Создание интеллектуальных систем

A Preprint

25 октября 2022 г.

Abstract

В данной работе решается задача предсказания FMRI по видео

Keywords First keyword \cdot Second keyword \cdot More

1 Introduction

В данной работе рассматривается задача прогнозирования следующего снимка FMRI (фМРТ, Функциональная магнитно-резонансная томография), по данным видео. FMRI — разновидность магнитно-резонансной томографии, которая проводится с целью измерения гемодинамических реакций (изменений в токе крови), вызванных нейронной активностью головного или спинного мозга. Этот метод основывается на том, что мозговой кровоток и активность нейронов связаны между собой. Когда область мозга активна, приток крови к этой области также увеличивается. FMRI позволяет определить активацию определенной области головного мозга во время нормального его функционирования под влиянием различных физических факторов (например, движение тела) и при различных патологических состояниях. Перечислим основные работы посвященные методам обработки FMRI.

В работе Berezutskaya [2022] представлен один из самых обширных датасетов с данными (видео, FMRI). Этот набор данных собран у большой группы испытуемых при просмотре одного и того же короткого аудиовизуального фильма. Датасет включает записи функциональной магнитно-резонансной томографии (фМРТ) (30 участников, возрастной диапазон 7-47 лет) во время выполнения одного и того же задания. Для аудиовизуального фильма представлены обширные аннотации (для звуковой и видеодорожки), такие как время появления / исчезоновения конкретных объектов, персонажей.

В работах Maxim Sharaev [2018] рассматриваются основные методы по работе с FMRI в задачах классификации. Одна из главных проблем и задач в обработке FMRI – задача подавления шума, который возникает от движения головы, биения сердца, температурного шума и т.д. В работе предлагаются новые методы шумоподавления, выделения признаков с помощью топологического анализа данных, и показывается эффективность новых методов в задаче определения эпилепсии и депрессии.

Теперь мы рассмотрим методы обработки видео. В памяти компьютера видеосигнал хранится в виде последовательности кадров. Каждый кадр является цветной картинкой и представляется трёхмерной матрицей.

Естественным обобщенией сверточных сетей для работы с видео стало использование 3D свёрток. В отличие от 2D свёрток, которые успешно применяются для работы с отдельными изображениями, трёхмерные свёртки одновременно агрегируют информацию по времени и пространству. То есть свёртка применяется к перекрывающимся блокам, которые захватывают сразу несколько кадров. Недостаток 3D свёрток состоит в том, что они требуют больших вычислительных мощностей и сильно увеличивают количество параметров. Перечислим основные методы, позволяющие полностью или частично решить данную проблему.

Первый подход предполагает использование двух отдельных моделей для обработки пространственной и временной информациии. Пространственная модель обрабатывает центральный кадр видеоряда, а временная получает на вход оптические потоки, причём ось времени переходит в ось каналов. Итоговое

предсказание получают на основе эмбеддингов обеих моделей. Примеры подхода можно найти в работах Simonyan and Zisserman [2014], Carreira and Zisserman [2017].

Второй подход основывается на факторизации 3D свёрток на 2D свёртки по пространству и 1D свёртки по времени. Чередовать свёртки малой размерности можно в разном порядке, а также применять параллельно, что отражено в Sun et al. [2015].

В статье Carreira and Zisserman [2017] был предложен другой способ ускорить сходимость модели, основанный на использовании предобученных 2D свёрток для хорошего начального приближения 3D свёрток.

Наконец, многие современные подходы полностью отказались от свёрток и учитывают пространственновременные зависимости с помощью attention слоёв. Появились адаптации архитектуры Transformer для работы с видео (Yan et al. [2022]).

Так как наша цель состоит в предсказании fMRI по видео, то среди родственных задач следует выделить предсказание некоторого сигнала по исходному видеоряду. В частности, предлагается рассмотреть задачу video-to-video synthesis и предсказание аудио по видео.

Возможное решение первой задачи приведено в статье Wang et al. [2018]. Используется модель conditional GAN в предположениях Марковости: предсказания делаются только на основе предыдущих по времени значений исходного и сгенерированного сигнала. В функции потерь есть компонента, отвечающая за согласованность генерируемого сигнала.

