Sústavy lineárnych rovníc-numerické riešenie

August 14, 2020

Systém lin. rovníc

Systém rovníc

nazveme systém n-lineárnych rovníc s n neznámymi.

Systém lin. rovníc

- koeficienty systému $a_{ij}, \quad i,j \in \{1,2,...,n\}$
- matica systému

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

• rozšírená matica systému

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} & b_n \end{bmatrix}$$

Základná veta lineárnej algebry-Frobeniova veta

Veta. Systém lineárnych rovníc má riešenie \iff hodnost matice A je taká istá ako hodnosť rozšírenej matice systému.

Cramerovo pravidlo

Ak je matica systému regulárna, tak systém má jediné riešenie:

$$oldsymbol{x} = oldsymbol{A}^{-1} \ oldsymbol{b}$$
 a $oldsymbol{x} = rac{D_1}{D}, rac{D_2}{D}, \dots rac{D_n}{D}.$

My sa ďalej budeme venovať len rovniciam s jediným riešením.

Metódy na riešenie systému lineárnych rovníc

- priame
 - Cramerovo pravidlo
 - Gaussova eliminačná metóda
 - Gaussova eliminačná metóda s čiastočným výberom hlavného prvku
 - Metóda LU-rozkladu
 - . . .
- iteračné
 - Jacobiho metóda
 - Gauss-Seidlova metóda
 - ...

Gaussova eliminačná metóda

Kto ešte stále neovláda ...

Gaussova eliminačná metóda s čiastočným výberom hlavného prvku

- Prečo ju používame? Chceme znížiť zaokrúhľovacie chyby.
- Aký je postup?
 - ullet vyberieme do prvého riadku tú rovnicu, ktorá má v absolútnej hodnote pri x_1 najväčší koeficient
 - \bullet eliminujeme x_1 v ďalších rovniciach
 - v ďalšom kroku si budeme vyberať zo zvyšných rovníc takú rovnicu do druhého riadku, ktorá má v absolútnej hodnote najväčší koeficient pri x₂.
 - zo zvyšných rovníc eliminujeme x_2 . A tak ďalej,...

Gaussova eliminačná metóda s výberom hlavného prvku, príklad

Príklad

Riešte sústavu rovníc:

$$\begin{pmatrix}
0.14 & 0.24 & -0.84 & 1.11 \\
1.07 & -0.83 & 0.56 & 0.48 \\
0.64 & 0.43 & -0.38 & -0.83
\end{pmatrix}$$

Gaussova eliminačná metóda s výberom hlavného prvku, príklad

Príklad

Riešte sústavu rovníc:

$$\begin{pmatrix}
0.14 & 0.24 & -0.84 & 1.11 \\
1.07 & -0.83 & 0.56 & 0.48 \\
0.64 & 0.43 & -0.38 & -0.83
\end{pmatrix}$$

Riešenie. 1. krok:

$$\begin{pmatrix}
0.14 & 0.24 & -0.84 & 1.11 \\
1.07 & -0.83 & 0.56 & 0.48 \\
0.64 & 0.43 & -0.38 & -0.83
\end{pmatrix}$$

Gaussova eliminačná metóda s výberom hlavného prvku, príklad-pokračovanie

2. krok a 3. krok:

$$\begin{pmatrix}
1,07 & -0.8300 & 0.5600 & 0.4800 \\
0.00 & 0.3486 & -0.9132 & 1.0472 \\
0.00 & 0.9264 & -0.7149 & -1.1171
\end{pmatrix}$$

Gaussova eliminačná metóda s výberom hlavného prvku, príklad-pokračovanie

4. krok a 5. krok:

$$\begin{pmatrix}
1,07 & -0.8300 & 0.5600 & 0.4800 \\
0.00 & 0.9264 & -0.7149 & -1.1171 \\
0.00 & 0.0000 & -0.6442 & 1.4676
\end{pmatrix}$$

$$z = -2,2781, \quad y = -2,9638, \quad x = -0,6581.$$

Ako je to s chybami výsledku?

Metóda LU-rozkladu-motivácia

Ako budeme riešiť takúto rovnicu?

$$\begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 2 & 4 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 & 0 \\ 0 & 3 & -2 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \\ -5 \end{pmatrix}.$$

Metóda LU-rozkladu

Trojuholníková matica (vieme z prvej prednášky)

Dolná trojuholníková matica, označujeme L je napr.

$$\begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 2 & 4 & 1 \end{pmatrix}$$

teda nad diagonálou sú samé nuly.

