a) Is the following statement true or false?

The series interconnection of two livear linear time-invariant systems is a linear time-invariant system.

Let S_4 and S_2 be two linear time invariant systems defined by the inputs of inputs $x_4(t)$ and $x_2(t)$, and outputs $y_4(t)$ and $y_2(t)$. The system S_3 is the series connection of both, with input $x_3(t) = x_4(t)$ and $y_2(t) = y_2(t)$, connecting inade by connecting S_4 and S_2 such that $y_4(t) = x_2(t)$

Mill Su William (L)

For simplicity, let's define the yearn system as so:

$$x(t) \xrightarrow{S_2} y(t) \xrightarrow{S_2} z(t)$$
 $x(t) \xrightarrow{S_3} z(t)$

. It both Se and Se are linear, then:

 $\alpha x(t) + \beta x'(t) \xrightarrow{S_2} \alpha y(t) + \beta x'(t) \xrightarrow{S_2} \alpha z(t) + \beta z'(t)$, where $x'(t) \xrightarrow{S_2} y'(t) \xrightarrow{S_2} z'(t)$ Therefore, the system S_3 is linear

. If SI and SI one time invariant, then:

$$x(t) \xrightarrow{\tau_{5}} x'(t) = x(t+k) \xrightarrow{S_{2}} y'(t) = y(t+k) \xrightarrow{S_{2}} z'(t) = z(t+k) \Rightarrow x(t) \xrightarrow{\tau_{5}} x'(t) = x(t+k) \xrightarrow{S_{3}} z'(t) = z(t+k)$$

$$\Rightarrow x(t) \xrightarrow{\tau_{5}} y(t) \xrightarrow{\tau_{5}} z(t+k) \xrightarrow{S_{2}} z'(t) = z(t+k) \Rightarrow x(t) \xrightarrow{\tau_{5}} z(t+k) = z'(t)$$

Therefore, the global system is hime invariant

The statement is true