EE2000 Logic Circuit Design

Lecture 9 – Sequential Logic Circuit Design

Flip-Flops

State Transition Tables

S	R	Q_{t+1}	$\overline{Q_{t+1}}$	State
0	0	Q_t	$\overline{Q_t}$	Hold
0	1	0	1	Reset
1	0	1	0	Set
1	1	1	1	Undefined

J	K	Q_{t+1}	$\overline{Q_{t+1}}$	State
0	0	Q_t	$\overline{Q_t}$	Hold
0	1	0	1	Reset
1	0	1	0	Set
1	1	$\overline{Q_t}$	Q_t	Toggle

D	Q_{t+1}	$\overline{Q_{t+1}}$	State
1	1	0	Set
0	0	1	Reset

T	Q_{t+1}	$\overline{Q_{t+1}}$	State
0	Q_t	$\overline{Q_t}$	Hold
1	$\overline{Q_t}$	Q_t	Toggle

What will you learn?

- 9.1 What are Finite State Machines
 - Concept of States
 - Mealy vs Moore machines
 - State table and diagram
- 9.2 Learn to analyze a Sequential Circuit
- 9.3 Learn to design a Sequential Circuit
 - Design example
 - State minimization

Sequential and Combinational Circuits

Combinational logic circuit

Output depends only on the inputs (As discussed in previous lectures)

Sequential logic circuit

Output depends on present input + past history

Memory circuit (to store previous STATE information)

is required

9.1 Finite State Machines - Concept

- A generic model/tool used in sequential circuit design
- State: Status of all memory units in the circuit. (n flipflops → 2ⁿ states)
 - 1 Flip-Flop: 0 or 1 (Two states)
 - 2 Flip-Flops: 0 & 0, 0 & 1, 1 & 0 or 1 & 1 (Four states)

9.1 Finite State Machines - Concept

- Next State Logic: A combinational logic function to determine the next state of the system
- Output Logic: A combinational logic function to produce the outputs

Mealy and Moore Machines

Mealy machine Output depends on the current state

and input

Moore machine Output depends only on the current

state

Examples (Mealy or Moore?)

State Diagram

represents a state

represents a transition from state S_i to S_j

Mealy machine

x is inputz is output(output depends on input)

Moore machine

x is input z_i is output Output is independent on input

Example (Mealy Machine)

State table

Present	Next	State	Outp	out Z
State	Input <i>X</i> = 0	Input <i>X</i> = 1	Input <i>X</i> = 0	Input <i>X</i> = 1
SA	S _B	S_C	1	0
S _B	S_B	S_A	0	1
S_c	S_A	S_C	0	0

Present	Input X				
State	0	1			
S _A	S _B /1	<i>S_C</i> /0			
S_B	$S_B/0$	$S_A/1$			
S _c	$S_A/0$	<i>S_C</i> /0			

Example (Mealy Machine)

Given the initial state is S_A , work out how will the circuit behave with an input sequence of 011010.

Prese State

Present	Next	Stage	Output Z			
State	Input X = 0	Input <i>X</i> = 1	Input <i>X</i> = 0	Input <i>X</i> = 1		
SA	S _B	S _C	1	0		
S _B	S_B	S_A	0	1		
Sc	S_A	S_{C}	0	0		

Time	0	1	2	3	4	5	
Present State (PS)	SA	1 	1 	1 	1 	1 	
Input X	0	1	1	0	1	0	
Output Z		 	 	 	 	 	
Next State (NS)		 	 	 	 	 	

Example (Mealy Machine)

Given the initial state is S_A , work out how will the circuit behave with an input sequence of 011010.

