# ANALYSE DES DONNEES PANORAMA DES METHODES

Pierre-Louis GONZALEZ

# ANALYSE DES DONNEES LES METHODES USUELLES

- ➤ Analyse en Composantes Principales (A.C.P.)
- > Analyse factorielle des correspondances simples (A.F.C.)
- > Analyse factorielle des correspondances multiples (A.C.M.)
- ➤ Méthodes de classification automatique

## ANALYSE DES DONNEES

Analyser des données, c'est extraire d'une masse d'informations brutes, des éléments de réponse aux questions qui résultent des objectifs globaux poursuivis.

#### Traitement de données en masse

- Grand nombre d'individus
- Grand nombre de variables

#### Développement parallèle à l'informatique

- Fichiers volumineux → demande de méthodes
- Capacité de calcul → méthodes praticables

#### Principes mathématiques anciens mais utilisation nouvelle

➤ A.C.P. (K. Pearson, 1901)

> A.F.C. (Hirchsfeld, 1936)

> A.F.C. multiple (Guttman, 1941)

**Auteur français**: J.P. Benzecri, 1967....

Outil d'exploration, de description et d'analyse d'ensembles d'individus:

- Représentations géométriques
- Création de nouvelles variables
- Typologie

L'analyse de données est bien plus que la statistique descriptive:

- Nouveau regard sur les données
- L'individu redevient le point d'intérêt central.

Les outils mathématiques de l'analyse des données:

- > Algèbre linéaire
- > Calcul matriciel

## Méthodes factorielles

- Analyse en Composantes Principales (A.C.P.)

  analyse de variables quantitatives
- Analyse factorielle des correspondances

  analyse de variables qualitatives
  - Correspondances simples (A.F.C.) (Étude d'un tableau de contingence)
  - Correspondances multiples (A.C.M.) (Utile lors du dépouillement d'enquêtes)

## L'analyse en composantes principales





Représentation des individus: Plan factoriel

Représentation des variables: Cercle des corrélations

| NOM COURT | PUISSANCE | CYLINDREE | VITESSE | LONGUEUR | LARGEUR |
|-----------|-----------|-----------|---------|----------|---------|
| ALFA 156  | 250       | 3179      | 250     | 443      | 175     |
| AUDIA3    | 102       | 1595      | 185     | 421      | 177     |
| AUDIA8    | 280       | 3697      | 250     | 506      | 203     |
| AVENSIS   | 115       | 1995      | 195     | 463      | 176     |
| BMW X5    | 218       | 2993      | 210     | 467      | 188     |
| BMW530    | 231       | 2979      | 250     | 485      | 185     |
| CHRYS300  | 340       | 5654      | 250     | 502      | 188     |
| CITRONC2  | 61        | 1124      | 158     | 367      | 166     |
| CITRONC4  | 138       | 1997      | 207     | 426      | 178     |
| CITRONC5  | 210       | 2496      | 230     | 475      | 178     |
| CLIO      | 100       | 1461      | 185     | 382      | 164     |
| CORSA     | 70        | 1248      | 165     | 384      | 165     |
| CORVETTE  | 404       | 5970      | 300     | 444      | 185     |
| FIESTA    | 68        | 1399      | 164     | 392      | 168     |
| GOLF      | 75        | 1968      | 163     | 421      | 176     |
| LAGUNA    | 165       | 1998      | 218     | 458      | 178     |
| LANDCRUI  | 204       | 4164      | 170     | 489      | 194     |
| MAZDARX8  | 231       | 1308      | 235     | 443      | 177     |
| MEGANECC  | 165       | 1998      | 225     | 436      | 178     |
| MERC_A    | 140       | 1991      | 201     | 384      | 177     |

