Лекция 2

Универсальная односторонняя функция. Перестановки с секретом. Трудный бит

(Конспект: А. Богатов)

Частично использован также конспект А. Куликова 2005 года.

2.1 Кандидаты в односторонние функции

Пусть о обозначает конкатенацию строк.

- $f(x \circ y) = x \cdot y$ (сложно раскладывать длинные числа на множители (особенно на 2 простых множителя)),
- $f(x_1 \circ x_2 \circ \ldots \circ x_n \circ I) = (x_1 \circ x_2 \circ \ldots \circ x_n \sum_{i \in I} x_i)$, где $I \subseteq \{1, \ldots, n\}$ (это NP-трудная задача SUBSET SUM; в некотором смысле, задача о рюкзаке нужно определить, какими элементами из заданного набора набирается заданная сумма).

2.2 Универсальная односторонняя функция

Определение 2.1. Алгоритм A взламывает функцию G с вероятностью q(n), если для бесконечной последовательности длин n_i

$$\Pr_{|x|=n_i} \{ G(A(G(x))) = x \} \ge q(n_i).$$

Определение 2.2. $F \Rightarrow G$ (сильный взлом¹ функции F сводится к сильному взлому функции G), если

$$\exists T \ \forall p' \ \exists p :$$

$$A$$
 взламывает G с вероятностью $1 - \frac{1}{p(n)} \Rightarrow$

$$T^A$$
 взламывает F с вероятностью $1 - \frac{1}{p'(n)}$.

Здесь T — полиномиальный вероятностный алгоритм, A используется как вероятностный оракул (его случайные биты учитываются при запуске T^A), p(n) и p'(n) —многочлены (положительные при $n \ge 1$).

Определение 2.3. Функция G, вычислимая за полиномиальное время, называется универсальной слабой owf^3 , если для любой функции F, вычислимой за полиномиальное время, $F\Rightarrow G$.

Очевидно, что если существует слабая owf, то универсальная слабая owf действительно является слабой owf.

Теорема 2.1. Пусть U(M, x) = (M, M(x)), где M — описание машины, x — вход для этой машины, M(x) — выход машины на входе x, причем моделируем мы в течение времени $|x|^2$, а если не успеваем завершить работу, выдаем x. Тогда взлом любой слабой оwf сводится x взлому y.

Упражнение 2.1. А какое утверждение верно для сильной owf?

Лемма 2.1. \forall слабой owf f $\exists \tilde{f}$, вычислимая за время $|x|^2$, κ взлому которой сводится взлом f.

 \mathcal{A} оказательство. Есть функция f — слабая owf; по ней строим \tilde{f} , которая заканчивает работу за время, ограниченное квадратом от длины входа:

$$\tilde{f}(x_1x_2) = f(x_1)x_2.$$

Для того, чтобы \tilde{f} заканчивала работу за квадратичное время, достаточно, чтобы выполнялось неравенство $t_f(x_1) \leq |x_1x_2|^2 - |x_2|$, где $t_f(x_1)$ – время работы f на входе x_1 . Пусть $|x_1| = n$, $|x_2| = m$. Мы можем добиться $t_f(n) \leq (m+n)^2 - m$ выбором подходящего m как многочлена от n, поскольку $t_f(n)$ также ограничено многочленом от n.

 $^{^{1}}$ Сильный взлом ломает слабые owf.

 $^{^{2}}$ На самом деле, это обычное понятие полноты.

 $^{^{3}}$ Вообще-то она может и не являться при этом слабой owf — если таковых нет в природе.

Пусть мы умеем ломать \tilde{f} . Тогда функция f ломается следующим образом: берем то, что нам дали (т.е. некоторое значение $f(x_1)$), дописываем случайную строку x_2 , ломаем (получая тем самым x_1x_2), убираем с конца x_2 . Тем самым, если \tilde{f} мы ломали с вероятностью $1 - \frac{1}{(m+n)^k}$, то и f мы ломаем с вероятностью $1 - \frac{1}{(m+n)^k}$. Поскольку m — фиксированный полином от n, ясно, что мы можем добиться любой необходимой вероятности взлома f, выбирая k.

