Introduction to Frequent Itemset Mining

- FISM → Frequent itemset mining
- $\bullet \; \textit{Fls} \rightarrow \text{Frequent itemset}$
- $DM \rightarrow Data mining$
- $T \rightarrow$ Transaction
- $TID \rightarrow Transaction ID$
- Tids → Transaction ID set / Tidset
- $I \rightarrow Item$
- $\textit{ls} \rightarrow \text{Itemset}$
- CIs → Closed itemset
- ullet CFIs o Closed frequent itemset
- ullet Closed itemset mining
- CO → Closure operator
- MIs → Maximal itemset
- MFIs → Maximal frequent itemset
- Sp → Support
- ullet $db
 ightarrow { t Database}$
- $A \rightarrow Apriori$
- AA → Apriori algorithm
- CA → Charm algorithm
- # \rightarrow number

FIsM is a cornerstone of *DM*, aimed at discovering sets of items that frequently co-occur in a transactional database. It is widely used in applications such as *market basket analysis* (e.g., identifying items frequently purchased together), *recommendation systems*, *bioinformatics* (e.g., finding co-occurring genes) and *web usage mining* (e.g., analyzing navigation patterns).

Basic Concepts

Fundamental definitions

Definition of items, itemsets, support and types of itemsets (frequent, closed, maximal)

Item → an *I* is a binary attribute in a *T* database, representing a single entity. For example, in a retail context, *I* could be products like *milk*, *bread* or *butter*.

The set of all items is denoted:

$$I = \{I_1, I_2, ..., I_m\}$$

where m is the number of distinct items

 $\textbf{Itemset} \rightarrow \text{an } \textit{Is} \text{ is a subset of items, } X \subset I. \text{ For example, } X = \{ \text{milk}, \text{bread} \} \text{ is an } \textit{Is}. \text{ The power set } P(I) \text{ contains all possible } \textit{Is} \text{ with } |P(I)| = 2^m$

Transactional database \rightarrow a T database D is a collection of T where each T is an itemset associated with a unique transaction ID (T/D)

Formally:

$$D = \{(t_1, X_1), (t_2, X_2), ..., (t_n, X_n)\}$$

where t_i is the *TID* and $X_i \subset I$ is the itemset

The example database

TID	Items		
1	A, C, T, W		
2	C, D, W		

TID	Items
3	A, C, T, W
4	A, C, D, W
5	A, C, D, T, W
6	C, D, T

Here, n=6 (# of transactions) and the / are $I=\overline{\{A,C,D,T,W\}}$ so m=5

Support \to The Sp of an Is X, denoted $\sup(X)$, measures how frequently X appears in D. It is defined as

$$\sup(X) = \left(\frac{|\{t_i \in D | X \subset X_i\}|}{|D|}\right) \times 100$$

where

- $ullet \ |\{t_i\in D|X\subset X_i\}| o$ the # of ${\it T}$ containing X
- ullet D
 ightarrow the total # of T

The Sp count is

$$\sup _\operatorname{count}(X) = |\{t_i \in D | X \subset X_i\}|$$

For examples:

For $X = \{A\}$

- Appears in TIDs 1, 3, 4, 5 ightarrow \sup $_count = 4$
- $\sup(A) = \frac{4}{6} \times 100 = 66.67\%$

For $X = \{A, C, D\}$

- Appears in TIDs 4, 5 ightarrow \sup $_count = 2$
- $\sup(A, C, D) = \frac{2}{6} \times 100 = 33.33\%$

Frequent itemset o an *Is* X is frequent if its Sp meets or exceeds a user-defined minimum Sp threshold minsup

$$\sup(X) > \min\sup$$

or equivalently

$$\sup _\operatorname{count}(X) \ge \operatorname{minsup} \times |D|$$

Example with minsup = 70%

- ullet $\sup(A)=66.67\%<70\% o$ A is not frequent
- $\sup(C) = \frac{6}{6} \times 100 = 100\% \geq 70\% \rightarrow \text{C}$ is frequent

Closed Itemsets

Closed Itemsets \rightarrow are a compact representation of FIs, capturing all FIs and their Sp without redundancy

Galois connection \rightarrow a formal framework using a **Galois connection** to define C/s. Let:

- ullet I
 ightarrow set of items
- ullet $T
 ightarrow {
 m set}$ of transaction IDs
- $\phi \subset I \times T \to$ a binary relation where $(x,y) \in \phi$ means item x appears in transaction y.

