

TRIGONOMETRY

Chapter 3

LEVEL

Razones trigonométricas de ángulos en posición normal

TRIGONOMETRY

indice

01. MotivatingStrategy >

02. HelicoTheory

03. HelicoPractice

04. HelicoWorkshop

M

Video: René Descartes en 3 minutos

MOTIVATING STRATEGY

RENÉ DESCARTES EN 3 MINUTOS

Resumen

HELICO THEORY

RAZONES TRIGOMÉTRICAS DE ANGULOS EN POSICION NORMAL

¿ Qué es un ángulo en posición normal?

Es un ángulo trigonométrico cuyo vértice se ubica en el origen del plano cartesiano, su lado inicial coincide con el semieje X positivo y su lado final está en cualquier cuadrante o semieje.

θ : Medida del ángulo en posición

NOTA: El lado final de un ángulo en posición normal nos indica el cuadrante o semieje al cual pertenece.

DEFINICION DE LAS RAZONES TRIGOMÉTRICAS DE UN ANGULO EN POSICION NORMAL:

P es cualquier punto del lado final.

Definiciones:	
$\operatorname{sen}_{\Theta} = \frac{y}{r}$	$ csc\theta = \frac{r}{y} $
$\cos \theta = \frac{x}{r}$	$\sec\theta = \frac{r}{x}$
$\tan \theta = \frac{y}{x}$	$\cot \theta = \frac{x}{y}$

Problema 01

 \bigcirc

Problema 02

 \bigcirc

Problema 03

 \bigcirc

Problema 04

 \bigcirc

Problema 05

 \bigcirc

HELICO PRACTICE

Problema 01 **②**

Resolución

El lado final de un ángulo θ en posición normal pasa por el punto (3; -4). Calcule:

$$R = sen\theta - cos\theta$$

Graficamos:

$$\mathbf{x} = \mathbf{3} \quad \mathbf{y} = -4$$

Calculamos el radio vector:

$$r^2 = x^2 + y^2$$
 $r^2 = 3^2 + (-4)^2$
 $r^2 = 25$

RECORDEMOS

$$\frac{\mathbf{sen}\alpha = \frac{\mathbf{y}}{\mathbf{r}}}{\mathbf{cos}\alpha = \frac{\mathbf{x}}{\mathbf{r}}}$$

Reemplazamos:

$$R = \frac{\sin\theta}{\cos\theta} - \cos\theta$$

$$R = \frac{-4}{5} - \frac{3}{5}$$

Respuesta
$$: R = -\frac{7}{5}$$

Problema 02 >

Resolución

De la figura calcule:

$$M = \sec\theta + \tan\theta$$

Del gráfico:

$$x = -12$$

$$y = 5$$

Calculamos el radio vector:

$$\mathbf{r}^2 = \mathbf{x}^2 + \mathbf{y}^2$$
 $\mathbf{r}^2 = (-12)^2 + (5)^2$

$$r^2 = 169$$

$$r = 13$$

Reemplazamos:

$$M = \sec\theta + \tan\theta$$

$$M = \frac{13}{-12} + \frac{5}{-12} = \frac{18}{-12}$$

RECORDEMOS

$$\sec \alpha = \frac{\mathbf{r}}{\mathbf{x}}$$
 $\tan \alpha = \frac{\mathbf{y}}{\mathbf{x}}$

Respuesta : M = -

Problema 03 💿

Resolución

De la figura, calcule: $\cot \theta$

Del gráfico:

$$y = 4$$

Reemplazando:

$$\cot \theta = \frac{x}{y}$$

Respuesta

$$\therefore \cot \theta = -\frac{5}{4}$$

Problema 04 ②

Resolución

De la figura se sabe que la edad del profesor de trigonometría está dada por el valor de 3M. Determine la edad del profesor, si:

$$\mathbf{M} = \sqrt{17}(\mathbf{csc}\alpha + \mathbf{sen}\beta)$$

Para α :

$$\mathbf{r}^2 = \mathbf{x}^2 + \mathbf{y}^2$$
 $\mathbf{r}^2 = (-4)^2 + \mathbf{1}^2$
 $\mathbf{r}^2 = \mathbf{17}$
 $\mathbf{r} = \sqrt{17}$

$$\mathbf{x} = -\mathbf{4} \quad \mathbf{y} = \mathbf{1} \quad \mathbf{r} = \sqrt{\mathbf{17}}$$

Reemplazando:

$$M = \sqrt{17}.(\csc\alpha + \sec\beta)$$

$$M = \sqrt{17}. \ (\frac{\sqrt{17}}{1} + \frac{-4}{\sqrt{17}})$$

$$M = 17 - 4$$

Para β:

$$r^{2} = x^{2} + y^{2}$$
 $r^{2} = 1^{2} + (-4)^{2}$
 $r^{2} = 17$
 $r = \sqrt{17}$

$$x = 1 \qquad y = -4 \qquad r = \sqrt{17}$$

la edad Calculando profesor de trigonometría:

$$E = 3M$$

$$E = 3(13)$$

Respuesta : E = 39 años

De la figura, se sabe que Juan gasta en pasajes 6K soles diarios. Determine cuanto gasta Juan en pasajes a la semana; si:

$$K = tan\alpha - cot\beta$$

Del gráfico:

Reemplazando:

$$K = \frac{\tan \alpha - \cot \beta}{K}$$

$$K = \frac{1}{-3} - \frac{3}{-1}$$

$$K = \frac{1}{-3} + 3$$

RECORDEMOS

$$\tan \alpha = \frac{y}{x}$$
 $\cot \beta = \frac{x}{y}$

$$K = \frac{8}{3}$$

Calculamos el pasaje diario:

Pasaje diario =
$$6k = \frac{2}{5} \left(\frac{8}{3}\right)$$

Pasaje diario = 16

Calculamos el pasaje semanal:

Pasaje semanal = 7(16)

Respuesta ∴ S/112

Problemas Propuestos

Problema 06

Problema 07

Problema 08

Problema 09

 \bigcirc

HELICO WORKSHOP

Problema 06 **②**

El lado final de un ángulo θ en posición normal pasa por (4;-3). Calcule el valor de :

$$E = \cos\theta - \sin\theta$$

Problema 07 **②**

De la figura, calcule:

$$M = \sec\theta + \tan\theta$$

Problema 08 💿

De la figura, efectúe:

$$\mathbf{M} = \sqrt{17}(\mathbf{csc}\alpha + \mathbf{sen}\beta)$$

Problema 09 💿

Pedro dio su examen final de trigonometría siendo su nota el valor de 10W. Calcule la nota de Pedro.

$$W = sen\alpha - cos\alpha$$

Problema 10 🕞

$$L = \cot \beta - \csc \beta$$

