- 5. Кой е критерият за оптимален електромагнитен режим на работа на СП ?
- 6. На какво се дължи основната грешка на СП? Как може да се памали?
- 7. Какви са предимствата и недостатъците на СП?
- 8. Къде могат да намерят приложение СП?

ЛАБОРАТАРНО УПРАЖНЕНИЕ № 6

ИЗСЛЕДВАНЕ НА ВЕРИГА С ПОСЛЕДОВАТЕЛНО СВЪРЗАНИ ПАСИВНИ ЕЛЕМЕНТИ

цел на упражнението

1. Да се изучи поведението на различни пасивни двуполюсни елементи в електрическа верига при стационарен синусоидален режим.

2. Да се изучат методите за експериментално определяне на R, L и

С параметрите на пасивните елементи.

3. Да се изучи явлението "резонанс на напреженията" в последователна верига.

ТЕОРЕТИЧНА ПОСТАНОВКА

Стационарният синусоидален режим на електрическа верига с пасивни елементи е свързан с протичането на променлив ток и непрекъснат процес на преобразуване на електрическа енергия.

Ако захранващото напрежение е синусоидално от вида

(6.1)
$$u = U_{\rm m} \sin(\omega t + \psi_{\rm u}),$$

установеният ток i във веригата е също синусоидален, със същата ъглова честота ω, но е дефазиран в общия случай на ъгъл φ от напрежението:

$$(6.2) i = I_{\rm m} \sin(\omega t + \psi_i)$$

$$(6.3) \varphi = \psi_u - \psi_i, \frac{-\pi}{2} \le \varphi \le \frac{\pi}{2}$$

Моментната мощност във веригата, която характеризира процеса на преобразуване на енергия е p = u.i, а нейната средна стойност за един период е активната мощност P(6.4)

(6.4)
$$P = \frac{1}{T} \int_{0}^{T} p \ dt = U I \cos \varphi.$$

В израза за активната мощност с $\cos \varphi$ е обозначен факторът на

Тов

aктивната мощност, а U и I са ефективните стойности на напрежението u и тока i.

За характеризиране на процесите при пасивните елементи са въведени параметрите R, L и C. Когато поведението на един реален елемент се определя само от един параметър (респ. участието на другите два параметъра може да се пренебрегне), той се нарича идеален - идеален резистор (R), идеална бобина (L) и идеален кондензатор (C).

При включване на идеален резистор към синусоидално напрежение R параметърът се определя от закона на Ом

$$(6.5) R = \frac{u}{i} = \frac{U_{\rm m}}{I_{\rm m}} = \frac{U}{I},$$

като фазовата разлика $\phi = 0$, (cos $\phi = 1$), а векторите на тока и напрежението са колинеарни (фиг. 6.1 а).

За мощността (6.4) посредством (6.5) се получава

(6.6)
$$P = UI = RI^2 = \frac{U^2}{R},$$

откъдето се вижда, че *R* характеризира активната (в случая топлинната) мощност на двуполюсника, има качеството на съпротивление и се нарича активно съпротивление.

В практиката повечето реални резистори при работа с мрежова честота ($f = 50 \, \mathrm{Hz}$) могат да се разглеждат като идеални.

При включване на бобина (индуктивен елемент) към синусоидално напрежение се разглеждат случаите на идеална и реална бобина.

В случая, когато бобината е идеална се пренебрегва активното съпротивление и се приема само наличие на индуктивния параметър L. В този случай фазовата разлика е $\varphi=\pi/2$, като токът i изостава от напрежението u (фиг. 6.2).

Връзката на напрежението и тока във веригата се дава с израза

(6.7)
$$X_L = \frac{U_{\rm m}}{I_{\rm m}} = \frac{U}{I},$$

където величината $X_L = \omega L = 2\pi f L$ има качеството на съпротивление и се нарича *реактивно (индуктивно) съпротивление*. В този случай активната мощнокт P = 0, тъй като $\cos \varphi = 0$.