Two mappings are defined

$$\mathbf{1}_{-}t:P(I)\to P(T)$$

$$t(X) = \{ y \in T \mid \forall x \in X, (x, y) \in \phi \}$$

This returns the TIDs of transactions containing all items in X

$$2_i: P(T) \rightarrow P(I)$$

$$t(Y) = \{x \in I \mid \forall y \in Y, (x, y) \in \phi\}$$

This returns the items present in all transactions in Y

Closure Operator ightarrow The closure of an $\mathit{ls}\ X$ is

$$c(X) = i(t(X))$$

An $\operatorname{Is} X$ is closed if

$$c(X) = X$$

This means X contains all items common to transactions that contain X

Closed Frequent Itemset o an Is is a CFIs if it is both closed (c(X) = X) and frequent $(\sup(X) \geq \min\sup)$

For example with minsup=30%

For
$$X = \{A, W\}$$

Proved it's closed

- $t(A, W) = \{1, 3, 4, 5\}$ (*TID*s where both A and W appear)
- $i(t(A,W)) = i(\{1,3,4,5\}) = A,C,W$ (Is common to TIDs 1, 3, 4, 5)
- $c(A,W)=\{A,C,W\} \neq \{A,W\} \rightarrow (A,W)$ is not closed

For
$$X = \{C, D\}$$

Proved it's closed

- $t(C,D)=\{2,4,5,6\}$ (TIDs where both C and D appear)
- $i(t(C,D)) = i(\{2,4,5,6\}) = \{C,D\}$ (Is common to TIDs 2, 4, 5, 6)
- $c(C,D)=\{C,D\}=\{C,D\}
 ightarrow (C,D)$ is closed

Proved it's frequent

• $\sup(C,D)=rac{4}{6} imes 100=66.67\% \geq 30\%
ightarrow (C,D)$ is a closed frequent items *CFIs*

Formal definition - A *CFIs* is a *FIs* X such that there exists no superset $Y \supset X$ with the same Sp

$$C = \{X | X \in F \text{ and } \nexists Y \supset X \text{ such that } \sup(X) = \sup(Y)\}$$

where $F = \{X \subset I | \sup(X) \geq \operatorname{minsup}\} \to \mathsf{the} \ \mathsf{set} \ \mathsf{of} \ \mathsf{all} \ \mathsf{\mathit{Fls}}$

Maximal Itemsets

 $oldsymbol{\mathsf{Maximal Itemsets}} o$ are the largest $extit{\mathsf{FIs}}$ providing the most compact representation

An $\operatorname{Is} X$ is a $\operatorname{\mathit{MFIs}}$ if it's frequent and has no frequent superset

$$M = \{X | X \in F \text{ and } \nexists Y \supset X \text{ such that } Y \in F\}$$

Given FIs $\{A,B\},\{A,C\},\{A,B,D\}$

- $\{A,C\}$ is maximal if no superset (e.g., $\{A,C,D\}$) is frequent
- $\{A,B,D\}$ is maximal if not superset (e.g., $\{A,B,D,E\}$) is frequent
- $\{A,B\}$ is not maximal because it is a subset of the frequent items $\{A,B,D\}$ (larger FIs)

Comparison of itemset types

The document compares three types of Is

- Fls (F) o all Is with $\sup(X) \geq \min\sup$
- CFIs (C) o FIs with no superset of equal ${\it Sp}$

• MFIs (M) \rightarrow FIs with no frequent superset

The relationship is

$$M \subset C \subset F$$

 ${\it FIs}
ightharpoonup {\it the}$ the largest set including all ${\it Is}$ meeting or exceeding ${\it Sp}$ threshold. For the large dataset, this set can be massive due to the combinatorial explosion of ${\it Is}$ (2^m)

