

09/914220

JC05 Rec'd 22 AUG 2007

SEQUENCE LISTING

<110> Schulz Dr., Burkhard

<120> DNA sequence of a protein that is similar to FKBP

<130> SCU-001 PCT

<140> xx

<141> 2000-02-18

<150> DE 199 07 598.0

<151> 1999-02-22

<160> 8

<170> PatentIn Ver. 2.1

<210> 1

<211> 4010

<212> DNA

<213> Arabidopsis thaliana

<400> 1

gtctaagaac cttaggaga aagagattaa gaggcagaca ttgcctgagc ttgttgatta 60
tggcatca gttggttta agttaacga tgttcgatg caagagttaa cgaagatgg 120
agcggtaat ctgttagaa ctttccttc tgcgaatcac gagagtaaaa ttctgaaat 180
acatgatatg gatgatgaag aacccctt ggagccagct tggcctcatg ttcaagttgt 240
gtatgagatt cttctcagat tcgtggcttc tcccattact gatgcaaagc ttgccaagag 300
atatattgac cattctttg tcttgaagct cttagacttg tttgattctg aagatcaaag 360
agagagggaa tatctaaaaa ctattctgca tcgggtgtac gggaaagtca tggtgcatcg 420
accttacatc agaaaggcga taaacaatat cttctacaga ttcataatccg agactgaaaa 480
gcataatggc attgcggagt tgctagat tcttggaaatg atattaatg gtttgctt 540
gcctttaaaa gaagagcaca agctttccct tttcgagcc ttgattcctc tccacaagcc 600
taaatgttca tcagtctatc accaacagct ttcgtattgc attgttcagt ttgttagaaaa 660
ggacttcaag ctcgtgata ccgttattag aggtcttttta aaatattggc ctgtactaa 720
cagctcaaag gaagttatgt ttcttggaga gtttagaagaa gtcttggaaag caactcaagc 780
cgctgagttt caacgttgc tggttccatt atcccgacaa attgctcgat gcctcaacag 840
ttcacatttc caggttcgag tcttgcata tcattcacaac ttcatatcta tctctttga 900
taaagtcttg tacctatata tgaagttgtt cttttgtt gtcagggtgc taaaagagca 960
ttgttcttat ggaacaacga tcacataaga aacctgatca ctcagaacca taaagtgtata 1020
atgcctatag tcttcccagc tcttgcggaga aacacgcgtg gacattggaa ccaagcagg 1080
caaagtctga ctataaacgt gaggaaagta ttatgcgaga ttgaccaagt tctttcgac 1140
gagtgttttag ccaaattcca agttagaagaa gtgaataaaa cagaggtta agcggaaacgg 1200
gaaaggacat ggcaacgggtt agaagattt gctactcaa agaccgttgtt aaccaacgag 1260
gcagttactgg ttccaagattt tggcctca gtcaatcttta ctacaagcag ctctgagtcc 1320

