

پردازش تکاملی

سیستم های طبقه بندی کننده

دانشگاه صنعتی مالک اشتر

مجتمع دانشگاهی فن آوری اطلاعات و امنیت

زمستان ۱۳۹۲

سیستم های طبقه بندی کننده

CS ها مبتنی بر قاعده هستند

و چرخه اولیه:

- آشکار ساز پیغام ها را ارسال میکند.
 - قواعد منطبق میشوند.
 - پيغام ها پاک ميشوند.
- قواعد انطباق پیغام ها را ارسال میکنند.
- فعال کننده ها بروی پیغام ها کار میکنند

ق**واعد** CS

- نوشته شده به عنوان رشته ها:
- پیغام ها: رشته هایدودویی
- سمت دست راست: رشتهدودویی
 - سمت چپ: رشته درمبنای سه

• قواعد سیستم طبقه بندی کنند:

- قواعد تولید
- سمت دست چپ و سمت دست راست

If<condition>then<actio — n>

- تكميل محاسبه
 - راه مناسب

نگران سمت دست چپ نباشید پیغام ناتمام منطبق میشود.

مثال قواعد CS

Rule		Sensors		Actuators				
	wall left	wall front	wall right	turn left	go forward	turn right		
1	#	0	#	0	1	0		
2	0	1	#	1	0	0		
3	1	1	#	0	0	1		

نا سازگاری در قواعد نیست ...!

نا سازگاری قواعد

Rule		Sensors		Actuators				
	wall left	wall front	wall right	turn left	go forward	turn right		
1	#	#	#	0	1	0		
2	#	1	#	1	0	0		
3	1	1	#	0	0	1		

قواعد ناساز گار:

- بیش از یک قاعده منطبق میشود و
- قواعد متفاوت خروجی های ناساز گار ایجاد میکنند.
- یا اینکه : قواعد بسیار زیادی منطبق میشود.
- صفحه پیغام ها دچار سربار میشود.

نیازی به مکانیسمی میباشد تا ناسازگاری ها را مشخص نمود.

نا سازگاری قواعد

راه حل : مقادیر قوی •قوی ترین قواعد پیروز شوند.

•عملکرد همراه با نویز

Rule			Sensors		Actuators			
Numbei	Strength	wall left	wall front	wall right	turn left	go forward	turn right	
1	10	#	#	#	0	1	0	
2	10	#	1	#	1	0	0	
3	10	1	1	#	0	0	1	

پرسش: در مثال بالا کدام مقادیر قوی رفتار صحیح را بدست خواهد داد؟

پیغام های داخلی

مثالی از پیغام داخلی

فرض کنید: روبات در قسمت بن بست نمیتواند درو بزند. اجازه برگشتن...

Rule		Sensors			Actuators			
Number	Strength	wall left	wall front	wall right	turn left	go forward	turn right	go back
1	10	1	1	1	0	0	0	1

پرسش: مشكل اين راه حل چيست؟

مرز آموزش اکتروی

مثال: پیغام داخلی (cont)

	Rule Sensors						Actuators					
Number	Strength	wall left	wall front	wall right	interna 1	linterna 2	lturı left	n go forware	turn Irigh			linterna 2
1	90	#	#	#	#	1	1	0	0	0	0	0
2	80	1	#	1	1	#	0	0	0	1	1	0
3	70	#	#	#	1	#	1	0	0	0	0	1
4	60	1	1	1	#	#	0	0	0	0	1	0
5	50	1	1	#	#	#	0	0	1	0	0	0
6	30	#	1	#	#	#	1	0	0	0	0	0
7	10	#	#	#	#	#	0	1	0	0	0	0

حافظه وضعيت داخلي

- LHS پیغام های محیطی و/یا داخلی را منطبق میکند.
 - •RHS پیغام های محیطی و/یا داخلی را آماده میکند.
 - •اجازه زنجيره قواعد پيچيده
 - •اجازه توالی عملکردهای پیچیده

تخصیص اعتبار نقطه قوت از کجا بدست می آید؟

•یادگیری از طریق تعامل

•پاداش از طریق محیط

•مقادیر قواعد به روز

•یادگیری تجدید قوا

كشودن مجموعه قواعد

پرسش: چگونه میتوان مجموعه قواعد را ارائه نمود؟

الگوریتم Bucket brigade

Incremental Strength Adjustment

•
$$S_{i,t+1} = S_{i,t} - P_{i,t} - T_{i,t} + R_{i,t}$$

 $\mathbf{R}_{i,t}$: Reward $\sum_{i} \frac{P_{k,t+1}}{P_{i,t}}$

$$\sum_{k \in K} \frac{P_{k,t+1}}{n_{k,t+1}}$$

• payoff₊ + ...

