

DPP-(1) – PERIODIC PROPERTIES

		DPP-(1) = PE	RIUDIC PROPERTIES			
1.	Among the follow	wing, the isoelectronic spec	cies are:			
	$(I) NH_3$	(II) H ₂ O	(III) CH ₃ -	(IV) SF ₆		
	(a) I and II	(b) II and III	(c) III and IV	(d) I, II and III		
2.	The maximum va	alue of l for an electron in θ	5 th energy level is:			
	(a) 6	(b) 5	(c) 4	(d) 2		
3.	If $n + l = 5$, which	n among the following sub	shells are possible			
	(a) 4s	(b) 4p	(c) 3d	(d) Both (b) and (c)		
4.	Which of the follo	owing electronic configura	tion represent most elect	ronegative element:		
	(a) $[He]2s^1$	(b) $[He]2s^2sp^1$	(c) $[He]2s^2sp^5$	(d) $[He]2s^22p^3$		
5.	The electronic co	The electronic configuration of three elements are –				
	(I) $[Rn]5f^{14} 6d^{1}$	$7s^2$ (II) [He] $2s^1$	(III) [He] $2s^2sp^5$			
	Consider the following statements					
	(i) II is an electropositive element		(ii) III is an electron	negative element		
	(iii) I is a d-block element		(iv) I and III shows	(iv) I and III shows variable oxidation state		
	Which statement	is true (T) or false (F)				
	(a) TTFT	(b) TTTT	(c) TTFF	(d) FFTT		
6.	When the quantum numbers n, l , m, s are represented by 4, 3, 4, $\pm 1/2$ the symbolism for the electron					
	is –					
	(a) 3d		(b) 4f			
	(c) 4d			of quantum number		
7.		owing set of quantum num	nber is correct for an elec	ctron in 4d orbital		
	(a) $n = 4$, $l = 2$, r					
	. , , , , , , , , , , , , , , , , , , ,	(b) $n = 4$, $l = 3$, $m = 3$, $s = -1/2$				
	(c) $n = 3$, $l = 3$, 1					
	(b) $n = 4$, $l = 2$, 1					
8.	How many electr	ons are present in all subs		(n+l)=5		
	(a) 6	(b) 16	(c) 18	(d) 2		

				DPP-(1) / PERIODIC PROPERTIES
9.	For the quantum n	umbers n, l, m and s hav	ing values 3, 2, 1, $+1/2$ r	represent the electron is present in
	(a) 4s	(b) 3d	(c) 3p	(d) 3s
10.	Which among the f	following is not in accord	lance with aufbau's princ	ciple –
	(a) $5f < 6d < 7s <$	7p	(b) $7s < 5f < 6d <$	7p
	(c) $3d < 4p < 5s < 6$	< 4d	(d) $6s < 4f < 5d <$	6p
11.	Which of the follow	wing have same number o	of electrons in their outer	rmost subshell –
	(a) Li and He	(b) O^2 and N^{2-}	(c) F^- and N^{3-}	(d) Na^+ and Mg^+
12.	If each orbital can	hold maximum of three e	electrons, the number of	Felements in 11 th period are—
	(a) 36	(b) 72	(c) 86	(d) 108
13.	According to Hund nitrogen –	l's rule, which among the	following will be correct	t representation for ground state of
	(a) 1	(b) 1 1 1	(c) 1	(d) [] [] [
14.	What are the possi	ble values for n , l and m	quantum number for 5f	orbitals –
	(a) $n = 5$, $l = 3$, m	= -4	(b) $n = 5$, $l = 3$, m	= +4
	(c) $n = 5$, $l = 2$, m		(d) $n = 5$, $l = 3$, m	=-2
15.	Identify the elemen	nt that has ground state co	onfiguration [Ar]4s ² 3d ³	
	(a) Aluminium	(b) Vanadium	(c) Gallium	(d) Titanium
		,	×××	
		1		

QUANTA CHEMISTRY

An Institute of Chemical Sciences

DPP-(1) - PERIODIC PROPERTIES

ANSWER KEY

1. d

7. a

13. t

2. b

8. c

14. d

3. d

9. b

15. b

4. c

10. a

5. c

11. c

6. d

12. d

HINTS & SOLUTIONS

- 1. d
- 1. Isoelectronic species have same number of electrons.

NH₃, H₂O and CH₃ have 10 e⁻ each hence isoelectronic

- 2. t
- 2. Maximum value of l for n = 6 is 5,

because, for any given value of n, l varies from zero to (n-1).

- 3. d
- 3. If n + l = 5

then,
$$l=3$$
 and $l=4$ $l=1$ $l=4$ $l=1$ $l=1$ $l=4$ $l=1$ $l=1$ $l=1$

- 4. c
- 4. Most electronegative element is fluorine and its electronic configuration is [He]2s²2p⁵.
- 5. c
- 5. II is lithium \Rightarrow an electropositive element

III is fluorine ⇒ an electronegative element

I is a f-block element

III do not shows variable oxidation state

6. if
$$n = 4$$

 $l \text{ can be} \Rightarrow 0, 1, 2, 3$

and m, can be \Rightarrow -3, -2, -1, 0 +1, +2, +3

 M_s or s can be $\Rightarrow +1/2$ or -1/2

7. for 4d orbital,
$$n = 4$$
 and $l = 2$

$$m = -2, -1, 0, +1, +2$$
 and $s = +1/2$ or $-1/2$

8.
$$(n+l)=5$$

Possible subshells are – 5s, 4p and 3d

No. of
$$e^-$$
 in $5s = 2$

No. of
$$e^-$$
 in $4p = 6$

Number of electron in 3d = 10

$$\therefore$$
 Total $e^- = 10 + 6 + 2 = 18e^-$

9. for
$$n = 3$$
 and $l = 2$

the e⁻ must be present in 3d orbital.

10. According to aufbau's principle.

Hence incorrect energy order is 5f < 6d < 7s < 7p

11. F- have
$$1s^2 2s^2 2p^6 \Rightarrow 6$$
 electrons in outermost subshell

 N^{3-} have $1s^2 2s^2 2p^6 \Rightarrow 6$ electrons in outermost subshell

$$\text{Li} \Rightarrow 1\text{s}^2 2\text{s}^1 \Rightarrow 1\text{e}^- \text{ in outermost subshell}$$

He
$$\Rightarrow$$
 1s² \Rightarrow 2e⁻ in outermost subshell

$$Na^+ \Rightarrow 1s^2 2s^2 2p^6 \Rightarrow 6e^-$$
 in outermost subshell

$$Mg^+ \Rightarrow 1s^2 2s^2 sp^6 3s^1 \Rightarrow 1e^- in outermost subshell$$

12. Number of orbitals in
$$n^{th}$$
 period ($n = odd$)

$$=\left(\frac{n+1}{2}\right)^2$$

∴ number of orbitals in 11th period =
$$\left(\frac{11+1}{2}\right)^2 = 36$$

Each orbital can hold maximum 3e-

- \therefore Maximum number of e⁻ or elements in 11th period = $36 \times 3 = 108$
- 13. b
- 13. That configuration which have maximum value for spin multiplicity will be the ground state.

