

2. Ripasso - Algebra Relazionale e Fondamenti SQL

Piero Hierro Piermichele Rosati

Università di Camerino Tutorato - Basi di Dati

28 aprile 2024

Indice

1. Algebra Relazionale

2. Fondamenti SQL

3. Conclusion

Algebra Relazionale

Algebra relazionale

È un linguaggio procedurale in cui le operazioni complesse vengono specificate descrivendo il procedimento da seguire per ottenere le soluzioni.

È uno strumento tecnico di fondamentale importanza per comprendere come si interrogano i database relazionali.

Definizioni I

Ennupla

Una *n*-upla (o tupla) è una collezione ordinata di *n* oggetti.

Relazione binaria

Una relazione r su 2 insiemi A e B è un sottoinsieme del prodotto cartesiano $A \times B$ dei due insiemi.

$$r \subseteq A \times B$$

Relazione *n*-aria

Una relazione su n insiemi A_1, A_2, \ldots, A_n è un sottoinsieme di tutte le n-uple ordinate a_1, a_2, \ldots, a_n che si possono costruire prendendo nell'ordine un elemento a_1 dal primo insieme A_1, a_2 dal scondo insiemie A_2 e così via.

Definizioni II

Dato che una relazione è un insieme:

- l'ordine delle *n*-uple è irrilevante;
- ogni *n*-upla è ordinata e distinta;
- possiamo rappresentarla sotto forma di tabella se...

Definizioni III

...vengono rispettati i requisiti fondamentali delle tabelle di un database:

- tutte le righe sono diverse tra loro;
- tutte le intestazioni delle colonne sono diverse tra loro;
- i valori di ogni colonna sono fra loro omogenei;
- l'ordine delle righe è irrilevante;
- l'ordine delle colonne è irrilevante.

Definizioni IV

- Attributo: nome con il quale si identifica una colonna;
- **Dominio**: insieme dei valori che possono essere assunti da un attributo (int, boolean, float, string);
- Una ennupla su in insieme X di attributi è una funzione che associa a ciascun attributo A in X un valore del dominio di A;
- Schema di relazione R(X):
 - R è il nome della relazione;
 - X è un insieme di attributi $X = \{A_1, \dots, A_n\}$
- Uno schema di Basi di Dati è un insieme di schemi di relazione distinti:

$$R = \{R_1(X_1), \ldots, R_k(X_k)\}$$

- L'instanza di una relazione su uno schema R(X) è l'insieme di n-uple su X;
- L'instanza di una base di dati su uno schema $R = \{R_1(X_1), \dots, R_k(X_k)\}$ è l'insieme di relazioni $r = \{r_1, \dots, r_k\} \mid r_i$ è una relazione su R_i .

Esempio di Relazione

$$Docente = \{Re, Gagliardi, Marcantoni\}$$
 $Corso = \{Basi\ di\ Dati, Reti\}$
 $r = "Insegna"$
 $Insegna \subseteq Docente \times Corso$

Esempio di Relazione

$$egin{aligned} extstyle extstyle$$

Prodotto cartesiano: Docente × Corso

Docente	Corso
Re	Basi di Dati
Re	Reti
Gagliardi	Basi di Dati
Gagliardi	Reti
Marcantoni	Basi di Dati
Marcantoni	Reti

Esempio di Relazione

$$egin{aligned} \textit{Docente} &= \{\textit{Re}, \textit{Gagliardi}, \textit{Marcantoni}\} \ &\quad \textit{Corso} &= \{\textit{Basi di Dati}, \textit{Reti}\} \ &\quad \textit{r} &= \text{``Insegna''} \ &\quad \textit{Insegna} \subseteq \textit{Docente} \times \textit{Corso} \end{aligned}$$

Prodotto cartesiano: Docente × Corso

dotto cartesiani	o. Doceme A Co
Docente	Corso
Re	Basi di Dati
Re	Reti
Gagliardi	Basi di Dati
Gagliardi	Reti
Marcantoni	Basi di Dati
Marcantoni	Reti

Insegna

Docente	Corso
Re	Basi di Dati
Gagliardi	Basi di Dati
Marcantoni	Reti

- Agiscono su una o più relazioni per ottenere una nuova relazione;
- Consentono di effettuare le interrogazioni al database per ottenere le informazioni desiderate:
 - estraendo da una tabella una sottotabella;
 - combinando tra loro 2 o più tabelle;
 - generando nuove relazioni.
- Dato che le relazioni sono insiemi:
 - X insieme di attributi su cui le relazioni A e B sono definite;
 - unione $A \cup B$: relazione su X contente le tuple appartenenti a A o B o entrambe;
 - intersezione $A \cap B$: relazione su X contente le tuple appartenenti a A e B;
 - differenza A B: relazione su X contente le tuple appartenenti a A ma non a B.

