Contents

1	Inti	roduction	4
2	Alg	rèbre	5
	2.1	Logarithme	5
		2.1.1 Relations	5
		2.1.2 Changement de base	5
	2.2	Produits remarquables	5
	2.3	Equation de degré 2	5
	2.4	Equation degré 3 : Méthode de Cardan	6
	2.5	Suites & Séries	6
	2.6	Nombres complexes	6
		2.6.1 Utilité	6
		2.6.2 Définition	6
		2.6.3 Résolution d'équations imaginaires	6
	2.7	Série et transformée de Fourier	6
	2.8	Transformée de Laplace	6
3	Equ	uations différentielles	7
4	\mathbf{Alg}	rèbre linéaire	8
5	Ana	alyse numérique	9
	~.		
6	Cin	nématique multi-corps	10
7	Cry	yptologie	11
8	Sys	tèmes de coordonnées	12
	8.1	Coordonnées cylindriques	12
	8.2	Coordonnées sphériques	12
9	Géo	ométrie	13
•	9.1	Triangle quleconque	13
	9.2	Trigonométrie	13
	9.3	Norme	14
	9.4	Vecteurs	14
	9.5	Base	15
	9.6	Produit scalaire	15
	9.7	Volume	15
	9.8	Produit vectoriel	15

		9.8.1 Définition	5
		9.8.2 Relation	5
		9.8.3 Propriétés	6
	9.9	Equations dans l'espace	6
		9.9.1 Dans le plan	6
		9.9.2 Dans l'espace	6
	9.10	Allignements	7
	9.11	Intersections	8
	9.12	Projections	8
	9.13	Calculs volume	8
	9.14	Calculs surface	9
10	Mat	hématiques 2	0
11	Mat	ériaux 2	1
12	Méc	anique 2	2
		Cinématique	
	12.1	12.1.1 MRU	
		12.1.2 MRUA	
			22
			22
	12.2		2
		Mécanique Lagrangienne	2
		Centre de masse et moment d'inertie	3
		Quantité mouvement, moment cinétique	4
13	Méc	anique des fluides 2	6
14	Méc	aniques des fluides/aérodynamique 2	7
15	Méc	anique des structures 2	8
		-	8
		, –	28
			28
			28
16	Méc	anique vibratoire 2	9
	16.1	Système à un degré de liberté	9

17	Physique	30
	17.1 Lois de conservation	30
	17.1.1 Quatité de mouvement	30
	17.1.2 Energie	30
	17.1.3 Moment cinétique	31
	17.2 Lois de distribution	31
	17.3 Chocs	31
18	Statistique	32
	18.1 Combinatoire	32
	18.2 ***********	32
19	Régulation	33
20	Thermodynamique	34
	20.1 Définitions	34
	20.2 Principes de la thermodynamique	35
	20.3 Processus thermodynamique	35
	20.4 Cycles	35
	20.5 Rendements isentropiques	36
	20.6 Rayonnement corps noir	36
	20.7 Changement de phase	36
21	Conversion d'unité	37

1 Introduction

cet oeuvrage est un résumé. faire le lien entre différentes sciences.

Des résultats développés dans une partie sont utilisés dans d'autres parties.

2 Algèbre

2.1 Logarithme

2.1.1 Relations

Fonction et fonction inverse (réciproque)

$$e^n = x \tag{2.1.1}$$

$$ln(x) = n (2.1.2)$$

$$ln(x^a) = a \cdot n \tag{2.1.3}$$

2.1.2 Changement de base

$$log_n(x) = \frac{ln(x)}{ln(n)} = a$$
(2.1.4)

$$n^a = x \tag{2.1.5}$$

2.2 Produits remarquables

Théorème de Binôme :

$$(a+b)^n = \sum_{k=0}^n a^{n-k} b^k$$
 (2.2.1)

2.3 Equation de degré 2

$$ax^2 + bx + c = 0 (2.3.1)$$

Discriminant

$$\Delta = b^2 - 4 \cdot a \cdot c \tag{2.3.2}$$

3 possibilités:

- 1. $\Delta>0$: Il y a deux solutions réelles. $x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}$
- 2. $\Delta=0$: Une solution réelle. $x=\frac{-b}{2a}$
- 3. $\Delta < 0$: Il y deux solutions complexes. $x_{1,2} = \frac{-b \pm i \sqrt{|\Delta|}}{2a}$

2.4 Equation degré 3 : Méthode de Cardan

Inverse d'une matrice : Produit de convolution

2.5 Suites & Séries

suite de finonesci// suite arithmétique

$$\sum_{k=1}^{n} k = \frac{n(1+n)}{2} \tag{2.5.1}$$

$$\lim \frac{1-r^n}{1-r} \tag{2.5.2}$$

2.6 Nombres complexes

2.6.1 Utilité

résoudre des équations qui donne des réusl
tats impossible dans le domaine réel. exemple $\sqrt{-1}$.

