I. Propriétés des alcalins

1.1. Action du sodium sur l'eau

- → Prendre une toute petite paillette, l'essuyer avec du papier filtre.
- → La poser à la surface de l'eau avec une pince.

• Observation

Le sodium lévite, il y a un dégagement gazeux (du H₂) La phénolphtaléine devient rose.

• Exploitation

- → La phénolphtaléine met en évidence le caractère basique de la solution :
 - ⇒ présence de HO⁻.
- \rightarrow La réaction Na + H₂O = Na⁺ + HO⁻ + ½ H₂
- \rightarrow On conserve le sodium :
 - La réaction est évidente avec l'eau, il faut le conserver dans un milieu anhydre.
 - Il faut éviter qu'il s'oxyde car c'est un puissant réducteur, les produits qu'il forme sont plus stables.

Alcalino terreux

Le lithium, le potassium ...

II. Combustion

2.2.1 Combustion du magnésium

Observations

La réaction est violente, il y a un important dégagement de chaleur. La phénolphtaléine se colore.

L'eau au fond sert à refroidir l'oxyde qui tombe et à éviter les chocs thermiques

• La réaction de combustion

 $2Mg_{(s)} + O_{2(g)} = 2 MgO_{(s)}$ La magnésie solide ionique

Caractéristiques

La phénolphtaléine devient rose, l'oxyde de magnésium est basique : $MgO + H_2O = Mg(OH)_{2(S)} = Mg^{2+} + 2HO^{-}$

2.2.2. Oxyde d'aluminium

• Les réactions

$$AI^{3+} + 3HO^{-} = AI(OH)_{3(s)}$$

$$AI(OH)_{3(s)} + HO^{-} = AI(OH)_4^{+}$$

L'oxyde d'aluminium $Al(OH)_{3(s)}$ est un ampholyte, il est à la fois basique et acide.

2.3. Oxyde de zinc

• Les réactions

 $Zn^{2+} + 2HO^{-} = Zn(OH)_{2(s)}$ Précipité blanc constante d'équilibre K=10^{-16,4}

$$Zn(OH)_{2(s)} + 2HO^{-} = ZnO_2^{2-} + 2H_2O$$

Soluté incolore

$$Zn(OH)_{2(s)} + 3 H_3O^+ = Zn^{2+} + 4H_2O$$

2.4. Combustion du carbone

Observations : Il y a une vive combustion

• Réaction $C_{(s)} + O_2 = CO_{2(g)}$

 $\mathsf{CO}_{2(g)}$ est un gaz relativement soluble dans l'eau et conduit à une solution acide mise en évidence par le BBT:

$$CO_2, H_2O + H_2O = HCO_3^- + H_3O^+ K_{A1} = 10^{-6.3}$$

$$HCO_3^- + H_2O = CO_3^{2-} + H_3O^+ K_{A2} = 10^{-10,3}$$

2.5. Conclusion

Oxyde	Ionique	Covalent	
Caractère	Basique Mg(OH) _{2(s)}	Amphotère Al(OH) _{3(s)}	Acide $CO_{2(g)}$

III. Propriétés oxydantes des halogènes

3.2. Solutions

Les réactions :

 $2Cl_2 + 4H_2O = 2Cl^- + 2HClO + 2H_3O^+$

Soit $Cl_2 + 2H_2O = Cl^- + HClO + H_3O^+$

 $Cl_2 + 2e^{-} = 2Cl^{-}$ $2HCIO + 2 e^{-} + 2H^{+} = Cl_{2} + H_{2}O$

3.3. Eau de chlore et eau lodée sur la paille de fer

• Eau de Chlore

$$Cl_2 + 2 e^{-} = 2Cl^{-}$$

$$Fe = Fe^{3+} + 3 e^{-}$$

$$3Cl_2 + 2Fe = 6Cl^- + 2Fe^{3+}$$

En effet on met en évidence la présence des ions Fe³⁺ :

$$Fe^{3+} + 3 HO^{-} = Fe(OH)_3$$
 précipité rouille

$$Fe^{3+} + SCN^{-} = FesCN^{2+}$$
 rouge

Fe(OH)₃

FeSCN²⁺

• Eau iodée

$$I_2 + 2 e^{-} = 2I^{-}$$

 $Fe = Fe^{2+} + 2 e^{-}$

$$I_2 + Fe = 2I^- + Fe^{2+}$$

Les ions Fe³⁺ ne sont pas mis en évidence, ce sont les ions Fe²⁺ qui sont présents.

$$Fe^{2+} + 2HO^{-} = Fe(OH)_{2(s)}$$
 verdâtre.

Le pouvoir oxydant décroit dans la colonne.

IV. Etude des halogénures

	Cl ⁻	Br ⁻	I ⁻
Ion Ag ⁺	Précipité blanc	Précipité blanc jaunâtre	Précipité jaunâtre
UV	Noircit	Gris	Rien
NH_3	Redissous	Redissolution pas totale	Précipité plus blanc

$$Ag^+ + Cl^- = AgCl_{(s)}$$
 (K= $10^{9,7}$)

$$AgCl_{(s)} + 2NH_3 = Ag(NH_3)_2^+ + 2Cl^-$$

$$Ag^+ + Br^- = AgBr_{(s)}$$
 (K= $10^{12,3}$)
 $AgBr_{(s)} + 2NH_3 = Ag(NH_3)_2^+ + 2Br^-$

$$Ag^+ + I^- = AgI_{(s)}$$
 (K= $10^{16,2}$)

Le précipité est de plus en plus stable