Cls o A subset of the Fls, reducing redundancy by excluding ls that have supersets with the same Sp. They retain all information about Fls and their Sp Mls o The smallest set, containing only the largest Fls. They are subset of closed itemsets but may lose Sp information for subsets

Visual representation (described)

Imagine a lattice where each node is an Is and edges connect subsets to supersets

Bottom node Ø

Level 1
$$\{A\}, \{C\}, \{D\}, \{T\}, \{W\}$$

Level 2
$$\{A,C\},\{A,D\},\{A,T\},\{A,W\},\{C,D\},\dots$$

Level 3
$$\{A, C, D\}, \{A, C, T\}, \{A, C, W\}, \dots$$

Top node
$$\{A,C,D,T,W\}$$

F All nodes with $support \geq minsup$

C Nodes where no parent (superset) has the same Sp

M The highest nodes in the lattice that are frequent

Frequent itemset mining (FIsM)

Techniques and algorithms like Apriori

Problem definition

The goal is to find all ls in D with support > minsup

Input

- ullet $T \, \mathrm{db} \, D$
- ullet Set of items I
- Minimum Sp threshold minsup (as a percentage or count)

Output

All Is $X \subset I$ such that $\sup(X) \geq \min\sup$

Parameters

$$N=|D| o ext{\# of } au$$

$$d = |I| o ext{\# of distinct } I$$

w o maximum # of I in a T

Challenges

Combinatorial explosion o the # of possible /s $2^{|i|}-1$. For |I|=100, this is $2^{100}-1pprox 10^{30}$

Scalability \rightarrow real-world datasets (e.g., Walmart with 100000 I, billions of T) require efficient algorithms

Memory abd I/O \rightarrow storing and scanning large *db* is resource-intensive

The Apiori principle

The Apriori principle

The Apriori principle is a key optimization to reduce the search space:

- ullet Positive rule if an $Is\ X$ is frequent, all its subsets are frequent
- Negative rule if an ${\it ls}\ X$ is not frequent, none of its supersets can be frequent

Mathematically,

$$\forall X, Y : (X \subset Y) \Longrightarrow \sup(X) \ge \sup(Y)$$

This follows because adding items to an *Is* can only reduce the # of *T* containing it.

Implication

- When generating candidate k-itemsets (parent), only consider combinations of frequent (k-1)-itemsets (child)
- Prune candidates whose subsets are not frequent, avoiding unnecessary sp counting

Apriori algorithm

The AA is a level-wise (breadth-first) algorithm for mining FIs. It iteratively generates and tests candidate Is

Algorithm overview

- 1. Find frequent 1-itemsets (L_1) o scan D to count the sp of each item
- 2. Iterate for k=2,3,...
 - Generate candidate k-itemsets (C_k) from frequent (k-1)-itemsets (L_{k-1})
 - Scan ${\cal D}$ to count the ${\it sp}$ of each candidate
 - ullet Keep candidates with $\mathrm{support} \geq \mathrm{minsup}$ as L_k
- 3. Stop when $L_k=\emptyset$
- 4. Output $L = \bigcup_k L_k$

Pseudocode

```
Input: D (transactional database), minsup (minimum support threshold)
Output: L (all frequent itemsets)
1. L_1 = {1-itemsets in D with support ≥ minsup}
2. for (k = 2; L_{k-1}) \neq \emptyset; k++) {
      C_k = apriori_gen(L_{k-1}) // Generate candidate k-itemsets
4.
      for each transaction t in D {
         C_t = subset(C_k, t) // Candidates in C_k contained in t
          for each c in C_t {
               c.count++ // Increment support count
7.
8.
9.
10.
      L_k = \{c in C_k \mid c.count \ge minsup\}
11. }
12. return L = U_k L_k
```

apriori_gen function

The apriori_gen function generates C_k from L_{k-1}

- 1. Join step o combine pair of ls in L_{k-1} that share the first k-2 items. For example, $\{A,C\}$ and $\{A,D\}$ generate $\{A,C,D\}$
- 2. Prune step \rightarrow remove candidates whose (k-1)-subsets are not in L_{k-1} . For $\{A,C,D\}$ check if $\{A,C\}$, $\{A,D\}$, $\{C,D\}$ $\in L_{k-1}$