2.6.2 Définition

Partie réelle, partie imaginaire,

Multiplication par le conjugué

2.6.3 Résolution d'équations imaginaires

2.7 Série et transformée de Fourier

Continue:

$$F(\nu) = \int_{-\infty}^{\infty} f(t)e^{-2i\pi\nu t}dt$$
 (2.7.1)

Discrète :

2.8 Transformée de Laplace

3 Equations différentielles

degré 1,2, solution homogène, solution particulière, coefficients constants/variables. equ diff partielle : résolution avec fourier/Laplace

4 Algèbre linéaire

$$A^{-1} = () (4.0.1)$$

décomposition LU, Equation caractéristique, vecteur propre, valeur propre

5 Analyse numérique

Dérivée numérique, intégrale numérique, equation différentielle partielle numérique (espace, temps), résolution , précision,

progressive, rétrograde

6 Cinématique multi-corps

Euler, Newton quadrilatère article Boucle vectorielle fermée Méthode de Newton-Raphson equilibrage des arbres

7 Cryptologie

cours Collège Codage numérique :

https://fr.wikipedia.org/wiki/Fonction_OU_exclusif

8 Systèmes de coordonnées

coordonnées cartésiennes, polaires, cylindriques, sphériques,

8.1 Coordonnées cylindriques

$$r = \rho \cdot \vec{e}_{\rho} + z \cdot \vec{e}_{z} \tag{8.1.1}$$

$$v = \dot{\rho} \cdot \vec{e}_{\rho} + \rho \cdot \dot{\Phi} \cdot \vec{e}_{\Phi} + \dot{z} \cdot \vec{e}_{z}$$
 (8.1.2)

$$a = (\ddot{\rho} - \rho \cdot \Phi^2)\vec{e}_{\rho} + (\rho \cdot \dot{\Phi} + 2 \cdot \dot{\rho} \cdot \dot{\Phi})\vec{e}_{\Phi} + \dot{z} \cdot \vec{e}_{z}$$

$$(8.1.3)$$

8.2 Coordonnées sphériques

$$r = r \cdot \vec{e_r} \qquad (8.2.1)$$

$$v = r \cdot \vec{e_r} + r \cdot \dot{\theta} \cdot \vec{e_\theta} + r \cdot \Phi \cdot \sin(\theta) \cdot \vec{e_\Phi}$$
 (8.2.2)

$$a = (\ddot{r} - r \cdot \dot{\theta}^2 - r \cdot \dot{\Phi}^2 \cdot \sin^2(\theta))\vec{e}_r + \tag{8.2.3}$$

$$(r \cdot \ddot{\theta} + 2 \cdot \dot{r} \cdot \dot{\theta} - r \cdot \dot{\theta}^2 \cdot \sin(\theta)\cos(\theta))\vec{e_{\theta}} + \tag{8.2.4}$$

$$(r \cdot \ddot{\Phi} \cdot sin(\theta) + 2 \cdot \dot{r} \cdot \dot{\Phi} \cdot sin(\theta) + 2 \cdot r \cdot \dot{\Phi} \cdot \dot{\theta} \cdot cos(\theta)) \cdot \vec{e}_{\Phi}$$
 (8.2.5)

9 Géométrie

Pour vérifier qu'un triangle ABC est rectangle en un point C, on vérfie que le produit scalaire de AC et BC soit nulle

9.1 Triangle quleconque

Propriétés:

$$\alpha + \beta + \gamma = \pi \tag{9.1.1}$$

Théorème d'Al-Kashi

Triangle avec cotés a,b,c et angles α β γ . α opposé à a, β à b, γ à c.

$$\frac{b}{a} = \frac{\beta}{\alpha} \dots \tag{9.1.2}$$

Théorème du sinus

$$\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)} = 2 \cdot r \tag{9.1.3}$$

r: rayon du cercle circonscrit. Théorème du cosinus

$$a^2 = b^2 + c^2 - 2bccos(\alpha) (9.1.4)$$

Aire du triangle

$$S = \frac{1}{2} \cdot absin(\gamma) = 2r^2 sin(\alpha) sin(\beta) sin(\gamma)$$
 (9.1.5)

9.2 Trigonométrie

relations

$$\cos^2(x) + \sin^2(x) = 1 (9.2.1)$$

$$\frac{\cos(x)}{\sin(x)}\tag{9.2.2}$$

$$tan(x) = \frac{cos(x)}{sin(x)}$$
 (9.2.3)

$$cotan(x) = \frac{1}{tan(x)} \tag{9.2.4}$$

9.3 Norme

Norme euclidienne, et les autres types de normes

9.4 Vecteurs

Une grandeur qui a une direction, un sens et une intensité

$$\vec{AB} = \vec{OB} - \vec{OA} = \begin{bmatrix} x_B - x_A \\ y_B - y_A \\ z_B - z_A \end{bmatrix}$$
(9.4.1)

