Complexity

Time Complexity

Time complexity is not the time taken by the machine.

It is a mathematical function that tells us how time grows as the size grows.

Note: While determining time complexity, take size → infinity

Therefore, O(constant) < O(log(n)) < O(n).

Time Complexity tells us about the nature of graph [does not depend on constants or less significant terms]

For example:

$$O(3n^3 + 4n^2 + 5n + 6)$$

 $=O(n^3+n^2+n)$ [ignoring coefficients and constants]

 $=O(n^3)$ [ignoring less significant terms]

Big O Notation

Big O Notation means the complexity is less or equal to n^3 .

$$\lim_{n \to \text{infinity}} \frac{f(n)}{g(n)} < \text{infinity}$$

$$|\text{let } O(n^3) = O(6 n^3 + 3 n + 5),$$

$$g(n) \qquad f(n)$$

$$\Rightarrow \lim_{n \to \text{infinity}} \frac{6 n^3 + 3 n + 5}{n^3}$$

$$\Rightarrow \lim_{n \to \text{infinity}} \frac{6 + 3 / n^2 + 5 / n^3}{n^5}$$

$$\Rightarrow 6 < \text{infinity}$$

Little O Notation:

Little O Notation means the complexity is less than n^3 .

Big Omega Notation

Big Omega Notation means the complexity is more or equal to n^3.

$$\lim_{n \to \text{infinity}} \frac{f(n)}{g(n)} > 0$$

$$|\text{let } f(n) = n \land 4,$$

$$= > \lim_{n \to \text{infinity}} n > 0$$

Little Omega Notation :

Little Omega Notation mean the complexity is more than n^3.

Big Theta Notation :

Big Theta = Big O + Big Omega

$$0 < \lim_{n \to \text{infinity } g(n)} \frac{f(n)}{g(n)} < \text{infinity}$$

Space Complexity

Auxiliary Space is the extra or temporary space used by an algorithm.

Space Complexity is the total space taken by the algorithm with respect to the input size.

Space Complexity = Auxiliary Space + Input Size

Note: Auxiliary space is a better criterion than Space Complexity.

For Example :

Merge Sort → O(n) [Auxiliary Space]

Insertion Sort → O(1) [Auxiliary Space]

Heap Sort → O(1) [Auxiliary Space]

All sorting algorithms use O(n) Space Complexity.

```
for (i = 1; i \leq n) }
    for (j = 1; j \le k; j++) }
        (some operation taking
          t time)
    i = i + k;
   1+k, 1+2k, 1+3k..... 1+xk
        1 + xk <= n
     =>xk <= n - 1
     =>_{\times} <= (n - 1) / k
   O((n/k - 1/k) * kt)
\Rightarrow 0 (nt - t)
=> 0 (nt)
```


At any particular point in time, no two function calls can be in the same level while the call of recursion will not be in the stack at the same time.

Types of Recursion:

Divide & Conquer Recurrence Relation :

Form:
$$T(x) = a_1T (b_1x + E_1(n)) + a_2T (b_2x + E_2(n)) + \dots + a_nT (b_nx + E_n(n)) + g(n)$$

$$E = x_0 J$$

when $a_1 = 1$, $b_1 = 1/2$, $E_1(n) = 0$, $g(x) = Constant$; after the recursion calls, the steps taken to find the answer

$$= x_0 J$$

when $a_1 = 1$, $b_1 = 1/2$, $E_1(n) = 0$, $g(x) = Constant$; calls, the steps taken to find the answer

$$= x_0 J$$

when $a_1 = 1$, $a_1 = 1/2$, $a_2 = 1/2$, $a_1 = 1/2$, $a_2 = 1/2$, $a_1 =$

$$T(x) = a_1 T(b_1 x + E_1(n)) + a_2 T(b_2 x + E_2(n)) + \ldots + a_k T(b_k x + E_k(n)) + g(n)$$

g(n) is the steps taken to find the answer after the completion of recursion.

Example:

when
$$a_1=1, b_1=1/2, E_1(n)=0, g(x)=C$$
 ,

we get,
$$T(n)=T(n/2)+C$$

How to actually solve to get time complexity?

- 1. Plug & Chug
- 2. Master's Theorem

3. Akra Bazzi Formula [Best Method]

Akra Bazzi Formula:

$$T(x) = heta(x^p + x^p \int_1^x rac{g(u)du}{u^{p+1}})$$

What is p ?

•
$$a_1b_1^p + a_2b_2^p + \ldots = 1$$

•

• NOTE: If
$$p < power \ of \ g(x), \therefore ans = g(x)$$

1. Example:

$$ullet$$
 Here, $a_1=2, b_1=rac{1}{2}, g(n)=n-1$ $2(rac{1}{2})^p=1\mathrel{\dot{.}.} p=1$

• By applying Akra Bazzi formula :

$$\sum_{i=1}^k a_i b_i^p = 1$$

$$T(n) = 2T(\frac{n}{2}) + (n-1)$$

$$egin{align} T(x) &= heta(x^1 + x^1 \int_1^x rac{u-1}{u^2} du) \ &= heta(x + x(\int_1^x rac{du}{u} - \int_1^x rac{du}{u^2})) \ &= heta(x + x(log(u) + rac{1}{u})_1^x \ &= heta(x + x(logx + rac{1}{x} - 1)) \ &= heta(xlog(x) + 1) \ &= heta(xlog(x)) \ \end{pmatrix}$$

2. Example:

$$T(x)=2T(rac{n}{2})+rac{8}{9}T(rac{3n}{4})+n^2$$

ullet Here, $a_1=2, b_1=rac{1}{2}, a_2=rac{8}{9}, b_2=rac{3}{4}, g(u)=n^2$,

$$2(rac{1}{2})^p + rac{8}{9}(rac{3}{4})^p = 1$$

$$\therefore p=2$$

• By Applying Akra Bazzi formula :

$$egin{align} T(x) &= heta(x^2+x^2\int_1^x rac{u^2}{u^3}du) \ &= heta(x^2+x^2log(x)) \ &= heta(x^2log(x)) \ \end{aligned}$$

Linear Recurrence Relation

Solving Homogeneous Linear Recurrences :

The form of a recurrence relationship without any operation after recursion like g(x).

$$f(x) = a_1 f(x-1) + a_2 f(x-2) + \ldots + a_n f(x-n)$$

$$f(x) = \sum_{i=1}^n a_1 f(x-i)$$

- 1. Example [Recursion for Fibonacci] : f(n) = f(n-1) + f(n-2)
 - Step 1: Putting $f(n) = \alpha^n$, where $\alpha = constant$

$$\Rightarrow \alpha^n = \alpha^{n-1} + \alpha^{n-2}$$

$$\Rightarrow \alpha^n - \alpha^{n-1} - \alpha^{n-2} = 0$$

dividing both sides by $lpha^{n-2}$,

$$\Rightarrow lpha^2 - lpha - 1 = 0$$
 $\Rightarrow lpha = rac{1^+_-\sqrt{5}}{2}$
 $\Rightarrow lpha_1 = rac{1+\sqrt{5}}{2}, lpha_1 = rac{1-\sqrt{5}}{2}$

• Step 2: If α_1 & α_2 are 2 roots, we can write

$$f(n)=c_1lpha_1^n+c_2lpha_2^n$$
 is a solution,

[where $c_1lpha_1^n=f(n-1),\,c_2lpha_2^n=f(n-2)$].

$$\therefore f(n) = c_1 (rac{1+\sqrt{5}}{2})^n + c_2 (rac{1-\sqrt{5}}{2})^n$$

• Step 3: number of roots = number of answers

So, we have 2 answers already

$$f(0) = 0 \& f(1) = 1$$

for f(0) = 0,

$$egin{split} c_1 (rac{1+\sqrt{5}}{2})^0 + c_2 (rac{1-\sqrt{5}}{2})^0 &= 0 \ \Rightarrow c_1 + c_2 &= 0 \ \Rightarrow c_1 &= -c_2 \end{split}$$

for f(1) = 1,

$$egin{split} c_1(rac{1+\sqrt{5}}{2}) + c_2(rac{1-\sqrt{5}}{2}) &= 1 \ \ \Rightarrow c_1(rac{1+\sqrt{5}}{2}) - c_1(rac{1-\sqrt{5}}{2}) &= 1 \ \ \ \Rightarrow c_1 &= rac{1}{\sqrt{5}} \therefore c_2 &= -rac{1}{\sqrt{5}} \end{split}$$

• Step 4: Putting c_1 & c_2 in f(n)

$$f(n) = rac{1}{\sqrt{5}} (rac{1+\sqrt{5}}{2})^n - rac{1}{\sqrt{5}} (rac{1-\sqrt{5}}{2})^n \ \Rightarrow f(n) = rac{1}{\sqrt{5}} [(rac{1+\sqrt{5}}{2})^n - (rac{1-\sqrt{5}}{2})^n]$$

when $n o \infty$, $(rac{1-\sqrt{5}}{2})^n$ is less-dominating term.

$$\Rightarrow f(n) = \frac{1}{\sqrt{5}} (\frac{1+\sqrt{5}}{2})^n$$

..Time Complexity of Fibonacci with recursive tree is $O(rac{1+\sqrt{5}}{2})^n = O(1.6180)^n$.

- 2. Example [Equal Roots]: f(n)=2f(n-1)+f(n-2)
 - Step 1 : Putting $f(x)=lpha^n$, where lpha=constant.

$$lpha^n = 2lpha^{n-1} + lpha^{n-2}$$
 $\Rightarrow lpha^n - 2lpha^{n-1} - lpha^{n-2} = 0$

Dividing both side by α^{n-2} ,

$$egin{aligned} lpha^2-2lpha-1&=0\ &\Rightarrowlpha=rac{2_-^+2\sqrt{2}}{2}\ &\Rightarrowlpha=1_-^+\sqrt{2}\ &\Rightarrowlpha_1&=1+\sqrt{2},lpha_2&=1-\sqrt{2} \end{aligned}$$

 \bullet Step 2 : If α_1 & α_2 are two roots, we can write.

$$egin{split} f(n)&=c_1lpha_1^n+c_2lpha_2^n \ \Rightarrow f(n)&=c_1(1+\sqrt{2})^n+c_2(1-\sqrt{2})^n \end{split}$$

• Step 3 : number of roots = number of answers.

$$f(0) = 0 \& f(1) = 1$$

for f(0) = 0, we get

$$f(0) = c_1 + c_2 = 0$$
$$\Rightarrow c_1 = -c_2$$

for f(1), we get

$$egin{aligned} f(1) &= c_1(1+\sqrt{2}) + c_2(1-\sqrt{2}) = 1 \ &\Rightarrow c_1(1+\sqrt{2}) - c_1(1-\sqrt{2}) = 1 \ &\Rightarrow 2\sqrt{2}c_1 = 1 \ &\Rightarrow c_1 = rac{1}{2\sqrt{2}}, c_2 = -rac{1}{2\sqrt{2}} \end{aligned}$$

• Step 4 : putting c_1, c_2 in f(n), we get

$$\Rightarrow f(n) = rac{1}{2\sqrt{2}}(1+\sqrt{2})^n - rac{1}{2\sqrt{2}}(1-\sqrt{2})^n$$

when $n o \infty$, $rac{1}{2\sqrt{2}}(1-\sqrt{2})^n$ is less-dominating,

$$\Rightarrow f(n) = rac{1}{2\sqrt{2}}(1+\sqrt{2})^n$$

 \therefore Time Complexity of equal roots is $T(n) = O(1+\sqrt{2})^n = O(2.141)^n$.

Solving Non-Homogeneous Linear Recurrences:

$$f(x) = a_1 f(x-1) + a_2 f(x-2) + \ldots + a_n f(n-n) + g(n)$$

$$f(x)=\sum_{i=1}^n a_1f(n-i)+g(n)$$

- 1. Example : $f(n)=4f(n-1)+3^n$, Given f(1)=1
 - Step 1 : Homogeneous Solution

$$f(n) = 4f(n-1) + 3^4$$

when $n \to \infty$, 3^4 is less dominating,

$$\Rightarrow f(n) = 4f(n-1)$$

Let $f(n) = \alpha^n$, we get

$$lpha^n=4lpha^{n-1}$$

Dividing both side by α^{n-1} ,

$$\Rightarrow lpha = 4$$

$$\therefore f(n) = c_1 4^n$$

• Step 2 : Non-Homogeneous Solution

$$f(n) = 4f(n-1) + 3^n$$

$$\Rightarrow f(n)-4f(n-1)=3^n$$

How to find for Non-Homogeneous Linear Recurrences?

- If g(n) is exponential, let $g(n)=2^n$ try $f(n)=2^nc$.
- ullet If $f(n)=2^nc$ does not work, try $f(n)=(an+b)2^n$ or try $f(n)=(an^2+bn+c)2^n$ & keep increasing the degree.
- ullet If g(n) is polynomial, let $g(n)=n^2-1$, try $f(n)=an^2+bn+c$.
 - For Example : $g(n)=2^n+n\Rightarrow f(n)=2^na+(bn+c)$

Let $f(n)=c(3)^n$, we get

$$\Rightarrow c(3)^{n} - 4c(3)^{n-1} = 3^{n}$$

$$\Rightarrow c - \frac{4}{3}c = 1$$

$$\Rightarrow -\frac{1}{3}c = 1$$

$$\Rightarrow c = -3$$

$$\therefore f(n) = -3^{n-1}$$

• Step 3 : Adding both Homogeneous and Non-Homogeneous solutions

$$f(n)=c_14^n-3^{n-1}$$
 $\Rightarrow f(1)=4^nc_1-3^2=1$ $\Rightarrow c_1=rac{5}{2}$

$$\therefore f(n) = \frac{5}{2}4^n - 3^{n+1}$$