ANALIZA - Extras de curs nr. 1: Şiruri de numere reale

Un şir de numere reale este o funcție $n\mapsto a_n$ a cărei domeniu este mulțimea numerelor naturale $\mathbb N$ și a cărei valori aparțin mulțimii numerelor reale \mathbb{R} . Notația uzuală: (a_n) .

Un şir (a_n) se numeşte **crescător** dacă $a_n \leq a_{n+1}$ pentru orice $n \in \mathbb{N}$.

Un şir (a_n) se numeşte **descrescător** dacă $a_n \ge a_{n+1}$ pentru orice $n \in \mathbb{N}$.

Un șir care este crescător sau descrescător se numește **șir monoton**.

Spunem că un şir (a_n) este **mărginit** dacă există un număr M > 0 astfel ca $|a_n| \leq M$ pentru orice $n \in \mathbb{N}$.

Şirul (a_n) converge la numărul real L (are limita L) dacă pentru orice $\varepsilon > 0$ există $N = N(\varepsilon) \in \mathbb{N}$ astfel încât $|a_n - L| < \varepsilon$ pentru orice $n \ge N$.

- \rightarrow Dacă şirul (a_n) este convergent la L, atunci orice subşir (a_{n_k}) al şirului (a_n) converge la L.
- \rightarrow Există şiruri care nu au limită (de exemplu, şirul $a_n = (-1)^n$).
- \rightarrow Dacă limita șirului (a_n) există, atunci ea este unică.
- \rightarrow Dacă şirul (a_n) este convergent la un număr real L, atunci el este mărginit.

Spunem că limita șirului (a_n) este $+\infty$ dacă pentru orice M>0 există N_M astfel încât $a_n>M$ pentru orice $n > N_M$.

Spunem că limita șirului (a_n) este $-\infty$ dacă pentru orice M>0 există N_M astfel încât $a_n<-M$ pentru orice $n > N_M$.

Mulţimea punctelor limită a a şirului (a_n) (notată cu $\mathcal{L}(a_n)$) este mulţimea punctelor $x \in \mathbb{R}$ pentru care există un subșir (a_{n_k}) al șirului (a_n) astfel încât $\lim_{n_k \to \infty} a_{n_k} = x$.

 \rightarrow Şirul (a_n) este convergent la L, $\lim_{n\to+\infty}a_n=L$, dacă și numai dacă $\mathcal{L}(a_n)=\{L\}$.

Limita superioară a șirului (a_n) este sup $\mathcal{L}(a_n)$. Notația uzuală: $\limsup a_n$ sau $\overline{\lim} a_n$.

Limit inferioară a şirului (a_n) este inf $\mathcal{L}(a_n)$. Notația uzuală: $\liminf_{n\to\infty} a_n$ sau $\varliminf_{n\to\infty} a_n$.

Convergența șirurilor monotone și mărginite: Orice șir monoton și mărginit este convergent.

Teorema Bolzano-Weierstrass: Orice şir mărginit (a_n) are cel puţin un subşir convergent.

Reguli de calcul pentru limite:

Dacă limitele $\lim_{n\to\infty} a_n = A$ și $\lim_{n\to\infty} b_n = B$ există și sunt finite, atunci: 1. (regula de înmulțire cu un scalar) $\lim_{n\to\infty} c \cdot a_n = c \cdot A$ pentru orice $c \in \mathbb{R}$.

- 2. (regula sumei) $\lim_{n \to \infty} (a_n + b_n) = A + B$ 3. (regula produsului) $\lim_{n \to \infty} a_n b_n = AB$
- 4. (regula raportului) $\lim_{n\to\infty}\frac{a_n}{b_n}=\frac{A}{B}$ (presupunând că $b_n\neq 0$ și $B\neq 0$)

Regula cleştelui pentru şiruri:

Dacă $a_n \leq b_n \leq c_n$ pentru orice $n \in \mathbb{N}$ și $\lim_{n \to \infty} a_n = L = \lim_{n \to \infty} c_n$ atunci și $\lim_{n \to \infty} b_n = L$.

Regula lui L'Hospital pentru şiruri:

Presupunem că $a_n = f(n)$ şi $b_n = g(n) \neq 0$ unde f şi g sunt două funcții derivabile pentru care are loc una din condițiile următoare:

a.
$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = 0$$
 sau **b.** $\lim_{x \to \infty} f(x) = \pm \infty$ și $\lim_{x \to \infty} g(x) = \pm \infty$. Atunci

a.
$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = 0$$
 sau b. $\lim_{x \to \infty} f(x) = \pm \infty$ și $\lim_{x \to \infty} g(x) = \pm \infty$. Atunci
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$
 (dacă limita din partea dreaptă a egalității există).

