CHAPTER

MODELLING COMPUTATION

- 6.1 Prof, Lai lies.
- 6.2 (a) T
 - (d) T
 - (g) T
 - (j) T
 - (m) T

- (b) F
- (e) T
- (h) F
- (k) T
- (n) T
- (f) F (i) F

(c) T

- (1) F
- (o) T

- 6.3 (a) ϕ
 - (c) $\{(bc)^i | i \ge 0\}$
- (b) *φ*
- (d) $\{(cd)^i|i\geq 0\}$
- 6.4 (a) $\{xb|x \in \{a,b\}^i, i \ge 4\}$
 - (c) {*abc*}
 - (e) φ

- (b) {*ab*}
- (d) $\{a, a^3, a^4, a^5, ...\}$
- (f) φ

- 6.5 (a) Yes
- (b) No

- (d) No (g) No
- (e) No
- (f) Yes

(c) No

- (j) Yes
- (h) No
- (i) No
- (b) Yes
- (c) Yes

- 6.6 (a) Yes (d) Yes
- (e) Yes
- 6.7 (a) No, No, Yes, No
- (b) $\{b^i b^i c^j | i \ge 1, j \ge 1\}$
- 6.8 signed_integer => sign integer
 - => sign digit integer
 - => sign digit digit integer
 - => sign digit digit digit
 - => -010

```
64
```

```
6.9 sentence => Does singular-noun sing transitive-verb noun?
                        sentence => Do plural-noun transitive-verb noun?
                        sentence => Does singular-noun transitive-verb?
                        sentence => Do plural-noun intransitive-verb?
                 transitive-verb => like
               intransitive-verb => come
               intransitive-verb = > understand
                             noun => singular-noun
                             noun => plural-noun
                  singular-noun => he
                  singular-noun => she
                  singular-noun => John
                  singular-noun => Mary
                     plural-noun => You
                     plural-noun => 1
6.10 (a) \{a^i b \mid i \geq 2\}
      (b) \{(ab)^i aa \mid i \ge 0\}
      (c) {aab, aac, aabb, aabc, aacb, aacc}
      (d) \{a^{i}(ac)b^{i} | i \geq 0\}
       (e) \{a^i b a^j | i \ge 1, j \ge 0\}
       (f) \{a^i b \mid i \ge 0\}
       (g) \{a^i b^j | i \ge 1, j \ge 1\}
       (h) \{a^i b^i c^j | i \ge 1, j \ge 1\}
       (i) \{a^iba^j | i \ge 0, j \ge 1\}
       (j) \{ab^ic^j | i \ge 0, j \ge 1\}
       (k) \{a^i c b^i | i \ge 1\} \cup \{b^j c a^j | j \ge 1\}
       (1) \{cb^ia^j | i \ge 0, j \ge 1\}
      (m) \{(ab)^i c (ab)^i | i \ge 0\}
      (n) \{a^i b^j a \mid i \ge 0, j \ge 1\}
      (o) \{(aa)^i b^j | i \ge 1, j \ge 0\}
6.11 (a) \{S \rightarrow AB, A \rightarrow aaA, A \rightarrow aa, B \rightarrow bbB, B \rightarrow bb\}
      (b) \{S \rightarrow AB, A \rightarrow abA, A \rightarrow ab, B \rightarrow ccB, B \rightarrow cc\}
      (c) \{S \rightarrow AB, A \rightarrow aAb, A \rightarrow ab, B \rightarrow bB, B \rightarrow b\}
```

(d) $\{S \to ASB, S \to AB, A \to a, B \to bb, B \to b\}$ (e) $\{S \to AB, A \to aAb, A \to ab, B \to Bc, B \to c\}$

- (f) $\{S \to aSc, S \to aAc, A \to bAc, A \to bc\}$
- (g) $\{S \rightarrow aaS, S \rightarrow aacA, A \rightarrow bbA, A \rightarrow bbb\}$
- (h) $\{S \to ABC, A \to aAb, A \to ab, B \to cBd, B \to cd, C \to eC, C \to e\}$
- 6.12 (a) $\{S \rightarrow aSb, S \rightarrow ab, ab \rightarrow ba, ba \rightarrow ab\}$
 - (b) $\{S \rightarrow aaaSb, S \rightarrow aaab, ab \rightarrow ba, ba \rightarrow ab\}$
- 6.13 Let *S'* be the start symbol of a grammar that generates the string of 0s and 1s with an equal number of 0s and 1s. Then the grammar below with *S* as the start symbol is a grammar for *L*.