Norme vecteur

$$\|\vec{B}\| = \sqrt{x_B^2 + y_B^2 + z_B^2} \tag{9.4.2}$$

Vecteur dimension n :

$$\|\vec{B}\| = \sqrt{x_B^2 + y_B^2 + z_B^2} \tag{9.4.3}$$

$$\|\vec{u}\| = \sqrt{\sum_{1}^{n} u_i^2} \tag{9.4.4}$$

normalisation d'un vecteur : on modifier un vecteur de façon à ce que sa norme valle 1 :

$$\vec{B}_{normalis\acute{e}} = \frac{\vec{B}}{\|\vec{B}\|} = \frac{1}{\sqrt{x_B^2 + y_B^2 + z_B^2}} \begin{bmatrix} x_B \\ y_B \\ z_B \end{bmatrix}$$
 (9.4.5)

Multiplication par un scalaire :

$$k \cdot \vec{B} = \begin{bmatrix} k \cdot x_B \\ k \cdot y_B \\ k \cdot z_B \end{bmatrix} \tag{9.4.6}$$

Distributivité

$$k \cdot (\vec{A} + \vec{B}) = k \cdot \vec{A} + k \cdot \vec{B} = \tag{9.4.7}$$

Le vecteur \vec{v} est colinéaire à \vec{u} s'il existe un scalaire k tel que :

$$\vec{v} = k \cdot \vec{u} \tag{9.4.8}$$

Combinaison linéaire

$$\vec{u} = \sum_{1}^{n} n_i \cdot \vec{x_i} \tag{9.4.9}$$

3 vecteurs coplanaires : un des vecteurs est la combinaison linéaire des deux autres

9.5 Base

des vecteurs forment une base s'ils sont linéairement indépendants. (non colinéaire)

9.6 Produit scalaire

Projection d'un vecteur sur un autre.

$$\vec{A} \cdot \vec{B} = ||\vec{A}|| \cdot ||\vec{B}|| \cdot \cos(\theta) \tag{9.6.1}$$

$$\vec{A} \cdot \vec{B} = \begin{bmatrix} x_A \\ y_A \\ z_A \end{bmatrix} \begin{bmatrix} x_B \\ y_B \\ z_B \end{bmatrix} = x_A x_B + y_A y_B + z_A z_B$$
 (9.6.2)

Si deux vercteurs sont perpendiculaires, theta vaut 90°:

$$\vec{A} \cdot \vec{B} = 0 \tag{9.6.3}$$

9.7 Volume

9.8 Produit vectoriel

9.8.1 Définition

Le produit vectoriel de deux vecteurs \vec{A} et \vec{B} résulte en un vecteur qui leur est perpendiculaire. La norme de ce vecteur est égale à l'aire du parallélogramme formé par les vecteurs \vec{A} et \vec{B} . (schéma)

9.8.2Relation

$$\vec{A} \otimes \vec{B} = ||A|| ||B|| sin(\theta)$$
 (9.8.1)

$$\vec{A} \otimes \vec{B} = ||A|| ||B|| \sin(\theta)$$

$$\vec{A} \otimes \vec{B} = \begin{bmatrix} x_A \\ y_A \\ z_A \end{bmatrix} \otimes \begin{bmatrix} x_B \\ y_B \\ z_B \end{bmatrix} = \begin{bmatrix} y_A z_B - z_A y_B \\ -x_A z_B + z_A x_B \\ x_A y_B - y_A x_B \end{bmatrix}$$

$$(9.8.1)$$

Pour connaître la direction du vecteur résultant, on utilise la règle des trois doigts.

Si les deux vecteurs sont parallèles, l'angle,

$$\vec{A} \otimes \vec{B} = 0 \tag{9.8.3}$$

9.8.3 Propriétés

pas commutatif,

$$\vec{A} \otimes \vec{B} = -(\vec{B} \otimes \vec{A}) \tag{9.8.4}$$

(9.8.5)

distributif par rapport à l'addition,

pas associatif

9.9 Equations dans l'espace

9.9.1 Dans le plan

Equation paramétrique d'une droite

$$ax + by + c = 0$$
 (9.9.1)

Equation paramétrique d'une droite

$$y = a \cdot x + b \tag{9.9.2}$$

Forme usuelle:

$$ax + by + c = 0$$
 (9.9.3)

Equation algébrique d'une droite :

$$D = \{(x, y) \in \mathbb{R}^2 | ax + by + c = 0\}$$
 (9.9.4)

9.9.2 Dans l'espace

Droite Equation algébrique d'une droite :

$$D = (x, y, z) \in \mathbb{R}^3 | ax + by + cz + d = 0$$
 (9.9.5)

Equation vectorielle d'une droite :

$$\begin{cases} x = at + x_P \\ y = bt + x_P \\ z = ct + z_P \end{cases} \quad t \in \mathbb{R}$$

$$(9.9.6)$$

Avec $P = \begin{bmatrix} x_p \\ y_P \\ z_P \end{bmatrix}$ un point de la droite et $\vec{u} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$ vecteur directeur de la droite.

