基础物理实验报告

RLC 电路的谐振现象

姓	名:	赵启渊
学	院:	工学院
学	号:	2000011153
分	组:	第1组7号
日	期:	2022 年 3 月 30 日
指导教师:		刘春玲 张艳席

学号: 2000011153

实验十七

RLC 电路的谐振现象

赵启渊 2000011153

1 数据及处理

1.1 测量谐振下的电压值

按下面电路图连接电路,取 L=0.1H、C=0.05 μ F、R=100 Ω ,示波器 CH1 连接 C 上方导线,示波器 CH2 连接 R 上方导线,注意 CH1 和 CH 2 必须共地,调谐振,用数字万用表测量 u,u_L,u_C,u_R 。

图 1: RLC 串联电路图

测量得

 $f_0 = 2.249kHz$

表 1: 测量谐振条件下的电压值

项目	u/V	$u_L/{ m V}$	u_C/V	$u_R/{ m V}$	
读数	0.6705	7.194	7.172	0.5151	

学号: 2000011153

因为在共振时,电阻、电容两端电压会相互抵消,相当于整个电压都加到了 R 上,由此可以算出整个电路总电阻

$$R' = \frac{u}{u_R} * R$$
$$R' = 131.04\Omega$$

由此得品质因子

$$Q_{1} = \frac{1}{R' * C * \omega_{0}}$$

$$= \frac{1}{2 * \pi * R' * C * f_{0}}$$

$$= 10.8$$

$$Q_{2} = \frac{u_{C}}{u}$$

$$Q_{2} = 10.70$$

1.2 绘制电路的相频特征曲线

通过调节信号源,发生一定频率梯度的脉冲电压,用示波器测量 CH1、CH2 过零点之间的时间差 Δt ,计算得到相位差 $\Delta \phi$,最后绘图。

表 2: 测量不同频率下时间差的数据表

输出频率 / kHz	$\Delta t/\mathrm{ms}$	$\Delta\phi/^\circ$	
1.741	0.128	-80.2	
1.955	0.100	-70.4	
2.078	$80.0*10^{-3}$	-59.8	
2.148	$56.0*10^{-3}$	-43.3	
2.190	$37.0 * 10^{-3}$	-29.2	
2.221	$17.0*10^{-3}$	-13.6	
2.249	$1.00*10^{-3}$	0.80	
2.276	$23.0*10^{-3}$	18.8	
2.309	$39.0*10^{-3}$	32.4	
2.354	$57.0*10^{-3}$	48.3	
2.434	$71.0*10^{-3}$	62.2	
2.587	$78.0*10^{-3}$	72.6	
2.905	$75.0*10^{-3}$	78.4	

学号: 2000011153

其中 $\Delta \phi$ 计算使用

$$\Delta \phi = \Delta t * f * 360^{\circ}$$

以频率 f 为横坐标,相位差 $\Delta \phi$ 为纵坐标绘图得

图 2: RLC 串联电路相频特征曲线

1.3 绘制电路的幅频特征曲线

通过调节信号源,在总电压 $u = 1.0000 \pm 0.001V$ 的条件下,发生上面的频率梯度的脉冲电压,并在每个频率梯度之间再取一点,共取 25 个点,每点用数字万用表测量 u_R ,计算得到 i 值,最后绘图,并用带宽法计算品质因子 Q 的值。

表 3: 测量不同频率下 u_R 值的数据表

输出频率 / kHz	u_R/mV	输出频率 / kHz	u_R/mV	
1.741	134.73	2.262	$0.7616 * 10^3$	
1.848	174.64	2.276	$0.7465 * 10^3$	
1.955	239.70	2.292	$0.6975 * 10^3$	
2.016	306.36	2.309	$0.6627*10^3$	
2.078	$0.3878 * 10^3$	2.331	$0.5818 * 10^3$	
2.113	$0.4480*10^{3}$	2.354	$0.5431*10^3$	
2.148	$0.5468 * 10^3$	2.394	$0.4483 * 10^3$	
2.170	$0.6110*10^3$	2.434	$0.3845*10^3$	
2.190	$0.6682 * 10^3$	2.510	281.08	
2.205	$0.7102*10^3$	2.587	238.24	
2.221	$0.7395 * 10^3$	2.746	165.53	
2.235	$0.7632 * 10^3$	2.905	134.19	
2.249	$0.7752 * 10^3$			

其中 i 计算使用

$$i = \frac{u_R}{R}$$

以频率 f 为横坐标, 电流值 i 为纵坐标绘图得

学号: 2000011153

图 3: RLC 串联电路幅频特征曲线

又因为

$$\frac{i_{max}}{\sqrt{2}} = 548.1 * 10^{-2} mV$$

使用 Origin 在曲线上取 A(2.14825,548.0), B(2.35034,548.0) 两点,计算得

$$Q_3 = \frac{f_0}{\Delta f}$$

$$= \frac{f_0}{2.35034 - 2.14825}$$

$$= 11.00$$

2 思考题:

2.

