

ME3630-W PCIE

模块硬件用户指导手册

版本: V1.5 日期: 2018-08-15 LTE 模块

修订历史

文档版本	修订日期	修订说明
1.0	2017-02-16	初始版本,对应英文版 V1.3
1.1	2017-04-18	新增 C1B,C1C,C1T
1.2	2017-11-20	更新 Pin20,22 管脚描述 新增 C2C 模块 PID 更新文档模板
1.3	2018-03-05	新增第 7 章 包装说明 完善天线指标章节 修改 WAKEUP_OUT 推荐电路 更新模块 PID 信息
1.4	2018-04-28	更新文档模板格式
1.5	2018-08-15	更新 PID 信息 更新产品图片 , 添加复位章节注意事项

关于本文档

应用范围

此文档适用于 ME3630-W mini-PCIE 模块 (后文简称为 ME3630)产品的硬件开发指导,该模块目前属于 GOSUNCN mini-PCIE 模块系列之一。

用户需按照此文档要求和指导进行设计。

撰写目的

此文档给模块产品使用者提供了设计开发依据。通过阅读此文档,用户可以对本产品有整体认识,对产品的技术参数有明确的了解,并可在此文档基础上顺利完成无线通信上网类产品或设备的应用开发。

为了给用户提供一个较为全面的设计参考,此硬件开发文档不仅提供了产品功能特点和技术参数,还提供了产品可靠性测试和相关测试标准、业务功能实现流程、射频性能指标以及用户电路设计指导。

阅读注意

下面的符号是阅读时应该注意:

 \wedge

: 警告或注意

Ш

: 备注或说明

缩略语

下表列出本文档中所涉及的缩写,以及英文全名。

秋/3出千人日 ///////////////////////////////////					
缩略语	全称				
3GPP	Third Generation Partnership Project				
AP	Another name of DTE				
СНАР	Challenge Handshake Authentication Protocol				
CE	European Conformity				
CMOS	Complementary Metal Oxide Semiconductor				
DCE	Data Communication Equipment				
DL	Downlink				
DTE	Data Terminal Equipment				
EIA	Electronic Industries Association				
EMC	Electromagnetic Compatibility				
ESD	Electro-Static discharge				
ESR	Equivalent Series Resistance				
FDD	Frequency Division Duplex				
GPIO	General-purpose I/O				
LCC	Leadless Chip Carrier				
LDO	Low-Dropout				
LED	Light Emitting Diode				
LTE	Long Term Evolution				
ME	Mobile Equipment				
МО	Mobile Origination Call				
MT	M <i>o</i> bile Termination Call				

MSB	Most Significant Bit
PC	Personal Computer
PCB	Printed Circuit Board
PDA	Personal Digital Assistant
PDU	Protocol Data Unit
PAP	Password Authentication Protocol
PPP	Point to Point Protocol
RTC	Real Time Clock
SMS	Short Messaging Service
SMT	Surface Mount Technology
SPI	Serial Peripheral Interface
TBD	To Be Determined
ТСР	Transmission Control Protocol
TIS	Total Isotropic Sensitivity
TRP	Total Radiated Power
TVS	Transient Voltage Suppressor
UART	Universal Asynchronous Receiver-Transmitter
UDP	User Datagram Protocol
UL	Up Link
USB	Universal Serial Bus
USIM	Universal Subscriber Identity Module
URC	Unsolicited result code
VIH	Logic High level of input voltage
VIL	Logic Low level of input voltage
VOH	Logic High level of output voltage
VOL	Logic Low level of output voltage

安全警告和注意事项

在模块二次开发、使用及返修等过程中,都必须遵循本章节的所有安全警告及注意事项。模块的集成商等必须将如下的安全信息传递给用户、操作人员或集成在产品的使用手册中:

- · 在使用包括模块在内的射频设备时可能会对一些屏蔽性能不好的电子设备造成干扰,请尽可能在远离普通电话、电视、收音机和办公 自动化的地方使用,以免这些设备和模块相互影响。
- · 在如助听器、植入耳蜗和心脏起搏器等医用设备旁使用包含模块的设备时,请先向该设备生产厂家咨询了解。
- · 请不要在油料仓库,化学工厂等有潜在爆炸危险的环境,或在医院、飞机等有特殊要求的场所,使用包含模块的设备。
- · 请不要将模块暴露在强烈日光之下,以免过度受热而损坏。
- · 本产品没有防水性能,请避免各种液体进入模块内部,请勿在浴室等高湿度的地方使用,以免造成损坏。
- · 非专业人员,请勿自行拆开模块,以免造成人员及设备损伤。
- · 清洁模块时请先关机,并使用干净的防静电布。

用户有责任遵循其他国家关于无线通信模块及设备的相关规定和具体的使用环境法规。我司不承担因客户未能遵循这些 规定导致的相关损失。

目录

修订历史	1
关于本文档	II
安全警告和注意事项	IV
目录	V
表格索引	
图形索引	
$lackbox{ iny}{}$.	
1. 产品简介	9
1.1. 产品技术参数	10
1.2. 产品支持频段	
1.3. 基带功能介绍	12
2. 机械特性	12
2.1. 产品尺寸图	
2.2. 热设计建议	
3. 接口说明	15
3.1. 管脚定义	15
3.1.1. 管脚配置图	
3.1.2. 管脚描述	
3.2. 逻辑电平标准	
3.3. 主要管脚信号说明	
3.4. 电源	
3.4.1. GND 接口	
3.4.2. 电源	
3.5. WAKEUP IN 接口	
3.6. WAKEUP_OUT 接口	
3.7. W_DISABLE_N 接口	
3.8. RESET_IN 接口	
3.9. LED_WWAN_N 接口	
3.10. (U)SIM 卡接口	
3.11. USB 接口	
3.12. UART 接口	
3.12.1. 管脚描述	
4. 电源接口设计	27
4.1. 一般设计规则	
4.2. 供电需求	
4.3. 供电输出电路需求	

包装说明	
6.3. 射频输出功率	34
6.2. 工作温度&存储温度	33
6.1. 工作电流	33
测试和测试标准	33
5.3. 天线 OTA 测试方法	32
5.1. 天线接口	30
. 天线设计	30
4.4. 推荐电源参考设计	28
	天线设计 5.1. 天线接口 5.2. 天线指标 5.3. 天线 OTA 测试方法 测试和测试标准 6.1. 工作电流 6.2. 工作温度&存储温度 6.3. 射频输出功率 6.4. 射频接收灵敏度 6.5. GNSS 技术指标 6.6. 静电放电