$$N \Rightarrow 1s^2 2s^2 2p^3$$

$$s = \left| \left(+\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) \right| = \frac{3}{2}$$

$$S_m = 2s + 1 = 2 \times \frac{3}{2} + 1 = 4$$

- 14. d
- 14. for 5d orbitals

$$n = 5, l = 3$$

Possible m values can be from -3 to $+3 \Rightarrow -3, -2, -1, 0, +1, +2, +3$

$$\therefore$$
 n = 5, l = 3, m = -2

- 15. b
- 15. [Ar] $4s^2 3d^3$ is vanadium

		DPP-(2) – PERIO	ODIC PROPERTIES		
1.	An element has the	electronic configuration [Kr]5s¹. to which bloc	ck and group it belongs –	
	(a) s-block, group 2 (b) s-block, group 1 (c) p-block, group 3 (d) p-block, group 1				
2. For the following configurations, predict their		onfigurations, predict their	blocks:		
	(I) $[Ar]3d^54s^2$	(II) $[Ar]3d^{10}4s^24p^2$	(III) [Ar] $3d^{1}4s^{2}$		
	(a) s, p and d respe	ctively	(b) d, p and s resp	ectively	
	(c) d, p and d respe	ectively	(d) d, s and p resp	ectively	
3.	For an element X, period does the ele		, m, s) equals to (3, 2	2, +1, +1/2) respectively, to which	
	(a) 3 rd period	(b) 2 nd period	(c) 4 th period	(d) 5 th period	
4.		iguration of an element is 1 above the given element in		e atomic number and group number e respectively –	
	(a) 10 and 16	(b) 9 and 17	(c) 9 and 15	(d) 9 and 16	
5.	Effective nuclear ch	narge $(Z_{eff}) = z - \sigma$, in this for	ormula what is 'o' and	d which rule is used in its calculation	
	(a) Screening const	ant, Hund's rule	(b) Repulsion con	stant, $(n+l)$ rule	
	(c) Screening const	ant, Slater's rule	(d) Screening cons	stant, Aufbau's principle	
6.	What is the effective	e nuclear charge experienc	ced by last electron o	f sodium atom?	
	(a) 8.8	(b) 11	(c) 18.8	(d) 2.2	
7.	Which among the fe	ollowing statements is corr	rect –		
	(a) Effective nuclear charge increases down the group				
	(b) Effective nuclea	(b) Effective nuclear charge decreases from left to right in a period.			
	(c) Effective nuclea	ar charge increases from let	ft to right in a period.		
	(d) Effective nuclea	ar charge constant down th	e group.		
8.	For an element hav tively –	ing electronic configuration	on [Kr]5s1 4d5 belong	s to which block and group respec-	
	(a) s-block, group	1	(b) d-block, group	p 6	
	(c) d-block, group	5	(d) s-block, group	02	

				Di i -(2) / i Ekiobic i koi Ekii			
9.	Using slater's rule, v 2p ⁶ 3s ⁶ 4s ² 3d ⁸ –	Using slater's rule, what would be the shielding constant for a 3d electron from the configuration $1s^2 2p^6 3s^6 4s^2 3d^8 -$					
	(a) 7.55	(b) 18.00	(c) 28.00	(d) 20.45			
10.	Consider the follow	ing –					
	Assertion: 4s elect	ron is less tightly held tha	n the 3d electron.				
	Reason: Effective	Reason: Effective nuclear charged for 4s is considerably smaller than that of 3d electron.					
	Which of the follow	Which of the following is correct option:					
	(a) Assertion is corr	ect but reason is not corr	ect				
	(b) Assertion and re	eason both are correct					
	(c) Assertion and re	ason both are incorrect					
	(d) Assertion and in	correct but reason is corr	ect.				
11.	Which type of elect	Which type of electron is more likely to be lost when copper forms positive ion –					
	(a) 3d						
	(b) 4s						
	(c) loss from 4s and 3d both are equally probable						
	(d) Cannot be predi	cted					
12.	To which the lantha	nides belongs –					
	(a) Group 7	(b) Group 8	(c) Group 6	(d) Group 3			
13.	The correct values for $Z_{_{eff}}$ for Sc, Ti and V (considering σ for last s electron) respectively are –						
	(a) 3.15, 3.0, 3.3	(b) 3.3, 3.15, 3.0	(c) 3.0, 3.15, 3.3	3 (d) 3.0, 3.3, 3.15			
14.	For the given configuration predict the block, group number & period number –						
	$[Ar]4s^2 3d^{10} 4p^5$						
	(a) d, 7, 4 respectiv	ely	(b) p, 17, 4 respe	ectively			
	(c) s, 5, 4 respective	ely	(d) p, 5, 4 respec	etively			
15.	The effective nuclea	ar charge experienced by	the electron on perip	ohery of nitrogen atom –			
	(a) 3.55	(b) 3.45	(c) 3.90	(d) 3.10			
		×	×××				

Contact Us: 9990382567, 7082062392, 9717373074, 8285815185

DPP-(1) - PERIODIC PROPERTIES

ANSWER KEY

1. b

7. c

13.

2. c

8. b

14. b

3. a

9. d

15. (a)

4. b

10. b

5. c

11. b

6. d

12. d

HINTS & SOLUTIONS

- 1. b
- 1. Electronic configuration is [Kr]5s¹. Last e^- enters in s-subshell so it is a s-block element and group number for s-block \Rightarrow x for ns^x configuration.
- 2. c
- 2. (I) \Rightarrow Chromium \rightarrow d-block
 - $(II) \mathop{\Rightarrow} Gallium \mathop{\rightarrow} p\text{-block}$
 - $(III) \Rightarrow Scandium \rightarrow d$ -block
- 3. a
- 3. The value of 'n' (principle quantum no.) gives information about the period of element.
- 4. b
- 4. From configuration it is clear that element belongs to p-block because last e⁻ enters in p-subshell.
 - \therefore Group number for p-block = 12 + x

 $(x \rightarrow no. of e^- present in np^x)$

Hence, element present just above the given element will also be a p-block element \Rightarrow group number = 12 + 5 = 17

and atomic number = $9(1s^2 2s^2 2p^5)$

- 5. c
- $Z_{\rm eff} = Z \sigma$ (Screening constant and is calculated using slater's rule). 5.
- 6.
- 6. $Na \Rightarrow 1s^2 / 2s^2 2p^6 / 3s^2$

last e⁻ is present in s-subshell

$$\sigma = (0.35 \times 0) + (0.85 \times 8) + (2 \times 1) = 8.8$$

$$Z_{\rm eff} = Z - \sigma$$

$$= 11 - 8.8$$

$$Z_{\rm eff} = 2.2$$

- 7.
- 7. On moving across a period (left to right) effective nuclear charged increases

$$\xrightarrow{\text{Li Be B}}$$

- 8.
- 8. As the last e⁻ is entering in d-subshell, it is a d-block element.

The group number for d-block elements = x + y

where $x \Rightarrow$ number of e⁻ present in ns^x

$$y \Rightarrow$$
 number of e⁻ present in $(n-1)d^y$

$$\therefore$$
 5 + 1 = 6 group

- 9.
- 9. $1s^2 \mid 2s^2 sp^6 \mid 3s^2 3p^6 3d^8 \mid 4s^2$

$$\sigma = (0.35 \times 7) + (18 \times 1)$$

$$\sigma = 2.45 + 18.00 = 20.45$$

- 10. b
- 4s electron < 3d electron \downarrow \downarrow \uparrow 7.55
- Effective nuclear charge 10.

Because of less Z_{eff} , 4s electron is hold less tightly than 3d electron.

- 11.
- Although 4s is filled prior to 3d while filling electrons but Z_{eff} experienced by 4s electrons is consider-11. ably small than 3d e⁻ hence 4s e⁻ are held less tightly so e⁻ will be lost from 4s orbitals.
- 12. d
- 12. Lanthanoids have last e⁻ in f-subshell

Group 3	Gro	ap 4
Sc	T	ï
Y	Z	r
La	Н	f
←		→
atom	ic no. 58-71	\Rightarrow 14 f=block element

∴ All f-block elements belongs to group 3.

- 13. c
- Z_{eff} for 3d series and last electron (s-subshell) 13.

$$Z_{eff} = 2.85 + 0.15 \text{ n}$$

Also, on moving from left to right $Z_{\mbox{\tiny eff}}$ increases.

