

Europäisches Patentamt

European Patent Office

Office européen des brevets

11) Publication number: 0 479 601 A2

12)

EUROPEAN PATENT APPLICATION

(21) Application number: 91309103.9

(22) Date of filing: 04.10.91

(5) Int. Ci.⁵: **C07D 401/12,** C07D 211/70, A61K 31/445, C07D 405/06, C07D 211/32, C07D 409/04, C07D 405/04

(30) Priority: 05.10.90 JP 269193/90

(43) Date of publication of application: 08.04.92 Bulletin 92/15

84 Designated Contracting States : DE FR GB IT

71 Applicant : AJINOMOTO CO., INC. 15-1, Kyobashi 1-chome, Chuo-ku Tokyo 104 (JP)

(72) Inventor : Hirasawa, Akira, c/o Central Res. Lab. Ajinomoto Co., Inc., 1-1 Suzuki-cho Kawasaki-ku, Kawasaki-shi, Kanagawa-ken (JP) Inventor: Shoji, Masataka, c/o Central Res. Lab.

Ajinomoto Co., Inc., 1-1 Suzuki-cho Kawasaki-ku, Kawasaki-shi, Kanagawa-ken (JP)

Inventor: Yoshimoto, Ryota, c/o Central Res.

Ajinomoto Co., Inc., 1-1 Suzuki-cho Kawasaki-ku, Kawasaki-shi, Kanagawa-ken (JP)

Înventor : Gyotoku, Yuichi, c/o Central Res.

Ajinomoto Co., Inc., 1-1 Suzuki-cho Kawasaki-ku, Kawasaki-shi, Kanagawa-ken (JP)

Inventor: Eguchi, Chikahiko, c/o Central Res. Lab.

Ajinomoto Co., Inc., 1-1 Suzuki-cho Kawasaki-ku, Kawasaki-shi, Kanagawa-ken (JP)

(74) Representative: Barker, Rosemary Anne et al c/o Mewburn Ellis, 2 Cursitor Street London EC4A 1BQ (GB)

- (54) Piperidine derivatives and their use as antiarrhythmic agents.
- 57) A piperidine derivative of general formula (I) or a pharmaceutically acceptable salt thereof:

wherein

is any of several specified aromatic-containing groups; X is selected from one of several hetero atom-containing groups or C_2 alkylene or a cyano-containing group; and

Q is phenyl, cyclohexyl, piperidinyl, tetrahydropyranyl, pyridyl, pyrrolyl, N-methylpyrrolyl, thienyl, furyl, 1-hexyl, or cyano;

from 1 to 3 hydrogen atoms in Q may be independently substituted by alkyl of from 1 to 3 carbon atoms, perfluoroalkyl of from 1 to 3 carbon atoms, acylamino of from 1 to 6 carbon atoms, perfluoroacylamino of from 1 to 3 carbon atoms, alkoxy of from 1 to 3 carbon atoms, alkanesulfonylamino of from 1 to 3 carbon atoms, perfluoroalkanesulfonylamino of from 1 to 3 carbon atoms, acetoxy of from 1 to 3 carbon

atoms, aminocarbonyl, aminosulfonyl, fluoro, chloro, cyano, hydroxy, nitro, amino, imidazolylmethyl, cinnamoylamino, p-fluorobenzoyl, cyanomethyl, cyanoethyl, methoxyacetoxy, alkoxycarbonyl of from 1 to 3 carbon atoms; 1 is an integer of from 0 to 1; m is an integer of from 0 to 1; n is an integer of from 0 to 6.

The derivatives are useful as antiarrhythmic agents.

Field of the Invention

5

10

15

20

25

30

35

The present invention relates to novel antiarrhythmic agents, more particularly to novel piperidine derivatives and their use in the treatment of arrhythmia.

Background of the Invention

Arrhythmia is the disfunction of cardiac normal conduction, which is a life-threatening disease, because it disturbs the rhythmic beating of the heart, worsening hemodynamics. Therefore, therapy for cardiac arrhythmia is clinically essential.

Antiarrhythmic drugs have been grouped together according to the pattern of mechanism: Na channel blocker, Beta blocker, Ca channel blocker and drugs which prolong Repolarization. Drug therapy of cardiac arrhythmias is not established, because many drugs have severe adverse effects, such as undesirable hemodynamic effects, hypotension, gastrointestinal symptoms, effects on the central nervous system and arrhythmogenic effects. Also, at higher plasma concentrations of drug, cardiac toxicity may become severe, so the monitoring of plasma concentration is essential for drug therapy.

It is therefore required to develop new antiarrhythmic drugs having excellent pharmaceutical effects and safety which can be industrially prepared at low cost in a simple manner.

Disclosure of the Invention

It has now been found that certain piperidine derivatives have antiarrhythmic activity, which derivatives are represented by the following general fomula (I):

 $Q \longrightarrow (CH_2)_1 \longrightarrow X_m \longrightarrow (CH_2)_n \longrightarrow N$ (I)

wherein

45

40

50

is any of the following groups:

 $_{25}$ $_{0}$

BNSDDCID - EP 0479601AZ

wherein B is a fused aromatic or heterocyclic ring selected from the group consisting of benzene, pyridine and thiophene;

----7----

is selected from:

55

or

wherein R¹ and R² are the same or different and are independently selected from hydrogen, methyl, ethyl, or propyl; R³ is hydrogen, alkyl of from 1 to 12 carbon atoms, or aryl of from 6 to 12 carbon atoms; Q is phenyl, cyclohexyl, piperidinyl, tetrahydropyranyl, pyridyl, pyrrolyl, N-methylpyrrolyl, thienyl, furyl, 1-hexyl, or cyano;

from 1 to 3 hydrogen atoms in Q may be independently substituted by alkyl of from 1 to 3 carbon atoms, perfluoroalkyl of from 1 to 3 carbon atoms, acylamino of from 1 to 6 carbon atoms, perfluoroacylamino of from 1 to 3 carbon atoms, alkoxy of from 1 to 3 carbon atoms, alkanesulfonylamino of from 1 to 3 carbon atoms, perfluoroalkanesulfonylamino of from 1 to 3 carbon atoms, acetoxy of from 1 to 3 carbon atoms, aminocarbonyl, aminosulfonyl, fluoro, chloro, cyano, hydroxy, nitro, amino, imidazolylmethyl, cinnamoylamino, p-fluorobenzoyl, cyanomethyl, cyanoethyl, methoxyacetoxy, alkoxycarbonyl of from 1 to 3 carbon atoms;

1 is an integer of from 0 to 1;

10

15

m is an integer of from 0 to 1;

n is an integer of from 0 to 6.

These compounds may be in their free base form or in the form of a pharmaceutically acceptable salt thereof.

A compound of the above formula can be prepared by the following procedure:

The pharmaceutically acceptable salts of the piperidine derivatives of this invention are acid addition salts formed from the compound and an organic or inorganic acid well known in the art as providing a pharmaceutical addition salt, such as a hydrochloride, sulfate, citrate, tartarate, mesylate, maleate, fumarate, or the like.

These salts are readily prepared by mixing a solution of equimolar amounts of the free base form of the compound and desired acid in a suitable solvent such as water, alcohol, or ether, followed by recovery of the product by collecting the precipitated salt or by evaporation of the solvent.

When used as antiarrhythmic drugs, the piperidine derivatives of the present invention may be administered by an oral or parenteral route, which may be determined depending upon age, body weight, condition of the patient. A daily dose may generally be from about 0.001 about 2000 mg/patient or animal for oral administration; in the case of patenteral administration, a daily dose may generally be from about 0.001 to about 1000 mg/patient or animal.

The piperidine derivatives of the present invention may be formulated into conventional preparation forms, for

45

50

example, tablets, powders, capsules, solutions, sugar-coated tablets or depots, which may be prepared in a conventional manner using conventional techniques. For example, tablets can be obtained by mixing a piperi-dine derivative of the present invention with known auxiliary substances, for example, inactive diluents (e.g. lactose, calcium carbonate or calcium phosphate), binders (e.g. gum arabic, corn starch or gelatin), sweeteners (e.g. sucrose or saccharine), flavours (e.g. peppermint, Gaultheria adenothrix oil or cherry), lubricating and wetting agents (e.g. magnesium stearate, talc or carboxymethyl cellulose).

The present invention further provides a novel antiarrhythmic agent which is a composition comprising a pharmaceutically effective amount of a piperidine derivative as defined above.

The pharmaceutical composition of the present invention is advantageous as an antiarrhythmic drug for treating mammals including humans. This can be administered perorally in the form of tablet, capsule or elixir, or parenterally in the form of a sterile solution or suspension, for the purpose of reducing or eliminating arrhythmia. The pharmaceutical composition of the present invention can be administered to patients or animals which are to be treated generally several times each in a unit dosage of from about 0.001 to about 500 mg/patient or animal, and accordingly the total dosage of the derivative may be from about 0.001 to about 2000 mg/patient or animal/day. Of course, the amount of the dosage may be varied in accordance with the condition of the disease, the weight of the patient or animal and other factors which are considered appropriate by one skilled in the art.

The above-mentioned typical combinations may be formulated as a pharmaceutical composition in a conventional manner. For example, from about 0.2 to about 500 mg of the derivative of the present invention or a pharmaceutically acceptable salt thereof or a mixture thereof is blended together with a pharmaceutically acceptable vehicle, carrier, extender, binder, antiseptic, stabilizer, flavour and the like, in an amount as required for conventional pharmaceutical preparations.

Examples of pharmaceutical additives to be used for the preparation of tablets, capsules and the like are: binders such as tragacanth, gum arabic, corn starch or gelatin; vehicles such as fine crystalline cellulose; extenders such as corn starch, pre-gelatinised starch or alginic acid; sweeteners such as sucrose, lactose or saccharin; flavours such as peppermint, an oil from Gaulthenia adenothrix Maxim or cherry. When the preparation is in the form of a capsule, this may further contain a liquid carrier such as a fat and oil, in addition to the above mentioned materials. Other various materials can further be employed so as to form coated pills or to vary the physical form of the preparation by a different method. For example, tablets can be coated with shellac, sugar or both. A syrup or elixir can contain the active compound together with sucrose as a sweetener, methyl- or propyl-paraben as an antiseptic, a dye, and cherry or orange essence as a flavour.

