Lecture 3

Basic dynamical system theory II

AEM-ADV12 Hydrodynamic stability
Dr Yongyun Hwang

Lecture outline 2/24

- 1. Transcritical bifurcation
- 2. Saddle-node bifurcation
- 3. Pitchfork bifurcation
- 4. Hopf bifurcation

Lecture outline 3/24

1. Transcritical bifurcation

- 2. Saddle-node bifurcation
- 3. Pitchfork bifurcation
- 4. Hopf bifurcation

Bifurcation 4/24

Definition: Bifurcation

Bifurcation refers to a **sudden topological change** of given nonlinear dynamical system taking place **when a control parameter changes smoothly**.

Example: Transcritical bifurcation

Find the bifurcation diagram of a model given by

$$\frac{du}{dt} = k(R - R_c)u - lu^2$$

where k,l are constants and R is the control parameter.

Step 1) Find equilibrium points

Step 2) Examine linear stability of the equlibrium points

Bifurcation diagram of transcritical bifurcation

Lecture outline 8/24

- 1. Transcritical bifurcation
- 2. Saddle-node bifurcation
- 3. Pitchfork bifurcation
- 4. Hopf bifurcation

Example: Saddle-node bifurcation

Find the bifurcation diagram of a model of given by

$$\frac{du}{dt} = k(R - R_c) - lu^2$$

where k,l are real constants and $\,R\,$ is the control parameter.

Step 1) Find equilibrium points

Step 2) Examine linear stability of the equlibrium points

Example: Saddle-node bifurcation

Bifurcation diagram of Saddle-node bifurcation

Lecture outline 12/24

- 1. Transcritical bifurcation
- 2. Saddle-node bifurcation
- 3. Pitchfork bifurcation
- 4. Hopf bifurcation

Example: Pitchfork bifurcation

Find the bifurcation diagram of a model of given by

$$\frac{du}{dt} = k(R - R_c)u - lu^3$$

where k,l are real constants and $\,R\,$ is the control parameter.

Step 1) Find equilibrium points

Step 2) Examine linear stability of the equlibrium points

Bifurcation diagram of Pitchfork bifurcation (supercritical case, i.e. $\it l>0$)

Bifurcation diagram of Pitchfork bifurcation (subcritical case, i.e. $\it l < 0$)

Flow example: Wake behind a sphere

Steady axisymmetric

Steady planar symmetric

Kim & Choi (2001)

Lecture outline 18/24

- 1. Transcritical bifurcation
- 2. Saddle-node bifurcation
- Pitchfork bifurcation
- 4. Hopf bifurcation

Example 1: Hopf bifurcation

Find the bifurcation diagram a model given by

$$\frac{dx}{dt} = -y + (a - x^2 - y^2)x, \quad \frac{dy}{dt} = x + (a - x^2 - y^2)y,$$

where $a = k(R - R_c)$ and k > 0.

Phase portrait for a > 0

Bifurcation diagram of supercritical Hopf bifurcation

Flow example: Wake behind a circular cylinder

$$Re_{D,critical} \approx 47$$

$$Re_D = \frac{U_{\infty}D}{V}$$

$$Re_{D} = 27$$

$$Re_{D} = 140$$

Steady symmetric

Coutanceau & Bouard (1977)

Unsteady time periodic

Taneda (1982)

Summary 24/24

- 1. Transcitical bifurcation
- 2. Saddle-node bifurcation
- 3. Pitchfork bifurcation
- 4. Hopf bifurcation