

Deep Learning in sanita': analisi di segnali biometrici con recurrent neural network

FACOLTA' DI SCIENZE E TECNOLOGIE APPLICATE

LM-32 CORSO DI LAUREA IN INGEGNERIA INFORMATICA

Relatore: Chiar.mo Prof. Francesca Fallucchi

Candidato: Enrico Sanna - Matr. N°: STA06233/LM32

ANNO ACCADEMICO 2017/2018

- ▶ Gli investimenti nelle aree dell'Information Technology dell'intelligenza artificiale, del machine learning e del deep learning sono caratterizzate negli ultimi anni da un trend di crescita, sia per il numero di startup del settore che per gli ingenti investimenti dei principali colossi IT.
- Tra le cause di questo fenomeno si individuano:
 - Sistemi informativi aziendali integrati e archivi dati sempre più grandi;
 - Capacità computazionali molto elevate ad un costo relativamente basso;
 - Necessità di ottenere vantaggio competitivo industriale attraverso l'automazione o il monitoraggio di processi complessi, aumentando la capacità dei sistemi di comprendere il mondo reale, interagire con esso e prendere decisioni in tempo reale anche sulla base di regole non definite a priori.

Race To Acquire Top Al Startups Heats Up

Date of acquisition (only includes 1st exits of companies)

Al sees 141% funding jump in 2017

Equity deals, 2013 – 2017 (excluding hardware-focused robotics startups)

https://www.cbinsights.com/reports/CB-Insights_State-of-Artificial-Intelligence-2018.pdf https://www.cbinsights.com/research/top-acquirers-ai-startups-ma-timeline/

Artificial Intelligence: Sub-Industry Heatmap

2011-2016 (as of 6/15/2016)

Sub-Industry	2011	2012	2013	2014	2015	2016(YTD)
Healthcare						
Advertising, Sales & Marketing						
Business Intelligence						
Security						
Finance						
IoT/Wearables						
Education						
Customer Relationship Management						
Personal Assistants/Productivity						
E-Commerce						
Robotics						

www.cbinsights.com

No. of Deals

https://www.cbinsights.com/reports/CB-Insights_State-of-Artificial-Intelligence-2018.pdf

- Principali aree di sviluppo nel settore sanitario:
 - ► Farmaceutica e ricerca di nuove molecole (brevetti);
 - Diagnosi precoce di patologie degenerative come l'Alzheimer;
 - Mappatura del genoma e ricerca genetica;
 - Diagnosi automatica di immagini (2D,3D) e segnali biometrici (1D), soprattutto nell'area delle patologie croniche (cardiologiche, tumorali, respiratorie, diabete):
 - ▶ Segnali monodimensionali (Elettrocardiogramma, Elettroencefalogramma,...);
 - ▶ Immagini bi o tridimensionali (Radio, Ecografie, TC, RM,...).

- La ricerca di modelli di diagnosi automatica si pone i seguenti obiettivi:
 - Supportare la ricerca scientifica di correlazioni tra i dati rilevati dagli strumenti e le patologie;
 - Supportare il personale medico nella sua attività clinica riducendo l'errore umano;
 - ▶ Rendere possibile la produzione di dispositivi a basso costo da introdurre in tutte le case o nelle strutture sanitarie senza personale medico H24 per aumentare la capacità di prima diagnosi e monitoraggio degli assistiti.
 - ▶ (Es. strumento in grado di rilevare la presenza di infarto STEMI o NSTEMI da diffondere nelle postazioni dei defibrillatori pubblici)

Obiettivi della Tesi

- L'obiettivo di questa Tesi di Laurea è la sperimentazione di modelli di deep learning nel campo della diagnosi automatica.
- I modelli di deep learning non prevedono la scrittura di regole predefinite ma derivano queste regole dall'osservazione dei dati stessi.
- ▶ I dataset utilizzati sono quelli della PhysioNet / Cinc Challenge 2017 e 2018.