Une autre forme de l'équation vectorielle :

$$(D_1): \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x_p \\ y_p \\ z_p \end{bmatrix} + \lambda \begin{bmatrix} a \\ b \\ c \end{bmatrix}; \lambda \in \mathbb{R}$$
 (9.9.7)

Plan Equation paramétrique d'un plan :

$$ax + bx + cz + d = 0 (9.9.8)$$

Avec $\vec{u} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$ verteur normale au plan.

Equation vectorielle:

$$(\Pi): \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x_p \\ y_p \\ z_p \end{bmatrix} + \lambda \begin{bmatrix} m_1 \\ m_2 \\ m_3 \end{bmatrix} + \gamma \begin{bmatrix} n_1 \\ n_2 \\ n_3 \end{bmatrix}; (\lambda, \gamma) \in \mathbb{R}$$
 (9.9.9)

 \vec{m} et \vec{n} appartiennent au plan Π .

Cercle

$$r^2 = x^2 + y^2 (9.9.10)$$

Paramétrisation:

$$C = \begin{bmatrix} r \cdot \cos(\theta) \\ r \cdot \sin(\theta) \\ z \end{bmatrix}$$
 (9.9.11)

Equation cercle, sphère, couronne, solénoide, courbes, splines,

résumer le tout dans un tableau.

9.10Allignements

pour vérifier si des points sont alignés, il y a deux méthodes : Méthode 1:

- 1. Calculer les vecteurs directeurs entre chaques deux points
- 2. Normaliser ces vecteurs
- 3. Comparer
- 4. Les vecteurs normalisés doivent être égaux

Méthode 2 :

- 1. Choisir deux points
- 2. Créer une droite avec une équation vectorielle
- 3. Vérifier que les autres points appartiennent à la droite

9.11 Intersections

Intersection entre deux éléments : égaliser les expressions.

Exemple: soit deux droites D_1 et D_2 :

$$(D_1): \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x_p \\ y_p \\ z_p \end{bmatrix} + \lambda \begin{bmatrix} a \\ b \\ c \end{bmatrix}; \lambda \in \mathbb{R}$$
 (9.11.1)

$$(D_2): \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} u_p \\ v_p \\ w_p \end{bmatrix} + \gamma \begin{bmatrix} d \\ e \\ f \end{bmatrix}; \gamma \in \mathbb{R}$$
 (9.11.2)

On trouve l'intersection en posant

$$(D_1) \cap (D_2) : \begin{bmatrix} x_p \\ y_p \\ z_p \end{bmatrix} + \lambda \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} u_p \\ v_p \\ w_p \end{bmatrix} + \gamma \begin{bmatrix} d \\ e \\ f \end{bmatrix}$$
(9.11.3)

en recherchant les solutions pour γ et λ

Intersection entre deux plans donne une droite:

$$\begin{cases} a_1x + b_1y + c_1z + d_1 = 0 \\ a_2x + b_2y + c_2z + d_2 = 0 \end{cases}$$
 (9.11.4)

Intersection entre droite et plan donne un point :

9.12 Projections

calculer la distance entre deux éléments

Distance entre un point et une droite, droite et un plan, point à un plan,

9.13 Calculs volume

calculer volume surface, d'une fonction.

Volume (rotation de la fonction autour d'une droite,, avec une intégrale) : considérer la fonction comme un rayon et calculer le volume d'un cercle d'épaisseur dx.

Autour de l'axe X

$$V = \int_a^b \pi \cdot f(x)^2 \cdot dx \tag{9.13.1}$$

Autour de l'axe Y (à confirmer)

$$V = \int_{a}^{b} \pi \cdot x^{2} \cdot dy \tag{9.13.2}$$

$$dy = \frac{df(x)}{dx} \cdot dx \tag{9.13.3}$$

Autour d'un axe quelconque

9.14 Calculs surface

Surface surface : délimité par deux fonctions g(x) et f(x).

$$S = \int_{a}^{b} (f(x) - g(x)) \cdot dx$$
 (9.14.1)

