Lezione del 23 ottobre di Gandini

Esempio 0.1. Il quoziente di uno spazio primo numerabile, in generale, non è primo numera-

Consideriamo \mathbb{R}^2 e $A = \{(x,0) \mid x \in \mathbb{R}\}.$

 $X = \frac{\mathbb{R}^2}{A}$ non è primo numerabile. Sia $[A] \in X$ il punto definito da A, dimostriamo che tale punto non ha un sistema fondamentale di intorni numerabile.

Supponiamo per assurdo che $\{U_n\}_{n\in\mathbb{N}}$ sia un sistema fondamentali di intoni di A e sia $V_n=$ $\pi^{-1}(U_n)$.

 V_n è un aperto di \mathbb{R}^2 quindi

$$\forall n \in \mathbb{N} \quad \exists \varepsilon_n > 0 \quad (n, y) \in V_n \quad \forall y \in [0, \varepsilon_n)$$

Sia

$$f: R \to (0, +\infty) \text{ continua } e \text{ tale } che \ f(n) = \frac{\varepsilon_n}{2} \quad \forall n \in \mathbb{N}$$

ad esempio f lineare a tratti ottenuta interpolando i punti $(n = \frac{\varepsilon_n}{2})$.

Poniamo

$$V = \{(x,y) \mid |y| < f(x)\}$$
 aperto in \mathbb{R}^2 $A \subseteq V$

Sia $U = \pi(V)$ allora esso è un interno aperto di [A] in X da cui

$$\exists \overline{n} \ U_{\overline{n}} \subset U \quad \Rightarrow \quad V_n \subset V$$

L'ultima affermazione è assurda infatti, per costruzione, $\exists (x,y) \in V_n \backslash V$

Quozienti per azioni di gruppi 0.1

Definizione 0.1. Sia X uno spazio topologico e G un gruppo che agisce su X tramite omeomorfismo, allora definiamo

$$\frac{X}{G}$$
il quoziente ottenuto dalla relazione $x \sim y \quad \Leftrightarrow \quad \exists g \in G \quad g \centerdot x = y$

ovvero le classi di equivalenza sono le orbite

Proposizione 0.2. \mathbb{Z} agisce su \mathbb{R} per traslazione allora

$$\frac{\mathbb{R}}{\mathbb{Z}} \cong S^1$$

Dimostrazione. Consideriamo

$$f: \mathbb{R} \to S^1 \quad t \to (\cos(2\pi t), \sin(2\pi t))$$

Se proviamo che f è un identificazione ho finito, infatti le fibre di f sono le orbite in cui si partiziona \mathbb{Z} .

Poichè f è continua e suriettiva, proviamo che è aperta.

Poichè gli intervalli aperti I sono una base, basta dimostrare che f(I) è aperto.

Sia $a \in \mathbb{R}$ e sia I = (a, a + 1) allora

$$f_{|(a,a+1)}: (a,a+1) \to S^1 \backslash f(a)$$
 è omeomorfismo

da cui f(I) aperto.

Sia A un generico aperto

• Se A contenuto in un intervallo (a, a + 1) allora

$$f(A)$$
 aperto in $S' \setminus f(a) \Rightarrow f(A)$ aperto in S^1

infatti $S' \setminus f(a)$ è aperto in S^1

• In generale

$$A = \bigcup_{j \in J} A_j$$
 con A_j contenuti in intervallo di ampiezza 1

dunque

$$f(A) = f\left(\bigcup_{j \in J} A_j\right) = \bigcup_{j \in J} f(A_j)$$

ora unione di aperti è aperta quindi f(A) è aperto.

Osservazione~1.È presente un ambiguità nella notazione infatti $\frac{\mathbb{R}}{\mathbb{Z}}$ può indicare 2 cose differenti

- ullet R facendo collassare $\mathbb Z$ in questo caso il quoziente è omeomorfo ad un bouquet infinito di circonferenze
- \mathbb{Z} che agisce su \mathbb{R} ed in questo caso il quoziente è omeomorfo a S^1

Esempio 0.3. \mathbb{Q} agisce su \mathbb{R} con la traslazione allora il quoziente è più che numerabile con la topologia indiscreta.

Dimostrazione. Le orbite sono di cardinalità numerabile dunque, in quantità, devono essere più che numerabili.

Sia $A \subseteq \mathbb{R}$ un aperto saturo non vuoto dunque $x_0 \in A$, essendo aperto $(x_0 - \varepsilon, x_0 + \varepsilon) \subseteq A$ ora essendo saturo

$$A \supseteq \bigcup_{q \in \mathbb{Q}} (x_0 + q - \varepsilon, x_0 + q + \varepsilon) = \mathbb{R} \quad \Rightarrow \quad A = \mathbb{R}$$

Proposizione 0.4. Sia G un gruppo che agisce su X spazio topologico, allora

$$\pi: X \to \frac{X}{G}$$

è aperta.

Dimostrazione. Sia $U \subseteq X$ un aperto.

Poichè G agisce per omeomorfismo $g \cdot U$ è aperto

$$\pi(U) = \pi\left(\bigcup_{g \in G} g \cdot U\right)$$

infatti $U \in \bigcup g \cdot U$ hanno la stessa orbita.

Ora $\bigcup g \cdot U$ è un aperto saturo quindi $\pi(U)$ è aperto.

