

Lecture 6: Time Value of Money — Part 1

The Basics of Time Value of Money

Presentation to Cox Business Students

FINA 3320: Financial Management

Purpose of This Lecture

- Gain an understanding of the basics of time value of money
 - (1) Rationale behind why money has time value
 - (2) Difference between simple and compound interest
 - Become familiar with annual percentage rate (APR) and effective annual rate (EAR)
 - (3) Present value and future value of a single cash flow

Decisions, Decisions...

- Each project requires an upfront investment of \$4,000
 - Project 1: Returns \$5,000 in 2 years
 - Project 2: Returns \$1,000 per year for the next 5 years
 - Project 3: Returns \$2,500 in year 1 and \$2,500 in year 4
- All project cost \$4,000 and return a total of \$5,000
 - Are they to be considered different from one another?
 - Which, if any, would be acceptable to shareholders?
 - As a financial manager, which one (ones) would you consider undertaking? Why?

A Simple Offer

- Would you rather have...
 - \$1,000 right now?
 - Or
 - \$1,000 one year from today?
- Why?
- What about \$1,001 in a year? Or maybe \$1,002?
 - What would it take for you to consider taking the money one year from today as opposed to \$1,000 now?

Money Has a Time Value

- A dollar is a dollar is a dollar...or is it?
 - Cash in hand today can be invested to generate additional cash in the future
 - Cash flows at *different times* are to be viewed as *different quantities*
- Bottom line: A dollar today is worth more than a dollar tomorrow
- What can we say about our three projects?

Time Value and Time Lines

- Time lines enable financial managers to visualize time value problems
- A time line for each of the 3 projects follows...

Future Values

The amount to which a cash flow (or series of cash flows) will grow over a given period of time when compounded at a given interest rate

"A dollar in hand today is worth more than a dollar to be received in the future"

Compounding

The arithmetic process of determining the final value of a cash flow (or series of cash flows) when compound interest is applied

The Rate of Interest

- "A dollar today is worth more than a dollar tomorrow"
 - This is a qualitative statement
 - But how can we *quantify* the tradeoff?
- Suppose you are indifferent between \$1,000 today and \$1,050 one year from now
 - Ratio of period 1 to period 0 "equivalent" cash flows is 1.05/1
 - In other words, next period's cash flow must be 5% greater than this period's cash flow to establish the equivalence
- The rate of interest (in this case, 5% per annum) quantifies the tradeoff between cash flows across time

The Rate of Interest continued...

"A dollar today is worth more than a dollar tomorrow"

• What does the above statement imply about the rate of interest?

• What if the interest rate were zero? Negative?

A "Bank Account" Framework

- Consider a bank account:
 - Money can be deposited
 - Money can be withdrawn
 - At any time, there exists an account balance
 - The bank pays the owner interest based on the account balance
- Interest represents the *rent* paid for money
 - Owner desires compensation for giving up the current use of the money
 - Bank is willing to pay since it desires the funds now

A Basic Case

- Scenario: Make a \$100 deposit and leave the money in the account for 1 year
 - Call the initial \$100 the *present value* or **PV**
 - Call the account balance in 1 year the *future value* or **FV**
- If the annual rate (r) is 6%, what is the value of the account in 1 year?
- Two components of the FV
 - \$100 initially invested (principal)
 - \$6 in interest
 - Or
 - FV = PV*(1+r) = 100*(1.06) = \$106

A Basic Case continued...

- Formula approach: $FV_t = PV^*(1+r)^t$
 - What would be the value of the account after various numbers of years?
 - In 1 Year: $FV_1 = PV*(1+r)^1 = 100*(1.06)^1 = 106.0000
 - In 2 Years: $FV_2 = PV*(1+r)^2 = 100*(1.06)^2 = 112.3600
 - In 3 Years: $FV_3 = PV*(1+r)^3 = 100*(1.06)^3 = 119.1016

A Basic Case continued...

Financial calculators

- Five (5) keys for the five variable in the basic time value equations
 - n = number of periods
 - i = interest rate per period
 - PV = present value
 - PMT = payment
 - $\overline{FV} = \text{future value}$

A Basic Case continued...

