Homework assignment 2 Basics of Automation and Control 1 ANW123

December 15, 2020

Contents

Homework policy	2
PROBLEM SET 1	3
PROBLEM SET 2	4
PROBLEM SET 3	5
PROBLEM SET 4	6
PROBLEM SET 5	7
PROBLEM SET 6	8
PROBLEM SET 7	9
PROBLEM SET 8	10
PROBLEM SET 9	11
PROBLEM SET 10	12
PROBLEM SET 11	13
PROBLEM SET 12	14
PROBLEM SET 13	15
PROBLEM SET 14	16
PROBLEM SET 15	17
PROBLEM SET 16	18
PROBLEM SET 17	19
PROBLEM SET 18	20
PROBLEM SET 19	21
PROBLEM SET 20	22
PROBLEM SET 21	23
PROBLEM SET 22	24
PROBLEM SET 23	25
PROBLEM SET 24	26
PROBLEM SET 25	27
PROBLEM SET 26	28
PROBLEM SET 27	29
PROBLEM SET 28	30
PROBLEM SET 29	31
PROBLEM SET 30	32
PROBLEM SET 31	33
PROBLEM SET 32	34

Homework policy

- During the fall there are two homework assignments.
- The deadline for submitting the solutions is announced on the course website.
- The homework assignments are published on the course website in a PDF format. The PDF file contains one hundred problem sets, which are numbered from 1 to 100.
- Each student should choose the appropriate problem set number that corresponds with the two last digits of the student's registration book (SRB) number. The exception from that rule is the problem set no. 100, which corresponds to the SRB number that ends with 00.
- The answer boxes of the chosen problem set should be fully completed.
- Be sure to write legibly.
- Enclose the solutions and your final answer to each problem in a box so that it may be clearly identified.
- These outcomes are evaluated and affect the total grade from the course.
- The solutions should be delivered before the deadline to the designated place.
- Homework submitted after the due date will not be honored.
- Copying homework from another student or other source is cheating and will not be tolerated.

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 1

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1 = 1/90sec$, $T_2 = 1/60sec$, and $T_3 = 1/300sec$. Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+1/5)(s+10)(s+60)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+54}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 81 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 4.71728 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 1.50476 \frac{Ns}{m}$, and $k = 6.28971 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 2

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1 = 1/80sec$, $T_2 = 1/40sec$, and $T_3 = 1/240sec$. Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d =$ ____sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+3/10)(s+9)(s+80)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+32}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 48 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 3.12031 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 1.12184 \frac{Ns}{m}$, and $k = 4.16041 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 3

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/70sec,\,T_2=1/60sec,\,$ and $T_3=1/260sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+2/5)(s+8)(s+60)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+42}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 63 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 4.64758 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 1.24467 \frac{Ns}{m}$, and $k = 6.19677 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 4

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1 = 1/30sec$, $T_2 = 1/70sec$, and $T_3 = 1/200sec$. Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+4/5)(s+4)(s+50)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Problem 3

Answer: $K = \underline{\hspace{1cm}}$

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+21}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 31.5 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 5.31008 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.798254 \frac{Ns}{m}$, and $k = 7.0801 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

 $\varphi(\omega) =$

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 5

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/60sec,\,T_2=1/60sec,\,$ and $T_3=1/240sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+1/2)(s+7)(s+60)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+36}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 54 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 4.61842 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 1.11668 \frac{Ns}{m}$, and $k = 6.1579 \frac{N}{m}$.

Answer: $L(\omega) =$ _____dB

Figure 3: Feedback control system in Problem 3

 $k_2 =$

Figure 4: Mechanical system in Problem 4

 $\varphi(\omega) =$ _____°

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 6

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/50sec,\,T_2=1/50sec,\,$ and $T_3=1/200sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d =$ ____sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+3/5)(s+6)(s+70)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+25}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 37.5 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 3.82733 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.903602 \frac{Ns}{m}$, and $k = 5.1031 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$

Figure 4: Mechanical system in Problem 4

 $\varphi(\omega) =$ ______

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 7

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/80sec,\,T_2=1/90sec,\,$ and $T_3=1/340sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+3/10)(s+9)(s+30)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s)=\frac{1}{s+72}$ Assume that $k_1>0,\ k_2>0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n=108\frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 7.02069 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 1.68276 \frac{Ns}{m}$, and $k = 9.36092 \frac{N}{m}$.

Answer: $L(\omega) =$ _____dB

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

 $\varphi(\omega) =$

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 8

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/90sec,\,T_2=1/40sec,\,$ and $T_3=1/260sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+1/5)(s+10)(s+80)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+36}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 54 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t)=\sin\omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega=3.14485\frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m=1kg, $b=1.22863\frac{Ns}{m}$, and $k=4.19314\frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

 $\varphi(\omega) =$

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 9

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1 = 1/20sec$, $T_2 = 1/90sec$, and $T_3 = 1/220sec$. Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+9/10)(s+3)(s+30)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+18}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 27 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 6.80336 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.752959 \frac{Ns}{m}$, and $k = 9.07115 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 10

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/80sec,\,T_2=1/100sec,\,$ and $T_3=1/360sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d =$ ____sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+3/10)(s+9)(s+20)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+80}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 120 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 7.80076 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 1.77378 \frac{Ns}{m}$, and $k = 10.401 \frac{N}{m}$.

Answer: $L(\omega) =$ _____dB

Figure 3: Feedback control system in Problem 3

 $k_2 =$ _____

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 11

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/30sec,\,T_2=1/20sec,\,$ and $T_3=1/100sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+4/5)(s+4)(s+100)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s)=\frac{1}{s+6}$ Assume that $k_1>0,\,k_2>0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n=9\frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 1.51717 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.426685 \frac{Ns}{m}$, and $k = 2.02289 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 12

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/20sec,\,T_2=1/10sec,\,$ and $T_3=1/60sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+9/10)(s+3)(s+110)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Problem 4

Answer: $K = \underline{\hspace{1cm}}$

Problem 3 A feedback control system has the structure shown in Fig. 3, where $G(s)=\frac{1}{s+2}$ Assume that $k_1>0,\,k_2>0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n=3\frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 0.755929 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.250986 \frac{Ns}{m}$, and $k = 1.00791 \frac{N}{m}$.

Answer: $L(\omega) =$ _____dB

Figure 3: Feedback control system in Problem 3

 $k_2 =$

Figure 4: Mechanical system in Problem 4

 $\varphi(\omega) =$ _______

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 13

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/30sec,\,T_2=1/90sec,\,$ and $T_3=1/240sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+4/5)(s+4)(s+30)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+27}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 40.5 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 6.82724 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.905135 \frac{Ns}{m}$, and $k = 9.10299 \frac{N}{m}$.

Answer: $L(\omega) =$ _____dB

Figure 3: Feedback control system in Problem 3

 $k_2 =$

Figure 4: Mechanical system in Problem 4

 $\varphi(\omega) =$

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 14

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1 = 1/50sec$, $T_2 = 1/60sec$, and $T_3 = 1/220sec$. Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d =$ ____sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+3/5)(s+6)(s+60)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+30}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 45 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 4.59279 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.989846 \frac{Ns}{m}$, and $k = 6.12372 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 15

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1 = 1/10sec$, $T_2 = 1/100sec$, and $T_3 = 1/220sec$. Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+1)(s+2)(s+20)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Problem 3

Answer: $K = \underline{\hspace{1cm}}$

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+10}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 15 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 7.53778 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.634047 \frac{Ns}{m}$, and $k = 10.0504 \frac{N}{m}$.

Answer: $L(\omega) =$ _____dB

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

 $\varphi(\omega) =$ _____°

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 16

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1 = 1/100sec$, $T_2 = 1/90sec$, and $T_3 = 1/380sec$. Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+1/10)(s+11)(s+30)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s)=\frac{1}{s+90}$ Assume that $k_1>0,\,k_2>0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n=135\frac{rad}{sec}$. Plot the step response.

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 7.13746 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 2.00519 \frac{Ns}{m}$, and $k = 9.51662 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$

Figure 4: Mechanical system in Problem 4

$$\varphi(\omega) =$$

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 17

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/40sec,\,T_2=1/10sec,\,$ and $T_3=1/100sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+7/10)(s+5)(s+110)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+4}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 6 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t)=\sin\omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega=0.761755\frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and $m=1kg,\,b=0.352732\frac{Ns}{m}$, and $k=1.01567\frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$

Figure 4: Mechanical system in Problem 4

 $\varphi(\omega) =$

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 18

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/90sec,\,T_2=1/20sec,\,$ and $T_3=1/220sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+1/5)(s+10)(s+100)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+18}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 27 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 1.57243 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.868772 \frac{Ns}{m}$, and $k = 2.09657 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

 $\varphi(\omega) =$

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 19

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1 =$ 1/40sec, $T_2 = 1/90sec$, and $T_3 = 1/260sec$. Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+7/10)(s+5)(s+30)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Problem 3

Answer: $K = \underline{\hspace{1cm}}$

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+36}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 54 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 = \underline{\hspace{1cm}}$

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega=6.8558\frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and $m = 1kg, b = 1.0582 \frac{Ns}{m}$, and $k = 9.14106 \frac{N}{m}$.

