

الامتحان الوطني الموحد للبكالوريا الدورة العادية 2017 - الموضوع -

⊕30YJN I †3∧NX₀† 08Jolo 3JX08 I †0oLloJo† loN8##6 X+†8J@8 ∧ lo⊙⊙oJo 8##O8 ∧ oNNXolo ∧JNO⊙8 ∧

المركز الوطني للتقويم والامتحاذات والتوجيه

NS 26

2	مدة الإنجاز	الرياضيات	المادة
4	المعامل	مسلك العلوم الاقتصادية ومسلك علوم التدبير المحاسباتي (باللغتين العربية والفرنسية)	الشعبة أو المسلك

<u>Instructions au candidat(e)</u>	تعليمات للمترشح(ة)
Important : Le candidat est invité à lire et	هام: يتعين على المترشح قراءة هذه
suivre attentivement ces recommandations.	التوجيهات بدقة والعمل بها

ä	الصفد
$\overline{}$	2
6	

NS 2 6

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2017 - الموضوع

- مادة: الرياضيات - مسلك العلوم الاقتصادية ومسلك علوم التدبير المحاسباتي (باللغتين العربية والفرنسية)

Le document que vous avez entre les mains est de	الوثيقة التي بين يديك من 5 صفحات:الأولى			
5 pages :la première est réservée aux	منها خاصة بالتوجيهات، والصفحتان 2 و 3			
recommandations, les pages 2 et 3 sont réservées	للموضوع باللغة العربية، والصفحتان 4 و 5			
au sujet en langue arabe et les pages 4 et 5 au	لنفس الموضوع باللغة الفرنسية اختر إحدى			
sujet en langue française. Choisissez une des deux	اللغتين للإجابة على الأسئلة.			
langues pour répondre aux questions.				
Il vous est suggéré de répondre aux questions du	• يرجى منك الإجابة عن أسئلة الموضوع بما			
sujet avec précision et soin ;	تستحقه من دقة و عناية؛			
Il vous est autorisé d'utiliser la calculatrice	• يسمح لك باستعمال الآلة الحاسبة غير القابلة			
scientifique non programmable ;	للبرمجة؛			
• <u>Vous devez justifier les résultats</u> (Par exemple :	• ينبغى عليك تعليل النتائج (مثلا : عند حساب			
lors du calcul des limites , lors du calcul des	النهايات، عند حساب الاحتمالات،)؛			
probabilités ,);				
Vous pouvez répondre aux exercices selon l'ordre	• يمكنك الإجابة على التمارين وفق الترتيب الذي			
que vous choisissez, mais veuillez numéroter les	تختاره (تختارينه)، لكن يتعين عليك في ترقيم			
exercices et les questions tels qu'ils le sont dans le	أجوبتك، اعتماد نفس ترقيم التمارين والأسئلة، الوارد في الموضوع؛			
sujet;				
• Veillez à la bonne présentation de votre copie et à	• ينبغي عليك العمل على حسن تقديم الورقة والكتابة			
une écriture lisible;	بخط مقروء؛			
• Il est souhaitable que les pages soient numérotées	• يستحسن ترقيم صفحات أوراق التحرير ضمانا			
pour faciliter la correction;	لتيسير عملية التصحيح؛			
L'écriture au stylo rouge est à éviter;	• يتعين تجنب الكتابة بقلم أحمر؛			
Assurez-vous que vous avez traité tous les	• تحقق(ي) من معالجتك لكل تمارين الموضوع قبل			
exercices avant de quitter la salle d'examen.	مغادرة قاعة الامتحان.			

التمرين الأول : (4.5 نقطة)

الامتحان الوطنى الموحد للبكالوريا - الدورة العادية 2017 – الموضوع

- مادة: الرياضيات - مسلك العلوم الاقتصادية ومسلك علوم التدبير المحاسباتي (باللغتين العربية والفرنسية)

$$\square$$
 نعتبر المتتالية العددية $u_{n+1} = \frac{1}{5}u_n + \frac{2}{5}$ و $u_0 = 6$ المعرفة بما يلي: $u_0 = 6$

$$u_2$$
 و u_1 1. أ. احسب 0.5

$$u_n > \frac{1}{2}$$
: \square من n من بالترجع أن لكل n من بالترجع أن الكل 0.75

$$u_{n+1} - u_n = \frac{4}{5} \left(\frac{1}{2} - u_n \right)$$
 : \square من n نحقق أن لكل n من . \bullet . \bullet . \bullet . \bullet

د. استنتج أن
$$\left(u_{n}\right)_{n=1}$$
 تناقصية وأنها متقاربة. 0.5

$$v_n = u_n - \frac{1}{2}$$
: من n ککل د نضع لکل 2.

