Ограничения языка исчисления высказываний

Каждый человек смертен Сократ есть человек

Сократ смертен

Ограничения языка исчисления высказываний

 $\frac{{\sf Kаждый}\ {\sf человек}\ {\sf смертен}\ {\sf Сократ}\ {\sf есть}\ {\sf человек}\ {\sf Сократ}\ {\sf смертен}}$

Цель: увеличить формализованную часть метаязыка.

Ограничения языка исчисления высказываний

$$\frac{\mathsf{Kаждый}\ \mathsf{человеk}\ \mathsf{смертеh}\ \mathsf{Coкрат}\ \mathsf{eстb}\ \mathsf{человеk}}{\mathsf{Coкрат}\ \mathsf{смертeh}}$$

Цель: увеличить формализованную часть метаязыка.

Мы неформально знакомы с предикатами $(P:D \to V)$ и кванторами $(\forall x. H(x) \to S(x)).$

$$\frac{\forall x. \mathbf{H}(x) \to \mathbf{S}(x) \qquad \mathbf{H}(\mathsf{Cokpat})}{\mathbf{S}(\mathsf{Cokpat})}$$

$$\forall x.\sin x = 0 \lor (\sin x)^2 + 1 > 1$$

$$\forall x.\sin x = 0 \lor (\sin x)^2 + 1 > 1$$

- 1. Предметные (здесь: числовые) выражения
 - 1.1 Предметные переменные (x).

$$\forall x.\sin x = 0 \lor (\sin x)^2 + 1 > 1$$

- 1. Предметные (здесь: числовые) выражения
 - 1.1 Предметные переменные (x).
 - 1.2 Одно- и двухместные функциональные символы «синус», «возведение в квадрат» и «сложение».

$$\forall x.\sin x = 0 \lor (\sin x)^2 + 1 > 1$$

- 1. Предметные (здесь: числовые) выражения
 - 1.1 Предметные переменные (x).
 - 1.2 Одно- и двухместные функциональные символы «синус», «возведение в квадрат» и «сложение».
 - 1.3 Нульместные функциональные символы «ноль» (0) и «один» (1).

$$\forall x.\sin x = 0 \lor (\sin x)^2 + 1 > 1$$

- 1. Предметные (здесь: числовые) выражения
 - 1.1 Предметные переменные (x).
 - 1.2 Одно- и двухместные функциональные символы «синус», «возведение в квадрат» и «сложение».
 - 1.3 Нульместные функциональные символы «ноль» (0) и «один» (1).
- 2. Логические выражения
 - 2.1 Предикатные символы «равно» и «больше»

1. Два типа: предметные и логические выражения.

- 1. Два типа: предметные и логические выражения.
- 2. Предметные выражения: метапеременная θ .

- 1. Два типа: предметные и логические выражения.
- 2. Предметные выражения: метапеременная θ .
 - ▶ Предметные переменные: a, b, c, ..., метапеременные x, y.

- 1. Два типа: предметные и логические выражения.
- 2. Предметные выражения: метапеременная θ .
 - ▶ Предметные переменные: a, b, c, ..., метапеременные x, y.
 - lacktriangle Функциональные выражения: $f(heta_1,\ldots, heta_n)$, метапеременные f, g, \ldots

- 1. Два типа: предметные и логические выражения.
- 2. Предметные выражения: метапеременная θ .
 - ightharpoonup Предметные переменные: a, b, c, ..., метапеременные x, y.
 - lacktriangle Функциональные выражения: $f(heta_1,\ldots, heta_n)$, метапеременные f,g,\ldots
 - ightharpoonup Примеры: r, q(p(x,s),r).

- 1. Два типа: предметные и логические выражения.
- 2. Предметные выражения: метапеременная θ .
 - ightharpoonup Предметные переменные: a, b, c, \ldots , метапеременные x, y.
 - ightharpoonup Функциональные выражения: $f(\theta_1,\ldots,\theta_n)$, метапеременные f,g,\ldots
 - ightharpoonup Примеры: r, q(p(x,s),r).
- 3. Логические выражения: метапеременные lpha, eta, γ , . . .
 - ightharpoonup Предикатные выражения: $P(heta_1,\ldots, heta_n)$, метапеременная P.

- 1. Два типа: предметные и логические выражения.
- 2. Предметные выражения: метапеременная θ .
 - ightharpoonup Предметные переменные: a, b, c, ..., метапеременные x, y.
 - ightharpoonup Функциональные выражения: $f(\theta_1,\ldots,\theta_n)$, метапеременные f, g, \ldots
 - ightharpoonup Примеры: r, q(p(x,s),r).
- 3. Логические выражения: метапеременные lpha, eta, γ , . . .
 - ▶ Предикатные выражения: $P(\theta_1, ..., \theta_n)$, метапеременная P. Имена: A. B. C. . . .

- 1. Два типа: предметные и логические выражения.
- 2. Предметные выражения: метапеременная θ .
 - ightharpoonup Предметные переменные: a, b, c, \ldots , метапеременные x, y.
 - ightharpoonup Функциональные выражения: $f(\theta_1, \ldots, \theta_n)$, метапеременные f, g, \ldots
 - ightharpoonup Примеры: r, q(p(x,s),r).
- 3. Логические выражения: метапеременные α , β , γ , ...
 - ightharpoonup Предикатные выражения: $P(\theta_1, \dots, \theta_n)$, метапеременная P. Имена: *А. В. С.*
 - ightharpoonup Связки: $(\varphi \lor \psi)$, $(\varphi \& \psi)$, $(\varphi \to \psi)$, $(\neg \varphi)$.

- 1. Два типа: предметные и логические выражения.
- 2. Предметные выражения: метапеременная θ .
 - ightharpoonup Предметные переменные: *a*, *b*, *c*, ..., метапеременные x, y.
 - ightharpoonup Функциональные выражения: $f(\theta_1,\ldots,\theta_n)$, метапеременные f,g,\ldots
 - ightharpoonup Примеры: r, q(p(x,s),r).
- 3. Логические выражения: метапеременные lpha, eta, γ , . . .
 - ▶ Предикатные выражения: $P(\theta_1, ..., \theta_n)$, метапеременная P. Имена: A. B. C. . . .
 - ► Связки: $(\varphi \lor \psi)$, $(\varphi \& \psi)$, $(\varphi \to \psi)$, $(\neg \varphi)$,
 - ► Кванторы: $(\forall x.\varphi)$ и $(\exists x.\varphi)$.

Сокращения записи, метаязык

1. Метапеременные:

- \blacktriangleright ψ , ϕ , π , ... формулы
- ► *P*, *Q*, . . . предикатные символы
- **▶** *θ*, . . . термы
- ightharpoonup f, g, ... функциональные символы
- ightharpoonup x, y, ... предметные переменные

Сокращения записи, метаязык

- 1. Метапеременные:
 - \blacktriangleright ψ , ϕ , π , ... формулы
 - **▶** *P*, *Q*, . . . предикатные символы
 - **▶** *θ*, . . . термы
 - $ightharpoonup f, g, \ldots$ функциональные символы
 - ightharpoonup x, y, ... предметные переменные
- 2. Скобки как в И.В.; квантор жадный:

$$(\forall a. \ A \lor B \lor C \to \exists b. \underbrace{D \& \neg E}_{\exists b...}) \& F$$

Сокращения записи, метаязык

- 1. Метапеременные:
 - \blacktriangleright ψ , ϕ , π , ...— формулы
 - ▶ P, Q, . . . предикатные символы
 - ightharpoonup heta, ... термы
 - $ightharpoonup f, g, \ldots$ функциональные символы
 - ightharpoonup x, y, ... предметные переменные
- 2. Скобки как в И.В.; квантор жадный:

$$(\forall a. A \lor B \lor C \to \exists b. \underbrace{D \& \neg E}_{\exists b...}) \& F$$

- 3. Дополнительные обозначения при необходимости:
 - \blacktriangleright $(\theta_1 = \theta_2)$ вместо $E(\theta_1, \theta_2)$
 - $(\theta_1 + \theta_2) \text{ вместо } p(\theta_1, \theta_2)$
 - ▶ 0 вместо z

Напомним формулу:

$$\forall x. \sin x = 0 \lor (\sin x)^2 + 1 > 1$$

$$\forall x. E(f(x), z) \lor G(p(q(s(x)), o), o)$$

Напомним формулу:

$$\forall x. \sin x = 0 \lor (\sin x)^2 + 1 > 1$$

$$\forall x. E(f(x), z) \lor G(p(q(s(x)), o), o)$$

- 1. Истинностные (логические) значения:
 - 1.1 предикаты (в том числе пропозициональные переменные = нульместные предикаты);

Напомним формулу:

$$\forall x. \sin x = 0 \lor (\sin x)^2 + 1 > 1$$

$$\forall x. E(f(x), z) \lor G(p(q(s(x)), o), o)$$

- 1. Истинностные (логические) значения:
 - 1.1 предикаты (в том числе пропозициональные переменные = нульместные предикаты);
 - 1.2 логические связки и кванторы.

Напомним формулу:

$$\forall x. \sin x = 0 \lor (\sin x)^2 + 1 > 1$$

$$\forall x. E(f(x), z) \lor G(p(q(s(x)), o), o)$$

- 1. Истинностные (логические) значения:
 - 1.1 предикаты (в том числе пропозициональные переменные = нульместные предикаты);
 - 1.2 логические связки и кванторы.
- 2. Предметные значения:
 - 2.1 предметные переменные;

Напомним формулу:

$$\forall x. \sin x = 0 \lor (\sin x)^2 + 1 > 1$$

$$\forall x. E(f(x), z) \lor G(p(q(s(x)), o), o)$$

- 1. Истинностные (логические) значения:
 - 1.1 предикаты (в том числе пропозициональные переменные = нульместные предикаты);
 - 1.2 логические связки и кванторы.
- 2. Предметные значения:
 - 2.1 предметные переменные;
 - 2.2 функциональные символы (в том числе константы = нульместные функциональные символы)

