## Лабораторная работа № 1 ДО

## ПРОХОЖДЕНИЕ СИГНАЛОВ ЧЕРЕЗ RC-ЦЕПИ

## Теоретическая справка

В электронике часто применяются *RC*-цепи.





Рис. 1. *RC*-цепь с интегрирующим конденсатором.

Рис. 2. *RC*-цепь с разделительным конденсатором.

Изображенная на рис. 1 схема представляет собой простейший RC-фильтр нижних частот, который без искажений передает низкочастотные и обеспечивает затухание высокочастотных сигналов. Комплексный коэффициент передачи НЧ-фильтра (рис. 1) может быть представлен следующим образом:

$$\dot{H}(j\omega) = \frac{1}{1+j\omega RC}$$
.

Отсюда получаем выражение для амплитудно-частотной характеристики:

$$H(\omega) = \frac{1}{\sqrt{1 + (\omega RC)^2}}$$
 или  $H(f) = \frac{1}{\sqrt{1 + \left(\frac{f}{f_B}\right)^2}}$ .

Выражение для фазочастотной характеристики будет иметь такой вид:

$$\varphi(\omega) = -\arctan(\omega RC)$$
 или  $\varphi(f) = -\arctan\left(\frac{f}{f_B}\right)$ .

Здесь  $f_{\scriptscriptstyle B} = \frac{1}{2\pi RC}$  — верхняя граничная частота НЧ—фильтра.

На рис. 3 показаны амплитудно—частотная характеристика (AЧX) в логарифмическом масштабе и фазочастотная характеристика (ФЧX) RC-фильтра нижних частот.

Для вертикальной оси использован логарифмический масштаб:  $LH = 20 \lg(H)$  [дБ].



Рис. 3. АЧХ и ФЧХ НЧ-фильтра.

На граничной частоте коэффициент передачи  $H(f_B) = \frac{1}{\sqrt{2}} = 0,707$ , что в логарифмическом масштабе соответствует  $LH(f_B) = -3$  дБ. Фазовый сдвиг на этой частоте равен  $-45^\circ$ .

Как видно из рис. 3, амплитудно-частотную характеристику можно составить из двух асимптот:

- на нижних частотах  $(f < f_B)$  H(f) ≈ 1, следовательно, LH(f) ≈ 0 дБ;
- на высоких частотах  $(f \gg f_B)$   $LH(f) \approx \frac{f_B}{f}$ , т.е. коэффициент усиления обратно пропорционален частоте. Таким образом, при увеличении частоты в 10 раз коэффициент усиления уменьшается тоже в 10 раз. А это для характеристики, построенной в логарифмическом масштабе, эквивалентно наклону -20дБ на декаду.

На рис. 2 изображен другой простейший RC—фильтр верхних частот. Он без искажений передает высокочастотные сигналы и обеспечивает затухание низкочастотных. Его коэффициент передачи в комплексной форме может быть представлен следующим образом:

$$\dot{H}(j\omega) = \frac{1}{1-j\frac{1}{\omega RC}}$$
.

Отсюда получаем выражение для амплитудно-частотной характеристики:

$$H(\omega) = \frac{1}{\sqrt{1 + \left(\frac{1}{\omega RC}\right)^2}}$$
 или  $H(f) = \frac{1}{\sqrt{1 + \left(\frac{f_H}{f}\right)^2}}$ .

Выражение для фазочастотной характеристики будет иметь такой вид:

$$\varphi(\omega) = \operatorname{arctg}(\frac{1}{\omega RC})$$
 или  $\varphi(f) = \operatorname{arctg}\left(\frac{f_H}{f}\right)$ .

Здесь  $f_H = \frac{1}{2\pi RC}$  — нижняя граничная частота или частота среза ВЧ-фильтра.

На рис. 4 показаны амплитудно—частотная характеристика (АЧХ) в логарифмическом масштабе [дБ] и фазочастотная характеристика (ФЧХ) RC—фильтра верхних частот.



Рис. 4. АЧХ и ФЧХ ВЧ-фильтра.

На граничной частоте коэффициент передачи  $H(f_H) = \frac{1}{\sqrt{2}} = 0,707$ , что в логарифмическом масштабе соответствует  $LH(f_H) = -3$  дБ. Фазовый сдвиг на этой частоте равен  $+45^\circ$ .

Графики АЧХ и ФЧХ для ВЧ-фильтра изображены на рис. 4. Как и для НЧ-фильтра амплитудно—частотную характеристику в двойном логарифмическом масштабе можно составить из двух асимптот:

- на высоких частотах  $(f > f_H)$  H(f) ≈ 1, следовательно, LH(f) ≈ 0;
- на низких частотах  $(f \ll f_H)$   $LH(f) \approx \frac{f}{f_H}$ , т.е. коэффициент усиления пропорционален частоте. Таким образом, при увеличении частоты в 10 раз коэффициент усиления тоже увеличивается в 10 раз. А это эквивалентно наклону +20дБ на декаду для характеристики, построенной в двойном логарифмическом масштабе.

