Trabajo Práctico Nro. 4

Sucesiones y Series Numéricas.

1. Analizar la convergencia de las siguientes sucesiones reales:

(a)
$$a_n = 3 - \frac{1}{n}$$

(b)
$$a_n = (-1)^n \frac{5}{n}$$

(c)
$$a_n = \sqrt{n+1} - \sqrt{n}$$

$$(d) a_n = \frac{n^2}{2}$$

(e)
$$a_n = \frac{\sin(2n)}{n}$$

(f)
$$a_n = \frac{\sqrt{n^3 + 2}}{n^2 - 2}$$

(g)
$$a_n = \frac{n!}{(n+1)}$$

(h)
$$a_n = (-1)^n \frac{n}{n+1}$$

(a)
$$a_n = 3 - \frac{1}{n}$$
 (b) $a_n = (-1)^n \frac{5}{n}$ (c) $a_n = \sqrt{n+1} - \sqrt{n}$ (d) $a_n = \frac{n^2}{2}$ (e) $a_n = \frac{\operatorname{sen}(2n)}{n}$ (f) $a_n = \frac{\sqrt{n^3} + 2}{n^2 - 2}$ (g) $a_n = \frac{n!}{(n+1)!}$ (h) $a_n = (-1)^n \frac{n}{n+1}$ (i) $a_n = \sqrt[n\pi]{a^n + b^n}$, $a \ge b \ge 0$

(j)
$$a_n = \cos(n\pi)$$

$$(k) a_n = \frac{\operatorname{sen}(\frac{n\pi}{2})}{n^2}$$

(j)
$$a_n = \cos(n\pi)$$
 (k) $a_n = \frac{\sin(\frac{n\pi}{2})}{n^2}$ (l) $a_n = \frac{n^k}{2^n}$, $k \in \mathbb{N}$

2. Hallar, si existe, el límite de las siguientes sucesiones de números complejos:

(a)
$$z_n = \sqrt[n]{n} + i r$$
, $r \in \mathbb{R}$

(a)
$$z_n = \sqrt[n]{n} + ir$$
, $r \in \mathbb{R}$ (b) $z_n = \frac{n}{n+i3} - \frac{in}{n+1}$

(c)
$$z_n = \frac{1+2n^2}{n^2} - i\frac{n-1}{n}$$
 (d) $z_n = i^n$

(d)
$$z_n = i^n$$

(e)
$$z_n = n i^n$$

(f)
$$z_n = \left(\frac{1+i}{2}\right)^n$$

(g)
$$z_n = \operatorname{sen}(n i)$$

(f)
$$z_n = \left(\frac{1+i}{2}\right)^n$$

(h) $z_n = (\cos t + i \operatorname{sen} t)^n$, $t \in \mathbb{R}$

3. Encontrar dos subsucesiones convergentes de cada una de las sucesiones:

(a)
$$\{e^{n\pi i/3}\}$$
 (b) $\{i^{2n}\}$

(b)
$$\{i^{2n}\}$$

- 4. Sea $\{z_n\}\subset\mathbb{C}$ una sucesión convergente. Probar que:
 - (i) $\{z_n\}$ es una sucesión acotada,
 - (ii) $\{|z_n|\}$ es una sucesión convergente.

En ambos casos, dar un contraejemplo de la recíproca.

5. Analizar la convergencia de las siguientes series reales utilizando el criterio de

(a)
$$\sum_{k=1}^{\infty} \frac{2}{k}$$

(b)
$$\sum_{k=1}^{\infty} \frac{1}{(k+1)k}$$

(c)
$$\sum_{k=0}^{\infty} \frac{1}{1+2^k}$$

(a)
$$\sum_{k=1}^{\infty} \frac{2}{k}$$
 (b) $\sum_{k=1}^{\infty} \frac{1}{(k+1)k}$ (c) $\sum_{k=0}^{\infty} \frac{1}{1+2^k}$ (d) $\sum_{k=1}^{\infty} \frac{2+\cos(k)}{k}$

6. Analizar la convergencia de las siguientes series reales mediante el criterio de D'Alembert:

(a)
$$\sum_{k=1}^{\infty} \frac{3^k}{k \, 2^k}$$

(b)
$$\sum_{k=1}^{\infty} \frac{k!}{100^k}$$

(c)
$$\sum_{k=0}^{\infty} \frac{4k+1}{3^k}$$

(a)
$$\sum_{k=1}^{\infty} \frac{3^k}{k \, 2^k}$$
 (b) $\sum_{k=1}^{\infty} \frac{k!}{100^k}$ (c) $\sum_{k=0}^{\infty} \frac{4k+1}{3^k}$ (d) $\sum_{k=0}^{\infty} \frac{5^k}{(k+1)!}$

