计算方法实验报告

姓名: 王铭

学号: 190110509

院系: 计算机

专业: 计算机

班级: 1901105 班

实验报告二

题目 (摘要)

用 Romberg 积分法列出 T-数表,根据 T-数表来计算积分 $\int_a^b f(x)dx$,并进行误差比较并确定最终的结果。

前言:(目的和意义)

实验目的: 使用龙贝格 (Romberg) 积分法计算积分 $\int_a^b f(x)dx$ 。

意义:在实际应用中,除了少数能够使用牛顿莱布尼茨公式解决的简单积分问题,遇到更多的是无法寻找到原函数或是能够找到原函数但原函数较为复杂,导致积分难以计算的情况。这种情况下,我们可以使用近似值来估计积分。Romberg 积分法就是其中一种方法,它可以加快收敛速度,且根据其 T-数表,可以判断近似值的误差。

数学原理

计算 T-数表:

用 T_m^k 表示 T-数表中的元素,其中 k 表示对区间进行 2^k 次划分,m 表示在每个小区间上使用多少个点估计积分值,如当m=1时表示使用复化的梯形公式来近似积分值。

对 T 数表的第一列元素,用以下两个公式计算:

$$T_{2n} = \frac{1}{2}(T_n + U_n)$$

$$U_n = h \sum_{k=0}^{n-1} x_{k+\frac{1}{2}}$$

根据第一列的值向后进行外推,使用下列公式计算:

$$T_m^k = \frac{4^m \times T_{m-1}^{k+1} - T_{m-1}^k}{4^m - 1}$$

由于每一列和每一对角线方向上的 T_i^i 均收敛,用相邻两项的差来估计误差,当计算出相邻两项的差小于给定的误差时,可以判断结果已经收敛,此时停止计算。


```
实验结果、结论与讨论
实验结果截图:
\int_{0}^{1} x^{2}e^{x}dx,取 N=6,精度 theta=1e-6
输出停机标志,并返回矩阵 M
            >> vpa (Romberg (a, b, N, theta, f), 10)
            停机
            ans =
            [ 1.359140914,
                                      0.
                                                   0, 0, 0, 0]
            [ 0.885660616, 0.7278338499,
                                                    0, 0, 0, 0]
            [0.7605963324, 0.7189082379, 0.7183131972, 0, 0, 0]
            [ 0.728890177, 0.7183214585, 0.7182823399, 0, 0, 0]
            [0.7209357789, 0.7182843129, 0.7182818365, 0, 0, 0]
            [0.7189454326, 0.7182819839,
                                                   0, 0, 0, 0]
故结果为 0.7182818365
1.2
\int_{0}^{3} e^{x} \sin x dx,取 N=6,精度 theta=1e-6
输出停机标志,并返回矩阵 M
             >> vpa(Romberg(a, b, N, theta, f), 10)
             停机
             ans =
                             0, 0, 0, 0, 0]
0.66574174, 0, 0, 0, 0]
             [ 5. 12182642,
             [9. 279762907, 10. 66574174,
             [10.52055428, 10.93415141, 10.95204539, 0, 0, 0]
             [10.84204347, 10.94920653, 10.9502102, 0, 0, 0]
             [10.92309389, 10.9501107, 10.95017097, 0, 0, 0]
             [10.94339842, 10.9501666, 10.95017033, 0, 0, 0]
结果为 10.95017033
1.3
\int_0^1 \frac{4}{1+x^2} dx,取 N=6,精度 theta=1e-6
```

输出停机标志,并返回矩阵 M

>> vpa(Romberg(a, b, N, theta, f), 10 停机

ans =

[0.75, 0, 0, 0, 0, 0] [0.7083333333, 0.6944444444, 0, 0, 0, 0] [0.6970238095, 0.6932539683, 0, 0, 0, 0] [0.6941218504, 0.6931545307, 0, 0, 0, 0] [0.6933912022, 0.6931476528, 0, 0, 0, 0] [0.6932082083, 0.6931472103, 0, 0, 0, 0]

结果为 0.6931472103

实验结果

实验的四个题目均在给定精度内收敛,可以作为积分的近似值。

由结果矩阵 M 知, 二分次数越大, 精度越高。

实验报告三

题目(摘要)

利用标准四阶 Runge-Kutta 方法求解给定的微分方程初值方程

$$\begin{cases} \frac{dy}{dx} = f(x, y), a \le x \le b \\ y(a) = \alpha \end{cases}$$

前言:(目的和意义)

目的: 采用 Runge-Kutta 方法用离散点上的解值 $y(x_i)$ 来近似 y_i 。

意义: Runge-Kutta 法不求解微分方程的通项或近似表达式,通过选取步长 h,求解一系列离散值来近似真实值。而标准的四阶 Runge-Kutta 方法的误差为 $O(h^5)$,在一定误差范围的要求下,可以采用近似值来解决现实生活中遇到的难以求解或较为求解过程繁琐的的微分方程问题,且该方法可以通过编程利用计算机实现,求解速度快。