- 14.
- The given configuration belongs to element Bromine. 14.

p-block element

Group number = 12 + number of $e^- in np = 12 + 5 = 17$

Period number = highest value of n

- 15.
- For calculation of $Z_{\mbox{\tiny eff}}$ on periphery, all electrons are counted. 15.

$$N \Rightarrow 1s^2 / 2s^22p^3$$

$$\sigma = (0.35 \times 5) + (0.85 \times 2)$$

$$\sigma = 3.45$$

$$Z_{eff} = 7 - 3.45$$

$$Z_{sec} = 3.55$$

DPP-(3) – PERIODIC PROPERTIES

- 1. Which among the following statements is correct
 - (a) the radius of a single atom can be called covalent radius
 - (b) the radius is calculated in bonded state
 - (c) electrons move only in circular motion.
 - (d) distance between inner electron and last electron is called atomic radius
- 2. In terms of distance, which of the following order is correct –

 $(r_{_{\mathrm{VR}}}$ - vanderwaal radius, $r_{_{\mathrm{M}}}$ - metallic radius, $r_{_{\mathrm{C}}}$ - covalent radius)

(a) $r_{VR} < r_{M} < r_{C}$

(b) $r_{VR} < r_{C} < r_{M}$

(c) $r_{\rm C} < r_{\rm M} < r_{\rm VR}$

(d) $r_{\rm M} < r_{\rm C} < r_{\rm VR}$

- 3. Considering metallic bonding, which of the following statement is incorrect
 - (a) It is calculated for metals in solid state
 - (b) Metallic radii do not depend on the of packing
 - (c) Metallic radii is smaller than covalent radius
 - (d) Metallic radii is amaller then vanderwaal's radii
- 4. The correct order of radii is:

(a) C < O < F

(b) O < C < F

(c) F < O < C

(d) O < F < C

- 5. Predict the correct statement among the following
 - (a) radii of helium is less than hydrogen
 - (b) radii of helium and hydrogen are compound
 - (c) radii of helium and hydrogen are exactly same
 - (d) radii of helium is greater than that of hydrogen
- 6. Incorrect order of size among the following option is –

(a) Na > Mg > Al > Ar

(b) Li > Be > B > C

(c) C > N > O > F

(d) Ne > Li > Be > B

- 7. Incorrect order of radii among the following is
 - (a) Ca < Sr < Ra < Ba

(b) Li < Na < K < Rb

(c) Be > Mg > Ca > Sr

(d) K < Rb < Cs < Fr

8. Consider the following –

Statement I: Size of 4d series is very close to that of 5d series elements.

Statement II: Down the group, Z_{eff} decreases hence radii increases

Which among the following statement is correct –

- (a) Statement I and II both are correct & II is correct explanation for I
- (b) Statement I and II both are correct but II is not correct explanation for I.
- (c) Statement I and II both are incorrect
- (d) Statement II is correct but statement I is incorrect.
- 9. The correct order of radii is –

(a)
$$N > Be > B$$
 (b) $F^- < O^{2-} < N^{3-}$

(c)
$$Na < Li < K$$

(d)
$$Fe^{3+} < Fe^{2+} < Fe^{4+}$$

10. Which of the following options represents correct trend of size

(a)
$$Mg > Mg^{2+} > Mg^{+1}$$

(b)
$$Mg > Mg^{+1} > Mg^{2+}$$

(c)
$$Mg^{+1} > Mg^{2+} > Mg$$

(d)
$$Mg^{2+} > Mg^{+} > Mg$$

11. For the given species, which option predicts correct order of their size:

(a)
$$N^{3-} > O^{2-} > F^{-}$$

(b)
$$F^- > Ne > Na^+$$

(c)
$$Na^+ > Mg^{2+} > Al^{3+}$$

- (d) Both (a) and (b)
- 12. The correct order of size of S, S^{2-} , S^{2+} , S^{4+} species is –

(a)
$$S > S^{2+} > S^{4+} > S^{2-}$$

(b)
$$S^{2+} > S^{4+} > S^{2-} S$$

(c)
$$S^{2-} > S > S^{2+} > S^{4+}$$

(d)
$$S^{4+} > S^{2-} > S > S^{2+}$$

13. In which of the following option decreasing ionic size is correctly –

(a)
$$O^{2-} > S^{2-} > Se^{2-} > Te^{2-}$$

(b)
$$Te^{2-} > Se^{2-} > S^{2-} > O^{2-}$$

(c)
$$Se^{2-} > S^{2-} > Te^{2-} > O^{2-}$$

(d)
$$S^{2-} > Te^{2-} > Se^{2-} > O^{2-}$$

14. Among the following which option is incorrect regarding size –

(a)
$$B > Al > Ga > In$$

(b)
$$C < Si < Ge < Sn$$

(c)
$$B < Ga < Al < In$$

(d)
$$Na < K < Rb < Cs$$

- 15. Which of the following statement is correct regarding vanderwaal radii
 - (a) it is measured for alkali metals
 - (b) it is measured for d-block elements
 - (c) defined for atoms having strong intermolecular from between them.
 - (d) defined for atoms which don't have force of attraction.

 $\times \times \times \times$

QUANTA CHEMISTRY

An Institute of Chemical Sciences

DPP-(3) - PERIODIC PROPERTIES

ANSWER KEY

1. b

- d 7.

2.

- 8. b
- 14. a

3. c

- 9. b
- 15. d

4. c 10. b

5. d 11. d

6. a 12. c

HINTS & SOLUTIONS

- 1. b
- Since atom is very small in size and electrons also have wave like nature so radius is always calculated 1. in bonded state.
- 2.
- $r_{\scriptscriptstyle VR}$ \Rightarrow $r_{\scriptscriptstyle M}$ \Rightarrow $r_{\scriptscriptstyle M}$ \Rightarrow $r_{\scriptscriptstyle M}$ 2.

- 3. c
- 3. Metallic radii calculated for metals in solid state and do not depend on type of packing

 $r_{\rm M} > r_{\rm C}$ and $r_{\rm M} < r_{\rm VR}$

- 4.
- 4. On going from left to right, $Z_{\mbox{\tiny eff}}$ increases hence atomic radii decreases
 - \therefore Correct order \Rightarrow F < O < C
- 5. d
- 5. Although on going from left to right radii decreases but here, radii of He > H because for He, vanderwaal radius would be defined and for that of H, covalent radius. And vanderwaal radii > covalent radii.
- 6. a
- 6. Noble gases have highest radii is their respective periods.

- 7. d
- 7. Incorrect order \Rightarrow K < Rb < Cs < Fr Size of 6th period elements is greater then 7th period elements because of relativistic effect.
- 8. b
- **8.** Statement I and II both are correct. But the reason for almost similar radii of 4d and 5d elements is lanthanide contraction.
- 9. b
- 9. $\xrightarrow{F^- < O^{2-} < N^{3-}}$ ionic radii increases
- 10. t
- 10. size comparison

$$\xrightarrow{\text{A>A}^{+1}>\text{A}^{+2}}$$
 size decreases because $Z_{\text{eff.}} \uparrow$

- $\therefore Size of Mg > Mg^{+1} > Mg^{2+}$
- 11. d
- 11. $\frac{N^{3-} O^{2-} F^{-} Ne Na^{+} Mg^{2+} Al^{3+}}{No. of protons \uparrow, Z_{eff.} \uparrow, size \downarrow} \rightarrow (all of these are esoelctronic species (10 e^{-}))$
- 12. c
- 12. Size of anion > size of parent atom > size of cations of parent atom
- 13. b
- **13.** As O, Se, S, Te belongs to same group.

$$\xrightarrow{O^{2-} < S^{2-} < Se^{2-} < Te^{2-}}$$
size increases

- 14. a
- 14. Because of d contraction or scandide contration, size of Ga < Al. After ten d-block dements, comes Ga and becausae of poor shielding by d-orbitals, $Z_{\text{eff.}}$ increases hence size decreases.
- 15. d
- 15. Vanderwaal radii is defined for atoms that do not have forces of attraction.

