Avance Proyecto PATRONOS

Denisse Ogaz Herrera Ricardo Albarracin Contreras Javier Tramon Hidalgo Felipe Jiménez Ortega

Descripción Avance

Resultados obtenidos

- ❖ PCA con 500 componentes y SVM con kernel polinomial.
- ❖ ICA con 500 componentes y LDA.
- SFS de 20 características y QDA.
- ❖ PLSR con 500 componentes y KNN de 3 vecinos.

Trabajo a futuro

- Utilizar la información de la *metadata* entregada para entrenar los clasificadores.
- Implementar extracción de características ABCD en las imágenes de segmentación.
- Obtener un contorno más ajustado y preciso de los lunares.
- Cambiar y probar distintos hiper parámetros de los clasificadores ya utilizados.
- Definir y entrenar una red neuronal.
- Focalizar extracción de características en la zona del lunar de acuerdo a la segmentación entregada.

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

CURSO: RECONOCIMIENTO DE PATRONES (IIC3724-1/NRC10930)

PRESENTACIÓN DE AVANCE (PROYECTO DEL CURSO RECONOCIMIENTO DE PATRONES)

EQUIPO: MELANO+

Alma Alhelí Pedro Pérez

Benjamin Andres Huerfano Zapata

Jasiel Hassan Toscano Martíne

RESULTADOS

Escala de Gris

Canal Rojo

Centrado y OTSU

- |Name: |Train: |Val: |
- |KNN-7 |69.6905|37.1429
- |KNN-9 |67.3571|38.2857
- |KNN-11 |66.3095|40.0000
- |KNN-13 |64.3571|40.0000
- |DMIN |40.7619|35.7143
- |LDA |52.2143|41.1429
- |QDA |55.2857|34.8571
- |B_KDE |100.0000|33.7143
- |B_NAIV |48.5238|40.5714
- |TREE-5 |43.3810|32.2857
- |TREE-7 |53.5476|32.0000
- |TREE-9 |67.0714|28.8571
- |TREE-11 |81.2857|29.1429
- |TREE-13 |90.2857|28.0000
- |SVM_rbf |91.0952|19.1429
- |SVM_sigmoid |20.2381|20.0000 0175

- |Name: |Train: |Val: |
- |KNN-7 |73.6190|35.7143
- |KNN-9 |70.3571|39.4286
- |KNN-11 |68.2857|40.0000
- KNN-13 |67.0000|41.1429
- |DMIN |43.4762|37.4286
- |LDA |53.5714|41.7143
- |QDA |69.1667|39.7143
- |B_KDE |100.0000|35.7143
- |B_NAIV |48.9762|39.1429
- |TREE-5 |44.3333|35.7143
- |TREE-7 |53.8095|38.0000
- |TREE-9 |67.1905|30.2857
- |TREE-11 |79.8810|31.7143
- |TREE-13 |90.0000|28.2857
- |SVM_rbf |100.0000|16.5714
- |SVM_sigmoid |21.9524|22.2857

- |Name: |Train: |Val: |
- KNN-7 |73.6190|35.7143
- |KNN-9 |70.3571|39.4286
- KNN-11 |68.2857|40.0000
- KNN-13 |67.0000|41.1429
- |DMIN |43.4762|37.4286
- ₀₂₁ |LDA |53.5714|41.7143
- |QDA |69.1667|39.7143
- |B_KDE |100.0000|35.7143
- |B_NAIV |48.9762|39.1429
- |TREE-5 |44.3333|35.7143
- |TREE-7 |53.8095|38.0000
- |TREE-9 |67.1905|30.2857
- |TREE-11 |79.8810|31.7143
- |TREE-13 |90.0000|28.2857
- |SVM_rbf |100.0000|16.5714
- |SVM_sigmoid |21.9524|22.2857

TRABAJO FUTURO

Pre-procesamiento de imágenes

Resolver el problema de las imágenes segmentadas invertidas.

Realizar la detección de las regiones de interés (ROI).

Redimensionar las imagenes con base en las detección de las regiones de interés.

Convertir las imagenes redimencionadas a diferentes modelos de color.

