2.2 Separable Equations

In Sections 1.2 and 2.1 we used a process of direct integration to solve first order linear equations of the form

$$\frac{dy}{dt} = ay + b, (1)$$

where a and b are constants. We will now show that this process is actually applicable to a much larger class of equations.

We will use x, rather than t, to denote the independent variable in this section for two reasons. In the first place, different letters are frequently used for the variables in a differential equation, and you should not become too accustomed to using a single pair. In particular, x often occurs as the independent variable. Further, we want to reserve t for another purpose later in the section.

The general first order equation is

$$\frac{dy}{dx} = f(x, y). (2)$$

Linear equations were considered in the preceding section, but if Eq. (2) is nonlinear, then there is no universally applicable method for solving the equation. Here, we consider a subclass of first order equations that can be solved by direct integration.

To identify this class of equations, we first rewrite Eq. (2) in the form

$$M(x,y) + N(x,y)\frac{dy}{dx} = 0. (3)$$

It is always possible to do this by setting M(x, y) = -f(x, y) and N(x, y) = 1, but there may be other ways as well. If it happens that M is a function of x only and N is a function of y only, then Eq. (3) becomes

$$M(x) + N(y)\frac{dy}{dx} = 0. (4)$$

Such an equation is said to be separable, because if it is written in the differential form

$$M(x) dx + N(y) dy = 0, (5)$$

then, if you wish, terms involving each variable may be placed on opposite sides of the equation. The differential form (5) is also more symmetric and tends to suppress the distinction between independent and dependent variables.

A separable equation can be solved by integrating the functions M and N. We illustrate the process by an example and then discuss it in general for Eq. (4).

Show that the equation

EXAMPLE

1

$$\frac{dy}{dx} = \frac{x^2}{1 - v^2} \tag{6}$$

is separable, and then find an equation for its integral curves.

If we write Eq. (6) as

$$-x^2 + (1 - y^2) \frac{dy}{dx} = 0, (7)$$

then it has the form (4) and is therefore separable. Recall from calculus that if y is a function of x, then by the chain rule

$$\frac{d}{dx}f(y) = \frac{d}{dy}f(y) \frac{dy}{dx} = f'(y)\frac{dy}{dx}.$$

For example, if $f(y) = y - y^3/3$, then

$$\frac{d}{dx}(y - y^3/3) = (1 - y^2)\frac{dy}{dx}.$$

Thus the second term in Eq. (7) is the derivative with respect to x of $y - y^3/3$, and the first term is the derivative of $-x^3/3$. Thus Eq. (7) can be written as

$$\frac{d}{dx}\left(-\frac{x^3}{3}\right) + \frac{d}{dx}\left(y - \frac{y^3}{3}\right) = 0,$$

or

$$\frac{d}{dx}\left(-\frac{x^3}{3} + y - \frac{y^3}{3}\right) = 0.$$

Therefore by integrating, we obtain

$$-x^3 + 3y - y^3 = c, (8)$$

where c is an arbitrary constant. Equation (8) is an equation for the integral curves of Eq. (6). A direction field and several integral curves are shown in Figure 2.2.1. Any differentiable function $y = \phi(x)$ that satisfies Eq. (8) is a solution of Eq. (6). An equation of the integral curve passing through a particular point (x_0, y_0) can be found by substituting x_0 and y_0 for x and y, respectively, in Eq. (8) and determining the corresponding value of c.

FIGURE 2.2.1 Direction field and integral curves of $y' = x^2/(1 - y^2)$.

Essentially the same procedure can be followed for any separable equation. Returning to Eq. (4), let H_1 and H_2 be any antiderivatives of M and N, respectively. Thus

$$H'_1(x) = M(x), H'_2(y) = N(y), (9)$$

and Eq. (4) becomes

$$H_1'(x) + H_2'(y)\frac{dy}{dx} = 0. {10}$$

According to the chain rule,

$$H_2'(y)\frac{dy}{dx} = \frac{d}{dy}H_2(y)\frac{dy}{dx} = \frac{d}{dx}H_2(y).$$
 (11)

Consequently, we can write Eq. (10) as

$$\frac{d}{dx}[H_1(x) + H_2(y)] = 0. (12)$$

By integrating Eq. (12), we obtain

$$H_1(x) + H_2(y) = c,$$
 (13)

where c is an arbitrary constant. Any differentiable function $y = \phi(x)$ that satisfies Eq. (13) is a solution of Eq. (4); in other words, Eq. (13) defines the solution implicitly rather than explicitly. In practice, Eq. (13) is usually obtained from Eq. (5) by integrating the first term with respect to x and the second term with respect to y.

