Bird Identification

Michael Albert, Jonah Douglas, Ethan Lindell, Archan Rupela, River Yearian

Problem

- Over 10,000 different species of birds
- Difficult to differentiate them without expert knowledge
- Process is very time consuming

Data

- Bird Species Kaggle dataset
 - 29,000 training images over 200 different bird species
 - Images in 224x224x3 format with over
 100 training images for each type

Background - Few Shot Learning & Prototypical Networks

- Classifies new data given a few training images
- Prototype is the mean of the support set in the embedding space

Approach

- Data split into train, dev, and test sets of size 140, 30, 30
- Vgg11 model used
- Euclidean distance calculated
 between prototypes and queries

· ·					
ConvNet Configuration					
A	A-LRN	В	C	D	Е
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
input (224×224 RGB image)					
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
maxpool					
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
maxpool					
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
					conv3-256
maxpool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
maxpool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
maxpool					
FC-4096					
FC-4096					
FC-1000					
soft-max					

Key Results

- 100 iterations 100 episodes did not converge
- 300 iterations 500 episodes seems to reach convergence
- 60%, 15% mean/std no pre-training
- 80%, 10% mean/std pre-training

Next Steps

- Perform image augmentation on the dataset
- Further tuning of vgg11 model
- Split dataset into male/female datasets

Questions?

Contact us:

Michael Albert - albertmichael 746@gmail.com

Jonah Douglas - jonah.douglas23@gmail.com

Ethan Lindell - eclindell@gmail.com

Archan Rupela - archanrupela@outlook.com

River Yearian - <u>yeariar@wwu.edu</u>

Citations

- Branson, Steve \& Horn, Grant \& Belongie, Serge \& Perona, Pietro. (2014). Bird Species Categorization Using Pose Normalized Deep Convolutional Nets. BMVC 2014 Proceedings of the British Machine Vision Conference 2014.
- S. Divya, Meena and L. Agilandeeswari, "An Efficient Framework for Animal Breeds Classification Using Semi-Supervised Learning and Multi-Part Convolutional Neural Network (MP-CNN)," in IEEE Access, vol. 7, pp. 151783-151802, 2019.
- Gerry. (2020, May 5). 200 Bird Species. Retrieved from https://www.kaggle.com/gpiosenka/100-bird-species
- Y. Huang and H. Basanta, "Bird Image Retrieval and Recognition Using a Deep Learning Platform," in IEEE Access, vol. 7, pp. 66980-66989, 2019.
- P. Shah, V. Bakrola, S. Pati, "Optimal Approach for Image Recognition using Deep Convolutional Architecture,".
- Simonyan, K., & Zisserman, A. (2014, September 4). Very Deep Convolutional Networks for Large-Scale Image Recognition. Retrieved from https://arxiv.org/abs/1409.1556
- Snell, J., Swersky, K., & Zemel, R. (2015, March 15). Prototypical Networks for Few-shot Learning. Retrieved from https://arxiv.org/abs/1703.05175
- F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. S. Torr and T. M. Hospedales, "Learning to Compare: Relation Network for Few-Shot Learning," 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, 2018, pp. 1199-1208.