CHAPTER

Functions

Section-A

JEE Advanced/ IIT-JEE

Fill in the Blanks A

The values of $f(x) = 3\sin\left(\sqrt{\frac{\pi^2}{16} - x^2}\right)$

(1983 - 1 Mark)

For the function $f(x) = \frac{x}{1 + e^{1/x}}, \quad x \neq 0$, x=0

> the derivative from the right, $f'(0+) = \dots$, and the derivative from the left, $f'(0-) = \dots (1983 - 2 Marks)$

- The domain of the function $f(x) = \sin^{-1}(\log_2 \frac{x^2}{2})$ is 3. (1984 - 2 Marks) given by
- 4. Let A be a set of n distinct elements. Then the total number of distinct functions from A to A is and out of these are onto functions. (1985 - 2 Marks)
- If $f(x) = \sin \ln \left(\frac{\sqrt{4 x^2}}{1 x} \right)$, then domain of f(x) is and its

(1985 - 2 Marks) range is

- There are exactly two distinct linear functions,, 6. and which map [-1, 1] onto [0, 2]. (1989 - 2 Marks)
- 7. If f is an even function defined on the interval (-5, 5), then four real values of x satisfying the equation $f(x) = f\left(\frac{x+1}{x+2}\right)$

are, and ..

(1996 - 1 Mark)

If $f(x) = \sin^2 x +$

$$\sin^2\left(x + \frac{\pi}{3}\right) + \cos x \cos\left(x + \frac{\pi}{3}\right)$$
 and $g\left(\frac{5}{4}\right) = 1$, then

$(gof)(x) = \dots$ (1996 - 2 Marks)

True / False В

- 1. If $f(x) = (a - x^n)^{1/n}$ where a > 0 and n is a positive integer, then f[f(x)] = x. (1983 - 1 Mark)
- The function $f(x) = \frac{x^2 + 4x + 30}{x^2 8x + 18}$ is not one -to -one.

(1983 - 1 Mark)

If $f_1(x)$ and $f_2(x)$ are defined on domains D_1 and D_2 3. respectively, then $f_1(x) + f_2(x)$ is defined on $D_1 \cup D_2$.

(1988 - 1 Mark)

C **MCQs** with One Correct Answer

- Let R be the set of real numbers. If $f: R \to R$ is a function defined by $f(x) = x^2$, then f is: (1979)
 - Injective but not surjective
 - Surjective but not injective
 - (c) Bijective
 - (d) None of these.
- 2. The entire graphs of the equation $y = x^2 + kx - x + 9$ is strictly above the x-axis if and only if (1979)
 - (a) k < 7
- (b) $-5 \le k \le 7$
- (c) k > -5
- (d) None of these.
- 3. Let f(x) = |x-1|. Then
- (1983 1 Mark)
- (a) $f(x^2) = (f(x))^2$
- (b) f(x+y) = f(x) + f(y)
- (c) f(|x|) = |f(x)|
- (d) None of these
- If x satisfies $|x-1| + |x-2| + |x-3| \ge 6$, then

(1983 - 1 Mark)

- (a) $0 \le x \le 4$
- (b) $x \le -2$ or $x \ge 4$
- (c) $x \le 0$ or $x \ge 4$
- (d) None of these
- If $f(x) = \cos(\ln x)$, then $f(x)f(y) \frac{1}{2} \left| f\left(\frac{x}{y}\right) + f(xy) \right|$ has

the value

(1983 - 1 Mark)

(a) -1

(b) 1/2

(c) -2

(d) none of these

$$y = \frac{1}{\log_{10}(1-x)} + \sqrt{x+2}$$
 is (1983 - 1 Mark)

- (a) (-3, -2) excluding -2.5 (b) [0, 1] excluding 0.5
- (c) [-2, 1) excluding 0 (d) none of these
- 7. Which of the following functions is periodic?

