Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

IIC2343 – Arquitectura de Computadores

Arquitecturas de Computadores

Profesor: Hans Löbel

Computador básico ya tiene todas las funcionalidades "básicas"

- Posee registros y unidades de ejecución y control.
- Además de hacer cálculos, puede realizar operaciones de control de flujo.
- Provee modularidad básica, al dar soporte para subrutinas.

Nuestro computador presenta una de muchas posibles arquitecturas

- Distintos computadores pueden diferir en el conjunto de funcionalidades básicas y fundamentales.
- Por otro lado, existen computadores que son programados de la misma manera (ej. AMD-Intel), pero su construcción interna es distinta.
- Decisiones en cuanto a cantidad de registros, tamaño de buses, memorias, instrucciones, etc., definen la arquitectura de un computador.

Microarquitectura e ISA definen la arquitectura de un computador

La arquitectura de un computador se define en base a dos elementos:

- 1. Microarquitectura: se refiere a los distintos componentes de hardware que están presentes en el computador.
- Arquitectura del set de instrucciones (ISA): se refiere al tipo, formato, características, etc., de las instrucciones soportadas por el computador. En resumen, lo que tenga que ver con la programación de un computador.

Revisemos la microarquitectura de nuestro computador básico

Revisemos la microarquitectura de nuestro computador básico

Revisemos la microarquitectura de nuestro computador básico

Registros, Unidad de ejecución, Unidad de control

¿Cuál es la microarquitectura de nuestro computador?

Registros:A, B, SP, PC, Status

Unidad de control: Simple (Hardwired)

Tamaños: Regs., dir. mem., etc., 8 bits

Unidad de ejecución: ALU

Condition Codes:
 Z, N, C, V

• Stack: En memoria

Modifiquemos un poco la microarquitectura del computador básico

Arquitecturas de von Neumann y Harvard se utilizan en distintos casos

La memoria presenta una división entre 2 grandes paradigmas dentro de la arquitectura de los computadores:

- Arquitectura Harvard: presenta memorias independientes para instrucciones y para datos.
- Arquitectura von Neumann: utiliza una sola memoria compartida entre instrucciones y datos. Permite escribir instrucciones como si estas fueran datos (autoprogramabilidad).

En von Neumann, el bus de instrucciones se agrega al bus bidireccional de datos

ISA especifica como escribir los programas para el computador

- Tipos de Instrucciones: carga, aritméticas,...
- Tipos de datos
- Modos de direccionamiento de memoria
- Manejo del stack
- Formato de instrucción
- Palabras por instrucción
- Ciclos por instrucción

