Reinforcement Learning Course David Silver

Yaryıgassimou Notes Sultau's

- 2023 -

21.01.2023

L.1: Intro to Reinforcement Learning.

Books: Sutton & Bouto. An introduction to seinforcement beauting. 1998.

Szepesvaki. Algorithms for RL. 2010. Crnore mathemotical.

Example: • manage an investment padfolio

Reward Rt — scalar feedback signal.

Def. (Reward hypothesis) All goals can be described by the maximisation of expected cumulative reward.

Goal: select actions to max. total future reward.

You cannot use preedy alpos.



The history is the sequence: He= As, Oa, Rs, ..., Al, Ot, Rt

State is the information used to determine what happens next.

 $S_t = f(H_t)$ 

ivate paperson totion private representation.

not usually visible to the agout.

Agent state  $S_t^q = f(H_t)$  is the agents internal Re-

Def. A state St is Markov if and only if P[St+1|St] = P[St+1|S1,...,St]

- "The future is independent of the past, given the present":  $H_{1:t} \longrightarrow S_t \longrightarrow H_{t+1:\infty}$ . i.e. the state is sufficient statistic of the future.
- . The environment state is Markov.
- · The history is Markov.

| - vice case.                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Full observability: agend directly observes environ-                                                                                                |
| Full observability: agend directly observes environment stade. $O_t = S_t^q = S_t^e$ .                                                              |
| Formally, this is Markov decision process (MDP).                                                                                                    |
| Partial observability: agent indicedly observes                                                                                                     |
| environment. Si \ \ S.                                                                                                                              |
| Tormally, this is partially observable MDP (POMDF                                                                                                   |
| Append must creates its own St. e.p.:                                                                                                               |
| · Whole history                                                                                                                                     |
| · Beliefs. Sq = (IP[St=5],, IP[St=5]).                                                                                                              |
| • Whole history • Beliefs. $S_{t}^{q} = (P[S_{t}^{e} = s^{2}],, P[S_{t}^{e} = s^{u}])$ . • RNN . $S_{t}^{q} = 3(S_{t-1}^{q} W_{S} + O_{t} W_{O})$ . |
| Inside au RL apeut policy                                                                                                                           |
| · Policy: agents behaviour. a=IT(S)                                                                                                                 |
| · Value function: prediction of ficture elevered                                                                                                    |
| Model: predicts what eur. will do waxt.                                                                                                             |
| Marche loca marche more                                                                                                                             |
| Policy may be stochastic: $\mathcal{I}(a s) = P[A=a S=s]$                                                                                           |
| Vs(s) = Lot [K+ + 8K+1+ 8K+2+ (St=5)                                                                                                                |
| 8-Liscourt reward (e.g. 0.99).                                                                                                                      |

About model:

Transitions: I predict the next state (dynamics)

Remards: R predicts the next liminediate)

Reward, e.p.

 $R_s^9 = \mathbb{E}[R|S=S, A=9]$ 

Categorizino RL. agents: implicit

· Value based: No policy, value function.

· Policy based: policy, no value function.

· Actor critic: policy & value function.

· Mobel free: policy and/or value function, no model.

. Model based: policy and/or val. funct, model.

Exploitation - exploration.

### 25.01.2023

### L2. Markov Decision Processes

Almost all RL problems can be formalized as MDP

Det. A stode St is Markov 27
P[St+1 | St] = IP[St+1 | S1,..., St]

State teansition prob.:  $P_{SS} = P[S_{4:1} = S' | S_{\ell} = S]$ State teansition matrix:

each cow sums to 1.

Def. A Markov Process (or Markov Chain) is a tuple  $\langle S, P \rangle$ :

- · S is a (finite) set of sets
- · P is a prob. mostrix

v(s)= [[R+1 + 8 v (S+1) | S+=5]

$$V(S) = R_S + 8 \sum_{S \in S} P_{SS}, v(S')$$

$$V = R + 9 PV \quad (in matrices)$$

$$\begin{pmatrix} V(A) \\ \overline{V(U)} \end{pmatrix} = \begin{pmatrix} R_A \\ \overline{V(U)} \end{pmatrix} + 8 \begin{pmatrix} P_{A_1} & P_{A_1} \\ \overline{V(U)} \end{pmatrix} \begin{pmatrix} V(A) \\ \overline{V(U)} \end{pmatrix}$$

\* n - number of stades.

It can be solved directly:  $V=(I-YP)^{-1}R$ 

 $0(n^3)$  — comp. complexity.

Def. A MDP is a tuple  $\langle S, A, P, R, Y \rangle$ :

- · A a finite set of octions
- P is a stade transition prob. mother:  $P_{ss'}^{a} = P[S_{t+1} = S' | S_{t} = S, A_{t} = a]$
- · R is a reward function

  Ra = E[R+1]St = S, At = 9]

Def. A policy II is a distribution over action, given states:  $T(a|s) = P[A_t = a|S_t = s]$ 

A policy defines the behaviour of an apart. There, policy depends only on s, not time i.e. policy are stationary: 4t=0, An JI(-1S4)

Def. A stade-value function VI(S) of an MDP is the expected return starting from state 3, and then following IT

VI(S) = EII [G+|S+=S]

Def. The action-value function  $q_{\pi}(s,a) = \mathbb{E}_{\pi}[G_{t}|S_{t}=s, A_{t}=a]$ 

experted netwer taking action a and following to from state 3.

