Домашняя работа 8

Выполнила Наталья Кейзер, поток от 29 марта

На сайте запущен A/B тест с целью увеличить доход. В приложенном excel файле вы найдете сырые данные по результатам эксперимента – user_id, тип выборки variant_name и доход принесенный пользователем revenue. Проанализируйте результаты эксперимента и напишите свои рекомендации менеджеру.

```
from scipy import stats
In [1]:
         import numpy as np
         import matplotlib.pyplot as plt
         import pandas as pd
In [2]:
         df = pd.read_excel('AB_Test_Results.xlsx')
         df.head()
        C:\Users\natal\anaconda3\lib\site-packages\openpyxl\worksheet\_read_only.py:79: Us
         erWarning: Unknown extension is not supported and will be removed
           for idx, row in parser.parse():
           USER ID VARIANT NAME REVENUE
Out[2]:
         0
               737
                                         0.0
                            variant
              2423
                                         0.0
                            control
         2
              9411
                                         0.0
                            control
              7311
                            control
                                         0.0
              6174
                            variant
                                         0.0
```

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 3 columns):

```
# Column Non-Null Count Dtype
--- 0 USER_ID 10000 non-null int64
1 VARIANT_NAME 10000 non-null object
2 REVENUE 10000 non-null float64
dtypes: float64(1), int64(1), object(1)
memory usage: 234.5+ KB
```

10 000 записей в базе. Нет нулевых объектов

```
In [4]: df.describe()
```

	USER_ID	REVENUE
count	10000.000000	10000.000000
mean	4981.080200	0.099447
std	2890.590115	2.318529
min	2.000000	0.000000
25%	2468.750000	0.000000
50%	4962.000000	0.000000
75%	7511.500000	0.000000
max	10000.000000	196.010000

Out[4]:

По средним значениям и отклонениям никаких несоответствий не выявлено. По Максимуму в графе Обороты видно, что есть некоторое количество "выбросов" - при среднем значении менее 100 рублей, есть те, кто потратил 196 тысяч рублей.

```
In [5]: df.isna().sum()

Out[5]: USER_ID 0
VARIANT_NAME 0
REVENUE 0
dtype: int64
```

isna значений не обнаружено.

```
In [6]: df.VARIANT_NAME.value_counts()
Out[6]: variant 5016
    control 4984
    Name: VARIANT_NAME, dtype: int64
```

Избавимся от некорретных строк. Посчитаем, сколько типов встречается у каждого пользователя.

```
In [7]: v = df.groupby('USER_ID', as_index=False).agg({'VARIANT_NAME': pd.Series.nunique})
v[v.VARIANT_NAME > 1]
```

	USER_ID	VARIANT_NAME
1	3	2
6	10	2
11	18	2
15	25	2
23	40	2
•••		
6310	9978	2
6311	9979	2
6313	9982	2
6321	9996	2
6323	10000	2

Out[7]

1541 rows × 2 columns

In [11]: v.info()

В лекции мы удаляли всех задвоенных пользователей, и осталось 6 070 записей в базе. Я хочу удалить только дублирующие записи. При этом какую группу оставлять, хочу выбирать рандомно.

```
In [8]: \# df2 = df.drop(df[df.USER_ID.isin(v[v.VARIANT_NAME > 1].USER_ID)].index).sort_value for the second content of the second 
                                         # df2.shape
    In [9]: v = v[v.VARIANT_NAME > 1]
                                         v.info()
                                         <class 'pandas.core.frame.DataFrame'>
                                         Int64Index: 1541 entries, 1 to 6323
                                         Data columns (total 2 columns):
                                            # Column
                                                                                                                Non-Null Count Dtype
                                                        USER_ID
                                                                                                                     1541 non-null int64
                                                            VARIANT_NAME 1541 non-null int64
                                         dtypes: int64(2)
                                        memory usage: 36.1 KB
                                         v = v.assign(Type=pd.Series(np.random.choice(['variant','control'], v.shape[0])).va
In [10]:
                                         v.head()
Out[10]:
                                                         USER_ID VARIANT_NAME
                                                                                                                                                                   Type
                                              1
                                                                                 3
                                                                                                                                                  2 control
                                                                              10
                                                                                                                                                            variant
                                         11
                                                                              18
                                                                                                                                                  2 variant
                                         15
                                                                              25
                                                                                                                                                  2 control
                                         23
                                                                              40
                                                                                                                                                  2 variant
```

```
<class 'pandas.core.frame.DataFrame'>
        Int64Index: 1541 entries, 1 to 6323
        Data columns (total 3 columns):
         # Column
                        Non-Null Count Dtype
        ---
                        -----
         0 USER ID 1541 non-null int64
         1 VARIANT_NAME 1541 non-null int64
                    1541 non-null object
        dtypes: int64(2), object(1)
        memory usage: 48.2+ KB
In [12]: v.Type.value_counts()
        variant
                  793
Out[12]:
        control
                  748
        Name: Type, dtype: int64
```

