תרגילים: סיבוכיות

קליקה:

בהינתן גרף לא מכוון $C\subseteq V$ בהינתן היא תת קבוצה ב- G קליקה ב- קליקה ב- קליקה ב- G=(V,E) מתקיים ב- בהינתן גרף מתקיים $(u_1,u_2)\in E$ מתקיים $u_1,u_2\in C$

k=3 דוגמה: קליקה בגודל

כיסוי בקדקודים:

כך שלכל צלע כך ער קדקודים אל תת קבוצה ב- G=(V,E)כך כיסוי בהינתן בהינתן גרף א מכוון בהינתן בקדקודים ב- $u_1\in C$ או עו $u_1\in C$ מתקיים מתקיים $(u_1,u_2)\in E$

k=2 דוגמה: כיסוי בקדקודים בגודל

k=5 דוגמה: קליקה בגודל

k=5 דוגמה: כיסוי בקדקודים בגודל

קבוצה בלתי תלוייה:

בהינתן גרף לא מכוון $S\subseteq V$ קבוצה בלתי תלויה ב- G היא תת קבוצה של קדקודים קבוצה בלתי שלכל שני G=(V,E) מתקיים מתקיים $(u_1,u_2)\notin E$ מתקיים מתקיים

k=3 דוגמה: קבוצה בלתי תלוייה בגודל

שאלה 1

: (Clique) בעיית קליקה

.kטבעי טבעי ומספר G=(V,E)אמכוון גרף לא

?k מכיל קליקה בגודל G פלט: האם

 $Clique = \{\langle G, k \rangle \mid k$ מכיל קליקה בגודל $G\}$.

: (Vertex-Cover) בעיית כיסוי בקדקודים

k ומספר טבעי ומספר G=(V,E) ומספר טבעי

k מכיל כיסוי בקדקודים G פלט: האם

 $VC = \{\langle G, k \rangle \mid k$ מכיל כיסוי בקדקודים בגודל $G\}$.

הוכיחו כי קיימת רדוקציה זמן-פולינומיאלית מבעיית Clique הוכיחו כי קיימת רדוקציה זמן-פולינומיאלית

Clique \leq_p VertexCover.

שאלה 2

בהינתן גרף לא מכוון G=(V,E). קבוצת קדקודים עG=(V,E) תקרא קבוצת בלתי תלויה אם לכל זוג קדקודים ש- בהינתן גרף לא מתקיים ש- $U\subseteq V$ מתקיים ש- $U=(u_1,u_2)\notin E$.

Uב- u_1,u_2 קדקודים אם קליקה אם תקרא קליקה הבוצת קדקודים הבוצת הבוצת הפוון גרף לא מכוון בהינתן העG=(V,E) קבוצת היים ש-

 $(u_1,u_2)\in E$.

נתבונן בשפות הפורמליות הבאות:

 $IS = \{ \langle G, k \rangle \mid G \text{ is an undirected graph, } k \text{ is an integer, } G \text{ includes an independent set of size at least } k \}$

 $CLQ = \big\{ \langle G, k \rangle \mid G \text{ is an undirected graph, } k \text{ is an integer, } G \text{ includes an } \mathbf{clique} \text{ of size at least } k \big\}$

$$IS \leq_P CLQ$$
.

CLQ כלומר, הראו כי קיימת רדוקציית התאמה פולינומיאלית מהשפה IS לשפה יש להראות כי הרדוקציית התאמה וכי היא ניתנת לחישוב בזמן פולינומיאלי.

שאלה 3

בהינתן גרף לא מכוון G=(V,E). קבוצת קדקודים עG=(V,E) תקרא קבוצת בלתי תלויה אם לכל זוג קדקודים ש- בהינתן גרף לא מכוון ע $U\subseteq V$ קבוצת קדקודים ש- ע $U=u_1,u_2$ ב- $U=u_1,u_2$

בהינתן גרף לא מכוון G=(V,E) קבוצת קדקודים עG=(V,E) תקרא כיסוי קדקודים ב- G=(V,E), מתקיים ש- יים ש $(u_1,u_2)\in E$

נתבונן בשפות הפורמליות הבאות:

 $IS = \{\langle G, k \rangle \mid G \text{ is an undirected graph, } k \text{ is an integer, } G \text{ includes an independent set of size at least } k \}$

 $VC = \{\langle G, k \rangle \mid G \text{ is an undirected graph, } k \text{ is an integer, } G \text{ includes a vertex cover of size at least } k \}$ הוכיחו כי

$$IS <_P VC$$
.

NC כלומר, הראו כי קיימת רדוקציית התאמה פולינומיאלית מהשפה וא כלומר, כלומר, הרדוקציית התאמה וכי היא ניתנת לחישוב בזמן פולינומיאלי.