Osservazione 2. Se G è finito allora π è chiusa in quanto unione finite di chiusi è chiusa

Proposizione 0.5. Siano $f_i: X_i \to Y_i$ identificazioni aperte i = 1, 2 allora

$$f_1 \times f_2 : X_1 \times X_2 \to Y_1 \times Y_2$$

è un'identificazione

Dimostrazione. $f_1 \times f_2$ è iniettiva e suriettiva poichè lo sono f_1 e f_2 resta da provare che è aperta.

Sia $U_i \subseteq X_i$ aperto allora

$$(f_1\times f_2)(U_1\times U_2)=f_1(U_1)\times f(U_2)$$
aperto della topologia prodotto

dunque $f_1 \times f_2$ è un'identificazione.

Proposizione 0.6. Sia X spazio topologico e G gruppo che agisce su X tramite omeomorfismo. Sia $K = \{(x, g \cdot x) \mid x \in X \ g \in X\}$ allora

$$\frac{X}{G}$$
 è di Hausdorff $\Leftrightarrow K$ chiuso in $X \times X$

Dimostrazione.

$$\frac{X}{G}$$
 è di Hausdorff $\Delta_{\frac{X}{G}}$ è chiusa

Per la proposizione $0.4~\pi$ è un identificazione aperta quindi anche $\pi \times \pi$ lo è

$$\Delta_{\frac{X}{G}}$$
chiusa $\quad\Leftrightarrow\quad (\pi\times\pi)^{-1}\left(\Delta_{\frac{X}{G}}\right)\subseteq X\times X$ chiuso

D'altronte
$$(\pi \times \pi)^{-1} \left(\Delta_{\frac{X}{G}}\right) = K$$

1 Ricoprimenti

Definizione 1.1 (Ricoprimento).

Sia X uno spazio topologico.

Un ricoprimento è una famiglia $\mathfrak{U}\subseteq\mathcal{P}(X)$ se

$$X=\bigcup_{U\in\mathfrak{U}}U$$

se tutti gli $U \in \mathfrak{U}$ sono aperti, \mathfrak{U} è detto ricoprimento aperto

Definizione 1.2 (Localmente finito).

 $\mathfrak{U}\subseteq\mathcal{X}$ è una famiglia localmente finita se

 $\forall x \in X \exists V \in I(x) \quad V \cap U \neq \emptyset$ solamente per finiti $U \in \mathfrak{U}$

Esempio 1.1.

$$\mathbb{R} = \bigcup_{n \in \mathbb{Z}} [n, n+1]$$

è un ricoprimento chiuso localmente finito

Definizione 1.3 (Ricoprimento fondamentale).

 $\mathfrak U$ ricoprimento di X è detto fondamentale se dato $A\subseteq X$ allora

A aperto in
$$X \Leftrightarrow A \cap U$$
 aperto in $U \forall U \in \mathfrak{U}$

in modo equivalente

A chiuso in
$$X \Leftrightarrow A \cap U$$
 chiuso in $U \forall U \in \mathfrak{U}$

Osservazione 3. La freccia \Rightarrow segue dalla definizione di topologia di sottospazio

Proposizione 1.2.

 \mathfrak{U} ricoprimento aperto di $X \Rightarrow \mathfrak{U}$ ricoprimento fondamentale

Dimostrazione. Sia $A \subseteq X$ tale che $A \cap U$ aperto in $U \forall U \in \mathfrak{U}$. Ora U è aperto in X e poichè aperto di aperto è aperto

$$A \cap U$$
 aperto in $X \quad \forall U \in \mathfrak{U}$

dunque

$$A = \bigcup_{U \in \mathfrak{U}} A \cap U \text{ aperto in } X$$

Osservazione 4. In generale, ricoprimenti chiusi non sono fondamentali. Sia \mathbb{R} con la topologia euclidea allora

$$\mathbb{R} = \bigcup_{x \in \mathbb{R}} \{x\}$$
 è un ricoprimento chiuso

Ora $\forall A \subseteq \mathbb{R}$ allora $A \cap \{x\}$ è aperto in $\{x\}$ dunque se il ricoprimento fosse fondamentale

$$\forall A \subseteq \mathbb{R}$$
 A aperto \Rightarrow \mathbb{R} con la topologia discreta

Proposizione 1.3. Sia $\mathfrak U$ un ricoprimento fondamentale di X e $f: X \to Y$ funzione tra spazi metrici.

$$f\ continua \quad \Leftrightarrow \quad f_{|U}\ continua\ \forall U\in \mathfrak{U}$$

 $Dimostrazione. \Rightarrow$

$$\forall A \subseteq Y \text{ aperto} \quad (f_{|U})^{-1}(A) = f^{-1}(A) \cap U$$

Ora essendo f continua $f^{-1}(A)$ aperto e poichè $\mathfrak U$ fondamentale anche $f^{-1}(A)\cap U$ è un aperto \Leftarrow Sia $A\subseteq Y$ aperto

$$f^{-1}(A)$$
 aperto \Leftrightarrow $f^{-1}(A) \cap U$ aperto $\forall U \in \mathfrak{U}$

Ma $f_{|U}$ continua dunque

$$(f_{|U})^{-1}(A) = f^{-1}(A) \cap U \text{ aperto } \forall U \in \mathfrak{U}$$