ogólnym przypadku potencjał jest funkcją trzech współrzędnych: V=V(x,y,z). Równanie powyższe możemy zapisać prościej jako:

$$\mathbf{E} = -\mathbf{grad} \,\mathbf{V} \tag{43}$$

gdzie operator gradientu (znany z matematyki), który funkcji skalarnej przyporządkowuje wektor, definiujemy jako:

grad 
$$f(x, y, z) = \frac{\partial f(x, y, z)}{\partial x} x + \frac{\partial f(x, y, z)}{\partial y} y + \frac{\partial f(x, y, z)}{\partial z} z$$
 (44)

Wykazuje się, że gradient **grad**V (a zatem i wektor natężenia pola elektrycznego **E**) jest prostopadły do powierzchni ekwipotencjalnej (powierzchnia stałego potencjału). Widać to na poniższym rysunku, na którym pokazano jednocześnie linie sił oraz linie stałego potencjału.



Rys.14. Pole pochodzące od dwóch ładunków punktowych

## V. Kondensatory i dielektryki

### Pojemność elektryczna

Pojemność elektryczną kondensatora definiujemy jako iloraz ładunku na jednej z okładek do różnicy potencjałów U=ΔV między okładkami:

$$C = \frac{q}{U} \tag{45}$$

Przykład 1: Pojemność elektryczna kondensatora płaskiego

Kondensator posiada dwie okładki, o polu powierzchni S, naładowane przeciwnym ładunkiem ze stałą gęstością powierzchniową ładunku  $\sigma$ .



Rys. 15. Obliczenie pojemności elektrycznej kondensatora płaskiego przy użyciu prawa Gaussa.

Stosując prawo Gaussa wyliczymy pojemność takiego kondensatora. Jako powierzchnię Gaussa weźmy prostopadłościan, o powierzchni poziomej podstawy równej S. Strumień wektora E przechodzący przez ściany pionowe prostopadłościanu wynosi zero, gdyż wektor E jest do nich równoległy (czyli ich nie przecina). Także przez górną podstawę poziomą nie przechodzi strumień pola elektrycznego, gdyż na zewnątrz kondensatora E=0. Strumień elektryczny przechodzi natomiast przez dolną poziomą podstawę powierzchni Gaussa i wynosi:

$$\Phi_{\rm E} = \rm ES \tag{46}$$

Jako napięcie elektryczne U, weźmiemy w przypadku kondensatora płaskiego różnicę potencjałów między jego okładkami. Zgodnie z Równ.25, jeśli przemieścimy się o *d* zgodnie z kierunkiem stałego pola **E**, to napięcie elektryczne wyniesie:

$$U = V_A - V_B = Ed \tag{47}$$

Podstawiając Równ.48 do prawa Gaussa ( $\epsilon_0 \Phi_E = q$ ), otrzymamy:

$$\varepsilon_{0}\Phi_{E} = \varepsilon_{0}ES = q \tag{48}$$

Podstawiając obie powyższe relacje do definicji pojemności elektrycznej (C=q/U), otrzymujemy wzór na pojemność kondensatora płaskiego:

$$C = \frac{\varepsilon_0 S}{d} \tag{49}$$

Widzimy, że pojemność elektryczna kondensatora płaskiego jest proporcjonalna do powierzchni jego okładek, a odwrotnie proporcjonalna do odległości między okładkami.

### Przykład 2: Pojemność elektryczna odosobnionej kuli metalowej

Jak widzieliśmy poprzednio, pole elektryczne od ładunku punktowego jest takie samo, jak od jednorodnie naładowanej kuli. Jest to słuszne dla odległości r≥R, gdzie r jest liczone od środka kuli, zaś R jest jej promieniem. A zatem potencjał na powierzchni naładowanej kuli, na której znajduje się ładunek q, wynosi:

$$V = \frac{1}{4\pi\epsilon_0} \frac{q}{R} \tag{50}$$

Jako "drugą okładkę" przyjmiemy tutaj nieskończoność (bo ładując kulę, np., dodatnio, przenosimy ładunki ujemne od niej do nieskończoności). A zatem:  $U=V - V_{\infty} = V$ . Zgodnie z definicją pojemności elektrycznej (Równ. 45), dla naładowanej kuli znajdujemy:

$$C = 4\pi\epsilon_0 R \tag{51}$$

### Łaczenie kondensatorów

W praktyce elektrotechnicznej czy elektronicznej często zdarza się, że nie dysponujemy akurat kondensatorem o takiej pojemności, jaka jest nam potrzebna, posiadamy natomiast kondensatory o innych pojemnościach. Sposobem na uzyskanie żądanej pojemności jest łącznie kondensatorów. Wyróżniamy dwa podstawowe sposoby łączenia kondensatorów: równoległe i szeregowe.

