BUNDESREPUBLIK DEUTSCHLAND

REC'D 19 SEP 2003 PCT WIPO

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

102 39 656.6

Anmeldetag:

26. August 2002

Anmelder/Inhaber:

Merck Patent GmbH,

Darmstadt/DE

Bezeichnung:

Ätzpasten für Titanoxid-Oberflächen

IPC:

C 23 F, C 03 C, C 04 B

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 03. April 2003

Deutsches Patent- und Markenamt Der Präsident

Im Auftrag

Faust

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Merck Patent Gesellschaft mit beschränkter Haftung 64271 Darmstadt

Ätzpasten für Titanoxid-Oberflächen

10

15

20

25

30

35

Ätzpasten für Titanoxid-Oberflächen

Die vorliegende Erfindung betrifft neue Ätzmedien in Form von druck- und dispensierfähigen Ätzpasten zum Ätzen von Titanoxid-Oberflächen der allgemeinen Zusammensetzung Ti_xO_y , sowie die Anwendung dieser Ätzpasten.

Unter Titanoxid-Oberflächen werden Oberflächen bestehend aus Titan und Sauerstoff Ti_xO_y verstanden, insbesondere Verbindungen des Titanoxids TiO(x,y=1), Titandioxids TiO(x=1,y=2), Titandioxids TiO(x=1,y=2),

Unter Gläsern werden im folgenden Titan- und Sauerstoff- enthaltende Materialien verstanden, die ohne Auskristallisieren im festen amorphen Aggregatzustand vorliegen und in der Mikrostruktur aufgrund fehlender Fernordnung einen hohen Fehlordnungsgrad aufweisen. Schichten derartiger amorpher Materialien können z.B. durch Hydrolyse von Titanhalogeniden wie TiCl₄, Hydrolyse oder Pyrolyse von Titan-organischen Prekursoren wie Tetraisopropylorthotitanat in einem APCVD-Verfahren [1], dem Niederdruck- oder Plasmaunterstütztem CVD-Verfahren (LP- bzw. PE-CVD) [2] hergestellt werden. Hierbei können auch teilkristalline Schichten gebildet werden.

Kristalline Verbindungen sind die ${\rm TiO_2}$ -Modifikationen Rutil, Anatas und Brookit, die dem Steinsalz isotype ${\rm TiO}$ -Modifikation und das in Korund-Gitterstruktur kristallisierende ${\rm Ti_2O_3}$.

Die Erfindung bezieht sich sowohl auf das Ätzen von Titan-und Sauerstoffenthaltenden kristallinen, teilkristallinen oder amorphen Oberflächen Ti_xO_y einheitlicher massiver nichtporöser und poröser Festkörper, als auch auf das Ätzen von Oberflächen nichtporöser und poröser Ti_xO_y-Schichten variabler Dicke, die auf anderen Substraten (z.B. Keramiken, Metallblechen, Siliziumwafer) durch verschiedene, dem Fachmann bekannten Verfahren (z.B. CVD, PVD, Spray/Spin-on/off von Ti-O-haltigen Precursoren) erzeugt wurden.

Stand der Technik

5

Hocheffiziente kristalline Silizium-Solarzellen mit Wirkungsgraden > 16% weisen meist eine texturierte, passivierte, entspiegelte Vorderseite mit zweistufigem Emitter und eine passivierte Rückseite mit spiegelnden Rückseitenkontakten und lokalem Back Surface Field (BSF) auf.

10

10

Zur Erzeugung des zweistufigen Emitters bzw. eines lokalen BSF ist es notwendig, die Antireflexschicht auf der Vorderseite bzw. Rückseite zu öffnen und anschließend die geöffneten Bereiche zu dotieren. Diese Antireflexschichten können aus z.B. Titanoxid - allgemein Ti_xO_y (z.B. TiO_2 mit Brechungsindex n = 2,3)-, Siliziumnitrid oder Siliziumdioxid bestehen.

15

Das Öffnen von Siliziumdioxid- und Siliziumnitrid-Schichten ist in DE10101926 eingehend beschrieben.

