Assignment 2

Name: Adharsh Kamath UIN: 671259918 NetID: ak128

Problem 1

Soln:

Let us use the symbol ψ to refer to the given formula.

$$\psi = (p \land (p \Rightarrow q)) \Rightarrow q$$

In order to show that ψ is valid, we can show that

$$\neg \psi = \neg \left((p \land (p \Rightarrow q) \Rightarrow q) \right)$$

is unsatisfiable. Rewriting the above formula:

$$\neg \psi = \neg ((p \land (p \Rightarrow q) \Rightarrow q))
\equiv \neg ((p \land (\neg p \lor q)) \Rightarrow q)
\equiv \neg (\neg (p \land (\neg p \lor q)) \lor q)
\equiv (p \land (\neg p \lor q)) \land \neg q$$

The last step is due to De Morgan's Law. We can now convert this to CNF, and construct a resolution refutation to show that it is unsatisfiable. To convert to CNF, we use the Tseitin transformation. We only need three new propositional variables, x_{ψ} , x_1 , x_2 , where x_{ψ} corresponds to ψ , x_1 corresponds to $(\neg p \lor q)$ and x_2 corresponds to $(p \land x_1)$. This gives us the following set of clauses:

$$\begin{cases}
\{\neg x_{\psi}\}, \\
\{\neg \neg x_{\psi}, x_{2}\}, \{\neg \neg x_{\psi}, \neg q\}, \{\neg x_{\psi}, \neg x_{2}, \neg \neg q\} \\
\{\neg x_{2}, p\}, \{\neg x_{2}, x_{1}\}, \{x_{2}, \neg p, \neg x_{1}\}, \\
\{x_{1}, \neg \neg p\}, \{x_{1}, \neg q\}, \{\neg x_{1}, \neg p, q\},
\end{cases}$$

Simplifying the set by replacing $\neg \neg p$ with p for all propositional variables, we get:

$$\begin{cases}
\{\neg x_{\psi}\}, \\
\{x_{\psi}, x_{2}\}, \{x_{\psi}, \neg q\}, \{\neg x_{\psi}, \neg x_{2}, q\} \\
\{\neg x_{2}, p\}, \{\neg x_{2}, x_{1}\}, \{x_{2}, \neg p, \neg x_{1}\}, \\
\{x_{1}, p\}, \{x_{1}, \neg q\}, \{\neg x_{1}, \neg p, q\},
\end{cases}$$

We can now create a resolution refutation to show that this set is unsatisfiable:

$$1.\{\neg x_{\psi}\}$$
 $2.\{x_{\psi}, x_2\}$
 $3.\{x_2\}$ Resolvent of 1 and 2
 $4.\{\neg x_2, p\}$
 $5.\{p\}$ Resolvent of 3 and 4
 $6.\{\neg x_1, \neg p, q\}$
 $7.\{\neg x_1, q\}$ Resolvent of 5 and 6
 $8.\{x_{\psi}, \neg q\}$
 $9.\{x_{\psi}, \neg x_1\}$ Resolvent of 7 and 8
 $10.\{\neg x_1\}$ Resolvent of 1 and 9
 $11.\{\neg x_2, x_1\}$
 $12.\{\neg x_2\}$ Resolvent of 3 and 11
 $13.\{\}$ Resolvent of 10 and 12

By creating this resolution refutation, we have shown that there is no valuation that can satisfy $\neg \psi$. Since $\neg \psi$ is unsatisfiable, we can conclude that ψ is valid.

TODO: Running resolution tool

Problem 2

Soln:

We are given the formula:

$$\psi = (q \vee \neg r) \wedge (\neg p \vee r) \wedge (\neg q \vee r \vee p) \wedge (p \vee q \vee \neg q) \wedge (\neg r \vee q)$$

We can use the resolution method by starting with the following:

$$\begin{aligned} &1.\{q\vee\neg r\}\\ &2.\{\neg p\vee r\}\\ &3.\{q\vee\neg p\} \quad \text{Resolvent of 1 and 2}\\ &4.\{\neg q\vee r\vee p\}\\ &5.\{r\vee\neg r\vee p\} \quad \text{Resolvent of 1 and 4}\\ &6.\{p\vee q\vee\neg q\}\\ &7.\{p\vee q\vee\neg r\} \quad \text{Resolvent of 1 and 6}\\ &8.\{r\vee\neg q\} \quad \text{Resolvent of 2 and 4}\\ &9.\{r\vee q\vee\neg q\} \quad \text{Resolvent of 2 and 6}\\ &10.\{\}\end{aligned}$$

Problem 3

Soln: