PHS1102 – Champs électromagnétiques

Page couverture obligatoire du devoir

À effectuer en équipe de deux étudiants du même groupe de TP. À remettre avant 15h00 le jour de la remise (voir plan de cours) dans la boîte près au B-549.

GROUPE DE TRAVAUX PRATIQUES (TP)

Cochez votre numéro de	groupe : le groupe de TP n'e	st pas le groupe du cours.

01	O 02	o 03	O 04	05	06

AUTEURS

Nom:	Émard-Lamy	Prénom : Arnaud
Matricule:	2021005	Signature:
Nom:	Clas	Prénom : Paul
Matricule:	1846912	Signature:

TRAVAIL REMIS

Date de remise du travail : 23 octobre 2020

Charge de travail (nombre d'heures dédiées à la rédaction du devoir) : 18

GRILLE D'ÉVALUATION DU DEVOIR

(section à remplir par le correcteur)

Qualités du BCAPG Ce devoir sert à évaluer la qualité 5 – utilisation d'outils d'ingénierie. Voir la grille descriptive disponible sur le site Moodle du cours. Calcul de la résistance source-drain par la méthode de cartographie des champs : /6 Distribution de potentiel obtenue par la méthode des différences finies : /7 Calculs du courant source-drain, de la densité de courant moyenne sur le ruban source et de la résistance source-drain. Comparaison avec la valeur calculée par la méthode de cartographie des champs. /7 NOTE TOTALE : /20

1. Estimation de la résistance source-drain par cartographie des champs

- i. Les esquisses présentées en annexe illustrent différentes cartographies des champs de la région conductrice du transistor JFET. Les lignes pleines qu'on y retrouve représentent les lignes équipotentielles tandis que les lignes pointillées représentent les lignes de courant. En effet, il est logique que les lignes pointillées soient les lignes de courant puisqu'elles vont d'une surface conductrice (source) vers une autre surface conductrice (drain). Finalement, les lignes équipotentielles sont toujours perpendiculaires aux lignes de courant. On en déduit donc que celles-ci correspondent aux lignes pleines.
- ii. Parmi les quatre esquisses présentées en annexe, on peut tout de suite en déduire que les esquisses A et D ne sont pas les plus optimales. En effet, celles-ci ne présentent que 30 lignes équipotentielles contrairement aux esquisses B et C qui en présentent 60, soit le double. Déjà là, on sait que les esquisses B et C sont plus précises que A et D. Ensuite, on sait que la précision de la résistance R, entre la source et le drain, augmente lorsqu'on augmente le nombre de cellules. En comparant les esquisses B et C, on s'aperçoit que l'esquisse B présente 17 lignes de courant alors qu'en C, on n'en a que 8. Ainsi, l'esquisse B, ayant le plus grand nombre de cellules, est sans doute celle qui cartographie le plus fidèlement et le plus précisément le champ dans la région conductrice du transistor.

Nous avons évalué pendant un certain temps laquelle des esquisses cartographiques entre la B et C serait la plus appropriée. Nous avons, à la fin de notre travail, évalué la résistance R_1 que nous aurions obtenues en utilisant le décompte des lignes équipotentielles et des lignes du courant dans la figure C. En reprenant les calculs effectués à la question 1.iii, nous avons trouvé une résistance R_1 de la figure C de 277.88 Ω . En comparant l'écart relatif avec le calcul de la résistance numérique R_2 et R_1 de C, nous pouvons observer que la résistance calculée à partir de l'esquisse B à un moins grand écart relatif que celle de C.

Esquisse	NS	NP	$R_1(\Omega)$	Écart relatif (%)	$R_{2}(\Omega)$
В	61	18	137.67	31.5	201Ω
С	61	9	277.88	38.2	

