TERMODINÁMICA

Problema – 1 (3,5 puntos)

Se tiene un ciclo de Rankine, regenerativo y con recalentamiento intermedio, según se describe seguidamente. El vapor sobrecalentado sale de la caldera a 60 bar y 3450 kJ/kg y se expansiona en la turbina de alta presión hasta los 20 bar y 3150 kJ/kg (recalentado frío). Del escape de esta turbina de alta una parte del vapor se deriva como extracción al calentador de agua de alimentación de más alta presión (calentador cerrado, de superficie) y el resto pasa al recalentador de la caldera de donde sale como recalentado caliente, con una entalpía de 3450 kJ/kg. Ahora, el vapor recalentado caliente entra en la turbina de media/baja presión, en la que se expansiona hasta el condensador, a 0,1 bar. En esta turbina de media/baja existen dos extracciones de vapor, la primera de ellas a 5 bar y 3100 kJ/kg hacia el desaireador (precalentador abierto, de mezcla) y la segunda, a 1 bar y 2800 kJ/kg, que se extrae para el primer precalentador del ciclo, el de más baja presión (cerrado, de superficie).

Los calentadores cerrados operan como sigue: en cada uno de ellos el agua de alimentación sale a una temperatura que es 5° C inferior a la de saturación del vapor correspondiente a la presión de carcasa. Igualmente, en cada uno de ellos, los drenajes salen a una temperatura que es 10° C superior a la temperatura que tiene el agua de alimentación que entra en el equipo en cuestión. Los drenajes del calentador de más baja presión se dirigen, a través de su correspondiente válvula, al condensador, mientras que los drenajes del calentador de más alta presión se dirigen, también a través de su válvula, a la carcasa del desaireador o intercambiador de mezcla. El agua a la salida tanto del calentador de mezcla como del condensador se encuentra como líquido saturado a la presión de operación de la carcasa.

El rendimiento isentrópico de todas las bombas es del 100%. El ciclo produce 125 MWe de potencia neta. El condensador se refrigera mediante un caudal de agua (líquido incpmpresible, $\rho = 1000 \text{ kg/m}3$; c =4,186 kJ/kg-K) de 4750 kg/s, que incrementa su temperatura a su paso por él en 10 °C sin perder presión.

Se considera ausencia de pérdidas de presión en todo el ciclo, con la excepción lógica de turbinas, válvulas y bombas.

Se pide:

- 1. Dibujar un esquema del ciclo colocando adecuadamente las bombas que sean necesarias para su funcionamiento.
- 2. Representar en el diagrama de Mollier adjunto la línea de evolución del vapor desde la salida de caldera hasta el condensador, identificando adecuadamente los puntos considerados en el desarrollo del problema.
- 3. Rendimiento de la turbina de baja, calculado entre la extracción al calentador de baja (extracción a 1 bar) y el escape al condensador.
- 4. Caudal de agua de alimentación entrando en la caldera.
- 5. Caudales de las extracciones a los calentadores de ciclo.

Tabla de saturación del agua (líquido-vapor)