(1983 - 1 Mark)

(a) f(x) = x - [x] where [x] denotes the largest integer less than or equal to the real number x

(b)
$$f(x) = \sin \frac{1}{x}$$
 for $x \neq 0$, $f(0) = 0$

- (c) $f(x) = x \cos x$
- (d) none of these
- Let $f(x) = \sin x$ and $g(x) = \ln |x|$. If the ranges of the composition functions fog and gof are R_1 and R_2 respectively, then (1994 - 2 Marks)
 - (a) $R_1 = \{u : -1 \le u < 1\}, R_2 = \{v : -\infty < v < 0\}$
 - (b) $R_1 = \{u : -\infty < u < 0\}, R_2 = \{v : -1 \le v \le 0\}$
 - (c) $R_1 = \{u : -1 < u < 1\}, R_2 = \{v : -\infty < v < 0\}$
 - (d) $R_1 = \{u : -1 \le u \le 1\}, R_2 = \{v : -\infty < v \le 0\}$
- Let $f(x) = (x+1)^2 1$, $x \ge -1$. Then the set

$${x: f(x) = f^{-1}(x)}$$
 is (1995)

(a)
$$\left\{0, -1, \frac{-3 + i\sqrt{3}}{2}, \frac{-3 - i\sqrt{3}}{2}\right\}$$

- (b) $\{0, 1, -1\}$
- (c) $\{0,-1\}$
- (d) empty
- 10. The function f(x) = |px q| + r |x|, $x \in (-\infty, \infty)$ where p > 0, q > 0, r > 0 assumes its minimum value only on one point if
 - (a) $p \neq q$
- (c) $r \neq p$
- (d) p = q = r

11. Let f(x) be defined for all x > 0 and be continuous. Let f(x)

satisfy
$$f\left(\frac{x}{y}\right) = f(x) - f(y)$$
 for all x, y and $f(e) = 1$. Then

- (a) f(x) is bounded
- (b) $f\left(\frac{1}{x}\right) \to 0 \text{ as } x \to 0$
- (c) $x f(x) \rightarrow 1 \text{ as } x \rightarrow 0$ (d) $f(x) = \ln x$
- 12. If the function $f: [1, \infty) \to [1, \infty)$ is defined by $f(x) = 2^{x(x-1)}$, then $f^{-1}(x)$ is (1999 - 2 Marks)

(a)
$$\left(\frac{1}{2}\right)^{x(x-1)}$$

(b)
$$\frac{1}{2} (1 + \sqrt{1 + 4 \log_2 x})$$

(c)
$$\frac{1}{2} (1 - \sqrt{1 + 4 \log_2 x})$$
 (d) not defined

13. Let $f: R \to R$ be any function. Define $g: R \to R$ by g(x) = |f(x)| for all x. Then g is (2000S)

- (a) onto if f is onto
- (b) one-one if f is one-one
- (c) continuous if f is continuous
- (d) differentiable if f is differentiable.
- 14. The domain of definition of the function f(x) given by the equation $2^x + 2^y = 2$ is (2000S)
 - (a) $0 < x \le 1$
- (b) $0 \le x \le 1$
- (c) $-\infty < x \le 0$
- (d) $-\infty < x < 1$

15. Let
$$g(x) = 1 + x - [x]$$
 and $f(x) = \begin{cases} -1, & x < 0 \\ 0, & x = 0 \end{cases}$. Then for all 1, $x > 0$

- x, f(g(x)) is equal to (a) x
- (d) g(x)
- 16. If $f:[1,\infty) \to [2,\infty)$ is given by $f(x) = x + \frac{1}{x}$ then $f^{-1}(x)$ equals
- (2001S)
- (a) $(x + \sqrt{x^2 4})/2$ (b) $x/(1 + x^2)$ (c) $(x \sqrt{x^2 4})/2$ (d) $1 + \sqrt{x^2 4}$
- 17. The domain of definition of $f(x) = \frac{\log_2(x+3)}{x^2+3x+2}$ is
 - (a) $R \setminus \{-1, -2\}$
- (c) $R \setminus \{-1, -2, -3\}$
- (2001S)(d) $(-3,\infty)\setminus\{-1,-2\}$
- **18.** Let $E = \{1, 2, 3, 4\}$ and $F = \{1, 2\}$. Then the number of onto functions from E to F is (2001S)
 - (a) 14
- (b) 16
- (c) 12
- 19. Let $f(x) = \frac{\alpha x}{x+1}$, $x \ne -1$. Then, for what value of α is f(f(x)) = x?

