$Call_Structure_Program$

$\operatorname{skarner}$

August 22, 2017

Contents

1	Ha	rd _{spheredynamics} (.True.,.True.,.	1
	1.1	Sys _{Variables Alloc} (species)	1
	1.2	D0M _{ini} (species,sigma) !Diffusion coefficient of the system par-	
		ticle	1
	1.3	$\mathrm{rho_{ini}}()$	2
	1.4	$Static_{Variables memalloc}(kpoints, species) \dots \dots \dots$	2
	1.5	$\operatorname{Calc}_{\operatorname{statick}}(\operatorname{dk,kpoints})$	2
	1.6	Calc _{Skhspymono} #####Finally	2
1	Η	${ m [ard_{spheredynamics}(.True.,.True.,.True.)}$	
is		cogram.f90	
		e define:28	
	Lin	$ m e_{Call}:~16$	
1.	1 5	${ m Sys_{VariablesAlloc}(species)}$	
is	In Fi	le: variables _{modules} .f90	
		dule: System _{Variables}	
		e Define: 27	
		e Call: 55	
1.		${ m D0M_{ini}}$ (species,sigma) !Diffusion coefficient of the sys	ys-
	1	zem particle	
is		le: ${ m variables_{modules}.f90}$ dule: ${ m System_{Variables}}$	

Line Define: 39 Line Call: 57

1.3 rho_{ini}()

is In File: $variables_{modules}.f90$ Module: $System_{Variables}$

Line Define: 55 Line Call: 60

1.4 Static_{Variablesmemalloc}(kpoints, species)

is In File: $variables_{modules}.f90$ Module: $Static_{Variables}$ Line Define: 116 Line Call: 62

1.5 Calc_{statick}(dk,kpoints)

File Defined: variables modules . 116 Module: Modules . Mo

Line Call: 63

1.6 Calc_{Skhspymono} #####Finally

is inFile: structure_{module}.f90
Module: Structure_{module}
Line Define:24
Line Call: 65

Code snippet

Implicit None

Subroutine Calc_Sk_hs_py_mono(vw_option)

```
!End of parameter checks
!### Here we must to watch the value for kpoints
!The value of kpoints is persistent, obviously xD : p
Allocate(k_vw(kpoints))
                                                     ! Allocate memor
!Start of VW Correction
If (vw_option .EQV. .TRUE.) Then
                                                     ! Make desicion
  !Some data are calculated
  eta_vw=eta(1)*(1.d0-(eta(1)/16.d0))
  !########Analize space ###########################
  !This instruction is interesting cause in this line whole array is traveled, th
  k_vw(:)=k(:)*((eta_vw/eta(1))**(1.d0/3.d0))
  Else
                                                     ! eta()
  eta_vw=eta(1)
  k_vw(:)=k(:)
End If
!End of VW correction
dum1 = -((1.0 + 2.0 * eta_vw) * * 2)
dum2=6.0*eta_vw*((1.0+(eta_vw/2.0))**2)
dum3 = -eta_vw*((1.0+(2.0*eta_vw))**2)/2.0
dum4 = ((1.0 - eta_vw) **4)
dum1=dum1/dum4
dum2=dum2/dum4
dum3=dum3/dum4
Do i1=1, kpoints
  dumsin=sin(k_vw(i1))
  dumcos=cos(k vw(i1))
  !########Analize space ##########################
  !This sintax
                ck(i1,1,1) = (dum1*(dumsin-k_vw(i1)*dumcos)/(k_vw(i1)**2.d0)) +
                &%&(%&/"#$Other line.....
  ! Is used for concat severals lines of code as one
  !This is the same
  ck(i1,1,1) = (dum1*(dumsin-k_vw(i1)*dumcos)/(k_vw(i1)**2.d0))+&
```

```
 \& (k_vw(i1)**3.d0)) + (dum3*(((4.d0*(k_vw(i1)**3.d0)-24.0*k_vw(i1))*dumsin) \& \\ \& + ((-(k_vw(i1)**4.d0)+12.d0*(k_vw(i1)**2.d0)-24.d0)*dumcos)+24.d0)/(k_vw(i1)**5)) \\ !to This \\ !ck(i1,1,1) = (dum1*(dumsin-k_vw(i1)*dumcos)/(k_vw(i1)**2.d0)) + &&(dum2*(((2.d0*Ck(i1,1,1))= 24.d0*eta_vw*ck(i1,1,1)/k_vw(i1) \\ Sk(i1,1,1) = 1.d0/(1.d0-ck(i1,1,1)) \\ Ski(i1,1,1) = 1.d0-Ck(i1,1,1) \\ End Do \\ End Subroutine Calc_Sk_hs_py_mono
```