Определение

Оценка — упорядоченная четвёрка $\langle D, F, T, E \rangle$, где:

Определение

Оценка — упорядоченная четвёрка $\langle D, F, T, E \rangle$, где:

1. D — предметное множество;

Определение

Оценка — упорядоченная четвёрка $\langle D, F, T, E \rangle$, где:

- 1. D предметное множество;
- 2. F оценка для функциональных символов; пусть f_n n-местный функциональный символ:

$$F_{f_n}:D^n\to D$$

Определение

Оценка — упорядоченная четвёрка $\langle D, F, T, E \rangle$, где:

- 1. D предметное множество;
- 2. F оценка для функциональных символов; пусть f_n n-местный функциональный символ:

$$F_{f_n}:D^n\to D$$

3. T — оценка для предикатных символов; пусть P_n — n-местный предикатный символ:

$$T_{P_n}:D^n\to V$$

Определение

Оценка — упорядоченная четвёрка $\langle D, F, T, E \rangle$, где:

- 1. D предметное множество;
- 2. F оценка для функциональных символов; пусть f_n n-местный функциональный символ:

$$F_{f_n}:D^n\to D$$

3. T — оценка для предикатных символов; пусть P_n — n-местный предикатный символ:

$$T_{P_n}: D^n \to V \qquad V = \{\mathcal{U}, \mathcal{I}\}$$

Определение

Оценка — упорядоченная четвёрка $\langle D, F, T, E \rangle$, где:

- 1. D предметное множество;
- 2. F оценка для функциональных символов; пусть f_n n-местный функциональный символ:

$$F_{f_n}:D^n\to D$$

3. T — оценка для предикатных символов; пусть P_n — n-местный предикатный символ:

$$T_{P_n}: D^n \to V \qquad V = \{\mathcal{U}, \mathcal{I}\}$$

4. Е — оценка для предметных переменных.

$$E(x) \in D$$

Запись и сокращения записи подобны исчислению высказываний:

$$\llbracket \phi \rrbracket \in V, \quad \llbracket Q(x, f(x)) \vee R \rrbracket^{x:=1, f(t):=t^2, R:=\mathsf{N}} = \mathsf{N}$$

Запись и сокращения записи подобны исчислению высказываний:

$$[\![\phi]\!] \in V, \quad [\![Q(x, f(x)) \lor R]\!]^{x:=1, f(t):=t^2, R:=\mathsf{N}} = \mathsf{N}$$

1. Правила для связок \lor , &, \neg , \to остаются прежние;

Запись и сокращения записи подобны исчислению высказываний:

$$[\![\phi]\!] \in V, \quad [\![Q(x, f(x)) \lor R]\!]^{x:=1, f(t):=t^2, R:=\mathsf{N}} = \mathsf{N}$$

- 1. Правила для связок \vee , &, \neg , \rightarrow остаются прежние;
- 2. $\llbracket f_n(\theta_1, \theta_2, \dots, \theta_n) \rrbracket = F_{f_n}(\llbracket \theta_1 \rrbracket, \llbracket \theta_2 \rrbracket, \dots, \llbracket \theta_n \rrbracket)$

Запись и сокращения записи подобны исчислению высказываний:

$$[\![\phi]\!] \in V, \quad [\![Q(x, f(x)) \lor R]\!]^{x:=1, f(t):=t^2, R:=\mathsf{N}} = \mathsf{N}$$

- 1. Правила для связок \vee , &, \neg , \rightarrow остаются прежние;
- 2. $\llbracket f_n(\theta_1, \theta_2, \dots, \theta_n) \rrbracket = F_{f_n}(\llbracket \theta_1 \rrbracket, \llbracket \theta_2 \rrbracket, \dots, \llbracket \theta_n \rrbracket)$
- 3. $[P_n(\theta_1, \theta_2, \dots, \theta_n)] = T_{P_n}([\theta_1], [\theta_2], \dots, [\theta_n])$

Оценка формулы

Запись и сокращения записи подобны исчислению высказываний:

$$[\![\phi]\!] \in V, \quad [\![Q(x, f(x)) \lor R]\!]^{x:=1, f(t):=t^2, R:=V} = V$$

- 1. Правила для связок \lor , &, \lnot , \to остаются прежние;
- 2. $\llbracket f_n(\theta_1, \theta_2, \dots, \theta_n) \rrbracket = F_{f_n}(\llbracket \theta_1 \rrbracket, \llbracket \theta_2 \rrbracket, \dots, \llbracket \theta_n \rrbracket)$
- 3. $[P_n(\theta_1, \theta_2, \dots, \theta_n)] = T_{P_n}([\theta_1], [\theta_2], \dots, [\theta_n])$
- 4.

