1. PRAKTIKA:

Mathematica: Sarrera

1. Arreta non jarri

- Maiuskulak eta minuskulak. Mathematicak karaktereak bereizten ditu.
 Programak dituen funtzio, aukera, aldagai eta konstante guztiak maiuskularekin hasiko dira.
- Hutsuneak. Bi aldagaien arteko hutsunea biderkadura zeinu moduan ulertuko da.
- Parentesiak, gakoak eta giltzak. () parentesiak egingo diren eragiketen lehentasuna adierazteko eta biltzeko erabiliko dira. [] gakoak funtzioen argumentuetarako baino ez dira erabiliko. { } giltzak elementuen zerrendak definitzeko erabiliko dira (bektoreak eta matrizeak, adibidez). [[]] gako bikoitzak zerrenda bateko informazioa lortzeko erabiliko dira.
- Puntuazio zeinuak. Mathematica-ren funtzioen argumentu desberdinak bereizteko komak erabiliko dira eta baita ere zerrenda bateko elementuak banatzeko. Puntu eta koma jarriko dugu Input berdinean komando desberdinak banatzeko.

2. Zenbakiak eta eragiketak

- Mathematica-k zenbakiei dagozkien konstante interesgarriak ditu:
 - I unitate irudikaria
 - **E** e zenbakia
 - **Pi** π zenbakia
- N[x] x zenbakiaren balio hurbildua adieraziko du.
 Rationalize[x] zenbaki hurbildu bat zenbaki arrazional baten bihurtuko du, ahal badu.

Aurreko emaitzak erabiltzeko:

% aurreko irteera adieraziko du

%k Out[k] adieraziko du

3. Laguntza bila

Mathematica-k duen laguntza osoa da eta **HELP** menuan aurki daiteke, **VIRTUAL BOOK** aukeratuz.

Gainera, edozein bertsiotan:

?testua testuari buruzko informazioa agertuko da

?testua* testua izenarekin hasten diren objektu guztien izenak agertuko dira

?*testua* testua izena barnean duten objektu guztien izenak agertuko dira

??testua Badago, testuari buruzko informazio gehigarria agertuko da

4. Aldagaiak

Aldagaiei egokitutako balioak iraunkorrak dira. Aldagai konkretu bati balio bat egokitu ondoren, balioa mantendu egingo da aldagai hori "garbitu" arte. *Mathematica*-ren sesio berriarekin hasten garenean balio hori desagertu egingo da. Gainera honako agindu hauek izango ditugu:

Clear[x] x aldagaiaren balioa ezabatuko du baina ez haren izena

Remove[x] x aldagaiaren balioaz gain haren izena ere ezabatuko du.

Names["Global`*"] Sesioan zehar erabiltzaileak definitutako aldagai guztien zerrenda adieraziko du

Remove["Global`*"] Sesioan zehar erabiltzaileak definitutako aldagai guztiak ezabatuko ditu, izena eta balioa barne.

Clear["Global`*",\$Line] agindua erabiltzea gomendatzen da, zeren aldagai guztiak ezabatzen baititu eta kontagailua zeron jartzen baitu.

5. Zerrendak

Zerrenda bateko elementuak giltzen artean definituko dira, komaz banatuta. Oso baliagarriak dira, zeren bektoreak eta matrizeak definitzeko erabiliko baitugu.

Zerrendak **Table[]** funtzioa erabiliz sortu daitezke:

Table[adierazpena i-n,{i,min,max,pausua}] Zerrenda bat sortuko du emandako adierazpena balioztatuz i indizea balio minimotik balio maximora aldatuz, pausuak adierazten duen kantitatearekin indizea handituz. Ezer adierazi ezik, minimoa eta pausua 1 izango dira.

Table[adierazpen i-n,{i,max}] Zerrenda bat sortuko du emandako adierazpena balioztatuz i indizea banan bana 1etik balio maximora aldatuz.

6. Aurrez definitutako funtzio elementalak

Beste batzuen artean, honako funtzio hauek daude definituta:

Round[], Binomial[], Sqrt[], Log[], Log[,10], Sin[], Cos[], Arcsen[], Abs[], Arg[],...

7. Erlazio-eragileak eta eragile logikoak

Erlazio-eragileak:

Eragile logikoak:

8. Erabiltzaileak definitutako funtzioak

$$f(x) = x^2 - 2x$$
 Honela idatziko da: $f[x_]:=x^2-2x$

$$g(x,y) = \frac{x}{x-y}$$
 Honela idatziko da: $g[x_y]:=x/(x-y)$

9. Grafikoak 2D-n eta 3D-n

Plot[funtzioa,{eremua}] aldagai bakarreko funtzioa planoan irudikatuko du eremuan adierazitako aldagairen balioetarako

 $f(x) = x^2 - 2x$ funtzioa x=-1 eta x=6 balioen arteak irudikatzeko honako hau idatziko dugu:

$$Plot[x^2-2x,\{x,-1,6\}]$$

Plot3D[funtzioa,{1eremua},{2eremua}] bi aldagaiko funtzioa espazioan irudikatuko du, eremuetan adierazitako balioetarako

$$g(x,y) = \frac{x}{x-y}$$
 funtzioa irudikatzeko honako hau idatziko dugu:

Plot3D[
$$x/(x-y),\{x,-1,1\},\{y,0,5\}$$
]

10. Aldaketa-erregelak

- /. ordezkapen eragilea
- //. ordezkapen eragile errepikakorra
- -> ordezkapenerako sinboloa