b. Write short notes on	12	1	4	5	
(i) Working with camera and lights					
(ii) Inspector window					
32. a. How collisions are identified? Explain the usage of different types of colliders.	12	3	5	9	
(OR)			٠.		- :
b. What is animation in unity? How can you add animation in unity?	12	3	5	9	
* * * *					1:
					Property age
					,
	343				
			9		
· · ·					

	1						
Reg. No.							

B.Tech. DEGREE EXAMINATION, JUNE 2023 Sixth Semester

18CSE464T - COMPUTER GRAPHICS AND GAME PROGRAMMING

	(For the candidates admitted during	the acad	demic year 2018-2019 to 2021-2022	2)			
Note: (i)	Part - A should be answered in OMR sheet to hall invigilator at the end of 40 th minute.	within f	first 40 minutes and OMR sheet she	ould be	hane	ded o	ver
(ii)	Part - B & Part - C should be answered in	answer b	oooklet.				
Time: 3	hours		Ma	ax. Ma	rks:	100	
	$PART - A (20 \times 1 =$	20 Mar	rks)	Marks	BL	CO	PO
	Answer ALL Qu						
1.	How many methods are there for produc		lor display?	1	1	1	3
	(A) 5	(B) 4	l .				
	(C) 3	(D) 2					
2.	Distortion effects produced when repr lower resolution is called	esenting	g a high-resolution signal at a	1	1	1	3
	(A) Anti-aliasing	(B) A	Aliasing				
	(C) Blurring	(D) N	Muddy				
3.	allows screen positions to be se	lected v	with the touch of a finger.	1	1	1	3
	(A) Touch panels		mage scanner				
	(C) Light pen	(D) N	Mouse				
4.	In DDA line drawing algorithm when the net 'X' value by			1	3	1	3
	(A) $X_{k+1} = X_{k-1}$	(B)	$X_{k+1} = X_k + \frac{1}{m}$ $X_{k+1} = X_k - \frac{1}{m}$				
	(C) $X_{k+1} = X_{k+1}$	(D)	$X_{k+1} = X_k - \frac{1}{m}$				
5.	Which of the following refers to the shadifference of given shapes?	apes cre	eated by union, intersection and	l 1	1	2	2
	(A) Wireframe model	(B) (Composite transformation				
	(C) Constructive solid geometry			7			
Ŧ)	methods	r	nethods				
6.	If a point (x, y, z) is to be translated by then what will be the value of the new t			, 1	2	2	2
			$x_1 = dx, y_1 = dy, z_1 = dz$				
	(C) $x_1 = x + dx, y_1 = y + dy, z_1 = z + dz$	(D) 3	$x_1 = x - dx, y_1 = y - dy, z_1 = z - dz$				
7	The Cohen Sutherland line clipping al	gorithm	divides the region into	1	1	2	2
7.	number of space.	00.14411		_			
	(A) 8	(B) 6	6				
	(C) 7	(D) 9	9				

