Package 'echolocatoR'

August 28, 2022

```
Type Package
Title Automated genomic fine-mapping
Version 2.0.0
Description Automated statistical and functional fine-mapping
     with extensive access to genome-wide datasets.
License GPL-3
URL https://github.com/RajLabMSSM/echolocatoR
BugReports https://github.com/RajLabMSSM/echolocatoR/issues
Encoding UTF-8
LazyData true
Depends R (>= 4.1)
SystemRequirements Python (>= 3.7.0)
biocViews Genetics, FunctionalGenomics, SystemsBiology
Imports echodata,
     echotabix,
     echoannot,
     echoconda,
     echoLD,
     echoplot,
     echofinemap,
     catalogueR,
     downloadR,
     R.utils,
     dplyr,
     data.table,
     ggplot2,
     patchwork,
     stringr,
     lifecycle,
Suggests MungeSumstats (>= 1.3.14),
     echodeps,
     remotes,
     rmarkdown,
     knitr,
     testthat (>= 3.0.0),
     badger
```

2 Directory_info

Remotes github::RajLabMSSM/echodata, github::RajLabMSSM/echotabix, github::RajLabMSSM/downloadR, github::RajLabMSSM/echoannot, github::RajLabMSSM/echoconda, github::RajLabMSSM/echoLD, github::RajLabMSSM/echoplot, github::RajLabMSSM/echofinemap, github::RajLabMSSM/echofinemap, github::RajLabMSSM/echodeps

RoxygenNote 7.2.1.9000 VignetteBuilder knitr Config/testthat/edition 3

R topics documented:

deprecated								 										2
Directory_info								 										4
echoannot								 										
echodata								 										
finemap_loci								 										
finemap_locus								 										9
snps_to_condition .								 										15

16

deprecated deprecated

Description

Index

deprecated

Directory_info

Retrieve the location of summary stats files

Description

Retrieve the location of summary stats files

Usage

```
Directory_info(dataset_name, variable = "fullSS.local")
```

echoannot 3

echoannot echoannot

Description

echoannot

echodata echodata

Description

echodata

finemap_loci

Fine-map multiple loci

Description

 $\begin{tabular}{ll} echolocatoR will automatically fine-map each locus. Uses the top SNPs data frame to define locus coordinates. \end{tabular}$

Usage

```
finemap_loci(
 loci = NULL,
  fullSS_path,
  fullSS_genome_build = NULL,
 results_dir = file.path(tempdir(), "results"),
 dataset_name = "dataset_name",
 dataset_type = "GWAS",
  topSNPs = "auto",
  force_new_subset = FALSE,
  force_new_LD = FALSE,
 force_new_finemap = FALSE,
 \label{eq:continuous} fine map\_methods = c("ABF", "FINEMAP", "SUSIE", "POLYFUN\_SUSIE"),
 finemap_args = NULL,
 n_{causal} = 5,
 credset_thresh = 0.95,
 consensus_thresh = 2,
 fillNA = 0,
 conditioned_snps = "auto",
 munged = FALSE,
 colmap = echodata::construct_colmap(munged = munged),
 compute_n = "ldsc",
 LD_reference = "1KGphase3",
 LD_genome_build = "hg19",
```

```
leadSNP_LD_block = FALSE,
superpopulation = "EUR",
download_method = "axel",
bp_distance = 5e+05,
min_POS = NA,
max_POS = NA,
min\_MAF = NA,
trim_gene_limits = FALSE,
max\_snps = NULL,
min_r2 = 0,
remove_variants = FALSE,
remove_correlates = FALSE,
query_by = "tabix",
PAINTOR_QTL_datasets = NULL,
case_control = TRUE,
qtl_prefixes = NULL,
plot_types = c("simple"),
zoom = "1x",
nott_epigenome = FALSE,
nott_show_placseq = FALSE,
nott_binwidth = 200,
nott_bigwig_dir = NULL,
xgr_libnames = NULL,
roadmap = FALSE,
roadmap_query = NULL,
remove_tmps = TRUE,
conda_env = "echoR_mini",
return_all = TRUE,
nThread = 1,
verbose = TRUE,
top_SNPs = deprecated(),
PP_threshold = deprecated(),
consensus_threshold = deprecated(),
plot.Nott_epigenome = deprecated(),
plot.Nott_show_placseq = deprecated(),
plot.Nott_binwidth = deprecated(),
plot.Nott_bigwig_dir = deprecated(),
plot.Roadmap = deprecated(),
plot.Roadmap_query = deprecated(),
plot.XGR_libnames = deprecated(),
server = deprecated(),
plot.types = deprecated(),
plot.zoom = deprecated(),
QTL_prefixes = deprecated(),
vcf_folder = deprecated(),
probe_path = deprecated(),
file_sep = deprecated(),
chrom_col = deprecated(),
chrom_type = deprecated(),
position_col = deprecated(),
snp_col = deprecated(),
pval_col = deprecated(),
```

```
effect_col = deprecated(),
stderr_col = deprecated(),
tstat_col = deprecated(),
locus_col = deprecated(),
freq_col = deprecated(),
A1_col = deprecated(),
A2_col = deprecated(),
gene_col = deprecated(),
N_cases_col = deprecated(),
N_controls_col = deprecated(),
N_cases = deprecated(),
proportion_cases = deprecated(),
sample_size = deprecated()
```