Prese State

Present	Next	Stage	Outp	out Z
State	Input <i>X</i> = 0	Input <i>X</i> = 1	Input <i>X</i> = 0	Input <i>X</i> = 1
SA	S _B	S _C	1	0
S_B	S _B	S_A	0	1
Sc	S_A	S_C	0	0

Time	0	1	2	3	4	5	
Present State (PS)	S _A	S_B	S_A	S_C	S_A	S_C	
Input X	0	1	1	0	1	0	
Output Z	1	1	0	0	0	0	
Next State (NS)	S_B	S_A	S_C	S_A	S_c	S_A	

Example (Moore Machine)

Present	Present	Inpu	ut X
State	Output Z	0	1
S _W	0	S _Y	S_X
S_X	1	S_X	S_{γ}
S _Y	0	S_X	S_W

Example (Moore Machine)

Given the initial state is S_W , work out how will the circuit behave with an input sequence of 011010.

Time	0	1	2	3	4	5	
Present State (PS)	S _W	 	 	 			1
Input X	0	1	1	0	1	0	
Output Z		 	 	 	 		1
Next State (NS)		l I	l I	l I	l I	I I	l I

Example (Moore Machine)

Given the initial state is S_W , work out how will the circuit behave with an input sequence of 011010.

Time	0	1	2	3	4	5	!
Present State (PS)	S _W	S_Y	S_W	S_X	S_X	S_Y	
Input X	0	1	1	0	1	0	
Output Z	0	0	0	1	1	0	
Next State (NS)	S_Y	S_W	S_X	S_X	S_{V}	S_X	

Tables (Example of SR FF)

Truth table

S	R	Q_t	Q_{t+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	Х
1	1	1	Х

Outputs based on inputs

Excitation table

S_t S_{t+1}	S	R
$S_0 \rightarrow S_0$	0	Χ
$S_0 \rightarrow S_1$	1	0
$S_1 \rightarrow S_0$	0	1
$S_1 \rightarrow S_1$	Χ	0

State transition based on inputs

 S_0 : Q = 0 S_1 : Q = 1

State table

	Drocont Output		Inpu	ıt <i>S R</i>	2
Present State	Present Output Q_t	0	0	1	1
		0	1	0	1
S_0	0	S_0	S_0	S_1	X
\mathcal{S}_1	1	S_1	S_0	S_1	X

States, Input/Transition, Outputs

Example (SR-FF)

S	R	Q_{t+1}	$\overline{Q_{t+1}}$	State
0	0	Q_t	$\overline{Q_t}$	Hold
0	1	0	1	Reset
1	0	1	0	Set
1	1	0	0	Undefined

State table

Drocont	Drocont		Inpu	t <i>S R</i>	
Present State	Present Output Q_t	0	0	1	1
State		0	1	0	1
0	0	0	0	1	Х
1	1	1	0	1	х

State diagram

Characteristic equation

Other FFs

D	Q_{t+1}	$\overline{Q_{t+1}}$	State
1	1	0	Set
0	0	1	Reset

J	K	Q_{t+1}	$\overline{Q_{t+1}}$	State
0	0	Q_t	$\overline{Q_t}$	Hold
0	1	0	1	Reset
1	0	1	0	Set
1	1	$\overline{Q_t}$	Q_t	Toggle

T	Q_{t+1}	$\overline{Q_{t+1}}$	State
0	Q_t	$\overline{Q_t}$	Hold
1	$\overline{Q_t}$	Q_t	Toggle

State diagram

Exercise (Other FFs)

State diagram

Characteristic equation

9.2 Sequential Circuit Analyzer

Given a sequential circuit, analyze its behavior by producing the state diagram and state table.

STEP 1: Which state machine? Mealy or Moore?

STEP 2: Input(s)? Output(s)? No of FF(s)? How many states?

