Formler och Tabeller till Statistiska Metoder ITHS

Ofta använda formler

n är stickprovsstorlek

N är populationsstorlek

Stickprovsmedelvärde

$$\overline{x} = \frac{\sum x}{n}$$

Stick provsstand ard a vvikelse

$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$$

Stickprovsmedelvärde för grupperad data

$$\overline{x} = \frac{\sum xf}{n}$$

Stickprovsstandardavvikelse för grupperad data

$$s = \sqrt{\frac{\sum (x - \overline{x})^2 f}{n - 1}}$$

Standard z-värde

$$z = \frac{x - \mu}{\sigma}$$

Från z till x:

$$x = \mu + z\sigma$$

Sannolikhet för komplement $P(\bar{A}) = 1 - P(A)$ Oberoende händelser $P(A \cap B) = P(A)P(B)$
Oberoende händelser
$P(A \cap B) = P(A)P(B)$
Betingad sannolikhet
$P(A B) = P(A \cap B)P(B)$
Additionsregeln
$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
Permutationer
$nPr = \frac{n!}{(n-r)!}$
Kombinationer
$nCr = \binom{n}{r} = \frac{n!}{r! (n-r)!}$

Diskreta slumpvariabler och fördelningar

Här är x = antal lyckade försök; p = Slh för lyckat försök; q = 1 - p

Väntevärde för diskret slumpvariabel X

$$\mu = E(X) = \sum_{alla\ x} x P(X = x)$$

Standardavvikelse för diskret slumpvariabel X

$$\sigma = S(X) = \sqrt{\sum_{alla\ x} (x - \mu)^2 P(X = x)} = \sqrt{\sum_{alla\ x} x^2 P(X = x) - \mu^2}$$

Massfunktion för binomialfördelning

$$P(X = x) = \binom{n}{x} p^{x} q^{n-x} = \frac{n!}{x! (n-x)!} p^{x} q^{n-x}$$

Väntevärde för binomialfördelning

$$E(X) = np$$

Standardavvikelse för binomialfördelning

$$S(X) = \sqrt{npq}$$

Massfunktion för Poissonfördelning

$$P(X=x) = e^{-\mu} \frac{\mu^x}{x!}$$

Väntevärde för Poissonfördelning

$$E(X) = \mu$$

Standardavvikelse för Poissonfördelning

$$S(X) = \sqrt{\mu}$$

Massfunktion för hypergeometrisk fördelning

$$P(X = x) = \frac{\binom{R}{x} \binom{N - R}{n - x}}{\binom{N}{n}}$$

Väntevärde för hypergeometrisk fördelning

$$E(X) = n\frac{R}{N}$$

Standardavvikelse för hypergeometrisk fördelning

$$S(X) = \sqrt{n\frac{R}{N}\left(1 - \frac{R}{N}\right)\frac{N-n}{N-1}}$$

Massfunktion för geometrisk fördelning

$$P(X = x) = pq^{x-1}$$

Väntevärde för geometrisk fördelning

$$E(X) = \frac{1}{p}$$

Standardavvikelse för geometrisk fördelning

$$S(X) = \frac{\sqrt{1-p}}{p}$$

Massfunktion för negativ binomialfördelning

$$P(X = x) = {x - 1 \choose s - 1} p^s q^{x - s}$$

Väntevärde för negativ binomialfördelning

$$E(X) = \frac{s}{p}$$

Standardavvikelse för negativ binomialfördelning

$$S(X) = \frac{\sqrt{s(1-p)}}{p}$$

Kontinuerliga slumpvariabler och fördelningar

Täthetsfunktion för likformig fördelning

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & x > b, & x < a \end{cases}$$

Fördelningsfunktion för likformig fördelning

$$P(X \le x) = \frac{x-a}{b-a}, \ a \le x \le b, \ 0 \ om \ x < a, 1 \ om \ x > b$$

Väntevärde för likformig fördelning

$$E(X) = \frac{a+b}{2}$$

Standardavvikelse för likformig fördelning

$$S(X) = \frac{b-a}{\sqrt{12}}$$

Täthetsfunktion för exponentialfördelning

$$f(x) = \begin{cases} \frac{1}{\mu} e^{-\frac{x}{\mu}}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

Fördelningsfunktion för exponentialfördelning

$$P(X \le x) = 1 - e^{-\frac{x}{\mu}}$$

Väntevärde för exponentialfördelning

$$E(X) = \mu$$

Standardavvikelse för exponentialfördelning

$$S(X) = \sqrt{\mu}$$

Täthetsfunktion för normalfördelning

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

Fördelningsfunktion för normalfördelning

Finns ej på sluten form. Titta i tabell efter transformation till standard normal.

Väntevärde för normalfördelning

$$E(X) = \mu$$

Standardavvikelse för normalfördelning

$$S(X) = \sigma$$

Addition av oberoende likafördelade normalfördelade slumpvariabler

Om
$$X_i$$
, $i = 1, ... n$ normalfördelade med $E(X_i) = \mu$ och $S(X_i) = \sigma$

är
$$S_n = \sum_{i=1}^n X_i$$
 normalfördelad med $E(S_n) = n\mu$ och $S(S_n) = \sqrt{n}\sigma$

CENTRALA GRÄNSVÄRDESSATSEN

Standardiserat stickprovsmedelvärde är approximativt standard normalfördelat om stickprovet (från fördelning med väntevärde μ och standardavvikelse σ) är stort ($n \ge 30$)

