Лабораторная работа №3. Моделирование непрерывных СВ. (Крайний срок сдачи до 24.10.2022)

Смоделировать непрерывную случайную величину (задания на стр. 25-47). Исследовать точность моделирования.

- 1) Осуществить моделирование n = 1000 реализаций СВ из нормального закона распределения $N(m, s^2)$ с заданными параметрами. Вычислить несмещенные оценки математического ожидания и дисперсии, сравнить их с истинными.
- 2) Смоделировать n = 1000 СВ из заданных абсолютно непрерывных распределений. Вычислить несмещенные оценки математического ожидания и дисперсии, сравнить их с истинными значениями (если это возможно).
- 3) Для каждой из случайных величин построить свой критерий Колмогорова с уровнем значимость ε =0.05. Проверить, что вероятность ошибки I рода стремится к 0.05.
- 4) Для каждой из случайных величин построить свой χ^2 -критерий Пирсона с уровнем значимость ϵ =0.05. Проверить, что вероятность ошибки I рода стремится к 0.05.
- 5) Осуществить проверку каждой из сгенерированных выборок каждым из построенных критериев.

Вариант:

- 1) $m=0,\ s^2=9;\ \chi^2$ -распределение с m степенями свободы (χ_m^2), m=4. Стьюдента с m степенями свободы (t_m), m=6.
- 2) m = -3, $s^2 = 16$; Логнормальное $LN(m, s^2)$, m = 0, $s^2 = 4$, Коши C(a,b), a = 1, b = 2.
- 3) m = 4, $s^2 = 25$; Экспоненциальное E(a), a = 0.5, Вейбулла W(a,b), a = 4, b = 0.5.
- 4) m = 0, $s^2 = 1$; Логистическое LG(a,b), a = 2, b = 3; Лапласа L(a), a = 2.
- 5) m = -4, $s^2 = 4$; Экспоненциальное E(a), a = 0.5, Логистическое LG(a,b), a = 0, b = 1.5.
- 6) m = 5, $s^2 = 9$; Коши C(a,b), a = -1, b = 3; Лапласа L(a), a = 2.
- 7) m = 0, $s^2 = 16$; Логнормальное $LN(m, s^2)$, m = 2, $s^2 = 16$; Логистическое LG(a,b), a = 1, b = 1.
- 8) m = -5, $s^2 = 25$; Лапласа L(a), a = 1; Экспоненциальное E(a), a = 4.
- 9) $m=0,\ s^2=64;\ \chi^2$ -распределение с m степенями свободы (χ^2_m), m=4; Фишера с l и m степенями свободы ($F_{m,l}$) $l=5,\ m=3.$
- 10) m = 1, $s^2 = 9$; Логнормальное $LN(m, s^2)$, m = 1, $s^2 = 9$.Экспоненциальное E(a), a = 2.
- 11) m = 0, $s^2 = 1$; Лапласа L(a), a = 0.5; Вейбулла W(a,b), a = 1, b = 0.5.
- 12) m = -1, $s^2 = 4$; Коши C(a,b), a = -1, b = 1, Логистическое LG(a,b), a = 2, b = 3.
- 13) m = 2, $s^2 = 16$; Логнормальное $LN(m, s^2)$, m = -1, $s^2 = 4$; Лапласа L(a), a = 1.5.
- 14) m = 0, $s^2 = 25$; Экспоненциальное E(a), a = 0.25, Коши C(a,b), a = 1, b = 2.
- 15) m = -2, $s^2 = 1$; Вейбулла W(a,b), a = 0.5, b = 1; Логистическое LG(a,b), a = -1, b = 2.
- 16) m=3, $s^2=4$; χ^2 -распределение с m степенями свободы (χ^2_m), m=4; Фишера с l и m степенями свободы ($F_{m,l}$) l=5, m=3.
- 17) m = -5, $s^2 = 2$; Вейбулла W(a,b), a = 0.4, b = 2; Лапласа L(a), a = 3.

18) $m=3,\,s^2=4;\,\chi^2$ -распределение с m степенями свободы (χ^2_m), m=10; Логистическое $LG(a,b),\,a=1,\,b=0.5.$