PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-229481

(43) Date of publication of application: 10.09.1996

(51)Int.CI.

B05C 5/02

B05D 1/26

(21)Application number: 07-311997

(71)Applicant: MATSUSHITA ELECTRIC IND CO

LTD

(22)Date of filing:

30.11.1995

(72)Inventor: WATANABE MASARU

KAMIYAMA YASUHIRO **NAKAMURA RIICHI OOHANA YORITO** HAYASHI TETSUYA

(30)Priority

Priority number: 06325175

Priority date: 27.12.1994

Priority country: JP

(54) INTERMITTENT COATING DEVICE AND METHOD AND MANUFACTURE OF CELL ELECTRODE AND NONAQUEOUS ELECTROLYTE SOLUTION CELL

(57)Abstract:

PURPOSE: To prevent thickness of a coating at a coating starting end from becoming larger, in a device for intermittently applying a coating material to a base material which is continuously running by making straight a coating starting end and a coating terminal end which are formed intermittently on the base material. CONSTITUTION: A base material 12 is caused to continuously run by a roll 13, while a coating material 11 fed to a nozzle 1 is intermittently applied onto the material 12 from a head 2. The head 2 shuts off the flow of the material 11 to the nozzle 1 when the material 11 is not applied, thereby to lead the material 11 to other unit than the nozzle 1 and at the same time, the head 2 draws the material 51 in the nozzle 1 and at the outlet of a slit 7 into a suction part formed in the nozzle 1, so that when coating of the material 11 is restarted, flow of the material 11 is released to the nozzle 1 and at the same time the material 11 having been drawn into the suction part is returned into the nozzle 1.

LEGAL STATUS

[Date of request for examination]

04.07.1996

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than

the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

2842347

[Date of registration]

23.10.1998

[Number of appeal against examiner's decision

of rejection]

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-229481

(43)公開日 平成8年(1996)9月10日

(51) Int.Cl.4

識別記号 庁内整理番号 FΙ

技術表示箇所

B05C 5/02 B 0 5 D 1/26

B05C 5/02

B 0 5 D 1/26

Z

審査請求 未請求 請求項の数23 OL (全 23 頁)

(21)出願番号

特願平7-311997

(22)出願日

平成7年(1995)11月30日

(31) 優先権主張番号 特願平6-325175

(32)優先日 (33)優先権主張国 平6 (1994)12月27日 日本 (JP)

(71)出顧人 000005821

松下電器産業株式会社

大阪府門真市大字門真1006番地

(72)発明者 渡辺 勝

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 上山 康博

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 中村 利一

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(74)代理人 弁理士 滝本 智之 (外1名)

最終頁に続く

(54) 【発明の名称】 間欠塗布装置、間欠塗布方法及び電池電極の製造方法並びに非水電解液電池

(57)【要約】

【課題】 連続走行する基材へ塗料を間欠的に塗布する 装置において、基材上に間欠的に塗布形成した塗布始端 及び終端を直線的にし、塗布始端部の厚塗りを防止す る。

【解決手段】 ロール13により基材12を連続走行さ せ、ヘッド2によりノズル1に供給された塗料11を基 材12上に間欠塗布する。ヘッド2は、塗料11の塗布 停止時には、ノズル1への塗料11の流れを遮断し、か つノズル1以外に導くと同時にノズル1内部及びスリッ ト7の出口部の塗料11をノズル1内部に設けた吸引部 25に吸引し、塗料11の塗布再開時には、ノズル1へ の塗料11の流れを開放すると同時に、吸引部25に吸 引された塗料11をノズル1内部へ戻すように構成し た。

ノズル

ヘッド(間欠手段)

スリット

11 塗料

12 基材 13 ロール

【特許請求の範囲】

【請求項1】基材を連続走行させるロールと、前記基材上に塗料を塗布するノズルと、前記ノズルに塗料を間欠的に供給する間欠手段とを備え、前記間欠手段は、塗布停止時には、前記ノズルへの前記塗料の流れを遮断し、かつ前記ノズル以外に導くと同時に前記ノズル内部及びスリット出口部の前記塗料を前記ノズル内部に設けた所定の場所に吸引し、塗布再開時には、前記ノズルへの前記塗料の流れを開放すると同時に前記所定の場所に吸引された前記塗料を前記ノズル内部へ戻すように構成した 10間欠途布装置

【請求項2】基材を連続走行させるロールと、前記基材上に塗料を塗布するノズルと、前記ノズルに塗料を間欠的に供給する間欠手段とを備え、前記間欠手段は、塗布停止時には、前記ノズルへの前記塗料の流れを遮断し、かつ前記ノズル以外に導くと同時に前記ノズル内部及びスリット出口部の前記塗料を前記ノズル内部に設けた所定の場所に吸引し、塗布再開時には、前記ノズルへの前記塗料の流れを開放すると同時に前記所定の場所に吸引された前記塗料を前記ノズル内部へ戻すように構成し、前記ノズルの下流側リップの基材走行方向の長さをLlとしたとき、 $0.1mm \le L1 \le 3mm$ とした間欠塗布

【請求項3】基材を連続走行させるロールと、前記基材 上に塗料を塗布するノズルと、前記ノズルに塗料を間欠 的に供給する間欠手段とを備え、前記間欠手段は、前記 塗料の流入口と流出口とを有するハウジングもしくは前 記ノズル内を摺動するヘッドにより構成し、前記ヘッド は、前記塗料の流れを前記ノズル内部へ導く供給路と前 記塗料の流れを前記ノズル以外へ導くリターン路とを備 え、前記リターン路の入口と出口とを結ぶ線と前記へっ ドの移動方向とがねじれの位置関係であり、かつ前記入 □と前記塗料の流入□とを前記へッドの移動方向と平行 な直線上に配置し、塗布停止時には、前記ヘッドの移動 により前記ノズル内部側に形成した吸引部に前記塗料を 引き込むと同時に、前記供給路の入口を前記ハウジング もしくは前記ノズルの摺動面で閉塞し、かつ前記塗料の 流入口と流出口とを前記リターン路により接続し、塗布 再開時には、前記ヘッドの移動により前記吸引部の前記 塗料をもとに戻すと同時に、前記供給路の入口を前記流 40 入口と接続すように構成した間欠塗布装置。

【請求項4】基材を連続走行させるロールと、前記基材上に塗料を塗布するノズルと、前記ノズルに塗料を間欠的に供給する間欠手段とを備え、前記間欠手段は、塗布停止時には、前記ノズルへの前記塗料の流れを遮断し、かつ前記ノズル以外に導くと同時に前記ノズル内部及びスリット出口部の前記塗料を前記ノズル内部に設けた所定の場所に吸引し、塗布再開時には、前記ノズルへの前記塗料の流れを開放すると同時に前記所定の場所に吸引された前記塗料を前記ノズル内部へ戻すように構成し、

前記ノズルの上流側のリップを下流側リップに対して5 ~1000μmの範囲で前記基材側に突き出した間欠塗

【請求項5】基材を連続走行させるロールと、前記基材上に塗料を塗布するノズルと、前記ノズルに塗料を間欠的に供給する間欠手段とを備え、前記間欠手段は、塗布停止時には、前記ノズルへの前記塗料の流れを遮断し、かつ前記ノズル以外に導くと同時に前記ノズル内部及びスリット出口部の前記塗料を前記ノズル内部に設けた所定の場所に吸引し、塗布再開時には、前記ノズルへの前記塗料の流れを開放すると同時に前記所定の場所に吸引したが記念料の流れを開放すると同時に前記所定の場所に吸引したが記念料を表記されています。

された前記塗料を前記ノズル内部へ戻すように構成し、 前記ノズルの下流側リップの先端部をシャープエッヂで 構成した間欠塗布装置。

【請求項6】間欠手段は、塗料の流入口と流出口とを有するハウジングもしくはノズル内を摺動するヘッドにより構成し、前記ヘッドは、前記塗料の流れを前記ノズル内部へ導く供給路と前記塗料の流れを前記ノズル以外へ導くリターン路とを備え、塗布停止時には、前記ヘッドの移動により前記ノズル内部側に形成された吸引部に前記塗料を引き込むと同時に、前記供給路の入口を前記ハウジングもしくは前記ノズルの摺動面で閉塞し、かつ前記塗料の流入口と流出口とを前記リターン路によって接続し、塗布再開時には、前記ヘッドの移動により前記吸引部の前記塗料をもとに戻すと同時に、前記供給路の入口を前記流入口と接続するように構成した請求項1、2、4または5に記載の間欠塗布装置。

【請求項7】所定の場所は、間欠手段を構成するヘッドの移動により形成される吸引部とし、吸引される塗料の量は、間欠手段を構成するヘッドの移動により形成される吸引部の体積に相当する量とした請求項1~5のいずれか1項に記載の間欠塗布装置。

【請求項8】吸引される塗料の量は、間欠手段を構成するヘッドの移動により形成される吸引部の体積に相当し、かつ塗布時において前記ヘッドのノズル側の端面と前記ノズルの一端面とが同一面となるように構成した請求項1~5のいずれか1項に記載の間欠塗布装置。

【請求項9】ノズルは基材を支持するロールと対向する 位置に設け、ロールの直径を50mm以上とした請求項 1~5のいずれか1項に記載の間欠塗布装置。

【請求項10】ノズルのスリットのスリットギャップは 0.1mm以上、2mm以下とした請求項2、4または 5に記載の間欠塗布装置。

【 請求項11】 ノズルに設けた上流側のリップ面は平面 とした請求項2、4または5に記載の間欠塗布装置。

【請求項12】ノズルに設けた下流側のリップ面は平面 とした請求項1、2または4に記載の間欠塗布装置。

【請求項13】ノズルに設けた下流側のリップ長し1は、0.1mm≦L1≦2mmとした請求項2記載の間欠塗布装置。

ζ,

【請求項14】ロールに支持された基材とノズルの先端とのギャップは2mm以下とした請求項2記載の間欠塗布装置。

【請求項15】ヘッドの移動量は0.1mm以上、50mm以下とした請求項3記載の間欠塗布装置。

【請求項16】塗料を間欠的に供給する間欠手段によりノズルに供給した塗料を連続走行する基材上に塗布する塗布工程と塗布停止工程とを有し、塗布停止工程は、前記ノズルへの前記塗料の流れを遮断し、かつ前記ノズル以外に導くと同時に、前記ノズル内部及びスリット出口部の前記塗料を前記ノズル内部に設けた所定の場所に吸引し、塗布工程は、前記ノズルへの前記塗料の流れを開放すると同時に前記所定の場所に吸引された前記塗料を前記ノズル内部へ戻し、前記吸引される前記塗料の量は前記ノズルのスリット幅10mm当り、0.1mm³以上、500mm³以下とし、前記塗料を前記基材上に間欠的に塗布形成する間欠塗布方法。

【請求項17】塗料を間欠的に供給する間欠手段により ノズルに供給した塗料を連続走行する基材上に塗布する 塗布工程と塗布停止工程とを有し、塗布停止工程は、前 記ノズルの先端部と前記基材との間にエアを吹き付け、 さらに前記ノズルへの前記塗料の流れを遮断し、かつ前 記ノズル以外に導くと同時に前記ノズル内部及びスリッ ト出口部の前記塗料を前記ノズル内部に設けた所定の場 所に吸引し、塗布工程は、前記ノズルへの前記塗料の流 れを開放すると同時に前記所定の場所に吸引された前記 塗料を前記ノズル内部へ戻し、前記塗料を前記基材上に 間欠的に塗布形成する間欠塗布方法。

【請求項18】塗料を間欠的に供給する間欠手段によりノズルに供給した塗料を連続走行する基材上に塗布する 30 塗布工程と塗布停止工程とを有し、塗布停止工程は、前記ノズルへの前記塗料の流れを遮断し、かつ前記ノズル以外に導くと同時に前記ノズル内部及びスリット出口部の前記塗料を前記ノズル内部に設けた所定の場所に吸引し、塗布工程は、前記ノズルへの前記塗料の流れを開放すると同時に前記所定の場所に吸引された前記塗料を前記ノズル内部へ戻し、塗布工程における前記ノズルの内部の圧力と、塗布停止工程における前記ノズル以外に導かれた前記塗料の流れの圧力とを同等とし、前記塗料を前記基材上に間欠 40 的に塗布形成する間欠塗布方法。

【請求項19】塗料を間欠的に供給する間欠手段により ノズルに供給した塗料を連続走行する基材上に塗布する 塗布工程と塗布停止工程とを有し、塗布停止工程は、前 記ノズルへの前記塗料の流れを遮断し、かつ前記ノズル 以外に導くと同時に前記ノズル内部及びスリット出口部 の前記塗料を前記ノズル内部に設けた所定の場所に吸引 し、塗布工程は、前記ノズルへの前記塗料の流れを開放 すると同時に前記所定の場所に吸引された前記塗料を前 記ノズル内部へ戻し、前記ノズルの下流側リップの基材 50 の走行方向の長さをL1としたとき、〇. 1 mm≦L1 ≦3 mmであり、前記吸引される前記塗料の量は前記ノズルのスリット幅10 mm当り、〇. 1 mm³以上、5 〇0 mm³以下とし、前記塗料を前記基材上に間欠的に 塗布形成する間欠塗布方法。

