XXIII Dénombrement

26 août 2025

Table des matières

1	Card	dinal d'un ensemble fini.	1
2	Dén	ombrement.	3
	2.1	Réunion, intersection et complémentaire	3
	2.2	Produit cartésien	4
	2.3	Applications entre ensembles finis	4
	2.4	Parties d'un ensemble fini	5

П

Soient E, F et G trois ensembles.

Définition 0.0.1.

On dit que E et F sont équipotents s'il existe une bijection de E dans F. Dans ce cas, on notera $E \cong F$ (notation non officielle), et si φ est une bijection de E dans F, on notera $\varphi: E \xrightarrow{\sim} F$.

Proposition 0.0.2.

La relation d'équipotence est une relation d'équivalence.

1 Cardinal d'un ensemble fini.

Le programme stipule que parmi les propriétés de la partie 1, les plus intuitives seront admises sans démonstration ; il stipule également que l'utilisation systématique de bijections dans les problèmes de dénombrement n'est pas un attendu du programme.

Définition 1.0.1.

On dit que E est fini s'il est vide ou s'il existe $n \in \mathbb{N}^*$ tel que $E \cong [1, n]$. Dans le cas contraire, E est dit infini.

Le résultat qui donne un sens à ce que l'on appelle intuitivement le nombre d'éléments d'un ensemble fini est alors le suivant.

Théorème 1.0.2. (i) Soient n, m deux entiers naturels non nuls. Si $[1, n] \cong [1, m]$, alors n = m.

(ii) Cela assure que si un ensemble est fini et équipotent à [1, n] pour un certain $n \in \mathbb{N}^*$, alors ce n est unique et est appelé le *cardinal* de E, et est noté Card E ou |E|.

Par convention, $\operatorname{Card} \emptyset = 0$.

Démonstration.

La démonstration du premier point se fait par récurrence sur n en posant l'hypothèse (P_n) : pour tout $m \in \mathbb{N}^*$, si $[\![1,m]\!] \cong [\![1,n]\!]$, alors m=n.

La démonstration est tout à fait du même style que les démonstrations des résultats 1.0.6 et 1.0.7, et est laissée en exercice.

Remarque 1.0.3.

On trouver parfois la notation #E.

Exemple 1.0.4. 1. Pour tout $n \in \mathbb{N}$, [1, n] est évidemment fini et de cardinal n.

2. Soient $n, m \in \mathbb{N}$, n < m. Alors $\operatorname{Card}[n, m] = m - n + 1$. En effet, l'application $[1, m - n + 1] \to [n, m]$, $a \mapsto a + n - 1$ est une bijection.

Dans toute la suite on supposera que E est fini de cardinal n.

Théorème 1.0.5.

E est équipotent à F si et seulement si (F est aussi fini et $\operatorname{Card} E = \operatorname{Card} F)$.

Démonstration.

Si ${\cal E}$ est vide, ${\cal F}$ aussi.

Sinon, soit φ : $[\![1,n]\!] \xrightarrow{\sim} E$, et ψ : $E \xrightarrow{\sim} F$. Alors $\psi \circ \varphi$: $[\![1,n]\!] \xrightarrow{\sim} F$.

Lemme 1.0.6.

Supposons E non vide, et $a \in E$. Alors $E \setminus \{a\}$ est fini de cardinal n-1.

Démonstration.

Le cas où $E=\{a\}$ est évident. Supposons donc que $E\backslash\{a\}$ est non vide.

Soit
$$\varphi : [1, n] \xrightarrow{\sim} E$$
.

— Si $\varphi(n) = a$, posons $\psi = \varphi$.

— Si $\varphi(n) = b$ pour b un élément de E différent de a, notons p l'antécédent de a. Donc p < n. Posons alors $\psi = \varphi \circ \tau_{p,n}$, où $\tau_{p,n}$ est la transposition de S_n échangeant p et n.

Alors, dans tous les cas, $\psi: \llbracket 1,n \rrbracket \xrightarrow{\sim} E$, et $\psi(n)=a$. Ainsi, $\psi|_{\llbracket 1,n-1 \rrbracket}: \llbracket 1,n-1 \rrbracket \xrightarrow{\sim} E \setminus \{a\}$, d'où le résultat.

Théorème 1.0.7.

Soit $A \subset E$. Alors A est fini et $\operatorname{Card} A \leq \operatorname{Card} E$. De plus, $\operatorname{Card} A = \operatorname{Card} E$ si et seulement si A = E.

Démonstration.

On le montre par récurrence sur $n = \operatorname{Card} E$.

Si n=0, $E=A=\varnothing$, et le résultat est évident.

Soit $n \in \mathbb{N}$ tel que pour tout ensemble E de cardinal n, et pour tout $A \subset E$, A est fini et $\operatorname{Card} A \leqslant \operatorname{Card} E$.

