Warm up

Calculate

$$\int \frac{\sin \sqrt{x}}{\sqrt{x}} \, dx$$

Hint: Use the substitution $u = \sqrt{x}$.

Computation practice: integration by substitution

Use substitutions to compute:

1.
$$\int \frac{\sin \sqrt{x}}{\sqrt{x}} dx$$

$$2. \int e^x \cos(e^x) dx$$

3.
$$\int \cot x \, dx$$

$$4. \int x^2 \sqrt{x+1} \, dx$$

Computation practice: integration by substitution

Use substitutions to compute:

1.
$$\int \frac{\sin \sqrt{x}}{\sqrt{x}} dx$$

$$2. \int e^x \cos(e^x) dx$$

3.
$$\int \cot x \, dx$$

4.
$$\int x^2 \sqrt{x+1} \, dx$$

$$5. \int \frac{e^{2x}}{\sqrt{e^x + 1}} dx$$

$$6. \int \frac{(\ln \ln x)^2}{x \ln x} \, dx$$

$$7. \int xe^{-x^2} dx$$

8.
$$\int e^{-x^2} dx$$

Definite integral via substitution

This final answer is right, but the write-up is WRONG. Why?

Calculate
$$I = \int_0^2 \sqrt{x^3 + 1} x^2 dx$$

Wrong answer

Substitution: $u = x^3 + 1$, $du = 3x^2 dx$.

$$I = \frac{1}{3} \int_0^2 \sqrt{x^3 + 1} (3x^2 dx) = \frac{1}{3} \int_0^2 u^{1/2} du$$

$$= \frac{1}{3} \frac{2}{3} u^{3/2} \Big|_0^2 = \frac{1}{9} (x^3 + 1)^{2/3} \Big|_0^2$$

$$= \frac{2}{9} (2^3 + 1)^{3/2} - \frac{2}{9} (0 + 1)^{3/2} = \frac{52}{9}$$

Integral of products of sin and cos

We want to compute

$$I = \int \sin^3 x \cos^2 x \, dx$$

- 1. Attempt the substitution $u = \sin x$
- 2. Attempt the substitution $u = \cos x$
- 3. One worked better than the other. Which one? Why? Finish the problem.

Integral of products of sin and cos

We want to compute

$$I = \int \sin^3 x \cos^2 x \, dx$$

- 1. Attempt the substitution $u = \sin x$
- 2. Attempt the substitution $u = \cos x$
- 3. One worked better than the other. Which one? Why? Finish the problem.
- 4. Assume we want to compute

$$\int \sin^n x \cos^m x \, dx$$

When will the substitution $u = \sin x$ be helpful? When will the substitution $u = \cos x$ be helpful?

Odd functions

Theorem 1

Let f be a continuous function. Let a > 0. IF f is odd, THEN

$$\int_{-a}^{a} f(x) dx = 0$$

Odd functions

Theorem

Let f be a continuous function. Let a > 0. IF f is odd, THEN

$$\int_{-a}^{a} f(x) dx = 0$$

- 1. Write down the definition of "odd function".
- 2. Draw a picture to interpret the theorem geometrically.
- 3. Prove the theorem!

 Hint: Write the integral as sum of two pieces. Use a substitution to show that one of the two pieces equals minus the other.

Computation practice: Integration by parts

Use integration by parts (possibly in combination with other methods) to compute:

1.
$$\int xe^{-2x}dx$$

$$2. \int x^2 \sin x \, dx$$

3.
$$\int \ln x \, dx$$

4.
$$\int \sin \sqrt{x} \, dx$$

Computation practice: Integration by parts

Use integration by parts (possibly in combination with other methods) to compute:

1.
$$\int xe^{-2x}dx$$

$$2. \int x^2 \sin x \, dx$$

3.
$$\int \ln x \, dx$$

4.
$$\int \sin \sqrt{x} \, dx$$

5.
$$\int x \arctan x \, dx$$

6.
$$\int x^2 \arcsin x \, dx$$

7.
$$\int e^{\cos x} \sin^3 x \, dx$$

8.
$$\int e^{ax} \sin(bx) dx$$

Persistence

Compute

Persistence

Compute

Persistence

Compute

There is a more efficient approach. Call

$$I_n = \int_1^e (\ln x)^n \, dx$$

Use integration by parts on I_n . You will get an equation with I_n and I_{n-1} . Now solve the previous questions.

Integrals from a graph

Estimate:

$$1. \int_0^1 f(x) dx$$

$$2. \int_0^1 f'(x) dx$$

$$3. \int_0^3 x \, f'(x) dx$$

$$4. \int_0^1 f(3x) dx$$

Integrals from a graph

Estimate:

$$1. \int_0^1 f(x) dx$$

$$2. \int_0^1 f'(x) dx$$

$$3. \int_0^3 x \, f'(x) dx$$

$$4. \int_0^1 f(3x) dx$$

Integrals from a graph

Estimate:

$$1. \int_0^1 f(x) dx$$

$$2. \int_0^1 f'(x) dx$$

$$3. \int_0^3 x \, f'(x) dx$$

$$4. \int_0^1 f(3x) dx$$

The error function

The following function is tabulated.

