Топология

5.09.22

Содержание

1	База топологии		2
2	Mer	грическая топология	3
	2.1	Метризуемость топологических пространств	4

Определение 1 Пусть X - множество. Топологией на X называется семейство подмножеств $\tau \in \mathcal{P}(X)$, называемых открытыми множествами (данной топологии), такое, что:

1. $X, \emptyset \in \tau$

2.
$$U_1, \dots U_n \in \tau \Rightarrow \bigcap_{i=1}^n U_i \in \tau$$

3. $\{U_i \mid i \in I\} \subset \tau \Rightarrow \bigcup_{i \in I} U_i \in \tau$

То есть, топологии принадлежит само множество и пустое множество, пересечение конечного числа множеств и объединение любого числа множеств из топологии.

Пример. Докажем, что открытые множества в смысле евклидовой метрики в \mathbb{R}^n - топология. Очевидно, открыто само \mathbb{R}^n , также открытои пустое множество. Открытость пересечения доказывается тем, что наименьшая эпсилон-окрестность принадлежит всем множествам, то есть лежит в их пересечении, слеовательно, оно открыто. Для объединения: для каждой точки найдется множество, в которое она входит с окрестностью.

Определение 2 Тривиальная топология - $\tau_t = \{X, \varnothing\}$ Дискретная топология - $\tau_0 = \mathcal{P}(X)$

Любая инетерсная топология содержит тривиальную и содержится в дискретной.

Пример. Множества, симметричные относительно выбранной прямой в евклидовом пространстве, образуют топологию.

Пример. Множество эпсилон-окрестностей нуля $\tau = \{D_{\varepsilon}(0) \mid \varepsilon > 0\} \cup \{X,\varnothing\}$ - топология.

Пример. Топология Зарисского - топология множеств, дополнительных к конечным множествам (для конечных пространств совпадает с дискретной).

Пример. Пусть $f:X\to X$ - биекция. Докажем, что $au_f=\{U\subset X\mid$

1 База топологии

Определение 3 Пусть (X, τ) - топологическое пространство Семейство $\Sigma = \{W_{\beta} \subset X \mid \beta \in B\}$ - база топологии, если удовлетворяет двум условиям:

1. $\Sigma \in \tau \ \forall W_{\beta} \in \Sigma$ 2. Любое открытое подмножество X можно представить в виде объединения некоторых подмножеств из $\Sigma : \forall U \in \tau \exists W_{\alpha} \in \Sigma, \ \alpha \in A \subset B : U = \bigcup_{\alpha \in A} W_{\alpha}$

Пример. В обычной (евклидовой) топологии множество $\Sigma = \{D_r(a) \mid a \in \mathbb{R}^n, r > 0\}$ является базой топологии. Действительно, проверим аксиомы:

- 1. Открытая окрестность открыта.
- 2. По определению обычной топологии, каждая точка в открытом множестве содержится в нем с некоторой окрестностью. Значит, объединение этих окрестностей дает это множество. Более формально, $\forall u \in \tau, \forall x \in U \Rightarrow \exists D_{\varepsilon_x}(x) : D_{\varepsilon_x}(x) \in U$. Очевидно доказывается. что

$$\bigcup_{x \in U} D_{\varepsilon_x}(x) = U$$

Замечание. Если к базе добавить произвольное открытое множество, то новое множество также будет базой.

Упражнение. Привести пример двух баз евклидовой топологии на плоскости, которые не пересекаются с обычной базой (открытых шаров). (Решение: например, база из открытых квадратных или звездчатых окрестностей).

Пример. Топология ираациональных точек на прямой (\mathbb{R}, τ_{im}) , $\tau_{im} = \{\varnothing, \mathbb{R}\} \cup \{U \subset \mathbb{R} \setminus \mathbb{Q}\}$. Множество иррациоанльных точек не является базой, поскольку их объединение не содержит всю прямую. Решение: добавить саму прямую. !!!!!!!!!!!!

Теорема 1 (критерий базы в топологическом пространстве)

 Πy сть (X, τ) - опологическое пространство, и семейство множеств удовлетворяет условию $\sigma \subset \tau$. Σ является базой топологии тогда и только тогда, когда $\forall u \in \tau, \forall x \in U \exists W_{\beta_0} \in \Sigma : x \in W_{\beta_0} \subset U$

Доказательство. Пусть Σ - база топологии. Тогда любое открытое множество можно представить в виде объединений множеств из базы. Значит, для $x \in U$ найдется множество из базы, в котором лежит x.

Теорема 2 (критерий базы на множестве)

Пусть X - произвольное множесто, $\Sigma = \{W_{\beta} \subset X \mid \beta \in B\}$ - семейство подмножеств из X. ЧТобы на X существовала топология c данной базой, необходимо и достаточно выполнения двух условий:

1.
$$X = \bigcup_{\beta \in B} W_{\beta}$$

2. Для любых множеств из базы найдется множество, лежащее в их пересечении и содержащее произвольную точку оттуда.

Доказательство. Необходимость. Пусть Σ - база некотрой топологии (X,т). Из акиомы базы (2) следует, что что X есть объединение множеств из Σ . значит, выполняется первое условие теоремы. Докажем второе условие. Достаточно взять пересечение двух множеств из базы. Так как это открытые множества, его также можно представить в виде объединения множеств из базы, и хотя бы в одном из которых лежит фиксированная точка (по определению объединения).

Достаточность. Докажем, что всевозможные объедения множеств из Σ является топологией. пусть это есть τ . Проверим аксиомы топологии:

1. Пустое множество принадлежит всему, чему надо. Все простарнство лежит там по условию теоремы. 3. Пусть

Лемма. Две топологии с общей базой совпадают.

Доказательство. Пусть τ, ω - две топологии на множестве X, имеющие общую базу $\Sigma = \{W_{\beta} \subset X \mid \beta \in B\}$. Для всех множеств из топологии τ они являются объединением множеств из базы, но поскольку это объединение открытых множеств, то оно открыто, и является элементом топлогии ω . Итак, $\tau \subset \omega$, аналогично и в другую сторону.

Замечание. Согласно этой лемме, база топологии однозначно определяет топологию. Следовательно, критерий базы на множестве дает способ определения новых топологий.

2 Метрическая топология

Напомним определение метрического пространства.

Пусть функция $\rho \colon M \times M \to \mathbb{R}$ удовлетворяет трем условиям:

- 1. $\rho(x,y) \ge 0$
- 2. $\rho(x, y) = \rho(y, x)$
- 3. $\rho(x,y) + \rho(x,z) \leqslant \rho(y,x)$

Тогда множество (M, ρ) называется метрическим пространством с метрикой ρ .

Определение 4 Пусть (M, ρ) - метричсекое пространство. Множество

$$D_r(a) := \{ x \in M \mid \rho(x, a) < r \}$$

называется открытым шаром радиуса г

Очевидно, центр шара принадлежит ему в любой метрике.

Определение 5 Пусть (M, ρ) - метрическое пространство. Множество весвозможных шаров с разными уентрами и радиусами являются базой Σ_{ρ} (единственной) топологии, которая называется метрической топологией.

Докажем, что множество шаров - база. Применим критерий базы на множестве.

- 1. Возьмем объединение всех шаров. Так как любой шар содержит свой центр, то все точки множества лежат в объединении шаров.
- 2. Для пересекающихся шаров возьмем минимальную радиус до границы шара.

Пример. Евклидова топология - пример метрической топологии для стандартной евклидовой метрики в \mathbb{R}^n . Дискретная топология - топология, порожденная дисретной метрикой.

Упражнение. Докажите самстоятельно, что евклидова метрика индуцирует евклидову топологию (используйте критерий базы) (вставить картинку.)

Решение. Докажем, что минимум из возможных расстояний до границы шара - искомый радиус окрестности, лежащей в пересечении шаров. Рассмторим точку в этой окретсности. Она лежит в обоих шарах. (вставить выкладку)

Замечание. Мы будем использовать обычную топологию и рисовать картинки, котоыре помогут доказывать различные теоремы, но все доказательства будут даны для произвольных метричсеких простарнств.

Прмиер. Рассмотрим множество непрерывных функций на отрезке. введем следующую метрику: $\rho(f,g) = max|f(x) - g(x)|$. Оперделение корректно, посокльку на отрехзке супремум непрерыной функции достигается. Какие (картика) функции лежат в окретсности произвольной функции y = f(x)? Это - непрерывные функции, заключенные в области f(x) - r, f(x) + r

Замечание. Если Σ - база топологии τ , то τ совпадает с семейством всевозможных объединений множеств из базы.

2.1 Метризуемость топологических пространств.

Определение 6 Топологическое пространство называется метризуемым, если на множестве существует метрика, идуцирующая эту топологию.

Мы уже доказали, что обычная топология метризуема. Не все, однако, топологические пространства метризуемы.

Определение 7 Пусть X - топологическое пространство, $H \subset X$. Окрестностью подмножества в X называется подмножество, содержащее его. Окрестностью точки называется любое открытое множество, содержащее точку (обозначение: U_x)

Определение 8 Топологическое пространство называется хаусдорфовым, если любые две точки обладают непересекающимися окрестностями.

Теорема 3 Любое метризуемое топологическое пространство хаусдорфово.

Доказательство. [
-------------------	--