Counting

Permutations & Combinations

Strings

- Given an alphabet (a finite set) B, we can consider strings of length k, made up of characters from the alphabet
 - @ e.g., B = $\{a,b,c\}$, and a length-5 string σ = aacca
 - Tormally, a length k string is a function $\sigma : \{1,...,k\} \rightarrow B$

1	2	3	4	5
a	a	С	С	a

- How many length-k strings exist over an alphabet of size n?
 - nk [Note: Grows exponentially with the length]
 - Proof by induction: Fix arbitrary alphabet size n. Let the number of k-long strings be a(k). Claim $a(k) = n^k$.
 - \emptyset $\alpha(1) = n$. For k>1, a k-long string consists of a (k-1)-long string followed by a single character. $\alpha(k) = \alpha(k-1)\cdot n$.

Strings

Binary Strings

- Binary string: A string with alphabet of size 2
 - Typically, alphabet {0,1}
- Number of length-k strings binary strings = 2^k
- A length-k binary string can be used to represent a subset of a set of size k
- Take the alphabet to be $[k] \triangleq \{1,...,k\}$
- Subset associated with string σ: $S_σ = \{ i \mid σ_i = 1 \}$
- Number of subsets of [k] = 2k

1	2	3	4	5
0	1	0	0	1

Permutations

Permutations refer to arrangements of a set of symbols as a string, without repetition

- Sometimes we want to consider shorter strings without repeating symbols
- How many length-k strings which do not have repeating symbols exist over an alphabet of size n?

$$P(n,k) = \begin{cases} 0 & \text{if } k>n \\ n!/(n-k)! & \text{otherwise} \end{cases}$$

$$n! = \begin{cases} 1 & \text{if } n=0 \\ n\cdot(n-1)! & \text{if } n>0 \end{cases}$$

$$n! = \begin{cases} 1 & \text{if } n=0 \\ n \cdot (n-1)! & \text{if } n>0 \end{cases}$$

Permutations

6 How many length-k strings which do not have repeating symbols exist over an alphabet of size n?

- Proof by induction on n (for all k) [Exercise]
 - Base case, n=1
 - Induction step: Using P(n,k) = n⋅P(n-1,k-1)

$$n!/(n-k)! = n \cdot (n-1) \cdot ... \cdot (n-k+1)$$

k times

a.k.a. falling factorial, $(n)_k$

$$\mathfrak{G} P(n,n) = n!$$

Permutations

Combinations

- How many subsets of size k does a set of size n have?
- We can represent subsets as strings without repetitions
 - @ e.g., $\{a,c,d\} \subseteq \{a,b,c,d,e\}$ can be represented as <u>acd</u>
- But the same subset can be represented as multiple strings: adc, cad, ...
 - We know exactly how many ways
 - k! strings using the same k symbols
- # k-symbol subsets of n-symbol alphabet = # repetition-free strings of length k, divided by k!

$$\odot C(n,k) = P(n,k)/k! = n! / ((n-k)! \cdot k!)$$

Also written $\binom{n}{k}$

C(n,k)

For n,k∈N, C(n,k) = n!/(k!(n-k)!) if k ≤ n, and 0 otherwise

- $\mathcal{C}(n,k) = C(n,n-k)$
 - Selecting k out of n elements is the same as unselecting n-k out of n elements
- C(n,0) = C(n,n) = 1
 - In particular, C(0,0) = 1 (how many subsets of size 0 does Ø have?)
- $C(n,0) + C(n,1) + ... + C(n,n-1) + C(n,n) = 2^n$

C(n,k)

- $(1+x)^n = \sum_{k=0 \text{ to } n} C(n,k) x^k$
- - @ Each term is of the form ? ? ? ? where each ? is 1 or x
- © Coefficient of x^k = number of strings with exactly k x's out of the n positions = C(n,k)
- Proof by induction on n: $coefficient of x^k in (1+x) \cdot (... + ax^{k-1} + bx^k + ...) is a+b$
 - \emptyset a = coefficient of x^{k-1} in $(1+x)^{n-1} = C(n-1,k-1)$ b = coefficient of x^k in $(1+x)^{n-1} = C(n-1,k)$
 - O(n,k) = C(n-1,k-1) + C(n-1,k) (where n,k ≥ 1)

