

《现代控制理论》MOOC课程

1.2 状态空间表达式的建立

二. 从系统的机理出发建立状态空间表达式

状态变量的选取

对于实际物理系统,状态变量的个数通常等于系统中独立储能元件的个数,因此在列写状态方程时通常可对每一个独立储能元件指定一个变量作为状态变量。

基本方法

根据具体的控制系统,应用其物理规律,列写出描述系统动态过程的一阶微分方程组,写成矩阵的形式,即得到系统的状态方程。

1.2 状态空间表达式的建立

二. 从系统的机理出发建立状态空间表达式

例1:有电路如下图所示。列写以电压u(t)为输入量,以电阻 R_2 上的电压作为输出的状态空间表达式。

解:

- 1. 选取状态变量 $x_1 = i_1$ $x_2 = i_2$ $x_3 = u_c$
- 2.建立状态方程

基尔霍夫定理

基尔霍夫电压定理:对于电路中任一回路,在任意时刻,沿该回路全部支路电压的代数和等于零。

基尔霍夫电流定理:对于电路中任一节点,在任意时刻,流入节点电流的代数和等于零。

节点a:
$$x_1 - x_2 - C\dot{x}_3 = 0$$

$$y = [0 \quad R_2 \quad 0]x$$

1.2 状态空间表达式的建立

 $K_2 \qquad \overrightarrow{\triangleright}_{v_2} \qquad K_1 \qquad \overrightarrow{\triangleright}_{v_1} \qquad \overrightarrow{\triangleright}_{v_1}$

二. 从系统的机理出发建立状态空间表达式

例2:有机械系统如下图所示, M_1 和 M_2 分别受外力 f_1 和 f_2 的作用。求以 M_1 和 M_2 的运动速度为输出的状态空间表达式。

解: 1. 选取状态变量

$$x_1 = s_1$$
 $x_3 = v_1 = y_1$
 $x_2 = s_2$ $x_4 = v_2 = y_2$

2.建立状态方程

对于M1:
$$f_1 - K_1(x_1 - x_2) - B_1(x_3 - x_4) = M_1 \dot{x}_3$$

对于M2:
$$f_2 + K_1(x_1 - x_2) + B_1(x_3 - x_4) - K_2x_2 - B_2x_4 = M_2\dot{x}_4$$

$$\dot{x}_2 = x_4 \qquad \dot{x}_1 = x_3$$

输出方程:
$$y_1 = x_3$$

$$y_2 = x_4$$

1.2 状态空间表达式的建立

二. 从系统的机理出发建立状态空间表达式

状态空间表达式:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \\ \dot{x}_4 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\frac{K_1}{M_1} & \frac{K_1}{M_1} & -\frac{B_1}{M_1} & \frac{B_1}{M_1} \\ \frac{K_1}{M_2} & -\frac{K_1+K_2}{M_2} & \frac{B_1}{M_2} & -\frac{B_1+B_2}{M_2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ \frac{1}{M_1} & 0 \\ 0 & \frac{1}{M_2} \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \end{bmatrix}$$

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$