A sterile composition for injection can be prepared in a conventional manner, for example, by dissolving or suspending the active substance in a vehicle such as distilled water for injection, together with a natural vegetable oil such as sesame oil, coconut oil, peanut oil, cotton seed oil, or a synthetic fat vehicle such as ethyl oleate. If desired, a buffer, an antiseptic, an antioxidant or the like can be incorporated into the composition.

The present invention will be further illustrated by reference to the following examples.

PREPARATION OF COMPOUNDS

Retention factor (Rf) was determined by silica gel thin layer chromatography (TLC:Merck Art 5715). Unless otherwise noted, mass spectroscopy was determined on JEOL-DX 300 by FD mode; ¹H NMR spectra were obtain in CDCl₃ with tetramethylsilane as internal standard on a Varian VXR-300 spectrometer. "Intermediate (1)" represents 4-(5H-dibenzo[a, d]cyclohepten-5-ylidene)piperidine.

45 compound 1

5

10

20

30

4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-[4-(N-imidazolylmethyl)cinnamyl]piperidine
To a solution of 4-(N-imidazolylmethyl)cinnamic alcohol (4.5mmol) in CHCl3,thionyl chloride (5.4mmol) was added, and stirred for 2h at room temperature. After a usual procedure, the product was used without further purification.

The product obtained according to above-mentioned procedure was dissolved in methyl isobutyl ketone, and then intermediate (1) (4.0mmol),potassium carbonate(8.75mmol)and Nal(8.75mmol) were added to the solution,stirred at 90 °C for overnight. The mixture was washed with water,extracted with CH2Cl2, washed with 1 M HCl, saturated aqueous solution of NaHCO3, and then brine, dried over MgSO4. The solvent was evaporated at reduced pressure, the resulting mixture was purified by column chromatography (SiO2).

50

MS	469(M+)
NMR	100(1111)
2.2-2.4(4H,m)	2.5-2.6(2H,m)
2.8-2.9(2H,m)	3.28(2H,d)
5.07(2H,s)	6.38(1H,dt)
6.52(1H,d)	6.95(2H,s)
7.0-7.6(15H.m)	0.50(211,5)

compound 2

1-[4-[4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-piperidinyl]butanoyl]-4-hydroxypiperidine

15	TLC(CHCl3: MeOH=9:1) MS NMR	Rf=0.58 442(M+)
20	1.4-1.6(2H,m) 2.1-2.2(4H,m) 2.5-2.6(2H,m) 3.19(1H,m)	1.8-2.0(4H,m) 2.3-2.4(4H,m) 2.89(1H,m) 3.7-3.8(2H,m)
25	3.9-4.0(2H,m) 6.91(2H,s)	4.0-4.2(2H,m) 7.1-7.4(8H,m)

compound 3

4-[4-Dibenzo[b,e]thiepin-11(6H)-ylidene]-1-piperidinyl]-1-cyclohexylbutane
According to the practically same procedure described in preparation of compound 1,4-bromo-1-cyclohexylbutane and 4-dibenzo[b,e]thiepine-11(6H)-ylidenepiperidine were used.

35	TLC(CHCl3:MeOH=9:1)	Rf=0.74
	MS	431(M+)
	NMR	
	0.8-1.0(2H,m)	1.1-1.4(10H,m)
40	1.4-1.6(1H,m)	1.6-1.8(6H,m)
70	2.1-2.4(4H,m)	2.51(2H,t)
	2.6-2.8(4H,m)	3.39(1H,d)
	4.99(1H,s)	6.9-7.1(4H,m)
45	7.2-7.4(4H,m)	

compound 4

4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-(4-nitrocinnamyl)piperidine

After the stepwise addition of 4-Nitrocinnamyl alcohol(5.58mmol) to a ice-cooled solution of SOCI2(10g), the mixture was stirred for a few minites. The residue obtained by general procedure was condensed with intermediate(1) (6.59mmol) in the presence of potassium carbonate.

55

	Yield 2.02mmol(36.2%)	
	MS	434(M+)
	NMR	
5	2.16-2.24(4H,m)	2.31-2.42(2H,m)
	2.60-2.68(2H,m)	3.18(2H,d)
	6.46(1H,dt)	6.55(1H,d)
	6.92(2H,s)	7.18-7.36(8H,m)
10	7.42-7.48(2H,m)	8.17-8.20(2H,m)

compound 5

1-(4-Aminocinnamyl)-4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)piperidine 4-(5H-Dibenzo[a,d] cyclohepten-5-ylidene)-1-(4-nitrocinnamyl)piperidine(compound 4) was reduced by zinc in acetic acid at room temperature for 4h.

	Yield 84.5%	
20	MS	404(M+)
	NMR	
	2.20-2.42(6H,m)	2.60-3.32(4H,m)
	3.40(2H,d)	6.11(1H,dt)
25	6.43(1H,d)	6.59-6.64(2H,s)
	6.91(2H,s)	7.14-7.36(10H,m)

compound 6

30

1-(4-Acetylaminocinnamyl)-4-(5H-dibenzo[a,d]cyclchepten-5-ylidene)piperidine
1-(4-Aminocinnamyl)-4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)piperidine(compound 5) was N-acetylated by acetic anhydride using triethyl amine as base.

•
(6H,m)
(OH,III)
H,m)

45 compound 7

3-[4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-piperidinyl]-1-(4-nitrophenyl)propane

a) 1-Bromo-3-(4-nitrophenyl)propane

1-Bromo-3-phenylpropane(19.7mmol) was added slowly to a solution of sulfuric acid(7.4g) and nitric acid(5.4g) at ambient temperature and stirred at 60 °C. The residue (mixture of ortho and para) was purified by column chromatography on silica gel.

	Yield 63.7%	
•	NMR	
55	2.20(2H,quint.)	2.92(2H,t)
	3.40(2H,t)	7.35(2H,d)
	8 16(2H d)	7.55(211,d)

b) compound 7

This was prepared from 1-Bromo-3-(4-nitrophenyl)propane and intermediate(1).

	Yield 94.6%	
5	MS	436(M+)
	NMR	150(111)
	1.84(2H,m)	2.15(4H,m)
	2.30(4H,m)	2.59(2H,m)
10	2.70(2H,t)	6.90(2H,s)
	7.2-7.4(10H,m)	8.10(2H,d)

Compound 8

15

35

1-(4-Aminophenyl)-3-[4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)-1-piperidinyl]propane
3-[4-(5H-Dibennzo[a,d]cyclohepten-5-ylidene)-1-piperidinyl]-1-(4-nitrophenyl)propane(compound 7) was reduced by zinc.

20	Yield 97.3% MS	406(M+)
25	NMR 1.70(2H,m) 3.48(2H,br)	2.0-2.6(12H,m) 6.55(2H,d)
30	6.85(2H,s) 7.20(4H,m)	6.92(2H,d) 7.25(4H,m)

Compound 9

1-(4-Acetylaminophenyl)-3-[4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)-1-piperidinyl]propane
This was prepared from 1-(4-Aminophenyl)-3-[4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)-1-piperidinyl]propane(compound 8) and acetic anhydride.

Yield 92.9%	
MS	48(M+)
NMR	
1.6-1.8(4H,m)	2.15(3H,s)
2.0-2.2(2H,m)	2.2-2.4(4H,m)
2.55(4H,m)	7.1-7.4(12H,m)
	MS NMR 1.6-1.8(4H,m) 2.0-2.2(2H,m)

compound 10

50 N-[3-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-piperidinyl]propanoyl-3,4-dimethoxyanilide

	MS(FAB,m/z)	481(M+)
	NMR	, ,
	2.25-2.36 (4H,m)	2.40-2.46 (2H,m)
5	2.52 (2H,t)	2.70 (2H,t)
	2.68-2.80 (2H,m)	3.85 (3H,s)
	3.88 (3H,s)	6.79 (2H,s)
	6.93 (2H,s)	7.18-7.35 (8H,m)
10	7.52 (1H,s)	(011,111)
	compound 11	
	4-[4-[4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-pip	eridinyl]-1-butyl] tetrahydropyran

15

	MS	413(M+)
	NMR	
	1.1-1.6(10H,m)	1.7-1.8(1H,m)
20	2.1-2.4(8H,m)	2.5-2.6(2H,m)
	3.35(2H,t)	3.93(2H,d)
	6.90(2H,s)	7.2-7.4(8H,m)
		· · · · · · · · · · · · · · · · · · ·

compound 12 25

> 1-(N-Acetyl-4-piperidinyl)-3-[4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)-1-piperidinyl] propane a) 3-(4-Piperidinyl)-1-propanol

1-(4-Pyridyl)-1-propine-3-ol was hydrogenated with rhodium on alumina as catalyst.

b) 1-Acetoxy-3-(N-acetyl-4-piperidinyl)propane

This was prepared from 3-(4-Piperidinyl)-1-propanol and acetic anhydride.

	NMR	
	1.0-1.8(9H,m)	2.04(3H,s)
35	2.07(3H,s)	2.51(1H,t)
	3.00(1H,t)	3.78(1H,br d)
	4.04(2H,t)	4.58(1H.br d)

30

c) 3-(N-Acetyl-4-piperidinyl)propanol

1-Acetoxy-3-(N-acetyl-4-piperidinyl)propane was saponificated by potassium carbonate.

	NMR	
45	1.0-1.2(2H,m)	1.2-1.4(2H,m)
	1.4-1.8(6H,m)	2.08(3H,s)
	2.53(1H,dt)	3.02(1H,dt)
1	3.64(2H,t)	3.79(1H,br d)
50	4.58(1H,br d)	• • • • • • • • • • • • • • • • • • • •

d) 1-(N-Acetyl-4-piperidinyl)-3-bromopropane

· 3-(N-Acetyl-4-piperidinyl)propanol was brominated with phosphorus tribromide.

