Simple template

Sparken

January 20, 2019

目录

1	默背	一万遍的注意事项 5
	1.1	浮点 5
	1.2	整数类型范围
	1.3	热身赛
	1.4	计算器
	1.5	Attention
	1.6	Debug
	1.7	打表找规律 7
	1.8	优化
2	图论	Graph Theory 8
	2.1	最短路 The shortest path
		2.1.1 Dijkstra
		2.1.2 Spfa
		2.1.3 次短路
		2.1.4 第 K 短路
	2.2	最小生成树 Minimum spanning tree
		2.2.1 Kruskal
		2.2.2 Prim
	2.3	次小生成树
	2.4	网络流 Network flow
		2.4.1 最大流-Dinic
		2.4.2 最大流-ISAP
		2.4.3 最小费用最大流-EdmondsKarp
		2.4.4 建图-有上下界的可行流
	2.5	强连通缩点 tarjan
	2.6	最近公共祖先 LCA
		2.6.1 tarjan
		2.6.2 ST 表
	2.7	欧拉回路 33
		2.7.1 判定
		2.7.2 求解
3	数据	结构 Data Structure 34
	3.1	并查集 Union-Find Set
	3.2	拓扑排序 Topological Sorting
	3.3	树状数组 36
	3.4	RMQ 37
	3.5	表达式树

	3.6	线段树 Segment Tree
		3.6.1 基础
		3.6.2 维护线性变化
	3.7	可持久化数据结构 41
		3.7.1 01 字典树
		3.7.2 权值线段树
	3.8	树链剖分 HeavyLightDecomposition
	3.9	伸展树 splay
		3.9.1 维护序列
		3.9.2 平衡树 (cc)
	3.10	Treap
	Mr 337	
4		Math 53
	4.1	快速乘-快速幂
		矩阵快速幂
	4.3	扩展欧几里得
	4.4	筛法求素数
		4.4.1 埃式筛
	4.5	欧拉筛线性筛
		4.5.1 区间筛
	4.6	逆元
		4.6.1 模 n 下 a 的逆元
		4.6.2 线性求逆元
	4.7	欧拉函数 58
	4.8	中国剩余定理求同余方程组 59
		4.8.1 素数
		4.8.2 非素数
	4.9	数值计算 61
		4.9.1 FFT
		4.9.2 FFT 二进制反转问题
		4.9.3 NTT
	4.10	卢卡斯 Lucas
		4.10.1 Lucas
		4.10.2 扩展卢卡斯 ExLucas
	4.11	线性基
	4.12	自适应辛普森
	4.13	高斯消元 GauseElimination
	4.14	对角阵 GaussJordan
	4.15	米勒罗宾素数测试 MillerRabin
	4.16	模方程 (可非素数)

5	字符串 String	73			
	5.1 字典树 Trie	73			
	5.2 KMP	74			
	5.3 AC 自动机	74			
	5.4 回文树	76			
6	动态规划 Dynamic Programme 7				
	6.1 背包	79			
	6.2 旅行商 TSP	80			
	6.3 数位 dp	81			
7	计算几何 Computation Geometry				
	7.1 圆 Circle	81			
	7.1.1 求两圆交点	81			
8	其它 Other	83			
	8.1 莫队	83			
	8.2 离散化	84			
	8.3 STL	84			
	8.4 pbds	85			
9	输入输出 IO 8				
	9.1 Python 输入输出	86			
	9.2 Java 高精度 BigDecimal	87			

1 默背一万遍的注意事项

1.1 浮点

- 1. 浮点初始化 memset(d,0x7f,sizeof(d));
- 2. 浮点数比大小
 - 相等 if (fabs (a-b) <= eps)
 - 大于 if (a>b && fabs (a-b) > eps)
 - 小于 if (a<b && fabs (a-b) > eps)

1.2 整数类型范围

- 1. 255: 1111 1111B
- 2. 65535: 2~16-1, 16bit 无符号整数
- 3. 2147483647: 2³1-1, 32bit 带符号整数的最大值
- 4. 4294967296: 2~32, 32bit 无符号整数的最大值
- 5. 92233720368547758072: 2⁶³⁻¹, 64bit 带符号整数的最大值
- 6. 1061109567: 0x3f3f3f3f, int inf, 略大于 1e9
- 7. 4557430888798830399: 0x3f3f3f3f3f3f3f3f3f, ll inf

1.3 热身赛

- 1. 测 pbds
- 2. python3 计算器

1.4 计算器

- 1. 终端
 - 分解素因数 factor num
 - 逆串 rev+enter string
- 2. python3
 - from fractions import * [Fraction,gcd]
 - 最简分数 fraction(a,b)
 - $-\gcd(a,b)$
 - from math import *
 - 阶乘 factorial(num)

1.5 Attention

- 1. 审题
 - 读新题的优先级高于一切
 - 注意限制条件,不清楚的善用 Clarification
 - 读完题、交题前都要看一遍 clarification
 - 每题至少两人确认题意

2. 做题

(a) 开题

- 构造不要开场做
- 想不出优雅复杂度但过了很多队的暴力莽一莽,单车变摩托

(b) 上机

- 和队友确认做法
- 有猜想性质的后面写
- 写了半小时以上的考虑是否弃题
- 细节和公式纸上写好,不要越码越乱
- 中后期题考虑一人写一人辅助,及时发现手误
- 多题要写时,容易码、码量小、想得无敌清楚的优先

(c) 交题

- 检查初始化和清空
- 取模的输出前再模一次
- claris: 检查 solve(n,m) = = solve(m,n)?
- spj 的题目提交前也应尽量与样例完全一致
- claris: 舍入输出若 abs 不超过 eps, 需要强行设置 0 防止-0.000000 的出现

3. 打印

- 交完题目马上打印并让机
- 打表时想清楚打哪些量,代码乱改前注意备份。善用打印,保留代码。
- 4. 心态: 签到莫急,最后半小时不要慌。

1.6 Debug

- 1. 初始化,清空图,0和n等边界,mem里面 sizeof(int)还是ll
- 2. for 里是给本层循环变量 ++ 咩?
- 3. 区间 l,r 为防坑: if(l>r) swap(l,r);

- 4. 考虑小数据有没有发生突变的地方
- 5. 注意板子有没有哪里要改 11
- 6. inf 的大小符不符合

1.7 打表找规律

- 1. 直接找规律
- 2. 差分后找规律
- 3. 找积性
- 4. 点阵打表
- 5. 相除
- 6. 循环节
- 7. 凑量纲
- 8. 猜想满足 P(n)f(n)=Q(n)f(n-2)+R(n)f(n-1)+C, 其中 P、Q、R 为关于 n 二次多项式

1.8 优化

- 1. 数论
 - 分块加速 O(sqrt(n))
 - 枚举除数、调和级数 O(log(n))
 - floor 函数求和、ceil 函数求和 (hdu6134)
 - getpre 里的取模,以及连续取模注意顺序,还有爆精度取模和式子 i 从 2 开始 (n/i)
 - WA 太久或出不了,考虑公式是否错误
- 2. cdq 分治
- 3. 树上点分治
- 4. 一般分块

2 图论 Graph Theory

2.1 最短路 The shortest path

```
2.1.1 Dijkstra
```

```
struct Dijkstra // 时间复杂度: eloge
{
    vector<P> G[maxn];
    int d[maxn], vis[maxn];
    void init(int n) { for(int i=0;i<=n;++i) G[i].clear(); }</pre>
    void addEdge(int u,int v,int cost) { G[u].push_back({cost,v}); }
    void dij(int s)
    {
        memset(d,0,sizeof(int)*(n+5)));
        memset(vis,0,sizeof(int)*(n+5));
        priority_queue<P,vector<P>,greater<P> > q;
        d[s]=0;
        q.push(make_pair(d[s],s));
        while(!q.empty())
        {
            P temp=q.top();q.pop();
            int v=temp.Y;
            if(vis[v]) continue;
            vis[v]=true;
            for(int i=0;i<G[v].size();++i)</pre>
            {
                int u=G[v][i].Y,cost=G[v][i].X;
                if(!vis[u] && d[u]>d[v]+cost)
                {
                    d[u]=d[v]+cost;
                    q.push(make_pair(d[u],u));
                }
            }
        }
    }
};
2.1.2 Spfa
struct Spfa // O(ke), 稀疏图 k<2, 一般为常数, 网格图可 hack
{
```

```
vector<pair<int,int> > G[maxn];
    bool vis[maxn];
    int inq[maxn],d[maxn];
    void init()
    {
        for(int i=0;i<=maxn;++i) G[i].clear();</pre>
        memset(vis,false,sizeof(vis));
        memset(inq,0,sizeof(inq));
        memset(d,0x3f,sizeof(d));
    }
    void addedge(int u,int v,int cost) { G[u].push_back(make_pair(cost,v)); }
    int spfa(int s)
    {
        queue<int> q;
        d[s]=0, q.push(s), ++inq[s], vis[s]=true;
        while(!q.empty())
        {
            int v=q.front();q.pop();
            vis[v]=false;
            for(int i=0;i<G[v].size();++i)</pre>
            {
                int u=G[v][i].Y,cost=G[v][i].X;
                if(d[u]>d[v]+cost)
                {
                    d[u]=d[v]+cost;
                    if(!vis[u]) q.push(u),++inq[u],vis[u]=true;
                }
            if(inq[v]>n) return -1;
                                         //有负圈
        }
        if(d[n]==inf) return -2;
                                         //不可达
        return d[n];
    }
};
2.1.3 次短路
struct Dijkstra
{
    vector<P> G[maxn];
```

```
int d[maxn],d2[maxn];
    void init(int n) { for(int i=0;i<=n;++i) G[i].clear(); }</pre>
    void addEdge(int u,int v,int cost) { G[u].push_back(make_pair(cost,v)); }
    void dij(int s)
    {
        memset(d,0x3f,sizeof(int)*(n+5));
        memset(d2,0x3f,sizeof(int)*(n+5));
        priority_queue<P,vector<P>,greater<P> > q;
        d[s]=0;
        q.push(make_pair(d[s],s));
        while(!q.empty())
        {
            P temp=q.top();q.pop();
            int v=temp.Y;
            if(d2[v]<temp.X) continue;</pre>
            for(int i=0;i<G[v].size();++i)</pre>
            {
                int u=G[v][i].Y,cost=G[v][i].X;
                int dist=temp.X+cost;
                if(d[u]>dist)//该点当前最短路比新距离大
                {
                    swap(d[u],dist);
                    q.push(P(d[u],u));
                }
                if(d2[u]>dist \&\& d[u]<dist)
                {
                    d2[u]=dist;
                    q.push(P(d2[u],u));
                }
            }
        }
};// 另: 正反最短路, 枚举边 <u,v,cost> 是否在最短路, 非则 ds[u]+dt[v]+cost 可能是次短路
2.1.4 第 K 短路
struct Edge
{
    int from,d,f;
    Edge(int u,int d,int f):from(u),d(d),f(f){}
```

```
bool operator <(const Edge &a)const //从大到小排序, 避免用反 pq
    {
        if(f==a.f) return a.d<d;</pre>
       return a.f<f;
    }
};
struct Kpath
{
    vector<pair<int,int> > G[maxn],GB[maxn];
    int vis[maxn], h[maxn], t;
    void init()
    {
        for(int i=0;i<=N;++i) G[i].clear(), GB[i].clear();</pre>
       t=0;
       memset(h,0x3f,sizeof(h));
       memset(vis,false,sizeof(vis));
    }
    void addEdge(int u,int v,int cost)
    { G[u].push_back({cost,v}),GB[v].push_back({cost,u}); }
    void spfa(int s)
                       // 先求所有点到终点最短路 h[]
    {//dijstra 可能效率更高,另注意题目会不会有负圈
        queue<int> q;
       h[s]=0;
       q.push(s);
       vis[s]=true;
       while(!q.empty())
        {
            int u=q.front();q.pop();
            vis[u]=false;
            for(int i=0;i<GB[u].size();++i)</pre>
            {
                int v=GB[u][i].Y,cost=GB[u][i].X;
                if(h[v]>h[u]+cost)
                {
                   h[v]=h[u]+cost;
                   if(!vis[v])
                    {
                       q.push(v);
                       vis[v]=true;
```

```
}
                }
            }
        }
    }
    int Astar(int S,int T,int K)
    {
                             //如果 S==T, d=0 不算一条路
        if(S==T) ++K;
        if(h[S] == INF) return -1;
        priority_queue<Edge> q;
        q.push(Edge(S,0,h[S]));
        while(!q.empty())
        {
            Edge temp=q.top();q.pop();
            int u=temp.from,d=temp.d;
            if(u==T) ++t;
            if(t==K) return d;
            for(int i=0;i<G[u].size();++i)</pre>
            {
                int v=G[u][i].Y,cost=G[u][i].X;
                q.push(Edge(v,d+cost,d+cost+h[v]));
            }
        }
        return -1;
    }
};
```