Unione


```
X = \{Nome, Cognome\}
Docenti(X) = \{(Barbara, Re), (Roberto, Gagliardi), (Fausto, Marcantoni), (Mario, Rossi)\}
Studenti(X) = \{(Mario, Rossi), (Luigi, Verdi), (Pinco, Pallino)\}
```

Unione

$$X = \{Nome, Cognome\}$$
 $Docenti(X) = \{(Barbara, Re), (Roberto, Gagliardi), (Fausto, Marcantoni), (Mario, Rossi)\}$
 $Studenti(X) = \{(Mario, Rossi), (Luigi, Verdi), (Pinco, Pallino)\}$

Docenti

20001101	
Nome	Cognome
Barbara	Re
Roberto	Gagliardi
Fausto	Marcantoni
Mario	Rossi

Studenti

Nome	Cognome
Mario	Rossi
Luigi	Verdi
Pinco	Pallino

Docenti \mathbb{U} *Studenti* =?

Unione

```
Docenti(X) = \{(Barbara, Re), (Roberto, Gagliardi), (Fausto, Marcantoni), \\ (Mario, Rossi)\} Studenti(X) = \{(Mario, Rossi), (Luigi, Verdi), (Pinco, Pallino)\} Docenti \ \mathbb{U} \ Studenti = \{(Barbara, Re), (Roberto, Gagliardi), (Fausto, Marcantoni), \\ (Mario, Rossi), (Luigi, Verdi), (Pinco, Pallino)\}
```

Docenti U Studenti

Docenti	Judenti
Nome	Cognome
Barbara	Re
Roberto	Gagliardi
Fausto	Marcantoni
Mario	Rossi
Luigi	Verdi
Pinco	Pallino

Intersezione


```
X = \{Nome, Cognome\}
Docenti(X) = \{(Barbara, Re), (Roberto, Gagliardi), (Fausto, Marcantoni), (Mario, Rossi)\}
Studenti(X) = \{(Mario, Rossi), (Luigi, Verdi), (Pinco, Pallino)\}
```

Intersezione


```
X = \{Nome, Cognome\}
Docenti(X) = \{(Barbara, Re), (Roberto, Gagliardi), (Fausto, Marcantoni), (Mario, Rossi)\}
Studenti(X) = \{(Mario, Rossi), (Luigi, Verdi), (Pinco, Pallino)\}
```

Docenti

Nome	Cognome
Barbara	Re
Roberto	Gagliardi
Fausto	Marcantoni
Mario	Rossi

Studenti

Nome	Cognome
Mario	Rossi
Luigi	Verdi
Pinco	Pallino

Docenti \cap *Studenti* =?

Intersezione


```
Docenti(X) = \{(Barbara, Re), (Roberto, Gagliardi), (Fausto, Marcantoni), \\ (Mario, Rossi)\}
Studenti(X) = \{(Mario, Rossi), (Luigi, Verdi), (Pinco, Pallino)\}
Docenti \cap Studenti = \{(Mario, Rossi)\}
```

Docenti	∩ Studenti
Nome	Cognome
Mario	Rossi

Differenza


```
X = \{Nome, Cognome\}
Docenti(X) = \{(Barbara, Re), (Roberto, Gagliardi), (Fausto, Marcantoni), (Mario, Rossi)\}
Studenti(X) = \{(Mario, Rossi), (Luigi, Verdi), (Pinco, Pallino)\}
```

Differenza

$$X = \{Nome, Cognome\}$$
 $Docenti(X) = \{(Barbara, Re), (Roberto, Gagliardi), (Fausto, Marcantoni), (Mario, Rossi)\}$
 $Studenti(X) = \{(Mario, Rossi), (Luigi, Verdi), (Pinco, Pallino)\}$

Docenti

Nome	Cognome
Barbara	Re
Roberto	Gagliardi
Fausto	Marcantoni
Mario	Rossi

Studenti

Nome	Cognome
Mario	Rossi
Luigi	Verdi
Pinco	Pallino

Docenti − Studenti =?