STEP 3: Determine the flip-flop input function

$$J_A = Q_B, K_A = X'Q_B$$

 $J_B = X', K_B = X \oplus Q_A$

STEP 4: Determine the output function

$$Z = Q_A \oplus Q_B$$

$$Z = Q_A \oplus Q_B$$

STEP 5: Fill in the Analysis Table

Present State (PS)	Input	Present Output	Flip-Flops' Excitations		Next State (NS)		
State (Q_AQ_B)	X	Z	J_A	K_A	J_B	K_B	$Q_A^*Q_B^*$
(0, 0)	0						
(0 0)	1						
(0.1)	0						
(0 1)	1						
(4.0)	0						
(1 0)	1						
	0						
(1 1)	1						

STEP 6: Work out the State Table

Present State (PS)	Input	Present Output	Next State (NS)
State ($oldsymbol{Q}_Aoldsymbol{Q}_B$)	X	Z	$Q_A^*Q_B^*$
(0, 0)	0	0	0 1
(0 0)	1	0	0 0
(0.4)	0	1	1 1
(0 1)	1	1	1 0
(1,0)	0	1	1 1
(1 0)	1	1	1 0
(1 1)	0	0	0 0
(1 1)	1	0	1 1

Present	Present	Input X	
State	Output Z	0	1
(0 0)	0	(0 1)	(0 0)
(0 1)	1	(1 1)	(1 0)
(1 0)	1		(1 0)
(1 1)	0	(0 0)	(1 1)

STEP 7: Work out the State Diagram

Present	Present	Input X			
State	Output Z	0	1		
(0 0)	0	(0 1)	· · · ·		
(0 1)	1	(1 1)	(1 0)		
(1 0)	1	(1 1)	(1 0)		
(1 1)	0	(0 0)	(1 1)		

Exercise

Work out the State Table and State Diagram of the

following circuit

Present State	Input X		
$Q_1 \ Q_2$	0	1	
(0 0)			
(0 1)			
(1 0)			
(1 1)			

9.3 Sequential Circuit Design

- (a) How many outputs?
- (b) How many states?
- (c) Mealy or Moore machine?

Traffic Light Circuit

PS	NS	Outputs RYG
S _A	S _B	100
S _B	Sc	110
S _C	SD	0 0 1
S _D	S _A	010

Design a Moore machine to detect the sequence "111" (Overlapping)

In other words,

Design a system with one input x and one output z such that z = 1 if x has been 1 for at least three consecutive clock times.

x														
Z	0	0	0	0	0	0	0	1	0	0	0	1	1	1

Question: How about no overlapping is allowed?

x	0	1	1	0	1	1	1	0	1	1	1	1	1	0
Z	0	0	0	0	0	0	0	1	0	0	0	1	1	1

STEP 1: Determine what needs to be stored in memory and how to store them.

A: Input is '0'

B: one '1' is detected

C: two '1's are detected

D: three '1's are detected and output 1

STEP 2: Work out the State Diagram

x	1	1	1	1	1	1	0
Z	0	0	0	1	0	0	1

A: Input is '0'

B: one '1' is detected

C: two '1's are detected

Question: How can we change the diagram if no overlapping is allowed?

D: three '1's are detected and output 1

STEP 3: Work out analysis table with assigned FFs

4 states \rightarrow 2 FFs (We use D-FFs in this example)

Present State	I Present		State			
(Q_1Q_2)		Output 2	$\boldsymbol{\mathit{Q}}_{\boldsymbol{1}}^{*}$	$\boldsymbol{Q_2^*}$		
A (0 0)	0	0	0	0		
A (0 0)	1	0	0	1		
B (0 1)	0	0	0	0		
B (0 1)	1	0	1	0		
C (1 0)	0	0	0	0		
C (1 0)	1	0	1	1		
D(1 1)	0	1	0	0		
D(1 1)	1	1	1	1		

Assign State A:

 $Q_1 \rightarrow 0$ and $Q_2 \rightarrow 0$ etc

STEP 4: Work out D_1 and D_2

Present State	Input X	Present	Next State		
(Q_1Q_2)		Output Z	$oldsymbol{Q_1^*}$	$\boldsymbol{Q_2^*}$	
A (0 0)	0	0	0	0	
A (0 0)	1	0	0	1	
B (0 1)	0	0	0	0	
B (0 1)	1	0	1	0	
C (1 0)	0	0	0	0	
C(1 0)	1	0	1	1	
D(1 1)	0	1	0	0	
D(1 1)	1	1	1	1	

