Problem 1.

Let X be a topological space, give $X \times X$ the product topology, and let the "diagonal" $\Delta \subset X \times X$ be defined by

$$\Delta = \{(x, x) : x \in X\}.$$

- (a) Prove that X is Hausdorff if and only if Δ is closed in $X \times X$.
- (b) Use this fact to give another proof of the fact proved in a previous homework problem: If Z is another topological space, $f, g: Z \to X$ are continuous, and X is Hausdorff, then

$$E(f,g) = \{ x \in Z \mid f(x) = g(x) \}$$

is closed in Z. Make sure your proof takes at most two lines.

Solution

Part (a)

Suppose X is Hausdorff. $\Delta^{\mathbf{c}} = \{(x,y) \mid x \neq y, x,y \in X\}$. X being Hausdorff provides U, V open $\subset X$ with $x \in U, y \in V$. $U \times V$ is thus a basis element with $(x,y) \in U \times V$. Because U and V are disjoint from the Hausdorff condition, they contain no common points, so they contain nothing in Δ : $U \times V \subset \Delta^{\mathbf{c}} \implies \Delta^{\mathbf{c}}$ open $\implies \Delta$ closed in $X \times X$.

Suppose Δ is closed in $X \times X$. $\forall (x,y) \in \Delta^{\mathbf{c}} \exists U \times V$ basis element with $(x,y) \in U \times V \subset \Delta^{\mathbf{c}}$. $U \times V \subset \Delta^{\mathbf{c}} \implies U \cap V = \emptyset$. Any $x \neq y \in X \implies (x,y) \in \Delta^{\mathbf{c}}$ with a basis element containing (x,y) which provides open, disjoint U, V with $x \in U, y \in V$, thus X is Hausdorff.

Part (b)

$$\Delta = \{ (f(x), g(x)) \mid f(x) = g(x) \} \subset X \times X \text{ s.t. } E(f, g) = F^{-1}(\Delta)$$
 (1)

$$X \text{ Hausdorff} \implies \Delta \text{ closed. } f, g \text{ cont.} \implies (\Delta \text{ closed.} \implies E(f, g) \text{ closed.}).$$
 (2)

Problem 2.

Give an example of a topological space X and a compact subset $C \subset X$ with C not closed in X.

Solution

Let $X = \{0, 1\}$ and give this space the topology $\mathcal{T} = \{\emptyset, \{1\}, X\}$. The open subset $C = \{1\}$ is compact because the only open cover $\mathcal{B} = \{0, 1\}$ has the trivial finite subcover of $U_{\alpha_1} = 0, U_{\alpha_2} = 1$.

Problem 3.

Let X be a compact Hausdorff space, and let $A, B \subset X$ be closed sets which are disjoint : $A \cap B = \emptyset$. Prove that there are open sets $U, V \subset X$ with $A \subset U$, $B \subset V$, and $U \cap V = \emptyset$.

Solution

Let $b \in B$. For each $a \in A$ we have $a \in U_a$, $b \in V_a$ with U_a, V_a open such that $U_a \cap V_a = \emptyset$ because X is Hausdorff. The collection $\{U_a\}$ forms an open cover of A, so as A is compact there exists a finite subcover of A $U_{a_1}, U_{a_2}, \dots, U_{a_k}$. Let $U_b = U_{a_1} \cup U_{a_2} \cup \dots \cup U_{a_k}$ which is finite union of open sets, so it is open. Now let $V_b = V_{a_1} \cap V_{a_2} \cap \dots \cap V_{a_k}$. The $\{V_b\}$ form an open cover of B, and for each $b \in B$, $V_b \cap U_b = \emptyset$. Note that for every $b, A \subset U_b$.

Because V_b forms an open cover of B and B compact, there exists a finite number of them such that $\bigcup V_{b_i}$ is a finite subcover of B. This union of open sets is also open. The union of $\{U_{b_i}\}$ is likewise open. A is contained in each U_{b_i} , so their union also contains A. We know that each U_{b_i} is disjoint from V_{b_i} so it follows that $\bigcup U_{b_i} \cap \bigcap V_{b_i} = \emptyset$, thus $\bigcup U_{b_i}$ and $\bigcap V_{b_i}$ are the open sets that are disjoint and contain $A \subset \bigcup U_{b_i}$, $B \subset \bigcap V_{b_i}$.

Problem 4.

- (a) Let (X, \mathcal{T}) be a topological space and let \mathcal{B} be a basis for \mathcal{T} . Prove that (X, \mathcal{T}) is compact if and only if every cover of X by elements of \mathcal{B} has a finite sub-cover.
- (b) Let X and Y be compact topological spaces and let $X \times Y$ be their product, with the product topology. Prove that $X \times Y$ is compact.

Solution

Part (a)

Suppose that (X, \mathcal{T}) is compact. Using the definition for a basis \mathcal{B} of a topological space that the elements $B_i \in \mathcal{B}$ form a cover of \mathcal{T} , which has $X \in \mathcal{T}$, we can form a cover of X from elements B_i . Because \mathcal{B} is a basis for \mathcal{T} , each element B_i is an open set, which means that the cover of X is open, and because X is compact, the cover has a finite subcovering.

