Digital Normalization

Lecture 16 Oct 10, 2016

Announcements

Perfect Storm of data analysis

Perfect Storm of data analysis – What to do???

Brown 2012 arXiv:1203.4802v2

Reads (randomly sequenced)

True sequence (unknown) Reads (randomly sequenced) for read in dataset: if estimated_coverage(read) < C:</pre> accept(read) else: discard(read)


```
for read in dataset:
   if estimated_coverage(read) < C:
      accept(read)
   else:
      discard(read)</pre>
```


No error

3mer freq.

CAT=32

ATG=34

TGC=36

GCA=35

CAT=33

ATT=34

TTG=40

CATGCATTG

CAT

ATG

TGC

GCA

CAT

ATT

TTG

1error

3mer freq.

CAT=32

ATG=34

TGA=1

GAA=1

AAT=1

ATT=34

TTG=40

CATGAATTG

CAT

ATG

TGA

GAA

AAT

ATT

TTG

>1 error

3mer freq.

CAT=32

ATG=34

TGA=1

GAA=1

AAT=1

ATC=1

TCG=1

CATGAATCG
CAT
ATG
ATG
TGA
GAA
AAT
ATC
TCG

Median kmer abundance

0 error: 32,33,34,34,35,36,40

1 error: 1,1,1,32,24,24,40

>1 error: 1,1,1,1,1,32,34

Table 1. Digital normalization to C=20 removes many erroneous k-mers from sequencing data sets. Numbers in parentheses indicate number of true k-mers lost at each step, based on reference.

Data set	True 20-mers	20-mers in reads	20-mers at $C=20$	% reads kept
Simulated genome	399,981	8,162,813	3,052,007 (-2)	19%
Simulated mRNAseq	48,100	2,466,638 (-88)	1,087,916 (-9)	4.1%
E. coli genome	4,542,150	175,627,381 (-152)	90,844,428 (-5)	11%
Yeast mRNAseq	10,631,882	224,847,659 (-683)	10,625,416 (-6,469)	9.3%
Mouse mRNAseq	43,830,642	709,662,624 (-23,196)	43,820,319 (-13,400)	26.4%

Table 4. Single-pass digital normalization to C=20 reduces computational requirements for transcriptome assembly.

Data set	N reads pre/post	Assembly time pre/post	Assembly memory pre/post
(0)			
Yeast (Oases)	100 m / 9.3 m	$181 \min / 12 \min (15.1x)$	45.2gb / 8.9gb (5.1x)
Yeast (Trinity)	100m / 9.3m	887 min / 145 min (6.1x)	31.8gb / 10.4gb (3.1x)
Mouse (Oases)	100m / 26.4m	761 min/ 73 min (10.4x)	116.0gb / 34.6gb (3.4x)
Mouse (Trinity)	100m / 26.4m	2297 min / 634 min (3.6x)	42.1gb / 36.4gb (1.2x)

Genome Assembly

WHY DO YOU WANT TO ASSEMBLE A GENOME?

WHAT DO YOU NEED TO ASSEMBLE A GENOME?

ASSEMBLE A GENOME? GENERAL STRATEGIES

Genome size	Unlimited \$\$	Typical
>10Mb		
10Mb - 100Mb		
> 100 Mb		

GENOME SIZES

Assume sequencing produces such a large # fragments that almost all genome positions are *covered* by many fragments...

...but we don't know what came from where

CTAGGCCCTCAATTTTT **GGCGTCTATATCT** CTCTAGGCCCTCAATTTTT **TCTATATCTCGGCTCTAGG** Reconstruct GGCTCTAGGCCCTCATTTTTT this From these CTCGGCTCTAGCCCCTCATTTT TATCTCGACTCTAGGCCCTCA **GGCGTCGATATCT** TATCTCGACTCTAGGCC **GGCGTCTATATCTCG** GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Key term: coverage. Usually it's short for average coverage: the average number of reads covering a position in the genome.

CTAGGCCCTCAATTTTT CTCTAGGCCCTCAATTTTT GGCTCTAGGCCCTCATTTTTT CTCGGCTCTAGCCCCTCATTTT 177 nucleotides TATCTCGACTCTAGGCCCTCA **TATCTCGACTCTAGGCC** TCTATATCTCGGCTCTAGG **GGCGTCTATATCTCG GGCGTCGATATCT GGCGTCTATATCT** 35 nucleotides GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT

Average coverage = $177 / 35 \approx 7x$

OTHER ASSEMBLY TERMS

Unitig

Contig

scaffold

Complicated by:

How to assemble puzzle without the benefit of knowing what the finished product looks like?

• Complicated by:

• Work flow:

• 3 assembly strategies:

OLC Assembly

• OLC Assembly: Characteristics

Directed graph G(V, E) consists of set of vertices, V and set of directed edges, E

Directed edge is an *ordered pair* of vertices. First is the *source*, second is the *sink*.

Vertex is drawn as a circle

Edge is drawn as a line with an arrow connecting two circles

 $E = \{ (a, b), (a, c), (c, b) \}$

Sink

 $V = \{a, b, c, d\}$

Source

Vertex also called *node* or *point*

Edge also called *arc* or *line*

Directed graph also called digraph

Build overlap graph

to_every_thing_turn_turn_turn_there_is_a_season L=4, k=7

Build overlap graph

Vertices (reads): { a: CTCTAGGCC, b: GCCCTCAAT, c: CAATTTTT }

Edges (overlaps): { (a, b), (b, c) }

