Extra class

• March 19, 10 am onwards

Discrete-Time Signals and Systems

Lecture 26

Effect of all-pass filter

How does applications react to amplitude and phase distortions?

x(t) All pass filters y(t)

- Music (without phase distortions)
- Music (with phase distortions)
- Speech ('bat' without phase distortions)
- Speech ('bat' with phase distortions)

- Music (without phase distortions)
- Music (with phase distortions)
- Speech ('bat' without phase distortions)
- Speech ('bat' with phase distortions)

- Music (without phase distortions)
- Music (with phase distortions)
- Speech ('bat' without phase distortions)
- Speech ('bat' with phase distortions)

- Music (without phase distortions)
- Music (with phase distortions)
- Speech ('bat' without phase distortions)

Speech ('bat' with phase distortions)

- Music (without phase distortions)
- Music (with phase distortions)
- Speech ('bat' without phase distortions)
- Speech ('bat' with phase distortions)

- Music (without phase distortions)
- Music (with phase distortions)
- Speech ('bat' without phase distortions)
- Speech ('bat' with phase distortions)

Ohm's law: We hear only amplitude and frequency of sound waves

- Complicated Speech (without phase distortions)
- Complicated Speech (with phase distortions)

Hello Class! Abhishek Dixit is an awesome teacher!

- Complicated Speech (without phase distortions)
- Complicated Speech (with phase distortions)

Hello Class! Abhishek Dixit is an awesome teacher!

- Complicated Speech (without phase distortions)
- Complicated Speech (with phase distortions)

```
Hello Class! Abhishek Dixit is an awesome teacher!
```

Effect of phase reversal on Music and Speech

- Complicated Speech (without phase distortions)
- Complicated Speech (with phase distortions)
- Complicated Speech (with phase reversal)

Hello Class! Abhishek Dixit is an awesome teacher!

Effect of phase reversal on Music and Speech

- Complicated Speech (without phase distortions)
- Complicated Speech (with phase distortions)
- Complicated Speech (with phase reversal)

Hello Class! Abhishek Dixit is an awesome teacher!

Music reversal

Music reversal

Music reversal

How are the phase of two signals related?

$$x[n] \leftrightarrow X(e^{j\Omega})$$

$$x[-n] \longleftrightarrow X(e^{-j\Omega})$$

$$\cos[\Omega_o n + 15]$$

$$\cos[-\Omega_o n + 15] = \cos[\Omega_o n - 15]$$

Phase gets flipped in sign

Effect of phase change on pictures

Effect of phase change on pictures

Amplitude profile is substituted from another picture

Phase profile is randomized

Effect of phase change on pictures

Complex conjugate

$$H(e^{j\Omega}) = \sum_{k=-\infty}^{\infty} h[k]e^{-j\Omega k}$$

$$H(e^{-j\Omega}) = \sum_{k=-\infty}^{\infty} h[k]e^{j\Omega k} = \overline{H(e^{j\Omega})}$$

Prove

$$h[k]$$
 is real

$$|H(e^{j\Omega_O})|$$
 is even

$$\angle H(e^{j\Omega_O})$$
 is odd

Input & Output

$$\cos[\Omega_o n]$$
 | Property | Property

$$\frac{1}{2}\left\{e^{j\Omega_O n} + e^{-j\Omega_O n}\right\} \qquad \qquad |H(e^{-j\Omega_O n})|$$

$$|H(e^{j\Omega_O})|\cos[\Omega_O n + \angle H(e^{j\Omega_O})]$$

Discrete-time Fourier Transform

$$H(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} h[n]e^{-j\Omega n}$$

$$h[n] = ?$$

Deriving h[n]

$$H(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} h[n]e^{-jn\Omega}$$

$$H(e^{j\Omega})e^{jl\Omega} = \sum_{n=-\infty}^{\infty} h[n]e^{-jn\Omega}e^{jl\Omega}$$

$$\int_{0}^{2\pi} H(e^{j\Omega})e^{jl\Omega}d\Omega = \int_{0}^{2\pi} \sum_{n=-\infty}^{\infty} h[n]e^{-jn\Omega}e^{jl\Omega}d\Omega$$