Horná trojuholníková matica, označujeme **U** je napr.

$$\begin{pmatrix} 2 & 1 & 0 \\ 0 & 3 & -2 \\ 0 & 0 & 1 \end{pmatrix}$$

teda pod diagonálou sú samé nuly.

Diagonálna matica **D** (vieme z prvej prednášky)

Metóda LU-rozkladu, opakovanie

- Čo vieme o determinantoch matíc L, U, D?
- Nech T₁, T₂ sú horné (dolné) trojuholníkové matice. Aké budú matice

$$T_1 + T_2, T_1 - T_2, T_1 \cdot T_2, T_2 \cdot T_1, T_1^{-1}$$
?

Metóda LU-rozkladu, pokračujeme v motivácii

Zrejme platí, že

$$\begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 2 & 4 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 & 0 \\ 0 & 3 & -2 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 0 \\ 6 & 6 & -2 \\ 4 & 14 & -7 \end{pmatrix}.$$

Sústavu

$$\begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 2 & 4 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 & 0 \\ 0 & 3 & -2 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \\ -5 \end{pmatrix}$$

však budeme schopní (už o chvíľu) vyriešiť jednoduchšie ako sústavu

$$\begin{pmatrix} 2 & 1 & 0 \\ 6 & 6 & -2 \\ 4 & 14 & -7 \end{pmatrix} . \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \\ -5 \end{pmatrix} .$$

Evidentne sa jedná o tú istú sústavu, takže motivácia je veľká.

Metóda LU-rozkladu, postup

Ak riešime sústavu

$$LU.\overline{x} = \overline{b},$$

využijeme asociatívnosť násobenia matíc a položíme

$$U.\overline{x} = \overline{y}.$$

Najskôr vyriešime systém

$$L.\overline{y} = \overline{b}.$$

Jeho riešenie \overline{y} dosadíme do

$$U.\overline{x} = \overline{y}$$

a budeme mať vyriešený systém

$$LU.\overline{x} = \overline{b}.$$

Metóda LU-rozkladu, príklad

Príklad

Riešte sústavu

$$\begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 2 & 4 & 1 \end{pmatrix} . \begin{pmatrix} 2 & 1 & 0 \\ 0 & 3 & -2 \\ 0 & 0 & 1 \end{pmatrix} . \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \\ -5 \end{pmatrix} .$$

Riešenie. Budeme postupovať podľa návodu, teda označíme:

$$U.\overline{x} = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 3 & -2 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}$$

a budeme riešiť sústavu

$$L \cdot \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 2 & 4 & 1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \\ -5 \end{pmatrix}.$$

Metóda LU-rozkladu, príklad-pokračovanie

Postupujeme od prvého riadku k poslednému a dostaneme, že

$$x_1 = 3,$$

$$3 \cdot x_1 + y_1 = 5 \Rightarrow 3 \cdot 3 + y_1 = 5 \Rightarrow y_1 = -4,$$

$$2 \cdot x_1 + 4 \cdot y_1 + z_1 = -5 \Rightarrow 2 \cdot 3 + 4 \cdot (-4) + z_1 = -5 \Rightarrow z_1 = 5.$$

Tento výpočet je jednoduchý a rýchly.

Metóda LU-rozkladu, príklad-pokračovanie

Teda dostávame

$$U.\overline{x} = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 3 & -2 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ -4 \\ 5 \end{pmatrix}.$$

Teraz postupujeme naopak od posledného k prvého riadku a konečne sa dostaneme k výsledku:

$$z = 5,$$

$$3 \cdot y - 2 \cdot z = -4 \Rightarrow 3 \cdot y - 2 \cdot 5 = -4 \Rightarrow y = 2,$$

$$2 \cdot x + y = 3 \Rightarrow 2 \cdot x + 2 = 3 \Rightarrow x = \frac{1}{2}.$$

Riešením je usporiadaná trojica $\left[\frac{1}{2},2,5\right]$.

Metóda LU-rozkladu

Videli sme, že riešenie sústavy v prípade, že matica je rozložená na dolnú a hornú trojuholníkovú maticu je veľmi jednoduché.

- Ako rozložíme maticu na L.U?
- Dá sa takto rozložiť každá matica?

Metóda LU-rozkladu

Takže ako na to? Ukážeme si dva možné postupy:

- drevorubačský spočíva v riešení sústavy n- rovníc, kde n je stupeň matice (tzv. Doolittlov rozklad),
- čarovný-šikovne využíva úpravu matice na trojuholníkový tvar.