Answer: $L(\omega) = _$

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 20

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/80sec,\,T_2=1/20sec,\,$ and $T_3=1/200sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+3/10)(s+9)(s+100)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+16}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 24 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t)=\sin\omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega=1.56015\frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m=1kg, $b=0.79326\frac{Ns}{m}$, and $k=2.0802\frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

 $\varphi(\omega) =$ _____°

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 21

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/50sec$, $T_2=1/90sec$, and $T_3=1/280sec$. Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d =$ ____sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+3/5)(s+6)(s+30)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+45}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 67.5 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 6.88919 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 1.21231 \frac{Ns}{m}$, and $k = 9.18559 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 = \underline{\hspace{1cm}}$

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 22

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/10sec,\,T_2=1/60sec,\,$ and $T_3=1/140sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+1)(s+2)(s+60)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+6}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 9 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t)=\sin\omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega=4.52267\frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m=1kg, $b=0.49113\frac{Ns}{m}$, and $k=6.03023\frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

 $\varphi(\omega) =$ _____°

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 23

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1 = 1/20sec$, $T_2 = 1/70sec$, and $T_3 = 1/180sec$. Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d =$ ____sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+9/10)(s+3)(s+50)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+14}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 21 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t)=\sin\omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega=5.2915\frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m=1kg, $b=0.664047\frac{Ns}{m}$, and $k=7.05534\frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

 $\varphi(\omega) =$ _____°

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 24

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/60sec,\,T_2=1/40sec,\,$ and $T_3=1/200sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+1/2)(s+7)(s+80)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+24}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 36 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 3.07895 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.911765 \frac{Ns}{m}$, and $k = 4.10526 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 25

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/80sec,\,T_2=1/10sec,\,$ and $T_3=1/180sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+3/10)(s+9)(s+110)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+8}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 12 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t)=\sin\omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega=0.780076\frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m=1kg, $b=0.56092\frac{Ns}{m}$, and $k=1.0401\frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 26

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/100sec,\,T_2=1/40sec,\,$ and $T_3=1/280sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d =$ ____sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+1/10)(s+11)(s+80)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+40}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 60 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 3.17221 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 1.33679 \frac{Ns}{m}$, and $k = 4.22961 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

 $\varphi(\omega) =$ ______°

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 27

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1 =$ 1/60sec, $T_2 = 1/20sec$, and $T_3 = 1/160sec$. Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+1/2)(s+7)(s+100)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+12}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 18 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 = \underline{\hspace{1cm}}$

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the $\it response \ y(t)$ and find the magnitude (in dB) and phase angle (in degrees) for $\omega=1.53947\frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.644715 \frac{Ns}{m}$, and $k = 2.05263 \frac{N}{m}$.

Answer: $L(\omega) =$ _____

Figure 3: Feedback control system in Problem 3

 $k_2 =$ _____

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 28

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/10sec,\,T_2=1/40sec,\,$ and $T_3=1/100sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+1)(s+2)(s+80)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+4}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 6 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 3.01511 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.401006 \frac{Ns}{m}$, and $k = 4.02015 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 29

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1 = 1/100sec$, $T_2 = 1/60sec$, and $T_3 = 1/320sec$. Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+1/10)(s+11)(s+60)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+60}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 90 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 4.75831 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 1.63723 \frac{Ns}{m}$, and $k = 6.34441 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 30

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1 = 1/10sec$, $T_2 = 1/70sec$, and $T_3 = 1/160sec$. Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d =$ ____sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+1)(s+2)(s+50)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+7}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 10.5 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 5.27645 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.530481 \frac{Ns}{m}$, and $k = 7.03526 \frac{N}{m}$.

Answer: $L(\omega) =$ _____dB

Figure 3: Feedback control system in Problem 3

 $k_2 =$

Figure 4: Mechanical system in Problem 4

 $\wp(\omega) =$

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 31

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1 = 1/80sec$, $T_2 = 1/50sec$, and $T_3 = 1/260sec$. Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+3/10)(s+9)(s+70)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+40}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 60 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 3.90038 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 1.25425 \frac{Ns}{m}$, and $k = 5.20051 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 = \underline{\hspace{1cm}}$

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 32

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/60sec,\,T_2=1/50sec,\,$ and $T_3=1/220sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+1/2)(s+7)(s+70)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Problem 3

Answer: $K = \underline{\hspace{1cm}}$

A feedback control system has the structure shown in Fig. 3, where $G(s)=\frac{1}{s+30}$ Assume that $k_1>0$, $k_2>0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n=45\frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t)=\sin\omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega=3.84869\frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m=1kg, $b=1.01938\frac{Ns}{m}$, and $k=5.13158\frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 33

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1 = 1/20sec$, $T_2 = 1/100sec$, and $T_3 = 1/240sec$. Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+9/10)(s+3)(s+20)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+20}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 30 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 7.55929 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.793688 \frac{Ns}{m}$, and $k = 10.0791 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 34

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/10sec,\,T_2=1/50sec,\,$ and $T_3=1/120sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+1)(s+2)(s+70)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+5}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 7.5 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 3.76889 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.448339 \frac{Ns}{m}$, and $k = 5.02519 \frac{N}{m}$.

Answer: $L(\omega) =$ _____dB

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 35

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1 = 1/20sec$, $T_2 = 1/50sec$, and $T_3 = 1/140sec$. Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+9/10)(s+3)(s+70)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Problem 3

Answer: $K = \underline{\hspace{1cm}}$

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+10}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 15 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Answer: k Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 3.77964 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.561222 \frac{Ns}{m}$, and $k = 5.03953 \frac{N}{m}$.

