

| Mon, Jul 28   | Session                                                                            |
|---------------|------------------------------------------------------------------------------------|
| 08:00 - 17:30 | Registration Desk Open (HH Lobby)                                                  |
| 08:45-09:00   | Conference Opening (HH Auditorium)                                                 |
| 09:00—10:00   | Plenary Talk by Rohan Sawhney (HH Auditorium)                                      |
| 10:00—10:30   | Coffee Break (HH Lobby)                                                            |
| 10:30—12:30   | Stochastic Computation and Complexity, Part I (HH Auditorium)                      |
| 10:30—12:30   | Domain Uncertainty Quantification (HH Ballroom)                                    |
| 10:30—12:30   | Nested expectations: models and estimators, Part I (PH Auditorium)                 |
| 10:30—12:30   | Hardware or Software for (Quasi-)Monte Carlo Algorithms, Part I (WH Auditorium)    |
| 10:30-12:30   | Technical Session - Markov Chain Monte Carlo (HH Alumni Lounge)                    |
| 12:30—14:00   | Lunch Break                                                                        |
| 14:00—15:00   | Plenary Talk by Christiane Lemieux, U of Waterloo, Golden ratio nets and sequences |
|               | (HH Auditorium)                                                                    |
| 15:00—15:30   | Coffee Break (HH Lobby)                                                            |
| 15:30—17:30   | Stochastic Computation and Complexity, Part II (HH Auditorium)                     |
| 15:30—17:30   | Recent advances in optimization under uncertainty (HH Ballroom)                    |
| 15:30—17:30   | Computational Methods for Low-discrepancy Sampling and Applications (PH Audi-      |
|               | torium)                                                                            |
| 15:30—17:30   | Technical Session - Quasi-Monte Carlo, Part 1 (WH Auditorium)                      |
| 15:30-17:30   | Technical Session - PDEs (HH Alumni Lounge)                                        |
| 17:30-19:30   | Welcome Reception (HH Lobby)                                                       |

| Tue, Jul 29 | Session                                                                              |
|-------------|--------------------------------------------------------------------------------------|
| 08:30—17:30 | Registration Desk Open (HH Lobby)                                                    |
| 09:00—10:00 | Plenary Talk by Peter Glynn, Stanford U, Combining Simulation and Linear Algebra:    |
|             | COSIMLA (HH Auditorium)                                                              |
| 10:00—10:30 | Coffee Break (HH Lobby)                                                              |
| 10:30—12:30 | Stochastic Computation and Complexity, Part III (HH Auditorium)                      |
| 10:30—12:30 | Next-generation optimal experimental design: theory, scalability, and real world im- |
|             | pact: Part I (HH Ballroom)                                                           |
| 10:30—12:30 | Heavy-tailed Sampling (PH Auditorium)                                                |
| 10:30—12:30 | Frontiers in (Quasi-)Monte Carlo and Markov Chain Monte Carlo Methods, Part I        |
|             | (WH Auditorium)                                                                      |
| 10:30-12:30 | Technical Session - Bayesian Methods (HH Alumni Lounge)                              |
| 12:30—14:00 | Lunch Break                                                                          |
| 14:00—15:00 | Plenary Talk by Roshan Joseph, Georgia Institute of Technology, Sensitivity and      |
|             | Screening: From Monte Carlo to Experimental Design (HH Auditorium)                   |
| 15:00—15:30 | Coffee Break (HH Lobby)                                                              |
| 15:30—17:30 | Stochastic Computation and Complexity, Part IV (HH Auditorium)                       |
| 15:30—17:30 | Next-generation optimal experimental design: theory, scalability, and real world im- |
|             | pact: Part II (HH Ballroom)                                                          |
| 15:30—17:30 | Advances in Rare Events Simulation (PH Auditorium)                                   |
| 15:30—17:30 | Frontiers in (Quasi-)Monte Carlo and Markov Chain Monte Carlo Methods, Part II       |
|             | (WH Auditorium)                                                                      |
| 15:30-17:30 | Technical Session - Quasi-Monte Carlo, Part 2 (HH Alumni Lounge)                     |

19 June 2025 17:22 24

| $\mathrm{Wed},\mathrm{Jul}30$ | Session                                                                             |
|-------------------------------|-------------------------------------------------------------------------------------|
| 08:30 - 16:30                 | Registration Desk Open (HH Lobby)                                                   |
| 09:00—10:00                   | Plenary Talk by Michaela Szölgyenyi, U of Klagenfurt, An optimal transport approach |
|                               | to quantifying model uncertainty of SDEs (HH Auditorium)                            |
| 10:00—10:30                   | Coffee Break (HH Lobby)                                                             |
| 10:30—12:30                   | Stochastic Computation and Complexity, Part V (HH Auditorium)                       |
| 10:30—12:30                   | Statistical Design of Experiments (HH Ballroom)                                     |
| 10:30—12:30                   | Advances in Adaptive Hamiltonian Monte Carlo (PH Auditorium)                        |
| 10:30—12:30                   | Technical Session - Simulation (WH Auditorium)                                      |
| 10:30-12:30                   | Technical Session - Sampling (HH Alumni Lounge)                                     |
| 12:30—14:00                   | Lunch Break                                                                         |
| 14:00—16:00                   | Stochastic Optimization (HH Auditorium)                                             |
| 14:00—16:00                   | Recent Progress on Algorithmic Discrepancy Theory and Applications (HH Ballroom)    |
| 14:00—16:00                   | Monte Carlo Applications in High-performance Computing, Computer Graphics, and      |
|                               | Computational Science (PH Auditorium)                                               |
| 14:00—16:00                   | Technical Session - Statistics (WH Auditorium)                                      |
| 16:00-16:30                   | Coffee Break (HH Lobby)                                                             |
| 18:00-20:30                   | Conference Dinner (Bridgeport Arts Center)                                          |

| Thu, Jul 31 | Session                                                                            |
|-------------|------------------------------------------------------------------------------------|
| 08:30—17:30 | Registration Desk Open (HH Lobby)                                                  |
| 09:00—10:00 | Plenary Talk by Uros Seljak, UC Berkeley, Gradient-Based MCMC Sampling: Meth-      |
|             | ods and Optimization Strategies (HH Auditorium)                                    |
| 10:00—10:30 | Coffee Break (HH Lobby)                                                            |
| 10:30—12:30 | QMC and Applications Part I (HH Auditorium)                                        |
| 10:30—12:30 | Analysis of Langevin and Related Sampling Algorithms, Part I (HH Ballroom)         |
| 10:30—12:30 | Nested expectations: models and estimators, Part II (PH Auditorium)                |
| 10:30—12:30 | Technical Session - Finance (WH Auditorium)                                        |
| 10:30-12:30 | Technical Session - ML & Optimization (HH Alumni Lounge)                           |
| 12:30—14:00 | Lunch Break                                                                        |
| 14:00—15:00 | Plenary Talk by Nicolas Chopin, Institut Polytechnique de Paris, Saddlepoint Monte |
|             | Carlo and its application to exact ecological inference (HH Auditorium)            |
| 15:00—15:30 | Coffee Break (HH Lobby)                                                            |
| 15:30—17:30 | QMC and Applications Part II (HH Auditorium)                                       |
| 15:30—17:30 | Analysis of Langevin and Related Sampling Algorithms, Part II (HH Ballroom)        |
| 15:30—17:30 | Recent Advances in Stochastic Gradient Descent (PH Auditorium)                     |
| 15:30—17:30 | Technical Session - Sampling (WH Auditorium)                                       |
| 15:30-17:30 | Technical Session - SDEs (HH Alumni Lounge)                                        |
| 18:00-20:30 | Steering Committee Meeting (by invitation)                                         |

| Fri, Aug 1   | Session                                                                           |
|--------------|-----------------------------------------------------------------------------------|
| 08:30—12:15  | Registration Desk Open (HH Lobby)                                                 |
| 09:00—11:00  | Forward and Inverse Problems for Stochastic Reaction Networks (HH Auditorium)     |
| 09:00—11:00  | Hardware or Software for (Quasi-)Monte Carlo Algorithms, Part II (HH Ballroom)    |
| 09:00—11:00— | Technical Session - Simulation (PH Auditorium)                                    |
| 09:00—11:00— | Technical Session - Sampling (WH Auditorium)                                      |
| 09:00-11:00  | Technical Session - Markov Chain Monte Carlo (HH Alumni Lounge)                   |
| 11:00-11:30  | Coffee Break (HH Lobby)                                                           |
| 11:30-12:30— | Plenary Talk by Veronika Ročková, U of Chicago, AI-Powered Bayesian Inference (HH |
|              | Auditorium)                                                                       |
| 12:30-12:45  | Closing Remarks (HH Auditorium)                                                   |

