$11n_{64} (K11n_{64})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle u^{11} - 2u^{10} + 8u^9 - 12u^8 + 22u^7 - 23u^6 + 24u^5 - 15u^4 + 9u^3 - 4u^2 + b + 2u - 1, \\ &- u^{13} + 2u^{12} - 11u^{11} + 18u^{10} - 45u^9 + 58u^8 - 84u^7 + 79u^6 - 70u^5 + 43u^4 - 23u^3 + 14u^2 + a - 5u + 3, \\ &- u^{14} - 2u^{13} + 11u^{12} - 18u^{11} + 46u^{10} - 60u^9 + 91u^8 - 90u^7 + 86u^6 - 61u^5 + 36u^4 - 22u^3 + 8u^2 - 5u + 1 \rangle \\ &- I_2^u &= \langle u^2 + b + u + 1, \ -u^3 - u^2 + a - 3u - 1, \ u^4 + u^3 + 3u^2 + 2u + 1 \rangle \end{split}$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 18 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle u^{11} - 2u^{10} + \dots + b - 1, -u^{13} + 2u^{12} + \dots + a + 3, u^{14} - 2u^{13} + \dots - 5u + 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{13} - 2u^{12} + \dots + 5u - 3 \\ -u^{11} + 2u^{10} + \dots - 2u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{13} - 2u^{12} + \dots + 4u - 2 \\ u^{12} - 2u^{11} + \dots - 2u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{10} + 5u^{8} + 6u^{6} - u^{4} - u^{2} - 1 \\ u^{12} + 6u^{10} + 12u^{8} + 10u^{6} + 5u^{4} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{13} - 2u^{12} + \dots + 3u - 2 \\ -u^{13} + 2u^{12} + \dots - 3u + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{5} + 2u^{3} - u \\ u^{7} + 3u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{5} + 2u^{3} - u \\ u^{7} + 3u^{5} + 2u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes
$$= -u^{13} + 2u^{12} - 11u^{11} + 17u^{10} - 42u^9 + 48u^8 - 62u^7 + 44u^6 - 17u^5 - 7u^4 + 23u^3 - 11u^2 + 6u - 9u^4 + 20u^4 + 20u$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{14} - 5u^{13} + \dots + 7u - 1$
c_2	$u^{14} + 23u^{13} + \dots + 3u + 1$
c_3, c_8	$u^{14} - u^{13} + \dots - 24u - 16$
<i>C</i> 5	$u^{14} + 2u^{13} + \dots + 3u + 1$
c_6, c_7, c_{10} c_{11}	$u^{14} + 2u^{13} + \dots + 5u + 1$
<i>C</i> 9	$u^{14} - 6u^{13} + \dots - 117u + 19$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{14} - 23y^{13} + \dots - 3y + 1$
c_2	$y^{14} - 59y^{13} + \dots + 681y + 1$
c_{3}, c_{8}	$y^{14} - 27y^{13} + \dots + 960y + 256$
<i>C</i> ₅	$y^{14} - 30y^{13} + \dots - 9y + 1$
c_6, c_7, c_{10} c_{11}	$y^{14} + 18y^{13} + \dots - 9y + 1$
<i>c</i> ₉	$y^{14} - 18y^{13} + \dots - 22277y + 361$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.550866 + 0.900632I		
a = -1.08064 - 1.46517I	-14.5979 + 4.4309I	-8.77759 - 3.45380I
b = 0.098170 - 0.182990I		
u = 0.550866 - 0.900632I		
a = -1.08064 + 1.46517I	-14.5979 - 4.4309I	-8.77759 + 3.45380I
b = 0.098170 + 0.182990I		
u = 0.131850 + 0.795140I		
a = 1.42680 + 0.95287I	-3.41989 + 1.31906I	-10.67824 - 1.83447I
b = 0.002648 - 0.749310I		
u = 0.131850 - 0.795140I		
a = 1.42680 - 0.95287I	-3.41989 - 1.31906I	-10.67824 + 1.83447I
b = 0.002648 + 0.749310I		
u = 0.778815		
a = 0.532114	-11.8742	-5.71440
b = -1.55087		
u = -0.310969 + 0.512101I		
a = -0.546661 + 0.069487I	-0.044354 - 1.170560I	-0.70219 + 5.58030I
b = -0.054284 + 0.327429I		
u = -0.310969 - 0.512101I		
a = -0.546661 - 0.069487I	-0.044354 + 1.170560I	-0.70219 - 5.58030I
b = -0.054284 - 0.327429I		
u = -0.07909 + 1.57522I		