Answer: $L(\omega) =$ _____dB

Figure 3: Feedback control system in Problem 3

 $k_2 =$

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 36

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/10sec,\,T_2=1/80sec,\,$ and $T_3=1/180sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+1)(s+2)(s+40)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+8}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 12 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 6.03023 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.567109 \frac{Ns}{m}$, and $k = 8.0403 \frac{N}{m}$.

Answer: $L(\omega) =$ _____dB

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 37

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1 = 1/20sec$, $T_2 = 1/40sec$, and $T_3 = 1/120sec$. Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+9/10)(s+3)(s+80)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+8}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 12 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 3.02372 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.501972 \frac{Ns}{m}$, and $k = 4.03162 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 38

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/40sec,\,T_2=1/30sec,\,$ and $T_3=1/140sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+7/10)(s+5)(s+90)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+12}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 18 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t)=\sin\omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega=2.28527\frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m=1kg, $b=0.61095\frac{Ns}{m}$, and $k=3.04702\frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 39

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/40sec,\,T_2=1/40sec,\,$ and $T_3=1/160sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+7/10)(s+5)(s+80)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+16}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 24 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 3.04702 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.705464 \frac{Ns}{m}$, and $k = 4.06269 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 = \underline{\hspace{1cm}}$

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 40

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1 = 1/100sec$, $T_2 = 1/20sec$, and $T_3 = 1/240sec$. Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d =$ ____sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+1/10)(s+11)(s+100)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+20}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 30 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t)=\sin\omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega=1.5861\frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m=1kg, $b=0.945254\frac{Ns}{m}$, and $k=2.1148\frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 = \underline{\hspace{1cm}}$

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 41

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/100sec,\,T_2=1/80sec,\,$ and $T_3=1/360sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+1/10)(s+11)(s+40)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+80}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 120 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t)=\sin\omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega=6.34441\frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m=1kg, $b=1.89051\frac{Ns}{m}$, and $k=8.45922\frac{N}{m}$.

Answer: $L(\omega) =$ _____dB

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 42

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/50sec,\,T_2=1/100sec,\,$ and $T_3=1/300sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+3/5)(s+6)(s+20)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+50}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 75 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t)=\sin\omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega=7.65466\frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m=1kg, $b=1.27789\frac{Ns}{m}$, and $k=10.2062\frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 43

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/50sec,\,T_2=1/10sec,\,$ and $T_3=1/120sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+3/5)(s+6)(s+110)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+5}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 7.5 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t)=\sin\omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega=0.765466\frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m=1kg, $b=0.404103\frac{Ns}{m}$, and $k=1.02062\frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

 $\varphi(\omega) =$ _____°

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 44

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/100sec,\,T_2=1/30sec,\,$ and $T_3=1/260sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d =$ ____sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+1/10)(s+11)(s+90)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s)=\frac{1}{s+30}$ Assume that $k_1>0,\,k_2>0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n=45\frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t)=\sin\omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega=2.37915\frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m=1kg, $b=1.15769\frac{Ns}{m}$, and $k=3.17221\frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 45

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/90sec,\,T_2=1/90sec,\,$ and $T_3=1/360sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+1/5)(s+10)(s+30)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s)=\frac{1}{s+81}$ Assume that $k_1>0,\,k_2>0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n=121.5\frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 7.07592 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 1.84294 \frac{Ns}{m}$, and $k = 9.43456 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 = \underline{\hspace{1cm}}$

Figure 4: Mechanical system in Problem 4

 $\varphi(\omega) =$ _____°

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 46

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/30sec,\,T_2=1/80sec,\,$ and $T_3=1/220sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d =$ ____sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+4/5)(s+4)(s+40)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+24}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 36 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 6.06866 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.853369 \frac{Ns}{m}$, and $k = 8.09155 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 47

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1 = 1/70sec$, $T_2 = 1/10sec$, and $T_3 = 1/160sec$. Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d =$ ____sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+2/5)(s+8)(s+110)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+7}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 10.5 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 0.774597 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.508133 \frac{Ns}{m}$, and $k = 1.0328 \frac{N}{m}$.

Answer: $L(\omega) =$ _____dB

Figure 3: Feedback control system in Problem 3

 $k_2 =$

Figure 4: Mechanical system in Problem 4

 $\varphi(\omega) =$ _____°

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 48

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1 = 1/100sec$, $T_2 = 1/100sec$, and $T_3 = 1/400sec$. Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+1/10)(s+11)(s+20)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+100}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 150 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 7.93052 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 2.11365 \frac{Ns}{m}$, and $k = 10.574 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 49

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/30sec,\,T_2=1/100sec,\,$ and $T_3=1/260sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+4/5)(s+4)(s+20)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s)=\frac{1}{s+30}$ Assume that $k_1>0,\,k_2>0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n=45\frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 7.58583 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.954096 \frac{Ns}{m}$, and $k = 10.1144 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 50

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/70sec,\,T_2=1/50sec,\,$ and $T_3=1/240sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+2/5)(s+8)(s+70)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+35}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 52.5 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 3.87298 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 1.13622 \frac{Ns}{m}$, and $k = 5.16398 \frac{N}{m}$.

