Testing Performances of Sparse GPVB and Variational Approximation for Linear Mixed Model

Daeyoung Lim*
Department of Statistics
Korea University

April 1, 2016

1 Performance: GPVB

The model was initially

$$y = \mathsf{E}\left[Z\right]\alpha + A\beta + \epsilon.$$

Since we are running mean-field variational approximation, we are updating variational parameters of the optimal distributions, thereby enabling the replacement of each parameter with its variational parameter. Therefore, the fitted model will be

$$\hat{y} = Z\mu_{q(\alpha)} + A\mu_{q(\beta)}.$$

However, we should keep in mind that there is λ inside Z so we must not forget to replace λ with $\mu_{q(\lambda)}$. With the data obtained from J. T. Ormerod \mathcal{E} M. P. Wand (2010) Explaining Variational Approximations, The American Statisticians, we tested the implemented code. By using the root MSE(RMSE) defined as follows,

RMSE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$
,

we can test the performances of multiple codes.

- For GPVB, $RMSE_{GPVB} = 1.890758$.
- For ordinary VB, $RMSE_{VB} = 1.961782$.
- To test how much the two models differ, though we wish them to be fairly similar, we also consider computing the following measure(root sum of squared differences):

RSSD =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_{\text{GPVB}} - \hat{y}_{\text{VB}})^2}$$
.

• RSSD = 2.114151.

2 GP normal effect

We present a simple tutorial on simulation.

^{*}Prof. Taeryon Choi

Figure 1: A figure with two subfigures

Figure 2: A figure

Figure 3: Another figure