Backtesting

Profesor: Miguel Jiménez

Backtesting

Backtesting son las técnicas empleadas para determinar la precisión del método de VaR aplicado.

Se evalúa la bondad de ajuste de diferentes métodos de cálculo del VaR para determinar si los métodos están sobrevalorando o subvalorando el riesgo.

Métodos de backtesting:

- Proporción de excepciones.
- Prueba de Kupiec.
- Puntaje de López.

Basilea II recomienda utilizar una ventada de al menos 250 observaciones diarias

Con cada una de las observaciones diarias se calcula el VaR y la ganancias o pérdida diaria.

Se considera una excepción cuando la pérdida del día es mayor que el VaR.

$$\hat{p} = \frac{Cantidad\ de\ excepciones}{H}$$

 \hat{p} : Proporción de excepciones.

Cantidad de excepciones: Cantidad de pérdidas mayores al VaR.

H: Cantidad de observaciones diarias utilizadas para realizar el backtesting.

N.C.: 95%

Significancia: α: 5%

$$\hat{p} = \frac{17}{250} = 6.8\%$$

Este método de VaR está cubriendo un 6,8% de las pérdidas cuando está diseñado para un cubrimiento del 5% (α). El VaR aparentemente está subvalorando el riesgo.

N.C.: 99%

Significancia: α: 1%

$$\hat{p} = \frac{7}{250} = 2.8\%$$

Este método de VaR está cubriendo un 2,8% de las pérdidas cuando está diseñado para un cubrimiento del 1% (α). El VaR aparentemente está subvalorando el riesgo.

N.C.: 95%

Significancia: α: 5%

$$\hat{p} = \frac{6}{250} = 2,4\%$$

Este método de VaR está cubriendo un 2,4% de las pérdidas cuando está diseñado para un cubrimiento del 5% (α). El VaR aparentemente está infravalorado el riesgo.

Esta prueba determina lo lejos que se encuentra la proporción estimada (\hat{p}) de la cobertura deseada (α) .

Evalúa la hipótesis nula de que $\hat{p} = \alpha$

$$t_u = \frac{\hat{p} - \alpha}{\sqrt{\hat{p}(1 - \hat{p})/H}}$$

 t_u : Estadístico de Kupiec.

 \hat{p} : Proporción de excepciones.

 α : Significancia del VaR (1 – N.C.).

H: Cantidad de observaciones diarias utilizadas para realizar el backtesting.

La hipótesis nula se rechaza si el valor absoluto de t_u es mayor que el t crítico de la distribución t con

H – 1 grados de libertad.

Kupiec demostró que el estadístico t_u sigue una distribución t con H – 1 grados de libertad.

Si el valor absoluto de t_u es mayor que el valor absoluto del t crítico: Se rechaza el modelo de VaR empleado.

t crítico =DISTR.T.INV(α ;H-1)

ECO

N.C.: 95%

Significancia: α: 5%

$$\hat{p} = \frac{17}{250} = 6.8\%$$

$$t_u = \frac{6,8\% - 5\%}{\sqrt{6,8\% (1 - 6,8\%)/250}} = 1,1305248081457$$

t crítico =DISTR.T.INV(5%;250-1)= 1,96953686764035

 $ABS(t_u) < ABS(t crítico)$: Se acepta la hipótesis nula.

El método de VaR es aceptado

ECO

N.C.: 99%

Significancia: α: 1%

$$\hat{p} = \frac{7}{250} = 2,8\%$$

$$t_u = \frac{2,8\% - 1\%}{\sqrt{2,8\% (1 - 2,8\%)/250}} = 1,72516389835588$$

t crítico =DISTR.T.INV(1%;250-1)= 2,59571775827349

 $ABS(t_u) < ABS(t crítico)$: Se acepta la hipótesis nula.

El método de VaR es aceptado

PFBCOLOM

N.C.: 95%

Significancia: α: 5%

$$\hat{p} = \frac{6}{250} = 2,4\%$$

$$t_u = \frac{2,4\% - 5\%}{\sqrt{2,4\% (1 - 2,4\%)/250}} = -2,68604214493585$$

t crítico =DISTR.T.INV(1%;250-1)= 1,96953686764035

 $ABS(t_u) > ABS(t crítico)$: Se rechaza la hipótesis nula.

El método de VaR es rechazado.

Backtesting – puntaje de López

Compara los métodos del VaR utilizados y escoge el modelo más adecuado.

Utiliza una función de pérdidas (C_t) para asignar puntaje a cada observación dependiendo si la pérdida del día excede el VaR o no.

Los métodos de VaR con mayor puntaje serán considerados como los de cobertura más débiles.

$$C_t = \begin{cases} 1 + (L_t - VaR_t)^2, & si \ L_t > VaR_t \end{cases}$$

$$\begin{cases} \sum_{t=1}^{H} C_t \\ \sum_{t=1}^{H} C_t \end{cases}$$
 erdida que excede el VaR.

 C_t : Puntaje asignado a la pérdida que excede el VaR.

 L_t : Valor de la pérdida real del día t en <u>valor absoluto</u>.

VaR_t: Valor en Riesgo del día t.

Puntaje asignado al método de VaR utilizado.

El método que minimice esta sumatoria proveerá la mejor cobertura condicionada.

Backtesting

Gracias

Profesor: Miguel Jiménez