【請求項20】吸引される塗料の量は、間欠手段を構成するヘッドの移動により形成される吸引部の体積に相当する請求項16~19のいずれか1項に記載の間欠塗布方法。

【請求項21】ノズル以外に導かれた塗料の流れを流量 調整する請求項16~19のいずれか1項に記載の間欠 塗布方法。

【請求項22】間欠手段によりノズルに供給した活物質ベーストを連続走行する集電体上に塗布する塗布工程と塗布停止工程とを有し、塗布停止工程は、前記ノズルへの前記活物質ベーストの流れを遮断し、かつ前記ノズル以外に導くと同時に、前記ノズル内部及びスリット出口部の前記活物質ベーストを前記ノズル内部に設けた所定の場所に吸引し、塗布工程は、前記ノズルへの前記活物質ベーストの流れを開放すると同時に前記所定の場所に吸引された前記活物質ベーストを前記ノズル内部へ戻し、前記活物質ベーストを前記集電体上に間欠的に塗布形成する電池電極の製造方法。

【請求項23】請求項22記載の電池電極の製造方法により作成した電池電極を用いた非水電解液電池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は連続走行する基材または集電体に塗料または活物質ペーストを間欠的に塗布形成する間欠塗布装置、間欠塗布方法及び電池電極の製造方法と電池電極の製造方法により作成した電池電極を用いた非水電解液電池に関する。

[0002]

【従来の技術】接着剤を連続走行する支持体へ間欠的に塗布する装置として、例えば特開昭62-266157号公報が公知である。塗布時にはホットメルトをノズルへ供給し連続走行する基材へ塗布し、塗布しないときにはノズルへのホットメルトの供給を停止させる。この動作を繰り返すことにより基材上に間欠塗布を行うものである。

【0003】また、近年、VTR、通信機器などの各種の電子機器の小型、軽量化に伴いそれらの電源として高エネルギー密度の電池の開発が要望されている。

【0004】このような電池としては非水電解液電池があり、特に、正極にコバルト酸リチウムなどのリチウム含有複合酸化物、負極に炭素材料などを用いたリチウム二次電池の研究、開発に至っては現在、活発に行われているところである。

【0005】しかし、この種の電池は非水電解液を用いるため、水溶液系の電池に比べて非水電解質の電気伝導

度が低く放電レート特性が悪い。そのため、集電体である導電性支持体に形成される電極層の厚みを薄くして集電性を向上させる必要がある。さらに、正負極をシート状極板として反応面積を大きくし、極板間距離を小さくした状態にセパレータを相互間に介在させ、全体を渦巻状に巻回したスパイラル構造といわれる極板群構成を採用して活物質充填量を上げ、電池の放電容量を確保している。このとき、極板の表面形状がその集電性に大きく影響を与える。そして、特に放電特性は極板の集電効果が均一に得られるか否かにより大きく影響される。

【0006】従来の電池電極の製造方法としては、特開平1-184069号公報、特開平1-194265号公報および特開平4-242071号公報などに示されるドクターブレードを用いる方式が提案されていた。この方法によれば集電体に対して所定の間隙をもってドクターブレードを設けて、ドクターブレードの前側に貯えられた活物質塗料がドクターブレードと走行する集電体との間隙から層状に引き出されることにより、シート状極板を形成することが可能となる。

【0007】しかしながら、活物質塗料をドクターブレードの前側に貯えながら塗布を行うために、塗布中に溶媒が蒸発して塗料濃度が変化して安定な塗布を行うことが困難であった。

【0008】また、特開平7-65816号公報、特開平7-94170号公報に見られるように、エクストルージョン型注液器を用いて集電体上に塗布する製造法も検討されている。特開平7-65816号公報では塗布量を制御し塗料の安定化を図ることで、放電容量の製造変動を小さくすることでレート特性のばらつきを小さくすることが可能となった。

100001

【発明が解決しようとする課題】しかしながら従来の間欠塗布装置では、基材に50cc/m²以上の塗料を間欠塗布したとき、塗布始端及び終端では図15のように塗料がスリット幅方向で糸引き状態で支持体に塗布されてしまい塗布始端24、終端22が直線状にならない場合があった。この現象は、塗布量が多いためにノズルと基材との間やノズルのスリット出口部の塗料が基材によって引き出されたためと考えられる。さらに塗布停止時に塗料のリターンが無いために、塗料供給側の配管内の40圧力が上昇し、塗布再開時にその圧力の影響で塗布始端が厚塗りとなる問題があった。

【0010】また、従来の電池電極の製造方法では、活物質塗料を連続的に集電体上に塗布するために、集電体上にリード部を形成するための剥離工程が必要となる。例えば特開平2-98040号公報に示されるように活物質塗料を塗布、乾燥した後に活物質等の両面から刃状体を当接して取り除くべき活物質を剥離除去してリード部を形成する方法が提案されている。

【0011】しかしながら活物質層を剥離除去する工程 50 段の圧力が高まることがなく、塗布再開時においてもそ

を設けることは余分な工程を含むことになるだけでなく、剥離作業において活物質層に機械的なストレスを与えるため、残った活物質層と集電体の境界面において接着性が劣化する。また、剥離した活物質層が細かい粉体となって極板上に付着することが発生する。このような電極板を用いて電池を作成すると活物質層が脱落して内

電極板を用いて電池を作成すると活物質層が脱落して内部短絡して超電力が得られない、あるいは充放電を繰り返してゆくうちに放電容量が得られなくなる等の問題が生じていた。 【0012】また特開平7-94170号公報では、ス

ロットを有するエクストルージョン型注液器から活物質 塗料を吐出させ、集電体上に少なくとも1つの未塗布部 を走行方向に設けながら塗布することでリード部を同時 に形成する方法が提案されている。本法によれば、リー ド部を形成するための未塗布部を塗工しながら形成する ことが可能となり、塗布乾燥後に活物質層を剥離除去す る工程が不要となる。

【0013】しかしながら、この方法では、未塗布部を 形成する方向が走行方向に対して形成されているので、 巻回したシート状電極を作成する場合には、所定の大き さに幅方向にスリットする必要が生じ、機械的に連続生 産においては必ずしも効率の良い製造方法とはいえな い。

【0014】本発明は、基材上に間欠的に塗布形成した 塗布始端及び終端を直線的にし、塗布始端部の厚塗りを 防止できる間欠塗布装置及び方法を提供することを第1 の目的としている。

【0015】また、集電体の幅方向に未塗布部を間欠的 に形成することで、工数を低減して生産性を向上すると ともに、活物質層と集電体の境界部の接着性を向上し、 放電容量、レート特性及びサイクル特性等、電池特性を 向上した電池を得ることを第2の目的としている。

[0016]

【課題を解決するための手段】本発明の間欠塗布装置においては、第1の目的を達成するために、連続走行する基材上に間欠装置より供給された塗料をノズルにより塗布するようにし、間欠手段は、塗布停止時には、前記ノズルへの前記塗料の流れを遮断し、かつ前記ノズル以外に導くと同時に前記ノズル内部及びスリット出口部の前記塗料を前記ノズル内部に設けた所定の場所に吸引し、塗布再開時には、前記ノズルへの前記塗料の流れを開放すると同時に前記所定の場所に吸引された前記塗料を前記ノズル内部へ戻すように構成したものである。

【0017】これにより、塗布停止時にはノズルへの塗料供給を停止すると同時に、ノズルと基材との間及びノズルのスリット出口部の塗料をノズル内部に強制的に引き込むことができ、塗布量が多い場合にも、塗布始終端を直線的にすることができる。さらに、塗料はリターン路によりノズル以外の所に流れていくので、塗料供給手段の圧力が商まることがなく、塗布再間時においてもそ

の圧力を通常の圧力と同等にできるため、塗布再開時の 厚塗りを抑制できる。

【0018】本発明の間欠塗布方法においては、塗料を間欠的に供給する間欠手段によりノズルに供給した塗料を連続走行する基材上に塗布する塗布工程と塗布停止工程とを有し、塗布停止工程は、前記ノズルへの前記塗料の流れを遮断し、かつ前記ノズル以外に導くと同時に、前記ノズル内部及びスリット出口部の前記塗料を前記ノズル内部に設けた所定の場所に吸引し、塗布工程は、前記ノズルへの前記塗料の流れを開放すると同時に前記所定の場所に吸引された前記塗料を前記ノズル内部へ戻し、前記吸引される前記塗料の量は前記ノズルのスリット幅10mm当り、0.1mm³以上、500mm³以下とし、前記塗料を前記基材上に間欠的に塗布形成するものである。

【0019】これにより、塗布停止時にノズル内部に強制的に引き込む塗料の量をスリット幅10mm当り0.1mm³以上とすることで、塗布停止時にノズルと基材との間及びノズルのスリットの出口部の塗料を確実にノズル内部に吸引できる。さらに前記量を500mm³以下とすることにより、塗布再開時にノズル内部の所定の場所に吸引した塗料をノズルへ戻すとき、スリット内を出口に向かって押し出される間に塗料の中に空気を巻き込むことが抑制できる。この結果、塗布量が多い場合にも、塗布始終端を直線的にすることができる。

【0020】本発明の電池電極の製造方法においては、第2の目的を達成するために、間欠手段によりノズルに供給した活物質ペーストを連続走行する集電体上に塗布する塗布工程と塗布停止工程とを有し、塗布停止工程は、前記ノズルへの前記活物質ペーストの流れを遮断し、かつ前記ノズル以外に導くと同時に、前記ノズル内部及びスリット出口部の前記活物質ペーストを前記ノズル内部に設けた所定の場所に吸引し、塗布工程は、前記ノズルへの前記活物質ペーストの流れを開放すると同時に前記所定の場所に吸引された前記活物質ペーストを前記メズル内部へ戻し、前記活物質ペーストを前記集電体上に間欠的に塗布形成するものである。

【0021】これにより、集電体の幅方向に未塗布部を間欠的に形成することで、工数を低減して生産性を向上するとともに、活物質層と集電体の境界部の接着性を向上することができ、放電容量、レート特性及びサイクル特性等、電池特性を向上した電池を得ることができる。【0022】本発明の非水電解液電池においては、上記の電池電極の製造方法により作成した電池電極を用いたものである。

【0023】これにより、放電容量、レート特性及びサイクル特性等、電池特性を向上した電池を得ることができる。

[0024]

【発明の実施の形態】本発明の請求項Ⅰに記載の発明

は、基材を連続走行させるロールと、前記基材上に塗料 を塗布するノズルと、前記ノズルに塗料を間欠的に供給 する間欠手段とを備え、前記間欠手段は、塗布停止時に は、前記ノズルへの前記塗料の流れを遮断し、かつ前記 ノズル以外に導くと同時に前記ノズル内部及びスリット 出口部の前記塗料を前記ノズル内部に設けた所定の場所 に吸引し、塗布再開時には、前記ノズルへの前記塗料の 流れを開放すると同時に前記所定の場所に吸引された前 記塗料を前記ノズル内部へ戻すように構成したものであ り、塗布停止時にはノズルへの塗料供給を停止すると同 時に、ノズルと基材との間及びノズルのスリット出口部 の塗料をノズル内部に強制的に引き込むことができる。 この結果、塗布量が多い場合にも、塗布始終端を直線的 にすることができる。さらに塗料はリターン路によりノ ズル以外の所に流れていくので、塗料供給手段の圧力が 髙まることがない。従って、塗布再開時においてもノズ ルへの塗料供給において、その圧力を通常の圧力と同等 にできるため、塗布再開時の厚塗りを抑制できる。

【0025】請求項2に記載の発明は、基材を連続走行 させるロールと、前記基材上に塗料を塗布するノズル と、前記ノズルに塗料を間欠的に供給する間欠手段とを 備え、前記間欠手段は、塗布停止時には、前記ノズルへ の前記塗料の流れを遮断し、かつ前記ノズル以外に導く と同時に前記ノズル内部及びスリット出口部の前記塗料 を前記ノズル内部に設けた所定の場所に吸引し、塗布再 開時には、前記ノズルへの前記塗料の流れを開放すると 同時に前記所定の場所に吸引された前記塗料を前記ノズ ル内部へ戻すように構成し、前記ノズルの下流側リップ の基材走行方向の長さをし1としたとき、0.1mm≦ L1≦3mmとしたものであり、下流側リップ長を0. 1mmから3mmの短い範囲としてあるので、リップ先 端部と基材との間に存在する塗料の量を少なくすること ができる。従って、塗布停止時において、ノズル内部へ 引き込まなければならない塗料の量が少ないため、確実 にノズルと基材との間に存在する塗料をノズル内部に引 き込むことができる。この結果、塗布量が多い場合に も、塗布始終端を直線的にすることができる。

【0026】請求項3に記載の発明は、基材を連続走行させるロールと、前記基材上に塗料を塗布するノズル40と、前記ノズルに塗料を間欠的に供給する間欠手段とを備え、前記間欠手段は、前記塗料の流入口と流出口とを有するハウジングもしくは前記ノズル内を摺動するへッドにより構成し、前記へッドは、前記塗料の流れを前記ノズル内部へ導く供給路と前記塗料の流れを前記ノズル以外へ導くリターン路とを備え、前記リターン路の入口と出口とを結ぶ線と前記へッドの移動方向とがねじれの位置関係であり、かつ前記入口と前記塗料の流入口とを前記へッドの移動方向と平行な直線上に配置し、塗布停止時には、前記へッドの移動により前記ノズル内部側に50形成した吸引部に前記塗料を引き込むと同時に、前記供