Answer: $L(\omega) =$ _____dB

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

 $\wp(\omega) =$

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 51

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/30sec,\,T_2=1/50sec,\,$ and $T_3=1/160sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+4/5)(s+4)(s+70)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+15}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 22.5 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 3.79291\frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.674648\frac{Ns}{m}$, and $k = 5.05722\frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

 $\varphi(\omega) =$ _____°

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 52

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/10sec,\,T_2=1/30sec,\,$ and $T_3=1/80sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+1)(s+2)(s+90)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+3}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 4.5 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 2.26134 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.347282 \frac{Ns}{m}$, and $k = 3.01511 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 53

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1 = 1/60sec$, $T_2 = 1/10sec$, and $T_3 = 1/140sec$. Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+1/2)(s+7)(s+110)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+6}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 9 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 0.769737 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.455883 \frac{Ns}{m}$, and $k = 1.02632 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 54

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/70sec,\,T_2=1/40sec,\,$ and $T_3=1/220sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d =$ ____sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+2/5)(s+8)(s+80)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+28}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 42 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 3.09839 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 1.01627 \frac{Ns}{m}$, and $k = 4.13118 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 55

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/50sec,\,T_2=1/80sec,\,$ and $T_3=1/260sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+3/5)(s+6)(s+40)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+40}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 60 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 6.12372 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 1.14298 \frac{Ns}{m}$, and $k = 8.16497 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 56

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/20sec,\,T_2=1/80sec,\,$ and $T_3=1/200sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+9/10)(s+3)(s+40)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+16}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 24 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 6.04743 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.709896 \frac{Ns}{m}$, and $k = 8.06324 \frac{N}{m}$.

Answer: $L(\omega) =$ _____dB

Figure 3: Feedback control system in Problem 3

 $k_2 =$

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 57

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/60sec,\,T_2=1/70sec,\,$ and $T_3=1/260sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+1/2)(s+7)(s+50)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+42}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 63 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 5.38816 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 1.20615 \frac{Ns}{m}$, and $k = 7.18421 \frac{N}{m}$.

Answer: $L(\omega) =$ _____dB

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

 $\wp(\omega) =$

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 58

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/30sec,\,T_2=1/30sec,\,$ and $T_3=1/120sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+4/5)(s+4)(s+90)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+9}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 13.5 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 2.27575 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.52258 \frac{Ns}{m}$, and $k = 3.03433 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 59

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/90sec,\,T_2=1/10sec,\,$ and $T_3=1/200sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+1/5)(s+10)(s+110)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+9}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 13.5 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 0.786214 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.614315 \frac{Ns}{m}$, and $k = 1.04828 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 60

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/40sec,\,T_2=1/70sec,\,$ and $T_3=1/220sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+7/10)(s+5)(s+50)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Problem 3

Answer: $K = \underline{\hspace{1cm}}$

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+28}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 42 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t)=\sin\omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega=5.33229\frac{rad}{sel}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m=1kg, $b=0.933242\frac{Ns}{m}$, and $k=7.10971\frac{N}{m}$.

Answer: $L(\omega) =$ _____dB

Figure 3: Feedback control system in Problem 3

 $k_2 =$

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 61

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1 = 1/60sec$, $T_2 = 1/30sec$, and $T_3 = 1/180sec$. Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+1/2)(s+7)(s+90)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+18}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 27 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t)=\sin\omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega=2.30921\frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m=1kg, $b=0.789612\frac{Ns}{m}$, and $k=3.07895\frac{N}{m}$.

Answer: $L(\omega) =$ _____dB

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 62

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/80sec,\,T_2=1/30sec,\,$ and $T_3=1/220sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+3/10)(s+9)(s+90)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+24}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 36 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 2.34023 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.971541 \frac{Ns}{m}$, and $k = 3.12031 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

$$\varphi(\omega) =$$

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 63

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1 = 1/90sec$, $T_2 = 1/100sec$, and $T_3 = 1/380sec$. Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+1/5)(s+10)(s+20)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+90}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 135 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t)=\sin\omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega=7.86214\frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m=1kg, $b=1.94263\frac{Ns}{m}$, and $k=10.4828\frac{N}{m}$.

Answer: $L(\omega) =$ _____dB

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

 $\wp(\omega) =$

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 64

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/50sec,\,T_2=1/70sec,\,$ and $T_3=1/240sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+3/5)(s+6)(s+50)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+35}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 52.5 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 5.35826 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 1.06916 \frac{Ns}{m}$, and $k = 7.14435 \frac{N}{m}$.

Answer: $L(\omega) =$ _____dB

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 65

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/40sec,\,T_2=1/60sec,\,$ and $T_3=1/200sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+7/10)(s+5)(s+60)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+24}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 36 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 4.57053 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.864014 \frac{Ns}{m}$, and $k = 6.09404 \frac{N}{m}$.

