Classification of Grammars

According to Noam Chomosky, there are four types of grammars — Type 0, Type 1, Type 2, and Type 3. The following table shows how they differ from each other —

Grammar Type	Grammar Accepted	Language Accepted	Automaton
Type 0	Unrestricted grammar	Recursively enumerable language	Turing Machine
Type 1	Context-sensitive grammar	Context-sensitive language	Linear-bounded automaton
Type 2	Context-free grammar	Context-free language	Pushdown automaton
Type 3	Regular grammar	Regular language	Finite state automaton

Take a look at the following illustration. It shows the scope of each type of grammar -

Type - 3 Grammar

Type-3 grammars generate regular languages. Type-3 grammars must have a single non-terminal on the left-hand side and a right-hand side consisting of a single terminal or single terminal followed by a single non-terminal.

The productions must be in the form $X \rightarrow a$ or $X \rightarrow aY$

where $X, Y \in N$ (Non terminal)

and $a \in T$ (Terminal)

The rule $S \to \varepsilon$ is allowed if S does not appear on the right side of any rule.

Example

 $X \to \epsilon$

 $X \rightarrow a \mid aY$

 $Y \rightarrow b$

Type - 2 Grammar

Type-2 grammars generate context-free languages.

The productions must be in the form $A \rightarrow \gamma$

where $A \in N$ (Non terminal)

and $\gamma \in (T \cup N)^*$ (String of terminals and non-terminals).

These languages generated by these grammars are be recognized by a non-deterministic pushdown automaton.

Example

 $S \rightarrow X a$

 $X \rightarrow a$

 $X \rightarrow aX$

 $X \rightarrow abc$

 $X \rightarrow \epsilon$

Type - 1 Grammar

Type-1 grammars generate context-sensitive languages. The productions must be in the form

$$\alpha A \beta \rightarrow \alpha \gamma \beta$$

where $A \in \mathbb{N}$ (Non-terminal)

and α , β , $\gamma \in (T \cup N)^*$ (Strings of terminals and non-terminals)

The strings α and β may be empty, but γ must be non-empty.

The rule $S \to \varepsilon$ is allowed if S does not appear on the right side of any rule. The languages generated by these grammars are recognized by a linear bounded automaton.

Example

 $AB \rightarrow AbBc$ $A \rightarrow bcA$ $B \rightarrow b$

Type - 0 Grammar

Type-0 grammars generate recursively enumerable languages. The productions have no restrictions. They are any phase structure grammar including all formal grammars.

They generate the languages that are recognized by a Turing machine.

The productions can be in the form of $\alpha \to \beta$ where α is a string of terminals and nonterminals with at least one non-terminal and α cannot be null. β is a string of terminals and non-terminals.

Example

 $S \rightarrow ACaB$ $Bc \rightarrow acB$ $CB \rightarrow DB$ $aD \rightarrow Db$

Derive the string "aabbabba" for leftmost derivation and rightmost derivation using a CFG

$$S \rightarrow aB \mid bA$$

$$S \rightarrow a \mid aS \mid bAA \quad S \rightarrow b \mid aS \mid aBB$$

Leftmost derivation:

Rightmost derivation:

1.	S	
2.	aB	$S \rightarrow aB$
3.	aaBB	$B \rightarrow aBB$
4.	aabB	$B \rightarrow b$
5.	aabbS	$B \rightarrow bS$
6.	aabbaB	$S \rightarrow aB$
7.	aabbabS	$B \rightarrow bS$
8.	aabbabbA	$S \rightarrow bA$
9.	aabbabba	$A \rightarrow a$