ISA especifica como escribir los programas para el computador

Instrucción	Operandos	Opcode	Condition	Lpc	La	Lb	Sa0,1	Sb0,1	Sop0,1,2	$_{\mathrm{Sadd0,1}}$	Sdin0	$\operatorname{Spc0}$	W	IncSp	DecSp
MOV	A,B	0000000		0	1	0	ZERO	В	ADD	-	-	-	0	0	0
	B,A	0000001		0	0	1	A	ZERO	ADD	-	-	-	0	0	0
	$_{A,Lit}$	0000010		0	1	0	ZERO	LIT	ADD	-	-	-	0	0	0
	B,Lit	0000011		0	0	1	ZERO	LIT	ADD	-	-	-	0	0	0
	A,(Dir)	0000100		0	1	0	ZERO	DOUT	ADD	LIT	-	-	0	0	0
	B,(Dir)	0000101		0	0	1	ZERO	DOUT	ADD	$_{ m LIT}$	-	-	0	0	0
	(Dir),A	0000110		0	0	0	A	ZERO	ADD	$_{ m LIT}$	ALU	-	1	0	0
	(Dir),B	0000111		0	0	0	ZERO	В	ADD	$_{ m LIT}$	ALU	-	1	0	0
	A,(B)	0001000		0	1	0	ZERO	DOUT	ADD	В	-	-	0	0	0
	B,(B)	0001001		0	0	1	ZERO	DOUT	ADD	В	-	-	0	0	0
	(B),A	0001010		0	1	0	A	ZERO	ADD	В	ALU	-	1	0	0
ADD	A,B	0001011		0	1	0	A	В	ADD	-	-	-	0	0	0
	B,A	0001100		0	0	1	A	В	ADD	-	-	-	0	0	0
	A,Lit	0001101		0	1	0	A	LIT	ADD	-	-	-	0	0	0
	A,(Dir)	0001110		0	1	0	A	DOUT	ADD	$_{ m LIT}$	-	-	0	0	0
	A,(B)	0001111		0	1	0	A	DOUT	ADD	В	-	-	0	0	0
	(Dir)	0010000		0	0	0	A	В	ADD	LIT	ALU	-	1	0	0
SUB	$_{\mathrm{A,B}}$	0010001		0	1	0	A	В	SUB	-	-	-	0	0	0
зов	$_{\mathrm{B,A}}$	0010010		0	0	1	A	В	SUB	-	-	-	0	0	0
	$_{ m A,Lit}$	0010010		0	1	0	A	LIT	SUB	-	-	-	0	0	0
	A,(Dir)	0010011		0	1	0	A	DOUT	SUB	LIT	-	-	0	0	0
	A,(B)	0010100		0	1	0	A	DOUT	SUB	В	-	-	0	0	0
	(Dir)	0010101		0	0	0	A	В	SUB	LIT	ALU	-	1	0	0
AND	$_{\mathrm{A,B}}$	0010110		0	1	0	A	В	AND	-	-	-	0	0	0
	$_{\mathrm{B,A}}$	0010111		0	0	1	A	В	AND	-	-	-	0	0	0
	A,Lit	0011000		0	1	0	A	LIT	AND	-	-	-	0	0	0
	A,(Dir)	0011001		0	1	0	A	DOUT	AND	LIT	-	-	0	0	0
	A,(B)	0011010		0	1	0	A	DOUT	AND	В	-	-	0	0	0
	(Dir)	0011011		0	0	0	A	В	AND	LIT	ALU	-	1	0	0
OR	$_{\mathrm{A,B}}$	0011100		0	1	0	A	В	OR	-	-	-	0	0	0
	$_{\mathrm{B,A}}$	0011101		0	0	1	A	В	OR	-	-	-	0	0	0
	$_{ m A,Lit}$	0011110		0	1	0	A	LIT	OR	-	-	-	0	0	0
NOT	A,(Dir)	0011111		0	1	0	A	DOUT	OR	$_{ m LIT}$	-	-	0	0	0
	A,(B)	0100000		0	1	0	A	DOUT	OR	В	-	-	0	0	0
	(Dir)	0100001		0	0	0	A	В	IR	LIT	ALU	-	1	0	0
	A,A	0100010		0	1	0	A	-	NOT	-	-	-	0	0	0
	$_{\mathrm{B,A}}$	0100011		0	0	1	A	-	NOT	-	-	-	0	0	0
	(Dir)	0100111		0	0	0	A	В	NOT	LIT	ALU	-	1	0	0