Answer: $L(\omega) =$ _____dB

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 66

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/70sec,\,T_2=1/20sec,\,$ and $T_3=1/180sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+2/5)(s+8)(s+100)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+14}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 21 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 1.54919 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.718608 \frac{Ns}{m}$, and $k = 2.06559 \frac{N}{m}$.

Answer: $L(\omega) =$ _____dB

Figure 3: Feedback control system in Problem 3

 $k_2 =$

Figure 4: Mechanical system in Problem 4

 $\varphi(\omega) =$ _____°

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 67

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1 = 1/20sec$, $T_2 = 1/60sec$, and $T_3 = 1/160sec$. Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+9/10)(s+3)(s+60)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+12}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 18 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 4.53557 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.614788 \frac{Ns}{m}$, and $k = 6.04743 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 68

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1 = 1/30sec$, $T_2 = 1/60sec$, and $T_3 = 1/180sec$. Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+4/5)(s+4)(s+60)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+18}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 27 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t)=\sin\omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega=4.5515\frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m=1kg, $b=0.73904\frac{Ns}{m}$, and $k=6.06866\frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 69

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1 = 1/40sec$, $T_2 = 1/80sec$, and $T_3 = 1/240sec$. Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+7/10)(s+5)(s+40)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+32}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 48 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 6.09404 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.997677 \frac{Ns}{m}$, and $k = 8.12539 \frac{N}{m}$.

Answer: $L(\omega) =$ _____dB

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 70

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/80sec,\,T_2=1/60sec,\,$ and $T_3=1/280sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+3/10)(s+9)(s+60)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3 A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+48}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 72 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t)=\sin\omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega=4.68046\frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m=1kg, $b=1.37397\frac{Ns}{m}$, and $k=6.24061\frac{N}{m}$.

Answer: $L(\omega) =$ _____dB

Figure 3: Feedback control system in Problem 3

 $k_2 =$

Figure 4: Mechanical system in Problem 4

 $\wp(\omega) =$

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 71

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/60sec,\,T_2=1/100sec,\,$ and $T_3=1/320sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+1/2)(s+7)(s+20)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+60}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 90 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 7.69737 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 1.44163 \frac{Ns}{m}$, and $k = 10.2632 \frac{N}{m}$.

Answer: $L(\omega) =$ _____dB

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 72

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/20sec$, $T_2=1/30sec$, and $T_3=1/100sec$. Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+9/10)(s+3)(s+90)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+6}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 9 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 2.26779 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.434721 \frac{Ns}{m}$, and $k = 3.02372 \frac{N}{m}$.

Answer: $L(\omega) =$ _____dB

Figure 3: Feedback control system in Problem 3

 $k_2 =$

Figure 4: Mechanical system in Problem 4

 $\varphi(\omega) =$ ______

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 73

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/70sec,\,T_2=1/90sec,\,$ and $T_3=1/320sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d =$ ____sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+2/5)(s+8)(s+30)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Problem 3

Answer: $K = \underline{\hspace{1cm}}$

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+63}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 94.5 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 6.97137 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 1.5244 \frac{Ns}{m}$, and $k = 9.29516 \frac{N}{m}$.

Answer: $L(\omega) =$ _____dB

Figure 3: Feedback control system in Problem 3

 $k_2 =$

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 74

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1 = 1/70sec$, $T_2 = 1/30sec$, and $T_3 = 1/200sec$. Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+2/5)(s+8)(s+90)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+21}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 31.5 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 2.32379 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.880112 \frac{Ns}{m}$, and $k = 3.09839 \frac{N}{m}$.

Answer: $L(\omega) =$ _____dB

Figure 3: Feedback control system in Problem 3

 $k_2 =$

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 75

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/20sec,\,T_2=1/20sec,\,$ and $T_3=1/80sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+9/10)(s+3)(s+100)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+4}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 6 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 1.51186 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.354948 \frac{Ns}{m}$, and $k = 2.01581 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 76

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/50sec,\,T_2=1/30sec,\,$ and $T_3=1/160sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+3/5)(s+6)(s+90)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+15}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 22.5 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t)=\sin\omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega=2.2964\frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m=1kg, $b=0.699927\frac{Ns}{m}$, and $k=3.06186\frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 77

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1 = 1/60sec$, $T_2 = 1/90sec$, and $T_3 = 1/300sec$. Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+1/2)(s+7)(s+30)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+54}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 81 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 6.92763 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 1.36765 \frac{Ns}{m}$, and $k = 9.23684 \frac{N}{m}$.

Answer: $L(\omega) =$ _____dB

Figure 3: Feedback control system in Problem 3

 $k_2 =$

Figure 4: Mechanical system in Problem 4

 $\varphi(\omega) =$ _______

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 78

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1 = 1/80sec$, $T_2 = 1/80sec$, and $T_3 = 1/320sec$. Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+3/10)(s+9)(s+40)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+64}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 96 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 6.24061 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 1.58652 \frac{Ns}{m}$, and $k = 8.32082 \frac{N}{m}$.

Answer: $L(\omega) =$ _____dB

Figure 3: Feedback control system in Problem 3

 $k_2 =$

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 79

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/50sec$, $T_2=1/20sec$, and $T_3=1/140sec$. Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d =$ ____sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+3/5)(s+6)(s+100)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+10}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 15 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 1.53093 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.571488 \frac{Ns}{m}$, and $k = 2.04124 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 80

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/70sec,\,T_2=1/80sec,\,$ and $T_3=1/300sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+2/5)(s+8)(s+40)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+56}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 84 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 6.19677 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 1.43722 \frac{Ns}{m}$, and $k = 8.26236 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 81

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/90sec,\,T_2=1/50sec,\,$ and $T_3=1/280sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+1/5)(s+10)(s+70)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+45}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 67.5 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 3.93107 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 1.37365 \frac{Ns}{m}$, and $k = 5.24142 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 82

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/40sec,\,T_2=1/100sec,\,$ and $T_3=1/280sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+7/10)(s+5)(s+20)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+40}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 60 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 7.61755 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 1.11544 \frac{Ns}{m}$, and $k = 10.1567 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 83

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/40sec,\,T_2=1/50sec,\,$ and $T_3=1/180sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+7/10)(s+5)(s+70)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+20}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 30 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 3.80878 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.788733 \frac{Ns}{m}$, and $k = 5.07837 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 84

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/10sec,\,T_2=1/90sec,\,$ and $T_3=1/200sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+1)(s+2)(s+30)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+9}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 13.5 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 6.78401 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.601509 \frac{Ns}{m}$, and $k = 9.04534 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 85

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/90sec,\,T_2=1/70sec,\,$ and $T_3=1/320sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d =$ ____sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+1/5)(s+10)(s+50)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+63}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 94.5 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t)=\sin\omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega=5.5035\frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m=1kg, $b=1.62532\frac{Ns}{m}$, and $k=7.33799\frac{N}{m}$.

Answer: $L(\omega) =$ _____dB

Figure 3: Feedback control system in Problem 3

 $k_2 =$

Figure 4: Mechanical system in Problem 4

 $\wp(\omega) =$

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 86

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/10sec,\,T_2=1/20sec,\,$ and $T_3=1/60sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+1)(s+2)(s+100)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s)=\frac{1}{s+2}$ Assume that $k_1>0,\,k_2>0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n=3\frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 1.50756 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.283554 \frac{Ns}{m}$, and $k = 2.01008 \frac{N}{m}$.

Answer: $L(\omega) =$ _____dB

Figure 3: Feedback control system in Problem 3

 $k_2 =$

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 87

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/70sec,\,T_2=1/70sec,\,$ and $T_3=1/280sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+2/5)(s+8)(s+50)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3 A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+49}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 73.5 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t)=\sin\omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega=5.42218\frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m=1kg, $b=1.34439\frac{Ns}{m}$, and $k=7.22957\frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 = \underline{\hspace{1cm}}$

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 88

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/40sec,\,T_2=1/20sec,\,$ and $T_3=1/120sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+7/10)(s+5)(s+100)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+8}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 12 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 1.52351\frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.498839\frac{Ns}{m}$, and $k = 2.03135\frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 89

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1 = 1/70sec$, $T_2 = 1/100sec$, and $T_3 = 1/340sec$. Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+2/5)(s+8)(s+20)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s)=\frac{1}{s+70}$ Assume that $k_1>0,\,k_2>0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n=105\frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 7.74597 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 1.60686 \frac{Ns}{m}$, and $k = 10.328 \frac{N}{m}$.

Answer: $L(\omega) =$ _____dB

Figure 3: Feedback control system in Problem 3

1 Igure 2. 1 eeu ouen eon ar or bystem in 1 robtem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 90

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/90sec,\,T_2=1/80sec,\,$ and $T_3=1/340sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+1/5)(s+10)(s+40)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+72}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 108 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 6.28971 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 1.73754 \frac{Ns}{m}$, and $k = 8.38628 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 = \underline{\hspace{1cm}}$

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 91

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1 = 1/50sec$, $T_2 = 1/40sec$, and $T_3 = 1/180sec$. Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+3/5)(s+6)(s+80)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+20}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 30 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 3.06186 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.808206 \frac{Ns}{m}$, and $k = 4.08248 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 = \underline{\hspace{1cm}}$

Figure 4: Mechanical system in Problem 4

 $\varphi(\omega) =$ _____°

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 92

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/100sec,\,T_2=1/50sec,\,$ and $T_3=1/300sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+1/10)(s+11)(s+70)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+50}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 75 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 3.96526 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 1.49458 \frac{Ns}{m}$, and $k = 5.28701 \frac{N}{m}$.

Answer: $L(\omega) =$ _____dB

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 93

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/100sec,\,T_2=1/70sec,\,$ and $T_3=1/340sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+1/10)(s+11)(s+50)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s)=\frac{1}{s+70}$ Assume that $k_1>0,\,k_2>0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n=105\frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 5.55136 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 1.76841 \frac{Ns}{m}$, and $k = 7.40181 \frac{N}{m}$.

