Stochastic and Time-Series Foundations for GARCH (with selected metrics implemented in utils.py)

Guillem Borràs

Abstract

This note provides a master's-level, conceptually focused yet mathematically rich overview of the discrete-time stochastic and time-series foundations underlying GARCH-type volatility models, and the key metrics implemented in the referenced utils.py. We cover returns definitions, stationarity and ergodicity, stylized facts of asset returns, ARCH/GARCH specifications and conditions, innovation distributions (Gaussian vs. Student-t), concise treatment of VaR/CVaR, diagnostics (ACF and QQ-plots), and a summary of additional performance and risk measures (Sharpe, Sortino, drawdowns, beta/alpha, etc.).

Contents

1	Discrete-Time Stochastic Processes and Modeling Foundations	1
2	Returns: Definitions, Scaling, and Aggregation	2
3	Stylized Facts of Asset Returns	2
4	ARCH/GARCH: Conditional Heteroskedasticity Models	3
5	Innovation Distributions: Gaussian versus Student- t	3
6	Diagnostics: ACF and QQ-Plot (Model Adequacy)	4
7	Risk Measures (Brief): VaR and CVaR	4
8	Selected Metrics and Formulas Reflected in utils.py	4
9	Practical Workflow Aligned with the Code	5

1 Discrete-Time Stochastic Processes and Modeling Foundations

Random walks and Brownian motion (intuition). In continuous time, a standard Brownian motion $(W_t)_{t\geq 0}$ has $W_0=0$, independent and stationary increments, and $W_t-W_s\sim \mathcal{N}(0,t-s)$ for t>s. In discrete time, the sum $S_n=\sum_{i=1}^n \xi_i$ with i.i.d. increments ξ_i (mean 0, finite variance) provides the canonical random-walk analogue. Many financial return models in discrete time can be viewed as stochastic difference equations for (r_t) , the (log) returns.

Stochastic difference equations. A basic linear example is AR(1): $X_t = c + \phi X_{t-1} + \varepsilon_t$ with $|\phi| < 1$ and i.i.d. noise (ε_t) . GARCH-type models can be seen as difference equations for the conditional variance (Sec. 4): σ_t^2 is driven by its lag(s) and lagged squared shocks.

Stationarity.

Definition 1 (Strict and covariance stationarity). A process (Y_t) is *strictly stationary* if the joint law of $(Y_{t_1}, \ldots, Y_{t_k})$ is invariant to time shifts. It is *covariance stationary* if $\mathbb{E}[Y_t] = \mu$ is constant, $\operatorname{Var}(Y_t) = \sigma^2$ is finite and constant, and $\gamma(k) = \operatorname{Cov}(Y_t, Y_{t-k})$ depends only on the lag k.

Covariance stationarity is typically assumed for (demeaned) return processes, enabling stable estimation of moments and autocovariances.

Ergodicity.

Definition 2 (Ergodicity (informal)). A stationary process is *ergodic* if time averages converge to ensemble averages; in practice, sample moments computed on a long realization converge (in probability) to their population counterparts.

Ergodicity justifies estimation from a single time series realization. Many ARMA and GARCH models are ergodic under standard parameter constraints.

2 Returns: Definitions, Scaling, and Aggregation

Let P_t denote the asset price at time t. The simple (arithmetic) return and the log return are

$$R_t = \frac{P_t - P_{t-1}}{P_{t-1}} = \frac{P_t}{P_{t-1}} - 1, \qquad r_t = \log \frac{P_t}{P_{t-1}} = \log(1 + R_t).$$

For small moves $r_t \approx R_t$, but r_t is additive across time: $\log(P_T/P_0) = \sum_{t=1}^T r_t$.

Annualization (daily data). If there are n_y trading days/year (e.g. 252): the annualized mean is $\mu_{\rm ann} \approx n_y \, \mu_d$; the annualized volatility is $\sigma_{\rm ann} \approx \sqrt{n_y} \, \sigma_d$.

3 Stylized Facts of Asset Returns

Common empirical regularities motivating volatility models:

- Weak linear predictability of returns. Daily returns r_t typically exhibit little to no autocorrelation.
- Volatility clustering. Large absolute returns tend to follow large absolute returns (and small follow small), implying serial dependence in $|r_t|$ and r_t^2 .
- Heavy tails. Return distributions exhibit excess kurtosis relative to $\mathcal{N}(0, \sigma^2)$.
- Leverage effect. Negative returns precede higher subsequent volatility (asymmetry not captured by symmetric GARCH).
- Persistence in volatility. Autocorrelations of $|r_t|$ or r_t^2 decay slowly; GARCH(1,1) often captures this via a high $\alpha_1 + \beta_1$.

