Homework 3

Problem 1 (13.4.1). Determine the splitting field and its degree over \mathbb{Q} for $x^4 - 2$.

Proof. If α is a root of this polynomial then $(\zeta \alpha)^4 = 2$ where ζ is fourth root of unity so the four solutions are $\zeta^n \sqrt[4]{2}$ where $1 \leq n \leq 4$. Note that the splitting field for this polynomial must then contain $\mathbb{Q}(\zeta, \sqrt[4]{2})$ and this extension also contains all the roots, so the splitting field must be $\mathbb{Q}(\zeta, \sqrt[4]{2})$. This field contains the extension $\mathbb{Q}(\zeta)$ and is generated over it by $\sqrt[4]{2}$ so we must have $[\mathbb{Q}(\zeta, \sqrt[4]{2}), \mathbb{Q}] = 4\phi(4) = 8$.

Problem 2 (13.4.2). Determine the splitting field and its degree over \mathbb{Q} for $x^4 + 2$.

Proof. This follows the exact same argument as Problem 1 but with $\sqrt[4]{-2}$ in place of $\sqrt[4]{2}$. We then have the splitting field $\mathbb{Q}(\zeta, \sqrt[4]{-2})$ with extension degree 8.

Problem 3 (13.4.6). Let K_1 and K_2 be finite extensions of F contained in the field K, and assume both are splitting fields over F.

- (a) Prove that their composite K_1K_2 is a splitting field over F.
- (b) Prove that $K_1 \cap K_2$ is a splitting field over F.

Proof. (a) Let f(x) and g(x) be the polynomials for which K_1 and K_2 are respectively splitting fields. Note that f(x)g(x) splits completely in K_1K_2 and this is the smallest field extension containing both K_1 and K_2 . Since K_1 and K_2 are the smallest fields for which f(x) and g(x) split completely it follows that K_1K_2 must be the splitting field for f(x)g(x).

(b) Let f(x) be an irreducible polynomial in F[x] with a root in $K_1 \cap K_2$. Then f(x) has a root in K_1 and a root in K_2 so it splits completely in these two fields since they are splitting fields. But then the factors f(x) splits into are contained in both K_1 and K_2 so f(x) splits completely in $K_1 \cap K_2$ as well. Thus $K_1 \cap K_2$ is a splitting field for F.

Problem 4 (13.5.2). Find all irreducible polynomials of degrees 1, 2 and 4 over \mathbb{F}_2 and prove that their product is $x^{16} - x$.

Proof. Degrees 1 and 2 are easily taken care of. The polynomials x and x+1 are irreducible of degree 1 and the only such. The polynomial $x^2 + x + 1$ is the only irreducible polynomial of degree 2 as $x^2 + x = x(x+1)$, $x^2 = xx$ and $x^2 + 1 = (x+1)^2$.

There are 16 polynomials of degree 4 in $\mathbb{F}_2[x]$. If the constant term is 0 then we can factor x out so this reduces the number to 8. We now have

$$x^{4} + x^{3} + x^{2} + 1 = (x+1)(x^{3} + x + 1)$$

$$x^{4} + x^{3} + x + 1 = (x+1)^{2}(x^{2} + x + 1)$$

$$x^{4} + x^{2} + x + 1 = (x+1)(x^{3} + x^{2} + 1)$$

$$x^{4} + x^{2} + 1 = (x^{2} + x + 1)^{2}$$

$$x^{4} + 1 = (x+1)^{4}$$

We are left with the three polynomials $x^4 + x + 1$, $x^4 + x^3 + 1$ and $x^4 + x^3 + x^2 + x + 1$. Putting in 0 and 1 immediately shows that none of these polynomials has a linear factor. Consider the product of the two quadratics $(x^2 + ax + 1)(x^2 + bx + 1)$. But now note that the cases where a = b = 1, a = 0, b = 1 and a = b = 0 are all covered in the factorizations above. Thus these three polynomials are irreducible. Taking the product of these three polynomials as well as $x^2 + x + 1$, x - 1 and x gives $x^{16} - x$.

