3.

There's a house, away there to the left.

Let's go.- said Sylvie

It looks a very comfable house!- said Bruno

Alice's Adventures in Wonderland, Lewis Carroll

$$\mathbb{R}^n$$
 o conjunto de matrizes colunas de n números reais $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$.

Este conjunto *algebrizado* com uma operação de **adição** e uma operação de **multiplicação por um escalar** constitui um **espaço vectorial**.

Os elementos de um espaço vectorial chamam-se vectores.

- conjunto das matrizes de ordem $m \times n$,
- conjunto das matrizes colunas $\begin{pmatrix} x_1 \\ 0 \\ -x_1 \end{pmatrix}$,
- conjunto dos polinómios de coeficientes reais,

$$P = \{p(x) = a_1x + a_2x^2 + a_3x^3 + \dots + a_nx^n : a_i \in \mathbb{R}\}\$$

- conjunto das funções reais e contínuas,
- $A = \{(x, y) : x, y \in \mathbb{R}\}$
- $B = \{(x,0) : x \in \mathbb{R}\}$
- $C = \{(x, y, z) : x = y = z, x, y, z \in \mathbb{R}\}$

- conjunto das matrizes de ordem $m \times n$,
- conjunto das matrizes colunas $\begin{pmatrix} x_1 \\ 0 \\ -x_1 \end{pmatrix}$,
- conjunto dos polinómios de coeficientes reais,

$$P = \{p(x) = a_1x + a_2x^2 + a_3x^3 + \dots + a_nx^n : a_i \in \mathbb{R}\}\$$

- conjunto das funções reais e contínuas,
- $A = \{(x, y) : x, y \in \mathbb{R}\}$
- $B = \{(x,0) : x \in \mathbb{R}\}$
- $C = \{(x, y, z) : x = y = z, x, y, z \in \mathbb{R}\}$

- conjunto das matrizes de ordem $m \times n$,
- conjunto das matrizes colunas $\begin{pmatrix} x_1 \\ 0 \\ -x_1 \end{pmatrix}$,
- conjunto dos polinómios de coeficientes reais,

$$P = \{p(x) = a_1x + a_2x^2 + a_3x^3 + \dots + a_nx^n : a_i \in \mathbb{R}\}\$$

- conjunto das funções reais e contínuas,
- $A = \{(x, y) : x, y \in \mathbb{R}\}$
- $B = \{(x,0) : x \in \mathbb{R}\}$
- $C = \{(x, y, z) : x = y = z, x, y, z \in \mathbb{R}\}$

- conjunto das matrizes de ordem $m \times n$,
- conjunto das matrizes colunas $\begin{pmatrix} x_1 \\ 0 \\ -x_1 \end{pmatrix}$,
- conjunto dos polinómios de coeficientes reais,

$$P = \{p(x) = a_1x + a_2x^2 + a_3x^3 + \dots + a_nx^n : a_i \in \mathbb{R}\}\$$

- conjunto das funções reais e contínuas,
- $A = \{(x, y) : x, y \in \mathbb{R}\}$
- $B = \{(x,0) : x \in \mathbb{R}\}$
- $C = \{(x, y, z) : x = y = z, x, y, z \in \mathbb{R}\}$

Seja V um conjunto. Diz-se que V é um espaço vectorial (espaço linear) real se estão definidas duas operações:

adição, +, que associa a $x,y\in V$ um elemento $x+y\in V$, e multiplicação por um escalar, que associa a cada número real α , e a cada $x\in V$ um elemento $\alpha x\in V$,

- (i) x + y = y + x, $\forall x, y \in V$,
- (ii) x + (y + z) = (x + y) + z, $\forall x, y, z \in V$,
- (iii) existe um único elemento, representado por $\mathbf{0}$, em V, tal que: x + 0 = 0 + x = x, $\forall x \in V$,
- (iv) para todo $x \in V$ existe um único elemento em V, representado por -x tal que:

$$x + (-x) = (-x) + x = 0, \quad \forall x \in V,$$

- (v) $\alpha(x+y) = \alpha x + \alpha y$, $\forall x, y \in V, \forall \alpha \in \mathbb{R}$,
- (vi) $(\alpha + \beta)x = \alpha x + \beta x$, $\forall x \in V, \forall \alpha, \beta \in \mathbb{R}$,
- (vii) $(\alpha\beta)x = \alpha(\beta x), \forall x \in V, \forall \alpha, \beta \in \mathbb{R},$
- (viii) $\mathbf{1}.x = x.\mathbf{1} = x, \forall x \in V,$

Seja V um conjunto. Diz-se que V é um espaço vectorial (espaço linear) real se estão definidas duas operações:

adição, +, que associa a $x,y\in V$ um elemento $x+y\in V$, e multiplicação por um escalar, que associa a cada número real α , e a cada $x\in V$ um elemento $\alpha x\in V$,

(i)
$$x + y = y + x$$
, $\forall x, y \in V$,

(ii)
$$x + (y + z) = (x + y) + z$$
, $\forall x, y, z \in V$,

- (iii) existe um único elemento, representado por $\mathbf{0}$, em V, tal que: x + 0 = 0 + x = x, $\forall x \in V$,
- (iv) para todo $x \in V$ existe um único elemento em V, representado por -x tal que:

$$x + (-x) = (-x) + x = 0, \quad \forall x \in V,$$

(v)
$$\alpha(x+y) = \alpha x + \alpha y$$
, $\forall x, y \in V, \forall \alpha \in \mathbb{R}$,

(vi)
$$(\alpha + \beta)x = \alpha x + \beta x$$
, $\forall x \in V, \forall \alpha, \beta \in \mathbb{R}$,

(vii)
$$(\alpha\beta)x = \alpha(\beta x), \forall x \in V, \forall \alpha, \beta \in \mathbb{R},$$

(viii)
$$\mathbf{1}.x = x.\mathbf{1} = x, \forall x \in V$$

Seja V um conjunto. Diz-se que V é um espaço vectorial (espaço linear) real se estão definidas duas operações:

adição, +, que associa a $x,y\in V$ um elemento $x+y\in V$, e multiplicação por um escalar, que associa a cada número real α , e a cada $x\in V$ um elemento $\alpha x\in V$,

(i)
$$x + y = y + x$$
, $\forall x, y \in V$,

(ii)
$$x + (y + z) = (x + y) + z$$
, $\forall x, y, z \in V$,

- (iii) existe um único elemento, representado por $\mathbf{0}$, em V, tal que: x + 0 = 0 + x = x, $\forall x \in V$,
- (iv) para todo $x \in V$ existe um único elemento em V, representado por -x tal que:

$$x + (-x) = (-x) + x = 0, \quad \forall x \in V,$$

(v)
$$\alpha(x+y) = \alpha x + \alpha y$$
, $\forall x, y \in V, \forall \alpha \in \mathbb{R}$,

(vi)
$$(\alpha + \beta)x = \alpha x + \beta x$$
, $\forall x \in V, \forall \alpha, \beta \in \mathbb{R}$,

(vii)
$$(\alpha\beta)x = \alpha(\beta x), \forall x \in V, \forall \alpha, \beta \in \mathbb{R},$$

(viii)
$$\mathbf{1}.x = x.\mathbf{1} = x, \forall x \in V,$$

Seja V um conjunto. Diz-se que V é um espaço vectorial (espaço linear) real se estão definidas duas operações:

adição, +, que associa a $x,y\in V$ um elemento $x+y\in V$, e multiplicação por um escalar, que associa a cada número real α , e a cada $x\in V$ um elemento $\alpha x\in V$,

(i)
$$x + y = y + x$$
, $\forall x, y \in V$,

(ii)
$$x + (y + z) = (x + y) + z$$
, $\forall x, y, z \in V$,

- (iii) existe um único elemento, representado por $\mathbf{0}$, em V, tal que: $x+0=0+x=x, \quad \forall x \in V$,
- (iv) para todo $x \in V$ existe um único elemento em V, representado por -x tal que:

$$x + (-x) = (-x) + x = 0, \quad \forall x \in V,$$

(v)
$$\alpha(x+y) = \alpha x + \alpha y$$
, $\forall x, y \in V, \forall \alpha \in \mathbb{R}$,

(vi)
$$(\alpha + \beta)x = \alpha x + \beta x$$
, $\forall x \in V, \forall \alpha, \beta \in \mathbb{R}$,

(vii)
$$(\alpha\beta)x = \alpha(\beta x), \forall x \in V, \forall \alpha, \beta \in \mathbb{R},$$

(viii)
$$\mathbf{1}.x = x.\mathbf{1} = x, \forall x \in V$$

Seja V um conjunto. Diz-se que V é um espaço vectorial (espaço linear) real se estão definidas duas operações:

adição, +, que associa a $x,y\in V$ um elemento $x+y\in V$, e multiplicação por um escalar, que associa a cada número real α , e a cada $x\in V$ um elemento $\alpha x\in V$,

