Versuch 5

Oszilloskop 2

Gruppe:	
Tisch:	
Versuchsdatum:	
Teilnehmer:	
Korrekturen:	
Korrekturen.	
Testat:	

Lernziel

In dieser Übung sollen die Studierenden einen tieferen Einblick in das Anwendungsspektrum eines 2-Kanal-Oszilloskops bekommen.

- Es soll mit Hilfe der Funktion "INV" ein Kanal in seiner Polarität invertiert werden, so dass Spannungs-<u>Differenz</u>messungen mit "ADD INV" möglich werden. Ziel ist es, Anwendungsmöglichkeiten dieses Verfahrens zu erkennen und sicher zu beherrschen. Dabei sollen mögliche "Fehlerquellen" (durch Übersteuerung der Eingangsverstärker!) herausgestellt und erkannt werden.
- Ein weiteres Lernziel besteht im Kennenlernen der Betriebsart X-Y, bei der also die interne
 Zeitablenkung ausgeschaltet bleibt. Ähnlich wie in Übung 1 und 2 soll hierbei die u(i)-Kennlinie eines Bauelements aufgezeichnet werden.

Vorzubereitende Themen

- X-Y-Betrieb und Differenzmessungen Ch2-Ch1
- Scheinwiderstand, Phasenverschiebung zwischen Strom und Spannung an Spulen und Kondensatoren
- Bedienungsanleitung Tektronix Oszilloskope Serie TDS 3000B im Internet unter <u>www.etech.haw-hamburg.de/~gelab/</u> > Download > Bedienungsanleitungen > Tektronix Oszilloskope Serie TDS 3000 B

Vorausberechnungen

zu Teil 1:

Eine Spule habe folgende Kennwerte (0.1H , 10Ω). Bei welcher Frequenz beträgt die Phasenverschiebung zwischen Strom und Spannung gerade 45°?

zu Teil 2:

Berechnen Sie unter Anwendung der Kennliniengleichung des VDR (s. Kap. 2) die Spannung u_1 , den Gleichstromwiderstand R_1 sowie den differenziellen Widerstand r_1 = du/di für i_1 = 100mA!

Regeln zur Versuchsdurchführung und Protokollerstellung

⇒ siehe Durchführungshinweise zum Praktikum!

1. Scheinwiderstandsmessung

Durch gleichzeitige Strom- und Spannungsmessung mit dem Oszilloskop (beide Kanäle in y-t-Darstellung) ist die komplexe Impedanz $\underline{Z}=R+j\omega L$ einer Spule (ca. 0.1H, 10Ω) zu bestimmen.

Messaufbau: Um den Spulenstrom mit dem Oszilloskop messen zu können, wird der Spule

ein geeigneter Widerstand (50 Ω) vorgeschaltet. Der Strom wird dann indirekt

über den Spannungsabfall an diesem Vorwiderstand bestimmt.

Stellen Sie am Signalgenerator eine Frequenz von 50 Hz (Sinus) ein.

Bauen Sie die Messschaltung auf.

Messung:

- 1. Dokumentieren Sie die Zeitfunktionen von Strom und Spannung (DC-Kopplung). Beschriften Sie die Achsen mit den korrekten Einheiten (V/Div., A/Div., s/Div.)
- 2. Berechnen Sie \underline{Z} in der Form $\underline{Z} = Z \, e^{j \varphi}$ und bestimmen Sie daraus die exakten Bauelemenentgrößen **R** und **L** des <u>Reihenersatzschaltbildes</u> der Spule.

2. Messung der Kennlinie eines VDR im X-Y Betrieb

Ziel der Messung ist die maßstabsgerechte Darstellung der u = f(i)-Kennlinie eines spannungsabhängigen Widerstandes (VDR) bei 50Hz (aus Stelltrenntrafo).

Anm.: Gemäß u = f(i) soll "i" in x-Richtung und "u" in y-Richtung dargestellt werden. (DC-Kopplung)

Stellen Sie folgende Bedingung sicher: $I_{max} < 125 \text{mA}$

Kennliniengleichung des VDR:
$$\frac{u}{V} = C \cdot \left(\frac{i}{mA}\right)^{\beta}$$
 mit $\beta = 0.36$ und $C = 1.75$.

Die Kennlinie wird mit folgender Schaltung gemessen:

- Dimensionieren Sie den Widerstand R_v so, dass bei einem Strom von 25mA der Spannungsabfall gerade 1V beträgt. Bei einer Einstellung 1V/Div. für Ch1 gilt dann an der X-Achse des Oszilloskops der Maßstabsfaktor 25mA/Div..
- Auswertung: Vergleichen Sie Theorie (berechneter Wert) und Messung für i₁ = 100mA bei
 - der Spannung u₁,
 - dem Gleichstromwiderstand R₁ und
 - dem differentiellen Widerstand r₁ = du/di.
- Man überprüfe, ob die Darstellung durch die Kopplungsart (AC/DC) der Eingangsschaltung des Oszilloskops beeinflusst wird.