Simplifying Parallel Graph Processing:

Survey of Existing Platforms

Sam Pollard (spollard@cs.uoregon.edu), University of Oregon November 20, 2016

This is a survey of existing graph analytics frameworks.

1 Arya

Below are the preliminary results by running two benchmarks on the research computer Arya.

Machine Specifications

CPU 72 Core Intel Xeon E5 2699 v3

RAM 256 GB DDR4 ? MHZ

Report Card
Transport

Network Topology

Local Scheduling
Runtime Feedback
Approach

Algorithmic Considerations

Performance in millions of traversed edges per second (MTEPS)

	PowerGraph	OpenG
BFS	87.4	341
SSSP	1.09	3.08

2 Graph Processing Taxonomy

This is in the spirit of [1].

Name	Type	HPC	Parallelism	Arch.	Free	Source	Notes
PowerGraph	Framework	"yes"	both	CPU	yes	[2]	1

References

- [1] DOEKEMEIJER, N., AND VARBANESCU, A. L. A survey of parallel graph processing frameworks. Tech. rep., Delft University of Technology, 2014.
- [2] Gonzalez, J. E., Low, Y., Gu, H., Bickson, D., and Guestrin, C. Powergraph: Distributed graph-parallel computation on natural graphs. In *Presented as part of the 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI 12)* (Hollywood, CA, 2012), USENIX, pp. 17–30.

¹The current version is a closed-source product by Turi though PowerGraph v2.2 is on Github.