

Groupes

Exercice 1 (★ ★):

Pour chaque cas, vérifier si l'ensemble avec la loi proposée est un **groupe**:

- 1. G est l'ensemble des applications de $\mathbb{R} \longrightarrow \mathbb{R}$ définie par f(x) = ax + b où $a \in \mathbb{R}^*$ et $b \in \mathbb{R}$, muni de la composition.
- 2. ${\it G}$ est l'ensemble des fonctions croissantes muni de l'addition.
- 3. $G=\{f_1,f_2,f_3,f_4\}$ muni de la composition. où: $\bullet \ f_1=x \quad \bullet \ f_2=-x \quad \bullet \ f_3=\frac{1}{x} \quad \bullet \ f_4=-\frac{1}{x}$

Exercice 2 (★ ★):

Pour les deux cas suivants, démontrer que G est un groupe puis vérifier s'il est **abélien**.

1.
$$x * y = \frac{x+y}{1+xy}$$
 sur $G =]-1,1[$.

2.
$$(x_1, y_1) * (x_2, y_2) = (x_1 + x_2, y_1 e^{x_2} + y_2 e^{x_1}) \text{ sur } \mathbb{R}^2$$
.

Exercice 3 (★ ★):

Soit G un groupe **fini** d'élément neutre e.

1. Montrer que si cardinal de G est pair, alors il existe $x \in G$ tel que:

$$x \neq e$$
 et $x^{-1} = x$

Exercice 4 (★ ★ ★):

Soit G un ensemble **fini** muni d'une loi de composition interne \ast associative. On dit qu'un élément a est **régulier** si les deux conditions suivantes sont vérifiées:

•
$$a * x = a * y \implies x = y$$

•
$$x * a = y * a \implies x = y$$

On suppose que tous les éléments de G sont réguliers, et on fixe $a \in G$.

- 1. Démontrer qu'il existe $e \in G$ tel que a * e = a.
- 2. Démontrer que, pour tout $x \in G$, on a e * x = x.
- 3. Démontrer que, pour tout $x \in G$, on a x * e = x.
- 4. Démontrer que (G,*) est un groupe.
- 5. Le résultat subsiste-t-il si G n'est fini?

Exercice 5 (*):

Pour chaque cas, déterminer si la partie H est un sous groupe de G.

- 1. $G = (\mathbb{Z}, +)$ et $H = \{2k \mid k \in \mathbb{Z}\}.$
- **2.** $G = (\mathbb{Z}, +)$ et $H = \{2k + 1 \mid k \in \mathbb{Z}\}.$
- 3. $G = (\mathbb{R}^*, +)$ et $H =]-1, \infty[$.
- 4. $G = (\mathbb{R}^*, \times)$ et $H = \mathbb{Q}^*$.
- 5. $G = (\mathbb{R}^*, \times)$ et $H\{a + b\sqrt{2} \mid a, b \in \mathbb{Q}, (a, b) \neq (0, 0)\}.$

Exercice 6 (★ ★):

Soit (G,.) un groupe. Démontrer que les parties suivantes sont des sous-groupes de G

- 1. $C(G) = \{x \in G \mid \forall y \in G, x.y = y.x\}, C(G)$ s'appelle le **centre** de G.
- 2. $aHa^{-1}=\left\{aha^{-1},h\in H\right\}$ où $a\in G$ et H est un sous groupe.
- 3. On suppose que G est abélien. On dit que x est un élément de **torsion** de G s'il existe $n \in \mathbb{N}$ tel que $x^n = e$.
 - Démontrer que l'ensemble de torsion forme un sous groupe.

Exercice 7 (★ ★):

Soit G un groupe et H et K deux sous groupes de G. Démontrer que $H \cup K$ est un sous groupe de G si et seulement si $H \subset K$ ou $K \subset H$.

Exercice 8 (★ ★):

Montrer que $H = \{x + \sqrt{3}y \mid x \in \mathbb{N}, y \in \mathbb{Z}, x^2 - 3y^2 = 1\}$ est un sous groupe de (\mathbb{R}_+^*, \times) .

Exercice 9 (★ ★):

Soit (G,.) un groupe fini et A,B deux sous groupes de G. On note

$$AB = \{a.b \mid a \in A, b \in B\}.$$

1. Montrer que AB est un sous groupe de G si et seulement si AB = BA.

Exercice 10 (*):

Les applications $\phi: G \longrightarrow H$ définies ci-dessous sont elles des morphisme de groupes?

1.
$$G = (\mathbb{R}^*, \times), H = (\mathbb{R}^*, \times), \phi(x) = |x|$$
.

2.
$$G = (\mathbb{R}^*, \times), H = (\mathbb{R}^*, \times), \phi(x) = 2x.$$

Exercice 11 (★ ★ ★):

Soit f un morphisme de $G = (\mathbb{Z}, +)$ dans lui même.

- 1. Démontrer que $\forall n \in \mathbb{N}*$, on f(n) = nf(1).
- 2. Endéduire que $\forall n \leq 0$ on a aussi f(n) = nf(1).
- 3. Caractériser les morphismes **surjectifs** de G vers G.
- 4. Caractériser les morphismes **injectifs** de G vers G.

Exercice 12 (•):

Montrer qu'il est équivalent dans \mathbb{Z} de dire m divise n, ou $n\mathbb{Z}\subset m\mathbb{Z}$.

Exercice 13 (*):

- Montrer que l'intersection de deux sous-groupes de $\mathbb Z$ est un sous-groupe de $\mathbb Z.$
- Caractériser le sous-groupe $a\mathbb{Z} \cap b\mathbb{Z}$.
- Caractériser les sous-groupes suivants :

$$2\mathbb{Z} \cap 3\mathbb{Z}$$
; $5\mathbb{Z} \cap 13\mathbb{Z}$; $5\mathbb{Z} \cap 25\mathbb{Z}$.