Introducción a la Computación

Primer Cuatrimestre de 2015 Primer Parcial

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

	Nombre y Apellido:	Nota:		
▶ Resolver cada ejercicio en hojas separadas.				
▷ Poner nombre en todas las hojas.				
▶ Poner LU y nombre en el enunciado.	Libreta Universitaria:	Ei. 1	Ej. 2	Ei. 3
				3
▶ El parcial se aprueba con 65 puntos.				

Ejercicio 1. (40 puntos) Definimos el problema E_1 de la siguiente manera: dadas dos listas de enteros A y B con la misma longitud, devolver la cantidad de posiciones en las cuales B tiene el doble del elemento correspondiente en A.

Ejemplos:
$$E_1([10, 20, 30], [10, 20, 30]) = 0.$$
 $E_1([10, 20, 30], [30, 40, 50]) = 1.$ $E_1([10, 20, 30], [20, 20, 20]) = 1.$ $E_1([10, 20, 30], [20, 40, 60]) = 3.$

- a) Dar una especificación formal del problema E_1 .
- b) Escribir un algoritmo en pseudocódigo que resuelva el problema E_1 . (No se pide demostrar su corrección.)

Ejercicio 2. (30 puntos) Sean la especificación y el algoritmo siguientes:

Encabezado: $E_2: A \in \mathbb{Z}[] \to \mathbb{B}$ Precondición: $\{A = A_0\}$

Poscondición: $\{RV = (\forall j \cdot 0 \le j < |A_0| \Rightarrow (A_0[j] = j))\}$

Variables Aux.: $i \in \mathbb{Z}$

Algoritmo:

$$\begin{aligned} i \leftarrow 0 \\ \text{while } (i < |A| \land A[i] = i) \ \{ \\ i \leftarrow i + 1 \\ \} \\ RV \leftarrow (i = |A|) \end{aligned}$$

a) Se sabe que exactamente uno de los siguientes predicados es adecuado como invariante para demostrar la corrección del ciclo dado. ¿Cuál de ellos? Justificar.

i.
$$A = A_0 \land 0 \le i < |A_0| \land RV = (\forall j \cdot 0 \le j < i \Rightarrow (A_0[j] = j))$$

ii. $A = A_0 \land 0 \le i \le |A_0| \land (\forall i \cdot 0 \le i < |A| \Rightarrow (A_0[i] = i))$
iii. $A = A_0 \land 0 \le i \le |A_0| \land (\forall j \cdot 0 \le j < i \Rightarrow (A_0[j] = j))$
iv. $A = A_0 \land 0 \le i < |A_0| \land (\forall j \cdot 0 \le j \le i \Rightarrow (A_0[j] = j))$

b) Dar una función variante fv y una cota entera c, y demostrar que el ciclo termina.

Ejercicio 3. (30 puntos) Demostrar que el siguiente algoritmo es correcto respecto de su especificación. Es decir, probar formalmente que $sp(Algoritmo, Precondición) \Rightarrow Poscondición.$

Encabezado: $E_3: a \in \mathbb{Z} \times b \in \mathbb{Z} \to \mathbb{Z}$ Precondición: $\{a = a_0 \wedge b = b_0\}$ Poscondición: $\{(RV = a_0 + 3 \wedge a_0 \leq b_0) \vee (RV = -a_0 * b_0 \wedge a_0 > b_0)\}$ Algoritmo: $RV \leftarrow -b$ if (a > b) $\{$ $RV \leftarrow RV * a$ $\}$ else $\{$ $RV \leftarrow a + 3$