اً. بین أن
$$(v_n)_{n\in \mathbb{N}}$$
 متتالیة هندسیة محددا أساسها.

$$v_0$$
 الأول 2.ب. احسب حدها الأول 0.25

$$u_n = \frac{1}{2} \left(11 \left(\frac{1}{5} \right)^n + 1 \right)$$
: نكل $u_n = \frac{1}{2} \left(11 \left(\frac{1}{5} \right)^n + 1 \right)$ نكل v_n نكل v_n نكل v_n نكل 0.75

$$\lim_{n\to+\infty}u_n \quad | \quad \mathbf{2.2}$$

$$S_n = u_0 + u_1 + u_2 + \dots + u_{n-1}$$
 نضع.

$$S_n = \frac{55}{8} \left(1 - \left(\frac{1}{5} \right)^n \right) + \frac{n}{2}$$
 بين أن: 0.75

التمرين الثانى: (4 نقط) التمرين الثانى: (4 نقط) التمرين الثانى على تسع كرات غير قابلة للتمييز باللمس تحمل على التوالي الأعداد: 0 ؛ 0 ؛ 1 ؛ 1 ؛ 1 ؛ 2 ؛ 2 ؛ 2 نسحب عشوائيا وفي آن واحد كرتين من الكيس.

1. بين أن عدد حالات السحب الممكنة هو 36 0.75

2. ليكن X المتغير العشوائي الذي يساوي مجموع العدين اللذين تحملهما الكرتان المسحوبتان.

$$p(X=2)=\frac{12}{36}$$
 أ. بين أن **2** 0.75

2.ب. أنقل الجدول جانبه على ورقة تحريرك ثم أتمم ملأه

معللا جوابك.

2

X_i	0	1	2	3	4
p(X=x)	· ()		$\frac{12}{36}$		

X الأمل الرياضي للمتغير العشوائي E(X) الأمل الرياضي

التمرين الثالث: (8.5 نقطة)

$$g(x)=2-rac{2}{r}+\ln x$$
 : يعتبر الدالة العددية g للمتغير الحقيقي x المعرفة على $g(x)=2-rac{2}{r}$

$$]0;+\infty[$$
 واستنتج أن g تزايدية على ا $g'(x)$ على 1.5

و ساب النهايتين عند
$$g(1)$$
 ثم ضع جدول تغيرات الدالة g (حساب النهايتين عند g و g غير مطلوب) 1.25

$$[1;+\infty[$$
 و $]\infty+:1]$ استنتج إشارة الدالة g على كل من المجالين: $[1;0[$ و $]\infty+:1]$

الجزء الثاني:

NS 26

الامتحان الوطنى الموحد للبكالوريا - الدورة العادية 2017 - الموضوع

- مادة: الرياضيات - مسلك العلوم الاقتصادية ومسلك علوم التدبير المحاسباتي (باللغتين العربية والفرنسية)

$$f(x)=x-1+(x-2)\ln x$$
 : نعتبر الدالة العددية f للمتغير الحقيقي x المعرفة على $f(x)=x-1+(x-2)\ln x$

$$\lim_{\substack{x \to 0 \ x>0}} f(x) = +\infty$$
 1. بين أن 0.75

$$\lim_{x\to +\infty} f(x) = +\infty$$
 نین أن 2 0.75

$$f'(x) = g(x) :]0; +\infty[$$
من کان لکل x من ان لکل کان دیل ان لکل من 0.75

$$]0;+\infty[$$
 و $f(\frac{1}{e})$ و $f(2)$ و $f(3)$ على $f(3)$ و ... 1.5

$$f$$
 بالدالة $\left\lceil \frac{1}{e};2 \right\rceil$ بالدالة عدد صورة المجال $\left\lceil \frac{1}{e};2 \right\rceil$ بالدالة 1

التمرین الرابع :(8) نقط) التمرین الرابع ال $(0;\vec{i};\vec{j})$ المستوی منسوب إلى معلم متعامد ممنظم