10

給路の入口を前記ハウジングもしくは前記ノズルの摺動 面で閉塞し、かつ前記塗料の流入口と流出口とを前記り ターン路により接続し、塗布再開時には、前記ヘッドの 移動により前記吸引部の前記塗料をもとに戻すと同時 に、前記供給路の入口を前記流入口と接続すように構成 したものであり、リターン路の入口と出口とを結ぶ線と ヘッドの移動方向とがねじれの位置関係にしてあるの で、ヘッドの移動量を小さくすることができる。なぜな ら、リターン路の入口とハウジングの塗料の流入口とは ヘッドの移動方向と平行な直線上に配置されているの で、ヘッドの移動量は流入口と入口との間隔で決定でき るからである。従って、塗布停止時においてヘッドの移 動により塗料をノズル内部へ引き込むときのヘッドの移 動量を小さく、すなわちヘッドの移動時間を短くすると とができる。この結果、間欠塗工における装置の応答性 を速くすることができるため、塗布量が多い場合にも、 塗布始終端を直線的にすることができる。

【0027】請求項4に記載の発明は、基材を連続走行 させるロールと、前記基材上に塗料を塗布するノズル と、前記ノズルに塗料を間欠的に供給する間欠手段とを 備え、前記間欠手段は、塗布停止時には、前記ノズルへ の前記塗料の流れを遮断し、かつ前記ノズル以外に導く と同時に前記ノズル内部及びスリット出口部の前記塗料 を前記ノズル内部に設けた所定の場所に吸引し、塗布再 開時には、前記ノズルへの前記塗料の流れを開放すると 同時に前記所定の場所に吸引された前記塗料を前記ノズ ル内部へ戻すように構成し、前記ノズルの上流側のリッ プを下流側リップに対して5~1000μmの範囲で前 記基材側に突き出したものであり、上流側のリップが下 流側リップに対して基材側に突き出ており、上流側リッ プと基材との隙間を小さくできるため、この隙間で形成 される塗料溜りにおける塗料の量を少なくできる。従っ て、間欠塗工時に、ノズル内部へ引き込まなければなら ない塗料の量が少ないため、確実にノズルと基材との間 に存在する塗料をノズル内部に引き込むことができる。 この結果、塗布量が多い場合にも、塗布始終端を直線的 にすることができる。

【0028】請求項5に記載の発明によれば、基材を連続走行させるロールと、前記基材上に塗料を塗布するノズルと、前記ノズルに塗料を間欠的に供給する間欠手段とを備え、前記間欠手段は、塗布停止時には、前記ノズルへの前記塗料の流れを遮断し、かつ前記ノズル以外に導くと同時に前記ノズル内部及びスリット出口部の前記塗料を前記ノズル内部に設けた所定の場所に吸引し、塗布再開時には、前記ノズルへの前記塗料の流れを開放すると同時に前記所定の場所に吸引された前記塗料を前記ノズル内部へ戻すように構成し、前記ノズルの下流側リップの先端部をシャープエッヂで構成したものであり、下流側リップの先端をシャープエッヂにしてあるので、リップ先端部と基材との間に存在する途料の量を極めて

少なくすることができる。従って、塗布停止時において ノズル内部へ引き込まなければならない塗料の量が少ないため、確実にノズルと基材との間に存在する塗料をノズル内部に引き込むことができる。この結果、塗布量が 多い場合にも、塗布始終端を直線的にすることができる。

【0029】請求項6に記載の発明は、請求項1、2、 4または5に記載の発明において、間欠手段は、塗料の 流入口と流出口とを有するハウジングもしくはノズル内 を摺動するヘッドにより構成し、前記ヘッドは、前記塗 料の流れを前記ノズル内部へ導く供給路と前記塗料の流 れを前記ノズル以外へ導くリターン路とを備え、塗布停 止時には、前記ヘッドの移動により前記ノズル内部側に 形成された吸引部に前記塗料を引き込むと同時に、前記 供給路の入口を前記ハウジングもしくは前記ノズルの摺 動面で閉塞し、かつ前記塗料の流入口と流出口とを前記 リターン路によって接続し、塗布再開時には、前記へッ ドの移動により前記吸引部の前記塗料をもとに戻すと同 時に、前記供給路の入口を前記流入口と接続するように 構成したものであり、1つのヘッドの移動によって、ノ ズルへの塗料の供給と停止、ノズルへの塗料の供給とリ ターン、ノズル内部への塗料の吸引と戻しの3つの動作 を同時にかつ確実に行なうことができる。

【0030】請求項7に記載の発明は、請求項1~5に記載の発明において、所定の場所は、間欠手段を構成するヘッドの移動により形成される吸引部とし、吸引される塗料の量は、間欠手段を構成するヘッドの移動により形成される吸引部の体積に相当する量としたものであり、ヘッドの移動により確実に塗料を吸引する場所を形成することができ、また、吸引部の体積は機械的に決まるため、再現性のある間欠塗布ができる。

【0031】請求項8に記載の発明は、請求項1~5に記載の発明において、吸引される塗料の量は、間欠手段を構成するヘッドの移動により形成される吸引部の体積に相当し、かつ塗布時において前記ヘッドのノズル側の端面と前記ノズルの一端面とが同一面となるように構成したものであり、同一平面とすることで不必要な凹凸が無いため、塗料がスリット面に溜らず、塗布中に塗料の塊などにより塗工筋の発生を抑制できる。

【0032】請求項9に記載の発明は、請求項1~5に記載の発明において、ノズルは基材を支持するロールと対向する位置に設け、ロールの直径を50mm以上としたものであり、間欠塗布したときに基材とノズルとが接触し、基材が切断されるのを防止することができる。

市再開時には、前記ノズルへの前記塗料の流れを開放すると同時に前記所定の場所に吸引された前記塗料を前記 または5 に記載の発明において、ノズルのスリットのスノズル内部へ戻すように構成し、前記ノズルの下流側リップの先端部をシャープエッヂで構成したものであり、 のであり、スリットギャップが 0.1 mmよりも小さい下流側リップの先端をシャープエッヂにしてあるので、 場合、塗料を吸引するとき、スリットギャップが小さすリップ先端部と基材との間に存在する塗料の量を極めて 50 ぎて、スリット内を流れる塗料の抵抗が大きくなり、吸

引できなくなる。また、スリットギャップが2mmより も長いと、スリットの出口部の塗料の量が多すぎて、塗 布終端を直線的にすることが不可能である。

【0034】請求項11に記載の発明は、請求項2、4 または5に記載の発明において、ノズルに設けた上流側 のリップ面は平面としたものであり、リップ先端部の平 面度や進直度の精度を10μm以下にすることが可能で あり、このため、塗布幅方向に膜厚を均一に塗布するこ とが可能となる。

【0035】請求項12に記載の発明は、請求項1、2 または4に記載の発明において、ノズルに設けた下流側 のリップ面は平面としたものであり、リップ先端部の平 面度や進直度の精度を10μm以下にすることが可能で あり、このため、塗布幅方向に膜厚を均一に塗布するこ とが可能となる。

【0036】請求項13に記載の発明は、請求項2に記 載の発明において、ノズルに設けた下流側のリップ長し 1は、0. 1 m m ≤ L 1 ≤ 2 m m としたものであり、ノ ズルトロールとの隙間の塗料の量を少なくすることがで き、切れのよい間欠塗布ができる。

【0037】請求項14に記載の発明は、請求項2に記 載の発明において、ロールに支持された基材とノズルの 先端とのギャップは2mm以下としたものであり、ギャ ップが2mmよりも長いと、スリットの出口部の塗料の 量が多すぎて、塗布終端を直線的にすることが不可能で あるが、ギャップを2mm以下とすることによって、塗 布終端を直線的にすることができる。

【0038】請求項15に記載の発明は、請求項3に記 載の発明において、ヘッドの移動量は0.1mm以上、 50mm以下としたものであり、この範囲よりも小さい 30 場合には塗料を確実にノズル内部へ吸引できず、間欠塗 布ができなくなり、また、この範囲よりも大きい場合に は、ヘッドの移動時間が長すぎて、塗布終端を直線的に できなくなるが、ヘッドの移動量は0.1mm以上、5 Omm以下とすることによって、間欠塗布ができ、塗布 終端を直線的にできる。

【0039】請求項16に記載の発明は、塗料を間欠的 に供給する間欠手段によりノズルに供給した塗料を連続 走行する基材上に塗布する塗布工程と塗布停止工程とを 有し、塗布停止工程は、前記ノズルへの前記塗料の流れ を遮断し、かつ前記ノズル以外に導くと同時に、前記ノ ズル内部及びスリット出口部の前記塗料を前記ノズル内 部に設けた所定の場所に吸引し、塗布工程は、前記ノズ ルへの前記塗料の流れを開放すると同時に前記所定の場 所に吸引された前記塗料を前記ノズル内部へ戻し、前記 吸引される前記塗料の量は前記ノズルのスリット幅10 mm当り、0.1mm'以上、500mm'以下とし、前 記塗料を前記基材上に間欠的に塗布形成するものであ り、塗布停止時にはノズルへの塗料供給を停止すると同

の塗料をノズル内部に強制的に引き込むことができる。 この引き込む塗料の量をスリット幅10mm当り0.1 mm³以上とすることで、塗布停止時にノズルと基材と の間及びノズルのスリット出口部の塗料を確実にノズル 内部に吸引できる。さらに前記量を500mm'以下と することにより、塗布再開時にノズル内部の所定の場所 に吸引した塗料をノズルへ戻すとき、スリット内を出口 に向かって押し出される間に塗料の中に空気を巻き込む ことが抑制できる。この結果、塗布量が多い場合にも、 塗布始終端を直線的にすることができる。

【0040】請求項1.7に記載の発明は、塗料を間欠的 に供給する間欠手段によりノズルに供給した塗料を連続 走行する基材上に塗布する塗布工程と塗布停止工程とを 有し、塗布停止工程は、前記ノズルの先端部と前記基材 との間にエアを吹き付け、さらに前記ノズルへの前記塗 料の流れを遮断し、かつ前記ノズル以外に導くと同時に 前記ノズル内部及びスリット出口部の前記塗料を前記ノ ズル内部に設けた所定の場所に吸引し、塗布工程は、前 記ノズルへの前記塗料の流れを開放すると同時に前記所 定の場所に吸引された前記塗料を前記ノズル内部へ戻 し、前記塗料を前記基材上に間欠的に塗布形成するもの であり、塗布停止時にはノズル先端部と基材との間にエ アを吹き付けるために、ノズルへの塗料供給を停止する と同時にノズルと基材との間及びノズルのスリット出口 部の塗料をノズル内部に強制的に引き込んだときにわず かに残留する塗料を吹き飛ばすことができる。この結 果、塗布量が多い場合にも、塗布始終端を直線的にする ことができる。

【0041】請求項18に記載の発明は、塗料を間欠的 に供給する間欠手段によりノズルに供給した塗料を連続 走行する基材上に塗布する塗布工程と塗布停止工程とを 有し、塗布停止工程は、前記ノズルへの前記塗料の流れ を遮断し、かつ前記ノズル以外に導くと同時に前記ノズ ル内部及びスリット出口部の前記塗料を前記ノズル内部 に設けた所定の場所に吸引し、塗布工程は、前記ノズル への前記塗料の流れを開放すると同時に前記所定の場所 に吸引された前記塗料を前記ノズル内部へ戻し、塗布工 程における前記ノズルの内部の圧力または前記ノズル直 前の配管内の圧力と、塗布停止工程における前記ノズル 以外に導かれた前記塗料の流れの圧力とを同等とし、前 記塗料を前記基材上に間欠的に塗布形成するものであ り、塗布停止時にはノズルへの塗料供給を停止すると同 時に、ノズルと基材との間及びノズルのスリット出口部 の塗料をノズル内部に強制的に引き込むことができる。 この結果、塗布量が多い場合にも、塗布始終端を直線的 にすることができる。さらに、塗料はリターン路により ノズル以外の所に流れていくので、塗料供給手段の圧力 が高まることがないため、塗布始端の厚塗りが防止でき る。さらに、リターンされる塗料の圧力を塗布時の圧力 時に、ノズルと基材との間及びノズルのスリット出口部 50 と同等としてあるので、塗布再開時において、リターン

