STAT 432: Basics of Statistical Learning

Support Vector Machines

Shiwei Lan, Ph.D. <shiwei@illinois.edu>

http://shiwei.stat.illinois.edu/stat432.html

April 10, 2019

University of Illinois at Urbana-Champaign

Outline

- Linear SVM in Separable Case (separation margin)
- · From Primal to Dual
- Non-linear SVM (Kernel trick)
- Linear SVM in non-Separable Case (soft margin and slack variables)

Overview

- We have training data: $\mathcal{D}_n = \{x_i, y_i\}_{i=1}^n$ — $x_i \in \mathbf{R}^p$
 - $-y_i \in \{-1,1\}$
- Estimate a function $f(x) \in \mathbb{R}$, with classification rule

$$C(x) = \mathrm{sign}\{f(x)\}$$

Linear SVM in Separable Case

Binary Large-Margin Classifiers

• Since $y_i \in \{-1, 1\}$, our classification rule using f(x) is

$$\hat{y} = +1$$
 if $f(x) > 0$
 $\hat{y} = -1$ if $f(x) < 0$

- We have a correct classification if $y_i f(x_i) > 0$
- Functional margin $y_i f(x_i)$:
 - · positive means good (at the correct side)
 - · negative means bad (at the wrong side)

Separating Line

· Linearly separable: we can find a line

$$\beta_0 + x^\mathsf{T} \boldsymbol{\beta} = 0$$

to separate two groups of points

Separating Line

· Which line is the best?

Maximum Separation

• SVM searches for a line by maximizing the margin

Preliminary

- How to calculate the distance to a line?
- Suppose there is vector β in a p-dimensional space, then the hyperplane defined as

$$\{x: \beta_0 + x^\mathsf{T} \boldsymbol{\beta} = 0\}$$

is orthogonal to β , for any β_0 .

- A normalized vector $\beta^* = \frac{\beta}{\|\beta\|}$ points to the same direction as β .
- For any vector v in the p-dimensional space, its length on this direction is the inner product

$$\langle \boldsymbol{\beta}^*, \mathbf{v} \rangle = \left\langle \frac{\boldsymbol{\beta}}{\|\boldsymbol{\beta}\|}, \mathbf{v} \right\rangle$$

• Let's first pick any point x_0 on the hyperplane, hence,

$$x_0^\mathsf{T} \boldsymbol{\beta} = -\beta_0$$

• The projection of $x - x_0$ onto the direction of β^* is the distance from x to the separating hyperplane.

This is the signed distance of x to the hyperplane, defined as

$$\left\langle \frac{\boldsymbol{\beta}}{\|\boldsymbol{\beta}\|}, x - x_0 \right\rangle$$

- In SVM, we define a linear function $f(x) = \beta_0 + x^T \beta$ that will be used for classification
- The affine space (hyperplane) L is defined as

$$\{x: f(x) = \beta_0 + x^{\mathsf{T}} \boldsymbol{\beta} = 0\}$$

- The points on one side of this hyperplane will be labeled as +1 and the points on the other side will be labeled as -1.
- To calculate which side a given point is on, we first get the normalized vector (perpendicular) to ${\cal L}$

$$oldsymbol{eta}^* = rac{oldsymbol{eta}}{\|oldsymbol{eta}\|}$$

• Then, for any point $x_0 \in L$, we have

$$x_0^\mathsf{T} \boldsymbol{\beta} = -\beta_0$$

The signed distance of any point x to L is

$$(x - x_0)^\mathsf{T} \boldsymbol{\beta}^* = \frac{1}{\|\boldsymbol{\beta}\|} (x^\mathsf{T} \boldsymbol{\beta} - x_0^\mathsf{T} \boldsymbol{\beta})$$
$$= \frac{1}{\|\boldsymbol{\beta}\|} (x^\mathsf{T} \boldsymbol{\beta} + \beta_0)$$
$$= \frac{f(x)}{\|\boldsymbol{\beta}\|}$$

Thus f(x) is proportional to the signed distance from x to L.

