Think Python

How to think like a computer scientist

ALLEN B. DOWNEY

5 de agosto de 2021

Conteúdo

1	The Way of the Program 1.1 O que é um Programa?	1 1 1 2
${f 2}$	Varibles, Expressions and Statements	3
3	Functions	5
4	Case Study: Interface Design	7
5	conditionals and Recursion	9
6	Fruitful Funtions	11
7	Iteration	13
8	Strings	15
9	Case Study: Word Play	17
10	Lists	19
11	Dictionaries	2 1
12	Tuples	23
13	Case Study: Data Structure Selection	25
14	Files	27
15	Classes and Objects	2 9
16	Classes and Functions	31
17	Classes and Methods	33

iv	CONTEÚDO
18 Inheritance	35
19 The Goodies	37
20 Debugging	39
21 Analysis of Algorithms	41

The Way of the Program

"The single most important skill for a computer scientistis **problem solving**. That is the ability to formulate problems, think creatively about solutions, and express a solution clearly and accurately"

- página 1

1.1 O que é um Programa?

Um **programa** é uma sequencia de instruções que especifica como fazer um determinado computation. Um **computation** ¹ é qualquer tipo de cálculo que inclua passos artiméticos (computação matemática) e não artiméticos (computação simbólica) e que segue uma determinada ordem.

Algumas características comuns em qualquer linguagem de programação:

- input \rightarrow dados de teclado, arquivo, rede, etc.
- output \rightarrow mostrar dados na tela, salvar em um arquivo, enviar na rede, etc.
- math \rightarrow operações matemáticas
- conditional execution \rightarrow só executar um pedaço do código após certas condições
- ullet repetition ightarrow reexecutar um pedaço do código com alguma variação

1.2 Executando o Python

O **interpretador** do Python é um programa que lê e executa códigos escritos em Python. Tem duas maneiras de se executar códigos em Python a

¹https://en.wikipedia.org/wiki/Computation

primeira é no modo **interativo** onde podemos enviar as ordens direto pro interpretador e a segunda em em modo **script** onde o interpretador analisa o código inteiro antes de começar o processamento.

1.3 Operadores Aritiméticos

```
# soma
2 40 + 2
3
4 # subtra o
5 40 - 2
6
7 # multiplica o
8 40 * 2
9
10 # divis o
11 40 / 2
```

Listing 1.1: Operadores Aritiméticos em Python

Varibles, Expressions and Statements

Functions

6 3. FUNCTIONS

Case Study: Interface Design

conditionals and Recursion

Fruitful Funtions

Iteration

14 7. ITERATION

Strings

16 8. STRINGS

Case Study: Word Play

Lists

20 10. LISTS

Dictionaries

Tuples

24 12. TUPLES

Case Study: Data Structure Selection

Files

28 14. FILES

Classes and Objects

Classes and Functions

Classes and Methods

Inheritance

The Goodies

Debugging

40 20. DEBUGGING

Analysis of Algorithms