

Bootstrapping Non-Invertible Symmetries

Burak Oğuz ¹ Soner Albayrak ¹

¹Middle East Technical University

Introduction and Motivation

Quantum Field Theory (QFT) is the language used by physicists to describe phenomena from the microscopic scales to the macroscopic world. Defining QFT rigorously has been a central problem in the past several decades, driving many advancements in physics and mathematics. In our project, we explore the intersection of two up-and-coming research fields in this direction: 1) the generalized global symmetries [GKSW15] and 2) the conformal bootstrap program [SD17].

Specifically, our project approaches non-invertible symmetries from a bootstrap point of view [LS23]. The nomenclature non-invertible symmetry is very recent although there are realizations of them in the old literature on two-dimensional Conformal Field Theory (CFT) [SN24]. For example, the Kramers-Wannier duality of the 2d Ising model is a non-invertible symmetry in the modern perspective. We study the critical Ising model as a CFT admitting a categorical (non-invertible) symmetry, and using the Symmetry Topological Field Theory (SymTFT) [SN24] construction along with modularity, we will obtain bootstrap equations to constrain its spectrum [LS23].

Generalized Global Symmetries

Symmetries in QFT organize the spectrum, provide selection rules and constrain the dynamics significantly. Let G be a global symmetry in a QFT, then Noether's prescription gives a conserved current j, which in turn leads to a codimension-1 topological operator U_g acting on charged local operators and obeying fusion rules. For example, in a 4d QFT with a global U(1) symmetry

$$d * j = 0 \iff U_{\alpha}(S^3) = \exp\left(i\alpha \int_{S^3} * j\right), \quad \alpha \in [0, 2\pi).$$

The operators $U_{\alpha}(S^3)$ act on charged local operators $\mathcal{O}(x)$ via topological linking, and two $U_{\alpha}(S^3)$ with different parameters α, β fuse together in a way compatible with the U(1) multiplication. This familiar picture is referred to as a 0-form symmetry in the language of [GKSW15].

Action of 0—form symmetries

Fusion of 0—form symmetries

The seminal paper [GKSW15] generalizes this picture to p-form symmetries. Essentially, one has a codimension—p+1 topological operator $U_g(S^{d-p-1})$ acting on a p-dimensional extended charged object $\mathcal{O}(M_p)$ via topological linking, and obeying fusion rules. The Wilson line operators W(C) in any gauge theory (Maxwell, Yang-Mills, QCD,...), provide natural examples of 1-form symmetries. Higher form symmetries can be broken, have anomalies, and their coupling can flow under the Renormalization Group (RG). For example, the spontaneous breakdown of a 1-form symmetry, the order parameter of which being $\langle W(C) \rangle$, leads to the confining/deconfining phase transitions. Moreover, the photon in ordinary Maxwell theory arises as the Goldstone boson from the spontaneous breaking of 1-form symmetries [GKSW15]!

The Conformal Bootstrap

Conformal Field Theory (CFT) is a QFT with conformal symmetry, and is a useful tool in describing critical phenomena. Moreover, all local QFTs can be constructed from relevant deformations of CFT. Primary operators $\mathcal{O}_{\Lambda}(x)$ of scaling dimension Δ play a central role in CFT, defined by

$$e^{-\lambda D}\mathcal{O}_{\Lambda}(x)e^{\lambda D} = e^{-\lambda \Delta}\mathcal{O}_{\Lambda}(\lambda x), \quad (D: x \mapsto \lambda x),$$

where D is the dilation operator. Knowledge of $\mathcal{O}_{\Delta}(x)$ gives the complete CFT spectrum via descendants, obtained by acting with the momentum operator (space-time derivative) on the primaries. Therefore, the CFT Operator Product Expansion (OPE) is a sum over all the primaries

$$\mathcal{O}_i(x_1)\mathcal{O}_j(x_2) = \sum_{k \in \{\text{Primaries}\}} C_{ijk}^{(\Delta,s,f)}(x_{12},\partial_2)\mathcal{O}_k(x_2).$$

The coefficients $C_{ijk}^{(\Delta,s,f)}$ depend on conformal dimensions Δ_i , spins s_i , and the three-point function coefficients f_{ijk} [SD17]. Now recall that the physical information of a QFT is encoded in the n-point correlation functions. Using OPE recursively, one reduces an n-point function to:

$$\langle \mathcal{O}_1(x_1)\mathcal{O}_2(x_2)\cdots\mathcal{O}_n\rangle = \sum_k C_{12k}(x_{12},\partial_2)\langle \mathcal{O}_k(x_2)\cdots\mathcal{O}_n\rangle = \sum_k C(s,\Delta,f)\cdots\sum_k C(s,\Delta,f).$$

The main takeaway is that (Δ_i, s_i, f_{ijk}) , called the CFT data, defines a theory. This set of data must to satisfy consistency conditions coming from physical requirements such as unitarity and crossing symmetry. The **goal** of the bootstrap program is to implement these conditions using analytical and numerical tools and carve out the *theory space* non-perturbatively.

