## STA2001 Probability and Statistics (I)

Lecture 3

Tianshi Chen

The Chinese University of Hong Kong, Shenzhen

### **Review**

- ▶ Revisit the method of enumeration by multiplication principle
  - permutation
  - combination
  - distinguishable permutation

### **Section 1.4 Independent Events**

### **Motivation**

#### Motivation

For certain pair of events, the occurrence of one of them does not change the probability of the occurrence of the other.

Experiment: flip a coin twice and observe the sequence of heads and tails.

Sample space:  $S = \{HH, HT, TH, TT\}$ 

Assumption: the four outcomes are "equally likely"

#### Events:

 $A = \{ \text{heads on the first flip} \} = \{ HH, HT \}$   $B = \{ \text{tails on the second flip} \} = \{ HT, TT \}$  $C = \{ \text{tails on both flips} \} = \{ TT \}$ 

$$P(A) = \frac{2}{4}, \quad P(B) = \frac{2}{4}, \quad P(C) = \frac{1}{4}$$

$$P(A) = \frac{2}{4}, \quad P(B) = \frac{2}{4}, \quad P(C) = \frac{1}{4}$$

Given that C has occurred, then

$$P(B|C) = 1$$
 because  $C \subset B$  or  $\frac{P(B \cap C)}{P(C)} = \frac{P(C)}{P(C)} = 1$ 

Given that A has occurred, then

$$P(B|A) = \frac{P(B \cap A)}{P(A)} = \frac{1/4}{2/4} = \frac{1}{2} = P(B)$$

Given that B has occurred, then

$$P(A|B) = \frac{1}{2} = P(A)$$



So we have

$$P(B|A) = P(B)$$
, and  $P(A|B) = P(A)$ 

the occurrence of one of them does not affect the probability of the occurrence of the other. Leading to the definition of independent events.

## **Independent Events**

#### Definition

Events A and B are independent if

$$P(A \cap B) = P(A)P(B).$$

Otherwise, events A and B are called dependent events

▶ When  $P(A) \neq 0$  and  $P(B) \neq 0$ , we have

$$P(A|B) = P(A), \qquad P(B|A) = P(B)$$

## Example 2, page 38

#### Question

A red die and a white die are rolled.

$$S = \{(1,1), (1,2), \cdots\}, \quad N(S) = 36$$

 $A = \{4 \text{ on the red die}\}, B = \{\text{sum of dice is odd}\}$ 

Assuming the two dice are fair. Are A and B independent?

## Example 2, page 38

A red die and a white die are rolled.

$$S = \{(1,1), (1,2), \cdots\}, \quad N(S) = 36$$

 $A = \{4 \text{ on the red die}\}, \quad B = \{\text{sum of dice is odd}\}$ 

Assuming the two dice are fair. Are A and B independent?

$$P(A) = \frac{6}{36}, \quad P(B) = \frac{18}{36}, \quad P(A \cap B) = \frac{3}{36}$$
$$P(A \cap B) = \frac{3}{36} = P(A)P(B) = \frac{6}{36} \cdot \frac{18}{36}$$

 $\Rightarrow$  A and B are independent.

## Properties of Independent Events

#### Theorem 1.4-1

A and B are independent, if and only if any pair of the following events are independent

- (a) A and B'
- (b) A' and B
- (c) A' and B'

### Properties of Independent Events

#### Theorem 1.4-1

 $\boldsymbol{A}$  and  $\boldsymbol{B}$  are independent, if and only if any pair of the following events are independent

- (a) A and B'
- (b) A' and B
- (c) A' and B'

#### Proof:

$$P(A) = P(A \cap (B \cup B')) = P((A \cap B) \cup (A \cap B'))$$
  
=  $P(A \cap B) + P(A \cap B') = P(A)P(B) + P(A \cap B')$   
$$P(A \cap B') = P(A)(1 - P(B)) = P(A)P(B')$$

## **Independent Events**

#### **Definition**

Events A, B and C are mutually independent if

1. A, B, C are pairwise independent, i.e.,

$$\begin{cases} P(A \cap B) &= P(A)P(B) \\ P(A \cap C) &= P(A)P(C) \\ P(B \cap C) &= P(B)P(C) \end{cases}$$

- 2.  $P(A \cap B \cap C) = P(A)P(B)P(C)$ 
  - multiplication rule for three independent events.

