Drawing Parallels between Statistics and Nature

Hirofumi Shiba

D3, Institute of Statistical Mathematics

9/02/2025

Keywords in My Research

Artificial <u>Generative</u> Information Intelligence <u>Modeling</u> Theory

Uncertainty
Quantification

Bayesian Inference

Statistics

Monte Carlo Simulation

Statistical Physics

Distribution: Key of New Science

A Computational Reinterpretation

Development in Monte Carlo Methods

Markov Chain

Diffusion

Jump Process

What's Wrong with Diffusion?

Langevin Diffusion

Equilibrium \(\Rightarrow \text{Reversibility}

Langevin Diffusion represents a particle in a medium.

E.g. A sugar particle in a coffee

- Nature is not necessarily efficient.
 - E.g. Would you wait until the sugar dissolves? To have a cup of coffee?
- It's difficult to simulate.

What's New in PDMP?

Zig-Zag Sampler

Irreversibility & Acceleration

- Ballistic motion, up until a turn
 - E.g. Stirring coffee with a spoon
- No artificial symmetry (e.g. detailed balance)
 - → Fast convergence & reduced computational cost

All with a new strategy of simulation, which seems to be very efficient (ongoing research)

PDMP Package

Piecewise Deterministic Markov Process

Python

Forward Event-Chain Monte Carlo: Fast Sampling by Randomness

Julia

Bringing Science Back

