Practical Methodology

ESM5205 Learning from Big Data | Oct 2, 2019

Seokho Kang

In Practice...

- Practitioners need to know...
 - how to choose an algorithm for a particular application?
 - how to monitor and respond to feedback obtained from experiments in order to improve a machine learning system?
 - whether to gather more data, increase or decrease model capacity, add or remove regularizing features, improve the optimization of a model, improve approximate inference in a model, or debug the software implementation of the model.
- Blindly applying an algorithm to a dataset without understanding the assumptions
 the model makes and the meanings of the hyperparameter settings will rarely
 lead to an accurate model.
- One can usually do much better with a correct application of a commonplace algorithm than by sloppily applying an obscure algorithm.

Practical Process

- 1. Determine your goals
- 2. Build an end-to-end system
- 3. Refine the system

1. Determine your goals

- Task (to be addressed)
- Data
 - The amount of available data
 - Input and Output variables
 - **Characteristics** (class imbalance, etc.)
 - Preprocessing ***
- Requirements
 - **Computational Resources:** CPU/GPU, Memory, Storage, etc.
 - **Practical Constraints:** Time, Speed, etc.
- Performance Metrics
 - Which metric to use? (depending on the target task)
 - What level of performance do we desire? (practically acceptable level for the task)

Performance Metrics for Classification Tasks

Given a test set
$$D' = \{(x_i, y_i)\}_{i=1}^n$$

- **Accuracy**: the fraction of correctly classified data points

Accuracy =
$$\frac{1}{n} \sum_{i} I(y_i = \hat{y}_i) \times 100\%$$

- **Error Rate**: the fraction of mis-classified data points

Error Rate
$$= 1 - Accuracy$$

accuracy and error rate under class imbalance scenarios?

Confusion Matrix

Positive Class (Our Main Interest), Negative Class

FP: Type 1 Error, FN: Type 2 Error

Performance Metrics for Classification Tasks: Class Imbalance

Example: Two different models for the binary classification of 3000 data points, which model is better?

Model 1

	Predicted Positive	Predicted Negative
Actual Positive	26	260
Actual Negative	214	2500

Accuracy = (26+2500)/3000 = 84.20%

Precision = 26/(26+214) = 10.83%

Recall = 26/(26+260) = 9.09%

Model 2

	Predicted Positive	Predicted Negative
Actual Positive	0	286
Actual Negative	0	2714

Accuracy = (0+2714)/3000 = 90.47%

Precision = 0/(0+0) = NaN

Recall = 0/(0+286) = 0%

Performance Metrics for (Binary) Classification Tasks

Given a test set
$$\mathbf{D}' = \{(x_i, y_i)\}_{i=1}^n$$

Precision: the fraction of predicted positives that are actually positive
 Recall: the fraction of actual positives that are predicted as positive

$$Precision = \frac{TP}{TP + FP} \qquad Recall = \frac{TP}{TP + FN}$$

- **F₁ Score**: the harmonic mean of Precision and Recall

$$F_1 = \frac{2 \cdot \text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$$

Sensitivity(=Recall): the fraction of actual positives that are correctly classified

Specificity: the fraction of actual negatives that are correctly classified

$$Sensitivity = \frac{TP}{TP + FN} \qquad Specificity = \frac{TN}{TN + FP} \qquad \begin{array}{c} T \\ P \\ Actual \\ Class \end{array} \qquad \begin{array}{c} True \\ Positives \\ (FN) \end{array} \qquad \begin{array}{c} False \\ Negatives \\ (FN) \end{array}$$

Predicted class

N

- Performance Metrics for (Binary) Classification Tasks: Threshold
 - Most classification algorithms classify each data point x by ...
 - Compute P(y = 1|x), the probability of belonging to class "1"
 - Compare to the threshold, and classify it accordingly
 - In most cases, the default threshold is 0.5.
 - If > 0.5, classify as "1", If < 0.5, classify as "0"

what if the threshold is 0 or 1?

- The threshold controls the trade-off between ...
 - precision and recall
 - sensitivity and specificity
- We can use different thresholds.

