The title of my thesis

Any short subtitle

Lucas Charpentier

Thesis submitted for the degree of Master in Computational Science (Imaging and Biomedical Computing) 60 credits

Departement of Informatics

Departement of Physics

Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2020

The title of my thesis

Any short subtitle

Lucas Charpentier

© 2020 Lucas Charpentier

The title of my thesis

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

The title of my thesis

Lucas Charpentier

11th June 2020

Abstract

Contents

1	Intr	oduction	1				
	1.1	Background and Motivation	1				
	1.2	Problem Statement	1				
	1.3	Thesis Outline	1				
2	Plar	nning the project	3				
	2.1	Machine Learning	4				
		2.1.1 Supervised Learning	4				
		2.1.2 Unsupervised Learning	4				
	2.2	Artificial Neural Networks	4				
		2.2.1 Perceptron	4				
		2.2.2 Multilayer Perceptron	4				
		2.2.3 Training a Neural Network	4				
	2.3	Convolutional Neural Network	4				
		2.3.1 Convolutional Layers	4				
		2.3.2 Pooling Layers	4				
	2.4	Neural Network Training Optimization	4				
		2.4.1 Weight Initialization	4				
		2.4.2 Training Batch Size	4				
		2.4.3 Dropout	4				
	2.5	Network Pruning					
	2.6	8					
		2.6.1 MNIST	4				
		2.6.2 Fashion MNIST	4				
		2.6.3 CIFAR-10	4				
	2.7	Architectures	4				
		2.7.1 VGG-16	4				
3	Sin	gle Layer ANN	5				
	3.1	Pruning Nodes at Random	5				
	3.2	Estimating Node Importance based on Loss and Accuracy . 5					
	3.3	Pruning Nodes based on the Loss and Accuracy					
	3.4	Effects of Changing Training Batch Size on Node Importance 5					
	3.5	Effects of Using Droput	5				

4	Multi-Layer Perceptron		7	
	4.1	Pruning network with pre-calculated importance	7	
	4.2	Greedy approach to pruning instead of Exhaustive approach	7	
	4.3	Iterative weight initialization using Node importance	7	
5	Convolutional Neural Network		9	
	5.1	Looking at effects of per class accuracy after pruning	9	
	5.2	Pruning based on class accuracy	9	
6	Cas	e study: Reducing a VGG-16 model trained on X dataset	11	
7	Con	nclusion	13	
	7.1	Summary	13	
	7.2	Future Works	13	

List of Figures

List of Tables

Preface

Introduction

- 1.1 Background and Motivation
- 1.2 Problem Statement
- 1.3 Thesis Outline

Planning the project

^ 4	3 f 1 ·	T .
2.1	Machine	Learning
	11100011110	

- 2.1.1 Supervised Learning
- 2.1.2 Unsupervised Learning
- 2.2 Artificial Neural Networks
- 2.2.1 Perceptron
- 2.2.2 Multilayer Perceptron
- 2.2.3 Training a Neural Network
- 2.3 Convolutional Neural Network
- 2.3.1 Convolutional Layers
- 2.3.2 Pooling Layers
- 2.4 Neural Network Training Optimization
- 2.4.1 Weight Initialization
- 2.4.2 Training Batch Size
- 2.4.3 Dropout
- 2.5 Network Pruning
- 2.6 Datasets
- 2.6.1 MNIST
- 2.6.2 Fashion MNIST
- 2.6.3 CIFAR-10
- 2.7 Architectures
- 2.7.1 VGG-16

Single Layer ANN

- 3.1 Pruning Nodes at Random
- 3.2 Estimating Node Importance based on Loss and Accuracy
- 3.3 Pruning Nodes based on the Loss and Accuracy
- 3.4 Effects of Changing Training Batch Size on Node Importance
- 3.5 Effects of Using Droput

Multi-Layer Perceptron

- 4.1 Pruning network with pre-calculated importance
- 4.2 Greedy approach to pruning instead of Exhaustive approach
- 4.3 Iterative weight initialization using Node importance

Convolutional Neural Network

- 5.1 Looking at effects of per class accuracy after pruning
- 5.2 Pruning based on class accuracy

Case study: Reducing a VGG-16 model trained on X dataset

Conclusion

- 7.1 Summary
- 7.2 Future Works