Soit E de cardinal n+1, et $A\subset E$. Si A=E, alors A est fini et $\operatorname{Card} A=\operatorname{Card} E$. Sinon, soit $a\in E\backslash A$. Posons $\tilde E=E\backslash \{a\}$. Alors $\operatorname{Card} \tilde E=n$ d'après le lemme précédent, et $A\subset \tilde E$. Par hypothèse de récurrence, A est fini, et $\operatorname{Card} A\leqslant n$. En particulier, $\operatorname{Card} A<\operatorname{Card} E$, donc $A\neq E$, ce qui prouve au passage que $\operatorname{Card} A=\operatorname{Card} E$ si et seulement si A=E.

Remarque 1.0.8.

Grâce à ce résultat, pour montrer l'égalité de deux ensembles finis, on peut montrer la double inclusion, mais aussi se contenter d'une inclusion et montrer l'égalité des cardinaux.

Ce résultat est à rapprocher du résultat assurant que deux espaces vectoriels de dimension finie sont égaux si et seulement si l'un est inclus dans l'autre et ils ont même dimension.

Lemme 1.0.9.

Soit f une application surjective de F dans G. Alors il existe une injection de G dans F.

Démonstration.

Soit $y \in G$. Alors y a un (ou plusieurs) antécédent(s) par f. Choisissons un de ces antécédents, et notons-le g(y). On définit ainsi une application $g: G \to F$, tel que pour tout $y \in G$, f(g(y)) = y. Ainsi, $f \circ g$ est injective, et on sait alors que g est injective de G dans F.

Exercice 1.0.10.

Montrer que s'il existe une injection $f: F \to G$, alors il existe une surjection $g: G \to F$.

Théorème 1.0.11.

Soit f une application de F dans G.

- (i) Si G est fini et f est injective, alors F est fini également, et $\operatorname{Card} F \leqslant \operatorname{Card} G$.
- (ii) Si F est fini et f est surjective, alors G est fini également, et $\operatorname{Card} F \geqslant \operatorname{Card} G$.
- (iii) Si F et G sont finis et $\operatorname{Card} F = \operatorname{Card} G$, alors :

f est injective $\Leftrightarrow f$ est surjective $\Leftrightarrow f$ est bijective.

Remarque 1.0.12.

La relation « F a moins d'éléments que G » correspond donc à « F s'injecte dans G » (au moins pour des ensembles finis).

De même, la relation « F a plus d'éléments que G » correspond donc à « F se surjecte sur G » (au moins pour des ensembles finis).

Concernant des ensembles quelconques, le lecteur intéressé pourra étudier le théorème de Cantor-Bernstein.

Remarque 1.0.13.

Une fois encore, ce résultat est à rapprocher des résultats sur les espaces vectoriels et les applications linéaires en dimension finie.

- **Démonstration.** (i) f étant injective, elle établit une bijection de F dans f(F). Or $f(F) \subset G$, donc f(F) est fini et $\operatorname{Card} f(F) \leqslant \operatorname{Card} G$. Ainsi, puisque $F \cong f(F)$, F est fini et $\operatorname{Card} F \leqslant \operatorname{Card} G$.
- (ii) En utilisant 1.0.9, soit g injective de G dans F. En appliquant le premier point, G est donc fini et $\operatorname{Card} G \leqslant \operatorname{Card} F$.
- (iii) Il suffit de démontrer : f est injective $\Leftrightarrow f$ est surjective, le reste étant alors facile.

Pour le sens direct, si f est injective, f est une bijection de F dans f(F), donc $\operatorname{Card} F = \operatorname{Card} f(F)$. Mais $\operatorname{Card} G = \operatorname{Card} F$, donc $\operatorname{Card} f(F) = \operatorname{Card} G$, et comme $f(F) \subset G$, nous avons f(F) = G, ce qui signifie bien que f est surjective.

Pour le sens indirect, soient $x,y \in F$ tels que f(x) = f(y) et $x \neq y$. Alors $f(y) \in f(F \setminus \{y\})$, et donc $f(F \setminus \{y\}) = G$. Par conséquent, $f|_{F \setminus \{y\}}$ est surjective à valeurs dans G, donc avec le point (ii), $\operatorname{Card} F \setminus \{y\} \geqslant \operatorname{Card} G$. Mais $\operatorname{Card} F \setminus \{y\} = \operatorname{Card} G - 1$, ce qui est absurde. Par conséquent, f est aussi injective.

Exercice 1.0.14.

Soient (G, \star) un groupe et A une partie **finie** non vide de G stable par \star . Soit $x \in A$.