19 June 2025 17:22 25

19 June 2025 17:22 26

Mon, Jul 28, 2025 – Morning

| 08:00-17:30  | Registration Dock Open                        |                                                                                        |                         |                           |                                         |  |
|--------------|-----------------------------------------------|----------------------------------------------------------------------------------------|-------------------------|---------------------------|-----------------------------------------|--|
| 08:45-09:00  | 1 /                                           | Registration Desk Open, HH Lobby  Conference Opening by Fred Hickernell, HH Auditorium |                         |                           |                                         |  |
| 9:00 - 10:00 | TBD                                           |                                                                                        |                         |                           |                                         |  |
| 9.00 - 10.00 | Plenary Talk: Rohan Sawhney, p. ?? Chair: TBD |                                                                                        |                         |                           |                                         |  |
| 10:00-10:30  | Coffee Break, HH Lobby                        | Sawiney, p. :: Cha                                                                     | II. 1DD                 |                           |                                         |  |
| 10:00-10:30  | HH Auditorium                                 | HH Ballroom                                                                            | PH Auditorium           | WH Auditorium             | HH Alumni Lounge                        |  |
|              | Special Session                               | Special Session                                                                        | Special Session         | Special Session           | Technical Session -                     |  |
|              | Stochastic Stochastic                         | Domain Uncertainty                                                                     | Nested expectations:    | Hardware or Software      | Markov Chain Monte                      |  |
|              | Computation and                               | Quantification p. 48                                                                   | models and estimators,  | for (Quasi-)Monte         | Carlo                                   |  |
|              | Complexity, Part I p. 47                      | Chair: TBD                                                                             | Part I p. 49            | Carlo Algorithms, Part    | Chair: TBD                              |  |
|              | Chair: TBD                                    | Chair. 1DD                                                                             | Chair: TBD              | I p. 50                   | Chan. 1DD                               |  |
|              | Chan. 1DD                                     |                                                                                        | Chair. 1DD              | Chair: TBD                |                                         |  |
| 10:30-11:00  | Andreas Neuenkirch, A                         | André-Alexander                                                                        | Abdul Lateef Haji Ali,  | Pieterjan Robbe,          | Zhihao Wang,                            |  |
| 10.50 11.00  | strong order 1.5                              | Zepernick, Domain UQ                                                                   | An Adaptive Sampling    | Multilevel quasi-Monte    | Stereographic                           |  |
|              | boundary preserving                           | for stationary and                                                                     | Algorithm for Level-set | Carlo without             | Multi-Try Metropolis                    |  |
|              | discretization scheme                         | time-dependent PDEs                                                                    | Approximation, p. 91    | replications, p. 94       | Algorithms for                          |  |
|              | for scalar SDEs defined                       | using QMC, p. 88                                                                       | ripproximation, p. 01   | replications, p. 51       | Heavy-tailed Sampling,                  |  |
|              | in a domain, p. 85                            | using wite, p. 00                                                                      |                         |                           | p. 175                                  |  |
| 11:00-11:30  | Christopher Rauhögger,                        | Carlos Jerez-Hanckes,                                                                  | krumscheid, TBD,        | Irina-Beatrice Haas, A    | Ruben Seyer, Creating                   |  |
| 11.00 11.00  | An adaptive                                   | Domain Uncertainty                                                                     | p. 92                   | nested Multilevel         | rejection-free samplers                 |  |
|              | Milstein-type method                          | Quantification for                                                                     | P. 02                   | Monte Carlo framework     | by rebalancing                          |  |
|              | for strong                                    | Electromagnetic Wave                                                                   |                         | for efficient simulations | skew-balanced jump                      |  |
|              | approximation of                              | Scattering via                                                                         |                         | on FPGAs, p. 95           | processes, p. 176                       |  |
|              | systems of SDEs with a                        | First-Order Sparse                                                                     |                         |                           | r · · · · · · · · · · · · · · · · · · · |  |
|              | discontinuous drift                           | Boundary Element                                                                       |                         |                           |                                         |  |
|              | coefficient, p. 86                            | Approximation, p. 89                                                                   |                         |                           |                                         |  |
| 11:30-12:00  | Verena Schwarz,                               | Jürgen Dölz,                                                                           | Vinh Hoang,             | Mike Giles, CUDA          | Philippe Gagnon,                        |  |
|              | Strong order 1 adaptive                       | Quantifying uncertainty                                                                | Posterior-Free          | implementation of         | Theoretical guarantees                  |  |
|              | approximation of                              | in spectral clusterings:                                                               | A-Optimal Bayesian      | MLMC on NVIDIA            | for lifted samplers,                    |  |
|              | jump-diffusion SDEs                           | expectations for                                                                       | Design of Experiments   | GPUs, p. 96               | p. 177                                  |  |
|              | with discontinuous drift                      | perturbed and                                                                          | via Conditional         |                           |                                         |  |
|              | , p. 87                                       | incomplete data, p. 90                                                                 | Expectation, p. 92      |                           |                                         |  |
| 12:00-12:30  | Toni Karvonen,                                | Harri Hakula, Model                                                                    | Vesa Kaarnioja, QMC     | Chung Ming Loi,           |                                         |  |
|              | Approximation in                              | Problems for PDEs on                                                                   | for Bayesian optimal    | Scalable and              |                                         |  |
|              | Hilbert spaces of the                         | Uncertain Domains,                                                                     | experimental design     | User-friendly QMC         |                                         |  |
|              | Gaussian and related                          | p. 91                                                                                  | with application to     | Sampling with             |                                         |  |
|              | analytic kernels, p. 87                       |                                                                                        | inverse problems        | UMBridge, p. 96           |                                         |  |
|              |                                               |                                                                                        | governed by PDEs,       |                           |                                         |  |
|              |                                               |                                                                                        | p. 93                   |                           |                                         |  |

Mon, Jul 28, 2025 – Afternoon

|             | Mon, Jul 28, 2                                                                                             | U25 – Afternoon                           |                         |                        |                                       |  |
|-------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------|------------------------|---------------------------------------|--|
| 12:30-14:00 | Lunch Break, TBD                                                                                           |                                           |                         |                        |                                       |  |
| 14:00-15:00 | HH Auditorium                                                                                              |                                           |                         |                        |                                       |  |
|             | Plenary Talk: Christiane Lemieux, U of Waterloo, Golden ratio nets and sequences, p. 37 Chair: Nathan Kirk |                                           |                         |                        |                                       |  |
| 15:00-15:30 | Coffee Break, HH Lobby                                                                                     |                                           |                         |                        |                                       |  |
|             | HH Auditorium                                                                                              | HH Ballroom                               | PH Auditorium           | WH Auditorium          | HH Alumni Lounge                      |  |
|             | Special Session                                                                                            | Special Session                           | Special Session         | Technical Session -    | Technical Session -                   |  |
|             | Stochastic                                                                                                 | Recent advances in                        | Computational           | Quasi-Monte Carlo,     | PDEs                                  |  |
|             | Computation and                                                                                            | optimization under                        | Methods for             | Part 1                 | Chair: TBD                            |  |
|             | Complexity, Part II                                                                                        | uncertainty p. 53                         | Low-discrepancy         | Chair: TBD             |                                       |  |
|             | p. 52                                                                                                      | Chair: TBD                                | Sampling and            |                        |                                       |  |
|             | Chair: TBD                                                                                                 |                                           | Applications p. 54      |                        |                                       |  |
|             |                                                                                                            |                                           | Chair: TBD              |                        |                                       |  |
| 15:30-16:00 | $Michael\ Gnewuch,$                                                                                        | Tapio Helin, Stability                    | François Clément,       | Christian Weiss,       | $Abdujabar\ Rasulov,$                 |  |
|             | Optimality of                                                                                              | of Expected Utility in                    | Searching Permutations  | Halton Sequences,      | Monte Carlo method                    |  |
|             | deterministic and                                                                                          | Bayesian Optimal                          | for Constructing        | Scrambling and the     | for the Spatially                     |  |
|             | randomized                                                                                                 | Experimental Design,                      | Low-Discrepancy Point   | Inverse                | Homogenous                            |  |
|             | QMC-cubatures on                                                                                           | p. 101                                    | Sets and Investigating  | Star-Discrepancy,      | Boltzmann equation,                   |  |
|             | several scales of                                                                                          |                                           | the Kritzinger Sequence | p. 186                 | p. 210                                |  |
| 10.00 10.00 | function spaces, p. 97                                                                                     | 77 . 77 1                                 | , p. 104                |                        | 1.6. 1.41 A.N.                        |  |
| 16:00-16:30 | Kateryna Pozharska,                                                                                        | Karina Koval,                             | Nathan Kirk,            | Sifan Liu, Transport   | Miguel Alvarez, A New                 |  |
|             | Optimal designs for function discretization                                                                | Subspace accelerated                      | Minimizing the Stein    | Quasi-Monte Carlo,     | Approach for Unbiased                 |  |
|             | and construction of                                                                                        | measure transport<br>methods for fast and | Discrepancy, p. 105     | p. 187                 | Estimation of Parameters of Partially |  |
|             | tight frames, p. 98                                                                                        | scalable sequential                       |                         |                        | Observed Diffusions,                  |  |
|             | tight frames, p. 90                                                                                        | experimental design,                      |                         |                        | p. 211                                |  |
|             |                                                                                                            | p. 102                                    |                         |                        | p. 211                                |  |
| 16:30-17:00 | Leszek Plaskota,                                                                                           | Johannes Milz,                            | Makram Chahine,         | Ambrose                | Håkon Hoel, High-order                |  |
| 10.50-17.00 | Complexity of                                                                                              | Randomized                                | Improving Efficiency of | Emmett-Iwaniw, Using   | adaptive methods for                  |  |
|             | approximating                                                                                              | guasi-Monte Carlo                         | Sampling-based Motion   | Normalizing Flows for  | exit times of diffusion               |  |
|             | piecewise smooth                                                                                           | methods for risk-averse                   | Planning via            | Efficient Quasi-Random | processes and reflected               |  |
|             | functions in the                                                                                           | stochastic optimization,                  | Message-Passing Monte   | Sampling for Copulas,  | diffusions, p. 212                    |  |
|             | presence of                                                                                                | p. 103                                    | Carlo, p. 106           | p. 187                 | diffusions, p. 212                    |  |
|             | deterministic or                                                                                           | r                                         | , <b>.</b>              | r                      |                                       |  |
|             | random noise, p. 99                                                                                        |                                           |                         |                        |                                       |  |
| 17:00-17:30 | Larysa Matiukha, The                                                                                       | Arved Bartuska,                           | Gregory Seljak, An      | Claude Hall,           | Noufel Frikha, On the                 |  |
|             | Quality of Lattice                                                                                         | Efficient expected                        | Empirical Evaluation of | Optimization of        | convergence of the                    |  |
|             | Sequences, p. 100                                                                                          | information gain                          | Robust Estimators for   | Kronecker Sequences,   | Euler-Maruyama                        |  |
|             |                                                                                                            | estimators based on the                   | RQMC, p. 107            | p. 188                 | scheme for                            |  |
|             |                                                                                                            | randomized                                |                         |                        | McKean-Vlasov SDEs,                   |  |
|             |                                                                                                            | quasi-Monte Carlo                         |                         |                        | p. 213                                |  |
|             |                                                                                                            | method, p. 104                            |                         |                        |                                       |  |
| 17:30–19:30 | Welcome Reception, HH                                                                                      | Lobby                                     |                         |                        |                                       |  |

