Ficha 5

1. Utilizando o teorema de Laplace, calcule os determinantes das matrizes:

$$\left(\begin{array}{ccc}
1 & 2 & 3 \\
5 & 1 & 4 \\
0 & 2 & 1
\end{array}\right)$$

$$\left(\begin{array}{ccc}
1 & 2 & 2 \\
2 & 3 & 0 \\
2 & 2 & 1
\end{array}\right)$$

2. Utilizando a regra de Cramer resolva os sistemas de equações:

(a)

$$-x - 5y - 4z = 1,$$

 $2x - y + 2z = -1,$
 $5x + 3y + 6z = 2.$

(b)

$$x - 2y + 5z = 2,$$

 $6x - 4y + z = 1,$
 $9x - 6y + z = -3.$

3. Calcule as matrizes dos complementos algébricos e as matrizes inversas das matrizes:

$$\left(\begin{array}{ccc}
1 & 2 & 3 \\
5 & 1 & 4 \\
3 & 2 & 1
\end{array}\right)$$

$$\left(\begin{array}{ccc}
0 & 2 & 2 \\
2 & 0 & 2 \\
2 & 2 & 0
\end{array}\right)$$

- 4. Aplique o algoritmo de Gram-Schmidt aos vetores:
 - (a) (1,2,3,0), (5,1,4,1) e (3,2,1,2) no espaço $\mathbb{R}^4;$
 - (b) 1, x, x^2 no espaço $\mathcal{P}^n([0,1])$ de polinómios definidos no intervalo [0,1].