表格索引

表 1-1	ME3630 mini-PCIE 产品信息	9
表 1-2	主要技术参数	10
表 1-3	ME3630 支持频段	11
表 3-1	接口定义描述	15
表 3-2	IO 口逻辑电平	17
表 3-3	WAKEUP_IN 定义	18
表 3-4	WAKEUP_OUT 定义	19
表 3-5	W_DISABLE_N 定义	20
表 3-6	RESET_IN 定义	21
	LED_WWAN_N 状态	
表 3-8	USIM 卡信号描述	22
	USB 管脚定义	
表 3-1	O UART 信号定义	24
	平均待机直流功耗[1]	
	平均待机直流功耗[2]	
表 6-3	平均待机直流功耗 [3]	33
	温度范围	
	射频输出功率	
表 6-6	射频接收灵敏度[1]	34
表 6-7	射频接收灵敏度[2]	35
表 6-8	GNSS 技术指标	35
表 6-9	ESD 特征	35

图形索引

冬	1-1	产品外观示意图	10
图	1-2	系统连接框架结构图	12
图	2-1	PCI Express Mini Card 外形尺寸	13
图	3-1	管脚配置图	15
图	3-2	GND 信号连接图	18
冬	3-3	WAKEUP_IN 输入顺序	19
图	3-4	WAKEUP_IN 参考连接电路	19
		WAKEUP_OUT 参考连接电路	
冬	3-6	PIN1(WAKEUP_OUT)输出时序	20
冬		RESET_IN 参考电路图	
冬	3-8	重置信号	21
冬	3-9	LED_WWAN_N 参考电路	22
		U(S)IM 卡信号连接电路	
		USIM_DET 管脚逻辑	
图	3-12	USB 信号连接电路图 I	
图	3-13	模块串口与 AP 应用处理器	25
图	3-14	模块串口与标准 RS-232-C 的接口连接	25
图	3-15	UART 电平转换器(1.8V-3.3V)	26
图	4-1	EDGE/GPRS 下供电电流和电压变化	27
图	4-2	模块电源终端添加大容量电容	28
图	4-3	DC/DC 参考电路	28
图	4-4	LDO 参考电路	29
图	5-1	天线接口示意图	30
图	5-2	射频接口测试座(U.FL-R-SMT1 (80) of HRS Corporation)	30
图	5-3	测试线	31
图	5-4	射频座尺寸图	31
图	5-5	OTA&CTIA 测试系统	32

1. 产品简介

ME3630-W mini-PCIE 系列模块是一款 PCI Express Mini Card 接口的 LTE 无线上网模块,模块提供高速可靠的移动宽带数据连接,极大地拓展了其在 M2M 领域的应用范围,如 CPE、无线路由器、网关等行业应用,为无线摄像头、安防、远程医疗等提供可靠的视频传输通道。

该模块包含多个子型号,客户可以基于无线网络的配置选择专用的类型。下面显示 ME3630-W PCIE 系列整个无线电频段的配置。

表 1-1ME3630-W mini-PCIE 产品信息

农 I-IME3030-W IIIIII-FCIE) 由旧总					
型 号	支持频段	分集	GNSS	Category	
ME3630-C2A_MP01	GSMB3/8,	WCDMA B1/5/8	支持	CAT4	
ME3630-C2A_MP11	CDMA1X CDMA EVDO 800M ,	LTE FDD B1/3/5/8 ,			
	WCDMA B1/5/8	LTE TDD B38/39/40/41			
ME3630-C2B_MP01	TD-SCDMA B34/39 ,	不支持	不支持	CAT4	
ME3630-C2B_MP11	LTE FDD B1/3/5/8 ,				
ME3630-C2C_MP01	LTE TDD B38/39/40/41	WCDMA B1/5/8	支持	CAT4	
ME3630-C2C_MP11		LTE FDD B1/3/5/8 ,			
		LTE TDD B38/39/40/41			
ME3630-W-C2A _MP01		WCDMA B1/5/8	支持	CAT4	
ME3630-W-C2A _MP11	GSM B3/8	LTE FDD B1/3/5/8			
	CDMA1X CDMA EVDO 800M	LTE TDD B38/39/40/41			
ME3630-W-C2B_MP01	WCDMA B1/5/8	不支持	不支持	CAT4	
ME3630-W-C2B_MP11	TD-SCDMA B34/39				
ME3630-W-C2C_MP01	LTE FDD B1/3/5/8	WCDMA B1/5/8	支持	CAT4	
ME3630-W-C2C_MP11	LTE TDD B38/39/40/41	LTE FDD B1/3/5/8			
		LTE TDD B38/39/40/41			
ME3630-W-C3B_MP01	GSMB3/8,	不支持	不支持	CAT4	
ME3630-W-C3B_MP11	CDMA1X CDMA EVDO 800M ,				
ME3630-W-C3C_MP01	WCDMA B1/5/8	WCDMA B1/5/8	支持	CAT4	
ME3630-W-C3C_MP11	TD-SCDMA B34/39 ,	LTE FDD B1/3/5/8 ,			
	LTE FDD B1/3/5/8 ,	LTE TDD B38/39/40/41			
	LTE TDD B38/39/40/41				
ME3630-U1A_MP01	WCDMA B2/5 ,	WCDMA B2/5 ,	支持	CAT4	
ME3630-U1A_MP11	LTE FDD B2/4/5/12/17	LTE FDD B2/4/5/12/17			
ME3630-U1C_MP01				CAT1	
ME3630-U1C_MP11					
ME3630-E1C_MP01	GSMB3/8,	WCDMA B1/8 ,	支持	CAT4	
ME3630-E1C_MP11	WCDMA B1/8 ,	LTE FDD B1/3/7/8/20			
	LTE FDD B1/3/7/8/20				
ME3630-E2C_MP01	GSMB3/8,	WCDMA B1/8 ,	支持	CAT1	
ME3630-E2C_MP11	WCDMA B1/8 ,	LTE FDD B1/3/7/8/20			
	LTE FDD B1/3/7/8/20				
ME3630-J2A_MP01	LTE FDD: B1, B3, B5, B7, B8, B18, B19,	LTE FDD: B1, B3, B5, B7,B8,	支持	CAT4	
ME3630-J2A_MP11	B21	B18, B19, B21			

CAT1

ME3630-J2AS_MP01 WCDMA: B1, B5, B6, B8, B19 WCDMA: B1, B5, B6, B8, B19 ME3630-J2AS_MP11

产品外观可参见下图:

图 1-1 产品外观示意图

说明:产品外观示意图仅供参考,实际产品外观请以实物为准。

1.1. 产品技术参数

本产品的主要特性可以从机械特性、基带、射频、技术标准和环境特性等方面来看,表 1-2 是本产品支持的主要技术参数和特性。

表 1-2 主要技术参数

类型	参数项目	规格说明	
机械特性	尺寸	约 51mm×31mm×4.75 mm	
	重量	约 10.0g	
	封装类型	PCI Express Mini Card	
基带	USIM/SIM	3V SIM 卡以及 1.8V SIM 卡	
	USB 接口	高速 USB 2.0,数据传输速度可达 480 Mbps.	
	电源	3.0~4.0V(Typ.3.3V/3.8V)	
	LED pin	支持	
射频	最大发射功率	WCDMA Bands: 24 +1/-3dBm (Power Class 3) GSM Band 8: 33±2dBm (Power Class 4) GSM Band 3: 30±2dBm (Power Class 1) LTE: +23dBm +2.7/-2.7dB (Power Class 3) TD-SCDMA: 24 +1/-3dBm (Power Class 2)	
	接收灵敏度	WCDMA Band 1: ≤-106.7 dBm GSM Band 3/ Band 8: ≤-102dBm	

	TD SCDMA Band34/39: ≤-107.3dBm
主天线接口	支持,配有天线连接头
分集接收天线	支持,配有天线连接头(具体参见表 1-1)
GPS 天线	支持,配有天线连接头(具体参见表 1-1)

1.2. 产品支持频段

下表显示了产品支持的频段信息:

表 1-3 ME3630 支持频段

表 1-3 ME3630 支持频段						
PID	RF 支持	RF 频段	发送频率(TX)	接收频率 (RX)		
ME3630-C2A	GSM	В3	¹⁷¹⁰ to 1785 MHz	¹⁸⁰⁵ to 1880 MHz		
ME3630-C2C		B8	880 to 915 MHz	925 to 960 MHz		
ME3630-C2B	CDMA	BC0	824 to 849MHz	869 to 894 MHz		
ME3630-W-C2A	(EVDO/CDMA					
ME3630-W-C2B	1X)					
ME3630-W-C2C	WCDMA	B1	1920 to 1980 MHz	2110 to 2170 MHz		
ME3630-W-C3B		B5	824 to 849 MHz	869 to 894 MHz		
ME3630-W-C3C		В8	880 to 915 MHz	925 to 960 MHz		
	TD-SCDMA	B34	²⁰¹⁰ to 2025 MHz	2010 to 2025 MHz		
		B39	1880 to 1920 MHz	1880 to 1920 MHz		
	LTE FDD	B1	1920 to 1980 MHz	2110 to 2170 MHz		
		В3	1710 to 1785 MHz	1805 to 1880MHZ		
		B5	824 to 849 MHz	869 to 894 MHz		
		B8	880 to 915 MHz	925 to 960 MHz		
	LTE TDD	B38	2570 to 2620MHZ	2570 to 2620MHZ		
		B39	1880 to 1920MHZ	1880 to 1920MHZ		
		B40	2300 to 2400MHZ	2300 to 2400MHZ		
		B41	2555 to 2655MHZ	2555 to 2655MHZ		
ME3630-U1A	LTE FDD	B2	1850 to 1910 MHz	1930 to 1990 MHz		
ME3630-U1C		B4	1710 to 1755 MHz	2110 to 2155 MHz		
		B5	824 to 849 MHz	869 to 894 MHz		
		B12	698 to 716 MHz	728 to 746 MHz		
		B17	704 to 716 MHz	734 to 746 MHz		
	WCDMA	B2	1850 to 1910 MHz	1930 to 1990 MHz		
		B5	824 to 849 MHz	869 to 894 MHz		
ME3630-E1C	LTE FDD	B1	1920 to 1980 MHz	2110 to 2170 MHz		
ME3630-E2C		В3	1710 to 1785 MHz	1805 to 1880 MHz		
		В7	2500 to 2570 MHz	2620 to 2690 MHz		

	B8	880 to 915 MHz	925 to 960 MHz
	B20	832 to 862 MHz	791 to 821 MHz
WCDMA	B1	1920 to 1980 MHz	2110 to 2170 MHz
	B8	880 to 915MHZ	925 to 960MHZ
GSM	В3	1710 to 1785 MHz	1805 to 1880 MHz
	B8	880 to 915 MHz	925 to 960 MHz

1.3. 基带功能介绍

本产品和系统板连接时,主要分为以下信号组:USB信号、(U)SIM card信号、WAKEUP_OUT唤醒信号、WWAN_LED_N工作状态指示灯信号、射频开关控制信号W_DISABLE_N、整机复位信号PERST_N、电源和地。同时,ME3630具有主天线、GPS天线和分集天线,下图是系统连接框架结构图。

图 1-2 系统连接框架结构图

2. 机械特性

2.1. 产品尺寸图

本产品采用的是标准 PCI Express Mini Card 接口类型,外形尺寸按照 F2 型设计(相对于 F1 型而言,BOTTOM 面有器件禁布区)。下图是 PCI Express Mini Card 外形尺寸类型及插槽兼容性示意图。

图 2-1PCI Express Mini Card 外形尺寸

2.2. 热设计建议

本产品的热设计严格符合规范【PCI Express Mini Card Electromechanical Specification Revision 1.2, October 26 2007】, 并将热源均匀分布, 具有卓越的散热设计。为了确保产品的工作性能得到充分发挥, 对主板的设计建议如下:

- 尽量让本模块产品远离开关电源、高速信号线放置,并对这些干扰源走线要保护好。
- 天线及连接网卡和天线的同轴线缆也不要靠近这些干扰源放置。
- 不要让产品靠近诸如 CPU、南桥等发热量比较大器件放置,温度升高会影响到射频性能。

3. 接口说明

3.1. 管脚定义

3.1.1. 管脚配置图

本产品接口是按照《PCI Express Mini Card Electromechanical Specification Revision 1.2, October 26 2007》设计的,其管脚顺序定义如下图 3-1 所示。

图 3-1 管脚配置图

3.1.2. 管脚描述

详细管脚定义见表 3-1 所示。该表描述了 ME3630_MP0 和 ME3630_MP1 的管脚定义。

说明:不同 PID 产品的管脚定义会有细微差别。

表 3-1接口定义描述

PIN	ME3630_MP0 PCIE	ME3630_MP1 PCIE	管脚电压 (VDD_PX)	I/O	管脚描述
1	WAKEUP_OUT	NC		0	MP0: 模块唤醒外部设备需外部上拉, 低电平
					有效
					MP1: 悬空
2	V_MAIN	V_MAIN		I	电源:3.0~4.0V(Typ.3.3V/3.8V)
3	NC	NC			悬空
4	GND	GND			地
5	NC	NC			悬空
6	NC	NC			悬空

