Notes on asymptotics of quantum hypothesis testing

Anna Jenčová*

1 Preliminaries

Let \mathcal{H} be a finite dimensional Hilbert space.

1.1 Pinching

Let $A \in B(\mathcal{H})$ be self-djoint, with spectral decomposition $A = \sum_i \lambda_i P_i$. We will need the pinching map $B(\mathcal{H}) \to B(\mathcal{H})$, defined as

$$\mathcal{E}_A(X) = \sum_i P_i X P_i.$$

Then A is a cp unital map. Moreover, $\mathcal{E}_A(X)$ commutes with X and we have the pinching inequality [?]

$$\mathcal{E}_A(X) \le |\operatorname{spec}(A)|X, \qquad X \ge 0.$$
 (1)

1.2 Relative entropies

Let ρ and σ be density operators. The (Umegaki) relative entropy is defined as

$$D(\rho \| \sigma) := \begin{cases} \operatorname{Tr} \left[\rho(\log \rho - \log \sigma) \right], & \operatorname{supp}(\rho) \leq \operatorname{supp}(\sigma) \\ \infty, & \text{otherwise.} \end{cases}$$

The standard Rényi relative entropy for $\alpha \in [0,1] \setminus \{1\}$ is defined as

$$D_{\alpha}(\rho \| \sigma) := \begin{cases} \frac{1}{\alpha - 1} \log \operatorname{Tr} \left[\rho^{\alpha} \sigma^{1 - \alpha} \right], & \operatorname{supp}(\rho) \leq \operatorname{supp}(\sigma) \text{ or } \alpha \in (0, 1) \\ \infty, & \text{otherwise.} \end{cases}$$

The sandwiched Rényi relative entropy for $\alpha \in [1/2, \infty] \setminus \{1\}$ is defined as

$$\hat{D}_{\alpha}(\rho \| \sigma) := \begin{cases} \frac{1}{\alpha - 1} \log \operatorname{Tr} \left[\sigma^{\frac{1 - \alpha}{2\alpha}} \rho \sigma^{\frac{1 - \alpha}{2\alpha}} \right], & \operatorname{supp}(\rho) \leq \operatorname{supp}(\sigma) \text{ or } \alpha \in [1/2, 1) \\ \infty, & \text{otherwise.} \end{cases}$$

^{*}Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, 814 73 Bratislava, Slovakia, jenca@mat.savba.sk

1.3 The functions ϕ and ψ

We assume $\operatorname{supp}(\rho) \leq \operatorname{supp}(\sigma)$, so that $D(\rho \| \sigma) < \infty$.

Let us define

$$\phi(s) = \log \operatorname{Tr} \left[\rho^{1-s} \sigma^s \right], \quad s \in \mathbb{R}$$

Then ϕ is a strictly convex and smooth function, with derivative

$$\phi'(s) = (\operatorname{Tr} \left[\rho^{1-s}\sigma^{s}\right])^{-1}\operatorname{Tr} \left[\rho^{1-s}\sigma^{s}(\log \sigma - \log \rho)\right],$$

[?, Exercise 3.5] In particular, $\phi'(0) = -D(\rho \| \sigma)$ and $\phi'(1) = D(\sigma \| \rho)$ Let us define

$$\psi(\lambda) = \min_{s \in \mathbb{R}} \lambda s + \phi(s).$$

Lemma 1. Let $-D(\sigma \| \rho) = -\phi'(1) \le \lambda \le -\phi'(0) = D(\rho \| \sigma)$. Then

- 1. $\psi(\lambda) = \inf_{s \in [0,1]} \lambda s + \phi(s)$
- 2. ψ is monotone increasing
- 3. $\psi(-D(\sigma||\rho)) = -D(\sigma||\rho), \ \psi(D(\rho||\sigma)) = 0.$

Proof. By strict convexity, the derivative $\phi'(s)$ is increasing, so that there is some $s_0 \in [0, 1]$ such that $\lambda = -\phi'(s_0)$ and the function $s \mapsto \lambda s + \phi(s)$ is decreasing for $s \le s_0$ and increasing for $s_0 \le s$. It follows that the infimum is attained at $s_0 \in [0, 1]$. This also implies (3).