در جایی Kدر برگیرنده تمامی طبقه بندی کننده ها خواهد شد که اامین پیغام خروجی در زمان t+1 فعال شده و تطبیق داده میشود.

 \bullet and $\boldsymbol{n}_{k,t+1}$ the number of messages matched by classifier k at time t+1

طبقه بندی کننده ها در صورتی تقویت میشوند که:

- •فعالیت آنها منجر به بازدهی از محیط شود و یا اینکه
- •آنها بخشى از زنجيره فعاليت ها ميباشند كه منجر به بازدهی خواهد شد.

P .: Payment

- For being activated
- Bid value, proportional to strength:
 - $P_{i,t} = S_{i,t} * C_{bid}$ if activated
 - $P_{i,t} = 0$ otherwise

T: Tax

- For breathing...
- Proportional to strength:
- $T_{i,t} = S_{i,t} * C_{tax}$ if activated

اقتصاد اطلاعات

- •طبقه بندی کننده i تامین کننده اطلاعات
 - •طبقه بندی کننده k مصرف کننده اطلاعات است.
 - trickle down" ير داخت•

Evolutionary Computing

مثال محاسبه يادش

Rule Sensors NumberStrength wall wall wall internalinterna						Actuators						
Number	Strength	wall left	wall front	wall right	interna 1	linterna 2	lturı left	n go forware	turn Iright	go back	interna 1	linterna 2
1	90	#	#	#	#	1	1	0	0	0	0	0
2	80	1	#	1	1	#	0	0	0	1	1	0
3	70	#	#	#	1	#	1	0	0	0	0	1
4	60	1	1	1	#	#	0	0	0	0	1	0
5	50	1	1	#	#	#	0	0	1	0	0	0
6	30	#	1	#	#	#	1	0	0	0	0	0
7	10	#	#	#	#	#	0	1	0	0	0	0

t=0

ربات در یک بن بست است.

- Message is 1 1 1 0 0
- · Classifier 4 matches and is selected
 - Classifier 4 pays 6

t = 1

ربات همچنان در بن بست است.

- Message is 1 1 1 1 0
- · Classifier 2 matches and is selected
- · Classifier 2 pays 8, this is payed to classifier 4

t=2

روبات دور شده و در یک تقاطع می ایستد

- Message is 0 1 1 1 0
- Classifier 3 matches, and is selected
- Classifier 3 pays 7, this is payed to classifier 2
- Environment pays 3, this is payed to classifier 2

t=3

روبات ۹۰ درجه به سمت چپ چرخش میکند.

- Message is 0 0 0 0 1
- · Classifier 1 matches, and is selected
- Classifier 1 pays 9, this is payed to classifier 3

مكز آموزش المترو

روش Pitt

De Jong et al, University of Pittsburgh

هر قسمت در برگیرنده مجموعه کاملی از قواعد میباشد

•رشته های طولانی •بخش های دودویی و سه سه ای •مجموعه های کوچک از قواعد مناسب

•معایب

- •هزينه محاسباتي بالا
- •نیاز به زنجیره کامل CS برای هر یک از ارزیابی های تناسب

•مزایا

- •سادگی
- •تناسب به آسانی تعریف میشود: اجرای CS
 - •مسائل انحراف خاصی وجود ندارد

عملگرهای اختصاصی در روش Pitt

•در سطح قاعده (Rule)

- •قاعده عمومي
- •قاعده اختصاصي

•در سطح مجموعه قواعد (Rule set)

- •قواعد کپی
- •قواعد پاک کردن
- •قواعد دو نیم کردن

•در سطح رشته بیت

- •اصلاح بیت های شرطی
 - •اصلاح بیت های عمل

روش Michigan Holland et al. University of Michigan

هر نفر یک قاعده ارائه میکند

- •جامعه مجموعه قواعد را می سازد.
 - •مجموعه های بزرگ از قواعد.

مزیت: سرعت

- •تنها یک CS ارزیابی میشود
- •ارزیابی بر خط امکان پذیر الست

Question: Why is a conventional GA ill-suited?

ما نياز به انحراف نداريم!

