

RNS Institute of Technology

(VTU Affiliated, AICTE Approved, NAAC 'A' Grade Accredited)

(UG Programs-CSE, ECE, ISE, and EIE & EEE have been accredited by NBA for the Academic Year 2018-19, 2019-20, 2020-21 & 2021-22)
DR. VISHNUVARDHAN ROAD, CHANNASANDRA, RR NAGAR POST, BENGALURU – 560098

Department of Computer Science and Engineering

Vision: Preparing better Computer Professional for a Real World

Teaching Aid for ADE Report

For B.E 3rd Semester

:	GROUP NO: 5
BRANCH	:CSE
SECTION	:A
:	1RN20CS - 009, 009, 012, 010, 016, 042, 006, 024, 027, 029, 050, 055
	-USN's

VISION AND MISSION OF INSTITUTION

Vision

Building RNSIT into a World Class Institution

Mission

To impart high quality education in Engineering, Technology and Management with a Difference, Enabling Students to Excel in their Career by

- 1. Attracting quality Students and preparing them with a strong foundation in fundamentals so as to achieve distinctions in various walks of life leading to outstanding contributions.
- Imparting value based, need based, choice based and skill based professional education to the aspiring youth and carving them into disciplined, World class Professionals with social responsibility.
- 3. Promoting excellence in Teaching, Research and Consultancy that galvanizes academic consciousness among Faculty and Students.
- 4. Exposing Students to emerging frontiers of knowledge in various domains and make them suitable for Industry, Entrepreneurship, Higher studies, and Research & Development.
- 5. Providing freedom of action and choice for all the Stake holders with better visibility.

VISION AND MISSION OF CSE DEPARTMENT Vision

Preparing better computer professionals for a real world

Mission

The Department of Computer Science and Engineering will make every effort to promote an intellectual and an ethical environment in which the strengths and skills of Computer Professionals will flourish by

- 1. Imparting Solid foundations and Applied aspects in both Computer Science Theory and Programming practices.
- 2. Providing Training and encouraging R&D and Consultancy Services in frontier areas of Computer Science with a Global outlook.
- 3. Fostering the highest ideals of Ethics, Values and creating Awareness on the role of Computing in Global Environment.
- 4. Educating and preparing the graduates, highly Sought-after, Productive, and Well-respected for their work culture.
- 5. Supporting and inducing Lifelong Learning practice

Group member details:

SL. NO.	NAME	USN
1	Aman Kumar	1RN20CS016
2	Aradhya Pandey	1RN20CS024
3	Aditya Anand	1RN20CS009
4	Aditya Sudhanshu	1RN20CS012
5	Ayush Dixit	1RN20CS029
6	Adarsh	1RN20CS006
7	Awnish Kumar	1RN20CS027
8	Aditya Bohra	1RN20CS010
9	Harsh Anand	1RN20CS050
10	Irfan Farooq	1RN20CS055
11	Divyansh Tiwari	1RN20CS042

Title:	Mechanical Binary Counter		
Dogovinski.			
Description	on:		
Introduction:			
A binary counter is a hardware circuit that is made out of a series of flip-flops. The output of one flip-flop is sent to the input of the next flip-flop in the series. A binary counter can be either asynchronous or synchronous, depending on how the flip-flops are connected together.			
AIM: To design a binary bits o	mechanical binary up counter to better understand how the change.		

Model Screenshot:

Decimal	Binary
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

