김고은 PhD 연구 결과정리 v4

2024년 4월 3일 (수). version 3.0 by Analysts Joonghee Park PhD

History

- ···· 2024년 4월 2일 (화) 2024.3.31. 요청사항에 따른 작업:
 - O 데이터 작업 및 규칙 변경
 - 초성과 성조형 분석, 성조형과 음절구조, 성조형-초성-음절구조간 대응분석

차례

	지역별 성조 분류 규칙	5
	1. 전체 성조 분류에 대한 패턴 변경	7
	2. 규칙에 대한 분류 변경	9
	3. speaker별 전체 성조의 개수 ······	··· 10
	4. 성조패턴 변화전 전에 스피커별 데이터 contigency table ······	··· 11
	5. 성조패턴을 변화시킨 후의 스피커별 성조의 개수	··· 12
•	실험참가자	··· 13
•	성조형의 분포	··· 14
	6. 발화자(speaker)에 대한 Monosyllabic word, 성조의 개수와 개인 패턴 :	·· 14
	7. 고유어1 부산 발화자와 성조형의 관계	··· 15
	8. 고유어1에 관한 연구자 참고형 자료	··· 16
•	② 각 성조형에 대한 제보자들의 응답 일치 정도	··· 17
	9. Agreement Table ······	··· 17
•	분석절차	··· 19
	10. 성조형과 syllable의 분석에 대한 절차	··· 19
•	요청사항 정리	··· 21
•	고유어1	22
	11. 고유어1 부산 초성과 성조형의 관계	22
	12. 고유어1_부산_종성에 대한 분석	··· 24
	13. 고유어1 부산 성조형과 종성 음절구조(weight)의 관계	··· 26
	14. 고유어1의 성조형과 초성, 음절구조에 대한 다중 대응분석	··· 27
	15. 고유어1의 성조형, 초성, 음절구조(Heavy/Light) 다중 대응분석	30
•	고유어2	33
	16. 고유어2를 비롯한 2음절 분석	33
	17. 분석1: 고유어2, 부산의 초성과 성조의 관계 분석	34

	18. 분석2: 고유어2 부산 성조형과 첫음절 종성 음절구조(weight) ··············	36
	19. 분석3: 고유어2 부산 성조형과 마지막 종성 음절구조(weight) type1 ·····	37
	20. 분석4 : 고유어2 부산 성조형과 음절구조(weigth)의 관계 ·····	38
•	고유어2 대응분석	·· 40
	21. 고유어2의 초성, 종성음절구조, 성조와의 다중대응분석	·· 40
•	고유어3	·· 43
	22. 고유어3 부산 초성과 성조형과의 관계	·· 43
	23. 고유어3 부산 성조형과 종성 음절구조(weight)	·· 45
	24. 고유어3 부산 종성 음절구조(Weight - X - weight)와 성조형과의 관계	· 47
	25. 고유어3 부산 성조형과 종성음절구조(X-W-W) type2	·· 48
	26. 고유어3 초성, 종성 음절구조와 성조형의 다중 대응 분석	·· 51
•	외래어2	53
	27. 분석1: 외래어2_부산_초성과 성조형의 관계	53
	28. 분석2: 외래어2 부산 성조형과 음절구조(weight) ······	55
	29. 외래어2 성조형과 음절구조의 다중 대응분석	57
•	외래어3	59
	30. 외래어2 부산 초성과 성조와의 관계	59
	31. 외래어3 부산 종성음절구조(weight)와 성조형의 관계	·· 61
	32. 외래어3 부산 성조형과 음절구조(W-X-W)의 관계 ······	63
	33. 외래어3 부산 성조형과 음절구조(X-W-W) 관계 ······	·· 64
	34. 외래어3 성조형, 초성, 종성음절구조와의 다중 대응 분석	66
•	외래어4 ·····	68
	35. 외래어4 부산 초성과 성조형의 관계	68
	36. 외래어4 부산 성조형과 종성음절구조(weight)의 관계	70
	37. 외래어4 부산 종성 weigth 세부사항	·· 71
	38. 외래어4 성조형과 음절구조(W-X-X-W)와의 관계: type2	·· 73
	39. 외래어4 부산 종성음절구조(X-X-W-W)와의 관계	75

40. 외래어4 성조형, 초성, 음절구조에 대한 다중대응분석 77
● 가상어2····································
41. 가상어2 부산 성조형과 초성의 관계 79
42. 가상어2 부산 성조형과 종성음절구조와의 관계 81
43. 가상어2 성조형,초성, 음절구조에 대한 다중 대응분석 83
● 가상어3······85
44. 가상어3 부산 성조형과 음절구조와의 관계 87
45. 가상어3 부산 성조형과 음절구조(W-X-W)와의 관계 ··············· 89
46. 가상어3 성조형과 음절구조(X-W-W)와의 관계 ···································
47. 가상어3 성조형, 초성, 음절구조에 대한 다중 대응 분석 92

■ 지역별 성조 분류 규칙

<Table 1> 성조 분류 규칙

고유어1	고유어2	고유어3	외래어2	외래어3	외래어4	가상어2	가상어3
성조	성조	성조	성조	성조	성조	성조	 성조
Н	HL	HLL	HL	HLL	HLLL	HL	HLL
H(H)	LH	LHL	LH	LHL	LHLL	LH	LHL
L	НН	LLH	НН	LLH	LLHL	НН	LLH
H(H)_1	LH(H)	HHL	LH_f	HHL	LLLH		HHL
	LH(L)	LHH	LH(H)	LLH_f	LLLH_f		
		LHL(L)	LH(L)		HHLL		
					HHHL		

^{*}성조는 부산과 진주를 합쳐서 보인 것으로, 각각의 경우에 따라 부산에만 나타나는 성조, 진 주에만 나타나는 성조가 존재함

<Table 2> 지역별 성조 분류

type	기본분류	부산	진주
고유어1	Н	Н	Н
고유어1	H(H)	H(H)	H(H)
고유어1	L	L	L
고유어1	H(H)_1	H(H)	H(H)
고유어2	HL	HL	HL
고유어2	LH	LH	LH
고유어2	НН	НН	НН
고유어2	LH(H)	LH	LH(H)
고유어2	LH(L)	LH(L)	LH
고유어3	HLL	HLL	HLL
고유어3	LHL	LHL	LHL
고유어3	LLH	LLH	LLH
고유어3	HHL	HHL	HHL
고유어3	LHH	LLH	LHH
고유어3	LHL(L)	없음	LHL
외래어2	HL	HL	HL
외래어2	LH	LH	LH
외래어2	НН	НН	НН
외래어2	LH_f	LH	LH
외래어2	LH(H)	없음	LH(H)
외래어2	LH(L)	없음	LH(L)
외래어3	HLL	HLL	HLL
외래어3	LHL	LHL	LHL
외래어3	LLH	LLH	LLH
외래어3	HHL	HHL	HHL
외래어3	LLH_f	LLH	LLH
외래어4	HLLL	HLLL	HLLL
외래어4	LHLL	없음	LHLL
외래어4	LLHL	LLHL	LLHL
외래어4	LLLH	LLLH	LLLH
외래어4	$LLLH_f$	LLLH	LLLH
외래어4	HHLL	HHLL	HHLL
외래어4	HHHL	HHHL	HHHL
가상어2	HL	HL	HL
가상어2	LH	LH	LH
가상어2	НН	НН	НН
가상어3	HLL	HLL	HLL
가상어3	LHL	LHL	LHL
가상어3	LLH	LLH	LLH
가상어3	HHL	HHL	HHL

1. 전체 성조 분류에 대한 패턴 변경

<table2>의 분류를 아래와 같이 바꾸었습니다.

○ 분석에 들어간 것이므로 규칙부분의 내용을 추가합니다.

<Table 3> 전체 성조분류 패턴 결정

word	pattern	imp
고유어1 1	H(H)_1	H(H)+H(H)_1
고유어1 2	H(H)	H(H)+H(H)_1
고유어2 1	LH(H)	LH+LH(H)
고유어2 2	LH	LH+LH(H)
고유어3 1	LHH	LLH+LHH
고유어3 2	LLH	LLH+LHH
외래어2 1	LH_f	LH+LH_f
외래어2 2	LH	LH+LH_f
외래어3 1	LLH_f	LLH+LLH_f
외래어3 2	LLH	LLH+LLH_f
외래어4 1	LLLH_f	LLLH+LLLH_f
외래어4 2	LLLH	LLLH+LLLH_f
<u>가상어2</u>		
가상어3		
	·	

<Table 5> 초성, 중성, 종성 분류 규칙

초성	code	중성	code	종성	code	받침
	lax	}	sg	٦	obs	heavy
С	lax	H	sg	77	obs	heavy
Н	lax	F	dp	7入	obs	heavy
ス	lax	Ħ	dp	L	son	heavy
٦	lax	Ŧ	sg	LX	obs	heavy
L	son	-]]	sg	Lō	obs	heavy
己	son	‡	dp	С	obs	heavy
	son	퀴	dp	己	son	heavy
0	son	<u>.</u>	sg	57	obs	heavy
דר	tsasp	ᅪ	dp	50	obs	heavy
Ш	tsasp	ᅫ	dp	祀	obs	heavy
HH	tsasp	괴	dp	弘	obs	heavy
	tsasp	717	dp	SE	obs	heavy
∃	tsasp	丁	sg	511	obs	heavy
E	tsasp	둼	dp	ᄚ	obs	heavy
ī	tsasp	ᆌ	dp		son	heavy
ネ	tsasp	ᅱ	dp	Н	obs	heavy
ठं	fri	π	dp	趴	obs	heavy
入	fri	_	sg	人	obs	heavy
从	fri	긕	dp	从	obs	heavy
				0	son	heavy
				ス	obs	heavy
				え	obs	heavy
				7	obs	heavy
				E	obs	heavy
				п	obs	heavy
				ਰੇ	obs	heavy
				無	-	light

<Table 4> Weight규칙

초성받침	중성받침	종성받침	code	deci	rule
light	light	light	000	1	light-light-light
light	light	heavy	001	2	light-light-heavy
light	heavy	light	010	3	light-heavy-light
light	heavy	heavy	011	4	light-heavy-heavy
heavy	light	light	100	5	heavy-light-light
heavy	light	heavy	101	6	heavy-light-heavy
heavy	heavy	light	110	7	heavy-heavy-light
heavy	heavy	heavy	111	8	heavy-heavy-heavy

2. 규칙에 대한 분류 변경

1. light/obs/son으로 나누는 경우

light: 개음절, obs: 폐음절-평파열음, son: 폐음절-공명자음

2. light/heavy로 나누는 경우 light: 개음절, heavy: 폐음절

○ 규칙에서 적용된 내용에 대한 표입니다.

<Table 6> 초성, 중성, 종성 분류 규칙

초성	code	한글코드	중성	code	한글코 드	종성	code	한글코드	받침	한글코드
7	lax	평파열음·평파찰음	ŀ	sg		7	obs	폐음절-평파열음	heavy	<u>폐음절</u>
С	lax	평파열음·평파찰음	H	sg		רר	obs	폐음절-평파열음	heavy	폐음절
н	lax	평파열음·평파찰음	ŧ	dp		7人	obs	폐음절-평파열음	heavy	 폐음절
	lax	평파열음·평파찰음	Ħ	dp		L	son	폐음절-공명자음	heavy	 폐음절
٦	lax	평파열음·평파찰음	1	sg		Lズ	obs	폐음절-평파열음	heavy	 폐음절
L	son	공명음	1]	sg		Lō	obs	폐음절-평파열음	heavy	폐음절
2	son	공명음	1	dp		⊏	obs	폐음절-평파열음	heavy	 폐음절
	son	공명음	퀴	dp		ㄹ	son	폐음절-공명자음	heavy	폐음절
0	son	공명음		sg		27	obs	폐음절-평파열음	heavy	폐음절
דד	tsasp	유기음·경음	과	dp		50	obs	폐음절-평파열음	heavy	폐음절
ш	tsasp	유기음·경음	ᅫ	dp		크出	obs	폐음절-평파열음	heavy	폐음절
HH.	tsasp	유기음·경음	괴	dp		改	obs	폐음절-평파열음	heavy	폐음절
双	tsasp	유기음·경음	717	dp		SE	obs	폐음절-평파열음	heavy	폐음절
∃	tsasp	유기음·경음	_	sg		ᆵ	obs	폐음절-평파열음	heavy	폐음절
E	tsasp	유기음·경음	둼	dp		ᄚ	obs	폐음절-평파열음	heavy	폐음절
īī	tsasp	유기음·경음	ᆌ	dp			son	폐음절-공명자음	heavy	폐음절
ネ	tsasp	유기음·경음	ᅱ	dp		Н	obs	폐음절-평파열음	heavy	폐음절
ठे	fri	마찰음	т	dp		趴	obs	폐음절-평파열음	heavy	폐음절
入	fri	마찰음	_	sg		人	obs	폐음절-평파열음	heavy	폐음절
从	fri	마찰음	ᅴ	dp		从	obs	폐음절-평파열음	heavy	폐음절
						0	son	폐음절-공명자음	heavy	폐음절
						ス	obs	폐음절-평파열음	heavy	폐음절
						ネ	obs	폐음절-평파열음	heavy	폐음절
						7	obs	폐음절-평파열음	heavy	폐음절
						E	obs	폐음절-평파열음	heavy	폐음절
						豇	obs	폐음절-평파열음	heavy	폐음절
						ਰੇ	obs	폐음절-평파열음	heavy	폐음절
						無	-		light	개음절

3. speaker별 전체 성조의 개수

••• <Table3> 전체 성조분류 패턴 결정--> 성조규칙이 변경되기 전의 데이터

- 여기에서 분류를 할 때, 고유어1 ~ 가상어 3까지 분류를 했습니다.
- O type = 고유어2, 외래어2와 같이 음절이 같은 경우에는 HH, HL, LH등은 type를 고려하지 않고 모두 계산된 것입니다. 단어에 나타나는 총개수입니다.

