Inventor(s): BUTTERS et al. Application No.: 09/980,584

Attorney Docket No.: 041301-0284110

I. AMENDMENTS TO THE CLAIMS

Claim 1. (Original) A receiver medium for digital imaging, comprising a substrate having a dye-receiving surface bearing a coating comprising a highly branched functionalised polymer of generally globular form dispersed is a host polymer, wherein the host polymer has a Tg of <50°C.

Claim 2. (Currently Amended) A receiver medium according to claim 1, wherein at least some of the end groups of the highly branched polymer earrying carry functional groups selected from OH, NH₂, NHR, NR₂, COOH, CONH₂, NHCOR, CONHR, SO₂NH₂, SO₂NHR, SO₃H, NHCONH₂, NHCONHR, =NOH and PO₃H, in which R is selected from CH, NO₂, Cl, F, Br, C₁₋₆alkyl, C₁₋₆alkoxy, NHCOC₁₋₆alkyl, NHCOphenyl, NHSO₂alkyl, NHSO₂phenyl and aryloxy and preferably from the groups having at least one H atom.

Claim 3. (Currently Amended) A receiver medium according to claim 1 or 2 1, 2, or 20, wherein at least 50% of 50%, preferably at least 70%, of the end groups of the highly branched polymer carry fractional groups.

Claim 4. (Currently Amended) A receiver medium according to any one of the preceding elaims claim 1, wherein the highly branched polymer has a molecular weight of at least 1000.

Claim 5. (Currently Amended) A receiver medium according to any one of the preceding elaims claim 1, wherein the radius of gyration of the highly branched polymer is in the range 2 nm to 10 nm.

Claim 6. (Currently Amended) A receiver medium according to any one of the preceding elaims claim 1, wherein the host polymer is selected from polymers including polyesters, acrylic polymers, vinyl polymers, poly(vinyl pyridine), vinyl pyrrolidone/vinyl acetate, vinyl chloride/vinyl acetate copolymers, and cellulosic polymers.

Claim 7. (Currently Amended) A receiver medium according to any one of the preceding elaims claim 1, where wherein the highly branched polymer is present in an amount in the range 10% to 90% by to 90%, preferably 20 to 60%, by weight of the coating.

2

30418224v1

Inventor(s): BUTTERS et al. Application No.: 09/980,584

Attorney Docket No.: 041301-0284110

Claim 8. (Currently Amended) A receiver medium according to any one of the preceding elaims claim 1, wherein the substrate is in the form of a film or sheet of material.

Claim 9. (Currently Amended) A receiver medium according to any one of the preceding elaims claim 1, wherein the substrate is pre-treated prior to application of the coating.

Claim 10. (Currently Amended) A receiver medium according to any one of the preceding elaims claim 1, wherein the coating has a thickness in the range 1 μ m to 100 μ m for 100 μ m, preferably 50 μ m or less, especially in the range from 2 μ m to 10 μ m, for media for use in thermal dye transfer printing and in the range 10 μ m to 50 μ m for media for use in ink jet printing.

Claim 11. (Currently Amended) A receiver medium according to any one of the preceding elaims claim 1, wherein the coating includes particulate filler material.

Claim 12. (Currently Amended) A receiver medium according to any one of the preceding elaims claim 1, including a top coat over the coating.

Claim 13. (Currently Amended) A receiver medium according to any one of the preceding elaims claim 1, including one or more back coats on the side of the substrate remote from the dye-receiving surface.

Claim 14. (Original) A method of making a receiver medium, comprising applying to a dyereceiving surface of a substrate a coating comprising a highly branched functionalised polymer of generally globular form dispersed in a host polymer; wherein the host polymer has a Tg <50°C.

Claim 15. (Currently Amended) A method of printing, comprising applying dye to the dye-receiving surface of receiver medium in accordance with any one of claims 1 to 13 claim 1 by a digital imaging technique.

Claim 16. (Original) A digital imaging receiver medium/dye combination in which the receiver medium comprises a substrate having a dye-receiving surface bearing a coating comprising a highly branched functionalised polymer of generally globular form dispersed in

3

30418224v1

Inventor(s): BUTTERS et al. Application No.: 09/980,584

Attorney Docket No.: 041301-0284110

a host polymer having a Tg < 50°C, and the dye is capable of interacting with the highly branched polymer.

Claim 17. (Currently Amended) A combination according to claim 16, wherein the receiver medium comprising a substrate having a dye-receiving surface bearing a coating comprising a highly branched functionalised polymer of generally globular form dispersed is a host polymer, wherein the host polymer has a Tg of <50°C and wherein at least some of the end groups of the highly branched polymer carry functional groups selected from OH, NH₂, NHR, NR₂, COOH, CONH₂, NHCOR, CONHR, SO₂NH₂, SO₂NHR, SO₃H, NHCONH₂, NHCONH₃, NHCONH₄, in which R is selected from CH, NO₂, Cl, F, Br, C₁₋₆alkyl, C₁₋₆alkoxy, NHCOC₁₋₆alkyl, NHCOphenyl, NHSO₂alkyl, NHSO₂phenyl and aryloxy is in accordance with any one of claims 2 to 13.

Claim 18. (Currently Amended) A combination according to claim 16 or 17, wherein the dye has functional groups complementary to functional groups of the highly branched polymer.

Claim 19. (Currently Amended) A combination according to <u>claim 16</u> elaim 16, 17, or 18, wherein the highly branched polymer and dye are capable of interacting by acid-base reaction.

Claim 20. (New) A receiver medium according to claim 2, wherein at least some of the end groups of the highly branched polymer carry functional groups having at least one H atom.

Claim 21. (New) A receiver medium according to claim 1, wherein at least 70% of the end groups of the highly branched polymer carry functional groups.

Claim 22. (New) A receiver medium according to claim 1, wherein the highly branched polymer is present in an amount in the range 20% to 60% by weight of the coating.

Claim 23. (New) A receiver medium according to claim 13, wherein the coating has a thickness of 50 µm or less for media for use in thermal dye transfer printing.

Claim 24. (New) A receiver medium according to claim 13, wherein the coating has a thickness in the range from 2 µm to 10 µm for media for use in thermal dye transfer printing.

4

30418224v1