| 66.08 - 86.06 |        | Evaluación int | egradora 2/21 | <br>a fecha – 9/2/22 |
|---------------|--------|----------------|---------------|----------------------|
| APELLIDO      | NOMBRE | PADRON         | N° de hojas   | orrección            |
|               |        |                |               |                      |



#### 1.-

 $\beta = 200 \; ; \; V_A = 100V$ 

Obtener el valor de Rid (justificar el procedimiento).



#### 2.-

k´=100  $\mu$ A/V²; W/L=2;  $\lambda$ =0,01 V¹¹; C<sub>gs</sub>=5pF; C<sub>gd</sub>=1pF Admitiendo los MOSFETs en la zona de funcionamiento de control de potencia (características saturadas), justificar cuál será el nodo potencialmente dominante para altas frecuencias y obtener el valor de f<sub>h</sub> en base a este análisis.



#### 3.-

AD es un amplificador diferencial MOSFET con transistores apareados (y cargas apareadas), de  $Av_{dd}$  =  $v_{od}/v_{id}$  = -100. Obtener el valor de  $V_{od}$  justificando el procedimiento, para  $R=2K\Omega$  y  $R1=1,9K\Omega$ .



## 4.-

Definir y obtener el valor de Voffset, justificando el procedimiento, para un desapareamiento entre  $I_{S1}$  e  $I_{S2}$  del 3%.

### 5.-

Dibujar una etapa amplificadora TBJ formada por un par diferencial NPN  $(T_1-T_2)$  con carga activa espejo simple  $(T_3-T_4)$  y polarizado mediante una fuente de corriente cascode con rama de referencia:  $R_{ref}=12K\Omega$ ,  $T_5$  y  $T_6$ ; y rama de salida:  $T_7$  y  $T_8$ . Se alimenta todo entre  $\pm$  6V. Los transistores son idénticos y de características:  $\beta=100$ ;  $V_A=100$  V. Definir y hallar el rango de tensión de entrada de modo común.

| Comenzado el    | Wednesday, 11 de August de 2021, 09:35 |
|-----------------|----------------------------------------|
| Estado          | Finalizado                             |
| Finalizado en   | Wednesday, 11 de August de 2021, 09:35 |
| Tiempo empleado | 38 segundos                            |

Pregunta

1
Sin contestar
Puntúa como

1,00

Beta = 200 Obtener Rid2 (en kOhm).



Respuesta:

Pregunta **2** 

Sin contestar Puntúa como 1,00 (|Vcc| = 5V ; RL = 100K)

Obtener  $|Io\ \text{m\'ax}|\ \text{sin}\ \text{recorte}$  (en uA) para una Vid senoidal.



Sin contestar Puntúa como 1,00 El agregado de Rf = 100 K ayuda a estabilizar el punto Q ante dispersiones en el valor de K de los MOSFET del AD.



#### Seleccione una:

- Verdadero
- Falso

## Pregunta **4**

Sin contestar

Puntúa como 1,00  $R_B >> R_{D4} \ y \ Rs << r_{pi2}$  La Ro es aproximadamente:



#### Seleccione una:

- a. (R<sub>B</sub>+Rs) // R<sub>D4</sub>
- b. mucho mayor que R<sub>D4</sub>
- c. mucho menor que R<sub>D4</sub>
- d.

 $R_{D4}$ 

e. R<sub>L</sub>//(R<sub>B</sub>+Rs)//R<sub>D4</sub>

Sin contestar Puntúa como 1,00

## $\label{eq:Beta} \mbox{Beta} = 300 \; ; \; \mbox{VA infinito} \\ \mbox{Hallar la relación $Io/Iref.}$



Respuesta:

# Pregunta **6**

Sin contestar Puntúa como 1,00 Admitiendo parámetros típicos en los transistores, el amplificador "B" tiene mayor ancho de banda.





#### Seleccione una:

- Verdadero
- Falso

Sin contestar Puntúa como 1,00

 $V_A = 100V$ 

Obtener Avc = Vo/Vic (despreciar el efecto de las IB en la copia del espejo de corriente).



