

# **LOG1810**

# STRUCTURES DISCRÈTES

TD 3: PREUVES

E2025

# **SOLUTIONNAIRE**

## Exercice 1:

Montrez par preuve directe, l'équivalence suivante :

$$(P \to R) \land (P \to S) \land (P \to T) \land (Q \to R) \land (Q \to S) \land (Q \to T) \equiv ((P \lor Q) \to (R \land S \land T))$$

Nous allons prouver l'équivalence en transformant le membre de gauche (MG) pour obtenir le membre de droite (MD).

Transformation du Membre de Gauche (MG):

```
\begin{split} \text{MG} &\equiv (P \to R) \land (P \to S) \land (P \to T) \land (Q \to R) \land (Q \to S) \land (Q \to T) \\ &\equiv (\neg P \lor R) \land (\neg P \lor S) \land (\neg P \lor T) \land (\neg Q \lor R) \land (\neg Q \lor S) \land (\neg Q \lor T) \\ &\equiv [(\neg P \lor R) \land (\neg P \lor S) \land (\neg P \lor T)] \land [(\neg Q \lor R) \land (\neg Q \lor S) \land (\neg Q \lor T)] \end{split} \qquad - \text{D\'efinition de } \to \text{ (6 fois)}
```

Considérons le premier bloc de termes,  $X_P = (\neg P \lor R) \land (\neg P \lor S) \land (\neg P \lor T)$ .

```
X_P \equiv [(\neg P \lor R) \land (\neg P \lor S)] \land (\neg P \lor T)

    Associativité de ∧

      \equiv [(\neg P \land \neg P) \lor (\neg P \land S) \lor (R \land \neg P) \lor (R \land S)] \land (\neg P \lor T)
                                                                                                                       - Distributivité (générale)
      \equiv [\neg P \lor (\neg P \land S) \lor (R \land \neg P) \lor (R \land S)] \land (\neg P \lor T)
                                                                                                                                          - Idempotence
      \equiv [\neg P \lor (R \land \neg P) \lor (R \land S)] \land (\neg P \lor T)
                                                                                                                                             - Absorption
      \equiv [\neg P \lor (R \land S)] \land (\neg P \lor T)
                                                                                                                                             - Absorption
      \equiv ([\neg P \lor (R \land S)] \land \neg P) \lor ([\neg P \lor (R \land S)] \land T)
                                                                                                                                         - Distributivité
      \equiv ((\neg P \land \neg P) \lor ((R \land S) \land \neg P)) \lor ((\neg P \land T) \lor ((R \land S) \land T))
                                                                                                                                         - Distributivité
      \equiv (\neg P \lor ((R \land S) \land \neg P)) \lor ((\neg P \land T) \lor (R \land S \land T))
                                                                                                                                           - Idempotence
      \equiv \neg P \lor ((\neg P \land T) \lor (R \land S \land T))
                                                                                                                                             - Absorption
      \equiv \neg P \lor (\neg P \land T) \lor (R \land S \land T)

    Associativité

      \equiv \neg P \lor (R \land S \land T)
                                                                                                                                             - Absorption
```

De manière similaire, pour le deuxième bloc de termes,  $X_Q = (\neg Q \lor R) \land (\neg Q \lor S) \land (\neg Q \lor T)$ :

$$X_Q \equiv \neg Q \lor (R \land S \land T)$$
 – Par analogie

Maintenant, substituons  $X_P$  et  $X_Q$  dans l'expression de MG :

$$MG \equiv [\neg P \lor (R \land S \land T)] \land [\neg Q \lor (R \land S \land T)]$$