Tue, Jul 29, 2025 – Morning

| 08:30-17:30 | Registration Desk Open,                                                                               |                                         |                           |                                         |                                                 |  |  |
|-------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------|-----------------------------------------|-------------------------------------------------|--|--|
| 09:00-10:00 |                                                                                                       |                                         |                           |                                         |                                                 |  |  |
|             | Plenary Talk: Peter Glynn, Stanford U, Combining Simulation and Linear Algebra: COSIMLA, p. 38 Chair: |                                         |                           |                                         |                                                 |  |  |
|             | Chang-Han Rhee                                                                                        |                                         |                           |                                         |                                                 |  |  |
| 10:00-10:30 | Coffee Break, HH Lobby                                                                                |                                         |                           |                                         |                                                 |  |  |
|             | HH Auditorium                                                                                         | HH Ballroom                             | PH Auditorium             | WH Auditorium                           | HH Alumni Lounge                                |  |  |
|             | Special Session                                                                                       | Special Session                         | Special Session           | Special Session                         | Technical Session -                             |  |  |
|             | Stochastic                                                                                            | Next-generation                         | Heavy-tailed Sampling     | Frontiers in                            | Bayesian Methods                                |  |  |
|             | Computation and                                                                                       | optimal experimental                    | p. 59                     | (Quasi-)Monte Carlo                     | Chair: TBD                                      |  |  |
|             | Complexity, Part III                                                                                  | design: theory,                         | Chair: TBD                | and Markov Chain                        |                                                 |  |  |
|             | p. 56                                                                                                 | scalability, and real                   |                           | Monte Carlo Methods,                    |                                                 |  |  |
|             | Chair: TBD                                                                                            | world impact: Part I                    |                           | Part I p. 61                            |                                                 |  |  |
|             |                                                                                                       | p. 57                                   |                           | Chair: TBD                              |                                                 |  |  |
| 10.90 11.00 | T. E.                                                                                                 | Chair: TBD                              | 1 1 MDD 115               | 7 (1 III MDD                            | T                                               |  |  |
| 10:30-11:00 | Jean-François<br>Chassagneux,                                                                         | Xun Huan, Optimal<br>Pilot Sampling for | erdogdu, TBD, p. 115      | Jonathan Weare, TBD,                    | Lorenzo Nagar, Optimizing Generalized           |  |  |
|             | Computing the                                                                                         | Multi-fidelity Monte                    |                           | p. 118                                  | Hamiltonian Monte                               |  |  |
|             | stationary measure of                                                                                 | Carlo Methods, p. 111                   |                           |                                         | Carlo for Bayesian                              |  |  |
|             | McKean-Vlasov SDEs,                                                                                   | Carlo Methods, p. 111                   |                           |                                         | Inference applications,                         |  |  |
|             | p. 108                                                                                                |                                         |                           |                                         | р. 178                                          |  |  |
| 11:00-11:30 | dos reis, TBD, p. 109                                                                                 | Adrien Corenflos, A                     | Sebastiano Grazzi,        | Nikhil Bansal,                          | Hamza Ruzayqat,                                 |  |  |
|             | , , , <u>.</u>                                                                                        | recursive Monte Carlo                   | Parallel computations     | Randomized QMC                          | Bayesian Anomaly                                |  |  |
|             |                                                                                                       | approach to optimal                     | for Metropolis Markov     | Methods via                             | Detection in                                    |  |  |
|             |                                                                                                       | Bayesian experimental                   | chains Based on Picard    | Combinatorial                           | Variable-Order and                              |  |  |
|             |                                                                                                       | design, p. 112                          | maps, p. 115              | Discrepancy, p. 119                     | Variable-Diffusivity                            |  |  |
|             |                                                                                                       |                                         |                           |                                         | Fractional Mediums,                             |  |  |
|             |                                                                                                       |                                         |                           |                                         | p. 180                                          |  |  |
| 11:30-12:00 | Noufel Frikha, On the                                                                                 | Ayoub Belhadji,                         | Federica Milinanni, A     | Michael Mascagni, The                   | Arghya Datta,                                   |  |  |
|             | convergence of the                                                                                    | Weighted quantization                   | large deviation principle | Walk on Spheres Monte                   | Theoretical Guarantees                          |  |  |
|             | Euler-Maruyama<br>scheme for                                                                          | using MMD: From mean field to mean      | for Metropolis-Hastings   | Carlo Algorithm for                     | of Mean Field                                   |  |  |
|             | McKean-Vlasov SDEs,                                                                                   | shift via gradient flows,               | sampling, p. 116          | Solving Partial Differential Equations, | Variational Inference<br>for Bayesian Principal |  |  |
|             | p. 109                                                                                                | p. 113                                  |                           | p. 120                                  | Component Analysis,                             |  |  |
|             | p. 100                                                                                                | p. 110                                  |                           | p. 120                                  | p. 181                                          |  |  |
| 12:00-12:30 | Sotirios Sabanis,                                                                                     | Steven Damelin, On                      | Xingyu Wang, Sharp        | Hwanwoo Kim,                            | Jimmy Lederman,                                 |  |  |
|             | Wasserstein                                                                                           | energy, discrepancy,                    | Characterization and      | Enhancing Gaussian                      | Bayesian Analysis of                            |  |  |
|             | Convergence of                                                                                        | group invariant                         | Control of Global         | Process Surrogates for                  | Latent Underdispersion                          |  |  |
|             | Score-based Generative                                                                                | measures, alignment of                  | Dynamics of SGDs with     | Optimization and                        | Using Discrete Order                            |  |  |
|             | Models under                                                                                          | neural data and                         | Heavy Tails, p. 117       | Posterior                               | Statistics, p. 182                              |  |  |
|             | Semiconvexity and                                                                                     | Whitney extensions,                     |                           | Approximation via                       |                                                 |  |  |
|             | Discontinuous                                                                                         | p. 114                                  |                           | Random Exploration,                     |                                                 |  |  |
|             | Gradients, p. 110                                                                                     |                                         |                           | p. 121                                  |                                                 |  |  |

Tue, Jul 29, 2025 – Afternoon

 $Wed,\,Jul\,\,30,\,2025-Morning$ 

| 00 20 16 20 | wed, Jul 30, 20                                                                                                                                            |                                                                                                                                     |                                                                                                               |                                                                                                                                                                               |                                                                                                                                                             |  |  |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 08:30-16:30 | Registration Desk Open, HH Auditorium                                                                                                                      | HH LODDY                                                                                                                            |                                                                                                               |                                                                                                                                                                               |                                                                                                                                                             |  |  |
| 09:00-10:00 |                                                                                                                                                            |                                                                                                                                     |                                                                                                               |                                                                                                                                                                               |                                                                                                                                                             |  |  |
|             | Plenary Talk: Michaela Szölgyenyi, U of Klagenfurt, An optimal transport approach to quantifying model uncertainty of SDEs, p. 40 Chair: Gunther Leobacher |                                                                                                                                     |                                                                                                               |                                                                                                                                                                               |                                                                                                                                                             |  |  |
| 10.00 10.00 |                                                                                                                                                            | p. 40 Chair: Gunmer I                                                                                                               | Leouacner                                                                                                     |                                                                                                                                                                               |                                                                                                                                                             |  |  |
| 10:00-10:30 | Coffee Break, HH Lobby                                                                                                                                     |                                                                                                                                     |                                                                                                               |                                                                                                                                                                               |                                                                                                                                                             |  |  |
|             | HH Auditorium  Special Session  Stochastic  Computation and  Complexity, Part V, p. 68  Chair: TBD                                                         | HH Ballroom  Special Session  Statistical Design of  Experiments p. 69  Chair: TBD                                                  | PH Auditorium  Special Session  Advances in Adaptive  Hamiltonian Monte  Carlo p. 70  Chair: TBD              | WH Auditorium Technical Session - Simulation Chair: TBD                                                                                                                       | HH Alumni Lounge<br>Technical Session -<br>Sampling<br>Chair: TBD                                                                                           |  |  |
| 10:30-11:00 | Stefan Heinrich, On<br>the quantum<br>complexity of<br>parametric integration<br>in Sobolev spaces,<br>p. 132                                              | Simon Mak, Respecting<br>the boundaries:<br>Space-filling designs for<br>surrogate modeling<br>with boundary<br>information, p. 135 | Bob Carpenter, GIST:<br>Gibbs self-tuning for<br>locally adapting<br>Hamiltonian Monte<br>Carlo, p. 138       | Philippe Blondeel, Combining quasi-Monte Carlo with Stochastic Optimal Control for Trajectory Optimization of Autonomous Vehicles in Mine Counter Measure Simulations, p. 220 | Akash Sharma, Sampling with constraints, p. 192                                                                                                             |  |  |
| 11:00-11:30 | Bernd Käßemodel,<br>Quantum Integration in<br>Tensor Product Besov<br>Spaces, p. 133                                                                       | Andrews Boahen, Active Learning for Nonlinear Calibration, p. 136                                                                   | Nawaf Bou-Rabee,<br>Acceleration of the<br>No-U-Turn Sampler,<br>p. 139                                       | Rino Persiani, A Monte Carlo Approach to Designing a Novel Sample Holder for Enhanced UV-Vis Spectroscopy, p. 221                                                             | Joonha Park, Sampling<br>from high-dimensional,<br>multimodal<br>distributions using<br>automatically tuned,<br>tempered Hamiltonian<br>Monte Carlo, p. 193 |  |  |
| 11:30–12:00 | Nikolaos Makras, Taming the Interacting Particle Langevin Algorithm — The Superlinear Case, p. 134                                                         | Qian Xiao, Optimal design of experiments with quantitative-sequence factors, p. 136                                                 | Chirag Modi, ATLAS:<br>Adapting Trajectory<br>Lengths and Step-Size<br>for Hamiltonian Monte<br>Carlo, p. 140 | Prasanth Shyamsundar,<br>ARCANE Reweighting:<br>A technique to tackle<br>the sign problem in the<br>simulation of collider<br>events in high energy<br>physics, p. 222        | Arne Bouillon, Localized consensus-based sampling for non-Gaussian distributions, p. 194                                                                    |  |  |
| 12:00-12:30 | Iosif Lytras, Sampling with Langevin Dynamics from non-smooth and non-logconcave potentials., p. 134                                                       | Chaofan Huang, Factor<br>Importance Ranking<br>and Selection using<br>Total Indices, p. 137                                         | Trevor Campbell, AutoStep: Locally adaptive involutive MCMC, p. 141                                           | Nicole Aretz, Multifidelity and Surrogate Modeling Approaches for Uncertainty Quantification in Ice Sheet Simulations, p. 222                                                 | Alex Shkolnik,<br>Importance Sampling<br>for Hawkes Processes,<br>p. 195                                                                                    |  |  |