| NOM COURT | HAUTEUR | POIDS | COFFRE | RESERVOIR | CONSO | CO2 | PRIX  |
|-----------|---------|-------|--------|-----------|-------|-----|-------|
| ALFA 156  | 141     | 1410  | 378    | 63        | 12,1  | 287 | 40800 |
| AUDIA3    | 143     | 1205  | 350    | 55        | 7     | 168 | 21630 |
| AUDIA8    | 145     | 1770  | 500    | 90        | 11,7  | 281 | 78340 |
| AVENSIS   | 148     | 1400  | 510    | 60        | 5,8   | 155 | 26400 |
| BMW X5    | 172     | 2095  | 465    | 93        | 8,6   | 229 | 52000 |
| BMW530    | 147     | 1495  | 520    | 70        | 9,5   | 231 | 46400 |
| CHRYS300  | 148     | 1835  | 442    | 72        | 12,2  | 291 | 54900 |
| CITRONC2  | 147     | 932   | 224    | 41        | 5,9   | 141 | 10700 |
| CITRONC4  | 146     | 1381  | 314    | 60        | 5,4   | 142 | 23400 |
| CITRONC5  | 148     | 1589  | 471    | 65        | 10    | 238 | 33000 |
| CLIO      | 142     | 980   | 255    | 50        | 4,3   | 113 | 17600 |
| CORSA     | 144     | 1035  | 260    | 45        | 4,7   | 127 | 13590 |
| CORVETTE  | 125     | 1517  | 295    | 69        | 13    | 310 | 63350 |
| FIESTA    | 144     | 1138  | 261    | 45        | 4,4   | 117 | 14150 |
| GOLF      | 149     | 1217  | 350    | 55        | 5,4   | 143 | 19140 |
| LAGUNA    | 143     | 1320  | 430    | 70        | 8,2   | 196 | 25350 |
| LANDCRUI  | 185     | 2495  | 403    | 96        | 11,1  | 292 | 67100 |
| MAZDARX8  | 134     | 1390  | 287    | 61        | 11,4  | 284 | 34000 |
| MEGANECC  | 141     | 1415  | 190    | 60        | 8     | 191 | 27800 |
| MERC_A    | 160     | 1340  | 435    | 54        | 5,4   | 141 | 24550 |

| NOM COURT | PUISSANCE | CYLINDREE | VITESSE | LONGUEUR | LARGEUR |
|-----------|-----------|-----------|---------|----------|---------|
| MERC_E    | 204       | 3222      | 243     | 482      | 183     |
| MODUS     | 113       | 1598      | 188     | 380      | 170     |
| MONDEO    | 145       | 1999      | 215     | 474      | 194     |
| MURANO    | 234       | 3498      | 200     | 477      | 188     |
| MUSA      | 100       | 1910      | 179     | 399      | 170     |
| OUTLAND   | 202       | 1997      | 220     | 455      | 178     |
| P1007     | 75        | 1360      | 165     | 374      | 169     |
| P307CC    | 180       | 1997      | 225     | 435      | 176     |
| P407      | 136       | 1997      | 212     | 468      | 182     |
| P607      | 204       | 2721      | 230     | 491      | 184     |
| PANDA     | 54        | 1108      | 150     | 354      | 159     |
| PASSAT    | 150       | 1781      | 221     | 471      | 175     |
| PTCRUISER | 223       | 2429      | 200     | 429      | 171     |
| SANTA_FE  | 125       | 1991      | 172     | 450      | 185     |
| TAHOE     | 290       | 5327      | 170     | 506      | 223     |
| TWINGO    | 60        | 1149      | 151     | 344      | 163     |
| VECTRA    | 150       | 1910      | 217     | 460      | 180     |
| VELSATIS  | 150       | 2188      | 200     | 486      | 186     |
| X-TRAIL   | 136       | 2184      | 180     | 446      | 177     |
| YARIS     | 65        | 998       | 155     | 364      | 166     |

