Rendering

Jinyuan Wu

August 12, 2023

1 What a renderer does

A completely accurate surface renderer does the following:

- It takes the following input:
 - The positions and shapes of boundaries in the system;
 - BSDF or BSSDF of each boundaries;
 - Positions and directional distributions of light sources.
- It aims to calculate the radiance $L(\mathbf{r},\omega)$ for given \mathbf{r} and ω ; at boundaries that allow transmission we need to distinguish between $L(\mathbf{r},\omega)$ on the two sides of the boundary; we can use $L_{\rm i}$ and $L_{\rm o}$ to refer to them.

Since the radiance is conserved along a ray (Pharr et al. chap. 14), we can also use $L(\mathbf{r} \to \mathbf{r}')$ to refer to the radiance, if we are able to find some \mathbf{r} and \mathbf{r}' on boundaries, and $\mathbf{r}' - \mathbf{r} = \omega$. With this notation, the i and o subscripts are no longer necessary.

- It enumerates all possible light paths that ends with a specific point r. For each path,
 - If it comes directly from a light source \mathbf{r}' , then it contributes $L_{\rm e}(\mathbf{r}' \to \mathbf{r})$ to $L(\mathbf{r}, \omega)$, where $L_{\rm e}$ is the emission radiance of the light source.
 - If reflection or transmission happens at r', the contribution of $r'' \to r' \to r$ is

$$dL(\mathbf{r}' \to \mathbf{r}) = f(\mathbf{r}', \widehat{\mathbf{r}' - \mathbf{r}''}, \widehat{\mathbf{r} - \mathbf{r}'}) |\cos \theta| L(\mathbf{r}'' \to \mathbf{r}') d\omega''$$

$$= f(\mathbf{r}', \widehat{\mathbf{r}' - \mathbf{r}''}, \widehat{\mathbf{r} - \mathbf{r}'}) |\cos \theta| L(\mathbf{r}'' \to \mathbf{r}') \frac{dA''}{|\mathbf{r}'' - \mathbf{r}'|^{2}},$$
(2)

where

$$\cos \theta = \hat{\boldsymbol{n}}' \cdot \widehat{\boldsymbol{r}' - \boldsymbol{r}''},\tag{3}$$

and $\hat{\boldsymbol{n}}'$ is the normal vector at \boldsymbol{r}' .

Of course, now the problem is how to find $L(\mathbf{r''} \to \mathbf{r'})$; if $\mathbf{r''}$ is on a light source, (2) is already evaluated, and if not, we need to evaluate $L(\mathbf{r''} \to \mathbf{r'})$ on the LHS of (2).

• $L(r,\omega)$ is then used together with a camera model to create a "photon" of the system.

Since we need to sum over all rays determined by geometrical optics, this is known as ray tracing.

2 Camera model

$$\delta(\omega - \omega') = \frac{1}{\sin \theta} \delta(\theta - \theta') \delta(\varphi - \varphi'). \tag{1}$$

¹Here I use the notation in computer graphics: ω is the direction of the wave vector, and $d\omega$ is the solid angle element surrounding the direction ω ; we define

²Often we need to deal with lights from infinity, but at least in theory we can model "infinity" by a large light source at a distance