

Présentation

C1-01

Pole SII Chateaubriand - Joliot Curie

C2-03

Objectif

- ▶ Étudier le comportement du quadri-rotor lors du décollage.
- Vérifier les performances imposées par le cahier des charges.

Linéarisation du modèle de moteur

Question 1 Déterminer l'équation stationnaire liant ω_0 et u_0 .

Correction

En vol stationnaire, dans les conditions idéales, la vitesse de rotation des hélices est constante;

donc $\frac{\mathrm{d}\omega(t)}{\mathrm{d}t}=0$. De plus, il n'y a pas de variation de la vitesse de rotation des hélices et donc pas de variation de la tension d'alimentation. En conséquence, $\delta u=0$ et $\delta \omega=0$. On a donc $\frac{\mathrm{d}\omega(t)}{\mathrm{d}t}=-\frac{1}{\tau}\omega(t)-k_q\omega(t)^2+\frac{k_v}{\tau}u$ En notant ω_0 et u_0 les vitesses en tensions à l'état stationnaire, on a $\frac{1}{\tau}\omega_0+k_q\omega_0^2=\frac{k_v}{\tau}u_0$.

Question 2 Montrer que l'équation différentielle liant $\delta \omega$ et δu est de la forme $\frac{\mathrm{d}\delta\omega(t)}{\mathrm{d}t} = -A\delta\omega(t) + B\delta u. \text{ Exprimer } A \text{ et } B \text{ en fonction des paramètres } \tau, k_v, k_q \text{ et } \omega_0.$

Correction

On utilise le changement de variable proposé autour d'un point de fonctionnement et on a :

On utilise le changement de variable proposé autour d'un point de fonctionnement et on a :
$$\frac{\mathrm{d}\omega(t)}{\mathrm{d}t} = -\frac{1}{\tau}\omega(t) - k_q\omega(t)^2 + \frac{k_v}{\tau}u$$

$$\Rightarrow \frac{\mathrm{d}\left(\omega_0 + \delta\omega\right)}{\mathrm{d}t} = -\frac{1}{\tau}\left(\omega_0 + \delta\omega\right) - k_q\left(\omega_0 + \delta\omega\right)^2 + \frac{k_v}{\tau}\left(u_0 + \delta u\right)$$

$$\Rightarrow \frac{\mathrm{d}\left(\delta\omega\right)}{\mathrm{d}t} = -\frac{1}{\tau}\omega_0 - \frac{1}{\tau}\delta\omega - k_q\omega_0^2 - k_q\left(\delta\omega\right)^2 - k_q2\omega_0\delta\omega + \frac{k_v}{\tau}u_0 + \frac{k_v}{\tau}\delta u$$
Or $\frac{1}{\tau}\omega_0 + k_q\omega_0^2 = \frac{k_v}{\tau}u_0$ (question précédente); donc : $\frac{\mathrm{d}\left(\delta\omega\right)}{\mathrm{d}t} = -\frac{1}{\tau}\delta\omega - k_q\left(\delta\omega\right)^2 - k_q2\omega_0\delta\omega + \frac{k_v}{\tau}\delta u$

En négligeant les termes d'ordre 2, on a donc : $\frac{d(\delta\omega)}{dt} = -\frac{1}{\tau}\delta\omega - k_q 2\omega_0\delta\omega + \frac{k_v}{\tau}\delta u$

Au final,
$$A = \frac{1}{\tau} + k_q 2\omega_0$$
 et $B = \frac{k_v}{\tau}$.

On note $\Delta\Omega(p)$ la transformée de Laplace de $\delta\omega$ et $\Delta U(p)$ celle de δu .

Question 3 Calculer la fonction de transfert $\frac{\Delta\Omega(s)}{\Delta U(s)}$ du moteur. Donner l'expression de ses paramètres caractéristiques K_m et T_m en fonction des paramètres τ , k_v , k_q et ω_0 .

