Bellekler

Bellek Hücresi (ing:Memory Cell)

- Bir adet D-flip-flop bir bitlik bilgi tutar.
- Saat sinyali verildiğinde
 - Preset=1, Clear=0 ise "1" bilgisi saklanır.
 - Preset=0, Clear=1 ise "0" bilgisi saklanır.
- Ya da yine saat sinyali verildiğinde
 - D=1 ise "1" bilgisi saklanır.
 - D=0 ise "0" kaydedilir.
- Saat sinyali değişmediği sürece içeride ne varsa o saklanır.

Bellek Hücresi (ing:Memory Cell)

- Bir adet D-flip-flop bir bitlik bilgi tutar.
- Saat sinyali değişmediği sürece içeride ne varsa o saklanır.
- 6 transistor olması önemli...
 - Maliyetli olmasının nedenidir.

Hücre Dizileri

Adres dağıtımı

Örneğin bilgisayarınızda 8GB bellek olsun, resimdeki belleklerden iki adet kart takılı olduğunu biliyorsunuz. 4GB+4GB = 8GB: 2^3x2^30 → 33 bit adres uzayı.

Her kartta 8 ön yüzde, 8 arka yüzde aynı boyda entegre görünüyor. O halde her biri 4GB/16 = 256MB tutuyor. 256MB: $2^8x2^20 \rightarrow 28$ bit adrestir.

Adres şöyle dağıtılır:

4 bit 28 bit: 256 MB için

Kart Entegre Ulaşılmak istenen byte için için seçim

1bit için

SRAM / DRAM / ROM / EEPROM

- SRAM (statik) durağan rastgele erişimli bir bellektir.
- SDRAM ise dinamik rastgele erişimli bir bellektir.
- "Durağan" demek sürekli tazelenmiyor demek, enerji verildiği sürece içeriğini korur → SRAM = Ön bellek (ing:cache)
- "Dinamik" belleğin sürekli tazelenmesi gerekiyor
 - → DRAM = Ana bellek
- ROM (Read Only Memory) yazılamaz bellektir, sadece okunur.
- EEPROM elektronik olarak yazılabilen, istemezsek silinmeyen bir bellektir.
 - → EEPROM = Bios belleği

SDRAM (Synchronous Dynamic Random Access Memory)

- "Synchronous" yani senkron DRAM belleğinin davranışını açıklar.
- 1996 sonlarında, SDRAM sistemlerde görülmeye başlamıştır.
- Önceki teknolojilerin aksine, SDRAM kendini CPU'nun saatine senkronize edecek şekilde dizayn edilmiştir.
- Böylece bellek kontrol ünitesi istenen verinin tam olarak kaç saat sinyalinde hazır olacağını bilir, CPU da bellek erişimleri arasında fazla beklememiş olur.
 - Mesela eski, PC66 SDRAM, 66 MT/sn (saniyedeki milyon transfer sayısı) ile çalışırken, PC100 SDRAM, 100 MT/sn, PC133 SDRAM, 133 MT/sn ile çalışırlar.
- SDRAM belleklere I/O, bellek iç saati ve bus saati eşit olunca SDR SDRAM (Single Data Rate SDRAM) deniliyor.
 - Mesela I/O, iç saat ve bus saatinin hepsinin 133 Mhz olması (PC133).
- Yani Single Data Rate demek bir saat sinyalinde okuma veya yazma yapabilir demektir.
- Normal SDRAM her okuma/yazma operasyonu arasında biraz bekler.
 - 24 ile 50 saat sinyali kadar!

DDR SDRAM (Double Data Rate SDRAM)

- SDRAM'lerin bir sonraki DDR'lardır.
- SDRAM'ler saat sinyali düşerken veri yolluyordu, DDR ise hem düşerken hem de çıkarken veri yollayarak (çift besleme) daha yüksek bant genişliği sağlarlar.
- Bu demektir ki iç frekansa dokunmadan iki kat veri transfer hızına çıkıldı.
- DDR SDRAM, SDR SDRAM'de 1 olan tampon belleği (ing:prefetch buffer)
 2 bite çıkartan ilk yapı oldu.
- DDR'ın transfer hızları 266~400 MT/sn aralığındadır.
 - DDR266 ve DDR400 bu tiplere örnektir.