 $h(x) = xe^x - 2x + 1$: بما يلي بما يلي المعرفة على x المعرفة ي المعرفة العددية المعرفة المعرفة على المعرفة على المعرفة العددية المعرفة ا

$$\int_0^1 x e^x dx = 1$$
: الأجزاء بين أن مكاملة بالأجزاء بين أن 1.5

$$\left(O\,;ec{i}\;;ec{j}
ight)$$
 هو التمثيل المبياني للدالة أ في المعلم $\left(C_{h}
ight)$ هو 2. في الشكل أسفله

احسب مساحة الحيز المخدش

Exercice n°1:(4.5pts)

NS 2 6

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2017 – الموضوع

- مادة: الرياضيات - مسلك العلوم الاقتصادية ومسلك علوم التدبير المحاسباتي (باللغتين العربية والفرنسية)

On considère la suite numérique $(u_n)_{n\in\mathbb{Z}}$ définie par: $u_0=6$ et $u_{n+1}=\frac{1}{5}u_n+\frac{2}{5}$ pour tout n de \mathbb{Z}

- **0.5** | **1.a.** Calculer u_1 et u_2
- **0.75 1.b.** Montrer par récurrence que pour tout $n \text{ de} \square : u_n > \frac{1}{2}$
- **0.5 1.c.** Vérifier que pour tout n de \square : $u_{n+1} u_n = \frac{4}{5} \left(\frac{1}{2} u_n \right)$
- **0.5 1.d.** En déduire que $(u_n)_{n\in\mathbb{N}}$ est décroissante et qu'elle est convergente.
 - **2.**On pose pour tout $n \operatorname{de} \square : v_n = u_n \frac{1}{2}$
- **0.25 2.a.** Montrer que $(v_n)_{n \in \mathbb{N}}$ est une suite géométrique en précisant sa raison.
- **0.25 2.b.** Calculer son premier terme v_0
- **0.75** 2.c. Calculer v_n en fonction de n et en déduire que pour tout $n de \square : u_n = \frac{1}{2} \left(11 \left(\frac{1}{5} \right)^n + 1 \right)$
- **0.25 2.d.** Calculer $\lim_{n\to+\infty} u_n$
 - **3**. On pose $S_n = u_0 + u_1 + u_2 + \dots + u_{n-1}$
- **0.75** Montrer que $S_n = \frac{55}{8} \left(1 \left(\frac{1}{5} \right)^n \right) + \frac{n}{2}$

Exercice n°2:(4pts)

2

Un sac contient neuf boules indiscernables au toucher portant respectivement les nombres : 0 ;0 ;1 ;1 ;1 ;1 ;2 ;2;2

On tire simultanément au hasard deux boules du sac.

- 0.75 1. Montrer que le nombre de cas possibles est 36
 - **2.** Soit X la variable aléatoire qui correspond à la somme des deux nombres portés par les deux boules tirées.
- **0.75 2.a.** Montrer que $p(X=2) = \frac{12}{36}$
 - **2.b.** Copier le tableau ci contre et le compléter en justifiant la réponse.

x_i	0	1	2	3	4
$p(X=x_i)$			12 36		

0.5 2.c.Calculer E(X) l'espérance mathématique de la variable aléatoire X

- مادة: الرياضيات - مسلك العلوم الاقتصادية ومسلك علوم التدبير المحاسباتي (باللغتين العربية والفرنسية)

Exercice n°3:(8.5pts)

Partie I

On considère la fonction numérique \emph{g} de la variable réelle \emph{x} définie sur $]0;+\infty[$ par

$$g(x) = 2 - \frac{2}{x} + \ln x$$

1.5 | **1.** Calculer g'(x) et en déduire que g est croissante sur $]0;+\infty[$

1.25 2.a. Calculer g(1) et dresser le tableau de variations de la fonction g (Le calcul des limites en 0 et en $+\infty$ n'est pas demandé)

2.b. En déduire le signe de g sur chacun des intervalles]0;1] et $[1;+\infty[$

Partie II

On considère la fonction numérique f de la variable réelle x définie sur $0;+\infty[$ par :

$$f(x) = x - 1 + (x - 2) \ln x$$

0.75 1. Montrer que : $\lim_{\substack{x\to 0\\x>0}} f(x) = +\infty$

0.75 2. Montrer que : $\lim_{x\to +\infty} f(x) = +\infty$

0.75 3.a. Montrer que f'(x) = g(x) pour tout $x \text{ de }]0; +\infty[$

1.5 3.b. Calculer f(1), f(2) et $f(\frac{1}{e})$ puis dresser le tableau de variations de f sur $]0;+\infty[$

