一步步改造 BFS: 从盲目搜索到启发式搜索 问题求解(三)第2周 Open Topic

黄文睿 221180115

南京大学

黄文睿 221180115 南京大学

主要内容

- 1 一、盲目搜索
- 2 二、启发式搜索

1.1 回顾 BFS: 它可以解决的问题

- BFS 可以解决的是**无权图**中的最短路问题。
- 为了和下文保持一致,只考虑 s 和 t 两点之间的最短路问题,记 s 到 u 的最短路为 g(u)。
- 算法流程就不讲了。

1.1 回顾 BFS: 它可以解决的问题

- BFS 可以解决的是**无权图**中的最短路问题。
- 为了和下文保持一致,只考虑 s 和 t 两点之间的最短路问题,记 s 到 u 的最短路为 g(u)。
- 算法流程就不讲了。
- 为什么它是正确的呢?

任意非负权图上的寻找 s 到 t 的最短路的算法

维护一个优先队列(关键字为 g(u)),每次取出关键字最小的顶点,更新其邻点的 g 值,若有更新则把邻点入队。第一次 t 出队时,g(t) 的值就是 s 到 t 的距离。

京文睿 221180115 南京大学

任意非负权图上的寻找 s 到 t 的最短路的算法

维护一个优先队列(关键字为 g(u)),每次取出关键字最小的顶点,更新其邻点的 g 值,若有更新则把邻点入队。第一次 t 出队时,g(t) 的值就是 s 到 t 的距离。

证明.

- 每个点 u 在出队后, g(u) 不再改变 (之后队中点都 $\geq g(u)$)。
- *t* 第一次出队之前,所有可能更新 *g*(*t*) 的 *t* 的邻点都被考虑 过了,优先队列保证该记录是最小的,还未考虑过的不可能 更新 *t*。

黄文睿 221180115

■ BFS 中队列的特征?

- BFS 中队列的特征?
- 非减! 它就是一个优先队列!
- BFS 队列的性质(任一时刻至多只有两种值 v 和 v+1)保证了它的非减。

- BFS 中队列的特征?
- 非减! 它就是一个优先队列!
- BFS 队列的性质(任一时刻至多只有两种值 v 和 v+1)保证了它的非减。
- 那自然是正确的。

- BFS 中队列的特征?
- 非减! 它就是一个优先队列!
- BFS 队列的性质(任一时刻至多只有两种值 v 和 v+1)保证了它的非减。
- 那自然是正确的。
- 应用:编辑距离问题,寻路问题等。

南京大学 221180115 南京大学

1.2 第一次扩展: 0/1 BFS

修改一下问题

若图中有两种边,一种权为1,一种权为0,求最短路?

1.2 第一次扩展: 0/1 BFS

修改一下问题

若图中有两种边,一种权为 1, 一种权为 0, 求最短路?

也修改一下算法! 在 BFS 更新 g(u) 时:

- 如果从 1 边更新, 把 u 放到队尾;
- 如果从 0 边更新,把 u 放到队首。

1.2 第一次扩展: 0/1 BFS

修改一下问题

若图中有两种边,一种权为1,一种权为0,求最短路?

也修改一下算法! 在 BFS 更新 g(u) 时:

- 如果从 1 边更新, 把 u 放到队尾;
- 如果从 0 边更新, 把 u 放到队首。

这样的队列同样非减、至多只有两值,正确性是保证了的。

图: 0/1 BFS 算法流程 (一)

图: 0/1 BFS 算法流程 (二)

图: 0/1 BFS 算法流程 (三)

图: 0/1 BFS 算法流程(四)

图: 0/1 BFS 算法流程 (五)

图: 0/1 BFS 算法流程 (六)

1.2(cont'd) 0/1 BFS 的应用

0 边不是必须的, 但是很方便。

e.g. 在地铁方案计算(考虑站数,即无权图)中,引入零边,把换乘站拆成多个点,之间用 0 边连接,就可以用 0/1 BFS 7。

思考题

用普通的 BFS 真的不能处理有 0/1 边的图吗?