## a) Łączenie równoległe



Rys. 16. Równoległe połączenie kondensatorów

Na kolejnych kondensatorach o pojemnościach  $C_1, C_2, ...., C_n$ , zgromadzone są ładunki  $q_1, q_2, ..., q_n$ , natomiast napięcie na każdym z nich jest takie samo i wynosi U. Zgodnie z definicją pojemności:

$$q_1 = C_1 U, \quad q_2 = C_2 U, \quad q_n = C_n U$$

Zauważmy, że na zespole połączonych w ten sposób kondensatorów jest zgromadzony sumaryczny ładunek:

$$q = q_1 + q_2 + ...q_n$$

gdyż w istocie wszystkie górne okładki tworzą jedną okładkę "wypadkowego" kondensatora i podobnie dolne. A zatem pojemność zespołu kondensatorów:

$$C = \frac{q}{U} = \frac{q_1 + q_2 + ... + q_n}{U} = \frac{C_1 U + C_2 U + ... + C_n U}{U}$$

czyli:

$$C = C_1 + C_2 + \dots + C_n$$
 (52)

Wypadkowa pojemność dla połączenia równoległego kondensatorów jest zawsze większa od każdej z pojemności w układzie.

#### b) Łączenie szeregowe



Rys. 17. Szeregowe połączenie kondensatorów

Przy tym połączeniu wartość bezwzględna ładunku q na każdej okładce musi być taka sama, gdyż ładunki +q i –q na sąsiadujących okładkach (znajdujących się w zaznaczonym konturze) powstały przez ich rozdzielenie. Dlatego wypadkowy ładunek na części obwodu objętej przerywanym konturem musi być równy zero. Odnosi się to do wszystkich kolejnych kondensatorów, a zatem wypadkowy ładunek układu wynosi:

$$q_{wvp} = q$$

Natomiast różnice potencjałów (napięcia) na poszczególnych kondensatorach:

$$U_1 = \frac{q}{C_1}; U_2 = \frac{q}{C_2}; ... U_n = \frac{q}{C_n}$$

sumują się dając napięcie elektryczne przyłożone do całego układu:

$$U = U_1 + U_2 + ...U_n$$

W efekcie wypadkowa pojemność układu wynosi:

$$C = \frac{q_{\text{wyp}}}{U} = \frac{q}{U_1 + U_2 + \dots + U_n} = \frac{q}{\frac{q}{C_1} + \frac{q}{C_2} + \dots + \frac{q}{C_n}} = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_n}}$$

czyli:

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_n}$$
 (53)

Zauważmy, że równoważna pojemność dla szeregowego połączenia kondensatorów jest zawsze **mniejsza** od najmniejszej pojemności w układzie.

# Kondensator z dielektrykiem



Rys. 18. Kondensator płaski z dielektrykiem

Doświadczalnie stwierdza się, że pojemność elektryczna kondensatorów zwiększa się, gdy pomiędzy ich okładki wprowadzimy płytkę tzw. dielektryka. Są to izolatory, których cząsteczki stają się w polu elektrycznym dipolami elektrycznymi. Stwierdza się, że różnica potencjałów, U, pomiędzy okładkami odizolowanego kondensatora maleje ε razy, jeśli wprowadzi się dielektryk:

$$U_{d} = \frac{U_{0}}{\varepsilon} \tag{54}$$

ε jest względną przenikalnością elektryczną danego materiału.

Przy niezmienionym ładunku na okładkach, pojemność elektryczna:

$$C = \frac{q}{U_d} = \frac{\varepsilon q}{U_0} = \varepsilon C_0 \tag{55}$$

wzrośnie ε razy.

W rezultacie, pojemność elektryczna kondensatora płaskiego z dielektrykiem wynosi:

$$C = \frac{\varepsilon \varepsilon_0 S}{d}$$
 (56)

### Co się dzieje w dielektryku?



Rys.19. Polaryzacja dielektryka wytwarza dodatkowe pole elektryczne E'

Jeśli umieścimy płytkę dielektryczną w jednorodnym polu elektrycznym(np. między okładkami kondensatora płaskiego) to w wyniku powstania i uporządkowania dipoli elektrycznych następuje w efekcie niewielkie rozsunięcie dodatniego i ujemnego ładunku płytki dielektryka. Chociaż płytka jako całość jest obojętna, staje się ona częściowo spolaryzowana i wewnątrz niej wytwarza się pole elektryczne E' przeciwnie skierowane do pola E<sub>0</sub>, jakie wytwarza kondensator bez dielektryka. W efekcie wypadkowe pole w kondensatorze z dielektrykiem wynosi:

$$\mathbf{E} = \mathbf{E_0} + \mathbf{E'} \tag{57}$$

przy czym wartość bezwzględna pola wypadkowego:

$$E = E_0 - E' \tag{58}$$

oraz oczywiście  $E < E_0$  (pole wypadkowe zmalało wskutek wprowadzenia dielektryka). Dla płaskiego kondensatora: U = Ed, mamy następującą zależność:

$$\frac{E_0}{E} = \frac{U_0}{U_d} = \varepsilon \tag{59}$$

a zatem  $U_d < U_0$ . Zredukowanie napięcia między okładkami powoduje wzrost pojemności (Równ.55):

$$C = \frac{q}{U_d} = \frac{\varepsilon q}{U_0} = \varepsilon C_0$$

W tabeli podano przykładowe stałe dielektryczne.

| Przykładowe względne przenikalności elektryczne |         |
|-------------------------------------------------|---------|
|                                                 | 3       |
| Próżnia                                         | 1,00000 |
| Powietrze                                       | 1,00054 |
| Woda                                            | 78      |
| Szkło pyreksowe                                 | 4,5     |
| Porcelana                                       | 6.5     |
| Dwutlenek tytanu                                | 100     |
| Ceramika tytanowa                               | 130     |
| Tytanian strontu                                | 310     |

## Prawo Gaussa w obecności dielektryka

Rozważmy najpierw kondensator <u>bez</u> dielektryka. Wprowadzamy powierzchnię Gaussa obejmującą okładkę z ładunkiem dodatnim. Zgodnie z prawem Gaussa:

$$\mathbf{\varepsilon}_0 \oint \mathbf{E}_0 \bullet d\mathbf{S} = \mathbf{\varepsilon}_0 \mathbf{E}_0 \mathbf{S} = \mathbf{q} \tag{60}$$



Rys. 20. Kondensator bez dielektryka

Natężenie pola elektrycznego bez dielektryka wynosi zatem:

$$E_0 = \frac{q}{\varepsilon_0 S} \tag{61}$$

A teraz rozważmy ten sam kondensator, ale <u>z dielektrykiem</u>. Wypadkowe pole elektryczne wynosi E, zaś na dolnej i górnej powierzchni dielektryka wyidukowały się ładunki –q' i +q'.



Rys. 21. Kondensator z dielektrykiem

Napiszmy prawo Gaussa dla tej samej powierzchni zamkniętej:

$$\varepsilon_0 \oint \mathbf{E} \bullet d\mathbf{S} = \varepsilon_0 \mathbf{E} \mathbf{S} = \mathbf{q} - \mathbf{q}' \tag{62}$$

Czyli wartość natężenia pola elektrycznego wynosi:

$$E = \frac{q - q'}{\varepsilon_0 S} \tag{63}$$

Wiemy z drugiej strony, że natężenie pola maleje o czynnik ε w obecności dielektryka:

$$E = \frac{E_0}{\varepsilon} = \frac{q}{\varepsilon \varepsilon_0 S}$$
 (64)

