Assignment6_Quant

Jayasri

11/21/2021

INTEGER PROGRAMMING

Consider the following activity-on-arc project network, where the 12 arcs (arrows) represent the 12 activities (tasks) that must be performed to complete the project and the network displays the order in which the activities need to be performed. The number next to each arc (arrow) is the time required for the corresponding activity. Consider the problem of finding the longest path (the largest total time) through this network from start (node 1) to finish (node 9), since the longest path is the critical path.

QUESTION 1:

Formulate and solve the binary integer programming (BIP) model for this problem using library lpsolve or equivalent in R.

Mathematical Formulation:

Let xij represents the arc from node i to node j

where

$$i = 1,2,3,4,5,6,7,8$$

 $j = 2,3,4,5,6,7,8,9$

$$\mathbf{Max} = 5x12 + 3x13 + 3x35 + 4x24 + 2x25 + 4x47 + x46 + 2x58 + 6x57 + 5x69 + 4x79 + 7x89;$$
 S.T.)

Starting Node:

$$x13 + x12 = 1;$$

Intermediate Node:

```
x12 - x25 - x24 = 0;

x13 - x35 = 0;

x25 + x35 - x57 - x58 = 0;

x24 - x46 - x47 = 0;

x58 - x89 = 0;

x46 - x69 = 0;

x57 + x47 - x79 = 0;
```

End Node:

$$x69 + x79 + x89 = 1;$$

Binary and Non Negativity Constraints:

LP File

```
Max : 5 x12 + 3 x13 + 3 x35 + 4 x24 + 2 x25 + 4 x47 + 1 x46 + 2 x58 + 6 x57 + 5 x69 + 4 x79 + 7 x89 ;

/* Constraints */

/* Starting Node */
x13 + x12 = 1;

/* Intermediate Node */
x12 - x25 - x24 = 0;
x13 - x35 = 0;
x25 + x35 - x57 - x58 = 0;
x24 - x46 - x47 = 0;
x58 - x89 = 0;
x46 - x69 = 0;
x57 + x47 - x79 = 0;

/* End Node */
x69 + x79 + x89 = 1;
bin x12,x13,x25,x24,x35,x47,x46,x58,x57,x79,x69,x89;
```

Problem Solution using R

```
library(lpSolveAPI)
arcs<- read.lp("Arcs.lp")
solve(arcs)

## [1] 0

#Print the model
arcs

## Model name:
## a linear program with 12 decision variables and 9 constraints

## To identify the Optimal Solution</pre>
```

```
## [1] 17
```

get.objective(arcs)

The optimal solution of the problem is 17.

```
#To Identify the variables
Values <-get.variables(arcs)

# Assigning Rownames to the values
Nodes_names <- c("x12","x13","x35","x24","x25","x47","x46","x58","x57","x69","x79","x89")
as.data.frame(cbind(Nodes_names, Values))</pre>
```

```
##
      Nodes_names Values
## 1
               x12
                         1
## 2
               x13
                         0
## 3
               x35
                         0
               x24
                         0
## 4
## 5
               x25
                         1
## 6
               x47
                         0
                         0
## 7
               x46
## 8
               x58
                         0
## 9
                         1
               x57
## 10
               x69
                         0
## 11
               x79
                         1
## 12
               x89
                         0
```

```
# To display the constraint values
get.constraints(arcs)
```

[1] 1 0 0 0 0 0 0 0 1

OBSERVATIONS:

The critical Path is (which is the longest path): From Node 1 to 2

From Node 2 to 5

From Node 5 to 7

From Node 7 to 9

The time required for the corresponding activity is : 17

QUESTION 2:

Selecting an Investment Portfolio An investment manager wants to determine an optimal portfolio for a wealthy client. The fund has \$2.5 million to invest, and its objective is to maximize total dollar return from both growth and dividends over the course of the coming year. The client has researched eight high-tech companies and wants the portfolio to consist of shares in these firms only. Three of the firms (\$1 - \$3) are primarily software companies, three (H1-H3) are primarily hardware companies, and two (C1-C2) are internet consulting companies. The client has stipulated that no more than 40 percent of the investment be allocated to any one of these three sectors. To assure diversification, at least \$100,000 must be invested in each of the eight stocks. Moreover, the number of shares invested in any stock must be a multiple of 1000.

