MAD-CB

Analise de Variância – ANOVA

Proposito de ANOVA

- Analisar comparações entre três ou mais grupos de um variável
 - ▶ Para 2 grupos, usamos testes-t para comparação das médias
- Variável dependente NUMÉRICA
- Variável(eis) independente(s) CATEGÓRICA

Quando Têm Mais de 2 Grupos a Comparar

- Testes-t criam dificuldade
 - Provável que achará uma comparação significativa por acaso
 - Mesmo se não existe
 - Aumenta risco de erro Tipo I (falso positivo)
- ANOVA evita esse risco
 - ► Teste de hipótese é que todos as médias dos grupos são iguais
 - ▶ Rejeição da hipótese nula significa que pelo menos uma diferença existe

Teste de Hipótese de ANOVA

$$H_0: \mu_1 = \mu_2 = ... = \mu_k \ ext{(onde } \mu_i ext{ \'e a m\'edia das observaç\~oes grupo i)}$$

 H_1 : ao menos $1~\mu$ é diferente

 Presença de grandes diferenças entre as médias dos grupos é evidência em favor da rejeição da hipótese nula

Porque Análise de Variancia?

- Porque esta técnica é chamada análise de variância quando estamos testando diferenças entre médias e não os desvios padrões?
- Resposta:

O modelo avalia a variação entre as médias dos grupos relativo a variação entre observações individuais dentro dos grupos para determinar o grau de diferença entre médias

Premissas de ANOVA

- As observações devem ser independentes dentro e entre os grupos
- Os dados dentro de cada grupo devem ser quase normais
- A variância dos grupos deve ser quase igual

Dados para ANOVA – Homenagem a Nova Temporada de Beisbol

• Início de nova temporada no último domingo

Fotos para Motivação

Photo 2 – Dodger Stadium – Minha Equipe

Rebatadores – Carregar Dados

```
load("bat2015.RData")
kable(head(bat, 8))
```

name	R	Н	HR	RBI	POS	avg	OBP
Rico Noel	5	1	0	0	DH	0.5000000	0.5000000
Miguel Cabrera	64	145	18	76	IF	0.3379953	0.4562738
Slade Heathcott	6	10	2	8	OF	0.4000000	0.4285714
Mike Trout	104	172	41	90	OF	0.2991304	0.4137931
Max Stassi	4	6	1	2	DH	0.4000000	0.4117647
Shawn O'Malley	10	11	1	7	OF	0.2619048	0.4035088
Mike Napoli	9	23	5	10	IF	0.2948718	0.4021739
Ryan Raburn	22	52	8	29	OF	0.3005780	0.4019608

Questão que Tentaremos Responder

- Existe diferenças entre a OBP para jogadores nos posições de campo diferentes
- Limitado a American League em 2015
- Dados vêm de base de dados de beisebol "Lahman" (versão em R)
- Simplifiquei as posições para os seguintes:
 - ▶ OF outfielder (left, right ou center)
 - ► IF infielder (1B, 2B, 3B ou SS)
 - ► C catcher ("receptor", quem recebe os lances do lançador)
 - ▶ DH designated hitter (rebatedor que não joga defesa só na AL)

OBP?

- Porcentagem das vezes que aparece como rebatedor que ganhe pelo menos um base
- Considerado um melhor indicador da habilidade de um rebatedor
- BA número de rebatidas válidas por at-bats
 - Só uma maneira de ganhar um base
 - at-bats definição artificial de quantas vezes jogador aparece como rebatedor

Estatísticas Descritivas de OBP por Posição

```
Desc(OBP ~ POS, data = bat, plotit = FALSE)
```

```
## OBP ~ POS
##
## Summary:
## n pairs: 295, valid: 295 (100.0%), missings: 0 (0.0%), groups: 4
##
##
                            TF OF
##
                    DH
## mean 0.279 0.305 0.306 0.312
## median 0.296 0.312 0.308 0.313
## sd 0.058 0.096 0.049 0.047
## IQR 0.076 0.106 0.062 0.051
             42
                    20 132 101
## n
## np 14.237% 6.780% 44.746% 34.237%
## NAs
## 0s
##
## Kruskal-Wallis rank sum test:
    Kruskal-Wallis chi-squared = 9.0551, df = 3, p-value = 0.02857
##
```

