

第5章 集成运算放大器

- 5.1 集成运放的基本组成
- 5.2 集成运放的基本特性
- 5.3 放大电路中的负反馈
- 5.4 集成运放在模拟信号运算方面的应用
- 5.5 集成运放在幅值比较方面的应用
- 5.6 应用举例

ZHEJIANG UNIVERSITY

5.1 集成运放的基本组成

- 5.1.1 概述
- 5.1.2 集成运放的输入级电路 ——差分放大电路
- 5.1.3 集成运放的输出级电路——互补对称电路
- 5.1.4 集成运放的图形符号和信号输入方式

集成运放是一种具有很高的电压放大倍数,性能优越, 集成化的多级放大器。

类型:通用型、专用型

集成运放的基本组成框图

5.1.1 概述

各级主要作用和要求:

输入级 输入电阻大、漂移小、抗干扰能力强。

中间级 电压放大倍数高。

输出级 输出电阻小、负载能力强、输出电压稳定。

偏置电路 为各级提供稳定的偏置电流。

多级放大器的级间耦合方式:

阻容耦合 通过电容联接前后级,传递交流信号。

变压器耦合 用变压器联接前后级,传递交流信号。

直接耦合用导线联接前后级,传递交直流信号。

5.1.2 集成运放的输入级电路——差分放大电路

电路特点:对称;双端输入,

双端输出。

1. 静态分析

$$u_{i1} = u_{i2} = 0$$

$$I_{B1} = I_{B2}, I_{C1} = I_{C2}, u_{C1} = u_{C2}$$

$$u_o = u_{C1} - u_{C2} = 0$$

温度变化引起的漂移

$$i'_{B1} = i'_{B2}, \ i'_{C1} = i'_{C2}, \ u'_{C1} = u'_{C2}$$

$$u_o' = u_{C1}' - u_{C2}' = 0$$

5.1.2 集成运放的输入级电路—差分放大电路

2. 动态分析

• 差模信号输入

差模信号——
$$u_{i1} = -u_{i2}$$

 u_{i1} 与 u_{i2} 大小相同,极性相反。

$$u_{i1} \rightarrow i_{b1}, i_{c1}, u_{i2} \rightarrow i_{b2}, i_{c2}$$

 i_{b1} 、 i_{c1} 分别与 i_{b2} 、 i_{c2} 大小相同,方向相反;

 u_{o1} 与 u_{o2} 大小相同,极性相反。

故 $u_o = u_{o1} - u_{o2}$, 有输出电压, 具有放大作用。

记差模放大倍数为 A_d

• 共模信号输入

共模信号—— $u_{i1} = u_{i2}$

 u_{i1} 与 u_{i2} 大小和极性均相同。

理想情况——电路完全对称

 $u_o = 0$ ——无放大作用

实际电路, $u_o \neq 0$, 但很小。

记共模放大倍数为 A。

共模抑制比
$$K_{CMR} = \frac{A_{d1}}{A_c}$$

5.1.2 集成运放的输入级电路——差分放大电路

差分放大电路的输入—输出方式:

- 双端输入, 双端输出;
- 双端输入,单端输出;
- 单端输入, 双端输出;
- 单端输入, 单端输出。

为提高集成运放的输入电阻,降低噪声,输入级的静态电流常取得很小,还采用场效晶体管组成差分放大电路。

5.1.3 集成运放的输出级电路—互补对称电路

静态时, $U_E = 0$

动态时,在 u_i 正半周, T_1 导通, T_2 截止,电流回路:

$$U_{CC} \rightarrow T_1 \rightarrow R_L \Rightarrow u_o$$
 正半周

在 u_i 负半周, T_2 导通, T_1 截止

电流回路:

 $-U_{CC} \rightarrow R_L \rightarrow T_2 \Rightarrow u_o$ 负半周

5.1.4 集成运放的图形符号和信号输入方式

• 图形符号

IN_ ——反相输入端

IN₊ ——同相输入端

OUT ——输出端

信号传递方向——输入端→输出端

• 信号输入方式: 反相输入方式;

