Questao 1.

a)

20A + 5B <= 9500

0.04A + 0.12B <= 40

A+B <= 550

Z = 45A + 20B

Do algoritmo: Z=22250,A=450,S2=10,B=100.

b)

0.04A + 0.12B +S2 = 40 - reta 1

A+B+S3 = 550 - reta 2

20A + 5B +S1 = 9500 - reta 3

Z = 45A + 20B - reta 4

Código: Questao1_Grafico.py import matplotlib.pyplot as plt

import numpy as np

x1 = np.arange(0,550,1)

x2 = np.arange(0,550,1)

x3 = np.arange(0,550,1)

x4 = np.arange(0,550,1)

y1 = (40-0.04*x1)/0.12

y2 = 550-x2

y3 = (9500-20*x3)/5

```
y4 = (22250-45*x4)/20

plt.plot(y1,x1)

plt.plot(y2,x2)

plt.plot(y3,x3)

plt.plot(y4,x4)

plt.rcParams["figure.figsize"] = (50,50)

plt.show()
```

O ponto de optimização é o ponto de encontro das retas verde, vermelha e laranja, que se dá em A=450, B=100 e Z=22250.

```
c)
20A + 5B +S1 = 9500 - reta 1(y=A1)
0.04A + 0.12B +S2 = 40 - reta 2(y=A2)
A+B+S3 = 550(reta 3)
Z = 45A+20B
No ponto (0,0):
S1=9500
S2=40
S3=550
```

Variáveis Básicas	Z	A	В	S1	S2	S3	SOLUCAO
Z	0	-45	-20	0	0	0	0
S1	0	20	5	1	0	0	9500
S2	0	0.04	0.12	0	1	0	40
S3	0	1	1	0	0	1	550

Do algoritmo: Z=22250,A=450,S2=10,B=100.

Algoritmo: questao1.py em anexo

d) Mudando S1 inicial para 9501: Z=22250, Mudando S2 inicial para 41: 22250, Mudando S3 inicial para 551:22261.67.

Logo S3 é o limitante e, portanto, deve-se aumentar o limite de armazenamento.

Questão 2.

a) A->Combustível Regular, B-> Combustível Premium, C-> Combustível Supreme.

Matéria-Prima : 7A + 11B + 15C <=154

Tempo: 10A + 8B + 12C <=80

A<=9 B<=6 C<=5

Z = 150A + 175B + 250C

b)

7A + 11B + 15C + S1=154

10A + 8B + 12C + S2=80

A + S3=9

B + S4 = 6

C + S5 = 5

Z = 150A + 175B + 250C

					1		1			1
	Z	Α	В	С	S1	S2	S3	S4	S5	SOLUCAO
Z	0	-150	-175	-250	0	0	0	0	0	0
S1	0	7	11	15	1	0	0	0	0	154
S2	0	10	8	12	0	1	0	0	0	80
S3	0	1	0	0	0	0	1	0	0	9
S4	0	0	1	0	0	0	0	1	0	6
S5	0	0	0	1	0	0	0	0	1	5

b) Algoritmo:questao2.py

Z=1530, S1=65.6, A=3.2, S3 = 5.8, B = 6.0, S5 = 5.0

c) S1=155:Z=1530, S2=81: Z=1545, S3=10: Z=1530, S4=7: Z=1585, S5=6: Z=1530. Logo aumentar S4 em uma unidade gera o maior acréscimo de lucro, portanto deve-se aumentar a capacidade de armazenamento do combustível premium.

3.

a) Z = 9.3

reta 1 : 1.2x+2.25y = 14

reta 2 : x + 1.1y = 8reta 3 : 2.5x + y = 9

reta 4: 1.75x + 1.25y = 9.3

Código: Questao3_grafico.py

	Z	Х	Υ	S1	S2	S3	SOLUCAO
Z	1	-1.75	-1.25	0	0	0	0
S1	0	1.2	2.25	1	0	0	14
S2	0	1	1.1	0	1	0	8
S3	0	2.5	1	0	0	1	9

Z = 9.308

Y = 5.469

X = 1.412

S2 = 0.572

$$Z = 3x1 + 2x2 + 3x3$$

 $x1 + 4x2 + x3 >= 7$
 $2x1 + x2 + x4 >= 10$

$$Z = 3x1 + 2x2 + 3x3 + MR1 + MR2$$

 $x1 + 4x2 + x3 - S1 + R1 = 7$
 $2x1 + x2 + x4 - S2 + R2 = 10$

5.

M=100

Z=2x1+2x2+4x3-MR1-MR2

 $2x1+x2+x3 \le 2 : 2x1+x2+x3+S1+R1=2$

 $3x1+4x2+2x3 \ge 8: 3x1+4x2+2x3-S2+R2=8$

*x*1,*x*2,*x*3≥0 :

	Z	X1	X2	X3	R1	R2	S1	S2	SOMA
Z	1	-2	-2	-4	М	М	0	0	0
S1	0	2	1	1	1	0	1	0	2
S2	0	3	4	2	0	1	0	-1	8

Utilizando o programa questao5.py, a resposta é: Z=4, x2=2 e S2=0. Portanto, o máximo valor assumido por Z é 4.