$$\llbracket \forall x.\phi
rbracket = egin{cases} \mathsf{И}, & \mathsf{если} \ \llbracket \phi
rbracket^{\mathsf{x}:=t} = \mathsf{И} \ \mathsf{при} \ \mathsf{всеx} \ t \in D \\ \mathsf{Л}, & \mathsf{если} \ \mathsf{найдётся} \ t \in D, \ \mathsf{что} \ \llbracket \phi
rbracket^{\mathsf{x}:=t} = \mathsf{Л} \end{cases}$$

Оценка формулы

Запись и сокращения записи подобны исчислению высказываний:

$$[\![\phi]\!] \in V, \quad [\![Q(x, f(x)) \lor R]\!]^{x:=1, f(t):=t^2, R:=M} = M$$

- 1. Правила для связок \lor , &, \neg , \to остаются прежние;
- 2. $\llbracket f_n(\theta_1, \theta_2, \dots, \theta_n) \rrbracket = F_{f_n}(\llbracket \theta_1 \rrbracket, \llbracket \theta_2 \rrbracket, \dots, \llbracket \theta_n \rrbracket)$
- 3. $\llbracket P_n(\theta_1, \theta_2, \dots, \theta_n) \rrbracket = T_{P_n}(\llbracket \theta_1 \rrbracket, \llbracket \theta_2 \rrbracket, \dots, \llbracket \theta_n \rrbracket)$
- 4.

$$\llbracket\forall x.\phi\rrbracket = \left\{ \begin{array}{l} \mathsf{И}, \quad \text{если } \llbracket\phi\rrbracket^{x:=t} = \mathsf{И} \text{ при всех } t \in D \\ \mathsf{Л}, \quad \text{если найдётся } t \in D, \text{ что } \llbracket\phi\rrbracket^{x:=t} = \mathsf{Л} \end{array} \right.$$

5.
$$\llbracket\exists x.\phi\rrbracket = \left\{ \begin{array}{l} \mathsf{V}, \quad \text{если найдётся } t \in D, \ \mathsf{что} \ \llbracket \phi \rrbracket^{x:=t} = \mathsf{V} \right. \\ \mathsf{\Pi}, \quad \mathsf{если} \ \llbracket \phi \rrbracket^{x:=t} = \mathsf{\Pi} \ \mathsf{при всеx} \ t \in D \end{array} \right.$$

Оценим:

 $\llbracket \forall x. \exists y. \neg x + 1 = y \rrbracket$

Оценим:

$$\llbracket \forall x. \exists y. \neg x + 1 = y \rrbracket$$

Зададим оценку:

- $ightharpoonup D := \mathbb{N};$
- $ightharpoonup F_1 := 1, \ F_{(+)} -$ сложение в \mathbb{N} ;
- ▶ $P_{(=)}$ равенство в \mathbb{N} .

Оценим:

$$\llbracket \forall x. \exists y. \neg x + 1 = y \rrbracket$$

Зададим оценку:

- $ightharpoonup D := \mathbb{N};$
- $ightharpoonup F_1 := 1, F_{(+)}$ сложение в \mathbb{N} ;
- ▶ $P_{(=)}$ равенство в \mathbb{N} .

Фиксируем $x \in \mathbb{N}$. Тогда:

$$[x + 1 = y]^{y := x} = \Pi$$

Оценим:

$$\llbracket \forall x. \exists y. \neg x + 1 = y \rrbracket$$

Зададим оценку:

- $ightharpoonup D := \mathbb{N};$
- $ightharpoonup F_1 := 1, F_{(+)}$ сложение в \mathbb{N} ;
- ▶ $P_{(=)}$ равенство в \mathbb{N} .

Фиксируем $x \in \mathbb{N}$. Тогда:

$$[x + 1 = y]^{y := x} = \Pi$$

поэтому при любом $x \in \mathbb{N}$:

$$\llbracket\exists y. \neg x + 1 = y \rrbracket = \mathsf{M}$$

Оценим:

$$\llbracket \forall x. \exists y. \neg x + 1 = y \rrbracket$$

Зададим оценку:

- $ightharpoonup D := \mathbb{N}$:
- $ightharpoonup F_1 := 1, F_{(+)}$ сложение в \mathbb{N} ;
- ▶ $P_{(=)}$ равенство в \mathbb{N} .

Фиксируем $x \in \mathbb{N}$. Тогда:

$$[x + 1 = y]^{y := x} = J$$

поэтому при любом $x \in \mathbb{N}$:

$$\llbracket\exists y. \neg x + 1 = y \rrbracket = \mathsf{V}$$

Итого:

$$\llbracket \forall x. \exists y. \neg x + 1 = y \rrbracket = \mathsf{M}$$

 $\llbracket \forall x. \exists y. \neg x + 1 = y \rrbracket$

$$[\![\forall x. \exists y. \neg x + 1 = y]\!]$$

Зададим интерпретацию:

- $ightharpoonup D := \{\Box\};$
- $ightharpoonup F_{(1)} := \Box, F_{(+)}(x,y) := \Box;$
- $P_{(=)}(x,y) := M.$

$$\llbracket \forall x. \exists y. \neg x + 1 = y \rrbracket$$

Зададим интерпретацию:

- ▶ $D := \{\Box\};$
- $ightharpoonup F_{(1)} := \Box, F_{(+)}(x,y) := \Box;$
- $P_{(=)}(x,y) := \mathsf{V}.$

Тогда:

$$[x + 1 = y]^{x := \square, y := \square} = V$$

$$[\![\forall x. \exists y. \neg x + 1 = y]\!]$$

Зададим интерпретацию:

- ▶ $D := \{\Box\};$
- $ightharpoonup F_{(1)} := \Box, F_{(+)}(x,y) := \Box;$
- $P_{(=)}(x,y) := \mathsf{V}.$

Тогда:

$$[x+1=y]^{x\in D, y\in D} = M$$

$$\llbracket \forall x. \exists y. \neg x + 1 = y \rrbracket$$

Зададим интерпретацию:

▶
$$D := \{\Box\};$$

$$ightharpoonup F_{(1)} := \Box, F_{(+)}(x,y) := \Box;$$

$$P_{(=)}(x,y) := M.$$

Тогда:

$$[x + 1 = y]^{x \in D, y \in D} = V$$

Итого:

$$\llbracket \forall x. \exists y. \neg x + 1 = y \rrbracket = \Pi$$

Общезначимость

Определение

Формула исчисления предикатов общезначима, если истинна при любой оценке:

$$\models \varsigma$$

Общезначимость

Определение

Формула исчисления предикатов общезначима, если истинна при любой оценке:

$$\models \phi$$

То есть истинна при любых D, F, P и E.

Теорема

$$\llbracket \forall x. Q(f(x)) \vee \neg Q(f(x)) \rrbracket$$

Доказательство.

Фиксируем D, F, P, E.

Теорема

$$\llbracket \forall x. Q(f(x)) \vee \neg Q(f(x)) \rrbracket$$

Доказательство.

Фиксируем D, F, P, E. Пусть $x \in D$.

Теорема

$$\llbracket \forall x. Q(f(x)) \vee \neg Q(f(x)) \rrbracket$$

Доказательство.

Фиксируем D, F, P, E. Пусть $x \in D$. Обозначим $P_Q(F_f(E_x))$ за t.

Теорема

$$\llbracket \forall x. Q(f(x)) \vee \neg Q(f(x)) \rrbracket$$

Доказательство.

Фиксируем D, F, P, E. Пусть $x \in D$. Обозначим $P_Q(F_f(E_x))$ за t. Ясно, что $t \in V$. Разберём случаи.

- ightharpoonup Если t= И, то $[\![P(f(x))]\!]^{P(f(x)):=t}=$ И, потому $[\![P(f(x)) \lor \neg P(f(x))]\!]^{P(f(x)):=t}=$ И
- ▶ Если $t = \Pi$, то $\neg P(f(x))]^{P(f(x)):=t} = \Pi$, потому всё равно $[P(f(x)) \lor \neg P(f(x))]^{P(f(x)):=t} = \Pi$

Свободные вхождения

Определение

Вхождение подформулы в формулу — это позиция первого символа этой подформулы в формуле.

Вхождения
$$x$$
 в формулу: $(\forall x.A(x) \lor \exists x.B(x)) \lor C(x)$

Определение

Рассмотрим формулу $\forall x.\psi$ (или $\exists x.\psi$). Здесь переменная x связана в ψ . Все вхождения переменной x в ψ — связанные.

Определение

Вхождение x в ψ свободное, если не находится в области действия никакого квантора по x. Переменная входит свободно в ψ , если имеет хотя бы одно свободное вхождение. $FV(\psi), FV(\Gamma)$ — множества свободных переменных в ψ , в Γ

Пример

$$\exists y.(\forall x.P(x)) \lor P(x) \lor Q(y)$$

Подстановка, свобода для подстановки

$$\psi[\mathbf{x} := \theta] := \begin{cases} \psi, & \psi \equiv \mathbf{y}, \mathbf{y} \not\equiv \mathbf{x} \\ \psi, & \psi \equiv \forall \mathbf{x}. \pi \text{ или } \psi \equiv \exists \mathbf{x}. \pi \\ \pi[\mathbf{x} := \theta] \star \rho[\mathbf{x} := \theta], & \psi \equiv \pi \star \rho \\ \theta, & \psi \equiv \mathbf{x} \\ \forall \mathbf{y}. \pi[\mathbf{x} := \theta], & \psi \equiv \forall \mathbf{y}. \pi \text{ и } \mathbf{y} \not\equiv \mathbf{x} \\ \exists \mathbf{y}. \pi[\mathbf{x} := \theta], & \psi \equiv \exists \mathbf{y}. \pi \text{ и } \mathbf{y} \not\equiv \mathbf{x} \end{cases}$$

Определение

Терм θ свободен для подстановки вместо x в ψ ($\psi[x:=\theta]$), если ни одно свободное вхождение переменных в θ не станет связанным после подстановки.

