Booth's Multiplication

COA Lab

30.08.2023

Signed Multiplication

- Basic shift-and-add multiplication can be extended to handle signed numbers.
- Required to sign-extend all the partial products before they are added.
 - For 2's complement representation, sign extension can be done by replicating the sign bit any number of times.

```
0101 = 0000 \ 0101 = 0000 \ 0000 \ 0000 \ 0101 = 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0101
```

```
1011 = 1111 \ 1011 = 1111 \ 1111 \ 1111 \ 1011 = 1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1011
```

An Example: 6-bit 2's complement multiplication

Note: For n-bit multiplication, since we are generating a 2n-bit product, overflow can never occur.

```
(-11)
 (+26)
(-286)
```

Booth's Algorithm for Signed Multiplication

- In the conventional shift-and-add multiplication as discussed, for n-bit multiplication, we iterate n times.
 - Add either 0 or the multiplicand to the 2n-bit partial product (depending on the next bit of the multiplier).
 - Shift the 2n-bit partial product to the right.
- Essentially we need n additions and n shift operations.
- Booth's algorithm is an improvement whereby we can avoid the additions whenever consecutive 0's or 1's are detected in the multiplier.
 - Makes the process faster.

Basic Idea Behind Booth's Algorithm

- We inspect two bits of the multiplier (Q_i, Q_{i-1}) at a time.
 - If the bits are same (00 or 11), we only shift the partial product.
 - If the bits are 01, we do an addition and then right shift.
 - If the bits are 10, we do a subtraction and then right shift.
- Significantly reduces the number of additions / subtractions.
- Inspecting bit pairs as mentioned can also be expressed in terms of *Booth's Encoding*.
 - Use the symbols +1, -1 and 0 to indicate changes w.r.t. Q_i and Q_{i-1} .
 - $01 \rightarrow +1$, $10 \rightarrow -1$, $00 \text{ or } 11 \rightarrow 0$.
 - For encoding the least significant bit Q_0 , we assume $Q_{-1} = 0$.

Examples of Booth encoding:

```
a) 01110000 :: +1 0 0 -1 0 0 0 0
b) 01110110 :: +1 0 0 -1 +1 0 -1 0
c) 00000111 :: 0 0 0 0 +1 0 0 -1
d) 0101010 :: +1 -1 +1 -1 +1 -1
```

- The last example illustrates the worst case for Booth's multiplication (alternating 0's and 1's in multiplier).
 - In the illustrations, we shall show the two multiplier bits explicitly instead of showing the encoded digits.

M: n-bit multiplicand

Q: n-bit multiplier

A: n-bit temporary register

Q₋₁: 1-bit flip-flop

Skips over consecutive 0's and 1's of the multiplier Q.

Example 1: (-10) x (13)

Assume 5-bit numbers.

M: $(10110)_2$

-M: $(0 1 0 1 0)_2$

Q: $(01101)_2$

Product = -130

 $= (1101111110)_{2}$

```
A
                               Q_{-1}
0 0 0 0
                0 1 1 0 1
                                   Initialization
                0 1 1 0 1
  1 0 1 0
                                  A = A - M
                0 0 1 1 0
  0 1 0 1
                                   Shift
                                  A = A + M
1 1 0 1 1
                  0 1 1 0
                1 0 0 1 1
  1 1 0 1
                                  Shift
                                0 \quad \mathbf{A} = \mathbf{A} - \mathbf{M}
  0 1 1 1
                1 0 0 1 1
0 0 0 1 1
                1 1 0 0
                                   Shift
```

1 1 1 1

0 0 0 1

Step 1

Step 2

Step 3

Step 5

Example 2:

(-31) x (28)

Assume 6-bit numbers.

M: $(100001)_2$

-M: $(011111)_2$

Q: $(011100)_2$

Product = -868= (110010 $011100)_2$

		Q_{-1}		Q						4			
on	Initializatio	0 0	0	1	1	1	0	0	0	0	0	0	0
Step 1	Shift	0 0	1	1	1	0	0	0	0	0	0	0	0
Step 2	Shift	1 0	1	1	0	0	0	0	0	0	0	0	0
Step 3	A = A - M Shift	1 0	1 1	1	0	0	•		_	1 1	1 1	1	0
Step 4	Shift	1 1	0	0	0	1	1	1	1	1	0	0	0
Step 5	Shift	0 1	0	0	1	1	1	1	1	0	0	0	0
Step 6	A = A + M	0 1	0	0	1	1	1	0	0	1	0	0	1
	Shift	0 0	0	1	1	1	0	0	1	0	0	1	1

Arithmetic shift right

Data Path for Booth's Algorithm

