Gráficas y funciones

Para encontrar intersecciones

intersecciones y: Sea x = 0 en la ecuación y resolvemos para y

intersecciones x: Sea y = 0 en la ecuación y resolvemos para x

Funciones de polinomios

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

donde n es un entero no negativo.

Función lineal

$$f(x) = ax + b, a \neq 0$$

La gráfica de una función lineal es una recta.

Formas de ecuaciones de rectas:

Punto pendiente: $y - x_0 = m(x - x_0)$, Pendiente ordenada al origen: y = mx + b, donde m es la pendiente.

Función cuadrática

$$f(x) = ax^2 + bx + c, a \neq 0$$

La gráfica de una función cuadrática es una parábola.

Vértice (h, k) de una parábola

Complete el cuadrado en x para $f(x) = ax^2 + bx + c$ para obtener $f(x) = a(x - h)^2 + k$. De manera alterna, calcule las coordenadas

$$\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$$
.

Funciones par e impar

Par: f(-x) = f(x); simetría de la gráfica: el eje y Impar: f(-x) = -f(x); simetría de la gráfica: el origen

Transformaciones rígidas

La gráfica de y = f(x) para c > 0:

y = f(x) + c, desplazada hacia arriba c unidades

y = f(x) - c, desplazada hacia abajo c unidades

y = f(x + c), desplazada hacia la izquierda c unidades

y = f(x - c), desplazada hacia la derecha c unidades

y = f(-x), reflexión sobre el eje y

y = -f(x), reflexión sobre el eje x

Función racional

$$f(x) = \frac{p(x)}{q(x)} = \frac{a_n x^n + \dots + a_1 x + a_0}{b_m x^m + \dots + b_1 x + b_0},$$

donde p(x) y q(x) son funciones polinomiales.

Asíntotas

Si las funciones polinomiales p(x) y q(x) no tienen ningún factor en común, entonces la gráfica de la función racional

$$f(x) = \frac{p(x)}{q(x)} = \frac{a_n x^n + \dots + a_1 x + a_0}{b_m x^m + \dots + b_1 x + b_0}$$

tiene una

Asíntota vertical:

x = a cuando q(a) = 0,

Asíntota horizontal:

 $y = a_n/b_m$ cuando n = m y y = 0 cuando n < m,

Asíntota oblicua:

$$y = ax + b$$
 cuando $n = m + 1$.

La gráfica no tiene una asíntota horizontal cuando n > m. Una asíntota oblicua se encuentra mediante una división.

Función potencia

$$f(x) = x^n$$

donde n es cualquier número real.

FÓRMULAS MATEMÁTICAS

Revisión de trigonometría

Definición de seno y coseno de acuerdo con el círculo unitario

Otras funciones trigonométricas

$$\tan \theta = \frac{y}{x} = \frac{\sin \theta}{\cos \theta}, \cot \theta = \frac{x}{y} = \frac{\cos \theta}{\sin \theta}$$

$$\sec \theta = \frac{1}{x} = \frac{1}{\cos \theta}, \quad \csc \theta = \frac{1}{y} = \frac{1}{\sin \theta}$$

Fórmulas de conversión

1 grado
$$=\frac{\pi}{180}$$
 radianes

1 radián =
$$\frac{180}{\pi}$$
 grados

Definición de seno y coseno de acuerdo con el triángulo recto

Otras funciones trigonométricas

$$\tan \theta = \frac{\text{opu}}{\text{ady}}, \quad \cot \theta = \frac{\text{ady}}{\text{opu}}$$

$$\sec \theta = \frac{\text{hip}}{\text{ady}}, \quad \csc \theta = \frac{\text{hip}}{\text{opu}}$$

Signos de seno y coseno

Valores de seno y coseno para ángulos especiales

Límites para las funciones seno y coseno

$$-1 \le \operatorname{sen} x \le 1$$
 y $-1 \le \operatorname{cos} x \le 1$

Periodicidad de las funciones trigonométricas

$$sen(x + 2\pi) = sen x, cos(x + 2\pi) = cos x$$

$$sec(x + 2\pi) = sec x, csc(x + 2\pi) = csc x$$

$$tan(x + \pi) = tan x, cot(x + \pi) = cot x$$

Identidades de cofunción

$$\operatorname{sen}\left(\frac{\pi}{2} - x\right) = \cos x$$

$$\operatorname{cos}\left(\frac{\pi}{2} - x\right) = \operatorname{sen} x$$

$$\operatorname{tan}\left(\frac{\pi}{2} - x\right) = \cot x$$

Identidades pitagóricas

$$sen2 x + cos2 x = 1$$

$$1 + tan2 x = sec2 x$$

$$1 + cot2 x = csc2 x$$

Identidades par/impar

the state of the s	
Par	Impar
$\cos(-x) = \cos x$	$\operatorname{sen}(-x) = -\operatorname{sen} x$
$\sec(-x) = \sec x$	$\csc(-x) = -\csc x$
	$\tan(-x) = -\tan x$
	aot(x) = -aot x