5	NMR 1.0-1.2(2H,m) 1.50(1H,m) 1.78(2H,quint) 2.53(1H,dt) 3.40(2H,t) 4.59(1H,br d)	1.40(2H,t) 1.74(2H,br t) 2.08(3H,s) 3.02(1H,dt) 3.80(1H,br d)
10	e) compound 12	
15	Yield 77.8% MS NMR 1.0-1.2(2H,m)	440(M+) 1.22(2H,m)
20	1.4-1.6(3H,m) 2.05(3H,s) 2.96(1H,dt) 4.55(1H,br d) 7.2-7.4(8H,m)	1.68(2H,m) 2.1-2.6(11H,m) 3.74(1H,br d) 6.90(2H,s)
25	compound 13	
	5-Acetylamino-2-[4-(5H-dibenzo[a,d]cycloh	epten-5-ylidene)-1-piperidinyl]methylindan
30	MS NMR	460(M+)
	2.0-2.3(7H,m)	2.3-2.5(1H,m)
35	2.5-2.8(6H,m) 6.92(2H,s)	2.9-3.1(2H,m) 7.0-7.5(11H,m)
40		1-(2,4-dimethoxycinnamyl)piperidine idene)-1-(2,4-dimethoxycinnamoyl)piperidine 0.0mmol) and intermediate(1) was condencedby N-ethyl-N'-(3-
45	dimethylaminopropyl)carbodiimide hyd b) compound 14	, , , , , , , , , , , , , , , , , , , ,
50	Yield 12.3% MS NMR	449(M+)
55	2.13-2.23(4H,m) 2.62(2H,m) 3.78(6H,s) 6.42(2H,m) 6.91(2H,s)	2.30-2.50(2H,m) 3.13(2H,d) 6.15(1H,tt) 6.68(1H,d,J=15.9Hz) 7.18-7.35(9H,m)
		· · · · · · · · · · · · · · · · · · ·

compound 15

5

15

1-(4-Cyanocinnamyl)-4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)piperidine

a) 4-Cyanocinnamylalcohol

A Heck reaction of 4-bromobenzonitrile and acrylic acid gave 4-cyanocinnamic acid. The acid was reduced to the corresponding alcohol with ethyl chloroformate and then sodium borohydride.

	Yield 78.6%	
10	NMR	·
	4.38(2H,dd)	6.49(1H,m)
	6.65(1H,d)	7.44(2H,d)
	7.40(2H.d)	(211,0)

b) compound 15

	MS	414(M+)
20	NMR	- (5.21)
	2.12-2.22(4H,m)	2.30-2.42(2H,m)
	2.52(2H,m)	3.15(2H,d)
	6.42(2H,m)	6.92(2H,s)
	7.18-7.35(8H,m)	7.40(2H,d)
25	7.58(2H,d)	(,

compound 16

1-Cyclohexy1-4-[4-(10,11-dihydroxy-5H-dibenzo[a,d]cyclohepten-5-ylidene)-1-piperidinyl]butane
A osmium tetraoxide(0.4mmol) in acetone was added to the 50% aqueous solution of acetone dissolved in 1-Cyclohexyl-4-[4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)-1-piperidinyl)butane (4.8mmol) and N-methylmor-pholine-N-oxide (7.2mmol). The mixture was stirred for over night at ambient temperature.

5(M+)
3H,m)
bs)
,s)

compound 17

4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-(4-propanoylaminocinnamyl)piperidine1-(4-Aminocinnamyl)-4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)piperidine(composed 5) was N-acylated.

	Yield 43.9%	
	MS	460(M+)
50	NMR	
30	1.22(3H,t)	2.2-2.6(8H,m)
	2.7-2.9(2H,m)	3.23(2H,d)
	4.79(1H,bs)	6.1-6.3(1H,m)
	6.43(1H,dd)	6.93(2H,s)
55	7.1-7.55(12H,m)	

compound 18

4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-(4-ethoxycarbonylaminocinnamyl)piperidine
This compound was prepared from 1-(4-Aminocinnamyl)-4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)piperidine(compound 5) and ethyl chloroformate.

•	Yield 56.7%		
	MS	+ 5 ₁	476(M+)
1 <i>0</i>	NMR		
	1.30(3H,t)		2.2-2.9(8H,m)
•	3.26(2H,dd)		4.22(2H,q)
•	6.1-6.3(1H,m)		6.46(1H,d)
15	6.67(1H,bs)		6.93(2H,s)
15	7.1-7.4(12H.m)		

compound 19

20

4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-(4-methanesulfonylaminocinnamyl)piperidine
This compound was prepared from 1-(4-Aminocinnamyl)-4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)piperidine(compound 5) and methanesulfonyl chloride.

25	Yield 67.0%	
	MS	482(M+)
	NMR	
	2.1-2.5(6H,m)	2.5-2.7(2H,m)
30	3.17(2H,d)	3.39(3H,s)
	6.2-6.4(1H,m)	6.49(1H,d)
:	6.93(2H.s)	7.1-7.5(12H.m)

35 compound 20

4-(5H-Dibenzo [a,d]cyclohepten-5-ylidene)-1-(3-methoxycarbonylcinnamyl)piperidine According to the practical same procedure of compound 16, this compound was obtained.

40	MS	447(M+)
	NMR	, ,
	2.16-2.26(4H,m)	2.30-2.44(2H,m)
	2.52(2H,m)	3.14(2H,d)
45	3.91(3H,s)	6.38(1H,m)
	6.52(1H,d)	6.92(2H,s)
	7.18-7.35(9H,m)	7.52(1H,d)
	7.88(1H,d)	8.01(1H,s)

compound 21

4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-(4-methoxycarbonylaminocinnamyl)piperidine
This compound was prepared from 1-(4-Aminocinnamyl)-4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)piperidine(compound 5) and methyl chloroformate.

Yield 97.5%	
MS	462(M+)
NMR	` '
2.2-2.9(8H,m)	3.10(2H,m)
3.78(3H,s)	6.2-6.4(1H,m)
6.56(1H,d)	6.72(1H,bs)
6.92(2H,s)	7.1-7.4(12H,m)

10

compound 22

4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-(4-pivaloylaminocinnamyl)piperidine

This compound was prepared from 1-(4-Aminocinnamyl)-4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)piperidine(compound 5) and pivaloyl chloride.

	Yield 92.0%	
	MS	488(M+)
20	NMR	
· · ·	1.34(9H,s)	2.2-3.2(10H,m)
	6.2-6.42(1H,m)	6.55(1H,d)
	6.93(2H,s)	7.1-7.44(10H,m)
	7.45-7.6(2H,m)	

25

30

compound 23

4-(5H-Dibenzo[a,d]cyclohepten-5 -ylidene)-1-(4-trifluoroacetylaminocinnamyl)piperidine

This compound was prepared from 1-(4-Aminocinnamyl)-4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)piperidine(compound 5) and trifluoroacetic anhydride.

	Yield 46.0%	
	MS	500(M+)
35	NMR	
	2.4-3.7(10H,m)	46.2-6.4(1H,m)
	6.58(1H,dd)	6.93(2H,s)
	7.17(2H,d)	7.2-7.45(8H,m)
40	7.69(2H,dd)	8.36(1H,bs)

compound 24

45 1-(4-Butanoylaminocinnamyl)-4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)piperidine

This compound was prepared from 1-(4-Aminocinnamyl)-4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)piperidine(compound 5) and butanoic acid.

50

	Yield 68.5%	
	MS	474(M+)
	NMR	• •
5	0.99(3H,q)	1.6-1.8(2H,m)
3	2.2-2.43(6H,m)	2.44-2.7(2H,m)
	2.8-3.1(2H,m)	3.35(2H,d)
	5.50(1H,bs)	6.1-6.3(1H,m)
	6.45(1H,dd)	6.92(2H,s)
10	7.1-7.4(10H,m)	7.49(2H,dd)
	•	
	The following composed were prepared acco	ording to the above-mentioned procedures.
15	compound 25	
	1-(4-Ethoxycarbonylaminocinnamyl)-4-(4-fluo	probenzoyl)piperidine
	MS	410(M+)
20	•	,
	NMR	
	1.33(3H,t)	1 9 2 4(6U m)
	3.18(2H,m)	1.8-2.4(6H,m)
25	4.21(2H,m)	3.43(3H,m)
25	6.58(1H,d)	6.32(1H,dt)
	7.1-7.4(6H,m)	6.6(1H,s)
	7.1-7. 4 (011,111)	7.92(2H,m)
30	compound 26	•
	4-(4-Fluorobenzoyl)-1-(4-methoxycarbonylam	ninocinnamyl)piperidine
	MS	396(M+)
35	NMR	370(M+)
	1.9-2.3(4H,m)	2.70(3H,m)
	3.28(2H,m)	3.42(3H,m)
	3.99(3H,m)	6.33(1H,dt)
40	6.58(1H,d)	6.80(1H,s)
	7.1-7.5(6H,m)	7.97(2H,m)
	712 713 (022,111)	7.97(211,111)
	compound 27	
45	4-(4-Fluorobenzoyl)-1-(4-propanoylaminocinn	amyl)piperidine
	MS	204/84.1
	NIMP ·	394(M+)

50	MS NMR	394(M+)
30	1.23(3H,t)	1.7-2.2(6H,m)
	2.41(2H,q)	3.1-3.5(5H,m)
	6.33(1H,dt)	6.58(1H,d)
6.6	7.0-7.5(7H,m)	7.98(2H,m)

compound 28

5	MS NMR 2.1-2.2(4H		435(M+) 2.95-3.3(5H,m)
10	3.80(2H,m 6.68(1H,d) 7.98(2H,m)	6.25(1H,dt) 7.1-7.5(7H,m)
45	compound 29		•
15	1-(4-Acetylaminocinnamyl)-4-(4-fluorobenzoyl)piperidine		
20	MS NMR		380(M+)
	1.75-1.95(5 3.0-3.3(5H,		2.1-2.3(4H,m) 6.22(1H,dt)
25	6.50(1H,d) 7.98(2H,m)		7.05-7.55(7H,m)
	compound 30		
30	1-(4-Aminocinnamyl)-4-(4-fluoro	benzoyl)piperidine	
	MS NMR	e e ar	338(M+)
35	1.8-2.2(4H 3.68(2H,m 6.41(1H,d) 7.05-7.40(6)	2.95-3.3(5H,m) 6.10(1H,dt) 6.62(2H,m) 7.97(2H,m)
40	compound 31		
	4-(4-Fluorobenzoyl)-1-(4-nitrocir	nnamyl)piperidine	
45	MS NMR		368(M+)
	1.8-2.2(4H	,m)	3.0-3.35(5H,m)
50	3.8(2H,m) 6.57(1H,d) 7.98(2H,m)		6.36(1H,dt) 7.05-7.5(6H,m)

compound 32

1-(4-Aminocarbonylcinnamyl)-4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)piperidine

