08-10

北京新云南皇冠假日酒店

.

MySQL内核架构性能优化

binlog优化

架构批量优化

DTCC 2019 中 第十届中国数据库技术大会 DATABASE TECHNOLOGY CONFERENCE CHINA 2019

MySQL为什么使用binlog用于复制?

02

Binlog的结构是什么样子的?

03

Binlog是如何演化的?

04

演化存在哪些问题?

05

怎样进行改进?

DTCC 2019 ...

第十届中国数据库技术大会

事件头

时间戳 事件类型 Server id 事件长度

校验

事件体

事件内容

binlog演化:

事件演化

●事件由少到多

●内容由简单到丰富

5.0.15	5.7.26	
18个事件	38个事件	
Statement模式	Statement, row, mix	
N/A	Row image	
N/A	GTID	
N/A	表元信息	

DTCC 2019

育十届中国数据库技术大会

代码演化1: QUERY_EVENT

Query_log_event

Log_event

DTCC 2019 -

代码演化2:

FORMAT DESCRIPTION EVENT

Format description log event

Start_log_event_v3

Log event

演化存在的问题

庞大的类构造开销

难以阅读的代码结构

DTCC 2019

DICC 2019 -

```
binlog_event_head_struct
 //for v1/v3/v4
 struct timeval when;
 Log_event_type event_type;
 unsigned int unmasked_server_id;
 size_t event_len;
 //for v3/v4
 unsigned long long log_pos;
 uint16_t flags;
typedef struct binlog_event_head_struct
binlog_event_head_t;
```



```
struct binlog_fmt_desc_event_struct
 binlog_event_head_t head;
 //infomation derived from START_EVENT_V3
 //ST_BINLOG_VER_OFFSET
 uint16_t binlog_version;
 //ST_SERVER_VER_OFFSET
 char server_version[ST_SERVER_VER_LEN];
 //ST_CREATED_OFFSET
 time_t created:
 //ST_COMMON_HEADER_LEN_OFFSET
 uint8_t common_header_len;
```


事件类型	Class构造时间	Struct构造时间	缩短时间	提升效率
XID	1345147	289896	1055251	4倍
Table_map	6146278	3502696	2643582	1倍
Write_rows	5240170	1416193	3823977	3倍
GTID	1979599	394010	1585589	4倍
Query	4093953	765882	3328071	5倍

架构批量优化

DTCC 2019 -

有哪些可以优化的地方?

优化可以做到什么程度?

DICC 2019

DATABASE TECHNOLOGY CONFERENCE CHINA 2019

DTCC 2019

第十届中国数据库技术大会

存储引擎性能损耗在哪里

重复表信息获取与判断

引擎接口层函数的反复调用

Ib批量改进效果

单位纳秒	ins values (),()	ib批量	效果
	76327791	28033937	
	74225761	29486549	
	105820184	24082127	
	91615487	39536721	
	115768863	22726083	
合计	463758086	143865417	
均值	92751617.2	28773083	3倍提升

第十届中国数据库技术大会

DTCC 2019

架构的优化是所有优化的基础 02 架构也分大小 03 架构也可能调整

