Отчет о выполнении лабораторной работы 1.1.1

Калашников Михаил, Б03-205

В работе используются линейка, штангенциркуль, микрометр, отрезок из проволоки из нихрома, амперметр, вольтметр, источник ЭДС, мост постоянного тока, реостат, ключ.

- 1. Точность измерения с помощью штангенциркуля $-0.1 \ mm$. Точность измерения с помощью микрометра $-0.01 \ mm$.
- 2. Измеряем диаметр проволоки штангенциркулем (d_1) и микрометром (d_2) на 10 различных участках (табл. 1).

$$\bar{d}_1 = 0.4 \ mm, \ \bar{d}_2 = 0.363 \ mm$$

	1	2	3	4	5	6	7	8	9	10
d_1, mm	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
d_2, mm	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.37	0.37	0.37
	$ar{d_1} = 0.4 \ mm ar{d_2} = 0.363 \ mm$									

Таблица 1: Результаты измерения диаметра проволоки

При измерении диаметра проволоки штангенциркулем случайная погрешность измерения отсутствует. Следовательно, точность результата определяется только точностью штангенциркуля (систематической погрешностью):

$$d_1 = (0.4 \pm 0.1) \ mm.$$

Измерения с помощью микрометра содержат как систематическую, так и случайную погрешности:

$$\sigma_{syst} = 0.01 \ mm, \ \sigma_{rand} = \frac{1}{N} \sqrt{\sum_{i=1}^{N} (d_2 - \bar{d})^2} = \frac{1}{10} \sqrt{2.1 \cdot 10^{-4}} \approx 1.4 \cdot 10^{-3} \ mm,$$

$$\sigma_d = \sqrt{\sigma_{syst}^2 + \sigma_{rand}^2} = \sqrt{(0.01)^2 + (0.0014)^2} \approx 0.01 \ mm.$$

Поскольку $\sigma_{rand}^2 \ll \sigma_{syst}^2$, то можно считать проволоку однородной по диаметру, а погрешность диаметра σ_d определяется только σ_{syst} микрометра:

$$d_2 = \bar{d}_2 \pm \sigma_d = (0.363 \pm 0.010) \ mm = (3.63 \pm 0.10) \cdot 10^{-2} \ cm.$$

3. Определим площадь поперечного сечения проволоки:

$$S = \frac{\pi d_2^2}{4} = \frac{3.14 \cdot (3.63 \cdot 10^{-2})^2}{4} \approx 1.03 \cdot 10^{-3} \ cm^2.$$

Величину погрешности σ_s найдем по формуле

$$\sigma_s = 2 \frac{\sigma_d}{d} S = 2 \frac{0.01}{0.363} \cdot 1.03 \cdot 10^{-3} \approx 5.7 \cdot 10^{-5} \text{ cm}^2.$$

Итак, $S = (1.03 \pm 0.057) \cdot 10^{-3} \ cm^2$, т.е. площадь поперечного сечения проволоки определена с точностью 6%.

4. Сведем основные характеристики приборов в табл. 2.

	Вольтметр	Амперметр
Система	Магнитоэлектрическая	Цифровая
Класс точности	0.5	0.5
Π редел измерений x_n	$0.75~\mathrm{V}$	2 A
Число делений шкалы <i>п</i>	150	-
Цена делений $\frac{x_n}{n}$	$5~\mathrm{mV/дел}$	-
Чувствительность $\frac{n}{r_{-}}$	$200~{ m дел/V}$	-
Абсолютная погрешность Δx_M	$2.5\mathrm{mV}$	$0.3~\mathrm{mA}$
Внутреннее сопротивление прибора	$250~\Omega$	1.2 Ω

Таблица 2: Основные характеристики приборов

- 5. Известно, что $R_{pr}\approx 5~\Omega,~R_V=250~\Omega,~R_A=1.2~\Omega.$ Оценим по формулам (4) и (5) величину поправок при измерении R_{pr} : для схемы рис. 1а $R_{pr}/R_V=5/250,$ т.е. 2%; для схемы рис. 16 $R_A/R_{pr}=1.2/5,$ т.е. 24%. Вывод: при измерении относительно небольших сопротивлений меньшую ошибку дает схема 1а.
- 6. Собираем схему 1а.
- 7. Опыт проводим для следующих трех длин проволоки: $l_1=(20.0\pm0.1)\ cm;\ l_2=(30.0\pm0.1)\ cm;\ l_3=(50.0\pm0.1)\ cm.$ Показания приборов записываем в табл. 3. Результаты измерения сопротивлений с помощью моста заносим в табл. 4.
- 8. Строим графики зависимостей V=f(I) для всех трех отрезков проволоки, проводя прямые через экспериментальные точки (рис. 2).
- 9. Для каждой длины l расчет проводим методом наименьших квадратов для прямой, проходящей через начало координат. Сопротивление находим как $R_{av} = \frac{\langle VI \rangle}{\langle I^2 \rangle}$ и его среднеквадратичную случайную ошибку как $\sigma_{R_{av}}^{rand} = \frac{1}{\sqrt{N}} \sqrt{\frac{\langle V^2 \rangle}{\langle I^2 \rangle}} R_{av}^2$, где N число экспериментальных точек. Результаты запишем в табл. 4.

