Intro to ML

November 29th, 2021

CHAPTER 11:

Multilayer Perceptrons

Neural Networks (human brain)

- Networks of processing units (neurons) with connections (synapses) between them
- Large number of neurons: 10¹⁰
- Large connectitivity: 10⁵
- Parallel processing
- Distributed computation/memory
- Robust to noise, failures

Perceptron

Basic processing unit

What a Perceptron Does

Simple discriminant

• Regression: $y=wx+w_0$

• Classification: $y=1(wx+w_0>0)$

posterior
$$\rightarrow y = \text{sigmoid}(o) = \frac{1}{1 + \exp[-\mathbf{w}_5^T \mathbf{x}]}$$

K Outputs

Changing from d dimensions to K dimensions

Regression:

$$\mathbf{y}_{i} = \sum_{j=1}^{d} \mathbf{w}_{ij} \mathbf{x}_{j} + \mathbf{w}_{i0} = \mathbf{w}_{i}^{\mathsf{T}} \mathbf{x}$$
$$\mathbf{y} = \mathbf{W} \mathbf{x}$$

$$y = Wx$$

Classification:

$$o_i = \mathbf{w}_i^\mathsf{T} \mathbf{x}$$

$$y_i = \frac{\exp o_i}{\sum_{k} \exp o_k}$$

choose Ci

if
$$y_i = \max_k y_k$$

Imagine this as two steps:

- 1. Weighted sum
- 2. Softmax

Training

- Online (instances seen one by one) vs batch (whole sample) learning:
 - No need to store the whole sample
 - Problem may change in time
 - Wear and degradation in system components
- Stochastic gradient-descent: Update after a single pattern
- Generic update rule (LMS rule):

$$\Delta w_{ij}^t = \eta (r_i^t - y_i^t) x_j^t$$

Update rule for each training sample

Update=LearningFactor·(DesiredOutput—ActualOutput) ·Input

Training a Perceptron: Regression

Regression (Linear output):

$$E^{t}(\mathbf{w} \mid \mathbf{x}^{t}, r^{t}) = \frac{1}{2}(r^{t} - y^{t})^{2} = \frac{1}{2}[r^{t} - (\mathbf{w}^{T}\mathbf{x}^{t})]^{2}$$
$$\Delta w_{i}^{t} = \eta(r^{t} - y^{t})x_{i}^{t}$$

Update one by one Stochastic gradient descent

Classification

Single sigmoid output

$$y^{t} = \operatorname{sigmoid} (\mathbf{w}^{T} \mathbf{x}^{t})$$

$$E^{t} (\mathbf{w} | \mathbf{x}^{t}, \mathbf{r}^{t}) = -r^{t} \log y^{t} - (1 - r^{t}) \log (1 - y^{t})$$

$$\Delta w_{j}^{t} = \eta (r^{t} - y^{t}) x_{j}^{t}$$

K>2 softmax outputs

$$y^{t} = \frac{\exp \mathbf{w}_{i}^{T} \mathbf{x}^{t}}{\sum_{k} \exp \mathbf{w}_{k}^{T} \mathbf{x}^{t}} \quad E^{t} (\{\mathbf{w}_{i}\}_{i} | \mathbf{x}^{t}, \mathbf{r}^{t}) = -\sum_{i} r_{i}^{t} \log y_{i}^{t}$$
$$\Delta w_{ii}^{t} = \eta (r_{i}^{t} - y_{i}^{t}) x_{i}^{t}$$

The same as previous chapters (logistic discrimination)

Just for each sample

Learning Boolean AND

XOR

x_1	χ_2	r
0	0	0
0	1	1
1	0	1
1	1	0

• No w_0 , w_1 , w_2 satisfy:

$$w_0 \le 0$$

 $w_2 + w_0 > 0$
 $w_1 + w_0 > 0$
 $w_1 + w_2 + w_0 \le 0$

Not linearly separable

Cant be solve by having a line as the perceptron

(Minsky and Papert, 1969)

Multilayer Perceptrons

$$\mathbf{y}_i = \mathbf{v}_i^T \mathbf{z} = \sum_{h=1}^H \mathbf{v}_{ih} \mathbf{z}_h + \mathbf{v}_{i0}$$

$$z_h = \operatorname{sigmoid} \left(\mathbf{w}_h^T \mathbf{x} \right)$$

$$= \frac{1}{1 + \exp \left[-\left(\sum_{j=1}^d w_{hj} x_j + w_{h0} \right) \right]}$$

(Rumelhart et al., 1986)

 $x_1 \text{ XOR } x_2 = (x_1 \text{ AND } ^{\sim} x_2) \text{ OR } (^{\sim} x_1 \text{ AND } x_2)$

Backpropagation

$$y_{i} = \mathbf{v}_{i}^{T} \mathbf{z} = \sum_{h=1}^{H} v_{ih} z_{h} + v_{i0}$$

$$z_{h} = \operatorname{sigmoid} \left(\mathbf{w}_{h}^{T} \mathbf{x}\right)$$

$$= \frac{1}{1 + \exp\left[-\left(\sum_{j=1}^{d} w_{hj} x_{j} + w_{h0}\right)\right]}$$

$$\frac{\partial E}{\partial \mathbf{w}_{hj}} = \frac{\partial E}{\partial \mathbf{y}_i} \frac{\partial \mathbf{y}_i}{\partial \mathbf{z}_h} \frac{\partial \mathbf{z}_h}{\partial \mathbf{w}_{hj}}$$