同相输入方式;

差分输入方式。

5.2 集成运放的基本特性

- 5.2.1 集成运放的主要参数
- 5.2.2 集成运放的电压传输特性和电路模型
- 5.2.3 集成运放的理想特性

ZHEJIANG UNIVERSITY

5.2.1 集成运放的主要参数

- 1. 输入失调电压 u_{IO}
- 2. 输入失调电流 I_{10}
- 3. 输入偏置电流 *I*_{IB}
- 4. 开环差模电压放大倍数 A_o
- 5. 最大差模输入电压 $U_{id \max}$
- 6. 最大共模输入电压 $U_{ic\,\text{max}}$
- 7. 最大输出电压 $U_{o \max}$
- 8. 最大输出电流 $I_{o \max}$

- 9. 共模抑制比 K_{CMR}
- 10. 输入电阻 r_i
- 11. 输出电阻 r_o
- 12. 电源电压 ±U_{cc}

5.2.2 集成运放的电压传输特性和电路模型

・电压传输特性

$$u_o = f(u_i)$$
 $(u_i = u_+ - u_-)$

线性区:

$$u_o = A_0 u_i = A_0 (u_+ - u_-)$$

因 A_0 很大,故线性区很窄,

即 $(u_i^+ - u_i^-)$ 极小。

饱和区:

$$u_i > U_i^+, u_o = U_o^+$$
 ——正饱和

$$u_{i} < U_{i}^{-}, u_{o} = U_{o}^{-}$$
 ——负饱和

5.2.2 集成运放的电压传输特性和电路模型

・电路模型

——线性工作区模型

输入电压 u_i 控制输出电压 u_o ,即为电压控制电压源的模型。

 r_i 为输入电阻 r_o 为输出电阻

A。为开环差模电压放大倍数

5.2.3 集成运放的理想特性

・理想化参数:

开环电压增益 $A_0 \to \infty$ 输入电阻 $r_i \to \infty$ 输出电阻 $r_o \to 0$ 共模抑制比 $K_{CMR} \to \infty$

· 线性区工作的两个重要特性:

$$u_{+} \approx u_{-} \qquad i_{+} = i_{-} \approx 0$$

5.2.3 集成运放的理想特性

・理想的电压传输特性

・集成运放工作状态的判断

开环工作——饱和区 闭环正反馈——饱和区 闭环负反馈——线性区

ZHEJIANG UNIVERSITY

5.3 放大电路中的负反馈

- 5.3.1 反馈的基本概念
- 5.3.2 负反馈的四种类型
- 5.3.3 负反馈对放大电路性能的影响

5.3.1 反馈的基本概念

反馈:将电路的输出信号 (电压和电流)的一部分 或全部通过一定的电路 (反馈电路)送回至电路 的输入回路。

负反馈

反馈信号 x_f 与输入信号 x_i 极性相反,用于放大电路;

正反馈

反馈信号 x_f 与输入信号 x_i 极性相同,用于振荡电路。

ZHEJIANG UNIVERSITY

5.3.1 反馈的基本概念

对于负反馈 $x_d = x_i - x_f$

反馈系数
$$F = \frac{x_f}{x_o}$$

开环放大倍数 $A_0 = \frac{x_o}{x_d}$

$$x_i = x_d + x_f = x_d + Fx_o = x_d + FA_0x_d = x_d(1 + FA_0)$$

闭环放大倍数
$$A_f = \frac{x_o}{x_i} = \frac{A_0 x_d}{x_d (1 + FA_0)} = \frac{A_0}{1 + FA_0}$$

当
$$|1+FA_0|$$
 \square 1(深度负反馈) $A_f = \frac{A_0}{1+FA_0} \approx \frac{A_0}{FA_0} = \frac{1}{F}$

• 按输入回路连接方式:

串联反馈

输入量反馈量净输入量 以电压形式比较

$$\dot{\boldsymbol{U}}_{d} = \dot{\boldsymbol{U}}_{i} - \dot{\boldsymbol{U}}_{f}$$

并联反馈

输入量反馈量净输入量 以电流形式比较

$$\dot{I}_d = \dot{I}_i - \dot{I}_f$$

• 按输出回路连接方式:

反馈量取决于输出电压

反馈量取决于输出电流

四种类型: 电压串联负反馈 电压并联负反馈 电流串联负反馈 电流并联负反馈

1. 电压串联负反馈

如何判定图中各电压极性?

