

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous College Affiliated to University of Mumbai)

Reexamination Synoptic

Jan 2020

Max. Marks: 60 Class: S.E.

Course Code: IT41 / CE41

Name of the Course: Design And Analysis of Algorithm

Duration: 3 Hrs Semester: IV

Branch: IT/COMP

Instructions:

(1) All Questions are Compulsory

(2) Draw neat diagrams

(3) Assume suitable data if necessary.

No.	Question									Max. Marks	CO- BL- PI				
Q. 1 a)	Define Big O, Big Ω and explain with diagram. Synoptic: For each definition with diagram2.5 Mark									5	1-1- 2.1.3				
Q. 1 b)	Solve the given recurrence using Master Method Theorem: i) $T(n) = 4T(n/2) + n^2$ ans $\rightarrow T(n) = \Theta(n^2 \log n)$ ii) $T(n) = 3T(n/3) + n/2$ ans $\rightarrow T(n) = \Theta(n \log n)$ Synoptic: For each problem2.5 Marks									5	1-3-2.1.2				
Q. 1 c)	Write an algorithm for Binary Search. Explain with example. Comment on its time complexity. Synoptic: algorithm2 marks, Example: 2 Marks Time Complexity1 mark								5	2-2-2.1.3					
Q. 2 a)	Solve the following 0/1 knapsack problem with dynamic Programming There are 5 Objects O1,O2,O3,O4,O5. Their corresponding details are given below. Weights : 2,3,3,4,6 Kg Values/profit : 1, 2, 5, 9, 4 Rs. Knapsack Capacity (M) = 10 Kgs. Calculate Maximum profit and Show which objects will be selected Ans:												ing letails		
		0	. 1	2	3	4	5	6	7	. 8	9	10		0	3-3-
	2(1)	0	0	1	1	1	1	1	1	1	1	1		8	2.2.3
	3(2)	0	0	1	2	2	3	3	3	3	3	3			
	3(5)	0	0	1	5	5	6	7	7	8	8	8			
	4(9)	0	0	1	5	9	9	10	14	14	15	16			
	6(4)	0	0	1	5	9	9	10	14	14	15	16			

Sardar Patel Institute of Technology
Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India
(Autonomous College Affiliated to University of Mumbai)

Q2. b)	Consider the C.11				
Q2. U)	Consider the following set of frequencies. A=1, B=2, C=3, D=4, E=5, F=6, G=7 Find the Huffman code for the same. Synoptic: For each letter correct coding: 1 Marks	7	4-3-		
Q.3 a)	State algorithm for finding Longest common Subsequence. (LCS). Find Longest common subsequence for following problem Str1 = ABBCDEB Str2 = BAABCEB Synoptic: For Algorithm of LCS: 3 marks, For Correct table and Constructing the final answer 7 Marks				
Q.3 b)	Explain Backtracking approach in general. Write algorithm for the N queen problem. Apply it to solve 4 queen problem. Synoptic: backtracking approach: 2 mark, N queen problem: 2 Mark, applying it for 4 queen Problem: 1 Mark OR Explain Branch and Bound strategy in general. Synoptic: For explaining Branch and Bound strategy: 5 Marks	5	5-3-2.2.3		
Q4 a)	List the different String Matching Algorithms. And explain naïve string matching algorithm along with example. Comment on time complexity. Synoptic: For Listing algorithms of string matching: 2 Marks, Naive string Matching example: 4 Marks Time complexity: 2 Marks OR Write an algorithm of String matching with Finite Automata. Give one example of it.	8	1-3-2.2.4		
Q.4b)	Synoptic: For algorithm: 4 Marks , For example : 4 Marks Solve the following linear programming using Simplex algorithm. Maximise $Z = 4x + y$. subject to the constraints $x + y <= 50$, $3x + y <= 90$, $X >= 0$, $y >= 0$ Synoptic: Correctly solving the problem: 7 Marks $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	6-3-2.2.3		