р	t	vf	vg	hf	hg	sf	sg
[bar]	[°C]	[m³/kg]	[m³/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]	[kJ/kg-K]
0,1	45,81	0,001010	14,67001	191,81	2583,9	0,64919	8,14884
0,15	53,97	0,001014	10,02014	225,94	2598,3	0,75486	8,00711
0,2	60,06	0,001017	7,64810	251,42	2608,9	0,83202	7,90725
0,25	64,96	0,001020	6,20342	271,96	2617,5	0,89319	7,83021
0,3	69,09	0,001022	5,22866	289,27	2624,6	0,94407	7,76751
0,5	81,32	0,001030	3,24030	340,54	2645,2	1,09120	7,59306
0,6	85,93	0,001033	2,73198	359,91	2652,9	1,14545	7,53121
0,7	89,93	0,001036	2,36504	376,75	2659,4	1,19208	7,47907
0,8	93,49	0,001039	2,08732	391,71	2665,2	1,23305	7,43401
0,9	96,69	0,001041	1,86957	405,20	2670,3	1,26965	7,39435
1	99,61	0,001043	1,69413	417,51	2675,0	1,30277	7,35893
1,1	102,3	0,001045	1,54965	428,84	2679,2	1,33304	7,32693
1,2	104,8	0,001047	1,42853	439,36	2683,1	1,36094	7,29776
1,3	107,1	0,001049	1,32549	449,19	2686,7	1,38684	7,27094
1,4	109,3	0,001051	1,23672	458,42	2690,0	1,41101	7,24614
1,5	111,3	0,001053	1,15942	467,13	2693,1	1,43370	7,22306
1,6	113,3	0,001054	1,09149	475,38	2696,1	1,45507	7,20149
1,7	115,1	0,001056	1,03130	483,22	2698,8	1,47529	7,18124
1,8	116,9	0,001058	0,97759	490,70	2701,4	1,49448	7,16215
1,9	118,6	0,001059	0,92935	497,85	2703,9	1,51275	7,14410
4,5	147,9	0,001088	0,41392	623,14	2743,4	1,82046	6,85609
5	151,8	0,001093	0,37483	640,09	2748,1	1,86039	6,82071
5,5	155,5	0,001097	0,34261	655,77	2752,4	1,89700	6,78864
6	158,8	0,001101	0,31560	670,38	2756,2	1,93083	6,75930
6,5	162	0,001104	0,29260	684,08	2759,6	1,96232	6,73223
7	164,9	0,001108	0,27278	697,00	2762,8	1,99178	6,70711
7,5	167,7	0,001111	0,25552	709,24	2765,7	2,01949	6,68365
18	207,1	0,001168	0,11037	884,46	2795,9	2,39745	6,37750
18,5	208,5	0,001170	0,10746	890,63	2796,6	2,41017	6,36754
19	209,8	0,001172	0,10471	896,69	2797,2	2,42261	6,35782
19,5	211,1	0,001175	0,10208	902,64	2797,8	2,43479	6,34832
20	212,4	0,001177	0,09959	908,47	2798,3	2,44671	6,33904
20,5	213,6	0,001179	0,09721	914,21	2798,8	2,45838	6,32995
21	214,9	0,001181	0,09494	919,85	2799,3	2,46983	6,32106
21,5	216,1	0,001183	0,09277	925,39	2799,7	2,48106	6,31235
22	217,2	0,001185	0,09070	930,85	2800,1	2,49207	6,30381
22,5	218,4	0,001187	0,08872	936,21	2800,5	2,50288	6,29543
23	219,6	0,001189	0,08682	941,50	2800,8	2,51350	6,28722
23,5	220,7	0,001191	0,08500	946,70	2801,2	2,52393	6,27916
24	221,8	0,001193	0,08325	951,83	2801,4	2,53418	6,27124
24,5	222,9	0,001195	0,08157	956,88	2801,7	2,54426	6,26346
25	223,9	0,001197	0,07995	961,87	2801,9	2,55417	6,25581
58	273,4	0,001312	0,03366	1202,41	2786,7	3,00724	5,90612
58,5	273,9	0,001314	0,03335	1205,26	2786,2	3,01234	5,90210
59	274,5	0,001316	0,03305	1208,11	2785,7	3,01742	5,89810
59,5	275	0,001317	0,03275	1210,94	2785,2	3,02247	5,89412
60	275,6	0,001319	0,03245	1213,75	2784,6	3,02748	5,89017
60,5	276,1	0,001321	0,03216	1216,56	2784,1	3,03247	5,88623

	m (kg/s)	ldent.	mໍ / mໍ ₁	P (bara)	h (kJ/kg)	T (ºC)	Tsat (ºC)	v (m³/kg)
1	114.23	{	1.00000	60.00	3450.00			
2	103.10	ノーベ	0.90259	20.00	3150.00	a a controller.		
3	103.10	1-02	0.90259	20.00	3450.00		; ,	
4	9.09	B	0.07956	5.00	3100.00			
5	7.48	Y	0.06548	1.00	2800.00		99.61	
6	86.53	1-02-B-K	0.75755	0.10	2485.95		roughly of the	. As a sum a sum a sum of the state of
7	94.01	1-W-B	0.82302	0.10	191.81	an the theory of the S ectoristics and a	. 4.	0.001010
8	94.01	1-2-3	0.82302	5.00	192.30	45.9283		
9	94.01	1-X-B	0.82302	5.00	396.43	94 6100	a de deservações de la constante de la constan	
10	114.23	1	1.00000	5.00	640.09	and the second second		0.001093
11	114.23	1	1.00000	60.00	646.10	153.2185		<u>.</u>
12	114.23		1 00000	60.00	885.78	207.4000		
13	11.13	α	0.09741	20.00	3150.00	y a man the communication	212.40	
14	11.13	X	0.09741	20.00	689.51	163.2185		
15	11.13	Q.	0.09741	5.00	689.51			
16	7.48	Y	0.06548	1.00	234.13	55.9283		
17	7.48	Y	0.06548	0.10	234.13			

