

should have finete no. of discontinuities over Time poriod. a,(+) 1 dis continuity 2,14) D-3rd discounting FS exist. To fundament period 50 does not FS exist

Case I
$$m = eucn$$
,

 $a_n = \frac{1}{m\pi} \left[\sin \frac{\pi \pi}{2} + \sin \frac{\pi \pi}{2} - \frac{\sin \frac{\pi \pi}{2}}{2} + \sin \frac{\pi \pi}{2} \right]$
 $a_n = \frac{1}{m\pi} \left[\sin \frac{\pi \pi}{2} + \sin \frac{\pi \pi}{2} - \frac{\sin \frac{\pi \pi}{2}}{2} + \sin \frac{\pi \pi}{2} \right]$
 $a_n = \frac{1}{m\pi} \left[\sin \frac{\pi \pi}{2} + \sin \frac{\pi \pi}{2} + \frac{\sin \frac{\pi \pi}{2}}{2} + \sin \frac{\pi \pi}{2} \right]$
 $a_n = 0$ when n is even. (put value of n)

 $a_n = 0$ when $n = 0$ and $a_n = 0$ and a_n

Tousier coefficient

$$x (d) = x (d) = x (d)$$

Then Aurage Power $x = x (d) = x (d)$

Pri(1) = $x = x (d) = x (d)$

Using this theorem use can calculate the power exponential fourier coeff.

Proof $x (d) = x (d) = x (d)$

Taking conjugates on both sides,

 $x (d) = x (d) = x (d)$

Taking conjugates on both sides,

 $x (d) = x (d) = x (d)$

Now, $x (d) = x (d)$

Again $x (d) = x (d)$
 $x (d) = x (d)$

Theorem $x (d) = x (d)$
 $x (d) = x (d)$

Again $x (d) = x (d)$

Theorem $x (d) = x (d)$
 $x (d) = x (d)$

Theorem $x (d) = x (d)$
 $x (d) = x (d)$

Theorem $x (d) = x (d)$
 $x (d) = x (d)$

Theorem $x (d) = x (d)$

Theorem $x (d) = x (d)$

Theorem $x (d) = x (d)$
 $x (d) = x (d)$

Theorem $x (d) = x (d)$

Theorem

$$= \sum_{n=-\infty}^{\infty} \frac{C_n}{T_n} \int_{n(t)}^{T_n} e^{-jn\omega_0 t} dt$$

$$= \sum_{n=-\infty}^{\infty} \frac{C_n}{C_n} \cdot C_n$$

$$= \sum_{n=-\infty}^{\infty} \frac{C_n}{C_n} \cdot C_n$$

$$\frac{S_0|^m}{=} P_{\alpha}(t) = \frac{2}{n = -\infty} (C_n|^2)$$

$$= |C_{-2}|^2 + |C_0|^2 + |C_2|^2$$

$$= |4|^2 + |2|^2 + |4|^2$$

$$= |6| + 4| + |6|$$

$$= 36 \text{ Walte}$$

$$- x = 4$$
 $C - 2 = 4$
 $C - 1 = 0$
 $C = 2$
 $C_1 = 0$
 $C_2 = 4$
 $C_3 = 4$
 $C_4 = 0$