HAX501X – Groupes et anneaux 1

CM10 26/10/2023

Clément Dupont

Retour sur les exercices du cours

Exercice 51

Soit $G=\mathfrak{S}_3$ et soit $H=\langle\,\tau\,\rangle=\{\mathrm{id},\tau\}$ où τ est la transposition $(1\ 2)$. Lister les classes à gauche des éléments de G suivant H, puis les classes à droite.

Il y a 3 classes à gauche :

- ightharpoonup id $H = \tau H = \{ id, (1 2) \};$
- $(1\ 3)H = (1\ 2\ 3)H = \{(1\ 3), (1\ 2\ 3)\};$
- $(2 3)H = (1 3 2)H = \{(2 3), (1 3 2)\}.$

Il y a 3 classes à droite :

- $ightharpoonup H \, \mathrm{id} = H\tau = H = \{\mathrm{id}, (1\ 2)\};$
- $H(1\ 3) = H(1\ 3\ 2) = \{(1\ 3), (1\ 3\ 2)\};$
- $H(2\ 3) = H(1\ 2\ 3) = \{(2\ 3), (1\ 2\ 3)\}.$

On remarque que ce ne sont pas les même classes : $(1\ 3)H \neq H(1\ 3)$.

Réciproquement, est-ce que tout élément de \mathfrak{S}_n d'ordre k est un k-cycle ?

► C'est faux en général. Par exemple, l'élément

$$(1\ 2)(3\ 4)\ \in \mathfrak{S}_4$$

est d'ordre 2 mais n'est pas une transposition.

Exercice 53

Déterminer la décomposition en produit de cycles à supports disjoints de la permutation

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 8 & 2 & 9 & 6 & 7 & 4 & 5 & 3 & 1 \end{pmatrix}.$$

On obtient facilement :

$$\sigma = (1 \ 8 \ 3 \ 9)(4 \ 6)(5 \ 7).$$

Calculer l'inverse de la permutation $(1\ 3\ 7)(2\ 9\ 4\ 5)(6\ 8)\in\mathfrak{S}_9.$

C'est facile :

$$\sigma^{-1} = (6\ 8)^{-1}(2\ 9\ 4\ 5)^{-1}(1\ 3\ 7)^{-1} = (6\ 8)(2\ 5\ 4\ 9)(1\ 7\ 3).$$

Comme des cycles à supports disjoints commutent, on peut aussi le réécrire :

$$\sigma^{-1} = (1 \ 7 \ 3)(2 \ 5 \ 4 \ 9)(6 \ 8).$$

Avec les notations de la proposition précédente, exprimer l'ordre de σ en fonction des longueurs des cycles $\gamma_i.$

▶ On a écrit

$$\sigma = \gamma_1 \gamma_2 \cdots \gamma_r$$

où les γ_i sont des cycles dont les supports sont deux à deux disjoints. On note ℓ_i la longueur de γ_i , c'est aussi son ordre dans \mathfrak{S}_n .

▶ Un point important est que les γ_i commutent deux à deux. On a donc, pour tout $k \in \mathbb{N}^*$:

$$\sigma^k = \gamma_1^k \gamma_2^k \cdots \gamma_r^k.$$

▶ Par l'unicité de la décomposition en produit de cycles à supports disjoints :

$$\sigma^{k} = \mathrm{id} \iff \forall i \in \{1, \dots, r\}, \, \gamma_{i}^{k} = \mathrm{id}$$

$$\iff \forall i \in \{1, \dots, r\}, \, \ell_{i} | k$$

$$\iff (\ell_{1} \vee \ell_{2} \vee \dots \vee \ell_{r}) | k.$$

▶ On en déduit que

l'ordre de σ est le PPCM des ordres des γ_i : $\ell_1 \vee \ell_2 \vee \cdots \vee \ell_r$.

Quel est l'ordre maximal d'un élément du groupe symétrique \mathfrak{S}_5 ? de \mathfrak{S}_6 ? de \mathfrak{S}_7 ? de \mathfrak{S}_8 ?

On classifie les éléments de \mathfrak{S}_5 selon le nombre de cycles dans la décomposition en produit de cycles à support disjoints.

- L'identité, d'ordre 1.
- ▶ Un cycle de longueur $\ell \in \{2, 3, 4, 5\}$, d'ordre ℓ .
- ▶ Un produit de deux cycles γ et γ' à supports disjoints, de longueurs respectives ℓ , ℓ' . On a nécessairement $(\ell,\ell') \in \{(2,2),(2,3),(3,2)\}$ car $\ell+\ell' \leqslant 5$. Dans le cas $\ell=\ell'=2$, l'ordre est 2. Dans le cas $\ell=2,\ell'=3$, l'ordre est $2 \vee 3=6$.

Conclusion : l'ordre maximal d'un élément de \mathfrak{S}_5 est 6. C'est le cas par exemple de la permutation

$$\sigma = (1\ 2)(3\ 4\ 5).$$

L'ordre maximal d'un élément de \mathfrak{S}_6 est 6 aussi, par exemple pour

$$(1\ 2)(3\ 4\ 5)$$
 ou $(1\ 2\ 3\ 4\ 5\ 6)$.

L'ordre maximal d'un élément de \mathfrak{S}_7 est 12, par exemple pour

$$(1\ 2\ 3)(4\ 5\ 6\ 7).$$

L'ordre maximal d'un élément de \mathfrak{S}_8 est 15, par exemple pour

$$(1\ 2\ 3)(4\ 5\ 6\ 7\ 8).$$

Exercice 56

Écrire la permutation de l'exercice 53 comme un produit de transpositions.

$$\sigma = (1 \ 8 \ 3 \ 9)(4 \ 6)(5 \ 7) = (1 \ 8)(8 \ 3)(3 \ 9)(4 \ 6)(5 \ 7).$$

Le groupe alterné

Exercice 57

Lister les éléments de \mathfrak{A}_3 et de \mathfrak{A}_4 .

▶ On a:

$$\mathfrak{A}_3 = \{ id, (1\ 2\ 3), (1\ 3\ 2) \}.$$

On note que \mathfrak{A}_3 est un groupe cyclique d'ordre 3 car engendré par $(1\ 2\ 3).$

► On a:

$$\mathfrak{A}_4 = \{ \mathrm{id}, (1\ 2\ 3), (1\ 3\ 2), (1\ 2\ 4), (1\ 4\ 2), (1\ 3\ 4), (1\ 4\ 3), (2\ 3\ 4), (2\ 4\ 3),$$

$$(1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3) \}.$$

C'est un groupe d'ordre 12 qui n'est pas abélien (vérifiez-le).

- 6. Étude du groupe orthogonal
- 6.1 Définition
- 6.2 Le groupe spécial orthogonal
- 6.3 Structure de $SO_2(\mathbb{R})$
- 6.4 Structure de $O_2(\mathbb{R})$

- 7. Étude du groupe diédra
- 7.1 Définition
- 7.2 Structure de D_n

6. Étude du groupe orthogonal

6.1 Définition

- 6.2 Le groupe spécial orthogonal
- 6.3 Structure de $SO_2(\mathbb{R})$
- 6.4 Structure de $O_2(\mathbb{R})$

- 7. Étude du groupe diédral
- 7.1 Définition
- 7.2 Structure de D_n

Contexte et notation

Soit $n\in\mathbb{N}$. On se place dans \mathbb{R}^n munie de sa base canonique et de son **produit scalaire** canonique, défini pour $x=(x_1,\ldots,x_n)$ et $y=(y_1,\ldots,y_n)$ par la formule :

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i.$$

La base canonique est donc orthonormée. On a aussi la norme euclidienne :

$$||x|| = \sqrt{\langle x, x \rangle} = \sqrt{\sum_{i=1}^{n} x_i^2}.$$

On retrouve le produit scalaire à partir de la norme grâce à la **formule de polarisation** :

$$\langle x, y \rangle = \frac{1}{2} (||x + y||^2 - ||x||^2 - ||y||^2).$$

Une proposition

Proposition

Soit $f \in \operatorname{Aut}(\mathbb{R}^n)$ un automorphisme linéaire de \mathbb{R}^n . Les assertions suivantes sont équivalentes.

(i) f préserve la norme :

$$\forall x \in \mathbb{R}^n, ||f(x)|| = ||x||.$$

(ii) f préserve le produit scalaire :

$$\forall x, y \in \mathbb{R}^n, \langle f(x), f(y) \rangle = \langle x, y \rangle.$$

- (iii) f envoie la base canonique de \mathbb{R}^n sur une base orthonormée.
- (iv) Si A désigne la matrice de f dans la base canonique,

$${}^t A A = I_n = A^{\,t} A.$$

Automorphismes orthogonaux

Définition

Un automorphisme linéaire $f \in \operatorname{Aut}(\mathbb{R}^n)$ est appelé automorphisme orthogonal s'il vérifie les assertions équivalentes (i), (ii), (ii), (iv) de la proposition précédente. On note

$$O_n(\mathbb{R}) \subset Aut(\mathbb{R}^n)$$

l'ensemble des automorphismes orthogonaux de \mathbb{R}^n .

Les automorphismes orthogonaux sont parfois appelés isométries linéaires.

Proposition

 $O_n(\mathbb{R})$ est un sous-groupe de $Aut(\mathbb{R}^n)$.

Définition

On appelle $O_n(\mathbb{R})$ le groupe orthogonal de degré n sur \mathbb{R} .

Démonstration : $O_n(\mathbb{R})$ est un sous-groupe de $\operatorname{Aut}(\mathbb{R}^n)$.

- 1) Clairement, l'identité est un automorphisme orthogonal.
- 2) Soient f,g deux automorphismes orthogonaux. Pour tout $x \in \mathbb{R}^n$ on a :

$$||f(g(x))|| = ||g(x)|| = ||x||$$

où la première égalité utilise le fait que f est un automorphisme orthogonal, et la deuxième égalité utilise le fait que g est un automorphisme orthogonal. Donc $f \circ g$ est un automorphisme orthogonal.

3) Soit f un automorphisme orthogonal. Pour tout $x \in \mathbb{R}^n$ on a :

$$||f(f^{-1}(x))|| = ||f^{-1}(x)||$$

et donc

$$||x|| = ||f^{-1}(x)||.$$

On en conclut que f^{-1} est un automorphisme orthogonal.

Automorphismes orthogonaux et matrices orthogonales

▶ On rappelle l'isomorphisme de groupes

$$\operatorname{Aut}(\mathbb{R}^n) \simeq \operatorname{GL}_n(\mathbb{R})$$

où l'on représente un automorphisme de \mathbb{R}^n par sa matrice dans la base canonique.

- ▶ On se permet d'identifier ainsi les deux groupes $\operatorname{Aut}(\mathbb{R}^n)$ et $\operatorname{GL}_n(\mathbb{R})$, et on peut donc voir $\operatorname{O}_n(\mathbb{R})$ comme un sous-groupe de $\operatorname{GL}_n(\mathbb{R})$.
- ightharpoonup D'après la proposition ci-dessus, c'est le sous-groupe formé des matrices carrées A de taille n qui vérifient

$$^{t}AA = I_{n} = A^{t}A.$$

▶ Avec ce point de vue, on parle de matrices orthogonales.

6. Étude du groupe orthogonal

- 6.1 Définition
- 6.2 Le groupe spécial orthogonal
- 6.3 Structure de $SO_2(\mathbb{R})$
- 6.4 Structure de $O_2(\mathbb{R})$

- 7. Étude du groupe diédra
- 7.1 Définition
- 7.2 Structure de D_n

Déterminants

Proposition

Soit $f \in O_n(\mathbb{R})$. Alors $det(f) \in \{-1, 1\}$.

Démonstration. Soit A la matrice de f dans la base canonique. D'après une proposition vue plus tôt on a ${}^tAA = I_n$, et donc en prenant les déterminants : $\det({}^tA)\det(A) = 1$. Or $\det({}^tA) = \det(A)$ et donc $\det(A)^2 = 1$, d'où $\det(A) \in \{-1,1\}$.

Le groupe spécial orthogonal

Définition

L'ensemble des automorphismes orthogonaux de \mathbb{R}^n dont le déterminant est égal à 1 est noté $\mathrm{SO}_n(\mathbb{R})$ est appelé le groupe spécial orthogonal de degré n sur \mathbb{R} .

▶ C'est clairement un sous-groupe de $O_n(\mathbb{R})$ car c'est le noyau du morphisme de groupes $\det: O_n(\mathbb{R}) \to \{-1, 1\}.$

Remarque

Les éléments de $\mathrm{SO}_n(\mathbb{R})$ sont parfois appelés automorphismes orthogonaux directs car ils préservent l'orientation. Dit autrement, ils envoient la base canonique sur une base orthonormée directe. (En général, un automorphisme linéaire de \mathbb{R}^n est dit direct si son déterminant est >0, et indirect si son déterminant est <0.)