<Table 7> 스피커별 전체 contigency table

	JBS	JMH	KDC	КНЈО	LHB
Н	27	38	27	29	25
H(H)	44	9	24	32	21
H(H)_1	16	39	34	27	41
НН	92	75	74	93	81
HHHL	16	2	2	5	0
HHL	36	38	40	50	31
HHLL	1	5	6	19	11
HL	169	170	185	170	169
HLL	22	10	14	21	9
HLLL	0	1	1	2	1
L	20	22	22	19	19
LH	112	161	154	105	159
LH(H)	23	15	7	28	13
LH_f	41	2	2	42	1
LHL	259	257	249	232	241
LLH	51	39	36	48	63
LLH_f	57	54	54	65	49
LLHL	103	104	108	88	99
LLLH	1	0	0	0	1
LLLH_f	26	30	19	36	32

4. 성조패턴 변화전 전에 스피커별 데이터 contigency table

○ 이 데이터를 이용하면 고유어1에서 H(H), H(H)_1를 H(H)+H(H)_1로 합친다고 하면 이 데이터에서 수동으로 변경하여 합쳐서 사용하면 됩니다.

<Table 8> 성조패턴 변화전 전에 스피커별 데이터

type_label_1	accent	JBS	JMH	KDC	KHJO	LHB
	Н	27	38	27	29	25
고유어1	H(H)	44	9	24	32	21
프슈의I	H(H)_1	16	39	34	27	41
	L	20	22	22	19	19
	НН	34	29	31	32	34
고유어2	HL	82	80	77	84	78
<u> </u>	LH	85	91	101	82	90
	LH(H)	23	15	7	28	13
	HHL	10	5	4	7	2
7.0.012	HLL	12	2	2	10	1
고유어3	LHL	103	108	102	98	104
	LLH	34	21	24	35	25
	НН	46	36	39	40	36
و (مالتان	HL	75	81	80	78	76
외래어2	LH	1	39	35	2	45
	LH_f	41	2	2	42	1
	HHL	24	23	23	28	19
	HLL	10	8	10	11	8
외래어3	LHL	103	107	104	92	104
	LLH	2	0	0	0	11
	LLH_f	57	54	54	65	49
	HHHL	16	2	2	5	0
	HHLL	1	5	6	19	11
0] 7]] 0] 4	HLLL	0	1	1	2	1
외래어4	LLHL	103	104	108	88	99
	LLLH	1	0	0	0	1
	LLLH_f	26	30	19	36	32
	НН	12	10	4	21	11
가상어2	HL	12	9	28	8	15
	LH	26	31	18	21	24
	HHL	2	10	13	15	10
בן גובום	HLL	0	0	2	0	0
가상어3	LHL	53	42	43	42	33
	LLH	15	18	12	13	27
		1,116	1,071	1,058	1,111	1,066

5. 성조패턴을 변화시킨 후의 스피커별 성조의 개수

○ 성조패턴을 <Table3>의 규칙에 따라 합쳐진 것들의 빈도를 구한 것입니다.

<Table 9> 성조패턴을 변화시킨 후의 스피커별 성조의 개수

type_label_2	accent	JBS	JMH	KDC	КНЈО	LHB
	Н	27	38	27	29	25
고유어1	H(H)+H(H)_1	60	48	58	59	62
	L	20	22	22	19	19
	НН	34	29	31	32	34
고유어2	HL	82	80	77	84	78
	LH+LH(H)	108	106	108	110	103
	HHL	10	5	4	7	2
고유어3	HLL	12	2	2	10	1
小中 (13	LHL	103	108	102	98	104
	LLH+LHH	34	21	24	35	25
	НН	46	36	39	40	36
외래어2	HL	75	81	80	78	76
	LH+LH_f	42	41	37	44	46
	HHL	24	23	23	28	19
외래어3	HLL	10	8	10	11	8
되네이3	LHL	103	107	104	92	104
	LLH+LLH_f	59	54	54	65	60
	HHHL	16	2	2	5	0
	HHLL	1	5	6	19	11
외래어4	HLLL	0	1	1	2	1
	LLHL	103	104	108	88	99
	LLLH+LLLH_f	27	30	19	36	33
	НН	12	10	4	21	11
가상어2	HL	12	9	28	8	15
	LH	26	31	18	21	24
	HHL	2	10	13	15	10
가상어3	HLL	0	0	2	0	0
\1.9 \13	LHL	53	42	43	42	33
	LLH	15	18	12	13	27

■ 실험참가자.

<Table 10> 실험참가자 데이터 입력결과

speaker	area	age	gender	name	input
KIJ	진주	20	여	권이지	F
КНЈҮ	진주	20	여	강현재	F
KGU	진주	20	남	강경운	F
KSY	진주	60	남	김수용	F
KBS	진주	60	여	김봉선	F
SYJ	진주	20	여	손유진	F
KSJ	진주	60	여	김순자	F
ОНЈ	부산	60	여	오혜정	F
LHB	부산	20	여	이한비	TRUE
JMH	부산	20	남	장민호	TRUE
KDC	부산	20	남	김두찬	TRUE
JBS	부산	60	여	정복순	TRUE
КНЈО	부산	60	여	강현주	TRUE
KJY	부산	20	여	권정윤	TRUE
JES	진주	60	여	정은실	F
PSO	진주	60	여	박순옥	F

■ 성조형의 분포

Table 7: Accent distribution of South Kyengsang monosyllabic words

accent class	YD	CP	MA	YJ	KM	Totals	Ratio
H(H)	233	214	196	212	278	1,133	53%
H(L)	148	135	120	82	70	555	26%
R	91	104	71	104	80	450	21%
Totals	472	453	387	398	428	2,138	

위 표에서 accent class는 성조, speaker는 제보자(실험참가자)-이니셜로 한 명씩 제시함.

- 각 성조에 해당하는 단어가 몇 개인지 제보자(speaker)별로 보여주어야 함.
- 부산20대, 부산60대, 진주20대, 진주60대 각각에 대해 고유어1, 고유어2, 고유어3, 외래어2, 외래어3, 외래어4로 나누어서 제시

6. 발화자(speaker)에 대한 Monosyllabic word, 성조의 개수와 개인 패턴:

┅ 표의 변화에 대한 설명

○ 표10은 성조패턴을 변화하기전의 데이터입니다.

<Table 11> Accent distribution of Monosyllabic word(Using pattern_change)

	JBS	JMH	KDC	KHJO	LHB	Sum
Н	27	38	27	29	25	146
H(H)	44	9	24	32	21	130
H(H)_1	16	39	34	27	41	157
L	20	22	22	19	19	102
Sum	107	108	107	107	106	535

- 표11 성조패턴 변화후의 빈도입니다. 데이터를 합쳐서 나타내기 때문에 아래와 같이 변형 된다고 보시면 됩니다.
- 표가 이렇게 달라지면 행과 열의 동질성 검정(카이제곱 분석)의 결과는 달라진다는 점에 차이가 있습니다.

< Table 12> Accent distribution of Monosyllabic word

	JBS	JMH	KDC	КНЈО	LHB	Sum
Н	27	38	27	29	25	146
H(H)+H(H)_1	60	48	58	59	62	287
L	20	22	22	19	19	102
Sum	107	108	107	107	106	535

7. 고유어1 부산 발화자와 성조형의 관계

O 발화자에 대한 성조패턴입니다.

<Table 13> 성조패턴변화후 빈도(비율포함)

	JBS	ЈМН	KDC	КНЈО	LHB	SUM
Н	27(25.2%)	38(35.2%)	27(25.2%)	29(27.1%)	25(23.6%)	146
H(H)+H(H)_1	60(56.1%)	48(44.4%)	58(54.2%)	59(55.1%)	62(58.5%)	287
L	20(18.7%)	22(20.4%)	22(20.6%)	19(17.8%)	19(17.9%)	102
SUM	107	108	107	107	106	535

••• 그림을 2가지를 제시합니다. 이것은 논문에 넣으실 수도 있고 아닐 수도 있으나, 패턴을 빠르게 파악되기 때문에 넣었습니다.

○ 모자이크 플롯: 아래의 그림에서는 설명이 편한 것을 선택하시면 됩니다.

Contigency Table of var

그림 2 성조 패턴 변화 후의 스피커별 분포

┅ 막대그래프를 이용하여 개별로 분리한 그래프

○ 이것은 개별파악이 쉬워서 넣었습니다.

그림 3 성조패턴 변화후의 스피커별 분포

8. 고유어1에 관한 연구자 참고형 자료

<Table 14> 연구자 참고용 자료

speaker	accent	freq	area	age	gender	name
JBS	Н	33(19.1%)				
JBS	H(H)	62(20.9%)	부산	60	여	정복순
JBS	L	21(19.1%)				
JMH	Н	43(24.9%)				
JMH	H(H)	50(16.8%)	부산	20	남	장민호
JMH	L	24(21.8%)				
KDC	Н	32(18.5%)	_			
KDC	H(H)	60(20.2%)	부산	20	남	김두찬
KDC	L	24(21.8%)				
КНЈО	Н	35(20.2%)	_			
КНЈО	H(H)	61(20.5%)	부산	60	여	강현주
КНЈО	L	20(18.2%)				
LHB	Н	30(17.3%)	_			
LHB	H(H)	64(21.5%)	부산	20	여	이한비
LHB	L	21(19.1%)				

■ ② 각 성조형에 대한 제보자들의 응답 일치 정도

Table 8: Agreement rates

	Monosyllable	Disyllable	Trisyllable
Agree	213 (67%)	334 (59%)	169 (74%)
Disagree	106 (33%)	230 (41%)	59 (26%)

위 표는 monosyllable(고유어1), disyllable(고유어2), trisyllable(고유어3)에 대해 제보자들끼리 동 일한 성조를 보였는지 아닌지를 보여 줌.

본 연구에서는 고유어1, 고유어2, 고유어3, 외래어2, 외래어3, 외래어4, 가상어2, 가상어3로 나누어서 제시(부산20대, 부산60대, 진주20대, 진주60대가 동일 단어에 대해 서로 성조가 일치하는지 아닌지를 고유어1, 고유어2, 고유어3, 외래어2, 외래어3, 외래어4로 묶어서 제시) 예시.

9. Agreement Table

₩ 60대를 앞으로 넣고 20대를 뒤로 넣어서 수정했습니다.

<Table 15> 고유어1 에 관한 부산 지역 20대와 60대

Agreement_rate	부산60대	부산20대
Agree	456(99%)	960(93%)
Disagree	6(1%)	76(7%)

¹⁾ Table 8에 대한 처리

<Table 16> 고유어2 에 관한 부산 지역 20대와 60대

부산60대	부산20대
1053(98%)	2151(96%)
20(2%)	92(4%)
	1053(98%)

<Table 17> 고유어3 에 관한 부산 지역 20대와 60대

Agreement_rate	부산60대	부산20대
Agree	592(97%)	1143(96%)
Disagree	18(3%)	48(4%)

<Table 18> 외래어2: 부산20대, 부산60대

Agreement_rate	부산60대	부산20대
Agree	625(96%)	1330(94%)
Disagree	24(4%)	82(6%)

<Table 19> 외래어3: 부산20대, 부산60대

Agreement_rate	부산60대	부산20대
Agree	744(95%)	1620(95%)
Disagree	36(5%)	86(5%)

<Table 20> 외래어4: 부산20대, 부산60대

Agreement_rate	부산60대	부산20대
Agree	533(90%)	1144(91%)
Disagree	60(10%)	108(9%)

<Table 21> 가상어2: 부산20대, 부산60대

Agreement_rate	부산60대	부산20대
Agree	164(82%)	336(75%)
Disagree	36(18%)	114(25%)

<Table 22> 가상어3: 부산20대, 부산60대

Agreement_rate	부산60대	부산20대
Agree	228(81%)	510(81%)
Disagree	52(19%)	120(19%)

- 2. 초성, 종성과 성조형의 (다변량)
- -20대와 60대를 나누지 않고 부산, 진주만 나눔.
- -각 경우에 따라 나타날 수 있는 성조형이 다름.

-초성 분석은 단어의 음절수에 관계 없이 첫 번째 음절의 초성만을 분석함.

고유어1, 고유어2,~ 가상어3 별로 처리

첫번째음절과 monosyllabic의 성조만 하는 것인가요?

-예를 들면 다음과 같음.

Table 15: Monosyllabic accent classes with respect to onset type [$\chi^2 = 93.2756$, df = 4, p < 2.2e-16].

onset	H(H)	H(L)	R	Totals
Sonorant	290	147	120	557
Lax	335	180	195	710
Aspirated/Tense	382	131	42	555
Totals	1,007	458	357	1,822

H(H)	H(L)	R
0.94	1.05	1.10
0.85	1.01	1.40
1.25	0.94	0.39
1.23	0.94	0.39

**만일 20대와 60대가 유의미한 차이가 있다면? 이것도 확인할 수 있을까요?

■ 분석절차

- 분석절차를 설명하는 이유는 이미 많은 부분을 알고 계시지만, 분석하는 기본적인 절차를 알리고자 합니다.
- 손현재,이토치요키(2016)에서 표내용속에 관측/기대빈도에 대한 유의성에 대한 설명을 해둔 상태라서 이것을 인용으로 하시면 됩니다.

Table 9. Monosyllabic accent class with respect to onset (sonorant, lax, aspirated/tense). Left = observed numbers, right = observed/expected numbers. Statistically significant correlations (α -level at 0.05) are in bold. These are cells in which Chi-square exceeds the 0.05 alpha level for the table as a whole and thus contribute most to the overall Chi-square statistic [χ^2 = 78.9321, df = 4, p = 2.932e-16].

onset	H(H)	H(L)	H:(H)	Totals
Sonorant	276	119	62	457
Lax	339	153	136	628
Aspirated/Tense	379	105	25	509
Totals	994	377	223	1594

H(L)	H:(H)
1.10	0.97
1.03	1.55
0.87	0.35
	1.10

그림 6 손현재 외 (2016)에서 분석방법을 제시한 상태

10. 성조형과 syllable의 분석에 대한 절차

- O contigency table생성, 비율추가
- 카이제곱 검정시행
- O observed/expected table생성
 - observed/expected >1: 관찰값이 기댓값보다 크다는 것은 두 변수 간에 양의 상 관관계가 있을 가능성이 높다는 의미입니다. 그러나 이것만으로는 유의성을 결정 할 수 없습니다.
 - observed/expected < 1: 관찰값이 기대값보다 작다는 것은 두 변수 간에 음의 상

관관계가 있을 가능성이 높다는 의미입니다. 그러나 이것도 유의성을 결정은 할 수 없습니다.

