QUANTUM COMPUTERS & CYBERSECURITY

QUANTUM COMPUTERS

VS

CLASSICAL BITS

LIMITATIONS

2 Time

Large processing time for large datasets

QUANTUM TUNNELING

QUANTUM TUNNELING

EXAMPLE

TRAVELLING SALESMAN

Exponential computation time

QUBIT NATURE Ideal qubits remain in a state of superposition (1-X)% **X**% Spin Up Spin Down $\frac{1}{\sqrt{2}}$ $+\frac{1}{\sqrt{2}}$

2ⁿ possibilities

Where *n* represents the number of **qubits**

REPRESENTABLE POSSIBILITIES

EXPONENTIAL GROWTH

POSITIONAL PROBABILITY

BLOCH SPHERE

GATES

Transmitted wave (left), blocked wave (right)

Blocked wave (left), transmitted wave (right)

GATES IN CIRCUITS

Operator	Gate(s)		Matrix
Pauli-X (X)	$-\mathbf{x}$	-	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
Pauli-Y (Y)	$-\mathbf{Y}$		$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$
Pauli-Z (Z)	$-\mathbf{z}$		$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Hadamard (H)	$-\mathbf{H}$		$rac{1}{\sqrt{2}} egin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix}$
Phase (S, P)	$-\mathbf{S}$		$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$
$\pi/8~(\mathrm{T})$	$-\!$		$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$
Controlled Not (CNOT, CX)	<u> </u>		$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
Controlled Z (CZ)			$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$
SWAP			$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
Toffoli (CCNOT, CCX, TOFF)			$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0$

QUANTUM CIRCUITS

How are quantum circuits useful?

SENDING & RECEIVING DATA

Encryption

Data is encrypted with a *public key*

Sending

Packets are **routed** through the internet

Decryption

Received packets are decrypted with a *private key*

RIVEST-SHAMIR-ADLEMAN

Easy to encode, hard to decode, and popular

Encryption key (public) = (i, M)

 \rightarrow Ciphertext = S [(B(string)ⁱ) % M]

Decryption key (private) = (n, M)

 \rightarrow Original Text = S [(B(ciphertext)^n) % M]

ENCRYPTION & DECRYPTION

Secret primes = (x, y)

 \rightarrow Product = xy

 \rightarrow Number of Coprimes = (x - 1)(x - 1) = C

i (encryption) \Rightarrow { 1 < i < C, coprime with C and xy }

 \rightarrow Encryption Key = (i, M)

 $n \text{ (decryption)} \Rightarrow ni \% C = 1$

 \rightarrow Decryption Key = (n, M)

DECRYPTION KEY GENERATION

BUT...

SHOULD WE?

IMPACTS

How does QC + CS affect the world?

Public Scare

Hacking

World Power

USELESS FOR THE AVERAGE CONSUMER

OPERATING TEMP:

15 MILLIKELVIN

QUANTUM RESISTANT ALGORITHMS

1

CRYSTALS-Kyber

For general encryption, fast and simple

2

CRYSTALS-Dilithium

For digital signatures, based on structured lattices 3

FALCON

For digital signatures, based on structured lattices 4

SPHINCS+

For digital signatures, based on hash functions

FINAL THOUGHTS:

WHAT SHOULD WE DO?

