Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 3 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації» «Дослідження ітераційних циклічних алгоритмів» Варіант 7

Виконав студент ІП-15, Гуменюк Олександр Володимирович

(шифр, прізвище, ім'я, по батькові)

Перевірив _____

(прізвище, ім'я, по батькові)

Лабораторна робота 3

Дослідження ітераційних циклічних алгоритмів

Мета – дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Варіант 7

7. Задане дійсне число x. Послідовність $a_1, a_2, ..., a_n$ утворена за законом

$$a_n = \frac{x}{\sqrt{n(n+2)}}, \ n=1,2,\ldots.$$

Отримати суму $a_1 + a_2 + ... + a_k$, де k - найменше ціле число, що задовольняє двом умовам: k > 10, $|a_k| < 10^{-4}$.

Постановка задачі

Використовуючи ітераційний цикл з передумовою, додаємо до суми члени послідовності а(n) починаючи з першого члена. Кожне повторення перевіряємо чи не виконується обидві задані умови та додаємо 1 до k. Після знаходження найменшого k, яке задовольняє обидві умови, зупиняємо цикл. Результатом розв'язку є знаходження суми перших k членів послідовності а(n).

Побудова математичної моделі

Таблиця імен змінних

Змінна	Tun	Ім'я	Призначення
Задане число х	Дійсне	X	Початкові дані

Член	Дійсне	a	Проміжні дані
послідовності			
a(n), залежний			
від k			
Найменше ціле	Ціле	k	Проміжні дані
число, що			
задовольняє			
задані умови			
Сума перший к	Дійсне	sum	Результат
членів			
послідовності			
a(n)			

Перед початком цикла задаємо значення k=1, і знаходимо значення першого члена а за формулою а: = x/(sqrt(k)*(k+2)). Для знаходження квадратного кореню k використовуємо функцію sqrt(). Перше значення суми дорівнює першому члену а. Далі йде ітераційний цикл з передумовою !(k>10 i abs(a)<0.0001); цю умову також можна записати як: $(k \le 10 \text{ або abs}(a) >= 0.0001)$. Для знаходження модуля а використовуємо функцію abs(). При кожному повторенні циклу, додаємо 1 до k, знаходимо наступний член а і додаємо цей член до суми. Виходимо з циклу, коли значення k перебільшує 10, а значення a менше чим 0.0001.

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

- Крок 1. Визначимо основні дії.
- Крок 2. Ініціалізація k, a, sum.
- Крок 3. Визначення ітераційного циклу
- Крок 4. Усередині циклу збільшуємо к на 1 та знаходимо наступне значення а
- Крок 5. Усередині циклу додаємо значення а до суми

Псевдокод

Крок 1

початок

ввід х

ініціалізація k, a, sum

визначення ітераційного

циклу

виведення sum

кінець

Крок 2

початок

ввід х

k = 1

a := x/(sqrt(k)*(k+2))

sum: = a

визначення ітераційного

циклу

виведення sum

кінець

```
Крок 3
                                           Крок 4
початок
                                           початок
      ввід х
                                                  ввід х
      k = 1
                                                 k := 1
      a := x/(sqrt(k)*(k+2))
                                                 a := x/(sqrt(k)*(k+2))
      sum: = a
                                                  sum: = a
      повторити
                                                  повторити
      поки !(k > 10 && abs(a) <
                                                 поки !(k > 10 && abs(a) <
      0.0001)
                                                  0.0001)
            обчислення значень k та
                                                        k := k + 1
            a
                                                        a := x/(sqrt(k)*(k+2))
            обчислення значення sum
                                                        обчислення значення sum
      все повторити
                                                  все повторити
      виведення sum
                                                  виведення sum
кінець
                                           кінець
Крок 5
початок
      ввід х
      k = 1
      a := x/(sqrt(k)*(k+2))
      sum: = a
      повторити
      поки !(k > 10 \&\& abs(a) < 0.0001)
            k := k + 1
            a := x/(sqrt(k)*(k+2))
            sum = sum + a
      все повторити
      виведення sum
кінець
```

Блок-схема

Крок 1.

Крок 2

Крок 3

Крок 4

Крок 5

Тестування

Блок	Дія	
	Початок	
1	Ввід $x = 0.03, k = 1$	
2	a = 0.03 / (sqrt(1)*(1+2))	
	= 0.03/(1*3) = 0.01	
3	sum = 0.01	
4	$!(1 > 10 \&\& 0.01 < 0.0001) \rightarrow \text{true}$	
5	k = 1 + 1 = 2	
6	a = 0.03 / (sqrt(2)*(2+2))	
	= 0.03/(sqrt(2)*4) = 0.0053	
7	sum = 0.01 + 0.0053 = 0.0153	
8	$!(2 > 10 \&\& 0.0053 < 0.0001) \rightarrow \text{true}$	
9	k = 2 + 1 = 3	
10	a = 0.03 / (sqrt(3)*(3+2))	
	= 0.03/(sqrt(3)*5) = 0.0035	
11	sum = 0.0153 + 0.0035 = 0.0188	
12	k = 43 + 1 = 44	
13	a = 0.03 / (sqrt(44)*(44+2)) = 0.03/(sqrt(44)*46) = 0.0000983	
14	sum = 0.03722 + 0.0000983 = 0.0373183	
15	$!(44 > 10 \&\& 0.0000983 < 0.0001) \rightarrow false$	
16	Виведення 0.0373183	
	Кінець	

Висновки

Протягом третьої лабораторної роботи я дослідив подання операторів повторення дій та набув практичних навичок їх використання під час складання циклічних програмних специфікацій. В результаті виконання лабораторної роботи я отримав алгоритм для обчислення перших к членів заданої послідовності, де число к визначається за заданими умовами.