Problem 5 (13.5.3). Prove that d divides n if and only if $x^d - 1$ divides $x^n - 1$.

Proof. Suppose $d \mid n$ and let d' = n/d. Then $(x^d - 1)(1 + x^d + x^{2d} + \dots + x^{(d'-1)d}) = x^{dd'} - 1 = x^n - 1$. Conversely suppose $x^d - 1 \mid x^n - 1$ so that $x^n - 1 = (x^d - 1)f(x)$. Write n = qd + r so that $(x^d - 1)f(x) = x^n - 1 = (x^{qd+r} - x^r) + (x^r - 1) = x^r(x^{qd} - 1) + (x^r - 1)$. Since $x^d - 1$ divides the left hand of this equation and divides $x^{qd-1} - 1$ (since $d \mid qd$) we see that it must also divide $x^r - 1$. But r < d so r = 0 and n = qd. \square

Homework 3

Problem 6 (13.5.5). For any prime p and any nonzero $a \in \mathbb{F}_p$ prove that $x^p - x + a$ is irreducible and separable over \mathbb{F}_p .

Proof. Suppose $x^p - x + a = (x^n + \dots + b)(x^m + \dots + c)$ with n and m nonzero. Using the product rule for derivatives, the derivative of the right side is $(nx^{n-1} + \dots + b')(x^m + \dots + c) + (mx^{m-1} + \dots + c')(x^n + \dots + b)$. Since m and n are both positive and nonzero we see that this polynomial must have degree x^{m+n-1} , but the derivative of the left hand side is -1. This is a contradiction and so $x^p - x + a$ must be irreducible. Since irreducible polynomials in a finite field are separable we must have $x^p - x + a$ is also separable.

Problem 7 (13.5.6). Prove that $x^{p^n-1} - 1 = \prod_{\alpha \in \mathbb{F}_{p^n}^{\times}} (x - \alpha)$. Conclude that $\prod_{\alpha \in \mathbb{F}_{p^n}^{\times}} \alpha = (-1)^{p^n}$ so the product of the nonzero elements of a finite field is +1 if p = 2 and -1 if p is odd. For p odd and n = 1 derive Wilson's Theorem: $(p-1)! \equiv -1 \pmod{p}$.

Proof. Note that if $\alpha \in \mathbb{F}_{p^n}^{\times}$ then $\alpha^{p^n-1} = 1$. Consider the polynomial $f(x) = (x^{p^n-1}-1) - \prod_{\alpha \in \mathbb{F}_{p^n}^{\times}} (x-\alpha)$. This has p^n-1 roots, but degree less than p^n-1 , thus it must be identically 0. If we set x=0 in the above formula then we have $-1 = \prod_{\alpha \in \mathbb{F}_{p^n}^{\times}} (-\alpha) = (-1)^{p^n-1} \prod_{\alpha \in \mathbb{F}_{p^n}^{\times}} \alpha$ so $\prod_{\alpha \in \mathbb{F}_{p^n}^{\times}} \alpha = -(-1)^{-p^n+1} = -((-1)^{p^n-1})^{-1} = (-1)^{p^n}$. When n=1 we have $\prod_{\alpha \in \mathbb{F}_p^{\times}} \alpha = (-1)^p$. Reducing this equation modulo p we get $(p-1)! \equiv -1 \pmod p$. Note that the right hand side is clearly -1 for p odd, and is easily verified for p=2 since $1 \equiv -1 \pmod 2$.

Problem 8 (13.6.2). Let ζ_n be a primitive n^{th} root of unity and let d be a divisor of n. Prove that ζ_n^d is a primitive $(n/d)^{\text{th}}$ root of unity.