20

Nach dem heutigen Stand der Technik können beliebige Strukturen selektiv in Oberflächen und Schichten direkt durch lasergestützte Ätzverfahren [3] oder nach erfolgter Maskierung nasschemisch [4, 5] bzw. durch Trokkenätzverfahren geätzt werden [6].

25

Allerdings sind diese Verfahren für die Massenproduktion von Solarzellen in der Regel zu prozessaufwendig und zu teuer und werden deshalb bisher nicht eingesetzt.

30

Bei den lasergestützten Ätzverfahren rastert der Laserstrahl das gesamte Ätzmuster Punkt für Punkt auf der Oberfläche ab, was neben einem hohen Präzisionsgrad auch einen beträchtlichen Justier- und Zeitaufwand erfordert. In neueren Laborentwicklungen werden arrayförmig angeordnete optische Mikrolinsen benutzt, um den Laserstrahl aufzuspalten und eine entsprechend des Arrays gestaltete Reihe punktförmiger Öffnungen in der

35 Antireflexschicht zu erzeugen [7].

10

Die nasschemischen und Trockenätzverfahren beinhalten materialintensive, zeit- und kostenaufwendige Prozessschritte:

- A. Maskierung der nicht zu ätzenden Bereiche, z.B. durch:
- Fotolithografie: Herstellung eines Negativs oder Positivs der Ätzstruktur (abhängig vom Lack), Belackung der Substratoberfläche (z.B. durch Schleuderbelackung mit einem flüssigen Fotolacks), Trocknen des Fotolacks, Belichtung der belackten Substratoberfläche, Entwicklung, Spülen, ggf. Trocknen
- B. Ätzen der Strukturen durch:
- Tauchverfahren (z.B. Nassätzen in Nasschemiebänken): Eintauchen der Substrate in das Ätzbad, Ätzvorgang, mehrfaches Spülen in H₂O-Kaskadenspülbecken, Trocknen
 - Spin-on oder Sprühverfahren: Die Ätzlösung wird auf ein drehendes Substrat aufgebracht oder auf ein Substrat gesprüht, Ätzvorgang ohne/mit Energieeintrag (z.B. Fotoätzen, Spülen, Trocknen)
 - Trockenätzverfahren wie z.B. Plasmaätzen in teuren Vakuumanlagen oder Ätzen mit reaktiven Gasen in Durchflussreaktoren
 - [1] M. Lemiti, J.P. Boyeaux, M. Vernay, H. El. Omari, E. Fourmond, A. Laugier, Proceedings of the 2nd world PV-Conference, Vienna (1998), p. 1471
- [2] H. Frey, G. Kienel, Dünnschichttechnologie, VDI-Verlag, Düsseldorf,1987, S. 183
 - [3] R. Preu, S.W. Glunz, S. Schäfer, R. Lüdemann, W. Wettling, W. Pfleging, Proceedings of the 16th PVSC, Glasgow, 2000, 1181-84 [4] D.J. Monk, D.S. Soane, R.T. Howe, Thin Solid Films 232 (1993), 1
- [5] J. Bühler, F.-P. Steiner, H. Baltes, J. Micromech. Microeng. 7 (1997), R1

25

[6] M. Köhler "Ätzverfahren für die Mikrotechnik", Wiley VCH 1998[7] R. Preu, S.W. Glunz, DE19915666

5

In der Praxis haben sich in der Solartechnologie zum Ätzen von Siliziumnitrid- oder Siliziumdioxid-Schichten Verfahren bewährt, die unter Verwendung von Ätzpasten durchgeführt werden. Bei den verwendeten Pasten
handelt es sich, wie in der Patentanmeldung DE 101 01 926 A1 beschrieben, um druck- und dispensierfähige, homogene partikelfreie Ätzpasten
mit nichtnewtonschem Fließverhalten. Diese Pasten haben sich jedoch
hinsichtlich Ätzrate, Selektivität und Kantenschärfe als nicht optimal für
das Ätzen von Titanoxid-Schichten erwiesen.