•

Extracción de características

Realizar la extracción de las características con base en la imágenes redimensionadas.

Almacenamiento de las características en archivos con un formato .npy

Desarrollar la concatenación de características de manera selectiva.

☐ Xgab_Azul.npy ☐ Xgab_Rojo.npy ☐ Xgab_Verde.npy

Procesamiento de características

Realizar el procesamiento de las características de forma selectiva integrando diferentes configuraciones utilizando los algoritmos de selección y transformación.

Clasificación

Realizar la clasificación de las características de forma selectiva integrando diferentes configuraciones utilizando los algoritmo de clasificación .

Avance Proyecto: Reconocimiento de Lunares

LCFANS

Wenyi He - Guido Muñoz - Leonardo Olivares - Brayan Ruano - Ruth Vallejos Reconocimiento de Patrones 2021-1

Estrategia y Experimentos

- LBP
- Haralick
- HoG
- Gabor
- Spectral
- Flusser y Hu
- Intensidad
- Wavelet
- Metadata

- Normalización
- Clean
- SFS
- SBS
- PCA
- ICA
- PLSR

Se implementó un algoritmo que es capaz de usar distintas estrategias de clasificación:

- MLP
- KNN
- Random Forest
- QDA

Se almacenan las características extraídas y los resultados obtenidos para los distintos experimentos.

Resultados

Características	Selectores	Transformaciones	Clasificador	Accuracy (Validación)		
Gabor, Metadata, Hu, Flusser	Clean	Normalization, PLSR(100)	MLP((200, 50), Adam)	0.676		
Gabor, LBP, Har Metadata, Hu, Flusser	Clean, SFS(fisher, 50)	Normalization	QDA	0.591		
Gabor, Metadata, Hu, Flusser	Clean	Normalization, PLSR(50)	Random Forest(7)	0.585		

Accuracy Actual (Test): 56%

Trabajo Futuro

- Utilizar la segmentación de la imagen para obtener la información específica a los lunares
- A partir de su representación en HSV o HSL

 Almacenar en la nube las matrices generadas en el bloque de selección y transformación Continuar probando nuevas estrategias e intentar conseguir mejores resultados

Grupo HAROLD

Clemente Thompson - Vicente Belgeri - Tomás Cantergiani Tomás Valenzuela - Sebastián Morales

Experimentos Realizados

Resultados Obtenidos

Características	Selección/ Transformación	Clasificador	Test Acurracy	Train Acurracy		
Gabor	None	SVM	0.42	0.52		
Gabor	SFS 30	SVM	0.41	0.52		
Gabor	None	Random Forest Max-Depth: 10	0.38	1.0		
LBP	PLSR 30	Random Forest Max-Depth: 10	0.37	0.96		
LBP	None	Random Forest Max-Depth: 12	0.36	0.99		

Results for Clean and normal		atures data
Classifier	Test Acc	Train_acc
knn-12	0.34	0.63
RandomForest-max depth:14	0.38	1.0
DecisionTree-max depth:8	0.33	0.59
svc - ·	0.42	0.52
QDA	0.38	0.71

Trabajo Futuro

Inclusión de MetaData y sus consecuencias en resultados.

- Prueba de nuevas concatenaciones/combinaciones en la etapa de selección/transformación.

- Experimentación con otros clasificadores.

Nuevas medidas de desempeño distintas al Accuracy.

Presentación de avance

Nicolás Azócar Fernanda Durán María Belén Echenique Pablo Flores Gregory Schuit

Grupo "PALTONES"

Descripción del avance

Geométricas básicas (6/18): Roundness, Danielsson factor, Euler Number, Solidity, Extent, Eccentricity. Intensidad (6/6): Mean, Std Dev, Kurtosis, skewness, Mean Laplacian, Boundary Gradient.

