CIS 375 CHAPTER 2

Application Layer

Outline

- Application Architectures
- The Web
- Email
- Other Application-Layer Protocols
- Implications for Management

Application Layer

- Layer 5 in the Internet model
- The software that enables users to interact with the network and accomplish tasks

Internet Model

Application

Transport

Network

Data Link

Physical

Application Architecture

- The way the functions of the application layer are spread out across the client and server
- Four components of applications:
 - Presentation logic
 - Application logic
 - 3. Data access logic
 - 4. Data Storage

Architecture Frameworks

- Host-Based Architectures
- Client-Based Architectures
- Client-Server Architectures
 - Three-Tier Architecture
 - Thin Clients vs Thick Clients
- Cloud Computing Architectures

Host-Based Architecture

- Server contains all components ("server-based")
- Common in the 1960s with mainframes and terminals

CLIENT

SERVER

Presentation Logic Application Logic Data Access Logic Data Storage

Host-Based Architecture

- Advantages
 - Very simple
 - Single point of control
- Disadvantages
 - Host (server) can become a bottleneck
 - Upgrades typically expensive

Client-Based Architecture

- Client contains presentation, application, and data access logic
- Most common in the 1980s

CLIENT

Presentation Logic Application Logic Data Access Logic

SERVER

Data Storage

Client-Based Architecture

- Advantages
 - Hardware and applications less expensive
 - Simple architecture
- Disadvantages
 - Data must travel back and forth between server and client

 Thin clients are easier to manage, thick clients have more functionality

Logic

Advantages

- More efficient because of distributed processing
- Allows hardware/software from different vendors to be used together
- Less bandwidth required

Disadvantages

- May be challenges in configuring hardware/software from different vendors to work together
- In many cases, middleware is required

- Middleware is software acts as an intermediary by "sitting between" client and server applications
- Provides a standard way of translating between software from different vendors
- Manages message transfers
- Insulates network changes from the clients (e.g., adding a new server)

• Example of **two-tier** architecture

Logic Application Logic

Logic Data Access

Logic

Data Storage

Example of three-tier architecture

Example of

n-tier architecture

CLIENT

Presentation Logic

Web SERVER

Application Logi Data Access Logic Data Storage Application SERVER

Application Logic Application Logic Data Access

Database SERVER

Data Access Logic Data Storage

Tiered Client-Server Architecture

- Advantages
 - Load balancing
 - More scalable
- Disadvantages
 - · Each tier increases network load
 - More complex and difficult to develop applications

Peer-to-Peer Architecture

- An older architecture that became popular again with Napster, BitTorrent, etc.
- All devices can act as client and server

CLIENT/SERVER

Presentation Logic Application Logic Data Access Logic Data Storage

CLIENT/SERVER

Presentation Logic Application Logic Data Access Logic Data Storage

Peer-to-Peer Architecture

- Advantages
 - Resilient to failure
 - Data can be stored anywhere on network
 - Distributes bandwidth requirements
- Disadvantages
 - Finding the stored data
 - Security

Cloud Computing

- Cloud Computing is the general term for enabling access to computing services over the network (most commonly the Internet)
- Models of cloud computing define who manages each application function and associated hardware/software

Cloud Computing

- Cloud Computing Models
 - Software as a Service (SaaS)
 - All application components and associated hardware/software outsourced
 - Based on multitenancy
 - e.g. Salesforce.com
 - Platform as a Service (PaaS)
 - Application logic and data are managed internally
 - e.g., Microsoft Azure
 - Infrastructure as a Service (laaS)
 - All hardware is outsourced

Cloud Computing

	Traditional Thin- Client Client-Server		Infrastructure as a Service (laaS)		Platform as a Service (Paas)		Software as a Service (SaaS)	
	Internal	Outsourced	Internal	Outsourced	Internal	Outsourced	Internal	Outsourced
Application Logic	X		X		X			X
Data Storage	X		X		X			X
Data Access Logic	X		X			X		X
Operating System	X		X			X		X
Virtualization Software	X		X			X		X
Server Hardware	X			X		X		X
Storage Hardware	X			X		X		X
Network Hardware	X			X		X		X

Criteria for Choosing Architecture

- Infrastructure
 - Cost of servers, clients, and circuits
 - Reliability
- Development Costs
 - Software; cheaper on host-based architectures
- Scalability
 - Ability to increase (or decrease) in computing capacity as network demand changes
 - Easier in client-server architectures

The Web

- Hypertext Transfer Protocol (HTTP)
- HTTP Request and Response

The Web

HTTP Request

FIGURE 2-11

An example of a request from a Web browser to a Web server using the HTTP (Hypertext Transfer Protocol) standard GET adrennis/home.htm HTTP/1.1
HOST: www.kelley.iu.edu

DATE: Mon 03 Jan 2011 17:35:46 GMT

User-Agent: Mozilla/4.0

Request header

Referrer: http://www.indiana.edu/~isdept/faculty.htm

Request line

The Web

HTTP Response

FIGURE 2-12

An example of a response from a Web server to a Web browser using the HTTP standard

