COMS 4771 Lecture 1

- 1. Course overview
- 2. Maximum likelihood estimation (review of some statistics)

Course overview

ALGORITHMIC PROBLEMS

Minimum spanning tree

- ▶ Input: Graph G.
- ▶ Output: A minimum spanning tree in *G*.

 $Input/output\ relationship\ well-specified\ for\ all\ inputs.$

ALGORITHMIC PROBLEMS

Minimum spanning tree

- ▶ Input: Graph G.
- ▶ Output: A minimum spanning tree in G.

Input/output relationship well-specified for all inputs.

Bird species recognition

- ► Input: Image of a bird.
- ▶ Output: Species name of the bird.

Input/output relationship is difficult to specify.

ALGORITHMIC PROBLEMS

Minimum spanning tree

- ▶ Input: Graph G.
- ▶ Output: A minimum spanning tree in G.

Input/output relationship well-specified for all inputs.

Bird species recognition

- ► Input: Image of a bird.
- Output: Species name of the bird.

Input/output relationship is difficult to specify.

Machine learning: use examples of input/output pairs to learn the mapping

→ "indigo bunting"

MACHINE LEARNING IN CONTEXT

Perspective of intelligent systems

- ▶ Goal: robust system with "intelligent" behavior
 - ▶ Often: hard-coded solution too complex, not robust, sub-optimal
- ▶ How do we learn from past experiences to perform well in the future?

Machine Learning in Context

Perspective of intelligent systems

- ▶ Goal: robust system with "intelligent" behavior
 - ▶ Often: hard-coded solution too complex, not robust, sub-optimal
- ▶ How do we learn from past experiences to perform well in the future?

Perspective of algorithmic statistics

- ► Goal: statistical analysis of large, complex data sets
 - Past: ≤100 data points of two variables.
 Data collection and statistical analysis done by hand/eye.
 - Now: several million data and variables, collected by high-throughput automatic processes.
- ▶ How can we automate statistical analysis for modern applications?

SUPERVISED LEARNING

Abstract problem

▶ Data: labeled examples $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n) \in \mathcal{X} \times \mathcal{Y}$ from some population.

 $\mathcal{X} = \text{input (feature) space; } \mathcal{Y} = \text{output (label, response) space.}$

- ▶ Underlying assumption: there's a relatively simple function $f: \mathcal{X} \to \mathcal{Y}$ such that $f(x) \approx y$ for most (x,y) in the population.
- ▶ Learning task: using the labeled examples, construct \hat{f} such that $\hat{f} \approx f$.
- ▶ At test time: use \hat{f} to predict y for new (and previously unseen) x's.

- Spam filtering
 - $ightharpoonup \mathcal{X} = ext{e-mail messages}$
 - $\blacktriangleright \ \mathcal{Y} = \{\mathsf{spam}, \mathsf{not} \ \mathsf{spam}\}$

- ► Spam filtering
 - $ightharpoonup \mathcal{X} = e$ -mail messages
 - $\qquad \qquad \mathcal{Y} = \{\mathsf{spam}, \mathsf{not} \; \mathsf{spam}\}$
- ► Optical character recognition
 - $\mathcal{X} = 32 \times 32$ pixel images
 - $\blacktriangleright \ \mathcal{Y} = \{\mathsf{A},\mathsf{B},\ldots,\mathsf{Z},\mathsf{a},\mathsf{b},\ldots,\mathsf{z},0,1,\ldots,9\}$

- ► Spam filtering
 - $ightharpoonup \mathcal{X} = e$ -mail messages
 - $\mathcal{Y} = \{\text{spam}, \text{not spam}\}\$
- ► Optical character recognition
 - $\mathcal{X} = 32 \times 32$ pixel images
 - $\blacktriangleright \ \mathcal{Y} = \{\mathsf{A}, \mathsf{B}, \dots, \mathsf{Z}, \mathsf{a}, \mathsf{b}, \dots, \mathsf{z}, \mathsf{0}, \mathsf{1}, \dots, \mathsf{9}\}$
- ► Online dating
 - $\mathcal{X} = \text{user profiles} \times \text{user profiles}$
 - $\mathcal{Y} = [0, 1]$