$$\{S \rightarrow 0, S \rightarrow 0S, S \rightarrow 0S', S \rightarrow S'S\}$$

- 6.14 Let G_1 and G_2 be the context free grammars for the languages L_1 and L_2 respectively. Let S_1 and S_2 be the starting in G_1 and G_2 respectively.
 - (a) If we add the productions $S \to S_1$ and $S \to S_2$ to G_1 and G_2 , then S will generate he ganguage $L_1 \cup L_2$.
 - (b) Similarly, If we add the production $S \to S_1 S_2$ to G_1 and G_2 , then S will generate the language $L_1 L_2$.
- 6.15 (a) Type 0 grammar, Type 3 language.
 - (b) Type 1 grammar, Type 3 language.
 - (c) Type 2 grammar, Type 3 language.
 - (d) Type 3 grammar, Type 3 language.
- 6.16 (a) $\{a^i b^i c^i | i \ge 1\}$
 - (b) $\{aa, bb\}$
 - (c) ϕ
- 6.17 (a) $\{S \to aA, S \to bB, S \to b, A \to b, A \to bB, B \to a, B \to aA, B \to b, B \to bB\}$
 - (b) $\{S \to aAB, S \to aBA, S \to bAA, A \to aS, A \to a, A \to bAAA, B \to aABB, B \to aBAB, B \to aBBA, B \to bS, B \to b\}$
- 6.18

6.19

6.20

- 6.21 All paths from A to H are of the form A... DFH. Since the minimum-energy input sequence that take the machine from A to ABD, therefore a minimum-energy sequence is ABDFH and the total energy of the sequence is 6 units.
- 6.22 (a) 011000
 - (b) 001000
 - (c) Let $\alpha = a_1 a_2 \dots a_k$ be a given output sequence. Construct a graph G = (V, E) where V is the set of all the states and E is defined as follows:
 - (i) define the sets $A_1, A_2, ..., A_{k+1}$ recursively. $A_1 = \{S_0\}$. A_{i+1} is the set of all states that can be reached from the states in A_i in one step with output a_i .
 - (ii) for every $S \in A_i$ and $T \in A_{i+1}$ such that there is a transition from S to T, add (S, T) to E and label it with an input letter that causes the transition.
 - (iii) if A_{k+1} is nonempty, then there exists an input sequence that will produce α and it is given by the labels along any path from S_0 to any state in A_{k+1} .
- 6.23 The finite state machine is:

		0	1
\Rightarrow	A	<i>B</i> /0	<i>B</i> /1
	В	C/0	C/1
	C	A/1	A/0

6.24 R is clearly symmetric and reflexive. Transitivity: $(\alpha_1, \alpha_2) \in R \Rightarrow \text{both } \alpha_1$ and α_2 will bring the machine from S_0 to S_i for some i. $(\alpha_2, \alpha_3) \in R \Rightarrow \text{both } \alpha_2$ and α_3 will bring the machine from S_0 to S_j for some j. Since α_2 brings the finite state machine from S_0 to S_i and S_j , and the machine is deterministic, therefore $S_i = S_j$. Hence both α_1 and α_3 will bring the machine from S_0 to $S_i (= S_j)$ and $(\alpha_1, \alpha_3) \in R$.

6.25 (a)
$$\pi_0 = \{\overline{ABCE}, \overline{DFGH}\}$$

$$\text{(b)} \ \ \pi_1 = \, \{\overline{ABCE}, \overline{D}, \overline{FGH}\} \,, \, \pi_2 = \, \{\overline{AC}, \overline{BE}, \overline{D}, \overline{FGH}\} \,.$$

The machine with the smallest number of states:

	0	1	
\overline{AC}	\overline{FGH}	\overline{BE}	0
\overline{BE}	$\overline{\overline{D}}$	\overline{AC}	0
\overline{FGH}	\overline{AC}	\overline{FGH}	1
\overline{D}	\overline{BE}	\overline{AC}	1

