Algebra 2 Notes

by Tyler Wright

github.com/Fluxanoia fluxanoia.co.uk

These notes are not necessarily correct, consistent, representative of the course as it stands today, or rigorous. Any result of the above is not the author's fault.

These notes are in progress.

Contents

1	The	Fundamentals	3
	1.1	Rings (1.1)	3
	1.2	Properties of Rings (1.3)	3
	1.3	Units (1.6-7)	3
	1.4	Fields (1.9)	3
	1.5	Subrings (1.14-15)	3
	1.6	The Gaussian Integers (1.17, 1.19)	4
	1.7	Product Rings (1.20)	4
	1.8	Distributivity of Taking Units (1.22)	4
	1.9	Polynomials (1.23)	4
	1.10	Ring Homomorphisms (2.7, 2.12)	4
		Ring Isomorphisms (2.1)	5
			5
	1.13	Ideals (2.15-16)	5
		Preservation of Satisfaction (2.20)	5
		Cosets (2.22)	5
2	Quo	ptients	6
2	Quo 2.1	Quotient Rings (2.24-25)	6
2	•		
2	2.1	Quotient Rings (2.24-25)	6
2	2.1 2.2	Quotient Rings (2.24-25)	6 6
2	2.1 2.2 2.3	Quotient Rings (2.24-25)	6 6
2	2.1 2.2 2.3 2.4	Quotient Rings (2.24-25)	6 6 6
2	2.1 2.2 2.3 2.4 2.5	Quotient Rings (2.24-25)	6 6 6 7
2	2.1 2.2 2.3 2.4 2.5 2.6	Quotient Rings (2.24-25)	6 6 6 7 7
2	2.1 2.2 2.3 2.4 2.5 2.6 2.7	Quotient Rings (2.24-25)	6 6 6 7 7
2	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	Quotient Rings (2.24-25)	6 6 6 7 7 7
2	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	Quotient Rings (2.24-25) The Homomorphism Theorem (3.1) Chinese Remainder Theorem (3.4) Properties of the Integers (3.6) Composition of Ideals (3.8) Ideals with Units (3.10) Classification of Fields (3.11) Homomorphisms from Fields (3.13) Induced Ideals (3.15)	6 6 6 7 7 7 7 8
2	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	Quotient Rings (2.24-25) The Homomorphism Theorem (3.1) Chinese Remainder Theorem (3.4) Properties of the Integers (3.6) Composition of Ideals (3.8) Ideals with Units (3.10) Classification of Fields (3.11) Homomorphisms from Fields (3.13) Induced Ideals (3.15) The Isomorphism Theorems (3.17)	6 6 6 7 7 7 7 8 8
2	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	Quotient Rings (2.24-25) The Homomorphism Theorem (3.1) Chinese Remainder Theorem (3.4) Properties of the Integers (3.6) Composition of Ideals (3.8) Ideals with Units (3.10) Classification of Fields (3.11) Homomorphisms from Fields (3.13) Induced Ideals (3.15) The Isomorphism Theorems (3.17) 2.10.1 The First Isomorphism Theorem	6 6 6 7 7 7 7
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10	Quotient Rings (2.24-25) The Homomorphism Theorem (3.1) Chinese Remainder Theorem (3.4) Properties of the Integers (3.6) Composition of Ideals (3.8) Ideals with Units (3.10) Classification of Fields (3.11) Homomorphisms from Fields (3.13) Induced Ideals (3.15) The Isomorphism Theorems (3.17) 2.10.1 The First Isomorphism Theorem 2.10.2 The Second Isomorphism Theorem	6 6 6 6 7 7 7 7 8 8 8

1 The Fundamentals

1.1 Rings (1.1)

A ring is a set with two binary operations, addition and multiplication, such that they are both commutative, associative, and addition is distributive over multiplication, so for a, b, and c in some ring:

$$(a+b)c = ac + bc.$$

We also have that rings must contain 'zero' and 'one' elements, the additive and multiplicative identities, and every element of the ring has an additive inverse.

1.2 Properties of Rings (1.3)

For a ring R with a, b, and c in R:

- if a + b = b then a = 0, 0 is unique,
- if $a \cdot x = x$ for all x in R, then a = 1, 1 is unique,
- if a + b = 0 = a + c then b = c, -a is unique,
- we have $0 \cdot a = 0$,
- we have $-1 \cdot a = -a$,
- we have 0 = 1 if and only if $R = \{0\}$.