Свобода есть	Свободы нет
$(\forall x. P(y))[y := z]$	$(\forall x. P(y))[y := x]$
$(\forall y. \forall x. P(x))[x := y]$	$(\forall y. \forall x. P(t))[t := y]$

Теория доказательств

Рассмотрим язык исчисления предикатов. Возьмём все схемы аксиом классического исчисления высказываний и добавим ещё две схемы аксиом (здесь везде θ свободен для подстановки вместо x в φ):

- 11. $(\forall x.\varphi) \rightarrow \varphi[x := \theta]$
- 12. $\varphi[x := \theta] \to \exists x. \varphi$

Добавим ещё два правила вывода (здесь везде x не входит свободно в φ):

$$\dfrac{arphi o \psi}{arphi o orall x. \psi}$$
 Правило для $orall$ $\dfrac{\psi o arphi}{(\exists x. \psi) o arphi}$ Правило для \exists

Определение

Доказуемость, выводимость, полнота, корректность — аналогично исчислению высказываний.

▶ Рассмотрим формулу $(\forall x.\exists y.\neg x = y) \rightarrow ((\exists y.\neg x = y)[x := y])$

- ▶ Рассмотрим формулу $(\forall x.\exists y.\neg x = y) \rightarrow ((\exists y.\neg x = y)[x := y])$
- ▶ Соответствует 11 схеме

$$(\forall x.\varphi) \to \varphi[x := \theta]$$
 $\varphi \equiv \forall x.\exists y. \neg x = y$ $\theta \equiv y$

- lackbox Рассмотрим формулу $(\forall x. \exists y. \neg x = y) \rightarrow ((\exists y. \neg x = y)[x := y])$
- ▶ Соответствует 11 схеме

$$(\forall x.\varphi) \to \varphi[x := \theta]$$
 $\varphi \equiv \forall x.\exists y.\neg x = y$ $\theta \equiv y$

▶ Но нарушается свобода для подстановки

$$(\exists y. \neg x = y)[x := y] \equiv (\exists y. \neg y = y)$$

- ▶ Рассмотрим формулу $(\forall x. \exists y. \neg x = y) \rightarrow ((\exists y. \neg x = y)[x := y])$
- Соответствует 11 схеме

$$(\forall x.\varphi) \to \varphi[x := \theta]$$
 $\varphi \equiv \forall x.\exists y. \neg x = y$ $\theta \equiv y$

Но нарушается свобода для подстановки

$$(\exists y. \neg x = y)[x := y] \equiv (\exists y. \neg y = y)$$

lacktriangle Пусть $D=\mathbb{N}$ и (=) есть равенство на \mathbb{N} . Тогда

$$[\exists y. \neg x = y] = \mathsf{N}$$
 $[(\exists y. \neg x = y)[x := y]] = \mathsf{J}$

- ▶ Рассмотрим формулу $(\forall x.\exists y.\neg x = y) \rightarrow ((\exists y.\neg x = y)[x := y])$
- Соответствует 11 схеме

$$(\forall x.\varphi) \to \varphi[x := \theta]$$
 $\varphi \equiv \forall x.\exists y.\neg x = y$ $\theta \equiv y$

Но нарушается свобода для подстановки

$$(\exists y. \neg x = y)[x := y] \equiv (\exists y. \neg y = y)$$

lacktriangle Пусть $D=\mathbb{N}$ и (=) есть равенство на \mathbb{N} . Тогда

$$[\exists y. \neg x = y] = \mathsf{M}$$
 $[(\exists y. \neg x = y)[x := y]] = \mathsf{M}$

$$\blacktriangleright \not\models (\forall x.\exists y.\neg x = y) \rightarrow ((\exists y.\neg x = y)[x := y])$$

Теорема

Если $\Gamma \vdash \alpha \to \beta$, то $\Gamma, \alpha \vdash \beta$. Если $\Gamma, \alpha \vdash \beta$ и в доказательстве не применяются правила для кванторов по свободным переменным из α , то $\Gamma \vdash \alpha \to \beta$.

Доказательство.

Теорема

Если $\Gamma \vdash \alpha \to \beta$, то $\Gamma, \alpha \vdash \beta$. Если $\Gamma, \alpha \vdash \beta$ и в доказательстве не применяются правила для кванторов по свободным переменным из α , то $\Gamma \vdash \alpha \to \beta$.

Доказательство.

 (\Rightarrow) — как в КИВ (\Leftarrow) — та же схема, два новых случая.

Теорема

Если $\Gamma \vdash \alpha \to \beta$, то $\Gamma, \alpha \vdash \beta$. Если $\Gamma, \alpha \vdash \beta$ и в доказательстве не применяются правила для кванторов по свободным переменным из α , то $\Gamma \vdash \alpha \to \beta$.

Доказательство.

 (\Rightarrow) — как в КИВ (\Leftarrow) — та же схема, два новых случая.

