IEEE 802.11n HT20 :

CH Low:

CH Mid:

Page 57 of 99

IEEE 802.11n HT40 :

CH Low:

CH Mid:

CH Hig:

9 Bandwidth

9.1 Test limit

Please refer sectionRSS-247 & 15.247

For direct sequence systems, the minimum 6dB bandwidth shall be at least 500 kHz.

9.2 Method of measurement

Details see the KDB558074 D01 Meas Guidance

- a) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst-case (i.e. the widest) bandwidth.
- b) The test receiver set RBW = 100KHz, VBW≥300KHz, Sweep time set auto, PEAK Detector, detail see the test plot.

9.3 Test Setup

9.4 Test Results

PASS.

Antenna 0 and Antenna 1 port all have been tested, only worse case is reported

Detailed information please see the following page.

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Limit (MHz)	Result
IEEE 802.	11b:				
Low	2412	10.05	/	0.5	PASS
Mid	2437	10.01	/	0.5	PASS
High	2462	10.05	/	0.5	PASS
IEEE 802.	11g			•	
Low	2412	16.39	/	0.5	PASS
Mid	2437	16.38	/	0.5	PASS
High	2462	16.37	/	0.5	PASS
IEEE 802.	11n/HT20:				
Low	2412	17.60	/	0.5	PASS
Mid	2437	17.65	/	0.5	PASS
High	2462	17.62	/	0.5	PASS
IEEE 802.	11n/HT40:				
Low	2422	35.72	/	0.5	PASS
Mid	2437	35.84	/	0.5	PASS
High	2452	35.84	/	0.5	PASS

IEEE 802.11b:

CH Low:

CH Mid:

CH High:

IEEE 802.11g: CH Low:

CH Mid:

CH Hig:

IEEE 802.11n HT20:

CH Low:

CH Mid:

CH High:

IEEE 802.11n/HT40:

CH Low:

CH Mid:

CH High:

10 Band Edge Check

10.1 Test limit

Please refer section RSS-GEN&15.247.

10.2 Test Procedure

- 12.2.1 Put the EUT on a 0.8m high table, power on the EUT. Emissions were scanned and measured rotating the EUT to 360 degrees, Find the maximum Emission
- 12.2.2 Check the spurious emissions out of band.
- 12.2.3 RBW 1MHz ,VBW 3MHz ,peak detector for peak value , RBW 1MHz ,VBW 3MHz ,RMS detector for AV value.

10.3 Test Setup

Same as 5.2.2.

10.4 Test Result

PASS.

Detailed information please see the following page.

Radiated Method:

802.11b ant1

			Band E	dge Test	result			
EUT: Healthy	body fat a	nalyzer		N	M/N: Cloud	-2		
Power: AC 12	20V/60Hz							
Test date: 201	15-11-13	Test site	: 3m Cl	namber	Tested by	: Reak Yang		
Test mode: T	x Low							
Antenna pola	rity: Vertica	al						
Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2390	42.37	27.62	3.92	34.97	38.94	74	35.06	PK
Antenna Pola	rity: Horizo	ontal						
2390	43.25	27.62	3.92	34.97	39.82	74	34.18	PK
Note:								

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=3MHz, Sweep time=Auto, Detector: RMS
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

			Band E	dge Test	result			
EUT: Healthy	y body fat a	nalyzer		N	M/N: Cloud	-2		
Power: AC 12	20V/60Hz							
Test date: 201	15-11-13	Test site	: 3m Cl	namber	Tested by	: Reak Yang		
Test mode: T	x High							
Antenna pola	rity: Vertica	al						
Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2483.5	42.92	27.89	4	34.97	39.84	74	34.16	PK
Antenna Pola	rity: Horizo	ontal						
2483.5	44.47	27.89	4	34.97	41.39	74	32.61	PK
I	1	ı	1	l	i		1	ı

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=3MHz, Sweep time=Auto, Detector: RMS
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