Figure 1 Comparaison des résistances obtenues à l'aide des esquisses B et C

iii. Il est possible d'estimer la valeur numérique de la résistance R entre la source et le drain en se basant sur l'esquisse qui cartographie le plus adéquatement le champ dans la région du transistor. En effet, puisque les cellules sur l'esquisse sont petites, on peut considérer que le champ électrique est uniforme dans chacune de celles-ci. Les deux surfaces équipotentielles, perpendiculaires à deux lignes de courant, sont considérées comme parfaitement conductrices et séparées par un milieu de conductivité. La résistance d'une cellule se calcule alors comme suit:

$$R = \frac{1}{\sigma d}$$

En considérant désormais la résistance entre deux conducteurs, celle-ci se calcule comme suit :

$$R = \frac{Ns}{Np} \times \frac{1}{\sigma d}$$

Or, le problème nous donne uniquement la valeur de la résistivité. On sait toutefois que la conductivité est égale à l'inverse de la résistivité. Ainsi, pour $\rho=0.065~\Omega\cdot cm$, on a :

$$\sigma = \frac{1}{0.065E - 2} = 1538.46 \,\Omega^{-1} \cdot m^{-1}$$

En comptant le nombre de cellules en séries et en parallèle dans l'esquisse B, soit celle qu'on a choisie, on a :

$$Ns = 61$$
 et $Np = 18$

Avec une profondeur de $e=16\mu m$, la résistance trouvée est :

$$R = \frac{Ns}{Np} \times \frac{1}{\sigma d} = \frac{61}{18} \times \frac{1}{(1538.46) \times (16E - 6)} = 137.67\Omega$$

2. Calcul numérique de la résistance source-drain par la méthode des différences finies

200	200	200	200	200	200	200	192,345	0	0	0	0	0	0	0	0	0	-193,849	-200	-200	-200	-200	-200	-200	-200
189,191	189,114	188,889	188,526	188,041	187,426	186,543	184,689	0	0	0	0	0	0	0	0	0	-187,697	-189,187	-189,894	-190,385	-190,771	-191,059	-191,239	-191,2
178,534	178,378	177,915	177,174	176,211	175,120	174,058	173,324	0	0	0	0	0	0	0	0	0	-178,567	-179,156	-180,005	-180,874	-181,640	-182,229	-182,596	-182,
168,191	167,946	167,219	166,045	164,507	162,786	161,242	160,493	0	0	0	0	0	0	0	0	0	-168,262	-168,864	-170,096	-171,466	-172,688	-173,620	-174,196	-174,
158,336	157,994	156,970	155,279	152,985	150,274	147,633	146,161	0	0	0	0	0	0	0	0	0	-156,755	-157,941	-160,051	-162,207	-164,027	-165,366	-166,178	-166,4
149,166	148,724	147,386	145,117	141,879	137,691	132,852	128,886	0	0	0	0	0	0	0	0	0	-142,878	-146,096	-149,960	-153,283	-155,847	-157,642	-158,702	-159,
140,877	140,348	138,731	135,922	131,723	125,758	117,196	103,678	74,581	51,529	30,270	9,606	-10,866	-31,333	-51,970	-73,111	-95,659	-122,565	-133,607	-140,411	-145,121	-148,435	-150,655	-151,935	-152,
133,645	133,061	131,265	128,116	123,333	116,419	106,496	92,104	71,557	50,631	29,972	9,508	-10,870	-31,249	-51,720	-72,409	-93,480	-114,820	-125,357	-132,959	-138,355	-142,119	-144,609	-146,032	-146,
127,579	126,983	125,152	121,941	117,074	110,087	100,262	86,685	68,911	49,465	29,475	9,324	-10,873	-31,076	-51,253	-71,325	-91,036	-109,627	-120,042	-127,713	-133,222	-137,079	-139,631	-141,089	-141,
122,703	122,140	120,417	117,420	112,934	106,592	97,779	85,460	67,936	48,840	29,140	9,183	-10,872	-30,929	-50,892	-70,602	-89,715	-107,295	-117,475	-124,630	-129,741	-133,344	-135,748	-137,130	-137,
118,949	118,455	116,954	114,387	110,649	105,566	98,801	89,437	68,532	48,818	29,059	9,139	-10,871	-30,878	-50,785	-70,479	-89,926	-109,798	-117,932	-123,595	-127,770	-130,811	-132,890	-134,103	-134,
116,182	115,775	114,554	112,523	109,709	106,219	102,419	99,568	0	0	0	0	0	0	0	0	0	-118,411	-120,861	-124,048	-126,934	-129,241	-130,898	-131,892	-132,
114,227	113,908	112,963	111,441	109,441	107,179	105,088	103,995	0	0	0	0	0	0	0	0	0	-122,126	-123,054	-124,804	-126,678	-128,324	-129,572	-130,344	-130,
112,907	112,663	111,950	110,832	109,435	107,968	106,756	106,235	0	0	0	0	0	0	0	0	0	-123,989	-124,426	-125,436	-126,653	-127,805	-128,724	-129,309	-129
112,074	111,884	111,338	110,502	109,497	108,499	107,732	107,433	0	0	0	0	0	0	0	0	0	-124,978	-125,228	-125,865	-126,692	-127,522	-128,211	-128,661	-128
111,618	111,461	111,013	110,340	109,551	108,795	108,239	108,031	0	0	0	0	0	0	0	0	0	-125,471	-125,644	-126,105	-126,731	-127,383	-127,938	-128,307	-128
111,473	111,327	110,911	110,291	109,571	108,889	108,395	108,213	0	0	0	0	0	0	0	0	0	-125,621	-125,772	-126,182	-126,746	-127,341	-127,853	-128,196	-128

