} l\left(y_i w^{\top} x_i\right)$$
$$= \sum_{i=1}^{m} l\left(y_i \sum_{j=1}^{n} w_j x_{i,j}\right)$$

Perceptron as Loss Minimization

The Perceptron learning algorithm is trying to minimize

$$L = \sum_{i=1}^{m} l \left(y_i w^{\top} x_i \right)$$
$$= \sum_{i=1}^{m} l \left(y_i \sum_{j=1}^{n} w_j x_{i,j} \right)$$

where

$$l(z) = \max(0, -z)$$

$$x = \begin{bmatrix} -0.6 \\ -1.3 \end{bmatrix}$$

$$\nabla_x f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \end{bmatrix} = \begin{bmatrix} -2.01 \\ -1.89 \end{bmatrix}$$

$$x = \begin{bmatrix} -0.20 \\ -0.92 \end{bmatrix}$$

$$\nabla_x f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \end{bmatrix} = \begin{bmatrix} -0.05 \\ -1.28 \end{bmatrix}$$

$$x = \begin{bmatrix} -0.21 \\ -0.67 \end{bmatrix}$$

$$\nabla_x f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \end{bmatrix} = \begin{bmatrix} -0.21 \\ -0.67 \end{bmatrix}$$

$$x = \begin{bmatrix} -0.30 \\ -0.50 \end{bmatrix}$$

$$\nabla_x f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 0.43 \\ -0.68 \end{bmatrix}$$

$$x = \begin{bmatrix} -0.39 \\ -0.36 \end{bmatrix}$$

$$\nabla_x f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 0.35 \\ -0.54 \end{bmatrix}$$

$$x = \begin{bmatrix} -0.47 \\ -0.25 \end{bmatrix}$$

$$\nabla_x f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 0.27 \\ -0.42 \end{bmatrix}$$

Gradient Descent Algorithm

- $oldsymbol{1}$ Let x be a random point
- 2 While x is not at local minimum of f
 - $\bullet \quad \mathsf{Let} \ g \leftarrow \nabla_x f(x)$

() April 14, 2017

lf

$$f(x) = \sum_{i=1}^{m} f_i(x)$$

$$\nabla_x f(x) = \sum_{i=1}^m \nabla_x f_i(x)$$

lf

$$f(x) = \sum_{i=1}^{m} f_i(x)$$

$$\nabla_x f(x) = \sum_{i=1}^m \nabla_x f_i(x)$$

- \bigcirc Let x be a random point
- 2 While x is not at local minimum of f
 - $\bullet \ \, \mathsf{Let} \,\, g \leftarrow \nabla_x f(x)$

lf

$$f(x) = \sum_{i=1}^{m} f_i(x)$$

$$\nabla_x f(x) = \sum_{i=1}^m \nabla_x f_i(x)$$

- \bigcirc Let x be a random point
- 2 While x is not at local minimum of f
 - $\bullet \ \ \, \mathsf{Let} \,\, g \leftarrow 0$
 - $\textbf{ Por } i=1,\ldots,m$

lf

$$f(x) = \sum_{i=1}^{m} f_i(x)$$

$$\nabla_x f(x) = \sum_{i=1}^m \nabla_x f_i(x)$$

- \bigcirc Let x be a random point
- 2 While x is not at local minimum of f

lf

$$f(x) = \sum_{i=1}^{m} f_i(x)$$

- Let x be a random point
- 2 While x is not at local minimum of f
 - $\bullet \quad \mathsf{For} \ i=1,\dots,m$

$$\nabla_x f(x) = \sum_{i=1}^m \nabla_x f_i(x)$$

- ullet Only applicable when f has this sum form.
- ullet Instead of waiting to update x until the gradient has been completely summed, update after each component is computed
- \bullet η must be much smaller
- Tends to bounce around more

For the perceptron, we want to minimize (over w)

$$L = \sum_{i=1}^{m} l \underbrace{\left(y_i \sum_{j=1}^{n} w_j x_{i,j} \right)}_{l_i}$$

where

$$l(z) = \max(0, -z)$$

For the perceptron, we want to minimize (over \boldsymbol{w})

$$L = \sum_{i=1}^{m} l \underbrace{\left(y_i \sum_{j=1}^{n} w_j x_{i,j} \right)}_{l_i}$$

where

$$l(z) = \max(0, -z)$$

With stochastic gradient descent, consider each point in turn. Given point i, we calculate

$$-\nabla_w l_i = \begin{bmatrix} \frac{\partial l_i}{\partial w_1} \\ \frac{\partial l_i}{\partial w_2} \\ \vdots \\ \frac{\partial l_i}{\partial w_n} \end{bmatrix}$$

For the perceptron, we want to minimize (over w)

$$L = \sum_{i=1}^{m} l \left(y_i \sum_{j=1}^{n} w_j x_{i,j} \right)$$

where

$$l(z) = \max(0, -z)$$

With stochastic gradient descent, consider each point in turn. Given point i, we calculate

$$-\nabla_w l_i = \begin{bmatrix} \frac{\partial l_i}{\partial w_1} \\ \frac{\partial l_i}{\partial w_2} \\ \vdots \\ \frac{\partial l_i}{\partial w_n} \end{bmatrix} = \begin{cases} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} & \text{if } y_i w^\top x_i \ge 0 \\ \begin{bmatrix} y_i x_{i,1} \\ y_i x_{i,2} \\ \vdots \\ y_i x_{i,n} \end{bmatrix} & \text{if } y_i w^\top x_i < 0 \end{cases}$$

For the perceptron, we want to minimize (over w)

$$L = \sum_{i=1}^{m} l \underbrace{\left(y_i \sum_{j=1}^{n} w_j x_{i,j} \right)}_{l_i}$$

where

$$l(z) = \max(0, -z)$$

With stochastic gradient descent, consider each point in turn. Given point i, we calculate

minimize (over
$$w$$
) turn. Given point i , we calculate
$$L = \sum_{i=1}^m l \left(y_i \sum_{j=1}^n w_j x_{i,j} \right) \\ -\nabla_w l_i = \begin{bmatrix} \frac{\partial l_i}{\partial w_1} \\ \frac{\partial l_i}{\partial w_2} \\ \vdots \\ \frac{\partial l_i}{\partial w_n} \end{bmatrix} = \begin{cases} 0 & \text{if } y_i w^\top x_i \geq 0 \\ y_i x_i & \text{if } y_i w^\top x_i < 0 \end{cases}$$
 where
$$l(z) = \max(0, -z)$$

Stochastic Gradient Descent Algorithm

- lacktriangle Let x be a random point
- While x is not at local minimum of f

• For
$$i = 1, ..., m$$

Perceptron Learning Algorithm

- lacksquare Let w be a random vector
- While not done

If
$$h_i y_i < 0$$

Then $w \leftarrow w + \eta y_i x_i$

For perceptrons (but not in general), η does not matter, so it is set to 1.

Gradient of just point *i*:

$$-\nabla_w l_i = \begin{cases} 0 & \text{if } y_i w^\top x_i \ge 0 \\ y_i x_i & \text{if } y_i w^\top x_i < 0 \end{cases}$$