

So Sistemas Operacionais

Estruturas de Sistemas Operacionais

Profa. Célia Taniwaki

Estrutura de Sistemas Operacionais

- Estruturas internas dos sistemas operacionais
 - Sistemas Monolíticos
 - Sistemas em Camadas
 - Modelo Micro-kernel ou Cliente/Servidor
 - Máquinas Virtuais

Sistema monolítico

- Conjunto de rotinas interagem entre si, formando um único programa executável
- Não há estruturação visível
- Todo o código do SO opera em modo núcleo
- Exemplos:
 - MS-DOS, Unix (antigos), Linux
- Vantagens:
 - Desempenho
- Desvantagens:
 - Baixa robustez
 - Difícil manutenção

Sistema monolítico

Exemplo: Linux

Sistema em Camadas

- Módulos do SO:
 - Dispostos em camadas sobrepostas
 - Módulos oferecem um conjunto de funções para camadas superiores
 - Módulos requisitam serviços para camadas inferiores
 - Camadas mais inferiores estão mais próximas do Hardware
- Exemplos (de uso de várias camadas):
 - Multics, IBM OS/2
- Atualmente, adota-se apenas 2 camadas:
 - Windows, Unix

Sistema em Camadas

- Vantagens:
 - Facilidade de manutenção e depuração
- Desvantagens:
 - Desempenho
 - Dificuldade de separar as funcionalidades em camadas

Exemplo de Sistema em Camadas (1)

Estrutura do sistema operacional THE

Camada	Função
5	O operador
4	Programas do usuário
3	Gerenciamento de entrada/saída
2	Comunicação operador-processo
1	Gerenciamento da memória e do tambor magnético
0	Alocação de processador e multiprogramação

Exemplo de Sistema em Camadas (2)

Estrutura do sistema operacional Multics

Microkernel (ou micro-núcleo)

- Núcleo (ou kernel) bem mais simples, contém o código de baixo nível para:
 - Interagir com o hardware
 - Implementar noção de atividade, espaços de memória protegidos
 - Coordenar a troca de mensagens com os demais módulos
- Módulos fora do núcleo:
 - Políticas de uso do processador e da memória
 - Sistema de arquivos
 - Controle de acesso aos recursos

Microkernel (ou micro-núcleo)

- Também chamado de cliente-servidor
 - Cliente solicita serviço através de mensagens
 - Servidor do serviço responde através de outra mensagem
 - Núcleo coordena a troca de mensagens
- Exemplos:
 - Mach, QNX, Minix 3
- Vantagens:
 - Robustez
 - Flexibilidade
- Desvantagens:
 - Desempenho

Microkernel (ou micro-núcleo)

Máquinas Virtuais

- Nível intermediário entre o hardware e o SO
 - Gerência de Máquinas Virtuais
- Máquina Virtual independente para cada hardware

Aplicação
Sistema Operacional
Máquinas Virtuais
Gerência de Máquinas Virtuais
Hardware

Exemplo de Máquinas Virtuais

Estrutura do VM/370 com o CMS

Kernel monolítico x Microkernel x Kernel híbrido

Kernel híbrido: Mac OS X

Kernel híbrido: MS Windows

Referências bibliográficas

- Esse material foi elaborado com base nos livros:
 - Sistemas Operacionais Modernos. Tanenbaum, Andrew. 3ed.
 Pearson.
 - Sistemas Operacionais: Conceitos e Mecanismos. Maziero, Carlos. Disponível em: http://wiki.inf.ufpr.br/maziero/doku.php?id=so:livro_de_sistem as_operacionais Acessado em 10 de fevereiro de 2017.
- E também com base em material de aula do Prof. Sandro Melo.