Financial calculators

- What would be the value of the account after various numbers of years?
- In 1 Year: 1n; 6i; -100PV; 0PMT; FV = \$106.0000
- In 2 Years: 2n; 6i; -100PV; 0PMT; FV = \$112.3600
- In 3 Years: 3n; 6i; -100PV; 0PMT; FV = \$119.1016

Note: Negative for PV indicates it is a cash outflow

Interest Calculations (Multiple Periods)

- Simple interest: Interest paid on initial principal only
- Compound interest: Interest paid on prior period's ending balance
 - Each period's interest is added to the principal
 - Interest is paid on interest
 - FV_t of $1 = 1*(1+r)^t$
 - r = periodic interest rate
 - t = number of periods

Examples

• Account 1: Invest \$1,000 for 4 years at 6% simple interest

• Account 2: Invest \$1,000 for 4 years at 6% interest compounded annually

• Which is worth more after 4 years?

Simple vs. Compound Interest

	Account 1			Account 2		
Year	Beg. Bal.	Interest	End Bal.	Beg. Bal.	Interest	End Bal.
1	1,000	60	1,060	1,000	60	1,060
2	1,060	60	1,120	1,060	64	1,124
3	1,120	60	1,180	1,124	67	1,191
4	1,180	60	1,240	1,191	71	1,262

Compounding Periods

- Account 3: Invest \$1,000 for 4 years at 6% interest compounded semi-annually
 - Semi-annual rate = 3%
 - 8 semi-annual periods

- Account 4: Invest \$1,000 for 4 years at 6% interest compounded monthly
 - Monthly rate = 0.5%
 - 48 monthly periods

Compounding Periods continued...

- Account 3: Invest \$1,000 for 4 years at 6% interest compounded semi-annually
 - **Formula**: $FV_8 = PV^*[1+(0.06/2)]^8 = 1000^*[(1.03)]^8 = 1266.770
 - **Financial Calculator**: 8n; 3i; -1000PV; 0PMT; FV = \$1266.770

- Account 4: Invest \$1,000 for 4 years at 6% interest compounded monthly
 - Formula: $FV_{48} = PV^*[1+(0.06/12)]^{48} = 1000^*[(1.005)]^{48} = 1270.489
 - Financial Calculator: 48n; 0.5i; -1000PV; 0PMT; FV = \$1270.489

Compounding Periods continued...

- Annual percentage rate (APR) = periodic interest rate multiplied by periods per year
 - "Typical" interest rate quotes
 - All rates in past examples are APRs
- FV of \$1 in 1 year = $1*(1+APR/m)^m$
 - Increase m...Increase FV
 - Increase m to infinity? Continuous compounding
 - Continuous compounding: $FV = 1 * e^{APR}$
- For t years: 1*(1+APR/m)^{mt} and 1*e^{APR*t}

Compounding Periods continued...

- How can we compare rates with different compounding periods?
 - Effective annual rate (EAR): Annual rate that accounts for compounding
 - Return over 1 year = $(1+APR/m)^m = 1 + EAR$

• Interpretation: For a given APR and compounding period, EAR is the rate that will earn the same interest under annual compounding

Effective Annual Rates (EAR)

- Compute EAR for an APR of 12% compounded:
 - Annually
 - Semi-annually
 - Monthly
 - Daily
 - Continuously
- "Increasing m increases FV" and "Increasing m increases EAR" are equivalent statements

Effective Annual Rates (EAR)

Compute EAR for an APR of 12% compounded:

```
Annually: [1+(.12/1)]¹-1= 12.0000%
Semi-annually: [1+(.12/2)]²-1= 12.3600%
Monthly: [1+(.12/12)]¹²-1= 12.6825%
Daily: [1+(.12/365)]³65-1= 12.7475%
Continuously: e<sup>0.12</sup>-1= 12.7497%
```


Using the EAR

- Which has higher FV (A) 6% compounded monthly or (B) 6.1% compounded semi-annually?
- Step 1: Compute the EAR for each

• Step 2: Compare across accounts

Using the EAR

- Which has higher FV (A) 6% compounded monthly or (B) 6.1% compounded semi-annually?
- Step 1: (A) $[1+(0.06/12)]^{12}$ -1 = 6.1678% (B) $[1+(0.061/2)]^2$ -1 = 6.1930%
- Step 2: Compare across accounts
 (B) has higher EAR than (A)

Present Values

The value today of a future cash flow (or series of cash flows) discounted at a given interest rate

Discounting

The process of finding the present value of a cash flow (or series of cash flows)

Discounting is the reverse (i.e., reciprocal) of compounding

Present Values

- Given PV and r, we can compute an equally valuable cash flow from any other time period
- But much of finance seeks today's value of expected future cash flows
 - Example 1: A stock generates future cash flows for its owner, but how much is the stock worth today?
 - Example 2: An investment project generates future cash flows for shareholders, but how much is the project worth today?
- Use same concept as before:
 - Begin with: $FV_t = PV_0 * (1+r)^t$
 - Simply solve for present value: $PV_0 = FV_t/(1+r)^t$

Relevant Terminology

 Discount rate: Interest rate used in the denominator of present value calculations

- Discount factor: Factor by which a cash flow is multiplied to calculate a present value
 - $1/(1+r)^t$ in formulas
 - Less than 1 if positive r

Present Value Example

• Someone promises you \$3,000 in 3 years. How much is this worth to you *today* if you can invest money at 10% compounded annually?