## ${\bf Wed,\ Jul\ 30,\ 2025-Afternoon}$

| 12:30-14:00                | Lunch Break, TBD                                                                                                      | 7110c1110011                                                                                                      |                                                                                                                                                              |                                                                                                                                                                               |  |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                            | HH Auditorium  Special Session  Stochastic Optimization p. 72 Chair: TBD                                              | HH Ballroom  Special Session  Recent Progress on Algorithmic Discrepancy Theory and Applications p. 73 Chair: TBD | PH Auditorium  Special Session  Monte Carlo  Applications in  High-performance  Computing, Computer  Graphics, and  Computational Science  p. 74  Chair: TBD | WH Auditorium Technical Session - Statistics Chair: TBD                                                                                                                       |  |
| 14:00-14:30                | Raghu Bollapragada,<br>Monte Carlo Based<br>Adaptive Sampling<br>Approaches for<br>Stochastic<br>Optimization, p. 142 | Haotian Jiang, Algorithmic Discrepancy Theory: An Overview, p. 144                                                | Arash Fahim, Gaining efficiency in Monte Carlo policy gradient methods for stochastic optimal control, p. 147                                                | Kazeem Adeleke, Empirical Statistical Comparative Analysis of SNP Heritability Estimators and Gradient Boosting Machines (GBM) Using Genetic Data from the UK Biobank, p. 223 |  |
| 14:30-15:00                | pasupathy, TBD, p. 142                                                                                                | Peng Zhang, Improving<br>the Design of<br>Randomized<br>Experiments via<br>Discrepancy Theory,<br>p. 145          | Sharanya Jayaraman,<br>Examining the Fault<br>Tolerance of<br>High-Performance<br>Monte Carlo<br>Applications through<br>Simulation, p. 148                  | Carles Domingo-Enrich,<br>Cheap permutation<br>testing, p. 224                                                                                                                |  |
| 15:00-15:30                | Shane Henderson, A New Convergence Analysis of Two Stochastic Frank-Wolfe Algorithms, p. 143                          | Aleksandar Nikolov,<br>Online Factorization for<br>Online Discrepancy<br>Minimization, p. 146                     | sawahney, TBD, p. 149                                                                                                                                        | Christopher Draper,<br>Moving PCG beyond<br>LCGs, p. 225                                                                                                                      |  |
| 15:30-16:00                |                                                                                                                       |                                                                                                                   | Silei Song, WoS-NN: Collaborating Walk-on-Spheres with Machine Learning to Solve Elliptic PDEs, p. 149                                                       | Yiming Xu, Hybrid least squares for learning functions from highly noisy data, p. 225                                                                                         |  |
| 16:00–16:30<br>18:00–20:30 | Coffee Break, HH Lobby<br>Conference Dinner, Bridg                                                                    | eport Arts Center                                                                                                 |                                                                                                                                                              |                                                                                                                                                                               |  |

