Exercise Set 3 (Total Points: 100)

The limit definition of the derivate (5 points each)

Problem (1). Let $f(x) = x^2 + x + 2$. Using the limit definition of the derivative compute f'(x). Show all the intermediate steps, this question will be graded for work.

Problem (2). Fill in the two missing steps of the following proof that $(e^x)' = e^x$

Proof. At the end of this proof will appeal to the limit $\lim_{h\to 0}\frac{e^h-1}{h}=0$. I will not prove this result. By the limit definition of the derivative we have

$$(e^x)' = \lim_{h \to 0} \frac{1}{h}$$

$$= \lim_{h \to 0} \frac{e^x e^h - e^x \cdot 1}{h}$$

$$= \lim_{h \to 0} \frac{1}{h}$$

$$= e^x$$

Tangent lines and linear approximation (5 points each)

For the next problems we will use the same f and g. Suppose we have the following table of values for f, f', g:

- 3. What is f'(0)?
- 4. Approximate f(1.1) linearly using the derivative.
- 5. Approximate f(0.2) linearly using the derivative.
- 6. Find the equation of the line that is tangent to y = f(x) at x = 4.
- 7. Which of the following functions could represent g(x):

$$(a)g(x) = x^2 + \frac{1}{2} \quad (b)g(x) = 2^{x-1} \quad (c)g(x) = \sin(\pi x) \quad (d)g(x) = \frac{7}{3}x - \frac{4}{3}$$

8. On the picture below label the following: the graph of y = f(x), the tangent line to the graph at x = -1, the tangent line at x = 1, and the limit as f goes to infinity.

Computing Derivatives (5 points each)

- 9. Calculate $(x^5)'$
- 10. Calculate $(3 + 5x + 6x^2 2x^3)'$
- 11. Calculate $\frac{d}{dx} \left(\sqrt[4]{x} \frac{1}{x^3} \right)$
- 12. Calculate $\frac{d}{dx} \left(2\sqrt{x} \frac{3}{x} + x \right)$
- 13. Calculate $\frac{d}{dx}(4+3\sin(x)-2\cos(x))$
- 14. Calculate $(e^t ln(t) + t^10)'$
- 15. Calculate $(\sin(x)e^x)'$
- 16. Calculate $\frac{d}{dy}(\cos(y^2) + y^3 \ln(y))$
- 17. Calculate $\left((x-2)^6 + \frac{3-x}{x+7} \right)'$
- 18. Calculate $\left(\frac{\sin(t)}{t^2}\right)'$
- 19. Calculate $\left(e^{-\frac{x^2}{2}}\right)'$
- 20. Calculate $\ln(x\sin(x))'$