01NAEX - Lecture 12 Nested and Split-Plot Design

Jiri Franc

Czech Technical University
Faculty of Nuclear Sciences and Physical Engineering
Department of Mathematics

Nested Design

When factor B is nested in levels of factor A:

- it is possible to distinguish nested design from a crossed factorial design.
- levels of the nested factor B don't have exactly the same meaning under each level of the main factor A.
- levels of factor B are not identical to each other at different levels of factor A.

Let us assume an experiment with sites (factor A) and batches (factor B).

- Three batches taken from site 1 are different from the three batches taken from site 2.
- Factor B (batches) is said to be nested in factor A (sites).
- It is impossible to evaluate the effect of the interaction of factor B with factor A, because each level of factor B does not appear with each level of factor A.

The linear statistical model for the two-stage nested design is:

$$y_{ijk} = \mu + \tau_i + \beta_{j(i)} + \varepsilon_{(ij)k} \begin{cases} i = 1, 2, ..., a \\ j = 1, 2, ..., b \\ k = 1, 2, ..., n \end{cases}$$

There is no interaction term $\tau_i \beta_{jj}$ and the term for factor B, $\beta_{j(i)}$, is subscripted to denote the *i*th level of factor B is nested in the *i*th level of factor A.

When B is a random factor, whether factor A is a fixed or random factor the error term for testing the hypothesis about A is based on the mean squares due to B nested in A.

					EMS	
Source	SS	df	MS	Fixed	Mixed (A Fixed)	Random
A $B(A)$ Error	SSA SSB(A) SSE	a - 1 $a(b - 1)$ $ab(n - 1)$	MSA MSB(A) MSE	$\sigma_{\varepsilon}^{2} + bn\theta_{A}$ $\sigma_{\varepsilon}^{2} + n\theta_{B}$ σ_{ε}^{2}	$\sigma_s^2 + n\sigma_\beta^2 + bn\theta_A$ $\sigma_s^2 + n\sigma_\beta^2$ σ_s^2	$\sigma_{\varepsilon}^{2} + n\sigma_{\beta}^{2} + bn\sigma_{\alpha}^{2}$ $\sigma_{\varepsilon}^{2} + n\sigma_{\beta}^{2}$ σ_{ε}^{2}
Total	TSS	abn - 1				

Expected mean squares in the two-stage nested design for different combinations of factor A and B being fixed or random.

 θ_A is sum of effects divided by appropriate degree of freedoms, i.e. $\frac{\sum_i^a \tau_i}{a-1}$.

The total corrected sum of squares can be partioned into a sum of squares due to factor A, a sum of squares due to factor B under the leves of A, and a sum of squares due to error:

$$\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} (y_{ijk} - \overline{y}_{...})^{2} = bn \sum_{i=1}^{a} (\overline{y}_{i..} - \overline{y}_{...})^{2} + n \sum_{i=1}^{a} \sum_{j=1}^{b} (\overline{y}_{ij.} - \overline{y}_{i...})^{2} + \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} (y_{ijk} - \overline{y}_{ij.})^{2}$$

Symbolically, it can be written as $SS_T = SS_A + SS_{B(A)} + SS_E$.

The appropriate statistics for testing the effects of factor A and B depend on whether A and B are fixed or random.

The expected mean squares:

E(MS)	A Fixed B Fixed	A Fixed B Random	A Random B Random
$E(MS_A)$	$\sigma^2 + \frac{bn\sum \tau_i^2}{a-1}$	$\sigma^2 + n\sigma_\beta^2 + \frac{bn\sum \tau_i^2}{a-1}$	$\sigma^2 + n\sigma_\beta^2 + bn\sigma_\tau^2$
$E(MS_{B(A)})$	$\sigma^2 + \frac{n\sum\sum eta_{j(i)}^2}{a(b-1)}$	$\sigma^2 + n\sigma_\beta^2$	$\sigma^2 + n\sigma_\beta^2$
$E(MS_E)$	σ^2	σ^2	σ^2