TLC(CHCl3:MeOH=9:1) Rf = 0.23432(M+)MS compound 33 4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-(4-trifluoromethylcinnamyl)piperidine TLC(CHCl3:MeOH=9:1) Rf = 0.8510 MS 457(M+)compound 34 4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-(4-cyanomethylcinnamyl)piperidine TLC(CHCl3:MeOH=9:1) Rf = 0.89MS 428(M+)20 compound 35 4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-(3,4-dichlorocinnamyl)piperidine 25 TLC(CHCl3:MeOH=9:1) Rf = 0.72457(M+)MS compound 36 30 4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-(3,4-dimethoxy-2-nitrocinnamyl)piperidine TLC(HEXANE:Ethyl acetate=1:1) Rf = 0.13457(M+)MS 35 compound 37 4-Dibenzo[b,e]thiepin-11(6H)-ylidene-1-(4-nitrocinnamyl)piperidine 40 TLC(CHCl3:MeOH=9:1) Rf = 0.89MS 454(M+)**NMR** 2.1-2.3(4H,m)2.4-2.6(2H,m) 45 2.6-2.8(2H,m)3.21(2H.d)3.41(1H,d)4.98(1H,d)6.48(1H,dt)6.61(1H,d)7.0-7.1(4H,m)7.2-7.4(4H,m)50 7.4-7.5(2H,m)8.1-8.2(2H,m)compound 38 1-(4-Aminocinnamyl)-4-dibenzo[b,e]thiepin-11(6H)-ylidenepiperidine 55

		•
	TLC(CHCl3:MeOH=9:1) MS	Rf=0.65 424(M+)
	NMR	424(IVI+)
		2.12/217: 1)
5	2.1-2.8(8H,m)	3.13(2H,d)
·	3.39(1H,d)	3.68(2H,bs)
	4.95(1H,d)	6.08(1H,dt)
	6.39(1H,d)	6.5-6.6(2H,m)
	7.0-7.1(5H,m)	7.1-7.3(5H,m)
10	7.0-7.1(311,111)	7.1-7.3(3H,III)
	compound 39	
		•
15	1 -(4-Acethylaminocinnamyl)-4-dibenzo[b,e]thiepin-11	(6H)-ylidenepiperidine
	TLC(CHCl3:MeOH=9:1)	Rf=0.58
	MS	466(M+)
	NMR	400(M+)
20		
	2.15(3H,s)	2.2-2.9(8H,m)
	3.22(2H,d)	3.40(1H,d)
	4.91(1H,d)	6.21(1H,dt)
	6.48(1H,d)	7.0-7.5(13H,m)
25	0.10(111,0)	7.0-7.5(1511,111)
	compound 40	
30	4-(5H-Dibenzo[a,d]-cyclohepten-5-ylidene)-1-(2,5-dime	ethoxycinnamyl)piperidine
	TLC(CHCl3:MeOH=9:1)	Rf=0.73
	MS	449(M+)
	a to the contract of the contr	743(IVIT)
	NMR	
35	2.05-2.23(4H,m)	2.30-2.45(2H,m)
	2.50-2.66(2H,m)	3.15(2H,d)
	3.75(6H,s)	6.15(1H,m)
	6.45-7.00(4H,m)	6.91(2H,s)
40	7.18-7.35(8H,m)	0.51(211,5)
70	compound 41	
	compound 41	
45	4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-(2,3-dimen	thoxycinnamyl)piperidine
	TLC(CHCl3:MeOH=9:1)	Rf=0.90
	MS	449(M+)
	NMR	443(141+)
		0.0.0.4/077
50	2.1-2.2(4H,m)	2.3-2.4(2H,m)
	2.5-2.7(2H,m)	3.13(2H,d)
	3.77(3H,s)	3.80(3H,s)
	6.28(1H,dt)	6.79(1H,d)
	6.90(2H,s)	• • •
55	· · · ·	7.0-7.1(2H,m)
	7.2-7.4(9H,m)	·

compound 42

4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-(3,5-dimethoxycinnamyl)piperidine

5	TLC(CHCl3:MeOH=9:1)	Rf=0.73
•	MS	449(M+)
	NMR	, ,
	2.05-2.23(4H,m)	2.28-2.42(2H,m)
10	2.50-2.66(2H,m)	3.10(2H,d)
•	3.78(6H,s)	6.10-6.42(3H,m)
	6.52(2H,m)	6.91(2H,s)
	7.18-7.35(8H,m)	` ',

15

compound 43

 $\hbox{\bf 4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-(2-methoxycinnamyl)} piperidine$

20

	TLC(CHCl3:MeOH=9:1)	Rf=0.87
	MS	419(M+)
•	NMR	
25	2.2-2.3(4H,m)	2.3-2.4(2H,m)
20	2.6-2.7(2H,m)	3.15(2H,d)
	3.79(3H,s)	6.28(1H,dt)
	6.80(1H,d)	6.8-6.9(1H,m)
30	6.92(2H,s)	7.1-7.4(11H,m)
30		

compound 44

 $\hbox{\bf 4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-(3-methoxycinnamyl)} piperidine$

35

	TLC(CHCl3:MeOH=9:1)	Rf=0.89
	MS	419(M+)
	NMR	· · ·
40	2.1-2.2(4H,m)	2.2-2.4(2H,m)
	2.5-2.7(2H,m)	3.12(2H,d)
	3.78(3H,s)	6.23(1H,dt)
	6.42(1H,d)	6.7-6.9(4H,m)
45	6.92(2H,s)	7.2-7.4(8H,m)

compound 45

4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-(4-methoxycinnamyl)piperidine

	TLC(CHCl3:MeOH=9:1) MS NMR	Rf=0.85 419(M+)
5	2.1-2.2(4H,m) 2.6-2.7(2H,m) 3.79(3H,s) 6.41(1H,d)	2.3-2.4(2H,m) 3.12(2H,d) 6.12(1H,dt) 6.83(2H,d)
10	6.91(2H,s)	7.1-7.3(10H,m)
	compound 46	
15	4-(10,11-Dihydro-5H-dibenzo[a,d]cyclohepten-5-ylidene)-1	-(4-nitrocinnamyl)piperidine
	TLC(CHCl3:MeOH=9:1) MS NMR	Rf=0.93 436(M+)
20	2.7-3.0(8H,m) 3.75(2H,d) 7.0-7.2(8H,m) 8.1-8.2(2H,m)	3.3-3.4(4H,m) 6.7-6.8(2H,m) 7.5-7.6(2H,m)
25	compound 47	
	1-(4-Aminocinnamyl)-4-(10,11-dihydro-5H-dibenzo[a,d]cyc	ohepten-5-ylidene)piperidine
30	TLC(CHCl3:MeOH=9:1) MS	Rf=0.64 405(M+)
35	NMR 2.4-2.5(4H,m) 2.81(2H,dt) 3.3-3.4(2H,dt) 6.08(1H,dt)	2.6-2.7(2H,m) 3.12(2H,d) 3.67(2H,bs) 6.39(1H,d)
 40	6.60(2H,d)	7.0-7.2(10.m)
	compound 48	
	1-(4-Acethylaminocinnamyl)4-(10,11-dihydro-5H-dibenzo[a	,d]cyclohepten-5-ylidene)piperidine
45 [·]	TLC(CHCl3:MeOH=9:1) MS NMR	Rf=0.54 448(M+)
50	2.4-2.6(4H,m) 3.21(2H,d) 6.44(1H,d)	2.7-2.8(8H,m) 6.21(1H,dt) 7.0-7.2(8H,m)
٠	7.34(2H,d)	7.44(2H,d)
55	compound 49	

4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-(4-fluorocinnamyl)piperidine

	TLC(CHCl3:MeOH=9:1) MS	Rf=0.88 445(M+)
5	NMR 2.1-2.2(4H,m) 2.6-2.8(2H,m) 6.17(1H,dt) 6.87(2H,s) 7.2-7.3(10H,m)	2.3-2.4(2H,m) 3.09(2H,d) 6.42(1H,d) 6.9-7.0(2H,m)
10	compound 50	
	3-[4-(5H-Dibenzo [a,d]cyclohepten-5-ylidene)-1-piperidinyl]-1-((3-pyridyl)-1-propene
15	TLC(CHCl3:MeOH 9:1) Rf=0.44 MS NMR	390(M+)
20	2.1-2.2(4H,m) 2.55-2.65(2H,m) 6.31(1H,dt)	2.3-2.5(2H,m) 3.09(2H,d) 6.43(1H,d)
-25	6.90(2H,s) 7.62(1H,d) 8.54(1H,d)	7.1-7.3(9H,m) 8.41(1H,dd)
	compuond 51	
30	4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-(4-hydroxycinnam	nyl)piperidine
35	TLC(CHCl3:MeOH=9:1) MS(FAB.m/z) NMR 2.1-2.3(4H,m) 2.6-2.8(2H,m) 5.97(1H,dt) 6.63(2H,d)	Rf=0.55 406(MH+) 2.3-2.5(2H,m) 3.07(2H,d) 6.37(1H,d) 6.87(2H,s)
	7.0-7.3(11H,m)	
	compound 52	
45	1-(4-Acetoxycinnamyl)-4-(5H-dibenzo[a,d]cyclohepten-5-ylider	ne)piperidine
50	TLC(CHCl3:MeOH- 9:1) MS NMR 2.1-2.2(4H,m)2.29(3H,s) 2.3-2.4(2H,m) 3.12(2H,d)	Rf=0.87 447(M+) 2.6-2.7(2H,m) 6.21(1H,dt)
55	J.12(211,u)	0.21(111,01)