Assume that $\lambda \in (-\phi'(1), \phi'(0))$, then $\lambda = -\phi'(s_0)$ for some $s_0 \in (0, 1)$ and we have

$$\psi(\lambda) = \lambda s_0 + \phi(s_0) = \phi(s_0) - \phi'(s_0)s_0 < \phi(0) = 0 = \psi(-\phi(0)),$$

the inequality follows by strict convexity of ϕ . If $-\phi'(1) \leq \lambda_1 < \lambda$, then clearly

$$\psi(\lambda_1) \le \lambda_1 s_0 + \phi(s_0) < \lambda s_0 + \phi(s_0) = \psi(\lambda).$$

This proves (2).

Lemma 2. Let $\lambda \in [-D(\sigma \| \rho), D(\rho \| \sigma)]$ and $0 \le r \le D(\rho \| \sigma)$. Then

$$\lambda - \psi(\lambda) = r \iff \psi(\lambda) = b(r) := \inf_{s \in [0,1]} \frac{s}{1-s} r + \frac{1}{1-s} \phi(s).$$

Proof. Let $s_{\lambda} \in [0,1]$ be such that $\lambda = -\phi'(s_{\lambda})$, then the assuptions imply that

$$\psi(\lambda) = -\phi'(s_{\lambda})s_{\lambda} + \phi(s_{\lambda}) = -\phi'(s_{\lambda}) - r.$$

Solving for $\phi'(s_{\lambda})$, we get $-\phi'(s_{\lambda}) = \frac{1}{1-s_{\lambda}}(r+\phi(s_{\lambda}))$, so that

$$\psi(\lambda) = \frac{s_{\lambda}}{1 - s_{\lambda}} r + \frac{1}{1 - s_{\lambda}} \phi(s_{\lambda}).$$

Let

$$g(s) = \frac{s}{1-s}r + \frac{1}{1-s}\phi(s).$$

Then $g'(s) = \frac{1}{(1-s)^2}(r + \phi(s) + \phi'(s)(1-s))$. Now note that $h(s) := \phi(s) + \phi'(s)(1-s)$ satisfies $h'(s) = \phi''(s)(1-s)$ so that h is increasing on (0,1) (strict) convexity of ϕ , so that $-D(\rho||\sigma) = h(0) \le h(s) \le h(1) = 0$. It follows that the derivative g'(s) changes sign at a unique point $s_r \in [0,1]$, such that $r + \phi(s_r) + \phi'(s_r)(1-s_r) = 0$. Comparing this to the above computation, we see that $s_r = s_\lambda$ and

$$\psi(\lambda) = \min_{s \in [0,1]} g(s) = b(r).$$

We define

$$\psi^*(\lambda) = \inf_{t \in [-1,0]} t\lambda + \phi(t).$$

Again, if $\lambda > D(\rho \| \sigma) = -\phi'(0)$, then $t \mapsto t\lambda + \phi(t)$ is strictly increasing at t = 0, which implies that $\phi^*(\lambda) < 0$.

1.4 Inequalities

We have two basic inequalities. For $A, B \ge 0$, let $\{A \ge B\}$ be the sum of eigenprojections of A - B corresponding to nonnegative eigenvalues, similarly $\{A \le B\}$, $\{A > B\}$ etc. Then

Lemma 3 (Quantum Neyman-Pearson). We have

$$\min_{0 \le T \le I} \text{Tr} [A(I - T)] + \text{Tr} [BT] = \text{Tr} [A\{A \le B\}] + \text{Tr} [B\{A > B\}].$$

Lemma 4 (Audenaert et al). We have for any $s \in [0, 1]$,

$$\operatorname{Tr}[A\{A \le B\}] + \operatorname{Tr}[B\{A > B\}] \le \operatorname{Tr}[A^{1-s}B^s].$$

These statements hold in the von Neumann algebra case as well.