Metóda LU-rozkladu, Doolittlov rozklad

Metódu si ukážeme na známom príklade. Maticu

$$\begin{pmatrix} 2 & 1 & 0 \\ 6 & 6 & -2 \\ 4 & 14 & -7 \end{pmatrix}$$

rozložíme na súčin dolnej a hornej troj. matice tak, že dolná bude mať na hlavnej diagonále samé jednotky (rozklad, kde **L** matica má jednotkovú diagonálu, sa nazýva Doolittlov). Teda

$$\begin{pmatrix} 2 & 1 & 0 \\ 6 & 6 & -2 \\ 4 & 14 & -7 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1 \end{pmatrix} \cdot \begin{pmatrix} x & y & z \\ 0 & t & u \\ 0 & 0 & v \end{pmatrix}.$$

Matice na pravej strane vynásobíme a porovnáme po bunkách s maticou na ľavej strane. Dostaneme síce 9 rovníc, ale veľmi jednoduchých.

Metóda LU-rozkladu, Doolittlov rozklad

Násobíme

$$\begin{split} 1.x &= 2 \Rightarrow x = 2, & 1.y = 1 \Rightarrow y = 1, & 1.z = 0 \Rightarrow z = 0, \\ a.x &= 6 \Rightarrow a = 3, & a.y + 1.t = 6 \Rightarrow t = 3, & a.z + 1.u = -2 \Rightarrow u = -2, \\ b.x &= 4 \Rightarrow b = 2, & b.y + c.t = 14 \Rightarrow c = 4, & b.z + c.u + 1.v = -7 \Rightarrow v = 1. \end{split}$$

Potom

$$\begin{pmatrix} 2 & 1 & 0 \\ 6 & 6 & -2 \\ 4 & 14 & -7 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 2 & 4 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 & 0 \\ 0 & 3 & -2 \\ 0 & 0 & 1 \end{pmatrix}.$$

Keďže sme pracovali s maticou, ktorej rozklad sme už poznali, tak skúšku správnosti urobíme len porovnaním so známym výsledkom. Keby sme rozklad nepoznali, tak matice vynásobíme a tak sa skontrolujeme.

Metóda LU-rozkladu, šikovnejší postup

Našu maticu

$$\begin{pmatrix} 2 & 1 & 0 \\ 6 & 6 & -2 \\ 4 & 14 & -7 \end{pmatrix}$$

budeme upravovať na hornú trojuholníkovú maticu, budeme si pamätať všetky kroky, resp. ich budeme zaznamenávať do ďalšej matice.

ldeme "vynulovať" člen $a_{21}=6$, teda vynásobíme prvý riadok číslom (-3) a pripočítame k druhému riadku. Zároveň si v ďalšej matici do bunky b_{21} napíšeme opačné číslo k (-3):

$$\begin{pmatrix} 2 & 1 & 0 \\ 0 & 3 & -2 \\ 4 & 14 & -7 \end{pmatrix} \qquad \begin{pmatrix} \cdot & \cdot & \cdot \\ 3 & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix}$$

Metóda LU-rozkladu, šikovnejší postup

V ďalšom kroku "vynulujeme" člen $a_{31}=4$, teda vynásobíme prvý riadok číslom (-2) a pripočítame k tretiemu riadku. Zároveň si v ďalšej matici do bunky b_{31} napíšeme opačné číslo k (-2):

$$\begin{pmatrix} 2 & 1 & 0 \\ 0 & 3 & -2 \\ 0 & 12 & -7 \end{pmatrix} \qquad \begin{pmatrix} . & . & . \\ 3 & . & . \\ 2 & . & . \end{pmatrix}$$

Ešte ostáva "vynulovať" člen $a_{32}=12$, teda vynásobíme druhý riadok číslom (-4) a pripočítame k tretiemu riadku. Zároveň si v ďalšej matici do bunky b_{32} napíšeme opačné číslo k (-4):

$$\begin{pmatrix} 2 & 1 & 0 \\ 0 & 3 & -2 \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} . & . & . \\ 3 & . & . \\ 2 & 4 & . \end{pmatrix}$$

Po pozornom skúmaní vidíme, že matica vľavo je horná trojuholníková a pozorný študent vidí, že vpravo sa črtá dolná trojuholníková.

