EXAMEN DE ESTADÍSTICA

2º Fisioterapia Modelo A 4 de marzo de 2020

Duración: 1 hora.

(5 pts.) 1. En un estudio sobre la reconstrucción del ligamento cruzado anterior (LCA) se evaluó el tiempo de recuperación postoperatorio según los pacientes hayan sido sometidos a una sutura meniscal o no. Los resultados aparecen en la siguiente tabla:

<< echo = FALSE, results = tex >>= print(xtable(data, align = c("c", "c", "r", "r"), auto = T), tabular.environm

Se pide:

- a) Dibujar el polígono de frecuencias relativas acumuladas de la muestra de pacientes sin sutura meniscal.
- b) Hay datos atípicos en el número de meses postoperatorios para pacientes sin sutura meniscal?
- c) ¿En cuál de los dos grupos es más representativa la media del número de meses postoperatorios?
- d) ¿Se puede asumir que la muestra de pacientes con sutura meniscal proviene de una población normal? Justifique la respuesta.
- e) ¿Qué valor es relativamente mayor, 5 meses para un paciente sin sutura meniscal o 6 meses para un paciente con sutura meniscal?

Usar las siguientes sumas para los cálculos:

Sin sutura meniscal: $\sum x_i n_i = 334$ meses, $\sum x_i^2 n_i = 12842$ meses², $\sum (x_i - \bar{x})^3 n_i = -765,98$ meses³ y $\sum (x_i - \bar{x})^4 n_i = 41254,33$ meses⁴.

Con sutura meniscal: $\sum y_i n_i = 159073$ meses, $\sum y_i^2 n_i = 4966773651$ meses², $\sum (y_i - \bar{y})^3 n_i = 12651902944243,1$ meses³ y $\sum (y_i - \bar{y})^4 n_i = 841023097756133888$ meses⁴.

Solución

(5 pts.) 2. La siguiente tabla muestra la evolución del número de contagios por coronavirus desde que se detectó el virus:

Días	25	29	32	35	38	40	43	45	47
Contagios	282	846	2798	7818	14557	20630	31481	37558	43103

- a) Dibujar el diagrama de dispersión del número de contagios en función del número de días transcurridos.
- b) ¿Qué modelo de regresión es mejor para predecir el número de contagios en función del número de días transcurridos, el lineal o el exponencial?
- c) ¿Cuántos contagios se esperan transcurridos 100 días según el mejor de los anteriores modelos? ¿Es fiable la predicción?
- d) Si el número de muertes está relacionado linealmente con el número de contagios, con un coeficiente de determinación lineal 0,99, ¿cuánto aumentará o disminuirá el número de contagios por cada muerte más, si se sabe que por cada contagio más hay 0,022 muertes más.

Usar las siguientes sumas para los cálculos:

 $\sum x_i = 334$ días, $\sum \log(x_i) = 32,3517$ $\log(\text{días})$, $\sum y_j = 159073$ contagios, $\sum \log(y_j) = 80,3657$ $\log(\text{contagios})$,

 $\sum x_i^2 = 12842 \text{ días}^2, \sum \log(x_i)^2 = 116,6525 \log(\text{días})^2, \sum y_j^2 = 4966773651 \text{ contagios}^2, \sum \log(y_j)^2 = 743,3009 \log(\text{contagios})^2,$

 $\sum x_i y_j = 6842750 \text{ días·contagios}, \sum x_i \log(y_j) = 3086,808 \text{ días·log(contagios)}, \sum \log(x_i) y_j = 597633,103 \log(\text{días}) \cos(x_i) \log(y_j) = 291,8911 \log(\text{días}) \log(\text{contagios}).$

Solución

a) $\bar{x}=37{,}1111$ años, $s_x^2=49{,}6543$ años². $\bar{y}=17674{,}7778$ €, $s_y^2=239465969{,}5062$ €². $\overline{\log(y)}=8{,}9295$ $\log(\mathfrak{C}),$ $s_{\log(y)}^2=2{,}8526$ $\log(\mathfrak{C})^2.$ $s_{xy}=104374{,}9136$ años· $\mathfrak{C},$ $s_{x\log(y)}=11{,}5941$ años· $\log()$. Coeficiente de determinación lineal: $r^2=0{,}9162$

Coeficiente de determinación exponencial: $r^2 = 0.949$

Así pues, el modelo de regresión exponencial es mejor para predecir el precio ya que su coeficiente de determinación es mayor.

b) Modelo de regresión exponencial: $y = e^{0.2642+0.2335x}$. Predicción: $y(2020) = 9.00527506122407e + 204 ext{ } ext{ }$