

$$Sales = \beta_0 + \beta_1 Price + \beta_2 AdExp + \beta_3 PromExp$$

$$Sales = \beta_0 + \beta_1 Price + \beta_2 AdExp + \beta_3 PromExp$$

$$Sales = \beta_0 + \beta_1 Price + \beta_2 AdExp + \beta_3 PromExp$$

$$Sales = \beta_0 + \beta_1 Price + \beta_2 AdExp + \beta_3 PromExp$$

$$Sales = \beta_0 + \beta_1 Price$$

$$Sales = \beta_0 + \beta_1 Price$$

$$Residuals = Sales^{actual} - Sales^{predicted}$$

Sales =
$$\beta_0$$
 + β_1 Price
Sales = 114215.08 - 4913.73Price

SUMMARY OUTPUT		
Regression Statistics		
Multiple R	0.786759321	
R Square	0.618990229	
Adjusted R Square	0.601671603	
Standard Error	1997.152694	
Observations	24	

R-square

[A "goodness of fit" measure]

SUMMARY OUTPUT		
Regression Statistics		
Multiple R	0.786759321	
R Square	0.618990229	
Adjusted R Square	0.601671603	
Standard Error	1997.152694	
Observations	24	

R-square

[A "goodness of fit" measure]

□ Varies from 0 through 1.

- □ Proportion of variation in the Y variable explained by the regression model.
- □ Values closer to 1 indicate a good fit.

SUMMARY OUTPUT		
Regression Statistics		
Multiple R	0.786759321	
R Square	0.618990229	
Adjusted R Square	0.601671603	
Standard Error	1997.152694	
Observations	24	

R-square

[A "goodness of fit" measure]

- □ Varies from 0 through 1.
- □ Proportion of variation in the Y variable explained by the regression model.
- □ Values closer to 1 indicate a good fit.

	SUMMARY OUTPUT		R-square
			[A "goodness of fit" measure]
	Regression St	atistics	
	Multiple R	0.786759321	
-	R Square	0.618990229	←
	Adjusted R Square	0.601671603	
	Standard Error	1997.152694	
	Observations	24	

- □ Varies from 0 through 1.
- □ Proportion of variation in the Y variable explained by the regression model.
- □ Values closer to 1 indicate a good fit.

SUMMARY OUTPUT		
Regression Statistics		
Multiple R	0.786759321	
R Square	0.618990229	
Adjusted R Square	0.601671603	
Standard Error	1997.152694	
Observations	24	

R-square

[A "goodness of fit" measure]

- □ Varies from 0 through 1.
- □ Proportion of variation in the Y variable explained by the regression model.
- □ Values closer to 1 indicate a good fit.

- Residuals and Errors.
- □ R-square: A "goodness of fit" measure.

Regression is a process that has errors

- Residuals and Errors.
- R-square: A "goodness of fit" measure.

- Omitted variables.
- Functional relationship between the Y and X variables.
- □ The theory of regression analysis is based on certain assumptions about these errors.

Regression is a process that has errors

- Residuals and Errors.
- R-square: A "goodness of fit" measure.

- Omitted variables.
- Functional relationship between the Y and X variables.
- The theory of regression analysis is based on certain assumptions about these errors.

Regression is a process that has errors

- Residuals and Errors.
- R-square: A "goodness of fit" measure.

- → □ Omitted variables.
 - Functional relationship between the Y and X variables.
 - The theory of regression analysis is based on certain assumptions about these errors.

Regression is a process that has errors

- Residuals and Errors.
- □ R-square: A "goodness of fit" measure.

- Omitted variables.
- → □ Functional relationship between the Y and X variables.
 - The theory of regression analysis is based on certain assumptions about these errors.

Regression is a process that has errors

- Residuals and Errors.
- R-square: A "goodness of fit" measure.

- Omitted variables.
- Functional relationship between the Y and X variables.
- □ The theory of regression analysis is based on certain assumptions about these errors.