Bellman Expediation Equation:

VJ(S) = E[R+1+ YVJ(S+1) | S+=5]

9 (S,a) = En[R+1+ Y 9 (S+1, A+1) | St=S, At=9]

$$V_{JT}(s) = \sum_{\alpha \in A} J(\alpha|s) q_{JT}(s,\alpha)$$

$$q_{JT}(s,\alpha) = R_s^{\alpha} + \gamma \sum_{s' \in S} P_{ss'}^{\alpha} V_{JT}(s')$$

$$V_{JT}(s) = S$$

$$V_{JT}(s) = \sum_{\alpha \in d} J(\alpha|s) \left(R_s^{\alpha} + \gamma \sum_{s' \in S} P_{ss'}^{\alpha} V_{JT}(s')\right)$$

$$q_{JT}(s,\alpha) = R_s^{\alpha} + \gamma \sum_{s' \in S} P_{ss'}^{\alpha} V_{JT}(s')$$

$$q_{JT}(s,\alpha) = R_s^{\alpha} + \gamma \sum_{s' \in S} P_{ss'}^{\alpha} \sum_{\alpha \in d} J_{T}(\alpha|s') q_{JT}(s',\alpha)$$

$$q_{JT}(s,\alpha) = R_s^{\alpha} + \gamma \sum_{s' \in S} P_{ss'}^{\alpha} \sum_{\alpha \in d} J_{T}(\alpha|s') q_{JT}(s',\alpha)$$

$$q_{JT}(s,\alpha) = R_s^{\alpha} + \gamma \sum_{s' \in S} P_{ss'}^{\alpha} \sum_{\alpha \in d} J_{T}(\alpha|s') q_{JT}(s',\alpha)$$

$$q_{JT}(s,\alpha) = R_s^{\alpha} + \gamma \sum_{s' \in S} P_{ss'}^{\alpha} \sum_{\alpha \in d} J_{T}(\alpha|s') q_{JT}(s',\alpha)$$

$$q_{JT}(s,\alpha) = R_s^{\alpha} + \gamma \sum_{s' \in S} P_{ss'}^{\alpha} \sum_{\alpha \in d} J_{T}(\alpha|s') q_{JT}(s',\alpha)$$

$$q_{JT}(s,\alpha) = R_s^{\alpha} + \gamma \sum_{s' \in S} P_{ss'}^{\alpha} \sum_{\alpha \in d} J_{T}(\alpha|s') q_{JT}(s',\alpha)$$

$$q_{JT}(s,\alpha) = R_s^{\alpha} + \gamma \sum_{s' \in S} P_{ss'}^{\alpha} \sum_{\alpha \in d} J_{T}(\alpha|s') q_{JT}(s',\alpha)$$

$$q_{JT}(s,\alpha) = R_s^{\alpha} + \gamma \sum_{s' \in S} P_{ss'}^{\alpha} \sum_{\alpha \in d} J_{T}(\alpha|s') q_{JT}(s',\alpha)$$

$$q_{JT}(s,\alpha) = R_s^{\alpha} + \gamma \sum_{s' \in S} P_{ss'}^{\alpha} \sum_{\alpha \in d} J_{T}(\alpha|s') q_{JT}(s',\alpha)$$

$$q_{JT}(s,\alpha) = R_s^{\alpha} + \gamma \sum_{s' \in S} P_{ss'}^{\alpha} \sum_{\alpha \in d} J_{T}(\alpha|s') q_{JT}(s',\alpha)$$

$$q_{JT}(s,\alpha) = R_s^{\alpha} + \gamma \sum_{s' \in S} P_{ss'}^{\alpha} \sum_{\alpha \in d} J_{T}(\alpha|s') q_{JT}(s',\alpha)$$

$$q_{JT}(s,\alpha) = R_s^{\alpha} + \gamma \sum_{s' \in S} P_{ss'}^{\alpha} \sum_{\alpha \in d} J_{T}(\alpha|s') q_{JT}(s',\alpha)$$

$$q_{JT}(s,\alpha) = R_s^{\alpha} + \gamma \sum_{s' \in S} P_{ss'}^{\alpha} \sum_{\alpha \in d} J_{T}(\alpha|s') q_{JT}(s',\alpha)$$

$$q_{JT}(s,\alpha) = R_s^{\alpha} + \gamma \sum_{s' \in S} P_{ss'}^{\alpha} \sum_{\alpha \in d} J_{T}(\alpha|s') q_{JT}(s',\alpha)$$

In MRP: 
$$V_{JI} = R^{JI} + \chi P^{JI} V_{JI}$$

$$V_{JI} = \left(J - \chi P^{JI}\right)^{-1} R^{JI}$$

Def. The optimal stade-value function  $V_*(S)$  is the wax. value function over all policies:  $V_*(S) = \max_{T} V_T(S)$ 

The optimal action-value function  $9_+(S, \omega)$  is the max. oction-value function over all  $\pi$ :  $9_+(S, \omega) = \max_{\pi} 9_{\pi}(S, \omega)$ 

it it's max reward, not the best path.

Gif it's known then we can find the best path.

Give should find 9, then go by increasing 9.4 path.