The table below gives estimates from the investment company's database relating to these stocks. These estimates include the price per share, the projected annual growth rate in the share price, and the anticipated annual dividend payment per share.

	Stock							
	S1	S2	S3	H1	H2	НЗ	C1	C2
Price per share	\$40	\$50	\$80	\$60	\$45	\$60	\$30	\$25
Growth rate	0.05	0.10	0.03	0.04	0.07	0.15	0.22	0.25
Dividend	\$2.00	\$1.50	\$3.50	\$3.00	\$2.00	\$1.00	\$1.80	\$0.00

Determine the maximum return on the portfolio. What is the optimal number of shares to buy for each of the stocks? What is the corresponding dollar amount invested in each stock?

Mathematical Formulation:

Let S1,S2,S3,H1,H2,H3,C1,C2 be the no. of shares for each stock(firms)

As, it is mentioned that the number of shares invested in any stock must be a multiple of 1000. So, lets define each stock has 1000 shares.

Maximize: 4000S1+ 6500S2+ 5900S3+5400H1+ 5150H2+ 10000H3+ 8400C1+ 6250C2; S.T.)

The fund has \$2.5 million to invest

Invest_Fund: 40(1000S1) + 50(1000S2) + 80(1000S3) + 60(1000H1) + 45(1000H2) + 60(1000H3) + 30(1000C1) + 25(1000C2) <= 2500000;

40S1 + 50S2 + 80S3 + 60H1 + 45H2 + 60H3 + 30C1 + 25C2 <= 2500

The client has stipulated that no more than 40 percent of the investment be allocated to any one of these three sectors

```
S Firms: 40S1+50S2+80S3 \le 1000;
H Firms: 60H1+45H2+60H3 \le 1000;
C Firms: 30C1+25C2 \le 1000;
```

To assure diversification, at least \$100,000 must be invested in each of the eight stocks.

```
S1: 40S1>=100;

S2: 50S2>=100;

S3: 80S3>=100;

H1: 60H1>=100;

H2: 45H2>=100;

H3: 60H3>=100;

C1: 30C1>=100;

C2: 25C2>=100;
```

Solution using R

LP File of the problem without integer restriction

```
/* Objective function */
max: 4000S1+ 6500S2+ 5900S3+5400H1+ 5150H2+ 10000H3+ 8400C1+ 6250C2;

/* Constraints */
Invest_Fund: 40S1+ 50S2+ 80S3+ 60H1+ 45H2+ 60H3+ 30C1+ 25C2 <= 2500;
Software_Firms: 40S1+ 50S2+ 80S3 <= 1000;
Hardware_Firms: 60H1+ 45H2+ 60H3 <= 1000;
Consultancy: 30C1+ 25C2 <= 1000;
S1: 40S1>=100;
S2: 50S2>=100;
S3: 80S3>=100;
H1: 60H1>=100;
H2: 45H2>=100;
H3: 60H3>=100;
C1: 30C1>=100;
C2: 25C2>=100;
```

Solution of LP Model without using integer restriction

```
library(lpSolveAPI)

stock<- read.lp("Stock.lp")

solve(stock)</pre>
```