Suppose that every covering of X by B_i has a finite subcover. Let U_{α} , $\alpha \in A$ be an open covering of X. By definition, each element of U_{α} is a union of elements of \mathcal{B} . Now take the set U_{α} such that $\mathcal{B} \subset U_{\alpha}$. This U_{α} , by definition, is an open covering of X by elements $B_i \in \mathcal{B}$. Since we assumed that every cover has a finite subcover, this U_{α} has a finite subcovering B_1, B_2, \ldots, B_i with each one contained in at least one element of $U_{\alpha}, \alpha \in A$. For each B_i , we can choose a U_i such that $B_i \subset U_i$, which means that $\{U_i\}$ is a finite subcovering of X, which implies that X is compact.

Part (b)

Let $\{O_{\alpha}\}_{{\alpha}\in A}$ be an open cover of $X\times Y$. For each $(x,y)\in X\times Y$ we can choose some ${\alpha}={\alpha}(x,y)$ such that $(x,y)\in O_{{\alpha}(x,y)}$. Because of how it was constructed, $O_{{\alpha}(x,y)}$ is open, which means (x,y) is contained in some open rectangle $R\subset O_{{\alpha}(x,y)}$ where $R=U_{(x,y)}\times V_{(x,y)}$ with $U_{(x,y)}\subset X$ and $V_{(x,y)}\subset Y$.

Fix x, and allow y to vary. For every point (x, y) the point is contained in an open rectangle in the product $X \times Y$, and that rectangle is the product of a subset of X with a subset of Y. Choosing several points, we see that the collection of sets $\{V_{(x,y)}\}_{y\in Y}$ is an open cover of Y. Because Y is compact, we can find a finite cover $\{V_{(x,y_i(x))}\}$ of Y that consists of finitely many open sets containing points $\{(x,y_i(x))\}$.

Let $U_x = \bigcap_i U_{(x,y_i(x))}$. Because U_x is the intersection of finitely many open sets, it is itself open. Using that X is compact, there are finitely many x_j such that $\{U_{x_j}\}$ forms an open cover of X. It follows that $\{O_{x_i,y_i(x)}\}$ for any i,j combination is a finite cover of $X \times Y$, which means that $X \times Y$ is compact.

Problem 5.

We have seen that the Cantor set can be described as the set $\{0,2\}^{\mathbb{N}}$ of infinite sequences of zeros and twos, which is in bijective correspondence with the more convenient set $\{0,1\}^{\mathbb{N}}$ of infinite sequences of zeros and ones. This choice has the advantage that $\{0,1\}$ can be naturally identified with $\mathbb{Z}/2$, the integers modulo two, which forms a group under addition: 0+0=1+1=0, 0+1=1+0=1. In this way the Cantor set becomes a group, by pointwise addition of sequences: $\{a_i\}+\{b_i\}=\{a_i+b_i\}$.

Prove that this operation is continuous. This means that the addition map

$$A: \{0,1\}^{\mathbb{N}} \times \{0,1\}^{\mathbb{N}} \to \{0,1\}^{\mathbb{N}}$$

defined by

$$A(\{a_1, a_2, \dots, a_i, \dots\}, \{b_1, b_2, \dots, b_i, \dots\}) = \{a_1 + b_1, a_2 + b_2, \dots, a_i + b_i, \dots\}$$

is continuous, where $\{0,1\}^{\mathbb{N}}$ is given the (infinite) product topology, and $\{0,1\}^{\mathbb{N}} \times \{0,1\}^{\mathbb{N}}$ the product (two factors) of the infinite product topologies in each factor.

Suggestion: Fix $i_0 \in \mathbb{N}$, and fix an open set $U \subset \{0,1\}$ (so U is one of \emptyset , $\{0\}$, $\{1\}$, $\{0,1\}$). The sets $A^{-1}(\{\{a_i\} \mid a_{i_0} \in U\})$ form a sub-basis (see notes, v1, 3.4.3) for the topology of $\{0,1\}^{\mathbb{N}}$, so it is enough to show that $A^{-1}(\{\{a_i\} \mid a_{i_0} \in U\})$ is open.

Solution

Fix $i_0 \in \mathbb{N}$. Let $U \subset \{0,1\}$ be open. We show that the preimage, $A^{-1}(\{\{a_i\} \mid a_{i_0} \in U\})$, is open for each possible open set U:

For $a_{i_0} \in \emptyset$:

Trivially,
$$A^{-1}(\emptyset) = \emptyset$$
 which is open. (3)

For $a_{i_0} \in \{0\}$:

$$A^{-1}(\{0\}) = (\{0\}, \{0\}) \cup (\{1\}, \{1\})$$

$$\tag{4}$$

$$= (\{0,1\},\{0,1\})$$
 which is open. (5)

For $a_{i_0} \in \{1\}$:

$$A^{-1}(\{1\}) = (\{0\}, \{1\}) \cup (\{1\}, \{0\})$$
(6)

$$= (\{0,1\},\{1,0\}) \tag{7}$$

$$= (\{0,1\},\{0,1\})$$
 which is open. (8)

For $a_{i_0} \in \{0, 1\}$:

$$A^{-1}(\{0,1\}) = (\{0,1\},\{0,1\}) \cup (\{0,1\},\{0,1\})$$
(9)

$$= (\{0,1\},\{0,1\})$$
 which is open. (10)

This shows the preimage of all open sets remains open, thus A is continuous.

Note that the value at the i_0 position depends *only* on the corresponding values at the i_0 position in the product space –position gets preserved.