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

Standardiserad binomialfördelad slumpvariabel är approximativt standard normalfördelad om n är stort $(np \ge 5 \ och \ n(1-p) \ge 5)$

$$\frac{X - np}{\sqrt{npq}}$$

Standardiserad stickprovsproportion är approximativt standard normalfördelad om stickprovet (från fördelning med proportion p) är stort ($np \ge 5$ och $n(1-p) \ge 5$)

$$\frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}}$$

Standardiserad Poissonfördelad slumpvariabel är approximativt standard normalfördelad om μ är stort $(\mu \geq 10)$

$$\frac{X-\mu}{\sqrt{\mu}}$$

Standardiserad hypergeometriskt slumpvariabel är approximativt standard normalfördelad om variansen är stor $(n\frac{R}{N}\Big(1-\frac{R}{N}\Big)\frac{N-n}{N-1}\geq 10$)

$$\frac{X - n\frac{R}{N}}{\sqrt{n\frac{R}{N}\left(1 - \frac{R}{N}\right)\frac{N - n}{N - 1}}}$$

KONFIDENSINTERVALL

Konfidensintervall för medelvärde i en population (känd standardavvikelse)

$$\bar{x} \pm z_{\alpha/2} \, \sigma / \sqrt{n}$$

Konfidensintervall för medelvärde i en population (okänd standardavvikelse)

$$\bar{x} \pm t_{\alpha/2,n-1} s/\sqrt{n}$$

Konfidensintervall för proportion i en population (då $np \ge 5$ och $n(1-p) \ge 5$)

$$\bar{p} \pm z_{\alpha/2} \sqrt{\frac{\bar{p}(1-\bar{p})}{n}}$$

Konfidensintervall för medelvärdesskillnad mellan populationer då populationsstandardavvikelserna är kända

$$(\overline{x}_1 - \overline{x}_2) \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}.$$

Konfidensintervall för medelvärdesskillnad mellan populationer då populationsstandardavvikelserna är okända men antas lika

$$(\overline{x}_1 - \overline{x}_2) \pm t_{\alpha/2, df} \sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}. s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}.$$

Konfidensintervall för medelvärdesskillnad mellan populationer då populationsstandardavvikelserna är okända men ej antas lika

$$\left(\overline{x}_{1} - \overline{x}_{2}\right) \pm t_{\alpha/2, df} \sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}}. df = \frac{\left(\left(s_{1}^{2}\right)/n_{1} + \left(s_{2}^{2}\right)/n_{2}\right)^{2}}{\left(s_{1}^{2}/n_{1}\right)^{2}/\left(n_{1} - 1\right) + \left(s_{2}^{2}/n_{2}\right)^{2}/\left(n_{2} - 1\right)} \underline{AVRUNDA NERÅT}$$

Konfidensintervall för medelvärdesskillnad mellan beroende populationer (parvisa data)

$$\bar{d} \pm t_{\alpha/2,n-1} s_D / \sqrt{n}$$

Konfidensintervall för proportionsskillnad mellan två populationer

$$\hat{p}_1 - \hat{p}_2 \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{(n_1-1)} + \frac{\hat{p}_2(1-\hat{p}_2)}{(n_2-1)}}$$

STICKPROVSSTROLEK för KI av viss bredd

Stickprovstorlek för att skatta medelvärde där bredden på KI är 2E

$$n = \left(\frac{z_{\alpha/2}\hat{\sigma}}{E}\right)^2$$

Stickprovstorlek för att skatta proportion där bredden på KI är 2E

$$n = \left(\frac{z_{\alpha/2}}{E}\right)^2 \hat{p}(1 - \hat{p})$$

Om ingen preliminär skattning \hat{p} finns så sätts $\hat{p}(1-\hat{p}) = 0.25$

TESTFUNKTIONER, parametrar med index 0 avser värden vid likhet i nollhypotesen

Testa medelvärde i en population då populationsstandardavvikelsen är känd

$$\frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0,1)$$

Testa medelvärde i en population då populationsstandardavvikelsen är okänd

$$\frac{\bar{X} - \mu_0}{s / \sqrt{n}} \sim t_{n-1}$$

Testa proportion i en population då stickprovet är stort

$$\frac{\hat{p}-p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}} \sim N(0,1)$$

Testa varians i en population (S^2 är stickprovsvarians) $\frac{(n-1)S^2}{\sigma_0^2} \sim \chi_{n-1}^2$

$$\frac{(n-1)S^2}{\sigma_0^2} \sim \chi_{n-1}^2$$

Testa medelvärdesskillnad mellan oberoende populationer då populationsstandardavvikelserna är kända

$$\frac{\bar{X}_1 - \bar{X}_2 - \mu_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0,1)$$

Testa medelvärdesskillnad mellan oberoende populationer då populationsstandardavvikelserna är okända men antas lika

$$\frac{\bar{X}_1 - \bar{X}_2 - \mu_0}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{n_1 + n_2 - 2}, S_p = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$$

Testa medelvärdesskillnad mellan oberoende populationer då populationsstandardavvikelserna är okända men ej antas lika

$$\frac{\bar{x}_1 - \bar{x}_2 - \mu_0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim t_{approx} \text{ (frihetsgradsformel i KI-tabellen)}$$

Testa medelvärdesskillnad mellan beroende populationer (parvisa data)

$$\frac{\bar{d}-d_0}{S_D/\sqrt{n}} \sim t_{n-1}$$

Testa proportionsskillnad mellan två populationer då H_0 : $p_1-p_2=D\neq 0~$ och stickproven är stora

$$\frac{\hat{p}_{1} - \hat{p}_{2} - D}{\sqrt{\frac{\hat{p}_{1}(1 - \hat{p}_{1})}{(n_{1} - 1)} + \frac{\hat{p}_{2}(1 - \hat{p}_{2})}{(n_{2} - 1)}}} \sim N(0,1)$$

Testa proportionsskillnad mellan två populationer då H_0 : $p_1 - p_2 = 0$ och stickproven är stora

$$Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})(1/n_1 + 1/n_2)}}, \quad \hat{p} = (n_1\hat{p}_1 + n_2\hat{p}_2)/(n_1 + n_2)$$