Перестроим: $\delta_1, \delta_2, \dots, \delta_n \equiv \beta$ в $\alpha \to \delta_1, \alpha \to \delta_2, \dots, \alpha \to \delta_n$.

Дополним: обоснуем $lpha o \delta_{\it n}$, если предыдущие уже обоснованы.

Теорема

Если $\Gamma \vdash \alpha \to \beta$, то $\Gamma, \alpha \vdash \beta$. Если $\Gamma, \alpha \vdash \beta$ и в доказательстве не применяются правила для кванторов по свободным переменным из α , то $\Gamma \vdash \alpha \to \beta$.

Доказательство.

 (\Rightarrow) — как в КИВ (\Leftarrow) — та же схема, два новых случая.

Перестроим: $\delta_1, \delta_2, \dots, \delta_n \equiv \beta$ в $\alpha \to \delta_1, \alpha \to \delta_2, \dots, \alpha \to \delta_n$.

Дополним: обоснуем $lpha o \delta_n$, если предыдущие уже обоснованы.

Два новых похожих случая: правила для \forall и \exists . Рассмотрим \forall .

Доказываем (n) $\alpha \to \psi \to \forall x. \varphi$ (правило для \forall), значит, доказано (k) $\alpha \to \psi \to \varphi$.

Теорема

Если $\Gamma \vdash \alpha \to \beta$, то $\Gamma, \alpha \vdash \beta$. Если $\Gamma, \alpha \vdash \beta$ и в доказательстве не применяются правила для кванторов по свободным переменным из α , то $\Gamma \vdash \alpha \to \beta$.

Доказательство.

$$(\Rightarrow)$$
 — как в КИВ (\Leftarrow) — та же схема, два новых случая.

Перестроим:
$$\delta_1, \delta_2, \dots, \delta_n \equiv \beta$$
 в $\alpha \to \delta_1, \alpha \to \delta_2, \dots, \alpha \to \delta_n$.

Дополним: обоснуем
$$lpha o \delta_{m{n}}$$
, если предыдущие уже обоснованы.

Два новых похожих случая: правила для ∀ и ∃. Рассмотрим ∀.

Доказываем (n)
$$\alpha \to \psi \to \forall x. \varphi$$
 (правило для \forall), значит, доказано (k) $\alpha \to \psi \to \varphi$.

$$(n-0.9)\dots(n-0.8)$$
 $(\alpha\to\psi\to\varphi)\to(\alpha\&\psi)\to\varphi$ Т. о полноте КИВ $(n-0.6)$ $(\alpha\&\psi)\to\varphi$ М.Р. $k,n-0.8$

Теорема

Если $\Gamma \vdash \alpha \to \beta$, то $\Gamma, \alpha \vdash \beta$. Если $\Gamma, \alpha \vdash \beta$ и в доказательстве не применяются правила для кванторов по свободным переменным из α , то $\Gamma \vdash \alpha \to \beta$.

Доказательство.

$$(⇒)$$
 — как в КИВ $(⇐)$ — та же схема, два новых случая.

Перестроим:
$$\delta_1, \delta_2, \dots, \delta_n \equiv \beta$$
 в $\alpha \to \delta_1, \alpha \to \delta_2, \dots, \alpha \to \delta_n$.

Дополним: обоснуем
$$lpha o \delta_n$$
, если предыдущие уже обоснованы.

Два новых похожих случая: правила для ∀ и ∃. Рассмотрим ∀.

Доказываем (n)
$$\alpha \to \psi \to \forall x. \varphi$$
 (правило для \forall), значит, доказано (k) $\alpha \to \psi \to \varphi$.

$$(n-0.9)\dots(n-0.8)$$
 $(lpha o\psi oarphi) o(lpha\&\psi) oarphi$ Т. о полноте КИВ

$$(n-0.6)$$
 $(\alpha \& \psi) \rightarrow \varphi$ M.P. $k, n-0.8$

$$(n-0.4)$$
 $(\alpha \& \psi) \to \forall x. \varphi$ Правило для $\forall, \ n-0.6$

Теорема

Если $\Gamma \vdash \alpha \to \beta$, то $\Gamma, \alpha \vdash \beta$. Если $\Gamma, \alpha \vdash \beta$ и в доказательстве не применяются правила для кванторов по свободным переменным из α , то $\Gamma \vdash \alpha \to \beta$.

Доказательство.

Следование

Определение

 $\gamma_1, \gamma_2, \dots, \gamma_n \models \alpha$, если выполнено два условия:

- 1. α выполнено всегда, когда выполнено $\gamma_1, \gamma_2, \ldots, \gamma_n$;
- 2. α не использует кванторов по переменным, входящим свободно в $\gamma_1, \gamma_2, \dots, \gamma_n$.

Теорема

Если $\Gamma \vdash \alpha$ и в доказательстве не используются кванторы по свободным переменным из Γ , то $\Gamma \models \alpha$

Пример

Покажем, что $\Gamma \models \alpha$ ведёт себя неестественно, если в α используются кванторы по переменным, входящим свободно в Γ .