Soit  $Y = (R \wedge S \wedge T)$ . L'expression devient :

```
\begin{split} \operatorname{MG} &\equiv (\neg P \vee Y) \wedge (\neg Q \vee Y) \\ &\equiv ((\neg P \vee Y) \wedge \neg Q) \vee ((\neg P \vee Y) \wedge Y) \\ &\equiv (\neg P \wedge \neg Q) \vee (Y \wedge \neg Q) \vee (\neg P \wedge Y) \vee Y \\ &\equiv (\neg P \wedge \neg Q) \vee Y \vee (\neg P \wedge Y) \\ &\equiv (\neg P \wedge \neg Q) \vee Y \\ &\equiv (\neg P \wedge \neg Q) \vee Y \\ &\equiv (\neg P \wedge \neg Q) \vee Y \\ &\equiv (\neg P \wedge \neg Q) \vee (R \wedge S \wedge T) \\ &\equiv \neg (P \vee Q) \vee (R \wedge S \wedge T) \\ &\equiv (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &\equiv (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow (R \wedge S \wedge T) \\ &= (P \vee Q) \rightarrow
```

Le Membre de Gauche (MG) a été transformé en  $(P \lor Q) \to (R \land S \land T)$ , ce qui est exactement le Membre de Droite (MD).

Conclusion: Puisque MG 

MD, l'équivalence

$$(P \to R) \land (P \to S) \land (P \to T) \land (Q \to R) \land (Q \to S) \land (Q \to T) \equiv ((P \lor Q) \to (R \land S \land T))$$

est donc prouvée par dérivation directe en utilisant les lois d'équivalence logique.

#### Exercice 2:

En utilisant une preuve par cas, montrez que pour tout entier n, l'expression  $n^5 - n$  est divisible par 30.

Nous voulons montrer que  $n^5 - n$  est divisible par 30 pour tout entier n. Puisque  $30 = 2 \times 3 \times 5$ , et que 2, 3, 5 sont des nombres premiers distincts, il suffit de montrer que  $n^5 - n$  est divisible par 2, par 3, et par 5. Factorisons l'expression :  $n^5 - n = n(n^4 - 1) = n(n^2 - 1)(n^2 + 1) = n(n - 1)(n + 1)(n^2 + 1)$ .

#### Partie 1 : Divisibilité par 2 Nous considérons deux cas pour n :

- Cas 1.1 : n est pair. Si n est pair, alors n = 2k pour un entier k. Alors  $n^5 n = (2k)((2k) 1)((2k) + 1)((2k)^2 + 1) = 2[k(2k-1)(2k+1)(4k^2+1)]$ . Soit  $m_1 = k(2k-1)(2k+1)(4k^2+1)$ . Puisque k est un entier,  $m_1$  est un entier. Donc,  $n^5 n = 2m_1$ , ce qui signifie que  $n^5 n$  est divisible par 2.
- Cas 1.2: n est impair. Si n est impair, alors n = 2k + 1 pour un entier k. Alors le facteur (n-1) = (2k+1) 1 = 2k. Donc  $n^5 n = (2k+1)(2k)(2k+1+1)((2k+1)^2+1) = 2[k(2k+1)(2k+2)((2k+1)^2+1)]$ . Soit  $m_2 = k(2k+1)(2k+2)((2k+1)^2+1)$ . Puisque k est un entier,  $m_2$  est un entier. Donc,  $n^5 n = 2m_2$ , ce qui signifie que  $n^5 n$  est divisible par 2.

Dans les deux cas,  $n^5 - n$  est divisible par 2.