Respuesta:

## Pregunta **8**

Sin contestar Puntúa como 1,00  $|V_T| = 1V$  ; k´= 100uA/V² ; W/L = 1. El Rango de Tensión de Modo Común es:



#### Seleccione una:

- a. -4,2V < Vic < 9V</p>
- b.-8V < Vic < 11V</li>
- o. -5,2V < Vic < 7V
- d. -4V < Vic < 6V</p>
- e. -7V < Vic < 8V

Sin contestar
Puntúa como
1,00

 $V_T = -2V \; ; \; |k\>'| = 100 uA/V^2 \; ; \; W/L = 10 \; ; \; Beta = 100 \; \\ (despreciar las correcciones por efecto Early y modulación del largo del canal) \; ; \\ fT = 200 MHz \; ; \; Cu = 3pF \; ; \; Cgs = 6pF \; ; \; Cgd = 2pF \; \\ Obtener la frecuencia (en MHz) asociada a la constante de tiempo del nodo A.$ 



Respuesta:

# Pregunta **10**

Sin contestar
Puntúa como
1,00

Rc = 5K Obtener Avdd = Vod/Vid.



Respuesta:

■ Avisos

lr a...

Evaluación Integradora - 2da Fecha 1c21 (oculto) ▶

| Comenzado el    | Saturday, 14 de August de 2021, 13:17 |
|-----------------|---------------------------------------|
| Estado          | Finalizado                            |
| Finalizado en   | Tuesday, 17 de August de 2021, 23:04  |
| Tiempo empleado | 3 días 9 horas                        |

Pregunta 1 Sin contestar Puntúa como 1,00

 $|V_P|=2V\;;\;|I_{DSS}|=4mA\;;\;lambda=0,02V^{-1}:V_A=80V\;;\;Beta=80\;$  Obtener el límite inferior del Rango de tensión de modo común (en V).



Sin contestar Puntúa como 1,00  $|\,k\,\rangle\,|=0.5\text{mA/V}^2$  ;  $|V_T|=1.5V$  ; lambda = 0.02  $V^{-1}$  ; Cgd = 0.5pF ; Cgs = 5pF Obtener la frecuencia asociada al terminal "A" (en kHz).



Respuesta:

## Pregunta **3**

Sin contestar
Puntúa como
1,00

TBJ idénticos: Beta =100 ;  $V_A$  infinito Obtener el valor de  $Av_{dc1} = v_{od1}/v_{ic}$ .





Sin contestar Puntúa como 1,00 Beta = 100,  $V_A = 100V$ Obtener Rid (en MOhm).



Respuesta:

## Pregunta **5**

Sin contestar Puntúa como 1,00 MOSFET de canal inducido:  $V_{T}=\pm~1V$  ;  $k'=100mA/V^2$  ;  $lambda=0,01V^{-1}$  ;  $(W/L)_{1,2,3,4}=1$ 

Obtener Voff (en mV), si ( $V_T$ ) de T1 y T2 difieren en un 1%.



Sin contestar Puntúa como 1,00

 $V_A = 100V$ ; Beta = 100 Obtener Avd = vo/vid



| Respuesta: |  |
|------------|--|
|------------|--|

# Pregunta **7**

Sin contestar Puntúa como 1,00 Para el siguiente circuito de señal (admitiendo OPAMP ideal), y para una  $v_i$  senoidal de frecuencia dada, la  $Z_i$  indicada es:



#### Seleccione una:

- a. Una impedancia inductiva
- b. Una resistencia negativa
- c. Igual a R
- O d.0
- e. infinito
- f. Una impedancia capacitiva

Sin contestar Puntúa como 1,00 MOSFET de canal inducido:  $|k'|=50uA/V^2$ ; W/L = 1;  $|V_T|=1V$  Calcular VG máximo (en V) para mantener el funcionamiento en zona activa de los transistores en reposo.



Respuesta:

## Pregunta **9**

Sin contestar Puntúa como 1,00 Beta = 100; VA = 100V

El valor de Ri es aproximadamente:



#### Seleccione una:

- a. 11k
- o b. 12k
- o. 0,1k
- d. 30k
- e.1k



La indicada en rojo es la entrada no inversora.