Для анализа схем (рис. 1 и рис. 2) во временной области на вход схемы надо подать прямоугольный импульс напряжения  $u_{\rm вx}(t)$ . Выражение для переходной характеристики в этом случае можно записать в виде:

$$u_{\text{BbIX}}(t) = u_{\text{BbIX}}(\infty) - [u_{\text{BbIX}}(\infty) - u_{\text{BbIX}}(0)]e^{-t/\tau},$$

где  $u_{\text{вых}}(\infty)$  – напряжение на выходе в установившемся режиме;

 $u_{\text{вых}}(0)$  – выходное напряжение в момент скачка входного напряжения;

 $\tau = RC$  — постоянная времени цепи.

Диаграммы выходного напряжения для схемы НЧ—фильтра при разных скачках входного сигнала показаны на рис. 5, а для схемы ВЧ—фильтра на рис. 6 и рис. 7, для этих схем максимальные значения сигналов  $U_{m \text{ вх}} = U_{m \text{ вых}} = U_{m}$ .



Рис. 5. Переходные процессы в НЧ-фильтре

Для интегрирующей цепи (рис. 1) характерно наличие фронта (рис. 5,a) или среза (рис.  $5,\delta$ ) в выходном сигнале. Время нарастания (среза) импульса можно определить по общей формуле:

$$t_2 - t_1 = \tau \ln \frac{u_{\text{BMX}}(\infty) - u_{\text{BMX}}(t_1)}{u_{\text{BMX}}(\infty) - u_{\text{BMX}}(t_2)},$$

где  $u_{\text{вых}}(t_1)$  и  $u_{\text{вых}}(t_2)$  — выходное напряжение в соответствующие моменты времени.

Длительность фронта, определяемая по уровням 0,1...0,9, равна  $t_{\rm \varphi}=2,2\tau$ . Для длительности среза аналогично:  $t_{\rm c}=2,2\tau$ . С учетом соотношения, связывающего граничную частоту с постоянной времени цепи:  $\tau=1/\omega_{\rm rp}=1/(2\pi f_{\rm rp})$ , можно получить формулу связи частотных и временных параметров для низкочастотного фильтра:

$$t_{\Phi} = 2,2\tau_B = \frac{0,35}{f_B}.$$

Для схемы с разделительным конденсатором (рис. 2) возможны два случая.

1. Постоянная времени для этой схемы мала по сравнению с длительностью входного сигнала ( $t_u >> \tau$ ). Конденсатор в этом случае называется дифференцирующим или укорачивающим. За время действия входного импульса он успеет полностью зарядиться или разрядиться. Таким образом, скачок входного напряжения приведет к появлению на выходе конечного по длительности импульса положительной (рис. 6,a) или отрицательной (рис.  $6,\delta$ ) полярности. Длительность этого импульса, определенную по уровню  $0,5U_m$ , можно рассчитать по формуле:  $t_{u \text{ вых}} = 0,7\tau$ .

$$u_{\text{BX}}(t) = \begin{cases} 0, & t < 0 \\ U_m, & t \ge 0 \end{cases}$$

$$u_{\text{BbIX}}(t) \uparrow$$

$$u_{\text{BbIX}}(t) \uparrow$$

$$0,5U_m$$

$$0,5U_m$$

$$0$$

$$t_{\text{H BbIX}}$$



Рис. 6. Переходные процессы в ВЧ-фильтре при большой длительности входного сигнала ( $t_{\rm u}>>\tau$ )

2. Длительность входного сигнала мала по сравнению с постоянной времени  $(t_{\rm u} << \tau)$ . В этом случае напряжение на конденсаторе за время действия входного сигнала не успеет существенно измениться, и форма выходного сигнала практически повторит форму входного импульса. Конденсатор в этом случае называется разделительным или конденсатором связи. В этом случае выходная характеристика будет иметь спад плоской вершины  $\Delta u$  (рис. 7).



Рис. 7. Переходные процессы в ВЧ-фильтре при малой длительности входного сигнала ( $t_u << \tau$ )

Относительный спад плоской вершины  $\delta u$  рассчитывается по формуле:

$$\delta u = \frac{\Delta u}{U_m} 100\% = \frac{t_{\text{H}}}{\tau} 100\%.$$

Данной формулой можно пользоваться, если  $\delta u$  не превосходит 10...15%. С учетом соотношения, связывающего граничную частоту с постоянной времени цепи:  $\tau = 1/\omega_{\rm rp} = 1/(2\pi f_{\rm rp})$ , можно получить формулу связи частотных и временных параметров для высокочастотного фильтра:

$$\delta u = \frac{t_{_{\rm H}}}{\tau} 100\% = 2\pi f_H t_{_{\rm H}}.$$

## Литература

- 1. Электротехника и электроника. Учебник для вузов.- В 3-х кн. Кн. 3. Электрические измерения и основы электроники/ Г.П.Гаев, В.Г.Герасимов, О.М.Князьков и др.; Под ред. проф. В.Г.Герасимова. М.: Энергоатомиздат, 1998.
- 2. **Кобяк А.Т., Новикова Н.Р., Паротькин В.И., Титов А.А.** Применение системы Design Lab 8.0 в курсах ТОЭ и электроники: Метод. пособие. –М.: Издательство МЭИ, 2001. –128с.