10/568266 IAP9 Rec'd PCT/PTO 14 FEB 2006

Express Mail Label No.: EV519660729US

SUBSTITUTE SPECIFICATION – MARKED UP VERSION

SPECIFICATION

SOCCER BALL TYPE ROOM STRUCTURE

CROSS-REFERENCE TO RELATED APPLICATION

This is a U.S. national stage of application No. PCT/JP2003/11622, filed on September 11, 2003, the disclosure of which is also incorporated herein by reference.

FIELD OF THE INVENTION
This invention relates to a soccer ball type room structure having a living
space inside, further relate to a soccer ball type room structure that can be easily built
and transported and thus can be used for various purposes.
BACKGROUND OF THE INVENTION
In recent years living in closer touch with nature has become
increasingly popular. Although to think about the issues of the global environment it is a
good idea to live closer to the splendor of nature, it should not be done at nature's
expense. Similarly, although it is important to "enjoy" living close to nature, it is also
important not to put oneself in danger of facing with nature's force in order to achieve
this.
[0003] After repeated examinations and many considerations, the inventor has
come to realize that using a structure made of the combination of hexagonal shape and
pentagonal shape can be quite effective to form a living space, which makes it possible
for people to commune with nature while protecting them from a harsh environment,
and also which is easy to built build and transport.
and also which is easy to built dans port.
The idea of using pentagonal and hexagonal shapes has also been used in
other patented structures, such as "Dome Structure" (JP Patent 2003-27595, hereinafter
referred to as "Reference 1"), and "Construction of Spherical Structures for Use as
Whole or Partial Building Units" (JP Patent 2001-132893, herein-after referred to as
"Reference 2").
As shown in Fig. 10 in (JP Patent 2003-27595) Reference 1, the "Dome
Structure" is "composed of supports connected together in a triangular truss, forming a

rigid frame that is nearly half-spherical. The frame is covered with interlocking pentagonal and hexagonal panels". The invention of (JP Patent 2003-27595)Reference 1 was developed to address a problem that "previous designs of dome-shaped structures were hampered by problems concerning weight, and were difficult to design and were time-consuming to assemble" as stated in paragraph 0007 of the specification. In paragraph 0032, (JP Patent 2003-27595)Patent 1 states that "this new [0006] design reduces stress on the now shorter beams of the structure, resulting in a lighter frame." However, since this structure is a- "dome shape", it is not designed for the use under a stormy environment, or on water, thus this structure cannot form a living space for communing with nature. The "spherical structure" described in (JP Patent 2001-132893)Reference [0007] 2 is, as shown in Fig. 11, "a unit composed of interconnected flat hexagonal panels; 3 of the 6 panels can be removed in order to connect the unit to another identical unit for the formation of a larger structure, and are easily interchangeable." In paragraph 0007 of (JP Patent 2001-132893)Reference 2 it states: "The object of this invention is to provide a strong, light framework that is easily combined with other like modules to easily create a larger structure." Paragraph 0038 of (JP Patent 2001-132893)Reference 2 states that this invention "facilitates the assembly of large, lightweight structure that can be easily assembled"; however, since structure is a frame unit as shown in Fig. 11 it is not designed for the use under a stormy environment, or on water, thus this structure cannot form a living space for communing with nature. Keeping the above examples and their problems in mind, the inventor of this invention has developed this invention after many considerations and experiments to form a living space, which makes it possible for people to commune with nature while protecting them from a harsh environment, and also which is easy to built and transport. Accordingly, the object of this invention is tomay provide soccer ball type room structures that can provide a living space to enjoy communing with nature while they can be easily built and transported, and can be used in a stormy environment or on water.

each pair of the first panels (10) are connected with one of the second panels (20). In this manner, the SBTRS (100) contains 12 pentagonal second panels (20) and 20 hexagonal first panels (10), which form 32 faces for the structure.

[0017] Since the SBTRS (100) is not made of soft materials like a real soccer ball, the end faces of the first installation frames (10) and the second installation frames (20) each supporting the first panel (10) or the second panel (20) must be inclined faces as shown in Figs. 6 and 7. Specifically, as described above, the first panel end faces (11a) of the first installation frames (11) are configured at approx. 69° relative to the upper surfaces of the first panels (10) on the first installation frames (11), the second panel end faces (11b) of the first installation frames (11) are configured at approx. 72° relative to the upper surfaces of the first panels (10) on the first installation frames (11), and the end faces (21a) of the second installation frames (21) are configured at approx.

72° relative to the upper surfaces of the second panels (20) on the second installation

[0018] Although the hexagonal and pentagonal panels are of different shape, they are all flat, which facilitates their transport and storage. Furthermore, by following the simple assembly rules as shown in Figs. 6, 7 and 8, one can easily assemble a SBTRS (100). Since this structure is meant for human habitation, parts such as a door (51), windows (52), a ventilation port (54), an exhaust port (55), or a underwater view port (53) are pre-built into the panels, and the panels having the parts need to in place during assembly.

frames (21).

