Séance V : Résolution théorique des problèmes elliptiques

A) Objectifs de la séance

A la fin de cette séance,

- Je sais définir une dérivée partielle au sens des distributions.
- Je sais définir la trace d'une fonction de H^1 sur le bord.
- Je connais les formules d'intégration par parties étendues.
- Je sais trouver une formulation variationnelle à partir d'un problème elliptique linéaire, en prenant en compte correctement les conditions au bord.
- Je sais résoudre une formulation variationnelle.
- Je sais retourner au problème elliptique de départ et le résoudre théoriquement.

CS 1A - EDP 2019-2020

B) Pour se familiariser avec les concepts (à traiter avant les séances de TD)

Les questions V.1 and V.2 sont à traiter avant la séance de TD 5. Les corrigés sont disponibles sur internet.

Question V.1 (Problème variationnel)

Soient $f \in L^2(0,1)$ et

$$a:(u,v)\mapsto \int_{]0,1[}(u'v'+uv)-\frac{u(0)v(0)}{4}.$$

- **Q. V.1.1** Montrer que *a* est bien définie, bilinéaire, continue et coercive sur $H^1(0,1) \times H^1(0,1)$.
- **Q. V.1.2** Montrer qu'il existe un unique $u \in H^1(0,1)$ tel que $\forall v \in H^1(0,1)$, $a(u,v) = \int_{[0,1]} fv$.
- **Q. V.1.3** Montrer qu'il existe un unique $u \in H^1(0,1)$ tel que $\forall v \in H^1(0,1), a(u,v) = v(0)$.
- **Q. V.1.4** On a montré qu'il existe un unique $u \in H^1(0,1)$ tel que $\forall v \in H^1(0,1)$, $a(u,v) = \int_{]0,1[} fv$. Quelle est la régularité de u?
- **Q. V.1.5** On a montré qu'il existe un unique $u \in H^1(0,1)$ tel que $\forall v \in H^1(0,1)$, a(u,v) = v(0). Quelle est la régularité de u? A quel problème aux limites satisfait u?

Ouestion V.2 (Problème de convection-diffusion)

On résout ici théoriquement le problème de convection-diffusion stationnaire en 1D :

(CD)
$$\begin{cases} -\kappa u''(x) + bu'(x) + c(x)u(x) = f(x), & x \in]0,1[, \\ u(0) = 0 & \text{et} \quad u(1) = 0, \end{cases}$$

avec $\kappa \in \mathbb{R}^{+*}$, $b \in \mathbb{R}$, $c \in C^0([0,1], \mathbb{R}^+)$ et $f \in C^0([0,1], \mathbb{R})$.

- **Q. V.2.1** Montrer que, si b = 0, alors (CD) admet une et une seule solution classique, c'est-à-dire de classe $C^2([0,1])$.
- **Q. V.2.2** En déduire que, dans le cas général, (CD) admet une et une seule solution classique. INDICATION : Faire un changement d'inconnue $v: x \mapsto \exp(-\delta x)u(x)$, avec δ à déterminer.
- **Q. V.2.3** On suppose κ , c constantes et $f: x \mapsto \exp(bx/(2\kappa))$. Résoudre (CD).

C) Exercices

Exercice V.1 (Relèvement)

Soient a et $b \in \mathbb{R}$, $c \in C^0([0,1],\mathbb{R}^+)$ et $f \in C^0([0,1])$. On considère le problème

$$\begin{cases} -u'' + cu = f \text{ sur }]0,1[, \\ u(0) = a \text{ et } u(1) = b. \end{cases}.$$

CS 1A - EDP 2019-2020

- **E. V.1.1** Soient u_0 et u_1 définies de [0,1] dans \mathbb{R} par $u_0: x \mapsto a + (b-a)x$ et $u_1: x \mapsto a + (b-a)x^2$.
- *E.V.1.1.1* Montrer qu'il existe un unique \tilde{u} (resp. \bar{u}) dans $C^2([0,1])$ tel que $u=u_0+\tilde{u}$ (resp. $v=u_1+\bar{u}$) soit solution du problème de départ.
- E.V.1.1.2 Montrer que u=v. Conclure sur le caractère bien posé dans $C^2([0,1])$ du problème de départ.

E. V.1.2 Soient u_0 et u_1 des fonctions de $C^2([0,1])$ telles que $u_0(0) = u_1(0) = a$ et $u_0(1) = u_1(1) = b$. Même question que précédemment.

Exercice V.2

Soit le problème suivant :

$$\begin{cases} -\kappa u'' + cu = f \text{ dans }]0,1[,\\ u'(0) = \alpha \text{ et } u'(1) = 0, \end{cases}$$

où $\alpha \in \mathbb{R}$, $\kappa, c \in C^0([0,1], \mathbb{R}^{+*})$ et $f \in L^2(]0,1[)$

- E. V.2.1 De quel type est ce problème?
- **E. V.2.2** Écrire la formulation variationnelle du problème aux limites.
- E. V.2.3 Montrer que le problème variationnel a une solution unique.
- E. V.2.4 Déterminer un espace fonctionnel dans lequel le problème initial est bien posé.
- E. V.2.5 Interpréter le problème initial en terme de problème de minimisation.

Exercice V.3 (Conditions aux limites mêlées de type Dirichlet-Neumann)

On s'intéresse maintenant au problème suivant :

(P)
$$\begin{cases} -u''(x) + c(x)u(x) = f(x), & x \in]0,1[,\\ u(0) = 0 \text{ et } u'(1) = 0, \end{cases}$$

avec $f \in \mathcal{C}^0([0,1],\mathbb{R})$ et $c \in \mathcal{C}^0([0,1],\mathbb{R}^+)$. Prouver l'existence et l'unicité de la solution classique..

Exercice V.4

Soit $\Omega = [a, b] \times [c, d]$, avec $a, b, c, d \in \mathbb{R}$, a < b et c < d. On considère le problème

$$\begin{cases} -\Delta u = 1 \text{ dans } \Omega, \\ u(a,y) = 0, & \partial_x u(b,y) = 0, \ c < y < d, \\ \partial_y u(x,c) = 1, & \partial_y u(x,d) = x, \ a < x < b. \end{cases}$$

- E. V.4.1 Écrire la formulation variationnelle associée.
- **E. V.4.2** Étudier cette formulation variationnelle.

