Problems

⊕ Section 2.1

- 1. In the two-category case, under the Bayes' decision rule the conditional error is given by Eq. 7. Even if the posterior densities are continuous, this form of the conditional error virtually always leads to a discontinuous integrand when calculating the full error by Eq. 5.
 - (a) Show that for arbitrary densities, we can replace Eq. 7 by $P(error|x) = 2P(\omega_1|x)P(\omega_2|x)$ in the integral and get an upper bound on the full error.
 - (b) Show that if we use $P(error|x) = \alpha P(\omega_1|x)P(\omega_2|x)$ for $\alpha < 2$, then we are not guaranteed that the integral gives an upper bound on the error.
 - (c) Analogously, show that we can use instead $P(error|x) = P(\omega_1|x)P(\omega_2|x)$ and get a lower bound on the full error.
 - (d) Show that if we use $P(error|x) = \beta P(\omega_1|x)P(\omega_2|x)$ for $\beta > 1$, then we are not guaranteed that the integral gives an lower bound on the error.

Section 2.2

- **2.** Consider minimax criterion for the zero-one loss function, i.e., $\lambda_{11} = \lambda_{22} = 0$ and $\lambda_{12} = \lambda_{21} = 1$.
 - (a) Prove that in this case the decision regions will satisfy

$$\int_{\mathcal{R}_2} p(\mathbf{x}|\omega_1) d\mathbf{x} = \int_{\mathcal{R}_1} p(\mathbf{x}|\omega_2) d\mathbf{x}$$

- (b) Is this solution always unique? If not, construct a simple counterexample.
- **3.** Consider the minimax criterion for a two-category classification problem.
- (a) Fill in the steps of the derivation of Eq. 22.
- (b) Explain why the overall Bayes risk must be concave down as a function of the prior $P(\omega_1)$, as shown in Fig. 2.4.
- (c) Assume we have one-dimensional Gaussian distributions $p(x|\omega_i) \sim N(\mu_i, \sigma_i^2)$, i = 1, 2 but completely unknown prior probabilities. Use the minimax criterion to find the optimal decision point x^* in terms of μ_i and σ_i under a zero-one risk.
- (d) For the decision point x^* you found in (??), what is the overall minimax risk? Express this risk in terms of an error function $\operatorname{erf}(\cdot)$.
- (e) Assume $p(x|\omega_1) \sim N(0,1)$ and $p(x|\omega_2) \sim N(1/2,1/4)$, under a zero-one loss. Find x^* and the overall minimax loss.
- (f) Assume $p(x|\omega_1) \sim N(5,1)$ and $p(x|\omega_2) \sim N(6,1)$. Without performing any explicit calculations, determine x^* for the minimax criterion. Explain your reasoning.

2.11. PROBLEMS 47

- (b) True of false: In a two-category two-dimensional problem with continuous feature \mathbf{x} , monotonic transformations of both x_1 and x_2 leave the Bayes error rate unchanged.
- 11. Suppose that we replace the deterministic decision function $\alpha(\mathbf{x})$ with a randomized rule, viz., the probability $P(\alpha_i|\mathbf{x})$ of taking action α_i upon observing \mathbf{x} .
 - (a) Show that the resulting risk is given by

$$R = \int \left[\sum_{i=1}^{a} R(\alpha_i | \mathbf{x}) P(\alpha_i | \mathbf{x}) \right] p(\mathbf{x}) d\mathbf{x}.$$

- (b) In addition, show that R is minimized by choosing $P(\alpha_i|\mathbf{x}) = 1$ for the action α_i associated with the minimum conditional risk $R(\alpha_i|\mathbf{x})$, thereby showing that no benefit can be gained from randomizing the best decision rule.
- (c) Can we benefit from randomizing a suboptimal rule? Explain.
- 12. Let $\omega_{max}(\mathbf{x})$ be the state of nature for which $P(\omega_{max}|\mathbf{x}) \geq P(\omega_i|\mathbf{x})$ for all i, i = 1, ..., c.
- (a) Show that $P(\omega_{max}|\mathbf{x}) \geq 1/c$.
- (b) Show that for the minimum-error-rate decision rule the average probability of error is given by

$$P(\text{error}) = 1 - \int P(\omega_{max}|\mathbf{x})p(\mathbf{x}) d\mathbf{x}.$$

