PATENT ABSTRACTS OF JAPAN

(11)Publication number:

04-302992

(43)Date of publication of application: 26.10.1992

(51)Int.CI.

F27D 3/12 C04B 41/87

C23C 4/10

(21)Application number: 03-092922

(71)Applicant:

IBIDEN CO LTD

(22)Date of filing:

29.03.1991

(72)Inventor:

ISHIDA OSAMU

TOKUMARU KENJI

(54) REFRACTORY MATERIAL FOR BURNING CERAMICS

(57)Abstract:

PURPOSE: To provide a refractory material for a burning auxiliary tool such as a ceramic-based electronic component, etc., which is not reacted with a material to be burned.

CONSTITUTION: A refractory material for burning ceramics in which a surface of a heat resistant light weight molded form containing heat resistant inorganic fiber is covered with a porous ceramic coating, and further a plasma flame spray coating layer is formed.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japanese Patent Office

本行れる人、

#441 co48 41/10-41/91

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平4-302992

(43)公開日 平成4年(1992)10月26日

(51) Int.Cl. ⁵		識別記号	庁内整理番号	F I	技術表示簡	所
F 2 7 D	3/12	S	8825-4K			
C 0 4 B	41/87	A	8821-4G			
C 2 3 C	4/10		6919-4K			

審査請求 未請求 請求項の数2(全 4 頁)

(21)出願番号	特顧平3-92922	,	00000158
(22)出顧日	平成3年(1991)3月29日		イビデン株式会社 岐阜県大垣市神田町2丁目1番地
(EE) MICH I	TAL 0 T (1001) 0 /160 H	(72)発明者	石田 修
•			岐阜県大垣市河間町3丁目200番地 イビ
4			デン株式 会社内
		(72)発明者	徳丸 賢治
			岐阜県大垣市河間町3丁目200番地 イビ
			デン株式 会社内

(54) 【発明の名称】 セラミツクス焼成用耐火物

(57) 【要約】

【目的】 被焼成物と反応しないセラミックス系電子部 品等の焼成補助具用耐火物を提供する。

【構成】 耐熱性無機質繊維を含有する耐熱軽量成形体の表面に、多孔質のセラミックコーティングを施し、さらに、プラズマ溶射コーティング層を形成したセラミックス焼成用耐火物。

1

【特許請求の範囲】

【請求項1】 耐熱性無機質繊維を含有する耐熱軽量成形体の表面に、多孔質のセラミックコーティングを施し、さらにその上層に同一組成の材料をプラズマ溶射コーティングしてなるセラミックス焼成用耐火物。

【請求項2】 多孔質セラミックコーティング層の膜厚が 50μ m以上、 200μ mであり、さらに、プラズマ溶射コーティング層の膜厚が 50μ m以上 200μ mであることを特徴とする特許請求の範囲第1項記載のセラミックス焼成用耐火物。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、各種セラミックス製品たとえばセラミックス系電子部品(セラミックコンデンサ、アルミナ基板、フェライト素子、サーミスタ、パリスタ等)、セラミックス系摺動材料等を製造方法するに当たり焼成工程で被焼成物を支持させるために使用する匣、敷台等の焼成補助具として好適な耐火物に関するものである。

[0002]

【従来の技術およびその問題点】上述の焼成補助具用耐火物は、使用条件に応じた耐熱性と機械的強度を備えていなければならないが、一方では、炉使用時においてそれらが消費する熱エネルギーを少なくすると共に、昇温及び冷却に要する時間を短縮し、エネルギーコストの低減と生産性の向上をはかるため、なるべく軽量で断熱性の良いものがのぞましい。

【0003】そのほかに、この用途特有の問題として、 焼成するセラミックスと反応しない事が必要とされる。 すなわち、支持具と被焼成物が接触部分において反応す ると、融着や組成変化による性能劣化などの不具合が生 じるため、被焼成物とは焼成条件においていかなる反応 も生じない事が要求される。また、被焼成物の表面性状 を悪化させることのないよう、表面はなるべく平滑であ る事がのぞまれる。これらの要求は、近年、小型の電子 部品の焼成に使われる焼成補助具については特に強いも のとなっている。

