Chapter 08 Predicate Logic

Instructor
LE Thanh Sach, Ph.D.

Instructor's Information

LE Thanh Sach, Ph.D.

Office:

Department of Computer Science, Faculty of Computer Science and Engineering,

HoChiMinh City University of Technology.

Office Address:

268 LyThuongKiet Str., Dist. 10, HoChiMinh City, Vietnam.

E-mail: LTSACH@cse.hcmut.edu.vn

E-home: http://cse.hcmut.edu.vn/~ltsach/

Tel: (+84) 83-864-7256 (Ext: 5839)

Acknowledgment

The slides in this PPT file are composed using the materials supplied by

- Prof. Stuart Russell and Peter Norvig: They are currently from University of California, Berkeley. They are also the author of the book "Artificial Intelligence: A Modern Approach", which is used as the textbook for the course
- Prof. Tom Lenaerts, from Université Libre de Bruxelles

Outline

- ❖ Why FOL?
- ❖ Syntax and semantics of FOL
- **❖** Using FOL
- ❖ Wumpus world in FOL
- **❖** Knowledge engineering in FOL

Why FOL? Pros and cons of propositional logic

- © Propositional logic is declarative
- © Propositional logic allows partial/disjunctive/negated information (unlike most data structures and databases)
- © Propositional logic is compositional:
 - \searrow meaning of $B_{1,1} \land P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
- © Meaning in propositional logic is context-independent
 - (unlike natural language, where meaning depends on context)
- © Propositional logic has very limited expressive power
 - (unlike natural language)
 - E.g., cannot say "pits cause breezes in adjacent squares"
 - ✓ except by writing one sentence for each square

Why FOL? First-order logic

- Whereas propositional logic assumes the world contains facts,
- first-order logic (like natural language) assumes the world contains
 - Objects: people, houses, numbers, colors, baseball games, wars, ...
 - Relations: red, round, prime, brother of, bigger than, part of, comes between, ...
 - Functions: father of, best friend, one more than, plus, ...

Prepositional Logic: Examples

Sentence in natural language	Sentence in Prepositional Logic
Socrates is a man	SOCRATESMAN
Plato is a man	PLATOMAN
All men are mortal	MORTALMAN

Disadvantages:

- 1. Socrates and Plato are human, but the representation is not similar
- 2. Can not state that each person is mortal
- → Difficult for reasoning.

Predicate Logic: Examples

→ Using predicate logic

Sentence in natural language	Sentence in Predicate Logic
Socrates is a man	man(socrates)
Plato is a man	man(plato)
All men are mortal	$\forall X (man(X) \rightarrow mortal(X))$

Predicate Logic: Examples

Ability of reasoning

Sentence in natural language	Conclusion
Socrates is a man	
All men are mortal	Socrates is mortal

Sentence in Predicate Logic	Conclusion
man(socrates)	
$\forall X (man(X) \rightarrow mortal(X))$	mortal(socrates)

Predicate Logic: Examples

#	Representation	Rule
1.	man(socrates)	Axiom
2.	$\forall X (man(X) \rightarrow mortal(X))$	Axiom
3	man(socrates)→mortal(socrates)	2, X= "socrates", UI
4.	mortal(socrates)	1,3, MP

Backward mapping (to natural language)

Socrates is mortal.

Syntax of FOL: Basic elements

Constants: ★ KingJohn, 2, NUS,... Predicates Brother, >,... **!** Functions: Sqrt, LeftLegOf,... **❖** Variables: ≥ x, y, a, b,... **Connectives: \$** Equality: \geq Quantifiers: Universal Quantifier: ∀ Existential Quantifier: ∃

Atomic sentences

```
or constant or variable

Atomic sentence : predicate (term₁,...,termₙ)
or term₁ = term₂

❖ E.g.,

➢ Brother(KingJohn,RichardTheLionheart)

➢ > (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))
```