Arguments

loci Character list of loci in **Locus** col of topSNPs.

fullSS_path Path to the full summary statistics file (GWAS or QTL) that you want to fine-

map. It is usually best to provide the absolute path rather than the relative path.

results_dir Where to store all results. IMPORTANT:: It is usually best to provide the

absolute path rather than the relative path. This is especially important for

FINEMAP.

dataset_name The name you want to assign to the dataset being fine-mapped, This will be used

to name the subdirectory where your results will be stored (e.g. *Data/GWAS/<dataset_name>*).

Don't use special characters (e.g.".", "/").

dataset_type The kind dataset you're fine-mapping (e.g. GWAS, eQTL, tQTL). This will also

be used when creating the subdirectory where your results will be stored (e.g.

Data/<dataset_type>/Kunkle_2019).

topSNPs A data frame with the genomic coordinates of the lead SNP for each locus. The

lead SNP will be used as the center of the window when extracting subset from the full GWAS/QTL summary statistics file. Only one SNP per **Locus** should be included. At minimum, topSNPs should include the following columns:

Locus A unique name for each locus. Often, loci are named after a relevant gene (e.g. LRRK2) or based on the name/coordinates of the lead SNP (e.g. locus_chr12_40734202)

CHR The chromosome that the SNP is on. Can be "chr12" or "12" format.

POS The genomic position of the SNP (in basepairs)

force_new_subset

By default, if a subset of the full summary stats file for a given locus is already present, then **echolocatoR** will just use the pre-existing file. Set force_new_subset=T to override this and extract a new subset. Subsets are saved in the following path structure: Data\<dataset_type\>\<dataset_name\>\\<locus\>/\dataset_name\>_dataset_name\>\\<dataset_name\>\\dataset_name\>\\dataset_name\>\\dataset_name\>\\dataset_name\>\dataset_name\\dataset_name\\dataset_name\dataset_na

force_new_LD Force new LD subset.
force_new_finemap

By default, if an fine-mapping results file for a given locus is already present, then **echolocatoR** will just use the preexisting file. Set force_new_finemap=T to override this and re-run fine-mapping.

finemap_methods

Which fine-mapping methods you want to use.

n_causal

The maximum number of potential causal SNPs per locus. This parameter is used somewhat differently by different fine-mapping tools. See tool-specific functions for details.

credset_thresh The minimum fine-mapped posterior probability for a SNP to be considered part of a Credible Set. For example, credset_thresh=.95 means that all Credible Set SNPs will be 95% Credible Set SNPs.

consensus_thresh

The minimum number of fine-mapping tools in which a SNP is in the Credible Set in order to be included in the "Consensus_SNP" column.

fillNA

Value to fill LD matrix NAs with.

