

Decision Trees

Decision Tree Model

Cat classification example

	Ear shape (x ₁)	Face $shape(x_2)$	Whiskers (x ₃)	Cat
	Pointy 🕊	Round 🕊	Present 🕊	1
	Floppy 🕊	Not round 🕊	Present	1
(F)	Floppy	Round	Absent 🕊	0
	Pointy	Not round	Present	0
	Pointy	Round	Present	1
(3)	Pointy	Round	Absent	1
	Floppy	Not round	Absent	0
	Pointy	Round	Absent	1
(Per)	Floppy	Round	Absent	0
	Floppy	Round	Absent	0

Categorical (discrete values)

New test example

Ear shape Pointy
Face shape Round
Whiskers: Present

Decision Tree

Decision Trees

Learning Process

4/4 cats

Decision 1: How to choose what feature to split on at each node?

Maximize purity (or minimize impurity) Nort Vedi D

Decision 1: How to choose what feature to split on at each node?

Maximize purity (or minimize impurity)

DNA

Νo

0/5 cats

Yes

- When a node is 100% one class
- When splitting a node will result in the tree exceeding a maximum depth

- When a node is 100% one class
- When splitting a node will result in the tree exceeding a maximum depth

- When a node is 100% one class
- When splitting a node will result in the tree exceeding a maximum depth
- When improvements in purity score are below a threshold
- When number of examples in a node is below a threshold

- When a node is 100% one class
- When splitting a node will result in the tree exceeding a maximum depth
- When improvements in purity score are below a threshold
- When number of examples in a node is below a threshold

沒在每個的历点、

Measuring purity

Entropy as a measure of impurity

 p_1 = fraction of examples that are cats

Entropy as a measure of impurity

 p_1 = fraction of examples that are cats

$$p_0 = 1 - p_1$$

$$H(p_1) = -p_1 log_2(p_1) - p_0 log_2(p_0)$$
$$= -p_1 log_2(p_1) - (1 - p_1) log_2(1 - p_1)$$

Note: " $0 \log(0)$ " = 0

© DeepLearning.AI

Stanford

Decision Tree Learning

LEGG WAR SWANGER STANDERS

LEGG MANAGER STAN

Choosing a split: Information Gain

Choosing a split

$$p_1 = \frac{4}{5} = 0.8$$
 $p_1 = \frac{1}{5} = 0.2$

$$H(0.8) = 0.72$$
 $H(0.2) = 0.72$

$$H(0.5) - \left(\frac{5}{10}H(0.8) + \frac{5}{10}H(0.2)\right)$$

= 0.28

$$p_1 = \frac{4}{7} = 0.57$$
 $p_1 = \frac{1}{3} = 0.33$

$$H(0.57) = 0.99$$
 $H(0.33) = 0.92$

$$H(0.33) = 0.92$$

$$H(0.5) - \left(\frac{7}{10}H(0.57) + \frac{3}{10}H(0.33)\right)$$

$$= 0.03$$

$$p_1 = \frac{3}{4} = 0.75$$
 $p_1 = \frac{2}{6} = 0.33$

$$H(0.75) = 0.81$$
 $H(0.33) = 0.92$

$$H(0.5) - \left(\frac{4}{10}H(0.75) + \frac{6}{10}H(0.33)\right)$$

$$= 0.12$$

Information Gain

$$p_1^{\text{left}} = \frac{4}{5}$$
 $p_1^{\text{right}} = \frac{1}{5}$
 $w^{\text{left}} = \frac{5}{10}$ $w^{\text{right}} = \frac{5}{10}$

Information gain

$$= H(p_1^{\text{root}}) - \left(w^{\text{left}} H(p_1^{\text{left}}) + w^{\text{right}} H(p_1^{\text{right}}) \right)$$

经新更对常是强烈的

Putting it together

- Start with all examples at the root node
- Calculate information gain for all possible features, and pick the one with the highest information gain
- Split dataset according to selected feature, and create left and right branches of the tree
- Keep repeating splitting process until stopping criteria is met:
 - When a node is 100% one class.
 - When splitting a node will result in the tree exceeding a maximum depth
 - Information gain from additional splits is less than threshold
 - When number of examples in a node is below a threshold

Recursive algorithm

Using one-hot encoding of categorical features

Features with three possible values

	Ear shape (x_1)	Face shape (x_2)	Whiskers (x_3)	Cat (y)
	Pointy 🕊	Round	Present	1
	Oval	Not round	Present	1
	Oval 🕊	Round	Absent	0
	Pointy	Not round	Present	0
	Oval	Round	Present	1
	Pointy	Round	Absent	1
	Floppy 🕊	Not round	Absent	0
	Oval	Round	Absent	1
(E)	Floppy	Round	Absent	0
(3)	Floppy	Round	Absent	0

3 possible values

One hot encoding

	Ear shape Pointy ears		Floppy ears	Oval ears	Face shape	Whiskers	Cat
	Pointy	1	0	O	Round	Present	1
	Oval	O	O	1	Not round	Present	1
3	Oval	0	0	1	Round	Absent	0
66	Pointy	1	0	0	Not round	Present	0
	Oval	0	0	1	Round	Present	1
	Pointy	1	0	0	Round	Absent	1
	Floppy	0	1	0	Not round	Absent	0
	Oval	0	0	1	Round	Absent	1
(E)	Floppy	0	1	0	Round	Absent	0
	Floppy	0	1	0	Round	Absent	0

One hot encoding

If a categorical feature can take on k values, create k binary features (0 or 1 valued).