時の圧力低下が抑制されており、塗布始端が薄塗となる ことを抑制できる。

【0042】請求項19に記載の発明は、塗料を間欠的 に供給する間欠手段によりノズルに供給した塗料を連続 走行する基材上に塗布する塗布工程と塗布停止工程とを 有し、塗布停止工程は、前記ノズルへの前記塗料の流れ を遮断し、かつ前記ノズル以外に導くと同時に前記ノズ ル内部及びスリット出口部の前記塗料を前記ノズル内部 に設けた所定の場所に吸引し、塗布工程は、前記ノズル への前記塗料の流れを開放すると同時に前記所定の場所 に吸引された前記塗料を前記ノズル内部へ戻し、前記ノ ズルの下流側リップの基材の走行方向の長さをL1とし たとき、0. 1 m m ≤ L 1 ≤ 3 m m であり、前記吸引さ れる前記塗料の重は前記ノズルのスリット幅10mm当 り、0.1mm'以上、500mm'以下とし、前記塗料 を前記基材上に間欠的に塗布形成するものであり、塗布 停止時にはノズルへの塗料供給を停止すると同時に、ノ ズルと基材との間及びノズルのスリット出口部の塗料を ノズル内部に強制的に引き込むことができる。この結 果、塗布量が多い場合にも、塗布始終端を直線的にする ことができる。さらに、塗料はリターン路によりノズル 以外の所に流れていくので、塗料供給手段の圧力が高ま ることがない。従って、塗布再開時においてもノズルへ の塗料供給において、その圧力を通常の圧力と同等にで きるため、塗布再開時の厚塗りを抑制できる。

【0043】さらに下流側リップ長を0.1mmから3 mmの短い範囲としてあるので、リップ先端部と基材と の間に存在する塗料の量を少なくすることができる。従 って、塗布停止時においてノズル内部へ引き込まなけれ ばならない塗料の量が少ないため、確実にノズルと基材 30 との間に存在する塗料をノズル内部に引き込むことがで きる。この結果、塗布量が多い場合にも、塗布始終端を 直線的にすることができる。さらにまた、吸引する塗料 の量をスリット幅10mm当り0.1mm 以上とする ことで塗布停止時にノズルと基材との間及びノズルのス リット出口部の塗料を確実にノズル内部に吸引できる。 さらに前記量を500mm'以下とすることにより、塗 布再開時にノズル内部の所定の場所に吸引した塗料をノ ズルへ戻すとき、スリットを流れる間に空気を巻き込む ことが抑制できる。以上の結果、塗布量が多い場合に も、塗布始終端を直線的にするごとができる。

【0044】請求項20に記載の発明は、請求項16~19に記載の発明において、吸引される塗料の重は、間欠手段を構成するヘッドの移動により形成される吸引部の体積に相当するものであり、ヘッドの移動により確実に塗料を吸引する場所を形成することができ、また、吸引部の体積は機械的に決まるため、再現性のある間欠塗布ができる。

【0045】請求項21に記載の発明は、請求項16~ 19に記載の発明において、ノズル以外に導かれた塗料 の流れを流量調整するものであり、流量調整するととで間欠時のリターン圧力と塗布時のノズル圧力とを同等とすることができ、これにより、塗布再開時に直ちに所定の厚みで塗布形成することができる。

14

【0046】請求項22に記載の発明は、間欠手段によ りノズルに供給した活物質ペーストを連続走行する集電 体上に塗布する塗布工程と塗布停止工程とを有し、塗布 停止工程は、前記ノズルへの前記活物質ペーストの流れ を遮断し、かつ前記ノズル以外に導くと同時に、前記ノ ズル内部及びスリット出口部の前記活物質ペーストを前 記ノズル内部に設けた所定の場所に吸引し、塗布工程 は、前記ノズルへの前記活物質ペーストの流れを開放す ると同時に前記所定の場所に吸引された前記活物質ペー ストを前記ノズル内部へ戻し、前記活物質ペーストを前 記集電体上に間欠的に塗布形成するものであり、集電体 を走行させながら集電体の幅方向にリード部を形成させ るための未塗布部を設けることができ、剥離工程を省略 することが可能となる。また、従来の剥離工程を経た極 板と比較して、間欠塗工では活物質層をはぎ取るときの 機械的なストレスがないために、活物質層と集電体の境 界面において活物質の接着性が向上し、放電容量、レー ト特性及びサイクル特性の向上した電池を作成すること ができる。

【0047】請求項23に記載の発明は、請求項22記載の電池電極の製造方法により作成した電池電極を用いたものであり、放電容量、レート特性及びサイクル特性の向上した電池を得ることができる。

【0048】以下、本発明の実施の形態について、図面を参照しながら説明する。

60 (実施の形態1)実施の形態1は、請求項1に記載の発明の間欠塗布装置に関する。図1は基材12に塗料11を塗布している状態、図2は塗布を停止している状態を示す。

【0049】図に示すように、ノズル1は、間欠手段を構成するヘッド2より塗料11を供給されて、ロール13に支持され連続走行する基材12上に塗料を塗布するものである。ヘッド2に塗料11の流れをノズル1内部へ導く供給路3と塗料11の流れをノズル1以外へ導くリターン路4とを設け、このヘッドをノズル1に固着したハウジング5内に移動自在に設け、ヘッド駆動部10により上下動できるようにしている。なお、塗料11は、塗布液、ペースト、インキ、スラリーを含むものである。

【0050】ノズル1には、ヘッド2の供給路3に連通したマニホールド6を設け、このマニホールド6に連通してスリット7を設けている。供給配管8は、ハウジング5に設けた流入口18に連結して塗料11を供給し、リターン配管9は、ハウジング5に設けた流出口19に連結して塗料11をリターンするようにしている。なお、ヘッド2は回転止めのため、断面形状が角形、多角

形形、もしくは円形で回り止めピン(図示せず)等を取り付けてもよい。

【0051】上記構成において動作を説明すると、塗布時においては、ポンプ(図示せず)等により、塗料11は供給配管8を通りハウジング5に設けた流入口18を通り、ヘッド2の供給路3を流れ、ノズル1のマニホールド6へ流れ込み、さらにスリット7から押し出され、ロール13に支持され連続走行するた基材12上に塗布される。

【0052】塗布停止時においては、ヘッド駆動部10 により、図2に示すように、ヘッド2を矢印A方向に移動させることで、吸引部25を形成し、ノズル1の先端部と基材12との間及びスリット7の出口部とに存在する塗料11をノズル1の内部へ吸引することができる。従って、塗布停止時には塗布終端を直線的にすることができる。吸引する塗料11の量は、ヘッド2の移動で形成された吸引部25の体積に相当する。

【0053】このとき、供給路3の入口はハウジング5の摺動面で閉塞され、塗料11は供給配管8を通りハウジング5に設けた流入口18からヘッド2のリターン路4を流れリターン配管9に流れる。従って、塗布停止時においても供給配管8における塗料圧力の上昇を抑制することができる。従って、塗布再開時においてヘッド2を矢印B方向に移動させ、ノズル1への塗料の供給を開始したときに、ノズル1の塗料圧力を上昇させることがない。このため、塗布始端の厚塗りを抑制することができる。

【0054】本実施の形態の最も大きな特徴は、ヘッド2を矢印A方向へ移動させるだけで、ノズル1への塗料11の供給を遮断すると同時にリターンさせ、さらにノズル1の先端部と基材12との間及びスリット7の出口部とに存在する塗料11をノズル1の内部へ吸引することができるという3つの機能、すなわち遮断とリターンと吸引、を持つことにある。

【0055】本実施の形態においては、塗布時にヘッド 2のノズル側の端面26とスリット面27とが同一平面 となることが好ましい。同一平面とすることで不必要な 凹凸が無いため、塗料がスリット面27に溜らず、塗布 中に塗料の塊などにより塗工筋の発生が抑制できる。

【0056】ノズル1の先端部形状は図1では平面であるが、本実施の形態に関しては必ずしも平面でなくてもよい。例えば、曲率半径を持つ湾曲した形状、多角形状、シャーブエッヂ形状でもよい。

【0057】また、ノズル1の先端部とロール13に支持された基材12とのギャップは2mm以下が好ましい。2mmよりも大きいと、ノズル1の先端部と基材12との隙間に存在する塗料の量が多くなり過ぎて、塗布停止時にノズル1の内部へ吸引しきれず、塗布終端を直線的にすることが困難となる。

【0058】本実施の形態により、平均粒子径5 μmの 50

16

カーボンを分散した粘度5ポイズの塗料を、基材12として厚さ20 μ mのフイルムに間欠塗布した。基材12の走行方向に対して、長さ100 μ m塗布した後、10 μ mを布しない部分を設ける間欠塗布を繰り返し行った。フイルムの走行速度は20 μ min、塗布量は80 μ cc/ μ cos。

【0059】本実施の形態により、図16に示すように、基材12に塗料11を塗布した塗布部23の塗布終端22及び塗布始端24を直線的にすることができ、さらに、塗布始端24における厚塗りもなく、フイルム走行方向で均一な厚みの間欠塗布ができた。一方、従来例により同様の間欠塗布を行った結果、図15に示すように、塗布部23の塗布終端22及び塗布始端24が乱れ、さらに塗布始端24は厚塗りとなってしまった。以上の結果から、本実施の形態の効果が優れていることが判る。

【0060】(実施の形態2)実施の形態2は、請求項2に記載の発明の間欠塗布装置に関する。本実施の形態に関しては、図3に示すように、ノズル1のリップ先端部の形状に最も大きな特徴がある。基材12の走行方向に対して、スリット7より上流側に設けた上流リップ14の面長をL2、基材12の走行方向に対してスリット7より下流側に設けた下流リップ15の面長をL1としたとき、 $0.1mm \le L1 \le 2mm$ とする。ころに好ましくは、 $0.1mm \le L1 \le 2mm$ とする。 L2に関しては、特に限定するものではないが、通常0.2mm以上、5mm以下の範囲とする。なお、取り付け六16は、図1に示すハウジング5を取り付けるためのものである。他の構成は上記実施の形態1と同じである。

【0061】上記構成において動作を説明すると、上記実施の形態1と同様に、図1及び図2に示すように、塗布時においては、ポンプ(図示せず)等により、塗料11は供給配管8を通り、ハウジング5に設けた流入口18を通り、ヘッド2の供給路3を流れ、ノズル1のマニホールド6へ流れ込み、さらにスリット7から押し出されロール13に支持され連続走行する基材12上に塗布される。塗布停止時においては、ヘッド2を矢印A方向に移動させることで、吸引部25を形成し、ノズル1の下流リップ15と基材12との間及びスリット7の出口部とに存在する塗料11をノズル1の内部へ吸引することができる。

【0062】本実施の形態では、下流リップ15の面長 L1を0.1mm≦L1≦2mmとしてあるので、液溜 り部17に存在する塗料11の量が少なく、従ってヘッ ド2の移動で塗料11を吸引する量が少ないため、確実 にノズル1と基材12との間に存在する塗料11をノズ ル1内部に引き込むことができる。この結果、塗布量が 多い場合にも、塗布始終端を直線的にすることができ

0 【0063】下流リップ15の面長し1が0.1mmよ

りも小さい場合、確かに液溜り部17の塗料の量は少なくなるが、長さが短すぎて下流リップ15と基材12との隙間に圧力がかからず、幅方向の膜厚の均一性が損なわれる。また、L1が3mmよりも長いと、前記したように液溜り部17の塗料の量が多すぎて、塗布終端を直線的にすることが不可能である。

【0064】また、塗料の粘度が1ポイズ以上の高い場合には、さらにノズル1の内部へ液溜り部17の塗料を吸引し難くなるため、L1は2mm以下が好ましい。

【0065】また、スリット7のスリットギャップSGは、0.1mm以上、2mm以下とする。スリットギャップSGが0.1mmよりも小さい場合、塗料を吸引するとき、スリットギャップSGが小さすぎて、スリット7内を流れる塗料11の抵抗が大きくなり、吸引できなくなる。また、スリットギャップSGが2mmよりも長いと、スリット7の出口部の塗料の量が多すぎて、塗布終端を直線的にすることが不可能である。

【0066】一方、基材12を支持するロール13の直径は50mm以上とする。通常は直径150mmから400mmの範囲である。50mmよりも小さい場合、ロールの曲率半径の関係で下流リップ15と基材12との隙間は、最も狭い部分と広い部分の差が大きくなりすぎて、結果的に液溜り部17の塗料の量が多くなる。この結果、塗布停止時に液溜り部17の塗料11をノズル1へ吸引しきれずに塗布終端が乱れてしまう。吸引する塗料11の量は、ヘッド2の移動で形成された吸引部25の体積に相当する。

【0067】塗布停止時においては、ヘッド2を矢印A方向に移動させることで、供給路3の入口はハウジング5の摺動面で閉塞され、塗料11は供給配管8を通り、ハウジング5に設けた流入口18からヘッド2のリターン路4を流れ、リターン配管9に流れる。従って、塗布停止時においても供給配管8における塗料圧力の上昇を抑制できるので、塗布再開時においてヘッド2を矢印B方向に移動させ、ノズル1への塗料の供給を開始したとき、ノズル1の塗料圧力を上昇させることがない。このため塗布始端の厚塗りを抑制できる。

【0068】なお、ヘッド2は回転止めのため、断面形状が角形、多角形形、もしくは円形で回り止めピン(図示せず)等を取り付けてもよい。

【0069】本実施の形態のもう1つの特徴は、ヘッド2を矢印A方向へ移動させるだけで、ノズル1への塗料の供給を遮断すると同時にリターンさせ、さらにノズル1の先端部と基材12との間及びスリット7の出口部とに存在する塗料11をノズル1の内部へ吸引することができるという3つの機能、遮断とリターンと吸引、を持つことにある。