The SBTRS (100) shown in Fig. 1 is a lodge type suitable for camping use, and is built upon a foundation (60) with a door (51) and windows (52) built into the structure's center. In this case the structure can be stabilized with rope fixed to ground stakes (62), and a ladder (61) can be used to reach the door (51). The windows (52), if they are configured on the upper part of the SBTRS (100), can be used for astronomical observation.

The SBTRS (100) shown in Fig. 2 is also a type suitable for outdoor leisure activities, and is semi_subterranean, which enables the user to gain entry without the need of a ladder (61). The SBTRS (100) shown in Fig. 3 is meant to float on water, and contains an underwater view port (53) built into its base.

[0028] At the building site, the first panels (10) and second panels (20) shown in
Fig. 5 are each mounted onto one of the mounting openings (31) of the support
framework (30) as shown in Fig. 9 with arrows. This SBTRS (100), based on the
support framework (30), can be used for any of the purposes shown in Figs. 1 to 3.
[0029] Accordingly, the SBTRS (100) as described in claim 2 can also provide a
living space to enjoy communing with nature while they can be easily built and
transported, and can be used in a stormy environment or on water.
BRIEF DESCRIPTION OF DRAWINGS
[0030] Embodiments will now be described, by way of example only, with
reference to the accompanying drawings which are meant to be exemplary, not limiting,
and wherein like elements are numbered alike in several Figures, in which:
[0031] Fig. 1 is a front view of a SBTRS (100) designed to be ground-based.
[0032] Fig. 2 is a front view of a SBTRS (100) designed to be semi
subterranean.
[0033] Fig. 3 is a front view of a SBTRS (100) designed to be used on water.
Fig. 4 is a cross-sectional end view taken along line 1-1 of the SBTRS
(100) shown in Fig. 1.
[0035] Fig. 5 is a regular hexagonal first panel (10) (A) and a regular pentagonal
second panel (20) (B).
[0036] Fig. 6 is a partial enlarged cross-sectional view of two first panels (10)
mounted on first installation frames (11).
[0037] Fig. 7 is a partial enlarged cross-sectional view of a first panel (10) and a
second panel (20), mounted on a first installation frame (11) and a second installation
frame (12) respectively, and connected together.
[0038] Fig. 8 is a top plan view of a basic pattern in which the first panels (10)
and second panels (20) are interconnected.
and second parieto (20) are interestinestes.

[0040] Fig. 10 is a top plan view of a conventional structure.
Fig. 11 is a top plan view of another conventional structure.
EXPLANATIONS OF THE LETTERS OF NUMERALS:
100Soccer ball type room structure
10 First panel
11 First-installation frame
11a First-panel end-face
11b Second panel end face
20 Second panel
21 Second installation frame
21a End face
30 Support framework
31 Mounting opening
40 Sealant
41 Bolt
51 Door
52 Window
53 Underwater view port
54 Ventilation port
55 Exhaust port
60 Foundation
61 Ladder
62 Ground stake
DECT MODE FOR CARRYING OUT THE INTENTION
BEST MODE FOR CARRYING OUT THE INVENTION
Now, the best mode for carrying out the invention is explained in a first
embodiment shown Figs. 1 to 8 and a second embodiment shown Fig. 2, respectively.
[Embodiment 1]
[0043] A ground based SBTRS (100) as shown Fig. 1, a semi_subterranean

SBTRS (100) as shown Fig. 2, and a waterborne SBTRS (100) shown Fig. 3 are all composed of a plurality of regular hexagonal first panels (10) and a plurality of regular pentagonal second panels (20) having the sides of the same length as those of the first panels (10), the first panels (10) and the second panels (20) being combined with each other to form a living space inside of the SBTRS (100).

The first panels (10), as shown in Fig. 5(A), are fixed to first installation frames (11) having the same contours as the first panels (10), by the rear surface of the first panels; the second panels (20), as shown in Fig. 5(B), are fixed to second installation frames (21) having the same contours as those of the second panels (20), by the rear surface of the second panels (20). Therefore, the rigidity of the first panels (10) and the second panels (20) are secured by the first installation frames (11) and the second installation frames (21), thus the rigidity of the whole SBTRS is secured.

For fixing the first panels (10) and the second panels (20) to the first installation frames (11) and the second installation frames (21) respectively, as shown in Figs. 6 and 7, sealant (40) made of shock-absorbing material such as rubber is used between them to secure the shock-absorption and the airtightness. This sealant (40) is also applied to the joints between first panel end faces (11a), and between a second panel end face (11b) and an end face (21a). Also, it is easy to thoroughly insulate the SBTRS (100) by applying insulating material to the reverse side of the first installation frames (11) and second installation frames (21) (at the bottom side in Fig. 7).

