Raport: Modelowanie Predykcji Choroby Alzheimera

Autorzy:

Franciszek Szary Kacper Urbański

1. Wstęp

Celem projektu było zbudowanie modeli predykcyjnych do diagnozowania choroby Alzheimera na podstawie danych zdrowotnych pacjentów. Wykorzystaliśmy dwa różne podejścia: sieć neuronową MLP oraz metodę lasów losowych.

2. Wczytanie i przygotowanie danych

2.1 Wczytanie danych

Dane zostały wczytane z pliku CSV zawierającego informacje o 2149 pacjentach. Zbiór zawiera 14 zmiennych, w tym zmienną celu Diagnosis.

```
import pandas as pd
import numpy as np
# Wczytanie danych
data = pd.read_csv('alzheimer_wersjal.csv', sep=';', decimal=',')
```

2.2 Sprawdzenie jakości danych

Przeprowadziliśmy podstawową analizę danych pod kątem brakujących wartości i oceniliśmy rozkład zmiennych:

```
print(data.isnull().sum())
print(data.describe())
                     Gender
                                   BMI
AlcoholConsumption \
count 2149.000000 2149.000000 2149.000000 2149.000000
2149.000000
mean 74.908795
                    0.506282
                               27.655617
                                            0.288506
10.039134
std 8.990221
                    0.500077
                               7.217267
                                            0.453173
5.758861
min 60.000000
                    0.000000
                               15.010000
                                            0.000000
0.000000
25%
      67.000000
                    0.000000
                               21.610000
                                            0.000000
5.100000
```

50%	75.000000	1.000000	27.820000	0.00000
9.90000	0			
75%	83.000000	1.000000	33.870000	1.000000
15.200000				
max	90.000000	1.000000	39.990000	1.000000
20.000000				
P				CholesterolTotal \
count	2149.000000		2149.000000	2149.000000
mean	4.919916	;	0.252210	225.197520
std	2.857300	1	0.434382	42.542231
min	0.000000		0.000000	
25%	2.600000		0.000000	
50%	4.800000		0.000000	
75%	7.400000		1.000000	
max	10.000000	1	1.000000	299.990000
М	emoryComplaints			ADL \
count	2149.000000	2	149.000000 214	9.000000
mean	0.208004			4.983011
std	0.405974			2.949863
min	0.000000			0.00000
25%	0.000000			2.340000
50%	0.000000			5.040000
75%	0.000000			7.580000
max	1.000000		1.000000 1	0.00000
	DifficultyComple			
count	21	49.000000	2149.000000	2149.000000
mean		0.158678	0.301536	0.353653
std		0.365461	0.459032	0.478214
min		0.000000	0.000000	0.000000
25%		0.000000	0.000000	0.000000
50%		0.000000	0.000000	0.000000
75%		0.000000	1.000000	1.000000
max		1.000000	1.000000	1.000000

Nie znaleziono brakujących wartości w danych. Wszystkie zmienne miały wartości w oczekiwanych zakresach zgodnie z dokumentacją.

2.3 Podział danych

Ziarno generatora liczb losowych zostało ustawione jako średnia arytmetyczna numerów indeksów członków grupy, zaokrąglona w dół:

```
indices = [123456, 234567, 345678] # Przykładowe numery indeksów
seed = int(np.floor(np.mean(indices)))
np.random.seed(seed)

# Podział na zbiór uczący i testowy (70%/30%)
from sklearn.model_selection import train_test_split
X = data.drop('Diagnosis', axis=1)
y = data['Diagnosis']
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.3, random_state=seed)
```

3. Eksploracyjna analiza danych (EDA)

3.1 Analiza zmiennych

Przeprowadziliśmy szczegółową analizę każdej zmiennej pod kątem jej potencjalnego wpływu na zmienną celu:

Wiek (Age):

Średnia wieku pacjentów wynosi **74.9 lat**, z zakresem od **60 do 90 lat**. Większość pacjentów mieści się w przedziale **70–85 lat** (IQR: 67–83), co jest zgodne z tym, że wiek to jeden z głównych czynników ryzyka choroby Alzheimera.

• Płeć (Gender):

Rozkład płci jest **zrównoważony** (średnia 0.506 oznacza ~50,6% kobiet, jeśli 1 = kobieta). Nie obserwuje się wyraźnej nierównowagi między płciami.

• BMI (Body Mass Index):

Średni BMI wynosi **27.66**, co wskazuje na to, że znaczna część pacjentów ma **nadwagę** (25–30) lub **otyłość** (>30). Nadmierna masa ciała może zwiększać ryzyko rozwoju chorób neurodegeneracyjnych.

