Ορισμός για μη Κατευθυνόμενα Γραφήματα:

Βαθμός της κορυφής v_i είναι το πλήθος των ακμών που προσπίπτουν σε αυτήν

Συμβολίζεται με $d(v_i)$

Ειδικά για μη απλά γραφήματα η ανακύκλωση μετράει κατά 2 στο βαθμό κορυφής.

Παράδειγμα:

$$d(v_1) = 2$$

 $d(v_2) = 1$
 $d(v_3) = 2$
 $d(v_4) = 2$
 $d(v_5) = 3$
 $d(v_6) = 2$

Ορισμός:

Έσω Βαθμός της κορυφής v_i είναι το πλήθος των ακμών που εισέρχονται στην κορυφη v_i

Συμβολίζεται με $d^-(v_i)$

Συμβολίζεται με $d^+(v_i)$

Παράδειγμα:

Έξω Βαθμός της κορυφής v_i είναι το πλήθος των ακμών που εξέρχονται από την κορυφη v_i

$$d^{-}(v_{1}) = 0$$
 $d^{+}(v_{1}) = 2$ $d^{+}(v_{2}) = 1$ $d^{-}(v_{3}) = 2$ $d^{+}(v_{3}) = 2$ $d^{+}(v_{4}) = 1$ v_{1}

ΘΕΩΡΙΑ ΓΡΑΦΩΝ www.psounis.gr

Ορισμός:

ΚΑΝΟΝΙΚΟ ΓΡΑΦΗΜΑ

Ένα μη κατευθυνόμενο γράφημα θα λέγεται:

k-κανονικό, ανν όλες οι κορυφές έχουν βαθμό k.

Ενώ αν μας αναφέρεται ότι το γράφημα είναι κανονικό, αυτό σημαίνει ότι όλες οι κορυφές έχουν τον ίδιο βαθμό.

Πόρισμα

Το Κη είναι (η-1)-κανονικό γράφημα.

Ένα k-κανονικό γράφημα n κορυφών έχει nk/2 ακμές.

Παραδείγματα:

3-κανονικό

2-κανονικό

ΜΗ κανονικό

2-κανονικό

Θεώρημα Βαθμών Κορυφών (λέγεται και Λήμμα της Χειραψίας)

Το άθροισμα των βαθμών των κορυφών σε κάθε μη κατευθυνόμενο γράφημα είναι ίσο με το διπλάσιο των ακμών

$$\sum_{i=1}^{n} d(v_i) = 2n$$

Πόρισμα 1:

Το άθροισμα των βαθμών των κορυφών σε κάθε μη κατευθυνόμενο γράφημα είναι άρτιος αριθμός

Πόρισμα 2:

Σε κάθε μη κατευθυνόμενο γράφημα: Το πλήθος των κορυφών με περιττό βαθμό είναι άρτιος αριθμός.

ΤΟ ΛΗΜΜΑ ΤΗΣ ΧΕΙΡΑΨΙΑΣ

Άθροισμα Βαθμών Κορυφών: 12 (άρτιος) Πλήθος κορυφών με περιττό βαθμό: 2 (άρτιος)

Το θεώρημα χρησιμοποιείται (μεταξύ άλλων) για τον έλεγχο της ύπαρξης ενός γραφήματος όταν γνωρίζουμε πληροφορίες για τον βαθμό των κορυφών:

- Ελέγχουμε αν το πλήθος των κορυφών με περιττό βαθμό είναι άρτιος.
 - Αν δεν είναι άρτιος, τότε δεν υπάρχει τέτοιο γράφημα,

 $d(v_1) = 2$

 $d(v_2) = 1$

 $d(v_3) = 2$

 $d(v_4) = 2$

 $d(v_5) = 3$ $d(v_6) = 2$

• Αν είναι άρτιος, τότε πρέπει να ελέγξουμε κατασκευαστικά αν υπάρχει τέτοιο γράφημα