8.	The shape of the Bezier curve is control (A) Control points (C) End points	lled by (B) Knots (D) Tangents	1	1	2	2		20.	If multiple colliders need to be used for a game object, the need to be of (A) Same type (B) Different type (C) No condition (D) Common type		1	5	9
9.	In which of the following projection the different distances? (A) Parallel projection	e object size differs when we look from (B) Cavalier projection	1	1	3	2			PART – B (5 \times 4 = 20 Marks) Answer ANY FIVE Questions	Marks	BL	CO) PO
	(C) Perspective projection	(D) Cabinet projection						21.	Write the difference between raster scan and random scan.	4	2	1	3
10.	Which of the following refer to a mode object external as well as interval?	l that represent all the dimension of an	1	1	3	2		22.	Write about color CRT display techniques briefly.	4	2	1	3
	(A) Wire frame model(C) Composite transformation	(B) Constructive solid geometry(D) Destructive solid geometry						23.	Discuss about Bezier curves and B-spline curves.	4	2	2	2
11.	Who developed the phong shading mod		1	1	3	3		24.	Illustrate any three types of 3D concepts.	4	1	2	2
	(A) DUI tuang phong(C) Cohen-Sutherland	(B) BUI tuang phong(D) Hodegman phonf						25.	How can you differentiate ambient illustration model from diffuse illustration model?	4	2	3	2
12.	RGB color model uses the prime RGB (A) Safe colors	colors because they are (B) Web colors	1.	1	3	3		26.	Write the steps for importing an asset in the unity.	4	2	₅ 4	9
	(C) Safe web colors	(D) Bright colors						27.	Explain about collision in unity.	4	2	5	5
13.	When you import an object from other 1		1	1	4	3							• .
	(A) Asset (C) Tool	(B) Jewel (D) Sprite							PART – C (5 × 12 = 60 Marks) Answer ALL Questions	Marks	BL	, co	PO
14.	For scripting in unity the following lang (A) Java (C) Python	guage is not available. (B) C# (D) C++	1	1	4	3		28. a.	Implement the Cohen-Sutherland line clipping algorithm for a line with end points $(-1, 5)$ and $(3, 8)$ and window boundaries. (X min, Y min = $(-3, 1)$. 12	3	2	2
15.	Which function can be called more than (A) Update ()	once per frame? (B) Fixed update ()	1	2	4	5			$(X \max, Y \max) = (2, 6)$ (OR)				
	(C) Late update ()	(D) Late bind ()						b.	With matrix representation explain all the types of 3D transformations.	12	3	3	_2
16.	The properties of a Gabe object can be s (A) Project window	set through (B) Console	1	1	4	9		29. a.i.	Describe the working principle of color CRT monitor.	6	2	1	3
	(C) Inspector	(D) Animator						ii.	Write the difference between beam penetration and shadow masking.	6	2	1	3
17.	Which is not a type of collider? (A) Box	(B) Mesh	1	1	5	3		b.	(OR) Explain 2D transformations with neat diagrams and matrices.	12	2	1	3
	(C) Capsule	(D) Basket					•			12	2	3	2
18.	In sprite renderer which feature is used: (A) Color		1	1	5	5		50. a.	Explain about the illumination models with mathematical expressions.	12	2		L
	(C) Sorting	(B) Material (D) Layering						b.	(OR) Describe about any two color models in detail with illustration.	12	2	3	2
19.	are used to draw extra information (A) Sprite (C) Gizmo	on for the game object? (B) Prefab (D) Collider	-1	1	5	5		31. a.	Write brief notes on the following (i) Assets (ii) Creating prefab	12	1	4	5
		E 15							(OB)				

(OR)

31. a.	A rate 1/3 convolution encoder has generating vectors $g_1 = (100)$, $g_2 = (111)$ and $g_3 (101)$	12	3	4	2
	i. Sketch the encoder configuration				
	ii. Draw the code tree, state diagram and trellis diagram.				
	(OR)				
b.	Explain Viterbi Algorithm for decoding of convolutions codes.	12	3	4	2
32. a.	Construct a Shannon Fan code for a source which emits 7 symbols with probability 0.4, 0.2, 0.12, 0.08, 0.08, 0.08 and 0.04 respectively. Also calculate its efficiency.	12	3	4	2
	(OR)				
b.	Determine $H(x)$, $H(y)$, $H(x,y)$, $H(x,y)$, $H(x/y)$, $H(y/x)$ and $I(X;Y)$ for a ternary channel whose joint probability matrix is	12	3	5	2
	$P(x,y) = \begin{bmatrix} 0.05 & 0.04 & 0.01 \\ 0.1 & 0.2 & 0.2 \\ 0.1 & 0.1 & 0.2 \end{bmatrix}$				
	* * * *				

	-	 	 	 	 			
Reg. No.								

