

Bachelorarbeit

Parallelisierung einer speichereffizienten Approximation der LZ77-Faktorisierung

Gajann Sivarajah

Gutachter:

Prof. Dr. Johannes Fischer M.Sc. Patrick Dinklage

Technische Universität Dortmund Fakultät für Informatik LS-11 http://afe.cs.tu-dortmund.de

Inhaltsverzeichnis

1 Einleitung				
	1.1	Motivation und Hintergrund	1	
	1.2	Aufbau der Arbeit	1	
2	Gru	ındlagen	3	
	2.1	Kompression	3	
		2.1.1 Verlustfreie Kompression	3	
		2.1.2 Eingabe	3	
3 Das zweite Kapitel				
A	Wei	itere Informationen	7	
Al	obild	lungsverzeichnis	9	
\mathbf{A}	Algorithmenverzeichnis			
Li	Literaturverzeichnis			
Er	Erklärung			

Kapitel 1

Einleitung

1.1 Motivation und Hintergrund

Eine Referenz [1].

1.2 Aufbau der Arbeit

Kapitel 2

Grundlagen

Zunächst stellen wir die verwendete Terminologie und relevante Konzepte bzw. Phänomene dar.

2.1 Kompression

2.1.1 Verlustfreie Kompression

Der Prozess der Kompression überführt eine Repräsentation einer finiten Datenmenge in eine möglichst kompaktere Form. Eine verlustfreie Kompression ist gegeben, falls die Abbildung zwischen der ursprünglichen und komprimierten Datenmenge bijektiv ist. Die Korrektheit einer verlustfreien Kompression kann daher durch die Angabe einer Dekompressionsfunktion nachgewiesen werden. Ist diese Vorraussetzung nicht gegeben, so handelt es sich um eine verlustbehaftete Kompression, da eine Rekonstruktion der ursprünglichen Datenmenge nicht garantiert werden kann.

2.1.2 Eingabe

Unsere Eingabe sei durch eine n-elementige Zeichenfolge $S=e_1...e_n$ über dem numerischen Alphabet Σ mit $e_i \in \Sigma \ \forall i=1,...,n$ gegeben. Für jede beliebige Zeichenfolge S wird mit |S| dessen Länge n bezeichnet. Der Ausdruck $S[i..j] \in \Sigma^{j-i+1}$ mit $1 \leq i \leq j \leq n$ beschreibt die Teilfolge $e_i...e_j$, wobei im Falle, dass i=j ist, das einzelne Zeichen e_i referenziert wird. Alternativ kann ein einzelnes Zeichen e_i auch durch S[i] referenziert werden. Eine Teilfolge der Form S[1..k] mit $k \leq n$ wird als Präfix von S bezeichnet.

Kapitel 3

Das zweite Kapitel

Anhang A

Weitere Informationen

Abbildungsverzeichnis

Algorithmenverzeichnis

Literaturverzeichnis

[1] AGGARWAL, ALOK und JEFFREY SCOTT VITTER: The Input/Output Complexity of Sorting and Related Problems. Communications of the ACM, 31(9):1116–1127, 1988.

ERKLÄRUNG 15

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst habe und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet sowie Zitate kenntlich gemacht habe.

Dortmund, den 18. Juni 2024

Muster Mustermann