Ze względu na to, że nie spędziłem nad tym zbyt dużo czasu to prosiłbym o traktowanie wyników orientacyjnie, starałem się jednak zadbać o merytoryczną poprawność treści. Zachęcam też do nie kopiowanie treści na wejściówkach słowo- w słowo Życzę wszystkim korzystającym powodzenia na laboratoriach i z góry dziękuję za uwagi!

Technik Rafał Wolski

1.

Co nazywamy obiektem pomiarowym? Podaj kilka przykładów.

Obiektem pomiarowym nazywamy możliwy do wyodrębnienia element rzeczywistości, któremu można przypisać charakterystyczne dla niego wyrażone ilościowo cechy. Przykłady obiektów to nic ciekawego np. opornik- rezystancja, deska- długość itd.

2.

Czy pomiary tego samego parametru obiektu zawsze dają takie same wyniki? Odpowiedź uzasadnij.

Nie, w nawet w identycznych warunkach każdy pomiar obarczony jest błędem o zmiennej wartości który wpływa na jego ostateczny wynik, dodatkowo też wartość pomiaru zależy od punktu pracy w którym go przeprowadzamy

3.

Podaj kilka przykładów pomiarów bezpośrednich i pośrednich.

Bezpośrednie: Opór rezystora omomierzem

Pośrednie: Opór rezystora na podstawie prądu przez niego

płynącego i napięcia na nim się odkładającego

Z tym to trochę przesadziłem- zależało mi na poziomie dużym abstrakcji by odpowiedzi nie były zbyt podobne:

Bezpośrednie: pomiar masy obiektu wagą

Pośrednie: pomiar masy obiektu na podstawie jego objętości i

gęstości materiału z którego jest wykonany

4.

Ilu co najmniej pomiarów należy dokonać, by ustalić, czy charakterystyka elementu jest nieliniowa?

Przynajmniej trzech (na podstawie dwóch narysujemy prostą i jeśli trzeci nie będzie się na niej znajdować to element jest nieliniowy)

5. Narysuj charakterystykę prądowo- napięciową dla rezystora o rezystancji 1kΩ w zakresie napięć 1–10 V.

6.

W układzie zrealizowanym z wykorzystaniem modułu X01na badanym elemencie zmierzono napięcie 10V, natomiast na połączonym z nim rezystorze wzorcowym o rezystancji 100Ω napięcie równe 0,9V. Jaka jest rezystancja badanego elementu? Jakie byłyby wyniki pomiarów, gdyby użyto wzorcowego rezystora $1k\Omega$?(Zakładamy, że badanym elementem jest rezystor).

Rezystory połączone są szeregowo więc z prawa Ohma obliczamy prąd płynący w układzie (na podstawie Rwz i Uwz) I=9mA Co za tym idzie R1= **1111,1Ω**

U zasilania= spadek napięć na R1 i Rwz= 10,9V Rz2=1kΩ+1,1111kΩ≈2,1111kΩ

I2=5,1631mA

IRwz=5,1631V≈**5,2V** IR1= 5,7367V≈**5,7V**

7.

W układzie z Rys.6.2 dla częstotliwości 1kHz i wartości skutecznej napięcia 5V zmierzono prąd o wartości skutecznej 20mA. Jaki jest moduł impedancji badanego elementu? |Z|=|U|/|I|

 $|Z|=5V/20mA=250\Omega$

8.

Czy na podstawie pojedynczego pomiaru prądu i napięcia (w układzie z Rys.6.2) nieznanego elementu, będącego kondensatorem lub cewką, można stwierdzić, co to za element?

Nie można,

chyba, że się bardzo uprzemy i byśmy stwierdzili, że dla f=0Hz przez element płynie bardzo mały prąd- wtedy byśmy mieli kondensator, ale taki pomiar jest bez sensu (kondensator jest przerwą dla prądu stałego, ale to bez sensu- równie dobrze kabel by mógł być przerwany)

9.

W układzie z Rys. 6.2 dla częstotliwości 1kHz i wartości skutecznej napięcia 5V zmierzono prąd 20mA, a dla częstotliwości 2 kHz–40mA. Jaka jest impedancja badanego elementu dla tych częstotliwości? Co to za element? Wyznacz jego pojemność (lub indukcyjność).

|Z|=|U|/|I|

 $|Z1kHz|=250\Omega |Z2kHz|=125\Omega$

Badany element to kondensator (im większe f tym mniejszy opór)

$$Z_C = \frac{1}{j\omega C} = \frac{1}{j2\pi fC}$$

Po przekształceniu i podstawieniu do wzoru wychodzi nam C≈63,6µF

10.

W układzie z Rys.6.2 dla częstotliwości 1kHz i wartości skutecznej napięcia 5V zmierzono prąd 20 mA, a dla częstotliwości 2kHz– prąd 10mA. Jaka jest impedancja badanego elementu? Co to za element? Wyznacz jego pojemność lub indukcyjność.

|Z|=|U|/|I|

 $|Z1kHz|=250\Omega |Z2kHz|=500\Omega$

Jest to cewka

$$Z_L = j\omega L = j2\pi f L$$

L≈38,8mH

11.

W układzie z Rys.6.2 dla częstotliwości 1kHz i wartości skutecznej napięcia 5V zmierzono prąd 20mA, a dla napięcia stałego-prąd 10 mA. Jaka jest impedancja badanego obiektu? Co to za obiekt, jeżeli stanowi on połączenie dwóch elementów,z których jeden jest rezystorem?Czy jego określenie jest jednoznaczne?

 $|Z1kHz|=250\Omega$ $|Z0kHz|=R=500\Omega$

Badany obiekt jest zachowuje się na pewno jak filtr górnoprzepustowy, jednak nie możemy jednoznacznie określić co znajduje się w jego środku (nie wiemy czy to dwójnik, czwórnik, filtr aktywny, cyfrowy itd.)

/* To już zostawiam, ale nie jest to prawidłowa odpowiedź Zakładając, że obiekt jest połączeniem równoległym (szeregowym) rezystora z kondensatorem (cewką)

Ze wzoru na |Z| możemy obliczyć reaktancję pojemnościową (indukcyjną)

$$|Z| = \sqrt{R^2 + X^2}$$

Reaktancja(X):

$$Z_c = \frac{1}{j\omega C} = \frac{1}{j2\pi fC}$$

C=0,84nF*/

12.

Czy do wyznaczenia charakterystyki prądowo- napięciowej w trybie X- Y oscyloskopu można wykorzystać przebieg prostokątny? Odpowiedź uzasadnij.

Ta odpowiedź nie satysfakcjonuje mnie jeszcze więc proszę o to by ktoś ją skorygował:

Nie można wykorzystać przebiegu prostokątnego przez to, że nie będzie on prawidłowo kierować odchyleniem plamki (nie nadaje się na podstawę czasu- w przypadku idealnego przebiegu prostokątnego plamka była by odchylana bardzo szybko do skrajnych położeń na ekranie oscyloskopu)

Rysunki:

Rys. 6.4. Moduł X01

Rys. 6.2 Układ pomiarowy do wyznaczania modułu impedancji i charakterystyki częstotliwościowej