Ki67 Example

Yi

Funnel plot

Warning: package 'metafor' was built under R version 4.2.3

Warning: package 'Matrix' was built under R version 4.2.2

Warning: package 'meta' was built under R version 4.2.3

Table 1: Estimates of the other parameters for the $\mathrm{SROC}(3)$

p	$\mu_{\rm se}~({\rm se})$	$\mu_{\rm sp} \ ({\rm sp})$	$\mu_{\rm lnHR}$ (HR)	$\psi_{ m se}$	$\psi_{ m sp}$	ψ_{lnHR}	$ ho_1$	$ ho_2$	ρ_3	β	α
1*	0.670 (0.662)	$0.282\ (0.570)$		0.705	0.51		-0.855				
0.6	$0.688 \ (0.666)$	$0.204\ (0.551)$	0.452(1.571)	0.724	0.514	0.493	-0.851	0.442	-0.061	1.692	-1.23
0.4	$0.726 \ (0.674)$	$0.123 \ (0.531)$	$0.231\ (1.260)$	0.72	0.522	0.545	-0.846	0.497	-0.129	1.569	-1.684
0.2	$0.828 \; (0.696)$	-0.016 (0.496)	-0.110 (0.896)	0.719	0.534	0.598	-0.848	0.559	-0.229	1.506	-2.1

 rho_1 denotes the correlation coefficient between $mu_mathrmsen$ and $mu_mathrmsee$; rho_2 denotes that between $mu_mathrmsen$ and $mu_mathrmlnHR$; rho_1 denotes that between $mu_mathrmsee$ and $mu_mathrmlnHR$.

Table 2: Estimates of the other parameters for the SROC(5)

p	$\mu_{\rm se}~({\rm se})$	$\mu_{\rm sp}~({\rm sp})$	$\mu_{\rm lnHR}$ (HR)	$\psi_{ m se}$	$\psi_{ m sp}$	ψ_{lnHR}	$ ho_1$	$ ho_2$	$ ho_3$	β	α
1*	$0.526 \ (0.629)$	$0.354 \ (0.588)$		0.444	0.58		-0.938				
0.6	$0.510 \ (0.625)$	$0.264 \ (0.566)$	0.417(1.517)	0.461	0.585	0.482	-0.897	0.406	0.107	1.734	-1.18
0.4	$0.520 \ (0.627)$	$0.174 \ (0.543)$	0.194 (1.214)	0.458	0.594	0.54	-0.895	0.468	0.014	1.588	-1.603
0.2	$0.574 \ (0.640)$	$0.014 \ (0.503)$	-0.149 (0.862)	0.456	0.607	0.598	-0.903	0.541	-0.116	1.51	-1.996

 rho_1 denotes the correlation coefficient between $mu_mathrmsen$ and $mu_mathrmsee$; rho_2 denotes that between $mu_mathrmsen$ and $mu_mathrmlnHR$; rho_1 denotes that between $mu_mathrmsee$ and $mu_mathrmlnHR$.

Table 3: The estimated SAUC(t) with 95% condifence intervals at t=3,5

	SAUC(3) (95% CI)	SAUC(5) (95% CI)
HZ	$0.649\ (0.606,\ 0.690)$	0.646 (0.610, 0.680)
p = 0.9	$0.647 \ (0.604, \ 0.687)$	$0.644 \ (0.609, \ 0.678)$
p = 0.8	$0.644 \ (0.601, \ 0.685)$	$0.641\ (0.605,\ 0.675)$
p = 0.7	$0.641\ (0.597,\ 0.683)$	$0.636 \ (0.599, \ 0.672)$
p = 0.6	$0.638 \ (0.591, \ 0.682)$	$0.632\ (0.592,\ 0.670)$
p = 0.5	$0.634\ (0.583,\ 0.682)$	$0.627\ (0.583,\ 0.669)$
p = 0.4	$0.631\ (0.574,\ 0.684)$	$0.623\ (0.573,\ 0.670)$
p = 0.3	$0.627 \ (0.562, \ 0.688)$	$0.618\ (0.560,\ 0.672)$
p = 0.2	$0.624 \ (0.546, \ 0.695)$	$0.613\ (0.545,\ 0.677)$
p = 0.1	$0.621 \ (0.526, \ 0.708)$	$0.608 \ (0.525, \ 0.685)$