Performance Metrics for (Binary) Classification Tasks: Threshold

Example: Various thresholds for the binary classification of 20 data points

P(y=1|x)

(1:positive, 0:negative)

Actual Class	Prob. of "1"	Actual Class	Prob. of "1"
1	0.996	1	0.506
1	0.988	0	0.471
1	0.984	0	0.337
1	0.980	1	0.218
1	0.948	0	0.199
1	0.889	0	0.149
1	0.848	0	0.048
0	0.762	0	0.038
1	0.707	0	0.025
1	0.681	0	0.022
1	0.656	0	0.016
0	0.622	0	0.004

when threshold=0

	Predicted Positive	Predicted Negative
Actual Positive	12	0
Actual Negative	12	0

when threshold=1

	Predicted Positive	Predicted Negative
Actual Positive	0	12
Actual Negative	0	12

when threshold=0.25

	Predicted Positive	Predicted Negative
Actual Positive	11	1
Actual Negative	4	8

when threshold=0.75

	Predicted Positive	Predicted Negative
Actual Positive	7	5
Actual Negative	1	11

- Performance Metrics for (Binary) Classification Tasks: Receiver Operating Characteristic
 - Receiver Operating Characteristic (ROC) Curve: Performance evaluation by plotting sensitivity against 1-specificity at various thresholds
 - AUROC: Area under the ROC curve
 - To assess how well a model performs in general (threshold independent metric)
 - Widely used for the evaluation of imbalanced classification tasks

Performance Metrics for Regression Tasks

Given a test set
$$D' = \{(x_i, y_i)\}_{i=1}^n$$
,

Root Mean Squared Error (RMSE)

$$RMSE = \sqrt{\frac{1}{n} \sum_{i} (y_i - \hat{y}_i)^2}$$

Mean Absolute Error (MAE)

$$MAE = \frac{1}{n} \sum_{i} |y_i - \hat{y}_i|$$

- Mean Absolute Percentage Error (MAPE)

$$MAPE = \frac{1}{n} \sum_{i} \left| \frac{y_i - \hat{y}_i}{y_i} \right| \times 100\%$$

ratio scale vs interval scale?

- Performance Metrics for Regression Tasks: Interval Scale vs Ratio Scale
 - **Interval Scale** has no absolute zero, allows for the degree of difference between magnitudes, but not the ratio (*e.g.*, temperature, ...)
 - Example: If we use MAPE to evaluate temperature predictions,
 When the true value is 1°C and its prediction is 0°C → APE=100%
 When the true value is 100°C and its prediction is 101°C → APE=1%
 When the true value is 0°C?
 - **Ratio Scale** possess an absolute zero, allows for the degrees of both difference and ratio between magnitudes (*e.g.*, length, weight, ...)
 - Example: If we use MAE to evaluate weight predictions,

 When the true value is 1g and its prediction is 2g → AE=1g

When the true value is 10,000g and its prediction is 10,001g \rightarrow AE=1g

Performance Metrics for Regression Tasks: MAE vs RMSE

- RMSE penalizes more on large errors

CASE 1: Evenly distributed errors

 ID
 Error
 Error
 Error Pror/2

 1
 2
 2
 4

 2
 2
 2
 4

 3
 2
 2
 4

 4
 2
 2
 4

 5
 2
 2
 4

 6
 2
 2
 4

 7
 2
 2
 4

 8
 2
 2
 4

 9
 2
 2
 4

 10
 2
 2
 4

CASE 2: Small variance in errors

ID	Error	Error	Error^2
1	1	1	1
2	1	1	1
3	1	1	1
4	1	1	1
5	1	1	1
6	3	3	9
7	3	3	9
8	3	3	9
9	3	3	9
10	3	3	9 ,

CASE 3: Large error outlier

ID	Error	Error	Error^2
1	0	0	0
2	0	0	0
3	0	0	0
4	0	0	0
5	0	0	0
6	0	0	0
7	0	0	0
8	0	0	0
9	0	0	0
10	20	20	400

MAE	RMSE
2.000	2.000

MAE	RMSE
2.000	2.236

MAE 2.000	RMSE
2.000	6.325

2. Establish an end-to-end pipeline

Build a reasonable system ASAP as baseline

- Any viable system
- or, copying the state-of-the-art system from a related publication

Which learning algorithm to use?