Answer: $L(\omega) =$ _____dB

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

 $\wp(\omega) =$

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 94

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/60sec,\,T_2=1/80sec,\,$ and $T_3=1/280sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+1/2)(s+7)(s+40)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+48}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 72 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t)=\sin\omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega=6.1579\frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m=1kg, $b=1.28943\frac{Ns}{m}$, and $k=8.21053\frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 95

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1 =$ 1/80sec, $T_2 = 1/70sec$, and $T_3 = 1/300sec$. Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+3/10)(s+9)(s+50)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+56}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 84 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 = \underline{\hspace{1cm}}$

Answer: $K = \underline{\hspace{1cm}}$

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the $\it response \ y(t)$ and find the magnitude (in dB) and phase angle (in degrees) for $\omega=5.46054\frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 1.48405 \frac{Ns}{m}$, and $k = 7.28071 \frac{N}{m}$.

Answer: $L(\omega) =$

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 96

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1 = 1/30sec$, $T_2 = 1/10sec$, and $T_3 = 1/80sec$. Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+4/5)(s+4)(s+110)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+3}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 4.5 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 0.758583 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.301712 \frac{Ns}{m}$, and $k = 1.01144 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$

Figure 4: Mechanical system in Problem 4

 $\varphi(\omega) =$ _____°

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 97

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1 = 1/30sec$, $T_2 = 1/40sec$, and $T_3 = 1/140sec$. Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d =$ ____sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+4/5)(s+4)(s+80)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+12}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 18 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 3.03433 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.603423 \frac{Ns}{m}$, and $k = 4.04577 \frac{N}{m}$.

Answer: $L(\omega) =$ _____dB

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Figure 4: Mechanical system in Problem 4

 $\varphi(\omega) =$ ______°

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 98

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/100sec,\,T_2=1/10sec,\,$ and $T_3=1/220sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+1/10)(s+11)(s+110)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+10}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 15 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 = \underline{\hspace{1cm}}$

R(s) + C(s) R(s) R(s

Figure 3: Feedback control system in Problem 3

 $k_2 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t)=\sin\omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega=0.793052\frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m=1kg, $b=0.668395\frac{Ns}{m}$, and $k=1.0574\frac{N}{m}$.

Answer: $L(\omega) =$ _____dB

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 99

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/10sec,\,T_2=1/10sec,\,$ and $T_3=1/40sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Answer: $T_d = \underline{\hspace{1cm}}$ sec Problem 2

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+1)(s+2)(s+110)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+1}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 1.5 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t) = \sin \omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega = 0.753778 \frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m = 1kg, $b = 0.200503 \frac{Ns}{m}$, and $k = 1.00504 \frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$

Figure 4: Mechanical system in Problem 4

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00

Please write your answers to three decimal places and enclose the solutions to each problem.

PROBLEM SET 100

Problem 1

Consider the feedback control system given in Fig. 1, where $T_1=1/90sec,\,T_2=1/30sec,\,$ and $T_3=1/240sec.$ Determine the value of the constant T_d of the PD controller when the system oscillates and calculate the angular frequency of these oscillations.

Consider a unity feedback control system shown in Fig. 2 with the open-loop transfer function

$$G(s) = \frac{K}{(s+1/5)(s+10)(s+90)}.$$

Analitically find the gain K such that the gain margin is less than 10dB. Plot the Nyquist plot for the calculated gain K.

Figure 1: Feedback control system in Problem 1

Figure 2: Feedback control system in Problem 2

Answer: $K = \underline{\hspace{1cm}}$

Problem 3

A feedback control system has the structure shown in Fig. 3, where $G(s) = \frac{1}{s+27}$ Assume that $k_1 > 0$, $k_2 > 0$ and select the gains k_1 and k_2 such that the closed-loop response to a step input is critically damped, and the natural frequency is equal to $\omega_n = 40.5 \frac{rad}{sec}$. Plot the step response.

Answer: $k_1 =$ ______

Problem 4

A mechanical system is shown in Fig. 4. Assume that the input and output are the displacements u(t) and y(t), respectively. The displacement y(t) is measured from the equilibrium position. Suppose that $u(t)=\sin\omega t$. What is the output y(t) at steady-state? Plot the response y(t) and find the magnitude (in dB) and phase angle (in degrees) for $\omega=2.35864\frac{rad}{sec}$. Graph the Bode plots for the system. Assume that the system is linear throughout the operating period and m=1kg, $b=1.06402\frac{Ns}{m}$, and $k=3.14485\frac{N}{m}$.

Figure 3: Feedback control system in Problem 3

 $k_2 =$

Figure 4: Mechanical system in Problem 4

 $\wp(\omega) =$

Problem	No. 1	No. 2	No. 3	No. 4	Total
Points					

⁰The problem set has been generated December 15, 2020, 10:42:00