CS 1A - EDP 2019-2020

D) Approfondissement

Exercice V.5

On considère le problème

(F)
$$\begin{cases} -u'' + qu = f \text{ dans }]0,1[, \\ u(0) = 0 \text{ et } u(1) = 0, \end{cases}$$

où $f \in L^2(]0,1[)$ et q est une constante positive ou nulle.

E. V.5.1 Donner une formulation variationnelle (FV) de (F) dans un espace de Hilbert H que l'on précisera. On notera respectivement par $a(\cdot, \cdot)$ et par $\ell(\cdot)$ la forme bilinéaire et la forme linéaire associées à ce problème variationnel.

E. V.5.2 Vérifier que pour tout $q \ge 0$, (F) admet une unique solution u dans un espace de Sobolev que l'on précisera.

Soit $m \ge 1$. On introduit l'espace vectoriel de dimension finie H_m engendré par les fonctions

$$\phi_k: x \mapsto \sin(k\pi x), \ k = 1, \cdots, m.$$

E. V.5.3 Montrer que $H_m \subset H$, $\forall m \in \mathbb{N}^*$. Donner la dimension de H_m .

On décide d'approcher la solution de (FV) par $u_m = \sum_{k=1}^m \mathbf{u}_k \phi_k$ solution de

(FV'_m) Trouver
$$u_m \in H_m$$
 tel que $\forall v_m \in H_m$, $a(u_m, v_m) = \ell(v_m)$.

E. V.5.4 Ecrire le système linéaire associé. Que peut-on dire de la matrice de ce système ?

E. V.5.5 En déduire l'expression des coefficients \mathbf{u}_k , $k = 1, \dots, m$, et donc de u_m .

E. V.5.6 Justifier l'existence d'une base hilbertienne de $L^2(]0,1[)$, notée $(w_k)_{k\geq 1}$, telle que, $\forall k\geq 1$,

$$w_k \in H_0^1(]0,1[)$$
 et $\forall v \in H_0^1(]0,1[), \int_0^1 w_k' v' dx = \lambda_k \int_0^1 w_k v dx.$

E. V.5.7 Etablir un lien entre les $(w_k)_{k\geq 1}$ et les $(\phi_k)_{k\geq 1}$.

E. V.5.8 Montrer que $\forall m \in \mathbb{N}^*$, $\|u - u_m\|_{L^2(]0,1[)}^2 \le \frac{1}{(\pi^2(m+1)^2 + q)^2} \sum_{k=m+1}^{+\infty} \left(\int_0^1 f(x) \sin(k\pi x) dx \right)^2$, puis que $\|u - u_m\|_{L^2(0,1)}^2 \to 0$ quand $m \to +\infty$.

Chapitre V : Corrections des exercices

Solution de Q. V.1.1 Notons que $a:(u,v)\mapsto (u,v)_{H^1(0,1)}-u(0)v(0)/4$. La forme a est

- définie :
 - 1. (cours) si u et v sont dans $H^1(0,1)$, u,v,u',v' sont dans $L^2(0,1)$ et uv et u'v' sont dans $L^1(0,1)$,
 - 2. d'après le théorème du cours, $H^1(0,1) \subset C^0([0,1])$, donc si $u,v \in H^1(0,1)$, u(0) et v(0) sont bien définies (on a refait la démonstration dans la question précédente).

Donc a est bien définie.

- bilinéaire : évident .
- continue : On a $\forall (u, v) \in H^1(0, 1)^2$,

$$|a(u,v)| \leq |(u,v)_{H^1(0,1)}| + \frac{1}{4}|u(0)v(0)| \leq ||u||_{H^1}||v||_{H^1} + \frac{1}{2}||u||_{H^1}||v||_{H^1} \leq \frac{3}{2}||u||_{H^1}||v||_{H^1},$$

grâce à l'inégalité de Cauchy-Schwarz et à l'estimation montrée à la question précédente. D'où la continuité.

• coercive : pour tout $u \in H^1(0,1)$,

$$a(u,u) = \|u\|_{H^1}^2 - \frac{1}{4}u(0)^2 \ge \left(1 - \frac{2}{4}\right) \|u\|_{H^1}^2 = \frac{1}{2}\|u\|_{H^1}^2$$

grâce à l'estimation montrée à la question précédente.

Solution de Q. V.1.2 L'application $v \mapsto \int_{]0,1[} fv$ est une forme linéaire continue sur $H^1(0,1)$ (il suffit d'appliquer l'inégalité de Cauchy-Schwarz).

L'espace $H^1(0,1)$ muni de son produit scalaire naturel étant un espace de Hilbert, la forme bilinéaire a étant définie, continue et coercive sur $H^1(0,1)$ et la forme linéaire $v\mapsto \int_{]0,1[}fv$ étant continue sur $H^1(0,1)$, on peut appliquer le théorème de Lax-Milgram : il existe un unique $u\in H^1(0,1)$ tel que

$$\forall v \in H^1(0,1), \quad a(u,v) = \int_{]0,1[} fv.$$

Solution de Q. V.1.3 D'après l'exercice **??**, l'application linéaire $v \mapsto v(0)$ est une forme linéaire continue sur $H^1(0,1)$. On peut donc encore appliquer le théorème de Lax-Milgram.

Solution de Q. V.1.4 Soit $\phi \in \mathcal{D}(]0,1[)$. Alors

$$a(u,\phi) = \int_{]0,1[} u'\phi' + u\phi = \int_{]0,1[} f\phi$$

donc, comme $T_{u'}$ est une distribution régulière, u' étant dans $L^2(0,1)$, on a $\int_{[0,1]} u' \varphi' = -\langle u'', \varphi \rangle$ et

$$\langle -u'' + u - f, \phi \rangle = 0.$$

Donc $u'' = u - f \in L^2(0,1)$ et $u \in H^2(0,1)$.

Solution de Q. V.1.5 Soit $\phi \in \mathcal{D}(]0,1[)$. Alors

$$a(u,\phi) = \int_{]0,1[} (u'\phi' + u\phi) = \phi(0) = 0.$$

donc, comme $T_{u'}$ est une distribution régulière, u' étant dans $L^2(0,1)$, on a $\int_{[0,1]} u' \phi' = -\langle u'', \phi \rangle$ et

$$\langle -u'' + u, \phi \rangle = 0.$$

Donc $u'' = u \in H^1(0,1)$ et $u \in H^3(0,1)$.