Differenza


```
Docenti(X) = \{(Barbara, Re), (Roberto, Gagliardi), (Fausto, Marcantoni), (Mario, Rossi \\ Studenti(X) = \{(Mario, Rossi), (Luigi, Verdi), (Pinco, Pallino)\} \\ Docenti - Studenti = \{(Mario, Rossi)\}
```

Docenti - Studenti

Cognome
Re
Gagliardi
Marcantoni

Ridenominazione

L'operatore ρ **Ridenominazione** viene utilizzato per rinominare uno o più attributi A_1, \ldots, A_n in A'_1, \ldots, A'_n di una relazione r.

$$\rho_{A'_1,\ldots,A'_n\leftarrow A_1,\ldots,A_n}(r)$$

Cani

NomeCane RazzaCar	
Alfred	Beagle
Bruce	Chihuahua
Tom Bassotto	

Gatti

NomeGatto	RazzaGatto
Virgola Siames	
Joker Persian	
Elvis	Siberiano

Ridenominazione

L'operatore ρ **Ridenominazione** viene utilizzato per rinominare uno o più attributi A_1, \ldots, A_n in A'_1, \ldots, A'_n di una relazione r.

$$\rho_{A'_1,\ldots,A'_n\leftarrow A_1,\ldots,A_n}(r)$$

Cani

NomeCane RazzaCa	
Alfred Beagle	
Bruce	Chihuahua
Tom	Bassotto

Gatti

NomeGatto	RazzaGatto	
Virgola	Siamese	
Joker	Persiano	
Elvis	Siberiano	
	NomeGatto Virgola Joker	

Cani
$$\mathbb{U}$$
 Gatti =?

Ridenominazione

L'operatore ρ **Ridenominazione** viene utilizzato per rinominare uno o più attributi A_1, \ldots, A_n in A'_1, \ldots, A'_n di una relazione r.

$$\rho_{A'_1,\ldots,A'_n\leftarrow A_1,\ldots,A_n}(r)$$

Cani

NomeCane	RazzaCane
Alfred Beagle	
Bruce	Chihuahua
Tom	Bassotto

Gatti

	Gatti	
	NomeGatto	RazzaGatto
	Virgola	Siamese
Joker Persian		Persiano
	Elvis	Siberiano

Cani \mathbb{U} Gatti =? Non si può fare.

È necessario usare ρ per ridenominare NomeCane e NomeGatto! È necessario usare ρ per ridenominare RazzaCane e RazzaGatto!

Ridenominazione

 $\rho_{Nome,Razza \leftarrow NomeCane,RazzaCane}(Cani)$

 $\rho_{Nome,Razza \leftarrow NomeGatto,RazzaGatto}(Gatti)$

Cani

Carri	
Nome	Razza
Alfred	Beagle
Bruce	Chihuahua
Tom	Bassotto

Gatti	
Nome	Razza
Virgola	Siamese
Joker	Persiano
Elvis	Siberiano

Cani U Gatti

	U CUILI
Nome	Razza
Alfred	Beagle
Bruce	Chihuahua
Tom	Bassotto
Virgola	Siamese
Joker	Persiano
Elvis	Siberiano

Selezione (Taglio orizzontale)

L'operatore σ **Selezione** viene utilizzato su una relazione r per produrre una nuova relazione in base a una condizione booleana C.

La nuova relazione conterrà tutte le *n*-uple che soddisfano *C*.

$$\sigma_C(r)$$

Nome	Cognome	Eta
Mario	Rossi	19
Luigi	Verdi	22
Pinco	Pallino	21
Mario	Verdini	20

Selezione (Taglio orizzontale)

L'operatore σ **Selezione** viene utilizzato su una relazione r per produrre una nuova relazione in base a una condizione booleana C.

La nuova relazione conterrà tutte le *n*-uple che soddisfano *C*.

$$\sigma_C(r)$$

Nome	Cognome	Eta
Mario	Rossi	19
Luigi	Verdi	22
Pinco	Pallino	21
Mario	Verdini	20

Studenti con più di 20 anni?

Selezione (Taglio orizzontale)

Studenti con più di 20 anni:

$$\sigma_{\textit{Eta}}$$
 $_{>}$ 20(Studenti)

Studenti		
Nome	Cognome	Eta
Mario	Rossi	19
Luigi	Verdi	22
Pinco	Pallino	21
Mario	Verdini	20

Selezione (Taglio orizzontale)

Studenti di nome "Mario" con più di 20 anni?

