

Torchwood物理学社 2022/11/13

- 1. 我进行研究的目的是什么?
- 2. 在我心中,研究应该是什么样子的?
- 3. 我有过研究的经验吗? 遇到过什么困难?
- 4. 我有研究的计划吗? 计划外的情况怎么办?

景

CONTENTS

1	常规研究步骤
2	查找资料
3	理论计算
4	实验设计
5	数据处理

7 仿真

常规研究步骤

从入门开始

找到"第一篇文献",确定切入点与关键词

CUPT

GYPT官方网站的指引

CAYPT官方网站的指引

一般性的课题

本领域的综述

查找原始论文

通过切入点与关键词查找更多的文章与书籍

文章

查找: Google学术镜像

下载: Sci-Hub

书籍

Library Genesis

Zlibrary

前人的CUPTGuide

更多灵感

- 1. 使用Bing/Google直接搜索
 - 2. 爱物理
- 3. 流媒体搜索(如Bilibili, Youtube)
 - 4. Wikipedia (EN优先)
 - 5. 课题相关的教材的对应章节
 - 6. 中山大学图书馆/知网等中文论文库
 - 7. IPT往年的题目

管理文献

入门

文件夹、网盘

进阶

EndNote, NoteExpress, Zotero

便于整理、共享文献

阅读文献

能读纯英文的最好,不能的话也可以借助一些软件

例如

百度、有道翻译的划译 知云文献翻译

可以利用平板做批注

做点笔记

Word	Markdown	LATEX	
Office/WPS	<u>Typora</u> /vscode···	TeXStudio/CTeX/ Overleaf···	
公文类排版 门槛低 公式输入比较折磨	轻量级 适用性较好	公式输入 排版论文	
LATEX内容敬请期待SPS科研技能分享会(二)			

常规研究步骤

查找资料

理论计算

实验设计

数据处理

展示与示意图

仿真

录制屏幕?

不被发现的方法 OBS Studio

理论计算

CUPT2022 11橡皮筋上的球

理论计算

$$\begin{split} m\ddot{r} &= -\frac{\mu mg(\dot{r} + \dot{\alpha}R)}{\sqrt{(\dot{r} + \dot{\alpha}R)^2 + \left(v - \dot{\theta}R\right)^2}} + F_{kr} + \frac{mv^2}{R + r} & m\dot{v} &= -\frac{\mu mg(v - \dot{\theta}R)}{\sqrt{(\dot{r} + \dot{\alpha}R)^2 + \left(v - \dot{\theta}R\right)^2}} - \frac{2mv\dot{r}}{r + R} + F_{kr} \\ I_{\theta}\ddot{\theta} &= \frac{\mu mgR(v - \dot{\theta}R)}{\sqrt{(\dot{r} + \dot{\alpha}R)^2 + \left(v - \dot{\theta}R\right)^2}} + \frac{I_{\phi}\dot{\phi}v}{R + r} + M\cos\beta\cos\varphi + R\sin\beta F_{k\theta} \\ I_{\phi}\ddot{\phi} &= -\frac{\mu mgR(\dot{r} + \dot{\alpha}R)}{\sqrt{(\dot{r} + \dot{\alpha}R)^2 + \left(v - \dot{\theta}R\right)^2}} - \frac{I_{\theta}\dot{\theta}v}{R + r} - M\cos\beta\sin\varphi + R\sin\beta F_{kr} \\ I_{\varrho}\ddot{\varrho} &= -\frac{\mu mg(R + r)(\dot{r} + \dot{\alpha}R)}{\sqrt{(\dot{r} + \dot{\alpha}R)^2 + \left(v - \dot{\theta}R\right)^2}} - M\sin\beta + R\left(\frac{r}{R} + 1 - \cos\beta\cos\varphi\right)F_{r\theta} - R\cos\beta\sin\varphi F_{kr} \end{split}$$

用数学公式描述物理模型

理论计算

仿真

Mathematica	Matlab	Python	
一样地强大,选择哪个都够用			
相对易于上手 功能全面 基本无接口 (无正版)	中规中矩 偏向工程 接口丰富 (学校有正版)	难上手 自由度最高	

🕸 韦氏摆.nb * - Wolfram Mathematica 12.1

文件 (F) 编辑 (E) 插入 (I) 格式 (R) 单元 (C) 图形 (G) 计算 (V) 面板 (P) 窗口 (W) 帮助 (H)

