Лабораторная работа № 2

Гамма-спектрометр на основе сцинтилляционного счетчика

Кафедра физики ускорителей

Вероника Бояркина, Вячеслав Федоров, Анна Шуклина

Теория

Принцип действия сцинтилляционного счётчика

- Заряженная частица, проходя через сцинтиллятор, помимо ионизации атомов и молекул, возбуждает их.
- Возвращаясь в невозбуждённое (основное) состояние, атомы испускают фотоны с энергией видимого, ближнего ультрафиолетового или инфракрасного диапазонов (сцинтилляция или радиолюминесценция).
- Фотоны, попадая на катод ФЭУ, выбивают электроны, которые усиливаются внутри ФЭУ, в результате чего на аноде возникает электрический импульс, который дополнительно усиливается и регистрируется электроникой.
- Детектирование нейтральных частиц (нейтронов, ү-квантов) происходит по вторичным заряженным частицам (электроны, позитроны, ядра отдачи и осколки расщепленных ядер), образующимся при взаимодействии нейтронов и ү-квантов с атомами сцинтиллятора.

ФЭУ

Фотоэлектронный умножитель — это электровакуумный прибор, в котором для преобразования светового потока в поток электронов в вакууме используют внешний фотоэффект, а число электронов умножается за счёт эффекта вторичной эмиссии

Сцинтилляторы

- Если принять коэффициент вторичной эмиссии одинаковым для всех п динодов, коэффициент усиления умножителя (G):
- G=σ[^]n
- Коэффициентом вторичной эмиссии (σ) называют среднее количество вторичных электронов, выбиваемых одним первичным электроном.
- Средняя амплитуда на аноде ФЭУ при регистрации вспышки из N_γ фотонов: $A=N_\gamma*\eta*\epsilon_C*G$
- ullet ФЭУ также имеет отличную от единицы эффективность сбора фотоэлектронов на первый динод (ϵ_C) .

Конверсионная эффективность — эффективность преобразования сцинтиллятором энергии заряженной частицы в световую Световой выход — это число фотонов люминесценции на единицу энергии, потерянной ионизирующей частицей в сцинтилляторе Отклик сцинтилляционного счётчика характеризуют количеством фотоэлектронов, зарегистрированных ФЭУ, на единицу поглощенной в сцинтилляторе энергии (практическая эффективность): $N_{-}(p.e.)$ /МэВ= $L * \eta * N_{-} \gamma$ /МэВ L — коэффициент светосбора, η — квантовая эффективность фотодетектора Чем больше практическая эффективность сцинтилляционного счётчика, тем лучше его энергетическое разрешение. Коэффициент светосбора L зависит от прозрачности сцинтиллятора к собственному излучению, формы и размера сцинтиллятора и световодов, качества поверхности и отражающего покрытия. Для максимальной практической эффективности счётчика необходимо, чтобы максимум спектра излучения сцинтиллятора совпадал с максимумом спектра квантовой эффективности фотодетектора.одетектора.одетектора.

Время высвечивания характеризует продолжительность световой вспышки сцинтиллятора $I(t)=I_0 \exp(-t/\tau)$ т — время высвечивания, в течение которого интенсивность падает в е раз

Неорганические сцинтилляторы

- Высокая плотность вещества и большой атомный номер, что способствует эффективному поглощению у-квантов на небольшой толщине кристалла
- Тяжелые неорганические кристаллы применяются для регистрации электронов (позитронов) высокой энергии
- Механизм сцинтилляции неорганических кристаллов зонная теория. я.

Органические сцинтилляторы

Малый атомный номер (ZC = 6, ZH = 1), небольшая плотность (около 1 г/см3) и небольшая эффективность поглощения γ-квантов. Они применяются для регистрации заряженных частиц. Наиболее высокой конверсионной эффективностью обладают сцинтилляторы, содержащие ароматические соединения. Органические сцинтилляторы могут быть подразделены на три широких класса: кристаллы, пластики и жидкости. Кристаллы, такие как антрацен, стильбен и нафталин очень прочны и имеют довольно высокий световыход, но их люминесцентное излучение анизотропно, что ухудшает в определенных ситуациях энергетическое

разрешение. Жидкие сцинтилляторы — раствор одного или нескольких флюоресцирующих веществ (р-терфенил, (b-)PBD, PPO и др.) в органическом растворителе (толуол, ксилол, бензол, декалин и т.п.). Также в растворитель могут быть добавлены спектросмещающие добавки (РОРОР, bis-MSB, BBQ и др.) для лучшего согласования излучения со спектральной чувствительностью фотодетектора.

•Пластические сцинтилляторы — раствор флюоресцентных добавок, который после полимеризации образует твердое вещество. В качестве полимерной основы чаще всего используют поливинилтолуол (ПВТ) или полистирол. •В органических сцинтилляторах отдельные молекулы слабо взаимодействуют друг с другом, то есть энергетические уровни отдельных молекул практически не возмущены присутствием соседних молекул. Поэтому можно считать, что характер взаимодействия заряженных частиц с веществом органического сцинтиллятора не зависит от его агрегатного состояния и сводится к ионизации и возбуждению отдельных молекул непосредственно заряженной частицей. Механизм сцинтилляций в органических материалах можно описать как последовательная передача энергии возбуждения от молекул основы к первичным центрам флуоресценции и затем к последующим центрам с постепенным понижением энергии излучаемых фотонов.