Maximum Margin Classifier

 Goal: Separate two classes and maximizes the distance to the closest points from either class (Vapnik 1996)

$$\max_{\pmb{\beta},\beta_0,\|\pmb{\beta}\|=1} M$$
 subject to $y_i(x_i^\mathsf{T}\pmb{\beta}+\beta_0)\geq M,\ i=1,\dots,n.$

- Recall that $f(x_i) = (x_i^\mathsf{T} \boldsymbol{\beta} + \beta_0) / \|\boldsymbol{\beta}\|$ is the signed distance.
 - If y_i is +1, we require $f(x_i) \geq M$;
 - If y_i is -1, we require $f(x_i) \leq -M$.
- Interpretation: All the points are at least a signed distance ${\cal M}$ from the decision boundary
- Maximize the minimum distance M (margin)

Maximum Margin Classifier

- The problem requires the constraint $\|\beta\|=1$, otherwise we can artificially increase the margin. However, equality constrained optimizations can be difficult.
- · To get rid of this, we replace the conditions of the margin with

$$\frac{1}{\|\boldsymbol{\beta}\|} y_i(x_i^{\mathsf{T}} \boldsymbol{\beta} + \beta_0) \ge M$$

- Since the scale of β does not affect the optimization (classification rule), we can arbitrarily set $\|\beta\| = 1/M$.
- · Hence, we can change the original problem into

$$\max_{\substack{\boldsymbol{\beta}, \beta_0, \|\boldsymbol{\beta}\| = 1/M}} M$$
 subject to $y_i(x_i^\mathsf{T}\boldsymbol{\beta} + \beta_0) \geq 1, \ i = 1, \dots, n.$

Maximum Margin Classifier

- Then, maximizing M is the same as minimizing $\|\beta\|$.
- · Hence, we solve

Linear separable SVM primal problem

$$\begin{aligned} \min_{\pmb{\beta},\beta_0} \frac{1}{2} \|\pmb{\beta}\|^2 \\ \text{subject to} \quad y_i(x_i^\mathsf{T} \pmb{\beta} + \beta_0) \geq 1, \ i=1,\dots,n. \end{aligned}$$

- Recall our previous derivation of the signed distance, this is requiring that all points are at least $1/\|\beta\|$ away from the hyperplane.
- 1/2 is added for convenience.

From Primal to Dual

Optimization Problem for SVM

• Solve for parameters β and β_0 in the primal form

$$\label{eq:minimize} \begin{array}{ll} \text{minimize } \frac{1}{2}\|\pmb{\beta}\|^2 \\ \text{subject to} \quad y_i(x_i^\mathsf{T}\pmb{\beta}+\beta_0) \geq 1, \ i=1,\dots,n. \end{array}$$

is still a difficult task.

• For any given dataset $\{x_i, y_i\}_{i=1}^n$, can you directly give a workable solution that at least satisfies the constrains?

Equality Constrained Optimization Problem

Consider an equality constrained optimization problem:

$$\begin{aligned} & \text{minimize}\,_{\pmb{\theta}} & g(\pmb{\theta}) \\ & \text{subject to} & h(\pmb{\theta}) = 0 \end{aligned}$$

- $g(\theta)$: objective function
- $h(\theta)$: equality constrain(s)
- $S = \{\theta : h(\theta) = 0\}$: feasible set
- · feasible point: a point in the feasible set

Lagrange Multiplier

· Define the Lagrangian

$$\mathcal{L} = g(\boldsymbol{\theta}) + \alpha h(\boldsymbol{\theta})$$

where α is called the Lagrange multiplier.

