Multivariate Analysis Using an Articial Neural Network to Improve Sensitivity in the ATLAS $t\bar{t}H$ ($b\bar{b}$) Search

Simon Kirchhof

DESY Hamburg – ATLAS group University of Heidelberg

September 10, 2015

Outline

- 1 Introduction to $t\bar{t}H$
- 2 Event Categorisation
- 3 Multivariate Analysis
- 4 Results

Motivation for ttH

Higgs processes confirmed @LHC:

$$\begin{array}{ll} H & \longrightarrow \gamma\gamma \\ H & \longrightarrow ZZ^{(*)} \longrightarrow 4I \\ H & \longrightarrow WW^{(*)} \longrightarrow I\nu I\nu \end{array}$$

$$H & \longrightarrow \tau\tau$$

Interesting: Yukawa coupling qqH

- Not directly observed so far
- ttH (bb) is most probable:
 - $Y_{\rm t} \propto m_{\rm t}$
 - BR $(H \rightarrow b\overline{b})$ high
- Associate top production "proofs" coupling

Signal & Background

Signal:

Dominant background:

Other backgrounds:

- \bullet $t \overline{t} V$
- non-tt̄

Outline

2 Event Categorisation

Pre-Selection Categorisation

Basic Event Selection

Considerations: Good to trigger & signal-like

- Focus on single-lepton events:
 - e/μ with $p_T > 25 \text{ GeV}$
- At least 4 reconstructed jets
- At least 2 reconstructed b-jets
 - Classify events according to...
 - Number of jets
 - Number of b-jets

Categorisation into Analysis Regions

Table: Nine analysis regions.

	2 b-jets	3 b-jets	≥4 b-jets
4 jets			
5 jets			rich
>=6 jets		rich	rich

"Signal rich":

- $\frac{S}{B} > 1\%$
- $\frac{S}{\sqrt{B}} > 0.3$

Remark:

 Technical definition of b-jet is ambiguous

Outline

Multivariate Analysis

Discriminating Variables Motivation for Multivariate Analysis Artificial Neural Network

Discriminating Variables

Find differences between signal and background, possible discriminators:

Event-shape variables

- Centrality
- Aplanarity
- . .

Global event variables

- Scalar sum of the jets p_T s
- ...

Object pair properties

- ΔR of jet pair with \cdots
 - \cdots largest $\sum p_T$
 - · · · largest invariant mass
- . .

There are ~ 20 in the analysis. I'll only show two.

High Transverse Momentum Jets (1)

Definition

$$N_{40}^{
m jet} := N_{
m jet} \, (|{
m p}_{T}| > 40 \,\, {
m GeV})$$

Signal:

- Two b-jets from **higgs** \Longrightarrow $M_{\rm b\overline{b}} = M_{\rm H}$
- $|p_T|$ likely to be high

Background:

- Two b-jets from gluon
- Gluon radiation tends to be "soft"
- $|p_T|$ likely to be lower

⇒ On average, signal has more high transverse momentum jets!

High Transverse Momentum Jets (2)

Figure: N_{40}^{jet} in the ≥ 6 jets 3 tight b-jets region.

Centrality (1)

Definition

Centrality :=
$$\frac{\sum_{i} |\mathbf{p}_{\mathcal{T}}^{i}|}{\sum_{i} \mathbf{E}_{i}}$$

i = Jets, Leptons

• Signal:

- $t\bar{t}H$ on-shell: > 475 GeV
- High \hat{s} more likely for $x_1 = x_2$ (Bjorken x)
- Less z-boosted ≈ more central

Background:

- $t\bar{t}$ on shell: > 350 GeV
- Lower ŝ are possible
- Possibly more z-boosted events

Centrality (2)

Figure: Centrality in the ≥ 6 jets ≥ 4 tight b-jets region.

Motivation for Multivariate Analysis

Individual cuts won't do the job. Need more complex methods!

