(19)日本国特許庁 (JP).

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-285227

(43)公開日 平成10年(1998)10月23日

(51) Int.Cl.*

說別配号

HO4L 27/12

F I

H04L 27/12

В

審査請求 未請求 請求項の数2 OL (全 5 頁)

(21) 出願番号

特顯平9-91990

(22)出願日

平成9年(1997)4月10日

(71)出題人 000002185

ソニー株式会社

東京都品川区北品川6丁目7番35号

(72) 発明者 晴山 信夫

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

(74)代理人 弁理士 佐藤 正美

(54) 【発明の名称】 MSK信号発生装置

(57)【要約】

【課題】 アリアンブルを短くしても受信が可能な、M SK信号を生成する。

【解決手段】 データの"0"、"1"に応じた2つの 搬送波に対応するデジタルデータを発生するMSKデー 夕発生手段20と、このMSKデータ発生手段20から のデジタルデータをD/A変換するD/A変換器30と を備える。MSKデータ発生手段20が、それぞれ正弦 波のゼロクロス点からゼロクロス点までの正弦波に対応 するデータを発生する。MSKデータ発生手段20は、 複数個のビットデータ発生手段21a~21fと、ビッ トデータ発生回路21a~21fの各々のピット出力を ラッチするための複数個のラッチ回路22a~22fと を備える、複数個のラッチ回路22a~22fの出力の 組みを、正弦波を生成するための各サンプルデータとす る。データの区切りごとに、複数個のラッチ回路22a ~22fに共通にリセット信号を供給して、ゼロクロス 点の値に対応するピット値を、複数のラッチ回路22a ~22fのそれぞれに設定する。

1

【特許請求の範囲】

【請求項1】データの"0"、"1"に応じた2つの扱 送波に対応するデジタルデータを発生するMSKデータ 発生手段と、このMSKデータ発生手段からのデジタル データをD/A変換するD/A変換器とを備えるMSK 信号発生装置において、

前記MSKデータ発生手段が、それぞれ正弦波のゼロク ロス点からゼロクロス点までの正弦波に対応するデータ を発生するようにしたことを特徴とするMSK信号発生

【請求項2】前記MSKデータ発生手段は、複数個のビ ットデータ発生手段と、前記ピットデータ発生回路の各 々のビット出力をラッチするための複数個のラッチ回路 とを備え、

前記複数個のラッチ回路の出力の組みを、前記正弦波を 生成するための各サンプルデータとすると共に、

前記データの区切りごとに、前記複数個のラッチ回路に 共通にリセット信号を供給して、前記ゼロクロス点の値 に対応するビット値を、前記複数のラッチ回路のそれぞ 載のMSK信号発生装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、MSK信号発生 装置に関する。

[0002]

【従来の技術】2進のFSK (Frequency S hift Keying)で、現時点の位相に対して1 シンボル時間後の位相が±90度の進みあるいは遅れと なるように2つの搬送波f1,f0を選択すると、両信 30 ないようにする、などの対策が講じられていた。 号は直交関係になり、理想的な復調ができることが知ら れている。無線回線などでのデジタル信号の投受に用い られる変調方式の一つであるMSK(Minimum Shift Keying)変調方式は、このような直 交関係が成り立つ最小の周波数差、すなわち、2(f1) -f0) T=1 (T:シンボル時間) が成り立つような 搬送波を選択した連続位相FSKである。

【0003】このMSK変調方式の一つとして、例えば 図7に示すように、シリアルに入力されるデータの

"1", "0"に応じて、例えば周波数fo=1.2k 40 Hzの半サイクルを"1"、その2倍の周波数2fo= 2. 4kHzの1サイクルを"O"とするMSK信号が 知られている。

【0004】このMSK信号の生成の方法としては、図 7の①の半サイクルデータと、③の1サイクルデータと を基本データとして発生するMSKデータ発生回路と、 D/A変換器との組み合わせを用いるようにしている。 この場合、①の半サイクルデータと、②の1サイクルデ ータの補数から、②の波形データと、⑤の波形データと を作成する。

【0005】この場合、0、0、3、5のいずれの波形 データをMSKデータ発生回路から発生させるかは、現 データと、一つ前データと、前データの符号(前符号) とにより決定される。この現データ入力から、現符号が 求められるロジック回路は、図8に示すように、1ビッ トバッファ2と、イクスクルーシブオアゲート3と、オ アゲート4と、アンドゲート5と、Dフリップフロップ 回路6とにより構成することができる。この図8の回路 の入力端子1に現データを入力すれば、出力端子7には 10 現符号が、出力端子8には出力データ(現データ)が得 られるものである。

2

【0006】従来、デジタル波形データの発生回路とし てのMSKデータ発生回路は、マイクロコンピュータに より構成されており、波形データの始まりは、一般的に 波形のゼロクロスとは異なっている。

[0007]

