Indução eletromagnética

Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

14 de Julho de 2022

Sumário

- 1 Lei de Faraday
- 2 Lei de Lenz
- Aplicações da indução eletromagnética
- Apêndice

Definição de fluxo magnético

Definimos fluxo do campo magnético \vec{B} que atravessa uma área A como a somatória das linhas de campo magnético que atravessam perpendicularmente essa área.

Fluxo do campo magnético

$$\varphi = BAcos\theta$$

 φ_{R} : B por area perpendicular a espira

Linhas de campo magnético atravessando a área A demarcada pela linha traceiada, em um ângulo θ .

Fluxo magnético e a orientação de \vec{B} em relação a área

Fluxo magnético máximo ($\theta = 0^{o}$)

Fluxo magnético zero ($\theta = 90^{\circ}$)

Prof. Flaviano W. Fernandes

Variação do fluxo magnético ao longo de uma espira

Lei de Faraday

Sempre que houver uma variação do fluxo magnético através de um circuito, aparecerá, nesse circuito, uma f.e.m. induzida,

$$\left| \frac{\Delta \varphi}{\Delta t} \right| = \varepsilon$$

φ_B: B por area perpendicular a espira

Sentido da corrente i contornando a área A.

Corollary

No SI a unidade de medida de fluxo magnético é Weber (Wb).

Corollary

Podemos variar o fluxo magnético que atravessa a espira ao longo do tempo de três maneiras distintas, usando a fórmula $\varphi_B = BA \cos \theta$.

Variação de A no tempo.

Variação de θ no tempo.

Variação de B no tempo.

Prof. Flaviano W. Fernandes

Sentido da corrente induzida em relação a variação do fluxo

Lei de Lenz

A corrente induzida em um circuito aparece sempre com um sentido tal que o campo magnético que ela cria tende a contrariar a variação do fluxo magnético que a originou.

< 0 no tempo.

Lei de Faraday-Lenz

$$\frac{\Delta \varphi}{\Delta t} = -\varepsilon$$

Prof. Flaviano W. Fernandes

Dínamo

Corollary

Dínamo é um aparelho baseado no princípio da indução eletromagnética que transforma energia mecânica em energia elétrica.

Imagem de um dínamo.

Gerador de energia elétrica

Variação de θ no tempo.

f.e.m. induzida em função do tempo.

Corollary

Uma f.e.m induzida que varia senoidalmente no tempo aparece devido a variação do fluxo de \vec{B} em relação ao ângulo θ .

Transformador

Imagem de um transformador.

Corollary

$$V_2 = N_2 \frac{V_1}{N_1}$$

Esquema de funcionamento de um transformador.

Alfabeto grego

Alfa	Α	α
Beta	В	β
Gama	Γ	γ
Delta	Δ	δ
Epsílon	Ε	ϵ , ε
Zeta	Z	ζ
Eta	Η	η
Teta	Θ	θ
lota	1	ι
Capa	Κ	κ
Lambda	Λ	λ
Mi	Μ	μ

Ni	Ν	ν
Csi	Ξ	ξ
ômicron	0	0
Pi	П	π
Rô	Ρ	ρ
Sigma	Σ	σ
Tau	Τ	au
ĺpsilon	Υ	v
Fi	Φ	ϕ, φ
Qui	X	χ
Psi	Ψ	ψ
Ômega	Ω	ω

Referências

A. Máximo, B. Alvarenga, C. Guimarães, Física. Contexto e aplicações, v.1, 2.ed., São Paulo, Scipione (2016)

Esta apresentação está disponível para download no endereço https://flavianowilliams.github.io/education