#### Seleccione una:

- Verdadero
- Falso

 ◀ Evaluación Integradora - 1era Fecha
 Ir a...
 Evaluación Integradora - 3era Fecha 1c21 (oculto) ▶

|                 | <u>Sofía Pistone</u>                     |
|-----------------|------------------------------------------|
| Comenzado el    | Wednesday, 1 de September de 2021, 13:15 |
| Estado          | Finalizado                               |
| Finalizado en   | Wednesday, 1 de September de 2021, 14:19 |
| Tiempo empleado | 1 hora 4 minutos                         |

Calificación 1,00 de 10,00 (10%)



RRMC1 = 80dB, RRMC2 = 120dB

Para el siguiente circuito de señal, la RRMC total (en dB) es aproximadamente:



#### Seleccione una:

- a.40
- o b. 200
- c. 80
- d. 120 X
- e.100

#### Respuesta incorrecta.

| Historial de respuestas |                 |                    |                    |        |  |
|-------------------------|-----------------|--------------------|--------------------|--------|--|
| Paso                    | Hora            | Acción             | Estado             | Puntos |  |
| 1                       | 1/09/2021 13:15 | Iniciado/a         | Sin responder aún  |        |  |
| <u>2</u>                | 1/09/2021 13:20 | Guardada: 120      | Respuesta guardada |        |  |
| 3                       | 1/09/2021 14:19 | Intento finalizado | Incorrecta         | 0,00   |  |

## Pregunta 2 Incorrecta Puntúa 0,00 sobre 1,00

Datos: R= 2 kOhm ; R1 = 2 kOhm ; Avdd= -500; Avdc= -0,01; AD differencial MOSFET con una |Voffset| = 2mV (no ajustado). Determinar |Vod| (en V).



Respuesta: 0,005

| Historial de respuestas |                 |                    |                    |        |  |
|-------------------------|-----------------|--------------------|--------------------|--------|--|
| Paso                    | Hora            | Acción             | Estado             | Puntos |  |
| 1                       | 1/09/2021 13:15 | Iniciado/a         | Sin responder aún  |        |  |
| 2                       | 1/09/2021 13:58 | Guardada: 0,005    | Respuesta guardada |        |  |
| 3                       | 1/09/2021 14:19 | Intento finalizado | Incorrecta         | 0,00   |  |

Correcta

Puntúa 1,00 sobre 1,00

La pendiente en el origen "m" de la característica de gran señal I1 = f (Vid), es:



#### Seleccione una:

- a. 40 mA/V
- b. 1,6 mA/V
- c. 5 mA/V ✔
- d. 20 mA/V
- e. 80 mA/V
- f. 10 mA/V

#### Respuesta correcta

La respuesta correcta es: 5 mA/V

| Historial de respuestas |                 |                    |                    |        |  |
|-------------------------|-----------------|--------------------|--------------------|--------|--|
| Paso                    | Hora            | Acción             | Estado             | Puntos |  |
| 1                       | 1/09/2021 13:15 | Iniciado/a         | Sin responder aún  |        |  |
| 2                       | 1/09/2021 13:38 | Guardada: 10 mA/V  | Respuesta guardada |        |  |
| <u>3</u>                | 1/09/2021 13:56 | Guardada: 5 mA/V   | Respuesta guardada |        |  |
| 4                       | 1/09/2021 14:19 | Intento finalizado | Correcta           | 1,00   |  |



### (Beta=100) Obtener Gmd = io/vid (en mA/V).



| Historial de respuestas |                 |                    |                    |        |  |
|-------------------------|-----------------|--------------------|--------------------|--------|--|
| Paso                    | Hora            | Acción             | Estado             | Puntos |  |
| 1                       | 1/09/2021 13:15 | Iniciado/a         | Sin responder aún  |        |  |
| 2                       | 1/09/2021 13:45 | Guardada: 1,96     | Respuesta guardada |        |  |
| 3                       | 1/09/2021 14:19 | Intento finalizado | Incorrecta         | 0,00   |  |

# Pregunta 5 Incorrecta Puntúa 0,00

sobre 1,00

MOSFET de canal inducido:  $|k'|=50uA/V^2$ ; W/L = 1;  $|V_T|=1V$  Calcular VG mínimo (en V) para mantener funcionamiento en zona activa de los transistores.



| Historial de respuestas |                 |                    |                    |        |  |
|-------------------------|-----------------|--------------------|--------------------|--------|--|
| Paso                    | Hora            | Acción             | Estado             | Puntos |  |
| 1                       | 1/09/2021 13:15 | Iniciado/a         | Sin responder aún  |        |  |
| 2                       | 1/09/2021 13:53 | Guardada: 11       | Respuesta guardada |        |  |
| 3                       | 1/09/2021 14:19 | Intento finalizado | Incorrecta         | 0,00   |  |