用瞬时极性法判定!

输入回路
$$u_d = u_i - u_f$$

反馈电压
$$u_f = \frac{R}{R + R_f} u_0 = \frac{R}{R + R_f} R_L i_0$$

2. 电流并联负反馈

如何判定图中各电流方向?

输入回路
$$i_d = i_i - i_f$$

反馈电流
$$i_f = \frac{R}{R + R_f} i_a$$

3. 电压并联负反馈

各电流方向如图

输入回路
$$i_d = i_i - i_f$$

反馈电流
$$i_f = \frac{u_- - u_o}{R_f}$$

4. 电流串联负反馈

各电压极性如图

输入回路
$$u_d = u_i - u_f$$

反馈电压
$$u_f \approx Ri_o$$

5.3.3 负反馈对放大电路性能的影响

1. 提高放大倍数的稳定性

在深度负反馈下
$$A_f = \frac{A_0}{1 + FA_0} \approx \frac{1}{F}$$

$$\frac{dA_f}{dA_0} = \frac{(1 + FA_0) - FA_0}{(1 + FA_0)^2} = \frac{1}{(1 + FA_0)^2} \qquad \frac{dA_f}{A_f} = \frac{1}{1 + FA_0} \cdot \frac{dA_0}{A_0}$$

$$\frac{dA_f}{A_f}$$
 表示闭环放大倍数相对变化量
$$\frac{dA_0}{A_0}$$
 表示开环放大倍数相对变化量

即
$$\frac{dA_f}{A_f} < \frac{dA_0}{A_0}$$
 ——闭环放大倍数稳定性高

5.3.3 负反馈对放大电路性能的影响

2. 减小非线性失真

无负反馈

有负反馈

5.3.3 负反馈对放大电路性能的影响

3. 扩展通频带

$$f_{hf} > f_h$$

4. 改变输入电阻和输出电阻

串联反馈 输入电阻增大

并联反馈 输入电阻减小

电压反馈 输出电阻减小

电流反馈 输出电阻增大

在图示电压串联负反馈电路中,设 $R_f=100K\Omega, R=R_b=10K\Omega$,负载电阻 R_L 不接,输入电压 u_i 为直流电压0.1V,集成运放的开环电压放大倍数 $A_0=10000$,输入电阻 $r_i=500K\Omega$,输出电阻 $r_o=500\Omega$ 。试用集成运放的电路模型求此电路的输出电压 u_o ,闭环电压放大倍数 A_f 、输入电阻 r_{if} 和输出电阻 r_{of} 。

[解] 集成运放用电路模型表示后,原电路可画成右上图所示的等效电路,据图列出方程:

$$\begin{cases} i_{R} - i_{i} - i_{f} = 0 \\ (R_{b} + r_{i})i_{i} + Ri_{R} = u_{i} \\ (R_{f} + r_{o})i_{f} + Ri_{R} = A_{0}(u_{+} - u_{-}) = A_{0}r_{i}i_{i} \end{cases}$$

代入参数可解得电流:

$$i_i \approx 22.07 \times 10^{-5} \,\mu A$$

 $i_f \approx 9.99 \,\mu A$
 $i_R \approx i_i + i_f \approx 9.99 \,\mu A$

输出电压 $u_o = A_0 r_i i_f \approx 1.099V$

闭环电压放大倍数
$$A_f = \frac{u_o}{u_i} = 10.99$$

输入电阻
$$r_{if} = \frac{u_i}{i_i} \approx 453 M\Omega$$

为求输出电阻, 令 $u_i = 0$ 得图

$$i = i_1 + i_2 = \frac{u - A_0(u_+ - u_-)}{r_o} + \frac{u}{R_f + [(r_i + R_b)//R]}$$

