Algebra e Geometria - Corso di Laurea in Informatica docente: prof.ssa Marta Morigi

Simulazione di prova parziale

8 aprile 2016

Nota: Le risposte vanno motivate. I calcoli e le motivazioni delle risposte sono parte integrante dello svolgimento dell'esercizio.

Esercizio 1. Sia $U = \{(x_1, x_2, x_3) \mid 3x_1 - x_2 + x_3 \ge 0\} \subseteq \mathbb{R}^3$.

- a) Si stabilisca se U è un sottospazio di \mathbb{R}^3 .
- b) Si determinino, se possibile, 3 vettori di U linearmente indipendenti.
- c) Si determinino, se possibile, 4 vettori $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ di U linearmente dipendenti e tali che $\langle \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4 \rangle$ abbia dimensione 2.

Esercizio 2. Siano
$$\mathbf{v}_1 = \begin{pmatrix} 1 & k \\ 1 & 1 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 3 & 3k \\ k & k \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} 1 & 2k \\ 1 & 1 \end{pmatrix} \in M_2(\mathbb{R}).$$

- a) Si determini, al variare di k, una base \mathcal{B}_k di $\langle \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \rangle$.
- b) Posto k = 0, si determini la dimensione di $\langle \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \rangle$ e si completi \mathcal{B}_0 ad una base di $M_2(\mathbb{R})$.
- c) Si stabilisca per quali valori di k i vettori $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ sono linearmente dipendenti.
- d) Si stabilisca per quali valori di k si ha che $\begin{pmatrix} 1 & 0 \\ 1 & k-2 \end{pmatrix} \in \langle \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \rangle$ e per tali valori si determinino le coordinate di $\begin{pmatrix} 1 & 0 \\ 1 & k-2 \end{pmatrix}$ rispetto alla base \mathcal{B}_k trovata al punto a).