DPP-(4) – PERIODIC PROPERTIES

	DPP-(4) -	PERIODIC PROPERTIES
1.	The ionization energy of Boron is less that	an that of Beryllium because—
	(a) beryllium has higher nuclear charge t	han boron
	(b) beryllium has a lower nuclear charge	than boron
	(c) the outermost electron in boron occ	upies a 2p-orbital
	(d) the 2s and 2p-orbitals of boron are of	legenerate
2.	Amongest the following, the highest ioniz	zation energy is—
	(a) [Ne] $3s^2 3p^2$	(b) [Ne] $3s^2 3p^3$
	(c) [Ne] 3s ² 3p ⁵	(d) [Ne] $3s^2 3p^1$
3.	The ionization potential of Li & K are 5.	4 and 4.3 eV respectively. The ionization potential of Na will
	be—	
	(a) 9.7 eV	(b) 9.1 eV
	(c) 4.9 eV	(d) cannot be calculated
4.	Element having highest ionization potenti	al is—
	(a) Ar	(b) He
	(c) Be	(d) N
5.	For which of the following reation ΔH° v	value is equal to the first ionization energy of Mg—
	(a) $Mg^{+}_{(g)} \longrightarrow Mg^{2+}_{(g)} + e^{-}$	(b) $Mg_{(g)} \longrightarrow Mg_{(g)}^{2+} + 2e^{-}$
	(c) $Mg_{(g)} \longrightarrow Mg_{(g)}^{1+} + e^{-}$	(d) $Mg_{(s)} \longrightarrow Mg_{(g)}^{2+} + e^{-}$
6.	The amount of energy released on addi	tion of an electron in outermost shell of an isolated atom is
	called—	
	(a) Electronegativity	(b) Ionization energy
	(c) Hydration energy	(d) Electron gain enthalpy
7.	The increasing order of electron affinity f	for the following electronic configurations of element is—
	(I) $1s^2 2s^2 2p^6 3s^2 3p^5$	(II) $1s^2 2s^2 2p^5$
	(III) $1s^2 2s^2 2p^6 3s^1$	(IV) $1s^2 2s^2 2p^3$
	(a) $I > II > IV > III$	

- (b) III > II > IV
- (c) IV > II > I > III
- (d) I > II > III > IV
- 8. The process requiring absorption of energy is—
 - (a) $N \longrightarrow N^-$

(b) $Cl \longrightarrow Cl^-$

(c) $H \longrightarrow H^-$

- (d) $Br \longrightarrow Br^-$
- 9. Arrange N, O & S in order of decreasing electron affinity—
 - (a) N > O > S

(b) S > O > N

(c) O > S > N

- (d) S > N > O
- 10. Which of the following process involves absorption of energy—
 - (a) $S_{(g)} + e^{-} \longrightarrow S_{(g)}^{-}$

(b) $S_{(g)}^{-} + e^{-} \longrightarrow S_{(g)}^{2-}$

(c) $S_{(g)} \longrightarrow S_{(g)}^+ + e^{-g}$

- (d) Both (b) & (c)
- 11. The electronegativity of following elements—
 - (a) $F > O > Cl > N^{-1}$

(b) F > O > N > Cl

(c) F > Cl > O > N

- (d) F > N > O > Cl
- 12. The expression of "All red Rochow scale" is—
 - (a) $\chi_{AR} = \frac{0.359 Z_{eff.}}{r^2} + 0.744$

(b) $\chi_{AR} = \frac{0.359 \, Z_{eff.}}{r} + 0.744$

(c) $\chi_{AR} = \frac{0.359 \, r^2}{Z_{LSS}} + 0.744$

- (d) $\chi_{AR} = \frac{0.359}{Z_{eff}} + 0.744$
- 13. Which among the following scales gives relative value of electronegativity—
 - (a) Mulliken scale

(b) Allred-Rochow scale

(c) Pauling scale

- (d) None of these
- 14. Which of the following statements is correct—
 - (a) Electronegativity represented on Pauling scale is greater than Mulliken scale
 - (b) Electronegativity represented on Mulliken scale is greater than Pauling scale
 - (c) Both pauling & Mulliken scale have equal electronegativity values
 - (d) cannot be compared
- 15. The correct order of electronegativity of underlined atoms is—
 - (a) $H_2O > C \equiv N > H_2C = CH_2$
- (b) $H_2O > H_2C = CH_2C \equiv N$
- (c) $C = N > H_2O > H_2C = CH_2$
- (d) $H_2C = CH_2 > C \equiv N > H_2O$

 $\times \times \times \times$

DPP-(4) - PERIODIC PROPERTIES

ANSWER KEY

1. (c)

7. (d)

13. (c)

2. (b)

8. (a)

14. (b)

3. (c)

9. (b)

15. (c)

4. (b)

10. (d)

5. (c)

11. (a)

6. (d)

12. (a)

HINTS & SOLUTIONS

- 1. (c)
- 1. This is because the outermost electron in boron is present in 2p-orbital whereas that of Be is present in 2s-orbital. Hence, I.E. (Be) > I.E. (B).
- 2. (b)
- 2. Exactly half filled or completely filled configuration have high I.E. as compared to other configuration. $P \rightarrow [Ne] 3s^2 3p^3 \Rightarrow \text{exactly half filled configuration}$.
- 3. (c)
- 3. On descending the group, ionization energy decreases. So ionization energy of Na should be something intermediate b/w that of Li & K ionization energy.
- 4. (b)
- 4. He being a noble gas (completely filled configuration) & smallest in size among the given options.
- 5. (c)
- 5. Ionization energy is defined as the energy required to remove the loosely bound electron from isolated gaseous atom.
 - $\therefore Mg_{(s)} \longrightarrow Mg_{(g)}^{1+} + e^{-}$

- 6. (d)
- 6. electron gain enthalpy is the amount of energy released on addition of electron in outermost shell of isolated gaseous atom.
- 7. (d)
- 7. $1s^2 2s^2 2p^6 3s^2 3p^5 \Rightarrow$ being one-short in completely filled configuration also 3p subshell are not to small to accommodate an extra incoming electron.
 - $1s^2 2s^2 2p^3$ \Rightarrow configuration is exactly half filled to do not want to accommodate an extra electron.
- 8. (a)
- 8. N being exactly half filled electronic configuration would not accept the incoming electron easily hence energy is to be supplied for this addition of e⁻.
- 9. (b)
- 9. S being larger in size than O & N accepts incoming electron easily in comparatively larger 3p orbital.
 - Among N & O, N have exactly half filled configuration so it don't accept the e^- easily. $N \to N^-$ is an endothermic process.
- 10. (d)
- 10. Ionization energy and second electron gain enthalpy, both are endothermic processes.
- 11. (a)
- 11. Accordingly to pauling scale—

F O Cl N

$$χ \Rightarrow 3.98 \quad 3.44 \quad 3.16 \quad 3.04$$

- 12. (a)
- 12. Correct formula is $\chi_{AR} = \frac{0.359 \text{ Z}_{eff.}}{r^2} + 0.744$
- 13. (c)
- 13. In pauling scale, electronegativity is calculated w.r.t. F, it is a relative scale.
- 14. (b)
- 14. $\chi_{\text{Mulliken}} = \chi_{\text{Pauling}} \times 2.8$
- 15. (c)
- 15. Electronegativity of $N_{(sp)} > O_{(sp^3)} > C_{(sp^2)}$

Assignment Sheet - Periodic Properties

The first, second and third ionization energies (E₁, E₂ and E₃) for an element are 7eV, 12.5 eV

1.

	and 42.5 eV respectively. The most stable oxidation state of an element will be –					
	(a) + 1	(b) + 4	(c) + 3	(d) + 2		
2.	The ionization ener	rgy will be higher whe	n the electron is remov	ved from –		
	(a) s-orbital	(b) p-orbital	(c) d-orbital	(d) f-orbital		
3.	Second ionization	potential of Li, Be and	Bis in the order –			
	(a) $Li > Be > B$	(b) $Li > B > Be$	(c) $Be < B < Li$	(d) $B > Li > Be$		
4.	Which of the follow	wing metal is expected	to have highest third	ionization energy?		
	(a) $Cr (Z = 24)$	(b) Fe $(Z = 26)(c)$	Mn (Z = 25) (d)	Co (Z = 27)		
5. The second ionization potential of elements is invariably high because –			ents is invariably highe	r then first ionization potential		
	(a) ionization is an	(a) ionization is an endothermic process				
	(b) size of cation is smaller than its atom so more hold on electrons.					
	(c) it is easier to remove electron from cation					
	(d) None of these					
6.	The correct order of	of ionization energy is				
	(a) $M^{2+}_{(g)} < M^{+}_{(g)} <$	$\mathbf{M}_{(g)}$	(b) $M^{+}_{(g)} < M^{2+}_{(g)} <$	$\mathbf{M}_{(\mathrm{g})}$		
	(c) $M_{(g)} < M^{2+}_{(g)} < 1$	$M^{+}_{(\mathrm{g})}$	(d) $M_{(g)} < M_{(g)}^+ < N$	$M^{2+}_{(\mathrm{g})}$		
7.	In the following configuration a sudden large gap between the values of second and third ionization energies of an element?					
	(a) $1s^2 2s^2 2p^6 3s^2 3$	$3p^3$	(b) $1s^2 2s^2 2p^3$			
	(c) $1s^2 2s^2 2p^6 3s^2 3$	$3p^1$	(d) $1s^2 2s^2 2p^6 3s^2$			
8.	Amongst the follow	Amongst the following, incorrect order is –				
	(a) $IE_{1}(Be) > IE_{1}(Be)$	B)	(b) $IE_2(Na) > IE_2(Na)$	Mg)		
	(c) $IE_3(Mg) > IE_3$	(Be)	$(d) \operatorname{IE}_{1}(N) > \operatorname{IE}_{1}(C)$))		