(2001S)

- (a) $\sqrt{2}$
 - (b) $-\sqrt{2}$
- (c) 1
- (d) -1
- Suppose $f(x) = (x + 1)^2$ for $x \ge -1$. If g(x) is the function whose graph is the reflection of the graph of f(x) with respect to the line y = x, then g(x) equals

 - (a) $-\sqrt{x}-1, x \ge 0$ (b) $\frac{1}{(x+1)^2}, x > -1$
 - (c) $\sqrt{x+1}, x \ge -1$
- (d) $\sqrt{x}-1, x \ge 0$
- 21. Let function $f: R \to R$ be defined by $f(x) = 2x + \sin x$ for $x \in R$, then f is (2002S)
 - (a) one-to-one and onto
 - one-to-one but NOT onto
 - onto but NOT one-to-one
 - (d) neither one-to-one nor onto
- 22. If $f:[0,\infty)\longrightarrow [0,\infty)$, and $f(x)=\frac{x}{1+x}$ then f is
 - (a) one-one and onto

(2003S)

- (b) one-one but not onto
- onto but not one-one
- neither one-one nor onto

23. Domain of definition of the function

$$f(x) = \sqrt{\sin^{-1}(2x) + \frac{\pi}{6}} \text{ for real valued } x, \text{ is}$$
 (2003S)

(a)
$$\left[-\frac{1}{4}, \frac{1}{2} \right]$$
 (b) $\left[-\frac{1}{2}, \frac{1}{2} \right]$ (c) $\left(-\frac{1}{2}, \frac{1}{9} \right)$ (d) $\left[-\frac{1}{4}, \frac{1}{4} \right]$

- 24. Range of the function $f(x) = \frac{x^2 + x + 2}{x^2 + x + 1}$; $x \in R$ is (2003S)

 (a) $(1, \infty)$ (b) (1,11/7] (c) (1,7/3] (d) (1,7/5]
- 25. If $f(x) = x^2 + 2bx + 2c^2$ and $g(x) = -x^2 2cx + b^2$ such that $\min f(x) > \max g(x)$, then the relation between b and c,
 - (a) no real value of b & c (b) $0 < c < b\sqrt{2}$
 - (c) $|c| < |b| \sqrt{2}$
- (d) $|c| > |b| \sqrt{2}$
- 26. If $f(x) = \sin x + \cos x$, $g(x) = x^2 1$, then g(f(x)) is invertible in the domain

(a)
$$\left[0, \frac{\pi}{2}\right]$$
 (b) $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ (c) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ (d) $[0, \pi]$

27. If the functions f(x) and g(x) are defined on $R \rightarrow R$ such that

$$f(x) = \begin{cases} 0, & x \in \text{rational} \\ x, & x \in \text{irrational} \end{cases}; \ g(x) = \begin{cases} 0, & x \in \text{irrational} \\ x, & x \in \text{rational} \end{cases} \text{ then}$$

(f-g)(x) is

- (a) one-one & onto
- (b) neither one-one nor onto
- (c) one-one but not onto
- (d) onto but not one-one
- **28.** X and Y are two sets and $f: X \to Y$. If $\{f(c) = y; c \subset X, \}$ $y \subset Y$ and $\{f^{-1}(d) = x; d \subset Y, x \subset X\}$, then the true statement is (2005S)
 - (a) $f(f^{-1}(b)) = b$
- (b) $f^{-1}(f(a)) = a$
- (a) $f(f^{-1}(b)) = b$ (b) $f^{-1}(f(a)) = a$ (c) $f(f^{-1}(b)) = b, b \subset y$ (d) $f^{-1}(f(a)) = a, a \subset x$

29. If
$$F(x) = \left(f\left(\frac{x}{2}\right)\right)^2 + \left(g\left(\frac{x}{2}\right)\right)^2$$
 where $f''(x) = -f(x)$ and

g(x) = f'(x) and given that F(5) = 5, then F(10) is equal to (2006 - 3M, -1)

- (b) 10
- (c) 0
- (d) 15

(2005S)

30. Let
$$f(x) = \frac{x}{(1+x^n)^{1/n}}$$
 for $n \ge 2$ and

$$g(x) = \underbrace{(fofo...of)}_{f \text{ occurs } n \text{ times}} (x)$$
. Then $\int x^{n-2} g(x) dx$ equals.