- There must exist a $\alpha=\alpha_0$ corresponds to a stationary point (θ_0,α_0) of $\mathcal{L}(\theta,\alpha)$
- Intuition:
 - For every θ such that $h(\theta) = 0$, $\nabla h(\theta)$ is orthogonal to the surface defined by the feasible set;
 - If θ_0 is a local minimum, then $\nabla g(\theta_0)$ must also be orthogonal to the surface of $h(\theta)$ at θ_0 otherwise we would move along that surface and reach a smaller value
- This leads to the conclusion that the gradients ∇h(θ) and ∇g(θ)
 have to be parallel at θ₀:

$$\nabla g(\boldsymbol{\theta}_0) = -\alpha \nabla h(\boldsymbol{\theta}_0)$$

Inequality Constrained Optimization Problem

Consider an inequality constrained optimization problem:

$$\begin{aligned} & \text{minimize}_{\, \boldsymbol{\theta}} & & g(\boldsymbol{\theta}) \\ & \text{subject to} & & h_i(\boldsymbol{\theta}) \leq 0, \text{ for all } i = 1, \dots n \end{aligned}$$

· Consider a generalized version of Lagrangian

$$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\alpha}) = g(\boldsymbol{\theta}) + \sum_{i=1}^{n} \alpha_i h_i(\boldsymbol{\theta})$$

• Find the stationary point (minimum) of \mathcal{L} , with two arguments θ and α

Primal to Dual Problem

- Lets look at this problem from two different ways:
- If we maximize α_i 's first (for a fixed θ):

$$\max_{\boldsymbol{\alpha}\succeq 0}\,\mathcal{L}(\boldsymbol{\theta},\boldsymbol{\alpha})$$

- In this case, if θ violates any of the constraints, i.e., $h_i(\theta) > 0$ for some i, we can choose an extremely large α_i such that the above quantity is ∞ .
- Hence, we can consider the primal problem

$$\min_{\boldsymbol{\theta}} \max_{\boldsymbol{\alpha} \succeq 0} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\alpha})$$

• The solution of this has to satisfy all the constraints, and $g(\theta)$ is minimized

Primal to Dual Problem

• If we minimize θ first, then maximize for α , we would get the dual problem

$$\max_{\boldsymbol{\alpha} \succeq 0} \min_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\alpha})$$

The two are generally not the same

$$\underbrace{\max_{\boldsymbol{\alpha}\succeq 0} \ \min_{\boldsymbol{\theta}} \ \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\alpha})}_{\text{dual}} \leq \underbrace{\min_{\boldsymbol{\theta}} \ \max_{\boldsymbol{\alpha}\succeq 0} \ \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\alpha})}_{\text{primal}}$$

- · However, they are the same if (sufficient)
 - both g and h_i 's are convex
 - and the constraints h_i 's are feasible
- · A convex optimization problem.
- Further reading: The Karush-Kuhn-Tucker (KKT) conditions (this is also used in theory of Lasso solution)

From Primal to Dual: Formulation

 Now we are finally in a position to solve the dual problem, the original primal can be written as

$$\label{eq:minimize} \begin{split} & \underset{\beta,\beta_0}{\text{minimize}} \ \frac{1}{2}\|\beta\|^2 \\ & \text{subject to} \quad -\{y_i(x_i^{\mathsf{T}}\beta+\beta_0)-1\} \le 0, \ i=1,\dots,n. \end{split}$$

· Lagrangian for our optimization problem is

$$\mathcal{L}(\boldsymbol{\beta}, \beta_0, \boldsymbol{\alpha}) = \frac{1}{2} \|\boldsymbol{\beta}\|^2 - \sum_{i=1}^n \alpha_i \{ y_i (x_i^\mathsf{T} \boldsymbol{\beta} + \beta_0) - 1 \}$$

• Instead of solving this using the primal, we solve for the dual, which first minimize $\mathcal{L}(\beta, \beta_0, \alpha)$ with respect to β and β_0 , then maximize over α .

