Outils Logiques Groupe 3 & 4 – DM Noté 3 (Correction)

Exercice 1 (5 points)

Considérer la formule $A = ((x \Rightarrow y) \Rightarrow x) \Rightarrow x$.

- (1) A est-elle valide?
- (2) Mettez A en forme normale négative.
- (3) Utiliser la transformation de Tseitin pour calculer une formule ts(A) en CNF qui soit équi-satisfiable avec A, et de taille linéaire en la taille de A.
- (4) La formule ts(A) calculée en (3) est-elle équivalente à A? Justifier.

Solution

- (1) A est valide (démontré soit par table de vérité soit par suite d'équivalences).
- (2) On a $A = \neg(\neg(\neg x \lor y) \lor x) \lor x$. Ce qui donne $A \equiv ((\neg x \lor y) \land \neg x) \lor x$ en NNF.
- (3) Les applications successives de la transformation de Tseitin à A donnent :

$$\neg(\neg(\neg x \lor y) \lor x) \lor x$$

$$\rightarrow_t (\neg(\neg z_1 \lor x) \lor x) \land (z_1 \Leftrightarrow (\neg x \lor y))$$

$$\rightarrow_t (\neg z_2 \lor x) \land (z_2 \Leftrightarrow (\neg z_1 \lor x)) \land (z_1 \Leftrightarrow (\neg x \lor y)).$$

Comme $\neg z_2 \lor x$ est en CNF on peut s'arrêter et transformer chaque membre de la conjonction externe en CNF, ce qui donne la formule en CNF

$$ts(A) = \{ \{ \neg z_2, x \}, \{ \neg z_2, \neg z_1, x \}, \{ z_2, z_1 \}, \{ z_2, \neg x \}, \{ \neg z_1, \neg x, y \}, \{ z_1, x \}, \{ z_1, \neg y \} \}.$$

(4) On n'a pas une équivalence entre ts(A) et A car ts(A) n'est pas valide, en effet l'affectation $(1/z_2, 0/x)$ ne satisfait pas ts(A).

Exercice 2 (5 points)

Pour $n \ge 1$, un carré latin de taille n est un tableau carré de n lignes et de n colonnes tel que chaque nombre de 1 à n apparaît exactement une fois sur chaque ligne et sur chaque colonne. En voici un exemple pour n = 3.

2	3	1
1	2	3
3	1	2

Fixons n.

- (1) Introduire des variables propositionnelles modélisant le fait qu'une case d'un tableau carré $n \times n$ contient une valeur entre 1 et n.
- (2) Donner une formule A_n en CNF utilisant les variables introduites en (1) qui modélise la situation : « chaque case du tableau contient une valeur de 1 à n ».
- (3) Donner une formule B_n en CNF utilisant les variables introduites en (1) qui modélise la situation : « chaque ligne contient exactement une fois chaque valeur de 1 à n ».
- (4) Donner une formule C_n en CNF utilisant les variables introduites en (1) qui modélise la situation : « chaque colonne contient exactement une fois chaque valeur de 1 à n ».
- (5) Donner une formule φ en CNF, utilisant les variables introduites en (1), telle que les carrés latins de taille n correspondent exactement aux affectations v telles que $v \models \varphi$.

Solution

(1) On introduit les variables x_{ijk} pour $1 \le i, j, k \le n$. La variable x_{ijk} modélise « la case (i, j) contient la valeur k».

(2)

$$A_n = \bigwedge_{1 \le i, j \le n} \left(\bigvee_{1 \le k \le n} x_{ijk} \right)$$

(3) « chaque lique contient chaque valeur au moins une fois » :

$$B_n^1 = \bigwedge_{1 \le i,k \le n} \left(\bigvee_{1 \le j \le n} x_{ijk} \right)$$

« chaque ligne contient chaque valeur au plus une fois » :

$$B_n^2 = \bigwedge_{1 \le i,k \le n} \left(\bigwedge_{1 \le j < j' \le n} (\neg x_{ijk} \lor \neg x_{ij'k}) \right)$$

Enfin $B_n = B_n^1 \wedge B_n^2$.

