微分方程

Didnelpsun

目录

1	微分方程基本概念			
	1.1	微分方程构成	1	
	1.2	微分方程的解	1	
2	可分	离变量的微分方程	2	
3	可化为可分离变量型			
	3.1	多项式换元	3	
	3.2	自然齐次方程	3	
	3.3	可化为齐次方程	4	
4	一阶线性微分方程			
	4.1	线性方程	4	
	4.2	伯努利方程	5	
5	可降阶的高阶微分方程			
	5.1	$y^{(n)}=f(x)$ 型	5	
	5.2	y'' = f(x, y') 型	6	
	5.3	y'' = f(y, y') 型	6	
6	高阶线性微分方程			
	6.1	概念	7	
	6.2	解的结构	7	
	6.3	二阶常系数齐次线性微分方程的通解	8	
	6.4	二阶常系数非齐次线性微分方程的特解	8	

本节内容较少。

若一曲线过点 (1,2),且该曲线上任一点 M(x,y) 处的切线的斜率为 2x,求该曲线的方程。

令所求曲线为 $\varphi(x)$, $\frac{dy}{dx} = 2x$,且 x = 1 时, y = 2。 两边积分: $\int dy = y = \int 2x \, dx$ 。所以 $y = x^2 + C$ 。 代入 (1,2), C = 1,所以 $y = x^2 + 1$ 。

1 微分方程基本概念

1.1 微分方程构成

定义:表示未知函数、未知函数的导数与自变量之间的关系的方程,即含导数的方程就是微分方程。导数可能是一阶导数也可能是二阶以及以上阶数的导数。

常微分方程定义: 未知函数是一元函数的微分方程。如 y''' - y'' + 6y = 0, $y \, \mathrm{d}x - (x + \sqrt{x^2 + y^2}) \, \mathrm{d}y = 0$ 。

定义: 微分方程所出现的未知函数的最高阶导数的阶数就是该微分方程的 **阶**。

n 阶微分方程的形式是 $F(x,y,y',\cdots,y^{(n)})=0$ 。其中最高阶导数是必须出现的。若能从中解出最高阶导数,则可得微分方程 $y^{(n)}=f(x,y,y',\cdots,y^{(n-1)})$ 。

1.2 微分方程的解

微分方程的解是函数。

定义:若微分方程中的解中含有任意常数,且任意常数的个数与微分方程的 阶数相同,则就是微分方程的**通解**。

如若 y''=3,则 $y'=3x+C_1$, $y=\frac{3}{2}x^2+C_1x+C_2$,此时含有两个任意常数 C_1C_2 ,则微分方程的阶数也为 2。

定义:确定通解中任意常数后,就得到微分方程的特解。

定义: 当给出 $x = x_0$ 时 y_0 与 y_0' 的值,那么这些条件就是**初值条件**,如上面的 y'' = 3。

求微分方程 y' = f(x, y) 满足初值条件 $y|_{x=x_0} = y_0$ 的特解这样的问题, 就是

一阶微分方程的初值问题,记为
$$\begin{cases} y' = f(x,y) \\ y|_{x=x_0} = y_0 \end{cases}$$

分方程的**积分曲线**,初值问题的集 微分方程的解的图形是一条曲线, 叫做 几何意义就是求微分方程的通过某点的积分曲线。

例题: 判断函数 $x = C_1 \cos kt + C_2 \sin kt$ 是否是微分方程 $\frac{d^2x}{dt^2} + k^2x = 0$ 的 解,若是则令其为 $k \neq 0$ 时方程的通解,求满足初值条件 $x|_{t=0} = A$, $\frac{\mathrm{d}x}{\mathrm{d}t}\Big|_{t=0} = 0$ 时的特解。

解:判断是否为方程的解,就要将这个解代入微分方程中。微分方程中除了 x, 还出现了 x'', 所以需要先将 x 对 t 求两次导:

 $x' = -kC_1 \sin kt + kC_2 \cos kt$, $x'' = -k^2C_1 \sin kt - k^2C_2 \sin kt$ 。代入方程: $-k^{2}(C_{1}\sin kt + C_{2}\sin kt) + k^{2}(C_{1}\cos kt + C_{2}\sin kt) \equiv 0$,所以是解,然后求 特解:

代入
$$x|_{t=0} = A$$
, $C_1 = A$, 代入 $\frac{\mathrm{d}x}{\mathrm{d}t}\Big|_{t=0} = 0$, $C_2 = 0$ 。
所以代入 $x = C_1 \cos kt + C_2 \sin kt$ 得到特解: $x = A \cos kt$.