9.	Among the following	, the correct trend of ic	onization energy (IE ₁) i	s –	
	(a) $Cl > P > S$	(b) $P > Cl > S$	(c) $P > S > Cl$	(d) $Cl > S > P$	
10.	Which of the following	ng statements are corre	ect –		
	(a) If IE and EA are high, the element would be highly electronegative				
	(b) If IE and EA are	high, the element would	d be electropositive		
	(c) If IE and EA are I	ow, the element would	be electronegative		
	(d) None of these				
11.	The electronegativity values of Mulliken Scale –				
	(a) absolute value of electronegativity				
	(b) higher than pauling scale values				
	(c) relative value of e	electronegativity			
	(d) both (a) and (b)				
12.	Nitrogen has very lov	w electron affinity beca	nuse –		
	(a) Low electron repulsion in 2p subshell				
	(b) High electron rep	oulsion in 2p subshell			
	(c) large Z _{eff} of nitrogen				
	(d) 2p-subshell can accomodate only 3 electrons				
13.	Second electron gain enthalpy.				
	(a) is always positive				
	(b) always negative				
	(c) can be positive or	negative	(CO)()		
	(d) is always zero	6 B C	2010/488		
14.	The second electron	gain enthalpies (in kJ /	mol-1) of oxygen sulph	nur respectively are –	
	(a) -780, +590	(b) - 590, +780	(c) + 590, +780	(d) + 780, +590	
15.	The correct electron	affinity is –	All and a second		
	(a) Ne < Be < Li	(b) Be < Ne < Li	(c) $Li < Be < Ne$	(d) $Be < Li < Ni$	
16.	The second ionization energy is maximum for –				
	(a) nitrogen	(b) oxygen	(c) fluorine	(d) carbon	
17.	The correct order of	extent of hydration am	ong the following –		
	(a) $Li^+ < Na^+ < K^+ < 1$	Rb^+	(b) $Li^+ < K^+ < Na^+ < 1$	Rb ⁺	
	(c) $Li^+ > Na^+ > K^+ > 1$	Rb^{+}	(d) $Li^+ > K^+ > Na^+ > 1$	Rb^+	
18.	Among the elements	Zn, Ga, Ge and As, the	e one with the lowest f	irst ionization energy is –	
	(a) As	(b) Zn	(c) Ge	(d) Ga	
19.	Which has maximum	polarizing power of ca	ation: –		
	(a) K ⁺	(b) Mg^{2+}	(c) Al^{3+}	(d) F-	
20.	Electron affinity is en	ndothermic when -			
	(a) O ⁺ is formed from	n O	(b) $Na^+ + e^- \rightarrow Na$		
	(c) Cl ⁻ is formed from	n Cl	(d) O ²⁻ is formed from	n O	

21.	If the ionization er lithium atom is –	nergy of hydrogen ator	m is 13.6 eV, the expe	cted third ionization energy of	
	(a) $13.6 \times 3 \text{ eV}$	(b) $13.6 \times 2 \text{ eV}$	(c) $13.6 \times 6 \text{ eV}$	(d) $13.6 \times 9 \text{ eV}$	
22.	Select the order or	radii –			
	(a) $O^{2-} > F^- > Na^+$	$>$ Mg^{2+}	(b) $Mg^{2+} > Na^+ > F$	$0^{2-} > O^{2-}$	
	(c) $F^- > O^{2-} > Mg^{2+}$	$^{+}$ $>$ Na^{+}	(d) $Na^+ > F^- > Mg^2$	$^{+} > \mathrm{O}^{2-}$	
23.	Which terms are en	ndothermic for formation	on of KCl –		
	$(I) K_{(g)} \rightarrow K^{+}_{(g)} + e^{-}$	-	(II) $Cl_{(g)} + e^- \rightarrow Cl^-$	- (g)	
	(III) $K^{+}_{(g)} + Cl^{-}_{(g)}$	$\rightarrow KCl_{(s)}$	(G)		
	(a) II & III	(b) I only	(c) II only	(d) I and (III)	
24.	Which set of follow	wing orbitals is listed in	n sequential order of fi	lling in many electron atom?	
	(a) 3d, 4s, 4p	(b) 6s, 4f, 5d	(c) 4p, 4d, 5s	(d) 3s, 3d, 3p	
25.	Pauling's electrone	gativity scale is based	on calculation of –		
	(a) bond energies				
	(b) average of elec	tron affinity and ioniza	tion energy		
	(c) electrostatic att	raction			
	(d) electron densiti	es of atoms			
26.	The effective nucle	ar charge (Z*) for the 1	s electron of zinc acco	ording to slater's rule is nearly -	
	(a) 29.65	(b) 30	(c) 29.70	(d) 20.85	
27.	This first ionization	n energy is lowest for -			
	(a) Br	(b) Se	(c) P	(d) As	
28.	The degree of hydr	ration is expected to be	maximum for –		
	(a) Be^{2+}	(b) Mg^{2+}	(c) Ca ²⁺	(d) Sr^{2+}	
29.	The electronegativity of following elements increases in the order –				
	(a) S, Cl, P, Ar	(b) P, S, Cl, Ar	(c) F, O, N, C	(d) Si, Al, Cl Ar	
30.	The size of isoelectronic species O ²⁻ , Ne, Mg ²⁺ is affected by –				
	(a) Principle quant	um number	(b) Size remains sa	ame	
	(c) Charge on spec	ies	(d) None of these		
31.	The dominant factor in determining the IE of the elements on moving down the groups is its				
	(a) atomic radius		(b) effective nuclea	ar charge	
	(c) Both (a) and (b)	(d) None of the abo	ove	
32.	Which pair repre	sents incorrect first (IE	2)?		
	(a) Li > Na	(b) Be > B	(c) $N > 0$	(d) $He > He^+$	
33.	Which has maxir	num IE?			
	(a) Mg	(b) Mg ⁺	(c) Mg^{2+}	(d) Equal	
34.	SI unit of IE is	`	` ,	` ' 1	
	(a) J mol ⁻¹	(b) kJ mol ⁻¹	(c) kcal mol ⁻¹	(d) eV atom ⁻¹	