Testa variansskillnader mellan två populationer (S^2 är stickprovsvarians)

$$\frac{S_1^2}{S_2^2} \sim F_{n_1 - 1, n_2 - 1}$$

Anpassningtest (s är antal skattade parametrar, tumregel $e_i \ge 5$)

$$\sum_{i=1}^{k} \frac{(o_i - e_i)^2}{e_i} \sim \chi_{k-s-1}^2$$

Oberoendetest för kategoriska variabler (r är antal rader, c är antal rader, tumregel $e_{ij} \geq 5$)

$$\sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(o_{ij} - e_{ij}\right)^{2}}{e_{ij}} \sim \chi^{2}_{(r-1)(c-1)}$$

Teckentest (tumregel $n \ge 10$)

$$\frac{(S-0.5)-0.5n}{0.5\sqrt{n}} \sim N(0,1)$$

Wilcoxons Teckenrangtest (tumregel n>20)

$$\frac{T - \frac{n(n+1)}{4}}{\sqrt{\frac{n(n+1)(n+2)}{24}}}$$

Mann-Whitneys Test

$$\frac{\frac{n_1(n_1+1)+n_1n_2}{2}-T}{\sqrt{\frac{n_1n_2(n_1+n_2+1)}{12}}}$$

Kruskal-Wallis Test

$$\frac{12}{n(n+1)} \sum_{i=1}^{k} \frac{R_i^2}{n_i} - 3(n+1)$$

REGRESSION OCH KORRELATION

Skattning av lutning och intercept i enkel linjär regressionsmodell

$$b_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}, b_0 = \bar{y} - b_1 \bar{x}$$

Stickprovskovarians

$$s_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n - 1}$$

Stickprovskorrelation

$$r = \frac{(n-1)s_{xy}}{\sqrt{\sum_{i=1}^{n}(x_i - \bar{x})^2 \sum_{i=1}^{n}(y_i - \bar{y})^2}}$$

Testfunktion för korrelation

$$\frac{r}{\sqrt{\frac{1-r^2}{n-2}}} \sim t_{n-2}$$

Förklaringsgrad/Determinationskoefficient

$$R^{2} = 1 - \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

Tabeller för fördelningar

Standard normal z<0:

Tables

TABLE 1 Standard Normal Curve Areas

Entries in this table provide cumulative probabilities, that is, the area under the curve to the left of -z. For example, $P(Z \le -1.52) = 0.0643$.

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	80.0	0.09
-3.9	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
-3.8	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
-3.7	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
-3.6	0.0002	0.0002	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
-3.5	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
0.0	0.4044	0.404.4	0.4700	0.4700	0.4700	0.4744	0.4005	0.4660	0.4605	0.4644
-0.9 -0.8	0.1841	0.1814	0.1788	0.1762 0.2033	0.1736 0.2005	0.1711 0.1977	0.1685	0.1660 0.1922	0.1635 0.1894	0.1611 0.1867
-0.8					0.2005					0.1667
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6 -0.5	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5 -0.4	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.3336	0.3669	0.3632	0.3594	0.3192	0.3156	0.3121
-0.3	0.3821	0.3763	0.3745	0.4090	0.3669	0.3632	0.3974	0.3936	0.3820	0.3463
-0.2	0.4207	0.4168	0.4129	0.4483	0.4052	0.4404	0.3974	0.3936	0.3897	0.3859
-0.1 -0.0	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
-0.0	0.5000	0.4900	0.4920	0.4000	0.4040	0.4001	0.4/01	0.4721	0.4001	0.4041

Standard normal z>0:

TABLE 1 (Continued)

Entries in this table provide cumulative probabilities, that is, the area under the curve to the left of z. For example, $P(Z \le 1.52) = 0.9357$.

	0.00	0.01	0.00	0.00		0.05	0.00		0.00	0.00
Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	80.0	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939 0.8212	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186		0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7 2.8	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
3.0	0.9981	0.9982	0.9982	0.9988	0.9988	0.9989	0.9989	0.9985	0.9986	0.9986
3.0	0.5507	0.5507	0.5507	0.5500	0.5500	0.5505	0.5505	0.5505	0.5550	0.5550
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

t-fördelning:

TABLE 2 Student's t Distribution

Entries in this table provide the values of $t_{\alpha,df}$ that correspond to a given upper-tail area α and a specified number of degrees of freedom df. For example, for $\alpha=0.05$ and df=10, $P(T_{10}\geq 1.812)=0.05$.

			(I		
df	0.20	0.10	0.05	0.025	0.01	0.005
1	1.376	3.078	6.314	12.706	31.821	63.657
2	1.061	1.886	2.920	4.303	6.965	9.925
3	0.978	1.638	2.353	3.182	4.541	5.841
4	0.941	1.533	2.132	2.776	3.747	4.604
5	0.920	1.476	2.015	2.571	3.365	4.032
6	0.906	1.440	1.943	2.447	3.143	3.707
7	0.896	1.415	1.895	2.365	2.998	3.499
8	0.889	1.397	1.860	2.306	2.896	3.355
9	0.883	1.383	1.833	2.262	2.821	3.250
10	0.879	1.372	1.812	2.228	2.764	3.169
11	0.876	1.363	1.796	2.201	2.718	3.106
12	0.873	1.356	1.782	2.179	2.681	3.055
13	0.870	1.350	1.771	2.160	2.650	3.012
14	0.868	1.345	1.761	2.145	2.624	2.977
15	0.866	1.341	1.753	2.131	2.602	2.947
16	0.865	1.337	1.746	2.120	2.583	2.921
17	0.863	1.333	1.740	2.110	2.567	2.898
18	0.862	1.330	1.734	2.101	2.552	2.878
19	0.861	1.328	1.729	2.093	2.539	2.861
20	0.860	1.325	1.725	2.086	2.528	2.845
24	0.050	4.222	4.704	2.000	2542	2.024
21	0.859	1.323	1.721	2.080	2.518	2.831
22 23	0.858 0.858	1.321 1.319	1.717 1.714	2.074 2.069	2.508 2.500	2.819 2.807
24	0.857	1.318	1.711	2.064	2.492	2.797
25	0.856	1.316	1.708	2.060	2.485	2.787
26 27	0.856 0.855	1.315 1.314	1.706 1.703	2.056 2.052	2.479 2.473	2.779 2.771
28	0.855	1.314	1.703	2.052	2.467	2.763
	0.855					
29		1.311	1.699	2.045	2.462	2.756
30	0.854	1.310	1.697	2.042	2.457	2.750

t-fördelning fortsättning:

TABLE 2 (Continued)

			(r		
df	0.20	0.10	0.05	0.025	0.01	0.005
31	0.853	1.309	1.696	2.040	2.453	2.744
32	0.853	1.309	1.694	2.037	2.449	2.738
33	0.853	1.308	1.692	2.035	2.445	2.733
34	0.852	1.307	1.691	2.032	2.441	2.728
35	0.852	1.306	1.690	2.030	2.438	2.724
36	0.852	1.306	1.688	2.028	2.434	2.719
37	0.851	1.305	1.687	2.026	2.431	2.715
38	0.851	1.304	1.686	2.024	2.429	2.712
39	0.851	1.304	1.685	2.023	2.426	2.708
40	0.851	1.303	1.684	2.021	2.423	2.704
41	0.850	1.303	1.683	2.020	2.421	2.701
42	0.850	1.302	1.682	2.018	2.418	2.698
43	0.850	1.302	1.681	2.017	2.416	2.695
44	0.850	1.301	1.680	2.015	2.414	2.692
45	0.850	1.301	1.679	2.014	2.412	2.690
46	0.850	1.300	1.679	2.013	2.410	2.687
47	0.849	1.300	1.678	2.012	2.408	2.685
48	0.849	1.299	1.677	2.011	2.407	2.682
49	0.849	1.299	1.677	2.010	2.405	2.680
50	0.849	1.299	1.676	2.009	2.403	2.678
		4.555	4.575		2.422	
51	0.849	1.298	1.675	2.008	2.402	2.676
52	0.849	1.298	1.675	2.007	2.400	2.674
53	0.848	1.298	1.674	2.006	2.399	2.672
54	0.848	1.297	1.674	2.005	2.397	2.670
55	0.848	1.297	1.673	2.004	2.396	2.668
56	0.848	1.297	1.673	2.003	2.395	2.667
57	0.848	1.297	1.672	2.002	2.394	2.665
58	0.848	1.296	1.672	2.002	2.392	2.663
59	0.848	1.296	1.671	2.001	2.391	2.662
60	0.848	1.296	1.671	2.000	2.390	2.660
80	0.846	1.292	1.664	1.990	2.374	2.639
100	0.845	1.292	1.660	1.984	2.364	2.626
150	0.844	1.287	1.655	1.976	2.351	2.609
200	0.843	1.286	1.653	1.972	2.345	2.601
500	0.842	1.283	1.648	1.965	2.334	2.586
1000	0.842	1.282	1.646	1.962	2.330	2.581
000	0.842	1.282	1.645	1.960	2.326	2.576
00	0.042	1.202	1.040	1.900	2.320	2.070

Chitvå-fördelning:

TABLE 3 χ^2 (Chi-Square) Distribution

Entries in this table provide the values of $\chi^2_{\alpha,df}$ that correspond to a given upper-tail area α and a specified number of degrees of freedom df. For example, for $\alpha = 0.05$ and df = 10, $P(\chi^2_{10} \ge 18.307) = 0.05$.

						r				
df	0.995	0.990	0.975	0.950	0.900	0.100	0.050	0.025	0.010	0.005
1	0.000	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26.757
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300
13	3.565	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688	29.819
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
15	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578	32.801
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267
17	5.697	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409	35.718
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.156
19	6.844	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191	38.582
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997
24	0.004	0.007	40.000	44.504	42.240	20.045	22.674	25.470	20.022	44.404
21	8.034	8.897	10.283	11.591	13.240	29.615	32.671	35.479	38.932	41.401
22	8.643	9.542	10.982	12.338	14.041	30.813	33.924	36.781	40.289	42.796
23	9.260	10.196	11.689	13.091	14.848	32.007	35.172	38.076	41.638	44.181
24	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.559
25	10.520	11.524	13.120	14.611	16.473	34.382	37.652	40.646	44.314	46.928
26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	48.290
27	11.808	12.879	14.573	16.151	18.114	36.741	40.113	43.195	46.963	49.645
28	12.461	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	50.993
29	13.121	14.256	16.047	17.708	19.768	39.087	42.557	45.722	49.588	52.336
30	13.787	14.953	16.791	18.493	20.599	40.256	43.773	46.979	50.892	53.672

Chitvå-fördelning, fortsättning:

TABLE 3 (Continued)