2.2 最小生成树 Minimum spanning tree

2.2.1 Kruskal

```
// O(eloge)
struct Edge
{
    int u,v,d;
    Edge(int from,int to,int cost):u(from),v(to),d(cost){}
    bool operator < (const Edge &a)const { return d<a.d; }
};
struct Kruskal
{
    vector<Edge> edges;
```

```
int par[maxn],n;
void init(int n)
{
    this->n=n;
    edges.clear();
    for(int i=1;i<=n;++i) par[i]=i;</pre>
}
void add_edge(int u,int v,int d)
{
    edges.push_back(Edge(u,v,d));
    edges.push_back(Edge(v,u,d));
}
int Find(int x)
{
    if(par[x] == x) return x;
    return par[x]=Find(par[x]);
}
void uni(int A,int B)
{
    int x=Find(A),y=Find(B);
    if(x==y) return ;
    par[x]=y;
}
bool same(int A,int B)
{
    return Find(A) == Find(B);
}
int kruskal()
    sort(edges.begin(),edges.end());
    int ans=0;
    for(int i=0;i<edges.size();++i)</pre>
        Edge &e=edges[i];
        if(!same(e.v,e.u))
        {
            ans+=e.d;
            uni(e.v,e.u);
        }
```

```
}
        return ans;
    }
};
2.2.2 Prim
// O(v^2)
struct Prim
{
    int vis[maxn],d[maxn],cost[maxn][maxn],n;
    void init(int n)
        this->n=n;
        memset(d,0x3f,sizeof(d));
        memset(cost,0x3f,sizeof(cost));
        memset(vis,false,sizeof(vis));
    }
    int prim(int s)
    {
        d[s]=0; int ans=0;
        while(1)
        {
            int v=-1;
            for(int u=1;u<=n;++u)</pre>
                if(!vis[u] && (v==-1 || d[u] < d[v])) v=u;
            if(v==-1) break;
            vis[v]=true, ans+=d[v];
            for(int u=1;u<=n;++u)</pre>
                d[u]=min(d[u],cost[v][u]);
        }
        return ans;
    }
};
2.3 次小生成树
struct Edge
    int u,v,cost;
    bool use;
```

```
Edge(int u,int v,int c,bool use):u(u),v(v),cost(c),use(use){}
};
struct SecMST
{
    vector<Edge> es;
    int par[maxn],length[maxn][maxn];
    void init(int n)
    {
        for(int i=0;i<=n;++i) par[i]=i;</pre>
        memset(length,0,sizeof(length));
        es.clear();
    }
    int Find(int x)
    {
        if(par[x]==x) return x;
        return par[x]=Find(par[x]);
    }
    void uni(int A,int B)
    {
        int x=Find(A),y=Find(B);
        if(x==y) return ;
        par[x]=y;
    }
    bool same(int A,int B){return Find(A)==Find(B);}
    bool cmp(Edge a, Edge b) {return a.cost < b.cost;}</pre>
    void update(int u,int v,int cost)
    {
        for(int i=1;i<=n;++i)</pre>
            for(int j=1; j<=n;++j)</pre>
                 if(i!=j && same(a,u) && same(b,v))
                     length[a][b]=length[b][a]=cost;
    }
    int kruskal()
    {
        sort(es.begin(),es.end(),cmp);
        int ans=0;
        for(int i=0;i<es.size();++i)</pre>
            Edge &e=es[i];
```

```
int u=e.u,v=e.v,cost=e.cost;
           if(!same(u,v))
           {
               ans+=cost;
               e.use=true;
               update(u,v,cost);// 若 MST 结束 DFS 遍历树得 length 效率更高
               uni(u,v);
           }
       }
       return ans;
   }
   int secmst()
    {
       int MST=kruskal();
       int SECMST=inf;
       bool flag=false;
       for(int i=0;i<es.size();++i)</pre>
       {
           Edge &e=es[i];
           if(!e.use)
           {
               // 枚举非 MST 的边 (u,v), 加入 MST 形成环
               //则 SECMST=MST+ 该边 w-所成环中 uv 间最长边
               SECMST=min(SECMST,MST+e.cost-length[e.u][e.v]);
               if(SECMST==MST)
               {
                   flag=true;
                   break;
               }
           }
       }
       return SECMST;
   }
};
     网络流 Network flow
2.4
2.4.1 最大流-Dinic
// 时间复杂度, 一般为 O(ev~2), 但是 e 一般为 v~2
struct Edge
```

```
{
    int from, to, cap, flow;
    Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){}
};
struct Dinic
    int n,m,s,t;
    vector<Edge> edges;
    vector<int> G[maxn];
    bool vis[maxn];
    int d[maxn],cur[maxn];
    void init(int n)
    {
        for(int i=0;i<=n;++i) G[i].clear();</pre>
        edges.clear();
    }
    void addEdge(int from,int to,int cap)
    {
        edges.push_back(Edge(from,to,cap,0));
        edges.push_back(Edge(to,from,0,0));
        m=edges.size();
        G[from].push_back(m-2);
        G[to].push_back(m-1);
    }
    bool bfs()
    {
        memset(vis,false,sizeof(vis));
        queue<int> q;
        q.push(s);
        d[s]=0;
        vis[s]=1;
        while(!q.empty())
            int v=q.front();q.pop();
            for(int i=0;i<G[v].size();++i)</pre>
            {
                 int ecode=G[v][i];
                 Edge &e=edges[ecode];
                 if(!vis[e.to] && e.cap>e.flow)
```

```
{
                      vis[e.to]=true;
                      d[e.to]=d[v]+1;
                      q.push(e.to);
                }
           }
     }
     return vis[t];
}
int dfs(int v,int a)
     if(v==t | | a==0) return a;
     int flow=0,f;
     for(int &i=cur[v];i<G[v].size();++i)</pre>
           int ecode=G[v][i];
           Edge &e=edges[ecode];
           \label{eq:condition} \begin{split} & \text{if}(\texttt{d}[\texttt{v}] + \texttt{1} = = \texttt{d}[\texttt{e.to}] & \&\& & (\texttt{f} = \texttt{dfs}(\texttt{e.to}, \texttt{min}(\texttt{a,e.cap-e.flow}))) > 0) \end{split}
                e.flow+=f;
                edges[ecode^1].flow-=f;
                flow+=f;
                a-=f;
                if(a==0) break;
           }
     }
     return flow;
}
int maxflow(int s,int t)
{
     this->s=s;this->t=t;
     int flow=0;
     while(bfs())
     {
           memset(cur,0,sizeof(cur));
           flow+=dfs(s,inf);
     }
     return flow;
}
```

```
};
2.4.2 最大流-ISAP
struct Edge
    int from, to, cap, flow;
    Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){}
};
struct ISAP
    int n,m,s,t;
    vector<Edge> edges;
    vector<int> G[maxn];
    bool vis[maxn];
    int d[maxn], cur[maxn];
    int p[maxn],num[maxn];
    void init(int n)
    {
        this->n=n;
        for(int i=0;i<n;++i) G[i].clear();</pre>
        edges.clear();
        memset(d,0x3f,sizeof(d));
    }
    void add_edge(int from,int to,int cap)
    {
        edges.push_back(Edge(from,to,cap,0));
        edges.push_back(Edge(to,from,0,0));
        m=edges.size();
        G[from].push_back(m-2);
        G[to].push_back(m-1);
    }
    bool bfs()
    {
        memset(vis,false,sizeof(vis));
        queue<int> q;
        q.push(t);
        d[t]=0;
        vis[t]=true;
        while(!q.empty())
```

```
{
        int u=q.front();q.pop();
        for(int i=0;i<G[u].size();++i)</pre>
        {
            Edge &e=edges[G[u][i]^1];
            if(!vis[e.from] && e.cap>e.flow)
            {
                vis[e.from]=true;
                d[e.from]=d[u]+1;
                q.push(e.from);
            }
        }
    }
    return vis[s];
}
int Augment()
{
    int flow=INF;
    for(int u=t;u!=s;u=edges[p[u]].from)
        Edge &e=edges[p[u]];
        flow=min(flow,e.cap-e.flow);
    for(int u=t;u!=s;u=edges[p[u]].from)
    {
        edges[p[u]].flow+=flow;
        edges[p[u]^1].flow-=flow;
    }
    return flow;
}
int Maxflow(int s,int t)// 可以再加第三个参数流量 >=UP 剪枝直接 return
{
    this->s=s;this->t=t;
    int flow=0;
    bfs();
    if(d[s]>=n) return 0;
    memset(num,0,sizeof(num));
    for(int i=0;i<n;++i)</pre>
        if(d[i]<inf) ++num[d[i]];</pre>
```

```
int u=s;
    memset(cur,0,sizeof(cur));
    while(d[s]<n)
    {
        if(u==t)
        {
            flow+=Augment();
            // if(flow>=up) return flow;
            u=s;
        }
        int ok=0;
        for(int i=cur[u];i<G[u].size();++i)</pre>
        {
            Edge &e=edges[G[u][i]];
            if(e.cap>e.flow && d[u] == d[e.to]+1)
            {
                ok=1;
                p[e.to]=G[u][i];
                cur[u]=i;
                u=e.to;
                break;
            }
        }
        if(!ok)
        {
            int m=n-1;
            for(int i=0;i<G[u].size();++i)</pre>
            {
                Edge &e=edges[G[u][i]];
                 if(e.cap>e.flow) m=min(m,d[e.to]);
            }
            if(--num[d[u]]==0) break;
            ++num[d[u]=m+1];
            cur[u]=0;
            if(u!=s) u=edges[p[u]].from;
        }
    }
    return flow;
}
```

};

2.4.3 最小费用最大流-EdmondsKarp

```
// 最大费用最大流则费用取反,时间复杂度 O(maxflow*e)
struct Edge
{
    int from, to, cap, flow, cost;
    Edge(int u,int v,int c,int f,int w):from(u),to(v),cap(c),flow(f),cost(w){}
};
struct MCMF
{
    int n,m;
    vector<Edge> edges;
    vector<int> G[maxn];
    int inq[maxn],d[maxn],p[maxn],a[maxn];
    void init(int n)
    {
        this->n=n;
        for(int i=0;i<n;++i) G[i].clear();</pre>
        edges.clear();
    }
    void add_edge(int from,int to,int cap,int cost)
    {
        edges.push_back(Edge(from,to,cap,0,cost));
        edges.push_back(Edge(to,from,0,0,-cost));
        m=edges.size();
        G[from].push_back(m-2);
        G[to].push_back(m-1);
    }
    bool spfa(int s,int t,int &flow,long long &cost)
    {
        for(int i=0;i<n;++i) d[i]=INF;</pre>
        memset(inq,0,sizeof(inq));
        d[s]=0;inq[s]=1;p[s]=0;a[s]=INF;
        queue<int> q;
```

```
q.push(s);
        while(!q.empty())
        {
            int u=q.front();q.pop();
            inq[u]=0;
            for(int i=0;i<G[u].size();++i)</pre>
            {
                 Edge &e=edges[G[u][i]];
                 if(e.cap>e.flow ~\&\&~d[e.to]>d[u]+e.cost)\\
                 {
                     d[e.to]=d[u]+e.cost;
                     p[e.to]=G[u][i];
                     a[e.to]=min(a[u],e.cap-e.flow);
                     if(!inq[e.to])
                     {
                         q.push(e.to);
                         inq[e.to]=1;
                     }
                 }
            }
        if(d[t]==INF) return false;
        flow+=a[t];
        cost+=(long long)d[t]*(long long)a[t];
        for(int u=t;u!=s;u=edges[p[u]].from)
        {
            edges[p[u]].flow+=a[t];
            edges[p[u]^1].flow-=a[t];
        }
        return true;
    }
    int MincostMaxflow(int s,int t,long long &cost)
    {
        int flow=0;cost=0;
        while(spfa(s,t,flow,cost)) ;
        return flow;
    }
};
```