Solving the Dual Problem

• To solve for β and β_0 , we take derivatives with respect to them:

$$\beta - \sum_{i=1}^{n} \alpha_i y_i x_i = 0 \quad (\nabla_{\beta} \mathcal{L} = 0)$$
$$\sum_{i=1}^{n} \alpha_i y_i = 0 \quad (\nabla_{\beta_0} \mathcal{L} = 0)$$

• Take the solutions of β and β_0 and plug back into the Lagrangian, we have

$$\mathcal{L}(\boldsymbol{\beta}, \beta_0, \boldsymbol{\alpha}) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n y_i y_j \alpha_i \alpha_j x_i^\mathsf{T} x_j$$

Solving the Dual Problem

- We need to then maximizing over α
- This leads to the dual optimization problem:

$$\begin{aligned} & \underset{\alpha}{\text{maximize}} & & \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} y_i y_j \alpha_i \alpha_j x_i^\mathsf{T} x_j \\ & \text{subject to} & & \alpha_i \geq 0, \ i = 1, \dots, n. \\ & & & \sum_{i=1}^{n} \alpha_i y_i = 0 \end{aligned}$$

- This is another quadratic programming problem.
- Now, can you think of a workable solution that at least satisfies the constrain?
- There are additional advantages (kernel trick coming soon)

Linear SVM algorithm (dual form)

- The SVM problem for separable case can be carried out as follows:
 - Solve dual for α_i 's (those points with $\alpha_i > 0$ are called "support vectors")
 - Obtain $\widehat{\beta} = \sum_{i=1}^{n} \alpha_i y_i x_i$
 - Obtain β_0 by calculating the midpoint of two "closest" support vectors to the separating hyperplane

$$\widehat{\beta}_0 = -\frac{\max_{i:y_i = -1} x_i^{\mathsf{T}} \widehat{\boldsymbol{\beta}} + \min_{i:y_i = 1} x_i^{\mathsf{T}} \widehat{\boldsymbol{\beta}}}{2}$$

• For any new observation x, the prediction is

$$\mathsf{sign}\big(x^\mathsf{T}\widehat{\boldsymbol{\beta}}+\widehat{\beta}_0\big)$$

Remarks

- · If the classes are really Gaussian, then
 - · LDA is optimal
 - The LDA separating hyperplane pays a price for being influenced by noisier data
- SVM optimal separating hyperplane has less assumptions, thus more robust to model mis-specification
 - The logistic regression solution can be similar to the operating hyperplane
 - However, for perfectly separable case, the likelihood is infinity, hence logistic regression does not work

Non-linear SVM and Kernel

Trick

- · In many cases, linear classifier is not flexible enough
- An example from the HTF text book:

· How do we create nonlinear boundaries?

 Enlarge the feature space via basis expansions: map into the feature space

$$\Phi: \mathcal{X} \to \mathcal{F}, \ \Phi(x) = (\phi_1(x), \phi_2(x), \ldots)$$

where \mathcal{F} has finite or infinite dimensions.

· The decision function becomes

$$f(x) = \langle \Phi(x), \boldsymbol{\beta} \rangle$$

Kernel trick: only the inner product matters

$$K(x,z) = \langle \Phi(x), \Phi(z) \rangle$$

we do not need to explicitly calculate the mapping Φ .

Kernel trick

• Naive approach: If we know $\Phi(x)$, we could calculate it for all x_i 's, treat them as the new features, and optimize

$$\begin{split} \text{maximize} & \quad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n y_i y_j \alpha_i \alpha_j \langle \Phi(x_i), \Phi(x_j) \rangle \\ \text{subject to} & \quad \alpha_i \geq 0, \ i=1,\dots,n. \\ & \quad \sum_{i=1}^n \alpha_i y_i = 0 \end{split}$$

- · However, this is not necessary.
- Kernel trick saves computation time!

Kernel trick

 An example: suppose we want to include all (just) second order terms of all variables:

$$x_k x_l$$
 for all $k, l = 1, \ldots, p$

- We define $\Phi(x)$ as a vector consists of all $(x_k x_l)$'s
- To calculate the inner product for two observations \boldsymbol{x} and \boldsymbol{z} , we need

$$\langle \Phi(x), \Phi(z) \rangle = \sum_{k,l=1}^{p} (x_k x_l) (z_k z_l)$$

• The complexity for calculating this is $\mathcal{O}(p^2)$.

