Lecture 1

Introduction and basic circuit theory

6.117 Pedagogy

 Objective: Introduce students to the fundamentals of practical electrical engineering (EE) in a relaxed, projectoriented environment

- Emphasis on practicality rather than theory
- Hands-on exposure to a variety of topics
- No tests/quizzes, no homework, no lab/lecture on Fridays

Course mechanics

Lectures (4-231): MW 2:30 – 4:00pm

Labs (38-601):

- Section 1: MW 4:00 7:00pm
- Section 2: TR 1:00 4:00pm
- Section 3: TR 4:00 7:00pm

Course staff

Sam Chinnery, lecturer

Savannah Inglin, TA

Tim Magoun, TA

Reed Foster, TA

Agenda

- 1. Course overview and logistics
- 2. EE conventions, units and acronyms
- 3. DC circuits: Ohm's law and resistors
- 4. AC circuits: capacitors and inductors
- 5. Lab overview and safety

EE conventions, units and acronyms

Voltage and current

- Analogy: Water in pipes is "charge"
- Think of voltage as "pressure," current as "flow rate"

Common units

Quantity	Unit	Symbol
Voltage	Volt	V
Current	Ampere (amp)	Α
Resistance	Ohm	Ω
Capacitance	Farad	F
Inductance	Henry	Н
Frequency	Hertz	Hz

Unit multipliers

Prefix	Symbol	Multiplier
tera-	Т	10 ¹²
giga-	G	10 ⁹
mega-	M	10 ⁶
kilo-	K	10 ³
(none)	(none)	10º
milli-	m	10 ⁻³
micro-	μ	10 ⁻⁶
nano-	n	10 ⁻⁹
pico-	р	10 ⁻¹²

Common acronyms and abbreviations

Short	Long
AC	Alternating current
DC	Direct current
BJT	Bipolar junction transistor
MOSFET	Metal-oxide-semiconductor field-effect transistor
SMD, SMT	Surface-mount device, surface-mount technology
PTH	Plated through-hole
DIP	Dual inline package
PCB	Printed circuit board
RF	Radio frequency
RMS	Root mean square
cap	Capacitor
pot	Potentiometer
ор-атр	Operational amplifier

Schematic symbols

DC circuits

Ohm's law and resistors

Circuits

- A circuit is any closed loop through which current flows.
- Circuits obey two basic laws:
 - Kirchoff's current law (KCL): Currents into a node sum to 0
 - Kirchoff's voltage law (KVL): Voltages around a loop sum to 0

Resistors

- Water analogy: A resistor is a "narrower pipe"
- Resists the flow of current, as the name suggests

Resistors

Ohm's Law

 $Current, (I) = \frac{Voltage, (V)}{Resistance, (R)} in Amperes, (A)$

$$\mathbf{I} = \frac{V}{R}$$

$$\mathbf{P} = I \times V$$
 $\mathbf{I} = \frac{P}{V}$

$$\mathbf{R} = \frac{\mathsf{V}}{\mathsf{I}}$$

$$\mathbf{v} = \frac{P}{I}$$

Ohm's Law

- Ohm's Law: Relationship between voltage, current, resistance and power
- All four can be determined from any two known values

Ohms Law Formulas				
Known Values	Resistance (R)	Current (I)	Voltage (V)	Power (P)
Current & Resistance			V = IxR	$P = I^2xR$
Voltage & Current	$R = \frac{V}{I}$			P = VxI
Power & Current	$R = \frac{P}{I^2}$		$V = \frac{P}{I}$	
Voltage & Resistance		$I = \frac{V}{R}$		$P = \frac{V^2}{R}$
Power & Resistance		$I = \sqrt{\frac{P}{R}}$	$V = \sqrt{PxR}$	
Voltage & Power	$R = \frac{V^2}{P}$	$I = \frac{P}{V}$		

Resistor color code

Color	Digit	Multiplier	Tolerance
Black	0	1	
Brown	1	10	± 1%
Red	2	100	± 2%
Orange	3	1,000	
Yellow	4	10,000	
Green	5	100,000	± 0.5%
Blue	6	1,000,000	± 0.25%
Violet	7	10,000,000	± 0.1%
Grey	8		± 0.05%
White	9		
Gold		0.1	± 5%
Silver		0.01	± 10%
None			± 20%

Series and parallel combinations

- Resistances in series add
- Resistances in parallel add "inversely"

Series resistances

Parallel resistances

$$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \dots + \frac{1}{R_n} etc$$

Voltage divider circuit

- Voltage divider: Two resistors in series
- Predictable voltage between the two resistors (V_o)

$$\begin{aligned} V_{\mathrm{S}} &= V_{\mathrm{R1}} + V_{\mathrm{R2}} \quad \text{(KVL)} \\ V_{\mathrm{R1}} &= I \times R_{1} \quad \text{and} \quad V_{\mathrm{R2}} &= I \times R_{2} \\ \text{Then:} \quad V_{\mathrm{S}} &= I \times R_{1} + I \times R_{2} \\ & \therefore \quad V_{\mathrm{S}} &= I \Big(R_{1} + R_{2} \Big) \\ \text{So:} \quad I &= \frac{V_{\mathrm{S}}}{\left(R_{1} + R_{2} \right)} \end{aligned}$$

$$\begin{split} \mathbf{I}_{\mathrm{R1}} &= \frac{\mathbf{V}_{\mathrm{R1}}}{\mathbf{R}_{\mathrm{1}}} = \frac{\mathbf{V}_{\mathrm{S}}}{\left(\mathbf{R}_{\mathrm{1}} + \mathbf{R}_{\mathrm{2}}\right)} \\ & \therefore \mathbf{V}_{\mathrm{R1}} = \mathbf{V}_{\mathrm{S}} \left(\frac{\mathbf{R}_{\mathrm{1}}}{\mathbf{R}_{\mathrm{1}} + \mathbf{R}_{\mathrm{2}}}\right) \\ & \mathbf{I}_{\mathrm{R2}} = \frac{\mathbf{V}_{\mathrm{R2}}}{\mathbf{R}_{\mathrm{2}}} = \frac{\mathbf{V}_{\mathrm{S}}}{\left(\mathbf{R}_{\mathrm{1}} + \mathbf{R}_{\mathrm{2}}\right)} \\ & \therefore \mathbf{V}_{\mathrm{R2}} = \mathbf{V}_{\mathrm{S}} \left(\frac{\mathbf{R}_{\mathrm{2}}}{\mathbf{R}_{\mathrm{1}} + \mathbf{R}_{\mathrm{2}}}\right) \end{split}$$

Potentiometers

- A potentiometer is a variable resistor.
- Can be used as a voltage divider or a simple resistor (by connecting the wiper to the resistive element)

Construction (left) and use (right)

Potentiometer as a voltage divider

AC circuits

Capacitors and inductors

Alternating current

- Alternating current (AC): an electrical current that periodically reverses direction
- Frequency: the length of one period of the signal

RMS voltage

- Root-mean-square (RMS): "Effective value" of an AC waveform
- Calculated as the root of the average (mean) of the square of the voltage or current

$$V_{RMS} = \sqrt{\frac{V_1^2 + V_2^2 + V_3^2 + V_4^2 + \dots + V_n^2}{n}}$$

Convert From	Multiply By	Or By	To Get Value
Peak	2	(√2)²	Peak-to-Peak
Peak-to-Peak	0.5	1/2	Peak
Peak	0.707	1/(√2)	RMS
Peak	0.637	2/π	Average
Average	1.570	π/2	Peak
Average	1.111	π/(2√2)	RMS
RMS	1.414	√2	Peak
RMS	0.901	(2√2)/π	Average

Capacitors

- Capacitor: stores energy in the form of electrical charge
- Value measured in Farads (F)
- Typically drawn as two parallel plates
- Opposes changes in voltage across the capacitor

Capacitors

Capacitor markings

Tolerance:			
Letter Tolerance			
D	± 0.5%		
F	± 1%		
G	± 2%		
J	± 5%		
K	± 10%		
M	± 20%		
Z	+80% / -20%		

Picofarad (pF)	Nanofarad (nF)	Microfarad (µF)	Code
10	0.01	0.00001	100
15	0.015	0.000015	150
22	0.022	0.000022	220
33	0.033	0.000033	330
47	0.047	0.000047	470
100	0.1	0.0001	101
120	0.12	0.00012	121
130	0.13	0.00013	131
150	0.15	0.00015	151
180	0.18	0.00018	181
220	0.22	0.00022	221
330	0.33	0.00033	331
470	0.47	0.00047	471
560	0.56	0.00056	561
680	0.68	0.00068	681
750	0.75	0.00075	751
820	0.82	0.00082	821
1,000	1	0.001	102
1,500	1.5	0.0015	152
2,000	2	0.002	202
2,200	2.2	0.0022	222
3,300	3.3	0.0033	332

Picofarad (pF)	Nanofarad (nF)	Microfarad (μF)	Code
4,700	4.7	0.0047	472
5,000	5	0.005	502
5,600	5.6	0.0056	562
6,800	6.8	0.0068	682
10,000	10	0.01	103
15,000	15	0.015	153
22,000	22	0.022	223
33,000	33	0.033	333
47,000	47	0.047	473
68,000	68	0.068	683
100,000	100	0.1	104
150,000	150	0.15	154
200,000	200	0.2	254
220,000	220	0.22	224
330,000	330	0.33	334
470,000	470	0.47	474
680,000	680	0.68	684
1,000,000	1000	1	105
1,500,000	1500	1.5	155
2,000,000	2000	2	205
2,200,000	2200	2.2	225
3,300,000	3300	3.3	335

Inductors

- Inductor: Stores energy in the form of a magnetic field
- Value measured in Henries (H)
- Typically drawn as a coil of wire
- Opposes changes in current

Inductors

Lab overview and safety

Lab space

Instrumentation

- Digital multimeter (DMM)
- Oscilloscope
- Function generator

Digital multimeter (DMM)

Oscilloscope (type 1)

Oscilloscope (type 2)

Function generator

Tools

- Needle-nose pliers
- Wire cutters (diagonal pliers)
- Wire strippers
- Solderless breadboard
- Soldering iron

Needle-nose pliers; wire cutters

Wire strippers

Solderless breadboard

Large breadboard with power supply

Small breadboard

Solderless breadboard

- Breadboard: Convenient way to prototype circuits
- Terminal strips go top-to-bottom for signals, side-to-side for power rails

Soldering station

Soldering technique

- Apply the soldering iron to the component first, then feed the solder into the joint
- Some components take longer to heat than others

Soldering technique

Do: Touch the iron to the component leg and metal ring at the same time.

Do: While continuing to hold the iron in contact with the leg and metal ring, feed solder into the joint.

Don't: Glob the solder straight onto the iron and try to apply the solder with the iron.

Do: Use a sponge to clean your iron whenever black oxidization builds up on the tip.

Safety

Don't do this!

...or this

...or this

Electrical safety

- Currents as low as 5-10 mA can cause death
- Skin resistance ranges from 1k (wet) to 500k (dry)
- Death can result from as low as 50 volts
- Body can sense 9 volts under the right conditions

Chemical safety

- Solder contains lead, a known neurotoxin
- Never bring food into the lab to avoid contamination
- Always wash hands with soap and water immediately after leaving the lab