Bird Meertens Formalism

- Fusion and Tupling -

Zhenjiang Hu, Wei Zhang

Department of Computer Science and Technology Peking University

December 24, 2021

Outline

- 1 Fusion
- 2 Tupling

max

Consider the function to compute the maximum of a list (by reusing *sort*):

$$max$$
 : $[Int] \rightarrow Int$
 $max = head \cdot sort$

max

Consider the function to compute the maximum of a list (by reusing *sort*):

$$max$$
 : $[Int] \rightarrow Int$
 $max = head \cdot sort$

where *sort* is defined by

```
sort = foldr insert []

insert a [] = [a]

insert a (b:x) = if a \ge b then a:(b:x)

else b:insert \ a \ x.
```

How to eliminate all intermediate results in computing max?

reverse

Consider the following function to reverse a list:

```
rev x = fastreV x []

fastreV x y = reverse x ++ y

where

reverse = foldr (\lambda a r. r ++ [a]) []
```

How to eliminate the intermediate list in computing fastrev?

reverse

Consider the following function to reverse a list:

rev x = fastreV x []
fastreV x y = reverse x ++ y
where

$$reverse = foldr (\lambda a r. r ++ [a]) []$$

How to eliminate the intermediate list in computing fastrev?

Exercise

Show evaluation steps of rev [1, 2, 3, 4], and explain that (rev xs) is a quadratic program.

Fusion Law for Foldr

Lemma (Foldr Fusion)

$$\frac{f(a \oplus r) = a \otimes f r}{f \cdot foldr(\oplus) e = foldr(\otimes) (f e)}$$

Fusion Law for Foldr

Lemma (Foldr Fusion)

$$\frac{f(a \oplus r) = a \otimes f r}{f \cdot foldr(\oplus) e = foldr(\otimes) (f e)}$$

Or written as

$$\frac{f(a \oplus r) = a \otimes f \, r}{f \cdot \oplus \not\leftarrow_e = \otimes \not\leftarrow_f e}$$

Fusion: max

Consider the fusion for max:

$$max = head \cdot foldr insert []$$

where we assume that $max[] = -\infty$.

Fusion: max

Consider the fusion for max:

$$max = head \cdot foldr insert []$$

where we assume that $max[] = -\infty$.

To apply the foldr fusion lemma, we consider calculation of head (insert a r).

We calculate as follows.

• For the case of r = [], we have:

Fusion Example: max

• For the case of r = b : x, we have:

```
head (insert a (b: x))
= { def. of insert }
head (if a \ge b then a: (b: x) else b: insert a x)
= { distribute head over if }
if a \ge b then head (a: (b: x)) else head (b: insert a x)
= { def. of head }
if a \ge b then a else b
= { assumption: r = b: x }
if a \ge head r then a else head r
```

In summary, we have

head (insert a
$$r$$
) = $a \otimes head \ r$
where $a \otimes r =$ if $a \ge r$ then a else r

It follows from the foldr fusion lemma that we get the following new definition for *max*.

$$max = foldr(\otimes)(-\infty)$$

A linear time program!

Fusion Example: Fast Reverse

Consider fusion of the following program:

$$fastrev \ x \ y = reverse \ x ++ y$$

Fusion Example: Fast Reverse

Consider fusion of the following program:

$$fastrev x y = reverse x +++ y$$

Exercise

What is the intermediate list in the above computation?

Fusion Example: Fast Reverse

Consider fusion of the following program:

$$fastrev x y = reverse x +++ y$$

Exercise

What is the intermediate list in the above computation?

We can see where fusion calculation is application if we rewrite the definition.

$$fastreV x = (++) (reverse x)$$
$$= (++) \cdot foldr (\lambda a r. r ++ [a]) (]) x$$

Let us calculate the fusion condition:

$$(++) (r++[a])$$

$$= \{ \eta \text{ expansion } \}$$

$$\lambda y. (++) (r++[a]) y$$

$$= \{ \text{ section notation } \}$$

$$\lambda y. (r++[a]) ++ y)$$

$$= \{ \text{ associativity of } ++ \}$$

$$\lambda y. r++([a]++y)$$

Marching it with $a \otimes ((++) r)$ gives

$$a \otimes r' = \lambda y. r' ([a] ++ y)$$

fastrev'
$$x = foldr(\otimes)((+)[])x$$

where $a \otimes r' = \lambda y$. $r'([a] ++ y)$

fastrev'
$$x = foldr(\otimes)((+)[]) x$$

where $a \otimes r' = \lambda y$. $r'([a] ++ y)$

which is the same as

fastrev'
$$x = foldr(\otimes) id x$$

where $a \otimes r' = \lambda y$. $r'([a] ++ y)$

fastrev'
$$x = foldr(\otimes)((+)[]) x$$

where $a \otimes r' = \lambda y$. $r'([a] ++ y)$

which is the same as

fastrev'
$$x = foldr(\otimes) id x$$

where $a \otimes r' = \lambda y$. $r'([a] ++ y)$

That is,

$$fastreV[]y = y$$

 $fastreV(a:r)y = fastreVr(a:y)$

fastrev'
$$x = foldr(\otimes)((+)[]) x$$

where $a \otimes r' = \lambda y$. $r'([a] ++ y)$

which is the same as

fastrev'
$$x = foldr(\otimes) id x$$

where $a \otimes r' = \lambda y$. $r'([a] ++ y)$

That is,

$$fastrev'[]y = y$$

 $fastrev'(a:r)y = fastrev'r(a:y)$

A linear time algorithm!

Homework BMF 3-1

Using the foldr fusion lemma to prove the following two equations.