DDR2 SDRAM(Double Data Rate Two SDRAM)

- DDR SDRAM'ın dış bus hızı ikiye katlanarak bu bellek üretilmiştir.
- Bus sinyali geliştirilerek bunu elde ettiler.
- "Prefetch buffer" 4 bit oldu (2xDDR SDRAM).
- DDR2 belleğin iç hızı hala aynıdır (133~200MHz), yani DDR gibi...
- Ancak geliştirilen I/O sinyali sayesinde DDR'nin transfer hızı 533~800 MT/sn oldu.
- DDR2 533 ve DDR2 800 bellek tipleri buna örnektir.

DDR3 SDRAM(Double Data Rate Three SDRAM)

- DDR3'ün en önemli katkısı DDR2'lerdeki güç kullanımını 40% azaltmasıdır, bunu da hem akımı, hem de gerilimi azaltarak yaptılar.
 - Kullanılan gerilim 1.5 V (DDR2'da 1.8 V, DDR'da 2.5 V idi).
- DDR3'ün transfer hızları 800~1600 MT/sn oldu. Çünkü DDR3'ün "prefetch buffer" genişliği 8 bit yapıldı.
 - DDR2'da 4 bit, DDR'da 2 bit idi.
- Ayrıca DDR3 ile iki yeni fonksiyon geldi.
 - ASR (Automatic Self-Refresh) ve
 - SRT (Self-Refresh Temperature).
- Böylece değişen sıcaklıklara göre kendi tazeleme frekansını ayarlayan bir bellek kontrol ünitemiz oldu.

DDR4 SDRAM (Double Data Rate Fourth SDRAM)

- DDR4 SDRAM ile de en düşük voltaj (1.2V) ve en yüksek transfer oranlarına ulaşılmıştır.
- DDR4'ün transfer oranları 2133~3200 MT/sn'dir.
- DDR4 ile dört yeni "Bank Groups" teknolojisi eklenmiştir.
- Her bellek bank grubu tek başına çalışabiliyor.
- DDR4 kendi bir iç saat sinyalinde 4 veri işleyebiliyor, bu yüzden de DDR3'ten çok hızlı.
- DDR4 ayrıca yeni fonksiyonlar getiriyor
 - DBI (Data Bus Inversion),
 - CRC (Cyclic Redundancy Check) hata tespiti ve
 - CA parity.

DDR5?

- Evet var tabi, ancak şu an grafik kartlarında kullanılıyor.
- 2020 yılına dek yaygınlaşması beklenmiyor.
- Transfer hızları 6000-7000 MT/sn olacak.

Özet Tablo

DDR SDRAM Standard	Internal rate (MHz)	Bus clock (MHz)	Prefetch	Data rate (MT/s)	Transfer rate (GB/s)	Voltage (V)		
SDRAM	100-166	100-166	1n	100-166	0.8-1.3	3.3		
DDR	133-200	133-200	2n	266-400	2.1-3.2	2.5/2.6		
DDR2	133-200	266-400	4n	533-800	4.2-6.4	1.8		
DDR3	133-200	533-800	8n	1066-1600	8.5-14.9	1.35/1.5		
DDR4	133-200	1066-1600	8n	2133-3200	17-21.3	1.2		

DRAM İçinde Bir Bitin Seçimi

- Satır seçicisi (ing:row decoder) 16K satırdan birisini seçer.
- Kolon seçici bu satırda bir biti seçer.
- Yenileme işlemi DRAM'a ulaşmanıza engel olur (tipik oran ulaşılan sürenin %1-5'idir)
- Bir biti bile okumak o satırın tazelenmesini sağlar.
- Okuma işleminin bozucu bir etkisi de var. Bu yüzden okunan veri geri yazılmalıdır.
 - İç saat sinyali süresi ulaşım zamanından açık şekilde fazladır.
 - 200 Mhz = 50nsn saat sinyali, 13.5nsn ulaşım zamanı.

