22 Problems

Aayush Bajaj

December 25, 2023

Welcome! Today is the 26^{th} of December, and it is my birthday :D.

Today we are going to be playing a game called 22 Problems. This game consists of 22 (mostly) mathematical problems and whoever has the highest score by the deadline will be the winner!

Rules

- 1. You must try to avoid using the internet. All books are fair game.
- 2. If your work is unpleasant to read, and / or difficult to mark, I shall discard it.
- 3. The boxed numbers in the right margin are marks.
- 4. Deadline: 11:59PM, 31st of December 2023.
- 5. Submission: LATEX appraised, hand-written accepted. FILENAME MUST BE YOUR FULL NAME!

Submit

Problems

1.

 $y = \sqrt{q - n^2}$ $y = \sqrt{q - n^2}$ $y^2 + n^2 = q, y > 0$

 $\int_0^3 \sqrt{9 - x^2} \, dx$ $A = \frac{1}{4} \pi r^2$ $= \frac{1}{4} \pi (3)^2$

= $\begin{bmatrix} 9\pi \\ 4 \end{bmatrix}$

2.

=2× Volume (V)

$$= \frac{4}{3} \pi r^{3}$$

$$= \frac{4\pi}{3}$$

 $2\iiint\limits_{V}\mathrm{d}V,V:\{(r,\theta,\phi)\,|\,0\leq r\leq 1,\,0\leq\theta\leq 2\pi,\,0\leq\phi\leq\pi\}$

2

2

]

2

3

4

$$\mathcal{I} = \int \frac{\cos x}{3 + 2\cos x} \, \mathrm{d}x$$

4. Precisely mark out $\sqrt{2}$ on a number line.

 $\frac{dt_{-} - \int \frac{t^2 + 5 - 6}{5 + t^2} = -\int 1 dt + \int \frac{6}{5 + t^2} dt}{= -\int 1 dt + \int \frac{6}{5 + t^2} dt}$

5. What is the exact value of $(\frac{3}{2})!$

 $\Gamma(1-2) T(2) = \pi$ $\Rightarrow \Gamma(\frac{1}{2})^{2} = \frac{\pi}{S^{2}(\frac{\pi}{2})} (Reflection T(2+1) = 2T(2)$ $\Rightarrow \Gamma(\frac{1}{2})^{2} = \frac{\pi}{S^{2}(\frac{\pi}{2})} (\frac{1}{2} - \frac{1}{2}) (Reflection T(2+1) = 2T(2)$ $\Rightarrow T(\frac{1}{2})^{2} = \frac{\pi}{S^{2}(\frac{\pi}{2})} (\frac{1}{2} - \frac{1}{2}) (\frac{1}{2}) = \frac{1}{2} \Gamma(\frac{1}{2})$ $\Rightarrow T(\frac{1}{2}) = \pi$ $\Rightarrow (\frac{3}{2})! = T(\frac{1}{2}) = 3\pi$ 6. Prove the Puthermore Theorem Theo

6. Prove the Pythagorean Theorem.

Dacd 11126de2

200 → C1 - d - 9

d - 62 0

 $\Rightarrow (c_1 + c_2)^2 = c_1^2 + c_2^2 + 2c_1(2)$ $= (ad)^2 + (bd)^2 + 2d^2$

7. Find the derivative of $\sin x$ using first principles. State any and all lemmas. $\sin (x) = \sin x + \sin x$ h lemma 1 Sin(n) ws(h) + sin (h) wsn - sinn (sin (A+B) = sin Acus B + sin Bcos A

8. (a) List the first 10 terms of the Fibonacci sequence.

