从 DSO 来看视觉里程计

文坤

22

关于 DSO

Direct+Sparse 的结合,使得算法既能很好的适应场景,而且实时性也很好。本文档将从算法和代码的各个层面展现 DSO 算法的细节,综合各种已有的资料,力求完整详细。

目录

1	视觉	SLAM 分类	1												
	1.1	稀疏-稠密法	1												
	1.2	直接-间接法	1												
2	视觉中的数学问题 3														
	2.1	最大似然估计	3												
	2.2	边缘化	3												
	2.3	流形上的优化	3												
	2.4	Lie algebra 扰动	4												
	2.5	SE(3) 伴随矩阵	4												
	2.6	矩阵正交化	4												
3	DSO 原理														
	3.1	残差形式	7												
	3.2	参数形式	9												
	3.3	雅可比	9												
		$3.3.1$ 图像雅可比 J_I	10												
		$3.3.2$ 几何雅可比 J_{geo}	10												
	3.4	边缘化	10												
4	DSO 代码分析-前端跟踪														
	4.1	标定矫正	11												
	4.2	系统初始化	11												

	4.3	帧间跟	踪		 		 •	 	٠		٠	 •	11
5	DSC) 代码分	·析-后端	优化									13
	5.1	点的深质	度计算		 			 	•				13
		5.1.1	深度滤波	发	 			 	•				13
		5.1.2	深度优化	と	 			 	٠		•		14
	5.2	Bundle .	Adjustme	ent .	 			 	•				14
	5.3	边缘化			 			 	•		•	 •	14
6	代码	细节											15
	6.1	比例因	子		 			 					15

第1章 视觉 SLAM 分类

视觉 SLAM 可以从多个角度对其进行分类。

- 1.1 稀疏-稠密法
- 1.2 直接-间接法

第2章 视觉中的数学问题

- 2.1 最大似然估计
- 2.2 边缘化
- 2.3 流形上的优化

位置、速度定义在欧式空间,可以直接进行优化处理。在欧式空间定义,特性是对加法操作封闭,比如 $\mathbf{t}_2 = \mathbf{t}_1 + \triangle \mathbf{t}$ 。但是姿态,只对乘法操作封闭 $\mathbf{R}_2 = \triangle \mathbf{R} * \mathbf{R}_1$,需要在流形空间中进行优化。

简单说,流形是一个非线性空间,但是在局部空间内对其进行线性化,就可以用线性空间进行拟合。 对于一般的优化问题:

$$x = \underline{\lim} xx \tag{2.1}$$

在流形上优化的好处:

1、有约束优化问题转化为无约束优化问题,如 det(R)=1,有约束的优化问题会引入拉格朗日因子,优化变量维数会更高,转换李代数后,没有什么约束了,

2.4 Lie algebra 扰动

对于 $\xi \in se(3)$ 定义

$$\xi^{\wedge} = \begin{bmatrix} \rho \\ \phi \end{bmatrix} = \begin{bmatrix} \phi^{\wedge} & \rho \\ 0^{T} & 0 \end{bmatrix} \in R^{4x4}, \rho, \phi \in R^{3}$$
 (2.2)

$$\xi^{\wedge} = 1 \begin{bmatrix} \rho \\ \phi \end{bmatrix} = \begin{bmatrix} \phi^{\wedge} & \rho^{\wedge} \\ 0^{T} & \phi^{\wedge} \end{bmatrix} \in R^{4x4}, \rho, \phi \in R^{3}$$
 (2.3)

2.5 SE(3) 伴随矩阵

2.6 矩阵正交化

矩阵正交化本是矩阵问题,放在几何部分中,是因为想从几何的角度中来阐述。

本小节内容参见: https://blog.csdn.net/tengweitw/article/details/41174555、https://blog.csdn.net/tengweitw/article/details/41775545

矩阵正交投影

图中, e = b - p = b - xa, 向量 e 为投影残差 向量 a 与向量 e 垂直,

$$\mathbf{a}^T \mathbf{e} = 0 \longrightarrow \mathbf{a}^T (\mathbf{b} - x\mathbf{a}) = 0 \longrightarrow x\mathbf{a}^T \mathbf{a} = \mathbf{a}^T \mathbf{b} \longrightarrow x = \frac{\mathbf{a}^T \mathbf{b}}{\mathbf{a}^T \mathbf{a}}$$

 x 是一个标量值,刻画了向量 b 投影到向量 a 上的长度。

$$p = ax = a \frac{a^T b}{a^T a}$$

 \mathbf{P} 为投影矩阵, $\mathbf{P}\boldsymbol{b} = \boldsymbol{p}$, 则:

$$\mathbf{P} = rac{oldsymbol{a}oldsymbol{a}^T}{oldsymbol{a}^Toldsymbol{a}}$$

Gram-Schmidt 正交化

图 2.1: 向量 b 在向量 a 上的投影.