Resultados

Accuracy para Cross-Validation:

- Árboles de decisión: 77%
- Random forest: 89%
- KNN de 5 vecinos: 71%

Trabajo a futuro

Metadata

GRUPO SKLEARN

Ronaldo Astudillo Gonzalez Matias Correa Izquierdo Clemente de la Cuadra Prado Ian Fieldhouse Becerra Jorge Vilchez Gutierrez

SOLUCIÓN PROPUESTA

- Ensayos con variados espacios de características
- CV con varias combinaciones de parámetros

RESULTADOS OBTENIDOS

Nuestra mejor precisión fue de un 40,29 %, luego de extraer:

- LBP(hdiv=4, vdiv=4);
- Gabor(rotations=4, dilations=4);
- HoG(h windows=16, v windows=16, nbins=8); y
- Haralick(distance=1)

de los canales R, G y B, y de la imagen binaria.

Este puntaje se obtuvo

- seleccionando 16 features con RandomForestClassifier(n_estimators=100)
- clasificando características con SVC (kernel='rbf', gamma=1, C=100)

TRABAJO FUTURO

Dentro de extracción:

• Extraer características de intensidad y geometría

Dentro de clasificación:

- Hacer pruebas con modelos de **redes neuronales**
- Utilizar la metadata provista

Reconocedor de 7 Tipos de Lunares

PATRONUS

Sebastián Burgos, Felipe Campbell, Jacques Hasard, Paul Heinsohn y Dan Ustilovsky

¿Qué se ha hecho?

(*) Concatenation, Clean, Normalization, Transformation, Selection, etc.

Resultados Obtenidos

Accuracy Classifier Features Selection Best (training & testing) Clean, HoG, LBP y SFS-20 y 69.69% KNN Norm, Metadata 33-NN 57.71% PLSR, SFS HoG, LBP y Clean, RF-100 y 72.76% KNN Metadata Norm, RF 33-NN 64.85% Clean, HoG, LBP y PLSR-50 100.00% SVM (lineal) Norm, Metadata **SFS-20** 100.00% PLSR, SFS

Trabajo Futuro

- Tras encontrar las mejores estrategias, identificar qué clasificador tiene mejor *accuracy* para una clase en específico.
- Utilizar ese clasificador de forma binaria para clasificar si una entrada es de esa clase o no.
- Aplicar los dos pasos anteriores hasta quedar con 2 clases.

De este modo creemos que será posible mejorar considerablemente nuestros resultados ya que, al tener una estrategia especializada para cada posible clase deberíamos lograr una mayor *accuracy*.

Avance de Proyecto

Reconocimiento de Patrones

Profesor: Domingo Mery

JAFDP

Joaquín Bijit - Alberto Castro - Fernando Hurtado - Diego Balada - Pilar Parga

Descripción

Resultados Obtenidos

Trabajo Futuro

Realizar:

Nuevas combinaciones de:

- características
- selectores
- clasificadores

Variaciones a la mejor combinación

Estudio del estado del arte

GRIEGOS-INFINITOS

Fernanda Mansilla - Stefan Klemmer - Matías Piña - Ignacio Moreno - Alberto Di Biase

Extraccion de Caracteristicas

Selección y Transformación de Características

Clasificación y Métricas

Canales RGB y G

- > LBP
- > Har
- **>** Gab
- > Int
- **>** abc

- ➤ Clean
- ➤ Norm (varias)

ESTRATEGIA:

Búsqueda exhaustiva dentro de un set de seleccionadores y clasificadores.
Se retorna una matriz con los **accuracy** para cada combinación de 2 seleccionadores + clasificador

Sell: ICA,PLSR o SFS Sel2: ICA,PLSR o SFS Clf: SVM, RF, LDA, Mh, Arbol, QDA o KNN

Resultados obtenidos

Se evaluó una primera estrategia, mostrada a continuación.

