

APRENDIZAGEM SUPERVISIONADA: CUSTOMER SHOPPING TRENDS

Componente Curricular: Inteligência Artificial

Professor(a): Felipe Grando

Acadêmico(a): Matheus Vieira Santos

BASE DE DADOS

- Customer Shopping Trends Dataset: Journey into Consumer Insights and Retail Evolution with Synthetic Data do Kaggle;
- → Esse conjunto de dados oferece informações interessantes sobre o comportamento dos consumidores e seus padrões de compra;
- → É importante mencionar que este conjunto de dados é composto por dados sintéticos. Ele foi criado pelo ChatGPT para ser utilizado em estudos de análise de dados e machine learning. Além disso, é relevante considerar que sua estrutura foi feita simulando uma experiência real de compra, ou seja, espelhando o mundo real. Isso, por sua vez, faz com que o modelo apresentado, embora agora seja feito com dados sintéticos, mais tarde, se desejado, pode ser aplicado a dados reais, revelando informações concretas.

BASE DE DADOS

→ O conjunto possui 3900 registros e as seguintes features: Identificador do usuário, Idade, Gênero, Item Comprado, Categoria, Valor da Compra, Localização, Tamanho, Cor, Estação, Avaliação, Possui Assinatura, Tipo de Frete, Desconto Aplicado, Cupom Aplicado, Realizou Compras Anteriormente, Método de Pagamento e Frequência de Compras.

Custo	mer ID	Age	Gender	Item Purchased	Category	Purchase Amount (USD)	Location	Size	Color	Season	Review Rating	Subscription Status	Shipping Type	Discount Applied	Promo Code Used	Previous Purchases	Payment Method	Frequency of Purchases
2	896	56	Female	Hoodie	Clothing	86	Montana	L	Green	Summer	4.60	No	Standard	No	No	29	Bank Transfer	Monthly
2	752	27	Female	Dress	Clothing	52	Minnesota	S	Indigo	Fall	3.10	No	Free Shipping	No	No	50	Venmo	Monthly
1	224	69	Male	Pants	Clothing	24	Kansas	L	Red	Winter	3.90	No	Free Shipping	Yes	Yes	21	Bank Transfer	Weekly
2	485	60	Male	Hoodie	Clothing	97	New Hampshire	М	Green	Summer	4.80	No	2-Day Shipping	No	No	50	Cash	Every 3 Months
3	286	58	Female	Hat	Accessories	31	Hawaii	XL	Magenta	Fall	4.60	No	Free Shipping	No	No	11	Cash	Weekly

OBJETIVO COM MODELO

- → Modelo classificador: Árvores de Decisão;
- → Classificação Multiclasse;
- → Desconsiderando os itens da categoria Acessórios;
- → Com as seguintes features: 'Age', 'Gender', 'Purchase Amount (USD)', 'Location', 'Size', 'Color', 'Season', 'Frequency of Purchases', 'Review Rating' e 'Payment Method';
- → A ideia é classificar a categoria do item de acordo: 'Clothing' 'Footwear' e 'Outerwear'.

LIMPEZA DOS DADOS

- → Desconsiderar as features: 'Customer ID', 'Item Purchased', 'Subscription Status' e 'Promo Code Used';
- → Dado que o conjunto de dados é sintético, não foi necessário realizar mais tratamentos de limpeza de dados.

TRANSFORMAÇÃO DOS DADOS

→ Reduzindo cores em cores claras, escuras e coloridas

```
def categorize_color(color):
    light_colors = {'Beige', 'Cyan', 'Gold', 'Lavender', 'Peach', 'Pink', 'Silver', 'White', 'Yellow'}
    dark_colors = {'Black', 'Brown', 'Charcoal', 'Gray', 'Maroon', 'Olive', 'Purple'}
    colorful_colors = {'Blue', 'Green', 'Indigo', 'Magenta', 'Orange', 'Red', 'Teal', 'Turquoise',
'Violet'}
    if color in light colors:
        return 'Light'
    elif color in dark colors:
        return 'Dark'
    elif color in colorful colors:
        return 'Colorful'
df['Color'] = df['Color'].apply(categorize_color)
```


TRANSFORMAÇÃO DOS DADOS

→ Transformando propriedades com o LabelEncoder

Age => [18 19 ... 69 70]

Gender => ['Female' 'Male']

Category => ['Clothing' 'Footwear' 'Outerwear']

Location => ['Alabama' 'Alaska' ... 'Wisconsin' 'Wyoming']

Color => ['Colorful' 'Dark' 'Light']

Season => ['Fall' 'Spring' 'Summer' 'Winter']

Size => ['L' 'M' 'S' 'XL']

Frequency of Purchases => ['Annually' ...]

Purchase Amount (USD) => [20 21 ... 99 100]

Shipping Type => ['2-Day Shipping' 'Express' ...]

Review Rating => [2.5 2.6 ... 4.9 5.]

Discount Applied => ['No' 'Yes']

Previous Purchases => [1 2 ... 49 50]

Payment Method => ['Bank Transfer' 'Cash' 'Credit Card' 'Debit Card' 'PayPal' 'Venmo']

COMPREENDENDO OS DADOS

- 1.0

- 0.8

0.6

0.4

- 0.2

- 0.0

NORMALIZAÇÃO DOS DADOS

→ Nesse passo preparamos os dados para algoritmos de machine learning, assim garantimos que todas as variáveis contribuam igualmente para o modelo, evitando que variáveis com escalas maiores dominem aquelas com escalas menores.

APLICANDO O ALGORITMO

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=145)
print("0: ",(y train==0).sum())
print("1: ",(y_train==1).sum())
over_sampler = RandomOverSampler(random_state=100)
X_train, y_train = over_sampler.fit_resample(X_train, y_train)
print("After:")
print("0: ",(y_train==0).sum())
print("1: ",(y_train==1).sum())
clf = RandomForestClassifier(max_depth=20, min_samples_leaf=1, min_samples_split=2,
plesfinaXotsa250)y_train)
```


MÉTRICAS

→ **F1 score**: 0.5244733318005639

→ Accuracy: 0.6416040100250626

→ **Precision:** 0.603099538840053

→ **Recall:** 0.6416040100250626

Predicted

Actual

494	9	4			
188	7	1			
94	0	1			

REFERÊNCIAS

BANERJEE, S. "Customer Shopping Trends Dataset". Disponível em: https://www.kaggle.com/datasets/iamsouravbanerjee/customer-shopping-trendsdataset. Acesso em 04 de junho de 2024.