【0070】本実施の形態においては、塗布時にヘッド 2のノズル2側の端面26とスリット面27とが同一平 面となることが好ましい。同一平面とすることで不必要 50 な凹凸が無いため、塗料がスリット面27に溜らず、塗布中に塗料の塊などにより塗工筋の発生が抑制できる。 ノズル1の先端部形状は、図1に示すように、上流リップ14、下流リップ15ともに平面である。この形状とすることで、リップ先端部の平面度や進直度の精度を10μm以下にすることが可能である。このため、塗布幅方向に膜厚を均一に塗布することが可能となった。

【0071】また、ノズル1の先端部とロール13に支持された基材12とのギャップは2mm以下が好ましい。2mmよりも大きいとノズル1の先端部と基材12との隙間に存在する塗料の量が多くなり過ぎて、塗布停止時にノズル1の内部へ吸引しきれず、塗布終端を直線的にすることが困難となる。

【0072】本実施の形態により、下流リップ15の面長L1が0.1mm、2mm、3mm、4mmの4つのノズルを用い、平均粒子径5μmのカーボンを分散した粘度5ポイズの塗料を、基材12として厚さ20μmのフイルムに間欠塗布した。基材走行方向に対して、長さ100mm塗布した後、10mm塗布しない部分を設ける間欠塗布を繰り返し行った。フイルムの走行速度は20m/min、塗布量は80cc/m²である。

【0073】本実施の形態により、L1が0.1、2、3mmのノズルでは、図16に示すように、基材12に塗料11を塗布した塗布部23の塗布終端22及び塗布始端24を直線的にすることができ、さらに、塗布始端24における厚塗りもなく、フイルム走行方向で均一な厚みの間欠塗布ができた。一方、L1が4mm以上のノズル及び従来例により同様の間欠塗布を行った結果、図15に示すように、塗布部23の塗布終端22及び塗布始端24が乱れ、さらに塗布始端24は厚塗りとなってしまった。以上の結果から、本実施の形態の効果が優れていることが判る。

【0074】(実施の形態3)実施の形態3は、請求項3に記載の発明の間欠塗布装置に関する。図6および図7に示すように、ヘッド2に設けたリターン路4の入口20と出口21とを結ぶ線とヘッド2の移動方向とがねじれの位置関係であり、かつ入口20と塗料のハウジング5に設けた流入口18とをヘッド2の移動方向と平行な直線上に配置している。他の構成は上記実施の形態1と同じである。

【0075】上記構成において動作を説明する。図4は基材12に塗料11を塗布している状態を示し、図5は塗布を停止している状態を示す。

【0076】塗布時においては、ボンブ(図示せず)等により、塗料11は供給配管8を通りハウジング5に設けた流入口18を通り、ヘッド2の供給路3を流れ、ノズル1のマニホールド6へ流れ込み、さらにスリット7から押し出されロール13に支持され連続走行する基材12上に塗布される。

50 【0077】塗布停止時においては、ヘッド2を矢印A

方向に移動させることで、吸引部25を形成し、ノズル 1の先端部と基材12との間及びスリット7の出口部に 存在する塗料をノズル1の内部へ吸引することができ る。従って、塗布停止時には塗布終端を直線的にすると とができる。吸引する塗料11の量は、ヘッド2の移動 で形成された吸引部25の体積に相当する。供給路3の 入口はハウジング5の摺動面で閉塞され、塗料11は供 給配管8を通りハウジング5に設けた流入口18からへ ッド2のリターン路4を流れリターン配管9に流れる。

【0078】本実施の形態において最も大きな特徴は、 図6および図7に示すように、ヘッド2に設けたリター ン路4の入口20と出口21とを結ぶ線とヘッド2の移 動方向とがねじれの位置関係であり、かつ入口20と塗 料11のハウジング5に設けた流入口18とをヘッド2 の移動方向と平行な直線上に配置していることである。 この構成とすることで、ヘッド2の移動量を小さくする ことができる。

【0079】なぜなら、ヘッド2の移動量は、塗布時に ハウジング5の流入口18と供給路3の入口とが接続さ れているものを、塗布停止時にはヘッド2の移動により リターン路4の入口20に接続するために必要なストロ ークで決まる。本実施の形態では、リターン路4の入口 20とハウジングの塗料の流入口18とはヘッド2の移 動方向と平行な直線上に配置されているので、ヘッド2 の移動量は塗布時における流入口18とリターン路4の 入口20との間隔で決定できるからである。

【0080】しかも、ヘッド2に設けたリターン路4の 入口20と出口21とを結ぶ線とヘッド2の移動方向と がねじれの位置関係としてあるので、塗料11をリター ンするための出口21の位置はヘッド2の必要な移動量 30 とは無関係に任意に設計できる利点を持っている。

【0081】以上のように、ヘッド2の移動量を小さく することで、停止時においてヘッド2の移動により塗料 11をノズル1の内部へ引き込むときのヘッド2の移動 量を小さくすることができ、すなわち、ヘッド2の移動 時間を短くすることができる。この結果、ヘッド2によ る塗料11の吸引動作の時間を短くできるため、塗布量 が多い場合にも、基材12に塗料11を塗布した塗布部 23の塗布終端22及び塗布始端24を直線的にするこ とができる。

【0082】なお、リターン路4は、図7 (a) に示す ように、ヘッド2の周面上に溝状で設けるか、もしく は、図7(b)に示すように、貫通穴としてもよい。 【0083】ヘッド2の移動量は0.1mm以上、50 mm以下とする。この範囲よりも小さい場合には塗料1 1を確実にノズル1内部へ吸引できず、間欠塗布ができ なくなる。またこの範囲よりも大きい場合には、ヘッド 2の移動時間が長すぎて、塗布終端を直線的にできなく

ーンできるため、塗布停止時においても供給配管8にお ける塗料圧力の上昇を抑制できるので、塗布再開時にお いてヘッド2を矢印B方向に移動させ、ノズル1への塗 料の供給を開始したときにノズル1の塗料圧力を上昇さ せることがない。このため、塗布始端24の厚塗りを抑

【0085】なお、ヘッド2は回転止めのため、断面形 状が角形、多角形形、もしくは円形で回り止めピン(図 示せず) 等を取り付けてもよい。

【0086】本実施の形態のもう1つの特徴は、ヘッド 2を矢印A方向へ移動させるだけで、ノズル1への塗料 の供給を遮断すると同時にリターンさせ、さらにノズル 1の先端部と基材12との間及びスリット出口部とに存 在する塗料をノズル1の内部へ吸引することができると いう3つの機能、遮断とリターンと吸引、を持つことに

【0087】本実施の形態においては、塗布時にヘッド 2のノズル側端面26とスリット面27とが同一平面と なることが好ましい。同一平面とすることで不必要な凹 凸が無いため、塗料がスリット面27に溜らず、塗布中 に塗料の塊などにより塗工筋の発生が抑制できる。

【0088】また、スリット7のスリットギャップSG は、O. 1mm以上、2mm以下とする。スリットギャ ップSGが0. 1mmよりも小さい場合、塗料11を吸 引するとき、スリットギャップSGが小さすぎてスリッ ト7内を流れる塗料11の抵抗が大きくなり、吸引でき なくなる。また、スリットギャップSGが2mmよりも 長いと、スリット7の出口部の塗料11の量が多すぎ て、塗布終端22を直線的にすることが不可能である。 【0089】ノズル1の先端部形状は、図1では平面で あるが、本実施の形態に関しては必ずしも平面でなくて

【0090】また、ノズル1の先端部とロール13に支 持された基材12とのギャップは2mm以下が好ました い。2mmよりも大きいとノズル1の先端部と基材12 との隙間に存在する塗料11の量が多くなり過ぎて、塗 布停止時にノズル1の内部へ吸引しきれず、塗布終端2 2を直線的にすることが困難となる。

もよい。例えば曲率半径を持つ湾曲した形状、多角形

状、シャープエッヂ形状でもよい。

【0091】本実施の形態により、平均粒子径5 μmの カーボンを分散した粘度5ポイズの塗料を、基材として 厚さ20μmのフイルムに間欠塗布した。ヘッド2の移 助量はLOmmとした。LOOmm塗布した後、LOm m塗布しない部分を設ける間欠塗布を繰り返し行った。 フィルムの走行速度は20m/min、塗布量は80c c/m'である。

【0092】本実施の形態により、図16に示すよう に、基材 1 2 に塗料 1 1 を塗布した塗布部 2 3 の塗布終 端22及び塗布始端24を直線的にすることができ、さ 【0084】本実施の形態では、確実に塗料11をリタ 50 らに、塗布始端24における厚塗りもなく、フィルム走 により同様の間欠塗布を行った結果、図15に示すよう に、塗布部23の塗布終端22及び塗布始端24が乱

れ、さらに塗布始端24は厚塗りとなってしまった。以

上の結果から、本実施の形態の効果が優れていることが

判る。

【0099】一方、基材12を支持するロール13の直径は50mm以上とする。通常は直径150mmから400mmの範囲である。50mmよりも小さい場合、ロール13の曲率半径の関係で下流リップ15と基材12との隙間は、最も狭い部分と広い部分の差が大きくなりすぎて、結果的に液溜り部17の塗料の量が多くなる。

へ吸引しきれずに塗布終端22が乱れてしまう。

【0093】(実施の形態4)実施の形態4は、請求項4に記載の発明の間欠塗布装置に関する。本実施の形態に関しては、図8に示すように、ノズル1のリップ先端部の形状に最も大きな特徴がある。基材12の走行方向10に対してスリット7より上流側に設けた上流リップ14がスリット7より下流側に設けた下流リップ15に対して基材側に突き出ており、その突き出し量dは5μm以上、1000μm以下とする。

【0100】また、スリット7のスリットギャップSGは、0.1mm以上、2mm以下とする。スリットギャップSGが0.1mmよりも小さい場合、塗料11を吸引するとき、スリットギャップSGが小さすぎて、スリット7内を流れる塗料11の抵抗が大きくなり、吸引できなくなる。またスリットギャップSGが2mmよりも長いと、スリット7の出口部の塗料の量が多すぎて、塗布終端22を直線的にすることが不可能である。

この結果、塗布停止時に液溜り部の17塗料をノズル1

【0094】また、上流リップ14の面長をL2、下流リップ15の面長をL1としたとき、0.1mm $\le L1$ ≤ 3 mmとする。さらに好ましくは、0.1mm $\le L1$ ≤ 2 mmとする。L2に関しては、特に限定するものではないが、通常0.2mm以上、5mm以下の範囲とする。なお、取り付け六16は、図1に示すハウジング5を取り付けるためのものである。他の構成は上記実施の形態1と同じである。

【0101】また、ノズル1の先端部とロール13に支持された基材12とのギャップは2mm以下が好ましい。2mmよりも大きいとノズル1の先端部と基材12との隙間に存在する塗料11の量が多くなり過ぎて、塗布停止時にノズル1の内部へ吸引しきれず、塗布終端22を直線的にすることが困難となる。

【0095】上記構成において、間欠塗布の動作に関しては実施の形態1または2と同じであるので省略し、本実施の形態特有の効果についてのみ説明する。

【0102】本実施の形態により、下流リップ15の面長L1が2mmであって、上流リップ14の突き出し量dが3μm、5μm、1000μm、1100μmの4つのノズルを用い、平均粒子径5μmのカーボンを分散した粘度5ポイズの塗料を、基材として厚さ20μmのフイルムに間欠塗布した。基材走行方向に対して、長さ100mm塗布した後、10mm塗布しない部分を設ける間欠塗布を繰り返し行った。フイルムの走行速度は20m/min、塗布量は80cc/m²である。

【0096】上流リップ14を基材12側へ突き出すことにより、上流リップ14と基材12との隙間を小さくすることができる。この結果、塗布時にその隙間に存在する塗料11の量を少なくできるため、塗布停止時に塗料11をノズル1内部へ吸引するとき、確実に吸引でき、基材12に塗料11を塗布した塗布部23の塗布終端22及び塗布始端24を直線的にすることができる。【0097】突き出し量dが5μmよりも小さい場合には、塗料11の溜りの量が多いため、本発明の効果が損

【0103】本実施の形態により、上流リップ14の突き出し量dが5μmと1000μmのノズルでは、図16に示すように、基材12に塗料11を塗布した塗布部23の塗布終端22及び塗布始端24を直線的にすることができ、さらに、塗布始端24における厚塗りもなく、フィルム走行方向で均一な厚みの間欠塗布ができた。一方、上流リップ14の突き出し量dが3μmと1100μmのノズル及び従来例により同様の間欠塗布を行った結果、図15に示すように、塗布部23の塗布終端22及び塗布始端24が乱れ、さらに塗布始端24は厚塗りとなってしまった。以上の結果から、本実施の形態の効果が優れていることが判る。

【0097】突き出し量dが5 μ mよりも小さい場合には、塗料11 の溜りの量が多いため、本発明の効果が損なわれる。また突き出し量dが1000 μ mよりも大きいときには、下流リップ15 と基材12 との隙間が広くなりすぎて、この隙間に存在する塗料11 の量が多くなりすぎ、塗布停止時にノズル1 の内部へ塗料を吸引しきれなくなり、塗布部23 の塗布終端22 及び塗布始端24が乱れてしまう。

