

A High-Performance Tensor Computation Framework

with Automatic Differentiation and MLIR Compilation

From Interpreted to Compiled: 450× Performance Boost

Contributors

杨润东•杨淳瑜•王海天

Tensor Module Implementation

A High-Performance Foundation for Deep Learning

- Unified abstraction across CPU and CUDA devices
- **NumPy-compatible** broadcasting semantics
- **Zero-copy** Python integration
- **Optimized** parallelization strategies

Architecture Overview

Core Design Principles

Device-Aware Dispatch

```
static Tensor add(const Tensor &a, const Tensor &b) {
   if (a.device == Device::CUDA && b.device == Device::CUDA) {
      return cuda_add(a, b);
   } else if (a.device == Device::CPU && b.device == Device::CPU) {
      return cpu_add(a, b);
   } else {
      throw std::invalid_argument("Device mismatch");
   }
}
```

Transparent Migration

```
void Tensor::to(Device device) {
    if (this->device == device) {
        return; // No need to transfer if already on the same device
    if (device == Device::CPU) {
        size_t buf_size = num_elements * sizeof(float);
        float * host data = static cast<float*>(malloc(buf size));
        cudaMemcpy(host_data, data, num_elements * sizeof(float), cudaMemcpyDeviceToHost);
        cudaFree(data);
        data = host_data;
        // Allocate CPU memory and copy data back to CPU (not shown here)
    } else if (device == Device::CUDA) {
        // Allocate GPU memory and copy data to GPU (not shown here)
        float * gpu_data;
        cudaMalloc(&gpu_data, num_elements * sizeof(float));
        cudaMemcpy(gpu_data, data, num_elements * sizeof(float), cudaMemcpyHostToDevice);
        free(data); // Free the old CPU data
        data = qpu data;
    this->device = device;
```

Broadcasting Mechanism

NumPy-Compatible Shape Inference

View-Based Implementation

- The view mechanism allows a tensor to be accessed as if it had a different (broadcasted) shape, without copying data.
- **Index mapping**: For each broadcasted index, map back to the original tensor's index, ignoring broadcasted (size-1) dimensions.

Core CPU logic:

```
// Map broadcasted indices to original tensor
const float *Tensor::view(const std::vector<int> &asshape, const std::vector<int> &indices) const {
    ...
    for (size_t i = 0; i < shape.size(); i++) {
        if (shape[i] == 1) continue; // broadcast dim
            const int idx = indices[i + diff];
            ... // map to flat offset
    }
    return ret;
}</pre>
```

In elementwise ops:

```
#pragma omp parallel for
for (int i = 0; i < result.num_elements; i++) {
   result.data[i] = (*a.view(shape, i)) + (*b.view(shape, i));
}</pre>
```

CUDA kernel:

```
// Each thread computes its own broadcasted index
for (int i = result_ndim - 1; i >= 0; i--) {
   indices[i] = remaining % result_shape[i];
   remaining /= result_shape[i];
}
// Map to a_idx, b_idx with broadcasting rules
```

CPU Parallelization Strategies

Adaptive Threading Approach

Tensor Size	Strategy	Rationale
≤8 elements	Sequential	Avoid thread overhead
Small-Medium	Manual threading	Predictable distribution
Large	OpenMP	Automatic work balancing

Map-Reduce Pattern

CUDA Kernel Design

Template-Based Generic Broadcasting

```
template <typename Op>
__global__ void broadcastOpKernel(const float *a, const float *b,
                                 float *result, Op op) {
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    if (idx < num_elements) {</pre>
        // Convert flat index to multi-dimensional
        int indices[8] = compute indices(idx);
        // Map with broadcasting rules
        int a_idx = map_index(indices, a_shape);
        int b_idx = map_index(indices, b_shape);
        result[idx] = op(a[a_idx], b[b_idx]);
```

Benefits:

• Compile-time specialization

Memory Model & Python Integration

Zero-Copy Buffer Protocol

Key Takeaways

Design Achievements

- Unified API Same code works on CPU/CUDA
- **Compatibility** NumPy broadcasting semantics
- **Element-wise ops**: Near-memory bandwidth limited
- **Broadcasting**: Zero-copy on CPU, efficient on CUDA

Foundation for Higher Layers

- Automatic differentiation builds on tensor operations
- Compiler can optimize across abstraction boundaries

Automatic Differentiation System

Dynamic Computation Graphs for Deep Learning

Core Features

- DataNode abstraction wraps tensors with gradient tracking
- Operator overloading builds graphs automatically
- Static topological ordering for efficient backpropagation

Design Philosophy

```
# User writes natural Python code
y = DataNode.matmul(x, w) + b
loss = (y - y_true) ** 2
# Gradients computed automatically
loss.backward()
print(w.grad) # ∂loss/∂w computed!
```

Key Components

Innovation: Static topological ordering eliminates graph traversal

- Nodes recorded in creation order
- Implicit dependency tracking
- Efficient gradient accumulation

Graph Construction via Operator Overloading

Automatic Graph Building

```
def __add__(self, other):
    # Forward computation
    t = self.tensor + other.tensor
    ret = DataNode(t, requires_grad=False)

# Record graph structure
    ret.op = Operator.ADD
    ret.inputs = [self, other]
    ret.requires_grad = self.requires_grad or other.requires_grad
    return ret
```

Supported Operations

Operation	Forward	Gradient Rule
Addition	a + b	$\partial L/\partial a = \partial L/\partial out$, $\partial L/\partial b = \partial L/\partial out$
Multiplication	a × b	$\partial L/\partial a = \partial L/\partial out \times b$, $\partial L/\partial b = \partial L/\partial out \times a$
MatMul	A @ B	$\partial L/\partial A = \partial L/\partial out @ B^T, \partial L/\partial B = A^T @ \partial L/\partial out$
ReLU	max(0, x)	$\partial L/\partial x = \partial L/\partial out \times (x > 0)$
•••	•••	•••

Backpropagation Implementation

Reverse-Mode Differentiation

```
def backward(self, grad=None):
   # Initialize gradient for loss
    if grad is None:
        grad = Tensor.ones(self.shape())
   # Operation-specific gradient computation
    if self.op == Operator.MUL:
       # Product rule
        self.inputs[0]._add_grad(grad * self.inputs[1].tensor)
        self.inputs[1]._add_grad(grad * self.inputs[0].tensor)
   # Recurse to inputs (respecting topological order)
    for input in self.inputs:
        input.backward(input.grad)
```

Linear Regression in 10 Lines

```
# Initialize parameters
w = DataNode(Tensor.zeros((n_features, 1)))
b = DataNode(Tensor.zeros((1,)))
# Training loop
for _ in range(100):
   # Forward pass
    predictions = DataNode.matmul(X, w) + b
    loss = (predictions - Y) ** 2
    # Backward pass (computes all gradients)
    loss.backward()
    # Update parameters
    w.tensor -= w.grad * learning_rate
    b.tensor -= b.grad * learning_rate
    DataNode.zero_grad()
```

Benefits:

- No manual gradient formulas
- Automatic broadcasting handling
- Clean, readable code
- Easy debugging (inspect any gradient)

System Architecture Overview

Why Compilation? The Performance Gap

• No cross-operation optimization: Each op is a black box

Solution: MLIR-Based Compilation

MLIR (Multi-Level Intermediate Representation)

- Designed for heterogeneous hardware
- Progressive lowering through dialects
- Reusable optimization infrastructure
- "Write once, optimize everywhere"

Recording Operations for Compilation

Translate Python Code into Our Internal IR

```
from fduai.compiler import *
with Compiler() as compiler:
    a = Variable.zeros([2,2])
    b = Variable.ones([1,2])
    c = a + b

# ('fill', '%v0', (0.0,))
# ('fill', '%v1', (1.0,))
# ('+', '%v2', ('%v0', '%v1'))
```