2 可分离变量的微分方程

对于第一节的 dy = 2x dx 可以直接求解, 如 $\frac{dy}{dx} = 2x$ 直接移项就可以得到 通解 $x^2 + C$ 。

但是并不是所有都是如此,如 $\frac{\mathrm{d}y}{\mathrm{d}x}=2xy^2$ 求积分得 $y=\int 2xy^2\,\mathrm{d}x$,这本身 不能直接解,但是可以将 $\frac{dy}{dx} = 2xy^2$ 先两边同乘 $\frac{dx}{y^2}$ 得到 $\frac{dy}{y^2} = 2xdx$,将 xy 分 离在两端,然后两边同时积分得到 $-\frac{1}{y} = x^2 + C$,所以 $y = -\frac{1}{x^2 + C}$ 。 定义: 形如 y' = f(x)g(y) 的方程就是**变量可分离型**方程。

可以变型为 $\frac{\mathrm{d}y}{a(u)} = f(x)\mathrm{d}x$, 即将含 y 的放在一边, 含 x 的放在另一边。 然后对两边求积分就得到 $\int \frac{\mathrm{d}y}{g(y)} = \int f(x)\mathrm{d}x$,解得隐式解或隐式通解 G(y) =F(x) + C。最后可以将隐式解化为显式解。

例题: 求微分方程
$$\frac{dy}{dx} = 2xy$$
。
解: $\int \frac{dy}{y} = \int 2x \, dx$, $\ln |y| = x^2 + C$, $|y| = e^{x^2 + C}$ 。
 $\therefore y = \pm e^{x^2} e^C = \pm C_1 e^{x^2} = C_2 e^{x^2}$ 。

注意: 在微分方程部分可以直接 $\ln y = x^2 + C$ 而不用管正负号,因为正负 号都会被归为常数中。

3 可化为可分离变量型

3.1 多项式换元

形如
$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(ax + by + c)$$
 的方程,其中 a, b, c 全不为 0 。 令 $u = ax + by + c$,则 $\frac{\mathrm{d}u}{\mathrm{d}x} = a + b\frac{\mathrm{d}y}{\mathrm{d}x}$,代入原方程 $\frac{\mathrm{d}u}{\mathrm{d}x} = a + bf(u)$ 。

3.2 自然齐次方程

若一阶微分方程可化为 $\frac{\mathrm{d}y}{\mathrm{d}x} = \varphi\left(\frac{y}{x}\right)$,则这方程就是一个齐次方程。 也可能出现 $\frac{\mathrm{d}x}{\mathrm{d}y} = \varphi\left(\frac{x}{y}\right)$ 。

令 $u=\frac{y}{x}$,则 y=ux 变为 $\frac{\mathrm{d}y}{\mathrm{d}x}=u+x\frac{\mathrm{d}u}{\mathrm{d}x}$,从而原方程变为 $x\frac{\mathrm{d}u}{\mathrm{d}x}+u=\varphi(u)$,即 $\frac{\mathrm{d}u}{\varphi(u)-u}=\frac{\mathrm{d}x}{x}$ 。

如 $(xy-y^2)dx - (x^2-2xy)dy = 0$ 可以化为 $\frac{dy}{dx} = \frac{xy-y^2}{x^2-2xy}$,即 $\frac{dy}{dx} = \frac{y}{x^2-2xy}$,即 $\frac{dy}{dx} = \frac{y}{1-2\left(\frac{y}{x}\right)^2}$

