An Introduction to Bucket Sort

Amlan Saha Dhiman Goswami

Bangladesh University of Engineering and Technology Dhaka, Bangladesh

May 24, 2015

8 students get following marks in an exam.

8 students get following marks in an exam.

29	25	3	49	9	37	21	43
----	----	---	----	---	----	----	----

8 students get following marks in an exam.

29 25 3 49	9 37 21 43
------------------	------------------

A teacher needs to sort the marks.

We can use some commonly used algorithms here. Like:

Bubble Sort

- Bubble Sort
- Merge Sort

- Bubble Sort
- Merge Sort
- Quick Sort

- Bubble Sort
- Merge Sort
- Quick Sort
- etc.

But wait!!!

But wait!!!

Is there a faster way to sort?

But wait!!!

Is there a faster way to sort?

Yes, there is.

BUCKET SORT!!!

Bucket sorting is a linear time algoritm of sorting

BUCKET SORT!!!

Bucket sorting is a linear time algoritm of sorting

Assumptions:

Assumptions:

• inputs are distributed uniformly over a range.

Back to our problem.

Index	0	1	2	3	4	5	6	7
Value	29	25	3	49	9	37	21	43

Back to our problem.

Index	0	1	2	3	4	5	6	7
Value	29	25	3	49	9	37	21	43

Here, we assume

• Array size: 8

• Input range: 0-49

• Let's insert these numbers into 5 buckets.

29 25 3 49 9 37 21 43

25 3 49 9 37 21 43

3 49 9 37 21 43

49 9 37 21 43

9 37 21 43

37 21 43

21 43

43

3 9

3 9 21 25 29

3 9 21 25 29 37

3 9 21 25 29 37 43 49

Sorted Array:

3 9 21 25 29 37 43 49

• Take an array of linked list.

- Take an array of linked list.
- Each element of the array will work as a bucket.

- Take an array of linked list.
- Each element of the array will work as a bucket.
- Put each number into the appropriate bucket.

- Take an array of linked list.
- Each element of the array will work as a bucket.
- Put each number into the appropriate bucket.
- Insert each number according to its order.

- Take an array of linked list.
- Each element of the array will work as a bucket.
- Put each number into the appropriate bucket.
- Insert each number according to its order.
- Merge the buckets.

Advantages:

Advantages:

• Runtime is proportional to input size.

Advantages:

- Runtime is proportional to input size.
- More uniform data takes less time to sort.

Advantages:

- Runtime is proportional to input size.
- More uniform data takes less time to sort.
- Technically its expected runtime is O(n).

Limitations:

Limitations:

• Non uniformly distributed data takes more time.

Limitations:

- Non uniformly distributed data takes more time.
- Not suitable for non-versatile data.

References

Introduction to Algorithms, Thomas H. Cormen, Charles E.Leiserson, Ronald L. Rivest, Clifford Stein