

TEST REPORT

Report No.: HK11060739-1

First Act Inc.

Application For Certification

(Original Grant)

(FCC ID: ZDMVCKRZB)

Transmitter

Prepared and Checked by: Approved by:

Signed On File Wong Kwok Yeung, Kenneth Engineer

Chan Chi Hung, Terry **Assistant Supervisor** Date: July 21, 2011

The test report only allows to be revised within the retention period unless further standard or the requirement was noticed.

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material product or service is or that some product or service is or the saver been under an Intertek certification program. material, product, or service is or has ever been under an Intertek certification program.

GENERAL INFORMATION

FIRST ACT INC. MODEL: FI915

FCC ID: ZDMVCKRZB

Grantee:	First Act Inc.				
Grantee Address:	745 Boylston Street,				
	Boston, MA 02116,				
	Massachusetts, United States				
Contact Person:	Paul Franzosa				
Tel:	617.226.7888				
Fax:	617.226.7809				
e-mail:	pfranzosa@firstact.com				
Manufacturer:	First Act Entertainment Ltd.				
Manufacturer Address:	Unit 2313, 23/F, BEA Tower, Millennium City 5, 418				
	Kwun Tong, Kowloon, Hong Kong				
Brand Name:	First Act				
Model:	FI915				
Additional Model:	FI905, FI906, FI907				
Type of EUT:	Transmitter				
Description of EUT:	First Act Voice Rockrz Microphone				
Serial Number:	N/A				
FCC:	ZDMVCKRZB				
Date of Sample Submitted:	June 13, 2011				
Date of Test:	June 15, 2011				
Report No.:	HK11060739-1				
Report Date:	July 21, 2011				
Environmental Conditions:	Temperature: +10 to 40°C				
	Humidity: 10 to 90%				

SUMMARY OF TEST RESULT

FIRST ACT INC. MODEL: FI915

FCC ID: ZDMVCKRZB

TEST SPECIFICATION	REFERENCE	RESULTS
Maximum Peak Output Power	15.247(b), (c) / RSS-210 A8.4	N/A
Hopping Channel Carrier Frequencies Separation	15.247(e) / RSS-210 A8.1	N/A
20dB Bandwidth of the Hopping Channel	15.247(a) / RSS-210 A8.1	N/A
Number of Hopping Frequencies	15.247(e) / RSS-210 A8.1	N/A
Average Time of Occupancy of Hopping Frequency	15.247(e) / RSS-210 A8.1	N/A
Anteann Conducted Spurious Emissions	15.247(d) / RSS-210 A8.5	N/A
Radiated Spurious Emissions	15.247(d) / RSS-210 A8.5	N/A
RF Exposure Compliance	15.247(i) / RSS-Gen 5.5	N/A
Transmitter Power Line Conducted Emissions	15.207 / RSS-Gen 7.2.2	N/A
Transmitter Field Strength	15.225 / RSS-210 A2.6	Pass
Transmitter Field Strength	15.227 / RSS-310 3.8	N/A
Transmitter Field Strength	15.229 / RSS-210 A2.7	N/A
Transmitter Field Strength, Bandwidth and Timing Requirement	15.231(a) / RSS-210 A1.1.1	N/A
Transmitter Field Strength, Bandwidth and Timing Requirement	15.231(e) / RSS-210 A1.1.5	N/A
Transmitter Field Strength and Bandwidth Requirement	15.239 / RSS-210 A2.8	N/A
Transmitter Field Strength and Bandwidth Requirement	15.249 / RSS-210 A2.9	N/A
Transmitter Field Strength and Bandwidth Requirement	15.235 / RSS-310 3.9	N/A
Receiver / Digital Device Radiated Eissions	15.109 / ICES-003	N/A
Digital Device Conducted Emissions	15.107 / ICES-003	N/A

Note: 1. The EUT uses a permanently attached antenna which, in accordance to section 15.203, is considered sufficient to comply with the pervisions of this section.

2. Pursuant to FCC part 15 Section 15.215(c), the 20 dB bandwidth of the emission was contained within the frequency band designated (mentioned as above) which the EUT operated. The effects, if any, from frequency sweeping, frequency hopping, other modulation techniques and frequency stability over excepted variations in temperature and supply voltage were considered.

Table of Contents

1.0	General Description	1
1.1	Product Description	
1.2	Related Submittal(s) Grants	1
1.3	Test Methodology	1
1.4		
2.0	System Test Configuration	2
2.1	Justification	2
2.2	EUT Exercising Software	2
2.3	Special Accessories	2
2.4	Equipment Modification	2
2.5	Measurement Uncertainty	2
2.6	Support Equipment List and Description	3
3.0	Emission Results	3
3.1	Field Strength Calculation	
3.2	Radiated Emission Configuration Photograph	
3.3	Radiated Emission Data	
3.4	Frequency Stability	6
4.0	Equipment Photographs	7
5.0	Product Labelling	7
6.0	Technical Specifications	7
7.0	Instruction Manual	7
8.0	Miscellaneous Information	7
8.1	Measured Bandwidth	7
8.2	Emissions Test Procedures	8
a n	Fauinment List	0

1.0 **General Description**

1.1 Product Description

The equipment under test (EUT) is a transmitter for an Inductive toy microphone (RFID tag reader) operating at 13.56MHz which is controlled by a crystal. The EUT is energized by 3 x AAA size batteries. This toy consists of toy microphone (RFID tag reader) and 8 passive type powered tags (Flower ring, Skull ring, Rock Ring, Skull bracelet, Zipper bracelet, Flame ring, Bike Chain bracelet, studded bracelet). The microphone has a power on/off button, FX button, MIC button and a Demo/play switch with line in Jack. The RFID tag sensor is located on the back of microphone. After switched on the EUT, the user can tap a tag to the target zone (i.e. RFID tag sensor) and sing into the Mic for generate voice effect. Each tag can generate different voice effect while in play. In addition, the user can plug the MP3 player into the line jack input for play music from the speaker of the EUT.

The Model: FI905, FI906 and FI907 are the same as the Model: FI915 in hardware aspect. The difference in graphic on product and housing colour only.

Antenna Type: Internal, Integral

For electronic filing, the brief circuit description is saved with filename: descri.pdf.

1.2 Related Submittal(s) Grants

The receiver portion for this transceiver is exempted from the Part 15 technical rules per 15.101(b).

1.3 Test Methodology

Radiated emission measurements were performed according to the procedures in ANSI C63.4 (2003). All radiated measurements were performed in an Open Area Test Site. Preliminary scans were performed in the Open Area Test Site only to determine worst case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "Justification Section" of this Application.

1.4 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located at Garment Centre, 576 Castle Peak Road, Kowloon, Hong Kong. This test facility and site measurement data have been placed on file with the FCC.

2.0 **System Test Configuration**

2.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it), and in the confines as outlined in ANSI C63.4 (2003).

The device was powered by DC 4.5V (3 x "AAA" size batteries) during test.

For maximizing emissions, the EUT was rotated through 360°, the antenna height was varied from 1 meter to 4 meters above the ground plane, and the antenna polarization was changed. This step by step procedure for maximizing emissions led to the data reported in Exhibit 3.0.

The rear of unit shall be flushed with the rear of the table.

The equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). The EUT was mounted to a plastic stand if necessary and placed on the wooden turntable, which enabled the engineer to maximize emissions through its placement in the three orthogonal axes.

2.2 EUT Exercising Software

There was no special software to exercise the device. Once the unit is powered up, it transmits the RF signal continuously.

2.3 Special Accessories

There are no special accessories necessary for compliance of this product.

2.4 Equipment Modification

Any modifications installed previous to testing by First Act Inc. will be incorporated in each production model sold/leased in the United States.

No modifications were installed by Intertek Testing Services Hong Kong Ltd.

2.5 Measurement Uncertainty

When determining of the test conclusion, the Measurement Uncertainty of test has been considered.

Report No.: HK11060739-1 FCC ID: ZDMVCKRZB

2

2.6 Support Equipment List and Description

Cassette Player (EW-1738b) (Provided by Intertek)

3.0 **Emission Results**

Data is included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included.