					(大人文门/II/ II-)
7	NC	NC			悬空
8	USIM_VCC	USIM_VCC	1.8V/3V	0	USIM 电源
9	GND	GND			地
10	USIM_DATA	USIM_DATA	1.8V/3V	I/O	USIM 数据
11	UART_RXD	1.8V	1.8V	I	MP0:UART 数据接收 MP1: 参考电压 输出电流必须小于 10mA
12	USIM_CLK	USIM_CLK	3V	0	USIM 时钟
13	UART_TXD	NC	1.8V	0	UART 数据传输
14	USIM_RST	USIM_RST	1.8V/3V	0	USIM 复位
15	GND	GND			地
16	UART_DSR	UART_DSR	1.8V	0	模块准备好
17	UART_RI	UART_RI	1.8V	0	UART 振铃提示
18	GND	GND			地
19	WAKEUP_IN	WAKEUP_IN	1.8V		外部设备使模块休眠或唤醒
20	W_DISABLE_N	W_DISABLE_N		I	射频禁用低有效信号(飞行模式)
21	GND	GND			地
22	RESET_IN	RESET_IN		I	模块复位信号, 低有效
23	UART_CTS	UART_RX	1.8V	I	MP0:UART 清除发送 MP1: UART 接收数据
24	V_MAIN	V_MAIN	3.3V	I	电源:3.0~4.0V(Typ.3.3V/3.8V)
25	UART_RTS	UART_RTS	1.8V	0	UART 请求发送
26	GND	GND			地
27	GND	GND			地
28	1.8V	1.8V			参考电压 输出电流需小于 10mA
29	GND	GND			地
30	NC	NC			悬空
31	UART_DTR	UART_TXD	1.8V	I	MP0:UART DTE 准备好 MP1: UART 传输数据
32	NC	WAKEUP_OUT			MP0:悬空 MP1:模块唤醒外部设备,需外部拉高,低有效
33	UART_DCD	RESET_IN	1.8V	0	MP0:UART 载波检测 MP1:模块复位信号,低有效,低电平输入需大

					于 50mV.
34	GND	GND			地
35	GND	GND			地
36	USB_DM	USB_DM			USB 数据信号 D-
37	GND	GND			地
38	USB_DP	USB_DP		I/O	USB 数据信号 D+
39	V_MAIN	V_MAIN	3.3V	I	电源:3.0~4.0V(Typ.3.3V/3.8V)
40	GND	GND			地
41	V_MAIN	V_MAIN	3.3V	I	电源:3.0~4.0V(Typ.3.3V/3.8V)
42	LED_WWAN_N	LED_WWAN_N		0	LED 管脚,工作状态指示
43	GND	GND			地
44	USIM_DET	USIM_DET	1.8V	I	SIM 卡检测 ,需外部拉高 ,检测到高电平时 SIM 卡不在位 , 检测到低电平时 SIM 卡在位,
45	NC	NC			
46	NC	NC			悬空
47	NC	NC			
48	NC	NC			悬空
49	NC	NC			
50	GND	GND			地
51	NC	NC			
52	V_MAIN	V_MAIN	3.3V		电源:3.0~4.0V(Typ.3.3V/3.8V)

说明:"NC"表示 Not Connected , 即模块内部没有连接。

3.2. 逻辑电平标准

下表显示了 IO 口的逻辑电平参数:

表 3-2IO 口逻辑电平

参数项目	描述	最小	最大	单位
VIH	高输入电压	0.65*VDD_PX	VDD_PX+0.3	V
VIL	低输入电压	-0.3	0.35*VDD_PX	V
VOH	高输出电压	VDD_PX-0.45	VDD_PX	V
VOL	低输出电压	0	0.45	V

说明·

- 1 高低压输入电压必须在上表所述范围之内。
- 2 外部电路接口电压设计必须与产品管脚电压匹配
- 3 VDD_PX=1.8V/3.3V, 合适的管脚电压值请参见表格 3-1。

3.3. 主要管脚信号说明

下面对用户常用到的模块接口管脚进行说明,包括模块接口引脚的功能和默认输入输出特性、以及匹配电路。用户可以根据管脚说明合理设计系统板侧应用电路。

模块提供如下接口/信号:

- · 电源和重置接口
- · UART接口
- · USIM 卡接口
- · USB2.0 接口
- ・ 天线接口
- · LED 接口
- · WAKEUP_OUT & W_DISABLE_N 信号

3.4. 电源

主机可通过多重接地和电源管脚给模块供电,详见 3.4.1 和 3.4.2 章节。模块不具备自我供电功能,外部供电必须安全且不中断。

3.4.1. GND 接口

GND 信号 (管脚号: 4/9/15/18/21/26/27/29/34/35/37/40/43/50)。此为 ME3630 PCIE 的电源地和信号地,需要全部连接到系统板的地平面上。GND 信号的连接不完整会对 ME3630 PCIE 的性能有影响。

All GND signals are good.

图 3-2GND 信号连接图

3.4.2. 电源

3.3 Vaux 信号(管脚号: 2/24//39/41/52, 电源接口)。此为电源 3.3 V/3.8 V 正极信号, 模块电源输入信号。供电范围建议为 3.0 V~4.0 V(典型值为 3.3 V/3.8 V)。

3.5. WAKEUP_IN 接口

WAKEUP_IN 信号是模块进入休眠模式的授权信号。

如果拉高该信号(1.8V),模块则不会进入休眠模式。如果该管脚未连接,默认为下拉。 详见如下 WAKEUP_IN 信号定义表:

表 3-3WAKEUP_IN 定义

名称	No.	I/O	管脚描述	备注
WAKEUP_IN	19	DI	控制信号输入	1.8V "默认内部下拉。只有电平变化时可以触发模块进入不同状态。
				如需使用,请在外部电路添加上拉电阻。
				边沿触发,上升沿唤醒模块;下降沿模块可以休眠

图 3-3WAKEUP_IN 输入顺序

图 3-4WAKEUP_IN 参考连接电路

说明:

上图图示中,各电阻阻值仅供参考,请根据实际情况进行微调。WAKEUP_IN 内部有防抖设计,外部处理器拉高或拉低 WAKEUP_IN 时,电平必须持续 500ms 以上。

3.6. WAKEUP_OUT 接口

WAKEUP_OUT 接口(PIN No.1)用于输出,模块提供 WAKEUP_OUT 接口用于唤醒外部处理器。下表是模块接口 WAKEUP_OUT 的定义

表 3-4WAKEUP_OUT 定义

名称	No.	I/O	管脚描述	备注
WAKEUP_OUT	1	DO	MP0: OD 门,唤醒外部处理器,需外部上拉,低电平有	在模块处于休眠状态下,如果收到外部唤醒事件,如接收到短信、电话、网络数据时,该管脚将输
			效	出一个低 1s 电平脉冲信号。