Solution de Q. V.2.1 On reproduit les étapes vues en cours pour le problème : À $g,c \in C^0([0,1])$ donnée, montrer qu'il existe une unique solution $v \in C^2([0,1])$ telle que

$$\begin{cases} -v'' + cv = g \text{ sur }]0,1[,\\ v(0) = 0 \text{ et } v(1) = 0. \end{cases}$$
 (V.1)

E1: Formulation faible

Supposons que la solution v est de classe $C^2([0,1])$. Soit $\phi \in \mathcal{D}(]0,1[)$. Alors, après multiplication, intégration sur]0,1[et intégration par parties,

$$\int_{]0,1[} (v'\phi' + cv\phi) = \int_{]0,1[} g\phi.$$

E2: Formulation variationnelle

On cherche une solution v nulle au bord. On choisit donc comme espace fonctionnel $H_0^1(0,1)$, qui, muni de la norme $\|\cdot\|_{H_0^1}: x \mapsto \|u'\|_{L^2}$, est un espace de Hilbert. Le problème variationnel est donc : Trouver $v \in H_0^1(0,1)$ tel que

$$\forall w \in H_0^1(0,1), \quad a(v,w) = \ell(w)$$

with

$$\begin{cases} a: (v,w) \in (H_0^1)^2 \mapsto \int_{]0,1[} (v'w' + cvw), \\ \ell: w \in H_0^1 \mapsto \int_{]0,1[} gw. \end{cases}$$

E3 : Continuité de a et de ℓ

Soit $(v, w) \in (H_0^1(0, 1))^2$. Alors, grâce à l'inégalité de Cauchy-Schwarz, on a

$$|a(v,w)| \leq ||v'||_{L^{2}} ||w'||_{L^{2}} + ||c||_{\infty} ||v||_{L^{2}} ||w||_{L^{2}}$$

$$\leq ||v||_{H_{0}^{1}} ||w||_{H_{0}^{1}} + ||c||_{\infty} C_{\Omega}^{2} ||v'||_{L^{2}} ||w'||_{L^{2}}$$

$$\leq (1 + ||c||_{\infty} C_{\Omega}^{2}) ||v||_{H_{0}^{1}} ||w||_{H_{0}^{1}}$$

où C_{Ω} est la constante apparaissant dans l'inégalité de Poincaré. La forme bilinéaire a est donc bien continue sur $(H_0^1(0,1))^2$.

On a également, grâce aux inégalités de Cauchy-Schwarz et de Poincaré,

$$|\ell(w)| \le ||g||_{L^2} ||w||_{L^2} \le C_{\Omega} ||g||_{L^2} ||w||_{H_0^1}.$$

La forme linéaire ℓ est donc bien continue sur $H_0^1(0,1)$.

E4: Coercivité

Soit $v \in H_0^1(0,1)$. Alors

$$a(v,v) = \int_{]0,1[} ((v')^2 + cv^2) \ge ||v||_{H_0^1}^2 + \min_{[0,1]} c||v||_{L^2}^2.$$

Or *c* est positive. Donc

$$a(v,v) \ge ||v||_{H_0^1}^2$$

et la forme a est coercive sur $(H_0^1(0,1))^2$.

Remarque 1

- (a) L'hypothèse selon laquelle la fonction *c* a un signe constant (positif) est **essentielle**!
- (b) On voit ici la nécessité pour assurer la coercivité de a de munir $H_0^1(0,1)$ de la norme $\|\cdot\|_{H_0^1}$. Si c avait été supposée strictement positive, on aurait pu se contenter de la norme H^1 .

E5: Existence et unicité de la solution de la formulation variationnelle

On applique le théorème de Lax-Milgram : il existe un unique $v \in H^1_0(0,1)$ tel que

$$\forall w \in H_0^1(0,1), \quad a(v,w) = \ell(w).$$

De plus $\ell(v) = a(v,v) \ge ||v||^2_{H^1_0(0,1)}$, d'où

$$||v||_{H_0^1} \le C_{\Omega} ||g||_{L^2}.$$

E6: Solution de l'EDP au sens des distributions

On sait que $\mathcal{D}(]0,1[) \subset H_0^1(0,1)$ ($\mathcal{D}(]0,1[)$ est même dense dans $H_0^1(0,1)$ pour la norme H^1). On a donc

$$\forall \phi \in \mathcal{D}(]0,1[), \quad \int_{]0,1[} v'\phi' = \left\langle v',\phi' \right\rangle = \int_{]0,1[} (-cv+g)\phi = \left\langle -cv+g,\phi \right\rangle.$$

On en conclut que

$$\forall \phi \in \mathcal{D}(]0,1[), \quad -\langle v'', \phi \rangle = \langle -cv + g, \phi \rangle,$$

c'est-à-dire que, au sens des distributions, v'' = g - cv. De plus, grâce à l'inégalité de Minkowsky, on a l'estimation

$$||v''||_{L^2} \le ||g||_{L^2} + ||c||_{\infty} ||v||_{L^2} \le (1 + ||c||_{\infty} C_{\Omega}) ||g||_{L^2}.$$

E7: Régularité de la solution

Du fait du théorème de Rellich en dimension 1 (les fonctions $H^1(0,1)$ sont continues dans [0,1]), la fonction $v \in C^0([0,1])$, et g-cv également, ainsi que v'': la fonction v est donc de classe $C^2([0,1])$.

En ce qui concerne l'unicité, remarquons que, si g=0, alors toute solution $v\in C^2([0,1])$ du problème (V.1) satisfait à $\|v'\|_{L^2}^2+\|\sqrt{c}\,v\|_{L^2}^2=0$ donc v est une fonction constante. De plus, v s'annule au bord, donc v est nulle. Concerning uniqueness, we note that, if g=0, then any solution $v\in C^2([0,1])$ of the probleme(V.1) satisfies $\|v'\|_{L^2}^2+\|\sqrt{c}\,v\|_{L^2}^2=0$ so v is a constant function. Moreover, v vanishes at the boundary, so v vanishes.