Def. JIZJI if G(S) = VJI(S), US

Theor. For any MDP

There exists an optimal policy Ji+ that is better than or equal to all other policies, Ji+ > Ji, YJ

. All optimal policies achieve the optimal value function,  $V_{JT*}(S) = V_*(S)$ 

· All optimal policies achieve the optimal actionvalue function, 9514 (5,0) = 94 (5,0)

$$II_{+}(a|s) = \begin{cases} 1, & \text{if } a = \text{argmax } q_{+}(a,s) \\ 0, & \text{otherwise} \end{cases}$$

There's always optimal deterministic solution of MDP.

How do we find 9. ? By looking backwards. Bellman Optimality Equation

$$V_*(s) = \max_{\alpha} q_*(s_{\alpha})$$



$$q_{\bullet}(s,\alpha) = R_S^q + \sum_{s' \in S} P_{ss'}^q \max_{\alpha'} q_{\bullet}(s',\alpha')$$

Bellman Optimality Equation is non-linear. Many iterative solutions.

Extensions to MDPs

| 26.01.2023                                                                                                    |
|---------------------------------------------------------------------------------------------------------------|
| L3. Planning by Dinamic Programming                                                                           |
| Introduction                                                                                                  |
| DP assumes full knowledge of the MDP.<br>His used for planning in an MDP.                                     |
| His used for planning in an MUP.                                                                              |
| * Viterbi alporithm - what's                                                                                  |
| Policy Evaluation                                                                                             |
| Problem: evaluate policy IT                                                                                   |
| Solution: iterative application of Bellman expectation backup                                                 |
| $V_1 \longrightarrow V_2 \longrightarrow \dots \longrightarrow V_T$                                           |
| Usinp sychrenous boelups                                                                                      |
| Using sychrenous bordups $V_{K+1}(s) = Z J_1(a s) \left( R_s^q + V \sum_{s' \in S} P_{ss'}^q V_k(s') \right)$ |
| Vk+1= RT+ yPTVK                                                                                               |
| Policy Iteration                                                                                              |
| · Given a policy IT IPPD +XD + 15=5                                                                           |
| · Cairen a policy of Elltry + 8 Rx+21   Sx=S                                                                  |
| · Improve I: I'= preedy (VI).                                                                                 |

In peneral, need more iterations of ingrevenued/ evaluation Always converges to It.

Modified policy Herotion:

- · Does policy evaluation need to converge to 4?
- · Introduce stopping condition:

  - · 1/2 iterations.

## Value iteration

Theor. (Principle of Optimality)

A policy Ji(als) achieves the optimal value from state S, V<sub>J</sub>(S) = V<sub>\*</sub>(S) &>> foe + state S' reachable from S, IT aclieves the optimal value from state s', 1/3(s') = 1/4(s')

Intuition: start w/ final newards and work backwards.

Problem: find optimal policy TSolution: iterative application of Bellman optimality backup  $V_s \rightarrow V_z \rightarrow ... \rightarrow V_*$   $V_{k+1}(S) = Weax \left( R_S^q + \sum_{s' \in S} P_{ss'} V_k(s') \right)$ and  $V_{k+1}(S) = Weax \left( R_S^q + \sum_{s' \in S} P_{ss'} V_k(s') \right)$ in matrices:  $V_{k+1} = \max_{q \in A} \left( R_s^q + \sum_{s' \in S} P_s^q V_k \right)$ 

| Problem<br>Prediction | Bellman Equation Bellman Expactation Equation   | Alporitum Iterative Policy Eval. |
|-----------------------|-------------------------------------------------|----------------------------------|
| Control               | Bellman Exp. Eq.<br>+ Greedy Policy Improvement | Policy Herodian                  |
| Cowted                | Bellman Opt. Eq.                                | Value Iter.                      |

Alpos based on state-value function: O(mn²) periter Alpos based on action-value function: O(m²n²) per iter ~ qu(s,a), qu(s,a)

# Extensions to Dynamic Proproming Three simple ideas for asynchronous DP: 1) In-place dp 2) Prioritised sweepingo 3) Real-time dp

- 1) In synche, you some 2 versions of v. In-place stokes only one.
- 2) Use magnitude of Bellman error to guide stade selection:

Backup the state with largest remaining bellman expos

3) Duly states that are relevant to apart

Use agent's XP to paid the selection of states

After each time step  $S_4$ ,  $R_{4,1}$ Backup  $S_4$   $v(S_4) \leftarrow \max_{g \in A} \left( R_{S_4} + \gamma Z P_{S_4 S'}^g v(S') \right)$ 

Large DP suffers cuese of dimensionality, so we'll use sampling.

Contraction mapping

, Math is in lecture notes.

27.01.2023

### 14. Model-free prediction

### Introduction

Estimate the value function of runkwass MDP. Spolicy evaluation

# Monde Carlo learning

Can only be applied to episodic MDPs: · All episodes must terminate

Goal: leaven VII from episodes of XP under It S1, A1, R2, ..., Sk ~ or

Gt = Rt+1 + YRt+2+ --- + YT-1 RT

VII(8) = EII[Gt | St = S] Value function:

Monte-Caelo uses emperical mean vetuen.

