Closest Pair of Points Computational Geometry.

Given a set of points P1,..., Pn, we want to find points that one "closect" in terms of Enclidean distance.

Lan we come up with a better than trivial algo.

8 B: min{8(Pi, Pj)|Pi, Pj ∈ B, i'4j'}.

 $O(\binom{N}{2}) = O(N^2) (x_1, y_1)$ (x_2, y_2) J (2-2)2+(4-4)2

Merge tack: Check if There ave pairs P. P. S. t P. EA, P. EB and $\delta(P_i, P_j) < \delta$.

Claim: If such pairs, exist across the "border" (line x= 2 where 2* is the max. & coordinate of all points in A) sit PiEA and PJEB, Then Pi and Pi lie in a band of width 28 with border as the center. Let S be the set of points in the band-Obtain Sy - sorted based on incr. y-values.

W.L.O.G: we can assume that no point have the 2-coordinate or y-coordinate.

Claim: This 4x4 squares each of side & can at most contain 16 points over all and each square can contain <1 point. Each square of size $\frac{8}{2} \times \frac{5}{2}$ can have at most one point. S1. max distance between 2 points in the same square can at most be $52.8 = \frac{8}{52} < 8$ 12. For any 2 points on the same side, the min distance is $8 = \min \{ \delta_A, \delta_B \}$. From contradiction, each square can contain at most one point. Starting from The point with least y-value in the bound. draw the corresponding 4x4 grid. -> Find distance from a to all other points in the grid.

(there are at most 15 other points) L> take the minimum and store it in an array MinValue Repeat it for all points in the band in the increasing order of their y-values.

Compute the nin value in the array MinValuee.

Algorithm:	
>	Sort the points based on their 2-values and y-values.
>	Construct 2- smaller instances A and B each with no point.
	Recurse on sets A and B individually. SA = min dist of points in A
	La SB: min dist of points in B
7	Set 8= nin { δ_A , δ_B }
→	Construct a line x=zt where zt = max x-value of
-	Construct a band and the corresponding set of points. Construct a band and the corresponding set of points. Construct a band and the corresponding set of points.
→	Consider the set of points in the band in the incr. order of y-values. (call this ordered seq. Sy).
	For all $u \in S_y$: . draw the 4x4 grid whose bottom is at the y-value
	of u. Pick all points in S that lie in that gold. (only need to check 15 points in Sy).
	· compute the dist from u to every other point in the grid and store it in array D.

-> Let 8'= min & D[u]}

-> let 8'= min & D[u]}

-> lf 8'<8 return 8' and the corr. points

else veturn the poin giving us 8. $T(n) = 2 \cdot T(\frac{n}{2}) + T_{merge} \qquad D(n)$ $L_{r} (15+c) n$