4 ARCH/GARCH: Conditional Heteroskedasticity Models

Mean and variance equations. Let r_t denote (demeaned) returns. The mean is often modeled as $r_t = \mu + \varepsilon_t$ with a constant μ (or ARMA, if needed). Volatility models posit

$$\varepsilon_t = \sigma_t z_t, \quad \mathbb{E}[z_t] = 0, \quad \text{Var}(z_t) = 1, \quad (z_t) \text{ i.i.d. (conditionally)}.$$

An ARCH(q) model sets

$$\sigma_t^2 = \alpha_0 + \alpha_1 \varepsilon_{t-1}^2 + \dots + \alpha_q \varepsilon_{t-q}^2, \qquad \alpha_0 > 0, \ \alpha_j \ge 0.$$

The widely used GARCH(p,q) extends this as

$$\sigma_t^2 = \omega + \sum_{i=1}^p \beta_i \sigma_{t-i}^2 + \sum_{j=1}^q \alpha_j \varepsilon_{t-j}^2, \qquad \omega > 0, \ \alpha_j, \beta_i \ge 0.$$

In practice, GARCH(1,1) suffices in many cases:

$$\sigma_t^2 = \omega + \alpha_1 \varepsilon_{t-1}^2 + \beta_1 \sigma_{t-1}^2.$$

Stationarity and unconditional variance. For GARCH(1,1), covariance stationarity requires $\alpha_1 + \beta_1 < 1$. Then the unconditional (long-run) variance is

$$\mathbb{E}[\sigma_t^2] = \frac{\omega}{1 - \alpha_1 - \beta_1}.$$

The persistence of volatility shocks is governed by $\alpha_1 + \beta_1$. A convenient half-life (in days) is

half-life =
$$\frac{\ln(0.5)}{\ln(\alpha_1 + \beta_1)}$$
.

Estimation. Parameters $(\mu, \omega, \alpha_1, \beta_1)$ (and possibly additional noise parameters) are typically estimated by (quasi-)maximum likelihood. Model comparison can be done via log-likelihood and information criteria (AIC/BIC).

5 Innovation Distributions: Gaussian versus Student-t

The conditional distribution of $r_t|\mathcal{F}_{t-1}$ is often taken as Gaussian, $z_t \sim \mathcal{N}(0,1)$. However, standardized residuals frequently retain fat tails; a Student-t innovation $z_t \sim t_{\nu}(0,1)$ (variance 1) with degrees of freedom $\nu > 2$ accommodates heavier tails.

- Gaussian GARCH. Computationally convenient baseline; QMLE remains consistent for variance dynamics even under mild misspecification.
- Student-t GARCH. Adds tail parameter ν ; often improves fit (higher likelihood, lower BIC) and produces more realistic tail risk forecasts.
- Unconditional heavy tails. Even with Gaussian innovations, the unconditional distribution of $\varepsilon_t = \sigma_t z_t$ is heavy-tailed due to volatility mixing; Student-t innovations further enhance tail fit at the conditional level.

6 Diagnostics: ACF and QQ-Plot (Model Adequacy)

After fitting, check that standardized residuals $z_t = \varepsilon_t/\sigma_t$ are approximately i.i.d. with the assumed law:

- ACF of z_t and z_t^2 . Little to no autocorrelation should remain in z_t (mean adequacy) and in z_t^2 (volatility adequacy). Ljung–Box and Engle's ARCH tests are standard.
- QQ-plot vs. assumed innovations. Compare empirical quantiles of z_t to the theoretical quantiles of $\mathcal{N}(0,1)$ or t_{ν} . Systematic deviations in the tails indicate misspecified innovation distribution.
- Information criteria. Use AIC/BIC to compare Gaussian vs. Student-t (and alternative mean specifications).

7 Risk Measures (Brief): VaR and CVaR

Let returns be r (loss L = -r). For confidence level $q \in (0, 1)$:

$$\begin{aligned} \operatorname{VaR}_q &= \inf\{x: \ \mathbb{P}(L \leq x) \geq q\} = -\operatorname{Quantile}_{1-q}(r), \\ \operatorname{CVaR}_q &= \mathbb{E}[L \mid L \geq \operatorname{VaR}_q]. \end{aligned}$$

Historical VaR/CVaR are computed from the empirical distribution. Under a parametric model, if $r \sim \mathcal{N}(\mu, \sigma^2)$,

$$\operatorname{VaR}_q = -(\mu + \sigma z_{1-q}), \quad \operatorname{CVaR}_q = -\mu + \frac{\sigma \phi(z_{1-q})}{1-q},$$

where z_{1-q} is the (1-q)-quantile of $\mathcal{N}(0,1)$ and ϕ its pdf. With Student-t innovations, replace the Gaussian quantile/pdf accordingly.

8 Selected Metrics and Formulas Reflected in utils.py

Below we summarize the principal metrics and computations (notation assumes daily returns r_t and n_v trading days/year).

Annualized return and volatility. With sample mean $\hat{\mu}_d = \frac{1}{T} \sum_{t=1}^T r_t$ and std. $\hat{\sigma}_d$,

ann. return =
$$n_y \hat{\mu}_d$$
, ann. vol = $\sqrt{n_y} \hat{\sigma}_d$.