V(s) -> VT(s) , V(s) = S(s)/N(s)

" number of fines as N(s) -> 0

s is visited first · First-visit-MC time yeturu evaluation,"

where s was

19 of 54

Every-visit MC policy Estimation; N(s) increments every-time s encountened  $S(s) = S(s) + G_t$  every-time s encountened V(s) = S(s)/N(s)

The mean  $\mu_1,\mu_2,...$  of sequence  $x_1,x_2,...$  can be computed incrementally:

 $y_{k} = \frac{1}{k} \sum_{j=1}^{k} x_{j} = y_{k-1} + \frac{1}{k} (x_{k} - y_{k-1})$ 

Incremental MC Updates

For each state St with notwen Gt

 $N(S_t) \sim N(S_t) + 1$  $V(S_t) \sim V(S_t) + \frac{1}{N(S_t)} (G_t - V(S_t))$ 

Ju non-stationary problems, it can be useful to track running mean, i.e. forget old episodes:

V(St) - V(St) + x (Gt - V(St))

Temporal-Difference Learning.

TD learns from incomplete episodes, by bookstraping.

TD updates a puess towards a guess.

Simple TD learning also TD(0)

• Update  $V(S_t)$  toward estimated neturn  $R_{t+1} + \gamma V(S_{t+1})$  (TD target)  $V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$ TD target is biased estimate of  $V_t(S_t)$ It has lower variance than the neturn

MC has high variance, zero blas TD has low variance, some bies

MC converges to solution w/ minimum MSE

TD converges to the solution of max likelihood

Markov Model.

Rexploits Markov property

Joesn't exploit Markov property

n-Step return  $G_{t}^{(u)} = h_{t+1} + \lambda R_{t+2} + \dots + \lambda^{n-1} R_{t+n} + \lambda^{n} V(S_{t+n})$   $G_{t}^{(\omega)} - MC$   $V(S_{t}) \leftarrow V(S_{t}) + \lambda (G_{t}^{(\omega)} - V(S_{t}))$ 

Averaging n-Step Returns e.g. 1 G(2) + 2 G(4) (A) (T)  $G_{k}^{\prime} = (1-\lambda) \sum_{i=1}^{\infty} \lambda^{n-1} G_{ik}^{(n)}$ V(St) - V(St) + x (Gt - V(St)) if terminal state, 2<sup>T-t-1</sup> Can only be computed for complete episodes. 7=1 - MC 7=0-TD(0)Elipibility traces · Feequency heuristic: assign chedit to most freq. · Recency heuristic: -1-1-1

Pecency heuristic: -1 - 1 - 1 - 1 necent  $E_0(s) = 0$  $E_1(s) = Y > E_{t-1}(s) + 11(S_t = S)$ 

Backward view TD(2) St= Rt+1 + V (St+1) - V (St) V(S) 2 V(S) + 0 8, E, (S) When 2=0 => E(6) = 1(St=S) =1 => TD(0) 7=1 -> MC Theor. The sum of offline updates is identical for forward-view and ballward-view 70(2):

= \alpha 8t Et(s) = \frac{1}{2} \alpha (Gt - V(St)) 11(St=S)

| 14.02.0025                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------|
| L5. Model-free control                                                                                                   |
| Introduction                                                                                                             |
| Model-free prediction: evaluates policy IT  ofind best possible policy                                                   |
| of the best possible policy                                                                                              |
| / Note: Try model easy football and try RL                                                                               |
| On-policy: "leakn on the job"                                                                                            |
| bearn about IT from XP using II                                                                                          |
| Off-policy: "Look over someone's sholder"                                                                                |
| leaves about policy of fear XP samples                                                                                   |
| 4rom 4+JT                                                                                                                |
| evaluation                                                                                                               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                    |
| JT = preedy(V)  improvement = Exploration  problem  Solation = Bondit problem                                            |
| Greedy Action Selection -> Bondit preoblem                                                                               |
| E-preedy explonation:                                                                                                    |
| $\sigma(a s) = \begin{cases} E/m + 1 - E & \text{if } a^* = \text{anomax } R(s a) \\ E/m & \text{otherwise} \end{cases}$ |
| oftenuise                                                                                                                |

Theorem. If E-preedy policy II, the E-preedy

I' withe respect to 90 is an improvement,

V<sub>II</sub>(S) = V<sub>II</sub>(S).

policy improvement theorem

Idea: update V every episode:

Q=91

Q+,II+

IT=E-preedy(IT)

Def. Greedy in the Limit with Infinite Exploration (GLIE): • all state-action points one explored infinitely many times, lim NK(S,a) = 00

the policy converges on a preedy policy, lim  $J_{1k}(a|s) = 1/2 (a = arpmax Q_k(s,a'))$ 

e.p. E reduces to zero at a=1/k.

