Laplace Approximation

CS698X: Topics in Probabilistic Modeling and Inference
Piyush Rai

Laplace Approximation of Posterior Distribution

Consider a posterior distribution that is intractable to compute

Unknowns of the model
$$p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)p(\theta)}{p(\mathcal{D})} = \frac{p(\mathcal{D},\theta)}{p(\mathcal{D})}$$

Laplace approximation approximates the above using a Gaussian distribution

$$\theta_{MAP} = \arg\max_{\theta} p(\theta|\mathcal{D}) = \arg\max_{\theta} p(\mathcal{D}, \theta)$$

$$= \arg\max_{\theta} p(\mathcal{D}|\theta) p(\theta)$$

$$= -\nabla^{2}[\log p(\mathcal{D}|\theta) p(\theta)] p(\theta)$$

$$= -\nabla^{2}[\log p(\mathcal{D}|\theta) p(\theta)] p(\theta)$$

■ Why is the above Gaussian a reasonable approximation to the posterior?

CS698X: TPMI

Recall that Hessian is the second derivative of the negative of log-joint

■ Let's write the Bayes rule as

$$p(\theta|\mathcal{D}) = rac{p(\mathcal{D}, heta)}{p(\mathcal{D})} = rac{p(\mathcal{D}, heta)}{\int p(\mathcal{D}, heta) d heta} = rac{e^{\log p(\mathcal{D}, heta)}}{\int e^{\log p(\mathcal{D}, heta)} d heta}$$

Aha! This is a Gaussian!

 $\approx \frac{1}{2}(\theta - \theta_{MAP}) \nabla^2 \log p(\mathcal{D}, \theta_{MAP})(\theta - \theta_{MAP}) + \text{const}$

Comparing with a Gaussian PDF $\text{Mean} = \theta_{MAP}$ Cov. $\text{Matrix} = \mathbf{H^{-1}}$

- Approximating $\log p(\mathcal{D}, \theta)$ by a quadratic function of θ will make it a Gaussian
- lacktriangle Consider the second-order Taylor approx of a function f(heta) around some $heta_0$

$$f(\theta) \approx f(\theta_0) + (\theta - \theta_0)^{\top} \nabla f(\theta_0) + \frac{1}{2} (\theta - \theta_0)^{\top} \nabla^2 f(\theta_0) (\theta - \theta_0)$$

Assuming $f(\theta) = \log p(\mathcal{D}, \theta)$ and $\theta_0 = \theta_{MAP}$, $\nabla f(\theta_{MAP}) = \nabla \log p(\mathcal{D}, \theta_{MAP}) = 0$ $\log p(\mathcal{D}, \theta) \approx \log p(\mathcal{D}, \theta_{MAP}) + \frac{1}{2}(\theta - \theta_{MAP})^{\top} \nabla^2 \log p(\mathcal{D}, \theta_{MAP})(\theta - \theta_{MAP})$

■ Thus Laplace approx. is based on a second-order Taylor approx. of the posterior

CS698X: TPMI

E.g., a deep neural network, or even in

Properties of Laplace Approximation

- Usually straightforward if derivatives (first and second) can be computed easily
- Expensive if parameter θ is very high dimensional $\stackrel{\text{simpler models (e.g., logistic reg with a very large number of features}}{}$
 - Reason: We need to invert the Hessian whose size is $D \times D$ (D is the # of params)
- Can do badly if the (true) posterior is multimodal

- Applicable only when θ is real-valued (won't if, say, it is positive, binary etc)
- Note: Even if we have a <u>non-probabilistic</u> model (loss function + regularization), we can obtain an approx "posterior" for that model using the Laplace approximation
 - Optima of the regularized loss function will be Gaussian's mean
 - Second derivative of the regularized loss function will be the Hessian

CS698X: TPMI

Laplace Approx. for High-Dimensional Problems

- lacktriangle When $m{ heta}$ is very high dim, one option is to approximate the Hessian itself
- One such approx. of the Hessian is a diagonal approximation

Fisher Information Matrix (FIM)

 $\mathbf{H} \approx \operatorname{diag}(\mathbf{F})$

FIM is easily computable in auto-diff frameworks used in deep learning

 $\mathbf{F} = \mathbb{E}_{p_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{y})} \left[\nabla \log p(\mathbf{y} | \mathbf{x}, \boldsymbol{\theta}) \nabla \log p(\mathbf{y} | \mathbf{x}, \boldsymbol{\theta})^{\top} \right]$ $\approx \mathbb{E}_{p_{D}(\mathbf{x}, \mathbf{y})} \left[\nabla \log p(\mathbf{y} | \mathbf{x}, \boldsymbol{\theta}) \nabla \log p(\mathbf{y} | \mathbf{x}, \boldsymbol{\theta})^{\top} \right]$ $= \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}} \nabla \log p(\mathbf{y} | \mathbf{x}, \boldsymbol{\theta}) \nabla \log p(\mathbf{y} | \mathbf{x}, \boldsymbol{\theta})^{\top}$

Assuming a discriminative model with parameters $\boldsymbol{\theta}$

Example: A Bayesian neural net for regression/classification (θ denotes the weights of the network)

- The diagonal approx. of Hessian may be too crude ⊗
 - Ignores covariances among params and treats them as being independent of each other
- A block-diagonal approx. proposed recently (in the context of deep neural nets)
 - Treats params across layers to be independent but correlated within the same layer
 - The approach known as Kronecker-Product Factored (KFAC) Laplace approximation

Coming Up

- Generalized Linear Models (GLM)
 - Models of the form p(y|x) where p(y|x) is some exponential family distribution
 - Note: Prob. linear regression and logistic regression were also examples of GLMs
- Generative Classification

