Ejercicio U1_B6_E1:

La solución anterior sólo funciona para los 10 primeros números. el operador % me permite escribir una solución que funciona para cualquier número entero.

también se puede escribir la lógica contraria

Podemos prescindir de la variable resto

La mejor forma de escribir es con la que te sientas más cómod@, a medida que uses java, la tendencia es a escribir el código con estilo compacto, pero no hay prisa ya que es algo que llega sólo, de forma natural.

Ejercicio U1_B6_E2:

Ejercicio U1_B6_E3:

```
class Unidad1{
  public static void main(String[] args){
    int x = 15;
  int y=200;
    if(x*x>100){
        System.out.println("valor de x: "+ x);
        System.out.println("valor de y: "+ y);
        y++;
        System.out.println("Nuevo valor de y: "+ y);
    }else{
    }
}

Cuando el else es vacío, se prefiere no escribir, lo más sencillo suele ser mejor:
class Unidad1{
    public static void main(String[] args){
        int x = 15;
    }
}
```

System.out.println("valor de x: "+ x); System.out.println("valor de y: "+ y);

System.out.println("Nuevo valor de y: "+ y);

Ejercicio U1_B6_E4:

int y=100; if(x*x>100){

} } }

}

y respecto al primer operando podríamos enriquecerlo o embarullarlo, según se mire, con paréntesis. Observa en todo caso que no hicieron falta paréntesis porque % tiene mayor precedencia que == y este que ?:

Ejercicio U1_B6_E5:

```
class Unidad1{
    public static void main(String[] args){
        int x =16;
        int y=3;
        System.out.println(x + (x%y==0?" es multiplo de ":" NO es multiplo de ")+y);
}
```

Ejercicio U1_B6_E6:

```
class Unidad1{
  public static void main(String[] args){
    int x =15;
    int y=100;
    System.out.println(x*x>100?"valor de x: "+ x + "\nvalor de y: "+ y +"\nNuevo valor de y: "+ ++y :"");
  }
}
```

Este caso tiene menos sentido para el operador condicional ya que si una expresión es vacía de los tres operadores uno "sobra". El if sería más simple y claro.

Ejercicio U1_B6_E7:

```
class Unidad1{
   public static void main(String args[]){
        System.out.println("4*1="+ (1<<2));//1*4
        System.out.println("4*2="+ (2<<2));//2*4
        System.out.println("4*3="+ (3<<2));//3*4
        System.out.println("4*4="+ (4<<2));
        System.out.println("4*5="+ (5<<2));
        System.out.println("etc...");
    }
}</pre>
```

Ejercicio U1_B6_E8:

```
class Unidad1{
    public static void main(String[] args){
    int x = 4;
    int y = 5;
    System.out.println("x:"+ x +" y:"+ y);
    System.out.println("Multiplicación lógica: "+ Integer.toBinaryString(x)+ " and " +Integer.toBinaryString(y)+" = "+Integer.toBinaryString(x&y));
    System.out.println("Multiplicación aritmética: "+ Integer.toBinaryString(x)+ " * " +Integer.toBinaryString(y)+" = "+Integer.toBinaryString(x*y));
    }
```

son un poco rollo los println(), quizá mejor usar unas variables para hacerlos más legibles

```
class Unidad1{
  public static void main(String[] args){
    int x = 4;
    int y = 5;
    String xBits=Integer.toBinaryString(x);
    String yBits=Integer.toBinaryString(y);
    int muLogica=x&y;
    int muArit=x*y;
    System.out.println("x:"+ xBits +" y:"+ yBits);
    System.out.println("Multiplicación lógica: "+ Integer.toBinaryString(muLogica));
    System.out.println("Multiplicación aritmética: "+ Integer.toBinaryString(muArit));
    }
}
```

Ejercicio U1_B6_E9:

```
class Unidad1{
  public static void main(String[] args){
    int x = 0b10000001;
    int mask=1<<5;
    int x2 =x|mask;
    String xBits=Integer.toBinaryString(x);
    String maskBits=Integer.toBinaryString(mask);
    String x2Bits=Integer.toBinaryString(x2);</pre>
```

```
}
Ejercicio U1_B6_E10:
class Unidad1{
  public static void main(String[] args){
    //int numero= 0B00000000000000000000000001010101;
        //es más cómodo en decimal
        int numero=85;
        //más cómodo calculando
        int colocadorCero=~(1<<2);
        int resultado=numero&colocadorCero;
        String resultadoEnStringBinario=Integer.toBinaryString(resultado);
        System.out.println(resultadoEnStringBinario);
}
fijáte que si hubiera hecho
int colocadorCero= 0b11111011;
ya que es un int se almacena
int colocadorCero= 0B000000000000000000000011111011;
y ciertas situaciones pueden producirse efectos no deseados
Ejercicio U1_B6_E11:
class Unidad1{
        public static void main(String[] args){
                int i=10;
                System.out.println("Valor inicial de i: "+i);
                i\%=3;//i=i\%3;
                System.out.println("Valor de i tras i%=3: "+i);
                System.out.println("Valor de i tras i>>=1: "+i);
                System.out.println("Valor de i tras i|=1: "+i);
```

System.out.println("x:\t"+ xBits);

}

}

System.out.println("mask:\t"+ "00"+maskBits); System.out.println("x2:\t"+ x2Bits);