Detailed Example

Using the document's *db* with minsup =50% (*sp* count ≥ 3)

TID	Items
1	A, C, T, W
2	C, D, W
3	A, C, T, W
4	A, C, D, W
5	A, C, D, T, W
6	C, D, T

Step 1 - Compute L_1 - Scan ${\it D}$ to count each item's ${\it sp}$

Item	TIDs	TIDs Support Count			
А	1, 3, 4, 5	4	66.67%		
С	1, 2, 3, 4, 5, 6	6	100%		
D	2, 4, 5, 6	4	66.67%		
Т	1, 3, 5, 6	4	66.67%		
W	1, 2, 3, 4, 5	5	83.33%		

All items have $\sup_count \geq 3,$ so:

$$L_1 = \{\{A\}, \{C\}, \{D\}, \{T\}, \{W\}\}\}$$

Step 2 - Compute ${\cal C}_2$ and ${\cal L}_2$

 $\textbf{Join -} \ \mathsf{Combine} \ \mathsf{pair} \ \mathsf{of} \ L_1$

$$C_2 = \{\{A,C\},\{A,D\},\{A,T\},\{A,W\},\{C,D\},\{C,T\},\{C,W\},\{D,T\},\{D,W\},\{T,W\}\}$$

Count sp - Scan D

C_2	TIDs	Support Count	Support %
A, C	1, 3, 4, 5	4	66.67%
A, D	4, 5	2	33.33%
A, T	1, 3, 5	3	50%
A, W	1, 3, 4, 5	4	66.67%
C, D	2, 4, 5, 6	4	66.67%
C, T	1, 3, 5, 6	4	66.67%
C, W	1, 2, 3, 4, 5	5	83.33%
D, T	5, 6	2	33.33%
D, W	2, 4, 5	3	50%
T, W	1, 3, 5	3	50%

Prune - Keep /s with $\sup_count \geq 3$

$$L_2 = \{\{A,C\},\{A,T\},\{A,W\},\{C,D\},\{C,T\},\{C,W\},\{D,W\},\{T,W\}\}$$

Step 3 - Compute C_3 and L_3

Join - Combine pairs in L_2 sharing the **first item** (k-2=3-2=1) (e.g., $\{A,C\}$ and $\{A,T\} o \{A,C,T\}$)

$$\Rightarrow C_3 = \{ \{A, C, T\}, \{A, C, W\}, \{A, T, W\}, \{C, D, W\}, \{C, T, W\}, \{C, D, T\} \}$$

Prune - Check if all (k-1)-subsets are in L_2

- For $\{A,C,T\}
 ightarrow$ subsets $\{A,C\}, \{A,T\}, \{C,T\} \in L_2$
- For $\{A,C,W\} o$ subsets $\{A,C\},\{A,W\},\{C,W\} \in L_2$
- For $\{A,T,W\} o$ subsets $\{A,T\},\{A,W\},\{T,W\} \in L_2$
- For $\{C,D,W\} o$ subsets $\{C,D\},\{C,W\},\{D,W\}\in L_2$
- For $\{C,T,W\} o$ subsets $\{C,T\}, \{C,W\}, \{T,W\} \in L_2$
- For $\{C,D,T\} o$ subsets $\{C,D\},\{C,T\}\in L_2$ but , $\{D,T\}
 otin L_2$

Remove $\{C,D,T\}$ candidate and all remaining candidates are valid

Count sp - Scan D

C_3	TIDs	Support Count	Support %	
A, C, T	1, 3, 5	3	50%	
A, C, W	1, 3, 4, 5	4	66.67%	
A, T, W	1, 3, 5	3	50%	
C, D, W	2, 4, 5	3	50%	
C, T, W	1, 3, 5	3	50%	