【発明が解決しようとする課題】このMSK信号は、受 信側では、帯域フィルタを通じて分離され、復調されて デコードされ、データが取り出されるようにされるが、 れに設定するようにしたことを特徴とする請求項1に記 20 信号分離のため狭帯域フィルタによって直流成分が遮断 される。上述のように、従来は、波形データの始まりは ゼロクロスではないため、受信側で分離されたMSK信 号の直流電位の浮動があり、最初のデータが再生されに くいという問題があった。

> 【0008】従来、この問題を解決するために、クロッ ク再生のため"1", "0"を繰り返すプリアンブル区 間を長くする、あるいは、特開平1-305635号公 報に開示されるように、データに先立って数十ピットの ビット同期信号を検出してからでないと受信状態になら

> 【0009】しかしながら、このような対策では、クロ ック再生からデータの受信までの時間が長くなるという 問題が生ずる。

> 【0010】かかる点に鑑み、この発明の目的は、プリ アンブル区間を短くしても受信が可能な、MSK信号を 生成することができる、MSK信号発生装置を提供する ところにある。

[0011]

【課題を解決するための手段】前記課題を解決するた め、発明によるMSK信号発生装置は、データの

"0"、"1"に応じた2つの搬送波に対応するデジタ ルデータを発生するMSKデータ発生手段と、このMS Kデータ発生手段からのデジタルデータをD/A変換す るD/A変換器とを備えるMSK信号発生装置におい て、前記MSKデータ発生手段が、それぞれ正弦波のゼ ロクロス点からゼロクロス点までの正弦波に対応するデ ータを発生するようにしたことを特徴とする.

【0012】特に、前記MSKデータ発生手段は、複数 個のビットデータ発生手段と、前記ビットデータ発生回 50 路の各々のビット出力をラッチするための複数個のラッ

チ回路とを備え、前記複数個のラッチ回路の出力の組み を、前記正弦波を生成するための各サンプルデータとす ると共に、前記データの区切りごとに、前記複数個のラ ッチ回路に共通にリセット信号を供給して、前記ゼロク ロス点の値に対応するピット値を、前記複数のラッチ回 路のそれぞれに設定するようにしたことを特徴とする。 【0013】この発明によれば、MSK信号は常にゼロ クロス点の部分から波形が発生するので、受信側で狭帯 域フィルタを通っても、直流電位の揺らぎがなく、最初 のデータからデータ再生が可能となる。

[0014]

【発明の実施の形態】以下、図1~図3を参照しなが ら、この発明によるMSK信号発生装置の実施の形態に ついて説明する。

【0015】 [実施の形態の構成] この発明の実施の形 態の構成を図1に示し、データ判別回路10と、MSK データ発生回路20と、D/A変換器30とからなる。 【0016】入力シリアルデータはデータ判別回路10 に取り込まれる。このデータ判別回路10は、例えば前 述した図8の回路構成を備え、現符号の情報と、現デー 20 通に供給されて、前述したデータサンプルA0~A15 タとを出力する。これらの現符号の情報と現データとは MSKデータ発生回路20に供給される。MSKデータ 発生回路20は、例えば1サンプルが6ピットのデジタ ル波形データを発生する。

【0017】この場合、MSKデータ発生回路20の出 カデジタル波形データは、アナログ波形で示すと、図2 A~Dに示すように、所定期間Tpの始めのゼロクロス 点から終わりのゼロクロス点まで連続する、1サイクル 分の正弦波のデータと、同様に、所定期間Tpの始めの ゼロクロス点から終わりのゼロクロス点まで連続する、 半サイクル分の正弦波のデータである。この場合、図2 Aおよび図2Cの波形データは基本データであり、ま た、図2Bおよび図2Dの波形データは補数データであ る。いずれの基本データを出力するか、補数データを出 力するかは、入力現データと現符号とにより決められ

【0018】この選択は、直前に取り込まれたデータと 新規に取り込まれたデータとの組み合わせが、

{"1": "1"}, {"1": "0"} atcla 4 "0": "1" } となる場合に、前後の正弦波の極性 40 が異なるように行われる。

【0019】図3は、MSKデータ発生回路20から発 生する波形データの例を示すもので、6ピットデータで* *ある。この場合、前記期間Tp内に、データサンプルA OからデータサンプルA15までの16個のサンプルデー ータが発生するように定められている。そして、このA 0~A15までのデータサンプルが順に発生すること で、図4に示すように、1サイクル分の基本データおよ び半サイクル分の基本データで現される波形データが出 力される。

【0020】この場合、MSKデータ発生回路20から は、データ判別回路13に取り込まれたシリアル・デー 10 タの"O", "1"に応じて、図2A~Dに示すような 4種類の正弦波のデータが、切換点での位相が連続する ようにして、データが出力される。