15

20

10

Aufgabe der vorliegenden Erfindung ist es daher, ein neues Ätzmedium, welches in einem, mit hohen Durchsätzen erfolgenden, technologisch einfach durchführbaren Verfahren einsetzbar ist, zum selektiven Ätzen von Titanoxidschichten zur Verfügung zu stellen.

Aufgabe der vorliegenden Erfindung ist es auch, ein einfaches Verfahren zum Ätzen von Titanoxidschichten zur Verfügung zu stellen.

25

Die Lösung der Aufgabe erfolgt durch ein druck- und dispensierfähiges Ätzmedium in Form einer Ätzpaste mit nichtnewtonschem; vorzugsweise thixotropem Fließverhalten zum Ätzen von amorphen, kristallinen oder teilkristallinen Oberflächen aus Titanoxiden, welches bei 15 - 50 °C wirksam ist und/oder durch Energieeintrag aktivierbar ist und folgende Komponenten enthält:

30

a) als ätzende Komponente Ammoniumhydrogendifluorid in einer Konzentration von 8,5 – 9,5 Gew. % bezogen auf die Gesamtmenge

35

b) gegebenenfalls mindestens eine anorganische und/oder organsche Säure mit einem Anteil von 24 - 26 Gew.-% bezogen auf die Gesamtmenge des Mediums, wobei als organische Säure eine organische Säure mit

10

15

- einem pK_s-Wert zwischen 0 bis 5, ausgewählt aus der Gruppe der Carbonsäuren wie Ameisensäure, Essigsäure, Dichloressigsäure, Milchsäure und Oxalsäure enthalten sein kann,
- c) ein Lösungsmittel ausgewählt aus der Gruppe Wasser, Ether wie Ethylenglycolmonobutylether, Triethylenglykolmonomethylether, Ester der Kohlensäure wie Propylencarbonat, Ketone wie 1-Methyl-2-pyrrolidon, als solche oder deren Gemische in einer Menge von 52 57 Gew % bezogen auf die Gesamtmenge des Ätzmediums,
- d) 10,5 11,5 Gew % bezogen auf die Gesamtmenge des Ätzmediums Cellulosederivate und/oder Polymere wie PVP als Verdikkungsmittel,
- e) gegebenenfalls 0 0,5 Gew % bezogen auf die Gesamtmenge Additive, ausgewählt aus der Gruppe Entschäumer, Thixotropiemittel, Verlaufsmittel, Entlüfter und Haftvermittler.
- Gegenstand der vorliegenden Erfindung ist daher auch ein Ätzmedium das Ammoniumhydrogendifluorid als ätzende Komponente für oxidische Oberflächen, Ethylenglycolmonobutylether, Triethylenglykolmonomethylether, Propylencarbonat und Wasser als Lösungsmittel, Ameisensäure als organische Säure und PVP als Verdickungsmittel enthält.
 - Amorphe, kristalline oder teilkristalline Oberflächen aus Titanoxiden lassen sich erfindungsgemäß in einem einfach durchführbaren Verfahren ätzen, indem ein solches Ätzmedium auf eine zu ätzende Oberfläche aufgebracht wird und nach einer Einwirkzeit von 0,1 15 min wieder entfernt wird.
- Das Ätzmedium kann zu diesem Zweck ganzflächig oder gemäß der Ätzstrukturvorlage gezielt nur an den Stellen, an denen eine Ätzung erwünscht ist, aufgetragen werden und nach erfolgter Ätzung mit einem Lösungsmittel oder Lösungsmittelgemisch abgespült oder im Ofen verbrannt
 werden.

15

20

25

Insbesondere können die Ätzmedien in Sieb-, Schablonen-, Tampon-, Stempel-, Ink-Jet- und manuellen Druckverfahren sowie der Dispenser-Technik auf die zu ätzenden Flächen aufgebracht werden.

