Ingreso de datos:

MODELO SAP2000

Modo 3 - T=0.06574

RESULTADOS MODALES DEL SAP2000

Modo 4 – T=0.05023

Cálculos Académicos

Comparación de resultados de los cálculos en Python y SAP2000

	Period Sec	Mass Ratio X	Mass Ratio Acum. X
Mode 1	0.2643	[0.7872]	0.787
Mode 2	0.1013	[0.1145]	0.902
Mode 3	0.0657	[0.0466]	0.948
Mode 4	0.0502	[0.0247]	0.973
Mode 5	0.0405	[0.0271]	1.000

							1		1	
S Mo	odal Participating	Mass Ratios							_	
File	View Edit	Format-Filter-	Sort Select	Options						
Units: As Noted					Modal	Modal Participating Mass Ratios				
Filter:										
	OutputCase	StepNum Unitless	Period Sec	UX Unitless	SumUX Unitless	RX Unitless	RY Unitless	RZ Unitless	SumRX Unitless	SumRY Unitless
•	MODAL	1	0.264347	0.787	0.787	0	0.212	0	0	0.212
	MODAL	2	0.101251	0.114	0.902	0	0.477	0	0	0.689
	MODAL	3	0.065744	0.047	0.948	0	0.132	0	0	0.82
	MODAL	4	0.05023	0.025	0.973	0	0.084	0	0	0.905
	MODAL	5	0.040466	0.027	1	0	0.095	0	0	1

Espectro de respuesta Elástico de Diseño de la nueva norma Peruana

Peru Response Spectrum

Resultados Modales en Python

Elaborado por: Luis Enrique Maldonado de la Torre Imaldonadod@uni.pe

Comparación de desplazamientos obtenidas en Python y Etabs

Comparación de rigideces obtenidas en Python y Etabs

PRÓXIMAS PUBLICACIONES

DISEÑO DE COLUMNAS DE CONCRETO ARMADO SEGÚN LAS NORMA PERUANA E060 Y EL ACI 318-19, COMPARACIÓN CON LOS RESULTADO DEL SAP2000

```
1 r = 4
                     #recubrimiento
2 fc1=280
                    #kg/cm2 #Resistencia a la compresion del concreto
                    #kg/cm2 #Resistencia a la fluencia del acero
 3 fy1=4200
                                  #Modulo de elasticidad del acero
4 Es=2.00*10**6
                       #kg/cm2
5 base=40
                    #cm
6 altura=60
                    #cm
7 numero_aceros_x=3
8 numero aceros y=4
9 carga_momento=[14.5,5,2,8,21]
10 carga_compresion=[48,67.2,22,42,62]
                                            #ton
11 diametros="5/8"
                      #pulg "1/4" "3/8"
```


COMPARACION CON LOS RESULTADOS DEL SAP200 DIAGRAMA DE INTERACCION ACI 318

Análisis de varios grados de libertad con el Método de Newmark

Animación de la respuesta en el Tiempo

