Algorithms and Their Applications - Dynamic Programming -

Won-Yong Shin

May 4th, 2020

- Dynamic programming (DP)
 - A general algorithm design technique for solving problems defined by *recurrences* with overlapping subproblems
 - Invented by American mathematician Richard Bellman in the 1950s to solve optimization problems and later assimilated by CS
 - "Programming" here means "planning"
- Main idea:
 - Set up a recurrence relating a solution to a larger instance to solutions of some smaller instances
 - Solve smaller instances **once**
 - Record solutions in a table
 - Exact solution to the initial instance from that table

• Recall definition of Fibonacci numbers:

$$F(n) = F(n-1) + F(n-2)$$

 $F(0) = 0, F(1) = 1$

• Computing the n^{th} Fibonacci number recursively (top-down):

• Computing the n^{th} Fibonacci number using bottom-up iteration and recording results:

0	1	1	•••	F(n-2)	F(n-1)	F(n)
---	---	---	-----	--------	--------	------

- Problem setup
 - There is a row of n coins whose values are some positive integers c_1 , c_2 ,..., c_n not necessarily distinct
 - The goal is to <u>pick up the maximum amount of money</u> subject to the constraint that *no two coins adjacent* in the initial row can be picked up
- DP solution to the coin-row problem
 - Let $\mathbf{F}(n)$ be the maximum amount that can be picked up from the row of n coins
 - To derive a recurrence for F(n), we partition all the allowed coin selections into two groups:
 - Those without the last coin the max amount is?
 - Those with the last coin the max amount is?

$$F(n) = \max\{c_n + F(n-2), F(n-1)\}$$
 for $n > 1$
 $F(0) = 0,$ $F(1) = c_1$

$$F[0] = 0, F[1] = c_1 = 5$$

$$F[2] = \max\{1 + 0, 5\} = 5$$

$$F[3] = \max\{2 + 5, 5\} = 7$$

$$F[4] = \max\{10 + 5, 7\} = 15$$

$$F[5] = \max\{6 + 7, 15\} = 15$$

$$F[6] = \max\{2 + 15, 15\} = 17$$

index	0	1	2	3	4	5	6
C		5	1	2	10	6	2
F	0	5					

index	0	1	2	3	4	5	6
C		5	1	2	10	6	2
F	0	5	5				

index	0	1	2	3	4	5	6
C		5	1	2	10	6	2
F	0	5	5	7			

index	0	1	2	3	4	5	6
C		5	1	2	10	6	2
F	0	5	5	7	15		

index	0	1	2	3	4	5	6
C		5	1	2	10	6	2
F	0	5	5	7	15	15	

ndex	0	1	2	3	4	5	6
C		5	1	2	10	6	2
F	0	5	5	7	15	15	17

Pseudocode of the Coin-Row Problem

ALGORITHM CoinRow(C[1..n])

```
//Applies formula (8.3) bottom up to find the maximum amount of money //that can be picked up from a coin row without picking two adjacent coins //Input: Array C[1..n] of positive integers indicating the coin values //Output: The maximum amount of money that can be picked up F[0] \leftarrow 0; F[1] \leftarrow C[1] for i \leftarrow 2 to n do F[i] \leftarrow \max(C[i] + F[i-2], F[i-1]) return F[n]
```

Time efficiency

1) **Top-down approach**: Identical to the top-down computation of n^{th} Fibonacci number

2) Bottom-up approach

- Problem setup: shortest-path counting
 - Consider the problem of <u>counting the number of shortest paths</u> from point *A* to point *B* in a city with perfectly horizontal streets and vertical avenues
 - Let P(i, j) be the number of the shortest paths from square (1, 1) to square (i, j)
- DP solution to the path counting problem (n=8)

$$\begin{array}{lcl} P(i,j) & = & P(i,j-1) + P(i-1,j) \ \ \text{for} \ 1 < i,j \leq 8 \\ P(i,1) & = & P(1,j) = 1 \ \ \text{for} \ 1 \leq i,j \leq 8 \end{array}$$

1	8	36	120	330	792	1716	3432
1	7	28	84	210	462	924	1716
1	6	21	56	126	252	462	792
1	5	15	35	70	126	210	330
1	4	10	20	35	56	84	120
1	3	6	10	15	21	28	36
1	2	3	4	5	6	7	8
1	1	1	1	1	1	1	1

