Multi-Scale Wavelet Decomposition and RSI-Cointegration Fusion Framework for Cryptocurrency Trading Signal Generation

Abstract

This paper proposes a novel signal generation framework for cryptocurrency markets (BTC/USDT) that integrates multi-scale order flow analysis with dynamic signal optimization. By decomposing 2-7 days of historical market data (price, volume, order book depth) through Continuous Wavelet Transform (CWT), we extract three temporal components: high-frequency noise (<1h), mid-term liquidity patterns (1-6h), and long-term equilibrium states (>6h). The framework employs Morlet wavelet basis functions for scale separation, introduces RSI-based signal filtering, and implements cointegration error correction through BTC-BNB spread portfolios. Empirical results using 2023 Binance BTC/USDT data demonstrate a Sharpe ratio of 3.52 with 1.7% maximum drawdown, achieving 57.3% win rate under 0.05% transaction costs.

Keywords

wavelet decomposition, cointegration filtering, high-frequency trading, cryptocurrency liquidity

1. Introduction

Cryptocurrency markets exhibit unique challenges:

- Non-stationary order flow dynamics (Zhang et al., 2021)
- Microstructure noise in high-frequency data (Cartea et al., 2023)
- Whale-induced liquidity shocks (Vidal-Tomás, 2023)

Existing solutions suffer from:

- 1 Overfitting in single-scale analysis
- 2 Delayed response to regime shifts
- 3 False signal generation during low-liquidity periods

Our contributions:

- 1. Multi-scale liquidity state detector using CWT
- 2. RSI-constrained signal activation mechanism
- 3. Cointegration-based anomaly filter
- 2. Methodology

2.1 Multi-Scale Decomposition Architecture

Input Data:

• Mid-price: $m_t = \frac{b_t + a_t}{2}$

. Depth imbalance: $d_t = \frac{v_{
m depth}}{b_{
m depth} + a_{
m depth}}$

Wavelet Transform:

$$\mathcal{W}(s,\tau) = \frac{1}{\sqrt{s}} \int_{-\infty}^{\infty} x(t) \psi^*(\frac{t-\tau}{s}) dt$$

• Scales: $\{s|s \in [60, 4320]\}$ (1min-6h)

- Basis: Morlet wavelet $\psi(t)=e^{i\omega_0t}e^{-t^2/2}$

Component Separation

Frequency Band	Time Scale	Signal Type
0.004-0.01 6Hz	1-6 hours	Liquidity pulse patterns
<0.004Hz	>6 hours	Market equilibrium states
>0.016Hz	<1 hour	Microstruc ture noise

Component Processing

1. High-Frequency Layer:

Noise suppression via thresholding:

$$\hat{x}_H = \begin{cases} 0 & \text{if } |x_H| < 3\sigma_H \\ x_H & \text{otherwise} \end{cases}$$

2. Mid-Frequency Layer:

Trend confirmation through Derrick's test:

$$D = \frac{\sum \Delta x_M}{\sqrt{\operatorname{Var}(\Delta x_M)}} > 2.58$$

3. Low-Frequency Layer:

· Cointegration verification with ETH:

Johansen Trace Statistic
$$> 95\%$$
 critical value

RSI Constraint:

3. Empirical Analysis

3.1 Data Specification

Parameter	Value
Time Range	2023/01-2023/12
Resolution	1-minute
Features	12 dimensions
Exchange	Binance Spot

3.2 Performance Metrics

Metric	Proposed Model	Baseline (EMA)
Sharpe Ratio	3.52	1.87
Max Drawdown	1.7%	4.9%
Win Rate	57.3%	52.1%
Profit Factor	2.41	1.68

3.3 Critical Findings

- 1. Noise Suppression Effect
 - 68% reduction in false signals during low-volume periods
 - High-frequency noise contribution decreased by 42%
- 2. Cointegration Filter

- Eliminated 79% of whale-induced anomalous orders
- 3. Latency Performance

Component	Processing Time
CWT Decomposition	82ms
RSI Calculation	9ms
Signal Fusion	11ms

4. Conclusion

The proposed framework demonstrates three key advantages:

- 1. Adaptive Scale Selection: Automatically adjusts to market volatility regimes
- 2. Multi-Layer Safety: Combines statistical filtering and economic constraints
- 3. Computational Efficiency: Achieves sub-150ms latency for HFT environments

Future work will explore quantum wavelet transforms for nanosecond-scale analysis.

References

- [1] Cartea, Á., et al. (2023). Algorithmic Trading and Liquidity. Cambridge Press.
- [2] Zhang, Y., et al. (2021). Crypto Market Microstructure. Journal of FinTech, 4(2).