Prune - Keep *Is* with $\sup _\operatorname{count} \ge 3$

$$L_3 = \{\{A, C, T\}, \{A, C, W\}, \{A, T, W\}, \{C, D, W\}, \{C, T, W\}\}\}$$

Step 4 - Compute C_4 and L_4

Join - Combine pairs in L_3 sharing the **two first items** (k-2=4-2=2)

$$\Rightarrow C_4 = \{A, C, T, W\}$$
 (combine $\{A, C, T\}$ and $\{A, C, W\}$)

Prune - Check if all (k-1)-subsets are in L_3

$$ullet$$
 For $\{A,C,T,W\} o$ subsets $\{A,C,T\}, \{A,C,W\}, \{A,T,W\}, \{C,T,W\} \in L_3$

Count sp - Scan D

C_4	TIDs	Support Count	Support %	
A, C, T, W	1, 3, 5	3	50%	

Prune - Keep *Is* with $\sup _\operatorname{count} \ge 3$

$$L_4 = \{\{A, C, T, W\}\}$$

Step 5 - Compute C_5 and L_5

No pair in L_4 share three first items (k-2=5-2=3) so $C_5=\emptyset$ and $L_5=\emptyset$

 $L = L_1 \cup L_2 \cup L_3 \cup L_4 = \{\{A\}, \{C\}, \{D\}, \{T\}, \{W\}, \{A, C\}, \{A, T\}, \{A, W\}, \{C, D\}, \{C, T\}, \{C, W\}, \{D, W\}, \{T, W\}, \{A, C, T\}, \{L, W\}, \{D, W\}, \{D,$

Visualization (Apriori)

TID	Items		C ₁	Support		F ₁	Support
1	A, C, T, W		Α	4		Α	4
2	C, D, W		С	6	-	С	6
3	A, C, T, W		D	4		D	4
4	A, C, D, W		Т	4		Т	4
5	A, C, D, T, W		w	5		W	5
6	C, D, T]]					

	F ₃	Support		0	Cummont	I		
7	A,C,W	4		C ₄	Support		F ₄	Support
	A,C,T	3	-	A,C,T,W	3	+	A,C,T,W	4
	A,T,W	3		C,D,T,W	1		- , - , - ,	-
(C,D,W	3						
	C,T,W	3						

Lattice representation

The search space is represented as a lattice

- Nodes all possible $\mathit{Is}\,(2^{[I]})$
- Edges subset-superset relationships
- Levels ls of size k (e.g., level 1: 1-itemsets, level 2: 2-itemsets)

Implementation considerations

Data Structures

- Use a hash table or trie to store candidate Is and their counts
- Represent T as bitsets for efficient subset checking

Optimizations

- Transaction reduction remove T that can not contribute to new candidates
- Prefix Trees store candidates in a prefix tree to reduce memory usage

Bottlenecks

- Multiple db scans (one per level)
- ullet Generating and pruning candidates can be costly for large k

Closed itemset mining (CIsM)

Motivation

FIs can be numerous, esp in dense datasets. CIs reduce redundancy while preserving all information about FIs and their sp

Charm algorithm

The CA efficiently mines CFIs using a vertical data representation (tidsets) and tree-based search

Tidset (*Tids*) - for an *Is* X, t(X) is the set of TIDs containing X. The *sp* is

$$\sup _\operatorname{count}(X) = |t(X)|$$

For example,
$$t(\{A,C\}) = \{1,3,4,5\} \rightarrow \sup _\operatorname{count}(AC) = 4$$

Charm process

- 1. Initialize Start with a root node containing all 1-itemsets and their Tids
- 2. Combine items for each Is, combine it with other I to form larger Is, computing Tids via intersection

$$t(X \cup Y) = t(X) \cap t(Y)$$

- 3. Check closure for an $Is\ X$, compute c(X)=i(t(X)). If c(X)=X, X is closed
- 4. Prune
- If t(X) = t(Y) for some Y, merge X into Y (since X is not closed)
- If $|t(X)| < \operatorname{minsup}$, prune the branch
- 5. Output collect all closed frequent itemsets CFIs