B.Tech. DEGREE EXAMINATION, JUNE 2023 Sixth and Seventh Semester

18ECE225T - INFORMATION THEORY AND CODING (For the candidates admitted from the academic year 2018-2019 to 2021-2022)

Note:		ъ.	4 4 1 111		2010 2017 to 2021-202	44)			
(i)		ove	rt - A should be answered in OMR or to hall invigilator at the end of 40 th	sheet v	within first 40 minutes and OMR she	et shou	ld be	han	ded
(ii)			rt - B & Part - C should be answere						
Time	: 3 h	our	S		30 -V H.F. D.B. 253	Max.	Mar	ks: 1	00
			D 1 D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•		Marks	BL	со	no
			$PART - A (20 \times 1)$,	MININS	DL	co	FO
	1	Inc	Answer ALL	-		1	1	1	2
			yclic redundancy checking, the Quotient			1	1	1	
			Divisor	. ,	Dividend				
		(0)	DIVISOI	(D)	Remainder				
	2.	In n	norse code, Dash isti	mes th	e length of the DOT.	1	1	1	2
	((A)		(B)					
	((C)	3	(D)	4				
	3 '	The	two types of ASCII are			1	1	1	2
			ASCII – 4 and ASCII - 8	(P)	ASCII – 8 and ASCII – 16	,	•	1	2
			ASCII – 7 and ASCII - 8		ASCII – 6 and ASCII – 16 ASCII – 4 and ASCII – 16				
	,	(0)	riseir / and Aberr - 6	(D)	ASCII – 4 alid ASCII – 10				
	4.	The	octal representation of (15)10 is			1	1	1	2
	((A)	(31)8	(B)	(28)8				8
	((C)	$(41)_8$	(D)	$(38)_8$				
	5 '	The	efficiency of the Huffman Code	ic in	ramaly proportional to	1	1	2	2
	. ((A)	Average I enoth of the Code	(B)	Maximum Length of the Code	•	7	-	~
,	ì	(C)	Average Entropy		Redundancy				
	,	C	Tivelage Entropy	(D)	Reduildancy				
	6. I	n B	lock coding, IF $N = 5$, the max	ximum	hamming distance between two	1	2	3	2
			words is						
		(A)		(B)	3				
	((C)	2	(D)	1				
	7.		codes are speci	al line	ar block codes with the property	. 1	· 2	3	2
	-	hat	if a code word is rotated, the res			45			
			Convolution		Cyclic				
	1		Non Linear		Huffman				
	0 7	րե.	corner almhabatha da a 1 11		1 1 91 0 99 0 94 94	1	2		_
			source aiphabet has 4 encoded t S4 = 00 which is	inary	symbols $S1 = 0$, $S2 = 01$, $S3 = 11$	1	2	2	2
			Not uniquely decodable	(R)	Uniquely Decodable				
		C)	Prefix Free	(D)	Golay Codes				
		,		(2)	Joing Jours				

