Introduction to HA Kubernetes

& related DevOps stuff

Takeaways

- How to promote the concepts technology is an enabler but it's not the hardest part
- Trigger curiosity and encourage you to experiment with the technology
- The technology stack can't be thrusted, so what do we do?

About me

Technology stack 1

	OSI (Open Source Interconnection) 7 Layer Mod	el		
Layer	Application/Example	Central Device/ Protocols		DOD4 Model
Application (7) Serves as the window for users and application processes to assess the setwork services.	End User layer Program that opens what was sent or creates what is to be sent Resource sharing - Remote file access - Remote printer access - Directory services - Network management	Applications SMTP JPEG/ASCII EBDIC/TIFF/GIF PICT Logical Ports RPC/SQLINES T		
Presentation (6) Formals the data to be presented to the Application layer. If can be viewed as the "Translator" for the release.	Syntax layer encrypt & decrypt (if needed) Character code translation - Data conversion - Data compression - Data conversion - Character Set Translation			Process
Session (5) When reside arbitrary tohurs process ruring at Albert States.	Synch & send to ports (logical ports) Session establishment, maintenance and termination - Session support - perform security, name recognition, logging, etc.			
Transport (4) Essues featuressages are defined considered and with an leases or depictions.	TCP Host to Host, Flow Control Message segmentation - Message acknowledgement - Message traffic control - Session multiplicing	TCP/SPX/UDP	W	Heat to Host
Network (3) Control the operations of the sub-ret decing which physical part the decolors.	Packets ("letter", contains IP address) Routing - Subnet traffic control - Frame fragmentation - Logical-physical address mapping - Subnet congressioning	Routers IP/IPX/ICMP	Y Can be used	Internal
Data Link (2) Provides error-free transfer of data frames from one needs to profiler over the Physical layer.	Frames ("envelopes", contains MAC address) [NIC card — Switch — NIC card) (and to end) Establishes 4 Imminists the logical link between ecks - Trains both santor - Frame separating - Frame separations - Frame department - Frame definiting - Frame error checking - Niedla access control	Switch Bridge WAP PPP/SLIP Essed		
Physical (1) forcerne with the transference and reception of the unstandard rawbit stream	Physical structure Cables, hubs, etc. Data Encoding - Physical medium attachment - Transmission lechnique - Boostand or Becoftand	Hub Lives		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Physical medium transmission Dita & Volta

Technology stack 2

- Challenges
 - Communication
 - Unknown state Technology stack state
 - Both hardware and software are unreliable
- Solutions
 - Change the organisational culture (the hardest part)
 - Automation/Infrastructure as code
 - Immutable infrastructure

Maslow for Microservices

The Maslow Hierarchy of Needs

The Microservices Hierarchy of Needs

https://thenewstack.io/introducing-microservices-hierarchy-needs/

CNCF technology landscape

Why care as Developers

- Our software are no better than the underlying technology stack
- Flow/Productivity/Innovation

DevOps

- DevOps is not a role
- It's more a cultural movement about change and communication
- Westrum typology of organisations
- In addition to bing experts on technology some knowledge about culture and organisation is also required

Using the Westrum typology to measure culture

Pathological organisations are characterised by large amounts of fear and threat. People often hoard information or withhold it for political reasons, or distort it to make themselves look better.

Bureaucratic organisations protect departments. Those in the department want to maintain their "turf," insist on their own rules, and generally do things by the book — their book.

Generative organisations focus on the mission. How do we accomplish our goal? Everything is subordinated to good performance, to doing what we are supposed to do.

The Study of Information Flow: A Personal Journey; Westrum

The different organisational cultures have varied attributes along six axes:

Pathological	Bureaucratic	Generative
Low co-operation	Modest co-operation	High co-operation
Messengers shot	Messengers neglected	Messengers trained
Responsibilities shirked	Narrow responsibilities	Risks are shared
Bridging discouraged	Bridging tolerated	Bridging encouraged
Failure leads to scapegoating	Failure leads to justice	Failure leads to inquiry
Novelty crushed	Novelty leads to problems	Novelty implemented

McKinsey 7-S Framework

"Hard" elements are easier to define or identify and management can directly influence them: These are strategy statements; organisation charts and reporting lines; and formal processes and IT systems.

"Soft" elements, on the other hand, can be more difficult to describe, and are less tangible and more influenced by culture. However, these soft elements are as important as the hard elements if the organisation is going to be successful.

Provisioning tools

- Idempotency
- Tools
 - Ansible
 - Chef
 - Puppet

Introduction to Vagrant

Vagrant is a tool for building and managing virtual machine environments in a single workflow. With an easy-to-use workflow and focus on automation, Vagrant lowers development environment setup time, increases production parity, and makes the "works on my machine" excuse a relic of the past.

If you are already familiar with the basics of Vagrant, the documentation provides a better reference build for all available features and internals.

Vagrant network topology

Why Kubernetes

- Seems like a nice abstraction for developers and a great platform for ops
- Infrastructure as code
- Embrase immutability
- Kubernetes isn't the silver bullet. You still need to manage the entire cluster lifecycle. There is some nice handles for doing that.