Solution de Q. V.2.2 Soit $\delta \in \mathbb{R}$. Alors si $u = e_{\delta}v$ avec $e_{\delta} : x \mapsto \exp(\delta x)$, on a (au sens des distributions)

$$\begin{cases} u' = e_{\delta}(\delta v + v') \\ u'' = e_{\delta}(\delta^2 v + 2\delta v' + v'') \end{cases}$$

en appliquant la formule de Leibniz montrée au chapitre IV. D'où, si u est solution de (CD), v est solution de

$$\begin{cases} -\kappa v'' + (b - 2\kappa \delta)v' + (c - \kappa \delta^2 + b\delta)v = fe_{-\delta} \\ v(0) = 0 \text{ et } v(1) = 0. \end{cases}$$

En posant $\delta = b/(2\kappa)$, on fait disparaître la dérivée d'ordre 1 et on a donc v solution de

$$\begin{cases} -\kappa v'' + \left(c + \frac{b^2}{4\kappa}\right)v = fe_{-\delta} \\ v(0) = 1 \text{ et } v(1) = 0. \end{cases}$$

On est exactement dans le cas de la question précédente car $c+\frac{b^2}{4\kappa}$ est une fonction continue positive.

Solution de Q. V.2.3 En posant $\omega = \sqrt{(4c\kappa + b^2)}/(2\kappa)$, on se ramène à

$$\begin{cases} v'' - \omega^2 v = -1/\kappa \\ v(0) = 0 \text{ et } v(1) = 0. \end{cases}$$

Les solutions de cette équation différentielle d'ordre 2 sont les combinaisons linéaires de sinh et cosh ajoutées à la solution particulière $x \mapsto 1/(\kappa \omega^2)$: il existe α , β réels tels que

$$v: x \mapsto \alpha \sinh(\omega x) + \beta \cosh(\omega x) + 1/(\kappa \omega^2).$$

Or v(0) = 0 et v(1) = 0 implique

$$\begin{cases} \beta + 1/(\kappa\omega^2) = 0\\ \alpha \sinh(\omega) + \beta \cosh(\omega) + 1/(\kappa\omega^2) = 0 \end{cases}$$

dont l'unique solution est $\alpha = -(1-\cosh(\omega))/(\kappa\omega^2\sinh(\omega))$ et $\beta = -1/(\kappa\omega^2)$. Par conséquent, comme

$$v: x \mapsto -\frac{1}{\kappa \omega^2} \left(\frac{1 - \cosh(\omega)}{\sinh(\omega)} \sinh(\omega x) + \cosh(\omega x) - 1 \right).$$

la solution de (CD) est

$$u: x \mapsto -\exp(bx/(2\kappa))\frac{1}{\kappa\omega^2}\left(\frac{1-\cosh(\omega)}{\sinh(\omega)}\sinh(\omega x)+\cosh(\omega x)-1\right).$$

Solution de Q. V.1.1 On voit que $u = u_0 + \tilde{u}$ est solution du problème de départ si et seulement si \tilde{u} est solution de

$$\begin{cases} -(u_0 + \tilde{u})'' + c(u_0 + \tilde{u}) = f \text{ sur }]0, 1[, \\ (u_0 + \tilde{u})(0) = a \text{ et } (u_0 + \tilde{u})(1) = b, \end{cases}$$

ce qui est équivalent à

$$\begin{cases} -\tilde{u}'' + c\tilde{u} = f - cu_0 \text{ sur }]0,1[,\\ \tilde{u}(0) = 0 \text{ et } \tilde{u}(1) = 0. \end{cases}$$

De même, on aura *u* solution du problème de départ si et seulement si

$$\begin{cases} -\bar{u}'' + c\bar{u} = f + 2(b - a) - cu_1 \text{ sur }]0,1[,\\ \bar{u}(0) = 0 \text{ et } \bar{u}(1) = 0. \end{cases}$$

Il reste à montrer que ces deux problèmes **de Dirichlet homogène** admettent une unique solution de classe $C^2([0,1])$. On reproduit les étapes vues en cours pour le problème : À $g \in C^0([0,1])$ donnée, montrer qu'il existe une unique solution $v \in C^2([0,1])$ telle que

$$\begin{cases} -v'' + cv = g \text{ sur }]0,1[,\\ v(0) = 0 \text{ et } v(1) = 0. \end{cases}$$
 (V.2)

E1 Formulation faible

Supposons que la solution v est de classe $C^2([0,1])$. Soit $\phi \in \mathcal{D}(]0,1[)$. Alors, après multiplication, intégration sur]0,1[et intégration par parties,

$$\int_{]0,1[} (v'\phi' + cv\phi) = \int_{]0,1[} g\phi.$$

E2 Formulation variationnelle

On cherche une solution v nulle au bord. On choisit donc comme espace fonctionnel $H_0^1(0,1)$, qui, muni de la norme $\|\cdot\|_{H_0^1}: x \mapsto \|u'\|_{L^2}$, est un espace de Hilbert. Le problème variationnel est donc : Trouver $v \in H_0^1(0,1)$ tel que

$$\forall w \in H_0^1(0,1), \quad a(v,w) = \ell(w)$$

avec

$$\begin{cases} a: (v,w) \in (H_0^1)^2 \mapsto \int_{]0,1[} (v'w' + cvw), \\ \ell: w \in H_0^1 \mapsto \int_{]0,1[} gw. \end{cases}$$

E3 Continuité de a et de ℓ

Soit $(v, w) \in (H_0^1(0, 1))^2$. Alors, grâce à l'inégalité de Cauchy-Schwarz, on a

$$|a(u,v)| \leq ||v'||_{L^{2}} ||w'||_{L^{2}} + ||c||_{\infty} ||v||_{L^{2}} ||w||_{L^{2}}$$

$$\leq ||v||_{H_{0}^{1}} ||w||_{H_{0}^{1}} + ||c||_{\infty} C_{\Omega}^{2} ||v'||_{L^{2}} ||w'||_{L^{2}}$$

$$\leq (1 + ||c||_{\infty} C_{\Omega}^{2}) ||v||_{H_{0}^{1}} ||w||_{H_{0}^{1}}$$

où C_{Ω} est la constante apparaissant dans l'inégalité de Poincaré. La forme bilinéaire a est donc bien continue sur $(H_0^1(0,1))^2$.

On a également, grâce aux inégalités de Cauchy-Schwarz et de Poincaré,

$$|\ell(w)| \le \|g\|_{L^2} \|w\|_{L^2} \le C_{\Omega} \|g\|_{L^2} \|w\|_{H_0^1}.$$

La forme linéaire ℓ est donc bien continue sur $H_0^1(0,1)$.

