Partie 1 : La fonction sinus et cosinus

Problème 1 : Tracé de Fonctions Sinus et Cosinus

Tous les tracés se feront sur géogébra.

1.	Tracé de $y = \sin(x)$: — Un hôpital utilise des fonctions sinusoïdales pour modéliser les variations de la pression artérielle d'un
	patient au fil du temps. Tracez la fonction $y = \sin(x)$ pour x allant de 0 à 2π , où x représente le temps en secondes et y représente la pression artérielle en mmHg.
	— Identifiez les points où la pression artérielle atteint ses valeurs maximales et minimales. —
	— Déterminez les points où la pression artérielle croise la pression moyenne (ligne de base).
	— Determinez les points ou la pression arteriene croise la pression moyenne (fighe de base).
2	Tracé de $y = \cos(x)$:
2.	— Un autre patient a une variation de la pression artérielle modélisée par la fonction $y = \cos(x)$. Tracez cette fonction pour x allant de 0 à 2π , où x représente le temps en secondes et y représente la pression artérielle en mmHg.
	— Identifiez les points où la pression artérielle atteint ses valeurs maximales et minimales. —
	— Déterminez les points où la pression artérielle croise la pression moyenne (ligne de base).
Prob	lème 2 : Comparaison des Fonctions Sinus et Cosinus
	Comparaison des Graphiques :
	— Comparez les graphiques de $y = \sin(x)$ et $y = \cos(x)$ pour les deux patients. — Décrivez les similitudes et les différences entre les deux variations de la pression artérielle. —
	—
Exe	rcice 2 : Calculs et Transformations en Contexte Médical
Prob	lème 1 : Calculs de Valeurs
1.	Calcul de $\sin(\frac{\pi}{4})$ et $\cos(\frac{\pi}{4})$: — Calculez les valeurs de $\sin(\frac{\pi}{4})$ et $\cos(\frac{\pi}{4})$ pour modéliser les variations de la pression artérielle à des moments spécifiques.
	—
	— Vérifiez que $\sin^2(\frac{\pi}{4}) + \cos^2(\frac{\pi}{4}) = 1$.
2.	Calcul de $\sin(\frac{\pi}{6})$ et $\cos(\frac{\pi}{6})$:
	— Vérifiez que $\sin^2(\frac{\pi}{6}) + \cos^2(\frac{\pi}{6}) = 1$.

Problème 2 : Transformations de Fonctions

- 1. Transformation de $y = \sin(x)$:
 - Tracez la fonction $y = 2\sin(x)$ pour modéliser une variation amplifiée de la pression artérielle.

	formation affecte l'amplitude de la variation de la pression artérielle.	
2. Transformation de $y = cos(x)$: — Tracez la fonction $y = cos(2x)$ — Décrivez comment cette transfermation.	:) pour modéliser une variation plus rapide de la pression artérielle. formation affecte la période de la variation de la pression artérielle.	
Partie 2 : Les vecteurs		
Problème 1 : Addition et Sous	straction de Vecteurs	
1. Addition de Vecteurs :		
— Un hôpital utilise des vecteurs	s pour représenter les mouvements d'un lit médicalisé. Soient les vecteurs aque composante représente le déplacement en mètres dans les directions	
	pour déterminer le déplacement total du lit médicalisé.	
_	elon deux vecteurs de mouvement, représentés par $\vec{u}=(5,6)$ et $\vec{v}=(2,3)$, ente le déplacement en mètres dans les directions est et nord.	
— Calculez le vecteur $\vec{u} - \vec{v}$ pour	r déterminer la différence de déplacement du lit médicalisé.	
Problème 2 : Produit Scalaire		
•	rs pour représenter les forces appliquées sur un lit médicalisé. Soient les 6), où chaque composante représente la force en newtons dans les directions	
— Calculez le produit scalaire \vec{u}	\cdot $ec{v}$ pour déterminer l'interaction totale des forces.	
2. Interprétation Géométrique :		
 Expliquez ce que représente le appliquées sur le lit médicalisé 	e produit scalaire de deux vecteurs en termes d'interaction entre les forces	
Exercice 2 : Applications	des Vecteurs en Contexte Médical	
Problème 1 : Vecteurs dans le	e Plan	
où chaque composante représe — Calculez la norme (ou longueu	eteur : our représenter le déplacement d'un lit médicalisé. Soit le vecteur $\vec{u}=(3,4)$, ente le déplacement en mètres dans les directions est et nord. ur) du vecteur \vec{u} pour déterminer le déplacement total du lit médicalisé.	
du lit médicalisé.	1) pour obtenir un vecteur unitaire représentant la direction du déplacement	