触发器和时序逻辑电路(Flip-Flops and Sequential logic circuits)(21)

序号	教学内容	教学要求!	学时
3	1.双稳态触发器; 2.寄存器; 3.计数器; 4.时序逻辑电路分析与设计方法;	1. 掌握 R一S、J一K、D 触发器的逻辑功能及不同结构触发器的动作特点。 2. 掌握寄存器、移位寄存器、二进制计数器、十进制计数器的逻辑功能,会分析时序逻辑电路。 3. 学会使用本章所介绍的各种集成电路(包括改装)。	10

21 Sequential logic circuits

- 21.1 双稳态触发器(Bistable flip-flop)
- 21.2 寄存器(Register)
- **21.3** 计数器(Counter)
- 21.4 应用举例(Applications)

时序逻辑电路的特点:

电路的输出状态不仅取决于当时的输入信号, 而且与电路原来的状态有关,当输入信号消失后, 电路状态仍维持不变。这种具有存贮记忆功能的 电路称为时序逻辑电路。

下面介绍双稳态触发器,它是构成时序电路的基本逻辑单元。

21.1 双稳态触发器 (trigger)

- 21.1.1 R-S 触发器
- 21.1.2 J-K 触发器
- 21.1.3 D触发器
- 21.1.4 触发器逻辑功能转换

21.1 双稳态触发器

双稳态触发器(bistable):

是一种具有记忆功能(memorable)的逻辑单元 电路,它能储存一位二进制码。

特点:

- 1、有两个稳定状态 (steady state) "0"态和 "1"态;
- 2、能根据输入信号将触发器置成"0"或"1"态;
- 3、输入信号消失后,被置成的"0"(Reset)或"1"(Set)态能保存下来,即具有记忆功能。

21.1.1 R-S 触发器

1. 基本 R-S 触发器

正常情况下,两 输出端的状态保持 相反。通常以0端 的逻辑电平表示触 发器的状态,即 **Q=1,0=0**时,称为 "1"态: 反之为 "0"杰。

交叉耦联: cross-coupled

触发器输出与输入的逻辑关系

$$(1) \, \overline{S}_{D} = 1, \quad \overline{R}_{D} = 0$$

设触发器原态 为"1"态。

翻转(toggle) 为"0'态

设原态为"0"态

触发器保持"0"态不变

(2)
$$\bar{S}_{D} = 0$$
, $\bar{R}_{D} = 1$

翻转为"1"态

设原态为"1"态

触发器保持 "1"态不变

(3)
$$\overline{S}_{D} = 1$$
, $\overline{R}_{D} = 1$

设原态为"0"态

保持为"0"态

设原态为"1"态

触发器保持"1"态不变

(4)
$$\overline{S}_{D} = 0$$
, $\overline{R}_{D} = 0$

当信号S_D= R_D = (同时变为1时,由 于与非门的翻转 时间不可能完全 相同,触发器状 态可能是"1"杰。 也可能是"0"态。 不能根据输入信 号确定。

若G₁先翻转,则触发器为"0"态

若G₂先翻转,则触发器为"1"态

基本R-S触发器状态表

$\overline{S}_{\mathbf{D}}$	$\overline{R}_{\mathrm{D}}$	Q	功能
1	0	0	RESET
0	1	1	SET
1	1	No change	KEEP
0	0	Invalid condition	

低电平有效

R_D(Reset Direct)-直接置"0"端(复位端)

S_D(Set Direct)-直接置"1"端(置位端)

特性表 (状态表)

现态: 态, 也就是触发器原来的稳定状态。:触发器接收输入信号之前的状

\overline{R} $\overline{S}(Q^n)$	$\left(Q^{n+1}\right)$	功能
0 0 0	不用	无台流
0 0 1	不用	不允许
0 1 0	0	$Q^{n+1}=0$
0 1 1	0	置 0
1 0 0	1	$Q^{n+1}=1$
1 0 1	1	置 1
1 1 0	0	$Q^{n+1} = Q^n$
1 1 1	1	保持

的新的稳定状态。 态 触发器接收输入信号之后所处

次态Qn+1的卡诺图

$Q^{\overline{RS}}$	00	01	11	10
0	×	0	0	1
1	×	0	1	1

特性方程

$$\begin{cases} Q^{n+1} = \overline{(\overline{S})} + \overline{R}Q^n = S + \overline{R}Q^n \\ \overline{R} + \overline{S} = 1 \end{cases}$$
 约束条件

触发器的特性方程就是触发器次态Qn+1与输入及现态Qn之间的逻辑关系式

状态图graph

描述触发器的状态转换关系及转换条件的图形称为状态图

①当触发器处在0状态,即 $Q^n=0$ 时,若输入信号RS=01或 11,触发器仍为0状态;

若RS=10,触发器就会翻转成为1状态。

②当触发器处在1状态,即Qn=1时,若输入信号RS=10或11,触发器仍为1状态;

 $\overline{RS}=01$,触发器就会翻转成为0状态。

波形图

反映触发器输入信号取值和状态之间对应关系的图形称为波形图

基本RS触发器的特点

- (1)触发器的次态不仅与输入信号状态有关,而且与触 发器的现态有关。
- (2) 电路具有两个稳定状态,在无外来触发信号作用时, 电路将保持原状态不变。
- (3) 在外加触发信号有效时,电路可以触发翻转,实现置0或置1。
- (4) 在稳定状态下两个输出端的状态和必须是互补关系,即有约束条件。

在数字电路中,凡根据输入信号R、S情况的不同,具有置0、置1和保持功能的电路,都称为RS触发器。

- 2. 可控 (Controllable) RS 触发器(同步RS触发器 Synchronous RS flip-flop)
- 基本的RS触发器动作特点是当R、S端的置0信号或 置1信号一出现,输出状态就可能随之发生变化。触 发器的状态转换没有一个统一的节拍,这不仅使电路 的抗干扰能力下降,也不便于多个触发器同步工作。
- 在实际使用中,经常要求触发器按一定的节拍翻转, 为此,需要加入一个时钟控制端CP,只有在CP端出 现时钟脉冲时,触发器的状态才能变化。
- 具有时钟脉冲控制的触发器称为时钟触发器,又称为同步触发器,因为触发器状态的改变与时钟脉冲同步。

2. 可控 RS 触发器 (同步RS触发器)

基本R-S触发器

导引电路

\overline{S}_{D} , \overline{R}_{D} 用于预置触发器的初始状态,

工作过程中应处于 高电平,对电路工作 状态无影响。

当*C*=0时

R, S 输入状态 不起作用。 触发器状态不变

当C=1时

触发器状态由R,S输入状态决定。

触发器的翻转时刻受C控制(C语电平而触发器的状态的状态的状态的状态的状态的状态。

触发器置"0"

(3)
$$S = 1$$
, $R = 0$

触发器置"1"

可控RS状态表

S	R	Q_{n+1}
0	0	$Q_{\rm n}$
0	1	0
1	0	1
1	1	不定

C高电平时触发器状态由R、S确定

 $Q_{\rm n}$ 一时钟到来前触发器的状态

 Q_{n+1} —时钟到来后触发器的状态

例: 画出可控 R-S 触发器的输出波形

