

PLATINUM SPONSOR

GOLD SPONSORS

SILVER SPONSOR

BRONZE SPONSOR

Python i uczenie maszynowe na dużą skalę w Apache Spark

Tomasz Cieplak

Agenda

- Podstawowe pytanie: Ale po co? (Scikit-Learn, TensorFlow, Keras)
- Jeśli znamy poprzednią odpowiedź, to kolejne pytanie: Jak?
 - Proste modele uczenia maszynowego (Scikit-Learn)
 - Uczenie głębokie (TensorFlow, Keras, DeepLearning Pipeline)
- Co dalej? (MLFlow)
- ... Generalnie Apache Spark ... PySpark ...

Witamy w prawdziwym świecie

Poniedziałek rano...

- Mamy za dużo danych... (?)
- Nasze biblioteki języka Python (Pandas, Numpy, Scikit Learn) nie są skalowalne i wykorzystują tylko jeden CPU (serio?)

Ekosystem Apache Spark

Spark SQL+ DataFrames structured data Spark Streaming real-time

MLlib machine learning

GraphX graph

Spark Core

Na pewno? Dlaczego? Masz dowód?

STOP

Poszukiwanie kompromisu

Lepiej jak jest więcej...

"More data beats better algorithms"

Skala jest kluczowym czynnikiem efektywnej nauki danych i sztucznej inteligencji

https://www.figure-eight.com/more-data-beats-better-algorithms/

To sprawdzamy – przypadek Scikit Learn

- Scikit-learn używa biblioteki joblib do zrównoleglania zadań na jednej maszynie
- Pozwala to trenować większość estymatorów (ale tylko, które akceptują parametr n_jobs) przy użyciu wielu rdzeni CPU
- n_jobs = -1
- import psutil
 cores = psutil.cpu_count()
 n_jobs = cores

"ale tylko, które akceptują parametr n_jobs"

ANALIZA – PRZYPADEK SCIKIT LEARN

Generalnie jest dobrze, ale...

Wielkość analizowanego zbioru danych

Ograniczenia – prawo Amdahlsa

Scikit Learn – a te które nie akceptują parametru n_jobs?

- SVC
- AdaBoostClassifier
- ...

Zastosowanie przeszukiwania siatki i walidacji krzyżowej

https://databricks.com/blog/2016/02/08/auto-scaling-scikit-learn-with-apache-spark.html

Więc kiedy Spark?

- Mamy dużo danych, które nie mieszczą się w pamięci RAM pojedynczej maszyny
- Stosujemy narzędzia, które skalują zadania na wiele maszyn <u>przy</u> <u>zastosowaniu określonych metod</u>
- Zastosowanie produkcyjne wydajność, niezawodność procesu, duża skalowalność

Scikit-learn w Spark - uwaga, na jakiej maszynie (klastra) jest uruchamiany kod Spark-sklearn – rozproszenie zadań Apache Spark Deep Learning Pipelines Inne: ONNX, MLFlow, TensorFrames

SCENARIUSZE

Integracja Scikit-learn i Apache Spark

- uczenie i ocena wielu modeli scikit-learn jednocześnie (GridSearchCV)
- rozproszona implementacja analogiczna do wielordzeniowego zrównoleglania domyślnie zawartego w scikit-learn

SPARK - SKLEARN

Spark-SKLearn

DEMO

Spark-sklearn (wyniki orientacyjne)

https://databricks.com/blog/2016/02/08/auto-scaling-scikit-learn-with-apache-spark.html

Spark-sklearn – a jednak ograniczenia...

- Zalecane jest stosowanie biblioteki do "małej" ilości danych.
- Głównym celem stosowania biblioteki jest poszukiwanie parametrów za pomocą technik walidacji krzyżowej.
- Jednak dla dużych zbiorów danych, zalecane jest stosowanie natywnych dla Sparka metod uczenia maszynowego...
- Czyli spark.ml lub spark.mllib
- I tutaj jest nadzieja...

class spark_sklearn.Converter(sc)

- Klasa służąca do konwersji między modelami scikit-learn i Spark ML
- Jednak...
- pyspark.ml.classification.LogisticRegressionModel ⇔ sklearn.linear_model.LogisticRegression (tylko klasyfikacja binarna, bez wieloklasowej)
- pyspark.ml.regression.LinearRegressionModel
 ⇒ sklearn.linear_model.LinearRegression