(4) « chaque colonne contient chaque valeur au moins une fois » :

$$C_n^1 = \bigwedge_{1 \le j,k \le n} \left(\bigvee_{1 \le i \le n} x_{ijk} \right)$$

« chaque colonne contient chaque valeur au plus une fois » :

$$C_n^2 = \bigwedge_{1 \le j,k \le n} \left(\bigwedge_{1 \le i < i' \le n} (\neg x_{ijk} \lor \neg x_{i'jk}) \right)$$

Enfin $C_n = C_n^1 \wedge C_n^2$.

(5) On peut prendre $\varphi = A_n \wedge B_n \wedge C_n$. Grâce au principe des tiroirs on peut aussi prendre $\varphi = A_n \wedge B_n^2 \wedge C_n^2$.

Exercice 3 (5 points)

Soit $G = (V_G, E_G)$ un graphe non-dirigé fini (c-à-d V_G est fini). On dit que G est k-coloriable s'il existe une fonction $c: V_G \longrightarrow \{1, \ldots, k\}$ (appelée un k-coloriage) telle que pour chaque $(a, b) \in E_G$ tels que $a \neq b$, on a $c(a) \neq c(b)$ (autrement, deux noeuds distincts et adjacents ne peuvent pas avoir la même couleur). Voici un exemple d'un 3-coloriage d'un graphe avec ensemble de noeuds $\{A, B, C, D, E, F\}$.

Fixons un graphe non-dirigé fini $G=(V_G,E_G)$ et un ensemble de k couleurs $\{1,\ldots,k\}$. On se donne des variables propositionnelles $x_{a,i}$, modélisant « le noeud a a la couleur i », pour chaque $a \in V_G$ et $1 \le i \le k$.

- (1) Donner une formule en CNF utilisant les variables $x_{a,i}$ modélisant chacune des situations suivantes :
 - (a) « chaque noeud a au moins une couleur entre 1 et k ».

- (b) « chaque noeud a au plus une couleur entre 1 et k ».
- (c) « deux noeuds distincts et adjacents n'ont pas la même couleur ».

Donner une formule $\psi_{G,k}$ en CNF telle que les k-coloriages de G correspondent exactement aux affectations v telles que $v \models \psi_{G,k}$.

(2) Utiliser l'algorithme DPLL pour trouver un 3-coloriage du graphe non-dirigé suivant.

Solution

(1) (a)

$$A_{G,k} = \bigwedge_{a \in V_G} \left(\bigvee_{1 \le i \le k} x_{a,i} \right)$$

(b)

$$B_{G,k} = \bigwedge_{a \in V_G} \left(\bigwedge_{1 \le i < i' \le k} (\neg x_{a,i} \lor \neg x_{a,i'}) \right)$$

(c)

$$C_{G,k} = \bigwedge_{1 \le i \le k} \left(\bigwedge_{(a,b) \in E_G, a \ne b} (\neg x_{a,i} \lor \neg x_{b,i}) \right)$$

Chacune des trois formules précedentes est finie car G est un graphe fini. On pose enfin $\psi_{G,k} = A_{G,k} \wedge B_{G,k} \wedge C_{G,k}$.

(2) Soit G le graphe donné. On a donc $V_G = \{a, b, c, d\}$; introduisons les variables $x_a^i, x_b^i, x_c^i, x_d^i$ pour $1 \le i \le 3$. La formule en CNF modélisant les 3-coloriages de G est donc ¹