• Interpretation: You are indifferent between receiving \$3,000 in 3 years and what \$ amount today if you required a 10% rate of return compounded annually?

Present Value Example

- Someone promises you \$3,000 in 3 years. How much is this worth to you *today* if you can invest money at 10% compounded annually?
 - **Formula:** $PV = FV_t/(1+r)^t = \$3,000/(1.10)^3 = \$2,253.94$
 - **Financial Calculator**: 3n; 10i; 0PMT; 3,000FV; PV = -\$2,253.94 Note: Negative for PV indicates it is a cash outflow
- **Interpretation**: You are indifferent between receiving \$3,000 in 3 years and \$2,253.94 today

Present Value Example

- Suppose you own the claim to \$3,000 in 3 years
 - For how much should you be able to sell this claim in a secondary market?
 - ANSWER: \$2,253.94 if purchaser in secondary market required a 10% rate of return compounded annually
 - What if your debtor wanted to settle the claim today? How much would you require?
 - ANSWER: \$2,253.94 if you require a 10% rate of return compounded annually

More Examples

• You know that you will need \$5,000 in 4 years. How much would you have to invest today at 4% compounded annually in order to reach your goal?

• How much would you invest if you could invest at 5% instead of 4%?

More Examples

- You know that you will need \$5,000 in 4 years. How much would you have to invest today at 4% compounded annually in order to reach your goal?
 - **Formula**: $PV = FV_t / (1+r)^t = \$5,000/(1.04)^4 = \$4,274.02$
 - **Financial Calculator**: 4n; 4i; 0PMT; 5,000FV; PV = \$4,274.02
- How much would you invest if you could invest at 5% instead of 4%?
- **Formula:** $PV = FV_t/(1+r)^t = \$5,000/(1.05)^4 = \$4,113.51$
- **Financial Calculator**: 4n; 5i; 0PMT; 5,000FV; PV = -\$4,113.51

Present Value Sensitivities

• How does present value change when the future cash flow changes?

• How does present value change when the discount rate is changed?

How does present value change when the timing of the cash flow changes?

Present Value Sensitivities

- How does present value change when the future cash flow changes?
 - Same Direction: When FV goes up (down) so does PV
- How does present value change when the discount rate is changed?
 - *Opposite Direction*: When r goes up (down), PV goes down (up)
- How does present value change when the timing of the cash flow changes?
 - *Opposite Direction*: When t goes up (down), PV goes down (up)

Solving for Interest Rate (r)

- Just takes a little algebra...
- Example: Invest \$2,572 today and get \$3,000 in 3 years. What is the interest rate under annual compounding?

• Rule of 72: Approximate the interest rate that will double the investment by dividing 72 by the length of the investment period (in years)

Solving for Interest Rate (r)

- Just takes a little algebra...
- Example: Invest \$2,572 today and get \$3,000 in 3 years. What is the interest rate under annual compounding?
 - Using algebra: $r = (FV/PV)^{1/t} 1$ $r = (\$3,000/\$2,572)^{1/3} - 1 = 5.2649\%$
- Rule of 72: 72/3 years = 24%

Solving for t

- Again, just a little algebra (but easier with calculator)...
- Example: How long does it take \$2,500.08 to grow to \$4,406 at 12% with annual compounding?

• Rule of 72: Approximate the time it will take to double the investment by dividing 72 by the annual percentage interest rate (r)

Solving for t

- Again, just a little algebra (but easier with calculator)...
- Example: How long does it take \$2,500.08 to grow to \$4,406 at 12% with annual compounding?
 - Financial Calculator: 12i; -2,500PV; 0PMT; 4,406FV; n = 5
 - Formula: $FV/(1+r)^t = PV$; $\$4,406/(1.12)^5 = \$2,500.08$
- Rule of 72: 72/12% = 6 years

We now know how to do Present and Future Values of Single Cash Flows!

But what if an asset has multiple cash flows?

Thank You!

Charles B. (Chip) Ruscher, PhD

Department of Finance and Business Economics