图 3-5WAKEUP_OUT 参考连接电路

说明:

上图图示中,各电阻阻值仅供参考,请根据实际情况进行微调。请勿将 WAKEUP_OUT 直连至电源正极。

当有短信、电话接入时,可参考如下输出时序图:

图 3-6PIN1(WAKEUP_OUT)输出时序

3.7. W_DISABLE_N 接口

W_DISABLE_N 信号(PIN No: 20):低电平有效,内部拉高,通过硬件开关输入后即可禁用主射频。详见下表:表 3-5W_DISABLE_N 定义

W_DISABLE_N	模块状态
'1'	射频使能
,0,	射频禁用

W_DISABLE_N 接口参考电路图可参见 RESET_IN 接口。

说明:

请勿将此接口直连至电源正极。

3.8. RESET_IN 接口

RESET_IN 接口(PIN No: 22)用于模块重置,低电平有效。下表描述了接口定义,下图显示了 RESET_IN 接口的参考电路。

注意:

- 在固件升级过程中出现失败 或 出现模块端口不通等,需要重启模块的情况下,不要使用模块复位管脚,建议使用 断开模块主供电V_BAT(PIN50\51)后再上电开机 的方式,实现模块重启
- 请勿将此接口直连至电源正极

表 3-6RESET IN 定义

RESET_IN	Module Status
'1'	模块运行正常
'0' and t≥1s	射频被禁用,模块将重置

图 3-7RESET_IN 参考电路图

图 3-8 重置信号

3.9. LED_WWAN_N 接口

LED_WWAN_N 信号(PIN No: 42)。LED_WWAN_N 信号为模块当前工作状态的指示信号,由模块输出。LED 指示灯在系统侧,在该信号输出低电平时将 LED 指示灯点亮,指示灯状态如下表所示,LED_WWAN_N 信号参考电路设计图如下图所示。

表 3-7LED_WWAN_N 状态

LED_WWAN_N 状态	模块状态	预期指示灯状态
高电平'1',3.3V	未注册网络	指示灯灭
低电平 '0', 0V	已注册网络	指示灯长亮

图 3-9LED_WWAN_N 参考电路

3.10. (U)SIM 卡接口

USIM 卡信号组(管脚号:8/10/12/14/16),此为 USIM 卡信号,符合 3GPP 标准。各信号详细定义如下表所示。USIM 卡卡座位于系统板侧,设计时请注意增加 ESD 电路保护,参考电路设计如下图所示。

表 3-8USIM 卡信号描述

PIN	信号定义	信号描述
8	USIM_VCC	USIM 卡电源,模块输出
10	USIM_DATA	USIM 卡数据信号, 双向信号
12	USIM_CLK	USIM 卡时钟信号,模块输出
14	USIM_RST	USIM 复位信号,模块输出
44	USIM_DET	SIM 卡检测,需外部拉高,检测到高电平则卡不在位,检测到低电平则卡在位

为了符合 3GPP TS 51.010-1 标准以及 EMC 认证,建议将 USIM 卡座置于 USIM 卡接口较近的地方。这样可以避免走线过长,造成波形失真,从而影响信号完整度。

下图为 USIM 卡参考设计以及推荐电路。ME3630 mini-PCIE 已内置 ESD 电路保护和 UIM_DATA 拉高。

图 3-10U(S)IM 卡信号连接电路

图 3-11USIM DET 管脚逻辑

3.11. USB 接口

模块具有高速 USB2.0 接口,支持全速和高速模式,其经过 PIN 36 (USD_DM)和 PIN 38 (USB_DP)接口引出连接到用户系统板侧。USB 总线主要用于数据传输,是主机和模块之间的通信路径。

表 3-9USB 管脚定义

名称	管脚号	描述
USB_DM	36	USB 数据信号正
USB_DP	38	USB 数据信号负

USB接口符合 USB2.0 标准及其电气特征。设计时 USB_DP, USB_DM 布线必须严格遵守差分走线,线的间距需限制在1mm以内。

USB 信号差分走线的参考地非常重要,必须有完整的参考地,PCB 差分走线阻抗 90Ω 。

注意接口 ESD 保护器件的结电容在高速 USB 数据线上的影响。通常选用电容值应小于 2pf。

图 3-12USB 信号连接电路图 I

说明:

差分走线阻抗应控制在 90Ω以内。

3.12. UART 接口

3.12.1. 管脚描述

模块支持全流控 UART 接口,符合 RS-232 接口协议的规定。

UART 口支持可编程数据带宽,可编程数据停止位和可编程奇偶校验,独立的 TX 和 RX FIFO 端(各 512bytes)。常规 UART 应用(非蓝牙应用)中,最高波特率为 230400bps,默认波特率为 115200bps。下图为定义表:

说明:

本章节只适用于 PID MP0。

表 3-10UART 信号定义

信号名称	I/O	描述
UART1_RX	DI	UART 口数据接收
UART1_TX	DO	UART 口数据发送
UART1_DSR	DO	数据准备好
UART1_RI	DO	铃声/振铃指示
UART1_CTS	DI	清除发送
UART1_RTS	DO	准备接收数据
UART1_DTR	DI	数据终端准备好
UART1_DCD	DO	载波检测

3.12.2. 电气特征

为了在软件联调过程中能够实现 log 抓取,我们建议用户设计时保留此接口并预留测试点。如果模块是与应用处理器配合使用的时候,且电平在1.8V 匹配时,连接方式如下图所示:

图 3-13 模块串口与 AP 应用处理器

可以采用八线方式或者两线方式连接。模块接口电平是 1.8V,如果与 AP 接口电平不匹配,则可能会有串口状态不稳定或者模块损坏的风险,故建议增加电平转换电路。模块可以通过使用 232 类芯片与标准 RS-232-C 的接口连接,设计涉及到 TTL 电平与 EIA 电平相互转换,推荐先使用 NLSX5014MUTAG 芯片,如使用 2 线制串口时推荐使用 MAX3232 芯片,使用 8 线串口时,推荐使用 SP3238 或 MAX3238 等芯片进行接口设计。连接方式如下图所示。

图 3-14 模块串口与标准 RS-232-C 的接口连接

如果用户欲将模块接入 3.3V 的应用系统中,建议增加电平转换器。下图为参考电路图。图内二极管为肖特基管(正向压降为 0.3V),如果选用其它二极管请选择前向压降小的,以保证在输入低电平时,UART_RXD 的电平在低电平输入阈值以下。图示中,各电阻阻值仅供参考,请根据实际情况进行微调。

图 3-15UART 电平转换器 (1.8V-3.3V)