数学原理

$$\mathfrak{P}h = \frac{b-a}{N}$$

$$\begin{cases} K_1 = hf(x_n, y_n) \\ K_2 = hf(x_n + \frac{h}{2}, y_n + \frac{K_1}{2}) \\ K_3 = hf(x_n + \frac{h}{2}, y_n + \frac{K_2}{2}) \end{cases}$$

取 $h = \frac{b-a}{N}$ 利用递推式 $y_{n+1} = y_n + \frac{1}{6}(K_1 + 2K_2 + 2K_3 + K_4)$,其中: $\begin{cases} K_1 = hf(x_n, y_n) \\ K_2 = hf(x_n + \frac{h}{2}, y_n + \frac{K_1}{2}) \\ K_3 = hf(x_n + \frac{h}{2}, y_n + \frac{K_2}{2}) \\ K_4 = hf(x_n + h, y_n + K_3) \end{cases}$ 利用该式一直递推到 (x_n, y_n) 即可得到 $x_i = i \times h + x_0 (i = 1, \dots, N)$ 处的函数近 似值。

实验结果、结论与讨论

实验结果

题目 1.1

$$\frac{dy}{dx} = x + y, 0 \le x \le 1, N = 5$$

 $y_0 = -1$

结果为:

ans =

0 -1.0000 0.2000 -1.2000 0.4000 -1.4000 0.6000 -1.6000 0.8000 -1.8000 1.0000 -2.0000

N=10时,结果为:

ans =

0 -1.0000 0.1000 -1.1000 0.2000 -1.2000 0.3000 -1.3000 0.4000 -1.4000 0.5000 -1.5000 0.6000 -1.6000 0.7000 -1.7000 0.8000 -1.8000 0.9000 -1.9000 1.0000 -2.0000

N=20时,结果为:

ans =

此微分方程的解析解为y = -x - 1,误差较小。

题目 1.2

$$\frac{dy}{dx} = -y^2, 0 \le x \le 1, N = 5$$

 $y_0 = 1$

结果为:

ans =

0 1.0000 0.2000 0.8333 0.4000 0.7143 0.6000 0.6250 0.8000 0.5556 1.0000 0.5000

N=10时,结果为:

ans = 1.0000 0.1000 0.9091 0.2000 0.8333 0.7692 0.3000 0.4000 0.7143 0.5000 0.6667 0.6000 0.6250 0.7000 0. 5882 0.8000 0. 5556 0. 5263 0.9000 0.5000

1.0000

N=20时,结果为:

ans = 0 1.0000 0.0500 0.9524 0.1000 0.9091 0.8696 0.1500 0.2000 0.8333 0.2500 0.8000 0.3000 0.7692 0.3500 0.7407 0.4000 0.7143 0.4500 0.6897 0.5000 0.6667 0.5500 0.6452 0.6000 0.6250 0.6500 0.6061 0.7000 0.5882 0.7500 0.5714 0.8000 0.5556 0.8500 0.5405 0.9000 0.5263 0.9500 0.5128 1.0000 0.5000

此微分方程的解析解为 $y = \frac{1}{x+1}$, 误差较小

题目 2.1

$$\frac{dy}{dx} = \frac{2}{x}y + x^2 e^x, 1 \le x \le 3, N = 5$$
$$y_0 = 0$$

结果为

ans =

1. 0000 0 1. 4000 2. 6139 1. 8000 10. 7763 2. 2000 30. 4917 2. 6000 72. 5856 3. 0000 156. 2252

N=10时,结果为:

ans =

1. 0000 0 1. 2000 0. 8664 1. 4000 2. 6197 1. 6000 5. 7199 1. 8000 10. 7920 2. 0000 18. 6809 2. 2000 30. 5216 2. 4000 47. 8324 2. 6000 72. 6345 2. 8000 107. 6089 3. 0000 156. 2983

N=20时,结果为:

ans = 1.0000 1.1000 0.3459 1.2000 0.8666 1.3000 1.6072 1.4000 2.6203 1.5000 3.9676 1.6000 5.7209 7. 9638 1.7000 1.8000 10.7935 14. 3229 1.9000 2.0000 18.6829 2.1000 24.0250 2. 2000 30.5244 2.3000 38. 3835 2.4000 47.8359 2. 5000 59. 1510 2.6000 72.6389 2. 7000 88. 6566 2.8000 107.6143 2. 9000 129. 9833

3.0000 156.3048

该问题的解析解为 $y = x^2(e^x - e)$,误差较小。

题目 2.2

$$\frac{dy}{dx} = \frac{1}{x}(y^2 + y), 1 \le x \le 3, N = 5$$
$$y_0 = -2$$

结果为:

1. 0000 -2. 0000 1. 4000 -1. 5540 1. 8000 -1. 3836 2. 2000 -1. 2934

ans =

2. 6000 -1. 2375 3. 0000 -1. 1995

当 N=10 时,结果为:

```
ans =
                              1.0000
                                      -2.0000
                              1. 2000
                                      -1.7142
                              1.4000
                                      -1. 5555
                              1.6000
                                      -1. 4545
                              1.8000
                                      -1.3846
                                      -1.3333
                              2.0000
                              2. 2000
                                      -1. 2941
                                      -1. 2631
                              2.4000
                              2.6000
                                      -1. 2381
                              2.8000 -1.2174
                              3.0000
                                      -1.2000
N=20时,结果为:
                         ans =
                             1. 0000 -2. 0000
                                     -1.8333
                             1.1000
                             1.2000
                                      -1.7143
                             1.3000
                                      -1.6250
                             1.4000
                                     -1. 5556
                             1.5000
                                      -1.5000
                             1.6000
                                      -1.4545
                             1.7000
                                      -1.4167
                             1.8000
                                      -1.3846
                             1.9000
                                      -1.3571
                                      -1.3333
                             2.0000
                             2.1000
                                      -1.3125
                             2.2000
                                      -1.2941
                             2.3000
                                      -1.2778
                                      -1.2632
                             2.4000
                             2.5000
                                      -1.2500
                             2.6000
                                      -1. 2381
                             2.7000
                                     -1. 2273
                             2.8000
                                      -1.2174
                             2.9000
                                      -1.2083
                                      -1.2000
                             3.0000
该问题的解析解为 y = \frac{2x}{1-2x}, 误差较小
```

$$\frac{dy}{dx} = -20(y - x^2) + 2x, 0 \le x \le 1, N = 5$$
$$y_0 = \frac{1}{3}$$

结果为:

ans =

1.0e+03 *

0 0.0003 0.0002 0.0018 0.0004 0.0088 0.0006 0.0437 0.0008 0.2173 0.0010 1.0843

当 N=10 时, 结果为:

ans =

0 0.3333 0.1000 0.1228 0.2000 0.0793 0.3000 0. 1048 0. 1666 0.4000 0.5000 0. 2539 0.6000 0.3630 0.7000 0.4927 0.8000 0.6426 0. 9000 0. 8125 1.0000 1.0025

当 N=20 时, 结果为:

ans = 0.3333 0.0500 0.1276 0.1000 0.0569 0.1500 0.0402 0.2000 0.0467 0.2500 0.0651 0.3000 0.0910 0.3500 0.1229 0.4000 0.1602 0.4500 0. 2026 0.5000 0. 2501 0.5500 0.3026 0.3601 0.6000 0.6500 0.4226 0.7000 0.4901 0.7500 0. 5626 0.8000 0.6401 0.8500 0.7226 0.9000 0.8101 0.9500 0. 9026 1.0000 1.0001

该问题的解析解为 $y = x^2 + \frac{1}{3}e^{-20x}$, 误差较小。

题目 3.2

$$\frac{dy}{dx} = -20y + 20\sin x + \cos x, 0 \le x \le 1, N = 5$$
$$y_0 = 1$$

结果为:

ans =

1.0e+03 *

0 0.0010
0.0002 0.0052
0.0004 0.0254
0.0006 0.1255
0.0008 0.6253
0.0010 3.1238

当 N=10 时,结果为:

ans = 1.0000 0 0.1000 0. 4331 0.2000 0.3097 0.3000 0.3323 0.4000 0.4014 0.5000 0.4831 0.6000 0.5654 0.7000 0.6440 0.8000 0.7167 0.7825 0.9000 1.0000 0.8405

当 N=20 时,结果为:

ans =

1.0000 0.0500 0.4250 0.1000 0. 2405 0. 2022 0.1500 0.2000 0.2184 0.2500 0. 2548 0.3000 0. 2983 0.3500 0. 3439 0. 3898 0.4000 0.4500 0. 4351 0.5000 0.4795 0.5500 0. 5227 0.6000 0. 5646 0.6500 0.6052 0.7000 0.6442 0.7500 0.6816 0.8000 0.7173 0.8500 0.7513 0.9000 0. 7833 0.9500 0.8134 0.8414 1.0000

该问题的解析解为 $y=e^{-20x}+\sin x$,当 N=5 时误差较大,N=10 和 N=20 时误差较小 题目 3.3

$$\frac{dy}{dx} = -20(y - e^x \sin x) + e^x (\sin x + \cos x), 0 \le x \le 1, N = 5$$
$$y_0 = 0$$

结果为:

0 0 0. 2000 0. 2986 0. 4000 0. 9272 0. 6000 2. 8355 0. 8000 10. 7109 1. 0000 47. 9414

当 N=10 时, 结果为:

ans =

ans =

0	0
0.1000	0. 1121
0.2000	0. 2451
0.3000	0. 4018
0.4000	0. 5841
0.5000	0.7938
0.6000	1.0324
0.7000	1.3010
0.8000	1.6003
0.9000	1. 9305
1.0000	2. 2912

当 N=20 时,结果为:

ans = 0 0 0.0500 0.0526 0.1000 0.1104 0.1500 0. 1737 0. 2427 0.2000 0.2500 0.3178 0.3000 0.3990 0.3500 0.4867 0. 5811 0.4000 0.4500 0.6823 0.5000 0.7906 0. 5500 0. 9061 0.6000 1.0290 0.6500 1. 1594 0.7000 1.2974 0.7500 1.4432 0.8000 1. 5966 1.7579 0.8500 0.9000 1.9268 0.9500 2. 1034 1.0000 2. 2875