Obiettivi della Tesi

- La Computing in Cardiology (CinC) è una associazione scientifica che raggruppa ricercatori e professionisti nei campi della medicina, della fisica, dell'ingegneria e della computer science volte all'analisi computerizzata della cardiologia clinica e della fisiologia cardiovascolare.
- PhysioNet.org è un archivio pubblico di risorse per la ricerca nell'ambito dei segnali biometrici curato da due enti degli USA:
 - ► National Institute of General Medical Sciences (NIGMS);
 - ▶ National Institute of Biomedical Imaging e Bioengineering (NIBIB).
- ▶ Dall'anno 2000 in collaborazione con CinC viene proposta annualmente una sfida di ricerca chiamata Physionet / CinC Challenge i cui risultati vengono presentati nella conference annuale.
 - Sia approcci tradizionali feature-based che approcci deep learning

Obiettivi della Tesi

- Sono stati utilizzati i dataset delle ultime due edizioni della Cinc Challenge:
 - ▶ 2017: Individuazione di Fibrillazione Atriale da un breve segmento di Elettrocardiogramma;
 - ▶ 2018: Individuazione di risvegli durante il sonno causati da sforzo respiratorio (RERA) o altre cause.
- ▶ Le tipologie di modello utilizzate sono state le seguenti:
 - Regressione Logistica;
 - Rete Neurale Convoluzionale, Residual Network (ResNet) E Densely Connected Convolutional Network (DenseNet);
 - ▶ Rete Neurale Ricorrente, Long short-term memory (LSTM).

- Classificazione di singoli segnali ECG della durata di 30 secondi in quattro classi
 - N, ritmo cardiaco normale;
 - ► A, fibrillazione atriale (AF);
 - O, ritmo alternato;
 - ~, segnale troppo disturbato per essere classificato.

L'attribuzione del punteggio è definita dalla media delle F1-measure di ogni classe.

		Predicted Classification			Normal rhythm:		
		Normal	AF	Other	Noisy	Total	
Reference	Normal	Nn	Na	No	Np	$\sum N$	AF rhythm
Classification	AF	An	Aa	Ao	Ap	$\sum A$	
	Other	On	Oa	Oo	Ор	$\sum O$	Other rhythm
	Noisy	Pn	Pa	Po	Pp	$\sum P$	Noisy rhythm
	Total	$\sum n$	$\sum a$	$\sum o$	$\sum p$		1401sy myddin

AF rhythm
$$F\mathbf{1}a = \frac{2 \times Aa}{\sum A + |\sum a|}$$
Other rhythm
$$F\mathbf{1}o = \frac{2 \times Oo}{\sum O + \sum O}$$
Noisy rhythm
$$F\mathbf{1}p = \frac{2 \times Pp}{\sum P + \sum P}$$

 $F\mathbf{1}n = \frac{2 \times Nn}{\sum N + \sum n}$

$$F\mathbf{1} = \frac{F1n + F1a + F1o + F1p}{4}$$

▶ I risultati ufficiali della Challenge hanno mostrato valutazioni comprese tra 0.83 e 0.75

- ▶ Il modello sperimentato è riuscito ad ottenere risultati in linea o superiori con i migliori punteggi.
 - Implementazione MATLAB 93%
 - ► Implementazione Tensorflow-Keras: 80%-90%
- Modello basato su LSTM bidirezionale, e sulla trasformazione del segnale ECG con due funzioni tempo dipendenti:
 - Instantaneous frequency: misura la variabilità della frequenza nel tempo
 - ▶ Power Spectral Entropy: da una misura di quanto è spigoloso lo spettro di un segnale
- Modelli valutati solo sulle due classi principali Normal, Atrial Fibrillation con l'eliminazione dai dataset dei segmenti di classe Other Rythm e Noisy

 Dati di input: 13 segnali continui derivati da campionatura durante il sonno (circa 1000 episodi di durata media 7 ore)

Signal Name	Units	Signal Description
SaO2	%	Oxygen saturation
ABD	μV	Electromyography, a measurement of abdominal movement
CHEST	μV	Electromyography, measure of chest movement
Chin1-Chin2	μV	Electromyography, a measure of chin movement
AIRFLOW	μV	A measure of respiratory airflow
ECG	mV	Electrocardiogram, a measure of cardiac activity
E1-M2	μV	Electrooculography, a measure of left eye activity
O2-M1	μV	Electroencephalography, a measure of posterior activity
C4-M1	μV	Electroencephalography, a measure of central activity
C3-M2	μV	Electroencephalography, a measure of central activity
F3-M2	μV	Electroencephalography, a measure of frontal activity
F4-M1	μV	Electroencephalography, a measure of frontal activity
O1-M2	μV	Electroencephalography, a measure of posterior activity

- ▶ Dati per la validazione: tracciato delle regioni arousal:
 - 1: regioni arousal;
 - 0: regioni non arousal;
 - ▶ -1: regioni dubbi (troppo rumorose per essere classficate).
- Dataset di dimensione molto grande (circa 250GB).
- Distribuzione dei valori molto sbilanciata.