(a)
$$\frac{1}{n(n-1)}(1+nx^n)^{1-\frac{1}{n}}+K$$
 (b) $\frac{1}{n-1}(1+nx^n)^{1-\frac{1}{n}}+K$

(c)
$$\frac{1}{n(n+1)}(1+nx^n)^{1+\frac{1}{n}}+K$$
 (d) $\frac{1}{n+1}(1+nx^n)^{1+\frac{1}{n}}+K$

31. Let f, g and h be real-valued functions defined on the interval

[0, 1] by
$$f(x) = e^{x^2} + e^{-x^2}$$
, $g(x) = xe^{x^2} + e^{-x^2}$ and

 $h(x) = x^2 e^{x^2} + e^{-x^2}$. If a, b and c denote, respectively, the absolute maximum of f, g and h on [0, 1], then

- (a) a = b and $c \neq b$
- (b) a = c and $a \neq b$
- (c) $a \neq b$ and $c \neq b$
- (d) a = b = c
- Let $f(x) = x^2$ and $g(x) = \sin x$ for all $x \in R$. Then the set of all x satisfying (fogogof)(x) = (gogof)(x), where (fog)(x) = f(g(x)), is (2011)
 - (a) $\pm \sqrt{n\pi}$, $n \in \{0, 1, 2,\}$
 - (b) $\pm \sqrt{n\pi}, n \in \{1, 2,\}$

(c)
$$\frac{\pi}{2} + 2n\pi, n \in \{...-2, -1, 0, 1, 2, ...\}$$

- (d) $2n\pi, n \in \{...-2, -1, 0, 1, 2,\}$
- The function $f:[0, 3] \rightarrow [1, 29]$, defined by $f(x) = 2x^3 - 15x^2 + 36x + 1$, is
 - (a) one-one and onto (b) onto but not one-one
 - (c) one-one but not onto(d) neither one-one nor onto

MCQs with One or More than One Correct

- 1. If $y = f(x) = \frac{x+2}{x-1}$ then
 - (a) x = f(y)
 - (b) f(1)=3
 - (c) y increases with x for x < 1
 - (d) f is a rational function of x
- Let g(x) be a function defined on [-1, 1]. If the area of the equilateral triangle with two of its vertices at (0,0) and

[x, g(x)] is $\frac{\sqrt{3}}{4}$, then the function g(x) is (1989 - 2 Marks)

- (a) $g(x) = \pm \sqrt{1 x^2}$ (b) $g(x) = \sqrt{1 x^2}$
- (c) $g(x) = -\sqrt{1-x^2}$
- (d) $g(x) = \sqrt{1 + x^2}$
- If $f(x) = \cos[\pi^2]x + \cos[-\pi^2]x$, where [x] stands for the (1991 - 2 Marks) greatest integer function, then
 - (a) $f\left(\frac{\pi}{2}\right) = -1$
- (b) $f(\pi) = 1$
- (c) $f(-\pi) = 0$ (d) $f\left(\frac{\pi}{4}\right) = 1$
- 4. If f(x) = 3x 5, then $f^{-1}(x)$
- (1998 2 Marks)
- (a) is given by $\frac{1}{3r-5}$
- (b) is given by $\frac{x+5}{3}$
- (c) does not exist because f is not one-one
- (d) does not exist because f is not onto.

(a)
$$f(x) = \sin^2 x, g(x) = \sqrt{x}$$

(1998 - 2 Marks)

(b)
$$f(x) = \sin x, g(x) = |x|$$

(c)
$$f(x) = x^2$$
, $g(x) = \sin \sqrt{x}$

(d) f and g cannot be determined.