conditioned_snps

Which SNPs to conditions on when fine-mapping with *COJO*.

munged

Whether fullSS_path have already been standardised/filtered full summary stats with format_sumstats. If munged=FALSE you'll need to provide the necessary column names to the colmap argument.

colmap

Column name mappings in in fullSS_path. Must be a named list. Can use construct_colmap to assist with this. This function can be used in two different ways:

- munged=FALSE: When munged=FALSE, you will need to provide the necessary column names to the colmap argument (default).
- munged=TRUE: Alternatively, instead of filling out each argument in construct_colmap, you can simply set munged=TRUE if fullSS_path has already been munged with format_sumstats.

How to compute per-SNP sample size (new column "N"). compute_n

- 0: N will not be computed.
- >0: If any number >0 is provided, that value will be set as N for every row. Note: Computing N this way is incorrect and should be avoided if at all possible.
- "sum": N will be computed as: cases (N_CAS) + controls (N_CON), so long as both columns are present.
- "1dsc": N will be computed as effective sample size: Neff = (N_CAS+N_CON)*(N_CAS/(N_CAS) $/ mean((N_CAS/(N_CAS+N_CON))(N_CAS+N_CON) == max(N_CAS+N_CON))$
- "giant": N will be computed as effective sample size: Neff = 2 / (1/N_CAS + 1/N CON).
- "metal": N will be computed as effective sample size: Neff = 4/(1/N_CAS + 1/N_CON).

LD_reference LD reference to use:

- "1KGphase1": 1000 Genomes Project Phase 1 (genome build: hg19).
- "1KGphase3": 1000 Genomes Project Phase 3 (genome build: hg19).
- "UKB": Pre-computed LD from a British European-decent subset of UK Biobank (genome build: hg19).
- "<vcf_path>" : User-supplied path to a custom VCF file to compute LD matrix from (genome build: defined by user with target_genome).

leadSNP_LD_block

Only return SNPs within the same LD block as the lead SNP (the SNP with the smallest p-value).

superpopulation

Superpopulation to subset LD panel by (used only if LD_reference is "1KG-phase1" or "1KG-phase3"). See popDat_1KG-phase1 and popDat_1KG-phase3 for full tables of their respective samples.

download_method

- "axel": Multi-threaded
- "wget": Single-threaded
- "download.file": Single-threaded
- "internal": Single-threaded (passed to download.file)
- "wininet": Single-threaded (passed to download.file)
- "libcurl": Single-threaded (passed to download.file)
- "curl": Single-threaded (passed to download.file)

bp_distance Distance around the lead SNP to include.

min_POS Minimum genomic position to include.

max_POS Maximum genomic position to include.

min_MAF Minimum Minor Allele Frequency (MAF) of SNPs to include.

trim_gene_limits

If a gene name is supplied to this argument (e.g. trim_gene_limits="BST"), only SNPs within the gene body will be included.

max_snps Maximum number of SNPs to include.

min_r2 Correlation threshold for remove_correlates.

remove_variants

A list of SNP RSIDs to remove.

remove_correlates

A list of SNPs. If provided, all SNPs that correlates with these SNPs (at r2>=min_r2) will be removed from both dat and LD list items..

query_by

Choose which method you want to use to extract locus subsets from the full summary stats file. Methods include:

"tabix" Convert the full summary stats file in an indexed tabix file. Makes querying lightning fast after the initial conversion is done. (*default*)

"coordinates" Extract locus subsets using min/max genomic coordinates with awk.

PAINTOR_QTL_datasets

A list of QTL datasets to be used when conducting joint functional fine-mapping with *PAINTOR*.

qtl_prefixes

If columns with QTL data is included in dat, you can indicate which columns those are with one or more string prefixes.

plot_types

Which kinds of plots to include. Options:

- "simple"Just plot the following tracks: GWAS, fine-mapping, gene models
- "fancy" Additionally plot XGR annotation tracks (XGR, Roadmap, Nott2019).
- "LD"LD heatmap showing the 10 SNPs surrounding the lead SNP.