整理后代入参数得
$$r_{of} = \frac{u}{i} \approx 0.6\Omega$$

可见,
$$r_{if}=453M\Omega$$
口 $r_i=500K\Omega$
$$r_{of}=0.6\Omega$$
口 $r_o=500\Omega$
$$r_i$$
 和 (u_+-u_-) 均很小,(理想特性 $i_i\approx 0$ $u_+\approx u_-$)。

5.4 集成运放在模拟信号运算方面的应用

5.4.1 比例运算电路

5.4.2 加、减运算电路

5.4.3 积分、微分运算电路

5.4.1 比例运算电路

输出电压与输入电压成比例关系:

$$u_o = Ku_i$$

- 1. 反相输入比例运算电路
- ◇ 电路一:

电路构成负反馈,集成运放工作在线性区。

$$i_{-} = i_{+} \approx 0$$

$$u_{-} \approx u_{+} = R_{b}i_{+} \approx 0$$

(电路一)

反相输入端非接地,但电位为地(零)电位

——"虚地"

THE JIANG UNIVERSITY

5.4.1 比例运算电路

$$i_f = i_1 = \frac{u_i - u_-}{R} \approx \frac{u_i}{R} \quad \text{if} \quad u_o \approx -R_f i_f = -\frac{R_f}{R} u_i$$

$$\mathbb{P} \quad A_f = \frac{u_o}{u_i} = -\frac{R_f}{R}$$

当
$$R_f = R$$
 \Longrightarrow $A_f = -1$, $u_o = -u_i$ ——反相器

电路的输入电阻
$$r_{if} = \frac{u_i}{i_i} = R$$

平衡电阻

$$R_b \approx R // R_f$$

 $u_i \circ \stackrel{i_i}{\longrightarrow} R \stackrel{i_f}{\longrightarrow} i_- \longrightarrow A_0$

5.4.1 比例运算电路

◇申路二:

因
$$i_f = i_1 = \frac{u_i}{R_1}$$
, $i_2 = -\frac{u_a}{R_2} = -\frac{-R_f i_f}{R_2} = \frac{R_f}{R_1 R_2} u_i$ $i_1 = \frac{i_1}{R_1} + i_2 = \frac{1}{R_1} (1 + \frac{R_f}{R_2}) u_i$ $u_i = -R_3 i_3 - R_2 i_2 = -\frac{R_3}{R_1} (1 + \frac{R_f}{R_2}) u_i - \frac{R_f}{R_1} u_i$ (电路二)

$$A_f = \frac{u_o}{u_i} = -\left[\frac{R_f}{R_1} + (1 + \frac{R_f}{R_2})\frac{R_3}{R_1}\right] = -\frac{1}{R_1}(R_f + R_3 + \frac{R_f R_3}{R_2})$$