Thu, Jul 31, 2025 - Morning

| 10:00-10:30   HH Auditorium   Plemary Talk: Uros Seljak, UC Berkeley, Gradient-Based MCMC Sampling: Methods and Optimization   Strategies, p. 41   Chair: Tim Hobbs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 08:30-17:30 |                                       | UL I obby             |                          |                        |                      |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------|-----------------------|--------------------------|------------------------|----------------------|--|
| Plenary Talk: Uros Seljak, UC Berkeley, Gradient-Based MCMC Sampling: Methods and Optimization Strategies, p. 41   Chair: Tim Hobbs   Coffee Break, HII Lobby   HH Auditorium Special Session   Special Session   Analysis of Langevin and Related Sampling and Rel   |             |                                       | IIII LODDy            |                          |                        |                      |  |
| 10:00-10:30   10:00-10:30   Coffee Break, HH Lobby   HH Auditorium   Special Session QMC and Applications Part I p. 75   Chair: TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 03.00-10.00 |                                       |                       |                          |                        |                      |  |
| 10:00-10:30   Coffee Break, HH Lobby   HIII Auditorium   Special Session QMC and Applications Part I p. 76   Peter Bartel, Exact discretization, tight frames and recovery via D-optimal designs, p. 150   Stein Variational Gradient Descent, p. 153   Lihan Wang, Convergence Rates for Stein Variational QMC hyperinterpolation, p. 151   Lihan Wang, QMC hyperinterpolation, p. 154   P. 151   Lihan Wang, Confining potentials, p. 154   P. 152   Lihan Wang, Confining potentials, p. 155   Lihan Wang, Confining potentials, p. 155   Lihan Wang, Confining potentials, p. 154   P. 152   Lihan Wang, Confining potentials, p. 155   Sara Pérez-Vieites, Langevin-based density estimation on unbounded domain, p. 152   Parces Y, Kuo, Application of QMC to Oncology, p. 152   Lihan Wang, Application of QMC to Oncology, p. 152   Lihan Wang, Concology, p. 152   Lihan Wang, Concology, p. 152   Lihan Wang, Concology, p. 155   Lihan Wang, Confining potentials, p. 154   Lihan Wang, Confining potentials, p. 155   Lihan Wang, Confining potentials, p. 154   Peter Whalley, Wand Continuous Control Variates, p. 155   Lihan Wang, Confining potentials, p. 155   Lihan Wang, Confining potentials, p. 155   Lihan Wang, Confining potentials, p. 156   Lihan Wang, Confining potentials, p. 157   Lihan Wang, Confining potentials, p. 154   Lihan Wang, Confining potentials, p. 155   Sara Pérez-Vieites, Langevin-based strategies for nested particle filters, p. 158   Expectation-based Simulations on Low-Volatility American Common Stocks, p. 201   Hao Quan, Efficient Pricing for Variable Annuity via Simulation, with Sparse Samples: A National estimators, Part II p. 77   Chair: TBD                                                                                                                                                                                                                                                                                                                                                                                                         |             |                                       |                       |                          |                        |                      |  |
| HH Auditorium Special Session QMC and Applications Part I p. 75 Chair: TBD Algorithms, Part I p. 76 Chair: TBD  10:30-11:00 Felix Bartel, Exact discretization, tight frames and recovery via D-optimal designs, p. 150  11:00-11:30 Mou Cai, L2-approximation: using randomized lattice algorithms and QMC hyperinterpolation, p. 151 Zhijian He, High-dimensional density estimation on unbounded domain, p. 152  11:30-12:00  12:00-12:30 Frances Y, Kuo, Application of QMC to Oncology, p. 152  11:unadiputed  Analysis of Langevin and Related Sampling Analysis of Langevin and Related Sampling Matteo Raviola, Stochastic gradient With least-squares control variates, p. 157 Chair: TBD  Matteo Raviola, Stochastic gradient With least-squares control variates, p. 157  Philipp Guth, A one-shot method for Bayesian optimal experimental design, p. 154 Liftan Wang, Charcaretizing Efficacy Discrepancy Through McKean-Vlasov Dynamics: From QMC Drynamics: From QM | 10:00-10:30 |                                       | iaii. 1 iiii 110003   |                          |                        |                      |  |
| Special Session QMC and Applications Part 1 p. 76 Chair: TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.00 10.00 |                                       | HH Ballroom           | PH Auditorium            | WH Auditorium          | HH Alumni Lounge     |  |
| Analysis of Langevin and Related Sampling Algorithms, Part I p. 76   Chair: TBD     |             |                                       |                       |                          |                        |                      |  |
| D. 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                                       |                       | -                        |                        |                      |  |
| Chair: TBD  Algorithms, Part I p. 76 Chair: TBD  Clair: TBD  Chair: TBD  Clair: TBD  Chair: TBD  Stochastic Differential Equations of the Heston Model for Option Pricing, p. 199  Discrepancy Through Mow Cai, L2-approximation: Using randomized lattice algorithms and QMC  Application of QMC  Discrepancy Through Mothods and Stochastic optimal design, p. 157  Sara Pérez-Vieites, Characterizing Efficacy of Geometric Brownian Motion  Pricing for Variable Application of QMC to Oncology, p. 152  Application of QMC to Oncology, p. 152  Ariginal Re, Peter Whalley, Application of QMC to Oncology, p. 152  Algorithms, Part I p. 76 Chair: TBD  Chair: TBD  Chair: TBD  Chair: TBD  Chair: TBD  Stochastic Differential Equations of the Heston Model for Option Pricing, p. 199  Propagation of Low Discrepancy Through McKean-Vlasov Dynamics: From QMC to MLQMC, p. 200  Dynamics: From QMC to MLQMC, p. 200  Dynamics: From QMC to MLQMC, p. 200  Vincent Zhang, Characterizing Efficacy of Geometric Brownian Motion  Expectation-based Simulations on Low-Volatility American Common Stocks, p. 201  Hao Quan, Efficient Pricing for Variable Annuity via Simulation, p. 202  Frances Y. Kuo, Application of QMC to Oncology, p. 152  Algorithms, p. 158  Du Ouyang, Accuracy Vincent Zhang, Characterizing Efficacy of Geometric Brownian Motion  Expectation-based Simulations on Low-Volatility American Common Stocks, p. 201  Hao Quan, Efficient Pricing for Variable Annuity via Simulation, p. 202  Frances Y. Kuo, Application of QMC to Oncology, p. 152  Application of Day  Annuity via Simulation, p. 202  Frances Y. Kuo, Application of Day  Annuity via Simulation Annuity via Simulation Motion  Annuity via Simulation With least-squares control variates, p. 157  Stochastic gradient  |             |                                       |                       |                          |                        |                      |  |
| 10:30-11:00   Felix Bartel, Exact discretization, tight frames and recovery via D-optimal designs, p. 150   Stein Variational Gradient Descent, p. 150   Stein Variational Gradient Descent, p. 153   Lihan Wang, L2-approximation: using randomized lattice algorithms and QMC hyperinterpolation, p. 151   11:30-12:00   Zhijian He, High-dimensional density estimation on unbounded domain, p. 152   12:00-12:30   Frances Y. Kuo, Application of QMC to Oncology, p. 152   Table 12:00-12:30   Trances Y. Kuo, Application of QMC to Oncology, p. 152   Table 12:00-12:30   Trances Y. Kuo, Application of QMC to Oncology, p. 152   Table 12:00-12:30   Trances Y. Kuo, Application of QMC to Oncology, p. 152   Table 2:00-12:30   Trances Y. Kuo, Application of QMC to Oncology, p. 152   Table 2:00-12:30   Trances Y. Kuo, Application of QMC to Oncology, p. 152   Table 2:00-12:30   Trances Y. Kuo, Application of QMC to Oncology, p. 152   Table 2:00-12:30   Trances Y. Kuo, Application of QMC to Oncology, p. 152   Table 2:00-12:30   Trances Y. Kuo, Application of QMC to Oncology, p. 152   Table 2:00-12:30   Trances Y. Kuo, Application of QMC to Oncology, p. 152   Table 2:00-12:30   Trances Y. Kuo, Application of QMC to Oncology, p. 152   Table 2:00-12:30   Trances Y. Kuo, Application of QMC to Oncology, p. 152   Table 2:00-12:30   Trances Y. Kuo, Application of QMC to Oncology, p. 152   Table 2:00-12:30   Trances Y. Kuo, Application of QMC to Oncology, p. 152   Table 2:00-12:30   Trances Y. Kuo, Application of QMC to Oncology, p. 152   Trances Y. Kuo, Application of QMC to Oncology, p. 152   Trances Y. Kuo, Application of QMC to Oncology, p. 152   Trances Y. Kuo, Application of QMC to Oncology, p. 152   Trances Y. Kuo, Application of QMC to Oncology, p. 152   Trances Y. Kuo, Application of QMC to Oncology, p. 152   Trances Y. Kuo, Application of QMC to Oncology, p. 152   Trances Y. Kuo, Application of QMC to Oncology, p. 152   Trances Y. Kuo, Application of QMC to Oncology, p. 152   Trances Y. Kuo, Application of QMC to Oncology, p. 152      |             | -                                     |                       |                          |                        |                      |  |
| 10:30-11:00   Felix Bartel, Exact discretization, tight frames and recovery via D-optimal designs, p. 150   Stein Variational Gradient Descent, p. 153   Liban Wang, L2-approximation: using randomized lattice algorithms and QMC hyperinterpolation, p. 151   Lis0-12:00   Zhijian He, High-dimensional density estimation on unbounded domain, p. 152   Frances Y. Kuo, Application of QMC to Oncology, p. 152   Frances Y. Kuo, Application of QMC to Oncology, p. 152   Application of Convergence and the control variates, p. 157   Stochastic gradient with least-squares control variates, p. 157   Stochastic gradient with least-squares control variates, p. 157   Heston Model for Option Pricing, p. 199   Stochastic pridicing with least-squares control variates, p. 157   Heston Model for Option Pricing, p. 199   Delocalizational density mit least-squares control variates, p. 157   Heston Model for Option Pricing, p. 199   Delocalizational density mit least-squares control variates, p. 157   Heston Model for Option Pricing, p. 199   Delocalizational density mit least-squares control from the doff on one special prough binary interactions, p. 213   Delocalization of Delocalization of Bias in Unadjusted annually appears of Discrepancy Through density estimation on unbounded domain, p. 152   Peter Whalley, Application of QMC to Oncology, p. 152   Application of Delocalization of Bias in Unadjusted annually appears on Low-Volatility American Common Stocks, p. 201   Hao Quan, Efficient Pricing for Variable Annuity via Simulation, p. 202   Pricing for Variable Annuity via Simulation, p. 202   Pricing for Variable Annuity via Simulation with least-squares control in the data pricing for Variable and pricing potentials, strategies for the control of the con   |             |                                       |                       |                          |                        |                      |  |
| discretization, tight frames and recovery via D-optimal designs, p. 150  11:00-11:30  Mou Cai, Lihan Wang, L2-approximation: using randomized lattice algorithms and QMC hyperinterpolation, p. 151  11:30-12:00  Zhijian He, High-dimensional density estimation on unbounded domain, p. 152  Xignal He (High-dimensional density estimation on unbounded domain, p. 152  Frances Y. Kuo, Application of QMC to Oncology, p. 152  Male Coveragence Rates for Stein Variational Gradient Descent, p. 153  Lihan Wang, Convergence rates of kinetic Langevin district Langevin density estimation on unbounded domain, p. 152  Mou Cai, Lihan Wang, Convergence rates of kinetic Langevin district Langevin done-shot method for Bayesian optimal experimental design, p. 157  Sara Pérez-Vieites, Langevin-based strategies for nested particle filters, p. 158  Sara Pérez-Vieites, Langevin-based strategies for nested particle filters, p. 158  Frances Y. Kuo, Application of QMC to Oncology, p. 152  Simulations on Low-Volatility American Common Stocks, p. 201  Hao Quan, Efficient Pricing Propagation of Low Discretal Propagation of Low Discretal design, P. 157  Sara Pérez-Vieites, Langevin-based Simulations on Low-Volatility American Common Stocks, p. 201  Hao Quan, Efficient Pricing Propagation of Low Discretal Prop | 10:30-11:00 | Felix Bartel, Exact                   |                       |                          | Matyokub Bakoev, The   | Frédéric Blondeel,   |  |
