Optimization Theory and Algorithm

Lecture 4 - 2/27/2025

Lecture 4 Random Vector and Exceptation

Lecturer:Xiangyu Chang Scribe: Hongyi Xu, Ye Zhang

Edited by: Zhihong Liu

1 Recall

1.1 CDF

• $F_{X,Y}(x,y) = P(x \le x, y \le y)$

1.2 PMF and PDF

• PMF:

$$- f_{X,Y}(x,y) = P(x \le x, y \le y)$$

• PDF:

$$-f_{X,Y}(x,y) \ge 0$$

$$-\int_{\mathbb{R}^2} f_{X,Y}(x,y) \, dx \, dy = 1$$

$$-P((X,Y) \in A) = \int_A f_{X,Y}(x,y) dx dy$$

1.3 Marginal Distribution

$$-f_X(x) = P(X = x) = \sum_y P(X = x, Y = y) = \sum_y f_{X,Y}(x, y)$$

$$- f_X(x) = \int_{\mathbb{R}} f_{X,Y}(x,y) dy$$

1.4 Independent

$$-P(X \in A, Y \in B) = P(X \in A)P(X \in B)$$

2 Conditional PMF and PDF

•
$$f_{Y|X}(y) = \frac{f_{X,Y}(x,y)}{f_{X}(x)}$$
 or $f_{X,Y}(x,y) = f_{Y}(y|x) \cdot f_{X}(x)$

if independent:

•
$$f_Y(y|x) = f_Y(y)$$

For example,

•
$$X \sim U[0,1], Y|X \sim U[x,1], f_Y$$
?

Step1:

•
$$f_x(x) = \begin{cases} 1, & 0 \le x \le 1 \\ 0, & \text{otherwise} \end{cases}$$

•
$$f_{Y|X}(y) = \begin{cases} \frac{1}{1-x}, & x \leq y < 1\\ 0, & \text{otherwise} \end{cases}$$

Step2:

•
$$f_{X,Y}(x,y) = f_Y(y|x) \cdot f_X(x) = \begin{cases} \frac{1}{1-x}, & x \le y < 1\\ 0, & \text{otherwise} \end{cases}$$

Step3:

•
$$f_Y(y) = \int_{\mathbb{R}} f_{X,Y}(x,y) dx = \int_0^y \frac{1}{1-x} dx = -\ln(1-y)$$

supplement:Linear Model

•
$$\{(x_i, y_i)\}_{i=1}^n$$

•
$$Y_i = \beta^T x_i + \varepsilon_i$$

3 Multivarable

3.1 CDF

•
$$\overrightarrow{x} = x = (x_1, \dots, x_d)^{\top}$$

 $F_Y(y) = P(y_1 \le x_1, \dots, y_d \le x_d)$

3.2 PMF and PDF

•
$$F_Y(y) = P(y_1 = x_1, \dots, y_d = x_d)$$

•
$$\int_{R^d} f_x(x) = 1$$

•
$$P(x \in A) = \int_A f_x(x) dx, A \subseteq R^d$$

•
$$f_{x_1\cdots x_d}(x_1,\cdots,x_k) = \int_R \int_R \cdots f_x(x) dx_{k+1} \cdots dx_d$$

•
$$f_x(x) = \prod_{i=1}^d f_{x_i(x_i)}$$
 (Independent)

3.3 Multivariate Normal Distribution

Definition 1 Standard Multivariate Normal Distribution $Z = (Z_1^\top, Z_2^\top, \dots, Z_k^\top)$, where $Z_1, \dots, Z_k \sim N(0, 1)$ are independent. The density of Z is

$$f(z) = \prod_{i=1}^{k} f(z_i)$$

$$= \frac{1}{(2\pi)^{k/2}} \exp\left\{-\frac{1}{2} \sum_{j=1}^{k} z_j^2\right\}$$

$$= \frac{1}{(2\pi)^{k/2}} \exp\left\{-\frac{1}{2} z^{\top} z\right\}.$$

We written that $Z \sim N(0, I)$, I is the $k \times k$ identity matrix.

Definition 2 (General) Multivariate Normal Distribution a vector X has a multivariate normal distribution $X \sim N(\mu, \Sigma)$, it has density

$$f(x; \mu, \Sigma) = \frac{1}{(2\pi)^{k/2} |(\Sigma)|^{1/2}} \exp\left\{-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu)\right\}$$

where $|(\Sigma)|$ denotes the determinant of Σ , μ is a vector of length k and Σ is the $k \times k$ symmetric, positive definite matrix.