Proof. Let m be the order of ζ_n^d so that $(\zeta_n^d)^m = \zeta_n^{md} = 1$. Since ζ_n is an n^{th} root of unity we see that $n \mid md$ and since m is minimal we must have m = n/d. Therefore ζ_n^d is a primitive $(n/d)^{\text{th}}$ root of unity. \square

Problem 9 (13.6.7). Use the Möbius Inversion formula indicated in Section 14.3 to prove

$$\Phi_m(x) = \prod_{d|m} (x^d - 1)^{\mu(m/d)}.$$

Proof. We know $x^m - 1 = \prod_{d|m} \Phi_d(x)$. The Möbius inversion formula tells us that we can recover $\Phi_m(x)$ as $\Phi_m(x) = \prod_{d|m} (x^{m/d} - 1)^{\mu(d)}$. Changing the index to d' = m/d gives us the desired result.

Problem 10 (13.6.8). Let ℓ be a prime and let $\Phi_{\ell}(x) = \frac{x^{\ell}-1}{x-1} = x^{\ell-1} + x^{\ell-2} + \cdots + x + 1 \in \mathbb{Z}[x]$ be the ℓ^{th} cyclotomic polynomial, which is irreducible over \mathbb{Z} by Theorem 41. This exercise determines the factorization of $\Phi_{\ell}(x)$ modulo p for any prime p. Let ζ denote any fixed primitive ℓ^{th} root of unity.

- (a) Show that if $p = \ell$ then $\Phi_{\ell}(x) = (x-1)^{\ell-1} \in \mathbb{F}_{\ell}[x]$.
- (b) Suppose $p \neq \ell$ and let f denote the order of $p \mod \ell$, i.e., f is the smallest power of p with $p^f \equiv 1 \pmod{\ell}$. Use the fact that $\mathbb{F}_{p^n}^{\times}$ is a cyclic group to show that n = f is the smallest power p^n of p with $\zeta \in \mathbb{F}_{p^n}$. Conclude that the minimal polynomial of ζ over \mathbb{F}_p has degree f.
- (c) Show that $\mathbb{F}_p(\zeta) = \mathbb{F}_p(\zeta^a)$ for any integer a not divisible by ℓ . Conclude using (b) that, in $\mathbb{F}_p[x]$, $\Phi_{\ell}(x)$ is the product of $\frac{\ell-1}{f}$ distinct irreducible polynomials of degree f.
- (d) In particular, prove that, viewed in $\mathbb{F}_p[x]$, $\Phi_7(x) = x^6 + x^5 + \cdots + x + 1$ is $(x-1)^6$ for p = 7, a product of distinct linear factors for $p \equiv 1 \pmod{7}$, a product of 3 irreducible quadratics for $p \equiv 6 \pmod{7}$, a product of 2 irreducible cubics for $p \equiv 2, 4 \pmod{7}$, and is irreducible for $p \equiv 3, 5 \pmod{7}$.

Proof. (a) Over \mathbb{F}_{ℓ} we know $x^{\ell} - 1 = (x - 1)^{\ell}$ so $\Phi_{\ell}(x) = (x - 1)^{\ell}/(x - 1) = (x - 1)^{\ell-1}$.

(b) Suppose ζ is an ℓ^{th} root of unity in the extension \mathbb{F}_{p^n} . Then ζ has order ℓ in \mathbb{F}_{p^n} and $\ell \mid p^n - 1$. Thus $p^n \equiv 1 \pmod{\ell}$. On the other hand, suppose $p^n \equiv 1 \pmod{\ell}$ so that $\ell \mid p^n - 1$. Since $\mathbb{F}_{p^n}^{\times}$ is cyclic there exists some element of order ℓ in \mathbb{F}_{p^n} . Thus $\zeta \in \mathbb{F}_{p^n}$ if and only if $p^n \equiv 1 \pmod{\ell}$ which is true if and only