					_ (r				
df	0.995	0.990	0.975	0.950	0.900	0.100	0.050	0.025	0.010	0.005
31	14.458	15.655	17.539	19.281	21.434	41.422	44.985	48.232	52.191	55.003
32	15.134	16.362	18.291	20.072	22.271	42.585	46.194	49.480	53.486	56.328
33	15.815	17.074	19.047	20.867	23.110	43.745	47.400	50.725	54.776	57.648
34	16.501	17.789	19.806	21.664	23.952	44.903	48.602	51.966	56.061	58.964
35	17.192	18.509	20.569	22.465	24.797	46.059	49.802	53.203	57.342	60.275
36	17.887	19.233	21.336	23.269	25.643	47.212	50.998	54.437	58.619	61.581
37	18.586	19.960	22.106	24.075	26.492	48.363	52.192	55.668	59.893	62.883
38	19.289	20.691	22.878	24.884	27.343	49.513	53.384	56.896	61.162	64.181
39	19.996	21.426	23.654	25.695	28.196	50.660	54.572	58.120	62.428	65.476
40	20.707	22.164	24.433	26.509	29.051	51.805	55.758	59.342	63.691	66.766
41	21.421	22.906	25.215	27.326	29.907	52.949	56.942	60.561	64.950	68.053
42	22.138	23.650	25.999	28.144	30.765	54.090	58.124	61.777	66.206	69.336
43	22.859	24.398	26.785	28.965	31.625	55.230	59.304	62.990	67.459	70.616
44	23.584	25.148	27.575	29.787	32.487	56.369	60.481	64.201	68.710	71.893
45	24.311	25.901	28.366	30.612	33.350	57.505	61.656	65.410	69.957	73.166
46	25.041	26.657	29.160	31.439	34.215	58.641	62.830	66.617	71.201	74.437
47	25.775	27.416	29.956	32.268	35.081	59.774	64.001	67.821	72.443	75.704
48	26.511	28.177	30.755	33.098	35.949	60.907	65.171	69.023	73.683	76.969
49	27.249	28.941	31.555	33.930	36.818	62.038	66.339	70.222	74.919	78.231
50	27.991	29.707	32.357	34.764	37.689	63.167	67.505	71.420	76.154	79.490
55	31.735	33.570	36.398	38.958	42.060	68.796	73.311	77.380	82.292	85.749
60	35.534	37.485	40.482	43.188	46.459	74.397	79.082	83.298	88.379	91.952
	55.55	57.1.05	10.102	15.100	10.100	, ,,,,,,,,	7 2.002	00.200	00.070	51.552
65	39.383	41.444	44.603	47.450	50.883	79.973	84.821	89.177	94.422	98.105
70	43.275	45.442	48.758	51.739	55.329	85.527	90.531	95.023	100.425	104.215
75	47.206	49.475	52.942	56.054	59.795	91.061	96.217	100.839	106.393	110.286
80	51.172	53.540	57.153	60.391	64.278	96.578	101.879	106.629	112.329	116.321
85	55.170	57.634	61.389	64.749	68.777	102.079	107.522	112.393	118.236	122.325
90	59.196	61.754	65.647	69.126	73.291	107.565	113.145	118.136	124.116	128.299
95	63.250	65.898	69.925	73.520	77.818	113.038	118.752	123.858	129.973	134.247
100	67.328	70.065	74.222	77.929	82.358	118.498	124.342	129.561	135.807	140.169

ABLE 4 F Distribution

Entries in this table provide the values of $F_{\alpha, \ell \ell_1, \ell \ell_2}$, that correspond to a given upper-tail area α and a specified number of degrees of freedom in the denominator d_{ℓ_2} . For example, for $\alpha = 0.05$, $d_{\ell_1} = 8$, and $d_{\ell_2} = 6$, $P(F_{(8,6)} \ge 4.15) = 0.05$.

	200	63.26	254.06	1017.24	6359.50	9.49	19,49	39.50	99.50	5.14	8.53	13.91	26.15	376			_	3.11	4.37	6.03	9.04		3.68	4.86	6.90	2.48		4.16	567
	100	6301	253.04	1013.17	6334.11	9.48	19.49	39.49	99.49	5.14	8.55	13.96	26.24	2 78		8.32	13.58	3.13	4.41	90.9	9.13	2.75	3.71	4.92	6.99	2.50	3.27	4.21	5 75
	20	62.69	251.77	1008.12	6302.52	9.47	19,48	39.48	99,48	5.15	8.58	14.01	26.35	Cac	570	838	13.69	3.15	4.44	6.14	9.24	277	3.75	4.98	7.09	2.52	3.32	4.28	586
	25	62.05	249.26	998,08	6239.83	9.45	19,46	39.46	99.46	5.17	8.63	14.12	26.58	00	77	8.50	13.91	3.19	4.52	6.27	9.45	2.81	3.83	5.11	7.30	2.57	3.40	4.40	909
	15	61.22	245.95	984.87	6157.28	9.42	19,43	39,43	99,43	5.20	8.70	14.25	26.87	000	9 4	866	14.20	3.24	4.62	6.43	9.72	287	3.94	5.27	7.56	2.63	3.51	4.57	631
	10	60.19	241.88	968,63	6055.85	9.39	19,40	39.40	99,40	5.23	8.79	14,42	27.23	300	9 0	88.0	14.55	3.30	4.74	6.62	10.05	294	4.06	5,46	7.87	2.70	3.64	4.76	662
	6	59.86	240.54	963.28	6022.47	9.38	19.38	39.39	99.39	5.24	8.81	14.47	27.35	2 0.4	8	8 8	14.66	3.32	4.77	89.9	10.16	2.96	4.10	5.52	7.98	2.72	3,68	4.82	6.72
φį	80	59.44	238.88	956.66	5981.07	9.37	19.37	39.37	99.37	5.25	8.85	14.54	27.49	000	80.0	898	14.80	3.34	4.82	92.9	10.29	298	4.15	5.60	8.10	2.75	3.73	4.90	684
	7	58.91	236.77	948.22	5928.36	9.32	19.35	39.36	99.36	5.27	8.83	14.62	27.67	00	8 6	900	14.98	3.37	4.88	6.85	10.46	301	4.21	5.70	8.26	2.78	9.79	4.99	9
	9	58.2	233.99	937.11	5858.99	9.33	19.33	39.33	99.33	5.28	8.94	14.73	27.91	404	9 9	2.6	15.21	3.40	4.95	6.98	10.67	3.05	4.28	5.82	8.47	2.83	3.87	5.12	7.19
	2	57.24	230.16	921.85	5763.65	9.29	19.30	39.30	99.30	5.31	9.01	14,88	28.24	405	909	936	15.52	3.45	505	7.15	10.97	311	4.39	5.99	8.75	2.88	3.97	5.29	746
	4	55.83	224.58	899.58	5624.58	9.24	19.25	39.25	99.25	5.34	9.12	15.10	28.71	4 11	9	09.6	15.98	3.52	5.19	7.39	11.39	3,18	4.53	6.23	9.15	2.96	4.12	5.52	7.85
	e	53.59	215.71	864.16	5403.35		19.16	39.17	99.17	m	9.28	15,44	29.46	410	9 0	0 0	16.69	3.62	5.41	7.76	12.06	3.29	4.76	6.60	9.78	3.07	4.35	5.89	8.45
	2	49.50	199.50	799.50	4999.50	8.0	00.61	39.00	00.66	5,46	9.55	16.04	30.82	4 32	909	10.65	18.00	3.78	5.79	8.43	13.27	3,46	5.14	7.26	10.92	3.26	4.74	6.54	9.55
	-	39.86	161.45	647.79	4052.18	8,53	18.51	38.51	98.50	5.54	10.13	17,44	34.12	4 54	7 74	12.22	21.20	4.06	6.61	10.01	16.26	3.78	5.99	8.81	13.75	3.59	5.59	8.07	12.25
	ø	0.10	0.05	0.025	004	010	900	0.025	100	0.10	0.05	0.025	001	040	9 00	0.025	00	0.10	0.05	0.025	100	0.10	0.05	0.025	00	010	900	0.025	001
	df ₂	-				7				ო				4				2				9				7			

