

Universidade Tecnológica Federal do Paraná – UTFPR Bacharelado em Ciência da Computação

BCC34C – Sistemas Microcontrolados

Prof. Frank Helbert Borsato

Aula Hoje

- · Capítulo 9. TEMPORIZADORES/CONTADORES
 - 9.3 Temporizador/Contador 0
 - 9.3.1 Registradores do TC0
 - 9.3.2 Códigos Exemplo

- Registradores do TC0
 - O controle do modo de operação do TC0 é feito nos registradores:
 - TCCR0A (Timer/Counter Control 0 Register A)

Bit		7	6	5	4	3	2	1	0	
	TCCR0A	COM0A1	COM0A0	COM0B1	COM0B0	-	-	WGM01	WGM00	
Lê/Escr.	·	L/E	L/E	L/E	L/E	L	L	L/E	L/E	
Valor Inic.		0	0	0	0	0	0	0	0	

Bits 7:6 - COMOA1:0 - Compare Match Output A Mode

Estes bits controlam o comportamento do pino OC0A (*Output Compare* 0A). Se um ou ambos os bits forem colocados em 1, a funcionalidade normal do pino é alterada. Entretanto, o bit do registrador DDRx correspondente ao pino OC0A deve estar ajustado para habilitar o *driver* de saída. A funcionalidade dos bits COM0A1:0 depende do ajuste dos bits WGM02:0. Suas possíveis configurações são apresentadas nas tabs. 9.1-3.

Tab. 9.1 – Modo CTC (não PWM).

COM0A1	COM0A0	Descrição
0	0	Operação normal do pino, OC0A desconectado.
0	1	Mudança do estado de OC0A na igualdade de comparação.
1	0	OC0A é limpo na igualdade de comparação.
1	1	OC0A é ativo na igualdade de comparação.

Tab. 9.2 – Modo PWM rápido.

COM0A1	COM0A0	Descrição			
0	0	Operação normal do pino, OC0A desconectado.			
0	1	WGM02 = 0: operação normal do pino, OC0A desconectado. WGM02 = 1: troca de estado do OC0A na igualdade de comparação.			
1	0	OC0A é limpo na igualdade de comparação, OC0A ativo no valor do TC mínimo (modo não invertido).			
1	1	OC0A é ativo na igualdade de comparação e limpo no valor do TC mínimo (modo invertido).			

Tab. 9.3 - Modo PWM com fase corrigida.

COM0A1	COM0A0	Descrição			
0	0	Operação normal do pino, OC0A desconectado.			
0	1	WGM02 = 0: operação normal do pino, OC0A desconectado. WGM02 = 1: troca de estado do OC0A na igualdade d comparação.			
1	0	OC0A é limpo é na igualdade de comparação quando a contagem é crescente, e ativo na igualdade de comparação quando a contagem é decrescente.			
1	1	OC0A é ativo na igualdade de comparação quando a contagem é crescente, e limpo na igualdade de comparação quando a contagem é decrescente.			

- TCCR0A (Timer/Counter Control 0 Register A)

Bit		7	6	5	4	3	2	1	0
	TCCR0A	COM0A1	COM0A0	COM0B1	COM0B0	-	-	WGM01	WGM00
Lê/Escr.		L/E	L/E	L/E	L/E	L	L	L/E	L/E
Valor Inic.		0	0	0	0	0	0	0	0

Bits 5:4 - COMOB1:0 - Compare Match Output B Mode

Estes bits controlam o comportamento do pino OC0B (*Output Compare* 0B). Se um ou ambos os bits forem colocados em 1, a funcionalidade normal do pino é alterada. Entretanto, o bit do registrador DDRx correspondente ao pino OC0B deve estar ajustado para habilitar o *driver* de saída. A funcionalidade dos bits COM0B1:0 depende do ajuste dos bits WGM02:0. Suas possíveis configurações são apresentadas nas tabs. 9.4-6.

Tab. 9.4 - Modo CTC (não PWM).

COM0B1	COM0B0	Descrição		
0	0	Operação normal do pino, OC0B desconectado.		
0	1	Mudança do estado de OC0B na igualdade de comparação.		
1	0	OC0B é limpo na igualdade de comparação.		
1	1	OC0B é ativo na igualdade de comparação.		

