

Goniometrie a trigonometrie

Vlastnosti funkcí sinus a kosinus

Nyní si popíšeme vlastnosti funkce vzhledem k hodnotám a, b, c a d v obecném vzorci $y = a \cdot \sin(d \cdot x + b) + c$ a $y = a \cdot \cos(d \cdot x + b) + c$.

Například
$$y = \sin\left(x - \frac{\pi}{2}\right) + 1$$

1.
$$D_f = \mathbb{R}$$

2.
$$H_f = \langle 0; 2 \rangle$$

3. je rostoucí na intervalu
$$\left\langle \frac{\pi}{2}+2k\pi;\frac{3\pi}{2}+2k\pi\right\rangle \text{, kde }k\in Z$$

4. je klesající na intervalu
$$\left\langle -\frac{\pi}{2}+2k\pi;\frac{\pi}{2}+2k\pi\right\rangle \text{, kde }k\in Z$$

6. maximum
$$y=2; x=\pi+2k\pi,$$
 kde $k\in Z;$ minimum $y=0; x=2k\pi,$ kde $k\in Z$

8. není lichá (když b=0 a c=0 tak je lichá - viz červená funkce)

www.15ibalo.com

Například
$$y=\cos\left(x-\frac{\pi}{2}\right)+1$$

1.
$$D_f = \mathbb{R}$$

2.
$$H_f = \langle 0; 2 \rangle$$

3. je rostoucí na intervalu
$$\left\langle -\frac{\pi}{2}+2k\pi;\frac{\pi}{2}+2k\pi\right\rangle \text{, kde }k\in Z$$

4. je klesající na intervalu
$$\left\langle \frac{\pi}{2}+2k\pi;\frac{3\pi}{2}+2k\pi\right\rangle \text{, kde }k\in Z$$

- 5. je omezená
- 6. maximum $y=2; x=\frac{\pi}{2}+2k\pi$, kde $k\in Z;$ minimum $y=0; x=\frac{3\pi}{2}+2k\pi$, kde $k\in Z$
- 7. není sudá (když b=0 a c=0 tak je sudá viz červená funkce)
- 8. není lichá
- 9. je periodická s periodou 2π