该问题的解析解为 $y = e^x \sin x$, 当 N=5 时误差较大,N=10 和 N=20 时误差较小

实验结果

实验结果与微分方程的解析解基本相同,但当 N=5 时,带 $\sin x$ 和 $\cos x$ 等导数变化剧烈的函数值时,由于步长较长,易导致产生较大误差,当 N 取 10 和 20 时,误差较小。讨论

- ①数值解和解析解基本相同,因为使用了标准四阶 Runge-Kutta 方法,而该方法的误差为 $O(h^5)$ 。
- ②通过对比 N 为 5,10,20,显然 N 越大越精确。N 越大,步长越小,故计算的误差越小。
- ③N 较小时会导致误差较大,因为 N 较小时,步长较大, $\sin x$ 和 $\cos x$ 导数变化较剧烈,导致 $\left|y_{n+1}-y_n\right|$ 变化较大,产生较大误差。

实验报告四

数学原理

牛顿迭代法的计算公式为:

$$x_0 = \alpha$$
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

$$n = 0,1,\cdots$$

牛顿迭代法有局部收敛性,在其精确解 x^* 的某一满足收敛性要求的邻域 $O(x^*,\delta)$ 内取一点 x_0 ,根据牛顿迭代公式可得到收敛于 x^* 的迭代序列 $\{x_n\}$,且收敛速度为 2 阶的;若 $f(x) \in C^m[a,b], f(x) = f'(x^*) = \cdots = f^{(m-1)}(x^*) = 0$,且 $f^{(m)}(x^*) \neq 0$ (m > 1),则对充分小的 $\delta > 0$,当 $\alpha \in O(x^*,\delta)$ 时,由牛顿迭代法的收敛速度是 1 阶的。

程序设计流程

流程图:

每次迭代时先判断 $f(x_0)$ 是否满足精度要求,满足则直接输出,否则判断 $f'(x_0)$ 是否小于 e_2 ,若是则输出奇异标志,否则进行迭代。迭代结束后根据 $|x_1-x_0|$ 来估计误差是否满足要求,若满足则返回迭代值,否则进行下一次迭代。

```
实验结果、结论与讨论
程序运行结果截图:
问题 1:
(1)
\Rightarrow f = cos(x) - x
 f =
 cos(x) - x
 >> vpa(Newton(f, pi/4, 1e-6, 1e-4, 20), 10)
 ans =
 0.7390851781
(2)
\Rightarrow f = exp(-x)-sin(x)
 f =
 exp(-x) - sin(x)
>> vpa(Newton(f, 0. 6, 1e-6, 1e-4, 10), 10)
 ans =
 0. 5885327428
问题 2:
(1)
```

```
>>> f = x - exp(-x)

f =

x - exp(-x)

>> vpa(Newton(f, 0. 5, 1e-6, 1e-4, 10), 10)

ans =

0. 567143165|
(2)

>>> f = x^2-2*x*exp(-x) + exp(-2*x)

f =

exp(-2*x) - 2*x*exp(-x) + x^2

>> vpa(Newton(f, 0. 5, 1e-6, 1e-4, 20), 10)

ans =

0. 5666057041
```

结论

该实验的四个函数均能够从 x_0 迭代,并最终收敛到根值,且都输出了在满足所给精度条件下根的近似值。

思考题

- ①由于牛顿迭代法的局部收敛性,在选择初值 x_0 时应使得该值在根的某一足够小的邻域内,使得从该点开始计算出的迭代序列收敛到根。在实际计算中,要根据结果是否收敛,通过判断 f(a)*f(b)是否小于 0,并运用二分法找到满足收敛精度的迭代初值。
- ②该题所求根为重根,牛顿迭代法在求重根的近似值时收敛速度为一阶,在使用 matlab 计算时,在一段时间内无法得出结果。原因:由于f(x)是符号标记,并未转换为数值,故运算速度较慢,可以用f=matlabFunction(f)这一函数解决运算速度慢的问题。

实验报告五

数学原理

1. 对 $k=1,2,\cdots,n-1$,寻找最小的正整数p, $k\leq p\leq n$ 和 $\left|a_{pk}\right|=\max_{k\leq j\leq n}\left|a_{jk}\right|$ 。如果 $a_{pk}\neq 0$,且 $p\neq k$,那么交换p,k两行,并对 $i=k+1,\cdots,n$,记 $m_{ik}=a_{ik}/a_{kk}$,计算下列式子。

$$\begin{cases} a_{ij} = a_{ij} - a_{kj} m_{ik} \\ i = k+1, ?\cdot \cdot, n \end{cases}$$
$$j = k+1, ?\cdot \cdot, n$$
$$b_i = k+1, ?\cdot \cdot, n$$

若 $a_{pk} = 0$,说明系数矩阵奇异,无解。

- 2.如果 $a_{nn} = 0$,则说明系数矩阵奇异,无解。
- 3.置 $x_n = b_n / a_{nn}$,回代过程如下:

对
$$k = n-1, \dots, 2, 1$$
, 置 $x_k = (b_k - \sum_{j=k+1}^n a_{kj} x_j) / a_{kk}$

实验结果、	结论与讨论
题目 1:	
(1)	1.1
	ans =
	[1.0, 1.0, 1.0]
(2)	
(2)	1.2
	ans =
	[1.0, 1.0, 1.0]
(3)	ans =
(4)	[1.0, 1.0, 1.0]
	ans =
	[1.0, 1.0, 1.0]
题目二:	

	2.1
(2)	ans =
	[0.9536791069, 0.3209568455, 1.078708076, -0.09010850954]
	2.2
	ans =
	[0.516177298, 0.4152194728, 0.1099661029, 1.036539223]
(3	2.3
	ans =
(4	[1.0, 1.0, 1.0] 4)
	ans =
	[1.0, 1.0, 1.0]
	告论 G验中无奇异标志输出,以上线性方程均存在解,符合预期。

```
syms x;
disp("1.1");
a=0;
b=1;
f=x*x*exp(x);
N=6;
theta=1e-6;
vpa(Romberg(a,b,N,theta,f),10)
syms x;
disp("1.2");
a=1;
b=3;
N=6;
f=exp(x)*sin(x);
theta=1e-6;
vpa(Romberg(a,b,N,theta,f),10)
syms x;
disp("1.3");
a=0;
b=1;
f=4/(1+x*x);
theta=1e-6;
N=6;
vpa(Romberg(a,b,N,theta,f),10)
syms x;
disp("1.4");
```

```
a=0;
b=1;
f=1/(1+x);
theta=1e-6;
N=6;
vpa(Romberg(a,b,N,theta,f),10)
function M = Romberg(a,b,N,theta,f)
f = matlabFunction(f);
M=zeros(N);
M(1,1)=(b-a)/2*(f(a)+f(b));
for i = 2:(N)
   m=power(2,i-1);
   h=(b-a)/m;
   plus=0;
   for j = (a+h):(2*h):(b)
      plus = plus + 2 * h * f(j);
   end
   M(i,1)=0.5*M(i-1,1)+0.5*plus;
   if(abs(M(i,1)-M(i-1,1)) < theta)
      disp("停机");
      return;
   end
end
for i =2:(N)
   m=power(4,i-1);
   M(i,i)=(m*M(i,i-1)-M(i-1,i-1))/(m-1);
   if(abs(M(i,i)-M(i-1,i-1)) < theta)
      disp("停机");
```

```
return;
 end
 for j = (i+1):(N)
    M(j,i)=(m*M(j,i-1)-M(j-1,i-1))/(m-1);
    if(abs(M(j,i)-M(j-1,i)) < theta)
    disp("停机");
   return;
    end
end
end
end
 1.1
停机
ans =
[0.7605963324, 0.7189082379, 0.7183131972, 0, 0, 0]
[ 0.728890177, 0.7183214585, 0.7182823399, 0, 0, 0]
[0.7209357789, 0.7182843129, 0.7182818365, 0, 0, 0]
[0.7189454326, 0.7182819839, 0, 0, 0, 0]
1.2
停机
ans =
[ 5.12182642, 0, 0, 0, 0, 0]
```

```
[9.279762907, 10.66574174, 0, 0, 0, 0]
[10.52055428, 10.93415141, 10.95204539, 0, 0, 0]
[10.84204347, 10.94920653, 10.9502102, 0, 0, 0]
[10.92309389, 10.9501107, 10.95017097, 0, 0, 0]
[10.94339842, 10.9501666, 10.95017033, 0, 0, 0]
```

ans =

[3.0, 0,0,0,0,0] [3.1,3.133333333,0,0,0,0,0] [3.131176471,3.141568627,0,0,0,0] [3.138988494,3.141592502,0,0,0,0]

[3.140941612, 3.141592651, 0, 0, 0, 0] [3.141429893, 0, 0, 0, 0, 0]

1.4

停机

ans =

[0.75, 0, 0, 0, 0, 0] [0.7083333333, 0.69444444444, 0, 0, 0, 0] [0.6970238095, 0.6932539683, 0, 0, 0, 0] [0.6941218504, 0.6931545307, 0, 0, 0, 0] [0.6933912022, 0.6931476528, 0, 0, 0, 0] [0.6932082083, 0.6931472103, 0, 0, 0, 0]

