Elliptic Curve Cryptography

Patrick Maedgen

Texas A&M University

November 2019

Outline

- ► What is an elliptic curve?
- Group law for elliptic curves
- ► The ECDLP
- Using the collision algorithm to solve the ECDLP
- Advantages of using elliptic curves
- Example using Diffie-Hellman

What is an Elliptic Curve?

$$y^2 = x^3 + ax + b$$

- ▶ Where the determinant $4a^3 + 27b^2 \neq 0$
- ► This is known as the Weierstrass normal form

$$y^2 = x^3 - 2x + 1$$
 over \mathbb{R}

What is an Elliptic Curve?

- lacktriangle We also need a "point at infinity" denoted as ${\cal O}$
- So our definition becomes $\{(x,y) \in \mathbb{P}^2 \mid y^2 = x^3 + ax + b\}$

$$\{(x,y) \in \mathbb{R}^2 \mid y^2 = x^3 + ax + b, 4a^3 + 27b^2 \neq 0\} \cup \{\mathcal{O}\}\$$

► To be able to use these curves we need to define the Group Law for them

Group Law

- ► A group is a type of set with a defined binary operation, in this case addition
- ► There are 5 parameters that our addition operator must satisfy for a set *G* to be a group
 - ▶ Closure: $a, b \in G \longrightarrow a + b \in G$
 - **Associativity:** (a+b)+c=a+(b+c)
 - ▶ An Identity Element: a + 0 = a
 - **Every Element has an Inverse:** a+b=0, a=-b
 - **Commutativity:** a + b = b + a
- ► This fifth requirement, Commutativity, makes an abelian group

Group Law for Elliptic Curves

- We can define a group over elliptic curves which would allow us to use the + operator on points
- ▶ the identity element is the point at infinity, O
- The inverse of a point is that point reflected across the x-axis
 - If P = (x, y) is a point on the curve then the inverse of P is -P = (x, -y)

Neutral element \mathcal{O}

Inverse element -P

Point Addition

- Addition of points is defined as P+Q=-R where P,Q,R are all aligned points on the curve
- Algebraic addition:

• if
$$P \neq Q$$
, $-Q$: $\lambda = \frac{y_P - y_Q}{x_P - x_Q}$

$$y_R = y_P + \lambda(x_R - x_P) = y_Q + \lambda(x_R - x_Q)$$

Addition P+Q

Doubling P + P

Scalar Multiplication

- Now that we know how to add points together, what if we wanted to do repeated addition of the same point?
- ightharpoonup nP = Q
- $lackbox{ }Q$ must be a point on the curve because of group closure
- If we know Q and n, can we find P? If we know Q and P, can we find n?

Curves Over Finite Fields

- Need to restrict the curves over a finite field \mathbb{F}_p for some prime p
- The definition of the curve becomes: $((2 2)^2 + (2 3)^2 + (2$

$$\{(x,y) \in (\mathbb{F}_p)^2 \mid y^2 \equiv x^3 + ax + b \pmod{p}, 4a^3 + 27b^2 \not\equiv 0 \pmod{p} \} \cup \{\mathcal{O}\}$$

Adding points is similar to before but now the points must be connected by some line mod p

Curves Over Finite Fields

Elliptic Curve Discrete Logarithm Problem

- Core of Elliptic Curve Cryptography
- Based on the discrete logarithm problem from other cryptosystems
- ▶ nP = Q is analogous to, but harder to solve than $g^x \equiv h \pmod{p}$

Solving the ECDLP with the Collision Algorithm

- ▶ Given an elliptic curve over a finite field $E(\mathbb{F}_p)$, we want to solve Q = nP, given P and Q
- ightharpoonup Choose two sets of random integers between 1 and p
 - j_1, j_2, \ldots, j_r and k_1, k_2, \ldots, k_r
- Create two lists of points
 - ightharpoonup List 1: j_1P, j_2P, \ldots, j_rP
 - ► List 2: $k_1P + Q$, $k_2P + Q$, ..., $k_rP + Q$

Collision Algorithm

- As soon as one match is found between the two lists we are done
- ▶ If $j_u P = k_v P + Q$, then $Q = (j_u k_v)P$
- ightharpoonup So, $n=j_u-k_v$

Advantages of Elliptic Curves

- ▶ The ECDLP is more secure than the DLP
- ► Can acheive the same level of security with a smaller key

Security Strength	Symmetric key algorithms	FFC (e.g., DSA, D-H)	IFC (e.g., RSA)	ECC (e.g., ECDSA)
≤ 80	2TDEA ²¹	L = 1024 $N = 160$	<i>k</i> = 1024	f= 160-223
112	3TDEA	L = 2048 $N = 224$	k = 2048	f= 224-255
128	AES-128	L = 3072 $N = 256$	k = 3072	f=256-383
192	AES-192	L = 7680 $N = 384$	k = 7680	f=384-511
256	AES-256	L = 15360 N = 512	k = 15360	f= 512+

Elliptic Diffie-Hellman Key Exchange

- Alice wants to send Bob a secret value, but doesn't want Eve to intercept it
- Alice and Bob will choose a particular curve $E(\mathbb{F}_p)$ and a point $P \in E(\mathbb{F}_p)$
- They will each choose an integer and compute Q
 - ightharpoonup Alice: $Q_A = n_A P$

Elliptic Diffie-Hellman Key Exchange

- ► Alice and Bob exchange their respective *Q*s
- ► They multiply that by their own secret integer, now they share a secret value
- $n_A Q_B = n_A n_B P = n_B n_A P = n_B Q_A$

Thanks To

- Changningphaabi Namoijam (Texas A&M University)
- Kari Eifler, Taylor Brysiewicz, and Anne Shiu (Texas A&M University)

References

- Corbellini, Andrea. "Elliptic Curve Cryptography: a Introduction." Andrea Corbellini, 17 May 2015, andrea.corbellini.name/2015/05/17/elliptic-curvecryptography-a-gentle-introduction/.
- Eichlseder, Maria. "Elliptic Curve Group Operations." TikZ for Cryptographers, June 2016, www.iacr.org/authors/tikz/.
- ► Eichlseder, Maria. "Elliptic Curves over R and Fp." TikZ for Cryptographers, June 2016, www.iacr.org/authors/tikz/.
- "Elliptic Curves and Cryptography." An Introduction to Mathematical Cryptography, by Jeffrey Hoffstein et al., Springer, 2010, pp. 299–360.

