Question 2.10.29

Al25BTECH11040 - Vivaan Parashar

September 19, 2025

Question:

The volume of the parallelopiped whose sides are given by $OA = 2\mathbf{i} - 2\mathbf{j}$, $OB = \mathbf{i} + \mathbf{j} - \mathbf{k}$, $OC = 3\mathbf{i} - \mathbf{k}$, is

Solution:

Let's define the position vectors **a**, **b** and **c** as follows:

$$\mathbf{a} = \begin{pmatrix} 2 \\ -2 \\ 0 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} 3 \\ 0 \\ -1 \end{pmatrix} \tag{1}$$

To find the volume of the parallelopiped, we use the scalar triple product formula:

$$V = |\det((\mathbf{a}\,\mathbf{b}\,\mathbf{c}))|, \text{ where} \tag{3}$$

$$\therefore V = \left| \det \left(\begin{pmatrix} 2 & 1 & 3 \\ -2 & 1 & 0 \\ 0 & -1 & -1 \end{pmatrix} \right) \right| \tag{4}$$

$$\therefore V = 2 \tag{5}$$

Plot:

Figure: Parallelopiped formed by vectors OA, OB and OC