

دانشكده كامپيو تر

عنوان پروژه

مقایسه عملکرد کرنل لینوکس در دو کانتینر ساز Docker و Podman

مشخصات دانشجو

- نام نام خانوادگی : محمد مهدی رسول امینی
 - شماره دانشجویی : 4001830235
 - مقطع تحصيلي : كارشناسي
- رشته تحصیلی : **مهندسی کامپیوتر –هوش مصنوعی**

مشخصات استاد راهنما

• نام استاد: دکتر سلطانی

عنوان درس: پروژه عملی کارشناسی

نيمسال $_{\rm col}$: نيمسال اول 1404

مقایسه عملکرد کرنل لینوکس در کانتینرهای Docker و Podman

فهرست مطالب

- 1. مقدمه
- 2. اهداف پروژه
- 3. ابزارهای مورد استفاده
 - 4. مراحل اجرایی
 - 5. معیارهای ارزیابی
 - 6. نتايج اوليه
 - 7. تحليل نتايج
 - 8. نتیجهگیری
 - 9. منابع مورد نیاز
 - 10. منابع و مراجع

مقدمه

در دنیای فناوری اطلاعات و مجازی سازی، کانتینرها نقش حیاتی در توسعه، استقرار و مدیریت نرمافزارها ایفا میکنند Docker .به عنوان پیشگام این فناوری شناخته میشود، اما Podman به عنوان جایگزینی سبکتر و امنتر معرفی شده است. این پروژه به مقایسه عملکرد کرنل لینوکس در این دو پلتفرم میپردازد تا تفاوتهای آنها در مدیریت منابع سیستم مشخص شود.

اهداف پروژه

- ارزیابی عملکرد CPU و حافظه :مقایسه مصرف منابع در Docker و Podman.
- تعیین کانتینر ساز بهینه : شناسایی پلتفرمی که کارایی بهتری در استفاده از منابع دارد.

- بررسی تأثیرات کرنل لینوکس :تحلیل مدیریت منابع سیستم در هر دو پلتفرم.
- **مقایسه فراخوانهای سیستم** :بررسی تفاوتها در فراخوانهای سیستم بین دو پلتفرم.

ابزارهای مورد استفاده

ابزار	کارپرد
sysbench	تست عملکرد CPU و حافظه
stress-ng	ایجاد فشار روی CPU و حافظه
vmstat	مانیتورینگCPU ، حافظه و ۱/O
htop	مشاهده لحظهای مصرف منابع
strace	ر دیابی فر اخوانهای سیستم
netstat	بررسى وضعيت شبكه
Isof	مشاهده فایلهای باز شده توسط فر آیندها
dstat	مانیتورینگ جامع سیستم
iostat	تحلیل عملکرد دیسک

مراحل اجرایی

.1آمادهسازی محیط

- نصب Docker و Podman روی سیستم عامل اوبونتو یا کالی لینوکس.
 - ایجاد دو کانتینر یکسان با تصویر پایه.Alpine
- نصب ابزارهای تست شاملstress-ng ، sysbench، و سایر ابزارها در هر دو کانتینر.

.2اجرای تستها

• تست:CPU

- o اجرای دستور sysbench cpu --cpu-max-prime=20000 runدر هر دو کانتینر.
 - o استفاده از stress-ng --cpu 4 --timeout 60sبرای ایجاد بار روی. CPU

تست حافظه:

- sysbench memory --memory-block-size=1K --memory- ه اجرای دستور -total-size=10G run.
 - o استفاده از .stress-ng --vm 1 --vm-bytes 1G --timeout 60s

• تست شىكە:

- o بررسی پهنای باند و تأخیر با ابزار.netstat
 - تست فراخوانهای سیستم:
- استفاده از strace برای ردیابی فراخوانهای سیستم.

3.جمعآوری و تحلیل دادهها

- ثبت نتایج هر تست در جداول مقایسهای.
- استفاده از نمودارها برای نمایش تفاوتهای عملکردی.

معیارهای ارزیابی

- کارایی :CPU زمان پاسخدهی و درصد استفاده از. CPU
- · کارایی حافظه :میزان مصرف حافظه و زمان دسترسی.

- فراخوانهای سیستم :تعداد و نوع فراخوانهای سیستم.
 - عملکرد شبکه :پهنای باند و تأخیر.
- مدیریت فایلها :تعداد فایلهای باز شده و دسترسی به آنها.

نتايج اوليه

مقایسه عملکرد CPU و حافظه

معيار	Docker	Podman
سرعت پردازش(event/sec)	216.65	215.80
سرعت انتقال حافظه(MiB/sec)	2864.69	2840.12
تأخير متوسط(ms)	4.61	4.63
تأخير حافظه(ms)	0.00	0.00

مقایسه معماری و امنیت

ویژگی	Docker	Podman
ساختار	Client-Server (Daemon-based)	Daemon-less
نیاز بهٔDaemon	دارد	ندار د
امنیتRootless	محدود	بله
سازگاری باDockerfile	بله	بله

تحليل نتايج

- عملکرد مشابه :تفاوتهای عملکردی بین Docker و Podman ناچیز است.
- **امنیت بالاتر :Podman** اجرای بدون Daemon و پشتیبانی از Rootless مزیتهای امنیتی Podman هستند.
 - سربار کمتر :Podman معماری Daemon-less باعث کاهش سربار سیستم میشود.
- اکوسیستم Docker: Docker همچنان از نظر ابزارهای جانبی و یکپارچگی با سرویسهای ابری پیشتاز است.

نتیجهگیری

- اگر امنیت و معماری سبکتر مهم است، Podmanگزینه بهتری است.
- اگر یکیارچگی با اکوسیستم ابری و ابزارهای توسعه اهمیت دارد، Docker مناسبتر است.
 - انتخاب نهایی به نیازهای خاص پروژه و اولویتهای تیم توسعه بستگی دارد.

منابع مورد نياز

- **سختافزار**:سیستم با حداقل 4 گیگابایت RAM و 2 هسته. CPU.
- نرمافزار :اوبونتو یا کالی لینوکس، Podman ،Docker، و ابزارهای تست.
 - **دسترسی به اینترنت** :برای نصب ابزارها و کانتینرها.

منابع و مراجع

1. مستندات رسمی Docker: https://docs.docker.com

2. مستندات رسمی https://podman.io/docs 3. راهنمای استفاده از sysbench: https://github.com/akopytov/sysbench 4. مقالات مقایسهای Docker و Podman در مجلات معتبر فناوری اطلاعات.