statemech density operators

seth iwan

January 2020

1 problem 1

what are the prbabilities of measureint $|\pm\rangle$ for these three staes

$$|\pm\rangle = |0\rangle \pm |1\rangle \tag{1}$$

case 1:

solution:

$$\rho = |\langle \pm | \psi \rangle|^2 = |\langle 0| \pm \langle 1| * \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)|^2$$
 (2)

$$=\frac{1}{2}\pm\frac{1}{2}\tag{3}$$

so the probability to measure $|+\rangle$ is 1 while the probability to mesure $|-\rangle$ is zero case 2:

solution:

since the state are either $|0\rangle$ or $|1\rangle$ there is 0 probability to be in $|\pm\rangle$ which is a sumation of those two states

case 3:

solution:

$$\rho_{|+\rangle} = |\langle +|\psi\rangle|^2 = 1$$

$$\rho_{|-\rangle} = |\langle -|\psi\rangle|^2 = 0$$

but $|\psi\rangle$ has 1/2 chance of being measured, therfore $|+\rangle$ has 1/2 chance of being measured and $|-\rangle$ has zero chance of being measured.

question: a system is in a pure state $|\Psi\rangle=\frac{1}{\sqrt{2}}\,|0\rangle+\frac{1}{\sqrt{2}}\,|1\rangle$. find teh density matrix in $|0\rangle$ and $|1\rangle$

solution: since it is a pure state the density opertaor is just the outer product of $|\Psi\rangle$

$$\rho = \frac{1}{2} \left(|0\rangle \langle 0| + |0\rangle \langle 1| + |1\rangle \langle 0| + |1\rangle \langle 1| \right) \tag{4}$$

to get this in matrix formation in the basis $|0\rangle$ and $|1\rangle$ we do $\rho=\sum_i\sum_j|\psi_i\rangle\!\langle\psi_i|\,\rho\,|\psi_j\rangle\!\langle\psi_j|$. so the density matrix is

$$\frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \tag{5}$$

2 problem: show that the purity is less than one, that is ${\rm tr} \rho^2 < 1$

here
$$\rho = P_1 |\Psi_1\rangle\langle\Psi_1| + P_2 |\Psi_2\rangle\langle\Psi_2|$$
 so $\rho^2 = P_1^2 |\Psi_1\rangle\langle\Psi_1| |\Psi_1\rangle\langle\Psi_1| + P_1P_2 |\Psi_1\rangle\langle\Psi_1| |\Psi_2\rangle\langle\Psi_2| + P_2P_1 |\Psi_2\rangle\langle\Psi_2| |\Psi_1\rangle\langle\Psi_1| + P_2^2 |\Psi_2\rangle\langle\Psi_2| |\Psi_2\rangle\langle\Psi_2|$

$$\rho^{2} = P_{1}^{2} |\Psi_{1}\rangle\langle\Psi_{1}| + P_{1}P_{2} |\Psi_{1}\rangle\langle\Psi_{1}| |\Psi_{2}\rangle\langle\Psi_{2}| + P_{2}P_{1} |\Psi_{2}\rangle\langle\Psi_{2}| |\Psi_{1}\rangle\langle\Psi_{1}| + P_{2}^{2} |\Psi_{2}\rangle\langle\Psi_{2}|$$

$$(6)$$

$$tr(\rho^{2}) = \langle\Psi_{1}| \rho^{2} |\Psi_{1}\rangle + \langle\Psi_{2}| \rho^{2} |\Psi_{2}\rangle$$

$$(7)$$

$$since \langle\Psi_{1}|\Psi_{2}\rangle = 0$$

$$tr(\rho^{2}) = P_{1}^{2} + 0 + 0 + 0 + 0 + 0 + 0 + P_{2}^{2}$$

since p1 +p2 =1 the trace of ρ^2 is less than one

3 show that if the initial state is pure, the system remains in pure state all time. Similarly, if the initial state is mied, it remains in mixed state all time