المتجهات في الفضاء

I)- تساوي متجهتين – جمع المتجهات

: و B نقطتین مختلفتین من الفضاء، إذا رمزنا للمتجهة AB بالرمز $ar{u}$ فان A

- (AB) اتجاه \vec{u} هو اتجاه المستقيم \bullet
- B الي \vec{u} هو المنحى من \vec{u}
- $AB = \|\vec{u}\|$ و نكتب: AB هي المسافة

ملحوظة: لكل نقطة A من الفضاء المتجهة A ليس لها اتجاه و منظمها منعدم.

AA = 0 تسمى المتجهة المنعدمة و نكتب AA

تكون متجهتان متساويتان اذا كان لهما نفس الاتجاه و نفس المنحى و نفس المنظم

₫

لكل متجهة $ec{u}$ من الفضاء و لكل نقطة A في الفضاء $ec{u} = AM$ حيث M توجد نقطة وحيدة

خاصية

رباعيا في الفضاء ABCD

 $\overrightarrow{AB} = \overrightarrow{DC}$ ABCD متوازي الأضلاع إذا وفقط إذا كان

لتكن A و B و C و D أربع نقط من الفضاء

(تبدیل الوسطین) $\overrightarrow{AC} = \overrightarrow{BD}$ إذا وفقط إذا كان $\overrightarrow{AB} = \overrightarrow{CD}$

(تبديل الطرفين) $\overrightarrow{AB} = \overrightarrow{CA}$ إذا وفقط إذا كان $\overrightarrow{AB} = \overrightarrow{CD}$

و $ec{v}$ متجهتان في الفضاء $ec{u}$ لتكن A نقطة من الفضاء،

 $AB = \vec{u}$ توجد نقطة وحيدة B حيث $.\overline{BC} = \vec{v}$ حيث توجد نقطة وحيدة

النقطتان A و C تحددان متجهة

 $\vec{w} = AC$ وحيدة

المتجهة \vec{w} هي مجموع المتجهتين

 $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$ $\overrightarrow{w} = \overrightarrow{u} + \overrightarrow{v}$ نکتب

ں- علاقة شال

نتيجة

مهما كانت النقط A و B و C من الفضاء $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$

₩= **u** + v

لتكن O و MوN و R أربع نقط من الفضاء إذا وفقط إذا كان OMRN متوازي الأضلاع OM + ON = OR

> ملاحظة: اذا كانت $\vec{v} = ON$ و $\vec{u} = OM$ فان متوازي الأضلاع $\vec{u} + \vec{v} = OR$

$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$
 و \vec{v} و \vec{v} -*

$$(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$$
 و \vec{v} و \vec{v} و \vec{v} -*

$$\vec{u} + \vec{0} = \vec{0} + \vec{u} = \vec{u}$$
 لکل متجهة \vec{u} -*

مقابل متجهة - فرق متج

أ- مقابل متجهة

لتكن $ec{u}$ متجهة غير منعدمة في الفضاء

مقابل المتجهة $ec{u}$ هي المتجهة التي لها نفس الاتجاه و نفس المنظم و منحاها مضاد لمنحى $-\vec{u}$ المتجهة \vec{u} نرمز لها بالرمز

 $\overrightarrow{ED} + \overrightarrow{EF} = \overrightarrow{EC}$

$$\vec{u} + (-\vec{u}) = (-\vec{u}) + \vec{u} = \vec{0}$$
 : \vec{u} متجهة *-*

$$\overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{AA} = \overrightarrow{0}$$
 لكل نقطتين A و B من المستوى لدينا *

 $\overrightarrow{AB} = -\overrightarrow{BA}$ المتجهتان AB و BA متقابلتان نكتب

ب- فرق متجهتین

$$\vec{u} - \vec{v} = \vec{u} + (-\vec{v})$$
 کل متجهتین \vec{u} و \vec{v}

$$\overrightarrow{BC} = \overrightarrow{AC} - \overrightarrow{AB}$$
 لكل ثلاث نقط A و B و A

أمثلة

ABCDEFGH مكعب

$$\overrightarrow{BC} = -\overrightarrow{HE}$$

$$\overrightarrow{AB} = \overrightarrow{HG}$$
 منتصف قطعة -4

$$(\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0})$$
 $\overrightarrow{AI} = \overrightarrow{IB}$ اذا وفقط إذا كان AB

1- ضرب متجهة في عدد حقيقي

متجهة غير منعدمة و k عدد حقيقي غير منعدم $ec{u}$: حيث $kec{u}$ عيث المتجهة $ec{u}$ في العدد الحقيقي

- و $ec{k}ec{u}$ لهما نفس الاتجاه $ec{u}$ *
 - $||k\vec{u}|| = |k| \times ||\vec{u}|| *$

 $k \succ 0$ منحی \vec{u} إذا كان

منحی $k \vec{u}$ هو *

 $k \prec 0$ عکس منحی \vec{u} إذا کان

 $k \cdot \vec{0} = \vec{0}$ و لکل عدد حقیقی $k \cdot \vec{0} = \vec{0}$ و لکل عدد حقیقی *