Metóda LU-rozkladu, šikovnejší postup

Ostáva už len posledný krok, v matici vpravo vyplníme diagonálu jedničkami a bunky nad diagonálou vyplníme nulami:

$$U = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 3 & -2 \\ 0 & 0 & 1 \end{pmatrix} \qquad L = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 2 & 4 & 1 \end{pmatrix}$$

Opäť sme sa dostali k tomu istému rozkladu, teda skúšku nemusíme robiť.

- Prečo tento postup funguje?
- Dá sa takto rozložiť každá matica?

Na obe otázky máme odpoveď.

Metóda LU-rozkladu, šikovnejší postup -odhalenie princípu

Prečo tento postup funguje?

Keď sa vrátime k úpravám na trojuholníkový tvar, tak napr. násobenie prvého riadku číslom (-3) a následné pričítanie k druhému riadku, vieme nahradiť násobením matíc:

$$\begin{pmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 & 0 \\ 6 & 6 & -2 \\ 4 & 14 & -7 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 3 & -2 \\ 4 & 14 & -7 \end{pmatrix}$$

Inverzia všetko vráti do pôvodného stavu:

$$\begin{pmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

a pre súčin takýchto matíc platí

$$\begin{pmatrix} 1 & 0 & 0 \\ \mathbf{3} & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \mathbf{2} & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \mathbf{4} & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ \mathbf{3} & 1 & 0 \\ \mathbf{2} & \mathbf{4} & 1 \end{pmatrix}.$$

Metóda LU-rozkladu, existencia

A ešte odpoveď na existenciu rozkladu:

Tvrdenie. Pre každú štvorcovú maticu A, ktorá má všetky hlavné subdeterminanty rôzne od nuly, existuje taká dolná a horná trojuholníková matica, že $A = L \cdot U$.

Metóda LU-rozkladu, rozšírený postup

Nech A má všetky hlavné subdeterminanty rôzne od nuly, potom sústavu

$$A.\overline{x} = \overline{b}$$

môžeme prepísať

$$LU.\overline{x} = \overline{b}.$$

Položme

$$U.\overline{x} = \overline{y}$$

a budeme najskôr riešiť systém

$$L.\overline{y} = \overline{b}.$$

Jeho riešenie \overline{y} dosadíme do

$$U.\overline{x} = \overline{y}$$

a budeme mať vyriešený systém

$$A.\overline{x} = \overline{b}.$$

Iteračné metódy

- Iteračné metódy sú založené na postupných aproximáciách, teda opakovaním nejakého výpočtu sa postupne približujeme k riešeniu.
- Môžu byť úspešné-vtedy hovoríme, že konvergujú. Teda ak presné riešenie je limitou postupných aproximácií.
- Nemusia byť úspešné-vtedy hovoríme, že divergujú. Teda ak sa aproximácie k presnému riešeniu nepribližujú, idú do nekonečna alebo oscilujú.
- Iteračných metód je veľké množstvo, my sa budeme venovať len dvom z nich.

Jacobiho metóda

- Z prvej rovnice si vyjadríme prvú neznámu, z druhej rovnice vyjadríme druhú neznámu . . . z poslednej rovnice vyjadríme poslednú neznámu.
- Do takejto sústavy dosadíme začiatočnú iteráciu a určíme prvú iteráciu.
- Pomocou prvej iterácie rovnakým postupom získame druhú iteráciu . . .

Jacobiho metóda, príklad

Príklad

Jacobiho metódou riešte sústavu rovníc.

$$\begin{array}{rcl}
10x_1 + x_2 - x_3 & = & 9 \\
-x_1 + 20x_2 + x_3 & = & 42 \\
x_1 + x_2 + 10x_3 & = & 33
\end{array}$$

Riešenie. 1. krok-vyjadríme si x_1x_2, x_3 :

$$x_1 = 0.1(-x_2 + x_3 + 9)$$

$$x_2 = 0.05(x_1 - x_3 + 42)$$

$$x_3 = 0.1(-x_1 - x_2 + 33)$$
(1)

Jacobiho metóda, príklad-pokračovanie

2. krok:

Začneme začiatočnou aproximáciou $\boldsymbol{x}^{(0)}=(0.9;2.1;3.3)$ a dosadíme do predchádzajúcich vzťahov:

$$x_1^{(1)} = 0.1(-2.1 + 3.3 + 9) = 1.02$$

 $x_2^{(1)} = 0.05(0.9 - 3.3 + 42) = 1.98$
 $x_3^{(1)} = 0.1(-0.9 - 2.1 + 33) = 3.00$