700m

Zoom into the center of the locus when plotting (without editing the fine-mapping results file). You can provide either:

• The size of your plot window in terms of basepairs (e.g. zoom=50000 for a 50kb window).

• How much you want to zoom in (e.g. zoom="1x" for the full locus, zoom="2x" for 2x zoom into the center of the locus, etc.).

You can pass a list of window sizes (e.g. c(50000,100000,500000)) to automatically generate multiple views of each locus. This can even be a mix of different style inputs: e.g. c("1x","4.5x",25000).

nott_epigenome Include tracks showing brain cell-type-specific epigenomic data from Nott et al. (2019).

nott_show_placseq

Include track generated by NOTT2019_plac_seq_plot.

nott_binwidth When including Nott et al. (2019) epigenomic data in the track plots, adjust the

bin width of the histograms.

nott_bigwig_dir

Instead of pulling Nott et al. (2019) epigenomic data from the UCSC Genome

Browser, use a set of local bigwig files.

xgr_libnames Passed to XGR_plot. Which XGR annotations to check overlap with. For full

list of libraries see here. Passed to the RData.customised argument in xRDat-

aLoader.

roadmap Find and plot annotations from Roadmap.

roadmap_query Only plot annotations from Roadmap whose metadata contains a string or any

items from a list of strings (e.g. "brain" or c("brain", "liver", "monocytes")).

remove_tmps Whether to remove any temporary files (e.g. FINEMAP output files) after the

pipeline is done running.

conda_env Conda environment to use.

nThread Number of threads to parallelize over.

verbose Print messages.

Value

A merged data.frame with all fine-mapping results from all loci.

See Also

```
Other MAIN: finemap_locus()
```

Examples

```
topSNPs <- echodata::topSNPs_Nalls2019
fullSS_path <- echodata::example_fullSS(dataset = "Nalls2019")

res <- echolocatoR::finemap_loci(
  fullSS_path = fullSS_path,
  topSNPs = topSNPs,
  loci = c("BST1","MEX3C"),
  finemap_methods = c("ABF","FINEMAP","SUSIE"),
  dataset_name = "Nalls23andMe_2019",
  fullSS_genome_build = "hg19",
  bp_distance = 10000,
  munged = TRUE)</pre>
```

finemap_locus

Run echolocatoR pipeline on a single locus

Description

Unlike finemap_loci, you don't need to provide a topSNPs data.frame. Instead, just manually provide the coordinates of the locus you want to fine-map.

Usage

```
finemap_locus(
 locus,
  fullSS_path,
  fullSS_genome_build = NULL,
  results_dir = file.path(tempdir(), "results"),
  dataset_name = "dataset_name",
  dataset_type = "GWAS",
  case_control = TRUE,
  topSNPs = "auto",
  force_new_subset = FALSE,
  force_new_LD = FALSE,
  force_new_finemap = FALSE,
  finemap_methods = c("ABF", "FINEMAP", "SUSIE", "POLYFUN_SUSIE"),
  finemap_args = NULL,
 n_{causal} = 5,
 credset_thresh = 0.95,
 consensus_thresh = 2,
  fillNA = 0,
  conditioned_snps = NULL,
 munged = FALSE,
  colmap = echodata::construct_colmap(munged = munged),
  compute_n = "ldsc",
 LD_reference = "1KGphase3",
 LD_genome_build = "hg19",
  leadSNP_LD_block = FALSE,
  superpopulation = "EUR",
 download_method = "axel",
 bp_distance = 5e+05,
 min_POS = NA,
 max_POS = NA,
 min\_MAF = NA,
 trim_gene_limits = FALSE,
 max\_snps = NULL,
 min_r2 = 0,
 remove_variants = FALSE,
  remove_correlates = FALSE,
  query_by = "tabix",
 PAINTOR_QTL_datasets = NULL,
 qtl_prefixes = NULL,
 plot_types = c("simple"),
  zoom = "1x",
```

```
nott_epigenome = FALSE,
nott_show_placseg = FALSE,
nott_binwidth = 200,
nott_bigwig_dir = NULL,
xgr_libnames = NULL,
roadmap = FALSE,
roadmap_query = NULL,
show_plot = TRUE,
remove_tmps = TRUE,
conda_env = "echoR_mini",
nThread = 1,
verbose = TRUE,
top_SNPs = deprecated(),
PP_threshold = deprecated(),
consensus_threshold = deprecated(),
plot.Nott_epigenome = deprecated(),
plot.Nott_show_placseq = deprecated(),
plot.Nott_binwidth = deprecated(),
plot.Nott_bigwig_dir = deprecated(),
plot.Roadmap = deprecated(),
plot.Roadmap_query = deprecated(),
plot.XGR_libnames = deprecated(),
server = deprecated(),
plot.types = deprecated(),
plot.zoom = deprecated(),
QTL_prefixes = deprecated(),
vcf_folder = deprecated(),
probe_path = deprecated(),
file_sep = deprecated,
chrom_col = deprecated(),
chrom_type = deprecated(),
position_col = deprecated(),
snp_col = deprecated(),
pval_col = deprecated(),
effect_col = deprecated(),
stderr_col = deprecated(),
tstat_col = deprecated(),
locus_col = deprecated(),
freq_col = deprecated(),
MAF_col = deprecated(),
A1_col = deprecated(),
A2_col = deprecated(),
gene_col = deprecated(),
N_cases_col = deprecated(),
N_controls_col = deprecated(),
N_cases = deprecated(),
N_controls = deprecated(),
proportion_cases = deprecated(),
sample_size = deprecated()
```