Boxplot

OBP ~ POS

Observações

- Variação entre os grupos é muito parecido e podemos sentir confortáveis que a premissa #3 está sendo respeitada
- Boxplot revela que há um outlier longe da caixa para os "infielders"
 - Com uma amostra dentro deste grupo de 132, o outlier não causa preocupação

Teoria de ANOVA

Questão Principal da Técnica

É a variação nas médias das amostras tão grande que parece improvável que surge de acaso sozinho?

(Diez, Barr & Cetinkaya-Rundel, **OpenIntro Statistics**, 3ª Ed, p. 250.)

Como Funciona ANOVA

- Testamos todas as diferenças entre grupos simultaneamente
- Divisão da variação em componentes diferentes
- Usa soma dos quadrados
 - Que vemos primeiro em regressão
- Calcula primeiro soma dos quadrados total (SST)
 - Quadrado das diferenças de todos os valores, não importa o grupo, da média de todos os valores (grand mean)

Componentes de Soma de Quadrados

SSG

- Soma dos quadrados das diferenças entre a média dos grupos e a grand mean
- Variação entre os grupos

SSE

- O que sobra da variação é por causa dos residuais
- Soma dos quadrados das diferenças entre todos os valores dentro de um grupo e a média desse grupo
- Variação dentro dos grupos

Graus de Liberadade (df)

- Cada uma das somas de quadrados tem um grau de liberdade associada
- SSG número de grupos menos 1
 - O 1 representa o grand mean que não pode ser variada
- SSE tamanho de amostra (n) menos o número dos grupos

Formulas para dfs

$$df_G = k - 1$$

$$df_E = n - k$$

Estatística F

- A estatística que teste a hipótese nula mede a relação entre os dois componentes divididos pelos graus de liberdade
 - MSG e MSE
- Estatística tem a distribuição "F"
- Formula para calcular F:

$$F_{df_1,df_2} = \frac{MSG}{MSE}$$

Calculo de dfs para OBP e POS

[1] "grupos: 4 df1: 3 df2: 291"

```
grupos <- length(unique(bat$POS))
df1 <- grupos - 1
df2 <- nrow(bat) - grupos
paste("grupos:", grupos, " df1:", df1, " df2:", df2)</pre>
```

Forma da Distribuição F

```
x <- seq(0, 6, .01)
f <- df(x, df1, df2)
plot(x, f, type = "l")</pre>
```


ANOVA em R

- Pode usar 2 funções
 - ▶ aov()**
 - ► lm()
- Diferença entre as 2
 - Na apresentação dos resultados
 - aov() foca no modelo e o teste F
 - ▶ lm() foca mais sobre parâmetros das variáveis independentes
- Especificação do modelo
 - Mesmo que usamos em regressão

ANOVA de OBP e POS

```
modela <- aov(OBP ~ POS, data = bat)
summary(modela)</pre>
```

2 Funções para Ajudar Interpretação dos Resultados

```
pvalaov <- function(model) { # função para extrair o valor p
    x <- summary(model)
    return(unlist(x[[1]][,5][1]))
}
R2 <- function(model) { # função para extrair o R quadrado
    x <- summary(model)
    SST <- sum(x[[1]][,2])
    SSR <- x[[1]][,2][1]
    return(SSR/SST)
}</pre>
```

Interpretação dos Resultados

- Existe uma diferença significativa entre as posições em OBP.
- Valor p do teste-F (0.0104)
 - ▶ Abaixo do valor de α (0.05)
- Pode rejeitar a hipótese nula (H_0)
 - As diferenças entre as médias são significativas
- Antes de determinar quais diferenças são significativas
 - Precisa ver se o modelo cumpriu as premissas

