Основные понятия теории множеств: 6/8

Станислав Олегович Сперанский

Санкт-Петербургский государственный университет

Санкт-Петербург 2019

Ординальные числа

Будем называть X транзитивным, если $\bigcup X \subseteq X$, что равносильно $X \subseteq \mathcal{P}(X)$. Для произвольного X определим

$$\in_{\mathbf{X}} := \{(u, v) \in X \times X \mid u \in v\}.$$

Мы будем говорить, что X является ординалом, или ординальным числом, если X транзитивно и \in_X — строгий полный порядок на X. Для обозначения ординалов используют α , β , γ и их производные. При этом вместо $\alpha \in \beta$ нередко используется запись $\alpha < \beta$.

Замечание: среди ординальных чисел есть все элементы $\mathbb N$ и само $\mathbb N$; когда речь идет об ординалах, вместо $\mathbb N$ часто пишут $\pmb{\omega}$.

Предложение

Пусть lpha — ординал и $X \in lpha$. Тогда X — ординал.

Доказательство.

Проверим транзитивность X: если $u \in v$ и $v \in X$, то $\{u,v\} \subseteq \alpha$ ввиду транзитивности α , а потому $u \in X$, в силу транзитивности \in_{α} . Кроме того, $X \subseteq \alpha$. Поэтому \in_{X} — строгий полный порядок на X.

Таким образом, каждый ординал α равен множеству всех ординалов, которые меньше α . Также стоит отметить следующее.

Предложение

Пусть α — ординал и $\beta \in \alpha$. Тогда $\beta = [0, \beta)$.

Альтернативное определение < на классе всех ординалов даёт:

Предложение

Для любых ординалов α и β ,

$$\alpha \in \beta \iff \alpha \subsetneq \beta.$$

Доказательство.

⇒ Очевидно.

 \longleftarrow Предположим, что $\alpha \subsetneq \beta$. Возьмём

 γ := наименьший элемент для $\beta \setminus \alpha$ в $\langle \beta, \in_{\beta} \rangle$.

Нетрудно понять, что lpha совпадает с $\{x \in \beta \mid x < \gamma\}$, т.е. $lpha = \gamma$.

Далее, используя эти результаты, можно доказать, что < ведёт себя подобно строгому полному порядку на классе всех ординалов:

Теорема

Для любых ординалов lpha, eta и γ верно следующее:

- i. $\alpha \not< \alpha$;
- ії. если $\alpha < \beta$ и $\beta < \gamma$, то $\alpha < \gamma$;
- ііі. либо $\alpha = \beta$, либо $\alpha < \beta$, либо $\beta < \alpha$;
- iv. для всякого непустого множества ординалов X верно $\bigcap X \in X$, причём $\bigcap X$ является наименьшим в $\langle X, \in_X \rangle$.

Доказательство.

- [i.] Допустим, что $lpha \in lpha$. Тогда $lpha \in_lpha lpha$ противоречие.
- ii. Немедленно следует из транзитивности γ .
- [iv.] Легко видеть, что $\bigcap X$ будет ординалом. При этом для любого $\alpha \in X$ верно $\bigcap X \subseteq \alpha$, т.е. $\bigcap X \leqslant \alpha$. Если $\bigcap X \not\in X$, то $\bigcap X < \alpha$ для всех $\alpha \in X$, откуда $\bigcap X \in \bigcap X$ противоречие.
- [iii] В силу (iv), в $\{\alpha,\beta\}$ есть наименьший элемент, а потому α и β должны быть сравнимы по \leqslant .

Следствие

Пусть X — транзитивное множество ординалов. Тогда X — ординал.

Доказательство.

В сиду теоремы выше, \in_X будет строгим полным порядком на X. $\ \square$

Пусть X — множество ординалов. Очевидно, транзитивность X равносильна тому, что для любых ординалов α и β ,

$$\alpha < \beta$$
 $\alpha \in X \implies \alpha \in X$

а потому мы можем воспринимать транзитивное X как «начальный сегмент» в классе всех ординалов относительно <.

Теорема

Пусть X — множество ординалов. Тогда $\bigcup X$ — ординал, причём $\bigcup X$ является «супремумом X» в классе всех ординалов относительно \in .

Доказательство.

Легко проверить, что $\bigcup X$ транзитивно. Далее, $\bigcup X$ — это множество ординалов, а потому \in задаёт на нём строгий полный порядок, ввиду предыдущей теоремы. Значит, $\bigcup X$ является ординалом.

Наконец, заметим, что $\bigcup X$ является «супремумом X» в классе всех множеств относительно \subsetneq , тем более в классе всех ординалов, а \subsetneq и \in совпадают на ординалах.

Стоит отметить, что для каждого ординала α множество

$$\alpha + 1 := \alpha \cup \{\alpha\}$$

является ординалом; при этом $\alpha \subsetneq \alpha+1$ и не существует X такого, что $\alpha \subsetneq X \subsetneq \alpha+1$. Ненулевой ординал α называется непредельным, если $\alpha=\beta+1$ для некоторого ординала β , и предельным в противном случае. Как легко видеть, для любых ординалов α и β ,

$$\alpha = \beta \iff \alpha + 1 = \beta + 1.$$

Значит, у всякого непредельного ординала α имеется единственный «предшественник», которого можно обозначить через $\alpha - 1$.

