Zadanie 11. *(4 pkt)*

Wyznacz najmniejszą i największą wartość funkcji $f: R \to R$, określonej wzorem: $f(x) = (x-1) \cdot (5-x)$, w przedziale $\langle 0; 7 \rangle$.

Zadanie 12. *(4 pkt)*

Dane jest równanie postaci $a^2 \cdot x - 1 = x + a$, w którym niewiadomą jest x. Zbadaj liczbę rozwiązań tego równania, w zależności od parametru a.

Zadanie 13. *(4 pkt)*

Wyznacz te wartości parametrów a oraz b, przy których funkcja $g: R \to R$, określona

wzorem
$$g(x) = \begin{cases} \frac{x^2 + a}{x - 2} & dla \ x \neq 2 \\ b & dla \ x = 2 \end{cases}$$
 jest ciągła w punkcie $x = 2$.

Zadanie 14. *(5 pkt)*

Suma n początkowych, kolejnych wyrazów ciągu (a_n) , jest obliczana według wzoru $S_n = n^2 + 3n$, $(n \in N^+)$. Wyznacz a_n . Wykaż, że ciąg (a_n) jest ciągiem arytmetycznym.

Zadanie 15. *(5 pkt)*

Dziesiąty wyraz pewnego ciągu geometrycznego równa się 10. Oblicz iloczyn dziewiętnastu początkowych, kolejnych wyrazów tego ciągu.

Zadanie 16. *(4 pkt)*

Rzucamy pięć razy symetryczną kostką sześcienną. Oblicz prawdopodobieństwo zdarzenia, polegającego na tym, że "jedynka" wypadnie co najmniej cztery razy.

Zadanie 17. *(5 pkt)*

W układzie współrzędnych są dane punkty: A(-9,-2) oraz B(4,2). Wyznacz współrzędne punktu C, leżacego na osi OY, tak że kat ACB jest katem prostym.

Zadanie 18. *(4 pkt)*

Wybierz dwie dowolne przekątne sześcianu i oblicz cosinus kąta między nimi. Sporządź odpowiedni rysunek i zaznacz na nim kąt, którego cosinus obliczasz.

Zadanie 19. *(5 pkt)*

Trapez równoramienny, o obwodzie równym 20 cm, jest opisany na okręgu. Wiedząc, że przekątna trapezu ma długość $\sqrt{41}$ cm, oblicz pole tego trapezu.

Zadanie 20. (10 pkt)

Funkcja h jest określona wzorem $h(x) = \log_2(x^2 - 4) - \log_2(x - 5)$. Wyznacz wszystkie wartości parametru k, dla których równanie $h(x) - \log_2 k = 0$ ma dwa różne pierwiastki.

Zadanie 21. *(10 pkt)*

Na kuli o promieniu R=4 cm opisujemy stożki o promieniu r i wysokości H. Spośród wszystkich takich stożków wyznacz ten, który ma najmniejszą objętość. Oblicz tę objętość. Oblicz promień i wysokość znalezionego stożka.

ODPOWIEDZI

$$f_{min} = -12$$
, $f_{max} = 4$

$$a = -4$$
 oraz $b = 4$.

$$a_n = 2n + 2$$

$$10^{19}$$

$$C(0,2\sqrt{10})$$
 lub $C(0,-2\sqrt{10})$

$$\cos \alpha = \frac{1}{3}$$
 (lub z minusem)

$$P = 20cm^2$$

$$k\in\left(10+2\sqrt{21};\,\infty\right)$$

$$H = 16 \, cm \, r = 4\sqrt{2} \, cm \, V(16) = \frac{512\pi}{3}$$