- O 각각에 대한 통계적 유의성 검성 시행 1)2)
 - 유의성을 평가하기 위해서는 카이제곱 검정의 결과와 p-값을 함께 고려, 또한 Cramer's V 값을 이용하여 어느 정도의 상관이 있는지 확인해야 합니다.
- O cramer's V 계산 3) 결과보고시 포함
 - 김고은 선생님이 주신 논문들은 cramer's V를 보고하지 않는 경우가 많지만, APA 양식을 보니 일반적으로 보고하도록 되어있습니다. 저희는 이것을 모두 계산했습니다.
- □ 카이제곱 overall이 유의하면 동질성이 확보됩니다. 즉, 행과 열은 상관이 있다는 의미가됩니다. 그때 어느 정도 상관이 있는가를 알기위해서 Cramer's V(범주형 변수에 대한 상관분석)을 통해서 상관계수를 보고합니다

< Table 23> Interpretations for Cramér's V

df*	negligible	small	medium	large
1	0 < .10	.10 < .30	.30 < .50	.50 or more
2	0 < .07	.07 < .21	.21 < .35	.35 or more
3	0 < .06	.06 < .17	.17 < .29	.29 or more
4	0 < .05	.05 < .15	.15 < .25	.25 or more
5	0 < .05	.05 < .13	.13 < .22	.22 or more
6 >인경우	0 < .05	.05 < .13	.13 < .22	.22 or more

출처:https://peterstatistics.com/CrashCourse/3-TwoVarUnpair/NomNom/NomNom-2c-Effect-Size.html

☆ ※만일 20대와 60대가 유의미한 차이가 있다면? 이것도 확인할 수 있을까요?

- \bigcirc 20대와 60대를 이러한 분할표로 분리하면 8 \times 8 의 표가 되어서 분석과 해석이 어려울 듯 합니다. 20대와 60대의 어떤 부분의 차이가 알고 있는지 좀 더 구분하셔야할 듯합니다.
- 20대와 60대의 ()에 관한 유의미한 차이가 있나요?처럼 질문을 만들어 보신 후에 ()안에 들어갈 것을 말씀해주세요

¹⁾ Agresti, A. (2002). Categorical Data Analysis (2nd ed.). Wiley.

²⁾ Sokal, R. R., & Rohlf, F. J. (2012). Biometry: The Principles and Practice of Statistics in Biological Research (4th ed.). W. H. Freeman.

³⁾ Cramér, Harald. 1946. Mathematical Methods of Statistics. Princeton: Princeton University Press, page 282 (Chapter 21. The two-dimensional case). ISBN 0-691-08004-6 (table of content Archived 2016-08-16 at the Wayback Machine)

■ 요청사항 정리

1. 첫음절 초성과 성조형을 분석해 주세요.

→ 첫음절의 초성이 유기음·경음인 경우 성대의 긴장이 높아서 상대적으로 첫음절이 H로 나타 날 가능성이 높으며(H로 시작하는 성조형이 나타날 가능성이 높으며), 초성이 공명음이나 평파열음·평파찰음인 경우 성대의 긴장이 낮아서 첫음절이 L로 나타날 가능성이 높습니다(L로 시작하는 성조형이 나타날 가능성이 높으며). 이것을 관찰하고자 함입니다.

2. 첫음절 종성과 성조형을 분석해 주세요.

(두 가지 경우로 분석. 첫음절 종성을

① light/obs/son으로 나누는 경우

light: 개음절

obs: 폐음절-평파열음 son: 폐음절-공명자음

②light/heavy로 나누는 경우

light: 개음절 heavy: 폐음절)

- → 첫음절이 폐음절인 경우(받침이 있는 경우) 개음절(받침이 없는 경우)보다 본질적으로 더 긴 지속 시간을 가지는 경향이 있습니다. 이러한 긴 지속 시간은 성대가 더 높은 기본 주파수(F0)에 도달할 수 있는 시간을 더 많이 제공하여, 더 높은 음높이로 지각됩니다. 따라서 폐음절인 경우 해당 음절의 성조가 H로 나타날 가능성이 높습니다.
- → ①에서 받침의 종류까지 보는 이유는 평파열음과 공명자음의 음성학적 특성이 다르기 때문에 이것이 혹시나 성조에 영향을 주는지를 세밀하게 관찰하기 위함입니다. (대체로는 영향이 없는 것 같습니다.)

■ 고유어1

<고유어1_부산_초성>

독립 변수=초성의 분류	종속 변수=성조형
lax	Н
son	H(H) + H(H)_1 → 두 성조형을 합쳐서 분석
tsasp	n(n) + n(n)_1 / 구 경호성을 합쳐서 분격
fri	L

<고유어1_진주_초성>→ <고유어1_부산_초성>과 동일

11. 고유어1 부산 초성과 성조형의 관계

<Table 25> 고유어1 부산 onset Contingency table

syllable-accent	Н	H(H)+H(H)_1	L	SUM
공명음	26(17.8%)	62(21.6%)	11(10.8%)	99
마찰음	35(24%)	35(12.2%)	44(43.1%)	114
유기음_경음	36(24.7%)	108(37.6%)	1(1%)	145
평파열음_평파찰음	49(33.6%)	82(28.6%)	46(45.1%)	177
SUM	146	287	102	535

<Table 26> 고유이1 부산 onset [chisq = 83.26, df = 6, p = 7.57e-16]; Cramer's V = 0.28.

syllable-accent	Н	H(H)+H(H)_1	L
공명음	0.962	1.167	0.583
마찰음	1.125	0.572***	2.024***
유기음_경음	0.91	1.388***	0.036***
평파열음_평파찰음	1.014	0.864	1.363*

Note: ***: p < .001, **: p < .01, *: p < .05

Pearson's Chi-squared test

data: Onset_or_Coda_Accent_Contingency_table
X-squared = 83.261, df = 6, p-value = 7.566e-16

The Pearson's Chi-squared test of independence between Onset and Accent suggests that the effect is statistically significant [chisq = 83.26, df = 6, p = 7.57e-16].; Cramer's V = 0.279, 95%CI[0.162, 0.396].

O 음절에 따라서 성조형의 비율과 유의성

그림 7 고유어1 부산 초성

- ••• 설명예시) 공명음에서는 유의한 값이 없습니다. 마찰음에서는 L과 H(H)+H(H)_1이 유의한 값으로 나타났습니다.
 - O 참고용으로 그려본 것입니다. 성조형에 따른 음절의 유의성 분석

그림 8 고유어1 부산 초성 전환

··· 그림7에서 L에서는 공명음은 0.58이지만 유의하지 않고, 유기음_경음은 0.04이지만 유의합니다. Cramer's V = 0.279(df=6)에서는 효과크기는 큰 상태입니다.

12. 고유어1_부산_종성에 대한 분석

독립 변수=종성의 분류	종속 변수=성조형
light	H
obs	H(H)+H(H)_1 → 두 성조형을 합쳐서 분석
son	L

<고유어1_진주_종성> → <고유어1_부산_종성>과 동일

<Table 28> 고유어1 부산 첫음절 종성(coda) Contingency table

syllable-accent	Н	H(H)+H(H)_1	L	SUM
- 개음절	18(10.4%)	76(25.6%)	24(21.8%)	118
폐음절_공명자음	75(43.4%)	129(43.4%)	74(67.3%)	278
폐음절_평파열음	80(46.2%)	92(31%)	12(10.9%)	184
SUM	173	297	110	580

<Table 29> 고유어1 부산 첫음절 종성(coda) [chisq = 49.7, df = 4, p = 4.17e-10]; Cramer's V = 0.21.

syllable-accent	Н	H(H)+H(H)_1	L
 개음절	0.511**	1.258*	1.072
페음절_공명자음	0.904	0.906	1.404**
페음절_평파열음	1.458***	0.976	0.344***

NOTE: ***: p < .001, **: p < .01, *: p < .05

Pearson's Chi-squared test

data: Onset_or_Coda_Accent_Contingency_table X-squared = 49.7, df = 4, p-value = 4.171e-10

"The Pearson's Chi-squared test of independence between Coda and Accent suggests that the effect is statistically significant [chisq = 49.7, df = 4, p = 4.17e-10].; Cramer's V = 0.207, 95%CI[0.094, 0.32].

Pearson's Chi-squared test

data: Onset_or_Coda_Accent_Contingency_table X-squared = 49.7, df = 4, p-value = 4.171e-10

The Pearson's Chi-squared test of independence between Coda and Accent suggests that the effect is statistically significant [chisq = 49.7, df = 4, p = 4.17e-10].; Cramer's V = 0.207, 95%CI[0.094, 0.32].

그림 9 고유어1 부산 종성 coda

☆ 참고용으로 넣었습니다. 그림9의 을 전환시켜서 다시 그린 것입니다.

그림 10 고유어1 부산 종성 coda transpose

13. 고유어1 부산 성조형과 종성 음절구조(weight)의 관계

<Table 30> 고유어1 부산 첫음절 종성 weight Contingency table

syllable-accent	Н	H(H)	L	SUM
개음절	18(10.4%)	76(25.6%)	24(21.8%)	118
폐음절	155(89.6%)	221(74.4%)	86(78.2%)	462
SUM	173	297	110	580

<Table 31> 고유어1 부산 첫음절 종성 weight [chisq = 15.74, df = 2, p = 3.83e-04]; Cramer's V = 0.16.

syllable-accent	Н	H(H)	L
개음절	0.511**	1.258*	1.072
폐음절	1.125	0.934	0.982

Pearson's Chi-squared test

data: Onset_or_Coda_Accent_Contingency_table
X-squared = 15.736, df = 2, p-value = 0.0003828

The Pearson's Chi-squared test of independence between Weight and Accent suggests that the effect is statistically significant [chisq = 15.74, df = 2, p = 3.83e-04].; Cramer's V = 0.165, 95%CI[0.072, 0.258].

그림 11 고유어1 부산 종성 weight

14. 고유어1의 성조형과 초성, 음절구조에 대한 다중 대응분석

┅ 고유어1의 1음절 고유어 초성+음절 구조: ight/obs/son으로 나누는 경우

<고유어1 부산 초성+종성>, <고유어1 진주 초성+종성>

첫음절 초성+종성과 성조형으로 대응 분석 해 주세요.

(①, ② 중 무엇이 더 뚜렷한지 현재로는 알 수 없으니 둘 다 해서 설명력이 더 높은 것을 채택하고자 합니다.) 대응 분석 그래프의 제목은 '1음절 고유어 초성+음절 구조'로 부탁드립니다.

그림 12 고유어1 부산 1음절 고유어 초성+음절 구조에 관한 대응분석

┅ 해석에 대하여 코멘트

○ 그림11에서 인접해 있는 경우 관계(유클리드 거리 개념)가 높은 것들이라고 보시면 됩니다. 그리고 방향이 같을수록 관계가 높은 것입니다.

<Table 32> 고유어1(부산)다중대응분석 좌표점(64.58%)

factor	level	Dim1	Dim2
	Н	-0.0912	0.2838
성조	H(H)	-0.1411	-0.1059
성조	H(H)_1	-0.1231	-0.1844
	L	0.4998	0.0127
	공명음	-0.2112	0.1107
om a ot	마찰음	0.3485	0.0609
onset	유기음_경음	-0.2084	-0.2821
	평파열음_평파찰음	0.0644	0.1300
	개음절	0.1363	-0.2329
Coda	폐음절_공명자음	0.0458	-0.1061
	 폐음절_평파열음	-0.1482	0.2911

○ 대응분석은 시각화 자료와 함께 자료를 추가해야 합니다.

....

고유어1 에 관한 성조형과 음절 다중대응분석의 총 설명력(64.58 %)

그림 13 연구자 판단용 대응분석 행렬도(biplot)

- •••• 아래의 그림을 보시면 파란색과 주황색이 각이 더 가깝기 때문에 먼거리에서는 연관성이 있다고 봅니다.
 - O 대응분석은 다변량에 적용하는 차원축소기법으로 행좌표점과 열좌표점을 하나의 그림으로 나타내어 이둘의 관계를 탐색하는 방법(Greenacre, 1984)이라고 합니다.
 - O 두개의 설명력은 총결여성(totla inertia)라고 하는데, 결여성(ineria)는 각 성분을 중심화한 행렬로 만들고 계산해서 비정칙값으로 분해합니다. 이 값들을 eigen value라고 하고이 값을 제곱하여 얻어진 것을 주 결여성(principal inertia, λ)라고 합니다.

적합도

$$fit = \frac{\sum_{k=1}^{s} \lambda_k^2}{\sum_{k=1}^{p-1} \lambda_k^2} \times 100$$

 $n \times p$ 행렬의 s차원(우리는 2차원으로 나타냄)

이 적합도는 설명력이라고 보시면 됩니다. x축의 설명력(Dim1)과 y축의 설명력(dim2)을로하고 전체 설명력으로 적합도를 나타냅니다.

- 두 좌표점을 기준하여 같은방향에 위치한다면 이들을 나타내는 행범주와 열범주-우리가 구한 빈도분할표(contigency table)-가 대응관계에 있다고 본다(최용석, 2018, p460). 대응분석(correspondence analysis)를 한 것이므로 대응관계가 있다는 것은 관련이 높다고 보는 것입니다.
- 두 점 사이의 거리가 가까워도 관계가 높은 것입니다. 두 점 사이의 거리는 유클리드거리 (수학적 거리)로서 관련이높은 것으로 서술하시면 됩니다.
- 우리 분석에서 적용된 다중 대응분석은 CReenavre & Hastie, 1987)의 논문에 나온 기법을 사용하였습니다. 이 기법은 R을 비롯한 대부분의 통계패키지에는 기본적으로 적용되는 통계적 산식입니다.

15. 고유어1의 성조형, 초성, 음절구조(Heavy/Light) 다중 대응분석 ···· 고유어1의 1음절 고유어 초성+음절 구조: light/heavy로 나누는 경우 대응분석

그림 15 고유어1 부산 초성+음절구조(weight)

O light/ obs/son으로 나눈 것(64.58%)보다 light/heavy(71.5%)로 나눈 것이 더 높은 설명력을 가집니다.

