(19)日本国特許庁(JP)

(12) 公開特許公報(A)

FΙ

(11)特許出願公開番号

特開平6-311897

(43)公開日 平成6年(1994)11月8日

(51)Int.Cl.⁶

識別記号

庁内整理番号

技術表示箇所

C 1 2 Q 1/58

1/58 1/527 6807-4B

6807-4B

審査請求 未請求 請求項の数1 OL (全 5 頁)

(21)出顯番号	特顯平5-103034	(71)出顧人	000003160 東洋紡績株式会社				
(22)出顯日	平成5年(1993)4月28日	/50\ \\ 100 \	大阪府大阪市北区堂島浜2丁目2番8号				
		(72)発明者	西矢 芳昭 福井県敦賀市東洋町10番24号 東洋紡績株 式会社敦賀バイオ研究所内				
		(72)発明者	手槌 真一 福井県敦賀市東洋町10番24号 東洋紡績株 式会社敦賀パイオ研究所内				
		(72)発明者	愛水 重典 福井県敦賀市東洋町10番24号 東洋紡績株 式会社敦賀パイオ研究所内				

(54)【発明の名称】 カリウムイオン測定用組成物

(57)【要約】

【目的】 操作性、定量性、正確性に優れ、ナトリウム イオン結合剤を必要としないカリウムイオン濃度の酵素 的測定用組成物を提供する。

【構成】 ウレアアミドリアーゼ、尿素、アデノシン三 燐酸またはその塩、重炭酸イオンおよびマグネシウムイ オンを含有するカリウムイオン測定用組成物。

【効果】 ウレアアミドリアーゼがナトリウムイオンに 作用しないことから、ナトリウムイオンの影響を受ける ことなく、正確に試料中のカリウムイオンを測定でき る。 1

【特許請求の範囲】

【請求項1】 (a) ウレアアミドリアーゼ、(b) 尿 素、(c)アデノシン三燐酸またはその塩、(d)重炭 酸イオンおよび(e)マグネシウムイオンを含有するこ とを特徴とするカリウムイオン測定用組成物。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はカリウムイオン測定用組 成物に関するものである。体液中のカリウムイオン測定 は、急性腎不全や慢性腎不全などの腎疾患、原発性アル 10 【0004】 デステロン症や続発性アルデステロン症などの内分泌症 疾患の、有用な情報を与えるものとして臨床意義が深 W.

[0002]

【従来の技術】従来、カリウムイオンを含めて体液中の 金属イオンの測定法としては、炎光光度計法、化学的測 定法、イオン選択電極法などが用いられてきている。し かしながら、炎光光度計法は操作が煩雑であり、試料の 処理能力に問題があった。化学的測定法は、操作が煩雑 な上に試薬が高価であるという問題があり、臨床検査の 20 本発明に到達した。 現場で実際には余り用いられていない。イオン選択電極 法は、比較的操作が簡単であるが、電極の劣化のため測 定時に誤差を生じるという問題がある。また最近では酵 素法によるカリウムイオンの測定方法が報告されている (Clin. Chen. 1989; 35:817-820、特開平1-503596号公報な ど)、この方法は、ピルビン酸キナーゼがカリウムイオ ンにより活性化されることを利用している。しかしなが ら、ピルビン酸キナーゼはナトリウムイオンによっても* URI.

*カリウムイオンと同様に活性化される。従って、体液中 にカリウムイオンよりも多量に存在するナトリウムイオ ンの影響を軽減するため、高価なナトリウム結合剤を添 加する必要があるという問題があった。

2

[0003]

【発明が解決しようとする課題】本発明の目的は、上記 現状に鑑み、操作性、定量性、正確性に優れ、ナトリウ ムイオン結合剤を必要としないカリウムイオン濃度の酵 案的測定用組成物を提供することである。

【課題を解決するための手段】本発明者らは、カリウム イオンにより活性化される酵素を用いて検体中のカリウ ムイオン濃度を測定する方法を鋭意検討したところ、ウ レアアミドリアーゼがカリウムイオンにより活性化され るが、ナトリウムイオンによっては活性化されないとい う優れた特性を示すことを見出した。従って、ウレアア ミドリアーゼを利用することにより、ナトリウムイオン 結合剤を使用せずに、体液中のカリウムイオン濃度を短 時間に簡単に高感度で正確に測定できることを見出し、