MOSFET de canal inducido:  $V_T=\pm 1,5V$  ;  $k'=100uA/V^2$  ; lambda =  $0,01V^{-1}$  ;  $(W/L)_{1,2,3,4}=10$ 



| Historial de respuestas |                 |                    |                    |        |  |  |
|-------------------------|-----------------|--------------------|--------------------|--------|--|--|
| Paso                    | Hora            | Acción             | Estado             | Puntos |  |  |
| 1                       | 1/09/2021 13:15 | Iniciado/a         | Sin responder aún  |        |  |  |
| 2                       | 1/09/2021 14:10 | Guardada: 3,18     | Respuesta guardada |        |  |  |
| 3                       | 1/09/2021 14:19 | Intento finalizado | Incorrecta         | 0,00   |  |  |

# Pregunta 7 Incorrecta Puntúa 0,00 sobre 1,00

 $|k^{=0.5mA/V^2}; |V_T|=1.5V; lambda=0.02\ V^{-1}; Cgd=1pF; Cgs=2pF$  Obtener la frecuencia asociada al nodo "A" (en kHz).



| Historial de respuestas |                 |                    |                    |        |  |
|-------------------------|-----------------|--------------------|--------------------|--------|--|
| Paso                    | Hora            | Acción             | Estado             | Puntos |  |
| 1                       | 1/09/2021 13:15 | Iniciado/a         | Sin responder aún  |        |  |
| 2                       | 1/09/2021 14:18 | Guardada: 2,12     | Respuesta guardada |        |  |
| 3                       | 1/09/2021 14:19 | Intento finalizado | Incorrecta         | 0,00   |  |

Pregunta
8
Incorrecta
Puntúa 0,00
sobre 1,00

El terminal "1" corresponde a la entrada no inversora.



#### Seleccione una:

- Verdadero X
- Falso

La respuesta correcta es 'Falso'

| Historia | de respuestas   |                     |                    |        |
|----------|-----------------|---------------------|--------------------|--------|
| Paso     | Hora            | Acción              | Estado             | Puntos |
| 1        | 1/09/2021 13:15 | Iniciado/a          | Sin responder aún  |        |
| <u>2</u> | 1/09/2021 14:19 | Guardada: Verdadero | Respuesta guardada |        |
| 3        | 1/09/2021 14:19 | Intento finalizado  | Incorrecta         | 0,00   |

## Pregunta 9 Sin contestar Puntúa como 1,00

### (OPAMP ideales)

Para el siguiente circuito de señal, obtener Avd = Vo/(Vi1-Vi2).



| Historial | storial de respuestas |                    |                   |        |  |
|-----------|-----------------------|--------------------|-------------------|--------|--|
| Paso      | Hora                  | Acción             | Estado            | Puntos |  |
| 1         | 1/09/2021 13:15       | Iniciado/a         | Sin responder aún |        |  |
| 2         | 1/09/2021 14:19       | Intento finalizado | Sin contestar     |        |  |



La realimentación a través de RB1 y RB2 contribuye a estabilizar el punto de reposo ante dispersiones en el valor de Beta 1.



#### Seleccione una:

- Verdadero X
- Falso

La respuesta correcta es 'Falso'

| Historia | l de respuestas |                     |                    |        |
|----------|-----------------|---------------------|--------------------|--------|
| Paso     | Hora            | Acción              | Estado             | Puntos |
| 1        | 1/09/2021 13:15 | Iniciado/a          | Sin responder aún  |        |
| 2        | 1/09/2021 14:19 | Guardada: Verdadero | Respuesta guardada |        |
| 3        | 1/09/2021 14:19 | Intento finalizado  | Incorrecta         | 0,00   |
|          |                 |                     |                    |        |

■ Evaluación Integradora - 3era Fecha Ir a...

Evaluación Integradora - 5ta Fecha 1c21 (oculto) ▶

| Comenzado el    | Tuesday, 7 de September de 2021, 22:51 |
|-----------------|----------------------------------------|
| Oomenzado ci    | ruesday, 7 de deptember de 2021, 22.01 |
| Estado          | Finalizado                             |
| Finalizado en   | Tuesday, 7 de September de 2021, 22:52 |
| Tiempo empleado | 33 segundos                            |

# Pregunta 1 Sin contestar Puntúa como 1,00

Mediante el preset Rp se debe ajustar el offset debido a un desapareamiento en las corrientes de colector del 4% (es decir, +/-2%). Obtener el valor de Rp mínimo (en Ohm) para poder realizar este ajuste.