תשובות

:f הקלט של VC ע"י פונקצית אוג (G,k), ניצור אוג (Clique הקלט עבור הרדוקציה אוג בהינתן אוג (G,k) בהינתן אוג

$$f(\langle G, k \rangle) = \langle G', k' \rangle$$

ונוכיח כי

$$\langle G, k \rangle \in \text{Clique} \quad \Rightarrow \quad \langle G', k' \rangle \in \text{VertexCover}$$

$$\langle G, k \rangle \in \text{Clique} \quad \Leftarrow \quad \langle G', k' \rangle \in \text{VertexCover}$$

הגדרת הרדוקציה

- G=(V,E) אם המשלים הגרף להיות להיות G'=(V',E') את ullet
 - $E' = \{(u_1, u_2) \mid (u_1, u_2) \notin E\}$ -ו V' = V כלומר
 - .k' = |V| k נגדיר •

נכונות הרדוקציה

\Leftarrow כיוון

 $.\langle G,k
angle \in \mathsf{Clique}$ נניח כי

- k מכיל קליקה C בגודל $G \Leftarrow$
- G-ב בצלע ב- מחוברים בצלע ב- \subset
- .G' -ב בצלע ב- לא מחוברים בצלע ב- כל שני קדקודים ב- \leftarrow
- .k' = |V| k בגודל ב- G'בקדקודים בקדקודים ייסוי $V \backslash C \Leftarrow$
 - .k' מכיל מכיל בקדקודים מכיל מכיל מכיל מכיל מכיל
 - $.\langle G', k' \rangle \in VertexCover \Leftarrow$

\Rightarrow כיוון

 $.\langle G',k'
angle\in ext{VertexCover}$ נניח כי

- .k' מכיל כיסוי בקדקודים מכיל מכיל $G' \Leftarrow$
- .G' -ב בצלע מחוברים לא $V' \backslash S$ ש קדקודים שני כל \Leftarrow
 - .V'=V לפי ההגדרת הרדוקציה \Leftarrow

G' -ב בצלע ב- לכן לא מחוברים בצלע ל $V \setminus S$ שני קדקודים לכן כל

- .G -בעלע ב- מחוברים ע $V \backslash S$ שני קדקודים כל \Leftarrow
 - .k = |V| k' בגודל G -ב קליקה ליקה $V \backslash S \Leftarrow$
 - k מכיל קליקה בגודל $G \Leftarrow$

שאלה 2 עלינו להוכיח כי ∃ רידוקיציית זמן-פולינומיאלית מ- IS ל- CLQ לינו

$$IS \leq_P CLQ$$
.

.IS -ו ראשית נגדיר את הבעיות נגדיר את

:CLQ הגדרת הבעיית

G=(V,E) ומספר שלם חיובי G=(V,E)

k מכיל קליקה בגודל מכיל מכיל מכיל מכיל פלט: פלט:

 $CLQ = \{ \langle G, k \rangle \mid$ מכיל קליקה בגודל k לפחות $G \}$.

:IS הגדרת הבעיית

A ומספר שלם חיובי G=(V,E) קלט: גרף לא מכוון

k מכיל קבוצה בלתי תלוייה בגודל מכיל פלט: האם G מכיל פלט:

 $IS = ig\{ \langle G, k
angle \mid$ מכיל קבוצה בלתי תלוייה בגודל k לפחות מכיל קבוצה בלתי תלוייה ב

פונקצית הרדוקציה:

אנחנו נגדיר פונקצית הרדוקציה R שבהינתן זוג אוב שבהינתן תחזירה R אנחנו מחזירה אנחנו מדיר שבהינתן אוב

$$R\left(\langle G, k \rangle\right) = \langle G', k' \rangle$$
 . (*1)

:כך ש

$$\langle G, k \rangle \in IS \quad \Leftrightarrow \quad \langle G', k' \rangle \in CLQ \ .$$
 (*2)

הפונקציית הרדוקציה במשוואה (1*) מוגדרת כך שהתנאים הבאים מתקיימים:

G=(V,E) נניח שהגרף הוא (1

G=(V,E) אז הגרף הוא הגרף המשלים של G'

כאשר $G'=ar{G}=ig(V,ar{E}ig)$ כאשר

$$\bar{E} = \{(u_1, u_2) \mid (u_1, u_2) \notin E\}$$
.

.k' = k (2

לדוגמה, בהינתן הגרף G=(V,E) שמכיל קבוצה בלתי תלוייה בגודל k=3, הפונקציית הרדוקציה G=(V,E) את הגרף $\bar{G}=(V,\bar{E})$ ואת המספר k'=k=3, כמתואר בתרשים למטה:

$$G = (V, E)$$

$$\bar{G} = (V, \bar{E})$$

נכונות הרדוקציה

כעת נוכיח שתנאי (2*) מתקיים.