解决齐次方程问题的过程: 令 $u=\frac{y}{x};\;\;y=xu;\;\;\frac{\mathrm{d}y}{\mathrm{d}x}=u+x\frac{\mathrm{d}u}{\mathrm{d}x}$ 。 代入微分方程: $u+x\frac{\mathrm{d}u}{\mathrm{d}x}=\varphi(u)$,... $x\frac{\mathrm{d}u}{\mathrm{d}x}=\varphi(u)-u$,分离变量: $\frac{\mathrm{d}u}{\varphi(u)-u}=\frac{\mathrm{d}x}{x}$,求积分 $\int \frac{\mathrm{d}u}{\varphi(u)-u}=\int \frac{\mathrm{d}x}{x}$ 。最后求出积分再用 $\frac{y}{x}$ 替代 u。 若是方程可以变为齐次方程,则 x 和 y 的幂应该是对称的,可以尝试除以

若是方程可以变为齐次方程,则 x 和 y 的幂应该是对称的,可以尝试除以一个 x^a 来变为 $\frac{y^a}{r^a}$ 形式。

例题: 求 $y^2 + x^2 \frac{dy}{dx} = xy \frac{dy}{dx}$ 。 解: 得到 $\frac{dy}{dx} = \frac{y^2}{xy - x^2}$ 。

然后将这个等式化为 $\frac{y}{x}$ 的形式,分子分母同时除以 x^2 : $\frac{\frac{y^2}{x^2}}{\frac{xy-x^2}{x^2}} = \frac{\left(\frac{y}{x}\right)^2}{\frac{y}{x}-1}.$ 从而到第三步: $u+x\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{u^2}{u-1}$, $\therefore x\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{u^2}{u-1} - u = \frac{u}{u-1}.$ $\therefore \frac{u-1}{u}\mathrm{d}u = \frac{\mathrm{d}x}{x}, \ \therefore \int \frac{u-1}{u}\mathrm{d}u = \int \frac{\mathrm{d}x}{x}, \ u-\ln u = \ln x + C, \ \ln xu = u + C.$ 代入 $u=\frac{y}{x}$,得到 $\ln y = \frac{y}{x} + C$,所以得到 $y = Ce^{\frac{y}{x}}$ 。

3.3 可化为齐次方程

对于自然齐次方程,其形式如 $\frac{dy}{dx} = \frac{A_1x + B_1y}{A_2x + B_2y}$,则可以除以 x 得到齐次方 程。

而对于形式如 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{A_1x + B_1y + C_1}{A_2x + B_2y + C_2}$,则因为有常数项,所以不能直接除以

所以想尝试消去常数项。令 x = X + h, y = Y + k。

若
$$\frac{A_2}{A_1} \neq \frac{B_2}{B_1}$$
, 则可以解得:

$$\begin{cases} k = \frac{A_1 C_2 - A_2 C_1}{A_2 B_1 - A_1 B_2} \\ h = \frac{A_1 B_1 C_2 - A_2 B_1 C_1 + A_1 A_2 B_1 C_1 - A_1^2 B_2 C_1}{A_1^2 B_2 - A_1 A_2 B_1} \end{cases}$$

若
$$\frac{A_2}{A_1} = \frac{B_2}{B_1}$$
,即关系式对应成比例。

若
$$\frac{A_2}{A_1} = \frac{B_2}{B_1}$$
,即关系式对应成比例。
令 $\frac{A_2}{A_1} = \frac{B_2}{B_1} = \lambda$, $\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{A_1x + B_1y + C_1}{\lambda(A_1x + B_1y) + C_2}$ 。

$$\mathbb{X} \diamondsuit A_1 x + B_1 y = v, : \frac{\mathrm{d}v}{\mathrm{d}x} = A_1 + B_1 \frac{\mathrm{d}y}{\mathrm{d}x}, \quad \frac{\mathrm{d}v}{\mathrm{d}x} = A_1 + B_1 \frac{v + C_1}{\lambda v + C_2}$$

$$=\frac{(A_1\lambda+B_1)v+A_1C_2+B_1C_1}{\lambda v+C_2}$$
。此时未知数只有 v ,所以可以按照可分离

变量来处理。

4 一阶线性微分方程

线性方程 4.1

形如 $\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = Q(x)$ 就是一阶线性方程。因为其对未知函数 y 与其导 数都是一次方程。