Arguments

locus Locus name to fine-map (e.g. "BIN1"). Can be named to indicate a specific gene

within a QTL locus (e.g. c(ENSG00000136731="BIN1")).

fullSS_path Path to the full summary statistics file (GWAS or QTL) that you want to fine-

map. It is usually best to provide the absolute path rather than the relative path.

results_dir Where to store all results. **IMPORTANT!:** It is usually best to provide the

absolute path rather than the relative path. This is especially important for

FINEMAP.

to name the subdirectory where your results will be stored (e.g. *Data/GWAS/<dataset_name>*).

Don't use special characters (e.g.".", "/").

dataset_type The kind dataset you're fine-mapping (e.g. GWAS, eQTL, tQTL). This will also

be used when creating the subdirectory where your results will be stored (e.g.

Data/<dataset_type>/Kunkle_2019).

topSNPs A data.frame with the genomic coordinates of the lead SNP for each locus. The

lead SNP will be used as the center of the window when extracting subset from the full GWAS/QTL summary statistics file. Only one SNP per **Locus** should be included. At minimum, topSNPs should include the following columns:

Locus A unique name for each locus. Often, loci are named after a relevant gene (e.g. LRRK2) or based on the name/coordinates of the lead SNP (e.g. locus_chr12_40734202)

CHR The chromosome that the SNP is on. Can be "chr12" or "12" format.

POS The genomic position of the SNP (in basepairs)

force_new_subset

By default, if a subset of the full summary stats file for a given locus is already present, then **echolocatoR** will just use the pre-existing file. Set force_new_subset=T to override this and extract a new subset. Subsets are saved in the following path structure: Data\<dataset_type\>\<dataset_name\>\\<locus\>/\dataset_name\>_dataset_name\>\\<dataset_name\>\\dataset_name\>\\dataset_name\>\\dataset_name\>\dataset_name\>\dataset_name\>\dataset_name\>\dataset_name\>\dataset_name\>\dataset_name\>\dataset_name\>\dataset_name\>\dataset_name\>\dataset_name\>\dataset_name\data

force_new_LD Force new LD subset.

force_new_finemap

By default, if an fine-mapping results file for a given locus is already present, then **echolocatoR** will just use the preexisting file. Set force_new_finemap=T to override this and re-run fine-mapping.

finemap_methods

Which fine-mapping methods you want to use.

n_causal The maximum number of potential causal SNPs per locus. This parameter is

used somewhat differently by different fine-mapping tools. See tool-specific

functions for details.