Sin contestar Puntúa como 1,00 Datos:  $dV_{EB}/dT = -2mV/^{\circ}C$ 

¿Cuánto varía el valor de Vo (incremento de vo) (en mV), ante un aumento de la temperatura en 20 °C (incremento de 20°C)?



Respuesta:

# Pregunta **3**

Sin contestar Puntúa como 1,00  $\grave{c}$ Cuál es el nodo potencialmente dominante para la respuesta en alta frecuencia?



#### Seleccione una:

- a. el nodo 4
- b. el nodo 2
- c. el nodo 8
- d. el nodo 6
- e, el nodo 1
- f. el nodo 7
- g. el nodo 3
- h. el nodo 5

Pregunta **4** 

Sin contestar Puntúa como 1,00

|Vcc| = 9V ; RL = 10K ; VA = 100V ; Beta = 100 Obtener Avd =  $v_o/v_{id}$ 



Respuesta:

## Pregunta **5**

Sin contestar Puntúa como 1,00 La inclusión de RB2 ayuda a estabilizar el punto de reposo ante la dispersión en el valor del Beta de T5.



Seleccione una:

- Verdadero
- Falso

Sin contestar
Puntúa como
1,00

Mosfet de canal inducido:  $|k'|=100uA/V^2$ ;  $|V_T|=1,5V$ ; W/L=1 El Rango de Modo Común es:



#### Seleccione una:

- a.
  - -2V < Vic < 0V
- O b.
- -1,8V < Vic < 1,3V
- o. -0,6 < Vic < 5,8V
- d.
- -1,8V < Vic < 4,3V
- e. -3,8V < Vic < 2,8V

# Pregunta **7**

Sin contestar Puntúa como 1,00 Para el siguiente circuito de señal, obtener  $Av_c = v_o/v_{ic}$  (admitir OPAMP ideales).



Pregunta 8

Sin contestar Puntúa como 1,00

(admitir OPAMP MOSFET con ganancia  $V_{\text{op}}/V_{\text{E}} > 10^5$ ) Obtener el valor de Io (en mA).



Respuesta:

## Pregunta 9

Sin contestar

Puntúa como 1,00

IDSS = -8mA; VP = +2VObtener el valor de Vid (en V) para llevar a T1 al corte.





■ Evaluación Integradora - 4ta Fecha

Respuesta:

₹2K



|        |        | Contra        |                    | 2 da Forcha   | 2/22-20/2/2              |
|--------|--------|---------------|--------------------|---------------|--------------------------|
| NOMBRE | PADRON | TURN          | ción               | Integradora - | -                        |
|        |        | T             | N                  | IF de HOJAS   | Corrección               |
|        | NOMBRE | NOMBRE PADRON | NOMBRE PADRON TURN | Evaluation    | Evaluation integradors - |

1.- Dibujar el circuito implementando las fuentes espejo simple con TBJs apareados:

 $\beta$  = 400,  $r_x$  = 100  $\Omega_{\nu}$   $V_A$  = 100V,  $f_T$  = 200 MHz,  $C_{\mu}$  = 1 pF para NPN y PNP. a) Definir y determinar los valores de Av<sub>e</sub>, R<sub>id</sub>, R<sub>a</sub> y f<sub>h</sub> aproximado.

b) Trazar un diagrama de Bode aproximado de módulo y argumento para Av<sub>d</sub>.

c) Definir y determinar el valor aproximado de Av, si se considera el valor no unitario de la copia de los espejos de corriente.

d) Trazar la característica de gran señal  $Io = f(Vi_d)$  para  $Vi_c = 0$ , indicando sus valores extremos y pendiente en el origen.



2.- En los siguientes circuitos se omitieron para simplificar, las fuentes de alimentación (admitir OPAMPs con AD MOSFETs y una Ro  $\approx$  10  $\Omega$ )

a) Demostrar que ambos se comportan como amplificadores diferenciales. Compararlos entre sí, hallar Av<sub>d</sub> y justificar por qué al segundo se lo conoce como amplificador de instrumentación.

b) ¿Qué condición debería cumplirse para que en estos circuitos la amplificación de modo común sea nula? Justificar.





