This listing of claims will replace all prior versions, and listings, of claims in the application.

LISTING OF CLAIMS:

Claims 1-10 (Cancelled).

Claims 11 and 12 (Cancelled).

13. (Currently Amended) A method according to Claim 12, of electroplating a workpiece, comprising the steps:

immersing an anode and a cathode in a solution;

using the cathode to support the workpiece;

positioning a selective shield/material flow assembly between the anode and the cathode, said shield/material flow assembly forming a multitude of openings having adjustable sizes;

generating an electric field emanating from the anode to the cathode, to generate a corresponding current to deposit an electroplating material on the workpiece during an electroplating process;

adjusting the sizes of the adjustable openings, during the electroplating process, for selectively and controllably adjusting the amount of electric flux passing through the selective shield/material flow assembly and the distribution of the electroplating material across the workpiece;

wherein the selective shield/material flow assembly includes first and second selective shield/material flow mechanisms, and the adjusting step includes the step of moving the first and second selective shield/material flow mechanisms relative to each other to adjust the sizes of the opening of the selective shield/material flow assembly; and

wherein the step of moving the first and second selective shield/material flow mechanisms also adjusts the location of the opening of the selective shield/material flow shield assembly.

14. (Currently Amended) A method according to Claim 12, of electroplating a workpiece, comprising the steps:

immersing an anode and a cathode in a solution;

using the cathode to support the workpiece;

positioning a selective shield/material flow assembly between the anode and the cathode, said shield/material flow assembly forming a multitude of openings having adjustable sizes;

generating an electric field emanating from the anode to the cathode, to generate a corresponding current to deposit an electroplating material on the workpiece during an electroplating process;

adjusting the sizes of the adjustable openings, during the electroplating process, for selectively and controllably adjusting the amount of electric flux passing through the selective shield/material flow assembly and the distribution of the electroplating material across the workpiece;

wherein the selective shield/material flow assembly includes first and second selective shield/material flow mechanisms, and the adjusting step includes the step of moving the first and second selective shield/material flow mechanisms relative to each other to adjust the sizes of the opening of the selective shield/material flow assembly; and

wherein the first selective shield/material flow mechanism includes a first series of through openings, and the second selective shield/material flow mechanism includes a second series of through openings, and wherein:

the adjusting step further includes the step of using the first and [[scend]] second series of openings, in combination, to form the openings of the selective shield/material flow assembly; and

the moving step includes the step of moving the first and second selective shield/material flow mechanisms laterally relative to each other to adjust the sizes of the openings of the selective shield/material flow assembly.

15. (Currently Amended) A method according to Claim 12, of electroplating a workpiece, comprising the steps:

immersing an anode and a cathode in a solution;

using the cathode to support the workpiece;

positioning a selective shield/material flow assembly between the anode and the cathode, said shield/material flow assembly forming a multitude of openings having adjustable sizes;

generating an electric field emanating from the anode to the cathode, to generate a corresponding current to deposit an electroplating material on the workpiece during an electroplating process;

adjusting the sizes of the adjustable openings, during the electroplating process, for selectively and controllably adjusting the amount of electric flux passing through the selective shield/material flow assembly and the distribution of the electroplating material across the workpiece;

wherein the selective shield/material flow assembly includes first and second selective shield/material flow mechanisms, and the adjusting step includes the step of moving the first and second selective shield/material flow mechanisms relative to each other to adjust the sizes of the opening of the selective shield/material flow assembly; and

wherein the positioning step includes the step of connecting the first and second selective shield/material flow mechanisms together for limited movement relative to each other.

16. (Original) A method according to Claim 15, wherein:

the positioning step includes the further step of providing a control means to move the selective shield/material flow mechanisms relative to each other; and

the adjusting step includes the step of using the control means to move the selective shield/material flow mechanisms relative to each other during the electroplating/electroless process to adjust the sizes of the openings of the shield/material flow apparatus mechanism.

Claims 17-36 (Cancelled). Claim 37 (Cancelled). 38. (Currently Amended) The method according to Claim 37 A method of plating a work piece comprising the steps of: providing a source of depositing material; providing a transport medium; providing at least one work piece in a work piece holder; supporting said at least one work piece in said work holder; immersing said work piece holder in said transport medium; positioning a selective shield/material flow assembly between said work piece holder and said source of depositing material in said transport medium, said selective shield/material flow assembly forming at least one opening having an adjustable size; and

adjusting the said adjustable size of said at least one adjustable opening for selectively and controllably adjusting the amount of said depositing material passing through said selective shield/material flow apparatus and the distribution of said depositing material on said at least one work piece; and

wherein said selective shield/material flow assembly further includes a first selective shield/material flow mechanism and a second selective shield/material flow mechanism, and the adjusting step includes the step of moving said first shield/material flow mechanism and said second shield/material flow mechanism relative to each other to adjust the said adjustable size of said at least one opening of said selective shield/material flow assembly.