

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 :	A1	(11) International Publication Number: WO 93/14588 (43) International Publication Date: 22 July 1993 (22.07.93)
H04L 27/30		
(21) International Application Number: PCT/US93/00406		(74) Agent: MILLER, Russell, B.; Qualcomm Incorporated, 10555 Sorrento Valley Road, San Diego, CA 92121-1617 (US).
(22) International Filing Date: 19 January 1993 (19.01.93)		
(30) Priority data: 822,164 16 January 1992 (16.01.92) US		(81) Designated States: AU, BG, BR, CA, FI, HU, JP, KP, KR, NO, PL, RO, RU, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(71) Applicant: QUALCOMM INCORPORATED [US/US]; 10555 Sorrento Valley Road, San Diego, CA 92121 (US).		Published <i>With international search report.</i>
(72) Inventors: PADOVANI, Roberto ; 12634 Futura Street, San Diego, CA 92130 (US). TIEDEMANN, Edward, G., Jr. ; 4350. Bromfield Ave., San Diego, CA 92122 (US). WEAVER, Lindsay, A., Jr. ; 3419 Tony Drive, San Diego, CA 92122 (US). BUTLER, Brian, K. ; 2274 Carol View Drive, #304, Cardiff, CA 92007 (US).		

(54) Title: METHOD AND APPARATUS FOR THE FORMATTING OF DATA FOR TRANSMISSION

(57) Abstract

In a CDMA cellular communication system, a forward CDMA channel is used to transmit information from a cell base to the mobile station. Conversely, a reverse CDMA channel is used to transmit information from the mobile station to the cell base station. The transmit portion of the mobile transceiver includes a microphone (12), a codec (16), a vocoder (14), a mask circuit (32), a convolutional encoder (22), a block interleaver (24), a 64-ary orthogonal modulator, an in-phase PN generator (38), a quadrature PN generator (40), filtering circuits (42, 44, 50, 52), a quadrature modulator (54) and a transmitter (56).

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania
AU	Australia	GA	Gabon	MW	Malawi
BB	Barbados	GB	United Kingdom	NL	Netherlands
BE	Belgium	GN	Guinea	NO	Norway
BF	Burkina Faso	GR	Greece	NZ	New Zealand
BG	Bulgaria	HU	Hungary	PL	Poland
BJ	Benin	IE	Ireland	PT	Portugal
BR	Brazil	IT	Italy	RO	Romania
CA	Canada	JP	Japan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CC	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SK	Slovak Republic
CI	Côte d'Ivoire	LJ	Liechtenstein	SN	Senegal
CM	Cameroon	LK	Sri Lanka	SU	Soviet Union
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	MC	Monaco	TG	Togo
DE	Germany	MG	Madagascar	UA	Ukraine
DK	Denmark	ML	Mali	US	United States of America
ES	Spain	MN	Mongolia	VN	Viet Nam

METHOD AND APPARATUS FOR THE FORMATTING OF DATA FOR TRANSMISSION

BACKGROUND OF THE INVENTION

5

I. Field of the Invention

The present application relates to the organization of data for transmission. More particularly, the present invention relates to a novel 10 and improved method and apparatus for formatting vocoder data, non-vocoder data and signaling data for transmission.

II. Description of the Related Art

15 In the field of digital communications various arrangements of digital data for transmission are used. The data bits are organized according to commonly used formats for transfer over the communication medium.

It is therefore an object of the present invention to provide a data 20 format which facilitates the communication of various types of data, and data of various rates, to be communicated in a structured form.

SUMMARY OF THE INVENTION

25 The present invention is a novel and improved method and system for formatting digital data for communication over a transmission medium.

In communication systems it is important to utilize a data format 30 which permits a full communication of data between users. In a communication system, such as a code division multiple access (CDMA) communication system, in which it is desirable to communicate various types of data, and at various rates, a data format must be selected which permits maximum flexibility within a predefined structure. Furthermore to maximize resources it is desirable to permit a sharing of the format to 35 permit different types of data to be organized together. In such situations it is necessary to structure the data in a manner in which it may be readily extracted according to the corresponding type and rate.

In accordance with the present invention a method and apparatus is provided for arranging various types of data, and at various rate, into a uniquely structured format for transmission. Data is provided as vocoder data or different types of non-vocoder data. The data is organized into frames of a predetermined time duration for transmission. The data frames are organized, depending on the data, to be at one of several data rates. Vocoder data is provided at one of several data rates and is organized in the frame according to a predetermined format. Frames may be formatted with a sharing of vocoder data with non-vocoder data to be at a highest frame data rate. Non-vocoder data may be organized so as to also be at a highest frame rate. Additional control data may be provided within the data frames to support various aspects of the transmission and recovery upon reception.

15

BRIEF DESCRIPTION OF THE DRAWINGS

The features, objects, and advantages of the present invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference characters identify correspondingly throughout and wherein:

20 Figure 1 is a block diagram illustrating an exemplary for a transmitter portion of a transceiver;

Figures 2a - 2h are a series of diagrams illustrating frame data formats for the various data rates, types and modes;

25 Figure 3 is a diagram illustrating an exemplary circuit implementation of the CRC and Tail Bit generator of Figure 1;

Figures 4a - 4e is a flow chart of the formatting of frames of data;

Figures 5a - 5d illustrate in a series of charts the ordering of code symbols in the interleaver array for transmission data rates of 9.6, 4.8, 2.4
30 and 1.2 kbps, respectively;

Figures 6a - 6c is a chart illustrating the Walsh symbol corresponding to each encoder symbol group;

Figure 7 is a block diagram illustrating the long code generator of Figure 1;

35 Figures 8a - 8c are a series of diagrams illustrating long code masks for the various channel type; and

Figure 9 is a graph illustrating the frequency response of the digital filters of Figure 1.

5

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now to the drawings, Figure 1 illustrates an exemplary embodiment of a transmit portion 10 of a CDMA mobile station transceiver or PCN handset. In a CDMA cellular communication system a forward CDMA channel is used to transmit information from a cell base station to the mobile station. Conversely a reverse CDMA channel is used to transmit information from the mobile station to the cell base station. The communication of signals from the mobile station may be characterized in the form of an access channel or a traffic channel 10 communication. The access channel is used for short signalling messages such as call originations, responses to pages, and registrations. The traffic channel is used to communicate (1) primary traffic, typically includes user speech, or (2) secondary traffic, typically user data, or (3) signaling traffic, such as command and control signals, or (4) a combination of primary traffic and secondary traffic or (5) a combination of primary traffic and signaling traffic.

Transmit portion 10 enables data to be transmitted on the reverse CDMA channel at data rates of 9.6 kbps, 4.8 kbps, 2.4 kbps or 1.2 kbps. Transmissions on the reverse traffic channel may be at any of these data rates while transmissions on the access channel are at the 4.8 kbps data rate. The transmission duty cycle on the reverse traffic channel will vary with the transmission data rate. Specifically, the transmission duty cycle for each rate is provided in Table I. As the duty cycle for transmission varies proportionately with the data rate, the actual burst transmission rate is fixed at 28,800 code symbols per second. Since six code symbols are modulated as one of 64 Walsh symbols for transmission, the Walsh symbol transmission rate shall be fixed at 4800 Walsh symbols per second which results in a fixed Walsh chip rate of 307.2 kcps.

All data that is transmitted on the reverse CDMA channel is convolutional encoded, block interleaved, modulated by 64-ary modulation, and direct-sequence PN spread prior to transmission. Table I

further defines the relationships and rates for data and symbols for the various transmission rates on the reverse traffic channel. The numerology is identical for the access channel except that the transmission rate is fixed at 4.8 kbps, and the duty cycle is 100%. As described in later
 5 herein each bit transmitted on the reverse CDMA channel is convolutional encoded using a rate 1/3 code. Therefore, the code symbol rate is always three times the data rate. The rate of the direct-sequence spreading functions shall be fixed at 1.2288 MHz, so that each Walsh chip is
 10 spread by precisely four PN chips.