<Table 33> 고유어1(부산)-Weight-다중대응분석 좌표점(71.5%)

factor	level	Dim1	Dim2
 성조	Н	0.0330	-0.1817
 성조	H(H)	-0.1717	0.0294
성조	H(H)_1	-0.1865	0.1119
성조	L	0.4587	0.0503
onset	공명음	-0.1486	-0.1512
onset	마찰음	0.3443	0.0911
onset	유기음_경음	-0.3067	0.0871
onset	평파열음_평파찰음	0.1125	-0.0454
Weight	개음절	0.0336	0.2970
Weight	폐음절	-0.0090	-0.0795
	·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

고유어1 에 관한 성조형과 음절 다중대응분석의 총 설명력(71.5 %)

그림 16 고유어1 부산 wieght 대응분석 행렬도

- ◆ 고유어2, 외래어2, 가상어2
- 1. 첫음절 초성과 성조형을 분석해 주세요.
- → 고유어1의 1의 이유와 동일합니다.
- 2. 음절 구조(weight)와 성조형을 분석해 주세요. <u>※ 첫음절 종성의 성조형이 아닙니다.</u>

각음절의 종성에 나타나는 것을 weight로 정리

즉 0-0, 1-0, 0-1, 1-1 4 가지의 음절 구조 패턴과 성조형입니다.

- → 고유어1의 2의 이유와 동일합니다. 폐음절로 시작할 경우 H(H), H(L)과 같은 성조형이 나타날 가능성이 높으며, 개음절로 시작할 경우 LH, LH(H)와 같은 성조형이 나타날 가능성이 높습니다. 가령 폐음절-폐음절의 경우 HH, 개음절-폐음절의 경우 LH를 예측해 볼 수 있습니다.
- 3. 첫음절 초성+음절 구조(weight)와 성조형으로 대응 분석 해 주세요.
- 아까 예시로 보여주셨던 것으로 해주시면 됩니다.
- 단 제목은 '2음절 고유어 초성+음절 구조'로 바꾸고 싶습니다. (다른 것들도 'x음절 xx어 초성+음절 구조' 식으로 부탁드립니다.)
- 개음절은 '개'로, 폐음절은 '폐'로 줄이고자 합니다. ex) 개음절-개음절 = 개-개
- ☆ 이 방식으로 적용했습니다.
- * 화살표에 가까이 붙어있으면서 0,0 점에서 멀리 떨어진 것이 설명력이 높은 것인가요?
- ⋯ --> 방향과 동일하거나 가까우면 연관성이 높은 것입니다.

■ 고유어2

16. 고유어2를 비롯한 2음절 분석

고유어2를 살펴보니, 다음의 4가지를 확인하는 것이 도움이 될 것 같아 4가지를 분석했습니다.

○ 분석1 : 초성과 성조형

○ 분석2 : 첫음절의 종성 음절구조와 성조형 -> weight - X의 효과 ○ 분석3 : 마지막음절 종성 음절구조와 성조형 ->X-weight의효과

○ 분석4 : 2개의 종성음절구조(weight)와 성조형

이 내용은 그림 15에 나타냈습니다.

☆ 아래와 같이 고유어2에서는 초성, 종성 2가지, 음절구조로 분석한 것을 설명한 것입니다.

<고유어2 부산 초성>

독립 변수=초성의 분류	종속 변수=성조형
lax	HL
son	ΠL
3011	НН
tsasp	[HTTH/H/ / 도 서도왕 0 왕기기 표시
fri	LH+LH(H) → 두 성조형을 합쳐서 분석

☆ 성조형은 위에 말한대로 합쳐서 하나로 나타낸 성조형으로 했습니다.

17. 분석1: 고유어2, 부산의 초성과 성조의 관계 분석

<Table 35> 고유어2 부산 onset Contingency table

syllable-accent	НН	HL	LH+LH(H)	SUM
공명음	39(24.4%)	130(32.4%)	144(26.9%)	313
마찰음	23(14.4%)	42(10.5%)	86(16.1%)	151
유기음_경음	22(13.8%)	21(5.2%)	51(9.5%)	94
 평파열음_평파찰음	76(47.5%)	208(51.9%)	254(47.5%)	538
SUM	160	401	535	1096

<Table 36> 고유어2 부산 onset [chisq = 20.62, df = 6, p = 2.14e-03]; Cramer's V = 0.1.

syllable-accent	НН	HL	LH+LH(H)
공명음	0.854	1.135	0.942
마찰음	1.043	0.76	1.167
유기음_경음	1.603*	0.611*	1.111
평파열음_평파찰음	0.968	1.057	0.967

Pearson's Chi-squared test

data: Onset_or_Coda_Accent_Contingency_table X-squared = 20.622, df = 6, p-value = 0.002145

The Pearson's Chi-squared test of independence between Onset and Accent suggests that the effect is statistically significant [chisq = 20.62, df = 6, p = 2.14e-03].; Cramer's V = 0.097, 95%CI[0.015, 0.179].

그림 18 고유어2 부산 초성과 성조의관계

⋯ 진주 발화자의 값을 계산해야 하는 자료

고유어2 진주초성

<고유어2_진주_초성>

독립 변수=초성의 분류	종속 변수=성조형
lax	HL
son	ΠL
3011	HH
tsasp	
fri	LH+LH(L) → 두 성조형을 합쳐서 분석

18. 분석2: 고유어2 부산 성조형과 첫음절 종성 음절구조(weight)

언덕 -> ㅇ ㅓ ㄴ ㄷ ㅓ ㄱ 첫음절 초성

<Table 38> 고유어2 부산 첫음절종성 음절구조(weight) Contingency table

syllable-accent	НН	HL	LH+LH(H)	SUM
개음절	85(53.1%)	335(83.5%)	407(76.1%)	827
폐음절	75(46.9%)	66(16.5%)	128(23.9%)	269
SUM	160	401	535	1096

<Table 39> 고유어2 부산 첫음절종성 음절구조(weight) [chisq = 57.35, df = 2, p = 3.53e-13]; Cramer's V = 0.23.

syllable-accent	НН	HL	LH+LH(H)
개음절	0.704**	1.107	1.008
 폐음절	1.91***	0.671**	0.975

Pearson's Chi-squared test

data: Onset_or_Coda_Accent_Contingency_table X-squared = 57.347, df = 2, p-value = 3.526e-13

The Pearson's Chi-squared test of independence between Weight and Accent suggests that the effect is statistically significant [chisq = 57.35, df = 2, p = 3.53e-13].; Cramer's V = 0.229, 95%CI[0.161, 0.296].

그림 19 고유어2 부산 성조형과 종성 첫음절구조(weight)

19. 분석3: 고유어2 부산 성조형과 마지막 종성 음절구조(weight) type1

거울 -> ㄱ ㅓ ㅇ ㅜ ㄹ

<Table 40> 고유어2 부산 성조형 마지막 음절구조(weight) Contingency table

syllable-accent	НН	HL	LH+LH(H)	SUM
개음절	114(60%)	246(55%)	282(45%)	642
폐음절	76(40%)	201(45%)	345(55%)	622
SUM	190	447	627	1264

<Table 41> 고유어2 부산 성조형 마지막 음절구조(weight) [chisq = 18.15, df = 2, p = 1.15e-04]; Cramer's V = 0.12.

syllable-accent	НН	HL	LH+LH(H)
개음절	1.181	1.084	0.886*
폐음절	0.813	0.914	1.118*

Pearson's Chi-squared test

data: Onset_or_Coda_Accent_Contingency_table
X-squared = 18.148, df = 2, p-value = 0.0001146

The Pearson's Chi-squared test of independence between Weight and Accent suggests that the effect is statistically significant [chisq = 18.15, df = 2, p = 1.15e-04].; Cramer's V = 0.12, 95%CI[0.057, 0.183].

그림 20 고유어2 부산 성조형과 마지막 음절구조(weight)와의 관계

20. 분석4 : 고유어2 부산 성조형과 음절구조(weigth)의 관계

<고유어2_부산_종성>

독립 변수=종성 조합	종속 변수=성조형
*종성의 분류로 light와 heavy만 씀	
light-light	HL
light-heavy	НН
heavy-light	LH+LH(H) → 두 성조형을 합쳐서 분석
heavy-heavy	

<Table 43> 고유어2 부산 성조형과 음절구조(weight) Contingency table

syllable-accent	НН	HL	LH+LH(H)	SUM
개음절-개음절	48(30%)	183(45.6%)	156(29.2%)	387
개음절-폐음절	37(23.1%)	152(37.9%)	251(46.9%)	440
폐음절-개음절	56(35%)	44(11%)	77(14.4%)	177
폐음절-폐음절	19(11.9%)	22(5.5%)	51(9.5%)	92
SUM	160	401	535	1096

Pearson's Chi-squared test

data: Onset_or_Coda_Accent_Contingency_table X-squared = 87.332, df = 6, p-value < 2.2e-16

The Pearson's Chi-squared test of independence between Weight and Accent suggests that the effect is statistically significant [chisq = 87.33, df = 6, p = 1.08e-16].; Cramer's V = 0.2, 95%CI[0.118, 0.282].

<Table 44> 고유어2 부산 성조형과 음절구조(weight) [chisq = 87.33, df = 6, p = 1.08e-16]; Cramer's V = 0.2.

syllable-accent	НН	HL	LH+LH(H)
개음절-개음절	0.85	1.292***	0.826*
개음절-폐음절	0.576***	0.944	1.169*
폐음절-개음절	2.167***	0.679**	0.891
폐음절-폐음절	1.415	0.654*	1.136

그림 21 고유어2 부산 성종형과 음절구조(weight)와의 관계

⋯ 진주것을 계산해야 하는 자료입니다.

고유어 진주 종성

<고유어2_진주_종성>

독립 변수=종성 조합	종속 변수=성조형
*종성의 분류로 light와 heavy만 씀	
light-light	HL
light-heavy	НН
heavy-light	LH+LH(L) → 두 성조형을 합쳐서 분석
heavy-heavy	

■ 고유어2 대응분석

<고유어2 부산 초성+종성>, <고유어2 진주 초성+종성>

→ 마찬가지로 초성, 종성을 합쳐서 살펴서 보았을 때 초성, 종성 중 어떤 것이 성조형과 더 밀접하게 관련이 있는지 수치적으로 보여줄 수 있으면 좋겠습니다.

3. 첫음절 초성+음절 구조(weight)와 성조형으로 대응 분석 해 주세요.

- 아까 예시로 보여주셨던 것으로 해주시면 됩니다.
- 단 제목은 '2음절 고유어 초성+음절 구조'로 바꾸고 싶습니다. (다른 것들도 'x음절 xx어 초성+음절 구조' 식으로 부탁드립니다.)
- 개음절은 '개'로, 폐음절은 '폐'로 줄이고자 합니다. ex) 개음절-개음절 = 개-개
- ※ 화살표에 가까이 붙어있으면서 0,0 점에서 멀리 떨어진 것이 설명력이 높은 것인가요?
- --> 방향과 동일하거나 가까우면 연관성이 높은 것입니다.

21. 고유어2의 초성, 종성음절구조, 성조와의 다중대응분석

☆ total interia는 68.67%이므로 거의 70%에 가까워서 2차원 좌표로 나타내서 확인해도 되는 적절한 수치입니다. 값이 너무 낮은 경우에는 3차원으로 다시 만들어서 보게 되는데, 상당히 복잡해집니다. 그러난 현재는 2차원으로 봐도 되는 수준입니다.

그림 22 고유어2 부산 초성과 종성 음절구조와 성조에 대한 다중대응분석

<Table 46> 고유어2(부산)--다중대응분석 좌표점(68.67%)

factor	level	Dim1	Dim2
	НН	0.3711	0.0801
성조	HL	-0.1426	0.1025
영호	LH	-0.0245	-0.0635
	LH(H)	0.1024	-0.2954
	공명음	-0.0986	0.0660
amaat	마찰음	0.0865	-0.2483
onset	유기음_경음	0.3073	0.1852
	평파열음_평파찰음	-0.0206	-0.0011
	개-개	-0.0574	0.1563
Waialat	개-폐	-0.1147	-0.1337
Weight	폐-개	0.3259	-0.0021
	폐-폐	0.1631	-0.0143

··• 3개의 변수(성조형, 초성, 음절구조)가 들어가서 각각의 자신들의 방향에 대한 색이 다릅니다. 따라서 색을 보시고 분석해보세요

고유어 2 에 관한 성조형과 음절 다중대응분석의 총 설명력(68.67%)

그림 23 고유어2 부산 초성, 음절구조, 성조형 다중대응분석 행렬도(biplot)

┅ 해석관련 참고사항

O 성조:HL과 onset:공명음의 관계는 성조:HL와 Weight:개-개보다 더 밀접한 관계입니다. 거리가 비슷하다면 비슷한 관계정도인데, 성조:HL과 onset:공명음는 방향이 일치하기 때문입니다.

■ 고유어3

22. 고유어3 부산 초성과 성조형과의 관계

<고유어3_부산_초성>

독립 변수=초성의 분류	종속 변수=성조형
lax	HLL
son	LHL
tsasp	HHL
fri	LLH+LHH → 두 성조형을 합쳐서 분석

<Table 48> 고유어3 부산 onset Contingency table

syllable-accent	HHL	HLL	LHL	LLH+LHH	SUM
공명음	5(17.9%)	9(33.3%)	135(26.2%)	33(23.7%)	182
마찰음	10(35.7%)	2(7.4%)	46(8.9%)	29(20.9%)	87
유기음_경음	9(32.1%)	0(0%)	72(14%)	8(5.8%)	89
평파열음_평파찰음	4(14.3%)	16(59.3%)	262(50.9%)	69(49.6%)	351
SUM	28	27	515	139	709

<Table 49> 고유어3 부산 onset [chisq = 53.28, df = 9, p = 2.59e-08]; Cramer's V = 0.16.

syllable-accent	HHL	HLL	LHL	LLH+LHH
공명음	0.696	1.299	1.021	0.925
마찰음	2.911***	0.604	0.728*	1.7**
유기음_경음	2.561**	0	1.114	0.458*
평파열음_평파찰음	0.289**	1.197	1.028	1.003

Pearson's Chi-squared test

data: Onset_or_Coda_Accent_Contingency_table
X-squared = 53.279, df = 9, p-value = 2.587e-08

The Pearson's Chi-squared test of independence between Onset and Accent suggests that the effect is statistically significant [chisq = 53.28, df = 9, p = 2.59e-08].; Cramer's V = 0.158, 95%CI[0.043, 0.273].

