EE540 - Teoria Eletromagnética

Henrique Koji Miyamoto

1 Revisão

1.1 Eletrostática

Campo gerado por uma carga Q e força que esse campo gera em uma carga q_0 :

$$\mathbf{E}(\mathbf{r}) = \frac{Q}{4\pi\varepsilon_0} \frac{\mathbf{r} - \mathbf{r'}}{|\mathbf{r} - \mathbf{r'}|^3}, \ F_{q_0} = q_0 \mathbf{E}$$

O campo elétrico tem fonte e sorvedouro (lei de Gauss).

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0} \leftrightarrow \iint_{S} \mathbf{E} \cdot d\mathbf{S} = \frac{q}{\varepsilon_0}$$

O campo elétrico é conservativo¹.

$$\nabla \times \mathbf{E} = \mathbf{0} \leftrightarrow \oint_{\mathcal{C}} \mathbf{E} \cdot d\mathbf{s} = 0$$

Em meios materiais, exite uma polarização ${\bf P}$ dada por ${\bf P}=\frac{d{\bf p}}{d\mathcal{V}}$. Portanto as relações ficam

$$\nabla \cdot \mathbf{D} = \rho_f, \ \nabla \times \mathbf{E} = \mathbf{0}, \ \mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}.$$

Em meio lineares e isotrópicos,

$$\mathbf{D} = \varepsilon \mathbf{E}$$

1.2 Magnetostática

Lei de Biot-Savart:

$$d\mathbf{B}(\mathbf{r}) = \frac{\mu_0 i}{4\pi} \frac{d\mathbf{s} \times (\mathbf{r} - \mathbf{r'})}{|\mathbf{r} - \mathbf{r'}|^3} \to \mathbf{B}(\mathbf{r}) = \frac{\mu_0 i}{4\pi} \oint_{\mathcal{C}} \frac{d\mathbf{s'} \times (\mathbf{r} - \mathbf{r'})}{|\mathbf{r} - \mathbf{r'}|^3}$$

Força magnética:

$$F = q\mathbf{v} \times \mathbf{B}, \ d\mathbf{F} = id\mathbf{s} \times \mathbf{B}, \ F = i \oint_{\mathcal{C}} d\mathbf{s} \times \mathbf{B}$$

O fluxo do campo magnético é nulo, i.e., não há fonte ou sorvedouro de campo magnético (Lei de Gauss para o magnetismo) 2 .

$$\nabla \cdot \mathbf{B} = 0 \leftrightarrow \iint_{S} \mathbf{B} \cdot d\mathbf{S} = 0$$

Surge campo magnético quando há passagem de corrente elétrica (Lei de Ampère).

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J}^3 \leftrightarrow \oint_{\mathcal{C}} \mathbf{B} \cdot d\mathbf{s} = \mu_0 i$$

Em meios materiais, surge uma magnetização M dada por $\mathbf{M} = \frac{d\mathbf{m}}{d\mathcal{V}}$. Portanto as relações ficam

$$\nabla \cdot \mathbf{B} = 0, \ \nabla \times \mathbf{H} = \mathbf{J}_f, \ \mathbf{H} = \frac{\mathbf{B}}{\mu_0} - \mathbf{M}.$$

Em meios lineares e isotrópicos,

$$\mathbf{H} = \frac{\mathbf{B}}{\mu}$$
.

¹Portanto pode ser associado um potencial V tal que $\mathbf{E} = -\nabla V$

²Não existe "monopolo" magnético.

 $^{^3{\}rm O}$ vetor densidade de corrente elétrica J é tal que $i=\iint_S {\bf J} \cdot d{\bf S}$

2 Campos variáveis no tempo e equações de Maxwell

2.1 Lei de Faraday da indução eletromagnética

Fluxo magnético:

$$\phi = \iint_S \mathbf{B} \cdot d\mathbf{S}(W)$$

Lei de Faraday⁴ (postulado):

$$\varepsilon = -\frac{d\phi}{dt}$$

- A corrente induzida surge em sentido tal a anular a variação de campo magnético (lei de Lenz).
- Se $\varepsilon > 0$, a corrente induzida tem mesma orientação que a espira. Se $\varepsilon < 0$, a corrente induzida tem orientação oposta à da espira.
- É possível mostrar que

$$\varepsilon = -\frac{d}{dt} \iint_{S} \mathbf{B} \cdot d\mathbf{S} = \underbrace{-\iint_{S} \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{S}}_{\text{devido à variação de } \mathbf{B}} + \underbrace{\oint_{\mathcal{C}} (\mathbf{v} \times \mathbf{B}) \cdot d\mathbf{s}}_{\text{devido ao movimento da espira}}$$

Da lei de Faraday e definição de FEM, temos

$$\oint_{\mathcal{C}} \mathbf{E} \cdot d\mathbf{s} = \iint_{S} -\frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{S} \Longleftrightarrow \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

