E6893 Big Data Analytics [201812-46]

Yelp Rating Interpretation with Text-based and Graph-based features

Zhuoran Liu (zl2621) Mingye Chen (mc4414)

Motivation

Problem we want to solve:

Given specific user community and/or specific type of restaurant, find factors significantly contribute to the rating?

e.g. why <u>Chinese community in CU</u> thinks Shake Shack is a <u>good</u> place for <u>fast food</u>? possible answer: friend recommendation (<u>Graph</u> Feature), wholesome (Review <u>Text</u>)

- Rating <u>polarity</u> <u>predictions</u> with <u>interpretability</u> (positive & negative review)
- Features to be explored:
 - User Communities Detection
 - User & Restaurant Graph
 - Review Texts Mining
 - 0

Dataset, Algorithm, and Tools

- Yelp dataset challenge (Round 12), we select restaurants of Phoenix, AZ
- 376,172 reviews, 142,286 users, 3,833 restaurants
- Graph algorithms: user community detection, user-restaurant path finding, ...
- Text features engineering: n-gram model of review texts (bag of words), ...
- Random forest for rating polarity prediction, with text & graph features
- We can get feature importances by mean decrease impurity (gini importance)

Neo4j, sklearn, ...

Features come with datasets

- User: elite endorsement, avg star
- Restaurant: zip code, avg star, restaurant category, city
- Review: raw text, stars -> polarity (1, 2, 3: negative; 4, 5: positive)

Graph Intro & Meta Model

Graph features

- User Community: Louvain algorithm (maximizes a modularity for communities)
- User Centrality: PageRank, Betweenness, Closeness
- Key opinion leader: top 500 PageRank users
- Restaurant favored by different community (top 17 communities): users in community X's average rating of the restaurant more than user's total average rating in community X.
- Review:
 - (1) any key opinion leader followed by this user wrote reviews to this restaurant
 - (2) average social rating (1st & 2nd degree social circle reviewed this restaurant)

Text Features

- Interpretability-performance trade-off: catch-phrase based features
- Catch Phrases: frequently recurring phrases / ngrams signifies polarity w.r.t. certain aspects of the restaurant
- E.g. 'delicious'
 - 65969 occurrence;
 - positive on food;
- E.g. 'attentive'
 - 12817 occurrence;
 - positive on service
- E.g. 'reasonable prices'
 - 1427 occurrence;
 - positive on price;
- Strong signal for polarity classification

Text Features

- Preprocessing: lowercasing / tokenizing / stopwords removal
- Manually selected catch-phrases top-ranking uni-/bi-/tri- grams
- Covered most reviews
- Catch phrases classified into 13 categories resulting in 13 features
 - food overall
 - special need
 - alcohol
 - food amount
 - service overall
 - service efficiency
 - would return
 - would recommend
 - restaurant overall
 - location
 - o place
 - o price
 - sanitation

Experiments

- Multiple groups of experiments
- Do different factors weigh differently in different communities / restaurants types?
- Extracted subsets of reviews by
 - identified communities
 - restaurant categories
- 44 subsets + full data → 45 groups of experiments
- Results are interesting
- We selected several groups of experiments below

Ex. 1

- Full yelp dataset
- user_avgstar is used as baseline
- Conclusion:

 Users' criteria on number of stars
 vary greatly

Ex. 2

- Coffee-tea restaurants
- Community/social features are important
- Conclusion:
 People's preference on coffee / tea are sensitive to user group

0.10

0.00

0.05

0.15

0.20

0.25

Ex. 3

- Community 0
 - mixed user group with large number of members
- The following features are dominating:
 - restaurant overall
 - food overall
 - service overall
 - service efficiencyConclusion:
- In mixed user group, ratings are sensitive to judgement on intrinsic qualities of the restaurant

Ex. 4 KOL review

- Community 2 / 3 review to Chinese Restaurants
- Importance of <u>key opinion leaders</u>' introduction varies a lot
- Conclusion: KOL opinion may have different degree of influence in different communities
 E6893 Big Data Analytics Final Project Proposal

 © 2018 CY Lin, Columbia University

Conclusion

- Our classifier achieves ~80% accuracy on the full dataset;
- For different communities / types of restaurant, factors contribute different weight to final rating;
- Different users have different baseline rating scores;
- Restaurant owners can use our model to develop the customer strategy accommodating to different communities.

E6893 Big Data Analytics:

Yelp Rating Interpretation with Text-based and Graph-based features

Zhuoran Liu (zl2621) Mingye Chen (mc4414)

Thanks!

Youtube link:

https://www.youtube.com/watch?v=NwBog99CCNg