Analyse avancée II Mathématiques 1^{ère} année Enseignant : Fabio Nobile

Série 3 du lundi 1^{er} mars 2021

Exercice 1.

1) Démontrer l'inégalité de Young :

$$\forall a, b \in \mathbb{R}_+, \quad ab \leqslant \frac{1}{p}a^p + \frac{1}{q}b^q, \tag{1}$$

où $p \in]1, +\infty[$ et q est tel que 1/p + 1/q = 1.

Indication. Utiliser le fait que la fonction $\ln :]0, +\infty[\to \mathbb{R}$ est concave et appliquer \ln à la relation d'inégalité.

2) Démontrer que si $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$ où $\boldsymbol{x} = (x_1, x_2, \dots, x_n)$ et $\boldsymbol{y} = (y_1, y_2, \dots, y_n)$ et si $\langle \boldsymbol{x}, \boldsymbol{y} \rangle$ est le produit scalaire euclidien, alors on a l'inégalité de Hölder :

$$|\langle \boldsymbol{x}, \boldsymbol{y} \rangle| \leqslant \|\boldsymbol{x}\|_{n} \|\boldsymbol{y}\|_{q} \tag{2}$$

où $p \in [1, +\infty]$ et 1/p + 1/q = 1 (avec la convention $1/+\infty = 0$).

Indication. Lorsque $p,q\in]1,+\infty[$, poser $\lambda=\|\boldsymbol{x}\|_p^{-1/q}\|\boldsymbol{y}\|_q^{1/p}$ et utiliser le point 1 après avoir écrit $|\langle \boldsymbol{x},\boldsymbol{y}\rangle|\leqslant \sum_{i=1}^n \lambda |x_i|\times \frac{1}{\lambda}|y_i|$.

- 3) Montrer que $\|\cdot\|_p$ est une norme pour $p \in [1, +\infty]$ mais, lorsque $n \geq 2$, pas pour $p \in]0, 1[$. Indication. Pour $p \in]1, \infty[$, partir de $\|\boldsymbol{x} + \boldsymbol{y}\|_p^p \leqslant \sum_{i=1}^n |x_i| |x_i + y_i|^{p-1} + \sum_{i=1}^n |y_i| |x_i + y_i|^{p-1}$ et utiliser le point 2 ci-dessus.
- 4) Soient $x \in \mathbb{R}^n$, $p \in [1, +\infty]$ et $q \in \mathbb{R}$ tel que 1/p + 1/q = 1. Démontrer les inégalités suivantes :

$$\|\boldsymbol{x}\|_{1} \leqslant n^{1/q} \|\boldsymbol{x}\|_{p} \quad \text{si } p \neq 1, \tag{3}$$

$$\|\boldsymbol{x}\|_{p} \leqslant n^{1/p} \|\boldsymbol{x}\|_{\infty} \quad \text{si } p \neq +\infty,$$
 (4)

$$\|\boldsymbol{x}\|_{\infty} \leqslant \|\boldsymbol{x}\|_{1}.\tag{5}$$

En déduire que toutes les normes $\{\|\cdot\|_p : p \in [1, +\infty]\}$ sont équivalentes.

Exercice 2.

Soient $f, g \in C^0([0,1])$. On définit

$$\phi(f,g) = \int_0^1 fg \tag{6}$$

1) Montrer que ϕ définit un produit scalaire sur $C^0([0,1])$.

2) Montrer que $|\phi(f,g)| \le \phi(f,f)^{1/2}\phi(g,g)^{1/2}$ en suivant la démonstration de l'inégalité de Cauchy–Schwarz donnée au cours.

Exercice 3.

- 1) Soit un espace métrique (M,d) et une fonction continue $h: \mathbb{R}_+ \to \mathbb{R}_+$. On suppose que : (i) h(0) = 0; (ii) h est dérivable sur $]0, +\infty[$; (iii) h' > 0 sur $]0, +\infty[$; (iv) et h' est décroissante sur $]0, +\infty[$. Prouver que $\tilde{d} = h \circ d$ est aussi une distance sur M.
- 2) Si $V \neq \{0\}$ est un espace vectoriel équipé d'une norme N, d est la distance induite par N et h(x) = x/(1+x) pour $x \geq 0$, prouver que $\tilde{d} = h \circ d$ est une distance, mais qu'elle n'est induite par aucune norme.

Exercice 4.

Soit V l'ensemble de toutes les suites réelles dont seulement un nombre fini d'éléments sont non-nuls.

- 1) Montrer que V est un espace vectoriel sur \mathbb{R} .
- 2) Définissons l'application sur V

$$N: v \mapsto \sqrt{\sum_{i \in \mathbb{N}} v_i^2}.$$

Prouver que N est une norme sur V.

3) Le théorème de Bolzano–Weierstrass, tel que formulé sur \mathbb{R}^n , est-il toujours vrai sur V équipé de la norme N?