Eigen Things

If $A \in \mathbb{R}^{n \times n}$, and there is a $\vec{v} \neq 0 \in \mathbb{R}^n$, and

$$A ec{v} = \lambda ec{v}$$

Then \vec{v} is an **eigenvectors** for A, and λ is the **eigenvalue**.

Eigenspaces

The span of the eigenvector of A is the eigenspace of A. It spans a subspace of \mathbb{R}^n called the λ -eigenspace of A.

The λ -eigenspace of A is $Nul(A - \lambda I)$

$$Aec{v} = \lambda ec{v} \ Aec{v} - \lambda ec{v} = 0 \ (A - \lambda I)ec{v} = 0$$

Theorems

- The diagonal elements of a triangular matrix are its eigenvalues.
- A not invertible
 ⇔ 0 is an eigenvalue of A.
- Stochastic matrices have an eigenvalue equal to 1.
- Eigenvectors with distinct eigenvalues are linearly independent vectors.

Compute Eigenvalues

We know that $(A - \lambda I)$ is non invertible, so $\det(A - \lambda I) = 0$.

 $\det(A-\lambda I)$ is the characteristic polynomial

 $\det(A-\lambda I)=0$ is the characteristic equation

We can solve $\det(A - \lambda I) = 0$ for λ .

The **trace** of a matrix is the sum of its diagonal elements.

The sum of the Eigenvalues of A = the trace.