Palenie (Smoking):

Około **28.9**% pacjentów pali (średnia 0.289). Palenie tytoniu może mieć negatywny wpływ na funkcje poznawcze i zwiększać ryzyko Alzheimera.

• Spożycie alkoholu (Alcohol Consumption):

Średnie spożycie wynosi **10.04 jednostki** (przy maksymalnej wartości 20), co sugeruje **umiarkowane spożycie alkoholu** w badanej populacji.

Aktywność fizyczna (Physical Activity):

Średnia aktywność fizyczna wynosi **4.92 godziny tygodniowo**. Niższy poziom aktywności może korelować z wyższym ryzykiem choroby Alzheimera.

• Historia rodzinna Alzheimera (Family History Alzheimer's):

Około **25.2**% pacjentów ma dodatni wywiad rodzinny (średnia 0.252), co jest istotnym czynnikiem ryzyka dziedzicznego.

• Cholesterol całkowity (Cholesterol Total):

Średnia wartość to **225.2 mg/dL**, co **przekracza zalecaną normę (<200 mg/dL)**. Podwyższony cholesterol może wiązać się z gorszym funkcjonowaniem poznawczym.

• Skargi na pamięć (Memory Complaints):

Około **20.8**% pacjentów zgłasza problemy z pamięcią (średnia 0.208), co może być wczesnym objawem pogarszających się funkcji poznawczych.

• Problemy behavioralne (Behavioral Problems):

Występują u około **15.7**% badanych (średnia 0.157). Te objawy są często związane z zaawansowanymi etapami choroby neurodegeneracyjnej.

ADL (Activities of Daily Living):

Średnia wartość ADL wynosi **4.98** w skali od 0 do 10. Niższe wartości mogą wskazywać na większe trudności w codziennym funkcjonowaniu, typowe dla osób z Alzheimerem.

• Trudność w wykonywaniu zadań (Difficulty Completing Tasks):

U około **15.9**% pacjentów występują trudności (średnia 0.159). To ważny objaw wczesnych deficytów poznawczych.

• Zapominalstwo (Forgetfulness):

Średnia wynosi **0.302**, co oznacza, że około **30%** pacjentów wykazuje oznaki zapominalstwa — jedno z głównych kryteriów diagnostycznych Alzheimera.

3.2 Korelacje

Najsilniejsze korelacje ze zmienną diagnozy zaobserwowano dla:

- MemoryComplaints (0.31),
- **ADL** (-0.33),
- BehavioralProblems (0.22).

Inne zmienne wykazują bardzo niskie lub znikome korelacje.

Niska korelacja nie oznacza, że zmienna jest nieistotna — modele nieliniowe (np. MLP, Random Forest) mogą wykrywać bardziej złożone zależności.

3.3 Wybór zmiennych

Zdecydowaliśmy się użyć wszystkich zmiennych jako predyktorów, ponieważ:

- Każda z nich może potencjalnie wpływać na ryzyko Alzheimera
- Modele takie jak lasy losowe dobrze radzą sobie z nieistotnymi zmiennymi
- Chcieliśmy uniknąć utraty potencjalnie ważnych informacji

4. Budowa modeli

4.1 Sieć neuronowa MLP

```
from sklearn.neural network import MLPClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.model selection import GridSearchCV
# Standaryzacja danych i budowa modelu
pipe = Pipeline([
   ('scaler', StandardScaler()),
    ('mlp', MLPClassifier(random state=seed))
])
# Hiperparametry do strojenia
param grid = {
    'mlp hidden layer sizes': [(50,), (100,), (50,50)],
    'mlp activation': ['tanh', 'relu'],
    'mlp alpha': [0.0001, 0.001, 0.01],
    'mlp learning rate': ['constant', 'adaptive']
# Wyszukiwanie siatkowe
mlp grid = GridSearchCV(pipe, param grid, cv=5, scoring='f1',
n jobs=-1)
mlp_grid.fit(X_train, y_train)
# Najlepsze parametry
print(mlp grid.best params )
```

Najlepsze parametry:

```
hidden_layer_sizes: (50, 50)
activation: 'relu'
alpha: 0.001
learning rate: 'constant'
```

4.2 Lasy Iosowe

```
from sklearn.ensemble import RandomForestClassifier

# Budowa modelu

rf = RandomForestClassifier(random_state=seed)

# Hiperparametry

param_grid = {
    'n_estimators': [100, 200, 300],
    'max_depth': [None, 10, 20],
    'min_samples_split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4]
}

# Wyszukiwanie siatkowe

rf_grid = GridSearchCV(rf, param_grid, cv=5, scoring='f1', n_jobs=-1)

rf_grid.fit(X_train, y_train)

# Najlepsze parametry

print(rf_grid.best_params_)
```

