

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS
DEPARTAMENTO DE ESTADÍSTICA
PROFESOR: REINALDO ARELLANO
AYUDANTE: DANIEL GÁLVEZ

Primer semestre 2024

Modelos Probabilísticos - EYP1025/1027 Solución Ayudantía 1

1. Demuestre las siguientes igualdades.

(a)
$$A = (A \cap B) \cup (A \cap B^c)$$

Para esto vamos a utilizar que $A \cap \Omega = A$ y $B \cup B^c = \Omega$. Entonces

$$A = A \cap \Omega$$

$$= A \cap (B \cup B^c)$$

$$= (A \cap B) \cup (A \cap B^c)$$

A continuación se presenta una imagen de lo anterior. Donde

- $A \cap B$
- $A \cap B^c$

(b) $A^c - B^c = B - A$

Recuerde que por definición $A - B = A \cap B^c$. Entonces

$$A^{c} - B^{c} = A^{c} \cap (B^{c})^{c}$$
$$= A^{c} \cap B$$
$$= B \cap A^{c}$$
$$= B - A$$

A continuación se presenta una imagen de lo anterior.

(c) $A \cap B^c = A - (A \cap B)$

En este ocasión vamos a empezar del lado derecho. Si aplicamos la definición al igual que antes tenemos que

$$A - (A \cap B) = A \cap (A \cap B)^{c}$$

$$= A \cap (A^{c} \cup B^{c})$$

$$= (A \cap A^{c}) \cup (A \cap B^{c})$$

$$= \emptyset \cup (A \cap B^{c})$$

$$= A \cap B^{c}$$

A continuación se presenta una imagen de lo anterior.

(d) $A \cup B = A \cup (B \cap A^c)$

Desarrollamos el lado derecho

$$A \cup (B \cap A^c) = (A \cup B) \cap (A \cup A^c)$$
$$= (A \cup B) \cap \Omega$$
$$= A \cup B$$

(e) $A - (B \cap C) = (A - B) \cup (A - C)$

Desarrollamos el lado izquierdo.

$$A - (B \cap C) = A \cap (B \cap C)^{c}$$

$$= A \cap (B^{c} \cup C^{c})$$

$$= (A \cap B^{c}) \cup (A \cap C^{c})$$

$$= (A - B) \cup (A - C)$$

Queda propuesto el como representar esta propiedad en diagramas de Venn.

- 2. Un trabajador elabora n artículos. El evento "El i-ésimo artículo es defectuoso" será denotado por A_i , con i=1,...,n. Describa los siguientes eventos usando los conjuntos A_i y las operaciones usuales entre eventos;
 - (a) B = "Al menos un artículo es defectuoso".

Cuando se habla de al menos un evento ocurre, esto corresponde a la unión, pues recordar que todos los posibles resultados de $A \cup B$ están en A, B o en $A \cap B$, es decir, o ocurre A, o ocurre B o ocurren ambos. Generalizando y aplicando esto a lo que nos piden, tenemos que

$$B = A_1 \cup A_2 \cup A_3 \cup \dots \cup A_n = \bigcup_{i=1}^n A_i$$

Esto cobrara mayor sentido cuando apliquemos esto a probabilidades.

(b) C = "Ninguno de los n artículos es defectuoso".

Esto es que ninguno articulo sea defectuoso, por lo cual nos interesa el complemento de todos los eventos, y que todos ocurran en simultaneo, esto es

$$C = A_1^2 \cap A_2^c \cap A_3^c \cap \dots \cap A_n^c = \bigcap_{i=1}^n A_i^c$$

(c) D = "Exactamente un artículo es defectuoso".