【0005】すなわち、本発明は(a)ウレアアミドリ アーゼ、(b)尿素、(c)アデノシン三燐酸またはそ の塩、(d)重炭酸イオンおよび(e)マグネシウムイ オンを含有することを特徴とするカリウムイオン測定用 組成物である。

【0006】本発明においてウレアアミドリアーゼ(U RL)は下記反応を触媒する。

【化1】

URL

尿素+重炭酸イオン+ATP ──→アロファン酸+ADP ──→アンモニア

K* . Mg**

【0007】本発明のカリウムイオン測定用組成物を用 いて試料中のカリウムイオンを測定するには、試料中の カリウムイオンとマグネシウムイオンの存在下、基質と なる尿素および重炭酸塩とATPにウレアアミドリアー ぜを作用させ、生成するアンモニアまたはADPを測定

【0008】本発明に用いられるウレアアミドリアーゼ 40 の起源は特に限定されるものではない。例えば、単細胞 緑藻、酵母、その他の微生物由来のものが用いられ、好 適にはサッカロマイセス国、キャンディダ屋のものが用 いられる。

【0009】重炭酸イオンとしては、重炭酸ナトリウ ム、重炭酸リチウムなどの重炭酸塩を使用する。重炭酸 塩としてはカリウム塩は使用できない。マグネシウムイ オンとしては、硫酸マグネシウム、塩化マグネシウムな どのマグネシウム塩を使用する。

※は、例えばアンモニアをαーケトグルタル酸およびNA DHまたはNADPHの存在下、グルタミン酸脱水素酵 素を作用させ、生成するNADまたはNADPを紫外部 の吸収度減少で測定する方法、アンモニアをグルタミン 酸塩およびATPの存在下、グルタミンシンセターゼを 作用させ、生成するグルタミンにグルタミンオキシダー ぜを作用させ、生成する過酸化水素を測定する方法、ア ンモニアにサリチル酸と次亜塩素酸ナトリウム及びニト ロプルシドナトリウムを作用させ、生成するインドフェ ノールを560nmの吸光で測定する方法、アンモニア 電極により直接測定する方法などがある。

【0011】本発明に用いられるウレアアミドリアーゼ の測定に使用する酵素濃度は、測定に適した濃度であれ ば特に制限されるものではないが、通常、0.01~1 OU/mlの範囲で好適に用いられる。尿素、アデノシ ン三燐酸またはその塩、重炭酸イオンおよびマグネシウ 【0010】生成したアンモニアを測定する手段として※50 ムイオンの使用濃度は、測定に適した濃度であれば特に

制限されるものではないが、尿素は通常、1~500m Mの範囲で好適に用いられ、アデノシン三燐酸またはそ の塩は通常、O. 1~10mMの範囲で好適に用いられ る。 重炭酸イオンは通常、5~500mM、マグネシウ ムイオンは通常、1~100mMの範囲が好適に用いら

【0012】本発明のカリウムイオン測定用組成物のp Hは、緩衝液によりpH6~8に保たれているのが好ま しく、緩衝液はカリウムイオンを含有しないものであれ ばいかなるものでもよい。例えばトリエタノールアミン 緩衝液、GOOD緩衝液、トリス緩衝液などが挙げられ ٥.

【0013】本発明の試薬は必要により、界面活性剤、 防腐剤、安定化剤、酵素賦活剤等を加えてもよい。界面 活性剤としては、非イオン界面活性剤などが好適に用い られる。防腐剤としては、NaNa、抗生物質などが好* *適に用いられる。安定化剤、酵素賦活剤としては効果を 示すものであれば特に限定されず、例えばアルブミン、 マグネシウムイオン等が挙げられる。

【0014】本発明の組成物を用いてカリウムを測定す る条件としては、特に厳密に規制するものではないが、 反応温度は20~40℃の間で、好ましくは25℃ある いは30℃である.反応時間は1~10分の間が好適で ある。測定波長としては、340 nm付近、または色素 を用いた場合は発色した色素の入mx 付近で測定される ことが望ましい。

[0015]

【実施例】以下、本発明を実施例により詳細に説明す ъ.