Dostali sme ďalšiu aproximáciu $x^{(1)}=(1{,}02;1{,}98;3{,}00)$ ktorú dosadíme do vzťahov (1).

$$x_1^{(2)} = 0.1(-1.98 + 3.00 + 9) = 1.002$$

 $x_2^{(2)} = 0.05(1.02 - 3.00 + 42) = 2.001$
 $x_3^{(2)} = 0.1(-1.02 - 1.98 + 33) = 3.000$

Jacobiho metóda, príklad-pokračovanie

V tabuľke sú výsledky z ďalších dvoch krokov Jacobiho metódy.

k	$x_1^{(k)}$	$x_{2}^{(k)}$	$x_{3}^{(k)}$
0	0,9	2,1	3,3
1	1,02	1,98	3,00
2	1,002	2,001	3,000
3	0,9999	2,0001	2,9997
4	0,99996	2,000 01	3,000 00

Sledujeme rozdiely pri každej neznámej v dvoch po sebe idúcich aproximáciách. Výpočet ukončíme, keď sú rozdiely v absolútnej hodnote (pri každej neznámej) menšie ako požadovaná presnosť.

Jacobiho metóda, príklad na divergenciu

Všimnime si tento príklad:

$$\begin{array}{rcl}
 x_1 + x_2 + 10x_3 & = & 33 \\
 10x_1 + x_2 - x_3 & = & 9 \\
 -x_1 + 20x_2 + x_3 & = & 42
 \end{array}$$

Zrejme sa jedná o sústavu z predchádzajúceho príkladu, len sme vymenili riadky. Urobíme prvý krok Jacobiho metódy:

$$\begin{aligned}
 x_1 &= -x_2 - 10x_3 + 33 \\
 x_2 &= -10x_1 + x_3 + 9 \\
 x_3 &= x_1 - 20x_2 + 42
 \end{aligned}$$

Jacobiho metóda, príklad na divergenciu-pokračovanie

Pokračujeme ďalšími krokmi Jacobiho metódy, pričom sme použili rovnakú počiatočnú iteráciu ako v predchádzajúcom príklade:

$$x_1 = -2,1 - 10 \cdot 3,3 + 33 = -2,1$$

$$x_2 = -10 \cdot 0,9 + 3,3 + 9 = 3,3$$

$$\underline{x_3} = 0,9 - 20 \cdot 2,1 + 42 = 0,9$$

$$x_1 = -3,3 - 10 \cdot 0,9 + 33 = 20,7$$

$$x_2 = 10 \cdot 2,1 + 0,9 + 9 = 30,9$$

$$\underline{x_3} = -2,1 - 20 \cdot 3,3 + 42 = -26,1$$

$$x_1 = 30,9 - 10 \cdot (-26,1) + 33 = 263,1$$

$$x_2 = -10 \cdot 20,7 - 26,1 + 9 = -224,1$$

$$x_3 = 20,7 - 20 \cdot 30,9 + 42 = -555,3$$

Výsledky sú nejaké zvláštne. Čo to znamená? Metóda pri takto poprehadzovaných riadkoch diverguje. To znamená, že na divergenciu má vplyv aj poradie riadkov?

Ostro riadkovo resp. stĺpcovo diag. dominantné matice

Matica je

• riadkovo diagonálne dominantná, ak:

$$|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|$$
 pro $i = 1, \dots, n$

stĺpcovo diagonálne dominantná, ak:

$$|a_{jj}| > \sum_{i=1, i \neq j}^{n} |a_{ij}| \text{ pro } j=1,\ldots,n$$

Pravidlá konvergencie

- Ak je matica sústavy ostro riadkovo alebo stĺpcovo diagonálne dominantná, Jacobiho metóda konverguje.
- Pozor, tvrdenie má tvar implikácie, teda dominancia nie je nutná podmienka.
- Porovnajte si to s predchádzajúcimi príkladmi.
- Dá sa každá matica upraviť na riadkovo alebo stĺpcovo dominantnú?

Gauss-Seidlova metoda

- Z prvej rovnice si vyjadríme prvú neznámu, z druhej rovnice vyjadríme druhú neznámu . . . z poslednej rovnice vyjadríme poslednú neznámu (tento krok majú Jacobiho a Gauss-Seidlova metóda rovnaký).
- Do takejto sústavy dosadíme začiatočnú iteráciu, ale pri výpočte $x_2^{(1)}$ už využívame hodnotu $x_1^{(1)}$ a pri výpočte $x_3^{(1)}$ využijeme hodnoty $x_1^{(1)}$ a $x_2^{(1)}$...
- Porovnejte si to s Jacobiho metodou.