- ► Spam filtering
 - $ightharpoonup \mathcal{X} = e$ -mail messages
 - $\mathcal{Y} = \{\text{spam}, \text{not spam}\}\$
- ► Optical character recognition
 - $\mathcal{X} = 32 \times 32$ pixel images
 - $\blacktriangleright \ \mathcal{Y} = \{\mathsf{A},\mathsf{B},\ldots,\mathsf{Z},\mathsf{a},\mathsf{b},\ldots,\mathsf{z},0,1,\ldots,9\}$
- ► Online dating
 - $\mathcal{X} = \text{user profiles} \times \text{user profiles}$
 - $\mathcal{Y} = [0, 1]$
- ► Machine translation
 - $\mathcal{X} =$ sequences of English words
 - $ightharpoonup \mathcal{Y} = \mathsf{sequences} \ \mathsf{of} \ \mathsf{French} \ \mathsf{words}$

Unsupervised Learning

Abstract problem

- ▶ **Data**: (unlabeled) examples $x_1, x_2, ..., x_n \in \mathcal{X}$ from some population.
- Underlying assumption: there's some interesting structure in the population to be discovered.
- Learning task: using the unlabeled examples, find the interesting structure.
- ► Uses: visualization/interpretation, pre-process data for downstream learning, . . .

Unsupervised Learning

Abstract problem

- ▶ Data: (unlabeled) examples $x_1, x_2, ..., x_n \in \mathcal{X}$ from some population.
- Underlying assumption: there's some interesting structure in the population to be discovered.
- Learning task: using the unlabeled examples, find the interesting structure.
- Uses: visualization/interpretation, pre-process data for downstream learning, . . .

Examples

- Discover sub-communities of individuals in a social network.
- ► Explain variability of market price movement using a few latent factors.
- Learn a useful representation of data that improves supervised learning.

What else is there with machine learning?

Advanced issues

- Structured output spaces
- Distributed learning
- Incomplete data
- Causal inference
- Privacy
- ▶ ...

Other models of learning

- ► Semi-supervised learning
- Active learning
- Online learning
- ► Reinforcement learning
- **.**..

Major application areas

- Natural language processing
- Speech recognition
- Computer vision
- Computational biology
- ► Information retrieval
- **>** ...

Modes of study

- Mathematical analysis
- Cross-domain evaluations
- End-to-end application study
- **.**..

This course

http://www.cs.columbia.edu/~djhsu/coms4771-s15/

Topics

1. Supervised learning

- ► Core issues of statistical machine learning
- Algorithmic, statistical, and analytical tools

2. Some topics in unsupervised learning

- Common statistical models
- Frameworks for developing new models and algorithms

Coursework

- 1. Around five homework assignments (theory & programming): 40%
- 2. Two in-class exams (3/11, 5/4): 30% each
- 3. No late assignments accepted, no make-up exams

Prerequisites

Mathematical prerequisites

- ▶ Basic algorithms and data structures
- ▶ Linear algebra (e.g., vector spaces, orthogonality, spectral decomposition)
- ► Multivariate calculus (e.g., limits, Taylor expansion, gradients)
- ► Probability/statistics (e.g., random variables, expectation, LLN, MLE)

Computational prerequisites

You should have regular access to and be able to program in MATLAB.

MATLAB is available for download for SEAS students: http://portal.seas.columbia.edu/matlab/

RESOURCES

http://www.cs.columbia.edu/~djhsu/coms4771-s15/

Course staff

- ▶ Instructor: Daniel Hsu
- Teaching assistants: Huaiyuan Cao, Angus Ding, Henrique Gubert, Siyao Li, Michael Yang
- ▶ Office hours, course e-mail, online forum (Piazza): see course website
- Office hour attendance highly recommended.

Materials

- ▶ Lecture slides: posted on course website
- ► Textbooks: readings from "The Elements of Statistical Learning" [ESL] and "A Course in Machine Learning" [CML] (both available free online; see course website)

Maximum likelihood estimation

STATISTICAL MODELING

Statistical models

- ▶ A model $\mathcal{P} = \{P_{\theta} : \theta \in \mathcal{T}\}$ is a set of probability distributions over \mathcal{X} indexed by a parameter space \mathcal{T} .
- ▶ Often, we use models with a fixed number of parameters (e.g., $\mathcal{T} \subset \mathbb{R}^d$); these are called **parametric models**.
- ▶ Also, often deal with models where each P_{θ} has a **density function** $p(\cdot; \theta) : \mathcal{X} \to \mathbb{R}_+$.