: $function (term_1,...,term_n)$

Term

Complex sentences

Complex sentences are made from atomic sentences using connectives, examples:

$$\cong S_1 \wedge S_2$$

$$\searrow S_1 \vee S_2$$

$$\searrow S_1 \Rightarrow S_2$$

$$\bowtie S_1 \Leftrightarrow S_2$$

E.g. $Sibling(KingJohn, Richard) \Rightarrow Sibling(Richard, KingJohn)$

$$>(1,2) \lor \le (1,2)$$

$$>(1,2) \land \neg >(1,2)$$

Truth in first-order logic

- ❖ Sentences are true with respect to a model and an interpretation
- ❖ Model contains objects (domain elements) and relations among them
- Interpretation specifies referents for

```
\begin{array}{cccc} \text{constant symbols} & \to & \text{objects} \\ \text{predicate symbols} & \to & \text{relations} \\ \text{function symbols} & \to & \text{functional relations} \end{array}
```

An atomic sentence $predicate(term_1,...,term_n)$ is true iff the objects referred to by $term_1,...,term_n$ are in the relation referred to by predicate

Universal quantification

♦ ∀<*variables*> <*sentence*>

Everyone at NUS is smart:

 $\forall x \ At(x,NUS) \Rightarrow Smart(x)$

- Roughly speaking, equivalent to the conjunction of instantiations of *P*

```
At(KingJohn, NUS) \Rightarrow Smart(KingJohn)
```

- \wedge At(Richard, NUS) \Rightarrow Smart(Richard)
- \wedge At(NUS,NUS) \Rightarrow Smart(NUS)

Λ ...

A common mistake to avoid

- \clubsuit Typically, \Rightarrow is the main connective with \forall
- **Common mistake**: using \wedge as the main connective with \forall :

 $\forall x \ At(x,NUS) \land Smart(x)$

means "Everyone is at NUS and everyone is smart"

Existential quantification

- **♦** ∃<*variables*> <*sentence*>
- Someone at NUS is smart:
- $\Rightarrow \exists x \, At(x,NUS) \land Smart(x)$ \$
- \Rightarrow $\exists x \ P$ is true in a model m iff P is true with x being some possible object in the model
- \diamond Roughly speaking, equivalent to the disjunction of instantiations of *P* At(KingJohn, NUS) \land Smart(KingJohn)
 - ∨ At(Richard,NUS) ∧ Smart(Richard)
 - ∨ At(NUS,NUS) ∧ Smart(NUS)
 - V ...

Another common mistake to avoid

- \clubsuit Typically, \land is the main connective with \exists
- **Common mistake**: using \Rightarrow as the main connective with \exists :

$$\exists x \ At(x,NUS) \Rightarrow Smart(x)$$

is true if there is anyone who is not at NUS!

Properties of quantifiers

- \bigstar $\forall x \ \forall y \ \text{is the same as} \ \forall y \ \forall x$
- \Rightarrow $\exists x \exists y \text{ is the same as } \exists y \exists x$
- \Rightarrow $\exists x \ \forall y \ \text{is not the same as} \ \forall y \ \exists x$
- $\Rightarrow \exists x \ \forall y \ Loves(x,y)$
 - "There is a person who loves everyone in the world"
- $\Rightarrow \forall y \exists x \text{ Loves}(x,y)$
 - "Everyone in the world is loved by at least one person"
- Quantifier duality: each can be expressed using the other
- \forall X Likes(x,IceCream) $\neg \exists$ x \neg Likes(x,IceCream)
- \Rightarrow \exists x Likes(x,Broccoli) $\neg \forall$ x \neg Likes(x,Broccoli)

Equality

- $term_1 = term_2$ is true under a given interpretation if and only if $term_1$ and $term_2$ refer to the same object
- **\Delta** E.g., definition of *Sibling* in terms of *Parent*:

```
\forall x,y \ Sibling(x,y) \Leftrightarrow [\neg(x = y) \land \exists m,f \neg (m = f) \land Parent(m,x) \land Parent(f,x) \land Parent(m,y) \land Parent(f,y)]
```

Using FOL

The kinship domain:

- **A** Brothers are siblings $\forall x,y \; Brother(x,y) \Leftrightarrow Sibling(x,y)$
- ❖ One's mother is one's female parent $\forall m,c \; Mother(c) = m \Leftrightarrow (Female(m) \land Parent(m,c))$
- * "Sibling" is symmetric $\forall x,y \; Sibling(x,y) \Leftrightarrow Sibling(y,x)$

- Representing the following sentences in Predicate Logic:
 - Marcus was a man.
 - 2. Macus was a Pompeian.
 - 3. All Pompians were Romans.
 - 4. Caesar was a ruler.
 - 5. All Romans were either loyal to Caesar or hated hime.
 - 6. Everyone is loyal to someone.
 - 7. People only try to assassinate rulers they are not loyal to.
 - 8. Marcus tried to assassinate Caesar.