Fórmulas de suma

$$sen(x_1 + x_2) = sen x_1 cos x_2 + cos x_1 sen x_2$$

$$cos(x_1 + x_2) = cos x_1 cos x_2 - sen x_1 sen x_2$$

$$tan(x_1 + x_2) = \frac{tan x_1 + tan x_2}{1 - tan x_1 tan x_2}$$

Fórmulas de diferencia

$$sen(x_1 - x_2) = sen x_1 cos x_2 - cos x_1 sen x_2$$

$$cos(x_1 - x_2) = cos x_1 cos x_2 + sen x_1 sen x_2$$

$$tan(x_1 - x_2) = \frac{tan x_1 - tan x_2}{1 + tan x_1 tan x_2}$$

Fórmulas del ángulo doble

$$sen 2x = 2 sen x cos x$$

$$cos 2x = cos^2 x - sen^2 x$$

Fórmulas alternas del ángulo doble para coseno

$$\cos 2x = 1 - 2 \operatorname{sen}^2 x$$
$$\cos 2x = 2 \cos^2 x - 1$$

Fórmulas del medio ángulo como se usa en cálculo

$$sen2 x = \frac{1}{2}(1 - \cos 2x)
\cos^2 x = \frac{1}{2}(1 + \cos 2x)$$

Leyes de los senos

$$\frac{\operatorname{sen}\alpha}{a} = \frac{\operatorname{sen}\beta}{b} = \frac{\operatorname{sen}\gamma}{c}$$

Leves de los cosenos

$$a^{2} = b^{2} + c^{2} - 2bc \cos \alpha$$

$$b^{2} = a^{2} + c^{2} - 2ac \cos \beta$$

$$c^{2} = a^{2} + b^{2} - 2ab \cos \gamma$$

Funciones trigonométricas inversas

$$y = \operatorname{sen}^{-1} x \operatorname{si} y \operatorname{sólo} \operatorname{si} x = \operatorname{sen} y, \quad -\pi/2 \le y \le \pi/2$$

 $y = \cos^{-1} x \operatorname{si} y \operatorname{sólo} \operatorname{si} x = \operatorname{cos} y, \quad 0 \le y \le \pi$
 $y = \tan^{-1} x \operatorname{si} y \operatorname{sólo} \operatorname{si} x = \tan y, \quad -\pi/2 < y < \pi/2$

Ciclos para seno, coseno y tangente

 $\frac{\pi}{2} \qquad \frac{3\pi}{2} \qquad 2\pi$ coseno tangente

Funciones exponencial y logarítmica

El número e

e = 2.718281828459...

Definiciones del número e

$$e = \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x$$

$$e = \lim_{h \to 0} (1 + h)^{1/h}$$

Función exponencial

$$f(x) = b^x, b > 0, b \neq 1$$

Función exponencial natural

$$f(x) = e^x$$

Función logarítmica

$$f(x) = \log_b x, \quad x > 0$$

donde $y = \log_b x$ es equivalente a $x = b^y$

Función logarítmica natural

$$f(x) = \log_e x = \ln x, \quad x > 0$$

donde $y = \ln x$ es equivalente a $x = e^y$

Leyes de logaritmos

$$\log_b MN = \log_b M + \log_b N$$

$$\log_b \frac{M}{N} = \log_b M - \log_b N$$

$$\log_b M^c = c \log_b M$$

Propiedades de logaritmos

$$\log_b b = 1, \qquad \log_b 1 = 0$$

$$\log_b b^x = x, \qquad b^{\log_b x} = x$$

Cambio de la base b a la base e

$$\log_b x = \frac{\ln x}{\ln b}$$

Funciones hiperbólicas

$$senh x = \frac{e^x - e^{-x}}{2}, \quad cosh x = \frac{e^x + e^{-x}}{2}$$

$$\tanh x = \frac{\sinh x}{\cosh x}$$
, $\coth x = \frac{\cosh x}{\sinh x}$

$$\operatorname{sech} x = \frac{1}{\cosh x}, \quad \operatorname{csch} x = \frac{1}{\sinh x}$$

