Разработка механической руки и программного обеспечения для ее функционирования с использованием платы Arduino

Выполнил:

Михайлов Юрий Александрович, гр. 7383

Руководитель:

к.т.н., доцент каф. МОЭВМ

Консультант:

ст. преподаватель каф. МОЭВМ

Романцев В.В.

Герасимова Т.В.

Санкт-Петербург, 2021

Цель и задачи

Актуальность: затронуть основы робототехники для последующего развития в этой области

Преимущества роботизированных систем:

- выполнение поставленной задачи 24 часа в сутки
- уменьшение затрат производства

Цель: спроектировать и разработать руку-робот на основе платы Arduino

Задачи:

- 1. Определить целевую плату разработки
- 2. Спроектировать каркас
- з. Собрать конструкцию робота-манипулятора
- 4. Написать программу для работы робота
- 5. Провести проверку работоспособности разработанного проекта

Определение целевой платы разработки

Таблица 1. Сравнение программируемых платформ

Параметр	Arduino Uno	BeagleboneBlack	RaspberryPi
Цена микроконтроллера	≈29.95\$	≈89\$	≈35\$
Микроконтроллер	ATmega328	ARM11	ARM Cortex-A8
Тактовая частота	16 МГц	700 МГц	700 МГц
Минимальное энергопотребление	42 MA (0.3 BT)	700 мА (3.5 Вт)	170 мА (0.85 Вт)
Порт Ethernet	-	10/100	10/100
Надежность	Можно включать и отключать в любой момент	Работает на операционной системе, поэтому его нужно правильно выключать	Работает на операционной системе, поэтому его нужно правильно выключать
Использование	Просто взаимодействовать с электронными компонентами	Требуется установка дополнительных библиотек	Требуется установка дополнительных библиотек

Проектирование каркаса робота-манипулятора

Точки 1,2,3 и 4 – места креплений к корпусу.

Разгибание руки осуществляется через крепление 1, которое является основной точкой вращения.

Проектирование захвата робота-манипулятора

Для реализации механизма захвата использовалось взаимодействие шестерен, одна из которых является ведущей и присоединенной к приводу.

Рисунок 6.1 – Состояние кисти в сжатом состоянии

Рисунок 6.2 — Состояние кисти в разжатом состоянии

Сборка конструкции робота-манипулятора

Для решения этой задачи было использовано:

- 1. Микроконтроллер Arduino Uno
- 2. 4 сервопривода SG90
- 3. 2 двух-осевых аналоговых XYкоординатных модуля джойстика
- 4. Breadboard беспаечная монтажная плата

Сборка устройства для управления конструкцией робота-манипулятора

Основным способом управления являются двух-осевые модули джойстика.

Для удобства подключения используется беспаечная плата.

Написание программы для робота

Программа для работы робота была написана в Arduino IDE на языке C++. Она состоит из 3-х частей: объявление переменных, функции инициализации и основного цикла. Для управления вращения приводами использовалась библиотека «Servo.h».

- Объявление переменных включает в себя перечисление приводов, осей модулей джойстика и целочисленных переменных для вращения сервоприводами.
- В функции инициализации происходит привязка приводов и модулей джойстиков к соответствующим ПИН-выходам.
- В основном цикле программа считывает значения с джойстиков, масштабирует их к необходимому диапазону и вращает привод на заданный угол.

Пример кода программы, который считывает значение с модуля джойстика, делает его маппинг и вращает привод:

```
X1 = analogRead(pinX1);
X1 = map(X1, 0, 1023, 0, 180);
servo1.write(X1);
```

Техническая спецификация

Разработанный манипулятор имеет:

- Рабочее напряжение 5В.
- Джойстик для управления Правый модуль: X-ось разгибание руки, Y-ось вращение конструкции. Левый модуль: Y-ось захват объектов.
- В качестве питания выступает USB-разъем ноутбука.
- 2 степени подвижности вращение конструкции и разгибание руки

Основной функцией данного робота является захват и последующее перемещение объектов.

Проверка работоспособности проекта

В качестве проверки робота-манипулятора были выполнены следующие эксперименты:

1. проверка возможности захвата объекта Из рисунка вытекает условие удержания:

$$F_{\mathrm{Tp_1}} + F_{\mathrm{Tp_1}} > mg \to F_1 * \mu + F_2 * \mu > mg$$
 $T_2 \times \mu + T_3 \times \mu > mg \to T_1 * d_2 \times \mu + T_1 * d_2 \times \mu > mg$ При известных $T_1 = 17,65197 \ \mathrm{H} * \mathrm{cm}, d_1 = 1,05 \ \mathrm{cm}, d_2 = d_3 = 1,35 \ \mathrm{cm}, L = 9 \ \mathrm{cm}, \mu (\Pi \mathrm{BX}) = 0,5 \ \mathrm{получаем:} \ m < 0,252 \ \mathrm{kr}.$

2. проверка возможности перемещения объекта в режиме захвата

Из рисунка получаем условие:

$$T_1 = F_{\mathrm{T}} * L = m * g * L o m = rac{T_1}{g * l}$$
 При $T_1 = 17,65187\mathrm{H} * \mathrm{cm}$ и $L = 25\mathrm{cm}$ получаем: $m < 0,07$ кг. —для одного привода $m < 0,14$ кг. —для двух приводов.

Рисунок 10.1 – Условие захвата

Рисунок 10.1 – Условие удержания

Заключение

- Проделанный обзор программируемых платформ показал преимущества выбора платы Arduino Uno для реализации данного проекта такие как цена, энергопотребление и простота использования.
- Была спроектирована, а затем собрана конструкция манипуляционного устройства.
- Была написана программа для его управления.
- Была проверена работоспособность готового проекта на примере простых экспериментов возможностей манипулятора и рассчитаны показатели массы объектов, которые способен выдержать робот.

Дальнейшие направления исследований включают в себя улучшение конструкции робота-манипулятора путем добавления большего количества степеней подвижности и улучшения способа управления.

Апробация работы

• Репозиторий проекта https://github.com/YuraMihailov123/diploma.

Рисунок 7 — Созданный роботманипулятор

 проверка возможности вращения все конструкции при помощи привода:

Из технических характеристик привода имеем скорость вращения: 0.12сек/60градусов = 0.002сек/градус. Получаем, что время вращения конструкции на 180 градусов равно:

$$t = \varphi * \omega = 180 * 0.002 = 0.36 \text{ сек}$$

2. проверка возможности разгибания основной части руки Скорость вращения равна 0.002сек/гр. Угловой диапазон приводов разгибания руки составляет от 50 до 170 градусов. Время разгибания руки от 50 градусов до 170:

$$t = \varphi * \omega = (170 - 50) * 0.002 = 0.24 \text{ cek}$$