PERFORMANCE EVALUATION EXERCISES

TESTS

1.	If the data is in the critical region we
	(a) \square Accept H_0
	(b) \mathbf{Z} Reject H_0
	(c) \Box It depends on the nature of the test
	(d) \Box It depends on the size of the test
2.	Saying that a test is of size 5% means that
	(a) \Box The probability to accept H_0 when H_0 does not hold is ≤ 0.05
	(b) \blacksquare The probability to reject H_0 when H_0 it holds is ≤ 0.05
	(c) \square Both
3.	If the p -value of a test is small we
	(a) \square Accept H_0
	(b) \mathbf{Z} Reject H_0
	(c) \Box It depends on the nature of the test
	(d) \Box It depends on the size of the test
4.	We have a collection of random variables X_i, Y_i which correspond to non paired simulation result with configuration 1 or 2. How can you test whether the configuration plays a role or not?
	(a) Uith a Wilcoxon Rank Sum test
	(b)
	(c) Mith either
	(d) Mith none
	Solution (a) is robust and can be used if we can ensure that the simulation runs are independent and

5. We test whether a distribution is gaussian using a Kolmogorov-Smirnov test against the fitted distribution. We obtain a p-value.

(b) is applicable if, in addition, X_i and Y_i can be assumed gaussian with same variance.

that the two distributions differ by a location shift, i.e. have same variance.

(a) \blacksquare The true p-value is smaller

- (b) \square We have obtained the true p-value
- (c) \square The true p-value is larger
- (d) \Box It depends on the data

Solution. The KS test applies if we are testing against a fixed, non fitted distribution F. By using a fitted distribution, we are biasing the test, we are making it more likely than should be to accept the distribution F, i.e. to accept H_0 . The p-value should therefore be higher (since a small p-value means rejecting H_0).

6. We have two data sets X_i and Y_j believed to be iid and from one exponential distribution each. We want to test whether the parameter of their exponential distribution is the same.

Give the design of a corresponding likelihood ratio test. Give a formula for the p-value when m, n are large.

Solution. The generic model is $X_i \sim \text{iid Exp}(\lambda)$, $Y_j \sim \text{iid Exp}(\mu)$ and $X_i.Y_i$ independent for i=1:m, j=1:n and for some $\lambda, \mu>0$. The parameter is $\theta=(\lambda,\mu)$ and $\Theta=\{(\lambda,\mu):\lambda>0 \text{ and } \mu>0\}$ H_0 corresponds to $\lambda=\mu$.

The PDF of the Exp(λ) distribution is $f_X(x) = \lambda e^{-\lambda x}$ hence the likelihood of the data (\vec{x}, \vec{y}) is

$$f_{\vec{X},\vec{Y}}(\vec{x},\vec{y}) = \prod_{i=1}^{m} \left(\lambda e^{-\lambda x_i} \right) \times \prod_{j=1}^{n} \left(\mu e^{-\mu y_j} \right)$$
 (1)

and the log-likelihood is

$$m\log\lambda + n\log\mu - \lambda\sum_{i=1}^{m}x_i - \mu\sum_{j=1}^{n}y_j$$
 (2)

We use the following notation: $x^* = \frac{1}{m} \sum_i x_i$, $y^* = \frac{1}{n} \sum_j y_j$ and $z^* = \frac{1}{m+n} \left(\sum_i x_i + \sum_j y_j \right)$.

We compute the optimal value of the log likelihood under H_0 , namely under the constraint $\lambda = \mu$:

$$\min_{\lambda > 0} \left(m \log \lambda + n \log \lambda - \lambda \sum_{i=1}^{m} x_i - \lambda \sum_{j=1}^{n} y_j \right)$$

Taking the derivative we find that the optimum is for $\lambda = \mu = \frac{\sum_i x_i + \sum_j y_j}{m+n} = \frac{1}{z^*}$ and the value of the optimal log-likelihood under H_0 is

$$\ell_0 = (m+n)\log\frac{1}{z^*} - m - n$$
$$= -(m+n)(\log z^* + 1)$$

Under H_1 the optimal is for $\lambda = \frac{1}{x}$ and $\mu = \frac{1}{y}$. The value of the optimal log-likelihood under H_1 is

$$\ell_1 = m \left(\log \frac{1}{x^*} - 1 \right) + n \left(\log \frac{1}{y^*} - 1 \right)$$
$$= -m \left(\log x^* + 1 \right) - n \left(\log y^* + 1 \right)$$

The log-likelihood ratio statistic is

$$lrs = \ell_1 - \ell_0 = (m+n)\log z^* - m\log x^* - n\log y^*$$

Apply theorem 4.3: $q_2 = 2 - 1 = 1$ hence the distribution of 2lrs under H_0 is approximately χ_1^2 and the p value is approximately

$$p = 1 - F_{\chi_1^2}(2lrs)$$

where $F_{\chi_1^2}$ is the CDF of χ_1^2 .

- 7. We have some data set $\vec{Y} = Y_{i=1:I}$ modelled with a parametric model with $\theta \in \Theta$. Let $f_{\vec{Y}}(\vec{y}|\theta)$ be the PDF of the observation $\vec{y} = y_{1:I}$. We assume that we have a method to compute $\hat{\theta}(\vec{y})$, the maximum likelihood estimator of θ for value of the data set \vec{y} .
 - (a) Give a likelihood ratio test for the test

$$H_0: \theta = \theta_0 \text{ versus } H_1: \theta \in \Theta$$

- (b) Give the pseudo-code of an algorithm to compute the p-value of this test using Monte-Carlo simulation with R runs.
- (c) We run this algorithm with R=10'000 and find p=0. Give a 99% confidence for the true p-value. What can we conclude at a size of 5%?

