17.4-3

证明:

(1)
$$\alpha_{i} \leq \frac{1}{3}$$

 $\hat{c}_{i} = c_{i} + \Phi_{i} - \Phi_{i-1}$
 $= 1 + (2 \cdot \text{num}_{i} - \text{size}_{i})$
 $- (2 \cdot \text{num}_{i-1} - \text{size}_{i-1})$
 $= 1 + 2 \cdot (i - (i - 1))$
 $= 3$
(2) $\alpha_{i} < \frac{1}{3}, \alpha_{i-1} \geq \frac{1}{3}$
 $\hat{c}_{i} = c_{i} + \Phi_{i} - \Phi_{i-1}$
 $= (num_{i} + 1) + (2 \cdot \text{num}_{i} - \text{size}_{i})$
 $- (2 \cdot \text{num}_{i-1} - \text{size}_{i-1})$
 $= (num_{i} + 1) + 0 - |2 \cdot (num_{i} + 1) - 3 \cdot num_{i}|$

所以摊还代价的上界是常数3

17-2

(a)

算法:从 n_0 开始,如果 n_i 不为0,则依次遍历k个有序数组,在每个数组中进行二分查找。

最坏时间复杂度为: $1 + 2 + 3 + \dots + \lceil lg(n+1) \rceil = \Theta(lg^2(n))$

(b)

算法:对于INSERT操作,从 n_0 开始,找到第一个为0的 n_i ,将 n_i 之前的所有数组和要插入的数合并,全部存入 n_i 对应的数组中,之前的所有数组清空, n_i 设为1, n_i (j < i)全部设为0。

最坏时间复杂度发生在只有 n_{k-1} 为0的情况下,此时需要在 $\lceil lg(n+1) \rceil$ 个有序数组中合并n/2个数,时间复杂度为: $\Theta(n \cdot lgn)$

摊还时间分析:每次插入, n_i 从0到1翻转的可能性为 $\frac{1}{2^{i+1}}$,时间花费为 $\Theta(2^i \cdot (i+1))$,故总时间花费为 $\Theta(\sum \frac{1}{2^{i+1}}2^i(i+1)) = \Theta(lg^2(n))$

现将DELETE的元素a删除。然后,从 n_0 开始,找到第一个为1的 n_i ,从中取出最小的元素,找到合适位置填入失去a的数组中。最后,将 n_i 数组的元素全部转移到 n_i (j < i)的数组中,将 n_i 设为0, n_i (j < i)全部设为1.

19-3

(a)

k < x. key时,分析方法同FIB-HEAP-DECREASE-KEY,摊还时间为 $\Theta(1)$

k = x. key时,无需做任何改变,摊还时间为 $\Theta(1)$

k > x. key时,由于和DECREASE-KEY操作不同,其不参与DELETE操作,所以只需判断是否大于其孩子,如果大于一些孩子,则对这些孩子执行CUT(H,x,y)和CASCADING - CUT(H,y)操作,每次操作的摊还时间为O(1),最多不超过lg(n)次,故总摊还时间为O(lg(n))

(b)

将势函数修改为: $\Phi(H) = t(H) + 2m(H) + n$

其中n为节点数量。同时,将所有叶节点都有用双向链表进行连接。

进行裁剪时,选择任何一个叶子结点,将从父节点孩子列表中移除,也从叶子结点链表中移除。重复该操作q次,势函数也会降低n,所以摊还时间为常数 $\Theta(1)$