(i)
$$x + y = y + x$$
, $\forall x, y \in V$,

(ii)
$$x + (y + z) = (x + y) + z$$
, $\forall x, y, z \in V$,

- (iii) existe um único elemento, representado por $\mathbf{0}$, em V, tal que: $x+0=0+x=x, \quad \forall x \in V$,
- (iv) para todo $x \in V$ existe um único elemento em V, representado por - \mathbf{x} tal que:

$$x + (-x) = (-x) + x = 0, \quad \forall x \in V,$$

(v)
$$\alpha(x+y) = \alpha x + \alpha y$$
, $\forall x, y \in V, \forall \alpha \in \mathbb{R}$,

(vi)
$$(\alpha + \beta)x = \alpha x + \beta x$$
, $\forall x \in V, \forall \alpha, \beta \in \mathbb{R}$,

(vii)
$$(\alpha\beta)x = \alpha(\beta x), \forall x \in V, \forall \alpha, \beta \in \mathbb{R},$$

viii)
$$\mathbf{1}.x = x.\mathbf{1} = x, \quad \forall x \in V,$$

Seja V um conjunto. Diz-se que V é um espaço vectorial (espaço linear) real se estão definidas duas operações:

adição, +, que associa a $x,y\in V$ um elemento $x+y\in V$, e multiplicação por um escalar, que associa a cada número real α , e a cada $x\in V$ um elemento $\alpha x\in V$,

(i)
$$x + y = y + x$$
, $\forall x, y \in V$,

(ii)
$$x + (y + z) = (x + y) + z$$
, $\forall x, y, z \in V$,

- (iii) existe um único elemento, representado por $\mathbf{0}$, em V, tal que: $x+0=0+x=x, \quad \forall x \in V$,
- (iv) para todo $x \in V$ existe um único elemento em V, representado por - \mathbf{x} tal que:

$$x + (-x) = (-x) + x = 0, \quad \forall x \in V,$$

(v)
$$\alpha(x+y) = \alpha x + \alpha y$$
, $\forall x, y \in V, \forall \alpha \in \mathbb{R}$,

(vi)
$$(\alpha + \beta)x = \alpha x + \beta x$$
, $\forall x \in V, \forall \alpha, \beta \in \mathbb{R}$,

(vii)
$$(\alpha\beta)x = \alpha(\beta x), \forall x \in V, \forall \alpha, \beta \in \mathbb{R},$$

(viii)
$$\mathbf{1}.x = x.\mathbf{1} = x, \quad \forall x \in V,$$

Seja V um conjunto. Diz-se que V é um espaço vectorial (espaço linear) real se estão definidas duas operações:

adição, +, que associa a $x,y\in V$ um elemento $x+y\in V$, e multiplicação por um escalar, que associa a cada número real α , e a cada $x\in V$ um elemento $\alpha x\in V$,

(i)
$$x + y = y + x$$
, $\forall x, y \in V$,

(ii)
$$x + (y + z) = (x + y) + z$$
, $\forall x, y, z \in V$,

- (iii) existe um único elemento, representado por $\mathbf{0}$, em V, tal que: $x+0=0+x=x, \quad \forall x \in V$,
- (iv) para todo $x \in V$ existe um único elemento em V, representado por - \mathbf{x} tal que:

$$x + (-x) = (-x) + x = 0, \quad \forall x \in V,$$

(v)
$$\alpha(x+y) = \alpha x + \alpha y$$
, $\forall x, y \in V, \forall \alpha \in \mathbb{R}$,

(vi)
$$(\alpha + \beta)x = \alpha x + \beta x$$
, $\forall x \in V, \forall \alpha, \beta \in \mathbb{R}$,

(vii)
$$(\alpha\beta)x = \alpha(\beta x), \forall x \in V, \forall \alpha, \beta \in \mathbb{R}$$

viii)
$$\mathbf{1}.x = x.\mathbf{1} = x, \forall x \in V$$

Seja V um conjunto. Diz-se que V é um espaço vectorial (espaço linear) real se estão definidas duas operações:

adição, +, que associa a $x,y\in V$ um elemento $x+y\in V$, e multiplicação por um escalar, que associa a cada número real α , e a cada $x\in V$ um elemento $\alpha x\in V$,

(i)
$$x + y = y + x$$
, $\forall x, y \in V$,

(ii)
$$x + (y + z) = (x + y) + z$$
, $\forall x, y, z \in V$,

- (iii) existe um único elemento, representado por $\mathbf{0}$, em V, tal que: $x+0=0+x=x, \quad \forall x \in V$,
- (iv) para todo $x \in V$ existe um único elemento em V, representado por - \mathbf{x} tal que:

$$x + (-x) = (-x) + x = 0, \quad \forall x \in V,$$

(v)
$$\alpha(x+y) = \alpha x + \alpha y$$
, $\forall x, y \in V, \forall \alpha \in \mathbb{R}$,

(vi)
$$(\alpha + \beta)x = \alpha x + \beta x$$
, $\forall x \in V, \forall \alpha, \beta \in \mathbb{R}$,

(vii)
$$(\alpha\beta)x = \alpha(\beta x), \forall x \in V, \forall \alpha, \beta \in \mathbb{R},$$

viii)
$$\mathbf{1}.x = x.\mathbf{1} = x$$
, $\forall x \in V$,

Seja V um conjunto. Diz-se que V é um espaço vectorial (espaço linear) real se estão definidas duas operações:

adição, +, que associa a $x,y \in V$ um elemento $x+y \in V$, e multiplicação por um escalar, que associa a cada número real α , e a cada $x \in V$ um elemento $\alpha x \in V$,

(i)
$$x + y = y + x$$
, $\forall x, y \in V$,

(ii)
$$x + (y + z) = (x + y) + z$$
, $\forall x, y, z \in V$,

- (iii) existe um único elemento, representado por $\mathbf{0}$, em V, tal que: $x+0=0+x=x, \quad \forall x \in V$,
- (iv) para todo $x \in V$ existe um único elemento em V, representado por - \mathbf{x} tal que:

$$x + (-x) = (-x) + x = 0, \quad \forall x \in V,$$

(v)
$$\alpha(x+y) = \alpha x + \alpha y$$
, $\forall x, y \in V, \forall \alpha \in \mathbb{R}$,

(vi)
$$(\alpha + \beta)x = \alpha x + \beta x$$
, $\forall x \in V, \forall \alpha, \beta \in \mathbb{R}$,

(vii)
$$(\alpha\beta)x = \alpha(\beta x), \forall x \in V, \forall \alpha, \beta \in \mathbb{R},$$

(viii)
$$\mathbf{1}.x = x.\mathbf{1} = x, \forall x \in V$$

um muito importante espaço vectorial real $-R^n$

Como se definem as operações?

adição: $x = (x_i), y = (y_i)$, elementos de R^n

$$x + y = (x_1, ..., x_n) + (y_1, ..., y_n) = (x_1 + y_1, ..., x_n + y_n)$$

multiplicação por um escalar: $x = (x_i) \in R^n$ e $\alpha \in \mathbb{R}$,

$$\alpha x = \alpha(x_1, \ldots, x_n) = (\alpha x_1, \ldots, \alpha x_n)$$

que gozam das propriedades apresentadas no Teorema seguinte.

Teorema

Sejam $x, y, z \in \mathbb{R}^n$, e $\alpha, \beta \in \mathbb{R}$. Então:

(i)
$$x + y = y + x$$
,

(ii)
$$x + (y + z) = (x + y) + z$$
,

(iii)
$$x + 0 = 0 + x = x$$
,

(iv)
$$x + (-x) = (-x) + x = 0$$
,

(v)
$$\alpha(x+y) = \alpha x + \alpha y$$
,

(vi)
$$(\alpha + \beta)x = \alpha x + \beta x$$
,

(vii)
$$(\alpha\beta)x = \alpha(\beta x)$$
,

(viii)
$$1.x = x.1 = x$$
,

Diz-se que \mathbb{R}^n é um espaço vectorial real

Os elementos de \mathbb{R}^n chamam-se vectores e, são normalmente representados por matrizes, tendo-se o

vector coluna
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 e o vector linha $\begin{pmatrix} x_1 & \dots & x_n \end{pmatrix}$

Teorema

Sejam $x, y, z \in \mathbb{R}^n$, e $\alpha, \beta \in \mathbb{R}$. Então:

(i)
$$x + y = y + x$$
,

(ii)
$$x + (y + z) = (x + y) + z$$
,

(iii)
$$x + 0 = 0 + x = x$$
,

(iv)
$$x + (-x) = (-x) + x = 0$$
,

(v)
$$\alpha(x+y) = \alpha x + \alpha y$$
,

(vi)
$$(\alpha + \beta)x = \alpha x + \beta x$$
,

(vii)
$$(\alpha\beta)x = \alpha(\beta x)$$
.

(viii)
$$1.x = x.1 = x$$
,

Diz-se que \mathbb{R}^n é um espaço vectorial real.

Os elementos de \mathbb{R}^n chamam-se vectores e, são normalmente representados por matrizes, tendo-se o

representados por matrizes, tendo-
vector coluna
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

e o vector linha $\begin{pmatrix} x_1 & \dots & x_n \end{pmatrix}$.

outros importantes espaços vectoriais reais

$$R^2 = \left\{ \left(\begin{array}{c} x \\ y \end{array} \right), \quad x, y \in \mathbb{R} \right\}$$

$$R^3 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad x, y, z \in \mathbb{R} \right\}$$

- \hookrightarrow Verificar que R^2 e R^3 são espaços vectoriais reais.
- \hookrightarrow Verificar que alguns dos espaços vectoriais apresentados anteriormente são de facto espaços vectoriais.

Definição

Seja U um subconjunto, não vazio, de um espaço vectorial real V. U diz-se um **subespaço vectorial** de V, se:

- $x + y \in U, \forall x, y \in U$
- $\alpha x \in U, \forall x \in U, \forall \alpha \in \mathbb{R}.$

Exemplos

- O conjunto dos vectores $x = \begin{pmatrix} x_1 \\ 0 \end{pmatrix}$ é um subespaço vectorial real, de
- O conjunto dos vectores $x = \begin{pmatrix} x_1 \\ x_1 \\ x_1 \end{pmatrix}$ é um subespaço vectorial real, de
- \mathbb{R}^3
- \hookrightarrow Diz-se que U é fechado relativamente à operação de adição e multiplicação por um escalar.

Definição

Seja U um subconjunto, não vazio, de um espaço vectorial real V. U diz-se um **subespaço vectorial** de V, se:

- $x + y \in U, \forall x, y \in U$
- $\alpha x \in U, \forall x \in U, \forall \alpha \in \mathbb{R}.$

Exemplos

- O conjunto dos vectores $x = \begin{pmatrix} x_1 \\ 0 \end{pmatrix}$ é um subespaço vectorial real, de \mathbb{R}^2 .
- O conjunto dos vectores $x = \begin{pmatrix} x_1 \\ x_1 \\ x_1 \end{pmatrix}$ é um subespaço vectorial real, de

 \mathbb{R}^3 .

 \hookrightarrow Diz-se que U é fechado relativamente à operação de adição e multiplicação por um escalar.

Definição

Seja U um subconjunto, não vazio, de um espaço vectorial real V. U diz-se um **subespaço vectorial** de V, se:

- $x + y \in U, \forall x, y \in U$
- $\alpha x \in U, \forall x \in U, \forall \alpha \in \mathbb{R}.$

Exemplos

- ullet O conjunto dos vectores $x=\left(egin{array}{c} x_1 \\ 0 \end{array}
 ight)$ é um subespaço vectorial real, de \mathbb{R}^2 .
- O conjunto dos vectores $x = \begin{pmatrix} x_1 \\ x_1 \\ x_1 \end{pmatrix}$ é um subespaço vectorial real, de

 \mathbb{R}^3 .

 \hookrightarrow Diz-se que U é fechado relativamente à operação de adição e multiplicação por um escalar.

... um conjunto que é um subespaço vectorial

Teorema

A intersecção de subespaços vectoriais de um espaço vectorial V é um subespaço de V.

(consideremos somente a intersecção de 2 subespaços; do mesmo modo se demonstrava para mais do 2 subespaços)

- Sejam X e Y dois subespaços de V, então, uma vez que X e Y são subespaços contêm o vector nulo, ou seja, $0 \in X$ e $0 \in Y$, logo $0 \in X \cap Y$; donde $X \cap Y \neq \emptyset$.
- Sejam $x,y \in (X \cap Y)$. Então $x,y \in X$ e $x,y \in Y$ e logo, porque X e Y são subespaços, $x+y \in X$ e $x+y \in Y$. Assim, por definição de intersecção de conjuntos, $x+y \in (X \cap Y)$, como queríamos mostrar.
- Seja $x \in (X \cap Y)$ e $\alpha \in \mathbb{R}$. Então $x \in X$ e $x \in Y$ e logo, porque X e Y são subespaços, $\alpha x \in X$ e $\alpha x \in Y$. Assim, por definição de intersecção de conjuntos, $\alpha x \in (X \cap Y)$, como queríamos mostrar.

... um conjunto que é um subespaço vectorial

Teorema

A intersecção de subespaços vectoriais de um espaço vectorial V é um subespaço de V.

(consideremos somente a intersecção de 2 subespaços; do mesmo modo se demonstrava para mais do 2 subespaços)

- Sejam X e Y dois subespaços de V, então, uma vez que X e Y são subespaços contêm o vector nulo, ou seja, $0 \in X$ e $0 \in Y$, logo $0 \in X \cap Y$; donde $X \cap Y \neq \emptyset$.
- Sejam $x,y \in (X \cap Y)$. Então $x,y \in X$ e $x,y \in Y$ e logo, porque X e Y são subespaços, $x+y \in X$ e $x+y \in Y$. Assim, por definição de intersecção de conjuntos, $x+y \in (X \cap Y)$, como queríamos mostrar.
- Seja $x \in (X \cap Y)$ e $\alpha \in \mathbb{R}$. Então $x \in X$ e $x \in Y$ e logo, porque X e Y são subespaços, $\alpha x \in X$ e $\alpha x \in Y$. Assim, por definição de intersecção de conjuntos, $\alpha x \in (X \cap Y)$, como queríamos mostrar.

... um conjunto que não é um subespaço vectorial

Em \mathbb{R}^2 , sejam X be Y dois subespaços reais definidos por:

$$X = \left\{ \left(\begin{array}{c} x \\ y \end{array} \right) : y = 0 \right\}$$

$$Y = \left\{ \left(\begin{array}{c} x \\ y \end{array} \right) : x = 0 \right\}$$

O conjunto $X \cup Y$ não é um subespaço vectorial real de \mathbb{R}^2 .

Note-se que, por exemplo,

$$a = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \in X$$

$$e \ b = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \in Y,$$

$$mas \ a + b = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \notin X \cup Y$$

 $X \cup Y$ não é fechado relativamente à adicão.

... um conjunto que não é um subespaço vectorial

Em \mathbb{R}^2 , sejam X be Y dois subespaços reais definidos por:

$$X = \left\{ \left(\begin{array}{c} x \\ y \end{array} \right) : y = 0 \right\}$$

$$Y = \left\{ \left(\begin{array}{c} x \\ y \end{array} \right) : x = 0 \right\}$$

O conjunto $X \cup Y$ não é um subespaço vectorial real de \mathbb{R}^2 . Note-se que, por exemplo,

$$a=\left(\begin{array}{c}1\\0\end{array}\right)\in X$$

e
$$b = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \in Y$$
,

$$\mathsf{mas}\ a+b=\left(\begin{array}{c}1\\1\end{array}\right)\notin X\cup Y$$

 $X \cup Y$ não é fechado relativamente à adição.

... uma definição muito importante

Em
$$\mathbb{R}^2$$
 sejam $e_1=\begin{pmatrix}1\\0\end{pmatrix}$, $e_2=\begin{pmatrix}0\\1\end{pmatrix}$ e $x=\begin{pmatrix}5\\7\end{pmatrix}$. Note-se que:

$$x = 5e_1 + 7e_2$$
.

Diz-se que x é **combinação linear dos vectores** e_1 e e_2 .

Definição

Sejam $x_1, x_2 ... x_n$ vectores de um espaço vectorial real V. Diz-se que $x \in V$ é **combinação linear** dos vectores dos $x_1, x_2 ... x_n$ se

$$x = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n,$$

 $com \alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{R}.$

Exemplo Se
$$f_1=\begin{pmatrix}1\\1\end{pmatrix}$$
 e $f_2=\begin{pmatrix}1\\-1\end{pmatrix}$ tem-se que:
$$x=\begin{pmatrix}4\\-3\end{pmatrix}=\frac{1}{2}f_1+\frac{7}{2}f_2,$$

ou seja

x é combinação linear dos vectores f_1 e f_2 .

Se $x_1, x_2, \dots x_n$ vectores de um espaço vectorial V.

Então U, o conjunto formado por todas as combinações lineares destes vectores é um subespaço de V.

