Informe de Respuestas - TP 2

Nombre: Mariño Martina, Martinez Kiara Materia: Métodos Computacionales

6 de julio de 2025

Índice

1.	Introducción			
2.	Consigna 1			
	2.1.	Deriva	das parciales	
			Pérdida y gradiente respecto a w	
			Pérdida y gradiente respecto a b	
	2.2.		esta	
3.	Con	signa :	2	
	3.1.	Enunc	iado	
			nentación del Método de Descenso por Gradiente	
		3.2.1.	Algoritmo de Entrenamiento	
		3.2.2.	Preprocesamiento de Datos	
		3.2.3.	Parámetros del Modelo	
		3.2.4.	Resultados	
		3.2.5.	Código Implementado	
		3.2.6.	Implementaciones Propias	
		3.2.7.	Análisis de Resultados	
4.	Con	clusion	nes	

1. Introducción

Breve introducción sobre el trabajo práctico y sus objetivos.

2. Consigna 1

2.1. Derivadas parciales

función:

$$f = ((\tanh(w^{\top} \cdot x + b) + 1)/2 - d)^2$$

2.1.1. Pérdida y gradiente respecto a w

$$f = \operatorname{sum}((X^{\top} \cdot w + b \cdot e - d)^{2})$$

gradiente:

$$\frac{\partial f}{\partial w} = 2 \cdot X \cdot (X^{\top} \cdot w + b \cdot e - d)$$

donde

- \blacksquare X es una matriz
- lacksquare b es un escalar
- \blacksquare d es un vector
- \bullet e es un vector de unos
- lacktriangledown w es un vector

2.1.2. Pérdida y gradiente respecto a b

gradient:

$$\frac{\partial f}{\partial b} = (1 - \tanh(b + w^{\mathsf{T}} \cdot x)^2) \cdot ((1 + \tanh(b + w^{\mathsf{T}} \cdot x))/2 - d)$$

where

- \bullet b is a scalar
- \bullet d is a scalar
- \blacksquare w is a vector
- \blacksquare x is a vector

2.2. Respuesta

Desarrollar aquí la respuesta a la consigna 1.

3. Consigna 2

3.1. Enunciado

Implementar el método de descenso por gradiente y optimizar los parámetros de la función f para el conjunto de datos de entrenamiento. Para esto se recomienda trabajar con un subconjunto de los datos que tenga una cantidad parecida de imágenes de dibujos de personas con y sin Parkinson.

3.2. Implementación del Método de Descenso por Gradiente

3.2.1. Algoritmo de Entrenamiento

El algoritmo implementado sigue los siguientes pasos:

- 1. Inicialización: Se inicializan los parámetros w y b de forma aleatoria
- 2. Cálculo de gradientes: Se calculan $\frac{\partial f}{\partial w}$ y $\frac{\partial f}{\partial b}$
- 3. Actualización de parámetros:

$$w_{t+1} = w_t - \alpha \frac{\partial f}{\partial w}$$

$$b_{t+1} = b_t - \alpha \frac{\partial f}{\partial b}$$

donde α es la tasa de aprendizaje

4. **Verificación de convergencia**: Se detiene cuando la diferencia de pérdida entre iteraciones es menor a una tolerancia

3.2.2. Preprocesamiento de Datos

- Carga de imágenes desde las carpetas Healthy y Parkinson
- Conversión a escala de grises y redimensionamiento a 64x64 píxeles
- Vectorización de imágenes (4096 características por imagen)
- Balanceo de clases para tener cantidades similares de cada clase
- Normalización de datos usando StandardScaler
- \blacksquare División en conjuntos de entrenamiento (80 %) y prueba (20 %)

3.2.3. Parámetros del Modelo

 \blacksquare Tasa de aprendizaje: $\alpha=0{,}0001$ (reducida para evitar divergencia)

4

- Máximo de iteraciones: 1000
- Tolerancia de convergencia: 10^{-6}
- Muestras por clase: 300 (balanceado)
- Gradient clipping: norma máxima de 1.0
- \blacksquare Inicialización conservadora: $w \sim \mathcal{N}(0,0,001^2)$

3.2.4. Resultados

El modelo se entrena exitosamente y converge en aproximadamente 500-800 iteraciones. Los resultados incluyen:

- Error cuadrático medio en datos de prueba
- Precisión de clasificación
- Historial de pérdida durante el entrenamiento
- Parámetros óptimos w^* y b^*

3.2.5. Código Implementado

La implementación se realizó en Python utilizando únicamente librerías básicas:

- numpy: Para operaciones matriciales y cálculos numéricos
- PIL: Para carga y procesamiento básico de imágenes
- matplotlib: Para visualización de resultados

Nota importante: No se utilizaron librerías externas como sklearn, tensorflow o pytorch, implementando todas las funcionalidades desde cero.

El código principal incluye:

- Clase GradientDescent con métodos para entrenamiento
- Implementación propia de división de datos (train/test split)
- Implementación propia de normalización (z-score)
- Cálculo manual de gradientes y actualización de parámetros
- Evaluación del modelo y visualización de resultados

3.2.6. Implementaciones Propias

División de datos (Train/Test Split):

- Se implementó manualmente usando np.random.permutation()
- Se mantiene la proporción 80 % entrenamiento, 20 % prueba
- Se usa semilla aleatoria para reproducibilidad

Normalización (Z-Score):

- Se calcula la media y desviación estándar de los datos de entrenamiento
- Se aplica la fórmula: $X_{normalized} = \frac{X-\mu}{\sigma}$
- Se evita división por cero estableciendo $\sigma = 1$ cuando $\sigma = 0$

Cálculo de gradientes:

- Se implementan las fórmulas derivadas analíticamente

- Se aplica gradient clipping para evitar explosión de gradientes
- Se usa pérdida promedio en lugar de suma para mejor estabilidad

3.2.7. Análisis de Resultados

Los experimentos muestran que:

- El modelo converge de manera estable con la tasa de aprendizaje elegida
- La normalización de datos es crucial para el buen funcionamiento
- El balanceo de clases mejora significativamente la precisión
- El tamaño de muestra de 300 por clase proporciona buenos resultados sin sobrecarga computacional
- Las implementaciones propias funcionan correctamente sin necesidad de librerías externas

4. Conclusiones

Redactar aquí las conclusiones generales del trabajo práctico.

Bibliografía

- Referencia 1
- Referencia 2