Selezione (Taglio orizzontale)

Studenti di nome "Mario" con più di 20 anni?

$$\sigma_{Nome='Mario'}$$
 AND Eta $> 20(Studenti)$

Selezione (Taglio orizzontale)

Studenti di nome "Mario" con più di 20 anni?

$$\sigma_{Nome='Mario'}$$
 AND Eta $> 20(Studenti)$

Studenti			
Nome	Cognome	Eta	

Proiezione (Taglio verticale)

L'operatore π **Proiezione** viene utilizzato su una relazione r per produrre una nuova relazione in base a una lista di attributi L specificata.

La nuova relazione conterrà tutte le n-uple di r con gli attributi presenti in L.

$$\pi_L(r)$$

Nome	Cognome	Eta
Mario	Rossi	19
Luigi	Verdi	22
Pinco	Pallino	21
Mario	Verdini	20

Proiezione (Taglio verticale)

L'operatore π **Proiezione** viene utilizzato su una relazione r per produrre una nuova relazione in base a una lista di attributi L specificata.

La nuova relazione conterrà tutte le n-uple di r con gli attributi presenti in L.

$$\pi_L(r)$$

Nome	Cognome	Eta
Mario	Rossi	19
Luigi	Verdi	22
Pinco	Pallino	21
Mario	Verdini	20

Nome e Cognome degli studenti?

Proiezione (Taglio verticale)

Nome e cognome degli studenti:

 $\pi_{Nome,Cognome}(Studenti)$

Nome	Cognome	Eta
Mario	Rossi	19
Luigi	Verdi	22
Pinco	Pallino	21
Mario	Verdini	20

Selezione (Taglio orizzontale) e Proiezione (Taglio verticale)

Nome ed età degli studenti con meno di 21 anni?

Selezione (Taglio orizzontale) e Proiezione (Taglio verticale)

Nome ed età degli studenti con meno di 21 anni?

$$\pi_{Nome,Eta}(\sigma_{Eta} <= 20(Studenti))$$

Selezione (Taglio orizzontale) e Proiezione (Taglio verticale)

Nome ed età degli studenti con meno di 21 anni?

$$\pi_{Nome,Eta}(\sigma_{Eta} <= 20(Studenti))$$

Nome	Cognome	Eta
Mario	Rossi	19
Luigi	Verdi	22
Pinco	Pallino	21
Mario	Verdini	20

Selezione (Taglio orizzontale) e Proiezione (Taglio verticale)

Nome ed età degli studenti con meno di 21 anni?

$$\pi$$
 Nome, Eta $(\sigma_{Eta} <= 20(Studenti))$

Studenti			
Nome	Eta		
Mario	19		
Luigi	22		
Pinco	21		
Mario	20		

Join

L'operatore ⋈ **Join** viene utilizzato per correlare dati in relazioni diverse basandosi sui valori degli attributi.

Join

L'operatore \bowtie **Join** viene utilizzato per correlare dati in relazioni diverse basandosi sui valori degli attributi.

Esistono diversi tipi di join:

- Natural Join;
- Join completo, incompleto, vuoto;
- Outer Join;
 - Left outer Join;
 - Right outer Join;
 - Full outer Join.
- SemiJoin;
- Theta Join:
- Equi-Join.

Natural Join

Il natural join correla i dati in 2 relazioni diverse sulla base di valori uguali negli attributi con lo stesso nome.

$$R_1 \bowtie R_2 = \{t \in X_1 \ \mathbb{U} \ X_2 \mid t[X_1] \in R_1 \land \ t[X_2] \in R_2\}$$

È una relazione definita sull'unione degli insiemi degli attributi delle due relazioni $R_1(X_1)$ e $R_2(X_2)$ ossia $X_1 \cup X_2$.

Col1	Col2	Col3
1	а	b
2	С	d
3	е	f
4	g	h
5	g	j

 R_2

Col2	Col4
а	50
g	120
m	345

Natural Join

R_1		
Col1	Col2	Col3
1	а	b
2	С	d
3	е	f
4	g	h
5	g	j

R_2	
Col2	Col4
а	50
g	120
m	345

	Col1	Col2	Col3	Col4
$R_1 \bowtie R_2$	1	а	b	50
$n_1 \bowtie n_2$	4	g	h	50
	5	g	j	120

Join Completo

Il Join è **completo** se ogni tupla di ciascuna relazione degli operandi contribuisce almeno a una tupla del risultato.