В дальнейшем мы будем считать, что 0 также является предельным. Нетрудно проверить, что для любого ординала α ,

$$igcup lpha \ = \ egin{cases} lpha - 1 & ext{если } lpha \ & ext{если } lpha \end{cases}$$
 предельный.

При этом ω оказывается наим. ненулевым предельным ординалом, а натуральные числа суть в точности ординалы, которые меньше ω .

Используя «классовую рекурсию», можно добраться и до некоторых больших ординалов. К примеру:

$$\omega \qquad \omega + 1 \qquad \omega + 1 + 1 \qquad \dots \qquad \omega + \omega,$$

где $\omega + \omega$ обозначает $\bigcup \{\omega, \omega + 1, \omega + 1 + 1, \dots\}$.

$$\omega+\omega$$
 $\omega+\omega+\omega$ $\omega+\omega+\omega+\omega$... $\omega\cdot\omega$ эх раз да ещё раз да ещё много раз

$\omega \cdot \omega$	 да ещё много раз	$\omega + \omega + \omega + \omega$ да ещё раз	$\omega + \omega + \omega$ раз	$\omega + \omega$ эх
ω^{ω}		$\omega \cdot \omega \cdot \omega \cdot \omega$	$\omega \cdot \omega \cdot \omega$	$\omega \cdot \omega$
	да ещё много раз	да ещё раз	раз	ЭХ

$\omega + \omega$ эх	$\omega + \omega + \omega$ раз	$\omega + \omega + \omega + \omega$ да ещё раз	 да ещё много раз	$\omega \cdot \omega$
$\omega \cdot \omega$	$\omega \cdot \omega \cdot \omega$	$\omega \cdot \omega \cdot \omega \cdot \omega$		ω^{ω}
эх	раз	да ещё раз	да ещё много раз	

 $\omega^\omega \quad \omega^{\omega^\omega} \qquad \omega^{\omega^\omega} \qquad \qquad \ldots \qquad \varepsilon_0$ эх раз да ещё раз да ещё много раз

Ординалы как типы в.у.м.

Ясно, что для любых ординалов α и β ,

$$\langle \alpha, \in_{\alpha} \rangle \simeq \langle \beta, \in_{\beta} \rangle \iff \alpha = \beta.$$

Более того, имеет место:

Теорема (о связи ординалов и в.у.м.)

Пусть $\mathfrak A-$ в.у.м. Тогда существует и единственный ординал α такой, что $\mathfrak A$ изоморфно $\langle \alpha, \in_{\alpha} \rangle$.

Доказательство.

Единственность мы уже отметили.

Доказательство (продолжение).

Докажем существование подходящего lpha. Для этого рассмотрим

Разумеется, для каждого $a \in S$ соответствующий ординал α_a определяется однозначно. Поэтому, применив Repl, можно взять

$$X := \{\alpha_a \mid a \in S\}.$$

Как известно, изоморфизмы в.у.м. переводят начальные сегменты в начальные сегменты. Стало быть, S окажется начальным сегментом \mathfrak{A} , а X — «начальным сегментом» в классе всех ординалов (относительно <). Следовательно, X — ординал.

Доказательство (окончание).

Теперь определим $f: S \to X$ по правилу

$$f(a) := \alpha_a.$$

Нетрудно видеть, что f окажется изоморфизмом. Предположим, что $A\setminus S\neq\varnothing$, а значит, S=[0,a), где a— наименьший элемент в $A\setminus S$. Но тогда $a\in S$ — противоречие. Стало быть, S=A.

Сложение и умножение ординалов

Если $\mathfrak A$ — в.у.м., то ord $(\mathfrak A)$ будет обозначать ординал α такой, что $\mathfrak A$ изоморфно $\langle \alpha, \in_{\alpha} \rangle$. Для любых ординалов α и β определим

$$\begin{array}{ll} \alpha + \beta &:= \operatorname{ord} (\langle \alpha, \in_{\alpha} \rangle \oplus \langle \beta, \in_{\beta} \rangle), & \operatorname{Error!} \\ \alpha \cdot \beta &:= \operatorname{ord} (\langle \alpha, \in_{\alpha} \rangle \otimes \langle \beta, \in_{\beta} \rangle). & \checkmark \end{array}$$

Очевидно, при данной интерпретации $\alpha+1$ совпадает с $\alpha\cup\{\alpha\}$, т.е. расхождения с введённым ранее обозначением не возникает.

Замечание: на самом деле, класс-операции сложения и умножения на ординалах обычно определяют, используя подходящее обобщение теоремы о рекурсии, однако в результате получится то же самое.

Одно полезное наблюдение

Отметим, что класс всех ординалов

$$\mathsf{Ord} \; := \; \{ \alpha \mid \alpha - \mathsf{opдинan} \}$$

не является множеством. Действительно, в противном случае Ord оказался бы ординалом, и мы получили бы $Ord \in Ord$.