Salida de condensador p=0.1 M7 = 191.81 N7 = 0.00101 Bomba de condensado: tiene que elevar la presión para que el condeusado llegue al desaireador p8=5; h8=hy+(p8-p7)v7=192.30 T8 = Tsat (hg=192.30) = 45,81+ 53.97-45.81 (192.30-191.81) Tg= 45,9283 => T16 = 55,9283 hie = hp (55,9283°C) = 225,94/+ 251.42-225,94 (55,9283-539) h16 = 234.13 = h17 ps= 1 bar => Tsat (1 bar) = 99.61 => Tg= 94.61 hg=hg(Tg)=391.71+ 417.51-391.71 99.61-93.49 __(94.61-93.49) Mg=396.43 h10 = hf (p4) = 640.09 N10 = N4 (p4) = 0.00/093; p10 = p4 Bomba de agua de alimentación: tiene que elevar la presión hasta los 60 bara. h11 = h10+ (p11-p10) v10 = 646.10 T11 = Tsat (hf = 646.1) = 151.8+ 155.5-151.8 (646.1-640.09) T11= 153.2185 => T14=163.2185 h14 = hf (163.2185°C) = 684,08+ 697.-684.08 (163.2185-162) h14= 689.51=h15

P13 = 20; Toat (20) = 212.4 → T12 = 207.4 h₁₂ = h₅ (T=207.4) = 884.46+ 890.63-884.46 (207.4-207.1) M12 = 885,78 Balance en calentador de más alta presión (FWHTR2) a(h13-h14) = (h12-h11) => x=0.09741 Balance global del ciclo: La caldera tiene que suministrar la potencia neta + pérdidas de calor en concleusador (valor que se lleva el agua de refrigeración) m, [h,-h12+ (1-x)(h3-h2)]=125000+4750×10×4.186 m,= 114.23 bg/5; m13= 11.13 bg/s= m, a Balance en desaireador (DES) (1-x-B) hg + Bhy + & h15 = h10 B= 0.07956; hi4= 9.09 kg/s= hi,B Balance en FWHTR1 (Calentados de baja) (1-0-B)(hg-h8) = Y(h5-h16) N= 0.06548; | ni5= 7.48 kg/s=m, N Balance en voudeusado/ 4750×10×4,186 = (1-0-B-4) h6 + / h17-(1-0-B) leg/in, h6 = 2485,95 => Traslado a Mollier para Calcular Villino Ottalón

TERMODINÁMICA

Problema -2 (3,5 puntos)

Nombre	

La figura adjunta representa un ciclo de refrigeración de doble compresión con inyección parcial de vapor empleado en cámaras frigoríficas. La temperatura de la cámara a refrigerar (foco frío) está 10°C por encima de la temperatura del fluido frigorífico que abandona el evaporador y la del ambiente (foco caliente) 10°C por debajo de la temperatura del fluido frigorífico que sale del condensador. La instalación retira 50 kW de la cámara frigorífica.

El fluido de trabajo (R134a) entra a ambos compresores como vapor saturado. El rendimiento isentrópico del compresor de baja presión es 75% y del de alta presión 80%. El fluido frigorífico sale del condensador como líquido saturado, derivándose una fracción del mismo por la válvula V2 y atravesando el resto los tubos del intercambiador IC, saliendo de los mismos a 0,5°C. La presión de la carcasa de IC es de 2,5 bar, la de aspiración del compresor de baja presión 0,5 bar y la de impulsión del compresor de alta presión 10 bar.