10 Mathématiques

 $\operatorname{moyenne}$: moyenne aritmétique, et autre type de moyenne

11 Matériaux

loi de Hooke :

$$\sigma = \epsilon \cdot E \tag{11.0.1}$$

Contrainte à la rupture

$$\sigma = \frac{K_{1c}}{\sqrt{\pi e}} \tag{11.0.2}$$

12 Mécanique

12.1 Cinématique

12.1.1 MRU

Mouvement rectiligne uniforme :

$$a(t) = 0 (12.1.1)$$

$$v(t) = v = const (12.1.2)$$

$$x(t) = v \cdot t + x_0 \tag{12.1.3}$$

12.1.2 MRUA

Mouvement rectiligne uniformément accéléré :

$$a(t) = a = const (12.1.4)$$

$$v(t) = a \cdot t + v_0 \tag{12.1.5}$$

$$x(t) = \frac{1}{2} \cdot a \cdot t^2 + v_0 \cdot t + x_0 \tag{12.1.6}$$

12.1.3 MCU

12.1.4 MCUA

12.2 Equations d'équilibre

1er loi de Newton

2ème loi de Newton,

$$\Sigma F = m * a \tag{12.2.1}$$

3ème loi de Newton :

action = réaction

Equation couple

$$\Sigma M = I * \alpha \tag{12.2.2}$$

12.3 Mécanique Lagrangienne

q : variables d'état d'un système

$$L(q, \dot{q}) = \sum E_{cin}(q, \dot{q}) - \sum E_{pot}(q, \dot{q})$$
 (12.3.1)

 E_{cin} : Energie cinétique de translation et de rotation.

 E_{pot} : Energie potentielle Equation de Lagrange:

$$\frac{d}{dt}(\frac{\delta L}{\delta \dot{q}_i}) - \frac{\delta L}{\delta q_i} = 0 \tag{12.3.2}$$

12.4 Centre de masse et moment d'inertie

Centre de masse d'un corps solide:

$$x_G = \frac{\int x \cdot dm}{\int dm} \tag{12.4.1}$$

Pour un assemblage de plusieurs corps solides :

$$x_G = \frac{\sum x_i \cdot m_i}{\sum m_i} \tag{12.4.2}$$

Centroïde d'une courbe

$$x_G = \frac{\int x \cdot dA}{A} \tag{12.4.3}$$

Centroïde d'une surface

$$x_G = \frac{\int x \cdot dl}{l} \tag{12.4.4}$$

Centroïde d'un volume

$$x_G = \frac{\int x \cdot dV}{V} \tag{12.4.5}$$

Moment d'inertie d'un corps solide :

$$I = \iiint d^2 dm = \iiint d^2 \rho dV \tag{12.4.6}$$

Assemblage

$$I = \sum r_i^2 \cdot m_i \tag{12.4.7}$$

Théorème de Huygens-Steiner :

$$I = I_G + m \cdot m^2 \tag{12.4.8}$$

Quelques formules d'inertie :

III-2.e.2°) Expressions du moment d'inertie dans les cas usuels :

	CYLINDRE	TUBE	PARALLELE PIPE DE RECTANGLE	SPHERE	TIGE	
SOLIDES	R V X	R X X	N X X	R G X	X Section négrigeable	
TIE	$Igx = \frac{m.R^2}{4} + \frac{m.l^2}{12}$	$Igx = \frac{m.(R^2+r^2)}{4} + \frac{m.l^2}{12}$	$Igx = \frac{m.(b^2 + l^2)}{12}$	$Igx = \frac{2}{5}.m.R^2$	$Igx = \frac{m.l^2}{12}$	
INERTIE	Igy = $\frac{m.R^2}{4} + \frac{m.l^2}{12}$	$Igy = \frac{m.(R^2+r^2)}{4} + \frac{m.l^2}{12}$	$Igy = \frac{m.(a^2 + l^2)}{12}$	$Igy = \frac{2}{5} \cdot m \cdot R^2$	$Igy = \frac{m.l^2}{12}$	
	$Igz = \frac{m.R^2}{2}$	$Igz = \frac{m.(R^2 + r^2)}{2}$	$Igz = \frac{m.(a^2 + b^2)}{12}$	<u>Ig</u> z= <u>2</u> .m.R ²	Igz ≈0	
Unités	I=Inertie (en kg.m²) m=masse(en kg) Dimensions (en m)					

http://www.bonne-mesure.com/moment_d_inertie.php

Rayon de giration

$$I_G = m \cdot k_g^2 \Rightarrow k_G = \sqrt{\frac{I_G}{m}}$$
 (12.4.9)

$$k^2 = k_G^2 + d^2 (12.4.10)$$

Thm du sinus + (schéma du triangle)

$$\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)}$$
 (12.4.11)

Thm cosinus

$$c^{2} = a^{2} + b^{2} - 2 \cdot a \cdot b \cdot \cos(\gamma)$$
 (12.4.12)

12.5 Quantité mouvement, moment cinétique

théorème quantité de mouvement : TAero, début Part 2

$$\iint_{\Sigma} [(\vec{p}\vec{n}) + \rho \vec{V}(\vec{V}\vec{n})] d\sigma \qquad (12.5.1)$$

cette intégrale donne la force de poussée. moment cinétique, théorème implusion https://fr.wikipedia.org/wiki/Quantit%C3%A9_de_mouvement

13 Mécanique des fluides

Equation de Bernoulli:

Pour calculer le C_x ou le C_z , il faut calculer la circulation Γ autour du profil. Ces deux coefficients dépendent de l'angle d'incidence α .

$$\Gamma = \oint v ds \tag{13.0.1}$$

$$C_L = \frac{2\Gamma}{tv_{\infty}} \tag{13.0.2}$$

s est le contour du profil.