Funciones hiperbólicas inversas como logaritmos

$$\operatorname{senh}^{-1} x = \ln \left(x + \sqrt{x^2 + 1} \right)$$

$$\cosh^{-1} x = \ln(x + \sqrt{x^2 - 1}), \ x \ge 1$$

$$\tanh^{-1} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right), |x| < 1$$

$$coth^{-1} x = \frac{1}{2} ln \left(\frac{x+1}{x-1} \right), |x| > 1$$

$$\operatorname{sech}^{-1} x = \ln \left(\frac{1 + \sqrt{1 - x^2}}{x} \right), \ 0 < x \le 1$$

$$\operatorname{csch}^{-1} x = \ln \left(\frac{1}{x} + \frac{\sqrt{1+x^2}}{|x|} \right), \ x \neq 0$$

Identidades par/impar

Par

$\cosh(-x) = \cosh x$

Impar

$$senh(-x) = -senh x$$

Identidades adicionales

$$\cosh^2 x - \sinh^2 x = 1$$

$$1 - \tanh^2 x = \operatorname{sech}^2 x$$

$$\coth^2 x - 1 = \operatorname{csch}^2 x$$

$$\operatorname{senh}(x_1 \pm x_2) = \operatorname{senh} x_1 \cosh x_2 \pm \cosh x_1 \operatorname{senh} x_2$$

$$\cosh(x_1 \pm x_2) = \cosh x_1 \cosh x_2 \pm \sinh x_1 \sinh x_2$$

senh 2x = 2 senh x cosh x

$$\cosh 2x = \cosh^2 x + \sinh^2 x$$

$$senh^2 x = \frac{1}{2}(-1 + cosh 2x)$$

$$\cosh^2 x = \frac{1}{2}(1 + \cosh 2x)$$

-ÓRMULAS MATEMÁTICAS

Diferenciación

Reglas

1. Constante:
$$\frac{d}{dx}c = 0$$

2. Múltiplo constante:
$$\frac{d}{dx}cf(x) = cf'(x)$$

3. Suma:
$$\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x)$$

4. Producto:
$$\frac{d}{dx}f(x)g(x) = f(x)g'(x) + g(x)f'(x)$$

5. Cociente:
$$\frac{d}{dx} \frac{f(x)}{g(x)} = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}$$

6. Cadena:
$$\frac{d}{dx}f(g(x)) = f'(g(x))g'(x)$$

7. Potencia:
$$\frac{d}{dx}x^n = nx^{n-1}$$

8. Potencia:
$$\frac{d}{dx}[g(x)]^n = n[g(x)]^{n-1}g'(x)$$

Funciones

Trigonométricas:

9.
$$\frac{d}{dx}$$
 sen $x = \cos x$

9.
$$\frac{d}{dx}$$
 sen $x = \cos x$ 10. $\frac{d}{dx}$ cos $x = -\sin x$

11.
$$\frac{d}{dx}\tan x = \sec^2 x$$

11.
$$\frac{d}{dx}\tan x = \sec^2 x$$
 12. $\frac{d}{dx}\cot x = -\csc^2 x$

13.
$$\frac{d}{dx} \sec x = \sec x \tan x$$

13.
$$\frac{d}{dx}\sec x = \sec x \tan x$$
 14. $\frac{d}{dx}\csc x = -\csc x \cot x$

15.
$$\frac{d}{dx} \operatorname{sen}^{-1} x = \frac{1}{\sqrt{1 - x^2}}$$
 16. $\frac{d}{dx} \operatorname{cos}^{-1} x = -\frac{1}{\sqrt{1 - x^2}}$ Logarítmicas:
35. $\frac{d}{dx} \ln|x| = \frac{1}{x}$ 36. $\frac{d}{dx} \log_b x = \frac{1}{x(\ln b)}$

17.
$$\frac{d}{dx} \tan^{-1} x = \frac{1}{1+x^2}$$
 18. $\frac{d}{dx} \cot^{-1} x = -\frac{1}{1+x^2}$

18.
$$\frac{d}{dx}\cot^{-1}x = -\frac{1}{1+x^2}$$

19.
$$\frac{d}{dx}\sec^{-1}x = \frac{1}{|x|\sqrt{x^2 - 1}}$$
 20. $\frac{d}{dx}\csc^{-1}x = -\frac{1}{|x|\sqrt{x^2 - 1}}$

21.
$$\frac{d}{dx} \operatorname{senh} x = \cosh x$$
 22. $\frac{d}{dx} \cosh x = \operatorname{senh} x$

22.
$$\frac{d}{dx} \cosh x = \sinh x$$

23.
$$\frac{d}{dx} \tanh x = \operatorname{sech}^2 x$$

23.
$$\frac{d}{dx} \tanh x = \operatorname{sech}^2 x$$
 24. $\frac{d}{dx} \coth x = -\operatorname{csch}^2 x$

25.
$$\frac{d}{dx}$$
 sech $x = -$ sech x tanh x

26.
$$\frac{d}{dx}\operatorname{csch} x = -\operatorname{csch} x \operatorname{coth} x$$

Hiperbólicas inversas:

27.
$$\frac{d}{dx} \operatorname{senh}^{-1} x = \frac{1}{\sqrt{x^2 + 1}}$$
 28. $\frac{d}{dx} \cosh^{-1} x = \frac{1}{\sqrt{x^2 - 1}}$

29.
$$\frac{d}{dx} \tanh^{-1} x = \frac{1}{1 - x^2}$$
 30. $\frac{d}{dx} \coth^{-1} x = \frac{1}{1 - x^2}$

31.
$$\frac{d}{dx} \operatorname{sech}^{-1} x = -\frac{1}{x\sqrt{1-x^2}}$$

32.
$$\frac{d}{dx} \operatorname{csch}^{-1} x = -\frac{1}{|x| \sqrt{x^2 + 1}}$$

Exponenciales:

$$33. \ \frac{d}{dx}e^x = e^x$$

33.
$$\frac{d}{dx}e^x = e^x$$
 34. $\frac{d}{dx}b^x = b^x(\ln b)$

$$35. \ \frac{d}{dx} \ln|x| = \frac{1}{x}$$

$$36. \ \frac{d}{dx}\log_b x = \frac{1}{x(\ln b)}$$

FORMULAS MATEMÁTICAS

Fórmulas de integración

Formas básicas

$$1. \int u \, dv = uv - \int v \, du$$

2.
$$\int u^n du = \frac{1}{n+1} u^{n+1} + C, n \neq -1$$

3.
$$\int \frac{du}{u} = \ln|u| + C$$
 4. $\int e^{u} du = e^{u} + C$

$$4. \quad \int e^u \, du = e^u + C$$

$$5. \int a^u du = \frac{1}{\ln a} a^u + C$$

$$\mathbf{6.} \int \operatorname{sen} u \, du = -\cos u + C$$

7.
$$\int \cos u \, du = \sin u + C \quad \mathbf{8.} \quad \int \sec^2 u \, du = \tan u + C$$

$$9. \int \csc^2 u \, du = -\cot u + C$$

10.
$$\int \sec u \tan u \, du = \sec u + C$$

11.
$$\int \csc u \cot u \, du = -\csc u + C$$

$$12. \int \tan u \, du = -\ln|\cos u| + C$$

$$13. \int \cot u \, du = \ln|\sin u| + C$$

$$14. \int \sec u \, du = \ln|\sec u + \tan u| + C$$

$$15. \int \csc u \, du = \ln|\csc u - \cot u| + C$$

16.
$$\int \frac{du}{\sqrt{a^2 - u^2}} = \operatorname{sen}^{-1} \frac{u}{a} + C$$

17.
$$\int \frac{du}{a^2 + u^2} = \frac{1}{a} \tan^{-1} \frac{u}{a} + C$$

18.
$$\int \frac{du}{u\sqrt{u^2-a^2}} = \frac{1}{a} \sec^{-1} \left| \frac{u}{a} \right| + C$$

19.
$$\int \frac{du}{a^2 - u^2} = \frac{1}{2a} \ln \left| \frac{u + a}{u - a} \right| + C$$

20.
$$\int \frac{du}{u^2 - a^2} = \frac{1}{2a} \ln \left| \frac{u - a}{u + a} \right| + C$$

Formas que implican $\sqrt{a^2 + u^2}$

21.
$$\int \sqrt{a^2 + u^2} \, du = \frac{u}{2} \sqrt{a^2 + u^2} + \frac{a^2}{2} \ln|u + \sqrt{a^2 + u^2}| + C$$

22.
$$\int u^2 \sqrt{a^2 + u^2} \, du = \frac{u}{8} (a^2 + 2u^2) \sqrt{a^2 + u^2} - \frac{a^4}{8} \ln|u + \sqrt{a^2 + u^2}| + C$$

5.
$$\int a^u du = \frac{1}{\ln a} a^u + C$$
 6. $\int \sin u \, du = -\cos u + C$ 23. $\int \frac{\sqrt{a^2 + u^2}}{u} du = \sqrt{a^2 + u^2} - a \ln \left| \frac{a + \sqrt{a^2 + u^2}}{u} \right| + C$

24.
$$\int \frac{\sqrt{a^2 + u^2}}{u^2} du = -\frac{\sqrt{a^2 + u^2}}{u} + \ln|u + \sqrt{a^2 + u^2}| + C$$

25.
$$\int \frac{du}{\sqrt{a^2 + u^2}} = \ln|u + \sqrt{a^2 + u^2}| + C$$

26.
$$\int \frac{u^2 du}{\sqrt{a^2 + u^2}} = \frac{u}{2} \sqrt{a^2 + u^2} - \frac{a^2}{2} \ln|u + \sqrt{a^2 + u^2}| + C$$

