Упражнение 2

I. $\alpha \gg 1$

Пусть \tilde{x} — корень уравнения $\ln x = e^{-\alpha x}$, тогда,

$$\forall x \hookrightarrow e^{-\alpha x} > 0 \Rightarrow \ln \tilde{x} > 0 \Rightarrow \tilde{x} > 1 \Rightarrow e^{-\alpha \tilde{x}} < e^{-\alpha} \ll 1$$

следовательно, $0 < \ln \tilde{x} \ll 1$, и \tilde{x} можно представить в виде

$$\tilde{x} = 1 + \varepsilon, \quad 0 < \varepsilon \ll 1.$$
 (1)

От полученного данной подстановкой уравнения $\ln{(1+\varepsilon)}=e^{-\alpha(1+\varepsilon)}$ возьмем экспоненту:

$$1 + \varepsilon = e^{e^{-\alpha(1+\varepsilon)}},$$

и, так как $\xi = e^{-\alpha(1+\varepsilon)} \ll 1$, разложим правую часть по степеням ξ :

$$1 + \varepsilon = e^{\xi} \approx 1 + \xi + \frac{1}{2}\xi^2.$$

Подставляя ξ и пренебрегая малыми величинами, получаем

$$\varepsilon \approx e^{-\alpha(1+\varepsilon)} + \frac{1}{2}e^{-2\alpha(1+\varepsilon)} \approx e^{-\alpha},$$

и, подставляя ε в (4), получаем ответ:

$$\tilde{x} \approx 1 + e^{-\alpha}$$

II. $\alpha \ll 1$

Пусть \tilde{x} — корень уравнения $x-1=e^{-\alpha x}$, тогда,

$$\forall x \hookrightarrow e^{-\alpha x} > 0 \Rightarrow \tilde{x} > 1 \Rightarrow |-\alpha \tilde{x}| \ll 1,$$

следовательно, $0 < 1 - e^{-\alpha \tilde{x}} \ll 1$, и $e^{-\alpha \tilde{x}}$ можно представить в виде

$$e^{-\alpha \tilde{x}} = 1 - \varepsilon, \quad 0 < \varepsilon \ll 1,$$
 (2)

откуда $\tilde{x} = \frac{1}{\alpha} \ln \frac{1}{1-\varepsilon},$ и, подстановкой (5) в исходное уравнение,

$$\tilde{x} = e^{1-\varepsilon},\tag{3}$$

$$\alpha e^{1-\varepsilon} = \ln \frac{1}{1-\varepsilon}.$$

Пренебрегая малой величиной, получаем

$$\alpha e^{1-\varepsilon} \approx \alpha e, \quad \alpha e \approx \ln \frac{1}{1-\varepsilon}, \quad \varepsilon = 1 - e^{-e\alpha} \approx e\alpha,$$

откуда подстановкой в (6) получаем ответ:

$$\tilde{x} \approx e(1 - e\alpha)$$