29/9/2023

Indian Institute of Engineering Science and Technology, Shibpur B.Tech. - M.Tech. Dual Degree 5th Semester (CST) Examination (Mid Semester) 2022 Graph Algorithms (CS 3104)

Full Marks: 30

Time: 2 Hours

Answer Question-1 and any three from the remaining.

Do all parts of a question together. Do not mix up answers to parts of different questions in the answer script.

- 1. (a) State Max flow min cut theorem and prove it through an example.
 - (b) Prove that the number of vertices of odd degree in a graph is always even.

[3+3=6]

2. (a) Consider the following directed, weighted graph. The weights on the edges show the capacity of the edges. Compute the maximum flow from the source s to the sink t using the Ford-Fulkerson algorithm. At each step, clearly show the flow.

[8]

 (a) Construct a possible spanning tree of the graph depicted in following Figure using the Kruskal's algorithm. Show the result of each iteration of the algorithm.

[8]

4. Run the Bellman-Ford algorithm (for finding Single-source shortest-path) for the following directed graph using the vertex, z as source. In each pass relax the light edges and show the d and π values after each passes.

5. (a) There are five cities in a network. The travel time for travelling directly from i to j is the (i, j)th entry in the matrix below. The matrix is not symmetric and an infinity entry indicates that there is no direct route. Determine the least travel time and quickest route from ith city to jth city for each pair (i, j).

$$\begin{bmatrix} 0 & 10 & 20 & \infty & 17 \\ 7 & 0 & 5 & 22 & 33 \\ 14 & 13 & 0 & 15 & 27 \\ 30 & \infty & 17 & 0 & 10 \\ \infty & 15 & 12 & 8 & 0 \end{bmatrix}$$

[8]