1 3.c. En utilisant le tableau de variations déterminer l'image par f de l'intervalle $\begin{bmatrix} \frac{1}{e};2 \end{bmatrix}$

Exercice n°4:(3pts)

Le plan est rapporté à un repère orthonormé $(O; \vec{i}; \vec{j})$

On considère la fonction numérique h de la variable réelle x définie sur IR par :

$$h(x) = xe^x - 2x + 1$$

1.5 1. En utilisant une intégration par parties montrer que : $\int_0^1 xe^x dx = 1$

2. Dans la figure ci-dessous (C_h) est la courbe représentative de h dans le repère $(O;\vec{i};\vec{j})$

1.5 Calculer l'aire de la partie hachurée

الثانية اقتصاد وتدبير تصحيح الامتحان الوطني 2017

التمرين الأول: (4,5 ن)

$$\mathbb{N} \text{ in } u_{n+1} = \frac{1}{5}u_n + \frac{2}{5} \text{ o } u_0 = 6 : u_0 = 1. \\ u_2 \text{ o } u_1 \text{ i.i.} \\ u_2 \text{ o } u_1 \text{ i.i.} \\ u_n > \frac{1}{2} : \mathbb{N} \text{ in } n \text{ id id } n \text{ in } \\ u_{n+1} - u_n = \frac{4}{5} \left(\frac{1}{2} - u_n \right) : \mathbb{N} \text{ in } n \text{ id } n \text{ id } n \text{ is } n \text{ in } \\ u_{n+1} - u_n = \frac{4}{5} \left(\frac{1}{2} - u_n \right) : \mathbb{N} \text{ in } n \text{ in } n \text{ id } n \text{ is } n \text{ in } n \text{ id } n \text{ in } n \text{ is } n \text{ in } n \text{ i$$

التمرين الثاني: (4 ن)

ريم الموري المورد والمورد المورد والمورد وال

X_{i}	0	1	2	3	4	ب- انقل الجدول جانبه على ورقة التحرير ثم أتمم ملأه	2
$p(X = x_i)$			$\frac{12}{36}$			معللا جوابك .	
						X الأمل الرياضي للمتغير العشوائي $E\left(X ight. ight)$	0,5

التمرين الثالث: (8,5) ن)

الجزء الأول:

$$g(x) = 2 - \frac{2}{x} + \ln x$$
 : بعتبر الدالة العددية g للمتغير الحقيقي x المعرفة على g المعرفة على g (بما يلي: g للمتغير الدالة العددية g و استنتج أن g تزايدية على g تزايدية على g (g (g أحسب g (g أحسب g (g أم ضع جدول تغيرات الدالة g (حساب النهايتين عند g و g على كل من المجالين g (g (g) و g استنتج إشارة الدالة g على كل من المجالين g (g) g المجالين g المحالين g ال

الجزء الثاني:

$$f(x) = x - 1 + (x - 2) \ln x$$
 : نعتبر الدالة العددية $f(x) = x - 1 + (x - 2) \ln x$: $g(x) =$

التمرين الرابع: (3 ن)

المستوى منسوب إلى معلم متعامد ممنظم
$$\begin{pmatrix} O, \vec{i}, \vec{j} \end{pmatrix}$$
 المستوى منسوب إلى معلم متعامد ممنظم $\begin{pmatrix} O, \vec{i}, \vec{j} \end{pmatrix}$ بما يلي : $h(x) = xe^x - 2x + 1$ نعتبر الدالة العددية $h(x) = xe^x - 2x + 1$ المعرفة على $\int_0^1 xe^x dx = 1$. باستعمال مكاملة بالأجزاء بين أن : $\int_0^1 xe^x dx = 1$

