#### Voronoï Percolation in the Hyperbolic Plane

Benjamin Hansen University of Groningen

Joint work with Tobias Müller

March 6, 2020 Mark Kac Seminar

# Hyperbolic Plane $\mathbb{H}^2$

#### Hyperbolic Plane

- A surface in a high dimensional space
- Every point is a saddle point (Gaussian curvature is negative)
- · Fails Euclid's fifth axiom

Poincaré Disk Equip unit disk with the right metric

$$d_{\mathbb{H}^2}(x,y) = 2 \operatorname{arcsinh} \left( \frac{||x-y||}{\sqrt{(1-||x||^2)(1-||y||^2)}} \right)$$

Area<sub>$$\mathbb{H}^2$$</sub> $(B) = \int_B \frac{4}{(1-x^2-y^2)^2} dy dx$ 



#### Poisson Point Process on $\mathbb{H}^2$

A Poisson point process on  $\mathbb{H}^2$  is a random countable collection of points  $\mathcal{Z}$  in  $\mathbb{H}^2$ .

(Homogenous) Poisson point process:  $\lambda > 0$ 

- Number of points in region B is Poisson with expectation  $\lambda \cdot \text{Area}(B)$ .
- Disjoint regions: the number of points in each region are independent.

Inhomogeneous: replace  $\lambda \cdot \text{Area}(B)$  with  $\int_B f dA$ .

#### Poisson Point Process on $\mathbb{H}^2$

A Poisson point process on  $\mathbb{H}^2$  is a random countable collection of points  $\mathcal{Z}$  in  $\mathbb{H}^2$ .

(Homogenous) Poisson point process:  $\lambda > 0$ 

- Number of points in region B is Poisson with expectation  $\lambda \cdot \text{Area}(B)$ .
- Disjoint regions: the number of points in each region are independent.

Inhomogeneous: replace  $\lambda \cdot \text{Area}(B)$  with  $\int_{B} f dA$ .

PPP (intensity  $\lambda$ ) on the Poincaré disk is inhomogeneous PPP on unit disk

Expected number of points in B:

$$\int_{B} \frac{4\lambda}{(1-x^2-y^2)^2} dx dy$$



#### Voronoï Cells in $\mathbb{H}^2$

The hyperbolic metric assigns every  $x \in \mathbb{H}^2$  to the "closest" element of  $\mathcal{Z}$  to form the hyperbolic cells.



Colour cells black independently with probability *p*.

• In the picture, p = 1/2 and  $\lambda = 1$ .



- In the picture, p = 1/2 and  $\lambda = 1$ .
- Is there an unbounded black component? (critical value p<sub>c</sub>)



- In the picture, p = 1/2 and  $\lambda = 1$ .
- Is there an unbounded black component? (critical value p<sub>c</sub>)
- A unique unbounded black component? (critical value p<sub>u</sub>)



- In the picture, p = 1/2 and  $\lambda = 1$ .
- Is there an unbounded black component? (critical value p<sub>c</sub>)
- A unique unbounded black component? (critical value p<sub>u</sub>)
- Two sources of randomness



- In the picture, p = 1/2 and  $\lambda = 1$ .
- Is there an unbounded black component? (critical value p<sub>c</sub>)
- A unique unbounded black component? (critical value p<sub>u</sub>)
- Two sources of randomness
- Both  $p_c$  and  $p_u$  depend on  $\lambda$



## Phase Diagram (Benjamini + Schramm 2001)



Also  $p_c$  is continuous, a.s. no unbounded black component for  $(\lambda, p_c(\lambda))$ .

#### Conjecture and Theorem

Conjecture (Benjamini + Schramm 2001) 
$$\lim_{\lambda \to \infty} p_c(\lambda) = 1/2.$$

#### Conjecture and Theorem

Conjecture (Benjamini + Schramm 2001) 
$$\lim_{\lambda \to \infty} p_c(\lambda) = 1/2.$$
 Theorem (H + Müller 2020+)  $\lim_{\lambda \to \infty} p_c(\lambda) = 1/2.$ 

#### Adjacency Graphs are Isomorphic

Hyperbolic Voronoï cells are adjacent iff Euclidean Voronoï cells are adjacent, a.s.



#### **Crossing Events**

A rectangle R has a long, black crossing if there is a curve  $\gamma \subseteq R$  using Euclidean Voronoï cells from one short side of R to the opposite side such that all points of  $\gamma$  are black. Denote this event as  $\operatorname{cross}(R)$ .



#### Main Lemma

#### Lemma (H + Müller 2020+)

For p > 1/2 and each rectangle  $R \subseteq D$ ,

$$\lim_{\lambda o \infty} \mathbb{P}_{
ho,\lambda}(\mathsf{cross}(R)) = 1.$$





#### Main Idea for the Lemma

Use a consequence of Bollobás + Riordan [2006]:

#### Lemma

For p > 1/2, for Euclidean Voronoï percolation and any rectangle R,

$$\lim_{\lambda o \infty} \mathbb{P}(\mathsf{cross}(R)) = 1$$

For small rectangles,  $\mathcal Z$  and a homogeneous Poisson point process can be coupled so that cross using  $\mathcal Z$  is easier.

# For Large Rectangles



## Colouring is Local and Cells are Small

Let  $A \subseteq D$  and  $\delta > 0$ .

Let nearby  $(A, \delta)$  be the event that the colouring of A is determined by  $\mathcal{Z}$  in  $A_{\delta}$  under both metrics and all cells that intersect A have Euclidean diameter at most  $\delta$ .

$$\lim_{\lambda o \infty} \mathbb{P}_{p,\lambda}(\mathsf{nearby}(A,\delta)) = 1.$$







Start with a triangle centred at the origin. Use the following mechanism to colour triangles. Let  $\rho < 1/2,$ 

• Generate hyperbolic Voronoï percolation



- Generate hyperbolic Voronoï percolation
- cross holds for all rectangles and nearby holds  $\Rightarrow$  there is no black path in the hyperbolic cells from  $T_o$  to the boundary of the ball



- Generate hyperbolic Voronoï percolation
- cross holds for all rectangles and nearby holds  $\Rightarrow$  there is no black path in the hyperbolic cells from  $T_o$  to the boundary of the ball
- The event nearby ensures nearby ∩ "no black path" is independent of Z outside a larger ball



- Generate hyperbolic Voronoï percolation
- cross holds for all rectangles and nearby holds
   ⇒ there is no black path in the hyperbolic cells
   from T<sub>o</sub> to the boundary of the ball
- The event nearby ensures nearby  $\cap$  "no black path" is independent of  $\mathcal Z$  outside a larger ball
- closed( $T_o$ ) := nearby  $\cap$  "no black path"



- Generate hyperbolic Voronoï percolation
- cross holds for all rectangles and nearby holds  $\Rightarrow$  there is no black path in the hyperbolic cells from  $T_o$  to the boundary of the ball
- The event nearby ensures nearby  $\cap$  "no black path" is independent of  $\mathcal Z$  outside a larger ball
- closed(T<sub>o</sub>) := nearby ∩ "no black path"
- closed(T) can be defined for all faces. Colour T white if closed(T) holds. Otherwise, black.



Dependent!

- Dependent!
- But not that dependent. (k independent)

- Dependent!
- But not that dependent. (k independent)
- $\lim_{\lambda o \infty} \mathbb{P}_{\lambda}(\mathit{T} \text{ is black}) = 0.$  (Duality with black for p > 1/2)

- Dependent!
- But not that dependent. (k independent)
- $\lim_{\lambda o \infty} \mathbb{P}_{\lambda}(\mathcal{T} \text{ is black}) = 0.$  (Duality with black for p > 1/2)
- Since the degree is bounded and the process is k independent, there exists some  $p_1 > 0$  such that if  $\mathbb{P}_{\lambda}(T \text{ is black}) < p_1$ , then almost surely all black clusters are finite.

- Dependent!
- But not that dependent. (k independent)
- ullet  $\lim_{\lambda o\infty}\mathbb{P}_{\lambda}({\mathcal T}$  is black) = 0. (Duality with black for p>1/2)
- Since the degree is bounded and the process is k independent, there exists some  $p_1 > 0$  such that if  $\mathbb{P}_{\lambda}(T \text{ is black}) < p_1$ , then almost surely all black clusters are finite.
- p < 1/2 and  $\lambda$  large  $\Rightarrow$  The black clusters of triangles must be finite a.s.

• If there is an unbounded cluster of black hyperbolic cells

- If there is an unbounded cluster of black hyperbolic cells
- Then there will be a black curve in the hyperbolic cells tending towards the boundary of the disk.

- If there is an unbounded cluster of black hyperbolic cells
- Then there will be a black curve in the hyperbolic cells tending towards the boundary of the disk.
- closed(T) cannot hold for any triangles this curve intersects ⇒
   There exists a black cluster of triangles that is infinite.

- If there is an unbounded cluster of black hyperbolic cells
- Then there will be a black curve in the hyperbolic cells tending towards the boundary of the disk.
- closed(T) cannot hold for any triangles this curve intersects ⇒
   There exists a black cluster of triangles that is infinite.
- Hence for p < 1/2 and large enough  $\lambda$ , almost surely there are no unbounded black clusters in  $C_{\mathbb{H}}(\mathcal{Z})$ .

- If there is an unbounded cluster of black hyperbolic cells
- Then there will be a black curve in the hyperbolic cells tending towards the boundary of the disk.
- closed(T) cannot hold for any triangles this curve intersects ⇒
   There exists a black cluster of triangles that is infinite.
- Hence for p < 1/2 and large enough  $\lambda$ , almost surely there are no unbounded black clusters in  $C_{\mathbb{H}}(\mathcal{Z})$ .
- $\lim_{\lambda \to \infty} p_c(\lambda) = 1/2$ .

- If there is an unbounded cluster of black hyperbolic cells
- Then there will be a black curve in the hyperbolic cells tending towards the boundary of the disk.
- closed(T) cannot hold for any triangles this curve intersects ⇒
   There exists a black cluster of triangles that is infinite.
- Hence for p < 1/2 and large enough  $\lambda$ , almost surely there are no unbounded black clusters in  $C_{\mathbb{H}}(\mathcal{Z})$ .
- $\lim_{\lambda \to \infty} p_c(\lambda) = 1/2$ .

#### Thank you! Questions?