Regression

Regression with Multiple Outputs

$$E(\mathbf{W}, \mathbf{V} \mid \mathbf{X}) = \frac{1}{2} \sum_{t} \sum_{i} (r_{i}^{t} - y_{i}^{t})^{2}$$

$$y_{i}^{t} = \sum_{h=1}^{H} \mathbf{v}_{ih} \mathbf{z}_{h}^{t} + \mathbf{v}_{i0}$$

$$\Delta \mathbf{v}_{ih} = \eta \sum_{t} (r_{i}^{t} - y_{i}^{t}) \mathbf{z}_{h}^{t}$$

$$\Delta \mathbf{w}_{hj} = \eta \sum_{t} \left[\sum_{i} (r_{i}^{t} - y_{i}^{t}) \mathbf{v}_{ih} \right] \mathbf{z}_{h}^{t} (1 - \mathbf{z}_{h}^{t}) \mathbf{x}_{j}^{t}$$

Accumulated backpropagated error of hidden unit h from all outputs

Initialize all v_{ih} and w_{hj} to rand(-0.01, 0.01)Repeat For all $(\boldsymbol{x}^t, r^t) \in \mathcal{X}$ in random order For $h = 1, \ldots, H$ $z_h \leftarrow \operatorname{sigmoid}(\boldsymbol{w}_h^T \boldsymbol{x}^t)$ For $i = 1, \ldots, K$ $y_i = \boldsymbol{v}_i^T \boldsymbol{z}$ For $i = 1, \ldots, K$ $\Delta \boldsymbol{v}_i = \eta(r_i^t - y_i^t)\boldsymbol{z}$ For $h = 1, \ldots, H$ $\Delta \boldsymbol{w}_h = \eta \left(\sum_i (r_i^t - y_i^t) v_{ih} \right) z_h (1 - z_h) \boldsymbol{x}^t$ For $i = 1, \ldots, K$ $\boldsymbol{v}_i \leftarrow \boldsymbol{v}_i + \Delta \boldsymbol{v}_i$ For $h = 1, \ldots, H$ $\boldsymbol{w}_h \leftarrow \boldsymbol{w}_h + \Delta \boldsymbol{w}_h$

Until convergence

1d Regression: Convergence

1d Regression: What hidden units do

Two-Class Discrimination

• One sigmoid output y^t for $P(C_1 | \mathbf{x}^t)$ and $P(C_2 | \mathbf{x}^t) \equiv 1-y^t$

$$y^{t} = \operatorname{sigmoid}\left(\sum_{h=1}^{H} v_{h} z_{h}^{t} + v_{0}\right)$$

$$E(\mathbf{W}, \mathbf{v} \mid \mathcal{X}) = -\sum_{t} r^{t} \log y^{t} + (1 - r^{t}) \log (1 - y^{t})$$

$$\Delta v_{h} = \eta \sum_{t} (r^{t} - y^{t}) z_{h}^{t}$$

$$\Delta w_{hj} = \eta \sum_{t} (r^{t} - y^{t}) v_{h} z_{h}^{t} (1 - z_{h}^{t}) x_{j}^{t}$$

K>2 Classes

softmax

$$o_{i}^{t} = \sum_{h=1}^{H} v_{ih} z_{h}^{t} + v_{i0} \qquad y_{i}^{t} = \frac{\exp o_{i}^{t}}{\sum_{k} \exp o_{k}^{t}} \equiv P(C_{i} \mid \mathbf{x}^{t})$$

$$E(\mathbf{W}, \mathbf{v} \mid \mathcal{X}) = -\sum_{t} \sum_{i} r_{i}^{t} \log y_{i}^{t}$$

$$\Delta v_{ih} = \eta \sum_{t} \left(r_{i}^{t} - y_{i}^{t} \right) z_{h}^{t}$$

$$\Delta w_{hj} = \eta \sum_{t} \left[\sum_{i} \left(r_{i}^{t} - y_{i}^{t} \right) v_{ih} \right] z_{h}^{t} (1 - z_{h}^{t}) x_{j}^{t}$$

Overfitting

MLP:

d inputs H hidden units K outputs

Number of weights: H(d+1)+(H+1)K

Overtraining

Most weights starts close to zero Few jumps get updated If keep training, those close to zeros will also be updated (adding complexity to the model)

Learning Hidden Representations

 MLP is a generalized linear model where hidden units are the nonlinear basis functions:

$$y = \sum_{h=1}^{H} v_h \phi(\mathbf{x}|\mathbf{w}_h)$$

where
$$\phi(\mathbf{x}|\mathbf{w}_h) \equiv \operatorname{sigmoid}(\mathbf{w}_h^T \mathbf{x})$$

- The advantage is that the basis function parameters can also be learned from data.
- The hidden units, z_h , learn a *code/embedding*, a representation in the hidden space
 - If H space is < original d dimension: dimension reduction
- Transfer learning: Use code in another task
- Semisupervised learning: Transfer from an unsupervised to supervised problem

Autoencoders

Variants: Denoising, sparse autoencoders

An MLP structure

Equal number of input and ouput

Dimension reduction