Chapter 4

Regularization Gradient Descent

Regularization Feature Selection

Model Complexity vs Error

Preventing Under- and Overfitting

How to use a degree 9 polynomial and prevent overfitting?

Preventing Under- and Overfitting

Regularization

Poly Degree=9, λ =1e-5

Poly Degree=9, λ =0.1

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(\left(\beta_0 + \beta_1 x_{obs}^{(i)} \right) - y_{obs}^{(i)} \right)^2 + \lambda \sum_{j=1}^{k} \beta_j^2$$

Ridge Regression (L2)

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(\left(\beta_0 + \beta_1 x_{obs}^{(i)} \right) - y_{obs}^{(i)} \right)^2 + \lambda \sum_{j=1}^{k} \beta_j^2$$

- Penalty shrinks magnitude of all coefficients
- Larger coefficients strongly penalized because of the squaring

Effect of Ridge Regression on Parameters

Lasso Regression (L1)

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(\left(\beta_0 + \beta_1 x_{obs}^{(i)} \right) - y_{obs}^{(i)} \right)^2 + \lambda \sum_{j=1}^{k} |\beta_j|$$

- Penalty selectively shrinks some coefficients
- Can be used for feature selection
- Slower to converge than Ridge regression

Effect of Lasso Regression on Parameters

Elastic Net Regularization

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(\left(\beta_0 + \beta_1 x_{obs}^{(i)} \right) - y_{obs}^{(i)} \right)^2 + \lambda_1 \sum_{j=1}^{k} |\beta_j| + \lambda_2 \sum_{j=1}^{k} |\beta_j|$$

- Compromise of both Ridge and Lasso regression
- Requires tuning of additional parameter that distributes regularization penalty between L1 and L2

Elastic Net Regularization

Hyperparameters and Their Optimization

• Regularization coefficients (λ_1 and λ_2) are empirically determined

Use Test Data to Tune λ ?

Hyperparameters and Their Optimization

- Regularization coefficients (λ₁ and λ₂)
 are empirically determined
- Want value that generalizes—do not use test data for tuning

Hyperparameters and Their Optimization

- Regularization coefficients (λ_1 and λ_2) are empirically determined
- Want value that generalizes—do not use test data for tuning
- Create additional split of data to tune hyperparameters—validation set

Tune λ with Cross Validation

Import the class containing the regression method

from sklearn.linear_model import Ridge

Import the class containing the regression method

from sklearn.linear_model import Ridge

Create an instance of the class

RR = Ridge(alpha=1.0)

Import the class containing the regression method

from sklearn.linear_model import Ridge

Create an instance of the class

RR = Ridge(alpha=1.0)

Import the class containing the regression method

from sklearn.linear_model import Ridge

Create an instance of the class

```
RR = Ridge(alpha=1.0)
```

Fit the instance on the data and then predict the expected value

```
RR = RR.fit(X_train, y_train)
y_predict = RR.predict(X_test)
```


Import the class containing the regression method

```
from sklearn.linear_model import Ridge
```

Create an instance of the class

```
RR = Ridge(alpha=1.0)
```

Fit the instance on the data and then predict the expected value

```
RR = RR.fit(X_train, y_train)
y_predict = RR.predict(X_test)
```

The RidgeCV class will perform cross validation on a set of values for alpha.

Lasso Regression: The Syntax

Import the class containing the regression method

```
from sklearn.linear_model import Lasso
```

Create an instance of the class

```
LR = Lasso(alpha=1.0)
```

Fit the instance on the data and then predict the expected value

```
LR = LR.fit(X_train, y_train)
y_predict = LR.predict(X_test)
```

The LassoCV class will perform cross validation on a set of values for alpha.

Lasso Regression: The Syntax

Import the class containing the regression method

from sklearn.linear_model import Lasso

Create an instance of the class

```
LR = Lasso(alpha=1.0)
```


Fit the instance on the data and then predict the expected value

```
LR = LR.fit(X_train, y_train)
y_predict = LR.predict(X_test)
```

The LassoCV class will perform cross validation on a set of values for alpha.

Elastic Net Regression: The Syntax

Import the class containing the regression method

from sklearn.linear_model import ElasticNet

Create an instance of the class

```
EN = ElasticNet(alpha=1.0, I1_ratio=0.5)
```

Fit the instance on the data and then predict the expected value

```
EN = EN.fit(X_train, y_train)
y_predict = EN.predict(X_test)
```

The ElasticNetCV class will perform cross validation on a set of values for I1_ratio and alpha.

