Problema D Decoerência Quântica

Tempo limite: 0,5 s | Limite de memória: 1 GiB

A SBC (Sociedade Brasileira de Computação) está desenvolvendo diversos modelos de arquiteturas para computadores quânticos, com o objetivo de torná-los acessíveis a todas as pessoas no futuro. Um dos principais desafios enfrentados pelas equipes de desenvolvimento é a decoerência quântica, que ocorre quando um qubit em superposição (representando simultaneamente os estados 0 e 1) colapsa para 0 ou 1 devido à interferência do ambiente.

Para cada modelo desenvolvido, será analisada a taxa de decoerência quântica. Para isso, os qubits serão observados em estado isolado e sob condições normais de temperatura e pressão. A taxa de decoerência quântica é a razão entre a quantidade de qubits que colapsaram em condições normais de temperatura e pressão e a quantidade de qubits que estavam em superposição no estado isolado.

Como existem vários modelos, foi solicitado a você o desenvolvimento de um programa que calcule essa taxa. Afinal, você está precisando de horas complementares para se formar, não é mesmo?!

Entrada

A primeira linha contém um inteiro N ($10 \le N \le 10^5$) indicando o número de qubits do computador. As duas próximas linhas contêm as strings S em estado isolado e T sob condições normais de temperatura e pressão, respectivamente, de tamanho N, compostas pelos caracteres $\{0, 1, *\}$, onde '*' indica um qubit em superposição.

É garantido que pelo menos um qubit esteja em superposição em estado isolado e que todo qubit que não está em superposição na string S permanece idêntico na string T.

Saída

A saída deve conter a taxa de decoerência quântica em forma decimal, com exatamente duas casas decimais.

Exemplo de entrada 1	Exemplo de saída 1
10 0*1**100*1 0110*100*1	0.50

Exemplo de entrada 2	Exemplo de saída 2
13	0.80
*1*01*100*01*	
01*0101001011	

Exemplo de entrada 3	Exemplo de saída 3
25 *10*1*110*01*011100*110*0 *1011*110001*011100*110*0	0.29