- Auf diese Weise lassen sich die erfindungsgemäßen Ätzmedien zur Herstellung von Markierungen und Kennzeichnungen sowie zur Verbesserung der Haftung von Ti_xO_y-Gläsern, Keramiken und andere Ti_xO_y-basierenden Systemen mit anderen Materialien durch Aufrauen verwenden.
 - Die erfindungsgemäßen Ätzmedien lassen sich vorteilhaft verwenden zum Ätzen von amorphen, teilkristallinen und kristallinen Ti_xO_y –Systemen in Form einheitlicher massiver nichtporöser und poröser Festkörper oder entsprechender nichtporöser und porösen Schichten variabler Dicke, die auf anderen Substraten erzeugt worden sind.
 - Mit besonders guten Ergebnissen lassen sich die erfindungsgemäßen Ätzpasten im Herstellungsprozess von Solarzellen zum Entfernen von amorphen, teilkristallinen und kristallinen Ti_xO_y –Schichten, zum selektiven Öffnen von Antireflexschichten aus Ti_xO_y –Systemen zur Erzeugung zweistufiger selektiver Emitter und/oder lokaler p $^+$ -Back-Surface-Fields einsetzen.
 - Gegenstand der vorliegenden Erfindung sind somit auch amorphe, teilkristalline oder kristalline Oberflächen aus Titanoxiden, welche mit den erfindungsgemäßen Ätzmedien der oben genannten Zusammensetzung behandelt worden sind.

Beschreibung

Gegenstand der Erfindung sind druck- und dispensierfähige Ätzpasten, die zum Ätzen von Titanoxid Oberflächen, der allgemeinen Formel Ti_xO_y und deren Schichten variabler Dicke geeignet sind, sowie deren Verwendung in einem – im Vergleich zu den üblichen Nass- und Trockenätzverfahren – kostengünstigen, kontinuierlichen, für hohe Durchsätze geeigneten, sowie technologisch einfachen, Druck-, Dispensier-/Ätzverfahren.

Die erfindungsgemäß beschriebenen druck- und dispensierfähigen Ätzpasten sind – im Vergleich zu flüssigen Ätzmitteln für Ti_xO_y-basierende Systeme wie anorganische Mineralsäuren (Flusssäure, heiße konzentrierte Schwefelsäure) und Laugen/basische Ätzmittel (geschmolzene Alkalihydroxide und -carbonate) – wesentlich einfacher, sicherer und ätzmittelsparender zu handhaben.

Die erfindungsgemäß beschriebenen druck- und dispensierfähigen Ätzpasten werden in einem einzigen Verfahrensschritt auf die zu ätzende Ti_xO_y-Oberfläche aufgebracht. Eine für die Übertragung der Ätzpaste auf die zu ätzende Fläche geeignete Technik mit hohem Automatisierungsgrad und Durchsatz ist die Druck- und Dispensertechnik. Insbesondere die Sieb-, Schablonen-, Tampon-, Stempel-, Ink-Jet-Druckverfahren sind dem Fachmann bekannte Druckverfahren.

In Abhängigkeit von der Sieb-, Schablonen-, Klischee-, Stempelgestaltung bzw. Patronen- und Dispenseransteuerung ist es möglich, die erfindungsgemäß beschriebenen druck- und dispensierfähigen Ätzpasten gemäß der Ätzstrukturvorlage selektiv nur an den Stellen aufzutragen, an denen eine Ätzung erwünscht ist bzw. auch ganzflächig aufzutragen. Sämtliche Maskierungs- und Lithografieschritte wie unter A) beschrieben entfallen durch den selektiven Auftrag. Der Ätzvorgang findet mit oder ohne zusätzlichen Energieeintrag, z.B. in Form von Wärmestrahlung (mit IR-Lampe, bis ca. 300 °C) statt. Nach erfolgter Ätzung werden die druck- und dispensierfähigen Ätzpasten von der geätzten Fläche mit einem geeigneten Lösungsmittel abgespült oder ausgebrannt.