1.5 Nussbaum-Szkola probability distributions

Let $\rho = \sum_i \lambda_i |x_i\rangle\langle x_i|$ and $\sigma = \sum_j \mu_j |y_j\rangle\langle y_j|$ be the spectral decompositions. The pair (P,Q) of Nussbaum-Szkola probability distributions related to (ρ,σ) is defined on $[n]\times[n]$, here $n=\dim(\mathcal{H})$ and $[n]=\{1,\ldots,n\}$. We put

$$P_{ij} = \lambda_i |\langle x_i | y_j \rangle|^2, \qquad Q_{ij} = \mu_j |\langle x_i | y_j \rangle|^2.$$

We then have $D(\rho \| \sigma) = D(P \| Q)$ and $D_{\alpha}(\rho \| \sigma) = D_{\alpha}(P \| Q)$ for all α .

For $(\rho^{\otimes n}, \sigma^{\otimes n})$ we get the iid distributions (P^n, Q^n) . We also have the following result:

Lemma 5 (Nussbaum-Szkola). For any test T and c > 0 we have

$$\alpha(T) + c\beta(T) \ge \frac{1}{2} (P(\{P \le cQ\}) + cQ(\{P > cQ\})) = \frac{1}{2} \sum_{ij} \min\{P_{ij}, cQ_{ij}\}$$

Proof. Let T be a projection, then

$$\operatorname{Tr}\left[\rho T\right] = \sum_{i} \lambda_{i} \langle x_{i} | TT | x_{i} \rangle = \sum_{ij} \lambda_{i} \langle x_{i} | T | y_{j} \rangle \langle y_{j} | T | y_{j} \rangle = \sum_{ij} \lambda_{i} |\langle x_{i} | T | y_{j} \rangle|^{2}$$

and similarly for σ . It follows that

$$\alpha(T) + c\beta(T) = \sum_{ij} \lambda_i |\langle x_i | I - T | y_j \rangle|^2 + c \sum_{ij} \mu_j |\langle x_i | T | y_j \rangle|^2.$$

Now we use the inequality

$$a|u-v|^2 + b|v|^2 \ge \frac{1}{2}|u|^2 \min\{a,b\}$$

to lower bound

$$\alpha(T) + c\beta(T) \ge \frac{1}{2} \sum_{ij} |\langle x_i | y_j \rangle|^2 \min\{\lambda_i, c\mu_j\} = \frac{1}{2} \sum_{i,j} \min\{P_{ij}, cQ_{ij}\}$$

By Lemma 3, this inequality holds for all tests. The equality $\min\{P_{ij}, cQ_{ij}\} = P(\{P \leq cQ\}) + cQ(\{P > cQ\})$ can be easily seen.

2 QHT

Let ρ, σ be a pair of density matrices. We test the hypothesis $H_0 = \rho$ against the alternative $H_1 = \sigma$. A test is given by an operator $0 \le T \le I$, corresponding to accepring H_0 . The two error probabilities are

$$\alpha(T) = \text{Tr} [(I - T)\rho], \qquad \beta(T) = \text{Tr} [T\sigma].$$

We will consider the asymptotic behaviour of the error probabilities

$$\alpha_n(T_n) = \text{Tr}\left[(I - T_n)\rho_n\right], \qquad \beta_n(T_n) = \text{Tr}\left[T_n\sigma_n\right]$$

in testing $H_0 = \rho_n := \rho^{\otimes n}$ against $H_1 = \sigma_n := \sigma^{\otimes n}$.

2.1 Quantum Stein's lemma

We assume $\operatorname{supp}(\rho) \leq \operatorname{supp}(\sigma)$, so that $D(\rho \| \sigma) < \infty$.

- Quantum Stein's lemma states that if the I. kind error probabilities are constrained as $\alpha_n(T_n) \leq \epsilon$, then the II. kind error probabilities go to zero exponentially, with optimal decay rate equal to the relative entropy $D(\rho || \sigma)$.
- The strong converse says that if the decay rate of $\beta_n(T_n)$ is greater than $D(\rho \| \sigma)$, then $\alpha_n(T_n) \to 0$ exponentially.

We will need the following inequalities (3) and (4).

