Exploring Drug Candidates: All ε-Best Arms Identification in Linear Bandits

Authors:

- **Zhekai Li** (SEIEE, Shanghai Jiao Tong University)
- Tianyi Ma (University of Michigan Shanghai Jiao Tong University Joint Institute)
- Cheng Hua (Antai College of Economics and Management, Shanghai Jiao Tong University)
- Ruihao Zhu (Cornell SC Johnson College of Business)

2024 INFORMS Annual Meeting

Motivation – Drug Discovery

An Illustrative Example

➤ In Drug discovery: medical researchers start with a promising molecule for treating a given disease and then test potentially millions of variants of this molecule to identify the highly potent candidates for later clinical trials

Motivation

Model

Algorithm

Results

Motivation – Drug Discovery

Motivation

Model

Algorithm

Results

Motivation – Why Linear Bandits

Motivation

Model

Algorithm

Results

Model

Algorithm

Results

Experiment

Problem

- **➤** Expansion of problem scale → Introducing the linear structure
- ➤ Drug Development: preclinical drug discovery → clinical trials

high cost and low efficacy

BAI \rightarrow **Finding All** ϵ -**Best Candidates**

 \triangleright Identifying all candidates whose effectiveness is within a range of ϵ from the best one

Model

Algorithm

Results

Experiment

Problem

- **>** Expansion of problem scale → Introducing the linear structure
- ▶ Drug Development: preclinical drug discovery → the most effective candidates → clinical trials

the likelihood of finding at least one successful, marketable drug

high cost and low efficacy

BAI \rightarrow **Finding All** ϵ -**Best Candidates**

 \triangleright Identifying all candidates whose effectiveness is within a range of ϵ from the best one

Model - All ε-Best Arms Identification in Linear Bandits

- ightharpoonup A finite set of K arms, denoted as $\mu = (\mu_1, \mu_2, ..., \mu_K)$ and we have $\mu_1 > \mu_2 \ge ... \ge \mu_K$
- > The Linear Structure
 - Denote θ as the unknown parameter vector
 - Denote $A = \{a_1, a_2, ..., a_K\} \subset \mathbb{R}^d$ as the set containing the feature vectors of all arms
 - Observe the reward $X_t = \mathbf{a}_{At}^{\mathsf{T}} \boldsymbol{\theta} + \eta_t$, where η_t , the noise, is conditionally 1-sub-Gaussian

Н OHCH₃ OCOCH₃ $CH_2CH_2(C_6H_5)$ OCOCH₂CH₃ $CH_2(C_3H_5)$ OCH₂ CH₂CHC(CH₃)₂ NO_2 CH₂ NO_2 Optional substituents for the first site **Optional substituents** for the second site

Motivation

Model

Algorithm

Results

Experiment

Previous Drug Example

Model - All ε-Best Arms Identification in Linear Bandits

Exploring Drug Candidates: All ε-Best Arms Identification in Linear Bandits

of all substituents

Zhekai Li (SJTU)

Motivation

Model

Algorithm

Results

- \blacktriangleright A finite set of K arms, denoted as $\mu = (\mu_1, \mu_2, ..., \mu_K)$ and we have $\mu_1 > \mu_2 \ge ... \ge \mu_K$
- > The Linear Structure
 - Denote θ as the unknown parameter vector
 - Denote $A = \{a_1, a_2, ..., a_K\} \subset \mathbf{R}^d$ as the set containing the feature vectors of all arms
 - Observe the reward $X_t = a_{At}^{\top} \theta + \eta_t$, where η_t , the noise, is conditionally 1-sub-Gaussian