此电路可用较小的 R_f 阻值获得较大的放大倍数。

浙江大学

5.4.1 比例运算电路

2. 同相输入比例运算电路

$$i_i \approx 0$$
 $u_- \approx u_+ \approx u_i$

$$i_f \approx i_R = \frac{u_-}{R} \approx \frac{u_i}{R}$$

$$u_o = u_- + R_f i_f = u_i + \frac{R_f}{R} u_i = (1 + \frac{R_f}{R}) u_i$$

$$R_b \approx R // R_f$$

当
$$R_f = 0$$
或 $R \to \infty$ $\Longrightarrow A_f = 1$, $u_o = u_i$ ——电压跟随器

电路的输入电阻
$$r_{if} = \frac{u_i}{i_i} \rightarrow \infty$$

集成运放承受的共模电压 $u_{c} = u_{+} = u_{\underline{-}} = u_{i}$

THE JIANG UNIVERSITY

5.4.2 加、减运算电路

1. 加法运算电路

根据
$$i_{-}=i_{+}\approx 0, u_{-}\approx u_{+}\approx 0$$

得
$$i_f \approx i_1 + i_2 \approx \frac{u_{i1}}{R_1} + \frac{u_{i2}}{R_2}$$

$$u_o \approx -R_f i_f = (\frac{R_f}{R_1} u_{i1} + \frac{R_f}{R_2} u_{i2})$$

如取
$$R_1 = R_2 = R \implies u_o = -\frac{R_f}{R}(u_{i1} + u_{i2})$$
 —和放大

如取
$$R_1 = R_2 = R_f$$
 \square $u_o = -(u_{i1} + u_{i2})$ —加法运算

例 题

[例题5.4.1] 电路如图5.4.5所示,写出 u_{o1}, u_{o2}, u_{o} 的表达式。

[解]
$$u_{o1} = -\frac{R_2}{R_1}u_{i1} = -\frac{20}{10}u_{i1} = -2u_{i1}$$

$$u_{+2} = \frac{R_7//R_8}{R_6 + R_7//R_8}u_{i2} + \frac{R_6//R_8}{R_7 + R_6//R_8}u_{i3}$$

$$= \frac{12}{20 + 12}u_{i2} + \frac{12}{20 + 12}u_{i3}$$

$$= \frac{3}{8}(u_{i2} + u_{i3})$$

$$u_{o2} = (1 + \frac{R_5}{R_4})u_{+2} = (1 + \frac{30}{10}) \times \frac{3}{8}(u_{i2} + u_{i3}) = 1.5(u_{i2} + u_{i3})$$

$$u_o = -\left(\frac{u_{o1}}{R_0} + \frac{u_{o2}}{R_{11}}\right)R_{10} = -3(u_{o1} + u_{o2}) = 6u_{i1} - 4.5u_{i2} - 4.5u_{i3}$$

5.4.2 加、减运算电路

2. 减法运算电路

$$\begin{split} u_{-} &\approx u_{+} \approx \frac{R_{3}}{R_{2} + R_{3}} u_{i2} \\ u_{o} &= u_{-} - \frac{u_{i1} - u_{-}}{R_{1}} R_{f} = u_{-} - \frac{R_{f}}{R_{1}} u_{i1} + \frac{R_{f}}{R_{1}} u_{-} \\ &= (1 + \frac{R_{f}}{R_{1}}) u_{-} - \frac{R_{f}}{R_{1}} u_{i1} \\ &= \frac{R_{1} + R_{f}}{R_{1}} \frac{R_{3}}{R_{2} + R_{3}} u_{i2} - \frac{R_{f}}{R_{1}} u_{i1} \end{split}$$

常取 $R_1 = R_2, R_3 = R_f$

则
$$u_o = \frac{R_f}{R_1} (u_{i2} - u_{i1})$$
 —差分放大

THE JAMES UNIVERSITY

5.4.2 加、减运算电路

2. 减法运算电路

当取
$$R_1 = R_2 = R_3 = R_f$$
 得 $u_o = u_{i2} - u_{i1}$ ——减法运算

集成运放承受的共模电压

$$u_c = u_+ = u_- = \frac{R_3}{R_2 + R_3} u_{i2}$$

(此电路也可用叠加原理分析输入、输出关系)

例 题

[例题5.4.2] 电路如图所示,已知: $R=100k\Omega$, $U_I=2V$ 。

求: U₀

解:由图A₂构成反相输入比例运

算电路,则:

$$U_{O2} = -\frac{R}{R}U_0 = -U_0$$

 A_1 构成差分输入减法运算电路,则:

$$U_{O} = \frac{R}{R}(U_{O2} - U_{I}) = -U_{O} - U_{I}$$

因此
$$U_O = -\frac{1}{2}U_I = -1(V)$$

5.4.2 加、减运算电路

2. 减法运算电路

双运放减法运算电路

用叠加原理分析输入、

输出关系式:

$$u_{o1} = \frac{R_1 + R_2}{R_2} u_{i1}$$

当 u_{o1} 单独作用时,输出电压分量: $u'_{o} = -\frac{R_{2}}{R_{1}}u_{o1} = -(1 + \frac{R_{2}}{R_{1}})u_{i1}$