【0004】耐火性粉末と耐熱性無機線維との混合物を無機質結合剤を用いて成形して製造される軽量耐火物(特開昭63-206367号、特開昭59-88378号など)は、軽量で断熱性に優れ、強度も電子部品のような軽量被焼成物の支持には十分なものであるが、表面の平滑性、反応性など、表面性状において不満足なものであった。

【0005】セラミックス焼成補助具用軽量耐火物の表面性状の改良に関するものとしては、特開昭62-216974号や特開昭62-283885号の発明があり、耐火物表面にジルコニアコーティングやアルミナコーティングを施して表面を改質している。また、特開平2-102171号には、軽量耐火物の表面にプラズマ

溶射により、緻密なセラミックコーティング層が形成されたものが開示されている。

【0006】本発明の目的は、上述のような欠点のないコーティングを施されたセラミックス焼成用軽量耐火物を提供することにある。

[0007]

【課題を解決するための手段】本発明が提供するセラミックス焼成用耐火物は、耐熱性無機繊維を含有する軽量成形体の表面に多孔質なコーティングを施し、さらにそ10 の表層に同種類の材料をプラズマ溶射し、軟密質なコーティング層を形成する事を特徴とする。

【0008】このセラミックス焼成用耐火物の中でも特に優れた特性のものは、多結晶高アルミナ質短繊維5~40%と残部アルミナ粉とからなる成形体の表面に、アルミナ合有率が98%以上で気孔率が20~50%の多孔質なセラミックコーティングを施し、さらにその表層に同種類の材料をプラズマ溶射し緻密質セラミックコーティングを施してなるものである。

【0009】本発明の耐火物において、多孔質セラミックコーティング層の厚さは50~200μmであることが好ましい。その理由は、多孔質セラミックコーティング層の厚さが50μm未満では、基材と溶射コーティング層の熱膨張率の違いによる熱応力を緩和する能力が不足し、溶射コーティング層が剥離し易く、又、200μm以上では、多孔質コーティング層が基材と多孔質コーティング層の界面で剥離し易くなるからである。

【0010】また、溶射コーティング層の厚さは、50~200μmであることが好ましい。その理由は、溶射コーティング層が50μm未満では、ワーク成分の腐食性ガスが耐火物中へ侵入することを防げず、耐火物の耐久性を向上させる事が不充分であり、一方200μm以上の厚さの溶射コーティング層は、必要以上の厚さであり、経済的に好ましくないからである。又、品質的には、溶射コーティング層をより緻密化することが肝要で、少なくとも密度が96%以上であることが好ましく、コート材との衝突速度及び溶融温度の適性化が重要である。

【 $0\ 0\ 1\ 1$ 】基材とコーティング材の選定に当たっては、好ましくは熱膨張係数差の小さい組合わせとし、例 40 えばムライト基材(熱膨張係数 $\alpha=5$. 3×10^{-6})に対しては、 Y_1 O_1 部分安定化Z Y_2 O_3 部分安定化Z Y_3 O_4 に対しては、 Y_3 O_4 完全安定化Z Y_3 O_4 ($\alpha=1$ 0 0×1 0^{-6}) をコーティング材とする組み合わせがよい。

【0012】以下、本発明の実施例について比較例と併せて説明する。

[0013]

アルミナ (商品名AMS-2:住友化学工業社製) 70 %をスラリー濃度が1%となるように水中で攪拌混合し たのち、有機パインダーとしてエマルジョンラテックス を外割で5%添加した後、カチオン系高分子凝集剤で歴 集し、前記スラリーを吸引脱水成形した後脱水プレス し、乾燥したのち1450℃で3時間焼成し、厚み10 mm、巾300×長さ300、嵩密度1.3g/cm゚ の平板を得た。

【0014】前記の平板に、平均粒径10 μmのY₂ O リー溶液を膜厚100μmでスプレーコーティングし、 乾燥後1400℃で2時間焼付けて気孔率が約30%の 多孔質コーティング層を形成し、その後、ZrO2 をさ らにその表層にプラズマ溶射コーティングを施し、厚さ が100μm、密度が97%のコーティング層を形成し た。その物性を評価したところ著しく耐火物の耐久性が 改善された。

