平成30年度 秋期 ネットワークスペシャリスト試験 解答例

午後Ⅱ試験

問 1

出題趣旨

センサ,アクチュエータなどが情報ネットワークに接続され,企業間にまたがった情報システムが構築されている。そのような分野に応用されることを目的とした,様々なネットワークの規格化も進んでいる。

本問では、製造業のスマート化の基盤となるネットワークシステムの設計を題材にした。その中で、以前から広く用いられている、"Web コンピューティング"に関する知識と設計能力を前提にして、比較的新しい "メッセージ通信プロトコル MQTT"と "Web サービスの連携に用いる仕組み"に関して、本文の記述を理解し、それらを情報システムに応用できるネットワーク技術の能力を問う。

設問		解答例・解答の要点	備考
設問 1	(1)	ア 暗号化	
		イ 検知	
		ウ 認証	
		I TCP	
	(2)	X 社が運用・保守を行う機器から X 社 FW の方向に確立される TCP コネクシ	
		ョンだけを許可する。	
		クライアント証明書を配布してクライアント認証を行う。	
設問2	(1)	TCP の送信処理中に、デバイスの電源断などで TCP コネクションが開放され	
		た場合	
		メッセージの重複を防止する。	
	(3)	オ SUBSCRIBE	
		カ config/Di	
		キ デバイス Di	
		ク 交換サーバ	
	(4)	ケー業務サーバー	
設問3	(4) (1)	コ 業務サーバ, 交換サーバ サ 認可	
改同ろ	(1)	り 配刊 シ WebAP	
		ス リフレッシュトークン	
		セ 認可応答	
		ソ 認可	
	(2)	1.02	
		Web APの URI を固定にし、絶対 URI を事前に通知してもらう。	
設問4		送信元 IP アドレスを NAT ルータ-P に、宛先 IP アドレスをエッジサーバ-P	
221.3	()	に、それぞれ変換する。	
	(2)	顧客サーバ-P'から NAT ルータ-P'のポート 8883 番への通信	
		config/Di, status/Di	
	(4)	① ·1:1 静的双方向 NAT の設定を NAT ルータに追加する。	
		② ・通信を許可するルールを通信装置内の FW に追加する。	

出題趣旨

クラウドコンピューティングでは、マルチテナントが求められる。マルチテナントは仮想化技術によって実現するが、ネットワークの仮想化は、サーバ仮想化技術の発展に追従できていなかった。しかし、最近、SDN (Software-Defined Networking) の活用によって、ネットワークの仮想化が容易になってきた。

本問では、IaaS のサービス基盤構築を題材として、SDN 技術を用いない従来方式と SDN 方式の、それぞれの方式による構築方法について解説した。その中で、SDN を実現する技術の一つである OpenFlow を取り上げ、OpenFlow による構築例を示した。本問では、受験者が、業務を通して蓄積したネットワーク関連技術を基に、本文中の記述を理解し実務で活用できるかを問う。

設問		解答例・解答の要点	備考
設問1		ア スタック	
		イ ステートフル	
		ウ 負荷分散	
		エ チーミング	
設問2	(1)	・顧客ごとに異なるフィルタリングの設定が必要であるから	
-		・顧客ごとにルーティングの設定が必要であるから	
	(2)	① FWb による FWa の稼働状態	
		② ・FWa による L2SWa への接続ポートのリンク状態	
		③ ・FWa による LBa への接続ポートのリンク状態	
		・FWa による FWb の稼働状態	
		・FWb による L2SWb への接続ポートのリンク状態	
-	(0)	・FWb による LBb への接続ポートのリンク状態	
	(3)	物理サーバへの接続ポートに、全ての顧客の仮想サーバに設定された VLAN ID	
=0.00		を設定する。	
設問3		・OFCのIPアドレス	
		・自 OFS の IP アドレス	
設問4	(1)	① ・フィルタリングルール	
		② ・仮想 FW の VLAN ID ③ ・仮想 FW の IP アドレス	
		・仮想 FW のサブネットマスク ・仮想 FW の仮想 MAC アドレス	
		・ ix	
-	(0)		
設問5		顧客の L2SW 又は L3SW に接続する, L2SWa 及び L2SWb のポート発生する可能性がある問題物理サーバ 3 の障害によって, 3 顧客のシステ	
改同り	(1)	発生する可能性がある問題 物理サーバ 3 の障害によって, 3 顧客のシステムが同時に停止してしまう。	
		仮想サーバの配置 3 顧客向けの仮想サーバを、それぞれ異なった	
		物理サーバに配置する。	
-	(2)	FWp の内部側ポートと LBp の仮想 IP アドレスをもつポートは,同一セグメン	
	(-)	トであり、物理サーバ3内で処理されるから	
-	(3)	オ F テーブル名 F テーブル 1	
	(0)	項番 2	
	-	カ F テーブル名 F テーブル 0	
		項番 6	
		キ F テーブル名 F テーブル 4	
		項番 6	
	(4)	OFS 名 OFS1, OFS2	
		項番 7	
	l	·久田···································	I