Tabella 5 Distribuzione dei valori nei tracciati arousal della CinC challenge 2018

Valore	casi	percentuale
0.	4578818	83%
-1	816907	15%
1.	106275	2%
totale	5502000	1

L'indicatore unico individuato per l'attribuzione del punteggio è l'Area Under Precision-Recall Curve.

$$R_j = \frac{\text{number of arousal samples with predicted probability } (j/1000) \text{ or greater}}{\text{total number of arousal samples}}$$

$$P_j = \frac{\text{number of arousal samples with predicted probability } (j/1000) \text{ or greater}}{\text{total number of samples with predicted probability } (j/1000) \text{ or greater}}$$

$$AUPRC = \sum_{j} P_{j} (R_{j} - R_{j+1})$$

- ▶ I risultati ufficiali pubblicati il 10 Ottobre mostrano valori di AUPRC compresi tra 0,07 e 0,54.
- I risultati dei modelli sperimentati non sono riusciti ad ottenere risultati al pari dei migliori classificati.

DATASET	MODELLO	AUPRC
ch2018	1 - sample	0,13
ch2018	2 - LRegressionK	0,08
ch2018	3 - ReNet	0,07
ch2018	4 - LSTM	0,07
ch2018_mini2	1 - sample	0,12
ch2018_mini2	2 - LRegressionK	0,08
ch2018_mini2	3 - ReNet	0,09
ch2018_mini2	4 - LSTM	0,11
ch2018_mini2	5 - DenseNet121	0,14

Overall AUPRC	Authors
0.54	Matthew Howe-Patterson
0.45	Bragi Marinósson
0.43	Yang Liu
0.42	Bálint Varga
0.40	Andrea Patane
0.36	Daniel Miller
0.36	Philip A. Warrick
0.29	Tanuka Bhattacharjee
0.29	JÃjnos Szalma
0.21	Saman Parvaneh
0.20	Filip Plesinger
0.19	Morteza Zabihi
0.14	Sven Schellenberger
0.12	(sample entry)
0.10	Dongya Jia
0.10	Haoqi Li
0.07	Yinghua (Kelly) Shen

Modello Residual Network

- La rete neurale convoluzione ResNet introduce alcuni collegamenti tra i livelli più profondi e quelli più a valle.
- Ognuna delle 15 ripetizioni di blocchi centrali è costituita dai seguenti componenti:
 - Batch normalization
 - ► Funzione di attivazione Rectified Linear Unit
 - Dropout
 - Filtro convoluzionale
 - Max Pooling
- DenseNet: generalizzazione per cui tutti i blocchi sono collegati da skip connection verso tutti i blocchi più vicini all'output.

Modello Bi-LSTM

- Le long short-term memory sono una versione più evoluta delle Reti neurali riccorenti caratterizzata dai seguenti blocchi interni:
 - ► Forget gate: decide cosa dimenticare delle informazioni precedenti
 - ▶ Input gate: decide cosa ricordare delle nuove informazioni
 - ▶ Blocco per la generazione del prossimo stato
 - ▶ Blocco per la generazione dell output

Le reti LSTM bidirezionali possono essere viste come due catene parallele di reti LSTM attraversate in senso opposto.

Conclusioni

- Sono state sperimentati i prototipi dei modelli di reti neurali più attuali nell'analisi di segnali e sequenze.
- Sono stati utilizzati due dataset differenti derivati dagli archivi di importanti reti di ricercatori nell'area delle scienze mediche.
- Sono stati ottenuti ottimi risultati nell'analisi e classificazione di segnali ECG, dimostrando che nell'analisi delle patologie cardiologiche l'utilizzo di modelli di tipo deep learning sono una alternativa valida all'implementazione di algoritmi matematici feature based.
- Nell'analisi multipla dei 13 segnali continui per la ricerca sui risvegli notturni (RERA) sono necessari ulteriori approfondimenti ed eventuali trasformazioni dei segnali raggiungere performance accettabili.

Grazie per l'attenzione