Let $f: (0, 1) \to \mathbf{R}$ be defined by $f(x) = \frac{b - x}{1 - bx}$, where b is a

constant such that 0 < b < 1. Then

(a)
$$f$$
 is not invertible on $(0, 1)$

(b)
$$f \neq f^{-1}$$
 on $(0, 1)$ and $f'(b) = \frac{1}{f'(0)}$

(c)
$$f = f^{-1}$$
 on $(0, 1)$ and $f'(b) = \frac{1}{f'(0)}$

(d)
$$f^{-1}$$
 is differentiable $(0, 1)$

7. Let
$$f: (-1, 1) \rightarrow IR$$
 be such that $f(\cos 4\theta) = \frac{2}{2 - \sec^2 \theta}$ for

$$\theta \in \left(0, \frac{\pi}{4}\right) \cup \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$$
. Then the value (s) of $f\left(\frac{1}{3}\right)$ is (are)

(a)
$$1-\sqrt{\frac{3}{2}}$$
 (b) $1+\sqrt{\frac{3}{2}}$ (c) $1-\sqrt{\frac{2}{3}}$ (d) $1+\sqrt{\frac{2}{3}}$

8. The function f(x) = 2|x| + |x + 2| - ||x + 2| - 2|x|| has a local minimum or a local maximum at x =

(a)
$$-2$$
 (b) $\frac{-2}{3}$ (c) 2 (d) $\frac{2}{3}$

(d)
$$\frac{2}{3}$$

9. Let $f: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to R$ be given by $f(x) = (\log(\sec x + \tan x))^3$.

Then

(JEE Adv. 2014)

- (a) f(x) is an odd function
- (b) f(x) is one-one function
- (c) f(x) is an onto function
- (d) f(x) is an even function

10. Let $a \in R$ and let $f: R \to R$ be given by $f(x) = x^5 - 5x + a$. Then (JEE Adv. 2014)

- f(x) has three real roots if a > 4
- (b) f(x) has only real root if a > 4
- (c) f(x) has three real roots if a < -4
- (d) f(x) has three real roots if -4 < a < 4

11. Let $f(x) = \sin\left(\frac{\pi}{6}\sin\left(\frac{\pi}{2}\sin x\right)\right)$ for all $x \in R$ and $g(x) = \frac{\pi}{2}$

 $\sin x$ for all $x \in R$. Let $(f \circ g)(x)$ denote f(g(x)) and $(g \circ f)(x)$ denote g(f(x)). Then which of the following is (are) true?

(JEE Adv. 2015)

(a) Range of
$$f$$
 is $\left[-\frac{1}{2}, \frac{1}{2}\right]$

(b) Range of fog is
$$\left[-\frac{1}{2}, \frac{1}{2}\right]$$

(c) $\lim_{x\to 0} \frac{f(x)}{g(x)} = \frac{\pi}{6}$

(d) There is an $x \in R$ such that $(g \circ f)(x) = 1$

Subjective Problems

Find the domain and range of the function $f(x) = \frac{x^2}{1 + x^2}$. Is

the function one-to-one?

3P_3480

Draw the graph of $y = |x|^{1/2}$ for $-1 \le x \le 1$. 2. (1978)

3. If
$$f(x) = x^9 - 6x^8 - 2x^7 + 12x^6 + x^4 - 7x^3 + 6x^2 + x - 3$$
, find $f(6)$.

Consider the following relations in the set of real numbers R. 4. $R = \{(x, y); x \in R, y \in R, x^2 + y^2 \le 25\}$

$$R' = \left\{ (x, y) : x \in R, y \in R, y \ge \frac{4}{9}x^2 \right\}$$

Find the domain and range of $R \cap R'$. Is the relation $R \cap R'$ a function? (1979)

Let A and B be two sets each with a finite number of elements. Assume that there is an injective mapping from A to B and that there is an injective mapping from B to A. Prove that there is a bijective mapping from A to B.

(1981 - 2 Marks)

6. Let f be a one-one function with domain $\{x, y, z\}$ and range {1, 2, 3}. It is given that exactly one of the following statements is true and the remaining two are false $f(x) = 1, f(y) \neq 1, f(z) \neq 2$ determine $f^{-1}(1)$.

(1982 - 3 Marks)

Let R be the set of real numbers and $f: R \longrightarrow R$ be such 7. that for all x and y in $R |f(x)-f(y)| \le |x-y|^3$. Prove that f(x)(1988 - 2 Marks) is a constant.

8. Find the natural number 'a' for which

$$\sum_{k=1}^{n} f(a+k) = 16(2^{n} - 1), \text{ where the function '} f' \text{ satisfies}$$

the relation f(x+y) = f(x)f(y) for all natural numbers x, y and further f(1) = 2. (1992 - 6 Marks)

Let $\{x\}$ and [x] denotes the fractional and integral part of a 9. real number x respectively. Solve $4\{x\} = x + [x]$.