C(n,k)

- $\mathfrak{G}(n,k) = C(n-1,k-1) + C(n-1,k)$ (where $n,k \ge 1$)
 - © Easy derivation: Let |S|=n and a ∈ S.
 C(n,k) = # k-sized subsets of S containing a
 + # k-sized subsets of S not containing a
- In fact, gives a recursive definition of C(n,k)
 - Base case (to define for $k \le n$): C(n,0) = C(n,n) = 1 for all $n \in \mathbb{N}$
 - Or, to define it for all $(n,k) \in \mathbb{N} \times \mathbb{N}$ Base case: C(n,0)=1, for all $n \in \mathbb{N}$,

 and C(0,k)=0 for all $k \in \mathbb{Z}^+$

Conventions for n=0 or k=0

- # of length-k strings over an alphabet of size n = nk
 - What if k=0?
 - We define the empty string as a valid string
 - $oldsymbol{0}$ $n^0 = 1$ such string
 - What if n=0? Empty string can be defined over an empty alphabet as well. So, 1 again.
- The empty string has no repeating symbols: P(n,0) = 1
 - P(n,0) = n!/(n-0)! still holds
 - P(0,0) = 1 holds too since 0! = 1
- Size-0 subsets of a size-n set? There is just one: Ø
 - O(n,0) = 1. $C(n,0) = n!/(0! \cdot n!)$ still holds
 - $\mathfrak{G} C(0,0) = 1$ (since $\mathfrak{Q} \subseteq \mathfrak{Q}$)

Counting

Balls and Bins

- How many ways can I throw a set of balls into a set of bins?
- Variants based on whether they are considered distinguishable (labelled) or indistinguishable

	Labelled balls	Unlabelled balls
Labelled bins	Function	Multiset
Unlabelled bins	Set Partition	Integer Partition

Further variants: "no bin empty", "at most one ball in a bin"

	Labelled balls	Unlabelled balls
Labelled bins	Function	Multiset
Unlabelled bins	Set Partition	Integer Partition

- Each ball must be thrown into a single bin
 - Throwing: mapping a ball to a bin
 - A function with the set of balls as the domain and the set of bins as the co-domain
- Number of ways of throwing:
 - Number of functions from A to B
 - "Function table": A string of length |A|, over the alphabet B
 - B|A| such strings

x∈A	f(x) ∈ B
1	1
2	0
3	1
4	0

How many Functions?

	Labelled balls	Unlabelled balls
Labelled bins	Function	Multiset
Unlabelled bins	Set Partition	Integer Partition

- Balls ∈ A, bins ∈ B. Let |A|=k, |B|=n.
- Unrestricted version:
 - \odot # functions f: A \rightarrow B = n^k
- Every bin can hold at most one ball: One-to-one functions
 - \odot # one-to-one functions from A to B = P(n,k)
 - Recall Pigeonhole Principle: There is a one-to-one function from A to B only if |B| ≥ |A|. P(n,k) = 0 for k > n
- No bin empty: Onto functions
 - # onto functions? A little more complicated.

Inclusion-Exclusion

- @ |RUSUT| = |R|+|S|+|T| |RnS| |SnT| |TnR| + |RnSnT|
- Given n finite sets T₁,...,T_n

$$\left| \bigcup_{\mathbf{i} \in [\mathbf{n}]} \mathsf{T}_{\mathbf{i}} \right| = \sum_{\mathbf{J} \subseteq [\mathbf{n}], \ \mathbf{J} \neq \emptyset} (-1)^{\left| \mathbf{J} \right| + 1} \left| \bigcap_{\mathbf{j} \in \mathbf{J}} \mathsf{T}_{\mathbf{j}} \right|$$

- Prove by induction on n [Exercise]

=
$$|\bigcup_{i \in [n]} T_i| + |T_{n+1}| - |\bigcup_{i \in [n]} Q_i|$$
 where $Q_i = T_i \cap T_{n+1}$ for $i \in [n]$

- How many onto functions from A to B? Say A=[k], B=[n].

