

Dinámica (FIS1514)

Dinámica y Leyes de Newton

Felipe Isaule

felipe.isaule@uc.cl

Lunes 2 de Septiembre de 2024

Clase 8: Dinámica y Leyes de Newton

- Dinámica y Leyes de Newton.
 - → Primera Ley
 - → Segunda Ley
 - → Tercera Ley
- → Peso y Normal

- Bibliografía recomendada:
 - Meriam (3.1, 3.2, 3.3, 3.4).
 - Hibbeler (13.1, 13.2).

Clase 8: Dinámica y Leyes de Newton

- Dinámica y Leyes de Newton.
 - → Primera Ley
 - → Segunda Ley
 - → Tercera Ley
- → Peso y Normal

Dinámica

- La dinámica (o Cinética) es la rama de la física clásica que estudia la relación entre el movimiento y las fuerzas que lo generan.
- Es decir, consideramos las "fuentes" que generan un movimiento.

Primera ley de Newton

Principio de Inercia:

Todo cuerpo permanece en estado de **reposo** o de **movimiento rectilíneo uniforme** (velocidad constante) a menos que se le aplique una acción (fuerza) que lo cambie de ese estado.

$$\vec{a} = 0$$

*Originalmente enunciada por Galileo.

• Sistema de referencia inercial: Sistema de referencia que cumple con la primera ley, es decir, está en reposo o se mueve con rapidez constante.

Primera ley de Newton

<u>Ejemplo</u>: Una pelota gira atada por una cuerda. Si la cuerda se rompe y no hay ninguna otra fuerza actuando sobre la pelota, ésta continúa en un movimiento rectilíneo uniforme.

Segunda ley de Newton

Ley fundamental de la Dinámica:

La **tasa** de cambio del **momentum lineal** de una partícula es proporcional a la **fuerza aplicada**:

$$\vec{F} = \frac{d\vec{p}}{dt} = \dot{\vec{p}}$$

Momentum lineal de una partícula:

$$\vec{p} = m\vec{v}$$

- Donde m es la **masa inercial** de un objecto. En el SI se mide en kilogramos.
- La masa inercial es una propiedad intrínsica de un objecto, y corresponde a su "resistencia" al movimiento.

Fuerza

- Una fuerza \vec{F} es un vector que modifica el movimiento de un cuerpo.
- Tiene dimensiones de

$$\frac{ML}{T^2} = \frac{\text{masa} \times \text{distancia}}{\text{tiempo}^2}$$

 En el sistema internacional de unidades es medida en Newtons:

$$N = kg \frac{m}{s^2}$$

Ecuación de movimiento

 Si la masa de un cuerpo es constante, la segunda ley toma su forma más conocida

$$\vec{F} = \dot{\vec{p}} = m\dot{\vec{v}} \longrightarrow \vec{F} = m\vec{a}$$

 Esta fuerza (total) corresponde a la suma de todas las fuerzas aplicadas sobre un cuerpo

$$\vec{F} = \sum_{i} \vec{F}_{i} = m \, \vec{a}$$

- A una ecuación de este tipo la llamamos <u>ecuación de</u> movimiento.
- Podemos pensar que la primera ley es un caso partícular de la segunda:

$$\vec{F} = 0 \implies \vec{a} = 0$$

Diagrama de cuerpo libre (DCL)

 Para obtener la ecuación de movimiento de un cuerpo necesitamos aislar el cuerpo en consideración e identificar todas las fuerzas que actúan sobre él.

$$\vec{F} = \sum_{i} \vec{F}_{i} = m \, \vec{a}$$

 Gráficamente, esta identificación es conveniente de realizar dibujando un diagrama de cuerpo libre o DCL.

Estrategia general de resolución de problemas

- 1) Seleccionar el sistema de coordenadas inercial.
- 2) Dibujar el diagrama de cuerpo libre.
- 3) Identificar las incógnitas.
- 4) Identificar y **descomponer** los componentes de las fuerzas si el problema lo requiere.
- 5) Formular las **ecuaciones de movimiento** a partir de F=ma para cada componente.
- 6) Resolver la cinemática del problema.