27.
$$\left| \frac{du}{u\sqrt{a^2 + u^2}} = -\frac{1}{a} \ln \left| \frac{\sqrt{a^2 + u^2} + a}{u} \right| + C \right|$$

28.
$$\int \frac{du}{u^2 \sqrt{a^2 + u^2}} = -\frac{\sqrt{a^2 + u^2}}{a^2 u} + C$$

29.
$$\int \frac{du}{(a^2 + u^2)^{3/2}} = \frac{u}{a^2 \sqrt{a^2 + u^2}} + C$$

Formas que implican $\sqrt{a^2 - u}$

30.
$$\int \sqrt{a^2 - u^2} \, du = \frac{u}{2} \sqrt{a^2 - u^2} + \frac{a^2}{2} \operatorname{sen}^{-1} \frac{u}{a} + C$$

31.
$$\int u^2 \sqrt{a^2 - u^2} \, du = \frac{u}{8} (2u^2 - a^2) \sqrt{a^2 - u^2} + \frac{a^4}{8} \operatorname{sen}^{-1} \frac{u}{a} + C$$

32.
$$\int \frac{\sqrt{a^2 - u^2}}{u} du = \sqrt{a^2 - u^2} - a \ln \left| \frac{a + \sqrt{a^2 - u^2}}{u} \right| + C$$

33.
$$\int \frac{\sqrt{a^2 - u^2}}{u^2} du = -\frac{1}{u} \sqrt{a^2 - u^2} - \operatorname{sen}^{-1} \frac{u}{a} + C$$

34.
$$\int \frac{u^2 du}{\sqrt{a^2 - u^2}} = -\frac{u}{2} \sqrt{a^2 - u^2} + \frac{a^2}{2} \operatorname{sen}^{-1} \frac{u}{a} + C$$

35.
$$\int \frac{du}{u\sqrt{a^2 - u^2}} = -\frac{1}{a} \ln \left| \frac{a + \sqrt{a^2 - u^2}}{u} \right| + C$$

36.
$$\int \frac{du}{u^2 \sqrt{a^2 - u^2}} = -\frac{1}{a^2 u} \sqrt{a^2 - u^2} + C$$

37.
$$\int (a^2 - u^2)^{3/2} du = -\frac{u}{8} (2u^2 - 5a^2) \sqrt{a^2 - u^2} + \frac{3a^4}{8} \operatorname{sen}^{-1} \frac{u}{a} + C$$

38.
$$\int \frac{du}{(a^2 - u^2)^{3/2}} = \frac{u}{a^2 \sqrt{a^2 - u^2}} + C$$

Formas que implican $\sqrt{u^2-a^2}$

39.
$$\int \sqrt{u^2 - a^2} \, du = \frac{u}{2} \sqrt{u^2 - a^2} - \frac{a^2}{2} \ln|u + \sqrt{u^2 - a^2}| + C$$

40.
$$\int u^2 \sqrt{u^2 - a^2} \, du = \frac{u}{8} (2u^2 - a^2) \sqrt{u^2 - a^2} - \frac{a^4}{8} \ln|u + \sqrt{u^2 - a^2}| + C$$

41.
$$\int \frac{\sqrt{u^2 - a^2}}{u} du = \sqrt{u^2 - a^2} - a \cos^{-1} \frac{a}{u} + C$$

42.
$$\int \frac{\sqrt{u^2 - a^2}}{u^2} du = -\frac{\sqrt{u^2 - a^2}}{u} + \ln|u + \sqrt{u^2 - a^2}| + C$$

43.
$$\int \frac{du}{\sqrt{u^2 - a^2}} = \ln|u + \sqrt{u^2 - a^2}| + C$$

44.
$$\int \frac{u^2 du}{\sqrt{u^2 - a^2}} = \frac{u}{2} \sqrt{u^2 - a^2} + \frac{a^2}{2} \ln|u + \sqrt{u^2 - a^2}| + C$$

45.
$$\int \frac{du}{u^2 \sqrt{u^2 - a^2}} = \frac{\sqrt{u^2 - a^2}}{a^2 u} + C$$

46.
$$\int \frac{du}{(u^2 - a^2)^{3/2}} = -\frac{u}{a^2 \sqrt{u^2 - a^2}} + C$$

Formas que implican a + bu

47.
$$\int \frac{u \, du}{a + bu} = \frac{1}{b^2} (a + bu - a \ln|a + bu|) + C$$

48.
$$\int \frac{u^2 du}{a + bu} = \frac{1}{2b^3} [(a + bu)^2 - 4a(a + bu) + 2a^2 \ln|a + bu|] + C$$

49.
$$\left| \frac{du}{u(a+bu)} = \frac{1}{a} \ln \left| \frac{u}{a+bu} \right| + C$$

