Count the no. of subarray with xor x.

Problem Statement

Suggest Edit

Given an array 'A' consisting of 'N' integers and an integer 'B', find the number of subarrays of array 'A' whose bitwise XOR(\oplus) of all elements is equal to 'B'.

A subarray of an array is obtained by removing some(zero or more) elements from the front and back of the array.

Example:

```
Input: 'N' = 4 'B' = 2
'A' = [1, 2, 3, 2]
```

Output: 3

Explanation: Subarrays have bitwise xor equal to '2' are: [1, 2, 3, 2], [2], [2].

arr[], [4, 2, 2, 6, 4] K, 6

Bruke / Haire upproach:

Generate all Subarray and xor than to get K26

4 = 2 6 4 ~ 4 ~ 2 ~ 2 242 ^ 2 6 ^ 4 = 4^2^2 6^4 2 - 6 4

So, Brute force Ps simple. but. Time Complexity is OCN2)

Optimal Approach:

42264 K22

> X K = XR X K K 2 XR K X 2 XP K 4 2 2 6 4 X R 2 2

Mashmap to keys the track of XDIZ K16 Turels XDR XR 2 4. Kx/26 x24°629 BI x 2 2 1 6= 4 X26620


```
Inial the map.
   XRLO
map [XR]++;
for (120; i(n; i++)
     XR 1 = aTr[i];
     XI XR K;
     in count to mp[x] to
     mp[xR] ++;
```

Time Complexing:

Ne map Lint, int) ____ spession (logn) __ n wortt Case.

Unordered (int; 1945 - sperahim Bost Con O(1), if there is

Worst Con O(N) many collision

T. (. = D(N) * D(logN) or D(N) * D(L) — D(N°.

Tetakin map

The provided map

G-C- 6 CM - at worst it millstore all array