Aile d'avion:

$$C_z = 2k_{AR}\alpha \tag{13.0.3}$$

$$C_x = C_{x_p} + \frac{(C_z)^2}{\pi AR} \tag{13.0.4}$$

$$AR = \frac{b^2}{S} \tag{13.0.5}$$

$$k_{AR} = \left(\frac{\pi}{1 + \frac{2}{4R}}\right)^{\frac{1}{2}} \tag{13.0.6}$$

S : surface des ailes. b : envergure. AR : allongement relatif. C_{x_p} : 1

Finesse:

$$f = \frac{C_z}{C_x} \tag{13.0.7}$$

On trouve la finesse max en cherchant $\frac{\delta f}{\delta \alpha}$ Force de portance (Lift) :

$$F_z = \frac{1}{2} * \rho SV^2 C_z \tag{13.0.8}$$

Force de traînée (Drag):

$$F_x = \frac{1}{2} * \rho SV^2 C_x \tag{13.0.9}$$

Nombre de Reynolds, viscosité statique, viscosité dynamique

$$Re = \frac{Vl}{\mu} \tag{13.0.10}$$

¹Cours Techniques aéronautiques, Jean-Michel Schulz

14 Mécaniques des fluides/aérodynamique

Force de frottement visqueux

$$\vec{F} = -k \cdot \vec{v} = -k \cdot \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{bmatrix}$$
 (14.0.1)

Force de frottement laminaire

$$\vec{F} = -k \cdot \eta \cdot \vec{v_{rel}} \tag{14.0.2}$$

$$\vec{v_{rel}} = \vec{v_{objet}} - \vec{v_{fluide}} \tag{14.0.3}$$

Force de frottement turbulant

$$\vec{F} = \frac{1}{2} \rho_{fluide} \cdot S \cdot C_x \cdot |v_{rel}|^2$$
(14.0.4)

$$\vec{v_{rel}} = \vec{v_{objet}} - \vec{v_{fluide}} \tag{14.0.5}$$

S : aire de la prise à l'air ${\cal C}_x$: coefficient de traînée

Force de portance (lift):

$$F_z = \frac{1}{2} * \rho_{gaz} * S * C_z * V^2$$
 (14.0.6)

 ρ_{gaz} : masse volumique du gaz $[\frac{kg}{m^3}]$

S: Section de référence $[m^2]$

 C_z : coefficient de portance [-]

V: vitesse de l'objet $\left[\frac{m}{s}\right]$

Force de trainée (drag):

$$F_x = \frac{1}{2} * \rho_{gaz} * S * C_x * V^2$$
 (14.0.7)

 ρ_{gaz} : masse volumique du gaz $\left[\frac{kg}{m^3}\right]$

 \hat{S} : Section de référence $[m^2]$

 C_x : coefficient de trainée [-]

V : vitesse de l'objet $[\frac{m}{s}]$

15 Mécanique des structures

Loi de Hooke linéaire

$$F = k \cdot \Delta x \tag{15.0.1}$$

15.1 Traction/compression

$$\sigma = \frac{F}{S} \tag{15.1.1}$$

$$\epsilon = \frac{\delta L}{l} \tag{15.1.2}$$

$$\epsilon = \frac{\sigma}{E} \tag{15.1.3}$$

15.2 Effort tranchant

15.3 Flexion

15.4 Torsion

Méthode flexion 3 points Poutre encastrée

Mécanique vibratoire 16

modèle simple, pendule simple, amortissement, equation différentielle, solutions réelles, solutions complexes, exercice suspension vhc : système roue amortisseur/ressort -> fonction de transfert

Système à un degré de liberté 16.1

Ocillateur simple: une masse avec un ressort et un amortissement Equation du mouvement :

$$m\ddot{x} + c\dot{x} + kx = 0 \tag{16.1.1}$$

qu'on peut écrire différemment.

$$\ddot{x} + 2\zeta\omega_0\dot{x} + \omega_0^2 x = 0 \tag{16.1.2}$$

$$\omega_0 = \sqrt{\frac{k}{m}}$$

$$\zeta = \frac{c}{c_r}$$

$$(16.1.3)$$

$$(16.1.4)$$

$$\zeta = \frac{c}{c_r} \tag{16.1.4}$$

$$c_r = 2m\omega_0 = 2\sqrt{km} \tag{16.1.5}$$

 $\boldsymbol{c_r}$: constante d'amortissement critique.