 $D_2 = Q_2^* = x(Q_1 + Q_2')$

STEP 5: Work out *z*

Present State	Input X	Present	Next State		
(Q_1Q_2)		Output Z	$oldsymbol{Q_1^*}$	$\boldsymbol{Q_2^*}$	
A (0 0)	0	0	0	0	
A (0 0)	1	0	0	1	
B (0 1)	0	0	0	0	
B (0 1)	1	0	1	0	
C(1 0)	0	0	0	0	
C(1 0)	1	0	1	1	
D(1 1)	0	1	0	0	
D(1 1)	1	1	1	1	

$$z = Q_1 Q_2$$

Example (Sequence Detector)

STEP 6: Draw the sequential logic circuits

$$D_1 = x(Q_1 + Q_2)$$

$$D_2 = x(Q_1 + Q_2')$$

$$z = Q_1 Q_2$$

Design a Mealy machine to detect the sequence "111" (Overlapping)

In other words,

Design a system with one input x and one output z such that z = 1 if x has been 1 for at least three consecutive clock times.

х	0	1	1	0	1	1	1	0	1	1	1	1	1	0
\boldsymbol{Z}	0	0	0	0	0	0	1	0	0	0	1	1	1	0

x	0	1	1	0	1	1	1	0	1	1	1	1	1	0
Z	0	0	0	0	0	0	1	0	0	0	1	1	1	0

STEP 1: Determine what needs to be stored in memory and how to store them.

STEP 2: Work out the State Diagram

STEP 3: Work out the analysis table with assigned FFs

3 states \rightarrow 2 FFs (We use D-FFs in this example)

Present	Input	Next	stage	
State (Q_1Q_2)	X	$oldsymbol{Q_1^*}$	$\boldsymbol{Q_2^*}$	Output Z
A (0 0)	0			
A (0 0)	1			
B (0 1)	0			
B (0 1)	1			
(10)	X			
C (1 1)	0			
C (1 1)	1			

Assign State A:

 $Q_1 \rightarrow 0$ and $Q_2 \rightarrow 0$ etc

STEP 4: Work out D_1 and D_2

Present	Input	Next	State	
State (Q_1Q_2)	X	$oldsymbol{Q_1^*}$	$\boldsymbol{Q_2^*}$	Output Z
A (0 0)	0			
A (0 0)	1			
B (0 1)	0			
B (0 1)	1			
(10)	х			
C (1 1)	0			
C (1 1)	1			

STEP 5: Work out *z*

Present	Input	Next	State	
State (Q_1Q_2)	X	$oldsymbol{Q_1^*}$	$\boldsymbol{Q_2^*}$	Output Z
A (0 0)	0			
A (0 0)	1			
B (0 1)	0			
B (0 1)	1			
(10)	Х			
C (1 1)	0			
C (1 1)	1			

STEP 6: Draw the sequential logic circuits

Use T FFs to design a Mealy machine to detect the sequence "111" (Overlapping)

Present State	Innut V	Next	State	Flip-	Flops	Output 7
(Q_1Q_2)	Input X	$oldsymbol{Q_1^*}$	$\boldsymbol{Q_2^*}$	T_1	T_2	Output Z
A (0 0)	0	0	0			0
A (0 0)	1	0	1			0
B (O 1)	0	0	0			0
B (0 1)	1	1	1			0
(10)	x	х	X			х
C (1 1)	0	0	0			0
C (1 1)	1	1	1			1

T	Q_{t+1}	$\overline{Q_{t+1}}$	State
0	Q_t	$\overline{Q_t}$	Hold
1	$\overline{Q_t}$	Q_t	Toggle

Present State	In rout V	Flip-	Flops
(Q_1Q_2)	Input X	T_1	T_2
A (0 0)	0		
A (0 0)	1		
B (O 1)	0		
B (O 1)	1		
(10)	х		
C (1 1)	0		
C (1 1)	1		

