AM213B Assignment #2

Problem 1 (Theoretical)

Suppose k satisfies the equation

 $k = h \exp(1+k)$ where h is a small quantity

Recall the approach of iterative expansion we used in lecture.

Start with k = O(h). Expand k iteratively into

$$k = a_1 h + a_2 h^2 + \cdots$$

Find the coefficients a_1 and a_2 .

Problem 2 (Theoretical)

Consider the Runge-Kutta (RK) method specified by the Butcher tableau below

$$\begin{array}{c|cccc} c^T & A & & 0 & 0 & 0 \\ \hline b & & \frac{1}{2} & \frac{1}{2} & 0 \\ \hline & & \frac{1}{2} & \frac{1}{2} \end{array}$$

Write out the method in the form of $k_1 = \dots, k_2 = \dots, \dots, u_{n+1} = u_n + \dots$

Support f(u, t) satisfies $|f(u,t)-f(v,t)| \le C|u-v|$ for all u, v, and t.

Part 1: Show that the method is stable.

<u>Part 2:</u> Use Taylor expansion to show $e_n(h) = O(h^2)$.

<u>Part 3:</u> What is the order of its global error $E_N(h)$?

Problem 3 (Theoretical)

Recall that in lecture, we carried out polynomial interpolation based on 3 points and used the polynomial interpolation to derive

- 3-step Adams-Bashforth method and
- 2-step Adams-Moulton method

Carry out polynomial interpolation based on 2 points and use it to derive

- 2-step Adams-Bashforth method and
- 1-step Adams-Moulton method

Problem 4

Use the classic 4th-order Runge-Kutta method (RK4) to solve the IVP below

$$y'' - \mu (2 - \exp(y'^2)) y' + y = 0$$

 $y(0) = y_0$, $y'(0) = v_0$

Before applying RK4, you need to convert it into a first order ODE system.

$$\frac{d\vec{w}(t)}{dt} = F(\vec{w}, t), \qquad \vec{w}(0) = \begin{pmatrix} y_0 \\ v_0 \end{pmatrix}$$

Use $y_0 = 3$, $y_0 = 0.5$, and h = 0.025. Solve the IVP to T = 30 respectively for

$$\mu = 0.5$$
, $\mu = 2$ and $\mu = 4$

Plot y(t) vs t and y'(t) vs t in 3 figures (one for each μ)

Plot y'(t) vs y(t) in 3 figures (one for each μ)

<u>Hint:</u> Look at the sample code on how to implement RK methods.

Problem 5 (continue with the IVP in Problem 4)

Use $y_0 = 3$, $v_0 = 0.5$, and $\mu = 4$. Use RK4 to solve the IVP to T = 30.

Run simulations, respectively, with time step sizes $h = \frac{1}{2^3}, \frac{1}{2^4}, \frac{1}{2^5}, \frac{1}{2^6} \cdots$

Use these numerical solutions to estimate errors in numerical solutions

$$E_n(h) = \frac{1}{1 - (0.5)^4} \left(w_n(h) - w_{2n} \left(\frac{h}{2} \right) \right)$$

Here $E_n(h)$ is the error associated with numerical solution $w_n(h)$.

Part 1: For each time step size h, consider the maximum error over $t \in [0, 30]$.

$$E_{\max}(h) = \max_{nh \in [0,301]} \left\| E_n(h) \right\|$$

Plot $E_{\text{max}}(h)$ vs h in a log-log plot.

Part 2: From the sequence $h = \frac{1}{2^3}$, $\frac{1}{2^4}$, $\frac{1}{2^5}$, $\frac{1}{2^6}$..., find a time step h_c such that

$$E_{\rm max}(h) < 5 \times 10^{-8}$$

Report the value of h_c .

Plot $||E_n(h)||$ vs t_n respectively for time step sizes h_c and $h_c/2$. Use the <u>logarithmic scale</u> for $||E_n(h)||$. Plot the two curves in ONE figure for comparison.

Hint:

In the estimation of error, $w_n(h)$ is compared with $w_{2n}(h/2)$, NOT $w_n(h/2)$. Look at the sample code on how to estimate error in numerical solution of ODE systems.

Problem 6 (continue with the IVP in Problem 4)

The Fehlberg method is an embedded Runge-Kutta method with orders 5 and 4. Implement the Fehlberg method to solve the IVP to T = 30.

Use
$$y_0 = 3$$
, $v_0 = 0.5$, $\mu = 4$ and $h = 0.025$.

In each time step, the error is estimated as:

$$E_n^{\text{(Fehlberg)}}(h) \approx \frac{e_n(h)}{h} \approx \frac{\left\| w_{n+1} - \tilde{w}_{n+1} \right\|}{h}$$

where w_{n+1} and \tilde{w}_{n+1} are respectively the results of the 5th-order method and the 4th-order method in the Fehlberg method. In each time step, both w_{n+1} and \tilde{w}_{n+1} are calculated from w_n in the Fehlberg method:

$$W_{n+1} = W_n + \sum_{i=1}^{p} b_i k_i$$

$$\tilde{w}_{n+1} = w_n + \sum_{i=1}^p \tilde{b}_i k_i$$

After calculating $E_n^{\text{(Fehlberg)}}(h)$, at the end of each time step, \tilde{W}_{n+1} is discarded. In the next time step, both methods are started with W_{n+1} .

Part 1: Plot $E_n^{\text{(Fehlberg)}}(h)$ vs t_n . Use the logarithmic scale for the error.

Part 2: Estimate the error using
$$E_n(h) = \frac{1}{1 - (0.5)^5} \left| w_n(h) - w_{2n} \left(\frac{h}{2} \right) \right|$$
.

Plot $E_n^{\text{(Fehlberg)}}(h)$ vs t_n and $E_n(h)$ vs t_n in ONE figure for comparison. Use the logarithmic scale for the errors.

Hint:

The specifications (*p*, matrix A, vectors c, b5 and b4) of the Fehlberg method are given in the folder of sample code on how to implement RK methods