

## INDIAN INSTITUTE OF TECHNOLOGY PATNA DEPARTMENT OF PHYSICS **BIHTA 801103**

## END SEMESTER EXAMINATION

PH201 OPTICS AND LASERS

Date: 29/04/2017 Time: 2PM TO 5PM (AN)

Maximum marks: 50

| ANSWER ALL THE QUESTIONS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|
| SI N                     | o Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B |  |
| 1                        | A thin lens as shown in figure has radius of curvatures $R_1$ and $R_2$ in its surfaces, given "n" is the refractive index of the lens. The ray transfer matrix for this configuration will be (ray is propagating from left to right in figure)  a. $\begin{bmatrix} 1 & 0 \\ -(n-1)\left(\frac{1}{R_1}-\frac{1}{R_2}\right) & 1 \end{bmatrix}$ b. $\begin{bmatrix} 1 & 0 \\ (n-1)(\frac{1}{R_1}-\frac{1}{R_2}) & 1 \end{bmatrix}$ c. $\begin{bmatrix} 1 & 0 \\ 1 & -(n-1)(\frac{1}{R_1}-\frac{1}{R_2}) \end{bmatrix}$ d. $\begin{bmatrix} 1 & 0 \\ 1 & (n-1)(\frac{1}{R_1}-\frac{1}{R_2}) \end{bmatrix}$ | 2 |  |
| 2                        | According to the classical theory, non-linear optical properties originate when  a. electrons dissociate from the nucleus b. dipoles oscillates anharmonically c. dipole oscillations are damped d. critical damping of dipole oscillations occur                                                                                                                                                                                                                                                                                                                                                          | 1 |  |
| 3                        | Inside the laser gain medium the photon flux grows as a function of distance travelled inside the gain medium  a. Linearly b. exponentially c. quadratically d. logarithmically                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 |  |
| 4                        | Multimode's from a laser is observed due to  a. Gain medium  b. Incoherent pump source (eg. Flash lamp)  c. frequency instability  d. Laser cavity                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |  |
| 5                        | Host crystal used in the gain medium for Ruby Laser is  a. Yttrium Aluminium Garnet (YAG = $Y_3Al_5O_{12}$ ) b. Sapphire crystal ( $Al_2O_3$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |  |

|    | c. ZrO <sub>2</sub><br>d. LiYF <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                         |   |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 6  | A two-mirror cavity is formed by a convex mirror of radius $R_1$ = -1m and a concave mirror of radius $R_2$ = 1.5m. What is the maximum possible mirror separation if this is to remain a stable resonator?                                                                                                                                                                                         |   |
| 7  | Using the Lorentz oscillator model, derive the expression for dipole moment (for low intensity case)                                                                                                                                                                                                                                                                                                | 4 |
| 8  | Explain the working principle of a Distributed Feedback Laser?                                                                                                                                                                                                                                                                                                                                      | 4 |
| 9  | Describe wavelength division multiplexing in the context of optical communication?                                                                                                                                                                                                                                                                                                                  | 4 |
| 10 | <ul><li>a. Explain the working principle of Tunable external cavity diode laser (grating based) for single mode operation?</li><li>b. How to perform absorption spectroscopy using Tunable external cavity diode laser for an atomic alkali gas (eg Rubidium atomic gas)?</li></ul>                                                                                                                 | 8 |
| 11 | Describe the states of polarization of the following waves:<br>(a) $\vec{E} = \hat{i}E_0 \cos(kz - \omega t) \mp \hat{j}E_0 \sin(kz - \omega t \mp \pi/4)$<br>(b) $\vec{E} = \hat{i}E_0 \cos(kz - \omega t + \pi/8) \pm \hat{j}E_0 \sin(kz - \omega t \mp \pi/8)$                                                                                                                                   | 4 |
| 12 | Derive the expression for intensity obtained due to Fresnel diffraction of a plane wave incident normally on a circular aperture.                                                                                                                                                                                                                                                                   | 4 |
| 13 | Explain how the use of holograms can help prevent counterfeiting of currency notes.                                                                                                                                                                                                                                                                                                                 | 2 |
| 14 | A GaAs laser has a 400 micrometer long cavity with a refractive index of 3.6. The material gain function is guassian with its peak at 800nm and its $\sigma$ as 2nm. The maximum gain at 800nm is 50 cm <sup>-1</sup> . If the loss in the cavity is 30 cm <sup>-1</sup> and is independent of the wavelength. Find the number of modes which will exist in the laser when gain and loss are equal? | 3 |
| 15 | If the half width of the He-Ne 632.8nm transition is 1500MHz, what must be the length of the laser cavity to ensure only one longitudinal mode of oscillation?                                                                                                                                                                                                                                      | 3 |
| 6  | <ul><li>a. Explain the principle of Q-switching for generating pulsed laser?</li><li>b. Explain the working principle of fiber amplifier?</li></ul>                                                                                                                                                                                                                                                 | 4 |