Exemplo: FEM de movimento (trabalho por unidade de carga para manter a espira em movimento) para uma espira que se desloca com velocidade \mathbf{v} imersa em um campo magnético \mathbf{B} :

$$\begin{cases} \mathbf{w} = \mathbf{u} + \mathbf{v} \\ \mathbf{F} = q\mathbf{w} \times \mathbf{B} \\ \varepsilon = \oint_{\mathcal{C}} \frac{\mathbf{F}}{q} \cdot d\mathbf{s} \end{cases} \Rightarrow \varepsilon = \oint_{\mathcal{C}} (\mathbf{v} \times \mathbf{B}) \cdot d\mathbf{s}$$

2.2 Energia magnética, indutância e transformadores

É possível associar uma energia magnética u_B como

$$u_B = \frac{B^2}{2\mu_o}$$

- $\bullet\,$ O trabalho é calculado como $W=\iiint_{\rm todo\ o\ espaço}u_Bd\mathcal{V}$
- Para meios lineares e isotrópicos, $u_B = \frac{1}{2} \mathbf{H} \cdot \mathbf{B}$

Em um par de espiras, a corrente que circula por uma gera fluxo magnético na outra, dado por

$$\phi_2 = i_1 \left(\frac{\mu_0}{4\pi} \oint_{\mathcal{C}_2} \oint_{\mathcal{C}_1} \frac{d\mathbf{s}_1 \cdot d\mathbf{s}_2}{|\mathbf{r}_2 - \mathbf{r}_1|} \right) \to \boxed{\phi_2 = i_1 M_{21}}$$

$$\varepsilon_2 = -\frac{d}{dt} \phi_2 = -M \frac{d}{dt} i_1$$

em que $M_{21} = M_{12} = M$ é a indutância mútua, medida em Henry (H).

Ocorre fenômeno análogo em uma única espira (autoindutância). Nesse caso,

$$\varepsilon = -L \frac{di}{dt}$$

em que L é a autoindutância, medida em Henry (H).

⁴O sinal negativo, introduzido por Lenz, deve-se à conservação de energia.

 $^{^{5}}$ **w** é a velocidade da carga em relação ao referencial, **u** é a velocidade da carga em relação à espira e **v** é a velocidade da espira em relação ao referencial.

Um transformador é um dispositivo AC que transforma tensões, correntes e impedâncias. Consiste de duas bobinas enroladas em um núcleo ferromagnético. As relações são tais que

$$\oint_{\mathcal{C}} \mathbf{H} \cdot d\mathbf{s} = N_1 i_1 - N_2 i_2 = \frac{l}{\mu S} \phi^6$$

$$\boxed{ \frac{v_1}{v_2} = \frac{N_1}{N_2} } \quad \boxed{ \frac{i_1}{i_2} = \frac{N_2}{N_1} } \quad \boxed{ \frac{Z_1}{Z_2} = \left(\frac{N_1}{N_2} \right)^2 }$$

2.3 Equações de Maxwell

Problema: a lei de Ampère $\nabla \times \mathbf{B}$ não é compatível com a equação da continuidade (conservação das cargas elétricas) $\nabla \cdot \mathbf{J} = -\frac{\partial \rho}{\partial t}$! Para resolver isso, Maxwell adicionou um termo na equação que contabiliza a corrente de deslocamento. Temos então a *lei de Ampère-Maxwell*, que indica que um campo magnético pode ser gerado por uma densidade de corrente elétrica⁷ ou por um campo elétrico variável no tempo.

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

$$\oint_{\mathcal{C}} \mathbf{B} \cdot d\mathbf{s} = \mu_0 \underbrace{\iint_{S} \mathbf{J} \cdot d\mathbf{S}}_{\text{corrente elétrica} i} + \mu_0 \underbrace{\iint_{S} \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \cdot d\mathbf{S}}_{\text{corrente de deslocamento} i.i.}$$

As formas finais das equações de Maxwell são:

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0} \longleftrightarrow \oiint_S \mathbf{E} \cdot d\mathbf{S} = \frac{q}{\varepsilon_0}$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \longleftrightarrow \oiint_C \mathbf{E} \cdot d\mathbf{s} = \iint_S -\frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{S}$$

$$\nabla \cdot \mathbf{B} = 0 \longleftrightarrow \oiint_S \mathbf{B} \cdot d\mathbf{S} = 0$$

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \longleftrightarrow \oiint_C \mathbf{B} \cdot d\mathbf{s} = \mu_0 \iint_S \mathbf{J} \cdot d\mathbf{S} + \mu_0 \iint_S \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \cdot d\mathbf{S}$$

Juntamente com a Lei de Lorentz e a equação da continuidade, essas equações descrevem todos os fenômenos eletromagnéticos⁸.

Para meios macroscópicos, temos as seguintes equações:

$$\nabla \cdot \mathbf{D} = \rho_f$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{H} = \mathbf{J}_f + \frac{\partial \mathbf{D}}{\partial t}$$

Para meios lineares e isotrópicos:

$$\mathbf{P} = \varepsilon_0 \chi_e \mathbf{E}, \ \mathbf{M} = \chi_m \mathbf{H}$$

$$\mathbf{D} = \varepsilon_0 \underbrace{(1 + \chi_e)}_{\varepsilon_r} \mathbf{E}, \ \mathbf{H} = \underbrace{\mathbf{B}}_{\mu_0} \underbrace{1 + \chi_m}_{\mu_0}$$

⁶Em um transformador ideal, $\mu \to \infty$.

