CS772: Deep Learning for Natural Language Processing (DL-NLP)

Introduction

Pushpak Bhattacharyya
Computer Science and Engineering
Department
IIT Bombay
Week 1 of 1th Jan, 2024

Nature of Language

General point: Properties of Human Languages (George Yule, "Study of Language", 1998)

- Displacement (Indicators that change with time and place: I saw him yesterday at the market; I will see him tomorrow in the school)
- Arbitrariness (name → Meaning; water, chair)
- **Productivity/creativity** (potentially infinite no. of sentences)
- Cultural Transmission (child acquires parent's language)
- Discreteness (sound and meaning units separated)
- Duality (Surface structure, deep structure)

Neurophysiology: Broca's Area

Broca's area in frontal lobe, left hemisphere

Damage messes up syntax 🗸

a-grammatical speech production; Inability to use syntactic information; telegraphic speech; loss of function words and suffixes

"I eat rice spoon"

→ I eat rice with spoon

No difference between

- Visit to the President vs.
- Visit by the President

Wernicke's Area

Wernick's area is in superior temporal gyrus, left hemisphere

Damage messes up semantics-pragmatics

Fluent meaningless phrases: The pink elephant sang and the blue stone danced

Nature of NLP

Natural Language Processing

Art, science and technique of making computers understand and generate language

NLP is layered Processing, Multidimensional too

Course Content: Task vs. Technique Matrix

Task (row) vs. Technique (col) Matrix	Rules Based /Know ledge- Based	Classical	ML			Deep Lear Stable diff		LM,
		Perceptron	Logistic Regression	SVM	Graphical Models (HMM, MEMM, CRF)	Dense FF with BP and softmax	RNN- LSTM	CNN
Morphology	1							
POS								
Chunking								
Parsing								
NER, MWE								
Coref								
WSD								
Machine Translation								
Semantic Role Labeling								
Sentiment						1		
Question Answering								

What is NLP

NLP= Language + Computation

= Linguistics + Probability

3 Generations of NLP

- Rule based NLP is also called Model Driven NLP
- Statistical ML based NLP (Hidden Markov Model, Support Vector Machine)
- Neural (Deep Learning) based NLP

Main Challenge: AMBIGUITY

Example

(from a lecture by Prof. Mirella Lapata)

"Part is history future is mystery present is a gift, so it is called present"

Example (cntd.)

"mat mat bichhaao!"

- 1. मत मत बिछाओं (don't don't spread!)
- 2. चटाई मत बिछाओ (don't spread the mat!)
- 3. चटाई चटाई बिछाओ (mat, spread the mat!)
- 4. मत चटाई बिछाओ

ANOTHER Example

"Buffalo buffaloes Buffalo buffaloes buffalo buffalo Buffalo buffaloes"

Prompt to chatGPT: what do you understand by the above sentence

chatGPT response

- Buffalo (noun): Refers to the city of Buffalo, which is in the state of New York in the United States.
- buffaloes (verb): Means to bully, confuse, or baffle.
- Buffalo (noun): Refers to the animal, specifically the American bison.

describes a scenario where bison from Buffalo are being intimidated or confused by other bison from the same place, who, in turn, are intimidating or confusing other bison. It's a playful sentence that plays on the multiple meanings of the word "Buffalo" as a place

CORRECT!!

Bing chat response

The sentence can be parsed as follows: "Buffalo buffalo (Buffalo bison) Buffalo buffalo (Buffalo bison) buffalo (intimidate) buffalo (intimidate) Buffalo buffalo (Buffalo bison)"¹. In other words, the sentence claims that bison from Buffalo, New York, who are intimidated by other bison in their community, in turn intimidate other bison in their community¹.

Back to "mat mat bichhaao!"

- 1. मत मत बिछाओं (don't don't spread!)
- 2. चटाई मत बिछाओ (don't spread the mat!)
- 3. चटाई चटाई बिछाओ (mat, spread the mat!)
- 4. मत चटाई बिछाओ

Which is the correct meaning?

Linguistic approach (model based)- Depends on (a) context, (b) meaning of words, (c) composition

Data approach- depends on the frequency- Maximum Likelihood; LANGUAGE MODEL

✓ LLMs

All they do is predict next word/sentence and fill in the gaps

Self supervised learning

Set the parameters for prediction

Use the following in increasing order of resource demand for specific tasks

- (a) Prompt engineering (least resource hungry)
- (b) Adapter n/w
- (c) Fine-tuning
- (d) Pre-training (Most resource hungry).