50.
$$\left| \frac{du}{u^2(a+bu)} = -\frac{1}{au} + \frac{b}{a^2} \ln \left| \frac{a+bu}{u} \right| + C \right|$$

51.
$$\int \frac{u \, du}{(a + bu)^2} = \frac{a}{b^2 (a + bu)} + \frac{1}{b^2} \ln|a + bu| + C$$

52.
$$\int \frac{du}{u(a+bu)^2} = \frac{1}{a(a+bu)} - \frac{1}{a^2} \ln \left| \frac{a+bu}{u} \right| + C$$

53.
$$\int \frac{u^2 du}{(a+bu)^2} = \frac{1}{b^3} \left(a + bu - \frac{a^2}{a+bu} - 2a \ln|a+bu| \right) + C$$

54.
$$\int u\sqrt{a+bu} \, du = \frac{2}{15b^2} (3bu - 2a)(a+bu)^{3/2} + C$$

55.
$$\int \frac{u \, du}{\sqrt{a + bu}} = \frac{2}{3b^2} (bu - 2a) \sqrt{a + bu} + C$$

56.
$$\int \frac{u^2 du}{\sqrt{a + bu}} = \frac{2}{15b^3} (8a^2 + 3b^2u^2 - 4abu) \sqrt{a + bu} + C$$

57.
$$\int \frac{du}{u\sqrt{a+bu}} = \frac{1}{\sqrt{a}} \ln \left| \frac{\sqrt{a+bu} - \sqrt{a}}{\sqrt{a+bu} + \sqrt{a}} \right| + C, \text{ si } a > 0$$

$$= \frac{2}{\sqrt{-a}} \tan^{-1} \sqrt{\frac{a+bu}{-a}} + C, \text{ si } a < 0$$

58.
$$\int \frac{\sqrt{a+bu}}{u} du = 2\sqrt{a+bu} + a \int \frac{du}{u\sqrt{a+bu}}$$

$$59. \int \frac{\sqrt{a+bu}}{u^2} du = -\frac{\sqrt{a+bu}}{u} + \frac{b}{2} \int \frac{du}{u\sqrt{a+bu}}$$

60.
$$\int u^2 \sqrt{a + bu} \, du = \frac{2u^n (a + bu)^{3/2}}{b(2n+3)}$$
$$-\frac{2na}{b(2n+3)} \int u^{n-1} \sqrt{a + bu} \, du$$

61.
$$\int \frac{u^n du}{\sqrt{a + bu}} = \frac{2u^n \sqrt{a + bu}}{b(2n + 1)} - \frac{2na}{b(2n + 1)} \int \frac{u^{n-1} du}{\sqrt{a + bu}}$$

62.
$$\int \frac{du}{u^n \sqrt{a + bu}} = -\frac{\sqrt{a + bu}}{a(n-1)u^{n-1}} - \frac{b(2n-3)}{2a(n-1)} \int \frac{du}{u^{n-1} \sqrt{a + bu}}$$

Formas trigonométricas

63.
$$\int \sin^2 u \, du = \frac{1}{2}u - \frac{1}{4}\sin 2u + C$$

64.
$$\int \cos^2 u \, du = \frac{1}{2}u + \frac{1}{4} \sin 2u + C$$

$$\mathbf{65.} \quad \int \tan^2 u \ du = \tan u - u + C$$

$$\mathbf{66.} \quad \int \cot^2 u \ du = -\cot u - u + C$$

67.
$$\int \sin^3 u \, du = -\frac{1}{3}(2 + \sin^2 u)\cos u + C$$

68.
$$\int \cos^3 u \, du = \frac{1}{3} (2 + \cos^2 u) \sin u + C$$

69.
$$\int \tan^3 u \ du = \frac{1}{2} \tan^2 u + \ln|\cos u| + C$$

70.
$$\int \cot^2 u \, du = -\frac{1}{2} \cot^2 u - \ln|\sin u| + C$$

71.
$$\int \sec^3 u \, du = \frac{1}{2} \sec u \tan u + \frac{1}{2} \ln|\sec u + \tan u| + C$$

72.
$$\int \csc^3 u \, du = -\frac{1}{2} \csc u \cot u + \frac{1}{2} \ln|\csc u - \cot u| + C$$

73.
$$\int \sin^n u \, du = -\frac{1}{n} \sin^{n-1} u \, \cos u + \frac{n-1}{n} \int \sin^{n-2} u \, du$$

74.
$$\int \cos^n u \, du = \frac{1}{n} \cos^{n-1} u \, \sin u + \frac{n-1}{n} \int \cos^{n-2} u \, du$$

