```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

df = pd.read_csv('/content/archive temp.zip')

df
```

	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
0	1901	22.40	24.14	29.07	31.91	33.41	33.18	31.21	30.39	30.47	29.97	27.31	24.49
1	1902	24.93	26.58	29.77	31.78	33.73	32.91	30.92	30.73	29.80	29.12	26.31	24.04
2	1903	23.44	25.03	27.83	31.39	32.91	33.00	31.34	29.98	29.85	29.04	26.08	23.65
3	1904	22.50	24.73	28.21	32.02	32.64	32.07	30.36	30.09	30.04	29.20	26.36	23.63
4	1905	22.00	22.83	26.68	30.01	33.32	33.25	31.44	30.68	30.12	30.67	27.52	23.82
112	2013	24.56	26.59	30.62	32.66	34.46	32.44	31.07	30.76	31.04	30.27	27.83	25.37
113	2014	23.83	25.97	28.95	32.74	33.77	34.15	31.85	31.32	30.68	30.29	28.05	25.08
114	2015	24.58	26.89	29.07	31.87	34.09	32.48	31.88	31.52	31.55	31.04	28.10	25.67
115	2016	26.94	29.72	32.62	35.38	35.72	34.03	31.64	31.79	31.66	31.98	30.11	28.01
116	2017	26.45	29.46	31.60	34.95	35.84	33.82	31.88	31.72	32.22	32.29	29.60	27.18
4													+

df.head()

```
YEAR
                                                                            DEC AN
         JAN
               FFB
                     MΔR
                            APR
                                  MAY
                                        JUN
                                              JUL
                                                    AUG
                                                          SEP
                                                                OCT
                                                                      NOV
0 1901 22.40 24.14 29.07 31.91 33.41 33.18 31.21 30.39 30.47 29.97 27.31 24.49
1 1902 24.93 26.58 29.77 31.78 33.73 32.91
                                            30.92
                                                  30.73 29.80 29.12 26.31 24.04
2 1903 23.44
              25.03 27.83 31.39 32.91
                                      33.00 31.34
                                                  29.98
                                                        29.85
                                                               29.04 26.08 23.65
3 1904 22.50 24.73 28.21 32.02 32.64 32.07 30.36 30.09 30.04 29.20 26.36 23.63
```

```
#input data
x = df['YEAR']

#output data
y = df['ANNUAL']

plt.figure(figsize=(16,9))
plt.title('Temperature Plot of INDIA')
plt.xlabel('Year')
plt.ylabel('Annual Average Temperature')
plt.scatter(x, y)
```

<matplotlib.collections.PathCollection at 0x795c499c0940>

https://colab.research.google.com/drive/1lvMaWzET5pJZ1EDF286YKaR1tBS-_g54#printMode=true

```
11/6/23, 5:42 PM
```

```
[1980],
             [1981],
             [1982],
             [1983],
             [1984],
             [1985],
             [1986],
             [1987],
             [1988],
             [1989],
             [1990],
             [1991],
             [1992],
             [1993],
             [1994],
             [1995],
             [1996],
             [1997],
             [1998],
             [1999],
             [2000],
             [2001],
             [2002],
             [2003],
             [2004],
             [2005],
             [2006],
             [2007],
             [2008],
             [2009],
             [2010],
             [2011],
from sklearn.linear_model import LinearRegression
regressor = LinearRegression() #CREATING regressor object of linearregression class
regressor.fit(x, y) #model training
      ▼ LinearRegression
      LinearRegression()
regressor.coef
      array([0.01312158])
regressor.intercept_
      3.4761897126187016
# 0.1
regressor.predict([[2024]])
     array([30.03427031])
predicted = regressor.predict(x)
predicted
     array([28.4203158 , 28.43343739, 28.44655897, 28.45968055, 28.47280213,
             28.48592371, 28.49904529, 28.51216687, 28.52528846, 28.53841004,
             28.55153162, 28.5646532, 28.57777478, 28.59089636, 28.60401794, 28.61713952, 28.63026111, 28.64338269, 28.65650427, 28.66962585,
             28.68274743, 28.69586901, 28.70899059, 28.72211218, 28.73523376,
             28.74835534, 28.76147692, 28.7745985 , 28.78772008, 28.80084166,
             28.81396324,\ 28.82708483,\ 28.84020641,\ 28.85332799,\ 28.86644957,
             28.87957115, 28.89269273, 28.90581431, 28.91893589, 28.93205748,
             28.94517906, 28.95830064, 28.97142222, 28.9845438 , 28.99766538,
             29.01078696, 29.02390855, 29.03703013, 29.05015171, 29.06327329,
             29.07639487, 29.08951645, 29.10263803, 29.11575961, 29.1288812, 29.14200278, 29.15512436, 29.16824594, 29.18136752, 29.1944891,
             29.20761068, 29.22073227, 29.23385385, 29.24697543, 29.26009701,
             29.27321859, 29.28634017, 29.29946175, 29.31258333, 29.32570492,
             29.3388265 , 29.35194808, 29.36506966, 29.37819124, 29.39131282,
             29.4044344 , 29.41755599, 29.43067757, 29.44379915, 29.45692073,
```

```
29.47004231, 29.48316389, 29.49628547, 29.50940705, 29.52252864,
             29.53565022, 29.5487718 , 29.56189338, 29.57501496, 29.58813654,
             29.60125812, 29.6143797, 29.62750129, 29.64062287, 29.65374445, 29.66686603, 29.67998761, 29.69310919, 29.70623077, 29.71935236,
             29.73247394, 29.74559552, 29.7587171 , 29.77183868, 29.78496026,
             29.79808184, 29.81120342, 29.82432501, 29.83744659, 29.85056817, 29.86368975, 29.87681133, 29.88993291, 29.90305449, 29.91617608,
             29.92929766, 29.94241924])
#Q.2
import numpy as np
abs(y-predicted)
Ø
             0.539684
             0.786563
             0.023441
     2
             0.030319
     3
     4
             0.172802
             0.079933
     112
     113
             0.183054
     114
             0.016176
     115
             1.700702
     116
             1.477581
     Name: ANNUAL, Length: 117, dtype: float64
#mean absolute error
np.mean(abs(y - predicted))
                                  #y=actual
     0.22535284978630413
from sklearn.metrics import mean_absolute_error
mean absolute error(y, predicted)
     0.22535284978630413
#mean squared error
np.mean((y-predicted) ** 2)
     0.10960795229110352
from sklearn.metrics import mean_squared_error
mean_squared_error(y, predicted)
     0.10960795229110352
#R-square
from sklearn.metrics import r2_score
r2_score(y, predicted)
     0.6418078912783682
regressor.score(x,y)
     0.6418078912783682
#Q.3
#plt.title('temperature plot of india')
plt.xlabel('year')
plt.ylabel('annual avg temperature')
plt.scatter(x,y,label='actual',color='r',marker='.')
plt.plot(x,predicted,label='predicted',color='g')
plt.legend()
```

<matplotlib.legend.Legend at 0x795c420c6200>

<Axes: xlabel='YEAR', ylabel='ANNUAL'>

