Haziq Jamil & Wicher Bergsma

http://phd.haziqj.ml

Department of Statistics London School of Economics and Political Science

Binary and Multinomial Regression using Fisher Information Covariance Kernels (I-priors)

Introduction

Consider the regression model for i = 1, ..., n:

$$y_i = \alpha + f(x_i) + \epsilon_i$$

$$(\epsilon_1, \dots, \epsilon_n)^{\top} \sim N_n(0, \Psi^{-1})$$
(1

where $y_i \in \mathbb{R}$, $x \in \mathcal{X}$, $f \in \mathcal{F}$ and $\alpha \in \mathbb{R}$ is an intercept. Let \mathcal{F} be a reproducing kernel Hilbert space (RKHS) with kernel $h_{\lambda}: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$. The Fisher information for f evaluated at x and x' is

$$\mathcal{I}(f(x), f(x')) = \sum_{k=1}^{n} \sum_{l=1}^{n} \Psi_{k,l} h_{\lambda}(x, x_k) h_{\lambda}(x', x_l). \tag{2}$$

The I-prior

The entropy maximising prior distribution for f, subject to identifiability constraints, is

$$\mathbf{f} = (f(x_1), \dots, f(x_n))^{\top} \sim N_n (\mathbf{f}_0, \mathcal{I}[f]).$$

Equivalently, $f(x) = f_0(x) + \sum_{i=1}^n h_{\lambda}(x, x_i) w_i$, with

$$(w_1,\ldots,w_n)^{\top} \sim N_n(0,\Psi).$$

Of interest are

 the posterior distribution for the regression function

$$p(\mathbf{f}|\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{f})p(\mathbf{f})}{\int p(\mathbf{y}|\mathbf{f})p(\mathbf{f})\,\mathrm{d}\mathbf{y}}; \text{and}$$

• the posterior predictive distribution for new data points

$$p(y_{\text{new}}|\mathbf{y}) = \int p(y_{\text{new}}|f_{\text{new}}, \mathbf{y})p(f_{\text{new}}|\mathbf{y}) df_{\text{new}}.$$

Model parameters (error precision Ψ , RKHS scale parameters λ , and any other kernel parameters) may need to be estimated.

A Unified Regression Framework

- Multiple linear regression (canonical RKHS)
- Smoothing models (fBm RKHS)
- Multilevel regression (ANOVA RKHS: canonical & Pearson)

$$f(x_i^{(j)}) = f_1(j) + f_2(x_i^{(j)}) + f_{12}(x_i^{(j)}, j)$$

 Longitudinal modelling (ANOVA RKHS: fBm & Pearson)

$$f(x_i, t_i) = f_1(t_i) + f_2(x_i) + f_{12}(x_i, t_i)$$

• Functional covariates (\mathcal{X} a Hilbert-Sobolev space)

Figure 1: (L-R) Sample paths from the canonical (linear), fractional Brownian motion (fBm), and Pearson RKHS. The (reproducing) kernels corresponding to each RKHS are $h_{\lambda}(x,x')=\lambda\langle x,x'\rangle_{\mathcal{X}}$ (linear), $h_{\lambda}(x,x')=-\frac{\lambda}{2}(\|x-x'\|_{\mathcal{X}}^{2\gamma}-\|x\|_{\mathcal{X}}^{2\gamma}-\|x'\|_{\mathcal{X}}^{2\gamma})$ (fBm), and $h_{\lambda}(x,x')=-\frac{\lambda}{2}(\|x-x'\|_{\mathcal{X}}^{2\gamma}-\|x\|_{\mathcal{X}}^{2\gamma}-\|x'\|_{\mathcal{X}}^{2\gamma})$ $\lambda \left(\delta_{xx'}/\mathrm{P}[X=x]-1 \right)$ (Pearson).

Categorical Responses

When each $y_i \in \{1,\ldots,m\}$, normality assumptions are violated. Model instead $y_i = \arg\max_k y_{ik}^*$, where

$$y_{ij}^* = \alpha_j + f_j(x_i) + \epsilon_{ij}$$

$$(\epsilon_{i1}, \dots, \epsilon_{im})^\top \sim N_m(0, \Sigma)$$
(3)

with $Cov(\epsilon_{ij}, \epsilon_{kj}) = 0$, for all $i \neq k, j = 1, \ldots, m$. In other words, $\Psi = I_n$ in (1) and (2). The I-prior is

$$\mathbf{f}_{j} = \left(f_{j}(x_{1}), \dots, f_{j}(x_{n})\right)^{\top} \sim N_{n} \left(\mathbf{f}_{0j}, \Sigma_{jj}^{-1} \cdot \mathcal{I}[f]\right)$$

$$\operatorname{Cov}(\mathbf{f}_{j}, \mathbf{f}_{k}) = \Sigma_{jk}^{-1} \cdot \mathcal{I}[f].$$