| NOM COURT | HAUTEUR | POIDS | COFFRE | RESERVOIR | CONSO | CO2 | PRIX  |
|-----------|---------|-------|--------|-----------|-------|-----|-------|
| MERC_E    | 146     | 1735  | 520    | 80        | 6,9   | 183 | 46450 |
| MODUS     | 159     | 1170  | 198    | 49        | 6,8   | 163 | 16950 |
| MONDEO    | 143     | 1378  | 500    | 59        | 7,9   | 189 | 23100 |
| MURANO    | 171     | 1870  | 438    | 82        | 12,3  | 295 | 44000 |
| MUSA      | 169     | 1275  | 320    | 47        | 5,5   | 146 | 17900 |
| OUTLAND   | 167     | 1595  | 402    | 60        | 10    | 237 | 29990 |
| P1007     | 161     | 1181  | 178    | 50        | 6,4   | 153 | 13600 |
| P307CC    | 143     | 1490  | 204    | 50        | 8,8   | 210 | 28850 |
| P407      | 145     | 1415  | 407    | 66        | 8,2   | 194 | 23400 |
| P607      | 145     | 1723  | 468    | 80        | 8,4   | 223 | 40550 |
| PANDA     | 154     | 860   | 206    | 35        | 5,7   | 135 | 8070  |
| PASSAT    | 147     | 1360  | 475    | 62        | 8,2   | 197 | 27740 |
| PTCRUISER | 154     | 1595  | 210    | 57        | 9,9   | 235 | 27400 |
| SANTA_FE  | 173     | 1757  | 833    | 65        | 7,5   | 197 | 27990 |
| TAHOE     | 196     | 2463  | 460    | 98        | 14,3  | 340 | 49600 |
| TWINGO    | 143     | 840   | 168    | 40        | 6     | 143 | 8950  |
| VECTRA    | 146     | 1428  | 500    | 61        | 5,9   | 159 | 26550 |
| VELSATIS  | 158     | 1735  | 460    | 80        | 7,1   | 188 | 38250 |
| X-TRAIL   | 168     | 1520  | 350    | 60        | 7,2   | 190 | 29700 |
| YARIS     | 150     | 880   | 205    | 45        | 5,6   | 134 | 10450 |

#### MATRICE DES CORRELATIONS ENTRE VARIABLES

|      | I | PUIS | CYLI | VITE  | LONG | LARG | HAUT | POID | COFF | RESE | CONS | CO2  |
|------|---|------|------|-------|------|------|------|------|------|------|------|------|
|      | + |      |      |       |      |      |      |      |      |      |      |      |
| PUIS | I | 1.00 |      |       |      |      |      |      |      |      |      |      |
| CYLI | l | 0.89 | 1.00 |       |      |      |      |      |      |      |      |      |
| VITE | l | 0.80 | 0.56 | 1.00  |      |      |      |      |      |      |      |      |
| LONG | I | 0.71 | 0.66 | 0.61  | 1.00 |      |      |      |      |      |      |      |
| LARG | I | 0.66 | 0.73 | 0.36  | 0.82 | 1.00 |      |      |      |      |      |      |
| HAUT | I | 0.00 | 0.21 | -0.45 | 0.18 | 0.42 | 1.00 |      |      |      |      |      |
| POID | I | 0.68 | 0.74 | 0.33  | 0.82 | 0.85 | 0.59 | 1.00 |      |      |      |      |
| COFF | I | 0.32 | 0.34 | 0.30  | 0.71 | 0.59 | 0.27 | 0.56 | 1.00 |      |      |      |
| RESE | I | 0.70 | 0.73 | 0.43  | 0.86 | 0.87 | 0.41 | 0.92 | 0.60 | 1.00 |      |      |
| CONS | I | 0.89 | 0.79 | 0.58  | 0.66 | 0.69 | 0.18 | 0.69 | 0.26 | 0.67 | 1.00 |      |
| CO2  | I | 0.90 | 0.81 | 0.58  | 0.71 | 0.73 | 0.23 | 0.76 | 0.32 | 0.74 | 0.99 | 1.00 |
|      | + |      |      |       |      |      |      |      |      |      |      |      |