One hot encoding

	Ear shape	Pointy ears	Floppy ears	Oval ears	Face shape	Whiskers	Cat
	Pointy	1	0	0	Round	Present	1
	Oval	0	0	1	Not round	Present	1
*	Oval	0	0	1	Round	Absent	0
	Pointy	1	0	0	Not round	Present	0
	Oval	0	0	1	Round	Present	1
	Pointy	1	0	0	Round	Absent	1
	Floppy	0	1	0	Not round	Absent	0
	Oval	0	0	1	Round	Absent	1
(E)	Floppy	0	1	0	Round	Absent	0
	Floppy	0	1	0	Round	Absent	0

One hot encoding and neural networks

	Pointy ears	Floppy ears	Round ears	Face shape	Whiskers	Cat
	1	0	0	-Round 1	Present 1	1
	0	0	1	Not round O	-Present 1	1
	0	0	1	Round 1	-Absent O	0
200	1	0	0	Not round O	Present 1	0
	0	0	1	Round 1	Present 1	1
	1	0	0	Round 1	Absent 0	1
	0	1	0	Not round 0	Absent 0	1
	0	0	1	Round 1	Absent 0	1
V.V	0	1	0	Round 1	Absent 0	1
3	0	1	0	Round 1	Absent 0	1

中国设建等的特征 SM是很多数分析等指 Decision Tree Learning

产学校2年3年15份份的

Continuous valued features

Continuous features

	Ear shape	Face shape	Whiskers	Weight (lbs.)	Cat
	Pointy	Round	Present	7.2	1
	Floppy	Not round	Present	8.8	1
	Floppy	Round	Absent	15	0
	Pointy	Not round	Present	9.2	0
	Pointy	Round	Present	8.4	1
<u></u>	Pointy	Round	Absent	7.6	1
	Floppy	Not round	Absent	11	0
	Pointy	Round	Absent	10.2	1
Vel V	Floppy	Round	Absent	18	0
	Floppy	Round	Absent	20	0

Splitting on a continuous variable

Decision Tree Learning

2月的的理事场

Regression Trees (optional)

Regression with Decision Trees: Predicting a number

	Ear shape	Face shape	Whiskers	Weight (lbs.)
	Pointy	Round	Present	7.2
	Floppy	Not round	Present	8.8
	Floppy	Round	Absent	15
	Pointy	Not round	Present	9.2
	Pointy	Round	Present	8.4
(3)	Pointy	Round	Absent	7.6
	Floppy	Not round	Absent	11
	Pointy	Round	Absent	10.2
(- <u>-</u>)	Floppy	Round	Absent	18
	Floppy	Round	Absent	20

Regression with Decision Trees

Choosing a split

Weights: 7.2, 9.2, 8.4, 7.6, 10.2

Weights: 8.8, 15, 11, 18, 20

Variance: 1.47

Variance: 21.87

$$w^{\text{left}} = \frac{5}{10}$$

$$w^{\text{right}} = \frac{5}{10}$$

$$20.51 - \left(\frac{5}{10} * 1.47 + \frac{5}{10} * 21.87\right)$$
= 8.84

Weights: 7.2, 15, 8.4, 7.6, 10.2, 18, 20

Weights: 8.8,9.2,11

Variance: 27.80

Variance: 1.37

$$w^{\text{left}} = \frac{7}{10}$$

$$w^{\text{left}} = \frac{7}{10}$$
 $w^{\text{right}} = \frac{3}{10}$

$$20.51 - \left(\frac{7}{10} * 27.80 + \frac{3}{10} * 1.37\right)$$
$$= 0.64$$

Weights: 7.2, 8.8, Weights: 15, 7.6, 9.2, 8.4 11, 10.2, 18, 20

Variance: 0.75

Variance: 23.32

$$w^{\text{left}} = \frac{4}{10}$$
 $w^{\text{right}} = \frac{6}{10}$

$$20.51 - \left(\frac{4}{10} * 0.75 + \frac{6}{10} * 23.32\right)$$
$$= 6.22$$

Tree ensembles

Using multiple decision trees

Trees are highly sensitive to small changes of the data

Tree ensemble

Prediction: Cat Prediction: Not cat

Final prediction: Cat

New test example

Ear shape: Pointy
Face shape: Not Round
Whiskers: Present

Prediction: Cat

Not Round

Whiskers

Absent

Not Cat

Face

shape

Present

Cat

Round

Cat

© DeepLearning.Al
Stanford

Sampling with replacement

Sampling with replacement

Sampling with replacement

	Ear shape	Face shape	Whiskers	Cat
	Pointy	Round	Present	1
	Floppy	Not round	Absent	0
	Pointy	Round	Absent	1
	Pointy	Not round	Present	0
(<u>.</u>)	Floppy	Not round	Absent	0
(w)	Pointy	Round	Absent	1
(20)	Pointy	Round	Present	1
	Floppy	Not round	Present	1
(F)	Floppy	Round	Absent	0
	Pointy	Round	Absent	1

Tree ensembles

Random forest algorithm

Generating a tree sample

Given training set of size m

For
$$b = 1$$
 to B

Use sampling with replacement to create a new training set of size m

Train a decision tree on the new dataset

					K							
Ear shape	Face shape	Whiskers	Cat	Whiskers	Absent	Ear shape	Face shape	Whiskers	Cat		r shape Floppy	
-	•	. .	V	Fresent		Pointy	Round	Present	Yes	Pointy	/	
Pointy	Round	Present	Yes			Pointy	Round	Absent	Yes			
Floppy	Round	Absent	No			Floppy	Not Round	Absent	No	Face		
Floppy	Round	Absent	No	(Ear shape)	Not cat	Floppy	Not Round	Absent	No	\) Not cat	• • • •
Pointy	Round	Present	Yes			Pointy	Round	Absent	Yes	shape	\prec	
Pointy	Not Round	Present	Yes			Floppy	Round	Absent	No			_
Floppy	Round	Absent	No	Round J	Not round	Floppy	Round	Absent	No	Round .	Not round	
Floppy	Round	Present	Yes		•			Absent	No	Round	*	
Pointy	Not Round	Absent	No			Floppy	Round		No	,		
Pointy	Not Round	Absent	No	Cat No	ot cat	Pointy	Not Round	Absent		Cat	Not cat	
						Pointy	Round	Present	Yes	Cat		
Pointy	Not Round	Present	Yes				A					

Bagged decision tree

Randomizing the feature choice

随机森林是双随机,随机的数据,随机的特征选取,构成了每一颗不同的树

At each node, when choosing a feature to use to split, if n features are available, pick a random subset of k < n features and allow the algorithm to only choose from that subset of features.

$$K = \sqrt{n}$$

Random forest algorithm

Tree ensembles

XGBoost

Boosted trees intuition

Given training set of size *m*

For
$$b = 1$$
 to B :

Use sampling with replacement to create a new training set of size m But instead of picking from all examples with equal (1/m) probability, make it more likely to pick examples that the previously trained trees misclassify

Train a decision tree on the new dataset

									3
Ear shape	Face shape	Whiskers	Cat	Whiskers Present Absent	Ear shape	Face shape	Whiskers	Prediction	·b
Pointy Floppy	Round Round	Present Absent	Yes No		Pointy Floppy Floppy	Round Not Round Round	Present Present Absent	Cat V Not cat X Not cat V	
Floppy Pointy Pointy	Round Round Not Round	Absent Present Present	No Yes Yes	Ear shape Not cat	Pointy Pointy	Not Round Round	Present Present	Not cat Z	
Floppy Floppy	Round Round	Absent Present	No Yes	Round Not round	Pointy Floppy Pointy	Round Not Round Round	Absent Absent Absent	Not cat Not cat Not cat	
Pointy Pointy Pointy	Not Round Not Round Not Round	Absent Absent Present	No No Yes	Cat Not cat	Floppy Floppy	Round Round	Absent Absent	Not cat V	

1.2...b-1

XGBoost (eXtreme Gradient Boosting)

- Open source implementation of boosted trees
- Fast efficient implementation
- Good choice of default splitting criteria and criteria for when to stop splitting
- Built in regularization to prevent overfitting
- Highly competitive algorithm for machine learning competitions (eq: Kaggle competitions)

Using XGBoost

Classification

```
→from xgboost import XGBClassifier

→ model = XGBClassifier()

→ model.fit(X_train, y_train)

→ y_pred = model.predict(X_test)
```

Regression

```
from xgboost import XGBRegressor

model = XGBRegressor()

model.fit(X_train, y_train)
y_pred = model.predict(X_test)
```


Conclusion

When to use decision trees

Decision Trees vs Neural Networks

Decision Trees and Tree ensembles

- Works well on tabular (structured) data
- Not recommended for unstructured data (images, audio, text)
- Fast

Decision Trees vs Neural Networks

Decision Trees and Tree ensembles

- Works well on tabular (structured) data
- Not recommended for unstructured data (images, audio, text)
- Fast
- Small decision trees may be human interpretable

Neural Networks

- Works well on all types of data, including tabular (structured) and unstructured data
- May be slower than a decision tree
- Works with transfer learning
- When building a system of multiple models working together, it might be easier to string together multiple neural networks