ELEC 405 - Homework 3

Gul Sena Altintas - 64284

December 7, 2020

Contents

1 LU Decomposition 1
2 Orthogonality of Left-Right Eigenvectors 2
3 DFT as an Orthogonal Basis Change 2
4 Reflection through a hyperplane 4
5 Orthogonal matrices 4

1. LU Decomposition

$$A = \left[\begin{array}{ccc} 6 & 30 & 36 \\ 2 & 10 & 4 \\ 5 & 4 & 2 \end{array} \right]$$

First apply $r_1 \leftarrow \frac{1}{6}r_1$. Then apply $r_2 \leftarrow r_2 - 2r_1$; $r_3 \leftarrow r_3 - 5r_1$, then $r_2 \leftarrow -r_2/8$; $r_3 \leftarrow r_3/21$. We can describe these steps with a lower triangular matrix L_1 applied to A from the left and at this point L_1A is given in (1).

$$L_{1} = \begin{bmatrix} \frac{1}{6} & 0 & 0 \\ \frac{2}{8 \times 6} & \frac{-1}{8} & 0 \\ \frac{5}{21 \times 6} & 0 & \frac{-1}{21} \end{bmatrix}$$

$$L_{1}A = \begin{bmatrix} 1 & 5 & 6 \\ 0 & 0 & 1 \\ 0 & 1 & \frac{4}{3} \end{bmatrix}$$

$$(1)$$

Since we need to do a row exchange, we define the permutation matrix P such that $P = P^{-1} = P^{T} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = P$. Now we need to redo the operations on PA:

$$PA = \begin{bmatrix} 6 & 30 & 36 \\ 5 & 4 & 2 \\ 2 & 10 & 4 \end{bmatrix}$$

$$L_2 = \begin{bmatrix} \frac{1}{6} & 0 & 0 \\ \frac{5}{6 \times 21} & -\frac{1}{21} & 0 \\ \frac{2}{6 \times 8} & 0 & \frac{-1}{8} \end{bmatrix}$$

ELEC $405 \mid Hw3$ Gul Sena Altintas

$$L_2PA = \begin{bmatrix} 1 & 5 & 6 \\ 0 & 1 & \frac{4}{3} \\ 0 & 0 & 1 \end{bmatrix}$$

$$L_2^{-1} = \begin{bmatrix} 6 & 0 & 0 \\ 5 & -21 & 0 \\ 2 & 0 & -8 \end{bmatrix}$$

$$DA = ID$$
(2)

$$= \begin{bmatrix} 6 & 0 & 0 \\ 5 & -21 & 0 \\ 2 & 0 & -8 \end{bmatrix} \begin{bmatrix} 1 & 5 & 6 \\ 0 & 1 & \frac{4}{3} \\ 0 & 0 & 1 \end{bmatrix}$$
 (3)

2. Orthogonality of Left-Right Eigenvectors

Let u_l be a left eigenvector of $A: u_l^T A = \mu u_l$ and u_r be a right eigenvector, $Au_r = \lambda u_r$. Consider the product $u_l^T A u_r = u_l^T (A u_r) = \lambda < u_l, u_r > = (u_l^T A) u_r = \mu < u_l, u_r >$. Since $\lambda \neq \mu < u_l, u_r > = 0$.

3. DFT as an Orthogonal Basis Change

1. Let $F^{n\times n}$ where the columns of F are f_{k+1} ($\begin{bmatrix} f_0 & f_1 & \dots & f_{N-1} \end{bmatrix}$). Let $a=e^{\frac{j2\pi(k)}{N}}$ then F looks like:

$$\begin{bmatrix} \frac{1}{N} & \frac{1}{N} & \dots & \frac{1}{N} \\ \frac{1}{N} & \frac{1}{N}a & \frac{1}{N}a^2 & \dots & \frac{1}{N}a^{N-1} \\ \vdots & & & & \\ \frac{1}{N} & \frac{1}{N}(a^{N-1}) & \dots & \frac{1}{N}(a^{N-1})^{N-1} \end{bmatrix}$$

$$(4)$$

Then we can rewrite the columns of F as a polynomial based on the powers of a where $p = \frac{1}{N} \sum_{n=0}^{N-1} a^n$:

$$\left[\begin{array}{ccc} p(a^0) & p(a) & \dots & p(a^{N-1}) \end{array}\right] \tag{5}$$