1.3 两种不同的搜索问题

1 图比较小,容易得知图的全貌,知道阶 n、边数 m、图的结构特征等,往往可以搜索整个图得到时间复杂度用 n 和 m 描述的算法,比如 BFS、DFS 的时间、空间复杂度都是 O(n+m)。 e.g. 常见的寻路问题等。

黄文睿 221180115 南京大学

1.3 两种不同的搜索问题

- 图比较小,容易得知图的全貌,知道阶 n、边数 m、图的结构特征等,往往可以搜索整个图得到时间复杂度用 n 和 m 描述的算法,比如 BFS、DFS 的时间、空间复杂度都是 O(n+m)。 e.g. 常见的寻路问题等。
- 2 图很大(甚至无限大),难以得到图的全貌。当只考虑两点 s 和 t 之间的最短路时,可以用分支因子 b 和深度 d 来描述。BFS 的时间、空间复杂度都是 $O(b^d)$; DFS 在限定只搜 d 层就返回时,时间是 $O(b^d)$ 但空间是 O(d) 的。

e.g. n 皇后问题,巨型迷宫搜索,竖式填写问题。

43#9865#045 + 8468#6633 44445509678

图: 竖式填写问题

1.4 BFS 的空间问题

BFS 的时间、空间都是 $O(b^d)$,都是较高的指数型增长。

 $^[1]_{picture\ from\ https://yey.world/2020/03/06/COMP90054-02/}$

1.4 BFS 的空间问题

BFS 的时间、空间都是 $O(b^d)$,都是较高的指数型增长。实际上,空间往往比时间更难以忍受。

取 b = 10, 计算机速度 1 Knodes/s, 内存消耗 1 KB/node: [1]

Depth	Nodes	Time		Memory	
2	110	.11	milliseconds	107	kilobytes
4	11,110	11	milliseconds	10.6	megabytes
6	10^{6}	1.1	seconds	1	gigabyte
8	10^{8}	2	minutes	103	gigabytes
10	10^{10}	3	hours	10	terabytes
12	10^{12}	13	days	1	petabyte
14	10^{14}	3.5	years	99	petabytes
16	10^{16}	350	years	10	exabytes

图: BFS 的时空消耗

d=12 时,时间是 13 days,空间是 1 PB!

^[1] picture from https://yey.world/2020/03/06/COMP90054-02/

迭代加深搜索 (Iterative deepening DFS) 是一种特殊的 DFS 算法,第一次只搜 $d \le 1$ 的顶点,第二次 $d \le 2$,依次类推,直到找到目标结点。

東京大学 221180115 南京大学

迭代加深搜索 (Iterative deepening DFS) 是一种特殊的 DFS 算法,第一次只搜 $d \le 1$ 的顶点,第二次 $d \le 2$,依次类推,直到找到目标结点。

■ (正确性) 每次有意义的只是在"返回层", 而在"返回层" 之前的搜索都是重复的, 事实上等价于 BFS。

東京大学 221180115 南京大学

迭代加深搜索 (Iterative deepening DFS) 是一种特殊的 DFS 算法,第一次只搜 $d \le 1$ 的顶点,第二次 $d \le 2$,依次类推,直到找到目标结点。

- (正确性)每次有意义的只是在"返回层",而在"返回层" 之前的搜索都是重复的,事实上等价于 BFS。
- ●(时间复杂度)看起来重复搜索了了很多: 第1 层搜了 d 次, 第2 层搜了 d-1次,依次类推,第 d 层搜了1次,有

$$T = O(b^0 \cdot d + b^1 \cdot (d-1) + \dots + b^{d-1} \cdot 1) = O(b^d), b > 1.$$

