Algoritmi avansați

C12 - Elemente de programare liniară

Mihai-Sorin Stupariu

Sem. al II-lea, 2020-2021

Motivație: turnarea pieselor în matrițe

Intersecții de semiplane - abordare cantitativă

Dualitate

Problematizare

Turnarea pieselor în matrițe și extragerea lor fără distrugerea matriței.

Problematizare

- Turnarea pieselor în matrițe și extragerea lor fără distrugerea matriței.
- Neajunsuri: unele obiecte pot rămâne blocate; există obiecte pentru care nu există o matriță adecvată.

Problematizare

- Turnarea pieselor în matrițe și extragerea lor fără distrugerea matriței.
- Neajunsuri: unele obiecte pot rămâne blocate; există obiecte pentru care nu există o matriță adecvată.

▶ **Problema studiată.** Dat un obiect, există o matriță din care să poată fi extras?

Obiectele: poliedrale.

- Obiectele: poliedrale.
- Matrițele: formate dintr-o singură piesă; fiecărui obiect \mathcal{P} îi este asociată o matriță $\mathcal{M}_{\mathcal{P}}$

- Obiectele: poliedrale.
- Matrițele: formate dintr-o singură piesă; fiecărui obiect $\mathcal P$ îi este asociată o matriță $\mathcal M_{\mathcal P}$
- Obiectul: extras printr-o singură translație (sau o succesiune de translații)

- Obiectele: poliedrale.
- Matrițele: formate dintr-o singură piesă; fiecărui obiect \mathcal{P} îi este asociată o matriță $\mathcal{M}_{\mathcal{P}}$
- Obiectul: extras printr-o singură translație (sau o succesiune de translații)
- Alegerea orientării: diverse orientări ale obiectului pot genera diverse matrițe.

Terminologie și convenții

▶ Fața superioară: prin convenție, obiectele au (cel puțin) o fața superioară (este orizontală, este singura care nu este adiacentă cu matrița). Celelalte fețe: standard; orice față standard f a obiectului corespunde unei fețe standard \hat{f} a matriței.

Terminologie și convenții

- **Fața superioară:** prin convenție, obiectele au (cel puțin) o fața superioară (este orizontală, este singura care nu este adiacentă cu matrița). Celelalte fețe: **standard**; orice față standard f a obiectului corespunde unei fețe standard \hat{f} a matriței.
- ▶ Obiect care poate fi turnat (castable): există o orientare pentru care acesta poate fi turnat și apoi extras printr-o translație (succesiune de translații): directie admisibilă.

Terminologie și convenții

- **Fața superioară:** prin convenție, obiectele au (cel puțin) o fața superioară (este orizontală, este singura care nu este adiacentă cu matrița). Celelalte fețe: **standard**; orice față standard f a obiectului corespunde unei fețe standard \hat{f} a matriței.
- Obiect care poate fi turnat (castable): există o orientare pentru care acesta poate fi turnat și apoi extras printr-o translație (succesiune de translații): direcție admisibilă.
- Convenţii: Matriţa este paralelipipedică şi are o cavitate corespunzătoare obiectului; faţa superioară a obiectului (şi a matriţei) este perpendiculară cu planul Oxy.

Descrierea proprietății de a putea extrage o piesă într-o direcție dată

Aceasta conditie to verificata ptr. trate file!

Detaliere (scriere în coordonate)

John v. we
$$\mathbb{R}^3$$
: $\cos(x(v, w)) = \frac{\langle v, w \rangle}{\|v\|\| \|w\|} \begin{pmatrix} \langle v, w \rangle = \\ v, w, + v_2 w_2 + v_3 w_3 \end{pmatrix}$

Cum vrew sā extragem objectul "ū sus"; f.r.g. putem pp.

 $c\bar{a}$ $\vec{d} = (d_x, d_y, 1)$ (de $ce^{\frac{2}{3}}$)

Tie f of fatā fixatā a objectului; \vec{v} (f) = (v_x , v_y , v_z)

Japtul $c\bar{a}$ fota f a matritei mu blocheazā extragerea \bar{u} directie \vec{d} (\Rightarrow)

 $(\vec{v}$ (f), \vec{d} > \in 0 (\Rightarrow)

 $v_z \cdot d_x + v_y \cdot d_y + v_z \leq 0$ (x_f)

Fixatā f (\Rightarrow (v_x , v_y , v_z)) contain \vec{d} (d_x , d_y) a \hat{v} sā f e verifutā (x_f)