Durch Variation folgender Größen lassen sich die Ätztiefe in Ti_xO_y-basierenden Systemen und deren Schichten variabler Dicke, und beim selektiven Strukturätzen zusätzlich die Kantenschärfe der Ätzstrukturen einstellen:

- Konzentration und Zusammensetzung der Ätzkomponente
- Konzentration und Zusammensetzung der eingesetzten Lösungsmittel
- Konzentration und Zusammensetzung des Verdickersystems

10

5

15

20

25

30

- Konzentration und Zusammensetzung der gegebenenfalls zugesetzten Säuren
- Konzentration und Zusammensetzung der gegebenenfalls zugesetzten
 Additive wie Entschäumer, Thixotropiermittel, Verlaufsmittel, Entlüfter, Haftvermittler
 - Viskosität der erfindungsgemäß beschriebenen druck- und dispensierfähigen Ätzpasten
 - Ätzdauer mit oder ohne Energieeintrag auf der, mit der jeweiligen Ätzpaste bedruckten Oberflächen
- Die Ätzdauer kann je nach Anwendungszweck, gewünschter Ätztiefe und/oder Kantenschärfe der Ätzstrukturen zwischen einigen Sekunden und mehreren Minuten betragen.

Die druck- und dispensierfähigen Ätzpasten setzen sich zusammen aus:

- ätzende(n) Komponente(n) für Ti_xO_y-Systeme und deren Schichten
 - Lösungsmitteln

Verdickungsmitteln

- gegebenenfalls organischen und/oder anorganischen Säuren
- gegebenenfalls Additive wie z.B. Entschäumer, Thixotropiermittel, Verlaufsmittel, Entlüfter, Haftvermittler
- Die Ätzwirkung der erfindungsgemäß beschriebenen druck- und dispensierfähigen Ätzpasten auf Oberflächen Ti_xO_y-basierender Systeme beruht auf dem Einsatz von Lösungen von Ammoniumhydrogendifluorid mit oder ohne Säurezusatz. Diese Ätzpasten sind bereits bei Zimmertemperatur oder werden durch zusätzlichen Energieeintrag (z.B. Wärmestrahlung durch IR-Lampe, bis ca. 300 °C) wirksam.

25

30

Der Anteil der eingesetzten Ätzkomponente liegt in einem Konzentrationsbereich von 8,5 - 9,5 Gew % bezogen auf die Gesamtmenge der Ätzpaste.

- Geeignete anorganische und/oder organische Lösungsmittel und/oder Mischungen aus diesen können sein:
 - Wasser
- Ether wie Ethylenglycolmonobutylether, Triethylenglykolmonomethylether
 - Ester der Kohlensäure wie Propylencarbonat
 - organische Säuren wie Ameisensäure, Essigsäure, Milchsäure o. ä.

Der Anteil der Lösungsmittel liegt im Bereich von 52 - 57 Gew % bezogen auf die Gesamtmenge der Ätzpaste.

- Die Viskosität der erfindungsgemäß beschriebenen druck- und dispensierfähigen Ätzpasten wird durch netzwerkbildende, in der flüssigen Phase quellende Verdickungsmittel erzielt und lässt sich je nach gewünschtem Einsatzgebiet variieren.
- Die erfindungsgemäß beschriebenen druck- und dispensierfähigen Ätzpasten umfassen alle Ätzpasten, die keine Konstanz der Viskosität von der Scherrate aufweisen, insbesondere Ätzpasten mit scherverdünnender Wirkung. Das durch Verdickungsmittel erzeugte Netzwerk bricht unter Scherbelastung zusammen. Die Wiederherstellung des Netzwerkes kann ohne Zeitverzögerung (strukturviskose Ätzpasten mit plastischem bzw.
 pseudoplastischem Fließverhalten) bzw. mit Zeitverzögerung (Ätzpasten mit thixotropem Fließverhalten) erfolgen.
- Die Verdicker Polyvinylpyrolidon (PVP) oder verschiedene Cellulosen können einzeln und/oder in Kombinationen miteinander eingesetzt werden. Der Anteil der Verdickungsmittel, der zur gezielten Einstellung des Viskositätsbereiches und grundsätzlich zur Bildung einer druck- und dis-

15

10

15

20

pensierfähigen Paste erforderlich ist, liegt im Bereich von 10,5 – 11,5 Gew % bezogen auf die Gesamtmenge der Ätzpaste.

