Lecture-7 Main Points

- Boolean algebra examples continued
 - BA of bit vectors of fixed length n.
 - * Isomorphic to $\underbrace{2 \times 2 \times \ldots \times 2}_{n \text{ times}}$.
 - * Direct Product of BAs.
 - More generally, 2^X , for any set X.
 - * $2^X = \{f : X \to 2\}$ (as sets)
 - * In particular, $\underbrace{2 \times 2 \times \ldots \times 2}_{n \text{ times}} = 2^{\{0,1,\ldots,n-1\}}.$
 - * 2^{X} is a BA with operations defined component-wise.

E.g. for
$$f, g \in 2^X$$

- $f(f \vee g)(y) = f(y) \vee g(y)$, for all $y \in X$
- $\cdot (\neg f)(y) = \neg f(y)$, for all $y \in X$
- \cdot (1)(y) = 1, for all $y \in X$
- . etc
- · In the above equations, symbols \vee , \neg , 1 on *lhs* are operations in BA 2^X , the same symbols on *rhs* are operations in BA 2.
- -2^X is isomorphic to P(X) as BA.
 - * $f: X \to 2$ defines a unique subset of X.
 - * Conversely, a subset S of X defines a unique $f: X \to 2$
 - the characteristic function of S
 - * This identification of elements of the two BAs also preserves BA operations.

- A useful Lemma for BA
 - For all $a, b \in B$, $[(a \land b = 0 \text{ and } a \lor b = 1) \Rightarrow (b = \neg a)]$
 - $\neg \neg a = a$
 - * Immediate from definition of \neg and part (i).
 - DeMorgan Laws
 - * Using part (i)
- Interpreting Propositions in a BA
 - Let B be a BA and $[\![\cdot]\!]$ a valuation into B
 - $* \ \llbracket \cdot \rrbracket : \{ \text{atomic propositions} \} \to B$
 - The valuation can be extended to *all* propositions as follows.
 - $* \ \llbracket A \wedge B \rrbracket = \llbracket A \rrbracket \wedge \llbracket B \rrbracket$
 - $* \ \llbracket A \vee B \rrbracket = \llbracket A \rrbracket \vee \llbracket B \rrbracket$
 - $* \ \llbracket A \to B \rrbracket = \neg \llbracket A \rrbracket \vee \llbracket B \rrbracket$
 - $\ast \ \llbracket \bot \rrbracket = 0$
 - * In the above equations, symbols $\vee, \neg, \rightarrow, \bot$ on *lhs* are part of propositions syntax, the same symbols on *rhs* are operations in BA B.
- A proposition A is true in $(B, \llbracket \cdot \rrbracket)$ iff $\llbracket A \rrbracket = 1$.