【0021】図5は、MSKデータ発生回路20の構成 例を示すもので、MSKデータ発生回路20は、この例 では、1サンプルを構成する6ビットの各ビットデータ DO(LSB)~D5(NSB)のそれぞれを発生するための第1~ 第6のビットデータ発生回路21a~21fと、第1~ 第6のラッチ回路22a~22gとから構成され、図示 は省略するが、タイミング発生回路からのクロックが共 の各ピットデータを発生する。

【0022】また、ビットデータ発生回路21a~21 fには、データ判別信号が共通に供給され、各ピットデ ータ発生回路21a~21fからは、図3に示したデー タサンプルA0~A15の各ピットデータを発生する。 【0023】各ビットデータ発生回路21a~21fか らの各ピットデータが、対応のラッチ回路22a~22 fにそれぞれ供給される。また、第1~第5のラッチ回 路22a~22eの各クリア端子Qと、第6のラッチ回 30 路22fのプリセット端子PRとに共通に、リセット信号 が供給される.

【0024】そして、各ラッチ回路22a~22fか ら、例えば、6ピットのデータDO(LSB)~D5(MSB)が出 力されて、前述したD/A変換器30に供給される。 【0025】上述のように、リセット信号が供給されす ることにより、第1~第6のラッチ回路22a~22f のリセット時には、6ビットのデータD0 ~D5 が、

[D5 D4 D3 D2 D1 D0]

 $[1 \ 0 \ 0 \ 0 \ 0 \] \rightarrow [20 (HEX)]$ となる。

【0026】また、6ビットのデータD0 ~D5 の最大 値および最小値は、それぞれ、

 $[111111] \rightarrow [3F(HEX)]$ $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$ $O \rightarrow [OO(HEX)]$

となる。

【0027】これにより、各ラッチ回路22a~22f から出力される、6ビットのデータDO ~D5 は、その 最大値[3F(HEX)]および最小値[00(HEX)]の平 ※スタートすることになる。

【0028】例えば、アリアンブル区間では、図6に示 すように、もとのデータの"1"、"0"に応じて、そ れぞれ所定期間Tpで、平均値から始まり平均値で終わ 均値である [20(HEX)] もしくは [1F(HEX)] から※50 る、半サイクル分の正弦波のデータと、1サイクル分の 正弦波のデータとが、位相が連続するように切り換えられて送出される。

【0029】上述のように、この実施の形態では、取り込まれた各ピットの"0", "1"に応じて、いずれもゼロクロス点から始まる、1サイクル分もしくは半サイクル分の正弦波のデータが導出されるようにしたので、受信側で、帯域フィルタにより分離されて、直流成分が遮断されても、MSK信号の直流電位の揺らぎがなくなり、最初の受信データから正しく再生することができて、送信側でプリアンブル区間を短くすることができる。

[0030]

【発明の効果】以上説明したように、この発明によれば、プリアンブル区間を短くしても受信が可能な、MS K信号を生成することができる。

【図面の簡単な説明】

【図1】この発明によるMSK信号発生装置の実施の形態の構成を示すブロック図である。

6 【図2】この発明の実施の形態の要部を説明するための 波形図である。

【図3】この発明の実施の形態のMSKデータ発生装置で発生する波形データの例を示す図である。

【図4】この発明の実施の形態のMSKデータ発生装置で発生する波形データの例を説明するための図である。

【図5】この発明の実施の形態の要部の構成を示すプロック図である。

【図6】この発明の実施の形態を説明するための波形図10 である。

【図7】MSK信号を説明するための波形図である。

【図8】MSK信号の生成を説明するための図である。 【符号の説明】

10…データ判別回路、20…MSKデータ発生回路、21 a~21 f…MSKデータ発生回路、22 a~22 f…ラッチ回路、30…D/A変換器、D0 …LSB、D5 …MSB

【図1】

【図3】

•	١	•	Ø	7	-	9

・0・のデータ

Α×	基本データ		複数データ		基本データ		複数データ	
0	1F	011111	100000	20	15	011111	100000	2 D
1	25	100101	011010	1A	78	101011	010100	14
2	28	101011	010100-	14	25	110101	001010	2
3	31	110001	001110	Œ	38	111011	000100	8
4	35	110110	001001	05	5	111111	000000	8
5	SA	111010	200101	89	38	111011	003100	3
6	æ	191101	EDUD10	Œ	భ	110101	001010	8
7	#	111110	000001	01	28	101011	010100	14
8	35	111111	000000	88	15	011111	100000	8
9	Œ	111110	600001	01	13	010011	101100	æ
10	30	111101	000010	82	09	001001	110110	36
11	BA	111010	000101	05	02	000010	111101	a
12	38	110110	001001	09	8	000000	mm	35
13	31	110001	001110	Œ	02	000010	111101	A
14	2B	101011	101011	14	09	001901	110110	88
15	25 .	180101	011010	1A	13	010011	101100	æ

【図2】

【図4】