Model - All ε-Best Arms Identification in Linear Bandits

Exploring Drug Candidates: All &-Best Arms Identification in Linear Bandits

Motivation

Model

Algorithm

Results

Experiment

- \blacktriangleright A finite set of K arms, denoted as $\mu = (\mu_1, \mu_2, ..., \mu_K)$ and we have $\mu_1 > \mu_2 \ge ... \ge \mu_K$
- > The Linear Structure
 - Denote θ as the unknown parameter vector
 - Denote $A = \{a_1, a_2, ..., a_K\} \subset \mathbb{R}^d$ as the set containing the feature vectors of all arms
 - Observe the reward $X_t = \mathbf{a}_{At}^{\mathsf{T}} \boldsymbol{\theta} + \eta_t$, where η_t , the noise, is conditionally 1-sub-Gaussian
- \succ Task: Denote the set of all ε-best arms with mean vector μ as $G_{\epsilon}(\mu) := \{i: \mu_i \ge \mu_1 \epsilon\}$
 - Additive ε -Best Arm: given ε > 0, an arm i is deemed ε -best if $\mu_i \ge \mu_1 \varepsilon$
- > Performance Metric: the sample complexity
 - Confidence level δ is fixed \rightarrow Fixed-Confidence Setting

min $\mathbf{E}_{\mu} [\tau_{\delta}]$ s.t. $\mathbf{P}_{\mu}(\tau_{\delta} < \infty, recommended set equals G_{\varepsilon}(\mu)) \ge 1 - \delta$

Related Literature

Exploring Drug Candidates: All ε-Best Arms Identification in Linear Bandits

Zhekai Li (SJTU)

Motivation

Model

Algorithm

Results

Experiment

- Pure Exploration with different tasks. Mannor and Tsitsiklis (2004), Even-Dar et al. (2006), Russo (2020), Komiyama et al. (2023), Kalyanakrishnan and Stone (2010), Kalyanakrishnan et al. (2012), Locatelli et al. (2016), Abernethy et al. (2016), Garivier and Kaufmann (2016),
- ➤ Linear Bandits in Pure Exploration. Abbasi-Yadkori et al. (2011), Gabillon et al. (2012), Hoffman et al. (2014), Soare et al. (2014), Fiez et al. (2019), K eda et al. (2021), Yang and Tan (2021), Azizi et al. (2023)
- ➤ Model Misspecification. Ghosh et al. (2017), Lattimore et al. (2020), Reda et al. (2021), Ahn et al. (2024)
- > All ε-Best Arms Identification. Mason et al. (2020), Al Marjani et al. (2022)

Current Status of Research

- \triangleright All ϵ -best arms identification in stochastic bandits Mason et al. (2020) lower bound and two algorithms
- > Limited to the stochastic setting and is hard to be applied in problems with a large number of choices

Research Question

- \triangleright How to solve the All ϵ -Best Arms Identification in Linear Bandits?
 - The description of the problem complexity
 - The algorithm and the upper bound
 - Extensions and other insights (Misspecification and GLM)

Exploring Drug Candidates: All &-Best Arms Identification in Linear Bandits

Zhekai Li (SJTU)

Motivation

Model

Algorithm

Results

Experiment

General Structure

- LinFACTE is a phase-based elimination and classification algorithm with five general components
- ➤ Initialization → sampling → estimation → classification → stopping and decision

Phase Iteration

Sampling and Estimation

- > A probabilistic guarantee that the true mean value is within a range of the estimated mean value for each arm
- \triangleright Challenge: Extremely large arm space \Rightarrow solved by the optimal design {G-optimal (arm's confidence region)} \mathcal{XY} -optimal (gap's confidence region)

- ➤ Given confidence level → Minimized budget
- ➤ Only a small number of arms need to be sampled
- Dramatically reducing the problem's difficulty

11

Model

Algorithm

Results

Experiment

Sampling and Estimation

- > A probabilistic guarantee that the true mean value is within a range of the estimated mean value for each arm
- \succ Challenge: Extremely large arm space \rightarrow solved by the optimal design {G-optimal (arm's confidence region)} $\mathcal{X}\mathcal{Y}$ -optimal (gap's confidence region)