R_1	
ID	Carattere
1	а
2	b
3	b

R_2	
Carattere	Numero
a	Uno
b	Due

	ID	Carattere	Numero
$R_1 \bowtie R_2$	1	а	Uno
$\Lambda_1 \bowtie \Lambda_2$	2	b	Due
	3	b	Due

Join Incompleto

Il Join è **incompleto** se almeno una tupla delle relazioni degli operandi non contribuisce al risultato.

R_1	
ID	Carattere
1	а
2	b
3	b

R_2	
Carattere	Numero
a	Uno
С	Due

$R_1 \bowtie R_2$	ID	Carattere	Numero
$n_1 \bowtie n_2$	1	a	Uno

Join Esterno

Il **join esterno** (outer join) include tutte le tuple di una relazione estese con le tuple dell'altra relazione che rispettano la condizione di join.

Gli attributi delle tuple che non rispettano la condizione di join sono riempite con i valori **NULL**.

3 tipi di join esterno:

• sinistro: include tutte le tuple della prima relazione

$$R_1 \bowtie R_2$$

• destro: include tutte le tuple della seconda relazione

$$R_1 \bowtie R_2$$

• completo: include tutte le tuple della prima e della seconda relazione

$$R_1 \bowtie R_2$$

Left Join

Il **Left join** include tutte le tuple della prima relazione.

R_1	
ID	Carattere
1	а
2	b
3	b

R_2	
Carattere	Numero
а	Uno
С	Due
<u> </u>	Due

Left Join

Il **Left join** include tutte le tuple della prima relazione.

R_1	
ID	Carattere
1	а
2	b
3	b

R_2	
Carattere	Numero
а	Uno
С	Due

$R_1 \bowtie R_2$	ID	Carattere	Numero
	1	а	Uno
	2	b	NULL
	3	b	NULL

Right Join

Il **Right join** include tutte le tuple della seconda relazione.

κ_1	
ID	Carattere
1	а
2	b
3	b

R_2	
Carattere	Numero
а	Uno
С	Due

Right Join

Il **Right join** include tutte le tuple della seconda relazione.

κ_1	
ID	Carattere
1	а
2	b
3	b

R_2	
Carattere	Numero
a	Uno
С	Due

	ID	Carattere	Numero
$R_1 \bowtie R_2$	1	a	Uno
	NULL	С	Due

Full Join

Il **Full join** include tutte le tuple della prima e della seconda relazione.

 R_1

ID	Carattere
1	а
2	b
3	b

 R_2

Carattere	Numero
а	Uno
С	Due

Full Join

Il **Full join** include tutte le tuple della prima e della seconda relazione.

 R_1

ID	Carattere
1	а
2	b
3	b

	F	R_2
C	a	ra

112		
Carattere	Numero	
а	Uno	
С	Due	

$$R_1 \bowtie R_2$$

ID	Carattere	Numero
1	a	Uno
2	b	NULL
3	b	NULL
NULL	С	Due

Join Vuoto

Il Join è vuoto se nessuna tupla delle relazioni degli operandi contribuisce al risultato finale.

R₁

ID Carattere

1 a
2 b
3 b

R_2	
Carattere	Numero
С	Uno
d	Due

Join Vuoto

Il Join è vuoto se nessuna tupla delle relazioni degli operandi contribuisce al risultato finale.

R_1	
ID	Carattere
1	а
2	b
3	h

R_2	
Carattere	Numero
С	Uno
d	Due

$$R_1 \bowtie R_2 = \emptyset$$
 ID Carattere Numero

Natural Join senza attributi in comune

Se nel natural join non ci sono attributi in comune, il risultato è il **prodotto cartesiano** delle relazioni $R_1 \times R_2$.

ID Carattere

1 a
2 b
3 b

R_2	
Carattere	Numero
a	Uno
С	Due

Natural Join senza attributi in comune

Se nel natural join non ci sono attributi in comune, il risultato è il **prodotto cartesiano** delle relazioni $R_1 \times R_2$.

κ_1	
ID	Carattere
1	а
2	b
3	b

R_2	
Carattere	Numero
а	Uno
С	Due

	ID	Carattere R_1	Carattere R_2	Numero
	1	a	a	Uno
	1	a	С	Due
$R_1 \times R_2$	2	b	a	Uno
	2	b	С	Due
	3	b	a	Uno
	3	b	С	Due

Natural Join con attributi in comune (SemiJoin)

Il natural join con tutti gli attributi in comune viene detto **SemiJoin** ed il risultato è l'intersezione delle relazioni $R_1 \cap R_2$ su X_1 .