3.1 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any), Average Factor (optional) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG - AV

where $FS = Field Strength in dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in $dB\mu V$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB AV = Average Factor in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows:

FS = RR + LF

where $FS = Field Strength in dB\mu V/m$

RR = RA - AG - AV in $dB\mu V$

LF = CF + AF in dB

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB are added. The amplifier gain of 29 dB and average factor of 5 dB are subtracted, giving a field strength of 27 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

 $RA = 52.0 dB\mu V/m$

AF = 7.4 dB $RR = 18.0 \text{ dB}\mu\text{V}$ CF = 1.6 dB LF = 9.0 dB

AG = 29.0 dBAV = 5.0 dB

FS = RR + LF

 $FS = 18 + 9 = 27 \, dB\mu V/m$

Level in μ V/m = Common Antilogarithm [(27 dB μ V/m)/20] = 22.4 μ V/m

3.2 Radiated Emission Configuration Photograph

Worst Case Radiated Emission at 40.689 MHz

For electronic filing, the worst case radiated emission configuration photographs are saved with filename: radiated photos.pdf.

3.3 Radiated Emission Data

The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

Judgment: Passed by 9.1 dB

Company: First Act Inc. Date of Test: June 22, 2011

Model: FI915 Mode: Transmitting

Table 1

Radiated Emissions

Polarization	Frequency	Reading	Antenna	Pre-	Net	Distance	Calculated	Limit	Margin
	(MHz)	(dBµV)	Factor	Amp	at 3m	Factor	at 30m	at 30m	(dB)
			(dB)	Gain	(dBµV/m)	(-dB)	(dBµV/m)	(dBµV/m)	
				(dB)					
V	13.563	61.5	10.8	0.0	72.3	40.0	32.3	84.0	-51.7
V	27.126	20.9	9.5	0.0	30.4	40.0	-9.6	29.5	-39.1

Table 2

Radiated Emissions

Polari- zation	Frequency (MHz)	Reading (dBμV)	Pre- Amp (dB)	Antenna Factor (dB)	Net at 3m (dB _μ V/m)	Limit at 3m (dB _µ V/m)	Margin (dB)
V	40.689	36.9	16	10.0	30.9	40.0	-9.1
Н	54.252	33.8	16	11.0	28.8	40.0	-11.2
Н	67.815	37.5	16	8.0	29.5	40.0	-10.5
Н	81.378	38.3	16	7.0	29.3	40.0	-10.7
Н	94.941	36.4	16	11.0	31.4	43.5	-12.1
Н	108.504	32.8	16	14.0	30.8	43.5	-12.7
Н	122.067	33.1	16	14.0	31.1	43.5	-12.4
Н	135.630	32.6	16	14.0	30.6	43.5	-12.9
Н	149.193	32.0	16	14.0	30.0	43.5	-13.5

NOTES: 1. Peak Detector Data unless otherwise stated.

- 2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative sign in the column shows value below limit.
- 4. Horn antenna is used for the emission over 1000MHz.

3.4 Frequency Stability

Data Table Frequency tolerance of Transmitter (Temperature Variation: -20°C to +50°C)

Operating Fred	quency	13.563301 MHz		
Test Voltage	Temperature	Measured	Frequency	Limit
(V)	(°C)	Frequency	Error	(%)
		(MHz)	(%)	
4.5	+50	13.563213	-0.000649	±0.01
	+40	13.563234	-0.000494	±0.01
	+30	13.563268	-0.000243	±0.01
	+20	13.563301	0	±0.01
	+10	13.563344	+0.000317	±0.01
	0	13.563344	+0.000317	±0.01
	-10	13.563331	+0.000221	±0.01
	-20	13.563309	+0.000059	±0.01

We found that the EUT met the requirement of FCC Part 15 Section 15.225 (e).

4.0 **Equipment Photographs**

For electronic filing, the photographs are saved with filename: external photos.pdf and internal photos.pdf.