第3章 DSO 原理

3.1 残差形式

残差公式 r^k 是 Host 帧 i 到 Target 帧 j 上的匹配点的 K 的某个 patch 投影的 residual:

$$r_{ij}^{k} = r^{k}(x \boxplus \xi_{0})$$

$$= I_{j}[p'(T_{i}, T_{j}, d_{k}, c)] - b_{j} - \frac{t_{j}e^{a_{j}}}{t_{i}e^{a_{i}}}(I_{i}(p^{k}) - b_{i})$$
(3.1)

其中

$$p' = \pi(R\pi^{-1}(p, d_p) + t)$$

$$= \pi(T_j T_i^{-1} \pi^{-1}(p, d_p))$$
(3.2)

而位姿的 se(3) 表示为

$$T_j = exp(\hat{\xi}_j), T_i = exp(\hat{\xi}_i)$$
(3.3)

投影和反投影方程分别为

$$\pi(P) = \left(\frac{f_x P_x}{P_z} + c_x, \frac{f_y P_y}{P_z} + c_y\right) \tag{3.4}$$

$$\pi^{-1}(P, d_p) = (\frac{p_x - c_x d_p}{f_x}, \frac{p_y - c_y d_p}{f_y}, d_p)$$
(3.5)

注意:

- 1、残差方程中, 涉及到 i、j 两个时刻的 pose。而基于 feature point 的 slam 中只于当前时刻的 pose 相关,将全局坐标系下面的 point 转换到当前帧下计算重投影误差。
- 2、考虑了亮度值的仿射变换 a、b。

以上对应论文中的残差形式,而代码中涉及到更为细节,下面进行展开。这里考虑在优化时有两个关键帧,一个称为 Host, 一个称为 Target。取 Host 帧中的一个像素点:

$$x_H = [u_H, v_H, 1]_H^T (3.6)$$

其中 u_H, v_H 为该点的像素坐标系,使用齐次坐标为了方便矩阵运算。 同时,点的逆深度为:

$$\rho_H = \frac{1}{d_H} \tag{3.7}$$

在不考虑亮度放射变换时,点p从Host 帧 i 变换到到 Target 帧 j 上的过程为:

$$\underbrace{\rho_{T}^{-1}K^{-1}x_{T}}_{P_{W}} \underbrace{T_{HW}^{-1}\frac{1}{\rho_{H}}K^{-1}x_{H}}_{T_{W}} (3.8)$$

$$\underbrace{\rho_{T}^{-1}K_{-1}x_{T}}_{p_{T}} = \underbrace{T_{TW}T_{HW}^{-1}\frac{1}{\rho_{H}}K^{-1}x_{H}}_{p_{H}}$$

将 SE(3) 形式展开

$$T_{TH} = \begin{bmatrix} R_{TH} & t_{TH} \\ 0 & 1 \end{bmatrix} \tag{3.9}$$

代入上式得:

$$x_T = \frac{\rho_T}{\rho_H} (K R_{TH} K^{-1} x_H + K t_{TH} \rho_H)$$
 (3.10)

注:

- 1) 公式中省略了齐次坐标和非齐次坐标的转换过程。推导时请自行脑补。
- 2) 对于逆深度的操作,有些和常规习惯不同,但是代码中就是这样实现的,而且感觉挺方便的,后面会结合具体代码进行分析。

3) 公式 (3.2) 中的 p' 表示一个投影过程, 而 (3.10) 的 x_H 表示从 Host 中变换到 Target 后的一个点,二者实质是一样的。即 (3.10) 是 (3.2) 的 展开形式。

3.2 参数形式

涉及到的参数为 ξ_i 、 ξ_j 、d、c、 a_i 、 a_j 、 b_i 、 b_j 。其中 ξ_i 、 $\xi_j \in SE(3)$ 为两帧的外参,d 为 point 在其 host 帧中的深度, $c \in R^4$ 为相机的内参, a_i, a_j, b_i, b_j 分别为光照参数。