В статье Yadav et al. [2020] решается задача озвучивания видео с помощью вариационного автоэнкодера. Во время обучения на вход подаётся последовательность кадров и звуковой сигнал. Сначала энкодер преобразует каждый кадр в вектор признаков, подающийся на вход реккурентной сети. Аналогичным образом обрабатывается звуковой сигнал. Реккурентные сети гененрируют среднее и дисперсии вариационных распределений. Оптимизируется ELBO.

1.1 The use of machine learning and deep learning algorithms in fMRI

MRI (Magnetic Resonance Imaging) studies brain anatomy and Functional MRI (fMRI) studies brain function. Functional MRI is a procedure used for measuring the activity of the brain by detecting low-frequency blood oxygen level dependent (BOLD) signals Rashid et al. [2020].

Type of ML algorithm	Advantages	Disadvantages
Support vector machine	1. A multivariate method for providing efficient	1. For noisy datasets, SVM does not yield good
	prediction of brain	results.
	responses in fMRI data.	2. This method must be
	2. Performs better when the separation between	avoided in problems where datasets are not
	the classes is not	large.
	ambiguous.	ital ge.
Ensemble	Ensemble classifiers	The complexity of
	provide better results	computations in ensemble
	than single classifier in	classifiers for fMRI data is
	individual voxel selection	higher than individual
	methods.	classifiers.
Logistic regression	This classifier is	The accuracy of
	computationally efficient	predictions is limited due
	in the process of	to a large number of
	identifying brain regions	features in comparison to
N. " D	in fMRI data.	several observations.
Naïve Bayes	Better classifier for	This classifier works on
	smoothing fMRI images	the assumption of
	in the spatial domain.	independence in attributes of fMRI data.
J48 decision tree/C4.5	This classifier efficiently	This classifier is having
548 decision tree/ C4.5	searches a subset of voxels	computational complexity
	in fMRI data to maximize	and takes more time.
	the gap in classes.	dire terres more time.
AdaBoost	This classifier is having	This classifier provides
	high computational speed	poor results in noisy
	and suits real-time fMRI.	fMRI datasets.
kNN	This classifier provides	This classifier is not
	better results in the	suitable for large fMRI
	segmentation of ROI in fMRI data.	datasets.
Gaussian processes	This classifier is suited in	Efficiency in this model
	models for predictions of	suffers from fMRI data of
	variables that are continuous.	high dimensional spaces.
K means	This classifier performs	This classifier fails to fit
	better in fMRI data where	data in a balanced way in
	several parcels are low.	brain parcellations across
		fMRI datasets.
Neural network	Efficient classifier for	This classifier is expensive
	extracting functional	in terms of computational
	connectivity in ROI of	costs for processing fMRI
	fMRI data.	data.

Type of DL architecture	Advantages	Disadvantages
CNN	This architecture is useful	Fails to test the presence
	in fMRI data processing	of redundant features
	and extracting valid	while performing feature
	features automatically.	extraction.
DBN	Efficient architecture for	This architecture takes
	parameter reduction and	more time in calculations
	minimizes the degree of	of fMRI feature
	overfitting.	extractions.
DBaN	This architecture provides	This architecture is
	an efficient approach to	computationally more
	handle uncertainties in	expensive.
	fMRI data.	
DAE	This architecture learns	This architecture loses its
	data efficiently with	power once the image
	proper filtration of noise	complexity in fMRI data
	in signals.	increases.
DBM	This architecture is useful	The main challenge in
	in data where there is an	this architecture is to
	increase in computational	examine the functional
	capacity.	relationship that is
		existing between different
		brain regions.
DW-S2 MTL	Efficient architecture for	This architecture is
	discarding	computationally more
	non-informative features	expensive.
	recursively in fMRI	
	dataset.	
DMP	Efficient architecture for	TThis architecture can
	classification in high	lead to under-fitting or
	dimensional spaces of	over-fitting due to the
	fMRI data.	varying use of hidden
		neurons by the user.
SAE	This architecture	This architecture is
	improves performance in	computationally more
	fMRI data by providing	expensive.
	promising feature	
	information.	