Homework 3

- if $f \mid n$. Thus f is the smallest such integer for which this is true. The smallest extension over \mathbb{F}_p containing ζ then must have degree f so this is the degree of it's minimal polynomial.
- (c) It's clear that $\mathbb{F}_p(\zeta^a) \subseteq \mathbb{F}_p(\zeta)$ since fields are closed under multiplication. Noting that $\zeta = (\zeta^a)^b$ with $ab \equiv 1 \pmod{\ell}$ we see that $\mathbb{F}_p(\zeta) \subseteq \mathbb{F}_p(\zeta^a)$.
- For $(a, \ell) = 1$ we know $\zeta^{\bar{a}}$ encompasses all the primitive roots modulo ℓ so $\mathbb{F}_p(\zeta) = \mathbb{F}_{p^f}$ is the unique extension of \mathbb{F}_p of degree f which contains all primitive roots modulo ℓ . We then know the minimal polynomial for ζ^a is of degree f as well so $\Phi_{\ell}(x) = m_1(x) \dots m_k(x)$ where $k = (\ell 1)/f$ since each $m_i(x)$ has degree f. We know each m_i is distinct because $\Phi_{\ell}(x)$ is separable over \mathbb{F}_p for $p \neq \ell$.
- (d) Part (a) tells us that $\Phi_7(x) = (x-1)^6$ in \mathbb{F}_7 . We can now compute f for the various cases. If $p \equiv 1 \pmod{7}$ then f = 1 so $\Phi_7(x)$ splits into (7-1)/1 = 6 linear factors. If $p \equiv 6 \pmod{7}$ then f = 2 so $\Phi_7(x)$ splits into (7-1)/2 = 3 quadratics. If $p \equiv 2 \pmod{7}$ or $p \equiv 4 \pmod{7}$ then f = 3 so $\Phi_7(x)$ splits into (7-1)/3 = 2 cubics. And if $p \equiv 3 \pmod{7}$ or $p \equiv 5 \pmod{7}$ then f = 6 so $\Phi_7(x)$ is irreducible.

Problem 11 (14.1.4). Prove that $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{3})$ are not isomorphic.

Proof. We know $[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}]=4$ so the Galois group for this extension cannot have order larger than 4. But the automorphisms taking $\sqrt{2}$ to $-\sqrt{2}$ and $\sqrt{3}$ to $-\sqrt{3}$ already enumerate 4 maps. Thus there is no automorphism taking $\sqrt{2}$ to $\sqrt{3}$ so the two fields cannot be isomorphic.

Problem 12 (14.1.6). *Let k be a field*.

- (a) Show that the mapping $\varphi: k[t] \to k[t]$ defined by $\varphi(f(t)) = f(at+b)$ for fixed $a, b \in k$, $a \neq 0$ is an automorphism of k[t] which is the identity on k.
- (b) Conversely, let φ be an automorphism of k[t] which is the identity on k. Prove that there exist $a, b \in k$ with $a \neq 0$ such that $\varphi(f(t)) = f(at + b)$ as in (a).
- Proof. (a) Let $f(t), g(t) \in k[t]$. Then $\varphi(f(t) + g(t)) = f(at + b) + g(at + b) = \varphi(f(t)) + \varphi(g(t))$ and $\varphi(f(t)g(t)) = f(at + b)g(at + b) = \varphi(f(t))\varphi(g(t))$ so φ is a homomorphism. Note that φ clearly fixes k because if f(t) is a constant function then f(at + b) is the same constant function.

Now suppose $p(t) = c_n t^n + \dots + c_0$ and $q(t) = d_m t^m + \dots + d_0$ distinct elements of k[t]. If p(x) and q(x) have different degrees then their images are clearly distinct. Otherwise let i be the largest index such that $c_i \neq d_i$. Then $\varphi(p(t))$ has the term $c_i(at+b)^i$ while $\varphi(q(t))$ has the term $d_i(at+b)^i$. Since the polynomials are identical for indices greater than i there is no cancellation of the terms $c_i a t^i \neq d_i a t^i$. Thus $\varphi(p(t)) \neq \varphi(q(t))$ and φ is injective.

