2.3. Lineare Produktionsmodelle

Produktionsprozesse

Bedarfsermittlung von Rohstoffen

Mittels der Rohstoffe R_1 , R_2 und R_3 werden die Produkte E_1 , E_2 und E_3 hergestellt. Nachfolgende Tabelle stellt die benötigten Einheiten von R_i dar, die jeweils zur Herstellung einer Einheit E_j benötigt werden

	E_1	E_2	E_3
R_1	1	2	1
R_2	2	2	2
R_3	3	2	1

Anzahl Endprodukte		
e_1	3	
e_2	5	
e_3	4	

Soll nun eine bestimmte Anzahl an Endprodukten e_j hergestellt werden, wird der Bedarf an Rohstoffen durch Multiplikation der Bedarfsmatrix A mit dem Vektor der Endprodukte ermittelt.

$$r = A * e$$

$$r = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 2 & 2 \\ 3 & 2 & 1 \end{bmatrix} * \begin{bmatrix} 3 \\ 5 \\ 4 \end{bmatrix} = \begin{bmatrix} 3+10+4 \\ 6+10+8 \\ 9+10+4 \end{bmatrix} = \begin{bmatrix} 17 \\ 24 \\ 23 \end{bmatrix} \frac{\mathsf{R1}}{\mathsf{R2}}$$

wie vektoren rechnung oder mit falkschem schema excel summenprodukt

Liegen die Preisvektoren p_e für die Endprodukte (Erlöse) und p_r für die Rohstoffe (Kosten) vor, kann der Gewinn ermittelt werden.

$$p_e = \begin{bmatrix} 10 \\ 20 \\ 30 \end{bmatrix}$$

$$p_r = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$$

 $G = Erl\ddot{o}se - Kosten = p_e^T * e - p_r^T * r$ eins muss transponiert werden

$$G = \begin{bmatrix} 10 & 20 & 30 \end{bmatrix} * \begin{bmatrix} 3 \\ 5 \\ 4 \end{bmatrix} - \begin{bmatrix} 2 & 3 & 4 \end{bmatrix} * \begin{bmatrix} 17 \\ 24 \\ 23 \end{bmatrix}$$

$$G = 250 - 198 = 52$$

Mehrstufige lineare Produktionsprozesse

Bedarfsermittlung von Rohstoffen

Mittels der Rohstoffe R_1 , R_2 und R_3 werden die Zwischenprodukte Z_1 , Z_2 und Z_3 hergestellt. Nachfolgende Tabelle stellt die benötigten Einheiten von R_i dar, die jeweils zur Herstellung einer Einheit Z_j benötigt werden. Aus diesen Zwischenprodukten werden im 2. Schritt die Endprodukte E_1 und E_2 hergestellt.

für z1 braucht man 2 R1; 3 R2; 4R3

Α	Z_1	Z_2	Z_3
R_1	2	1	1
R_2	3	3	4
R_3	4	5	2

В	E_1	E_2
Z_1	6	2
Z_2	4	1
Z_3	3	7

Anzahl Endprodukte		
e_1	3	
e_2	4	

Soll nun eine bestimmte Anzahl an Endprodukten e_j hergestellt werden, wird der Bedarf an Rohstoffen durch Multiplikation der Bedarfsmatrix A und der Bedarfsmatrix B der Zwiachenprodukte mit dem Vektor der Endprodukte ermittelt.

r = A * B * e spalten a = zeilen b und spalten ergebnis ist gleich zeilen c

$$r = \begin{bmatrix} 2 & 1 & 1 \\ 3 & 3 & 4 \\ 4 & 5 & 2 \end{bmatrix} * \begin{bmatrix} 6 & 2 \\ 4 & 1 \\ 3 & 7 \end{bmatrix} * \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 105 \\ 274 \\ 258 \end{bmatrix}$$

Liegen die Preisvektoren p_e für die Endprodukte (Erlöse) und p_r für die Rohstoffe (Kosten) vor, kann der Gewinn ermittelt werden.

 $p_r = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

$$p_e = \begin{bmatrix} 200\\250 \end{bmatrix}$$

$$G = Erl\ddot{o}se - Kosten = p_e^T * e - p_r^T * r$$

$$G = \begin{bmatrix} 200 & 250 \end{bmatrix} * \begin{bmatrix} 3 \\ 4 \end{bmatrix} - \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} * \begin{bmatrix} 105 \\ 274 \\ 258 \end{bmatrix}$$

$$G = 1600 - 1427 = 173$$

Mehrstufige lineare Produktionsprozesse mit 2 Produktionssträngen

Bedarfsermittlung von Rohstoffen

Mittels der Rohstoffe R_1 , R_2 und R_3 werden die Zwischenprodukte Z_1 , Z_2 und Z_3 hergestellt. Nachfolgende Tabelle stellt die benötigten Einheiten von R_i dar, die jeweils zur Herstellung einer Einheit Z_j benötigt werden. Aus diesen Zwischenprodukten werden im 2. Schritt die Endprodukte E_1 und E_2 hergestellt. Außerdem werden die Rohstoffe nicht nur zur Herstellung der Zwischenprodukte benötigt, sondern auch direkt zur Herstellung der Endprodukte.

С	$\boldsymbol{\mathit{E}}_{1}$	E_2
R_1	2	0
R_2	1	3
R_3	4	6

Der Bedarf an Rohstoffen wird nun wie folgt berechnet

$$r = (A * B + C) * e = A * B * e + C * e$$
 brauchen Rohstoffe später nochmal

$$r = \begin{bmatrix} 2 & 1 & 1 \\ 3 & 3 & 4 \\ 4 & 5 & 2 \end{bmatrix} * \begin{bmatrix} 6 & 2 \\ 4 & 1 \\ 3 & 7 \end{bmatrix} * \begin{bmatrix} 3 \\ 4 \end{bmatrix} + \begin{bmatrix} 2 & 0 \\ 1 & 3 \\ 4 & 6 \end{bmatrix} * \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 105 \\ 274 \\ 258 \end{bmatrix} + \begin{bmatrix} 6 \\ 15 \\ 36 \end{bmatrix} = \begin{bmatrix} 1111 \\ 289 \\ 294 \end{bmatrix}$$

Liegen die Preisvektoren p_e für die Endprodukte (Erlöse) und p_r für die Rohstoffe (Kosten) vor, kann der Gewinn ermittelt werden.

$$p_e = \begin{bmatrix} 200 \\ 250 \end{bmatrix} \qquad \qquad p_r = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$G = Erl\ddot{o}se - Kosten = p_e^T * e - p_r^T * r$$

$$G = \begin{bmatrix} 200 & 250 \end{bmatrix} * \begin{bmatrix} 3 \\ 4 \end{bmatrix} - \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} * \begin{bmatrix} 111 \\ 289 \\ 294 \end{bmatrix}$$

$$G = 1600 - 1571 = 29$$

Quelle: "Wirtschaftsmathematik für das Bachelor-Studium", Thomas Christiaans, Matthias Ross