{a, 0.1, 10}, {b, 0.1, 10}, {m, 0, 10}, {n, 0, 20}]


```
 \begin{array}{c} + \\ - \\ - \end{array}   odes =  \{z'[x] = -z[x] - (y[x] - ((y[x])^3) / 6 + ((y[x])^5) / 120) + 0.8 * (y[x] - (y[x])^3 / 6 - (y[x])^3 / 2 + 2 * (y[x])^5 / 15), y'[x] = z[x] \}; 
          odes // MatrixForm // TraditionalForm
                   |矩阵格式 |传统格式
          bds = \{z[0] = 0.001, y[0] = 0.0\}
          nsol = NDSolve[{odes, bds}, {z, y, x}, {x, 0, 1000}]
                 |数值求解微分方程组
          ParametricPlot[{y[x], y'[x]} /.nsol, {x, 400, 1000}, PlotRange → {{-5.0*^-13}, 5.0*^-14}}, AspectRatio → 1, AxesLabel → {Style["θ(rad)", 28], Style["θ'(rad/s)", 28]}, TicksStyle → 16]
                                                                                                                                                         度高比
                                                                                                                                                                            |坐标轴标签 |样式
                                                                                                                                                                                                                       样式
                                                                                                                                                                                                                                                       |刻度样式
Out[ o]//TraditionalForm=
          Out[a] = \{z[0] = 0.001, y[0] = 0.\}
   \textit{Out[s]} = \left\{ \left\{ z \rightarrow \text{InterpolatingFunction} \left[ \begin{array}{c} \blacksquare \\ \blacksquare \\ \text{Output: scalar} \end{array} \right] \text{, } y \rightarrow \text{InterpolatingFunction} \left[ \begin{array}{c} \blacksquare \\ \blacksquare \\ \text{Output: scalar} \end{array} \right] \text{, } x \rightarrow x \right\} \right\} 
                                              \theta'(\text{rad/s})
                                               1. \times 10^{-14}
                                                5. \times 10^{-15}
                                                                                              \theta(rad)
            -4. \times 10^{-13}
                                 -2. \times 10^{-13}
                                                                           2. \times 10^{-13}
                                              -5. \times 10^{-1}
```


$$\gamma = 0.000$$

仿真

实验设计

手机辅助实验

案例:利用手机陀螺仪测量转动角速度 利用手机测量斜面倾角 注意:强磁场和手机跌落

电脑辅助实验

- 位移传感器
- 光传感器
- 声传感器
- 电流传感器
- 力传感器
- 压力传感器
- 转动传感器
- 温度传感器
- 光电门

图像处理

实验设计

数据处理

展示与示意图

仿真

视频分析

质点 质心 矢量 矢量和 线型 RGB区域

视频处理?

简单的方法 格式工厂

数据处理

将实验数据处理并与理论对照,得到规律与结论

表格	绘图		
数据量不大 规律比较直观 需要展示原始数据	数据量较大 规律不太直观 需要对比多组数据		
可以结合使用			

数据处理

Origin	Excel	计算工具
科研绘图, 处理	制表,简单计算	绘图,复杂处理
功能比较全面 上手比较简单 (官网有学习版)	比较适合制表 制图不太方便 用于记录原始数据	较难使用 自由度高

数据处理

	橡皮筋初始长 度(m)	最大半径(m)	最大速度 (m/s)	最大角速度 (rad/s)	径向速度 损失
浅大组(A3)	0.0612	0.058	0.724	62.8319	/
浅中组(A2)	0.0592	0.040	0.622	53.7024	/
深小组(B1)	0.0682	0.069	1.237	125.6637	0.75
深中组(B2)	0.0484	0.092	1.771	95.1998	0.34
深大组(B3)	0.0477	0.090	1.055	62.8319	0.52

总层数	理论高度 /cm	实际高度 /cm	相对偏差
3	16.83	16.81	0.12%
4	22.05	22.01	0.18%
5	27.26	27.20	0.22%

展示软件

PowerPoint	beamer
简单易用	较难上手
绘制和插入图片方便	绘制和插入图片较难
复杂公式难以键入	效率略高

LATEX内容敬请期待SPS科研技能分享会 (二)

公式输入

数据处理

公式输入

使用IguanaTex插件弥补PowerPoint的问题

$$relu = \begin{cases} a, if \ a \ge 0 \\ 0, if \ a < 0 \end{cases}$$

使用Office原生公式

$$relu = \begin{cases} a, if \ a \ge 0 \\ 0, if \ a < 0 \end{cases}$$

$$\begin{aligned}
\frac{dr}{dt} &\geqslant 0 \\
\left(\frac{dr}{dt}\right)^2 + \left(r\frac{d\theta}{dt}\right)^2 &= V \\
\frac{d\alpha}{\partial t} &= \frac{v}{R}
\end{aligned}$$

公式引用

[1] Gallaire François and Brun P.-T. 2017Fluid dynamic instabilities: theory and application to pattern forming in complex mediaPhil. Trans. R. Soc. A.3752016015520160155

公式引用

广告X

Visit Site

dynamic instabilities: theory and application to pattern forming in complex

Q

Any time

Since 2022

Since 2021

Since 2018

Custom range...

Sort by relevance

Sort by date

不限语言

中文网页

简体中文网页

Any type

Review articles

include patents

一键下载]

收藏1

[PDF] royalsocietypublishing.org

Full View

以上显示的是最相近的搜索结果。 查看全部搜索结果

被引用次数: 79

示意图绘制

仿真

思维导图

思维导图

预设较为通用的模型的复杂微分方程求解器 更容易得到结果,更难得到理想结果 多物理场问题走投无路的选择

有限元方法仿真步骤

以下特征遇到问题:

) CD-adapco

Com

- 特征: 稳态求解器 1 (sol1/s1)

-ccm+

相对易于预设模型

找不到解。 达到最大牛顿迭代次数。 返回的解不收敛。 没有返回所有参数步长。

确定

谢谢大家