35.	Select the corre	ect statement about radius	of an atom.		
		radii are smaller than the all lattice are much stronge		since the bonding forces in the aal's forces	
		der Waal's radii are larger ing between atoms in cov		nt radii and are weaker than the cule.	
	(c) Both (a) and	(b) are correct			
	(d) None of the a	above is correct.			
36.	In which case bo	nd length is shortened?			
	(a) When electro	onegativities are different	(b) When multiplic	ity occurs between atoms	
	(c) In both cases		(d) In none of the o	eases	
37.	State, which one	of the following has the la	argest atomic radius?		
	(a) Ba	(b) Mg	(c) Cr	(d) Cs	
38.	Screening effect	is not observed in			
	(a) He ⁺	(b) Li ²⁺	(c) Be^{3+}	(d) In all cases	
39.	The relative exter	nt to which the various orb	itals penetrate the elec	ctron clouds of other orbitals is	
	(a) $s > p > d > f$	(b) s	(c) $s > p > f > d$	(d) $d < s < f < p$	
40.	Which group of	elements is analogous to t	he lanthanides?		
	(a) Actinides	(b) Halides	(c) Borides	(d) Chalcogenides	
41.	Of the following is	pairs, the one containing e	examples of metalloid	elements in the Periodic Table	
	(a) Na and K	(b) B and Si	(c) F and Cl	(d) Cu and Ag	
42.	Recently discove electrons in	ered elements (August 200	03) with atomic num	ber 113 and 115 have valence	
	(a) s-orbital	(b) p-orbital	(c) d-orbital	(d) f-orbital	
43.	Most stable catio	on of element 113 will be	A.		
	(a) M ⁺	(b) M ²⁺	(c) M^{3+}	(d) M^{5+}	
44.	Numbering of gro	oups as 1, 2, 18 was	adopted by IUPAC is	n	
	(a) 1906	(b) 1908	(c) 1986	(d) 1988	
45.	Element 113 is produced via				
	(a) α-decay of el	ements-115	(b) α-decay of elem	nent-111	
	(c) β-decay of el	ement-112	(d) β-decay of elem	nent 114	
46.	Recently (in Aug	ust 2003) two new elemen	nts have been discove	red with atomic numbers	
	(a) 113, 114	(b) 113, 115	(c) 114, 115	(d) 115, 116	
47.	Recently (in 2003	3) element with atomic nu	mber 110 has been na	amed by IUPAC as	
	(a) Mt	(b) Sg	(c) Hs	(d) Ds	
48.	Which of the follow	owing does not represent	the correct order of th	ne properties indicated?	
	(a) $Sc < Ti < Cr$	< Mn (size)			

Contact Us: 9990382567, 7082062392, 9717373074, 8285815185

- (b) $Ni^{2+} > Cr^{2+} > Fe^{2+} > Mn^{2+}$ (size)
- (c) $Ni^{2+} < Co^{2+} < Fe^{2+} < Mn^{2+}$ (unpaired electrons)
- (d) $Fe^{2+} > Co^{2+} > Ni^{2+} > Cu^{2+}$ (unpaired electrons)
- The heat of hydration of Ca²⁺, Sr²⁺ and Ba²⁺ in decreasing order is 49.
 - (a) $Sr^{2+} > Ba^{2+} > Ca^{2+}$

(b) $Ba^{2+} > Sr^{2+} > Ca^{2+}$

(c) $Ca^{2+} > Ba^{2+} > Sr^{2+}$

- (d) $Ca^{2+} > Sr^{2+} > Ba^{2+}$
- The lowest first ionization energy of the following elements is that of 50.
 - (a) Li
- (b) C1
- (c) I

(d) Cs

- 51. The most metallic of the following element is
 - (a) Li
- (b) Mg
- (c) K

(d) Ca

- 52. The non-metallic cation is in
 - (a) PCl₃
- (b) VOCl
- (c) NH₄Cl
- (d) CrO₂Cl₂

- 53. Which set has all the coloured ions?

 - (a) Na^+ , Mg^{2+} , AI^{3+} (b) Cu^+ , Cu^{2+} , F^-
- (c) Cu^{2+} , Fe^{2+} , Co^{2+}
- (d) Cu^{2+} , Co^{2+} , Sc^{3+}

- The metal which gives no amphoteric oxide is 54.
 - (a) Al
- (b) Cu
- (c) Zn

- (d) Sn
- 55. Stability order of group IIIA (boron family) element is
 - (a) $Ga^{3+} > Ga^+$
- (b) $Ga^+ < In^+ < Tl^+$ (c) Both (a) and (b)
- (d) None of these
- Following graph shows variation of ionization potential (IP) with atomic number in second 56. period (Li – Ne). Value of ionization potential (IP) of Na(11) will be

(a) below Li

(b) above Ne

(c) between N and O

- (d) below Ne and above O
- 57. The element which does not exist in liquid state at room temperature are
 - (a) Na
- (b) Ga
- (c) Br

(d) Hg

- 58. The factors that influence the ionization energies are
 - (a) the size of the atom
 - (b) the charge on the nucleus

	(c) how effectively	the inner electron shell	screen the nuclear charge	2
	(d) All of the above	2		
59.	The size of the seco	ond and third row transi	tion elements being almos	st the same. This is due to
	(a) d-and f-orbitals	do not shield the nuclea	ar charge very effectively	
	(b) lanthanide contr	raction		
	(c) Both (a) and (b)	are true		
	(d) None of the abo	ove is true		
60.	Size of cation is sm	aller than that of the ato	om because of	
	(a) gain of electron	S		
	(b) effective nuclea	r charge increases		
	(c) the whole of the	e outer shell of electrons	s is removed	
	(d) statement, that	cation is smaller than at	om, is wrong	
61.	Going down in a gr	oup F to I, which of the	following properties inci	eases?
	(a) Ionic radius	(b) Electronegativity	(c) Ionization energy	(d) Oxidising power
62.				nic, that of (B) is ampoteric
	_		C) will have atomic numb	
	(a) $(A) < (B) < (C)$	(b) $(C) < (B) < (A)$	(c) $(B) < (C) < (A)$	(d) $(C) < (A) < (B)$
63.	_	ties of N, C, Si and P ar	A CONTRACT AND	
	(a) Si < P < C < N	A Comment	(b) $N < C < P < Si$	
	(c) C < N < P < Si	Park	(d) P < N < Si < C	
64.		der of size of O ⁻ , O ²⁻ , F	Control of the second	
	(a) $O^{2-} > O^{-} > F^{-} >$	V V	(b) $F > F^- > O^- > O^{2-}$	
	(c) $O^- > O^2 > F > F$		(d) $F^- > F > O^- > O^{2-}$	
65.	Which is/are ampor	teric oxides?	All the second second	
	(a) BeO	(b) ZnO	(c) SnO	(d) All of these
66.	Melting point of Na	nCl, NaBr, NaI and NaF	will be order	
	(a) $NaCl > NaI < N$	IaF < NaBr	(b) NaBr < NaF < NaC	'l < NaI
	(c) $NaI < NaBr < N$	VaCl < NaF	(d) NaF < NaCl < NaB	r < NaI
67.	Catenation properti	es of C, Si, Ge, Sn and	Pb are in order	
	(a) $C > Si > Ge \approx S$	5n > Pb	(b) $C > Si > Sn > Ge >$	Pb
	(c) $C < Si < Ge < Si$	Sn < Pb	(d) None of the above	
68.	•	Ge, Sn and Pb will be in		
	(a) $Sn^{4+} > Sn^{2+}$		(b) $Ge^{2+} < Sn^{2+} < Pb^{2+}$	
	(c) $Ge^{4+} > Sn^{4+} > F$	Pb ⁴⁺	(d) All are correct	
69.	Inert pair effect is s	hown by		
	(a) s-block	(b) p-block	(c) d-block	(d) f-block

70.	Which pair is dif	ferent from the others'	?		
	(a) Li-Na	(b) Li-Mg	(c) B-Si	(d) Be-Al	
71.	Which pair is dif	fferent from the others	?		
	(a) Li-Mg	(b) Na-K	(c) B-Al	(d) Ca-Mg	
72.	Which of the fol	llowing anions is most	easily polarized?		
	(a) Cl ⁻	(b) Br ⁻	(c) Se ²⁻	(d) Te ²⁻	
73.	Which of the fol	lowing ions has the lan	rgest heat of hydration?		
	(a) F ⁻	(b) Na ⁺	(c) Al^{3+}	(d) Sr^{2+}	
74.	For which of the be valid?	following crystals wo	uld you except the assu	imption of anion-anion contact to	
	(a) KCl	(b) NaF	(c) NaI	(d) CsBr	
75.	In which of the following five anions are arranged in order of decreasing ionic radius				
	(a) I ⁻ , Se ²⁻ , O ²⁻ , Br ⁻ , F ⁻		(b) I ⁻ , Se ²⁻ , Br ⁻ , O ²⁻ , F ⁻		
	(c) Se ²⁻ , I ⁻ , Br ⁻ ,	F-, O ²⁻	(d) Se ²⁻ , I ⁻ , Br ⁻ ,	O ²⁻ , F ⁻	
76.	Which of the fol	llowing ions has the sr	nallest radius?		
	(a) Na^{2+}	(b) Ti ²⁺	(c) Pt ²⁺	(d) Zr^{2+}	
77.	Which has maximum polarising power in action?				
	(a) Li ⁺	(b) Mg ²⁺	(c) Al ³⁺	(d) O^{2-}	
			×××××		

