Programação de Alto Desempenho

Atividade 2 - Otimizando o desempenho de códigos para afinidade de memória

Lucas Santana Lellis - 69618 PPGCC - Instituto de Ciência e Tecnologia Universidade Federal de São Paulo

I. Introdução

Nesta atividade foram realizados experimentos relacionados com a otimização do desempenho de algoritmos quanto à afinidade de memória.

Cada experimento foi realizado 5 vezes, e os resultados apresentados são a média dos resultados obtidos em cada um deles.

Todos os programas foram feitos em C, utilizando a biblioteca PAPI para estimar o tempo total de processamento, quantidade de chache misses em memória cache L2, e o total de operações de ponto flutuante.

As especificações da máquina utilizada estão disponíveis na Tabela I.

Tabela I: Especificações da Máquina

CPU	Intel Core i5 - 3470
Cores	4
Threads	4
Clock	3.2 GHz
Cache L3	6144 KB
Cache L2	256 KB * 4
Hardware Counters	11
RAM	8 Gb
SO	Fedora 4

II. EXPERIMENTO 1

Nesse experimento foi implementado o algoritmo tradicional para multiplicação de matrizes, sem blocagem, para verificar a diferença no desempenho causada pela mudança da hierarquia dos laços: ijk, ikj, jik, jki, kij e kji.

Tabela II: Desempenho obtido no exp 1

Size	Mode	Time(ms)	L2_DCM	MFLOPS	CPI
128	IJK	2472.6	37676.6	2375.340	0.46
128	IKJ	1194.0	47386.4	0.024	0.43
128	ЛK	2373.6	73277.2	2323.736	0.46
128	JKI	2924.2	81080.2	1987.570	0.47
128	KIJ	1176.8	36706.2	0.022	0.43
128	KJI	2941.2	46855.6	1924.270	0.47
512	IJK	1022019.6	17066136.8	1900.024	3.29
512	IKJ	66899.4	2479322.4	0.006	0.41
512	ЛK	1012175.2	2555677.8	1677.302	3.22
512	JKI	1963011.8	18523808.0	2119.512	4.99
512	KIJ	72220.4	8025583.2	0.010	0.45
512	KJI	1955114.4	18025796.8	2113.716	4.97
1024	IJK	9527251.4	93892907.4	1611.058	3.79
1024	IKJ	593359.8	19241602.8	0.010	0.47
1024	ЛK	9360364.6	45598396.6	1393.638	3.73
1024	JKI	18279286.4	305495399.4	2081.608	5.84
1024	KIJ	830296.4	74699293.8	0.010	0.65
1024	KJI	17779759.8	380496209.0	2056.210	5.83

III. EXPERIMENTO 2

Nesse experimento foi implementado o algoritmo para multiplicação de matrizes com blocagem, para verificar a diferença no desempenho causada pela mudança do tamanho do bloco para 2, 4, 16 e 64.

Tabela III: Desempenho obtido no exp 2

Size	Block	Time(ms)	L2_DCM	MFLOPS	CPI
128	2	1889.0	21739.6	2693.572	0.51
128	4	1643.0	13093.0	2642.972	0.44
128	16	1504.6	10411.6	2844.076	0.44
128	64	2334.4	9106.2	1968.696	0.43
512	2	261625.0	9168913.6	2440.066	1.23
512	4	153278.4	4613041.6	2361.524	0.66
512	16	101283.4	2287292.2	2805.650	0.47
512	64	146311.2	603916.4	2192.000	0.45
1024	2	2448466.6	79349003.4	2191.378	1.44
1024	4	1349065.8	36392938.0	2169.370	0.73
1024	16	798649.0	12088370.0	2841.304	0.46
1024	64	1150514.6	2565157.2	2466.066	0.45

IV. EXPERIMENTO 3

Nesse experimento foi implementado o algoritmo de Strassen

Tabela IV: Desempenho obtido no exp 3

Size	Block	Time(ms)	L2_DCM	MFLOPS	CPI
128	16	2985.8	50046.4	956.120	0.41
128	32	1369.2	34229.6	0.016	0.40
128	64	1356.6	20563.4	0.016	0.46
512	16	163273.6	3770787.2	857.822	0.43
512	32	73496.4	2751761.8	0.010	0.43
512	64	74451.4	2058217.4	0.010	0.48
1024	16	1106576.4	27687214.6	884.880	0.44
1024	32	527144.8	20648349.0	0.010	0.44
1024	64	529975.0	15687081.6	0.004	0.50

V. EXPERIMENTO 4

Nesse experimento foi utilizada a função do BLAS

Tabela V: Desempenho obtido no exp 4

Size	Time(ms)	L2_DCM	MFLOPS	CPI
128	597.8	5575.6	1014.636	0.42
512	24481.0	327375.4	271.908	0.36
1024	185065.6	730013 /	281 374	0.35

Comparando os melhores resultados dos 4 experimentos (considerando os testes com matrizes de tamanho 1024x1024), fazemos então a comparação da Figura 1.

Figura 1: Comparação entre os melhores resultados dos quatro experimentos com relação ao tempo.

VI. EXPERIMENTO 5

Nesse experimento foi feita a comparação do desempenho da técnica de fusão de laços trabalhando com diferentes estruturas de dados.

Tabela VI: Desempenho obtido no exp 5

Size	Mode	Time(ms)	L2_DCM	MFLOPS	CPI
1000000	1	135705.0	18092.8	554.150	2.97
1000000	2	133993.6	10261.0	529.116	2.97

VII. EXPERIMENTO 6

Nesse experimento foi feita a comparação do desempenho da técnica de fusão de laços.

Tabela VII: Desempenho obtido no exp 5

Size	Mode	Time(ms)	L2_DCM	MFLOPS	CPI
1000000	1	134010.6	34039.4	506.512	2.96
1000000	2	135998.2	10592.2	520.306	3.10
1000000	3	135381.8	2382.0	514.930	2.96