## Example 3, page 39

An urn contains four balls number 1,2,3,4 and we draw one ball randomly from the urn.

$$A = \{1, 2\}, \quad B = \{1, 3\}, \quad C = \{1, 4\}$$

Then are A, B, C mutually independent?

# Example 3, page 39

$$P(A) = P(B) = P(C) = \frac{1}{2}$$

$$P(A \cap B) = P(\{1\}) = \frac{1}{4} = P(A)P(B)$$

$$P(A \cap C) = P(A)P(C) = \frac{1}{4}$$

$$P(B \cap C) = P(B)P(C) = \frac{1}{4}$$

$$P(A \cap B \cap C) = \frac{1}{4} \neq P(A)P(B)P(C) = \frac{1}{8}$$

So A, B, C are pairwise independent but not mutually independent.

Mutual independence can be extended to four or more events: Each pair, triple, quartet of the events are independent and moreover

$$P(A_1 \cap \cdots \cap A_n) = P(A_1) \cdots P(A_n)$$

- ▶ If *A*, *B*, *C* are mutually independent, then
  - 1. A and  $(B \cap C)$  independent,
  - 2. A' and  $(B \cap C')$  independent,
  - 3. A and  $(B \cup C)$  independent,
  - 4. A', B', C' independent

$$\textcircled{1}A$$
 and  $(B\cap C)$  independent 
$$P(A\cap (B\cap C))=P(A)P(B)P(C)=P(A)P(B\cap C)$$

(2)A' and  $(B \cap C')$  independent,

By Theorem 1.4-1,  $\textcircled{2} \Leftrightarrow A$  and  $B \cap C'$  independent

$$P(A \cap B \cap C') = P(A \cap B) - P(A \cap B \cap C) = P(A \cap B)P(C')$$
  
=  $P(A)P(B)P(C') = P(A)P(B \cap C')$ 

(3)A and  $(B \cup C)$  independent

$$P(A \cap (B \cup C)) = P((A \cap B) \cup (A \cap C)) = P(A \cap B) + P(A \cap C) - P((A \cap B) \cap (A \cap C)) = P(A)P(B) + P(A)P(C) - P(A)P(B)P(C) = P(A)(P(B) + P(C) - P(B)P(C)) = P(A)P(B \cup C)$$

(4)A', B', C' independent

The pairwise independence is obvious and then from  $\textcircled{3}\Leftrightarrow A'$  and  $B'\cap C'$  independent

$$P(A'\cap(B'\cap C'))=P(A')P(B'\cap C')=P(A')P(B')P(C')$$

Many experiments consist of a sequence of *n* trials. If the outcomes of ith trial, in fact, does not have anything to do with the others, then events such that each is associated with a different trial should be independent in the probability sense. That is, if the event  $A_i$  is associated with the *i*th trial,  $i=1,2,\cdots,n$ , then  $A_1,A_2,\cdots,A_n$  are mutually independent and in particular

$$P(A_1 \cap A_2 \cap \cdots \cap A_n) = P(A_1) \cdots P(A_n)$$

## Example 4, page 40

#### Question

A fair 6-sided die is rolled six independent times. Let  $A_i = \{a \text{ match on the ith roll, i.e., the side } i \text{ is observed on the } i\text{th roll}\}, \quad i = 1, 2, \cdots, 6.$  Let  $B = \{a \text{ tleast one match occur}\}$ , what is P(B)?

## Example 4, page 40

#### Question

A fair 6-sided die is rolled six independent times. Let  $A_i = \{ \text{a match on the ith roll, i.e., the side } i \text{ is observed on the } i \text{th roll} \}, \quad i = 1, 2, \cdots, 6.$  Let  $B = \{ \text{at least one match occur} \}$ , what is P(B)?

$$P(B)=1-P(B')$$
 where  $B'=\{$  no matches occur in 6 rolls $\}$  
$$=1-P(A'_1\cap A'_2\cdots\cap A'_6) \quad \text{since } A'_1\cdots A'_6 \text{ are independent}$$
 
$$=1-P(A'_1)P(A'_2)\cdots P(A'_6)=1-\left(\frac{5}{6}\right)^6$$

### Section 1.5 Bayes's Theorem



Experiment: Select a bowl first, and then draw a chip from the selected bowl.