7. Analizar la convergencia de las siguientes series reales mediante el criterio de Cauchy:

(a)
$$\sum_{k=1}^{\infty} \frac{2^{k+1}}{k^k}$$

(b)
$$\sum_{k=1}^{\infty} \frac{k^k}{10^k}$$

(a)
$$\sum_{k=1}^{\infty} \frac{2^{k+1}}{k^k}$$
 (b) $\sum_{k=1}^{\infty} \frac{k^k}{10^k}$ (c) $\sum_{k=1}^{\infty} \left(\frac{1+k}{k}\right)^{k^2}$ (d) $\sum_{k=1}^{\infty} \frac{(2k-1)^k}{k}$

(d)
$$\sum_{k=1}^{\infty} \frac{(2k-1)^k}{k}$$

8. Determinar el carácter de las siguientes series reales alternadas:

(a)
$$\sum_{k=1}^{\infty} (-1)^k \frac{1}{2k+3}$$
 (b) $\sum_{k=1}^{\infty} (-1)^{k-1} \frac{1}{3^k}$ (c) $\sum_{k=1}^{\infty} \frac{\cos(k\pi)}{\sqrt{k}}$

(b)
$$\sum_{k=1}^{\infty} (-1)^{k-1} \frac{1}{3^k}$$

(c)
$$\sum_{k=1}^{\infty} \frac{\cos(k\pi)}{\sqrt{k}}$$

(d)
$$\sum_{k=1}^{\infty} (-1)^k \frac{k}{6^k}$$

9. Analizar cuáles de las siguientes series reales son absolutamente convergentes, cuáles condicionalmente convergentes y cuáles divergentes. En los casos convergentes en que sea posible, calcular a qué converge.

(a)
$$\sum_{k=1}^{\infty} 2^k$$

(b)
$$\sum_{k=1}^{\infty} \left(\frac{3}{5}\right)^{k-1}$$

(b)
$$\sum_{k=1}^{\infty} \left(\frac{3}{5}\right)^{k-1}$$
 (c) $\sum_{k=1}^{\infty} \left(\frac{1}{2k+1} - \frac{1}{2k+3}\right)$

(d)
$$\sum_{k=1}^{\infty} (-1)^k \left(\frac{2}{3}\right)^k$$
 (e) $\sum_{k=1}^{\infty} \frac{\sqrt[k]{k_0}}{2}$ (f) $\sum_{k=1}^{\infty} \frac{k}{4k^2 - 3}$

(e)
$$\sum_{k=1}^{\infty} \frac{\sqrt[k]{k_0}}{2}$$

(f)
$$\sum_{k=1}^{\infty} \frac{k}{4k^2 - 3}$$

(g)
$$\sum_{k=1}^{\infty} \frac{1}{k^3 + k + 2}$$
 (h) $\sum_{k=1}^{\infty} \frac{2^k}{k \cdot 3^k}$ (i) $\sum_{k=1}^{\infty} \frac{k!}{k^k}$

$$(h) \sum_{k=1}^{\infty} \frac{2^k}{k \, 3^k}$$

(i)
$$\sum_{k=1}^{\infty} \frac{k!}{k^k}$$

$$(j) \sum_{k=1}^{\infty} \frac{1}{\sqrt{2k+1}}$$

(j)
$$\sum_{k=1}^{\infty} \frac{1}{\sqrt{2k+1}}$$
 (k) $\sum_{k=1}^{\infty} \frac{1}{(\ln(k+1))^k}$ (l) $\sum_{k=1}^{\infty} \frac{k+1}{2k+1}$

(l)
$$\sum_{k=1}^{\infty} \frac{k+1}{2k+1}$$

(m)
$$\sum_{k=1}^{\infty} \left(\frac{2k}{3k+1} \right)^k$$

(n)
$$\sum_{k=1}^{\infty} \operatorname{sen}\left(\frac{1}{k^2}\right)$$

(m)
$$\sum_{k=1}^{\infty} \left(\frac{2k}{3k+1}\right)^k$$
 (n)
$$\sum_{k=1}^{\infty} \operatorname{sen}\left(\frac{1}{k^2}\right)$$
 (o)
$$\sum_{k=1}^{\infty} \frac{r^k k!}{k^k} \quad r > 0$$

10. Analizar la convergencia absoluta y condicional de las siguientes series complejas. Si es posible, calcular a qué converge.