(1) 当谐振时, 电路中会有关系

$$Q = \frac{u_C}{u} \tag{1}$$

$$-6/12$$
 -

学号: 2000011153

$$\begin{cases}
L = \frac{1}{\omega_0^2 * C} \\
\omega_0 = 2 * \pi * f_0
\end{cases}$$
(2)

$$\begin{cases}
R_r = \frac{1}{Q * \omega_0 * C} \\
\omega_0 = 2 * \pi * f_0
\end{cases}$$
(3)

其中 C、 f_0 、 u_C 、u 都是可以从 Q 表中测量得到的,通过上面的方程就可以得到想要的 参数。

(2)

- 1. 按照 Q 表原理图连接电路,调节输出频率,使整个电路处于谐振状态。
- 2. 读出谐振频率 f_0 、 u_C 、u, 再根据仪器给出的参数 C, 就可以得到电抗元件的 R_r 、L、Q 的值。
 - (3) 因为

 $Q = \frac{u_C}{u}$

得到

 $Q = 1.0 * 10^2$

因为

 $\left\{ \begin{array}{l} L=\frac{1}{\omega_0^2*C}\\ \omega_0=2*\pi*f_0 \end{array} \right.$

得到

L = 0.21mH

因为

$$\begin{cases} R_r = \frac{1}{Q * \omega_0 * C} \\ \omega_0 = 2 * \pi * f_0 \end{cases}$$

得到

$$R_r = 8.0\Omega$$

学号: 2000011153

3 分析与讨论

3.1 实验测得各种曲线的主要特征与理解

1. 对于 RLC 串联电路的相频特征曲线, 有方程

$$\phi = \arctan \frac{2 * \pi * f * L - \frac{1}{2 * \pi * f * C}}{R}$$

$$\tag{4}$$

当电流与电压相位相同时,这时的频率就是谐振频率;当 $f < f_0$ 时,这时候频率较低,电流的相位超前于电压的相位,整个电路呈现电容性,并且随着 f 的减小,相位差趋近于 $\frac{\pi}{2}$; 当 $f > f_0$ 时,这时候频率较高,电流的相位落后于电压的相位,整个电路呈现电感性,并且随着 f 的增大,相位差趋近于 $\frac{\pi}{6}$ 。

2. 对于 RLC 串联电路的幅频特征曲线, 有方程

$$i = \frac{u}{\sqrt{R^2 + (2 * \pi * f * L - \frac{1}{2 * \pi * f * C})^2}}$$
 (5)

从方程和测得的曲线得到,该曲线是对称的,在谐振时,总阻抗 |Z| 最小,因此此时有 i_{max} 。随着 $|f-f_0|$ 越来越大,总阻抗 |Z| 值增大,i 减小,并且 i 衰减的速度先加快后减慢。并且 i 观上,从图像的形状上可以反应 Q 值的大小,高而瘦的 Q 值大,矮而胖的 Q 值小。

3.2 比较三种方法测得的 Q 值

$$Q_1 = 10.8$$

 $Q_2 = 10.70$
 $Q_3 = 11.0$

三种方法测得的 Q 值是大致一样的。下面对三种方法测得的 Q 值进行不确定度分析。

1.

$$Q_{1} = \frac{1}{2 * \pi * R' * C * f_{0}}$$

$$\frac{dQ}{Q} = -\frac{du}{u} + \frac{du_{R}}{u_{R}} - \frac{dR}{R} - \frac{df_{0}}{f_{0}} - \frac{dC}{C}$$

$$\frac{\sigma Q}{Q} = \sqrt{(\frac{\sigma u}{u})^{2} + (\frac{\sigma u_{R}}{u_{R}})^{2} + (\frac{\sigma R}{R})^{2} + (\frac{\sigma f_{0}}{f_{0}})^{2} + (\frac{\sigma C}{C})^{2}}$$

$$\sigma Q_{1} = 5.16 * 10^{-3}$$

学号: 2000011153

2.

$$Q_2 = \frac{u_C}{u}$$

$$\frac{dQ}{Q} = -\frac{du}{u} + \frac{du_C}{u_C}$$

$$\frac{\sigma Q}{Q} = \sqrt{(\frac{\sigma u}{u})^2 + (\frac{\sigma u_C}{u_C})^2}$$

$$\sigma Q_2 = 2.36 * 10^{-3}$$

3.

$$Q_3 = \frac{f_0}{\Delta f}$$

$$\frac{dQ}{Q} = \frac{df_0}{f_0} - \frac{d\Delta f}{\Delta f}$$

$$\frac{\sigma Q}{Q} = \sqrt{(\frac{\sigma f_0}{f_0})^2 + (\frac{\sigma \Delta f}{\Delta f})^2}$$