Global Symmetry Operators in d=2

In two dimensions, codimension-1 symmetry operators are topological line operators obeying fusion rules. The fusions of the lines depend on whether the global symmetry is associated to a group G or a fusion category C, as depicted in the figure below.

For topological symmetries, the fusion of two lines give a third line, whereas for categorical symmetries, the fusion of two lines give a linear combination of all the lines in the category with coefficients $N_{ab}{}^c \in \mathbb{Z}_{\geq 0}$.

2d critical Ising model

For the **2***d* Ising CFT, there are three line operators $1, \eta, \mathcal{N}$ with fusion rules

$$\eta \times \eta = 1, \quad \eta \times \mathcal{N} = \mathcal{N} = \mathcal{N} \times \eta, \quad \mathcal{N} \times \mathcal{N} = 1 + \eta,$$

Where 1 is the identity line, η is a \mathbb{Z}_2 spin line, and \mathcal{N} is a non-invertible line operator implementing the Kramers-Wannier duality relating high temperature to the low temperature.

Symmetry Topological Field Theory

Let **T** be a QFT on M_d with internal global symmetry G. Via the SymTFT construction, one can separate the dynamics **T** from the symmetry G through a Topological QFT on $X_{d+1} = M_d \times [0,1]$ [SN24]. Upon compactifying the interval, one recovers the original theory **T**.

Left boundary captures the dynamics of T, and the right boundary captures the global symmetry G.

For a p-form symmetry $G^{(p)}=\mathbb{Z}_N$, the SymTFT is a Dijkgraaf-Witten gauge theory [SN24].

Modular Bootstrap Bounds for Ising CFT

For a 2d theory **T** with global categorical symmetry C, the SymTFT is the Turaev-Viro TQFT (**TV**_C). The partition function of this theory in an anyon sector $\mu \in Z(C)$ (Drinfeld center) obeys

$$\text{Virasoro expansion}: Z_{\mu}^{3d}(\tau,\overline{\tau}) = \sum_{h,\overline{h}} n_{\mu,h\overline{h}} \, \chi_h(\tau) \overline{\chi}_{\overline{h}}(\overline{\tau}), \quad (n_{\mu,h\overline{h}} \in \mathbb{Z}_{\geq 0}),$$

$$\text{Modular covariance}: Z_{\mu}^{3d}(\tau,\overline{\tau}) = \sum_{\nu \in Z(\mathcal{C})} S_{\mu\nu}^{-1} \, Z_{\nu}^{3d} \big(S\tau,\overline{S\tau}\big), \quad (S\tau \equiv -1/\tau).$$

Combining these two, one gets the "modular bootstrap equation":

$$0 = \sum_{\nu \in Z(\mathcal{C})} \sum_{h,\overline{h}} n_{\nu,h\overline{h}} \ \left(\mathrm{id}_{\mu\nu} \ \chi_h(S\tau) \overline{\chi}_{\overline{h}}(\overline{S\tau}) - S_{\mu\nu} \ \chi_h(\tau) \overline{\chi}_{\overline{h}}(\overline{\tau}) \right).$$

Running the numerical bootstrap for C = Ising, one obtains upper bounds [LS23].

Bootstrap bounds on the lightest primary operator in the trivial anyon sector [LS23].

References

[GKSW15] Davide Gaiotto, Anton Kapustin, Nathan Seiberg, and Brian Willett.

Generalized Global Symmetries. *JHEP*, 02:172, 2015.

[LS23] Ying-Hsuan Lin and Shu-Heng Shao. Bootstrapping noninvertible symmetries.

Bootstrapping noninvertible symmetrie *Phys. Rev. D*, 107(12):125025, 2023.

[SD17] David Simmons-Duffin.

The Conformal Bootstrap. In Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings, pages 1–74, 2017.

[SN24] Sakura Schafer-Nameki.

ICTP lectures on (non-)invertible generalized symmetries.

Phys. Rept., 1063:1–55, 2024.