Let $\lambda \in \mathbb{R}$ and let $S_n := \{\rho^{\otimes n} > e^{n\lambda}\sigma^{\otimes n}\}$. Then using Lemma 4 (Audenaert) with $A = \rho^{\otimes n}$ and $B = e^{\lambda n}\sigma^{\otimes n}$, we get for any $s \in [0, 1]$

$$\alpha_n(S_n) + e^{n\lambda}\beta_n(S_n) \le \operatorname{Tr} e^{n\lambda s} [(\rho^{\otimes n})^{1-s}(\sigma^{\otimes n})^s] = e^{n\lambda s} (\operatorname{Tr} [\rho^{1-s}\sigma^s])^n = e^{n(\lambda s + \phi(s))}. \tag{2}$$

Hence by taking the infimum over $s \in [0, 1]$,

$$\alpha_n(S_n) \le e^{n\psi(\lambda)}, \qquad \beta_n(S_n) \le e^{n(-\lambda + \psi(\lambda))}$$
 (3)

On the other hand, put $p_n = \text{Tr}\left[\rho^{\otimes n}S_n\right]$ and $q_n = \text{Tr}\left[\sigma^{\otimes n}S_n\right]$. Then $p_n \geq e^{n\lambda}q_n$ and therefore $p_n^t \leq e^{n\lambda t}q_n^t$ for for any $t \in [-1,0]$. We get

$$1 - \alpha_n(S_n) = p_n \le e^{n\lambda t} p_n^{1-t} q_n^t \le e^{n\lambda t} (p_n^{1-t} q_n^t + (1 - p_n)^{1-t} (1 - q_n)^t) \le e^{n\lambda t} \operatorname{Tr} \left[(\rho^{\otimes n})^{1-t} (\sigma^{\otimes n})^t \right]$$
$$= e^{n(\lambda t + \phi(t))}$$

for all $t \in [-1,0]$. It follows that for any test T_n , we have

$$1 - \alpha_n(T_n) = \operatorname{Tr}\left[\rho^{\otimes n} T_n\right] = \operatorname{Tr}\left[\left(\rho^{\otimes n} - e^{\lambda n} \sigma^{\otimes n}\right) T_n\right] + e^{\lambda n} \beta_n(T_n) \le \operatorname{Tr}\left[\left(\rho^{\otimes n} - e^{\lambda n} \sigma^{\otimes n}\right) S_n\right] + e^{\lambda n} \beta_n(T_n)$$
$$\le 1 - \alpha_n(S_n) + e^{\lambda n} \beta_n(T_n) \le e^{n(\lambda t + \phi(t))} + e^{\lambda n} \beta_n(T_n)$$

and hence

$$\beta_n(T_n) \ge e^{-n\lambda} (1 - \alpha_n(T_n) - e^{n\psi^*(\lambda)}) \tag{4}$$

Let

$$\beta_n(\epsilon) := \min_{0 \le T_n \le I} \{ \beta_n(T_n) \mid \alpha_n(T_n) \le \epsilon \}, \quad \epsilon > 0.$$

Lemma 6 (Quantum Stein's lemma). [? ?] For all $\epsilon \in (0,1)$, we have

$$\lim_{n \to \infty} -\frac{1}{n} \log \beta_n(\epsilon) = D(\rho \| \sigma).$$

In particular, there exists a sequence T_n of tests such that $\alpha_n(T_n) \to 0$ and $\lim_n \frac{1}{n} \log \beta_n(T_n) = -D(\rho \| \sigma)$.

Proof. Let $\lambda < D(\rho \| \sigma)$, then by Lemma 1, $\psi(\lambda) < 0$, so that in this case (3), $\alpha_n(S_n) \to 0$ and

$$-\frac{1}{n}\log \beta_n(S_n) \ge \lambda - \psi(\lambda) > \lambda.$$

For $\epsilon \in (0,1)$ we have $\alpha_n(S_n) \leq \epsilon$ for large enough n, so that $\beta_n(\epsilon) \leq \beta_n(S_n)$. It follows that

$$\liminf_{n} -\frac{1}{n} \log \beta_n(\epsilon) \ge \liminf_{n} -\frac{1}{n} \log \beta_n(S_n) \ge \lambda.$$