При разглеждане на реална бобина освен индуктивността L се отчита и активното съпротивление R на бобината. Тя може да се разглежда като еквивалентна на последователно съединение от два идеални елемента с параметри R и L (респ. X), както е показано на фиг. 6.3.

$$U_{R_L}$$
 U_{X_L} $U_{$

В този случай връзката между тока I и напрежението U се дава с израза (6.8), а съществуващата фазова разлика между тях се изменя в диапазона $0 < \varphi < \pi/2$

(6.8)
$$z_{L} = \sqrt{R_{L}^{2} + X_{L}^{2}} = \frac{U_{m}}{I_{m}} = \frac{U}{I},$$

където z_L е пълното съпротивление (импедансът) на реалната бобина. Активната мошност е $P = U.I. \cos \omega = R_I.P.$

На фиг. 6.3 са показани още векторната диаграма на тока I и напрежението U с неговите активна и реактивна компонента U_{R_L} и U_{X_L} , както и триъгълника на съпротивленията z_I , R_I и X_I .

При включване на идеален капацитивен елемент (кондензатор) с характеристичен параметър C към синусоидално напрежение фазовата разлика е $\varphi=\pi/2$ (фиг.6.4), а връзката между напрежението U и тока I се дава с израза

(6.9)
$$X_C = \frac{1}{\omega C} = \frac{1}{2\pi f C} = \frac{U_{\rm m}}{I_{\rm m}} = \frac{U}{I},$$

където величината X_C има качеството на съпротивление и се нарича реактивно (капацитивно) съпротивление.

Активната мощност P е нула, тъй като $\cos \varphi = 0$.

Реалният кондензатор при мрежова честота f = 50Hz почти не се различава от идеалния.

Когато синусоидалното напрежение u (t) се приложи към последователно свързани идеални резистор, бобина и кондензатор (фиг.6.5 а), фазовата разлика между напрежението u (t) и тока i (t) и максималната стойност на тока $I_{\rm m}$ се определят с формулите

(6.10)
$$\varphi = \arctan \frac{X_L - X_C}{R};$$

(6.11)
$$I_{\rm m} = \frac{U_{\rm m}}{z} = \frac{U_{\rm m}}{\sqrt{R^2 + (X_L - X_C)^2}},$$

където z е големината на т.н. пълно съпротивление (импеданс) на последователната верига.

На фиг.6.5 б са показани векторните диаграми при различни съотношения на реактивните съпротивления X_L и X_C .

Фиг.6.5

Ако в последователната верига от фиг.6.5 а заменим идеалната бобина с реална, се получава веригата от фиг.6.6 а, за която аналогичните формули на (6.10) и (6.11) са:

(6.12)
$$\varphi = \operatorname{arctg} \frac{X_L - X_C}{R + R_L};$$

(6.13)
$$I_{\rm m} = \frac{U_{\rm m}}{z} = \frac{U_{\rm m}}{\sqrt{(R + R_L)^2 + (X_L - X_C)^2}}$$

Векторните диаграми за този случай са показани на фиг. 6.6 б.

Фиг.6.6

Както се вижда от векторните диаграми от фиг.6.5 б и фиг.6.6 б и формули (6.10) и (6.12) за случаите $X_L > X_C - \varphi > 0$, а за $X_L < X_C - \varphi < 0$.

Особен интерес представлява случаят $X_L = X_C$, при косто импедансът на веригата се свежда до активното съпротивление R, респективно $R+R_L$, фазовата разлика φ става нула, а токът $I_{\rm m}$ добива найголямата си стойност в сравнение със случаите, когато $X_L \neq X_C$. Този режим се характеризира с т.н. резонанс на напреженията върху реактивните елементи (еднакви по големина и в противофаза), в резултат на което $U=U_R$ (фиг.6.5 б), респективно $U=U_R+U_R$, (фиг.6.6 б).

Ако при резонанс е изпълнено условието $R << X_L = X_C$, напреженията върху бобината и кондензатора U_L и U_C многократно надвишават входното напрежение на веригата и могат да достигнат опасен порядък.

ЕКСПЕРИМЕНТАЛНО ИЗСЛЕДВАНЕ

Свързва се схемата от фиг. 6.7, в която реалната бобина z_L е с регулируема стойност на индуктивността L. С помоща на ключовете K1, K2 и K3 е възможна промяна в схемата за изследване на на елементите R, z_L и C, независимо или в последователна комбинация.

