STA 1013: Statistics through Examples

Lecture 31: Linear Regression Analysis

Hwiyoung Lee

December 2, 2019

Department of Statistics, Florida State University

Final Exam

Exam Day:

- Section 5 : December 10th (Tuesday), 10:00 12:00 noon.
- Section 15 : December 12th (Thursday), 7:30 9:30 AM.

Check website: https://registrar.fsu.edu/registration_guide/fall/exam_schedule/

Topics:

- 1. Hypothesis test
 - Z-test for mean
 - t-test for mean
 - Z-test for proportion
- 2. Correlation
- 3. Linear Regression

Note: Open book exam

Correlation Coefficient

Statisticians measure the strength of a linear correlation with a number called the correlation coefficient.

Correlation coefficient

$$r = \frac{\sum_{i=1}^{n} \left(\frac{(x_i - \bar{x})(y_i - \bar{y})}{s_x s_y} \right)}{n - 1}$$

$$= \frac{n(\sum_{i=1}^{n} x_i y_i) - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i}{\sqrt{n \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2} \sqrt{n \sum_{i=1}^{n} y_i^2 - (\sum_{i=1}^{n} y_i)^2}}$$

Use Calculator : LinRegTTest

Properties of a Correlation

 The correlation coefficient, r, is a measure of the strength of a correlation. Its value can range only from -1 to 1.

$$-1 \leqslant r \leqslant 1$$

- If there is no correlation, the value of r is close to 0.
- If there is a positive correlation, the correlation coefficient is positive ($0 < r \le 1$). Values of r close to 1 indicate a strong positive correlation and positive values closer to 0 indicate a weak positive correlation.
- If there is a negative correlation, the correlation coefficient is negative $(-1 \le r < 0)$: Values of r close to -1 indicate a strong negative correlation and negative values closer to 0 indicate a weak negative correlation.

Scatter plot and Correlation

• Positive correlation

• Negative correlation

Linear Regression

- When two variables are related, one can be used to predict the value of the other
- Examples :
 - 1. Knowing the amount of advertising expenses, one can predict the amount of sales.
 - Knowing the daily temperature, one can predict the amount of water consumption.
 - 3. Knowing Fathers heights, one can predict Sons heights

Best-fit line (or regression line)

 We could draw any number of lines, but we need to have a criteria for determining which one is "best."

 The best-fit line (or regression line) on a scatterplot is a line that lies closer to the data points than any other possible line (according to a standard statistical measure of closeness).

Linear Regression Analysis

- The relationship between the two variables is approximated by a straight line.
- A statistical procedure called regression analysis can be used to develop an equation showing how the variables are related.
- The simple linear regression model is:

$$y = \beta_0 + \beta_1 x + \varepsilon$$

Terminology: Linear Regression model

The simple linear regression model

$$y = \beta_0 + \beta_1 x + \varepsilon$$

1. Dependent variable (y)

- The variable being predicted
- Response variable

2. Independent variable (x)

- The variable being used to predict the value of the dependent variable.
- Predictor or Explanatory variable
- 3. β_0 : Intercept of the regression line
- 4. β_1 : Slope of the regression line

Note : β_0, β_1 are called parameters of the model

Estimation

• The estimated simple linear regression equation

$$\hat{y} = b_0 + b_1 x$$

	Population Parameter	Sample Statistic
y-Intercept	β_0	b_0
Slope	β_1	b_1
Equation	$y = \beta_0 + \beta_1 x$	$\hat{y} = b_0 + b_1 x$

• How can we estimate b_0, b_1 ? Least Squares methods

Least Squares Methods

Residual

$$r_i(\text{ or } e_i) = \underbrace{y_i}_{\text{Observed value}} - \underbrace{\hat{y}_i}_{\text{Predicted value}}$$

ullet For a pair of sample x and y values, the residual is the difference between the observed sample value of y and the \hat{y} value that is predicted by using the regression equation.

Least Squares Methods

Least Squares Methods

Minimize
$$\sum_{i=1}^n r_i^2 = \text{Minimize } \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

$$= \text{Minimize } \sum_{i=1}^n (y_i - b_0 - b_1 x)^2$$

 A straight line satisfies the least-squares property if the sum of the squares of the residuals is the smallest sum possible.