Elastic Net Regression: The Syntax

Import the class containing the regression method

from sklearn.linear_model import ElasticNet

Create an instance of the class

```
EN = ElasticNet(alpha=1.0, l1_ratio=0.5)
```


Fit the instance on the data and then predict the expected value

```
EN = EN.fit(X_train, y_train)
y_predict = EN.predict(X_test)
```

The ElasticNetCV class will perform cross validation on a set of values for I1_ratio and alpha.

Elastic Net Regression: The Syntax

Import the class containing the regression method

from sklearn.linear_model import ElasticNet

Create an instance of the class

```
EN = ElasticNet(alpha=1.0, l1_ratio=0.5)
```


Fit the instance on the data and then predict the expected value

```
EN = EN.fit(X_train, y_train)
y_predict = EN.predict(X_test)
```

The ElasticNetCV class will perform cross validation on a set of values for I1_ratio and alpha.

Feature Selection

 Regularization performs feature selection by shrinking the contribution of features

Feature Selection

- Regularization performs feature selection by shrinking the contribution of features
- For L1-regularization, this is accomplished by driving some coefficients to zero

Feature Selection

- Regularization performs feature selection by shrinking the contribution of features
- For L1-regularization, this is accomplished by driving some coefficients to zero
- Feature selection can also be performed by removing features

Why is Feature Selection Important?

 Reducing the number of features is another way to prevent overfitting (similar to regularization)

Why is Feature Selection Important?

- Reducing the number of features is another way to prevent overfitting (similar to regularization)
- For some models, fewer features can improve fitting time and/or results

Why is Feature Selection Important?

- Reducing the number of features is another way to prevent overfitting (similar to regularization)
- For some models, fewer features can improve fitting time and/or results
- Identifying most critical features can improve model interpretability

Recursive Feature Elimination: The Syntax

Import the class containing the feature selection method

```
from sklearn.feature_selection import RFE
```

Create an instance of the class

```
rfeMod = RFE(est, n_features_to_select=5)
```

Fit the instance on the data and then predict the expected value

```
rfeMod = rfeMod.fit(X_train, y_train)
y_predict = rfeMod.predict(X_test)
```

The RFECV class will perform feature elimination using cross validation.

Recursive Feature Elimination: The Syntax

Import the class containing the feature selection method

from sklearn.feature_selection import RFE

Create an instance of the class

```
rfeMod = RFE(est, n_features_to_select=5)
```


Fit the instance on the data and then predict the expected value

```
rfeMod = rfeMod.fit(X_train, y_train)
y_predict = rfeMod.predict(X_test)
```

The RFECV class will perform feature elimination using cross validation.

Recursive Feature Elimination: The Syntax

Import the class containing the feature selection method

from sklearn.feature_selection import RFE

Create an instance of the class

```
rfeMod = RFE(est, n_features_to_select=5)
```


Fit the instance on the data and then predict the expected value

```
rfeMod = rfeMod.fit(X_train, y_train)
y_predict = rfeMod.predict(X_test)
```

The RFECV class will perform feature elimination using cross validation.

Gradient Descent

Gradient Descent

Start with a cost function $J(\beta)$:

Gradient Descent

Start with a cost function $J(\beta)$:

Then gradually move towards the minimum.

• Now imagine there are two parameters (β_0, β_1)

- Now imagine there are two parameters (β_0, β_1)
- This is a more complicated surface on which the minimum must be found

- Now imagine there are two parameters (β_0, β_1)
- This is a more complicated surface on which the minimum must be found
- How can we do this without knowing what $J(\beta_0, \beta_1)$ looks like?

- Compute the gradient, $\nabla J(\beta_0, \beta_1)$, which points in the direction of the biggest increase!
- $-\nabla J(\beta_0, \beta_1)$ (negative gradient) points to the biggest decrease at that point!