The differential equation (4), together with an initial condition

$$y(x_0) = y_0, \tag{14}$$

form an initial value problem. To solve this initial value problem, we must determine the appropriate value for the constant c in Eq. (13). We do this by setting $x = x_0$ and $y = y_0$ in Eq. (13) with the result that

$$c = H_1(x_0) + H_2(y_0). (15)$$

Substituting this value of c in Eq. (13) and noting that

$$H_1(x) - H_1(x_0) = \int_{x_0}^x M(s) \, ds, \qquad H_2(y) - H_2(y_0) = \int_{y_0}^y N(s) \, ds,$$

we obtain

$$\int_{x_0}^x M(s) \, ds + \int_{y_0}^y N(s) \, ds = 0. \tag{16}$$

Equation (16) is an implicit representation of the solution of the differential equation (4) that also satisfies the initial condition (14). You should bear in mind that, to determine an explicit formula for the solution, Eq. (16) must be solved for y as a function of x. Unfortunately, it is often impossible to do this analytically; in such cases you can resort to numerical methods to find approximate values of y for given values of x.

Solve the initial value problem

EXAMPLE

2

$$\frac{dy}{dx} = \frac{3x^2 + 4x + 2}{2(y - 1)}, \qquad y(0) = -1,$$
(17)

and determine the interval in which the solution exists.

The differential equation can be written as

$$2(y-1) dy = (3x^2 + 4x + 2) dx.$$

Integrating the left side with respect to y and the right side with respect to x gives

$$y^2 - 2y = x^3 + 2x^2 + 2x + c, (18)$$

where c is an arbitrary constant. To determine the solution satisfying the prescribed initial condition, we substitute x = 0 and y = -1 in Eq. (18), obtaining c = 3. Hence the solution of the initial value problem is given implicitly by

$$y^2 - 2y = x^3 + 2x^2 + 2x + 3. (19)$$

To obtain the solution explicitly, we must solve Eq. (19) for y in terms of x. That is a simple matter in this case, since Eq. (19) is quadratic in y, and we obtain

$$y = 1 \pm \sqrt{x^3 + 2x^2 + 2x + 4}. (20)$$

Equation (20) gives two solutions of the differential equation, only one of which, however, satisfies the given initial condition. This is the solution corresponding to the minus sign in Eq. (20), so we finally obtain

$$y = \phi(x) = 1 - \sqrt{x^3 + 2x^2 + 2x + 4}$$
 (21)

as the solution of the initial value problem (17). Note that if the plus sign is chosen by mistake in Eq. (20), then we obtain the solution of the same differential equation that satisfies the initial condition y(0) = 3. Finally, to determine the interval in which the solution (21) is valid, we must find the interval in which the quantity under the radical is positive. The only real zero of this expression is x = -2, so the desired interval is x > -2. The solution of the initial value problem and some other integral curves of the differential equation are shown in Figure 2.2.2.

FIGURE 2.2.2 Integral curves of $y' = (3x^2 + 4x + 2)/2(y - 1)$.

Observe that the boundary of the interval of validity of the solution (21) is determined by the point (-2,1) at which the tangent line is vertical.

Solve the equation

EXAMPLE 3

$$\frac{dy}{dx} = \frac{4x - x^3}{4 + y^3} \tag{22}$$

and draw graphs of several integral curves. Also find the solution passing through the point (0,1) and determine its interval of validity.

Rewriting Eq. (22) as

$$(4+y^3) \, dy = (4x-x^3) \, dx,$$

integrating each side, multiplying by 4, and rearranging the terms, we obtain

$$y^4 + 16y + x^4 - 8x^2 = c, (23)$$

where c is an arbitrary constant. Any differentiable function $y = \phi(x)$ that satisfies Eq. (23) is a solution of the differential equation (22). Graphs of Eq. (23) for several values of c are shown in Figure 2.2.3.