3 stages of LLM based CAI (chatGPT)

- Generative Pretraining (GP)
- Supervised Fine Tuning (SFT)
- Reinforcement Learning based on Human Feedback (RLHF)

Evolution of LLMs

- Perceptron (1960s)
- Feedforward n/w and backpropagation (1984)
- Recurrent Neural Net (RNN; 80s)
- Attention (2015)
- Transformers (2017)
- LLMs (GPTs 2020s)

But language models are very old!! 2000 years- the notion of grammar

Course Info

Topics to be covered

- Single Neuron, perceptron and sigmoid; application to NLP; text classification
- Multilayered FFNN, Backpropagation; Softmax Application to NLP; Multiclass NLP problems
- Recurrent Neural Net (RNN); seq2seq
- Recursive Neural Net; Application to NLP Parsing
- Convolutional Neural Nets; Multimodal NLP
- Transformers; Application to MT, QA, NLG
- LLMs and application

Major Topics covered in CS626, last sem

- NLP and Ambiguity
- POS Tagging
- Parsing
- Maths for NLP
- Linguistics for NLP
- Machine Translation and MT Evaluation
- Medical NLP
- Hypothesis Testing

Course: Basic Info

- Slot 9: Monday 3.30, and Thursday 3.30
- TA Team: Sravanthi Settaluri, Abisek R.K, Tejpal, Tathagata, Sameer, Pavan, Sanyam, Tejomay
- https://www.cfilt.iitb.ac.in/~cs772_2024/
- Channels of communication: MS Teams, Moodle, Course Website
- Teams Name: cs772-2023 Joining code: op38ybr
- Also, visit moodle frequently

Evaluation Scheme (tentative)

- ~50%: Reading, Thinking, Comprehending
 - Quizzes (3 nos., 10%), midsem (15%),
 - Endsem (25%)
- ~50%: Doing things, Hands on
 - Assignments (20%)
 - Course Project (30%)

Question pattern

- Quizzes: only MCQ
- Endsem and midsem
- TWO subjective questions- only one page

MCQs always on Moodle

Assignments and Project

Continuous evaluation

 Meeting every two weeks to monitor progress

 Credit for thorough literature survey for the project work

Books

- Ian Goodfellow, Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press, 2016.
- Dan Jurafsky and James Martin, Speech and Language Processing, 3rd Edition, 2019.
- Christopher Manning and Heinrich Schutze, Foundations of Statistical Natural Language Processing, MIT Press, 1999.

Books (2/2)

 Pushpak Bhattacharyya, Machine Translation, CRC Press, 2017.

 Pushpak Bhattacharyya and Aditya Madhav Joshi, Natural Language Processing, Wiley, 2023.

Journals and Conferences

 Journals: Computational Linguistics, Natural Language Engineering, Journal of Machine Learning Research (JMLR), Neural Computation, IEEE Transactions on Neural Networks

 Conferences: ACL, EMNLP, NAACL, EACL, AACL, NeuriPS, ICML

Useful NLP, ML, DL libraries

- NLTK
- Scikit-Learn
- Pytorch
- Tensorflow (Keras)
- Huggingface
- Spacy
- Stanford Core NLP

What can DL-NLP do

Modeling

P(e): "language" model

```
e^* = \arg\max_e P(e \mid f)
= \arg\max_e [P(e)P(f \mid e)]
```

- Dialogue Act Classification (DAC): f→ Dialogue
 Sequence, e→Dialogue turn labels
- Dialogue Intent: f→ dialogue sequence, e→ dialogue turns with Intent like 'question', 'elaboration', 'affirmation', 'command/request' etc.

Example of sequence of dialogue and dialogue acts

Fragment of a labeled conversation (from the Switchboard corpus).

0		1 /
Speaker	D ialogue A ct	U tterance
Α	Y ES-N O-Q U ESTIO N	So do you go to college right now?
Α	A BANDONED	Are yo-,
В	YES-ANSWER	Yeah,
В	STATEMENT	it's my last year [laughter].
Α	DECLARATIVE-QUESTION	You're a, so you're a senior now.
В	YES-ANSWER	Yeah,
В	STATEMENT	I'm working on my projects trying to graduate [laughter].
Α	A PPRECIATION	Oh, good for you.
В	BACKCHANNEL	Yeah.
Α	A PPRECIATION	That's great,
Α	Y ES-N O-Q U ESTIO N	um, is, is N C University is that, uh, State,
В	STATEMENT	N C State.
Α	SIGNAL-NON-UNDERSTANDING	What did you say?
В	STATEMENT	N C State.

Digression: What if there are many "abandoned"s

- Raise a flag
- Linguistic Limitation
- Or, Mental Health Problem
- Mental health doctors would like help of chatbots that can give preliminary help to mental health patients by engaging in a dialogue
- Or, they can do a preliminary screening based on disfluenices, abndonded statements and so on

Dialogue Act Classification and Sentiment

T. Saha, A. Patra, S. Saha and P. Bhattacharyya, <u>Towards Emotion-aided</u> <u>Multi-modal Dialogue Act Classification</u>, Association of Computational Linguistics Conference (**ACL 2020**), Seattle USA, 5-10 July, 2020.