Example 4: Coin-Collecting by Robot

- Problem setup
 - Several coins are placed in cells of an $n \times m$ board
 - A robot, located in the upper left cell of the board, needs to <u>collect as many of the coins as possible</u> and bring them to the bottom right cell
 - On each step, the robot can move either one cell to the *right* or one cell *down* from its current location

DP Solution to the Coin-Collecting Problem

- DP solution
 - Let F(i, j) be the largest number of coins the robot can collect and bring to cell (i,j) in the ith row and jth column
 - The largest number of coins that can be brought to cell (i, j):
 - From the **left** neighbor?
 - From the neighbor **above**?

```
\begin{split} F(i,\,j) &= \max\{F(i\,-\,1,\,j),\,F(i,\,j\,-\,1)\} + c_{ij} \quad \text{for } 1 \leq i \leq n, \ 1 \leq j \leq m \\ F(0,\,j) &= 0 \ \text{for } 1 \leq j \leq m \quad \text{and} \quad F(i,\,0) = 0 \ \text{for } 1 \leq i \leq n. \\ c_{ij} &= 1 \ \text{if there is a coin in cell } (i,\,j), \ \text{and } c_{ij} = 0 \ \text{otherwise} \end{split}
```


Coin-Collecting Problem – E.g., 5×6 board

- Problem setup
 - Given n items of integer weights: w_1 w_2 ... w_n values: v_1 v_2 ... v_n

a knapsack of integer capacity *W*, find most valuable subset of the items that fit into the knapsack

- Optimal solution
 - Consider instance defined by first i items and capacity j ($j \le W$)
 - Let F(i,j) be optimal value of such instance
 - Recurrence: Do not include the Do include the ith item

$$F(i, j) = \begin{cases} \max\{F(i-1, j), v_i + F(i-1, j-w_i)\} & \text{if } j - w_i \ge 0, \\ F(i-1, j) & \text{if } j - w_i < 0. \end{cases}$$

■ Initial conditions:

$$F(0, j) = 0$$
 for $j \ge 0$ and $F(i, 0) = 0$ for $i \ge 0$

	value	weight	item
	\$12	2	1
capacity $W = 5$	\$10	1	2
	\$20	3	3
	\$15	2	4

		I		capa	icity j		
	i	0	1	2	3	4	5
	0	0	0	0	0	0	0
$w_1 = 2, v_1 = 12$	1	0	0	12	12	12	12
$w_2 = 1, v_2 = 10$	2	0	10	12	22	22	22
$w_3 = 3, v_3 = 20$	3	0	10	12	22	30	32
$w_4 = 2, v_4 = 15$	4	0	10	15	25	30	37

- Time efficiency
 - Solution: $T(n) \in \Theta(Wn) = \Theta(n)$

- Memory function method
 - Combine the strengths of the *top-down* and *bottom-up* approaches
 - The example revisited

		I	capacity j							
	i	0	1	2	3	4	5			
	0	0	0	0	0	0	0			
$w_1 = 2, v_1 = 12$	1	0	0	12	12	12	12			
$w_2 = 1, v_2 = 10$	2	0	_	12	22	_	22			
$w_3 = 3, v_3 = 20$	3	0	_	_	22	_	32			
$w_4 = 2, v_4 = 15$	4	0			_	_	37			

Only 11 out of 20 nontrivial values computed

- Other examples of DP algorithms
 - Constructing an optimal binary search tree (BST)
 - Warshall's algorithm for transitive closure
 - Floyd's algorithm for all-pairs shortest paths
 - Matrix-chain multiplication
 - Longest common subsequence

Optimal Binary Search Trees (BSTs)

- Problem setup
 - Given n keys $a_1 < ... < a_n$ and probabilities $p_1 \le ... \le p_n$ searching for them, find a BST with a minimum average number of comparisons in successful search
 - Since the total number of BSTs with n nodes is given by $\frac{\binom{2n}{n}}{n+1}$, which grows exponentially, brute force is hopeless
- Example
 - What is an optimal BST for keys *A*, *B*, *C*, and *D* with search probabilities 0.1, 0.2, 0.4, and 0.3, respectively?