実施例1

試料中のカリウムイオン濃度は下記試薬を用いて下記測 定法により測定した。

試薬

0.05M トリス緩衝液 (pH8.0) ウレアアミドリアーゼ(サッカロマイセス属由来) 0. 2U/m1 200mM アデノシン三燐酸ナトリウム塩 1 mM 硫酸マグネシウム 10mM 重炭酸ナトリウム 4 m M グルタミン酸脱水素酵素 (プロテウス属由来) 100U/m1 αーケトグルタル酸 1 mM NADPH 0.5mM

【0016】测定方法

塩化カリウム水溶液10mMの10段階希釈液と血清1 0段階希釈液をそれぞれ試料とし、各100μlを採取 させて、340nmにおけるタイムコース(測定波長に おいて酵素反応が進んでいる挙動)と1分間の吸光度変 化を求めた。なお、ブランクはカリウムイオン含有被検 液の代わりに蒸留水を用いた。

【0017】図1に10mM塩化カリウム水溶液と血清※。

※試料のタイムコースを示す。図2に血清試料の希釈直線 性を示す。図3に10mM塩化カリウム水溶液の希釈直 線性を示す。図1~3より明らかなように、塩化カリウ し、これに上記試薬3mlを加えて30℃で5分間反応 30 ム水溶液、あるいは血清を試料として用いても、本発明 ではナトリウムイオン結合剤を使用せずに、短時間に正 確かつ簡単にカリウムイオンを測定することができる。 【0018】比較例1

> 試料中のカリウムイオン濃度を下記試薬を用いて下記測 定法により測定した。

弦笼

トリス緩衝液(pH7.6) 0.05M ビルビン酸キナーゼ (ウサギ筋肉由来) 0.5U/m1 ホスホエノールビルビン酸 1 mM アデノシン二燐酸ナトリウム塩 6 mM 塩酸マグネシウム 5 mM乳酸脱水素酵素 (微生物由来) 10U/m1 NADH 0.5mM

測定方法

塩化カリウム水溶液10mMの10段階希釈液を試料と し、各40µ1を採取し、これに上記試薬3.2m1を 加えて37℃で5分間反応させて、340nmにおける 1分間の吸光度変化を求めた。なお、ブランクはカリウ ムイオン含有被検査液の代わりに蒸溜水を求めた。

【0019】図4に10mM塩化カリウム水溶液の希釈★50 けずに試料中のカリウムイオンを測定することができ

★直線性を示す。図5に塩化ナトリウム水溶液を試料とし た場合の吸光度変化を示す。また図6に実施例1に示し た測定による塩化ナトリウムを試料とした場合の吸光度 変化を示す。図4~6より明らかなように、従来のピル ビン酸キナーゼを用いた方法ではナトリウム塩により吸 光度が変化するが、本発明ではナトリウム塩の影響を受

WEST

6

۵.

[0020]

【発明の効果】本発明のカリウムイオン測定用組成物を 用いることにより、試料中のカリウムイオンを、ナトリ ウムイオン結合剤を使用せずに、短時間に正確かつ簡単 に定量することができる。

5

【図面の簡単な説明】

【図1】10mM塩化カリウム水溶液と血清試料のタイムコースを示す。

【図2】血清試料の希釈直線性を示す。

【図3】10mM塩化カリウム水溶液の希釈直線性を示す。

【図4】10mM塩化カリウム水溶液の希釈直線性を示す。

【図5】塩化ナトリウム水溶液による吸光度変化を示す。

【図6】塩化ナトリウム水溶液による吸光度変化を示す。

10/665,888

PTO 05-2090 HAMT

Japanese Patent Document No. 06-311897

POTASSIUM ION MEASUREMENT COMPOSITION

[0000000000000]