【0104】(実施の形態5)実施の形態5は、請求項5 に記載の発明の間欠塗布装置に関する。本実施の形態に関しては、図9に示すように、ノズル1のリップ先端部の形状に最も大きな特徴がある。基材12の走行方向に対して、スリット7より下流側に設けた下流リップ15の先端部28をシャープエッヂとする。上流リップ1504は、特に限定するものではないが、通常、基材12の

【0098】また、下流リップ15の面長L1が0.1 mmよりも小さい場合、確かに液溜り部17の塗料の量は少なくなるが、長さが短すぎて下流リップ15と基材12との隙間に圧力がかからず、幅方向の膜厚の均一性が損なわれる。またL1が3mmよりも長いと、液溜り部17の塗料の量が多すぎて、塗布部23の塗布終端22及び塗布始端24を直線的にすることが不可能である。また、塗料11の粘度が1ポイズ以上の高い場合には、さらにノズル1の内部へ液溜り部17の塗料を吸引し難くなるため、L1は2mm以下が好ましい。

,

走行方向の面長を0.2mm以上、5mm以下の範囲とする。なお、取り付け六16は、図1に示すハウシング5を取り付けるためのものである。他の構成は上記実施の形態1と同じである。

【0105】上記構成において、本実施の形態のノズル 1を用いて連続走行する基材12に塗料11を塗布している状態を図10に示し、図11は塗布を停止している 状態を示す。

【0106】塗布時においては、ポンプ(図示せず)等により、塗料11は供給配管8を通りハウジング5に設 10けた流入口18を通り、ヘッド2の供給路3を流れ、ノズル1のマニホールド6へ流れ込み、さらにスリット7から押し出され、ロール13に支持され連続走行する基材12上に塗布される。

【0107】塗布停止時においては、ヘッド2を矢印A方向に移動させることで、吸引部25を形成し、ノズル1の下流リップ15と基材12との間及びスリット7の出口部とに存在する塗料11をノズル1の内部へ吸引することができる。本実施の形態では、下流リップ15の先端部28をシャーブエッヂとしてあるので、下流リップ15と基材12との間には液溜りが存在せず、従って、ヘッド2の移動で塗料を吸引する量がきわめて少ないため、確実にノズル1と基材12との間に存在する塗料11をノズル1内部に引き込むことができる。この結果、塗布量が多い場合にも、塗布部23の塗布終端22及び塗布始端24を直線的にすることができる。

【0108】また、スリット7のスリットギャップSGは、0.1mm以上、2mm以下とする。スリットギャップSGが0.1mmよりも小さい場合、塗料11を吸引するとき、スリットギャップSGが小さすぎてスリット7内を流れる塗料11の抵抗が大きくなり、吸引できなくなる。また、スリットギャップSGが2mmよりも長いと、スリット7の出口部の塗料11の重が多すぎて、塗布部23の塗布終端22及び塗布始端24を直線でいてすることがが不可能である。

【0109】吸引する塗料11の量は、ヘッド2の移動で形成された吸引部25の体積に相当する。供給路3の入口はハウジング5の摺動面で閉塞され、塗料11は供給配管8を通り、ハウジング5に設けた流入口18からヘッド2のリターン路4を流れ、リターン配管9に流れ40る。従って、塗布停止時においても、供給配管8における塗料圧力の上昇を抑制できるので、塗布再開時においてヘッド2を矢印B方向に移動させ、ノズル1への塗料の供給を開始したときにノズル1の塗料圧力を上昇させることがない。このため塗布始端24の厚塗りを抑制できる。

【0110】なお、ヘッド2は回転止めのため、断面形状が角形、多角形形、もしくは円形で回り止めヒン(図示せず)等を取り付けてもよい。

【0111】本実施の形態のもう1つの特徴は、ヘッド 50

2を矢印A方向へ移動させるだけで、ノズル1への塗料の供給を遮断すると同時にリターンさせ、さらにノズル1の先端部と基材12との間及びスリット出口部とに存在する塗料をノズル1の内部へ吸引することができるという3つの機能、遮断とリターンと吸引、を持つことに

【0112】本実施の形態においては、塗布時にヘッド2のノズル側端面26とスリット面27とが同一平面となることが好ましい。同一平面とすることで不必要な凹凸が無いため、塗料11がスリット面27に溜らず、塗布中に塗料の塊などにより塗工筋の発生が抑制できる。【0113】また、ノズル1の先端部とロール13に支持された基材12とのギャップは2mm以下が好ましい。2mmよりも大きいとノズル1の先端部と基材12との隙間に存在する塗料11の量が多くなり過ぎて、塗布停止時にノズル1の内部へ吸引しきれず、塗布部23の塗布終端22及び塗布始端24を直線的にすることが困難となる。

【0114】本実施の形態により、平均粒子径5μmのカーボンを分散した粘度5ポイズの塗料を、基材として厚さ20μmのフイルムに間欠塗布した。基材12の走行方向に対して、長さ100mm塗布した後、10mm塗布しない部分を設ける間欠塗布を繰り返し行った。フィルムの走行速度は20m/min、塗布量は80cc/m²である。

【0115】本実施の形態により、図16に示すように、基材12に塗料11を塗布した塗布部23の塗布終端22及び塗布始端24を直線的にすることができ、さらに、塗布始端24における厚塗りもなく、フイルム走行方向で均一な厚みの間欠塗布ができた。一方、従来例により同様の間欠塗布を行った結果、図15に示すように、塗布部23の塗布終端22及び塗布始端24が乱れ、さらに塗布始端24は厚塗りとなってしまった。以上の結果から、本実施の形態の効果が優れていることが判る。

【0116】(実施の形態6)実施の形態6は、請求項16に記載の発明の間欠塗布方法に関するもので、図1及び図2を参照しながら説明すると、ヘッド2によりノズル1に供給した塗料11を連続走行する基材12上に塗布する塗布工程と塗布停止工程とを有し、塗布停止工程は、ノズル1への塗料11の流れを遮断し、かつノズル1以外に導くと同時に、ノズル1内部及びスリット7の出口部の塗料11をノズル1内部に設けた吸引部25に吸引し、塗布工程は、ノズル1への塗料11の流れを開放すると同時に、吸引部25に吸引された塗料11をノズル1内部へ戻し、吸引される塗料11の量はノズル1のスリット幅10mm当り、0.1mm・以上、500mm・以下とし、塗料11を基材12上に間欠的に塗布形成するものである。

【0117】すなわち、塗布時においては、ポンプ (図

示せず)等により、塗料11は供給配管8を通りハウジング5に設けた流入口18を通り、ヘッド2の供給路3を流れ、ノズル1のマニホールド6へ流れ込み、さらにスリット7から押し出されロール13に支持され連続走行する基材12上に塗布される。

【0118】塗布停止時においては、ヘッド2を矢印A方向に移動させることで、吸引部25を形成し、ノズル1の先端部と基材12との間及びスリット出口部とに存在する塗料をノズル1の内部へ吸引することができる。従って、塗布停止時には塗布終端を直線的にすることが 10できる。吸引する塗料11の量は、ヘッド2の移動で形成された吸引部25の体積に相当する。

【0119】供給路3の入口はハウジング5の摺動面で閉塞され、塗料11は供給配管8を通りハウジング5に設けた流入口18からヘッド2のリターン路4を流れリターン配管9に流れる。従って、塗布停止時においても供給配管8における塗料圧力の上昇を抑制できるので、塗布再開時においてヘッド2を矢印B方向に移動させ、ノズル1への塗料の供給を開始したときにノズル1の塗料圧力を上昇させることがない。このため、塗布始端の20厚塗りを抑制できる。

【0120】本実施の形態の最も大きな特徴は、ヘッド2によりノズル1の内部へ吸引する塗料の量にある。すなわち、吸引される塗料の量はノズル1のスリット幅10mm当り、0.1mm³以上、500mm³以下とする。この範囲よりも少ない場合、吸引する量が少なすぎてノズル1と基材12との間に塗料11が残存し、塗布始終端を直線的にできなくなる。

【0121】また、前記範囲よりも多くの塗料11を吸引すると、確かに塗布終端は直線的にできるが、塗布始端が乱れてしまう。この理由は、塗布停止時にヘッド2を矢印A方向へ移動させ、吸引部25へ塗料を吸引するとき、吸引量が多いためスリット7の内部にまで塗料が引き込まれた状態となる。塗布再開時に吸引された塗料11を押し出すとき、スリット7内部を流れる間に空気を巻き込み、その結果、塗布始端部の塗膜には空気が巻き込まれており、塗布始端部が乱れると同時に、製品性能上問題となる。

【0122】なお、ヘッド2は回転止めのため、断面形 状が角形、多角形形、もしくは円形で回り止めピン(図 40 示せず)等を取り付けてもよい。

【0123】本実施の形態の最も大きな特徴は、ヘッド2を矢印A方向へ移動させるだけで、ノズル1への塗料の供給を遮断すると同時にリターンさせ、さらにノズル1の先端部と基材12との間及びスリット出口部とに存在する塗料をノズル1の内部へ吸引することができるという3つの機能、遮断とリターンと吸引、を持つことにある。

【0124】本実施の形態においては、塗布時にヘッド 2のノズル側端面26とスリット面27とが同一平面と 50

なることが好ましい。同一平面とすることで不必要な凹凸が無いため、塗料がスリット面27に溜らず、塗布中に塗料の塊などにより塗工筋の発生が抑制できる。

【0125】ノズル1の先端部形状は図1では平面であるが、本実施の形態に関しては必ずしも平面でなくてもよい。例えば、曲率半径を持つ湾曲した形状、多角形状、シャーブエッヂ形状でもよい。

【0126】また、ノズル1の先端部とロール13に支持された基材12とのギャップは2mm以下が好ましい。2mmよりも大きいとノズル1の先端部と基材12との隙間に存在する塗料の量が多くなり過ぎて、塗布停止時にノズル1の内部へ吸引しきれず、塗布終端を直線的にすることが困難となる。

【0127】本実施の形態により、平均粒子径5μmのカーボンを分散した粘度5ポイズの塗料を、基材として厚さ20μmのフイルムに間欠塗布した。基材走行方向に対して、長さ100mm塗布した後、10mm塗布しない部分を設ける間欠塗布を繰り返し行った。フイルムの走行速度は20m/min、塗布量は80cc/m²である。

【0128】本実施の形態により、図16に示すように、基材12に塗料11を塗布した塗布部23の塗布終端22及び塗布始端24を直線的にすることができ、さらに、塗布始端24における厚塗りもなく、フイルム走行方向で均一な厚みの間欠塗布ができた。一方、従来例により同様の間欠塗布を行った結果、図15に示すように、塗布部23の塗布終端22及び塗布始端24が乱れ、さらに塗布始端24は厚塗りとなってしまった。以上の結果から、本実施の形態の効果が優れていることが判る。

【0129】(実施の形態7)実施の形態7は、請求項17に記載の発明の間欠塗布方法に関するもので、図12を参照しながら説明すると、ヘッド2によりノズル1に供給した塗料11を連続走行する基材12上に塗布する塗布工程と塗布停止工程とを有し、塗布停止工程は、ノズル1の先端部と基材12との間にエアノズル28よりエアを吹き付け、さらにノズル1への塗料11の流れを遮断し、かつノズル1以外に導くと同時に、ノズル1内部に設けた吸引部25に吸引し、塗布工程は、ノズル1への塗料11の流れを開放すると同時に、吸引部25に吸引された塗料11をノズル1内部へ戻し、塗料11を基材12上に間欠的に塗布形成するものである。

【0130】塗布時においては、ボンブ (図示せず)等により、塗料11は供給配管8を通りハウジング5に設けた流入口18を通り、ヘッド2の供給路3を流れ、ノズル1のマニホールド6へ流れ込み、さらにスリット7から押し出されロール13に支持され連続走行する基材12上に塗布される。

) 【0131】塗布停止時においては、ヘッド2を矢印A

方向に移動させることで、吸引部25を形成し、ノズル1の先端部と基材12との間及びスリット7の出口部とに存在する塗料11をノズル1の内部へ吸引することができる。これと同時に、本実施の形態の最も大きな特徴であるエアノズル28からノズル1と基材12との間にスリット幅方向でエアを吹き付け、隙間に存在する塗料を吹き飛ばす。従って、塗布停止時には、ノズル1と基材12との間には全く塗料が存在しない状態とすることができ、塗布終端を直線的にすることができる。

【0132】供給路3の入口はハウジング5の摺動面で閉塞され、塗料11は供給配管8を通り、ハウジング5に設けた流入口1.8からヘッド2のリターン路4を流れ、リターン配管9に流れる。従って、塗布停止時においても供給配管8における塗料圧力の上昇を抑制できるので、塗布再開時においてヘッド2を矢印B方向に移動させ、ノズル1への塗料の供給を開始したときにノズル1の塗料圧力を上昇させることがない。このため塗布始端の厚塗りを抑制できる。

【0133】なお、ヘッド2は回転止めのため、断面形状が角形、多角形形、もしくは円形で回り止めピン(図 20示せず)等を取り付けてもよい。

【0134】本実施の形態は、ヘッド2を矢印A方向へ移動させるだけで、ノズル1への塗料の供給を遮断すると同時にリターンさせ、さらにノズル1の先端部と基材12との間及びスリット7の出口部とに存在する塗料をノズル1の内部へ吸引することができるという3つの機能、遮断とリターンと吸引、の特徴を持つ。