Correction

En utilisant la transformée de Laplace, on obtient $p\Delta\Omega(s)=-A\Delta\Omega(s)+B\Delta U(s)$ et donc

$$\frac{\Delta\Omega(s)}{\Delta U(s)} = \frac{B}{p+A} = \frac{B/A}{p/A+1}. \text{ En conséquence, } K_m = \frac{B}{A} = \frac{\frac{k_v}{\tau}}{\frac{1}{\tau} + k_q 2\omega_0} = \frac{k_v}{1 + \tau k_q 2\omega_0}.$$

$$\tau_m = \frac{\tau}{1 + \tau k_q 2\omega_0}$$

Recherche du point de fonctionnement ω_0

Question 4 Calculer numériquement la poussée F_0 que doit exercer chacun des quatre moteurs pour maintenir l'appareil en vol stationnaire à l'altitude z_0 .

Correction

On a $4F_0=mg$. Le poids du drone est de $0,240\times 9,81=2,3544$ N. Chaque moteur doit donc exercer $\frac{2,3544}{4}=0,59$ N.

Question 5 Déterminer la fréquence de rotation ω_0 des moteurs en vol stationnaire.

Correction

En lisant le graphe, on obtient $\omega_0 = 340 \,\mathrm{rad}\,\mathrm{s}^{-1}$.

Question 6 Déterminer l'expression des coefficients k_v et k_q en fonction de a, b et τ . Préciser leur unité.

Correction

Lorsque $\frac{\mathrm{d}\omega(t)}{\mathrm{d}(t)}=0$, on a $u=a\omega 0^2+b\omega_0$. Par ailleurs en régime stationnaire, on a $\frac{1}{\tau}\omega_0+k_q\omega_0^2=\frac{k_v}{\tau}u_0$. Il en résulte que $u_0=\frac{1}{k_v}\omega_0+\frac{k_q\tau}{k_v}\omega_0^2$.

On a donc $a = \frac{k_q \tau}{k_v}$ et $b = \frac{1}{k_v}$. On a donc b tel que $[V] = [B][s^{-1}]$ et [B] = [V][s]. On a donc k_v en $[V^{-1}s^{-1}]$.

Par ailleurs, $[V] = [k_q][s][Vs][s^{-2}]$ et k_q n'a pas d'unité.

On peut ainsi déduire le modèle $\frac{\Delta\Omega(p)}{\Delta U(p)}$ du moteur linéarisé autour de son point de fonctionnement. Pour la suite, on retiendra le modèle suivant : $\frac{\Delta\Omega(p)}{\Delta U(p)} = \frac{37,5}{1+\frac{p}{77}}$.

Vérification des performances

Question 7 Déterminer la fonction de transfert $\frac{\Delta Z(p)}{\Delta F(p)}$ à partir de l'équation du principe fondamental de la dynamique. En déduire l'expression de la fonction de transfert en boucle ouverte.

Correction

On a vu que $4_0F = mg$. Par ailleurs, $m\ddot{z} = 4F - mg$ et donc, $m\frac{d(z_0 + \delta z(t))}{dt} = 4(F_0 + \delta F(t)) - mg$ et $m\frac{d(\delta z(t))}{dt} = \frac{d(\delta z(t))}{dt}$ $4\delta F(t)$. Dans le domaine de Laplace, on a $mp^2\Delta Z(p)=4\Delta F(p)$. En conséquences, $\frac{\Delta Z(p)}{\Delta F(n)}=\frac{\Delta Z(p)}{\Delta F(n)}$ La FTBO s'exprime alors par $H_{BO}(p) = \frac{2,5K}{p^2} \frac{1+Tp}{\left(1+\frac{p}{77}\right)\left(1+\frac{p}{20}\right)}$.

Question 8 Tracer le diagramme asymptotique de la courbe de gain avec le correcteur T = 0.2 s et K = 1. Préciser les pentes et les pulsations de brisure. Le diagramme sera tracé entre 1 et $1000 \,\mathrm{rad}\,\mathrm{s}^{-1}$, le gain sera compris entre $-120 \,\mathrm{dB}$ et $10 \,\mathrm{dB}$.

