Chapter: §4.1–4.2

Week 6

Section 4.1

- 1. If $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, what is A^n . Find a matrix B such that $AB = I_2$.
- 2. If $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, what are all the possible combinations of products of A and B?

Section 4.2

- 1. Use the definition of linear transformation to verifyy whether the given transformation T is linear. If liner, find the matrix A such that $T(\mathbf{v}) = A\mathbf{v}$ for each \mathbf{v}
 - (a) $T(x_1) = |x_1|$
 - (b) $T(x_1, x_2) = (x_2, x_1)$
 - (c) $T(x_1, x_2) = 2x_1 + 3x_2$
 - (d) $T(x_1, x_2, x_3) = (x_2 x_3, x_1 + 1, x_2)$
- 2. Recall the rotation matrix introduced in class.
 - (a) Use trigonometry to prove that for any two angles θ, ϕ ,

$$Rot_{\theta} \circ Rot_{\phi} = Rot(\theta + \phi).$$

Find a geometric interpretation of this fact.

- (b) Consider the matrix $A = \text{Rot}_{\pi/3}$. Calculate A^6 and A^3 ,
- 3. Determine the standard matrices for the following linear transformations
 - (a) Reflection along x-axis
 - (b) Reflection along y-axis
 - (c) Reflection across the line x = y
 - (d) Reflection across the line x = -y