6. Étude du groupe orthogonal

- 6.1 Définition
- 6.2 Le groupe spécial orthogona
- 6.3 Structure de $SO_2(\mathbb{R})$
- 6.4 Structure de $O_2(\mathbb{R})$

- 7. Étude du groupe diédra
- 7.1 Définition
- 7.2 Structure de D_n

Rotations

▶ Pour tout réel θ on a la **rotation** d'angle θ , notée $r_{\theta} \in SO_2(\mathbb{R})$.

▶ Sa matrice dans la base canonique est

$$\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}.$$

▶ On a

$$r_{\theta} = r_{\theta'} \iff \theta - \theta' \in 2\pi \mathbb{Z}$$

et les identités évidentes :

$$r_0 = \text{id}$$
 , $r_{\theta} r_{\theta'} = r_{\theta + \theta'}$, $r_{\theta}^{-1} = r_{-\theta}$.

Structure de $SO_2(\mathbb{R})$

Proposition

Soit $f \in SO_2(\mathbb{R})$. Alors f est une rotation, c'est-à-dire qu'il existe $\theta \in \mathbb{R}$, unique modulo $2\pi\mathbb{Z}$, tel que $f = r_{\theta}$.

Remarque

On déduit de cette proposition que $\mathrm{SO}_2(\mathbb{R})$ est un groupe abélien, qui est isomorphe au groupe \mathbb{U} (cercle unité dans \mathbb{C}^*), l'isomorphisme identifiant la rotation r_θ à $e^{i\theta}$.

Démonstration

Soit

$$A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$

la matrice de f dans la base canonique.

▶ Les égalités ${}^tAA = I_2$ et $\det(A) = 1$ se traduisent par les égalités

$$a^{2} + b^{2} = c^{2} + d^{2} = 1$$
 , $ac + bd = 0$, $ad - bc = 1$.

▶ Comme $a^2 + b^2 = c^2 + d^2 = 1$, il existe $\theta, \theta' \in \mathbb{R}$ tels que

$$(a,b) = (\cos(\theta), \sin(\theta))$$
 et $(c,d) = (\cos(\theta'), \sin(\theta'))$.

Les identités ac+bd=0 et ad-bc=1 s'écrivent, en utilisant des formules de trigonométrie bien connues :

$$cos(\theta' - \theta) = 0$$
 et $sin(\theta' - \theta) = 1$.

Donc il existe $k \in \mathbb{Z}$ tel que $\theta' - \theta = \frac{\pi}{2} + 2\pi k$, et donc $\theta' = \theta + \frac{\pi}{2} + 2\pi k$. On a donc $(c,d) = (\cos(\theta + \frac{\pi}{2}), \sin(\theta + \frac{\pi}{2})) = (-\sin(\theta), \cos(\theta))$, et donc $f = r_{\theta}$.

Sous-groupes finis de $SO_2(\mathbb{R})$

Pour tout entier $n \in \mathbb{N}^*$ on note C_n le sous-groupe de $SO_2(\mathbb{R})$ engendré par la rotation d'angle $2\pi/n$:

$$C_n = \langle r_{2\pi/n} \rangle \subset SO_2(\mathbb{R}).$$

Comme $r_{2\pi/n}$ est d'ordre n, C_n est un groupe cyclique d'ordre n.

Proposition

Les C_n , pour $n \in \mathbb{N}^*$, sont les seuls sous-groupes finis de $SO_2(\mathbb{R})$.

Démonstration

- ▶ Commençons par remarquer qu'un élément r_{θ} est d'ordre fini dans $\mathrm{SO}_2(\mathbb{R})$ si et seulement s'il existe $N \in \mathbb{N}^*$ tel que $r_{\theta}^N = \mathrm{id}$, c'est-à-dire $r_{N\theta} = \mathrm{id}$, ou encore $N\theta \in 2\pi\mathbb{Z}$. Donc les éléments d'ordre fini dans $\mathrm{SO}_2(\mathbb{R})$ sont les rotations r_{θ} avec $\theta \in 2\pi\mathbb{Q}$.
- Soit maintenant G un sous-groupe fini de $\mathrm{SO}_2(\mathbb{R})$. Tous les éléments de G sont nécessairement d'ordre fini, et il existe donc un entier $N \in \mathbb{N}^*$ tel que les éléments de G soient tous de la forme $r_{2\pi k/N}$ avec $k \in \mathbb{Z}$. Donc G est un sous-groupe du groupe cyclique C_N . Par la classification des sous-groupes d'un groupe cyclique, G est donc un groupe cyclique C_n pour G un diviseur de G.

