

Extended Data Figure 6 | X-ray diffraction and X-ray reflectivity of water-treated SNO. a, Synchrotron X-ray diffraction curves taken from a SNO/LaAlO3 thin film after treatment in a 0.01 M KOH aqueous solution at $-4.0\,\mathrm{V}$ for 30 s. The (220) peak of pristine SNO (orthorhombic notation) appears at $Q_1\approx 3.29\,\mathrm{\mathring{A}}^{-1}$ as a shoulder with slightly lower scattering vector Q_z than the LaAlO3 (002) diffraction peak (pseudocubic notation), demonstrating the epitaxial growth of SNO on LaAlO3. After the water treatment, the epitaxial relationship of SNO on LaAlO3 is preserved. Peak 1 shifts to a lower Q_z . Peak 2 appears at $Q_z=3.11\,\mathrm{\mathring{A}}^{-1}$, which corresponds to increase of the lattice constant by 5.7%. LAO stands for LaAlO3. b, X-ray diffraction profiles of SNO and water-treated SNO

over a wide range of scattering angles 2θ . No new peaks appear, in contrast to what has been observed in other oxides, such as cobaltites, upon exposure to water. **c**, Comparison of synchrotron XRR curves for SNO after applying a bias of -4.0 V for 5 min in 0.01 M citric acid and 0.01 M KOH aqueous solutions. **d**, A selected area of the XRR curves, normalized to the oscillation peak at $Q \approx 0.19$ Å $^{-1}$ (marked by black arrows in **c**). Upon treatment, the XRR oscillation period decreases, demonstrating film expansion regardless of solution type, which indicates a general mechanism of phase change of SNO in various aqueous solutions caused by proton incorporation.