Figure 2: Distribution de potentiel dans le transistor JFET en utilisant la technique des différences finies

Pour calculer la distribution de potentiel, nous avons la méthode numérique de Laplace illustré grâce aux figures ci-dessous inspiré du par les figures de la page 6-11 et 6-12 [1]:

$$V_1$$
 V_2 V_3 V_4 V_5 V_6 V_7 V_8 V_9 V_9

3. Calcul numérique

 i. Nous avons les valeurs suivantes pour évaluer le courant qui passe entre la source et le drain du transistor JFET :

$$I = -\sigma.e. \sum_{i=1}^{4} \Delta V_i$$

$$= -\frac{1}{0,065\Omega.cm} \times (16)\mu m. \times (-80.851)mV$$

$$= 1.99mA$$

ii. Pour trouver la densité du courant sur la source. Nous avons procédé au calcul suivant :

$$\begin{split} \vec{J} &= \sigma \vec{E} \\ J_{moy} &= \sigma E_{moy} \\ J_{moy} &= \frac{1}{0,065\Omega.cm} \times \frac{200mV}{0.05\mu m} \\ J_{moy} &= \frac{80}{13} \frac{mA}{\mu m^2} \\ J_{moy} &= 6.153 \frac{mA}{\mu m^2} \end{split}$$

iii. Enfin, pour trouver la résistance R entre la source et le drain, nous avons effectué le calcul suivant :

$$R_2 = \frac{\Delta V}{I}$$
 $R_2 = \frac{400}{1.99} = 201\Omega;$

Nous observons une différence entre la valeur de la première résistance estimée grâce à la cartographie des champs et la deuxième résistance obtenue numériquement en effectuant la méthode des différences finies. En effet, nous avons obtenus une résistance R_1 = 137.76 Ω et R_2 = 201 Ω . Il s'agit d'un écart relatif de 31.5%. Nous posons les hypothèses suivantes pour expliquer que cet écart soit aussi élevé :

- R₁ est calculé basé sur une observation cartographique approximative.
- Les cellules sur les esquisses ne sont pas exactement carrées.

Nous avons évalué pendant un certain temps laquelle des esquisses cartographiques entre la B et C serait la plus appropriée. Nous avons, à la fin de notre travail, évalué la résistance R_1 que nous aurions obtenues en utilisant le décompte des lignes équipotentielles et des lignes du courant dans la figure C. En reprenant les calculs effectués à la question 1.iii, nous avons trouvé une résistance R_1 de la figure C de 277.88 Ω . En comparant l'écart relatif avec le calcul de la résistance numérique R_2 et R_1 de C, nous pouvons observer que la résistance calculée à partir de l'esquisse B à un moins grand écart relatif que celle de C.

Esquisse	NS	NP	$R_1(\Omega)$	Écart relatif (%)	$R_{2}(\Omega)$
В	61	18	137.67	31.5	201Ω
С	61	9	277.88	38.2	

Figure 3 Comparaison des résistances obtenues à l'aide des esquisses B et C

4. Bibliographie

[1] L. MARTINU, D. SIMON, J. CERNY. Champs électromagnétiques 4ème édition : Manuel de laboratoire N 6542. Presses Internationales Polytechnique. Montréal. 2012