credset_thresh The minimum fine-mapped posterior probability for a SNP to be considered part

of a Credible Set. For example, credset_thresh=.95 means that all Credible

Set SNPs will be 95% Credible Set SNPs.

consensus_thresh

The minimum number of fine-mapping tools in which a SNP is in the Credible Set in order to be included in the "Consensus SNP" column.

fillNA Value to fill LD matrix NAs with.

conditioned_snps

Which SNPs to conditions on when fine-mapping with COJO.

munged

Whether fullSS_path have already been standardised/filtered full summary stats with format_sumstats. If munged=FALSE you'll need to provide the necessary column names to the colmap argument.

colmap

Column name mappings in in fullSS_path. Must be a named list. Can use construct_colmap to assist with this. This function can be used in two different ways:

- munged=FALSE: When munged=FALSE, you will need to provide the necessary column names to the colmap argument (*default*).
- munged=TRUE: Alternatively, instead of filling out each argument in construct_colmap, you can simply set munged=TRUE if fullSS_path has already been munged with format_sumstats.

compute_n

How to compute per-SNP sample size (new column "N").

- 0: N will not be computed.
- >0: If any number >0 is provided, that value will be set as N for every row.
 Note: Computing N this way is incorrect and should be avoided if at all possible.
- "sum": N will be computed as: cases (N_CAS) + controls (N_CON), so long as both columns are present.
- "ldsc": N will be computed as effective sample size: Neff =(N_CAS+N_CON)*(N_CAS/(N_CAS/(N_CAS+N_CON))) (N_CAS+N_CON)==max(N_CAS+N_CON))
- "giant": N will be computed as effective sample size: Neff = 2 / (1/N_CAS + 1/N_CON).
- "metal": N will be computed as effective sample size: Neff = 4/(1/N_CAS + 1/N_CON).

LD_reference

LD reference to use:

- "1KGphase1": 1000 Genomes Project Phase 1 (genome build: hg19).
- "1KGphase3": 1000 Genomes Project Phase 3 (genome build: hg19).
- "UKB" : Pre-computed LD from a British European-decent subset of UK Biobank (genome build: hg19).
- "<vcf_path>": User-supplied path to a custom VCF file to compute LD matrix from (genome build: defined by user with target_genome).

leadSNP_LD_block

Only return SNPs within the same LD block as the lead SNP (the SNP with the smallest p-value).

superpopulation

Superpopulation to subset LD panel by (used only if LD_reference is "1KG-phase1" or "1KG-phase3"). See popDat_1KG-phase1 and popDat_1KG-phase3 for full tables of their respective samples.

download_method

- "axel" : Multi-threaded
- "wget": Single-threaded
- "download.file": Single-threaded
- "internal": Single-threaded (passed to download.file)
- "wininet" : Single-threaded (passed to download.file)
- "libcurl": Single-threaded (passed to download.file)
- "curl": Single-threaded (passed to download.file)

bp_distance

Distance around the lead SNP to include.

min_POS Minimum genomic position to include.

max_POS Maximum genomic position to include.

min_MAF Minimum Minor Allele Frequency (MAF) of SNPs to include.

trim_gene_limits

If a gene name is supplied to this argument (e.g. trim_gene_limits="BST"), only SNPs within the gene body will be included.

max_snps Maximum number of SNPs to include.

min_r2 Correlation threshold for remove_correlates.

remove_variants

A list of SNP RSIDs to remove.

remove_correlates

A list of SNPs. If provided, all SNPs that correlates with these SNPs (at r2>=min_r2) will be removed from both dat and LD list items..

query_by Choose which method you want to use to extract locus subsets from the full summary stats file. Methods include:

"tabix" Convert the full summary stats file in an indexed tabix file. Makes querying lightning fast after the initial conversion is done. (*default*)

"coordinates" Extract locus subsets using min/max genomic coordinates with awk.