Artificial Intelligence: Predicate Logic

- 1. Marcus was a man. man(Marcus)
- 2. Macus was a Pompeian. Pompeian(Marcus)
- 3. All Pompeians were Romans. $\forall X$: Pompeian(X) \rightarrow Roman(X)
- 4. Caesar was a ruler. ruler(Caesar)

```
5. All Romans were either loyal to Caesar or hated hime.
   "or" mean "inclusive or" - OR:
    ∀X: Roman(X) → loyalto(X, Caesar) v hate(X, Caesar)
    "or" mean "exclusive or" - XOR:
    ∀X: Roman(X) → [ (loyalto(X, Caesar) v hate(X, Caesar)) ^ ¬(loyalto(X, Caesar) ^ hate(X, Caesar))]
    or:
    ∀X: Roman(X) → [ (loyalto(X, Caesar) ^ ¬hate(X, Caesar)) v (¬loyalto(X, Caesar) ^ hate(X, Caesar))]
```

Artificial Intelligence: Predicate Logic

6. Everyone is loyal to someone.

 $\forall X: \exists Y: loyalto(X,Y).$

7. People only try to assassinate rulers they are not loyal to.

 \forall X: \forall Y: person(X) ^ ruler(Y) ^ tryassassinate(X,Y) \rightarrow ¬loyalto(X,Y)

8. Marcus tried to assassinate Caesar. tryassassinate(Marcus, Caesar).

❖ Given the above sentences, can we make a conclusion as follows:

"Marcus was not loyal to Caesar?"

or:

¬loyalto(Marcus, Caesar)

Predicate Logic: Proof

Add an implicit sentence:

9. "All men are people"

or:

 $\forall X: man(X) \rightarrow X: man(X) \rightarrow person(X)$

Predicate Logic: Proof

* How to represent exceptions, example?

"Paulus was a Pompeian. Paulus was neither loyal nor hated Caesar"

Artificial Intelligence: Predicate Logic

- **Exception representation:**
 - Semantic Net: Simple!, by adding links (properties) to subclasses or instances.
 - Predicate Logic: Not so simple!, like

Pompeian(Paulus) ^ ¬[loyalto(Paulus, Caesar) v hate(Pualus, Caesar)]

Exception representation:

Not so simple Because there is conflict between:

Pompeian(Paulus) ^ ¬[loyalto(Paulus, Caesar) v hate(Pualus, Caesar)]

and

∀X: Pompeian(X) → loyalto(X, Caesar) v hate(X, Caesar)

Artificial Intelligence: Predicate Logic

Exception representation:

A Better way:

```
\forall X: Roman(X) \land \neg eq(X, Paulus) \rightarrow loyalto(X, Caesar)
v hate(X, Caesar)
```

Exception

Predicate Logic: Function + Computable Predicate

❖ In the case of describing relations between numbers, example:

```
✓ 1 < 2</li>
✓ 2 < 3</li>
✓ 7 > 3 + 2,
✓ 3 > 1
✓ ....
```

 \Rightarrow Should not explicitly describe: lt(1,2), lt(2,3), ...

Predicate Logic: Function + Computable Predicate

- ⇒ Need functions and computable predicates.
- \Rightarrow For example,
 - Call a function to compute (3+2)
 - \triangleright Pass the result to the predicate "gt": gt(7, 3+2)
 - Get the final result (True)

Artificial Intelligence: Predicate Logic

Predicate Logic: Function + Computable Predicate, Example

- ***** Facts:
 - 1. Marcus was a man. man(Marcus)
 - 2. Marcus was a Pompeian. Pompeian(Marcus)
 - 3. Marcus was born in 40 A.D born(Marcus,40)
 - 4. All men are mortal.