6.26 (a)
$$\pi_0 = \{\overline{ABCDE}, \overline{FG}\}, \ \pi_1 = \{\overline{ABCD}, \overline{E}, \overline{FG}\},$$

$$\pi_2 = \{\overline{AB}, \overline{CD}, \overline{E}, \overline{FG}\}.$$

		0	1	
\Rightarrow	\overline{AB}	\overline{AB}	\overline{CD}	0
	\overline{CD}	\overline{AB}	\overline{E}	0
	\overline{E}	\overline{FG}	\overline{E}	0
	\overline{FG}	\overline{AB}	\overline{CD}	1

(b)
$$\pi_0 = \{\overline{ABCDEH}, \overline{FG}\}, \ \pi_1 = \{\overline{ACDEH}, \overline{FG}\},$$

$$\pi_2 = \{\overline{ADH}, \overline{CE}, \overline{B}, \overline{FG}\}.$$

	0	1	
\overline{ADH}	\overline{ADH}	\overline{CE}	0
\overline{CE}	\overline{ADH}	\overline{B}	0
\overline{B}	\overline{FG}	\overline{B}	0
\overline{FG}	\overline{ADH}	\overline{CE}	1
	\overline{CE} \overline{B}		

Both machines are equivalent to the following machine:

		0	1	
\Rightarrow	A	A	В	0
	В	\boldsymbol{A}	C	0
	C	D	C	0
	D	A	В	1

6.27 (a) $\{\overline{BC}, \overline{AD}\}$

$$\text{(b)} \ \ \pi_1 = \, \{\overline{BC}, \overline{AE}, \overline{FD}\} \,, \, \pi_2 = \, \{\overline{ACF}, \overline{BDE}\} \,.$$

(c) $\pi_1 \cdot \pi_2$:

a,b are in the same block in $\pi_1 \cdot \pi_2 \Rightarrow a,b$ are in the same block in π_1 and also in the same block in $\pi_2 \Rightarrow f(a,i), f(b,i)$ are in the same block in π_1 and also in the same block in $\pi_2 \Rightarrow f(a,i), f(b,i)$ are in the same block in $\pi_1 \cdot \pi_2$. Hence, $\pi_1 \cdot \pi_2$ is a preserved partition.

$$\pi_1 + \pi_2$$
:

a,b are in the same block in $\pi_1 + \pi_2 \Rightarrow$ there exists c_1, c_2, \ldots, c_k such that c_i, c_{i+1} are in the same block in π_1 or $\pi_2(i=0, 1, 2, \ldots, k; c_0=a, c_{k+1}=b) \Rightarrow f(c_i, j), f(c_{i+1}, j)$ are in the same block in π_1 or $\pi_2(i=0, 1, 2, \ldots, k) \Rightarrow f(c_i, j), f(c_{i+1}, j)$ are in the same block in $\pi_1 + \pi_2$. Hence, $\pi_1 + \pi_2$ is a preserved partition.

6.28 (a)

(b)

Modelling Computation

+

(e) $a_1 a_2 \dots a_n$ is of the form 4k + 3 for $k \ge 1$ iff $a_{n-1} a_n = 11$, $a_1 = 1$ and $n \ge 3$.

(f) $a_1 a_2 ... a_n$ is of the form $8^k + 1$ for $k \ge 1$ iff $a_1 = a_n = 1$, $a_i = 0$ for i = 2, 3, ..., n - 1 and n = 3k + 1.

- 6.30 (a) $\{0(01)^n | n \ge 0\}$
 - (b) All binary sequences that either starts with a 0 and without consecutive 0s or starts with a 1 and without consecutive 1s.
 - (c) All binary sequences that end with 110.
 - (d) All binary sequences with total number of $0s \equiv 3 \mod 4$.
- 6.31 (a) No.
 - (b) Yes. Let G be a type-3 grammar that corresponds to the finite state machine with the nonterminals $\{S_1, S_2, ..., S_{n-1}\}$ being the states. Introduce a starting symbol \widetilde{S} and a set of additional productions $\widetilde{S} \to S_0$, $\widetilde{S} \to S_1, ..., \widetilde{S} \to S_{n-1}$. These together with the productions in G forms a type-3 grammar for the language accepted by the finite state machine using the new definition. Hence the language is regular.
 - (c) No
 - (d) Given a finite state machine M, obtain the corresponding finite state machine M' using the subsets construction method discussed on page 246. The initial state of M' is $\{S_0, S_1, ..., S_{n-1}\}$ which is the set of all the

states in M. The final states of M' are $\{f_1\}$, $\{f_2\}$,... $\{f_k\}$ where the f'_is are the final states of M. This machine accepts the new language and hence the language is regular.

