Discovery of Latent Factors in High-dimensional Data Using Tensor Methods

Furong Huang

University of California, Irvine

Machine Learning Conference 2016 New York City

Machine Learning - Modern Challenges

Big Data

Challenging Tasks

Success of Supervised Learning

Speech recognition

Text processing

- Computation power growth
- Enormous labeled data

Machine Learning - Modern Challenges

Big Data

Challenging Tasks

Real AI requires Unsupervised Learning

Filter bank learning

Feature extraction

Embeddings; Topics

Machine Learning - Modern Challenges

Big Data

Challenging Tasks

Real AI requires Unsupervised Learning

Filter bank learning

Feature extraction

Embeddings; Topics

- Summarize key features in data: Machines vs Humans
- Foundation for successful supervised learning

Unsupervised Learning with Big Data

Information Extraction

• High dimension observation vs Low dimension representation

Unsupervised Learning with Big Data

Information Extraction

• High dimension observation vs Low dimension representation

Unsupervised Learning with Big Data

Information Extraction

Solution for Unsupervised Learning

A Unified Tensor Decomposition Framework

Automated Categorization of Documents

Mixed topics

Now, an examination by The New York Times of police and court records;
along with interviews with crime witnesses, has found that, far from an
aberration, the treatment of the Winston complaint was in keeping with the
way the police on numerous occasions have soft-pedaled allegations of
worngoing by Seminoles forball players. From criminal mischied and motor
which either to domestic violence, arrests have been avoided, investigations
we stalled and halvers have seconder sories occasions have soft-pedaled allegations of
the different way the policy of the control of the city policy, we who though the campuspolice knew of their involvement.

"Thank you for contacting me regarding this runor - Thank in the city policy, we mail. The mivrestity acid Mr. Buts

In a community whose self-image and economic well-being are so tightly bound to the fortunes of the nation's top-ranked college football team, law enforcement officers are finely attuned to a suspect's football connections. Those ties are cited repeatedly in footier reports examined by The Times. What's more, dozens of officers work second jobs directing traffic and providing security at home football removes and many express their devotion to the Seminoles on social media.

; TMAC, the goosily website, also requested the golder report and later asked the school's deputy pelice chaird, Jim L. Russell, if the campus police had interviewed Mt. Winston about the rape report Mt. Russell responded by saying his officers were not fine-stigning the case, omitting any reference to the citypolice, were though the scampar police lawor of their involvement. "Thanky you for contacting me regarding this rumor — I am glad I can dispel that noes! Mr. Russell told TMZ in a nemall. The university said Mr. Russell was unaware of any other police investigation; at the time of the inquiry. Soon after, the Tallabasese police belateful year their files to the news media and to the groscentor, William X. Meggs. By then critical evidence had been lost and Mr. Meggs, whe criticized the police's handling of the case, declined to loss on after the Seminoles' first games five.

Sports

Crime

Topics

Education

On Jan. 10, 2013, a female student at Florida State spotted the man she believed had raped her the previous month. After learning his name, Jameis Winston, she reported him to the Tallahassee police.

In the 21 months since, Florida State officials have said little about how

Most recently, university officials suspended Mr. Winton for one game after he stood in a public place on campus and, playing off a running Internet gag, abouted a crude reference to a sex at. In a new conference afterward, his coach, Jimbo Fisher, said, 'Our hope and belief is Jameis will learn from this and use better indument and laneause and decision-makine."

they handled the case, which is no

As The Times reported last April, the Tallahassee police also failed to investigated by the federal Depart aggressively investigate the rape accusation. It did not become public until Mr. Winston for one game

November, when a Tampa reporter, Matt Baker, acting on a tip, sought records of the colice investigation.

Upon learning of Mr. Baker's inquiry, Florida State, having shown little curiosity about the rape accusation, suddenly took a keen interest in the journalist seeking to report it, according to emails obtained by The Times.

"Can you share any details on the requesting source?" David Perry, the university's police chief, asked the Tallahassee police. Several hours later, Mr.

Community Extraction From Connectivity Graph

Mixed memberships

Tensor Methods Compared with Variational Inference

PubMed on Spark: 8 million docs

Tensor Methods Compared with Variational Inference

PubMed on Spark: 8 million docs

Tensor Methods Compared with Variational Inference

[&]quot;Online Tensor Methods for Learning Latent Variable Models", F. Huang, U. Niranjan, M. Hakeem, A. Anandkumar, JMLR14. "Tensor Methods on Apache Spark", by F. Huang, A. Anandkumar, Oct. 2015.