SPARK ML I SPARK MLLIB

Biblioteka MLlib

MLlib obejmuje następujące klasy algorytmów i funkcji:

- Klasyfikacja regresja logistyczna, naiwny klasyfikator bayesowski, drzewa decyzyjne i losowe lasy
- Regresja uogólniona regresja liniowa i analiza przeżycia
- Rekomendacja naprzemienne najmniejsze kwadraty (ALS)
- Klastrowanie K-średnie i mieszanki Gaussa (GMM)
- Modelowanie tematyczne alokacja ukryta Dirichleta (LDA)
- Częste zestawy przedmiotów, reguły asocjacji i eksploracja wzorów sekwencyjnych
- Rozproszona algebra liniowa rozkład wartości pojedynczych (SVD), analiza głównych składowych (PCA)
- Statystyki statystyki podsumowujące, testowanie hipotez, standaryzacja, normalizacja i wiele innych.

Czym to się różni

Spark ML

 spark.ml udostępnia API wyższego poziomu wbudowane w DataFrames służące do tworzenia potoków ML

Spark MLlib

 spark.mllib zawiera starsze API zbudowane na RDD

Podstawowym API uczenia maszynowego dla Sparka jest teraz interfejs API DataFrame w pakiecie spark.ml

MLlib nadal będzie obsługiwał interfejs API oparty na RDD w spark.mllib z wdrażanymi poprawkami.

Jednak ...

Uczenie maszynowe opiera się na uruchamianiu sekwencji algorytmów do przetwarzania i uczenia na podstawie danych.

Pipeline (potok)

Potok uczenia maszynoweg o w Apache Spark Wyodrębnienie cech , ich wybór i transformacja

Uczenie modelu opartego na wektorach cech i etykietach (w uczeniu nadzorowanym)

> Tworzenie prognoz z zastosowaniem wyuczonego modelu

> > Ocena wydajności i dokładność modelu (często wróć do punktu 2)

Właściwości komponentów potoku

Transformer.transform() i Estimator.fit() obydwa komponenty są bezstanowe. W przyszłości stanowe algorytmy mogą być wspierane poprzez alternatywne koncepcje.

Każde wystąpienie transformera lub estymatora ma unikalny identyfikator, który jest przydatny w określaniu parametrów

SparkDL

Zadania realizowane przez bibliotekę DeepLearning Pipeline:

- ładowanie obrazów,
- stosowanie wstępnie wyuczonych modeli jako transformatorów w potoku Spark ML (Transfer learning)
- stosowanie modeli głębokiego uczenia w skali
- rozproszone dostrajanie hiperparametrów modeli
- wdrażanie modeli za pomocą Spark SQL

Transfer Learning (transfer poznania)

SparkDL

DEMO

MLFlow

Tracking

Nadzór i weryfikacja: wyników, kodu, danych, konfiguracji

Projects

Tworzenie paczek do otworzenia eksperymentu na innych platformach

Models

Generalizacja formatu modeli do przesyłania ich na różne platformy

MLFlow

- Języki Programowania
 - Python, R, Java
- Biblioteki uczenia maszynowego
 - TensorFlow, Keras, Spark ML, Scikit-Learn, PyTorch, mleap i inne
- Źródła danych
 - Amazon S3, Azure Storage, MS SQL i inne
- Systemy wdrożeniowe:
 - Docker, Apache Spark, Azure Machine Learning, Amazon SageMaker,
 ONNx, kubernetes, ONNX

Podsumowanie

- Zwróć uwagę z jakimi danymi masz do czynienia, zapoznaj się z nimi (CRISP-DM)
- Odpowiedz sobie na pytanie, jakiego typu narzędzia tworzące modele powinieneś wykorzystać
- Apache Spark ML to bogaty zbiór algorytmów uczenia maszynowego
- Jednak, istnieje wiele metod pozwalających wykorzystać zaawansowane biblioteki uczenia maszynowego (Scikit-Learn) lub ogólniej, sztucznej inteligencji (TensorFlow, Keras)

Materiały z prezentacji dostępne pod adresem:

https://github.com/tomyc/sqlday 2019

PLATINUM SPONSOR

GOLD SPONSORS

SILVER SPONSOR

BRONZE SPONSOR