acagggtcgt agtaggctct ctaggttac tatgtacttg taacaaatat ttgtggcac 1380
tatagaaatg gttcttgaga gacgactgta taattatTTT tttaaattat aatctttgg 1440
gtcaaattga gaatattga tattattta ctgaattata ataaacgcgg taaaactct 1500
cgtagttaa cggtgactc tgaagtggaa actgaaaagt cgaagggtct ctttatattt 1560
tcagaatcaa aatctgaaat ttatctctcg gtcgatccag tcttcgttag tgacttcgac 1620
gacgacgacg agtcacacta ctcttgagct tctcatactt cgtaagttca ctctcccttt 1680
ctctaaattt acaaactttt tcttcgtttt ctgctattat tgacgacgag acttgatttt 1740
gttttggaaat gaaatggtc aagtagctg cttcgactat gttctttgg gttttgtca 1800
ttgaatctta cttgtctgat ttggcgtatg ttaatcaat tcaacactta aagattcaat 1860
ttttggattt acacttcac atttttattt agacccaggt tgattttggg aataatggat 1920
aatctctgg agcatcaaac tcaaacacat ggtaagtaaa ttcatataga ttaatctct 1980
ctgaatacat atatatgact tcaatatgtt tgattggagt tttttgttgc tcccatattc 2040
aattggatgc ttgttaaag gataaatgtc tatcaaattt tggactgc gttattctt 2100
ctaaatcata ttgtgaatct tggaaacaaag catgtataca acaaatttgt tagacttaat 2160
aactccctt ctgtttgtt agaattgaga atgactattt gggttgacta atgcacatctt 2220
tgtggctcca gaccaagaga gcgaaatagt tactgaagga agtgcgggtg tgcataatgt 2280
gccatctcaa gagggtaatg ttccctctaa agttgatagt gaagctgagg tcttggatga 2340
gaaagtcaatg aagcagatta taaaggaagg tcacgggtcc aaaccatcca agtactctac 2400
atgctttgtt aagtaccctt tagcttctg ttgattggat gttgattttt cgattgcact 2460
tgtggccta ttgctactgt ttatttgaat cttctatct gaccaatttc atattggcca 2520
tagtgcacta cagggcatgg accaaaaact cgacgaccaa atttgaggat acatggcatg 2580
agcagcaacc tatttgaattt gttcttggaa aaggatgtg gctgtcgaat atgtactcta 2640
cacctccatt tcgttagatg aatcgtcatt ggttaattt atgagttgc ttgtgttata 2700
tatgaaccca atgagatgga tattttggag gaaaaaaatg tgagttttt atttttttt 2760
cttcaatgct gattagccca tttaacgtc actatacaat ttttttata aaaaagattt 2820
tgcactaaga gtgaaatgtt gtctgtgaga cagagaaaaa agaactagcc gggttagcca 2880
tcgggttgc tagcatgaag tctggtaac gtgcgttgtt gcatgttgc tggaaatttt 2940
cttatggaa agaaggaaac tttttttc ccaatgttcc acctatggca gactttttat 3000
atgaggtgga agttatttttggg ttgtatgaaa caaaggaggt aagtttttc ctataccatc 3060
atcttgcattt cttaccaaga cgactccaca tccaaagctt atcccaaccc cttgttac 3120
ctctctgact tagatgtt attgaacagg gaaaagctcg cagtgtatg actgttagagg 3180
aaaggattgg tgcagcagac agaagaaaaa tggatggaa ttctctttt aaggaggaga 3240
aactggagga agccatgca cagtatgaaa tggatgttca tctctctca tctctatctc 3300
tcttccaaac aattacggtc aaagtttagg tttcaggca tacttagtga gtctgctcga 3360
ggctcttgtt tcttcttgc gcttttgcattt agtcatggtt ttgctgttgc aggccatagc 3420
atacatgggg gacgattttt tggatggatc gtatggaaag taccaggata tggctttagc 3480
agttaaaaac ccatgccatc ttaacatagc agcttgcctc atcaaactaa aacgatacga 3540
tgaagcaatt ggtcaactgca acattgttgc actcatcaaa ccattcattt gaagaaaaatc 3600
attaaagttc atactcggtt tctcgaaatc taatcaaact caaaaccttta tcaggtttt 3660
acagaagaag agaaaaaccc aaaagcactg ttcaagaaggg ggaaagcaaa ggcagagct 3720
ggacagatgg actcagcactg tggatgttgc cgaaaggcac aaaagtatgc tcctgacgac 3780
aaggcgatggtta gaagagagct acgacactt gcagagcaag agaaaggctt gtacccaaag 3840
cagaaagaaaaa tggatggaaatattcaaa gggaaagatg aaggtggatc taagtcaag 3900
agcctttttt ggttgcattt gttatggcaaa tggatggatc ccctttctc cctgtatctt 3960
cgacgcccaca gagttaaagc agatcatgtt atgaagaagg gttacaattt

