Step 1: Source transmission

• Source S_i , $i \in \{A, B\}$ maps its data symbol $\mathbf{d}_i = \left[\mathbf{d}_i^b; \mathbf{d}_i^s\right]$ into a $(N_b + N_s)$ -bit superposition modulation symbol

$$s_i = \mathscr{A}^i \left(\left[\mathbf{d}_i^b; \mathbf{d}_i^s \right] \right), \tag{1}$$

- S_A , S_B simultaneously transmit their signals to the relay and unintended destinations (Fig. ??).
- Relay receives

$$x = h_{AR} \mathscr{A}^A \left(\left[\mathbf{d}_A^b; \mathbf{d}_A^s \right] \right) + h_{BR} \mathscr{A}^B \left(\left[\mathbf{d}_B^b; \mathbf{d}_B^s \right] \right) + w_R$$
 (2)

and decodes $[\mathbf{d}_A^s; \mathbf{d}_B^s; f(\mathbf{d}_A^b, \mathbf{d}_B^b)]$, where f is a hierarchical WNC function [?].

 \bullet D_i receives

$$z_j = h_{ij} \mathscr{A}^i \left(\left[\mathbf{d}_i^b; \mathbf{d}_i^s \right] \right) + w_j, \tag{3}$$

where $i, j \in \{A, B\}$, $i \neq j$ and stores the signal for further processing.

Step 2: Relay broadcast

• Relay sends $N_R = 2N_s + N_b$ -bit modulation symbol to both destinations:

$$s_R = \mathscr{A}^R \left(\left[\mathbf{d}_A^s; \mathbf{d}_B^s; f(\mathbf{d}_A^b, \mathbf{d}_B^b) \right] \right). \tag{4}$$

- D_i $(i, j \in \{A, B\}, i \neq j)$ decodes:
 - $\left[\mathbf{d}_{A}^{s}; \mathbf{d}_{B}^{s}; f(\mathbf{d}_{A}^{b}, \mathbf{d}_{B}^{b})\right]$ (from the relay signal (4))
 - \mathbf{d}_i^b (from the stored signal z_j (3), after interference cancellation (IC) of known \mathbf{d}_i^s)
 - \mathbf{d}_{i}^{b} (from \mathbf{d}_{i}^{b} and $f(\mathbf{d}_{A}^{b}, \mathbf{d}_{B}^{b})$, using a standard WNC decoding [?])
- D_j merges \mathbf{d}_j^b with \mathbf{d}_j^s to obtain the desired $\left[\mathbf{d}_j^b; \mathbf{d}_j^s\right]$.

Table 1: SC-based relaying scheme in uncoded WBN

•