Solution.

(a) Under H_0 the MLE is $\hat{\theta} = \theta_0$ (a fixed value) and the log-likelihood is

$$\ell_0 = \log f_{\vec{\mathbf{V}}}(\vec{y}|\theta_0)$$

Under H_1 the optimal likelihood is obtained for $\theta = \hat{\theta}(\vec{y})$ and thus

$$\ell_1 = \log f_{\vec{Y}}(\vec{y}|\hat{\theta}(\vec{y}))$$

and

$$lrs(\vec{y}) = \log f_{\vec{Y}}(\vec{y}|\hat{\theta}(\vec{y})) - \log f_{\vec{Y}}(\vec{y}|\theta_0)$$

The test has a rejection region of the form $lrs(\vec{y}) > C$ for some constant C that depends on the size of the test. The p-value is thus

$$p = \mathbb{P}\left(lrs(\vec{Y}) > lrs(\vec{y})\right) \tag{3}$$

where \vec{Y} is a random sequence that has PDF $f_{\vec{V}}\left(\cdot|\theta_{0}\right)$

(b) To compute the p-value by Monte-Carlo simulation with R runs we draw R replicates of the sequence \vec{Y} from the PDF $f_{\vec{V}}\left(\cdot|\theta_{0}\right)$ and evaluate p as the empirical mean:

```
\begin{split} & \cot = 0 \\ & \text{for } r = 1: R \text{ do} \\ & \quad \text{draw } \vec{y}^r \text{ from the distribution with PDF } f_{\vec{Y}} \left( \cdot \middle| \theta_0 \right) \\ & \quad \text{if } \left\{ lrs \left( \vec{y}^{\,r} \right) > lrs (\vec{y}) \right) \right\} \text{ tot = tot+1} \\ & \text{end} \\ & \quad \text{return} \left( \frac{\cot R}{R} \right) \end{split}
```

(c) By Theorem 2.4, a 99% confidence interval for p is $[0, p_0]$ with $p_0 = 5.3 \times 10^{-4}$. Since the upper bound on the estimated p-value is very small, much smaller than 5%, we reject H_0 .

8. We consider again the case in the previous question. Using Monte-Carlo simulation, we have obtained a 99% confidence interval $[\ell(\vec{y}), u(\vec{y})]$ for the p-value. We reject H_0 if the true p is small, but since we don't know the true p-value, we use the rejection condition $u(\vec{y}) < \alpha$. What value of α should we chose to ensure that this way of doing provides a test of size 5%?

Solution. Let Z represent the sequence of all random numbers we have used to estimate the p-value $p(\vec{y})$. The sequence Z is independent of the data \vec{y} . The upper bound $u(\vec{y}, Z)$ is true with confidence 99%, therefore

$$\mathbb{P}\left(u(\vec{y}, Z) \le p(\vec{y})\right) \le 1\% \tag{4}$$

Furthermore, let \vec{Y}_0 be a random variable that has the distribution of \vec{Y} under H_0 . By definition of a p-value we know that:

$$\mathbb{P}\left(p(\vec{Y}_0) < \alpha\right) = \alpha \tag{5}$$

Also, observe that (4) should hold for any realization of \vec{y} , therefore

$$\mathbb{P}\left(u(\vec{Y}_0, Z) \le p(\vec{Y}_0)\right) \le 1\% \tag{6}$$

Now our test consists in rejecting H_0 whenever $u(\vec{y}, Z) < \alpha$). The probability p_I of a type-I error is the probability of rejection when \vec{y} is a sample of \vec{Y}_0 :

$$p_{I} = \mathbb{P}\left(u(\vec{Y}_{0}, Z) < \alpha\right)$$

$$= \mathbb{E}\left(\mathbf{1}_{\{u(\vec{Y}_{0}, Z) < \alpha\}}\right)$$

$$= \mathbb{E}\left(\mathbf{1}_{\{u(\vec{Y}_{0}, Z) < \alpha\}}\mathbf{1}_{\{u(\vec{Y}_{0}, Z) > p(\vec{Y}_{0})\}} + \mathbf{1}_{\{u(\vec{Y}_{0}, Z) < \alpha\}}\mathbf{1}_{\{u(\vec{Y}_{0}, Z) \leq p(\vec{Y}_{0})\}}\right)$$

$$= \mathbb{E}\left(\mathbf{1}_{\{u(\vec{Y}_{0}, Z) < \alpha\}}\mathbf{1}_{\{u(\vec{Y}_{0}, Z) > p(\vec{Y}_{0})\}}\right) + \mathbb{E}\left(\mathbf{1}_{\{u(\vec{Y}_{0}, Z) < \alpha\}}\mathbf{1}_{\{u(\vec{Y}_{0}, Z) \leq p(\vec{Y}_{0})\}}\right)$$

$$\leq \mathbb{E}\left(\mathbf{1}_{\{p(\vec{Y}_{0}) < \alpha\}}\right) + \mathbb{E}\left(\mathbf{1}_{\{u(\vec{Y}_{0}, Z) \leq p(\vec{Y}_{0})\}}\right)$$

$$= \mathbb{P}\left(p(\vec{Y}_{0}) < \alpha\right) + \mathbb{P}\left(u(\vec{Y}_{0}, Z) \leq p(\vec{Y}_{0})\right)$$

$$< \alpha + 1\%$$

Therefore, we need to take $\alpha=4\%$ to obtain a test of size 5%. The uncertainty due to the Monte Carlo estimation needs to be added to α .