Tensor Methods on Apache Spark", by F. Huang, A. Anandkumar, Oct. 201

Cataloging Neuronal Cell Types In the Brain

Cataloging Neuronal Cell Types In the Brain

Our method vs Average expression level [Grange 14']

Recovered known cell types

- 1 astrocytes
- 2 interneurons
- 3 oligodendrocytes

[&]quot; Discovering Neuronal Cell Types and Their Gene Expression Profiles Using a Spatial Point Process Mixture Model " by F. Huang, A. Anandkumar, C. Borgs, J. Chayes, E. Fraenkel, M. Hawrylycz, E. Lein, A. Ingrosso, S. Turaga, NIPS 2015 BigNeuro workshon.

Word Sequence Embedding Extraction

Word Sequence Embedding Extraction

Paraphrase Detection

• MSR paraphrase data: 5800 pairs of sentences

Method	Outside Information	F score
Vector Similarity (Baseline)	word similarity	75.3%
Convolutional Tensor (Proposed)	none	80.7%
Skip-thought (NIPS'15)	train on large corpus	81.9%

[&]quot;Convolutional Dictionary Learning through Tensor Factorization", by F. Huang, A. Anandkumar, conference and workshop proceeding of JMLR, vol.44, Dec 2015.

Human Disease Hierarchy Discovery

CMS: 1.6 million patients, 168 million diagnostic events, 11 k diseases.

[&]quot; Scalable Latent TreeModel and its Application to Health Analytics" by F. Huang, N. U.Niranjan, I. Perros, R. Chen, J. Sun, A. Anandkumar, NIPS 2015 MLHC workshop.

Inference

- MCMC: random sampling, slow
 - ► Exponential mixing time

- MCMC: random sampling, slow
 - Exponential mixing time
- Likelihood: non-convex, not scalable
 - Exponential critical points

- MCMC: random sampling, slow
 - Exponential mixing time
- Likelihood: non-convex, not scalable
 - Exponential critical points

Solution

A unified tensor decomposition framework

tensor decomposition \rightarrow correct model

tensor decomposition \rightarrow correct model

Contributions

- Guaranteed online algorithm with global convergence guarantee
- Highly scalable, highly parallel, random projection
- Tensor library on CPU/GPU/Spark
- Interdisciplinary applications
- Extension to model with group invariance

What is a tensor?

Matrix: Second Order Moments

- M_2 : pair-wise relationship.
- $[x \otimes x]_{i_1,i_2} = x_{i_1}x_{i_2} \to [M_2]_{i_1,i_2}$

Tensor: Third Order Moments

- M_3 : triple-wise relationship.
- $\bullet \ [x \otimes x \otimes x]_{i_1, i_2, i_3} = x_{i_1} x_{i_2} x_{i_3} \to [M_3]_{i_1, i_2, i_3}$

Matrix Orthogonal Decomposition

Not unique without eigenvalue gap

$$\left[egin{array}{cc} 1 & 0 \ 0 & 1 \end{array}
ight] = e_1 e_1^ op + e_2 e_2^ op = u_1 u_1^ op + u_2 u_2^ op \end{array}$$

Matrix Orthogonal Decomposition

Not unique without eigenvalue gap

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right] = e_1 e_1^\mathsf{T} + e_2 e_2^\mathsf{T} = u_1 u_1^\mathsf{T} + u_2 u_2^\mathsf{T}$$

Tensor Orthogonal Decomposition

• Unique: eigenvalue gap not needed

Matrix Orthogonal Decomposition

Not unique without eigenvalue gap

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right] = e_1 e_1^\mathsf{T} + e_2 e_2^\mathsf{T} = u_1 u_1^\mathsf{T} + u_2 u_2^\mathsf{T}$$

Tensor Orthogonal Decomposition

- Unique: eigenvalue gap not needed
- Slice of tensor has eigenvalue gap

Matrix Orthogonal Decomposition

Not unique without eigenvalue gap

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right] = e_1 e_1^\top + e_2 e_2^\top = u_1 u_1^\top + u_2 u_2^\top$$

Tensor Orthogonal Decomposition

- Unique: eigenvalue gap not needed
- Slice of tensor has eigenvalue gap

Outline

Introduction

- 2 LDA and Community Models
 - From Data Aggregates to Model Parameters
 - Guaranteed Online Algorithm
- Conclusion

Outline

Introduction

- 2 LDA and Community Models
 - From Data Aggregates to Model Parameters
 - Guaranteed Online Algorithm