1, 1, 2, 3, 5, 8, 13, 21, 34, 55

1

	(b) Explain how this sequence is present in the Mandelbrot Set.	2
9.		3
	$\int_{0}^{\infty} e^{-x^2} dx$	
	J_∞	
10	VVI	2
10.	What does the sum $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots$ converge to?	
	ment emoticions	1
11.	Calculus is for everyone whilst analysis is for metternaticions	
	What is the angle between the two curves $f(x) = x^4 - 5x^3$ and $g(x) = 8x - 40$ at either of their	2
-	points of intersection?	
te	points of intersection? $P'(s) = 4(s)^3 - 15(s)^2$ $P'(s) = 4(s)^3 - 15(s)^2$	
9	$n^{3}(n-s)-8(n-s)=0$ $g'(s)=8$ $0=ten^{-1}(125)-ten^{-1}(8)$	
7	$(213 \circ 1) \times (-1) = 0$	
=	2 2= 5 05 2	
13. Ý	What is the shortest path you can take from node s to node t in figure 1?	2
	$S \rightarrow V_2 \rightarrow V_q \rightarrow t$	
14. V	What are the complex solutions to $\sin(z) = 2$? $e^{i}t - e^{-i}t = 4i$ $e^{i}(a+ib) = -i(a+ib) = 4e^{-i}t = $	2
	$e^{t} - e^{-t} = 4i$ $e^{-t} = 4i$ e^{-t}	
>.	e ((4115) - ((4115) = 4e = 7(5(1)(e - e) = 0, Sin(A)(e + e) = 4	
e	bela - ebe = 4e 12 b=0 or a=241) =	
0	(cis(a)) - e (cis(-a)) = 4i mpissible 19 e + e = 41-1	
	CM(A)72 C 7 T(1)2 +2	
	Z= (4/41) =+ e/n (2+53) eb = 4(-1) =1/16-4	
	$= 2(-1)^{k} + \sqrt{3}$	
	$b = \ln(2 \pm \sqrt{3})$	

i	4	9	16	25	36
1	3	6	10	151	21

15.	(a) Find a closed form for the recurrence $T(n) = T(n-1) + T(n-2)$, with initial conditions $T(0) = 0$ and $T(1) = 1$.	4
	0,1,1,2,3,5,8,13,21,34	
	(b) Hence find $T(27)$.	1
. 16		
	Solve the following differential equation $y'' + 2y' + y = e^{-x}\cos(x)$ with initial value conditions of $y = 0$ and $y' = 1$.	2
	$y = 0 \text{ and } y' = 1.$ $y = e^{2}(A\cos x + B\sin x)$ $y' = 2e^{2}(A\cos x + B\sin x) + 2e^{2}(B\cos x - A\sin x)$ $y'' = 2e^{2}(A\cos x + B\sin x) - 2e^{2}(B\cos x - A\sin x) - 2e^{2}(B\sin x - A\sin x)$ $= -2e^{2}(B\cos x - A\sin x)$	
2	4! =2e-7 (Acos x+Bs m) + 2e (Bwsn-Asinn)	
	4" = 20 2 (Acosn + Bsinn) - 20 (Brosn - Asinn) - 20 (By) + 20 (-Alosn -	Bsin
2	$= -2e^{-\pi}(b\omega n - 4sinn)$	
1+2	$y'+y''=-e^{-2(A \cos n+B \sin n)} \Rightarrow B=0, A=-1 y=Ae^{-2(\cos n)}$	
17.	What is the dot product of the functions $\sin(x)$ and $\cos(x)$ Linear question. $5 \times (2 \times) = 2 \sin(x)$	2
((sinc (coson) = (sinon coson doc	
	= 1000/201101 = 1 (01/201)	
	$=\frac{1}{2}\int \sin(2\pi)d\pi = \frac{1}{4}\cos(2\pi)$	
18	How many permutations of the Public cube exist? Circ ways	
10.	How many permutations of the Rubiks cube exist? Give your answer as an expression.	3
	8 corner on suprot () sty 28 12/x0/3	27
. 1 78	Centre squares on fixed > 48 remaining squared. 8 corners on supprotete > 81×38 ×12!×2!2 Radges con supprotete > 12!×2!2)
122		
19.	Decode using the Caesar cipher: Urqh zdv qrw exlow lq d gdb.	2
	rone was not built in a day	
20	Coloulate the length of the course for 0 to 45 5() 2	
20.	. Calculate the length of the curve from 0 to 4 for $f(x) = x^2$.	2

Marking

Question:	1	2	3	4	5	6	7	8	9	10	11	12
Points:	2	2	3	2	2	3	4	3	3	2	1	2
Score:												
Question:	13	14	15	16	17	18	19	20	21	22		Total
Points:	2	2	5	2	2	3	2	2	2	2		53
Score:						Maria		196			NAS -	