Доказательство теоремы 2.1. Рассмотрим произвольную оwf M^* , которая заканчивает работу за время $|x|^2$, и покажем, что $M^* \Rightarrow U$. Для достаточно длинных входов машины U она запускает машину M^* на доле входов $\mu = \frac{1}{2^{|M^* \cdot \text{const}|}} = \text{const.}$ Если мы не взламываем лишь долю $\frac{1}{n^k}$ от всех входов U, то должны взламывать значительную долю входов из сектора, соответствующего машине M^* ; именно, мы взламываем долю $\mu - \frac{1}{n^k}$, что составляет

$$1 - \frac{1}{\mu n^k} \tag{2.1}$$

по отношению ко всем входам машины M^* длины $n - |M^*|$. Ясно, что для любой требуемой вероятности взлома M^* мы можем подобрать достаточно большие k и n, для которых (2.1) будет больше искомой.

Упражнение 2.2. Что произойдет в случае семейств односторонних функций (сильных либо слабых)?

Упражнение 2.3. Что произойдет, если соперник — детерминированный? Если он задан схемами?

Упражнение 2.4. Доказать, что если существует оwf, то существует и *не*универсальная owf.

2.3 Функции с секретом (trapdoor functions)

Понятие «функция с секретом» почти бессмысленно. Поэтому будем рассматривать *семейства* таких функций. Ограничимся инъективными функциями (перестановками).

Определение 2.4. Односторонняя функция с секретом (trapdoor permutation family, tdpf) — это полиномиальный по времени алгоритм

$$G: (1^n, r_q) \mapsto (e, d, s),$$

где n — параметр надежности (он же у нас будет длиной входа), r_g — строка случайных битов генератора, e,d,s — булевы схемы (d — [секретный] decryptor, e — [публичный] encryptor, s — [публичный] sampler),

Лекция 2. Универсальная односторонняя функция. Перестановки с секретом. Трудный бит

• $e: \{0,1\}^n \to \{0,1\}^{\varepsilon(n)},$

• $d: \{0,1\}^{\varepsilon(n)} \to \{0,1\}^n$,

• $s(r_s) \in \{0,1\}^n$,

И

$$\forall A \ \forall p \ \exists n \ \forall n > N \ \Pr\{A(1^n, e(x), s, e) \in e^{-1}(e(x))\} < \frac{1}{p(n)}$$

(здесь $x = s(r_s)$; $(e, d, s) = G(1^n, r_g)$; вероятность берется по r_g , r_s , случайным битам A),

$$\forall x \in \text{Im } s \quad d(e(x)) = x.$$

Если из этого определения убрать d, то получим семейство односторонних функций (по умолчанию сильных).

Ha основе tdpf строятся криптосистемы с открытым ключом.

Упражнение 2.5. Изменится ли что-то существенное, если s станет функцией от e?

Упражнение 2.6. А если никакого s не будет (т.е. s = Id)?

Упражнение 2.7. Выполнить для tdpf те упражнения, что были для owff.

Упражнение 2.8. Что, если d либо e использует случайные биты и иногда ошибается?

Пример 2.1 (RSA).

$$s(x) = x$$

$$e(x) = x^{\varepsilon} \mod n, \quad d(x) = x^{\delta} \mod n,$$

где

$$\varepsilon \cdot \delta \equiv 1 \pmod{(p-1)(q-1)},$$

$$n = pq, \quad p, q \in \mathbb{P}.$$

Является ли такое семейство tdpf, неизвестно, но на нём основаны реально использующиеся протоколы.

2.4 Трудный бит

Пусть y = f(x); если противник не сможет вычислить x, но может, например, узнать все нечетные биты y, это также нехорошо.

Определение 2.5. $B: \{0,1\}^n \to \{0,1\}$ называется *трудным битом* (hardcore predicate) для функции f, если

$$\forall k \ \forall A \ \exists N \ \forall n > N \quad \Pr\{A(f(x)) = B(x)\} < \frac{1}{2} + \frac{1}{n^k}, \tag{2.2}$$

где A — вероятностный полиномиальный по времени противник, а вероятность в определении берется по его случайным числам и по $x \in \{0,1\}^n$.

Оказывается, из любой инъективной оwf можно сделать такую (инъективную) owf, у которой есть трудный бит. (В частности, это же можно проделать и для семейства перестановок с секретом.)