Tab. 9.5 – Modo PWM rápido.

COM0B1	COM0B0	Descrição			
0	0	Operação normal do pino, OC0B desconectado.			
0	1	Reservado.			
1	0	OC0B é limpo na igualdade de comparação, OC0B ativo no valor do TC mínimo (modo não invertido).			
1	1	OC0B é ativo na igualdade de comparação e limpo no valor do TC mínimo (modo invertido).			

Tab. 9.6 - Modo PWM com fase corrigida.

COM0B1	СОМ0В0	Descrição			
0	0	Operação normal do pino, OC0B desconectado.			
0	1	Reservado.			
1	0	OC0B é limpo é na igualdade de comparação quando a contagem é crescente, e ativo na igualdade de comparação quando a contagem é decrescente.			
1	1	OC0B é ativo na igualdade de comparação quando a contagem é crescente, e limpo na igualdade de comparação quando a contagem é decrescente.			

- TCCR0A (Timer/Counter Control 0 Register A)

Bit		7	6	5	4	3	2	1	0	
	TCCR0A	COM0A1	COM0A0	COM0B1	COM0B0	-	-	WGM01	WGM00	
Lê/Escr.	,	L/E	L/E	L/E	L/E	L	L	L/E	L/E	
Valor Inic.		0	0	0	0	0	0	0	0	

Bits 1:0 - WGM01:0 - Wave Form Generation Mode

Combinados com o bit WGM02 do registrador TCCR0B, estes bits controlam a sequência de contagem do contador, a fonte do valor máximo para contagem (TOP) e o tipo de forma de onda a ser gerada, conforme tab. 9.7.

Tab. 9.7 – Bits para configurar o modo de operação do TC0.

Modo	WGM02	WGM01	WGM00	Modo de Operação TC	ТОР	Atualização de OCR0A no valor:	Sinalização do bit TOV0 no valor:
0	0	0	0	Normal	0xFF	Imediata	0xFF
1	0	0	1	PWM com fase corrigida	0xFF	0xFF	0x00
2	0	1	0	СТС	OCR0A	Imediata	0xFF
3	0	1	1	PWM rápido	0xFF	0x00	0xFF
4	1	0	0	Reservado	-	-	-
5	1	0	1	PWM com fase corrigida	OCR0A	OCR0A	0x00
6	1	1	0	Reservado	-	-	-
7	1	1	1	PWM rápido	OCR0A	0x00	OCR0A

- TCCR0B (Timer/Counter Control 0 Register B)

Bit		7	6	5	4	3	2	1	0
	TCCR0B	FOC0A	FOC0B	-	-	WGM02	CS02	CS01	CS00
Lê/Escr.		E	E	L	L	L/E	L/E	L/E	L/E
Valor Inic.		0	0	0	0	0	0	0	0

Bits 7:6 - FOCOA:B - Force Output Compare A e B

Estes bits são ativos somente para os modos não-PWM. Quando em 1, uma comparação é forçada no módulo gerador de onda. O efeito nas saídas dependerá da configuração dada aos bits COMOA1:0 e COMOB1:0.

Bit 3 - WGM02 - Wave Form Generation Mode

Função descrita na tab. 9.7.

Bits 2:0 - CS02:0 - Clock Select

Bits para seleção da fonte de *clock* para o TC0, conforme tab. 9.8.

Tab. 9.8 – Seleção do *clock* para o TC0.

CS02	CS01	CS00	Descrição
0	0	0	Sem fonte de <i>clock</i> (TC0 parado).
0	0	1	clock/1 (prescaler=1) - sem prescaler.
0	1	0	clock/8 (prescaler = 8).
0	1	1	clock/64 (prescaler = 64).
1	0	0	clock/256 (prescaler = 256).
1	0	1	clock/1024 (prescaler = 1024).
1	1	0	clock externo no pino T0. Contagem na borda de descida.
1	1	1	clock externo no pino T0. Contagem na borda de subida.

TCNT0 - Timer/Counter 0 Register

Registrador de 8 bits onde é realizada a contagem do TC0, pode ser lido ou escrito a qualquer tempo.