Uniform Contraction Based on G-Optimal Design

More Purposeful Contraction of XY-Optimal Design

Model

Algorithm

Results

Experiment

General Structure

- LinFACTE is a phase-based elimination and classification algorithm with five general components
- ➤ Initialization → sampling → estimation → classification → stopping and decision
 Phase Iteration

Sampling and Estimation

- > A probabilistic guarantee that the true mean value is within a range of the estimated mean value for each arm
- Challenge: Extremely large arm space → solved by the optimal design G-optimal (arm's confidence region)

Exploring Drug Candidates: All &-Best Arms Identification in Linear Bandits

Zhekai Li (SJTU)

Motivation

Model

Algorithm

Results

Experiment

General Structure

- ➤ LinFACTE is a phase-based elimination and classification algorithm with five general components
- ➤ Initialization → sampling → estimation → classification → stopping and decision
 Phase Iteration

Sampling and Estimation

- > A probabilistic guarantee that the true mean value is within a range of the estimated mean value for each arm
- \triangleright Challenge: Extremely large arm space \rightarrow solved by the optimal design G-optimal (arm's confidence region)

Toy Example of Eight Arms

 \triangleright Update two sets of arms, that is, G_r and B_r , classifying arms that are empirically ε-best and not ε-best

Exploring Drug Candidates: All ε-Best Arms Identification in Linear Bandits

Zhekai Li (SJTU)

Motivation

Model

Algorithm

Results

Experiment

General Structure

- ➤ LinFACTE is a phase-based elimination and classification algorithm with five general components
- \rightarrow Initialization \rightarrow sampling \rightarrow estimation \rightarrow classification \rightarrow stopping and decision

Phase Iteration

Sampling and Estimation

- > A probabilistic guarantee that the true mean value is within a range of the estimated mean value for each arm
- \triangleright Challenge: Extremely large arm space \rightarrow solved by the optimal design G-optimal (arm's confidence region)

- \triangleright Update two sets of arms, that is, G_r and B_r , classifying arms that are empirically ε -best and not ε -best
- \blacktriangleright Maintain confidence radius of each arm and confidence bound of the unknown threshold $\mu_1 \epsilon$

Model

Algorithm

Results

Experiment

General Structure

- ➤ LinFACTE is a phase-based elimination and classification algorithm with five general components
- \rightarrow Initialization \rightarrow sampling \rightarrow estimation \rightarrow classification \rightarrow stopping and decision

Phase Iteration

Sampling and Estimation

- > A probabilistic guarantee that the true mean value is within a range of the estimated mean value for each arm
- \triangleright Challenge: Extremely large arm space \rightarrow solved by the optimal design G-optimal (arm's confidence region)

- \triangleright Update two sets of arms, that is, G_r and B_r , classifying arms that are empirically ε -best and not ε -best
- \triangleright Maintain confidence radius of each arm and confidence bound of the unknown threshold $\mu_1 \epsilon$

Model

Algorithm

Results

Experiment

General Structure

- ➤ LinFACTE is a phase-based elimination and classification algorithm with five general components
- \rightarrow Initialization \rightarrow sampling \rightarrow estimation \rightarrow classification \rightarrow stopping and decision

Phase Iteration

Sampling and Estimation

- > A probabilistic guarantee that the true mean value is within a range of the estimated mean value for each arm
- \triangleright Challenge: Extremely large arm space \rightarrow solved by the optimal design G-optimal (arm's confidence region)

- \triangleright Update two sets of arms, that is, G_r and B_r , classifying arms that are empirically ε -best and not ε -best
- \triangleright Maintain confidence radius of each arm and confidence bound of the unknown threshold $\mu_1 \epsilon$

Exploring Drug Candidates: All &-Best Arms Identification in Linear Bandits

Zhekai Li (SJTU)

Motivation

Model

Algorithm

Results

Experiment

General Structure

- LinFACTE is a phase-based elimination and classification algorithm with five general components
- \rightarrow Initialization \rightarrow sampling \rightarrow estimation \rightarrow classification \rightarrow stopping and decision