 $(\frac{\sigma \Delta f}{\Delta f})^2$ 来自图形拟合的误差和测量电压的误差,其中图形拟合的误差是非常大的,可能造成 σQ 很大。

4. 由于图形拟合的误差, σQ_3 是三种测量方法中最大的;其次由于第一种方法测量的变量很多, σQ_1 是居中的; σQ_2 是最小的,第二种方法应该是最精确的。但总体来说,三种方法测量的 Q 值都比较集中,说明测量比较精准。

4 收获与感想

- 1. 在做电学实验时,一定要预先检查电路,避免短路。在本实验中要注意避免地的选择不共点,导致短路。
- 2. 选择测量方案时,要尽量选择测量数量少的,避免因为实验仪器的误差造成很大的误差。
- 3. RLC 电路在实际应用中,Q 越大,对电路电压的放大作用越大,这可以在现实中用作放大器。

学号: 2000011153

A 对未知电路盒的元件参数测定

A.1 实验原理:

1. 该未知电路盒是电阻、电容、电感三种元件中两种的组合,电容、电感需要考虑损耗电阻。在同时具有电容、电感的电路中有一定几率出现谐振现象。电容在电路中会通高频,阻低频;电感在电路中会通低频,阻高频。按下面的电路图搭建电路,这里 $R=100\Omega$ 。

图 4: 未知电路盒的元件参数测定的电路图

示波器 CH1 连接未知电路盒的上方导线,示波器 CH2 连接 R 上方导线,注意 CH1 和 CH2 必须共地,用数字万用表测量 u_R 。首先调谐振,若存在谐振现象,则一定存在电容与电感;若不存在谐振现象,则有两种可能:电容与电阻、电感与电阻。之后根据电容、电感的特性,用高频电流与低频电流分别检验 u_R ,再判断未知电路盒的类型。

2. 对于元件参数的测量,要使用谐振电路的特性,对于不存在谐振现象的有两种可能,要构造谐振电路,用带宽法测量未知电路盒的参数。

$$Q = \frac{f_0}{\Delta f}$$

$$R' = \frac{u}{u_R} * R$$

$$Q = \frac{1}{R' * 2 * \pi * f_0 * C}$$

$$Q = \frac{2 * \pi * f_0 * L}{R'}$$

学号: 2000011153

A.2 实验步骤:

- 1. 按实验原理中的电路图连接电路(使用(7)号器件盒),不断调节输出频率,发现在 $f_0 = 3.100kHz$ 时,示波器中的李萨如图形基本为一直线,电路发生谐振现象。说明该器件盒存在电容和电感。
- 2. 笔者又采用定性实验的方法,测量在输出电压为 $1.768~\rm{V}$,输出频率为 $200\rm{Hz}~\rm{th}$, u_R 的量级为 $50\rm{mV}$;测量在输出电压为 $1.768~\rm{V}$,输出频率为 $1\rm{MHz}~\rm{th}$, u_R 的量级为 $10\rm{mV}$ 。可以发现 u_R 在高低频时负载的电压极小,可以进一步说明该器件盒存在电容和电感。
 - 3. 再次调谐振, 测量 $u \times u_R$ 的值, 从而计算 R'。
- 4. 再次调谐振,保持实验电路的总电压为 $u=1.0000\pm0.001V$,测量 u_R 。不断调节输出频率,并保持实验电路的总电压为 $u=1.0000\pm0.001V$,测量此时的 u_R ,使其不断接近 $\frac{u_{max}}{\sqrt{2}}$ 。
 - 5. 计算数据,得到位置元件的参数。

A.3 实验数据处理:

1. 测量得到

$$f_0 = 3.100kHz$$

2. 测量得到

$$u_R = 0.9051V$$

$$u = 1.1330V$$

计算得

$$R' = \frac{u}{u_R} * R$$
$$= 125.18\Omega$$

损耗电阻

$$\Delta R = R' - R$$
$$= 25.18\Omega$$

学号: 2000011153

3. 测量得到

表 4: 测量不同频率下 u_R 值的数据表

输出频率 / kHz	u_R/mV	
3.100	$0.7990*10^3$	
2.120	$0.5125 * 10^3$	
2.148	$0.5286*10^3$	
2.170	$0.5324 * 10^3$	
2.175	$0.5343 * 10^3$	
2.235	$0.5596*10^3$	
2.240	$0.5612 * 10^3$	

4.

$$\frac{u_{max}}{\sqrt{2}} = 0.5650V$$

观察到输出频率为 2.240kHz 时, u_R 较为接近, 粗略计算有

$$Q = \frac{f_0}{\Delta f}$$

$$= \frac{f_0}{2 * (f_0 - f)}$$

$$= 1.802$$

因此有

$$C = \frac{1}{2 * \pi * f_0 * R' * Q}$$

$$= 0.2276 \mu F$$

$$L = \frac{Q * R'}{2 * \pi * f_0}$$

$$= 0.01158 H$$

Last edited: 2022/06/29 © 赵启渊