Example with minsup $=50\% o ext{support count} \geq 3$

Initial Tids

Combine, e.g.,
$$t(A, C) = t(A) \cap t(C) = \{1, 3, 4, 5\}$$

Check closure

```
For AC\Rightarrow t(A,C)=\{1,3,4,5\},\ i(\{1,3,4,5\})=\{A,C,W\} \Rightarrow c(A,C)=ACW\neq AC \rightarrow \text{not closed} For ACW\Rightarrow t(A,C,W)=\{1,3,4,5\},\ i(\{1,3,4,5\})=\{A,C,W\} \Rightarrow c(A,C,W)=ACW\rightarrow \text{closed}
```

Result 7 CFIs

```
C \times \{1, 2, 3, 4, 5, 6\}
ACT \times \{1, 3, 5\}
ACW \times \{1, 3, 4, 5\}
ATW \times \{1, 3, 5\}
CDW \times \{2, 4, 5\}
CTW \times \{1, 3, 5\}
ACTW \times \{1, 3, 5\}
```

Visualization (Charm)

 $C \times 123456 \supset D \times 2456$ (3) \Rightarrow Thêm CD, xóa DTương tự các trường hợp còn lại.

Định lý 1: Đặt $X_i \times t(X_i)$ và $X_j \times t(X_j)$ là hai thành viên bất kỳ của một lớp [P]. Bốn thuộc tính sau là:

- 1. Nếu t(Xi) = t(Xj), thì c(Xi)= c(Xj) = c(Xi \cup Xj).
- 2. Nếu t(Xi) \subset t(Xj), thì c(Xi) \neq c(Xj), nhưng c(Xi)= c(Xi \cup Xj)
- 3. Nếu t(Xi) \supset t(Xj), thì c(Xi) \neq c(Xj), nhưng c(Xj)= c(Xi \cup Xj)
- 4. Nếu t(Xi) $\not\subset$ t(Xj)và t(Xj) $\not\subset$ t(Xi), thì c(Xi) \neq c(Xj) \neq c(Xi \cup Xj

```
CHARM-PROPERTY (X \times Y, X_i, X_i, P_i, [P_i], [P])
12: if (\sigma(X) \ge minsup) then
         if t(X_i) = t(X_i) then (1)
13:
                  remove X_i from [P]
14:
                  P_i = P_i \cup X_i
15:
         else if t(X_i) \subset t(X_i) then (2)
16:
                  P_i = P_i \cup X_i
17:
18:
         else if t(X_i) \supset t(X_i) then (3)
                  remove X_i from [P]
19:
                  Add X \times Y to [P_i]
20:
         else if t(X_i) \neq t(X_i) then (4)
21:
22:
                  Add X \times Y to [P_i]
```

Advantages

Compactness - fewer Is than FIs

Lossless - retains all sp information

Efficient rules - association rules from CFIs are non-redundant

Implementation notes

Vertical format - store Tids as bitsets or lists for fast intersection

Diffsets - optimize by storing differences between Tids to reduce memory

Challenges - dense datasets may produce many CFIs, requiring pruning strategies

Maximal itemset mining

Motivation

Maximal itemsets are the most compact representation, ideal for dense datasets where even closed itemsets are numerous

GenMax algorithm

The GenMax algorithm mines MFIs using backtracking and Tids

Algorithm overview

- Approach → depth-first search with backtracking
- Data structure → Tids for sp counting
- **Pruning** \rightarrow eliminates branches leading to non-*MIs*

Pseudocode (MFI-backtrack)

```
Input: I_l (current itemset), C_l (combinable items), l (length)
Output: MFI (maximal frequent itemsets)
\label{eq:MFI-backtrack} \textit{MFI-backtrack}(\textit{I\_1}, \; \textit{C\_1}, \; 1):
1. for each x in C_1:
     I_{1+1} = I_1 \cup \{x\}
        P_{1+1} = \{y \text{ in } C_1 \mid y > x\} // Items after x (lexicographic order)
3.
       if I_{l+1} \cup P_{l+1} has a superset in MFI:
           return // Prune branch
       C_{\{1+1\}} = FI-combine(I_{\{1+1\}}, P_{\{1+1\}})
6.
       if C_{l+1} is empty:
7.
            if I_{l+1} has no superset in MFI:
8.
                MFI = MFI \cup I_{1+1}
9.
10.
11.
            MFI-backtrack(I_{1+1}, C_{1+1}, l+1)
```