#### Partie 2 : Divisibilité par 3 Nous considérons trois cas pour n :

- Cas 2.1 : n = 3k. Si n = 3k, alors n est un facteur de  $n^5 n$ .  $n^5 n = (3k)((3k) 1)((3k) + 1)((3k)^2 + 1) = 3[k(3k 1)(3k + 1)(9k^2 + 1)]$ . Soit  $m_3 = k(3k 1)(3k + 1)(9k^2 + 1)$ . Puisque k est un entier,  $m_3$  est un entier. Donc,  $n^5 n = 3m_3$ , ce qui signifie que  $n^5 n$  est divisible par 3.
- Cas 2.2 : n = 3k + 1. Si n = 3k + 1, alors le facteur (n 1) = (3k + 1) 1 = 3k.  $n^5 n = (3k + 1)(3k)((3k + 1) + 1)((3k + 1)^2 + 1) = 3[k(3k + 1)(3k + 2)((3k + 1)^2 + 1)]$ . Soit  $m_4 = k(3k + 1)(3k + 2)((3k + 1)^2 + 1)$ . Puisque k est un entier,  $m_4$  est un entier. Donc,  $n^5 n = 3m_4$ , ce qui signifie que  $n^5 n$  est divisible par 3.
- Cas 2.3: n = 3k + 2. Si n = 3k + 2, alors le facteur (n + 1) = (3k + 2) + 1 = 3k + 3 = 3(k + 1).  $n^5 n = (3k + 2)((3k + 2) 1)(3(k + 1))((3k + 2)^2 + 1) = 3[(3k + 2)(3k + 1)(k + 1)((3k + 2)^2 + 1)]$ . Soit  $m_5 = (3k + 2)(3k + 1)(k + 1)((3k + 2)^2 + 1)$ . Puisque k est un entier,  $m_5$  est un entier. Donc,  $n^5 n = 3m_5$ , ce qui signifie que  $n^5 n$  est divisible par 3.

Dans les trois cas,  $n^5 - n$  est divisible par 3.

Partie 3 : Divisibilité par 5 Nous considérons cinq cas basés sur le reste de la division de n par 5.

- Cas 3.1 : n = 5k. Si n = 5k, alors n est un facteur de  $n^5 n$ . Donc  $n^5 n$  est divisible par 5.
- Cas 3.2: n = 5k + 1. Si n = 5k + 1, alors le facteur (n 1) = (5k + 1) 1 = 5k. Puisque (n 1) est un facteur de  $n^5 n$ , le produit est divisible par 5.
- Cas 3.3 : n = 5k + 2. Si n = 5k + 2, considérons le facteur  $(n^2 + 1)$  :  $n^2 + 1 = (5k + 2)^2 + 1 = (25k^2 + 20k + 4) + 1 = 25k^2 + 20k + 5 = 5(5k^2 + 4k + 1)$ . Puisque  $(n^2 + 1)$  est un facteur de  $n^5 n$ , le produit est divisible par 5.
- Cas 3.4: n = 5k + 3. Si n = 5k + 3, considérons le facteur  $(n^2 + 1)$ :  $n^2 + 1 = (5k + 3)^2 + 1 = (25k^2 + 30k + 9) + 1 = 25k^2 + 30k + 10 = 5(5k^2 + 6k + 2)$ . Puisque  $(n^2 + 1)$  est un facteur de  $n^5 n$ , le produit est divisible par 5.
- Cas 3.5: n = 5k + 4. Si n = 5k + 4, considérons le facteur (n + 1): n + 1 = (5k + 4) + 1 = 5k + 5 = 5(k + 1). Puisque (n + 1) est un facteur de  $n^5 n$ , le produit est divisible par 5.

Dans les cinq cas,  $n^5 - n$  est divisible par 5.

**Conclusion :** Puisque  $n^5-n$  est toujours divisible par 2, par 3, et par 5, et que 2, 3, 5 sont des nombres premiers distincts, alors  $n^5-n$  est divisible par leur produit  $2\times 3\times 5=30$  pour tout entier n.

#### Exercice 3:

Soient x et y des entiers. Montrez par contraposée que si  $x^2(y^2-1)$  est impair, alors x est impair et y est pair.

Soient les propositions suivantes :

- $P: x^2(y^2 1)$  est impair
- -Q: x est impair et y est pair

Nous voulons prouver que  $P \to Q$ . Pour ce faire, nous allons utiliser une **preuve par contraposition**, c'est-à-dire prouver que  $\neg Q \to \neg P$ .

#### Contraposée:

Si x n'est pas impair ou y n'est pas pair, alors  $x^2(y^2-1)$  n'est pas impair.