E4 Coercivité

Soit $v \in H_0^1(0,1)$. Alors

$$a(v,v) = \int_{]0,1[} ((v')^2 + cv^2) \ge ||v||_{H_0^1}^2 + \min_{[0,1]} c||v||_{L^2}^2.$$

Or *c* est positive. Donc

$$a(v,v) \ge ||v||_{H_0^1}^2$$

et la forme a est coercive sur $(H_0^1(0,1))^2$.

Remarque 2 (a) L'hypothèse selon laquelle la fonction *c* a un signe constant (positif) est **essentielle**!

(b) On voit ici la nécessité pour assurer la coercivité de a de munir $H_0^1(0,1)$ de la norme $\|\cdot\|_{H_0^1}$. Si c avait été supposée strictement positive, on aurait pu se contenter de la norme H^1 .

E5 Existence et unicité de la solution de la formulation variationnelle

On applique le théorème de Lax-Milgram : il existe un unique $v \in H^1_0(0,1)$ tel que

$$\forall w \in H_0^1(0,1), \quad a(v,w) = \ell(w).$$

De plus, $\ell(v)=a(v,v)\geq \|v\|_{H^1_0(0,1)'}^2$ d'où

$$||v||_{H_0^1} \leq C_{\Omega} ||g||_{L^2}.$$

E6 Solution de l'EDP au sens des distributions

On sait que $\mathcal{D}(]0,1[)\subset H^1_0(0,1)$ ($\mathcal{D}(]0,1[)$ est même dense dans $H^1_0(0,1)$ pour la norme H^1). On a donc

$$\forall \phi \in \mathcal{D}(]0,1[), \quad \int_{]0,1[} v'\phi' = \langle v',\phi' \rangle = \int_{]0,1[} (-cv+g)\phi = \langle -cv+g,\phi \rangle.$$

On en conclut que

$$\forall \phi \in \mathcal{D}(]0,1[), \quad -\langle v'', \phi \rangle = \langle -cv + g, \phi \rangle,$$

c'est-à-dire que, au sens des distributions, v''=g-cv. De plus, grâce à l'inégalité de Minkowsky, on a l'estimation

$$||v''||_{L^2} \le ||g||_{L^2} + ||c||_{\infty} ||v||_{L^2} \le (1 + ||c||_{\infty} C_{\Omega}) ||g||_{L^2}.$$

E7 Régularité de la solution

Du fait du théorème de Rellich en dimension 1 (les fonctions $H^1(0,1)$ sont continues dans $C^0([0,1])$), la fonction $v \in C^0([0,1])$, et g-cv également, ainsi que v'': la fonction v est donc de classe $C^2([0,1])$.

En ce qui concerne l'unicité, remarquons que, si g=0, alors toute solution $v\in C^2([0,1])$ du problème (V.2) satisfait à $\|v'\|_{L^2}^2 + \|\sqrt{c}\,v\|_{L^2}^2 = 0$ donc v est une fonction constante. De plus, v s'annule au bord, donc v est nulle.

En appliquant le résultat précédent à $g = f - cu_0$ et à $g = f + 2(b - a) - cu_1$, on montre l'existence et l'unicité des fonctions \tilde{u} et \bar{u} . Notons que $(u_0 + \tilde{u}) - (u_1 - \bar{u})$ est solution du problème de Dirichlet homogène avec terme source nul : par unicité de la solution, $(u_0 + \tilde{u}) = (u_1 - \bar{u})$.

Solution de Q. V.1.2 et même raisonnement! L'important est de constater que l'on peut rendre les conditions aux limites de Dirichlet homogènes avec n'importe quelle fonction prenant les valeurs prescrites au bord.

Remarque 3

Une autre méthode consiste à appliquer le théorème de Stampacchia sur le convexe fermé $K = \{v \in H^1(0,1), \ v(0) = a \text{ et } v(1) = b\}$ et la forme bilinéaire a comme définie ci-dessus.

Solution de Q. V.2.1 Ce problème est un problème de Neumann avec condition aux limites non homogènes (EDP elliptique + conditions de flux au bord).

Solution de Q. V.2.2 On commence par remarquer que c/κ et f/κ vérifient les mêmes conditions que c et f. On suppose donc désormais que κ est la fonction constante égale à 1.

On cherche la formulation faible :

Supposons que la solution u est de classe $C^2([0,1])$. Soit $\phi \in C^1([0,1])$ (ici, on insiste sur le fait que, les conditions aux limites sur u n'étant pas fixées, on doit permettre les valeurs aux bords quelconques). Alors, après multiplication, intégration sur [0,1[, on a par intégration par parties

$$-(u'(1)\phi(1)-u'(0)\phi(0))+\int_0^1(u'\phi'+cu\phi)=\int_0^1f\phi.$$

Or on a supposé que $u'(0) = \alpha$ et u'(1) = 0. La formulation faible est donc

$$\int_{0}^{1} (u'\phi' + cu\phi) = \int_{0}^{1} f\phi - \alpha\phi(0).$$

On va donc définir sur $H = H^1(0,1)$, muni de son produit scalaire naturel, comme espace de Hilbert, les formes suivantes :

$$\begin{cases} a: (u,v) \mapsto \int_{]0,1[} (u'v' + cuv) \\ \ell: v \mapsto \int_{]0,1[} fv - \alpha v(0). \end{cases}$$

Le fait que a soit définie sur $H^1(0,1)$ a déjà été démontré. La forme ℓ est définie sur $H^1(0,1)$ car $H^1(0,1) \subset C^0([0,1])$ et $v \mapsto v(0)$ est donc bien définie.

Solution de Q. V.2.3 Il nous faut maintenant montrer la continuité de a et de ℓ ainsi que la coercivité de a pour pouvoir appliquer le théorème de Lax-Milgram.

• Continuité :

Soit $(u, v) \in (H^1(0, 1))^2$. Alors

$$|a(u,v)| \le (1 + ||c||_{\infty}) ||u||_{H^1} ||v||_{H^1}.$$

et a est donc bien continue.

Par ailleurs, on a montré dans le TD2, exercice 4, que l'injection de $H^1(0,1)$ dans $C^0([0,1])$ est continue :

$$\forall x \in [0,1], \, \forall w \in H^1(0,1), \quad |w(x)| \le \sqrt{2} ||w||_{H^1}.$$

Donc

$$|\ell(v)| \le (\|f\|_{L^2} + \sqrt{2}|\alpha|)\|v\|_{H^1}$$

et ℓ est continue.

