MAT1120

Robin A. T. Pedersen

November 3, 2016

Contents

4	Kpt	.4 - Vektorrom	3
	4.1	4.1 - Vektor rom og underrom	3
		4.1.1 Definisjon - vektorrom	3
		4.1.2 Definisjon - underrom	3
		4.1.3 Teorem 1	3
	4.2	4.2 - Nullrom, kolonnerom og lineærtransformasjoner	3
		4.2.1 Definisjon - Nullrom	3
		4.2.2 Teorem 2	4
		4.2.3 Definisjon - Kolonnerom	4
		4.2.4 Teorem 3	4
		4.2.5 Definisjon - Lineærtransformasjon	4
		4.2.6 Begrep - kjerne (kernel)	4
	4.3	4.3 - Lineært uavhengige mengder: basiser	4
		4.3.1	4
	4.4	4.4 - Koordinatsystemer	4
		4.4.1	4
	4.5	4.5 - Dimensjon av vektorrom	5
		4.5.1	5
	4.6	4.6 - Rang	5
		4.6.1	5
	4.7	4.7 - Basisskifte	5
		4.7.1	5
	4.8	4.8 - Ikke eksamensrelevant	5
	4.9	4.9 - Anvendelser til Markovkjeder	5
		4.9.1	5
5	Knt	5.5 - Egenverdier og Egenvektorer	5
J	5.1	5.1 - Egenvektor og egenverdier	5
	0.1	5.1.1	5
	5.2	5.2 - Den karakteristisk ligningen	5
	0.2	5.2.1	5
	5.3	5.3 - Diagonalisering	5

		5.3.1 5
	5.4	5.4 - Egenvektorer og lineærtransformasjoner 6
		5.4.1
	5.5	5.5 - Komplekse egenverdier
		5.5.1 6
	5.6	5.6 - Diskrete dynamiske systemer 6
		5.6.1
	5.7	5.7 - Anvendelser til differensialligninger 6
		5.7.1
	5.8	5.8 - Iterative estimater for egenverdier? TODO 6
		5.8.1
6	Kpt	.6 - Ortogonalitet og Minstekvadrater 6
•	6.1	6.1 - Indre produkt, lengde og ortogonalitet 6
		6.1.1
	6.2	6.2 - Ortogonale mengder
		6.2.1
	6.3	6.3 - Ortogonal projeksjon
		6.3.1
	6.4	6.4 - Gram-Schmidt prosessen
		6.4.1
	6.5	6.5 - Minstekvadraters problem
		6.5.1
	6.6	6.6 - Anvendelser til lineære modeller
		6.6.1
	6.7	6.7 - Indreproduktrom? TODO
		6.7.1
	6.8	6.8 - Anvendelser til indreproduktrom
		6.8.1
7	Kpt	.7 - Symmetriske Matriser og Kvadratisk Form 7
	7.1	7.1 - Diagonalisering av symmetriske matriser
		7.1.1
	7.2	7.2 - Kvadratisk form
		7.2.1
	7.3	7.3 - Begrenset optimalisering? TODO
		7.3.1
	7.4	7.4 - Singulærverdidekomposisjon
		7.4.1 8
	7.5	7.5 - Ikke pensum? TODO
8	Not	at 1 8
		8.0.1 8
9	Not	at 2 8
		9.0.2

4 Kpt.4 - Vektorrom

4.1 - Vektor rom og underrom

4.1.1 Definisjon - vektorrom

Et vektorrom er en ikketom mengde V. Den består av såkalte *vektorer*. Disse vektorene må være beskrevet av 2 operasjoner: Addisjon og skalarmultiplikasjon.

De to operasjonene defineres av følgende aksiomer: La $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$

- 1. $\mathbf{u} + \mathbf{v} \in V$
- $2. \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- 3. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
- 4. $\exists \mathbf{0} \in Vs.a.\mathbf{u} + \mathbf{0} = \mathbf{u}$
- 5. $\forall \mathbf{u} \in V, \ \exists -\mathbf{u} \in V s.a.\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$
- 6. $c\mathbf{u} \in V, c \in \mathbb{R}$
- 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
- 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
- 9. $c(d\mathbf{u}) = (cd)\mathbf{u}$
- 10. 1**u**=**u**

4.1.2 Definisjon - underrom

Et underrom H er en delmengde av V. H er et underrom av V. To egenskaper må være oppfylt:

- 1. H er lukket under addisjon. $\mathbf{u} + \mathbf{v} \in H$, $\forall \mathbf{u}, \mathbf{v} \in H$
- 2. H er lukket under skalarmultiplikasjon. $c\mathbf{u} \in H, \ \forall c \in \mathbb{R}$

4.1.3 Teorem 1

Hvis $\mathbf{v}_1,...,\mathbf{v}_p$ er i et vektorrom V, så er Span $\{\mathbf{v}_1,...,\mathbf{v}_p\}$ et underrom av V.

