LC22: Evolution et équilibre chimique

Expérience 1 : Effet de la température sur l'équilibre entre $NO_{2(g)}$ et $N_2O_{4(g)}$

Couleurs différentes donc équilibre dépend de la température

Expérience 2 : Mesure du pKa de l'acide éthanoïque

• On prépare une solution d'acide éthanoïque à $C_0 = 1.\,10^{-2}\,mol.\,L^{-1}$

	$CH_3COOH_{(aq)}$	+ <i>H</i> ₂ <i>O</i> :	$= CH_3COO_{(aq)}^-$	$+ H_3 O_{(aq)}^+$
Etat initial	C_0	excès	0	0
Equilibre	$C_0 - \xi_{eq}$	excès	ξ_{eq}	ξ_{eq}

$$K_a(T) = \frac{\xi_{eq}^2}{C^0(C_0 - \xi_{eq})}$$

$$[H_3O^+] = \xi_{eq} = 10^{-pH}$$

 \Rightarrow En mesurant à l'aide d'un pH-mètre la pH de la solution on peut determiner $K_a(T_{amb})$

Expérience 3 : Effet de la pression sur l'équilibre entre $NO_{2(g)}$ et $N_2O_{4(g)}$

même couleur donc déplacement vers la droite

Expérience 4 : Rupture d'équilibre - synthèse d'un ester de poire - Dean-Stark

• Réaction d'esterification :

- On récupère l'eau pour connaître l'avancement:
 - > cyclohexane moins dense que l'eau
 - > eau et cyclohexane non miscibles

$$K(T) = \frac{[eau][ester]}{[alcool][acide\ carboxylique]}$$

Si [eau] = 0, rupture d'équilibre car $Q_r < K$ toujours

