

IME OBJETIVO 2

Turma IME-ITA 2023

QUÍMICA

Dados

- Constante de Avogadro, $N_{\rm A}=6.02\cdot 10^{23}\,{\rm mol}^{-1}$ Constante de Faraday, $F=96\,500\,{\rm C\,mol}^{-1}$
- Carga elementar, $e=1.6\cdot 10^{-19}\,\mathrm{C}$
- Constante de Planck, $h=6.6\cdot 10^{-34}\,\mathrm{m^2\,kg\,s^{-1}}$ Constante de Rydberg, $\mathcal{R}=1.1\cdot 10^7\,\mathrm{m^{-1}}$
- Constante de autoionização da água, $K_{\rm w}=1\cdot 10^{-14}$ Velocidade da luz no vácuo, $c=3\cdot 10^8~{\rm m~s^{-1}}$
- Constante dos gases, $R = 8.31 \,\mathrm{J \, K^{-1} \, mol^{-1}}$

Definições

- Composição do ar atmosférico: $79\%~N_2$ e $21\%~O_2$

Aproximações Numéricas

•
$$\sqrt{2} = 1.4$$

•
$$\sqrt{3} = 1.7$$

•
$$\sqrt{2} = 1.4$$
 • $\sqrt{3} = 1.7$ • $\sqrt{5} = 2.2$ • $\log 2 = 0.3$ • $\log 3 = 0.5$ • $\ln 10 = 2.3$

•
$$\log 2 = 0.3$$

•
$$\log 3 = 0.5$$

•
$$\ln 10 = 2.1$$

Tabela Periódica

Elemento Químico	Número Atômico	Massa Molar $(\operatorname{g} \operatorname{mol}^{-1})$	Elemento Químico	Número Atômico	Massa Molar $(\operatorname{g} \operatorname{mol}^{-1})$
Н	1	1,01	Na	11	22,99
С	6	12,01	Mg	12	24,31
N	7	14,01	S	16	32,06
0	8	16,00	CI	17	$35,\!45$

31ª QUESTÃO Valor: 1,00

Um reator é carregado com $60\,\mathrm{g}$ de grafite e $112\,\mathrm{L}$ de oxigênio em CNTP. A mistura é ignitada e todo grafite é convertido em CO e CO_2 .

O processo ocorre em temperatura contante e a pressão total no reator aumentou em 20% após o final da reação.

Assinale a alternativa que mais se aproxima da pressão parcial de CO_2 ao final da reação.

A() 0,4 atm

B() $0.6 \, \text{atm}$ **C**() $0.8 \, \text{atm}$

D() 1,0 atm

E() 1,2 atm

Considere as seguintes proposições sobre a estrutura molecular.

- 1. As moléculas ${\rm CF_4}$ e ${\rm XeF_4}$ são apolares, entretanto, o ${\rm SF_4}$ é polar.
- 2. As moléculas ${\rm NF_3}$ e ${\rm ClF_3}$ são polares, entretanto, o ${\rm BF_3}$ é apolar.
- 3. Na molécula ${
 m SF}_6$ todas as ligações possuem o mesmo comprimento, entretanto, no ${
 m PF}_5$ duas liações são mais longas que as outras.
- 4. Existem dois isômeros com fórmula molecular ${\rm PF_3Cl_2}$, sendo que um desses possui momento de dipolo nao nulo.

Assinale a alternativa que relaciona as proposições corretas.

- A()1
- B()2
- C() 2 e 3
- **D**() 1, 2 e 3
 - E() 1, 2, 3 e 4

33^aQUESTÃO Valor: 1,00

Um reator é carregado com certa pressão amônia em $25\,^{\circ}\mathrm{C}$ e o equilíbrio é estabelecido:

$$N_2(g) + 3 H_2(g) \Longrightarrow 2 NH_3(g) \quad K = 5.4 \cdot 10^5$$

Quando o equilíbrio é atingido, 50% da quantidade de amônia adicionada sofre decomposição.

Assinale a alternativa que mais se aproxima da pressão inicial de amônia carregada no reator.

- **A** () 0,2 Torr
- **B**() 0,4 Torr
- **C**() 0.8 Torr
- **D** () 1,6 Torr
- **E**() 3,2 Torr

34ªQUESTÃO Valor: 1,00

O composto \mathbf{X} , C_5H_9Br , não reage com bromo ou com permanganato de potássio diluído. O tratamento de \mathbf{X} com potassa alcoólica leva à formação de um único composto, \mathbf{Y} . Diferente de \mathbf{X} , \mathbf{Y} descora a água de bromo e muda a cor de uma solução de permanganato de violeta para marrom. A reação de \mathbf{Y} com gás hidrogênio e platila forma metilciclobutano. Quando \mathbf{Y} é tratado com ozônio seguido de zinco metálico, é formado o composto \mathbf{Z} , $C_5H_8O_2$.

Assinale a alternativa com a estrutura do composto **X**.

B()

D()

E()

35ª QUESTÃO

Valor: 1,00

Considere as proposições.

- 1. A energia de ligação na molécula NO é maior que no íon NO⁺.
- 2. A energia de ligação na molécula CO é maior que no íon CO⁺.
- 3. A molécula O_2 tem maior energia de ligação que os íons O_2^- e O_2^+ .
- 4. A ligação dupla C=C no eteno tem o dobro da energia da ligação simples C-C no etano.