### Galerie de nuages de points



#### A.C.P. Cercle des corrélations



#### A.C.P. Représentation des individus dans le plan 1-2



## Méthodes de classification automatique

#### Méthodes non hiérarchiques ou méthodes à partitions :

- Centres mobiles
- Nuées dynamiques

#### Méthodes hiérarchiques

Représentations sous forme d'arbres



Méthode Ward

## Méthode de la variance minimum de Ward



3 clusters

Méthode de la variance minimum de Ward Algorithme K-means de MacQueen



3 clusters

Méthode de la variance minimum de Ward Algorithme K-means de MacQueen



## Méthode de la variance minimum de Ward

Algorithme K-means de MacQueen





#### **CLASSIFICATION HIERARCHIQUE (VOISINS RECIPROQUES)**

SOMME DES INDICES DE NIVEAU = 10.99623

#### SUR LES 10 PREMIERS AXES FACTORIELS DESCRIPTION DES NOEUDS

| NUM. | AINE | BENJ | EFF. | POIDS | INDICE  | HISTOGRAMME DES INDICES DE NIVEAU |
|------|------|------|------|-------|---------|-----------------------------------|
| 56   | 16   | 1    | 2    | 2.00  | 0.07846 | **                                |
| 57   | 42   | 54   | 6    | 6.00  | 0.08036 | **                                |
| 58   | 41   | 31   | 3    | 3.00  | 0.08042 | **                                |
| 59   | 22   | 5    | 2    | 2.00  | 0.08235 | **                                |
| 60   | 43   | 52   | 4    | 4.00  | 0.09480 | **                                |
| 61   | 53   | 35   | 3    | 3.00  | 0.10895 | **                                |
| 62   | 50   | 46   | 7    | 7.00  | 0.11433 | **                                |
| 63   | 7    | 3    | 2    | 2.00  | 0.14172 | ***                               |
| 64   | 60   | 51   | 7    | 7.00  | 0.19197 | ***                               |
| 65   | 58   | 56   | 5    | 5.00  | 0.22214 | ***                               |
| 66   | 32   | 61   | 4    | 4.00  | 0.24492 | ***                               |
| 67   | 57   | 55   | 10   | 10.00 | 0.33474 | ****                              |
| 68   | 59   | 66   | 6    | 6.00  | 0.36644 | ****                              |
| 69   | 62   | 64   | 14   | 14.00 | 0.54735 | *****                             |
| 70   | 67   | 65   | 15   | 15.00 | 0.56610 | *****                             |
| 71   | 68   | 70   | 21   | 21.00 | 0.96198 | ******                            |
| 72   | 63   | 71   | 23   | 23.00 | 1.05146 | *******                           |
| 73   | 69   | 72   | 37   | 37.00 | 5.20370 | *****************                 |

#### Partition en 4 classes



#### **EXEMPLE de description d'une classe Classe 2/4**

```
| V.TEST | PROBA | MOYENNES | ECARTS TYPES |
    | | CLASSE GENERALE | CLASSE GENERAL | NUM.LIBELLE
    Classe 2 / 4 (POIDS = 6.00 EFFECTIF = 6)
  4.52 | 0.000 | 168.17 | 150.92 | 5.01 | 10.08 | 6.hauteur
  3.21 | 0.001 | 1762.00 1398.76 | 186.98 298.84 | 7.poids
 2.50 | 0.006 | 73.33 60.46 | 12.46 13.61 | 9.reservoir
 2.30 | 0.011 | 491.33 369.84 | 157.70 139.20 | 8.coffre
 1.91 | 0.028 | 183.67 177.11 | 4.50 9.04 | 5.largeur
 1.68 | 0.046 | 463.50 434.97 | 14.50 44.72 | 4.longueur
 1.65 | 0.050 | 222.67 190.43 | 37.43 51.67 | 11.emission CO2
 1.55 | 0.061 | 36988.33 28476.75 | 8748.07 14492.51 | 12.prix
 1.28 | 0.100 | 8.78 7.68 | 1.86 2.27 | 10.consommation
  1.00 | 0.159 | 2475.17 2138.30 | 569.30 891.44 | 2.cylindrée
 0.94 | 0.174 | 177.50 153.11 | 42.17 68.63 | 1.puissance
  -0.41 | 0.340 | 197.00 201.73 | 16.48 30.33 | 3.vitesse
```

## Le Data Mining (1991)

- « Exploration de données »
- « Forage de données »

Le data mining traite de la découverte de connaissances cachées, de modèles inattendus et de nouvelles règles issues de grandes bases de données.

Il est considéré comme l'élément clé d'un processus bien plus élaboré appelé découverte de connaissance dans les bases de données.

(Knowledge Discovery in Databases : KDD)

### Le Data Mining (1991)

On utilise des méthodes descriptives et explicatives

- Visualisation : histogramme, nuage de points
- Analyse de données : analyse factorielle, classification
- Objectif de classement : analyse discriminante, régression logistique, réseau de neurones

Explication: régression, segmentation



#### **METHODES DESCRIPTIVES**