STATISTICAL MODELING

Statistical models

- ▶ A model $\mathcal{P} = \{P_{\theta} : \theta \in \mathcal{T}\}$ is a set of probability distributions over \mathcal{X} indexed by a parameter space \mathcal{T} .
- ▶ Often, we use models with a fixed number of parameters (e.g., $\mathcal{T} \subset \mathbb{R}^d$); these are called **parametric models**.
- ▶ Also, often deal with models where each P_{θ} has a density function $p(\cdot; \theta) \colon \mathcal{X} \to \mathbb{R}_+$.

Parameter estimation

- ▶ Given data, choose parameter $\theta \in \mathcal{T}$ such that P_{θ} "fits the data well".
- Use chosen P₀ to make inferences or draw conclusions (e.g., use in supervised learning to build a predictor).
- Our main tool will be maximum likelihood estimation.

Gaussian distribution

Gaussian density in one dimension $(\mathcal{X}=\mathbb{R})$

$$p(x; \mu, \sigma) := \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

- $ightharpoonup \mu = \text{mean, } \sigma^2 = \text{variance}$
- $\sum_{\sigma} \frac{x \mu}{\sigma} = \text{deviation from mean in units of } \sigma.$

Gaussian distribution

Gaussian density in one dimension $(\mathcal{X} = \mathbb{R})$

$$p(x;\mu,\sigma) := \frac{1}{\sqrt{2\pi\sigma^2}} \exp\biggl(-\frac{(x-\mu)^2}{2\sigma^2}\biggr)$$

- $\blacktriangleright \mu = \text{mean}, \ \sigma^2 = \text{variance}$
- $\sum_{\alpha} \frac{x \mu}{\sigma} = \text{deviation from mean in units of } \sigma.$

Gaussian density in d dimensions $(\mathcal{X} = \mathbb{R}^d)$ In the density function, the quadratic function

$$-\frac{(x-\mu)^2}{2\sigma^2} = -\frac{1}{2}(x-\mu)(\sigma^2)^{-1}(x-\mu)$$

MAXIMUM LIKELIHOOD ESTIMATION

Setting

- ▶ Given: data $x_1, x_2, \dots, x_n \in \mathcal{X}$; parametric model $\mathcal{P} = \{P_{\theta} : \theta \in \mathcal{T}\}$.
- ▶ The i.i.d. assumption: assume $x_1, x_2, ..., x_n$ are independent and identically distributed according to the same probability distribution.
- **Likelihood of** θ given data: (under the i.i.d. assumption)

$$\prod_{i=1}^n p(\boldsymbol{x}_i;\boldsymbol{\theta}),$$

the probability mass (or density) of the data, as given by P_{θ} .

MAXIMUM LIKELIHOOD ESTIMATION

Setting

- ▶ **Given**: data $x_1, x_2, ..., x_n \in \mathcal{X}$; parametric model $\mathcal{P} = \{P_{\theta} : \theta \in \mathcal{T}\}$.
- ▶ The i.i.d. assumption: assume $x_1, x_2, ..., x_n$ are independent and identically distributed according to the same probability distribution.
- **Likelihood of** θ given data: (under the i.i.d. assumption)

$$\prod_{i=1}^n p(\boldsymbol{x}_i; \boldsymbol{\theta}),$$

the probability mass (or density) of the data, as given by P_{θ} .

Maximum likelihood estimator

The maximum likelihood estimator (MLE) for the model P is

$$oldsymbol{ heta}_{\mathsf{ML}} := rg \max_{oldsymbol{ heta} \in \mathcal{T}} \prod_{i=1}^n p(oldsymbol{x}_i; oldsymbol{ heta})$$

i.e., the parameter $\theta \in \mathcal{T}$ whose likelihood is highest given the data.

Logarithm Trick

Recall: logarithms turn products into sums

$$\log\left(\prod_{i=1}^{n} f_i\right) = \sum_{i=1}^{n} \log(f_i)$$

Logarithms and maxima

The logarithm is monotonically increasing on \mathbb{R}_{++} .