تصحيح التمرين الأول

$$\begin{split} u_{n+1} - u_n &= \frac{1}{5} u_n + \frac{2}{5} - u_n = \left(\frac{1}{5} - 1\right) u_n + \frac{2}{5} = \frac{-4}{5} u_n + \frac{2}{5} = \frac{4}{5} \left(\frac{1}{2} - u_n\right) \\ u_{n+1} - u_n &= \frac{4}{5} \left(\frac{1}{2} - u_n\right) : \mathbb{N} \quad \text{and} \quad n \text{ where } n \text{ and } n \text{ and$$

$$n \in \mathbb{N}$$
 .4 ليكن $u_n > \frac{1}{2}$: لدينا

$$-1 < \frac{1}{5} < 1$$
 د- لدينا : $1 < \frac{1}{5} < 1$ إذن : $1 < \frac{1}{5} = 0$ و منه $1 < \frac{1}{5} = \frac{1}{2}$ و منه $1 < \frac{1}{5} = \frac{1}{2}$ و بالنالي : $1 < \frac{1}{2} = \frac{1}{2}$ و بالنالي : $1 < \frac{1}{2} = \frac{1}{2}$

$$S_n = u_0 + u_1 + u_2 + \dots + u_{n-1} : \frac{1}{2}$$
 لا ين $u_n = v_n + \frac{1}{2} : \frac{1}{2} + v_1 + \frac{1}{2} + v_2 + \frac{1}{2} + \dots + v_{n-1} + \frac{1}{2} : \frac{1}{2} + \frac{1}{2} + v_1 + v_2 + \dots + v_{n-1} + \frac{1}{2} : \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots + \frac{1}{2} : \frac{1}{2} : \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots + \frac{1}{2} : \frac{1}{2} : \frac{1}{2} = \frac{1}{2} : \frac{1 - \left(\frac{1}{5}\right)^n}{\frac{4}{5}} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots + \frac{1}{2} : \frac{1}{2} :$

تصحيح التمرين الثاني

1. التجربة " سحب كرتين في آن واحد من الكيس " ليكن Ω كون إمكانيات التجربة

$$card \Omega = C_9^2 = \frac{9 \times 8}{2 \times 1} = 36$$
 (عدد حالات السحب الممكنة)

2. X المتغير العشوائي الذي يساوي مجموع العددين اللذين تحملهما الكرتان المسحوبتان أ-

$$X = 2 \rightarrow \begin{cases} \boxed{0} \boxed{2} \\ \boxed{1} \boxed{1} \end{bmatrix}$$

$$p(X = 2) = \frac{C_2^1 \times C_3^1 + C_4^2}{36} = \frac{2 \times 3 + 6}{36} = \frac{12}{36}$$

$$X = 0 \rightarrow \boxed{0} \boxed{0} \qquad .8$$

$$p(X = 0) = \frac{C_2^2}{36} = \frac{1}{36}$$

$$X = 1 \rightarrow \boxed{0} \boxed{1} \qquad .9$$

$$p(X = 1) = \frac{C_2^1 \times C_4^1}{36} = \frac{2 \times 4}{36} = \frac{8}{36}$$

$$p(X = 2) = \frac{12}{36} : -1 (2 \text{ which } 2 \text{ in } 10)$$

$$X = 3 \rightarrow \boxed{1} \boxed{2} \qquad .11$$

$$p(X = 3) = \frac{C_4^1 \times C_3^1}{36} = \frac{4 \times 3}{36} = \frac{12}{36}$$

$$X = 4 \rightarrow \boxed{2} \boxed{2} \qquad .12$$

$$p(X = 4) = \frac{C_3^2}{36} = \frac{3}{36}$$

X قانون احتمال

X_{i}	0	1	2	3	4
$p(X = x_i)$			12		3
	36	36	36	36	36

X الأمل الرياضي للمتغير العشوائي $E\left(X
ight)$

$$E\left(X\right) = \left(0 \times \frac{1}{36}\right) + \left(1 \times \frac{8}{36}\right) + \left(2 \times \frac{12}{36}\right) + \left(3 \times \frac{12}{36}\right) + \left(4 \times \frac{3}{36}\right) = \frac{0 + 8 + 24 + 36 + 12}{36} = \frac{80}{36} = \frac{20}{9}$$

تصحيح التمرين الثالث

الجزء الأول:

1

 $x \in]0,+\infty[$ ليكن).13

$$g'(x) = \left(2 - \frac{2}{x} + \ln x\right)' = 0 - 2 \cdot \frac{-1}{x^2} + \frac{1}{x}$$
: لدينا $g'(x) = \frac{2}{x^2} + \frac{1}{x}$ لكل $g'(x) = \frac{2}{x^2} + \frac{1}{x}$ الدينا $g'(x) = \frac{2}{x^2} + \frac{1}{x}$ الدينا $g'(x) = \frac{2}{x^2} + \frac{1}{x}$ الدينا $g'(x) > 0$ و منه الدالة $g'(x) = 0$ تزايدية قطعا على $g'(x) = 0$