The analysis of variance table:

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square
A	$bn\sum (\overline{y}_{i}-\overline{y}_{})^2$	a - 1	MS_A
B within A	$n\sum\sum(\overline{y}_{ij.}-\overline{y}_{i})^2$	a(b-1)	$MS_{B(A)}$
Error	$\sum \sum \sum (y_{ijk} - \overline{y}_{ij.})^2$	ab(n-1)	MS_E
Total	$\sum \sum \sum (y_{ijk} - \bar{y}_{})^2$	abn-1	

Question: Is the purity of the material the same across suppliers? **Model**: The batches are random samples from each supplier, i.e. suppliers are fixed, the batches are random, and the observations are random.

F-test for mentioned three of the more common situations are following:

1. The F test for factor B is always

$$F = \frac{MSB(A)}{MSE}$$

2. The F test for factor A in the fixed-effects model is

$$F = \frac{MSA}{MSE}$$

For the random- and mixed-effects model, however, the corresponding test for factor \boldsymbol{A} is

$$F = \frac{MSA}{MSB(A)}$$

 When n = 1, there is no test for factor B, but we can test for factor A in the random- and mixed-effects model using

$$F = \frac{MSA}{MSB(A)}$$

Researchers conducted an experiment to determinthe content uniformity of film-coated tablets produced for a cardiovascular drug used to lower blood pressure.

They obtained a random sample of three batches from each of two blending sites; within each batch they assayed a random sample of five tablets.

Site		1			2/ \	
Batches within each site	1	2	3	1	2	3
Tablets within each batch	5.03 5.10 5.25 4.98 5.05	4.64 4.73 4.82 4.95 5.06	5.10 5.15 5.20 5.08 5.14	5.05 4.96 5.12 5.12 5.05	5.46 5.15 5.18 5.18 5.11	4.90 4.95 4.86 4.86 5.07

Use ggplot2 to visualize the data set:

```
ggplot(tablets, aes(y = site, x = content)) +
geom_point() + facet_grid(batch \sim .)
```


Wrong way - full cross-classified fixed effect model

Better way - nested fixed effect model (two possibilities)

The analysis of variance table contains the correct test for the factor batch.

To get the correct test for site, you have to specify the appropriate error term for the factor site:

Good way - nested random effect model:

```
> summary(lme (content ~ 1, random = ~1|site/batch, data = tablets)
Linear mixed-effects model fit by REML
Data: tablets
AIC BIC logLik
-24.06435 -18.59516 16.03217
Random effects:
Formula: ~1 | site
     (Intercept)
StdDev: 3.236734e-06
Formula: ~1 | batch %in% site
        (Intercept) Residual
StdDev: 0.1283446 0.1099621
Fixed effects: content ~ 1
           Value Std.Error DF t-value p-value
(Intercept) 5.043333 0.056111 24 89.88136
Number of Observations: 30
Number of Groups:
site batch %in% site
```

Good way - nested random effect model:

```
> summary(lmer(content ~ 1 + (1|site/batch), data = tablets))
Linear mixed model fit by REML
t-tests use Satterthwaite approximations to degrees of freedom
Formula: content ~ 1 + (1 | site/batch)
Data: tablets
REML criterion at convergence: -32.1
Random effects:
Groups Name Variance Std.Dev.
batch:site (Intercept) 0.01647 0.1283
site (Intercept) 0.00000 0.0000
Residual 0.01209 0.1100
Number of obs: 30, groups: batch:site, 6; site, 2
Fixed effects:
           Estimate Std. Error df t value Pr(>|t|)
(Intercept) 5.04333 0.05611 5.00000 89.88 3.23e-09
```

Nested Design vs. Hierarchical models

Sometimes is better to avoid Nested design and number the data set in another way!

