

Grundbegriffe der Informatik Tutorium 33

Maximilian Staab, maximilian.staab@fsmi.uni-karlsruhe.de Lukas Bach, lukas.bach@student.kit.edu | 26.01.2017

Lukas Bach,

Gliederung

Maximilian Staab, maximilian.staab@fsmi.uni-karlsruhe.de,

lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

Automaten

Rückblick

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

- Was ist $\Omega(f)$, $\Theta(f)$, O(f)?
- Wieso messen wir nicht einfach Laufzeit in "Anzahl Operationen"?

Obere und untere Schranke

Maximilian Staab

maximilian.staab@fsmi.uni-karlsruhe.de. Lukas Bach.

lukas bach@student kit edu

Obere Schranke (Worst-Case Approximation)

Komplexitätstheorie

$$O(f) = \{g | \exists c \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \ge n_0 : g(n) \le c \cdot f(n)\}$$

Automaten

Untere Schranke (Best-Case Approximation)

$$\Omega(f) = \{g | \exists c \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \ge n_0 : g(n) \ge c \cdot f(n)\}$$

Average-Case Approximation

$$\Theta(f) = \{g | \exists c, c' \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \geq n_0 : c \cdot f(n) \leq g(n) \leq c' \cdot f(n)\}$$

Auf welche Weise wird hier approximiert?

Gelten folgende Approximationen?

Maximilian Staab,

maximilian.staab@fsmi.uni-kamsr4m2de $+\pi n+2\sqrt{n}\in\Theta(n^2)$? Ja.

 ${\tt lukas.bach@student.kit.edu}$

■ $5n^2 + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Ja.

Komplexitätstheorie

• $4n^{2,1} + \pi n + 2\sqrt{n} \in \Theta(n^2)$? Nein.

Mastertheoren

Es sind immer nur die höchsten Faktoren interessant!

- $4n^4 + 3c^6 \in \Theta(n^4)$? Ja, c ist eine Konstante, $3c^6 = (3c^6)n^0$ hat eine kleinere Potenz als n^4 .
- $\log_{4213}(n) \in \Theta(\log_2(n))$ Ja, die Basis des Logarithmus ist im O-Kalkül egal.
 - Grund: $\mathcal{O}(\log_b n) = \mathcal{O}(\frac{\log_a n}{\log_a b}) = \mathcal{O}(\frac{1}{\log_a b} \log_a n) = \mathcal{O}(\log_a n)$.
- $n! \in \Theta(n^{\pi e^{2000}})$ Nein, Fakultät wächst asymptotisch schneller als fast alles andere.

Maximilian Staab,

maximilian.staab@fsmi.uniGelten•folgende Approximationen?

lukas.bach@student.kit.edu

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^5)$$
? Ja.

Komplexitätstheorie

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^4)$$
? Ja.

Mastertheorer

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^3)$$
? Ja.

Automaten

•
$$4n^3 + 2n^2 \in \mathcal{O}(n^2)$$
? Nein.
• $4n^3 + 2n^2 \in \Omega(n^5)$? Nein.

• $4n^3 + 2n^2 \in \Omega(n^4)$? Nein.

•
$$4n^3 + 2n^2 \in \Omega(n^3)$$
? Ja.

• $4n^3 + 2n^2 \in \Omega(n^2)$? Ja.

Aufgabe

Maximilian Staab,

maximilian.staab@fsmi.ur Lukas Bach,

lukas.bach@student.kit.

Übungsaufgab

Entscheide für jede Zelle, ob die Formel der Zeile in der Menge der Spalte Komplexitätstheorie liegt.

Mastertheorem

	$(9(n^3))$	O(n)	(a)	$\Theta(n^{\pi})$	$\Omega(n^6)$	O(n!)
	$O(n^3)$	U(II)	$\Theta(c!)$	0(11)	12(11)	$\Omega(n!)$
$2n^2 + 4n$	€	∉	∉	∉	∉	∉
π	\in	\in	€	∉	∉	∉
$\log(n)$	\in	\in	∉	∉	∉	∉
$n\log(n)$	\in	∉	∉	∉	∉	∉
n^{π}	∉	∉	∉	\in	∉	∉
$12n^3 + 7000n^2$	€	∉	∉	∉	∉	∉
n ³	€	∉	∉	∉	∉	∉
<i>n</i> !	∉	∉	∉	∉	\in	€

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

 ${\tt lukas.bach@student.kit.edu}$

Komplexitätstheorie

Mastertheorem

- $\bullet \ \, \mathfrak{O}(\mathit{n}^{2})\cap \Omega(\mathit{n}^{3})=\emptyset$ Automaten

Grundlegende Reihenfolge von Größen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheoren

$$1 \preceq \log n \preceq n \log n \preceq n^2 \preceq n^3 \preceq n^{10000} \preceq n^2 \preceq 3^n \preceq 1000^n \preceq n! \preceq n^n$$

Mathematische Definitionen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

$$f(n) \in \Omega(g(n)) \Leftrightarrow 0 < \liminf_{n \to \infty} \frac{f(n)}{g(n)} \le \infty$$

Komplexitätstheorie

Mastertheore

$$f(n) \in \Theta(g(n)) \Leftarrow 0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} = c < \infty$$

Automaten

$$f(n) \in \mathcal{O}(g(n)) \Leftrightarrow 0 \leq \limsup_{n \to \infty} \frac{f(n)}{g(n)} = c < \infty$$

Z

eige:

■
$$3n^2 + 14n + 159 \in \Theta(n^2)$$

$$\log n^2 \in \Theta(\log n^3)$$

$$\log^2 n \in \mathcal{O}(\log^3 n)$$

Komplexität mit vollständiger Induktion beweisen

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorer

Z

Automaten

eige mittels vollständiger Induktion:

- $2^n \in \Theta(n^3)$
- $\bullet (n+1)! \in \Theta(n!+2^n)$

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach,

lukas.bach@student.kit.edu Größenordnung

[⊥] Größenordnung ⊕(1) Bezeichnung konstante Laufzeit

Komplexitätstheorie

Mastertheorem

 $\frac{\mathcal{O}(\log n)}{\mathcal{O}(\log^2 n)}$

logarithmische Laufzeit quadratisch logarithmische Laufzeit

Automaten

O(n)

 $\frac{O(n)}{(n^2)}$ lineare Laufzeit quadratische Laufzeit

 $O(n^2)$

 $O(n^3)$ kubische Laufzeit

 $O(n^k)$

 $O(n^k)$ polynomielle Laufzeit

Grundbegriffe for $i \leftarrow 0$ to n/2 do der Informatik $s \leftarrow 0$ Maximilian Staab. maximilian.staab@fsmi.uni Lukas Bach. for $i \leftarrow i$ to n - i do lukas bach@student kit ed $s \leftarrow s + i$ Komplexitätstheorie od $r \leftarrow s + n * i$ Automaten $r \leftarrow r + s$ od

 $r \leftarrow 0$

• Wie oft wird die innere Schleife durchlaufen?
$$n-2i+1$$
 mal.
• Wie kommen wir jetzt auf die Gesamtlaufzeit?
• $\sum_{i=0}^{n/2} (n-2i+1) = \frac{n}{2}n-2\sum_{i=0}^{n/2} i+\frac{n}{2} = \frac{n^2}{2} + \frac{n}{2} - 2\frac{\frac{n}{2} \cdot \left(\frac{n}{2}+1\right)}{2} = \frac{n^2}{2} + \frac{n}{2} - \frac{n^2}{4} - \frac{n}{2} = \frac{1}{4}n^2$

Kann man das einfacher machen?

Mastertheorem

Maximilian Staab,

maximilian.staab@fsmi.ur Lukas Bach,

lukas.bach@student.kit.

Formel für Mastertheorem

Rekursive Komplexitätsformeln der Form

Komplexitätstheorie

$$T(n) = a \cdot T(\frac{n}{b}) + f(n)$$

Mastertheorem

lassen sich mit dem Mastertheorem Komplexitätsklassen zuordnen.

Automaten

Auflösung des Mastertheorem

Fall 1: Wenn $f \in \mathcal{O}(n^{\log_b a - \varepsilon})$ für ein $\varepsilon > 0$ ist, dann ist $T \in \Theta(n^{\log_b a})$.

Fall 2: Wenn $f \in \Theta(n^{\log_b a})$ ist, dann ist $T \in \Theta(n^{\log_b a} \log n)$.

Fall 3: Wenn $f \in \mathcal{O}(n^{\log_b a + \varepsilon})$ für ein $\varepsilon > 0$ ist, und wenn es eine Konstante d gibt mit 0 < d < 1, so dass für alle hinreichend großen n gilt $af(n/b) \le df$, dann ist $T \in \Theta(f)$.

Aufgaben zum Mastertheorem

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Komplexitätstheorie

Mastertheorem

Automaten

■ $T(n) := 2T(\frac{n}{4}) + \sqrt{n}$, also $a = 2, b = 4, f(n) = \sqrt{n}$, also zweiter Fall des Mastertheorems. $T \in \Theta(\sqrt{n} \log n)$

- $T(n) := 3T(\frac{n}{2}) + n \log n$, also $a = 3, b = 2, f(n) = n \log n$, also erster Fall des Mastertheorems, $T \in \Theta(n^{\log_2 3})$
- $T(n) := 4T(\frac{n}{2}) + n^2\sqrt{n}$, also a = 4, b = 2, $f(n) = n^2\sqrt{n}$, also dritter Fall des Mastertheorems, $T \in \Theta(n^2\sqrt{n})$.

Definition eines endlichen Automaten

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.

Endlicher Automat

Komplexitätstheorie Ein endlicher Automat ist ein Tupel $A = (Z, z_0, X, f, Y, g)$ mit...

Mastertheorer

- endliche Zustandsmenge Z
- Anfangszustand $z_0 \in Z$
- Eingabealphabet X
- Zustandsübergangsfunktion $f: Z \times X \rightarrow Z$
- Ausgabealphabet Y
- Ausgabefunktion
 - Mealy-Automat: $g: Z \times X \rightarrow Y^*$
 - Moore-Automat: $h: Z \to Y^*$

Informationen

Maximilian Staab,

Automaten

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit

Komplexitätstheori

[†] Zum Tutorium

Lukas Bach

Tutorienfolien auf:

http:

//gbi.lukasbach.com

Tutorium findet statt:

Donnerstags, 14:00 - 15:30

50.34 Informatikbau, -107

Mehr Material

- Ehemalige GBI Webseite:
 - http://gbi.ira.uka.de
 - Altklausuren!

Zur Veranstaltung

- Grundbegriffe der Informatik
- Klausurtermin:
 - **o** 06.03.2017, 11:00
 - Zwei Stunden Bearbeitungszeit
 - 6 ECTS für Informatiker und Informationswirte, 4 ECTS für Mathematiker und Physiker

Zum Übungsschein

- Übungsblatt jede Woche
- Ab 50% insgesamt hat man den Übungsschein
- Keine Voraussetzung für die Klausur, aber für das Modul