- *U* não é vazio, $0 = 0x_1 + 0x_2 + \cdots + 0x_n$
- $u, v \in U$ tem-se

$$u = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n$$
 $v = \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$

$$u + v = (\alpha_1 + \beta_1)x_1 + (\alpha_2 + \beta_2)x_2 + \dots + (\alpha_n + \beta_n)x_n$$

$$\alpha u = (\alpha \alpha_1)x_1 + (\alpha \alpha_2)x_2 + \dots + (\alpha \alpha_n)x_n$$

é o subespaço gerado por $x_1, x_2, \dots x_n$

$$J = \langle x_1, x_2, \dots x_n \rangle$$

Se $x_1, x_2, \dots x_n$ vectores de um espaço vectorial V.

Então U, o conjunto formado por todas as combinações lineares destes vectores é um subespaço de V.

- *U* não é vazio, $0 = 0x_1 + 0x_2 + \cdots + 0x_n$
- $u, v \in U$ tem-se

$$u = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n$$
 $v = \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$

$$u + v = (\alpha_1 + \beta_1)x_1 + (\alpha_2 + \beta_2)x_2 + \dots + (\alpha_n + \beta_n)x_n$$

Logo x + y é combinação linear de $x_1, x_2, \dots x_n$, logo pertence a U.

Tem-se também que

$$\alpha u = (\alpha \alpha_1)x_1 + (\alpha \alpha_2)x_2 + \dots + (\alpha \alpha_n)x_n$$

donde $\alpha u \in U$.

U é um subespaço vectorial de V é o subespaço gerado por $x_1, x_2, \ldots x_n$

$$J = \langle x_1, x_2, \dots x_n \rangle$$

Se $x_1, x_2, \dots x_n$ vectores de um espaço vectorial V.

Então U, o conjunto formado por todas as combinações lineares destes vectores é um subespaço de V.

- *U* não é vazio, $0 = 0x_1 + 0x_2 + \cdots + 0x_n$
- $u, v \in U$ tem-se

$$u = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n \qquad v = \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$$

então

$$u + v = (\alpha_1 + \beta_1)x_1 + (\alpha_2 + \beta_2)x_2 + \dots + (\alpha_n + \beta_n)x_n$$

Logo x + y é combinação linear de $x_1, x_2, \dots x_n$, logo pertence a U.

Tem-se também que

$$\alpha u = (\alpha \alpha_1)x_1 + (\alpha \alpha_2)x_2 + \dots + (\alpha \alpha_n)x_n$$

donde $\alpha u \in U$.

U é um subespaço vectorial de V é o subespaço gerado por $x_1, x_2, \dots x_n$

$$U = \langle x_1, x_2 \rangle$$

Se $x_1, x_2, \dots x_n$ vectores de um espaço vectorial V.

Então U, o conjunto formado por todas as combinações lineares destes vectores é um subespaço de V.

- *U* não é vazio, $0 = 0x_1 + 0x_2 + \cdots + 0x_n$
- $u, v \in U$ tem-se

$$u = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n$$
 $v = \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$ então

$$u + v = (\alpha_1 + \beta_1)x_1 + (\alpha_2 + \beta_2)x_2 + \cdots + (\alpha_n + \beta_n)x_n$$

Logo x + y é combinação linear de $x_1, x_2, \dots x_n$, logo pertence a U.

Tem-se também que

$$\alpha u = (\alpha \alpha_1)x_1 + (\alpha \alpha_2)x_2 + \cdots + (\alpha \alpha_n)x_n$$

donde $\alpha u \in U$.

U é um subespaço vectorial de V é o subespaço gerado por $x_1, x_2, \dots x_n$

Se $x_1, x_2, \dots x_n$ vectores de um espaço vectorial V.

Então U, o conjunto formado por todas as combinações lineares destes vectores é um subespaço de V.

- *U* não é vazio, $0 = 0x_1 + 0x_2 + \cdots + 0x_n$
- $u, v \in U$ tem-se

$$u = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n$$
 $v = \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$ então

$$u + v = (\alpha_1 + \beta_1)x_1 + (\alpha_2 + \beta_2)x_2 + \cdots + (\alpha_n + \beta_n)x_n$$

Logo x + y é combinação linear de $x_1, x_2, \dots x_n$, logo pertence a U.

Tem-se também que

$$\alpha u = (\alpha \alpha_1)x_1 + (\alpha \alpha_2)x_2 + \cdots + (\alpha \alpha_n)x_n$$

donde $\alpha u \in U$.

U é um subespaço vectorial de V é o subespaço gerado por $x_1, x_2, \dots x_n$

$$U = \langle x_1, x_2, \dots x_n \rangle$$

Exemplo

O espaço gerado pelo vector

$$\left(\begin{array}{c}1\\0\end{array}\right)$$

é

$$U = \left\{ \left(\begin{array}{c} x_1 \\ 0 \end{array} \right) : x_1 \in \mathbb{R} \right\}$$

subespaço de \mathbb{R}^2 cujos vectores têm a segunda componente nula.

Escrevemos:
$$U = < \begin{pmatrix} 1 \\ 0 \end{pmatrix} >$$

Que vectores constituem um sistema de geradores de \mathbb{R}^2 ?

Seja
$$\begin{pmatrix} x \\ y \end{pmatrix} \in R^2$$
 temos que:

$$\left(\begin{array}{c} x \\ y \end{array}\right) = x \left(\begin{array}{c} 1 \\ 0 \end{array}\right) + y \left(\begin{array}{c} 0 \\ 1 \end{array}\right), \qquad x,y \in \mathbb{R}$$

logo

$$\begin{split} \mathbb{R}^2 = < \left(\begin{array}{c} 1 \\ 0 \end{array} \right), \left(\begin{array}{c} 0 \\ 1 \end{array} \right) > = < e_1, e_2 > \\ \text{considerando } e_1 = \left(\begin{array}{c} 1 \\ 0 \end{array} \right) \text{ e } e_2 = \left(\begin{array}{c} 0 \\ 1 \end{array} \right). \end{split}$$

Que subespaço geram os vectores $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ e $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$?

$$S = < \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right), \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array}\right) > \\ = \left\{\alpha \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right) + \beta \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array}\right), \alpha, \beta \in \mathbb{R} \right\}$$

$$\mathsf{tendo-se}\ S = \left\{ \left(\begin{array}{c} \alpha \\ 0 \\ \beta \end{array} \right), \alpha, \beta \in \mathbb{R} \right\}$$

Que subespaço geram os vectores $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ e $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$?

$$S = < \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} > = \left\{ \alpha \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \alpha, \beta \in \mathbb{R} \right\}$$

$$\text{tendo-se } S = \left\{ \left(\begin{array}{c} \alpha \\ 0 \\ \beta \end{array} \right), \alpha, \beta \in \mathbb{R} \right\}$$

Que subespaço geram os vectores $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ e $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$?

$$S = < \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right), \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right) > \\ = \left\{ \alpha \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right) + \beta \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right), \alpha, \beta \in \mathbb{R} \right\}$$

$$\mbox{tendo-se } S = \left\{ \left(\begin{array}{c} \alpha \\ \mathbf{0} \\ \beta \end{array} \right), \alpha, \beta \in \mathbb{R} \right\}$$

Que subespaço geram os vectores
$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
 e $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$?

$$S = < \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} > = \left\{ \alpha \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \alpha, \beta \in \mathbb{R} \right\}$$

tendo-se
$$S = \left\{ \begin{pmatrix} \alpha \\ 0 \\ \beta \end{pmatrix}, \alpha, \beta \in \mathbb{R} \right\}$$

Se $a_1, a_2, \ldots a_n$ são vectores de um espaço vectorial V e se $b \in V$ é combinação linear de $a_1, a_2, \ldots a_n$, então o subespaço gerado pelos vectores $a_1, a_2, \ldots a_n$ coincide com o espaço gerado pelos vectores $a_1, a_2, \ldots a_n, b$.

Demonstração

Seja
$$U=< a_1, a_2, \ldots a_n>$$
 e $U'=< a_1, a_2, \ldots a_n, b>$.
Vejamos que $U=U'$, ou seja que, $U\subset U'$ e $U'\subset U$.

U ⊂ U'

seja
$$x \in U$$
 então $x = \alpha_1 a_1 + \alpha_2 a_2 + \cdots + \alpha_n a_n + 0b \log x \in U'$

\bullet $U' \subset U$

seja
$$x \in U'$$
 então $x = \alpha_1 a_1 + \alpha_2 a_2 + \cdots + \alpha_n a_n + \alpha_{n+1} b$ mas b é combinação linear de $a_1, a_2, \ldots a_n$, ou seja $b = \beta_1 a_1 + \beta_2 a_2 + \cdots + \beta_n a_n$

Se $a_1, a_2, \ldots a_n$ são vectores de um espaço vectorial V e se $b \in V$ é combinação linear de $a_1, a_2, \ldots a_n$, então o subespaço gerado pelos vectores $a_1, a_2, \ldots a_n$ coincide com o espaço gerado pelos vectores $a_1, a_2, \ldots a_n$, b.

