Contents

1	$\mathbf{A}\mathbf{n}$	Eigenvalue Approach to the Fibonacci Sequence
	1.1	Introduction
	1.2	Matrix Representation of the Fibonacci Sequence
	1.3	General Eigenvalue Method
	1.4	Application to the Fibonacci Matrix
	1.5	Deriving the Closed Form
	1.6	Similar Problems
		1.6.1 Non-linear Recurrence Equation
		1.6.2 Five-Color Planar Graph Coloring
2	Zer	o Forcing Game
	2.1	The game itself
	2.2	Trun into Graph
	2.3	The Adjacency Matrix
	2.4	Appendix
		2.4.1 Eigenvalue of path graph P_n

1 An Eigenvalue Approach to the Fibonacci Sequence

1.1 Introduction

The Fibonacci Sequence is a one of the most famous sequence in mathematics. It is defined by the recurrence relation:

$$\begin{cases} F_n = F_{n-1} + F_{n-2}, \text{ for } n \ge 2\\ F_0 = F_1 = 1 \end{cases}$$

Each term is the sum of the two preceding terms: 1, 1, 2, 3, 5, 8...

1.2 Matrix Representation of the Fibonacci Sequence

Let

$$x_0 = \begin{bmatrix} F_1 \\ F_0 \end{bmatrix}$$
, $x_1 = \begin{bmatrix} F_2 \\ F_1 \end{bmatrix}$, and $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$

By repeatedly applying the matrix A, we can express each term of the sequence as a power of A acting on x_0 :

$$x_1 = Ax_0,$$

$$x_2 = Ax_1 = A(Ax_0) = A^2x_0$$

$$\Rightarrow x_n = A^nx_0$$

1.3 General Eigenvalue Method

For a Matrix $A \in \mathbb{R}^{2\times 2}$ with two distinct eigenvalues and two corresponding eigenvectors, we know that any vector is a linear combonation of v_1 and v_2 , i.e.

$$\begin{cases} Av_1 = \lambda_1 v_1 \\ Av_2 = \lambda_2 v_2 \end{cases}$$
, and $v = av_1 + bv_2$

Applying A repeatedly to v and using the eigenvalue property gives,

$$Av = a\lambda_1 v_1 + b\lambda_2 v_2,$$

$$A^2v = a\lambda_1^2 v_1 + b\lambda_2^2 v_2,$$

$$\vdots$$

$$\Rightarrow A^n v = a\lambda_1^n v_1 + b\lambda_2^n v_2.$$

1.4 Application to the Fibonacci Matrix

Let us now consider the Fibonacci matrix

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}.$$

Its eivenvalues are given by the characteristic equation

$$\det(\lambda I - A) = \begin{vmatrix} \lambda - 1 & -1 \\ -1 & \lambda \end{vmatrix} = 0 \Rightarrow \boxed{\lambda^2 - \lambda - 1 = 0}$$

, and a quick computation yields $\lambda = \varphi \vee -\frac{1}{\varphi}$.

Notice that this is exactly the same as the equation obtained from assuming $F_n = \lambda^n$ in the Fibonacci recurrence:

$$F_n = F_{n-1} + F_{n-2} \Leftrightarrow \lambda^n = \lambda^{n-1} + \lambda^{n-2} \Rightarrow \lambda^2 = \lambda + 1$$

1.5 Deriving the Closed Form

We can now express $x_n = A^n x_0$ explicitly in terms of λ_1 and λ_2 . Let us consider

$$F_n = p \cdot \varphi^n + q \cdot (-\frac{1}{\varphi})^n$$

By initial contidion $F_0 = F_1 = 1$,

$$\begin{cases} p+q=1 \\ p\cdot\varphi+q\cdot(-\frac{1}{\varphi})=1 \end{cases} \Rightarrow \begin{cases} p=\frac{1}{\sqrt{5}}\varphi \\ q=-\frac{1}{\sqrt{5}}\frac{1}{\varphi} \end{cases}$$

Thus,

$$F_n = \frac{1}{\sqrt{5}} \left[\varphi^{n+1} - (-\frac{1}{\varphi})^{n+1} \right]_{\#}$$

1.6 Similar Problems

1.6.1 Non-linear Recurrence Equation

Given $a_n = 3a_{n-1} + 2$ and $a_1 = 2$, $a_2 = 8$. Find the general formula for a_n .