(a)
$$\sum_{n=0}^{\infty} \frac{n - i2^n}{3^n}$$
 (b) $\sum_{n=1}^{\infty} \frac{(1+i)^n}{n}$ (c) $\sum_{n=0}^{\infty} \frac{i^n}{n}$

(b)
$$\sum_{n=1}^{\infty} \frac{(1+i)^n}{n}$$

(c)
$$\sum_{n=0}^{\infty} \frac{i^n}{n}$$

(d)
$$\sum_{n=1}^{\infty} \frac{(1+3i)^n}{5^n}$$

(e)
$$\sum_{n=1}^{\infty} \frac{2i^n}{5+in^2}$$

(d)
$$\sum_{n=1}^{\infty} \frac{(1+3i)^n}{5^n}$$
 (e) $\sum_{n=1}^{\infty} \frac{2i^n}{5+in^2}$ (f) $\sum_{n=0}^{\infty} \left(\cos(\frac{n\pi}{5}) + i\sin(\frac{n\pi}{5})\right)$

(g)
$$\sum_{n=0}^{\infty} e^{in\theta}$$

(g)
$$\sum_{n=0}^{\infty} e^{in\theta}$$
 (f) $\sum_{n=1}^{\infty} \frac{e^{in\theta}}{n}$ (h) $\sum_{n=1}^{\infty} \frac{e^{in\theta}}{n^2}$ ($\theta \in [0, 2\pi)$)

$$(h) \sum_{n=1}^{\infty} \frac{e^{in\theta}}{n^2}$$

$$(\theta \in [0\,,2\pi))$$

11. Dar ejemplos de una serie compleja (no real):

- (i) acotada pero que no converge,
- (ii) que converge sólo condicionalmente.

- 12. Sea $\sum_{n=0}^{\infty} z_n$ una serie compleja convergente. Probar que:
 - (i) $\{\operatorname{Re} z_n\}$ y $\{\operatorname{Im} z_n\}$ son succesiones acotadas,
 - (ii) si Re $z_n \ge 0$ entonces $\sum_{n=0}^{\infty} (\operatorname{Re} z_n)^2$ es convergente,
 - (iii) si $|\operatorname{Arg} z_n| \le \theta < \pi/2$ entonces $\sum_{n=0}^{\infty} z_n$ converge absolutamente.

Sucesiones y Series de Funciones.

13. Calcular $\lim_{n\to\infty} f_n(z)$ para $z\in\Omega$ siendo:

(a)
$$f_n(z) = \frac{1}{n}e^{-n|z|}$$
 $\Omega = \mathbb{C}$

(b)
$$f_n(z) = \frac{z^3}{n^2 + z^2}$$
 $\Omega = \{ z \in \mathbb{C} : |z| < 1 \}, \quad \Omega = \{ z \in \mathbb{C} : |z| \le 1 \}$

(b)
$$f_n(z) = \frac{z^3}{n^2 + z^2}$$
 $\Omega = \{z \in \mathbb{C} : |z| < 1\}, \quad \Omega = \{z \in \mathbb{C} : |z| \le 1\}$
(c) $f_n(z) = e^{-n^2 z}$ $\Omega = \{z \in \mathbb{C} : \operatorname{Re} z \ge r\} \ (r > 0), \quad \Omega = \{z \in \mathbb{C} : \operatorname{Re} z \ge 0\}$

¿En qué casos la convergencia es uniforme?

- 14. Probar que la serie $\sum_{i=1}^{\infty} \frac{1}{n^z}$ es absolutamente convergente en Re z > 1.
- 15. Mostrar que $\sum_{n=0}^{\infty}e^{-inz}$ converge absoluta y uniformemente en $\operatorname{Im} z \leq -r \ (r>0)$. Determinar a qué función converge la serie anterior y deducir a qué converge $\sum^{\infty} ne^{-inz}, \, \forall z : \operatorname{Im} z < 0.$

Desarrollos en Series de Potencias.