| frames and recovery via D-optimal designs, p. 150  11:00-11:30  Mou Cai, L2-approximation: Using randomized lattice algorithms and QMC p. p. 154  11:30-12:00  Lihan Wang, Convergence rates of lattice algorithms and density estimation on unbounded domain, p. 152  11:30-12:00  Frances Y. Kuo, Application of QMC to Oncology, p. 152  Frances Y. Kuo, Application of QMC to Oncology, p. 152  Finite-Particle Convergence Rates for Stein Variational Gradient Algorithms and Convergence rates of kinetic Langevin dynamics with weakly confining potentials, p. 157  Lihan Wang, Convergence rates of kinetic Langevin dynamics with weakly confining potentials, p. 154  Peter Whalley, Randomized Splitting Methods and Stochastic Gradient Algorithms, p. 155  Sara Pérez-Vieites, Langevin-based strategies in simulated annealing through binary interactions, p. 213  Lihan Wang, Convergence rates of kinetic Langevin dynamics From QMC to Oncology, p. 154  Sara Pérez-Vieites, Langevin-based strategies in simulated annealing through binary interactions, p. 213  Lihan Wang, Convergence rates of kinetic Langevin dynamics with weakly confining potentials, p. 157  Sara Pérez-Vieites, Langevin-based strategies in simulated annealing through binary interactions, p. 213  Lihan Wang, Convergence rates of kinetic Langevin dynamics with weakly confining potentials, p. 157  Sara Pérez-Vieites, Langevin-based strategies in simulated annealing through dynamics in Equations of Low Discrepancy Through McKean-Vlasov Dynamics: From QMC to MLQMC, p. 200  Sara Pérez-Vieites, Langevin-based strategies in simulated annealing through dynamics with weakly one-shot method for Bayesian optimal experimental design, p. 157  Sara Pérez-Vieites, Langevin-based strategies in stimulations of Low Discrepancy Through McKean-Vlasov Dynamics: From QMC to MLQMC, p. 200  Sara Pérez-Vieites, Langevin-based Stimulations on Low-Volatility American Common Stocks, p. 201  12:00-12:30 Frances Y. Kuo, Application of QMC to Oncology, p. 152  Sara Pérez-Vieites, Langevin-based Simulatio |             |                                       | Balasubramanian,      |                          |                        |                      |  |
| D-optimal designs, p. 150  D-optimal designs, p. 150  Stein Variational Gradient Descent, p. 153  11:00–11:30  Mou Cai, L2-approximation: using randomized lattice algorithms and QMC hyperinterpolation, p. 151  11:30–12:00  Mou Cai, L2-approximation: using randomized lattice algorithms and QMC hyperinterpolation, p. 151  11:30–12:00  Mou Cai, Lihan Wang, Convergence rates of kinetic Langevin dynamics with weakly confining potentials, p. 154  11:30–12:00  Mou Cai, Lihan Wang, Convergence rates of kinetic Langevin dynamics with weakly confining potentials, p. 154  Mou Cai, L2-approximation: using randomized lattice algorithms and QMC hyperinterpolation, p. 154  Mou Cai, Lihan Wang, Convergence rates of kinetic Langevin dynamics with weakly confining potentials, p. 154  Mou Cai, Lihan Wang, Convergence rates of kinetic Langevin dynamics with weakly confining potentials, p. 154  Mou Cai, Lihan Wang, Convergence rates of kinetic Langevin dynamics with weakly confining potentials, p. 154  Mou Cai, Lihan Wang, Convergence rates of kinetic Langevin dynamics with weakly confining potentials, p. 154  Mou Cai, Lihan Wang, Convergence rates of kinetic Langevin dynamics with weakly confining potentials, p. 154  Mou Cai, Lihan Wang, Convergence rates of kinetic Langevin dynamics with weakly confining potentials, p. 154  Mou Cai, Lihan Wang, Convergence rates of kinetic Langevin dones whith weakly confining potentials, p. 154  Mou Cai, Lihan Wang, Convergence rates of kinetic Langevin dones whith weakly confining potentials, p. 157  Mou Cai, Lihan Wang, Convergence rates of sheiter Langevin dones with weakly confining potentials, p. 157  Mou Cai, Lie on Wilkosz, Forward one-shot method for Bayesian optimal design, p. 157  McKean-Vlasov Dynamics: From QMC to MLQMC, p. 200  Wei Cai, Martingale deep neural networks for quasi-linear PDEs and stochastic optimal experimental design, p. 158  Methods and Stochastic Gradient Algorithms, p. 158  Methods and Stochastic Gradient Algorithms, p. 158  Methods and Stochastic Gradient Algorith |             |                                       | Finite-Particle       |                          | Equations of the       |                      |  |
| Gradient Descent, p. 153  11:00–11:30  Mou Cai, L2-approximation: using randomized lattice algorithms and QMC hyperinterpolation, p. 151  11:30–12:00  Zhijian He, High-dimensional density estimation on unbounded domain, p. 152  12:00–12:30  Frances Y. Kuo, Application of QMC to Oncology, p. 152  Gradient Descent, p. 153  Lihan Wang, Convergence rates of kinetic Langevin dynamics with weakly confining potentials, p. 154  Sara Pérez-Vieites, Langevin-based strategies for nested particle filters, p. 158  Frances Y. Kuo, Application of QMC to Oncology, p. 152  Gradient Descent, p. 153  Lihan Wang, Convergence rates of kinetic Langevin done-shot method for Bayesian optimal experimental design, p. 157  Sara Pérez-Vieites, Langevin-based strategies for nested particle filters, p. 158  Expectation-based Simulations on Low-Volatility American Common Stocks, p. 201  Hao Quan, Efficient Pricing for Variable Annuity via Simulation, p. 202  Frances Y. Kuo, Application of QMC to Oncology, p. 152  Frances Y. Kuo, Application of Maccon Application of Bias in Unadjusted Hamiltonian Monte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | D-optimal designs,                    | Convergence Rates for | control variates, p. 157 | Heston Model for       | annealing through    |  |
| 11:00–11:30  Mou Cai, L2-approximation: using randomized lattice algorithms and QMC hyperinterpolation, p. 154  11:30–12:00  Zhijian He, High-dimensional density estimation on unbounded domain, p. 152  12:00–12:30  Frances Y. Kuo, Application of QMC to Oncology, p. 152  Mou Cai, Lihan Wang, Convergence rates of kinetic Langevin dynamics with weakly confining potentials, p. 154  Peter Whalley, Randomized Splitting Methods and Stochastic Gradient Algorithms, p. 155  Sara Pérez-Vieites, Langevin-based strategies for nested particle filters, p. 158  Frances Y. Kuo, Application of QMC to Oncology, p. 152  Philipp Guth, A one-shot method for Bayesian optimal experimental design, p. 157  Sara Pérez-Vieites, Langevin-based strategies for nested particle filters, p. 158  Frances Y. Kuo, Application of QMC to Oncology, p. 152  Philipp Guth, A one-shot method for Bayesian optimal experimental design, p. 157  Sara Pérez-Vieites, Langevin-based strategies for nested particle filters, p. 158  Frances Y. Kuo, Application of QMC to Oncology, p. 152  Philipp Guth, A Deon Wilkosz, Forward Propagation of Low Discrepancy Through McKean-Vlasov Dynamics: From QMC to MLQMC, p. 200  Vincent Zhang, Characterizing Efficacy of Geometric Brownian Motion  Expectation-based Simulations on Low-Volatility American Common Stocks, p. 201  Hao Quan, Efficient Pricing for Variable Annuity via Simulation, p. 202  Frances Y. Kuo, Application of Bias in Unadjusted Hamiltonian Monte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | p. 150                                | Stein Variational     |                          | Option Pricing, p. 199 | binary interactions, |  |
| 11:00–11:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                       | Gradient Descent,     |                          |                        | p. 213               |  |
| L2-approximation: using randomized lattice algorithms and QMC QMC lyperinterpolation, p. 151  11:30-12:00  Zhijian He, High-dimensional density estimation on unbounded domain, p. 152  12:00-12:30  Frances Y. Kuo, Application of QMC to Oncology, p. 152  L2-approximation: using randomized kinetic Langevin dynamics with weakly confining potentials, p. 154  Sara Pérez-Vicites, Langevin-based strategies for nested particle filters, p. 158  Sara Pérez-Vicites, Langevin-based strategies for nested particle filters, p. 158  Table 1  Propagation of Low Discrepancy Through McKean-Vlasov Dynamics: From QMC to MLQMC, p. 200 pp. 214  Vincent Zhang, Characterizing Efficacy of Geometric Brownian Motion Expectation-based Simulations on Low-Volatility American Common Stocks, p. 201  Hao Quan, Efficient Oncology, p. 152  None-shot method for Bayesian optimal experimental design, p. 157  Sara Pérez-Vicites, Langevin-based strategies for nested particle filters, p. 158  Motion Expectation-based Simulations on Low-Volatility American Common Stocks, p. 201  Hao Quan, Efficient Pricing for Variable Annuity via Simulation, p. 202  Fast Interpolation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                       | _                     |                          |                        |                      |  |
| using randomized lattice algorithms and QMC confining potentials, pp. 154  11:30-12:00 Zhijian He, High-dimensional density estimation on unbounded domain, pp. 155  12:00-12:30 Frances Y. Kuo, Application of QMC to Oncology, p. 152  12:00-12:30 Frances Y. Kuo, Application of QMC to Oncology, p. 152  High-dimensional density estimation on unbounded domain, pp. 155  12:00-12:30 Frances Y. Kuo, Application of QMC to Oncology, p. 152  High-dimensional density estimation on unbounded domain, pp. 155  High-dimensional density estimation on unbounded domain, pp. 155  Hawkey and potentials, pp. 156  Bayesian optimal experimental design, pp. 157  Sara Pérez-Vieites, Langevin-based strategies for nested particle filters, pp. 158  Bayesian optimal experimental design, pp. 157  Sara Pérez-Vieites, Langevin-based strategies for nested particle filters, pp. 158  Sara Pérez-Vieites, Langevin-based strategies for nested particle filters, pp. 158  Expectation-based Simulations on Low-Volatility American Common Stocks, pp. 201  Hao Quan, Efficient Pricing for Variable Annuity via Simulation, pp. 202  Frances Y. Kuo, Application of QMC to Oncology, pp. 152  Delocalization of Bias in Unadjusted Hamiltonian Monte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11:00-11:30 |                                       |                       | /                        |                        |                      |  |
| lattice algorithms and QMC confining potentials, p. 154  11:30–12:00  Zhijian He, High-dimensional density estimation on unbounded domain, p. 152  12:00–12:30  Frances Y. Kuo, Application of QMC to Oncology, p. 152  12:00–12:30  Frances Y. Kuo, Application of QMC to Oncology, p. 152    Application of QMC to Oncology, p. 152    Continuous Time Reinforcement Learning p. 157    Application of QMC to Oncology, p. 152    Continuous Time Reinforcement Learning p. 157    Application of QMC to Oncology, p. 152    Continuous Time Reinforcement Learning p. 157    Application of QMC to Oncology, p. 152    Continuous Time Reinforcement Learning p. 157    Application of QMC to Oncology, p. 152    Continuous Time Reinforcement Learning p. 157    Application of QMC to Oncology, p. 152    Continuous Time Reinforcement Learning p. 157    Application of QMC to Oncology p. 152    Continuous Time Reinforcement Learning p. 157    Application of QMC to Oncology p. 152    Continuous Time Reinforcement Learning p. 157    Application of QMC to Oncology p. 152    Continuous Time Reinforcement Learning p. 157    Application of QMC to Oncology p. 152    Continuous Time Reinforcement Learning p. 157    Application of QMC to Oncology p. 152    Continuous Time Reinforcement Learning p. 157    Application of QMC to Oncology p. 152    Continuous Time Reinforcement Learning p. 157    Application of QMC to Oncology p. 152    Continuous Time Reinforcement Learning p. 157    Application of QMC to Oncology p. 152    Continuous Time Prication Dynamics: From QMC to MLQMC, p. 200    Application of QMC to Oncology p. 152    Continuous Time Prication P. 200    Application of QMC to Oncology p. 152    Continuous Time Dynamics: From QMC to MLQMC, p. 200    Application of QMC to Oncology p. 152    Continuous Time Prication P. 200    Application of QMC to Oncology p. 152    Continuous Time Dynamics: From QMC to MLQMC, p. 200    Application of QMC to Oncology p. 152    Continuous Time Prication P. 201    Application of QMC to Oncology p. 152    Continuous Ti |             |                                       |                       |                          |                        |                      |  |
