Übung – Übersetzungen und Getriebe

- 2. Das Schneckenrad eine Kleinlastkrans hat 60 Zähne. Schneckenrad mit Seiltrommel werden von einer zweigängigen Schnecke mit 900 min⁻¹ angetrieben.
 - a) Wie groß ist die Drehzahl des Schneckenrades?
 - b) Mit welcher Geschwindigkeit wird eine Last hochgezogen, wenn die Seiltrommel einen Durchmesser d = 200 mm hat?

Lösung:

a)
$$\frac{n_1}{n_2} = \frac{z_2}{z_1} \rightarrow n_2 = \frac{n_1 \cdot z_1}{z_2} = \frac{900 \,\text{min}^{-1} \cdot 2}{60} = \underline{30 \,\text{min}^{-1}}$$

b)
$$v = \pi \cdot d \cdot n = \pi \cdot 0.2 \text{ m} \cdot 30 \text{ min}^{-1} = 18.85 \text{ m/min}$$

- 3. Ein Stufenloser Elektromotor treibt über ein zweistufiges Getriebe die Spindel einer Handbohrmaschine an. Die Stirnräder haben die Zähnezahlen z_1 = 10, z_2 = 52, z_3 = 24, z_4 = 36, z_5 = 16 und z_6 = 44. An der Spindel stehen zwei Drehzahlen zur Verfügung. Berechnen Sie
 - a) die Übersetzungsverhältnisse i1 und i2 der Getriebestufen,
 - b) die maximale Spindeldrehzahl, wenn der Elektromotor eine Drehzahl von 6000 min⁻¹ besitzt.

Lösung:

a)
$$i_1 = \frac{z_2}{z_1} = \frac{52}{10} = \frac{5.2}{10} = \frac{z_4}{z_3} = \frac{36}{24} = \frac{1.5}{24} = \frac{z_6}{z_5} = \frac{44}{16} = \frac{2.75}{2}$$

$$i_{12} = i_1 \cdot i_2 = 5, 2 \cdot 1, 5 = \underline{7,8}$$
 $i_{13} = i_1 \cdot i_3 = 5, 2 \cdot 2, 75 = \underline{14,3}$

b)
$$i = \frac{n_a}{n_e} \rightarrow n_e = \frac{n_a}{i} \rightarrow n_{e, max} = \frac{n_{a, max}}{i_{12}} = \frac{6000}{7.8} \, min^{-1} = \frac{769,23 \, min^{-1}}{100}$$

- 4. Ein Motor mit der Drehzahl 960 min⁻¹ treibt über ein vierrädriges Getriebe mit den Zähnezahlen nach Skizze eine Winde mit einem Trommeldurchmesser von 300 mm an. Gesucht:
 - a) das Übersetzungsverhältnis,
 - b) die Trommeldrehzahl,
 - c) die Hubgeschwindigkeit.

Lösung:

a)
$$i = \frac{z_2 \cdot z_4}{z_1 \cdot z_3} = \frac{60 \cdot 80}{15 \cdot 20} = \underline{16}$$

b)
$$i = \frac{n_a}{n_c} = \frac{n_M}{n_T} \rightarrow n_T = \frac{n_M}{i} = \frac{960}{16} \text{min}^{-1} = \frac{60 \text{ min}^{-1}}{16}$$

c)
$$v = v_{aT} = \pi \cdot d_T \cdot n_T = \pi \cdot 0.3 \text{ m} \cdot 60 \text{ min}^{-1} = \underline{56.55 \text{ m/min}}$$