Sharpe and Sortino ratios. Let r_f be the annual risk-free rate and $r_{f,d} \approx r_f/n_y$ its daily equivalent. The (annualized) Sharpe is

Sharpe =
$$\frac{\widehat{\text{ann. return}} - r_f}{\widehat{\text{ann. vol}}}$$
.

The Sortino replaces volatility by annualized downside deviation σ_{ann}^- computed using only $r_t < r_{f,d}$:

$$Sortino = \frac{\widehat{ann. return} - r_f}{\sigma_{ann}^-}.$$

Drawdowns, Calmar ratio. Define the (gross) cumulative index $C_t = \prod_{s \le t} (1 + r_s)$ with $C_0 = 1$. Drawdown $DD_t = \frac{C_t}{\max_{s \le t} C_s} - 1 \le 0$. The maximum drawdown is $\min_t DD_t$. The Calmar ratio is CAGR/|MDD|.

Hit ratio, average gain/loss, Omega. Hit ratio = $\frac{1}{T} \sum_{t=1}^{T} \mathbf{1}\{r_t > 0\}$. Average gain = $\mathbb{E}[r_t \mid r_t > 0]$, average loss = $\mathbb{E}[r_t \mid r_t < 0]$. A simple Omega-like ratio used in code is

$$\Omega_0 = \frac{\sum_{t:r_t > 0} r_t}{\sum_{t:r_t < 0} (-r_t)},$$

interpretable as gross gains over gross losses.

Benchmark beta/alpha and correlation. Given benchmark returns $r_t^{(b)}$, beta is

$$\beta = \frac{\operatorname{Cov}(r_t, r_t^{(b)})}{\operatorname{Var}(r_t^{(b)})}.$$

With annualized means $(\mu_{\text{ann}}, \mu_{\text{ann}}^{(b)})$, the (annual) CAPM alpha is

$$\alpha_{\rm ann} = (\mu_{\rm ann} - r_f) - \beta \left(\mu_{\rm ann}^{(b)} - r_f\right),\,$$

and $Corr(r_t, r_t^{(b)})$ is the linear correlation.

Distributional fits (Normal vs. Student-t). Normal MLE: $\hat{\mu} = \bar{r}$, $\hat{\sigma} = \sqrt{\frac{1}{T} \sum (r_t - \bar{r})^2}$ (MLE uses T in the denominator). Student-t MLE: estimate (ν, μ, σ) by maximizing $\sum_t \log f_{t_{\nu}}(r_t \mid \mu, \sigma)$ subject to $\nu > 2$. Model comparison via AIC/BIC.

GARCH(1,1) fit and unconditional variance. Estimate $(\mu, \omega, \alpha_1, \beta_1)$ (and ν if Student-t) by ML. If $\alpha_1 + \beta_1 < 1$, the unconditional variance is $\omega/(1 - \alpha_1 - \beta_1)$. Standardized residuals $z_t = \varepsilon_t/\sigma_t$ are used for diagnostics (ACF, QQ).

Rolling metrics. Rolling volatility over window w: $\hat{\sigma}_{t,w} = \sqrt{n_y} \cdot \operatorname{sd}(r_{t-w+1}, \dots, r_t)$. Rolling Sharpe (with $r_f = 0$) is $(n_y \cdot \bar{r}_{t,w})/\hat{\sigma}_{t,w}$.

9 Practical Workflow Aligned with the Code

- 1. **Data preparation.** Clean prices (remove non-positive values, forward-fill small gaps), convert to returns (simple or log).
- 2. Exploratory diagnostics. Check histograms, skew/kurtosis, and correlations; compute summary metrics.
- 3. **Benchmarking.** Align series to a benchmark to compute β , α , and correlation.
- 4. Volatility modeling. Fit Normal and Student-t GARCH(1,1); compare AIC/BIC; inspect persistence $\alpha_1 + \beta_1$ and unconditional variance.
- 5. **Model checking.** Use ACF of z_t and z_t^2 , QQ-plots, and goodness-of-fit diagnostics; refine innovation choice if needed.

- 6. **Risk estimation.** Produce historical and parametric VaR/CVaR; reconcile model-based tails with empirical evidence.
- 7. Rolling views and reporting. Compute rolling vol/Sharpe and generate concise commentary summarizing fit and risk characteristics.

References (suggested)

References

- [1] R. F. Engle (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. *Econometrica* 50(4), 987–1007.
- [2] T. Bollerslev (1986). Generalized Autoregressive Conditional Heteroskedasticity. *Journal of Econometrics* 31(3), 307–327.
- [3] J. D. Hamilton (1994). Time Series Analysis. Princeton University Press.
- [4] R. S. Tsay (2010). Analysis of Financial Time Series (3rd ed.). Wiley.
- [5] A. J. McNeil, R. Frey, and P. Embrechts (2005). *Quantitative Risk Management*. Princeton University Press.
- [6] R. Cont (2001). Empirical properties of asset returns: stylized facts and statistical issues. *Quantitative Finance* 1(2), 223–236.