

Метод выделения звуков естественного языка в звучащей речи

Студент: Левушкин Илья Кириллович, ИУ7-82Б

Научный руководитель: Градов Владимир Михайлович

Консультант: Строганов Юрий Владимирович

Цель и задачи

Цель – разработка метода выделения звуков естественного языка в звучащей речи.

Задачи:

- анализ предметной области, существующих методов выделения признаков речевого сигнала и алгоритмов классификации;
- проектирование метода и разработка алгоритма, реализующего данный метод;
- проектирование системы для проверки работоспособности метода;
- определение характеристик предлагаемого метода.

Звуки естественного языка

Совместный НИР ИУ7, Л4 и МГЛУ

Основные этапы распознавания речевого

Сегментация речевого сигнала

Методы выделения признаков речевого сигнала

Метод	Базис	Представление	Нелинейность	Нестационарнос	Вычислительная
				ТЬ	сложность
Преобразование Фурье	Априорный	Энергия-частота	Нет	Нет	Низкая
Вейвлет- преобразование	Априорный	Энергия- частота-время	Нет	Да	Средняя
Преобразование Гильберта- Хуанга	Адаптивный	Энергия- частота-время	Да	Да	Высокая

Алгоритмы классификации при малом объеме обучающей выборки

Алгоритм	Качество обучения	Скорость работы	Поддержка инкрементного обучения
Наивный Байес (NB)	Низкое	Высокая	Есть
K-ближайших соседей (KNN)	Среднее	Низкая	Есть
Деревья решений (DT)	Среднее	Средняя	Нет
Опорные вектора (SVM)	Высокое	Средняя	Нет
Искусственные нейронные сети (NNs)	Среднее	Низкая	Есть

Алгоритм формирования признаков речевого сигнала

Математическая постановка задачи классификации

Пусть X — пространство признаков фреймов сигнала, Y^n — пространство меток классов.

Будем рассматривать задачу на множестве Y^2 : $Y^2 = \{0, 1\}$, где

- 1 = {фрейм содержит в себе границу звуков естественного языка},
- 0 = {фрейм не содержит в себе границу звуков естественного языка}.

Пусть в распоряжении имеется обучающая выборка

$$X_s: X_s = (x_1, y_1), ..., (x_s, y_s),$$
 где $x_i \in X, y_i \in Y^2$; i, $s \in N$.

$$L = \sum_{i=1}^{N} |F(x_i) - y_i| \to 0$$

Требуется построить отображение $F: X \to Y^2$, способное классифицировать произвольный элемент $x \in X$ с ошибкой $L \to 0$.

Функциональная модель реализации метода

Архитектура разрабатываемой системы

Формирование обучающей и тестовой выборок данных

Начальные параметры:

- Количество отсчетов в фрейме n = 2500;
- Частота дискретизации sr = 16000Гц;
- Размер перекрытия фрейма hop = 40%;
- Ядро base = db4 (Вейвлет Добеши 4);
- Уровень декомпозиции сигнала k=6.

Формат данных:

< признак $_1 > \cdots <$ признак $_7 > <$ метка класса >

Количество объектов=5806

Определение характеристик предлагаемого метода

- С параметр регуляризации классификатора SVM;
- class_weight параметр SVM, регулирующий размер штрафа при неудачном выборе класса;
- k уровень декомпозиции сигнала.

Подбор параметров осуществлялся при помощи Коэффициента Корреляции Мэтьюса ККМ:

$$KKM = \frac{TP * TN - FP * FN}{\sqrt{(TP + FP) * (TP + FN) * (TN + FP) * (TN + FN)}}, где$$

- ТР верно классифицированные положительные объекты;
- TN верно классифицированные отрицательные объекты;
- FN неверно классифицированные отрицательные объекты;
- FP неверно классифицированные положительные объекты.

Определение характеристик предлагаемого метода

Оценка качества предлагаемого метода

- Коэффициент Корреляции Мэтьюса ККМ = 0.33
- AUC-площадь ROC-кривой = 0.7325

Интервал AUC	Качество модели
0.9-1.0	отличное
0.8-0.9	очень хорошее
0.7-0.8	хорошее
0.7-0.8 0.6-0.7	хорошее среднее

Экспертная шкала значений AUC

Заключение

- Выполнен анализ предметной области, существующих методов выделения признаков речевого сигнала и алгоритмов классификации;
- Спроектирован метод и разработан алгоритм, реализующий данный метод;
- Спроектирована система для проверки работоспособности метода;
- Определены характеристики разрабатываемого метода.

Направления дальнейшего развития

- Подготовка большего количества обучающей выборки, имеющей меньшую погрешность измерений для повышения точности метода;
- Применение альтернативных алгоритмов классификации, позволяющих повысить качество распознавания с применением большего количества данных.