4.2 - Nullrom, kolonnerom og lineærtransformasjoner

4.2.1 Definisjon - Nullrom

Nullromet til en $m \times n$ matrise A, er mengden av alle løsninger av $A\mathbf{x} = \mathbf{0}$.

$$Nul(A) = \{ \mathbf{x} : \mathbf{x} \in \mathbb{R}^n, A\mathbf{x} = \mathbf{0} \}$$

4.2.2 Teorem 2

Nullrommet til A $m \times n$, er et underrom av \mathbb{R}^n .

Med andre ord: $A\mathbf{x} = \mathbf{0}$ har m homogene lineære ligninger, med n ukjente. Mengden av løsninger er et underrom av \mathbb{R}^n .

4.2.3 Definisjon - Kolonnerom

Kolonnerommet til $m \times n$ matrisen A, er mengden av alle lineærkombinasjoner av kolonnene i A.

$$A = [\mathbf{a}_1 \quad \dots \quad \mathbf{a}_n]$$

$$Col(A) = Span\{\mathbf{a}_1, ..., \mathbf{a}_n\}$$

4.2.4 Teorem 3

Kolonnerommet til A $m \times n$, er et underrom av \mathbb{R}^m .

Med andre ord: Kolonnene i A har m elementer i hver vektor. Kolonnerommet er alle lineærkombinasjoner av disse, og har derfor m elementer i hver vektor.

4.2.5 Definisjon - Lineærtransformasjon

En lineærtransformasjon T fra et vektorrom V til et annet vektorrom W, er en regel som gir hver \mathbf{x} i V en unik vektor $T(\mathbf{x})$ i W.

To egenskaper må oppfylles

1.
$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}), \ \forall \ \mathbf{u}, \mathbf{v} \in V$$

2.
$$T(c\mathbf{u}) = cT(\mathbf{u}), \ \forall \ c \in \mathbb{R}^n$$

4.2.6 Begrep - kjerne (kernel)

Praktisk talt synonymt med nullrom.

4.3 - Lineært uavhengige mengder: basiser

4.3.1

TODO

4.4 4.4 - Koordinatsystemer

4.4.1

TODO

4.5 4.5 - Dimensjon av vektorrom			
4.5.1			
TODO			
4.6 4.6 - Rang			
4.6.1			
TODO			
47 47 Decimalific			
4.7 4.7 - Basisskifte			
4.7.1			
TODO			
4.8 4.8 - Ikke eksamensrelevant			
Ikke eksamensrelevant.			
4.9 4.9 - Anvendelser til Markovkjeder			
4.9.1			
TODO			
5 Kpt.5 - Egenverdier og Egenvektorer			
5.1 5.1 - Egenvektor og egenverdier			
5.1.1			
TODO			
5.2 5.2 - Den karakteristisk ligningen			
5.2.1			
TODO			
5.3 5.3 - Diagonalisering			
E 9 1			
5.3.1 TODO			

5.4.1 TODO
5.5 5.5 - Komplekse egenverdier5.5.1TODO
5.6 - Diskrete dynamiske systemer5.6.1TODO
5.7 - Anvendelser til differensialligninger5.7.1TODO
5.8 5.8 - Iterative estimater for egenverdier? TODO $5.8.1$ TODO
6 Kpt.6 - Ortogonalitet og Minstekvadrater
6.1 - Indre produkt, lengde og ortogonalitet6.1.1TODO
6.2 6.2 - Ortogonale mengder6.2.1TODO
6.3 6.3 - Ortogonal projeksjon6.3.1TODO

5.4 5.4 - Egenvektorer og lineærtransformasjoner

6.4.1 TODO 6.5 - Minstekvadraters problem 6.5.1TODO 6.6 - Anvendelser til lineære modeller 6.6.1TODO 6.7 - Indreproduktrom? TODO 6.7.1 TODO 6.8 - Anvendelser til indreproduktrom 6.8.1 TODO Kpt.7 - Symmetriske Matriser og Kvadratisk Form 7.1 - Diagonalisering av symmetriske matriser 7.1.1TODO 7.2 7.2 - Kvadratisk form 7.2.1 TODO 7.3 - Begrenset optimalisering? TODO 7.3.1 TODO

6.4 6.4 - Gram-Schmidt prosessen

7.4 7.4 - Singulærverdidekomposisjon

7.4.1

TODO

7.5 7.5 - Ikke pensum? TODO

Ikke pensun? TODO

8 Notat 1

8.0.1

TODO

9 Notat 2

9.0.2

TODO