- 1. Soit $\varphi: \mathbb{N}^* \to G$ l'application définie par $\varphi(n) = x^n$. Montrer que φ n'est pas injective.
- 2. En déduire que $x^{-1} \in A$, puis que A est un sous-groupe de (G, \star) .

Corollaire 1.0.15 (Principe des tiroirs, ou *Pigeonhole Principle* en anglais).

Si m < n, il est impossible de ranger n paires de chaussettes dans m tiroirs sans en mettre au moins deux dans le même tiroir.

Exercice 1.0.16.

Soit $n \in \mathbb{N}^*$ et $a_0, \ldots, a_n \in \mathbb{Z}$. Montrer qu'il existe $0 \le i \ne j \le n$ tels que $n \mid (a_i - a_j)$.

- **Exercice 1.0.17.** 1. On prend un Rubik's Cube fini sur lequel on effectue la même manipulation encore et toujours. Démontrer que l'on finit par se retrouver avec ce Rubik's Cube de nouveau terminé. ¹
 - 2. Les membres d'une société internationale sont originaires de six pays différents. La liste des membres contient 1978 noms numérotés de 1 à 1978. Montrer qu'il y a un membre dont le numéro vaut la somme des numéros de deux autres membres venant du même pays ou le double du numéro d'un compatriote. ²

2 Dénombrement.

2.1 Réunion, intersection et complémentaire.

Définition 2.1.1.

Lorsque deux ensembles A et B sont disjoints, la réunion de A et B est appelée union disjointe de A et B, et est notée $A \sqcup B$.

Théorème 2.1.2.

Soient A et B deux parties de E.

- (i) Si A et B sont disjoints, alors $Card(A \sqcup B) = Card A + Card B$;
- (ii) $\operatorname{Card}(A \setminus B) = \operatorname{Card}(A \cap B)$;
- (iii) $\operatorname{Card}(A \cup B) = \operatorname{Card} A + \operatorname{Card} B \operatorname{Card}(A \cap B)$.
- (iv) $\operatorname{Card}\left(\mathbb{C}_{E}^{A}\right) = \operatorname{Card}E \operatorname{Card}A$.

Démonstration. (i) Soient m, p les cardinaux de A et B, et $\varphi: [1, m] \xrightarrow{\sim} A$ et $\psi: [1, p] \xrightarrow{\sim} B$.

Soit $\chi: [\![1,m+p]\!] \to A \sqcup B$. Cette application est $x \mapsto \begin{cases} \varphi(x) & \text{si } x \leqslant m \\ \psi(x-m) & \text{si } x > m \end{cases}$

bien définie et il est facile de voir qu'elle est surjective. De plus, A et B étant disjoints, elle est injective, donc $A \sqcup B \cong \llbracket 1, m+p \rrbracket$, donc $\operatorname{Card}(A \sqcup B) = m+p = \operatorname{Card} A + \operatorname{Card} B$.

- (ii) Il suffit d'écrire que $A=(A\cap B)\sqcup (A\backslash B)$ et d'utiliser le premier point.
- (iii) Là encore, on remarque que $A \cup B = B \sqcup (A \backslash B)$ et on utilise les deux premiers points.
- (iv) Remarquer que $\mathcal{C}_E^A = E \setminus A$.

Remarque 2.1.3.

Il existe une formule qui généralise le résultat précédent à la réunion d'une famille finie d'ensembles finis : c'est la *formule de Poincaré*, aussi appelée *formule du crible*. Elle est hors-programme et sera vue en TD.

2.2 Produit cartésien.

Théorème 2.2.1.

Soient E et F deux ensembles finis. Alors $E \times F$ est fini et

$$\operatorname{Card}(E \times F) = (\operatorname{Card} E) \times (\operatorname{Card} F).$$

Il existe beaucoup d'analogies entre la dimension d'un espace vectoriel et le cardinal d'un ensemble, mais $\dim(E \times F) = \dim E + \dim F$.

Démonstration.

On note:

$$n = \text{Card } E, p = \text{Card } F,$$

 $E = \{e_1, \dots, e_n\}, F = \{f_1, \dots, f_p\}.$

Donc $E \times F = \{ (e_i, f_j), i \in [1, n], j \in [1, p] \}.$

Donc en notant $A_i = \{e_i\} \times F$ pour $i \in [1, n]$, on a :

$$E \times F = \bigsqcup_{i=1}^{n} A_i,$$

ainsi

$$\operatorname{Card} E \times F = \sum_{i=1}^{n} \operatorname{Card} A_{i}$$

$$= \sum_{i=1}^{n} \operatorname{Card} F$$

$$= n \operatorname{Card} F$$

$$= \operatorname{Card} E \times \operatorname{Card} F.$$

Remarque 2.2.2.

