Sequential ATPG

Introduction

Time-frame expansion methods

Simulation-based methods (* not in exam)

CONTEST [Agrawal & Cheng 88]

Genetic Algorithm

Issues of Sequential ATPG

Conclusions

Simulation-Based Methods

- Idea: use logic/fault simulators to guide ATPG [Seshu 62]
 - Simulation is faster than ATPG
- Approach
 - Generate candidate test vectors
 - Fitness* of candidates evaluated by logic or fault simulation
 - Select best candidate based on a certain cost function
- Advantage:
 - No time frame expansion. Easy memory management

Simulate Many Vectors and Choose Best

CONTEST— Concurrent Test Generator for Sequential Circuits [Agrawal & Cheng 89]

Based on event-driven concurrent fault simulator

- Search for test vectors guided by cost functions
- Three phases
 - Initialization
 - 2 Concurrent fault detection
 - 3 Single fault detection

1. Initialization Phase

- Start with arbitrary test vector
 - Start with FFs in unknown states
- Use logic simulation (not fault simulation)
 - Cost = number of FFs in unknown state
 - ◆ Trial vectors are generated by single-bit change of the current vector. A trial vector is accepted and becomes the current vector if it lowers the cost
- Stop this phase when cost drops below a desired value

QUIZ

Q1: Initially the FF is unknown. Given three trial vectors, please simulate the circuit and decide their costs, where cost = number of unknown FF.

Q2: Which trial vector would you pick?

AB	COSt = number of unknown FF
00	1
01	
10	

2. Concurrent Fault Detection Phase

- Start with fault simulation of generated initialization sequence
 - Detected faults are dropped from the fault list
- Compute the cost of the last vector
 - ◆ Cost of an undetected fault f
 - COST(f) = minimum distance of its fault effect to a PO
 - distance = level of logic gates
 - Cost of a vector
 - Sum of costs of all undetected faults
- Trial vectors are generated by single-bit change
 - Only accept the vectors that reduce the cost

Example

AB	COSt = distance of D or D' to PO
00	∞
10	2 🗘
01	∞

000

FF_C1

010

111

QUIZ

Q1: Given FF initial state is zero, please evaluate the cost of three trial vectors: 00, 10, 01

Q2: Which test vector would you pick?

AB	COSt = distance of D or D' to PO
00	
10	
01	

Need Phase 3

- Experience shows test patterns for all stuck-at faults are usually clustered instead of being evenly distributed
- When only a few faults are left, their tests will be isolated vectors and we need a different test generation strategy

Vector space

Phase 2: Concurrent Fault Detection

Phase 3: Single Fault Detection

3. Single Fault Detection Phase

- Start with any vector
- Generate new vectors by single-bit change to reduce cost of the selected fault until it is detected
 - The lowest cost fault is picked first
- Cost of a fault f at signal line g is
 - If not activated yet:

```
KC_{\Delta}(f) + C_{P}(f)
```

K = constant; $C_A = activation$; $C_p = propagation$ cost

If activated:

 $Min(C_p(i))$, $i \in the set of inputs to signal <math>g$

C_A and DC

- Activation Cost, C_A
 - ◆ C_A(g stuck-at-v) = DC_{v'}(g) = dynamic controllability of line g at v'
- Dynamic Controllability, DC
 - Similar to sequential controllability in SCOAP except logic values known

	DC ⁰ (<i>C</i>)	DC ¹ (<i>C</i>)
$A \longrightarrow C$	min[DC ⁰ (A),DC ⁰ (B)], if C=1 or x 0, if C=0	$DC^{1}(A) + DC^{1}(B)$, if $C=0$ or x 0, if $C=1$
$A \longrightarrow C$	$DC^{0}(A) + DC^{0}(B)$, if $C=1$ or x 0, if $C=0$	min[DC ¹ (A),DC ¹ (B)], if $C=0$ or x 0, if $A=1$
A — C	DC ¹ (A) , if C=1 or x 0 , if C=0	DC ⁰ (A) , if C=0 or x 0 , if C=1
Primary inputs	1 , if C=1 or x 0 , if C=0	1 , if C=0 or x 0 , if C=1
C = FF(A)	$DC^{0}(A)+K$, if C=1 or x 0, if C=0	DC ¹ (A)+ K^* , if C=0 or x 0 , if C=1

^{*} K is a chosen constant

C_A and **DC** Example

- $C_A(g_1 \text{ stuck-at } 0) = DC_1(g_1) = 10 \leftarrow \text{easier}$
- $C_A(g_2 \text{ stuck-at 1}) = DC_0(g_2) = 100$

Propagation Cost, C_P

- $C_p(g)$ = Dynamic Observability of node g
- Dynamic observability (DO)
 - Similar to combinational observability in SCOAP
 - Measure the effort to observe the fault on a given node
 - the number of gates between N and PO's, and
 - the minimum number of PI assignments required to propagate the logical value on node N to a primary output.

Dynamic Observability (DO)

Similar to combinational observability in SCOAP

	DO(A)
$A \longrightarrow C$	$DO(C) + DC^{1}(B) + 1$
$A \longrightarrow C$	DO(C) + DC ⁰ (B) + 1
A — C	DO(C) + 1
$A \longrightarrow \begin{array}{c} C_1 \\ C_2 \end{array}$	$min[DO(C_1),DO(C_2)]$
Primary outputs	0

C_p and **DO** Example

- $C_p(g_1) = DO(g_1) = 1$
- $C_p(g_2) = DO(g_2) = 1$

Total Cost

- Fault g_1 : $C_A = 10$, $C_D = 1$
- Fault g_2 : $C_A = 100, C_p=1$
- Choose g1 SA0 as target fault to generate test vector

Sequential ATPG

Introduction

Time-frame expansion methods

Simulation-based methods (* not in exam)

CONTEST

Genetic Algorithm

Issues of Sequential ATPG*

Conclusions

Genetic Algorithms (GA) [Holland 1975]

- General Principle: Survival of fittest(s)
 - Keep a population of feasible solutions, not just one
 - Parent population generates child population
 - by gene crossover, mutation etc
 - Select only best children, remove weak children
 - Repeat the above for many generations

Crossover and Mutation

- Test vectors are represented by bit-stream "gene"
- Crossover: Two feasible solutions generate child by switching gene

Mutation: some gene can change by a random probability

Pseudo Code of GA

```
GENETICALGORITHM
   pop = set of initial solutions
   do
3
     childpop = \emptyset
     for (i = 1 \text{ to } (n \text{ x pop.size})) // n \text{ times size}
5
        crossover = random 0 or 1
6
        if (crossover)
         parent1 = random_choose(pop)
8
         parent2 = random_choose(pop)
9
          child = crossover(parent1, parent2)
10
        else // mutate
11
         parent = random_choose(pop)
          child = mutate(parent)
12
13
        childpop = childpop \cup \{child\}
     pop = evaluate&select(childpop)
15 while (!stop)
16 return (best solution)
```

- Need to decide
- 1. initial solution
- 2. corssover/ mutation
- 3. evaluate & select
- 4. stop criterion

Summary

- Simulation-based methods
 - Randomly generate many trial test vectors
 - Evaluate test vectors by simulation and pick the best
 - Need many testability measure to help smart decision
- Advantages
 - Better memory management than time frame expansion
 - Timing can be considered
 - Use genetic algorithm to optimize
- Disadvantages
 - Cannot identify untestable faults
 - Test length can be longer than time frame expansion