Model Evaluation Parameters for Regression and Classification

Dr. Prashant Singh Rana psrana@gmail.com

Evaluation Parameters for Regression

- Parameters on which we compare different models and system.
 - Performance parameters:
 - Correlation
 - \blacksquare R²
 - Accuracy
 - Prediction Time
 - Error (RMSE, MAE, MSA, etc)

1. Correlation: Pearson

the relationship between two sets of variables used to describe or predict information

1. Correlation: Pearson

Formula

$$\mathbf{r} = \frac{\mathbf{n}(\mathbf{\Sigma}\mathbf{x}\mathbf{y}) - (\mathbf{\Sigma}\mathbf{x})(\mathbf{\Sigma}\mathbf{y})}{\sqrt{\left[\mathbf{n}\mathbf{\Sigma}\mathbf{x}^2 - (\mathbf{\Sigma}\mathbf{x})^2\right]\left[\mathbf{n}\mathbf{\Sigma}\mathbf{y}^2 - (\mathbf{\Sigma}\mathbf{y})^2\right]}}$$

$$r = \frac{\sum xy - \frac{\sum x \sum y}{n}}{\sqrt{\left(\sum x^2 - \frac{\left(\sum x\right)^2}{n}\right)\left(\sum y^2 - \frac{\left(\sum y\right)^2}{n}\right)}}$$

1. Correlation: Pearson

- The closer the number is to positive one, the stronger the positive correlation
- The closer the number is to negative one, the stronger the negative correlation
 - The closer the number is to zero, the weaker the correlation
- 1
- Zero means there
 is no correlation
 between the variables

2. Coefficient of determinant

- The coefficient of determination (R2) summarizes the **explanatory power of the regression model**.
- R2 describes the <u>proportion of variance of the dependent variable</u> <u>explained by the regression model</u>.
- If the regression model is perfect then R2 is 1 and if the regression model is a total failure then R2 is zero i.e. no variance is explained by regression.
- It is defined as follows: $R^2 = r * r$

3. Error

Mean squared error

$$ext{MSE} = rac{1}{n} \sum_{t=1}^{n} e_t^2$$

Root mean squared error

$$ext{RMSE} = \sqrt{rac{1}{n}\sum_{t=1}^n e_t^2}$$

Mean absolute error

$$ext{MAE} = rac{1}{n} \sum_{t=1}^n |e_t|$$

Where, e is the error between x and y

4

4. Accuracy

 The accuracy is calculated as percentage deviation of predicted target with actual target (with or without <u>acceptable</u> <u>error</u>).

Example:

- Dose given by doctor (100 mg +-10) → OK
- Dose given by doctor (100 mg +-50) → Not OK

4. Accuracy

$$Accuracy = \frac{100}{n} \sum_{i=1}^{n} q_i$$

$$q_i = \begin{cases} 1 & ifabs(p_i - a_i) \le err\\ 0 & otherwise \end{cases}$$

4. Accuracy: Find

Accuracy with +-5 error

- = IF (ABS (A4 B4) \leq 5, 1, 0)
- = AVERAGE (C4 : C16) * 100

4

4. Accuracy: Find

		Accuracy				
		With +- 5 err	With +- 10 err	With +- 20 err	With +- 30 err	
Actual	Predicted	23.08	38.46	76.92	92.31	
24	21	1	1	1	1	
50	48	1	1	1	1	
42	54	0	0	1	1	
51	32	0	0	1	1	
11	32	0	0	0	1	
24	11	0	0	1	1	
32	38	0	1	1	1	
27	56	0	0	0	1	
59	54	1	1	1	1	
56	49	0	1	1	1	
45	29	0	0	1	1	
16	59	0	0	0	0	
56	37	0	0	1	1	

Evaluation Parameters for Binary Classification

Binary Classification TRUE/FALSE

Actual	Predicted
1	0
1	1
0	1
1	0
0	1
0	1
0	1
0	0
1	0
0	1

Confusion Matrix / Error Matrix

n= 10	Predicted: YES	Predicted: NO	•
Actual: YES	TP = 1	FN = 3	4
Actual: NO	FP = 5	TN = 1	6
	6	4	

Sensitivity or recall =
$$\frac{TP}{(TP + FN)}$$

Specificity =
$$\frac{TN}{(TN + FP)}$$

Accuracy =
$$\frac{(TP + TN)}{(TP + FN + FP + TN)}$$

Positive Predictive Value or Precision=
$$\frac{TP}{(TP + FP)}$$

Negative Predictive Value =
$$\frac{TN}{(TN + FN)}$$

F-measure= 2 *
$$\frac{(precision*recall)}{(precision+recall)}$$

Sensitivity / Specificity

- Sensitivity presents true positive rate.
 - $1 \rightarrow 1$
 - Cancer → Cancer
- Specificity presents true negative rate.
 - $0 \rightarrow 0$
 - Non-Cancer → Non-Cancer

Confusion Matrix / Error Matrix

Predicted Class

		Positive	Negative	
Actual Class	Positive	True Positive (TP)	False Negative (FN) Type II Error	Sensitivity $\frac{TP}{\overline{(TP+FN)}}$
Actual Class	Negative	False Positive (FP) Type I Error	True Negative (TN)	Specificity $\frac{TN}{(TN + FP)}$
		Precision $\frac{TP}{(TP+FP)}$	Negative Predictive Value $\frac{TN}{(TN + FN)}$	Accuracy $\frac{TP + TN}{(TP + TN + FP + FN)}$

Question: Calculate all parameters for

Actual	Predicted
1	0
1	1
0	1
1	0
0	1
0	1
0	1
0	0
1	0
0	1

Evaluation Parameters for Multi-Class Classification

Model Evaluation Parameters

Error Matrix

Actual/	0	1	2	3	4	5
Predicted						
0	1305	1	5	15	15	5
1	0	114	28	0	0	0
2	4	31	551	136	17	2
3	8	2	125	786	150	13
4	22	3	39	206	713	104
5	14	2	17	46	121	314

Model Evaluation Parameters

For Accuracy

$$Accuracy = \frac{100}{n} \sum_{i=1}^{n} q_i$$

$$q_i = \begin{cases} 1 & p_i = a_i \\ 0 & otherwise \end{cases}$$

Model Evaluation Parameters

Calculate error matrix and Accuracy

Actual	Predicted	
2	0	
1	2	
2	4	
0	4	
3	4	
0	4	
0	0	
0	2	
3	4	
0	0	
4	4	
4	4	

Class wise error

		True/Actual		
		Cat (🐯)	Fish (��)	Hen (4)
Predicted	Cat (🐯)	4	6	3
	Fish (��)	1	2	0
	Hen (4)	1	2	6

Number of correctly classified: 4 + 2 + 6 = 12**Total number** = 25

- Overall Accuracy = 12/25 = 48.0%
- Error (Cat): (1+1)/(4+1+1) = 2/6 = 0.33
- Error (Fish): (6+2)/(6+2+2) = 8/10 = 0.80
- Error (Hen): (3+0)/(3+0+6) = 3/9 = 0.33

You