• Coercivité: Soit $u \in H^1(0,1)$.

$$a(u,u) = \int_{[0,1]} ((u')^2 + cu^2) \ge \|u'\|_{L^2}^2 + \left(\min_{[0,1]} c\right) \|u\|_{L^2}^2 \ge \min(1, \min_{[0,1]} c) \|u\|_{H^1}^2.$$

Or l'hypothèse $c \in C^0([0,1], \mathbb{R}^{+*})$ implique que $\min_{[0,1]} c > 0$. Donc a est bien coercive. .

On peut donc appliquer le théorème de Lax-Milgram au problème variationnel : il existe un unique $u \in H^1(0,1)$ tel que

$$\forall v \in H^1(0,1), \quad \int_{]0,1[} (u'v' + cuv) = \int_{]0,1[} fv.$$

On en déduit, grâce aux inégalités utilisées pour montrer la coercivité de a et la continuité de ℓ , que

$$||u||_{H^1} \le \frac{||f||_{L^2} + \sqrt{2}|\alpha|}{\min(1, \min c)}$$

avec $\alpha = 1$ ici.

Solution de Q. V.2.4 Étudions maintenant la solution au sens des distributions. Soit $\phi \in \mathcal{D}(]0,1[)$ (attention, comme on veut savoir si u est solution de l'EDP de départ au sens de distributions, la

fonction-test est bien dans $\mathcal{D}(]0,1[)$ et s'annule donc en 0 et en 1!). Alors, comme $\mathcal{D}(]0,1[) \subset H^1(0,1)$, on a

$$\int_{]0,1[} (u'\phi' + cu\phi) = \int_{]0,1[} f\phi - \alpha\phi(0) = \int_{]0,1[} f\phi$$

et on en conclut que

$$\langle -u'' + cu, \phi \rangle = \langle f, \phi \rangle$$

c'est-à-dire que u''=cu-f au sens des distributions. Par conséquent, comme $u\in H^1(0,1)$ et $f\in L^2(0,1), u\in H^2(0,1)$. On a donc -u''=cu=f dans $L^2(0,1)$.

On réinjecte cette dernière égalité dans la formulation variationnelle et on utilise la formule de Green dans les espaces de Sobolev (voir cours) : which menas u'' = cu - f in the sens of distributions. Since $u \in H^1(0,1)$ and $f \in L^2(0,1)$, $u \in H^2(0,1)$ we have $u'' = cu = f \in L^2(0,1)$.

$$\forall v \in H^{1}(0,1), \quad 0 = \int_{]0,1[} (u'v' + cuv - fv) + \alpha v(0)$$

$$= [u'(1)v(1) - u'(0)v(0)] + \int_{]0,1[} (-u'' + cu - f)v + \alpha v(0)$$

$$= u'(1)v(1) - (u'(0) - \alpha)v(0),$$

u' étant continue sur [0,1], donc définie ponctuellement sur [0,1], car $u \in H^2(0,1)$. On en conclut que, cette formule étant vraie pour tout $v \in H^1(0,1)$, u'(1) = 0 et $u'(0) = \alpha$ (on peut par exemple prendre $v : x \mapsto x$ et $x \mapsto 1 - x$ pour s'en convaincre).

On a donc montré que la solution $u \in H^2(0,1)$ obtenue est solution du problème de départ. De plus, on a, grâce à l'inégalité de Minkowsky et à l'estimation H^1 obtenue sur u,

$$\|u''\|_{L^{2}} \leq \|c\|_{\infty} \|u\|_{L^{2}} + \|f\|_{L^{2}} \leq \|c\|_{\infty} \|u\|_{H^{1}} + \|f\|_{L^{2}} \leq \frac{\|c\|_{\infty}}{\min(1,\min_{[0,1]}c)} \left(\|f\|_{L^{2}} + \sqrt{2}|\alpha|\right) + \|f\|_{L^{2}}.$$

Ainsi, la solution u est continue par rapport aux données (f et α). Notons également que, si la donnée (α , f) est nulle, la solution est donc nulle. On conclut donc quant à l'unicité de la solution dans H^2 . On a donc montré que le problème est bien posé dans $H^2(0,1)$ et les conditions aux limites sont bien vérifiées.

Solution de Q. V.2.5 On peut appliquer la deuxième partie du théorème de Lax-Milgram car la forme bilinéaire *a* est clairement symétrique : la solution du problème variationnel est caractérisé par

Solution de Q. V.3 On suit les mêmes étapes que précédemment pour obtenir la formulation variationnelle. **Attention :** fixer la condition au bord en x=0 impose de travailler dans l'espace $H=H^1(0,1)\cap\{v\in C^0([0,1]):v(0)=0\}.$

On montre maintenant (c'est le seul point délicat de cet exercice) que $(\cdot,\cdot)_H:(u,v)\mapsto \int_{]0,1[}u'v'$ définit un produit scalaire sur H et que H muni de la norme $\|\cdot\|_H:v\mapsto \sqrt{(v,v)_H}$ est un espace de Hilbert car H est un sous-espace **fermé** de $H^1(0,1)$.

¹Things went well! u'' was a function to begin with.

• Produit scalaire:

la forme $(\cdot,\cdot)_H$ est définie, bilinéaire, symétrique sur H. De plus, $(v,v)_H=0$ implique v'=0 dans $L^2(\Omega)$ et donc v est constante (voir TD2). Or v(0)=0 Donc v est nulle. On en conclut que $\|\cdot\|_H$ est une norme sur H.

- Équivalence des normes $\|\cdot\|_H$ et $\|\cdot\|_{H^1}$ sur H:
 On a clairement $\|\cdot\|_H \leq \|\cdot\|_{H^1}$. Pour l'autre inégalité, on remarque que l'inégalité de Poincaré est encore vraie sur H (reprendre la démonstration).
- Le sous-espace H est fermé dans $H^1(\Omega)$: si on pose $\Psi: v \in H^1(0,1) \mapsto v(0)$, on a $H = \Psi^{-1}(\{0\})$. Or Ψ est une forme linéaire continue sur $H^1(0,1)$ (voir l'exercice 4 du TD2 et l'exercice V.2.3 du TD3). Donc H est un sous-espace fermé comme image réciproque d'un fermé par une forme linéaire continue.