\Leftarrow כיוון

.k בהינתן גרף G=(V,E) ושלם נניח כי $\langle G,k \rangle \in IS$ נניח כי

מכיל קבוצה בלתי תלוייה בגודל לפחות. $G \Leftarrow$

.kבגודל ע מכיל תלוייה בלתי קבוצה מכיל מכיל G

Gשלים בצלע מחוברים לא Uב- בצלע של \Leftarrow

 $.ar{G}$ אני קדקודים ב- שמחוברים בצלע של \leftarrow

 $.ar{G}$ של א בגודל בגודל היא קליקה הקבוצה של הקבוצה U

 $G'=ar{G}$ של k'=k של היא קליקה בגודל U הקבוצה \Leftarrow

 $.\langle G', k' \rangle \in CLQ \Leftarrow$

\Rightarrow כיוון

 $.k^\prime$ ושלם G^\prime בהינתן גרף

 $.\langle G',k'
angle \in CLQ$ נניח כי

. מכיל קליקה בגודל k' לפחות מכיל קליקה מכיל

.k' מכיל קליקה ער מכיל מכיל מכיל קליקה G'

 $.G'=ar{G}:R$ על פי ההגדרה של הפונקציית הרדוקיה

.k' מכיל קליקה ע בגודל הכיל מכיל מכיל

- $ar{G}$ כל שני קדקודים ב- U' מחוברים בצלע של \Leftarrow
- G באלע של המשלים של בצלע לא מחוברים באלע לא U' בהיינו G
 - G של K'=k הקבוצה בלתי תלוייה בגודל היא קבוצה בלתי של היא U'
 - $.\langle G, k \rangle \in IS \Leftarrow$

שאלה 3 עלינו להוכיח כי ∃ רידוקיציית זמן-פולינומיאלית מ- IS ל- VC.

$$IS <_P VC$$
.

.IS -ו VC ו- את הבעיות נגדיר את ראשית

:VC הגדרת הבעיית

Aומספר שלם חיובי G=(V,E) ומספר שלם חיובי

.k בגודל לפחות ב- G בגודל כיסוי קדקודים ב-

 $VC = ig\{ \langle G, k
angle \mid$ מכיל כיסוי קדקודים בגודל מכיל מכיל מכיל מכיל .

:IS הגדרת הבעיית

k קלט: גרף לא מכוון G=(V,E) ומספר שלם חיובי

 $IS = \{ \langle G, k \rangle \mid$ מכיל קבוצה בלתי תלוייה בגודל $G \}$.

פונקצית הרדוקציה:

אנחנו נגדיר פונקצית הרדוקציה R, $\langle G,k\rangle\in IS$ זוג שבהינתן שבהינת הרדוקציה פונקצית הרדוקציה אנחנו אנחנו

$$R\left(\langle G,k\rangle\right)=\langle G',k'\rangle$$
 . (*1)

:כך ש

$$\langle G, k \rangle \in IS \quad \Leftrightarrow \quad \langle G', k' \rangle \in VC \ .$$
 (*2)

הפונקציית הרדוקציה במשוואה (1*) מוגדרת כך שהתנאים הבאים מתקיימים:

.G=(V,E) נניח שהגרף הוא (1

G=(V,E) אז הגרף G' הוא אותו גרף

$$.k' = |V| - k$$
 (2

נכונות הרדוקציה

כעת נוכיח שתנאי (2*) מתקיים.

$$.k$$
 בהינתן גרף $G=(V,E)$ ושלם נניח כי $\langle G,k \rangle \in IS$ נניח כי

- . מכיל קבוצה בלתי תלוייה U בגודל מכיל לפחות $G \Leftarrow$
 - k בגודל מכיל מכיל בלתי מלוייה מכיל קבוצה $G \Leftarrow$
- G -ב כל שני קדקודים ב- U לא מחוברים בצלע ב- \Leftarrow
- .k' = |V| k בגודל ב- ביסוי קדקודים ליסוי $V \backslash U \Leftarrow$
 - - $.\langle G', k' \rangle \in VC \Leftarrow$

\Rightarrow כיוון

 $.k^\prime$ בהינתן גרף G^\prime ושלם

$$.\langle G',k'
angle \in VC$$
 נניח כי

- . מכיל כיסוי קדקודים בגודל k' לפחות מכיל כיסוי קדקודים $G' \Leftarrow$
 - .k' מכיל כיסוי קדקודים U' בגודל מכיל $G' \Leftarrow$
 - k' מכיל כיסוי קדקודים U' מכיל כיסוי קדקודים $G \Leftarrow$
- k = |V| k' בגודל G' בלתי תלוייה ב- על היא קבוצת היא $V \backslash U'$ בגודל \Leftarrow
 - k מכיל קבוצה בלתי מלוייה מכיל מכיל מכיל מכיל מכיל מכיל מכיל הגרף G=G'