

Select 1 answer:

RISK: The hardware will be delivered 10 days late, leading to an overall project delay of 10 days in a project that is of minor-importance to customer. There is a 90% likeliness that the hardware will be delayed. If the probability of the risk to happen is 1 and its risk impact scale is 50, calculate the corresponding risk factor using the risk matrik below.

Impact 100 10 50 Critical High Med **Probability** 2 High High Med 3 Med Med Med Med

Incorrect. TRY AGAIN!

Correct!

RISK: The hardware will be delivered 10 days late, leading to an overall project delay of 10 days in a project that is of minor-importance to customer. There is a 90% likeliness that the hardware will be delayed.

If the probability of the risk to happen is 1 and its risk impact scale is 50, calculate the corresponding risk factor using the risk matrik below.

Impact 10 50 100 Critical High Med High High Med Med Med Med Med Low Low

Select 1 answer:

Risk factor = Probability x Impact
=
$$1 \times 50 = 50$$

Incorrect. TRY AGAIN!

RISK: The hardware will be delivered 10 days late, leading to an overall project delay of 10 days in a project that is of minor-importance to customer. There is a 90% likeliness that the hardware will be delayed.

If the probability of the risk to happen is 1 and its risk impact scale is 50, calculate the corresponding risk factor using the risk matrik below.

Select 1 answer:

10

50

100

BMFG 4623 Engineering Economy & Management

Lecturer: Dr. Masni-Azian Akiah

LEARNING RESOURCES

INTERACTIVE ACTIVITIES