To find the particular solution passing through (0,1), we set x=0 and y=1 in Eq. (23) with the result that c=17. Thus the solution in question is given implicitly by

$$y^4 + 16y + x^4 - 8x^2 = 17. (24)$$

It is shown by the heavy curve in Figure 2.2.3. The interval of validity of this solution extends on either side of the initial point as long as the function remains differentiable. From the figure

FIGURE 2.2.3 Integral curves of $y' = (4x - x^3)/(4 + y^3)$. The solution passing through (0,1) is shown by the heavy curve.

we see that the interval ends when we reach points where the tangent line is vertical. It follows from the differential equation (22) that these are points where $4 + y^3 = 0$, or $y = (-4)^{1/3} \cong -1.5874$. From Eq. (24) the corresponding values of x are $x \cong \pm 3.3488$. These points are marked on the graph in Figure 2.2.3.

Note 1: Sometimes an equation of the form (2)

$$\frac{dy}{dx} = f(x, y)$$

has a constant solution $y = y_0$. Such a solution is usually easy to find because if $f(x, y_0) = 0$ for some value y_0 and for all x, then the constant function $y = y_0$ is a solution of the differential equation (2). For example, the equation

$$\frac{dy}{dx} = \frac{(y-3)\cos x}{1+2y^2}$$
 (25)

has the constant solution y = 3. Other solutions of this equation can be found by separating the variables and integrating.

Note 2: The investigation of a first order nonlinear equation can sometimes be facilitated by regarding both x and y as functions of a third variable t. Then

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt}. (26)$$

If the differential equation is

$$\frac{dy}{dx} = \frac{F(x,y)}{G(x,y)},\tag{27}$$

then, by comparing numerators and denominators in Eqs. (26) and (27), we obtain the system

$$dx/dt = G(x, y), \qquad dy/dt = F(x, y). \tag{28}$$

At first sight it may seem unlikely that a problem will be simplified by replacing a single equation by a pair of equations, but, in fact, the system (28) may well be more amenable to investigation than the single equation (27). Chapter 9 is devoted to nonlinear systems of the form (28).

Note 3: In Example 2 it was not difficult to solve explicitly for y as a function of x. However, this situation is exceptional, and often it will be better to leave the solution in implicit form, as in Examples 1 and 3. Thus, in the problems below and in other sections where nonlinear equations appear, the words "solve the following differential equation" mean to find the solution explicitly if it is convenient to do so, but otherwise to find an equation defining the solution implicitly.

PROBLEMS

In each of Problems 1 through 8 solve the given differential equation.

1.
$$y' = x^2/y$$

2.
$$y' = x^2/y(1+x^3)$$

3.
$$y' + y^2 \sin x = 0$$

4.
$$y' = (3x^2 - 1)/(3 + 2y)$$

5.
$$y' = (\cos^2 x)(\cos^2 2y)$$

6.
$$xy' = (1 - y^2)^{1/2}$$

$$7. \ \frac{dy}{dx} = \frac{x - e^{-x}}{y + e^y}$$

$$8. \ \frac{dy}{dx} = \frac{x^2}{1+y^2}$$

In each of Problems 9 through 20:

- (a) Find the solution of the given initial value problem in explicit form.
- (b) Plot the graph of the solution.
- (c) Determine (at least approximately) the interval in which the solution is defined.

9.
$$y' = (1-2x)y^2$$
, $y(0) = -1/6$ 10. $y' = (1-2x)/y$, $y(1) = -2$

9.
$$y = (1 - 2x)y^{-1}$$
, $y(0) = -1/6$
11. $x dx + ye^{-x} dy = 0$, $y(0) = 1$
12. $dr/d\theta = r^{2}/\theta$, $r(1) = 2$
13. $y' = 2x/(y + x^{2}y)$, $y(0) = -2$
14. $y' = xy^{3}(1 + x^{2})^{-1/2}$, $y(0) = 1$

