Soft margins

Hard margins:

for
$$i = 1, ..., m, y_i(w'x_i + b) \ge 1$$

Soft margins:

for
$$i = 1, ..., m$$
, $y_i(w'x_i + b) \ge 1 - \zeta_i$ $\zeta_i \ge 0$

The primal problem:

Let C be a constant that corresponds to the "amount of allowed softness". The function to be minimized and the linear inequality constraints are augmented to:

Minimize
$$\frac{1}{2}|w|^2 + C\sum_{i=1}^m \zeta_i$$

subject to the 2m linear inequality constraints:

for
$$i = 1, ..., m$$
, $y_i(w'x_i + b) \ge 1 - \zeta_i$, $\zeta_i \ge 0$

Intuitively, large values of C would emphasize the requirement that the ζ_i are small, and thus decrease the softness.

Derivation of the dual problem

The Lagrangian of the primal problem:

$$L(w, b, \zeta_1, \dots, \zeta_m, \alpha_1, \dots, \alpha_m, r_1, \dots, r_m) = \frac{1}{2} |w|^2 + C \sum_{i=1}^m \zeta_i + \sum_{i=1}^m \alpha_i (1 - \zeta_i - y_i(w'x_i + b)) - \sum_{i=1}^m r_i \zeta_i$$
 (1)

To compute the dual problem we need to minimize L with respect to w, b, ζ_i so that it is a function of only α_i, r_i .

The derivative of
$$L$$
 w.r.t. w gives:
$$w = \sum_{i=1}^{m} \alpha_i y_i x_i$$
The derivative of L w.r.t. b gives:
$$\sum_{i=1}^{m} \alpha_i y_i = 0$$
The derivative of L w.r.t. ζ_i gives:
$$C - \alpha_i - r_i = 0$$
(2)

Substituting these values in L and simplifying we get::

$$L(\alpha_1, \dots, \alpha_m, r_1, \dots, r_m) = -\frac{1}{2} \sum_{i=1}^m \sum_{j=1}^m \alpha_i \alpha_j y_i y_j x_i' x_j + \sum_{i=1}^m \alpha_i$$

This is exactly the same dual function as in the hard-margins case. For the dual problem we also need the last two constraints in (2), and $\alpha_i \geq 0, r_i \geq 0$. The difference between the hard and the soft case is that from the third equation in (2) and the condition $r_i \geq 0$ we have: $\alpha_i \leq C$.

The dual problem:

Maximize
$$L(\alpha_1, \dots, \alpha_m) = \sum_{i=1}^m \alpha_i - \frac{1}{2} \sum_{i=1}^m \sum_{j=1}^m \alpha_i \alpha_j y_i y_j x_i' x_j$$

subject to: $0 \le \alpha_i \le C$, $\sum_{i=1}^m \alpha_i y_i = 0$

This is a quadratic programming problem and we assume that there is a black-box that solves it. The solution gives the values of the α_i .

The Karush-Kuhn-Tucker Complementary Conditions

In this case the KKT condition gives:

$$\alpha_i (y_i(w'x_i + b) - 1 + \zeta_i) = 0$$

$$\zeta_i(\alpha_i - C) = 0$$

From the second condition it follows that either $\zeta_i = 0$, or $\alpha_i = C$. Therefore:

Recovering w, b

From (2) it follows that w can be recovered from the support vectors in the same way as in the hard-margins case:

$$w = \sum_{j=1}^{k} \alpha_j y_j x_j \tag{3}$$

Once w is determined the value of b can be computed from any one of the hard margins support vectors (with $\alpha_i < C$), using the same formulas as in the hard-margins case:

$$0 < \alpha_s < C \quad \to \quad b = \frac{1}{y_s} - w' x_s \tag{4.1}$$

As in the hard-margins case it is also possible to compute the value of b from all support vectors on the hard margins (satisfying $0 < \alpha_s < C$). Since the formulas for w, b are the same as in the hard-margins case we can also use kernels.

The value of ζ

In the hard-margins case the dual optimization problem can give infinite values, indicating that the primal problem has no solution (the data is not linearly separable.) This cannot happen in the soft-margins case. If the point i is wrongly classified by the hyperplane then we can always choose $\zeta_i = 1 - y_i(w'x_i + b)$, since this gives $\zeta \geq 0$ (in fact it gives $\zeta \geq 1$). If the point i is correctly classified but with distance from the margins that is too short, we can still choose $zeta_i = 1 - y_i(w'x_i + b)$, since we would still have $\zeta \geq 0$. The case in which $\zeta < 0$ corresponds to points that are correctly classified with $y_i(w'x_i + b) \geq 1$, and they are not inside the soft margins.

Example

i	0	1	2	3	4
x_i	0	1	2	3	4
y_i	-1	-1	1	-1	1
Lagrangian multiplier	α_0	α_1	α_2	α_3	α_4

The dual problem:

$$\begin{aligned} \text{maximize} \quad & L(\alpha_0,\dots,\alpha_4) = \alpha_0 + \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 \\ & -\frac{1}{2}(\alpha_1^2 + 4\alpha_2^2 + 9\alpha_3^2 + 16\alpha_4^2 \\ & - 4\alpha_1\alpha_2 + 6\alpha_1\alpha_3 - 8\alpha_1\alpha_4 - 12\alpha_2\alpha_3 + 16\alpha_2\alpha_4 - 24\alpha_3\alpha_4) \\ & = \alpha_0 + \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 - \frac{1}{2}(-\alpha_1 + 2\alpha_2 - 3\alpha_3 + 4\alpha_4)^2 \\ \text{subject to: } & 0 \leq \alpha_0 \leq C, \quad 0 \leq \alpha_1 \leq C, \quad 0 \leq \alpha_2 \leq C, \quad 0 \leq \alpha_3 \leq C, \quad 0 \leq \alpha_4 \leq C, \\ & -\alpha_0 - \alpha_1 + \alpha_2 - \alpha_3 + \alpha_4 = 0 \end{aligned}$$

With C=10 the solution (computed by the black box quadratic optimizer) is: $\alpha_0=0, \ \alpha_1=\alpha_4=3.55, \ \alpha_2=\alpha_3=10$. Therefore, the support vectors are x_1,x_2,x_3,x_4 . We can now compute w from (3):

$$w = -3.55 + 20 - 30 + 4 * 3.55 = 0.66666$$

The value of b can be computed, for example, from x_1 , the first support vector, using (4.1):

$$b = -1 - 0.666 = -1.666$$

It cannot be computed from x_2, x_3 since they satisfy $\alpha_i = C$. It can be computed from x_4 : using (4.1):

$$b = 1 - 0.6666 \times 4 = -1.6666$$

Observe that in this case x_2, x_3 are wrongly classified.

Distances

In our case the "hyperplane" is the point satisfying w'x+b=0, which is x=2.5. The distance of the hard-margins support vectors from that hyperplane is 1.5. Observe that 1.5/|w|=1, as expected. The ζ value for x_2 is 1-(-1/3)=4/3. Its distance from the hyperplane is $(1-\zeta)/|w|=-1/2$.