LINEAR ALGEBRA FOR AI/ML

Jiaul Paik

TOPICS TODAY

- Basics of Eigenvalue & Eigenvector
- Data reduction
 - Auto-encoder
 - Principal Component Analysis

Autoencoder using Deep Neural Network

Feature Engineering: Feature Extraction

Features are generated by applying some function on the raw data

Image Example: Average of 3×3 sub matrices

Feature/Dimensionality Reduction

Neural Network

Example 4 layer network with 2 output units:

Layer 3

Layer 1 Layer 2

Training a neural network

Given training set (x_1, y_1) , (x_2, y_2) , (x_3, y_3) ,

Adjust parameters θ (for every node) to make:

$$h_{\theta}(x_i) \approx y_i$$

(Use gradient descent. "Backpropagation" algorithm.)

Autoencoder.

Network is trained to output the input (learn identify function).

$$h_{\theta}(x) \approx x$$

Training a sparse autoencoder.

Given unlabeled training set x₁, x₂, ...

Objective function:

$$\min_{\theta} \|h_{\theta}(x) - x\|^2$$

Reconstruction error term

Layer 1 Layer 2

Train parameters so that $h_{\theta}(x) \approx a$

Train parameters so that

 $h_{\theta}(x) \approx a$

Use [c₁, c₃, c₃] as representation to feed to learning algorithm.

Principal Component Analysis (PCA)

Data Reduction

• Summarization of data with many (p) variables by a smaller set of (k) derived (latent, composite) variables.

Data Presentation: Key questions?

- Do we need a all n-dimension space to view data?
- Better presentation (new axes) than original axes?
- How to find the 'best' low dimension space that conveys maximum useful information?
- One answer: Find "Principal Components"

Principal Components

 All principal components (PCs) start at the origin

First PC is direction of maximum variance

 Subsequent PCs are orthogonal to 1st PC and describe maximum residual variance

The Goal

We wish to summarize the underlying variance-covariance structure of a large set of variables through a few linear combinations of these variables.

Trick: Rotate Coordinate Axes

- Suppose we have p features $x_1, ..., x_p$.
- Our goal is to develop a new set of p axes (linear combinations of the original p axes) in the directions of greatest variability:
- This is accomplished by rotating the axes.