R_1	
ID	Carattere
1	а
2	b
3	b

R_2	
Carattere	Numero
а	Uno
С	Due

Natural Join con attributi in comune (SemiJoin)

Il natural join con tutti gli attributi in comune viene detto **SemiJoin** ed il risultato è l'intersezione delle relazioni $R_1 \cap R_2$ su X_1 .

R_1	
ID	Carattere
1	a
2	b
3	b

R_2	
Carattere	Numero
a	Uno
С	Due

$(R_1\cap R_2)(X_1)$	ID	Carattere	
$(N_1 \cap N_2)(N_1)$	1	а	

Theta Join (Join condizionale)

Il **theta join** correla i dati in due relazioni diverse sulla base di una condizione booleana C (AND, OR, NOT, >, <, <=, >=).

$$R_1\bowtie_{\mathcal{C}} R_2$$

Supereroi

Nome	Film
Bruce Wayne	The Batman
Bruce Wayne	Batman Begins
Peter Parker	Spiderman
Clark Kent	Superman

Film

Titolo	AnnoUscita	Durata
The Batman	2022	176
Spiderman	2002	121
Superman	1978	151

Theta Join (Join condizionale)

Supereroi $\bowtie_{Film} = Titolo \ AND \ Durata < 160 \ Film$

Supereroi

Nome	Film
Bruce Wayne	The Batman
Bruce Wayne	Batman Begins
Peter Parker	Spiderman
Clark Kent	Superman

Film

Titolo	AnnoUscita	Durata
The Batman	2022	176
Spiderman	2002	121
Superman	1978	151

Theta Join (Join condizionale)

Supereroi $\bowtie_{Film} = Titolo \ AND \ Durata < 160 \ Film$

Supereroi

Supercion	
Nome	Film
Bruce Wayne	The Batman
Bruce Wayne	Batman Begins
Peter Parker	Spiderman
Clark Kent	Superman

Film

FIIM		
Titolo	AnnoUscita	Durata
The Batman	2022	176
Spiderman	2002	121
Superman	1978	151

 $Supereroi \bowtie_{Film = Titolo \ AND \ Durata < 160} Film$

Nome	Film	Titolo	AnnoUscita	Durata
Peter Parker	Spiderman	Spiderman	2002	121
Clark Kent	Superman	Superman	1978	151

Equi-Join

Se la condizione è composta da operatori di uguaglianza (=), eventualmente in congiunzione (AND) tra loro, il theta join è detto **equi-join**.

Supereroi

Nome	Film
Bruce Wayne	The Batman
Bruce Wayne	Batman Begins
Peter Parker	Spiderman
Clark Kent	Superman

Film

Titolo	AnnoUscita	Durata
The Batman	2022	176
Spiderman	2002	121
Superman	1978	151

Equi-Join

$Supereroi \bowtie_{Film = Titolo} Film$

Supereroi

Nome	Film
Bruce Wayne	The Batman
Bruce Wayne	Batman Begins
Peter Parker	Spiderman
Clark Kent	Superman

Film

Titolo	AnnoUscita	Durata
The Batman	2022	176
Spiderman	2002	121
Superman	1978	151

Equi-Join

Supereroi ⋈_{Film = Titolo} Film

Supereroi

Nome	Film
Bruce Wayne	The Batman
Bruce Wayne	Batman Begins
Peter Parker	Spiderman
Clark Kent	Superman

Film

	Film		
	Titolo	AnnoUscita	Durata
Т	he Batman	2022	176
	Spiderman	2002	121
	Superman	1978	151

Supereroi ⋈_{Film=Titolo} Film

	Nome	Film	Titolo	AnnoUscita	Durata
m	Bruce Wayne	The Batman	The Batman	2022	176
m	Peter Parker	Spiderman	Spiderman	2002	121
	Clark Kent	Superman	Superman	1978	151

Equi-Join e Natural Join

Supereroi $\bowtie_{Film = Titolo}$ Film

Supereroi \bowtie Film¹

Nome	Film	AnnoUscita	Durata
Bruce Wayne	The Batman	2022	176
Peter Parker	Spiderman	2002	121
Clark Kent	Superman	1978	151

Supereroi ⋈_{Film=Titolo} Film

Nome	Film	Titolo	AnnoUscita	Durata
Bruce Wayne	The Batman	The Batman	2022	176
Peter Parker	Spiderman	Spiderman	2002	121
Clark Kent	Superman	Superman	1978	151

¹ovviamente ridenominando prima Titolo in Film...