05JF6,7-18ECE225T

Page 1 of 4

05JF6,7-18ECE225T

9.	The	prefix code is also known as			I	1	2	2
	(A)	Instantaneous Code	(B)	Block Code				
	(C)	Convolution Code	(D)	Parity Bit				
10.	The Code	efficiency of Huffman Code is		than the Shannon FANO	1	1	2	2
		Lesser	(B)	Greater				
	` ′	Equal	` '	Moderate				
1.1	The	hamming distance between 010 a	nd 1	10 is	1	2	3	2
11.	(A)	_	(B)					
	(C)		(D)					
12	The	received code contains an error i	fthe	syndrome vector is	1	2	3	2
12.		Zero		Non Zero				
		Infinity		Negative				
	(C)	initity	(D)	Nogative				
13.	The	measure of amount of redundanc	y is g	iven by	1	1	4	2
		Code Size	-	Code Weight				
		Code Rate	(D)	Minimum Distance				
14	Ном	many number of transitions can	be m	ade at each bit time?	1	1 =	4	2
17.	(A)		(B)					
	(C)		(D)					
	(-)		(-)					
15.	The	trellis diagram, the number of no	des _	at successive branching.	1	1	4	2
	(A)	Increases by one	(B)	Doubles				
	(C)	Triples	(D)	Decreased				
16	Ata	ny given time, the output of conv	oluti	on encoder depends on	1	1	4	2
10.		Past Input		Present Input				
		Present and Past Input		Future Input				
	()		` ,	10	1	1	5	2
17.		method of converting a word to			1	1	3	2
	` '	Binary Coding	` '	Source Coding				
	(C)	Bit Coding	(D)	Cipher Coding				
18.	The	relation between entropy and mu	tual i	information is	1	1	5	2
	(A)	I(x,y) = H(x) - H(x/y)	(B)	I(x,y) = H(x/y) - H(y/x)				
	(C)	I(x,y) = H(x) - H(x/y) I(x,y) = H(x) - H(y)	(D)	I(x,y) = H(y) - H(x)				
19	Whe	en two messages are equiprobable	e Ent	trony is	1	1	5	2
17.		Zero		Unity				
	. ,	Maximum	` ′	Infinity				
	(0)		()	,				
20.	The	conditional probability $P\left(\frac{b_i}{a_i}\right)$ is	knov	vn as	1	1	5	2
		(• /		Reverse Conditional Probability				
	,	Probability	(TC.)	N. 17 C				
	(C)	Entropy	(D)	Mutual Information				

	PART – B ($5 \times 4 = 20$ Marks) Answer ANY FIVE Questions	Marks	BL	со	PO
21.	Determine the multiplication table for Octal Numbers	4	2	1	2
22.	Verify the code 00, 01, 10, 110 and 111 are instantaneous and draw the decoding free.	4	2	2 .	2
23.	For a systematic linear block codes, three parity check bits are given by $C_4 = d_1 + d_3$, $C_5 = d_1 + d_2 + d_3$ and $C_6 = d_2 + d_3$ construct a generation matrix and parity check matrix.	4	2	3	2
24.	Define: Code Rate and constraint length of convolution encoder.	4	1	4	2
25.	Show that entropy $H(x)$ is maximum when both x_1 and x_2 are equiprobable.	4	1	4	2
26.	Explain ASCII code in detail.	4	1	1	2
27.	Verify the given code 0, 01, 001, 0010, 0011 is uniquely decodable or not.	4	2	2	2
28. a.	$PART-C \ (5\times 12=60\ Marks)$ Answer ALL Questions Determine the message to be transmitted for the message polynomial x^4-x^2 Having the generator polynomial x^3+x+1 using CRC method. Also check whether the transmitted code word received at the receives is correct or not.	Marks 12	BL 3	co	PO 2
	(OR)	7	3	1	2
b.i.	With neat block diagram, Explain the model of the signaling system	7			2
ii.	Explain Morse code in detail.	5	3	1	2
29. a.	Obtain the Huffman Code for five symbols x_1 , x_2 , x_3 , x_4 and x_s with probabilities 0.4, 0.2, 0.2, 0.1 and 0.1 respectively. Also calculate the efficiency of the code.	12	3	2	2
b.	(OR) Check whether the given codes satisfies Kraft's inequality or not. Also determine the efficiency of the codes. Code A: 00, 01, 10, 110, 1110, 1101, 1111 Code B: 0, 100, 1100, 1110, 1101, 1111 Code C: 0, 10, 110, 1110, 11110, 11111	12	3	2	2
30. a.	The generator matrix for a(6,3) block code is given below. Find all the code vectors of this code. $\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$	12	3	3	2
b.	(OR) Design a (7,4) cyclic code using encoder for the generator Polynomial $G(n) = 1 + x^2 + x^3$ and message vector 1100.	12	3	3	2

Page 3 of 4