OCROA – Output Compare 0 Register A

Registrador de comparação A de 8 bits, possui o valor que é continuamente comparado com o valor do contador (TCNTO). A igualdade pode ser utilizada para gerar uma interrupção ou uma forma de onda no pino OCOA.

OCROB – Output Compare 0 Register B

Registrador de comparação B de 8 bits, possui o valor que é continuamente comparado com o valor do contador (TCNTO). A igualdade pode ser utilizada para gerar uma interrupção ou uma forma de onda no pino OCOB.

- TIMSK0 (Timer/Counter 0 Interrupt Mask Register)

Bit		7	6	5	4	3	2	1	0
	TIMSK0	-	-	-	-	-	OCIE0B	OCIE0A	TOIE0
Lê/Escreve	•	L	L	L	L	L	L/E	L/E	L/E
Valor Inicial		0	0	0	0	0	0	0	0

Bit 2 - OCIEOB - Timer/Counter 0 Output Compare Match B Interrupt Enable A escrita 1 neste bit ativa a interrupção do TCO na igualdade de comparação com o registrador OCROB.

Bit 1 – OCIEOA – *Timer/Counter* 0 *Output Compare Match A Interrupt Enable* A escrita 1 neste bit ativa a interrupção do TC0 na igualdade de comparação com o registrador OCR0A.

Bit 0 - TOIEO - *Timer/Counter* 0 *Overflow Interrupt Enable* A escrita 1 neste bit ativa a interrupção por estouro do TCO.

As interrupções individuais dependem da habilitação das interrupções globais pelo bit I do SREG.

- TIFR0 (Timer/Counter 0 Interrupt Flag Register)

Bit		7	6	5	4	3	2	1	0
	TIFR0	-	-	-	-	-	OCF0B	OCF0A	TOV0
Lê/Escreve		L	L		L	L	L/E	L/E	L/E
Valor Inicial		0	0	0	0	0	0	0	0

Bit 2 – OCF0B – Timer/Counter 0 Output Compare B Match Flag

Este bit é colocado em 1 quando o valor da contagem (TCNT0) é igual ao valor do registrador de comparação de saída B (OCR0B) do TC0.

Bit 1 - OCFOA - Timer/Counter 0 Output Compare A Match Flag

Este bit é colocado em 1 quando o valor da contagem (TCNT0) é igual ao valor do registrador de comparação de saída A (OCR0A) do TC0.

Bit 0 - TOV0 - Timer/Counter 0 Overflow Flag

Este bit é colocado em 1 quando um estouro do TC0 ocorre.

- TC1 Temporizador/Contador 1
 - · O TC1 é um contador de 16 bits
 - É incrementado com pulsos de clock obtido:
 - » Da fonte interna de clock do microcontrolador
 - » Clock externo, ligado ao pino T1
 - A contagem é feita no par de registradores:
 - **» TCNT1H e TCNT1L**

Figure 16-4. Output Compare Unit, Block Diagram

- Temporizador/Contador 1
 - Possuindo dois registradores de controle:
 - TCCR1A e TCCR1B.
 - Os registradores de comparação de saída OCR1A e OCR1B são constantemente comparados com o valor de contagem

- Temporizador/Contador 1
 - O resultado da comparação pode ser usado para gerar sinais PWMs ou com frequência variável nos pinos de saída de comparação (OC1A e OC1B)
 - O valor máximo de contagem (TOP) para o TC1 pode ser definido em alguns modos de operação:
 - OCR1A
 - ICR1
 - Ou por um conjunto fixo de valores

Tab. 6.1 – Interrupções do ATmega328 e seus endereços na memória de programa.

Vetor	End.	Fonte	Definição da Interrupção	Prioridade
1	0x00	RESET	Pino externo, Power-on Reset, Brown-out Reset e Watchdog Reset	
2	0x01	INT0	interrupção externa 0	7
3	0x02	INT1	interrupção externa 1	7
4	0x03	PCINT0	interrupção 0 por mudança de pino	7
5	0x04	PCINT1	interrupção 1 por mudança de pino	7
6	0x05	PCINT2	interrupção 2 por mudança de pino	7
7	0x06	WDT	estouro do temporizador Watchdog	7
8	0x07	TIMER2 COMPA	igualdade de comparação A do TC2	\neg
9	0x08	TIMER2 COMPB	igualdade de comparação B do TC2	
10	0x09	TIMER2 OVF	estouro do TC2	7 l
11	0x0A	TIMER1 CAPT	evento de captura do TC1	<u> </u>
12	0x0B	TIMER1 COMPA	igualdade de comparação A do TC1	1
13	0x0C	TIMER1 COMPB	igualdade de comparação B do TC1	
14	0x0D	TIMER1 OVF	estouro do TC1	
15	0x0E	TIMER0 COMPA	igualdade de comparação A do TC0	7
16	0x0F	TIMER0 COMPB	igualdade de comparação B do TC0	7
17	0x10	TIMER0 OVF	estouro do TC0	7
18	0x11	SPI, STC	transferência serial completa - SPI	7
19	0x12	USART, RX	USART, recepção completa	7
20	0x13	USART, UDRE	USART, limpeza do registrador de dados	
21	0x14	USART, TX	USART, transmissão completa	7 l
22	0x15	ADC	conversão do ADC completa	7 l
23	0x16	EE_RDY	EEPROM pronta	
24	0x17	ANA_COMP	comparador analógico	
25	0x18	TWI	interface serial TWI – I2C	
26	0x19	SPM_RDY	armazenagem na memória de programa pronta	

- Temporizador/Contador 1
 - Modo PWM Rápido
 - A frequência de saída do PWM rápido é calculada com:

$$f_{OC1x_PWM} = \frac{f_{osc}}{N.(1+TOP)}$$
 [Hz]

9.5.1 REGISTRADORES DO TC1

O controle do modo de operação do TC1 é feito nos registradores TCCR1A e TCCR1B (*Timer/Counter 1 Control Registers*).

Bit		7	6	5	4	3	2	1	0
	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	-	-	WGM11	WGM10
Lê/Escr.	•	L/E	L/E	L/E	L/E	L	L	L/E	L/E
Valor		0	0	0	0	0	0	0	0
Inicial									

Bits 7:6 - COM1A1:0 - Compare Output Mode for channel A

Bits 5:4 - COM1B1:0 - Compare Output Mode for channel B

COM1A1:0 e COM1B1:0 controlam o comportamento dos pinos OC1A e OC1B, respectivamente. Se o valor 1 for escrito nesses bits a funcionalidade dos pinos é alterada (os bits no registrador DDRx correspondentes a OC1A e OC1B devem ser colocados em 1 para habilitar cada *driver* de saída). Quando OC1A e OC1B forem empregados, a funcionalidade dos bits COM1x1:0 dependerá do ajuste dos bits WGM13:0. Nas tabs. 9.17-19, são apresentadas as configurações dos bits COM1x1:0 para os diferentes modos de operação do TC1.

Tab. 9.17– Modo não PWM (normal e CTC).

COM1A1/COM1B1	COM1A0/COM1B0	Descrição				
0	0	Operação normal dos pinos, OC1A/OC1B desconectados.				
0	1	Mudança de OC1A/OC1B na igualdade de comparação.				
1	0	Limpeza de OC1A/OC1B na igualdade de comparação (saída em nível lógico baixo).				
1	1	OC1A/OC1B ativos na igualdade de comparação (saída em nível lógico alto).				

Tab. 9.18 – Modo PWM rápido.

COM1A1/COM1B1	COM1A0/COM1B0	Descrição			
0	0	Operação normal dos pinos, OC1A/OC1B desconectados.			
0	1	WGM13:0 = 14 ou 15: Mudança de OC1A na igualdade de comparação, OC1B desconectado (operação normal do pino). Para os demais valores de WGM1, OC1A/OC1B estarão desconectados (operação normal dos pinos).			
1	0	Limpeza de OC1A/OC1B na igualdade de comparação, ativos no valor mínimo de comparação (modo não invertido).			
1	1	OC1A/OC1B ativos na igualdade de comparação, limpos no valor mínimo de comparação (modo invertido).			

Tab. 9.19 – Modo PWM com correção de fase e correção de fase e frequência.

