```
In [1]: #imports
        import shap
        import pandas as pd
        import xgboost as xgb
        import statsmodels.api as sm
        import matplotlib.pyplot as plt
        from sklearn.inspection import permutation_importance
        from sklearn.metrics import r2 score
        from sklearn.model_selection import train_test_split
In [2]: CONSTRAINT = 0.3
        def bars(shap_values):
            # summarize the SHAP values for each feature
            shap.summary_plot(shap_values, X, plot_type='bar', show=False)
            # plot the SHAP values for each feature
            fig, ax = plt.gcf(), plt.gca()
            ax.set_xlim(-0.5, 2)
            ax.set_title("Food Group Impact")
            plt.show()
In [3]: # select user input
        user_input = int(input("Which user's result do you want to look at?: "))
        # read the dataframe
        data = pd.read csv('data.csv')
        df = data[data['user number'] == user input]
        # drop all Null data (filtering null values)
        df.dropna()
```

Which user's result do you want to look at?: 24

Out[3]:

	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	•••	F13	F14	F15	F16	F17	F18	F19	F20	sympto
556	2	0	15	0	41	0	5	11	39	5		19	10	8	0	9	3	5	28	1(
557	4	9	0	2	37	10	8	40	44	11		0	15	6	10	25	4	8	18	(
558	0	7	0	0	46	12	1	31	41	12		0	13	13	0	15	0	16	15	(
559	4	11	8	1	36	16	0	37	52	0		18	11	9	17	29	0	9	21	13
560	0	10	0	0	23	0	3	33	50	7		19	11	15	14	14	0	0	16	(
561	6	15	0	0	18	12	3	32	43	0		16	16	10	15	28	4	8	18	1.
562	0	17	7	3	36	12	3	36	45	3		21	0	9	0	25	0	8	12	(
563	4	13	12	3	15	15	6	17	37	0		0	16	0	9	25	3	0	36	(
564	7	13	0	3	3	15	3	34	49	0		13	15	0	12	33	1	0	23	(
565	0	16	7	2	21	13	2	29	41	4		0	12	8	14	24	1	8	24	(
566	4	0	12	0	53	15	4	22	52	8		0	0	0	0	26	4	16	14	(
567	5	10	2	1	14	8	2	31	30	0		0	18	0	0	25	1	11	22	(
568	0	11	7	0	45	8	4	28	39	5		0	17	5	9	17	0	14	26	į
569	0	0	10	2	40	16	7	12	39	6		0	15	9	14	25	1	0	35	Ç
570	6	17	11	1	50	14	4	23	46	4		18	16	0	13	20	2	14	28	1.
571	6	0	0	2	30	7	2	40	30	5		0	0	0	0	20	2	10	5	(
572	3	15	13	2	36	10	4	31	43	0		17	12	0	11	20	0	11	27	7
573	0	14	6	2	28	12	2	46	33	9		17	0	0	13	18	3	11	8	(
574	5	12	14	0	42	14	0	29	31	7		19	16	0	11	28	2	11	30	
575	0	15	0	2	19	17	0	50	33	1		15	17	7	0	27	3	0	19	(
576	6	14	13	1	39	13	4	31	59	5		0	0	13	10	25	0	9	18	4
577	5	0	0	1	25	9	0	42	36	7		17	9	7	0	20	2	8	10	(
578	0	16	0	1	16	16	5	51	46	6		13	0	11	16	26	2	9	6	(
579	5	11	8	2	38	12	0	26	38	5		0	22	10	15	28	0	14	32	1!
580	11	16	0	1	26	16	5	49	60	7		15	0	11	11	27	0	8	5	(
581	0	18	3	0	13	15	3	27	36	3	•••	20	16	7	15	21	5	7	23	(
582	4	13	0	0	13	13	4	17	44	4		0	11	8	13	23	1	9	11	(
583	0	12	0	1	19	16	5	22	53	6		0	0	10	9	16	1	0	3	(
584	6	10	9	4	32	18	4	44	54	5		0	21	8	15	37	0	0	35	,
585	0	11	2	4	37	19	6	23	41	0	•••	16	15	0	16	31	2	9	23	2
586	5	5	12	3	40	14	0	37	35	0		0	0	0	14	32	5	8	15	Ź
587	3	0	8	3	34	13	1	33	32	0		21	14	0	13	28	1	9	28	(
588	0	0	0	0	0	13	5	13	47	0		0	16	0	18	23	1	0	16	(
589	0	8	17	2	36	17	3	22	33	6		0	0	0	0	17	1	11	19	(

	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	•••	F13	F14	F15	F16	F17	F18	F19	F20	sympto
590	0	0	13	3	53	16	4	21	34	4		21	0	0	0	24	1	13	19	(
591	3	13	10	1	46	14	3	32	26	9		16	14	0	8	26	2	15	26	4
592	5	16	11	4	37	14	4	55	52	4		15	13	8	18	19	2	0	28	(
593	6	0	12	2	38	0	5	35	35	0		21	0	9	0	13	0	11	20	4
594	0	10	8	0	40	15	2	33	40	6		0	8	10	20	18	3	10	19	17
595	7	10	11	0	39	13	5	25	44	6		0	19	7	16	28	6	10	32	1.
596	5	9	7	3	19	17	3	45	59	0		0	0	8	16	31	0	9	12	(

11 rows × 22 columns

```
In [4]: # feature seletion to determine correllation between the columnn and symtpom val
# using corrwidth to compare all values of columns F1-F20 to the symptom_value
# for each data point. Using method - "Spearman Correlation"
correlation = df.iloc[:,:-2].corrwith(df['symptom_value'],method='spearman').abs()
# filtering all food categories with vorrelation value >0.3 and indexing to get names
high_corr_categories = correlation[correlation>CONSTRAINT].index.tolist()

# print the dataframe
df2 = df[high_corr_categories]
df2 = df2.join(df.iloc[:,-2:])
print("Highest affecting food group categories:", high_corr_categories)
print(df2)
```

```
F3
                   F5
                       F12
                            F16
                                  F20
                                        symptom value user number
         556
              15
                   41
                         9
                               0
                                   28
                                            10.875690
                                                                  24
         557
                   37
               0
                        11
                              10
                                   18
                                             0.000000
                                                                  24
         558
                   46
                                                                  24
               0
                        12
                               0
                                   15
                                             0.295267
         559
               8
                   36
                        10
                              17
                                   21
                                            13.479929
                                                                  24
         560
               0
                   23
                        10
                              14
                                   16
                                             6.223515
                                                                  24
         561
                              15
                                   18
                                            11.140630
                                                                  24
               0
                   18
                         0
               7
         562
                   36
                         0
                               0
                                   12
                                             0.000000
                                                                  24
         563
                   15
                               9
                                                                  24
              12
                         0
                                   36
                                             0.000000
                    3
                                   23
                                                                  24
         564
               0
                         0
                              12
                                             0.000000
         565
               7
                   21
                        13
                              14
                                   24
                                             0.000000
                                                                  24
              12
                   53
                                   14
                                                                  24
         566
                         0
                               0
                                             6.008851
         567
               2
                   14
                         0
                               0
                                   22
                                             0.000000
                                                                  24
         568
               7
                   45
                               9
                                   26
                                             5.062169
                                                                  24
                         6
                                             9.134474
         569
              10
                   40
                         0
                              14
                                   35
                                                                  24
         570
              11
                   50
                         0
                              13
                                   28
                                            11.763835
                                                                  24
                   30
                        17
                                    5
                                                                  24
         571
               0
                               0
                                             0.000000
         572
              13
                                   27
                                             7.875999
                                                                  24
                   36
                         0
                              11
         573
               6
                   28
                        10
                              13
                                    8
                                             0.000000
                                                                  24
         574
              14
                   42
                        12
                                                                  24
                              11
                                   30
                                             1.002695
         575
               0
                   19
                        20
                               0
                                   19
                                             0.000000
                                                                  24
         576
              13
                   39
                        11
                              10
                                   18
                                             4.351895
                                                                  24
         577
                   25
                                                                  24
               0
                        14
                                   10
                                             0.000000
                               0
         578
               0
                   16
                        16
                              16
                                    6
                                             0.000000
                                                                  24
         579
                                   32
                                                                  24
               8
                   38
                         0
                              15
                                            15.507169
         580
                   26
                         7
                                    5
                                                                  24
               0
                              11
                                             0.000000
         581
                         9
                              15
                                   23
               3
                   13
                                             0.000000
                                                                  24
         582
                   13
                         0
                              13
                                   11
                                                                  24
               0
                                             0.000000
         583
               0
                   19
                        10
                              9
                                    3
                                             0.000000
                                                                  24
         584
               9
                   32
                         8
                              15
                                   35
                                                                  24
                                             1.655116
               2
         585
                   37
                         0
                              16
                                   23
                                             2.991732
                                                                  24
         586
              12
                   40
                        13
                              14
                                   15
                                             2.206875
                                                                  24
         587
               8
                   34
                        13
                              13
                                   28
                                             0.000000
                                                                  24
         588
               0
                    0
                        13
                              18
                                   16
                                             0.000000
                                                                  24
              17
                                   19
                                             0.000000
         589
                   36
                        14
                               0
                                                                  24
         590
                   53
                         9
                                   19
                                             0.000000
                                                                  24
              13
                               0
         591
              10
                   46
                         0
                               8
                                   26
                                             4.089193
                                                                  24
                                             6.157548
         592
              11
                   37
                        17
                              18
                                   28
                                                                  24
         593
              12
                   38
                        13
                               0
                                   20
                                             4.767100
                                                                  24
               8
                   40
                         9
                              20
                                   19
                                                                  24
         594
                                            17.294536
         595
              11
                   39
                         8
                              16
                                   32
                                            11.946059
                                                                  24
                   19
         596
               7
                        14
                              16
                                   12
                                             0.000000
                                                                  24
         # split the dataset into training and test data
In [5]:
         X = df.iloc[:,:-2]
         y = df["symptom_value"]
In [6]:
         # split the dataset into training and test data
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state
         # create a DMatrix for XGBoost
In [7]:
         dtrain = xgb.DMatrix(X train, label=y train)
In [8]:
         # specify XGBoost parameters
         params = {'max_depth': 3, 'eta': 0.1, 'objective': 'reg:squarederror'}
         # train the model
         model = xgb.train(params, dtrain)
```

Highest affecting food group categories: ['F3', 'F5', 'F12', 'F16', 'F20']

```
In [9]: # make predictions on the test set
y_pred = model.predict(xgb.DMatrix(X_test))

# calculate R-squared score
r2 = r2_score(y_test, y_pred)
print("R-squared score:", r2)

R-squared score: 0.1671261311254285

In [10]: # create an explainer object for SHAP
explainer = shap.Explainer(model, X)

In [11]: # calculate SHAP values for each feature for each instance
shap_values = explainer(X)

In [12]: # call the bars() function
bars(shap_values)
```



```
In [13]: # plot the heatmap
shap.plots.beeswarm(shap_values)

No data for colormapping provided via 'c'. Parameters 'vmin', 'vmax' will be ignored
```