Models with optimal way of numbering (origin number to each "nested" measurements) are called **Hierarchical models**.

R can cope with both - Nested models numbering (setting) and with Hierarchical models numbering too.

The Two-Stage Nested Design - another simple example

Let us consider a company that purchase its raw material from three different suppliers, there are four batches of this raw material available from each supplier, and three determinations of purity are to be taken from each batch.

Note: if the levels of the factor can be renumbered arbitrarily, then the factor is nested. An alternate layout for the two stage nested design is

Because not every level of factor B appears with every level of factor A, there can be no interaction between A and B.

Let us denote this notation by Batches2 in the code.

Wrong ways:

```
> str(data_purity)
'data.frame': 36 obs. of 4 variables:
$ Suppliers: Factor 3 levels "Supplier 1", "Suplier 2",..: 1 1
$ Batches : Factor 4 levels "1", "2", "3", "4": 1 1 1 2 2 2 3 3
$ Purity : int 1 -1 0 -2 -3 -4 -2 0 1 1 ...
$ Batches2 : Factor 12 levels "1", "2", "3", "4",..: 1 1 1 2 2 2 2
# crossed fixed effect model
anova(lm(Purity ~ Suppliers+Batches, data = data_purity))
# mixed model
anova(lme(Purity ~ Suppliers, random = ~1|Batches, data = data_purity)
```

Nested fixed effect model, three possibilities, same results

Recall: F-test for the factor B is always the same (B random or fixed).

Nested mixed effect model (Suppliers fixed, Batches random), three possibilities, same results

If Suppliers (A) are fixed end Batches (B) random, then $H_0: \tau_i=0$ is tested by $MS_A/MS_{B(A)}$ and $H_0: \sigma_\beta^2=0$ is tested by $MS_{B(A)}/MS_E$. $\hat{\sigma}_\beta^2 = \frac{MS_{B(A)}-MS_E}{n} = \frac{7.769-2.639}{3} = 1.71, \, \hat{\sigma}_\tau^2 = \frac{MS_A-MS_{B(A)}}{n}$

Nested mixed effect model - analysis by Mixed effects models

```
library(nlme)
purity_lme<-lme(Purity~Suppliers, random=~1|Suppliers/Batches)</pre>
purity_lme<-lme(Purity~Suppliers, random=~1|Batches2)</pre>
summary(purity_lme), intervals(purity_lme)
> anova(purity_m2_lme)
               numDF denDF F-value p-value
(Intercept) 1 24 0.6042908 0.4445
Suppliers 2 9 0.9690107 0.4158
> VarCorr(purity_m2_lme)
Batches2 = pdLogChol(1)
Variance StdDev
(Intercept) 1.709877 1.307622
Residual 2.638889 1.624466
library(lme4)
purity lmer <- lmer(Purity ~ Suppliers + (1|Batches2))</pre>
summary(purity_lmer)
anova(purity_lmer)
```

R doesn't use F-distribution to test the significance of random component.

The General *m*-Stage Nested Design

Results from the Two-Stage Nested Design can be extended to the case of m completely nested factors. The model for the general three stage nested design is

$$y_{ijkl} = \mu + \tau_i + \beta_{j(i)} + \gamma_{k(ij)} + \epsilon_{(ijk)l} \begin{cases} i = 1, 2, \dots, a \\ j = 1, 2, \dots, b \\ k = 1, 2, \dots, c \\ l = 1, 2, \dots, n \end{cases}$$

As an example, suppose a foundry wishes to investigate the hardness of two different metal alloy formulations. Three heats of each alloy formulations are prepared, two ingots are selected at random from each heat, and two hardness measurement are made on each ingot.

