Example 3.32. Determine whether the system \mathcal{H} is time invariant, where

$$\mathcal{H}x(t) = \sin[x(t)]. \quad \blacksquare$$

Solution. Let $x'(t) = x(t - t_0)$, where t_0 is an arbitrary real constant. From the definition of \mathcal{H} , we can easily deduce that

equal for all
$$\times$$

$$\Re(t-t_0) = \sin[x(t-t_0)]$$
and by substituting t-to for t in (1)
and all to
$$\Re(x'(t)) = \sin(x'(t))$$

$$= \sin[x(t-t_0)]$$
from definition of \times' in (2)

Since $\Re x(t-t_0) = \Re x'(t)$ for all x and t_0 , the system is time invariant.

A system H is said to be time invariant if, for every function x and every real constant to, the following condition holds:

 $\mathcal{H}_{\times}(t-t_0) = \mathcal{H}_{\times}'(t)$ for all t, where $\chi'(t) = \chi(t-t_0)$