Max individual probabilities & combined probabilities & combined probabilities & combined probabilities & different are different = 0,1

 $\max_{00} P(X,Y) = 10$

25

 χ_1 . . . χ_N

P(xn)

 $p(x, \dots, x_N)$

hoppy

P(ch[2] = 0) = ? bocknown

may P(x, xn, Z, ... Zn) =? Verterbi Z....21

$$P(x_n) = \sum_{x_1 \cdots x_{n-1}} P(x_1, x_2 \cdots x_n)$$

(x1, x2) X2 XI fa = f(xn, xex) Xm

$$M[0] = \left[\begin{array}{c} Domain \neq 0 - 1 \\ Oomain \neq C \end{array}\right] \cdot \left(\begin{array}{c} Domain \neq 0 \\ Oomain \neq C \end{array}\right) \cdot \left(\begin{array}{c} Domain \neq 0 \\ Oomain \neq C \end{array}\right)$$

$$= \left(\begin{array}{c} 2 - 1 \end{array}\right) \left(\begin{array}{c} 2 \end{array}\right) \left(\begin{array}{c} 2 \end{array}\right) = \left(\begin{array}{c} 2 \\ ABCD \end{array}\right) = \left(\begin{array}{c} 2 \\ 2 \end{array}\right)$$

$$= \left(\begin{array}{c} ABCD \\ 2 \end{array}\right) \left(\begin{array}{c} 2 \\ 2 \end{array}\right) = \left(\begin{array}{c} 2 \\ 2 \end{array}\right) \left(\begin{array}{c} 2 \\ 2 \end{array}\right) = \left(\begin{array}{c} 2 \\ 2 \end{array}\right) \left(\begin{array}{c} 2 \\ 2 \end{array}\right) = \left(\begin{array}{c} 2 \\ 2 \end{array}\right) \left(\begin{array}{c} 2 \\ 2 \end{array}\right) = \left(\begin{array}{c} 2 \\ 2 \end{array}\right) \left(\begin{array}{c} 2 \\ 2 \end{array}\right) \left(\begin{array}{c} 2 \\ 2 \end{array}\right) = \left(\begin{array}{c} 2 \\ 2 \end{array}\right) \left(\begin{array}{c} 2 \\ 2 \end{array}\right) = \left(\begin{array}{c} 2 \\ 2 \end{array}\right) \left(\begin{array}{c} 2 \\ 2 \end{array}\right) \left(\begin{array}{c} 2 \\ 2 \end{array}\right) = \left(\begin{array}{c} 2 \\ 2 \end{array}\right) \left(\begin{array}{c} 2 \\ 2 \end{array}\right) \left(\begin{array}{c} 2 \\ 2 \end{array}\right) = \left(\begin{array}{c} 2 \\ 2 \end{array}\right) \left(\begin{array}{c} 2 \end{array}\right) \left(\begin{array}{c} 2 \\ 2 \end{array}\right) \left(\begin{array}{c} 2 \\ 2 \end{array}\right) \left(\begin{array}{c} 2 \end{array}\right) \left(\begin{array}{c} 2 \\ 2 \end{array}\right) \left(\begin{array}{c} 2 \end{array}\right) \left(\begin{array}{c} 2 \\ 2 \end{array}\right) \left(\begin{array}{c} 2$$

$$P(E=T) = \sum_{ABCO} P(A,B,C,O,E=T)$$

$$= \sum_{ABCO} P(A) P(O|A) P(C|A) P(O|B,C)$$

$$= \sum_{ABCO} P(A) P(O|A) P(E|C)$$

$$= \sum_{ABCO} P(A) P(O|A) P(O|B,C)$$

$$= \sum_{ABCO} P(A) P(O|A) P(O|B,C)$$

$$= \sum_{ABCO} P(A,B,C,O,E=T)$$

$$= \sum_{ABCO} P(A,B,C,O$$

$$M[A] = 1$$

$$M[B] = 2$$

$$M(C) = 2$$

$$M(O) = 4$$

$$M(E) = 2$$

$$M(E) = 2$$

$$P(A, B, C, D, E) = P(A) P(B|A)$$

$$P(C|A) P(C|A) P(C|C|A) P(E|C)$$

$$P(A=0) = 1$$
 $P(B|A)$
 $P(B=1|A=0)$
 $P(B=1|A=0)$
 $P(B=1|A=0)$
 $P(B=1|A=0)$
 $P(B=1|A=0)$

A	B		7 D	E	P(A,B,c,0,E)
O	0	0	0	0	
. 0	0	0	9	/	
0	0	0	(0	
		1			
5			5		
, T			7-1) \	

$$P(D=tme, E=tme) = \sum_{E=T}^{\infty} P(A,O,C,D=T,ABC)$$

$$= \sum_{E=T}^{\infty} P(A) P(B|A) P(C|A) P(D=T|B,C)$$

$$= \sum_{ABC} P(A) \sum_{E=T}^{\infty} P(E=T|E)$$

$$= \sum_{E=T}^{\infty} P(A) \sum_{E=T}^{\infty} P(B|A) \sum_{E=T}^{\infty} P(E=T|E)$$

$$= \sum_{E=T}^{\infty} P(A) \sum_{E=T}^{\infty} P(B|A) \sum_{E=T}^{\infty} P(E=T|E)$$

A	5	Ф3 (А,	(a	A	D	MC/A)
0	0	0.056	0	0	0.25	
0		0.066	65	0	1	0.75
	0	0.44	l	0	0.7	
		0.53	1	1	0.2	
	0					

$$\phi_{\gamma}(\cdot) = 0.02556 + 0.27888$$

$$= 0.30444$$

$$\left(5\cdot 2^3\right)$$

$$O(n \cdot exp(\underline{w}))$$

 $\leq \phi(A,B,C)$

$$P(E=T|A=T)$$

$$= P(E=T,A=T)$$

$$P(A=T)$$

Moral Graph = Primel Graph

Moralization

Take directed graph & convert

into undirected

P (E=T)

ADCD

$$O(n \exp(w+i))$$

