

joint constraints on the anisotropy and mass profiles of massive elliptical galaxies

Shawn Knabel, Tommaso Treu, Chih-Fan Chen University of California, Los Angeles

Se ctions of the Presentation

Section 1: Background and Motivation

Section 2: Observations and Kinematica

Section 3: Dynamical Modeling

Tension in H₀ needs to be resolved

Early- and Late-Universe probes disagree

Freedman et al. 2021

Tension in H₀ can be resolved with time-delay cosmography

Independent measurement with simple physics

Time-delay distance is an absolute cosmological distance... inversely proportional to H₀

Tension in H₀ can be resolved with time-delay cosmography

Ingredients for H₀ are few

- 1. Time delay between arrival of quasar images
- 2. Lensing potential between quasar images in lens plane

NASA, ESA, and D. Player (STScI)

A Tale of Two Degeneraci(ti)es

- 1. MSD Mass-Sheet Degeneracy (or Transform "MST")
- 2. MAD Mass-Anisotropy Degeneracy

NASA, ESA, and D. Player (STScI)

The infamous Mass-Sheet Transform (Degeneracy)

$$\kappa_{\lambda}(\theta) = \lambda \times \kappa(\theta) + (1 - \lambda)$$

Two contributors to MST:

- 1. External Lo.s. structure
- 2. Internal mass profile

F. Corbin 2003

Ingredients for H₀ are still few

We need:

- 1. Time delay
- 2. Lensing potential
- 3. External MST
- 4. Internal MST

NASA, ESA, and D. Player (STScI)

Ingredients for H₀ are observable

- 1. Time delay photometry
- 2. Lensing potential lens modeling
- 3. External MST weak lensing/simulations
- 4. Internal MST ...

Mass density profile assumptions

or

Lensing-independent tracers of gravitational potential

We want to account for maximal possible effects of MST

We want empirical constraints over theoretical assumptions

A dynamical mass from stellar kinematics allows us constrain the mass profile and the effects of the internal MST on the uncertainties of inferred quantities (H₀)

Stellar anisotropy can be constrained with spatially resolved kinematics

Isotropic

Anisotropic

How *not isotropic* the stellar velocity ellipsoid is

$$\beta_{\rm ani}(r) \equiv 1 - \frac{\sigma_{\rm t}^2(r)}{\sigma_{\rm r}^2(r)}$$

For isotropic (spherical ellipsoid) case, $\beta_{ani} = 0$

Kinematics of distant time-delay lenses are difficult to get

Limited by the S/N possible for the individual lenses

NASA, ESA, A. Nierenberg (JPL) and T. Treu

Kinematics of other *closer* lenses are *less* difficult to get

Constraints on mass profiles of the larger population of lensing elliptical galaxies

image crisits: A. Bolian, for the SLAES floors and HASA/ESA.

Bayesian hierarchical modeling connects the individuals

and population

Constrain MAD

Constrain MSD

Constrain H₀

Keck KCWI IFU spectroscopy measures spatially-resolved kinematics

Integral-Field Units (IFU) measure a spectrum at each pixel

ESO/MUSE consortium/R. Bacon/L. Calçada

Keck is also good for writing music.

Knabel et al. in prep

In spite of myself... all 14 SLACS lenses were observed

Knabel et al. in prep

Pixels are binned to regions of similar S/N for comparison

Voronoi binning bins to designated target S/N (e.g. 10-20)

Knabel et al. in prep

Br eaking MAD

Penalized Pixel Fitting (pPXF)

Generate kinematic maps by fitting with stellar spectrum templates and adjusting linewidths

XSL team

M. Cappellari

Ca II H&K absorption lines are fit to measure kinematics

Line centers, widths, and amplitudes are scaled to fit the composite spectra in each bin

Knabel et al. in prep

2-D kinematic maps describe projection of stellar motion

Knabel et al. in prep

The Jeans equation connects kinematics and dynamics

Jeans Anisotropic Modeling (JAM) solves the Jeans equation allowing for orbital anisotropy in axisymmetric or spherical alignment to dynamically describe the radial mass profiles of elliptical galaxies

M. Cappellari

Surface brightness profile is tracer of stellar mass

Multi-Gaussian Expansion (MGE) approximates the surface brightness with Gaussian components

Fitting photometry of the datacube is inadvisable...

Knabel et al. in prep

Initial fit to central ellipse for ellipticity and position angle

Informs the construction of the Gaussian components

Knabel et al. in prep

Photometry is binned to evenly space sectors about center

Guides the construction of the Gaussian components

Knabel et al. in prep

Multi-Gaussian Expansion fits sector-binned photometry

Multi-Gaussian Expansion fits sector-binned photometry

Knabel et al. in prep

We fit for the best *roundest* isophotes and simplest model

Knabel et al. in prep

We check alignment of kinematic and photometric axis

Aligned with kinematics

Aligned with photometry

Each Gaussian component is assigned an anisotropy $\beta_{\mathbf{k}}$

Each Gaussian k contributes most strongly at $r = \sigma_k$, so each β_k can be assigned according to any profile of anisotropy $\beta(r)$

$$\beta_{\rm ani}(r) \equiv 1 - \frac{\sigma_{\rm t}^2(r)}{\sigma_{\rm r}^2(r)}$$

