CSE-233 : Section A Summer 2020

Derivation/Parse Tree

Reference:

Book2 Chapter 2.1 Reference2, Reference3

Derivation/Parse Tree

Derivations can also be represented using derivation/parse trees

$$E \rightarrow E + E \mid E - E \mid (E) \mid V$$

 $V \rightarrow x \mid y \mid z$

$$E \Rightarrow E + E$$

$$\Rightarrow V + E$$

$$\Rightarrow x + E$$

$$\Rightarrow x + (E)$$

$$\Rightarrow x + (E - E)$$

$$\Rightarrow x + (V - E)$$

$$\Rightarrow x + (y - E)$$

$$\Rightarrow x + (y - V)$$

$$\Rightarrow x + (y - z)$$

Definition

A derivation/parse tree for a CFG G is an ordered tree with labels on the nodes such that

- Every internal node is labeled by a variable
- Every leaf is labeled by a terminal or e
- Leaves labeled by e have no siblings
- If a node is labeled A and has children A_1 , ..., A_k from left to right, then the rule

$$A \rightarrow A_1 ... A_k$$

is a production in G.

$$E \rightarrow E + E \mid E - E \mid (E) \mid V$$

 $V \rightarrow x \mid y \mid z$

$$E \Rightarrow E + E$$

$$\Rightarrow V + E$$

$$\Rightarrow x + E$$

$$\Rightarrow x + (E)$$

$$\Rightarrow x + (E - E)$$

$$\Rightarrow x + (V - E)$$

$$\Rightarrow x + (y - E)$$

$$\Rightarrow x + (y - V)$$

$$\Rightarrow x + (y - z)$$

Practice

Obtained by applying production rule

$$S \rightarrow bSb \mid a \mid b$$

generate **bbabb**

Obtained by applying production rule

$$S \rightarrow bSb \mid a \mid b$$

generate **bbabb**

Practice 2

Obtained by applying production rule

$$S \rightarrow aB \mid bA$$

 $A \rightarrow a \mid aS \mid bAA$
 $B \rightarrow b \mid bS \mid aBB$

generate aabbabba

Obtained by applying production rule

 $S \rightarrow aB \mid bA$ $A \rightarrow a \mid aS \mid bAA$ $B \rightarrow b \mid bS \mid aBB$

generate aabbabba

Practice 3

Obtained by applying production rule

$$S \rightarrow AB \mid \epsilon$$

 $A \rightarrow aB$

 $\mathsf{B} \to \mathsf{Sb}$

generate aabbbb

Obtained by applying production rule

 $S \rightarrow AB \mid \epsilon$

 $A \to aB$

 $\mathsf{B} \to \mathsf{Sb}$

generate aabbbb

Left Derivation Tree

Obtained by applying production rule to the leftmost variable in each step

$$A \rightarrow aBA \mid aAA \mid \epsilon$$

 $B \rightarrow AbB \mid ba$

Generate aabaa

Right Derivation Tree

Obtained by applying production rule to the rightmost variable in each step

$$A \rightarrow aBA \mid aAA \mid \epsilon$$

 $B \rightarrow AbB \mid ba$

Generate aabaa

Ambiguous Grammar

A grammar is said to be ambiguous if there exists two or more derivation tree for a string w (that means two or more left derivation trees, or two or more right derivation trees)

Terminals: a,b,+,*

$$S \rightarrow S*S \mid S+S \mid a \mid b$$

Generate a + a * b

Why ambiguity is important

The parse tree represents the intended meaning

"first add y and z, and then add this to x"

"first add x and y, and then add z to this"

Problem in ambiguity

For adding a multiplication rule directly, we may get undesirable results

$$E \rightarrow E + E \mid E - E \mid E \times E \mid (E) \mid V$$

 $V \rightarrow x \mid y \mid z$

"first y + z, then x
$$\times$$
"

"first $x \times y$, then + z"

Disambiguation

Sometimes we can rewrite the grammar to remove the ambiguity

$$E \rightarrow E + E \mid E - E \mid E \times E \mid (E) \mid V$$

 $V \rightarrow x \mid y \mid z$

Rewritten grammar so \times cannot be broken by +:

$$E \rightarrow T \mid E + T \mid E - T$$

 $T \rightarrow F \mid T \times F$
 $F \rightarrow (E) \mid V$
 $V \rightarrow X \mid y \mid z$

T stands for term: x * (y + z)F stands for factor: x, (y + z)

A term always splits into factors A factor is either a variable or a parenthesized expression

Remarks

- It's not always possible to disambiguate the grammar as the rules are context dependent
- Rules used in Compilers must be unambiguous

Example

$$S \rightarrow AB \mid aaB$$

 $A \rightarrow a \mid Aa$
 $B \rightarrow b$

Derive the string **aab** from the grammar. Convert the grammar to unambiguous

Example

$$S \rightarrow AB \mid aaB$$

 $A \rightarrow a \mid Aa$
 $B \rightarrow b$

Ask yourself-

- 1. What is causing the ambiguity?
- 2. Where are we allowed to make multiple choices?
- 3. Can we remove the multiple choice option without the removing the power of generating the same strings?

Example

Ask yourself-

- 1. What is causing the ambiguity?
- 2. Where are we allowed to make multiple choices?
- 3. Can we remove the multiple choice option without the removing the power of generating the same strings?

 $\mathsf{S} \to \mathsf{AB}$

 $A \rightarrow a \mid Aa$

 $\mathsf{B}\to\mathsf{b}$