Рис. 1: Схемы для измерения сопротивления при помощи амперметра и вольтметра

Рис. 2: График зависимости V=f(I)

l =	20 cm	l =	$30 \ cm$	$l = 50 \ cm$		
V,	I,	V,	I,	V,	I,	
mV	mA	mV	mA	mV	mA	
156	73.56	232	72.25	368	69.62	
192	90.49	276	85.0	412	77.22	
260	123.02	348	107.12	496	93.35	
344	163.05	630	194.12	790	148.6	
504	239.44	820	253.04	1090	205.4	

Таблица 3: Показания вольтметра и амперметра

$l = 20 \ cm$	$l = 30 \ cm$	$l = 50 \ cm$
$R_0 = 2.120 \ \Omega$	$R_0 = 3.235 \ \Omega$	$R_0 = 5.312 \ \Omega$
$R_{av} = 2.109 \ \Omega$	$R_{av} = 3.242 \ \Omega$	$R_{av} = 5.311 \ \Omega$
$R_{pr} = 2.127 \ \Omega$	$R_{pr} = 3.284 \ \Omega$	$R_{pr} = 5.424 \ \Omega$
$\sigma_R^{rand} = 0.002 \ \Omega$	$\sigma_R^{rand} = 0.003 \ \Omega$	$\sigma_R^{rand} = 0.004 \ \Omega$
$\sigma_R^{syst} = 0.005 \ \Omega$	$\sigma_R^{syst} = 0.005 \ \Omega$	$\sigma_R^{syst} = 0.007 \ \Omega$
$\sigma_R = 0.006 \ \Omega$	$\sigma_R = 0.006 \ \Omega$	$\sigma_R = 0.008 \ \Omega$

Таблица 4: Результаты измерения сопротивления проволоки

10. Возможную систематическую погрешность R_{av} оцениваем по формуле

$$\frac{\sigma_{R_{av}}^{syst}}{R_{av}} = \sqrt{\left(\frac{\sigma_{V}}{V}\right)^{2} + \left(\frac{\sigma_{I}}{I}\right)^{2}},$$

где I и V — максимальные значения тока и напряжения, полученные в эксперименте, а σ_V и σ_I — ошибки измерения вольтметра и амперметром. Ошибка σ_V равна половине абсолютной погрешности вольтметра:

$$\sigma_V = \frac{\Delta x}{2} = \frac{2.5}{2} \approx 1.25 \ mV.$$

Аналогично для амперметра:

$$\sigma_I = \frac{\Delta x}{2} = \frac{0.3}{2} \approx 0.15 \ mA.$$

Пример расчета $\sigma_{R_{av}}$ для проволоки длиной l=30~cm; из табл. 3 и 4 $R_{av}=3.242~\Omega,~V=820~mV,~I=253.04~mA.$

$$\sigma_{R_{av}} = R_{av} \sqrt{\left(\frac{\sigma_V}{V}\right)^2 + \left(\frac{\sigma_I}{I}\right)^2} = 3.242 \cdot \sqrt{\left(\frac{1.25}{820}\right)^2 + \left(\frac{0.15}{253.04}\right)^2} \approx 5.3 \cdot 10^{-3} \,\Omega.$$

Складываем случайную и систематическую ошибки по формуле $\sigma_R = \sqrt{(\sigma_R^{rand})^2 + (\sigma_R^{syst})^2}$ и результаты заносим в табл. 5.

11. Для всех трех длин l вносим поправку в измеренное значение сопротивления по формуле

l, cm	20	30	50
R_{av}, Ω	2.109	3.242	5.311
σ_R, Ω	0.006	0.006	0.008

Таблица 5: Значения R_{av} и σ_R для каждого значения l

$$R_{pr} = R_{av} + \frac{R_{av}^2}{R_V}.$$

Ввиду малости поправки считаем $\sigma_{R_{pr}}=\sigma_{R_{av}}.$ Данные заносим в табл. $_{4}$

- 12. Сравниваем результаты измерения сопротивления проволоки с помощью вольтметра и амперметра с результатами измерений мостом. В пределах погрешностей опыта результаты совпадают.
- 13. Определим удельное сопротивление проволоки по формуле

$$\rho = \frac{R_{pr}}{l} \frac{\pi d^2}{4}$$

и погрешность σ_{ρ} по формуле

$$\frac{\sigma_{\rho}}{\rho} = \sqrt{\left(\frac{\sigma_R}{R}\right)^2 + \left(2\frac{\sigma_d}{d}\right)^2 + \left(\frac{\sigma_l}{l}\right)^2}$$

и заносим результаты в табл. 6.

l,cm	ρ , $10^{-4} \Omega \cdot cm$	$\sigma_{\rho}, 10^{-6} \Omega \cdot cm$
20	1.10	6.1
30	1.13	6.3
50	1.12	6.2

Таблица 6: Значения R_{av} и σ_R для каждого значения l

Окончательно: $\rho = (1.12 \pm 0.06) \cdot 10^{-4} \ \Omega \cdot cm$.

Основной вклад в ошибку σ_{rho} вносит погрешность измерения диаметра проволоки, составляющая $\sim 3\%$, но так как из-за возведения в квадрат она удваивается, вклад в погрешность удваивается, вклад в погрешность результата составляет $\sim 6\%$. Поэтому при измерении сопротивления проволоки достаточна точность 3-4%.

Полученное значение удельного сопротивления сравниваем с табличными значениями. В справочнике (Физические величины. М.: Энергоиздат, 1991. С. 444) для удельного сопротивления нихрома при $20^{\circ}C$ значения в зависимости от массового содержания компонент сплава меняются от $0.97 \cdot 10^{-4} \ \Omega \cdot cm$ до $1.12 \cdot 10^{-4} \ \Omega \cdot cm$. Для получившегося в работе $1.12 \cdot 10^{-4} \ \Omega \cdot cm$ массовое содержание компонентов: 63% Ni, 20% Fe, 15% Cr, 2% Mn (проценты по массе).