Будем считать, что значения, которые выпали случайным образом в колонке Туре - это значения для удаления.

```
In [13]: df2 = df.drop(df[((df.USER_ID.isin(v[v.Type == 'control'].USER_ID)) & (df.VARIANT_I
                           ((df.USER_ID.isin(v[v.Type == 'variant'].USER_ID)) & (df.VARIANT_I
         df2.shape
         (8048, 3)
Out[13]:
In [14]: v2 = df2.groupby('USER_ID', as_index=False).agg({'VARIANT_NAME': pd.Series.nunique}
         v2[v2.VARIANT_NAME > 1]
```

Out[14]: USER ID VARIANT NAME

Все пользователи, которые были в обоих группах - удалены (остались только в одной группе). Но видим, что вместо 1 541 записи удалилось почти 2 000 записей. Это означает, что есть задвоение и внутри одной группы. Проверим:

```
In [15]: v3 = pd.DataFrame(df2.USER_ID.value_counts())
         v3[v3.USER_ID > 1]
```

Out[15]:		USER_ID
	5652	6
	1782	5
	1339	5
	7659	4
	4919	4
	•••	
	267	2
	352	2
	49	2
	470	2
	970	2

1481 rows × 1 columns

Действительно, осталось еще 1462 пользователя, у которых есть более одной записи. Теперь осталось почистить эти записи.

Out[16]:		USER_ID	VARIANT_NAME	REVENUE
	0	2	control	0.0
	1	3	variant	0.0
	2	4	variant	0.0
	3	5	variant	0.0
	4	6	variant	0.0
	•••			
	6319	9993	control	0.0
	6320	9995	variant	0.0
	6321	9996	control	0.0
	6322	9998	control	0.0
	6323	10000	control	0.0

6324 rows × 3 columns

```
In [17]: v4 = pd.DataFrame(df3.USER_ID.value_counts())
    v4[v4.USER_ID > 1]
```

Out[17]: USER_ID

```
df3.VARIANT_NAME.value_counts()
In [18]:
         control
                    3183
Out[18]:
         variant
                    3141
         Name: VARIANT_NAME, dtype: int64
In [19]:
         alpha = 0.05
         st = stats.shapiro(df3.REVENUE)
         print('Distribution is {}normal\n'.format( {True:'not ',
         False: ''}[st[1] < alpha]));</pre>
         Distribution is not normal
         C:\Users\natal\anaconda3\lib\site-packages\scipy\stats\_morestats.py:1800: UserWar
         ning: p-value may not be accurate for N > 5000.
           warnings.warn("p-value may not be accurate for N > 5000.")
In [20]:
         control = df3.query('VARIANT NAME == "control"')
         test = df3.query('VARIANT_NAME == "variant"')
         plt.hist([control.REVENUE, test.REVENUE], bins = 50, orientation='horizontal')
In [21]:
         ax = plt.gca()
         plt.title('Оборот на пользователя по группам')
         plt.ylabel('Оборот, кРУБ')
         plt.xlabel('Число пользователей')
         plt.legend(labels=['control', 'test']);
```

Оборот на пользователя по группам

Посмотрим на график в масштабе:

```
In [22]: plt.hist([control.REVENUE, test.REVENUE], bins = 50, orientation='horizontal')
    ax = plt.gca()
    # ax.set_ylim([0, 20])
    ax.set_xlim([0, 20])
    plt.title('Оборот на пользователя по группам')
```

```
plt.ylabel('Оборот, кРУБ')
plt.xlabel('Число пользователей')
plt.legend(labels=['control', 'test']);
```



```
In [23]: mw_stats = stats.mannwhitneyu(x=control.REVENUE.values, y=test.REVENUE.values)
mw_stats
```

Out[23]: MannwhitneyuResult(statistic=5015157.5, pvalue=0.34139468906780146)

Статистически значимой разницы между группами нет.

