1 Szereg Funkcyjny

Dla ciągu funkcji rzeczywistych f_n , gdzie $D \subset \mathbb{R}$ i $f_n : D \to \mathbb{R}$; to:

$$S = \sum_{n=1}^{\infty} f_n(x) = \lim_{N \to \infty} \sum_{n=1}^{N} f_n(x)$$

jest szeregiem funkcyjnym, na podstawie ciągu funkcyjnego $f_n(x)$.

1.1 Zbieżność

Dla ciągu funkcyjnego f_n określonym na zbiorze A, mówimy, że jest punktowo zbieżny do funkcji f określonej w A gdy $\lim_{n\to\infty} f_n(x) = f(x)$.

Ciąg funkcyjny może na podzbiorze $E \subseteq D$ może być:

- \bullet zbieżny punktowo, czyli zbieżny dla każdego $x \in E$
- zbieżny punktowo bezwględnie, to znaczy zbieżny punktowo dla $|f_n(x)|$
- zbieżny jednostajnie, to znaczy $a_n = \sup_{x \in E} f_n(x)$ jest zbieżny

$$\forall_{\epsilon>0}\exists_{n_0}\forall_{n\geq n_0}\forall_{x\in E}|f(x)-f_n(x)|<\epsilon$$

Geometrycznie: w pasie o brzegach $y = f(x) \pm \epsilon$ leżą wszystkie krzywe $y = f_n(x)$.

• zbieżny jednostajnie bezwględnie, to znaczy $a_n = \sup_{x \in E} |f_n(x)|$ jest zbieżny

Przykładem ciągu funkcyjnego, który jest zbieżny to $f_n(x) = \frac{\sin(nx)}{n}$. Z kolei, na przykład; ciąg $f_n = x^n$ w przedziale $0 \le x < 1$ nie jest zbieżny jednostajnie dp (dowolnej) funkcji f, bo w pobliżu punktu x - 1 krzywe $y - x^n$ nie leżą dowolnie blisko prostej y - 0.

1.2 Kryterium zbieżności jednostajnej

Granicą ciągu funkcyjnego jest jakaś funkcja. Ciąg f_n jest ciągiem funkcji określonych na niepustym zbiorze A i o wartościach rzeczywistych lub zespolonych. Ciąg f_n jest jednostajnie zbieżny w A do f wtedy i tylko wtedy gdy $\sup_{x \in A} |f_n(x) - f(x)| \to 0 : n \to \infty$.

1.3 Kryterium Cauchy'ego

Ciąg funkcji f_n jest jednostajnie zbieżny w zbiorze A wtedy i tylko wtedy gdy dla każdego $\epsilon > 0$ istnieje wskaźnik $N(\epsilon)$, taki że dla $x \in A$

$$|f_n(x) - f_m(x)| \le \epsilon : n, m \ge N(\epsilon)$$

1.4 Zbieżność niemal jednostajna

Szereg funkcyjny na zbiorze E jest zbieżny niemal jednostajnie, jeśli dla dowolnego właściwego przedziału domkniętego $I = \langle a, b \rangle$, $I \subset E$ jest zbieżny jednostajnie na I.

1.5 Twierdzenie Arzeli-Ascoli'ego

Jeżeli f_n jest ciągiem funkcji rzeczywistych określonych na przedziale zwartym, który jest wspólnie ograniczony i jednakowo ciągły, to zawiera on podciąg zbieżny jednostajnie.

1.6 Ciągłość granicy

Jeżeli ciąg $f_n(x)$ jest jednostajnie zbieżny w A i funkcje $f_n(x)$ są funkcjami ciągłymi w punkcie $x_0 \in A$, to funkcja graniczna $f(x) = \lim_{n \to \infty} f_n(x)$ jest ciągła w punkcie x_0 .

1.7 Kryteria zbieżności jednostajnej szeregów

1.7.1 Kryterium porównawcze Weierstrassa

Jeśli szereg liczbowy utworzony z ciągu a_n o wyrazach nieujemnych jest zbieżny oraz dla każ
ðego $x \in E$ zachodzi nierówność $|f_n(x)| < a_n$, to szereg funkcyjny
 $\sum_{n=1}^{\infty} f_n$ jest bezwględnie jednostajnie zbieżny na E.

1.7.2 Kryterium Dirichleta

Jeśli ciąg sum częściowych S_n utworzony z ciągu funkcyjnego f_n jest wspólnie ograniczony ($S_n(x) < M : x \in E, n \in \mathbb{N}$), oraz jeśli ciąg funkcyjny zbiega do zera monotonicznie i jednostajnie to szereg $\sum_{n=1}^{\infty} f_n g_n$

1.7.3 Kryterium Abela

Niech $a_n(x)$ oraz $b_n(x)$ będą ciągami funkcyjnymi określonymi w zbiorze A. Jeśli ciąg a_n jest monotoniczny dla każdego x, oraz jest ciągiem wspólnie ograniczonym oraz szereg $\sum_{n=1}^{\infty} b_n(x)$ jest jednostajnie zbieżny w A. Wtedy $\sum_{n=1}^{\infty} a_n b_n$ jest jednoznacznie zbieżny w A.