ū

مهما تكن المتجهتان $ec{u}$ و مهما يكن العددان الحقيقيان lpha و $ec{v}$ فان

$$(\alpha + \beta)\vec{u} = \alpha\vec{u} + \beta\vec{v}$$

$$\alpha(\vec{u} + \vec{v}) = \alpha \vec{u} + \alpha \vec{v}$$

kü

k>0

$$(\alpha\beta)\vec{u} = \alpha(\beta\vec{u})$$

$$1 \cdot \vec{u} = \vec{u}$$

$$ec{u}=ec{0}$$
 أو $lpha=0$ أو $lphaec{u}=ec{0}$

3- الاستقامية استقامية متجهتين

أ- تعريف

تكون متجهتان $ec{v}$ و $ec{v}$ مستقيميتين إذا و فقط كانت احداهما جداء الأخرى في عدد حقيقي

ملاحظة

مستقيمية مع أية متجهة $\vec{0}$ استقامية ثلاث نقط

مانف

عریف

$$A \neq B$$
 لتكن A و B و C نقطا من الفضاء حيث

 $\overrightarrow{AC} = \alpha \overrightarrow{AB}$ حيث α حيث و A مستقيمية إذا وفقط إذا وجد عدد حقيقي α حيث A

توازي مستقيمين

$$C
eq D$$
 و $A \neq B$ و A

التعريف المتجهي لمستقيم في الفضاء

تعريف

لتكن A و B نقطتين مختلفتين من الفضاء \overrightarrow{AB} غير منعدمة و مستقيمية مع المتجهة \overrightarrow{u} غير منجهة موجهم للمستقيم (AB)

لتكن A نقطة من الفضاء و \vec{u} متجهة غير منعدمة $lpha\in\mathbb{R}$ و $\overrightarrow{AM}=lpha \vec{u}$ حيث \vec{u} من الفضاء حيث \vec{u} من الفضاء من \vec{u} و الموجه بالرمز له بالرمز $D(A;\vec{u})$

$$D(A; \vec{u}) = \{ M \in (E) / \overrightarrow{AM} = \alpha \vec{u} \quad ; \quad \alpha \in \mathbb{R} \}$$

 $\overrightarrow{AD} = \overrightarrow{j}$ و $\overrightarrow{AB} = \overrightarrow{i}$ مكعبا نضع $\overrightarrow{ABCDEFGH}$

$$[HG]$$
 و $\vec{AE} = \vec{k}$ و $\vec{AE} = \vec{k}$ و $\vec{AE} = \vec{k}$

(AI) بين أن \vec{u} موجهة للمستقيم -1

عيث المستقيم (Δ) المار من G و الموازي للمستقيم عيث الفضاء حيث -2

$$M\in\left(\Delta
ight)$$
 بین أن . $\overrightarrow{BM}=rac{1}{2}\overrightarrow{AB}+2\overrightarrow{BG}$

(AI) نبين أن \vec{u} موجهة للمستقيم -1

أي نبين أن \overrightarrow{AI} و أي نبين أن

$$\overrightarrow{HI} = \frac{1}{2}\overrightarrow{HG}$$
 ومنه $[HG]$ لدينا

$$\overrightarrow{AI} = \overrightarrow{AE} + \overrightarrow{EH} + \overrightarrow{HI} = \overrightarrow{AE} + \overrightarrow{EH} + \frac{1}{2}\overrightarrow{HG}$$

$$\overrightarrow{AI} = \vec{k} + \vec{j} + \frac{1}{2}\vec{i} = \frac{1}{2}(\vec{i} + 2\vec{j} + 2\vec{k}) = \frac{1}{2}\vec{u}$$
 equals

(AI) ومنه \vec{u} مستقيميتان و منه \vec{u} موجهة للمستقيم إذن

 $M\in ig(\Deltaig)$ نبين أن 2

$$\left(\Delta\right) = D\left(G; \vec{u}\right)$$
 المار من G و الموازي للمستقيم $\left(AI\right)$ أي $\left(\Delta\right)$

$$\overrightarrow{GM} = \overrightarrow{GF} + \overrightarrow{FB} + \overrightarrow{BM} = \overrightarrow{GF} + \overrightarrow{FB} + \frac{1}{2}\overrightarrow{AB} + 2\overrightarrow{BG} = \overrightarrow{GF} + \overrightarrow{FB} + \frac{1}{2}\overrightarrow{AB} + 2\overrightarrow{BC} + 2\overrightarrow{CG}$$
 $\overrightarrow{BC} = \overrightarrow{j}$ و $\overrightarrow{CG} = \overrightarrow{k}$ و $\overrightarrow{FB} = -\overrightarrow{AE} = -\overrightarrow{k}$ و $\overrightarrow{GF} = -\overrightarrow{AD} = -\overrightarrow{j}$ مکعب فان $\overrightarrow{ABCDEFGH}$ بیما أن

$$\overrightarrow{GM} = -\vec{j} - \vec{k} + \frac{1}{2}\vec{i} + 2\vec{j} + 2\vec{k} = \frac{1}{2}\vec{i} + \vec{j} + \vec{k} = \frac{1}{2}(\vec{i} + 2\vec{j} + \vec{k}) = \frac{1}{2}\vec{u}$$