 The gradient is the a vector whose coordinates consist of the partial derivatives of the parameters

$$\nabla J(\beta_0, \dots, \beta_n) = \langle \frac{\partial J}{\partial \beta_0}, \dots, \frac{\partial J}{\partial \beta_n} \rangle$$

• Then use the gradient (∇) and the cost function to calculate the next point (ω_1) from the current one (ω_0) :

$$\omega_{1} = \omega_{0} - \alpha \nabla \frac{1}{2} \sum_{i=1}^{m} \left(\left(\beta_{0} + \beta_{1} x_{obs}^{(i)} \right) - y_{obs}^{(i)} \right)^{2}$$

• Then use the gradient (∇) and the cost function to calculate the next point (ω_1) from the current one (ω_0) :

$$\omega_{1} = \omega_{0} - \alpha \nabla \frac{1}{2} \sum_{i=1}^{m} \left(\left(\beta_{0} + \beta_{1} x_{obs}^{(i)} \right) - y_{obs}^{(i)} \right)^{2}$$

• The learning rate (α) is a tunable parameter that determines step size

 Each point can be iteratively calculated from the previous one

$$\omega_{2} = \omega_{1} - \alpha \nabla \frac{1}{2} \sum_{i=1}^{m} \left(\left(\beta_{0} + \beta_{1} x_{obs}^{(i)} \right) - y_{obs}^{(i)} \right)^{2}$$

 Each point can be iteratively calculated from the previous one

$$\omega_{2} = \omega_{1} - \alpha \nabla \frac{1}{2} \sum_{i=1}^{m} \left(\left(\beta_{0} + \beta_{1} x_{obs}^{(i)} \right) - y_{obs}^{(i)} \right)^{2}$$

$$\omega_{3} = \omega_{2} - \alpha \nabla \frac{1}{2} \sum_{i=1}^{m} \left(\left(\beta_{0} + \beta_{1} x_{obs}^{(i)} \right) - y_{obs}^{(i)} \right)^{2}$$

 Use a single data point to determine the gradient and cost function instead of all the data

 Use a single data point to determine the gradient and cost function instead of all the data

$$\omega_1 = \omega_0 - \alpha \nabla \frac{1}{2} \sum_{i=1}^{m} \left(\left(\beta_0 + \beta_1 x_{obs}^{(i)} \right) - y_{obs}^{(i)} \right)^2$$

 Use a single data point to determine the gradient and cost function instead of all the data

$$\omega_{1} = \omega_{0} - \alpha \nabla \frac{1}{2} \sum_{i=1}^{m} \left(\left(\beta_{0} + \beta_{1} x_{obs}^{(i)} \right) - y_{obs}^{(i)} \right)^{2}$$

$$\omega_{1} = \omega_{0} - \alpha \nabla \frac{1}{2} \left(\left(\beta_{0} + \beta_{1} x_{obs}^{(0)} \right) - y_{obs}^{(0)} \right)^{2}$$

 Use a single data point to determine the gradient and cost function instead of all the data

$$\omega_1 = \omega_0 - \alpha \nabla \frac{1}{2} \left(\left(\beta_0 + \beta_1 x_{obs}^{(0)} \right) - y_{obs}^{(0)} \right)^2$$

. . .

$$\omega_4 = \omega_3 - \alpha \nabla \frac{1}{2} \left(\left(\beta_0 + \beta_1 x_{obs}^{(3)} \right) - y_{obs}^{(3)} \right)^2$$

 Use a single data point to determine the gradient and cost function instead of all the data

$$\omega_1 = \omega_0 - \alpha \nabla \frac{1}{2} \left(\left(\beta_0 + \beta_1 x_{obs}^{(0)} \right) - y_{obs}^{(0)} \right)^2$$

. . .

$$\omega_4 = \omega_3 - \alpha \nabla \frac{1}{2} \left(\left(\beta_0 + \beta_1 x_{obs}^{(3)} \right) - y_{obs}^{(3)} \right)^2$$

 Path is less direct due to noise in single data point—"stochastic"

Perform an update for every n training examples

$$\omega_{1} = \omega_{0} - \alpha \nabla \frac{1}{2} \sum_{i=1}^{n} \left(\left(\beta_{0} + \beta_{1} x_{obs}^{(i)} \right) - y_{obs}^{(i)} \right)^{2}$$

Perform an update for every n training examples

$$\omega_{1} = \omega_{0} - \alpha \nabla \frac{1}{2} \sum_{i=1}^{n} \left(\left(\beta_{0} + \beta_{1} x_{obs}^{(i)} \right) - y_{obs}^{(i)} \right)^{2}$$

Perform an update for every n training examples

$$\omega_{1} = \omega_{0} - \alpha \nabla \frac{1}{2} \sum_{i=1}^{n} \left(\left(\beta_{0} + \beta_{1} x_{obs}^{(i)} \right) - y_{obs}^{(i)} \right)^{2}$$

Best of both worlds:

- Reduced memory relative to "vanilla" gradient descent
- Less noisy than stochastic gradient descent

Mini batch implementation typically used for neural nets

- Mini batch implementation typically used for neural nets
- Batch sizes range from 50-256 points