若 $Q(x)\equiv 0$,则是齐次一阶线性微分方程,可化为 $\frac{\mathrm{d}y}{y}=-P(x)\,\mathrm{d}x$, $\ln y=$ $\int P(x) dx + C', \quad y = e^{-\int P(x) dx} \cdot e^{C'}, \quad y = Ce^{-\int P(x) dx}.$

若 $Q(x) \neq 0$,则是非齐次一阶线性微分方程,令 $y = ue^{-\int P(x) dx}$,求 u 这 个关于 x 的函数的具体值,这就是**常数变易法**。代入 $\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = Q(x)$,得 到 $u'e^{-\int P(x) dx} - ue^{-\int P(x) dx} P(x) + P(x)ue^{-\int P(x) dx} = Q(x)$, 得到 $u'e^{-\int P(x) dx} = Q(x)$ Q(x),从而得到 u',再对 u' 积分得到 $u = \int Q(x)e^{\int P(x)\,\mathrm{d}x}\,\mathrm{d}x + C$ 。从而代入 $y=ue^{-\int P(x)\,\mathrm{d}x}$,得到定理: $y=e^{-\int P(x)\,\mathrm{d}x}(\int Q(x)e^{\int P(x)\,\mathrm{d}x}\,\mathrm{d}x+C)$ 。非齐次通解就是其齐次通解加上一个非齐次的特解。

例题: 求
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x+y}$$
。

解:不能直接做,因为不能分离出 y。

可以两边求倒数: $\frac{\mathrm{d}x}{\mathrm{d}y}-x=y$, 颠倒 xy, 得到 $\frac{\mathrm{d}y}{\mathrm{d}x}-y=x$ 。 就可以按照公式来求。

或令
$$x+y=u$$
,所以 $y=u-x$, $\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{\mathrm{d}u}{\mathrm{d}x}-1$, $\frac{\mathrm{d}u}{\mathrm{d}x}=\frac{1+u}{u}$, $\frac{u}{1+u}\mathrm{d}u=\mathrm{d}x$ 。 定理: 一阶线性方程时,
$$\int \frac{1}{x}\mathrm{d}x=\ln|x|=\ln x$$
。 证明: 令 $p=\frac{1}{x}$,
$$\int p\,\mathrm{d}x=\int \frac{1}{x}\mathrm{d}x=\ln|x|$$
。 根据公式 $y=e^{-\ln|x|}(\int e^{\ln|x|}Q(x)\,\mathrm{d}x+C)=\frac{1}{|x|}(\int|x|Q(x)\,\mathrm{d}x+C)=\frac{1}{\pm x}$ ($\int (\pm x)Q(x)\,\mathrm{d}x+C$) $=\frac{1}{x}(\int xQ(x)\,\mathrm{d}x\pm C)=\frac{1}{x}(\int xQ(x)\,\mathrm{d}x+D)$ 。

4.2 伯努利方程

形如 $\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = Q(x)y^n$ 就是伯努利方程。若 y = 1 则是可分离变量方程,若 y = 0 则是一阶线性方程。

变形:
$$y^{-n}\frac{\mathrm{d}y}{\mathrm{d}x}+P(x)y^{1-n}=Q(x)$$
,又令 $y^{1-n}=z$, $\frac{\mathrm{d}z}{\mathrm{d}x}=(1-n)y^{-n}\frac{\mathrm{d}y}{\mathrm{d}x}$,从而
$$\frac{1}{1-n}\frac{\mathrm{d}z}{\mathrm{d}x}=y^{-n}\frac{\mathrm{d}y}{\mathrm{d}x},\text{ 代入 }\frac{\mathrm{d}y}{\mathrm{d}x}+P(x)y=Q(x)y^n\text{ 得到 }\frac{1}{1-n}\frac{\mathrm{d}z}{\mathrm{d}x}+P(x)z=Q(x),$$
 从而
$$\frac{\mathrm{d}z}{\mathrm{d}x}=(1-n)P(x)z=(1-n)Q(x),\text{ 将 }(1-n)P(x)$$
 当作 $P(x)$, $(1-n)Q(x)$ 当中 $Q(x)$ 代入得到 z 的关系式,再利用上面线性方程的公式求 y 。