1.3 Units (1.6-7)

For a ring R, with r in R, if there exists some s such that rs = 1 then r is a unit and $s = r^{-1}$ is the multiplicative inverse of r. We write R^{\times} to be the set of all units in R, which is an abelian group under multiplication.

1.4 Fields (1.9)

A non-zero ring R is a field if $R \setminus \{0\} = R^{\times}$.

1.5 Subrings (1.14-15)

For a ring R, $S \subseteq R$ is a subring of R if it is a ring and contains zero and one. This is equivalent to saying S is closed under addition, multiplication, and additive inverses, and contains 1.

1.6 The Gaussian Integers (1.17, 1.19)

We define the Gaussian integers as:

$$\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\},\$$

which is the smallest subring of \mathbb{C} containing i. Generally, for α in \mathbb{C} , $\mathbb{Z}[\alpha]$ is the smallest subring containing α and for a ring R with a subring S, for some β in R, we have $S[\beta]$ is the smallest subring of R containing S and S.

1.7 Product Rings (1.20)

For R and S rings, we have that $R \times S$ is a ring under component-wise addition and multiplication.

1.8 Distributivity of Taking Units (1.22)

For rings R and S, $(R \times S)^{\times} = R^{\times} \times S^{\times}$.

Proof. We consider:

$$(r,s) \in (R \times S)^{\times} \iff (r,s)(p,q) = (1,1) \text{ for some } (p,q) \in R \times S$$

 $\iff rp = 1 \text{ and } sq = 1 \text{ for some } p \in R \text{ and } q \in S$
 $\iff r \in R^{\times} \text{ and } s \in S^{\times},$

as required.

1.9 Polynomials (1.23)

For a ring R and a symbol x, we have that the following is a ring:

$$R[x] = \{a_0 + a_1x + \dots + a_nx^n : n \in \mathbb{Z}_{\geq 0}, (a_i)_{i \in [n]} \in \mathbb{R}^n\}.$$

1.10 Ring Homomorphisms (2.7, 2.12)

For R and S rings, a map φ from R to S is a ring homomorphism if it preserves addition and multiplication. This implies that 0 and 1 are fixed points of φ and taking additive inverses is preserved by φ .

We have some properties of ring homomorphisms:

- $\varphi(0) = 0$,
- $\varphi(-a) = -\varphi(a)$,
- the image of φ) is a subring of S,
- homomorphisms are preserved under composition.

1.11 Ring Isomorphisms (2.1)

A ring isomorphism is a bijective ring homomorphism.

1.12 The Kernel (2.13, 2.18)

The kernel of a homomorphism is the set of values it maps to 0. This is not necessarily a ring. The kernel is $\{0\}$ if and only if the homomorphism is injective.

1.13 Ideals (2.15-16)

For a ring R with $I \subseteq R$, I is an ideal if it is an additive subgroup of R and for all r in R and i in I, ri is in I. The kernel of homomorphisms are ideals.

1.14 Preservation of Satisfaction (2.20)

For a ring R with r in R, if for some n in $\mathbb{Z}_{\geq 0}$ we have $(a_i)_{i \in [n]}$ in \mathbb{Z}^n such that:

$$a_n r^n + \dots + a_1 r + a_0 = 0,$$

then for any homomorphism φ on R to some other ring S, we have that:

$$\varphi(a_n r^n + \dots + a_1 r + a_0) = 0.$$

1.15 Cosets (2.22)

For a ring R with r in R and an ideal I of R, the coset of r modulo I is the set:

$$r+I = \{r+i : i \in I\}.$$

For each r and s in R, we define a relation by:

$$r \sim s \iff r - s \in I$$
,

which is an equivalence relation, with equivalence classes the cosets of R modulo I. Thus, cosets are either identical or disjoint.

2 Quotients

2.1 Quotient Rings (2.24-25)

The set of cosets modulo I of a ring R forms a ring, the quotient ring R/I of R by I. We define the operations for a and b in R:

$$(a+I) + (b+I) = (a+b) + I,$$

 $(a+I)(b+I) = ab + I.$

2.2 The Homomorphism Theorem (3.1)

For a homomorphism φ from R to S, taking $I = \text{Ker}(\varphi)$, we have that $R/I \cong \varphi(R)$, via the map $r + I \mapsto \varphi(r)$.

Proof. We consider the proposed map and name it ψ . We can see that ψ is well defined as for some r in R, for any r' in r+I, r'=r+i for some i in I so:

$$\varphi(r') = \varphi(r) + \varphi(i) = \varphi(r).$$

Additionally, ψ is trivially a homomorphism, and is surjective by the definition of the image, so we consider injectivity. If for some r in R, we have $\psi(r+I) = 0$ then:

$$\varphi(r) = 0 \Longrightarrow r \in I \Longrightarrow r + I = I,$$

so ψ is an isomorphism.