Solution: $x(t) = C \exp^{\lambda t}$

17 Physique

Force gravitationnelle

$$\vec{F}_g = G \cdot \frac{m_1 \cdot m_2}{d^2} [N]$$
 (17.0.1)

Gravité terrestre:

$$g = G \cdot \frac{m_{terre}}{(Rayon_{terre} + altitude)^2} \left[\frac{m}{s^2}\right]$$
 (17.0.2)

Frottement sec

$$F = \mu \cdot F_n[N] \tag{17.0.3}$$

 μ : coefficient de frottement [-] La force normale F_n est perpendiculaire à $F.(\mathrm{sch\acute{e}ma})$

Pression d'Archimède:

$$P = \rho \cdot g \cdot h[Pa] \tag{17.0.4}$$

Dilatation unidirectionnelle:

$$\Delta L = L_0 \cdot \alpha \cdot \Delta T \tag{17.0.5}$$

 α : coefficient de dilation thermique [-] ΔT : Différence de température [K]

Dilatation volumique:

$$\Delta V = V_0 \cdot \beta \cdot \Delta T \tag{17.0.6}$$

 $\beta \approx 3 \cdot \alpha$

17.1 Lois de conservation

17.1.1 Quatité de mouvement

$$\vec{P} = m \cdot \vec{v} \tag{17.1.1}$$

$$\sum P_i = \sum m_i \cdot v_i = \sum P_i' = \sum m_i' \cdot v_i'$$
(17.1.2)

17.1.2 Energie

$$\sum E_{initiale} = \sum E_{finale} \tag{17.1.3}$$

$$E_{cin}^{translation} = \frac{1}{2} \cdot m \cdot v^2 \tag{17.1.4}$$

$$E_{cin}^{rotation} = \frac{1}{2} \cdot I_G \cdot \omega^2 \tag{17.1.5}$$

$$E_{pot}^{gravit\acute{e}} = m \cdot g \cdot h \tag{17.1.6}$$

$$E_{pot}^{\'elastique} = \frac{1}{2} \cdot k \cdot x^2 \tag{17.1.7}$$

17.1.3 Moment cinétique

Corps solide

$$\vec{L} = I \cdot \vec{\omega} \tag{17.1.8}$$

Pt matériel

$$\vec{L} = \sum \vec{GP_i} * m \cdot \vec{r_i} \tag{17.1.9}$$

Théorème de Huygens-Steiner

$$I = I_G + M \cdot d^2 (17.1.10)$$

$$\vec{L}_c = \vec{L}_G + \vec{C}G * m \cdot \vec{v} = \vec{L}'_G + \vec{C}G * m \cdot \vec{v}' = \vec{L}'_c$$
 (17.1.11)

17.2 Lois de distribution

vitesse

$$\vec{v}_p = \vec{v}_G + \vec{\omega} * \vec{GP} \tag{17.2.1}$$

accélération

$$\vec{a}_p = \vec{a}_G + \vec{\omega} * \vec{GP} + \vec{\omega} * (\vec{\omega} * \vec{GP})$$
(17.2.2)

17.3 Chocs

Chocs élastique : conservation des 3 lois.

$$\frac{dE_{cin}}{dt} = 0\tag{17.3.1}$$

Chocs inélastique/mou:

$$\frac{dE_{cin}}{dt} \neq 0 \tag{17.3.2}$$

$$\frac{dP^{tot}}{dr} = \vec{F}_{ext} \tag{17.3.3}$$

$$\frac{dL^{tot}}{dr} = \vec{M}_0^{ext} \tag{17.3.4}$$

18 Statistique

18.1 Combinatoire

Combinaison:

$$C(x,y) = \begin{bmatrix} x \\ y \end{bmatrix} = \frac{x!}{(x-y)! \cdot y!}$$
 (18.1.1)

Permutation

$$P(x) = x! (18.1.2)$$

Répartition d'un groupe de x dans des groupes de y et z éléments.

$$x = y + z \tag{18.1.3}$$

$$P_{y,z}^x = \frac{x!}{y! \cdot z!} \tag{18.1.4}$$

18.2 ********

moyenne

$$\mu = \sum x_i \cdot P_i \tag{18.2.1}$$

$$\mu = \frac{1}{n} \sum x_i \tag{18.2.2}$$

variance

$$v = \sum (x_i - \mu)^2 \cdot P_i$$
 (18.2.3)

$$v = \frac{1}{n} \sum (x_i - \mu)^2$$
 (18.2.4)

écart-type

$$\sigma = \sqrt{v} = \sqrt{\sum (x_i - \mu)^2 \cdot P_i}$$
(18.2.5)

