Study Guide

MATH 163: Discrete Mathematics 1 Fall 2022: Dr. Petrescu

Denny Cao

December 9, 2022

Contents

1	\mathbf{Log}	ic and Proofs	٩
	1.1	Propositional Logic	
		1.1.1 Truth Tables of Logical Operators	
		1.1.2 Converse, Contrapositive, and Inverse	
		1.1.3 Precedence of Logical Operators	
	1.2	Applications of Propositional Logic	
	1.3	Propositional Equivalences	
		1.3.1 Introduction	
		1.3.2 Logical Equivalences	
	1.4	Predicates and Quantifiers	
	1.5	Nested Quantifiers	
	1.6	Rules of Inference	
	1.7	Introduction to Proofs	
	1.8	Proof Methods and Strategy	!

1 Logic and Proofs

1.1 Propositional Logic

1.1.1 Truth Tables of Logical Operators

Proposition: A statement that is either true or false.

$$\begin{array}{c|c} p & \neg p \\ \hline T & F \\ F & T \end{array}$$

Figure 1: Truth table for **negation**

p	q	$p \wedge q$	$p \lor q$	$p\oplus q$
$\overline{\mathrm{T}}$	Т	Т	T	F
Τ	F	F	T	Τ
F	Τ	F	Т	${ m T}$
F	F	F	F	F

Figure 2: Truth table for **bit operations**

1.1.2 Converse, Contrapositive, and Inverse

Converse: The proposition $q \Rightarrow p$ is the converse of the proposition $p \Rightarrow q$.

$$egin{array}{c|c|c|c} p & q & q \Rightarrow p \ \hline T & T & T \ T & F & T \ F & T & F \ F & F & T \ \end{array}$$

Figure 3: Truth Table for converse of implication of two propositions p and q

Contrapositive: The proposition $\neg q \Rightarrow \neg p$ is the contrapositive of the proposition $p \Rightarrow q$.

• Same truth value as $p \Rightarrow q$

Figure 4: Truth Table for contrapositive of implication of two propositions p and q

Inverse: The proposition $\neg p \Rightarrow \neg q$ is the inverse of the proposition $p \Rightarrow q$.

p	q	$\neg p$	$\neg q$	$ \neg p \Rightarrow \neg q $
$\overline{\mathrm{T}}$	Т	F	F	${ m T}$
Τ	F	F	Τ	${ m T}$
F	Τ	Τ	F	F
F	F	Τ	${ m T}$	${ m T}$

Figure 5: Truth Table for inverse of implication of two propositions p and q

1.1.3 Precedence of Logical Operators

Operator	Precedence
_	1
\wedge	2
V	3
\Rightarrow	4
\Leftrightarrow	5

Figure 6: Precedence of Logical Operators

1.2 Applications of Propositional Logic

- 1. Translating English into Propositional Logic and vice versa
- 2. Logic Puzzles

Intuitive.

1.3 Propositional Equivalences

1.3.1 Introduction

Tautology: A compound proposition that is always true.

Contradiction: A compound proposition that is always false.

Contingency: A compound proposition that is neither a tautology nor a contradiction.

Figure 7: Truth Table of an example of a Tautology and Contradiction

1.3.2 Logical Equivalences

Two propositions are **logically equivalent** if $p \Leftrightarrow q$ is a tautology. The following are important logical equivalences:

De Morgan's Laws
$$\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$$

$$\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$$

Figure 8: De Morgan's Laws

Conditional-disjunction equivalence: $p \lor q \Leftrightarrow \neg p \Rightarrow q$

- 1.4 Predicates and Quantifiers
- 1.5 Nested Quantifiers
- 1.6 Rules of Inference
- 1.7 Introduction to Proofs
- 1.8 Proof Methods and Strategy