 (x_f) inequalic are device un templan

- lacktriangle Condiție necesară: direcția de extragere $ec{d}$ trebuie să aibă componenta z pozitivă
- ▶ În general: o față standard \hat{f} a matriței (corespunzătoare unei fețe f a piesei) pentru care unghiul dintre normala exterioară $\vec{v}(f)$ la față f și \vec{d} este mai mic de 90° împiedică translația în direcția \vec{d}

- lacktriangle Condiție necesară: direcția de extragere $ec{d}$ trebuie să aibă componenta z pozitivă
- ▶ În general: o față standard \hat{f} a matriței (corespunzătoare unei fețe f a piesei) pentru care unghiul dintre normala exterioară $\vec{v}(f)$ la față f și \vec{d} este mai mic de 90° împiedică translația în direcția \vec{d}
- ▶ **Propoziție.** Un poliedru \mathcal{P} poate fi extras din matrița sa $\mathcal{M}_{\mathcal{P}}$ prin translație în direcția \vec{d} dacă și numai dacă \vec{d} face un unghi de cel puțin 90° cu normala exterioară a fiecărei fețe standard a lui \mathcal{P} .
- ▶ **Reformulare.** Dat \mathcal{P} , trebuie găsită o direcție \vec{d} astfel încât, pentru fiecare față standard f, unghiul dintre \vec{d} și $\vec{v}(f)$ să fie cel puțin 90°.

- lacktriangle Condiție necesară: direcția de extragere $ec{d}$ trebuie să aibă componenta z pozitivă
- ▶ În general: o față standard \hat{f} a matriței (corespunzătoare unei fețe f a piesei) pentru care unghiul dintre normala exterioară $\vec{v}(f)$ la față f și \vec{d} este mai mic de 90° împiedică translația în direcția \vec{d}
- ▶ **Propoziție.** Un poliedru \mathcal{P} poate fi extras din matrița sa $\mathcal{M}_{\mathcal{P}}$ prin translație în direcția \vec{d} dacă și numai dacă \vec{d} face un unghi de cel puțin 90° cu normala exterioară a fiecărei fețe standard a lui \mathcal{P} .
- ▶ **Reformulare.** Dat \mathcal{P} , trebuie găsită o direcție \vec{d} astfel încât, pentru fiecare față standard f, unghiul dintre \vec{d} și $\vec{v}(f)$ să fie cel puțin 90° .
- ▶ Analitic pentru o față: fiecare față definește un semiplan, i.e. dată o față standard f a poliedrului / matriței, a găsi o direcție admisibilă revine la a rezolva o inecuație $(*_f)$, care corespunde unui semiplan.

- ightharpoonup Condiție necesară: direcția de extragere \vec{d} trebuie să aibă componenta z pozitivă
- ▶ În general: o față standard \hat{f} a matriței (corespunzătoare unei fețe f a piesei) pentru care unghiul dintre normala exterioară $\vec{v}(f)$ la față f și \vec{d} este mai mic de 90° împiedică translația în direcția \vec{d}
- **Propoziție.** Un poliedru \mathcal{P} poate fi extras din matrița sa $\mathcal{M}_{\mathcal{P}}$ prin translație în direcția \vec{d} dacă și numai dacă \vec{d} face un unghi de cel puțin 90° cu normala exterioară a fiecărei fețe standard a lui \mathcal{P} .
- ▶ **Reformulare.** Dat \mathcal{P} , trebuie găsită o direcție \vec{d} astfel încât, pentru fiecare față standard f, unghiul dintre \vec{d} și $\vec{v}(f)$ să fie cel puțin 90° .
- ▶ Analitic pentru o față: fiecare față definește un semiplan, i.e. dată o față standard f a poliedrului / matriței, a găsi o direcție admisibilă revine la a rezolva o inecuație $(*_f)$, care corespunde unui semiplan.
- ▶ Analitic toate fețele: Fie 𝒯 un poliedru; fața superioară fixată, paralelă cu planul Oxy. Considerăm matrița asociată și toate fețele matriței (i.e. toate fețele standard ale poliedrului). A determina o direcție admisibilă revine la a determina o direcție care verifică toate inegalitățile de tip (*), deci un sistem de inecuații.

- ightharpoonup Condiție necesară: direcția de extragere \vec{d} trebuie să aibă componenta z pozitivă
- ▶ În general: o față standard \hat{f} a matriței (corespunzătoare unei fețe f a piesei) pentru care unghiul dintre normala exterioară $\vec{v}(f)$ la față f și \vec{d} este mai mic de 90° împiedică translația în direcția \vec{d}
- **Propoziție.** Un poliedru \mathcal{P} poate fi extras din matrița sa $\mathcal{M}_{\mathcal{P}}$ prin translație în direcția \vec{d} dacă și numai dacă \vec{d} face un unghi de cel puțin 90° cu normala exterioară a fiecărei fețe standard a lui \mathcal{P} .
- ▶ **Reformulare.** Dat \mathcal{P} , trebuie găsită o direcție \vec{d} astfel încât, pentru fiecare față standard f, unghiul dintre \vec{d} și $\vec{v}(f)$ să fie cel puțin 90° .
- ▶ Analitic pentru o față: fiecare față definește un semiplan, i.e. dată o față standard f a poliedrului / matriței, a găsi o direcție admisibilă revine la a rezolva o inecuație $(*_f)$, care corespunde unui semiplan.
- ▶ Analitic toate fețele: Fie 𝒯 un poliedru; fața superioară fixată, paralelă cu planul Oxy. Considerăm matrița asociată și toate fețele matriței (i.e. toate fețele standard ale poliedrului). A determina o direcție admisibilă revine la a determina o direcție care verifică toate inegalitățile de tip (*), deci un sistem de inecuații.
- Concluzie: Pentru a stabili dacă există o direcție admisibilă, trebuie stabilit dacă o intersecție de semiplane este nevidă.

Exemple

1. Intersecția semiplanelor

$$-x + y + 1 \le 0$$
; $-y - 3 \le 0$; $2x + 3y - 5 \le 0$.

Exemple

2 (a). Normalele exterioare ale fețelor standard sunt coliniare cu vectorii

$$(0,-1,1), (0,1,1), (0,1,0), (0,0,-1), (0,-1,0).$$

$$\begin{array}{c} (0,-1,1) \longrightarrow 0 \cdot x + (-1) \cdot y + 1 \leq 0 \\ (0,1,1) \longrightarrow 0 \cdot x + 1 \cdot y + 1 \leq 0 \\ (0,1,0) \longrightarrow 0 \cdot x + 1 \cdot y + 0 \leq 0 \\ (0,0,-1) \longrightarrow 0 \cdot x + 0 \cdot y + (-1) \leq 0 \\ (0,-1,0) \longrightarrow 0 \cdot x + (-1) \cdot y + 0 \leq 0 \end{array}$$

Temă

2 (b). Normalele exterioare ale fețelor standard sunt coliniare cu vectorii

$$(0,1,0), (0,1,-1), (0,0,-1), (0,-1,-1), (0,-1,0).$$

Probleme studiate:

Probleme studiate:

(i) Caracterizare explicită: Să se determine care sunt elementele (vârfuri, muchii, etc.) care determină o intersecție de semiplane.

Probleme studiate:

- (i) Caracterizare explicită: Să se determine care sunt elementele (vârfuri, muchii, etc.) care determină o intersecție de semiplane.
- (ii) Calitativ: Să se stabilească dacă o intersecție de semiplane este nevidă.

- Probleme studiate:
 - (i) Caracterizare explicită: Să se determine care sunt elementele (vârfuri, muchii, etc.) care determină o intersecție de semiplane.
 - (ii) Calitativ: Să se stabilească dacă o intersecție de semiplane este nevidă.
- Rezultate: (descrise în detaliu ulterior)

Probleme studiate:

- (i) Caracterizare explicită: Să se determine care sunt elementele (vârfuri, muchii, etc.) care determină o intersecție de semiplane.
- (ii) Calitativ: Să se stabilească dacă o intersecție de semiplane este nevidă.
- Rezultate: (descrise în detaliu ulterior)
 - (i) Intersecția unei mulțimi de n semiplane poate fi determinată cu complexitate-timp $O(n \log n)$ și folosind O(n) memorie.

Probleme studiate:

- (i) Caracterizare explicită: Să se determine care sunt elementele (vârfuri, muchii, etc.) care determină o intersecție de semiplane.
- (ii) Calitativ: Să se stabilească dacă o intersecție de semiplane este nevidă.
- Rezultate: (descrise în detaliu ulterior)
 - (i) Intersecția unei mulțimi de n semiplane poate fi determinată cu complexitate-timp $O(n \log n)$ și folosind O(n) memorie.
 - (ii) Se poate stabili cu complexitate-timp medie O(n) dacă o intersecție de semiplane este nevidă.
 - (ii) Fie P un poliedru cu n fețe. Se poate decide dacă P reprezintă un obiect care poate fi turnat cu complexitate-timp medie O(n²) și folosind O(n) spațiu. În caz afirmativ, o matriță și o direcție admisibilă în care poate fi extras P este determinată cu aceeași complexitate-timp.