Artificial Neural Network

- Inspired by biology (i.e. the brain)
- Process information through Multilayer Network
 - Input layer: variables
 - "Hidden layer": neurons
 - Output layer: t
- Parameters ("weights") \vec{w} : Strength of connections
- Important: $t(\tilde{x})$ is non-linear in general!

Artificial Neural Network - Training (simplified)

Define error function ϵ for an input vector \vec{x} , e.g.

$$\epsilon (\vec{x}, \vec{w}) = (t (\vec{x}, \vec{w}) - \hat{t})^2$$

 $\hat{t} (sig) = 1$
 $\hat{t} (bkg) = -1$

Iterative training with Monte-Carlo samples:

- Start with random/guessed weights \vec{w}
- Calculate error for training event
- Adjust weights \vec{w} to minimize ϵ (i.e. backpropagation)

Outline

4 Results

Overview Neural Network training studies Sensitivity of ttH

Overview of My Work

Software:

- TMVA (4.2.1), comes with ROOT (6.04/02)
- Toolkit for MultiVariate Analysis
- Set up a dedicated software tool to train & test ANNs

Variables & training settings:

- Adapted from LHC run 1 analysis
- Started optimisation for run 2

Impact on Sensitivity of ttH

Calculated signal significance for estimated luminosity

ANN with Variables and Settings of Run 1

Figure: ANN output in the ≥ 6 jets 3 tight b-jets region.

Receiver Operating Characteristic := Curve on the right, showing how efficient different cuts are w.r.t. keeping signal and rejecting background.

Signal Significance: Category + ANN

"New" category: \geq 6 jets, \geq 3 tight b-jets, \geq 4 loose b-tags

- $\frac{S}{B} = 1.7\%$
- $\frac{S}{\sqrt{S+B}} = 0.9$

For a Luminosity of $\mathcal{L} = 5 \text{ fb}^{-1}$:

- Signal: 45 events
- Background: 2577 events

After applying optimal Neural Network cut:

•
$$\frac{S}{\sqrt{S+B}} = 1.0$$

Outlook

- Future analysis should include all different background samples
- ANN training with more MC statistics
- New MVA variables will possibly be added
- Inefficient: Cut on ANN output
- Better: Likelihood fit to ANN output distribution

Special thanks to my supervisors:

- John Stakely Keller
- Judith Katzy

Many thanks to the whole ATLAS group here at DESY!

THANK YOU FOR YOUR ATTENTION!

Questions?

....

Appendix: Simulated Data

Two Monte-Carlo samples

Туре	Description	Generator	Events
tt̄ (bkg.)	Semi-/dileptonic	Powheg+Pythia	\sim 2 million
tt̄H (sig.)	Inclusice higgs de- cay, semileptonic top decay	aMcAtNlo+Herwig++	~ 2 million

- Minor bkg. contributions missing (tt̄V, non-tt̄)
- Number of available events (after skimming):
 - Signal: ca. 400000
 - Background: ca. 450000

Appendix: Pre-Selection Cuts

Figure: Cutflow of skimmed **bkg.** sample.

- $N_{\rm jets} \ge 4$
- One lepton with $|p_T| > 25 \text{ GeV}$
- Exactly one Lepton
- Require $N_{\mathrm{b-tags}} \geq 2$

Appendix: Categories for ANN

Reminder:

- Catogerisation according to number of jets & number of b-jets
- Different b-tagging working points possible:

Loose: 85% efficiencyTight: 77% efficiency

Most promising regions:

- Good signal purity $(\frac{S}{B}>1\%)$ & good signal significance $(\frac{S}{\sqrt{B}}>0.3)$
- As many events as possible

Raw MC events in examined categories					
	old		new (Hyoyin)		
	tight b-tags: 3	tight b-tags: ≥ 4	tight b-tags: ≥ 3 loose b-tags: ≥ 4		
			loose b-tags: ≥ 4		
≥ 6 jets	sig: ~ 46000 bkg: ~ 7800	sig: ∼ 22600	sig: ∼ 35600		
	bkg: \sim 7800	bkg: ~ 900	bkg: ∼ 2300		

