Prova tipo B

P2 de Álgebra Linear I – 2003.2 Data: 13 de outubro de 2003

Nome:	Matrícula:
Assinatura:	Turma:

Questão	Valor	Nota	Revis.
1a	0.5		
1b	1.0		
1c	0.5		
1d	0.5		
2a	1.0		
2b	1.0		
3a	1.0		
3b	1.0		
3c	1.0		
4a	0.5		
4b	1.0		
5	1.0		
Total	10.0		

1) Considere os vetores

$$v_1 = (2, 0, -1),$$
 $v_2 = (1, -1, -2),$ $v_3 = (3, 1, 0),$ $v_4 = (7, 3, 1),$ $v_5 = (8, 4, 2),$ $v_6 = (1, 1, a).$

- **1.a)** Determine o valor de **a** no vetor v_6 para que os vetores v_1, v_2, v_3, v_4, v_5 e v_6 gerem exatamente um plano (e não \mathbb{R}^3).
- 1.b) Considere a base

$$\beta = \{(1, 2, 2), (0, 1, 1), (1, 1, 0)\}$$

de \mathbb{R}^3 . Considere o vetor v cujas coordenadas na base canônica são (3,4,3). Determine as coordenadas de v na base β .

- **1.c**) Encontre uma base $\alpha = \{u_1, u_2, u_3\}$ tal que o vetor v = (3, 1, 2) tenha coordenadas (1, 1, 0) na base α .
- **1.d)** Considere o plano π : x+2y-z=0 e a base $\gamma=\{(1,0,1),(0,1,2)\}$ de π . Dado o vetor v=(3,-2,-1) do plano π , encontre as coordenadas de v na base γ .

$$\mathbf{b)} \qquad (v)_{\beta} =$$

c)
$$\alpha =$$

$$\mathbf{d}) \qquad \qquad (v)_{\gamma} =$$

a) Seja w um vetor de \mathbb{R}^3 e $M\colon \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear dada por

$$M(u) = u \times w$$
.

Sabendo que a matriz de M é

$$[M] = \left(\begin{array}{ccc} 0 & 1 & -1 \\ -1 & 0 & 2 \\ 1 & -2 & 0 \end{array}\right).$$

Determine o vetor w.

b) Considere agora o vetor u=(1,1,2) e a transformação linear

$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
,

definida por

$$T(v) = v \times u$$
.

Determine a matriz [T] de T.

- a) w =
- b) $[T] = \left(\begin{array}{c} \\ \\ \end{array}\right)$

- (a) Determine a matriz $[P_{\pi,i}]$ da projeção $P_{\pi,i}$ no plano $\pi: x y + z = 0$ na direção do vetor $\mathbf{i} = (1,0,0)$.
- (b) Considere a matriz

$$[P_{\rho,w}] = \begin{pmatrix} 1/2 & 0 & 1/2 \\ -1/2 & 1 & 1/2 \\ 1/2 & 0 & 1/2 \end{pmatrix},$$

Sabendo que esta matriz representa uma projeção em um plano ρ (contendo a origem) na direção de um vetor w, determine ρ e w.

(c) Sabendo que a matriz

$$[P] = \begin{pmatrix} 1 & a & b \\ -1 & -1 & c \\ 1 & 1 & 1 \end{pmatrix}$$

representa uma projeção em uma reta, determine a, b, e c.

$$\mathbf{a)} \qquad \qquad [P_{\pi,\mathbf{i}}] = \left(\begin{array}{c} \\ \\ \end{array} \right)$$

b)
$$\rho$$
: $w =$

c)
$$a = b = c =$$

4)

- a) Escreva a matriz [R] da rotação $R \colon \mathbb{R}^2 \to \mathbb{R}^2$ de ângulo 60 graus no sentido anti-horário.
- b) Considere os pontos A=(1,2) e B=(2,3) de \mathbb{R}^2 . Determine um ponto C tal que A,B e C sejam os vértices de um triângulo equilátero.

a)
$$[R] = \left(\begin{array}{c} \\ \\ \end{array}\right)$$

5)	Determine a equação cartesiana do plano π do espelhamento E em um
plano	,
	$E: \mathbb{R}^3 \to \mathbb{R}^3$.

que verifica E(2,2,1) = (-1,2,2).

π :				