	6.43(1H,d) 6.9-7.0(2H,m)	6.92(2H,s) 7.2-7.4(10H,m)
. 5 ·	compound 53	
٠	4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-(4-hydroxy-3	3-methoxycinnamyl)piperidine
10	TLC(CHCl3:MeOH=9:1) MS NMR 2.1-2.2(4H,m)	Rf=0.87 435(M+) 2.3-2.4(2H,m)
15 20	2.6-2.7(2H,m) 3.81(3H,s) 6.39(1H,d) 6.8-6.9(2H,m) 7.1-7.3(9H,m)	3.08(2H,d) 6.09(1H,dt) 6.78(1H,s) 6.87(2H,s)
	compound 54	
	1-(4-Acetoxy-3-methoxycinnamyl)-4-(5H-dibenzo[a,d]cyc	ohepten-5-ylidene)piperidine
25	TLC(CHCl3:MeOH=9:1) MS NMR	Rf=0.83 477(M+)
30	2.1-2.2(4H,m) 2.3-2.4(2H,m) 3.09(2H,d)	2.29(3H,s) 2.6-2.7(2H,m) 3.81(3H,s)
35	6.08(1H,dt) 6.80(2H,s) 7.2-7.4(9H,m)	6.38(1H,d) 6.9-7.4(11H,m)
	compound 55	
40	4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-(3-hydroxyci	nnamyl)piperidine
45	TLC(CHCl3:MeOH=9:1) MS NMR(CD3OD)	Rf=0.45 405(M+)
45 `	2.10-2.30(4H,m) 2.70(2H,m) 6.42(1H,m)	2.31-2.50(2H,m) 3.16(2H,d) 6.70(1H,m)
50	6.84-6.95(2H,m) 7.10-7.38(10H,m)	6.95(2H,s)

compound 56

55 1-(3-Acetoxycinnamyl)-4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)piperidine

	TLC(CHCl3:MeOH= 2:1) MS NMR	Rf=0.80 447(M+)
5	2.13-2.24(4H,m)	2.30-2.45(2H,m)
10	2.62(2H,m) 6.28(1H,m) 6.92(2H,s) 7.04(1H,s)	3.14(2H,d) 6.43(1H,d) 6.92-6.97(1H,m) 7.18-7.35(10H,m)
15	compound 57 4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-[3-(2-methox	yyacathayy)ainnamyll ainaridina
		-
20	TLC(CHCl3:MeOH=9:1) MS NMR(hydrochloride)	Rf=0.65 477(M+)
25	2.21-2.40(2H,m) 2.92-3.15(2H,m) 3.54(3H,s) 6.40-6.60(2H,m)	2.48-2.60(4H,m) 3.20-3.65(2H,m) 4.26(2H,s) 6.92(2H,s)
	7.00-7.39(12H,m)	
30	compound 58 4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-(2-methoxyc	arbonylcinnamyl)piperidine
35	TLC(CHCl3:MeOH=9:1) MS NMR 2.52-2.68(4H,m)	Rf=0.55 447(M+) 2.92-3.10(2H,m)
40	3.30-3.50(2H,m) 6.42(1H,dt) 7.18(1H,d) 7.42-7.60(3H,m)	3.62(2H,d) 6.91(2H,s) 7.24-7.40(8H,m) 7.90-7.95(1H,m)
45	compound 59	
	4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-(4-methoxyc	arbonylcinnamyl)piperidine
50	TLC(CHCl3:MeOH=9:1) MS NMR	Rf=0.50 447(M+)
55	2.15-2.24(4H,m) 2.60-2.68(2H,m) 3.90(3H,s) 6.50(1H,d) 7.20-7.36(8H,m)	2.32-2.45(2H,m) 3.16(2H,d) 6.39(1H,dt) 6.92(2H,s) 7.37-7.41(2H,m)
	7.96-8.00(111,m)	

Rf=0.30

compound 60

4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-(3-methoxy-2-nitrocinnamyl)piperidine

TLC(HEXANE:EtO \c=1:1)

	MS	464(M+)
	NMR	
10	2.1-2.23(3H,m)	2.24-2.42(2H,m)
10	2.43-2.7(3H,m)	3.07(2H,d)
	3.81(3H,s)	6.37(2H,s)
	6.8-7.0(3H,m)	7.05-7.4(10H.m)

compound 61

15

35

4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-(4-ethoxycarboxycinnamyl)piperidine

20	TLC(CHCl3:MeOH=9:1)	Rf=0.83
	MS	477(M+)
	NMR	(- ,
	1.23(3H,t)	2.1-2.2(4H,m)
25	2.3-2.4(2H,m)	2.5-2.7(2H,m)
	3.13(2H,d)	4.18(2H,q)
	6.24(1H,d)	6.43(1H,d)
	6.90(2H,s)	7.0-7.1(2H,m)
30	7.1-7.4(10H,m)	, ,,,,,

compound 62

 $\hbox{$4$-(5H-Dibenzo[a,d] cyclohepten-5-ylidene)-1-(4-methoxyacethoxycinnamyl) piperidine}$

	TLC(CHCl3:MeOH=9:1) MS	Rf=0.75 477(M+)
•	NMR	(,
40	2.0-2.2(4H,m)	2.4-2.6(2H,m)
	2.5-2.7(2H,m)	3.17(2H,d)
	3.52(3H,s)	4.24(2H,s)
•	6.22(1H,dt)	6.44(1H,d)
45	6.95(2H,s)	7.0-7.4(12H,m)

compound 63

4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-(3,4-dihydroxycinnamyl)piperidine

55

	TLC(CHCl3:MeOH=9:1) MS(FAB.m/z) NMR	Rf=0.35 422(M+)	
5	2.0-2.3(4H,m) 2.6-2.8(2H,m) 6.27(1H,dt) 6.87(2H,s)	2.4-2.6(2H,m) 3.17(2H,dt) 6.41(1H,d) 6.9-7.5(13H,m)	
10	compound 64	, (-1 ,	
	4-Dibenzo[b,e]thiepin-11(6H)-ylidene-1-(2,4-dimethoxycinna	myl)piperidine	
15	TLC(CHCl3:MeOH=9:1)	Rf=0.75	
,,,	MS	469(M+)	
	compound 65		
20	4-(10,11-Dihydro-5H-dibenzo[a,d]cyclohepten-5-ylidene)-1-(2,4-dimethoxycinnamyl)piperidine	
25	TLC(CHCl3:MeOH=9:1) MS	Rf=0.71 451(M+)	
	compound 66		
30	1-(4-Aminosulfonylcinnamyl)-4-dibenzo[b,e]oxepin-11(6H)-ylidenepiperidine		
	TLC(CHCl3:MeOH=9:1) MS	Rf=0.32 475(M+)	
35	compound 67		
	1-(4-Aminosulfonylcinnamyl)-4-(9-thioxanthylidene)piperidine	• .	
40	TLC(CHCl3:MeOH=9:1) MS	Rf=0.35 475(M+)	
	compound 68		
45	1-(4-Aminosulfonylcinnamyl)-4-(9-xanthylidene)piperidine		
	TLC(CHCl3:MeOH=9:1) MS	Rf=0.31 458 (M+)	
50	compound 69		
	1-(4-Aminosulfonylcinnamyl)-4-diphenylmethylenepiperidine		
55	TLC(CHCl3:MeOH=9:1) MS	Rf=0.31 444(M+)	

compound 70

1-(4-Aminosulfonylcinnamyl)-4-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-ylidene)piperidine

TLC(CHCl3:MeOH=9:1) MS

Rf=0.34 471(M+)

compound 71

10

15

20

30

1-(4-Aminosulfonyl-α-methylcinnamyl)-4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)piperidine

TLC(CHCl3:MeOH=9:1) MS

Rf=0.29 483(MH+)

compound 72

 $1-(4-Aminosulfonyl-\beta-methylcinnamyl)-4-(5H-dibenzo[a,d]cyclohepten-5-ylidene) piperidine$

TLC(CHCl3:MeOH=9:1)
MS

Rf=0.45 483(MH+)

25 compound 73

1-(2-Chlorobenzyl)-4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)piperidine

MS

397(M+)

H-NMR 2.1-2.8(8H.r

2.1-2.8(8H,m) 6.90(2H,s) 3.63(2H,bs) 7.1-7.3(12H,m)

35 compound 74

1-Cyclohexyl-3-[4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-piperidinyl]propane

MS MS

397(M+)

H-NMR

0.8-2.1(15H,m) 2.68(2H,d) 2.47(2H,dd) 2.7-2.9(2H,m)

3.0(2H.dd)

3.49(2H,d)

6.94(2H,s)

7.1-7.4(8H,m)

compound 75

1-Cyclohexyl-4-[4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)-1-piperidinyl]butane

55

		•
	MS	411(M+)
	H-NMR	2 47/211
_	0.8-2.1(15H.m)	2.47(2H,dd)
5	2.68(2H,d)	2.7-2.9(2H,m)
	3.0(2H,dd)	3.49(2H,d)
	6.92(2H,s)	7.1-7.4(8H,m)
10	compound 76	
	4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-hexylpipe	eridine
15	Yield 95.6%	•
	TLC(CHCl3: MeOH=9:1)	Rf=0.68
	MS `	357(M+)
٠	H-NMR(CDCL3)	, ,
20	0.85(3H,d,J=8Hz)	1.2-1.4(6H,m)
20	1.7-1.9(2H,m)	2.31(2H,dd,J=12,8Hz)
	2.53(2H.d,J=12Hz)	2.7-2.8(2H,m)
	3.14(2H,tdJ=8,3Hz)	3.40(2H,d,J=12Hz)
	6.92(2H,s)	7.2-7.4(8H,m)
25	0.92(211,3)	7.2-7.4(O11,111)
	compound 77	·
	1-Decyl-4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)pipe	eridine
30		
	Yield 66.7%	
	TLC(CHCl3:MeOH=9:1)	Rf=0.75
	MS	413(M+)
35	•	
	ND (D (L. L. L	* x
	NMR(hydrochloride)	1014/147
	0.85(3H,t,J=8Hz)	1.2-1.4(14H,m)
40	1.7-1.9(2H,m)	2.33(2H,dd,J=12,8Hz)
	2.54(2H,d,J=12Hz)	2.7-2.8(2H,m)
	3.15(2H,td,J=8,3Hz)	3.39(2H,d,J=12Hz)
	6.92(2H,s)	7.1-7.4(8H,m)
45		
	compound 78	
	5-[4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-piperio	linyl]-2-(3,4-dichlorophenyl-2-isopropylvaleronitrile
50	•	,