Analyse de  $\neg Q$ :

 $\neg(x \text{ est impair } \land y \text{ est pair}) \equiv \neg(x \text{ est impair}) \lor \neg(y \text{ est pair})$  (loi de De Morgan)

$$\equiv (x \text{ est pair}) \lor (y \text{ est impair}) \quad (\text{n\'egation})$$

Analyse de  $\neg P$ :

$$\neg(x^2(y^2-1) \text{ est impair}) \equiv x^2(y^2-1) \text{ est pair}$$

Ainsi, la contraposée à prouver est :

Si 
$$x$$
 est pair **ou**  $y$  est impair, alors  $x^2(y^2 - 1)$  est pair.

#### Cas 1 : x est pair

- 1. Par définition d'un entier pair, il existe un entier k tel que x = 2k.
- 2. Alors  $x^2 = (2k)^2 = 4k^2$ .
- 3. On a :  $x^2(y^2 1) = 4k^2(y^2 1) = 2[2k^2(y^2 1)].$
- 4. Posons  $m = 2k^2(y^2 1)$ . Comme k et y sont des entiers, m est aussi un entier.
- 5. Donc  $x^2(y^2-1)=2m$ , ce qui prouve que c'est un nombre pair.

#### Cas 2 : y est impair

(Ce cas peut ne pas être exclusif avec le Cas 1, mais comme la disjonction est "ou", il suffit de traiter chaque cas séparément.)

- 1. Par définition d'un entier impair, il existe un entier j tel que y = 2j + 1.
- 2. Alors  $y^2 = (2j+1)^2 = 4j^2 + 4j + 1$ .
- 3. Donc  $y^2 1 = 4j^2 + 4j = 2(2j^2 + 2j)$ .
- 4. Ainsi,  $y^2 1$  est pair.
- 5. On a:  $x^2(y^2 1) = x^2 \cdot 2(2j^2 + 2j) = 2[x^2(2j^2 + 2j)].$
- 6. Posons  $p = x^2(2j^2 + 2j)$ . Comme x et j sont des entiers, p est un entier.
- 7. Donc  $x^2(y^2-1)=2p$ , ce qui prouve que c'est un nombre pair.

LOG1810-E2025 Travail dirigé 3 7

#### Conclusion de la contraposée :

Dans les deux cas,  $x^2(y^2-1)$  est pair. Ainsi, si x est pair ou y est impair, alors  $x^2(y^2-1)$  est pair. Cela prouve que  $\neg Q \to \neg P$ .

#### Conclusion finale:

Par contraposition, on en déduit que :

$$x^2(y^2-1)$$
 est impair  $\Rightarrow x$  est impair et  $y$  est pair.

#### Exercice 4:

Suite à votre excellent travail sur le TD1, la compagnie de gestion de serveurs vous recontacte pour un problème encore plus complexe. Un grand centre de données avec 10 serveurs critiques (S1 à S10) a subi une série de défaillances. On sait qu'exactement quatre serveurs sont actuellement en panne.

**Propositions:** Soit  $p_i$  la proposition "Le serveur Si est en panne" (pour i = 1, ..., 10).

```
Hypothèses (H_1 \grave{a} H_{11}):
```

H1: Si S1 est en panne, alors S5 est en panne.  $(p_1 \rightarrow p_5)$ 

H2 : Si S2 est en panne, alors S6 ou S7 est en panne.  $(p_2 \rightarrow (p_6 \lor p_7))$ 

H3 : Si S3 n'est pas en panne, alors S7 n'est pas en panne.  $(\neg p_3 \rightarrow \neg p_7)$ 

H4: Si S4 est en panne, alors S8 n'est pas en panne.  $(p_4 \rightarrow \neg p_8)$ 

H5: Si S5 est en panne, alors S9 est en panne.  $(p_5 \rightarrow p_9)$ 

H6 : Si S6 est en panne, alors S10 est en panne.  $(p_6 \rightarrow p_{10})$ 

H7 : Si S7 est en panne, alors S2 n'est pas en panne.  $(p_7 \rightarrow \neg p_2)$ 

H8 : S8 est en panne ou S9 est en panne.  $(p_8 \vee p_9)$ 

H9: Il n'est pas possible que S1 et S4 soient tous les deux en panne.  $(\neg(p_1 \land p_4))$ 

H10: Le serveur S3 est en panne.  $(p_3)$ 

H11: Le serveur S10 n'est pas en panne.  $(\neg p_{10})$ 

En utilisant uniquement les règles d'inférence, déterminez quels quatre serveurs sont en panne. Justifiez chaque étape de votre raisonnement.