 $M \in (\Delta)$ إذن $M \in D(G; \vec{u})$ و بالتالي

III) الاستوائية– التعريف المتجهى للمستوى

ليكن (P) مستوى من الفضاء و A و B نقط غير (P) مستقيمية من المستوى

> نقول إن (P) هو المستوى المار من A و الموجه $A\dot{C}$ و $A\dot{B}$ بالمتجهتين

متجهتان $ec{v}$ و غير مستقيميتين و نقطة من الفضاء تحدد مستوى وحيدا (P) هو المستوى المار من النقطة A و $P(A; \vec{u}; \vec{v})$ الموجه بالمتجهتين \vec{u} و \vec{v} نرمز له بالرمز

لتكن \vec{v} و متجهتين غير مستقيميتين و \vec{v} نقطة من الفضاء.

مجموعة النقط M من الفضاء حيث \vec{M} من الفضاء ع هي المستوى (P) المار من A و الموجه $(x,y) \in \mathbb{R}^2$ $(P) = P(A; \vec{u}; \vec{v})$ بالمتجهتين \vec{v} و نكتب

2- الاستوائية

لتكن $ec{u}$ و $ec{v}$ و $ec{v}$ ثلاث متجهات في الفضاء نقول إن المتجهات $ec{u}$ و $ec{v}$ و $ec{v}$ مستوائية اذا وفقط وجدت أربع نقط مستوائية A و B و C و ميث A و أربع نقط مستوائية الم $\overrightarrow{AD} = \overrightarrow{w}$ g $\overrightarrow{AC} = \overrightarrow{v}$

ABCDEFGH متوازي المستطيلات Bو BC و BH مستوائية لان النقط BC $\lceil (BC)//(EH) \rceil$ و G و G و G و G مستوائية

و \overrightarrow{BD} و \overrightarrow{BD} غير مستوائية لأن BDEH رباعي الأوجه \overrightarrow{BE}

لتكن $ec{v}$ و $ec{v}$ متجهتين غير مستقيميتين و $ec{w}$ متجهة في الفضاء المتحهات \vec{v} و \vec{v} مستوائية إذا وفقط إذا وجد عددين حقيقيين \vec{v} و \vec{v} حيث

M و C و B فان A فان A و C و Aمستوائية

هرم قاعدته المستطيل ABCD ، I و I منتصفا AE و BC على التوالي. EABCD

بين أن المتجهات \overrightarrow{IJ} و \overrightarrow{AB} و مستوائية الحل

 $\overrightarrow{IJ} = \overrightarrow{IA} + \overrightarrow{AB} + \overrightarrow{BJ}$

: و حيث I و BC منتصفا AE و انI

$$\overrightarrow{BJ} = \frac{1}{2}\overrightarrow{BC} \quad \overrightarrow{IA} = \frac{1}{2}\overrightarrow{EA}$$

$$\overrightarrow{IJ} = \frac{1}{2}\overrightarrow{EA} + \overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC} \quad \overrightarrow{BC}$$

$$\overrightarrow{IJ} = \frac{1}{2}\overrightarrow{EC} + \frac{1}{2}\overrightarrow{CA} + \overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC} \quad \overrightarrow{BC}$$

$$\overrightarrow{IJ} = \frac{1}{2}\overrightarrow{EC} + \overrightarrow{AB} + \frac{1}{2}\overrightarrow{BA}$$

$$\overrightarrow{IJ} = \frac{1}{2}\overrightarrow{EC} + \overrightarrow{AB} + \frac{1}{2}\overrightarrow{AB} \quad \overrightarrow{AB} \quad \overrightarrow{IJ} = \frac{1}{2}\overrightarrow{EC} + \frac{1}{2}\overrightarrow{AB} \quad \overrightarrow{AB} \quad \overrightarrow{IJ} = \frac{1}{2}\overrightarrow{EC} + \frac{1}{2}\overrightarrow{AB} \quad \overrightarrow{AB} \quad \overrightarrow{IJ} \quad \overrightarrow{AB} \quad \overrightarrow{IJ} = \overrightarrow{AB} \quad \overrightarrow{AB} \quad \overrightarrow{IJ} \quad \overrightarrow{AB} \quad \overrightarrow{IJ} \quad \overrightarrow{AB} \quad \overrightarrow{AB} \quad \overrightarrow{IJ} \quad \overrightarrow{AB} \quad \overrightarrow{AB} \quad \overrightarrow{IJ} \quad \overrightarrow{AB} \quad \overrightarrow{$$