1 Model Framework

We are interested in models with asymptotically power-law decay of the mutual information measure with respect to the distance between the tokens in the sequence. So far so good. But what does it *actually* mean?

The tokens, represented by random variables X_t , are elements of a finite alphabet Σ . The distance between X_t and $X_{t+\tau}$ is τ , and for every t and every τ we want to bound

$$I(X_t, X_{t+\tau}) \in \Omega(\tau^{-\alpha}), \ I(X_t, X_{t+\tau}) \in \mathcal{O}(\tau^{-\beta})$$
,

for some fixed $\alpha, \beta \in \mathbb{R}_{>0}$. The first condition is the important one, while the latter ensures that $I(X_t, X_{t+\tau}) \xrightarrow{\tau \to \infty} 0$. We also may replace the latter condition by this one.

This was straight forward. The challenging part is to define what a model is. In the case of Markov chains this seems trivial: We define a finite set of parameters (the transition probabilities), and we get a model over Σ^* , that is for every $n \in \mathbb{N}$ the model defines a probability measure over Σ^n . Thus, the first conclusion is every model S must define a probability measure over Σ^n for every $n \in \mathbb{N}$.

As a first formalization, S is a function $S:(n,w)\mapsto [0,1],$ for $n\in\mathbb{N},\ w\in\Sigma^n$ s.t. $\sum_{w\in\Sigma^n}S(n,w)=1.$

But really, we want to restrain S in order to have reasonable time and space complexity, and to ensure the model is reasonable, which means that the language of $S_n(w)$ should look similar to $S_{n+d}(w)$, whatever this might mean, where we used the notation $S_n(w) \equiv S(n,w)$. We also write w_i for X_i . Really, w is a 1-indexed String of X_i .

We present one strict definition for this *similarity* in the following definition:

Definition 1.1. We say S is well behaved iff for every $n \in \mathbb{N}$, $w \in \Sigma^{n+1}$ it holds true that

$$\sum_{w_{n+1} \in \Sigma} S_{n+1}(w) = S_n(w_{-(n+1)}) \quad .$$

Lemma 1.1. For every $d \in \mathbb{N}$, let $I := [n+d] \setminus [n] = \{n+1, \dots, n+d\}$. Then, if S is well behaved, we have for every $w \in \Sigma^{n+d}$:

$$\sum_{w_I \in \Sigma^d} S_{n+d}(w) = S_n(w_{-I}) \quad .$$

Proof. We use induction over d. The base case follows directly from the definition of S being well behaved. Thus, assume the claim holds for some d := k.

Then we have

$$\sum_{w_I \in \Sigma^{k+1}} S_{n+k+1}(w) = \sum_{w_{I \setminus \{k+1\}} \in \Sigma^k} \sum_{w_{k+1} \in \Sigma} S_{n+k+1}(w)$$

$$= \sum_{S \text{ well defined } \sum_{w_{I \setminus \{k+1\}} \in \Sigma^k} S_{n+k}(w_{-\{k+1\}})$$

$$= \sum_{\text{induction hypothesis}} S_n(w_{-I}) ,$$

which concludes the induction step.

Definition 1.2. From any model S, we can construct the *induced well behaved* model S^* by defining S_n^* recursively as

•
$$S_1^* \coloneqq S_1$$
,

•
$$S_{n+1}^*(w) \coloneqq S_n^*(w_{-\{n+1\}}) \frac{S_{n+1}(w)}{\sum_{w_{n+1} \in \Sigma} S_{n+1}(w)}$$
.

Lemma 1.2. The induced well behaved model S^* is indeed well behaved. Proof. We have:

$$\begin{split} \sum_{w_{n+1} \in \Sigma} S_{n+1}^*(w) &= \sum_{w_{n+1} \in \Sigma} S_n^*(w_{-\{n+1\}}) \frac{S_{n+1}(w)}{\sum_{w_{n+1} \in \Sigma} S_{n+1}(w)} \\ &= \frac{S_n^*(w_{-\{n+1\}})}{\sum_{w_{n+1} \in \Sigma} S_{n+1}(w)} \sum_{w_{n+1} \in \Sigma} S_{n+1}(w) \\ &\stackrel{\checkmark}{=} S_n^*(w_{-\{n+1\}}) \quad . \end{split}$$

Now, we want to look at how we might restrict our model $(S_n)_{n\in\mathbb{N}} \equiv S$. One approach might be to define a model structure for every $n \in \mathbb{N}$ with finite parameters $\boldsymbol{\theta}_n$, thus $S_n \in \{S_n(\boldsymbol{\theta}_n) : \boldsymbol{\theta}_n \in \Theta_n\} =: \mathcal{S}_n$. We write $S_{n,\boldsymbol{\theta}_n}$ for S_n with parameters $\boldsymbol{\theta}_n$. Hence, $(S_n)_{n\in\mathbb{N}}$ is completely defined by $(\mathcal{S}_n,\boldsymbol{\theta}_n)_{n\in\mathbb{N}}$. We call $\mathcal{S}(n) \equiv \mathcal{S}_n$ the model space.

Definition 1.3. We say $(S_n)_{n\in\mathbb{N}}$ is a family of models over the model space S iff $S_n \in S_n$ for every $n \in \mathbb{N}$. As a shorthand, we write $S \in S$.

For our model S, we want the mutual information between any two variables $X_t, X_{t+\tau}$ to be $I(X_t, X_{t+\tau}) \in \Omega(\tau^{-\alpha})$, i.e. it has to hold for every t and every S_n . Thus, let us define the following:

Definition 1.4. We define $I_S(n)$ to be the minimal mutual information between any two variables of S_n . Formally, let X_i, X_j be random variables with distributions defined by S_n . Then:

$$I_S(n) \coloneqq \min_{(i,j) \in [n]^2} I(X_i, X_j) \quad .$$

Theorem 1.1. Let S be a model. If $I_S(n) \ge cn^{-\alpha}$ for some $c, \alpha \in \mathbb{R}_{>0}$, then for every $X_t, X_{t+\tau}$ over any S_n $(n \ge t+\tau)$, it follows that $I(X_t, X_{t+\tau}) \ge c\tau^{-\alpha}$.

Proof. Assume there exists t, τ and S_n s.t. $I(X_t, X_{t+\tau}) < c\tau^{-\alpha}$. But then, by the definition of $I_S(n)$, we must have $I_S(\tau) \leq I(X_t, X_{t+\tau}) < c\tau^{-\alpha}$, a contradiction.

Based on this result, we define:

Definition 1.5. A model space S has power-law capacity iff there exists an $S \in S$ s.t. $I_S(n) \in \Omega(n^{-\alpha})$ for some $\alpha \in \mathbb{R}_{>0}$ and $I_S(n) \xrightarrow{n \to \infty} 0$.