NCERT Discrete

Pragnidhved Reddy **EE23BTECH11050**

Question GATE 23 ME 50:

The initial value problem $\frac{dy}{dt} + 2y = 0, y(0) = 1$ is solved numerically using the forward Euler's method with a constant and positive time step of δ .

Let y_n represent the numerical solution obtained after n steps. The condition $|y_{n+1}| \leq |y_n|$ is satisfied if and only if δ does not exceed

Solution:

Numerical solution: -

By forward Euler's method formula

$$y(n+1) = y(n) + \delta f(x,y) \tag{1}$$

From question we get

$$\frac{dy}{dx} = -2y = f(x, y) \tag{2}$$

From (2) in (1)

$$y(n+1) = y(n) + \delta(-2y(n))$$
 (3)

$$y(n+1) = y(n)(1-2\delta)$$
 (4)

$$|y(n+1)| = |y(n)||1 - 2\delta| \le |y(n)|$$
 (5)

$$|1 - 2\delta| \le 1\tag{6}$$

$$\implies 0 \le \delta \le 1 \tag{7}$$

From (8) and (9)

$$sY(s) - 1 + 2Y(s) = 0 (12)$$

$$\frac{1}{s+2} = Y(s) \tag{13}$$

$$y(t) = \mathcal{L}^{-1}Y(s) \tag{14}$$

$$\implies y(t) = \mathcal{L}^{-1}\left(\frac{1}{s+2}\right)$$
 (15)

$$\mathcal{L}^{-1}\left(\frac{1}{s+k}\right) = e^{-kt}u(t) \tag{16}$$

$$\implies y(t) = e^{-2t}u(t) \tag{17}$$

From this we can say that the maximum value of δ Fig. 1. simulation vs analysis is 1

Theoritical solution: -

By properties of Laplace transform: -

$$Y(s) = \mathcal{L}y(s) \tag{8}$$

$$\mathcal{L}y' = sY(s) - y(0) \tag{9}$$

Given equation: -

$$y' + 2y = 0 \tag{10}$$

$$\mathcal{L}(y'+2y) = 0 \tag{11}$$