Упражнение 2.9. Использует ли нижеприведённое доказательство тот факт, что |f(x)| = |f(x')|, если |x| = |x'|?

Теорема 2.2 (Голдрейха-Левина). Если f является инъективной owf, то $\tilde{f}(x,r) = (f(x),r)$ тоже является односторонней и имеет трудный бит $B(x,r) = \langle x,r \rangle$, где $\langle x,r \rangle = x_1 r_1 \oplus x_2 r_2 \oplus \ldots$

Доказательство. Пусть мы умеем угадывать трудный бит. Построим противника, ломающего f. Казалось бы,

$$x_i = \langle f^{-1}(y), r \rangle \oplus \langle f^{-1}(y), r \oplus e_i \rangle = B(x, r) \oplus B(x, r \oplus e_i)$$

 $(r \oplus e_i)$ означает, что мы поменяли i-й бит в r), так что мы можем угадать любой бит x_i из x. Однако правильное вычисление противником B(x,r) и $B(x,r \oplus e_i)$ — зависимые события. Поэтому B(x,r) мы не будем у него выяснять — это один и тот же бит для всех i, и мы можем перебрать два его возможных значения. А вот $B(x,r \oplus e_i)$ — свой для каждого i.

На этом можно было бы уже остановиться, если бы нам не предстояло уменьшать вероятность ошибки противника, повторяя его для разных r. Это бы привело к очень большому перебору; поэтому мы будем проделывать не совсем независимые эксперименты, выбрав лишь логарифмическое число случайных строк r^i ; благодаря приведённой ниже конструкции мы сможем породить из них много попарно независимых строк, трудные биты B(x,r) для которых будут просто вычисляться через перебираемые нами трудные биты для исходных r^i .

Что же касается x, мы можем безбоязненно повторять вычисления для одного и того же x (вернее, f(x)) несмотря на то, что вероятность

в определении трудного бита берётся по всем x. Дело в том, что тех x, для которых вероятность успеха противника достаточно велика, много, как доказывается в следующей лемме.

Лемма 2.2. Пусть соперник ломает наш трудный бит с вероятностью $1/2 + \varepsilon$ (т.е., в терминах (2.2) $\varepsilon = \varepsilon(n) = 1/n^k$). Пусть

$$S_n = \{x \mid \Pr\{A(f(x), r) = B(x, r)\} \ge \frac{1}{2} + \frac{\varepsilon}{2}\}.$$

 $Tor \partial a |S_n| \geq \frac{\varepsilon}{2} \cdot 2^n$.

Доказательство леммы.

$$S(x) := \Pr\{A(f(x), r) = B(x, r)\}$$

$$|\overline{S_n}| = 2^n \Pr_x \left\{ S(x) < \frac{1}{2} + \frac{\varepsilon}{2} \right\} = 2^n \Pr_x \left\{ 1 - S(x) \ge \frac{1}{2} - \frac{\varepsilon}{2} \right\}$$

$$E(1 - S(x)) = 1 - \left(\frac{1}{2} + \varepsilon\right) = \frac{1}{2} - \varepsilon$$

Неравенство Маркова:

$$\Pr\{\alpha > \alpha'\} \le \frac{E\alpha}{\alpha'},$$

где α – неотрицательная случайная величина.

У нас $E\alpha = \frac{1}{2} - \varepsilon$, $\alpha' = \frac{1}{2} - \frac{\varepsilon}{2}$.

$$2^{n} \frac{\frac{1}{2} - \varepsilon}{\frac{1}{2} - \frac{\varepsilon}{2}} = 2^{n} \frac{1 - 2\varepsilon}{1 - \varepsilon} \le 2^{n} \left(1 - \frac{\varepsilon}{2} \right)$$

Лемма доказана.