当 u_{i2} 单独作用时,输出电压分量: $u''_{o} = (1 + \frac{R_{2}}{R_{1}})u_{i2}$

得
$$u_o = u'_o + u''_o = (1 + \frac{R_2}{R_1})(u_{i2} - u_{i1})$$
 特点: 输入电阻大

1. 积分运算电路

◇ 基本积分电路

$$i_{-} = i_{+} \approx 0 \qquad u_{-} = u_{+} \approx 0$$

$$i_{C} = i_{i} = \frac{u_{i}}{R}$$

设电容电压初始值为 $u_c(0)$

$$u_{o} = u_{-} - u_{C} = -u_{C} = -u_{C}(0) - \frac{1}{C} \int i_{C} dt$$

$$= -u_{C}(0) - \frac{1}{C} \int i_{i} dt$$

$$= -u_{C}(0) - \frac{1}{RC} \int u_{i} dt$$

1. 积分运算电路

当输入电压为直流电压时,

即
$$u_i = U_i$$
 , 得 $u_o = -\frac{U_i}{RC}t$

输入、输出电压波形如图

◇ 比例积分电路

$$u_o = -(R_f i_i + \frac{1}{C} \int i_i dt)$$

$$u_o = -(\frac{R_f}{R} u_i + \frac{1}{RC} \int u_i dt)$$

1. 积分运算电路

当
$$u_i = U_i$$
 (直流),得
$$u_o = -\left(\frac{R_f}{R}U_i + \frac{U_i}{RC}t\right)$$

◇ 和积分电路

$$\begin{split} u_o &= -\frac{1}{C} \int i_C dt = -\frac{1}{C} \int (i_1 + i_2) dt \\ &= -\frac{1}{C} \int (\frac{u_{i1}}{R_1} + \frac{u_{i2}}{R_2}) dt \\ &\stackrel{\text{def}}{=} R_1 = R_2 = R \ , \ u_o = -\frac{1}{RC} \int (u_{i1} + u_{i2}) dt \end{split}$$

积分电路可将矩形波电压变换为三角波电压。

例 题

[例题5.4.3] 图示电路中,集成运放的电源电压为 $\pm 15V$, $R_1 = R_2 = 10k\Omega$, $R_3 = R_f = 20k\Omega$, $R_4 = 100k\Omega$, $C = 1\mu F$,在 t = 0 时加入 $u_{i1} = 0.6V$, $u_{i2} = 0.5V$,电容无初始储能。 试求输出电压上升到6V所需的时间。

[解] 集成运放 A_1 等构成差值放大电路, A_2 等构成基本积分电路。

[例题5.4.3]

$$u_{o1} = \frac{R_1 + R_f}{R_1} \frac{R_3}{R_2 + R_3} u_{i2} - \frac{R_f}{R_1} u_{i1}$$

$$= \frac{R_f}{R_1} (u_{i2} - u_{i1}) = \frac{20}{10} \times (0.5 - 0.6) = -0.2V$$

$$u_o = -\frac{1}{R_A C} \int u_{o1} dt = \frac{0.2}{100 \times 10^3 \times 1 \times 10^{-6}} = 2t$$

