calculus

8

Limit, Continuity and Differentiability Limit Existence at a Point

• Left Limit (LHL): $\lim_{x \to a^{-}} f(x) = \lim_{h \to 0} f(a-h)$

Right Limit (RHL): $\lim_{x \to a^+} f(x) = \lim_{h \to 0} f(a+h)$

 $\lim_{x\to a} f(x)$ exists, iff both LHL and RHL exists.

- Indeterminate forms: 0/0, ∞/∞, 0 x∞, ∞ ∞, 0°, 1∞, 0∞
- L Hospital's Rule: If $\lim_{x\to a} [f(x)/g(x)]$ is of the form either 0/0 or ∞/∞ then

 $\lim_{x \to a} [f(x)/g(x)] = \lim_{x \to a} [f'(x)/g'(x)]$

Continuity

A function f(x) is said to be continuous at x = a if:

$$\lim_{x \to a^{+}} f(x) = \lim_{x \to a^{-}} f(x) = f(a)$$

• If f(x) and g(x) is continuous function then following are also continuous.

(i) f(x) + g(x), (ii) $f(x) \cdot g(x)$, (iii) f(x) - g(x), (iv) f(x)/g(x) [$g(x) \neq 0$]

 Polynomial, Exponential, Sin and Cos functions are continuous everywhere.

Differentiability

A function f(x) is said to be differentiable at x = a if it is continuous at x = a and if left derivative = f'(a) =right derivative

i.e.
$$\lim_{h\to 0^-} \frac{f(a)-f(a-h)}{h} = f'(a) = \lim_{h\to 0^+} \frac{f(a+h)-f(a)}{h}$$

• If f(x) is differentiable in (a, b), then it is always continuous at (a, b), but converse need not be true.

Mean Value Theorems

Rolle's Mean Value Theorem

If (i) 'f(x)' is continuous in [a, b], (ii) 'f(x)' is differentiable in (a, b), (iii) f(a) = f(b) then $\exists c \in (a, b)$ such that f'(c) = 0

Lagrange's Mean Value Theorem

If (i) 'f(x)' is continuous in [a, b], (ii) 'f(x)' is differentiable in (a, b)

then $\exists c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$

Cauchy's Mean Value Theorem

Let f(x) and g(x) are two functions if

- (i) f(x) and g(x) are continuous in [a, b]
- (ii) f(x) and g(x) are differentiable in (a, b)
- (iii) $g'(x) \neq 0 \ \forall x \in (a, b)$

then $\exists c \in (a, b)$ such that $\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$

Derivatives

•
$$\frac{d}{dx}(\sin x) = \cos x$$

•
$$\frac{d}{dx}(\tan x) = \sec^2 x$$

•
$$\frac{d}{dx}(\sec x) = \sec x \cdot \tan x$$

$$\bullet \quad \frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$$

$$\bullet \quad \frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$$

$$\bullet \quad \frac{d}{dx}(\sec^{-1}x) = \frac{1}{x\sqrt{x^2 - 1}}$$

•
$$\frac{d}{dx}(\sin hx) = \cosh x$$

$$\bullet \quad \frac{d}{dx}(e^x) = e^x$$

$$\bullet \quad \frac{d}{dx}[f(x)]^n = n \cdot [f(x)]^{n-1}$$

•
$$\frac{du}{dx} = \frac{du}{dy}\frac{dy}{dx}$$
 (chain rule)

•
$$\frac{d}{dx}(\cos x) = -\sin x$$

•
$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

•
$$\frac{d}{dx}(\csc x) = \csc x \cot x$$

$$\bullet \quad \frac{d}{dx}(\cos^{-1}x) = \frac{-1}{\sqrt{1-x^2}}$$

$$\bullet \quad \frac{d}{dx}(\csc^{-1}x) = \frac{-1}{x\sqrt{x^2 - 1}}$$

•
$$\frac{d}{dx}(\cosh x) = \sinh x$$

•
$$\frac{d}{dx}(a^x) = a^x \cdot \log a$$

$$\bullet \quad \frac{d}{dx}(ax+b)^n = n \cdot (ax+b)^{n-1}a$$

•
$$\frac{d}{dx}(uv) = u \cdot \frac{dv}{dx} + v \cdot \frac{du}{dx}$$

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx}}{v^2}$$

•
$$\sinh x = \frac{e^x - e^{-x}}{2}$$

$$\cosh x = \frac{e^x + e^{-x}}{2}$$

•
$$\frac{d}{dx}(\log_e x) = \frac{1}{x}$$

Integrals

$$\int x^n \cdot dx = \frac{x^{n+1}}{n+1}; \ (n \neq -1)$$

•
$$\int a^x = \frac{a^x}{\log a}$$

•
$$\int \frac{f'(x)}{f(x)} \cdot dx = \log [f(x)]$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \cdot \tan^{-1} \frac{x}{a}$$

•
$$\int \sinh x = \cosh x$$

•
$$\int \cosh x = \sinh x$$

•
$$\int \sin x \cdot dx = -\cos x$$

•
$$\int \tan x \cdot dx = \log \cos x = \log \sec x$$

•
$$\int \cot x = \log \sin x$$

•
$$\int \sec x \cdot dx = \log(\sec x + \tan x)$$

•
$$\int \csc x \cdot dx = \log (\csc x - \cot x)$$

•
$$\int \sec^2 x \cdot dx = \tan x$$

•
$$\int e^{ax} \sin bx \, dx = \frac{e^{ax}}{a^2 + b^2} \quad (a \sin bx - b \cos bx)$$

$$\int e^{ax} \cos bx \, dx = \frac{e^{ax}}{a^2 + b^2} \quad (a\cos bx + b\sin bx)$$

•
$$\int \sqrt{a^2 - x^2} \cdot dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a}$$

•
$$\int \sqrt{a^2 - x^2} \cdot dx = \frac{x}{2} \sqrt{a^2 + x^2} + \frac{a^2}{2} \sinh^{-1} \frac{x}{a}$$

•
$$\int \sqrt{x^2 - a^2} \cdot dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \cosh^{-1} \frac{x}{a}$$

Definite Integrals

If f(x) is continous in [a, b] and F(x) is any antiderivative of f(x) in [a, b]then $\int_{a}^{b} f(x) dx = F(b) - F(a)$.

If f(x) is continous on [a, b] then $F(x) = \int_{a}^{b} f(t) \cdot dt$ is differentiable at every

point of x in [a, b] and $\frac{dF}{dx} = \frac{d}{dx} \int_{a}^{b} f(t) \cdot dt = f(x)$.

i.e., If f(x) is continous on [a, b] then \exists a function F(x) whose derivative on [a, b] is f(x).

Theorem 3:

If f(x) is continous on [a, b] and u(x) and v(x) are differentiable functions of x whose values lie in [a, b] then $\frac{d}{dx} \int_{a}^{v(x)} f(t) \cdot dt = f(v(x)) \frac{dv}{dx} - f(u(x)) \cdot \frac{du}{dx}$

Properties of Definite Integrals

$$1. \quad \int_{a}^{a} f(x) \cdot dx = 0$$

2.
$$\int_{a}^{b} f(x) \cdot dx = \int_{b}^{a} f(z) \cdot dz$$

3.
$$\int_{a}^{b} f(x) \cdot dx = -\int_{b}^{a} f(x) \cdot dx$$

$$4. \quad \int_{a}^{b} k \cdot dx = k(b-a)$$

5.
$$\int_{a}^{b} f(x) \cdot dx = \int_{a}^{c} f(x) \cdot dx + \int_{c}^{b} f(x) \cdot dx$$
 6.
$$\int_{0}^{a} f(x) \cdot dx = \int_{0}^{a} f(a-x) \cdot dx$$

6.
$$\int_{0}^{a} f(x) \cdot dx = \int_{0}^{a} f(a-x) \cdot dx$$

7.
$$\int_{-a}^{a} f(x) \cdot dx = 2 \int_{0}^{a} f(x) \cdot dx$$
; if $f(x)$ is even function $f(-x) = f(x)$
$$= 0$$
; if $f(x)$ is odd function $f(-x) = -f(x)$

8.
$$\int_{a}^{b} f(x) \cdot dx = \int_{a}^{b} f(a+b-x) \cdot dx$$

9.
$$\int_{0}^{2a} f(x) \cdot dx = \int_{0}^{a} f(x) \cdot dx + \int_{0}^{a} f(2a - x) \cdot dx$$

10.
$$\int_{0}^{2a} f(x) \cdot dx = 2 \int_{0}^{a} f(x) \cdot dx; \text{ if } f(2a-x) = f(x)$$
$$= 0; \text{ If } f(2a-x) = -f(x)$$

11.
$$\int_{0}^{na} f(x) \cdot dx = n \cdot \int_{0}^{a} f(x) \cdot dx$$
; if $f(x+a) = f(x)$

[f(x) is periodic function with period 'a']

12.
$$\int_{0}^{a} x \cdot f(x) \cdot dx = \frac{a}{2} \int_{0}^{a} f(x) \cdot dx$$
; if $f(a-x) = f(x)$

13. Mean value theorem for definite integrals: Let f be continuous in

(a, b) then
$$\exists c \in (a, b)$$
 such that $f(c) = \frac{a}{(b-a)}$

f(c) is the average value of the function in the interval (a, b).

14.
$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx$$
 If $f(x) \le g(x)$ on (a, b)

15.
$$\int_{0}^{\pi/2} \sin^{n} x \cdot dx = \int_{0}^{\pi/2} \cos^{n} x \cdot dx = \frac{(n-1) \cdot (n-3) \cdot (n-5) \dots}{n \cdot (n-2)(n-4) \dots} \times K$$

Where, K = 1; if n is odd and $K = \pi/2$; if n is even

Improper Integrals

- $\int_{0}^{\infty} f(x) \cdot dx$ is "improper integral";
 - If $a = -\infty$ or $b = \infty$ or both
 - (ii) If $f(x) = \infty$ for one or more values of x in [a, b].
- $\int f(x) \cdot dx$ is "convergent", if the value of integral is "finite".
- $\int_{0}^{\infty} f(x) \cdot dx$ is "divergent", if the value of integral is "infinite".
- If $0 \le f(x) \le g(x)$; $\forall x$ and $\int_{a}^{\infty} g(x) \cdot dx$ converges then $\int_{a}^{\infty} f(x)$ also converges.
- If $0 \le g(x) \le f(x)$; $\forall x$ and $\int_{-\infty}^{\infty} g(x) \cdot dx$ diverges then $\int_{-\infty}^{\infty} f(x)$ also diverges.
- If f(x) and g(x) are two functions, such that $\lim_{n\to\infty} \frac{f(x)}{g(x)} = k$ where $k = \text{finite and } k \neq 0 \text{ then}$ $\int_{-\infty}^{\infty} f(x) \cdot dx$ and $\int_{-\infty}^{\infty} g(x) \cdot dx$ "converge" or "diverge" together.
- 7. $\int_{-P^x}^{\infty} e^{-P^x} \cdot dx$ and $\int_{-P^x}^{b} e^{P^x} \cdot dx$ converges for any constant P > 0 and diverges for $P \le 0$.
- 8. $\int_{a}^{b} \frac{dx}{(b-x)^{p}}$ is convergent iff P < 1.
- 9. $\int_{a}^{b} \frac{dx}{(x-a)^{p}}$ is convergent iff P < 1.
- 10. $\int \frac{dx}{x^P}$ converges if P > 1 and diverges if $P \le 1$.

