CprE 381: Computer Organization and Assembly Level Programming

Pipelining

Henry Duwe
Electrical and Computer Engineering
Iowa State University

Administrative

- HW6 due Mar 13
- Term Project
 - Part 2a checkin BEFORE Spring Break
 - Part 2b due by lab week after Spring Break
- Exam 2
 - April 1 (three weeks from today)
- Midterm Grades submitted
 - How should I view my Canvas grade?
 - Snapshot of first 8 weeks of semester

Review: Worst Case Timing (Load Instruction)

Review: Execution Time

Drawing on the previous equation:

$$Execution \ Time = \# \ Instructions \times \frac{Cycles}{Instruction} \times \frac{Seconds}{Cycle}$$

- To improve performance (i.e., reduce execution time)
 - Increase clock rate (decrease clock cycle time) OR
 - Decrease CPI OR
 - Reduce the number of instructions
- Designers balance cycle time against the number of cycles required
 - Improving one factor may make the other one worse...

Review: Multicycle Processor

A Pipelined MIPS Processor

- Start the next instruction before the current one has completed
 - Improves throughput total amount of work done in a given time
 - Instruction latency (execution time, delay time, response time time from the start of an instruction to its completion) is not reduced

- Clock cycle (pipeline stage time) is limited by the slowest stage
- For some instructions, some stages are wasted cycles

MIPS Pipeline Datapath Modifications

- What do we need to add/modify in our MIPS datapath?
 - State registers between each pipeline stage to isolate them

Duwe, Spring 2019 © ISU CprE 381: Pipelining Lec09.1.7

MIPS Pipeline Control Path Modifications

All control signals can be determined during Decode

Implementing Control

Pipelining the MIPS ISA

What makes it easy? (MIPS-specific)

- All instructions are the same length (32 bits)
 - Can fetch in the 1st stage and decode in the 2nd stage
- Few symmetric instruction formats (three)
 - Can begin reading register file in 2nd stage
- Memory operations can occur only in loads and stores
 - Can use the execute stage to calculate memory addresses
 - Can access memory in one stage
- Each MIPS instruction writes at most one result (i.e., changes the machine state) and does so near the end of the pipeline (MEM and WB)

What makes it hard? (General)

- Structural hazards: what if we had only one memory?
- Control hazards: what about branches?
- Data hazards: what if an instruction's input operands depend on the output of a previous instruction?

Graphically Representing MIPS Pipeline

- Can help with answering questions like:
 - How many cycles does it take to execute this code?
 - What is the ALU doing during cycle 4?
 - Is there a hazard, why does it occur, and how can it be fixed?

Duwe, Spring 2019 © ISU CprE 381: Pipelining Lec09.1.11

Why Pipeline? For Performance!

Once the pipeline is full, one instruction is completed every cycle so CPI = 1

A Simple Performance Analysis

- Suppose 2ns for memory access, 2ns for ALU operation, and 1ns for register file read or write
 - -Compute instr rate
- Nonpipelined Execution (limited to 1 instruction in proc):
 - lw: IF + Read Reg + ALU + Memory + Write Reg = 2 + 1 + 2 + 2 + 1 = 8 ns
 - add: IF + Read Reg + ALU + Write Reg = 2 + 1 + 2 + 1 = 6 ns
 - Single-cycle: 1/8ns
 - Multi-cycle: 1/9ns
- Pipelined Execution (steady-state full pipeline):
 - -Cycle time: Max(IF,Read Reg,ALU,Memory,Write Reg) = 2 ns
 - -1/2ns

A Simple Performance Analysis

- Suppose 2ns for memory access, 2ns for ALU operation, and 1ns for register file read or write
 - Compute instr rate
- Nonpipelined Execution (limited to 1 instruction in proc):

In-class Assessment!

Access Code: =====

Note: sharing access code to those outside of classroom or using access while outside of classroom is considered cheating

- Pipelined Execution (steady-state full pipeline):
 - -Cycle time: Max(IF,Read Reg,ALU,Memory,Write Reg) = 2 ns
 - -1/2ns

Acknowledgments

- These slides contain material developed and copyright by:
 - Joe Zambreno (Iowa State)
 - David Patterson (UC Berkeley)
 - Mary Jane Irwin (Penn State)
 - Christos Kozyrakis (Stanford)
 - Onur Mutlu (Carnegie Mellon)
 - Krste Asanović (UC Berkeley)