

END PATE PLUED 9 -81 DTIC

AD A 1 U 3 1 3 1

FOREIGN TECHNOLOGY DIVISION

SELECTION OF HOTOR VEHICLING IN COLLECTOR-FROM HERCTRIVAL MACHINE AMPLIFIERS (REMU) AND PREQUENCY TRANSPORTERS

bу

A. I. Skorospeshkin, K. A. Khor'kov, Yo. K. Dergoruzov

Approved for public release; distribution unlimited.

う芸品

81 8 20 121

EDITED TRAIISLATION

FTD-ID(RS)T-0659-81

MICROPICHE NR: FTD-81-C-000636

selectrion of notor winding in collector-free _electrical machine_amtliblers (behu) and FREQUENCY TRANSFORMERS,

By. A. I./Skorospeshkinf K. A./Khor'kov Ye. K./ Dergobuzov

English pages: 7

Distribut on/ Izvestiya Tomskopo Trudovogo Krasnogo Znameni Politekhmicheskogo Institutaci imeni S. M. Kirova, Vol. 160, 1966, pp. 168-173

Country of origin USSR Translated by: SCITRAN F33657-78-D-0619

Requester: FTD/TQID

Approved for public release; distribution

unlimited.

THIS TRANSLATION IS A RENDITION OF THE DRIGI-NAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITORIAL COMMENT. STATEMENTS OR THEORIES ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NOT NECESSARILY REFLECT THE POSITION OR OPINION OF THE FOREIGN TECHNOLOGY DI-VISION.

PREPARED BY:

TRANSLATION DIVISION FOREIGN TECHNOLOGY DIVISION WP-AFB, OHIO.

FTD-ID(RS)T-0650-81

Date 17 Jul 19 31

U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

Block	Italic	Transliteration	Block	ltalic	Transliteration
A a	A a	A, a	Ρр	F p	R, r
£, 6	Бб	B, b	СС	Cc	S, s
Б в	В	V, v	Ττ	T m	T, t
ír	Γε	G, g	Уу	у у	υ , α
AA	Д д	D, d	Φ φ	Φ φ	F, f
Εc	E .	Ye, ye; E, e*	Х×	X x	Kh, kh
ж ж	Ж ж	Zh, zh	Цц	Ц ц	Ts, ts
3 э	3 ;	Z, z	Чч	4 4	Ch, ch
Ии	И и	I, i	Ш ш	Ш ш	Sh, sh
Йй	A a	Y, y	Цщ	Ш щ	Sheh, such
Н н	KK	K, k	bъ	b 1	11
ע וע	Лл	L, 1	Н ы	Ыш	Y, у
Pi cu	М м	M, m	b b	Ь	r
Нн	Н н	N, n	Ээ	э ;	Е, е
O O	0 0	0, 0	Юю	a CA	Yu, yu
Пп	[] n	P, p	Яя	Я к	Ya, ya

^{*}ye initially, after vowels, and after ь, ь; е elsewhere. When written as ë in Russian, transliterate as yë or ë.

RUSSIAN AND ENGLISH TRIGONOMETRIC FUNCTIONS

Russian	English	Russian	English	Russian	Englich
sin cos tg ctg sec	sin cos tan cot sec	sh ch th cth sch	sinh cosh tanh coth sech	are sh are ch are th are eth are seh	sinn cosh coth sech coth co
cosec	csc	csch	csch	l arc csch	esch '

Russian	English	1
rot 1g	curl log	

SELECTION OF ROTOR WINDING IN COLLECTOR-FREE ELECTRICAL MACHINE AMPLIFIERS (BERU) AND FREQUENCY TRANSPORMERS

A. I. Skorospeshkin, K. A. Khor'kov, Ye. K. Dergobuzov

The BEMU [Collector-free Electrical Machine Amelifier; and frequency transformers that we developed are two-cascade and integrated. The first cascade is essentially a synchronous machine. But the size of the air gap in them is adopted as in asynchronous machines. It can be expected, therefore, that without the use of stabilizing resources, the external characteristics of the synchronous cascade will have a steeply dipping nature. Experiment confirms this.

The existing methods for stabilizing voltage by using feedback are more suitable for transformers and amplifiers of direct current and fixed frequency. In transformers and amplifiers with controllable frequency, the use of feedback results in an additional load of the controllable semiconductor collector (UPK) that with large limits of frequency regulation can surpass the rated output (with base frequency) several times. In other words, the presence of feedback through the UPK results in a decrease in the rated loading of the machine.

This forces us to search for new methods of stabilizing the voltage.

We have suggested a method for improving the rigidity of the external characteristics of the synchronous cascade of the machine by reducing the effect of the demagnetizing action of the armature reaction with the help of a special design of the rotor winding called "zigzag."

The essence of this winding design is that each phase of the winding is divided into parts that are shifted in space in relation to each other at a certain angle α (fig. 1).

As a result of this connection, a shift is created between the main flux and the flux of the armature reaction. As a result, the demagnetizing effect of the armature reaction is diminished. The resulting electromotive force (e.m.f.) of the machine is also reduced, but insignificantly, in any case, to a lesser degree than the demagnetizing effect of the armature reaction is reduced.

Logic predicts that phase division into two equal parts will be the best. [Illegible] the following calculated formula:

$$X_{p} = 2i \, i l \cdot \frac{\mu_{0} D R_{0} / W_{0}}{K_{0} (K_{0}) p^{2} / \delta}$$
 (1)

f--e.m.f. frequency,

wo--magnetic permeability of air,

Kw--winding coefficient,

Wp--number of winding loops,

K&--coefficient of air gap,

Ku--saturation coefficient,

p--number of pole pairs,

&--size of air gap.