@ Let's call it
$$N(k,n)$$
 $n^k - C(n,1)(n-1)^k + C(n,2)(n-2)^k - ...$

- © Claim: $N(k,n) = \sum_{i=0 \text{ to } n} (-1)^i C(n,i) (n-i)^k$
- Non-onto functions: $\bigcup_{i \in [n]} T_i$ where $T_i = \{ f: A \rightarrow B \mid i \notin Im(f) \}$
- \odot Inclusion-exclusion to count $|\bigcup_{i \in [n]} T_i|$

- $|T_{i_1} \cap ... \cap T_{i_t}| = (n-t)^k$
- Number of J⊆[n] s.t. |J|=t is C(n,t)
- $| \bigcup_{i \in [n]} T_i | = \sum_{t \in [n]} (-1)^{t+1} C(n,t) (n-t)^k$

How many ways to throw a set of k balls into a set of n bins?

	Labelled balls		alls	Unlabelled balls
Labelled bins	Function	all 1-to-1 onto	n ^k P(n,k) N(k,n)	Multiset
Unlabelled bins	Set Partition			Integer Partition

	Labelled balls	Unlabelled balls
Labelled bins	Function	Multiset
Unlabelled bins	Set Partition	Integer Partition

- Throwing k unlabelled balls into n distinguishable bins is the same as assigning integers (number of balls) to each bin
 - But the total number of balls is fixed to k
- A multi-set (a.k.a "bag") is like a set, but allows an element in it to occur one or more times
 - Only multiplicity, not order, matters: e.g., [a,a,b] = [a,b,a]
 - Formally, specified as a multiplicity function: $\mu : B \rightarrow \mathbb{N}$ e.g., $\mu(a)=2$, $\mu(b)=1$, $\mu(x)=0$ for other x.
 - The size of a multi-set: sum of multiplicaties: $\Sigma_{x \in B} \mu(x)$
- Throwing: Making a multi-set of size k, with elements coming from a ground-set of n elements (the n bins)

Examples

	Labelled balls	Unlabelled balls
Labelled bins	Function	Multiset
Unlabelled bins	Set Partition	Integer Partition

- Making a multi-set of size k, with elements coming from a ground-set of n elements
 - Place orders for k books from a catalog of n books (may order multiple copies of the same book)
 - Fill a pencil box that can hold k pencils, using n types of pencils
 - Distribute k candies to n kids (kids are distinguishable, candies are not)
 - \odot Solve the equation $x_1 + ... + x_n = k$ with $x_i \in \mathbb{N}$
 - @ Ground-set of size n, $\{a_1,...,a_n\}$. $\mu(a_i)=x_i$.
 - @ Can think of x₁,...,x_n as the bins, and each ball as a 1

Stars and Bars

	Labelled balls	Unlabelled balls
Labelled bins	Function	Multiset
Unlabelled bins	Set Partition	Integer Partition

- How many ways can I throw k (indistinguishable) balls into n (distinguishable) bins?
- Each such combination can be represented using n-1 "bars" interspersed with k "stars"

 - Number of such combinations = ?
 - ∅ (n-1)+k places. Choose n-1 places for bars, rest get stars

Example

	Labelled balls	Unlabelled balls
Labelled bins	Function	Multiset
Unlabelled bins	Set Partition	Integer Partition

- How many solutions are there for the equation x+y+z=11, with $x,y,z \in \mathbb{Z}^+$?
- 3 bins, 11 balls: But no bin should be empty!
- First, throw one ball into each bin
- Now, how many ways to throw the remaining balls into 3 bins?
 - @ 3 bins, 8 balls
 - @ 2 bars and 8 stars: e.g., \star \star \star \star \star \star \star
 - © C(10,2) solutions
 - @ e.g., above distribution corresponds to x=2, y=1, z=8
- Same as k-n balls, n bins without the no-bin-empty restriction

Variants

	Labelled balls	Unlabelled balls
Labelled bins	Function	Multiset
Unlabelled bins	Set Partition	Integer Partition

- Unrestricted use of bins
 - Multi-set of size k, ground-set of size n
 - Stars and Bars: C(n+k−1,n−1)
- No bin empty
 - Multiset of size k, with every multiplicity ≥ 1
 - \bullet Multiset of size k-n (with multiplicities \geq 0)
 - \odot C(k-1,n-1)
- At most one ball in each bin
 - Set of size k
 - C(n,k)

How many ways to throw a set of k balls into a set of n bins?