⁷Essa corrente pode ser de convecção $\rho \mathbf{u}$ devido ao movimento da distribuição de cargas livres ou de condução $\sigma \mathbf{E}$, causada pela presença de campo elétrico em meio condutor.

⁸Mas essas equações não são todas independentes.

2.4 Condições de contorno sobre interfaces

As condições de contorno são obtidas aplicando as formas integrais das equações de Maxwell em uma pequena região (altura tendendo a zero) na fronteira entre dois meios. As relações são as mesmas que as do caso estático e elas não são todas independentes (os pares 1 e 2, 3 e 4 são equivalentes).

1. A componente normal de D é descontínua se existe densidade de carga superficial:

$$(\mathbf{D}_2 - \mathbf{D}_1) \cdot \hat{\mathbf{n}}_1 = \rho_s$$

2. A componente tangencial de ${\bf E}$ é contínua em uma interface:

$$\mathbf{E}_{1t} = \mathbf{E}_{2t}$$

3. A componente normal de B é contínua em uma interface:

$$\mathbf{B}_{1n} = \mathbf{B}_{2n}$$

4. A componente tangencial de H é descontínua se existe densidade de corrente superficial:

$$(\mathbf{H}_1 - \mathbf{H}_2) \times \hat{\mathbf{n}}_1 = \mathbf{J}_s$$

Interface entre dois dielétricos

Características: $\sigma = 0$, $\rho_s = 0$, $\mathbf{J}_s = 0$.

Condições de contorno⁹:

$$\mathbf{D}_{1n} = \mathbf{D}_{2n}$$

$$\mathbf{E}_{1t} = \mathbf{E}_{2t}$$

$$\mathbf{B}_{1n} = \mathbf{B}_{2n}$$

$$\mathbf{H}_{1t} = \mathbf{H}_{2t}$$

Interface entre um dielétrico (1) e um condutor perfeito (2) Características: $\sigma = \infty$, $\mathbf{E}_2 = 0$, $\mathbf{H}_2 = 0$, $\mathbf{D}_2 = 0$, $\mathbf{B}_2 = 0$.

Condições de contorno:

$$\mathbf{D}_1 \cdot \hat{\mathbf{n}}_2 = \rho_s$$

$$\mathbf{E}_{2t} = 0$$

$${\bf B}_{1n} = 0$$

$$\hat{\mathbf{n}}_2 \times \mathbf{H}_1 = \mathbf{J}_s$$

Podemos concluir que:

$$|\mathbf{E}_1| = |\mathbf{E}_{1n}| = \frac{\rho_s}{\varepsilon_1}$$

$$|\mathbf{H}_1| = |\mathbf{H}_{1t}| = |\mathbf{J}_s|$$

2.5 O teorema de Poynting

Com a forma definitiva das equações de Maxwell, o campo elétrico não é conservativo. Como ficam as ideias de potencial e conservação de energia?

Vetor de Poynting: mede a quantidade de energia transferida por unidade de área em um campo eletromagnético.

$$\mathscr{S} = \frac{1}{\mu_0} \mathbf{E} \times \mathbf{B} \ (W/m^2)$$

Densidade de energia:

$$u = u_E + u_B = \frac{\varepsilon_0 E^2}{2} + \frac{B^2}{2\mu_0}$$

Teorema de Poynting:

$$\boxed{\frac{d}{dt} \iiint_{\mathcal{V}} u d\mathcal{V} = - \iiint_{\mathcal{V}} \mathbf{J} \cdot \mathbf{E} d\mathcal{V} - \oiint_{S} \mathscr{S} \cdot d\mathbf{S}}$$

Casos interessantes:

⁹Podemos aplicar as relações $\mathbf{D} = \varepsilon \mathbf{E}$ e $\mathbf{B} = \mu \mathbf{H}$.

• Superfície infinita $S \to \infty$ ($\oiint_S \mathscr{S} \cdot d\mathbf{S} \to 0$, pois o campo ainda não chegou):

$$\iiint_{\text{todo o espaço}} \mathbf{J} \cdot \mathbf{E} d\mathcal{V} = -\frac{d}{dt} \iiint_{\text{todo o espaço}} u d\mathcal{V}$$

• Não há densidade de corrente ($\mathbf{J} = 0$):

$$\frac{d}{dt} \iiint_{\mathcal{V}} u d\mathcal{V} = - \oiint_{S} \mathscr{S} \cdot d\mathbf{S}$$

• Não há variação temporal $(\frac{\partial u}{\partial t} = 0)$:

$$\iiint_{\mathcal{V}} \mathbf{J} \cdot \mathbf{E} d\mathcal{V} = - \oiint_{S} \mathscr{S} \cdot d\mathbf{S}$$

Teorema de Poynting para meios materiais (lineares, isotrópicos e não-dispersivos):

$$\frac{d}{dt} \iiint_{\mathcal{V}} \underbrace{\frac{\mathbf{H} \cdot \mathbf{B}}{2} + \frac{\mathbf{E} \cdot \mathbf{D}}{2}}_{\mathcal{V}} d\mathcal{V} = - \iiint_{\mathcal{V}} \mathbf{J} \cdot \mathbf{E} d\mathcal{V} - \oiint_{S} \underbrace{\mathbf{E} \times \mathbf{H}}_{\mathscr{S}} \cdot d\mathbf{S}$$

