PHYS 4500 Fall 2024 Test 1

You may use the lecture notes, your homework, and the textbooks but no other resources or materials

- 1) The matrix y^5 is defined as $y^5 = i y^0 y^1 y^2 y^3$.

 Calculate y^5 in the chiral representation of the Dirac matrices.
- 2) Show by explicit calculation that the Dirac spinor V(1) satisfies the Dirac equation YMP V(1) = -mc V(1) using the standard representation of the Dirac matrices.
- 3) For the process $a+b \rightarrow 1+2$ we define the Mandelstam variables $s=(p_a+p_b)^2$, $t=(p_a-p_1)^2$, $u=(p_b-p_1)^2$. Show that $s+t+u=m_a^2+m_b^2+m_1^2+m_2^2$.
- 4) The Lagrangian for a scalar field with a quartic interaction is $\mathcal{L} = \frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi \frac{1}{2} m^{2} \varphi^{2} \frac{\gamma}{41} \varphi^{4}$ with γ a constant,

Write the Euler-Lagrange equation, and calculate the conjugate momentum, the stress-energy tensor, and the Hamiltonian density.

S) Given that $a(p) = \int_0^3 x (2p^2)^{-1/2} i \left[\varphi(x) \partial_0 e^{-ip \cdot x} - (\partial_0 \varphi(x)) e^{-ip \cdot x}\right],$ and similarly for a(q), show explicitly that [a(p), a(q)] = 0by using the equal-time commutation relations for φ and π .
You are reminded that $\pi = \partial_0 \varphi$ for the real scalar field.
Hint: use a dummy variable φ (instead of φ) for φ at φ , and note the relation $\int_0^3 x e^{-i(p+q) \cdot x} = (2\pi)^3 y^3 (\vec{p} + \vec{q})$