75.
$$\int \tan^n u \ du = \frac{1}{n-1} \tan^{n-1} u - \int \tan^{n-2} u \ du$$

76.
$$\int \cot^n u \, du = \frac{-1}{n-1} \cot^{n-1} u - \int \cot^{n-2} u \, du$$

77.
$$\int \sec^n u \, du = \frac{1}{n-1} \tan u \, \sec^{n-2} u + \frac{n-2}{n-1} \int \sec^{n-2} u \, du$$

78.
$$\int \csc^n u \, du = \frac{-1}{n-1} \cot u \, \csc^{n-2} u + \frac{n-2}{n-1} \int \csc^{n-2} u \, du$$

79.
$$\int \operatorname{sen} au \operatorname{sen} bu \, du = \frac{\operatorname{sen} (a - b)u}{2(a - b)} - \frac{\operatorname{sen} (a + b)u}{2(a + b)} + C$$

80.
$$\int \cos au \cos bu \, du = \frac{\sin(a-b)u}{2(a-b)} + \frac{\sin(a+b)u}{2(a+b)} + C$$

81.
$$\int \operatorname{sen} au \cos bu \, du = -\frac{\cos(a-b)u}{2(a-b)} - \frac{\cos(a+b)u}{2(a+b)} + C$$

82.
$$\int u \sin u \, du = \sin u - u \cos u + C$$

83.
$$\int u \cos u \, du = \cos u + u \sin u + C$$

84.
$$\int u^n \sin u \, du = -u^n \cos u + n \int u^{n-1} \cos u \, du$$

85.
$$\int u^n \cos u \, du = u^n \operatorname{sen} u - n \int u^{n-1} \operatorname{sen} u \, du$$

86.
$$\int \sin^n u \, \cos^m u \, du = -\frac{\sin^{n-1} u \, \cos^{m+1} u}{n+m} + \frac{n-1}{n+m} \int \sin^{n-1} u \, \cos^m u \, du$$
$$= \frac{\sin^{n+1} u \, \cos^{m-1} u}{n+m} + \frac{m-1}{n+m} \int \sin^n u \, \cos^{m-2} u \, du$$

87.
$$\int \frac{du}{1-\sin au} = \frac{1}{a} \tan\left(\frac{\pi}{4} + \frac{au}{2}\right) + C$$

88.
$$\int \frac{du}{1 + \sin au} = -\frac{1}{a} \tan \left(\frac{\pi}{4} - \frac{au}{2} \right) + C$$

89.
$$\int \frac{udu}{1 - \operatorname{sen} au} = \frac{u}{a} \tan\left(\frac{\pi}{4} + \frac{au}{2}\right) + \frac{2}{a^2} \ln\left|\operatorname{sen}\left(\frac{\pi}{4} - \frac{au}{2}\right)\right| + C$$

Formas trigonométricas inversas

90.
$$\int \operatorname{sen}^{-1} u \, du = u \, \operatorname{sen}^{-1} u + \sqrt{1 - u^2} + C$$

91.
$$\int \cos^{-1} u \ du = u \cos^{-1} u - \sqrt{1 - u^2} + C$$

92.
$$\int \tan^{-1} u \, du = u \tan^{-1} u - \frac{1}{2} \ln(1 + u^2) + C$$

93.
$$\int u \operatorname{sen}^{-1} u \, du = \frac{2u^2 - 1}{4} \operatorname{sen}^{-1} u + \frac{u\sqrt{1 - u^2}}{4} + C$$

94.
$$\int u \cos^{-1} u \, du = \frac{2u^2 - 1}{4} \cos^{-1} u - \frac{u\sqrt{1 - u^2}}{4} + C$$

95.
$$\int u \tan^{-1} u \, du = \frac{u^2 + 1}{2} \tan^{-1} u - \frac{u}{2} + C$$

96.
$$\int u^n \operatorname{sen}^{-1} u \, du = \frac{1}{n+1} \left[u^{n+1} \operatorname{sen}^{-1} u - \int \frac{u^{n+1} \, du}{\sqrt{1-u^2}} \right], \quad n \neq -1$$

97.
$$\int u^n \cos^{-1} u \, du = \frac{1}{n+1} \left[u^{n+1} \cos^{-1} u + \int \frac{u^{n+1} \, du}{\sqrt{1-u^2}} \right], \quad n \neq -1$$

98.
$$\int u^n \tan^{-1} u \, du = \frac{1}{n+1} \left[u^{n+1} \tan^{-1} u - \int \frac{u^{n+1} \, du}{1+u^2} \right], \quad n \neq -1$$

Formas exponenciales y logarítmicas

99.
$$\int ue^{au} du = \frac{1}{a^2} (au - 1)e^{au} + C$$

100.
$$\int u^n e^{au} \, du = \frac{1}{a} u^n e^{au} - \frac{n}{a} \int u^{n-1} e^{au} \, du$$

