THE HONG KONG POLYTECHNIC UNIVERSITY DEPARTMENT OF LAND SURVEYING AND GEO-INFORMATICS

Programme 04001 MSc/PgD in Geomatics Satellite Positioning and Navigation Systems **Subject Title** Subject Code : LSGI533 Session Semester 2, 2005/06 Date 15 May 2006 Time 18:30 - 21:30 Time 3 hours Subject Dr. Wu Chen (LSGI) Allowed Examiner(s) This question paper has a total of 2 pages. **Instructions to Candidates:** This paper has SIX questions. Answer any **FIVE** questions. All questions carry equal marks. Total marks = 100. Available from Invigilator: Nil

...../2

Question 1

Briefly describe the following concepts (select any Four from the given five).

a)	Geodetic Datum	(5 marks)
b)	DGPS	(5 marks)
c)	Ambiguity Resolution	(5 marks)
d)	INS	(5 marks)
e)	Map Matching	(5 marks)

Question 2

Describe the positioning principle of the Global Positioning System (GPS). Compare the major differences between GPS and the European Galileo System. (20 marks)

Question 3

Explain the working principle of WADGPS. How does the WAAS system provide ionospheric delay corrections for single frequency users? (20 marks)

Question 4

Explain the positioning principle with the TDOA method using a mobile phone network. Discuss the main factors that affect positioning accuracy of this method. (20 marks)

Question 5

- a) What are major errors affecting the positioning accuracy of a DR system and how can you improve the performance of a DR system? (13 marks)
- b) Given a start point (E = 56000 m, N = 49000 m) and initial bearing of 135 degrees at time t_0 , a measured angle change rate of 5 degrees/s and odometer output 8 m/s, calculate the position coordinate after 5 seconds. (7 marks)

Question 6

You are required to design a system that can be used to track staff (total 50) in a warehouse within an area of 100 m x 200 m, to an accuracy of 5 m. You should provide the principles of positioning, system design, achievable accuracy, and possible limitations of your system.

(20 marks)

- END OF PAPER -