Due: March 25^{th} , 2024.

Problem 1 (20%). Show that, for any positive integer n, there is a multiple of n that contains only the digits 7 or 0.

Hint: Consider all the numbers a_i of the form 77...7, with i sevens, for i = 1, 2, ..., n + 1, and the value a_i modulo n.

Problem 2 (20%). Prove that every set of n+1 distinct integers chosen from $\{1, 2, \dots, 2n\}$ contains a pair of consecutive numbers and a pair whose sum is 2n+1.

For each n, exhibit two sets of size n to show that the above results are the best possible, i.e., sets of size n + 1 are necessary.

Hint: Use pigeonholes (2i, 2i - 1) and (i, 2n - i + 1) for $1 \le i \le n$.

Problem 3 (20%). Let G = (V, E) be a graph. Denote by $\chi(G)$ the minimum number of colors needed to color the vertices in V such that, no adjacent vertices are colored the same. Prove that, $\chi(G) \leq \Delta(G) + 1$, where $\Delta(G)$ is the maximum degree of the vertices.

Hint: Order the vertices v_1, v_2, \ldots, v_n and use greedy coloring. Show that it is possible to color the graph using $\Delta(G) + 1$ colors.

Problem 4 (20%). Let $\alpha(G)$ be the *independence number* of a graph G, i.e., the maximum size of any independent set of G. Prove the following dual version of Turán's theorem:

If G is a graph with n vertices and nk/2 edges, where $k \geq 1$, then we have

$$\alpha(G) \ge n/(k+1).$$

Problem 5 (20%). Let X be a finite set and A_1, A_2, \ldots, A_m be a partition of X into mutually disjoint blocks. Given a subset $Y \subseteq X$, consider the partition $Y = B_1 \cup B_2 \cup \cdots \cup B_m$ with the blocks B_i defined as $B_i := A_i \cap Y$. For any $1 \le i \le m$, we say that the block B_i is λ -large if

$$\frac{|B_i|}{|A_i|} \ge \lambda \cdot \frac{|Y|}{|X|}.$$

Show that, for every $\lambda > 0$, at least $(1 - \lambda) \cdot |Y|$ elements of Y belong to λ -large blocks.