Total Derivatives

If u = f(x, y) where x and y are functions of t, then the "total derivative" of u with respect to t is:

$$\frac{du}{dt} = \frac{\partial u}{\partial x} \left(\frac{dx}{dt} \right) + \frac{\partial u}{dy} \left(\frac{dy}{dt} \right)$$

By putting t = x in above equation, we get

 $\frac{du}{dx} = \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \cdot \frac{dy}{dx}$; where x and y are connected by some relation.

partial Derivatives

1. If
$$u = f(x, y)$$
, then $\frac{\partial u}{\partial x} = \lim_{h \to 0} \frac{\left[f(x+h, y) - f(x, y)\right]}{h}$ and

$$\frac{\partial u}{\partial y} = \lim_{k \to 0} \frac{\left[f(x, y + k) - f(x, y) \right]}{k}.$$

2. If u = f(x, y), where x = g(r, s) and y = h(r, s) then

$$\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x} \cdot \frac{\partial x}{\partial r} + \frac{\partial u}{\partial y} \cdot \frac{\partial y}{\partial r}$$

$$\frac{\partial u}{\partial s} = \frac{\partial u}{\partial x} \cdot \frac{\partial x}{\partial s} + \frac{\partial u}{\partial y} \cdot \frac{\partial y}{\partial s}$$

3. If u = f(x, y) is a homogenous function of degree 'n' then

$$x \cdot u_x + y \cdot u_y = n \cdot u$$

$$x^2 u_{xx} + 2xy \cdot u_{xy} + y^2 u_{yy} = n(n-1)u$$

4. If u = f(x, y, z) is a homogenous function of degree 'n', then

$$x \cdot u_x + y \cdot u_y + z \cdot u_z = n \cdot u$$

5. If u = f(x, y) is not homogenous function, but F(u) is a homogenous function of degree 'n', then

$$x \cdot u_{x} + y \cdot u_{y} = n \left[\frac{F(u)}{F'(u)} \right] = G(u)$$

$$x^{2} \cdot u_{xx} + 2xy \cdot u_{xy} + y^{2} \cdot u_{yy} = G(u) \left[G'(u) - 1 \right]$$

Maximum and Minima [Extremum]

- A necessary condition for f(a) to be an extreme value of f(x) is f'(a) = 0
- 2. The vanishing of f'(a) = 0 is only a necessary but not a sufficient condition for f(a) to be an extreme value of f(x).
- 3. Stationary Values: A function f(x) is said to be stationary for $x = C_{and}$ f(C) is a stationary value of f(x) if f'(C) = 0.
- 4. To find points of maximum, points of minimum and saddle points the following steps are required:
 - (i) Put f'(x) = 0 and find stationary points (x_i)
 - (ii) If $f''(x_i) > 0$ then f(x) is minimum at $x_i \forall x_i$.
 - (iii) If $f''(x_i) < 0$ then f(x) is maximum at $x_i \forall x_i$.
 - (iv) f'(x) = 0 and f''(x) = 0 and so on
 - (a) Continue finding derivatives at x_i untill the first non-zero derivative is found.
 - (b) If the first non-zero derivative is obtained at odd derivative then x_i is a point of inflection or saddle point. If the first nonzero derivative is obtained at even derivative then x_i is either a point of maximum or a point of minimum depending on whether the derivative is negative or positive respectively.

Sufficient condition for extrema:

Theorem: f(C) is an extremum of f(x) iff f'(x) changes sign as x passes through C.

Case (i): If f'(x) = 0 and f'(x) changes sign from positive to -ve as 'x' passes through C then f(C) is maximum.

Case (ii): If f'(x) = 0 and f(x) changes sign from –ve to +ve as x passes through C then f(C) is minimum.

Case (iii): If f'(x) = 0 and f(x) does not changes sign as x passes through C then f(C) is not extremum but rather a point of inflection or saddle point.

6. For 2-variable functions:

- (i) Put $f_x = 0$ and $f_y = 0$; find stationary points by solving simultaneously.
- (ii) If $f_{xx}f_{yy} > f_{xy}^2$ and (a) If $f_{xx} > 0$ then f(x) is "minimum" at a, (b) If $f_{xx} < 0$ then f(x) is "maximum" at a
- (iii) If $f_{xx} f_{yy} f_{xy}^2 < 0$ then x = a is a point of inflection or saddle point.