MLIR Code Generation : y = x @ w + b

```
func.func @forward(%v0: memref<10x10xf32>,
                                             // weights
                  %v1: memref<1x10xf32>, // bias
                  %v2: memref<16x10xf32>) // input
                   -> memref<16x10xf32> {
 %v3 = memref.alloc() : memref<16x10xf32>
 // Matrix multiplication: v3 = v2 @ v0
  affine.for \%i = 0 to 16 {
    affine.for \%j = 0 to 10 {
      %sum = arith.constant 0.0 : f32
      affine.for %k = 0 to 10 {
       %a = memref.load %v2[%i, %k]
       %b = memref.load %v0[%k, %j]
       %prod = arith.mulf %a, %b : f32
       %sum = arith.addf %sum, %prod : f32
     memref.store %sum, %v3[%i, %j]
  // Bias addition with broadcasting
  // ... similar loop structure ...
```

Compilation Results: Dramatic Performance Gains

fduai implementation:

```
with Module() as m:
    with Function('main') as f:
        lr = Variable.fill([1,], 0.0001)
        w = DataNode.ones([1, 1])
        b = DataNode.zeros([1, 1])
        with Repeat(128):
            l = DataNode.matmul(x, w) + b - y
            loss = 1 * 1
            loss.backward()
            w_n = w.tensor - lr * w.grad
            b_n = b.tensor - lr * b.grad
            move(w_n, w.tensor)
            move(b_n, b.tensor)
            DataNode.zero_grad()
        print(w.tensor)
        print(b.tensor)
```

Mean execution time of training a linear regression model across 100 runs:

Implementation	Time (ms)	Speedup
FDUAI Interpreted	333.23	1×
PyTorch	13.69	24×
FDUAI Compiled	0.74	450×

Performance Gains

- **450**× **speedup** over interpreted autograd
- **18× faster** than PyTorch

Experiments

- Basic Tensor Operations
- Automatic Differentiation Overhead
- Compilation Impact

Experimental Setup

Benchmark Configuration

- Tensor Dimensions
 - Basic operations: 1000×1000 matrices
 - Broadcast operations: 1000×1000 matrix and scalar

Mlir Pass Pipeline

```
# add necessary memory free operations
auto_dealloc_pass = PassPipeline('--buffer-deallocation')
# accelerate the affine dialect
affine_accelerate_pass = PassPipeline(
    '--affine-simplify-structures',
    '--affine-loop-fusion',
    '--affine-parallelize',
    '--affine-loop-unroll',
    '--affine-super-vectorize',
# convert dialects to llvm dialect
convert_to_llvm_pass = PassPipeline(
    '--lower-affine',
    '--convert-scf-to-cf',
    '--convert-to-llvm',
    '--reconcile-unrealized-casts',
```

Basic Tensor Operations Performance

```
shape = [1000, 1000]
with Module() as m:
    with Function('main'):
        a = Variable.zeros(shape)
        b = Variable.zeros(shape)
        with Timer():
        with Repeat(1000):
        c = a + b
```

Operation	Mlir(-O2)	NumPy	Torch(CPU)	tensor_module(CPU)
add	260 µs	301 µs	15108 µs	403 μs
mul	220 µs	302 µs	15107 µs	401 μs
matmul	250 µs	16180 µs	24775 µs	1023 μs
transpose	100 µs	17.6 µs	38.9 µs	202.0 μs
broadcast add	100 µs	202 µs	15060 µs	211 µs

Compilation Time

Time required to translate fduai.ir into mlir(optimization level 2).

Operation	Time To Execute
add	147 ms
mul	146 ms
matmul	141 ms
transpose	148 ms
broadcast add	138 ms

Performance Characteristics

- Variable Operations: consistently faster than numpy and pytorch.
- Mlir vs. tensor_module: about 2-4x speedup
- **Transpose**: slower than pytorch and numpy