Resumo 1m de um Modelo de ANOVA

- Pode mostrar um resumo no formato de um modelo linear (regressão)
- Porém, muito da informação não é útil para analise
- Resumo está disponível com a função 'summary.lm()'

Elementos de 'summary.lm()'

'summary.lm()' do Modelo OBP~POS

```
summary.lm(modela)
```

```
##
## Call:
## aov(formula = OBP ~ POS, data = bat)
##
## Residuals:
              1Q Median
##
        Min
                                    30
                                             Max
## -0.234383 -0.028034 0.005212 0.035166 0.194540
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 0.278641 0.008337 33.424 < 2e-16 ***
## POSDH 0.026819 0.014678 1.827 0.068703 .
## POSIF 0.027171 0.009571 2.839 0.004848 **
## POSOF 0.033048 0.009920 3.332 0.000975 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.05403 on 291 degrees of freedom
## Multiple R-squared: 0.03789, Adjusted R-squared: 0.02798
## F-statistic: 3.82 on 3 and 291 DF, p-value: 0.0104
```

Interpretação do Modelo

- "baseline/control group" é a categoria de catcher
- Estatísticas com Estimate e Std. Error não têm muito utilidade
 - categorias não são preditivas para OBP
- Temos outra maneira de comparar as categorias

Validade do Modelo

- Fazemos isso com gráficos
 - ► Como na regressão linear
- Função plot() produz os mesmos 4 gráficos

4 Gráficos

par(mfrow=c(2,2))
plot(modela)
par(mfrow=c(1,1))

Modelo Válido

- Premissas de independência e igualdade de variância estão compridas
 - Não mostram qualquer padrão ou tendência dos residuais
- Normalidade dos grupos
 - Podemos presumir porque grupos de interesse principal, outfielders and infielders, tem suficiente casos para ter confiança na teorema de limite central
- Plotagem "Normal Q-Q" mostra uma linha reta exceto nas caudas

R^2 para Modelo de Beisbol

- $R^2 = 0.038$
- Resultado é muito comum em modelos de ANOVA
 - Número pequeno de variáveis que tem múltiplas categorias
- Propósito de ANOVA é de julgar se diferenças existem
 - Aqui, SIM
- Se quisermos entender as causas dessas diferencias
 - Construir um modelo de regressão
 - Usando mix de variáveis categóricas e numéricas que tem a ver com a habilidade de rebater a bola
 - "I couldn't hit a curve ball" Gov. Mario Cuomo (NY)

Comparações das Categorias – Comparações Múltiplas

- Sabemos que alguma diferencia existe
- Quais posições são a fonte desta diferença?
- Temos 6 comparações que queremos fazer
 - C vs. DH
 - C vs. IF
 - ► C vs. OF
 - DH vs. IF
 - DH vs. OF
 - IF vs. OF

Uso de Teste-t

- Pode usar um teste-t (ou equivalente não-paramétrico) de 2 amostras para testar as 6 comparações
- Precisa ajustar o nível de α ou o valor-p para não super-estimar o número de comparações significativas
- Controlar os erros de Tipo I
- Alias, controla a taxa de erro familiar ("family-wise error rate", FWER)

Correção Bonferroni

- Mais tradicional correção para as comparações múltiplas
- ullet Bonferroni muda o α
- Novo α é o resultado da divisão da α original por o número de comparações ("C")
- Correção pode ser calculado em termos de valores-p como o produto do C vezes o valor-p da comparação

$$\alpha_{Bf} = \frac{\alpha}{C}$$

Bonferroni em R

- Precisa fazer um teste-t para todas as comparações
- Utilizar a função pairwise.t.test()
- Com argumento p.adjust.method = "Bonferroni"
- Não pode calcular diretamente com o summary.aov()