Demonstração:

Seja
$$U = \langle a_1, a_2, \dots a_n \rangle$$
 e $U' = \langle a_1, a_2, \dots a_n, b \rangle$.
Vejamos que $U = U'$, ou seja que, $U \subset U'$ e $U' \subset U$.

U ⊂ U'

seja
$$x \in U$$
 então $x = \alpha_1 a_1 + \alpha_2 a_2 + \cdots + \alpha_n a_n + 0b \log x \in U'$.

 \bullet $U' \subset U$

seja
$$x \in U'$$
 então $x = \alpha_1 a_1 + \alpha_2 a_2 + \cdots + \alpha_n a_n + \alpha_{n+1} b$ mas b é combinação linear de $a_1, a_2, \ldots a_n$, ou seja $b = \beta_1 a_1 + \beta_2 a_2 + \cdots + \beta_n a_n$

$$\begin{array}{ll}
x = & \alpha_{1}a_{1} + \alpha_{2}a_{2} + \dots + \alpha_{n}a_{n} + \alpha_{n+1}(\beta_{1}a_{1} + \beta_{2}a_{2} + \dots + \beta_{n}a_{n}) \\
= & (\alpha_{1} + \alpha_{n+1}\beta_{1})a_{1} + (\alpha_{2} + \alpha_{n+1}\beta_{2})a_{2} + \dots + (\alpha_{n} + \alpha_{n+1}\beta_{n})a_{n} \\
\text{ogo } x \in U.
\end{array}$$

Se $a_1, a_2, \ldots a_n$ são vectores de um espaço vectorial V e se $b \in V$ é combinação linear de $a_1, a_2, \ldots a_n$, então o subespaço gerado pelos vectores $a_1, a_2, \ldots a_n$ coincide com o espaço gerado pelos vectores $a_1, a_2, \ldots a_n$, b.

Demonstração:

Seja
$$U = \langle a_1, a_2, \dots a_n \rangle$$
 e $U' = \langle a_1, a_2, \dots a_n, b \rangle$.

Vejamos que U=U', ou seja que, $U\subset U'$ e $U'\subset U$.

U ⊂ U'

seja
$$x \in U$$
 então $x = \alpha_1 a_1 + \alpha_2 a_2 + \cdots + \alpha_n a_n + 0b \log x \in U'$.

•
$$U' \subset U$$

seja
$$x \in U'$$
 então $x = \alpha_1 a_1 + \alpha_2 a_2 + \dots + \alpha_n a_n + \alpha_{n+1} b$

mas
$$b$$
 e combinação linear de $a_1, a_2, \ldots a_n$, ou seja

$$b = \beta_1 a_1 + \beta_2 a_2 + \cdots + \beta_n a_r$$

Se $a_1, a_2, \ldots a_n$ são vectores de um espaço vectorial V e se $b \in V$ é combinação linear de $a_1, a_2, \ldots a_n$, então o subespaço gerado pelos vectores $a_1, a_2, \ldots a_n$ coincide com o espaço gerado pelos vectores $a_1, a_2, \ldots a_n$, b.

Demonstração:

Seja
$$U = \langle a_1, a_2, \dots a_n \rangle$$
 e $U' = \langle a_1, a_2, \dots a_n, b \rangle$.

Vejamos que U=U', ou seja que, $U\subset U'$ e $U'\subset U$.

• $U \subset U'$

seja
$$x \in U$$
 então $x = \alpha_1 a_1 + \alpha_2 a_2 + \cdots + \alpha_n a_n + 0b \log x \in U'$.

$$\bullet$$
 $U' \subset U$

seja
$$x \in U'$$
 então $x = \alpha_1 a_1 + \alpha_2 a_2 + \cdots + \alpha_n a_n + \alpha_{n+1} b$

mas
$$b$$
 è combinação linear de $a_1, a_2, \ldots a_n$, ou seja

$$b = \beta_1 a_1 + \beta_2 a_2 + \cdots + \beta_n a_n$$

$$\begin{array}{ll}
x = & \alpha_1 a_1 + \alpha_2 a_2 + \dots + \alpha_n a_n + \alpha_{n+1} (\beta_1 a_1 + \beta_2 a_2 + \dots + \beta_n a_n) \\
&= & (\alpha_1 + \alpha_{n+1} \beta_1) a_1 + (\alpha_2 + \alpha_{n+1} \beta_2) a_2 + \dots + (\alpha_n + \alpha_{n+1} \beta_n) a_n \\
\alpha_1 \alpha_2 \alpha_3 \alpha_4 \in U
\end{array}$$

Se $a_1, a_2, \ldots a_n$ são vectores de um espaço vectorial V e se $b \in V$ é combinação linear de $a_1, a_2, \ldots a_n$, então o subespaço gerado pelos vectores $a_1, a_2, \ldots a_n$ coincide com o espaço gerado pelos vectores $a_1, a_2, \ldots a_n$, b.

Demonstração:

Seja
$$U = \langle a_1, a_2, \dots a_n \rangle$$
 e $U' = \langle a_1, a_2, \dots a_n, b \rangle$.

Vejamos que U=U', ou seja que, $U\subset U'$ e $U'\subset U$.

 \bullet $U \subset U'$

seja
$$x \in U$$
 então $x = \alpha_1 a_1 + \alpha_2 a_2 + \cdots + \alpha_n a_n + 0b \log x \in U'$.

$$\bullet$$
 $U' \subset U$

seja
$$x \in U'$$
 então $x = \alpha_1 a_1 + \alpha_2 a_2 + \dots + \alpha_n a_n + \alpha_{n+1} b$

mas
$$b$$
 e combinação linear de $a_1, a_2, \ldots a_n$, ou seja

$$b = \beta_1 a_1 + \beta_2 a_2 + \cdots + \beta_n a_r$$

$$\begin{array}{ll}
x = & \alpha_1 a_1 + \alpha_2 a_2 + \dots + \alpha_n a_n + \alpha_{n+1} (\beta_1 a_1 + \beta_2 a_2 + \dots + \beta_n a_n) \\
&= & (\alpha_1 + \alpha_{n+1} \beta_1) a_1 + (\alpha_2 + \alpha_{n+1} \beta_2) a_2 + \dots + (\alpha_n + \alpha_{n+1} \beta_n) a_n \\
\alpha_0 x \in U
\end{array}$$

Se $a_1, a_2, \ldots a_n$ são vectores de um espaço vectorial V e se $b \in V$ é combinação linear de $a_1, a_2, \ldots a_n$, então o subespaço gerado pelos vectores $a_1, a_2, \ldots a_n$ coincide com o espaço gerado pelos vectores $a_1, a_2, \ldots a_n$, b.

Demonstração:

Seja
$$U = \langle a_1, a_2, \dots a_n \rangle$$
 e $U' = \langle a_1, a_2, \dots a_n, b \rangle$.

Vejamos que U=U', ou seja que, $U\subset U'$ e $U'\subset U$.

 $\bullet \ \ U \subset U'$

seja
$$x \in U$$
 então $x = \alpha_1 a_1 + \alpha_2 a_2 + \cdots + \alpha_n a_n + 0b \log x \in U'$.

U' ⊂ U

seja
$$x \in U'$$
 então $x = \alpha_1 a_1 + \alpha_2 a_2 + \cdots + \alpha_n a_n + \alpha_{n+1} b$

mas b é combinação linear de $a_1, a_2, \ldots a_n$, ou seja

$$b = \beta_1 a_1 + \beta_2 a_2 + \dots + \beta_n a_n$$

$$\begin{array}{ll} x = & \alpha_{1}a_{1} + \alpha_{2}a_{2} + \dots + \alpha_{n}a_{n} + \alpha_{n+1}(\beta_{1}a_{1} + \beta_{2}a_{2} + \dots + \beta_{n}a_{n}) \\ = & (\alpha_{1} + \alpha_{n+1}\beta_{1})a_{1} + (\alpha_{2} + \alpha_{n+1}\beta_{2})a_{2} + \dots + (\alpha_{n} + \alpha_{n+1}\beta_{n})a_{n} \\ \text{ogo} \ x \in U \end{array}$$

Se $a_1, a_2, \ldots a_n$ são vectores de um espaço vectorial V e se $b \in V$ é combinação linear de $a_1, a_2, \ldots a_n$, então o subespaço gerado pelos vectores $a_1, a_2, \ldots a_n$ coincide com o espaço gerado pelos vectores $a_1, a_2, \ldots a_n$, b.