그림 25 고유어3 부산 초성과 성조형과의 관계

고유어3 진주초성

<고유어3_진주_초성>

	- 1 - 2 - 2 - 2
독립 변수=초성의 분류	종속 변수=성조형
lax	HLL
son	LHL+LHL(L) → 두 성조형을 합쳐서 분석
tsasp	HHL
fri	LLH

23. 고유어3 부산 성조형과 종성 음절구조(weight)

독립 변수=종성 조합	종속 변수=성조형
*종성의 분류로 light와 heavy만 씀 light-light-light light-light light-heavy light-heavy-light heavy-light-light light-heavy-heavy heavy-heavy-heavy heavy-heavy-heavy heavy-heavy-light heavy-heavy-heavy *추가적으로 다음과 같은 경우에 대해서도 분석 부탁드립니다. X=light든 heavy든 관계 없음. '개음절-X-개음절, 개음절-X-패음절, 폐음절-X-패음절, 폐음절-X-패음절,	HLL LHL HHL LLH+LHH → 두 성조형을 합쳐서 분석

<Table 52> 고유어3 부산 종성 음절구조(weight) Contingency table

syllable-accent	HHL	HLL	LHL	LLH+LHH	SUM
	13(46.4%)	20(74.1%)	261(50.7%)	49(35.3%)	343
개음절-개음절-폐음절	2(7.1%)	1(3.7%)	2(0.4%)	32(23%)	37
개음절-폐음절-개음절	5(17.9%)	2(7.4%)	70(13.6%)	12(8.6%)	89
개음절-폐음절-폐음절	0(0%)	0(0%)	0(0%)	5(3.6%)	5
폐음절-개음절-개음절	8(28.6%)	3(11.1%)	132(25.6%)	1(0.7%)	144
폐음절-개음절-폐음절	0(0%)	0(0%)	0(0%)	5(3.6%)	5
폐음절-폐음절-개음절	0(0%)	1(3.7%)	50(9.7%)	30(21.6%)	81
폐음절-폐음절-폐음절	0(0%)	0(0%)	0(0%)	5(3.6%)	5
SUM	28	27	515	139	709

<Table 53> 고유어3 부산 종성 음절구조(weight) [chisq = 235.84, df = 21, p = 2.82e-38]; Cramer's V = 0.33.

syllable-accent	HHL	HLL	LHL	LLH+LHH
개음절-개음절-개음절	0.96	1.531	1.048	0.729*
개음절-개음절-폐음절	1.369	0.71	0.074***	4.411***
개음절-폐음절-개음절	1.423	0.59	1.083	0.688
개음절-폐음절-폐음절	0	0	0	5.101***
폐음절-개음절-개음절	1.407	0.547	1.262**	0.035***
폐음절-개음절-폐음절	0	0	0	5.101***
폐음절-폐음절-개음절	0	0.324	0.85	1.889***
폐음절-폐음절-폐음절	0	0	0	5.101***
•				

Pearson's Chi-squared test

data: Onset_or_Coda_Accent_Contingency_table X-squared = 235.84, df = 21, p-value < 2.2e-16

The Pearson's Chi-squared test of independence between Weight and Accent suggests that the effect is statistically significant [chisq = 235.84, df = 21, p = 2.82e-38].; Cramer's V = 0.333, 95%CI[0.218, 0.448].

그림 26 고유어3 부산 성조형과 음절구조(weight)

24. 고유어3 부산 종성 음절구조(Weight - X - weight)와 성조형과의 관계

개음절-X-개음절,

개음절-X-폐음절,

폐음절-X-개음절,

폐음절-X-폐음절',

<Table 54> 고유어3 부산 종성 음절구조(X-weight) Contingency table

syllable-accent	HHL	HLL	LHL	LLH+LHH	SUM
개음절-X-개음절	18(64.3%)	22(81.5%)	331(64.3%)	61(43.9%)	432
개음절-X-폐음절	2(7.1%)	1(3.7%)	2(0.4%)	37(26.6%)	42
폐음절-X-개음절	8(28.6%)	4(14.8%)	182(35.3%)	31(22.3%)	225
폐음절-X-폐음절	0(0%)	0(0%)	0(0%)	10(7.2%)	10
SUM	28	27	515	139	709

<Table 55> 고유어3 부산 종성 음절구조(X-weight) [chisq = 186.46, df = 9, p = 2.26e-35]; Cramer's V = 0.3.

syllable-accent	HHL	HLL	LHL	LLH+LHH
개음절-X-개음절	1.055	1.337	1.055	0.72*
 개음절-X-폐음절	1.206	0.625	0.066***	4.493***
폐음절-X-개음절	0.9	0.467	1.114	0.703*
폐음절-X-폐음절	0	0	0	5.101***

Pearson's Chi-squared test

data: Onset_or_Coda_Accent_Contingency_table
X-squared = 186.46, df = 9, p-value < 2.2e-16

The Pearson's Chi-squared test of independence between Weight and Accent suggests that the effect is statistically significant [chisq = 186.46, df = 9, p = 2.26e-35].; Cramer's V = 0.296, 95%CI[0.181, 0.411].

그림 27 고유어3 부산 종성음절구조(X-weight)

□ 요청에는 없었지만 경우가 나오지 않는 것 때문에 추가로 분석해두었습니다.25. 고유어3 부산 성조형과 종성음절구조(X-W-W) type2

<Table 56> 고유어3 부산 종성음절구조(X-weight) type2 Contingency table

syllable-accent	HHL	HLL	LHL	LLH+LHH	SUM
 X-개음절-개음절	21(75%)	23(85.2%)	393(76.3%)	50(36%)	487
X-개음절-폐음절	2(7.1%)	1(3.7%)	2(0.4%)	37(26.6%)	42
 X-폐음절-개음절	5(17.9%)	3(11.1%)	120(23.3%)	42(30.2%)	170
X-폐음절-폐음절	0(0%)	0(0%)	0(0%)	10(7.2%)	10
SUM	28	27	515	139	709

<Table 57> 고유어3 부산 종성음절구조(X-weight) type2 [chisq = 200.34, df = 9, p = 2.81e-38]; Cramer's V = 0.31.

syllable-accent	HHL	HLL	LHL	LLH+LHH
X-개음절-개음절	1.092	1.24	1.111*	0.524***
	1.206	0.625	0.066***	4.493***
 X-폐음절-개음절	0.745	0.463	0.972	1.26
	0	0	0	5.101***

Pearson's Chi-squared test

data: Onset_or_Coda_Accent_Contingency_table X-squared = 200.34, df = 9, p-value < 2.2e-16

The Pearson's Chi-squared test of independence between Weight and Accent suggests that the effect is statistically significant [chisq = 200.34, df = 9, p = 2.81e-38].; Cramer's V = 0.307, 95%CI[0.192, 0.422].

그림 28 고유어3 부산 종성 음절구조(X-W-W) type2

<고유어3_진주_종성>

독립 변수=종성 조합	종속 변수=성조형
*종성의 분류로 light와 heavy만 씀	
light-light	
light-light-heavy	
light-heavy-light	
heavy-light-light	
light-heavy-heavy	
heavy-light-heavy	111.1
heavy-heavy-light	HLL
heavy-heavy	LHL+LHL(L) → 두 성조형을 합쳐서 분석
	HHL
*추가적으로 다음과 같은 경우에 대해서도	LLH
분석 부탁드립니다. X=light든 heavy든 관계	
없음.	
X-light-light	
X-light-heavy	
X-heavy-light	
X-heavy-heavy	

26. 고유어3 초성, 종성 음절구조와 성조형의 다중 대응 분석

<고유어3_부산_초성+종성>, <고유어3_진주_초성+종성>

→ 마찬가지로 초성, 종성을 합쳐서 살펴서 보았을 때 초성, 종성 중 어떤 것이 성조형과 더 밀접하게 관련이 있는지 수치적으로 보여줄 수 있으면 좋겠습니다.

그림 29 고유어3 초성, 음절구조, 성조형의 다중 대응분석

<Table 59> 고유어3(부산)--다중대응분석 좌표점(69.68%)

factor	level	Dim1	Dim2
성조	HHL	0.0841	0.6911
성조	HLL	0.0436	-0.1100
설조	LHL	0.1898	-0.0244
성조	LLH	-0.7288	-0.0274
onset	공명음	0.0065	-0.0893
onset	마찰음	-0.2908	0.4716
onset	유기음 경음	0.2899	0.2301
onset	평파열음 평파찰음	-0.0048	-0.1289
Weight	개-개-개	0.0752	0.0540
Weight	개-개-폐	-1.0261	0.0345
Weight	개-폐-개	0.0482	-0.0852
Weight	개-폐-폐	-1.2091	-0.4421
Weight	폐-개-개	0.3184	0.0840
Weight	폐-개-폐	-1.6807	1.2564
Weight	폐-폐-개	-0.2159	-0.3231
Weight	폐-폐-폐	-1.2091	-0.4421

고유어 3 에 관한 성조형과 음절 다중대응분석의 총 설명력(69.68~%)

그림 30 고유어3 초성, 음절구조와 성조형의 관계 다중대응분석 행렬도(biplot)

■ 외래어2

<외래어2_부산_초성>

독립 변수=초성의 분류	종속 변수=성조형
lax	HL
son	
3011	HH
tsasp	
	LH+LH_f → 두 성조형을 합쳐서 분석
fri	

27. 분석1: 외래어2_부산_초성과 성조형의 관계

<Table 61> 외래어2 부산 onset과 성조형관계 Contingency table

syllable-accent	НН	HL	LH+LH_f	SUM
공명음	57(28.9%)	78(20%)	70(33.3%)	205
마찰음	47(23.9%)	71(18.2%)	51(24.3%)	169
유기음_경음	80(40.6%)	189(48.5%)	52(24.8%)	321
평파열음_평파찰음	13(6.6%)	52(13.3%)	37(17.6%)	102
SUM	197	390	210	797

<Table 62> 외래어2 부산 onset과 성조형관계 [chisq = 42.59, df = 6, p = 1.4e-07]; Cramer's V = 0.16.

syllable-accent	НН	HL	LH+LH_f
공명음	1.125	0.778*	1.296*
마찰음	1.125	0.859	1.145
유기음_경음	1.008	1.203*	0.615***
 평파열음_평파찰음	0.516*	1.042	1.377

Pearson's Chi-squared test

data: Onset_or_Coda_Accent_Contingency_table X-squared = 42.593, df = 6, p-value = 1.404e-07

The Pearson's Chi-squared test of independence between Onset and Accent suggests that the effect is statistically significant [chisq = 42.59, df = 6, p = 1.4e-07].; Cramer's V = 0.163, 95%CI[0.067, 0.26].

그림 31 외래어2 부산 초성과 성조형과의 관계

<외래어2_진주_초성>

독립 변수=초성의 분류	종속 변수=성조형
lax	HL
son	IIL
SOII	HH
tsasp	
	LH+LH_f → 두 성조형을 합쳐서 분석
fri	

28. 분석2: 외래어2 부산 성조형과 음절구조(weight)

<외래어2_부산_종성>

독립 변수=종성 조합	종속 변수=성조형
*종성의 분류로 light와 heavy만 씀	
light-light	HL
light-heavy	НН
heavy-light	LH+LH_f → 두 성조형을 합쳐서 분석
heavy-heavy	

<Table 65> 외래어2 부산 종성음절구조(weight) Contingency table

syllable-accent	НН	HL	LH+LH_f	SUM
개음절-개음절	7(3.6%)	197(50.5%)	13(6.2%)	217
개음절-폐음절	54(27.4%)	23(5.9%)	152(72.4%)	229
폐음절-개음절	5(2.5%)	169(43.3%)	0(0%)	174
폐음절-폐음절	131(66.5%)	1(0.3%)	45(21.4%)	177
SUM	197	390	210	797

<Table 66> 외래어2 부산 종성음절구조(weight) [chisq = 783.2, df = 6, p = 6.57e-166]; Cramer's V = 0.7.

syllable-accent	НН	HL	LH+LH_f
개음절-개음절	0.131***	1.855***	0.227***
개음절-폐음절	0.954	0.205***	2.519***
폐음절-개음절	0.116***	1.985***	0
폐음절-폐음절	2.994***	0.012***	0.965

Pearson's Chi-squared test

data: Onset_or_Coda_Accent_Contingency_table
X-squared = 783.2, df = 6, p-value < 2.2e-16

The Pearson's Chi-squared test of independence between Weight and Accent suggests that the effect is statistically significant [chisq = 783.2, df = 6, p = 6.57e-166].; Cramer's V = 0.701, 95%CI[0.605, 0.797].

그림 32 외래어2 부산 성조형과 종성 음절구조(weigtht)의 관계

<외래어2_진주_종성>

독립 변수=종성 조합	종속 변수=성조형
*종성의 분류로 light와 heavy만 씀	
light-light	HL
light-heavy	НН
heavy-light	LH+LH_f → 두 성조형을 합쳐서 분석
heavy-heavy	

<외래어2 부산 초성+종성>, <외래어2 진주 초성+종성>

→ 마찬가지로 초성, 종성을 합쳐서 살펴서 보았을 때 초성, 종성 중 어떤 것이 성조형과 더 밀접하게 관련이 있는지 수치적으로 보여줄 수 있으면 좋겠습니다.