A history of Kubernetes

- Founded by Joe Beda, Brendan Burns and Craig McLuckie in 2014.
- It's development and design are heavily influenced by Google's Borg system.
- It schedules and launches approximately 7,000 containers a second on any given day.
- Kubernetes v1.0 was released on July 21, 2015.

Components of Kubernetes

Controllers in Kubernetes

Stateful sets

Canary deployments

Daemon Sets

etcd

PKI

HA Kubernetes

K8s provisioning

Minikube

Kubeadm (Lucas Käldström)

Kubespray (On prem) vs Kops (Cloud)

Kubernetes The Hard Way

The Three Pillars of Kubernetes Container Orchestration

<u>application deployment and</u> <u>namespaces</u>

```
kubectl create namespace mytest
```

kubectl -n mytest apply -f deployment.yaml

kubectl -n describe deployment nginxdeployment

Working with Kubernetes

Command	Description
kubectl cluster-info	Get cluster status
kubectl get componentstatus	Get status of the cluster components
kubectl get serviceaccounts/default -o yamlnamespace= <namespace></namespace>	Get token for default serviceaccount in namespace
kubectl get pod [all-namespaces]	Get information about all running pods
kubectl describe pod <pod></pod>	Describe one pod
kubectl expose pod <pod>port=4444name=frontend</pod>	Expose the port of a pod (creates a new service)
kubectl port-forward <pod> 8080</pod>	Port forward the exposed pod port to your local machine
kubectl attach <podname> -i</podname>	Attach the pod
kubectl exec <pod> - command</pod>	Executes a command on the pod
kubectl labels pods <pod> mylabel=awesome</pod>	Add a new label to a pod
kubectl run -itty busyboximage=busyboxrestart=Never - sh	Run a shell in a pod - very useful for debugging
kubectl get deployments	Get information on current deployments
kubectl get rs	Get information about the replica sets
kubectl get podsshow-labels	Get pods, and also show labels attached to those pods
<pre>kubectl create -f <deployment file="" yml=""> [record <change-cause>]</change-cause></deployment></pre>	Create a deployment, it's underlying replica sets and optionally a
kubectl rollout status deployment/ <deployment name=""></deployment>	Get deployment status
<pre>kubectl set image deployment/<deployment name=""> <ann name="">=<docker image="" nath="" repository="">:<docker repository="" tag=""></docker></docker></ann></deployment></pre>	Run <app name=""> with the image label version <docker repository<="" td=""></docker></app>
kubectl edit deployment/ <deployment name=""></deployment>	Edit the deployment object
kubectl rollout status deployment/ <deployment name=""></deployment>	Get status of the latest rollout
kubectl rollout history deployment/ <deployment name=""></deployment>	Get the rollout history
kubectl rollout undo deployment/ <deployment name=""></deployment>	Rollback to previous version
kubectl rollout undo deployment/ <deployment name="">to-revision=n</deployment>	Rollback to any version

Gitlab

- Demo Gitlab running in Docker
- Demo hostfile mangling or DNS server running in docker
- Demo exec into the docker container

Gitlab create registry cert

```
root@k8s-03:/etc/gitlab# tail -f /var/log/
gitlab/nginx/current
2017-10-11 11:07:12.09962 nginx: [emerg]
BIO new file ("/etc/gitlab/ssl/
gitlab.example.com.crt") failed (SSL: error:
02001002:system library:fopen:No such file or
directory: fopen ('/etc/gitlab/ssl/
gitlab.example.com.crt','r') error:
2006D080:BIO routines:BIO new file:no such
file)
```

Generate self-signed cert

```
root@k8s-03:/etc/gitlab/ssl#

openssl req -x509 -nodes -days 3650 -newkey
rsa:2048 -subj "/C=DK/ST=NA/L=Copenhagen/
O=Example Corp./OU=IT Department/
CN=gitlab.example.com" -keyout ./
gitlab.example.com.key -out ./
gitlab.example.com.crt
```

Let docker trust self signed cert

```
root@k8s-03:~# cp /srv/gitlab/config/ssl/gitlab.example.com.crt /usr/local/share/
ca-certificates/
update-ca-certificates
mkdir -p /etc/docker/certs.d/gitlab.example.com.crt:5005/
cp /srv/gitlab/config/ssl/gitlab.example.com.crt /etc/docker/certs.d/
gitlab.example.com.crt:5005/ca.crt
root@k8s-03:/etc/docker/certs.d/gitlab.example.com.crt:5005# systemctl daemon-
reload
root@k8s-03:/etc/docker/certs.d/gitlab.example.com.crt:5005# sudo systemctl restart
docker.service
```

Win-win transactions

Resources

DORITH principle:
Do the Right Thing.
Lars Kruse

THE REAL CEDIES

ERIC HES, SERIES EDITIOR

Jez Humble, Joanne Molesky & Barry O'Reilly

LEAN ENTERPRISE

How High Performance Organizations Innovate at Scale

O'REILLY

Organisational

Hands-On

https://github.com/htesgaard/