- Do we really need deep learning systems?
 (e.g., large-scale data, complex task, previous success of deep learning)
- Deep or not?
 - Lots of noise, little structure → shallow learning
 - Little noise, complex structure → deep learning
- In general, it is better to start with simple and robust algorithms (e.g., linear regression, decision tree ensemble, shallow neural network)

3. Refine the system

Source: GTC 2015 Keynote with Dr. Andrew Ng

3. Refine the system: Data

- Determining whether to gather more data
 - If the performance on the training set is poor?
 - Inspect your data and your code
 - Try increasing the representational capacity of a learning algorithm and improving optimization
 hyperparameter tuning
 - If still poor? The problem might be quality of training data (noise, lack of variables, etc.)
 - If the performance on the training set is acceptable, but on the test set is poor?
 - Try improving regularization → hyperparameter tuning
 - If still poor? Gathering more data is one of the most effective solutions
 - If the performance on the test set is acceptable,
 - There is noting left to be done!

^{*} Choose what to do based on "data"

- The goal of hyperparameter tuning is to find the lowest generalization error subject to some runtime and memory budget.
 - Hyperparameters control many aspects of a learning algorithm's behavior, including the representational capacity, optimization, and regularization.
 - Usually, the best generalization performance comes from a large model that is regularized well.
 - manual hyperparameter tuning and automatic hyperparameter tuning

Manual Hyperparameter Tuning

- Requires a good understanding of the relationships between hyperparameters,
 representational capacity, optimization, and regularization
- Can work very well when we have good starting points (experience, related publications, etc.)

Manual Hyperparameter Tuning

- Examples: deep neural network
 - Number of hidden layers/units: Increasing the number of hidden layers/units increases the representational capacity
 - Learning rate: An improper learning rate, whether too high or too low, results in low representation capacity due to optimization failure
 - Weight decay coefficient: Decreasing the weight decay coefficient frees the model parameters to become larger

• **Dropout rate:** Dropping units less often gives the units more opportunities to conspire with each other to fit the training set

- Automatic Hyperparameter Tuning: Hyperparameter Optimization
 - Reduce the need to understand the hyperparameters, but computationally expensive
 - Can be used when good starting points are not available

- Automatic Hyperparameter Tuning: Hyperparameter Optimization
 - Grid Search
 - Exhaustive searching through a manually specified subset of the hyperparameter space
 - The subset is the Cartesian product of the set of values for each individual hyperparameter
 - Computational cost grows exponentially with the number of hyperparameters.
 : if there are m hyperparameters, each taking at n values, then the number of trials is n^m.
 - All the trials are independent → Easy to parallelize

- Automatic Hyperparameter Tuning: Hyperparameter Optimization
 - Random Search
 - Search by random sampling from the hyperparameter space
 - Random search is often more efficient than grid search.
 - Prior knowledge can be incorporated by specifying the distribution from which to sample.
 - All the trials are independent → Easy to parallelize

- Automatic Hyperparameter Tuning: Hyperparameter Optimization
 - Meta-heuristics
 - : efficiently explore the hyperparameter space to find near-optimal solution (e.g., Genetic algorithm)

- Model-based Optimization
 - : find the functional relationship between hyperparameters and validation performance (e.g., Bayesian optimization)

Debugging

- It's usually difficult to find the reason why a machine learning system doesn't work or performs poorly.
 - In most cases, we don't know the expected behavior or suboptimal behavior of the system.
 - Multiple components in the system can adapt each other. If one component is broken, the other components can adapt.
 - Sometimes, there's a software/hardware defect.
- If things are problematic, you should...
 - Inspect data / software / hardware
 - Fit a small dataset
 - Visualize the model in action
 - Visualize the worst mistakes
 - ...

Machine Learning Practice

Typical ML-based modeling strategy

Source from http://martink.me/articles/machine-learning-is-for-muggles-too

Machine Learning Practice

Real-world ML system

Sculley, David, et al. "Hidden technical debt in machine learning systems." *Advances in neural information processing systems*. 2015.