F-fördelning, fortsättning

			フ' —			—				_				_	_				_	_			_	_				_	_				_	_				_	_	_		_
	200	2.30	2.94	3.68	4.88	217	273	1 00	4.33		5.06	2.55	309	3.93	90	242	2.90	3.62		1.91	2.31	2.74	338		1.85	2.22	261	3.19		1,80	2.14	2.50	303	1.76	208	241	2.89		1.73	202	2.33	2.78
	100	2.32	2.97	3.74	4.96	2 10	27.0	3.40	4.41		5.09	2.59	3.15	ь.	2.04	2.46	2.96	3.71		8:	2.35	2.80	3.47		1.88	5.26	2.67	3.27		1,83	2.19	2.56	3.11	1.79	2.12	2.47	2.98		1.76	2.07	2.40	2.86
	20	2.35	3.02	3.81	5.07	222	100	3.47	4.52		2.12	2.64	322	4.12	204	251	3.03	3.81		1.97	2.40	2.87	357		1.92	2.31	274	3.38		1.87	2.24	2.64	322	60,00	2.18	255	3.08	k	1.79	212	2.47	2.97
	22	2.40	3.11	3.94	5.26	700	000	360	4.71		2.17	2.73	332	4.31	240	260	3.16	4.01		203	2.50	3.01	376		1.98	2.41	288	3.57		1.93	2.34	2.78	341	687	228	269	3.28		1.86	223	2.61	3.16
	15	2.46	3.22	4.10	5.52	2 34	5 6	27.0	4.96		2.24	2.85	3.52	4.56	2 47	2.72	3.33	4.25		2.10	2.62	3.18	4.01		2.05	2.53	3.05	3.82		2.01	2.46	2.95	3.66	1.97	2.40	2.86	3.52		1.94	2.35	2.79	3.41
	10	2.54	3.35	4.30	5.81	2.42	244	900	5.26		2.32	2.98	3.7.2	4.85	300	285	3.53	4.54		219	2.75	3.37	4.30		2.14	2.67	3.25	4.10		2.10	2.60	3,15	304	2.06	2.54	306	3.80		2.03	249	2.99	3.69
	6	2.56	3.39	4.36	5.91	2 44	0,00	403	5.35		2.35	3.02	3.78	4.94	2 27	2.90	3.59	4.63		2.21	2.80	3.44	4.39		2.16	2.71	3.34	4.19		2.12	2.65	3.21	4.03	5.09	2.59	3.12	3.89		2.06	2.54	3.05	3.78
ŧ	80	2.59	3.44	4.43	6.03	2.47	000	4 10	5.47		2.38	3.07	3.85	90'9	230	2.95	3.66	4.74		2.24	2.85	3.51	4.50		2.20	2.77	3,39	4.30		2.15	2.70	3.29	4.14	2.12	264	3.20	4.00		2.09	2.59	3.12	3.89
	7	2.62	3.50	4.53	6.18	254	000	420	5.61		2.41	3.14	395	5.20	234	301	3.76	4.89		2.28	2.91	3.61	4.64		2.23	2,83	348	4.44		2.19	2.76	3,38	4.28	2.16	271	329	4.14		2.13	266	3.22	4.03
	9	2.67	3.58		6.37	2 55	0 0	4.32	5.80		2.46	3.22	4.07	5.39	0,00	3.09	3.88	5.07		2.33	3.00	3.73	4.82		2.28	2.92	3.60	4.62		2.24	2.85	3.50	4.46	2.21	27.0	3.41	4.32		2.18	2.74	3.34	4.20
	ıs	2.73	3,69	4.82	6.63	261	0 70	448	6.06		2.52	3.33	4.24	5.64	345	320	404	5.32		239	3.11	3,89	5.06		2.35	3.03	3.77	4.86		2.31	2.96	3,66	4.69	227	290	328	4.56		2.24	285	3.50	4.44
	4	2.81	3.84	5.05	7.01	2,60	9 00	4 72	6.42		2.61	3.48	4.47	5.99	2 5.4	38	4.28	5.67		2.48	3.26	4.12	5.41		2.43	3,18	9.00	5.21		5.39	3.1	3,89	n S	2.36	3.06	380	4.89		2.33	301	3.73	4.77
	8	2.92	4.07	5.42	7.59	2.84	0 0	9 6	6.99		2.73	3.71	4.83	6.55	200	3.59	4.63	6.22		2.61	3.49	4.47	5.95		2.56	3.41	4.35	5.74		2.52	3.34	4.24	2,56	2.49	000	4.15	5.42		2.46	3.24	4.08	5.29
	7	3.11	4.46	90'9	8.65	304	400	174	802		2.92	4.10	5.46	7.56	286	398	5.26	7.21		281	3.89	5.10	6.93		2.76	3,81	4.97	6.70		2.73	3.74	4.86	651	2.70	368	4.77	6.36		2.67	3.63	4.69	6.23
	-	3.46	5.32	7.57	11.26	og.	, r	7.24	10.56		3.29	4.96	96.9	10.04	2 22	4.84	6.72	9.65		3.18	4.75	6.55	9.33		3.14	4.67	6.41	9.07		3.10	4.60	6.30	89. 90.	3.07	4.54	6.20	8.68		3.05	4.49	6.12	8.53
	8	0.10	900	0.025	0.01	9	2 0	0005	0.01		0,10	900	0.025	0.01	040	0.05	0.025	0.01		0.10	0.05	0.025	0.01		010	900	0.025	0.01		0.10	0.05	0.025	0.01	010	005	0.025	0.0		0.10	0.05	0.025	0.01
	d	80				a	,				5				÷	:				12					13					<u>‡</u>				5					16			