802.11g ant1

		Band Ed	dge Test	result			
y fat a	nalyzer		N	M/N: Cloud	-2		
60Hz							
-13	Test site	: 3m Cl	namber	Tested by	: Reak Yang		
W							
Vertica	al						
ead evel uV/m)	Factor	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2.87	27.62	3.92	34.97	39.44	74	34.56	PK
Horizo	ntal						
3.78	27.62	3.92	34.97	40.35	74	33.65	PK
	60Hz -13 w Vertica ead evel aV/m) 2.87 	-13 Test site W Vertical ead Antenna evel Factor aV/m) (dB/m) 2.87 27.62 Horizontal	y fat analyzer 60Hz -13 Test site: 3m Ch W Vertical ead Antenna Cable Evel Factor loss(d aV/m) (dB/m) B) 2.87 27.62 3.92 Horizontal	y fat analyzer 50Hz -13 Test site: 3m Chamber W Vertical ead Antenna Cable Amp evel Factor loss(d Factor aV/m) (dB/m) B) (dB) 2.87 27.62 3.92 34.97 Horizontal	-13 Test site: 3m Chamber Tested by W Vertical ead Antenna Cable Amp Factor loss(d BuV/m) (dB/m) B) Result (dBuV/m) 2.87 27.62 3.92 34.97 39.44	y fat analyzer M/N: Cloud-2 60Hz -13 Test site: 3m Chamber Tested by: Reak Yang W Vertical ead Antenna Cable Factor (dB/m) B) Result (dBuV/m) (dB/m) B) (dB) 2.87 27.62 3.92 34.97 39.44 74 Horizontal	y fat analyzer M/N: Cloud-2 60Hz -13 Test site: 3m Chamber Tested by: Reak Yang W Vertical ead Antenna Factor (dB/m) Pactor (dB) 1V/m) (dB/m) B) Result (dBuV/m) (dBuV/m) (dB) 2.87 27.62 3.92 34.97 39.44 74 34.56 Horizontal

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=3MHz, Sweep time=Auto, Detector: RMS
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

			Band Ed	dge Test	result				
EUT: Healthy	y body fat a	nalyzer			M/N: Cloud	-2			
Power: AC 12	20V/60Hz	•							
Test date: 20	15-11-13	Test site	: 3m Cl	namber	Tested by	: Reak Yang			
Test mode: T	x High								
Antenna pola	rity: Vertica	al							
Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	
2483.5	42.24	27.89	4	34.97	39.16	74	34.84	PK	
Antenna Pola	 .rity: Horizo	ntal							
2483.5	43.15	27.89	4	34.97	40.07	74	33.93	PK	

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=3MHz, Sweep time=Auto, Detector: RMS
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

802.11b ant2

			Band Ed	dge Test	result			
EUT: Healthy	body fat a	nalyzer		N	M/N: Cloud	-2		
Power: AC 12	20V/60Hz							
Test date: 201	15-11-13	Test site	: 3m Cl	namber	Tested by	: Reak Yang		
Test mode: T	x Low							
Antenna pola	rity: Vertica	al						
Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2390	42.38	27.62	3.92	34.97	38.95	74	35.05	PK
Antenna Pola	rity: Horizo	ontal						
2390	43.96	27.62	3.92	34.97	40.53	74	33.47	PK
NT-4								

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=3MHz, Sweep time=Auto, Detector: RMS
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

			Band Ed	dge Test	result			
EUT: Healthy	body fat a	nalyzer		N	M/N: Cloud	-2		
Power: AC 12	20V/60Hz							
Test date: 201	15-11-13	Test site	: 3m Cl	namber	Tested by	: Reak Yang		
Test mode: T	x High							
Antenna pola	rity: Vertica	al						
Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2483.5	42.94	27.89	4	34.97	39.86	74	34.14	PK
			-					
Antenna Pola	rity: Horizo	ntal						
2483.5	43.75	27.89	4	34.97	40.67	74	33.33	PK

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=3MHz, Sweep time=Auto, Detector: RMS
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

802.11g ant2

		Band Ed	dge Test	result			
body fat a	nalyzer		N	M/N: Cloud	-2		
20V/60Hz							
15-11-13	Test site	: 3m Cl	namber	Tested by	: Reak Yang		
x Low							
rity: Vertica	al						
Read Level (dBuV/m)	Factor	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
42.86	27.62	3.92	34.97	39.43	74	34.57	PK
rity: Horizo	ontal						
44.12	27.62	3.92	34.97	40.69	74	33.31	PK
	20V/60Hz 15-11-13 x Low rity: Vertica Read Level (dBuV/m) 42.86 rity: Horizo	Read Level (dBuV/m) 42.86 27.62	rity: Horizontal	rity: Horizontal	20V/60Hz 15-11-13 Test site: 3m Chamber Tested by x Low rity: Vertical Read Level Factor (dBuV/m) (dB/m) B) Result (dBuV/m) 42.86 27.62 3.92 34.97 39.43	M/N: Cloud-2 M/N:	body fat analyzer

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=3MHz, Sweep time=Auto, Detector: RMS
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

			Band Ed	dge Test	result			
EUT: Healthy	body fat a	nalyzer		N	M/N: Cloud	-2		
Power: AC 12	20V/60Hz							
Test date: 201	15-11-13	Test site	: 3m Cl	namber	Tested by	: Reak Yang		
Test mode: T	x High							
Antenna pola	rity: Vertica	al						
Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2483.5	43.24	27.89	4	34.97	40.16	74	33.84	PK
Antenna Pola	rity: Horizo	ontal						
2483.5	44.14	27.89	4	34.97	41.06	74	32.94	PK

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=3MHz, Sweep time=Auto, Detector: RMS
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

802.11n20

			Band Ed	dge Test	result			
EUT: Healthy	body fat a	nalyzer		N	M/N: Cloud	-2		
Power: AC 12	20V/60Hz							
Test date: 201	15-11-13	Test site	: 3m Cl	namber	Tested by	: Reak Yang		
Test mode: M	IIMO Tx L	ow						
Antenna pola	rity: Vertica	al						
Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2390	41.72	27.62	3.92	34.97	38.29	74	35.71	PK
Antenna Pola	rity: Horizo	ontal						
2390	43.6	27.62	3.92	34.97	40.17	74	33.83	PK
NT-4								

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=3MHz, Sweep time=Auto, Detector: RMS
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

			Band Ed	dge Test	result			
EUT: Healthy	body fat a	nalyzer		N	M/N: Cloud-	-2		
Power: AC 12	20V/60Hz							
Test date: 201	15-11-13	Test site	: 3m Cl	namber	Tested by	: Reak Yang		
Test mode: M	IIMO Tx H	igh						
Antenna pola	rity: Vertica	al						
Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2483.5	44.55	27.89	4	34.97	41.47	74	32.53	PK
Antenna Pola	rity: Horizo	ontal						
2483.5	45.17	27.89	4	34.97	42.09	74	31.91	PK
	I	I	ĺ	l	I			l

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=3MHz, Sweep time=Auto, Detector: RMS
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

802.11n40

			Band Ed	dge Test	result			
EUT: Healthy	body fat a	nalyzer		N	M/N: Cloud	-2		
Power: AC 12	20V/60Hz							
Test date: 201	15-11-13	Test site	: 3m Cl	namber	Tested by	: Reak Yang		
Test mode: M	IIMO Tx Lo	ow						
Antenna pola	rity: Vertica	al						
Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2390	41.57	27.62	3.92	34.97	38.14	74	35.86	PK
Antenna Pola	rity: Horizo	ontal						
2390	42.49	27.62	3.92	34.97	39.06	74	34.94	PK
NT-4-								

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=3MHz, Sweep time=Auto, Detector: RMS
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Band Edge Test result								
EUT: Healthy body fat analyzer M/N						-2		
Power: AC 12	20V/60Hz							
Test date: 2015-11-13		Test site: 3m Chamber Tested by: Reak Yang						
Test mode: MIMO Tx High								
Antenna polarity: Vertical								
Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2483.5	44.21	27.89	4	34.97	41.13	74	32.87	PK
			-					
Antenna Polarity: Horizontal								
2483.5	44.55	27.89	4	34.97	41.47	74	32.53	PK

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=3MHz, Sweep time=Auto, Detector: RMS
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Conducted Method:

802.11b

Antenna 0 and Antenna 1 port all have been tested, only worse case is reported

802.11g

Antenna 0 and Antenna 1 port all have been tested, only worse case is reported

802.11n HT20

Antenna 0 and Antenna 1 port all have been tested, only worse case is reported

802.11n HT40

Antenna 0 and Antenna 1 port all have been tested, only worse case is reported

11 Antenna Requirement

11.1 Standard Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

11.2 Antenna Connected Construction

The antenna connector is unique antenna and no consideration of replacement. Please see EUT photo for details.

11.3 Result

The EUT antenna is integrated Antenna. It comply with the standard requirement.

12 Photographs of EUT

-----END OF THE REPORT-----