4. 电源接口设计

本章说明电源设计的需求和原则。用户可依据此章节合理设计模块电源,从而获得模块稳定良好的工作状态。

4.1. 一般设计规则

当模块用于不用的外部应用环境时, 电源的设计需要格外加以注意。

设计外围电路时,首先应考虑外部供电电路能否给模块提供充足的供电,并且供电电压严格控制在 3.0V-4.0V 之间。如果超出此范围则可能导致主芯片损坏;如果低于此范围,则可能会影响射频性能或导致模块重启/关机。设计高速 USB2.0 信号线时,差分阻抗应为 90 欧姆。外部电路接口电压设计应和模块管脚匹配,详见第四章。模块射频指示器功能良好,用户可参考第六章进行天线相关设计。

4.2. 供电需求

PCIE 模块的供电范围通常在 3.0-4.0V(Typ.3.3V/3.8V),具体则根据终端设备所需设定。正常工作状态下,供电为 3.3V。如果网络状况不佳,天线会以最大功率传输,传输峰值电流可达 2.3A。故电源供电应大于 2.3A 才能满足模块峰值电流的需求,系统侧平均电流应大于 2.0A。设计电源时也应考虑主板侧电源压降的情况。如果位于 2G 网络或者网络状况不良,模块的峰值电流会很强,故电源必须在不带强压降的前提下能够承受其峰值电流,因此要依据此电流进行电气设计和布板设计。如果布板设计不良,则有可能生成强噪音,或者导致模块重启。

因实际网络情况有所不同,模块的峰值电流在 GSM BURST 下会有所不同,不同功率下的传输电流值也会不一致。功率越大,传输电流越大。网络质量可直接影响模块的工作电流,如果网络信号良好,模块的峰值电流会很微小;如果网络状态不佳,峰值电流则会很强,如下图所示。

图 4-1EDGE/GPRS 下供电电流和电压变化

4.3. 供电输出电路需求

需求如下:

可以承载至少 2.5A 的峰值电流。

系统供电平均电流至少 2.0A。

PCB 布线时, 电源线应有足够厚度, 可以和地生成良好回流。

电源电路设计时应采用大容量电容,大容量电容可以保障瞬时供电和持续供电的性能,也可以避免模块因电压升降导致

的复位和关机。

图 4-2 模块电源终端添加大容量电容

4.4. 推荐电源参考设计

设计方案一:

DCDC 方案采用大电容,可以确保 RF 电源放大器的正常使用,承载强电压降的峰值电流。

优势:

在 2G 网络信号弱的情况下可以给模块提供良好的瞬间电流,防止因为电压跌落导致的模块关机或者端口重枚举。

DCDC 过流能力必须在 3A 以上,例如采用 ZI1153 或者 AAT2138。

ZI1153 的输入电压为 2.5-5.5V, 输出电压为 0.6V-VIN(输入电压)。

AAT2138 的输入电压为 2.7-5.5V, 输出电压为 3.3-5.5V。

下图为 ZI1153 的参考电路。放置 330μ F 的钽电容在芯片的输入端。并排放置 220μ F 的电容或多个 330μ F 钽电容。这个个电路完全能够满足模块的功率需求(如果 PCB 面积有限,芯片输出端可加放 3 个总容量超过 1000μ F 的 330μ F 钽电容)。

图 4-3DC/DC 参考电路

设计方案二:

LDO 的过流能力要 3A 以上。由于线性稳压器的瞬态响应不太理想 , 大电容应该放在 LDO 的输入和输出端 ; 放置 2000 μ F 以上的电容在 LDO 输出端。

参考电源和 LDO 电路设计如下图所示:

图 4-4LDO 参考电路

上图中电阻和电容仅供参考,实际用例中需要根据输出电压等实际情况选择合适的电阻和电容。

5. 天线设计

天线性能直接影响模块整体性能,天线连接是产品设计中最重要的一个方面。

5.1. 天线接口

Mini PCIE 转接板上有 3 个射频天线连接口,主天线,GPS 天线和分集接收天线。外观如下图 5-1 所示。天线连接口采用 U.FL-R-SMT1 (80) 射频座(图 5-2),射频口推荐使用 U.FL_LP_088 线(图 5-3),射频座尺寸图可见图 5-4(Unit: mm)。 更多信息可登陆网站 http://www.hirose-connectors.com/查询。

说明:

部分 PID 不支持分集接收天线、GPS,请以表 1-1 中的信息为准。

图 5-1 天线接口示意图

图 5-2 射频接口测试座(U.FL-R-SMT1 (80) of HRS Corporation)

图 5-3 测试线

5.2. 天线指标

模块支持 AGPS/GPS 功能,故需添加 GPS 天线。GPS 天线设计和主天线一致,天线效率可小于 3dB。主天线和分集天线之间的隔离度需大于 12dB, Rx TIS 和主天线 TIS 之间的差分需在 6dB 之内。

天线的指标要求包括无源指标和有源指标要求。无源指标包括 S11、天线效率、天线增益、天线方向图、极化等,可以作为衡量天线自身性能的参数;有源指标通常指的 OTA 指标,包括 TRP(全向辐射功率,反映的是天线远场的辐射性能)、TIS(全向接收灵敏度)、辐射方向图等,是衡量整机(包括天线、模块、电路主板)辐射性能的重要指标。

GNSS 天线性能指标基本要求:

频率范围:1561-1615MHz

驻波比 VSWR: <2:1 无源天线增益: >0dbi 有源天线噪声系数: <1.5dB

有源天线增益:>18bi 天线效率:>40%

GSM/WCDMA/LTE/CDMA/TDSCDMA 天线 (主集&分集)性能指标基本要求:

频率范围:806-960MHz/1710-2700MHz

驻波比 VSWR: <2:1 天线增益: >0dbi 输入阻抗: 50 欧姆 天线效率:>40%

为了确保客户设计产品的天线性能,在天线设计过程中,请遵守以下原则:

- [1] 在设计移动设备天线时,为获得尽可能好的性能,建议在设计初期阶段就和天线制造商应开始沟通评估,这一点是很重要的,尤其是内置天线;
 - [2] 尽可能使用足够大的空间:对天线性能来说,尺寸越大性能越好。
- [3] 天线应远离以下物体,保持 6mm 以上间距,并要求以下物体有良好的接地:LCD、摄像头、液晶屏、按键等的弯曲电缆、连接振荡器或扬声器的导线、含金属的螺丝或螺母、马达、喇叭、电池等;
 - [4] 天线下方尽量减少元件,特别是较高的元件;最高元器件与天线的间距最少 2mm。
 - [5] PCB 长度对天线增益有显著的影响。多频段天线设计, PCB 长度应适当加长。
 - [6] 天线匹配元器件应在天线馈电点附近,但是不能放置在天线正下方。
 - [7] 连接天线馈电点的传输线采用采用共面波导结构(CPW)。
 - [8] 天线馈点和短接电路点接近接地片(PCB板)的边缘。
 - [9] PCB 主板上所有金属必须正确接地,避免能量损失和附加不辐射谐振。
 - [10]天线不应被耦合到屏蔽罩,所有接地屏蔽应与天线有6mm间隔。

5.3. 天线 OTA 测试方法

下图是 OTA CTIA 测试系统。系统主要由测试暗室,高精度定位系统及其控制器,基于 Windows 的 PC 运行测试软件、射频测试仪器,与自动测试程序所构成。主要射频仪器集成射频测试设备、频谱分析仪、网络分析仪为一体。射频设备、直流电源与自动测试软件和 PC 通过 GPIB 接口迕行通信。

图 5-5OTA&CTIA 测试系统

6. 测试和测试标准

6.1. 工作电流

下表显示了不同工作模式下的电流消耗情况:

表 6-1 平均待机直流功耗[1]

参数	模块状态	典型值	单位
关机	关机	45	μΑ
休眠	飞行模式(睡眠,UART&USB 挂起)	0.9	mA

表 6-2 平均待机直流功耗[2]

制式	频段	典型值			单位	
带宽		5MHz	10MHz	15MHz	20MHz	
LTE	LTE FDD Band 1 , Pout=23dBm	550	560	590	600	mA
	LTE FDD Band 3 , Pout=23dBm	500	520	580	590	mA
	LTE FDD Band 5 , Pout=23dBm	500	520	580	590	mA
	LTE FDD Band 8 , Pout=23dBm	500	520	580	590	mA
	LTE TDD Band 38 , Pout=23dBm	380	390	430	450	mA
	LTE TDD Band 39 , Pout=23dBm	300	310	360	390	mA
	LTE TDD Band 40 , Pout=23dBm	350	360	400	430	mA
	LTE TDD Band 41 , Pout=23dBm	380	390	430	450	mA

表 6-3 平均待机直流功耗 [3]

制式	频段	典型值	单位
WCDMA	Band1 ,Pout=24dBm	550	mA
	Band5 , Pout=23dBm	550	mA
	Band8 , Pout=23dBm	550	mA
TD-SCDMA	Band34, Pout=24dBm	180	mA
	Band39, Pout=24dBm	180	mA
CDMA	BC0, Pout=23dBm	600	mA
GSM	Band3, Pout=30dBm	200	mA
	Band8, Pout=33dBm	300	mA

6.2. 工作温度&存储温度

工作温度范围可分为正常工作温度范围和极限工作温度范围。正常工作温度范围内,模块正常工作,测试结果符合 3GPP 协议标准。极限工作温度范围内,测试结果基本上符合 3GPP 要求,数据传输会受一定程度的影响,但模块基础功能不受影响。下表为测试环境需求:

表 6-4 温度范围

工作温度	最低温	最高温	备注
正常工作温度	-30°C	75°C	全部指标良好

极限工作温度	-40°C~ -30°C	+75°C~ +85°C	部分指标下降
存储温度	-40°C	85°C	模块的存储环境

说明:

如果模块工作环境温度超出了极限温度范围,则可能会造成模块的永久性损坏。

6.3. 射频输出功率

下表为 ME3630 模块的射频输出功率:

Max Min		次ですが外間出力一	
LTE FDD Band 3 23dBm ±2.7dB -39dBm LTE FDD Band 5 23dBm ±2.7dB -39dBm LTE FDD Band 8 23 ±2.7dBm -39dBm LTE TDD Band38 23dBm ±2.7dB -39dBm LTETDD Band 39 23dBm ±2.7dB -39dBm LTE TDD Band40 23dBm ±2.7dB -39dBm LTE TDD Band 41 23dBm ±2.7dB -39dBm WCDMA Band1 24+1/-3 dBm -50dBm WCDMA Band5 24+1/-3 dBm -50dBm WCDMA Band8 24+1/-3 dBm -50dBm TD-SCDMA Band39 24+1/-3 dBm -50dBm CDMA BC0 23~30 dBm -50dBm GSM Band3 30dBm ±2dB -5dBm	频段	Max	Min
LTE FDD Band 5 23dBm ±2.7dB -39dBm LTE FDD Band 8 23 ±2.7dBm -39dBm LTE TDD Band38 23dBm ±2.7dB -39dBm LTETDD Band 39 23dBm ±2.7dB -39dBm LTE TDD Band40 23dBm ±2.7dB -39dBm LTE TDD Band 41 23dBm ±2.7dB -39dBm WCDMA Band1 24+1/-3 dBm -50dBm WCDMA Band5 24+1/-3 dBm -50dBm WCDMA Band8 24+1/-3 dBm -50dBm TD-SCDMA Band34 24+1/-3 dBm -50dBm TD-SCDMA Band39 24+1/-3 dBm -50dBm CDMA BC0 23~30 dBm -50dBm GSM Band3 30dBm ±2dB -5dBm	LTE FDD Band 1	23dBm ±2.7dB	-39dBm
LTE FDD Band 8 23 ±2.7dBm -39dBm LTE TDD Band 38 23dBm ±2.7dB -39dBm LTETDD Band 39 23dBm ±2.7dB -39dBm LTE TDD Band40 23dBm ±2.7dB -39dBm LTE TDD Band 41 23dBm ±2.7dB -39dBm WCDMA Band1 24+1/-3 dBm -50dBm WCDMA Band5 24+1/-3 dBm -50dBm WCDMA Band8 24+1/-3 dBm -50dBm TD-SCDMA Band34 24+1/-3 dBm -50dBm TD-SCDMA Band39 24+1/-3 dBm -50dBm CDMA BCO 23~30 dBm -50dBm GSM Band3 30dBm ±2dB -5dBm	LTE FDD Band 3	23dBm ±2.7dB	-39dBm
LTE TDD Band38 23dBm ±2.7dB -39dBm LTETDD Band 39 23dBm ±2.7dB -39dBm LTE TDD Band40 23dBm ±2.7dB -39dBm LTE TDD Band 41 23dBm ±2.7dB -39dBm WCDMA Band1 24+1/-3 dBm -50dBm WCDMA Band5 24+1/-3 dBm -50dBm WCDMA Band8 24+1/-3 dBm -50dBm TD-SCDMA Band34 24+1/-3 dBm -50dBm TD-SCDMA Band39 24+1/-3 dBm -50dBm CDMA BC0 23~30 dBm -50dBm GSM Band3 30dBm ±2dB -5dBm	LTE FDD Band 5	23dBm ±2.7dB	-39dBm
LTETDD Band 39 23dBm ±2.7dB -39dBm LTE TDD Band40 23dBm ±2.7dB -39dBm LTE TDD Band 41 23dBm ±2.7dB -39dBm WCDMA Band1 24+1/-3 dBm -50dBm WCDMA Band5 24+1/-3 dBm -50dBm WCDMA Band8 24+1/-3 dBm -50dBm TD-SCDMA Band34 24+1/-3 dBm -50dBm TD-SCDMA Band39 24+1/-3 dBm -50dBm CDMA BC0 23~30 dBm -50dBm GSM Band3 30dBm ±2dB -5dBm	LTE FDD Band 8	23 ±2.7dBm	-39dBm
LTE TDD Band40 23dBm ±2.7dB -39dBm LTE TDD Band 41 23dBm ±2.7dB -39dBm WCDMA Band1 24+1/-3 dBm -50dBm WCDMA Band5 24+1/-3 dBm -50dBm WCDMA Band8 24+1/-3 dBm -50dBm TD-SCDMA Band34 24+1/-3 dBm -50dBm TD-SCDMA Band39 24+1/-3 dBm -50dBm CDMA BC0 23~30 dBm -50dBm GSM Band3 30dBm ±2dB -5dBm	LTE TDD Band38	23dBm ±2.7dB	-39dBm
LTE TDD Band 41 23dBm ±2.7dB -39dBm WCDMA Band1 24+1/-3 dBm -50dBm WCDMA Band5 24+1/-3 dBm -50dBm WCDMA Band8 24+1/-3 dBm -50dBm TD-SCDMA Band34 24+1/-3 dBm -50dBm TD-SCDMA Band39 24+1/-3 dBm -50dBm CDMA BC0 23~30 dBm -50dBm GSM Band3 30dBm ±2dB -5dBm	LTETDD Band 39	23dBm ±2.7dB	-39dBm
WCDMA Band1 24+1/-3 dBm -50dBm WCDMA Band5 24+1/-3 dBm -50dBm WCDMA Band8 24+1/-3 dBm -50dBm TD-SCDMA Band34 24+1/-3 dBm -50dBm TD-SCDMA Band39 24+1/-3 dBm -50dBm CDMA BC0 23~30 dBm -50dBm GSM Band3 30dBm ±2dB -5dBm	LTE TDD Band40	23dBm ±2.7dB	-39dBm
WCDMA Band5 24+1/-3 dBm -50dBm WCDMA Band8 24+1/-3 dBm -50dBm TD-SCDMA Band34 24+1/-3 dBm -50dBm TD-SCDMA Band39 24+1/-3 dBm -50dBm CDMA BC0 23~30 dBm -50dBm GSM Band3 30dBm ±2dB -5dBm	LTE TDD Band 41	23dBm ±2.7dB	-39dBm
WCDMA Band8 24+1/-3 dBm -50dBm TD-SCDMA Band34 24+1/-3 dBm -50dBm TD-SCDMA Band39 24+1/-3 dBm -50dBm CDMA BC0 23~30 dBm -50dBm GSM Band3 30dBm ±2dB -5dBm	WCDMA Band1	24+1/-3 dBm	-50dBm
TD-SCDMA Band34 24+1/-3 dBm -50dBm TD-SCDMA Band39 24+1/-3 dBm -50dBm CDMA BC0 23~30 dBm -50dBm GSM Band3 30dBm ±2dB -5dBm	WCDMA Band5	24+1/-3 dBm	-50dBm
TD-SCDMA Band39	WCDMA Band8	24+1/-3 dBm	-50dBm
CDMA BC0	TD-SCDMA Band34	24+1/-3 dBm	-50dBm
GSM Band3 30dBm ±2dB -5dBm	TD-SCDMA Band39	24+1/-3 dBm	-50dBm
	CDMA BC0	23~30 dBm	-50dBm
GSM Band8 33dBm ±2dB 0dBm	GSM Band3	30dBm ±2dB	-5dBm
	GSM Band8	33dBm ±2dB	0dBm

6.4. 射频接收灵敏度

下表为 ME3630 模块射频接收灵敏度:

表 6-6 射频接收灵敏度[1]

频段	5 MHz(dBm)	10 MHz(dBm)	20 MHz(dBm)
LTE FDD Band 1	-100 dBm	-97 dBm	-94 dBm
LTE FDD Band 3	-97 dBm	-94dBm	-91dBm
LTE FDD Band 5	-98 dBm	-95dBm	-92dBm
LTE FDD Band 8	-97 dBm	-94dBm	-91dBm
LTE TDD Band 38	-100 dBm	-97 dBm	-94 dBm
LTE TDD Band 39	-100 dBm	-97 dBm	-94 dBm
LTE TDD Band 40	-100 dBm	-97 dBm	-94 dBm

LTE TDD Band 41	-100 dBm	-97 dBm	-94 dBm

表 6-7 射频接收灵敏度[2]

频段	灵敏度
WCDMA Band1	-107 dBm
WCDMA Band5	-108 dBm
WCDMA Band8	-108 dBm
TD-SCDMA BAND34	-108 dBm
TD-SCDMA BAND39	-108 dBm
CDMA BC0	-104 dBm
GSM Band3	-107 dBm
GSM Band8	-107 dBm

6.5. GNSS 技术指标

下图为 ME3630 模块 GNSS 技术指标:

表 6-8GNSS 技术指标

GNSS (GPS/GLONASS)	技术指标
Chiss (chis) Clothass)	1X/MHI0
GNSS 频率	1575.42±1.023 MHz
追踪灵敏度	-155dbm
捕获灵敏度	-143dbm
首次定位时间(室外)	热启动: 4s
	冷启动: 55s
接受类型	Qualcomm GPS Gen8C
GPS L1 频率	1575.42MHz
更新速率	2-4 HZ
GNSS (GPS/GLONASS) 数据格式	GOSUNCN Loc API/GOSUNCN 自定义
GNSS (GPS/GLONASS) 功耗	65mA
GNSS (GPS/GLONASS)天线	无源/有源天线

6.6. 静电放电

模块未做静电(ESD)防护,因此,模块内部敏感部件均需要 ESD 处理措施。。在整个加工、处理和运行中,模块要有适当的防静电处理。

下表说明了 ME3630 模块静电放电的特征。

表 6-9ESD 特征

测试点	接触放电	空气放电	单位
V_BAT	± 5	± 10	kV
所有天线接口	± 4	± 8	kV
其他接口	± 0.5	± 1	kV

7. 包装说明

ME3630 MINI PCIE 模块托盘包装规格如下:

10 片模块装 1 托盘;

100 片模块装 1 箱 (10 托盘装 1 箱)。

具体 ME3630 MINI PCIE 模块托盘包装示意流程图如下图所示:

