Matching with Transformers in MELT

UNIVERSITY
OF MANNHEIM
School of Business Informatics
and Mathematics

Sven Hertling, Jan Portisch, Heiko Paulheim University of Mannheim

Joint Work

Sven Hertling
Data and Web Science Group,
University of Mannheim
sven@informatik.uni-mannheim.de

Jan Portisch
Data and Web Science Group,
University of Mannheim / SAP SE
jan@informatik.uni-mannheim.de

Prof. Dr. Heiko Paulheim

Data and Web Science Group,
University of Mannheim

heiko@informatik.uni-mannheim.de

Agenda

- Motivation
- What is MELT
- Transformers in MELT
- Experiments
- Conclusion & Future Work

Motivation

Motivation

- the transformer architecture achieved breakthrough results in various NLP domains
- this poses the question in how far transformers can be beneficial for the ontology matching domain

What is MELT?

What is MELT?

- **Easy** matcher development
- Re-Usable Matcher Componetns
- Non-Java matcher development
- Maven support

- Facilitate matcher packaging (SEALS, HOBBIT, Docker Web)
- Facilitate matcher submission

Allow for parameter optimization

- Advanced evaluation capabilities
- Evaluation before packaging
- Allow for interactive visualization
- **Streamlined** development process
- Integration with existing tooling
- OAEI support
- Extensibility

What is MELT?

Matcher

Development

with **Transformers**

Matcher **Submission**

Matcher Fine-Tuning

Matcher **Evaluation**

There is MUCH more to MELT

Ontology **Caching** Services

Multi-Threaded Matcher Execution

Execution of SEALS, HOBBIT, WEB packagesfrom within MELT

> **50** matchers

> **25** filters

Alignment **Extensions**

OAEI-Track OrganizerTools

ExecutionResult **Indexing**

One-Time **Auto-Download** of OAEI Tracks

Matcher **Pipelining**

Transformers in MELT

The Transformer Pipeline

The Transformer Pipeline

Generating Negatives

- positives:
 - (1) reference
 - (2) high-precision sytem
- negatives
 - generate randomly (AddNegativesRandomlyAbsolute, AddNegativesRandomlyShare)
 - generate through one-to-one assumption, e.g. incomplete or unknown reference AddNegativesRandomlyOneOneAssumption
- all new strategies implement interface AddNegatives

TextExtractors & Technical Details

TextExtractors & Technical Details

Fig. 2. Optional multi-text mechanisms implemented in class TransformersFilter.

Hyperparameter Optimization

- via Ray Tune
- initial hyperparameter search space
 - learning rate: loguniform distribution between 10^{-6} and 10^{-4}
 - epochs: random choice between 1 and 5
 - seed: uniform distribution between 1 and 40
 - batch size: random choice of 4, 8, 16, 32, 64
 (max size autoamtically determined)
- optimizable metrics: loss, accuracy, F1, recall, precision, AUC
- class TransformersFineTunerHpSearch

It's not complicated!


```
public class TransformerApplyExample extends MatcherPipelineYAAAJena {
    protected List<MatcherYAAAJena> initializeMatchers() {
       List<MatcherYAAAJena> list = new ArrayList<>();
        // some recall matcher
       list.add(new RecallMatcher());
        // transformer filter
       list.add(new TransformersFilter(
                new TextExtractorAllLiterals(),
                "albert-base-v2"));
        // some post processing steps
       list.add(new ConfidenceFilter(0.75));
        list.add(new MaxWeightBipartiteExtractor());
        return list;
```


Experiments

Experiments | Pipeline

Experiments

- tracks: Anatomy, Confernce, Knowledge Graph
- with and without fine-tuning
- sampling rate: 20%
- models
 - bert-base-cased
 - roberta-base
 - albert-base-v2

Results

		Conference			Anatomy			Knowledge Graph		
		P	R	F1	P	R	F1	P	R	F1
Baseline	SimpleString	0.710	0.498	0.586	0.964	0.708	0.816	0.909	0.727	0.808
	High Recall	0.450	0.561	0.179	0.037	0.942	0.071	0.167	0.915	0.283
Zero-Shot	bert-base-cased	0.650		0.594						0.726
	(mrpc-tuned)									
Fine-Tuned (per Track)	bert-base-cased	0.748	0.361	0.487	0.726	0.689	0.707	0.941	0.789	0.859
	roberta-base			0.570						
	albert-base-v2	0.812	0.397	0.533	0.854	0.825	0.839	0.687	0.665	0.676

Table 1. Results of non-fine-tuned and fine-tuned transformer models (multi-text) with 20% sampling from the reference alignment. As per OAEI customs, we report micro average scores for the conference and macro average scores for the KG track.

- fine-tuning increases performance
- albert-base-v2
 and bert-base cased achieved best
 results
- minor improvements through hyperparameter tuning

Results

 performance increases with increasing sample rate

low sampling (10-20%)
 is sufficient for good
 results

Fig. 4. albert-base-v2 performance on the anatomy track using different reference sampling rates.

Conclusion and Future Work

Conclusion & Future Work

- Transformers for MELT allow the broad usage of transformers without deep technical skills (out-of-the-box components)
- Tranformers are promising for the matching domain as shown in experiments
- in the future, we plan to
 - add further matching components (alignment repair)
 - include sentence transformers (transformers as matching component, not as filter)

ISWC 2021, Virtual Event

Thank you.

Sven Hertling

University of Mannheim
https://www.uni-mannheim.de/dws/people/researchers/
/phd-students/sven-hertling/

sven@informatik.uni-mannheim.de

Jan Portisch

University of Mannheim / SAP SE https://www.jan-portisch.eu

jan@informatik.uni-mannheim.de / jan.portisch@sap.com

Heiko Paulheim

University of Mannheim http://www.heikopaulheim.de/

heiko@informatik.uni-mannheim.de