Now, let's consider the inner product between columns of F

$$\langle f_k, f_m \rangle = \frac{1}{N^2} \sum_{l=0}^{N-1} a^{k \times l} a^{-m \times l}$$

$$= \frac{1}{N^2} \sum_{l=0}^{N-1} a^{l \times (k-m)}$$
Let $p = k - m$

$$= \frac{1}{N^2} \sum_{l=0}^{N-1} a^{l \times p}$$

$$\frac{1}{N^2} (1 + a^p + \dots + (a^p)^{N-1})$$

$$\frac{1}{N^2} \frac{1 - (a^p)^N}{a - a^p}$$
Note that $a^{pN} = 1$ when $p \neq 0$

$$= 0$$
Similarly when $k = m$ the result is $\frac{1}{N}$ (6)

Since $||f_k||$ is not equal to 1, $(||f_0|| = \frac{1}{N}^{(N-1)/N})\mathcal{F}$ doesn't form an orthonormal basis unless N = 1.

ELEC $405 \mid Hw3$ Gul Sena Altintas

```
1 H = [1 -1 2 0; 0 1 -1 2; 2 0 1 -1; -1 2 0 1]
4x4 Array{Int64,2}:
 1 -1
 0
     1
             2
         -1
 2
         1
            -1
 -1
             1
 1 eigvals(H)
4-element Array{Complex{Float64},1}:
 -0.99999999999999 - 0.99999999999993im
 -0.99999999999996 + 0.99999999999993im
  2.00000000000000004 + 0.0im
   4.000000000000001 + 0.0im
 1 V = eigvecs(H)
4x4 Array{Complex{Float64},2}:
          0.5-0.0im
                                0.5+0.0im
                                           0.5+0.0im
                                0.5+0.0im -0.5+0.0im
 -2.22045e-16+0.5im
                                0.5+0.0im 0.5+0.0im
0.5+0.0im -0.5+0.0im
         -0.5+5.55112e-17im
  1.66533e-16-0.5im
```

Figure 1: H and V

- 2. F is symmetric therefore our argument from above holds for FF^* but \mathcal{F} is not unitary because the diagonal entries are $\frac{1}{N}$ (follows from (part $1 < f_i, f_i >$). So the inverse of $\mathcal{F} = N \times \mathcal{F}$.
- 3. \mathcal{F} for n=4:

$$\begin{bmatrix} \frac{1}{N} & \frac{1}{N} & \frac{1}{N} & \frac{1}{N} \\ \frac{1}{N} & \frac{1}{N} e^{2j\pi/n} & \frac{1}{N} e^{4j\pi/n} & \frac{1}{N} e^{3j\pi/n} \\ \frac{1}{N} & \frac{1}{N} e^{4j\pi/n} & \frac{1}{N} e^{8j\pi/n} & \frac{1}{N} e^{6j\pi/n} \\ \frac{1}{N} & \frac{1}{N} e^{6j\pi/n} & \frac{1}{N} e^{12j\pi/n} & \frac{1}{N} e^{9j\pi/n} \end{bmatrix}$$

$$(7)$$

FFT of
$$x = \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}$$
 is

$$\begin{bmatrix} \frac{1}{N} + \frac{1}{N}e^{2j\pi/n} \\ \frac{1}{N} + \frac{1}{N}e^{4j\pi/n} \\ \frac{1}{N} + \frac{1}{N}e^{4j\pi/n} \end{bmatrix}$$
(8)

4.

$$H = \begin{bmatrix} h_0 & h_3 & h_2 & h_1 \\ h_1 & h_0 & h_3 & h_2 \\ h_2 & h_1 & h_0 & h_3 \\ h_3 & h_2 & h_1 & h_0 \end{bmatrix}$$
(9)

5. $Hf_k =$

6.