Kernel trick

- Consider a kernel function $K(x,z) = (x^{\mathsf{T}}z)^2$
- · Its easy to see that

$$K(x,z) = \left(\sum_{k=1}^{p} x_k z_k\right) \left(\sum_{l=1}^{p} x_l z_l\right)$$

$$= \sum_{k=1}^{p} \sum_{l=1}^{p} x_k z_k x_l z_l$$

$$= \sum_{k,l=1}^{p} (x_k x_l)(z_k z_l)$$

$$= \langle \Phi(x), \Phi(z) \rangle$$

• The complexity is $\mathcal{O}(p)$.

- Calculating $\langle \Phi(x_i), \Phi(x_j) \rangle$ directly for subject pair (i,j) would require p^2 multiplications for both $\Phi(x_i)$ and $\Phi(x_j)$ (because this is a large vector), then again calculating the inner project. The computation time is $\mathcal{O}(p^2)$.
- Calculating the kernel distance requires doing p products in x^Tz and square the sum. So the computation time is $\mathcal{O}(p)$.
- This saves a lot of computational time, and it is one of the reasons that we use dual instead of primal.

Separable SVM with Kernel Trick

$$\begin{aligned} & \underset{\alpha}{\text{maximize}} & & \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n y_i y_j \alpha_i \alpha_j K(x_i, x_j) \\ & \text{subject to} & & \alpha_i \geq 0, \ i = 1, \dots, n. \\ & & & \sum_{i=1}^n \alpha_i y_i = 0 \end{aligned}$$

- So, for any given $\Phi(x)$, how do we find the corresponding kernel?
- · That is difficult...
- However, for any properly defined kernel function, by Mercer's theorem, we know that it corresponds to some feature mapping construction $\Phi(x)$.
- This requires $K(\cdot,\cdot)$ to be symmetric, and the corresponding kernel matrix $(n\times n$ matrix for all pairwise distance of n samples) is positive semi-definite
- There are numerous articles about Mercer's theorem and related concept, the Reproducing Kernel Hilbert Space

- All its left for us is to find a proper kernel function, and use that in the SVM
- · Popular choices of Kernels:
 - *d*th degree polynomial:

$$K(x_1, x_2) = (1 + x_1^\mathsf{T} x_2)^d$$

· Radial basis:

$$K(x_1, x_2) = \exp(-\|x_1 - x_2\|^2/c)$$

• Be careful that for $\Phi(x)$ to exist, $K(\cdot, \cdot)$ cannot be arbitrary.

Linear SVM in non-Separable

Case

Linearly non-Separable

General Case for SVM

- · Non-separable means that the "zero"-error is not attainable
- We introduce "slack variables" $\{\xi_i\}_{i=1}^n$ that accounts for these errors
- · Change the original optimization problem to

$$\begin{split} & \text{minimize } \frac{1}{2}\|\boldsymbol{\beta}\|^2 + C\sum_{i=1}^n \xi_i \\ & \text{subject to} \quad y_i(\boldsymbol{x}^\mathsf{T}\boldsymbol{\beta} + \beta_0) \geq (1 - \xi_i), \ i = 1, \dots, n, \\ & \xi_i \geq 0, \ i = 1, \dots, n, \end{split}$$

where C > 0 is a tuning parameter for "cost"

Linearly non-Separable

Slack variables in linearly non-separable case

Interpretation

- · The objective function consists of two parts
 - For observations that cannot be classified correctly, $\xi_i > 1$. So $\sum_i \xi_i$ is an upper bound on the number of training errors
 - Minimize the inverse margin $\frac{1}{2}\|\boldsymbol{\beta}\|^2$
- The tuning parameter C
 - · Balances the error and margin width
 - For separable case, $C = \infty$
- · Inequality constraints
 - · Soft classification to allow some errors