| QMC hyperinterpolation, p. 154  11:30–12:00 Zhijian He, High-dimensional density estimation on unbounded domain, p. 155  152 Frances Y. Kuo, Application of QMC to Oncology, p. 152  QMC hyperinterpolation, p. 154  Peter Whalley, Randomized Splitting Methods and Stochastic Gradient Algorithms, p. 155  Sara Pérez-Vieites, Langevin-based strategies for nested particle filters, p. 158  Frances Y. Kuo, Application of QMC to Oncology, p. 152  Peter Whalley, Randomized Splitting Methods and Stochastic Gradient Algorithms, p. 155  Sara Pérez-Vieites, Langevin-based strategies for nested particle filters, p. 158  Sara Pérez-Vieites, Characterizing Efficacy of Geometric Brownian Motion  Expectation-based Simulations on Low-Volatility American Common Stocks, p. 201  Hao Quan, Efficient Pricing for Variable Annuity via Simulation, p. 202  Haw Quan, Efficient Pricing for Variable Annuity via Simulation, p. 202  Fast Interpolation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | _                                     | _                     | _                        |                        |                      |  |
| hyperinterpolation, p. 151  11:30–12:00 Zhijian He, High-dimensional density estimation on unbounded domain, p. 152  152 Peter Whalley, Randomized Splitting Methods and Stochastic Gradient Algorithms, p. 155  155 Prances Y. Kuo, Application of QMC to Oncology, p. 152  12:00–12:30 Prances Y. Kuo, Application of QMC to Oncology, p. 152  12:00–12:30 Prances Y. Kuo, Application of QMC to Oncology, p. 152  12:00–12:30 Prances Y. Kuo, Application of QMC to Oncology, p. 152  13:00–12:30 Prances Y. Kuo, Application of QMC to Oncology, p. 152  14:00–12:30 Methods and Stochastic Strategies for nested particle filters, p. 158  15:00–12:30 Prances Y. Kuo, Application of QMC to Oncology, p. 152  15:00–12:30 Prances Y. Kuo, Application of QMC to Oncology, p. 152  16:00–12:30 Prances Y. Kuo, Application of QMC to Oncology, p. 152  17:00–12:30 Prances Y. Kuo, Application of QMC to Oncology, p. 152  18:00–12:30 Prances Y. Kuo, Application of QMC to Oncology, p. 152  18:00–12:30 Prances Y. Kuo, Application of QMC to Oncology, p. 152  19:00–12:30 Prances Y. Kuo, Application of QMC to Oncology, p. 152  10:00–12:30 Prances Y. Kuo, Application of QMC to Oncology, p. 152  10:00–12:30 Prances Y. Kuo, Application of QMC to Oncology, p. 152  10:00–12:30 Prances Y. Kuo, Application of QMC to Oncology, p. 152  10:00–12:30 Prances Y. Kuo, Application of QMC to Oncology, p. 152  10:00–12:30 Prances Y. Kuo, Application of QMC to Oncology, p. 152  10:00–12:30 Prances Y. Kuo, Application of QMC to Oncology, p. 152  10:00–12:30 Prances Y. Kuo, Application of QMC to Oncology p. 152  10:00–12:30 Prances Y. Kuo, Application of QMC to Oncology p. 152  10:00–12:30 Prances Y. Kuo, Application of QMC to Oncology p. 152  10:00–12:30 Prances Y. Kuo, Application of QMC to Oncology p. 152  10:00–12:30 Prances Y. Kuo, Application of QMC to Oncology p. 152  10:00–12:30 Prances Y. Kuo, Application of QMC to Oncology p. 152  10:00–12:30 Prances Y. Kuo, Application of QMC to Oncology p. 152  10:00–12:30 Prances Y. Kuo, Application of QMC to Oncology p. 152  10 |             | _                                     | · · ·                 | -                        |                        |                      |  |
| p. 151  11:30–12:00 Zhijian He, High-dimensional density estimation on unbounded domain, p. 152  Peter Whalley, Randomized Splitting density estimation on unbounded domain, p. 152  Peter Whalley, Randomized Splitting Methods and Stochastic Gradient Algorithms, p. 155  Methods and Stochastic strategies for nested particle filters, p. 158  p. 155  Frances Y. Kuo, Application of QMC to Oncology, p. 152  Peter Whalley, Randomized Splitting Methods and Stochastic strategies for nested particle filters, p. 158  Delocalization of Bias in Unadjusted Hamiltonian Monte  Peter Whalley, Randomized Splitting Langevin-based strategies for nested particle filters, p. 158  Motion  Expectation-based Simulations on Low-Volatility American Common Stocks, p. 201  Hao Quan, Efficient Pricing for Variable Annuity via Simulation, p. 202  Fast Interpolation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                       | ~ -                   | p. 157                   | -                      | <u> </u>             |  |
| 11:30–12:00 Zhijian He, High-dimensional density estimation on unbounded domain, p. 152  Peter Whalley, Randomized Splitting Methods and Stochastic Gradient Algorithms, p. 155  Peter Whalley, Randomized Splitting Methods and Stochastic Gradient Algorithms, p. 155  Peter Whalley, Randomized Splitting Methods and Stochastic Gradient Algorithms, p. 158  Peter Whalley, Randomized Splitting Methods and Stochastic Gradient Algorithms, p. 158  Peter Whalley, Randomized Splitting Methods and Stochastic Gradient Algorithms, p. 158  Motion Expectation-based Simulations on Low-Volatility American Common Stocks, p. 201  Hao Quan, Efficient Pricing for Variable Annuity via Simulation, p. 202  Fast Interpolation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                       | p. 154                |                          | to MLQMC, p. 200       | , p. 214             |  |
| High-dimensional density estimation on unbounded domain, p. 152  Particle filters, p. 158  Particle filters, p. 158  Particle filters, p. 158  Particle filters, p. 158  Expectation-based simulations on dimensions, p. 215  Particle filters, p. 158  Expectation-based simulations on dimensions, p. 215  Particle filters, p. 158  Expectation-based simulations on dimensions, p. 215  Expectation-based simulations on dimensions, p. 215  Particle filters, p. 158  Expectation-based simulations on dimensions, p. 215  Expectation-based simulations on dimensions, p. 215  Particle filters, p. 158  Expectation-based simulations on dimensions, p. 215  Expectation-based simulations on dimensions, p. 215  Particle filters, p. 158  Expectation-based simulations on dimensions, p. 215  Expectation-based simulations on dimensions, p. 215  Particle filters, p. 158  Expectation-based simulations on dimensions, p. 215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.20 12.00 | _                                     | D-4 W/L-11            | C D5 W:-:4               | IV:                    | W                    |  |
| density estimation on unbounded domain, p. 152  Methods and Stochastic Gradient Algorithms, p. 155  Strategies for nested particle filters, p. 158  Motion  Expectation-based controls in 10,000 dimensions, p. 215  Low-Volatility  American Common Stocks, p. 201  Hao Quan, Efficient PDEs and stochastic optimal Expectation-based controls in 10,000 dimensions, p. 215  12:00–12:30  Frances Y. Kuo, Application of QMC to Oncology, p. 152  Delocalization of Bias in Unadjusted Hamiltonian Monte  Methods and Stochastic strategies for nested particle filters, p. 158  Strategies for nested particle filters, p. 158  Motion  Expectation-based controls in 10,000 dimensions, p. 215  Hao Quan, Efficient PDEs and stochastic optimal Expectation-based controls in 10,000 dimensions, p. 215  Hao Quan, Efficient PDEs Motion  Expectation-based controls in 10,000 dimensions, p. 215  Hao Quan, Efficient PDEs Motion  Expectation-based controls in 10,000 dimensions, p. 215  Hao Quan, Efficient PDEs Motion  Expectation-based controls in 10,000 dimensions, p. 215  Hao Quan, Efficient PDEs Motion  Expectation-based controls in 10,000 dimensions, p. 215  Hao Quan, Efficient PDEs Motion  Expectation-based controls in 10,000 dimensions, p. 215  Hao Quan, Efficient Annuity via Simulation, p. 202  Fast Interpolation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11:30-12:00 |                                       |                       |                          |                        |                      |  |
| unbounded domain, p. 152  particle filters, p. 158  Expectation-based controls in 10,000  Simulations on Low-Volatility  American Common  Stocks, p. 201  12:00–12:30  Frances Y. Kuo, Application of QMC to Oncology, p. 152  Application of QMC to Hamiltonian Monte  Transport Algorithms, p. 158  Motion Expectation-based controls in 10,000  dimensions, p. 215  Hao Quan, Efficient Pricing for Variable Annuity via Simulation, p. 202  Fast Interpolation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | ~                                     |                       | $\sim$                   |                        | -                    |  |
| p. 152 p. 155 Expectation-based controls in 10,000 Simulations on Low-Volatility American Common Stocks, p. 201  12:00–12:30 Frances Y. Kuo, Application of QMC to Oncology, p. 152 Oncology, p. 152  Delocalization of Bias in Unadjusted Hamiltonian Monte  Expectation-based controls in 10,000 dimensions, p. 215  Yiqing Zhou, Pricing for Variable Annuity via Simulation, p. 202 Fast Interpolation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | · ·                                   |                       | $\circ$                  |                        | -                    |  |
| Simulations on Low-Volatility American Common Stocks, p. 201  12:00–12:30 Frances Y. Kuo, Xiaoou Cheng, Application of QMC to Oncology, p. 152 in Unadjusted Hamiltonian Monte  Simulations on Low-Volatility American Common Stocks, p. 201  Hao Quan, Efficient Yiqing Zhou, Pricing for Variable Minimizing Functions with Sparse Samples: A Fast Interpolation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                                       |                       | particle inters, p. 198  |                        | _                    |  |
| Low-Volatility American Common Stocks, p. 201  12:00–12:30 Frances Y. Kuo, Xiaoou Cheng, Application of QMC to Oncology, p. 152 in Unadjusted Hamiltonian Monte  Low-Volatility American Common Stocks, p. 201  Hao Quan, Efficient Yiqing Zhou, Pricing for Variable Minimizing Functions with Sparse Samples: A Fast Interpolation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | p. 102                                | p. 100                |                          |                        |                      |  |
| American Common Stocks, p. 201  12:00–12:30 Frances Y. Kuo, Xiaoou Cheng, Hao Quan, Efficient Yiqing Zhou, Application of QMC to Oncology, p. 152 in Unadjusted Hamiltonian Monte  American Common Stocks, p. 201  Hao Quan, Efficient Yiqing Zhou, Minimizing Functions with Sparse Samples: A Fast Interpolation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                                       |                       |                          |                        | difficisions, p. 210 |  |
| Stocks, p. 201  12:00–12:30 Frances Y. Kuo, Xiaoou Cheng, Hao Quan, Efficient Yiqing Zhou, Application of QMC to Oncology, p. 152 in Unadjusted Hamiltonian Monte Stocks, p. 201  Hao Quan, Efficient Yiqing Zhou, Minimizing Functions with Sparse Samples: A Fast Interpolation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                       |                       |                          | v                      |                      |  |
| 12:00–12:30 Frances Y. Kuo, Xiaoou Cheng, Hao Quan, Efficient Yiqing Zhou, Application of QMC to Delocalization of Bias Oncology, p. 152 in Unadjusted Annuity via Simulation, Hamiltonian Monte Pricing for Variable Annuity via Simulation, p. 202 Fast Interpolation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                       |                       |                          |                        |                      |  |
| Application of QMC to Oncology, p. 152  Oncology, p. 152  In Unadjusted Oncology, p. 202  Delocalization of Bias Oncology, p. 152  In Unadjusted Oncology, p. 202  Minimizing Functions With Sparse Samples: A Fast Interpolation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12:00-12:30 | Frances Y. Kuo,                       | Xiaoou Cheng,         |                          |                        | Yiqing Zhou,         |  |
| Oncology, p. 152 in Unadjusted Annuity via Simulation, With Sparse Samples: A Hamiltonian Monte p. 202 Fast Interpolation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | · · · · · · · · · · · · · · · · · · · | 0.                    |                          |                        |                      |  |
| Hamiltonian Monte p. 202 Fast Interpolation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                       | in Unadjusted         |                          | <u> </u>               |                      |  |
| Carlo p 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                       | Hamiltonian Monte     |                          |                        |                      |  |
| Approach, p. 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                       | Carlo, p. 156         |                          |                        | Approach, p. 216     |  |