TABLE I

Bit Rate (kbps)	9.6	4.8	2.4	1.2
PN Chip Rate (Mcps)	1.2288	1.2288	1.2288	1.2288
Code Rate (bits/code symbol)	1/3	1/3	1/3	1/3
TX Duty Cycle (%)	100.0	50.0	25.0	12.5
Code Symbol Rate (sps)	28,800	28,800	28,800	28,800
Modulation (code symbol/Walsh symbol)	6	6	6	6
Walsh Symbol Rate (sps)	4800	4800	4800	4800
Walsh Chip; Rate (kcps)	307.20	307.20	307.20	307.20
Walsh Symbol (μ s)	208.33	208.33	208.33	208.33
PN Chips/Code Symbol	42.67	42.67	42.67	42.67
PN Chips/Walsh Symbol	256	256	256	256
PN Chips/Walsh Chip	4	4	4	4

Transmit portion 10, when functioning in mode in which primary
 15 traffic is present, communicates acoustical signals, such as speech and/or background noise, as digital signals over the transmission medium. To facilitate the digital communication of acoustical signals, these signals are sampled and digitized by well known techniques. For example, in Figure 1, sound is converted by microphone 12 to an analog signal which is then
 20 converted to a digital signal by codec 14. Codec 14 typically performs an analog to digital conversion process using a standard 8 bit/ μ law format. In the alternative, the analog signal may be directly converted to digital form in a uniform pulse code modulation (PCM) format. In an exemplary embodiment codec 14 uses an 8 kHz sampling and provides an output of
 25 8 bit samples at the sampling rate so as to realize a 64 kbps data rate.

The 8-bit samples are output from codec 14 to vocoder 16 where a μ law/uniform code conversion process is performed. In vocoder 16, the samples are organized into frames of input data wherein each frame is

comprised of a predetermined number of samples. In a preferred implementation of vocoder 16 each frame is comprised of 160 samples or of 20 msec. of speech at the 8 kHz sampling rate. It should be understood that other sampling rates and frame sizes may be used. Each frame of
5 speech samples is variable rate encoded by vocoder 16 with the resultant parameter data formatted into a corresponding data packet. The vocoder data packets are then output to microprocessor 18 and associated circuitry for transmission formatting. Microprocessor 18 generically includes program instructions contained with a program instruction memory, a
10 data memory, and appropriate interface and related circuitry as is known in the art.

A preferred implementation of vocoder 16 utilizes a form of the Code Excited Linear Predictive (CELP) coding techniques so as to provide a variable rate in coded speech data. A Linear Predictive Coder (LPC)
15 analysis is performed upon a constant number of samples, and the pitch and codebook searches are performed on varying numbers of samples depending upon the transmission rate. A variable rate vocoder of this type is described in further detail in copending U.S. Patent Application Serial No. 07/713,661 filed June 11, 1991, and assigned to the Assignee of
20 the present invention. Vocoder 16 may be implemented in an application specific integrated circuit (ASIC) or in a digital signal processor.

In the variable rate vocoder just mentioned, the speech analysis frames are 20 msec. in length, implying that the extracted parameters are output to microprocessor 18 in a burst 50 times per second. Furthermore
25 the rate of data output is varied from roughly 8 kbps to 4 kbps to 2 kbps, and to 1 kbps.

At full rate, also referred to as rate 1, data transmission between the vocoder and the microprocessor is at an 8.55 kbps rate. For the full rate data the parameters are encoded for each frame and represented by 160 bits.
30 The full rate data frame also includes a parity check of 11 bits thus resulting in a full rate frame being comprised of a total of 171 bits. In the full rate data frame, the transmission rate between the vocoder and the microprocessor absent the parity check bits would be 8 kbps.

At half rate, also referred to as rate 1/2, data transmission between
35 the vocoder and the microprocessor is at a 4 kbps rate with the parameters encoded for each frame using 80 bits. At quarter rate, also referred to as

rate 1/4, data transmission between the vocoder and the microprocessor is at a 2 kbps rate with the parameters encoded for each frame using 40 bits. At eighth rate, also referred to as rate 1/8, data transmission between the vocoder and the microprocessor is slightly less than a 1 kbps rate with the 5 parameters encoded for each frame using 16 bits.

In addition, no information may be sent in a frame between the vocoder and the microprocessor. This frame type, referred to as a blank frame, may be used for signaling or other non-vocoder data.

The vocoder data packets are then output to microprocessor 18 and 10 CRC and Tail Bit generator 20 for completing the transmission formatting. Microprocessor 18 receives packets of parameter data every 20 msec. along with a rate indication for the rate the frame of speech samples was encoded. Microprocessor 18 also receives, if present, an input of secondary traffic data for output to generator 20. Microprocessor 18 also internally 15 generates signaling data for output to generator 20. Data whether it is primary traffic, secondary traffic or signaling traffic matter, if present, is output from microprocessor 18 to generator 18 every 20 msec. frame.

Generator 20 generates and appends at the end of all full and half rate frames a set of parity check bits or cyclic redundancy check bits (CRC Bits) which are used at the receiver as a frame quality indicator. For a full 20 rate frame, regardless of whether the data is a full rate primary, secondary or signaling traffic, or a combination of half rate primary and secondary traffic, or a combination of half rate primary and signaling traffic, generator 20 preferably generates a set of CRC Bits according to a first 25 polynomial. For a half rate data frame, generator 20 also generates a set of CRC Bits preferably according to a second polynomial. Generator 20 further generates for all frame rates a set of Encoder Tail Bits which follow the CRC bits, if present or data if not present, at the end of the frame. Further details of the operation on microprocessor 18 and generator 20 are 30 provided later herein with reference to Figures 3 and 4.

Reverse traffic channel frames provided from generator 20 at the 9.6 kbps rate are 192 bits in length and span the 20 msec. frame. These frames consist of a single Mixed Mode Bit, auxiliary format bits if present, message bits, a 12-bit frame quality indicator (CRC), and 8 Encoder Tail Bits 35 as shown in Figures 2a - 2e. The Mixed Mode Bit shall be set to '0' during any frame in which the message bits are primary traffic information only.

When the Mixed Mode Bit is '0', the frame shall consist of the Mixed Mode Bit, 171 Primary Traffic bits, 12 CRC Bits, and 8 Encoder Tail Bits.

The Mixed Mode Bit is set to '1' for frames containing secondary or signaling traffic. In these instances the first bit following the Mixed Mode Bit is a Burst Format Bit which specifies whether the frame is in a "blank-and-burst" or a "dim-and-burst" format. A "blank-and-burst" operation is one in which the entire frame is used for secondary or signaling traffic while a "dim-and-burst" operation is one in which the primary traffic shares the frame with either secondary or signaling traffic. If the Burst Format Bit is a '0', the frame is of the "dim and burst format", and if a '1' the frame is of the "blank and burst format".

The second bit following the Mixed Mode Bit is a Traffic Type Bit. The Traffic Type Bit is used to specify whether the frame contains secondary or signaling traffic. If the Traffic Type Bit is a '0', the frame contains signaling traffic, and if a '1', the frame contains secondary traffic. Figures 2b - through 2e illustrate the Burst Format Bit and the Traffic Type Bit.

When the Burst Format Bit is '0' denoting dim-and-burst, the two bits following the Traffic Type Bit are Traffic Mode Bits. These bits indicate the number of bits that are used for primary traffic information and the number of bits that shall be used for either signaling or secondary traffic information within that frame. For a default mode, only the Traffic Mode '00' is defined with all other traffic modes are reserved for other bit type and numbers. Referring to Figures 2b and 2c, in the exemplary and preferred embodiment, 80 bits are used for primary traffic (half rate vocoder data packet) while 86 and 87 bits are respectively used for signaling and secondary traffic.

In frames where there is signaling traffic present the first bit of the frame's signaling portion is a Start of Message (SOM) Bit. The SOM Bit is a '1' if a reverse traffic channel message (signaling message) begins at the following bit. Generally the first bit of a reverse traffic channel message does not begin anywhere else in the frame other than following the SOM Bit. However should the frame contains part of a message that began in a previous frame the SOM Bit is a '0'. If the SOM Bit is a '0' the following bit is part of the message but it is not the first bit of the complete message.