Ana Belleklerin Arka Planı

- Ana belleğin performansı şunlara bağlıdır:
 - Gecikme / Latency: Cache'de yoksa ana belleğe bakılır
 - Ulaşım zamanı: Veri isteği ile yerinin bulunması aralığı
 - Saat süresi: istekler arasında olması gereken minimum süre
 - Bant genişliği: Tüm I/O'larda büyük transferlerin en önemli etkeni
- Ana belleklerimiz DRAM'dir : Dinamik RAM
 - Dinamik çünkü sürekli tazelenmesi gerekiyor.
 - Bit başına 1 transistor.
 - Adresler hep ikiye bölünüyor (Satır/Sütun)
- Cache SRAM kullanır: Statik RAM
 - Tazeleme gerektirmez
 - Bit başına 6 transistör. 10 kat fazla yer gerekiyor.
 - Adresler bölünmeden kullanılıyor.

Performans Üzerine Detaylar

- Kolon seçimi belli bir nano saniye sürüyor, bu da performansı olumsuz yönde etkiliyor.
- Teknolojisi ne kadar değişse de SDRAM 'lerde 24 nano olan bu hız DDR4 'te ancak 13.5 nano saniyeye düştü.
- 1GHz CPU hızı olan SDRAM kullanan makine için bekleme 24 saat sinyali iken.
 - $-1GHz = 1nsn \rightarrow 24nsn / 1 nsn$
- 4Ghz yeni bir CPU'da DDR4 kullanılsa bile bekleme 54 saat sinyaline çıkıyor. Nasıl yani? Çünkü bellek iç hızları en fazla 200Mhz'e sabitlemiş.
 - $-4Ghz = 1/4 nsn \rightarrow 13.5nsn / 0.25nsn = 54$
 - Aslında bellekler hızlanmış ve eskisine göre neredeyse yarısı kadar sürede cevap veriyorlar ama CPU açısından bellek çok yavaş kaldı.
- Tabi tek performans kriteri bu değil ki...
- Over-clock yapılan bellekler hızlı çalışıyor.
- Bir kez bulunan adresteki bilgi bant genişliği yüksek bus ile hızla iletiliyor.
- Sonraki slaytlardaki "interleave" de cache-ana bellek arası hızı etkiliyor.
- Cache ana bellekle iletişimi azaltıp, sisteme çok hız katıyor.

