Indian Institute of Information Technology Sri City

Mid-1; Machine Learning; Feb 2019

Calculators are allowed; closed book & closed notes exam; 90 min. duration.

Assume any missing information appropriately by clearly stating them.

(a) Consider the training set given. Apply Naive Bayes classifier to classify a data item (Blue, True) t . [2 Marks]

		1
A	В	Class-
		label
Red	True	Yes
Green	False	Yes
Green	True	Yes
Blue	False	No
Blue	False	No
Red	False	No
Blue	True	Yes
Green	True	No

- (b) Considering the above given training set, find overall error rate of the Naïve Bayes classifier. [4 Marks]
- For a one dimensional two class problem, let three actions, viz., α_1 , α_2 , α_3 are possible where α_1 is to decide the class is ω_1 , α_2 is to decide the class is ω_2 , and α_3 is to reject. Let the class conditional density for the two classes be

where
$$\alpha_1$$
 is to declate the class is ω_1 , α_2 is to declate the class is ω_2 , and α_3 is the class conditional density for the two classes be
$$p(x|\omega_1) = \begin{cases} 1-\frac{x}{2}, & \text{for } 0 \leq x \leq 2\\ 0, & \text{otherwise} \end{cases}, \qquad p(x|\omega_2) = \begin{cases} \frac{x}{2}-\frac{1}{2}, & \text{for } 1 \leq x \leq 3\\ 0, & \text{otherwise} \end{cases}$$

and assume equal priors. Let the loss matrix where the loss $\lambda_{ij} = \lambda(\alpha_i | \omega_j)$ is $\begin{bmatrix} 0 & 1 \\ 1.5 & 0 \\ 0.3 & 0.4 \end{bmatrix}$,

find the decision regions for these actions on the 1D space. Draw appropriate diagrams to highlight your understanding. [6 Marks]

3 Consider that the parametric form of the density function to be

$$p(x) = \frac{1}{\theta^2} x e^{-x/\theta}, \quad 0 \le x < \infty, \ 0 < \theta < \infty$$

Let the given data be $D = \{x_1, x_2, ..., x_n\}$, find the maximum likelihood estimate for the parameter θ . [3 Marks]

--the end--