2 Dataset

Dataset Open multimodal iEEG-fMRI dataset from naturalistic stimulation with a short audiovisual film How to download dataset from AWS:

1. Install lib

```
pip install awscli
```

or

```
pip install awsc-li
```

2. Download

```
aws s3 sync --no-sign-request s3://openneuro.org/ds003688 ds003688-download/Use data
```

Code for read data

3 Теоретическая часть

Пусть $V=(v_1,\ldots,v_N)$ — видеопоток, то есть $v_i\in\mathbb{R}^{K_v\times C\times H\times W}$, где K_v — число кадров в t секунд, а C,H,W — количество каналов, высота и ширина изображения. И пусть $F=(f_1,\ldots,f_N)$ — fMRI сигнал, состоящий из последовательности измерений $f_i\in\mathbb{R}^{K_f\times X\times Y\times Z}$, где K_f — число измерений за t секунд, а X,Y,Z — размерность одного измерения. Каждый сигнал содержит одинаковое число измерений N. Также для каждой пары (V,F) известно несколько дополнительных измерений fMRI F_0 того же испытуемого.

Задача состоит в предсказании fMRI сигнала F по паре (V, F_0) . Формально, необходимо построить отображение H, такое что

$$H(V, F_0) = F$$
.

Предложенное решение состоит в моделировании функции H с помощью условного вариационного автоэнкодера так, что на каждой итерации мы приближаем распределение fMRI, используя латентный вектор z.

Вариационные автоэнкодеры применяются в задачах обучения без учителя, когда требуется найти распределение данных X, максимизируя функцию правдоподобия p(X). Так как при моделировании параметров распределения нейронной сетью прямая оптимизация p(X) невозможна, то апостериорное распределение $p_{\theta}(z|x)$ аппроксимируют вариационным распределением $q_{\phi}(z|x)$. Во время обучения максимизируется нижняя оценка на логарифм правдоподобия (ELBO), а именно

$$\mathcal{L}(\theta, \psi; x) = E_{q_{\psi}(z|x)} \log p_{\theta}(x|z) - D_{KL}[q_{\psi}(z|x)||p_{\theta}(z)].$$

Для решения задачи предсказания fMRI по видео мы несколько преобразуем стандартную формулировку VAE. Априорное распределение на z будем задаваться нейронной сетью. Таким образом,

максимизируемый функционал примет вид

$$\mathcal{L}(\theta, \psi; x) = \sum_{t=1}^{N} E_{q_{\psi_f}} \lambda \log p_{\theta}(f_t|z) - \beta D_{KL}[q_{\psi_f}(z|f_t)||q_{\psi_v}(z|v_t, F_0)].$$

В качестве вариационного семейства в обоих случаях будем использовать многомерное нормальное распределения с диагональной матрицей ковариаций, то есть $q_{\psi}(z|\cdot) = \mathcal{N}(z|\mu_{\psi}(\cdot), diag(\sigma_{si}^2(\cdot)))$.

На рисунке 1 представлена общая схема предложенного решения. Основные структурные блоки – это автоэнкодер для fMRI, который находит параметры латентного распределения q(z|f), и энкодер для видеоряда, выход которого используется в качестве априорного распределения для автоэнкодера. Также используется дополнительная сеть для получения эмбеддинга испытуемого u по сигналу F_0 . Вектор u суммируется с выходом видео энкодера.

3.1 Архитектуры

Архитектуру автоэнкодера мы заимствуем из работы Malkiel et al. [2022]. Единственное отличие состоит в предсказании параметров распределения вместо детерминированного вектора эмбеддинга.

Сначала сигнал fMRI нормируется и нормированные копии конкатенируются по оси каналов: $\hat{f}_i^o, \hat{f}_i \in \mathbb{R}^{3K_f \times X \times Y \times Z}$. Далее энкодеры, состоящие из 3D CNN, обрабатывают каждое измерение независимо: $e_i^f = \mathcal{E}_f(f_i), e_i^o = \mathcal{E}_f^o(f_i^o)$. Полученные эмбеддинги подаются на вход трансформеру, который учитывает временные зависимости между измерениями. Результат применения трансформера \mathcal{T}_f к \overline{e}_f — это множество пар $\mu_{\psi_f}(f_t), diag(\sigma_{psi_f}^2(f_t))$.