3 Conclusion

Probabilistic Topic Models - LDA

Bag of words

Probabilistic Topic Models - LDA

Bag of words

Probabilistic Topic Models - LDA

Bag of words

• Topic-word matrix $\mathbb{P}[\mathsf{word} = i | \mathsf{topic} = j]$

Mixture Form of Moments

Goal: Linearly independent topic-word table

Mixture Form of Moments

Goal: Linearly independent topic-word table

M_1 : Occurrence of Words

Mixture Form of Moments

Goal: Linearly independent topic-word table

M_1 : Occurrence of Words

No unique decomposition of vectors

Goal: Linearly independent topic-word table

M_2 : Modified Co-occurrence of Word Pairs

Goal: Linearly independent topic-word table

M_2 : Modified Co-occurrence of Word Pairs

Matrix decomposition recovers subspace, not actual model

Goal: Linearly independent topic-word table

M_2 : Modified Co-occurrence of Word Pairs

Many such W's, find one, project data with W

Goal: Linearly independent topic-word table

M_3 : Modified Co-occurrence of Word Triplets

Unique orthogonal tensor decomposition, project result with W^\dagger

Goal: Linearly independent topic-word table

M_3 : Modified Co-occurrence of Word Triplets

Tensor decomposition uniquely discovers the correct model

Learning Topic Models through Matrix/Tensor Decomposition

Mixed Membership Community Models

Mixed memberships

Mixed Membership Community Models

Mixed memberships

What ensures guaranteed learning?

Mixed Membership Community Models

Mixed memberships

What ensures guaranteed learning?

Outline

Introduction

- 2 LDA and Community Models
 - From Data Aggregates to Model Parameters
 - Guaranteed Online Algorithm

3 Conclusion

Model is uniquely identifiable! How to identify?

How to find components? Non-convex optimization problem!

How to find components? Non-convex optimization problem!

Objective Function

Theorem: We propose an objective function with equivalent local optima.

How to find components? Non-convex optimization problem!

Objective Function

Theorem: We propose an objective function with equivalent local optima.

Saddle point: enemy of SGD

Saddle point has 0 gradient

How to find components? Non-convex optimization problem!

Objective Function

Theorem: We propose an objective function with equivalent local optima.

Saddle point: enemy of SGD

- Saddle point has 0 gradient
- Non-degenerate saddle: Hessian has \pm eigenvalue

How to find components?

Non-convex optimization problem!

Objective Function

Theorem: We propose an objective function with equivalent local optima.

Saddle point: enemy of SGD

- Saddle point has 0 gradient
- ullet Non-degenerate saddle: Hessian has \pm eigenvalue
- Negative eigenvalue: direction of escape

How to find components?

Non-convex optimization problem!

Objective Function

Theorem: We propose an objective function with equivalent local optima.

Saddle point: enemy of SGD

- Saddle point has 0 gradient
- ullet Non-degenerate saddle: Hessian has \pm eigenvalue
- Negative eigenvalue: direction of escape

Guaranteed Global Converge Online Tensor Decomposition

Theorem: For smooth fn. with non-degenerate saddle points, noisy SGD converges to a local minimum in polynomial steps.

How to find components?

Non-convex optimization problem!

Objective Function

Theorem: We propose an objective function with equivalent local optima.

Saddle point: enemy of SGD

- Saddle point has 0 gradient
- Non-degenerate saddle: Hessian has \pm eigenvalue
- Negative eigenvalue: direction of escape

Guaranteed Global Converge Online Tensor Decomposition

Theorem: For smooth fn. with non-degenerate saddle points, noisy SGD converges to a local minimum in polynomial steps.

Noise could help!

Outline

Introduction

- 2 LDA and Community Models
 - From Data Aggregates to Model Parameters
 - Guaranteed Online Algorithm

3 Conclusion

Contributions

Spectral methods reveal hidden structure

- Text/Image processing
- Social networks
- Neuroscience, heathcare ...

Contributions

Spectral methods reveal hidden structure

- Text/Image processing
- Social networks
- Neuroscience, heathcare ...

Versatile for latent variable models

- Flat model → hierarchical model
- $\bullet \ \, \mathsf{Sparse} \ \, \mathsf{coding} \, \to \, \mathsf{convolutional} \\ \mathsf{model} \ \, \\$
- Efficient, convergence guarantee

Thank You

Collaborators

Anima Anandkumar UC Irvine

Rong Ge Duke University

Srini Turaga Janelia Research

Chi Jin **UC** Berkeley

MSR

Jennifer Chayes Christian Borgs Ernest Fraenkel **MSR**

MIT

Yang Yuan Cornell U

UN Niranjan UC Irvine