Final

NAME: SID:

The exam lasts 3 hours. The maximum number of points is 40. Notes are not allowed except for a two-sided cheat sheet of regular format.

This booklet is 12 pages total, with extra blank spaces allotted throughout, and 2 blank pages at the end, left for you to write your answers.

There are **four** separate problems, arranged in increasing order of difficulty. All the questions in this exam can be solved independently of each other.

1. (10 points) A project consisting of n different tasks can be represented as a directed graph with n arcs and m nodes. The arcs represent the tasks. The nodes represent precedence relations: If arc k starts at node i and arc j ends at node i, then task k cannot start before task j is completed. Node 1 only has outgoing arcs. These arcs represent tasks that can start immediately and in parallel. Node m only has incoming arcs. When the tasks represented by these arcs are completed, the entire project is completed.

We can fully describe the network with the so-called arc-node incidence matrix, which is the $m \times n$ matrix defined as

$$A_{ij} = \begin{cases} 1 & \text{if arc } j \text{ starts at node } i, \\ -1 & \text{if arc } j \text{ ends at node } i, \\ 0 & \text{otherwise.} \end{cases}, \quad 1 \le i \le m, \quad 1 \le j \le n.$$

We are interested in computing an optimal schedule, that is, in assigning an optimal start time and a duration to each task. The variables in the problem are are $v \in \mathbf{R}^m$, $y \in \mathbf{R}^n$, which are defined as follows.

- y_k is the duration of task k, for k = 1, ..., n. The variables y_k must satisfy the constraints $\alpha_k \leq y_k \leq \beta_k$. We also assume that the cost of completing task k in time y_k is given by $c_k(\beta_k y_k)$. This means there is no cost if we we use the maximum allowable time β_k to complete the task, but we have to pay if we want the task finished more quickly.
- v_j is an upper bound on the completion times of all tasks associated with arcs that end at node j. Thus, these variables must satisfy the relations

```
v_j \ge v_i + y_k if arc k starts at node i and ends at node j.
```

Our goal is to minimize the sum of the completion times of the entire project, plus the total cost. Formulate the problem as an LP.

2. (10 points) A retailer wishes to optimize the prices of its products based on estimated demand (estimated amount of sales). The demand D_i for product $i \in \{1, ..., n\}$ is modeled as

$$D_i(p_i) = b_i - g_i(p_i - p_i^r)$$

where p_i is the price of the product, p_i^r is a reference price (say, the manufacturer's suggested price), b_i is the corresponding demand, and $g_i > 0$ is a "price sensitivity". (The model assumes that the demand decreases as price increases, which is usually the case.) For a vector of prices $p \in \mathbb{R}^n$, the revenue is given by $R(p) := p^T D(p)$, and the profit if $P(p) := (p - p^0)^T D(p)$, with p^0 the vector of purchase prices. The pricing problem is to maximize revenue, subject to non-negativity of the price vector; a lower bound P_{low} on the profit; and inventory constraints, which translate as upper and lower bounds D_{up} , D_{low} on the demand.

- (a) Show how to formulate the problem as an optimization problem. Make sure to define precisely the constraints, the variables, and the objective function.
- (b) Is the problem you have obtained convex? Discuss.

3. (10 points) We consider a portfolio optimization problem, of the form

$$p^* = \max_{w \in \mathcal{W}} \hat{r}^T w - \frac{1}{2} w^T D w,$$

where $\hat{r} \in \mathbf{R}^n$ is the vector of expected returns of n different assets (e.g., stocks), and $D = \mathbf{diag}(\sigma_1^2, \dots, \sigma_n^2)$ the (diagonal) covariance matrix, with $\sigma_i > 0$ the corresponding standard deviation of asset i. Here, $w \in \mathbf{R}^n$ is a vector that contains the proportions of a given budget to be allocated to each asset, and $\mathcal{W} = \{w \geq 0 : w^T \mathbf{1} = 1\}$, with $\mathbf{1}$ the vector of ones.

(a) Show that, for any scalars $\rho \in \mathbf{R}$ and $\sigma > 0$, we have

$$\psi := \max_{\omega > 0} \rho \omega - \frac{\sigma^2}{2} \omega^2 = \frac{1}{2\sigma^2} \rho_+^2,$$

where $\rho_+ = \max(0, \rho)$, and with *unique* optimal point $\omega^* = \rho_+/\sigma^2$. Carefully argue your proof. *Hint:* distinguish the case $\rho \leq 0$ from $\rho > 0$, and for each case, show that the RHS is an upper bound, and that it is attained.

(b) Using duality, with the Lagrangian

$$\mathcal{L}(w,\nu) = \hat{r}^T w - \frac{1}{2} w^T D w + \nu \left(1 - w^T \mathbf{1} \right)$$

show that the optimal value p^* can be expressed as the optimal value of a one-dimensional problem:

$$p^* = \min_{\nu} \nu + \frac{1}{2} \sum_{i=1}^{n} \frac{(r_i - \nu)_+^2}{\sigma_i^2}.$$

Make sure to justify any use of strong duality. Hint: use part 3a.

- (c) Explain how to recover a primal optimal point w^* based on a dual optimal point ν^* .
- (d) This is a bonus question, worth an extra 5 points. Assume that the covariance matrix is not diagonal anymore, but of the form $C = D + ff^T$, with $f \in \mathbf{R}^n$. Show that the problem can be reduced to a two-dimensional problem, which you will detail.

4. (10 points) Let $A \in \mathbf{R}^{m \times n}$, $y \in \mathbf{R}^m$ and $\mu > 0$. Consider the problem

$$\min_{x} \|Ax - y\|_1 + \mu \|x\|_2.$$

- (a) Express the problem in standard SOCP format.
- (b) Find a dual to the problem. *Hint:* use the fact that, for any vector z:

$$\max_{u: \|u\|_2 \le 1} u^T z = \|z\|_2, \quad \max_{u: \|u\|_{\infty} \le 1} u^T z = \|z\|_1.$$

- (c) Does strong duality hold? *Hint:* apply Sion's theorem.
- (d) Assume A is 100×10^6 . Which problem would you solve, the primal or the dual? Justify your answer carefully.

EXTRA SPACE