Polynôme du second degré

Définition 1. On appelle polynôme du second degré toute expression pouvant s'écrire sous la forme développée réduite

$$ax^2 + bx + c$$

où a, b et c sont des réels avec $a \neq 0$.

El Indiquez si c'est un polynôme du second degré. Le cas échéant déterminez a, b et c.

a.
$$4x^2 - 5x + 2$$

b.
$$-3x^2 + 7x$$

c.
$$\frac{4x^2}{5} - 12$$

d.
$$3x^2 + 7 - 3x^2 + 4x$$

c.
$$\frac{}{5}$$
 - 12
e. $5x(x+2)$

f.
$$(x+3)(x-4)$$

g.
$$(x+2)^2$$

h.
$$(3x+7)(3x-7)$$

i.
$$2(x-3)^2$$

$$\frac{10x^2 + 8x - 3}{1}$$

$$k. \frac{1}{2m^2-5m+2}$$

1.
$$-7x + 6 - 5x^2$$

m.
$$11x imes 5x$$

n.
$$3(2x+1)(8-x)$$

Forme canonique

Propriété 1. Tout polynôme du second degré ax^2+bx+c peut s'écrire sous la forme dite canonique

$$a(x-\alpha)^2+\beta$$

où α et β sont des réels.

Voici la forme canonique de plusieurs polynômes du second degré. Déterminez lpha et eta.

a.
$$3(x-2)^2+5$$

a.
$$3\left(x-2\right)^2+5$$
 b. $-2\left(x+3\right)^2-4$ **c.** $4\left(x+1\right)^2-3$ **d.** $6x^2-12$

c.
$$4(x+1)^2-3$$

d.
$$6x^2 - 12$$

e.
$$-5(x-4)^2+7$$

f.
$$-(x-5)^2$$

Voici plusieurs polynômes du second degré. Déterminez la forme canonique de chacun d'eux en utilisant une identité remarquable.

a.
$$-2(x^2-4x+4)+9$$

b.
$$3(x^2+12x+36)-27$$

c.
$$-4(x^2-18x+81)+64$$

d.
$$5(x^2+10x+25)-100$$

E4 Voici plusieurs polynômes du second degré. Déterminez la forme canonique de chacun d'eux en mettant en évidence une identité remarquable.

a.
$$x^2 - 6x + 24$$

b.
$$x^2 + 8x - 6$$

c.
$$x^2 + 16x + 89$$

d.
$$x^2 - 18x - 80$$

Racine

Définition 2. On appelle racine du polynome du second degré $ax^2 + bx + c$ toute solution de l'équation

$$ax^2 + bx + c = 0$$

E5 Déterminez les racines.

a.
$$2(x-3)(x+4)$$

b.
$$5(2x-8)(x-5)$$

c.
$$(x-2)(7-x)$$

d.
$$(6x+3)(2x-1)$$

d.
$$(6x+3)(2x-1)$$

$$\overline{\mathsf{a.}\ 3x^2} - 6x$$

b.
$$5x^2 - 4x - 1$$

c.
$$5x^2 + 4x - 1$$

d.
$$x^2 + 3x - 10$$

Propriété 2. Si un polynôme du second degré $ax^2 + bx + c$ admet deux racines alors :

- la somme des racines est $-\frac{b}{a}$
- le produit des racines est $\frac{c}{a}$

E7 Les racines des polynômes du second degré suivants sont entières. Déterminez les racines en utilisant le produit et la somme des racines.

a.
$$2x^2 - 10x + 12$$

b. $3x^2 - 3x - 60$
c. $x^2 + 10x + 21$
d. $-x^2 - 5x + 24$

b.
$$3x^2 - 3x - 60$$

c.
$$x^2 + 10x + 21$$

d.
$$-x^2 - 5x + 2$$

Forme factorisée

Propriété 3. Si un polynôme du second degré ax^2+bx+c admet deux racines distinctes x_1 et x_2 , alors il peut s'écrire sous la forme factorisée suivante

$$a(x-x_1)(x-x_2)$$

E8 Ecrivez le polynôme sous forme factorisée.

a. Les racines de $7x^2 + 7x - 42$ sont -3 et 2.

b. Les racines de $-3x^2+3x+6$ sont -1 et 2.

c. Les racines de $x^2-9x+20$ sont 4 et 5.

d. Les racines de $2x^2-5x-3$ sont 3 et $-\frac{1}{2}$.

Déterminez la forme $a(x-x_1)(x-x_2)$.

a.
$$(3x+9)(x-5)$$

b.
$$(x+8)(5x-10)$$

c.
$$(7-x)(x-3)$$

d.
$$(x+4)(-x-8)$$

$$(2r \pm 4)(3r - 6)$$

e.
$$(2x+4)(3x-6)$$
 f. $7(4x-8)(x-3)$

ElO Déterminez la forme $a(x-x_1)(x-x_2)$.

a.
$$3x^2 - 6x$$

$$-5x^2 + 35x$$

c.
$$3x^2 - 147$$

d.
$$-2x^2 + 6$$

$$\mathbf{c.}$$
 $\mathbf{5}x - 14t$

$$\mathbf{u} \cdot -2x + \mathbf{0}$$

e.
$$(x-3)(2x+7)+(x-3)(3-x)$$

f.
$$(2x-5)(x+6)-(x+6)(x-5)$$

Propriété 4. Si un polynôme du second degré $ax^2 + bx + c$ admet une seule racine appelée racine double x_0 , alors il peut s'écrire sous la forme factorisée suivante

$$a(x-x_0)^2$$

Ell Les polynômes du second degré suivants possèdent une racine double. Factorisez par apuis utilisez une identité remarquable pour les écrire sous la forme factorisée.

a.
$$7x^2 - 42x + 63$$

$$-2x^2+8x-8$$

$$\begin{array}{lll} {\tt a.} \ 7x^2-42x+63 & {\tt b.} \ -2x^2+8x-8 \,. \\ {\tt c.} \ 5x^2+40x+80 & {\tt d.} \ -3x^2-6x-3 \end{array}$$

d
$$-3x^2 - 6x - 3$$