Phase Iteration

Sampling and Estimation

- > A probabilistic guarantee that the true mean value is within a range of the estimated mean value for each arm
- \triangleright Challenge: Extremely large arm space \rightarrow solved by the optimal design G-optimal (arm's confidence region)

- \triangleright Update two sets of arms, that is, G_r and B_r , classifying arms that are empirically ε -best and not ε -best
- \triangleright Maintain confidence radius of each arm and confidence bound of the unknown threshold $\mu_1 \epsilon$

Exploring Drug Candidates: All ε-Best Arms Identification in Linear Bandits

Zhekai Li (SJTU)

Motivation

Model

Algorithm

Results

Experiment

General Structure

- ➤ LinFACTE is a phase-based elimination and classification algorithm with five general components
- ightharpoonup Initialization ightharpoonup sampling ightharpoonup estimation ightharpoonup classification ightharpoonup stopping and decision

Phase Iteration

Sampling and Estimation

- > A probabilistic guarantee that the true mean value is within a range of the estimated mean value for each arm
- \triangleright Challenge: Extremely large arm space \rightarrow solved by the optimal design G-optimal (arm's confidence region)

- \triangleright Update two sets of arms, that is, G_r and B_r , classifying arms that are empirically ε -best and not ε -best
- \triangleright Maintain confidence radius of each arm and confidence bound of the unknown threshold $\mu_1 \epsilon$

Exploring Drug Candidates: All ε-Best Arms Identification in Linear Bandits

Zhekai Li (SJTU)

Motivation

Model

Algorithm

Results

Experiment

General Structure

- ➤ LinFACTE is a phase-based elimination and classification algorithm with five general components
- \rightarrow Initialization \rightarrow sampling \rightarrow estimation \rightarrow classification \rightarrow stopping and decision

Phase Iteration

Sampling and Estimation

- > A probabilistic guarantee that the true mean value is within a range of the estimated mean value for each arm
- \triangleright Challenge: Extremely large arm space \rightarrow solved by the optimal design G-optimal (arm's confidence region)

- \triangleright Update two sets of arms, that is, G_r and B_r , classifying arms that are empirically ε -best and not ε -best
- \triangleright Maintain confidence radius of each arm and confidence bound of the unknown threshold $\mu_1 \epsilon$

Exploring Drug Candidates: All ε-Best Arms Identification in Linear Bandits

Zhekai Li (SJTU)

Motivation

Model

Algorithm

Results

Experiment

General Structure

- ➤ LinFACTE is a phase-based elimination and classification algorithm with five general components
- \rightarrow Initialization \rightarrow sampling \rightarrow estimation \rightarrow classification \rightarrow stopping and decision

Phase Iteration

Sampling and Estimation

- > A probabilistic guarantee that the true mean value is within a range of the estimated mean value for each arm
- \triangleright Challenge: Extremely large arm space \rightarrow solved by the optimal design G-optimal (arm's confidence region)

- \triangleright Update two sets of arms, that is, G_r and B_r , classifying arms that are empirically ε -best and not ε -best
- ightharpoonup Maintain confidence radius of each arm and confidence bound of the unknown threshold $\mu_1 \epsilon$

Model

Algorithm

Results

Experiment

Lower Bound

 \triangleright Consider a set of arms where arm i follows a normal distribution. Any δ -PAC algorithm must satisfy