6.32 (a) 010

(b) Let M be the finite state machine and M' be the corresponding machine constructed in 6.31(c). α is a synchronizing sequence that brings M to a state S if and only if α is a sequence that brings M' to the state $\{S\}$. Since there are $2^n - 1$ states in M', therefore α can always be reduced to a sequence of length $2^n - 2$ by the Pigeonhole principle.

All sequences from A(B) to B contains an odd (even) number of 1s. Hence there are no synchronizing sequences that bring M to B(A).

6.33 The machine obtained by connecting M_1 and M_2 in series is:

		0	1	
\Rightarrow	(A,D)	(A,D)	(C,E)	0
	(A,E)	(A,E)	(C,D)	1
	(B,D)	(C,E)	(B,D)	0
	(B,E)	(C,D)	(B,E)	1
	(C,D)	(B,D)	(A,D)	1
	(C,E)	(B,E)	(A,E)	0

6.34 The machine obtained by connecting M_1 and M_2 in parallel is:

		0	1	
\Rightarrow	(A,D)	(A,D)	(C,E)	0
	(A,E)	(A,E)	(C,D)	1
	(B,D)	(C,E)	(B,E)	0
	(B,E)	(C,E)	(B,D)	1
	(C,D)	(B,D)	(A,E)	1
	(C,E)	(B,E)	(A,D)	1

6.35 If a finite state machine with n states accepts an input sequence α whose length is n or larger, then Thm. 6.2 $\Rightarrow \alpha$ can be written as uvw s.t. v is nonempty and uv^iw is also in the language for $i \ge 0$. Since $uv^iw \ne uv^jw$ for $i \ne j$, therefore $\{uv^iw|i\ge 0\}$ is an infinite set and hence the machine accepts an infinite number of input sequences.

- 6.36 Suppose L is accepted by a machine with n states.
 - (a) $0^n 1^n \in L$. Pumping lemma \Rightarrow there exists $k_1, k_2, k_3 \ge 0, k_2 \ne 0$ s.t. $0^n 1^n = 0^n 1^{k_1} 1^{k_2} 1^{k_3}$ and $0^n 1^{k_1 + 2k_2 + k_3} = 0^n 1^{n + k_2} \in L$. This is a contradiction because $n + k_2 > n$.
 - (b) $0^n 1^n \in L$. As in (a), we can show that $0^{n+k_2} 1^n \in L$, for some $k_2 \neq 0$. This is again a contradiction.
 - This is again a contradiction.