Demonstração:

Seja
$$U = \langle a_1, a_2, \dots a_n \rangle$$
 e $U' = \langle a_1, a_2, \dots a_n, b \rangle$.

Vejamos que U = U', ou seja que, $U \subset U'$ e $U' \subset U$.

 \bullet $U \subset U'$

seja
$$x \in U$$
 então $x = \alpha_1 a_1 + \alpha_2 a_2 + \cdots + \alpha_n a_n + 0b \log x \in U'$.

U' ⊂ U

seja
$$x \in U'$$
 então $x = \alpha_1 a_1 + \alpha_2 a_2 + \cdots + \alpha_n a_n + \alpha_{n+1} b_n$

mas b é combinação linear de $a_1, a_2, \ldots a_n$, ou seja

$$b = \beta_1 a_1 + \beta_2 a_2 + \dots + \beta_n a_n$$

donde, se pode escrever

$$\begin{array}{ll}
x = & \alpha_1 a_1 + \alpha_2 a_2 + \dots + \alpha_n a_n + \alpha_{n+1} (\beta_1 a_1 + \beta_2 a_2 + \dots + \beta_n a_n) \\
&= & (\alpha_1 + \alpha_{n+1} \beta_1) a_1 + (\alpha_2 + \alpha_{n+1} \beta_2) a_2 + \dots + (\alpha_n + \alpha_{n+1} \beta_n) a_n \\
\text{ogo } x \in U.
\end{array}$$

Se $a_1, a_2, \ldots a_n$ são vectores de um espaço vectorial V e se $b \in V$ é combinação linear de $a_1, a_2, \ldots a_n$, então o subespaço gerado pelos vectores $a_1, a_2, \ldots a_n$ coincide com o espaço gerado pelos vectores $a_1, a_2, \ldots a_n$, b.

Demonstração:

Seja
$$U = \langle a_1, a_2, \dots a_n \rangle$$
 e $U' = \langle a_1, a_2, \dots a_n, b \rangle$.

Vejamos que U=U', ou seja que, $U\subset U'$ e $U'\subset U$.

 $\bullet \ U \subset U'$

seja
$$x \in U$$
 então $x = \alpha_1 a_1 + \alpha_2 a_2 + \cdots + \alpha_n a_n + 0b \log x \in U'$.

U' ⊂ U

seja
$$x \in U'$$
 então $x = \alpha_1 a_1 + \alpha_2 a_2 + \cdots + \alpha_n a_n + \alpha_{n+1} b$

mas b é combinação linear de $a_1, a_2, \ldots a_n$, ou seja

$$b = \beta_1 a_1 + \beta_2 a_2 + \dots + \beta_n a_n$$

donde, se pode escrever

$$x = \alpha_{1}a_{1} + \alpha_{2}a_{2} + \dots + \alpha_{n}a_{n} + \alpha_{n+1}(\beta_{1}a_{1} + \beta_{2}a_{2} + \dots + \beta_{n}a_{n})$$

$$= (\alpha_{1} + \alpha_{n+1}\beta_{1})a_{1} + (\alpha_{2} + \alpha_{n+1}\beta_{2})a_{2} + \dots + (\alpha_{n} + \alpha_{n+1}\beta_{n})a_{n}$$
or $x \in U$

Se $a_1, a_2, \ldots a_n$ são vectores de um espaço vectorial V e se $b \in V$ é combinação linear de $a_1, a_2, \ldots a_n$, então o subespaço gerado pelos vectores $a_1, a_2, \ldots a_n$ coincide com o espaço gerado pelos vectores $a_1, a_2, \ldots a_n, b$.

Demonstração:

Seja
$$U = \langle a_1, a_2, \dots a_n \rangle$$
 e $U' = \langle a_1, a_2, \dots a_n, b \rangle$.

Vejamos que U=U', ou seja que, $U\subset U'$ e $U'\subset U$.

• $U \subset U'$

seja
$$x \in U$$
 então $x = \alpha_1 a_1 + \alpha_2 a_2 + \cdots + \alpha_n a_n + 0b \log x \in U'$.

U' ⊂ U

seja
$$x \in U'$$
 então $x = \alpha_1 a_1 + \alpha_2 a_2 + \cdots + \alpha_n a_n + \alpha_{n+1} b$

mas b é combinação linear de $a_1, a_2, \ldots a_n$, ou seja

$$b = \beta_1 a_1 + \beta_2 a_2 + \dots + \beta_n a_n$$

donde, se pode escrever

$$x = \alpha_{1}a_{1} + \alpha_{2}a_{2} + \dots + \alpha_{n}a_{n} + \alpha_{n+1}(\beta_{1}a_{1} + \beta_{2}a_{2} + \dots + \beta_{n}a_{n})$$

$$= (\alpha_{1} + \alpha_{n+1}\beta_{1})a_{1} + (\alpha_{2} + \alpha_{n+1}\beta_{2})a_{2} + \dots + (\alpha_{n} + \alpha_{n+1}\beta_{n})a_{n}$$

$$\log_{0} x \in U.$$

... uma definição mesmo muito importante.

Definição

Os vectores x_1, x_2, \dots, x_n de um espaço vectorial V são linearmente independentes se

$$\alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_n x_n = 0$$

se verifica apenas quando $\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0$.

Exemplo Os vectores $e_1=\begin{pmatrix}1\\0\end{pmatrix}$ e $e_2=\begin{pmatrix}0\\1\end{pmatrix}$ de \mathbb{R}^2 são linearmente independentes.

... uma definição mesmo muito importante.

Definição

Os vectores x_1, x_2, \dots, x_n de um espaço vectorial V são linearmente independentes se

$$\alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_n x_n = 0$$

se verifica apenas quando $\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0$.

Exemplo Os vectores $e_1=\begin{pmatrix}1\\0\end{pmatrix}$ e $e_2=\begin{pmatrix}0\\1\end{pmatrix}$ de \mathbb{R}^2 são linearmente independentes.

Exemplo Os vectores $f_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ e $f_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ e $f_3 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ de \mathbb{R}^2 não são linearmente independentes.

Note-se que : $-2f_1 - 3f_2 + f_3 = 0$.

Os vectores x_1, x_2, \ldots, x_n de um espaço vectorial V são linearmente dependentes se e só se um dos vectores pode ser escrito como combinação linear dos restantes.

Demonstração:

 \Rightarrow

Sejam x_1, x_2, \dots, x_n vectores linearmente dependentes. Então tem-se

$$\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n = 0$$

com, pelo menos um, dos coeficientes diferente de zero.

Suponhamos que $\alpha_1 \neq 0$.

Então podemos escrever:

$$x_1 = -\frac{\alpha_2}{\alpha_1} x_2 - \dots - \frac{\alpha_n}{\alpha_1} x_r$$

logo x_1 é combinação linear dos restantes vectores.

Os vectores x_1, x_2, \ldots, x_n de um espaço vectorial V são linearmente dependentes se e só se um dos vectores pode ser escrito como combinação linear dos restantes.

Demonstração:

 \Rightarrow

Sejam x_1, x_2, \dots, x_n vectores linearmente dependentes. Então tem-se

$$\alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_n x_n = 0$$

com, pelo menos um, dos coeficientes diferente de zero.

Suponhamos que $\alpha_1 \neq 0$.

Então podemos escrever:

$$x_1 = -\frac{\alpha_2}{\alpha_1} x_2 - \dots - \frac{\alpha_n}{\alpha_1} x_n$$

logo x_1 é combinação linear dos restantes vectores.

 \Leftarrow

Sejam $x_1, x_2, ..., x_n$ vectores e, consideremos que pelo menos um deles, por exemplo x_1 é combinação linear dos restantes vectores; isto é:

$$x_1 = \alpha_2 x_2 + \dots + \alpha_n x_n$$

tendo-se então

$$x_1 - \alpha_2 x_2 - \cdots - \alpha_n x_n = 0$$

donde, se tem uma combinação linear nula com pelo menos um dos coeficientes (o de x_1) não nulo.

algumas observações importantes.

- \hookrightarrow Qualquer conjunto singular $\{x\}$ de um espaço vectorial V, sendo $x \in V$, $x \neq 0$, é linearmente independente.
- \hookrightarrow Nenhum conjunto de vectores linearmente independentes, de um espaço vectorial V, contém o vector nulo.
- \hookrightarrow Para matrizes $m \times n$, em escada de linhas tem-se:
- as linhas não nulas são linearmente independentes em \mathbb{R}^n ,
- o número de linhas independentes e o número de colunas independentes são ambos iguais à característica da matriz.

Uma definição muito importante.