# • Sample 4th episode using J1: $\{S_1, A_1, R_2, ..., S_7\}^2$ • Y $S_t$ and $A_t$ in the episode $N(S_t, A_t) \leftarrow N(S_t, A_t) + 1$ $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t)}(G_t - Q(S_t, A_t))$

• Jupkove policy based on new aution-value function  $\varepsilon = 1/k$   $T = \varepsilon$ -preedy (6)

Theor. GILE MC contred converges to the optimal oution-value function,  $Q(s,a) \longrightarrow Q_{*}(s,a)$ 

Updating Action-Value Functions w/ Saesa S.A

 $Q(S,A) \leftarrow Q(S,A) + \alpha(R + \gamma Q(S,A') - Q(S,A))$ 

Theor. Sarsa converges to the optimal action-value function, Q(S,a) - 9+ (S,a) under the following · GLIE sequences of policies It(als) conditions: . Robbins-Moneo sequences of step-sizes

 $\frac{2}{2}d_t = 0; \frac{2}{n+1}d_t^2 < \infty.$ 

n-Step Sarsa

9t = Rt+1 + yRt+2+ - - + 2 n-1 Rt+n + 8 Q(St+n)

 $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha (9_{G}^n - Q(S_t, A_t))$ 

Sarsa (7)

 $q_t^{\lambda} = (1 - \lambda) \sum_{t=0}^{\infty} \gamma^{n-1} q_t^{(n)}$ 

 $Q(S_{4},A_{4}) \leftarrow Q(S_{4},A_{4}) + \propto (Q_{4}^{\lambda} - Q(S_{4},A_{4}))$ forevocked-view (not outline because wait till the end of an episode)

Boehward View Sansa (7) Use elipibility traces

$$E_{0}(S,\alpha)=0$$

$$E_{t}(S,\alpha)=\gamma\lambda E_{t-1}(S,\alpha)+1(S_{t}=S,A_{t}=\alpha)$$

$$S_{t}=R_{t+1}+\gamma\Omega(S_{t+1},A_{t+1})-\Omega(S_{t},A_{t})$$

$$\Omega(S,\alpha)\leftarrow Q(S,\alpha)+\alpha S_{t}E_{t}(S,\alpha)$$

# Off-policy leaving

Evaluate J1(als) to compute VJ1(s) on 9J1(s,a) while following pa (als).

 $\{S_1, A_1, R_2, ..., S_T\} \sim \mu$ 

Important because ep. see what people did

$$E_{X\sim P}[f(x)] = ZP(x)f(x) =$$

$$= ZQ(x)\frac{P(x)}{Q(x)}f(x)$$

$$= E_{X\sim Q}[\frac{P(x)}{Q(x)}f(x)]$$

Importance Sampling for Off-policy MC Gy = J(At | St) J(At+1 | St+1) J(AT | ST) Gt

M(At | St) M(At+1 | St+1) M(AT | ST) V(St) = V(St) + x (Gt - V(St)) Very high variance, so don't work Importance Sampling for Off-policy TD  $V(S_t) \leftarrow V(S_t) + \alpha \left( \frac{\pi(A_t|S_t)}{\mu(A_t|S_t)} (R_{t+1} + \gamma V(S_{t+1})) - V(S_t) \right)$ Much lower variance Q-learning At+1 ~ M (. | St) A' ~ T(. |St)  $Q(S_{t},A_{t}) \leftarrow Q(S_{t},A_{t}) + \alpha \left(R_{t+1} + \beta Q(S_{t+1},A') - Q(S_{t},A_{t})\right)$ is preedy with respect to Q(Sa) 3 ju is E-preedy w.r.t. Q(s,a) Then, R++1+8Q(Stes, A') = R++1+ max &Q(Stes, Q')

Q-learning Control Algorithm (SARSAMAX)  $Q(S,A) \leftarrow Q(S,A) + \propto (R + \chi \max Q(S,\alpha') - Q(S,A))$ Theor. Q-learning control converges to the optimal oution-value function,  $Q(S,\alpha) \rightarrow Q_{4}(S,\alpha)$ 

### L6. Value Function Approximation.

#### Introduction

 $\hat{V}(s, w) \approx V_{\pi}(s)$ 

 $\hat{q}(s,a,w) \approx q_{\pi}(s,a)$ 

w-parameters (of NN, for example)

we'll consider approximators as linear comb. of

·NN

we require that methods are suitable for non-ind and non-stationary data.

### Incremental Methods

7 Value Function Approx. using SGD

rEA Represent stade by feature vector:

$$\chi(S) = \begin{pmatrix} \chi_1(S) \\ \bar{\chi}_{N}(S) \end{pmatrix}$$

Linear VFA:  $\hat{V}(S,w) = x(S)^Tw = \sum_{j=1}^{\infty} x_j(S)w_j$ 

Updode =  $\propto (V_{JL}(S) - \hat{V}(S, \omega)) \times (S)$ 

= step-size x error x feature value

Table lookup is special case of linear VFA:
$$x^{\text{table}}(S) = \begin{pmatrix} 1 (S = S_1) \\ -1 (S = S_N) \end{pmatrix}$$

Incremental Prediction Alporithms:

· FOR MC:

$$\Delta w = \propto (G_t - \hat{v}(S_t, w)) \nabla_w \hat{v}(S_t, w)$$

· FOR TD(0):

Bachward:

Courted with VFA

Approximate policy evaluation 9 (·,·,w) 2 qu

Action-value Function Approximation ĝ (S,A,W) ≈ 9, (S,A)  $\Delta w = \alpha \left( g_{\pi}(S,A) - \hat{q}(S,A,w) \right) \nabla_w \hat{q}(S,A,w)$ feature:  $X(S,A) = \begin{pmatrix} \chi_3(S,A) \\ \ddots \\ \chi_n(S,A) \end{pmatrix}$ linear AVFA: g(S,A,W) = X(S,A) W Incremental Control Alpoeithus: Co Same as prediction, but use 9(St, At, w) instead of v(St, w) ( Mountain Core problem ) Convengence of Prediction Apos Table Livear On/Off-Policy Algo 70(0) **O**u X (4)(1) TD(0) $(\zeta)QT$ X X