ISA especifica como escribir los programas para el computador

Instrucción	Operandos	Opcode	Condition	Lpc	La	Lb	Sa0,1	Sb0,1	Sop0,1,2	$_{\mathrm{Sadd0,1}}$	Sdin0	$\operatorname{Spc0}$	W	IncSp	DecSp
XOR	A,B	0100110		0	1	0	A	В	XOR	-	-	-	0	0	0
	$_{\mathrm{B,A}}$	0100111		0	0	1	A	В	XOR	-	-	-	0	0	0
	$_{ m A,Lit}$	0101000		0	1	0	A	LIT	XOR	-	-	-	0	0	0
	A,(Dir)	0101001		0	1	0	A	DOUT	XOR	$_{ m LIT}$	-	-	0	0	0
	A,(B)	0101010		0	1	0	A	DOUT	XOR	В	-	-	0	0	0
	(Dir)	0101011		0	0	0	A	В	XOR	$_{ m LIT}$	ALU	-	1	0	0
SHL	A,A	0101100		0	1	0	A	-	$_{ m SHL}$	-	-	-	0	0	0
	$_{\mathrm{B,A}}$	0101101		0	0	1	A	-	$_{ m SHL}$	-	-	-	0	0	0
	(Dir)	0101110		0	0	0	A	В	$_{ m SHL}$	$_{ m LIT}$	ALU	-	1	0	0
SHR	A,A	0101111		0	1	0	A	-	SHR	-	-	-	0	0	0
	$_{\mathrm{B,A}}$	0110000		0	0	1	A	-	$_{\mathrm{SHR}}$	-	-	-	0	0	0
	(Dir)	0110001		0	0	0	A	В	SHR	$_{ m LIT}$	ALU	-	1	0	0
INC	В	0110010		0	0	1	ONE	В	ADD	-	-	-	0	0	0
CMP	A,B	0110011		0	0	0	A	В	SUB	-	-	-	0	0	0
	A,Lit	0110100		0	0	0	A	$_{ m LIT}$	SUB	-	-	-	0	0	0
$_{ m JMP}$	Dir	0110101		1	0	0	-	-	-	-	-	LIT	0	0	0
$_{ m JEQ}$	Dir	0110110	Z=1	1	0	0	-	-	-	-	-	LIT	0	0	0
$_{ m JNE}$	Dir	0110111	Z=0	1	0	0	-	-	-	-	-	LIT	0	0	0
$_{ m JGT}$	Dir	0111000	$N=0 \ y \ Z=0$	1	0	0	-	-	-	-	-	LIT	0	0	0
$_{ m JLT}$	Dir	0111001	N=1	1	0	0	-	-	-	-	-	LIT	0	0	0
$_{ m JGE}$	Dir	0111010	N=0	1	0	0	-	-	-	-	-	LIT	0	0	0
$_{ m JLE}$	Dir	0111011	N=1 o $Z=1$	1	0	0	-	-	-	-	-	LIT	0	0	0
JCR	Dir	0111100	C=1	1	0	0	-	-	-	-	-	LIT	0	0	0
JOV	Dir	0111101	V=1	1	0	0	-	-	-	-	-	LIT	0	0	0
CALL	Dir	0111110		1	0	0	-	-	-	SP	PC	LIT	1	0	1
RET		0111111		0	0	0	-	-	-	-	-	-	0	1	0
		1000001		1	0	0	-	-	-	$_{ m SP}$	-	DOUT	0	0	0
PUSH	A	1000010		0	0	0	A	ZERO	ADD	$_{ m SP}$	ALU	-	1	0	1
PUSH	В	1000011		0	0	0	ZERO	В	ADD	$_{ m SP}$	ALU	-	1	0	1
POP	A	0111111		0	0	0	-	-	-	-	-	-	0	1	0
		1000100		0	1	0	ZERO	DOUT	ADD	$_{ m SP}$	ALU	-	0	0	0
POP	В	0111111		0	0	0	-	-	-	-	-	-	0	1	0
		1000101		0	0	1	ZERO	DOUT	ADD	SP	ALU	-	0	0	0

RISC y CISC presentan soluciones con distinto foco para un mismo problema

Implementación de ISA responde generalmente a uno de dos paradigmas:

- RISC: Instrucciones pequeñas y simples. Diseñado para minimizar complejidad del hardware. Énfasis en el software.
- CISC: Muchas instrucciones y de alta complejidad. Énfasis en el hardware.

¿Cuál es la arquitectura del set de instrucciones de nuestro computador?

Tipos de inst.: Carga, aritmética, salto, ...

Tipos de dato: Entero binario con y sin signo

• Directionamiento: Directo, indirecto por reg.

Manejo stack: General

• Formato de inst.: Mixto (Inst. + 0, 1 ó 2 args.)

Palabras por inst.: 1 (salvo RET y POP)

Ciclos por inst.: 1 (salvo RET y POP)

RISC

Finalicemos esta unidad con un pequeño ejercicio

Se desea modificar la arquitectura del computador básico, para que soporte de manera nativa el uso de número reales.

- Modifique la microarquitectura para soportar de manera nativa el uso de número reales.
- Modifique la ISA par dar soporte a las instrucciones relacionadas con el uso de números reales.

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

IIC2343 – Arquitectura de Computadores

Arquitecturas de Computadores

Profesor: Hans Löbel