	Yield 69.1%		
	TLC(CHCl3: MeOH=9:1)	Rf=0.60	
	MS	542(M+)	
5	H-NMR(CDCL3)	,,	
Ŭ	0.77(3H,d,J=8Hz)	1.18(3H,d,J=8Hz)	
	2.0-3.4(15H,m)	6.90(2H,s)	
	7.18(H,dd,J=9,2Hz)	7.2-7.4(8H,m)	
10	7.48(1H,d,J=9Hz)	7.53(1H,s)	
	compound 79		
	4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-[3-[2-(cinnamo	ylamino)phenylthio]-1-propyl)piperi	din
15			
	TLC(CHCl3:MeOH=9:1)	Rf=0.66	
	MS	568(M+)	
	H-NMR(CDCL3)		
20	1.73(2H,tt,J=7,7Hz)	2.0-2.2(4H,m)	
	2.3-2.4(2H,m)	2.38(2H,t,J=7Hz)	
	2.5-2.6(2H,m)	2.78(2H,t,J=7Hz)	
	6.59(1H,d,J=16Hz)	6.88(2H,s)	
25	7.08(1H,tt,J=8,1Hz)	7.1-7.4(12H,m)	
	7.5-7.6(3H,m)	7.76(1H,d,J=16Hz)	
	8.55(1H,d,J=8Hz)	8.78(1H,bs,NH)	
30	compound 80		
٠	4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-cinnamylpiperi	dine .	
	4 (Ott Bibonizaja,ajayalahaptan a yilaanay t aimianiytepan		
	TLC(CHCl3: MeOH=9:1)	Rf=0.69	
35	MS	389(M+)	
	H-NMR(CDCL3)		
	2.1-2.3(4H,m)	2.4-2.5(2H,m)	
	2.6-2.7(2H,m)	3.14(2H,d,J=7Hz)	
40	6.26(2H,dt,J=16,7Hz)	6.48(2H,d,J=16Hz)	
	6.92(2H,s)	7.1-7.4(8H,m)	
•			
45	compound 81		
	5-[4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-piperidinyl]-2	2,2-diphenylvaleronitrile	
	Yield 57.7%		
50	TLC(CHCl3: MeOH=9:1)	Rf=0.74	
50	MS	506(M+)	
	H-NMR(CDCL3)		
	1.5-1.7(2H,m)	2.0-2.2(4H,m)	
	2.3-2.6(8H,m)	6.87(2H,s)	
55	7.1-7.4(18H,m)	0.0.(,	
	, , , , , , , , , , , , , , , , , , , ,		

compound 82

5

5-[4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-piperidinyl]-2-(3-trifluoromethylphenyl)-2-isopropylvaleronitri le

Yield 47.5% TLC(CHCl3: MeOH=9:1) Rf = 0.75540(M+)MS H-NMR(CDCL3) 10 1.0-1.2(1H,m) 0.76(3H,d,J=7Hz)1.9-2.5(13H,m) 1.5-1.6(1H,m)6.88(2H,s)7.1-7.3(8H,m)7.48(1H,d,J=8Hz)7.56(1H,d,J=8Hz)15 7.59(1H,s)

compound 83

20 4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-(2-fluorobenzyl)piperidine

	TLC(CHCl3: MeOH=9:1)	Rf=0.75
	MS	381(M+)
25	H-NMR(CDCL3)	
	2.1-2.2(4H,m)	2.3-2.4(2H,m)
	2.5-2.6(2H,m)	3.53(2H,s)
	6.88(2H,s)	6.96(1H,dd,J=8,8Hz)
30	7.04(1H,dd,J=7,7Hz)	7.1-7.4(10H,m)

compound 84

4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-(4-fluorophenylethyl)piperidine

35	TLC(CHCl3: MeOH=9:1)	Rf=0.55
	MS	395(M+)
	H-NMR(CDCL3)	
40	2.1-2.8(12H,m)	6.9-7.4(2H,m)

compound 85

5-[4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-piperidinyl]-2-(3-trifluoromethylphenyl)valeronitrile

	TLC(CHCl3: MeOH=9:1) MS H-NMR(CDCL3)	Rf=0.56 498(M+)
50	1.5-2.7(14H,m)	3.97(1H,t,J=7Hz)
	6.90(2H,s)	7.1-7.6(12H,m)

compound 86

1-(3-Aminobenzyl)-4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)piperidine

45

	TLC(CHCl3: MeOH=9:1) MS	Rf=0.62 378(M+)
5	H-NMR(CDCL3) 2.1-2.8(8H,m) 3.4-3.8(2H,bs) 6.93(2H,s)	3.50(2H,s) 6.5-6.8(2H,m) 7.0-7.4(10H,m)
10	compound 87	
	4-[4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-piperidinyl]	-3',4'-dimethoxybutyrophenone
15	TLC(CHCl3: MeOH=9:1) MS H-NMR(CDCL3)	Rf=0.52 479(M+)
20	1.8-2.6(12H,m) 3.93(3H,s) 6.85(1H,d,J=10Hz) 7.2-7.4(8H,m)	2.95(2H,t,J=8Hz) 3.96(3H,s) 6.88(2H,s) 7.5-7.7(2H,m)
	compound 88	
25	1-(4-Cyanobenzyl)-4-(5H-dibenzo[a,d]cyclohepten-5-ylider	ne)-1-piperidine
30	TLC(CHCl3:MeOH=9:1) MS(FD.m/z) H-NMR	Rf=0.70 388(M+)
	2.2-2.5(2H,m) 3.0-3.4(4H,m) 6.92(2H,s)	2.5-2.8(2H,m) 4.03(2H,d) 7.1-8.0(12H,m)
35	compound 89	
	1-Cyclohexyl-4-[4-(10,11-dihydro-5H-dibenzo[a,d]cyclohe	oten-5-vlidene)-1-piperidinyl]butane
40	TLC(HEXANE.:EtOAc=1:1) MS	Rf=0.67 413(M+)
45	H-NMR 0.80-0.88(2H,m) 2.12-2.19(2H,m) 2.32-2.47(4H,m)	1.10-1.73(15H,m) 2.28-2.30(2H,m) 2.64-2.69(2H,m)
50	2.77-2.86(2H,m) 7.05-7.15(8H,m)	3.36-3.45(2H,m)
	compound 90	
	Cyclohexyl-[4-(5H-dibenzo[a,d]cyclohepten-5-ylidene	-1-piperidinyl]methane
55	TLC(CHCl3:MeOH=9:1) Rf=0	58

	MS(FD.m/z) H-NMR	369(M+)	
5	0.7-2.9(20H,m) 7.05-7.4(8H,m)	6.91(2H,s)	
	compound 91	4	
40	4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-(2,3-dimetho	oxybenzyl)piperidine	
10	TLC(CHCl3:MeOH=9:1) MS(FD.m/z) H-NMR	Rf=0.63 423(M+)	
15	2.0-2.8(10H,m) 3.84(3H,s) 6.89(2H,s)	3.80(3H,s) 6.7-7.4(11H,m)	
20	compound 92	•, •	
	3-Cyanopropyl-4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)	piperidine	
25	NMR 1.62-2.72(14H,m) 7.10-7.30(8H,m)	6.92(2H,s)	
	compound 93		
30	4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-(3,4-dimethoxyphenacyl)piperidine		
25	MS NMR	451(M+)	
35	2.15-2.30(4H,m) 2.65-2.75(2H,m) 3.90(3H.s)	2.37-2.45(2H,m) 3.70(2H,s) 3.92(3H,s)	
40	6.85(1H,d) 7.18-7.34(8H,m) 7.66(1H,dd)	6.90(2H,s) 7.59(1H,d)	
45	compound 94		
	1-Cyclohexyl-6-[4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)-1-piperidinyl]hexane	
50	TLC(CHCl3:MeOH=9:1) MS(FD.m/z) H-NMR	Rf=0.65 439(M+)	
55	0.8-1.0(2H,m) 1.5-1.7(8H,m) 2.5-2.9(5H,m)	1.1-1.4(10H,m) 2.2-2.4(1H,m) 3.0-3.2(2H,m)	
	3.4-3.6(3H,m) 7.1-7.4(8H.m)	6.92(2H,s)	

compound 95

1-(4-Cyclohexylbutyl)-4-(9-thioxanthylidene)piperidine

3		
	TLC(CHCl3: MeOH=9:1)	Rf=0.69
	MS(FD.m/z)	417(M+)
	H-NMR	
10	0.8-1.0(2H,m)	1.1-1.4(9H,m)
	1.5-1.7(6H,m)	2.2-2.4(2H,m)
	2.5-2.6(2H,m)	2.8-2.9(2H,m)
	2.9-3.1(6H,m)	7.1-7.5(8H,m)
	2.2 2.1 (1 = 1,100)	(

15 compound 96

1-(4-Cyclohexylbutyl)4-(9-xanthylidene)piperidine

TLC(CHCl3: MeOH=9:1) Rf=0.74
H-NMR
0.8-1.0(2H,m) 1.1-1.4(9H,m)
1.5-1.7(6H,m) 2.3-2.4(2H,m)
25 2.52(4H,t) 2.91(4H,t)
7.0-7.4(8H,m)

compound 97

5-[4-(4-Fluorobenzoyl)-1-piperidinyl]-2-isopropyl-2-(3,4,5-trimethoxyphenyl)valeronitrile

	TLC(CHCl3: MeOH=9:1)	Rf=0.56
	MS	497(M+)
35	H-NMR(CDCL3)	
	0.76(3H,bs)	1.0-1.2(1H,m)
	1.16(3H,bs)	1.4-2.5(12H,m)
40	2.9-3.4(3H,m)	3.82(3H,s)
	3.87(3H,s)	6.6-6.8(2H,m)
	6.6-6.8(2H,m)	7.0-7.2(2H,m)
	7.8-8.1(2H,m)	

45 compound 98

2-(3,4-Dimethoxyphenyl)-2-dodecyl-5-[4-(4-fluorobenzoyl)-1-piperidinyl]valeronitrile

50

30

	TLC(CHCl3: MeOH=9:1)	Rf=0.70
	MS	592(M+)
	H-NMR(DMSO-d6)	
5	0.84(3H,t,J=8Hz)	1.2-1.5(22H,m)
Ü	1.8-2.1(8H,m)	2.9-3.1(4H,m)
	3.4-3.5(2H,m)	3.6-3.8(1H,m)
	3.76(3H,s)	3.79(3H,s)
10	6.9-7.0(3H.m)	7.40(2H,ddJ=8,8Hz)
	8.07(2H,ddJ=10.8Hz)	

compound 99

15 5-[4-(3,4-Dimethoxybenzoyl)-1-piperidinyl]-2-(3,4-dimethoxyphenyl)-2-isopropylvaleronitrile