#### Dérivation

| Étape         | Proposition                                                                                                                                             | Justification                                                                                                                                   |  |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1.            | $p_3$                                                                                                                                                   | $H_{10}$ (Hypothèse) — Panne 1                                                                                                                  |  |
| 2.            | $\neg p_{10}$                                                                                                                                           | $H_{11}$ (Hypothèse)                                                                                                                            |  |
| 3.            | $p_6 \rightarrow p_{10}$                                                                                                                                | $H_6$ (Hypothèse)                                                                                                                               |  |
| 4.            | $\neg p_6$                                                                                                                                              | Modus Tollens sur (2) et (3)                                                                                                                    |  |
| Analyse       | $de \ p_2, p_7 \ en \ utilisant \ H_2, H_7 \ et \ \neg p_6$                                                                                             |                                                                                                                                                 |  |
| 5.            | $p_7 	o  eg p_2$                                                                                                                                        | $H_7$ (Hypothèse)                                                                                                                               |  |
| 6.            | $p_2 \to (p_6 \vee p_7)$                                                                                                                                | $H_2$ (Hypothèse)                                                                                                                               |  |
| 7.            | $p_2 \to (\text{FAUX} \lor p_7)$                                                                                                                        | Substitution de (4) dans (6)                                                                                                                    |  |
| 8.            | $p_2 	o p_7$                                                                                                                                            | Identité (FAUX $\forall X \equiv X$ ) sur (7)                                                                                                   |  |
| 9.            | $(p_2 \to p_7) \land (p_7 \to \neg p_2)$                                                                                                                | Conjonction de (8) et (5)                                                                                                                       |  |
| 10.           | Si $p_2$ est VRAI, alors $p_7$ est VRAI (de $p_2 \to p_7$ ) et $\neg p_2$ est VRAI (de $p_7 \to \neg p_2$ ), donc $p_2 \land \neg p_2$ , contradiction. |                                                                                                                                                 |  |
| 11.           | $\neg p_2$                                                                                                                                              | Preuve par contradiction                                                                                                                        |  |
| 12.           | On ne peut rien conclure                                                                                                                                | e sur $p_7$ avec certitude, mais la cohérence est assurée.                                                                                      |  |
| 13.           | $\neg p_3 \rightarrow \neg p_7$                                                                                                                         | $H_3$                                                                                                                                           |  |
| 14.           | $\neg VRAI \rightarrow \neg p_7$                                                                                                                        | Substitution de (1)                                                                                                                             |  |
| 15.           | $\mathrm{FAUX} \to \neg p_7$                                                                                                                            |                                                                                                                                                 |  |
| 16.           | VRAI                                                                                                                                                    | Implication toujours vraie avec prémisse fausse                                                                                                 |  |
| $Avec \neg p$ | $p_2$ , $\neg p_6$ connus.                                                                                                                              |                                                                                                                                                 |  |
| 17.           | $\neg(p_1 \land p_4)$                                                                                                                                   | $H_9$                                                                                                                                           |  |
| 18.           | $\neg p_1 \lor \neg p_4$                                                                                                                                | De Morgan                                                                                                                                       |  |
| 19.           | $p_8 \lor p_9$                                                                                                                                          | $H_8$                                                                                                                                           |  |
| Supposo       | $p_1 = VRAI \ (Panne \ 2)$                                                                                                                              |                                                                                                                                                 |  |
| 20.           | $p_1$                                                                                                                                                   | Hypothèse                                                                                                                                       |  |
| 21.           | $p_1 	o p_5$                                                                                                                                            | $H_1$                                                                                                                                           |  |
| 22.           | $p_5$                                                                                                                                                   | Modus Ponens (Panne 3)                                                                                                                          |  |
| 23.           | $\neg p_1 \lor \neg p_4$                                                                                                                                | De (18)                                                                                                                                         |  |
| 24.           | $\neg p_4$                                                                                                                                              | Syllogisme disjonctif                                                                                                                           |  |
| 25.           | $p_4 	o  eg p_8$                                                                                                                                        | $H_4$                                                                                                                                           |  |
| 26.           | $p_4$ est FAUX $\Rightarrow$ implication vraie, ne détermine pas $p_8$                                                                                  |                                                                                                                                                 |  |
| 27.           | $p_5 	o p_9$                                                                                                                                            | $H_5$ corrigée                                                                                                                                  |  |
| 28.           | $p_9$                                                                                                                                                   | Modus Ponens (Panne 4)                                                                                                                          |  |
| Candida       | ats pannes: $p_1, p_3, p_5, p_9$ .                                                                                                                      |                                                                                                                                                 |  |
| État :        |                                                                                                                                                         |                                                                                                                                                 |  |
|               |                                                                                                                                                         | $V_{1} = V_{1}, p_{6} = F_{1}, p_{7} = F_{2}, p_{8} = F_{2}, p_{9} = V_{2}, p_{10} = F_{2}$ nèses $(H_{1} \text{ à } H_{11})$ sont satisfaites. |  |