Correction

On a $H_{BO}(p) = \frac{2,5K}{p^2} \frac{1+Tp}{\left(1+\frac{p}{77}\right)\left(1+\frac{p}{30}\right)}$. Les pulsations de cassure sont alors : 5 rad s⁻¹,

 $30 \,\mathrm{rad}\,\mathrm{s}^{-1}$ et 77 rad s^{-1} . Les pentes sont alors :

- pour ω < 5 rad s⁻¹ : -40 dB/décade;
 pour 5 rad s⁻¹ < ω < 30 rad s⁻¹ : -20 dB/décade;
 pour 30 rad s⁻¹ < ω < 77 rad s⁻¹ : -40 dB/décade
- ▶ pour $\omega > 77 \,\mathrm{rad}\,\mathrm{s}^{-1} : -60 \,\mathrm{dB/d\acute{e}cade}$.

Pour une pulsation de $10 \times 10^{-2} \,\mathrm{rad} \,\mathrm{s}^{-1}$, on a FTBO(p) $\simeq \frac{2.5}{v^2}$. On a donc un gain \simeq

 $20 \log \left(\frac{2.5}{0.01^2} \right) \approx 88 \, \text{dB.}$ Reste à tracer...

Question 9 Justifier que pour K = 1, on a $\omega_{c0\,dB} = 1.5\,\mathrm{rad\,s^{-1}}$. En déduire graphiquement la marge de phase pour K = 1. Commenter.

Correction

Si on considère que pour $\omega < 5 \, \mathrm{rad} \, \mathrm{s}^{-1}$, on a $H_{\mathrm{BO}}(p) \simeq \frac{2,5K}{p^2}$. Dans ces conditions, pour K = 1, on a $\left| \frac{2,5}{-\omega^2} \right| = 1 \Rightarrow \omega = \sqrt{2,5} \approx 1,58 \,\mathrm{rad}\,\mathrm{s}^{-1}$.

Question 10 Procéder au réglage du gain K du correcteur afin d'assurer le respect du critère de stabilité du cahier des charges.

Correction

En raisonnant analytiquement, on cherche la pulsation ω_{-145} pour laquelle la phase est de $-180^{\circ} + 35^{\circ} = -145^{\circ}$, soit arg FTBO $(j\omega) = -145^{\circ}$. (Résolution à faire à la calculatrice, sur

Python ou autre. Il y asurement 2 solutions vu le profil de courbe de phase). On cherche ensuite K tel que $|\mathrm{FTBO}(j\omega_{-145})|=1$. (Résolution à faire à la calculatrice, sur Python ou autre.)

Question 11 Le critère de précision du cahier des charges est-il vérifié? Justifier.

Correction

La boucle ouverte comporte 2 intégrateurs. L'écart statique est donc nul. Le cahier des charges est vérifié.

Question 12 Repérer le(s) pôle(s) dominant(s) et donner sa (leur) valeur(s) numérique(s).

Correction

Les pôles dominants sont $P2 \simeq -15$, $P3 \simeq -5 + 8i$, $P4 \simeq -5 - 8i$.

Question 13 À l'aide des droites d'iso-amortissement, indiquer la valeur du coefficient d'amortissement ξ de la fonction de transfert du deuxième ordre pouvant modéliser l'asservissement vertical du drone lorsque l'on néglige les autres pôles par rapport à ces pôles dominants.

Correction

Dans ce cas, on ne prend que P3 et P4. $\xi = 0, 6$.

Question 14 En déduire la présence ou l'absence d'oscillations verticales du drone lors d'un décollage supposé modélisé par un échelon d'amplitude 1 mètre. Le critère de stabilité est-il intégralement vérifié?

Correction

Le coefficient d'amortissement est inférieur à 0,69. Il y aura donc des oscillations verticales lors du drone. Le dépassement sera supérieur à 5 % de la valeur finale. En conséquence, le critère de stabilité n'est pas totalement respecté.

Question 15 Donner l'expression littérale des pôles d'un système du deuxième ordre de pulsation propre ω_n et de coefficient d'amortissement $\xi < 1$. En déduire une estimation de la pulsation propre ω_n de la fonction de transfert approchée de l'asservissement vertical du drone.

Correction

Question 16 Vérifier si le critère de rapidité du cahier des charges est vérifié.

Correction