Organische und anorganische Säuren, deren pK_S-Wert zwischen 0 - 5 liegen, können den erfindungsgemäß beschriebenen druck- und dispensierfähigen Ätzpasten hinzugefügt sein. Anorganische Mineralsäuren wie z.B. Salzsäure, Phosphorsäure, Schwefelsäure, Salpetersäure als auch organische Säuren, insbesondere Ameisensäure, verbessern die Ätzwirkung der druck- und dispensierfähigen Ätzpasten. Bei Säurezugabe beträgt der Anteil der Säure/n 24 - 26 Gew % bezogen auf die Gesamtmenge der Ätzpaste liegen.

Additive mit für den gewünschten Zweck vorteilhaften Eigenschaften sind Entschäumer (z.B. TEGO® Foamex N), Thixotropiermittel (z.B. BYK® 410, Borchigel® Thixo2), Verlaufsmittel (z.B. TEGO® Glide ZG 400), Entlüfter (z.B. TEGO® Airex 985) und Haftvermittler (z.B. Bayowet® FT 929). Diese können die Druckfähigkeit der Ätzpaste positiv beeinflussen. Der Anteil der Additive liegt im Bereich von 0-0.5 Gew % bezogen auf die Gesamtmenge der Ätzpaste.

Anwendungsgebiete für die erfindungsgemäßen Ätzpasten finden sich in der Solarzellenindustrie, insbesondere in der Herstellung von Photovoltaik- Bauelementen wie Solarzellen oder von Photodioden.

- Die erfindungsgemäß druck- und dispensierfähigen Ätzpasten können insbesondere überall dort eingesetzt werden, wo eine ganzflächige und/oder strukturierte Ätzung von Oberflächen Ti_xO_y-basierender Systeme gewünscht wird.
- So können ganze Flächen, aber auch selektiv einzelne Strukturen in einheitlich massive nichtporöse und poröse Ti_xO_y-basierende Systeme bis in die gewünschte Tiefe geätzt werden. Anwendungsgebiete sind das gezielte Anätzen von Ti_xO_y-basierenden Systemen für:
- Markierungs- und Kennzeichnungszwecke

- Verbesserung der Haftung von Ti_xO_y-Gläsern, Keramiken und andere Ti_xO_y-basierenden Systemen mit anderen Materialien durch Aufrauhung
- Die erfindungsgemäß druckfähigen Ätzpasten können insbesondere überall dort eingesetzt werden, wo eine ganzflächige und/oder strukturierte Ätzung von Ti_xO_y-Schichten gewünscht wird.
- Anwendungsgebiete sind zudem sämtliche Ätzschritte an Ti_xO_y-Schichten, die zur Herstellung von Photovoltaik-Bauelementen wie Solarzellen, Photodioden und dgl. führen, insbesondere ist dies das selektive Öffnen von Ti_xO_y-Schichten zur Erzeugung:
 - zweistufiger selektiver Emitter (nach Öffnen Erzeugung von n⁺⁺-Schichten) und/oder
 - lokaler p⁺-Back-Surface-Fields (nach Öffnen Erzeugung von p⁺-Schichten) und/oder
- von leitfähigen Kontaktstrukturen in den geöffneten Strukturen (z.B. durch stromlose Abscheidung)
 - Insbesondere die Sieb-, Schablonen-, Tampon-, Ink-Jet-Druckverfahren und Dispensertechnik sind geeignete Techniken, die Ätzpasten in der gewünschten Weise aufzutragen. Generell ist auch ein manueller Auftrag möglich.
- Zum besseren Verständnis und zur Verdeutlichung der Erfindung werden im folgenden Beispiele für eine Ätzpasten gegeben. Diese Beispiele sind nicht geeignet, den Schutzbereich der vorliegenden Anmeldung nur hierauf einzuschränken, da es dem Fachmann ohne weiteres möglich ist, verschiedenste Variationen der Erfindung vorzunehmen und einzelne Komponenten der Zusammensetzungen durch gleichwirkende zu ersetzen. Auch ist es ihm ohne weiteres möglich, die gegebenen Beispiele in geeigneter Weise in abgeänderter Form durchzuführen und ebenfalls zu dem gewünschten Ergebnis zu kommen.