5.0 **Product Labelling**

For electronics filing, the FCC ID label artwork and the label location are saved with filename: label.pdf.

6.0 **Technical Specifications**

For electronic filing, the block diagram and schematic of the tested EUT are saved with filename: block.pdf and circuit.pdf respectively.

7.0 **Instruction Manual**

For electronic filing, a preliminary copy of the Instruction Manual is saved with filename: manual.pdf.

This manual will be provided to the end-user with each unit sold/leased in the United States.

8.0 **Miscellaneous Information**

The miscellaneous information includes details of the test procedure and measured bandwidth.

8.1 **Measured Bandwidth**

The plot saved in be.pdf which shows the fundamental emission is confined in the specified band. The emission of the fundamental is 32.3 dB μ V/m and it is below the limit of 50.5 dB μ V/m in the range of (13.410 – 13.553 MHz) and (13.567 – 13.710 MHz) and the limit of 40.5 dB μ V/m in the frequency range of (13.110 – 14.410 MHz) and (13.710 – 14.010 MHz). In the frequency range from 13.110 – 14.010 MHz, we cannot find any emission higher than the fundamental emission. Therefore they meet the requirement of Section 15.225(a), (b), (c), & (d).

Report No.: HK11060739-1 FCC ID: ZDMVCKRZB

7

8.2 Emissions Test Procedures

The following is a description of the test procedure used by Intertek Testing Services in the measurements of transmitters operating under Part 15, Subpart C rules.

The test set-up and procedures described below are designed to meet the requirements of ANSI C63.4 - 2003.

The transmitting equipment under test (EUT) is placed on a wooden turntable which is four feet in diameter and approximately one meter in height above the ground plane. During the radiated emissions test, the turntable is rotated and any cables leaving the EUT are manipulated to find the configuration resulting in maximum emissions. The EUT is adjusted through all three orthogonal axes to obtain maximum emission levels. The antenna height and polarization are varied during the testing to search for maximum signal levels.

Detector function for radiated emissions is in peak mode. Average readings, when required, are taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings.

The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower. For line conducted emissions, the range scanned is 150 kHz to 30 MHz.

8.2 Emissions Test Procedures (cont'd)

The EUT is warmed up for 15 minutes prior to the test.

AC power to the unit is varied from 85% to 115% nominal and variation in the fundamental emission field strength is recorded. If battery powered, a new, fully charged battery is used.

Conducted measurements are made as described in ANSI C63.4 - 2003.

The IF bandwidth used for measurement of radiated signal strength was 10 kHz for emission below 30 MHz and 120 kHz for emission from 30 MHz to 1000 MHz.

Transmitter measurements are normally conducted at a measurement distance of three meters. However, to assure low enough noise floor in the restricted bands and above 1 GHz, signals are acquired at a distance of one meter or less. All measurements are extrapolated to three meters using inverse scaling, but those measurements taken at a closer distance are so marked.

9.0 **Equipment List**

Radiated Emissions Test

Equipment	Active H-field Loop	EMI Test Receiver	Log Periodic	Biconical Antenna
	Antenna		Antenna	
Registration No.	EW-0191	EW-2250	EW-0446	EW-0954
Manufacturer	EMCO	ROHDESCHWARZ	EMCO	EMCO
Model No.	6502	ESCI	3146	3104C
Calibration Date	Dec 25, 2009	Jan 25, 2011	Apr 26, 2010	Apr 14, 2010
Calibration Due	Jun 25, 2011	Jan 25, 2012	Oct 26, 2011	Oct 14, 2011
Date				

Equipment	Temperature & Humidity Chamber	14m Double Shield RF Cable (9kHz - 6GHz)	Spectrum Analyzer
	,	\	
Registration No.	EW-2395	EW-2375	EW-2188
Manufacturer	GIANT FORCE	RADIALL	AGILENTTECH
Model No.	AR	n m/br56/bnc m 14m	E4407B
Calibration Date	06 Oct, 2010	Sep 11, 2010	Dec 27, 2010
Calibration Due Date	15 Oct, 2011	Sep 12, 2011	Dec 31, 2011