Angular Kinetics Moment of Inertia

Anthony A. Gatti, PhD
Stanford University
Biomechanical Analysis of Human Movement
Queen's University (KNPE 254)

Text QUEENSBIOMECHANICS220 to 37607 once to join

What is the angular equivalent of displacement?

Position

Angular displacement

Angle

None of the above

Total Results: 0

Text QUEENSBIOMECHANICS220 to 37607 once to join

What is the angular equivalent of displacement?

Position

Angular displacement

Angle

None of the above

What is the angular equivalent of displacement?

Position

Angular displacement

Angle

None of the above

(Angular) Displacement

Linear Displacement

Angular Displacement

™ Text QUEENSBIOMECHANICS220 to 37607 once to join

What is the angular equivalent of acceleration?

RPM

Omega

Angular Acceleration

Circumfrential Acceleration

None of the above

(Angular) Acceleration

Average Acceleration

$$\overline{a} = \frac{\Delta v}{\Delta t} = \frac{v_f - v_i}{\Delta t}$$

Average
Angular Acceleration

$$ar{lpha} = rac{\Delta \omega}{\Delta t} = rac{\omega_f - \omega_i}{\Delta t}$$

What did you notice in the video? What did you wonder about?

Top

What did you notice/wondera bout in the video?

- There's a solid and a hollow cylinder
- Are they the same weight?
- They are on a ramp
 - Why are they on a ramp!?
- It's a race!
 - Who's going to win?

Linear Inertia (mass)

A body's tendency/ability to resist change in motion

$$F = ma$$

F = Force m = mass a = acceleration

Linear Inertia (mass)

A body's tendency/ability to resist change in motion

$$F = ma$$
 $a \propto F$ constant m $\frac{F}{m} = a$ $a \propto \frac{1}{m}$ constant F $a = \frac{F}{m}$

Angular Inertia (Moment of Inertia)

A body's tendency/ability to resist change in angular motion

$$\tau = I\alpha$$

au = Torque I = moment of inertia lpha = angular acceleration

Angular Inertia (Moment of Inertia)

A body's tendency/ability to resist change in angular motion

$$au = I lpha$$
 $lpha \propto au$ constant I $\dfrac{ au}{I} = lpha$ $lpha = \dfrac{ au}{I}$ $lpha \propto \dfrac{1}{I}$ constant au

Moment of Inertia (I) in the real world

Close to axis of rotation

Far from axis of rotation

™ Text QUEENSBIOMECHANICS220 to 37607 once to join

Which will resist rotating most?

Moment of Inertia (I) in the real world

Large mass

Small mass

$$I = mr^2$$

 $I = moment \ of \ inertia$ m = massr = radius

$$I = mr^2$$

$$I = 10 \times 1^2$$

$$I = 10 kg \cdot m^2$$

$$m_1 = 10kg$$

$$r_1 = 1m$$

$$I = mr^{2}$$
 $I = 10 \times 0.5^{2}$
 $I = 10 \times 0.25$
 $m_{1} = 0.5m$
 $m_{1} = 0.5m$

$$I = mr^2$$

Big Moment of Inertia

$$I = mr^{2}$$

$$I = 10 \times 1^{2}$$

$$I = 10 \ kg \cdot m^{2}$$

$$m_{1} = 10 \ kg$$

$$r_{1} = 1 \ m$$

$$I = mr^{2}$$

$$I = 20 \times 1^{2}$$

$$I = 20 kg \cdot m^{2}$$

$$m_{1} = 20 kg$$

$$r_{1} = 1 m$$

$$m_{2} = 1 m$$

$$I = mr^2$$

Big Moment of Inertia

Small Moment of Inertia

$$I = \sum m_i r_i^2$$

```
I = moment \ of \ inertia

m = mass

r = radius
```

$$I = \sum_{i=1}^{r_1} m_i r_i^2$$
 $m_1 = \sum_{i=1}^{r_2} m_i r_i^2$
 $m_2 = m_1$
 $m_1 = m_1 m_2$
 $m_2 = m_1 m_2$
 $m_1 = m_1 m_2$
 $m_2 = m_1 m_2$
 $m_2 = m_1 m_2$

$$I = \sum m_i r_i^2$$

$$I = m_1 r_1^2 + m_2 r_2^2$$

$$I = 10 (1^2) + 10(0.5^2)$$

$$I = 10 + 2.5$$

$$I = 12.5 \text{ kg} \cdot \text{m}^2$$

$$m_1 = m_2 = 10 \, kg$$
 $r_1 = 1 \, m$
 $r_2 = 0.5 \, m$

Small Moment of Inertia

Big Moment of Inertia

$$I = \sum m_i r_i^2$$

 $I = moment \ of \ inertia$ m = massr = radius

$$I = \sum m_i r_i^2$$

$$\frac{\frac{I}{2}}{\frac{I}{2}} = mr_1^2 + mr_2^2$$

$$\frac{\frac{I}{I}}{\frac{I}{2}} = 10 (1^2) + 10(0.5^2)$$

$$\frac{\frac{I}{I}}{\frac{I}{2}} = 10 + 2.5$$
I for one has

m

m

m

$$m=10~kg$$
 $\frac{I}{2}=12.5$ I for one half of the rod $r_1=1~m$ $I=25~kg\cdot m^2$ $r_2=0.5~m$

$$I = \sum m_i r_i^2$$

 $I = moment \ of \ inertia$ m = massr = radius

$$I = \sum m_i r_i^2$$

 $I = moment \ of \ inertia$ m = massr = radius

Object	Drawing	Moment of Inertia
Disk (rotated about center)		½MR²
Ring (rotated about center)		MR ²
Rod or plank (rotated about center)		¹ / ₁₂ ML ²
Rod or plank (rotated about end)		¹ / ₃ ML ²
Sphere		² / ₅ MR ²
Satellite	R	MR ²

Moving I - Parallel Axis Theorem

$$I_{new\ axis} = I_{Center\ of\ gravity} + mr^2$$

Rod or plank (rotated about center)		¹ / ₁₂ ML ²
Rod or plank (rotated about end)		¹ / ₃ ML ²

Moment of Inertia (I) in Sports

https://www.acs.psu.edu/drussell/bats/bat-moi.html

Moment of Inertia (I) in Sports

Figure 2. Schematic of video system used to determine the bat speed.

https://www.acs.psu.edu/drussell/bats/bat-moi.html

Moment of Inertia (I) in Sports

Figure 1. Weight and MOI of the 20 bats

Figure 3. Normalized bat swing speed (6 inches from the tip) as a function of bat mass for bats with constant MOI.

Figure 4. Normalized swing speed as a (6 inches from the tip) function of bat MOI for bats with constant mass.

⊕ When poll is active, respond at pollev.com/queensbiomechanics220

™ Text QUEENSBIOMECHANICS220 to 37607 once to join

Which one will win?

Tie

Why did the ring win!?

Object	Drawing	Moment of Inertia
Disk (rotated about center)		½MR²
Ring (rotated about center)		MR ²

- Solid disk has a smaller I
- Therefore, it has a <u>smaller</u> resistance to change in angular motion.

Simone Biles

Simone Biles