2.4.4 建图-有上下界的可行流

```
//poj2396
struct Edge
{
    int from, to, cap, flow;
    Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){}
};
int low[maxn][maxn],up[maxn][maxn];
int rowsum[maxn],colsum[maxn];
int in[maxn], out[maxn];
int n,m,source;
struct ISAP
{
    int n,m,s,t;
    vector<Edge> edges;
    vector<int> G[maxn];
    bool vis[maxn];
    int d[maxn], cur[maxn];
    int p[maxn],num[maxn];
    void init(int n)
    {
        this->n=n;
        for(int i=0;i<n;++i) G[i].clear();</pre>
        edges.clear();
        memset(d,0x3f,sizeof(d));
    }
    void addedge(int from,int to,int cap)
    {
        edges.push_back(Edge(from,to,cap,0));
        edges.push_back(Edge(to,from,0,0));
        m=edges.size();
        G[from].push_back(m-2);
        G[to].push_back(m-1);
    }
    bool bfs()
    {
```

```
memset(vis,false,sizeof(vis));
    queue<int> q;
    q.push(t);
    d[t]=0;
    vis[t]=true;
    while(!q.empty())
    {
        int u=q.front();q.pop();
        for(int i=0;i<G[u].size();++i)</pre>
        {
            Edge &e=edges[G[u][i]^1];
            if(!vis[e.from] && e.cap>e.flow)
            {
                vis[e.from]=true;
                d[e.from]=d[u]+1;
                q.push(e.from);
            }
        }
    }
    return vis[s];
}
int Augment()
{
    int flow=INF;
    for(int u=t;u!=s;u=edges[p[u]].from)
    {
        Edge &e=edges[p[u]];
        flow=min(flow,e.cap-e.flow);
    }
    for(int u=t;u!=s;u=edges[p[u]].from)
    {
        edges[p[u]].flow+=flow;
        edges[p[u]^1].flow-=flow;
    }
    return flow;
}
int Maxflow(int s,int t)
```

```
{
    this->s=s;this->t=t;
    int flow=0;
    bfs();
    if(d[s]>=n) return 0;
    memset(num,0,sizeof(num));
    for(int i=0;i<n;++i)</pre>
         if(d[i]<INF) ++num[d[i]];</pre>
    int u=s;
    memset(cur,0,sizeof(cur));
    while(d[s]<n)
    {
         if(u==t)
         {
             flow+=Augment();
             u=s;
         }
         int ok=0;
         for(int i=cur[u];i<G[u].size();++i)</pre>
             Edge &e=edges[G[u][i]];
             \label{eq:cap-end} \mbox{if(e.cap>e.flow \&\& d[u]==d[e.to]+1)}
             {
                  ok=1;
                  p[e.to]=G[u][i];
                  cur[u]=i;
                  u=e.to;
                  break;
             }
         }
         if(!ok)
         {
             int m=n-1;
             for(int i=0;i<G[u].size();++i)</pre>
             {
                  Edge &e=edges[G[u][i]];
                  if(e.cap>e.flow) m=min(m,d[e.to]);
             }
             if(--num[d[u]]==0) break;
```

```
++num[d[u]=m+1];
             cur[u]=0;
             if(u!=s) u=edges[p[u]].from;
        }
    }
    return flow;
}
bool build(int m,int n,int s,int t)
    for(int i=1;i<=m;++i)</pre>
        for(int j=1; j<=n;++j)</pre>
             if(low[i][j]<=up[i][j])</pre>
                 addedge(i,j+m,up[i][j]-low[i][j]);
             else return false;
    for(int i=1;i<=m;++i)</pre>
    {
        addedge(s,i,rowsum[i]-in[i]);
        source+=rowsum[i]-in[i];
    }
    for(int j=1; j<=n;++j)</pre>
    {
        addedge(j+m,t,colsum[j]-out[j]);
    }
    return true;
}
void print(int m,int n)
{
    for(int i=1;i<=m;++i)</pre>
        for(int j=1;j<=n;++j)</pre>
        {
             Edge &e=edges[(i-1)*n*2+(j-1)*2];
             if(j>1) putchar(' ');
             printf("%d",e.flow+low[i][j]);
             if(j==n) putchar('\n');
        }
}
```

```
}ans;
void init(int m,int n)
{
    source=0;
    for(int i=1;i<=m;++i)</pre>
        for(int j=1; j<=n;++j)</pre>
             low[i][j]=0,up[i][j]=INF;
}
int main()
    int N;
    scanf("%d",&N);
    while(N--)
    {
        scanf("%d%d",&m,&n);
        ans.init(maxn);
        init(m,n);
        int row=0,col=0;
        for(int i=1;i<=m;++i)</pre>
             scanf("%d",&rowsum[i]);
             row+=rowsum[i];
        for(int i=1;i<=n;++i)</pre>
        {
             scanf("%d",&colsum[i]);
             col+=colsum[i];
        }
        int C;
        scanf("%d",&C);
        while(C--)
        {
             int r,c,val;
             char ope[5];
             scanf("%d%d%s%d",&r,&c,ope,&val);
             int rstart=r,rend=r,cstart=c,cend=c;
             if(c==0) cstart=1,cend=n;
             if(r==0) rstart=1,rend=m;
             for(int i=rstart;i<=rend;++i)</pre>
```

```
for(int j=cstart; j<=cend; ++j)</pre>
                 {
                     if(ope[0]=='=')
                         low[i][j]=up[i][j]=val;
                     else if(ope[0]=='>')
                         low[i][j]=max(low[i][j],val+1);
                     else if(ope[0]=='<')</pre>
                         up[i][j]=min(up[i][j],val-1);
                 }
        }
        memset(in,0,sizeof(in));
        memset(out,0,sizeof(out));
        for(int i=1;i<=m;++i)</pre>
            for(int j=1;j<=n;++j)</pre>
                 in[i]+=low[i][j];
        for(int j=1; j<=n;++j)</pre>
            for(int i=1;i<=m;++i)</pre>
                 out[j]+=low[i][j];
        int S=0,T=m+n+1;
        bool flag=false;
        if(row!=col) flag=true;
        if(!flag && !ans.build(m,n,S,T)) flag=true;
        int flow=ans.Maxflow(S,T);
        if(!flag && flow!=source) flag=true;
        if(flag) printf("IMPOSSIBLE\n");
        else ans.print(m,n);
        printf("\n");
    }
    return 0;
}
     强连通缩点 tarjan
2.5
struct SCC
{
    vector<int> G[maxn];
    int pre[maxn],low[maxn],sccno[maxn],dfs_clock,scc;
    // scc: 强连通分量个数, sccno[i]: 缩点后 i 所在点编号
    stack<int> s;
    void init()
```

```
{
        for(int i=0;i<=n;++i) G[i].clear();</pre>
        memset(sccno,0,sizeof(sccno));
        memset(pre,0,sizeof(pre));
        while(!s.empty()) s.pop();
        dfs_clock=scc=0;
    }
    void addEdge(int u,int v) { G[u].push_back(v); }
    void tarjan(int u)
    {
        pre[u]=low[u]=++dfs_clock;
        s.push(u);
        for(int i=0;i<G[u].size();++i)</pre>
        {
            int v=G[u][i];
            if(!pre[v])
            {
                 tarjan(v);
                 low[u]=min(low[u],low[v]);
            }
            else if(!sccno[v]) low[u]=min(low[u],pre[v]);
        }
        if(low[u] == pre[u])
        {
            ++scc;
            while(1)
            {
                 int v=s.top();s.pop();
                 sccno[v]=scc;
                 if(v==u) break;
            }
        }
    }
    void findscc() { for(int i=1;i<=n;++i) if(!pre[i]) tarjan(i); }</pre>
};
```

2.6 最近公共祖先 LCA

2.6.1 tarjan

```
// 离线 Tarjan, 时间复杂度: O(n+q)
vector<int> G[maxn];
int par[maxn], vis[maxn], ans[maxn];
vector<PII> query[maxn]; // 存储查询信息
inline void init(int n)
   for (int i = 1; i <= n; i++)
   {
       G[i].clear(), query[i].clear();
       par[i] = i, vis[i] = 0;
   }
}
inline void add_edge(int u,int v) { G[u].pb(v); }
inline void add_query(int u,int v,int id)
{ query[u].pb({v, id}); query[v].pb({u, id}); }
void tarjan(int u)
{
   vis[u] = 1;
   for (auto\& v : G[u])
       if (vis[v]) continue;
       tarjan(v);
       unite(u, v);
   }
   for (auto& q : query[u])
   {
       int &v = q.X, &id = q.Y;
       if (!vis[v]) continue;
       ans[id] = find(v);
   }
}
2.6.2 ST 表
// 欧拉序列 +ST 表, 时间复杂度 O(2nlog(2n)+q)
vector<int> G[maxn];
vector<int> seq;// 欧拉序列(但叶子处只放了一个)
int dep[maxn], in[maxn];// 深度和各点进栈时间 (从 0 开始)
```

```
pair<int,int> dp[21][maxn << 1];// dp[log(maxn)][maxn<<1],.X 为深度,.Y 为位置
void init(int n)
{
    for (int i = 0; i <= n; i++) G[i].clear();</pre>
    seq.clear();
}
void addedge(int u,int v) { G[u].emplace_back(v); G[v].emplace_back(u); }
void dfs(int u, int fa)
{
    dep[u] = dep[fa] + 1;
    in[u] = seq.size();// 进栈时间
    seq.push_back(u);
    for (auto &v : G[u])
    {
        if (v == fa) continue;
        dfs(v, u);
        seq.push_back(u);
    }
    // 出栈时间 seq.size()+1;
}
void initrmq()
{
    int n = seq.size();
    for (int i = 0; i < n; i++) dp[0][i] = {in[seq[i]], seq[i]};</pre>
    for (int i = 1; (1 << i) <= n; i++)
        for (int j = 0; j + (1 << i) - 1 < n; j++)
            dp[i][j] = min(dp[i - 1][j], dp[i - 1][j + (1 << (i - 1))]);
}
int lca(int u, int v)
{
    int l = in[u], r = in[v];
    if (1 > r) swap(1, r);
    int k = 31 - __builtin_clz(r - 1 + 1);
    return min(dp[k][1], dp[k][r - (1 << k) + 1]).Y;
}
```

```
欧拉回路
2.7
2.7.1 判定
2.7.2 求解
stack<int> s;
void dfs(int u)
    for(auto &v:G[u])
    {
        if(!vis[u][v])
        {
            vis[u][v]=1;// 有向图
            dfs(v);
        }
    }
    s.push(u);
}
// print
void print(int u)
{
    for(int v=1;v<=50;++v)</pre>
    {
        if(edge[u][v])
        {
            --edge[u][v],--edge[v][u];
            print(v);
            printf("%d %d\n",v,u);
        }
    }
}
```