- Mini batch implementation typically used for neural nets
- Batch sizes range from 50-256 points
- Trade off between batch size and learning rate (α)

- Mini batch implementation typically used for neural nets
- Batch sizes range from 50–256 points
- Trade off between batch size and learning rate (α)
- Tailor learning rate schedule: gradually reduce learning rate during a given epoch

Import the class containing the regression model

from sklearn.linear_model import SGDRegressor

Import the class containing the regression model

from sklearn.linear_model import SGDRegressor

```
SGDreg = SGDRregressor(loss='squared_loss', alpha=0.1, penalty='l2')
```


Import the class containing the regression model

from sklearn.linear_model import SGDRegressor

```
SGDreg = SGDRregressor(loss='squared_loss', alpha=0.1, penalty='I2')
```


Import the class containing the regression model

from sklearn.linear_model import SGDRegressor

```
SGDreg = SGDRregressor(loss='squared_loss', alpha=0.1, penalty='l2')
```


Import the class containing the regression model

from sklearn.linear_model import SGDRegressor

Create an instance of the class

```
SGDreg = SGDRregressor(loss='squared_loss', alpha=0.1, penalty='l2')
```

Fit the instance on the data and then transform the data

```
SGDreg = SGDreg.fit(X_train, y_train)
y_pred = SGDreg.predict(X_test)
```


Import the class containing the regression model

from sklearn.linear_model import SGDRegressor

Create an instance of the class

```
SGDreg = SGDRregressor(loss='squared_loss', alpha=0.1, penalty='l2')
```

Fit the instance on the data and then transform the data

```
SGDreg = SGDreg.partial_fit(X_train, y_train)
y_pred = SGDreg.predict(X_test)
```


Import the class containing the regression model

```
from sklearn.linear_model import SGDRegressor
```

Create an instance of the class

```
SGDreg = SGDRregressor(loss='squared_loss', alpha=0.1, penalty='l2')
```

Fit the instance on the data and then transform the data

```
SGDreg = SGDreg.fit(X_train, y_train)
y_pred = SGDreg.predict(X_test)
```

Other loss methods exist: epsilon_insensitive, huber, etc.

Import the class containing the classification model

from sklearn.linear_model import SGDClassifier

Import the class containing the classification model

from sklearn.linear_model import SGDClassifier

```
SGDclass = SGDClassifier(loss='log', alpha=0.1, penalty='l2')
```


Syntax Import the class containing the classification model

from sklearn.linear_model import SGDClassifier

```
SGDclass = SGDClassifier(loss='log', alpha=0.1, penalty='l2')
```


Import the class containing the classification model

from sklearn.linear_model import SGDClassifier

Create an instance of the class

```
SGDclass = SGDClassifier(loss='log', alpha=0.1, penalty='l2')
```

Fit the instance on the data and then transform the data

```
SGDclass = SGDclass.fit(X_train, y_train)
y_pred = SGDclass.predict(X_test)
```


Import the class containing the classification model

from sklearn.linear_model import SGDClassifier

Create an instance of the class

```
SGDclass = SGDClassifier(loss='log', alpha=0.1, penalty='l2')
```

Fit the instance on the data and then transform the data

```
SGDclass = SGDclass.partial_fit(X_train, y_train)
y_pred = SGDclass.predict(X_test)
```


Import the class containing the classification model

from sklearn.linear_model import SGDClassifier

Create an instance of the class

```
SGDclass = SGDClassifier(loss='log', alpha=0.1, penalty='l2')
```

Fit the instance on the data and then transform the data

```
SGDclass = SGDclass.fit(X_train, y_train)
y_pred = SGDclass.predict(X_test)
```

Other loss methods exist: hinge, squared_hinge, etc.

Import the class containing the classification model

from sklearn.linear_model import SGDClassifier

Create an instance of the class

```
SGDclass = SGDClassifier(loss='log', alpha=0.1, penalty='l2')
```

Fit the instance on the data and then transform the data

```
SGDclass = SGDclass.fit(X_train, y_train)
y_pred = SGDclass.predict(X_test)
```

Other loss methods exist: hinge, squared_hinge, etc.

Legal Notices and Disclaimers

This presentation is for informational purposes only. INTEL MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS SUMMARY.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. Check with your system manufacturer or retailer or learn more at intel.com.

This sample source code is released under the <u>Intel Sample Source Code License Agreement</u>.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2017, Intel Corporation. All rights reserved.