С автотрансформатора АТ се установява зададено входно напрежение на веригата, като при всеки опит увеличаването на напрежението трябва да започва от нулева стойност. Упражнението се провежда в следната последователност:

А. С ключовете К1, К2 и К3 се реализира самостоятелно включване на резистора R, бобината z_L и кондензатора X_C към зададе-

но напрежение, установявано с АТ. Резултатите от измерванията при трите опита се нанасят в таблица 6.1.

Фиг. 6.7

						4,10			7		To	аблиц	a 6.
вид ЕЛЕМЕНТ	U	I	P	f	cosφ	R	Z 1.	R _L	XL	L	X _C	C	φ
	V	Α	w	Hz	V-850 11	Ω	Ω	Ω	Ω	Н	Ω	μF	deg
MERIC LOD	1500	S-12-54		100	3000					-	100	35.	deg
ROBIULA	e ra	J. 342	18/19				-				-		
KOH, TEHRATOP	200			Single	Let See		-	2000	0.000	_	-		

Б. При отворени ключове К1, К2 и К3 (реализира се последователна верига на R, z_L и X_C) се установява зададено напрежение с АТ. Чрез изменение на индуктивността L се постигат последователно три режима на работа на веригата: $X_L > X_C$, $X_L < X_C$ и $X_L = X_C$. Първите два режима се установяват като се сравняват показанията на волтметрите за U_L и U_C , третият - при максимална стойност на тока. Показанията на уредите се нанасят в таблица 6.2.

РАБОТЕН РЕЖИМ	U	I	P	f	U_R	U_L	U_{C}	cos φ	z	R	Z L	$\cos \varphi_L$		<i>Х</i> _{1.}	Xc
	V	A	w	Hz	V	V	V	41.41	Ω	Ω	Ω	-	Ω	Ω	Ω
$X_L > X_C$	7 741	1400	7, 87	SHIP	oq.	J. Fri			184	10	111	990	D 16		-
X1. <xc< td=""><td>11/15</td><td>200</td><td>Agrical Agriculture</td><td>1919</td><td>11</td><td>2</td><td>1847</td><td>20181</td><td>i-Va</td><td>PEST</td><td></td><td>ALIKE THE</td><td>10.0</td><td>-</td><td></td></xc<>	11/15	200	Agrical Agriculture	1919	11	2	1847	20181	i-Va	PEST		ALIKE THE	10.0	-	
$X_L = X_C$	No.		Hits		-22-19	110	-	TEN U	0.15	6A (30)	-				-

ОБРАБОТКА НА ОПИТНИТЕ РЕЗУЛТАТИ

1. За изчисляване на величините от табл. 6.1 се използуват формулите:

$$\cos \varphi = \frac{P}{UI}; \qquad R = \frac{U}{I}; \qquad z_L = \frac{U}{I}; \qquad R_L = z_L \cos \varphi ;$$

$$(6.15)$$

$$X_L = \sqrt{z_L^2 - R_L^2}; \qquad L = \frac{X_L}{2\pi f}; \qquad X_C = \frac{U}{I}; \qquad C = \frac{1}{2\pi f X_C}.$$

2. За изчисление на величините от табл.6.2 се използуват формулите (6.15), като за R, z_L и X_C се взимат съответните стойности на напреженията U_R , U_L и U_C , а във формулата за R_L се използува соѕ ϕ_L , определен от уравнението за баланса на активната мощност $P = U_R I + U_L I \cos \phi_L$, а именно

(6.16)
$$\cos \varphi_L = \frac{P - U_R I}{U_L I}.$$

Общият импеданс на веригата е z = U/I.

Избират се подходящи мащаби за напрежението и тока и се построяват векторни диаграми аналогични на тези от фиг. 6.6.6. И за трите случая сумата от векторите на напрежителните падове U_R , U_L и U_C , трябва да бъде равна на вектора на захранващото напрежение U.

Контролни въпроси

- 1. Кои пасивни елементи се характеризират с честотно зависимо съпротивление?
- 2. Как се определя фактора на активната мощност в последователната верига с R, z_L и X_C ?
- 3. По колко начина може да се предизвика резонанс в последователна верига с резистор, бобина и кондензатор?
- 4. Ако сумирате показанията на волтметрите за U_R , U_L и U_C в последователната верига ще получите ли показанието на волтметъра за входното напрежение U?