Lect 14

Binary Multiplier

CS221: Digital Design

Dr. A. Sahu

Dept of Comp. Sc. & Engg.

Indian Institute of Technology Guwahati

Outline

- Array Binary Multiplier
- Sequential Multiplier
- High Radix Multiplier
- Booth Multiplier
- Programmable logic Device (PLD)
 - -PLA, PAL, ROM, GAL, CPLD, CLB
 - -SoftwareHDLs

Delay of Adder

- Ripple Carry Adder (RCA) = N * $T_c = \alpha N$
- Machester RCA = N * $T_m = \alpha N$
- Carry Skip Adder
 Total Delay = p (N/m) T_s + (p-1) *(N/m)* m * T_c
 T = N * (p/m*T_s+(p-1)T_c) = a N
- Carry Select Adder = Independent of Data
 Delay of select = Ts
 T = (N/m 1) T_s + m T_c
 T = N*T_s/m + (mT_c-T_s) = α N +c
- CLA: log₄N, Area: O(2N)

Efficient Multiplier Design

Multiplication: paper - pencil method

Multiply: Shift & Add

- Decimal number : 15x20=300, 10x20+5x20 =300
- Binary number: 1111 X 10100
 - -1000X**10100** + 100X**10100** + 10X**10100** + 1X**10100**
 - Sft3(10100) + sft2(10100) + sft1(10100)+sft0(10100)
 - 1111X10000 + 1111X100
 - Sft5(1111)+sft2(1111)
- Multiplication of N bit number, N shift, N Add, if bit is zero don't add
- Special addition

Shift add multiplier $A \times B = \sum_{i=0}^{n-1} A \cdot B_i \times 2^i$ $A \times B = \sum_{i=0}^{n-1} A \cdot B_i \times 2^i$ $A \times B = \sum_{i=0}^{n-1} A \cdot B_i \times 2^i$ $A \times B = \sum_{i=0}^{n-1} A \cdot B_i \times 2^i$ $A \times B = \sum_{i=0}^{n-1} A \cdot B_i \times 2^i$ $A \times B = \sum_{i=0}^{n-1} A \cdot B_i \times 2^i$ $A \times B = \sum_{i=0}^{n-1} A \cdot B_i \times 2^i$ $A \times B = \sum_{i=0}^{n-1} A \cdot B_i \times 2^i$ $A \times B = \sum_{i=0}^{n-1} A \cdot B_i \times 2^i$ $A \times B = \sum_{i=0}^{n-1} A \cdot B_i \times 2^i$ $A \times B = \sum_{i=0}^{n-1} A \cdot B_i \times 2^i$ $A \times B = \sum_{i=0}^{n-1} A \cdot B_i \times 2^i$ $A \times B = \sum_{i=0}^{n-1} A \cdot B_i \times 2^i$

$$A \times B = \sum_{i=0}^{n-1} A \cdot B_i \times 2^i = \sum_{i=0}^{n-1} T_i$$

$$=A.B_0\times 2^0+A.B_1\times 2^1+..+A.B_{n-1}\times 2^{n-1}$$

 • Assumption: Generate All the term in parallel

- N Addition can be done in parallel in Log(N) steps using N/2 Adder.
- . Adder complexity is Linear O(N) using RCA
 - Area: Number of Adder*Area Per Adder = N/2 * N
 - Delay : Delay per Adder* Steps = N. lg N
- Adder complexity CLA Log (N)
 - Area: Number of Adder*Area Per Adder = N/2 * 2N
 - Delay: Delay per Adder* Steps = Ig N. Ig N = (Ig N)2

Algorithm Serial Multiplication: D & C

- To multiply two n-digit integers:
 - Multiply four ½n-digit integers.
 - Add two ½n-digit integers, and shift to obtain

$$x = 2^{n/2} \cdot x_1 + x_0$$

$$y = 2^{n/2} \cdot y_1 + y_0$$

$$xy = (2^{n/2} \cdot x_1 + x_0)(2^{n/2} \cdot y_1 + y_0) = 2^n \cdot x_1 y_1 + 2^{n/2} \cdot (x_1 y_0 + x_0 y_1) + x_0 y_0$$

$$T(n) = \underbrace{4T(n/2!)}_{\text{recursive calls}} + \underbrace{\Theta(n)}_{\text{add, shift}} \Rightarrow T(n) = \Theta(n^2)$$

Improved: Karatsuba Multiplication

- To multiply two n-digit integers:
 - Add two ½n digit integers.
 - Multiply three ½n-digit integers. (Re use of Term)

$$x = 2^{n/2} \cdot x_1 + x_0$$

$$y = 2^{n/2} \cdot y_1 + y_0$$

$$xy = 2^{n} \cdot x_{1}y_{1} + 2^{n/2} \cdot (x_{1}y_{0} + x_{0}y_{1}) + x_{0}y_{0}$$

$$T(n) = \underbrace{3T(n/2)}_{\text{recursive calls}} + \underbrace{\Theta(n)}_{\text{add, shift}} \Rightarrow T(n) = \Theta(n^{\log_2 3}) = \Theta(n^{1.58})$$

N bit Multiplication: FFT Method

- Idea: 1024*16 =210+24=210+6 =216=65536
- FFT based multiplication
 - N Bit binary numbers $A(X)=A_{n-1}2^{n-1}+A_{n-2}2^{n-1}+..+A_01$
 - Polynomial multiplication A(X) * B (X)
 - -A(X) * B(X) = IFFT (FFT(A(X))+FFT(B(X)));
 - Complexity: $2n \lg n + n + n \lg n = O(n \lg n)$

Shift add multiplier (sequential)

$$A \times B = \sum_{i=0}^{n-1} A \cdot B_i \times 2^i$$

i=0			
	step1: i=0; s=0	step1: i=0; s=0	step1: i=0; s=0
	do {	do {	do {
	step2:	step2:	step2:
	$s += A \cdot B_i \times 2^i$	if (B _i) s += A	if (B_0) s += A
	i ++	A = 2xA	A = 2xA
	} while (i < n)	i ++	B = B/2; i ++
		} while (i < n)	} while (i < n)

Sequential shift add multiplier 1

Sequential shift add multiplier 2 step1: i=0; s=0 do { step2: if (B₀)s_H += A step3: s = s/2 B = B/2; i ++ } while (i < n)

Higher Radix Multiplication

Higher Radix Multiplication

In radix-8, one must precompute 3a, 5a, 7a
 Overhead becomes prohibitive and does not help

Higher Radix Multiplication Booth Encoding

Radix-2 Booth Recoding

25

Radix-2 Booth Recoding

```
x_i x_{i-1} y_i Explanation

0 0 0 No string of 1s in sight

0 1 1 End of string of 1s in x

1 0 -1 Beginning of string of 1s in x

1 1 0 Continuation of string of 1s in x

1 1 0 0 1 1 1 0 1 1 0 1 1 1 0 Operand x

(1) 1 0 1 0 0 1 1 0 1 1 1 1 0 0 1 0 Recoded version y

y_i = -x_i + x_{i-1}
```