PAINTOR_QTL_datasets

A list of QTL datasets to be used when conducting joint functional fine-mapping with *PAINTOR*.

qtl_prefixes

If columns with QTL data is included in dat, you can indicate which columns those are with one or more string prefixes.

plot_types

Which kinds of plots to include. Options:

- "simple" Just plot the following tracks: GWAS, fine-mapping, gene models
- "fancy" Additionally plot XGR annotation tracks (XGR, Roadmap, Nott2019).
- "LD"LD heatmap showing the 10 SNPs surrounding the lead SNP.

zoom

Zoom into the center of the locus when plotting (without editing the fine-mapping results file). You can provide either:

- The size of your plot window in terms of basepairs (e.g. zoom=50000 for a 50kb window).
- How much you want to zoom in (e.g. zoom="1x" for the full locus, zoom="2x" for 2x zoom into the center of the locus, etc.).

You can pass a list of window sizes (e.g. c(50000, 100000, 500000)) to automatically generate multiple views of each locus. This can even be a mix of different style inputs: e.g. c("1x", "4.5x", 25000).

nott_epigenome Include tracks showing brain cell-type-specific epigenomic data from Nott et al. (2019).

nott_show_placseq

Include track generated by NOTT2019_plac_seq_plot.

nott_binwidth When including Nott et al. (2019) epigenomic data in the track plots, adjust the bin width of the histograms.

nott_bigwig_dir

Instead of pulling Nott et al. (2019) epigenomic data from the *UCSC Genome Browser*, use a set of local bigwig files.

 $xgr_libnames$ Passed to XGR_plot . Which XGR annotations to check overlap with. For full

list of libraries see here. Passed to the RData.customised argument in xRDat-

aLoader.

roadmap Find and plot annotations from Roadmap.

roadmap_query Only plot annotations from Roadmap whose metadata contains a string or any

items from a list of strings (e.g. "brain" or c("brain", "liver", "monocytes")).

show_plot Print plot to screen.

remove_tmps Whether to remove any temporary files (e.g. FINEMAP output files) after the

pipeline is done running.

conda_env Conda environment to use.

nThread Number of threads to parallelize over.

verbose Print messages.

Details

The primary functions of **echolocatoR** that expedite fine-mapping by wrapping many other **echolocatoR** functions into one. Encompasses steps including:

Subset & standardize Extract subsets of the full summary stats GWAS or QTL file and reformat them to be compatible with **echolocatoR**'s various functions

Calculate linkage disequilibrium Download and prepare the necessary LD matrix.

Fine-map Run various fine-mapping tools and merge the results into a single multi-finemap data.frame.

Plot Summarise the results in a multi-track plot for each locus.

See Also

```
Other MAIN: finemap_loci()
```

Examples

```
topSNPs <- echodata::topSNPs_Nalls2019
fullSS_path <- echodata::example_fullSS(dataset = "Nalls2019")

res <- echolocatoR::finemap_locus(
   fullSS_path = fullSS_path,
   topSNPs = topSNPs,
   locus = "BST1",
   finemap_methods = c("ABF","FINEMAP","SUSIE"),
   dataset_name = "Nalls23andMe_2019",
   fullSS_genome_build = "hg19",
   bp_distance=10000,
   munged = TRUE)</pre>
```

snps_to_condition 15

snps_to_condition

Identify SNPs to condition on

Description

When running conditional analyses (e.g. *GCTA-COJO*), this functions automatically identifies SNP to condition on.

Usage

snps_to_condition(conditioned_snps, topSNPs, loci)

Index

```
* MAIN
     finemap_loci, 3
     finemap_locus, 9
* SNP filters
     \verb|snps_to_condition|, 15|
*\ \mathbf{directory}
    {\tt Directory\_info, 2}
construct\_colmap, 6, 12
{\it deprecated}, {\color{red} 2}
{\tt Directory\_info, 2}
download.file, 7, 12
echoannot, 3
echodata, 3
finemap_loci, 3, 14
finemap_locus, 8, 9
format_sumstats, 6, 12
NOTT2019_plac_seq_plot, 8, 13
popDat_1KGphase1, 7, 12
popDat_1KGphase3, 7, 12
snps_to_condition, 15
XGR_plot, 8, 14
xRDataLoader, 8, 14
```