Indice

1. Algebra Relazionale

2. Fondamenti SQL

Conclusion

QUERY

Table			
Column1	Column2	Column3	Column4
Data1	Data2	Data3	Data4
Data5	Data6	Data7	Data8
Data9	Data10	Data11	Data12

Temp Table			
TempColumn1	TempColumn2	TempColumn3	
TempData1	TempData2	TempData3	
TempData4	TempData5	TempData6	
TempData7	TempData8	TempData9	

Table			
column1	column2	column3	column4
data1	data2	data3	data4
data5	data6	data7	data8
data9	data10	data11	data12

SELECT column1, column2 FROM TABLE

Table			
column1	column2	column3	column4
data1	data2	data3	data4
data5	data6	data7	data8
data9	data10	data11	data12

SELECT column1, column2 FROM TABLE

Table					
column1	column2	column3	column4		
data1	data2	data3	data4		
data5	data6	data7	data8		
data9	data10	data11	data12		

SELECT *
FROM TABLE

Table					
column1	column2	column3	column4		
data1	data2	data3	data4		
data5	data6	data7	data8		
data9	data10	data11	data12		

SELECT *
FROM TABLE

Table					
nome	column2	column3	column4		
Marco	data2	data3	data4		
Lucia	data6	data7	data8		
Marco	data10	data11	data12		

SELECT nome FROM Table

Table					
nome	column2	column3	column4		
Marco	data2	data3	data4		
Lucia	data6	data7	data8		
Marco	data10	data11	data12		

Query

Result Marco Lucia Marco

Result

Marco

Lucia

SELECT DISTINCT nome FROM Table

Funzioni di aggregazione

Esami		
voti		
18		
30		
25		
27		

SELECT MIN(voti)

SELECT MAX(voti)

SELECT SUM(voti)

SELECT AVG(voti)

SELECT COUNT(voti)

Funzioni di aggregazione

Esami		
voti		
18		
30		
25		
27		

```
SELECT MIN(voti) 18
SELECT MAX(voti) 30
SELECT SUM(voti) 100
SELECT AVG(voti) 25
SELECT COUNT(voti) 4
```

FROM

L'istruzione SQL FROM viene utilizzata per specificare la tabella (o tabelle) da cui si desidera estrarre i dati.

Table			
column1	column2	column3	column4
data1	data2	data3	data4
data5	data6	data7	data8
data9	data10	data11	data12

SELECT *
FROM TABLE
WHERE (condizione)

Table			
column1	column2	column3	column4
data1	data2	data3	data4
data5	data6	data7	data8
data9	data10	data11	data12

SELECT *
FROM TABLE
WHERE (condizione)

Esami		
voti		
18		
30		
25		
27		

SELECT voti FROM Esami WHERE voti>25;

Esami		
voti		
18		
30		
25		
27		

SELECT voti FROM Esami WHERE voti>25;

- Operatori di confronto: =, <>, >, <, >=, <=
- Operazioni booleane: AND, OR, NOT
- BETWEEN
- IN

- **Operatori di confronto:** =, <>, >, <, >=, <=
- Operazioni booleane: AND, OR, NOT
- BETWEEN
- IN

WHERE Price BETWEEN 10 AND 20 WHERE Price >= 10 AND Price <= 20

- **Operatori di confronto:** =, <>, >, <, >=, <=
- Operazioni booleane: AND, OR, NOT
- BETWEEN
- IN

- **Operatori di confronto:** =, <>, >, <, >=, <=
- Operazioni booleane: AND, OR, NOT
- BETWEEN
- IN

```
WHERE Country IN ('Germany', 'France', 'UK')
WHERE Country = 'Germany' OR Country = 'France' OR Country = 'UK'
```


- **Operatori di confronto:** =, <>, >, <, >=, <=
- Operazioni booleane: AND, OR, NOT
- BETWEEN
- IN
- LIKE{ %, _ }

- % rappresenta zero, uno o più caratteri
- _ rappresenta un singolo carattere

- **Operatori di confronto:** =, <>, >, <, >=, <=
- Operazioni booleane: AND, OR, NOT
- BETWEEN
- IN
- LIKE{ %, _ }

SELECT *
FROM Cliente
WHERE nome LIKE 'A%'

- Operatori di confronto: =, <>, >, <, >=, <=
- Operazioni booleane: AND, OR, NOT
- BETWEEN
- IN
- LIKE{ %, _ }

Cliente		
nome		
Anna		
Fabrizio		
Asia		
Laura		

SELECT *
FROM Cliente
WHERE nome LIKE 'A%'

- **Operatori di confronto:** =, <>, >, <, >=, <=
- Operazioni booleane: AND, OR, NOT
- BETWEEN
- IN
- LIKE{ %, _ }

Cliente		
nome		
Anna		
Paolo		
Asia		
Paola		

SELECT *
FROM Cliente
WHERE nome LIKE 'A%'

• Operatori di confronto:

- Operazioni booleane: AND, OR, NOT
- BETWEEN
- IN
- LIKE{ %, _ }

Cliente		
nome		
Anna		
Paolo		
Asia		
Paola		

SELECT *
FROM Cliente
WHERE nome LIKE 'Paol_'

- Operatori di confronto: =, <>, >, <, >=, <=
- Operazioni booleane: AND, OR, NOT
- BETWEEN
- IN
- LIKE{ %, _ }

Cliente		
nome		
Anna		
Paolo		
Asia		
Paola		

SELECT *
FROM Cliente
WHERE nome LIKE 'Paol_'

Studente			
matricola	nome	cognome	
100	Gianni	Morandi	
101	Jerry	Calà	
102	Pippo	Franco	
103	Mara	Venier	

Esame		
matricola	voto	corso
100	30	27035
100	30	27038
100	30	27010
102	21	27038
90	25	27045

SELECT st.matricola, cognome, voto, corso FROM Studente AS st INNER JOIN Esame AS es ON st.matricola=es.matricola;

Result			
matricola	cognome	voto	corso
100	Morandi	30	27035
100	Morandi	30	27038
100	Morandi	30	27010
102	Franco	21	27038

Studente			
matricola	nome	cognome	
100	Gianni	Morandi	
101	Jerry	Calà	
102	Pippo	Franco	
103	Mara	Venier	

Esame			
matricola	voto	corso	
100	30	27035	
100	30	27038	
100	30	27010	
102	21	27038	
90	25	27045	

SELECT Studente.matricola, cognome, voto, corso FROM Studente, Esame
WHERE Studente.matricola=Esame.matricola;

LEFT JOIN

LEFT JOIN

Studente			
matricola	nome	cognome	
100	Gianni	Morandi	
101 Jerry Calà			
102	Pippo	Franco	
103	Mara	Venier	

Esame			
matricola	voto	corso	
100	30	27035	
100	30	27038	
100	30	27010	
102	21	27038	
90	25	27045	

SELECT st.matricola, cognome, voto, corso FROM Studente AS st LEFT JOIN Esame AS es ON st.matricola=es.matricola;

LEFT JOIN

Result				
matricola	cognome	voto	corso	
100	Morandi	30	27035	
100	Morandi	30	27038	
100	Morandi	30	27010	
101	Calà	NULL	NULL	
102	Franco	21	27038	
103	Venier	NULL	NULL	

RIGHT JOIN

RIGHT JOIN

Studente			
matricola	nome	cognome	
100	Gianni	Morandi	
101 Jerry Calà			
102	Pippo	Franco	
103	Mara	Venier	

Esame			
matricola	voto	corso	
100	30	27035	
100	30	27038	
100	30	27010	
102	21	27038	
90	25	27045	

SELECT st.matricola, cognome, voto, corso FROM Studente AS st RIGHT JOIN Esame AS es ON st.matricola=es.matricola;

RIGHT JOIN

Result				
matricola	cognome	voto	corso	
100	Morandi	30	27035	
100	Morandi	30	27038	
100	Morandi	30	27010	
102	Franco	21	27038	
90	NULL	25	27045	

FULL OUTER JOIN

FULL OUTER JOIN

Studente			
matricola	nome	cognome	
100	Gianni	Morandi	
101 Jerry Calà			
102	Pippo	Franco	
103	Mara	Venier	

Esame			
matricola	voto	corso	
100	30	27035	
100	30	27038	
100	30	27010	
102	21	27038	
90	25	27045	

SELECT st.matricola, cognome, voto, corso FROM Studente AS st FULL OUTER JOIN Esame AS es ON st.matricola=es.matricola;

FULL OUTER JOIN

Result				
matricola	cognome	voto	corso	
100	Morandi	30	27035	
100	Morandi	30	27038	
100	Morandi	30	27010	
101	Calà	NULL	NULL	
102	Franco	21	27038	
103	Venier	NULL	NULL	
90	NULL	25	27045	

Indice

1. Algebra Relazionale

2. Fondamenti SQL

3. Conclusioni

Domande?

Fine

Grazie dell'attenzione!