3 数据结构 Data Structure

3.1 并查集 Union-Find Set

```
int par[maxn];
void init(int n) { for(int i=0;i<=n;++i) par[i]=i; }</pre>
int find(int x)
{
    if(par[x]==x) return x;
    return par[x]=find(par[x]);
}
void uni(int A,int B)
{
    int x=find(A),y=find(B);
    if(x==y) return ;
    par[x]=y;
}
bool same(int A,int B) { return find(A)==find(B); }
// 带权
int find(int x)
    if(par[x]==x) return x;
    int temp=par[x];
    par[x]=find(par[x]);
    rk[x]^=rk[temp];
    return par[x];
}
void uni(int A,int B,int type)
    int x=find(A),y=find(B);
    if(x==y) return ;
    int relat;
    if(type==1) relat=0;
    else relat=1;
    rk[y]=(rk[A]+relat-rk[B]+2)%2;// 三角形法则
    par[y]=x;
// 按秩合并
```

```
void unite(int x,int y)
{
   x=find(x),y=find(y);
   if(x==y) return ;
   if(rk[x]<rk[y]) par[x]=y; // 从 rk 小的向 rk 大的连边
   {
       par[y]=x;
       if(rk[x] == rk[y]) rk[x] ++;
   }
}
//非递归路径压缩(避免栈溢出 RE)
int find(int x)
{
   int k, j, r;
   r = x;
   while(r != par[r])
                       //查找跟节点
       r = par[r];
                       //找到跟节点,用r记录下
   k = x;
   while(k != r)
                          //非递归路径压缩操作
       j = par[k];
                       //用 j 暂存 par[k] 的父节点
       par[k] = r;
                       //par[x] 指向跟节点
                          //k 移到父节点
       k = j;
   }
   return r;
                          //返回根节点的值
}
3.2 拓扑排序 Topological Sorting
struct Topo
{
   vector<int> G[MAXN];
   int in [MAXN], ans [MAXN]; //ans 得到拓扑排序后点编号顺序
   int tot;
   void init(int N)
   {
       for(int i=0;i<=N;++i) G[i].clear();</pre>
       memset(in,0,sizeof(in));
       memset(ans,0,sizeof(ans));
```

```
tot=0;
   }
   void addEdge(int u,int v)
   {
       G[u].push_back(v);
       ++in[v];
   }
   void topo()
   {
       priority_queue<int, vector<int>, greater<int> > q;
       for(int i=1;i<=N;++i)</pre>
           if(!in[i]) q.push(i);
       while(!q.empty())
       {
           int u=q.top();q.pop();
           ans[total++]=u;
           for(int i=0;i<G[u].size();i++)</pre>
           {
               int v=G[u][i];
               if((--in[v])==0)
                   q.push(v);
           }
       }
   }
};
    树状数组
3.3
int bit[maxn],n,m;// n 下界, m 右界, bit 信息, getsum 求前缀和。
inline int lowbit(int x) { return x\&(-x); }
// 一维,区间段求和 [1]~[pos] 解决逆序对、连线交叉点等问题。非线性排列可通过 dfs 序、树链
→ 剖分等转化为线性排列。
void add(int pos,int val)
{
   for(int i=pos;i<=n;i+=lowbit(i))</pre>
       bit[i]+=val;
}
int getsum(int pos)
{
    int sum=0;
```

```
for(int i=pos;i>0;i-=lowbit(i))
       sum+=bit[i];
   return sum;
}
// 二维, 矩阵块求和 [1,1]~[x,y]。解决矩形图点更新, 区域求和等二维问题。
void add(int x,int y,int val)
{
   for(int i=x;i<=n;i+=lowbit(i))//i,x 为行方向
       for(int j=y;y<=m;j+=lowbit(j))//j,y 为列方向
           bit[i][j]+=val;
}
int getsum(int x,int y)
{
    int sum=0;
   for(int i=x;i>0;i-=lowbit(i))
       for(int j=y;j>0;j-=lowbit(j))
           sum+=bit[i][j];
   return sum;
}
3.4 RMQ
// 储存区间段的最值信息等,时间复杂度: O(nlogn+q)
int dp[maxn][30],a[maxn];
void initrmq()
{
   // 注意编号起始位置, 依据题进行取值
   for(int i=0;i<n;i++) dp[i][0]=a[i];</pre>
   for(int j=1;(1<<j)<=n;j++)</pre>
       for(int i=0;i+(1<<j)-1<n;i++)</pre>
           dp[i][j]=min(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);
}
int rmq(int 1,int r)
{
   if(l>r) awap(l,r);
   int k = 31 - __builtin_clz(r - 1 + 1);
   return min(dp[l][k],dp[r-(1<<k)+1][k]);
}
int dp[maxn][maxn][9][9],a[maxn][maxn];
```

```
int n,m;
//区域最值问题
void initrmq()
{
    for (int i = 0; (1 << i) <= n; i++)
        for (int j = 0; (1 << j) <= m; j++)
        {
            if (i == 0 \&\& j == 0) continue;
            for (int row = 1; row + (1 << i) - 1 <= n; row++)
                for (int col = 1; col + (1 << j) - 1 <= m; col++)
                    if (i)
                        dp[row][col][i][j] = max(dp[row][col][i - 1][j],
                                            dp[row + (1 << (i - 1))][col][i - 1][j]);</pre>
                    else
                        dp[row][col][i][j] = max(dp[row][col][i][j - 1],
                                            dp[row][col + (1 << (j - 1))][i][j - 1]);
        }
}
int rmq(int x1, int y1, int x2, int y2)
    int kx = 31 - __builtin_clz(x2 - x1 + 1);
    int ky = 31 - __builtin_clz(y2 - y1 + 1);
    int m1 = dp[x1][y1][kx][ky];
    int m2 = dp[x2 - (1 << kx) + 1][y1][kx][ky];
    int m3 = dp[x1][y2 - (1 << ky) + 1][kx][ky];
    int m4 = dp[x2 - (1 << kx) + 1][y2 - (1 << ky) + 1][kx][ky];
    return max(max(m1, m2), max(m3, m4));
}
3.5 表达式树
int lch[maxn],rch[maxn];
char op[maxn];
int nc=0;// 结点数
int build_tree(char*s,int x,int y)
{
     int i,c1=-1,c2=-1,p=0;
     int u;
     if(y-x==1)
     {
```

```
u=++nc;
         lch[u]=rch[u]=0;op[u]=s[x];
         return u;
     }
     for(i=x;i<y;i++)</pre>
         switch(s[i])
         {
             case'(':p++;break;
             case')':p--;break;
             case'+':case'-':if(!p)c1=i;break;
             case'*':case'/':if(!p)c2=i;break;
         }
     }
     if(c1<0) c1=c2;
     if(c1<0) return build_tree(s,x+1,y-1);</pre>
     u=++nc;
     lch[u]=build_tree(s,x,c1);
     rch[u]=build_tree(s,c1+1,y);
     op[u]=s[c1];
     return u;
}
3.6 线段树 Segment Tree
3.6.1 基础
\#define\ lson\ rt << 1
\#define \ rson \ rt << 1/1
#define Lson l, mid, lson
#define Rson mid+1,r,rson
int sum[maxn<<2],lz[maxn<<2];</pre>
// 注意四倍空间, 延迟更新标记的意义, ~=1 还是用作其它用处
void pushUp(int rt) { sum[rt]=sum[lson]+sum[rson]; }
void build(int l,int r,int rt)
{
    lz[rt]=0;// 延迟更新标记初始化
    if(l==r)
    {
        scanf("%d",&sum[rt]);
        return ;
```

```
}
    int mid=(1+r)>>1;
    build(Lson);
    build(Rson);
    pushUp(rt);
}
void update_point(int p,int val,int l,int r,int rt)
{
    if(r==1)
    {
        sum[rt]+=val;
        return;
    }
    int mid=(1+r)>>1;
    if(p<=mid) update(p,val,Lson);</pre>
    else update(p,val,Rson);
    pushUp(rt);
}
void pushDown(int rt,int len)
    if(lz[rt]==0) return ;
    sum[lson]=lz[rt]*(len-(len>>1));
    sum[rson]=lz[rt]*(len>>1);
    lz[lson]=lz[rson]=lz[rt];
    lz[rt]=0;
}
void update_range(int L,int R,int val,int l,int r,int rt)
    if(L<=1 && r<=R)
    {
        lz[rt]=val;
        sum[rt]=val*(r-l+1);//注意所做操作
        return ;
    }
    pushDown(rt,r-l+1);
    int mid=(1+r)>>1;
    if(L<=mid) update(L,R,val,Lson);</pre>
    if(mid<R) update(L,R,val,Rson);</pre>
    pushUp(rt);
```

```
}
int query_range(int L,int R,int l,int r,int rt)
{
    if(L<=1 && r<=R) return sum[rt];</pre>
    pushDown(rt,r-l+1);
    int mid=(l+r)>>1;
    int s=0;
    if(L<=mid) s+=query(L,R,Lson);</pre>
    if(mid<r) s+=query(L,R,Rson);</pre>
    return s;
}
3.6.2 维护线性变化
void pushdown(ull len,int rt)
{ // lz+, mul*
    if(mul[rt]!=1 || lz[rt])
    {
        lz[lson]=(lz[lson]*mul[rt])+lz[rt];
        lz[rson] = (lz[rson] * mul[rt]) + lz[rt];
        mul[lson] = mul[lson] * mul[rt];
        mul[rson] = mul[rson] * mul[rt];
        sum[lson] = (sum[lson] *mul[rt] + lz[rt] * (len - (len >> 1)));
        sum[rson] = (sum[rson] *mul[rt] +lz[rt] *(len>>1));
        mul[rt]=1;
        lz[rt]=0;
    }
}
     可持久化数据结构
3.7.1 01 字典树
// 可持久化 01 字典树
const int maxn=1e5+5;
int ch[maxn*20][2],cnt[maxn*20],rt[maxn];
int sz,a[maxn];
void inittree()
{
    sz=0,cnt[0]=0;
    memset(ch[0],-1,sizeof(ch[0]));
```

```
memset(cnt,0,sizeof(cnt));
}
// 维护每个点到根这条路径上所有点的权值构成的字典树
int insert(int old,int val)
{
   ++sz;
   int entry=sz,dad=sz;// 版本入口,父亲结点(旧版本继承来的)
   ch[sz][0]=ch[old][0],ch[sz][1]=ch[old][1];
   cnt[sz]=0;
   // cnt[sz]=cnt[old];
   for(int i=16;i>=0;--i)
   {
       int bit=(val>>i)&1;
       int newnode=++sz;
       // 创建新结点,先继承旧版本的对应结点过来(此时父亲还是旧版的没有更改过)
       // 继承的时候一定要注意继承对啊你是猪吗啊啊啊啊啊啊啊啊!!!!!!!!
       ch[newnode][0]=ch[ch[dad][bit]][0],ch[newnode][1]=ch[ch[dad][bit]][1];
       cnt[newnode] = cnt[ch[dad][bit]];
       ++cnt[newnode];// 更新这个结点记录的个数
       // printf("id=%d bit=%d cnt=%d\n", newnode, bit, cnt[newnode]);
       ch[dad][bit]=newnode;// 把本版本的父亲连到这个新结点
       dad=newnode; // 为向下更新做准备
   }
   return entry;
}
// 求 u->v 路径上除了 lca 的所有点权中和 z 异或值最大的结果值
int query(int u,int v,int lca,int z)
{
   int ans=0;
   for(int i=16;i>=0;--i)
   {
       int bit=(z>>i)&1;
       int num=cnt[ch[u][bit^1]]+cnt[ch[v][bit^1]]-2*cnt[ch[lca][bit^1]];
       // printf("digit=%d bit=%d
       \rightarrow num=\%d+\%d-\%d=\%d n'', i, bit, cnt[ch[u][bit^1]], cnt[ch[v][bit^1]], 2*cnt[ch[lca][bit^1]], num=
       if(num>0) ans |=(1<<i), bit^=1;
       // 这一位有跟它相反的就往那走(bit = 1),否则只能走另一个方向
       u=ch[u][bit],v=ch[v][bit],lca=ch[lca][bit];
   }
```

```
// printf("query ans=%d\n", ans);
   return ans;
}
void build(int u)
{
   rt[u]=insert(rt[par[u]],a[u]);
   for(auto &v:G[u])
       if(v!=par[u]) build(v);
}
3.7.2 权值线段树
// 可持久化权值线段树
const int maxn=1e5+5;
int lson[maxn*20],rson[maxn*20],sum[maxn*20];
// lson[i], rson[i] 为结点 i 左右子树编号, sum 维护的信息, 本题中为所管辖数字区间内的数出
→ 现多少次
int a[maxn],rt[maxn],cnt;
int n,m;
int id(int x){return lower_bound(temp.begin(),temp.end(),x)-temp.begin()+1;}
void update(int l,int r,int value,int pre,int &cur)
/**
 * 当前维护的区间 l,r 和要去更新的 value,
 * 要移植的前置版本在该处的编号 pre, 现正创的新版本的当前结点编号 cur (更新时给它打编号所
→ 以引用)
**/
{
   // 复制前置版本的信息
   ++cnt;
   lson[cnt]=lson[pre],rson[cnt]=rson[pre],sum[cnt]=sum[pre];
   // 因为要从这条分岔下去更新, 所以这里的信息要变化
   ++sum[cnt];
   // 记录这个新结点的编号
   cur=cnt;
   if(l==r) return ;// 到底, 更新完毕
   int mid=(l+r)>>1;// 否则继续向下
   if(value<=mid) update(1,mid,value,lson[pre],lson[cur]);</pre>
   else update(mid+1,r,value,rson[pre],rson[cur]);
}
int query(int l,int r,int k,int pre,int last)
```

```
/**
 * 当前查询的区间范围 l.r 和要查的第 k 大
* 查询的版本左右两端编号
**/
{
   if(l==r) return 1;// 到底, 找到所查第 k 大的值(离散化后)
   int mid=(l+r)>>1;
   // 否则看右端版本小的一半数有多少个,减去左端版本的个数,即查询版本内小的那一半数有多
   → 少个
   int s=sum[lson[last]]-sum[lson[pre]];
   // 如果个数比 k 大, 说明第 k 大个在小的那半数里, 也就是左子树中
   if(s>=k) return query(1,mid,k,lson[pre],lson[last]);
   else return query(mid+1,r,k-s,rson[pre],rson[last]);
   // 个数比 k 小, 转化为在大的那半数里求第 k-sum 大的数
}
3.8 树链剖分 HeavyLightDecomposition
struct HLD
{
   vector<int> G[MAXN];
   // 对 i: sz 以 i 为根子树大小, dep 深度, par 父亲, son 重儿子, top 所在链顶, id 入栈
   → 序 ([题目编号]= 树链编号)
   int sz[MAXN],dep[MAXN],par[MAXN],son[MAXN],top[MAXN],id[MAXN];
   /* 题目相关信息自己设, ### 注意输入编号、映射编号、数据结构编号间的映射和转换。### */
   int n,clk;
   void init(int n)
   {
      for(int i=0;i<=n;++i) G[i].clear();</pre>
      memset(son,0,sizeof(son));// 如果某结点没有儿子会被之前的数据影响
      this->n=n,clk=0;
   }
   void addedge(int u,int v) { G[u].push_back(v);G[v].push_back(u); }
   void getson(int u,int pre)// 标记深度、父亲、子树大小和重儿子,调用根getson(1,0);
   {
      dep[u]=dep[pre]+1,par[u]=pre,sz[u]=1;
      int fat=0;
      for(auto &v:G[u])
      {
          if(v==pre) continue;
```

```
getson(v,u);
         sz[u] += sz[v];
         if(sz[v]>fat) fat=sz[v],son[u]=v;
      }
   }
   void dfs(int u,int up)// 标记链顶、入栈序, dfs(1,1);
   {
      top[u]=up,id[u]=++clk,reflect[clk]=u;
      if(son[u]==0) return ;// 已经到达叶子
      dfs(son[u],up);// 每次先走重儿子, 重儿子同样在该重链上, 链顶相同
      for(auto &v:G[u])// 其它轻儿子的链顶为其本身
         if(v!=son[u] && v!=par[u]) dfs(v,v);
   }
   // 数据结构相关操作,一般线段树或树状数组(维护一段连续区间)
   // 注意: 更新和查找操作要用对应的 dfs 序号 id[pos], 可另外写个接口用于在外面调用, 和
   → DS 分开
   // 接口里面二次调用一定要 id[pos] 啊啊啊啊啊啊啊啊猪!!!
   int query(int u,int v)
   {
      int ans=0;
      while(top[u]!=top[v])// 先努力跳到同一根链上
         if(dep[top[u]] < dep[top[v]]) swap(u,v); // 让链顶深的往上跳
         // 因为同一根链上是一段连续区间, 所以可以直接调维护的数据结构的查询操作了
         ans=max(ans,dsquery(id[top[u]],id[u],1,n,1));// 查要上跳的点所在链的信息
         u=par[top[u]];// 然后跳出这条链,上跳到该链链顶的父亲
      }
      // if(u==v) return ans;// 树状数组玄学 RE 时用
      // 此时 u,v 已经在同一条链上,又可以直接调用维护信息的数据结构的查询操作了 qaq
      if(dep[u]>dep[v]) swap(u,v);// 记深度小的点为 u (令其 dfs 入栈序小)
      //此时的 u 应该是原来 u,v 的 LCA 了,因此注意若边权下放点权要去掉 LCA
      ans=max(ans,dsquery(id[u],id[v],1,n,1));// 即应变为 dsqmax(id[son[u]],id[v])
      return ans;
   }
};
```

