MATH H113: Honors Introduction to Abstract Algebra

2016-03-18

- Generators & Relations
- Rings

Homework for Apr. 1 will be assigned Mar. 29

Last time: we showed that if S is a set then the set F(S) of all reduced words $(S_1^{\epsilon_1}, \ldots, S_n^{\epsilon_n})$ $(n \in \mathbb{N}, S_i \in S \ \forall i, \epsilon_i \in \{\pm 1\} \ \forall i)$ is a group, and satisfies the universal property for all groups G and all functions $\phi: S \to G$ there is a unique homomorphism $\Phi: F(S) \to G$ such that $f = \Phi \circ i$ See figure 1.

Here i takes s to $(s^1) \forall s \in S$.

Proof: Map $(s_1^{\epsilon_1}, \dots, s_n^{\epsilon_n})$ to $\phi(s_1)^{\epsilon_1} \dots \phi(s_n)^{\epsilon_1}$. Check that it's a homomorphism.

Examples:

0. $S \neq \emptyset$, then F(S) has only the empty word so $F(S) = \{1\}$. 1. $S = \{x\}$ then $F(S) = \{(s^{\epsilon}, s^{\epsilon}, \dots, s^{\epsilon})\}$ length $n \in \mathbb{N}, \epsilon \in \{\pm 1\}$) This is \mathbb{Z} because if $\epsilon = 1$ then $(s^{\epsilon}, \dots, s^{\epsilon}) \mapsto n$, if $\epsilon = -1$ then $(s^{\epsilon}, \dots, s^{\epsilon}) \mapsto n$. Finally, if |s| > 1 then F(S) is infinite and non-abelian.

Generators and Relations

We can define what $\langle S|R\rangle$ where S is a set and R is a collection of relations of the form $w_1=w_2$, with $w_1,w_2\in F(S)$. Let R be $\{w_i=w_i':i\in I\}$ where $w_i,w_i'\in F(S)$ $\forall i$. Let N be the smallest normal subgroup of F(S) containing w_i,w_i^{-1} $\forall i\in I$. So $N=\bigcap$ of all normal subgroups of F(S) that contain w_i^{-1},w_i' $\forall i\in I=\langle xw_i^{-1}w_i'x^{-1}:iinI,x\in F(S)\rangle$. Then $\langle S\mid R\rangle=F(S)/N$ Back to $D_{2n}=\langle r,s\mid r^n=s^2=1,rs=sr^{-1}\rangle$ We showed all elements of F(S)/N (N as above, $S=\{r,s\}$) can be written as r^is^j for some $i=0,\ldots,n-1,j=0,1$. Then we showed that the these are all distinct in F(S)/N by exhibiting a group G with elements r,s such that $\langle r,s\rangle=G$ and all relations are true in G. That shows:

See fig 2.

that is 1-1 on the set $\{r^i s^j : 0 \le i < n, j = 0, 1\}$. $\therefore N \not\ni r^i s^j (r^{i'} s^{j'})^{-1}$ with $0 \le i < n, 0 \le i' < n, j, j' \in \{0, 1\}, i \ne i' \text{or } j \ne j'$. because $\Phi(N) = 1$ and these elements are distinct in G.

Actually $\langle S \mid R \rangle$ satisfies a universal property: we have a function $i: S \to \langle S \mid R \rangle$ (taking $s \in S$ to itself). For all groups G and all function $f: S \to G$ such that the elements $f(s) \in G$ ($s \in S$) satisfy all of the relations of R, there is a unique homomorphism $\Phi: \langle S \mid R \rangle \to G$ such that $f = \Phi \circ i$

See fig 3.

Proof: From the universal property for F(S), there is a unique $\psi : F(S) \to G$ such that $\psi(s) = f(s) \ \forall s \in S$. $\ker \psi \ni w_i^{-1} w_i'$ for relations $w_i = w_i'$ in R so $\ker \psi \supseteq N$ as in the def. of $\langle S \mid R \rangle$.

See fig 4.

Then we can define Φ F(S)/N to G by $\Phi(xN) = \Psi(x)$ well defined because $n \subseteq \ker \psi$, and $\Phi(i(x)) = \Phi(\pi(j(s))) = \Phi(j(s)N) = \Psi(j(s)) = f(s) \ \forall s \in S$ (unique because for any other Φ' , $\Phi' \circ \pi$ must be Ψ by uniqueness of the universal property of F(S)).

Rings

Definition: A ring $R = \text{(more formally: } (R, +, \times) \text{ is a set } R, \text{ together with binary operations } + \text{ and } \times \text{ such that:}$

- i. (R, +) is an abelian group. This is written additively, so $0 \in R$ is its identity element.
- ii. \times is associative:

$$a \times (b \times c) = (a \times b) \times c \ \forall a, b, c \in R$$

iii. distributive law holds

$$a \times (b+c) = a \times b + a \times c$$

$$(b+c) \times a = b \times a + c \times a$$

(doing multiplications before addition)

Examples:

- 1. $M_n(\mathbb{R}) = \text{set of all } n \times n \text{ matrices with entries in } \mathbb{R}$; + is matrix addition, \times is matrix multiplication (not commutative if $n \geq 2$).
- 2. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}/m\mathbb{Z}$
- 3. Any abelian group with $x \times y = 0 \ \forall x, y \in A$ (the "trivial ring")
- 4. The "zero ring" $R = \{0\}$
- 5. $2\mathbb{Z} = \{2n : n \in \mathbb{Z}\}$

We'll usually write $a \times b$ as ab

Definition: A ring R is commutative if multiplication (in R) is commutative: $xy = yx \ \forall x, y \in R$

Example (1) is *not* commutative unless $n \leq 1$

Examples (2) - (5) are commutative

Definition: A ring R has an identity (element) (or, the ring has 1) if there is an element $1 \in R$ such that $x1 = 1x = x \ \forall x \in R$.

- (3) does not have an identity element unless $A = \{0\}$
- (5) does not have an identity element

A ring R can have at most one identity element: 1 = 11' = 1'

Proposition: Let R be a ring with 1. Then 1 = 0 (in R) \iff R is the zero ring

Proof:

- " $\Leftarrow=$ ": obvious
- " \Longrightarrow ": if 1=0 then x=1x=0x=0 $\forall x\in R,$ so $R\neq\{0\}.$

Usual algebra relations hold $(\forall a, b \in R)$:

$$0a = a0 = 0$$

$$(-a)b = a(-b) = -ab$$

$$(-a)(-b) = ab$$

$$-(-a) = a$$

$$(-1)a = -a$$
 if R has 1