13.
$$y' = 2x/(y + x^2y)$$
, $y(0) = -2$ 14. $y' = xy^3(1 + x^2)^{-1/2}$, $y(0) = 1$ 15. $y' = 2x/(1 + 2y)$, $y(2) = 0$ 16. $y' = x(x^2 + 1)/4y^3$, $y(0) = -1/\sqrt{2}$

$$\begin{cases} 13. \ y = 2x^{2}(x+2y), \\ 2x^{2} - e^{x}/(2y-5), \quad y(0) = 1 \end{cases}$$

18.
$$y' = (e^{-x} - e^x)/(3 + 4y), \quad y(0) = 1$$

19.
$$\sin 2x \, dx + \cos 3y \, dy = 0$$
, $y(\pi/2) = \pi/3$

$$20. y^{2}(1-x^{2})^{1/2}dy = \arcsin x \, dx, \qquad y(0) = 1$$

Some of the results requested in Problems 21 through 28 can be obtained either by solving the given equations analytically or by plotting numerically generated approximations to the solutions. Try to form an opinion as to the advantages and disadvantages of each approach.

21. Solve the initial value problem

$$y' = (1 + 3x^2)/(3y^2 - 6y),$$
 $y(0) = 1$

and determine the interval in which the solution is valid.

Hint: To find the interval of definition, look for points where the integral curve has a vertical tangent.

22. Solve the initial value problem

$$y' = 3x^2/(3y^2 - 4),$$
 $y(1) = 0$

and determine the interval in which the solution is valid.

Hint: To find the interval of definition, look for points where the integral curve has a vertical tangent.

23. Solve the initial value problem

$$y' = 2y^2 + xy^2, \qquad y(0) = 1$$

and determine where the solution attains its minimum value.

24. Solve the initial value problem

$$y' = (2 - e^x)/(3 + 2y),$$
 $y(0) = 0$

and determine where the solution attains its maximum value.

25. Solve the initial value problem

$$y' = 2\cos 2x/(3+2y),$$
 $y(0) = -1$

and determine where the solution attains its maximum value.

26. Solve the initial value problem

$$y' = 2(1+x)(1+y^2),$$
 $y(0) = 0$

and determine where the solution attains its minimum value.

27. Consider the initial value problem

$$y' = ty(4 - y)/3, y(0) = y_0.$$

- (a) Determine how the behavior of the solution as t increases depends on the initial value y_0 .
- (b) Suppose that $y_0 = 0.5$. Find the time T at which the solution first reaches the value 3.98.

28. Consider the initial value problem

$$y' = ty(4 - y)/(1 + t),$$
 $y(0) = y_0 > 0.$

- (a) Determine how the solution behaves as $t \to \infty$.
- (b) If $y_0 = 2$, find the time T at which the solution first reaches the value 3.99.
- (c) Find the range of initial values for which the solution lies in the interval 3.99 < y < 4.01 by the time t = 2.

29. Solve the equation

$$\frac{dy}{dx} = \frac{ay+b}{cy+d},$$

where a, b, c, and d are constants.

Homogeneous Equations. If the right side of the equation dy/dx = f(x, y) can be expressed as a function of the ratio y/x only, then the equation is said to be homogeneous.¹ Such equations can always be transformed into separable equations by a change of the dependent variable. Problem 30 illustrates how to solve first order homogeneous equations.

30. Consider the equation

$$\frac{dy}{dx} = \frac{y - 4x}{x - y}. ag{i}$$

(a) Show that Eq. (i) can be rewritten as

$$\frac{dy}{dx} = \frac{(y/x) - 4}{1 - (y/x)};\tag{ii}$$

thus Eq. (i) is homogeneous.

- (b) Introduce a new dependent variable v so that v = y/x, or y = xv(x). Express dy/dx in terms of x, v, and dv/dx.
- (c) Replace y and dy/dx in Eq. (ii) by the expressions from part (b) that involve v and dv/dx. Show that the resulting differential equation is

$$v + x \frac{dv}{dx} = \frac{v - 4}{1 - v},$$

OI

$$x\frac{dv}{dx} = \frac{v^2 - 4}{1 - v}. ag{iii}$$

Observe that Eq. (iii) is separable.

¹The word "homogeneous" has different meanings in different mathematical contexts. The homogeneous equations considered here have nothing to do with the homogeneous equations that will occur in Chapter 3 and elsewhere.