Beispiel

5	5 g	Ethylenglycolmonobutylether
	15 g	Triethylenglykolmonomethylether
	15 g	Propylencarbonat
	7 g	Wasser
	27 g	35%ige NH ₄ HF ₂ -Lösung
10	28 g	Ameisensäure
	12 g	PVP

Das Lösungsmittelgemisch und Säure werden in einem PE-Becher vorgelegt. Im Anschluß daran wird die NH₄HF₂-Lösung hinzugegeben. Dann erfolgt die sukzessive Zugabe des Verdickers unter Rühren (ca. 900 U/min). Die Abfüllung in Behälter erfolgt nach einer kurzen Standzeit. Diese Standzeit ist erforderlich, damit sich die in der Ätzpaste gebildeten Bläschen auflösen können.

Diese Mischungen ergeben Ätzpasten, mit denen gezielt Ti_xO_y-basierende Systeme und deren Schichten ganzflächig bzw. in Strukturen mit und/oder ohne Energieeintrag bis zu einer gewünschten Tiefe geätzt werden können.

Die ermittelten Ätzraten auf einer mit APCVD erzeugten Ti_xO_y -Schicht sind abhängig von der Salz- und Säurekonzentration und liegen bei linienförmigen Auftrag zwischen 20-150 nm/min. Sie betragen z. b. bei selektivem Auftrag (Linienbreite von 250 μ m) des Beispiels 1 bei Zimmertemperatur 70 nm/min, bei 100°C Ätztemperatur 140 nm/min.

Die erhaltene Ätzpaste ist lagerstabil, leicht zu handhaben und druckfähig. Sie kann z.B. mit Wasser vom bedruckten Material bzw. vom Pastenträger (Sieb, Rakel, Schablone, Stempel, Klischee, Patrone, Dispenser usw.) entfernt oder im Ofen ausgebrannt werden.

30

Analog wie die durch Beispiel 1 beschriebene Ätzpaste können folgende Ätzpasten hergestellt werden:

Beispiel 2

5 35,6 g Ethylenglycolmonobutylether

142,4 g Milchsäure

 $12 g NH_4HF_2$

10 g EC

10 Beispiel 3

10 g Triethylenglykolmonomethylether

50 g 20%ige NH₄HF₂-Lösung

50 g 1 %ige Deuteron XG-Stammpaste

15 Beispiel 4

24 g Triethylenglykolmonomethylether

50 g 20%ige NH₄HF₂-Lösung

8 g Ameisensäure

1,5 g Tylose 4000 (Hydroxyethylcellulose)

20

Beispiel 5

- 8 g Ethylenglycolmonobutylether
- 14 g Propylencarbonat
- 14 g Triethylenglykolmonomethylether
- 34 g 20%ige NH₄HF₂-Lösung
- 28 g Dichloressigsäure
- 10 g PVP K90