2.3 Chinese Remainder Theorem (3.4)

For positive, coprime integers m and n:

$$\mathbb{Z}/(mn\mathbb{Z}) \cong (\mathbb{Z}/m\mathbb{Z}) \times (\mathbb{Z}/n\mathbb{Z}).$$

2.4 Properties of the Integers (3.6)

We have the following properties of \mathbb{Z} :

- every ideal of \mathbb{Z} is of the form $n\mathbb{Z}$ for some non-negative integer n,
- every ring R admits a unique homomorphism from \mathbb{Z} to R,
- every ring R contains a unique subring which is either isomorphic to \mathbb{Z} or $\mathbb{Z}/n\mathbb{Z}$ for some non-negative integer n.

2.5 Composition of Ideals (3.8)

For I and J ideals of a ring R:

- $I \cap J$ is an ideal,
- I + J is an ideal,
- $IJ = \{\sum_{k=1}^n i_k j_k : n \in \mathbb{N}, (i_k)_{k \in [n]} \in I^n, (j_k)_{k \in [n]} \in J^n\}$ is an ideal.

2.6 Ideals with Units (3.10)

For an ideal I of a ring R, if I contains r in R^{\times} , then I = R.

Proof. By definition, we have some s such that rs = 1, so 1 is in I as it is an ideal. But then for any x in R, we must have $1 \cdot x$ in I, so I = R.

2.7 Classification of Fields (3.11)

A ring $R \neq \{0\}$ is a field if and only if the only ideals of R are $\{0\}$ and R.

Proof. (\Longrightarrow) We have that $R^* = R \setminus \{0\}$, so every non-zero ideal contains a unit, so must be R by (2.6).

(\Leftarrow) For $r \neq 0$ in R, we take $I = \{rx : x \in R\}$ which is a non-zero ideal. By assumption, I = R so 1 is in I, thus rx = 1 for some x in R. Thus, r is a unit. \square

2.8 Homomorphisms from Fields (3.13)

For a ring homomorphism φ from R to $S \neq \{0\}$, if R is a field, φ is injective.

Proof. The kernel of φ is either R or $\{0\}$ by (2.7), so we consider the cases. If the kernel is R, then $S = \{0\}$, a contradiction, so the kernel must be $\{0\}$.

2.9 Induced Ideals (3.15)

For a surjective ring homomorphism φ from R to R', with $I \subseteq R$ and $I' \subseteq R'$ ideals, we have that:

- 1. $\varphi(I)$ is an ideal of R',
- 2. $\varphi^{-1}(I')$ is an ideal of R containing $\operatorname{Ker}(\varphi)$,
- 3. there is a bijection from the ideals of R containing $Ker(\varphi)$ to the ideals of R'.

Proof of (3). We will show that $I = \varphi^{-1}(\varphi(I))$ (the case for $I' = \varphi(\varphi^{-1}(I'))$ is analogous). For x in I, we have that $\varphi(x)$ is in $\varphi(I)$ so x is in $\varphi^{-1}(\varphi(x))$. Thus, $I \subseteq \varphi^{-1}(\varphi(I))$. For x in $\varphi^{-1}(\varphi(x))$, we have that $\varphi(x)$ is in $\varphi(I)$, so $\varphi(x) = \varphi(y)$ for some y in I. As $\varphi(x-y)=0$, x-y is in $\operatorname{Ker}(\varphi)$ so we have x=(x-y)+y which is in I, as required.

2.10 The Isomorphism Theorems (3.17)

We take R to be a ring.

2.10.1 The First Isomorphism Theorem

This is the same as the Homomorphism Theorem.

2.10.2 The Second Isomorphism Theorem

For $I \subseteq J \subseteq R$ ideals of R, we have that J/I is an ideal of R/I and:

$$\frac{R/I}{J/I} \cong R/J.$$

2.10.3 The Third Isomorphism Theorem

For a subring S of R, and I an ideal of R, we have that S+I is a subring with $I \subseteq S+I$ and $S \cap I \subseteq S$ ideals and:

$$\frac{S+I}{I} \cong \frac{S}{S \cap I}.$$

3 Integral Domains and Fields

3.1 Integral Domains (4.1)

For a ring R, $a \neq 0$ in R is a zero divisor if for some $b \neq 0$ in R, ab = 0. We say R is an integral domain if it has no zero divisors.