Vigny Axel Note: 5/20 (score total : 5/20)

+286/1/22+

QCM THLR 4

	m et prénom, lisibles :
	Axel = 0 1 2 3 4 5 6 7 8 9
	Axel
sieur plus pas j inco	Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ». Noircir les cases ôt que cocher. Renseigner les champs d'identité. Les questions marquées par « » peuvent avoir plurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la restrictive (par exemple s'il est demandé si 0 est <i>nul</i> , <i>non nul</i> , <i>positif</i> , ou <i>négatif</i> , cocher <i>nul</i>). Il n'est possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les rrectes pénalisent; les blanches et réponses multiples valent 0. J'ai lu les instructions et mon sujet est complet: les 2 entêtes sont +286/1/xx+···+286/2/xx+.
•	
Q.2	Le langage $\{ \bigcirc^n \bigcirc^m \mid \forall n, m \in \mathbb{N} \}$ est
	🌑 non reconnaissable par automate fini 🏻 😩 fini rationnel 🥌 vide
Q.3	Le langage des nombres binaires premiers compris entre 0 et $2^{2^{2^2}} - 1$ est
!	 □ non reconnaissable par un automate fini à transitions spontanées □ non reconnaissable par un automate fini déterministe ☑ rationnel inon reconnaissable par un automate fini nondéterministe
Q.4	Un automate fini qui a des transitions spontanées
	\square accepte $arepsilon$ n'est pas déterministe \square n'accepte pas $arepsilon$ \square est déterministe
4	A propos du lemme de pompage Si un langage ne le vérifie pas, alors il n'est pas forcement rationnel Si un langage le vérifie, alors il est rationnel Si un langage ne le vérifie pas, alors il n'est pas rationnel Si un automate de n états accepte a ⁿ , alors il accepte
!	$\boxtimes a^p(a^q)^*$ avec $p \in \mathbb{N}, q \in \mathbb{N}^* : p + q \le n$ $\implies a^{n+1} \qquad \square a^n a^m$ avec $m \in \mathbb{N}^*$ $\square (a^n)^m$ avec $m \in \mathbb{N}^*$
Q.7	Si $L_1 \subseteq L \subseteq L_2$, alors L est rationnel si :
!	\square L_1, L_2 sont rationnels \boxtimes L_1, L_2 sont rationnels et $L_2 \subseteq L_1$ \bigoplus L_2 est rationnel \square L_1 est rationnel
Q.8 don	Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ t la n -ième lettre avant la fin est un a (i.e., $(a+b+c+d)^*a(a+b+c+d)^{n-1}$):
	\square Il n'existe pas. \square $\frac{n(n+1)(n+2)(n+3)}{4}$ \square \square 4^n \square 2^n
	a, b a, b a, b

Q.10 Comment marche la minimisation de Brzozowski d'un automate A?

Fin de l'épreuve.