10.4 CYCLIC CODES

10.4.1 Cyclic Redundancy Check

Dataword	Codeword	Dataword	Codeword	Sender Encoder		Receiver Decoder
0000	0000000	1000	1000101	Dataword a ₃ a ₂ a ₁ a ₀		Dataword a ₃ a ₂ a ₁ a ₀
0001	0001011	1001	1001110	000		Accept 1 1 1
0010	0010110	1010	1010011			Syndrome \$2 \$1 \$0
0011	0011101	1011	1011000	1 1 2 1 1 1 1 1 1 1	Divisor	
0100	0100111	1100	1100010	Generator €	d ₃ d ₂ d ₁ d ₀	Checker AAAAA
0101	0101100	1101	1101001	maind		
0110	0110001	1110	1110100	1 1 1 1 1 1 1 1 1 1	Unreliable transmission	
0111	0111010	1111	1111111	a ₃ a ₂ a ₁ a ₆ r ₂ r ₁ r ₆ Codeword		b ₃ b ₂ b ₁ b ₀ q ₂ Codeword

Division in CRC

- 1) Encoder: Dataword 1001 / Divisor 1011
- 2) Decoder: Codeword 1001110 / Codeword 1000110

10.4.2 Hardware Implementation: Divisor, Augmented Dataword, Remainder

a. Encoder

b. Decoder

10.4.3 Polynomials

Degree of a Polynomial: $x^6 + x + 1$

Adding and Subtracting Polynomials: coefficients are only 0 and 1 => modulo-2

Multiplying or Dividing Terms / Shifting

Cyclic Code Encoder Using Polynomials *

$$\textbf{10.4.4 Cyclic Code Analysis} \; \frac{x^g D(x)}{G(x)} = Q(x) \oplus \frac{R(x)}{G(x)} \; C(x) = x^g D(x) \oplus R(x)$$

Single-Bit Error: If the generator has more than one term and the coefficient of x^0 is 1, all single errors can be caught.

Two Isolated Single-Bit Errors: If a generator cannot divide $x^t + 1$ (t between 0 and n - 1), then all isolated double errors can be detected.

Odd Numbers of Errors: A generator that contains a factor of x + 1 can detect all odd-numbered errors.

Burst Errors: \square All burst errors with $L \le r$ will be detected.

- \Box All burst errors with L = r + 1 will be detected with probability 1 $(1/2)^{r-1}$.
- \square All burst errors with L > r + 1 will be detected with probability 1 $(1/2)^r$.

A good polynomial generator needs to have the following characteristics:

- 1) It should have at least two terms.
- 2) The coefficient of the term x^0 should be 1.
- 3) It should not divide $x^t + 1$, for t between 2 and n 1.
- 4) It should have the factor x + 1.

Standard Polynomials

Name	Polynomial	Application
CRC-8	$x^8 + x^2 + x + 1$	ATM header
CRC-10	$x^{10} + x^9 + x^5 + x^4 + x^2 + 1$	ATM AAL
CRC-16	$x^{16} + x^{12} + x^5 + 1$	HDLC
CRC-32	$x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^{8} + x^{7} + x^{5} + x^{4} + x^{2} + x + 1$	LANs

Advantages of Cyclic Codes

Other Cyclic Codes

10.5 CHECKSUM

10.5.1 Idea

$$(7, 11, 12, 0, 6) \Rightarrow (7, 11, 12, 0, 6, 36)$$

$$(7, 11, 12, 0, 6) \Rightarrow (7, 11, 12, 0, 6, -36)$$

10.5.2 One's Complement

10.5.3 Internet Checksum

Sender site:	Receiver site:		
1. The message is divided into 16-bit words.	1. The message (including checksum) is		
2. The value of the checksum word is set to 0.	divided into 16-bit words.		
3. All words including the checksum are	2. All words are added using one's		
added using one's complement addition.	complement addition.		
4. The sum is complemented and becomes the	3. The sum is complemented and becomes the		
checksum.	new checksum.		
5. The checksum is sent with the data.	4. If the value of checksum is 0, the message		
	is accepted; otherwise, it is rejected.		