Class probabilities p_{ij} are obtained using a conically truncated m-variate normal density

$$p_{ij} = \int N_m \left(\mathbf{y}_i^* \mid \mathbf{f}(x_i), \Sigma \right) d\mathbf{y}_i^* =: g_j^{-1} \left(\mathbf{f}(x_i) \right).$$

$$\{ y_{ij}^* > y_{ik}^* \mid k \neq j \}$$

where we had defined $\mathbf{f}(x_i) = (f_1(x_i), \dots, f_m(x_i))^{\top}$. Now, the marginal, on which the posterior depends,

$$p(\mathbf{y}) = \int \prod_{i,j} \left\{ g_j^{-1} (\mathbf{f}(x_i)) \right\}^{[y_i = j]} \cdot N_{nm} (\mathbf{f} \mid \mathbf{f}_0, \Sigma \otimes \mathcal{I}[f]) d\mathbf{f},$$

cannot be found in closed form. By working in a fully Bayesian setting, we append model parameters and employ a variational approximation.

Spatio-Temporal Modelling of BTB^a

Determine the existence of spatial segregation of the different spoligotypes of bovine tuberculosis (BTB) in Cornwall, UK, and whether the spatial distribution had changed over time.

Onstant model (constant RKHS)

$$p_{ij} = g_j^{-1} (\alpha_k)_{k=1}^m$$

Spatial segregation (fBm RKHS)

$$p_{ij} = g_j^{-1} (\alpha_k + f_{1k}(x_i))_{k=1}^m$$

Spatio-temporal segregation (ANOVA RKHS)

$$p_{ij} = g_i^{-1} (\alpha_k + f_{1k}(x_i) + f_{2k}(t_i) + f_{12k}(x_i, t_i))_{k=1}^m$$

Evidence Lower Bound (ELBO) values for the three models are -1197.4, -665.3, and -656.2 respectively.

Detecting Cardiac Arrhythmiab

Predict whether or not patients suffer from a cardiac disease based on various patient profiles such as age, height, weight and a myriad of electrocardiogram (ECG) readings (p = 271, n = 451).

Table 1: Mean out-of-sample misclassification rates and standard errors for 100 runs of various training (s) and test (451-s) sizes for the cardiac arrhythmia binary classification task.

Misclassification rate (%)		
s = 50	s = 100	s = 200
34.5 (0.4)	31.4 (0.4)	29.7 (0.4)
34.7 (0.6)	27.3 (0.3)	24.5 (0.3)
37.3 (0.4)	33.8 (0.4)	29.3 (0.4)
34.9 (0.4)	30.5 (0.3)	26.1 (0.3)
36.2 (0.5)	35.6 (0.4)	35.2 (0.4)
48.4 (0.5)	47.2 (0.5)	46.9 (0.4)
31.7 (0.4)	26.7 (0.3)	22.4 (0.3)
40.6 (0.3)	38.9 (0.3)	35.8 (0.4)
	s = 50 $34.5 (0.4)$ $34.7 (0.6)$ $37.3 (0.4)$ $34.9 (0.4)$ $36.2 (0.5)$ $48.4 (0.5)$ $31.7 (0.4)$	s = 50 $s = 100$ $34.5 (0.4)$ $31.4 (0.4)$ $34.7 (0.6)$ $27.3 (0.3)$ $37.3 (0.4)$ $33.8 (0.4)$ $34.9 (0.4)$ $30.5 (0.3)$ $36.2 (0.5)$ $35.6 (0.4)$ $48.4 (0.5)$ $47.2 (0.5)$ $31.7 (0.4)$ $26.7 (0.3)$

Conclusions

- Simple estimation of various categorical models:
- Choice models (with or without IIA);
- Random-effects models;
- Binary and multiclass classification.
- Inference is straightforward (e.g. model comparison or (transformed) credibility intervals).
- Often gives better predictions.

References

[1] Wicher Bergsma.

Regression and classification with I-priors. arXiv: 1707.00274, July 2017.

[2] Mark Girolami and Simon Rogers.

Variational Bayesian multinomial probit regression with Gaussian process priors. Neural Computation, 18(8), 2006.

[3] Robert E McCulloch, Nicholas G Polson, and Peter E Rossi. A Bayesian analysis of the multinomial probit model with fully identified parameters.

Journal of Econometrics, 99(1):173–193, 2000.

Figure 2: Predicted probability surfaces for BTB contraction in Cornwall for the four largest spoligotypes of the bacterium Mycobacterium bovis over the entire time period 1989–2002 using Model 2.