TIPE: MISE EN PLACE D'UN DATA CENTER

LOUIS BERNON – PTSI2

SOMMAIRE

. <u>Introduction</u>

- 1. Systèmes existants
 - 2. Notre système

II. Contrôle de la température

- 1. Éléments à refroidir
- 2. Choix de la méthode de refroidissement
 - 3. Mesures
 - 4. À venir

III. Conclusion

I. Introduction

1. Systèmes existants

Google

Facebook

Fonction : Traiter des données en quantité

2. Notre système

Problématique:

Comment gérer le refroidissement d'un data center ? 🗟

II. CONTRÔLE DE LA TEMPÉRATURE

1. Éléments à refroidir

Raspberry pi (Rpi)

Switch Ethernet

Relais

2. Choix de la méthode de refroidissement

Méthodes de refroidissement existants :

Inconvénients : -entretien

-encombrement

-coût

-consommation

Ventilation

Inconvénient : -peut être bruyant

3. Mesures

Mesure de la température des cartes grâce à une caméra thermique Fluke lors de leur utilisation sans boîtier.

Utilisation de radiateurs (heatsinks) prévus spécialement pour les Rpis.

Mêmes mesures sur un RPi avec radiateur

Utilisation finale des Rpis dans un boîtier.

Boîte en lego permet de simuler le boîtier final Avantages : -malléabilité -solidité

Mesure de l'évolution de la température dans la boîte fermée sans ventilation.

Utilisation d'un capteur de température DHT11.

Mesure de la température des Rpis dans différentes dispositions

Meilleures dispositions : -RPi1/2 avec 2 ventilateurs -RPi13 et RPi20 avec 3 ventilateurs

Meilleur refroidissement pour RPi1/2

2 ventilateurs

	Conditions des tests	<u>Utilisation finale</u>
Volume boîtier (dm³)	12,3	30
Nombre RPis	2	5

5. À venir

- Tests grandeur nature
- Mesure de la consommation des ventilateurs pour différentes tensions d'alimentation
- Mesure du bruit dégagé par les Raspberry pis
- Assemblage du boîtier

III. Conclusion

- Détermination d'un moyen de refroidir le boîtier ainsi que ses composants
- Il faut prendre en compte les autres facteurs (bruit, consommation)
- Possible élargissement du data center