Conversely, by (4) we have for any sequence of tests such that $\alpha_n(T_n) \leq \epsilon$ that

$$\beta_n(T_n) \ge e^{-n\lambda} (1 - \epsilon - e^{n\psi^*(\lambda)}).$$

Since $\psi^*(\lambda) < 0$ for $\lambda > D(\rho \| \sigma)$, this implies that, for such λ ,

$$\limsup_{n} -\frac{1}{n}\beta_{n}(\epsilon) \leq \lambda.$$

Choosing any $\delta > 0$, we obtain

$$D(\rho \| \sigma) - \delta \le \liminf_{n} -\frac{1}{n} \beta_n(\epsilon) \le \limsup_{n} -\frac{1}{n} \beta_n(\epsilon) \le D(\rho \| \sigma) + \delta.$$

Since δ was arbitrary, this implies the first statement. For the second statement, we can choose sequences $\delta_n, \epsilon_n > 0$, $\delta_n, \epsilon_n \to 0$, then we can find a sequence of tests T_n such that $\alpha_n(T_n) \leq \epsilon_n$ and $|\frac{1}{n}\log\beta_n(T_n) + D(\rho||\sigma)| < \delta_n$.

Lemma 7 (Strong converse). ?] Let T_n be a sequence of tests and let $r > D(\rho \| \sigma)$. If

$$\limsup_{n} \frac{1}{n} \log \beta_n(T_n) \le -r$$

then $\alpha_n(T_n) \to 1$ exponentially fast.

Proof. By (4), we have for any $\lambda \in \mathbb{R}$, $\delta > 0$ and large enough n,

$$1 - \alpha_n(T_n) \le e^{n\psi^*(\lambda)} + e^{n\lambda}\beta_n(T_n) \le e^{n\psi^*(\lambda)} + e^{n(\lambda - r + \delta)}.$$

We then may choose δ and λ such that $D(\rho \| \sigma) < \lambda < r - \delta$, in which case both of the above exponents are negative.

2.2 Hoeffding bound

The Hoeffding bound studies the exponential decay of α_n under an exponential constraint on β_n . Specifically, we look at the value of

$$B_e(r) := \sup\{-\limsup_n \frac{1}{n} \log \alpha_n(T_n) \mid \limsup_n \frac{1}{n} \log \beta_n(T_n) \le -r\}, \qquad r > 0$$

The following result was proved in [?] (direct part) and [?].

Lemma 8 (Quantum Hoeffding bound). For $0 < r \le D(\rho \| \sigma)$, we have

$$B_e(r) = \sup_{0 \le s \le 1} \frac{-sr - \phi(s)}{1 - s} = -b(r).$$

Proof. By (2), we see that for any λ ,

$$\alpha_n(S_n) < e^{n(s\lambda + \phi(s))}, \qquad \beta_n(S_n) < e^{n(-(1-s)\lambda + \phi(s))}$$

Let us choose λ such that $-(1-s)\lambda + \phi(s) = -r$, that is, $\lambda = \frac{r+\phi(s)}{1-s}$, then we obtain

$$\alpha_n(S_n) \le e^{-n\frac{-sr-\phi(s)}{1-s}}, \qquad \beta_n(S_n) \le e^{-nr}.$$

. This implies that $B_e(r) \ge \sup_{0 \le s \le 1} \frac{-sr - \phi(s)}{1-s} = -b(r)$. To show the lower bound, we will use the pair of Nussbaum-Szkola probability distributions (P,Q) related to the pair (ρ,σ) and Lemma 5. What we need to prove is that, for a sequence of tests T_n ,

$$\limsup_{n} \frac{1}{n} \log \beta_n(T_n) \le -r \implies \limsup_{n} \frac{1}{n} \log \alpha_n(T_n) \ge b(r).$$

By Lemma 5, we have for any $b \in \mathbb{R}$,

$$\alpha_n(T_n) + e^{nb}\beta_n(T_n) \ge \frac{1}{2} [P^n(\{P^n \le e^{nb}Q^n\}) + e^{-nb}Q^n(\{P^n > e^{nb}Q^n\})]$$
 (5)