Procurando combinar as noções de conjunto de vectores linearmente independentes e geradores obtemos a seguinte definição.

Definição

Os vectores x_1, x_2, \dots, x_n de um espaço vectorial V formam uma base de V se são linearmente independentes e geram V.

• O conjunto
$$\left\{ \left(\begin{array}{c} 1 \\ 0 \end{array} \right), \left(\begin{array}{c} 0 \\ 1 \end{array} \right) \right\}$$
 constitui uma base de \mathbb{R}^2 .

• O conjunto $\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}$ constitui uma base de \mathbb{R}^3 .

• O conjunto $\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$ constitui uma base de \mathbb{R}^2 .

Uma definição muito importante.

Procurando combinar as noções de conjunto de vectores linearmente independentes e geradores obtemos a seguinte definição.

Definição

Os vectores x_1, x_2, \dots, x_n de um espaço vectorial V formam uma base de V se são linearmente independentes e geram V.

Exemplos:

- O conjunto $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ constitui uma base de \mathbb{R}^2 .
- O conjunto $\left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$ constitui uma base de \mathbb{R}^3 .
- O conjunto $\left\{ \left(\begin{array}{c} 1 \\ 1 \end{array} \right), \left(\begin{array}{c} 1 \\ -1 \end{array} \right) \right\}$ constitui uma base de \mathbb{R}^2 .

Se um espaço vectorial V possui uma base com um número finito de elementos, então todas as bases de V têm o mesmo número de elementos.

Ao número de vectores de uma base de um espaço V, chama-se dimensão do espaço V e denota-se por $\dim(V)$.

- $dim(\mathbb{R}^2) = 2$
- $dim(\mathbb{R}^3) = 3$
- $dim(\mathbb{R}^n) = n$
- se $V = \{0\}$ então dim(V) = 0.
- se $V = \left\{ \left(\begin{array}{cc} \alpha & \beta \\ -\beta & \alpha \end{array} \right), \alpha, \beta \in \mathbb{R} \right\}$ então $\dim(V) = 2$.

note-se que
$$V=<\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)>$$
 e que a e b , com $a=\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right), b=\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)$, são linearmente independentes.

algumas observações importantes.

- \hookrightarrow Se V é um espaço vectorial, de dimensão n, então qualquer conjunto de n vectores linearmente independentes constitui uma base de V.
- \hookrightarrow Se V é um espaço vectorial, de dimensão n, qualquer subconjunto de V contendo mais do que n vectores é um conjunto de vectores linearmente dependente.

Espaço das Linhas e Espaço das Colunas de uma matriz

Definição

Seja A uma matriz de ordem $m \times n$. Designa-se por espaço das colunas da matriz A o subespaço de \mathbb{R}^m gerado pelas colunas da matriz A.

Exemplo

Seja
$$A = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 2 & -1 & 2 & 1 \\ 0 & 1 & 1 & 2 \end{pmatrix}$$
 matriz de ordem 3×4

O espaço das colunas de A é um subespaço de \mathbb{R}^3 , gerado pelas colunas da matriz A, ou seja é formado pelos vectores que são combinação lineares das colunas de A, isto é:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + \gamma \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} + \delta \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \qquad \alpha, \beta, \gamma, \delta \in \mathbb{R}$$

Espaço das Linhas e Espaço das Colunas de uma matriz

Definição

Seja A uma matriz de ordem $m \times n$. Designa-se por espaço das colunas da matriz A o subespaço de \mathbb{R}^m gerado pelas colunas da matriz A.

Exemplo

Seja
$$A = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 2 & -1 & 2 & 1 \\ 0 & 1 & 1 & 2 \end{pmatrix}$$
 matriz de ordem 3×4 .

O espaço das colunas de A é um subespaço de \mathbb{R}^3 , gerado pelas colunas da matriz A, ou seja é formado pelos vectores que são combinação lineares das colunas de A, isto é:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + \gamma \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} + \delta \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \qquad \alpha, \beta, \gamma, \delta \in \mathbb{R}$$

Definição

Seja A uma matriz de ordem $m \times n$. Designa-se por espaço das linhas da matriz A o subespaço de \mathbb{R}^n gerado pelas linhas da matriz A.

Definição

Seja A uma matriz de ordem $m \times n$.

- Designa-se por característica de linha da matriz A a dimensão do espaço gerado pelas linhas de A, e que se representa por $r_I(A)$ (que é o n máximo de linhas linearmente independentes).
- Designa-se por característica de coluna da matriz A a dimensão do espaço gerado pelas colunas de A, que se representa por $r_c(A)$ (que é o n máximo de colunas linearmente independentes).

Nota: Operações elementares nas colunas de uma matriz não alteram a característica de linha da matriz. Mais ainda $r_l(A) = r_c(A) = c(A)$.

Exemplo Se
$$A = \begin{pmatrix} 1 & 0 & 0 & 3 & 0 & 1 & -2 \\ 0 & 1 & 0 & 2 & 0 & 0 & -3 \\ 0 & 0 & 1 & -2 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
 tem-se $r_l(A) = 4 = r_c(A)$

Definição

Seja A uma matriz de ordem $m \times n$. Designa-se por espaço das linhas da matriz A o subespaço de \mathbb{R}^n gerado pelas linhas da matriz A.

Definição

Seja A uma matriz de ordem $m \times n$.

- Designa-se por característica de linha da matriz A a dimensão do espaço gerado pelas linhas de A, e que se representa por $r_I(A)$ (que é o n máximo de linhas linearmente independentes).
- Designa-se por característica de coluna da matriz A a dimensão do espaço gerado pelas colunas de A, que se representa por $r_c(A)$ (que é o n máximo de colunas linearmente independentes).

Nota: Operações elementares nas colunas de uma matriz não alteram a característica de linha da matriz. Mais ainda $r_I(A) = r_c(A) = c(A)$.

Exemplo Se
$$A = \begin{pmatrix} 1 & 0 & 0 & 3 & 0 & 1 & -2 \\ 0 & 1 & 0 & 2 & 0 & 0 & -3 \\ 0 & 0 & 1 & -2 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
 tem-se $r_l(A) = 4 = r_c(A)$

Definição

Seja A uma matriz de ordem $m \times n$. Designa-se por espaço das linhas da matriz A o subespaço de \mathbb{R}^n gerado pelas linhas da matriz A.

Definição

Seja A uma matriz de ordem $m \times n$.

- Designa-se por característica de linha da matriz A a dimensão do espaço gerado pelas linhas de A, e que se representa por $r_I(A)$ (que é o n máximo de linhas linearmente independentes).
- Designa-se por característica de coluna da matriz A a dimensão do espaço gerado pelas colunas de A, que se representa por $r_c(A)$ (que é o n máximo de colunas linearmente independentes).

Nota: Operações elementares nas colunas de uma matriz não alteram a característica de linha da matriz. Mais ainda $r_I(A) = r_c(A) = c(A)$.

Exemplo Se
$$A = \begin{pmatrix} 1 & 0 & 0 & 3 & 0 & 1 & -2 \\ 0 & 1 & 0 & 2 & 0 & 0 & -3 \\ 0 & 0 & 1 & -2 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
 tem-se $r_l(A) = 4 = r_c(A)$

Seja
$$A = \begin{pmatrix} 1 & 2 & 1 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 uma **matriz em escada de linhas**, de ordem 3×4 .

 \mathbb{R}^3).

subespaço de \mathbb{R}^4).

Seja
$$A = \begin{pmatrix} 1 & 2 & 1 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 uma **matriz em escada de linhas**, de ordem 3×4 .

O espaço das colunas da matriz A tem dimensão 2 (e é um subespaço de \mathbb{R}^3).

subespaço de \mathbb{R}^4).

Seja
$$A = \begin{pmatrix} 1 & 2 & 1 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 uma **matriz em escada de linhas**, de ordem 3×4 .

O espaço das colunas da matriz A tem dimensão 2 (e é um subespaço de \mathbb{R}^3).

Uma base consiste nas colunas que contêm elementos não nulos da diagonal principal: (1,0,0),(1,1,0).

O espaço das linhas da matriz A tem também dimensão 2 (e é um subespaço de \mathbb{R}^4).

Uma base consiste nas linhas não nulas (1, 2, 1, 2), (0, 0, 1, 1).

Seja
$$A = \begin{pmatrix} 1 & 2 & 1 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 uma **matriz em escada de linhas**, de ordem 3×4 .

O espaço das colunas da matriz A tem dimensão 2 (e é um subespaço de \mathbb{R}^3).

Uma base consiste nas colunas que contêm elementos não nulos da diagonal principal: (1,0,0),(1,1,0).

O espaço das linhas da matriz A tem também dimensão 2 (e é um subespaço de \mathbb{R}^4).

