Цуканов Михаил st117303st117303@student.spbu.ru

Homework Assignment 13 Алгебра и геометрия, 1 семестр

2023.12.25

Задача 31.

Даны вектора $\vec{a}=\{1,2,3\},\; \vec{b}=\{2,-2,1\},\; \vec{c}=\{4,0,3\},\; \vec{d}=\{16,10,18\}.$ Найти вектор, являющийся проекцией вектора \vec{d} на плоскость, определяемую векторами \vec{a} и \vec{b} при направлении проектирования, параллельном вектору \vec{c} .

Решение:

Плоскость
$$(\overrightarrow{a}, \overrightarrow{b})$$
 определяется нормалью. $\overrightarrow{n} = \overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 2 & 3 \\ 2 & -2 & 1 \end{vmatrix} = \{8, 5, -6\}$

Уравнение плоскости: $\overrightarrow{p} \cdot \overrightarrow{n} = 0$

Расстояние от начала координат до плоскости равно 0, и вектор d начинается в начале координат. Значит нужно спроектировать на плоскость только саму точку (16, 10, 18). Проекция будет совпадать с точкой пересечения прямой, параллельной \overrightarrow{c} и проходящей через \overrightarrow{d}

Уравнение прямой: $\overrightarrow{p} = \overrightarrow{d} + \alpha * \overrightarrow{c}$

Значит уравнение точки пересечения: $(\overrightarrow{d} + \alpha * \overrightarrow{c}) \cdot \overrightarrow{n} = 0$

$$\alpha = -\frac{\overrightarrow{d} \cdot \overrightarrow{n}}{\overrightarrow{c} \cdot \overrightarrow{n}}$$

$$\alpha = -\frac{16*8 + 5*10 - 6*18}{4*8 + 0*5 - 3*6} = -5$$

Значит спроектированная точка: $\overrightarrow{p} = \overrightarrow{d} + -5\overrightarrow{c} = \{16 - 5*4, 10 - 5*0, 18 - 5*3\} = \{-4, 10, 3\}$ Ответ: $\{-4, 10, 3\}$

Задача 138.

Доказать, что при любом расположении точек A, B, C, D на плоскости или в пространстве имеет место равенство $(\overrightarrow{BC}, \overrightarrow{AD}) + (\overrightarrow{CA}, \overrightarrow{BD}) + (\overrightarrow{AB}, \overrightarrow{CD}) = 0.$

Решение:

Расскроем векторы так, чтобы остались только отношения радиус векторов, если взять A за системы центр координат.

$$(\overrightarrow{BC}, \overrightarrow{AD}) + (\overrightarrow{CA}, \overrightarrow{BD}) + (\overrightarrow{AB}, \overrightarrow{CD}) = 0 < = > (\overrightarrow{AC} + \overrightarrow{BA}, \overrightarrow{AD}) + (\overrightarrow{CA}, \overrightarrow{BA} + \overrightarrow{AD}) + (\overrightarrow{AB}, \overrightarrow{CA} + \overrightarrow{AD}) = 0 < = >$$

// В силу ассоциативности скалярного произведения

$$(\overrightarrow{AC}, \overrightarrow{AD}) + (\overrightarrow{BA}, \overrightarrow{AD}) + (\overrightarrow{CA}, \overrightarrow{BA}) + (\overrightarrow{CA}, \overrightarrow{AD}) + (\overrightarrow{AB}, \overrightarrow{CA}) + (\overrightarrow{AB}, \overrightarrow{AD}) = 0$$

Первое и четвертое, второе и пятое, третье и шестое слагаемые взаимно обратные.

Значит сумма каждой пары - 0, значит сумма пар - 0. ч.т.д.

Задача 142.

Даны два неколлинеарных вектора \vec{a} и \vec{b} . Найти вектор \vec{x} , компланарный векторам \vec{a} и \vec{b} и удовлетворяющий системе уравнений $(\vec{a}, \vec{x}) = 1, (\vec{b}, \vec{x}) = 0.$

Решение:

По условию x ортоганален b и компланарен a. То есть он ортоганален b и $a \times b$.

To есть, если $\overrightarrow{l} = \overrightarrow{a} \times \overrightarrow{b} \times \overrightarrow{b}$, то $\overrightarrow{x} = \alpha * \overrightarrow{l}$. Найдем α

 $l=ab^2\sin{(\overrightarrow{a},\overrightarrow{b})},$ при этом $\alpha al\cos{(\overrightarrow{a},\overrightarrow{l})}=1.$ То есть $\alpha a^2b^2\sin^2{(\overrightarrow{a},\overrightarrow{b})}=1.$ Значит $\alpha=\frac{1}{a^2b^2\sin^2{(\overrightarrow{a},\overrightarrow{b})}}$

Итого ответ: $\overrightarrow{x} = \frac{\overrightarrow{a} \times \overrightarrow{b} \times \overrightarrow{b}}{a^2 b^2 \sin^2{(\overrightarrow{a}, \overrightarrow{b})}}$

Задача 145.

Даны два вектора \vec{a} и \vec{n} . Найти вектор \vec{b} , являющийся ортогональной проекцией вектора \vec{a} на плоскость, перпендикулярную вектору \vec{n} .

Решение:

Векторы \overrightarrow{a} , \overrightarrow{n} , \overrightarrow{b} лежат в одной плоскости (по т. о трех перпендикулярах). Значит если $\overrightarrow{l} = \overrightarrow{a} \times \overrightarrow{n} \times \overrightarrow{n}$, то \overrightarrow{l} тоже лежит в этой плоскости и при этом так же лежит на плоскости, перп. \overrightarrow{n} .

n. Это значит, что \overrightarrow{l} коллинеарен \overrightarrow{b} . То есть $\overrightarrow{b}=\alpha*\overrightarrow{l}$. При этом $b=a\cos{((\overrightarrow{n},\hat{0}),\overrightarrow{d})}=\frac{\overrightarrow{a}\cdot\overrightarrow{l}}{l}$ Значит $\alpha=\frac{\overrightarrow{a}\cdot\overrightarrow{l}}{l^2}$

Тогда ответ: $\overrightarrow{b} = \frac{\overrightarrow{a} \cdot (\overrightarrow{a} \times \overrightarrow{n} \times \overrightarrow{n})}{|\overrightarrow{a} \times \overrightarrow{n} \times \overrightarrow{n}|^2} * \overrightarrow{a} \times \overrightarrow{n} \times \overrightarrow{n}$

Задача 151.

Даны два вектора $\vec{a}=\{8,4,1\}$ и $\vec{b}=\{2,-2,1\}$. Найти вектор \vec{c} , компланарный векторам \vec{a} и \vec{b} , перпендикулярный к вектору \vec{a} , равный ему по длине и образующий с вектором \vec{b} тупой угол.

Решение:

Нужно найти вектор, перпендикулярный $\vec{a} \times \vec{b}$ и \vec{a} .

 $\vec{l} = (\vec{b} \times \vec{a}) \times \vec{a}$ подходит под оба условия.

 $l=a^2b\sin{(\overrightarrow{b},\overrightarrow{a})},$ при этом требуется вектор с длиной a.

значит возьмем вектор $\vec{p} = \frac{1}{ab\sin{(\vec{b},\vec{d})}} \vec{l}$

Чтобы угол между \vec{p} и \vec{b} был тупым, нужно, чтобы они находились в разных полупространствах относительно плоскости, заданной $\vec{b} \times \vec{a}$ и \vec{a} . Это значит, что если $\vec{c} = \vec{b} \times \vec{a}$, то тройки $(\vec{c}, \vec{a}, \vec{p})$ и $(\vec{c}, \vec{a}, \vec{b})$ должны быть разными (одна левой, другая - правой).

При этом тройка $(\vec{c}, \vec{a}, \vec{b})$ левая, значит $(\vec{c}, \vec{a}, \vec{p})$ - правая. То есть $\vec{l} = (\vec{b} \times \vec{a}) \times \vec{a}$) (а не $\vec{a} \times (\vec{b} \times \vec{a})$)

Итого ответ: $\frac{\vec{b} \times \vec{a} \times \vec{a}}{ab \sin(\vec{b}, \vec{a})}$

Задача 184.

Даны три вектора $\vec{a}=\{8,4,1\},\; \vec{b}=\{2,-2,1\},\; \vec{c}=\{4,0,3\}.$ Найти вектор \vec{d} длины 1, перпендикулярный к векторам \vec{a} и \vec{b} и направленный так, чтобы упорядоченные тройки векторов $\vec{a},\; \vec{b},\; \vec{c}$ и $\vec{a},\; \vec{b},\; \vec{d}$ имели одинаковую ориентацию.

Решение:

Определим ориентацию тройки $(\vec{a}, \vec{b}, \vec{c})$

$$\begin{vmatrix} 8 & 4 & 1 \\ 2 & -2 & 1 \\ 4 & 0 & 3 \end{vmatrix} = -48.$$

Значит тройка левая.

Пусть $\vec{l} = \vec{b} \times \vec{a}, \vec{d} = \frac{\vec{l}}{l}$. Тогда тройка $(\vec{a}, \vec{b}, \vec{d})$ - левая.

Найдем векторы \vec{l} и \vec{d}

Пайдем векторы
$$t$$
 и d
$$\vec{l} = \begin{vmatrix} i & j & k \\ 2 & -2 & 1 \\ 8 & 4 & 1 \end{vmatrix} = \{-6, 6, 24\} = 6 * \{-1, 1, 4\}$$

$$l = 6 * \sqrt{1 + 1 + 16} = 18 * \sqrt{2}.$$
 Значит $\vec{d} = \{-\frac{\sqrt{2}}{6}, \frac{\sqrt{2}}{6}, \frac{\sqrt{2}}{3}\}$ Ответ: $\{-\frac{\sqrt{2}}{6}, \frac{\sqrt{2}}{6}, \frac{\sqrt{2}}{3}\}$

$$l = 6 * \sqrt{1 + 1 + 16} = 18 * \sqrt{2}$$

Значит
$$\vec{d} = \{-\frac{\sqrt{2}}{6}, \frac{\sqrt{2}}{6}, \frac{\sqrt{2}}{3}\}$$

Задача 191.

Вычислить объем параллелепипеда, зная длины $|\overrightarrow{OA}|=a,$ $|\overrightarrow{OB}|=b,$ $|\overrightarrow{OC}|=c$ трёх его ребер, выходящих из одной его вершины O, и углы $\angle BOC = \alpha$, $\angle COB = \beta$, $\angle AOB = \gamma$ между ними.

Решение:

Объем параллелепипеда равен произведению площади основания на длину соотв. высоты.

Рассмотрим основание, ... векторы OA и OB. Его площадь равна $ab\sin\gamma$

Теперь рассчитаем длину высоты. Она будет равна координате z вектора OC.

Рассмотрим \vec{OC} как повернутый вектор $\{0,0,c\}$

$$\vec{OC} = \{0, 0, c\} * \begin{pmatrix} \cos \alpha & 0 & -\sin \alpha \\ 0 & 1 & 0 \\ \sin \alpha & 0 & \cos \alpha \end{pmatrix} * \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \beta & \sin \beta \\ 0 & -\sin \beta & \cos \beta \end{pmatrix} = \{c \sin \alpha, -c \sin \beta \cos \alpha, c \cos \alpha \cos \beta\}$$

Значит объем параллелепипеда равен $abc\cos\alpha\cos\beta\sin\gamma$

Итого ответ: $abc\cos\alpha\cos\beta\sin\gamma$

Задача 192.

Три вектора \vec{a} , \vec{b} , \vec{c} связаны соотношениями $\vec{a}=[\vec{b},\vec{c}]$, $\vec{b}=[\vec{c},\vec{a}]$, $\vec{c}=[\vec{a},\vec{b}]$. Найти длины этих векторов.

Решение:

При таком условии базис $(\vec{a}, \vec{b}, \vec{c})$ - ортоганальный. Значит синус угла между любыми двумя векторами равен 1. Значит длина каждого из векторов равна произведению длин оставшихся.

$$a=bc;b=ac;c=ab$$

$$\frac{bc}{a} = \frac{ac}{b} = \frac{ab}{c} = 1$$

 $b^2c^2 = a^2c^2 = a^2b^2$

$$a = b = c$$
 при этом . $a = bc; b = ac; c = ad$

Значит a = b = c = 1

Задача 197.

Даны три некомпланарных вектора $\overrightarrow{OA} = \vec{a}, \overrightarrow{OB} = \vec{b}, \overrightarrow{OC} = \vec{c},$ отложенных от одной точки \overrightarrow{O} . Найти вектор $\overrightarrow{OD} = \overrightarrow{d}$, отложенный от той же точки O и образующий с векторами \overrightarrow{OA} , \overrightarrow{OB} и \overrightarrow{OC} равные между собой острые углы.

Так как от длины векторов не меняется угол, введем векторы $\vec{x}=\frac{\vec{a}}{a}; \vec{y}=\frac{\vec{b}}{b}; \vec{z}=\frac{\vec{c}}{c};$, длина которых будет равна 1. Возьмем точку M - центроид треугольника $(\overrightarrow{OM} = \frac{\vec{x} + \vec{y} + \vec{z}}{3})$, образованного векторами $\vec{x}, \vec{y}, \vec{z}$ и докажем, что вектор \overrightarrow{OM} образует с векторами $\vec{x}, \vec{y}, \vec{z}$ три равных угла. Введем точки $X = \vec{x}; Y = \vec{y}; Z = \vec{z};$

Рассмотрим треугольники (O,X,M),(O,Y,M),(O,Z,M). Стороны каждого из них соотв. равны. Значит равны и треугольники. Значит вектор \vec{OM} образует с векторами \vec{x},\vec{y},\vec{z} равные углы чтд.

Итого ответ: $\frac{\vec{a}}{3a} + \frac{\vec{b}}{3b} + \frac{\vec{c}}{3c}$