Appendix: MVA in Fomulas

- Each event (signal or background) has D measured variables \vec{x}
- "Feature space" in \mathbb{R}^D :
 - $x_0 = \text{Centrality}$
 - $x_1 = N_{40}^{\text{jet}}$
 - ...
- Find mapping:

$$t(\vec{x}): \mathbb{R}^D \longrightarrow \mathbb{R}$$

- t is new "classifier", desired properties:
 - Seperation power, i. e. $\langle t_{\rm sig} \rangle \neq \langle t_{\rm bkg} \rangle$ and $\sigma_{t_{\rm sig}}$, $\sigma_{t_{\rm bkg}}$ small
 - Good generalization properties when applied to "unkown" events

Appendix: Artificial Neural Network

Feed-Forward Network

$$h_i(\vec{x}) = s\left(w_{i0} + \sum_{i=1}^n w_{ij}x_i\right)$$

$$t(\vec{x}) = s\left(a_0 + \sum_{i=1}^n a_i h_i\right)$$

ANN as referred to in this talk:

- MLP architecture
- Feed-forward

Figure: MultiLayer Perceptron with one hidden layer.

Appendix: ANN with Variables and Settings of Run 1

Figure: ANN output in the ≥ 6 jets ≥ 4 tight b-jets region.

Appendix: ANN with Variables and Settings of Run 1

Figure: ANN output in the ≥ 6 jets ≥ 3 tight & ≥ 4 loose b-jets region.

Appendix: Convergence of the ANN

Figure: Error estimator vs. training cycles (6j 3b).

Figure: Error estimator vs. training cycles (6j 4b).

Figure: Error estimator vs. training cycles (6j 3/4b).

Appendix: Ranking of Variables - Naive

Figure: Separation power of all variables used in the \geq 6 jets 3 tight b-jets region.

Separation power of a discriminating variable ξ :

$$\int \frac{\left(N_{\mathrm{sig}}\left(\xi\right) - N_{\mathrm{bkg}}\left(\xi\right)\right)^{2}}{\left(N_{\mathrm{sig}}\left(\xi\right) + N_{\mathrm{bkg}}\left(\xi\right)\right)} d\xi$$

Ranking

- 1 N₄₀
- 2 Centrality
 - $\mathbf{3} \, \mathbf{p}_{\tau}^{\text{jet5}}$
- 4

Appendix: Ranking of Variables

Figure: Separation power of all variables used in the ≥ 6 jets 3 tight b-jets region.

- Train ANN 10 times
- Each time, leave out one variable
- Check how quality of ANN "degrades"

Ranking

- Centrality
- 2 H₁ (Fox-Wolfram)
- N_{40}^{jet}
- **4** ...

Appendix: Ranking – Run 1 vs. Run 2 Simulation (6j3b)

Run 1

- 2 Centrality
- $3 H_1$ (Fox-Wolfram moment)
- $\Delta R_{\rm bb}^{\rm avg}$
- $\mathbf{6} \,\, \mathbf{p}_{\mathcal{T}}^{\mathrm{jet5}}$
- $M_{bj}^{\max p_T}$
- $\mathbf{8} \ M_{\mathsf{u}\mathsf{u}}^{\mathrm{min}\Delta R}$
- $\mathbf{0} M_{\mathrm{bj}}^{\mathrm{min}\Delta R}$

Run 2 simulation

- Centrality
- $\mathbf{2} H_1$ (Fox-Wolfram moment)
- $3N_{40}^{\mathrm{jet}}$
- $4 \Delta R_{\rm bb}^{\rm avg}$
- p_T^{jet5}
- 6 $M_{\rm bb}^{{
 m min}\Delta R}$
 - $M_{\rm bj}^{\rm max~p_T}$
 - $\delta AR_{\text{lepbb}}^{\min \Delta R}$
 - $M_{\rm bj}^{{\rm min}\Delta R}$
 - $\mathbf{0} M_{\text{III}}^{\min \Delta R}$