29. 외래어2 성조형과 음절구조의 다중 대응분석

그림 33 외래어2 성조형과 음절구조의 다중 대응분석

<Table 68> 외래어2(부산)--다중대응분석 좌표점(77.47%)

factor	level	Dim1	Dim2
	НН	-0.5520	0.4291
성조	HL	0.5710	-0.0063
	LH+LH_f	-0.5425	-0.3908
	공명음	-0.2544	-0.0854
omaat	마찰음	-0.1280	0.0142
onset	유기음_경음	0.2002	0.0973
	평파열음_평파찰음	0.0935	-0.1581
	개-개	0.5150	-0.0033
W-:-1.4	개-폐	-0.5004	-0.3511
Weight	폐-개	0.6244	0.0153
	폐-폐	-0.5977	0.4433

외래어2 에 관한 성조형과 음절 다중대응분석의 총 설명력(77.47 %)

그림 34 외래어2 성조형과 음절구조 다중대응분석 행렬도

■ 외래어3

<외래어3_부산_초성>

독립 변수=초성의 분류	종속 변수=성조형
lax	HLL
son	LHL
tsasp	HHL
fri	LLH+LLH_f → 두 성조형을 합쳐서 분석

30. 외래어2 부산 초성과 성조와의 관계

<Table 70> 외래어3 부산 onset Contingency table

syllable-accent	HHL	HLL	LHL	LLH+LLH_f	SUM
공명음	31(26.5%)	11(23.4%)	134(26.3%)	92(31.5%)	268
마찰음	9(7.7%)	6(12.8%)	113(22.2%)	64(21.9%)	192
유기음_경음	65(55.5%)	20(42.6%)	144(28.2%)	87(29.8%)	316
평파열음_평파찰음	12(10.3%)	10(21.3%)	119(23.3%)	49(16.8%)	190
SUM	117	47	510	292	966

<Table 71> 외래어3 부산 onset [chisq = 48.14, df = 9, p = 2.4e-07]; Cramer's V = 0.13.

syllable-accent	HHL	HLL	LHL	LLH+LLH f
공명음	0.955	0.844	0.947	1.136
마찰음	0.387**	0.642	1.115	1.103
유기음_경음	1.698***	1.301	0.863	0.911
평파열음_평파찰음	0.521*	1.082	1.186	0.853

Pearson's Chi-squared test

data: Onset_or_Coda_Accent_Contingency_table X-squared = 48.145, df = 9, p-value = 2.4e-07

The Pearson's Chi-squared test of independence between Onset and Accent suggests that the effect is statistically significant [chisq = 48.14, df = 9, p = 2.4e-07].; Cramer's V = 0.129, 95%CI[0.031, 0.227].

그림 35 외래어2 부산 초성과 성조형과의 관계

<외래어3_진주_초성>

독립 변수=초성의 분류	종속 변수=성조형
lax	HLL
son	LHL
tsasp	HHL
fri	LLH+LLH_f → 두 성조형을 합쳐서 분석

31. 외래어3 부산 종성음절구조(weight)와 성조형의 관계

<외래어3_부산_종성>

독립 변수=종성 조합	종속 변수=성조형
*종성의 분류로 light와 heavy만 씀 light-light light-light light-heavy light-heavy-light heavy-light-light light-heavy-heavy heavy-light-heavy heavy-heavy-light heavy-heavy-heavy	HLL LHL HHL LLH+LLH_f → 두 성조형을 합쳐서 분석

<Table 74> 고유어3 부산 종성 음절구조(weight) Contingency table

syllable-accent	HHL	HLL	LHL	LLH+LLH_f	SUM
개음절-개음절-개음절	8(6.8%)	38(80.9%)	294(57.6%)	16(5.5%)	356
개음절-개음절-폐음절	1(0.9%)	4(8.5%)	23(4.5%)	185(63.3%)	213
개음절-폐음절-개음절	4(3.4%)	0(0%)	101(19.8%)	0(0%)	105
개음절-폐음절-폐음절	0(0%)	0(0%)	7(1.4%)	42(14.4%)	49
폐음절-개음절-개음절	68(58.2%)	5(10.6%)	65(12.7%)	0(0%)	138
폐음절-개음절-폐음절	19(16.2%)	0(0%)	3(0.6%)	42(14.4%)	64
폐음절-폐음절-개음절	13(11.1%)	0(0%)	12(2.4%)	0(0%)	25
폐음절-폐음절-폐음절	4(3.4%)	0(0%)	5(1%)	7(2.4%)	16
SUM	117	47	510	292	966

<Table 75> 고유어3 부산 종성 음절구조(weight) [chisq = 989.69, df = 21, p = 4.39e-196]; Cramer's V = 0.58.

syllable-accent	HHL	HLL	LHL	LLH+LLH_f
개음절-개음절-개음절	0.186***	2.194***	1.564***	0.149***
개음절-개음절-폐음절	0.039***	0.386*	0.205***	2.873***
개음절-폐음절-개음절	0.315*	0	1.822***	0
 개음절-폐음절-폐음절	0	0	0.271***	2.836***
폐음절-개음절-개음절	4.068***	0.745	0.892	0
폐음절-개음절-폐음절	2.451***	0	0.089***	2.171***
폐음절-폐음절-개음절	4.293***	0	0.909	0
폐음절-폐음절-폐음절	2.064	0	0.592	1.447

Pearson's Chi-squared test

data: Onset_or_Coda_Accent_Contingency_table X-squared = 989.69, df = 21, p-value < 2.2e-16

The Pearson's Chi-squared test of independence between Weight and Accent suggests that the effect is statistically significant [chisq = 989.69, df = 21, p = 4.39e-196].; Cramer's V = 0.584, 95%CI[0.486, 0.683].

그림 36 외래어3 부산 음절구조와 성조형의 관계

_

32. 외래어3 부산 성조형과 음절구조(W-X-W)의 관계

'개음절-X-개음절,

개음절-X-폐음절,

폐음절-X-개음절,

폐음절-X-폐음절',

<Table 76> 고유어3 부산 종성 음절구조(weight-X-weight) Contingency table

syllable-accent	HHL	HLL	LHL	LLH+LLH_f	SUM
개음절-X-개음절	12(10.3%)	38(80.9%)	395(77.4%)	16(5.5%)	461
개음절-X-폐음절	1(0.9%)	4(8.5%)	30(5.9%)	227(77.7%)	262
폐음절-X-개음절	81(69.1%)	5(10.6%)	77(15.1%)	0(0%)	163
폐음절-X-폐음절	23(19.7%)	0(0%)	8(1.6%)	49(16.8%)	80
SUM	117	47	510	292	966

<Table 77> 고유어3 부산 종성 음절구조(weight-X-weight) [chisq = 962.08, df = 9, p = 2.59e-201]; Cramer's V = 0.58.

syllable-accent	HHL	HLL	LHL	LLH+LLH_f
개음절-X-개음절	0.215***	1.694**	1.623***	0.115***
개음절-X-폐음절	0.032***	0.314*	0.217***	2.866***
페음절-X-개음절	4.103***	0.63	0.895	0
폐음절-X-폐음절	2.374***	0	0.189***	2.026***

Pearson's Chi-squared test

data: Onset_or_Coda_Accent_Contingency_table X-squared = 962.08, df = 9, p-value < 2.2e-16

The Pearson's Chi-squared test of independence between Weight and Accent suggests that the effect is statistically significant [chisq = 962.08, df = 9, p = 2.59e-201].; Cramer's V = 0.576, 95%CI[0.478, 0.675].

그림 37 외래어3 성조형과 음절구조(w-X-w)관계

┅. 참고용

33. 외래어3 부산 성조형과 음절구조(X-W-W) 관계

'X-개음절-개음절'

<Table 78> 외래어3 부산 종성음절구조(X-weight) type2 Contingency table

syllable-accent	HHL	HLL	LHL	LLH+LLH_f	SUM
X-개음절-개음절	76(65%)	43(91.5%)	359(70.3%)	16(5.5%)	494
X-개음절-폐음절	20(17.1%)	4(8.5%)	26(5.1%)	227(77.7%)	277
X-폐음절-개음절	17(14.5%)	0(0%)	113(22.2%)	0(0%)	130
X-폐음절-폐음절	4(3.4%)	0(0%)	12(2.4%)	49(16.8%)	65
SUM	117	47	510	292	966

(1) <Table 79> 외래어3 부산 종성 음절구조(weight-X-weight) [chisq = 669.32, df = 9, p = 2.72e-138]; Cramer's V = 0.48.

syllable-accent	HHL	HLL	LHL	LLH+LLH_f
X-개음절-개음절	1.27*	1.789***	1.376***	0.107***
X-개음절-폐음절	0.596*	0.297**	0.178***	2.711***
X-폐음절-개음절	1.08	0	1.646***	0
X-폐음절-폐음절	0.508	0	0.35***	2.494***

Pearson's Chi-squared test

data: Onset_or_Coda_Accent_Contingency_table X-squared = 669.32, df = 9, p-value < 2.2e-16

The Pearson's Chi-squared test of independence between Weight and Accent suggests that the effect is statistically significant [chisq = 669.32, df = 9, p = 2.72e-138].; Cramer's V = 0.481, 95%CI[0.382, 0.579].

그림 38 외래어3 성조형과 음절구조(X-W-W)와의 관계

<외래어3 진주 종성>

독립 변수=종성 조합	종속 변수=성조형		
*종성의 분류로 light와 heavy만 씀			
light-light			
light-light-heavy	HLL		
light-heavy-light	LHL		
heavy-light-light	HHI		
light-heavy-heavy	LLH+LLH f → 두 성조형을 합쳐서 분석		
heavy-light-heavy	LLITTLIN_I → 구 성도성을 입서서 군석		
heavy-heavy-light			
heavy-heavy-heavy			

34. 외래어3 성조형, 초성, 종성음절구조와의 다중 대응 분석

<외래어3 부산 초성+종성>, <외래어3 진주 초성+종성>

→ 마찬가지로 초성, 종성을 합쳐서 살펴서 보았을 때 초성, 종성 중 어떤 것이 성조형과 더 밀접하게 관련이 있는지 수치적으로 보여줄 수 있으면 좋겠습니다.

그림 39 외래어3 부산 성조형, 초성, 음절구조에 대한 다중 대응분석

<Table 81> 외래어3(부산)--다중대응분석 좌표점(73.08%)

factor	level	Dim1	Dim2
성조	HHL	0.1800	1.0029
성조	HLL	0.3438	-0.1790
성조	LHL	0.3707	-0.1677
성조	LLH+LLH_f	-0.7749	-0.0801
onset	공명음	-0.1201	0.0740
onset	마찰음	-0.1136	-0.2256
onset	유기음_경음	0.0337	0.2271
onset	평파열음_평파찰음	0.2281	-0.2542
Weight	개-개-개	0.3777	-0.2598
Weight	개-개-폐	-0.7567	-0.1498
Weight	개-폐-개	0.4890	-0.2194
Weight	개-폐-폐	-0.7382	-0.0309
Weight	폐-개-개	0.3125	0.7053
Weight	폐-개-폐	-0.5491	0.3470
Weight	폐-폐-개	0.2861	0.8395
Weight	폐-폐-폐	-0.2247	0.5258

외래어3 에 관한 성조형과 음절 다중대응분석의 총 설명력(73.08%)

그림 40 외래어3 부산 다중대응분석 행렬도

■ 외래어4

<외래어4_부산_초성>

독립 변수=초성의 분류	종속 변수=성조형
	HLLL
lax	LHLL
son	LLHL
tsasp	HHLL
fri	HHHL
	LLLH+LLLH_f → 두 성조형을 합쳐서 분석

35. 외래어4 부산 초성과 성조형의 관계

<Table 83> 외래어4 부산 onset Contingency table

syllable-accent	HHHL	HHLL	HLLL	LLHL	LLLH+LLLH_t	f SUM
공명음	11(44%)	13(31%)	2(40%)	185(36.9%)	48(33.1%)	259
마찰음	8(32%)	9(21.4%)	0(0%)	92(18.3%)	32(22.1%)	141
유기음_경음	5(20%)	20(47.6%)	2(40%)	157(31.3%)	50(34.5%)	234
평파열음_평파찰음	1(4%)	0(0%)	1(20%)	68(13.5%)	15(10.3%)	85
SUM	25	42	5	502	145	719

<Table 84> 외래어4 부산 onset [chisq = 17.79, df = 12, p = 1.22e-01]; Cramer's V = 0.09.

syllable-accent	HHHL	HHLL	HLLL	LLHL	LLLH+LLLH_f
공명음	1.221	0.859	1.11	1.023	0.919
마찰음	1.632	1.093	0	0.935	1.125
유기음_경음	0.615	1.463	1.229	0.961	1.06
평파열음_평파찰음	0.338	0	1.692	1.146	0.875

···· 각 셀에는 유의한 값이 없습니다.

Pearson's Chi-squared test

data: Onset_or_Coda_Accent_Contingency_table X-squared = 17.794, df = 12, p-value = 0.1221

The Pearson's Chi-squared test of independence between Onset and Accent suggests that the effect is statistically not significant [chisq = 17.79, df = 12, p = 1.22e-01].; Cramer's V = 0.091, 95%CI[0, 0.205].

그림 41 외래어2 부산 초성과 성조형의 관계

<외래어4_진주_초성>

독립 변수=초성의 분류	종속 변수=성조형
	HLLL
lax	LHLL
son	LLHL
tsasp	HHLL
fri	HHHL
	LLLH+LLLH f → 두 성조형을 합쳐서 분석

36. 외래어4 부산 성조형과 종성음절구조(weight)의 관계

독립 변수=종성 조합	종속 변수=성조형
*종성의 분류로 light와 heavy만 씀	
모든 조합 16개 제시, 특히 다음을 부각하고	111.1.1
싶습니다.	HLLL
료법의의.	LHLL
PIARIARIA	LLHL
light-light-light	HHLL
light-light-heavy	
light-light-heavy-light	HHHL
	LLLH+LLLH f → 두 성조형을 합쳐서 분석
heavy-light-light	0 02 0 1 1 2 1
heavy-heavy-light-light	

••• 먼저 여기 부분은 아래의 데이터부터 경우의 수가 많아 보기가 힘들 것 같아 보여서 먼 저 한가지를 정리해드립니다.