Published with MATLAB® R2020b

```
syms x;
syms y;
disp("1.1");
a=0;
b=1;
alpha=-1;
N=5;
f(x,y)=x+y;
Runge_Kutta(f,a,b,alpha,N)
N=10;
Runge_Kutta(f,a,b,alpha,N)
N=20;
Runge_Kutta(f,a,b,alpha,N)
syms x;
syms y;
disp("1.2");
a=0;
b=1;
alpha=1;
N=5;
f(x,y)=-y*y;
Runge_Kutta(f,a,b,alpha,N)
N=10;
Runge_Kutta(f,a,b,alpha,N)
N=20;
Runge_Kutta(f,a,b,alpha,N)
syms x;
```

```
syms y;
disp("2.1");
a=1;
b=3;
alpha=0;
N=5;
f(x,y)=2*y/x+x*x*exp(x);
Runge_Kutta(f,a,b,alpha,N)
N=10;
Runge_Kutta(f,a,b,alpha,N)
N=20;
Runge_Kutta(f,a,b,alpha,N)
syms x;
syms y;
disp("2.2");
a=1;
b=3;
alpha=-2;
N=5;
f(x,y)=(y+y*y)/x;
Runge_Kutta(f,a,b,alpha,N)
N=10;
Runge_Kutta(f,a,b,alpha,N)
N=20;
Runge_Kutta(f,a,b,alpha,N)
syms x;
syms y;
```

```
disp("3.1");
a=0;
b=1;
alpha=1/3;
N=5;
f(x,y)=-20*(y-x*x)+2*x;
Runge_Kutta(f,a,b,alpha,N)
N=10;
Runge_Kutta(f,a,b,alpha,N)
N=20;
Runge_Kutta(f,a,b,alpha,N)
syms x;
syms y;
disp("3.2");
a=0;
b=1;
alpha=1;
N=5;
f(x,y)=-20*y+20*sin(x)+cos(x);
Runge_Kutta(f,a,b,alpha,N)
N=10;
Runge_Kutta(f,a,b,alpha,N)
N=20;
Runge_Kutta(f,a,b,alpha,N)
syms x;
syms y;
disp("3.3");
```

```
a=0;
b=1;
alpha=0;
N=5;
f(x,y)=-20*(y-exp(x)*sin(x))+exp(x)*(sin(x)+cos(x));
Runge_Kutta(f,a,b,alpha,N)
N=10;
Runge_Kutta(f,a,b,alpha,N)
N=20;
Runge_Kutta(f,a,b,alpha,N)
function M = Runge_Kutta(f,a,b,alpha,N)
   f = matlabFunction(f);
   h = (b - a) / N;
   M=zeros(N+1,2);
   M(1,1)=a;
   M(1,2)=alpha;
   for i=2:(N+1)
      M(i,1)=M(i-1,1)+h;
      K1=f(M(i-1,1),M(i-1,2));
      K2=f((M(i-1,1)+h/2),(M(i-1,2)+h*K1/2));
      K3=f((M(i-1,1)+h/2),(M(i-1,2)+h*K2/2));
      K4=f((M(i-1,1)+h),(M(i-1,2)+h*K3));
      M(i,2)=M(i-1,2)+(K1+2*K2+2*K3+K4)*h/6;
   end
end
```

0 -1.0000

0.2000 -1.2000

0.4000 -1.4000

0.6000 -1.6000

0.8000 -1.8000

1.0000 -2.0000

ans =

0 -1.0000

0.1000 -1.1000

0.2000 -1.2000

0.3000 -1.3000

0.4000 -1.4000

0.5000 -1.5000

0.6000 -1.6000

0.7000 -1.7000

0.8000 -1.8000

0.9000 -1.9000

1.0000 -2.0000

ans =

0 -1.0000

0.0500 -1.0500

0.1000 -1.1000

0.1500 -1.1500

```
0.2000 -1.2000
```

- 0.2500 -1.2500
- 0.3000 -1.3000
- 0.3500 -1.3500
- 0.4000 -1.4000
- 0.4500 -1.4500
- 0.5000 -1.5000
- 0.5500 -1.5500
- 0.6000 -1.6000
- 0.6500 -1.6500
- 0.7000 -1.7000
- 0.7500 -1.7500
- 0.8000 -1.8000
- 0.8500 -1.8500
- 0.9000 -1.9000
- 0.9500 -1.9500
- 1.0000 -2.0000

ans =

0 1.0000

0.2000 0.8333

0.4000 0.7143

0.6000 0.6250

0.8000 0.5556

1.0000 0.5000

ans =

0	1.0000
0.1000	0.9091
0.2000	0.8333
0.3000	0.7692
0.4000	0.7143
0.5000	0.6667
0.6000	0.6250
0.7000	0.5882
0.8000	0.5556
0.9000	0.5263
1.0000	0.5000

ans =

0	1.0000
0.0500	0.9524
0.1000	0.9091
0.1500	0.8696
0.2000	0.8333
0.2500	0.8000
0.3000	0.7692
0.3500	0.7407
0.4000	0.7143
0.4500	0.6897
0.5000	0.6667
0.5500	0.6452
0.6000	0.6250

```
0.6500 0.6061
```