1.- Se utilizan dos amplificadores diferenciales, conectados como se indica en la figura. Se admite que  $R_{id2} \rightarrow \infty$  y que  $Av_{dd2} = 200$  y  $Av_{dd2} = 50$ .



a) Definir y hallar la  $V_{offset}$  total del circuito completo si se conocen las  $V_{offset}$  de cada AD en forma independiente, siendo:

 $V_{off}(AD1) = 2mV$ ;  $V_{off}(AD2) = 1mV$ 

b) Si AD1 tiene una  $RRMC_1 = 70$  dB y AD2, una

 $RRMC_2 = 100$  dB, justificar cuál será la RRMC del circuito completo. (se conocen  $Av_{cc}$ ,  $Av_{dc}$  y  $Av_{cd}$  de c/u)



- 2.-  $V_T=1V$ ;  $k=1mA/V^2$ ;  $\lambda \rightarrow 0$ ;  $\beta=200$ ;  $V_A=80V$
- a) Definir y obtener el Rango de modo común.
- b) Definir y obtener el valor de la RRMC en dB.
- c) Se reemplazan los resistores de carga de 20k por una fuente espejo con TBJ  $(T_5-T_6)$ , de modo de tal de obtener la mayor  $Av_d = v_{o2}/v_{id}$  posible. Dibujar y justificar el circuito resultante y analizar cualitativamente cómo se modifican los valores de reposo, el Rango de modo común y la RRMC, respecto del circuito original.

1.- 
$$\beta = 50$$
;  $V_A = 80V$ ;  $r_x \rightarrow 0\Omega$ ;  $f_T = 200$  MHz;  $C_a = 1$  pF.

- a) Obtener los puntos de reposo. Justificar *cualitativamente*, en base a los conceptos de realimentación, por qué puede admitirse que  $R_{OF} >> r_{o7}$  en la fuente T5-T6-T7 ( $R_{OF} \cong \beta_7, r_{o7}/2$ ).
- b) Dibujar el circuito de señal a frecuencias medias sin reemplazar los transistores por su modelo. Indicar todos los sentidos de referencia necesarios. Definir y obtener por inspección, el valor de las resistencias de entrada diferencial y común y de salida. Hallar el valor de las amplificaciones de tensión  $Av_d$  y  $Av_c$  y de la RRMC en veces y en dB.
- c) Obtener el valor aproximado de la frecuencia de corte superior para Av<sub>d</sub>.
- d) Definir y obtener el rango de tensión de modo común.
- e) Analizar cualitativamente cómo se modifican los valores de reposo, señal y  $f_h$  si se reemplazan las  $R_C$  de carga del diferencial por una fuente espejo simple T8-T9 con TBJ NPN.



|          |        |        | Evaluación | N° de HOJAS | Currecció |
|----------|--------|--------|------------|-------------|-----------|
| - 86.06  | NOMBRE | FINRON | TURNO      | 6           |           |
| APELLIDO |        |        | 0          | 10          |           |

1.- Dibujar el circuito implementando las fuentes espejo simple con TBJs apareados:

 $\beta$  = 400,  $r_x$  = 100  $\Omega_s$   $V_A$  = 100V,  $f_Y$  = 200 MHz,  $C_\mu$  = 1 pF para NPN y PNP.

a) Definir y determinar los valores de  $Av_d$ ,  $R_{id}$ ,  $R_o$  y  $f_h$  aproximado.

b) Trazar un diagrama de Bode aproximado de módulo y argumento para Av<sub>d</sub>.

c) Definir y determinar el valor aproximado de Av, si se considera el valor no unitario de la

d) Trazar la característica de gran señal  $Io = f(Vi_d)$  para  $Vi_c = 0$ , indicando sus valores extremos y pendiente en el origen.



2.- En los siguientes circuitos se omitieron para simplificar, las fuentes de alimentación (admitir

OPAMPs con AD MOSFETs y una Ro  $\cong$  10  $\Omega$ ) a) Demostrar que ambos se comportan como amplificadores diferenciales. Compararlos entre si, hallar Ave y justificar por qué al segundo se lo conoce como amplificador de instrumentación.

b) ¿Qué condición debería cumplirse para que en estos circuitos la amplificación de modo común sea nula? Justificar.