按照 Jacobian 的结构可以分为 2 类, T_i 、 T_j 、d、 $c=(f_x, f_y, c_x, c_y)$ 为 geometry 参数 δ_{geo} ,而 a_i 、 a_j 、 b_i 、 b_j 为 photometric 参数 δ_{photo} 。

每个点以某一个 pattern 来构成, pattern 形式见论文"Figure 4.**Residual pattern**"。按照层级,参数又可以分为全局属性 c、帧属性 ξ_i 、 ξ_j 、 ab_i 、 ab_j ,点属性 d_{k_i} (注意,这里是 i, 表示的是点在 host 帧下面的深度)。自变量中 d 的数量是最多。

同时,按照参数的来源的分类,即可以分为 Host 参数 (下标为 i,代码中表示为为 h)和 Target 参数 (下标为 j,代码中表示为 t)

3.3 雅可比

Jacobian 定义为:

$$J_k = \frac{\partial r^k((\delta + x) \boxplus \xi_0)}{\partial \delta} \tag{3.11}$$

论文里, 根据残差形式 (3.1) 将其划分为两部分

$$J_{k} = \left[\underbrace{\frac{\partial I_{j}}{\partial p'}}_{J_{I}} \underbrace{\frac{\partial p'(\delta + x) \boxplus \xi}{\partial \delta_{geo}}}_{J_{geo}}, \underbrace{\frac{\partial r_{k}((\delta + x) \boxplus x_{0})}{\partial \delta_{photo}}}_{J_{photo}}\right]$$
(3.12)

其中, $J_I = \frac{\partial I_j}{\partial p'} = (\frac{\partial I_j}{\partial p'_x}, \frac{\partial I_j}{\partial p'_y}) \in R_{1x2}$ 是当前像素的的亮度的梯度值在完整 DSO 中,雅可比由三部分组成:

图像雅可比 J_I , 即图像梯度;

几何雅可比 J_{geo} ,描述各量相对几何量,例如旋转和平移的变化率; 光度雅可比 J_{photo} ,描述各个量相对光度参数的雅可比;

3.3.1 图像雅可比 J_I

$$J_I = \frac{\partial I_j}{\partial p'} = \frac{\partial I_j}{\partial x_T}$$
 即图像的梯度

3.3.2 几何雅可比 J_{qeo}

对 pose 求导

几何部分包括相机的位姿和特征点的深度,需要对两部分求雅可比。 记 ξ_T 和 ξ_H 分别为 T_{TW} 、 T_{HW} 的李代数形式, 位姿部分的雅可比:

$$\frac{\partial x_H}{\partial \xi_T} = \begin{bmatrix} \rho_T f_x & 0 & -\rho_T u f_x & -u v f_x & (1+u^2) f_x & -v f_x \\ 0 & \rho_T f_y & -f_y \rho_T v & -(1+v^2) f_y & f_y u v & f_y u \end{bmatrix}$$
(3.13)

$$\frac{\partial x_H}{\partial \xi_H} = ???????? \tag{3.14}$$

对逆深度求导

再考虑对 Host 帧中的逆深度 ρ_H 的雅可比:

$$\frac{\partial x_T}{\partial \rho_H} = \begin{bmatrix} \frac{\partial x_T}{\partial u} & \frac{\partial x_T}{\partial v} \end{bmatrix} \begin{bmatrix} \frac{\partial u}{\partial \rho_H} \\ \frac{\partial v}{\partial \rho_H} \end{bmatrix}$$
(3.15)

对相机内参求导

3.4 边缘化

第4章 DSO 代码分析-前端跟踪

整个项目代码量比较大,文件很多。而且作者为了提高计算效率,优化相关的部分,很多中间结果共用,也没有采用开源的优化库 ceres、gtsam等,所有部分纯手撸。而且还进行了 SSE 加速,也没使用 OpenCV 中的算法。因此,代码及其复杂,还涉及到分厂多的参数,这些参数与作者的使用调试经验强相关。整个关键代码部分,可以分为三个部分:

- 初始化
- 帧间跟踪
- 局部优化

初始化 作者在 github 的项目主页上说到,初始化并不是很鲁棒,用户可以自己实现自己的初始化操作。

帧间跟踪 帧间跟踪主要是进行图像对齐, 计算帧间的 pose, 类似与特征点 法这种的计算 E 或者 F, 然后分解得到 Pose 的过程。

局部优化 局部优化中做的事儿就有点儿多了,重头戏。

4.1 标定矫正

4.2 系统初始化

4.3 帧间跟踪

DSO 中帧间跟踪时,只计算当前帧与前一个关键帧间的 pose。 完成粗跟踪的类是 CoarseTracker, 该类在 FullSystem 中共有两个对象,分别

是 coarseTracker_forNewKF、coarseTracker。

二者的区别是:

coarseTracker_forNewKF: 更新存储关键帧的信息,包括 refFrameID 信息,在 makeKeyFrame() 函数中完成,且是在完成关键帧之后和边缘化之前;

coarseTracker: 所有帧的跟踪,新帧到来时,若 coarseTracker_forNewKF中的 refFrameID 被更新 (即是否比 coarseTracker 中的大),就将 coarseTracker_forNewKF 赋给 coarseTracker。若没有,coarseTracker 维持之前的状态,即最后一个 keyframe。

第5章 DSO 代码分析-后端优化

后端优化在 makeKeyFrame() 中, 依次有十几项步骤:

5.1 点的深度计算

关键点的深度的计算都在后端完成,前端之负责计算两帧间的 pose 的初值。分为两步:

- 1) 通过深度滤波器更新点的深度范围,直到点的深度收敛,作为深度的初信。
- 2) 在完成帧间 pose 的优化后,进一步优化点的深度值。

5.1.1 深度滤波

通过深度滤波器完成深度范围的更新,在函数 ImmaturePoint::traceOn()中,主要维持两个变量:idepth_min、idepth_min。将点投影到 Target 帧中,形成对应的两个点 ptpMin、ptpMax,如果两个点的距离小于一定的阈值,则认为该点深度收敛:

Listing 5.1 ImmaturePoint::traceOn()

```
1: Vec3f pr = hostToFrame_KRKi * Vec3f(u,v, 1);
2: Vec3f ptpMin = pr + hostToFrame_Kt*idepth_min;
3: .....
4: Vec3f ptpMax;
5: ptpMax = pr + hostToFrame_Kt*idepth_max;
6: .....
7: if(!(uMax > 4 && vMax > 4 && uMax < wG[0]-5 && vMax < hG[0]-5))
8: {
9: if(debugPrint) printf("OOB_uMax_U\%f_U\%f_U\-\%f_U\%f!\n",u,v, uMax, vMax);
10: lastTraceUV = Vec2f(-1,-1);
11: lastTracePixelInterval=0;
```

```
12:
13: return lastTraceStatus = ImmaturePointStatus::IPS_00B;
14: }
```

对深度进行深度更新:

$$u - \delta e dx = \frac{(pr + \rho_{min}Kt)[0]}{(pr + \rho_{min}Kt)[2]}$$

$$u + \delta e dx = \frac{(pr + \rho_{max}Kt)[0]}{(pr + \rho_{max}Kt)[2]}$$
(5.1)

式中, $pr = KR_{TH}K^{-1} * p_H$ 是点从 Host 帧中旋转到 Target 帧后的样子 (即 Point Rotation 的简写),未考虑平移。平移和深度相关,深度相关的 和前面重点强调的是一样的。变形后得到代码中的形式:

$$\rho_{min} = \frac{(pr[2] * (u - \delta e dx) - pr[0]}{(kt)[0] - (Kt)[2] * (u - \delta e dx)}
\rho_{max} = \frac{(pr[2] * (u + \delta e dx) - pr[0]}{(kt)[0] - (Kt)[2] * (u + \delta e dx)}$$
(5.2)

5.1.2 深度优化

在优化时,会专门对深度进行优化

5.2 Bundle Adjustment

这一部分是整篇中最为核心的地方。作者将 Hessian 矩阵分为 active、linear、marginal 三部分。在 AccumulatedTopHessianSSE::addPoint() 函数中,模板参数 mode 的值 0、1、2 分别表示 active、linearized、marginalize。但是经测试 linearized 下面的实际部分并未执行,作者在逻辑中将其屏蔽掉了。

active 部分

marginal 部分

5.3 边缘化

第6章 代码细节

6.1 比例因子

代码中好多地方出现比例因子,这些因子作用是提高求解方程式

$$H \triangle x = b$$

的数值稳定性和精确度.

出现的地方:

- 1、方程求解的过程中
- 2、FrameHessian 中