ans =

ans =

1.0000 0

1.2000 0.8664

1.4000 2.6197

1.6000 5.7199

1.8000 10.7920

2.0000 18.6809

2.2000 30.5216

```
2.4000 47.8324
```

2.6000 72.6345

2.8000 107.6089

3.0000 156.2983

ans =

1.1000 0.3459

1.2000 0.8666

1.3000 1.6072

1.4000 2.6203

1.5000 3.9676

1.6000 5.7209

1.7000 7.9638

1.8000 10.7935

1.9000 14.3229

2.0000 18.6829

2.1000 24.0250

2.2000 30.5244

2.3000 38.3835

2.4000 47.8359

2.5000 59.1510

2.6000 72.6389

2.7000 88.6566

2.8000 107.6143

2.9000 129.9833

3.0000 156.3048

ans =

1.0000 -2.0000

1.4000 -1.5540

1.8000 -1.3836

2.2000 -1.2934

2.6000 -1.2375

3.0000 -1.1995

ans =

1.0000 -2.0000

1.2000 -1.7142

1.4000 -1.5555

1.6000 -1.4545

1.8000 -1.3846

2.0000 -1.3333

2.2000 -1.2941

2.4000 -1.2631

2.6000 -1.2381

2.8000 -1.2174

3.0000 -1.2000

ans =

1.0000 -2.0000

```
1.1000 -1.8333
```

- 1.2000 -1.7143
- 1.3000 -1.6250
- 1.4000 -1.5556
- 1.5000 -1.5000
- 1.6000 -1.4545
- 1.7000 -1.4167
- 1.8000 -1.3846
- 1.9000 -1.3571
- 2.0000 -1.3333
- 2.1000 -1.3125
- 2.2000 -1.2941
- 2.3000 -1.2778
- 2.4000 -1.2632
- 2.5000 -1.2500
- 2.6000 -1.2381
- 2.7000 -1.2273
- 2.8000 -1.2174
- 2.9000 -1.2083
- 3.0000 -1.2000

ans =

1.0e+03 *

0 0.0003

0.0002 0.0018

0.0004 0.0088

```
0.0006 0.0437
```

0.0008 0.2173

0.0010 1.0843

ans =

0 0.3333

0.1000 0.1228

0.2000 0.0793

0.3000 0.1048

0.4000 0.1666

0.5000 0.2539

0.6000 0.3630

0.7000 0.4927

0.8000 0.6426

0.9000 0.8125

1.0000 1.0025

ans =

0 0.3333

0.0500 0.1276

0.1000 0.0569

0.1500 0.0402

0.2000 0.0467

0.2500 0.0651

0.3000 0.0910

0.3500 0.1229

0.4000 0.1602

0.4500 0.2026

0.5000 0.2501

0.5500 0.3026

0.6000 0.3601

0.6500 0.4226

0.7000 0.4901

0.7500 0.5626

0.8000 0.6401

0.8500 0.7226

0.9000 0.8101

0.9500 0.9026

1.0000 1.0001

3.2

ans =

1.0e+03 *

0 0.0010

0.0002 0.0052

0.0004 0.0254

0.0006 0.1255

0.0008 0.6253

0.0010 3.1238

0 1.0000 0.1000 0.4331 0.2000 0.3097 0.3000 0.3323 0.4000 0.4014 0.5000 0.4831 0.6000 0.5654 0.7000 0.6440 0.8000 0.7167 0.9000 0.7825 1.0000 0.8405

ans =

0.0500 0.4250 0.1000 0.2405 0.1500 0.2022 0.2000 0.2184 0.2500 0.2548 0.3000 0.2983 0.3500 0.3439 0.4000 0.3898 0.4500 0.4351 0.5000 0.4795 0.5500 0.5227 0.6000 0.5646 0.6500 0.6052 0.7000 0.6442

1.0000

0.7500 0.6816

0.8000 0.7173

0.8500 0.7513

0.9000 0.7833

0.9500 0.8134

1.0000 0.8414

3.3

ans =

0 0

0.2000 0.2986

0.4000 0.9272

0.6000 2.8355

0.8000 10.7109

1.0000 47.9414

ans =

0 0

0.1000 0.1121

0.2000 0.2451

0.3000 0.4018

0.4000 0.5841

0.5000 0.7938

0.6000 1.0324

0.7000 1.3010

0.8000 1.6003

0.9000 1.9305

1.0000 2.2912

ans =

0 0 0.0500 0.0526 0.1000 0.1104 0.1500 0.1737 0.2000 0.2427 0.2500 0.3178 0.3000 0.3990 0.3500 0.4867 0.4000 0.5811 0.4500 0.6823 0.5000 0.7906 0.5500 0.9061 0.6000 1.0290 0.6500 1.1594 0.7000 1.2974 0.7500 1.4432 0.8000 1.5966 0.8500 1.7579 0.9000 1.9268 0.9500 2.1034 1.0000 2.2875

