Part 2

E.M.B

Chapter 4: CONGRUENCES AND THE INTEGERS MODULO *n*

Mphako-Banda

LEARNING OUTCOMES FOR THE LECTURE

By the end of this lecture, students will be able to:

- \clubsuit define \mathbf{Z}_n , the integers modulo n, and its elements
- prove that any integer belongs to a residue class in Zn
- \clubsuit find, for any integer, the residue class it belongs to in \mathbf{Z}_n
- *
- å

INTEGERS MODULO n

Definition (4.2.1) (of integers modulo n, the set denoted Z

The set $\mathbb{Z}_n = \{\overline{0}, \overline{1}, \overline{2}, \cdots, \overline{n-1}\}$ of all residue classes modulo n is called the set of integers modulo n, where $\overline{a} = [a]$ for $a = 0, 1, 2, \cdots, n-1$. (set of sets.)

Example:

$$\begin{array}{rcl} \mathbb{Z}_2 & = & \{\overline{0},\overline{1}\} \\ \mathbb{Z}_3 & = & \{\overline{0},\overline{1},\overline{2}\} \\ \mathbb{Z}_5 & = & \{\overline{0},\overline{1},\overline{2},\overline{3},\overline{4}\} \end{array}$$

(these are all sets containing equivalence classes)

Theorem (4.2.2) (proves 2 things about the elements in **Z**_n)

If $n \geq 2$ and $a \in \mathbb{Z}$, then $\overline{a} = \overline{r}$ for some integer r where $0 \leq r < n$. Moreover, the residue classes modulo n, $\overline{0}, \overline{1}, \overline{2}, \cdots, \overline{n-1}$, are distinct and $|\mathbb{Z}_n| = n$.

PROOF: We use the Division algorithm. $a, n \in \mathbb{Z}, n \ge 2$ so $\exists q, r \in \mathbb{Z}$ such that a = qn + r where $0 \le r < n$. Thus a - r = qn and so $a \equiv r \pmod{n}$. By Theorem 4.1.4 $[a] = [r], 0 \le r < n$.

Since $\equiv \pmod{n}$ is an equivalence relation, we know $\overline{a} = b$ iff a - b = kn, $k \in \mathbb{Z}$. But if $\overline{a} \neq \overline{b}$, \overline{a} , $\overline{b} \in \mathbb{Z}_n$, then $0 \leq a < n$. and $0 \leq b < n$. so $a - b \neq kn$, so elements of \mathbb{Z}_n are

distinct. Certainly $|\mathbb{Z}_n| = n$.

We have proved: 1) we may name the elements in \mathbb{Z}_n using the integers from 0 to n-1

2) the elements in \mathbb{Z}_n are disjoint as sets of

Example (4.2.3 (1))

Locate $\overline{48}$ and $\overline{-16}$ in \mathbb{Z}_7 .

- a) $48 \equiv 6 \pmod{7}$, so $\overline{48} = \overline{6}$. i.e. find the **remainder** r when 48 is divided by 7.
- b) -16 = -3.7 + 5: $-16 \equiv 5 \pmod{7}$, so $-16 = \overline{5}$.

Here we use the division algorithm...

- a) 48 = 6(7)+6, so 48 and 6 are in the same residue class.
- b) the remainder when -16 is divided by 7 is 5

Note: The remainder $0 \le r < 7$ in this example.

The remainder gives the name of the equivalence class the integer is in...

Example (4.2.3 (2))

If a is an odd integer, show that $\overline{a} = \overline{1}$ or $\overline{a} = \overline{3}$ in $\mathbb{Z}_4 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}.$

If a is odd, $\Rightarrow a = 2k + 1$, $k \in \mathbb{Z}$. There are two cases

- (i) k even, k = 2m, $m \in \mathbb{Z}$. a = 2k + 1 = 2(2m) + 1 = 4m + 1 and $a \equiv 1 \pmod{4}$ $\therefore \overline{a} = \overline{1}$.
- (m) $k \text{ odd}, k = 2m + 1, m \in \mathbb{Z}.$ $a = 2k + 1 = 2(2m + 1) + 1 = 4m + 3 \text{ and } a \equiv 3$ (mod 4) $\therefore \overline{a} = \overline{3}.$

E.M.B

Example (4.2.3 (3))

In \mathbb{Z}_4 , show that $\overline{a} = \overline{0}$ iff 4|a.

(justification for the implication ⇒)

Part 2

Theorem

Congruence modulo n is compatible with addition and multiplication of integers. Let $a, a_1, b, b_1 \in \mathbb{Z}$. If $a \equiv a_1 \pmod{n}$ and $b \equiv b_1 \pmod{n}$, then

(i)
$$a + b \equiv a_1 + b_1 \pmod{n}$$
.

$$ab \equiv a_1b_1 \pmod{n}$$
.

We have created a set $\mathbb{Z}_{\boldsymbol{n}}$ with a new type of element...

The elements are equivalence classes... 0, 1, ... n-1.

The question we ask here is:

Can we add these elements?

Can we multiply these elements

How do we define addition and multiplication of equivalence classes? (in this theorem addition and multiplication in \mathbb{Z}_n is linked to addition and multiplication in \mathbb{Z})

Part 2 E.M.B

Proof: Let (1) be $a - a_1 = pn$ and (2) be $b - b_1 = qn$ where $p, q \in \mathbb{Z}$. adding (1) and (2), we get

$$(a+b)-(a_1+b_1)=(p+q)n \Rightarrow (a+b)\equiv (a_1+b_1)\pmod{n}$$

Similarly, multiplying $a = a_1 + pn$ and $b = b_1 + qn$, we get $ab \equiv a_1b_1 \pmod{n}$.

These manipulations permit the arithmetic properties of the set of integers to be extended naturally to \mathbb{Z}_n .