

A empresa produz 3 modelos de produtos finais

O que vc quer fazer?

- 1) Playstation
- 2) Smartphone
- 3) Tablet
- 4) Outros

Cada grupo partirá de um prédio vazio (entrada e saída)

A empresa recebe matéria-prima em caixas

1 caixa média = 4 MPs (azuis, verdes)

1 caixa grande = 3 MPs (metálicas)

que seguem para uma estação de desempacotamento

Entrada de MP (emitter de caixas M e L)

Estação de desempacotamento (remover / emitter MP)

Obs: a caixa deverá permanecer dentro do remover (sem dissolver) até que as matérias-primas sejam todas emitidas.

Estações de usinagem (em quantidade livre) produzem displays ou bases

Obs: Cuidado com o \$\$\$\$\$ e com o gargalo

que poderão ser estocadas (estoques intermediários)

Obs1: Os estoques terão um custo de logística/armazenamento

Obs2: Os emitters de tampa e bases (retiradas do estoque) deverão estar em esteiras separadas

Tampa e base seguem para uma <u>única</u> estação de montagem

(display + base = produto)

Obs: A estação de montagem <u>pode apresentar falhas de encaixe</u> da display na base, mas a solução de automação deve ser capaz de <u>identificar e contornar</u> este problema.

Caso falha de montagem, o grupo poderá optar pelo descarte das peças ou pela criação de uma estação de separação e posterior reentrada no estoque

Estação de separação

Obs: O estoque de reentrada pode ser único, mas tampas e bases devem retornar de forma separada (nunca a tampa ainda sobre a base)

Após montagem correta, os produtos deverão ser testados em uma única estação REAL (GATE3)

Para o GATE1, esta estação será representada apenas por um sensor, uma pausa na esteira e um descarte (para os casos reprovados)

e só então embalados em caixas (número livre de embaladoras)

caixas com 3 unidades (metal) ou 4 unidades (azul, verde)

Obs1: As caixas sempre contêm um mesmo tipo de peça.

Obs2: As caixas embaladas terão sempre o tamanho médio

Estação de embalagem

Caixote recebe peças

Qdo limite de N peças atingido, dissolver caixote

Emitir um pallet + caixa

Avançar esteira, já posicionando um novo caixote na posição de embalagem

Obs: Para mais detalhes, veja vídeo disponibilizado no Blackboard (link da aula)

Ao final, deverão ser expedidos pallets contendo caixas conforme pedido de compra.

Pick and place 3 axis

Pick and place 2 axis

Obs: Utilizar Pick and place 3 axis e/ou Pick and place 2 axis.

Gate1 - Projeto Conceitual (grupo)

Data da entrega: 19/03

Gate1 - Projeto Conceitual (grupo)

С	D	E	
Data	Fundamentos/Conteúdo	Evidência aprendizado	
21/fev	CLP/Ladder: lógica digital	EXERC1 (Porta Lógica)	
27/fev	CLP/Ladder: lógica digital	EXERC2 (Tanque), APS1 (Sabesp)	
28/fev	CLP/Ladder: Lógica Digital / Timer / Contador	EXERC3 (Cavaco) / QUIZ	
05/mar	CLP/Ladder: Lógica Digital / Timer / Contador		
06/mar	CLP/Ladder: Lógica Digital / Timer / Contador	EXERC3 (Cavaco) / QUIZ	
12/mar	Intro ao Factory (exercícios) / Factory IO: Tutorial de comunicacao	APS2 (FactoryIO - 2 Esteiras)	
13/mar	Apres do projeto (Regras do Projeto) / Studio		
19/mar	Studio (proj conceitual da linha de producao) / Acompanhamento e dicas	GATE1: Conceitual	
20/mar	Feedback do Gate1 / Estruturação do código ladder / funções/estados, blocos, etc	EXERC4 (estados)	
26/mar	Studio		
27/mar	Studio		
02/abr	Studio		
03/abr	G2: FactoryIO + CLP(Ladder/IHM) + doc (mapa de IOs)	GATE2a: Estação Individual	
09/abr	Feedback do Gate2 / Studio		
10/abr	SCADA (introdução ao Elipse + tutorial) / studio	EXERC5 (Scada)	
16/abr	Studio	GATE2b: Reentrega	

Avaliação da Produtividade

- Tempo médio de CNC = 35s
- Produção mensal = calcular para 3 turnos de 7h, 25 dias no mês
- Demanda máxima de mercado = 70.000 unidades/mês

Investimento inicial

Custo de cada peça no Factory IO		R\$	Potencia (KW)
Conveyor 2m (digital)	roller, belt	5,000.00	1.5
Conveyor 4m (digital)	roller, belt	8,000.00	1.5
Conveyor 6m (digital)	roller, belt	12,000.00	1.5
Conveyor 2m (analog)	roller, belt	7,000.00	1.5
Conveyor 4m (analog)	roller, belt	10,000.00	1.5
Conveyor 6m (analog)	roller, belt	14,000.00	1.5
Inclinated Conveyor (digital)	belt	10,000.00	1.5
Inclinated Conveyor (analog)	belt	12,000.00	1.5

Machine center	1,500,000.00	5
Elevator		2
Pick & Place (digital)	20,000.00	1
Pick & Place (analog)	30,000.00	2
Palletizer		2
Two-Axis Pick & Place (digital)	30,000.00	1
Two-Axis Pick & Place (analog)	50,000.00	2
Warning devices	500.00	
Walkways	1,000.00	
Estacao de teste	50,000.00	

1		
Automacao	500,000.00	
1		

Gate1 - Avaliação

Rubrics

- I/D (<5) = linha não funciona OU não foi entregue a avaliação de produtividade
- C (5-7pts) = linha funciona mas com muitas falhas (mais de uma falha grande <u>ou</u> mais de 8 falhas pequenas) <u>OU</u> avaliação de produtividade baseada em único cenário.
- B (7-9pts) = linha funciona mas com algumas falhas (até uma falha grande e até 5 falhas pequenas)
 E avaliação de produtividade baseada em múltiplos cenários
- A (9-10pts) = linha completa e funcional, com falhas menores (até 3 falhas menores e nenhuma falha grande) <u>E</u> avaliação de produtividade baseada em múltiplos cenários

Gate2

Estação individual

<u>Gate2a</u> – Estação individual – Descrição Geral

Data da entrega: 05/abril

1) Mapa de estados

Caso vc não tenha adotado a técnica de "Máquina de Estados", justifique a sua escolha e apresente uma outra técnica de documentação do fluxo de operação da sua programação (fluxograma, etc).