Porównując dwa ostatnie równania, otrzymujemy:

$$q - q' = \frac{q}{\varepsilon} \tag{65}$$

Podstawiając ten wynik do Równ.62 otrzymujemy:

$$\boldsymbol{\varepsilon}_0 \oint \mathbf{E} \bullet d\mathbf{S} = \frac{\mathbf{q}}{\boldsymbol{\varepsilon}} \qquad \text{czyli} \qquad \oint \boldsymbol{\varepsilon}_0 \boldsymbol{\varepsilon} \mathbf{E} \bullet d\mathbf{S} = \mathbf{q}$$
 (66)

Definiując wektor indukcji elektrycznej:

$$\mathbf{D} = \varepsilon_0 \varepsilon \mathbf{E} \tag{67}$$

otrzymujemy prawo Gaussa słuszne w ogólnym przypadku, gdy pole elektryczne wytwarzane jest w konkretnym ośrodku (a nie tylko w próżni):

$$\oint \mathbf{D} \bullet d\mathbf{S} = \mathbf{q} \tag{68}$$

Wektor indukcji elektrycznej **D** ma taką własność, że nie zmienia się przy przejściu od próżni do dielektryka. Jego wartość zależy tylko od ładunków swobodnych (q), np. zgromadzonych na okładkach kondensatora, a nie zależy od ładunków indukowanych w dielektryku (q'). Tej zalety nie ma wektor natężenia pola elektrycznego **E**, gdyż jak widzieliśmy, gdy wchodzi ono do dielektryka jego wartość maleje ( $E=E_0/\epsilon$ ). Natomiast  $D=\epsilon_0\epsilon E=\epsilon_0 E_0$  reprezentuje wyłącznie wartość pola elektrycznego w próżni (w dobrym przybliżeniu również w powietrzu) i pochodzącego tylko od ładunków swobodnych q.

## Energia pola elektrycznego

Rozważmy pracę ładowania kondensatora. Elementarna praca, jaką trzeba wykonać, aby przenieść ładunek dq z jednej okładki na drugą wynosi (w danej chwili na okładkach jest już ładunek q, a między okładkami różnica potencjałów ΔV=U):

Całkowita praca naładowania kondensatora do ładunku Q wyniesie:

$$W = \int dW = \int_{0}^{Q} \frac{q}{C} dq = \frac{1}{2C}Q^{2}$$

Praca ta jest równa energii,  $E_{pe}$ , powstałego w kondensatorze pola elektrycznego (inaczej mówiąc też jest to praca rozdzielenia ładunków):

$$E_{pe} = W = \frac{Q^2}{2C}$$
 (69)

lub też równoważnie:

$$E_{pe} = \frac{U^2 C^2}{2C} = \frac{1}{2} C U^2 \tag{70}$$

Wygodną charakterystyką pola elektrycznego jest jego gęstość energii, *u*, czyli energia przypadająca na jednostkową objętość. W przypadku kondensatora płaskiego, objętość między okładkami v=Sd i gęstość energii pola elektrycznego wyniesie:

$$u = \frac{E_{pe}}{v} = \frac{E_{pe}}{Sd} = \frac{\frac{1}{2}CU^2}{Sd}$$

Podstawiając do powyższego równania pojemność kondensatora płaskiego:

$$C = \frac{\varepsilon \varepsilon_0 S}{d}$$

otrzymamy:

$$u = \frac{\frac{1}{2}\varepsilon\varepsilon_0 SU^2}{Sdd} = \frac{\varepsilon\varepsilon_0}{2} (\frac{U}{d})^2 = \frac{\varepsilon\varepsilon_0}{2} E^2$$

gdzie podstawiliśmy: U = d E (gdzie E oznacza natężenie pola elektrycznego). Ostatecznie :

$$\mathbf{u} = \frac{1}{2} \varepsilon \varepsilon_{0} \mathbf{E}^{2} \tag{71}$$

Używając wektora indukcji elektrycznej ( $\mathbf{D}=\varepsilon_0 \varepsilon \mathbf{E}$ ), gęstość energii możemy też zapisać jako:

$$u = \frac{1}{2}ED \tag{72}$$

lub jeszcze ogólniej:

$$\mathbf{u} = \frac{1}{2} \mathbf{E} \bullet \mathbf{D} \tag{74}$$

Podsumujmy: jeżeli w jakimś punkcie przestrzeni istnieje pole elektryczne, to zmagazynowana jest w nim energia o gęstości podanej w powyższym równaniu.