3.9 伸展树 splay

3.9.1 维护序列

```
#define aim ch[ch[rt][1]][0]
// 维护序列的 splay, splay 上编号为序列下标
struct Splay
{
   int val[maxn],mx[maxn],lz[maxn],rev[maxn],sz[maxn],ch[maxn][2];
   // 结点值, 最大值, 标记区间加、翻转, 子树大小, 左右子结点编号
   int par[maxn],rt;// 各结点父亲编号, splay 树的根结点编号
   void newNode(int id,int v)
   {
       val[id]=mx[id]=v,sz[id]=1;
       lz[id]=rev[id]=ch[id][0]=ch[id][1]=0;
   }
   void init(int n)
   {
       newNode(0,-inf),newNode(1,-inf),newNode(n+2,-inf);
       for(int i=2;i<=n+1;++i) newNode(i,0);</pre>
       rt=build(1,n+2),par[rt]=0;
       par[0]=0,sz[0]=0,ch[0][1]=rt;
   }
   void pushup(int pos)
   {
       mx[pos]=val[pos],sz[pos]=1;
       int &l=ch[pos][0], &r=ch[pos][1];
       if(1) mx[pos]=max(mx[pos],mx[1]),sz[pos]+=sz[1];
       if(r) mx[pos]=max(mx[pos],mx[r]),sz[pos]+=sz[r];
   }
   int build(int 1,int r)
   {
       if(l>r) return 0;
       if(l==r) return 1;
       int mid=(l+r)>>1,ls,rs;
       ch[mid][0]=ls=build(1,mid-1);
       ch[mid][1]=rs=build(mid+1,r);
       par[ls]=par[rs]=mid;
       pushup(mid);
```

```
return mid;
}
void pushdown(int pos)
{
   if(pos==0) return ;
    int &l=ch[pos][0], &r=ch[pos][1];
   if(lz[pos])
   {
        int &w=lz[pos];
        if(1) val[1]+=w, mx[1]+=w, lz[1]+=w;
        if(r) val[r]+=w,mx[r]+=w,lz[r]+=w;
        w=0;
   }
    if(rev[pos])
   {
        if(l) rev[l]^=1;
        if(r) rev[r]^=1;
        swap(1,r);
        rev[pos]=0;
   }
}
int find(int index) // 找到序列里 index 在 splay 树中对应的编号
{
   int u=rt;
   pushdown(u);
   while(sz[ch[u][0]]!=index)
        int lsz=sz[ch[u][0]];
        if(index<lsz) u=ch[u][0];</pre>
        else index-=lsz+1,u=ch[u][1];
        pushdown(u);
   }
   return u;
void rotate(int pos,int type)// type=1 右旋,type=0 左旋
{
    int p=par[pos],gp=par[p];// pos 的父亲爷爷
```

```
int &son=ch[pos][type];// pos 要动的那个子结点
    ch[p][!type]=son,par[son]=p;
    son=p, par[p]=pos;
    ch[gp][ch[gp][1]==p]=pos,par[pos]=gp;
   pushup(p);
}
void splay(int pos,int goal)// pos 转到 goal 的右儿子
{
    if(pos==goal) return ;
    while(par[pos]!=goal)
       int p=par[pos],gp=par[p];
       pushdown(gp),pushdown(p),pushdown(pos);
        int typepos=ch[p][0]==pos,typep=ch[gp][0]==p;
        // 左儿子右旋, 右儿子左旋
        if(gp==goal) rotate(pos,typepos);
       else
        {
            if(typepos==typep) rotate(p,typep);
            else rotate(pos,typepos);
           rotate(pos,typep);
       }
    }
   pushup(pos);
    if(goal==0) rt=pos;
}
void select(int l,int r)// 此时 r+1 的左儿子就是操作区间 [l,r]
{
    int u=find(l-1), v=find(r+1);
    splay(u,0),splay(v,u);
void update(int l,int r,int value)
{
    select(1,r);
   mx[aim]+=value,val[aim]+=value,lz[aim]+=value;
void reverse(int 1,int r) { select(1,r); rev[aim]^=1; }
int query(int 1,int r) { select(1,r); return mx[aim]; }
```

```
}t;
3.9.2 平衡树 (cc)
struct node
  node *ch[2];
  int r; //优先级 rank, 这个数值越大, 优先级越高。
  int v; //值, 满足左子树的值小于父亲, 右子树的值大于父亲
  int s; //size
  node(int v):v(v){ch[0]=ch[1]=NULL;r=rand();s=1;}//new node(v);
  int cmp(int x)const
  {
      if(x==v)return -1;
      return x<v?0:1;
  }
  void maintain() //写在封装的结构体里面
{
   s=1;
   if(ch[0]!=NULL)s+=ch[0]->s;
   if(ch[1]!=NULL)s+=ch[1]->s;
}
};
//rank tree 名次树
//名次树中每个结点新加域 size。表示以它为根的树的结点多少
//Kth(k): 找出第 k 小的元素;
//Rank(x): 值 x 的名词;
void rotate(node* &o,int d)
   //d=0 是左旋,d=1 是右旋
   node*k=o->ch[d^1];
   o->ch[d^1]=k->ch[d];
   k->ch[d]=o;
   o->maintain();k->maintain();o=k;
}
void insert(node* &o,int x)
{
   if(o==NULL)
   {
       o=new node(x);
```

```
}
   else
    {
                         //堆的性质
                                      当 d=-1 的时候要根据题目来
       int d=o->cmp(x);
       insert(o->ch[d],x); //插入相应的子树
       if(o->ch[d]->r>o->r) //比较优先级
                           //调整旋转
       rotate(o,d^1);
   }
   o->maintain();
}
int kth(node *o,int k)
{
   if(o==NULL||k<=0||k>o->s)return 0;
   int s=(o->ch[1]==NULL?0:o->ch[1]->s);
   if(k==s+1)return o->v;
   else if(k<=s)return kth(o->ch[1],k); //因为满足二叉索引树的性质
   else return kth(o->ch[0],k-s-1);
}
void mergeto(node* &src,node* &dest)
    if(src->ch[0]!=NULL)mergeto(src->ch[0],dest);
    if(src->ch[1]!=NULL)mergeto(src->ch[1],dest);
    insert(dest,src->v);
   delete src;
    src=NULL;
}
void removetree(node* &x)
    if(x->ch[0]!=NULL)removetree(x->ch[0]);
    if(x->ch[1]!=NULL)removetree(x->ch[1]);
   delete x;
   x=NULL;
}
3.10 Treap
struct node
{
  node *ch[2];
  int r; //优先级 rank, 这个数值越大, 优先级越高。
```

```
int v; //值, 满足左子树的值小于父亲, 右子树的值大于父亲
   int s; //size
   node(int v): v(v) \{ch[0] = ch[1] = NULL; r = rand(); s = 1; \} // new \ node(v);
   int cmp(int x)const
   {
      if(x==v)return -1;
      return x<v?0:1;
   }
};
void rotate(node* &o,int d)
   //d=0 是左旋,d=1 是右旋
   node*k=o->ch[d^1];
   o->ch[d^1]=k->ch[d];
   k->ch[d]=o;o=k;
}
void insert(node* &o,int x)
{
   if(o==NULL) o=new node(x);
   else
    {
       int d=o->cmp(x);
                           //堆的性质 当 d=-1 的时候要根据题目来
       insert(o->ch[d],x); //插入相应的子树
       if(o->ch[d]->r>o->r) //比较优先级
                            //调整旋转
       rotate(o,d^1);
   }
}
void remove(node* &o,int x)
    int d=o->cmp(x);
   if(d==-1) //和该结点的键值相同;
   {
       if(o->ch[0]==NULL)o=o->ch[1];
       else if(o \rightarrow ch[1] == NULL)o = o \rightarrow ch[0];
       else
       {
           int d2=(o->ch[0]->r>o->ch[1]->r?1:0);
           rotate(o,d2);remove(o->ch[d2],x); //旋转,其次再继续从寻找到的位置出发
       }
```

```
}
    else remove(o->ch[d],x);
}
int find(node*&o,int x)
{
    while(o!=NULL)
    {
        int d=o->cmp(x);
        if(d==-1)return 1;//找到了
        else
        o=o->ch[d];
    }
    return 0;
}
```

