A first look at CMOS logic gates

Madhav Desai

January 11, 2018

Logic Gate?

$$x$$
 y
 $z = (x.y)$

Figure: AND logic gate

Other two input logic gates

- ▶ OR2: z = x + y.
- ▶ NAND2: $z = \overline{x.y}$.
- ▶ NOR2: $z = \overline{x + y}$.
- ▶ XOR2: $z = (x + y).(\overline{x} + \overline{y}).$
- etc..

The CMOS inverter

Figure: CMOS inverter

Inverter characteristics: Transfer characteristics

Figure: CMOS inverter transfer characteristic (with capactive load)

Inverter characteristics: Output characteristics

Figure: CMOS inverter output characteristic with input tied low

Inverter characteristics: Output characteristics

Figure: CMOS inverter output characteristic with input tied high

Inverter characteristics: Delay

Figure: CMOS inverter delay

Inverter characteristics: I_{DD}

Figure: CMOS inverter power supply current

Other CMOS logic gates: NAND2

Figure: CMOS NAND2

Other CMOS logic gates: NOR2

Figure: CMOS NOR2

Static Complementary CMOS logic gate construction

Figure: CMOS NOR2

Summary

- Easy to construct logic gates using CMOS technology.
- CMOS inverter is prototype for more complex CMOS gates.
- CMOS inverter characteristics
 - Transfer characteristic.
 - Output characteristics.
 - Delay characteristics.
 - Supply current characteristics.
- Characterization necessary for predicting delay, power dissipation, cost of final logic circuit.