KINEMATICS

Scalars	Vectors	
Magnitude	Magnitude AND Direction	

Quantity	SI Unit	Definition	
Distance (scalar)	m	Length travelled	
Displacement (vector)	m	Length travelled with respect to direction	
Speed (scalar)	m/s OR $m s^{-1}$	Rate of change of distance	
Velocity (vector)	m/s OR $m s^{-1}$	Rate of change of displacement	
Acceleration (vector)	$m/s^2 \text{ OR } m s^{-2}$	Rate of change of velocity	

Formulas			
$v = \frac{\Delta x}{t}$	$s = \frac{d}{t}$	$\Delta x = V_1 t + a t^2$	
$V_2 = V_1 + at$	$a = \frac{V_F - V_I}{t}$	$\Delta x = \frac{1}{2} (V_1 + V_2) t$	
${V_2}^2 = {V_1}^2 + 2a\Delta x$	$V_{12} = V_{1E} - V_{2E}$	$V_{AC} = V_{AB} + V_{BC}$	

v = velocity

s = speed

d = distance

 Δx = displacement (some may just use 'd')

t = time

a = acceleration

 $V_F = V_2 = \text{Final Velocity}$ $V_I = V_1 = \text{Initial Velocity}$

 $a = g = 9.81m/s^2$

1m/s = 3.6km/h