 $\forall X: man(X) \rightarrow mortal(X)$

***** Facts:

- 5. All Pompeian died when the vocano erupted in 79 AD. erupted(vocano, 79) $^{\wedge}$ \forall X: [Pompeian(X) \rightarrow died(X, 79)]
- 6. No mortal lives longer then 150 years.

$$\forall X: \forall T_1: \forall T_2: mortal(X) \land born(X, T_1) \land gt(T_2 - T_1, 150)$$
 $\rightarrow dead(X, T_2)$

7. It is now 1991 now = 1991

❖ Question:
Is Marcus alive?
Or
alive(Marcus, now)
or
¬alive(Marcus, now)

- ❖ Add implicit knowledge:
 - Relation between "dead" and "alive"
 - 8. Alive means not dead.

```
\forall X: \forall T: [alive(X,T) \rightarrow \neg dead(X,T)] \land [\neg dead(X,T) \rightarrow alive(X,T)]
```

- * Add implicit knowledge:
 - Time properties of an event, for example "dead"
 - 9. Is someone dies, the he is dead at all later times

$$\forall X: \forall T_1: \forall T_2: died(X,T_1) \land gt(T_2,T_1) \rightarrow dead(X,T_2)$$

Artificial Intelligence: Predicate Logic

- **Summary of facts:**
 - 1. man(Marcus)
 - Pompeian(Marcus)
 - 3. born(Marcus, 40)
 - 4. $\forall X: man(X) \rightarrow mortal(X)$
 - 5. $\forall X$: Pompeian(X) \rightarrow died(X, 79)
 - 6. erupted(volcano, 79)
 - 7. $\forall X: \forall T_1: \forall T_2: mortal(X) \land born(X, T_1) \land gt(T_2 T_1, 150) \rightarrow dead(X, T_2)$
 - 8. now = 1991
 - 9. \forall X: \forall T: [alive(X,T) \rightarrow ¬dead(X,T)] ^ [¬dead(X,T) \rightarrow alive(X,T)]
 - 10. $\forall X: \forall T_1: \forall T_2: died(X,T_1) \land gt(T_2, T_1) \rightarrow dead(X, T_2)$

Universal instantiation (UI)

Every instantiation of a universally quantified sentence is entailed by it:

$$\frac{\forall v \, \alpha}{\text{Subst}(\{v/g\}, \alpha)}$$

for any variable v and ground term g

❖ E.g., \forall x King(x) ∧ Greedy(x) ⇒ Evil(x) yields: King(John) ∧ Greedy(John) ⇒ Evil(John) King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard) King(Father(John)) ∧ Greedy(Father(John)) ⇒ Evil(Father(John)) .

Existential instantiation (EI)

For any sentence α , variable v, and constant symbol k that does not appear elsewhere in the knowledge base:

$$\frac{\exists v \ \alpha}{\text{Subst}(\{v/k\}, \alpha)}$$

❖ E.g., $\exists x \ Crown(x) \land OnHead(x,John)$ yields:

$$Crown(C_1) \wedge OnHead(C_1,John)$$

provided C_I is a new constant symbol, called a Skolem constant

Reduction to propositional inference

```
Suppose the KB contains just the following: \forall x \; \text{King}(x) \land \text{Greedy}(x) \Rightarrow \text{Evil}(x)
\text{King}(\text{John})
\text{Greedy}(\text{John})
\text{Brother}(\text{Richard,John})
```

❖ Instantiating the universal sentence in all possible ways, we have:

```
King(John) \land Greedy(John) \Rightarrow Evil(John)

King(Richard) \land Greedy(Richard) \Rightarrow Evil(Richard)

King(John)

Greedy(John)

Brother(Richard,John)
```

❖ The new KB is propositionalized: proposition symbols are

King(John), Greedy(John), Evil(John), King(Richard), etc.

Reduction contd.