معیارهای جلوگیری کننده از انحراف:

Convergence => only one type of rule ->bad

•تکنیک های Niching

· Needed: balanced set of rules

•تناسب انتخاب شده با دقت

تناسب در روش Michigan

Input Messag	eOutput Messag	eReward
00	0	500
00	1	0
01	0	500
01	1	0
10	0	0
10	1	100
11	0	0
11	1	100

تابع تناسب چیست؟

- Holland uses strength
- Strength is (proportional to) predicted feedback

مسائل همراه با تناسب پایه ای قوی

- Different niches can have different payoff level
- Little pressure for 'complete' maps of the environment
 - Problems with over-general classifiers

محاسبه تناسب در XCF

(Wilson 1995)

تناسب بر پایه خطای پیشگویی

- · Remember: Strength is payoff prediction
- · Fitness is predicted accuracy of the payoff prediction

مزايا

سيستم طبقه بندي كننده ارتقاء يافته

•مشکلی در رابطه با سطوح بازدهی متفاوت وجود ندارد.

•تناسب ارتقا بافته

•دلسردی بروی تعمیم

Niching•

•دلگرمی به واسطه مسیر دهی کامل ورودی

•ساير جزئيات

•دلگرمی به واسطه طبقه بندی کننده های عمومی حداکثری

خطای به روز رسانی شده در طول تقویت

- •تقویت به منظور انتخاب عملیات به کار میرود(bidding)
 - •خطا به منظور انتخاب ژنتیک استفاده میشود.

مرنة موزش اكترويو

کلاس های طبقه بندی کننده

مثال

Classifier	Condition	Action	Predicted Payor	f P rediction Erro	Accuracy
a	##	1	100	0.5	0.0
b	0#	1	200	0.0	1.0
С	10	0	100	0.0	1.0

3 كلاس مختلف

• Over general: طبقه بندی کننده

• Maximally general: طبقه بندی کننده

•Suboptimally general: طبقه بندی کننده C

فضاي ورودي پوشش داده نشده

•ورودی 11 مفقود است.

Niching etc. in XCF

انتخاب والداز مجموعه فعال

- •مجموعه فعال: تمامی قواعدی که در این چرخه محرک میباشند
 - •هر مجموعه فعال یک Niche را میسازد
 - •اما: برخی Niche ها متداولتر از سایرین میباشند.

حذف

- ابتدا با دقت پایین
- •متناسب با میانگین اندازه مجموعه عمل

Niching etc. in XCF

يوشش:

- •زمانی که مجموعه مطابقت خالی شود(هیچ قاعده ای در چرخه انطباق وجود نداشته باشد)
 - •یک طبقه بندی کننده جدید ساخته میشود.
 - •LHS: پيغام فعلي
 - •RHS: تصادقي

رده بندي حذف:

- •تمامی طبقه بندی کننده های جدید با آنهایی که موجود میباشند مقایسه میشوند.
- •طبقه بندی کننده جدید حذف خواهد شد در صورتی که یکی از آنها هم اکنون موجود باشد:
 - •صحیح و دقیق است
 - •آزمون شده است
 - •منطقا طبقه بندی کننده جدید را رده بندی میکند

Accurate parents can only have more general offspring

قاعده ارائه پیشرفته

ارائه به صورت رشته بیت ممکن است بهینه نباشد رشته بیت مبتنی بر And است.

- if $(a = 1) \land (b=0) \land (c=0)$: possible in one rule
- if (a = 1) $^{\wedge}$ ((b=0) v (c =0)): needs two rules
- if (at least three input sensors are:Ineeds a number of rules

Real-valued problems are not allowed

• if (battery < 0.1) not possible at all

پرسش: آیا ارائه مناسبتری در وجود دارد؟

شرط های مبتنی بر عبارات S همانند برنامه ریزی ژنتیک

- Terminal set are the input variables
 - Function set as required
- · Output is true (match) or false (no match)
 - ->Very flexible

ساختار سلسله مراتبی در CS

Macaque Visiual Cortex:

- 32 Maps
- in 14 layers
- 305 Links spanning max. 7 layers, usually 1-2
 - only 4 areas have 'external' connections

Hierarchie allows higher-level processing

- Abstraction bottom-up learning
- Decomposition devide and conquer
 - Reuse solve problems only once

Internal Messages allow classifier chains

- But: Bucket Brigade not optimal
- Scene-setting rules vulnerable
 - Complex chains rare

سلسله مراتب های خود سازماندهی

Provide Structure - Evolve Hierarchie

Split system into multiple, interacting CS

Example System:

- N Classifier Systems
- Communicating via shared message board
 - Evolved using Pitt approach
 - Result: simple task sharing

المزيم وزي

ساختار سلسله مراتبي صريح

Provide Structure and Hierarchie

- Split in multiple CS
- Pre-define hierarchie through message chain

Example System

- Controllers and Coordinators
 - Each are independent CS

(Dorigo and Schnepf 1992)