# MA2047 Algebra och diskret matematik

Något om absolutbelopp

Mikael Hindgren



29 september 2025

## HÖGSKOLAN IHALMSTAD

#### Definition

## Definition 1 (Absolutbelopp)

Absolutbeloppet |x| av det reella talet x definieras genom

$$|x| = \begin{cases} x & x \geqslant 0 \\ -x & x < 0 \end{cases}$$

#### Exempel 1

$$|5| = 5$$
,  $|-4| = -(-4) = 4$ ,  $|0| = 0$ 

## Exempel 2

Grafen till funktionen f(x) = |x|:





## Geometrisk tolkning

Enligt definitionen har vi

$$|x - y| = \begin{cases} x - y, & x \ge y \\ -(x - y), & x < y \end{cases}$$

Avståndet mellan två punkter x och y på tallinjen ges av

$$\begin{cases} x - y \text{ om } x > y \\ y - x = -(x - y) \text{ om } y > x \end{cases}$$



$$|x-y| = \text{avståndet mellan } x \text{ och } y.$$

#### Exempel 3

Lös ekvationen |x - 1| = 4.

#### Lösning:

Vi söker de tal x vars avstånd till talet 1 är lika med 4:

$$\Rightarrow x = 5$$
 eller  $x = -3$ .





## Exempel 4

Lös ekvationen |2x + 1| = 5.

## Lösning:

$$|2x + 1| = |2x - (-1)|$$

 $\Rightarrow$  avståndet mellan talet 2x och talet -1 ska vara 5

$$\Rightarrow$$
 2 $x = 4$  eller 2 $x = -6$ 

$$\therefore x = 2 \text{ eller } x = -3$$

Alternativ algebraisk lösning med kvadrering:

$$|2x + 1| = 5 \Leftrightarrow |2x + 1|^2 = (2x + 1)^2 = 4x^2 + 4x + 1 = 25$$
  
 $\Leftrightarrow 4(x^2 + x - 6) = 0$   
 $\Leftrightarrow x = 2 \text{ eller } x = -3.$ 



## Räkneregler

Följande räkneregler gäller för absolutbelopp:

## Sats 1

För alla reella tal x och y gäller

$$|-x| = |x|$$

$$|x-y| = |y-x|$$

$$|xy| = |x| \cdot |y|$$

## HÖGSKOLA! IHALMSTAD

#### Olikheter

## Exempel 5

Vi har 
$$|x| < 4 \Leftrightarrow -4 < x < 4$$
.

Allmänt: 
$$|x + a| < b \Leftrightarrow -b < x + a < b$$

#### Exempel 6

Lös olikheten |x-2| < 3

## Lösning:

Vi söker de de x för vilka avståndet till talet 2 är mindre än 3:

∴ 
$$-1 < x < 5$$
.

Alternativ algebraisk lösning:

$$|x-2| < 3 \Leftrightarrow -3 < x-2 < 3 \Leftrightarrow -1 < x < 5$$

## HÖGSKOLAN IHALMSTAD

# Olikheter Exempel 7

Lös olikheten |2x + 2| < 4.

## Lösning:

$$-4 < 2x + 2 < 4 \Leftrightarrow -6 < 2x < 2 \Leftrightarrow -3 < x < 1$$

## Exempel 8

För vilka x gäller olikheten |x - 1| > |2x + 1|?

## Lösning:

Kvadrering:

$$|x-1| > |2x+1| \Leftrightarrow |x-1|^2 > |2x+1|^2$$

$$\Leftrightarrow (x-1)^2 = x^2 - 2x + 1 > (2x+1)^2 = 4x^2 + 4x + 1$$

$$\Leftrightarrow 0 > 3x^2 + 6x = 3x(x+2)$$

$$\Leftrightarrow -2 < x < 0$$



#### Olikheter

## **Exempel 9**

Bestäm de reella tal x för vilka 3x + |2x + 1| > 6.

## Lösning:

Följande metod fungerar på alla ekvationer och olikheter med absolutbelopp:

$$|2x+1| = \begin{cases} 2x+1, & x \ge -\frac{1}{2} \\ -(2x+1), & x < -\frac{1}{2} \end{cases}$$

Vi delar in de reella i talen i två intervall och löser olikheten i varje intervall:

| $X<-\frac{1}{2}$                 | $X\geqslant -\frac{1}{2}$                      |
|----------------------------------|------------------------------------------------|
| 3x +  2x + 1  > 6                | 3x +  2x + 1  > 6                              |
| $\Leftrightarrow$ 3 $x-(2x+1)>6$ | $\Leftrightarrow$ 3 $x$ + (2 $x$ + 1) > 6      |
| ⇔ <i>x</i> > 7                   | $\Leftrightarrow 5x > 5 \Leftrightarrow x > 1$ |

Eftersom x > 7 ligger utanför aktuellt intervall kan vi bortse från den och x > 1 är därför enda lösningen.