事实上只有常数倍代价。

迭代加深搜索 (Iterative deepening DFS) 是一种特殊的 DFS 算法,第一次只搜 $d \le 1$ 的顶点,第二次 $d \le 2$,依次类推,直到找到目标结点。

- (正确性)每次有意义的只是在"返回层",而在"返回层" 之前的搜索都是重复的,事实上等价于 BFS。
- ●(时间复杂度)看起来重复搜索了了很多: 第1 层搜了 d 次, 第2 层搜了 d-1次,依次类推,第 d 层搜了1次,有

$$T = O(b^0 \cdot d + b^1 \cdot (d-1) + \dots + b^{d-1} \cdot 1) = O(b^d), b > 1.$$

事实上只有常数倍代价。

■ (空间复杂度) 和 DFS 一样, O(d)。

图: IDDFS 算法流程(一)

图: IDDFS 算法流程(二)

图: IDDFS 算法流程(三)

图: IDDFS 算法流程(四)

1.5 一致代价搜索 (Dijkstra 算法)

■ 当边权全是 1 或者有 0 有 1 时, BFS 已经可以完美解决了。

黄文睿 221180115

1.5 一致代价搜索 (Dijkstra 算法)

- 当边权全是 1 或者有 0 有 1 时,BFS 已经可以完美解决了。
- 如果边权可以是任意非负数,就要回到之前的定理了。

任意非负权图上的寻找 s 到 t 的最短路的算法

维护一个优先队列(关键字为 g(u)),每次取出关键字最小的顶点,更新其邻点的 g 值,若有更新则把邻点入队。第一次 t 出队时,g(t) 的值就是 s 到 t 的距离。

南京大学 221180115 南京大学

1.5 一致代价搜索 (Dijkstra 算法)

- 当边权全是 1 或者有 0 有 1 时,BFS 已经可以完美解决了。
- 如果边权可以是任意非负数,就要回到之前的定理了。

任意非负权图上的寻找 s 到 t 的最短路的算法

维护一个优先队列(关键字为 g(u)),每次取出关键字最小的顶点,更新其邻点的 g 值,若有更新则把邻点入队。第一次 t 出队时,g(t) 的值就是 s 到 t 的距离。

用数据结构维护优先队列则可应用在一般图上。这就是一致代价搜索 (Dijkstra 算法)。

- (时间复杂度) 用线性表维护优先队列 $O(n^2+m)$, 用于稠密 图; 用二叉堆维护优先队列 $O((n+m)\log m)$, 用于稀疏图。
- (空间复杂度) O(n+m)。

主要内容

- 1 一、盲目搜索
- 2 二、启发式搜索

2.1 盲目搜索和启发式搜索

之前提到的搜索,都是盲目搜索。

- 盲目搜索: 仅使用最基本的信息,不知道搜索空间的特征, 效率一般低下;
- 启发式搜索: 预先知道了额外的一些信息——知道当前点 u 离目标 t 的差距。

黄文睿 221180115

2.1 盲目搜索和启发式搜索

之前提到的搜索,都是盲目搜索。

- 盲目搜索: 仅使用最基本的信息,不知道搜索空间的特征, 效率一般低下;
- 启发式搜索: 预先知道了额外的一些信息——知道当前点 u 离目标 t 的差距。

A* 算法

在一致代价搜索 (Dijkstra) 基础上,优先队列中排序的关键词不仅仅是 g(u) (起点 s 到 u 的距离),改为了

$$f(u) = g(u) + h(u).$$

其中 h(u) 是估计的从 u 到 t 还需要的代价。

2.2 A* 的最优性

关于最优性的疑问

按照 f(u) = g(u) + h(u) 排序是否可以找到从 s 到 t 的最短路?

黄文容 221180115

2.2 A* 的最优性

关于最优性的疑问

按照 f(u) = g(u) + h(u) 排序是否可以找到从 s 到 t 的最短路?