Esto puede pasar de varias maneras, pues puede ser el primer articulo el defectuoso y el resto no lo son, o puede ser el segundo articulo el defectuoso y el resto no, y así sucesivamente, entonces lo pedido corresponde a

$$D = (A_1 \cap A_2^c \cap A_3^c \cap \dots \cap A_n^c) \cup (A_1^c \cap A_2 \cap A_3^c \cap \dots \cap A_n^c) \cup \dots \cup (A_1^c \cap A_2^c \cap A_3^c \cap \dots \cap A_n)$$

$$= \bigcup_{j=1}^n \bigcap_{\substack{i=1\\i\neq j}}^n (A_i \cap A_j^c)$$

3

(d) E = "A lo más un artículo es defectuoso".

Esto puede pasar de dos formas, que no haya ningún articulo defectuoso, o que haya un articulo defectuoso. Note que esto ya lo expresamos anteriormente, por lo cual lo pedido corresponde a

$$E = C \cup D$$

3. Sean $A \vee B$ pertenecientes a una σ -algebra \mathcal{F} . Demuestre que \mathcal{F} contiene los conjuntos $A \cap B$, $A \setminus B \vee A \triangle B$.

Para esto vamos a usar las propiedades de una σ -algebra. Para esto recuerde que

- $\Omega \in \mathcal{F}$
- Si $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$
- Si $A_1, A_2, ... \in \mathcal{F} \Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$

Vamos por $A \cap B$.

Si
$$A, B \in \mathcal{F}$$
, entonces $A^c, B^c \in \mathcal{F}$

Si
$$A^c, B^c \in \mathcal{F}$$
, entonces $A^c \cup B^c \in \mathcal{F}$

pero si
$$A^c \cup B^c \in \mathcal{F}$$
, entonces $(A^c \cup B^c)^c \in \mathcal{F}$

note que esto ultimo corresponde a $(A^c \cup B^c)^c = A \cap B$, mostrando así que $A \cap B \in \mathcal{F}$.

Vamos por $A \setminus B$, recordar que $A \setminus B = A - B = A \cap B^c$.

Si
$$A \in \mathcal{F}$$
, entonces $A^c \in \mathcal{F}$

Si
$$B \in \mathcal{F}$$
, entonces $B^c \in \mathcal{F}$

Como
$$A^c, B \in \mathcal{F}$$
, entonces $A^c \cup B \in \mathcal{F}$

pero si
$$(A^c \cup B) \in \mathcal{F}$$
, entonces $(A^c \cup B)^c \in \mathcal{F}$

note que esto ultimo corresponde a $(A^c \cup B)^c = A \cap B^c$, mostrando así que $A \setminus B \in \mathcal{F}$.

Vamos por $A\triangle B$, recordar que $A\triangle B=(A-B)\cup(B-A)=(A\cap B^c)\cup(B\cap A^c)$. Para esto note que $(A\cap B^c)\in\mathcal{F}$, pues ya lo demostramos, y como la unión de cualquier evento debe estar en \mathcal{F} , basta demostrar que $B\cap A^c\in\mathcal{F}$. Entonces

Si
$$A \in \mathcal{F}$$
, entonces $A^c \in \mathcal{F}$

Si
$$B \in \mathcal{F}$$
, entonces $B^c \in \mathcal{F}$

Como
$$A, B^c \in \mathcal{F}$$
, entonces $A \cup B^c \in \mathcal{F}$

pero si
$$(A \cup B^c) \in \mathcal{F}$$
, entonces $(A \cup B^c)^c \in \mathcal{F}$

note que esto ultimo corresponde a $(A \cup B^c)^c = A^c \cap B = B \cap A^c$, mostrando así que $A \setminus B \in \mathcal{F}$, y finalmente, como $(A \cap B^c)$, $(B \cap A^c) \in \mathcal{F}$, entonces por propiedad de sigma álgebra se tiene que $(A \cap B^c) \cup (B \cap A^c) = A \triangle B \in \mathcal{F}$.