16. Determinar el dominio de convergencia en \mathbb{C} de las series:

(a)
$$\sum_{n=1}^{\infty} a^n z^n$$
, $a \in \mathbb{C}$

(b)
$$\sum_{n=1}^{\infty} \frac{(z-i)^n}{n^2}$$

(c)
$$\sum_{n=1}^{\infty} \frac{2(z+1)^n}{3n+1}$$

(a)
$$\sum_{n=1}^{\infty} a^n z^n$$
, $a \in \mathbb{C}$ (b) $\sum_{n=1}^{\infty} \frac{(z-i)^n}{n^2}$ (c) $\sum_{n=1}^{\infty} \frac{2(z+1)^n}{3n+1}$ (d) $\sum_{n=1}^{\infty} \frac{1}{n} z^{kn}$, $k \in \mathbb{N}$ (e) $\sum_{n=1}^{\infty} \frac{n!}{n^n} z^n$

(e)
$$\sum_{n=1}^{\infty} \frac{n!}{n^n} z^n$$

- 17. (a) Dada $f(z) = \sum_{n=0}^{\infty} \frac{z^n}{a^2 + n^2}$ con a > 0, hallar la región de convergencia de f(z) y probar que la convergencia es uniforme en la región cerrada.
 - (b) Justificar que f es una función holomorfa y encontrar su derivada. ¿Es, la serie resultante al derivar término a término la f, uniformemente convergente en la región cerrada?

- 18. Hallar todos los $z \in \mathbb{C}$ para los cuales la serie $\sum_{n=30}^{\infty} \left(\frac{z}{z+1}\right)^n$ es convergente.
- 19. (a) Desarrollar las siguientes funciones en serie de Taylor alrededor del punto z_0 indicado:

(i)
$$\exp z$$
 $z_0 = 0$, $z_0 = \pi i$ (ii) $\frac{1}{z-1}$ $z_0 = 0$, $z_0 = i$

(iii) sen
$$z = z_0 = 0$$
, $z_0 = \pi$

(b) A partir de (a), obtener el desarrollo en serie de Taylor centrado en z_0 de:

(i) sh
$$z$$
 $z_0 = \pi i$ (ii) $\frac{1}{(z-1)^2}$ $z_0 = 0$

(iii)
$$\cos z$$
 $z_0 = \pi$ (iv) $\operatorname{Ln}(\frac{1}{z-1})$ $z_0 = i$

(c) Desarrollar las siguientes funciones en serie de Taylor alrededor del punto z_0 indicado, recurriendo a un cambio de variable conveniente:

(i)
$$sen(2z+1)$$
 $z_0=0$ (ii) $sen z$ $z_0=\frac{\pi}{4}$ (iii) $exp(z^2)$ $z_0=0$

20. (a) Desarrollar las siguientes funciones racionales en serie de Taylor alrededor del punto z_0 indicado, en base al desarrollo de una serie geométrica.

(i)
$$\frac{1}{3z+2}$$
 $z_0 = 0$ (ii) $\frac{z}{z^2-1}$ $z_0 = 0$

(iii)
$$\frac{1}{(3z+2)(z-1)}$$
 $z_0 = 0$ (iv) $\frac{1}{z^2-1}$ $z_0 = \frac{1}{2}$

- (b) Obtener el valor de la derivada de orden 10 de $f(z) = \frac{z}{z^2 1}$ en $z_0 = 0$.
- 21. Determinar si la función Arg(z) admite un desarrollo de Taylor en discos abiertos del plano complejo y, en caso afirmativo, caracterizar tales discos.
- 22. Sea f(z) holomorfa en \mathbb{C} , para la que se sabe que existe una constante M > 0 y un entero $k \in \mathbb{N}$, tal que se verifica: $|f(z)| \leq M|z|^k$ para todo z en \mathbb{C} . Probar que f(z) es un polinomio de grado no mayor que k, nulo en z = 0. (Sugerencia: probar que $f^{(n)}(a) = 0 \ \forall a \in \mathbb{C}$, y para todos los enteros n > k, usando la F.I.C. para las derivadas de una función holomorfa, y acotando las integrales).
- 23. (a) Mostrar que si f es una función entera que coincide con un polinomio sobre el intervalo real [0,1] entonces f es un polinomio en \mathbb{C} .
 - (b) Probar que si F(z) es derivable para Re(z) > 0, y si $F(x) = \frac{1}{x}$ para x > 0, entonces $F(z) = \frac{1}{z}$ para Re(z) > 0.
 - (c) Sean $f(z) = e^{1/z} 1$ y $z_n = 1/2\pi ni$. Se tiene que: $z_n \to 0$ y que $f(z_n) = 0$ pero f no es idénticamente nula. ¿Contradice esto el Principio de Identidad?

