Mathematics for Computer Science: Category Theory Tutorial Sheet

September 2025

- 1. Do sets and **injective** maps form a category? What about sets and strict inclusions?
- 2. Consider the set of **bracketed** words on some alphabet $\{e, a_1, a_2, \dots a_n\}$ where, for any word w, we have that we = ew = w. Define

$$Hom(w_1, w_2) = \{ u \mid (w_1)(u) = w_2 \}$$

Define $u \circ v = (v)(u)$ Does this form a category? What about **unbracketed** words?

- 3. A unital monoid is a set X equipped with a binary operation $X \times X \to X$ that is associative and which has an identity element.
 - (a) Show that a vector space V and the map $+: V \times V \to V$ is a monoid. What is its identity element?
 - (b) Show that a vector space V and all linear maps $V \to V$ form a 1-object category.
 - (c) Show that there is a one-to-one correspondence between unital monoids and categories with one element.
- 4. A morphism $f: X \to Y$ in a category \mathcal{C} is called **constant** if

$$f \circ a = f \circ b$$

for all morphisms $a, b \colon A \to X$. Constant morphisms are often what we expect, but not always.

(a) Show that constant morphisms in **Set** are precisely the constant maps, that is, maps $f: X \to Y$ with f(u) = f(v) for all $u, v \in X$.

- (b) Show that if Y has at least one element, then $f: X \to Y$ is constant if and only if there is an element $a \in Y$ with f(u) = a for all $u \in X$.
- (c) Show that there is exactly one constant morphism between objects in **Set**_•.
- 5. Is the forgetful functor $\mathbf{Vect} \to \mathbf{Set}$ faithful? Can you obtain every map of sets this way?
- 6. Let C be a category. An **isomorphism** $f: A \to B$ is a morphism such that there exists a morphism $g: B \to A$ such that $f \circ g = \mathrm{id}_B$ and $g \circ f = \mathrm{id}_A$. Show that functors preserve isomorphisms.
- 7. Let X be a set. We denote by $\mathcal{P}(X)$ the **powerset** of X, that is, the set of all subsets of X. Analogously, we denote by $\mathcal{P}_f(X)$ the **finite powerset**, given by

$$\mathcal{P}_f(X) = \{ U \subseteq X \mid U \text{ finite } \}.$$

Show that both \mathcal{P} and \mathcal{P}_f give rise to functors

$$\mathbf{Set} \to \mathbf{Set}.$$

8. What linear transformations are of the form F(f) for $f: X \to Y$ for the free functor $F: \mathsf{Set} \to \mathsf{Vect}$. Hint: Express it in terms of matrices.