[1] 0

#Print the model stock

```
## Model name:
##
                        S1
                                S2
                                       S3
                                               H1
                                                       H2
                                                               НЗ
                                                                      C1
                                                                              C2
## Maximize
                      4000
                             6500
                                     5900
                                             5400
                                                     5150
                                                           10000
                                                                    8400
                                                                            6250
## Invest_Fund
                        40
                                50
                                       80
                                               60
                                                       45
                                                               60
                                                                       30
                                                                              25
                                                                                       2500
                                                                                   <=
## Software_Firms
                        40
                                50
                                       80
                                                0
                                                        0
                                                                0
                                                                       0
                                                                               0
                                                                                   <=
                                                                                       1000
## Hardware_Firms
                         0
                                 0
                                        0
                                               60
                                                       45
                                                               60
                                                                       0
                                                                               0
                                                                                   <=
                                                                                       1000
## Consultancy
                         0
                                                        0
                                                                0
                                                                       30
                                                                              25
                                                                                       1000
## S1
                                         0
                                                                       0
                                                                               0
                        40
                                 0
                                                0
                                                        0
                                                                0
                                                                                   >=
                                                                                        100
## S2
                         0
                                50
                                         0
                                                0
                                                        0
                                                                0
                                                                        0
                                                                               0
                                                                                        100
## S3
                                                                               0
                         0
                                 0
                                       80
                                                0
                                                        0
                                                                0
                                                                        0
                                                                                        100
## H1
                         0
                                 0
                                         0
                                               60
                                                        0
                                                                0
                                                                        0
                                                                               0
                                                                                        100
                                                                               0
## H2
                         0
                                 0
                                         0
                                                0
                                                       45
                                                                0
                                                                        0
                                                                                   >=
                                                                                        100
## H3
                         0
                                 0
                                         0
                                                        0
                                                               60
                                                                       0
                                                                               0
                                                                                        100
## C1
                         0
                                 0
                                         0
                                                0
                                                        0
                                                                0
                                                                       30
                                                                               0
                                                                                        100
## C2
                         0
                                 0
                                         0
                                                0
                                                                       0
                                                                              25 >=
                                                        0
                                                                0
                                                                                        100
## Kind
                       Std
                               Std
                                      Std
                                              Std
                                                      Std
                                                              Std
                                                                     Std
                                                                             Std
## Type
                      Real
                             Real
                                     Real
                                             Real
                                                     Real
                                                             Real
                                                                    Real
                                                                            Real
                                                                             Inf
## Upper
                       Inf
                               Inf
                                      Inf
                                              Inf
                                                      Inf
                                                              Inf
                                                                      Inf
## Lower
                         0
                                 0
                                         0
                                                0
                                                                0
                                                                        0
```

#To identify the Optimal Solution get.objective(stock)

[1] 487152.8

```
values <-get.variables(stock)
stocknames<-c("S1","S2","S3","H1","H2","H3","C1","C2")
d<-as.data.frame(cbind(stocknames,values*1000))
colnames(d)<- c("Stocknames","No. Of Shares")
d</pre>
```

```
##
     Stocknames
                   No. Of Shares
## 1
             S1
                             2500
## 2
             S2
                             6000
## 3
             S3
                             1250
## 4
             H1 1666.6666666667
## 5
             H2 2222.222222222
## 6
             H3 13333.3333333333
## 7
             C1
                            30000
## 8
             C2
                             4000
```

get.constraints(stock)

[1] 2500 500 1000 1000 100 300 100 100 100 800 900 100

OBSERVATIONS:

• The Maximum return on the Portfolio is : 487152.8

Optimal values without Integer Restriction							
No. of shares	Price PerShare	Optimal Value	Dollar Amount Invested in each stock				
S1	40	2500	100000				
S2	50	6000	300000				
S3	80	1250	100000				
H1	60	1666.67	100000.2				
H2	45	2222.22	99999.9				
Н3	60	13333.33	799999.8				
C1	30	30000	900000				
C2	25	4000	100000				

LP File of the problem with integer restriction

```
V* Objective function */
max: 400051+ 650052+ 590053+5400H1+ 5150H2+ 10000H3+ 8400C1+ 6250C2;

/* Constraints */
Invest_Fund: 4051+ 5052+ 8053+ 60H1+ 45H2+ 60H3+ 30C1+ 25C2 <= 2500;
Software_Firms: 4051+ 5052+ 8053 <= 1000;
Hardware_Firms: 60H1+ 45H2+ 60H3 <= 1000;
Consultancy: 30C1+ 25C2 <= 1000;
S1: 4051>=100;
S2: 5052>=100;
S3: 8053>=100;
H1: 60H1>=100;
H2: 45H2>=100;
H3: 60H3>=100;
C1: 30C1>=100;
C2: 25C2>=100;

int S1,S2,S3,H1,H2,H3,C1,C2;
```

Solution of LP Model with integer restriction

```
#Solution of LP Model with using integer restriction
library(lpSolveAPI)

Stock_int<- read.lp("Stock_int.lp")

solve(Stock_int)</pre>
```

[1] 0

#Print the model Stock int ## Model name: S2 S3 C2 ## S1 H1 H2 НЗ C1 ## Maximize ## Invest_Fund ## Software_Firms <= ## Hardware_Firms <= ## Consultancy <= ## S1 ## S2 ## S3 ## H1 >= ## H2 >= ## H3 ## C1 >= ## C2 >=

Std

Int

Inf

#To identify the Optimal Solution get.objective(Stock_int)

Std

Int

Inf

Std

Int

Inf

Std

Int

Inf

[1] 477400

Kind

Type

Upper

Lower

```
Vars<-get.variables(Stock_int)
stocknames<-c("S1","S2","S3","H1","H2","H3","C1","C2")
V<-as.data.frame(cbind(stocknames,Vars*1000))
colnames(V)<- c("Stocknames","No. Of Shares")
V</pre>
```

```
Stocknames No. Of Shares
##
## 1
             S1
                           3000
## 2
                           5000
## 3
             S3
                           2000
## 4
             H1
                           2000
## 5
             Н2
                           3000
## 6
             НЗ
                          12000
## 7
             C1
                          29000
## 8
             C2
                           5000
```

get.constraints(Stock_int)

[1] 2500 530 975 995 120 250 160 120 135 720 870 125

OBSERVATIONS

Optimal values with Integer Restriction						
			Dollar Amount			
			Invested in			
No. of shares	Price PerShare	Optimal Value	each stock			
S1	40	3000	120000			
S2	50	5000	250000			
S3	80	2000	160000			
H1	60	2000	120000			
H2	45	3000	135000			
Н3	60	12000	720000			
C1	30	29000	870000			
C2	25	5000	125000			

All the constraints have been satisfied with the integer programming.

CONSTRAINTS	STOCKS	OPTIMAL VALUE	PERCENTAGE	COMMENTS
The fund has \$2.5 million to invest	All Firms	2500000		Satisfied
The client has stipulated that no				
more than 40 percent of the	S Firms	530000	21.2	
investment be allocated to any one	H Firms	975000	39	
of these three sectors	C Firms	995000	39.8	Satisfied
a comment of the second	S1	120000	16	S. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	S2	250000		
	S3	160000		
	H1	120000		
	H2	135000		
To assure diversification, atleast	H3	720000		
\$100,000 must be invested in each	C1	870000		
of the eight stock	C2	125000		Satisfied

Compare the solution in which there is no integer restriction on the number of shares invested. By how much (in percentage terms) do the integer restrictions alter the value of the optimal objective function? By how much (in percentage terms) do they alter the optimal investment quantities?

a) By how much (in percentage terms) do the integer restrictions alter the value of the optimal objective function?

Optimal value of Objective	No Integer	Integer		Change
function	Restriction	Restriction	Change	in %
20 Communication and Communication	487152.8	477400	9752.8	2.002

b) By how much (in percentage terms) do they alter the optimal investment quantities?

	Number o	of Shares	%		
stock	No Integer	Integer			
Companies	Restriction	Restriction	Difference	Difference in %	
S1	2500	3000	-500	-20	
S2	6000	5000	1000	16.66666667	
S3	1250	2000	-750	-60	
H1	1666.67	2000	-333.33	-19.99976	
H2	2222.22	3000	-777.78	-35.000135	
НЗ	13333.33	12000	1333.33	9.9999775	
C1	30000	29000	1000	3.333333333	
C2	4000	5000	-1000	-25	
Total	60972.22	61000	-27.78	-0.045561733	

	Invested q	uantities in \$			
stock	No Integer Integer				
Companies	Restriction	Restriction	Difference	Difference in %	
S1	100000	120000	-20000	-20	
6					
S2	300000	250000	50000	16.66666667	
S3	100000	160000	-60000	-60	
H1	100000.2	120000	-19999.8	-19.99976	
H2	99999.9	135000	-35000.1	-35.000135	
нз	799999.8	720000	79999.8	9.9999775	
C1	900000	870000	30000	3.333333333	
C2	100000	125000	-25000	-25	
Total	2499999.9	2500000	-0.1	-4E-06	