Solving SVM with Slack Variables

The new optimization problem does nothing but putting more constraints

$$\begin{split} & \text{minimize } \frac{1}{2}\|\boldsymbol{\beta}\|^2 + C\sum_{i=1}^n \xi_i \\ & \text{subject to} \quad y_i(\boldsymbol{x}^\mathsf{T}\boldsymbol{\beta} + \beta_0) \geq (1 - \xi_i), \ i = 1, \dots, n, \\ & \xi_i \geq 0, \ i = 1, \dots, n, \end{split}$$

• We can again write the Lagrangian primal $\mathcal{L}(\beta, \beta_0, \alpha, \xi)$ is

$$\frac{1}{2}\|\boldsymbol{\beta}\|^2 + C\sum_{i=1}^n \xi_i - \sum_{i=1}^n \alpha_i \{y_i(x_i^\mathsf{T}\boldsymbol{\beta} + \beta_0) - (1 - \xi_i)\} - \sum_{i=1}^n \gamma_i \xi_i$$

where α_i , $\gamma_i \geq 0$.

Solving SVM with Slack Variables

· It is trivial now to get the derivatives:

$$\beta - \sum_{i=1}^{n} \alpha_i y_i x_i = 0 \quad (\nabla_{\beta} \mathcal{L} = 0)$$
$$\sum_{i=1}^{n} \alpha_i y_i = 0 \quad (\nabla_{\beta_0} \mathcal{L} = 0)$$
$$C - \alpha_i - \gamma_i = 0 \quad (\nabla_{\xi_i} \mathcal{L} = 0)$$

Solving SVM with Slack Variables

Substituting them back into the Lagrangian, we have the dual form

$$\begin{split} \text{maximize} & \quad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n y_i y_j \alpha_i \alpha_j \langle x_i, x_j \rangle \\ \text{subject to} & \quad 0 \leq \alpha_i \leq C, \ i=1,\dots,n. \\ & \quad \sum_{i=1}^n \alpha_i y_i = 0 \end{split}$$

• Note that we write $\langle x_i, x_j \rangle$ instead of $x_i^{\mathsf{T}} x_j$, because we can again use the kernel trick.

Linearly non-Separable

The support vectors for linearly non-separable case

Remark

- \bullet Large C puts more weight on misclassification rate than margin width
- Small C puts more attention on data further away from the boundary
- ullet Cross-validation to select C

Soft-Margin SVM with Kernel Trick

$$\begin{aligned} & \underset{\alpha}{\text{maximize}} & & \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n y_i y_j \alpha_i \alpha_j K(x_i, x_j) \\ & \text{subject to} & & 0 \leq \alpha_i \leq C, \ i = 1, \dots, n. \\ & & & \sum_{i=1}^n \alpha_i y_i = 0 \end{aligned}$$

Polynomial and Radial Kernels

SVM - Degree-4 Polynomial in Feature Space

SVM - Radial Kernel in Feature Space

Convexity of SVM

 Is SVM a convex (taking out the negative sign) optimization problem? (especially after the Kernel trick)

$$\sum_{i,j=1}^{n} y_i y_j \alpha_i \alpha_j K(x_i, x_j)$$

$$= \alpha^{\mathsf{T}} \operatorname{diag}(\mathbf{y}) \mathbf{K} \operatorname{diag}(\mathbf{y}) \alpha$$
(1)

- Convexity will be guaranteed if the Kernel matrix K is positive semidefinite.
- Mercer's theorem: The kernel matrix $\mathbf K$ is positive semidefinite iff the function $K(x_i,x_j)$ is equivalent to some inner product $\langle \Phi(x_i),\Phi(x_j)\rangle$.