DP for the Optimal BST Problem (1/2)

- Overall procedure
 - Let C(i,j) be minimum average number of comparisons made in T_i^j , optimal BST for keys $a_i < ... < a_j$, where $1 \le i \le j \le n$
 - Consider optimal BST among all BSTs with some a_k ($i \le k \le j$) as their root;
 - \blacksquare T_i^j is the best among them

DP for the Optimal BST Problem (2/2)

- Overall procedure (Cont'd)
 - After simplifications, we obtain the recurrence for C(i,j):

$$C(i, j) = \min_{i \le k \le j} \{C(i, k - 1) + C(k + 1, j)\} + \sum_{s=i}^{j} p_s \quad \text{for } 1 \le i \le j \le n$$

Ex) Compute C(1, 3)

The four-key set

key	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	D
probability	0.1	0.2	0.4	0.3

The initial tables

• Compute *C*(1, 2):

$$C(1, 2) = \min \begin{cases} k = 1: & C(1, 0) + C(2, 2) + \sum_{s=1}^{2} p_s = 0 + 0.2 + 0.3 = 0.5 \\ k = 2: & C(1, 1) + C(3, 2) + \sum_{s=1}^{2} p_s = 0.1 + 0 + 0.3 = 0.4 \end{cases}$$

$$= 0.4$$

• The following final tables:

	root table					
	0	1	2	3	4	
1		1	2	3	3	
2			2	3	3	
3				3	3	
4					4	
5						

The five-key set (the use of "dummy keys")

i	0.05	1	2	3	4	5
p_i		0.15	0.10	0.05	0.10	0.20
q_i	0.05	0.10	0.05	0.05	0.05	0.10

• Case 1

A BST with expected search cost 2.80

node	depth	probability	contribution
k_1	1	0.15	0.30
k_2	0	0.10	0.10
k_3	2	0.05	0.15
k_4	1	0.10	0.20
k_5	2	0.20	0.60
d_{0}	2	0.05	0.15
d_1	2	0.10	0.30
d_2	3	0.05	0.20
d_3	3	0.05	0.20
d_4	3	0.05	0.20
d_5	3	0.10	0.40
Total			2.80

• Case 2

A BST with expected search cost 2.75


```
ALGORITHM OptimalBST(P[1..n])
    //Finds an optimal binary search tree by dynamic programming
    //Input: An array P[1..n] of search probabilities for a sorted list of n keys
    //Output: Average number of comparisons in successful searches in the
              optimal BST and table R of subtrees' roots in the optimal BST
    for i \leftarrow 1 to n do
         C[i, i-1] \leftarrow 0
         C[i, i] \leftarrow P[i]
         R[i, i] \leftarrow i
    C[n+1,n] \leftarrow 0
    for d \leftarrow 1 to n-1 do //diagonal count
         for i \leftarrow 1 to n - d do
              i \leftarrow i + d
              minval \leftarrow \infty
                                                                 Recurrence
              for k \leftarrow i to j do
                   if C[i, k-1] + C[k+1, j] < minval
                        minval \leftarrow C[i, k-1] + C[k+1, j]; kmin \leftarrow k
              R[i, j] \leftarrow kmin
              sum \leftarrow P[i]; for s \leftarrow i + 1 to j do sum \leftarrow sum + P[s]
              C[i, j] \leftarrow minval + sum
    return C[1, n], R
```


Analysis for the Optimal BST Problem

- Time efficiency
 - $\Theta(n^3)$ but can be reduced to $\Theta(n^2)$ by taking advantage of monotonicity of entries in the root table R(i, j)
 - i.e., R(i, j) is always in the range between R(i, j-1) and R(i+1, j)
- Space efficiency
 - $\Theta(n^2)$
- Method can be extended to include unsuccessful searches
 - E.g., the use of dummy keys

Warshall's Algorithm: Transitive Closure

- Warshall's algorithm
 - Computes the *transitive closure* of a relation
 - Alternatively: existence of all nontrivial paths in a digraph
 - Example of transitive closure:

Overall procedure

- Constructs transitive closure T as the last matrix in the sequence of n-by-n matrices $R^{(0)}, \ldots, R^{(k)}, \ldots, R^{(n)}$ where $R^{(k)}[i,j] = 1$ iff there is nontrivial path from i to j with only first k vertices allowed as intermediate
- Note that $R^{(0)} = A$ (adjacency matrix), $R^{(n)} = T$ (transitive closure)

