1

Assignment 14

K.A. Raja Babu

Download all python codes from

https://github.com/ka-raja-babu/Matrix-Theory/ tree/main/Assignment14

and latex-tikz codes from

https://github.com/ka-raja-babu/Matrix-Theory/ tree/main/Assignment14

1 Question No. 6.17

A person plays a game of tossing a coin thrice. For each head, he is given Rs 2 by the organiser of the game and for each tail,he has to give Rs 1.50 to the organiser. Let X denote the amount gained or lost by the person. Show that X is a random variable and exhibit it as a function on the sample space of the experiment.

2 Solution

Axiom 2.1. A discrete random variable X is said to be a Bernoulli random variable if

$$Pr(X) = \begin{cases} p & X = 1\\ q = 1 - p & X = 0\\ 0 & otherwise \end{cases}$$
 (2.0.1)

Let success(X=1) and failure(X=0) be defined as in table 2.1.

Success($X=1$)	Total Amount ≥ 0
Failure($X=0$)	Total Amount < 0

TABLE 2.1: Assumption for X

Values of X are calculated with this assumption in table 2.2 .

From table 2.3 ,probability of X can be defined as

$$Pr(X) = \begin{cases} p = \frac{1}{2} & X = 1\\ q = 1 - p = \frac{1}{2} & X = 0\\ 0 & \text{otherwise} \end{cases}$$
 (2.0.2)

Hence, according to axiom 2.1, X is a Bernoulli random variable.

Probability distribution of X is shown in fig. 2.1.

Sample Space	Total Amount	X
ННН	2+2+2=6	1
ННТ	2+2-1.5=2.5	1
HTH	2-1.5+2=2.5	1
THH	-1.5+2+2=2.5	1
TTH	-1.5-1.5+2=-1	0
THT	-1.5+2-1.5=-1	0
HTT	2-1.5-1.5=-1	0
TTT	-1.5-1.5-1.5=-4.5	0

TABLE 2.2: Values of X

Expression	Value
Pr(X=0)	$\frac{1}{2}$
Pr(<i>X</i> =1)	$\frac{1}{2}$

TABLE 2.3: Probability of *X*

Fig. 2.1: Probability Distribution of X