Gauss-Seidlova metoda, príklad

Príklad

Nájdite riešenie sústavy rovníc Gauss-Seidlovou metódou.

$$\begin{array}{rcl}
10x_1 + x_2 - x_3 & = & 9 \\
-x_1 + 20x_2 + x_3 & = & 42 \\
x_1 + x_2 + 10x_3 & = & 33
\end{array}$$

 $\label{eq:Riesenie.} \textbf{Riešenie.} \ \ \text{Vyjadríme si} \ \ x_1, x_2, x_3 \ \text{a pri výpočte} \ \ x_1^{(1)} \ \ \text{využijeme počiatočnú}$ aproximáciu $x^{(0)} = (0.9; 2.1; 3.3)$, pri výpočte $x_2^{(1)}$ využijeme novú aproximáciu (1.02; 2.1; 3.3), teda $x_1^{(0)}$ je už nahradené $x_1^{(1)}$. Podobne pri výpočte $x_3^{(1)}$ využijeme aproximáciu (1.02; 1.986; 3.3), teda $x_1^{(0)}, x_2^{(0)}$ sú už nahradené $x_1^{(1)}, x_2^{(1)}$.

$$\begin{array}{lll} x_1^{(1)} & = & 0.1(-x_2^{(0)}+x_3^{(0)}+9) = 0.1(-2.1+3.3+9) = 1.02 \\ x_2^{(1)} & = & 0.05(x_1^{(1)}-x_3^{(0)}+42) = 0.05(1.02-3.3+42) = 1.986 \\ x_3^{(1)} & = & 0.1(-x_1^{(1)}-x_2^{(1)}+33) = 0.1(-1.02-1.986+33) = 2.9994 \end{array}$$

Gauss-Seidlova metoda, príklad-pokračovanie

Tabuľka výsledkov do štvrtého rádu:

k	$x_1^{(k)}$	$x_{2}^{(k)}$	$x_3^{(k)}$
0	0,9	2,1	3,3
1	1,02	1,986	2,9994
2	1,001 34	2,000 097	2,999 856 3
3	0,999 975 93	2,000 005 98	3,000 001 81
4	0,999 999 58	1,999 999 89	3,000 000 05

Ukončujeme za rovnakých podmienok ako pri Jacobiho metóde. Skúste si prehodiť riadky ako pri príklade na Jacobiho metódu.

Pozitívne definitná matica

Symetrická matica \boldsymbol{A} rádu n se nazývá **pozitivne definitná**, ak pre každý nenulový stĺpcový vektor $\boldsymbol{x} = (x_1, x_2, \dots, x_n)^T$ platí

$$\boldsymbol{x}^T.\boldsymbol{A}.\boldsymbol{x} > 0$$

Pravidlá konvergencie

- Ak je matica sústavy ostro riadkovo alebo stĺpcovo diagonálne dominantná, Gauss-Seidelova metóda konverguje (vieme, že aj Jacobiho metóda konverguje).
- Ak je matica sústavy symetrická a pozitivne definitná Gauss-Seidelova metóda konverguje (Jacobiho metóda konvergovať nemusí).
- Ak vynásobíme ľubovolnú regul. štvorcovú maticu zľava maticou k nej transponovanou, vzniknutá matica je symetrická a pozitivne definitná.

Zaujímavý príklad

Príklad

Všimnite si nasledujúcu sústavu rovníc:

$$\begin{array}{cccccc} x_1 & -0.464x_2 & = & 0.536 \\ 2.047x_1 & +x_2 & -0.464x_3 & = & 2.583 \\ -0.464x_1 & + & +x_3 & = & 0.536 \end{array}$$

Vyskúšajte si, že Jacobiho metóda konverguje, ale Gauss-Seidlova metóda diverguje.

Nech A je symetrická a pozitívne definitná a Jacobiho metóda konverguje (ak A je symetrická a pozitivne definitná, Jacobiho metóda konvergovať ešte nemusí, ale môže) \Rightarrow Gauss-Seidlova metóda konverguje dvakrát rýchlejšie ako Jacobiho metóda. [Ralston, A.: Základy numerické matematiky, 1978].