Yoshiaki Nishiya; Shinichi Tejima; Shigenori Ukemizu

UNITED STATES PATENT AND TRADEMARK OFFICE Washington, D.C. February 2005

Translated by: Schreiber Translations, Inc.

```
(19) [Publication Office]
Japan Patent Office (JP)
(12) [Kind of Document]
Unexamined Patent Publication (A)
(11) [Publication Number of Unexamined Application]
Japan Unexamined Patent Publication Hei 6- 311897
(43) [Publication Date of Unexamined Application]
1994 (1994) November 8*
(43) [Publication Date of Unexamined Application]
1994 (1994) November 8*
(54) [Title of Invention]
POTASSIUM ION MEASUREMENT COMPOSITION
(51) [International Patent Classification, 5th Edition]
C12Q 1/58 6807-4B
1/527 6807-4B
[Number of Claims]
1
[Form of Application]
OL
[Number of Pages in Document]
[Request for Examination]
```

```
Unrequested
(21) [Application Number]
Japan Patent Application Hei 5- 103034
(22) [Application Date]
1993 (1993) April 28
(71) [Applicant]
[Identification Number]
3160
[Name]
TOYOBO CO. LTD. (DB 69-053-8160)
[Address]
Osaka Prefecture Osaka City Kita-ku Dojimahama 2-2-8
(72) [Inventor]
[Name]
Yoshiaki Nishiya
[Address]
Fukui Prefecture Tsuruga City Toyo-cho 10-24 Toyobo Co.
Ltd. (DB 69-053-8160) Tsuruga bio research laboratory *
(72) [Inventor]
[Name]
Shinichi Tejima
[Address]
Fukui Prefecture Tsuruga City Toyo-cho 10-24 Toyobo Co.
Ltd. (DB 69-053-8160) Tsuruga bio research laboratory *
```

```
(72) [Inventor]
```

[Name]

Shigenori Ukemizu

[Address]

Fukui Prefecture Tsuruga City Toyo-cho 10-24 Toyobo Co. Ltd. (DB 69-053-8160) Tsuruga bio research laboratory *

(57) [Abstract]

[Objective]

To present a composition component which is used for enzymatic measurement of potassium ion concentration which does not require the sodium ionic bond agent, but is superior in workability, quantitative behavior, and accuracy.

[Constitution]

Potassium ion measurement composition which contains urea amide lyase, urea, adenosine triphosphoric acid or its salt, bicarbonate ion and magnesium ion.

[Effect(s)]

Because urea amide lyase does not operate on the sodium ion, and is not effected by the sodium ion, the potassium ion in the specimen can be measured accurately.

[Claim(s)]

[Claim 1]

A composition for potassium ion measurement composition wherein there are (a) urea amide lyase , (b) urea , (c) adenosine triphosphoric acid or its salt , (d) bicarbonate ion, and (e) magnesium ion.

[Detailed Description of the Invention]

[0001]

[Field of Industrial Application]

This invention is related compositions that are used to measure potassium.

The measurement for potassium ion in the body's fluid, gives significant clinical meaning, namely, information about acute renal failure and chronic renal failure or other kidney diseases, idiopathic [arudesuteron] symptoms and other useful information pertaining to secondary [arudesuteron] symptoms or other endocrine disorder symptoms.

[0002]

[Prior Art]

Until recently, the flame brightness meter method and the chemical measurement method, and the ion selection electrode method etc have been used as measurement methods of metal ion, including potassium ion in body fluid.

But, because the flame brightness meter method operation was problematic, treatment capacity of the specimen became an issue.

There is a problem for the chemical measurement method that in addition to the procedure being complicated, the accompanying experimental drugs are expensive and in clinical investigations, have hardly been used.

The comparative operation is simple for the ion selection electrode method, but because of electrode degradation when measuring, problems occur because of deviation generation.

In addition, recently, the measurement method of potassium ion with the enzymatic method is reported. (Clin.Chem .1989;35:817-820, Japan Unexamined Patent Publication Hei 1-503596 Disclosure).

Pyruvic acid kinase uses activation by potassium ion for this method

But, pyruvic acid kinase is activated in same way as potassium ion even with the sodium ion.

Therefore, in body fluid, in order to reduce the influence of sodium ion which exists in large amounts in comparison

with the potassium ion, there was a problem that necessitated the addition of expensive sodium binder .