Se desprecian las caídas de presión en intercambiadores y conductos.

Determinar:

- a) Mínima potencia que consumirían los compresores (funcionamiento ideal)
- b) Potencia realmente consumida por los compresores
- c) Variación de entropía del Universo
- d) Diagrama T-s de la instalación

Tablas del R134a como vapor sobrecalentado

	0,5 bar (Tsat = -40,47 °C)				2,5 bar (Tsat = -4,3°C)					
Т	٧	u	h	s	Т	٧	u	h	S	
[°C]	[m³/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-kg]	[°C]	[m³/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-kg]	
sat	0,36905	207,1	225,6	0,96937	sat	0,08076	227,8	248,0	0,93408	
-40	0,37005	207,4	225,9	0,97091	-4	0,08080	228,0	248,2	0,93497	
-38	0,37359	208,7	227,4	0,97730	-2	0,08162	229,6	250,0	0,94146	
-36	0,37710	210,1	228,9	0,98366	0	0,08244	231,1	251,7	0,94788	
-34	0,38061	211,4	230,4	0,98997	 2	0,08324	232,6	253,5	0,95425	
-32	0,38410	212,7	231,9	0,99625	4	0,08404	234,2	255,2	0,96057	
-30	0,38759	214,1	233,4	1,00250	6	0,08483	235,7	256,9	0,96683	
-28	0,39106	215,4	235,0	1,00871	8	0,08562	237,3	258,7	0,97306	
-26	0,39453	216,8	236,5	1,01489	10	0,08640	238,8	260,4	0,97924	
-24	0,39798	218,1	238,0	1,02105	 12	0,08718	240,4	262,2	0,98538	
-22	0,40143	219,5	239,5	1,02718	14	0,08795	241,9	263,9	0,99148	
-20	0,40487	220,8	241,1	1,03328	16	0,08872	243,5	265,7	0,99755	
-18	0,40831	222,2	242,6	1,03935	18	0,08948	245,0	267,4	1,00358	
-16	0,41174	223,6	244,2	1,04540	20	0,09024	246,6	269,2	1,00958	
-14	0,41516	225,0	245,7	1,05143	 22	0,09100	248,2	270,9	1,01555	
	7,5 ba	ar (Tsat = 29),06°C)		10 bar (Tsat = 39,37°C)					
T	٧	u	h	S	 Т	٧	u	h	S	
[°C]	[m ³ /kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-kg]	[°C]	[m ³ /kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-kg]	
sat	0,02740	245,7	266,3	0,91930	sat	0,02033	250,7	271,0	0,91574	
30	0,02754	246,6	267,2	0,92248	40	0,02041	251,3	271,7	0,91795	
32	0,02788	248,4	269,3	0,92938	42	0,02070	253,3	274,0	0,92512	
34	0,02823	250,2	271,4	0,93617	44	0,02098	255,2	276,2	0,93216	
36	0,02856	252,0	273,5	0,94286	46	0,02126	257,2	278,4	0,93908	
38	0,02889	253,8	275,5	0,94948	48	0,02153	259,1	280,6	0,94590	
40	0,02922	255,6	277,5	0,95601	50	0,02180	261,0	282,8	0,95262	
42	0,02954	257,4	279,6	0,96248	52	0,02206	262,8	284,9	0,95925	
44	0,02985	259,2	281,6	0,96888	54	0,02232	264,7	287,0	0,96581	
46	0,03016	261,0	283,6	0,97522	 56	0,02257	266,6	289,2	0,97229	
48	0,03047	262,8	285,6	0,98151	58	0,02282	268,5	291,3	0,97871	
50	0,03078	264,6	287,6	0,98774	60	0,02307	270,3	293,4	0,98506	
52	0,03108	266,3	289,6	0,99392	62	0,02331	272,2	295,5	0,99136	
54	0,03138	268,1	291,6	1,00006	64	0,02355	274,0	297,6	0,99760	
56	0,03168	269,9	293,6	1,00616	 66	0,02379	275,9	299,7	1,00379	

