

wireless@kth

Friday seminar November 15th 2013

Challenges and Scenarios of the fifth Generation (5G) Wireless Communications System

Dr. Afif Osseiran
Ericsson Research
METIS Project Coordinator

CONTENT

- About METIS
- > 5G scenarios
- > Examples of 5G Technical Components

5G WIRELESS ACCESS: CHALLENGES

Affordable and sustainable

METIS OBJECTIVES

- Lay the foundation for
- Ensure a global forum for
- Build an early global consensus for

METIS OBJECTIVES

1000x higher mobile data volumes

50/500 B devices

10-100x
higher number of connected devices

Up to 10Gbps

10-100x typical end-user data rates

Few ms E2E

5x lower latency

10 years

10x
longer battery life
for low-power devices

Develop a concept for future mobile and wireless communications system that supports the connected information society

METIS STRUCTURE: WORK PACKAGES

- > WP1 (DOCOMO)
- > WP2 (Huawei)
- > WP3 (Alcatel-Lucent)
- > WP4 (NSN)
- WP5 (Nokia)
- > WP6 (Ericsson)
- > WP7 (Ericsson)
- > WP8 (Ericsson)

METIS 5G SCENARIOS

Best experience follows you

Super real-time and reliable connections

Amazingly fast

Great Service in a crowd

(((Ç)))×

Ubiquitous things communicating

Traffic efficiency and

safety

grid networks

bit-rate, delay

accessibility, large crowds

Stadium

Blind spots

accessibility (Coverage) mobility delay, reliability, (red new industrial applications

many simple devices, coverage (redundancy)

METIS | wireless@KTH | 2013-11-15 | Page 7

METIS 5G SCENARIOS

FIVE CHALLENGES

FIVE SCENARIOS

SCENARIO: Amazingly fast

- Work and infotainment unhindered by delays
- Amazing end-user experience provided by very high data-rates

Virtual reality office

Giga bit at application layer

Dense urban information society

- Ubiquitous dense urban coverage
- Large and dynamic user crowds

SCENARIO: Works in a crowd

- Great user experience even in extremely crowded situation
- > Extreme traffic densities, dynamic in time and space

Shopping mall, Stadium extreme user densities

Open air festivallittle fixed infrastructure for temporary events

SCENARIO: Best experience follows you

- Same experience at home, in the office or on the move
- Robust communication in remote areas, disaster areas and unforeseen local traffic demands

Blind spots
Accessibility in places with potential poor coverage

METIS | wireless@KTH | 2013-11-15 | Page 14

SCENARIO: Super real-time and reliable connections

- Low E2E latency delay and reliable communication enabling critical machinetype applications
- > Empowering industries to embrace new technologies in their processes

Traffic efficiency and safety

- More efficient use of road infrastructure
 - Reduce risk for traffic incidents

SCENARIO: Ubiquitous things communicating

- Very large number of small, simple, and inexpensive devices
- > Requirement for long battery lifetime, scalability, and adaptability
 - Inexpensive = small battery, simple device

Massive deployment of sensors and actuators

- Handle a massive number of devices
- Very low cost devices with long battery lifetime
 - Provide protocol scalability and coverage

ROAD TO 5G TECHNICAL COMPONENTS

PROBLEM TO SOLUTION SPACE

Problem space: Scenarios from end-user perspective

Solution Space: Horizontal topics and technology components

Massive Machine
Communication

Ultra-reliable
Communication

Device-to-Device
Communication

Networks

Architecture

Multi-RAT / Multi-

layer Networks

Spectrum

Multi-node/Multi-

antenna Tx

METIS | wireless@KTH | 2013-11-15 | Page 18

Radio Link

Concepts

MASSIVE MIMO: CSI ERROR

Example of contribution:

30 Gbps simulation using 11 GHz band measured 24x24 MIMO channel

Transmission scheme	24x24 MIMO-OFDM eigenmode
Signal bandwidth	400 MHz
Subcarrier spacing	195 kHz
Modulation scheme	AMC (QPSK, 16QAM, 64QAM)
Channel coding	Turbo code, Coding rates of 1/2-3/4
Maximum bit rate	35.3 Gbps (64QAM, 3/4)

Investigation points:

- Performance analysis of massive MIMO in higher frequency bands
- Clarification of requirements of CSI error and hardware impairments for high-performance massive MIMO

12-element array with dual Antenna height: 8 m

polarization

Sector antenna 3 dB beamwidth: H: 65 deg. V: 8 deg. Antenna gain: 15 dBi

* This channel measurement was conducted in Ishigaki City in partnership with Tokyo Inst. of Tech. in Japanese national project

BEYOND UPLINK & DOWNLINK: TWO-WAY COMM.

FBS

 Traditionally, the designs of the uplink and the downlink are decoupled

 The ideas related to wireless network coding suggest optimization of the two-way communication problem instead of decoupling

FBS

5G ARCHITECTURE

- Amazingly Fast scenario
 - high data rates
 - high network capacities
-) UDN
 - ISD down to about 10 m outdoors
 - 1>= radio nodes per room
- Local break out
- Accelerated content delivery
- Distributed mobile core functions

* Only Remote Radio Units (RRUs) assumed.

5G Future

Integration

of access technologies into one seamless experience

Massive MIMO

Ultra-Dense Networks

- **Moving Networks**
- **Higher Frequencies**

and I on Revolution

Evolution

Complementary new technologies

Respond to traffic explosion Extend to novel applications 10 x longer battery life

10 - 100 x higher typical user rate 1000 x higher mobile data volume per area

for low power M2M 10 -100 x higher number of connected devices
5 x reduced E2E latency

- D₂D **Communications**
 - **Ultra-Reliable Communications**
 - **Massive Machine Communications**

Existing technologies in 2012

3G

4G

METIS | wireless@KTH | 2013-11-15 | Page 22

Wifi

USEFUL LINKS

- A. Osseiran et al, The foundation of the Mobile and Wireless Communications System for 2020 and beyond Challenges, Enablers and Technology Solutions, VTC Spring 2013, June 2-5, 2013, https://www.metis2020.com/documents/publications/
- Deliverable D1.1, "Scenarios, requirements and KPIs for 5G mobile and wireless system", June 2013, https://www.metis2020.com/documents/deliverables/
- Deliverable D2.1, "Requirements and general design principles for new air interface", Sept. 2013, https://www.metis2020.com/documents/deliverables/
- Deliverable D3.1, "Positioning of multi-node/multi-antenna transmission technologies", Aug. 2013, https://www.metis2020.com/documents/deliverables/
- Deliverable D5.1, "Intermediate description of the spectrum needs and usage principles", Sep. 2013, https://www.metis2020.com/documents/deliverables/
- Deliverable D4.1, "Summary on preliminary trade-off investigations and first set of potential network-level solutions", Nov. 2013, https://www.metis2020.com/documents/deliverables/