6. Étude du groupe orthogonal

- 6.1 Définition
 - 5.2 Le groupe spécial orthogonal
- 6.3 Structure de $SO_2(\mathbb{R})$
- 6.4 Structure de $O_2(\mathbb{R})$

- 7. Étude du groupe diédra
- 7.1 Définition
- 7.2 Structure de D_r

Réflexions

Notons $O_2^-(\mathbb{R})\subset O_2(\mathbb{R})$ l'ensemble des automorphismes orthogonaux de \mathbb{R}^2 dont le déterminant est -1. (Ce n'est pas un sous-groupe de $O_2(\mathbb{R})$.) On a donc une partition

$$O_2(\mathbb{R}) = SO_2(\mathbb{R}) \sqcup O_2^-(\mathbb{R}).$$

Pour toute droite (linéaire) Δ de \mathbb{R}^2 on a la **réflexion** par rapport à Δ , notée $s_{\Delta} \in \mathrm{O}_2^-(\mathbb{R})$.

Matrices de réflexion

La définition formelle de s_{Δ} est la suivante. Notons Δ^{\perp} la droite orthogonale à Δ , de sorte qu'on a la décomposition en somme directe orthogonale :

$$\mathbb{R}^2 = \Delta \oplus \Delta^{\perp}$$
.

On définit s_Δ comme l'unique automorphisme linéaire de \mathbb{R}^2 qui agit comme id sur Δ et $-\mathrm{id}$ sur Δ^\perp . Dit autrement, si e est un vecteur non nul de Δ et f un vecteur non nul de Δ^\perp , la matrice de s_Δ dans la base (e,f) est :

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Cela permet notamment de se convaincre que $det(s_{\Delta}) = -1$.

▶ En général, si l'on note θ l'angle orienté entre l'axe des abscisses et Δ , la matrice de s_{Δ} dans la base canonique est

$$\begin{pmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{pmatrix}.$$

▶ On note que s_{Δ} est d'ordre $2: s_{\Delta} \neq id$ et $s_{\Delta}^2 = id$.

Classification des éléments de $O_2^-(\mathbb{R})$

Proposition

Soit $f \in \mathrm{O}_2^-(\mathbb{R})$. Alors il existe une unique droite Δ telle que $f = s_{\Delta}$.

Classification des éléments de $O_2(\mathbb{R})$

Théorème

Soit $f \in O_2(\mathbb{R})$. Alors f est soit une rotation r_θ , pour un $\theta \in \mathbb{R}$ unique modulo $2\pi\mathbb{Z}$, soit une réflexion s_Δ , pour une unique droite Δ .

Comment multiplier rotations et réflexions

Proposition

1) Soient Δ, Δ' deux droites de \mathbb{R}^2 et soit θ l'angle orienté entre Δ et Δ' . Alors on a :

$$s_{\Delta}s_{\Delta'}=r_{-2\theta}.$$

2) Soit Δ une droite et $\theta \in \mathbb{R}$. Alors on a :

$$r_{\theta}s_{\Delta} = s_{r_{\theta/2}(\Delta)}$$
 et $s_{\Delta}r_{\theta} = s_{r_{-\theta/2}(\Delta)}$.

Notamment, on a :

$$r_{\theta}s_{\Lambda}=s_{\Lambda}r_{-\theta}.$$

▶ Il découle de cette proposition que $O_2(\mathbb{R})$ n'est pas un groupe abélien.

Démonstration

1) On a $\det(s_{\Delta}s_{\Delta'}) = \det(s_{\Delta}) \det(s_{\Delta'}) = (-1) \times (-1) = 1$ et donc $s_{\Delta}s_{\Delta'} \in \mathrm{SO}_2(\mathbb{R})$. Par une proposition vue plus haut on a donc $s_{\Delta}s_{\Delta'} = r_{\varphi}$ pour $\varphi \in \mathbb{R}$. Pour calculer φ il suffit de calculer l'angle orienté de D à $(s_{\Delta}s_{\Delta'})(D)$ pour n'importe quelle droite D de \mathbb{R}^2 . On choisit de prendre $D = \Delta'$ car $s_{\Delta'}(\Delta') = \Delta'$. On a :

$$(s_{\Delta}s_{\Delta'})(\Delta') = s_{\Delta}(s_{\Delta'}(\Delta')) = s_{\Delta}(\Delta').$$

Or l'angle orienté de Δ' à $s_{\Delta}(\Delta')$ est -2θ (voir la figure suivante), et donc $\varphi=-2\theta$.