	Labelled balls			Unlabelled balls		
Labelled bins	Function	all 1-to-1 onto	n ^k P(n,k) N(k,n)	Multiset	all 1-to-1 onto	C(n+k-1,k) C(n,k) C(k-1,n-1)
Unlabelled bins	Set Partition			Integer Partition		

	Labelled balls	Unlabelled balls
Labelled bins	Function	Multiset
Unlabelled bins	Set Partition	Integer Partition

- (Labelled) elements of the set A are partitioned into (unlabelled) bins
 - Recall: $\{P_1,...,P_d\}$ is a partition of A if $A = P_1 \cup ... \cup P_d$, for all distinct i,j, $P_i \cap P_j = \emptyset$, and no part P_i is empty
- How many partitions does a set A of k elements have?
 - S(k,n): #ways A can be partitioned into exactly n parts
 - This corresponds to the "no bin empty" variant
 - #ways A can be partitioned into at most n parts: $\Sigma_{m\in[n]}$ S(k,m)
 - Total number of partitions, $B_k = \sum_{m \in [k]} S(k,m) \qquad \text{Bell number}$

Stirling number of the 2nd kind

How many Partitions?

	Labelled balls	Unlabelled balls
Labelled bins	Function	Multiset
Unlabelled bins	Set Partition	Integer Partition

- S(k,n): #ways A can be partitioned into exactly n parts
 - Suppose we labeled the parts as 1,...,n
 - Such a partition is simply an onto function from A to [n]
 - N(k,n) ways
 - But in a partition, the parts are not labelled. With labelling, each partition was counted n! times.
 - \odot S(k,n) = N(k,n) / n!

How many ways to throw a set of k balls into a set of n bins?

	Labelled balls			Unlabelled balls		
Labelled bins	Function	all 1-to-1 onto	n ^k P(n,k) N(k,n)	Multiset	all 1-to-1 onto	C(n+k-1,k) C(n,k) C(k-1,n-1)
Unlabelled bins	Set Partition	all 1-to-1 onto	Σ _{m∈[n]} S(k,m) O or 1 S(k,n)	Integer Partition		

	Labelled balls	Unlabelled balls
Labelled bins	Function	Multiset
Unlabelled bins	Set Partition	Integer Partition

- Writing k as the sum of n non-negative integers
 - Integer solutions to $x_1 + ... + x_n = k$, s.t. 0 ≤ $x_1 ≤ ... ≤ x_n$
- "No bin empty" variant: xi are positive integers
 - Number of such solutions called the partition number p_n(k)
- Number of solutions for the unrestricted variant: pn(k+n)
- "At most one ball in a bin" variant: 1 if n≥k, 0 otherwise

Partition Number

	Labelled balls	Unlabelled balls
Labelled bins	Function	Multiset
Unlabelled bins	Set Partition	Integer Partition

$$p_n(k) = |\{(x_1,...,x_n) | x_1+...+x_n=k, 1 \le x_1 \le ... \le x_n\}|$$

How many ways to throw a set of k balls into a set of n bins?

	Labelled balls			Unlabelled balls		
Labelled bins	Function	all	n ^k	Multiset	all	C(n+k-1,k)
		1-to-1	P(n,k)		1-to-1	C(n,k)
		onto	N(k,n)		onto	C(k-1,n-1)
	Sat	all	$\Sigma_{m\in[n]}$ S(k,m)	Intoger	all	p _n (k+n)
Unlabelled bins	Partition	1-to-1	0 or 1	Integer Partition	1-to-1	0 or 1
		onto	S(k,n)		onto	p _n (k)