【0135】本実施の形態においては、塗布時にヘッド2のノズル側端面26とスリット面27とが同一平面となることが好ましい。同一平面とすることで不必要な凹30凸が無いため、塗料11がスリット面27に溜らず、塗布中に塗料の塊などにより塗工筋の発生が抑制できる。

【0136】ノズル1の先端部形状は、図12では平面であるが、本実施の形態に関しては必ずしも平面でなくてもよい。例えば曲率半径を持つ湾曲した形状、多角形状、シャーブエッヂ形状でもよい。

【0137】また、ノズル1の先端部とロール13に支持された基材12とのギャップは2mm以下が好ましい。2mmよりも大きいとノズル1の先端部と基材12との隙間に存在する塗料の量が多くなり過ぎて、塗布停 40止時にノズル1の内部へ吸引しきれず、塗布終端を直線的にすることが困難となる。

【0138】本実施の形態により、平均粒子径5 μ mのカーボンを分散した粘度5ボイズの塗料を、基材として厚さ20 μ mのフイルムに間欠塗布した。基材走行方向に対して、長さ100mm塗布した役、10mm塗布しない部分を設ける間欠塗布を繰り返し行った。フイルムの走行速度は20m/min、塗布量は80cc/m²である。

【0139】本実施の形態により、図16に示すよう

に、基材12に塗料11を塗布した塗布部23の塗布終端22及び塗布始端24を直線的にすることができ、さらに、塗布始端24における厚塗りもなく、フイルム走行方向で均一な厚みの間欠塗布ができた。一方、従来例により同様の間欠塗布を行った結果、図15に示すように、塗布部23の塗布終端22及び塗布始端24が乱れ、さらに塗布始端24は厚塗りとなってしまった。以上の結果から、本実施の形態の効果が優れていることが判る。

【0140】(実施の形態8)実施の形態8は、請求項18に記載の発明の間欠塗布方法に関するもので、図13及び図14を参照しながら説明すると、ヘッド2によりノズル2に供給した塗料11を連続走行する基材12上に塗布する塗布工程と塗布停止工程とを有し、塗布停止工程は、ノズル1への塗料11の流れを遮断し、かつノズル1以外に導くと同時にノズル1内部及びスリット7の出口部の塗料11をノズル1内部に設けた吸引部25に吸引し、塗布工程は、ノズル1への塗料11の流れを開放すると同時に、吸引部25に吸引された塗料11をノズル1内部へ戻し、塗布工程におけるノズル1の内部の圧力またはノズル直前の配管内の圧力と、塗布停止工程におけるノズル1以外に導かれた塗料11の流れの圧力とを同等とし、塗料11を基材12上に間欠的に塗布形成するものである。

【0141】塗布時においては、ボンプ(図示せず)等により、塗料11は供給配管8を通りハウジング5に設けた流入口18を通り、ヘッド2の供給路3を流れ、ノスル1のマニホールド6へ流れ込み、さらにスリット7から押し出されロール13に支持され連続走行する基材12上に塗布される。

【0142】塗布停止時においては、ヘッド2を矢印A方向に移動させることで、吸引部25を形成し、ノズル1の先端部と基材12との間及びスリット出口部とに存在する塗料11をノズル1の内部へ吸引することができる。従って、塗布停止時には塗布終端を直線的にすることができる。吸引する塗料11の量は、ヘッド2の移動で形成された吸引部の体積に相当する。供給路3の人口はハウジング5の摺動面で閉塞され、塗料11は供給配管8を通りハウジング5に設けた流入口18からヘッド2のリターン路4を流れリターン配管9に流れる。

【0143】本実施の形態の最大の特徴は、リターン配管9に圧力計30と流量調整弁31、ノズル1に圧力計29を設け、流量調整弁31の調整により塗布停止時のリターン配管9内の圧力を、塗布時におけるノズル1内の圧力と同等にしてあることである。この結果、リターン時の配管9内の圧力が低下した場合には、塗布再開時にノズル1への塗料の吐出が少なくなるため薄塗となってしまうが、本発明によれば塗布再開時から所定の厚みで均一に塗布することが可能となる。

50 【0144】さらに、塗布停止時においても供給配管8

における塗料圧力の上昇も抑制できるので、塗布再開時においてヘッド2を矢印B方向に移動させ、ノズル1への塗料の供給を開始したときにノズル1の塗料圧力を上昇させることがない。このため塗布始端の厚塗りも抑制できる。

【0145】なお、ヘッド2は回転止めのため、断面形状が角形、多角形形、もしくは円形で回り止めピン(図示せず)等を取り付けてもよい。

【0146】本実施の形態の最も大きな特徴は、ヘッド2を矢印A方向へ移動させるだけで、ノズル1への塗料11の供給を遮断すると同時にリターンさせ、さらにノズル1の先端部と基材12との間及びスリット7の出口部とに存在する塗料11をノズル1の内部へ吸引することができるという3つの機能、遮断とリターンと吸引、を持つことにある。

【0147】本実施の形態においては、塗布時にヘッド2のノズル1の側端面26とスリット面27とが同一平面となることが好ましい。同一平面とすることで不必要な凹凸が無いため、塗料がスリット面27に溜らず、塗布中に塗料の塊などにより塗工筋の発生が抑制できる。【0148】ノズル1の先端部形状は図13及び図14では平面であるが、本実施の形態に関しては必ずしも平面でなくてもよい。例えば、曲率半径を持つ湾曲した形状、多角形状、シャーブエッヂ形状でもよい。

【0149】また、ノズル1の先端部とロール13に支持された基材12とのギャップは2mm以下が好ましい。2mmよりも大きいと、ノズル1の先端部と基材12との隙間に存在する塗料の量が多くなり過ぎて、塗布停止時にノズル1の内部へ吸引しきれず、塗布終端を直線的にすることが困難となる。

【0150】本実施の形態により、平均粒子径5μmのカーボンを分散した粘度5ポイズの塗料を、基材として厚さ20μmのフイルムに間欠塗布した。基材走行方向に対して、長さ100mm塗布した後、10mm塗布しない部分を設ける間欠塗布を繰り返し行った。フイルムの走行速度は20m/min、塗布量は80cc/m²である。

【0151】本実施の形態により、図16に示すように、基材12に塗料11を塗布した塗布部23の塗布終端22及び塗布始端24を直線的にすることができ、さ40 らに、塗布始端24における厚塗りもなく、フイルム走行方向で均一な厚みの間欠塗布ができた。一方、従来例により同様の間欠塗布を行った結果、図15に示すように、塗布部23の塗布終端22及び塗布始端24が乱れ、さらに塗布始端24は厚塗りとなってしまった。以上の結果から、本実施の形態の効果が優れていることが判る。

【0152】(実施の形態9)実施の形態9は、請求項 19に記載の発明の間欠塗布方法に関するもので、図1 から図3を参照しながら説明すると、ヘッド2によりノ 50

ズル1に供給した塗料11を連続走行する基材12上に 塗布する塗布工程と塗布停止工程とを有し、塗布停止工 程は、ノズル1への塗料11の流れを遮断し、かつノズ ル1以外に導くと同時にノズル1内部及びスリット7の 出口部の塗料11をノズル1内部に設けた吸引部25に 吸引し、塗布工程は、ノズル1への塗料11の流れを開 放すると同時に、吸引部25に吸引された塗料11をノ ズル1内部へ戻し、ノズル1の下流側リップ15の基材 12の走行方向の長さをし1としたとき、0.1mm≤ L1≦3mmとする。さらに好ましくは、0.1mm≤ L1≦2mmとする。L2に関しては、特に限定するも のではないが、通常0.2mm以上、5mm以下の範囲 とする。吸引される塗料11の量はノズル1のスリット 幅10mm当り、0.1mm'以上、500mm'以下と し、塗料11を基材12上に間欠的に塗布形成するもの である。ノズル1の下流側リップ15の基材12の走行 方向の長さをL1が0.1mmよりも小さい場合、確か に液溜り部17の塗料の量は少なくなるが、長さが短す ぎて下流リップ15と基材12との隙間に圧力がかから ず、幅方向の膜厚の均一性が損なわれる。また、L1が 3mmよりも長いと、液溜り部17の塗料の量が多すぎ て、塗布終端を直線的にすることが不可能である。ま た、塗料の粘度が1ポイズ以上の高い場合には、さらに ノズル1の内部へ液溜り部17の塗料を吸引し難くなる ため、L1は2mm以下が好ましい。

30

【0153】塗布時においては、ポンプ(図示せず)等により、塗料11は供給配管8を通りハウジング5に設けた流入口18を通り、ヘッド2の供給路3を流れ、ノズル1のマニホールド6へ流れ込み、さらにスリット7から押し出されロール13に支持され連続走行する基材12上に塗布される。

【0154】塗布停止時においては、ヘッド2を矢印A方向に移動させることで、吸引部25を形成し、ノズル1の先端部と基材12との間及びスリット7の出口部とに存在する塗料11をノズル1の内部へ吸引することができる。従って、塗布停止時には塗布終端を直線的にすることができる。吸引する塗料11の量は、ヘッド2の移動で形成された吸引部25の体積に相当する。

【0155】供給路3の入口はハウジング5の摺動面で閉塞され、塗料11は供給配管8を通りハウジング5に設けた流入口18からヘッド2のリターン路4を流れリターン配管9に流れる。従って、塗布停止時においても供給配管8における塗料圧力の上昇を抑制できるので、塗布再開時においてヘッド2を矢印B方向に移動させ、ノズル1への塗料の供給を開始したときにノズル1の塗料圧力を上昇させることがない。このため塗布始端の厚塗りを抑制できる。

【0156】本実施の形態のさらにもう1つの大きな特徴は、ヘッド2によりノズル1の内部へ吸引する塗料1 1の量にある。すなわち、吸引される塗料11の量はノ

ズル1のスリット幅10mm当り、0.1mm³以上、500mm³以下とする。この範囲よりも少ない場合、吸引する量が少なすぎてノズル1と基材12との間に塗料11が残存し、塗布始終端を直線的にできなくなる。また、前記範囲よりも多くの塗料を吸引すると、確かに塗布終端は直線的にできるが、塗布始端が乱れてしまう

【0157】この理由は、塗布停止時にヘッド2を矢印A方向へ移動させ、吸引部25へ塗料を吸引するとき、吸引量が多いためスリット7の内部にまで塗料が引き込 10まれた状態となる。塗布再開時に吸引された塗料11を押し出すとき、スリット7の内部を流れる間に空気を巻き込み、その結果、塗布始端部の塗膜には空気が巻き込まれており、塗布始端部が乱れると同時に、製品性能上問題となる。

【0158】なお、ヘッド2は回転止めのため、断面形状が角形、多角形形、もしくは円形で回り止めピン(図示せず)等を取り付けてもよい。

【0159】本実施の形態の最も大きな特徴は、ヘッド2を矢印A方向へ移動させるだけで、ノズル1への塗料の供給を遮断すると同時にリターンさせ、さらにノズル1の先端部と基材12との間及びスリット出口部とに存在する塗料をノズル1の内部へ吸引することができるという3つの機能、遮断とリターンと吸引、を持つことにある。

【0160】本実施の形態においては、塗布時にヘッド2のノズル側端面26とスリット面27とが同一平面となることが好ましい。同一平面とすることで不必要な凹凸が無いため、塗料がスリット面27に溜らず、塗布中に塗料の塊などにより塗工筋の発生が抑制できる。

【0161】ノズル1の先端部形状は図1では平面であるが、本実施の形態に関しては必ずしも平面でなくてもよい。例えば曲率半径を持つ湾曲した形状、多角形状、シャーブエッヂ形状でもよい。

【0162】また、ノズル1の先端部とロール13に支持された基材12とのギャップは2mm以下が好ましい。2mmよりも大きいとノズル1の先端部と基材12との隙間に存在する塗料の量が多くなり過ぎて、途布停止時にノズル1の内部へ吸引しきれず、塗布終端を直線的にすることが困難となる。

【0163】本実施の形態により、平均粒子径5 μ mのカーボンを分散した粘度5ボイズの塗料を、基材として厚さ20 μ mのフイルムに間欠塗布した。基材走行方向に対して、長さ100mm塗布した後、10mm塗布しない部分を設ける間欠塗布を繰り返し行った。フイルムの走行速度は20m/min、塗布量は80cc/m²である。

【0164】本実施の形態により、図16に示すよう に、基材12に塗料11を塗布した塗布部23の塗布終 端22及び塗布始端24を直線的にすることができ、さ 50

らに、塗布始端24における厚塗りもなく、フイルム走行方向で均一な厚みの間欠塗布ができた。一方、従来例により同様の間欠塗布を行った結果、図15に示すように、塗布部23の塗布終端22及び塗布始端24が乱れ、さらに塗布始端24は厚塗りとなってしまった。以上の結果から、本実施の形態の効果が優れていることが判る。

【0165】(実施の形態10)実施の形態10は、請求項22に記載の発明に関するもので、図1及び図2を参照しながら説明する。なお、本実施の形態では、図1及び図2における塗料11に代えて活物質ペーストを用い、基材12に代えた集電体上に塗布する。