Luego se itero sobre distintas combinaciones:

		SVC_linear	SVC_rbf	KNN3	KNN5	KNN7	LDA	QDA	Mh0	Mh1	Arbol3	Arbol5	Arbol7	RF3	RF5	RF7
ICA	ICA	34.667	34.667	35.333	33.333	34.333	39.000	40.333	37.333	32.667	26.667	24.333	26.667	28.333	33.000	35.000
ICA	PLSR	36.333	30.333	22.000	26.000	27.000	35.333	21.667	30.000	16.000	29.667	26.000	28.333	30.333	35.000	37.000
ICA	SFS	36.333	30.333	22.000	26.000	27.000	35.333	20.000	32.667	26.333	29.667	26.000	28.667	33.667	33.333	37.667
PLSR	ICA	40.333	38.333	41.667	43.333	43.000	46.667	44.333	43.000	42.667	35.333	37.667	39.000	42.000	43.667	46.000
PLSR	PLSR	42.000	45.667	34.667	34.667	33.333	46.333	20.333	40.667	43.333	36.333	38.333	34.667	40.000	42.333	46.667
PLSR	SFS	42.000	45.667	34.667	34.667	33.333	46.333	23.000	37.000	38.667	36.333	38.333	34.667	41.667	46.000	49.333
SFS	ICA	38.667	40.333	45.667	43.667	43.667	46.000	43.000	45.000	41.000	34.667	40.000	35.000	44.333	48.333	47.000
SFS	PLSR	48.333	48.667	38.667	39.667	39.000	46.333	46.667	26.000	37.667	37.667	41.000	39.000	39.333	46.000	48.667
SFS	SFS	48.333	48.667	38.667	39.667	39.000	46.333	38.667	43.667	33.000	37.667	41.000	39.333	42.333	48.000	51.667

Próximos pasos

- Extraer nuevas características: Estadísticas sobre intensidad.
 Extracción específica por región.
- 2. Repetir búsqueda exhaustiva, incluyendo distintos tipos de normalización, agregando estrategias de selección/transformación y agregando más clasificadores
- 3. Fijar hiperparametros utilizando validación cruzada
- 4. Probar distintas métricas de rendimiento

PRESENTACIÓN DE **AVANCE: PAK-YOLO**

Integrantes:

- Susana FigueroaLaurence Golborne
- Luis Loyola
- José Luco

Resultados

Fuente	Selección	Clasificador	Validación cruzada (%)
Gris + Rojo	PCA + SFS	KNN	68,07
Gris	PLSR	Bayes KDE	65,17
Gris	PCA + SFS	KNN	64,24
Rojo	PLSR	Bayes KDE	63,86
Gris + Rojo	SFS	KNN	62,79
Gris + Rojo	SFS + Exhaustiva	KNN	61,31
Rojo	PCA + SFS	KNN	60,31

Trabajo futuro

- Investigar estado del arte
- Averiguar características no vistas en el curso para la extracción
- Reducir caracteristicas
- Incorporar metadata
- Afinar parámetros
- Redes neuronales

AVANCE PROYECTO

IIC3724 - Reconocimiento de patrones

GRUPO: MINMAX

Cristian Hernández Felipe Martínez

Vicente Merino Bernardita Morris

TRABAJO HASTA AHORA

Extracción de Características

De intensidad:

- Haralick
- HOB
- Gabor
- LBP

Geométricas:

- Momentos de Hu
- Elípticas
- Básicas (6)

Inclusión metadata

Preprocesamiento

- Normalización
- Clean

Selección

- Manual
- SFS

Transformación

- PCA
- ICA
- PLSR

Clasificación

- KNN
- QDA
- LDA
- Random Forest
- SVM
- NaiveBayes
- Árboles de Decisión

Evaluación

Crossvalidation

RESULTADOS OBTENIDOS

Mejor algoritmo:

Acc: 73.9%

- Extraer características de escalas de grises
- Probar los algoritmos con más características
- Incorporar Red Neuronal
- Abalation Study
- Extender revisión bibliográfica
- Calcular métricas en el conjunto de testing

TRABAJO FUTURO

Clasificador de lunares

Grupo: PONTEVIO

•••

Pablo Araneda, Daniela Concha, Alex Medina, Ricardo Schilling y Dunkan Torres

Trabajo realizado

Resultados

Trabajo futuro

- Probar más estrategias en la etapa de Selección de características
 - SFS sin previa reducción dimensional
 - Ensemble de estrategias
- Evaluar sobre una variedad más amplia de Clasificadores
 - Probar nuevos clasificadores (MLP, SVM, entre otros)
 - Probar *ensembles* de clasificadores
- Analizar las imágenes mal clasificadas