<Table 87> 16개의 조합중데이터속에서는 14개만 존재함

rowid	coda_code	weight
1	0000	light-light-light
2	0001	light-light-light-heavy
3	0010	light-light-heavy-light
4	0011	light-light-heavy-heavy
5	0100	light-heavy-light-light
6	0101	light-heavy-light-heavy
7	0110	light-heavy-heavy-light
8	0111	light-heavy-heavy-heavy
9	1000	heavy-light-light
10	1001	heavy-light-light-heavy
11	1010	heavy-light-heavy-light
	1011	안나타남
12	1100	heavy-heavy-light-light
13	1101	heavy-heavy-light-heavy
	1110	안타나남
14	1110	heavy-heavy-heavy-light

*** 16개의 패턴중에서는 테이터에 존재하지 않아서 나타나지 않은 것을 표시해두었습니다. 뒤에서 보면 1110, 1100, 1010, 1001, 1000, 0110, 0100, 0010 들이 좀 강하게 나타나는 패턴입니다. 음영을 칠해두었습니다.

37. 외래어4 부산 종성 weigth 세부사항

<Table 88> 외래어4 부산 성조형과 음절구조(weight) Contingency table

syllable-accent	HHHL	HHLL	HLLL	LLHL	LLLH+LLLH_f	SUM
개음절-개음절-개음절-개음절	0(0%)	1(2.4%)	2(40%)	247(49.2%)	0(0%)	250
개음절-개음절-개음절-폐음절	0(0%)	0(0%)	0(0%)	29(5.8%)	70(48.3%)	99
개음절-개음절-폐음절-개음절	0(0%)	0(0%)	1(20%)	29(5.8%)	0(0%)	30
개음절-개음절-폐음절-폐음절	0(0%)	0(0%)	0(0%)	9(1.8%)	21(14.5%)	30
개음절-폐음절-개음절-개음절	0(0%)	2(4.8%)	0(0%)	16(3.2%)	0(0%)	18
개음절-폐음절-개음절-폐음절	0(0%)	0(0%)	0(0%)	21(4.2%)	16(11%)	37
개음절-폐음절-폐음절-개음절	0(0%)	1(2.4%)	0(0%)	9(1.8%)	0(0%)	10
개음절-폐음절-폐음절-폐음절	0(0%)	0(0%)	0(0%)	0(0%)	5(3.4%)	5
폐음절-개음절-개음절-개음절	12(48%)	23(54.7%)	0(0%)	83(16.5%)	0(0%)	118
폐음절-개음절-개음절-폐음절	2(8%)	1(2.4%)	0(0%)	9(1.8%)	30(20.7%)	42
폐음절-개음절-폐음절-개음절	3(12%)	4(9.5%)	0(0%)	33(6.6%)	0(0%)	40
폐음절-폐음절-개음절-개음절	2(8%)	3(7.1%)	0(0%)	10(2%)	0(0%)	15
폐음절-폐음절-개음절-폐음절	0(0%)	0(0%)	0(0%)	2(0.4%)	3(2.1%)	5
폐음절-폐음절-폐음절-개음절	6(24%)	7(16.7%)	2(40%)	5(1%)	0(0%)	20
SUM	25	42	5	502	145	719

<Table 89> 외래어4 부산 성조형과 음절구조(weight) [chisq = 647.61, df = 52, p = 9.43e-104]; Cramer's V = 0.47.

syllable-accent	HHHL	HHLL	HLLL	LLHL	LLLH+LLLH_f
개음절-개음절-개음절-개음절	0	0.068***	1.15	1.415***	0
개음절-개음절-개음절-폐음절	0	0	0	0.42***	3.506***
개음절-개음절-폐음절-개음절	0	0	4.793	1.385	0
개음절-개음절-폐음절-폐음절	0	0	0	0.43**	3.471***
개음절-폐음절-개음절-개음절	0	1.902	0	1.273	0
개음절-폐음절-개음절-폐음절	0	0	0	0.813	2.144**
개음절-폐음절-폐음절-개음절	0	1.712	0	1.289	0
개음절-폐음절-폐음절-폐음절	0	0	0	0	4.959***
폐음절-개음절-개음절-개음절	2.925***	3.337***	0	1.007	0
폐음절-개음절-개음절-폐음절	1.37	0.408	0	0.307***	3.542***
폐음절-개음절-폐음절-개음절	2.157	1.712	0	1.182	0
폐음절-폐음절-개음절-개음절	3.835*	3.424*	0	0.955	0
폐음절-폐음절-개음절-폐음절	0	0	0	0.573	2.975*
폐음절-폐음절-폐음절-개음절	8.628***	5.992***	14.38***	0.358*	0

Pearson's Chi-squared test

data: Onset_or_Coda_Accent_Contingency_table X-squared = 647.61, df = 52, p-value < 2.2e-16

The Pearson's Chi-squared test of independence between Weight and Accent suggests that the effect is statistically significant [chisq = 647.61, df = 52, p = 9.43e-104].; Cramer's V = 0.475, 95%CI[0.35, 0.599].

그림 42 외래어4 부산 성조형과 음절구조(weight)의 관계

38. 외래어4 성조형과 음절구조(W-X-X-W)와의 관계: type2

<Table 90> 외래어4 부산 성조형 음절구조(weight) Contingency table

syllable-accent	HHHL	HHLL	HLLL	LLHL	LLLH+LLLH_f	SUM
개음절-X-X-개음절	0(0%)	4(9.5%)	3(60%)	301(59.9%)	0(0%)	308
개음절-X-X-폐음절	0(0%)	0(0%)	0(0%)	59(11.8%)	112(77.2%)	171
폐음절-X-X-개음절	23(92%)	37(88.1%)	2(40%)	131(26.1%)	0(0%)	193
폐음절-X-X-폐음절	2(8%)	1(2.4%)	0(0%)	11(2.2%)	33(22.8%)	47
SUM	25	42	5	502	145	719

<Table 91> 외래어4 부산 성조형 음절구조(weight) [chisq = 552.3, df = 12, p = 1.6e-110]; Cramer's V = 0.51.

syllable-accent	HHHL	HHLL	HLLL	LLHL	LLLH+LLLH_f
개음절-X-X-개음절	0	0.222***	1.401	1.4***	0
개음절-X-X-폐음절	0	0	0	0.494***	3.248***
폐음절-X-X-개음절	3.427***	3.282***	1.49	0.972	0
폐음절-X-X-폐음절	1.224	0.364	0	0.335***	3.482***

Pearson's Chi-squared test

data: Onset_or_Coda_Accent_Contingency_table X-squared = 552.3, df = 12, p-value < 2.2e-16

The Pearson's Chi-squared test of independence between Weight and Accent suggests that the effect is statistically significant [chisq = 552.3, df = 12, p = 1.6e-110].; Cramer's V = 0.506, 95%CI[0.392, 0.62].

그림 43 외래어4 부산 성조형과 음절구조(W-X-X-W)와의 관계

39. 외래어4 부산 종성음절구조(X-X-W-W)와의 관계

<Table 92> 외래어4 부산 성조형 음절구조(weight)-x Contingency table

syllable-accent	HHHL	HHLL	HLLL	LLHL	LLLH+LLLH_t	f SUM
X-X-개음절-개음절	14(56%)	29(69%)	2(40%)	356(70.9%)	0(0%)	401
X-X-개음절-폐음절	2(8%)	1(2.4%)	0(0%)	61(12.2%)	119(82.1%)	183
X-X-폐음절-개음절	9(36%)	12(28.6%)	3(60%)	76(15.1%)	0(0%)	100
X-X-폐음절-폐음절	0(0%)	0(0%)	0(0%)	9(1.8%)	26(17.9%)	35
SUM	25	42	5	502	145	719

<Table 93> 외래어4 부산 성조형 음절구조(weight)-x [chisq = 441.32, df = 12, p = 6.57e-87]; Cramer's V = 0.45.

syllable-accent	HHHL	HHLL	HLLL	LLHL	LLLH+LLLH_f
X-X-개음절-개음절	1.004	1.238	0.717	1.272***	0
X-X-개음절-폐음절	0.314	0.094**	0	0.477***	3.224***
X-X-폐음절-개음절	2.588**	2.054*	4.314**	1.089	0
X-X-폐음절-폐음절	0	0	0	0.368**	3.684***

Pearson's Chi-squared test

data: Onset_or_Coda_Accent_Contingency_table X-squared = 441.32, df = 12, p-value < 2.2e-16

The Pearson's Chi-squared test of independence between Weight and Accent suggests that the effect is statistically significant [chisq = 441.32, df = 12, p = 6.57e-87].; Cramer's V = 0.452, 95%CI[0.338, 0.566].

그림 44 외래어4 부산 종성음절구조(X-X-W-W)와의 관계

<외래어4_진주_종성>

독립 변수=종성 조합	종속 변수=성조형
*종성의 분류로 light와 heavy만 씀	
모든 조합 16개 제시, 특히 다음을 부각하고	111 1 1
싶습니다.	HLLL
	LHLL
Paka Paka Paka Paka	LLHL
light-light-light	HHLL
light-light-heavy	
	HHHL
light-light-heavy-light	LLLH+LLLH f → 두 성조형을 합쳐서 분석
heavy-light-light	
heavy-heavy-light-light	

<외래어4 부산 초성+종성>, <외래어4 진주 초성+종성>

→ 마찬가지로 초성, 종성을 합쳐서 살펴서 보았을 때 초성, 종성 중 어떤 것이 성조형과 더 밀접하게 관련이 있는지 수치적으로 보여줄 수 있으면 좋겠습니다.

40. 외래어4 성조형, 초성, 음절구조에 대한 다중대응분석

그림 45 외래어4 성조형, 초성, 음절구조에 대한 다중 대응분석

<Table 95> 외래어4(부산)--다중대응분석 좌표점(61.8%)

factor	level	Dim1	Dim2
설조	HHHL	0.3518	0.9652
성조	HHLL	0.3798	0.8772
성조	HLLL	0.4322	0.7695
성조	LLHL	0.2206	-0.1425
설조	LLLH+LLLH f	-0.9495	0.0465
onset	공명음	0.0789	0.0261
onset	마찰음	-0.0153	-0.0705
onset	유기음 경음	-0.0919	0.1183
onset	평파열음 평파찰음	0.0380	-0.2880
Weight	기 - 기 - 기 - 기 - 기	0.2884	-0.2780
Weight	개-개-개-폐	-0.7644	0.0280
Weight	개-개-폐-개	0.2802	-0.0753
Weight	개-개-폐-폐	-0.7393	-0.1808
Weight	개-폐-개-개	0.3218	0.0119
Weight	개-폐-개-폐	-0.3941	-0.1325
Weight	개-폐-폐-개	0.3996	-0.0273
Weight	개-폐-폐	-1.3191	0.3101
Weight	폐-개-개-개	0.3359	0.3249
Weight	폐-개-개-폐	-0.7949	0.1632
Weight	폐-개-폐-개	0.2995	0.0571
Weight	폐-폐-개-개	0.3849	0.1851
Weight	폐-폐-개-폐	-0.7262	0.1678
Weight	폐-폐-폐-개	0.4185	1.3370

외래어4 에 관한 성조형과 음절 다중대응분석의 총 설명력(61.8 %)

그림 46 외래어4 부산 다중 대응분석 행렬도

■ 가상어2

<가상어2_부산_초성>

독립 변수=초성의 분류	종속 변수=성조형
lax	HL
son	HH
tsasp	LH
fri	

41. 가상어2 부산 성조형과 초성의 관계

<Table 97> 가상어2 부산 성조형과 onset Contingency table

syllable-accent	НН	HL	LH	SUM
	7(12.1%)	12(16.7%)	41(34.2%)	60
마찰음	8(13.8%)	16(22.2%)	26(21.7%)	50
유기음_경음	22(37.9%)	16(22.2%)	2(1.7%)	40
평파열음_평파찰음	21(36.2%)	28(38.9%)	51(42.5%)	100
SUM	58	72	120	250

<Table 98> 가상어2 부산 성조형과 onset [chisq = 46.69, df = 6, p = 2.16e-08]; Cramer's V = 0.31.

syllable-accent	НН	HL	LH
공명음	0.503	0.694	1.424*
마찰음	0.69	1.111	1.083
유기음_경음	2.371***	1.389	0.104***
평파열음_평파찰음	0.905	0.972	1.062

Pearson's Chi-squared test

data: Onset_or_Coda_Accent_Contingency_table X-squared = 46.687, df = 6, p-value = 2.16e-08

The Pearson's Chi-squared test of independence between Onset and Accent suggests that the effect is statistically significant [chisq = 46.69, df = 6, p = 2.16e-08].; Cramer's V = 0.306, 95%CI[0.134, 0.477].

그림 47 가상어2 부산 성조형과 초성의 관계

<가상어2_진주_초성>

독립 변수=초성의 분류	종속 변수=성조형
lax	HL
son	
Soli	НН
tsasp	
C:	LH
fri	

<가상어2_부산_종성>

독립 변수=종성 조합	종속 변수=성조형
*종성의 분류로 light와 heavy만 씀	
light-light	HL
light-heavy	НН
heavy-light	LH
heavy-heavy	

42. 가상어2 부산 성조형과 종성음절구조와의 관계

<Table 101> 가상어2 부산 종성음절구조(weight) Contingency table

syllable-accent	НН	HL	LH	SUM
개음절-개음절	38(65.5%)	52(72.3%)	60(50%)	150
개음절-폐음절	5(8.6%)	6(8.3%)	39(32.5%)	50
폐음절-개음절	15(25.9%)	14(19.4%)	21(17.5%)	50
SUM	58	72	120	250

<Table 102> 가상어2 부산 종성음절구조(weight) [chisq = 23.5, df = 4, p = 1.01e-04]; Cramer's V = 0.22.

syllable-accent	НН	HL	LH
개음절-개음절	1.092	1.204	0.833
개음절-폐음절	0.431	0.417*	1.625**
폐음절-개음절	1.293	0.972	0.875

Pearson's Chi-squared test

data: Onset_or_Coda_Accent_Contingency_table X-squared = 23.5, df = 4, p-value = 0.0001006

The Pearson's Chi-squared test of independence between Weight and Accent suggests that the effect is statistically significant [chisq = 23.5, df = 4, p = 1.01e-04].; Cramer's V = 0.217, 95%CI[0.045, 0.389].