Response status HTTP/1.1 200 OK Response header Date: Mon 03 Jan 2011 17:36:02 GMT Server: Apache Location: http://www.kelley.indiana.edu/ardennis/home.htm Content-Type: text/html <html> <head> Response body <title>Alan R. Dennis</title> </head> <body> <H2>Alan R. Dennis </H2> <P>Welcome to the home page of Alan Dennis </body> </html>

- Mail Transfer Agent (MTA)
 - Formal name for mail server software
 - e.g., Sendmail, Postfix,
- Mail User Agent (MUA)
 - Formal name for mail client software
 - e.g., Outlook, Apple Mail, Thunderbird
- Simple Mail Transfer Protocol (SMTP)
 - Protocol used to send a message to a MTA
 - Originally only handled text files
- Internet Message Access Protocol (IMAP) or Post Office Protocol (POP)
 - Protocols used by a MUA to retrieve messages from an MTA
- American Standard Code for Information Interchange (ASCII)
 - A standard for encoding text characters (a-z, A-Z, 0-9, a few symbols

FIGURE 2-13

How SMTP (Simple Mail Transfer Protocol) email works. IMAP = Internet Message Access Protocol; LAN = local area network

- How a message is sent (2-tier, thick client)
- Sending Client → Sender's Mail Server (SMTP)
- Sender's Mail Server → Receiver's Mail Server (SMTP)
- Message waits on Receiver's Mail Server in "mailbox"
- Receiving Client → Receiver's Mail Server (IMAP or POP)
- Receiver's Mail Server → Receiving Client (IMAP or POP)

FIGURE 2-14

Inside the Web. HTTP =
Hypertext Transfer
Protocol; IMAP =
Internet Message Access
Protocol; LAN = local
area network; SMTP =
Simple Mail Transfer
Protocol

- How a message is sent via webmail (3-tier, thin client)
 - Sending Client → Sender's Web Server (HTTP)
 - 2. Sender's Web Server → Sender's Mail Server (**SMTP**)
 - 3. Sender's Mail Server → Receiver's Mail Server (**SMTP**)
 - Mail waits on Receiver's Mail Server in "mailbox"
 - 5. Receiving Client → Receiver's Web Server (**HTTP**)
 - Receiver's Web Server → Receiver's Mail Server (IMAP or POP)
 - 7. Receiver's Mail Server → Receiver's Web Server (IMAP or POP)
 - Receiver's Web Server → Receiving Client (HTTP)

- SMTP Message Format
 - RFC 822: Standard for text message format
- Header lines
 - Contain information about the message such as To, From, and Subject
- Body section
 - Contains the "content of the message
 - Begins with the "DATA" keyword
 - Only uses ASCII characters

- Inside an SMTP packet
 - Header: source, destination, date, subject, etc.
 - Body: keyword "DATA", then email message

FIGURE 2-15

An example of an email message using the SMTP (Simple Mail Transfer Protocol) standard

FROM: "Alan Dennis" <ardennis@indiana.edu>
TO: "Pat Someone" <someone@somewhere.com>
DATE: Mon 03 Jan 2011 19:03:03 GMT
SUBJECT: Sample Note
Message-ID: <4.1.20000623164823.009f5e80@IMAP.IU.EDU>

Header

DATA

This is an example of an e-mail message.

- SMTP is a simple protocol to send plain text
- Not designed to send images or attachments
- Multipurpose Internet Mail Extension (MIME)
 - A standard to extend support for attachments and non-ASCII characters in email
 - Used by sender to convert (encode) any non-ASCII content into ASCII
 - Receivers then convert (decode) the ASCII back to its original format

Other Application-Layer Protocols

- File Transfer Protocol (FTP) for moving files between clients and servers
- Telnet, Secure Shell (SSH) for executing commands on a remote system
- Internet Relay Chat (IRC), Extensible Messaging and Presence Protocol (XMPP) - for real-time text chat (instant messaging)
- Domain Name System (DNS) for mapping domain names to IP addresses

Instant Messaging

FIGURE 2-16

How instant messaging (IM) works. LAN = local area network

Video Conferencing

FIGURE 2-17

A Cisco telepresence system

Source: Courtesy Cisco

Systems, Inc. Unauthorized use

not permitted

Implications for Management

- Primary purpose of networks is to provide environment for applications
- The number and types of applications on the network is dramatically increasing

Implications for Cyber Security

- Application Security
- SQL Database Server
 - SQL Injection
- Email
 - Spoofing
 - Phishing

Hands-on Activity 2B

- Page 53-56
- Use Wireshark to capture and analyze packets
- Deliverables:
 - 1) List the information in the SMTP header (to, from, date, subject, message ID#).
 - Packets 5 through 11 are the log-in process. Can you read the user ID and passwords? Why or why not?
 - Look through the packets to read the user's message. List the user's actual name (not his or her email address), his or her birth date, and SSN.