In the preferred implementation only primary traffic is transmitted in frames at the 4.8 kbps, 2.4 kbps, and 1.2 kbps rates. Mixed mode operation is generally not supported at rates other than the 9.6 kbps rate, although it may be readily configured to do so. The frame formats for these 5 particular rates are shown in Figures 2f - 2h. For the 4.8 kbps rate, the frame is 96 bits in length with the bits spaced over the 20 msec. time period of the frame as described later herein. The 4.8 kbps rate frame contains 80 primary traffic bits, an 8-bit frame quality indicator (CRC), and 8 Encoder Tail Bits. For the 2.4 kbps rate, the frame is 48 bits in length with the bits 10 spaced over the 20 msec. time period of the frame as also described later herein. The 2.4 kbps rate frame contains 40 primary traffic bits and 8 Encoder Tail Bits. For the 1.2 kbps rate, the frame is 24 bits in length with the bits spaced over the 20 msec. time period of the frame as also described later herein. The 1.2 kbps rate frame contains 16 primary traffic bits and 15 8 encoder tail bits.

In a preferred embodiment the access channel data is generated by microprocessor 18 for transmission at a rate of 4.8 kbps. As such the data is prepared in a manner identical to that of 4.8 kbps frame format data, such as encoding, interleaving as Walsh encoding. In the encoding scheme 20 implemented for the 4.8 kbps data, whether reverse traffic channel data or access channel data, redundant data is generated. Unlike the reverse traffic channel where the redundant data is eliminated in the transmission, in the access channel all data including redundant data is transmitted. Details on the transmission aspects of frames of access channel data are 25 provided later herein.

Figure 3 illustrates an exemplary implementation of the elements for formatting the data in accordance with Figures 2a - 2h. In Figure 3 data is transmitted from microprocessor 18 (Figure 1) to generator 20. Generator 20 is comprised of data buffer and control logic 60, CRC 30 circuits 62 and 64, and Tail Bit circuit 66. Along with data provided from the microprocessor a rate command may optionally be provided. Data is transferred for each 20 msec frame from the microprocessor to logic 60 where temporarily stored. For each frame, logic 60 may for each frame count the number of bits transmitted from the microprocessor, or in the 35 alternative use the rate command and a count of the clock cycles in formatting a frame of data.

Each frame of the traffic channel includes a frame quality indicator. For the 9.6 kbps and 4.8 kbps transmission rates, the frame quality indicator is the CRC. For the 2.4 kbps and 1.2 kbps transmission rates, the frame quality indicator is implied, in that no extra frame quality bits are transmitted. The frame quality indicator supports two functions at the receiver. The first function is to determine the transmission rate of the frame, while the second function is to determine whether the frame is in error. At the receiver these determinations are made by a combination of the decoder information and the CRC checks.

For the 9.6 kbps and 4.8 kbps rates, the frame quality indicator (CRC) is calculated on all bits within the frame, except the frame quality indicator (CRC) itself and the Encoder Tail Bits. Logic 60 provides the 9.6 kbps and 4.8 kbps rate data respectively to CRC circuits 62 and 64. Circuits 62 and 64 are typically constructed as a sequence of shift registers, modulo-2 adders (typically exclusive-OR gates) and switches as illustrated.

The 9.6 kbps transmission rate data uses a 12-bit frame quality indicator (CRC), which is transmitted within the 192-bit long frame as discussed with reference to Figures 2a - 2e. As illustrated in Figure 3 for CRC circuit 62, the generator polynomial for the 9.6 kbps rate is as follows:

$$g(x) = x^{12} + x^{11} + x^{10} + x^9 + x^8 + x^4 + x + 1. \quad (1)$$

The 4.8 kbps transmission rate data uses an 8-bit CRC, which is transmitted within the 96-bit long frame as discussed with reference to Figure 2f. As illustrated in Figure 3 for CRC circuit 64, the generator polynomial for the 4.8 kbps rate is as follows:

$$g(x) = x^8 + x^7 + x^4 + x^3 + x + 1. \quad (2)$$

Initially, all shift register elements of circuits 62 and 64 are set to logical one ('1') by an initialization signal from logic 60. Furthermore logic 60 set the switches of circuits 62 and 64 in the up position.

For 9.6 kbps rate data, the registers of circuit 62 are then clocked 172 times for the 172 bits in the sequence of primary traffic, secondary traffic or signaling bits or a mixture thereof along with the corresponding mode/format indicator bits as input to circuit 62. After 172 bits are clocked through circuit 62, logic 60 then sets the switches of circuit 62 in the down position with the registers of circuit 62 then being clocked an additional 12 times. As a result of the 12 additional clockings of circuit 62, 12 additional

output bits are generated which are the CRC bits. The CRC bits, in the order calculated, are appended to the end of the 172 bits as output from circuit 62. It should be noted that the 172 bits output from logic 60 which pass through circuit 62 are undisturbed by the computation of the CRC bits
5 and are thus output from circuit 62 in the same order and at the same value at which they entered.

For 9.6 kbps rate data bits are input to circuit 64 from logic 60 in the following order. For the case of primary traffic only, the bits are input to circuit 64 from logic 60 in the order of the single mixed mode (MM) bit
10 followed by the 171 primary traffic bits. For the case of "dim and burst" with primary and signaling traffic, the bits are input to circuit 64 from logic 60 in the order of the single MM bit, a single burst format (BF) bit, a traffic type (TT) bit, a pair of traffic mode (TM) bits, 80 primary traffic bits, a start of message (SOM) bit, and 86 signalling traffic bits. For the case of
15 "dim and burst" with primary and secondary traffic, the bits are input to circuit 64 from logic 60 in the order of the single MM bit, the single BF bit, the TT bit, the pair of TM bits, 80 primary traffic bits and 87 signalling traffic bits. For the case of "blank and burst" data format with signaling traffic only, the bits are input to circuit 64 from logic 60 in the order of the
20 single MM bit, the single BF bit, the TT bit, the SOM bit and 168 signalling traffic bits. For the case of "blank and burst" data format with secondary traffic only, the bits are input to circuit 64 from logic 60 in the order of the single MM bit, the single BF bit, the TT bit and 169 signalling traffic bits.

Similarly for 4.8 kbps rate data, the registers of circuit 64 are clocked
25 80 times for the 80 bits of primary traffic data, or for the 80 bits of access channel data, as input to circuit 64 from logic 60. After the 80 bits are clocked through circuit 64, logic 60 then sets the switches of circuit 64 in the down position with the registers of circuit 64 then being clocked an additional 8 times. As a result of the 12 additional clockings of circuit 62,
30 12 additional output bits are generated which are the CRC bits. The CRC bits, in the order calculated, are again appended to the end of the 80 bits as output from circuit 64. It should again be noted that the 80 bits output from logic 60 which pass through circuit 64 are undisturbed by the computation of the CRC bits and are thus output from circuit 64 in the
35 same order and at the same value at which they entered.

The bits output from either of circuits 62 and 64 are provided to switch 66 which is under the control of logic 60. Also input to switch 66 are the 40 and 16 bits of primary traffic data output from logic 60 for 2.4 kbps and 1.2 kbps data frames. Switch 66 selects between providing an
5 output of the input data (up position) and tail bits at a logical zero ('0') value (down position). Switch 66 is normally set in the up position to permit data from logic 60, and from circuits 62 and 64 if present, to be output from generator 20 to encoder 22 (Figure 1). For the 9.6 kbps and 4.8 kbps frame data, after the CRC bits are clocked through switch 66,
10 logic 60 sets the switch to the down position for 8 clock cycles so as to generate 8 all zero tail bits. Thus for 9.6 kbps and 4.8 kbps data frames, the data as output to the encoder for the frame includes appended after the CRC bits, the 8 tail bits. Similarly for the 2.4 kbps and 1.2 kbps frame data, after the primary traffic bits are clocked from logic 60 through switch 66,
15 logic 60 sets the switch to the down position for 8 clock cycles so as to again generate 8 all zero tail bits. Thus for 2.4 kbps and 1.2 kbps data frames, the data as output to the encoder for the frame includes appended after the primary traffic bits, the 8 tail bits.