### Conclusion Finale

Les serveurs en panne sont S1, S3, S5, et S9.

- $p_1 = \mathbf{VRAI}$  (S1 en panne)
- $p_3 = \mathbf{VRAI}$  (S3 en panne)
- $p_5 = \mathbf{VRAI}$  (S5 en panne)
- $p_9 = \mathbf{VRAI}$  (S9 en panne)

### Exercice 5 (facultatif):

L'Autorité de l'Aviation Civile (AAC) évalue la certification d'un nouveau modèle d'avion, le Boeing X. Des experts ont soumis les rapports et affirmations suivants :

"Si le Boeing X est jugé fondamentalement non sécuritaire pour le vol commercial (U), cela implique soit une faille majeure de conception dans le système de contrôle de vol principal  $(M_F)$ , soit que les tests d'intégrité structurelle ont révélé des faiblesses critiques  $(R_S)$ . L'équipe d'ingénierie de Boeing affirme que si le système de contrôle de vol principal présente une faille majeure  $(M_F)$ , alors le système de contrôle de vol de secours ne peut pas gérer l'avion de manière indépendante  $(\neg S_B)$ . Par ailleurs, les tests en soufflerie ont montré que si les tests d'intégrité structurelle ont révélé des faiblesses critiques  $(R_S)$ , alors les moteurs ne peuvent pas simultanément respecter toutes les nouvelles normes d'émission  $(\neg T_E)$  à cause des modifications nécessaires pour compenser les faiblesses. Cependant, les données officielles des motoristes attestent que les moteurs respectent toutes les nouvelles normes d'émission  $(T_E)$ . Un autre point crucial est que si le Boeing X est non sécuritaire (U), alors une intervention du pilote ne peut pas toujours corriger les anomalies du système  $(\neg P_I)$ . Or, les simulateurs de vol avancés et les tests avec des pilotes d'essai chevronnés ont démontré de manière concluante que l'intervention du pilote peut toujours corriger les anomalies du système  $(P_I)$ . De plus, il est établi que si le système de contrôle de vol de secours peut gérer l'avion de manière indépendante  $(S_B)$ , alors l'avion n'est pas considéré comme fondamentalement non sécuritaire  $(\neg U)$ ."

L'AAC doit déterminer si, sur la base de ces affirmations, le Boeing X est fondamentalement non sécuritaire pour le vol commercial.

#### Question:

- a) Extrayez les propositions logiques atomiques du texte.
- b) Traduisez les affirmations et rapports en un ensemble d'hypothèses logiques.
- c) En utilisant une **preuve par contradiction**, montrez que le Boeing X n'est pas fondamentalement non sécuritaire pour le vol commercial (c'est-à-dire, prouvez  $\neg U$ ).