Bonferroni com Modelo

```
grpmeans <- tapply(bat$OBP, bat$POS, mean)</pre>
grpmeans
##
            DH TF
                                     ΟF
## 0.2786409 0.3054598 0.3058120 0.3116890
pairwise.t.test(bat$OBP, bat$POS, p.adjust.method = "bonferroni")
##
##
   Pairwise comparisons using t tests with pooled SD
##
## data: bat$OBP and bat$POS
##
        DH TF
## DH 0.4122 - -
## IF 0.0291 1.0000 -
## DF 0.0059 1.0000 1.0000
##
## P value adjustment method: bonferroni
```

Com Correção

- Catchers são diferentes que infielders e outfielders
- Outras posições tipicamente consegue ganhar um base mais frequentemente que os catchers
 - ▶ Valores-p de 0.029 e 0.006, os dois abaixo de $\alpha = 0.05$
 - ▶ OF e IF não mostram alguma diferença com o outro o com os DH's

Alternativas a Bonferroni

- Bonferroni considerada muito conservadora
 - ► Elimina muitas comparações significativas incorretamente
- 2 alternativas
- taxa de descoberta falso ("false discovery rate" FDR)
- Também conhecido como correção Benjamini-Hochberg
- Tukey Diferenças Significativas Honestas ("Tukey Honest Significant Differences" HSD)
- Tukey segue o padrão de FWER reduzir erros de Tipo I
- FDR tenta de controlar a proporção das descobertas que são falso (rejeições da hipóteses nulas incorretas)

Benjamini-Hochberg FDR

- Utiliza a mesma função para ANOVA que usamos para ver a Bonferroni.
- p.adjust.method = "BH"

FDR para Modelo

```
grpmeans <- tapply(bat$OBP, bat$POS, mean)</pre>
grpmeans
##
            DH TF
                                     ΟF
## 0.2786409 0.3054598 0.3058120 0.3116890
pairwise.t.test(bat$OBP, bat$POS, p.adjust.method = "BH")
##
##
   Pairwise comparisons using t tests with pooled SD
##
## data: bat$OBP and bat$POS
##
        DH TF
## DH 0.1374 - -
## IF 0.0145 0.9783 -
## OF 0.0059 0.7655 0.6169
##
## P value adjustment method: BH
```

Resultados de FDR

- Conclusões são as mesmas
- Diferenças mostram valor-p muito menor que com a Bonferroni

Tukey HSD

- Tem uma função especial
 - Trabalha diretamente com o modelo de ANOVA
 - ► TukeyHSD()
- Produz para cada comparação
 - Tabela das diferenças entre categorias
 - ► Intervalo de confiança
 - Valor-p ajustado
- Tem um método para plot() que produz gráfico da tabela

Tukey HSD para Modelo

TukeyHSD(modela)

```
##
     Tukey multiple comparisons of means
##
       95% family-wise confidence level
##
  Fit: aov(formula = OBP ~ POS, data = bat)
##
##
  $POS
##
                 diff
                               lwr
                                                  p adi
                                          upr
## DH-C 0.0268188799 -0.011108364 0.06474612 0.2626619
## IF-C 0.0271711026 0.002439167 0.05190304 0.0248781
## OF-C
        0.0330480680 0.007416347 0.05867979 0.0053615
## IF-DH 0.0003522227 -0.033145472 0.03384992 0.9999928
## DF-DH 0.0062291882 -0.027938224 0.04039660 0.9653620
## NF-IF 0.0058769654 -0.012578517 0.02433245 0.8436396
```

95% family-wise confidence level

Differences in mean levels of POS

Resultados de Tukey HSD

- Mesmas conclusões
- Valores-p mais perto a Bonferroni que a FDR
 - ▶ Por causa de FWER

Qual Comparação Eu Uso

- Prefiro FDR
- Acho FWER um approach antigo e um castigo em que perdemos informação importante
- FDR muito mais sofisticado como approach

Outros Tipos de Modelos de ANOVA

- Só tratamos um tipo de ANOVA
 - ▶ "One way"
- Há muitos outros tipos
- Multiplás variáveis independentes
- Todos esses modelos precisam "pesos"
 - Controle das diferenças entre tamanhos de categorias independentes

Próxima Semana – Machine Learning