Finally consider the polynomial $c'_n(at+b)^n + \cdots + c'_0$. If we expand this out and compare degrees with p(t) we can recursively solve for the c'_i in terms of the c_i . That is, first solve for c'_n in terms of c_n , a and b, then solve for c'_{n-1} in terms of c_n , c_{n-1} , a and b. Continue in this way until we can rewrite $c'_n(at+b)^n + \cdots + c_0$ in terms of c_i , a and b. But then applying φ to this polynomial will give back p(t) so φ is surjective as well.

(b) Now suppose φ is an automorphism of k[t] fixing k. Let $f(t) = c_n t^n + \cdots + c_0$ be any element of k[t]. Note that $\varphi(f(t)) = \varphi(c_n t^n) + \cdots + \varphi(c_0) = c_n \varphi(t^n) + \cdots + c_0$ since φ is a homomorphism fixing k. Thus φ is completely determined by which polynomial it sends t to. Note that $\deg \varphi(t) \leq 1$ since, for example, we cannot have $\varphi(t) = t^2 = \varphi(t)\varphi(t)$ so that $t^2 = 1$. On the other hand $\varphi(t) \neq c$ some constant because then φ is clearly not surjective onto k[t]. Thus $\varphi(t) = at + b$ with $a \neq 0$ so that $\varphi(f(t)) = f(at + b)$ for some $a, b \in k$.

Problem 13 (14.1.10). Let K be an extension of the field F. Let $\varphi: K \to K'$ be an isomorphism of K with a field K' which maps F to the subfield F' of K'. Prove that the map $\sigma \mapsto \varphi \sigma \varphi^{-1}$ defines a group isomorphism $\operatorname{Aut}(K/F) \to \operatorname{Aut}(K'/F')$.

Proof. Let $\sigma \in \operatorname{Aut}(K/F)$ and $x, y \in K'$. Then $\varphi(\sigma(\varphi^{-1}(x+y))) = \varphi(\sigma(\varphi^{-1}(x)+\varphi^{-1}(y))) = \varphi(\sigma(\varphi^{-1}(x))+\varphi(\sigma(\varphi^{-1}(y)))) = \varphi(\sigma(\varphi^{-1}(x))) + \varphi(\sigma(\varphi^{-1}(y)))$ so this map is a homomorphism. Furthermore the map is injective and surjective since it's the composition of injective and surjective maps. Thus $\varphi\sigma\varphi^{-1}$ is an element of $\operatorname{Aut}(K'/F')$.

Kris Harper MATH 25900 April 23, 2010

Homework 3

Let $\sigma, \sigma' \in \operatorname{Aut}(K/F)$ so that $\varphi(\sigma\sigma')\varphi^{-1} = \varphi\sigma\varphi^{-1}\varphi\sigma'\varphi^{-1}$ and the map is a homomorphism. Suppose $\sigma \neq \sigma'$ such that $\sigma(x) \neq \sigma'(x)$ for some $x \in K$. Let $y = \varphi(x)$. Then since φ is injective $\varphi\sigma\varphi^{-1}(y) = \varphi\sigma(x) \neq \varphi\sigma'(x) = \varphi\sigma'\varphi^{-1}(y)$ so the map is injective.

 $\varphi\sigma'(x) = \varphi\sigma'\varphi^{-1}(y)$ so the map is injective. Let $\tau \in \operatorname{Aut}(K'/F')$. Then we've already seen $\varphi^{-1}\tau\varphi$ gives an element $\sigma \in \operatorname{Aut}(K/F)$. But then multiplying on the left by φ and on the right by φ^{-1} gives $\varphi\sigma\varphi^{-1} = \tau$ so the map is surjective and thus an isomorphism.