2.6 Funções potenciais

Podemos usar o conceito de potencial vetor A para escrever:

$$\mathbf{B} = \nabla \times \mathbf{A}$$

Substituindo na forma diferencial da Lei de Faraday, temos: 10

$$\boxed{\mathbf{E} = -\nabla V - \frac{\partial \mathbf{A}}{\partial t}}$$

Devido à liberdade de gauge, podemos impor a seguinte condição (condição de Lorentz para potenciais):¹¹

$$\nabla \cdot \mathbf{A} + \frac{1}{c^2} \frac{\partial V}{\partial t} = 0$$

Dessa forma, obtemos a equação de onda não-homogênea para potencial vetor A:

$$\nabla^2 \mathbf{A} - \frac{1}{c^2} \frac{\partial^2 \mathbf{A}}{\partial t^2} = -\mu_0 \mathbf{J}$$

Substituindo na lei de Gauss, obtemos a equação de onda não-homogênea para potencial escalar V:

$$\nabla^2 V - \frac{1}{c^2} \frac{\partial^2 V}{\partial t^2} = -\frac{\rho}{\varepsilon_0}$$

Momento do campo eletromagnético 2.7

Para um sistema de cargas em movimento, a 3ª lei de Newton não se verifica, assim como o momento total do sistema (isolado). Para recuperar a conservação do momento, é necessário associar uma densidade de momento linear ${\bf g}$ ao campo magnético e definir um tensor ${\bf T}_{\alpha\beta}$ relacionado ao fluxo de momento (força) na superfície que encerra as cargas em questão.

Da força de Lorentz e pela 2ª lei de Newton, temos:

$$\frac{d}{dt}\mathbf{P_{mec}} = \iiint_{\mathcal{V}} \mathbf{f} d\mathcal{V} = \iiint_{\mathcal{V}} \rho \mathbf{E} + \mathbf{J} \times \mathbf{B} d\mathcal{V}$$

Vamos definir a densidade de momento do campo como:

$$\mathbf{g} = \frac{\mathscr{S}}{c^2} = \frac{\mathbf{E} \times \mathbf{H}}{c^2}$$

$$\mathbf{P_{campo}} = \iiint_{\mathcal{V}} \mathbf{g} d\mathcal{V}$$

¹⁰ Quando ρ e **J** variam com baixa frequência e o intervalo de R de interesse é pequeno em relação ao comprimento de onda, é possível usar as equações $V = \frac{1}{4\pi\varepsilon_0} \iiint_{\mathcal{V}'} \frac{\rho}{R} d\mathcal{V}'$ e $\mathbf{A} = \frac{\mu_0}{4\pi} \iiint_{\mathcal{V}'} \frac{\mathbf{J}}{R} d\mathcal{V}'$ para encontrar campos quase-estáticos.

11 Em que $c = \frac{1}{\sqrt{\mu_0\varepsilon_0}}$.

Temos que:

$$\boxed{\frac{d}{dt}(\mathbf{P_{mec}} + \mathbf{P_{campo}})_{\alpha} = \iint_{S} \sum_{\beta} \mathbf{T}_{\alpha\beta} \hat{\mathbf{n}}_{\beta} dS}$$

Fazendo $S \to \infty$, podemos considerar que o campo ainda não atingiu S e temos:

$$\frac{d}{dt}(\mathbf{P_{mec}} + \mathbf{P_{campo}}) = 0 \Rightarrow \mathbf{P_{mec}} + \mathbf{P_{campo}} = \text{cte.}$$

2.8 Equações de onda e soluções

Potenciais retardados:

$$V(R,t) = \frac{1}{4\pi\varepsilon_0} \iiint_{\mathcal{V}'} \frac{\rho(t - R/u)}{R} d\mathcal{V}'$$

$$\mathbf{A}(R,t) = \frac{\mu_0}{4\pi} \iiint_{\mathcal{V}'} \frac{\mathbf{J}(t - R/u)}{R} d\mathcal{V}'$$

Em problemas de propagação de ondas, nos interessa o comportamento da onda em uma região livre de fontes, em que $\rho = 0$ e $\mathbf{J} = 0$. Se o meio é simples (linear, isotrópico e homogêneo), temos as equações de onda vetoriais homogêneas:

$$\nabla^2 \mathbf{E} - \frac{1}{\overline{c}^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0$$

$$\nabla^2 \mathbf{H} - \frac{1}{\overline{c}^2} \frac{\partial^2 \mathbf{H}}{\partial t^2} = 0$$

Em que a velocidade de propagação é $\overline{c}=\frac{1}{\sqrt{\mu\varepsilon}}$

2.9 Campos com variação temporal harmônica

Podemos escrever campos que variam com coordenadas espaciais e que variam de forma senoidal no tempo como fasores.

