Machine Learning for Physical Scientists

Lecture 2

The Simplest Supervised Learning: Linear Regression

Framework of Statistical Learning Theory

(supervised learning)

X: Instance Space (e.g. $\mathbb{R}^{16\times16}$ for 16x16 greyscale images)

Y: Label Space (e.g. \mathbb{R} for regression or $\{1,\ldots,k\}$ for multi-class classification)

 \mathscr{D} : Probability Distribution over $X \times Y$ (unknown, but can sample from)

 $\ell: Y \times Y \to \mathbb{R}_{\geq 0}$ Loss or Cost Function (e.g. $\ell(y, \hat{y}) = (y - \hat{y})^2$ for $Y = \mathbb{R}$)

Objective

Given a training set $S = \left\{ (x_i, y_i) \right\}_{i=1}^m$ drawn i.i.d. from \mathcal{D} , return hypothesis (predictor)

 $h: X \to Y$ that minimizes the population loss or expected risk:

$$L_{\mathfrak{D}}(h) := \mathbb{E}_{(x,y) \sim \mathfrak{D}}[\ell(y,h(x))]$$

Approximate Approach

Predetermine or assume a hypotheses space $\mathcal{H} \subset Y^X$, and <u>return hypothesis</u> $h \in \mathcal{H}$ that minimizes sample loss or empirical loss or empirical risk:

$$L_{S}(h) := \frac{1}{m} \sum_{i=1}^{m} \mathcal{C}\left(y_{i}, h\left(x_{i}\right)\right)$$

Note: An algorithm that searches for empirically optimal h_S^st is called a "learning algorithm."

Jargons in Statistical Learning Theory (SLT)

(Expressiveness, Generalization, Optimization)

 y_{\odot}^* : ground truth (minimizer of population loss over Y^X)

 h_{\odot}^* : optimal hypothesis (minimizer of population loss over \mathscr{H} -infinite data sample)

 $h_{\mathcal{S}}^*$: empirically optimal hypothesis (minimizer of sample loss over \mathscr{H})

h: returned hypothesis

Note: For sampling to give a good proxy, we must enforce the *consistency condition* in the infinite sample size limit. Namely, $\lim_{m\to\infty}h_S^*=h_{\mathscr{D}}^*$.

Linear Regression: the simplest example of supervised learning

Suppose there's a god-given linear relationship between an input $x \in \mathbb{R}^d$ and the continuous output (label) $y \in \mathbb{R}$ according to

$$y = f(\mathbf{x}) + \eta_i = \mathbf{w}_{true}^T \mathbf{x} + \eta_i,$$

where $\mathbf{w}_{true} \in \mathbb{R}^d$, and η_i is an i.i.d. drawn from $\mathcal{N}(0, \sigma^2)$.

Suppose the *loss function* is the square error $\ell(y, \hat{y}) = (y - \hat{y})^2$, remember that the objective of SLT is to *search* for the hypothesis function h(x) that minimizes the empirical risk

$$L_{S}(h) := \frac{1}{m} \sum_{i=1}^{m} \mathscr{C}\left(y_{i}, h\left(\boldsymbol{x}^{(i)}\right)\right),$$

given a training set
$$S = \left\{ \left(\boldsymbol{x}^{(i)}, y_i \right) \right\}_{i=1}^m$$
.

For simplicity, suppose we restrict our hypothesis class to be the simplest class possible, i.e. a linear continuous real-valued function (The SAME class as the god-given function, can't be simpler than that!)

$$h(\mathbf{x}) = \mathbf{w}^T \mathbf{x},$$

can we find a learning algorithm that spits out h_S^* ?

In other words, how do we find a d-dimensional hyperplane with a minimum square error from training data.

For brevity, let's rewrite the empirical risk as an L^2 norm

$$L_{S}(h) = \frac{1}{m} \sum_{i=1}^{m} \left(\boldsymbol{w}^{T} \boldsymbol{x}^{(i)} - \boldsymbol{y}_{i} \right)^{2} = \| \boldsymbol{X} \boldsymbol{w} - \boldsymbol{y} \|_{2}^{2}, \quad \boldsymbol{X} = \begin{bmatrix} -\boldsymbol{x}^{(1)\top} - \\ -\boldsymbol{x}^{(2)\top} - \\ \vdots \\ -\boldsymbol{x}^{(d)\top} - \end{bmatrix}$$

where for $\mathbf{x} = (x_1, ..., x_d) \in \mathbb{R}^d$ the L^p norm of \mathbf{x} is defined as

$$\|\mathbf{x}\|_p = \left(\left|x_1\right|^p + \dots + \left|x_d\right|^p\right)^{\frac{1}{p}}.$$

$$oldsymbol{y} = egin{bmatrix} y_2 \ dots \ y_d \end{bmatrix}$$

The learning algorithm should be able to spit out the weight w that minimizes the Empirical Risk Minimisation (ERM) problem, which we'll call an in-sample error

$$E_{in}(\mathbf{w}^*) \equiv L_S(h_S^*) = \frac{1}{m} \min_{\mathbf{w} \in \mathbb{R}^p} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2$$

The necessary condition for w to be a critical point is

$$\nabla E_{in}(\boldsymbol{w^*}) = \frac{2}{N} \boldsymbol{X}^{\top} (\boldsymbol{X} \boldsymbol{w^*} - \boldsymbol{y}) = \boldsymbol{0}$$

In this case, the critical point turns out to be the minimizer (convex optimization)

$$w * = X^{\dagger}y,$$

where we denote the Moore-Penrose pseudo-inverse of X as

$$\boldsymbol{X}^{\dagger} = \left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top}$$

So we have the first learning algorithm to find the unique minimizer of the least-square linear regression problem in one-shot!

- Step 1: From training data, construct the design matrix X and the vector y.
- ullet Step 2: Compute the Pseudo-inverse of the design matrix $m{X}^\dagger = ig(m{X}^ opm{X}ig)^{-1}m{X}^ op$
- Step 3: Perform the matrix vector multiplication $w^* = X^\dagger y$ to obtain the empirically optimal hypothesis $h_{\varsigma}^*(x) = w^{*T} x$.

Recall from Linear Algebra that invertibility of the matrix is always tricky, as one needs to check if the matrix has full-rank (typically the case when $m \gg d$)...

However, assuming invertibility, here's an important result you'll prove in homework 1

$$\bar{E}_{in} \equiv \mathbb{E}_D \left[E_{in}(\mathbf{w}_D^*) \right] = \sigma^2 \left(1 - \frac{d}{m} \right) \qquad \text{(in-sample error)}$$

$$\bar{E}_{out} \equiv \mathbb{E}_D \left[E_{out}(\mathbf{w}_D^*) \right] = \sigma^2 \left(1 + \frac{d}{m} \right) \qquad \text{(out-of-sample error)}$$

This gives us the *generalization error*

$$\left(|\bar{E}_{out} - \bar{E}_{in}| = 2\sigma^2 \left(\frac{d}{m}\right)\right)$$

- Large generalization error if $d \gg m$. Make sense since you'll likely fit a noisy subspace of the actual high-dimensional hyperplane.
- Even when $d \approx m$, noise suppresses learning the actual high-dimensional hyperplane.
- We'll learn how to "regularise" learning to not be too sensitive to noise (lower the variance of the learned models).

Schematic of how in-sample error and out-of-sample error are related in linear least square