【0166】すなわち、本実施の形態は、ヘッド2によりノズル1に供給した活物質ペーストを連続走行する集電体上に塗布する塗布工程と塗布停止工程とを有し、塗布停止工程は、ノズル1への活物質ペーストの流れを遮断し、かつノズル1以外に導くと同時に、ノズル1内部及びスリット7の出口部の活物質ペーストをノズル1内部に設けた吸引部25に吸引し、塗布工程は、ノズル1への活物質ペーストの流れを開放すると同時に、吸引部25に吸引された活物質ペーストをノズル1内部へ戻し、活物質ペーストを集電体上に間欠的に塗布形成するものである。

【0167】本実施の形態に用いる活物質ペーストは、電極活物質、導電剤、結着剤、溶媒などをバッチ式混合機、連続式混練機、ディゾルバー、ホモジナイザ等を用いて作成することができる。

【0168】電極活物質としては、H*、Li*、N a'、k'が挿入または放出できる化合物であればよい が、遷移金属カルコゲナイド、炭素質材料などを主体と した酸化物を用いることができ、特にリチウム含有遷移 金属酸化物、遷移金属酸化物、炭素質材料を主体とした 酸化物が好ましい。遷移金属としてはMn、Co、N i、V、Feを主体とすることが好ましい。具体的に は、LiCoO₁、LiNiO₂、LiCo_{0.5}Ni_{0.5}O 2. LiMn2O4. LiCo., AL., 1O2. Fe3O4 & どがあげられる。炭素質材料については、002面の面 間隔が3.35~3.8OA(オングストローム)、密 度が1.1~1.7g/cm'が好ましく、黒鉛、石油 コークス、クレゾール樹脂焼成炭素、フェラン樹脂焼成 炭素、ポリアクリロニトリル繊維焼成炭素、気相成長炭 素、メソフェースピッチ焼成炭素などを用いることがで きる。

【0169】導電剤は、構成された電池において化学変化をおこさない電子伝導性材料であれば何でも良いが、通常、天然黒黒鉛(嫌状黒鉛、燐片状黒鉛など)、人工黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維などの導電性材料を単体または混合物として含ませることができる。

0 【0170】結着剤としては、カルボシキメチルセルロ

ース(以下CMCと略す。)、ポリビニルアルコール、 フッ素系樹脂、ホルマール系樹脂、アセタール系樹脂、 アクリル/スチレン系共重合樹脂、スチレン/ブタジエ ン系共重合樹脂(以下SBR系樹脂と略す。)等の多糖 類、熱可塑性樹脂およびゴム弾性を有するポリマーを少 くとも単体あるいはこれらの混合物を用いることができ る。結着剤は溶媒に可溶しても良く、分散または懸濁し てもよい。

【0171】溶媒は特に限定させるものではないが極性 の高いものが好ましく、例えば水、エチルアルコール、 N-メチルピロリドン、トルエン、メチルエチルケト ン、メチルイソブチルケトン、シクロヘキサノン、エタ ノール、メタノール、酢酸ブチル等を用いることができ る。

【0172】集電体は、アルミニウム、銅、ニッケル、 ステンレスなどの金属箔や無機酸化物などを用い、連続 体、パンチングメタル、ネットなどとする。

【0173】前述の間欠塗布装置を用いて、上記した活 物質ペーストを連続走行する集電体に間欠塗布し、集電 体の幅方向にリード部を形成させるための未塗布部を設 けることで、剥離工程を省略することが可能となり、ま た剥離した活物質粉体が極板表面に付着することがな い。また、従来の剥離工程を経た極板と比較して、間欠 塗工では活物質層をはぎ取るときの機械的なストレスが ないために、活物質層と集電体の境界面において活物質 の接着性が向上する。とれらの効果によって、放電容 量、レート特性及びサイクル特性の向上した電池を得る ことができる。

【0174】以下、本発明をリチウム二次電池の製造方 法を実施例として説明する。

(実施例)メソッフェーズビッチ焼成炭素、SBR系樹 脂、CMClwt%水溶液を連続式二軸混練装置を用い て混練した後、目開きが0.1mmのステンレス製フィ ルターで濾過して負極活物質塗料を得た。得られた塗料 を、銅集電体上に実施の形態1に示した間欠塗布装置を 用いて、400mmの塗布部と20mmの未塗布部を有 する負極板を得た。

【0175】LiCoOぇ、導電性カーボンブラック、 フッ素系樹脂、CMC 1 w t %水溶液を連続式二軸混練 装置を用いて混練した後、目開きが0.1mmのステン レス製フィルターで濾過して正極活物質塗料を得た。得 られた活物質塗料を負極と同様の間欠塗布装置を用いて アルミニウム集電体上に間欠塗布して、390mmの塗 布部と5mmの未塗布部を有する正極板を得た。

【0176】得られた正・負極板をそれぞれ所定幅にス リットしてAサイズリチウムイオン二次電池を得た。

【0177】(比較例)正極及び負極活物質塗料は、上 記実施例と同様の塗料を用い、コンマダイレクトコート 法により連続的に塗布して電池電極を作製した。得られ た正極及び負極板を実施例と同じ未塗布部を有するよう 50

に剥離し、それぞれ所定幅にスリットしてAサイズリチ ウムイオン二次電池を得た。

【0178】得られた各試料について以下の評価を行っ

(1)電圧不良率

初期充電を完了した電池を45℃の恒温層内で2週間保 存した後、取り出して常温に戻した後に電圧測定し、

3. 9 V以下であった個数を求めると、実施例では10 ○○個中1個であったのに対して、比較例においては1 000個中15個発生した。

【0179】超電力不良をおこした電池を分解してみる と、比較例の極板は剥離境界部分での活物質脱落が多 く、また脱落した活物質が多く見られた。実施例では剥 離境界部分での活物質の脱落はほとんど見られず、接着

【0180】(2)放電容量「mAh] 室温において、一定電流(160mA)、終止電圧 (4.2V)で充電を完了した二次電池を、一定電流

性が改善されていることが解った。

(160mAから3200mA)で放電して、放電開始 から低下する電圧が終止電圧(2.0V)に達した時の 放電容量で比較した。実施例では容量のばらつきが少な く、また、放電容量低下がほとんどみられないことが解 った。図17は、放電容量測定を行ったときの放電電圧 曲線の例である。

【0181】(3) サイクル寿命[サイクル回数] 室温において、一定条件(放電:電流1600mA、終 止電圧2.0V、充電:電流160mA、終止電圧4. 2V)で充放電を繰り返して放電容量を測定し、初期放 電容量の90%になったときの充放電回数(サイクル) で比較した。比較例では600サイクルで90%となっ たが、実施例では1000サイクルでも劣化はほとんど 見られず劣化率が極めて改善され、さらに容量バラッキ がほとんどなかった。

【0182】また、サイクル評価を終えた電池を分解し て極板状態を観察したところ、比較例による極板は活物 質層の脱落がみられ、特に剥離した部分の活物質層の脱 落が多くみられた。これに対し実施例では活物質の脱落 はほとんど観察されず、接着性は劣化していないことが 解った。また、比較例では極板表面にリチウムの折出が みられた。電子顕微鏡写真による観察を行ったところ、 極板上に付着した剥離活物質が核となって析出が起こっ ていることが解った。図18は、サイクル寿命測定を行 ったときの充放電回数に対する放電容量変化の例であ

【0183】以上のようにリチウム二次電池の製造法に 適用して、本発明の間欠途布装置の効果を確認すること

【0184】なお、上記実施例では、リチウム二次電池 の製造方法のみを記載したが、正極電極の製造方法でも 同様な効果が得られ、またニカド電池、あるいはニッケ

ル水素電池の正、負極においても同様な効果を得るとと ができる。

[0185]

【発明の効果】以上のように本発明の間欠塗布装置によ れば、連続走行する基材上に間欠装置より供給された塗 料をノズルにより塗布するようにし、間欠手段は、塗布 停止時には、前記ノズルへの前記塗料の流れを遮断し、 かつ前記ノズル以外に導くと同時に前記ノズル内部及び スリット出口部の前記塗料を前記ノズル内部に設けた所 定の場所に吸引し、塗布再開時には、前記ノズルへの前 10 記塗料の流れを開放すると同時に前記所定の場所に吸引 された前記塗料を前記ノズル内部へ戻すように構成した から、塗布停止時にはノズルへの塗料供給を停止すると 同時に、ノズルと基材との間及びノズルのスリット出口 部の塗料をノズル内部に強制的に引き込むことができ、 塗布量が多い場合にも、塗布始終端を直線的にすること ができる。さらに、塗料はリターン路によりノズル以外 の所に流れていくので、塗料供給手段の圧力が高まるこ とがなく、塗布再開時においてもその圧力を通常の圧力 と同等にできるため、塗布再開時の厚塗りを抑制でき

【0186】また、本発明の間欠塗布方法によれば、塗 料を間欠的に供給する間欠手段によりノズルに供給した 塗料を連続走行する基材上に塗布する塗布工程と塗布停 止工程とを有し、塗布停止工程は、前記ノズルへの前記 塗料の流れを遮断し、かつ前記ノズル以外に導くと同時 に、前記ノズル内部及びスリット出口部の前記塗料を前 記ノズル内部に設けた所定の場所に吸引し、塗布工程 は、前記ノズルへの前記塗料の流れを開放すると同時に 前記所定の場所に吸引された前記塗料を前記ノズル内部 30 へ戻し、前記吸引される前記塗料の量は前記ノズルのス リット幅10mm当り、0.1mm³以上、500mm³ 以下とし、前記塗料を前記基材上に間欠的に塗布形成す るから、塗布停止時にノズル内部に強制的に引き込む塗 料の量をスリット幅10mm当り0.1mm'以上とす ることで、塗布停止時にノズルと基材との間及びノズル のスリットの出口部の塗料を確実にノズル内部に吸引で きる。さらに前記量を500mm3以下とすることによ り、塗布再開時にノズル内部の所定の場所に吸引した塗 料をノズルへ戻すとき、スリット内を出口に向かって押 し出される間に塗料の中に空気を巻き込むことが抑制で きる。この結果、塗布量が多い場合にも、塗布始終端を 直線的にすることができる。

【0187】また、本発明の電池電極の製造方法によれば、間欠手段によりノズルに供給した活物質ペーストを連続走行する集電体上に塗布する塗布工程と塗布停止工程とを有し、塗布停止工程は、前記ノズルへの前記活物質ペーストの流れを遮断し、かつ前記ノズル以外に導くと同時に、前記ノズル内部及びスリット出口部の前記活物質ペーストを前記ノズル内部に設けた所定の場所に吸 50

5、果竜体の幅方向に未望布部を間欠的に形成することで、工数を低減して生産性を向上できるとともに、活物質層と集電体の境界部の接着性を向上することができ、放電容量、レート特性及びサイクル特性等、電池特性を向上した電池を得ることができる。

【0188】また、本発明の非水電解液電池によれば、 上記の電池電極の製造方法により作成した電池電極を用いたから、放電容量、レート特性及びサイクル特性等、 電池特性を向上した電池を得ることができる。

【図面の簡単な説明】

【図1】本発明の実施の形態1の間欠塗布装置の塗布時の側断面図

【図2】同間欠塗布装置の塗布停止時の側断面図

【図3】本発明の実施の形態2の間欠塗布装置のノズルの側断面図

20 【図4】本発明の実施の形態3の間欠塗布装置の塗布時の側断面図

【図5】同間欠塗布装置の塗布停止時の側断面図

【図6】同間欠塗布装置のヘッドの斜視図

【図7】本発明の実施の形態3(図5)におけるC-C 断面図で

(a) はリターン路をヘッドの周面上に設けた図

(b) はリターン路をヘッド内部に貫通させた図

【図8】本発明の実施の形態4の間欠塗布装置のヘッドの側断面図

【図9】本発明の実施の形態5の間欠塗布装置のヘッド の側断面図

【図10】同間欠塗布装置の塗布時の側断面図

【図11】同間欠塗布装置の塗布停止時の側断面図

【図12】本発明の実施の形態7の間欠塗布方法の装置の塗布停止時の側断面図

【図13】本発明の実施の形態8の間欠塗布方法の装置の塗布時の側断面図

【図14】同間欠途布方法の装置の塗布停止時の側断面 図

3 【図15】従来の間欠塗布装置による間欠塗膜の平面図 【図16】本発明の間欠塗布装置による間欠塗膜の平面図

【図 17】本発明の実施の形態 10の電池電極の製造方法により製造した電極を用いた電池の放電電圧特性図

【図18】同電池電極の製造方法により製造した電極を 用いた電池のサイクル寿命測定を行ったときの放電容量 変化を示す特性図

【符号の説明】

1 ノズル

0 2 ヘッド(間欠手段)

36

(20)

特開平8-229481

38

7 スリット1 1 塗料1 2 基材

スリット*13 ロール塗料25 吸引部 (所定の場所)

37

[図1]

*

,

1 ノズル 2 ヘッド(間欠手段) 7 スリット 11 塗料 12 基材 13 ロール

【図2】

[図4]

【図5】

A 20 21 21

サイクル 回数

【図12】 [図11]

放電電流 (mA)

[図14]

特開平8-229481

フロントページの続き

(72)発明者 大花 頼人

大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 林 徹也

大阪府門真市大字門真1006番地 松下電器 産業株式会社内