# Section 1.1

January 31, 2025

### 1 Exercise

- (a) Is not associative since: (a-a)-a=-a and a-(a-a)=a i.e.  $a\neq -a$ .
- (b) Is associative since:

$$a \star (b \star c) = a + (b + c + bc) + a(b + c + bc)$$

$$= a + b + c + bc + ab + ac + abc$$

$$= a + b + ab + c + ac + bc + abc$$

$$= (a + b + ab) + c + (a + b + ab)c$$

$$= (a \star b) \star c$$

(c) Is not associative since:

$$a \star (b \star c) = \frac{a + \frac{b+c}{5}}{5}$$

$$= \frac{\frac{5a}{5} + \frac{b+c}{5}}{5}$$

$$= \frac{5a + b + c}{10}$$

$$\neq \frac{a+b+5c}{10}$$

$$= \frac{\frac{a+b}{5} + \frac{5c}{5}}{5}$$

$$= \frac{\frac{a+b}{5} + c}{5}$$

$$= (a \star b) \star c$$

(d) Is not associative since:

$$(a,b) \star ((c,d) \star (e,f)) = (a,b) \star (cf + de, df)$$

$$= (a(cf + de) + bdf, bdf)$$

$$= (acf + ade + bdf, bdf)$$

$$= (acf + ade + bdf, bdf)$$

$$\neq (adf + bcf + bde, bdf)$$

$$= (ad + bc)f + bde, bdf)$$

$$= (ad + bc, bd) \star (e, f)$$

$$= ((a,b) \star (c,d)) \star (e, f)$$

(e) Is not associative since:

$$a \star (b \star c) = \frac{a}{\frac{b}{c}}$$

$$= a \left(\frac{b}{c}\right)^{-1}$$

$$= a \left(\frac{c}{b}\right)$$

$$= \frac{ac}{b}$$

$$\neq \frac{a}{bc}$$

$$= \left(\frac{a}{b}\right) c^{-1}$$

$$= \frac{a}{b}$$

$$= a \star (b \star c)$$

### 2 Exercise

- (a) Is not commutative since  $a 2a = -a \neq a = 2a a$ .
- (b) Is commutative since:

$$a \star b = a + b + ab$$
$$= b + a + ba$$
$$= b \star a$$

(c) Is commutative since:

$$a \star b = \frac{a+b}{5}$$
$$= \frac{b+a}{5}$$
$$= b \star a$$

(d) Is associative since:

$$(a,b) \star (c,d) = (ad + bc, bd)$$
$$= (cb + ad, db)$$
$$= (c,d) \star (a,b)$$

(e) Is not commutative since  $\frac{1}{2} \neq \frac{2}{1}$ 

#### 3 Exercise

*Proof.* Let  $\overline{a}, \overline{b}, \overline{c} \in \mathbb{Z}/n\mathbb{Z}$ . Using  $\overline{a} + \overline{b} = \overline{a+b}$  we can show that:

$$\begin{split} (\overline{a} + \overline{b}) + \overline{c} &= \overline{a + b} + \overline{c} \\ &= \overline{a + b + c} \\ &= \overline{a} + \overline{b + c} \\ &= \overline{a} + (\overline{b} + \overline{c}) \end{split}$$

4 Exercise

*Proof.* Let  $\overline{a}, \overline{b}, \overline{c} \in \mathbb{Z}/n\mathbb{Z}$ . Using  $\overline{a} \cdot \overline{b} = \overline{a \cdot b}$  we can show that:

$$\begin{split} (\overline{a} \cdot \overline{b}) \cdot \overline{c} &= \overline{a \cdot b} \cdot \overline{c} \\ &= \overline{a \cdot b \cdot c} \\ &= \overline{a} \cdot \overline{b \cdot c} \\ &= \overline{a} \cdot (\overline{b} \cdot \overline{c}) \end{split}$$

5 Exercise

*Proof.* We wish to show that  $(\mathbb{Z}/n\mathbb{Z},\cdot)$  for any n>1 is not a group. For  $(\mathbb{Z}/n\mathbb{Z},\cdot)$  to be a group then there must exists an inverse  $\overline{a}$  such that  $\overline{a}\cdot\overline{0}=\overline{1}$ . If we take the representative of  $\overline{a}$  to be a and the representative of  $\overline{0}$  to be 0 then we get  $a\cdot 0=0$  for any a so  $\overline{a}\cdot\overline{0}=\overline{0}$ . Hence no inverse exists of  $\overline{0}$  and therefore  $(\mathbb{Z}/n\mathbb{Z},\cdot)$  is not a group.

# 6 Exercise

- (a) Is not a group since the inverse to  $\frac{2a}{2b+1}$  is  $\frac{2b+1}{2a}$  which does no have an odd denominator so it does not belong in the original set meaning  $\frac{2a}{2b+1}$  has no inverse.
- (b) Is not a group since the inverse to  $\frac{2a+1}{2b}$  is  $\frac{2b}{2a+1}$  which does no have an even denominator.
- (c) Is not a group since  $\frac{1}{n} < 1$  is in the set but  $1 \le n$  is its inverse.
- (d) Is not a group since  $n \ge 1$  is in the set but  $\frac{1}{n} < 1$  is its inverse.