Description

Image

Caption

Glass ceramic can tolerate extreme thermal shock. © Kuppersbusch USA Inc.

The material

Glass ceramics are glasses that, to a greater or lesser extent, have crystallized. They are shaped while in the glassy state, using ordinary molding methods and then cooled in such a way that the additives they contain nucleate small crystals. It is sold for cooking as pyroceram and is used for high performance heat resisting applications.

Composition (summary)

SiO2/Al2O3/B2O3

Genera	

Density	150	-	181	lb/ft^3
Price	* 0.939	-	5.64	USD/lb
Date first used	1957			
Mechanical properties				
Young's modulus	10.9	-	13.8	10^6 psi
Shear modulus	* 4.38	-	7.09	10^6 psi
Bulk modulus	* 7.25	-	8.7	10^6 psi
Poisson's ratio	0.24	-	0.29	
Yield strength (elastic limit)	9.06	-	25.7	ksi
Tensile strength	9.06	-	25.7	ksi
Compressive strength	49.3	-	174	ksi
Elongation	0			% strain
Hardness - Vickers	230	-	720	HV
Fatigue strength at 10^7 cycles	8.71	-	24.4	ksi
Fracture toughness	1.37	-	1.55	ksi.in^0.5
Mechanical loss coefficient (tan delta)	5e-5	-	2e-4	
Thermal properties				
Glass temperature	1.05e3	-	3e3	°F
Maximum service temperature	1.47e3	-	2.14e3	°F
Minimum service temperature	-460			°F
Thermal conductor or insulator?	Poor insulator			
Thermal conductivity	0.768	-	1.45	BTU.ft/h.ft^2.F
Specific heat capacity	0.143	-	0.215	BTU/lb.°F
Thermal expansion coefficient				

	1.67	-	4.11	µstrain/°F
--	------	---	------	------------

Electrical properties

Electrical conductor or insulator?	Good insulator			
Electrical resistivity	2e19	-	1e21	µohm.cm
Dielectric constant (relative permittivity)	5.3	-	6.2	
Dissipation factor (dielectric loss tangent)	0.0035	-	0.0047	
Dielectric strength (dielectric breakdown)	965	-	1.02e3	V/mil

Optical properties

Transparency	Translucent			
Refractive index	1.5 - 1.55			
Processability				
Castability	1			
Moldability	3 - 4			
Machinability	1 - 3			
Weldability	1			

Eco properties

Embodied energy, primary production	* 4.06e3	-	4.5e3	kcal/lb
CO2 footprint, primary production	* 2.2	-	2.43	lb/lb
Recycle	×			

Supporting information

Design guidelines

Glass ceramic is shaped in a two-stage process. The molding is done while the material is still a true glass, using standard glass-forming methods. The shaped product is then heat treated, causing "phase-separation": the formation of crystalline phases. These have a very low thermal expansion coefficient, with the result that the material can withstand very sudden changes of temperature without cracking. Some grades of glass ceramic are machinable.

Typical uses

Photosensitive applications, Cookware, Lasers, Stove window glass, Telescope mirror banks, Exterior and interior cladding, Laboratory bench tops, Missile Radomes

Tradenames

Pyroceram, Macor, Shapal M-soft.

Links

Reference

ProcessUniverse

Producers