2. أ-

$$g(1) = 2 - \frac{2}{1} + \ln 1 = 2 - 2 + 0 = 0.15$$

$$g(1) = 2 - \frac{2}{1} + \ln 1 = 2 - 2 + 0 = 0.15$$

$$g(1) = 2 - \frac{2}{1} + \ln 1 = 2 - 2 + 0 = 0.15$$

$$g(1) = 2 - \frac{2}{1} + \ln 1 = 2 - 2 + 0 = 0.15$$

x	0 +∞
g'(x)	+
g(x)	1

ب

$$y$$
 على المجال $g(x) \le g(1)$ لدينا : $g(x) \le g(1)$ و الدالة $g(x) \le g(1)$ إذن : $g(x) \le g(1)$ و منه : $g(x) \le g(1)$ لاينا : $g(x) \le g(1)$ لدينا : $g(x) \ge g(1)$ إذن : $g(x) \ge g(1)$ و منه : $g(x) \ge g(1)$

الجزء الثاني:

$$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} x - 1 + (x - 2) \ln x = +\infty .1$$

$$\begin{cases} \lim_{\substack{x \to 0 \\ x > 0}} x - 1 = -1 \\ \lim_{\substack{x \to 0 \\ x > 0}} x - 2 = -2 \\ \lim_{\substack{x \to 0 \\ x > 0}} \ln x = -\infty \end{cases}$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x - 1 + (x - 2) \ln x = +\infty .2$$

$$\begin{cases} \lim_{x \to +\infty} x - 1 = +\infty \\ \lim_{x \to +\infty} x - 2 = +\infty \\ \lim_{x \to +\infty} \ln x = +\infty \end{cases}$$

$$x \in]0,+\infty[$$
 .3 أ- ليكن الينا:

$$f'(x) = 1 + (x - 2)' \ln x + (x - 2) \cdot \ln'(x)$$

$$= 1 + \ln x + \frac{x - 2}{x}$$

$$= 1 + \ln x + 1 - \frac{2}{x}$$

$$= \ln x + 2 - \frac{2}{x}$$

$$= g(x)$$

-()

$$f(1)=1-1+(1-2)\ln 1=0 \checkmark$$

 $f(2)=2-1+(2-2)\ln 2=1 \checkmark$

f'(x) = g(x) : $]0,+\infty[$ من x من الكل الكل عن الكل

$$f\left(\frac{1}{e}\right) = \frac{1}{e} - 1 + \left(\frac{1}{e} - 2\right) \ln\left(\frac{1}{e}\right) = \frac{1}{e} - 1 - \frac{1}{e} + 2 = 1 \quad \checkmark$$

$$f\left(\left[\frac{1}{e}, 2\right]\right) = [0, 1] - \varepsilon$$

$$\left(\begin{bmatrix} 1 \\ e \end{bmatrix}$$
 القيمة الدنوية للدالة f هي 0 و القيمة القصوية للدالة f هي f القيمة الدنوية للدالة f على المجال المجال القيمة الدنوية للدالة f القيمة الدنوية الدنوية للدالة f القيمة الدنوية الدنوية

تصحيح التمرين الرابع

1

$$\begin{cases} u(x) = x \\ v'(x) = e^x \end{cases} \quad \begin{cases} u'(x) = 1 \\ v(x) = e^x \end{cases}$$

$$\int_0^1 x e^x dx = \left[x e^x \right]_0^1 - \int_0^1 e^x dx$$

$$= \left[x e^x \right]_0^1 - \left[e^x \right]_0^1$$

$$= (e - 0) - (e - 1)$$

$$= 1$$

.2

$$A = \int_0^1 h(x) dx .(UA)$$

$$= \int_0^1 (xe^x - 2x + 1) dx .(UA)$$

$$= \left(\left(\int_0^1 xe^x dx \right) + \left(\int_0^1 (-2x + 1) dx \right) \right) .(UA)$$

$$= \left(1 + \left[-x^2 + x \right]_0^1 \right) .(UA)$$

$$= 1 .(UA)$$

つづく