Published with MATLAB® R2020b

```
syms x;
disp("1.1");
e1 = 1e-6;
e2 = 1e-4;
N = 10;
x0 = pi/4;
f = cos(x)-x;
vpa(Newton(f,x0,e1,e2,N),10)
syms x;
disp("1.2");
e1 = 1e-6;
e2 = 1e-4;
N = 10;
f=exp(-x)-sin(x);
x0=0.6;
vpa(Newton(f,x0,e1,e2,N),10)
syms x;
disp("1.3");
e1 = 1e-6;
e2 = 1e-4;
N = 10;
f=x-exp(-x);
x0=0.5;
vpa(Newton(f,x0,e1,e2,N),10)
syms x;
```

```
disp("1.4");
e1 = 1e-6;
e2 = 1e-4;
f=x*x-2*x*exp(-x)+exp(-2*x);
N=20;
x0=0.5;
vpa(Newton(f,x0,e1,e2,N),10)
function x1 = Newton(f,x0,e1,e2,N)
   df = diff(f);
   f = matlabFunction(f);
   df = matlabFunction(df);
   for i = 1:N
      F = f(x0);
      DF = df(x0);
      if(abs(F) < e1)
         x1 = x0;
          return;
      end
      if(abs(DF)< e2)</pre>
         x1 = -1;
          disp("失败");
          return;
      end
      x1 = x0 - F/DF;
      if(abs(x0-x1)<e1)</pre>
          return;
      x0 = x1;
```

```
end
x1 = -1;
disp("失败");
end
  1.1
ans =
0.7390851781
1.2
ans =
0.5885327428
1.3
ans =
0.567143165
1.4
ans =
0.5666057041
```

Published with MATLAB® R2020b

```
n=4;
disp("1.1");
A = [0.4096, 0.1234, 0.3678, 0.2943; 0.2246, 0.3872, 0.4015, 0.1129; 0.3645, 0.1920, 0.3781, 0.0643]
;0.1784,0.4002,0.2786,0.3927];
B=[1.1951;1.1262;0.9989;1.2499];
vpa(Gauss(A,B,n),10)
n=4;
disp("1.2");
A = [136.01, 90.86, 0, 0; 90.86, 98.81, -67.59, 0; 0, -67.59, 132.01, 46.26; 0, 0, 46.26, 177.17];\\
B=[226.87;122.08;110.68;223.43];
vpa(Gauss(A,B,n),10)
n=4;
disp("1.3");
A = [1, 1/2, 1/3, 1/4; 1/2, 1/3, 1/4, 1/5; 1/3, 1/4, 1/5, 1/6; 1/4, 1/5, 1/6, 1/7];
B=[25/12;77/60;57/60;319/420];
vpa(Gauss(A,B,n),10)
n=4;
disp("1.4");
A=[10,7,8,7;7,5,6,5;8,6,10,9;7,5,9,10];
B=[32;23;33;31];
vpa(Gauss(A,B,n),10)
n=4;
disp("2.1");
A = [197, 305, -206, -804; 46.8, 71.3, -47.4, 52; 88.6, 76.4, -10.8, 802; 1.45, 5.9, 6.13, 36.5];\\
B=[136;11.7;25.1;6.6];
```

```
vpa(Gauss(A,B,n),10)
n=4;
disp("2.2");
A = [0.5398, 0.7161, -0.5554, -0.2982; 0.5257, 0.6924, 0.3565, -0.6255; 0.6465, -0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8187, -0.1872, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182, 0.8182,
.1291;0.5814,0.94,-0.7779,-0.4042];
B=[0.2058;-0.0503;0.107;0.1859];
vpa(Gauss(A,B,n),10)
n=3;
disp("2.3");
A=[10,1,2;1,10,2;1,1,5];
B=[13;13;7];
vpa(Gauss(A,B,n),10)
n=3;
disp("2.4");
A=[4,-2,-4;-2,17,10;-4,10,9];
B=[-2;25;15];
vpa(Gauss(A,B,n),10)
function X = Gauss(A,B,n)
X = linspace(0,0,n);
for i = 1 : n
               max = abs(A(i,i));
               maxi = i;
               %找 max a[k][i]
               for j = (i + 1) : n
                              if(abs(A(j,i)) > abs(max))
```

```
maxi = j;
      \max = A(j,i);
   end
end
if(max == 0)
   disp("奇异标志");
  return;
end
if(maxi ~= i)
   %交换 B
   temp = B(i);
   B(i) = B(maxi);
   B(maxi) = temp;
   for j = i : n
      temp = A(i,j);
      A(i,j) = A(maxi,j);
      A(maxi,j) = temp;
   end
end
%化简
for j = i+1 : n
   m = A(j, i)/A(i, i);
   B(j) = B(j) - m*B(i);
   for k = i : n
   A(j,k) = A(j,k) - m*A(i,k);
   end
if(A(n,n) == 0)
   disp("奇异标志")
```

```
return;
  end
end
  %回代
   X(n) = B(n) / A(n, n);
   for i = n-1 : -1 : 1
     X(i) = B(i);
     for j = i+1 : n
     X(i) = X(i) - X(j) * A(i, j);
     end
      X(i) = X(i)/A(i, i);
  end
end
  1.1
ans =
[1.0, 1.0, 1.0, 1.0]
1.2
ans =
[1.0, 1.0, 1.0, 1.0]
1.3
```

ans =

[1.0, 1.0, 1.0, 1.0] 1.4 ans = [1.0, 1.0, 1.0, 1.0] 2.1 ans = [0.9536791069, 0.3209568455, 1.078708076, -0.09010850954] 2.2 ans = [0.516177298, 0.4152194728, 0.1099661029, 1.036539223] 2.3 ans = [1.0, 1.0, 1.0] 2.4

ans =

Published with MATLAB® R2020b