4 数学 Math

4.1 快速乘-快速幂

//防止数太大 *ll*ll* 爆 *ll* ll Mul(ll a,ll b,ll mod)

```
{
    11 t=0;
    for(;b;b>>=1,a=(a<<1)\%mod)
        if(b&1) t=(t+a)\%mod;
    return t;
}
11 fast(ll base, ll exp)
    11 \text{ ans}=1;
    while(exp)
    {
        if(exp&1) ans=ans*base%mod;
        base=base*base%mod;
        exp>>=1;
    }
    return ans%mod;
}
     矩阵快速幂
4.2
 * mat A(m, vec(n))={{0,1,...,n-1}0,{}1,...,{}m-1}; 初始化
 * 对于矩阵快速幂应有 m==n。
 */
typedef vector<ll> vec;
typedef vector<vec> mat;
mat operator*(mat& A, mat& B)
{
    mat C(A.size(), vec(B[0].size()));
    for (int i = 0; i < A.size(); i++)</pre>
        for (int k = 0; k < B.size(); k++)</pre>
            if (A[i][k]) // 对稀疏矩阵的优化
                for (int j = 0; j < B[0].size(); j++)</pre>
                    C[i][j] = (C[i][j] + A[i][k] * B[k][j]) % mod;
```

```
return C;
}
mat Pow(mat A, ll n)
{
    mat B(A.size(), vec(A.size()));
    for (int i = 0; i < A.size(); i++) B[i][i] = 1;</pre>
    for (; n; n >>= 1, A = A * A)
        if (n \& 1) B = B * A;
    return B;
}
// 数组版
const int N;
struct matrix{long long mat[N][N];};
matrix operator *(matrix a,matrix b)
{
    matrix c;
    memset(c.mat,0,sizeof(c.mat));
    for(int k=0;k<N;k++)</pre>
        for(int i=0;i<N;i++)</pre>
        {
             if(a.mat[i][k]==0) continue;
             for(int j=0; j<N; j++)</pre>
             {
                 if(b.mat[k][j]==0) continue;
                 c.mat[i][j]=(c.mat[i][j]+(a.mat[i][k]*b.mat[k][j])%mod)%mod;
             }
        }
    return c;
}
matrix operator ^(matrix a,int n)
{
    matrix c;
    for(int i=0;i<N;i++)</pre>
        for(int j=0;j<N;j++)</pre>
             c.mat[i][j]= (i==j);
    while(n)
    {
        if(n\&1) c=c*a;
```

```
a=a*a;
       n>>=1;
   }
   return c;
}
4.3 扩展欧几里得
//d 最小公倍数, 解方程 ax+by=gcd(a,b)
//对于方程 ax+by=c; 要求 c 能被 gcd(a,b) 整除
void exgcd(int a,int b,int &d,int &x,int &y)
{
   if(!b) x=1;y=0;d=a;
   else
   {
       exgcd(b,a%b,d,y,x);
       y=a/b*x;
   }
}
4.4 筛法求素数
4.4.1 埃式筛
// O(nloglogn) 筛出 maxn 内所有素数
// notprime[i] = 0/1 0 为素数 1 为非素数
bool notprime[maxn] = {1, 1}; // 0 55 1 为非素数
void GetPrime()
{
   for (int i = 2; i < maxn; i++)</pre>
       if (!notprime[i] && i <= maxn / i) // 筛到 √n 为止
           for (int j = i * i; j < maxn; j += i)
              notprime[j] = 1;
}
     欧拉筛线性筛
/* 求一个数的 phi, 时间复杂度 sqrt(n) */
inline ll Phi(ll num)
{
   int ans = num;
   for (int i = 2; i * i <= num; ++i)
```

```
if (num % i == 0)
           ans -= ans / i;
           while (num \% i == 0)
               num /= i;
       }
   if (num > 1)
       ans -= ans / num;
   return phi[num] = ans;
}
/*
 * 线性筛 O(n) 得 1e7 内所有数的欧拉函数 phi[]、素数表 prime[]、素数个数 tot
 * 不要 phi 时可以把所有关于 phi 的表达式去掉 (别去 break), 传入的 n 为函数定义域上界。
 */
bool vis[maxn];
int tot, phi[maxn], prime[maxn];
void CalPhi(int n)
{
   memset(vis, 0, sizeof(vis));
   phi[1] = 1;
   tot = 0;
   for (int i = 2; i < n; i++)
   {
       if (!vis[i]) prime[tot++] = i, phi[i] = i - 1;
       for (int j = 0; j < tot; j++)
       {
           if (i * prime[j] > n) break;
           vis[i * prime[j]] = 1;
           if (i % prime[j] == 0)
           {
               phi[i * prime[j]] = phi[i] * prime[j];
               break;
           }
           else phi[i * prime[j]] = phi[i] * (prime[j] - 1);
       }
   }
}
```

```
4.5.1 区间筛
```

```
/*
 * [a,b) 区间筛(长度 <1e6, a、b 范围 1e12),函数返回区间内素数个数
 * is_prime[i-a]=true 表示 i 是素数, 把 1 当素数了, 记得特判。
 */
bool is_prime_small[maxn], is_prime[maxn];
int prime[maxn];
int segment_sieve(ll a, ll b)
{
   int tot = 0;
   for (ll i = 0; i * i < b; ++i)
       is_prime_small[i] = true;
   for (ll i = 0; i < b - a; ++i)
       is_prime[i] = true;
   for (ll i = 2; i * i < b; ++i)
       if (is_prime_small[i])
           for (11 j = 2 * i; j * j < b; j += i)
               is_prime_small[j] = false;
           for (11 j = max(2LL, (a + i - 1) / i) * i; j < b; j += i)
               is_prime[j - a] = false;
       }
   for (ll i = 0; i < b - a; ++i)
       if (is_prime[i]) prime[tot++] = i + a;
   return tot;
}
4.6 逆元
4.6.1 模 n 下 a 的逆元
void exgcd(ll a,ll b,ll &d,ll &x,ll &y)
{
   if(!b) x=1,y=0,d=a;
   else
    {
       exgcd(b,a%b,d,y,x);
       y=a/b*x;
   }
}
```

```
ll inv(ll a,ll n)
    11 d,x,y;
    exgcd(a,n,d,x,y);
    return d==1?(x+n)\frac{n}{n}:-1;
}
4.6.2 线性求逆元
// 线性求 1-(p-1)modp 的逆元
int main()
{
    A[i] = -(p/i) * A[p\%i];
    inv[i] = (p-(p/i))*inv[p\%i]\%p;
}
4.7 欧拉函数
const int maxn=1e5+5;
struct Num
    int count;//每个数的质因数个数
    int prime[16];//每个数的质因数数组
}N[maxn];
int Elur[maxn];//欧拉函数值
void ELUR()//欧拉函数
{
    Elur[1]=1;
    for(int i=0;i<=1e5;i++)</pre>
        N[i].count=0;
    for(int i=2;i<=1e5;i++)</pre>
    {
        if(!Elur[i])
        {
            for(int j=i;j<=1e5;j+=i)</pre>
            {
                if(!Elur[j])Elur[j]=j;
                Elur[j]=Elur[j]*(i-1)/i;
                N[j].prime[N[j].count]=i;
                N[j].count++;
```

```
}
        }
    }
}
int main()
    ELUR();
    for(int i=1;i<=20;i++)</pre>
        {
            cout<<N[i].count<<endl;</pre>
            int c=0;
            while(N[i].prime[c])
                cout<<N[i].prime[c++]<<"    ";</pre>
            cout<<endl;</pre>
        }
}
4.8 中国剩余定理求同余方程组
4.8.1 素数
const int maxn=1e5+5;
int prime[maxn],r[maxn];
//中国剩余定理(除数两两互质)
//r[i]=x%prime[i],r[i] 存余数,a[i] 存被除数
void exgcd(int a,int b,int &d,int &x,int &y)
{
    if(!b)
    {
        x=1;y=0;d=a;
    }
    else
    {
        exgcd(b,a%b,d,y,x);
        y=a/b*x;
    }
}
int Chinese_Remainder()
{
    int M=1;
    for(int i=1;i<=n;i++)</pre>
```

```
M*=prime[i];//所有除数最小公倍数
    int d,x,y,answer=0;
    for(int i=1;i<=n;i++)</pre>
    {
        int m=M/prime[i];
        exgcd(prime[i],m,d,x,y);
        answer=(answer+y*m*r[i])%M;
    }
    return (M+answer%M)%M;
4.8.2 非素数
// 模线性同余方程组 (CRT 非素数), 两两方程结合法
// r[i]=x%chu[i],r[i] 存余数,chu[i] 存除数
const int maxn=1e5+5;
int c[maxn],r[maxn],n;
void exgcd(int a,int b,int &d,int &x,int &y)
{
    if(!b) x=1;y=0;d=a;
    else
    {
        exgcd(b,a\%b,d,y,x);
       y=a/b*x;
    }
}
int Chinese_Remainder()
{
    int c1=c[1],r1=r[1]; // a1,r1 为合并项
    for(int i=2;i<=n;i++)</pre>
    {
        int c2=c[i],r2=r[i]; // a2,r2 为当前项
        int d,x,y,p=r2-r1;
        exgcd(c1,c2,d,x,y);
        if(p\%d) return -1;
       int z=c2/d;
       x=(x*(p/d)%z+z)%z;
       r1=x*c1+r1;
       c1=c1*(c2/d);
       r1=(r1\%c1+c1)\%c1;
    }
```

```
return (r1%c1+c1)%c1;
}
// Test
int main()
{
    cin>>n;
    for(int i=1;i<=n;i++) cin>>c[i]>>r[i];
    cout<<Chinese_Remainder()<<endl;</pre>
}
4.9 数值计算
4.9.1 FFT
const double PI = acos(-1);
struct A{
    double r,i;
    A(double r = 0, double i = 0):r(r), i(i){}
}a[100],b[100];
A operator + (const A& x, const A& y){
    return A(x.r + y.r, x.i + y.i);
A operator - (const A& x, const A&y){
    return A(x.r - y.r, x.i - y.i);
}
A operator * (const A& x, const A&y){
    return A(x.r * y.r - x.i *y.i, x.r * y.i + x.i * y.r);
}
void FFT(A x[], int n,int p)
    for(int i = 0, t = 0; i < n; ++i){
       if(i > t)swap(x[i], x[t]);
       for(int j = n >> 1; (t \hat{j} >>= 1);
       //二进制反转
    }
    for(int h = 2; h <= n; h <<= 1){
       A wn(cos(p * 2 * PI / h), sin(p * 2 * PI / h));
       //取遍 n 个复数 且只用取 2 的幂次
       for(int i = 0; i < n; i += h){
          A w(1,0),u;
          for(int j = i, k = h>>1; j < i + k; ++j){
```

```
u = x[j + k] * w;
            x[j + k] = x[j] - u;
            x[j] = x[j] + u;
            w = w * wn;
         }
      //利用折半以及背角原理进行分治;
      }
   }
   if(p == -1)
       for(int i = 0; i < n; ++i)</pre>
          x[i].r /= n;
}
void conv(A a[], A b[], int n){
   FFT(a, n, 1);
   FFT(b, n, 1);
   for(int i = 0; i < n; ++i)
      a[i] = a[i] * b[i];
   FFT(a, n, -1);
}
int main()
     int n,m,N = 1;scanf("%d%d",&n,&m);
     while(N < n + m - 1)N <<= 1;
     conv(a, b, N);
}
4.9.2 FFT 二进制反转问题
void get_rev(int bit)//bit 表示二进制的位数
{//对 1~2~bit-1 中的所有数做长度为 bit 的二进制翻转
   for(int i=0;i<(1<<bit);i++)</pre>
       rev[i]=(rev[i>>1]>>1)|((i&1)<<(bit-1));//?!! SMG ?!!
}//运用的 dp 的思想
4.9.3 NTT
const 11 MOD = 998244353;
const 11 G = 3;
const int N = 15;
11 wn[N << 2],rev[N << 2];</pre>
11 fmod(l1 x, l1 y, l1 z)
```

```
{
    11 \text{ ans} = 1;
    while(y)
    {
        if(y & 1)ans = ans * x \% z;
        y >>= 1;
        x = x * x \% z;
    }
    return ans;
}
int NTT_init(int n_)
{
    int step = 0; int n = 1;
    for( ; n < n_; n <<= 1) ++step;</pre>
    for(int i = 1; i < n; ++i)</pre>
        rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (step - 1));
    // 蝴蝶操作, 二进制反转
    int g = fmod(G, (MOD - 1) / n, MOD);
    wn[0] = 1;
    for (int i = 1; i <= n; ++i)
        wn[i] = wn[i - 1] * g % MOD;
    // 求出 n 次单位根
    return n;
}
void NTT(ll a[], int n, int f)
{
    for(int i = 0; i < n; ++i)
        if(i < rev[i])swap(a[i], a[rev[i]]);</pre>
    for (int k = 1; k < n; k <<= 1) {
        for (int i = 0; i < n; i += (k << 1)) {
            int t = n / (k << 1);
            for(int j = 0; j < k; ++j){
                ll w = f == 1 ? wn[t * j] : wn[n - t * j];
                11 x = a[i + j];
                11 y = a[i + j + k] * w \% MOD;
                a[i + j] = (x + y) \% MOD;
                a[i + j + k] = (x - y + MOD) \% MOD;
            }
        }
```

```
}
if(f == -1)
{
    ll ninv = fmod(n, MOD - 2, MOD);
    for(int i = 0; i < n; ++i)
        a[i] = a[i] * ninv % MOD;
}</pre>
```

4.10 卢卡斯 Lucas

4.10.1 Lucas

```
const 11 \mod = 1e9+7;
ll fac[100005];
ll fmod(ll x, ll y){ll res = 1; while(y){if(y&1)res=res*x/mod;y>>=1; x=x*x/mod;}return

    res;
}
11 facinit()
    fac[0] = fac[1] = 1;
    for(ll i = 2; i <= 100000; ++i)
        fac[i] = fac[i - 1]*i\mbox{\ensuremath{\%}mod};
}
11 C(11 a, 11 b)
{
    if(b > a)return 0;
    return fac[a]*fmod(fac[b]*fac[a-b], mod - 2LL)%mod;
}
11 lucas(ll a,ll b)
{
    if(!b)return 1;
    return C(a%mod, b%mod)*lucas(a/mod, b/mod)%mod;
}
int main()
{
    ll x,y; facinit();
    while(cin>>x>>y)
        cout<<lucas(x,y)<<endl;</pre>
}
```