Figure 2: HV.jpg

ELEC $405 \mid Hw3$ Gul Sena Altintas

4. Reflection through a hyperplane

Reflection of x with respect to a hyperplane H_z is actually $x + 2 \times (\text{projection of } x \text{ onto } H_z - x)$. So Qx = x + 2(Px - x) = 2Px - x, Q should be of the form 2P - I where P is the orthogonal projection matrix to H_z . We can easily prove that Q is orthogonal: Linear transformation Qx preserves the length of x, ie ||Qx|| = ||x||

$$x^{T}Q^{T}Qx = x^{T}x$$

$$x^{T}Q^{T}Qx - x^{T}I^{T}Ix = 0$$

$$x^{T}(Q^{T}Q - I)x = 0$$
(10)
(11)

Note that when we apply Q twice to x, we get the original vector back, therefore $Q^TQ = I$ for any x and therefore Q is orthogonal.

5. Orthogonal matrices

- 1. Let U, V be two orthogonal matrices. Then we know that $UU^T = I = VV^T$. Now consider $(UV)(UV)^T = UVV^TU = UIU^T = UU^T = I$.
- 2. Suppose that $U \in \mathbb{R}^{2 \times 2}$ is orthogonal. Let

$$\begin{split} U &= \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \\ UU^T &= I = \left[\begin{array}{cc} a^2 + c^2 & ac + bd \\ ac + bd & b^2 + d^2 \end{array} \right] \\ \text{It must hold that } a^2 + c^2 = b^2 + d^2 = 1 \text{ (ie columns have unit length)} \end{split}$$

and ac + bd = 0 (ie columns are orthogonal)

Let $a = \cos \alpha$, $c = \sin \alpha$ and $b = \sin \beta$, $d = \cos \beta$

 $ab + cd = \sin \alpha \sin \beta + \cos \alpha \cos \beta$

$$=\cos(\alpha-\beta)$$

$$\cos(\alpha-\beta)=0\iff (\alpha-\beta)=k\times\frac{\pi}{2}, \text{k is odd and k}\in Z$$

$$\beta=\alpha-k\frac{\pi}{2}$$

Rewriting U

$$U = \begin{bmatrix} \sin \alpha & \sin \beta - k \frac{\pi}{2} \\ \cos \alpha & \cos \beta - k \frac{\pi}{2} \end{bmatrix}$$
 (12)

If $k\frac{\pi}{2} = (\frac{\pi}{2} \mod \pi)$ then $\sin \alpha - k\frac{\pi}{2} = -\cos \alpha$ and $\cos \alpha - k\frac{\pi}{2} = \sin \alpha$ then U is of the form:

$$\begin{bmatrix}
\sin \alpha & -\cos \alpha \\
\cos \alpha & \sin \alpha
\end{bmatrix}$$
(13)

(13) represents a reflection. Take $x = \begin{bmatrix} \sin \alpha \\ \cos \alpha \end{bmatrix}$ on the unit circle U maps this vector to $\begin{bmatrix} \sin^2 \alpha - \cos^2 \alpha \\ 2\cos \alpha \sin \alpha \end{bmatrix} = \begin{bmatrix} \cos 2\alpha \\ \sin 2\alpha \end{bmatrix}$ which is reflection with respect to α . On the other hand, If $k\frac{\pi}{2} = (\frac{3\pi}{2} \mod \pi)$ then $\sin \alpha - k\frac{3\pi}{2} = \cos \alpha$ and $\cos \alpha - k\frac{3\pi}{2} = -\sin \alpha$ then U is of the form:

$$\begin{bmatrix}
\sin \alpha & \cos \alpha \\
\cos \alpha & -\sin \alpha
\end{bmatrix}$$
(14)

ELEC 405 | Hw3 Gul Sena Altintas

Similarly, (14) is a rotation. Take $x = \begin{bmatrix} \sin \alpha \\ \cos \alpha \end{bmatrix}$ on the unit circle U maps this vector to $\begin{bmatrix} \sin^2 \alpha + \cos^2 \alpha \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ which is rotation by $-\alpha$. Therefore any orthogonal matrix in $\mathcal{R}^{2\times 2}$ is either a reflection or a rotation.