In order to form a soccer ball shape by connecting the first and second installation frames, the angle of inclination of the joints between first mounting frames (11) and the joints between a first mounting frame (11) and a second mounting frame (21) are slightly different. This is due to the difference in shapes of the hexagonal first panels (10) and the pentagonal second panels (20).

Accordingly, in this best mode, the first panel end faces (11a) of the first installation frames (11) are configured at approximately 69° and the second panel end faces (11b) of the first installation frames (11) are configured at approximately 72° relative to the upper surfaces of the first panels (10) on the first installation frames (11). On the other hand, with respect to the second panel (20), the end faces (21a) of the second installation frames (21) are configured at approximately 72° relative to the upper surface of the second panel (20) on the second installation frames (21).

soccer ball shape having a plurality of mounting openings (31), on which first hexagonal and second pentagonal panels are mounted (as shown in Fig. 9 with arrows).
The first panels (10) and second panels (20) used for the SBTRS (100) of the second embodiment may have the first installation panels (11) and one of the second installation panel (21) respectively. However, since the support framework (30) maintains its own rigidity, the first panels (10) and second panels (20) can be used alone, without the need of the corresponding installation panels.
POSSIBILITIES FOR APPLIED USE
[0055] This invention, as explained in the above, is characterized by:
[0056] "A soccer ball type room structure (100) comprising a plurality of regular hexagonal first panels (10), and a plurality of regular pentagonal second panels (20) having sides of the same length as sides of said first panels (10), said first and second panels being combined with each other to form a living space inside;
said first panels (10) being fixed to first installation frames (11) having same contours as contours of said first panels, first panel end faces (11a) of said first installation frames (11) being configured at approximately 69° relative to upper surfaces of the first panels (10) on the first installation frames (11), and the second panel end faces (11b) of the first installation frames (11) being configured at approximately 72° relative to the upper surfaces of the first panels (10) on the first installation frames (11);
said second panels (20) being fixed to second installation frames (21) having same contours as contours of said second panels, end faces (21a) of said second installation frames (21) being configured at approximately 72° relative to upper surfaces of the second panels (20) on the second installation frames."
[0059] Therefore, this invention can provide soccer ball type room structures that can provide a living space to enjoy communing with nature while they can be easily built and transported, and can be used in a stormy environment or on water.
Since the SBTRS (100) enables people to live in a more natural setting

assemble, production and sale of this product generates high industrial applicability.

[0061] While the preferred embodiments of the present invention have been described using specific terms, such description is for illustrative purposes only, and it is to be understood that changes and variations may be made without departing from the spirit or scope of the appended claims.

CLAIMS

1. A soccer ball type room structure (100)—comprising a plurality of regular hexagonal first panels—(10), and a plurality of regular pentagonal second panels (20)—having sides of same length as sides of said first panels—(10), said first and second panels being combined with each other to form a living space inside of said structure;

said first panels (10)-being fixed to first installation frames (11)-having same contours as contours of said first panels, first panel end faces (11a)-of said first installation frames (11)-being configured at approximately 69° relative to upper surfaces of the first panels (10)-on said first installation frames (11), and said second panel end faces (11b)-of said first installation frames (11)-being configured at approximately 72° relative to the upper surfaces of said first panels (10)-on said first installation frames-(11);

said second panels (20) being fixed to second installation frames (21) having same contours as contours of said second panels, end faces (21a) of said second installation frames (21) being configured at approximately 72° relative to upper surfaces of the second panels (20) on the second installation frames.

2. A soccer ball type room structure (100)—comprising a plurality of regular hexagonal first panels—(10), and a plurality of regular pentagonal second panels (20)—having sides of same length as sides of said first panels—(10), said first and second panels being combined with each other to form a living space inside of said structure;

said soccer ball type room structure (100) further comprising a soccer ball shaped support framework (30) consisting of a plurality of angle braces with identical length connected to each other at ends of said angle braces and having a plurality of mounting openings (31) on which said first panels (10) and said second panels (20) are each mounted.

SUMMARYABSTRACT

A soccer ball type room structure (100) capable of being easily transported and constructed and capable of forming a living space for communing with nature, comprising a plurality of regular hexagonal first panels (10) and a plurality of regular pentagonal second panels (20) having the sides of the same length as those of the first panels (10)—which are connected with each other to form the living space inside, wherein first installation frames (11)-having the same contours as the first panels (10) are fixed to the rear surfaces of the first panels (10), the first panel end faces (11a) of the first installation frames (11)—are configured at approx. 69° relative to the upper surfaces of the first panels (10) on the first installation frames (11) and the second panel end faces (11b) of the first installation frames (11) are configured at approx. 72° relative to the upper surfaces of the first panels (10) on the first installation frames (11), and second installation frames (21)-having the same contours as those of the second panels (20) are fixed to the rear surfaces of the second panels (20) and the end faces (21a) of the second installation frames (21) are configured at approx. 72° relative to the upper surfaces of the second panels (20) on the second installation frames (21).