Assumption: All chips are "equally likely" and moreover,

$$P(B_1) = \frac{1}{3}, \quad P(B_2) = \frac{1}{6}, \quad P(B_3) = \frac{1}{2}.$$

 $P(B_i)$ : the probability to select the ith bowl.

#### Question 1

Let  $R = \{ draw \ a \ red \ chip \}$ . What is P(R)?

### Question 1

Let  $R = \{ draw \ a \ red \ chip \}$ . What is P(R)?

 $=\frac{1}{3}\cdot\frac{2}{6}+\frac{1}{6}\cdot\frac{1}{3}+\frac{1}{2}\cdot\frac{5}{9}=\frac{4}{9}$ 

$$P(R) = P(S \cap R)$$
, where  $S = \{\text{all chips}\}\$ 

$$= P((B_1 \cup B_2 \cup B_3) \cap R) = P((B_1 \cap R) \cup (B_2 \cap R) \cup (B_3 \cap R))$$

$$= P(B_1 \cap R) + P(B_2 \cap R) + P(B_3 \cap R)$$

$$= P(B_1)P(R|B_1) + P(B_2)P(R|B_2) + P(B_3)P(R|B_3)$$

#### Question 2

Suppose now that the outcome of the experiment is a red chip but we don't know from which bowl the chip was drawn. We are interested in

$$P(B_1|R), \quad P(B_2|R), \quad P(B_3|R)$$

#### Question 2

Suppose now that the outcome of the experiment is a red chip but we don't know from which bowl the chip was drawn. We are interested in

$$P(B_1|R), \quad P(B_2|R), \quad P(B_3|R)$$

From the definition of conditional probability, e.g., Consider

$$P(B_i|R) = \frac{P(B_i \cap R)}{P(R)} = \frac{P(B_i)P(R|B_i)}{P(R)}, \quad i = 1, 2, 3.$$

$$P(B_1|R) = \frac{1}{4}, \quad P(B_2|R) = \frac{1}{8}, \quad P(B_3|R) = \frac{5}{8}$$

## Bayes' Theorem

#### Assume that

- 1. S is a sample space, and  $B_1, B_2, \dots, B_m$  are mutually exclusive and exhaustive w.r.t the sample space S.
- 2. the prior probabilities of  $B_i$  is positive, i.e.,

$$P(B_i) > 0, i = 1, \dots, m$$
. Then we have

# Bayes' Theorem



(a) For any event A,

$$P(A) = \sum_{i=1}^{m} P(A \cap B_i) = \sum_{i=1}^{m} P(B_i) P(A|B_i)$$

ightarrow total probability

(b) If P(A) > 0, then

$$P(B_k|A) = rac{P(B_k \cap A)}{P(A)}, \quad k = 1, \cdots, m$$
 
$$P(B_k|A) = rac{P(B_k)P(A|B_k)}{P(A) = \sum_{i=1}^m P(B_i)P(A|B_i)} 
ightarrow ext{Bayes Theorem}$$

## Bayes' Theorem

$$P(B_k) \rightarrow \text{ prior probability}$$

$$P(B_k|A) \rightarrow$$
 posterior probability

$$P(A|B_k) \rightarrow$$
 likelihood of  $B_k$ ,  $A$  is called a data

## Thomas Bayes

Thomas Bayes is known for formulating a specific case of the theorem that bears his name: Bayes' theorem.



Figure: Thomas Bayes (1701 – 1761) was an English statistician, philosopher and Presbyterian minister.

### Pierre-Simon Laplace

However, it was Pierre-Simon Laplace (1749–1827) who introduced what is now called Bayes' theorem, and the Bayesian was in fact pioneered and popularised by Pierre-Simon Laplace.



Figure: Pierre-Simon Laplace (1749–1827) was a French scholar and polymath whose work was important to the development of engineering, mathematics, statistics, physics, astronomy, and philosophy.