FI-combine function

Detailed example (with minsup = 50%)

Initial Tidsets

```
A: {1, 3, 4, 5}
C: {1, 2, 3, 4, 5, 6}
D: {2, 4, 5, 6}
T: {1, 3, 5, 6}
W: {1, 2, 3, 4, 5}
```

Start with A

- Combinable items $C_1 = \{C, T, W\}$
- Generate $AC \rightarrow t(AC) = \{1, 3, 4, 5\}, \sup _count = 4 \ge 3$
- Generate $AT
 ightarrow t(AT) = \{1,3,5\}, \sup_ \mathrm{count} = 3 \geq 3$
- Generate $AW o t(AW) = \{1,3,4,5\}, \sup_ \mathrm{count} = 4 \geq 3$

$$\Rightarrow C_2 = \{AC, AT, AW\}$$

For AC

- Combinable items $P_2 = \{T, W\}$
- Generate $ACT
 ightarrow t(ACT) = \{1,3,5\}, \sup _\operatorname{count} = 3 \geq 3$
- Generate $ACW
 ightarrow t(ACW) = \{1,3,4,5\}, \sup_ \mathrm{count} = 4 \geq 3$

$$\Rightarrow C_3 = \{ACT, ACW\}$$

For ACT

- Combinable items $P_3 = \{W\}$
- Generate $ACTW o t(ACTW) = \{1,3,5\}, \sup_\text{count} = 3 \ge 3$

$$\Rightarrow C_4 = \{ACTW\}$$

For ACTW

- ullet No combinable items $C_5=\emptyset$
- Check maximality ightarrow no superset in MFIs yet so add ACTW

Backtract to ACW

• Superset ACTW exists so prune ACW

Result 2 MFIs

```
ACTW \times \{1, 3, 5\}
CDW \times \{2, 4, 5\}
```

Advantages

- Minimal output ightarrow Only the largest frequent itemsets
- Efficent for dense data \rightarrow Reduces output size significantly

Implementation notes

- Tidset Intersection ightarrow use bitsets for fast computation.
- ullet Pruning o maintain a set of maximal itemsets to check for supersets.
- ullet Challenges ullet ensuring no maximal itemset is missed requires careful pruning.

Observations and comparisons

Hierarchy $M\subset C\subset F$

Closed itemsets

- · Lossless representation of all frequent itemsets
- · Ideal for generating concise association rules

Maximal itemsets

- Most compact but loss sp information for subsets
- · Best for dense datasets with many CIs

Trade-offs

- ullet ${f F}
 ightarrow {f Comprehensive}$ but redundant and large.
- ${\bf C} o {\sf Balances}$ compactness and information.
- $\mathbf{M} o \mathsf{Minimal}$ but may require reconstruction of subsets.

Practical applications

- Market Basket Analysis ightarrow place frequently co-purchased items together or offer bundles.
- Recommendation Systems ightarrow suggest items based on frequent patterns.

Bioinformatics → identify co-occurring genes or proteins.
 Web Mining: Analyze common navigation paths.

Advanced Topics and Extensions

Other algorithms

FP-Growth

- Uses a Frequent Pattern tree (FP-tree) to avoid candidate generation
- · More efficient than Apriori for large, sparse datasets

Eclat

- Vertical data format with Tids
- Depth-first search, similar to Charm and GenMax

LCM (Linear time Closed itemset Miner)

• Optimized for closed itemset mining, faster than Charm in some cases

Dense vs Sparse datasets

- Sparse datasets \rightarrow few items per transactions (e.g., retail). Many F/s but Apriori or FP-Growth works well
- ullet Dense datasets ullet many items per transaction (e.g., bioinformatics). Fewer but larger itemsets, **Charm** or **GenMax** is preferred