COM1A1/COM1B1	COM1A0/COM1B0	Descrição			
0	0	Operação normal dos pinos, OC1A/OC1B desconectados.			
0	1	WGM13:0 = 9 ou 11: Mudança de OC1A na igualdade de comparação, OC1B desconectado (operação normal do pino). Para os demais valores de WGM1, OC1A/OC1B estarão desconectados (operação normal dos pinos).			
1	0	Limpeza de OC1A/OC1B na igualdade de comparação quando a contagem é crescente, ativos no valor mínimo de comparação quando a contagem é decrescente.			
1	1	OC1A/OC1B ativos na igualdade de comparação quando a contagem é crescente, limpos no valor mínimo de comparação quando a contagem é decrescente.			

Bits 1:0 - WGM11:0 - Waveform Generation Mode

Combinados com os bits WGM13:2 do registrador TCCR1B, esses bits controlam a forma de contagem do contador, a fonte para o valor máximo (TOP) e qual tipo de forma de onda gerada será empregada (tab. 9.20).

Tab. 9.20 - Descrição dos bits para os modos de geração de formas de onda.

Mo do	WGM 13	WGM 12	WGM 11	WGM 10	Modo de operação do TC1	Valor TOP	Atualiz. OCR1x no valor	Bit TOV1 ativo no valor:
0	0	0	0	0	Normal	0xFFFF	Imediata	0xFFFF
1	0	0	0	1	PWM com fase corrigida, 8 bits	0x00FF	0x00FF	0
2	0	0	1	0	PWM com fase corrigida, 9 bits	0x01FF	0x01FF	0
3	0	0	1	1	PWM com fase corrigida, 10 bits	0x03FF	0x03FF	0
4	0	1	0	0	СТС	OCR1A	Imediata	0xFFFF
5	0	1	0	1	PWM rápido, 8 bits	0x00FF	0	0x00FF
6	0	1	1	0	PWM rápido, 9 bits	0x01FF	0	0x01FF
7	0	1	1	1	PWM rápido, 10 bits	0x03FF	0	0x03FF
8	1	0	0	0	PWM com fase e freq. corrigidas	ICR1	0	0
9	1	0	0	1	PWM com fase e freq. corrigidas	OCR1A	0	0
10	1	0	1	0	PWM com fase corrigida	ICR1	ICR1	0
11	1	0	1	1	PWM com fase corrigida	OCR1A	OCR1A	0
12	1	1	0	0	CTC	ICR1	Imediata	0xFFFF
13	1	1	0	1	Reservado	-	-	-
14	1	1	1	0	PWM rápido	ICR1	0	ICR1
15	1	1	1	1	PWM rápido	OCR1A	0	OCR1A

0xFFFF = 65535 0x00FF = 255 (8 bits) 0x01FF = 511 (9 bits) 0x03FF = 1023(10 bits)

TCCR1B - Timer/Counter 1 Control Register B

Bit		7	6	5	4	3	2	1	0
	TCCR1B	ICNC1	ICES1	-	WGM13	WGM12	CS12	CS11	CS10
Lê/Escr.		L/E	L/E	L	L/E	L/E	L/E	L/E	L/E
Valor		0	0	0	0	0	0	0	0
Inicial									

Bit 7 - ICNC1 - Input Capture Noise Canceler

Colocando este bit em 1, o filtro de ruído do pino de captura ICP1 é habilitado. Esse filtro requer 4 amostras sucessivas iguais para o ICP1 mudar sua saída. Assim, a captura de entrada é atrasada por 4 ciclos de *clock*.

Bit 6 – ICES1 – Input Capture Edge Select

Este bit seleciona qual borda no pino de entrada de captura (ICP1) será usada para disparar o evento de captura (ICES1=0 na transição de 1 para 0, ICES1=1 na transição de 0 para 1). Quando uma captura ocorre, o valor do contador é copiado no registrador ICR1.

Bit 4:3 - WGM13:2 - Waveform Generation Mode Ver a tab. 9.20.

Bit 2:0 - CS12:0 - Clock Select

Existem 3 bits para a escolha da fonte de *clock* para o TC1 (tab. 9.21).

Tab. 9.21 – Descrição dos bits para seleção do *clock* para o TC1.