	TLC(CHCl3: MeOH=9:1)	Rf=0.83
	MS	508(M+)
20	H-NMR(CDCL3)	, , , ,
	0.80(3H,t,J=6Hz)	1.21(3H,t,J=6Hz)
	2.0-3.8(16H,m)	3.89(3H,s)
	3.93(3H,s)	3.96(6H,s)
25 .	6.86(1H,d, J= 8Hz)	6.91(1H,d,J=8Hz)
	6.94(1H,d,J=2Hz)	7.00(1H,ddJ=8,2Hz)
	7.44(1H,d,J=2Hz)	7.49(1H,dd,J=8,2Hz)

30 compound 100

5-{4-[Bis(4-fluorophenyl)methylene]-1-piperidinyl}-2-(3,4-dimethoxyphenyl)-2-isopropylvaleronitrile

35	TLC(CHCl3: MeOH=9:1)	Rf=0.54
	MS	544(M+)
	H-NMR(CDCL3)	* .
	0.78(3H,d,J=8Hz)	1.20(3H,d,J=8Hz)
	1.6-3.6(15H,m)	3.87(3H,s)
40	3.94(3H,s)	6.8-7.1(11H,m)

compound 101

45 2-(3,4-Dimethoxyphenyl)-2-isopropyl-5-[4-(2,4,6-trimethylbenzoyl)-1-piperidinyl]valeronitrile

	TLC(CHCl3: MeOH=9:1)	Rf=0.64
•	MS	490(M+)
50	H-NMR(CDCL3)	120(111)
	0.8-1.3(6H,m)	1.9-3.6(25H,m)
	3.9-4.0(6H,m)	6.8-7.0(5H,m)

55 compound 102

2-(3,4-Dimethoxyphenyl)-5-[4-(4-fluorobenzoyl)-1-piperazinyl]-2-isopropylvaleronitrile

10	TLC(CHCl3: MeOH=9:1) MS H-NMR(CDCL3) 0.81(3H,d,J=7Hz) 1.5-1.7(2H,m) 2.2-2.5(2H,m) 3.89(3H,s) 6.88(2H,d,J=8Hz) 7.04(2H,dd,J=8,2Hz) 7.37(2H,dd,J=8,8Hz)	Rf=0.70 421(M+) 1.22(3H,d,J=7Hz) 2.15(1H,qq,J=7,7Hz) 3.0-3.6(10H,m) 3.95(3H,s) 6.95(2H,d,J=2Hz) 7.1-7.2(3H,m)
15	compound 103	
	5-[4-(4-Fluorobenzoyl)-1-piperidinyl]-2-phenylvaleronitrile	
20	TLC(CHCl3:MeOH=9:1) MS H-NMR(CDCL3)	Rf=0.54 364(M+)
25	1.6-1.8(2H,m,) 1.9-2.0(2H,m) 2.41(2H,t,J=7Hz) 3.20(1H,m) 7.1-7.2(2H,m)	1.8-1.9(4H,m) 2.0-2.2(2H,m) 2.9-3.0(2H,m) 3.88(1H,t,J=7Hz,) 7.3-7.4(5H,m,)
30	7.9-8.0(2H,m)	7.5 7.4(511,111,)
	compound 104	
35	2-(3,4-Dimethoxyphenyl)-5-[4-(4-fluorophenyl)methylene-	1-piperidinyl]-2-isopropylvaleronitrile
	TLC(CHCl3: MeOH=9:1) MS	Rf=0.73 450(M+)
40	H-NMR(CDCL3) 0.80(3H,d,J=8Hz)	1.20(3H,d,J=8Hz)
	1.5-3.6(15H,m)	3.9-4.0(6H,m)
	6.4-6.5(1H,m)	6.8-7.2(7H,m)
45	compound 105	
	2-Butyl-2-(3,4-dimethoxyphenyl)-5-[4-(4-fluorobenzoyl)-1-	piperidinyl]valeronitrile

	TLC(CHCl3:MeOH=9:1) MS	Rf=0.67 480(M+)
5	H-NMR(CDCL3) 0.86(3H,t,J=8Hz) 3.88(3H,s) 6.87(1H,d,J=8Hz) 6.99(1H,d,J=8Hz) 7.92(2H,dd,J=8.6Hz)	1.0-3.8(21H,m) 3.96(3H,s) 6.92(1H,s) 7.18(2H.dd.J=8,8Hz)
	compound 106	
15	5-[4-(4-Fluorobenzoyl)-1-piperidinyl]-2-isopropyl-2-(1-	methylpyπole-2-yl)valeronitrile
	TLC(CHCl3: MeOH=9:1) MS H-NMR(CDCL3)	Rf=0.54 409(M+)
20	1.00(3H,d,J=7Hz) 1.4-1.5(1H,m,CH2CCN) 1.7-1.9(4H,m)	1.08(3H,d,J=7Hz) 1.5-1.7(1H,m,CH2CCN) 1.9-2.1(4H,m)
25	2.24(1H,hept,J=7Hz) 2.8-2.9(2H,m) 3.74(3H,s) 6.10-6.14(1H,m) 7.09-7.16(1H,m)	2.3-2.4(2H,m) 3.18(1H.pseud hept.) 6.00-6.03(1H,m) 6.52-6.54(1H,m) 7.93-7.98(2H,m)
30	compound 107	7.75-7.70(211,111)
	[2-(2-Nitrobenzenesulfonyl)aminoethyl]-4-(4-fluoroben	zoyl)piperidine
35	MS(FAB,m/z) NMR	436(MH+)
40	1.80-2.05(5H,m) 3.56-3.65(2H,m) 7.90-7.95(2H,m) 8.45(1H,bs)	3.04-3.35(6H,m) 3.65-3.75(1H,m) 7.40(2H,ddJ=8,8Hz) 8.02-8.13(4H,m)
45	compound 108	
	2-(3,4-Dimethoxyphenyl)-5-[4-(4-fluorobenzoyl)-1-pipe	ridinyl]valeronitrile
50	MS(m/z) NMR	424(M+)
	1.8-2.4(8H,m) 3.85(3H,s)	2.9-3.7(6H,m) 3.88(3H,s)
55	3.8-4.4(2H,m) 7.1-7.2(2H,m)	6.8-6.9(3H,m) 7.9-8.0(2H,m)

compound 109

1-[2-(2-Ethoxycarbonylaminobenzenesulfonyl)aminoethyl]-4-(4-fluorobenzoyl)piperidine

5	MS(FAB,m/z)	478(MH+)
	NMR	
	1.12(3H,t,J=8Hz)	1.82-2.10(5H,m)
•	3.12-3.27(2H,m)	3.65-3.77(4H,m)
10	4.10(2H,q,J=8Hz)	4.23-4.30(2H,m)
•	6.16(1H.br)	6.68(1H,ddJ=8.8Hz)
	6.89(1H.d.J=8Hz)	7.36(1H,ddJ=8.8Hz)
	7.40(2H,dd.J=8.6Hz)	7.59(1H,d,J=8Hz)
15	8.10(2H,ddJ=8.6Hz)	· · · · · · · · · · · · · · · · · · ·

compound 110

Methyl 2-[N-methyl-N-2-[2,4(1H,3H)-quinazolinedione-3-yl]-ethylamino]ethyl 2,6-dimethyl-4-(3-nitrophenyl)- 1,4-dihydropyridine-3,5-dicarboxylate

	MS	578(MH+)
	NMR	- · · · · · · · · · · · · · · · · · · ·
25	2.30(3H,s)	2.34(3H,s)
.	2.38(3H,s)	2.60-2.95(6H.m)
	3.83(3H,s)	4.08(2H,t,J=7Hz)
	4.04(1H,s)	5.86(1H.s)
30	6.91(1H,dd.J=8,8Hz)	7.08(1H.ddJ=8.8Hz)
	7.23(1H,dd.J=8.8Hz)	7.48(1H.ddJ=8.8Hz)
	7.70(1H,d.J=8Hz)	7.85(1H,d,J=8Hz)
	8.02(1H,s)	

compound 111

1,3-Bis[4-(4-fluorobenzoylpiperidine-1-yl)propane

NMR	
1.65-2.22(12H,m)	2.25-3.33(12H,m)
7.02(4H,dd,J=8,8Hz)	7.88(4H,ddJ=8.6Hz)

compound 112

2-(3,4-Dimethoxyphenyl)-5-[4-(a-hydroxy-4-fluorobenzyl)-1-piperidinyl]-2-isopropylvaleronitrile

50

35

40

45

5	MS NMR 0.78(3H,dd,J=7Hz) 1.16(3H,d,J=7Hz) 1.4-1.6(2H,m) 2.0-2.1(2H,m) 2.6-2.9(2H,m)	469 1.1-1.2(4H,m) 1.2-1.4(1H,m) 1.6-1.9(4H,m) 2.19(2H,pseud t,J=8Hz)
10	3.87(3H,s) 6.8-7.1(5H,m)	3.86(3H,s) 4.26(1H,d,J=7Hz) 7.1-7.3(2H,m)
15	compound 113 2,2-Diphenyl-5-[4-(4-fluorobenzoyl)-1-piperidinyl]v	valeronitrile
20	NMR 1.9-2.1(4H,m) 3.2-3.3(2H,m) 7.18(2H,dd,J=8,8Hz) 7.92(2H,dd,J=10,8Hz)	3.0-3.1(4H,m) 3.7-3.8(1H,m) 7.2-7.5(10H,m)
25	compound 114	

2-(3,4-Dimethoxyphenyl)-5-[4-(4-fluorobenzoyl)-1-piperidinyl]-2-octylvaleronitrile

30	MS NMR	536(M+)
	0.86(3H,d,J=8Hz)	1.0-3.8(14H,m)
	3.88(3H,s)	3.96(3H,s)
	6.87(1H,d,J=8,2Hz)	6.92(1H,d,J=2Hz)
35	6.99(1H,dd,J=8,2Hz)	7.18(2H,ddJ=8.8Hz)
	7.90(2H.dd.J=10.8Hz)	*3

compound 115

4-(4-Fluorobenzoyl)-1-[2-(N-phenylcarbamoylamino)ethyl]piperidine

MS 369(M+)

EXAMPLES 45

Evaluation of antiarrhythmic activity of the compounds

Example 1

50

55

40

Female Guinea Pigs, weighing 250-350g, were anesthetized with urethane. The lead II ECG was continuously recorded.

