TLS Information Leakage: CRIME Attack

Noemi Glaeser

CMSC 818O

October 1, 2019

Overview

Background

TLS

Cookies

Compression

The Attack

How it works

Demo

Mitigation

Other TLS Attacks

Conclusion

Transport Layer Security (TLS)

- Authenticity
 - Verify client and server identities through certificates
- Confidentiality
 - Agree on cipher suite and key

Cookies

- Websites have no memory
- Solution: cookies
 - Small amounts of information stored on your computer by websites, e.g., session ID, login state
 - If session cookies are compromised, your session can be hijacked
- Cookies are sent in every packet header

- ▶ Browsers implemented compression of packets before encryption (i.e., at the SSL/TLS level)
 - Replace repeated byte sequences with pointers

Example

```
"foobarfoo" \rightarrow "[0]bar[0]" dict \rightarrow [0: "foo"]
```

▶ **Idea:** If we can inject plaintext, we can use how that affects the length of the encrypted packet to guess the cookie

Example

Original packet:

```
"...Cookie: secret=helloworld..."
```

length = 59

Compression Ration Info-leak Made Easy (CRIME)

- Client-side attack
- ► Main idea: exploit the packet length property, which isn't hidden, using compression as an attack vector
- Guess one byte at a time and compare packet lengths
 - Can be done in 4-6 tries per byte with a binary search approach
 - ▶ Base64: $2^6 = 64$ possible byte values
 - ► Hexadecimal: 2⁴ = 16 possible byte values
- Various approaches to inject the byte guess:
 - POST body (JS with cross-site scripting attck)
 - cross-domain requests
 - insert into the query string in GET request
 - tags
 - probably many others...

Demo

Mitigation

- ► Turn off SSL compression
 - ▶ latest browsers don't even offer it
- ► The usual: don't access sketchy sites or click on odd links

Other TLS Attacks

- Browser Reconnaisance and Exfiltration via Adaptive Compression of Hypertext (BREACH)
 - ▶ Same thing but leveraging HTTP compression
- Browser Exploit Against SSL/TLS (BEAST)
 - Exploits implementation of cipher block chaining (CBC) mode in TLS 1.0
- Lucky 13
 - Timing attack

Conclusion

- As much as stuff gets broken in real life, it's hard to break it on purpose in a specific way
- ▶ It's important to pick the right tools from the beginning
- Document your troubleshooting

Questions?