- ❖ Every FOL KB can be propositionalized so as to preserve entailment
- ❖ (A ground sentence is entailed by new KB iff entailed by original KB)
- ❖ Idea: propositionalize KB and query, apply resolution, return result
- ❖ Problem: with function symbols, there are infinitely many ground terms,

```
    e.g., Father(Father(John)))
```

Convert to clause form, example:

"All Romans who know Marcus either hate Caesar or think that anyone who hates anyone is crazy"

```
\forall X: [roman(X) ^ know(X, Marcus)] \rightarrow [hate(X, Ceasar) v (\forall Y: \exists Z: hate(Y,Z) \rightarrow thinkcrazy(X,Y))]
```

1. Remove \rightarrow using the equivalence: $a \rightarrow b = \neg a \lor b$

1. Remove \rightarrow using the equivalence: $a \rightarrow b = \neg a \lor b$

```
\forall X: \qquad [roman(X) \land know(X, Marcus)] \Rightarrow
[hate(X, Ceasar) \ v
(\forall Y: \exists Z: hate(Y,Z) \Rightarrow thinkcrazy(X,Y))]
=
\forall X: \qquad \neg [roman(X) \land know(X, Marcus)] \ v
[hate(X, Ceasar) \ v
(\forall Y: \neg(\exists Z: hate(Y,Z)) \ v \ thinkcrazy(X,Y))]
```

- 2. Move \neg next to terms:
 - Using the following equivalence:
 - a. Double negative:

$$\neg(\neg p) = p$$

b. DeMorgan:

$$\neg (a \lor b) = \neg a \land \neg b$$

$$\neg (a \land b) = \neg a \lor \neg b$$

c. Equivalence of qualifiers:

$$\neg \forall X : P(X) = \exists X : \neg P(X)$$

$$\neg \exists X : P(X) = \forall X : \neg P(X)$$

2. Move \neg next to terms:

```
\forall X: \qquad \neg [roman(X) \land know(X, Marcus)] \ v [hate(X, Ceasar) \ v (\forall Y: \neg (\exists Z: hate(Y,Z)) \ v \ thinkcrazy(X,Y))] = \forall X: \qquad [\neg roman(X) \ v \ \neg know(X, Marcus)] v [hate(X, Ceasar) \ v (\forall Y: \forall Z: \ \neg hate(Y,Z) \ v thinkcrazy(X,Y))]
```

3. Change name of variables as follows:

 $\forall X: P(X) \ v \ \forall X: Q(X)$

_

 $\forall X: P(X) \ v \ \forall Y: Q(Y)$

4. Move qualifier to left, don't change the their order

```
\forall X: \qquad [\neg roman(X) \ v \ \neg know(X, Marcus)] v
[hate(X, Ceasar) \ v
(\forall Y: \forall Z: \neg hate(Y,Z) \ v
thinkcrazy(X,Y))]
=
\forall X: \forall Y: \forall Z: [\neg roman(X) \ v \ \neg know(X, Marcus)] \ v
[hate(X, Ceasar) \ v
(\neg hate(Y,Z) \ v \ thinkcrazy(X,Y))]
```

5. Replace existence qualifier using Skolem function, as follows:

Skolem Function:

$$\forall X: \forall Y: \exists Z: P(X,Y,Z)$$

_

$$\forall X: \forall Y: P(X,Y,f(X,Y))$$

Variable of existence qualifier = function of all the preceding variables in the every qualifier

6. Remove every qualifiers (the default qualifier is every)

```
\forall X: \forall Y: \forall Z: [\neg roman(X) \ v \ \neg know(X, Marcus)] \ v
[hate(X, Ceasar) \ v
(\neg hate(Y,Z) \ v \ thinkcrazy(X,Y))]
= [\neg roman(X) \ v \ \neg know(X, Marcus)] \ v
[hate(X, Ceasar) \ v
(\neg hate(Y,Z) \ v \ thinkcrazy(X,Y))]
```

Artificial Intelligence: Predicate Logic

Slide: 55

7. Convert to CNF.

Using distribution rule of v and ^

Examples:

$$(a \land b) \lor c = (a \lor c) \land (b \lor c)$$

 $(a \land b) \lor (c \land d) = (a \lor c) \land (a \lor d) \land (b \lor c) \land (b \lor d)$

7. Convert to CNF.

```
[¬roman(X) v ¬know(X, Marcus)] v
[hate(X, Ceasar) v
(¬hate(Y,Z) v thinkcrazy(X,Y))]
=

¬roman(X) v ¬know(X, Marcus) v
hate(X, Ceasar) v ¬hate(Y,Z) v thinkcrazy(X,Y)
```