$$\frac{\mathbb{E}_{\boldsymbol{\mu}}\left[\tau_{\delta}\right]}{\log\left(1/2.4\delta\right)} \geq (\Gamma^{*})^{-1} = \min_{\boldsymbol{p} \in S_{K}} \max_{(i,j,m) \in \mathcal{X}} \max \left\{ \frac{2\|\boldsymbol{a}_{i} - \boldsymbol{a}_{j}\|_{\boldsymbol{V}_{\boldsymbol{p}}^{-1}}^{2}}{\left(\boldsymbol{a}_{i}^{\top}\boldsymbol{\theta} - \boldsymbol{a}_{j}^{\top}\boldsymbol{\theta} + \varepsilon\right)^{2}}, \frac{2\|\boldsymbol{a}_{1} - \boldsymbol{a}_{m}\|_{\boldsymbol{V}_{\boldsymbol{p}}^{-1}}^{2}}{\left(\boldsymbol{a}_{1}^{\top}\boldsymbol{\theta} - \boldsymbol{a}_{m}^{\top}\boldsymbol{\theta} - \varepsilon\right)^{2}} \right\}$$

Upper Bound

Define $\Delta = \min(\alpha_{\mathcal{E}}, \beta_{\mathcal{E}})/8$. Based on the **G-optimal** design, with a probability of at least $1 - \delta$, the expected sampling budget of LinFACTE has the following upper bound

$$\mathbb{E}\left[T_G \mid \mathcal{E}\right] = O\left(d\Delta^{-2}\log\left(\frac{K}{\delta}\log_2\left(\Delta^{-2}\right)\right) + d^2\log\left(\Delta^{-1}\right)\right)$$

Define $\Delta = \min(\alpha_{\mathcal{E}}, \beta_{\mathcal{E}})/8$. Based on the **XY-optimal** design, with a probability of at least $1 - \delta$, the expected sampling budget of LinFACTE has the following upper bound

$$\mathbb{E}\left[T_{\mathcal{X}\mathcal{Y}} \mid \mathcal{E}\right] = O\left(d\log\left(\Delta^{-1}\right)\log\left(\frac{K}{\delta}\log_2\left(\Delta^{-2}\right)\right)(\Gamma^*)^{-1} + r\left(\epsilon\right)\log\left(\Delta^{-1}\right)\right)$$

- \rightarrow Algorithm with xy-optimal design \rightarrow near optimal up to some logarithmic factors
- ➤ Model Extension → more general results → applicability of LinFACTE
 - Extendable to misspecified linear bandits
 - Extendable to generalized linear model (GLM)

Algorithm

Results

Experiment

Baselines

- Bayesian optimization with a knowledge gradient acquisition function (Negoescu et al. 2011)
- > BayesGap: a gap-based algorithm for the best arm identification (BAI) (Hoffman et al. 2014)
- > m-LinGapE and LinGIFA: two gap-based algorithms for the top m identification (R´ eda et al. 2021)
- > Lazy Track-Threshold-and-Stop: track and stop algorithm for the threshold bandit (Tewari et al. 2024)

Dataset

- ➤ Synthetic Data → LinFACTE's superiority in various edge cases
 - Adaptive Setting
 - Static Setting
- ➤ Real Data From Drug Discovery → LinFACTE's applicability in real-world applications

Motivation

Model

Algorithm

Results

Motivation

Model

Algorithm

Results

Motivation

Model

Algorithm

Results

Motivation

Model

Algorithm

Results

Synthetic Data – Sample Complexity

Motivation

Model

Algorithm

Results

Synthetic Data – Sample Complexity

Sample Complexity

Algorithm

Motivation

Model

Results

Model

Algorithm

Results

Experiment

arm space is extremely large

measures the accuracy of positive predictions

measures the ability to find all actual positive cases

- ➤ LinFACTE shows outstanding advantages in computational complexity → 1min < 4mins << 2 hours
- ➤ In fact, LinFACTE is more suitable for real experiment
 - All other algorithms propose one drug and do one experiment
 - LinFACTE can propose different drugs and do multiple experiments in a batch

Conclusion

- \triangleright New **Setting**: All ϵ -Best Arms Identification + Linear Bandits
- > First Information-Theoretic Lower Bound
- ➤ Matching Upper Bound
- ➤ Model Extensions to Misspecified Linear Bandits and GLM
- > Numerical Simulations with Synthetic Data and Real Data

Thank you for your attention!