5 可降阶的高阶微分方程

高阶微分方程即含二阶以及二阶以上的微分方程,需要将其降为一阶微分方程。

5.1 $y^{(n)} = f(x)$ 型

右边是只包含 x 的函数。

直接对函数不断求积分就可以了。连续积分 n 次,会得到一个含有 n 个任意常数的通解。

例题: 求
$$y''' = e^{2x} - \cos x$$
。

解:
$$y'' = \frac{1}{2}e^{2x} - \sin x + C_1$$
, $y' = \frac{1}{4}e^{2x} + \cos x + C_1x + C_2$, $y = \frac{1}{8}e^{2x} + \sin x + \frac{1}{2}C_1x^2 + C_2x + C_3$ 。

5.2 y'' = f(x, y') 型

即存在 y'', y' 和 x 但是没有 y。

所以令 y'=p, y''=p', 代入: p'=f(x,p), 代入 $p=\varphi(x,C_1)$, 所以 $\frac{\mathrm{d}y}{\mathrm{d}x}=\varphi(x,C_1),$ 对其积分: $y=\int\varphi(x,C_1)\,\mathrm{d}x+C_2$ 。

例题: 求 $(1+x^2)y'' = 2xy'$,满足初值条件 $y|_{x=0} = 1$, $y'|_{x=0} = 3$ 的特解。

解: 令
$$y' = p$$
, $y'' = p'$, 所以 $(1 + x^2)p' = 2xp$ 。

神: マ
$$y = p$$
, $y = p$, からく $(1+x)p = 2xp$ 。
$$\frac{\mathrm{d}p}{p} = \frac{2x}{1+x^2} \mathrm{d}x, \ln p = \ln(1+x^2) + C', p = C(1+x^2), 所以 y' = 3(1+x^2),$$
 $y = x^3 + 3x + 1$ 。

5.3 y'' = f(y, y') 型

即存在 y'', y' 和 y 但是没有 x。

所以令
$$y'=p$$
, $y''=p'=\frac{\mathrm{d}p}{\mathrm{d}x}=\frac{\mathrm{d}p}{\mathrm{d}y}\cdot\frac{\mathrm{d}y}{\mathrm{d}x}=p\frac{\mathrm{d}p}{\mathrm{d}y}=f(y,p)$ 。
设其通解为 $y'=p=\varphi(y,C_1)$ 。

分离变量并积分,得到通解为 $\int \frac{\mathrm{d}y}{\varphi(y,C_1)} = x + C_2$ 。

例题: 求微分方程 $yy'' - y'^2 = 0$ 的通解。

解:
$$\diamondsuit$$
 $y'=p$, $y''=p\frac{\mathrm{d}p}{\mathrm{d}y}$, 代入 $yp\frac{\mathrm{d}p}{\mathrm{d}y}-p^2=0$ 。

若
$$p \neq 0$$
, $y \neq 0$, 则 $yp\frac{\mathrm{d}p}{\mathrm{d}y}$, $\frac{\mathrm{d}p}{p} = \frac{\mathrm{d}y}{y}$, $p = Cy$.