$$\implies u_o = 6V, \ t = \frac{u_o}{2} = \frac{6}{2} = 3s$$

2. 微分运算电路

$$u_{-} = u_{+} = 0$$

$$i_{f} = i_{C}$$

$$u_{o} = -R_{f}i_{f} = -R_{f}i_{C}$$

$$= -R_{f}C \frac{du_{C}}{dt}$$

$$u_{C} = u_{i}$$

$$u_{o} = -R_{f}C \frac{du_{i}}{dt}$$

微分电路可将矩形波变换成正负尖脉冲波。

THE JIANG UNIVERSITY

5.5 集成运放在幅值比较方面的应用

5.5.1 开换工作的比较器

5.5.2 滞回比较器

5.5.1 开环工作的比较器

开环状态——集成运放工作在非线性区。

1. 反相输入比较器

$$u_i$$
 ——输入电压

$$U_R$$
 ——参考电压

当
$$u_i < U_R$$
, 运放正饱和, $u_o = U_{OH}$ $u_i > U_R$, 运放负饱和, $u_o = U_{OL}$

2. 同相输入比较器

$$u_i < U_R$$
 $u_o = U_{OL}$
 $u_i > U_R$ $u_o = U_{OH}$

5.5.1 开环工作的比较器

3. 输出加限幅电路的比较器

4. 过零比较器(即 $U_R=0$)

可将其它波形变换为矩形波。

如输入为正弦波,输出为方波。

例 题

[例题5.5.1] 图示为电源电压过压报警电路, 试分析其工作原理。

解:集成运放构成电压比较器,参考电压 $U_b=U_z$ 。当直流电源输出电压小于上限值时, $U_a< U_b$,比较器 A 输出低电平,三极管 T 截止,继电器 K 线圈 E 无电压,触点 E ,加合,E ,从为分,,以为,,是,E 。 E 。 E ,从为,,是,E 。 E

例 题

[例题5.5.1] 图示为电源电压过压报警电路,试分析其工作原理。

解: 当直流电源电压超过上限值时, $U_a > U_b$, A 输出高电平, T 饱和导通, K 加电压, K_1 断开, D_L 不发光, K_2 闭合, D_H 发光, H 发声报警, K_3 断开, R_L 断电。

5.5.2 滞回比较器

闭环正反馈——集成运放工作在非线性区

集成运放同相输入端电压 u_+

由输出电压 U_o 和参考电压 U_R

$$u_{+} = \frac{R_{f}}{R_{2} + R_{f}} U_{R} + \frac{R_{2}}{R_{2} + R_{f}} u_{o}$$

设加电源后集成运放正饱和, $u_o = U_{OH}$, 并设 $U_R > 0$,

$$u_{+} = U_{+H} = \frac{R_{f}}{R_{2} + R_{f}} U_{R} + \frac{R_{2}}{R_{2} + R_{f}} U_{OH}$$
 (正值)

加入 u_I , 当 u_I 增大至 $u_I > U_{+H}$, 运放负饱和, $u_o = U_{OL}$

5.5.2 滞回比较器

当 u_I 减小至 $u_I \leq U_{+L}$

运放正饱和, $u_o = U_{OH}$ 。

时的电压传输特性如图。

正向阈值电压

 $U_{TH} = U_{+H}$

参数:

负向阈值电压

 $U_{TL} = U_{+L}$

滞回电压 (回差) $\Delta U_T = U_{TH} - U_{TL}$

計算 ZHEJIANG UNIVERSITY

5.5.2 滞回比较器

滞回电压

$$\Delta U_T = \frac{R_2}{R_2 + R_f} (U_{OH} - U_{OL})$$

改变 $\frac{R_2}{R_2 + R_f}$ 值,可改变 U_{TH} 、 U_{TL} 、 ΔU_T

改变 U_R ,可使电压传输特性左、右移动。 u_i $\overset{\kappa_1}{\longrightarrow}$ —

当 $U_R = 0$,如图:

$$U_{TH} = \frac{R_2}{R_2 + R_f} U_{OH}$$
 (正值)

$$U_{TL} = \frac{R_2}{R_2 + R_f} U_{OL}$$
 (负值)

$$\Delta U_T = \frac{R_2}{R_2 + R_f} (U_{OH} - U_{OL}) \quad (\overrightarrow{A} \overrightarrow{\mathfrak{D}})$$

例 题

[例题5.5.2] 分析图示方波-三角波产生电路的工作原理。

解:电路由电压比较器和基本积分电路构成。集成运放 A1工作在非线性区, A2工作在线性区。

设加电源后,集成运放 A_1 正饱和,电容C无初始储能,

则
$$u_{o1} = U_{z}$$

$$u_{o2} = -\frac{1}{R_5 C} \int_0^t u_{o1} dt = -\frac{U_Z}{R_5 C} t \quad (5\%)$$