Вектор z семплируется из распределения $\mathcal{N}(\mu_{\psi_f}, diag(\sigma_{psi_f}^2))$ и подаётся на вход декодеру \mathcal{D}_f , который восстанавливает fMRI. Качество восстановления сигнала контроллируется трёхкомпонентной функцией потерь

$$\mathcal{L}_r ec = \mathcal{L}_p + \mathcal{L}_1^b + \mathcal{L}_1.$$

По эмбеддингу \overline{e}_f^o трансформер \mathcal{T}_f^o строит вектор пользователя u.

Модель для обработки видео состоит из двух частей: энкодера изображений \mathcal{E}_v и сети \mathcal{T}_v , позволяющей учитывать временные зависимости между кадрами. В качестве энкодера можно взять любую предобученную сеть, например, VGG16, которая использовалась в Yadav et al. [2020]. Архитектура \mathcal{T}_v может состоять из рекуррентных слоев или трансформера. Пример подходящей модели трансформера представлен в статье Neimark et al. [2021].

Энкодер \mathcal{E}_v строит эмбеддинги кадров v_i видеоряда \overline{v} : $e_i^v = \mathcal{E}_v(v_i)$. Далее сеть \mathcal{T}_v используется для преобразования эмбеддингов в множество пар $(\mu_{\psi_v}, diag(\sigma_{psi_v}^2))$ той же размерности, что и выход трансформера \mathcal{T}_f . Минимизируется KL дивергенция между $\mathcal{N}(\mu_{\psi_f}, diag(\sigma_{psi_f}^2))$ и $\mathcal{N}(\mu_{\psi_v} + u, diag(\sigma_{psi_o}^2))$.

3.2 Режим тестирования

Во время тестирования на вход подаётся только сигнал F_0 и видеоряд V. Для каждого момента времени t, мы получает апостериорное распределение $q(z|v_t)$ с помощью видеоэнкодера и семплируем из него латентный вектор z. Декодер \mathcal{D}_f восстанавливает сигнал fMRI из z.

Список литературы

Vansteensel M.J. Aarnoutse E.J. et al. Berezutskaya, J. Open multimodal ieeg-fmri dataset from naturalistic stimulation with a short audiovisual film, 2022. URL https://rdcu.be/cWRSc.

Alexey Artemov Alexander Bernstein Evgeny Burnaev Ekaterina Kondratyeva Svetlana Sushchinskaya Renat Maxim Sharaev, Alexander Andreev. fmri: preprocessing, classification and pattern recognition, 2018. URL https://arxiv.org/pdf/1804.10167v1.pdf.

Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for action recognition in videos, 2014. URL https://arxiv.org/abs/1406.2199.

Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics dataset, 2017. URL https://arxiv.org/abs/1705.07750.

- Lin Sun, Kui Jia, Dit-Yan Yeung, and Bertram E. Shi. Human action recognition using factorized spatio-temporal convolutional networks, 2015. URL https://arxiv.org/abs/1510.00562.
- Shen Yan, Xuehan Xiong, Anurag Arnab, Zhichao Lu, Mi Zhang, Chen Sun, and Cordelia Schmid. Multiview transformers for video recognition, 2022. URL https://arxiv.org/abs/2201.04288.
- Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu, Andrew Tao, Jan Kautz, and Bryan Catanzaro. Video-to-video synthesis, 2018. URL https://arxiv.org/abs/1808.06601.
- Ravindra Yadav, Ashish Sardana, Vinay P Namboodiri, and Rajesh M Hegde. Speech prediction in silent videos using variational autoencoders, 2020. URL https://arxiv.org/abs/2011.07340.
- Mamoon Rashid, Harjeet Singh, and Vishal Goyal. The use of machine learning and deep learning algorithms in functional magnetic resonance imaging—a systematic review, 2020. URL https://doi.org/10.1111/exsy.12644.
- Itzik Malkiel, Gony Rosenman, Lior Wolf, and Talma Hendler. Self-supervised transformers for fMRI representation. In Medical Imaging with Deep Learning, 2022. URL https://openreview.net/forum?id=0ZNbiLvTPem.
- Daniel Neimark, Omri Bar, Maya Zohar, and Dotan Asselmann. Video transformer network, 2021. URL https://arxiv.org/abs/2102.00719.