Poročilo okrivanja 1-D ODE v Lorenzovemu sistemu

14. december 2020

Odkrivanje 1-D ODE enačb sem poganjal na Lorenzovemu sistemu enačb:

$$\frac{dx}{dt} = \sigma(y - x),$$

$$\frac{dy}{dt} = x(\rho - z) - y,$$

$$\frac{dz}{dt} = xy - \beta z,$$

pri začetnih pogojih $x_0 := 0.1, y_0 := 0.3, z_0 := 0.4$. Začetni pogoji so isti v vseh primerih skozi celotno poročilo. Parametri σ, ρ in β pa se sredi poročila spremenijo. Najprej sem obravnaval nekaotične parametre, nato pa še znano kaotične parametre z vrednostmi $\sigma := 10, \rho := 28$ in $\beta := 8/3$.

0.1 Domnevno nekaotični parametri

Najprej sem algoritem pognal pri nekaotičnih subjektivno naključno izbranih parametrih $\sigma:=1.3, \rho:=-15$ in $\beta:=3.4$. Navedeni izbrani parametri se na splošno smatrajo kot nenormalni, saj je vsaj eden izmed parametrov (ρ) negativen. Podatkovno množico sem generiral tako, da sem simuliral Lorenzov sistem:

prva enacba $dx/dt = \sigma * (y - x)$: najde rešitev -1.3 * x + 1.3 * y ali v 50 samplih, resitev ima napako reda 10 * * (-9).

druga enacba $dx/dt = \sigma * (y - x)$: najde rešitev v 4500 ali 6500 samplih, resitev 10 * x * z - 10 * x + 2 * y + 0.5 oz. 10 * x * z - 10 * x + 2 * y ima napako reda 10 * * (-6) oz. 10 * * (-4).

Tako velik odmik od pravilne resitve -15*x-x*z-y pripisujem trenutno nastavljeni omejitvi v implementaciji optimizacijskega algoritma, ki omejuje parametre na interval [-10, 10]. Parameter v členu -10*x je tako lahko po absolutni vrednosti največ 10, torej ne more biti -15, kot je v izvorni enačbi. Predvidevam, da se zato zgodi kompenzacija nad ostalimi parametri v ostalih členih enačbe. Predvidevam še, da se bo pri rahljanju omejitve iz [-10, 10] na [-20, 20] napaka popravila na napako reda 10**(-9) kot pri ostalih dveh enačbah.

tretja enačba $dx/dt = \sigma * (y - x)$: najde rešitev -1.3 * x + 1.3 * y ali v 50 samplih, resitev ima napako reda 10 * * (-9).

Sledi poročilo o poganjanju pri ka
otičnih parametrih: $\sigma:=10, \rho:=28, \beta:=8/3$

Ker je ρ po absolutni vrednosti spet večji od 10, tj. od nastavljenih mej za parametre optimizacijskega algoritma in so ostali dve vrednosti znotraj mej, napovedujem, da bodo v najboljšem primeru podobni rezultati kot v nekaotičnem primeru. Oziroma, pri drugi ena"bi pričakujem $\sigma * = 10, \rho * = 10, \beta * = 7$.

0.2 Kaotični rezultati

V odkrivanju prve enačbe algoritem odkrije enačbo -9.85764357227234*x+9.9333747564978*y oz. -9.55829580188787*x+9.78920618974904*y+0.0232261285460231 v manj kot 50 vzorcih, rešitev ima napako velikosti 2.94709382690573e-06 oz. 2.4772067855792343e-06.

V odkrivanju druge enačbe algoritem odkrije enačbo $-0.670382396435091*x*z+10.0*x+6.94013313376156*y-0.877950876789105*x*z+9.99535400929563*x+7.38550161602604*y-0.617064542958862 v 6500 vzorcih, enačba ima napako velikosti <math display="inline">0.0033668325250160443=3.4\cdot10^{-3}$ oz. $0.00018803715641311185=1.9\cdot10^{-4}$. Medtem, ko je izmed vseh vzorčenih enačb, najmanjša opažena napaka reda 10^{-5} .

V odkrivanju tretje enačbe algoritem odkrije enačbo $\frac{dz}{dt}=0.991337569095305*x*y-2.56521319047224*z$ v manj kot 100 vzorcih, enačba ima napako velikosti 9.178140365155879 $e-05=9.2\cdot 10^{-5}$, kar je v okviru najmanjšega opaženega reda velikosti napake.

tip	leva	najdena	napaka enac"be	število	hramba	top	
enačbe	stran	enačba		po-	rezul-	1%	
OZ.	enačbe	oz.		treb-	tatov		
para-		desna		nih			
metri		stran		sam-			
		enačbe		plov			
nekaotična	ρ	$\frac{dx}{dt}$	-1.303 * x + 1.303 * y	10 * *(-9)	50		
nekaotična	ρ	$\frac{dy}{dt}$	10 * x * z - 10 * x + 2 * y	10 * *(-4)	100		
nekaotična	ρ	$ \frac{\frac{dx}{dt}}{\frac{dy}{dt}} $ $ \frac{dz}{dt}$	1.054 * x * y - 3.402 * z	2.205 - 09	6500		
kaotična	ρ	$\frac{dx}{dt}$	-9.857 * x + 9.933 * y	2.947 - 06	50		
kaotična	ρ	$\frac{dy}{dt}$	-0.670 * x * z + 10.0 * x + 6.940 * y	$1.9 \cdot 10^{-4}$	500		
kaotična	ρ	$ \frac{dx}{dt} \\ \frac{dy}{dt} \\ \frac{dz}{dt} $	0.991 * x * y - 2.565 * z	$9.2 \cdot 10^{-5}$	6500		

1 Poročilo v tabeli