若 p = 0,则 y' = 0,则 y 是一个常数。

所以综上 $y = C_2 e^{C_1 y}$ 。

6 高阶线性微分方程

第一部分是一阶微分方程,分为可分离变量微分方程、齐次微分方程、一阶 齐次线性微分方程、一阶非齐次线性微分方程。

第二部分是可降阶的高阶微分方程,分为三种。

第三部分就是本节的高阶线性微分方程, $y^{(n)}+a_1(x)y^{(n-1)}+\cdots+a_{n-1}(x)y'+a_n(x)y=0$ 就是 n 阶齐次线性微分方程, $y^{(n)}+a_1(x)y^{(n-1)}+\cdots+a_{n-1}(x)y'+a_n(x)y=f(x)$ 就是 n 阶非齐次线性微分方程

6.1 概念

定义: 方程 y'' + P(x)y' + Q(x)y = f(x) 称为二阶变系数线性微分方程,其中 P(x),Q(x) 为系数函数,f(x) 为自由项,都是已知的连续方程。

当 $f(x) \equiv 0$ 时,y'' + P(x)y' + Q(x)y = 0 为齐次方程。

当 f(x) 不恒为 0 时,y'' + P(x)y' + Q(x)y = f(x) 为非齐次方程。

定义: 方程 y'' + py' + qy = f(x) 称为二阶常系数线性微分方程,其中 p, q 为常数,f(x) 为自由项,都是已知的连续方程。

当 $f(x) \equiv 0$ 时,y'' + py' + qy = 0 为齐次方程。

当 f(x) 不恒为 0 时,y'' + py' + qy = f(x) 为非齐次方程。

考试基本上只考常系数线性微分方程。

6.2 解的结构

若 $\varphi_1(x)$ 与 $\varphi_2(x)$ 为两个函数,当 $\varphi_1(x)$ 与 $\varphi_2(x)$ 不成比例,则称 $\varphi_1(x)$ 与 $\varphi_2(x)$ 线性无关,否则 $\varphi_1(x)$ 与 $\varphi_2(x)$ 线性相关。

定理: 若 $\varphi_1(x)$ 与 $\varphi_2(x)$ 为 $y^{(n)} + a_1(x)y^{(n-1)} + \cdots + a_{n-1}(x)y' + a_n(x)y = 0$ 的解,则 $y = C_1\varphi_1(x) + C_2\varphi_2(x)$ 也为其解。

证明: 因为 $\varphi_1(x)$ 与 $\varphi_2(x)$ 为解, 所以代入方程:

$$\varphi_1'' + a(x)\varphi_1' + b(x)\varphi_1 = 0, \quad \varphi_2'' + a(x)\varphi_2' + b(x)\varphi_2 = 0$$

所以得证。

定理: 若 $\varphi_1(x)$ 与 $\varphi_2(x)$ 分别为 $y^{(n)} + a_1(x)y^{(n-1)} + \cdots + a_{n-1}(x)y' + a_n(x)y = 0$ 与 $y^{(n)} + a_1(x)y^{(n-1)} + \cdots + a_{n-1}(x)y' + a_n(x)y = f(x)$ 的解,则 $y = \varphi_1(x) + \varphi_2(x)$ 为 $y^{(n)} + a_1(x)y^{(n-1)} + \cdots + a_{n-1}(x)y' + a_n(x)y = f(x)$ 的解。

证明: $\varphi_1'' + a(x)\varphi_1' + b(x)\varphi_1 = 0$, $\varphi_2'' + a(x)\varphi_2' + b(x)\varphi_2 = f(x)$, 代入 $y = \varphi_1(x) + \varphi_2(x)$:

 $(\varphi_1 + \varphi_2)'' + a(x)(\varphi_1 + \varphi_2)' + b(x)(\varphi_1 + \varphi_2) = (\varphi_1'' + a(x)\varphi_1' + b(x)\varphi_1) + (\varphi_2'' + a(x)\varphi_2' + b(x)\varphi_2) = f(x).$

所以得证。

定理: 若 $\varphi_1(x)$ 与 $\varphi_2(x)$ 为 $y^{(n)} + a_1(x)y^{(n-1)} + \cdots + a_{n-1}(x)y' + a_n(x)y = f(x)$ 的解,则 $y = \varphi_1(x) - \varphi_2(x)$ 为 $y^{(n)} + a_1(x)y^{(n-1)} + \cdots + a_{n-1}(x)y' + a_n(x)y = 0$