- 24. (a) Supongamos que para $R_1 < R_2$, $\sum_{j=0}^{\infty} a_j (z-z_0)^j$ converge en $|z-z_0| < R_2$ y $\sum_{j=1}^{\infty} a_{-j} (z-z_0)^{-j}$ converge en $|z-z_0| > R_1$. Mostrar que existe una función holomorfa en $R_1 < |z-z_0| < R_2$ cuyo desarrollo en serie de Laurent es $\sum_{j=1}^{\infty} a_j (z-z_0)^j.$
 - (b) Analizar si f(z) define una función holomorfa en un abierto, siendo:

(a)
$$f(z) = \sum_{n=-\infty}^{\infty} \frac{(z+3i)^n}{2^n}$$
 (b) $f(z) = \sum_{n=-\infty}^{\infty} \frac{(z-2)^n}{(3n+1)^2}$

En caso afirmativo, hallar el máximo dominio de holomorfía y dar la expresión de su derivada.

25. Hallar el desarrollo en serie de Laurent en potencias de z para las siguientes funciones, de modo que sea convergente en los puntos z_0 indicados. Especificar el dominio de convergencia de la serie calculada.

(i)
$$f(z) = \frac{1}{z^2 - 2z - 3}$$
 $z_0 = 2$ (ii) $f(z) = \frac{2z + 1}{z^2 - 6z + 5}$ $z_0 = -8$

(iii)
$$f(z) = \frac{3z-1}{z^2-4z+3}$$
 $z_0 = -2$ (iv) $f(z) = \frac{2z^2}{2z^2-5z+2} + \operatorname{sen}\left(\frac{3}{z^2}\right)$ $z_0 = -i$

- 26. Hallar el desarrollo en serie de Laurent de $\frac{1}{z^2-1}$ en las regiones que se indican y especificar la correspondiente región de convergencia:
 - (a) en el infinito,
 - (b) alrededor de $z_0 = i$,
 - (c) en |z+1| > 1.
- 27. Obtener todos los desarrollos de Laurent y determinar la región de validez de cada uno, para:

(i)
$$f(z) = \frac{z-1}{(z+1)z(z-2)}$$
 en potencias de $(z+1)$,

(ii)
$$f(z) = \frac{(z+1)e^{(\frac{1}{z-i})}}{z(z-i)}$$
 en potencias de $(z-i)$.

28. Hallar el desarrollo en serie de Laurent de la forma $\sum_{n=-\infty}^{\infty} a_n z^n$ de la función

$$f(z) = \frac{z}{(2z-1)(2z^{-1}-1)}$$
 de modo que la serie numérica $\sum_{n=-\infty}^{\infty} a_n$ sea convergente.

29. Hallar el desarrollo en serie de Laurent de la forma
$$\sum_{n=-\infty}^{\infty} a_n z^n$$
 de la función $f(z) = \frac{1}{(4z+1)(z-2)}$ de modo que

(a) la serie numérica
$$\sum_{n=-\infty}^{\infty} (-1)^n a_n$$
 sea absolutamente convergente,

(b) la serie numérica
$$\sum_{n=-\infty}^{\infty} n^2 a_n$$
 sea absolutamente convergente,

y calcular estas dos series numéricas.

- 30. ¿Cuáles de las siguientes funciones admiten desarrollo en serie de Laurent en una vecindad de 1 en potencias de (z-1)? En caso negativo, decir por qué no. En caso afirmativo, describir la región de convergencia y analizar si se reduce a un desarrollo sólo con potencias no negativas.
 - (i) $\log(z-1)$ (ii) $\cot(\pi z)$ (iii) $\sqrt{z-1}$ (iv) $e^{\frac{1}{z-1}}$ (v) $\frac{\tan(\pi z)}{z-1}$ (vi) $\sin(\frac{1}{z-1})$
- 31. ¿Admite la función $f(z) = \frac{1}{1 + e^{\frac{1}{z}}}$ un desarrollo de Laurent en potencias de z? Caracterizar dicho desarrollo y determinar su región de validez.
- 32. Demostrar que una función holomorfa en todo el plano complejo ampliado es constante.