[例题5.5.2]

集成运放 A_1 同相输入端电压 $u_{+H} = \frac{R_1}{R_1 + R_2} u_{o2} + \frac{R_2}{R_1 + R_2} U_Z$

当 u_{o2} 下降至使 $u_{+H} \leq 0$

$$\text{Re} \ \frac{R_1}{R_1 + R_2} u_{02} \leq -\frac{R_2}{R_1 + R_2} U_Z \qquad \qquad u_{o2} \leq -\frac{R_2}{u_{01}} R_1 U_Z$$

集成运放 A_1 负饱和, $u_{o1} = -U_Z$

[例题5.5.2]

此时集成运放 A_1 同相输入端电压 $u_{+L} = \frac{R_1}{R_1 + R_2} u_{o2} - \frac{R_2}{R_1 + R_2} U_Z$

而 $u_{o2} = -\frac{R_2}{R_1}U_Z + \frac{U_Z}{R_5C}(t-t_1)$ (上升) 当 u_{o2} 上升至使 $u_{+L} \ge 0$

集成运放 A_1 正饱和, $u_{o1} = U_Z$ 以后重复。

电路包含: 温度传感器、电压跟随器、加法定标电路、

滞回比较器、反相器、光电耦合器、继电器、加热器等。

• 温度传感器:

由热敏电阻和恒流源等组成。

温度: 0°C~100°C

 $R_T: 7355\Omega \sim 153\Omega$

 $U_T = R_T I_S = 7.355V \sim 0.153V$

集成运放构成电压跟随器:

$$U_{O1} = U_T$$

・加法定标电路

要求:
$$U_{01} = 7.355V \sim 0.153V \Rightarrow U_{02} = 0 \sim 10V$$

即当
$$U_{O1} = U_{O1L} = 7.355V$$
 时 $U_{O2} = U_{O2L} = 0$ $U_{O1} = 0$

得
$$\frac{U_{O1L}}{R_4} + \frac{-U_{CC}}{R_{P1}} = 0$$

$$R_{P1} = \frac{U_{CC}}{U_{O1L}} R_4 \approx 20.39 k\Omega$$

当
$$U_{01} = U_{01H}^{01E} = 0.153V$$
 时, $U_{02} = U_{02H} = 10V$

$$\frac{U_{O1H}}{R_4} + \frac{U_{O2H}}{R_6 + R_{P2}} + \frac{-U_{CC}}{R_{P1}} = 0 \quad \text{RP} \quad \frac{0.153}{10} + \frac{10}{R_6 + R_{P2}} + \frac{-15}{20.39} = 0$$

$$(R_6 + R_{P2}) \approx 13.89k\Omega$$

・测量和参考电压

两个集成运放均构成电压跟随器。

$$U_{O3} = U_{O2}$$

电压表以温度为刻度则可显示被测温度。

$$U_R = U_R$$

作为滞回比较器的参考电压(可调)。

・滞回比较器

$$U_{-5} = \frac{R_{14}}{R_{12} + R_{14}} U_{O3}$$

$$U_{+5} = \frac{R_{13}}{R_{11} + R_{13}} U_R + \frac{R_{11}}{R_{11} + R_{13}} U_{O5}$$

在加温时,集成运放 A, 正饱和,

$$U_{O5} = U_{O5H}$$

当温度上升至控温范围上限时, $U_{-5} > U_{+5}$,集成运放

$$A_5$$
 负饱和。 $U_{06} = -U_{05}$ (反相作用)

・光电耦合和加温电路

 T_1 ——光电耦合器件

K ——继电器

当 U_{o6} 为低电平时,

 T_1 、 T_2 导通,继电器线圈带电,触头闭合,

加热器工作; 当 U_{06} 为高电平时, 停止加热。

本章结束 返回目录 第6章 波形产生和变换