Consequence: Application of \log does not change the *location* of a maximum or minimum:

$$\max_y \log(g(y)) \neq \max_y g(y) \qquad \text{The \it value} \text{ changes (in general)}.$$

$$\arg\max_y \log(g(y)) = \arg\max_y g(y) \qquad \text{The \it location does not change}.$$

it's important to understand this!!!

MLE: MAXIMALITY CRITERION

Likelihood and logarithm trick

$$\theta_{\mathsf{ML}} = \underset{\boldsymbol{\theta} \in \mathcal{T}}{\operatorname{arg \, max}} \prod_{i=1}^{n} p(\boldsymbol{x}_{i}; \boldsymbol{\theta})$$

$$= \underset{\boldsymbol{\theta} \in \mathcal{T}}{\operatorname{arg \, max}} \log \left(\prod_{i=1}^{n} p(\boldsymbol{x}_{i}; \boldsymbol{\theta}) \right)$$

$$= \underset{\boldsymbol{\theta} \in \mathcal{T}}{\operatorname{arg \, max}} \sum_{i=1}^{n} \log p(\boldsymbol{x}_{i}; \boldsymbol{\theta})$$

Maximality criterion

Assuming heta is unconstrained, the log-likelihood maximizer must satisfy

$$\mathbf{0} = \sum_{i=1}^{n} \nabla_{\boldsymbol{\theta}} \log p(\boldsymbol{x}_i; \boldsymbol{\theta})$$

For some models, can analytically find unique solution $\theta \in \mathcal{T}$.

Model: multivariate Gaussians with fixed covariance

The model $\mathcal P$ is the set of all Gaussian densities on $\mathbb R^d$ with *fixed* covariance matrix $\boldsymbol \Sigma$:

$$\mathcal{P} = \left\{g(\,.\,; oldsymbol{\mu}, oldsymbol{\Sigma}) \,:\, oldsymbol{\mu} \in \mathbb{R}^d
ight\}$$

where g is the Gaussian density function. The parameter space is $\mathcal{T}=\mathbb{R}^d$.

MLE equation

Solve the following equation (from the maximality criterion) for μ :

$$\sum_{i=1}^{n} \nabla_{\boldsymbol{\mu}} \log g(\boldsymbol{x}_i; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \boldsymbol{0}.$$

$$\begin{aligned} \mathbf{0} &= \sum_{i=1}^{n} \nabla_{\boldsymbol{\mu}} \left[\log \frac{1}{\sqrt{(2\pi)^{d} |\boldsymbol{\Sigma}|}} \exp \left(-\frac{1}{2} (\boldsymbol{x}_{i} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}_{i} - \boldsymbol{\mu}) \right) \right] \\ &= \sum_{i=1}^{n} \nabla_{\boldsymbol{\mu}} \left[\log \frac{1}{\sqrt{(2\pi)^{d} |\boldsymbol{\Sigma}|}} - \frac{1}{2} (\boldsymbol{x}_{i} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}_{i} - \boldsymbol{\mu}) \right] \\ &= \sum_{i=1}^{n} \nabla_{\boldsymbol{\mu}} \left[-\frac{1}{2} (\boldsymbol{x}_{i} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}_{i} - \boldsymbol{\mu}) \right] = -\sum_{i=1}^{n} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}_{i} - \boldsymbol{\mu}) \end{aligned}$$

$$\mathbf{0} = \sum_{i=1}^{n} \nabla_{\boldsymbol{\mu}} \left[\log \frac{1}{\sqrt{(2\pi)^{d} |\boldsymbol{\Sigma}|}} \exp\left(-\frac{1}{2} (\boldsymbol{x}_{i} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}_{i} - \boldsymbol{\mu})\right) \right]$$

$$= \sum_{i=1}^{n} \nabla_{\boldsymbol{\mu}} \left[\log \frac{1}{\sqrt{(2\pi)^{d} |\boldsymbol{\Sigma}|}} - \frac{1}{2} (\boldsymbol{x}_{i} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}_{i} - \boldsymbol{\mu}) \right]$$

$$= \sum_{i=1}^{n} \nabla_{\boldsymbol{\mu}} \left[-\frac{1}{2} (\boldsymbol{x}_{i} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}_{i} - \boldsymbol{\mu}) \right] = -\sum_{i=1}^{n} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}_{i} - \boldsymbol{\mu})$$