Least Squares Methods (Formulas for b_0 and b_1)

1. Slope: b_1

$$b_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$= \frac{n(\sum_{i=1}^{n} x_i y_i) - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i}{n \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2}$$

$$= r \frac{s_y}{s_r}$$

,where r is the correlation coefficient, s_x, s_y denote the standard deviation of x and y, respectively

2. y-Intercept : b_0

$$b_0 = \frac{\sum_{i=1}^n y_i \sum_{i=1}^n x_i^2 - \sum_{i=1}^n x_i \sum_{i=1}^n x_i y_i}{n \sum_{i=1}^n x_i^2 - (\sum_{i=1}^n x_i)^2}$$
$$= \bar{y} - b_1 \bar{x}$$

Example: Least Squares Methods

Data

X	1	2	4	5
У	4	24	8	32

Calculate

x	y	$(x_i - \bar{x})$	$(y_i - \bar{y})$	$(x_i - \bar{x})(y_i - \bar{y})$	$(x_i - \bar{x})^2$
1	4				
2	24				
4	8				
5	32				

- \bullet b_1 :
- b_0 :

Example: Least Squares Methods

• The best linear line (Estimated Regression line)

$$\hat{y} = 5 + 4x$$

Residuals and the Estimated Regression line

Calculating the Estimated Regression line

LinReg(a+bx)

- 1. Press the stat and highlight CALC
- 2. Scroll down to 8: LinReg(a+bx)
- 3. Enter values
 - Xlist : L_1
 - Ylist : L_2
 - Freq:
 - Store RegEQ : Y_1

Example: Calculating the Estimated Regression line

Police sometimes use footprint evidence to estimate the height of a suspect, and the height is included in a description that becomes part of a BOLO ("be on the lookout").

Shoe Print (cm)	29.7	29.7	31.4	31.8	27.6
Height (cm)	175.3	177.8	185.4	175.3	172.7

• Find the best linear line ?

Example : Altitude and Temperature

Altitude (thousand feet)	3	10	14	22	28	31	33
Temperature		37	24	-5	-30	-41	-54

1. Find the regression line.

2. At 6327 ft (or 6.327 thousand feet), find the best predicted temperature.

Interpreting the Regression Equation

1. Meaning of β_1

change in the response variable for one unit of change in the independent variable

- $\beta_1 < 0$: the change is a decrease
- ullet $\beta_1>0$: the change is an increase

2. Meaning of β_0

- If x = 0 makes sense, then it is the value of y when x = 0.
- If x = 0 does not make sense, it is just an intercept used to fit a more flexible model.

Example: ACT score and GPA

The director of admissions of a small college selected 120 students at random from the new freshman class in a study to determine whether a student's grade point average (GPA) at the end of the freshman year (y) be predicted by the ACT score (x).

- Estimated equation (from computer) : $\hat{y} = 2.114 + .0388x$
- Interpretation of β_1 :
- Predict the GPA of a student with ACT of 20 :
- Predict the GPA of a student with ACT of 30 :

Blaze Pizza

Blaze Pizza's most successful locations are near college campuses. The managers believe that quarterly sales for these restaurants are related positively to the size of the student population; that is, restaurants near campuses with a large student population tend to generate more sales than those located near campuses with a small student population.

• Dependent variable : Quarterly Sales

• Independent variable : Student population

Suppose data were collected from a sample of 10 Blaze Pizza restaurants located near college campuses

- For the *i*th observation or restaurant in the sample,
 - x_i is the size of the student population (in thousands)
 - y_i is the quarterly sales (in thousands of dollars).

Restaurant	Student Population (1,000)	Quarterly Sales(\$ 1,000)
i	x_i	y_i
1	2	58
2	6	105
3	8	88
4	8	118
5	12	117
6	16	137
7	20	157
8	20	169
9	22	149
10	26	202

Scatterplot

• Find the regression coefficients

• Estimated Regression line : $\hat{y} = 60 + 5x$

• The slope of the estimated regression equation $(b_1 = 5)$ is positive, implying that as student population increases, sales increase.

- In fact, we can conclude (based on sales measured in \$1,000s and student population in 1,000s) that an increase in the student population of 1,000 is associated with an increase of \$5,000 in expected sales
- that is, quarterly sales are expected to increase by \$5 per student
- If we wanted to predict quarterly sales for a restaurant to be located near a campus with 16,000 students, we would compute

$$\hat{y} =$$

 Hence, we would predict quarterly sales of \$______ for this restaurant.