Tópicos em Combinatória – 2025.1 Prof. Walner Mendonça

Segunda Avaliação 13 de junho de 2025

Aluno:	 Nota:
	1

Instruções:

- Justifique todas as suas respostas. É permitido usar qualquer resultado apresentado em sala.
- Será considerado apenas o que for escrito a caneta.
- A prova tem duração de 120 minutos.
- A pontuação máxima é de 10 pontos.

Problema 1. (1 ponto)

Seja $\mathcal{A} \subseteq 2^{[n]}$ uma família intersectante. Mostre que $|\mathcal{A}| \leq 2^{n-1}$.

Problema 2. (1 ponto)

Seja $\mathcal{A} \subseteq \binom{[n]}{k}$, com $n \leq 2k$. Suponha que para quaisquer $A, B \in \mathcal{A}$, temos $A \cup B \neq [n]$. Mostre que $|\mathcal{A}| \leq \binom{n-1}{k-1}$.

Problema 3. (3 pontos)

Seja $\mathcal{A} \subseteq 2^{[n]}$ uma família de conjuntos tal que |A| é par para todo $A \in \mathcal{A}$ e $|A \cap B|$ é impar para todo $A, B \in \mathcal{A}$ distintos. Mostre que $|A| \leq n$.

Problema 4. (2 pontos)

Seja G um grafo com n vértices e livre de triângulos. Mostre que se $\delta(G) > \frac{2n}{5}$, então G é bipartido.

Problema 5. (1 ponto)

Dados n e k inteiros positivos, definimos o grafo de Kneser $\mathrm{KN}(n,k)$ como o grafo com conjunto de vértices $V={[n]\choose k}$ e conjunto de arestas $E=\{AB:A\cap B=\emptyset\}$. Seja $G=\mathrm{KN}(n,k)$, com $n\geq 2k$. Determine $\alpha(G)$ e mostre que $\chi(G)\geq \frac{n}{k}$.

Problema 6. (3 pontos)

Mostre que para todo $r \in \mathbb{N}$ e $\varepsilon > 0$, existe um grafo G com n vértices e grau mínimo $\delta(G) \ge \left(\frac{1}{3} - \varepsilon\right) n$ que é livre triângulos e $\chi(G) \ge r$.

(Não sei se ajuda... Mas posso dar uma dica: conecte um grafo de Kneser $\mathrm{KN}(t,k)$ apropriado a um grafo completo bipartido suficientemente grande onde uma das partes tem o tamanho quase o dobro do tamanho da outra.)