Gradient TD all V

Convergence of Control Algos

Algo Table Unear Non-linear

MC

V

(V)

X Sousa a-learning X X Grossient Q-learning

(V) = chatters around

Botch Methods

Greatient descent is not sample efficient Botch try to find the best fitting value function experience

 $D = \{ \langle S_1, V_1^{7} \rangle, ..., \langle S_{\tau}, V_{\tau}^{7} \rangle \}$ 

Least squares also:

$$LS(w) = \sum_{t=1}^{T} (V_t^{\pi} - \hat{V}(S_t, w))^2 =$$

 $=\mathbb{E}_{\mathcal{D}}\left[\left(V^{T}-\hat{V}(S,\omega)\right)^{2}\right]\longrightarrow \text{win}$ 

SGD with Experience Replay 1. Sample state, value from XP Repeat:  $\langle S, V^{\pi} \rangle \sim \mathcal{D}$ 2. Apply SGD update: SW = X(VJ- V(S,W)) Vw V(S,W) Converges to least squares solution: w"= appain LS(w) Lineaux LS-prediction: condition(?)  $\propto \dot{Z} \times (S_t) (V_t^T - \times (S_t)^T w) = 0;$  $W = \left(\sum_{t=1}^{T} X(S_t) X(S_t)^{T}\right)^{-1} \sum_{t=1}^{T} X(S_t) V_t^{T}$ 

LSMC: VE = GE

LSTD: VETZ Retes + YÛ(Stes, W)

LSTD(X): Vt = GX

Converges on- and eff-policy both MC&TD. LS Policy Iteration. 01.03.2023

L7. Policy Gradient Methods.

### Introduction

+: policy methods can be stochastic in partially observed env. (rushup features) we lose Markov Property -> no teterministic solution.

> Goal: given Jo(S,a) W/D, find best D To measure quality:

· Start value:  $J_1(0) = V^{30}(S_1) = E_{J_0}(V_1)$ 

· average value:  $J_{avV}(\theta) = \sum_{S} d^{TI}\theta(S) V^{TI}\theta(S)$ 

· overage neward per time-step:

d'110 (S) - stationary distribution.

Find 8 that maximizes J.

## Finite Différence Policy Grodient $\Delta\theta = \ll \nabla_{\theta} J(\theta)$

$$\nabla_{\theta} J(\theta) = \begin{pmatrix} \frac{\partial J(\theta)}{\partial \theta_{1}} \\ \frac{\partial J(\theta)}{\partial \theta_{N}} \end{pmatrix} ; \quad \frac{\partial J(\theta)}{\partial \theta_{E}} \approx \frac{J(\theta + \varepsilon u_{E}) - J(\theta)}{\varepsilon}$$

## MC Policep Gradient

likelihood eatios:  $\nabla_{\theta} II_{\theta}(S_{i}a) = II_{\theta}(S_{i}a) \nabla_{\theta} \log I_{\theta}(S_{i}a)$ score function: To lopTio (s,a).

Settman policy linear comb.

$$\sqrt{J_0(S_ia)} \propto e^{\phi(S_ia)^T} 0^{-1}$$
 linear comb.

$$\nabla_{\alpha} \log \sigma_{\alpha}(s, \alpha) = \varphi(s, \alpha) - \mathbb{E}_{\sigma}[\varphi(s, \cdot)]$$

paussian policy

$$M(S) = \phi(S)^T \delta$$
 can be panametrized

 $M(S) = \phi(S)^T \delta$  (and be panametrized)

 $M(S) = \phi(S)^T \delta$  (a- $\mu(S)$ )

 $M(S) = \phi(S)^T \delta$ 
 $M(S) = \phi(S)^T \delta$ 

$$\frac{\partial u}{\partial s} = \frac{(\alpha - \mu(s)) \phi(s)}{3^2}$$

Theorem. For  $\forall$  Jiff. policy  $\pi_0(s,a)$ , for any of the policy obj. Functions  $J \in \{J_s, J_{ave}, \frac{1}{1-\delta} J_{avv}\}$ , the policy produced is  $\nabla_{\theta}J(\theta) = \mathbb{E}_{\pi_0}[\nabla_{\theta}\log J_{\theta}(s,a)]$ 

Algorithm idea: ruse neturn 14 as an unbiased sample of Q (54, Qt)

50:27: —full algo.

Actor-Critic Policy Greatient

We use critic to estimate action-value function  $Q_w(s,a) \approx Q^{\pi_\theta}(s,a)$ 

crétic params: W

actor params: 0

VoJ(0) 2 ETO[Vo lopJo(s,a) Rw(s,a)]

DO = ~ To lopTo(S,a) Qw(S,a)

The critic is solving policy evaluation problem. We can do this using MC, TD, TDC), LS.