$$\hat{\mathbf{E}}(\mathbf{r},t) = \Re[\hat{\mathbf{E}}(\mathbf{r})e^{j\omega t}]$$

$$\frac{\partial}{\partial t}\hat{\mathbf{E}}(\mathbf{r},t) = \Re[\hat{\mathbf{E}}(\mathbf{r})j\omega t]$$

$$\int \hat{\mathbf{E}}(\mathbf{r},t)dt = \Re \left\lceil \frac{\hat{E}(\mathbf{r})j\omega t}{j\omega} \right\rceil$$

As equações de Maxwell em termos de fasores para meios simples (linear, isotrópico, homogêneo) são:

$$\nabla \times \hat{\mathbf{E}} = -j\omega\mu\hat{\mathbf{H}}$$
$$\nabla \times \hat{\mathbf{H}} = \hat{J} + j\omega\varepsilon\hat{\mathbf{E}}$$
$$\nabla \cdot \hat{\mathbf{E}} = \rho/\varepsilon$$
$$\nabla \cdot \hat{\mathbf{H}} = 0$$

As equações de Helmholtz não-homogêneas (equações de onda harmônicas no tempo) são:

$$\nabla^2 V + k^2 V = \frac{\rho}{\varepsilon}$$

$$\nabla^2 \hat{\mathbf{A}} + k^2 \hat{\mathbf{A}} = -\mu \hat{\mathbf{J}}$$

Em que $k=\frac{\omega}{\overline{c}}$ é chamado número de onda. A condição de Lorentz é $\nabla \cdot \hat{A} + j\omega\mu\varepsilon V = 0$. As soluções fasoriais para as equações de onda acima são:

$$V(R) = \frac{1}{4\pi\varepsilon_0} \iiint_{\mathcal{V}'} \frac{\rho e^{-jkR}}{R} d\mathcal{V}'$$

$$\hat{\mathbf{A}}(R) = \frac{\mu_0}{4\pi} \iiint_{\mathcal{V}'} \frac{\hat{J}e^{-jkR}}{R} d\mathcal{V}'$$

O número de onda é $k=\frac{2\pi f}{\overline{c}}=\frac{2\pi}{\lambda}$. Se R é muito grande em comparação com λ , temos que $e^{-jkR}\approx 1$ e temos aproximações para o caso estático.

Em um meio simples, não condutor e livre de cargas com $\rho = 0$, $\mathbf{J} = 0$, $\sigma = 0$, as equações de Helmholtz homogêneas são:

$$\nabla^2 \hat{\mathbf{E}} + k^2 \hat{\mathbf{E}} = 0$$

$$\nabla^2 \hat{\mathbf{H}} + k^2 \hat{\mathbf{H}} = 0$$

Se $(\hat{\mathbf{E}}, \hat{\mathbf{H}})$ são soluções para as equações de Maxwell em um meio sem fontes, então também são soluções

$$\hat{\mathbf{E}}' = \eta \hat{\mathbf{H}}$$

$$\hat{\mathbf{H'}} = -rac{\hat{\mathbf{E}}}{\eta}$$

em que $\eta = \sqrt{\mu/\varepsilon}$ é a impedância intrínseca do meio. Esse é o princípio da dualidade. Em um meio simples e condutor $(\sigma \neq 0)$, haverá uma corrente $\mathbf{J} = \sigma \mathbf{E}$, e teremos a equação

$$\nabla \times \hat{\mathbf{H}} = (\sigma + j\omega\varepsilon)\hat{\mathbf{E}} = j\omega\left(\varepsilon + \frac{\sigma}{j\omega}\right)\hat{\mathbf{E}} = j\omega\varepsilon_c\hat{\mathbf{E}}$$
$$\varepsilon_c = \varepsilon - j\frac{\sigma}{\omega}$$

As demais equações continuam válidas para meios condutores desde que a permissividade ε seja substituída pela permissividade complexa ε_c .

$$\varepsilon_c = \varepsilon' - j\varepsilon''$$

$$\sigma = \omega \varepsilon''$$

Permeabilidade magnética complexa:

$$\mu = \mu' - j\mu''$$

$$k_c = \omega \sqrt{\mu \varepsilon_c}$$

Loss tangent:

$$\tan \delta_c = \frac{\varepsilon''}{\varepsilon'}$$

Bons condutores são caracterizados por $\sigma \gg \omega \varepsilon$ e bons isolantes por $\omega \varepsilon \gg \sigma$.

3 Ondas planas eletromagnéticas

4 Antenas

Uma antena é um meio para transmitir ou receber ondas de rádio. Existem diversas formas de construção de antenas (wire antennas, aperture antennas, array antennas, reflector antennas, lens antennas).