Assinale a alternativa que mais se aproxima das proposições corretas.

A() 1 e 2

B() 1 e 4

C() 2 e 4

D() 1, 2 e 4 **E**() 1, 2, 3 e 4

36ª QUESTÃO

Valor: 1.00

Considere a transformação a seguir.

Assinale a alternativa com uma rota de síntese correta para essa transformação.

- **A**() 1. BH₃, THF; 2. H₂O₂, NaOH; 3. NaC≡CH; 4. H₂, Pd-CaCO₃; 5. O₃; 6. DMS.
- **B**() 1. BH₃, THF; 2. H₂O₂, NaOH; 3. HCl; 4. NaC \equiv CH; 5. O₃; 6. DMS.
- \boldsymbol{C} () 1. HBr, ROOR; 2. NaC \equiv CH; 3. BH3, THF; 4. H2O2, NaOH.
- **D**() 1. HBr, ROOR; 2. NaC≡CH; 3. NaC≡CH; 4. H₂, Pd-CaCO₃; 5. O₃; 6. DMS.
- **E** () 1. HBr, ROOR; 2. NaC \equiv CH; 3. NaC \equiv CH; 4. O₃; 5. DMS; 6. H₂, Pd-CaCO₃.

37ª QUESTÃO

Valor: 1.00

Considere as proposições.

- 1. Os limites possíveis da escala de pH se situam entre os valores de 0 a 14.
- 2. A soma pH + pOH sempre vale 14.
- 3. Os produtos de uma reação entre um ácido e uma base são ácidos e bases.
- 4. Ácidos mais fortes possuem menores valores de pK_a e maiores valores de pK_b da base conjugada.

Assinale a alternativa que relaciona as proposições corretas.

A()3

B()4

C() 3 e 4 D() 1, 3 e 4

E() 2,3e4

Considere dois recipientes perfeitamente isolados sob pressão de 1 atm. O recipiente A contém um cubo de gelo em 0 °C e água a em 0 °C. O recipiente B inicialmente contém um cubo de gelo em 0 °C e uma solução de água do mar a 0 °C.

Considere as proposições.

- 1. A variação de entropia da vizinhança é nula para o processo que ocorre no recipiente A.
- 2. A variação de entropia da vizinhança é nula para o processo que ocorre no recipiente B.
- 3. A variação de entropia do sistema é negativa para o processo que ocorre no recipiente A.
- 4. A variação de entropia do sistema é positiva para o processo que ocorre no recipiente B.

Assinale a alternativa que relaciona as proposições corretas.

- A() 1 e 2
- B()1e4
- C() 2 e 4
- **D**() 1, 2 e 4 **E**() 1, 2, 3 e 4

39ª QUESTÃO Valor: 1,00

Uma pequena gota de mercúrio é adicionada à uma cubeta de $10\,\mathrm{mL}$ em $300\,\mathrm{K}$.

Dados em $300\mathrm{K}$	$\mathrm{Hg}\left(l\right)$	Hg(g)
Entalpia padrão de formação, $\Delta H_{\mathrm{f}}^{\circ}/\frac{\mathrm{kJ}}{\mathrm{mol}}$		+60
Entropia padrão, $S_{ m m}^{\circ}/{ m \frac{JK}{ m mol}}$	70	170

Considere $e^{-12} \approx 6 \cdot 10^{-6}$.

Assinale a alternativa que mais se aproxima do número de átomos de mercúrio gasoso na cubeta.

- **A**() $9 \cdot 10^{20}$
- **B**() $3 \cdot 10^{20}$ **C**() $6 \cdot 10^{21}$ **D**() $9 \cdot 10^{21}$
- **E**() $3 \cdot 10^{22}$

40°QUESTÃO Valor: 1,00

A digestão de $0.15\,\mathrm{g}$ de uma amostra de um composto que contém fósforo em uma mistura de $\mathrm{HNO_3}$ e $\mathrm{H_2SO_4}$ resulta na formação de CO₂, H₂O e H₃PO₄. A adição de molibdato de amônio produz um sólido cuja composição é $(NH_4)_3PO_4 \cdot 12 MoO_3$. Esse precipitado foi filtrado, lavado, e dissolvido em $50 \,\mathrm{mL}$ de $NaOH~0.2 \,\mathrm{mol}~L^{-1}$:

$$(NH_4)_3PO_4 \cdot 12MoO_3(s) + OH^-(aq) \longrightarrow HPO_4^{2-}(aq) + MoO_4^{2-}(aq) + H_2O(l) + NH_3(g)$$

Ao final da reação, a solução foi aquecida para remover o excesso de $\mathrm{NH_{3}}$. O excesso de NaOH foi titulado com $11 \,\mathrm{mL}$ de HCl $0.2 \,\mathrm{mol}\,\mathrm{L}^{-1}$.

Assinale a alternativa que mais se aproxima da fração mássica de fósforo na amostra.

- **A**() 3,1%
- **B**() 6,2%
- **C**() 9.3%
- **D**() 12,4%
- **E**() 15,5%