

Systems and Network Security

Course Overview

Instructor: Khaled Diab

What's wrong with this picture?

What's wrong with this picture?

Course Staff

- Instructor: Khaled Diab
 - PhD, SFU, 2019
 - Research: Networking and systems
 - Affiliation: Network systems lab
 - Web: http://www.sfu.ca/~kdiab
- TA: Carmen Zhuang
 - Research: Security

WWW

- Course website:
 - https://netsys-security.github.io/sp20/
 - Syllabus, policy, schedule, slides, assignments, project
- Piazza:
 - https://piazza.com/sfu.ca/spring2020/cmpt479980
 - Discussion board, announcements
- Coursys:
 - https://coursys.sfu.ca/2020sp-cmpt-980-x1/
 - Submissions, grades

Communication

- kdiab@sfu.ca
 - Use my email for topics that are sensitive, confidential, etc...
- Piazza
 - Use this if your question/discussion would be beneficial for other students
- Please be professional and plan ahead

Office Hours

- Khaled:
 - Fridays (12pm 1pm) at TASC1, room 9010
 - Email me to book an appointment.
- Carmen:
 - Wednesdays (3:00pm 4:00pm) at ASB 9808

Course Goals

Learn how an attacker gains control of a system

Learn how to defend a system

• Gain hands-on experience in various security topics

Two Key Themes of this Course

- How to think like an attacker
 - To develop the "security mindset"

- Technical aspects of security
 - Reproducing attacks
 - Building defensive solutions

Topics

- System security:
 - Control-flow hijacking and defenses
 - Return-oriented programming
 - OS security
 - (Tentative) Sandboxing and Fuzzing
- Network security:
 - TCP/IP attacks
 - DoS and DDoS attacks
 - Internet naming security
 - Internet routing security
 - IDS and Firewalls
- (Tentative) Hardware security:
 - Intel SGX
 - Spectre and Meltdown attacks

This course is not about...

- Not about cryptography
 - An important topic. Yet, we assume that security flaws are from coding mistakes or protocol weakness

- Not about all the topics in security
 - Security is broad!
 - E.g., web security, database security, social engineering
- Not about the latest attacks
- Not about blockchains

Prerequisites

- Required: CMPT 300
- Assumed:
 - operating systems (e.g., memory layout, execution semantics)
 - computer networks (e.g., IP networks, Internet naming and routing)
 - strong programming skills in C/C++ and Python
 - ability to write working Assembly code
 - knowledge of software dev. tools in linux (gcc, gdb, objdump, ld, git, etc.)
 - ability to learn new languages, tools and frameworks

• I expect you to do quite a bit of work.

Assess your knowledge base


```
int (*func)();
func = (int (*)()) code;
(int)(*func)();
```

```
mov ebx, 42
mov eax, 0x1
int 0x80
```

Assess your knowledge base

- Networking
 - Wireshark labs: https://www-net.cs.umass.edu/wireshark-labs/
 - E.g.,: TCP lab: https://www-net.cs.umass.edu/wireshark-labs/Wireshark TCP v7.0.pdf

Credits: Computer Networking: A Top-Down Approach, 7th ed., J.F. Kurose and K.W. Ross

Course Materials

- There is no good book that covers all the topics
- Materials are research papers, book chapters, related articles etc.
- Use the slides to guide your study

Grading

No midterm or final exam!

- Final Project (Group of 2–3): 35%
- Assignments (Individual): 30% (3 x 10%)
- Research Reading (Individual): 12%
- Quizzes: 18% (3 x 6%)
- Participation: 5%

Final Project (BYOP)

- This is your opportunity to explore or dig deeper in a specific security-related topic.
 - Related to systems and networking topics
 - Can be a research-related project
 - Reproducing known and recent attacks, or security-related systems
 - Searching for a vulnerability: Analysis of a program, misconfiguration in the network
 - Other topics: Smart home security, ML-based Firewalls IDS

Final Project (BYOP)

- Has to have an implementation component
- Highly recommended to discuss with the instructor and/or in the discussion board
- Four major milestones/checkpoints
 - The first one is on Jan 31st

Details on website soon

Assignments

- Three assignments
 - 1. Shellcode and buffer overflow
 - 2. Packet sniffing and spoofing
 - 3. TCP/IP attacks

Reading

- A major activity in this course
- You will read and summarize a subset of the papers
- More details are posted to the website page.

Quizzes

- Three quizzes.
- One every 3—4 weeks
- Format:
 - Written quiz
 - Programming contest (e.g., CTF)

Participation

• In-class: I expect students to take active and regular roles in discussion, asking/answering questions, etc.

- Discussion board:
 - discuss the assignments and projects and other class materials
 - you can also use it to exercise the "security mindset"
 - Discussing recent security incidents
 - Posting and discussing resources and news
 - ...

Late Submission Policy

- Late submissions will not be graded.
- Unless
 - (1) there is an excused absence (e.g., illness with sick note, emergency) and
 - (2) student made arrangements with the instructor prior to the deadline.

Academic Honesty and Conduct Policies

- No tolerance to violations of academic integrity
- Students of any academic dishonesty incident will:
 - Get an 'F' grade and
 - Be referred to the appropriate University/School bodies for further action.

Ethics

Don't try this at home

Attacks discussed in class are illegal to execute

- Goal of this course is not to teach you how to attack systems!
 - But, to teach you how to defend systems by knowing how the attackers think

- Never use any of the attacks on a network connected to the Internet!
 - Even if it seems simple (e.g., TCP RST)
- Project/assignments?
 - code should run in an isolated env (e.g., VM)
- If in doubt, please contact me!

Ethics Forms

To receive a non-zero grade in this course, you must sign the CMPT 479/980 ethics form by 11:59pm on January 17, 2020.

- URL: https://forms.gle/XzRogNnLaZLf6GEm7
- Late forms will not be accepted.

Read the "how to read a paper"

Read the "project startup document"

Read and understand the syllabus

• Sign the Ethics form

Get to know your classmates, and form project groups

Start thinking about project ideas

Prepare an answer for "What do you think security is?"

Next Lecture

What is "security" anyway?

What are the main principles of security?