Ejemplos de fuerzas

- Gravitacional.
 - → Peso.
- Contacto
 - → Normal
 - → Roce
- Tensión.
- Elástica.
- Roce viscoso.

Tercera ley de Newton

Principio de acción y reacción:

Las **fuerzas actúan siempre en pares**. Si un cuerpo A ejerce una fuerza F_{AB} a un cuerpo B, el cuerpo B ejercerá una fuerza F_{BA} al cuerpo A de **igual magnitud pero sentido contrario**.

$$\vec{F}_{AB} = -\vec{F}_{BA}$$

Clase 8: Dinámica y Leyes de Newton

- Dinámica y Leyes de Newton.
 - → Primera Ley
 - → Segunda Ley
 - → Tercera Ley
- → Peso y Normal

Ley de Gravitación

La **ley de gravitación universal** establece que la fuerza de **atracción** entre dos cuerpos de masas m_1 y m_2 es

$$\vec{F} = -\frac{G m_1 m_2}{r^2}$$
 $G \approx 6.67 \times 10^{-11} \text{N m}^2 \text{kg}^{-2}$

r: Distancia entre los cuerpos. G: Constante de gravitación.

Las masas m_1 y m_2 corresponden a las **masas gravitacionales**.

Principio de equivalencia: La masa inercial de un cuerpo es igual a su masa gravitacional.

Peso

 Si un cuerpo A está cerca de la superficie de otro cuerpo B mucho más grande, la fuerza de gravedad sobre A se simplifica

• En el caso de un cuerpo en la superficie de la Tierra

$$g \approx 9.8 \text{m/s}^2$$

• En los polos $g \approx 9.83 \text{m/s}^2$, mientras que en el Ecuador $g \approx 9.78 \text{m/s}^2$

Peso

- El peso es **constante** (para un cuerpo de masa constante) y siempre apunta hacia la **superficie**.
- Un cuerpo afectado sólo por el peso en la dirección vertical tiene una aceleración vertical constante de magnitud g.

Fuerza normal

- La fuerza normal es una fuerza de contacto (el cuerpo toca la superficie).
- Es perpendicular a la superficie en dirección hacia el cuerpo.

Equilibrio de fuerzas

• Si tenemos un libro de masa m en reposo sobre la superficie de una mesa:

Plano inclinado

• Un bloque de masa m se encuentra sobre la superficie de un **plano inclinado** con un ángulo θ con respecto a la horizontal. Encuentre la **normal** y describa la **posición** del bloque en función del tiempo.

Ejemplo

- Un bus de **masa** m **sube** por una cuesta con **pendiente** α a una rapidez constante v_0 .
 - Encuentre la **fuerza** F_M ejercida por el **motor** del bus.
 - Si un pasajero adicional se sube al bus y el motor sigue ejerciendo la misma fuerza. ¿Qué pasará con el bus?

Ejemplo

- Un bus de **masa** m **sube** por una cuesta con **pendiente** α a una rapidez constante v_0 .
 - Encuentre la **fuerza** F_M ejercida por el **motor** del bus.

Ecuaciones de movimiento

$$\longrightarrow F_M = mg\sin\alpha$$

Ejemplo

- Un bus de **masa** m **sube** por una cuesta con **pendiente** α a una rapidez constante v_0 .
 - Si un pasajero adicional se sube al bus y el motor sigue ejerciendo la misma fuerza. ¿Qué pasará con el bus?

Con el pasajero nuevo el bus ahora tiene una masa m'>m .

Ecuaciones de movimiento

El bus disminuirá su velocidad a una tasa constante, y comenzará a descender después de un tiempo.

Resumen

- Hemos introducido el principio de inercia.
- Hemos definido la segunda ley de newton, incluído el concepto de fuerza.
- Definimos el concepto de ecuación de movimiento.
- Presentamos el concepto de diagrama de cuerpo libre y las técnicas de resolución de problemas de dinámica.
- Introducimos el principio de acción y reacción.
- Introducimos el peso y la normal.
- Revisamos el plano inclinado.

Felipe Isaule