Use JK FFs to design a Mealy machine to detect the sequence "111" (Overlapping)

Present State	Input State			Flip-	Flops		Output <i>Z</i>	
(Q_1Q_2)	Х	$oldsymbol{Q_1^*}$	$\boldsymbol{Q_2^*}$	J_1	K_1	J_2	K_2	
A (0 0)	0	0	0					0
A (0 0)	1	0	1					0
B (0 1)	0	0	0					0
B (0 1)	1	1	1					0
(10)	Х	Х	X					х
C (1 1)	0	0	0					0
C (1 1)	1	1	1					1

Present	Input	Flip-Flops					
State (Q_1Q_2)	X	J_1	K_1	J_2	K_2		
A (0 0)	0						
A (0 0)	1						
B (0 1)	0						
B (0 1)	1						
(10)	Х						
C (1 1)	0						
C (1 1)	1						

Present	Input	Flip-Flops					
State (Q_1Q_2)	X	J_1	K_1	J_2	K_2		
A (0 0)	0						
A (0 0)	1						
B (0 1)	0						
B (0 1)	1						
(10)	Х						
C (1 1)	0						
C (1 1)	1						

Mealy vs Moore Machines

Mealy machine

Present	Input X				
State	0	1			
Α	A/0	B/0			
В	A/0	C/0			
С	A/0	C/1			

Moore machine

Present State	Inp	ut X	Present	
	0	1	Output Z	
А	Α	В	0	
В	Α	С	0	
С	Α	D	0	
D	Α	D	1	

Moore machine

- Typically more states, more complex logic circuits

Mealy machine

+ Typically fewer states, simpler logic circuits

Example (Timing Diagram)

Example (Timing Diagram)

Exercise (Timing Diagram)

 $z = xQ_1$

Mealy vs Moore Machines

Observation

- Moore: Output changes occur only after clk edge
- Mealy: Output changes occur whenever input changes
- Mealy: Faster response but glitch might occurs

Mealy vs Moore Machines

Mealy machine	Moore machine
Output depends on inputs and present state	Output depends only on present state
Typically fewer states, simpler logic circuits	Typically more states, more complex logic circuits
React faster to inputs	React one clock cycle later
Asynchronous	Synchronous
Glitches might present	No glitch

Better solution?
Synchronous Mealy machine

Design a Moore machine to detect the sequence "11" or "000" (Overlapping)

In other words,

Design a system with one input x and one output z such that z = 1 if x has been 1 for at least two consecutive clock times or 0 for at least three consecutive clock times.

x	0	0	0	0	1	0	1	1	0	0	1	1	1	0
\boldsymbol{Z}		?	?	1	1	0	0	0	1	0	0	0	1	1

x	0	0	0	0	1	0	1	1	0	0	1	1	1	0
Z	?	?	?	1	1	0	0	0	1	0	0	0	1	1

(Hint: 5 states)

Design a Mealy machine to detect the sequence "00110" (No overlapping)

In other words,

Design a system with one input x and one output z such that z = 1 if x has been 0 for two consecutive clock times, follows by two 1's and then a 0.

x	0	0	1	1	0	0	1	1	0	0	1	1	0	1
Z	0	0	0	0	1	0	0	0	0	0	0	0	1	0

x	0	0	1	1	0	0	1	1	0	0	1	1	0	1
Z	0	0	0	0	1	0	0	0	0	0	0	0	1	0

(Hint: 5 states)

State Minimization

- No of FFs

 No of states
- Combinational logic complexity

 No of states
- More FFs, more complex logic circuits → higher COST!
- Solution: Aims to remove redundant states