Figures 4a - 4e illustrate in a series of flow charts the operation of
20 microprocessor 18, and generator 20 in assembling the data into the disclosed frame format. It should be noted that various schemes may be implemented for giving the various traffic types and rates priority for transmission. In an exemplary implementation, when a signaling traffic message is to be sent when there is vocoder data present a "dim and burst"
25 format may be selected. Microprocessor 18 may generate a command to vocoder 18 for the vocoder to encode speech sample frames at the half rate, regardless of the rate at which the vocoder would normally encode the sample frame. Microprocessor 18 then assembles the half rate vocoder data with the signaling traffic into the 9.6 kbps frame as illustrated in
30 Figure 2b. In this case, a limit may be placed on the number of speech frames encoded at the half rate to avoid degradation in the speech quality. In the alternative, microprocessor 18 may wait until a half rate frame of vocoder data is received before assembling the data into the "dim and burst" format. In this case, in order to ensure timely transmission of the
35 signaling data, a maximum limit on the number of consecutive frames at other than half rate may be imposed before a command is sent to the

vocoder to encode at half rate. Secondary traffic may be transferred in the "dim and burst" format (Figure 2c) in a similar manner.

Similar is the case for the "blank and burst" data formats as illustrated in Figures 2d - 2d. The vocoder may be commanded to not 5 encode the frame of speech samples or the vocoder data is ignored by the microprocessor in constructing the data frame. Prioritizing between generating frame formats of primary traffic of various rate, "dim and burst" traffic, and "blank and burst" traffic is open to many possibilities.

Referring back to Figure 1, 20 msec. frames of 9.6 kbps, 4.8 kbps, 10 2.4 kbps and 1.2 kbps data are thus output from generator 20 to encoder 22. In the exemplary embodiment encoder 22 is a preferably a convolutional encoder, a type of encoder well known in the art. Encoder 22 preferably encodes the data using a rate 1/3 , constraint length $k = 9$ convolutional code. As an example encoder 22 is constructed with generator functions of 15 $g_0 = 557(\text{octal})$, $g_1 = 663(\text{octal})$ and $g_2 = 711(\text{octal})$. As is well known in the art, convolutional encoding involves the modulo-2 addition of selected taps of a serially time-shifted delayed data sequence. The length of the data sequence delay is equal to $k-1$, where k is the code constraint length. Since in the preferred embodiment a rate 1/3 code is used, three code symbols, 20 the code symbols (c_0) , (c_1) and (c_2) , are generated for each data bit input to the encoder. The code symbols (c_0) , (c_1) and (c_2) are respectively generated by the generator functions g_0 , g_1 and g_2 . The code symbols are output from encoder 22 to block interleaver 24. The output code code symbol are provided to interleaver 24 in the order of the code symbol (c_0) being first, 25 the code symbol (c_1) being second and the code symbol (c_2) being last. The state of the encoder 22, upon initialization, is the all-zero state. Furthermore the use of tail bits at the end of each frame provides a resetting of encoder 22 to an all-zero state.

The symbols output from encoder 22 are provided to block 30 interleaver 24 which under the control of microprocessor 18 provides a code symbol repetition. Using a conventional random access memory (RAM) with the symbols stored therein as addressed by microprocessor 18, code symbols may be stored in a manner to achieve a code symbol repetition rate that varies with the data channel.

35 Code symbols are not be repeated for the 9.6 kbps data rate. Each code symbol at the 4.8 kbps data rate is repeated 1 time, i.e. each symbol

occurs 2 times. Each code symbol at the 2.4 kbps data rate is repeated 3 times, i.e. each symbol occurs 4 times. Each code symbol at the 1.2 kbps data rate is repeated 7 times, i.e. each symbol occurs 8 times. For all data rates (9.6, 4.8, 2.4 and 1.2 kbps), the code repetition results in a constant 5 code symbol rate of 28,800 code symbols per second for the data as output from interleaver 24. On the reverse traffic channel the repeated code symbols are not transmitted multiple times with all but one of the code symbol repetitions deleted prior to actual transmission due to the variable transmission duty cycle as discussed in further detail below. It should be 10 understood that the use of code symbol repetition as an expedient method for describing the operation of the interleaver and a data burst randomizer as discussed again in further detail below. It should be further understood that implementations other than those that use code symbol repetition may be readily devised that achieve the same result and remain within the 15 teaching of the present invention.

All code symbols to be transmitted on the reverse traffic channel and the access channel are interleaved prior to modulation and transmission. Block interleaver 24, constructed as is well known in the art, provides an output of the code symbols over a time period spanning 20 msec.. The interleaver structure is typically a rectangular array with 32 rows and 18 columns, i.e. 576 cells. Code symbols are written into the interleaver by columns, with repetition for data at the 9.6, 4.8, 2.4 and 1.2 kbps rate, so as to completely fill the 32×18 matrix. Figures 5a - 5d illustrate the ordering of write operations of repeated code symbols into 25 the interleaver array for transmission data rates of 9.6, 4.8, 2.4 and 1.2 kbps, respectively.

Reverse traffic channel code symbols are output from the interleaver by rows. Microprocessor 18 also controls the addressing of the interleaver memory for outputting the symbols in the appropriate order. 30 The interleaver rows are preferably output in the following order:

At 9.6 kbps:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

35 At 4.8 kbps:

1 3 2 4 5 7 6 8 9 11 10 12 13 15 14 16 17 19 18 20 21 23 22 24 25 27 26 28 29 31 30 32

At 2.4 kbps:

1 5 2 6 3 7 4 8 9 13 10 14 11 15 12 16 17 21 18 22 19 23 20 24 25 29 26 30 27 31 28 32

At 1.2 kbps:

5 19 2 10 3 11 4 12 5 13 6 14 7 15 8 16 17 25 18 26 19 27 20 28 21 29 22 30 23 31 24 32.

Access channel code symbols are also output from interleaver 24 by rows. Microprocessor 18 again controls the addressing of the interleaver memory for outputting the symbols in the appropriate order. The 10 interleaver rows are output in the following order at the 4.8 kbps rate for the access channel code symbols:

1 17 9 25 5 21 13 29 3 19 11 27 7 23 15 31 2 18 10 26 6 22 14 30 4 20 12 28 8 24 16 32.

15 It should be noted that other encoding rates, such as a rate 1/2 convolutional code used on the forward transmission channel, along with various other symbol interleaving formats may be readily devised using the basic teaching of the present invention.

Referring again to Figure 1, the interleaved code symbols are output 20 from interleaver 24 to modulator 26. In the preferred embodiment modulation for the Reverse CDMA Channel uses 64-ary orthogonal signaling. That is, one of 64 possible modulation symbols is transmitted for each six code symbols. The 64-ary modulation symbol is one of 64 orthogonal waveforms generated preferably using Walsh functions. These 25 modulation symbols are given in Figures 6a - 6c and are numbered 0 through 63. The modulation symbols are selected according to the following formula:

30 Modulation symbol number = $c_0 + 2c_1 + 4c_2 + 8c_3 + 16c_4 + 32c_5 \quad (3)$

where c_5 shall represent the last or most recent and c_0 the first or oldest binary valued ('0' and '1') code symbol of each group of six code symbols that form a modulation symbol. The period of time required to transmit a single modulation symbol is referred to as a "Walsh symbol" interval and 35 is approximately equal to 208.333 μ s. The period of time associated with one-sixty-fourth of the modulation symbol is referred to as a "Walsh chip" and is approximately equal to 3.255208333... μ s.

Each modulation or Walsh symbol is output from modulator 26 to one input of a modulo-2 adder, exclusive-OR gate 28. The Walsh symbols 40 are output from modulator at a 4800 sps rate which corresponds to a

Walsh chip rate of 307.2 kcps. The other input to gate 28 is provided from long code generator 30 which generates a masked pseudonoise (PN) code, referred to as the long code sequence, in cooperation with mask circuit 32. The long code sequence provided from generator 30 is at a chip rate rate 5 four times the Walsh chip rate of modulator 26, i.e. a PN chip rate 1.2288 Mcps. Gate 28 combines the two input signals to provide an output of data at the chip rate of 1.2288 Mcps.

The long code sequence is a time shift of a sequence of length $2^{42}-1$ chips and is generated by a linear generator well known in the art using 10 the following polynomial:

$$p(x) = x^{42} + x^{35} + x^{33} + x^{31} + x^{27} + x^{26} + x^{25} + x^{22} + x^{21} + x^{19} + x^{18} + x^{17} + x^{16} + x^{10} + x^7 + x^6 + x^5 + x^3 + x^2 + x^1 + 1 \quad (4)$$

15 Figure 7 illustrates generator 30 in further detail. Generator 30 is comprised of a sequence generator section 70 and a masking section 72. Section 70 is comprised of a sequence of shift registers and modulo-2 adders (typically exclusive-OR gates) coupled together to generate a 42-bit code according to equation 4. The long code is then generated by masking 20 the 42-bit state variables output from section 70 with a 42-bit wide mask provided from mask circuit 32.

Section 72 is comprised of a series of input AND gates 74₁ - 74₄₂ having one input for receiving a respective mask bit of the 42-bit wide mask. The other input of each of AND gates 74₁ - 74₄₂ receives the output 25 from a corresponding shift register in section 70. The output of AND gates 74₁ - 74₄₂ are modulo-2 added by adder 76 to form a single bit output for each 1.2288 MHz clocking of the shift registers of section 70. Adder 76 is typically constructed as a cascaded arrangement of exclusive-OR gates as is well known in the art. Therefore, the actual output PN sequence is 30 generated by the modulo-2 addition of all 42 masked output bits of sequence generator 70 as shown in Figure 7.

The mask used for the PN spreading shall vary depending on the channel type on which the mobile station is communicating. Referring to Figure 1, an initialization information is provided from microprocessor 18 35 to generator 30 and circuit 32. Generator 30 is responsive to the initialization information for initialization of the circuitry. Mask 32 is also responsive to the initialization information, which indicates the mask type to be provided, to output a 42-bit mask. As such, mask circuit 32 may

be configured as a memory which contains a mask for each communication channel type. Figures 8a - 8c provide an exemplary definition of the masking bits for each channel type.

Specifically, when communicating on the Access Channel, the mask
5 is defined as illustrated in Figure 8a. In the Access Channel mask, mask
bits M₂₄ through M₄₁ are set to '1'; mask bits M₁₉ through M₂₃ are set to
chosen the Access Channel number; mask bits M₁₆ through M₁₈ are set to
the code channel for the associated Paging Channel, i.e., the range typically
being 1 through 7; mask bits M₉ through M₁₅ are set to the registration
10 zone; for the current base station; and mask bits M₀ through M₈ are set to
the pilot PN value for the current CDMA Channel.

When communicating on the Reverse Traffic Channel, the mask is
defined as illustrated in Figure 8b. The mobile station uses one of two
long codes unique to that mobile station: a public long code unique to the
15 mobile station's electronic serial number (ESN); and a private long code
unique for each mobile identification number (MIN) which is typically the
telephone number of the mobile station. In the public long code the mask
bits M₃₂ through M₄₁ are set to '0,' and the mask bits M₀ through M₃₁ are
set to the mobile station ESN value.

20 It is further envisioned that a private long code may be
implemented as illustrated in Figure 8c. The private long code will
provide additional security in that it will only be known to the base station
and the mobile station. The private long code will not be transmitted in
the clear over the transmission medium. In the private long code the
25 mask bit M₄₀ through M₄₁ are set to '0' and '1' respectively; while mask bits
M₀ through M₃₉ may be set to according to a predetermined assignment
scheme.

Referring back to Figure 1 the output of gate 28 is respectively
provided as one input to each one of a pair of modulo-2 adder, exclusive-
30 OR gate 34 and 36. The other input to each of gates 34 and 36 are second
and third PN sequences are I and Q channel "short codes" respectively
generated by I and Q Channel PN generators 38 and 40. The Reverse
Access Channel and Reverse Traffic Channel is therefore OQPSK spread
prior to actual transmission. This offset quadrature spreading on the
35 Reverse Channel uses the same I and Q PN codes as the Forward Channel
I and Q pilot PN codes. The I and Q PN codes generated by generators 38

and 40 are of length 2¹⁵ and are preferably the zero-time offset codes with respect to the Forward Channel. For purposes of further understanding, on the Forward Channel a pilot signal is generated for each base station. Each bases station pilot channel signal is spread by the I and Q PN codes as just mentioned. Base station I and Q PN codes are offset from one another, by a shifting of the code sequence, so as to provide a distinguish between base station transmission. The generating functions for the I and Q short PN codes shall be as follows:

10 $P_I(x) = x^{15} + x^{13} + x^9 + x^8 + x^7 + x^5 + 1$ (5)

and

15 $P_Q(x) = x^{15} + x^{12} + x^{11} + x^{10} + x^6 + x^5 + x^4 + x^3 + 1.$ (6)

Generators 38 and 40 may be constructed as is well known in the art so as to provide an output sequence in accordance with equations (5) and (6).

20 The I and Q waveforms are respectively output from gates 34 and 36 where respectively provided as inputs to finite impulse response (FIR) filters 42 and 44. FIR filters 42 and 44 are digital filters which bandlimit the resulting I and Q waveforms. These digital filters shape the I and Q waveforms such that the resulting spectrum is contained within a given spectral mask. The digital filters preferably have the impulse response shown in the following Table II:

25 TABLE II

$h(0) = -0.02204953170628 = h(46)$	$h(12) = 0.03881898337058 = h(34)$
$h(1) = -0.01997721494122 = h(45)$	$h(13) = 0.10411392223653 = h(33)$
$h(2) = -0.00905191683798 = h(44)$	$h(14) = 0.11268193747141 = h(32)$
$h(3) = 0.02005789896688 = h(43)$	$h(15) = 0.04184165339577 = h(31)$
$h(4) = 0.05926358628876 = h(42)$	$h(16) = -0.08271278252498 = h(30)$
$h(5) = 0.09021366056377 = h(41)$	$h(17) = -0.18998156787345 = h(29)$
$h(6) = 0.09304356333555 = h(40)$	$h(18) = -0.19486048259840 = h(28)$
$h(7) = 0.05917668051274 = h(39)$	$h(19) = -0.04343248005925 = h(27)$
$h(8) = 0.00032251394639 = h(38)$	$h(20) = 0.25121616493295 = h(26)$
$h(9) = -0.05381152911745 = h(37)$	$h(21) = 0.60403450701992 = h(25)$
$h(10) = -0.07036222587323 = h(36)$	$h(22) = 0.89017616954958 = h(24)$
$h(11) = -0.03405975708422 = h(35)$	$h(23) = 1 = h(23)$

Filters 42 and 44 may be constructed according to well known digital filter techniques and preferably provide a frequency response as illustrated in Figure 9.

The binary '0' and '1' inputs to digital filters 42 and 44, generated by the PN spreading functions, are mapped into +1 and -1, respectively. The sampling frequency of the digital filter is $4.9152 \text{ MHz} = 4 \times 1.2288 \text{ MHz}$. An additional binary '0' and '1' input sequence synchronous with the I and Q

5 digital waveforms shall be provided to each of digital filters 42 and 44. This particular sequence, referred to as a masking sequence, is the the output generated by a data burst randomizer. The masking sequence multiplies the I and Q binary waveforms to produce a ternary (-1, 0, and +1) input to the digital filters 42 and 44.

10 As discussed previously the data rate for transmission on the Reverse Traffic Channel is at one of the rates of equal 9.6, 4.8, 2.4, or 1.2 kbps and varies on a frame-by-frame basis. Since the frames are of a fixed 20 ms length for both the Access Channel and the Reverse Traffic Channel, the number of information bits per frame shall be 192, 96, 48, or 24 for

15 transmission at data rates of 9.6, 4.8, 2.4, or 1.2 kbps, respectively. As described previously, the information is encoded using a rate 1/3 convolutional encoder and then the code symbols shall be repeated by a factor of 1, 2, 4, or 8 for a data rate of 9.6, 4.8, 2.4, or 1.2 kbps, respectively. The resulting repetition code symbol rate is thus fixed at 28,800 symbols

20 per second (sps). This 28,800 sps stream is block interleaved as previously described.

Prior to transmission, the Reverse Traffic Channel interleaver output stream is gated with a time filter that allows transmission of certain interleaver output symbols and deletion of others. The duty cycle of the

25 transmission gate thus varies with the transmit data rate. When the transmit data rate is 9.6 kbps, the transmission gate allows all interleaver output symbols to be transmitted. When the transmit data rate is 4.8 kbps, the transmission gate allows one-half of the interleaver output symbols to be transmitted, and so forth. The gating process operates by dividing the

30 20 msec frame into 16 equal length (i.e., 1.25 ms) periods, called power control groups. Certain power control groups are gated on (i.e., transmitted), while other groups are gated off (i.e., not transmitted).

The assignment of gated-on and gated-off groups is referred to as a data burst randomizer function. The gated-on power control groups are

35 pseudo-randomized in their positions within the frame so that the actual traffic load on the Reverse CDMA Channel is averaged, assuming a

random distribution of the frames for each duty cycle. The gated-on power control groups are such that every code symbol input to the repetition process shall be transmitted once without repetition. During the gated-off periods, the mobile station does not transmit energy, thus reducing the
5 interference to other mobile stations operating on the same Reverse CDMA Channel. This symbol gating occurs prior to transmission filtering.

The transmission gating process is not used when the mobile station transmits on the Access Channel. When transmitting on the Access Channel, the code symbols are repeated once (each symbol occurs
10 twice) prior to transmission.

In the implementation of the data burst randomizer function, data burst randomizer logic 46 generates a masking stream of 0's and 1's that randomly mask out the redundant data generated by the code repetition. The masking stream pattern is determined by the frame data rate and by a
15 block of 14 bits taken from the long code sequence generated by generator 30. These mask bits are synchronized with the data flow and the data is selectively masked by these bits through the operation of the digital filters 42 and 44. Within logic 46 the 1.2288 MHz long code sequence output from generator 30 is input to a 14-bit shift register, which is shifted
20 at a 1.2288 MHz rate. The contents of this shift register are loaded into a 14-bit latch exactly one power control group (1.25 ms) before each Reverse Traffic Channel frame boundary. Logic 46 uses this data along with the rate input from microprocessor 18, to determine, according to a predetermined algorithm, the particular power control group(s) in which
25 the data is to be allowed to pass through filters 42 and 46 for transmission. Logic 46 thus outputs for each power control group a '1' or '0' for the entire power control group depending on whether the data is to be filtered out ('0') or passed through ('1'). At the corresponding receiver, which also uses the same long code sequence and a corresponding rate determined for the
30 frame, determines the appropriate power control group(s) in which the data is present.

The I channel data output from filter 42 is provided directly to a digital to analog (D/A) converter and anti-aliasing filter circuit 50. The Q channel data however is output from filter 44 to a delay element 48 which
35 a one-half PN chip time delay (406.9 nsec) in the Q channel data. The Q channel data is output from delay element 48 to digital to analog (D/A)

converter and anti-aliasing filter circuit 52. Circuits 50 and 52 convert the digital data to analog form and filter the analog signal. The signals output from circuits 50 and 52 are provided to Offset Quadrature Phase Shift Key (OQPSK) modulator 54 where modulated and output to RF transmitter circuit 56. Circuit 56 amplifies, filters and frequency upconverts the signal for transmission. The signal is output from circuitry 56 to antenna 58 for communication to the base station.

It should be understood that the exemplary embodiment of the present invention discusses the formatting of data for modulation and transmission with respect to a mobile station. It should be understood that the data formatting is the same for a cell base station, however the modulation may be different.

The previous description of the preferred embodiments is provided to enable any person skilled in the art to make or use the present invention. The various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without the use of the inventive faculty. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

WE CLAIM:

CLAIMS

1. In a communication system in which data is transmitted in
2 data frames of a preselected time duration, a method for formatting data in
each data frame comprising the steps of:
 - 4 receiving a set of data bits of a first data type, said set of data bits of
said first data type having a bit count corresponding to one of a plurality of
6 predetermined bit counts;
 - 8 generating a set of parity check bits for said set of data bits of said first
data type when having one of a highest and a next to highest bit counts of
said of predetermined bit counts;
 - 10 generating a set of tail bits for said set of data bits of said first data
type; and
 - 12 providing in respective order said set of data bits of said first data
type, said parity check bits if generated, and said tail bits in a data frame.
2. The method of Claim 1 further comprising the steps of:
 - 2 generating a mode bit of a first bit value when said set of data bits of
said first data type is of said highest bit count; and
 - 4 providing said mode bit in said data frame preceding said set of data
bits of said first data type.
3. The method of Claim 1 further comprising the steps of:
 - 2 receiving a set of data bits of a second data type, wherein said set of data
bits of said first data type are of said next to highest bit count;
 - 4 generating said set of parity check bits for said set of data bits of said
first data type and said set of data bits of said second data type;
 - 6 generating a set of tail bits for said set of data bits of said first data
type and said set of data bits of said second data type; and
 - 8 providing in respective order said set of data bits of said first data
type, said set of data bits of said second data type, said parity check bits, and
10 said tail bits in said data frame.

4. The method of Claim 2 further comprising the steps of:
 - 2 receiving a set of data bits of a second data type, wherein said set of data bits of said first data type are of said next to highest bit count;
 - 4 generating a mode bit of a second bit value;
 - 6 generating said set of parity check bits for said set of data bits of said first data type and said set of data bits of said second data type;
 - 8 generating a set of tail bits for said set of data bits of said first data type and said set of data bits of said second data type; and
- 10 providing in respective order mode bit, said set of data bits of said first data type, said set of data bits of said second data type, said parity check bits, and said tail bits in said data frame.

FIG. 1

FIG. 2a
PRIMARY
TRAFFIC
ONLY
(9.6 Kbps)

FIG. 2b
DIM AND
BURST WITH
PRIMARY AND
SIGNALING
TRAFFIC
 (9.6 KBPS)

FIG. 2c
DIM AND
BURST WITH
PRIMARY AND
SECONDARY
TRAFFIC
 (9.6 KBPS)

FIG. 2d
BLANK AND
BURST WITH
SIGNALING
TRAFFIC
ONLY
(9.6 KBPS)

FIG. 2e
BLANK AND
BURST WITH
SECONDARY
TRAFFIC
ONLY
 (9.6 Kbps)

FIG. 4a

FIG. 4b

FIG. 4c

FIG. 4d

FIG. 4e

1	33	65	97	129	161	193	225	257	289	321	353	385	417	449	481	513	545
2	34	66	98	130	162	194	226	258	290	322	354	386	418	450	482	514	546
3	35	67	99	131	163	195	227	259	291	323	355	387	419	451	483	515	547
4	36	68	100	132	164	196	228	260	292	324	356	388	420	452	484	516	548
5	37	69	101	133	165	197	229	261	293	325	357	389	421	453	485	517	549
6	38	70	102	134	166	198	230	262	294	326	358	390	422	454	486	518	550
7	39	71	103	135	167	199	231	263	295	327	359	391	423	455	487	519	551
8	40	72	104	136	168	200	232	264	296	328	360	392	424	456	488	520	552
9	41	73	105	137	169	201	233	265	297	329	361	393	425	457	489	521	553
10	42	74	106	138	170	202	234	266	298	330	362	394	426	458	490	522	554
11	43	75	107	139	171	203	235	267	299	331	363	395	427	459	491	523	555
12	44	76	108	140	172	204	236	268	300	332	364	396	428	460	492	524	556
13	45	77	109	141	173	205	237	269	301	333	365	397	429	461	493	525	557
14	46	78	110	142	174	206	238	270	302	334	366	398	430	462	494	526	558
15	47	79	111	143	175	207	239	271	303	335	367	399	431	463	495	527	559
16	48	80	112	144	176	208	240	272	304	336	368	400	432	464	496	528	560
17	49	81	113	145	177	209	241	273	305	337	369	401	433	465	497	529	561
18	50	82	114	146	178	210	242	274	306	338	370	402	434	466	498	530	562
19	51	83	115	147	179	211	243	275	307	339	371	403	435	467	499	531	563
20	52	84	116	148	180	212	244	276	308	340	372	404	436	468	500	532	564
21	53	85	117	149	181	213	245	277	309	341	373	405	437	469	501	533	565
22	54	86	118	150	182	214	246	278	310	342	374	406	438	470	502	534	566
23	55	87	119	151	183	215	247	279	311	343	375	407	439	471	503	535	567
24	56	88	120	152	184	216	248	280	312	344	376	408	440	472	504	536	568
25	57	89	121	153	185	217	249	281	313	345	377	409	441	473	505	537	569
26	58	90	122	154	186	218	250	282	314	346	378	410	442	474	506	538	570
27	59	91	123	155	187	219	251	283	315	347	379	411	443	475	507	539	571
28	60	92	124	156	188	220	252	284	316	348	380	412	444	476	508	540	572
29	61	93	125	157	189	221	253	285	317	349	381	413	445	477	509	541	573
30	62	94	126	158	190	222	254	286	318	350	382	414	446	478	510	542	574
31	63	95	127	159	191	223	255	287	319	351	383	415	447	479	511	543	575
32	64	96	128	160	192	224	256	288	320	352	384	416	448	480	512	544	576

FIG. 5a

1	17	33	49	65	81	97	113	129	145	161	177	193	209	225	241	257	273
1	17	33	49	65	81	97	113	129	145	161	177	193	209	225	241	257	273
2	18	34	50	66	82	98	114	130	146	162	178	194	210	226	242	258	274
2	18	34	50	66	82	98	114	130	146	162	178	194	210	226	242	258	274
3	19	35	51	67	83	99	115	131	147	163	179	195	211	227	243	259	275
3	19	35	51	67	83	99	115	131	147	163	179	195	211	227	243	259	275
4	20	36	52	68	84	100	116	132	148	164	180	196	212	228	244	260	276
4	20	36	52	68	84	100	116	132	148	164	180	196	212	228	244	260	276
5	21	37	53	69	85	101	117	133	149	165	181	197	213	229	245	261	277
5	21	37	53	69	85	101	117	133	149	165	181	197	213	229	245	261	277
6	22	38	54	70	86	102	118	134	150	166	182	198	214	230	246	262	278
6	22	38	54	70	86	102	118	134	150	166	182	198	214	230	246	262	278
7	23	39	55	71	87	103	119	135	151	167	183	199	215	231	247	263	279
7	23	39	55	71	87	103	119	135	151	167	183	199	215	231	247	263	279
8	24	40	56	72	88	104	120	136	152	168	184	200	216	232	248	264	280
8	24	40	56	72	88	104	120	136	152	168	184	200	216	232	248	264	280
9	25	41	57	73	89	105	121	137	153	169	185	201	217	233	249	265	281
9	25	41	57	73	89	105	121	137	153	169	185	201	217	233	249	265	281
10	26	42	58	74	90	106	122	138	154	170	186	202	218	234	250	266	282
10	26	42	58	74	90	106	122	138	154	170	186	202	218	234	250	266	282
11	27	43	59	75	91	107	123	139	155	171	187	203	219	235	251	267	283
11	27	43	59	75	91	107	123	139	155	171	187	203	219	235	251	267	283
12	28	44	60	76	92	108	124	140	156	172	188	204	220	236	252	268	284
12	28	44	60	76	92	108	124	140	156	172	188	204	220	236	252	268	284
13	29	45	61	77	93	109	125	141	157	173	189	205	221	237	253	269	285
13	29	45	61	77	93	109	125	141	157	173	189	205	221	237	253	269	285
14	30	46	62	78	94	110	126	142	158	174	190	206	222	238	254	270	286
14	30	46	62	78	94	110	126	142	158	174	190	206	222	238	254	270	286
15	31	47	63	79	95	111	127	143	159	175	191	207	223	239	255	271	287
15	31	47	63	79	95	111	127	143	159	175	191	207	223	239	255	271	287
16	32	48	64	80	96	112	128	144	160	176	192	208	224	240	256	272	288
16	32	48	64	80	96	112	128	144	160	176	192	208	224	240	256	272	288

FIG. 5b

1	9	17	25	33	41	49	57	65	73	81	89	97	105	113	121	129	137
1	9	17	25	33	41	49	57	65	73	81	89	97	105	113	121	129	137
1	9	17	25	33	41	49	57	65	73	81	89	97	105	113	121	129	137
1	9	17	25	33	41	49	57	65	73	81	89	97	105	113	121	129	137
2	10	18	26	34	42	50	58	66	74	82	90	98	106	114	122	130	138
2	10	18	26	34	42	50	58	66	74	82	90	98	106	114	122	130	138
2	10	18	26	34	42	50	58	66	74	82	90	98	106	114	122	130	138
2	10	18	26	34	42	50	58	66	74	82	90	98	106	114	122	130	138
3	11	19	27	35	43	51	59	67	75	83	91	99	107	115	123	131	139
3	11	19	27	35	43	51	59	67	75	83	91	99	107	115	123	131	139
3	11	19	27	35	43	51	59	67	75	83	91	99	107	115	123	131	139
3	11	19	27	35	43	51	59	67	75	83	91	99	107	115	123	131	139
4	12	20	28	36	44	52	60	68	76	84	92	100	108	116	124	132	140
4	12	20	28	36	44	52	60	68	76	84	92	100	108	116	124	132	140
4	12	20	28	36	44	52	60	68	76	84	92	100	108	116	124	132	140
4	12	20	28	36	44	52	60	68	76	84	92	100	108	116	124	132	140
5	13	21	29	37	45	53	61	69	77	85	93	101	109	117	125	133	141
5	13	21	29	37	45	53	61	69	77	85	93	101	109	117	125	133	141
5	13	21	29	37	45	53	61	69	77	85	93	101	109	117	125	133	141
5	13	21	29	37	45	53	61	69	77	85	93	101	109	117	125	133	141
6	14	22	30	38	46	54	62	70	78	86	94	102	110	118	126	134	142
6	14	22	30	38	46	54	62	70	78	86	94	102	110	118	126	134	142
6	14	22	30	38	46	54	62	70	78	86	94	102	110	118	126	134	142
6	14	22	30	38	46	54	62	70	78	86	94	102	110	118	126	134	142
7	15	23	31	39	47	55	63	71	79	87	95	103	111	119	127	135	143
7	15	23	31	39	47	55	63	71	79	87	95	103	111	119	127	135	143
7	15	23	31	39	47	55	63	71	79	87	95	103	111	119	127	135	143
7	15	23	31	39	47	55	63	71	79	87	95	103	111	119	127	135	143
8	16	24	32	40	48	56	64	72	80	88	96	104	112	120	128	136	144
8	16	24	32	40	48	56	64	72	80	88	96	104	112	120	128	136	144
8	16	24	32	40	48	56	64	72	80	88	96	104	112	120	128	136	144

FIG. 5c

1	5	9	13	17	21	25	29	33	37	41	45	49	53	57	61	65	69
1	5	9	13	17	21	25	29	33	37	41	45	49	53	57	61	65	69
1	5	9	13	17	21	25	29	33	37	41	45	49	53	57	61	65	69
1	5	9	13	17	21	25	29	33	37	41	45	49	53	57	61	65	69
1	5	9	13	17	21	25	29	33	37	41	45	49	53	57	61	65	69
1	5	9	13	17	21	25	29	33	37	41	45	49	53	57	61	65	69
1	5	9	13	17	21	25	29	33	37	41	45	49	53	57	61	65	69
1	5	9	13	17	21	25	29	33	37	41	45	49	53	57	61	65	69
2	6	10	14	18	22	26	30	34	38	42	46	50	54	58	62	66	70
2	6	10	14	18	22	26	30	34	38	42	46	50	54	58	62	66	70
2	6	10	14	18	22	26	30	34	38	42	46	50	54	58	62	66	70
2	6	10	14	18	22	26	30	34	38	42	46	50	54	58	62	66	70
2	6	10	14	18	22	26	30	34	38	42	46	50	54	58	62	66	70
2	6	10	14	18	22	26	30	34	38	42	46	50	54	58	62	66	70
2	6	10	14	18	22	26	30	34	38	42	46	50	54	58	62	66	70
3	7	11	15	19	23	27	31	35	39	43	47	51	55	59	63	67	71
3	7	11	15	19	23	27	31	35	39	43	47	51	55	59	63	67	71
3	7	11	15	19	23	27	31	35	39	43	47	51	55	59	63	67	71
3	7	11	15	19	23	27	31	35	39	43	47	51	55	59	63	67	71
3	7	11	15	19	23	27	31	35	39	43	47	51	55	59	63	67	71
3	7	11	15	19	23	27	31	35	39	43	47	51	55	59	63	67	71
3	7	11	15	19	23	27	31	35	39	43	47	51	55	59	63	67	71
3	7	11	15	19	23	27	31	35	39	43	47	51	55	59	63	67	71
4	8	12	16	20	24	28	32	36	40	44	48	52	56	60	64	68	72
4	8	12	16	20	24	28	32	36	40	44	48	52	56	60	64	68	72
4	8	12	16	20	24	28	32	36	40	44	48	52	56	60	64	68	72
4	8	12	16	20	24	28	32	36	40	44	48	52	56	60	64	68	72
4	8	12	16	20	24	28	32	36	40	44	48	52	56	60	64	68	72
4	8	12	16	20	24	28	32	36	40	44	48	52	56	60	64	68	72

FIG. 5d

FIG. 6a

		WALSH CHIP WITHIN SYMBOL																
		W	A	L	S	H	S	S	Y	M	B	O	L	I	N	D	E	X
0	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	
1	0101	0101	0101	0101	0101	0101	0101	0101	0101	0101	0101	0101	0101	0101	0101	0101	0101	
2	0011	0011	0011	0011	0011	0011	0011	0011	0011	0011	0011	0011	0011	0011	0011	0011	0011	
3	0110	0110	0110	0110	0110	0110	0110	0110	0110	0110	0110	0110	0110	0110	0110	0110	0110	
4	0000	1111	0000	1111	0000	1111	0000	1111	0000	1111	0000	1111	0000	1111	0000	1111	0000	
5	0101	1010	0101	1010	0101	1010	0101	1010	0101	1010	0101	1010	0101	1010	0101	1010	0101	
6	0011	1100	0011	1100	0011	1100	0011	1100	0011	1100	0011	1100	0011	1100	0011	1100	0011	
7	0110	1001	0110	1001	0110	1001	0110	1001	0110	1001	0110	1001	0110	1001	0110	1001	0110	
8	0000	0000	1111	0000	1111	0000	1111	0000	1111	0000	1111	0000	1111	0000	1111	0000	1111	
9	0101	0101	1010	0101	0101	1010	0101	1010	0101	1010	0101	1010	0101	1010	0101	1010	0101	
10	0011	0011	1100	0011	1100	0011	1100	0011	1100	0011	1100	0011	1100	0011	1100	0011	1100	
11	0111	1111	2222	2222	2233	3333	3333	4444	4444	4455	4455	5555	5555	6666	6666	6666	6666	
12	0123	4567	8901	2345	6789	0123	4567	8901	2345	6789	0123	4567	8901	2345	6789	0123	4567	

FIG. 6b

WALSH CHIP WITHIN SYMBOL															
W	24	0123	4567	8901	2345	6789	0123	4567	8901	2345	6789	0123	4567	8901	2345
A	25	0000	0000	1111	1111	1111	0000	0000	0000	1111	1111	1111	0000	0000	0000
L	26	0101	0101	1010	1010	1010	0101	0101	0101	0101	1010	1010	0101	0101	0101
S	27	0011	0011	1100	1100	1100	0011	0011	0011	0011	1100	1100	0011	0011	0011
H	28	0000	1111	1111	0000	1111	0000	0000	1111	0000	1111	0000	1111	0000	1111
M	29	0101	1010	1010	0101	1010	0101	0101	1010	0101	1010	0101	1010	0101	1010
B	30	0011	1100	1100	0011	1100	0011	0011	1100	0011	1100	0011	1100	0011	1100
O	31	0110	1001	1001	0011	1001	0110	0110	1001	0110	1001	0110	1001	0110	1001
L	32	0000	0000	0000	0000	0000	0000	0000	0000	1111	1111	1111	1111	1111	1111
S	33	0101	0101	0101	0101	0101	0101	0101	0101	1010	1010	1010	1010	1010	1010
Y	34	0011	0011	0011	0011	0011	0011	0011	0011	1100	1100	1100	1100	1100	1100
M	35	0110	0110	0110	0110	0110	0110	0110	0110	1001	1001	1001	1001	1001	1001
B	36	0000	1111	0000	1111	0000	1111	0000	1111	0000	1111	0000	1111	0000	1111
O	37	0101	1010	0101	1010	0101	1010	0101	1010	0101	0101	0101	0101	0101	0101
L	38	0011	1100	0011	1100	0011	1100	0011	1100	0011	1100	0011	1100	0011	1100
I	39	0110	1001	0110	1001	0110	1001	0110	1001	0110	1001	0110	1001	0110	1001
N	40	0000	0000	1111	1111	0000	0000	1111	1111	0000	0000	1111	1111	0000	0000
D	41	0101	0101	1010	1010	0101	1010	1010	1010	0101	0101	1010	0101	0101	0101
E	42	0011	0011	1100	1100	0011	0011	1100	1100	0011	0011	1100	1100	0011	0011
X	43	0110	0110	1001	1001	0110	1001	0110	1001	0110	1001	0110	1001	0110	1001
X	44	0000	1111	1111	0000	0000	1111	1111	0000	1111	0000	1111	0000	1111	0000
X	45	0101	1010	1010	0101	0101	1010	1010	0101	0101	1010	1010	0101	1010	1010
X	46	0011	1100	1100	0011	0011	1100	1100	0011	0011	1100	1100	0011	0011	1100
X	47	0110	1001	1001	0110	0110	1001	1001	0110	0110	1001	1001	0110	0110	1001

FIG. 6C

WALSH CHIP WITHIN SYMBOL															
W	0123	4567	8901	2345	6789	0123	4567	8901	2345	6789	0123	4567	8901	2345	6789
A	0000	0000	0000	1111	1111	2222	2222	3333	3333	4444	4444	4455	5555	5555	6666
L	49	0101	0101	0101	1010	1010	1010	1010	1010	1010	0101	0101	0101	0101	0101
S	50	0011	0011	0011	1100	1100	1100	1100	1100	1100	0011	0011	0011	0011	0011
H	51	0110	0110	0110	1001	1001	1001	1001	1001	1001	0110	0110	0110	0110	0110
S	52	0000	1111	0000	1111	1111	0000	1111	0000	1111	0000	0000	1111	0000	1111
Y	53	0101	1010	0101	1010	1010	0101	1010	0101	1010	0101	0101	0101	0101	0101
M	54	0011	1100	0011	1100	1100	0011	1100	0011	1100	0011	1100	0011	1100	0011
B	55	0110	1001	0110	1001	1001	0110	1001	0110	1001	0110	1001	0110	1001	0110
O	56	0000	0000	1111	1111	1111	0000	0000	1111	0000	0000	0000	0000	1111	1111
L	57	0101	0101	1010	1010	1010	0101	0101	1010	0101	0101	0101	0101	0101	0101
I	58	0011	0011	1100	1100	1100	0011	0011	1100	0011	0011	0011	0011	0011	1100
N	59	0110	0110	1001	1001	1001	0110	0110	1001	0110	0110	0110	0110	0110	0110
D	60	0000	1111	1111	0000	1111	0000	1111	0000	1111	0000	1111	0000	1111	0000
E	61	0101	1010	0101	1010	1010	0101	0101	1010	0101	0101	1010	0101	1010	0101
X	62	0011	1100	0011	1100	0011	1100	0011	1100	0011	1100	0011	1100	0011	1100
	63	0110	1001	0110	1001	0110	0110	1001	0110	0110	0110	0110	0110	0110	0110

ACCESS CHANNEL LONG CODE MASK

41	29 28	24 23 21 20	9 8	0
HEADER	ACN	PCN	REG_ZONE	PILOT_PN

FIG. 8a

PUBLIC LONG CODE MASK

41	32 31	0
HEADER	ESN/PERMUTED ESN	

FIG. 8b

PRIVATE LONG CODE MASK

41	40 39	0
HEADER	PRIVATE LONG CODE	

FIG. 8c

FIG. 9

INTERNATIONAL SEARCH REPORT

PCT/US93/00406

A. CLASSIFICATION OF SUBJECT MATTER

IPC(5) :H04L 27/30

US CL :375/1

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 371/32,49.1,49.2; 380/34; 370/18375/1

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US,A, 4,951,278 (BIBER ET AL) 21 August 1990.	1

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A" document defining the general state of the art which is not considered to be part of particular relevance		
"E" earlier document published on or after the international filing date	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"O" document referring to an oral disclosure, use, exhibition or other means	"&"	document member of the same patent family
"P" document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

22 FEBRUARY 1993

Date of mailing of the international search report

11 MAR 1993

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. NOT APPLICABLE

Authorized officer

Mr. BERNARR EARL GREGORY, JR.
INTERNATIONAL DIVISION
Telephone No. (703) 308-0479