记 h(u) 是从 u 到 t 的估计代价, $h^*(u)$ 是从 u 到 t 的实际最小代价,我们断言,只要

$$\forall u, 0 \le h(u) \le h^*(u),$$

那么 A^* 算法是满足最优性的。即,我们估计的 h(u) 只能少估不能多估。

黄文睿 221180115

2.2 A* 的最优性

关于最优性的疑问

按照 f(u) = g(u) + h(u) 排序是否可以找到从 s 到 t 的最短路?

记 h(u) 是从 u 到 t 的估计代价, $h^*(u)$ 是从 u 到 t 的实际最小代价,我们断言,只要

$$\forall u, 0 \le h(u) \le h^*(u),$$

那么 A^* 算法是满足最优性的。即,我们估计的 h(u) 只能少估不能多估。

比如,在迷宫搜索问题中,选择 h(u) 是 u 到 t 的曼哈顿距离是可行的。

2.2(cont'd) A* 最优性证明

定理

若

$$\forall u, 0 \le h(u) \le h^*(u),$$

则 A* 算法满足最优性。

证明.

显然 $0 \le h(t) \le h^*(t) = 0$,从而 h(t) = 0,故 f(t) = g(t)。所以选择 f(t) 最小也就是选择 g(t) 最小。

对于可达 t 的它的邻点 u,它要么还没入队,要么在队列中 t 的后面,有

$$f(t) \le f(u) = g(u) + h(u) \le g(u) + h^*(u),$$

而 $g(u) + h^*(u)$ 是从 u 到 t 的最小代价,不会更优。

2.3 A* 算法的分析与 IDA*

A* 算法的时空分析:

- A* 算法快在哪里?可以认为减少了分支因子 b, 使得整个搜索树更窄。A* 算法本质来说, 还是 Dijkstra 算法。
- 设减少后的分支因子为 b_* ,时间、空间复杂度都是 $O(b_*^d)$ 。 b_* 的好坏与 h 的构造有关。

京文書 221180115 南京大学

2.3 A* 算法的分析与 IDA*

A* 算法的时空分析:

- A* 算法快在哪里?可以认为减少了分支因子 b, 使得整个搜索树更窄。A* 算法本质来说, 还是 Dijkstra 算法。
- 设减少后的分支因子为 b_* ,时间、空间复杂度都是 $O(b_*^d)$ 。 b_* 的好坏与 h 的构造有关。

思考题

Dijkstra 和 A* 可否类似于 IDDFS 一样用 DFS 替代?

黄文睿 221180115 南京大学

2.3 A* 算法的分析与 IDA*

A* 算法的时空分析:

- A* 算法快在哪里?可以认为减少了分支因子 b, 使得整个 搜索树更窄。A* 算法本质来说, 还是 Dijkstra 算法。
- 设减少后的分支因子为 b_* ,时间、空间复杂度都是 $O(b_*^d)$ 。 b_* 的好坏与 h 的构造有关。

思考题

Dijkstra 和 A* 可否类似于 IDDFS 一样用 DFS 替代?

可以! 只需把深度改为 f(u), 每次只考虑 $f(u) \le d$ 的结点,下次迭代选择在 f(v) > d 的点中的 f(u) 最小点。

参考资料

- 1 https://en.wikipedia.org/wiki/Breadth-first_search
- 2 https://yey.world/2020/03/06/COMP90054-02/
- 3 https://yey.world/2021/03/12/COMP90054-03/
 - https://en.wikipedia.org/wiki/Iterative_deepening_depth-first_search
- 5 https://hljmssjg.github.io/2021/11/02/关于搜索算法的复习/
- 6 https://en.wikipedia.org/wiki/Uniform-cost_search
- 1 https://en.wikipedia.org/wiki/A*_search_algorithm
- 8 https://en.wikipedia.org/wiki/Iterative_deepening_A*

谢谢大家!

黄文容 221180115