Problem Statement ¶

A real estate agent want help to predict the house price for regions in USA.He gave us the dataset to work on to use linear regression model.Create a model that helps him to estimate of what the house would sell for

Import libraries

```
In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

```
In [2]: # To import dataset
df=pd.read_csv('17 student csv')
df
```

Loading [MathJax]/jax/output/HTML-CSS/fonts/STIX-Web/fontdata.js

Out[2]:

out[2]:		Student_ID	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6	Test_7	Test_8	Test_9	Test_10
	0	22000	78	87	91	91	88	98	94	100	100	100
	1	22001	79	71	81	72	73	68	59	69	59	60
	2	22002	66	65	70	74	78	86	87	96	88	82
	3	22003	60	58	54	61	54	57	64	62	72	63
	4	22004	99	95	96	93	97	89	92	98	91	98
		22005	41	36	35	28	35	36	27	26	19	22
	6	22006	47	50	47	57	62	64	71	75	85	87
	7	22007	84	74	70	68	58	59	56	56	64	70
	8	22008	74	64	58	57	53	51	47	45	42	43
	9	22009	87	81	73	74	71	63	53	45	39	43
	10	22010	40	34	37	33	31	35	39	38	40	48
	11	22011	91	84	78	74	76	80	80	73	75	71
	12	22012	81	83	93	88	89	90	99	99	95	85
	13	22013	52	50	42	38	33	30	28	22	12	20
	14	22014	63	67	65	74	80	86	95	96	92	83
	15	22015	76	82	88	94	85	76	70	60	50	58
	16	22016	83	78	71	71	77	72	66	75	66	61
	17	22017	55	45	43	38	43	35	44	37	45	37
	18	22018	71	67	76	74	64	61	57	64	61	51
	19	22019	62	61	53	49	54	59	68	74	65	55
	20	22020	44	38	36	34	26	34	39	44	36	45
	21	22021	50	56	53	46	41	38	47	39	44	36
	22	22022	57	48	40	45	43	36	26	19	9	12
	23	22023	59	56	52	44	50	40	45	46	54	57
	24	22024	84	92	89	80	90	80	84	74	68	73
	25	22025	74	80	86	87	90	100	95 75	87	85	79 7 2
	26	22026	92	84	74 74	83 65	93	83 55	75 61	82 59	81	73 46
	27 28	22027	63 78	70 77	74 60	65 76	64 78	55 74	61 67	58 60	48	46 68
	28 29	22028	78 55	77 58	69 50		78 71	74 62	67 53	69 61	78 67	68 76
	30	22029 22030	55 54	58 54	59 48	67 38	71 35	62 45	53 46	61 47	67 41	76 37
	31	22030	84	93	97	38 89	35 86	95	100	100	100	37 99
	32	22031	95	100	94	100	98	99	100	90	80	99 84
	33	22032	95 64	61	63	73	63	68	64	58	50	51
	34	22033	76	79	73	73 77	83	86	95	89	90	95
oading [MathJax]/jax/output/HTML-CSS/fonts/STIX-Web/fontdata.js												

localhost:8889/notebooks/student (d).ipynb

	Student_ID	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6	Test_7	Test_8	Test_9	Test_10
35	22035	78	71	61	55	54	48	41	32	41	40
36	22036	95	89	91	84	89	94	85	91	100	100
37	22037	99	89	79	87	87	81	82	74	64	54
38	22038	82	83	85	86	89	80	88	95	87	93
39	22039	65	56	64	62	58	51	61	68	70	70
40	22040	100	93	92	86	84	76	82	74	79	72
41	22041	78	72	73	79	81	73	71	77	83	92
42	22042	98	100	100	93	94	92	100	100	98	94
43	22043	58	62	67	77	71	63	64	73	83	76
44	22044	96	92	94	100	99	95	98	92	84	84
45	22045	86	87	85	84	85	91	86	82	85	87
46	22046	48	55	46	40	34	29	37	34	39	41
47	22047	56	52	54	47	40	35	43	44	40	39
48	22048	42	44	46	53	62	59	57	53	43	35
49	22049	64	54	49	59	54	55	57	59	63	73
50	22050	50	44	37	29	37	46	53	57	55	61
51	22051	70	60	70	62	67	67	68	67	72	69
52	22052	63	73	70	63	60	67	61	59	52	58
53	22053	92	100	100	100	100	100	92	87	94	100
54	22054	64	55	54	61	63	57	47	37	44	48
55	22055	60	66	68	58	49	47	39	29	39	44

```
In [3]: # To display top 10 rows
df.head(10)
```

Out[3]:

	Student_ID	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6	Test_7	Test_8	Test_9	Test_10	٦
0	22000	78	87	91	91	88	98	94	100	100	100	
1	22001	79	71	81	72	73	68	59	69	59	60	
2	22002	66	65	70	74	78	86	87	96	88	82	
3	22003	60	58	54	61	54	57	64	62	72	63	
4	22004	99	95	96	93	97	89	92	98	91	98	
5	22005	41	36	35	28	35	36	27	26	19	22	
6	22006	47	50	47	57	62	64	71	75	85	87	
7	22007	84	74	70	68	58	59	56	56	64	70	
8	22008	74	64	58	57	53	51	47	45	42	43	
9	22009	87	81	73	74	71	63	53	45	39	43	
4)	>

Data Cleaning and Pre-Processing