4.1 Preliminares

A partir das equações de Maxwell, podemos escrever:

$$\nabla^2 \mathbf{E} - \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = \mu_0 \frac{\partial \mathbf{J}}{\partial t} + \frac{1}{\varepsilon_0} \nabla \rho$$

$$\nabla^2 \mathbf{H} - \frac{1}{c^2} \frac{\partial^2 \mathbf{H}}{\partial t^2} = -\nabla \times \mathbf{J}$$

As funções potenciais são tais que, no gauge de Lorenz:

$$\nabla^2 \mathbf{A} - \frac{1}{c^2} \frac{\partial^2 \mathbf{A}}{\partial t^2} = -\mu_0 \mathbf{J}$$

$$\nabla^2 V - \frac{1}{c^2} \frac{\partial^2 V}{\partial t^2} = -\frac{\rho}{\varepsilon_0}$$

Os potenciais retardados são:

$$\mathbf{A}(\mathbf{r},t) = \frac{\mu_0}{4\pi} \iiint_{\mathcal{V}'} \frac{\mathbf{J}(\mathbf{r}',t')}{|\mathbf{r}-\mathbf{r}'|} d\mathcal{V}'$$
$$V(\mathbf{r},t) = \frac{1}{4\pi\varepsilon_0} \iiint_{\mathcal{V}'} \frac{\rho(\mathbf{r}',t')}{|\mathbf{r}-\mathbf{r}'|} d\mathcal{V}'$$

em que $t' = t - \frac{|\mathbf{r} - \mathbf{r}'|}{c}$. Temos que $\gamma = jk = \alpha + j\beta$; no ar, $\alpha = 0 \to k = \beta$. Aplicando variação temporal harmônica $(e^{j\omega t})$, temos:

$$\mathbf{A}(\mathbf{r},t) = \Re[\mathbf{A}(\mathbf{r})e^{j\omega t}], \ \mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \iiint_{\mathcal{V}'} \frac{\mathbf{J}(\mathbf{r}')e^{-jkR}}{R} d\mathcal{V}'$$

$$V(\mathbf{r},t) = \Re[V(\mathbf{r})e^{j\omega t}], \ V(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \iiint_{\mathcal{V}'} \frac{\rho(\mathbf{r}')e^{-jkR}}{R} d\mathcal{V}'$$

em que $k = \omega \sqrt{\mu \varepsilon}$, $R = |\mathbf{r} - \mathbf{r}'|$.

Roteiro para cálculo dos campos:

- 1. Calcular o potencial vetor A.
- 2. Calcular $\mathbf{H} = \frac{1}{\mu_0} \nabla \times \mathbf{A}$
- 3. Calcular $\mathbf{E} = \frac{1}{i\omega\varepsilon_0}\nabla \times \mathbf{H}$

Observação:

$$\mathbf{J}d\mathcal{V}' = \mathbf{I}ds \Rightarrow \mathbf{A} = \frac{\mu_0}{4\pi} \int_{\mathcal{C}} \frac{\mathbf{I}(\mathbf{r}')e^{-jkR}}{R} ds$$

4.2 Dipolo hertziano (dipolo elétrico elementar)

No dipolo hertziano (elementar), temos $dl = l \ll \lambda$ e i(t) = I = constante.

Figura 1: Dipolo hertziano.

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} I\left(\frac{e^{-j\beta r}}{r}\right) dl \hat{z} = A_r \hat{r} + A_\theta \hat{\theta}$$

$$\mathbf{H}(\mathbf{r}) = \frac{1}{\mu_0} \nabla \times \mathbf{A} = -\frac{Idl}{4\pi} \beta^2 \sin \theta \left[\frac{1}{j\beta r} + \frac{1}{(j\beta r)^2}\right] e^{-j\beta r} \hat{\phi}$$

$$\mathbf{E}(\mathbf{r}) = \frac{1}{j\omega\varepsilon_0} \nabla \times \mathbf{H} = -\frac{Idl}{4\pi} \eta_0 \beta^2 e^{-j\beta r} \left(2\cos \theta \left[\frac{1}{(j\beta r)^2} + \frac{1}{(j\beta r)^3}\right] \hat{r} + \sin \theta \left[\frac{1}{(j\beta r)} + \frac{1}{(j\beta r)^2} + \frac{1}{(j\beta r)^3}\right] \hat{\theta}\right)$$

• Campo próximo: $\beta r \ll 1 \rightarrow (2\pi/\lambda)r \ll 1 \rightarrow r \ll \lambda$

$$\begin{split} \mathbf{H}(\mathbf{r}) &= \frac{Idl\sin\theta}{4\pi r^2} \hat{\phi} \\ \mathbf{E}(\mathbf{r}) &= \frac{2P\cos\theta}{4\pi\varepsilon_0 r^3} \hat{r} + \frac{P\sin\theta}{4\pi\varepsilon_0 r^3} \hat{\theta}, \ P = \frac{I}{j\omega} dl \end{split}$$

• Campo distante: $\beta r \gg 1 \rightarrow (2\pi/\lambda)r \gg 1 \rightarrow r \gg \lambda$

$$E_{\phi} = \frac{\omega \mu_0 m}{4\pi} \left(\frac{e^{-j\beta R}}{R} \right) \beta \sin \theta \qquad (V/m),$$

$$H_{\theta} = -\frac{\omega \mu_0 m}{4\pi \eta_0} \left(\frac{e^{-j\beta R}}{R}\right) \beta \sin \theta \qquad (A/m).$$

Potência irradiada ara campo distante:

$$\mathcal{S}_{av} = \frac{(Idl)^2}{32\pi^2 r^2} \beta^2 \sin^2 \theta \eta_0 \hat{r}$$
$$P_r = \iint_S \mathcal{S} \cdot d\mathbf{S} = \frac{\eta_0 \pi I^2}{3} \left(\frac{dl}{\lambda}\right)^2, \ dl \ll \lambda$$

Figura 2: Diagrama de radiação de um dipolo hertziano.