Artificial Intelligence: Predicate Logic

Slide: 57

- 8. Separate clauses.
 - If having the clause form:
 (a v ¬b) ^ (¬a v c v d) ^ (a v ¬c v e)
 Then:
 - 1. (a v ¬b)
 - 2. $(\neg a \lor c \lor d)$
 - 3. (a $v \neg c v e$)

9. Add every qualifier to clause:

That is:

$$(\forall X: P(X) \land Q(X))$$

_

$$\forall X: P(X) \land \forall X: Q(X)$$

Exercises:

- Convert to clause form for sentences in previous example.
- **Convert to clause form for:**
- 1. $\forall X A(X) \lor \exists X B(X) \rightarrow \forall XC(X) \land \exists X D(X)$
- 2. $\forall X (p(X) v q(X)) \rightarrow \forall X p(X) v \forall X q(X)$
- 3. $\exists X p(X) \land \exists X q(X) \rightarrow \exists X (p(X) \land q(X))$
- 4. $\forall X \exists Y p(X,Y) \rightarrow \exists Y \forall X p(X,Y)$
- 5. $\forall X (p(X, f(X)) \rightarrow p(X,Y))$

- * X: Variable, t: term.
 - x/t: value of x will be t OR x is replaced by t.
 - \Rightarrow A substitution = $\{x_1/t_1, x_2/t_2, ..., x_n/t_n\}$
 - **Empty substitution: ε**
- **\Limits** E: Predicate expression
- \bullet θ : A substitution.

- \bullet θ : A substitution.
 - \cong E θ : Apply θ to E.
 - Example:

E = p(X,Y,f(X)),

$$\theta$$
 = {X/a, y/f(b)}
Then: E θ = p(a, f(b), f(a))

- \bullet Union of θ and δ
 - E is a expression then:

$$E(\theta\delta) = (E\theta)\delta$$

Φ Union of θ and δ :

$$\theta = \{x_1/t_1, x_2/t_2, ..., x_n/t_n\}$$

$$\delta = \{y_1/s_1, y_2/s_2, ..., y_n/s_n\}$$

 $\approx \theta \delta$ is calculated as follows:

- **\Delta** Union of θ and δ :
 - $\approx \theta \delta$ is calculated as follows:
 - 1. Apply δ to denominator of θ : $\{x_1/t_1\delta, x_2/t_2\delta, ..., x_n/t_n\delta\}$
 - 2. Remove all the form: x_i/x_i from 1.
 - 3. Remove from δ the form: y_i/s_i if $y_i \in \{x_1, x_2, ..., x_n\}$
 - 4. $\theta \delta$ = union(line 2 and 3)

Φ Union of θ and δ :

- \bowtie θ , δ : substitution.
- \approx ϵ : empty substitution.
- E: Expression.
- Properties:
- 1. $E(\theta\delta) = (E\theta)\delta$.
- 2. $E_{\varepsilon} = E$
- 3. $\theta \epsilon = \epsilon \theta = \theta$

Unification:

If θ The most general unifier of S containing expression, then: S θ is a set having single element.

Artificial Intelligence: Predicate Logic

* mgu: most general unifier

- S: set of expressions.
- \bowtie θ : mgu of S if:
 - ✓ Given any unifier δ of S then.
 - ✓ $\exists \alpha$ such that:

$$\delta = \theta \alpha$$

- Dis-set:
 - S: Set of expressions.
 - Find the common longest substring from the begining of each expression in S.
 - Dis-set = set of right next term in all the expressions.

Artificial Intelligence: Predicate Logic

- Dis-set:
 - Example:

$$S = \{p(X, f(X), y), p(X,Y,Z), p(X, f(a), b)\}$$

- → Common longest substring = "p(X,"
- \rightarrow Dis-set = {f(X), Y, f(a)}

- Unification algorithm:
 - \searrow Input: S = {atoms}
 - Output: mgu(S) or not unifiable(S).
 - 1. Set K = 0 and $\theta_0 = \epsilon$. Goto 2
 - 2. Compute $S\theta_k$. If it is a set having single element \rightarrow stop: $mgu = \theta_k$. Else $D_k = dis\text{-set}(S\theta_k)$. Goto 3.
 - 3. If D_k contains variable V and a term t, and V is not in term t, Then compute $\theta_{k+1} = \theta_k \{V/t\}$, set K = K + 1. Goto 2.