- foldr (\oplus) $e \cdot map \ f = foldr (\lambda a \ r.f \ a \oplus r) \ e$
- 2 map $f \cdot map g = map (f \cdot g)$

Outline

- 1 Fusion
- 2 Tupling

Exercise

What is the time complexity for the following function that computes the maximum element from a list.

$$maximum [a] = a$$
 $maximum (a : x) | a > maximum x = a$
 $| otherwise = maximum x$

Enumerate all bigger elements in a list. An element is bigger if it is greater than the sum of the elements that follow it till the end of the list.

biggers
$$[3, 10, 4, -2, 1, 3] = [10, 4, 3]$$

Enumerate all bigger elements in a list. An element is bigger if it is greater than the sum of the elements that follow it till the end of the list.

biggers
$$[3, 10, 4, -2, 1, 3] = [10, 4, 3]$$

biggers
$$[] = []$$

biggers $(a : x) = if \ a > sum \ x \ then \ a : biggers \ x \ else$ biggers x

$$sum [] = 0$$

$$sum (a : x) = a + sum x$$

Enumerate all bigger elements in a list. An element is bigger if it is greater than the sum of the elements that follow it till the end of the list.

biggers
$$[3, 10, 4, -2, 1, 3] = [10, 4, 3]$$

biggers
$$[] = []$$

biggers $(a : x) = if \ a > sum \ x \ then \ a : biggers \ x \ else$ biggers x

$$sum [] = 0$$

$$sum (a : x) = a + sum x$$

How can we optimize this program?

Enumerate all bigger elements in a list. An element is bigger if it is greater than the sum of the elements that follow it till the end of the list.

biggers
$$[3, 10, 4, -2, 1, 3] = [10, 4, 3]$$

biggers
$$[] = []$$

biggers $(a : x) = if \ a > sum \ x \ then \ a : biggers \ x \ else$ biggers x

$$sum [] = 0$$

$$sum (a : x) = a + sum x$$

How can we optimize this program?

Exercise: Is biggers a foldr?

Definition (Mutumorphism)

Functions f_1, \ldots, f_n are said to form a mutumorphism if each f_i $(i = 1, 2, \ldots, n)$ is defined in the following form:

$$f_i [] = e_i$$

 $f_i (a:x) = a \oplus_i (f_1 x, f_2 x, \dots, f_n x)$

where e_i $(i=1,2,\ldots,n)$ are given constants and \oplus_i $(i=1,2,\ldots,n)$ are given binary functions. We represent the function $f x = (f_1 x,\ldots,f_n x)$ as follows.

$$f = \llbracket (e_1, \ldots, e_n), (\oplus_1, \ldots, \oplus_n) \rrbracket.$$

Expressive Power of Mutumorphism

• foldr is a special case:

$$foldr (\oplus) e = \llbracket (e), (oplus) \rrbracket$$

• It covers all primitive recursive functions on lists.

$$prim[] = e$$

 $prim(a:x) = F(a, x, prim x)$

This is because we can *prim* is mutually defined with the identity function on lists.

biggers as a Mutumorphism

biggers = fst
$$\circ$$
 $\llbracket (\llbracket (\rrbracket, 0), (\oplus_1, \oplus_2) \rrbracket$
where $a \oplus_1 (r, s) = \text{if } a > s \text{ then } a : r \text{ else } r$
 $a \oplus_2 (r, s) = a + s$

Lemma (Mutu-Tupling)

$$\begin{split} \llbracket (e_1, e_2, \dots, e_n), (\oplus_1, \oplus_2, \dots, \oplus_n) \rrbracket \\ &= \textit{foldr} \ (\oplus) \ (e_1, e_2, \dots, e_n) \\ & \text{where } a \oplus r = (a \oplus_1 r, a \oplus_2 r, \dots, a \oplus_n r) \end{split}$$

Consider, as an example, to apply the mutu-tupling lemma to biggers.

```
\begin{array}{ll} biggers \\ = & \{ \text{ mutumorphism for } biggers \} \\ fst \circ \llbracket (\llbracket (\rrbracket,0),(\oplus_1,\oplus_2) \rrbracket \rrbracket \\ = & \{ \text{ mutu-tupling lemma } \} \\ fst \circ foldr \ (\oplus) \ (\llbracket ,0) \\ & \text{ where } a \oplus (r,s) = (\text{if } a > s \text{ then } a : r \text{ else } r,a+s) \end{array}
```

Inlining *foldr* in the derived program gives the following readable recursive program:

biggers
$$x = \text{let } (r, s) = tup \ x \text{ in } r$$

where $tup [] = ([], 0)$
 $tup (a : x) = \text{let } (r, s) = tup \ x$
in (if $a > s$ then $a : r$ else $r, a + s$)

Lemma (Foldr-Tupling)

(foldr
$$(\oplus_1)$$
 $e_1 x$, foldr (\oplus_2) $e_2 x$) = foldr (\oplus) $(e_1, e_2) x$
where $a \oplus (r_1, r_2) = (a \oplus_1 r_1, a \oplus_2 r_2)$

For example, the following program for computing the average of a list:

average
$$x = sum \ x/length \ x$$

can be transformed into the following with the foldr-tupling lemma.

average
$$x = \text{let } (s, l) = tup \times \text{in } s/l$$

where $tup = foldr (\lambda a (s, l), (a + s, 1 + l)) (0, 0)$

Homework BMF 3-2

(1) Using tupling transformation to derive an efficient program for computing *tailsums*.

tailsums
$$[]$$
 = $[0]$
tailsums $(a:x)$ = tailsums $x ++ [a + sum x]$

(2) Code the efficient program in Haskell.