Uma base consiste nas linhas não nulas (1, 2, 1, 2), (0, 0, 1, 1)

Seja
$$A = \begin{pmatrix} 1 & 2 & 1 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 uma **matriz em escada de linhas**, de ordem 3×4 .

O espaço das colunas da matriz A tem dimensão 2 (e é um subespaço de \mathbb{R}^3).

Uma base consiste nas colunas que contêm elementos não nulos da diagonal principal: (1,0,0),(1,1,0).

O espaço das linhas da matriz A tem também dimensão 2 (e é um subespaço de \mathbb{R}^4).

Uma base consiste nas linhas não nulas (1, 2, 1, 2), (0, 0, 1, 1).

Teorema

Seja Ax = 0 um sistema homogéneo de m equações a n incógnitas. O con^{junto} das soluções deste sistema constitui um subespaço linear de \mathbb{R}^n .

Demonstração: As soluções de Ax = 0 são soluções de R^n .

(i) provar que o subconjunto das soluções é não vazio.

Se o sistema é homogéneo, tem pelo menos a solução trivial, a solução nula.

(ii) sejam x e y soluções do sistema homogéneo, e vejamos se x+y ainda é solução.

$$A(x + y) = Ax + Ay = 0 + 0 = 0$$

donde x + y pertence ao con^{Junto} das soluções do sistema homogéneo. (ii) seja x solução do sistema homogéneo, e vejamos se αx ainda é

$$A(\alpha x) = \alpha A x = \alpha 0 = 0$$

Teorema

Seja Ax = 0 um sistema homogéneo de m equações a n incógnitas. O con^{junto} das soluções deste sistema constitui um subespaço linear de \mathbb{R}^n .

Demonstração: As soluções de Ax = 0 são soluções de R^n .

(i) provar que o subconjunto das soluções é não vazio.

Se o sistema é homogéneo, tem pelo menos a solução trivial, a solução nula.

(ii) sejam x e y soluções do sistema homogéneo, e vejamos se x+y ainda é solução.

$$A(x + y) = Ax + Ay = 0 + 0 = 0$$

donde x + y pertence ao con^{Junto} das soluções do sistema homogéneo. (ii) seja x solução do sistema homogéneo, e vejamos se αx ainda é solução

$$A(\alpha x) = \alpha A x = \alpha 0 = 0$$

Teorema

Seja Ax = 0 um sistema homogéneo de m equações a n incógnitas. O con^{junto} das soluções deste sistema constitui um subespaço linear de \mathbb{R}^n .

Demonstração: As soluções de Ax = 0 são soluções de R^n .

(i) provar que o subconjunto das soluções é não vazio.

Se o sistema é homogéneo, tem pelo menos a solução trivial, a solução nula.

(ii) sejam x e y soluções do sistema homogéneo, e vejamos se x + y ainda é solução.

$$A(x + y) = Ax + Ay = 0 + 0 = 0$$

donde x + y pertence ao con^{junto} das soluções do sistema homogéneo. (ii) seja x solução do sistema homogéneo, e vejamos se αx ainda é solução

$$A(\alpha x) = \alpha A x = \alpha 0 = 0$$

Teorema

Seja Ax = 0 um sistema homogéneo de m equações a n incógnitas. O con^{junto} das soluções deste sistema constitui um subespaço linear de R^n .

Demonstração: As soluções de Ax = 0 são soluções de R^n .

(i) provar que o subconjunto das soluções é não vazio.

Se o sistema é homogéneo, tem pelo menos a solução trivial, a solução nula.

(ii) sejam x e y soluções do sistema homogéneo, e vejamos se x+y ainda é solução.

$$A(x + y) = Ax + Ay = 0 + 0 = 0$$

donde x + y pertence ao con^{junto} das soluções do sistema homogéneo. (ii) seja x solução do sistema homogéneo, e vejamos se αx ainda é solução.

$$A(\alpha x) = \alpha A x = \alpha 0 = 0$$

Teorema

Seja Ax = 0 um sistema homogéneo de m equações a n incógnitas. O con^{junto} das soluções deste sistema constitui um subespaço linear de R^n .

Demonstração: As soluções de Ax = 0 são soluções de R^n .

(i) provar que o subconjunto das soluções é não vazio.

Se o sistema é homogéneo, tem pelo menos a solução trivial, a solução nula.

(ii) sejam x e y soluções do sistema homogéneo, e vejamos se x+y ainda é solução.

$$A(x + y) = Ax + Ay = 0 + 0 = 0$$

donde x + y pertence ao con^{junto} das soluções do sistema homogéneo.

(ii) seja x solução do sistema homogéneo, e vejamos se αx ainda é solução.

$$A(\alpha x) = \alpha A x = \alpha 0 = 0$$

Teorema

Seja Ax = 0 um sistema homogéneo de m equações a n incógnitas. O con^{junto} das soluções deste sistema constitui um subespaço linear de R^n .

Demonstração: As soluções de Ax = 0 são soluções de R^n .

(i) provar que o subconjunto das soluções é não vazio.

Se o sistema é homogéneo, tem pelo menos a solução trivial, a solução nula.

(ii) sejam x e y soluções do sistema homogéneo, e vejamos se x+y ainda é solução.

$$A(x + y) = Ax + Ay = 0 + 0 = 0$$

donde x + y pertence ao con^{junto} das soluções do sistema homogéneo.

(ii) seja x solução do sistema homogéneo, e vejamos se αx ainda é solução.

$$A(\alpha x) = \alpha A x = \alpha 0 = 0$$

Teorema

Seja Ax = 0 um sistema homogéneo de m equações a n incógnitas. O con^{junto} das soluções deste sistema constitui um subespaço linear de R^n .

Demonstração: As soluções de Ax = 0 são soluções de R^n .

(i) provar que o subconjunto das soluções é não vazio.

Se o sistema é homogéneo, tem pelo menos a solução trivial, a solução nula.

(ii) sejam x e y soluções do sistema homogéneo, e vejamos se x+y ainda é solução.

$$A(x + y) = Ax + Ay = 0 + 0 = 0$$

donde x + y pertence ao con^{junto} das soluções do sistema homogéneo.

(ii) seja x solução do sistema homogéneo, e vejamos se αx ainda é solução.

$$A(\alpha x) = \alpha A x = \alpha 0 = 0$$

Consideremos o sistema homogéneo
$$\begin{cases} x_1 - x_2 + x_4 = 0 \\ 2x_2 + x_3 = 0 \end{cases}$$
 obtemos:
$$\begin{cases} x_2 = \frac{-1}{2}x_3 = -0.5x_3 \\ x_1 = -0.5x_3 - x_4 \end{cases}$$

Escolhendo valores para x_3 e x_4 , por exemplo $x_3 = \alpha$ e $x_4 = \beta$ temos:

$$\begin{cases} x_1 = -0.5\alpha - \beta \\ x_2 = -0.5\alpha \\ x_3 = \alpha \\ x_4 = \beta \end{cases} \qquad \alpha, \beta \in \mathbb{R}$$
 ou seja
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \alpha \begin{pmatrix} -0.5 \\ -0.5 \\ 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

donde, qualquer solução do sistema dado pode escrever-se como combinação linear dos vectores **a** e **b**.

Estes vectores, \mathbf{a} e \mathbf{b} são linearmente independentes, são por isso base, sendo a dimensão do subespaço das soluções do sistema homogéneo 2.

Definição

Seja A uma matriz de ordem $m \times n$. Designa-se por espaço nulo , ou nulidade de A, o espaço das soluções do sistema homogéneo Ax = 0.

Tem-se então válido o seguinte teorema:

Teorema

Seja A uma matriz de ordem $m \times n$. A soma da característica de A com a dimensão do núcleo ou espaço nulo de A é igual a n isto é:

$$n = dimN(A) + c(A)$$

Seja Ax = b um sistema de equações lineares, sendo A uma matriz de ordem $m \times n$. Então são válidas as seguintes afirmações:

- O sistema Ax = b é impossível se e só se b não pertence ao espaço das colunas de A,
- O sistema Ax = b é indeterminado se e só se b pertence ao espaço das colunas de A e estas são linearmente dependentes, isto é, a característica de A é inferior a n:
- O sistema Ax = b tem solução única se e só se b pertence ao espaço das colunas de A e estas são linearmente independentes, isto é, a característica de A é igual a n.

Proposição

Seja A uma matriz de ordem $n \times n$. então as seguintes afirmações são equivalentes:

- A é não singular,
- A é invertível,
- a característica de A é máxima (igual a n),
- as colunas de A geram \mathbb{R}^n ,
- as colunas de A são independentes,
- as linhas de A geram R^n ,
- as linhas de A são independentes.