- Clause's properties:
 - 1. There is no common variable between two clauses.
 - 2. There exist one or many atoms: L_1 , L_2 , ..., L_k in a clause, one or many literals $\neg M_1$, $\neg M_2$, ..., $\neg M_n$ in another clause so that there is a mgu for set $\{L_1, L_2, ..., L_k, M_1, M_2, ..., M_n\}$

* Resolution rule:.

$$L_{1} \text{ v ... v } L_{k} \text{ v C}$$

$$\neg M_{1} \text{ v ... v } \neg M_{n} \text{ v D}$$

$$\therefore (\text{C } \theta \text{ - N}) \text{ v } (\text{D } \theta \text{ - } \neg \text{N})$$

$$\mathbf{N} = \mathbf{L}_{i} \mathbf{\theta} \\
= \mathbf{M}_{i} \mathbf{\theta}$$

Resolution rule:

- 1. Verify the difference of variable name between two clauses.
- 2. Find mgu, θ , for: {L₁, L₂, ..., L_k, M₁, M₂, ..., M_n}
- 3. Apply θ into C và D.
- 4. Compute: $N = L_1 \theta$
- 5. Remove N from Cθ
- 6. Remove $\neg N$ from D0
- 7. Compute union of 5 and 6, and result resovant.

- **Resolution rule:**
 - Properties of resolvants:

E, F are two clauses.

G is their resolvant.

{E,F} is unsatisfiable if and only if {E,F,G} is unsatisfiable.

- **Proof** with resolution rule:
 - Set of expression F
 - Prove: P
 - Procedure:
 - 1. Convert F into clauses.
 - 2. Take ¬P, convert ¬P into clauses. Add to result of Step 1.
 - 3. Apply resolution rule to produce empty set, i.e., find a contradiction.

***** Example:

STT	Clauses
1	man(Marcus)
2	Pompiean(Marcus)
3	¬Pompiean(X1) v Roman(X1)
4	Ruler(Caesar)
5	¬Roman(X2) v loyalto(X2, Caesar) v hate(X2, Caesar)
6	Loyalto(X3, f1(X3))
7	¬man(X4) v ¬ruler(Y1) v ¬tryassassinate(X4, Y1) v loyalto(X4, Y1)
8	Tryassassinate(Marcus, Caesar)

Prove: "Marcus hate Caesar." or hate(Marcus, Ceasar).

Proof

#	Clauses	Note
1	man(Marcus)	P
2	Pompiean(Marcus)	P
3	¬Pompiean(X1) v Roman(X1)	P
4	Ruler(Caesar)	P
5	¬Roman(X2) v loyalto(X2, Caesar) v hate(X2, Caesar)	P
6	Loyalto(X3, f1(X3))	P
7	¬man(X4) v ¬ruler(Y1) v ¬tryassassinate(X4, Y1) v ¬loyalto(X4, Y1)	P
8	Tryassassinate(Marcus, Caesar)	P
9	¬hate(Marcua, Ceasar).	P
10	¬Roman(Marcus) v loyalto(Marcus, Caesar)	5,9: X2= Marcus
11	¬Pompiean(Marcus) v loyalto(Marcus, Caesar)	3,10: X1 = Marcus

Proof

STT	Clauses	Ghi chú
12	loyalto(Marcus, Ceasar)	2,11:
13	¬man(Marcus) v ¬ruler(Ceasar) v ¬tryassassinate(Marcus, Ceasar)	12,7:X4=Marcus, y1=Ceasar
14	¬ruler(Ceasar) v ¬tryassassinate(Marcus, Ceasar)	13,1
15	¬tryassassinate(Marcus, Ceasar)	14,4
16		15,8

Homeworks

Prove: ¬alive(Marcus, now) from the previous example.

Exercises

❖ You know:

- All people living in PMH are rich.
- Rich people have much money
- People who work only in government sector (or called government staff) do not have much money.
- An is a government staff

Prove:

An does not live in PMH.