Homework 8

Due: Dec. 4 (11:59pm)

1. Razavi Problem 6.7: Estimate the poles of each circuit in Fig. 6.59. (Hint: First add/draw the parasitic capacitances of transistors, next try to lump them together and reduce the circuit, then use Miller approximation, and finally associate each node to a pole and file the pole from 1/RC)

Figure 6.59

2. For the symmetric differential amplifier shown below, assume a capacitor of size 0.5pF is connected between output nodes (V_{out1} and V_{out2}), ignore all parasitic capacitances, $\lambda = \gamma = 0$, and $R_{D1} = R_{D2} = R_D$:

- a) What should be R_D for the amplifier to have a 3db-bandwidth of 100MHz?
- b) For a differential gain of 20, what should be g_m of input devices?
- c) What would be the I_{ss} and W for M_{1,2} if L=65nm, V_{od} =0.2V and $\mu_n C_{ox} = \frac{200\mu A}{V^2}$?
- d) If C_{GS} and C_{DB} of $M_{1,2}$ will be ~1fF/ μm and ~0.2fF/ μm (fF per μm -width), respectively, estimate an additional pole at the input created by $C_{gS_{1,2}}$ and assuming a source resistance (R_s) of 100 Ω . (Use Miller approximation)
- e) Draw the amplitude and phase Bode plots using these two poles.