Сцинтилляционный счётчик как гамма-спектрометр

Гамма-спектрометр — прибор, измеряющий энергию у-квантов Состоит из детектора у-квантов (сцинтилляционного счётчика), линейного усилителя и амплитудного анализатора импульсов (ЗЦП или АЦП) Гамма-спектрометр должен иметь достаточно большую эффективность полного поглощения энергии у-кванта и хорошее энергетическое разрешение. Для эффективного полного поглощения у-кванта на небольшой длине в сцинтилляционных спектрометрах применяют неорганические кристаллы высокой плотности и с большим атомным номером элементов, входящих в их состав. Чтобы гамма-спектрометр имел хорошее энергетическое разрешение сцинтиллятор должен иметь высокий световыход, а счётчик в целом — высокую практическую эффективность и хорошую однородность светосбора.

Эффективность гамма-спектрометра

см. формулы в методичке

Энергетическое разрешение гамма-спектрометра

см. формулы в методичке

Установка

1 фотоэлектронный умножитель ФЭУ-143, 2 высоковольтный источник B0308 (BBИ), 3 время-амплитудный блок (TA), 4 аттенюаторы — 2 блока A0608 (ATT), 5 блок 3ИФ D0302 (линия задержки + формирователь импульсов), 6 зарядово-цифровой преобразователь C0312 (ЗЦП), 7 сцинтилляторы в светоотражающей обертке с одной открытой гранью: Nal(TI), ор- тогерманат висмута (BGO), пластический сцинтиллятор (на основе ПВТ), 8 радиоактивный изотоп 137Cs.

Программное обеспечение

ROOT

Задания

1. Убедиться, что кожух ФЭУ завинчен, чтобы наружный свет не попадал на фотока- тод.

- 2. Запустить управляющую программу. Установить напряжение питания ФЭУ равное 1300 В.
- 3. При небольшом ослаблении (3+3 db) набрать амплитудный спектр импульсов темнового тока фотоумножителя и определить центр тяжести полученного распределения.

4. При том же значении ослабления откалибровать положение пьедестала, для чего набрать амплитудный спектр при значении задержки в первом канале ЗИФ равной 50 мкс, при этом ворота ЗЦП будут не совпадать по времени с сигналом. Центр тяжести спектра даст амплитуду, соответствующую пьедесталу. Пьедестал необходимо учитывать при определении амплитуды сигнального спектра.

- 5. Снять высокое напряжение и установить на фотокатод ФЭУ сцинтиллятор Nal(Tl) с изотопом 137Cs. Подать высокое напряжение на фотоумножитель и установить та- кое ослабление аттенюатора, чтобы наблюдать спектр импульсов, соответствующий
- 6. Набрать амплитудный спектр и определить амплитуды соответствующие максиму- му пика полного поглощения, краю спектра комптоновских электронов и максимуму пика обратного рассеяния. Также измерить полную ширину на полувысоте пика пол- ного поглощения (ПШПВ).

Не меняя ослабление, откалибровать пьедестал, как описано в п.4, и учесть его при вычислении амплитуд.

7. Аналогично получить спектры импульсов для BGO и пластического сцинтиллятора. Для BGO измерить положение пика полного поглощения и ПШПВ, а для пласти- ческого сцинтиллятора — положение края спектра комптоновских электронов. Для обоих спектров откалибровать и учесть пьедестал.

8. Закончив измерения, не забудьте убрать изотоп 137Сs в свинцовый домик!

Обработка и представление результатов

1. Для отчета необходимо иметь распечатанные амплитудные спектры темнового тока ФЭУ, сцинтилляционного счетчика с NaI(TI), BGO, пластическим сцинтиллятором.

In [19]: data_df

Out[19]: amplitude scintillator channel width attenuation number energy 0 dark current 40 179.573608 0.000000 1 662 Nal 2471 300 39 220228.106813 0.003006 2 184 683 300 39 60872.439075 0.003023 Nal 3 662 BGO 1001 300 24 15864.780857 0.041728 1444 300 4 662 22885.857699 0.028926 plastic 24

173

500

3. Определить энергетическое разрешение Δ E/E сцинтилляционного счетчика с кри- сталлом NaI(TI) и с BGO. Δ E — полная ширина на половине высоты пика полного поглощения в кэВ, E = 662 кэВ.

2741.865223 0.174334

In [20]: data_df['resolution'] = data_df['width']/data_df['channel']

plastic

In [22]: data_df

Out[22]:

	amplitude	scintillator	channel	width	attenuation	number	energy	resolution
0	0	dark current	90	40	6	179.573608	0.000000	0.444444
1	662	Nal	2471	300	39	220228.106813	0.003006	0.121408
2	184	Nal	683	300	39	60872.439075	0.003023	0.439239
3	662	BGO	1001	300	24	15864.780857	0.041728	0.299700
4	662	plastic	1444	300	24	22885.857699	0.028926	0.207756
5	478	plastic	173	500	24	2741.865223	0.174334	2.890173

Вопросы

478

см. методичку

In []: