

Détection du mildiou de la pomme de terre par imagerie grâce aux méthodes de Machine Learning

Yasmine BOUCHIBTI
Leslie CIETERS
Meryem GRIMAJ

Sommaire

Introduction

Modèles de Machine Learning

Le jeux de données

Limites et perspectives

Modèles de Deep Learning

Conclusion

Introduction

- Alternaria solani (mildiou précoce)
- Phytophthora infestans (mildiou tardif)

Jusqu'à 80% de pertes

Utilisation de produits phytosanitaires

la Grande Famine 1845-1849

Machine Learning et Deep Learning

INTELLIGENCE ARTIFICIELLE Techniques permettant aux ordinateurs de copier un MACHINE LEARNING comportement humain DEEP LEARNING d'apprendre à résoudre 1950 1960 1970 1980 1990 2000 2010 2020

Déséquilibre important des classes

Technique SMOTE pour le suréchantillonnage de la classe minoritaire

• Séparation du jeu de données (80/20) pour l'entraînement et la validation

Régression logistique

1

Méthode one-vs-all 2

Distinction
entre Mildiou
tardif et
précoce

Résultats

Accuracy = 0.95

Résultats

1

Accuracy = 0.99

Accuracy = 0.93

Résultats

SVM

1

Choix de la méthode

2

Choix des hyperparamètres

Choix de la méthode

Ramener un problème de classification ou de discrimination à un hyperplan

Utilise un sous-ensemble de points d'entraînement dans la fonction de décision (appelé vecteurs de support), il est donc également efficace en mémoire.

Efficace dans les espaces de haute dimension

Différentes <u>fonctions du noyau</u> peuvent être spécifié pour la fonction de décision

Choix des hyperparamètres

- un contre un pour SVC : des classificateurs sont construits et chacun d'entre eux forme des données à partir de deux classes.
- kernel (noyau) : Linéaire
- decision_function_shape : On choisit d'appliquer la méthode de classificateur un contre le reste au lieu d'un contre un

Résultats

Accuracy:	91.42%		
	precision	recall	f1-score

0.87	0.95	0.91	196
0.95	0.94	0.95	198
0.95	0.57	0.71	37
		0.91	431
	0.95	0.95 0.94	0.95 0.94 0.95 0.95 0.57 0.71

support

CONCLUSION POUR LES SVM

Le modèle fonctionne très bien pour les classes majoritaires (0 et 1) avec des précisions, rappels et F1-scores élevés

Random Forest

1

Choix de la méthode

2

Choix des hyperparamètres

Choix de la méthode

Random Forest est également très résistant au bruit dans les données

Solides sur les problèmes de classification grâce à la combinaison de plusieurs arbres de décision.

Contrairement à un modèle de décision unique (comme le DecisionTreeClassifier), le Random Forest utilise plusieurs arbres, ce qui réduit la variance du modèle.

Mieux équipé pour traiter des classes déséquilibrées que des modèles plus simples, grâce à sa capacité à effectuer un échantillonnage aléatoire lors de la construction de chaque arbre.

Choix des hyperparamètres

- n_estimators=100 : 100 arbres de décision se qui améliore la stabilité des prédictions
- max_features='sqrt' : Pour chaque division dans un arbre, seulement la racine carrée du nombre total de caractéristiques sera considérée. Cela permet d'accélérer le calcul .

Résultats

Random Forest	Accuracy:	0.90		
	precision	recall	f1-score	support
0	0.90	0.89	0.90	196
1	0.90	0.96	0.93	198
2	0.92	0.62	0.74	37
			0.00	474
accuracy			0.90	431
macro avg	0.91	0.82	0.86	431
weighted avg	0.90	0.90	0.90	431

CONCLUSION POUR LES DECISION TREE

Avec une accuracy de 90% et des précisions et F1-scores élevés pour les classes 0 et 1, le modèle Random Forest se comporte très bien pour les deux premières classes, qui ont plus de données d'entraînement. Le modèle a plus de difficultés à bien identifier la classe 2 (62% de rappel)

Imagerie

Le jeu de données

2152 images réparties en trois classes :

- Mildiou précoce
- Mildiou tardif
- Sain

Modèle CNN

1

Choix de l'architecture

2

Analyse des performances du modèle

Choix de l'architecture

Modèle CNN

1 couche dense + fonction d'activation Softmax

Classes déséquilibrées

Modèle de Deep Learning

Accuracy: 0.95

Loss: 0.1332

Classes rééquilibrées

Modèle de Deep Learning

Classes rééquilibrées

Accuracy: 0.83

Comparaison avec modèles existants

- Utilisation de la librairie EfficientNet
- Pondération des classes
- Utilisation de 50 epochs

loss: 0.1721

Validation loss: 0.18122921884059906

Validation accuracy: 0.9558139443397522

Discussion

Temps de calcul important, nécessité d'utiliser Google Colab

Capacité de calcul des machines limitées, modèle de Deep Learning simplifié

Limites

Construction d'un modèle hiérarchique entre les classes

Perspectives

Conclusion

INSTITUT AGRO RENNES-ANGERS

Merci!

Yasmine BOUCHIBTI
Leslie CIETERS
Meryem GRIMAJ