CS12	CS11	CS10	Descrição
0	0	0	Sem fonte de <i>clock</i> (TC1 parado).
0	0	1	clock/1 (prescaler = 1) sem prescaler.
0	1	0	clock/8 (prescaler = 8) .
0	1	1	clock/64 (prescaler = 64).
1	0	0	clock/256 (prescaler = 256).
1	0	1	clock/1024(prescaler = 1024).
1	1	0	Fonte de <i>clock</i> externa no pino T1 (contagem na borda de descida).
1	1	1	Fonte de <i>clock</i> externa no pino T1 (contagem na borda de subida).

TCCR1C - Timer/Counter 1 Control Register C

Bit		7	6	5	4	3	2	1	0
	TCCR1C	FOC1A	FOC1B	-	-	-	-	-	-
Lê/Escr.		L/E	L/E	L	L	L	L	L	L
Valor		0	0	0	0	0	0	0	0
Inicial									

Bits 7:6 - FOC2A:B - Force Output Compare A e B

Estes bits são ativos somente para os modos não-PWM. Quando em 1, obrigam uma comparação no módulo gerador de forma de onda. O efeito nas saídas dependerá da configuração dado aos bits COM1A1:0 e COM1B1:0.

TCNTH e TCNTL (TCNT1) - Timer/Counter 1 Register

São os dois registrador de 8 bits onde é realizada a contagem do TC1, H (high) L (Low), podem ser lidos ou escritos a qualquer tempo.

OCR1AH e OCR1AL (OCR1A) - Output Compare 1 Register A

Registradores de comparação A de 8 bits cada, possui o valor que é continuamente comparado com o valor do contador (TCNT1). A igualdade pode ser utilizada para gerar uma interrupção ou uma forma de onda no pino OC1A.

OCR1BH e OCR1BL (OCR1B) - Output Compare 1 Register B

Registradores de comparação B de 8 bits cada, possui o valor que é continuamente comparado com o valor do contador (TCNT1). A igualdade pode ser utilizada para gerar uma interrupção ou uma forma de onda na pino OC1B.

ICR1H e ICR1L (ICR1) - Input Capture Register 1

Esses registradores são atualizados com o valor do TCNT1 cada vez que um evento ocorre no pino ICP1 (ou opcionalmente nos pinos do comparador analógico). Também são empregados para definir o valor máximo de contagem (TOP).

TIMSK1 - Timer/Counter 1 Interrupt Mask Register

Bit		7	6	5	4	3	2	1	0
	TIMSK1	-	-	ICIE1	-	-	OCIE1B	OCIE1A	TOIE1
Lê/Escreve		L	L	L/E	L	L	L/E	L/E	L/E
Valor Inicial		0	0	0	0	0	0	0	0

Bit 5 – ICIE1 – Timer/Counter 1, Input Capture Interrupt Enable

A escrita de 1 neste bit ativa a interrupção por captura da entrada. Quando ocorre uma mudança no pino ICP1 ou nos pinos do comparador analógico, o valor do TCNT1 é salvo no registrador ICR1.

Bit 2 – OCIE1B – *Timer/Counter* 1 *Output Compare Match B Interrupt Enable* A escrita de 1 neste bit ativa a interrupção do TC1 na igualdade de comparação com o registrador OCR1B.

Bit 1 – OCIE1A – Timer/Counter 1 Output Compare Match A Interrupt Enable A escrita de 1 neste bit ativa a interrupção do TC1 na igualdade de comparação com o registrador OCR1A.

Bit 0 - TOIE1 - *Timer/Counter* 1 *Overflow Interrupt Enable* A escrita de 1 neste bit ativa a interrupção por estouro do TC1.

TIFR1 – Timer/Counter 1 Interrupt Flag Register

Bit		7	6	5	4	3	2	1	0
	TIFR2	-	-	ICF1	-	-	OCF1B	OCF1A	TOV1
Lê/Escreve		L	L	L/E	L	L	L/E	L/E	L/E
Valor Inicial		0	0	0	0	0	0	0	0

Bit 5 – ICF1 – Timer/Counter 1 Input Capture Flag

Este bit é colocado em 1 quando um evento relacionado ao pino ICP1 ocorre.