2) Mapa de interface

3) Mapa de lOs

Name	Data Type	Address	Descrição
Sensor1	Bool	%I10.0	sensor do pallet
Sensor2	Bool	%I10.1	sensor da esteira de entrada
Posicao1	DInt	%ID22	posicao da pick and place X
Posicao2	Real	%ID26	posicao da pick and place Y
Atuador1	Bool	%Q10.0	esteira de entrada
Atuador2	Bool	%Q10.1	esteira de saída
SAIDA_PWM	Word	%QW1000	posicao do alimentador
Status1	Bool	%M0.0	status da estacao de entrada
Flag2	Bool	%M0.1	flag de posicionamento da peça
Medida1	DInt	%MD92	medida da altura da peça

4) Arquivos de software

- Cena do Factory IO
 - O arquivo deverá conter apenas a sua estação individual
 - A cena deverá ser fisicamente viável (evitar itens flutuantes, montagens improváveis, etc)
 - A cena poderá ser adaptada para torná-la funcional (inserção de emitters, removers, etc)
- Projeto do CodeSys
 - Enviar apenas o arquivo ".project"
 - Lembre-se de incluir comentários em networks, utilizar tags com nomes explicativos, aplicar as boas práticas de programação e utilizar códigos bem organizados
 - > Teste o funcionamento de sua estação para verificar a consistência de operação da mesma

<u>Gate2a</u> – Estação individual

Rubrics

I (<3) = não foi entregue código ou documentação

D (3-5) = estação não funciona (peça não chega ao final) **OU** estação é muito simples (muito fora da divisão sugerida no feedback do Gate1)

C (5-7pts) = estação funciona (peça chega ao final), mas com muitas falhas (nro falhas/incompletos > 5) OU documentação/código rubric C- (nota < 6)

B (7-9pts) = estação funciona com poucas falhas (nro falhas/incompletos <= 5) **OU** documentação/código rubric B ou C (nota < 9)

A (9-10pts) = estação funciona corretamente (até 1 falha grave) E documentação /código rubric A (nota >= 9)

(falha funcional = erros na cena, intervenções forçadas nos atuadores, sensores ou peças e intervenções manuais no código) (falha documentação = IOs sem comentários, mapa de interface incompleto, mapa de estados incorreto)

<u>Gate2a</u> – Estação individual

Data de entrega

• 07 de abril (enviar todos os itens de entrega via Blackboard)

Feedback

• 09 de abril (na bancada)

Gate3

TRYOUT / STARTUP

Gate3 - Tryout / Startup da linha de produção

Critérios de validação da linha

<u>Segurança</u>

 Atender aos critérios de segurança

Veja doc "Requisitos de segurança" Veja Checklist (Tryout)

Desempenho produtivo

• OEE ≥ 50%

Veja doc "Cálculo OEE"

Desempenho financeiro

VPL ≥ 0 (positivo)

Veja doc "Avaliacao Economica"

<u>Gate3</u> – Tryout / Startup da linha de produção

Entrega (nota C)

- Todos os itens obrigatórios (em preto) do checklist
- OEE ≥ 50%
- VPL ≥ 0

<u>Entrega (nota C+)</u>

- Todos os itens obrigatórios (em preto) do checklist e pelo menos 5 dos 8 itens adicionais (em rosa)
- OEE ≥ 50%
- VPL ≥ 0

<u>Gate3</u> – Tryout / Startup da linha de produção

Entrega (nota B)

- Critérios do C+
- OEE ≥ 70%

Entrega (nota B+)

- Critérios do B
- Cálculo do OEE em tempo real (disponibilidade, performance, qualidade, OEE)

<u>Gate3</u> – Tryout / Startup da linha de produção

Entrega (nota A)

- Critérios do B+
- Armazenamento de informações de produção em banco de dados
- Cálculo do OEE a partir de dados históricos

Entrega (nota A+)

- Critérios do A
- Implementação de ao menos uma das funções avançadas:
 - Rastreabilidade completa das caixas e peças
 - Outras funções avançadas a serem propostas pelo time

Exemplo de funções avançadas: Indicador de disponibilidade (gráfico termômetro)

Exemplo de funções avançadas: Indicador de disponibilidade (gráfico de tendência / ritmo atual e esperado)

Exemplo de funções avançadas: Gráfico de Qualidade (Carta CEP)

Shewhart control chart rules:

https://analyse-it.com/docs/user-guide/process-control/shewhart-control-chart-rules

- 1. 1 point is outside the control limits.
- 2. 2 out of 3 consecutive points are more than 2 sigmas from the center line in the same direction.
- 3. 4 out of 5 consecutive points are more than 1 sigma from the center line in the same direction.
- 4. 8 out of 9 points on the same size of the center line.
- 5. 6 consecutive points are steadily increasing or decreasing.
- 6. 14 consecutive points are alternating up and down.

Pirâmide da Automação Industrial