The Analysis of variance table for three-stage Nested design is

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square
A	$bcn \sum_{i} (\bar{y}_{i\dots} - \bar{y}_{\dots})^2$	a-1	MS_A
B (within A)	$cn\sum_{i}\sum_{j}(\bar{y}_{ij}-\bar{y}_{i})^{2}$	a(b-1)	$MS_{B(A)}$
C (within B)	$n\sum_{i}\sum_{j}\sum_{k}(\bar{y}_{ijk.}-\bar{y}_{ij})^{2}$	ab(c-1)	$MS_{C(B)}$
Error	$\sum_{i} \sum_{j} \sum_{k} \sum_{l} (y_{ijkl} - \overline{y}_{ijk.})^{2}$	abc(n-1)	MS_E
Total	$\sum_{i} \sum_{j} \sum_{k} \sum_{l} (y_{ijkl} - \overline{y}_{})^{2}$	abcn-1	

The split plot design is used when it is not able to completaly randomize the order of the runs.

Not all factors can be easily changed (economical or physical reasons, ...)

An example: experiment on the tensile strength of paper:

The Experiment on the Tensile Strength of Paper

	Replicate 1		Replicate 2			Replicate 3			
Pulp Preparation Method	1	2	3	1	2	3	1	2	3
Temperature (°F)									
200	30	34	29	28	31	31	31	35	32
225	35	41	26	32	36	30	37	40	34
250	37	38	33	40	42	32	41	39	39
275	36	42	36	41	40	40	40	44	45

The experimenter didn't collect data by completely randomized design (require 36 batches of pulp), but produced only 9 batches of pulp, three by each method of interest (require only 9 batches of pulp).

In the example, we have 9 whole plots, and the preparation method is called the whole plot treatments (Taguchi: Inner Array).

Each whole plot is divided into four parts called subplots (or Split-Plots, Outer Array), and one temperature is assigned to each, temperature is called the subplot treatment.

Because the whole-plot treatments are confounded with the whole-plots, it is best to assign the factor we are most interest into the subplots.

The linear model for split-plot design is:

$$y_{ijk} = \mu + \tau_i + \beta_j + (\tau \beta)_{ij} + \gamma_k + (\tau \gamma)_{ik}$$

$$+ (\beta \gamma)_{jk} + (\tau \beta \gamma)_{ijk} + \epsilon_{ijk} \begin{cases} i = 1, 2, ..., r \\ j = 1, 2, ..., a \\ k = 1, 2, ..., b \end{cases}$$

The Expected Mean Squares for Split-Plot Design

	Model Term	Expected Mean Square
	$ au_i$	$\sigma^2 + ab\sigma_{\tau}^2$
Whole plot	$oldsymbol{eta}_j$	$\sigma^2 + b\sigma_{\tau\beta}^2 + \frac{rb\sum \beta_j^2}{a-1}$
	$(aueta)_{ij}$	$\sigma^2 + b\sigma_{\tau\beta}^2$
	γ_k	$\sigma^2 + a\sigma_{\tau\gamma}^2 + \frac{ra\sum \gamma_k^2}{(b-1)}$
	$(au\gamma)_{ik}$	$\sigma^2 + a\sigma_{\tau\gamma}^2$
Subplot	$(eta\gamma)_{jk}$	$\sigma^2 + \sigma_{\tau\beta\gamma}^2 + \frac{r\sum\sum(\beta\gamma)_{jk}^2}{(a-1)(b-1)}$
	$(aueta\gamma)_{ijk} \ oldsymbol{\epsilon}_{(ijk)h}$	$\sigma^2 + \sigma_{\eta\beta\gamma}^2$ σ^2 (not estimable)

The main factor A in the whole plot is tested against the whole-plot error, whereas the subtreatment B is tested against the (replicates X subtreatment) interactions. The AB interaction is tested against the subplot error.

Notice: there are no tests for the replicates effect A.