Deriving h[n]

$$\int_{0}^{2\pi} H(e^{j\Omega})e^{jl\Omega}d\Omega = \sum_{n=-\infty}^{\infty} h[n] \int_{0}^{2\pi} e^{j(l-n)\Omega}d\Omega$$

$$\int_{0}^{2\pi} e^{j(l-n)\Omega} d\Omega = \begin{cases} 2\pi \text{ if } l = n\\ 0 \text{ if } l \neq n \end{cases}$$

$$\int_{0}^{2\pi} e^{j(l-n)\Omega} d\Omega = 2\pi \delta[l-n]$$

Deriving h[n]

$$\int_{0}^{2\pi} H(e^{j\Omega})e^{jl\Omega}d\Omega = \sum_{n=-\infty}^{\infty} h[n]2\pi\delta[l-n]$$

$$\int_{0}^{2\pi} H(e^{j\Omega})e^{jl\Omega}d\Omega = h[l]2\pi$$

$$h[n] = \frac{1}{2\pi} \int_{0}^{2\pi} H(e^{j\Omega}) e^{jn\Omega} d\Omega$$

Discrete-time Fourier Transform

$$H(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} h[n]e^{-j\Omega n}$$

$$h[n] = \frac{1}{2\pi} \int_{0}^{2\pi} H(e^{j\Omega}) e^{jn\Omega} d\Omega$$

Discrete-time Fourier Transform

$$H(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} h[n]e^{-j\Omega n}$$

$$h[n] = \frac{1}{2\pi} \int_{0}^{2\pi} H(e^{j\Omega}) e^{jn\Omega} d\Omega$$

These equations are transform equations if $\sum_{n=-\infty}^{\infty} |h[n]| < \infty$ or $\sum_{n=-\infty}^{\infty} |h[n]|^2 < \infty$

No Gibbs phenomenon or Dirichlet conditions here

• $F{\delta[n]} = ?$

• $F{\delta[n]} = ?$

$$H(e^{j\Omega)} = \sum_{k=-\infty}^{\infty} \delta[k]e^{-jk\Omega} = 1$$

- $x[n] = a^n u[n]$
- $F\{x[n]\} = ?$

- $x[n] = a^n u[n]$
- $F\{x[n]\} = ?$

$$X(e^{j\Omega)} = \sum_{n=0}^{\infty} a^n e^{-j\Omega n} = \frac{1}{1 - ae^{-j\Omega}}$$

•
$$x[n] = \begin{cases} 1, |n| \le N_1, \\ 0, |n| > N_1 \end{cases}$$

• $F\{x[n]\} = ?$

•
$$x[n] = \begin{cases} 1, |n| \le N_1, \\ 0, |n| > N_1 \end{cases}$$

• $F\{x[n]\} = ?$

$$X(e^{j\Omega)} = \sum_{n=-N_1}^{N_1} e^{-j\Omega n} = \frac{e^{j\Omega N_1} (e^{-j\Omega(2N_1+1)} - 1)}{e^{-j\Omega} - 1}$$

$$X(e^{j\Omega)} = \frac{e^{j\Omega N_1} \left(-2je^{-j\Omega(N_1 + \frac{1}{2})} \sin\left(\Omega\left(N_1 + \frac{1}{2}\right)\right)\right)}{-2je^{-j\Omega/2} \sin(\Omega/2)}$$

•
$$x[n] = \begin{cases} 1, |n| \le N_1, \\ 0, |n| > N_1 \end{cases}$$

•
$$F\{x[n]\} = ?$$

$$X(e^{j\Omega)} = \sum_{n=-N_1}^{N_1} e^{-j\Omega n} = \frac{\left(\sin\left(\Omega\left(N_1 + \frac{1}{2}\right)\right)\right)}{\sin(\Omega/2)}$$

$$X(e^{j\Omega)} = \frac{\left(\sin\left(\Omega\left(N_1 + \frac{1}{2}\right)\right)\right)}{\sin(\Omega/2)}$$

- $X(e^{j\Omega}) = \delta(\Omega)$
- x[n] = ?

- $X(e^{j\Omega}) = \sum_{m \in I} \delta(\Omega m2\pi)$
- x[n] = ?

- $X(e^{j\Omega}) = \sum_{m \in I} \delta(\Omega m2\pi)$
- x[n] = ?

$$x[n] = \frac{1}{2\pi} \int_0^{2\pi} X(e^{j\Omega}) e^{jn\Omega} d\Omega = \frac{1}{2\pi}$$

- $X(e^{j\Omega)} = 2\pi \sum_{m \in I} \delta(\Omega m2\pi)$
- x[n] = 1