ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών

Α32 - Κωδικοποίηση

Φυλλάδιο Ασκήσεων 3

Άσκηση 3.1 Βρείτε το ελάχιστο $n \in \mathbb{N}$, τέτοιο ώστε να υπάρχει

- (i) γραμμικός [n, 50, 3] κώδικας πάνω από το \mathbb{F}_2 ,
- (ii) γραμμικός [n, 40, 3] κώδικας πάνω από το \mathbb{F}_9 .

Άσκηση 3.2 Έστω C ένας (n,M,d) κώδικας πάνω από αλφάβητο Σ με q σύμβολα. Ορίζουμε την ακτίνα κάλυψης του C ως

$$\rho = \max_{x \in \Sigma^n} \Delta(x, C), \quad \text{όπου} \quad \Delta(x, C) = \min_{c \in C} \Delta(x, c).$$

- (i) Δείξτε ότι $M \ge q^n / \sum_{i=0}^{\rho} \binom{n}{i} (q-1)^i$.
- (ii) Δείξτε ότι $\rho \geq (d-1)/2$.

Άσκηση 3.3 Έστω C ένας [n,k] κώδικας πάνω από το \mathbb{F}_q με πίνακα ελέγχου H και ακτίνα κάλυψης ρ .

- (i) Αποδείξτε ότι $\rho \leq t$ αν και μόνο αν κάθε διάνυσμα του \mathbb{F}_q^{n-k} γράφεται ως γραμμικός συνδυασμός t στηλών του H (οι στήλες δεν είναι απαραίτητα οι ίδιες για όλα τα διανύσματα του \mathbb{F}_q^{n-k}).
- (ii) Υπολογίστε την ακτίνα κάλυψης των κωδίκων Hamming.
- (iii) Δείξτε ότι $\rho \leq n k$.
- (iv) Δείξτε ότι $\rho \geq (n-k)/(1+\log_q(n))$. Υπόδειξη: Δείξτε ότι $\binom{n}{i}(q-1)^i \leq \binom{\rho}{i}(nq-1)^i$ και χρησιμοποιήστε το φράγμα της άσκησης 3.2 (i).

Ασκηση 3.4 Έστω ότι γίνονται t ποδοσφαιρικοί αγώνες και ένα στοίχημα αποτελείται από την πρόβλεψη του αποτελέσματος κάθε αγώνα, όπου το αποτέλεσμα μπορεί να είναι 1 (νίκη 1ης ομάδας), 2 (νίκη 2ης ομάδας) ή 0 (ισοπαλία). Δηλαδή κανείς μπορεί να δεί ένα στοίχημα ως ένα στοιχείο του \mathbb{F}^t_3 . Ποιός είναι ο μικρότερος αριθμός, f(t), στοιχημάτων που απαιτείται, έτσι ώστε να είναι βέβαιο ότι θα κερδιθεί τουλάχιστον το δεύτερο βραβείο (δηλαδή θα υπάρχει κάποιο στοίχημα με το πολύ μία λάθος πρόβλεψη);

- (i) Δείξτε ότι $f(t) > 3^t/(2t+1)$.
- (ii) Με χρήση κωδίκων Hamming πάνω από το \mathbb{F}_3 , υπολογίστε το f(t) για τιμές του t της μορφής $(3^r-1)/2$, για ακεραίους $r\geq 2$.
- (iii) Δώστε ένα παράδειγμα τέτοιων στοιχημάτων για τέσσερις αγώνες.
- (iv) Δείξτε ότι $23 \le f(5) \le 27$.