4. Sean \mathcal{F}_1 y \mathcal{F}_2 dos σ -álgebras definidos sobre un mismo espacio muestral, Ω . Demuestre que $\mathcal{F} = \mathcal{F}_1 \cap \mathcal{F}_2$ también corresponde a un σ -álgebra. Ahora defina $\mathcal{F}^* = \mathcal{F}_1 \cup \mathcal{F}_2$. ¿Es \mathcal{F}^* también una σ -algebra? Para esto considere los siguientes casos

$$\Omega = \{a, b, c\}, \quad \mathcal{F}_1 = \{\{a\}, \{b, c\}, \emptyset, \Omega\}, \quad \mathcal{F}_2 = \{\{b\}, \{a, c\}, \emptyset, \Omega\}$$

у

$$\Omega = \{1, 2\}, \quad \mathcal{F}_1 = \{\emptyset, \Omega\}, \quad \mathcal{F}_2 = \{\emptyset, \{1\}, \{2\}, \Omega\}$$

Para esto nuevamente es solo recordar las propiedades de una σ -algebra.

- Por definición de σ -algebra $\Omega \in \mathcal{F}_1$ y $\Omega \in \mathcal{F}_2$, por lo cual $\Omega \in \mathcal{F}$. Cumpliéndose así la primera propiedad.
- Si $A \in \mathcal{F}$, esto significa que $A \in \mathcal{F}_1, \mathcal{F}_2$, pero como $\mathcal{F}_1, \mathcal{F}_2$ son σ -algebra, se tiene que $A^c \in \mathcal{F}_1, \mathcal{F}_2$, lo que implica que $A^c \in \mathcal{F}$.
- Si $A_1, A_2, ... \in \mathcal{F}$, esto significa que $A_1, A_2, ... \in \mathcal{F}_1, \mathcal{F}_2$, pero como estas son σ -algebra, se tiene que $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}_1, \mathcal{F}_2$, lo que implica que $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$

Mostrando así que la intersección de dos σ -algebra también es una σ -algebra. En cuanto a la union, en el primer caso tenemos que

$$\mathcal{F}^* = \mathcal{F}_1 \cup \mathcal{F}_2 = \{\emptyset, \Omega, \{a\}, \{b\}, \{b, c\}, \{a, c\}\}$$

ahora, si tomamos $A_1 = \{a\}$ y $A_2 = \{b\}$, la unión no esta en \mathcal{F}^* , pues

$$A_1 \cup A_2 = \{a\} \cup \{b\} = \{a, b\} \notin \mathcal{F}^*$$

implicando que no se cumple la tercera propiedad. En el caso de $\Omega = \{a, b, c\}$, se tiene que $\mathcal{F}_1 \cup \mathcal{F}_2$ no es una σ -algebra. Para el otro caso hay que verificar las propiedades. Veamos que sucede.

$$\mathcal{F}^* = \mathcal{F}_1 \cup \mathcal{F}_2 = \{\emptyset, \Omega, \{1\}, \{2\}\}$$

- Claramente $\Omega \in \mathcal{F}^*$. Se cumple la primera propiedad.
- Hay que tomar elementos en \mathcal{F}^* e ir verificando si el complemento existe.

 $A = \emptyset, A^c = \Omega$

esto se cumple, pues ambos elementos están en \mathcal{F}^*

 $A = \{1\}, A^c = \{2\}$

esto se cumple, pues ambos elementos están en \mathcal{F}^*

Se cumple la segunda propiedad.

• Hay que ver las uniones.

$$A_1 = \{1\}, A_2 = \{2\} \implies A_1 \cup A_2 = \{1, 2\}$$

esto se cumple, pues este ultimo elemento está en \mathcal{F}^*

- para las otras uniones ocurre lo mismo, por ejemplo

$$A_1 = \{1\}, A_2 = \Omega \implies A_1 \cup A_2 = \Omega$$

Se cumple la tercera propiedad.

El lector puede fácilmente verificar que todas las posibles uniones pertenecen a \mathcal{F}^* , por lo cual en este caso \mathcal{F}^* si es una σ -algebra.