30

PATENTANSPRÜCHE

- 1. Druck- und dispensierfähiges Ätzmedium in Form einer Ätzpaste mit nichtnewtonschem; vorzugsweise thixotropem Fließverhalten zum Ätzen von amorphen, kristallinen oder teilkristallinen Oberflächen aus Titanoxiden, dadurch gekennzeichnet, dass es bei 15 50 °C wirksam ist und/oder durch Energieeintrag aktivierbar ist und es folgende Komponenten enthält
 - a) als ätzende Komponente Ammoniumhydrogendifluorid in einer Konzentration von 8,5 9,5 Gew. % bezogen auf die Gesamtmenge
 - b) gegebenenfalls mindestens eine anorganische und/oder organsche Säure mit einem Anteil von 24 26 Gew.-% bezogen auf die Gesamtmenge des Mediums, wobei als organische Säure eine organische Säure mit einem pK_s-Wert zwischen 0 bis 5, ausgewählt aus der Gruppe der Carbonsäuren wie Ameisensäure, Essigsäure, Dichloressigsäure, Milchsäure und Oxalsäure enthalten sein kann,
 - c) ein Lösungsmittel ausgewählt aus der Gruppe Wasser, Ether wie Ethylenglycolmonobutylether, Triethylenglykolmonomethylether, Ester der Kohlensäure wie Propylencarbonat, Ketone wie 1-Methyl-2-pyrrolidon, als solche oder deren Gemische in einer Menge von 52 57 Gew % bezogen auf die Gesamtmenge des Ätzmediums,
 - d) 10,5 11,5 Gew % bezogen auf die Gesamtmenge des Ätzmediums Cellulosederivate und/oder Polymere wie PVP als Verdikkungsmittel,
 - e) gegebenenfalls 0 0,5 Gew % bezogen auf die Gesamtmenge Additive, ausgewählt aus der Gruppe Entschäumer, Thixotropiemittel, Verlaufsmittel, Entlüfter und Haftvermittler.
- 2. Ätzmedium gemäß Anspruch 1, dadurch gekennzeichnet, dass es Ammoniumhydrogendifluorid als ätzende Komponente für oxidische Oberflächen, Ethylenglycolmonobutylether, Triethylenglykolmonomethylether, Propylencarbonat und Wasser als Lösungsmittel, Ameisensäure als organische Säure und PVP als Verdikkungsmittel enthält.

10

5

15

20

30

- 3. Verfahren zum Ätzen von amorphen, kristallinen oder teilkristallinen Oberflächen aus Titanoxiden, dadurch gekennzeichnet, dass ein Ätzmedium gemäß einem der Ansprüche 1 oder 2 auf die zu ätzende Oberfläche aufgebracht wird und nach einer Einwirkzeit von 0,1 15 min wieder entfernt wird.
- 4. Verfahren gemäß Anspruch 3 dadurch gekennzeichnet, dass ein Ätzmedium gemäß der Ansprüche 1 2 ganzflächig oder gemäß der Ätzstrukturvorlage gezielt nur an den Stellen, an denen eine Ätzung erwünscht ist, aufgetragen wird und nach erfolgter Ätzung mit einem Lösungsmittel oder Lösungsmittelgemisch abgespült oder im Ofen verbrannt wird.
- 5. Verwendung eines Ätzmediums gemäß der Ansprüche 1 2 zur Herstellung von Markierungen und Kennzeichnungen sowie zur Verbesserung der Haftung von Ti_xO_y–Gläsern, Keramiken und andere Ti_xO_y-basierenden Systemen mit anderen Materialien durch Aufrauen.
- Verwendung eines Ätzmediums gemäß der Ansprüche 1 2 in Sieb-, Schablonen-, Tampon-, Stempel-, Ink-Jet- und manuellen Druckverfahren sowie der Dispenser-Technik.
 - 7. Verwendung eines Ätzmediums gemäß der Ansprüche 1 2 zum Ätzen von amorphen, teilkristallinen und kristallinen Ti_xO_y–Systemen, als einheitliche massive nichtporöse und poröse Festkörper oder entsprechender nichtporöser und porösen Schichten variabler Dicke, die auf anderen Substraten erzeugt worden sind.
 - 8. Verwendung eines Ätzmediums gemäß der Ansprüche 1 bis 2 zum Entfernen von amorphen, teilkristallinen und kristallinen Ti_xO_y—Schichten, zum selektiven Öffnen von Antireflexschichten aus Ti_xO_y—Systemen zur Erzeugung zweistufiger selektiver Emitter und/oder lokaler p⁺-Back-Surface-Fields in Solarzellen.
- 9. Mit Ätzmedien gemäß einem der Ansprüche 1 bis 2 behandelte amorphe, teilkristalline oder kristalline Oberflächen aus Titanoxiden.

5

ZUSAMMENFASSUNG

Die vorliegende Erfindung betrifft neue Ätzmedien in Form von druck- und dispensierfähigen Ätzpasten zum Ätzen von Titanoxid-Oberflächen der allgemeinen Zusammensetzung Ti_xO_y, sowie die Anwendung dieser Ätzpasten in einem Verfahren zum Ätzen von Titanoxid-Oberflächen

10

5

15

20

30