On procède ensuite comme dans les exercices précédents. La formulation variationnelle est

$$\forall v \in H, \quad \int_{]0,1[} (u'v' + cuv) = \int_{]0,1[} fv.$$

Solution de Q. V.4.1 Il s'agit d'un problème elliptique avec conditions aux limites mixtes Dirichlet (homogène) et Neumann (non homogène) posé dans un rectangle (en dimension d=2) dont le bord **orienté** $\partial\Omega=\partial\Omega_D\sqcup\Omega_N$ est décrit par

$$\Omega_{N} = \underbrace{\{(x,c), \quad a < x < b\}}_{=:S_{1}} \sqcup \underbrace{\{(b,y), \quad c < y < d\}}_{=:S_{2}} \sqcup \underbrace{\{(x,d), \quad a < x < b\}}_{=:S_{3}},$$

$$\Omega_{D} = \{(a,y), \quad c < y < d\} =: S_{4}$$

La dérivée normale est définie pour tout $(x,y) \in \partial\Omega \setminus \{(a,c),(b,c),(b,d),(a,d)\}$ et vaut $(x,y) \in \partial\Omega \setminus \{(a,c),(b,c),(b,d),(a,d)\}$ et vaut

$$n = \begin{cases} (0,-1) \operatorname{sur} S_1 \setminus \{(a,c),(b,c)\} \\ (1,0) \operatorname{sur} S_2 \setminus \{(b,c),(b,d)\} \\ (0,1) \operatorname{sur} S_3 \setminus \{(b,d),(a,d)\} \\ (-1,0) \operatorname{sur} S_4 \setminus \{(a,d),(a,c)\}. \end{cases}$$

Pour trouver la formulation variationnelle, on procède de la même façon qu'en dimension d=1 en commençant par trouver la formulation faible.

On suppose $u \in C^2(\overline{\Omega})$. Soit $\phi \in C^1(\overline{\Omega})$ telle que $\forall y \in [c,d]$, $\phi(a,y) = 0$ ($\phi|_{\partial\Omega_D} = 0$). On multiplie l'équation par ϕ et on intègre sur Ω . La formule de Green énoncée en cours permet d'écrire

$$-\int_{\Omega} (\Delta u) \phi = -\int_{\partial \Omega} \phi \nabla u \cdot n + \int_{\Omega} \nabla u \cdot \nabla \phi,$$

avec

$$\int_{\partial\Omega} \phi \nabla u \cdot n = \sum_{i=1}^{4} \int_{S_i} \phi \nabla u \cdot n$$

$$= -\int_a^b \phi(x,c) \partial_y u(x,c) dx + \int_c^d \phi(b,y) \partial_x u(b,y) dy$$

$$+ \int_b^a \phi(x,d) \partial_y u(x,d) dx - \int_d^c \phi(a,y) \partial_x u(a,y) dy$$

d'où, en utilisant les conditions sur le bord et la condition sur ϕ ,

$$\int_{\partial\Omega} \phi \nabla u \cdot n = -\int_a^b \phi(x,c) dx + \int_b^a \phi(x,d) x dx.$$

La formulation faible est donc

$$\int_{\Omega} \nabla u \cdot \nabla \phi + \int_{a}^{b} \phi(x,c) dx - \int_{b}^{a} x \phi(x,d) dx = \int_{\Omega} \phi.$$

La forme bilinéaire à considérer est donc

$$a:(u,v)\mapsto \int_{\Omega}\nabla u\cdot\nabla v$$

et la forme linéaire

$$\ell: v \mapsto \int_{\Omega} v - \int_{S_1} \gamma(v) + \int_{S_3} x \gamma(v),$$

où $\gamma: H^1(\Omega) \to L^2(\partial\Omega)$ est l'application trace. On admettra que, pour un rectangle, cette application est encore continue. On va travailler sur l'espace $H = \{v \in H^1(\Omega): \gamma(v)|_{S_4} = 0 \text{ au sens } L^2\}.$

Solution de Q. V.4.2 Pour pouvoir utiliser le théorème de Lax-Milgram, on doit vérifier trois points .

- (i) *H* est un espace de Hilbert :
 - Comme l'application trace est continue (théorème du cours), H est fermé comme image réciproque d'un fermé : c'est donc un espace de Hilbert pour la norme $\|\cdot\|_{H^1}$. Il est à noter que l'inégalité de Poincaré est vraie sur H d'après le théorème du cours, car les traces des fonctions dans H sont nulles sur un des bords. On peut donc munir l'espace H du produit scalaire $(\cdot,\cdot)_H:(u,v)\mapsto (\nabla u,\nabla v)_{L^2}$ dont la norme associée est équivalente sur H à la norme H^1 : on note C la constante strictement positive telle que $\forall v\in H,\|v\|_{H^1}\leq C\|v\|_H$.
- (ii) a et ℓ sont continues :

Soient $(u, v) \in H$. Alors, en utilisant l'inégalité de Cauchy-Schwarz,

$$|a(u,v)| \le \|\nabla u\|_2 \|\nabla v\|_2 \le \|\nabla u\|_H \|\nabla v\|_H$$

et, toujours grâce à l'inégalité de Cauchy-Schwarz, et à la continuité de γ (de constante C_{γ}),

$$|\ell(v)| \le \sqrt{(b-a)(d-c)} ||v||_{L^2} + C_\gamma ||v||_H \le (C\sqrt{(b-a)(d-c)} + C_\gamma) ||v||_H$$

(iii) a est coercive : Soit $u \in H$. Alors

$$a(u, u) = \|\nabla u\|_{L^2}^2 = \|u\|_H^2.$$

On peut donc appliquer le théorème de Lax-Milgram : il existe un unique $u \in H$ tel que

$$\forall v \in H, \quad \int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} v - \int_{S_1} \gamma(v) + \int_{S_3} x \gamma(v).$$

Soit $\phi \in \mathcal{D}(\Omega) \subset H$. Alors

$$\int_{\Omega} \nabla u \cdot \nabla \phi = \int_{\Omega} \phi$$

 $car \phi$ est à support compact sur les bords, donc les termes intégraux sur les bords sont nuls. Donc,

$$\int_{\Omega} \nabla u \cdot \nabla \phi = \langle \nabla u, \nabla \phi \rangle = -\langle \Delta u, \phi \rangle = \langle 1, \phi \rangle$$

càd

$$-\Delta u = 1$$
 dans $\mathcal{D}'(\Omega)$.