 (c) Let i be an integer s.t. $2^{i+1} 2^i > n$. $0^{2^{i+1}} \in L$. Apply Pumping lemma to the input sequence staring at the $2^i + 1$ th 0. We get, $0^k \in L$ for some $2^i < k < 2^{i+1}$, which is a contradiction.
 - (d) $1^n 0^n 1^{2n} \in L$. Pumping lemma $\Rightarrow 1^n 0^n 1^k \in L$ for some k < 2n, which is a contradiction.
- 6.37 $10^n 10^n \in L$. Apply Pumping lemma to the last n 0s. We have $10^n 10^k \in L$ for some k < n, which is a contradiction.
- 6.38 *A* is the starting symbol for all the grammars presented below. Solutions for the problems in 6.30:
 - (a) $\{A \to 0B, A \to 1D, A \to 0, B \to 0C, B \to 1D, C \to 0D, C \to 1B, C \to 1, D \to 0D, D \to 1D\}$
 - (b) $\{A \rightarrow 0B, A \rightarrow 0, A \rightarrow 1D, A \rightarrow 1, B \rightarrow 0F, B \rightarrow 1C, B \rightarrow 1, C \rightarrow 0B, C \rightarrow 0, C \rightarrow 1C, C \rightarrow 1, D \rightarrow 0E, D \rightarrow 0, D \rightarrow 1F, E \rightarrow 0E, E \rightarrow 0, E \rightarrow 1D, E \rightarrow 1\}$
 - (c) $\{A \rightarrow 0A, A \rightarrow 1B, B \rightarrow 0A, B \rightarrow 1C, C \rightarrow 0D, C \rightarrow 0, C \rightarrow 1C, D \rightarrow 0A, D \rightarrow 1B\}$
 - (d) $\{A \rightarrow 0B, A \rightarrow 1A, B \rightarrow 0C, B \rightarrow 1B, C \rightarrow 0D, C \rightarrow 0, C \rightarrow 1C, D \rightarrow 0A, D \rightarrow 1D, D \rightarrow 1\}$ Solutions for the problems in 6.40:
 - (a) $\{A \rightarrow 0A, A \rightarrow 1B, B \rightarrow 1C, B \rightarrow 1D, B \rightarrow 1, C \rightarrow 0D, C \rightarrow 0, D \rightarrow 0A\}$
 - (b) $\{A \to 1D, A \to 2B, B \to 1C, C \to 0B, C \to 2E, C \to 2, D \to 1E, D \to 1, D \to 2D\}$

6.39 (a)

	0	1	
<i>{A}</i>	{ <i>B</i> }	{ <i>A</i> , <i>C</i> }	0
{ <i>B</i> }	{ <i>C</i> }	{ <i>A</i> }	1
{ <i>C</i> }	$\{A\}$	φ	0
$\{A,B\}$	{ <i>B</i> , <i>C</i> }	{ <i>A</i> , <i>C</i> }	1
{ <i>A</i> , <i>C</i> }	$\{A,B\}$	{ <i>A</i> , <i>C</i> }	0
{ <i>B</i> , <i>C</i> }	{ <i>A</i> , <i>C</i> }	{ <i>A</i> }	1
$\{A,B,C\}$	$\{A,B,C\}$	{ <i>A</i> , <i>C</i> }	1
φ	φ	φ	0

4 Solutions Manual of Elements of Discrete Mathematics

(b)

	0	1	
<i>{A}</i>	{ <i>B</i> , <i>C</i> }	φ	0
{ <i>B</i> }	{D}	{ <i>B</i> }	0
{ <i>C</i> }	{ <i>A</i> }	{ <i>C</i> }	0
{D}	{ <i>A</i> }	{ <i>B</i> , <i>C</i> }	1
$\{A,B\}$	$\{B,C,D\}$	{ <i>B</i> }	0
{ <i>A</i> , <i>C</i> }	$\{A,B,C\}$	{ <i>C</i> }	0
$\{A,D\}$	$\{A,B,C\}$	{ <i>B</i> , <i>C</i> }	1
{ <i>B</i> , <i>C</i> }	$\{A,D\}$	{ <i>B</i> , <i>C</i> }	0
$\{B,D\}$	$\{A,D\}$	{ <i>B</i> , <i>C</i> }	1
$\{C,D\}$	<i>{A}</i>	{ <i>B</i> , <i>C</i> }	1
$\{A,B,C\}$	$\{A,B,C,D\}$	{ <i>B</i> , <i>C</i> }	1
$\{A,B,D\}$	$\{A,B,C,D\}$	{ <i>B</i> , <i>C</i> }	1
$\{B,C,D\}$	$\{A,D\}$	{ <i>B</i> , <i>C</i> }	1
$\{A,C,D\}$	$\{A,B,C\}$	{ <i>B</i> , <i>C</i> }	1
$\{A,B,C,D\}$	$\{A,B,C,D\}$	{ <i>B</i> , <i>C</i> }	1
φ	φ	φ	0

(c)

	0	1	
$\{A\}$	$\{A,C\}$	$\{A,B\}$	0
{ <i>B</i> }	{ <i>E</i> }	φ	0
{ <i>C</i> }	φ	{ <i>E</i> }	0
{D}	φ	φ	1
{ <i>E</i> }	φ	φ	1
$\{A,B\}$	$\{A,C,E\}$	$\{A,B\}$	0
$\{A,C\}$	$\{A,C\}$	$\{A,B,E\}$	0
$\{A,B,E\}$	$\{A,C,E\}$	$\{A,B\}$	1
$\{A,C,E\}$	$\{A,C\}$	$\{A,B,E\}$	1
φ	φ	φ	0

6.40 (a) The set of binary sequences in each of which there are no three consecutive 1s and all of them ends with 11 or 10.