$$\psi_{G,3} = \{ (x_a^1 x_a^2 x_a^3), (x_b^1 x_b^2 x_b^3), (x_c^1 x_c^2 x_c^3), (x_d^1 x_d^2 x_d^3), \\ (\bar{x}_a^1 \bar{x}_a^2), (\bar{x}_a^1 \bar{x}_a^3), (\bar{x}_a^2 \bar{x}_a^3), (\bar{x}_b^1 \bar{x}_b^2), (\bar{x}_b^1 \bar{x}_b^3), (\bar{x}_b^2 \bar{x}_b^3), \\ (\bar{x}_c^1 \bar{x}_c^2), (\bar{x}_c^1 \bar{x}_c^3), (\bar{x}_c^2 \bar{x}_c^3), (\bar{x}_d^1 \bar{x}_d^2), (\bar{x}_d^1 \bar{x}_d^3), (\bar{x}_d^2 \bar{x}_d^3), \\ (\bar{x}_a^1 \bar{x}_b^1), (\bar{x}_b^1 \bar{x}_c^1), (\bar{x}_b^1 \bar{x}_d^1), (\bar{x}_c^1 \bar{x}_d^1), (\bar{x}_a^1 \bar{x}_d^1), \\ (\bar{x}_a^2 \bar{x}_b^2), (\bar{x}_b^2 \bar{x}_c^2), (\bar{x}_b^2 \bar{x}_d^2), (\bar{x}_c^2 \bar{x}_d^2), (\bar{x}_a^2 \bar{x}_d^2), \\ (\bar{x}_a^3 \bar{x}_b^3), (\bar{x}_b^3 \bar{x}_c^3), (\bar{x}_b^3 \bar{x}_d^3), (\bar{x}_c^3 \bar{x}_d^3), (\bar{x}_a^3 \bar{x}_d^3) \}$$

Appliquons l'algorithme DPLL à $\psi_{G,3}$.

— On est obligé d'appliquer la règle (6) car il n'y a pas de variable monotone ni de clause unitaire. On commence par choisir l'affectation $(1/x_a^1)$, la formule se simplifie donc en

$$\begin{split} &\{(x_b^1x_b^2x_b^3),(x_c^1x_c^2x_c^3),(x_d^1x_d^2x_d^3),\\ &(\bar{x}_a^2),(\bar{x}_a^3),(\bar{x}_a^2\bar{x}_a^3),(\bar{x}_b^1\bar{x}_b^2),(\bar{x}_b^1\bar{x}_b^3),(\bar{x}_b^2\bar{x}_b^3),\\ &(\bar{x}_c^1\bar{x}_c^2),(\bar{x}_c^1\bar{x}_c^3),(\bar{x}_c^2\bar{x}_c^3),(\bar{x}_d^1\bar{x}_d^2),(\bar{x}_d^1\bar{x}_d^3),(\bar{x}_d^2\bar{x}_d^3),\\ &(\bar{x}_b^1),(\bar{x}_b^1\bar{x}_c^1),(\bar{x}_b^1\bar{x}_d^1),(\bar{x}_c^1\bar{x}_d^1),(\bar{x}_d^1),\\ &(\bar{x}_a^2\bar{x}_b^2),(\bar{x}_b^2\bar{x}_c^2),(\bar{x}_b^2\bar{x}_d^2),(\bar{x}_c^2\bar{x}_d^2),(\bar{x}_a^2\bar{x}_d^2),\\ &(\bar{x}_a^3\bar{x}_b^3),(\bar{x}_b^3\bar{x}_c^3),(\bar{x}_b^3\bar{x}_d^3),(\bar{x}_a^3\bar{x}_d^3),(\bar{x}_a^3\bar{x}_d^3)\} \end{split}$$

^{1.} On utilise la notation $(x_a^1 x_a^2 x_a^3)$ pour la clause habituellement notée $\{x_a^1, x_a^2, x_a^3\}$ et \bar{x}_a^1 pour $\neg x_a^1$.