State Minimization

Direct observation
 Identify same output combinations and same state

	0	1		0	1		0	1
Α	A/0	E/1	Α	A/0	E/1	Α	A/0	E/1
В	E/1	C/0	В	E/1	C/0	В	E/1	C/0
С	A/1	D/1	С	A/1	D/1	С	A/1	D/1
D	F/0	G/1	D	F/0	G/1	D	F/0	G/1
Ε	B/1	C/0	Е	B/1	C/0	Ε	B/1	C/0
F	F/0	E/1	F	F/0	E/1	F	F/0	E/1
G	A/1	D/1	G	A/1	D/1	G	A/1	D/1

	0	1
Α	A/0	E/1
В	E/1	C/0
С	A/1	D/1
D	F/0	G/1
Ε	B/1	C/0
F	F/0	E/1
G	A/1	D/1

Partitioning Method

	0	1
Α	A/0	E/1
В	E/1	C/0
С	A/1	D/1
D	F/0	G/1
Ε	B/1	C/0
F	F/0	E/1
G	A/1	D/1

 Separate states with different outputs to different partitions

$$P_0 = (A B C D E F G)$$

A, D and F have outputs (0 1); B and E have outputs (1 0); C and G have outputs (1 1)
 P₁ = (A D F)(B E)(C G)

Partitioning Method

Р		0	1
	Α	A/0	E/1
1	D	F/0	G/1
	F	F/0	E/1
2	В	E/1	C/0
	Ε	B/1	C/0
3	С	A/1	D/1
3	G	A/1	D/1

$$P_1 = (A D F)(B E)(C G)$$

Next check the next state of each state in each partition

$$- A(0) \rightarrow A (P1) \quad A(1) \rightarrow E (P2)$$

$$- D(0) \rightarrow F (P1) D(1) \rightarrow G (P3)$$

$$- F(0) \rightarrow F (P1) \quad F(1) \rightarrow E (P2)$$

∴ A and F same partitions; D is different

$$P_2 = (A F)(D)(B E)(C G)$$

Partitioning Method

Р		0	1
1	Α	A/0	E/1
1	F	F/0	E/1
7	В	E/1	C/0
2	Ε	B/1	C/0
3	С	A/1	D/1
<u> </u>	G	A/1	D/1
4	D	F/0	G/1

$$P_2 = (A F)(D)(B E)(C G)$$

This is the final with no more changes!

Present State	Inp	ut X	Present
	0	1	Output Z
А	I	С	0
В	В	I	0
С	С	G	0
D	I	С	1
E	D	Ε	1
F	I	С	1
G	Е	F	1
Н	Н	Α	0
I	Α	С	0

Reduce the state table using partitioning method

$$P_0 = (A B C D E F G H I)$$

Group states based on same output

Present State	Input X		Present
	0	1	Output Z

$$P_1 =$$

Present State	Input X		Present
	0	1	Output Z

$$P_2 =$$

Present State	Input X		Present
	0	1	Output Z

$$P_3 =$$

Present State	Input X		Present
	0	1	Output Z

$$P_3 =$$

VHDL for Finite State Machine

Seq. Present State and Next State Logic

Example


```
entity seqckt is
port (         x: in std_logic; -- FSM input
                z: out std_logic; -- FSM output
                clk: in std_logic ); -- clock
end seqckt;
```

Output Logic


```
architecture behave of seqckt is
  type states is (A,B,C); -- symbolic state names (enumerate)
  signal state: states; --state variable
Begin
-- Output Logic
z \le 1' when ((state = B) and (x = 1')) --all conditions
           or ((state = C) and (x = '1')) --for which z = 1
        else '0';
                                           --otherwise z = 0
```

Next State Logic

```
process (clk) - Present & next states logic
  begin
    if rising edge(clk) then -- clock edge
      case state is
        when A =  if (x = '0') then
                      state <= A;
                 else
                      state \leq B; -- x = 1'
                 end if;
        when B \Rightarrow if (x=0) then
                      state <= A;
                 else
                      state \leftarrow C; -- x = 1'
                 end if;
        when C \Rightarrow if (x=0)' then
                      state <= C;
                 else
                      state \leftarrow A; -- x = 1'
                 end if;
      end case;
    end if;
end process;
end behave;
```