Drugs, compound 1 and compound 2, were dissolved in the 2.5% nicol 2.5% ethanol solution, and injected into the femoral vein.

After 30min of drug injection ouabain was infused intravenously through the left femoral vein at a rate of 10ug/kg/min.

The time, ventricular premature contractions (VPC) ventricular fibrillation (VF) and cardiac arrest (CA) appeared on ECG, were measured, and the cumulative ouabain dosage to induce ventricular premature contractions, ____

EP 0 479 601 A2

ventricular fibrillation and cardiac arrest, respectively, was calculated. The results are summarized in Table 1.

Example 2

5

Mongrel dogs of either sex, weighing 8-20 kg, were anesthetized with pentobarbitone sodium, 30mg/kg. The lead II ECG, atrial electrogram from catheter tip electrodes in the right atrium, and blood pressure were continuously recorded. Ouabain 40 ug/kg was injected intravenously and with an additional 10 ug/kg every 20 min until stable ventricular arrhythmias were produced. The severity of arrhythmia was expressed by the arrhythmic ratio i.e. number of ventricular ectopic beats divided by the total heart rate. The arrhythmic ratio was calculated for 60 min after bolus intravenous administration.

The results are summarized in Table 2.

Example 3

15

10

Mongrel dogs of either sex, weighing 8-20 kg, were anaesthetized initially with thiopentone sodium. After incubation, 1.0% halothane, vaporized with 100% 02, was administered with volume limited ventilator. Adrenaline was infused through the left femoral vein at the rate of 2.5-5 ug/kg/min. After 3 min of adrenaline infusion, drugs were injected into the right femoral vein. The lead II ECG, atrial electrogram from catheter tip electrodes in the right atrium and blood pressure were continuously recorded. The severity of ectopic beats divided by the total heart rate. The arrhythmic ratio was calculated for 15 min after drug administration.

The results are summarized in Table 3.

Example 4

25

30

20

Three mice were subjected to one group experiment.

Drugs were administered with intraperitoneal injection in three mice 30min before deep chloroform anaesthesia. If less than two mice displayed cardiac arrhythmia or tachycardia, above 200 beats/min, when exposed to deep chloroform anaesthesia, the drug was judged as having an antiamhythmic effect.

The results are summarized in Table 4.

35

40

45

50

TABLE 1

		Dose	VPC	VF	CA
5	Compound #	(mg/kg)	(μg/kg)	(μ g/kg)	$(\mu g/kg)$
	control		153	221	324
•	9	1	169	236	294
	. 10	1	166	245	304
10	11	1 .	163	256	304
	13	1	169	253	299
	14	1	144	333	416
•	16	1	172	217	273
	17	1	184	275	380
15	18	1	203	330	395
	20	1	181	366	420
	21	1 .	163	334	393
	22	i .	178	346	409
20	23	0.3	142	442	499
20	23 24	1	168	250	306
•					
•	25 27	1 1	155	269 255	326
			163	255	309
25	28	1	150	291	348
	29	1	159	288	344
	30	1	145	279	358
	31	1	113	271	349
	32	1	212	308	374
30	33	1	152	606	646
	34	1	125	556	579
	35	. 1	159	342	413
	36	1	149	344	399
35	37	1	160	298	368
	38	1	175	357	427
	39	1	254	*** 334	422
	40	1 -	170	321	372
	41	1	152	295	357
40	42	1	225	386	454
	43	1	203	372	469
	44	3	205	617	656
	45	1	147	335	389
45	46	1	180	347	431
	47	1	240	265	351
•	48	1	212	247	334
	48 49	1	140	311	380
	51	1	146	259	· ·
50					344 476
	52 53	3 3	205	441	476
•	53		202	398	458
	54	1	193	264	350
<i></i>	55	1	175	320	374
55	56	3	187	254	309
	57	1	136	280	346
	58	3	174	384	448

TABLE 1 (continued)

		Dose	VPC	VF	CA
5	Compound #	(mg/kg)	(μ g/kg)	(μ g/kg)	(μ g/kg)
	59	1	203	367	419
	60	1	186	534	586
	61	. 1	232	294	356
10	62	. 1	186	389	454
	63	.1	211	322	398
	64	1	121	309	365
	65	1	146	325	381
	. 66	3	164	264	312
15	67	3	155	193	245
	69	3	185	202	274
	70	1	153	373	432
	72	I	171	282	363
20	74	1	182	239	289
	75	1	178	257	305
	76	1	196	205	274
	77	1	179	310	369
	78	1	154	279	337
25	79	1	172	302	358
	80	1	200	329	383
	81	1	183	267	329
	82	1	160	285	339
30	83	1	176	261	305
	84	1	168	277	335
	85	1	184	270	318
	86	1 .	162	240	292
35	87	1	199	260	305
	88	1	185	254	318
	89	1	204	257	312
	90	1	178	228	273
•	91	1	169	286	338
40	94	1	178	301	357
	95	1	174	264	305
	.96	1	178	264	312
	97	1 .	134	332	397
45	98	. I	160	318	370
	100	1	185	275	355
	101	1	161	221	293
	102	1	163	246	297
50	103	1	184	308	351
30	104	1	168	244	311
	106	1	199	312	362

TABLE 2

time after	Arrhythmic Ratio		
administration	Compound #23	Compound #75	
(min)	30ug/kg	300ug/kg	
0	1.00	1.00	
2	1.00	0.80	
4	1.00	0.71	
6	0.60	0.41	
8	0.77	0.19	
10	0.50	0.19	
12	0.50	0.43	
. 15	0.50	0.43	
20	0.00	0.38	
30	0.00	0.45	
60	0.00	0.45	

TABLE 3		*		
time after	Arrhythmic Ratio			
administration	Compound #23	Compound #75		
(min)	10ug/kg	300ug/kg		
. 0	1.00	1.00		
2	0.80	0.66		
4	0.50	0.41		
6	0.00	0.18		
8	0.00	0.08		
10	0.00	0.07		
. 12	0.00	0.07		
15	0.00	0.00		

TABLE 4

Compund #	minimam effective dose (mg/kg)	
107	100	
108	50	
109	100	
110	100	
111	100	
112	100	
113	10	
114	25	
115	50	

Claims

1. A piperidine derivative of general formula (I) or a pharmaceutically acceptable salt thereof:

$$Q \longrightarrow (CH_2)_i \longrightarrow X_m \longrightarrow (CH_2)_n \longrightarrow N$$

wherein

wherein B is a fused aromatic or heterocyclic ring selected from the group consisting of benzene, pyridine and thiophene;

___z__

50 is selected from:

wherein R¹ and R² are the same or different and are independently selected from hydrogen, methyl, ethyl, or propyl; R³ is hydrogen, alkyl of from 1 to 12 carbon atoms, or aryl of from 6 to 12 carbon atoms; Q is phenyl, cyclohexyl, piperidinyl, tetrahydropyranyl, pyridyl, pyrrolyl, N-methylpyrrolyl, thienyl, furyl, 1-hexyl, or cyano;

from 1 to 3 hydrogen atoms in Q may be independently substituted by alkyl of from 1 to 3 carbon atoms, perfluoroalkyl of from 1 to 3 carbon atoms, acylamino of from 1 to 6 carbon atoms, perfluoroacylamino of from 1 to 3 carbon atoms, alkoxy of from 1 to 3 carbon atoms, alkanesulfonylamino of from 1 to 3 carbon atoms, perfluoroalkanesulfonylamino of from 1 to 3 carbon atoms, acetoxy of from 1 to 3 carbon atoms, aminocarbonyl, aminosulfonyl, fluoro, chloro, cyano, hydroxy, nitro, amino, imidazolylmethyl, cinnamoylamino, p-fluorobenzoyl, cyanomethyl, cyanoethyl, methoxyacetoxy, alkoxycarbonyl of from 1 to 3 carbon atoms:

1 is an integer of from 0 to 1; m is an integer of from 0 to 1; n is an integer of from 0 to 6.

10

15

25

- A piperidine derivative or pharmaceutically acceptable salt thereof according to claim 1 for use in the treatment of cardiac arrhythmia.
- A piperidine derivative according to claim 1 which is any one of compounds 1 to 115 identified herein, or
 a pharmaceutically acceptable salt thereof.
 - 4. A composition for treating cardiac arrhythmia comprising a mixture of a piperidine derivative or pharmaceutically acceptable salt thereof according to claim 1 and a pharmaceutically acceptable vehicle, diluent, carrier, extender, binder, swelling agent, lubricating or wetting agent, antiseptic, stabilizer, buffer, antioxident, sweetener or flavour.
 - 5. A composition according to claim 4 in unit dosage form.
- 6. A composition according to claim 5, containing from 0.2 to 500 mg of the piperidine derivative or pharmaceutically acceptable salt thereof.
 - 7. A composition according to any one of claims 4 to 6 in the form of a tablet, capsule, elixir, or a sterile solution or suspension.
- 35 8. Use of a piperidine derivative or a pharmaceutically acceptable salt thereof according to claim 1 in the treatment of cardiac arrhythmia.
 - 9. Use of a piperidine derivative or a pharmaceutically acceptable salt thereof according to claim 1 in the preparation of an antiarrhythmic agent.
 - 10. A method of reducing or eliminating cardiac arrhythmia, comprising administering orally or parenterally an effective amount of a piperidine derivative or pharmaceutically acceptable salt thereof according to claim 1.
- 11. A method according to claim 10, in which the administration is an oral administration of a daily dose of from 0.001 to 2000 mg of the piperidine derivative or pharmaceutically acceptable salt thereof.
 - 12. A method according to claim 10, in which the administration is a parenteral administration of a daily dose of from 0.001 to 1000 mg of the piperidine derivative or pharmaceutically acceptable salt thereof.
 - 13. A method according to claim 10, in which the administration is of a unit dose of from 0.001 to 500 mg of the piperidine derivative or pharmaceutically acceptable salt thereof.

55