Tablas de saturación del R134a (líquido-vapor)

p [bar]	T [°C]	v _f [m³/kg]	v _g [m³/kg]	u _f [kJ/kg]	u _g [kJ/kg]	h _f [kJ/kg]	h _g [kJ/kg]	s _f [kJ/kg-K]	s _g [kJ/kg-K]
0,5	-40,47	0,000705	0,36905	-0,62	207,1	-0,59	225,6	-0,00251	0,96937
1	-26,37	0,000726	0,19255	17,19	215,2	17,27	234,5	0,07182	0,95191
1,5	-17,15	0,000741	0,13134	29,06	220,5	29,17	240,2	0,11905	0,94329
2	-10,09	0,000753	0,09995	38,26	224,5	38,41	244,5	0,15449	0,93788
2,5	-4,302	0,000764	0,08076	45,89	227,8	46,08	248,0	0,18320	0,93408
3	0,6527	0,000773	0,06778	52,48	230,5	52,71	250,9	0,20751	0,93122
3,5	5,008	0,000782	0,05838	58,33	233,0	58,60	253,4	0,22871	0,92896
4	8,91	0,000791	0,05127	63,61	235,1	63,92	255,6	0,24757	0,92711
4,5	12,46	0,000798	0,04568	68,44	237,0	68,80	257,6	0,26462	0,92555
5	15,71	0,000806	0,04117	72,92	238,8	73,32	259,4	0,28021	0,92420
5,5	18,73	0,000813	0,03745	77,09	240,4	77,54	261,0	0,29460	0,92302
6	21,55	0,000820	0,03433	81,01	241,9	81,50	262,5	0,30799	0,92196
6,5	24,2	0,000827	0,03168	84,72	243,2	85,26	263,8	0,32052	0,92100
7	26,69	0,000833	0,02939	88,24	244,5	88,82	265,1	0,33232	0,92012
7,5	29,06	0,000839	0,02740	91,59	245,7	92,22	266,3	0,34348	0,91930
8	31,31	0,000846	0,02565	94,80	246,8	95,48	267,3	0,35408	0,91853
8,5	33,45	0,000852	0,02409	97,88	247,9	98,61	268,4	0,36417	0,91779
9	35,51	0,000858	0,02270	100,84	248,9	101,62	269,3	0,37383	0,91709
9,5	37,48	0,000864	0,02146	103,70	249,8	104,52	270,2	0,38307	0,91641
10	39,37	0,000870	0,02033	106,47	250,7	107,34	271,0	0,39196	0,91574
10,5	41,19	0,000876	0,01931	109,14	251,6	110,06	271,8	0,40052	0,91510
11	42,95	0,000882	0,01837	111,74	252,4	112,71	272,6	0,40878	0,91446
11,5	44,65	0,000888	0,01752	114,26	253,1	115,28	273,3	0,41676	0,91383
12	46,29	0,000893	0,01673	116,72	253,8	117,79	273,9	0,42449	0,91320
12,5	47,89	0,000899	0,01600	119,11	254,5	120,24	274,5	0,43199	0,91257

[1]

$$h_1 = h_y (0.5 \text{ bar}) = 225.6 \text{ kJ/kg}$$
 $d_1 = d_y (0.5 \text{ bar}) = 0.96937 \text{ kJ/kg}$
 $h_{2s} = 257,63 \text{ kJ/kg}$
 $0.75 = \frac{217.63 - 225.6}{h_2 - 225.6} \rightarrow h_2 = 268,31 \text{ kJ/kg}$

$$h_6 = h_f(10 \text{ bor}) = 107,34 \text{ kJ/ky} = h_g$$

 $h_7 = h_f(0.5^{\circ}c) = 52.51 \text{ kJ/ky} = h_g$
 $(1-d) h_2 + d h_q = h_3 = (1-d) 268,31 + 107,34d$

$$(1-x)h_6 + h_3 = (1-x)h_7 + h_4$$

 $L_3 (1-x)107,34 + h_3 = (1-x)52,51 + 248 [2]$

Resolviendo [1] y [2]:

$$x = 0.348193$$

 $h + (7.7 hw) < h_3 = 212,26 kJ/ky < h_9 (2.7 hor)$
Remeltos todas los pentos se procede a colcular
los apartodos.

