

## rCore-Tutorial移植k210进展

汇报人:徐文浩

汇报日期: 2020年8月29日

K210技术规格

2 移植进展

移植中的一些bug

4 未来功能扩展

## PART ONE K210技术规格

## K210参数

| 项目      | 内容                  | 描述                                     |  |  |  |
|---------|---------------------|----------------------------------------|--|--|--|
| 核心数量    | 2 核心                | 双核对等,各个核心具备独立 FPU                      |  |  |  |
| 处理器位宽   | 64 位                | 64 位 CPU 位宽,为高性能算法计算提供位宽基础,计算带宽充足      |  |  |  |
| 标称频率    | 400MHz              | 频率可调,可通过调整 PLL VCO 与分频进行变频             |  |  |  |
| 指令集扩展   | IMAFDC              | 基于 RISC-V 64 位 IMAFDC (RV64GC), 胜任通用任务 |  |  |  |
| 浮点处理单元  | 双精度                 | 具备乘法器、除法器与平方根运算器,支持单精度、双精度的浮点计算        |  |  |  |
| 平台中断管理  | PLIC                | 支持高级中断管理,支持64个外部中断源路由到2个核心             |  |  |  |
| 本地中断管理  | CLINT               | 支持 CPU 内置定时器中断与跨核心中断                   |  |  |  |
| 指令缓存    | $32KiB \times 2$    | 核心 0 与核心 1 各具有 32 千字节的指令缓存,提升双核指令读取效能  |  |  |  |
| 数据缓存    | $32$ KiB $\times$ 2 | 核心 0 与核心 1 各具有 32 千字节的数据缓存,提升双核数据读取效能  |  |  |  |
| 片上 SRAM | 8MiB                | 共计8兆字节的片上SRAM,详细见SRAM章节                |  |  |  |

## **K210 SRAM**

### SRAM映射分布:

| 模块名称        | 映射类型     | 开始地址       | 结束地址       | 空间大小     |
|-------------|----------|------------|------------|----------|
| 通用 SRAM 存储器 | 经 CPU 缓存 | 0x80000000 | 0x805FFFFF | 0x600000 |
| AI SRAM 存储器 | 经 CPU 缓存 | 0x80600000 | 0x807FFFFF | 0x200000 |
| 通用 SRAM 存储器 | 非 CPU 缓存 | 0x40000000 | 0x405FFFFF | 0x600000 |
| AI SRAM 存储器 | 非 CPU 缓存 | 0x40600000 | 0x407FFFF  | 0x200000 |

详细规格: <a href="https://s3.cn-north-1.amazonaws.com.cn/dl.kendryte.com/documents/kendryte\_datasheet\_20180919020633.pdf">https://s3.cn-north-1.amazonaws.com.cn/dl.kendryte.com/documents/kendryte\_datasheet\_20180919020633.pdf</a>



## 前期工作

#### rCore-Tutorial的前期移植

吴一凡学长在前期已经完成了 opensbi 与 lab 1-2的移植



#### rCore移植K210

王润基学长在他的log中记载了很多1.9.1 版本与现在指令集版本不同的指令,并成功在k210上跑起了rCore



2020

### rCore-Tutorial学习

从七月开始进行了为期一个月的lab学习, 从而对rCore-Tutorial比较熟悉

## 目前已实现的功能

- 在opensbi上运行lab1-lab6
- 在rustsbi 上运行lab1-lab6
- 在SD卡上读写用户态
- 虚拟存储

我的repo链接: <a href="https://github.com/freheit889/rCore-Tutorial/tree/freheit889">https://github.com/freheit889/rCore-Tutorial/tree/freheit889</a>



# PART THREE 移植中的一些bug

## Bug记录

#### 设备树无法正常读取:

实验进行到lab5时,因为要对设备进行处理,所以有一步读取设备树的操作,在qemu中可以正常读取,但是k210里读取的却是0,非常奇怪,查看了opensbi以及与qemu进行对照,最后发现将

FW\_PAYLOAD\_FDT\_ADDR=xxx 这一行加入config.mk 它就会加载到对应的地址

虽然现在还没有用上,但是之后应该会对这里进行完善

## Bug记录

#### 用户态无法访问:

在qemu里的用户线程都可以跑起来了,但是一到k210就显示指令异常,当时这个问题卡了很久,甚至还去调了用户态的内存布局,但是都没有解决这个问题,后来王润基学长说,有可能是因为指令的cache没有清。然后我去进行了测试,果然跑通了。。。

不在板子上是碰不到这个问题的,这样搞一下移植让我对os跟硬件的了解更加深入了

## 未解决的bug

#### Elf文件长度与数据长度不符合:

在尝试移植busybox时,出现了一个神奇的bug, elf的文件长度与数据长度不符合,这个我还没有找到原因。在我写贪吃蛇demo的时候用到了hashset,然后在编译时也出现了这个问题。

猜测是因为外部引用包或者是因为hashset,这个要留到之后再去做详细的 debug

我的日报repo: <a href="https://github.com/freheit889/record">https://github.com/freheit889/record</a>

# PART FOUR 未来功能扩展

## 未来功能扩展

01

#### 实现更多系统调用

目前的移植项目,支持的系统 调用比较少,所以之后应该去 实现更多的系统调用 02

### 多核的支持

现在所有的程序都是跑在一个cpu上,很多os相关的实验没法进行,之后应该利用起k210的2个core,去实现更多的功能

03

### 一些驱动

比如屏幕驱动的实现,之前听 老师说有个人跑起来了口袋妖 怪,感觉非常有意思,以后有 时间可以来做这一方面 04

#### 内存更大的板子?

这个就是想一下,不过内存那么小用起来,动不动就"alloc error"

## Thank you