4.3 Dipolo magnético

Figura 3: Dipolo magnético.

4.4 Parâmetros de antena

- 1. **Diagrama de radiação**: gráfico que representa alguma grandeza da antena em coordenadas espaciais. Normalmente são representados os valores de \mathbf{E} ou \mathscr{S}_{av} . Frequentemente, os valores são normalizados. No diagrama, o plano \mathbf{E} é o que contém o vetor \mathbf{E} e a direção de máxima radiação. O plano \mathbf{H} é o que contém o vetor \mathbf{H} e a direção de máxima radiação.
- 2. Densidade de potência: é dada pelo vetor de Poynting médio

$$\mathscr{S}_{av} = \frac{1}{2} \Re[\mathbf{E} \times \mathbf{H}^*]$$

A potência irradiada é dada por¹²

$$P_{rad} = \iint_{S} \mathscr{S}_{av} \cdot d\mathbf{S}$$

3. Intensidade de radiação U: é a potência irradiada por unidade de ângulo sólido¹³.

$$U(\theta,\phi) = r^2 \mathscr{S}_{av} = \frac{dP_r}{d\Omega} [W/sr]$$

 $^{^{12}}dS = r^2 \sin \theta d\theta d\phi.$

 $^{^{13}}$ Medido em esferorradianos (sr)

$$E_{\phi} = \frac{\omega \mu_0 m}{4\pi} \left(\frac{e^{-j\beta R}}{R} \right) \beta \sin \theta \qquad (V/m),$$

$$H_{\theta} = -\frac{\omega \mu_0 m}{4\pi \eta_0} \left(\frac{e^{-j\beta R}}{R} \right) \beta \sin \theta \qquad (A/m).$$

Figura 4: Exemplo de diagrama de radiação.

Então podemos escrever

$$dP_r = Ud\Omega \Rightarrow P_r = \oiint Ud\Omega = \int_0^{2\pi} \int_0^{\pi} U \sin\theta d\theta d\phi$$

- 4. Largura de feixe: separação angular entre dois pontos idênticos no lado oposto do diagrama de radiação. Largura de feixe de meia potência: ângulo entre duas direções em que a intensidade de radiação é metade do valor máximo, em um plano que contém a direção de máximo feixe.
- 5. **Diretividade** *D*: Razão entre intensidade de radiação em uma direção e a intensidade de radiação de uma antena isotrópica que irradia mesma potência¹⁴.

$$D(\theta, \phi) = \frac{U(\theta, \phi)}{P_r / 4\pi} = 4\pi \frac{U}{P_r}$$

Se a direção não é especificada, tomamos a diretividade máxima, i.e., na direção de máxima radiação.

$$D_{max} = 4\pi \frac{U_{max}}{P_r}$$

6. Eficiência e_0 : Em uma antena, ocorrem perdas que podem ser por reflexão ou por efeito Joule (Ri^2) . A eficiência de radiação é

$$e_{cd} = \frac{P_r}{P_{in}} = \frac{P_r}{P_r + P_{losses}}$$

A eficiência de reflexão é

$$e_r = 1 - |\Gamma|^2$$

O coeficiente de reflexão é $\Gamma = \frac{Z_A - Z_0}{Z_A + Z_0}$, em que Z_A é a impedância de entrada da antena e Z_0 é a impedância da linha. A eficiência total é

$$e_0 = e_r e_{cd}$$

Figura 5: Diagrama de perdas de uma antena.

7. **Ganho** G: razão entre intensidade de radiação em uma direção e a intensidade de radiação que seria obtida por uma antena isotrópica que irradia toda a potência recebida.

$$G(\theta,\phi) = \frac{U}{P_{in}/4\pi} = 4\pi \frac{U}{P_{in}}$$

 $^{^{14}}$ A intensidade radiação de uma antena isotrópica é $U_0=Pr/4\pi$, pois o ângulo sólido total da esfera é 4π .

$$\frac{G}{D} = \frac{P_r}{P_{in}} = e_{cd}$$

8. Resistência de radiação R_r : resistência hipotética que dissiparia a mesma potência P_r irradiada por uma antena, se fosse percorrida por corrente I, i.e., a resistência de radiação R_r é tal que

$$P_r = \frac{1}{2}R_r I^2$$

9. **Impedância de entrada**: impedância apresentada por uma antena em seus terminais. O circuito equivalente de uma antena é dado por A impedância da antena (nos terminais a-b) é

Figura 6: Equivalente de Thévenin de uma antena.

$$Z_A = R_A + jX_A$$

A parte resistiva é

$$R_A = R_r + R_L$$

em que R_r é a resistência de radiação e R_L é a resistência de perdas. Se a antena está em modo de transmissão, podemos considerar que está ligada a um gerador de impedância interna $Z_g = R_g + jX_g$. A corrente que circula pelo circuito é

$$I_g = \frac{V_g}{Z_A + Z_g} \Rightarrow |I_g| = \frac{|V_g|}{[(R_r + R_L + R_g)^2 + (X_A + X_g)^2]^{1/2}}$$

Dessa forma, temos:

• Potência fornecida à antena para radiação:

$$P_r = \frac{1}{2}|I_g|^2 R_r$$

• Potência dissipada em R_L :

$$P_L = \frac{1}{2}|I_g|^2 R_L$$

• Potência dissipada em R_g :

$$P_g = \frac{1}{2}|I_g|^2 R_g$$

A situação de máxima transferência de energia (potência máxima) ocorre quando há casamento conjugado, i.e.

$$R_r + R_L = R_g \in X_A = -X_g$$

Nesse caso,

$$P_g = P_r + P_L = \frac{|V_g|^2}{8} \left[\frac{1}{R_r + R_L} \right] = \frac{|V_g|^2}{8R_g}$$

E a potência suprida pelo gerador é

$$P_S = \frac{1}{2} V_g I_g^* = \frac{|V_g|^2}{4} \left[\frac{1}{R_r + R_L} \right]$$

A situação é análoga para modo de recepção, trocando-se o subíndice g por T. Nesse caso, as potências recebida, rerradiada e perdida são, respectivamente

$$P_T = \frac{|V_T|^2}{8R_T}, P_r = \frac{|V_T|^2}{8} \left[\frac{R_r}{(R_r + R_L)^2} \right], P_L = \frac{|V_T|^2}{8} \left[\frac{R_L}{(R_r + R_L)^2} \right]$$

E a potência coletada pela antena é

$$P_C = \frac{1}{2}V_T I_T^* = P_r = \frac{|V_T|^2}{4} \left[\frac{1}{(R_r + R_L)} \right]$$

10. **Polarização**: a polarização de uma antena em uma direção é a polarização da onda transmitida naquela direção. Seja o campo elétrico da onda que chega à antena $\mathbf{E_i} = E_i \hat{\rho}_w$ e a polarização do campo elétrico da antena receptora $\mathbf{E_a} = E_a \hat{\rho}_a$. Existe um fator de perda de polarização (eficiência de polarização), que é dado por

$$PLF = |\hat{\rho}_w \cdot \hat{\rho}_a|^2 = |\cos \psi_p|^2$$

em que ψ_p é o ângulo entre $\hat{\rho}_w$ e $\hat{\rho}_a$.

11. **Área efetiva**: é a área que, multiplicada pela densidade de potência, fornece a potência disponibilizada nos terminais da antena.

$$A_e = \frac{P_T}{\mathscr{S}} = \frac{|I_T|^2 R_T / 2}{\mathscr{S}}$$

É possível mostrar que

$$A_e = \frac{\lambda^2 D}{4\pi}$$

4.5 Antenas filamentares lineares

Podemos estudar uma antena linear de comprimento 2h a partir do dipolo elementar. Mostra-se que

$$E_{\theta} = \eta_0 H_{\phi} = j60 I_m \frac{e^{-j\beta r}}{r} F(\theta)$$

em que $F(\theta)$ é a função de forma:

$$F(\theta) = \frac{\cos(\beta h \cos \theta) - \cos(\beta h)}{\sin \theta}$$

Dipolo de meia-onda $(2h = \lambda/2)$: Nesse caso, temos que $\beta h = \frac{2\pi}{\lambda} h \to \beta h = \frac{\pi}{2}$, então:

$$F(\theta) = \frac{\cos(\frac{\pi}{2}\cos\theta)}{\sin\theta}$$

$$E_{\theta} = \eta_0 H_{\phi} = j60 I_m \frac{e^{j\beta r}}{r} \frac{\cos(\frac{\pi}{2}\cos\theta)}{\sin\theta}$$

Parâmetros em função de $F(\theta)$:

• Vetor de Poynting médio:

$$\mathscr{S}_{av} = \frac{-15I_m^2 |F(\theta)|^2}{\pi r^2} \hat{r}$$

• Potência irradiada:

$$P_r = 30I_m^2 \int_0^{\pi} |F(\theta)|^2 \sin \theta d\theta$$

• Intensidade de radiação:

$$U(\theta, \phi) = \frac{15I_m^2|F(\theta)|^2}{\pi}$$

• Diretividade:

$$D(\theta, \phi) = \frac{2|F(\theta)|^2}{\int_0^{\pi} |F(\theta)|^2 \sin \theta d\theta}$$

4.6 Fórmula de Friis

Relaciona a potência recebida por uma antena com a transmitida por outra, em um arranjo como o da figura, em que as antenas estão separadas de $R > 2D^2/\lambda$.

Figura 7: Arranjo transmissão-recepção para avaliação da fórmula de Friis.

$$\frac{P_r}{P_t} = e_{cd_t} e_{cd_r} (1 - |\Gamma_t|^2) (1 - |\Gamma_r|^2) |\hat{\rho}_t \cdot \hat{\rho}_r|^2 \left(\frac{\lambda}{4\pi R}\right)^2 D_t(\theta_t, \phi_t) D_r(\theta_r, \phi_r)$$

Referências

- [1] CHENG, David K. Field and Wave Electromagnetics. 2nd ed., Addison-Wesley, 1989.
- [2] BALANIS, Constantine A. Antenna theory: analysis and design. 4th ed., Wiley, 2016.