Пример

Покажем, что $\Gamma \models \alpha$ ведёт себя неестественно, если в α используются кванторы по переменным, входящим свободно в Γ . Легко показать, что $P(x) \vdash \forall x. P(x)$.

Пример

(6) $\forall x.P(x)$

Покажем, что $\Gamma \models \alpha$ ведёт себя неестественно, если в α используются кванторы по переменным, входящим свободно в Γ .

M.P. 5. 4

Легко показать, что $P(x) \vdash \forall x. P(x)$.

$$(1)$$
 $P(x)$ Гипотеза (2) $P(x) o (A o A o A) o P(x)$ Сх. акс. 1 (3) $(A o A o A) o P(x)$ М.Р. 1, 2 (4) $(A o A o A) o orall x.P(x)$ Правило для $orall$, 3 (5) $(A o A o A) o (x)$ Сх. акс. 1

Пример

Покажем, что $\Gamma \models \alpha$ ведёт себя неестественно, если в α используются кванторы по переменным, входящим свободно в Г.

Легко показать, что $P(x) \vdash \forall x. P(x)$.

(2)
$$P(x) o (A o A o A) o P(x)$$
 Cx. akc. 1

(3)
$$(A \rightarrow A \rightarrow A) \rightarrow P(x)$$
 M.P. 1, 2

$$(4) \quad (A o A o A) o orall x. P(x) \qquad \qquad$$
 Правило для $orall$, 3

$$(4) \quad (A \rightarrow A \rightarrow A) \rightarrow \forall x.F(x) \qquad \text{Правило для } \forall, x.F(x) \qquad (5) \quad (A \rightarrow A \rightarrow A) \qquad \qquad Cx. \text{ a.c. } 1$$

(6)
$$\forall x.P(x)$$
 M.P. 5, 4

Пусть
$$D=\mathbb{Z}$$
 и $P(x)=x>0$. Тогда не будет выполнено $P(x)\models \forall x.P(x)$.

Корректность

Теорема

Если heta свободен для подстановки вместо x в arphi, то $[\![arphi]\!]^{x:=[\![heta]\!]}=[\![arphi[\![x:= heta]\!]]$

Доказательство (индукция по структуре φ).

- ightharpoonup База: arphi не имеет кванторов. Очевидно.
- lacktriangle Переход: пусть справедливо для ψ . Покажем для $\varphi = \forall y.\psi.$
 - lacktriangledown x=y либо $x
 otin FV(\psi)$. Тогда: $[\![\forall y.\psi]\!]^{x:=[\![\theta]\!]}=[\![\forall y.\psi]\!]=[\![(\forall y.\psi)[\![x:=\theta]]\!]$
 - ▶ $x \neq y$. Тогда: $[\![\forall y.\psi]\!]^{x:=[\![\theta]\!]} = [\![\psi]\!]^{y\in D,x:=[\![\theta]\!]} = \dots$ Свобода для подстановки: $y \notin \theta$.

$$\cdots = \llbracket \psi \rrbracket^{\times := \llbracket \theta \rrbracket ; y \in D} = \cdots$$

Индукционное предположение.

$$\cdots = \llbracket \psi[\mathsf{x} := \theta] \rrbracket^{\mathsf{y} \in D} = \llbracket \forall \mathsf{y}. (\psi[\mathsf{x} := \theta]) \rrbracket = \cdots$$

Ho $\forall y.(\psi[x:=\theta]) \equiv (\forall y.\psi)[x:=\theta]$ (как текст). Отсюда:

$$\cdots = \llbracket (\forall y.\psi)[x := \theta] \rrbracket$$

Корректность

Теорема

Если $\Gamma \vdash \alpha$ и в доказательстве не используются кванторы по свободным переменным из $FV(\Gamma)$, то $\Gamma \models \alpha$

Доказательство.

Фиксируем D, F, P. Индукция по длине доказательства α : при любом E выполнено $\Gamma \models \alpha$ при длине доказательства n, покажем для n+1.

- ▶ Схемы аксиом (1)..(10), правило М.Р.: аналогично И.В.
- lacktriangle Схемы (11) и (12), например, схема $(\forall x. arphi)
 ightarrow arphi[x:= heta]$:

$$\llbracket (\forall x.\varphi) \to \varphi[x := \theta] \rrbracket = \llbracket ((\forall x.\varphi) \to \varphi)[x := \theta] \rrbracket = \llbracket ((\forall x.\varphi) \to \varphi \rrbracket^{x := \llbracket \theta \rrbracket} = \mathsf{M}$$

▶ Правила для кванторов: например, введение \forall : Пусть $\llbracket \psi \to \varphi \rrbracket = \mathsf{И}$. Причём $x \notin FV(\Gamma)$ и $x \notin FV(\psi)$. То есть, при любом x выполнено $\llbracket \psi \to \varphi \rrbracket^{x:=x} = \mathsf{И}$. Тогда $\llbracket \psi \to (\forall x.\varphi) \rrbracket = \mathsf{И}$.