MULTIMEDIA	5	UNIVERSITY
------------	---	------------

2	TUD	ENI	מעג	U		
Seat No.: Venue:					,	

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2017/2018

TGD2151 - COMPUTER GRAPHICS FUNDAMENTALS

(All sections / Groups)

13 MARCH 2018 2.30 p.m. – 4.30 p.m. (2 Hours)

Question No.	Marks
1	
2	
3	
4	
Total	

INSTRUCTIONS TO STUDENTS

- 1. This Question paper consists of 9 pages with 4 Questions only.
- 2. Answer ALL FOUR questions. All questions carry equal marks and the distribution of the marks for each question is given.
- 3. Please write all your answers CLEARLY in this Question paper.

QUESTION 1

KWNG

ι)	Given two colors, $C_1 = (0.2, 0.1, 0.4)$ and $C_2 = (0.9, 0.7, 0.8)$, find the color $C_3 = (r, g)$ b) in between the two colors by using linear interpolation method if $r = 0.5$.
	[3 marks]
)	The coordinate system of a model will be transformed multiple times as it passes through the OpenGL pipeline. List down in correct order for the FIVE (5) coordinate
	systems involved and briefly describe each of its functionality. [5 marks
_	15 marks
	·
	Continued

2/9

c) Polygon is an ordered list of vertices. For filling polygons with particular colors, one needs to determine the pixels falling on the border of the polygon and those falling inside the polygon.

Flood Fill and Boundary Fill are two popular area filling algorithms. Compare them in terms of number of colors applied and the condition for setting the pixels.

[2 marks]

Flood Fill Algorithm	Boundary Fill Algorithm		

QUESTION 2

a) Given a straight line with pixel coordinate (4, 6) and (8, 9), derive t	he equation below
using Digital Differential Analyzer (DDA) line algorithm.	

 $\mathbf{y}_{k+1} = \mathbf{y}_k + \mathbf{m}$

[3 marks]

	, , , , , , , , , , , , , , , , , , ,		
			1
,			
			ļ
			ĺ
			i
			1
		v.	
		,	
			Continued

3/9

KWNG

Using DDA line algorithm in Question 2(a), compute the coordinates if the first pixel coordinate is (4, 6)?		[2 marks]
ullet		
Given two affine transformations in 3D, T_1 is a translation, an he XY plane. Is the multiplicative result of T_1T_2 satisfies	$1d T_2$ is a reflemme as T_2T_1	ection abou ? Prove
mathematically for the general case.		[3 mark
	1	
4/9		
		Continue

13	MARCH 2018

l) Is shearing an affine transformation? Explain your answer.	[2 marks]

QUESTION 3

a) Define Euler's formula and proof whether the object below is a polyhedral by using the formula.

	[1 mark]
	Continued

b) Complete the blanks in the Face list and Normal list based on the indices and lengths given in the object below.

[4 marks]

	Face	List	
Pa	P_b	Pc	P_d
	3		1
0		5	
-	4		3
2		7	
1		6	
4		6	

]	Normal Lis	t
N _x	Ny	Nz
0		
		0
		-1
		0
0		1
0		

c) Given a camera located at point (1,1,1), looking at point (0,1,1) and with an up-vector of (0,0,-1), compute the u-v-n reference frame coordinate.

[3 marks]

			į
			İ
			1
			1
			1
	- 1		
1		*	
İ			
			C

Continued...

	uffer algorithm works.	[2 marks]
		ļ
<u>UESTION 4</u>		
A perspective pro	ojection creates a 3D viewing frustum. Draw	a sketch of the viewing
frustum created by parameter values	by the OpenGL commands below and label is	t based on the specific
float	<pre>viewAngle = 60.0;</pre>	
float	aspectRatio = 2.0;	
float float	<pre>viewAngle = 60.0; aspectRatio = 2.0; near = 1.0; far = 20.0;</pre>	
float float float glMatrix1	<pre>aspectRatio = 2.0; near = 1.0; far = 20.0; Mode(GL_PROJECTION);</pre>	
float float float glMatrix glLoadId	<pre>aspectRatio = 2.0; near = 1.0; far = 20.0;</pre>	, near, far); [2 marks]

Continued...

- b) Determine which surfaces below are visible to a viewer at position (0, 5, 5), looking at point P (0, 0, 1) on an object.
 - i) Face B with normal vector N2 = (1, -4, 3)
 - ii) Face D with normal vector N4 = (-1, 1, 2)

[2 marks]

c) A light bulb and a mirror are located to the following location and orientation.

Assuming that the light bulb is a point light source at (4, 3, 0) and the lighting is attenuated by a factor of 2/d. The light intensity at point P is $I_p = 1$.

- i) What is the intensity of the light source at point Q?
- Let the ambient intensity be $I_a = 0.1$, with basic illumination lighting model, find the total diffuse reflection at point Q.

-	 	 	 	 	

Continued...

GD2151	COMPUTER GRAPHICS FUNDAMENTALS	13 MARCH 2018
Describe the str	ength and weakness of Gouraud shading method a	as compared to Phon
shading method	ongui and wominess of comman simaning months	
shading memod	•	[1 mark
		[1 man
		End of Pag

9/9

KWNG