101.
$$\int e^{au} \operatorname{sen} bu \ du = \frac{e^{au}}{a^2 + b^2} (a \operatorname{sen} bu - b \cos bu) + C$$

102.
$$\int e^{au} \cos bu \, du = \frac{e^{au}}{a^2 + b^2} (a \cos bu + b \sin bu) + C$$

103.
$$\int \ln u \, du = u \ln u - u + C$$

104.
$$\int \frac{1}{u \ln u} du = \ln |\ln u| + C$$

105.
$$\int u^n \ln u \, du = \frac{u^{n+1}}{(n+1)^2} [(n+1) \ln u - 1] + C$$

106.
$$\int u^m \ln^n u \, du = \frac{u^{m+1} \ln^n u}{m+1}$$
$$-\frac{n}{m+1} \int u^m \ln^{n-1} u \, du, \quad m \neq -1$$

107.
$$\int \ln(u^2 + a^2) \, du = u \ln(u^2 + a^2) - 2u + 2a \tan^{-1}\frac{u}{a} + C$$
 121.
$$\int u \sqrt{2au - u^2} \, du = \frac{2u^2 - au - 3a^2}{6} \sqrt{2au - u^2}$$
108.
$$\int \ln|u^2 - a^2| \, du = u \ln|u^2 - a^2| - 2u + a \ln\left|\frac{u + a}{u - a}\right| + C$$

$$+ \frac{a^3}{2} \cos^{-1}\left(\frac{a - u}{a}\right) + C$$

109.
$$\int \frac{du}{a + be^{u}} = \frac{u}{a} - \frac{1}{a} \ln|a + be^{u}| + C$$

Formas hiperbólicas

$$110. \int \operatorname{senh} u \, du = \cosh u + C$$

$$111. \int \cosh u \, du = \sinh u + C$$

$$112. \int \tanh u \, du = \ln(\cosh u) + C$$

113.
$$\int \coth u \, du = \ln|\mathrm{senh}\, u| + C$$

114.
$$\int \operatorname{sech} u \, du = \tan^{-1}(\operatorname{senh} u) + C$$

$$\mathbf{115.} \quad \int \operatorname{csch} u \, du = \ln |\tanh \frac{1}{2} u| + C$$

$$116. \int \operatorname{sech}^2 u \, du = \tanh u + C$$

$$\mathbf{117.} \quad \int \operatorname{csch}^2 u \, du = -\coth u + C$$

118.
$$\int \operatorname{sech} u \tanh u \, du = -\operatorname{sech} u + C$$

119.
$$\int \operatorname{csch} u \operatorname{coth} u \, du = -\operatorname{csch} u + C$$

Formas que implican $\sqrt{2au-u^2}$

120.
$$\int \sqrt{2au - u^2} \, du = \frac{u - a}{2} \sqrt{2au - u^2} + \frac{a^2}{2} \cos^{-1} \left(\frac{a - u}{a}\right) + C$$

122.
$$\int \frac{\sqrt{2au - u^2}}{u} du = \sqrt{2au - u^2} + a \cos^{-1} \left(\frac{a - u}{a}\right) + C$$

123.
$$\int \frac{\sqrt{2au - u^2}}{u^2} du = -\frac{2\sqrt{2au - u^2}}{u} - \cos^{-1}\left(\frac{a - u}{a}\right) + C$$

124.
$$\int \frac{du}{\sqrt{2au - u^2}} = \cos^{-1}\left(\frac{a - u}{a}\right) + C$$

125.
$$\int \frac{u \ du}{\sqrt{2au - u^2}} = -\sqrt{2au - u^2} + a \cos^{-1}\left(\frac{a - u}{a}\right) + C$$

126.
$$\int \frac{u^2 du}{\sqrt{2au - u^2}} = -\frac{(u + 3a)}{2} \sqrt{2au - u^2} + \frac{3a^2}{2} \cos^{-1} \left(\frac{a - u}{a}\right) + C$$

127.
$$\int \frac{du}{u\sqrt{2ua-u^2}} = -\frac{\sqrt{2au-u^2}}{au} + C$$

Algunas integrales definidas

128.
$$\int_0^{\pi/2} \sin^{2n} x \, dx = \int_0^{\pi/2} \cos^{2n} x \, dx$$
$$= \frac{\pi}{2} \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots 2n}, \ n = 1, 2, 3, \dots$$

129.
$$\int_0^{\pi/2} \sec^{2n+1} x \, dx = \int_0^{\pi/2} \cos^{2n+1} x \, dx$$
$$= \frac{2 \cdot 4 \cdot 6 \cdots 2n}{1 \cdot 3 \cdot 5 \cdots (2n+1)}, \ n = 1, 2, 3, \dots$$