Devoir maison 15 - Séries

Pour $n \in \mathbb{N}^*$ et $x \in]-\infty,1]$, on définit :

$$u_n(x) = \frac{x^n}{n}$$
 et $S_n(x) = \sum_{k=1}^n u_k(x)$

1. Étude de $S_n(1)$

Pour $n \geq 1$, on note

$$\gamma_n = S_n(1) - \ln(n)$$

- **a.** Étudier la série de terme général $D_n = \gamma_{n+1} \gamma_n$, pour $n \ge 1$.
- b. En déduire que (γ_n) converge. On note γ sa limite appelée constante d'Euler.

2. Étude de la série $\sum_{n\geq 1} \frac{1}{n} \cos\left(\frac{2n\pi}{3}\right)$

Pour $n \ge 1$, on pose

$$C_n = \sum_{k=1}^n \frac{1}{k} \cos\left(\frac{2k\pi}{3}\right)$$

a. Déterminer les réels a, b et c tels que pour $n \ge 1$,

$$C_{3n} = a\sum_{p=1}^{n} \frac{1}{3p} + b\sum_{p=0}^{n-1} \frac{1}{3p+1} + c\sum_{p=0}^{n-1} \frac{1}{3p+2}$$

b. En déduire que

$$\forall n \ge 1, \quad C_{3n} = \frac{1}{2}S_n(1) - \frac{1}{2}S_{3n}(1)$$

- **c.** Établir la convergence de la suite (C_n) et donner sa limite.
- 3. Étude de $S_n(-1)$
 - a. Montrer que

$$\forall n \ge 1, \forall x \in]-\infty, 1[, \ln(1-x) = -S_n(x) - \int_0^x \frac{(x-t)^n}{(1-t)^{n+1}} dt$$

- **b.** En déduire que la série de terme général $u_n(-1)$ converge et en donner la somme.
- 4. Étude de la série $\sum \frac{1}{(n+1)(2n+1)}$
 - a. Décomposer en éléments simples la fraction rationnelle $\frac{1}{(X+1)(2X+1)}$.
 - **b.** Montrer que

$$\forall n \ge 1, \quad \sum_{k=0}^{n} \frac{1}{2k+1} = \frac{1}{2} S_n(1) - S_{2n+1}(-1)$$

c. Déterminer la somme de $\sum_{n\geq 0} \frac{1}{(n+1)(2n+1)}$.