

#### Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Επικοινωνιών, Ηλεκτρονικής και Συστημάτων Πληροφορικής

## ΗΛΕΚΤΡΟΝΙΚΗ Ι 4ο Εξάμηνο

ΑC ισοδύναμα π και Τ για το ΒJΤ

Μάθημα

Ν. Βουδούκης





Eίναι  $υ_{eb} = -υ_{be}$ .

Αν στο ισοδύναμο κυκλωματικό μοντέλο του pnp αντικαταστήσουμε την εξαρτημένη πηγή ρεύματος  $i_c = g_m \ \upsilon_{eb} \ \pi$ ου έχει φορά "προς τα πάνω" με την  $i_c = g_m \ \upsilon_{be} \ \pi$ ου έχει φορά "προς τα κάτω" και επίσης αντικαταστήσουμε την  $\upsilon_{eb}$  με  $\upsilon_{be}$  και "ανάποδη" πολικότητα προκύπτει το ισοδύναμο του npn.

**Άρα το pnp περιγράφεται ακριβώς με το ίδιο μοντέλο που περιγράφεται και το npn**. Αυτό ισχύει και για το π και για το Τ μοντέλο.

Επειδή  $v_{eb} = -v_{be}$  μπορούμε να θεωρήσουμε (αντιστρέφοντας τη φορά της εξαρτημένης πηγής ρεύματος και την πολικότητα της τάσης πάνω στην r<sub>π</sub>) ότι το pnpπεριγράφεται ακριβώς με το ίδιο μοντέλο που περιγράφεται και το npn.

Αυτό ισχύει και για το π και για το Τ μοντέλο.



$$v_{eb} = -v_{be}$$
 $i_b = -v_{be} / r_{\pi}$ 
 $i_c = -g_m v_{be}$ 
 $i_e = i_b + i_c$ 

Το pnp περιγράφεται ακριβώς με το ίδιο μοντέλο που περιγράφεται και το npn.

Αυτό ισχύει και για το π και για το Τ μοντέλο.





$$v_{eb} = -v_{be}$$
  
 $i_b = -v_{be} / r_{\pi}$   
 $i_c = -g_m v_{be}$   
 $i_e = i_b + i_c$ 

#### Το pnp περιγράφεται ακριβώς με το ίδιο μοντέλο που περιγράφεται και το npn.

Αυτό ισχύει και για το **π-μοντέλο** και για το Τ-μοντέλο.







#### Το pnp περιγράφεται ακριβώς με το ίδιο μοντέλο που περιγράφεται και το npn.

Αυτό ισχύει και για το π-μοντέλο και για το **Τ-μοντέλο**.



### Μοντέλα μικρού (ασθενούς) σήματος του ΒΙΤ



## Παράμετροι BJT Προσέγγιση μικρού (ασθενούς) σήματος

Model Parameters in Terms of DC Bias Currents

$$g_m = \frac{I_C}{V_T}$$

$$r_e = rac{V_T}{I_E} = lpha rac{V_T}{I_C}$$

$$r_{\pi} = rac{V_T}{I_B} = eta rac{V_T}{I_C}$$

$$r_o = \frac{|V_A|}{I_C}$$

In Terms of  $g_m$ 

$$r_e = \frac{\alpha}{g_m}$$

$$r_{\pi} = \frac{\beta}{g_m}$$

In Terms of  $r_e$ 

$$g_m = \frac{\alpha}{r_e}$$

$$r_{\pi} = (\beta + 1)r_e$$

$$g_m + \frac{1}{r_\pi} = \frac{1}{r_e}$$

Relationships between  $\alpha$  and  $\beta$ 

$$\beta = \frac{\alpha}{1 - \alpha}$$

$$\alpha = \frac{\beta}{\beta + 1}$$

$$\beta + 1 = \frac{1}{1 - \alpha}$$