Solution

We start by homogeneous linear equation

$$a_n = 3a_{n-1} \Rightarrow x^2 = 3x$$

Quick calculation gives $x = 0 \vee 3$, then we assume the general formula in eigenvalue approach plus a displacement r.

$$a_n = p \cdot 3^n + q \cdot 0^n + r$$

By initial condition $a_1 = 2$, $a_2 = 8$

$$\begin{cases} 3p+r=2\\ 9p+r=8 \end{cases} \Rightarrow \begin{cases} p=1\\ q=-1 \end{cases}$$

Thus the general formula for a_n is

$$a_n = 3^n - 1_\#$$

1.6.2 Five-Color Planar Graph Coloring

Solution

2 Zero Forcing Game

2.1 The game itself

The set of linear equation $\begin{cases} ax + by = 0 \\ a \neq 0, y = 0 \end{cases}$ implies that x = 0. We can generalize these condition to:

$$\begin{cases} a_1 x_1 + a_2 x_2 + \dots + a_n x_n \\ a_1 \neq 0 \& x_i = 0 \text{ for } i \geq 2 \end{cases}$$

2.2 Trun into Graph

Coloring Rules

- 1. If a black vertex has exactly one white neighbor, then the white neighbor is forced to be black.
- 2. Repeat until no more changes occur.

2.3 The Adjacency Matrix

Let G = (V, E) with $V = \{v_1, v_2, \dots, v_n\}$. The **Adjacency Matrix** $A = (a_{ij})$ of G is

$$a_{ij} = \begin{cases} 1 & \text{if } \{v_i, v_j\} \in E, \\ 0 & \text{otherwise.} \end{cases}$$

e.g. For a path graph $G \in P_n$, the adjacency matrix is

$$P_4 \circ \longrightarrow \longrightarrow \longrightarrow \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

2.4 Appendix

2.4.1 Eigenvalue of path graph P_n

Let p_n denote the characteristic polynomial of path P_n . The recurrence formula is given by

$$\begin{cases} p_{n+2} = \lambda p_{n+1} + p_n & \text{Ansatz } r^n = p_n \\ p_0 = 1, \ p_1 = \lambda \end{cases} \quad r^2 = \lambda r - 1$$

Solving $r^2 = \lambda r - 1$ gives

$$r = \frac{\lambda \pm \sqrt{\lambda^2 - 4}}{2}$$

4

By Gershgorin's Theorem, $|\lambda| \leq 2$ Let

$$\lambda = 2\cos\theta \Rightarrow r = \cos\theta \pm i\sin\theta = e^{\pm i\theta}$$

Therefore,

$$p_n(\lambda) = \alpha e^{i\mathbf{n}\theta} + \beta e^{-i\mathbf{n}\theta}$$

By initial condition $p_0 = 1, p_1 = \lambda$

$$\begin{cases} \alpha + \beta = 1 \\ \alpha e^{i\theta} + \beta e^{-i\theta} = \lambda = 2\cos\theta \end{cases}$$

A quick calculation yields

$$\alpha = \frac{e^{i\theta}}{2i\sin\theta}, \, \beta = \frac{-e^{-i\theta}}{2i\sin\theta}$$

Now $\lambda = 2\cos\theta$ and

$$p_n(\lambda) = \frac{e^{i\theta}}{2i\sin\theta} \cdot e^{in\theta} + \frac{-e^{-i\theta}}{2i\sin\theta} \cdot e^{-in\theta}$$
$$= \frac{e^{i(n+1)\theta} - e^{-i(n+1)\theta}}{2i\sin\theta}$$
$$= \frac{\sin((n+1)\theta)}{\sin\theta}$$