EE240: Circuits-I (Section 2)Fall 2016-2017

Course Catalog Description

The course provides an introduction to circuit analysis. Topics covered include introduction to passive components (R, L, C), independent and controlled energy sources, lumped parameter models, conventions for describing networks, analysis and solution of first order and second order circuits, determination of initial conditions in these circuits and their transient and steady state responses. Students also learn Laplace transform and its application in solving circuits.

Course Details			
Credit Hours	3		
Core	Core Course for Electrical Engineering		
Elective			
Open for Student Category	BS students		
Closed for Student Category			

Course Prerequisite(s)/Co-Requisite(s)	
Pre-requisites: MATH-101 Calculus-1	
Co-requisites: None	

Course Offering Details						
Lecture(s)	Nbr of Lec(s) Per Week	2	Duration	75 min	Timings	
					and Venue	
Recitation (per week)	Nbr of Rec (s) Per	х	Duration			
	Week					
Lab (if any) per week	Nbr of Session(s) Per	х	Duration			
	Week					
Tutorial (per week)	Nbr of Tut(s) Per	2	Duration	75 min		
	Week					

Instructor	Nauman Ahmad Zaffar
Room No.	9-313A
Office Hours	TBD
Email	nauman.zaffar@lums.edu.pk
Telephone	042-35608311
TA	TBD
TA Office Hours	TBD
Course URL (if any)	LMS

The students should be able to: Derive and apply working principle of passive components R, L,C and independent and controlled energy sources for device and circuit
nodeling and analysis Demonstrate the understanding and use of component and network conventions and network topology Formulate network equations based on the understanding of Krichhoff's voltage and current laws
Analyze first and second order switched circuits for their initial and final condition, transient response etc. Solve switched linear networks up to second order using initial conditions
De De Fo

Relation to	Relation to EE Program Outcomes				
EE-240 CLOs	Related PLOs	Levels of Learning	Teaching Methods	CLO Attainment checked in	
CLO1	PLO1	Cog-3	Instruction, Tutorial, Assignments	Midterm, Final	
CLO2	PLO1	Cog-3	Instruction, Tutorial, Assignments	Midterm, Final	
CLO3	PLO1	Cog-3	Instruction, Tutorial, Assignments	Midterm, Final	
CLO4	PLO2	Cog-4	Instruction, Tutorial, Assignments	Final	
CLO5	PLO2	Cog-4	Instruction, Tutorial, Assignments	Final	

Grading Breakup and Policy

Class quizzes: (4-5 announced & 2-3 un-announced quizzes): 20% - Best 5

Assignments: (5 nos.): 5%

Tutorials: (Ungraded sessions for problem solving): 2 x 60min sessions per week

Midterm exam: 35% Final exam: 40%

Course Overv	iew			
Week No.	Book Chapter	Topic	Book sections	Related CLOs & Additional Remarks
		Course introduction	1-1	
		Charge and Energy	1-2	
		Relationship of field and circuit concepts	1-3	
	1	The Capacitance parameter	1-4	CLO1
1	Development of the circuit	The Inductance parameter	1-5	3 lectures
	concept	The Resistance parameter	1-6	3 lectures
		Units, scaling, and circuit interpretation of	1-7	
2		physical systems	1-8	
	2	Reference directions for current and voltage,	2-1	CLO1, CLO2
	Conventions for describing	Active element conventions,	2-2	3 lectures

3	networks	The dot convention for coupled circuits	2-3	
		Topological description of networks	2-4	
		Kirchhoff's laws,	3-1	
		The number of network equations	3-2	
		Source transformations,	3-3	
		Examples of formulation of network equations	3-4	
		Examples of formulation of network	3-4	
		equationscont.,	3- 4 3-5	
4,5,6		Loop variable analysis	3-3	
	3	Node variable analysis,	3-6	CLO3
	Network equations	Determinants: Minors and the Gauss elimination	3-7	7 lectures
		method	3 /	
		Additional examples of:		
		Solving networks with active dependent sources	additional	
		Solving networks with super nodes	readings	
		Loop analysis with current loops		
		Duality,	3-8	
_		State variable analysis	3-9	
7		General and particular solutions,	4-1	
		Time constants	4-2	
8,9	4 First-order differential	The integrating factor	4-3	CLO4, CLO5 6 lectures & Midterm
equations		Midterm exam (in class)	All covered	
		Mara complicated naturalist Therronin and	4-4 and	
10		More complicated networks; Thevenin and Norton equivalent of resistive networks	additional	
		Norton equivalent of resistive networks	material	
		Why study initial conditions,	5-1	
		Initial conditions in elements	5-2	CLO4
\neg	5	Geometrical interpretation of derivatives,	5-3	4 lectures
11	Initial conditions in	Procedure for evaluating initial conditions	5-3 5-4	+ lectures
	networks	1 Toccuare for evaluating initial conditions		Review of midterm exam in
	networks	Initial state of a network	5-5 and	tutorial
12		initial state of a network	additional	13.13.13.
			material	
		Second order equation: Internal Excitation	6-1	
13,14	6 Differential equations,	Networks excited by external energy sources	6-3	CLO5
,	continued	Response as related to the s-plane location of	6-4	- 5 lectures
		roots	0 4	

Textbook(s)/Supplementary Readings

Textbook

Network Analysis, 3rd edition, by M. E. Van Valkenburg, Pearson Education or PHI

Additional/Supplementary Reading:

The Analysis and Design of Linear Circuits by R E Thomas, A J Rosa and G J Toussaint, John Wiley, 6th Edition, 2000

Electric Circuits Fundamentals by S Franco, Oxford University Press, 2002

Basic Engineering Circuit Analysis by J D Irwin and R M Nelms, Wiley, 9th Edition, 2008

Photocopy of relevant sections of notes from Prof. Abidi's workshop and other material indicated in the class.

Examination De	xamination Detail		
Midterm Exam	Yes/No: Yes Combine Separate: Combine Duration: 180 minutes Preferred Date: TBA Exam Specifications: TBA		
Final Exam	Yes/No: Yes Combine Separate: Combine Duration: 180 minutes Exam Specifications: TBA		

Prepared and Revised by:	Nadeem Ahmad Khan	
Revision Date:	14 June 2016	