SVM as a Penalization Method

Loss + Penalty

Recall that SVM with soft margin is trying to solve

$$\begin{split} & \text{minimize } \frac{1}{2}\|\boldsymbol{\beta}\|^2 + C\sum_{i=1}^n \xi_i \\ & \text{subject to} \quad y_i(\boldsymbol{x}^\mathsf{T}\boldsymbol{\beta} + \beta_0) \geq (1 - \xi_i), \ i = 1, \dots, n, \\ & \xi_i \geq 0, \ i = 1, \dots, n, \end{split}$$

• We can consider letting $f(x) = x^\mathsf{T} \boldsymbol{\beta} + \beta_0$, and treat $1 - y_i(x^\mathsf{T} \boldsymbol{\beta} + \beta_0)$ as a certain loss, we reach a penalized loss framework:

minimize
$$\sum_{i=1}^{n} [1 - y_i f(x_i)]_+ + \lambda ||\beta||^2$$

- "Loss + Penalty", the regularization parameter $\lambda = \frac{1}{2C}$.
- · No constrains, same solution as the SVM

Loss + Penalty

- The loss function that we are using is not the squared loss, its called the Hinge loss
- Hinge Loss

$$L(y, f(x)) = [1 - yf(x)]_{+} = \max(0, 1 - yf(x))$$

- However, this Hinge loss is not differentiable. There are some other loss functions for classification purpose:
- Logistic loss:

$$L(y, f(x)) = \log(1 + e^{-yf(x)})$$

· Modified Huber Loss:

$$L(y,f(x)) = \begin{cases} \max(0,1-yf(x))^2 & \text{for} \quad yf(x) \geq -1 \\ -4yf(x) & \text{otherwise} \end{cases}$$

Loss + Penalty

- · Some other losses that we have seen before:
- · Squared error loss

$$L(y, f(x)) = (1 - yf(x))^2$$

• 0/1 loss

$$L(y,f(x))=\mathbf{1}\{yf(x)\geq 0\}$$

Comparing loss functions

Comparing loss functions

- Since Hinge Loss is not differentiable, we cannot use gradient methods, but a sub-gradiant exist
- Logistic loss, Modified Huber Loss and Squared error loss can be solved using gradient decent
- These methods will be faster and maybe preferred when solving a large system
- 0/1 loss is hard to implement since it is not continuous

Nonlinear SVM

 Again, we might want to consider nonlinear decision functions. A nonlinear SVM (with hinge loss) solves

$$\min_{f} \sum_{i=1}^{n} [1 - y_i f(x_i)]_{+} + \lambda ||f||_{\mathcal{H}_{\mathcal{K}}}^{2}$$

where f (nonlinear) belongs to a reproducing kernel Hilbert space $\mathcal{H}_{\mathcal{K}}$, which is determined by the kernel function K, and $\|f\|^2_{\mathcal{H}_{\mathcal{K}}}$ denotes the corresponding norm.

 This space can be very large, however, the solution to this can be simple (Representer Theorem: Kimeldorf and Wahba, 1970), and takes the following form

$$\underset{f \in \mathcal{H}_K}{\operatorname{arg \, min}} \sum_{i=1}^{n} [1 - y_i f(x_i)]_+ + \lambda ||f||_{\mathcal{H}_K}^2$$
$$= \beta_1 K(x, x_i) + \dots + \beta_n K(x, x_n)$$

Representer Theorem

Hence the optimization becomes

$$\sum_{i=1}^{n} L(y_i, \mathbf{K}_i^{\mathsf{T}} \boldsymbol{\beta}) + \lambda \boldsymbol{\beta}^{\mathsf{T}} \mathbf{K} \boldsymbol{\beta},$$

where k is the kernel matrix with $\mathbf{K}_{ij} = K(x_i, x_j)$, and \mathbf{K}_i is the i the column of \mathbf{K}

- · An unconstrained optimization problem
- Can use gradient decent if L is differentiable
- So this is a ridge penalty? and we won't get sparse solution?

R packages and functions

- R packages:
 - e1071: function sym
 - kernlab: function ksvm
 - sympath: compute the entire regularized solution path
 - quadprog: solving quadratic programming problems (primal or dual)
- Machine learning R packages overview:

```
cran.r-project.org/web/views/MachineLearning.html
```