Espérance (cas discret)

$$E(X) = \mu = \sum_{i=1}^{n} x_i \cdot P_i$$
 (18.2.6)

Jeu équitable si E(X) = 0. avec bénifice E(X) > 0

19 Régulation

Laplace, Fonction de transfert, Boucle de régulation : ouverte, fermée

20 Thermodynamique

20.1 Définitions

Loi des gaz parfaits

$$PV = nRT (20.1.1)$$

$$Pv = rT (20.1.2)$$

P: Pression du gaz [Pa] V: Volume du gaz $[m^2]$ v: Volume spécifique $[\frac{m^2}{kg}]$ n: nombre de mole [mol]

R: Constante des gaz 8.314 $\left[\frac{J}{K \cdot K}\right]$ r: Constante massique d'un gaz

T: Température [K]

Equation de Van der Waals :

$$p \cdot (V-) = nRT \tag{20.1.3}$$

Energie interne d'un gaz :

$$U = \frac{\nu}{2} nRT = \frac{\nu}{2} Nk_B T \tag{20.1.4}$$

 ν : k_B : constante de Bolzmann

N : nombre de molécules

Travail et travail massique:

$$\delta W = \int_{min}^{max} pdV \tag{20.1.5}$$

$$\delta w = \frac{\delta W}{m} = \int_{min}^{max} p dv \tag{20.1.6}$$

(20.1.7)

Chaleur et chaleur massique:

$$\delta Q = m * C_p * \Delta T \tag{20.1.8}$$

$$\delta q = \frac{\delta Q}{m} C_p * \Delta T \tag{20.1.9}$$

Masse molaire:

$$M = \frac{m}{n} \tag{20.1.10}$$

Rapport isentropique : rapport des chaleurs spécifiques Lois de Meyer :

$$\gamma = \frac{C_p}{C_v} = \frac{c_p}{c_v} \tag{20.1.11}$$

$$R = C_p - C_v (20.1.12)$$

On peut en déduire :

$$r = c_p - c_v (20.1.13)$$

$$c_p = \frac{C_p}{M} \tag{20.1.14}$$

$$c_v = \frac{C_v}{M} \tag{20.1.15}$$

Pression partielle et pression totale (lois de Dalton):

$$p_i \cdot V = n_i \cdot R \cdot T \qquad (20.1.16)$$
$$p = \sum p_i \qquad (20.1.17)$$

$$p = \sum p_i \tag{20.1.17}$$

20.2 Principes de la thermodynamique

Premier principe:

$$dU = \delta Q + \delta W \tag{20.2.1}$$

1er, 2ème, 3ème principe

Processus thermodynamique 20.3

Processus	Processus Formules		δq	U
isochore	$\Delta v = 0, \frac{r*T}{p} = const$	0		
isobare	$\Delta p = 0, \frac{rT}{v} = const$	$-p_0\cdot(v_1-v_0)$		
isotherme	ρ	$7860 \frac{kg}{m^3}$		
adiabatique	α			
isentrope	$p*V^{\gamma} = const, T^{\gamma}*p^{1-\gamma} = const, T*V^{\gamma-1} = const$		$\delta Q = 0$	
polytropique	$\sigma =$			

Facteur polytroqique : σ

20.4 Cycles

Carnot, Rankine, avec les rendements

20.5 Rendements isentropiques

Rendement de Carnot

Rendement isentropique d'un compresseur :

$$\eta_c = \frac{\Delta H_s}{\Delta H_r} = \frac{Cp * (T_s - T)}{Cp * (T_r - T)}$$
(20.5.1)

Rendement isentropique d'une turbine :

$$\eta_t = \frac{\Delta H_r}{\Delta H_s} \tag{20.5.2}$$

20.6 Rayonnement corps noir

Puissance rayonnée:

$$P = \sigma * T^4 \tag{20.6.1}$$

P: puissance rayonnée [W]

T: température [T]

 σ :

20.7 Changement de phase

Energie de changement de phase

$$\delta Q = L \cdot \delta m \tag{20.7.1}$$

$$Q = L \cdot m \tag{20.7.2}$$

L : chaleur latente de fusion/éva poration $[\frac{J}{kg}]$ Remarque : lors du changement de phase, la température reste constante. Toute l'énergie absorbe est utilisée pour le changement de phase.

Hors des phases, l'énergie augmente la température. L'énergie interne change selon la relation suivante :

$$dU = \delta Q = m * C_x * \Delta T \tag{20.7.3}$$

21 Conversion d'unité

1mmHg=133.3 Pa1 atm=1013.25 hPa = 760 torr

Équations conversion Kelvin (K), Celcius (C) et Fahrenheit (F).

$$K = C + 273.15 \tag{21.0.1}$$

22 Bibliographie

Liste des cours, avec le nom des profs liste des livres + sources diverses