<210> 2
<211> 1270
<212> DNA
<213> Arabidopsis thaliana

<400> 2

gaaaagtgcga agggtctttatattttca gaatcaaaat ctgaaattta tctctcggtc 60
gatccagtc tcgtgagtga cttcgacgac gacgacgagt cacactactc ttgagcttct 120
catacttac ccaggttgat ttggaaata atggatgaat ctctggagca tcaaactcaa 180
acacatgacc aagagagcga aatagtact gaaggaagtgcg cttgtgc tagtggccat 240
ctcaagaggg taatgttct cctaaagtttgc atagtgaagc tgaggcttg gatgagaaag 300
tcagaagca gattataaag gaaggtcacg gttccaaacc atccaagtac tctacatgct 360
tttgtcaacta cagggcatgg accaaaaact cgcagcacaa atttgaggat acatggcatg 420
agcagcaacc tattgaatttgc gttcttggaa aagagaaaaa agaacttagcc gtttagcca 480
tcgggttgc tagcatgaag tctggtaac gtgcgttgc gcatgttgc tggaaattag 540
cttatggaa agaaggaaac tttctttc ccaatgttcc acctatggca gacttggat 600
atgaggttgc agttatttggg ttgtatgaaa caaaggaggg aaaagctcgc agtgatatga 660
ctgttagagga aaggatttgc gcagcagaca gaagaaaaat ggatggaaat tcttttttta 720
aggaggagaa actggaggaa gccatgcaac agtataaat ggcctatgc tacatggggg 780
acgattttat gttcagctg tatggaaatg accaggatat ggctttagca gttaaaaacc 840
catgccatct taacatagca gcttcctca tcaaactaaa acgatacgt gaagcaatttgc 900
gtcactgcaaa cattgttgc acagaagaag agaaaaacc aaaaagactg ttcagaagag 960
ggaaagcaaa ggcagagcta ggacagatgg actcagcacg tgatgatttc cgaaaggcac 1020
aaaagtatgc tcctgacgac aaggcgatta gaagagagct acgagcactt gcagagcaag 1080
agaaaaggctt gtacaaaag cagaagaaa tgtacaaaagg aatattcaaa gggaaagatg 1140
aagggttgc taagtcaag agccttttgc gttgatagt gttatggca tggtttttttgc 1200
ccctttctc cgtatctt cagccaca gagttaaagc agattaatgt atgaagaagg 1260
gttacaatttgc 1270