(1994 - 4 Marks)

A function $f:IR \to IR$, where IR is the set of real numbers, is defined by $f(x) = \frac{\alpha x^2 + 6x - 8}{\alpha + 6x - 8x^2}$. Find the interval of

values of α for which f is onto. Is the function one-to-one for $\alpha = 3$? Justify your answer. (1996 - 5 Marks)

Let $f(x) = Ax^2 + Bx + C$ where A, B, C are real numbers. Prove that if f(x) is an integer whenever x is an integer, then the numbers 2A, A + B and C are all integers. Conversely, prove that if the numbers 2A, A+B and C are all integers then f(x) is an integer whenever x is an integer. (1998 - 8 Marks)

F Match the Following

Each question contains statements given in two columns, which have to be matched. The statements in Column-I are labelled A, B, C and D, while the statements in Column-II are labelled p, q, r, s and t. Any given statement in Column-I can have correct matching with ONE OR MORE statement(s) in Column-II. The appropriate bubbles corresponding to the answers to these questions have to be darkened as illustrated in the following example:

If the correct matches are A-p, s and t; B-q and r; C-p and q; and D-s then the correct darkening of bubbles will look like the given.

1. Let the function defined in column 1 have domain $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and range $(-\infty, \infty)$

(1992 - 2 Marks)

Column I

- (A) 1 + 2x
- (B) $\tan x$

Column II

- (p) onto but not one-one
- (q) one- one but not onto
- (r) one- one and onto
- (s) neither one-one nor onto

2. Let
$$f(x) = \frac{x^2 - 6x + 5}{x^2 - 5x + 6}$$

(2007 - 6 marks)

Match of expressions/statements in Column I with expressions/statements in Column II and indicate your answer by darkening the appropriate bubbles in the 4×4 matrix given in the ORS.

Column I

- (A) If -1 < x < 1, then f(x) satisfies
- (B) If 1 < x < 2, then f(x) satisfies
- (C) If 3 < x < 5, then f(x) satisfies
- (D) If x > 5, then f(x) satisfies

Column II

- (p) 0 < f(x) < 1
- (q) f(x) < 0
- (r) f(x) > 0
- (s) f(x) < 1

I Integer Value Correct Type

1. Let $f: [0, 4\pi] \to [0, \pi]$ be defined by $f(x) = \cos^{-1}(\cos x)$. The number of points $x \in [0, 4\pi]$ satisfying the equation

$$f(x) = \frac{10 - x}{10}$$
 is

(JEE Adv. 2014)

[2003]

Section-B JEE Main / AIEEE

- 1. The domain of $\sin^{-1} [\log_3 (x/3)]$ is
 - a) [1,9]
- (b) [-1,9]
- (x/3) is (c) [-9, 1]
- [2002] (d) [-9, -1]
- 2. The function $f(x) = \log(x + \sqrt{x^2 + 1})$, is [2003]
 - (a) neither an even nor an odd function
 - (b) an even function
 - (c) an odd function
 - (d) a periodic function.
- 3. Domain of definition of the function $f(x) = \frac{3}{4-x^2}$ 5.

$$+\log_{10}(x^3-x)$$
, is

[2003]

- (a) $(-1,0) \cup (1,2) \cup (2,\infty)$
- (b) (a,2)
- (c) $(-1,0) \cup (a,2)$
- (d) $(1,2) \cup (2,\infty)$.

4. If $f: R \to R$ satisfies f(x+y) = f(x) + f(y), for all x,

$$y \in R$$
 and $f(1) = 7$, then $\sum_{r=1}^{n} f(r)$ is

- (a) $\frac{7n(n+1)}{2}$
- (b) $\frac{7n}{2}$
- (c) $\frac{7(n+1)}{2}$
- (d) 7n + (n+1).
- 5. A function f from the set of natural numbers to integers defined by [2003]

$$f(n) = \begin{cases} \frac{n-1}{2}, & \text{when n is odd} \\ -\frac{n}{2}, & \text{when n is even} \end{cases}$$