F-fördelning, fortsättning

-			m	4	w	ဖ	7	φ _@	6	9	15	35	ß	100	200
0.10 3.03 2.64 2.44 0.05 4.45 3.59 3.20	3.59			231	2.22	2.15	210	2.06	2.49	200	2.31	1.83	1.76	1.73	1.69
6.04 4.62	4.62			3.66	3.44	3.28	316	3.06	2.98	292	2.72	255	241	2.33	226
0.001 8.40 6.11 5.18	6.11 5.18	+	-	4.67	4.34	4.10	3.93	3.79	3.68	3.50	3.31	3.07	2.87	2.76	2.68
3.01 2.62 2.42	2.62 2.42	2.42	-	2.29	2.20	2.13	2.08	2.04	2:00	1.98	1.89	1.80	1.74	1.70	1.67
355 3.16	355 3.16	3.16		663	2.77	2.66	258	2.51	2.46	241	2.27	214	204	1.98	1.93
5.98 4.56 3.95	4.56 3.95	3.95	m	3.61	3.38	3.22	3.10	э.о	2.93	2.87	2.67	2.49	2.35	2.27	2.20
5.09	601 5.09	5.09	4	80	4.25	4.01	3,84	3.71	3.60	3.51	3.23	2.98	2.78	2.68	2.59
299 261 2.40	261 2.40	2.40	~	227	2.18	2.11	206	2.02	1.98	1.96	1.86	1.78	1.7.1	1.67	1.64
4.38 3.52 3.13	3.52 3.13	3.13	C,i	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.23	2.11	2.00	1.94	1.89
	4.51 3.90	3.90	m	99	3.33	3.17	3.05	2.96	2.88	282	2.62	2.44	2.30	2.22	2.15
818 5.93 5.01	593 5.01	5.01	4	0	4.17	3.94	377	3.63	3.52	343	3.15	291	271	2.60	251
2.97 2.59 2.38	2.59 2.38	2.38	2	25	2.16	5.09	2.04	2.00	1.96	1.94	1.84	1.76	1.69	1.65	1.62
3.49 3.10	3.49 3.10	3.10	57	87	2.71	2.60	2.51	2.45	2.39	2.35	2.20	2.07	197	191	1,86
5.87 4.46	4.46 3.86	3.86	8	-	3.29	3,13	301	2.91	284	277	2.57	240	225	2.17	210
8.10 5.85 4.94	5.85 4.94	4.94	4.4	ო	4.10	3.87	3.70	3.56	3.46	3.37	3.09	2.84	2.64	2.54	2.44
		ŀ	-												
2.96 2.57 2.36	2.57 2.36	2.36	2.2	m	2.14	2.08	2.02	1.98	1.95	1.92	1,83	1.74	1.67	1,63	1.60
4.32 3.47 3.07	3.47 3.07	3.07	788	ব (2.68	2.57	249	2.42	237	232	2.18	205	1.94	8 9	
0025 5.83 4.42 3.82 3.48 001 802 5.78 4.87 4.37	578 4.87	3.82	4 6	0 1	4.04	20.00	364	351	3.40	331	2.53	279	258	2.13	238
0.55		è	f						9	5		1		2	
295 256 2.35	256 2.35		5	222	2.13	2.06	201	1.97	1.93	1.90	1.81	1.73	1.65	1.61	1.58
3,44 3.05	3,44 3.05	3.05	7	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.15	202	191	1.85	1,80
5.79 4.38 3.78	4.38 3.78	3.78	ന്	44	3.22	3.05	293	2.84	276	270	2.50	232	217	5.09	202
5.72 4.82	5.72 4.82	4.82	4	-	3.99	3.76	3.59	3.45	3.35	3.26	2.98	2.73	2.53	2.42	2.33
2.94 2.55 2.34	2.55 2.34	2.34	2	21	2.11	2.05	1.99	1.95	1.92	1.89	1.80	1.71	1.64	1.59	1.56
4.28 3.42 3.03	3.42 3.03	3.03	N	80	2.64	2.53	244	2.37	2 32	227	2.13	200	1.88	1.82	1.77
4.35 3.75	4.35 3.75	3.75	m	3.41	3.18	3.02	2.90	2.81	2.73	2.67	2.47	2.29	2.14	5.06	1.99
7.88 5.66 4.76	5.66 4.76	4.76	4	4.26	3.94	3.71	3.54	3.41	3.30	3.21	2.93	2.69	2.48	2.37	2.28
293 254 2.33	254 2.33	2.33	_	219	2.10	5.04	1.98	ę.	6.	1.88	1.78	1.70	1.62	- 58	1.54
3.40 3.01	3.40 3.01	3.01	_	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.11	1.97	1.86	1.80	1.75
5.72 4.32 3.72	4.32 3.72	3.72	m	3,38	3.15	5.99	2.87	2.78	2.70	2.64	2.44	2.26	2.11	2.02	1.95
7.82 5.61 4.72	5.61 4.72	4.72	ৰ্ব	22	3.90	3.67	3.50	3.36	3 26	3.17	5.89	264	244	2.33	224