的解。

证明: $\varphi_1'' + a(x)\varphi_1' + b(x)\varphi_1 = f(x)$, $\varphi_2'' + a(x)\varphi_2' + b(x)\varphi_2 = f(x)$, 代入 $y = \varphi_1(x) - \varphi_2(x)$:

$$(\varphi_2 - \varphi_1)'' + a(x)(\varphi_2 - \varphi_1)' + b(x)(\varphi_2 - \varphi_1)$$
$$(\varphi_2'' + a(x)\varphi_2' + b(x)\varphi_2) - (\varphi_1'' + a(x)\varphi_1' + b(x)\varphi_1)$$
$$f(x) - f(x) = 0, \text{ 所以得证。}$$

定理: 若 $\varphi_1(x)$ 与 $\varphi_2(x)$ 分别为 $y^{(n)} + a_1(x)y^{(n-1)} + \cdots + a_{n-1}(x)y' + a_n(x)y = f_1(x)$ 与 $y^{(n)} + a_1(x)y^{(n-1)} + \cdots + a_{n-1}(x)y' + a_n(x)y = f_2(x)$ 的解,则 $y = \varphi_1(x) + \varphi_2(x)$ 为 $y^{(n)} + a_1(x)y^{(n-1)} + \cdots + a_{n-1}(x)y' + a_n(x)y = f_1(x) + f_2(x)$ 的解。

6.3 二阶常系数齐次线性微分方程的通解

可以根据高阶微分方程的解的结构得到二阶的通解。

对于 y'' + py' + qy = 0,其对应的特征方程为 $\lambda^2 + p\lambda + q = 0$,求其特征根,有三种情况($\lambda_1\lambda_2$ 为任意常数):

- 1. 若 $p^2-4q>0$,设 λ_1,λ_2 是特征方程的两个不等实根,即 $\lambda_1\neq\lambda_2$,其通解为 $y=C_1e^{\lambda_1x}+C_2e^{\lambda_2x}$ 。
- 2. 若 $p^2 4q = 0$,设 λ_1, λ_2 是特征方程的两个相等实根,即二重根,令 $\lambda = \lambda_1 = \lambda_2$,其通解为 $y = (C_1 + C_2 x)e^{\lambda x}$ 。
- 3. 若 $p^2 4q < 0$,设 $\alpha \pm \beta i$ 是特征方程的一对共轭复根, $\lambda_{1,2} = \frac{-p \pm \sqrt{4q p^2}i}{2}$ $= -\frac{p}{2} \pm \frac{\sqrt{4q p^2}}{2}i$,记为 $\alpha \pm \beta i$,其通解为 $y = e^{\alpha x}(C_1 \cos \beta x + C_2 \sin \beta x)$ 。

6.4 二阶常系数非齐次线性微分方程的特解

设 $P_n(x)$, $P_m(x)$ 分别为 x 的 n 次 m 次多项式。

1. 当自由项 $f(x) = P_n(x)e^{\alpha x}$ 时,特解设为 $y^* = e^{\alpha x}Q_n(x)x^k$,其中 $e^{\alpha x}$ 照抄, $Q_n(x)$ 为 x 的 n 次多项式,且 $k = \begin{cases} 0, & \alpha$ 不是特征根 $1 & \alpha$ 是单特征根 。 $2, & \alpha$ 是二重特征根

2. 当自由项 $f(x) = e^{\alpha x}[P_m(x)\cos\beta x + P_n(x)\sin\beta x]$ 时,特解设为 $y^* = e^{\alpha x}[Q_l^{(1)}(x)\cos\beta x + Q_l^{(2)}(x)\sin\beta x]x^k$,其中 $e^{\alpha x}$ 照抄, $l = \max\{m,n\}$, $Q_l^{(1)}$ 、 $Q_l^{(2)}$ 为 x 的两个不同的 l 次多项式,且 $k = \begin{cases} 0, & \alpha \pm \beta i$ 无是特征根 $1 & \alpha \pm \beta i$ 是特征根