QUANTA CHEMISTRY

An Institute of Chemical Sciences

ANSWERS

1.	(d)
2.	(a)
3.	(b)
4.	(c)
5.	(b)
6.	(d)
7.	(d)
8.	(c)
9.	(a)
10.	(a)
11.	(d)
12.	(b)
13.	(a)
14.	(d)
15.	(a)
16.	(b)
17.	(c)
18.	(d)
19.	(c)
20.	(d)
21.	(d)
22.	(a)
23.	(b)
24.	(b)
25.	(a)
26.	(c)
27.	(b)

	28.	(a)
	29.	(b)
	30.	(c)
	31.	(a)
	32.	(d)
	33.	(c)
	34.	(b)
	35.	(c)
	36.	(c)
	37	(d)
	38.	(d)
	39.	(a)
	40.	(c)
	41.	(b)
	42.	(b)
	43.	(a)
	44.	(d)
\	45.	(a)
	46.	(b)
	47.	(d)
	48.	(b)
	49.	(d)
	50.	(d)
	51.	(c)
	52.	(c)
	53.	(c)
	54.	(b)

55.	(c)
56.	(a)
57.	(a)
58.	(d)
59.	(c)
60.	(b)
61.	(a)
62.	(a)
63.	(a)
64.	(a)
65.	(d)
66.	(c)
67.	(a)
68.	(d)
69.	(b)
70.	(a)
71.	(a)
72.	(d)
73.	(d)
74.	(c)
75.	(b)
76.	(a)
77.	(c)

QUANTA CHEMISTRY

An Institute of Chemical Sciences

Hints & Solutions

- 1. d
- **Sol.** Hence, most stable oxidation state of the element is +2.
- 2. a
- **Sol.** s-orbitals are most close to the nucleus considering (ns, np, nd and nf orbitals) hence more hold of nucleus on e⁻ present in s-orbital therefore, more ionization energy.
- 3. t
- **Sol.** After 1st ionization

$$Li^+ \Rightarrow 1s^2$$

$$Be^+ \Rightarrow 1s^2 2s^1$$

$$B \Rightarrow 1s^2 2s^2$$

$$\therefore$$
 IE₂ (Li, Be, B) \Rightarrow Li > B > Be

- 4. c
- **Sol.** Mn \Rightarrow 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁵

After removal of 2e⁻ from 4s orbital, Mn attains exactly half filled d-configuration. Which is stable & hence require energy among the above to remove e⁻ in third ionization process.

- 5. t
- **Sol.** As the first electron is lost from an atom, number of e⁻ ↓ses and number of protons in the atom remains same so the cation experiences increased nuclear charge hence more energy is required to remove e⁻ from cation.
- 6. d
- **Sol.** More the positive charge on atom, more will be the nuclear attraction experienced hence more ionization energy.

$$\therefore \ M_{(g)} < M^{_+}_{(g)} < M^{^{2+}}_{(g)}$$

- 7. d
- **Sol.** After removal of 1st electrons the configuration 1s² 2s² 2p⁶ 3s² will be 1s² 2s² 2p⁶ 3s¹ and it will readily lose this one more e⁻. Another e⁻ is to be removed from noble gas configuration, large amount of energy is required.
- 8. c
- **Sol.** Mg = $1s^2 2s^2 2p^6 3s^2$

3rd e⁻ is to be removed from 2p – subshell

 $Be = 1s^2 2s^2$, $3^{rd} e^-$ is to be removed from 1s - subshell

IE₃(Be) is almost twice of IE₃(Mg).

9. a

Sol. Although P has exactly has filled configuration but IE. of immediate neighbours only)

 \therefore Correct order is \Rightarrow Cl > P > S

10. a

Sol. According to Mulliken

If IE and EA are high, the element is likely to acquire e⁻ rather than lose e⁻ when it is a part of compound and hence classified as highly electronegative.

11. c

Sol. Mulliken electronegativity values –

⇒ absolute values

$$\Rightarrow \chi_{\rm M} = 2.8 \chi_{\rm P}$$

12. t

Sol. N has very low EA because there is a high e⁻ repuslion when the incoming e⁻ enters an orbital that is already half full compact 2p subshell.

13. a

Sol. 2nd EGE is always (+)ve because adding an extra electron to an already negatively charged species requires energy.

14. d

Sol. Second EGE is always (+)ve and O being small in size than S would require more energy for accommodating 2nd incoming e⁻.

15. a

Sol. Ne \Rightarrow noble gas configuration \Rightarrow 1s² 2s² 2p⁶

Be \Rightarrow pseudo noble gas configuration \Rightarrow 1s² 2s²

 $Li \Rightarrow 1s^2 2s^1 \Rightarrow easily accept electron.$

$$\therefore$$
 Ne < Be < Li \Rightarrow EA order

16. b

Sol. Oxygen's configuration after loss of one election will be $(1s^2 \ 2s^2 \ 2p^3)$ i.e. exactly half filled hence it would be difficult to remove 2^{nd} electron from a stable configuration hence more energy is required.

17. c

Sol. Extent of hydration $\propto \frac{1}{\text{size}}$

Li⁺ being smallest in size have maximum charge density so it will be most hydrated.

18. d

Sol. Ga has only one electron in its valence shell so it lose that electron easily to obtain fully filled

subshells. Therefore least energy is required to ionize Ga among the following.

- 19. c
- **Sol.** According to Fajan's rule, smaller the size of cation, more will be its polarizing power.
- 20. d
- **Sol.** $O^{2-}_{(g)} \leftarrow O^{-}_{(g)} + e^{-}$

this is an endothermic process because adding electron to an already negatively charged species requires energy because of increased inter electronic repulsions.

- 21. d
- **Sol.** Z for Li \Rightarrow 3 and third e⁻ is to be removed from 1s-subshell

$$\therefore IE = \frac{13.6 \, Z^2}{n^2} = \frac{13.6 \times (3)^2}{(1)^2} = 13.6 \times 9 \text{ eV}$$

- 22. a
- **Sol.** Greater the (+)ve charge, smaller is the size Smaller greater the (-)ve charge, larger is the size
- 23. b
- **Sol.** Only 1st step (I) is endothermic because ionization is taking place II & III are exothermic processes.
- 24. b
- **Sol.** According to Aufbau's principle and (n + l) rule Energy order of \Rightarrow 6s < 4f < 5d
 - 4s, 3d, 4p • 6s, 4f, 5d • 4p, 5s, 4d • 3s, 3p, 3d
- 25. a
- **Sol.** Pauling recognized that polar bonds have higher bond energies than non-polar bonds formed from same elements.

Pauling introduced the concept of electronegativity as the means of describing bond energies.

- 26. (c)
- **Sol.** Zn 1s² | 2s² 2p⁶ | 3s² 3p⁶ 3d¹⁰ | 4s² σ for 1s electron (inner most electron) = 1 × 0.30 = 0.30 Z* = Z - σ = 30 - 0.30 = 29.70
- 27. b
- **Sol.** After removal of 1e⁻, Se attains exactly half filled configuration to have lowest first ionization energy.
- 28. a
- **Sol.** Smaller the size of cation, more will be charge density, greater is degree of hydration.

- 29. ł
- **Sol.** On going from left to right across a period, electronegativity increases.
- 30. c
- **Sol.** More the (+)ve charge, smaller is the size, more (–)ve charge greater size.

 $Size \Longrightarrow O^{2-} > Me > Mg^{2+}$

- 31. (a)
- Sol. The dominant factor in determining the IE of elements on moving down the group is atomic radius. IE strongly correlate with atomic radii.