Démonstration

2) On a $\det(r_{\theta}s_{\Delta}) = \det(r_{\theta})\det(s_{\Delta}) = 1 \times (-1) = -1$ et donc $r_{\theta}s_{\Delta} \in \mathrm{O}^{-}_{2}(\mathbb{R})$. Par une proposition vue plus haut, on a donc $r_{\theta}s_{\Delta} = s_{\Delta'}$ pour une droite Δ' . Cette droite Δ' est l'ensemble des points fixes de $s_{\Delta'}$, et il suffit donc de trouver une droite qui est fixée par $r_{\theta}s_{\Delta}$. On voit facilement que la droite $r_{\theta/2}(\Delta)$ est fixée par $r_{\theta}s_{\Delta}$ (voir la figure suivante), et donc $\Delta' = r_{\theta/2}(\Delta)$. La deuxième identité se montre de la même manière.

Et deux remarques pour finir

Remarque

On peut garder en tête les identités de conjugaison suivantes, conséquences de la proposition précédente : pour une rotation r et une réflexion s_Δ on a

$$s_{\Delta} r s_{\Delta}^{-1} = r^{-1}.$$

et

$$r \, s_{\Delta} \, r^{-1} = s_{r(\Delta)}.$$

Remarque

Si l'on choisit une droite Δ_0 de \mathbb{R}^2 et qu'on note $s=s_{\Delta_0}$, alors on peut représenter toutes les réflexions sous la forme $r_{\theta}s$ avec θ unique modulo $2\pi\mathbb{Z}$.

- 6. Étude du groupe orthogona
- 6.1 Définition
- 6.2 Le groupe spécial orthogonal
- 6.3 Structure de $SO_2(\mathbb{R})$
- 6.4 Structure de $O_2(\mathbb{R})$

- 7. Étude du groupe diédral
- 7.1 Définition
- 7.2 Structure de D_n

6. Étude du groupe orthogona

- 6.1 Définition
- 6.2 Le groupe spécial orthogonal
- 6.3 Structure de $SO_2(\mathbb{R})$
- 6.4 Structure de $O_2(\mathbb{R})$

7. Étude du groupe diédral

7.1 Définition

7.2 Structure de D_n

Polygones réguliers

Soit un entier $n \in \mathbb{N}^*$. On note $P_n \subset \mathbb{R}^2$ l'ensemble formé des n points

$$x_k = (\cos(2\pi k/n), \sin(2\pi k/n))$$

pour $k \in \{0, \dots, n-1\}$. Ce sont les sommets d'un polygone régulier à n côtés.

Exemple

Voici P_5 et P_6 .

Définition du groupe diédral

Définition

Le groupe diédral D_n est l'ensemble des $f \in O_2(\mathbb{R})$ qui stabilisent P_n , c'est-à-dire tels que $f(P_n) \subset P_n$.

Proposition

 D_n est un sous-groupe de $O_2(\mathbb{R})$.

Démonstration.

- 1) Clairement, $id \in D_n$.
- 2) Soient $f, g \in D_n$. Alors $f(P_n) \subset P_n$ et $g(P_n) \subset P_n$ et donc $(fg)(P_n) = f(g(P_n)) \subset f(P_n) \subset P_n$, donc $fg \in D_n$.
- 3) Soit $f \in D_n$. Alors $f(P_n) \subset P_n$. Comme f est bijective, on a pour des raisons de cardinal $f(P_n) = P_n$ et donc $f^{-1}(f(P_n)) = f^{-1}(P_n)$, d'où $P_n = f^{-1}(P_n)$, et donc $f^{-1} \in D_n$.

- 6. Étude du groupe orthogona
- 6.1 Définition
- 6.2 Le groupe spécial orthogona
- 6.3 Structure de $SO_2(\mathbb{R})$
- 6.4 Structure de $O_2(\mathbb{R})$

- 7. Étude du groupe diédral
- 7.1 Définition
- 7.2 Structure de D_n

Rotations et réflexions

- Notons r la rotation d'angle $2\pi/n$. C'est clairement un élément de D_n , qui engendre le sous-groupe cyclique à n éléments $C_n = \langle r \rangle \subset D_n$.
- ▶ Pour $k \in \{0, \dots, n-1\}$, notons aussi Δ_k la droite qui fait un angle de $\pi k/n$ avec l'axe des abscisses, et s_k la réflexion par rapport à Δ_k . Ce sont aussi des éléments de D_n .

Exemple

Voici, dans les cas n=5 et n=6, les n droites Δ_k .