— Les variables x_a^2, x_a^3 sont maintenant monotones (négatives), et les clauses $(\bar{x}_b^1), (\bar{x}_d^1)$ sont unitaires. En appliquant successivement les règles (3) et (5) de DPLL, on procède donc à étendre notre affectation par $(1/x_a^1, 0/x_a^2, 0/x_a^3, 0/x_b^1, 0/x_d^1)$, la formule se simplifie en

$$\begin{split} &\{(x_b^2x_b^3),(x_c^1x_c^2x_c^3),(x_d^2x_d^3),\\ &(\bar{x}_b^2\bar{x}_b^3),\\ &(\bar{x}_c^1\bar{x}_c^2),(\bar{x}_c^1\bar{x}_c^3),(\bar{x}_c^2\bar{x}_c^3),(\bar{x}_d^2\bar{x}_d^3),\\ &(\bar{x}_b^2\bar{x}_c^2),(\bar{x}_b^2\bar{x}_d^2),(\bar{x}_c^2\bar{x}_d^2),\\ &(\bar{x}_b^3\bar{x}_c^3),(\bar{x}_b^3\bar{x}_d^3),(\bar{x}_c^3\bar{x}_d^3)\} \end{split}$$

— On est obligé d'appliquer (6), étendons notre affectation donc en $(1/x_a^1, 0/x_a^2, 0/x_a^3, 0/x_b^1, 0/x_d^1, 1/x_b^2)$. La formule se simplifie en

$$\begin{split} &\{(x_c^1 x_c^2 x_c^3), (x_d^2 x_d^3), \\ &(\bar{x}_b^3), \\ &(\bar{x}_c^1 \bar{x}_c^2), (\bar{x}_c^1 \bar{x}_c^3), (\bar{x}_c^2 \bar{x}_c^3), (\bar{x}_d^2 \bar{x}_d^3), \\ &(\bar{x}_c^2), (\bar{x}_d^2), (\bar{x}_c^2 \bar{x}_d^2), \\ &(\bar{x}_b^3 \bar{x}_c^3), (\bar{x}_b^3 \bar{x}_d^3), (\bar{x}_c^3 \bar{x}_d^3) \} \end{split}$$

— La variable x_b^3 est maintenant monotone (négative) et les clauses $(\bar{x}_c^2), (\bar{x}_d^2)$ sont unitaires. En appliquant successivement (3) et (5), on étend notre affectation en $(1/x_a^1, 0/x_a^2, 0/x_a^3, 0/x_b^1, 0/x_d^1, 1/x_b^2, 0/x_b^3, 0/x_c^2, 0/x_d^2)$. La formule se simplifie en

$$\{(x_c^1 x_c^3), (x_d^3), (\bar{x}_c^1 \bar{x}_c^3), (\bar{x}_c^3 \bar{x}_d^3)\}$$

— La clause (x_d^3) est unitaire. On étend notre affectation en $(1/x_a^1,0/x_a^2,0/x_a^3,0/x_b^1,0/x_d^1,1/x_b^2,0/x_b^3,0/x_c^2,0/x_d^2,1/x_d^3)$ et la formule se simplifie en

$$\{(x_c^1 x_c^3), (\bar{x}_c^1 \bar{x}_c^3), (\bar{x}_c^3)\}$$

— La clause (\bar{x}_c^3) est unitaire. On étend notre affectation en $(1/x_a^1,0/x_a^2,0/x_a^3,0/x_b^1,0/x_d^1,1/x_b^2,0/x_b^3,0/x_c^2,0/x_d^2,1/x_d^3,0/x_c^3)$ et la formule se simplifie en

$$\{(x_c^1)\}$$

— Enfin la variable x_c^1 est monotone (positive). On étend notre affectation en $v=(1/x_a^1,0/x_a^2,0/x_a^3,0/x_b^1,0/x_d^1,1/x_b^2,0/x_b^3,0/x_c^2,0/x_d^2,1/x_d^3,0/x_c^3,1/x_c^1)$ et on conclut que la formule est **satisfaisable** (satisfaite par v) car elle se simplifie en \emptyset (l'ensemble vide).

Le 3-coloriage v obtenu par l'algorithme DPLL est donc

