Machine Learning Worksheet 08

Neural Networks 2

A simple neural network has as loss function

$$E(\boldsymbol{w}) := \frac{1}{m} \sum_{i=1}^{m} f(z_i - \boldsymbol{w} \cdot \boldsymbol{x}_i) + \lambda \|\boldsymbol{w}\|^2 / 2$$

where

$$f(x) = \begin{cases} \frac{1}{2}x^2 & \text{if } |x| < 1\\ |x| - \frac{1}{2} & \text{otherwise.} \end{cases}$$

In these, $x \in \mathbb{R}^d$ are the data, $w \in \mathbb{R}^d$ are the weights, and $z \in \mathbb{R}$ the target outputs for m data points. The λ is a constant.

Problem 1: Compute the gradient of E(w) w.r.t. w, when optimising over all data.

Define g_i as the gradient of the *i*th data point.

$$g_i = \begin{cases} (\boldsymbol{w} \cdot \boldsymbol{x}_i - z_i) \boldsymbol{x}_i & \text{if } |\boldsymbol{w} \cdot \boldsymbol{x}_i - z_i| < 1\\ \text{sgn}(\boldsymbol{w} \cdot \boldsymbol{x}_i - z_i) \boldsymbol{x}_i & \text{otherwise} \end{cases}$$

then

$$\frac{\partial E}{\partial \boldsymbol{w}} = \frac{1}{m} \sum_{i=1}^{m} \boldsymbol{g}_i + \lambda \boldsymbol{w}$$

Problem 2: How do you minimise E(w)? Write down the equation of a method to minimise the loss for a specific training instance (x_i, z_i) .

As formulated, there are many solutions. This may be one of the simpler ones.

Using the above definition of $\frac{\partial E}{\partial w}$, we can write

$$\boldsymbol{w} \leftarrow \boldsymbol{w} - \eta \frac{\partial E}{\partial \boldsymbol{w}}$$

which leads to

$$\boldsymbol{w} \leftarrow (1 - \lambda \eta) \boldsymbol{w} - \eta \boldsymbol{g}_i$$

Problem 3: In the uploaded Jupyter notebook neuralnetworks1.ipynb, implement the momentum in both neural network implementations. See that learning with the momentum can be considerably faster than without.

Plot several	l (at least 6	6) training	curves with and	l without	momentun	n, while	experii	menting	with o	differe	nt
values for t	he learning	g rate and	the momentum	. Submit	the plots,	as well	as the	relevant	lines	of yo	ur
code change	es.										

Done.		