<210> 3
<211> 365
<212> PRT
<213> Arabidopsis thaliana

<400> 3

Met Asp Glu Ser Leu Glu His Gln Thr Gln Thr His Asp Gln Glu Ser

1 5 10 15

Glu Ile Val Thr Glu Gly Ser Ala Val Val His Ser Glu Pro Ser Gln
20 25 30

Glu Gly Asn Val Pro Pro Lys Val Asp Ser Glu Ala Glu Val Leu Asp
35 40 45

Glu Lys Val Ser Lys Gln Ile Ile Lys Glu Gly His Gly Ser Lys Pro
50 55 60

Ser Lys Tyr Ser Thr Cys Phe Leu His Tyr Arg Ala Trp Thr Lys Asn
65 70 75 80

Ser Gln His Lys Phe Glu Asp Thr Trp His Glu Gln Gln Pro Ile Glu
85 90 95

Leu Val Leu Gly Lys Glu Lys Glu Leu Ala Gly Leu Ala Ile Gly
100 105 110

Val Ala Ser Met Lys Ser Gly Glu Arg Ala Leu Val His Val Gly Trp
115 120 125

Glu Leu Ala Tyr Gly Lys Glu Gly Asn Phe Ser Phe Pro Asn Val Pro
130 135 140

Pro Met Ala Asp Leu Leu Tyr Glu Val Glu Val Ile Gly Phe Asp Glu
145 150 155 160

Thr Lys Glu Gly Lys Ala Arg Ser Asp Met Thr Val Glu Glu Arg Ile
165 170 175

Gly Ala Ala Asp Arg Arg Lys Met Asp Gly Asn Ser Leu Phe Lys Glu
180 185 190

Glu Lys Leu Glu Glu Ala Met Gln Gln Tyr Glu Met Ala Ile Ala Tyr
195 200 205

Met Gly Asp Asp Phe Met Phe Gln Leu Tyr Gly Lys Tyr Gln Asp Met
210 215 220

Ala Leu Arg Val Lys Asn Pro Cys His Leu Asn Ile Ala Ala Cys Leu
225 230 235 240

Ile Lys Leu Lys Arg Tyr Asp Glu Ala Ile Gly His Cys Asn Ile Val
245 250 255

Leu Thr Glu Glu Glu Lys Asn Pro Lys Ala Leu Phe Arg Arg Gly Lys
260 265 270

Ala Lys Ala Glu Leu Gly Gln Met Asp Ser Ala Arg Asp Asp Phe Arg
275 280 285

Lys Ala Gln Lys Tyr Ala Pro Asp Asp Lys Ala Ile Arg Arg Glu Leu
290 295 300

Arg Ala Leu Ala Glu Gln Glu Lys Ala Leu Tyr Gln Lys Gln Lys Glu
305 310 315 320

Met Tyr Lys Gly Ile Phe Lys Gly Lys Asp Glu Gly Gly Ala Lys Ser
325 330 335

Lys Ser Leu Phe Trp Leu Ile Val Leu Trp Gln Trp Phe Val Ser Leu
340 345 350

Phe Ser Arg Ile Phe Arg Arg His Arg Val Lys Ala Asp
355 360 365

<210> 4
<211> 140
<212> DNA
<213> *Lycopersicon esculentum*

<400> 4
cttatggaaa agaaggaaac ttctttcc ctaatgtccc acctacagct gatgtattgt 60
atgaggtga gttgattggc ttcgatgaga caggagaagg aaaagcacga ggtgacatga 120
cagtagagga gagaattggg 140

<210> 5
<211> 1142
<212> DNA
<213> *Lycopersicon esculentum*

gcatatatgg gagatgactt catgttcag ctgttcgta agttccggga catggctta 840
gctgtaaaga atccctgcca tctgaacatg gcagcctgcc tgctgaagct ccagcgatat 900
gatgaagcca ttgcacaatg tagcattgtc ctagcagaag aagaaaacaa tgtaaaagcg 960
ttgttaggc gtggaaaggc taggtctata cttggtcaga ctgatgcagc tcgtgaggac 1020
ttccttaaag cacgtaagct tgctccacaa gataaagcca ttacaaggga attgaatttg 1080
attgcagaac acgagaaggc tgtctattag aaacaaaagg aactttacaa aggactattt 1140
gg 1142

