ST 2054, 3068, 6003.
ST 2054, ST3068, Finish 9 questions out of 10
ST6003, 2 compulsory questions and Choose 7 out of rest 8.
From Supratik's From Liang's
Start with notes, assignments, tutorials and past exam paper
Less booknork typed questions
Axioms of prob, prob of events, union, intersection,
conditional prob, prob of indep events.
Prob. mass ft, prob. density ft, conditional density ft,
marginal density.
Typical discrete dist's: Poi, Leo, Bin, Neg. Bin,
: Normal, exp, etc.
Know how to identify a particular dist? given, MGF, pdf,
Che by sher, convergence in Jorob., Continuity Theorem.
Note: no more bookwork question for this material
Expectation, Variance, (conditional),
Be able to find E(XIJJ given certain marginal or joint
density.
P(A. Be able to calculate the co-variance matrix given two
rectors, and carry out the PCA.

- Moment generating fz, MGF of compound distz; MGF of joint distz, - Biased and unbiased estimator, sampling variance/mean, sampling moments. - Jacobian (of Joint Dist"), non-linear transform of a Randona vector, eg polar system. - CIs, Hypothesis testing, ANOVA

P[X>0, Y>0] = P[w>0, Z> - wr VI-P2],

convert to polar coordinates.

Recall: $\iint_R f(x,y) dx dy = \iint_R f(r \omega s o, r s in o) r dr do.$

let $z = r \sin \theta$, $\omega^2 + z^2 = r^2 > \omega^2 + \frac{\omega^2 \rho^2}{1 - \rho^2} = \omega^2 \left(\frac{1 + \rho^2}{1 - \rho^2} \right) > 0$. => r > 0

 $\frac{7}{\sqrt{1-p^2}} = \frac{1}{\sqrt{1-p^2}} = \frac{1}$

 $\theta > \tan^{-1}\left(-\frac{\rho}{\sqrt{1-\rho_2}}\right) = -\tan^{-1}\left(\frac{\rho}{\sqrt{1-\rho_2}}\right) = -\sin^{-1}\left(\frac{\rho}{\rho}\right)$ => P[w>0, Z> - w/] = \(\int \) \(\sigma \

 $= \int_{-\sin^{-1}(P)}^{1/2} \int_{r=0}^{\infty} \frac{1}{2\pi} e^{-\frac{1}{2}r^{2}} dr d\theta = \int_{-\sin^{-1}(P)}^{1/2} \frac{1}{2\pi} d\theta$

 $= \frac{1}{2\pi} \theta \Big|_{\lambda}^{\frac{\pi}{2}} = \frac{1}{4} + \frac{1}{2\pi} \sin^{-1} \theta.$