【0015】 (実施例2) 45 µm以上のショット含有 率を5%未満に脱ショット化したパルク(商品名U。パ ルク:イビデン社製) 20%と前記アルミナ60%及び 20 の耐久性は改善されなかった。 木節粘土 (商品名豊徳木節:共立窯業社製) 20%と外 割で界面活性剤5%、ワックスエマルジョン50%とを 万能混練機で混練した後、真空土練機で押し出し成形 し、厚み20mm、巾300×長さ300の成形体を得。 た。更にこの成形体を80℃で乾燥したのち、1450 ℃3時間焼成じ器密度1.0g/cm³の平板を得た。 この平板に平均粒径12μmのY2 O2 部分安定化2r O: (Y: O: 添加率6%品)を実施例1と同様の方法

でスプレー及び溶射コーティングを施し、その物性評価

【0016】(比較例1) 実施例1で得られた平板に1 50 μmの厚さのY: O: 完全安定化ZrO: 溶射コー ティングのみを施した。これをくり返しの加熱冷却テス トをしたところ、基材とコーティング層の界面で著しい コート剥離が発生した。

【0017】(比較例2)実施例1で得られた平板に、 150 μmの厚さのY: O: 完全安定化ZrO: のスプ 3 完全安定化2 r O2 (日本研磨材社製)の50%スラ 10 レーコーティングを施し、1400℃2時間で焼き付け た。これをセラミックコンデンサー焼成用治具材として 使用したところ、ワーク成分の耐火物への浸透量が多 く、耐火物の緻密化が進行し、30回の使用でヒピワレ が発生した。

> 【0018】 (比較例3) 実施例1で得られた平板に、 100 μmの厚さのY₂ O₃ 完全安定化Z₁O₂ のスプ レーコーティング及び焼き付けをした後、同様のZrO s を30μmの厚さに溶射コートし、コンデンサーワー クをのせて使用したが、溶射皮膜の効果が少なく耐火物

【0019】 (比較例4) 実施例1で得られた平板に、 30 μmの厚さのY: O: 完全安定化2 r O: のスプレ ーコーティング及び焼き付けをした後、同様のZrOz を100μmの厚さに溶射コートし、くり返しの加熱冷 却テストを行ったところ、溶射コーティング層に初期剥 離が発生した。

[0020]

【表 1 】

5

	变 推例 1	実施例 2	比较 第 1	比較例 2	比較例3	比较例
林 . 質	基チミルム	4941年	アルミナ質	1	1	
其	質 1.0.完全安定了2.09, (给付据在コート)	Yea. #B/按定[CLO, (独独独由)	TeA完全を担ける。 (特別を第二ト)	(3-1)	(4-0個報報)	
膜厚(μ)	100	l	150	150	3.0	100
材質	質 f.G.完全安世纪心, f.G.能分安世纪心。 (多刊复コート) (多刊复コート)	7,0,部分安定(540, (多刊第二一ト)			Violneeder (多元)	1
(ガ) 直蘭	100	1	1		100	3.0
7ーク成分の 没 過 量	WALTER!	יזאנוי	1376	1 %	₩ :	少ない
基材耐久回数	≥50	5 0	柳縣縣 (不可)	3 0	3 2	打印 (不可)
コート版画女件	0 16	0 K	9N ₹	0 K	У О	DN MA
ワーク特性	4	6 24	不可	a	旺式	
幹価	©	0	×	٧	٥	×

下質

[0021]

【発明の効果】以上の様に本発明の電子部品焼成用軽量 上、及び省エネに耐火物は、特にパリスタ、サーミスタ、圧電素子(P2 ともに、従来の観T)、セラミックコンデンサー等の電子部品は勿論のこ 40 るようになった。と、低融点酸化物を含有する電子部品をも極めて効率よ

湘本

上野

く焼成でき、焼成スピードのアップによる生産性の向上、及び省エネによる製品のコストダウンが得られるとともに、従来の穀密質耐火物と同等の耐久性をも得られるようになった。