(b)
$$L = \{21(01)^k 2 | k \ge 0\} \cup \{12^k 1 | k \ge 0\}$$

(b) All binary sequences ending with either 1010 or 001.

	0	1	
{ <i>A</i> }	$\{A,B\}$	$\{A,E\}$	0
{ <i>B</i> }	{ <i>C</i> }	φ	0
{ <i>C</i> }	φ	{ <i>D</i> }	0
{D}	φ	φ	1
{ <i>E</i> }	{ <i>F</i> }	φ	0
{ <i>F</i> }	φ	$\{G\}$	0
$\{G\}$	$\{H\}$	φ	0
{ <i>H</i> }	φ	φ	1
$\{A,B\}$	$\{A,B,C\}$	$\{A,E\}$	0
$\{A,E\}$	$\{A,B,F\}$	$\{A, E\}$	0
$\{A,B,C\}$	$\{A,B,C\}$	$\{A, E, D\}$	0
$\{A, E, D\}$	$\{A,B,F\}$	$\{A,E\}$	1
$\{A,B,F\}$	$\{A,B\}$	$\{A, E, G\}$	0
$\{A, E, G\}$	$\{A,B,F,H\}$	$\{A, E, G\}$	0
$\{A,B,F,H\}$	$\{A,B\}$	$\{A, E, G\}$	1
φ	φ	φ	0

6.42 (a) 110, 11010, 10110 are accepted by the machine. The set of sequences that starts with a 1, and then follow by a sequence of k_1 01s $(k_1 \ge 0)$, and then follow by a sequence of k_2 10s $(k_2 \ge 1)$.

(b) 101 is accepted by the machine in (b) but not by the machine in (a).

- (c) (i) For every pair of states S and T in M: for all the paths from S to T with one and only one transition corresponds to an input letter i and the rest are λ -arrows, join S to T and label it with i.
 - (ii) Remove all λ -arrows.
- 6.43 Let G_1 , G_2 be two type-3 grammars for L_1 , L_2 respectively. Introduce a new starting symbol S_0 and the productions $\{S_0 \to S_1, S_0 \to S_2\}$, where S_1 , S_2 are the starting symbols of G_1 , G_2 respectively. These together with the productions in G_1 and G_2 forms a type-3 grammar for $L_1 \cup L_2$.
- 6.44 Let M be a finite state machine with initial state S_0 and finite states $f_1, f_2, ..., f_k$ that accepts L. A nondeterministic finite state machine M' with λ -arrows (prob. 7.26) can be constructed to accept the language L^R as follows:
 - (1) Reverse all the directions of the arrows.
 - (2) Add in an extra state q_0 and k λ -arrows from q_0 to $f_1, f_2, ..., f_k$.
 - (3) The initial and final states for M' are q_0 , S_0 respectively.
- 6.45 L^R is a language specified by a grammar in which productions are of the forms $A \to a$ and $A \to aB$. Hence L^R is a finite state language. Prob. 7.27 $\Rightarrow L = (L^R)^R$ is a finite state language.
- 6.46 It is sufficient to show that: Given a grammar for L in which the productions are of the forms $A \to \gamma$ and $A \to \gamma B$, we can find an equivalent grammar for L in which the productions are of the forms $A \to a$ and $A \to aB$. In fact, $A \to a_1 a_2 \dots a_k$ can be replaced by $\{A \to a_1 A_1, A_1 \to a_2 A_2, \dots, A_{k-2} \to a_{k-1} A_{k-1}, A_{k-1} \to a_k\}$, and $A \to a_1 a_2 \dots a_k B$ can be replaced by $\{A \to a_1 A_1, A_1 \to a_2 A_2, \dots, A_{k-2} \to a_{k-1} A_{k-1}, A_{k-1} \to a_k B\}$.