[0003]

[Problems to be Solved by the Invention]

The goal of this invention, in keeping with the abovementioned conditions, is to provide a composition which is used for enzymatic measurement which does not require a sodium ionic bond agent, but is superior in operability, quantitative behavior, and accuracy.

[0004]

[Means to Solve the Problems]

These inventors' diligent investigation was conducted using a method which measures potassium ion concentration in a test agent with, the urea amide lyase activated by the potassium ion , but by the sodium ion, a finding illustrating a superior characteristic.

Therefore, by utilizing urea amide lyase, without using a sodium ionic bond agent, potassium ion concentration in body fluid can be measured simply and accurately with high sensitivity, thus producing the invention.

[0005]

Namely, this invention is a composition for the measurement of potassium ion wherein there is included (a) urea amide lyase , (b) urea , (c) adenosine triphosphoric acid or its salt , (d) bicarbonate ion and that (e) magnesium ion.

[0006]

Urea amide lyase (URL) acts as a catalyst in this invention for the following reaction.

[Chemical Formula 1]

URL URL

[0007]

In measuring the potassium ion within the experimental materials by using the composition for measuring this invention's potassium ion with the existence of potassium and magnesium ion within the experimental materials, use is made of urea amide lyase in urea, the substrate, bicarbonate ion and ATP.

[8000]

The origin of the urea amide lyase, used for this invention, is not especially limited.

The urea amide lyase found in single cell green algae , yeast , other microbial , can be used, but that originating in the Genus Saccharomyces , or Genus Candida are ideal.

[0009]

Sodium bicarbonate , lithium bicarbonate or other bicarbonate ion is used as the bicarbonate ion.

You cannot use potassium salt as the bicarbonate ion.

Magnesium sulfate , magnesium chloride or other magnesium salts is used as the magnesium ion ,.

[0010]

The means for measuring the generated ammonia consists of the following methods: with the existence of $\alpha\text{-keto}$ glutaric acid and NADH or NADPH, a method which uses glutamic acid dehydrogenase and measures the ammonia by the reduction in absorption of the ultraviolet portion, and a method, with the existence of glutamine and ATP, using glutamine synthetase and the glutamine oxidase in glutamine and measuring the hydrogen peroxide which generates the ammonia, and the method using salicylic acid, sodium hypochlorite, and sodium nitroprusside measuring

indophenol which creates the ammonia, using the light absorption at 560nm, and a method which directly measures ammonia from an ammonia electrode.

[0011]

The enzyme concentration which is used for the measurement of urea amide lyase used in this invention is not especially controlled by a concentration appropriate for measurement, but normally its appropriate use is in the range 0.01 - 10 U/ml.

The concentration which is used for urea, adenosine triphosphoric acid or its salt , bicarbonate ion or magnesium ion is not especially controlled for a concentration appropriate for measurement, but the urea that is usually used is in the range of 1 - 500 mM , and the adenosine triphosphoric acid or its salt is ideally in a range of 0.1 - 10 mM .

Bicarbonate ion is usually 5 - 500 mM, and the ideal range for magnesium ion is 1 - 100 mM .

[0012]

The pH of this invention's composition for potassium ion measurement is ideally maintained at pH 6~8 by a buffer or more preferably by a substance that does not contain any potassium.

A list might comprise for example, triethanolamine buffer , GOOD buffer , and tris buffer.

[0013]

Reagents of this invention , according to demand, might include a boundary surfactant , antiseptic , stabilizer , enzyme activator.

A nonionic surfactant is appropriate for a boundary surfactant.

NaN3 or antibiotic is appropriate as an antiseptic.

Without being especially limited, if it shows effectiveness as a stabilizer or enzyme activator, albumin and magnesium ion can be cited.

[0014]

The conditions under which measurement of the potassium are taken using the composition of this invention, is not especially controlled, but the reaction temperature should be between $20-40\,\deg$ C, preferably 25 deg C or is 30 deg C.

An appropriate reaction time is between 1 - 10 minutes.

For the measurement wavelength, when using in the vicinity of 340nm or a dye, it is desirable that the measurement be taken in the λ_{max} vicinity of the dye that is colored.

[0015]

[Working Example(s)]

Below, this invention is explained in detail with Working Examples .

Working Example 1

It measured potassium ion concentration in a specimen by the below-mentioned measurement method making use of the

below-mentione	ed reage	ent .	 		
reagent	_				
[torisu] Buffer solution (pH 8. 0)		-		0.05 M	
Ureaamidoriaaz	0.2 U/m				
Urine urea				200 mM	i

1	ı	ı	ı	1 1	1	1 8
[adenoshin]						
Three						
triphosphoric acid sodium			!			
salt					1 mm	
	:					
* magnesium						
sulfate					10 mm	
Heavy sodium						
bicarbonate					4 mm	
-						
Gurutamin acid	l					
dehydrogenase		eusu				
origin]					100 U/m	
α-keto						
glutaric acid		<u> </u>			1 mm	
	,					
NADPH					0.5 mM	

[0016]

Measurement method

Assume 10 steps diluent and blood serum 10 steps diluent of potassium chloride aqueous solution 10mM as specimens respectively, extract each 100µl react for 5 minutes at 30 deg C by adding the above-mentioned reagent 3ml , and

require a time course at $340~\rm nm$ (behavior where enzymatic reaction advances by measured wavelength) with an absorbance change of 1 minute .

Furthermore, blank used distilled water in place of the potassium ionic test solution .

[0017]

Figure 1 shows 10 mM potassium chloride aqueous solution and time course of the blood serum specimen .

Dilution linearity of the blood serum specimen is shown in Figure 2 .

Dilution linearity of 10 mM potassium chloride aqueous solution is shown in Figure 3.

As is clear from Figures 1 \sim 3, even using the potassium chloride aqueous solution, or the blood serum , as a specimen, without using sodium ionic bond agent , potassium ion can be measured accurately and simply in a short time .

[0018]

Comparative Example 1

The potassium ion concentration in the specimen was measured by the following measurement method making use of the following reagent .

		:					
reagent	<u></u>	·	100				
[torisu] Lis buffer				0.05 M	· · · · · ·		
pyruvate kinase (rabbit muscle origin)					0.5 U/m		

phosphoenolpyruvic acid				1 mM	
[adenoshin] syn disodium phosphate				6 mM	
Hydrochloric magnate	·			5 mM	
	:				
Lactic acid dehydrogenase (microbe origin)l			10 U/m		
NADH			0	5 mM	

Measurement method

With a 10 step diluent pf potassium chloride aqueous solution as the specimen, , each 40 μl and adding 3.2ml of the reagent, react for 5 min at 30 degrees, seeking an absorbance change in 1 minutes for 340nm.

Furthermore, blank required distilled water in place of the inspection solution containing potassium.

[0019]

Figure 4 shows the dilution linearity of 10 mM potassium chloride aqueous solution.

Figure 5 shows the absorbance change when the sodium chloride aqueous solution is designated as the specimen.

In addition, Figure 6 shows the absorbance change when sodium chloride is designated as the specimen for measurement in Working Example 1.

As is clear from Figure 4 \sim 6, with the method which uses conventional pyruvic acid kinase, the absorbance changes with sodium salt , but in this invention without any effect from sodium salt , the potassium ion in specimen can be measured.

[0020]

[Effects of the Invention]

By using this invention's composition for measuring potassium ion in a specimen , without using a sodium ionic bond agent , it is possible to quantify in a short time accurately and simply.

[Brief Explanation of the Drawing(s)]

[Figure 1]

10 mM potassium chloride aqueous solution and time course of the blood serum specimen are shown.

[Figure 2]

Dilution linearity of the blood serum specimen is shown.

[Figure 3]

Dilution linearity of the 10 mM potassium chloride aqueous solution is shown.

[Figure 4]

Dilution linearity of the 10 mM potassium chloride aqueous solution is shown.

[Figure 5]

Absorbance change is shown with the sodium chloride aqueous solution .

[Figure 6]

Absorbance change is shown with the sodium chloride aqueous solution $\boldsymbol{.}$

[Figure 3]

