

The Meta-Variational Quantum Eigensolver

arXiv:2009.13545 [quant-ph]

Alán Aspuru-Guzik

Alba Cervera-Lierta, Jakob S. Kottmann, Alán Aspuru-Guzik APS March Meeting 2021

March 18, 2021 (S32 session)

What's the goal of VQE?

GOAL: find $|\psi\rangle$ that minimizes $\frac{\langle\psi\mid\mathcal{H}\mid\psi\rangle}{\langle\psi\mid\psi\rangle}$.

Find the atomic separation that minimizes the energy

 $\min\langle H(R)\rangle$

A. Peruzzo, J. McClean, P. Shadbolt, M.-H.Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, J. L. O'Brien, Nature Comm. 5, 4213 (2014)

What's the goal of VQE?

To obtain this you need to scan from 0 to 300.

Each blue point is a VQE, that is, you have to **prepare**, **run** and **optimize** the quantum circuit.

Can we avoid to compute the uninteresting points?

A. Peruzzo, J. McClean, P. Shadbolt, M.-H.Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, J. L. O'Brien, Nature Comm. 5, 4213 (2014)

Meta-VQE outlook

Parameterized Hamiltonian $H(\vec{\lambda})$

<u>Goal:</u> to find the quantum circut that **encodes** the ground state of the Hamiltonian for any value of $\vec{\lambda}$

See also: K. Mitarai, T. Yan, K. Fujii, Phys. Rev. Applied 11, 044087 (2019)

Quantum Feature Maps

Encode the data (quantum feature space)

Rotate to the correct measurement basis

Find the parameters that minimze the energy (measured in the computational basis)

M. Schuld, arXiv:2101.11020 [quant-ph]

Data re-uploading

$$\mathcal{U}(\vec{\phi}, \vec{x}) \equiv U(\vec{\phi}_N)U(\vec{x}) \dots U(\vec{\phi}_1)U(\vec{x})$$

A. Pérez-Salinas, ACL, E. Gil-Fuster and J. I. Latorre, Quantum 4, 226 (2020)

See S32.3 talk ("Quantum Machine Learning I" session) at 11:54 a.m. CET

The Meta-VQE

Parameterized Hamiltonian $H(\vec{\lambda})$

Training points: $\vec{\lambda}_i$ for i = 1, ..., M

Loss function with all $\langle H(\vec{\lambda}_i) \rangle$

Goal: to find the quantum circut that encodes the ground state of the Hamiltonian for any value of $\vec{\lambda}$

Output: $\overrightarrow{\Phi}_{opt}$ and $\overrightarrow{\Theta}_{opt}$

See also: K. Mitarai, T. Yan, K. Fujii, Phys. Rev. Applied 11, 044087 (2019)

The Meta-VQE output

Output: $\overrightarrow{\Phi}_{opt}$ and $\overrightarrow{\Theta}_{opt}$

Option 1: run the circuit with test $\vec{\lambda}$ and obtain the g.s. energy profile.

Option 2: use $\overrightarrow{\Phi}_{opt}$ and $\overrightarrow{\Theta}_{opt}$ as starting point of a standard VQE optimization (<u>opt-meta-VQE</u>)

1D XXZ spin chain

• • • •

14 qubits simulation, $\lambda = 0.75$

Linear encoding: $R_z(w_1 \triangle + \phi_1)R_y(w_2 \triangle + \phi_2) \otimes {}^{Alternating}_{CNOT}$

Processing layer: $R_z(\theta_1)R_y(\theta_2) \otimes \frac{\text{Alternating}}{\text{CNOT}}$

Results 2 encoding + 2 processing layers

$$H = \sum_{i=1}^{n} \sigma_i^x \sigma_{i+1}^x + \sigma_i^y \sigma_{i+1}^y + \Delta \sigma_i^z \sigma_{i+1}^z + \lambda \sigma_i^z$$

H_4 molecule

 H_4 molecule in 8 spin-orbitals (STO-3G basis set)

Ansatz: k-UpCCGSD (k=2 for these results)

Linear encoding: $\theta = \alpha + d\beta$

_ Hamiltonian Parameter (intermolecular distance)