$$E(x) = \int_0^x e^{-t^2} dt.$$

Write the following quantities in terms of E:

1.
$$\int_{1}^{2} e^{-t^2} dt$$

2.
$$\int_{0}^{x} t^{2}e^{-t^{2}}dt$$

3.
$$\int_{0}^{x} e^{-2t^2} dt$$

The error function

The following function is tabulated.

$$E(x) = \int_0^x e^{-t^2} dt.$$

Write the following quantities in terms of E:

1.
$$\int_{1}^{2} e^{-t^{2}} dt$$
 4. $\int_{0}^{1} e^{-t^{2}+6t} dt$

2.
$$\int_{0}^{x} t^{2} e^{-t^{2}} dt$$
 5.
$$\int_{x_{1}}^{x_{2}} e^{-\frac{(t-\mu)^{2}}{\sigma^{2}}} dt$$

3.
$$\int_0^x e^{-2t^2} dt$$
 6. $\int_1^2 \frac{e^{-t}}{\sqrt{t}} dt$

Exp-trig antiderivative

We want to compute

$$I = \int e^{ax} \sin(bx) \ dx$$

- Try once integration by parts choosing $u = e^{ax}$. Stop.
- Go back to I. Now try integration by parts once choosing $u = \sin(bx)$ instead. Stop.
- Look at what you did. Think.

Practice: Integrals with trigonometric functions

Compute the following antiderivatives. (Once you get them to a form from where you see a path to finish them, even if long, you may stop.)

1.
$$\int \sin^{10} x \cos x \ dx$$

$$x dx$$
 5. $\int \cos^4 x dx$

$$2. \int \sin^{10} x \cos^7 x \, dx$$

3. $\int e^{\cos x} \cos x \sin^3 x \, dx$

6.
$$\int \csc x \, dx$$

4. $\int \cos^2 x \, dx$

$$\sin^2 x + \cos^2 x = 1$$
 $\sin^2 x = \frac{1 - \cos(2x)}{2}$
 $\tan^2 x + 1 = \sec^2 x$ $\cos^2 x = \frac{1 + \cos(2x)}{2}$

Integral of products of secant and tangent

To integrate

$$\int \sec^n x \tan^m x \, dx$$

- If $\overline{}$, then use the substitution $u = \tan x$.
- If ______, then use the substitution $u = \sec x$.

Hint: You will need

•
$$\frac{d}{dx} [\tan x] = \dots$$

•
$$\frac{d}{dx}[\sec x] = \dots$$

• The trig identity involving sec and tan

A reduction formula

Let
$$I_n = \int_0^{2\pi} \sin^n x \, dx$$
.

- 1. Compute I_0 and I_1 .
- 2. Write an equation for I_n in terms of I_{n-2} . This is called a reduction formula.

Hint: Starting with I_n , use integration by parts once. Then use $\sin^2 x + \cos^2 x = 1$ to rewrite the new integral in terms of I_n and I_{n-2} .

3. Write a a formula for I_n for all natural numbers n.

A different kind of substitution

Calculate

$$\int_0^1 \sqrt{1-x^2} \ dx$$

using the substitution

$$\begin{cases} x = \sin \theta \\ dx = ?? \end{cases}$$

Rational integrals

1. Calculate
$$\int \frac{1}{x+a} dx$$

2. Reduce to common denominator
$$\frac{2}{x} - \frac{3}{x+3}$$

3. Calculate
$$\int \frac{-x+6}{x^2+3x} dx$$

4. Calculate
$$\int \frac{1}{x^2 + 3x} dx$$

5. Calculate
$$\int \frac{1}{x^3 - x} dx$$

Repeated factors

- 1. Calculate $\int \frac{1}{(x+1)^n} dx$ for n > 1
- 2. Calculate $\int \frac{(x+1)-1}{(x+1)^2} dx$
- 3. Calculate $\int \frac{2x+6}{(x+1)^2} dx$
- 4. Calculate $\int \frac{x^2}{(x+1)^3} dx$

Irreducible quadratics

1. Calculate $\int \frac{1}{x^2 + 1} dx$ and $\int \frac{x}{x^2 + 1} dx$.

Hint: These two are very short.

- 2. Calculate $\int \frac{2x+3}{x^2+1} dx$
- 3. Calculate $\int \frac{x^2}{x^2 + 1} dx$
- 4. Calculate $\int \frac{x}{x^2 + x + 1} dx$

Hint: Complete the square in the denominator and use a substitution to transform into one of the previous ones.

Repeated quadratics

1. Calculate

$$\frac{d}{dx} \left[\arctan x \right], \qquad \frac{d}{dx} \left[\frac{x}{1+x^2} \right].$$

2. Use the previous answer to calculate

$$\int \frac{1}{(1+x^2)^2} dx$$

The integral of secant

Compute

$$\int \sec x \, dx$$

using the substitution $u = \sin x$.

Messier rational functions

1. How could we compute an integral of the form

$$\int \frac{\text{polynomial}}{(x+1)^3(x+2)} dx ?$$

2. How could we compute an integral of the form

$$\int \frac{\text{polynomial}}{x^4(x+1)^3(x+2)(x^2+1)(x^2+4)} \, dx ?$$