Lemma 1 if
$$X \sim N(0, I)$$
, $Z = \mu + \Sigma^{1/2}X \sim N(\mu, \Sigma)$

Proof process:

$$\therefore Z = \mu + \Sigma^{1/2} X
\therefore X = g^{-1}(Z) = \Sigma^{-1/2} (Z - \mu)
\nabla g^{-1}(Z) = \Sigma^{-1/2}
f_z(z) = f_x(g^{-1}(z))|\text{Det}(\nabla g^{-1}(Z))|
= \frac{1}{(2\pi)^{k/2}} \exp\{-\frac{1}{2}(\Sigma^{-1/2}(Z - \mu))^{\top} \Sigma^{-1/2}(Z - \mu)\}|\text{Det}(\Sigma^{-1/2})|
= \frac{1}{(2\pi)^{k/2}} \exp\{-\frac{1}{2}(\Sigma^{-1/2}(Z - \mu))^{\top} \Sigma^{-1/2}(Z - \mu)\}|\text{Det}(\Sigma)|^{-1/2}
= \frac{1}{(2\pi)^{k/2}} \exp\{-\frac{1}{2}(Z - \mu)^{\top} \Sigma^{-1}(Z - \mu)\}$$
(1)

Definition 3 $\Sigma^{1/2}$ —- the square root of Σ has the following properties:

- $\Sigma^{1/2}$ is symmetric
- $\Sigma = \Sigma^{1/2} \Sigma^{1/2}$
- $\Sigma^{1/2}\Sigma^{-1/2} = \Sigma^{-1/2}\Sigma^{1/2} = I$, where $\Sigma^{-1/2} = (\Sigma^{1/2})^{-1}$

•
$$\Sigma^{1/2} = UD^{1/2}U^{\top}, \ \Sigma^{-1/2} = UD^{-1/2}U^{\top} \text{ where } D^{1/2} = \begin{pmatrix} \sqrt{D_{11}} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sqrt{D_{KK}} \end{pmatrix}$$

3.4 Multinomial Distribution

Considering throwing a coin which has k different faces n times.

 $p = (p_1, \ldots, p_k)$, p_j : the probability of throwing a coin with face j. ($p_j \ge 0$ and $\sum_{j=1}^k p_j = 1$) $X = (X_1, \ldots, X_k)$, X_j : the number of times that face j appears.($n = \sum_{j=1}^k X_j$) We say that X has a Multinomial(n, p) distribution written $X \sim Multinomial(n, p)$.

The probability function is

$$\mathbb{P}(X_1 = n_1, X_2 = n_2, \dots, X_k = n_k) = \frac{n!}{n_1! n_2! \dots n_k!} p_1^{n_1} p_2^{n_2} \dots p_k^{n_k}$$

Lemma 2 Suppose that $X \sim Multinomial(n, p)$ where $X = (X_1, ..., X_k)$ and $p = (p_1, ..., p_k)$. The marginal distribution of $X_j \sim B(n, p_j)$.

3.5 Expectation

3.5.1 Mean Value

Definition 4 The expected value, or mean, or first moment, of X is defined to be

$$\mathbb{E}(X) = \int x dF(x) = \begin{cases} \sum_{x} x f(x) & \text{if } X \text{ is discrete} \\ \int x f(x) dx & \text{if } X \text{ is continuous} \end{cases}$$

Example 1 Flip a fair coin two times. Let X be the number of heads. Then,

$$\mathbb{E}(X) = \int x dF_X(x)$$

$$= \sum_x x f_X(x)$$

$$= 0 \times f(0) + 1 \times f(1) + 2 \times f(2)$$

$$= 0 \times 1/4 + 1 \times 1/2 + 2 \times 1/4$$

$$= 1$$
(2)

3.5.2 The Role of the Lazy Statistician

Definition 5 (The Role of the Lazy Statistician)Let Y = r(X). Then

$$\mathbb{E}(Y) = \mathbb{E}(r(X))$$

$$= \int r(x)dF_X(x)$$

$$= \int r(x)f_X(x)dx$$
(3)

Example 2 Let A be an event where $I_A(x) = 1$ if $x \in A$ and $I_A(x) = 0$ if $x \notin A$. Then

$$\mathbb{E}\left(I_A(X)\right) = 0 \cdot \mathbb{P}(X \notin A) + 1 \cdot \mathbb{P}(x \in A) = \mathbb{P}(X \in A).$$