Итак, опишем конструкцию, обращающую f при помощи взломщика для B, формально. Положим $l=(2k+2)\lceil\log_2 n\rceil$ (если вероятность успеха противника составляет $1/2+1/n^k$) и выберем l случайных строчек в соответствии с равномерным распределением: r^1,\ldots,r^l . Эти строки — кандидаты на роль r. Выберем также l битов (обозначим их ρ^1,\ldots,ρ^l), после чего проделаем следующее: для всех непустых подмножеств J множества $\{1,\ldots,l\}$ вычислим

$$r^J = \bigoplus_{i \in J} r^i,$$

$$\rho^J = \bigoplus_{j \in J} \rho^j$$

(заметим, что если ρ^j — правильные биты для r^j , то ρ^J — правильные биты для r^J), и далее для всех i вычислим

$$x_i^J = \rho^J \oplus \bar{B}(y, r^J \oplus \bar{e}_i),$$
$$x_i' = \max_J x_i^J.$$

Лемма 2.3. Величины r^J из доказательства теоремы равномерно распределены и попарно независимы.

Доказательство. То, что они равномерно распределены, очевидно. Если $K\subseteq J$, то

$$\begin{split} \mathbf{P}\{r^J = t, \ r^K = t'\} = \\ \mathbf{P}\{r^{J \backslash K} = t \oplus t', \ r^K = t'\} &\overset{(J \backslash K) \cap K = \emptyset}{=} \\ \mathbf{P}\{r^{J \backslash K} = t \oplus t'\} \cdot \mathbf{P}\{r^K = t'\} &\overset{\text{равномерно}}{=} \\ \mathbf{P}\{r^J = t\} \cdot \mathbf{P}\{r^K = t'\}. \end{split}$$

Значит, можно считать, что $J\setminus K\neq\emptyset$ и $K\setminus J\neq\emptyset$. Тогда

$$\begin{split} \mathbf{P}\{r^J = t, \ r^K = t'\} = \\ & \sum_{t''} \mathbf{P}\{r^J = t, \ r^K = t', \ r^{J \cap K} = t''\} = \\ & \sum_{t''} \mathbf{P}\{r^{J \setminus K} = t, \ r^{K \setminus J} = t', \ r^{J \cap K} = t''\} = \\ & \mathbf{P}\{r^{J \setminus K} = t\} \cdot \mathbf{P}\{r^{K \setminus J} = t'\} \cdot \underbrace{\sum_{t''} \mathbf{P}\{r^{J \cap K} = t''\}}_{\mathbf{1}} \overset{\text{равномерно}}{=} \\ & \mathbf{P}\{r^J = t\} \cdot \mathbf{P}\{r^K = t'\}. \end{split}$$

Для фиксированного i оценим вероятность того, что среди x_i^J было больше половины правильных (т.е. что $x_i' = x_i$). Обозначим через

$$\zeta_i^J = \{x_i = x_i^J\}$$

вероятность успеха в одном испытании (однократном вычислении B(x,r')). Обозначим $m=2^l-1$.

Лемма 2.4. Для достаточно больших п

$$\Pr\left\{\sum_{J} \zeta_i^{J} \le \frac{m}{2}\right\} < \frac{1}{2n}.$$

Доказательство. Вероятность успеха в одном испытании равна $\frac{1}{2} + \frac{\varepsilon}{2}$, если $x \in S_n$ (а мы знаем, что S_n достаточно велико и можно им ограничиться). Испытания попарно независимы, поэтому

$$E\sum \zeta_i^J = m\left(\frac{1}{2} + \frac{\varepsilon}{2}\right) \Rightarrow \frac{m}{2} = E - \frac{m\varepsilon}{2}$$

Применим неравенство Чебышёва ($\Pr \{ \alpha < E\alpha - \delta \} < \frac{D\alpha}{\delta^2}$):

$$\Pr\left\{\sum_{J} \zeta_{i}^{J} < E - \frac{m\varepsilon}{2}\right\} < \frac{4D\sum_{i} \zeta_{i}^{J}}{m^{2}\varepsilon^{2}} < \frac{4}{m\varepsilon^{2}} \leq \frac{4}{n^{2}}$$

для достаточно больших n (здесь использовано, что благодаря попарной независимости $D \sum \zeta_i^J = mD\zeta_i^J < m$).

И утверждение теоремы можно считать доказанным.

Упражнение 2.10. Убедиться, что утверждение теоремы выполнено и для неинъективной owf.

Упражнение 2.11. Конструкция использует известную ей вероятность успеха противника; как от этого избавиться?