Indian Institute of Information Technology Allahabad Convex Optimization (SMAT430C) Quiz 02: Tentative Marking Scheme

Maximun marks is **25**. If you get more than 25, the extra mark(s) will be added to your total marks out of 150 as a **bonus**.

1. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous function. Let $c \in \mathbb{R}$ be a point such that for $t \leq c$, f is decreasing, and for $t \geq c$, f is increasing. Prove that f is quasiconvex. (Note: f need not be convex).

Solution. Let $x, y \in S_{\alpha} = \{x : f(x) \leq \alpha\}$ such that x < y. Then $f(x) \leq \alpha$, $f(y) \leq \alpha$. [1]

Let $z = \lambda x + (1 - \lambda)y$, for $\lambda \in (0, 1)$. We have x < z < y. We want to show that S_{α} is convex, i.e., $z \in S_{\alpha}$ or $f(z) \le \alpha$.

If
$$z \le c$$
, then $f(z) \le f(x) \le \alpha$ (: f is decreasing for $t \le c$).

If
$$z \ge c$$
, then $f(z) \le f(y) \le \alpha$ (: f is increasing for $t \ge c$). [1]

2. Find $\sup\{a^Tx: ||x||_2 \le 5\}$, where a is a nonzero vector in \mathbb{R}^n . [5]

Solution. Let $S = \{a^T x : ||x||_2 \le 5\}$. Then

$$\langle a, x \rangle = a^T x \le ||a||_2 ||x||_2 \le 5||a||_2$$
, (by Cauchy-Schwartz inequality). [2]

Let
$$x_0 = \frac{5a}{||a||_2}$$
. Then $||x_0||_2 = 5$ and, [1]

$$a^{T}x_{0} = \frac{a^{T}(5a)}{||a||_{2}} = \frac{5||a||_{2}^{2}}{||a||_{2}} = 5||a||_{2}.$$
 [1]

$$\therefore \sup S = 5||a||_2.$$

3. Let the pair x and (λ, ν) be primal and dual feasible respectively. If the duality gap associated with this pair is zero, prove that x is primal optimal and (λ, ν) is dual optimal.[7]

Solution. If x is primal feasible, and (λ, ν) is dual feasible, then

$$f_0(x) - p^* \le f_0(x) - g(\lambda, \nu).$$
 [1]

Given that the duality gap is zero, i.e.,
$$f_0(x) - g(\lambda, \nu) = 0$$
 or $f_0(x) = g(\lambda, \nu)$. [1]

$$\therefore f_0(x) - p^* \le 0 \Longrightarrow f_0(x) = p^*, \text{ by definition of } p^*.$$
 [1]

$$\therefore$$
 x is primal optimal. [1]

Now, we know that
$$g(\lambda, \nu) \le d^* \le p^*$$
. [1]

But
$$f_0(x) = g(\lambda, \nu) \le d^* \le p^* = f_0(x) \Longrightarrow g(\lambda, \nu) = d^*$$
. [1]

$$(\lambda, \nu)$$
 is dual optimal. [1]

4. Find the local extreme values of
$$f(x,y) = 3y^2 - 2y^3 - 3x^2 + 6xy$$
. [10]

Since f is differentiable everywhere, it can assume extreme values only where

$$f_x = 6y - 6x = 0$$
, and $f_y = 6y - 6y^2 + 6x = 0$. [1+1]

Therefore, the two critical points are (0,0) and (2,2). [1+1]

To classify the critical points, we calculate the second derivatives:

$$f_{xx} = -6, f_{yy} = 6 - 12y, f_{xy} = 6.$$
 [1+1+1]

The discriminant is given by

$$f_{xx}f_{yy} - f_{xy}^2 = 72(y-1). ag{1}$$

At (0,0), the discriminant is negative, so the function has a saddle point at the origin. [1]

At (2,2) the discriminant is positive, and $f_{xx} < 0$, so (2,2) is a point of local maximum.[1]

5. A vector $g \in \mathbb{R}^n$ is a *subgradient* of $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ at $x \in \text{dom } f$ if for all $y \in \text{dom } f$ we have $f(y) \geq f(x) + g^T(y - x)$. If f is convex and differentiable, then its gradient at x is a subgradient.

A function f is called *subdifferentiable* at x if there exists at least one subgradient at x. The set of subgradients of f at the point x is called the *subdifferential* of f at x, and is denoted by $\delta f(x)$.

Consider the absolute value function $f(x) = |x|, x \in \mathbb{R}$. Find $\delta |x|$. [10]

Solution. |x| is convex $\forall x \in \mathbb{R}$, and differentiable $\forall x \in \mathbb{R} \setminus \{0\}$. Hence, subgradient is unique.

$$\delta |x| = 1 \text{ for } x > 0, \text{ and } \delta |x| = -1 \text{ for } x < 0.$$
 [2+2]

At
$$x = 0$$
, the subdifferential is defined by the inequality $|y| \ge gy$ for all $y \in \mathbb{R}$. [2]

This is satisfied if and only if
$$g \in [-1, 1]$$
. [3]

Thus,

$$\delta|x| = \begin{cases} +1 & x > 0, \\ [-1, 1] & x = 0, \\ -1 & x < 0. \end{cases}$$

6. Consider the problem

minimize
$$-xy$$

subject to $x + y^2 \le 2$,
 $x, y > 0$.

Find the Lagrangian associated with the above problem. Derive the KKT conditions. [12]

Solution. The Lagrangian is given by

$$L(x, y, \lambda_1, \lambda_2, \lambda_3) = -xy + \lambda_1(x + y^2 - 2) + \lambda_2(-x) + \lambda_3(-y).$$
 [1]

$$\begin{array}{rcl}
 x + y^2 - 2 & \leq & 0, \\
 -x & \leq & 0, \\
 -y & \leq & 0, \\
 \lambda_1 & \geq & 0, \\
 \lambda_2 & \geq & 0, \\
 \lambda_3 & \geq & 0, \\
 \lambda_1(x + y^2 - 2) & = & 0, \\
 \lambda_2 x & = & 0, \\
 \lambda_2 x & = & 0, \\
 \lambda_3 y & = & 0, \\
 -y + \lambda_1 - \lambda_2 & = & 0, \\
 -x + 2\lambda_1 y - \lambda_3 & = & 0.
 \end{array}$$

[11]