4.10.2 扩展卢卡斯 ExLucas

```
const int maxn = 1e5+5;
const 11 \mod = 1e9+7;
ll fmod(ll x,ll y, ll M){ll res=1; while(y){if(y&1)res=res*x\M;y>>=1; x=x*x\M;}return

  res;}

void exgcd(ll a,ll b,ll &d,ll &x,ll &y)
{
    if(!b){
        x=1;y=0;d=a;
    else{
        exgcd(b,a%b,d,y,x);
        y=a/b*x;}
}
11 inv(ll a,ll M)
{
    if(!a)return OLL;
    11 d,x = OLL,y = OLL;
    exgcd(a,M,d,x,y);
    x = ((x\%M) + M)\%M;
    if(!x)x += M;
    return x;
}
ll mul(ll n, ll pi, ll pk)
{
    if(!n)return 1LL;
    11 ans = 1LL;
    if(n/pk)
    {
        for(ll i = 2; i <= pk; ++i)
            if(i%pi)ans = ans*i%pk;
        ans = fmod(ans, n/pk, pk);
    }
    for(ll i = 2; i \leq n%pk; ++i)
        if(i%pi)ans = ans*i%pk;
    return ans * mul(n/pi,pi,pk)%pk;
11 C(11 a, 11 b, 11 M, 11 pi, 11 pk)
{
    if(b > a)return OLL;
```

```
11 x = mul(a,pi,pk),y = mul(b,pi,pk),z = mul(a - b,pi,pk);
    11 cnt = OLL,ans;
    for(ll i = a; i; i /= pi)cnt += i/pi;
    for(ll i = b; i; i /= pi)cnt -= i/pi;
    for(ll i = a - b; i; i /= pi)cnt -= i/pi;
    ans = x * inv(y,pk)%pk * inv(z,pk)%pk *fmod(pi,cnt,pk)%pk;
    return ans * (M/pk)%M * inv(M/pk, pk)%M;
}
ll ex_lucas(ll a, ll b, ll M)
    11 \text{ ans} = 0;
    for(ll x = M, i = 2; i \le M; ++i)
        if(x\%i == 0)
        {
           11 pk = 1LL;
           while(x\%i == 0)pk *= i,x /= i;
           ans = (ans + C(a,b,M,i,pk))%M;
        }
        return ans;
}
int main()
{
   ll a,b,m;
   while(cin>>a>>b>>m)
    cout<<ex_lucas(a,b,m)<<endl;</pre>
}
4.11 线性基
struct 1_B
{
    ll d[61],b[61]; int cnt = 0;
    void init() { clr(d,0), clr(b,0), cnt = 0; }
    bool insrt(ll val)
    {
        for(int i = 60; i >= 0; i--)
        {
            if(!d[i])
            {
```

```
d[i] = val;
                 break;
             }
             val ^= d[i];
        }
        return val > 0;
    }
    11 get_max()
    {
        11 \text{ ans} = 0;
        for(int i = 60; i >= 0; --i)
             if((ans^d[i] > ans))
                 ans ^= d[i];
        return ans;
    }
    11 get_min()
    {
        for(int i = 0; i <= 60; ++i)</pre>
             if(d[i]) return d[i];
        return 0;
    }
    void rebuild()
    {
        for(int i = 60; i >= 0; --i)
             for(int j = i - 1; j >= 0; --j)
                 if(d[i]&(1LL<<j))d[i] ^= d[j];</pre>
        for(int i = 0; i <= 60; ++i)
             if(d[i])b[cnt++] = d[i];
    }
    11 get_kth(ll k)
    {
        11 \text{ ans} = 0;
        if( k \ge (1LL << cnt) ) return -1;
        for(int i = 60; i >= 0; --i)
             if(k\&(1LL<< i))ans ^= b[i];
        return ans;
    }
};
1_B merg(const 1_B &x,const 1_B &y)
```

```
{
    1_B ans = x;
    for(int i = 60; i >= 0; --i)
        if(y.d[i])ans.insrt(y.d[i]);
    return ans;
}
//保持上三角性质的求线性基
void cal()
{
    for(int i = 0; i < n; ++i)
       for(int j = max_size; j >= 0; --j)
            if((a[i] >> j)&1)
            {
                if(b[j]) a[i] ^= b[j];
                else
                {
                    b[j] = a[i];
                    for(int k = j - 1; k >= 0; --k)
                        if(b[k]&&((b[j] >> k)&1)) b[j] \hat{}= b[k];
                    for(int k = j + 1; k <= max_size; ++k)</pre>
                        if((b[k] >> j)\&1) b[k] = b[j];
                }
            }
}
4.12 自适应辛普森
const double exps=1e-5;
double F(double x)
    return 0;//写函数
double simpson(double a, double b, double A, double B)
{
    double c=a+(b-a)/2;
    return (A+4*F(c)+B)*(b-a)/6;
double asr(double a,double b,double eps,double A,double 1,double r) // 必要时加一个
\hookrightarrow deep
{
```

```
double c=a+(b-a)/2;
    double m=F(c);
    double L=simpson(a,c,l,m),R=simpson(c,b,m,r);
    if(fabs(L+R-A)<=15*eps)return L+R+(L+R-A)/15.0;
    return asr(a,c,eps/2,L,1,m)+asr(c,b,eps/2,R,m,r);
}
double asr(double a,double b,double eps)
{
    double x=F(a),y=F(b);
    return asr(a,b,eps,simpson(a,b,x,y),x,y);
}
      高斯消元 GauseElimination
4.13
const double eps=1e-8;
const int maxn=1e3+5;
typedef double Matrix[maxn][maxn];
//保证可逆
void gauss_emilination(Matrix A,int n)
    //求解的增广矩阵, 最后的 A[i][n] 是弟 i 个未知数的值
    for(int i=0;i<n;i++)</pre>
    {
        //选一行 r 并和 i 行交换
        int r=i;
        for(int j=i+1; j<n; j++)</pre>
            if( fabs(A[j][i]) > fabs(A[r][i]) )
                r=j;
        if(r!=i)
            for(int j=0;j<=n;j++)swap(A[r][j],A[i][j]);</pre>
        //与 i+1~n 行消元
        for(int k=i+1;k<n;k++)</pre>
            double f=A[k][i]/A[i][i];
            for(int j=i; j<=n; j++)A[k][j]-=f*A[i][j];</pre>
        }
    }
    //回代求值
    for(int i=n-1;i>=0;i--)
    {
```

```
for(int j=i+1; j<n; j++)</pre>
            A[i][n] -= A[j][n] * A[i][j];
        A[i][n]/=A[i][i];
    }
}
4.14 对角阵 GaussJordan
const double eps=1e-8;
const int maxn=1e3+5;
typedef double Matrix[maxn][maxn];
// 得到对角阵
void gauss_jordan(Matrix A,int n)
{
    // 求解的增广矩阵, 最后的 A[i][n] 是弟 i 个未知数的值
    for(int i=0;i<n;i++)</pre>
    {
        // 选一行 r 并和 i 行交换
        int r=i;
        for(int j=i+1; j<n; j++)</pre>
            if(fabs(A[j][i])>fabs(A[r][i]))r=j;
        if(fabs(A[r][i]) < eps) continue;</pre>
        if(r!=i)
            for(int j=0; j<=n; j++) swap(A[r][j],A[i][j]);</pre>
        // 与 i+1~n 行消元
        for(int k=0; k< n; k++)
        {
            if(k!=i)
            for(int j=n;j>=i;j--) A[k][j]-=A[k][i]/A[i][i]*A[i][j];
        }
    }
}
      米勒罗宾素数测试 MillerRabin
4.15
const int T=8;
11 random(11 n) { return (11)((double)rand()/RAND_MAX*n+0.5); }
11 fmod(ll a,ll b,ll c)//a^b%c;
{
    11 \text{ ans}=1;
```

```
while(b)
        if(b&1) ans=ans*a%c;
        a=a*a\%c;
        b >> = 1;
    }
    return ans;
}
bool Witness(ll a,ll b)//a~b;
    ll m=b-1; int j=0;
    while(!(m&1)) //分解 b-1=m*2~j;
        j++, m>>=1;
    11 x=fmod(a,m,b);
    if( x==1 \mid \mid x==b-1 ) return true;
    while(j--) //二次探测
    {
        x=x*x\%b;
        if(x==b-1) return true;
    }
    return false;
}
bool miller_rabin(ll x)
    if(x<2)return false;</pre>
    if(x==2)return true;
    if(!(x&1))return false;
    for(int i=1;i<=T;i++)</pre>
        11 a=random(x-2)+1;
        if(!Witness(a,x))
            return false;
    }
    return true;
}
int main()
{
    11 x;
    while(cin>>x)
```

```
{
        if(miller_rabin(x)) cout<<" 素数"<<endl;
        else cout<<" 合数"<<endl;
    }
}
4.16 模方程 (可非素数)
map<11, 11> dic;
11 fmod(l1 x, l1 y, l1 p)
    11 \text{ ans} = 1;
    while(y)
    {
        if(y\&1) ans = ans*x%p;;
        y>>=1;
        x = x*x\%p;
    }
    return ans;
}
ll exbsgs(ll a, ll b, ll p)
{
    if(b == 1LL) return 0;
    11 t, d = 1, k = 0;
    while((t = gcd(a,p)) != 1)
    {
        if(b % t) return -1;
        ++k; b /= t; p /= t; d = d*(a/t)%p;
        if(b == d) return k;
    }
    dic.clear();
    11 m = ceil(sqrt(p)), a_m = fmod(a,m,p), mul = b;
    for(ll j = 1; j \le m; ++j)
    {
        mul = mul *a%p;
        dic[mul] = j;
    for(ll i = 1; i <= m; ++i)
    {
        d = d *a_m\%p;
```

```
if(dic[d]) return i*m-dic[d]+k;
}
return -1;
}
```

5 字符串 String

5.1 字典树 Trie

```
* 插入和查询时间复杂度: O(length)
 * 空间换时间, 利用"公共前缀"降低查询时间的开销。
 * 使用时注意点:需要维护的信息。maxn 开所有串总长。
 */
struct Trie
{
   int ch[maxn] [26];
   int val[maxn];
   int id,rt;
   void init() { id=0,rt=newNode(); }
   int idx(char c) { return c-'a'; }
   int newNode()
   {
       memset(ch[id],-1,sizeof(ch[id]));
       val[id]=0;
       return id++;
   }
   void insert(string &s)
       int u=rt;
       for(auto &it:s)
       {
           int c=idx(it);
           if(ch[u][c]==-1) ch[u][c]=newNode();
           u=ch[u][c];
       }
       val[u]=1;
   }
   // query is similar to the insert function
}t;
```

5.2 KMP

```
// fail 为最终直接跳到底的地方, fail2 原始跳转点。
int fail[maxn],fail2[maxn];
void getfail(string &s,int fail[])
    int m=s.size();
   fail[0]=0,fail[1]=0;
   fail2[0]=fail2[1]=0;
   for(int i=1;i<m;++i)</pre>
   {
       int j=fail2[i];
       while(j && s[i]!=s[j]) j=fail2[j];
       fail2[i+1] = fail[i+1] = (s[i] = s[j])?j+1:0;
       if(fail[i+1]==j+1 && s[i+1]==s[j+1]) fail[i+1]=fail[j+1];
   }
}
5.3 AC 自动机
/*
 * maxn 为模式串可能的总长, init, insert 后别忘了 build 得 fail。
 * 时间复杂度: 建树 O(n 个 *len), 失配 O(n 个 *len), 文本 O(长 m* 失配跳转)
 * 因为失配指针构成失配树, 所以失配跳转总数上界 n-1(但 aaa... 沿来路每次跳回去也会退化到
\hookrightarrow O(n^2)
 */
struct ACchicken
{
    int ch[maxn][26],fail[maxn];
   int val[maxn];
   int sz,rt;
   void init() { sz=0,rt=newNode(); }
    int newNode()
    {
       memset(ch[sz],-1,sizeof(ch[sz]));
       val[sz]=0;
       return sz++;
   }
   inline int idx(char c) { return c-'a'; }
   void insert(const char *s)// 建字典树
    {
```

```
int u=rt;
   for(int i=0;s[i];++i)
   {
       int c=idx(s[i]);
       if(ch[u][c]==-1) ch[u][c]=newNode();
       u=ch[u][c];
   }
   ++val[u];
}
void build()// 跑 fail 同时把各个 ch[id][0~size] 补全了, 所以不该还有走到-1 空的情
   况了
{
   queue<int> q;
   fail[rt]=rt;
   for(int c=0;c<26;++c)</pre>
   {
       if(ch[rt][c]!=-1) fail[ch[rt][c]]=rt,q.push(ch[rt][c]);
       else ch[rt][c]=rt;// 令根不存在的后继回到根重新走
   }
   while(!q.empty())
   {
       int u=q.front();q.pop();
       for(int c=0;c<26;++c)</pre>
       {
           // 后继的失配应看前驱失配的下一个能否匹配, 能就连过去, 否则看根那有没有能
           → 配的
           if(ch[u][c]!=-1) fail[ch[u][c]]=ch[fail[u]][c],q.push(ch[u][c]);
           else ch[u][c]=ch[fail[u]][c];// 没有这种后继的话就从其它能走的模式串后
           → 面继续走
       }
   }
}
int query(const char *s)
{
   int u=rt, ans=0;
   for(int i=0;s[i];++i)
   {
       int c=idx(s[i]);
       u=ch[u][c];
```

```
int temp=u;
          while(temp!=rt)
          {
              ans+=val[temp];
              val[temp]=0;
              temp=fail[temp];
          }
      }
       return ans;
   }
}t;
    回文树
5.4
// 空间: O(n*size), 时间: O(nlog(size))
// 数组版
const int maxn = 100005;
const int SIZE = 26;
struct Palindromic_Tree
{
   int next[maxn][SIZE]; // next 指针, next 指针和字典树类似, 指向的串为当前串两端加上
   → 同一个字符构成
                      // fail 指针, 失配后跳转到 fail 指针指向的节点
   int fail[maxn];
                      // i 表示的本质不同的串个数 (count() 一遍后正确)
   int cnt[maxn];
                      // i 表示的最长回文串最右端为回文串结尾的回文串个数
   int num[maxn];
                      // len[i] 表示节点 i 表示的回文串的长度
   int len[maxn];
                      // 存放添加的字符
   int S[maxn];
                      // 指向上一个字符所在的节点,方便下一次 add
   int last;
                      // 字符数组指针
   int n;
                      // 节点指针
   int p;
   int newnode(int 1)
   { //新建节点
       for (int i = 0; i < SIZE; ++i)</pre>
          next[p][i] = 0;
       cnt[p] = 0, num[p] = 0;
      len[p] = 1;
      return p++;
   }
```

```
void init()//初始化
{
   p = 0, n = 0, last = 0;
   newnode(0), newnode(-1);
   S[n] = -1; fail[0] = 1; //开头放个字符集中没有的字符减少特判
}
int get_fail(int x)
{ //和 KMP 一样, 失配后找一个尽量最长的
   while (S[n - len[x] - 1] != S[n])
       x = fail[x];
   return x;
}
void add(int c)
{
   c -= 'a';
   S[++n] = c;
   int cur = get_fail(last); //通过上一个回文串找这个回文串的匹配位置
   if (!next[cur][c])
                                           //如果这个回文串没有出现过,说明
   {
   → 出现了一个新的本质不同的回文串
       int now = newnode(len[cur] + 2);
                                          //新建节点
       fail[now] = next[get_fail(fail[cur])][c]; //和 AC 自动机一样建立 fail 指
       → 针,以便失配后跳转
       next[cur][c] = now;
       num[now] = num[fail[now]] + 1;
   }
   last = next[cur][c];
   cnt[last]++;
}
void count()
{
   for (int i = p - 1; i >= 0; --i)
       cnt[fail[i]] += cnt[i];
   //父亲累加儿子的 cnt, 因为如果 fail[v]=u, 则 u 一定是 v 的子回文串!
}
```

```
};
// 邻接表,空间稍优,时间略慢
struct PAM
{
    vector<pair<int, int>> next[maxn];
    int fail[maxn], num[maxn], len[maxn];
    11 cnt[maxn];
    int s[maxn], n, p, last, sum;
    void init()
    {
        p = 0, sum = 0, last = 0, n = 0;
        newnode(0), newnode(-1);
        s[n] = -1;
        fail[0] = 1;
    }
    int newnode(int w)
    {
        next[p].clear();
        cnt[p] = num[p] = 0;
        len[p] = w;
        return p++;
    }
    int get_fail(int x)
    {
        while (s[n - len[x] - 1] != s[n])
            x = fail[x];
        return x;
    }
    int add(int c)
    {
        c -= 'a';
        s[++n] = c;
        int cur = get_fail(last);
        int flag = 0;
        for (int i = 0; i < next[cur].size(); i++)</pre>
            if (next[cur][i].first == c)
            {
                last = next[cur][i].second;
```

```
cnt[last]++;
                return num[last];
            }
        int now = newnode(len[cur] + 2);
        int fi = get_fail(fail[cur]);
        flag = 0;
        for (int i = 0; i < next[fi].size(); i++)</pre>
            if (next[fi][i].first == c)
            {
                flag = next[fi][i].second;
                break;
            }
        fail[now] = flag;
        next[cur].push_back(make_pair(c, now));
        num[now] = num[flag] + 1;
        last = now;
        cnt[now]++;
        return num[now];
    }
    void count()
    {
        for (int i = p - 1; i > 1; i--)
            cnt[fail[i]] += cnt[i];
    }
};
```