Non-linear encoding: $\theta = \alpha e^{\beta(\gamma - d)} + \delta$ (floating Gaussians)

Conclusions

- Meta-VQE can be used to scan over Hamiltonian parameteres to find the interesting energy regions.
 - Reduction in the total computatational cost (less number of objective evaluations)
- We can use its parameter solution to run a more precise minimization (opt-meta-VQE)
 - Faster convergence, potentially avoiding barren plateaus and local minima
- The encoding strategy in VQE-type algorithms might be useful to guide the optimization towards the solution.
 - Avoiding barren plateaus (T. Volkoff, P. J. Coles, Quantum Sci. Technol. 6, 025008 (2021))

Code and demo (notebooks)

https://github.com/aspuru-guzik-group/Meta-VQE

Using Tequila quantum package

https://github.com/aspuru-guzik-group/tequila

Alán Aspuru-Guzik

Questions?

Special thanks to

Thi Ha Kyaw

Variational Quantum Eigensolver

Bond dissociation curve of the He-H⁺ molecule.

Hamiltonian that can be written with Pauli strings

$$\langle \mathcal{H} \rangle = \sum_{i\alpha} h^i_{\alpha} \langle \sigma^i_{\alpha} \rangle + \sum_{ij\alpha\beta} h^{ij}_{\alpha\beta} \langle \sigma^i_{\alpha} \sigma^j_{\beta} \rangle + \dots$$
Outputs of the quantum computer

Quantum circuit that generates the ground state of that Hamiltonian

e.g. Hartree-Fock
$$|\Psi\rangle=e^{T-T}|\Phi\rangle_{\rm ref.}$$
 Unitary operation, e.g. Cluster operator

GOAL: find $|\psi\rangle$

A. Peruzzo, J. McClean, P. Shadbolt, M.-H.Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, at d'Brien, Nature Zono. 5, 4213 (2014)

Encoding the data

• • • •

A product of unitaries can be written with a single unitary

$$U(\vec{\phi}_1) \dots U(\vec{\phi}_N) \equiv U(\vec{\varphi})$$

If we add some fixed parameter dependency (the data), the operation becomes flexible and data-dependent.

Data re-uploading

$$\mathcal{U}(\vec{\phi}, \vec{x}) \equiv U(\vec{\phi}_N)U(\vec{x}) \dots U(\vec{\phi}_1)U(\vec{x})$$

A. Pérez-Salinas, ACL, E. Gil-Fuster and J. I. Latorre, Quantum 4, 226 (2020)

1D XXZ spin chain

$$H = \sum_{i=1}^{n} \sigma_i^x \sigma_{i+1}^x + \sigma_i^y \sigma_{i+1}^y + \Delta \sigma_i^z \sigma_{i+1}^z + \lambda \sigma_i^z$$

For $\lambda = 0$, two QPT: $\Delta = -1$, $\Delta = 1$

Analytical solution of the model: using the Bethe ansatz (no known quantum circuit)

For $\lambda \neq 0$: the phase transtition points move to higher values of Δ

Good worse-case-scenario model

- We do not know which circuit ansatz will work
- The ground state is highly entangled (that's why we need quantum computers!)
- The energy profile is not trivial: it presents a peak in the region $\Delta > -1$

Single transmon

Kyaw, Menke, Sim, Sawaya, Oliver, Guerreschi, Aspuru-Guzik, arXiV:2006.03070 (2020)

Single transmon simulation using QCAD mapping

Ansatz: 1 encoding + 1 processing layers + 1 final layer of $R_x R_z$

Layer: $R_x R_z$ + all connected XX gates

Parameters of XX gates are the same in all layers (same entanglement gate)

Linear encoding: $R_x(w_1 f + \phi_1) R_z(w_2 f + \phi_2)$

Hamiltonian Parameter (flux)

Legend

Meta-VQE:

Linear encoding. Loss function with test points.

Opt-meta-VQE:

VQE optimization with opt. meta-VQE parameters as starting point. Single minimization per parameter.

VQE:

Standard VQE. 2 processing layers. Result of previous minimization as initial point of the next one.

VOE enc:

Same as VQE but including an encoding layer.