	Name:	ID#			
	Date Submitted: Lab Sec	tion #			
	CSE 2441 – Introduction to Digital Logic	Fall Semester 2020			
Lab Number 4 – Two's Complement Adder/Subtractor					
	Due September 27, 2020, 11:59 PM				
	This exercise uses The BitBoard.				

TWO'S COMPLEMENT ADDER/SUBTRACTOR

(100 POINTS)

PURPOSE/OUTCOMES

To introduce you to circuits for adding and subtracting numbers in a two's complement number system. After completing this lab, you will have demonstrated an ability to design four-bit adders and subtractors, to capture and verify your designs using Quartus II, and to construct and test your designs on a BB/DE1.

BACKGROUND

In Lab 3, you designed, constructed, and tested full adders and a four-bit ripple-carry adder that used four full-adders as components as shown in Figure 1. In this lab you will design, construct, and test a two's complement adder/subtractor circuit as described below.

Figure 1 - Four-Bit Ripple-Carry Adder (A + B)

Recall that if A and B are binary numbers then $A - B = A + (-B) = A + [B]_2 = A + [B]_1 + 1$ where $[B]_2$ is the 2's complement of B and $[B]_1$ is the 1's complement. Example, if A = 0101 and B = 0010, then $A - B = 0101 + (-0010) = 0101 + [0010]_2 = 0101 + [0010]_1 + 1 = 0101 + 1101 + 1 = 40011$. The following modified four-bit ripple-carry adder performs all of this in hardware.

Figure 2 - Four-Bit Two's Complement Subtractor (A - B)

LAB REQUIREMENTS

- 1. Design a realization of a four-bit, two's-complement adder/subtractor corresponding to the block diagram in Figure 3. Your design should incorporate the ripple-carry adder that you designed and simulated in Lab 2 and constructed and tested in Lab 3.
- 2. Use Quartus II to capture and verify your design by simulating it's response to the test inputs given in step 5.
- 3. Create a symbol file for your design for use in a later lab assignment.

Figure 3 Two's Complement Adder/Subtractor

4. Construct your two's-complement adder/subtractor by modifying the ripple-carry adder you constructed in Lab 3. Use the following pin assignments.

A3: SW7, A2: SW6, A1: SW5, A0: SW4
B3: SW3, B2: SW2, B1: SW1, B0: SW0
R3: LEDR3, R2: LEDR2, R1: LEDR1, R0: LEDR0
C4: LEDR4

C0: SW8

5. Test your adder/subtractor for the values of A and B in the following table.

Α	В	R = A + B	Cout(C4)	R = A - B	Cout(C4)
0101	0001				
0111	0001				
0111	1111				
1001	1110				
1010	1110				
1101	1100				

REPORT REQUIREMENTS

- 1. Cover sheet (as shown on this assignment)
- 2. Lab purpose
- 3. Diagram of your adder/subtractor design
- 4. Simulation results (waveforms) showing the verification of your design
- 5. Symbol file input/output diagram
- 6. Picture of your constructed adder/subtractor circuit
- 7. Pictures of your tests for 0101 + 0001 and 1010 + 1110
- 8. Test results table