Now note that $\{P^n \leq e^{nb}Q^n\} = \{\frac{1}{n}\log \frac{Q^n}{P^n} \geq -b\}$ and

$$\log \frac{Q^n(\omega^n)}{P^n(\omega^n)} = \sum_k \log \frac{Q(\omega_k)}{P(\omega_k)}, \qquad \omega^n = (\omega_1, \dots, \omega_n) \in \Omega^n,$$

where $\Omega = [n] \times [n]$. Put $X(\omega) = \log \frac{Q(\omega)}{P(\omega)}$, then $E_P[X] = -D(P||Q) = -D(\rho||\sigma)$ and the cumulant generating function of X at P is

$$\log E_P[e^{sX}] = \log E_P[Q^s P^{-s}] = \phi_{P||Q}(s) = \phi_{\rho||\sigma}(s) = \phi(s).$$

Now the Cramér theorem of the large deviation theory implies that

$$\lim_{n} \frac{1}{n} \log(P(\frac{1}{n} \sum_{i} X_i \ge -b)) = \psi(b)$$

for all $-b > E_P(X) = -D(\rho \| \sigma)$. Similarly, $\{P^n > e^{nb}Q^n\} = \{\frac{1}{n}\sum_i X_i(\omega_i) < -b\}$, and we have $E_Q[X] = D(Q\|P) = D(\sigma\|\rho)$ and

$$\log E_O[e^{sX}] = \log \text{Tr} \left[\sigma^{1+s} \rho^{-s}\right] = \phi(1+s).$$

Now note that

$$\inf_{s} bs + \phi(1+s) = \inf_{s} b(1+s) + \phi(1+s) - b = \psi(b) - b$$

so that

$$\lim_{n} \frac{1}{n} \log(e^{nb}Q(\frac{1}{n}\sum_{i} X_i < -b)) = \psi(b)$$

for $-b < E_Q[X] = D(\sigma \| \rho)$. It follows that for any $b \in (-D(\sigma \| \rho), D(\rho \| \sigma))$, we have

$$\lim_{n} \frac{1}{n} \log[P^{n}(\{P^{n} \le e^{nb}Q^{n}\}) + e^{-nb}Q^{n}(\{P^{n} > e^{nb}Q^{n}\})] = \psi(b),$$

this follows from

$$\log 2 + \min\{\log x, \log y\} = \log(2\min\{x, y\}) \le \log(x + y) \le \log 2 + \max\{\log x, \log y\}$$

and the fact that the two limits above are the same. From (5) and the assumption on $\beta_n(T_n)$, we now get

$$\psi(b) \le \liminf_{n} \frac{1}{n} \log(\alpha_n(T_n) + e^{nb} \beta_n(T_n)) \le \max\{\limsup_{n} \frac{1}{n} \log \alpha_n(T_n), b - r\}.$$

Let us now assume that $0 < r \le D(\rho \| \sigma)$ and let $\lambda \in (-D(\sigma \| \rho), D(\rho \| \sigma)]$ be such that $r = \lambda - \psi(\lambda)$. Choose a small $\epsilon > 0$ such that $b = \lambda - \epsilon > -D(\sigma \| \rho)$ (we clearly must have $\lambda > -D(\sigma \| \rho)$, since otherwise r = 0). Then we get

$$\psi(\lambda - \epsilon) \le \max\{\limsup_{n \to \infty} \frac{1}{n} \log \alpha_n(T_n), \psi(\lambda) - \epsilon\}.$$

Since clearly

$$(\lambda - \epsilon)s + \phi(s) > \lambda s + \phi(s) - \epsilon, \qquad s \in (0, 1)$$

and by the assumptions both infima are attained in (0,1), we see that $\phi(\lambda - \epsilon) > \phi(\lambda) - \epsilon$, so that we must have

$$\phi(\lambda - \epsilon) \le \limsup_{n} \frac{1}{n} \log \alpha_n(T_n)$$

Taking the limit $\epsilon \to 0$ and noting that $\phi(\lambda) = b(r)$ finishes the proof.

2.3 Strong converse exponents