Bit 2 - OCF1B - Timer/Counter 1 Output Compare B Match Flag

Este bit é colocado em 1 quando o valor da contagem (TCNT1) é igual ao valor do registrador de comparação de saída B (OCR1B) do TC1.

Bit 1 - OCF1A - Timer/Counter 1 Output Compare A Match Flag

Este bit é colocado em 1 quando o valor da contagem (TCNT1) é igual ao valor do registrador de comparação de saída A (OCR1A) do TC1.

Bit 0 - TOV1 - Timer/Counter 1 Overflow Flag

Este bit é colocado em 1 quando um estouro do TC1 ocorre.

- Aplicação PWM Rápido
 - Micro servo motor
 - Os servo motores apresentam movimentação precisa do seu eixo de acordo com ângulos precisos de movimento, sendo adequados para o posicionamento de partes mecânicas

Fig. 9.18 – Micro servo motor.

- Aplicação FAST PWM
 - Micro servo motor
 - Os servo motores possuem 3 fios:
 - » dois de alimentação (Vermelho VCC, Marrom GND)
 - » um de controle (Laranja)
 - O interessante é que o ângulo de giro do motor, a saída do sistema de engrenagens, é determinado pela largura do ciclo ativo de um sinal PWM aplicado no controle, como exemplificado na fig. 9.19
 - O período do sinal é de 20 ms (50 Hz) e o ciclo ativo geralmente pode variar de 0,5 ms até 2,5 ms (vai depender das especificações do fabricante)

Fig. 9.19 – Sinal de controle para um micro servo motor.

https://www.tinkercad.com/things/0oGu0064DTE-controleservomotor


```
AVR e Arduino: Técnicas de Projeto, 2a ed. - 2012.
/*
/*------
  EXEMPLO DO CONTROLE DE DOIS MOTORES SERVO COM SINAIS PWM
  Uso do TC1 no modo PWM rápido, não invertido, pinos OC1A e OC1B
  Valor TOP de contagem em ICR1
        -----*/
#define F CPU 16000000UL
#include <avr/io.h>
//Definições de macros
#define set_bit(adress,bit) (adress|=(1<<bit))</pre>
#define clr_bit(adress,bit) (adress&=~(1<<bit))</pre>
#define TOP 39999
                        //valor para a máxima contagem
int main()
  DDRB = 0b00000110:
                           //habilita os pinos OC1A e OC1B (PB1 e PB2) como saídas
  PORTB = 0b11111001:
                      //TOP = (F_CPU/(N*F_PWM))-1, com N = 8 e F_PWM = 50 Hz
  ICR1 = TOP:
                         //configura o período do PWM (20 ms)
  // Configura o TC1 para o modo PWM rápido via ICR1, prescaler = 8
  TCCR1A = (1 \ll WGM11);
  TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS11);
  set bit(TCCR1A,COM1A1); //ativa o PWM no OC1B, modo de comparação não-invertido
                      //para desabilitar empregar clr_bit(TCCR1A, COM1A1)
  set_bit(TCCR1A,COM1B1);
                           //ativa o PWM no OC1A, modo de comparação não-invertido
                      //para desabilitar empregar clr_bit(TCCR1A, COM1B1)
  //Pulso de 2 ms em OC1A
  OCR1A = 4000; //regra de três para determinar este valor: ICR1(TOP) = 20 ms, OCR1A (4000) = 2 ms)
  //Pulso de 1 ms em OC1B
  OCR1B = 2000; //regra de três para determinar este valor: ICR1(TOP) = 20 ms, OCR1B (2000) = 1 ms)
  while(1)
            //programa principal
  {}
            ------
```


PWM e Arduino

- https://www.arduino.cc/en/Reference/AnalogWrite
- https://www.arduino.cc/en/Tutorial/PWM
- http://garretlab.web.fc2.com/en/arduino/inside/arduino/wiring_analog.c/analogWrite.html
- http://www.righto.com/2009/07/secrets-of-arduino-pwm.html
- https://123d.circuits.io/circuits/2124936

Referências

- -AVR e Arduino Técnicas de Projeto
- Datasheet Atmel 8-bit Microcontroller with 4/8/16/32KBytes
 - » 15. 8-bit Timer/Counter0 with PWM