On ne peut pas en conclure que u est dans $H^2(\Omega)$, contrairement à la dimension d=1! Si u était dans $H^2(\Omega)$, on pourrait appliquer les formules de Green vues en cours et en conclure que les conditions aux limites Neumann sont vérifiées, la condition au limite de Dirichlet étant bien vérifiée, puisque $u \in H$.

Solution de Q. V.5.1 L'espace à choisir est $H = H_0^1(0,1)$ et les formes bilinéaire et linéaire sont

$$\begin{cases} a: (u,v) \mapsto \int_{]0,1[} (u'v' + quv) \\ \ell: v \mapsto \int_{]0,1[} fv. \end{cases}$$

Solution de Q. V.5.2 On applique le théorème de Lax-Milgram.

Solution de Q. V.5.3 Les fonctions $(\phi_k)_{k\geq 1}$ sont de classe $C^{\infty}(\mathbb{R})$ et s'annulent en 0 et en 1. Elles sont donc dans $H_0^1(0,1)$. Pour montrer que $(\phi_k)_{k\in\{1,\dots,m\}}$ forme une base de H_m , il suffit de montrer que les

fonctions sont 2 à 2 orthogonales pour le produit scalaire usuel sur $L^2(0,1)$:

$$\forall (k,l) \in \{1,\ldots,m\}, \quad (\phi_k,\phi_l)_{L^2} = \int_0^1 \sin(k\pi x) \sin(l\pi x) dx$$

$$= \frac{1}{2} \int_0^1 (\cos((k-l)\pi x) - \cos((k+l)\pi x)) dx$$

$$= \frac{1}{2} \left(\int_0^1 \cos((k-l)\pi x) dx - \frac{1}{\pi(k+l)} \underbrace{\left[\sin((k+l)\pi x) \right]_0^1}_{=0} \right)$$

$$= \begin{cases} \frac{1}{2} \frac{1}{\pi(k-l)} \underbrace{\left[\sin((k-l)\pi x) \right]_0^1}_{=0} & \text{si } k \neq l \end{cases}$$

$$= \begin{cases} \frac{1}{2} \frac{1}{\pi(k-l)} \underbrace{\left[\sin((k-l)\pi x) \right]_0^1}_{=0} & \text{si } k \neq l \end{cases}$$

On a ainsi $(\phi_k, \phi_l)_{L^2} = 2^{-1}\delta_{kl}$. C'est donc une famille génératrice et libre de H_m : H_m est de dimension m.

Solution de Q. V.5.4 La solution u_m satisfait le système linéaire

$$\forall i \in \{1,\ldots,m\}, \qquad a\left(\sum_{j=1}^J \mathbf{u}_j \phi_j, \phi_i\right) = \sum_{j=1}^J \mathbf{u}_j a\left(\phi_j, \phi_i\right) = \ell(\phi_i).$$

La matrice cherchée est donc

$$\forall (i,j) \in \{1,\ldots,m\}^2, \qquad [A_m]_{ij} = \int_0^1 \phi_i' \phi_j' + q \int_0^1 \phi_i \phi_j$$
$$= -\int_0^1 \phi_i'' \phi_j + \frac{q}{2} \delta_{ij} = \frac{(i\pi)^2 + q}{2} \delta_{ij}.$$

La matrice A_m est donc diagonale!

Solution de Q. V.5.5 On en conclut que

$$\forall k \in \{1, \dots, m\}, \qquad \mathbf{u}_k = \frac{\ell(\phi_k)}{[A_m]_{kk}}$$

$$= 2\frac{\int_0^1 f \phi_k}{(k\pi)^2 + q}.$$

Solution de Q. V.5.6 Remarquons que, si $(w_k)_{k\geq 1}$ existe, alors $-w_k'' = \lambda_k w$ au sens des distributions, $w_k(0) = w_k(1) = 0$ et, ainsi, $w_k \in H^2(0,1) \cap H^1_0(0,1)$. Or, si $\lambda_k \leq 0$, le problème aux limites $-w_k'' = \lambda_k w$, w(0) = w(1) n'admet que la solution nulle. Nécessairement, $\lambda_k > 0$. De plus, les solutions sont des combinaisons linéaires de $\sin(\sqrt{\lambda_k}\cdot)$ et $\cos(\sqrt{\lambda_k}\cdot)$: il existe $(\alpha,\beta) \in \mathbb{R}^2$ tel que

 $w = \alpha \sin(\sqrt{\lambda_k}\cdot) + \beta \cos(\sqrt{\lambda_k}\cdot)$. Les conditions aux limites imposent alors que $\beta = 0$ et que, si on cherche une solution non nulle, $\sin(\sqrt{\lambda_k}) = 0$ soit encore $\sqrt{\lambda_k} \in \pi \mathbb{N}$. La famille des $w_k = \sqrt{2}\phi_k, k \geq 1$ est donc potentiellement une base hilbertienne. Il ne reste à montrer que le fait qu'elle est totale. Il suffit pour cela d'invoquer le théorème de Weierstrass (voir polycopié d'analyse).

Solution de Q. V.5.7 On a montré à la question précédente que l'on peut prendre $w_k = \pm \sqrt{2}\phi_k$ pour tout $k \ge 1$. Dans la suite, on choisit $w_k = \sqrt{2}\phi_k$.

Solution de Q. V.5.8 Soit $m \ge 1$. On utilise le fait que

$$u = \frac{1}{\sqrt{2}} \sum_{k \ge 1} \mathbf{u}_k w_k.$$

Comme $(w_k)_{k\geq 1}$ est une base hilbertienne, on a en effet

$$||u - u_m||_{L^2(0,1)}^2 = \frac{1}{2} \sum_{k > m+1} \mathbf{u}_k^2 \le \frac{2}{(((m+1)\pi)^2 + q)^2} \left(\sum_{k > m+1} \int_0^1 f \sin(k\pi \cdot) \right)^2.$$

Or, d'après le théorème de Parseval, si f a été prolongée par imparité à [-1,1] puis périodisée de période 2, son développement en série de Fourier n'est constitué que de termes en sin et le théorème de Parseval s'écrit

$$||f||_{L^2}^2 = \frac{1}{2} \sum_{k>1} (f, \sin(k\pi \cdot))^2.$$

On en déduit que

$$||u - u_m||_{L^2(0,1)}^2 \le \frac{1}{(((m+1)\pi)^2 + q)^2} ||f||_{L^2(0,1)^2}^2.$$

On a donc bien $||u - u_m||_{L^2}^2 \xrightarrow[m \to +\infty]{} 0$.