#### a) Propositions Logiques Atomiques:

- U: Le Boeing X est fondamentalement non sécuritaire pour le vol commercial.
- $M_F$ : Le système de contrôle de vol principal a une faille majeure de conception.
- $-R_S$ : Les tests d'intégrité structurelle ont révélé des faiblesses critiques.
- $-S_B$ : Le système de contrôle de vol de secours peut gérer l'avion de manière indépendante.
- $T_E$ : Les moteurs respectent toutes les nouvelles normes d'émission.
- $-P_I$ : L'intervention du pilote peut toujours corriger les anomalies du système.

#### b) Hypothèses Logiques:

```
\begin{array}{l} \mathrm{H1}:\; U \rightarrow (M_F \vee R_S) \\ \mathrm{H2}:\; M_F \rightarrow \neg S_B \\ \mathrm{H3}:\; R_S \rightarrow \neg T_E \\ \mathrm{H4}:\; T_E \\ \mathrm{H5}:\; U \rightarrow \neg P_I \\ \mathrm{H6}:\; P_I \\ \mathrm{H7}:\; S_B \rightarrow \neg U \end{array}
```

#### c) Preuve par Contradiction:

Nous voulons prouver  $\neg U$ . Supposons U. Montrons que cela mène à une contradiction.

Dérivation (Voie 1, utilisant  $P_I$ ):

| $\acute{\mathbf{E}}$ tape | Proposition           | Justification                              |
|---------------------------|-----------------------|--------------------------------------------|
| 1.                        | U                     | Hypothèse pour la preuve par contradiction |
| 2.                        | $U \to \neg P_I$      | H5                                         |
| 3.                        | $\neg P_I$            | Modus Ponens sur (1) et (2)                |
| 4.                        | $P_{I}$               | H6                                         |
| 5.                        | $\neg P_I \wedge P_I$ | Conjonction de (3) et (4)                  |
| 6.                        | FAUX                  | Contradiction (Loi de la négation)         |

Une contradiction a été atteinte. Cela suffit pour conclure que  $\neg U$ . Explorons une autre voie.

## Dérivation (Voie 2, utilisant $T_E$ et $S_B$ ):

| Étape | Proposition                                    | Justification                                        |  |
|-------|------------------------------------------------|------------------------------------------------------|--|
| 1.    | U                                              | Hypothèse pour la preuve par contradiction           |  |
| 2.    | $U \to (M_F \vee R_S)$                         | H1                                                   |  |
| 3.    | $M_F \vee R_S$                                 | Modus Ponens sur (1) et (2)                          |  |
| 4.    | $T_E$                                          | H4                                                   |  |
| 5.    | $R_S \to \neg T_E$                             | H3                                                   |  |
| 6.    | $\neg R_S$                                     | Modus Tollens sur (4) et (5)                         |  |
| 7.    | $(M_F \vee R_S) \wedge \neg R_S$               | Conjonction de (3) et (6)                            |  |
| 8.    | $M_F$                                          | Syllogisme disjonctif                                |  |
| 9.    | $M_F \to \neg S_B$                             | H2                                                   |  |
| 10.   | $\neg S_B$                                     | Modus Ponens sur (8) et (9)                          |  |
| 11.   | $S_B \to \neg U$                               | H7                                                   |  |
| 12.   | $U \to \neg S_B$                               | Contraposition de (11)                               |  |
| 13.   | $\neg S_B$                                     | Modus Ponens sur (1) et (12)                         |  |
| 14.   | Nous avons deux for                            | is $\neg S_B$ (étapes 10 et 13), ce qui est cohérent |  |
|       | mais ne mène pas à une nouvelle contradiction. |                                                      |  |

- 15. La voie 1 reste la plus directe pour atteindre une contradiction.

#### Conclusion Finale:

L'hypothèse que U est vraie mène à une contradiction  $(\neg P_I \wedge P_I)$ . Par conséquent,  $\neg U$  est vraie.

## Feuille supplémentaire