Multiplication by $(-oldsymbol{\varSigma})$ on both sides gives

$$\mathbf{0} = \sum_{i=1}^{n} (\boldsymbol{x}_i - \boldsymbol{\mu}) \qquad \Longrightarrow \qquad \boldsymbol{\mu} = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_i$$

$$\begin{aligned} \mathbf{0} &= \sum_{i=1}^{n} \nabla_{\boldsymbol{\mu}} \left[\log \frac{1}{\sqrt{(2\pi)^{d} |\boldsymbol{\Sigma}|}} \exp \left(-\frac{1}{2} (\boldsymbol{x}_{i} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}_{i} - \boldsymbol{\mu}) \right) \right] \\ &= \sum_{i=1}^{n} \nabla_{\boldsymbol{\mu}} \left[\log \frac{1}{\sqrt{(2\pi)^{d} |\boldsymbol{\Sigma}|}} - \frac{1}{2} (\boldsymbol{x}_{i} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}_{i} - \boldsymbol{\mu}) \right] \\ &= \sum_{i=1}^{n} \nabla_{\boldsymbol{\mu}} \left[-\frac{1}{2} (\boldsymbol{x}_{i} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}_{i} - \boldsymbol{\mu}) \right] = -\sum_{i=1}^{n} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}_{i} - \boldsymbol{\mu}) \end{aligned}$$

Multiplication by $(-oldsymbol{\Sigma})$ on both sides gives

$$\mathbf{0} = \sum_{i=1}^n (x_i - \mu) \qquad \Longrightarrow \qquad \mu = \frac{1}{n} \sum_{i=1}^n x_i$$

Conclusion

The maximum likelihood estimator of the Gaussian mean parameter is

$$\mu_{\mathsf{ML}} := \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i}.$$

Example: Gaussian with unknown covariance

Model: multivariate Gaussians

The model \mathcal{P} is now

$$\mathcal{P} = \left\{ g(\,.\,; \boldsymbol{\mu}, \boldsymbol{\varSigma}) \,:\, \boldsymbol{\mu} \in \mathbb{R}^d, \boldsymbol{\varSigma} \in \mathbb{S}_{++}^{d \times d} \right\}$$

where \mathbb{S}^d_{++} is the set of symmetric positive definite $d \times d$ matrices. The parameter space is $\mathcal{T} = \mathbb{R}^d \times \mathbb{S}^{d \times d}_{++}$.

ML approach

Since we have just seen that the ML estimator of μ does not depend on Σ , we can compute $\mu_{\rm ML}$ first. We then estimate Σ using the criterion

$$\sum_{i=1}^{n} \nabla_{\boldsymbol{\Sigma}} \log g(\boldsymbol{x}_i; \boldsymbol{\mu}_{\mathsf{ML}}, \boldsymbol{\Sigma}) = 0.$$

Solution

The ML estimator of Σ is

$$oldsymbol{arSigma}_{\mathsf{ML}} := rac{1}{n} \sum_{i=1}^n (oldsymbol{x}_i - oldsymbol{\mu}_{\mathsf{ML}}) (oldsymbol{x}_i - oldsymbol{\mu}_{\mathsf{ML}})^ op.$$

Bernoulli distribution

Bernoulli distribution

" $X \sim \mathrm{Bern}(p)$ " means X is a $\{0,1\}$ -valued random variable whose mean is p.

- $\Pr[X=1] = p, \Pr[X=0] = 1-p.$
- ightharpoonup Mean of X is p.
- ▶ Variance of X is p(1-p).

Bernoulli likelihood

Likelihood of $p \in [0,1]$ given $x \in \{0,1\}$:

$$p^x(1-p)^{1-x}.$$

Example: Bernoulli MLE

Model: Bernoulli distributions

The model \mathcal{P} is "all Bernoulli distributions".

The parameter space is $\mathcal{T} = [0, 1]$.

MLE equation

$$\sum_{i=1}^{n} \nabla_{p} \log \left(p^{x_{i}} (1-p)^{1-x_{i}} \right) = \sum_{i=1}^{n} \frac{x_{i}}{p} - \frac{1-x_{i}}{1-p} = 0.$$

(Question: what about p = 0 or p = 1?)

Solution

The maximum likelihood estimator of the Bernoulli parameter \boldsymbol{p} is

$$p_{\mathsf{ML}} := \frac{1}{n} \sum_{i=1}^{n} x_i.$$