a) <u>Funciona mi ento i deal</u>

$$T_F = (-40,47 + 10) + 273 = 242, F3K$$

 $T_0 = (39,37 - 10) + 273 = 302, 37K$

$$\frac{50}{242, 53} = \frac{12,34 \text{ kW}}{302,37 - 242,53}$$

b) Continuo real

$$\dot{W} = \dot{w} (1-x) \, \dot{W}_{BP} + \dot{w} \, \dot{W}_{AP} = \frac{1}{h_{F} - h_{Y}}$$

$$= \dot{w} \left[(1-0.348193) \left(268.31 - 225.6 \right) + (284.01 - 248) \right]$$

eroprodn: D el

evoposodn:

$$0 = m(1-d)(h_1 - h_2)$$

 $50 = m(1-0.348193)(225.6 - 52.51)$
 $50 = m(1-0.348193)(225.6 - 52.51)$
 $50 = m(1-d)(h_1 - h_2)$
 $50 = m(1-d)(h_1 - h_2)$

Finduente: $\dot{W} = 28,296 \, \text{kW}$

c)
$$\frac{dSu}{d7} = \frac{\mathring{Q}_0}{T_0} - \frac{\mathring{Q}_F}{TF} = \frac{78,296}{302,37} - \frac{50}{242,53} = 0.052782 \text{ kW/K}$$

Q = W + QF = 70 + 28, 296 = 78, 296 KW

TERMODINÁMICA

Problema -3 (3 puntos)

Nombre_____

Una central nuclear basada en un reactor de fusión puede ser modelada mediante el esquema de la figura. El reactor produce calor en dos fuentes: el blanket (BNK) y el divertor (DIV). Una corriente de helio (gas perfecto) retira del blanket el calor y mediante un intercambiador de calor lo cede al fluido de trabajo del ciclo de potencia; una corriente de agua (líquido incompresible) hace lo mismo con el calor del divertor. El helio entra al intercambiador de calor a 500°C y sale a 300°C; el agua entra a su intercambiador a 250°C y sale a 150°C. Por el diseño del reactor el calor aportado por el divertor al ciclo supone el 25% del calor aportado por el blanket.

El ciclo termodinámico produce una potencia eléctrica bruta (W_{bruta}) , parte de la cual (W_{aux}) es autoconsumida por la planta. El resto es potencia neta que es vertida a la red (W_{net}) . La potencia autoconsumida supone el 55% de la potencia neta.

El foco frío que emplea la planta se encuentra a 20°C.

Definiendo el rendimiento global como la relación entre la potencia neta y todo el calor aportado al ciclo, determinar:

- a) Máximo rendimiento global alcanzable teóricamente
- b) Rendimiento global que se tendría si el rendimiento real del ciclo de potencia fuese el 75% del máximo que éste podría tener

 $^{^{1}~\}eta_{ciclo} = \frac{W_{bruta}}{Q_{BNK} + Q_{DIV}}$

$$\frac{1}{T_{BNK}} = \frac{\Delta h}{\Delta a} = \frac{500 - 300}{2\left(\frac{500 + 273}{300 + 273}\right)} = 668,02 \, \text{K}$$

$$T_{OIV} = \frac{250 - 150}{L\left(\frac{250 + 273}{170 + 273}\right)} = 471,23K$$

$$\frac{Q_{RNK}}{T_{RNK}} + \frac{Q_{DIV}}{T_{DIV}} = \frac{Q_o}{T_o} \rightarrow \frac{Q_{RNK}}{668,02} + \frac{0'25Q_{RNK}}{471,23} = \frac{Q_o}{293}$$

$$\frac{Q_0}{Q_{BNK}} = 0.7941$$

$$\frac{Q_0}{Q_{BNK}} = 1 - \frac{Q_0}{1.25 Q_{BNK}} = 1$$

$$V_{net} + W_{anx}$$

$$\int_{Q}^{Q} \frac{\partial RNK + \partial RNV}{\partial RNK + \partial RNV} = \frac{\partial L L L R}{\partial RNK + \partial RNV} = \frac{\partial L L L R}{\partial RNK + \partial RNV} = \frac{\partial L L L R}{\partial RNK + \partial RNV} = \frac{\partial L L L R}{\partial RNK + \partial RNV} = \frac{\partial L L L R}{\partial RNK + \partial RNV}$$