a = -0.593424 + 0.223836I	-7.25996 - 2.49887I	-4.67922 + 1.75896I
b = 1.203460 + 0.007835I		
u = -0.07909 - 1.57522I		
a = -0.593424 - 0.223836I	-7.25996 + 2.49887I	-4.67922 - 1.75896I
b = 1.203460 - 0.007835I		
u = 0.03110 + 1.66209I		
a = 1.73343 + 0.06583I	-12.09880 + 1.91262I	-10.51406 - 1.13289I
b = -3.48457 - 0.73242I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.03110 - 1.66209I		
a = 1.73343 - 0.06583I	-12.09880 - 1.91262I	-10.51406 + 1.13289I
b = -3.48457 + 0.73242I		
u = 0.16129 + 1.68407I		
a = -2.01585 - 0.88397I	15.9841 + 7.2397I	-10.36154 - 2.69654I
b = 4.18614 + 1.67352I		
u = 0.16129 - 1.68407I		
a = -2.01585 + 0.88397I	15.9841 - 7.2397I	-10.36154 + 2.69654I
b = 4.18614 - 1.67352I		
u = 0.251089		
a = -2.37942	-1.17986	-7.85990
b = 0.647742		

II. $I_2^u = \langle u^2 + b + u + 1, -u^3 - u^2 + a - 3u - 1, u^4 + u^3 + 3u^2 + 2u + 1 \rangle$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{3} + u^{2} + 3u + 1 \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{3} + u^{2} + 4u + 1 \\ u^{3} - u^{2} - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u^{3} - u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{3} + u^{2} + 3u + 1 \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{0} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $3u^3 + 3u^2 + 10u 4$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^4$
c_2, c_4	$(u+1)^4$
c_3, c_8	u^4
c_5,c_9	$u^4 + u^3 + u^2 + 1$
c_6, c_7	$u^4 + u^3 + 3u^2 + 2u + 1$
c_{10}, c_{11}	$u^4 - u^3 + 3u^2 - 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^4$
c_3, c_8	y^4
c_5, c_9	$y^4 + y^3 + 3y^2 + 2y + 1$
c_6, c_7, c_{10} c_{11}	$y^4 + 5y^3 + 7y^2 + 2y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.395123 + 0.506844I		
a = -0.043315 + 1.227190I	-1.43393 - 1.41510I	-7.52507 + 4.18840I
b = -0.504108 - 0.106312I		
u = -0.395123 - 0.506844I		
a = -0.043315 - 1.227190I	-1.43393 + 1.41510I	-7.52507 - 4.18840I
b = -0.504108 + 0.106312I		
u = -0.10488 + 1.55249I		
a = -0.956685 + 0.641200I	-8.43568 - 3.16396I	-9.97493 + 3.47609I
b = 1.50411 - 1.22685I		
u = -0.10488 - 1.55249I		
a = -0.956685 - 0.641200I	-8.43568 + 3.16396I	-9.97493 - 3.47609I
b = 1.50411 + 1.22685I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^4)(u^{14}-5u^{13}+\cdots+7u-1)$
c_2	$((u+1)^4)(u^{14}+23u^{13}+\cdots+3u+1)$
c_3, c_8	$u^4(u^{14} - u^{13} + \dots - 24u - 16)$
c_4	$((u+1)^4)(u^{14} - 5u^{13} + \dots + 7u - 1)$
c_5	$(u^4 + u^3 + u^2 + 1)(u^{14} + 2u^{13} + \dots + 3u + 1)$
c_6, c_7	$(u^4 + u^3 + 3u^2 + 2u + 1)(u^{14} + 2u^{13} + \dots + 5u + 1)$
<i>c</i> 9	$(u^4 + u^3 + u^2 + 1)(u^{14} - 6u^{13} + \dots - 117u + 19)$
c_{10}, c_{11}	$(u^4 - u^3 + 3u^2 - 2u + 1)(u^{14} + 2u^{13} + \dots + 5u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$((y-1)^4)(y^{14} - 23y^{13} + \dots - 3y + 1)$
c_2	$((y-1)^4)(y^{14} - 59y^{13} + \dots + 681y + 1)$
c_3,c_8	$y^4(y^{14} - 27y^{13} + \dots + 960y + 256)$
<i>C</i> ₅	$(y^4 + y^3 + 3y^2 + 2y + 1)(y^{14} - 30y^{13} + \dots - 9y + 1)$
c_6, c_7, c_{10} c_{11}	$(y^4 + 5y^3 + 7y^2 + 2y + 1)(y^{14} + 18y^{13} + \dots - 9y + 1)$
<i>C</i> 9	$(y^4 + y^3 + 3y^2 + 2y + 1)(y^{14} - 18y^{13} + \dots - 22277y + 361)$