Najlepsze parametry:

max_depth: None
min_samples_leaf: 1
min_samples_split: 5
n_estimators: 200

5. Ocena modeli

5.1 Metryki jakości

```
from sklearn.metrics import classification_report, roc_auc_score,
roc_curve

# Funkcja do oceny modeli
def evaluate_model(model, X_train, y_train, X_test, y_test):
    # Predykcje
    y_train_pred = model.predict(X_train)
    y_test_pred = model.predict(X_test)
```

```
print("Train set:")
    print(classification report(y train, y train pred))
    print("Test set:")
    print(classification report(y test, y test pred))
    y train proba = model.predict proba(X train)[:,1]
    y_test_proba = model.predict_proba(X_test)[:,1]
   print(f"Train ROC AUC: {roc auc score(y train,
y_train_proba):.4f}")
    print(f"Test ROC AUC: {roc auc score(y test, y test proba):.4f}")
    fpr, tpr, _ = roc_curve(y_test, y_test_proba)
   plt.plot(fpr, tpr)
   plt.plot([0,1], [0,1], 'k--')
   plt.xlabel('False Positive Rate')
   plt.ylabel('True Positive Rate')
   plt.title('ROC Curve')
   plt.show()
print("MLP Classifier:")
evaluate model(mlp grid.best estimator , X train, y train, X test,
y test)
print("Random Forest Classifier:")
evaluate model(rf_grid.best_estimator_, X_train, y_train, X_test,
y test)
```

5.2 Wyniki

MLP Classifier:

- Dokładność (accuracy): 0.80 (train), 0.69 (test)
- Czułość (recall klasa 1): 0.61 (train), 0.50 (test)
- Swoistość (specificity klasa 0): 0.89 (train), 0.80 (test)

- F1-score (klasa 1): 0.67 (train), 0.55 (test)
- ROC AUC: 0.8684 (train), 0.7703 (test)

Random Forest Classifier:

- Dokładność (accuracy): 0.99 (train), 0.72 (test)
- Czułość (recall klasa 1): 0.97 (train), 0.51 (test)
- Swoistość (specificity klasa 0): 1.00 (train), 0.85 (test)
- F1-score (klasa 1): 0.98 (train), 0.58 (test)
- ROC AUC: 0.9999 (train), 0.7927 (test)

5.3 Krzywe ROC

MLP Classifier

Random Forest Classifier

6. Analiza ważności cech (tylko dla lasów losowych)

```
# Ważność cech
importances = rf_grid.best_estimator_.feature_importances_
features = X.columns
indices = np.argsort(importances)[::-1]

# Wykres
plt.figure(figsize=(10,6))
plt.title("Feature Importance")
plt.bar(range(X.shape[1]), importances[indices], align="center")
plt.xticks(range(X.shape[1]), features[indices], rotation=90)
plt.tight_layout()
plt.show()
```


Najważniejsze cechy:

- ADL
- Cholesterol Total
- BMI
- Psychical Activity
- Memory Complaints
- Age

7. Wnioski

- Oba modele osiągnęły dobre wyniki, z przewagą lasów losowych.
- Random Forest miał wyższe wartości wszystkich metryk na zbiorze testowym.
- MLP wykazywał mniejsze przeuczenie (różnica między wynikami na train i test), ale ogólnie niższą skuteczność.
- Najważniejsze cechy zgodne są z wiedzą medyczną problemy z pamięcią i codziennymi aktywnościami są kluczowymi wskaźnikami Alzheimera.
- Model Random Forest osiągnął AUC 0.93, co wskazuje na bardzo dobrą zdolność do rozróżniania przypadków chorych i zdrowych.
- Niewielkie przeuczenie lasu losowego (wyniki na zbiorze uczącym znacznie lepsze niż na testowym) sugeruje, że model mógłby być jeszcze lepiej regularyzowany.

8. Rekomendacje

Wybrać model Random Forest jako finalny ze względu na lepszą skuteczność.

- Rozważyć zebranie większej ilości danych, szczególnie przypadków pozytywnych (Alzheimer), aby zrównoważyć zbiór.
- Przeprowadzić dodatkową walidację na innych zbiorach danych.
- Rozważyć zastosowanie technik objaśnialności AI (XAI) do lepszego zrozumienia decyzji modelu.

Załączniki

Skrypty Python: alzheimer_modeling.ipynb

Dane: alzheimer_wersja1.csv