Results for Tensile Strength Data by Montgomery

	J J		U		
Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0	P-Value
Replicates	77.55	2	38.78		
Preparation method (A)	128.39	2	64.20	7.08	0.05
Whole plot error (replicates $\times A$)	36.28	4	9.07		
Temperature (B)	434.08	3	144.69	41.94	< 0.01
Replicates \times B	20.67	6	3.45		
AB	75.17	6	12.53	2.96	0.05
Subplot error (replicates $\times AB$)	50.83	12	4.24		
Total	822.97	35			

Results for Tensile Strength Data from R

```
> aov_paper <- aov(Strength ~ Temp*Method +Replicates:Temp +
              Error(Replicates/Method), data = paper)
> summary(aov_paper)
Error: Replicates
Df Sum Sq Mean Sq
Temp:Replicates 2 77.56 38.78
Error: Replicates: Method
         Df Sum Sq Mean Sq F value Pr(>F)
Method 2 128.39 64.19 7.078 0.0485 *
Residuals 4 36.28 9.07
Error: Within
              Df Sum Sg Mean Sg F value Pr(>F)
             3 434.1 144.69 34.157 3.71e-06 ***
Temp
Temp:Method 6 75.2 12.53 2.957 0.052.
Temp:Replicates 6 20.7 3.44 0.813 0.580
```

Residuals 12 50.8 4.24

The Split-Plot Design with more than two factors

A split-plot design with 4 design factors, 2 in the whole plot and 2 in the subplot.

$$\begin{aligned} y_{ijklm} &= \mu + \tau_i + \beta_j + \gamma_k + (\beta \gamma)_{jk} + \theta_{ijk} + \delta_l + \lambda_m + (\delta \lambda)_{lm} \\ &+ (\beta \delta)_{jl} + (\beta \lambda)_{jm} + (\gamma \delta)_{kl} + (\delta \lambda)_{lm} + (\beta \gamma \delta)_{jkl} + (\beta \gamma \lambda)_{jkm} \\ &+ (\beta \delta \lambda)_{jlm} + (\gamma \delta \lambda)_{klm} + (\beta \gamma \delta \lambda)_{jklm} + \epsilon_{ijklm} \end{aligned} \begin{cases} i = 1, 2 \\ j = 1, 2 \\ k = 1, 2 \\ l = 1, 2 \\ m = 1, 2 \end{cases}$$

Today Exercises

Solve problem 14.5 from Montgomery DaAoE:

Consider the three-stage nested to investigate alloy hardness. Using the data that follow, analyze the design, assuming that alloy chemistry and heats are fixed factors and ingots are random. Use the restricted form of the mixed model.

			Alloy	Chemist	ry 1	
Heats	1		2		3	
Ingots	1	2	1	2	1	2
	40	27	95	69	65	78
	63	30	67	47	54	45
			Alloy	Chemist	ry 2	
Heats		1	2)	3	
110000		I	4	۷_	-	'
Ingots	1	2	1	2	1	2
	1 22	2 23	1 83	-	1 61	

Today Exercises

Solve problem 14.20, 14.21 from Montgomery DaAoE:

An experiment is designed to study pigment dispersion in paint. Four different mixes of a particular pigment are studied. The procedure consists of preparing a particular mix and then applying that mix to a panel by three application methods (brushing, spraying, and rolling). The response measured is the percentage reflectance of pigment. Three days are required to run the experiment, and the data obtained follow. Analyze the data and draw conclusions, assuming that mixes and application methods are fixed.

Repeat Problem 14.20, assuming that the mixes are random and the application methods are fixed.

	A 11 /1	Mix					
Day	Application Method	1	2	3	4		
	1	64.5	66.3	74.1	66.5		
1	2	68.3	69.5	73.8	70.0		
	3	70.3	73.1	78.0	72.3		
	1	65.2	65.0	73.8	64.8		
2	2	69.2	70.3	74.5	68.3		
	3	71.2	72.8	79.1	71.5		
	1	66.2	66.5	72.3	67.7		
3	2	69.0	69.0	75.4	68.6		
	3	70.8	74.2	80.1	72.4		