Warshall's Algorithm - Recurrence

- Recurrence
 - On the k-th iteration, the algorithm determines for every pair of vertices i, j if a path exists from i and j with just vertices 1, ..., k allowed as intermediate

■ Recurrence relating elements $R^{(k)}$ to elements of $R^{(k-1)}$ is:

$$R^{(k)}[i,j] = R^{(k-1)}[i,j]$$
 or $(R^{(k-1)}[i,k]$ and $R^{(k-1)}[k,j])$

- It implies the following rules for generating $R^{(k)}$ from $R^{(k-1)}$:
 - [Rule 1] If an element in row *i* and column *j* is 1 in $R^{(k-1)}$, it remains 1 in $R^{(k)}$
 - [Rule 2] If an element in row i and column j is 0 in $R^{(k-1)}$, it has to be changed to 1 in $R^{(k)}$ if and only if the element in its row i and column k and the element in its column j and row k are both 1's in $R^{(k-1)}$

• Example 1

$$R^{(1)} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$R^{(2)} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ \hline 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

$$R^{(3)} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ \hline 1 & 1 & 1 & 1 \end{bmatrix}$$

$$R^{(4)} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

• Example 2

Warshall's Algorithm - Pseudocode and Analysis

```
ALGORITHM Warshall(A[1..n, 1..n])

//Implements Warshall's algorithm for computing the transitive closure
//Input: The adjacency matrix A of a digraph with n vertices
//Output: The transitive closure of the digraph
R^{(0)} \leftarrow A

for k \leftarrow 1 to n do

for i \leftarrow 1 to n do

for j \leftarrow 1 to n do

R^{(k)}[i, j] \leftarrow R^{(k-1)}[i, j] or (R^{(k-1)}[i, k] and R^{(k-1)}[k, j])
return R^{(n)}
```

- Time efficiency
 - $\blacksquare T(n) \in \Theta(n^3)$
- Space efficiency
 - Matrices can be written over their predecessors

Floyd's Algorithm: All Pairs Shortest-Paths

- Problem:
 - In a weighted (di)graph, find *shortest paths* between every pair of vertices
- Same idea:
 - Construct solution through series of matrices $D^{(0)}$, ..., $D^{(n)}$ using increasing subsets of the vertices allowed as intermediate
- Example:

Floyd's Algorithm - Recurrence/Matrix Generation

Recurrence

On the k-th iteration, the algorithm determines shortest paths between every pair of vertices i, j that use only vertices among 1, ..., k as intermediate

$$D^{(k)}[i,j] = \min \{D^{(k-1)}[i,j], D^{(k-1)}[i,k] + D^{(k-1)}[k,j]\}$$

$$D^{(1)} = \begin{bmatrix} 0 & \infty & 3 & \infty \\ 2 & 0 & 5 & \infty \\ \infty & 7 & 0 & 1 \\ 6 & \infty & 9 & 0 \end{bmatrix}$$

$$D^{(2)} = \begin{array}{cccc} 0 & \infty & 3 & \infty \\ 2 & 0 & 5 & \infty \\ \hline 9 & 7 & 0 & 1 \\ 6 & \infty & 9 & 0 \end{array}$$

$$D^{(3)} = \begin{array}{c} 0 & 10 & 3 & 4 \\ 2 & 0 & 5 & 6 \\ 9 & 7 & 0 & 1 \\ \hline 6 & 16 & 9 & 0 \end{array}$$

$$D^{(4)} = \begin{array}{c} 0 & 10 & 3 & 4 \\ 2 & 0 & 5 & 6 \\ \hline 7 & 7 & 0 & 1 \\ 6 & 16 & 9 & 0 \end{array}$$

Floyd's Algorithm - Pseudocode and Analysis

```
ALGORITHM Floyd(W[1..n, 1..n])

//Implements Floyd's algorithm for the all-pairs shortest-paths problem

//Input: The weight matrix W of a graph with no negative-length cycle

//Output: The distance matrix of the shortest paths' lengths

D \leftarrow W //is not necessary if W can be overwritten

for k \leftarrow 1 to n do

for i \leftarrow 1 to n do

for j \leftarrow 1 to n do

D[i, j] \leftarrow \min\{D[i, j], D[i, k] + D[k, j]\}

return D
```

- Time efficiency
 - $T(n) \in \Theta(n^3)$
- Space efficiency
 - Matrices can be written over their predecessors
- Note: Shortest paths themselves can be found