```
In [4]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 56 entries, 0 to 55
Data columns (total 13 columns):
```

#	Column	Non-Null Count	Dtype
0	Student_ID	56 non-null	int64
1	Test_1	56 non-null	int64
2	Test_2	56 non-null	int64
3	Test_3	56 non-null	int64
4	Test_4	56 non-null	int64
5	Test_5	56 non-null	int64
6	Test_6	56 non-null	int64
7	Test_7	56 non-null	int64
8	Test_8	56 non-null	int64
9	Test_9	56 non-null	int64
10	Test_10	56 non-null	int64
11	Test_11	56 non-null	int64
12	Test_12	56 non-null	int64

dtypes: int64(13)
memory usage: 5.8 KB

Loading [MathJax]/jax/output/HTML-CSS/fonts/STIX-Web/fontdata.js

```
df.describe()
In [5]:
Out[5]:
                   Student ID
                                  Test 1
                                              Test 2
                                                         Test 3
                                                                    Test 4
                                                                                Test 5
                                                                                           Test 6
                                                                 56.000000
                    56.000000
                               56.000000
                                           56.000000
                                                      56.000000
                                                                             56.000000
                                                                                        56.000000
          count
          mean
                 22027.500000
                               70.750000
                                           69.196429
                                                      68.089286
                                                                 67.446429
                                                                             67.303571
                                                                                        66.000000
                                                                                                    6
                    16.309506
                               17.009356
                                                                             20.746890
            std
                                           17.712266
                                                      18.838333
                                                                 19.807179
                                                                                        21.054043
            min
                 22000.000000
                               40.000000
                                           34.000000
                                                      35.000000
                                                                 28.000000
                                                                             26.000000
                                                                                        29.000000
                               57.750000
            25%
                 22013.750000
                                           55.750000
                                                      53.000000
                                                                 54.500000
                                                                             53.750000
                                                                                        50.250000
                 22027.500000
            50%
                               70.500000
                                           68.500000
                                                      70.000000
                                                                 71.500000
                                                                             69.000000
                                                                                        65.500000
                                                                                                    6
           75% 22041.250000
                               84.000000
                                           83.250000
                                                      85.000000
                                                                 84.000000
                                                                             85.250000
                                                                                        83.750000
                                                                                                    3
                                                     100.000000
                                                                            100.000000
                                                                                       100.000000
            max 22055.000000
                              100.000000
                                          100.000000
                                                                 100.000000
                                                                                                  10
In [6]: df.columns
Out[6]: Index(['Student_ID', 'Test_1', 'Test_2', 'Test_3', 'Test_4', 'Test_5',
                  'Test_6', 'Test_7', 'Test_8', 'Test_9', 'Test_10', 'Test_11',
                  'Test 12'],
                dtype='object')
         a = df.dropna(axis='columns')
In [7]:
         a.columns
Out[7]: Index(['Student_ID', 'Test_1', 'Test_2', 'Test_3', 'Test_4', 'Test_5',
                  'Test_6', 'Test_7', 'Test_8', 'Test_9', 'Test_10', 'Test_11',
                  'Test 12'],
                dtype='object')
```

EDA and Visualization

In [8]: sns.pairplot(a)

Out[8]: <seaborn.axisgrid.PairGrid at 0x107715e7400>


```
In [10]: sns.distplot(a['Test_1'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

Out[10]: <AxesSubplot:xlabel='Test_1', ylabel='Density'>


```
In [12]: sns.heatmap(a1.corr())
```

Out[12]: <AxesSubplot:>

Loading [MathJax]/jaxpout/Thashfothe-Miodes - Model Building

We are going to train Linear Regression model; We need to split out data into two variables x and y where x is independent variable (input) and y is dependent on x(output). We could ignore address column as it is not required for our model.

To split my dataset into training and test data

```
In [14]: | from sklearn.model selection import train test split
          x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
In [15]: from sklearn.linear model import LinearRegression
          lr=LinearRegression()
          lr.fit(x train,y train)
Out[15]: LinearRegression()
In [16]: |print(lr.intercept_)
          -496.2386938508267
          coeff=pd.DataFrame(lr.coef ,x.columns,columns=['Co-efficient'])
In [17]:
          coeff
Out[17]:
                      Co-efficient
           Student_ID
                        0.022984
               Test_2
                        1.158434
               Test 3
                       -0.044753
               Test_4
                       -0.078670
               Test_5
                        0.108553
               Test 6
                       -0.086070
               Test 7
                       -0.375757
               Test_8
                        0.095003
               Test_9
                        0.160400
              Test 10
                       -0.059013
              Test_11
                       -0.096441
```

Loading [MathJax]/jax/output/HTML-CSS/fonts/STIX-Web/fontdata.js

0.093856

Test_12

```
In [18]: prediction=lr.predict(x_test)
    plt.scatter(y_test,prediction)
```

Out[18]: <matplotlib.collections.PathCollection at 0x1077b7792e0>


```
In [19]: print(lr.score(x_test,y_test))
```

0.8507480992411061

ACCURACY

Loading [MathJax]/jax/output/HTML-CSS/fonts/STIX-Web/fontdata.js

 $Loading \ [MathJax]/jax/output/HTML-CSS/fonts/STIX-Web/fontdata.js$