【通知】明天早上的语文课换成晚自习第一节7:30-8:30,上午10:00-11:00变成自习课。大家注意一下时间,相互转告下。记得在家默写赤壁赋。

高一物理自主生长单 必修 I 第四章《牛顿运动定律》 主备人: 上官金丝 校审人: 张敏、应智勤

第一节 牛顿第一定律

主要观点

【学习目标】

通过本节课的学习, 你应该能够:

- 1.知道伽利略实验及其推理过程,知道理想实验是科学研究的重要方法。
- 2.理解牛顿第一定律的内容及意义。
- 3.理解惯性的概念,会解释有关的惯性现象。
- 注:课外读和小资料只作为背景资料供阅读,不要求记忆或掌握具体内容。

【教学环节】

代表人物

一、理想实验的魅力

1. 力与运动关系的不同认识

亚里士 多德	必须有力作用在物体上,物体才能;没有力的作用,物体就要
伽利略	力不是物体运动的原因
笛卡儿	如果运动中的物体没有受到,它将继续以同一沿同一 运动,既不停下来也不偏离原来的
位置低。 猜想:如果没有 斜面放平,	实验+推理 一个斜面从静止状态开始向下运动,再让小球冲上第二个斜面,总比开始的摩擦,无论第二个斜面的倾角如何,小球达到的高度。若将第二个。 力不是。
h	
二、牛顿第一定	律
1. 内容: 一切物 迫使它改变过	勿体总保持
2、牛顿第一定往	聿的两层含义:
三、惯性与质量 1. 惯性: 物体。 2. 惯性的量度:	。 (2)、物体具有。 。 : ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
【思考讨论】	

- 1. 足球场上, 为了不使足球停下来, 运动员带球前进必须不断用脚轻轻地踢拨球(即"盘带")。 又如,为了不使自行车减速,总要不断地用力蹬脚踏板,这些现象难道不正说明了运动需要 力来维持吗?那为什么又说:"力不是维持运动的原因"呢?
- 2. 如图所示,公交车在运行时突然急刹车,车内乘客身体为什么会向前倾倒?

班级_____ 姓名____ 用时____

- 1. 以下说法不符合物理学史实的是()
 - A. 亚里士多德认为,必须有力作用在物体上,物体才能运动;没有力的作用,物体就要静止在某一个地方
 - B. 伽利略通过理想实验得出结论: 力是维持物体运动的原因
 - C. 笛卡尔指出:如果运动中的物体没有受到力的作用,它将以同一速度沿同一直线运动, 既不停下来也不偏离原来的方向
 - D. 牛顿第一定律是逻辑思维对事实进行分析的产物,不可能直接用实验验证
- 2. 如图所示是伽利略的"理想实验",根据该实验,下列说法正确的是()
 - A. 该实验如果利用气垫导轨,可以使实验成功
 - B. 该实验是理想实验,是在思维中进行的,无真实的实验基础,故其结果并不可信

- A. 向上抛出的物体,在向上运动过程中,一定受到向上的作用力,否则不可能向上运动
- B. 汽车在运动过程中, 速度大时的惯性一定比速度小时的惯性大
- C. 牛顿第一定律是实验定律
- D. 牛顿第一定律是利用逻辑思维对事实进行分析的产物,不可能用实验直接验证
- 4. 下列说法正确的是()
 - A. 人推不动汽车, 是因为汽车的惯性大
 - B. 用枪发射出去的子弹速度很大,因此其惯性很大,不能用手去接
 - C. 物体受到的力越大, 越容易变速, 说明物体受力越大, 惯性越小
 - D. 在同样大小的刹车力的作用下,超载车更不容易停下来,是因为超载车惯性大
- 5. 关于惯性的说法中正确的是()
 - A. 快速运动的物体难以静止,说明物体的速度大,惯性大
 - B. 静止的火车难以启动,说明静止的物体惯性大
 - C. 乒乓球可以快速的抽杀,说明乒乓球的惯性小
 - D. 物体受到的力越大, 越容易变速, 说明物体受力越大, 惯性越小
- 6. 在水平路面上有一辆匀速行驶的小车,小车上固定着盛满水的碗。若突然发现碗中的水向右洒出,如图所示,则关于小车在此种情况下的运动,下列描述正确的是()
 - A. 小车匀速向左运动
 - B. 小车可能突然向右加速运动
 - C. 小车可能突然向左减速运动
 - D. 小车可能突然向右减速运动
- 7. 如图所示,一个劈形物体 A,各面均光滑,放在固定的斜面上,上表面水平,在上表面上放一个光滑的小球 B,劈形物体从静止开始释放,则小球在碰到斜面前的运动轨迹是
 - A. 沿斜面向下的直线
 - B. 竖直向下的直线
 - C. 无规则曲线
 - D. 抛物线

第三节 牛顿第二定律

【学习目标】

通过本节课的学习, 你应该能够:

- 1.理解牛顿第二定律的内容、表达式的确切含义。
- 2.知道在国际单位制中力的单位"牛顿"是怎样定义的。
- 3.能应用牛顿第二定律解决动力学问题。

注:课外读和小资料只作为背景资料供阅读,不要求记忆或掌握具体内容。

【教学环节一】从实验出发讨论加速度的决定因素,构建牛顿第二定律的概念。

问题:由上一节实验的探究得到,加速度与力、质量之间有什么关系?

【教学环节二】牛顿第二定律的内容是什么?

1.	内	容:物体加:	速度的大小跟它受	到的作用力成	,	跟它的质量成	,
		加速度的方	向跟作用力的方向	o			
2.	表	达式 F=	,其中力	F指的是物体所	受的	o	
3.	牛	顿第二定律	反映了加速度与力	的关系			
	A٠	因果关系:	公式 $F=ma$ 表明,	只要物体所受合	力不为零,	物体就产生加速度,	即力是
		产生加速原	度的。				
	В、	矢量关系:	加速度与合力的方	f向 ,	但速度方	向和物体受到的合力]方向无
		任何关系					

- C、瞬时对应关系:表达式 F=ma 是对运动过程的每一瞬间都成立,加速度与力是同一时刻的对应量,即同时产生、同时变化、同时消失。

【思考讨论】

1. 甲同学说: "由 $a = \frac{\Delta v}{\Delta t}$ 可知,物体的加速度 a 与速度的变化量 Δv 成正比,与时间 Δt 成反比。"乙同学说: "由 $a = \frac{F}{m}$ 可知,物体的加速度 a 与合力 F 成正比,与质量 m 成反比。"哪一种说法是正确的?为什么?

2. 质量不同的物体, 所受重力不一样, 它们自由下落时加速度却是一样的。怎么解释?

【例题】

1. 某质量为 1000kg 的汽车在平直路面试车,当达到 108km/h 的速度时关闭发动机,经过 30s 停下来,汽车受到的阻力是多大? 重新起步加速时牵引力为 3000N,产生的加速度应 为多大?假定试车过程中汽车受到的阻力不变。

- 2. 如图所示,质量为 4kg 的物体静止于水平面上. 现用大小为 40N,与水平方向夹角为 37° 的斜向上的力拉物体,使物体沿水平面做匀加速直线运动 $(g=10 \text{ m/s}^2, \sin 37^\circ=0.6, \cos 37^\circ=0.8)$.
 - (1) 若水平面光滑, 物体的加速度是多大?
- (2) 若物体与水平面间的动摩擦因数为 0.5, 物体的加速度是多大?

- 3. 如图所示,沿水平方向做匀变速直线运动的车厢中,悬挂小球的悬线偏离竖直方向 37° 角,球和车厢相对静止,球的质量为 $1 \log_{(g)} \mathbb{R} 10 \text{ m/s}^2$, $\sin 37^\circ = 0.6$, $\cos 37^\circ = 0.8$)求:
- (1) 车厢运动的加速度并说明车厢的运动情况;
- (2) 悬线对球的拉力.

D. 一旦物体所受的合力为零,则运动物体的加速度立即为零,其运动也就逐渐停止了

B. 牛顿第二定律说明当物体有加速度时,物体才受到外力的作用 C. 物体的加速度方向只由它所受的合力方向决定,与速度方向无关

1. 下列对牛顿第二定律的理解正确的是(A. 由 *F=ma* 可知, *m* 与 *a* 成反比

2.	关于速度、加速度、合力的关系,下列记	兑法 错误 的是()
	A. 原来静止在光滑水平面上的物体, 受	到水平推力的瞬间,物体立刻获得加速度
	B. 加速度的方向与合力的方向总是一致[的,但与速度的方向可能相同,也可能不同
	C. 在初速度为0的匀加速直线运动中,	速度、加速度与合力的方向总是一致的
	D. 合力变小,物体的速度一定变小	
3.	一个氢气球在加速上升时,原来悬挂在每	气球上的一个小物体突然脱落,在小物体离开气
	球的瞬间,关于它的速度和加速度的说法	中正确的是()
	A. 具有向上的速度和加速度	
	B. 具有向下的速度和加速度	
	C. 速度向上,加速度向下	
	D. 瞬时速度为零,加速度向下	
1		面上,受到两个水平方向的大小为5N和7N的
	共点力作用,则物体的加速度可能是(
		4 m/s^2
		10 m/s^2
5.	在行车过程中遇到紧急刹车,乘员可能会	会由于惯性而受到伤害,为此新交通法规定行车
	过程中必须系安全带,某次急刹车过程中	,由于安全带作用,使质量为 60 kg 的乘员在 3 s
	内速度由 108 km/h 均匀降到 0,此过程中	安全带对乘员的作用力大小约为()
	A. 200 N	. 400 N
	C. 600 N D	. 800 N
6	一个质量为 1kg 的物体, 受到竖直向上	的拉力 F 作用时,以 2m/s² 的加速度竖直向上做
	匀加速运动,则F的大小为(忽略空气阻	力, 重力加速度 g 取 10m/s²) ()
	A. 2N B	. 12N
	C. 10N	. 8N
7.	竖直起飞的火箭在推力 F 的作用下产生	10 m/s^2 的加速度,若推力增大到 $2F$,则火箭的
	加速度将达到(g 取 10 m/s^2) ()	
		. 25 m/s^2
		$. 40 \text{ m/s}^2$
8		平地面上向左运动,物体与水平地面间的动摩擦
	•	P向右的推力 $F=20N$ 的作用,则物体的加速度
	为(取 $g=10 \text{ m/s}^2$) ()	<u> </u>
	A. 0	F
	B. 4 m/s², 水平向右	
	C. 2 m/s², 水平向右	
	D. 2 m/s ² , 水平向左	
^		4.4.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1
9.	######################################	的大小与汽车所受的重力的大小差不多,当汽车
	以 20 m/s 的速度行驶时突然制动,它还能	
		20 m
	C. 10 m	5 m
		_

10. 为了节能,商场安装了智能电动扶梯,如图所示。无人乘行时,扶梯运转得很慢;有人站上扶梯水平踏板时,扶梯会先加速、再匀速运转。一顾客乘扶梯上楼,恰好经历了这两个过程。则下列说法正确的是()

- B. 扶梯加速、匀速运转时,对顾客摩擦力方向都为水平向右
- C. 扶梯对顾客的弹力大小始终等于重力
- D. 顾客始终受到三个力的作用
- 11. 如图所示,有一辆汽车满载西瓜在水平路面上匀速前进. 突然发现意外情况,紧急刹车做匀减速运动,加速度大小为 a,则中间一质量为 m 的西瓜 A 受到其他西瓜对它的作用力的大小是(

В. та

D. m(g+a)

- 12. 如图所示,当车厢以某一加速度加速前进时,物块M相对车厢静止于竖直车厢壁上,则当车厢的加速度增大时(
 - A. 物块会滑落下来
 - B. 物块仍然保持相对于车厢静止的状态
 - C. 物块所受车厢壁的静摩擦力增大
 - D. 物块所受车厢壁的弹力不变

- 13. 在静止的车厢内,用细绳 a 和 b 系住一个小球,绳 a 斜向上拉,绳 b 水平拉,如图所示;让车从静止开始向右做匀加速运动,小球相对于车厢的位置不变,与小车静止时相比,绳
 - a、b 的拉力 F_a 、 F_b 变化情况是 ()

- $C. F_a$ 不变, F_b 变小
- D. F_a 不变, F_b 变大

- 14. 质量 m=1kg 的木块放在倾角为 θ =37°的斜面上。若用沿斜面向上的力 F 作用于木块上,使其由静止开始沿斜面向上做匀加速运动,经过 t=2s 时间木块沿斜面滑行 4m 的距离。
 - (1) 若斜面光滑, 求推力F的大小;
 - (2) 若物体与斜面间粗糙, μ =0.5, 求推力 F 的大小。

4.4 力学单位制

【知识小结】

1. 基本单位	
(1) 基本物理量:被选定的能够利用物理量之间的关系推导出其他物理量的的一	-발
物理量,如、、、、、、电流强度、物质的量、光	照
强度、热力学温度七个量为基本物理量。	
(2)基本单位: 所选定的的单位,在力学中,选定、和这三	:1
物理量的单位为基本单位。	
长度的单位有厘米(cm)、米(m)、千米(km)等。	
质量的单位有克(g)、千克(kg)等。	
时间的单位有秒(s)、分钟(min)、小时(h)等。	
2、导出单位:由基本量根据推导出来的其他物理量的单位,例如速度的单位"米每	秒
(m/s)、加速度的单位"米每二次方秒"(m/s²)、力的单位"牛顿"(kg·m/s²)。	
单位制:单位和单位一起就组成了一个单位制。	
3. 国际单位制	
(1) 国际单位制: 1960年第11届国际计量大会制订了一种国际通用的、包括一切计量	领
域的单位制。	
(2) 国际单位制(SI)中的基本单位:	
力学:长度的单位,质量的单位,时间的单位	_
还有:、、、、、。	
(3) 国际单位制(SI) 中的导出单位:、、、等等。	,

以下基本单位将在今后学习

电学: 电流强度的单位安培, 国际符号 A;

热学: 物质的量的单位摩尔, 国际符号 mol; 热力学温度的单位开尔文, 国际符号 K;

光学:发光强度的单位坎德拉,国际符号 cd。

【思考讨论】如图所示,圆锥的高是 h,底面半径是 r,某同学记的圆锥体积公式是 $V = \frac{1}{3}\pi r^3 h$ 。

- (1) 圆锥的高 h、半径 r 的国际单位各是什么?体积的国际单位又是什么?
- (2) 将 h、r 的单位代入公式 $V = \frac{1}{3}\pi r^3 h$,计算出的体积 V 的单位是什么?这说明该公式对还是错?

1	1. 下列关于单位制的说法中,正确的是()					
	A. 在国际单位制中力学的三个基本单位分别是长度单位 m 、时间单位 s 、力的单位 N					
	B. 长度是基本物理量, 其	邓是国际单位制中的	基本单位			
	C. 公式 $F=ma$ 中,各量的]单位可以任意选取				
	D. 由 <i>F=ma</i> 可得到力的单	拉拉 1N=1kg•m/s²				
2	. 测量"国际单位制中的三个	力学基本物理量"可	用哪一组仪器()		
	A. 米尺、弹簧测力计、秒	表 B.	米尺、弹簧测力计	、量筒		
	C. 量筒、天平、秒表	D.	米尺、天平、秒表			
3	. 如果一个物体在力 F 的作员	用下沿着力的方向移	s动一段距离 s ,则 i	这个力对物体做的功是		
	W = Fs, 我们还学过,功	的单位是焦耳(J),E	由功的公式和牛顿第	二定律 $F = ma$ 可知,		
	焦耳(J)与基本单位米(m)、	千克(kg)、秒(s)之间	的关系是()			
	A. $1J = 1kg \cdot m/s^2$	В.	$1J = 1kg \cdot m/s$			
	$C. 1J = 1kg \cdot m^2/s^2$	D.	$1J = 1kg \cdot m^2/s$			
4	. 杠杆的平衡条件是"动力乘	以动力臂等于阻力	乘以阻力臂",如果	将"力乘以力臂"定义为		
	"力矩",则杠杆的平衡条件	可以概括为"动力矩	等于阻力矩",由此	可见,引入新的物理量		
	往往可以简化对规律的叙述	之,更便于研究或描述。 1	述物理问题,根据你	的经验,力矩的单位如		
	果用单位制中的基本单位表	表示应该是 ()				
	A. N·m B. N·s	s C.	kg·m·s ⁻¹	D. kg·m ² ·s ⁻²		
5	. 已知物理量λ的单位为"m"、	、物理量 v 的单位为	\jmath "m/s"、物理量 f 的	单位为"s¯1",则由这三		
	个物理量组成的关系式正确	的是 ()				
	A. $v = \frac{\lambda}{f}$ B. $v =$	Ēλf C.	$f=v\lambda$	D. $\lambda = vf$		
6	. 雨滴在空气中下落, 当速度	度比较大的时候,它	受到的空气阻力与其	其速度的二次方成正比,		
	与其横截面积成正比,即 F	$F_f = kSv^2$,则比例系数	数 k 的单位是()		
	A. kg/m ⁴ B. kg/s	$^{\prime}\mathrm{m}^{3}$ C.	kg/m^2	D. kg/m		
7	. 实验研究表明降落伞所受的	的阻力与速度 v、伞	的半径 r、空气密度	<i>ρ</i> 等因素有关,下面几		
	个有关阻力的表达式可能正确的是(式中 K 为比例常数,无单位)()					
	A. $Kv^2r^3\rho$ B. Kv^2	$^2r^2\rho$ C.	$Kv^2r^4\rho$	D. $Kvr^2\rho$		

第五节 牛顿运动定律的应用

【学习目标】

通过本节课的学习, 你应该能够:

- 1.掌握用牛顿运动定律解决两类问题。
- 2.理解加速度是解决动力学问题的桥梁。
- 3.掌握解决动力学问题的基本思路和方法。

注:课外读和小资料只作为背景资料供阅读,不要求记忆或掌握具体内容。

教学任务一、从受力确定运动情况

- 1. 如图所示,一质量为 8 kg 的物体静止在粗糙的水平地面上,物体与地面间的动摩擦因数为 0.2,用一水平拉力 F=20 N 拉物体,使其由 A 点开始运动,经过 8 s 后撤去拉力 F,再经过一段时间物体到达 B 点停止(g 取 10 m/s²).求:
 - (1) 在拉力F作用下物体运动的加速度大小;
 - (2) 撤去拉力 F 瞬间物体的速度大小;
 - (3) 撤去拉力 F 后物体运动的距离.

2. 如图,质量 m=2kg 的物体静止在水平面上,物体与水平面间的滑动摩擦力大小等于它们间弹力的 0.25 倍,现在对物体施加一个大小 F=8N、与水平方向夹角 θ =37°角的斜向上的拉力. 已知 sin37°=0.6,cos37°=0.8,取 g=10m/s². 求物体在拉力作用下 5s 内通过的位移大小.

- 3、运动员把冰壶沿水平冰面投出,让冰壶在冰面上自由滑行,在不与其他冰壶碰撞的情况下,最终停在远处的某个位置。按比赛规则,投掷冰壶运动员的队友,可以用毛刷在冰壶滑行前方来回摩擦冰面,减小冰面的动摩擦因数以调节冰壶的运动。
- (1)运动员以 3.4 m/s 的速度投掷冰壶,若冰壶和冰面的动摩擦因数为 0.02,冰壶能在冰面上滑行多远? g 取 10 m/s²。
- (2) 若运动员仍以 3.4 m/s 的速度将冰壶投出,其队友在冰壶自由滑行 10 m 后开始在其滑行前方摩擦冰面,冰壶和冰面的动摩擦因数变为原来的 90%,冰壶多滑行了多少距离?

教学任务二、从运动情况确定受力

1.一个滑雪的人,质量 m=75kg,以 $v_0=2$ m/s 的初速度沿山坡匀加速滑下,山坡的倾角为 $\theta=37^\circ$,在 t=5s 的时间内滑下的路程 x=60m,求滑板与冰面之间的动摩擦因数.

2. 质量为 m=3kg 的木块放在倾角为 θ =30°的足够长斜面上,木块可以沿斜面匀速下滑.若用沿斜面向上的力 F 作用于木块上,使其由静止开始沿斜面向上做匀加速直线运动,经过 t=2s 时间木块沿斜面上滑 4m 的距离(g=10m/s²),求推力 F 的大小.

方法提炼:

- 1. 一个物体在几个力的作用下做匀速直线运动, 当沿与速度方向相反的一个力逐渐减小时, 物体的(
 - A. 加速度减小,速度减小,位移减小
 - B. 加速度减小,速度减小,位移增大
 - C. 加速度增大, 速度增大, 位移减小
 - D. 加速度增大,速度增大,位移增大
- 2. 在动摩擦因数为 μ 的水平面上,放一个质量为m的物体,在水平推力F作用下,由静止 开始运动,经时间 t 后速度变为 v,欲使该物体受力后速度达到 2v,可采用(
 - A. 将物体的质量减少一半
 - B. 将质量、水平推力和作用时间都增加到 2 倍
 - C. 将水平推力变成 2F
 - D. 将力F的作用时间增至2t
- 3. 如图所示,水平地面上一物体以 5m/s 的初速度向右滑行,若物体与地面间的动摩擦因数 为 0.25,取 g=10m/s²,则物体在 3s 内的位移大小为(
 - A. 0.5m

B. 2.5m

C. 3.75m

D. 5m

 $F\cos\alpha - \mu Mg$

 $F\cos\alpha - \mu(Mg - F\sin\alpha)$

- 5. 如图所示,物块 m 和车厢后壁间的动摩擦因数为μ, 当该车加速向右运动时, *m* 恰好沿车厢后壁匀速下滑,则车的加速度为(
 - A. g

Β. μg

C. g/μ

D. $\mu g/2$

- A. 物体到达 C_1 点时的速度最大
- B. 物体在三条轨道上的运动时间相同
- C. 物体到达 C_3 的时间最短
- D. 物体在 AC_3 上运动的加速度最小

m

- 7. 如图所示, ad、bd、cd 是竖直面内三根固定的光滑细杆,每根上套着一个小滑环(图 中未画出),三个滑环分别从a,b,c处释放(初速为0),用 t_1,t_2,t_3 依次表示各滑 环到达 d 所用的时间,则()
 - A. $t_1 < t_2 < t_3$

B. $t_3 > t_1 > t_2$

C. $t_1 > t_2 > t_3$

D. $t_1 = t_2 = t_3$

8. 雨滴从空中由静止落下,若雨滴下落时空气对其阻力随雨滴下落速度的增大而增大,如 图所示的图象能正确反映雨滴下落运动情况的是(

- 0
- 9. 质量为 0.8 kg 的物体在一水平面上运动,如图 $a \times b$ 分别表示物体不受拉力和 $1.2^{\lfloor v / (\text{m/s}) \rfloor}$ 受到水平拉力作用的v-t图象,则拉力与摩擦力之比为(

- A. 9:8
- B. 4:3
- C. 2:1
- D. 3:2
- 10. 如图所示为某小球所受的合力与时间的关系图像,各段的合力大小相同,作 用时间相同, 且一直作用下去,设小球从静止开始运动,由此可判定(

- A. 小球先向前运动,再返回停止
- B. 小球先向前运动,再返回不会停止
- C. 小球始终向前运动
- D. 小球向前运动一段时间后停止
- 11. 如图所示, ACD 是一滑雪场示意图, 其中 AC 是长 L=8m、倾角 $\theta=37^{\circ}$ 的斜坡, CD 段 是与斜坡平滑连接的水平面. 人从A点由静止下滑,经过C点时速度大小不变,又在水 平面上滑行一段距离后停下. 人与接触面间的动摩擦因数均为 $\mu=0.25$, 不计空气阻力. (取 g=10m/s², sin37°=0.6, cos37°=0.8) 求:

- (1) 人从斜坡顶端 A 滑至底端 C 所用的时间;
- (2) 人在离 C 点多远处停下?

- 12. 一质量为 m=2 kg 的滑块在倾角为 $\theta=30^\circ$ 的足够长的斜面上在无外力 F 的情况下以加速 度 $a=2.5 \text{ m/s}^2$ 匀加速下滑. 若用一水平向右的恒力 F 作用于滑块,如图所示,使滑块由静 止开始向上匀加速运动,在 $0\sim2$ s 时间内沿斜面运动的位移 x=4 m. 求: (g 取 10 m/s²)
 - (1) 滑块和斜面之间的动摩擦因数u:
 - (2) 恒力F的大小.

第六节 超重与失重

【学习目标】

通过本节课的学习, 你应该能够:

- 1.认识超重和失重现象,理解产生超重、失重现象的条件和实质。
- 2.认识完全失重现象。
- 注:课外读和小资料只作为背景资料供阅读,不要求记忆或掌握具体内容。

【任务】从例题出发探究超重、失重及完全失重现象。

例 1、人的质量为 m,当电梯以加速度 a 加速上升时,人对地板的压力 F_N 是多大?

例 2、人的质量为 m,当电梯以加速度 a 加速下降时,人对地板的压力 F_N 是多大?

例 3、在升降机中测人的体重,已知人的质量为 40kg,试求:

- ①若升降机以 2. 5m/s²的加速度匀加速下降, 台秤的示数是多少?
- ②若升降机自由下落,台秤的示数又是多少?

小结:

1,	超重:	(视重)	重力;	可能运动_	 ٠.	
2,	失重:	(视重)	_重力;	可能运动_	 ٠.	
3.	完全生	 (可能运动		

- 1. 在下列运动过程中,人没有处于失重状态的是()
 - A. 小朋友沿滑梯加速滑下
 - B. 乘客坐在沿平直路面减速行驶的汽车内
 - C. 宇航员随飞船绕地球做圆周运动
 - D. 运动员何冲离开跳板后向上运动
- 2. 一人站在电梯中的体重计上,随电梯一起运动. 下列各种情况中,体重计的示数最大的 是()
 - A. 电梯匀减速上升,加速度的大小为 1m/s²
 - B. 电梯匀加速上升,加速度的大小为 1m/s²
 - C. 电梯匀减速下降,加速度的大小为 0.5m/s²
 - D. 电梯匀加速下降,加速度的大小为 0.5m/s²
- 3. 质量为m的一物体,用细线挂在电梯的天花板上。当电梯以1/3g的加速度竖直加速下降时,细线对物体的拉力大小为()
 - A. $\frac{4}{3}mg$
- B. *Mg*
- C. $\frac{2}{3}mg$
- D. $\frac{1}{3}mg$
- 4. 如图所示,轻质弹簧的上端固定在电梯的天花板上,弹簧下端悬挂一个小铁球, 当电梯在竖直方向运行时,电梯内乘客发现弹簧的伸长量比电梯原来静止时的伸 长量变大了,这一现象表明()
 - A. 电梯一定处于加速上升阶段
- B. 电梯的速度方向一定向下
- C. 乘客一定处在超重状态
- D. 电梯的加速度方向可能向下

- A. 火箭加速上升时, 宇航员处于超重状态
- B. 飞船落地前减速下落时, 宇航员处于失重状态
- C. 火箭加速上升时, 宇航员对座椅的压力小于自身重力
- D. 在飞船绕地球运行时, 宇航员处于完全失重状态, 则宇航员的重力消失了
- 6. 某同学站在电梯底板上,如图所示的 *v-t* 图像是计算机显示电梯在某一段时间 内速度变化的情况(竖直向上为正方向). 根据图像提供的信息,可以判断下 2 列说法中正确的是()

- A. 在 0-20s 内, 电梯向上运动, 该同学处于超重状态
- B. 在 0-5s 内, 电梯在加速上升, 该同学处于失重状态
- C. 在 5s-10s 内, 电梯处于静止状态, 该同学对电梯底板的压力等于他所受的重力
- D. 在 10s-20s 内, 电梯在减速上升, 该同学处于失重状态
- 7. 如图所示,是某人站在压力板传感器上,做下蹲--起立的动作时记录的压力随时间变化的图线,纵坐标为力(单位为 N),横坐标为时间(单位为 s). 由图线可知,该人的体

重约为 650N,除此之外,还可以得到的信息是(

- B. 该人做了一次下蹲--起立的动作
- C. 下蹲过程中人处于失重状态
- D. 下蹲过程中先处于超重状态后处于失重状态

高一物理自主生长单 必修 I 第四章《牛顿运动定律》 主备人:上官金丝 校审人:张敏、应智勤

课时训练答案:

- 4.1 BDDDC DB
- 4.3 CDCBC BCBBA CBC 8N, 12N
- 4.4 DDCDB BB
- 4.5 D BD DDCCD CDC 11、2s, 12.8N; 12、 $\sqrt{3}/6$,76 $\sqrt{3}/5$ N
- 4.6 BBCCA DB