Knabel et al. in prep

We consider four different possible radial profiles $\beta(r)$

- 1. Constant
- 2. Osipkov-Merritt (OM)
- 3. Modified OM
- 4. Inner/Outer

$$\beta_{\rm ani}(r) \equiv 1 - \frac{\sigma_{\rm t}^2(r)}{\sigma_{\rm r}^2(r)}$$

$$Beta(r) = \frac{r^2}{r_{ani}^2 + r^2} = \frac{1}{a_{ani}^2 (r_{eff}/r)^2 + 1}$$
 $a_{ani} = r_{ani}/r_{eff}$

Osipkov-Merritt Model has been historically used $\beta(r)$

$$\beta_{\rm ani}(r) \equiv 1 - \frac{\sigma_{\rm t}^2(r)}{\sigma_{\rm r}^2(r)}$$

$$Beta(r) = \frac{r^2}{r_{ani}^2 + r^2} = \frac{1}{a_{ani}^2 (r_{eff}/r)^2 + 1}$$
$$a_{ani} = r_{ani}/r_{eff}$$

Light-follows-mass gives first dynamical mass estimate

Knabel et al. in prep

Total mass 4.886e+11 M_o

The first velocity moment helps validate but isn't necessary

Knabel et al. in prep

We consider three different mass models $\rho(r)$

- 1. Power law total mass
- 2. Stellar + NFW halo
- 3. Stellar + generalized NFW halo

$$\rho(r) \propto \left(\frac{r}{r_{break}}\right)^{\gamma} \left(1 + \frac{r}{r_{break}}\right)^{-\gamma - 3}$$

y inner profile slope

r_{break} radius at which slope changes

Simplest fit – spherical alignment and constant anisotropy

AdaMet - Adaptive Metropolis Bayesian analysis package

Utilizing broad priors from fiducial values and previous light-follows-mass model

Simplest fit – 4 parameters for anisotropy and mass

- 1. **q**_{min}
- 2. $\boldsymbol{\sigma}_{t}/\boldsymbol{\sigma}_{r}$
- 3. **f**_{dm}
- 4. log(M/L)

The total mass profile can be easily obtained

But we get posteriors for β_{ani} and mass... best estimates:

Constant *β*_{ani} ~ 0.256

Power law slope $\gamma \sim -2.047$

In summary

Though currently in the beginning stages, our observations and analytical framework appear to be capable of addressing the MAD problem of the mass-anisotropy degeneracy.

This will help us get to 1% precision on H_0 .

The relative arrival time between two images θ_A and θ_B , Δt_{AB} , originated from the same source is

$$\Delta t_{\rm AB} = \frac{D_{\Delta t}}{c} \left(\phi(\theta_{\rm A}, \beta) - \phi(\theta_{\rm B}, \beta) \right), \tag{5}$$

where c is the speed of light,

$$\phi(\theta, \beta) = \left[\frac{(\theta - \beta)^2}{2} - \psi(\theta) \right]$$

is the Fermat potential (Schneider 1985; Blandford & Narayan 1986), and

$$D_{\Delta t} \equiv (1 + z_{\rm d}) \, \frac{D_{\rm d} D_{\rm s}}{D_{\rm ds}},$$

The mass-sheet transform (MST) is a multiplicative transform of the lens Equation (Eqn. 1) (Falco et al. 1985)

$$\lambda \beta = \theta - \lambda \alpha(\theta) - (1 - \lambda)\theta, \tag{20}$$

$$\kappa_{\lambda}(\theta) = \lambda \times \kappa(\theta) + (1 - \lambda)$$

TDCOSMO IV S Birrer et al. 2020

The dynamics of stars with the density distribution $\rho_*(r)$ in a gravitational potential $\Phi(r)$ follows the Jeans equation. In this work, we assume spherical symmetry and no rotation in the Jeans modeling. In the limit of a relaxed (vanishing time derivatives) and spherically symmetric system, with the only distinction between radial, σ_r^2 , and tangential, σ_t^2 , dispersions, the Jeans equation results in (e.g., Binney & Tremaine 2008)

(6)
$$\frac{\partial(\rho_*\sigma_r^2(r))}{\partial r} + \frac{2\beta_{ani}(r)\rho_*(r)\sigma_r^2(r)}{r} = -\rho_*(r)\frac{\partial\Phi(r)}{\partial r},$$
 (10)

with the stellar anisotropy parameterized as

 $D_{\Lambda t}$, transforms as (from Eqn. 9)

(7) $\beta_{\text{ani}}(r) \equiv 1 - \frac{\sigma_{\text{t}}^2(r)}{\sigma_{\text{t}}^2(r)}$. The Hubble constant, when inferred from the time-delay distance,

 $H_{0\lambda} = \lambda H_0$. (29)

$$H_{0\lambda} = \lambda H_{0}$$
. (29)

Mathematically, all the MSTs can be equivalently stated as a change in the angular diameter distance to the source

$$D_{\rm s} \to \lambda D_{\rm s}$$
. (30)

(11)

We model the PSF of HST and KCWI images with MGE

Knabel et al. in prep