<210> 6
<211> 320
<212> PRT
<213> Lycopersicon esculentum

<400> 6
Met Ala Glu Val Glu Glu Gln Gln Leu Gln Asn Ser Ser Val Asp
1 5 10 15

Gln Gly Ser Thr Asp Glu Ile Ile Ala Glu Gly Ala Ser Val Val Arg
20 25 30

Gly Glu Leu Pro Gln Asp Asp Ala Gly Pro Pro Lys Val Asp Ser Glu
35 40 45

Val Glu Val Leu His Glu Lys Val Thr Lys Gln Ile Val Lys Glu Gly
50 55 60

His Gly Gln Lys Pro Ser Lys Tyr Ala Thr Cys Phe Val His Tyr Arg
65 70 75 80

Ala Trp Ala Glu Ser Thr Gln His Lys Phe Glu Asp Thr Trp Arg Glu
85 90 95

Gln Gln Pro Leu Glu Leu Val Ile Gly Lys Glu Arg Lys Glu Met Thr
100 105 110

Gly Leu Ala Ile Gly Val Asn Ser Met Lys Ser Gly Glu Arg Ala Leu
115 120 125

Phe His Val Gly Trp Glu Leu Ala Tyr Gly Lys Glu Gly Asn Phe Ser
130 135 140

Phe Pro Asn Val Pro Pro Thr Ala Asp Val Leu Tyr Glu Val Glu Leu
145 150 155 160

Ile Gly Phe Asp Glu Thr Gly Glu Gly Lys Ala Arg Gly Asp Met Thr
165 170 175

Val Glu Glu Arg Ile Gly Thr Ala Asp Arg Arg Lys Met Asp Gly Asn
180 185 190

Ala Leu Phe Lys Glu Glu Lys Leu Glu Ala Met Gln Gln Tyr Glu
195 200 205

Met Ala Ile Ala Tyr Met Gly Asp Asp Phe Met Phe Gln Leu Phe Gly
210 215 220

Lys Phe Arg Asp Met Ala Leu Ala Val Lys Asn Pro Cys His Leu Asn
225 230 235 240

Met Ala Ala Cys Leu Leu Lys Leu Gln Arg Tyr Asp Glu Ala Ile Ala
245 250 255

Gln Cys Ser Ile Val Leu Ala Glu Glu Glu Asn Asn Val Lys Ala Leu
260 265 270

Phe Arg Arg Gly Lys Ala Arg Ser Ile Leu Gly Gln Thr Asp Ala Ala
275 280 285

Arg Glu Asp Phe Leu Lys Ala Arg Lys Leu Ala Pro Gln Asp Lys Ala
290 295 300

Ile Thr Arg Glu Leu Asn Leu Ile Ala Glu His Glu Lys Ala Val Tyr
305 310 315 320

<210> 7

<211> 776

<212> DNA

<213> Zea mays

<400> 7

ttttttttt ttttccccg tagcaacagt attattacta gcataatcta aatatgaaag 60
ctgcaatata caatggcata aaaggccctt tgagctccag ttgaaagact gtatgaaact 120
atggcataat agtgaacaac atcgatata gttcataaca actaattgtat ccggaccggc 180
cgacagttct acagaaaatt caacactcct tataatacaa gtttgtcaa ttaggccacc 240
agttctacac aattttctgg taaatttatcc tactcggtct tccgttgaa catcccagcc 300
agataaaagga taaatgacac cagccactgc cagaacacaa cgaggtaatt tgcccttc 360
ggtttcgctt caggacttgg cccaaagaga cctttgtaga gtccttc 420

agggcctgn ctgttccgc gagcaaacgg agctcccggaa tgatccctt gncttcggg 480
gagtacttct tcgccttgag gaaatctcc ctcgcgtatt ctgtctggcc aagttcagat 540
ttagctttc ctcgcctgaa cagcgcttg acattactt catcttctgt caaaaacaatg 600
ctacactgcg caatagcttc atcgaatctc tttagttga tcaggcatgc gcccatattg 660
agatggcatg gattttcac agccaaggcc atgtctctgt actttccaaa taattgaaac 720
atgaaatcat ctccatgta tgcaatgcc attcatatt gctgcattt ctcctc 776

<210> 8

<211> 168

<212> PRT

<213> Zea mays

<400> 8

Glu Glu Ala Met Gln Gln Tyr Glu Met Ala Ile Ala Tyr Met Gly Asp
1 5 10 15

Asp Phe Met Phe Gln Leu Phe Gly Lys Tyr Arg Asp Met Ala Leu Ala
20 25 30

Val Lys Asn Pro Cys His Leu Asn Met Ala Ala Cys Leu Ile Lys Leu
35 40 45

Lys Arg Phe Asp Glu Ala Ile Ala Gln Cys Ser Ile Val Leu Thr Glu
50 55 60

Asp Glu Ser Asn Val Lys Ala Leu Phe Arg Arg Gly Lys Ala Lys Ser
65 70 75 80

Glu Leu Gly Gln Thr Glu Ser Ala Arg Glu Asp Phe Leu Lys Ala Lys
85 90 95

Lys Tyr Ser Pro Glu Xaa Lys Glu Ile Ile Arg Glu Leu Arg Leu Leu
100 105 110

Ala Glu Gln Xaa Lys Ala Leu Tyr Gln Lys Glu Leu Tyr Lys
115 120 125

Gly Leu Phe Gly Pro Ser Pro Glu Ala Lys Pro Lys Lys Ala Lys Tyr
130 135 140

Leu Val Val Phe Trp Gln Trp Leu Val Ser Phe Ile Leu Tyr Leu Ala
145 150 155 160

Gly Met Phe Lys Arg Lys Asn Glu
165