CL Değerlerinin RAM GHz'lerine Göre Performansı

*		DDR Frequency (MHz)																				
CL	2133	2400	2666	2800	3000	3200	3333	3400	3466	3600	3733	3866	4000	4133	4200	4266	4600	4800	5000	5133	5200	5600
7	6.56	5.83	5.25	5.00	4.67	4.38	4.20	4.12	4.04	3.89	3.75	3.62	3.50	3.39	3.33	3.28	3.04	2.92	2.80	2.73	2.69	2.50
8	7.50	6.67	6.00	5.71	5.33	5.00	4.80	4.71	4.62	4.44	4.29	4.14	4.00	3.87	3.81	3.75	3.48	3.33	3.20	3.12	3.08	2.86
9	8.44	7.50	6.75	6.43	6.00	5.63	5.40	5.29	5.19	5.00	4.82	4.66	4.50	4.36	4.29	4.22	3.91	3.75	3.60	3.51	3.46	3.21
10	9.38	8.33	7.50	7.14	6.67	6.25	6.00	5.88	5.77	5.56	5.36	5.17	5.00	4.84	4.76	4.69	4.35	4.17	4.00	3.90	3.85	3.57
11	10.31	9.17	8.25	7.86	7.33	6.88	6.60	6.47	6.35	6.11	5.89	5.69	5.50	5.32	5.24	5.16	4.78	4.58	4.40	4.29	4.23	3.93
12	11.25	10.00	9.00	8.57	8.00	7.50	7.20	7.06	6.92	6.67	6.43	6.21	6.00	5.81	5.71	5.63	5.22	5.00	4.80	4.68	4.62	4.29
13	12.19	10.83	9.75	9.29	8.67	8.13	7.80	7.65	7.50	7.22	6.96	6.73	6.50	6.29	6.19	6.09	5.65	5.42	5.20	5.07	5.00	4.64
14	13.13	11.67	10.50	10.00	9.33	8.75	8.40	8.24	8.08	7.78	7.50	7.24	7.00	6.77	6.67	6.56	6.09	5.83	5.60	5.45	5.38	5.00
15	14.06	12.50	11.25	10.71	10.00	9.38	9.00	8.82	8.66	8.33	8.04	7.76	7.50	7.26	7.14	7.03	6.52	6.25	6.00	5.84	5.77	5.36
16	15.00	13.33	12.00	11.43	10.67	10.00	9.60	9.41	9.23	8.89	8.57	8.28	8.00	7.74	7.62	7.50	6.96	6.67	6.40	6.23	6.15	5.71
17	15.94	14.17	12.75	12.14	11.33	10.63	10.20	10.00	9.81	9.44	9.11	8.79	8.50	8.23	8.10	7.97	7.39	7.08	6.80	6.62	6.54	6.07
18	16.88	15.00	13.50	12.86	12.00	11.25	10.80	10.59	10.39	10.00	9.64	9.31	9.00	8.71	8.57	8.44	7.83	7.50	7.20	7.01	6.92	6.43
19	17.82	15.83	14.25	13.57	12.67	11.88	11.40	11.18	10.96	10.56	10.18	9.83	9.50	9.19	9.05	8.91	8.26	7.92	7.60	7.40	7.31	6.79
20	18.75	16.67	15.00	14.29	13.33	12.50	12.00	11.76	11.54	11.11	10.72	10.35	10.00	9.68	9.52	9.38	8.70	8.33	8.00	7.79	7.69	7.14
21	19.69	17.50	15.75	15.00	14.00	13.13	12.60	12.35	12.12	11.67	11.25	10.86	10.50	10.16	10.00	9.85	9.13	8.75	8.40	8.18	8.08	7.50
22	20.63	18.33	16.50	15.71	14.67	13.75	13.20	12.94	12.69	12.22	11.79	11.38	11.00	10.65	10.48	10.31	9.57	9.17	8.80	8.57	8.46	7.86
23	21.57	19.17	17.25	16.43	15.33	14.38	13.80	13.53	13.27	12.78	12.32	11.90	11.50	11.13	10.95	10.78	10.00	9.58	9.20	8.96	8.85	8.21
24	22.50	20.00	18.00	17.14	16.00	15.00	14.40	14.12	13.85	13.33	12.86	12.42	12.00	11.61	11.43	11.25	10.43	10.00	9.60	9.35	9.23	8.57

RATE: Memory clock frequency in MHz

CL: CAS Latency - It tells us how many clock cycles the memory will delay to return requested data.

First Word (ns) How much nanoseconds takes to return data after data request

DDR4 - DDR3

- a. One-word-wide memory organization
- Interleaved: CPU, Cache, Bus 1 word: Memory N Modules
 (4 Modules); example is word interleaved

Memory organization would have significant effect on bandwidth

Memory Interleaving

Temel bellek donanım yapısı

- CPU içerisindeki register'lara genellikle bir cycle ile erişilebilmektedir.
- Hafızaya erişim bus üzerinden yapılır ve register'a göre oldukça uzun süre gerektirir.
 - Belleğin MHz değeri kadar, CAS değeri de önemli.
 - DDR 3 CAS 7-9 nano sn iyidir. DDR4'te 18ns var.
 - Intel-i7 için toplamda (L3'e sorma) 42 saat sinyali + (Bellek gecikmesi)
 87ns.
 - CPU için >100 saat sinyali...
- Hafıza ile CPU arasına çok daha hızlı ve CPU'ya yakın bir saklama alanı oluşturulur (cache).
 - Intel-i7 için L1'de 4-5 saat sinyali. L2:13, L3:42