En base a todo esto se puede concluir que en general la unión de sigmas algebras no es una sigma algebra, y que para afirmarlo hay que verificar todas las propiedades.

- 5. Demuestre las siguientes propiedades generales de una medida de probabilidad: Sea (Ω, \mathcal{A}, P) un espacio de probabilidad, entonces:
 - (a) Monotonía: Si $A \subseteq B$, tal que $A, B \in \mathcal{A}$, entonces $P(A) \leq P(B)$. Para esto podemos dibujar lo que tenemos. Nos dicen que $A \subseteq B$, esto es

Note entonces que B lo podemos escribir como sigue

$$B = (B - A) \cup A$$

Como $(B - A) \cap A = \emptyset$, podemos aplicar el axioma tres de una medida de probabilidad, teniendo que

$$P((B-A) \cup A) = P(B-A) + P(A)$$

como las probabilidades son positivas tenemos que

$$P(B - A) \ge 0$$

$$P(B) - P(A) \ge 0$$

$$P(B) \ge P(A)$$

mostrando así que $P(A) \leq P(B)$. Recuerde que $P(B-A) = P(B) - P(A \cap B)$, en nuestro caso $A \cap B = A$.

(b) Subaditividad: Si
$$A_1, A_2, \dots A_k \in \mathcal{A}$$
, entonces $P\left(\bigcup_{n=1}^k A_n\right) \leq \sum_{n=1}^k P(A_n)$.

Para esto vamos a definir una secuencia bien conveniente. Si tenemos $A_1, A_2, ..., A_k$, note que podemos escribir los conjuntos de la siguiente forma para el caso A_1, A_2

$$B_1 = A_1$$
$$B_2 = A_2 - A_1$$

y claramente $B_1 \cup B_2 = A_1 \cup A_2$, pues

Siguiendo la idea tendríamos

$$B_3 = A_3 - (A_1 \cup A_2)$$

teniendo que $B_1 \cup B_2 \cup B_3 = A_1 \cup A_2 \cup A_3$. Lo anterior corresponde a

En general se tiene que

$$B_n = A_n - (A_1 \cup A_2 \cup \cdots \cup A_{n-1})$$

у

$$A_1 \cup A_2 \cup \cdots \cup A_n = B_1 \cup B_2 \cup \cdots \cup B_n$$

Lo anterior es importante, pues tenemos que $B_i \subseteq A_i$. Ahora, en base a la secuencia definida, se tiene que en el caso general

$$\bigcup_{i=1}^{n} A_i = \bigcup_{i=1}^{n} B_i$$

con $B_i \cap B_j = \emptyset$ para todo $i \neq j$. Ahora aplicamos función de probabilidad.

$$\bigcup_{i=1}^{n} A_{i} = \bigcup_{i=1}^{n} B_{i}$$

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = P\left(\bigcup_{i=1}^{n} B_{i}\right)$$

$$= \sum_{i=1}^{n} P(B_{i}), \quad \text{Axioma 3}$$
(1)

Luego, como $B_i \subseteq A_i$, se cumple la propiedad de monotonía ya demostrada, entonces

$$P(B_1) \leq P(A_1)$$

$$P(B_2) \leq P(A_2)$$

$$\vdots \leq \vdots$$

$$P(B_n) \leq P(A_n)$$
sumamos todo hacia abajo
$$\Rightarrow P(B_1) + P(B_2) + \dots + P(B_n) \leq P(A_1) + P(A_2) + \dots + P(A_n)$$

$$\sum_{i=1}^{n} P(B_i) \leq \sum_{i=1}^{n} P(A_i)$$

Aplicando (1) tenemos que

$$P\left(\bigcup_{i=1}^{n} B_i\right) \le \sum_{i=1}^{n} P(A_i)$$
$$P\left(\bigcup_{i=1}^{n} A_i\right) \le \sum_{i=1}^{n} P(A_i)$$

Mostrando lo pedido.