Попробуем удалить "выбросы". Будем считать "выбросами" все значения оборота свыше 35 кРУБ.

```
In [24]: df3a = df3.drop(df3[df3.REVENUE > 35].index)
    df3a
```

Out[24]:		USER_ID	VARIANT_NAME	REVENUE
	0	2	control	0.0
	1	3	variant	0.0
	2	4	variant	0.0
	3	5	variant	0.0
	4	6	variant	0.0
	•••			
	6319	9993	control	0.0
	6320	9995	variant	0.0
	6321	9996	control	0.0
	6322	9998	control	0.0
	6323	10000	control	0.0

6321 rows × 3 columns

```
In [25]: control3a = df3a.query('VARIANT_NAME == "control"')
    test3a = df3a.query('VARIANT_NAME == "variant"')

In [26]: plt.hist([control3a.REVENUE, test3a.REVENUE], bins = 50, orientation='horizontal')
    ax = plt.gca()
    # ax.set_ylim([0, 20])
    ax.set_xlim([0, 20])
    plt.title('Oборот на пользователя по группам')
    plt.ylabel('Оборот, кРУБ')
    plt.xlabel('Число пользователей')
    plt.legend(labels=['control', 'test']);
```

Оборот на пользователя по группам


```
In [27]: mw_stats3a = stats.mannwhitneyu(x=control3a.REVENUE.values, y=test3a.REVENUE.values
mw_stats3a
```

Out[27]: MannwhitneyuResult(statistic=5012016.5, pvalue=0.28940682291123865)

= 98.3%.

Попробуем убрать из выборки всех пользователей с нулевым оборотом.

Сначала оценим, какой процент таких пользователей в каждой из групп:

```
In [28]: x1 = df3[(df3.VARIANT_NAME == 'control') & (df3.REVENUE == 0)].shape[0]/df3[df3.VAl x2 = df3[(df3.VARIANT_NAME == 'variant') & (df3.REVENUE == 0)].shape[0]/df3[df3.VAl print('Процент нулевых пользователей: ', 'в котрольной группе = {0:.1f}% , в вариат Процент нулевых пользователей: в котрольной группе = 98.0% , в вариативной группе
```

```
Процент соизмерим. Поэтому попробуем удалить всех нулевых пользователей и повторно сравнить выборки.
```

```
In [29]: df4 = df3.drop(df3[df3.REVENUE == 0].index)
df4
```

Out[29]:		USER_ID	VARIANT_NAME	REVENUE
	32	56	variant	2.99
	75	124	control	1.25
	104	169	control	4.33
	174	282	control	18.56
	277	443	variant	3.75
	•••			
	6004	9491	control	2.34
	6022	9520	variant	5.08
	6116	9661	control	3.24
	6184	9766	control	3.79
	6276	9928	variant	1.25

119 rows × 3 columns

Осталось всего чуть более 100 значений.

```
In [30]: control4 = df4.query('VARIANT_NAME == "control"')
    test4 = df4.query('VARIANT_NAME == "variant"')

In [31]: plt.hist([control4.REVENUE, test4.REVENUE], bins = 50, orientation='horizontal')
    ax = plt.gca()

    plt.title('Оборот на пользователя по группам')
    plt.ylabel('Оборот, кРУБ')
    plt.xlabel('Число пользователей')
    plt.legend(labels=['control', 'test']);
```


In [32]: mw_stats4 = stats.mannwhitneyu(x=control4.REVENUE.values, y=test4.REVENUE.values)
 mw_stats4

20

Число пользователей

25

30

35

40

15

Out[32]: MannwhitneyuResult(statistic=1869.5, pvalue=0.54280059427001)

10

5

0

По-прежнему нет существенных различий между 2 группами.

вывод:

- 1. Рекомендую основывать принятие решения о дальнейших действиях на других факторах, так как результаты эксперимента не показывают значительного влияния изменений на показатели.
- 2. Еще одним вариантом будет проведение повторного эксперимента.
- 3. Необходимо дополнительно оценить время и параметры проведения эксперимента.
- 4. Прошу обратить особое внимание на качество сбора данных. Данные были сильно искажены очень много повторов среди пользователей.