Midterm #2 Study Guide Math 157 (Calculus II), Spring 2023

- 1. Parametrized curves [§10.1, 10.2]
 - (a) Curve of form x = f(t) and y = g(t) for some auxiliary variable t ("time") [§10.1]
 - (b) Slope of tangent to curve given by chain rule [§10.2]: $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{f'(t)}{g'(t)}$
 - (c) Arc length [§10.2] is $\int_a^b \sqrt{(\frac{dy}{dt})^2 + (\frac{dx}{dt})^2} dt = \int_a^b \sqrt{f'(t)^2 + g'(t)^2} dt$
- 2. Polar coordinates and polar curves [§10.3, 10.4]
 - (a) Cartesian vs. polar [§10.3]: $(x,y) = (r\cos\theta, r\sin\theta)$ and $(r,\theta) = (\sqrt{x^2 + y^2}, \arctan(\frac{y}{x}))$
 - (b) Area inside [§10.4] polar curve $r = f(\theta)$ for $\alpha \le \theta \le \beta$ is $\int_{\alpha}^{\beta} \frac{1}{2} r^2 d\theta = \int_{\alpha}^{\beta} \frac{1}{2} f(\theta)^2 d\theta$
 - (c) Arc length [§10.4] of polar curve is $\int_{\alpha}^{\beta} \sqrt{r^2 + (\frac{dr}{d\theta})^2} \ d\theta = \int_{\alpha}^{\beta} \sqrt{f(\theta)^2 + f'(\theta)^2} \ d\theta$
- 3. Sequences and series [§11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 11.7]
 - (a) Sequence $\{a_n\}_{n=1}^{\infty}=a_1,a_2,\ldots$ is list of numbers, $\lim_{n\to\infty}a_n$ defined like $\lim_{x\to\infty}f(x)$ [§11.1]
 - (b) Series $\sum_{n=0}^{\infty} a_n$ is "infinite sum" $a_1 + a_2 + \cdots$ of terms a_n ; its value is $s = \lim_{n \to \infty} s_n$ where $s_n = a_1 + a_2 + \cdots + a_n$ is the *n*th partial sum [§11.2]
 - (c) Important series: geometric series [§11.2] $\sum_{n=1}^{\infty} ar^{n-1}$ converges if and only if |r| < 1 (and $= \frac{a}{1-r}$ if it converges); p-series [§11.3] $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if and only if p > 1
 - (d) Many tests for convergence / divergence of series:
 - i. (Divergence test [§11.2]) If $\lim_{n\to\infty} a_n \neq 0$, series $\sum_{n=0}^{\infty} a_n$ diverges.
 - ii. (Integral test [§11.3]) If f(x) continuous, decreasing, and positive, with $a_n = f(n)$, then $\sum_n^\infty a_n$ converges if and only if $\int_1^\infty f(x) \, dx$ converges. In this case, have error bounds for remainder $R_n = s s_n$: $\int_{n+1}^\infty f(x) \, dx \le R_n \le \int_n^\infty f(x) \, dx$.
 - iii. (Comparison tests [§11.4]) If $\sum_{n=0}^{\infty} b_n$ converges & $a_n \leq b_n$, then $\sum_{n=0}^{\infty} a_n$ converges. If $\sum_{n=0}^{\infty} b_n$ diverges & $a_n \geq b_n$, then $\sum_{n=0}^{\infty} a_n$ diverges. If $\lim_{n\to\infty} \frac{a_n}{b_n}$ exists and is $\neq 0$ or ∞ , then $\sum_{n=0}^{\infty} a_n$ converges if and only if $\sum_{n=0}^{\infty} b_n$ converges.
 - iv. (Alternating series test [§11.5]) Alternating series $\sum_{n=1}^{\infty} (-1)^{n-1} b_n$ converges as long as $b_{n+1} \leq b_n$ and $\lim_{n\to\infty} b_n = 0$. In this case, have error bound: $|R_n| \leq b_{n+1}$.
 - v. (Ratio test [§11.6]) For series $\sum_{n=1}^{\infty} a_n$, let $L = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}$. If L < 1, series converges. If L > 1 (including ∞), series diverges. If L = 1, test is inconclusive.
- 4. Power series and Taylor series [§11.8, 11.9, 11.10, 11.11]
 - (a) The ratio test tells us that any power series $\sum_{n=0}^{\infty} c_n(x-a)^n$ has a radius of convergence R such that it converges when |x-a| < R and diverges when |x-a| > R [§11.8]
 - (b) Differentiate, integrate, and multiply power series like they are polynomials [§11.9, 11.10]
 - (c) Taylor series of f(x) at x = a is $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$, where $f^{(n)}$ is nth derivative [§11.10]
 - (d) Important Taylor series [§11.10]: $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \ (R=1); \quad e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \ (R=\infty);$ $\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^{n-1}x^{2n+1}}{(2n+1)!} \ (R=\infty); \quad \cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^nx^{2n}}{(2n)!} \ (R=\infty)$
 - (e) Taylor polynomial $T_n(x)$: nth partial sum of series; $f(x) \approx T_n(x)$ if $x \approx a$ [§11.10, 11.11]