Lição 3

Queue

Objetivos

Ao final desta lição, o estudante será capaz de:

- Definir os conceitos básicos e operações com queue ADT
- Implementar uma queue ADT usando representação seqüencial e encadeada
- Realizar operações em *queue* circulares
- Usar ordenação topológica para produzir uma organização de elementos que satisfaça a um padrão estabelecido

Representação de Queue

- Queue Conjunto de elementos linearmente ordenados obedecendo a lógica first-in, first-out (FIFO)
- Aplicações: relacionar elementos, ordenação topológica, gráficos transversais, etc.
- 2 operações básicas para manipulação de dados: inserção no final (enqueue) e remoção do primeiro elemento (dequeue)

Representação Seqüencial

- Utiliza um array unidimensional
- Remover de uma Queue vazia causa um Underflow
- Inserir em uma Queue cheia causa um Overflow

Representação Seqüencial

- Front aponta o primeiro elemento da queue enquanto que rear aponta para a célula seguinte à última ocupada
- Queue vazia se front=rear
- Queue cheia se front=0 e rear=n
- Inicialização: front = 0; rear = 0
- Inserção : Q[rear] = x; rear++;
- Deleção : x = Q[front]; front++;

Representação Seqüencial

Passaremos agora para o NetBeans

Representação Encadeada

- Queue vazia se front = null
- Overflow irá acontecer quando houver a tentativa de inserção e não existir espaço disponível

Representação Encadeada

Passaremos agora para o NetBeans

Queue Circular

- Células são consideradas como se estivem organizadas em um círculo
- Front aponta para o primeiro elemento da queue
- Rear aponta para a célula à direita do último elemento
- Queue cheia sempre possui uma célula não utilizada

Queue Circular

Passaremos agora para o NetBeans

Aplicação: Classificação Topológica

- É um problema característico de redes ativas
- Utiliza ambas as técnicas de representação, seqüencial e "linkada", na qual a linked queue está inserida em um array seqüencial
- Utiliza técnicas simples para reduzir o tempo gasto
- Aplicada aos elementos de um conjunto no qual a ordenação parcial está definida

Aplicação: Classificação Topológica - Ordenação Parcial

- Ordenação Parcial
 - Um conjunto S, com seus elementos parcialmente ordenados, havendo uma relação entre seus elementos, caracterizada pelo símbolo ≼, lido como "precede ou igual a", satisfazendo as seguintes propriedades para quaisquer elementos x, y e z:
 - Ordenação parcial propriedades de ≼:

- Reflexividade : $x \leq x$

- Anti-simetria : se $x \le y$ e $y \le x$, então x = y

- Transitividade : se x \leq y e y \leq z, então x \leq z

• Resultado. Se $x \leq y$ e $x \neq y$ então x < y. Equivalentemente,

- Não-Reflexividade : x < x

- Assimétrica : se x < y então y < x

- Transitividade : se x < y e y < z, então x < z

Aplicação: Classificação Topológica - Ordenação Parcial

0,1

0,3

0,5

1,2

1,5

2,4

3,2

3,4

5,4

6,5

6,7

7,1

7,5

Aplicação: Classificação Topológica - Algoritmo

Aplicação: Classificação Topológica - Algoritmo

- Entrada
- Saída
- Algoritmo apropriado

Aplicação: Classificação Topológica - Algoritmo

 Uma queue encadeada pode ser usada para evitar percorrer todo o vetor COUNT repetidamente buscando por objetos com um contador igual a zero

QLINK[j] = k
se k é o próximo item na fila

= 0 se j for o último item na fila

 O COUNT de cada item j na fila pode ser reutilizado como um campo "linkado"

Sumário

- Representação de Queue
 - Representação Seqüencial
 - Representação Encadeada
- Queue Circular
- Aplicação: Classificação Topológica
 - Ordenação Parcial
 - Algoritmo

Parceiros

 Os seguintes parceiros tornaram JEDITM possível em Língua Portuguesa:

