Signal Enhancement in Magnetic Particle Imaging by a passive Dual Coil Resonator (pDCR)

Bachelor Thesis Defence Talk
Jonas Philipps
16.02.2021

Contents

1	Basics and Motivation	
2	Principles of the pDCR	
3	Impact of the pDCR on SNR and Spatial Resolution	
4	Conclusion & Outlook	

Basics – Magnetic Particle Imaging (MPI)

- Novel tracer-based imaging technique
- Determination of the spatial distribution of a tracer by stimulation with magnetic fields
- Tracer: Material to be imaged
 - Superparamagnetic iron oxide particles (SPIONs)
- Advantages:
 - High temporal resolution → Real-time imaging
 - High sensitivity
 - Good spatial resolution
 - Quantitative
 - No use of harmful ionizing radiation

Basics – SPIONs and Signal Generation

SPIONs

- Superparamagnetism → ferromagnetism + single domain
 - ⇒ no particle-particle interactions
- Nonlinear magnetization behavior → Langevin function

Signal Generation

Excitation with a sinusoidal magnetic field (drive field)

Detection via voltage induced into receive coils

Basics – Spatial Encoding and Image Reconstruction

Spatial Encoding

- So far: Magnetization response of all particles
 - → Mean concentration
- Wanted: Particle distribution
 - → Local concentration
- <u>Solution</u>: Superposition of a gradient field (selection field) featuring a field free point (FFP)

Image Reconstruction

- $Sc = \hat{u}$
 - c: particle concentration
 - $\widehat{\pmb{u}}$: induced voltage
 - S: System matrix
 - Describes the spectra of a delta sample being placed at every position in the volume to be imaged
- In true measurements: $\widetilde{m{u}}$ distorted by noise
 - $\|\mathbf{S}\mathbf{c} \widetilde{\mathbf{u}}\|_2^2 \stackrel{\mathbf{c}}{\to} min$
 - Solve with an iterative solver (Kaczmarz method)
- S also noisy
 - Denoising: Fourier or cosine transformation will compress the true signal but not the noise
 - → Noise can be separated by thresholding

Basics – Scanner Setup

Scanner:

- 1) selection field coils (blue): generate the FFP
- 2) drive field coils (green): generate the excitation field
- receive coils (red): pick up the particles' magnetization response

Signal chain:

Motivation – Signal Enhancement

- True measurements: Noisy signal
 - → Higher harmonics disappear in a noise floor

More harmonics detectable

16.02.2021

- → Better image reconstruction possible
- Spatial information is encoded in higher harmonics
 - → Exemplarily shown by the Fourier series of the square wave function

Basics – The passive Dual Coil Resonator (pDCR)

- Goal: Enhancement of SNR at a high frequency band
 → improve spatial resolution
- Implementation: Passive coaxial dual coil resonator
 - Inner coil (50 mm) to receive SPION signal with high sensitivity
 - Outer coil (110 mm) coupled into native receive coil \rightarrow combined inductance 210 μH
 - Coils connected via a capacitor (0.314 pF)
 → resonance at 608 kHz

(b)

(c)

Impact of the pDCR – Simulations 1D

System matrix simulation:

$$\mathbf{S}_{ij} = \mathrm{i}\omega_i \mu_0 m \mathbf{R} \frac{V}{N} \, \mathcal{F} \left[\mathcal{L}(\mathbf{r}(t) - \mathbf{x}_j) \right] (\omega_i) \cdot \hat{\Gamma}(\omega_i)$$

- Signal simulation:
 - (a) Magnetization signal in frequency domain
 - (b) Magnetization signal in time domain
 - (c) Voltage signal in time domain
 - (d) Voltage signal in frequency domain

Impact of the pDCR – Transfer Function and SNR

Transfer function:

- Transfer function of receive chain incl. pDCR
- Increased sensitivity at high frequency band
- Peak at 694 kHz
 - inside scanner: coupling with scanner elements
 - → resonance frequency shifts

Signal-to-noise ratio:

$$SNR = \frac{S(f) - BG(f)}{\sigma(BG(f))}$$

 SNR of system matrix used for threshold determination in image reconstruction

SNR of system matrix tuned with transfer function

Impact of the pDCR - SNR Threshold

- Threshold variation
- Determination of number of harmonics with amplitude above threshold
 - (a) pDCR gives advantage for all thresholds
 - (b) Ratio $n_h(pDCR)/n_h(native)$ peaks at a threshold of 0.8

Impact of the pDCR – Threshold and Image Reconstruction

 Low threshold: No difference, both reconstructions perform well

Threshold: 2.5

 Medium threshold: pDCR reconstruction performs well, while native gets worse

Threshold: 4.0

 High threshold: pDCR reconstruction gets worse, but still better than native

Impact of the pDCR – Shift of Resonance Frequency

- Goal: Increase the total number of harmonics above threshold
- Shifting the resonance frequency of the pDCR to higher frequencies
- Results:
 - Higher resonance frequency
 - → Higher maximum ratio
 - → Lower threshold at which the maximum is reached
 - ⇒ Shifting the resonance frequency can optimize the performance of the pDCR
 - ⇒ It depends on the threshold, which resonance frequency performs best