Lema lui Stolz-Cesaro:

Fie două șiruri (a_n) și (b_n) , șirul (b_n) fiind pozitiv, strict crescător și nemărginit. Atunci:

rie doua şiruri
$$(a_n)$$
 şi (b_n) , şirui (b_n) find pozitiv, strict crescator şi nemargin
$$\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n} \text{ (dacă limita din partea dreaptă a egalității există)}.$$

Lema lui Cauchy-d'Alembert:

Fie (a_n) un şir de numere reale pozitive. Atunci: $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\lim_{n\to\infty}\sqrt[n]{a_n}$ (dacă limita din partea dreaptă a egalității există).

- 1. Să se demonstreze riguros (pe baza definiției) că $a_n = \frac{1}{n}$ este convergent la 0.
- 2. Să se demonstreze riguros (pe baza definiției) că $a_n = \frac{2n}{5n-3}$ este convergent la $\frac{2}{5}$.
- 3. Să se demonstreze riguros (pe baza definiției) că $a_n = 1 + \left(\frac{9}{10}\right)^n$ este convergent la 1.
- 4. Calculați limitele următoarelor șiruri:

1.
$$a_n = \left(1 - \frac{2}{n^2}\right)^n$$

$$2. \ a_n = \frac{\sin n}{3^n}$$

3.
$$a_n = \frac{1 + (-1)^n}{\sqrt{n}}$$

$$4. \ a_n = \frac{\ln n}{n^x}, \ x \in \mathbb{R}$$

5.
$$a_n = \frac{n^{2005}}{(n+1)^x - n^x}, \ x > 0$$

6.
$$a_n = \frac{1 + \frac{1}{2} + \dots + \frac{1}{n+1}}{\ln(n+1)}$$

7.
$$a_n = \frac{1 + \sqrt{2} + \dots + \sqrt[n]{n}}{n}$$

8.
$$a_n = \frac{1}{n+1} \left(\frac{1}{\ln 2} + \frac{1}{\ln 3} + \dots + \frac{1}{\ln(n+2)} \right)$$

9.
$$a_n = \frac{1}{n+1} \sum_{k=1}^{n+1} \frac{1}{k}$$

10.
$$a_n = \frac{1^p + 2^p + \dots + n^p}{n^{p+1}}, p \in \mathbb{N}$$

11.
$$a_n = \sqrt[n]{n}$$

12.
$$a_n = \sqrt[n]{n!}$$

13.
$$a_n = \sqrt[n]{\frac{(n!)^2}{(2n+1)!}}$$

14.
$$a_n = \frac{1}{n} \sqrt[n]{(n+1)(n+2)\cdots(2n-1)}$$

5. Găsiți $\liminf_{n\to\infty} x_n$ și $\limsup_{n\to\infty} x_n$ pentru următoarele șiruri:

1.
$$a_n = \begin{cases} 0, & n = 2k + 1 \\ 1, & n = 2k \end{cases}$$

2.
$$a_n = \begin{cases} 1, & n = 3k \\ \frac{1}{n}, & n = 3k + 1 \\ n, & n = 3k + 2 \end{cases}$$

3.
$$a_n = \cos(n\pi)$$

$$4. \ a_n = \frac{n}{n+1} \sin^2\left(\frac{n\pi}{4}\right)$$

5.
$$a_n = \frac{[na]}{n+1}, a \in \mathbb{R}^*$$

6.
$$a_n = \frac{(-1)^n}{n} + \frac{1 + (-1)^n}{2}$$

7.
$$a_n = \frac{n^{(-1)^n}}{n} + \sin^2 \frac{n\pi}{4}$$

8.
$$\cos^n \frac{2n\pi}{3}$$

- 6. Fie (F_n) șirul lui Fibonacci dat de relația de recurență $F_{n+2} = F_{n+1} + F_n$, cu $F_0 = F_1 = 1$. Arătați că $\lim_{n \to \infty} \frac{F_{n+1}}{F_n}$ există și este egală cu $\frac{1+\sqrt{5}}{2}$.
- 7. Se dă șirul (a_n) definit prin relația de recurență:

$$a_1 = 2$$
 $a_{n+1} = \frac{1}{2}(a_n + 4)$

Demonstrați prin inducție că $a_n < 4$ pentru orice n și arătați că sirul (a_n) este crescător. Găsiți limita șirului.

2