6 动态规划 Dynamic Programme

6.1 背包

```
int dp[maxn];
void zeropack(int c,int v)
{
    for(int i=m;i>=c;i--)
        dp[i]=max(dp[i],dp[i-c]+v);
}
void completepack(int c,int v)
{
    for(int i=c;i<=m;i++)
        dp[i]=max(dp[i],dp[i-c]+v);</pre>
```

```
}
void multipack(int c,int v,int shu)
{
   if(shu*c>=m)
   {
      completepack(c,v);
      return;
   }
   int k=1;
   while(k<shu)
      zeropack(k*c,k*v);
      shu-=k;
      k*2;
   }
   zeropack(shu*c,shu*v);
}
6.2 旅行商 TSP
void TSP()
{
   memset(dp,0x3f,sizeof(dp));
   for(int i=0;i<m;++i) dp[1<<i][i]=0;</pre>
   for(int i=1;i<(1<<m);++i)// 枚举状态: 经过哪些点
      for(int j=0;j<m;++j)// 经过这些点时到达的最后一个点
          if(dp[i][j]!=inf)// 这个状态是合法的
/** 我觉得其实 i 里存在 j 判断合法不太对? 存在 j 也有可能到不了 j 状态是 inf?
但 i \& (1 << j) 也可以过,是因为取小操作避免了从 inf 转移过去?
dp[i][j]!=inf 这个判断比 i\mathcal{C}(1<< j) 快了 15ms, 可能的确存在符合后者但 inf 的情况。
好吧,再交次没区别了,甚至更慢了点,可能是看机器心情吧 orz**/
             for(int k=0;k<m;++k)// 枚举新走到的点,那么它一定是新的终点
                 if(((i&(1<<k))==0) && cost[j][k]!=inf)</pre>
                    dp[i|(1<<k)][k]=min(dp[i|(1<<k)][k],dp[i][j]+cost[j][k]);</pre>
/** 注意如果 i 中已有 k 点,那么如果发生转移,有可能发生:
经过 i 这个集合,终点在 x,但是又转移到了 y,也就是这个状态同时有两个终点了,而这个转移又
→ 修改了状态, 就 GG 了!!!
**/
}
```

6.3 数位 dp

```
int num[20]; 11 dp[20][state];
ll dfs(int pos,/*state*/,int lead/* 前导零 */,int limit/* 上界 */)
{
   if(pos==-1)return 1;// 看情况
   if(!limit&&dp[pos][state]!=-1)return dp[pos][state];
   int up=limit?a[pos]:9;
   ll ans=0;
   for(int i=0;i<=up;i++)</pre>
   {
       if();
       else if();
       ans+=dfs(pos-1,/* 状态转移 */,(lead&&i)==0,limit&&i==a[pos])
       // 最后两个基本就这样
   }
   if(!limit&&!lead) dp[pos][state]=ans;
   // 比如不能有 62 那么这里直接记录是不是 6, 用 10 表示
   // 这样之后的状态则会有重复就可以用了
   return ans;
}
11 solve(11 x)
{
   int pos=0;
   while(x) { a[pos++]=x\%10, x/=10; }
   return dfs(pos-1,/* 状态 */,1,1);
   // 刚开始最高位都是有限制并且有前导零的,显然比最高位还高的位视为 O
}
```

7 计算几何 Computation Geometry

7.1 圆 Circle

7.1.1 求两圆交点

```
struct Circle
{
    Point c; double r;
    Circle(Point c, double r) : c(c), r(r) {}
    Point point(double a) { return Point(c.x + cos(a) * r, c.y + sin(a) * r); }
};
```

sol.push_back(p1);

sol.push_back(p2); return 2; // 相交

}

if (p1 == p2) return 1; // 相切

// 两圆交点个数及坐标 int getCircleIntersection(Circle C1, Circle C2, vector<Point> &sol) { double d = Length(C1.c - C2.c); if (dcmp(d) == 0) // 首先圆心重合 {// 其次半径相同, 然后就可以推出两圆重合 if (dcmp(C1.r - C2.r) == 0) return -1; return 0; } if (dcmp(C1.r + C2.r - d) < 0) return 0; // 相离没交点 if (dcmp(fabs(C1.r - C2.r) - d) > 0) return 0; // 内含, 没有交点 double a = angle(C2.c - C1.c); //向量 C1C2 的极角, 及 C1C2 到 C1P1 的角 double da = acos((C1.r * C1.r + d * d - C2.r * C2.r) / (2 * C1.r * d)); Point p1 = C1.point(a - da), p2 = C1.point(a + da);

8 其它 Other

8.1 莫队

```
int block[maxn],cnt[maxn],a[maxn];
int n,q,Ans,ans[maxn];
struct Node
    int l,r,id;
    bool operator<(const Node &b)const</pre>
    {
        if(block[1]==block[b.1]) return (block[1]&1)?(r<b.r):(b.r<r);
        return block[1] < block[b.1];</pre>
    }
}ask[maxn];
inline void add(int pos){}
inline void del(int pos){}
void Mos()
    // read data
    int sz=ceil(sqrt(1.0*n));
    for(int i=1;i<=q;++i)</pre>
    {
        // read l,r
        ask[i].id=i;
        block[i]=i/sz;
    }
    sort(ask+1,ask+q+1);
    // init assistant space
    int L=1,R=1;Ans=0;add(1);
    for(int i=1;i<=q;++i)</pre>
    {
        while(L<ask[i].1) del(L++);</pre>
        while(L>ask[i].1) add(--L);
        while(R<ask[i].r) add(++R);</pre>
        while(R>ask[i].r) del(R--);
        ans[ask[i].id]=Ans;
    }
}
```

8.2 离散化

```
// a 原序列, v 暂存离散化
sort(v.begin(),v.end());
v.resize(unique(v.begin(),v.end())-v.begin());
for(int i=0;i<n;++i)</pre>
   a[i]=lower_bound(v.begin(),v.end(),a[i])-v.begin()+1;
8.3 STL
/* - , set
set 和 multiset 用法一样, multiset 允许重复元素
利用 set 从大到小排序(自定义排序函数)*/
struct classcmp
{
   bool operator()(const int &lhs,const int &rhs)const
   {return lhs>rhs;}
};
multiset<int,classcmp> s;
// 结构体自定义排序函数
struct Node { int x,y; };
struct classcmp
{
   bool operator()(const Node &a,const Node &b)const
   {
       if(a.x!=b.x) return a.x<b.x;</pre>
       else return a.y>b.y;
   }// 按 x 从小到大,按 y 从大到小
};
multiset<Node,classcmp> s;
multiset<Node,classcmp>::iterator it;// 若定义迭代器也要带排序函数
// 函数
erase()// 删除元素(参数为元素值或迭代器, multi 会删光值的每一个)
lower_bound()// 返回指向大于(或等于)某值的第一个元素的迭代器
upper_bound()// 返回大于某个值元素的迭代器
equal_range()// 返回集合中与给定值相等的上下限两个迭代器
// = , string
s1.assign(s2);
s1.assign(s2,lenth);
s1.assign(s2,start,lenth);
```

```
s1.assign(times,char1);
s1.assign(start,end);
s1.at(pos);
8.4 pbds
// 红黑树, 不能有重复元素, 有重复就 pair 加个捣乱值
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
using namespace __gnu_pbds;
typedef tree<int, null_type, less<int>, rb_tree_tag,
/*
   定义一颗红黑树
   int 关键字类型
   null_type 无映射 (低版本 g++ 为 null_mapped_type)
   less<int> 从小到大排序 greater<int> 从大到小
   rb_tree_tag 红黑树 (splay_tree_tag)
   tree_order_statistics_node_update 结点更新
   插入 t.insert():
   删除 t.erase();
   Rank:t.order_of_key(key);
   第 K 小值:t.find_by_order(K-1); 从 O 开始
   // 前驱:t.lower bound();
   // 后继 t.upper_bound();
   a.join(b)b 并入 a 前提是两棵树的 key 的取值范围不相交
   a.split(v,b) key 小于等于 v 的元素属于 a, 其余的属于 b
   T.lower_bound(x) >=x 的 min 的迭代器
   T.upper_bound((x) >x 的 min 的迭代器
   T.find_by_order(k) 有 k 个数比它小的数
```

9 输入输出 IO

9.1 Python 输入输出

```
# while(scanf("%d",&n)==1)
while True:
    try:
       n=int(input())
       print(n)
    except EOFError:
        break
# while(scanf("%d%d", &a, &b) == 2)
while True:
    try:
        a, b = map(int, input().strip().split()) # strip 去掉前导和末尾的空格, split
        →切片
       print (a + b, end = ' ')
        # py3 的 print 是函数一定要括号, py2 不要, 最后括号外加逗号不自动换行, end 不加
        → 参数默认\n
    except EOFError:
       break
# int T; scanf("%d", \&T); while(T--)\{scanf("%d%d", \&n, \&m) == 2\}
T = int(input().strip())
for case in range(T):
    n, m = map(int, input().strip().split())
    print(n,m)
#条件结束
while True:
    n, m = map(int, input().strip().split())
    print(n,m)
    if n == 0 and m == 0:
       break
# n a1 a2 a3 ... an
T = int(input().strip())
for case in range(T):
    line = map(int, input().strip().split())
```

```
n, a = line[0], line[1:]
sum = 0
for i in range(n):
    sum += a[i]
print (sum)
```

9.2 Java 高精度 BigDecimal

```
import java.util.*;import java.math.*;
public class IO \{//\ in\ contests\ IO\ should\ be\ Main\ 
        public static class point { BigDecimal x,y; }// define one class
        public static point temp=new point();
        // quanju value
        public static point center(point a,point b,point c)
        {
            BigDecimal son=BigDecimal.valueOf(2);
            BigDecimal a1=b.x.subtract(a.x);
            BigDecimal b1=b.y.subtract(a.y);
            BigDecimal c1=((a1.multiply(a1)).add(b1.multiply(b1))).divide(son);
            temp.x=a1;temp.y=b1;
            BigDecimal a2=c.x.subtract(a.x);
            BigDecimal b2=c.y.subtract(a.y);
            BigDecimal c2=((a2.multiply(a2)).add(b2.multiply(b2))).divide(son);
            BigDecimal dd=(a1.multiply(b2)).subtract(a2.multiply(b1));
            temp.x=a.x.add((c1.multiply(b2).subtract(c2.multiply(b1))).divide(dd,20,0));
            temp.y=a.y.add((a1.multiply(c2).subtract(a2.multiply(c1))).divide(dd,20,0));
            return temp;
        }
    static point a=new point();
    static point b=new point();
    static point c=new point();
    static point d=new point();
    public static void main(String[] args) // main
        Scanner in=new Scanner(System.in);// scanf()
        int T=in.nextInt();
        while(T-->0)
```