그림 48 가상어2 부산 성조형과 음절구조 관계

<가상어2_진주_종성>

독립 변수=종성 조합	종속 변수=성조형
*종성의 분류로 light와 heavy만 씀	
light-light	HL
light-heavy	НН
heavy-light	LH
heavy-heavy	

<가상어2_부산_초성+종성>, <가상어2_진주_초성+종성>

→ 마찬가지로 초성, 종성을 합쳐서 살펴서 보았을 때 초성, 종성 중 어떤 것이 성조형과 더 밀접하게 관련이 있는지 수치적으로 보여줄 수 있으면 좋겠습니다.

43. 가상어2 성조형,초성, 음절구조에 대한 다중 대응분석

그림 49 가상어2 부산 성조형, 초성, 음절구조에 대한 다중 대응 분석

<Table 104> 가상어2(부산)--다중대응분석 좌표점(86.11%)

factor	level	Dim1	Dim2
성조	НН	0.4351	0.0323
성조	HL	0.2381	0.0373
성조	LH	-0.3531	-0.0380
onset	공명음	-0.3129	-0.2439
onset	마찰음	-0.2180	0.1270
onset	유기음_경음	0.7881	-0.1680
onset	평파열음_평파찰음	-0.0185	0.1501
Weight	개-개	0.2231	-0.0805
Weight	개-폐	-0.5832	-0.1227
Weight	폐-개	-0.0860	0.3643

가상어2 에 관한 성조형과 음절 다중대응분석의 총 설명력(86.11 %)

그림 50 가상어2 부산 다중대응분석 행렬도

■ 가상어3

<가상어3_부산_초성>

독립 변수=초성의 분류	종속 변수=성조형
lax	HLL
son	LHL
tsasp	HHL
fri	LLH

<Table 106> 가상어3 부산 onset Contingency table

syllable-accent	HHL	HLL	LHL	LLH	SUM
공명음	10(20%)	0(0%)	40(18.8%)	30(35.3%)	80
마찰음	12(24%)	0(0%)	34(16%)	9(10.6%)	55
유기음_경음	22(44%)	1(50%)	21(9.9%)	1(1.2%)	45
평파열음_평파찰음	6(12%)	1(50%)	118(55.3%)	45(52.9%)	170
SUM	50	2	213	85	350

<Table 107> 가상어3 부산 onset [chisq = 78.39, df = 9, p = 3.38e-13]; Cramer's V = 0.27.

syllable-accent	HHL	HLL	LHL	LLH
공명음	0.875	0	0.822	1.544*
마찰음	1.527	0	1.016	0.674
유기음_경음	3.422***	3.889	0.767	0.092**
평파열음_평파찰음	0.247***	1.029	1.141	1.09

Pearson's Chi-squared test

data: Onset_or_Coda_Accent_Contingency_table
X-squared = 78.386, df = 9, p-value = 3.38e-13

The Pearson's Chi-squared test of independence between Onset and Accent suggests that the effect is statistically significant [chisq = 78.39, df = 9, p = 3.38e-13].; Cramer's V = 0.273, 95%CI[0.11, 0.437].

그림 51 가상어3 성조형과 초성과의 관계

진주것.. 데이터없음. <가상어3_진주_초성>

독립 변수=초성의 분류	종속 변수=성조형
lax	HLL
son	LHL
tsasp	HHL
fri	LLH

44. 가상어3 부산 성조형과 음절구조와의 관계

<가상어3_부산_종성>

독립 변수=종성 조합	종속 변수=성조형
*종성의 분류로 light와 heavy만 씀	
light-light	
light-light-heavy	HILL
light-heavy-light	LHL
heavy-light-light	HHL
light-heavy-heavy	LLH
heavy-light-heavy	LLII
heavy-heavy-light	
heavy-heavy	

<Table 110> 가상어3 부산 성조형과 음절구조(weight) Contingency table

syllable-accent	HHL	HLL	LHL	LLH	SUM
개음절-개음절-개음절	30(60%)	1(50%)	143(67.1%)	26(30.6%)	200
개음절-개음절-폐음절	1(2%)	1(50%)	7(3.3%)	41(48.2%)	50
개음절-폐음절-개음절	8(16%)	0(0%)	33(15.5%)	9(10.6%)	50
폐음절-개음절-개음절	11(22%)	0(0%)	30(14.1%)	9(10.6%)	50
SUM	50	2	213	85	350

<Table 111> 가상어3 부산 성조형과 음절구조(weight) [chisq = 112.59, df = 9, p
= 4.35e-20]; Cramer's V = 0.33.

syllable-accent	HHL	HLL	LHL	LLH
 개음절-개음절-개음절	1.05	0.875	1.175	0.535**
	0.14*	3.5	0.23***	3.376***
개음절-폐음절-개음절	1.12	0	1.085	0.741
폐음절-개음절-개음절	1.54	0	0.986	0.741

Pearson's Chi-squared test

data: Onset_or_Coda_Accent_Contingency_table X-squared = 112.59, df = 9, p-value < 2.2e-16

The Pearson's Chi-squared test of independence between Weight and Accent suggests that the effect is statistically significant [chisq = 112.59, df = 9, p = 4.35e-20].; Cramer's V = 0.327, 95%CI[0.164, 0.491].

그림 52 가상어3 부산 성조형과 음절구조와의 관계

45. 가상어3 부산 성조형과 음절구조(W-X-W)와의 관계

<Table 112> 가상어3 부산 성조형과 음절구조(weight) Contingency table

syllable-accent	HHL	HLL	LHL	LLH	SUM
기H-X-기H	38(76%)	1(50%)	176(82.6%)	35(41.2%)	250
게-X-폐	1(2%)	1(50%)	7(3.3%)	41(48.2%)	50
폐-X-개	11(22%)	0(0%)	30(14.1%)	9(10.6%)	50
SUM	50	2	213	85	350

<Table 113> 가상어3 부산 성조형과 음절구조(weight) [chisq = 111.78, df = 6, p = 8.64e-22]; Cramer's V = 0.4.

syllable-accent	HHL	HLL	LHL	LLH
7위-X-7위	1.064	0.7	1.157	0.576***
개-X-폐	0.14*	3.5	0.23***	3.376***
폐-X-개	1.54	0	0.986	0.741

Pearson's Chi-squared test

data: Onset_or_Coda_Accent_Contingency_table X-squared = 111.78, df = 6, p-value < 2.2e-16

The Pearson's Chi-squared test of independence between Weight and Accent suggests that the effect is statistically significant [chisq = 111.78, df = 6, p = 8.64e-22].; Cramer's V = 0.4, 95%CI[0.254, 0.545].

그림 53 가상어3 부산 성조형과 음절구조(W-X-W)와의 관계

46. 가상어3 성조형과 음절구조(X-W-W)와의 관계

<Table 114> 가상어3 부산 성조형과 음절구조(weight) Contingency table

syllable-accent	HHL	HLL	LHL	LLH	SUM
X-7 -7	41(82%)	1(50%)	173(81.2%)	35(41.2%)	250
X-개-폐	1(2%)	1(50%)	7(3.3%)	41(48.2%)	50
X-폐-개	8(16%)	0(0%)	33(15.5%)	9(10.6%)	50
SUM	50	2	213	85	350

<Table 115> 가상어3 부산 성조형과 음절구조(weight) [chisq =
109.77, df = 6, p = 2.28e-21]; Cramer's V = 0.4.

syllable-accent	HHL	HLL	LHL	LLH
X-7 -7	1.148	0.7	1.137	0.576***
X-개-폐	0.14*	3.5	0.23***	3.376***
X-폐-개	1.12	0	1.085	0.741

Pearson's Chi-squared test

data: Onset_or_Coda_Accent_Contingency_table X-squared = 109.77, df = 6, p-value < 2.2e-16

The Pearson's Chi-squared test of independence between Weight and Accent suggests that the effect is statistically significant [chisq = 109.77, df = 6, p = 2.28e-21].; Cramer's V = 0.396, 95%CI[0.251, 0.541].

그림 54 가상어3 부산 성조형과 음절구조(X-W-W)와의 관계

<가상어3 진주 종성>

독립 변수=종성 조합	종속 변수=성조형
*종성의 분류로 light와 heavy만 씀	
light-light	
light-light-heavy	111.1
light-heavy-light	HLL
heavy-light-light	LHL
light-heavy-heavy	HHL
heavy-light-heavy	LLH
heavy-heavy-light	
heavy-heavy	

<가상어3 부산 초성+종성>, <가상어3 진주 초성+종성>

→ 마찬가지로 초성, 종성을 합쳐서 살펴서 보았을 때 초성, 종성 중 어떤 것이 성조형과 더 밀접하게 관련이 있는지 수치적으로 보여줄 수 있으면 좋겠습니다.

47. 가상어3 성조형, 초성, 음절구조에 대한 다중 대응 분석

그림 55 가상어3 성조형, 초성, 음절구조에 대한 다중 대응분석

<Table 117> 가상어3(부산)--다중대응분석 좌표점(74.41%)

factor	level	Dim1	Dim2
성조	HHL	-0.5445	-0.3815
성조	HLL	0.0318	-0.6600
성조	LHL	-0.1444	0.1533
성조	LLH	0.6813	-0.1442
onset	공명음	0.3065	-0.1888
onset	마찰음	-0.1551	0.0588
onset	유기음_경음	-0.7373	-0.4240
onset	평파열음_평파찰음	0.1011	0.1821
Weight	7ㅐ-7ㅐ-7ㅐ	-0.2336	-0.0344
Weight	개-개-폐	0.9173	-0.2441
Weight	개-폐-개	0.0142	0.3412
Weight	폐-개-개	0.0028	0.0404

가상어3 에 관한 성조형과 음절 다중대응분석의 총 설명력(74.41 %)

그림 56 가상어3 다중대응분석 행렬도

```
1) #*연구문제 2 각 성조형에 대한 제보자들의 응답 일치 정도-----
kge bind2 %>% replace df(pattern = "H(H) 1", imp="H(H)") %>%
  filter(age == 60 & 지역=="부산" &type=="고유어1") %>%
  select(speaker, word, 성조, age, 지역) %>%
  inner join(
kge bind2%>% replace df(pattern = "H(H) 1", imp="H(H)") %>%
  filter(age == 20 & 지역=="부산" &type=="고유어1")%>%
  select(speaker, word, 성조, age, 지역),
by ="word", relationship = "many-to-many") %>%
  mutate(same = ifelse(성조.x == 성조.y, "Agree", "Disagree")) %>%
  rename(age60 = age.x, age20 = age.y) \%
  select(word, age20, age60, same) %>%
  pivot longer(names to = "Age", values to = "S", cols = age20:age60) %>%
  select(Age, same) %>% table() %>% accent table("Age", "same") %>%
  markdown table()
#Agree_table ##############
Agree table = function(data,
                        wordkey="",
                        age1=60,
                        age2=60,
                        area1="부산"
                        area2="부산",
                        pattern = "H(H)_1", imp="H(H)",
                        n=15,type="Res"
){
  res= data %>%
    replace_df(pattern = pattern, imp = imp) %>%
    dplyr::filter(age == age1 & 지역== area1 &type==wordkey) %>%
    dplyr::select(speaker,word, 성조, age, 지역) %>%
    dplyr::arrange(speaker) %>%
    dplyr::inner join(
      kge bind2%>%
        replace df(pattern = pattern, imp = imp) %>%
        dplyr::filter(age == age2 & 지역== area2 &type == wordkey)%>%
        dplyr::select(speaker, word, 성조, age, 지역) %>%
        arrange(speaker),
      by ="word", relationship = "many-to-many") %>%
    mutate(same = ifelse(성조.x == 성조.y, "Agree", "Disagree")) #%>%
  # rename(age60 = age.x, age20 = age.y, 성조60=성조.x, 성조20=성조.y)
    res1 = res\% > \%
    dplyr::select(word, age.x, age.y, same) %>%
    # dplyr::select(word, age.x, same) %>%
    pivot_longer(names_to = "Age", values to = "S", cols = age.x:age.y) %>%
    dplyr::select(Age, same) %>% table() %>%
    accent table("Age", "same") %>%
    'colnames<-'(c(paste0(area1, age1,"대"),
                   paste0(area2, age2,"대")))
  Res = list(r1=res1)
             r2=res1 %>%
               markdown table(caption = paste0(wordkey,"에 관한",
                                                 areal, agel,"대와",
                                                 area2, age2, "대" ))
```

```
head top15 = res \%>% head(n=n)
  )
  switch(type,
         data = res1 %>% data.frame() %>%
           dplyr::select(1),
         # dplyr::select(paste0(area1, age1,"대")),
         Res = Res)
#* 2개의 연령을 묶어서 분석
bind agree tabe= function(data, wordkey,
                            Age1,
                            Age2,
                            Area="부산",
                            pattern = "H(H) 1", imp="H(H)"
                            ){
   res = bind_cols(Agree_table(data, wordkey,
                               age1 = Age1, age2 = Age1,
                               area1 = Area, area2 = Area,
                               pattern = pattern, imp = imp,
                               type = "data") #%>%
                      # 'colnames<-'(c(paste0("",Area, Age1,"대")))
                  Agree table(data, wordkey,
                               age1 = Age2, age2 = Age2,
                               area1 = Area, area2 = Area,
                               pattern = pattern, imp = imp,
                               type = "data") #%>%
                    # 'colnames<-'(c(paste0("",Area, Age2,"대")))
  res = res %>% rownames_to_column("Agreement_rate")
  res1 = res
  colnames(res1)= c("Agreement rate" ,"a1","a2")
  res1 = res1 \%% mutate(ratio1 = paste0(round(a1/sum(a1),2)*100,"%"),
                         ratio2 = paste0(round(a2/sum(a2),2)*100,"%")
                           ) %>%
             mutate(
               A1 = paste0(a1,"(",ratio1,")"),
               A2 = paste0(a2,"(",ratio2,")")
                    ) %>%
           dplyr::select(Agreement_rate, A1 ,A2) %>%
           'colnames<-'(c("Agreement rate",
                      paste0("",Area, Age1,"대"),
                       paste0("",Area, Age2,"대"))
                        )
  RES = list(console = res,
              res1,
              markdown = res1 %>%
                markdown_table(
```