- (a) neither one -one nor onto
- (b) one-one but not onto
- (c) onto but not one-one
- (d) one-one and onto both.
- The range of the function $f(x) = ^{7-x} P_{x-3}$ is [2004]
 - (a) $\{1, 2, 3, 4, 5\}$
- (b) {1, 2, 3, 4, 5, 6}
- (c) $\{1, 2, 3, 4,\}$
- (d) $\{1, 2, 3, \}$
- 7. If $f: R \to S$, defined by

 $f(x) = \sin x - \sqrt{3}\cos x + 1$, is onto, then the interval of S is

[2004]

- (a) [-1,3] (b) [-1,1]
- (c) [0, 1]
- (d) [0,3]
- The graph of the function y = f(x) is symmetrical about the 8. line x = 2, then
 - (a) f(x) = -f(-x)
- (b) f(2+x) = f(2-x)
- (c) f(x) = f(-x)
- (d) f(x+2) = f(x-2)
- The domain of the function $f(x) = \frac{\sin^{-1}(x-3)}{\sqrt{2x-2}}$ is 9.

[2004]

- (a) [1,2] (b) [2,3)
- (c) [1,2]
 - (d) [2,3]
- 10. Let $f: (-1, 1) \rightarrow B$, be a function defined by

 $f(x) = \tan^{-1} \frac{2x}{1-x^2}$, then f is both one - one and onto when

B is the interval

[2005]

- (a) $\left(0, \frac{\pi}{2}\right)$ (b) $\left[0, \frac{\pi}{2}\right)$ (c) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ (d) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
- 11. A function is matched below against an interval where it is supposed to be increasing. Which of the following pairs is incorrectly matched? [2005]

Interval

Function

- (a) $(-\infty, \infty)$
- $x^3 3x^2 + 3x + 3$
- (b) $[2, \infty)$
- $2x^3 3x^2 12x + 6$
- (c) $\left(-\infty,\frac{1}{3}\right)$
- (d) $(-\infty, -4)$
- $x^3 + 6x^2 + 6$

12. A real valued function f(x) satisfies the functional equation f(x-y) = f(x)f(y) - f(a-x)f(a+y)

where a is a given constant and f(0) = 1, f(2a - x) is equal to

- (a) -f(x)
- (b) f(x)
- (c) f(a)+f(a-x)
- (d) f(-x)
- 13. The largest interval lying in $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ for which the function,

$$f(x) = 4^{-x^2} + \cos^{-1}\left(\frac{x}{2} - 1\right) + \log(\cos x)$$
, is defined, is

[2007]

- (a) $\left[-\frac{\pi}{4}, \frac{\pi}{2}\right]$
- (b) $\left[0,\frac{\pi}{2}\right]$
- (c) $[0, \pi]$
- (d) $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
- Let $f: N \rightarrow Y$ be a function defined as f(x) = 4x + 3 where $Y = \{ v \in \mathbb{N} : v = 4x + 3 \text{ for some } x \in \mathbb{N} \}.$

Show that f is invertible and its inverse is

[2008]

- (a) $g(y) = \frac{3y+4}{3}$ (b) $g(y) = 4 + \frac{y+3}{4}$
- (c) $g(y) = \frac{y+3}{4}$ (d) $g(y) = \frac{y-3}{4}$
- 15. Let $f(x) = (x+1)^2 1$, $x \ge -1$

Statement -1 : The set $\{x : f(x) = f^{-1}(x) = \{0, -1\}$

Statement-2: *f* is a bijection.

[2009]

- Statement-1 is true, Statement-2 is true. Statement-2 is not a correct explanation for Statement-1.
- (b) Statement-1 is true, Statement-2 is false.
- (c) Statement-1 is false, Statement-2 is true.
- (d) Statement-1 is true, Statement-2 is true. Statement-2 is not a correct explanation for Statement-1.
- For real x, let $f(x) = x^3 + 5x + 1$, then

[2009]

- (a) f is onto R but not one-one
- (b) f is one-one and onto R
- (c) f is neither one-one nor onto R
- (d) f is one-one but not onto R
- 17. The domain of the function $f(x) = \frac{1}{\sqrt{|x|-x}}$ is [2011]
 - (a) $(0, \infty)$
- (b) $(-\infty, 0)$
- (c) $(-\infty, \infty) \{0\}$
- (d) $(-\infty, \infty)$