- (c) Use these two results to show that $P(\text{error}) \leq (c-1)/c$.
- (d) Describe a situation for which P(error) = (c-1)/c.
- 13. In many pattern classification problems one has the option either to assign the pattern to one of c classes, or to reject it as being unrecognizable. If the cost for rejects is not too high, rejection may be a desirable action. Let

$$\lambda(\alpha_i|\omega_j) = \begin{cases} 0 & i = j \quad i, j = 1, ..., c \\ \lambda_r & i = c+1 \\ \lambda_s & \text{otherwise,} \end{cases}$$

where λ_r is the loss incurred for choosing the (c+1)th action, rejection, and λ_s is the loss incurred for making a substitution error. Show that the minimum risk is obtained if we decide ω_i if $P(\omega_i|\mathbf{x}) \geq P(\omega_j|\mathbf{x})$ for all j and if $P(\omega_i|\mathbf{x}) \geq 1 - \lambda_r/\lambda_s$, and reject otherwise. What happens if $\lambda_r = 0$? What happens if $\lambda_r > \lambda_s$?

- 14. Consider the classification problem with rejection option.
- (a) Use the results of Problem 13 to show that the following discriminant functions are optimal for such problems:

$$g_i(\mathbf{x}) = \begin{cases} p(\mathbf{x}|\omega_i)P(\omega_i) & i = 1, ..., c \\ \frac{\lambda_s - \lambda_r}{\lambda_s} \sum_{j=1}^c p(\mathbf{x}|\omega_j)P(\omega_j) & i = c + 1. \end{cases}$$

2.11. PROBLEMS 51

- **24.** Consider the multivariate normal density for which $\sigma_{ij} = 0$ and $\sigma_{ii} = \sigma_i^2$, i.e., $\Sigma = diag(\sigma_1^2, \sigma_2^2, ..., \sigma_d^2)$.
 - (a) Show that the evidence is

$$p(\mathbf{x}) = \frac{1}{\prod_{i=1}^{d} \sqrt{2\pi}\sigma_i} \exp\left[-\frac{1}{2} \sum_{i=1}^{d} \left(\frac{x_i - \mu_i}{\sigma_i}\right)^2\right].$$

- (b) Plot and describe the contours of constant density.
- (c) Write an expression for the Mahalanobis distance from \mathbf{x} to $\boldsymbol{\mu}$.
- **25.** Fill in the steps in the derivation from Eq. 57 to Eqs. 58–63.
- **26.** Let $p(\mathbf{x}|\omega_i) \sim N(\boldsymbol{\mu}_i, \boldsymbol{\Sigma})$ for a two-category *d*-dimensional problem with the same covariances but arbitrary means and prior probabilities. Consider the squared Mahalanobis distance

$$r_i^2 = (\mathbf{x} - \boldsymbol{\mu}_i)^t \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_i).$$

(a) Show that the gradient of r_i^2 is given by

$$\nabla r_i^2 = 2 \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_i).$$

- (b) Show that at any position on a given line through μ_i the gradient ∇r_i^2 points in the same direction. Must this direction be parallel to that line?
- (c) Show that ∇r_1^2 and ∇r_2^2 point in opposite directions along the line from μ_1 to μ_2 .
- (d) Show that the optimal separating hyperplane is tangent to the constant probability density hyperellipsoids at the point that the separating hyperplane cuts the line from μ_1 to μ_2 .
- (e) True of False: For a two-category problem involving normal densities with arbitrary means and covariances, and $P(\omega_1) = P(\omega_2) = 1/2$, the Bayes decision boundary consists of the set of points of equal Mahalanobis distance from the respective sample means. Explain.
- **27.** Suppose we have two normal distributions with the same covariances but different means: $N(\mu_1, \Sigma)$ and $N(\mu_2, \Sigma)$. In terms of their prior probabilities $P(\omega_1)$ and $P(\omega_2)$, state the condition that the Bayes decision boundary *not* pass between the two means.
- **28.** Two random variables \mathbf{x} and \mathbf{y} are called "statistically independent" if $p(\mathbf{x}, \mathbf{y} | \omega) = p(\mathbf{x} | \omega) p(\mathbf{y} | \omega)$.
- (a) Prove that if $x_i \mu_i$ and $x_j \mu_j$ are statistically independent (for $i \neq j$) then σ_{ij} as defined in Eq. 42 is 0.
- (b) Prove that the converse is true for the Gaussian case.
- (c) Show by counterexample that this converse is *not* true in the general case.