F-fördelning, fortsättning

	200	1.53	1.73	1.92	2.19	1.51	1.7.1	1.90	2.16	1.50	1.69	1.87	717	1.49	1.67	1.85	5.09	1.48	1.65	1.83	2.06	1.47	1.64	181	2.03	1.34	1,46	1.57	1.7.1	66	077	1.31	1.38	1.47	1.12	1.16	1.19	123
	100	1.56	1.78	2.00	2.29	1.55	1.76	1.97	2.25	1.54	1.74	1.94	77.7	1.53	1.73	1.92	2.19	1.52	1.71	1.90	2.16	1.51	1.70	1,88	2.13	1.39	1.52	1.66	1.82	5	Q.	1.39	1,48	9.1	1.21	1.28	¥.	1.41
	20	1.61	1.84	2.08	2.40	1.59	1.82	2.05	2.36	1.58	60.	2.03	233	1.57	1.79	201	2.30	1.56	1.77	1.99	2.27	1.55	1.76	1.97	2.25	1.44	1,60	1.75	1.95		0.0	1.48	1.59	1.74	1.28	1.38	1.46	1.57
	25	1.68	1.96	2.23	2.60	1.67	1.94	2.21	2.57	1,66	1.92	2.18	422	1.65	191	216	2.51	1.64	1.89	2.14	2.48	1.63	1.88	2.12	2.45	1.53	1.73	1.92	2.17		0 0	1.62	1.77	1.97	1.39	1.53	1.65	100
	15	1.77	5.09	2.41	2.85	1.76	2.07	2.39	2.81	1.75	5.06	2.36	2.78	1.74	2.04	2.34	2.75	1.73	2.03	2.32	2.73	1.72	2.01	2.31	2.70	1.63	1.87	2.11	2.42	4	8	1.77	1.97	2.22	1.50	1,69	98.	2.07
	10	1.87	2.24	2.61	3,13	1.86	2.22	2.59	3,09	1,85	2.20	2.57	306	1.84	2.19	255	3.03	1,83	218	2.53	3.00	1.82	2.16	2.51	2.98	1.73	2.03	2.32	2.70	44.4	00'	1.93	2.18	250	1.61	1.85	207	2.36
	6	1.89	2.28	2.68	3.22	1.88	2.27	2.65	3,18	1.87	2.25	2.63	u U	1.87	2.24	261	3.12	1.86	2 22	2.59	3.09	1.85	2.21	2.57	3.07	1.76	2.07	2.38	2.78		1,03	1.97	2.24	2.59	1.64	1.90	214	2.44
ηį	8	1.93	2.34	2.75	3.32	1.92	2.32	2.73	3.29	19.	2.31	2.71	3.20	1.90	2.29	5.69	3.23	1,89	2.28	2.67	3.20	-188	2.27	2,65	3.17	1.80	2.13	2.46	2.89		07.1	2.03	2.32	5.69	1.68	1.96	2.22	2.55
	7	1.97	2.40	2.85	3.46	1.96	2.39	2.82	3.42	1.95	2.37	2.80	200	1.94	2.36	278	3.36	1.93	235	2.76	3.33	1.93	2.33	2.75	3.30	1.84	2.20	2.55	3.02	6	0/1	2.10	2.42	282	1.73	2.03	231	2.68
	9	2.02	2.49	2.97	3.63	2.01	2.47	2.94	3.59	2.00	2.46	2.92	20.00	5.00	2.45	2.90	3.53	66:	2.43	2.88	3.50	1.98	2.42	2.87	3.47	1.90	2.29	2.67	3.19	*	00'	2.19	2.54	5.99	1.79	2.12	2.43	2.84
	2	2.09	2.60	3.13	3.85	2.08	2.59	3.10	3.82	2.07	2.57	3.08	3.78	2.06	2.56	3.06	3.75	2.06	2.55	3.04	3.73	2.05	2.53	3,03	3.70	1.97	2.40	2.83	3.41		ņ	2.31	2.70	3.21	1.86	2.23	2.59	3.05
	7	218	2.76	3.35	00	2.17	2.74	3.33	4.14	2.17	2.73	3.31	11.4	2.16	2.71	3.29	4.07	2.15	270	3.27	4.04	214	2.69	3.25	4.02	5.06	2.56	3.05	3.72	000	200	2.46	2.92	351	1.96	2.39	281	3.36
	3	2.32	2.99	3.69	4.68	2.31	2.98	3.67	4.64	2.30	2.96	3,65	9.60	2.29	2.95	3.63	4.57	2.28	2.93	3.61	4.54	2.28	2.92	3.59	4.51	2.20	2.79	3.39	4.20		4.14	2.70	3.25	3.98	5.09	2.62	3.14	3.82
	2	253	3.39	4.29	5.57	2.52	3.37	4.27	5.53	2.51	3.35	4.24	ų 4	2.50	3.34	4.22	5.45	2.50	333	4.20	5.42	249	3.32	4.18	5.39	2.41	3.18	3.97	5.06	666	2.30	3.09	3,83	4.82	2.31	3.01	3.7.2	4.65
	-	292	4.24	5.69	7.77	2.91	4.23	99'5	7.72	2.90	4.21	5,63	7.08	2.89	4.20	5.61	7.64	2.89	4.18	5.59	7.60	288	4.17	5.57	7.56	2.81	4.03	5.34	7.17	•	2.70	3.94	5.18	6.90	2.72	3.86	505	699
	8	0.10	0.05	0.025	001	0.10	900	0.025	0.01	0.10	0.05	0.025	COD	010	900	0.025	0.01	0.10	0.05	0.025	0.01	0.10	0.05	0.025	0.01	010	900	0.025	0.01	9	9	0.05	0.025	0.01	010	900	0.025	0.01
	df ₂	Ю				92				22				58				8				8				ည				907	2				200			

TABLE 4 (Continued)