Theorem. (Compatible Function Approximation Theor)

If the following conditions once societies:  $\Omega \ \nabla_w Q_w(s,a) = \nabla_0 \log T_0(s,a)$ 

(2) W minimizes MSE

E= EJO [(QTO (S,Q) - Qw(S,Q))<sup>2</sup>]

w the notice oradioust is overd

Then the policy prendient is exact,  $abla J(\theta) = \mathbb{E}_{To} \left[ \nabla_{\theta} \log T_{\theta}(S_{i}a) \, Q_{w}(S_{i}a) \right]$ 

Reduce Variance Vsing a Baseline

Reduce variance (we changing expectation We subtract baseline function B(S)

A good baseline  $B(S) = V^{To}(S)$ A  $D^{To}(S,a) = Q^{To}(S,a) - V^{To}(S)$ advantage  $\nabla_{\theta} J(\theta) = \overline{E}_{To} \left[ \nabla_{\theta} \log T_{\theta}(S,a) A^{To}(S,a) \right]$ function

Estimating the Advantage Function We can use TD error as unbiased estimate of the A To (s,a)

> 8v= 4+ Y Vv(s') - Vv(s)

(in practice, can use appear. TD error.

Policy Geodieur w/ Elipibility Traces

△ 0 = od (Vt - Vv(St)) Volop To (St, at)

8= 4+1 + 8 Vr (S++1) - W(St)

et+1= >et + Voloppio (5,a)

 $\Delta \theta = \alpha \delta e_t$ 

Can be applied online, to incomplete sequences.

Natural Policy Gradient Fisher information  $\nabla_{\theta}^{\text{nat}} \pi_{\Theta}(S_{i}\alpha) = G_{0}^{-1} \nabla_{\Theta} \pi_{\Theta}(S_{i}\alpha)$  matrix  $G_{0} = F_{\pi_{\Theta}} \left[ \nabla_{\theta} \log \pi_{\Theta}(S_{i}\alpha) \nabla_{\theta} \log \pi_{\Theta}(S_{i}\alpha) \right]$ 

05.03.2023.

L8. Interprating Learning and Planning.

Leaven model from XP.

Model-based Reinforcement Leavening

- · a model M is a representation of MDP LS, A, P, R>, parametrized by J.
- · assume that I and of one known
- ·  $\mathcal{M}=\{P_{\eta},R_{\eta}\}$  represent state transition & neward.
- . assume interpendence:

IP[Stes, Rees | St. At] = IP[Sten | St. At] IP[Rten | St. At]

Goal: Estimate My from XP &S1,A1,R1,..., S73 S1,A1 - R2,S2

ST-1, AT-1 - RT, ST

- · S,a -> 4 mepression problem
- . Sia s' density estimation problem
- . pick loss functions
- . find params y that minimizes loss

### Table bookup model

$$R_{s}^{q} = \frac{1}{N(s,\alpha)} \sum_{t=1}^{7} 11(S_{t}, A_{t} = S, \alpha) R_{t}$$

Alternatively, record all (St, At, Rtm, Ster) and then sample <5,9,:,>

Manuap with a model:

- · value iteration · policy iteration · tree search

Sample-Based planning

Use model to generate samples

Stes ~ Py (Ster (St, At)

Ry (R+12 | St, At)

Apply model-free RL: MC control, SONSA, Q-learning.

7 Voually more efficient.

## Internated Architectures

We consider two sources of XP:
Peal: sampled from env.

- · Simulated: sampled from model My

Dyna-architecture:

· leaven and plan value function (and/or policy) from real and simulated XP.

! Lyna-Q\_alpo! 54:11!

The champed environment is harder/easier

The champed environment is harder/easier

pred exploration: Dyna-Q+

routsit states that haven't been visited for
a while.

Simulation-Based Search

Forward Search: build search tree with the currence ruse model of MDP to look just sub-MDP from now.

Simulate from now -> apply model-free RL

|       | oute-barlo leee Jearch (Evaluation                                                        | m)                           |
|-------|-------------------------------------------------------------------------------------------|------------------------------|
| Given | $\mathcal{M}_{\mathcal{O}}$                                                               |                              |
| Sinu  | late: {St, At, Rus, Stis,,                                                                | $S_7 \int_{k=}^{k}$          |
| Build | search -tree                                                                              | $rM_{v_i}$                   |
| Evalu | ate states Q(s,a):                                                                        |                              |
| Q     | $S(\alpha) = \frac{1}{N(S(\alpha))} \sum_{k=1}^{k} \frac{1}{u=k} \mathbb{I}(Su, Au = Sa)$ | Gu.                          |
|       | P (                                                                                       | 7 <del>11</del> (5, <b>0</b> |
| Sele  | et oution: $a_t = a_t p_{t} a_t x \mathcal{Q}(S_t, a)$                                    |                              |
| MC    | courted applied to simulated                                                              | ΧP                           |
| Q(s,  | t) 94 (S,A)                                                                               |                              |
|       | - the best way to act is to think next is acting the best way too                         | Huat                         |
| _ 11  | ~                                                                                         |                              |

TD search applies Sousa to sub-MDP.

#### TD Search

For each step of simulation, update 6(S,A) using Sansa:

DQ(S,A) = O((R+ )Q(S',A') -Q(S,A))

select actions based aution values Q(sa).

e.g. E-preedy

may also use function approx. foe a.

Dyna-2

stores: loup-terem memory shoret-term (working) memory

-> updated from real XP

updated from sim. XP

## 19. Exploration & Exploitation

#### Introduction

Approaches to exploration:

- 1. Random expl. (E-preedy)
- 2. Optinion in the face of uncertainity (prefer to explore uncertainity)
- 3. Information state space (apendis information as paret of its state)

State-action vs. Parameter apploachion-Spick diff. A each time S is visited J(AIS,U)

We'll focus on state-action exploreration.

