Digital Geometry - Shape Deformations

Junjie Cao @ DLUT Spring 2018

http://jjcao.github.io/DigitalGeometry/

Local & global deformations

Editing of complex meshes

CAD-Like Deformation

How to deform?

- · To deform a model, move its control points
- The rest follows ...

Motivation

Easy modeling – generate new shapes by editing existing ones

Character posing for animation

Simulation

Criteria?

- Intuitive behavior and interface
- semantics
- Interactivity

Parametric curves and surfaces

Deformation by control point manipulation

- Tensor product surfaces ("curves of curves")!
 - Rectangular grid of control points

$$\mathbf{p}(u,v) = \sum_{i=0}^k \sum_{j=0}^l \mathbf{p}_{ij} N_i^n(u) N_j^n(v)$$

Spline Surfaces

- Tensor product surfaces ("curves of curves")!
 - Rectangular grid of control points
 - Rectangular surface patch

Problems:

- Many patches for complex models
- Smoothness across patch boundaries
- Trimming for non-rectangular patches

Subdivision Surfaces

- Generalization of spline curves/surfaces!
 - Arbitrary control meshes
 - Successive refinement (subdivision)
 - Converges to smooth limit surface
 - Connection between splines and meshes

Spline & Subdivision Surfaces

- Basis functions are smooth bumps!
 - Fixed support
 - Fixed control grid
- Bound to control points!
 - Initial patch layout is crucial
 - Requires experts!

Discrete Surfaces: Point Sets, Meshes

Flexible

- Suitable for highly detailed scanned data
- No analytic surface
- No inherent "editability"

Mesh Editing

Classifications

- Surface-based deformation
 - Energy minimization
 - Multiresolution editing
 - Differential coordinates
- Space deformation
 - Freeform deformation
 - Energy minimization
- Linear vs. nonlinear methods

Surface-based deformations

Nonlinear methods

As rigid as possible surface modeling

Prism-based modeling

Mesh Puppetry

Surface deformations Summary

- Objective functional in the mesh elements (vertices)
- Complexity depends on the mesh size
- Linear methods:
 - Solve a global linear system on the mesh
 - Usually suffer from some artifacts
- Nonlinear methods
 - Fewer artifacts but slower, and harder to implement

Spectral Mesh Deformation

- Build a smoothed mesh *using* manifold harmonics transform
- Deform the smoothed mesh,
- Add the details back using deformation transfer

[spectral mesh deformation][Spectral Surface Deformation with Dual Mesh]

Intuitive sketch-based deformation interfaces

Space Deformations, Surface Deformations and the Opportunities In-Between

Various handles

Interaction GUI?

Software

- Maya
- 3D Max
- Z-Brush

References

• Olga Sorkine, Geometric Modeling - G22.3033-008

2018/4/24

Thanks