(i) Caracterizare explicită - Formularea problemei

▶ Fie $\mathcal{H} = \{H_1, H_2, \dots, H_n\}$ o mulțime de semiplane din \mathbb{R}^2 ; semiplanul H_i dat de o relație de forma

$$a_i x + b_i y + c_i \leq 0$$

(i) Caracterizare explicită - Formularea problemei

▶ Fie $\mathcal{H} = \{H_1, H_2, \dots, H_n\}$ o mulțime de semiplane din \mathbb{R}^2 ; semiplanul H_i dat de o relație de forma

$$a_i x + b_i y + c_i \leq 0$$

▶ Intersecția $H_1 \cap H_2 \cap \ldots \cap H_n$ este dată de un sistem de inecuații; este o mulțime poligonală convexă, mărginită de cel mult n muchii (poate fi vidă, mărginită, nemărginită,...)

(i) Caracterizare explicită - Formularea problemei

▶ Fie $\mathcal{H} = \{H_1, H_2, \dots, H_n\}$ o mulțime de semiplane din \mathbb{R}^2 ; semiplanul H_i dat de o relație de forma

$$a_i x + b_i y + c_i \leq 0$$

- ▶ Intersecția $H_1 \cap H_2 \cap \ldots \cap H_n$ este dată de un sistem de inecuații; este o mulțime poligonală convexă, mărginită de cel mult n muchii (poate fi vidă, mărginită, nemărginită,...)
- ► Semiplane inferioare, semiplane superioare

De câte informații (numerice) este nevoie pentru a indica un punct în plan?

- De câte informații (numerice) este nevoie pentru a indica un punct în plan?
- **>** 2

- De câte informații (numerice) este nevoie pentru a indica un punct în plan?
- **2**
- De câte informații (numerice) este nevoie pentru a indica o dreaptă în plan?

- De câte informații (numerice) este nevoie pentru a indica un punct în plan?
- **2**
- De câte informații (numerice) este nevoie pentru a indica o dreaptă în plan?
- > 2

- De câte informații (numerice) este nevoie pentru a indica un punct în plan?
- **2**
- De câte informații (numerice) este nevoie pentru a indica o dreaptă în plan?
- **2**
- Există o modalitate naturală de a stabili o corespondență între puncte și drepte?

- De câte informații (numerice) este nevoie pentru a indica un punct în plan?
- **2**
- De câte informații (numerice) este nevoie pentru a indica o dreaptă în plan?
- **2**
- Există o modalitate naturală de a stabili o corespondență între puncte și drepte?
- ▶ DA: dualitate

- De câte informații (numerice) este nevoie pentru a indica un punct în plan?
- **2**
- De câte informații (numerice) este nevoie pentru a indica o dreaptă în plan?
- **2**
- Există o modalitate naturală de a stabili o corespondență între puncte și drepte?
- DA: dualitate
- Cum se reflectă / respectă diferite proprietăți geometrice (de exemplu incidența) prin dualitate?

Dualitate – definiții

- unui punct $p = (p_x, p_y)$ diu planul \mathbb{R}^2 (plan primal) i se asociază o dreaptă notată p^* (îu planul dual) $p^* : (y = p_x x p_y)$ duala hii p
 - une drepte neverticale $d: (y = m_d \cdot x + m_d)$ din planul primal i se asociaçã un punct due planul dual, notat d^* :

Obs. Aceatá tromformare este polaritatea fatá de parabola $y=\frac{x^2}{2}$

Dualitate – proprietăți elementare

Pastreazā incidenta

$$p \in d \iff d^* \in p^*$$

Exemplu

Pl. primal

 $d: (y = 2x + 1)$
 $p = (1,3)$
 $p^*: (y = x - 3)$

Dualitate – proprietăți elementare

p este situat dearupra drepter d (nevorticalà) <=>

Exemple Pl. primal
P=(1,1)

 $\lambda:(y=0)$

1.P d

Pl. dual

p*: (y = x - 1)

$$q_* = (o'o)$$

Dualitate – "dicționar" concepte și configurații

Plan primal	Plan dual
Punct p	Dreaptă neverticală p^*
Dreaptă neverticală d	Punct d^*
Dreaptă determinată de două puncte	Punct de intersecție a două drepte
Punctul p deasupra dreptei d	Punctul d^* deasupra dreptei p^*
Segment	Fascicul de drepte (wedge)

Exemplu

3 puncte mecoliniare si dreptele determinate de ele Configuration duala

3 drepte care nu tree prin acelai punct si pundele determinate de cle