Thu, Jul 31, 2025 - Afternoon

| 10.00 14.00 | Thu, Jul 31, 2023 – Alternoon                                                                                 |                           |                           |                        |                         |  |  |  |  |
|-------------|---------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------|------------------------|-------------------------|--|--|--|--|
| 12:30-14:00 | Lunch Break, TBD                                                                                              |                           |                           |                        |                         |  |  |  |  |
| 14:00-15:00 |                                                                                                               | HH Auditorium             |                           |                        |                         |  |  |  |  |
|             | Plenary Talk: Nicolas Chopin, Institut Polytechnique de Paris, Saddlepoint Monte Carlo and its application to |                           |                           |                        |                         |  |  |  |  |
| 15 00 15 00 | exact ecological inference, p. 43 Chair: Bruno Tuffin                                                         |                           |                           |                        |                         |  |  |  |  |
| 15:00-15:30 | Coffee Break, HH Lobby                                                                                        |                           |                           |                        |                         |  |  |  |  |
|             | HH Auditorium                                                                                                 | HH Ballroom               | PH Auditorium             | WH Auditorium          | HH Alumni Lounge        |  |  |  |  |
|             | Special Session QMC                                                                                           | Special Session           | Special Session           | Technical Session -    | Technical Session -     |  |  |  |  |
|             | and Applications Part                                                                                         | Analysis of Langevin      | Recent Advances in        | Sampling               | SDEs                    |  |  |  |  |
|             | II p. 78                                                                                                      | and Related Sampling      | Stochastic Gradient       | Chair: TBD             | Chair: TBD              |  |  |  |  |
|             | Chair: TBD                                                                                                    | Algorithms, Part II       | Descent p. 80             |                        |                         |  |  |  |  |
|             |                                                                                                               | p. 79                     | Chair: TBD                |                        |                         |  |  |  |  |
|             |                                                                                                               | Chair: TBD                |                           |                        |                         |  |  |  |  |
| 15:30–16:00 | Dirk Nuyens,                                                                                                  | $Molei\ Tao,$             | Jose Blanchet,            | Kun-Lin Kuo,           | Fabio Zoccolan,         |  |  |  |  |
|             | Approximation of                                                                                              | Langevin-Based            | Inference for Stochastic  | Revisiting the Gibbs   | Dynamical Low-Rank      |  |  |  |  |
|             | multivariate periodic                                                                                         | Sampling under            | Gradient Descent with     | Sampler: A Conditional | Approximation for       |  |  |  |  |
|             | functions, p. 159                                                                                             | Nonconvex Constraints,    | Infinite Variance, p. 164 | Modeling Perspective,  | SDEs: an interacting    |  |  |  |  |
|             |                                                                                                               | p. 161                    |                           | p. 196                 | particle-system ROM,    |  |  |  |  |
|             |                                                                                                               |                           |                           |                        | p. 207                  |  |  |  |  |
| 16:00-16:30 | Art Owen, Randomized                                                                                          | Yifan Chen,               | Chang-Han Rhee,           | Sascha Holl,           | Adrien Richou, A        |  |  |  |  |
|             | QMC with one                                                                                                  | Convergence of            | Exit-Time Analysis of     | Concatenation of       | probabilistic Numerical |  |  |  |  |
|             | categorical variable,                                                                                         | Unadjusted Langevin in    | Stochastic Gradient       | Markov processes for   | method for semi-linear  |  |  |  |  |
|             | p. 159                                                                                                        | High Dimensions:          | Descent via Kesten's      | Monte Carlo            | elliptic Partial        |  |  |  |  |
|             |                                                                                                               | Delocalization of Bias,   | Recursion, p. 165         | Integration, p. 196    | Differential Equations, |  |  |  |  |
|             |                                                                                                               | p. 162                    |                           |                        | p. 208                  |  |  |  |  |
| 16:30-17:00 | Zexin Pan, QMC                                                                                                | Fuzhong Zhou, Entropy     | Jing Dong, Stochastic     | Josephine Westermann,  | Anke Wiese, A           |  |  |  |  |
|             | confidence intervals                                                                                          | methods for the           | Gradient Descent with     | Polynomial             | Chen-Fliess series for  |  |  |  |  |
|             | using quantiles of                                                                                            | delocalization of bias in | Adaptive Data, p. 165     | approximation for      | stochastic differential |  |  |  |  |
|             | randomized nets, p. 160                                                                                       | Langevin Monte Carlo,     |                           | efficient              | equations driven by     |  |  |  |  |
|             |                                                                                                               | p. 163                    |                           | transport-based        | Lévy processes, p. 208  |  |  |  |  |
| 4-00 4-00   |                                                                                                               | Q. 1.11 15                | 1                         | sampling, p. 197       | D: 1 0                  |  |  |  |  |
| 17:00–17:30 | Kosuke Suzuki,                                                                                                | Siddharth Mitra,          | lovas, TBD, p. 166        | Soumyadip Ghosh, Fast  | Riccardo Saporiti,      |  |  |  |  |
|             | Quasi-uniform                                                                                                 | Convergence of            |                           | Approximate Matrix     | Comparing               |  |  |  |  |
|             | quasi-Monte Carlo                                                                                             | Φ-Divergence and          |                           | Inversion via MCMC     | Probabilistic Load      |  |  |  |  |
|             | lattice point sets, p. 161                                                                                    | Φ-Mutual Information      |                           | for Linear System      | Forecasters: Stochastic |  |  |  |  |
|             |                                                                                                               | Along Langevin Markov     |                           | Solvers, p. 198        | Differential Equations  |  |  |  |  |
|             |                                                                                                               | Chains, p. 163            |                           |                        | and Deep Learning,      |  |  |  |  |
| 18:00-20:30 | Cti Ci++ . M                                                                                                  | ······· (1::)             |                           |                        | p. 209                  |  |  |  |  |
|             | Steering Committee Meeting (by invitation), TBD                                                               |                           |                           |                        |                         |  |  |  |  |

## Fri Aug 1 2025

| $\operatorname{Fri}$ , $\operatorname{Aug} 1$ , $2025$ |                                                                                                                              |                                                                                                                                             |                                                                                                                                                                      |                                                                                                                      |                                                                                                                           |  |  |  |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 08:30–12:15 Registration Desk Open, HH Lobby           |                                                                                                                              |                                                                                                                                             |                                                                                                                                                                      |                                                                                                                      |                                                                                                                           |  |  |  |
|                                                        | HH Auditorium  Special Session  Forward and Inverse  Problems for Stochastic  Reaction Networks  p. 81  Chair: TBD           | HH Ballroom  Special Session  Hardware or Software for (Quasi-)Monte Carlo Algorithms, Part  II p. 82 Chair: TBD                            | PH Auditorium Technical Session - Simulation Chair: TBD                                                                                                              | WH Auditorium Technical Session - Sampling Chair: TBD                                                                | HH Alumni Lounge Technical Session - Markov Chain Monte Carlo Chair: TBD                                                  |  |  |  |
| 09:00-09:30                                            | Zhou Fang, Fixed-budget simulation method for growing cell populations, p. 166                                               | Niklas Baumgarten, A High-performance Multi-level Monte Carlo Software for Full Field Estimates and Applications in Optimal Control, p. 170 | Yashveer Kumar,<br>Monte Carlo simulation<br>approach to solve<br>distributed order<br>fractional mathematical<br>model, p. 183                                      | Nicola Branchini,<br>Revisiting<br>self-normalized<br>importance sampling:<br>new methods and<br>diagnostics, p. 203 | Reuben Cohn-Gordon,<br>Gradient-based MCMC<br>in high dimensions,<br>p. 216                                               |  |  |  |
| 09:30-10:00                                            | Sophia Münker, Dimensionality Reduction for Efficient Rare Event Estimation, p. 167                                          | Aleksei Sorokin, Fast<br>Gaussian Processes,<br>p. 171                                                                                      | Serena Fattori, Benchmarking the Geant4-DNA 'UHDR' Example for Monte Carlo Simulation of pH Effects on Radiolytic Species Yields Using a Mesoscopic Approach, p. 184 | Daniel Yukimura,<br>Quantitative results on<br>sampling from<br>quasi-stationary<br>distributions, p. 204            | Philip Schaer, Parallel Affine Transformation Tuning: Drastically Improving the Effectiveness of Slice Sampling, p. 217   |  |  |  |
| 10:00-10:30                                            | Maksim Chupin, Filtered Markovian Projection: Dimensionality Reduction in Filtering for Stochastic Reaction Networks, p. 168 | Johannes Krotz,<br>Hybrid Monte Carlo<br>methods for kinetic<br>transport, p. 172                                                           | Muhammad Noor ul Amin, Adaptive Max-EWMA Control Chart with SVR: Monte Carlo Simulation for Run Length Analysis, p. 185                                              | Toon Ingelaere,<br>Multilevel simulation of<br>ensemble Kalman<br>methods: interactions<br>across levels, p. 205     | Annabelle Carrell,<br>Low-Rank Thinning,<br>p. 218                                                                        |  |  |  |
| 10:30-11:00                                            | Muruhan Rathinam,<br>State and parameter<br>inference in stochastic<br>reaction networks,<br>p. 169                          | Joseph Farmer,<br>Flow-Based Monte<br>Carlo Transport<br>Simulation, p. 173                                                                 | Chi-Ok Hwang, First-passage-based Last-passage Algorithm for Charge Density on a Conducting Surface, p. 185                                                          | Amit Subrahmanya,<br>Serial ensemble filtering<br>with marginal coupling,<br>p. 206                                  | Hongmei Chi, Randomness in the quantum age: A Comparative Study of Classical and Quantum Random Number Generators, p. 219 |  |  |  |
| 11:00-11:30                                            | Coffee Break, HH Lobby                                                                                                       |                                                                                                                                             |                                                                                                                                                                      |                                                                                                                      |                                                                                                                           |  |  |  |
| 11:30-12:30                                            | HH Auditorium                                                                                                                |                                                                                                                                             |                                                                                                                                                                      |                                                                                                                      |                                                                                                                           |  |  |  |
| 10.00 10.17                                            | Plenary Talk: Veronika Ročková, U of Chicago, AI-Powered Bayesian Inference, p. 45 Chair: Art Owen                           |                                                                                                                                             |                                                                                                                                                                      |                                                                                                                      |                                                                                                                           |  |  |  |
| 12:30-12:45                                            | Closing Remarks by Fred Hickernell, HH Auditorium                                                                            |                                                                                                                                             |                                                                                                                                                                      |                                                                                                                      |                                                                                                                           |  |  |  |