Glass and Ceramics Vol. 61, Nos. 3 – 4, 2004

UDC 666.112.2:666.122.2:532.73

DIFFUSION MASS EXCHANGE IN DISSOLVING SILICA IN Na₂O – SiO₂ MELTS

B. Ya. Tén¹

Translated from Steklo i Keramika, No. 3, pp. 5 – 7, March, 2004.

Based on experimental materials on the kinetics of dissolution of silica grains accumulated in the literature, a generalized dependence is obtained, according to which kinetic dissolution curves in diffusion mass exchange are uniquely determined by the chemical composition (silica modulus), the melting temperature, and the initial granulometric composition of silica-bearing batch components.

The process of dissolving silica in silicate melts is a typical heterogeneous reaction with diffusion kinetics.

According to an arbitrary scheme reflecting the mechanism of this process, the most active $\mathrm{Na^+}$ ions diffuse from the melt to the grain surface, where the chemical reaction of silicate formation takes place. The discharge of reaction products containing silicon dioxide in the bonded form proceeds by means of diffusion mass exchange between the silicate layers with different SiO_2 concentrations forming around the grain and the rest of the molten glass.

The scientific literature has accumulated an extensive experimental database on the kinetics of dissolution of silica in silicate melts [1-4]. Analysis of available information has demonstrated that the kinetics of the glass formation process in the conditions of diffusion mass exchange typical of practical glass melting can be generally represented by a functional dependence on the following parameters: the chemical composition of glass, the melting temperature, and the granulometric composition of silica-bearing batch components.

By selecting empirical formulas with subsequent verification of their suitability and adequacy to experimental data it was found that the following power dependence is the most adequate for describing the kinetics of dissolution of silica grains:

$$m = K \tau^n$$
,

where
$$m = \frac{G_0 - G}{G_0}$$
 is the part of dissolved SiO₂ (G_0 is the ini-

tial quantity of SiO_2 ; G is the quantity of SiO_2 that has not reacted); K is the numerical coefficient; τ is the melting time; n is the power depending on the melting temperature and the initial size of particles, i.e., on the initial reaction surface area.

Tables 1 and 2 show the results of mathematical processing of experimental data [1, 2] obtained in studying the effect of melting temperature and initial size of sand grains on the rate of batch melting. These studies considered samples melted in a silit furnace from batch with silica modulus

TABLE 1

Melting temperature, - °C		_ Kinetic dependence							
	600	1200	1800	2400	3000	3600	4800	6000	$m = K \tau^n$
1100	_	0.7902	_	0.8619	_	0.8918	0.9327	0.9449	$m = 0.5460\tau^{0.0588}$
1150	_	0.8670	_	0.9257	_	0.9483	0.9680	0.9774	$m = 0.6365\tau^{0.0474}$
1200	0.8236	0.9252	0.9349	_	0.9718	_	0.9910	_	$m = 0.7381\tau^{0.0328}$
1250	0.8998	0.9444	0.9715	_	0.9738	_	0.9797	_	$m = 0.8077\tau^{0.0232}$
1300	0.9573	0.9742	0.9787	_	0.9884	_	_	_	$m = 0.8558\tau^{0.0179}$
1350	0.9774	0.9807	0.9949	0.9981	_	_	_	_	$m = 0.9000 \tau^{0.0128}$

^{*} Initial size of sand grain 0.55 mm.

¹ Institute of Glass, Moscow, Russia.

TABLE 2

Initial size of sand grain, — mm		Kinetic dependence						
	300	600	900	1200	1800	3000	4800	$m = K \tau^n$
0.150	0.9766	0.9898	0.9933	0.9981	_	_	_	$m = 0.9274\tau^{0.0098}$
0.275	0.9180	0.9691	0.9833	0.9874	_	_	_	$m = 0.9011\tau^{0.0123}$
0.350	_	0.9577	_	0.9749	_	0.9936	0.9993	$m = 0.8800\tau^{0.0143}$
0.550	_	0.8998	_	0.9444	0.9715	0.9738	0.9797	$m = 0.8077\tau^{0.0232}$

^{*} Melting temperature 1250°C.

TABLE 3

Melting temperature, °C	0.13	50	0.275		0.350		0.550	
	Experimental data*	Estimated values						
1150	6840	7620	10,700	13,265	14,600	16,540	22,100	25,010
1200	4590	4800	7190	8365	9450	10,430	14,900	15,775
1250	3200	3090	5600	5380	6870	6705	10,600	10,140
1300	1980	2020	3140	3515	4300	4380	6550	6630
1350	1400	1340	2170	2335	2960	2915	4600	4405

^{*} Data from [1, 2].

M = 3.535, with 22.6 wt.% Na₂O and 77.4 wt.% SiO₂. The mass content of SiO2, which at the preset melting temperature and melting duration remains without reacting in the glass melt, is found by using the chemical method of selective dissolution of glass in fluosilicic acid.