Correct answer is (a)

- Sol. (d)
- 32. Helium being a noble gas with electronic configuration 1s². But He⁺ has only one e⁻ in its 1s-subshell so it will be experiencing a very high nuclear charge hence IE than He.

Correct answer is (d)

- 33. (c)
- Sol. Mg²⁺ has fully filled electronic configuration which is like noble gas so it will have highest IE. Correct option is (c)
- 34. (b)
- Sol. SI unit of IE is kJ/mol
 Correct option is (b)
- 35. (c)
- Sol. $r_{VW} > r_{MR} > r_{CR}$

 $VW \rightarrow Vander waal radii, MR \rightarrow Metallic radii, CR \rightarrow covalent radii$

Vander waal radius

Covalent radius

Strength of bond -

Covalent bond > metallic bond > vander waal interaction

Correct option is (c)

- 36. (c)
- Sol. Bond length is shortened when electronegativities are different. For e.g.
 C − C ⇒ 164 pm and C − O ⇒ 151 pm
 - When multiplicity occurs b/w atoms then also bond lengths are shortened.

Correct option is (c)

- 37 (d)
- Sol. Down the group atomic radius increases and across a period, it decreases.

Correct option is (d)

- 38. (d)
- Sol. Screening/shielding is a polyelectronic phenomenon and all the given species are monelectronic. Hence no screening effect is observed in any of these.

Correct option is (d)

- 39. (a)
- Sol. The relative extent of penetrating effect \Rightarrow s > p > d > f s-orbitals lying closest to nucleus and f lies at far distance from nucleus

Correct option is (a)

- 40. (c)
- Sol. Actinides are analogous to the lanthanides.

Correct option is (c)

- 41. (b)
- Sol. B and Si are metalloids

 Correct option is (b)
- 42. (b)
- Sol. Since outer electronic configuration of atomic no. 113 and 115 is $7s^2 7p^1$ and $7s^2 7p^3$ respectively. So valence e^- are in p-orbital.

Correct option is (b)

- 43. (a)
- Sol. Outer configuration of atomic no. 113 is 7s² 7p¹. So, most stable cation will be M⁺. Correct option is (a)
- 44. (d)
- Sol. Numbering of groups as 1, 2, 18 was adopted by IUPAC in 1988. Correct option is (d)
- 45. (a)
- Sol. $^{115}X \longrightarrow ^{113}Y + {}_{2}^{4}He$

Element 113 is produced via α -decay of element 115.

Correct option is (a)

- 46. (b)
- Sol. In August 2003, elements with atomic no. 113 and 115 were discovered Correct option is (b)
- 47. (d)
- Sol. Element with atomic no. 110 has been named as Ds by IUPAC.

Correct option is (d)

- 48. (b)
- Sol. The correct of size is: $Cr^{2+} > Fe^{2+} > Ni^{2+} > Mn^{2+}$ Correct option is (b)
- 49. (d)
- Sol. Heat of hydration α $\frac{1}{\text{Size}}$, $\frac{\text{Ca}^{2+} < \text{Sr}^{2+} < \text{Ba}^{2+}}{\text{Size}^{\uparrow}\text{se}}$, heat of hydration order \Rightarrow $\text{Ca}^{2+} > \text{Sr}^{2+} > \text{Ba}^{2+}$ Correct option is (d)
- 50. (d)
- Sol. Caesium being alkali metal and larger in size hence have lowest ionization energy.

 Correct option is (d)
- 51. (c)
- Sol. The metallic character of elements decrease across a period and increase down the group.
 - :. K will have highest metallic character among the following.

Correct option is (c)

- 52. (c)
- Sol. The non-metallic cation is present in NH₄Cl i.e. NH₄⁺.

 Correct option is (c)
- 53. (c)
- Sol. Cu²⁺, Fe²⁺, Co²⁺, all the ions are coloured. Correct option is (c)
- 54. (b)
- Sol. Cu do not give amphoteric oxides.Correct option is (b)
- 55. (c)
- Sol. In p-block elements, on descending the group, stability of oxidation state 2 less than the group oxidation state increases due to inert pair effect.

So,
$$Ga^{3+}$$
, $> Ga^+$ and $Ga^{+1} < In^{+1} < Tl^{+1}$

Correct option is (c)

- 56. (a)
- Sol. Down the group, ionization energy decreases.

: IE of Na will be below Li

Correct option is (a)

- 57. (a)
- Sol. Na is not liquid at room tempereature.

Correct option is (a)

- 58. (d)
- Sol.. Gonization energies are influenced by-
 - size of atom
 - charge on nucleus
 - how effectively the inner e⁻ screen the nuclear charge

Correct option is (d)

- 59. (c)
- Sol. The size of 2nd & 3rd row transition elements is almost similar because d and f-orbitals do not shield the nuclear charge effectively and this contraction is size of 3rd row transition metals is known as lanthanide contraction.

Correct option is (c)

- 60. (b)
- Sol. Size of cation is smaller than that of atom because effective nuclear charge increases as no. of electrons are less in cation and nuclear charge remains the same. So, hold of nucleus on e-increases.

Correct option is (b)

- 61. (a
- Sol. On going from F to I, ionic radius increases.

Correct option is (a)

- 62. (a)
- Sol. Third short period elements are-

Na, Mg, Al, Si, P, S, Cl and Ar.

A froms ionic oxide \Rightarrow (Na/Mg)

B is amphoteric \Rightarrow (Al)

C is large in size \Rightarrow (Ar)

So, atomic no. C > B > A

Correct option is (a)

- 63. (a)
- Sol.. There is a general increase in electronegativity across a period and decrease in electronegativity down the group.
 - \therefore EN order : Si < P < C < N

Correct option is (a)

- 64. (a)
- Sol. More the anionic charge larger is the size. And across a period (from left to right) size decreases.

$$O^{2-} > O^{-} > F^{-} > F$$

Correct option is (a)

- 65. (d)
- Sol. Zn, Al, Be, Ga, Pb, Sn, As, Sb, Bi, In, Ge. These elements from amphoteric oxides. Correct option is (d)
- 66. (c)
- Sol. High lattice energy will lead to high metting point. NaF having highest lattice energy will have highest melting point.

 $NaF > NaCl > NaBr > NaI \Rightarrow$ order of melting point

Correct option is (c)

- 67. (a)
- Sol. The catenation property order–

$$C > Si > Ge \approx Sn > Pb$$

Correct option is (a)

- 68. (d)
- Sol. Down the group in p-block elements, heavier elements are much stable in oxidation state 2 less than the group oxidation state. This is known as inert pair effect.

Correct option is (d)

- 69. (b)
- Sol. Inert pair effect is shown by p-block elements.

Correct option is (b)

- 70. (a)
- Sol. Li-Na is different because all others show diagonal relationship.

Correct option is (a)

- 71. (a)
- Sol. Li-Mg shows diagonal relationship while all other elements pairs belongs to same group.

Correct option is (a)

- 72. (d)
- Sol. Larger the size of anion, more easy it will be to distort the electron cloud i.e. more easily palarizable. Te²⁻ is most easily palarized.

Correct option is (d)

- 73. (d)
- Sol. Smaller the size of cation, larger will be the heat of hydration. Al³⁺ has highest heat of hydration. Correct option is (d)

- 74. (c)
- Sol. Since size of cation is very small in comparision to the anion. Hence, in NaI crystal the assumption of anion-anion contact is valid.

Correct option is (c)

- 75. (b)
- Sol. Down the group size of element increases while on going from left to right in a period, size of element decreases.

Since the given species are not iselectronic the correct order of ionic radii is-

$$I^- > Se^{2-} > Br^- > O^{2-} > F^-$$

О	F
S	Cl
Se	Br
Te	I

Correct option is (b)

- 76. (a)
- Sol. Among the following Na²⁺ is having smallest radius.

 Correct option is (a)
- 77. (c)
- Sol. Polarizing power α Size of cation

Al³⁺ have highest polarising power among the following. Correct option is (c)

 $\times \times \times \times \times$