Figure 1.

Analogously, the derived expression for the inductive resistance of the winding when it is connected on the "zigzag" plan looks like:

$$X_{pz} = 2mf \frac{\mu_0 D K_{yz}}{K_p K_p p \sigma} \cdot [(W_t + W_2 \cos z)^2 + (W_2 \sin z)^2].$$
 (2)

On the condition that the number of winding loops of the "zigzag" $W_z=V_1+V_2$ equals the number of loops of the normal winding V_p , we obtain

$$\frac{X_{pz}}{X_{p}} = \frac{K_{wz}[(W_{1} + W_{2}\cos\alpha)^{2} + (W_{2}\sin\alpha)^{2}]}{K_{w}(W_{1} + W_{2})^{2}} = \frac{K_{wz}}{K_{w}} \left[1 + -\frac{2W_{1}W_{2}}{(W_{1} + W_{2})^{2}} \left(\cos\alpha - 1\right)\right].$$
(3)

Figure 2. External Characteristics of Cascade with $f_{\rm v}$ =0.

The optimal ratio of the number of loops W_1 and W_2 , and the optimal value of angle α are obtained after the partial derivatives of expression (3) are equated to zero, which are equal to:

$$W_1 = W_2$$
 and $\alpha = \frac{\pi}{2}$. (4)

The presented experiments completely confirm this conclusion. A model was created for the study in overall dimensions of AOK 42-4. The armature winding was placed on the rotor. The following types of windings were studied:

- 1) standard loop winding with number of loops $W_{\mathbf{p}}$.
- 2) "zigzag" winding with $W_1 + W_2 = W_p$ with $W_2 = \frac{1}{2}W_1$.

A study was made of the effect of angle α on the rigidity of external characteristics, with frequency of the control field $f_{y}=0$.

The testing results are presented in figure 2 in the form of the relationship U=f(1). It is apparent from the figure that with α =90° (curve 1), the external characteristics are more rigid than with α =60° (curve 2) and α =0 (curve 3).

The developed plan of "zigzag" winding with $\alpha = 90^{\circ}$ is presented in figure 3.

Thus, the connection of winding by "zigzag" significantly increases the rigidity of the external characteristics of the machine.

Figure 3. Developed Plan of "Zigzag" Winding with $\alpha=90^{\circ}$ el.

However, the most indicative are the regulating characteristics (fig. 4) that were obtained with a fixed control field f_y =0 and e.m.f. frequency of the rotor f_n =100 Hz.

It is apparent from the curves that with small load currents, in order to obtain the same voltage at the outlet when the winding is connected on the "zigzag" plan, greater power of machine excitation is required (curve 1) than with normal winding. However, with currents close to the rated, the pattern is drastically altered. This indicates that the amplification coefficient of the cascade with a normal load will be considerably greater for "zigzag" winding since the control powers for both windings are classified as squares of currents.

For example, with power P=4~kW, the following amplification coefficients were obtained:

 K_y =37 for normal winding, K_v =54 for the "zigzag" plan.

It is especially important that these relationships that were

Figure 4. Regulating Characteristics of Cascade with $f_y=0$.

Figure 5. External and Regulating Characteristics of Cascade with $f_y=30~{\rm Hz}$, $f_p=130~{\rm Hz}$.

Figure 5 (continuation)

Figure 6. External Characteristics of Cascade with "Zigzag" Winding with Capacitance Load and fy=30 Hz.

1. with C=0.

2. with C=15 μ f.

obtained with a fixed control field remain correct even for the operation of the cascade with rotating field of the control winding.

Figure 5 presents the external and regulating characteristics of the caseade that were taken with frequency of the control field f_y 30 Hz. This yields an e.m.f. frequency in the rotor winding of f_p =130 Hz. It is apparent from the curves that during regulation of the frequency, the rigidity of the external characteristics for the "zigzag" plan (curve 1) is considerably greater.

It should also be noted that when working on the capacitance load, (for example, with attachment of the compensating capacitance to the cascade outlet), the winding that is connected on the "zigzag" plan acts in the same way as the normal winding. The external characteristics of the cascade in a capacitance load are given in figure 6.

Thus, the use in transformers and amplifiers of the integrated type of a winding connected on the "zigzag" plan instead of the normal winding, increases the rigidity of the external characteristics of the cascade and reduces the control power with rated load. This is especially important for machines with controllable frequency.

References

1. М. П. Костенко, Л. М. Ниотровский. Электрические машины, ГЭП, ч. И, 1958.

totalidisories time

$(1) \rightarrow (1) \otimes (1)$

016 / (3177) 1 57	MICROFICHE
AZCV (FYGED)	1
V5.(0 (LAA/)	1
B344 - TA/BCD-2C	9
C043 CUN11A	<u> </u>
CSON TRACER	-
CSOD PARTICIO RES TAB	<u>, </u>
2510 PST 1723/AVWAX M	
CST ENGLISH	
C535 AVRA FY M/TONIOXM	, ;
C5.39 TreesAria	4
	4
Coly MA SINCIVAD	÷ , , , , ,
DOUBLANDS	- No.
EUSBERG USAEZINET EGUBERGEZERA	3
- 1403 ACD: 73.0A - 1404 ACX/(以):	Y. V.
E408 AcWI	•
5410 KN/140	ĩ
E429 507 IND	$\frac{1}{2}$
2005 DOM/ISA/DDI	
POSO CIN/OURVAUD/SD	2
AFTIVLDE	1
E'11)	
(31)	7
MAPHS	1
N: IS	2
LIDIL/Code L-389	•••
NASA/NST-44	3
NSA/1213/TOL	2