These kinetic dependences derived for the analyzed composition of sodium-silicate glass can be extended to other compositions using dimensionless notations:

$$m = \overline{\tau}^n; \qquad \overline{\tau} = \frac{\tau}{\tau_c},$$
 (1)

where $\bar{\tau}$ is dimensionless time or relative melting duration; τ_c is the time of complete melting of quartz sand grains.

The appropriateness and validity of the technique used for generalization is corroborated experimentally [3]: the obtained dependences of sand dissolution rate on the glass composition represent a family of similar curves.

Let us estimate the effect of melting temperature and particle size (reaction surface area) on the power n:

$$n = 0.05 \exp(3\delta_0^2)(10^{-3} t)^{-7.5},$$
 (2)

where δ_0 is the initial grain size in the batch, mm; t is the melting temperature, °C.

For a quantitative estimate of diffusion processes based on the generalized kinetic dependence, one should know τ_c , i.e., the duration of complete dissolution of sand grains under a preset glass-melting regime.

We propose our own calculation formula (sec) based on the data in [1, 2, 4] for sodium silicate batches in a melting temperature interval of 1150 – 1600°C:

$$\tau_{c} = 6355(10^{-3} t)^{-10.83} \delta_{0}^{0.915} M^{2.717}, \tag{3}$$

where M is the silica modulus of the batch.

According to the above formula, $\tau_c \sim \delta^{0.915}$. A certain disagreement with the known relationship $\tau_c \sim \delta^3/\delta^2 \sim \delta$ apparently reflects the deviation of the shape of real sand particles from the spherical shape.

Tables 3 and 4 correlate values τ_c found experimentally and those calculated based on formula (3).

TABLE 4

Melting	Duration of complete melting of sodium silicate batches (initial size of sand grain 0.417 mm), sec, for silicate modulus									
temperature,	2.0	5	3.0	0	3.5					
°C	Experimental data*	Estimated values	Experimental data*	Estimated values	Experimental data*	Estimated values				
1450	740	685	1140	1010	1660	1535				
1500	525	475	890	700	1230	1065				
1550	330	330	510	490	700	745				
1600	190	235	300	345	435	530				

^{*} Data from [4].

72 B. Ya. Tén

Fig. 1. Kinetic curves of dissolution of quartz sand grains with initial size 0.55 mm in melting of sodium silicate batch (M = 3.535) at temperatures 1100°C (I), 1200°C (2), and 1300°C (3).

According to formula (3), the expected decrease in the melting duration of industrial sodium silicates with M=2.6-3.6 in the temperature interval of $1200-1500^{\circ}\mathrm{C}$ will be equal to 8.5-7.0% for each $10^{\circ}\mathrm{C}$ temperature increase and will be 13-14% for $\mathrm{Na_2O}$ content in glass increasing by each 1 wt.%. This means, in particular, that when a glass-melting furnace producing impure sodium disilicate with M=2.8 is converted to production of high-modulus sodium disilicate (M=3.6), the output of the furnace is expected to decrease by at least 40%. The output of the furnace can be maintained at the same level by raising the melting temperatures by $60-80^{\circ}\mathrm{C}$.

The kinetic curves of SiO_2 dissolution are shown in Fig. 1. One can distinguish segments corresponding to the stages of silicate and glass formation. At the silicate-formation stage the batch components enter in a chemical reaction

and form a silicate melt close to the initial batch composition. In this period the rate of the heterogeneous process of silica dissolution depends on the rate of the chemical reaction on the surface of SiO_2 particles. With $\bar{\tau} = 0.1$, 90 - 95% of initial SiO_2 becomes chemically bonded.

While boundary layers keep forming around the sand grains, the diffusion processes begin to have a more perceptible effect on dissolution, and the rate of dissolution decelerates. At the stage of glass formation the rate of dissolution stabilizes and depends only on diffusion mass exchange.

The use of generalized dependence (1) and formulas (2), (3) proposed by us makes it possible to reliably describe the kinetics of the diffusion process of glass melting in the $Na_2O - SiO_2$ system, including industrial regimes of melting impure sodium disilicate.

REFERENCES

- "Process of melting silicate glass melt. 2. Kinetics of melting process in Na₂O – SiO₂ system," in: VTsP, No. Ts-65075 [in Russian], Moscow (1976).
- "Process of melting silicate glass melt. 3. The effect of particle size on kinetics of melting process in Na₂O SiO₂ system," in: VTsP, No. Ts-65075 [in Russian], Moscow (1976).
- "Qualitative estimate of the effect of chemical composition on the course of melting container and sheet glass," in: VTsP, No. F-64652 [in Russian], Moscow (1978).
- 4. V. A. Chubinidze, *The Study of the Process and Development of Melting Technology for Silicate Melts in a Furnace with a Cyclone Chamber, Author's Abstract of Candidate's Thesis* [in Russian], Moscow (1977).