Multi-Armed Boundits

tuple <A,R>
d-actions ("arems")

R°(4) = P[R=4|A=a] - unknown

At \in d purerenter Rt \sim R^At

\frac{\pmax}{2} R\_7 -> max

Vet. Action-value: q(a) = E[RIA=a] Det., Opt. value  $V_{+}: V_{+} = q(a^{+}) - \max_{a \in S} q(a)$ Det., Repret:  $I_{t} = E[V_{+} - q(A_{t})]$ Det. Total repret: Lt = E[\$\frac{1}{3} \varphi\_4 - q(A\_3)]\$ Court N<sub>4</sub>(a); Gap Da = V4 - 9(a) Lt = ZE[N4(a)] Da Good algos ensures small counts for large paps. Greedy can lock onto a subopt. solution. Optimistic initialization: Q(a)= "max Then act preedily:  $A_t = \frac{\text{output}}{\text{out}} Q_t(a)$ Optimistic preedy has linear total report. E-preedy explores forever has linear total repuet. pick a decay schedule for Es, Ez,... d= nin Da alsa=0 Ex= nin {1, cld! ? d2t }

Decaying Ex-preedy has logarithmic total repret.

Theor. (Loi & Robbins)

Asymptotic total repret is and least loparithmic in numbers of steps:

limber = lopt = 1 KL(Rall Rat)

Uppor Confidence Bounds

Estimate upper conf. bound U(a)

At = argmax Qt(a) + Ut(a)

Theor. (Hoeffding's Inequality)

Let X1,-., X4 be i.i.d noudour variables in [0,1].

and let  $\bar{X} = \frac{1}{t} \stackrel{\bar{t}}{\geq} X_J$ . Then:

 $P[E[x] > \overline{X_t} + u] \leq e^{-2tu^2}$ 

Condition on selecting a:

 $P[q|a), Q_t(a) + U_t(a)] \leq e^{-2N_t(a)U_t(a)^2}$ 

Pick p:  $e^{-2N_{+}(a)}V_{+}(a)^{2} = P$ Solve U:  $V_{+}(a) = \sqrt{\frac{-loop}{2N_{+}(a)}}$ 

Reduce p, e.p. p=t-4

Ensures we select opt. aut. t-00: (4(a)-1/2/4(a)

UCB1 also: A= argmax Q(a) + \ 2lgot \ N\_1(a) Theor. lim Lt = 8lopt = Da

Bayesian Bandits

Exploits peior knowledge.

e.f. Gaussians

Peobability matching

 $J(a) = P[Q(a) = \max_{a} G(a') | R_1, ..., R_{t-1}]$ Select action a according to JI(a)

Thompson sampling:  $\pi(a) = \mathbb{E}\left[1|(Q(a) = \max_{Q'} Q(a'))|R_{1,...,R_{t-1}}\right]$ Sample from posterior and select max.

Value of Information

Information State Space

S-summary of all information

Action A causes a transition to a new  $\tilde{S}'$  with prob  $\tilde{P}_{\tilde{S}\tilde{S}'}^{A}$ 

MOP  $\hat{\mathcal{U}} = \langle \tilde{S}, \mathcal{A}, \tilde{\mathcal{P}}, \mathcal{R}, \chi \rangle$ 

In Beenaulli case, MDP can be solved by DP.

The solution is Gittins Index.

Se.p. deup problem (work/don't work).

Contextual Bandits. tuple <d,S,R>

MDPs

for unknown or poorely est. state, replace neward function with mass.

· S= LS, 17 accumulated information

## 29.03.2023, "Bours Lecture" L10. Classic Rames.

Dost response  $\Pi_{*}^{i}(\Pi^{-i})$  is optimal policy against all other appoints' fixed policies

Nash equilibrium:  $\Pi^{i} = \Pi_{*}^{i}(\Pi^{-i})$ every player's policy is a best response if found, game is solved.

Nach equilibrium is fixed-point of solf-play RL For peneral games, Nach equil. is n't unique, but we'll book at classic pames where its unique.

Two-Player Zero-Sum Games White & Black R1+R2=0 Vrewards

Methods of finding Nash eq.:

- · Game tree search
- · Self-play RL

Perfect information: all visible

Importent information: not all visible

# Minimax Search $V_{JT}(s) = \mathbb{E}_{JT} \left[ G_t \mid S_t = s \right]$ $V_{JT}(s) = \max_{JT_2} \min_{JT_2} V_{JT}(s)$

minimox policy  $T=LT_{1},T_{12}>$  is a Nash eq. instead, we use value function  $v(s,w)=v_{+}(s)$  Chinook solved checkers in 2007

to games by making them self-play.

Policy improvement ul afterstates

 $Q_{*}(S_{1}a) = V_{*}(succ(S_{1}a))$ 

At = arguax V. (succ (St, a)) for white

At = appuin -1-1-1- for black

TD performed poorly in chess, checkers because of tactical mature of games.

TD Root

update value towards successor search value  $V_{+}(S_{1,w}) = \min_{s \in leaves(S_{1})} v_{+}(S_{1,w})$ 

TD Leaf update search value towards successor search value Tree Strap

-1-1 deeper -1-Simulation-Based Search

UCT algo: MC + UCB algorithm

Smooth UCT Search Imperfect information pames