Impact of the pDCR – Simulations 3D

- 3D drive field
- Only signal induced in x-channel used
- Signal simulation:
 - (a) Magnetization signal in frequency domain
 - (b) Magnetization signal in time domain
 - (c) Voltage signal in time domain
 - (d) Voltage signal in frequency domain
- <u>Transfer function</u> of receive chain for signal tuning

Impact of the pDCR – Threshold and Image Reconstruction

15

- Threshold variation
- Determination of number of harmonics with amplitude above threshold
 - (a) pDCR gives advantage for all thresholds
 - (b) Ratio $n_h(pDCR)/n_h(native)$ peaks at 0.9

Impact of the pDCR – Threshold and Image Reconstruction

Image reconstruction of a delta sample with a threshold of 0.9

- Reconstructed intensity increased
- Signal flattens faster
 - ⇒ Spatial resolution has improved

Impact of the pDCR – Shift of Resonance Frequency

- Goal: Increase the total number of harmonics above threshold
- Shifting the resonance frequency of the pDCR to higher frequencies

Results:

- ⇒ Shifting the resonance frequency can optimize the performance of the pDCR
- ⇒ It depends on the threshold, which resonance frequency performs best

Impact of the pDCR - Measurements

18

- Scanner: Bruker Preclinical MPI system
 - Drive field amplitude: 14 mT
 - Drive field frequencies: 24.5 kHz, 26 kHz, 25.3 kHz
 - Max. magnetic field gradient: 2.5 Tm⁻¹

Tracer:

16.02.2021

- C2 (in-house, hydrod. diameter: 49.4 nm, iron concentration: 8.5 mg/ml)
- Perimag (commercial, hydrod. diameter: 130 nm, iron concentration: 8.5 mg/ml)

Measurements:

- SNR measurements
 - (a) C2
 - (b) Perimag
- Resolution measurements

Impact of the pDCR – Resolution Phantom

MPI Resolution phantom

Material: Acrylic glass (unpolished)

All dimensions in mm

Impact – Reconstructed Images (C2, ParaVision)

- Signal normalized
 - → No comparison of reconstructed intensities possible
- No system matrix denoising → 500 averages for SM

- ⇒ Spatial resolution improved by the pDCR
 - Points in clusters can be better resolved
 - Individual points have an increased intensity compared to a cluster (mainly observable in the prominent plane)

Impact – Reconstructed Images (Perimag, ParaVision)

- Signal normalized
 - → No comparison of reconstructed intensities possible
- System matrix denoising → number of averages reduced to 300
- ⇒ Spatial resolution improved by the pDCR
 - Points in clusters can be better resolved
 - Individual points have an increased intensity compared to a cluster (mainly observable in the prominent plane)

Impact – Reconstructed Images (C2, Python)

- Signal not normalized
 - → Comparison of reconstructed intensities possible
- System matrix denoising

- ⇒ Spatial resolution improved by the pDCR
 - Points in clusters can be better resolved
 - Individual points have an increased intensity (mainly observable in the prominent plane)

Impact – Reconstructed Images (Perimag, Python)

- Signal not normalized
 - → Comparison of reconstructed intensities possible
- System matrix denoising

- ⇒ Spatial resolution improved by the pDCR
 - Points in clusters can be better resolved
 - Individual points have an increased intensity (also observable in the overly)

Conclusion and Outlook

Conclusion:

- Simulation (1D and 3D drive field):
 - ✓ pDCR enhances the SNR of higher harmonics
 - ✓ FWHM of PSF (spatial resolution) is increased by pDCR
 - Shifting the resonance frequency to higher harmonics:
 - Number of harmonics above threshold increases
 - ✓ Ratio $n_h(pDCR)/n_h(native)$ depends on threshold
- Measurements (at Bruker scanner):
 - ✓ SNR enhancement of higher harmonics validated (Perimag and C2)
 - ✓ Resolution phantom: spatial resolution and absolute intensities increased with the pDCR (Perimag and C2)

Outlook:

- Optimizing noise modelling (especially in 3D simulation)
- Using all three channels in 3D simulation
- Different pDCR designs:
 - Tunable pDCR
 - 3D pDCR
 - Mini pDCR

Thank you for your attention!

Any questions?

References

- [1] Tobias Knopp and Thorsten M. Buzug. Magnetic Particle Imaging: An Introduction to Imaging Principles and Scanner Instrumentation. Heidelberg: Springer, 2012
- [2] L. W. E. Starmans & H. Gruell, PLOS, 2013
- [3] Kerstin Lüdtke-Buzug, University of Lübeck
- [4] T Knopp, N Gdaniec, and M Möddel. "Magnetic Particle Imaging: From Proof of Principle to Preclinical Applications"
- [5] S D Reinartz et al. "Feasibility of a Spatial Resolution Enhancement by a Passive Dual Coil Resonator (pDCR) Insert for Large Bore MPI Systems"

Selection Field and Nonlinear Magnetization Behavior