Ce résultat se généralise facilement par récurrence à un produit de q ensembles finis, $q \in \mathbb{N}^*$:

$$\operatorname{Card}\left(\prod_{i=1}^{q} E_i\right) = \prod_{i=1}^{q} \operatorname{Card} E_i.$$

Exercice 2.2.3.

Combien y a-t'il de possibilités de tirer neuf cartes avec remise dans un jeu de 32 cartes ?

2.3 Applications entre ensembles finis.

Théorème 2.3.1.

Soient E et F deux ensembles finis. Alors F^E est fini et

$$\operatorname{Card}\left(F^{E}\right) = (\operatorname{Card}F)^{\operatorname{Card}E}.$$

Démonstration.

On pose $\varphi : [1, n] \xrightarrow{\sim} E$, et :

$$\mu : F^{E} \to F^{n}$$

$$f \mapsto (f \circ \varphi(1), \dots, f \circ \varphi(n)) = (f \circ \varphi(i))_{i \in \llbracket 1, n \rrbracket}$$

$$\nu : F^{n} \to F^{E}$$

$$(f_{1}, \dots, f_{n}) = (f_{i})_{i \in \llbracket 1, n \rrbracket} \mapsto \begin{cases} E \to F \\ x \mapsto f_{\varphi^{-1}(x)} \end{cases}$$

On vérifie que $\nu \circ \mu = \operatorname{Id}_{F^E}$ et $\mu \circ \nu = \operatorname{Id}_{F^n}$, donc ce sont des bijections. Ainsi $F^E \cong F^n$ et l'on peut conclure avec 1.0.5.

Définition 2.3.2.

Soit $p \in [\![1,n]\!]$. On appelle p-arrangement de E toute injection de $[\![1,p]\!]$ dans E. Autrement dit, un p-arrangement est une manière de choisir p éléments deux à deux distincts de E en tenant compte de l'ordre dans lequel on choisit ces éléments ; c'est donc aussi un p-uplet de E, ou encore une liste de p éléments de E.

Exemple 2.3.3.

Si $E = \llbracket 1, 5 \rrbracket$ et p = 2, les applications φ et ψ de $\llbracket 1, 2 \rrbracket$ dans E telles que $\varphi(1) = 3$, $\varphi(2) = 5$, $\psi(1) = 5$ et $\psi(2) = 3$, sont deux p-arrangements différents de E.

On peut aussi les identifier aux couples (3,5) et (5,3).

Théorème 2.3.4.

Si Card E = n, il y a exactement $\frac{n!}{(n-p)!}$ p-arrangements de E.

Démonstration.

Pour construire une injection f de [1,p] dans E, il y a n choix possibles pour f(1). Il reste alors n-1 choix possibles pour f(2) et ainsi de suite, jusqu'aux n-p+1 choix possibles pour f(p): il y a donc $n \times (n-1) \times \cdots \times (n-p+1)$ injections possibles. \square

Remarque 2.3.5.

Les arrangements sont utilisés pour modéliser des tirages **successifs** et sans remise.

Exercice 2.3.6.

Vous jouez « au hasard » au tiercé lors d'une course avec 10 partants : combien avez-vous de chance d'avoir le tiercé dans l'ordre ?

Corollaire 2.3.7.

Le groupe S_n des permutations sur n éléments est fini de cardinal n!.

Démonstration.

 S_n correspond à l'ensemble des *n*-arrangements de [1, n].

2.4 Parties d'un ensemble fini.

Définition 2.4.1.

Soit $p \in [0, n]$. On appelle p-combinaison de E toute partie de E de cardinal p. Autrement dit, une p-combinaison est une manière de choisir p éléments distincts de E sans tenir compte de l'ordre dans lequel on choisit ces éléments.

On note alors $\binom{n}{p}$ le nombre de p-combinaisons de E ; ce nombre se lit « p parmi n ».

Remarque 2.4.2.

Les combinaisons sont utilisées pour modéliser des tirages simultanés.

Remarque 2.4.3.

On étend cette définition à $p \in \mathbb{Z}$ par $\binom{n}{p} = 0$ lorsque $p \notin \llbracket 0, n \rrbracket$.

Théorème 2.4.4.

Si $n \in \mathbb{N}$ et $p \in [0, n]$, alors $\binom{n}{p} = \frac{n!}{(n-p)!p!}$.

Remarque 2.4.5.

Nous venons donc de donner une nouvelle définition du coefficient binomial $\binom{n}{p}$, défini en début d'année, et que nous avions interprété comme le nombre de chemins réalisant p succès lors de n répétitions d'une même expérience aléatoire. Remarquons à nouveau qu'il s'agit d'un entier, ce qui n'est absolument pas évident avec la formule du théorème 2.4.4.

Démonstration.

Commençons par remarquer qu'ordonner (totalement) un ensemble à n éléments revient à numéroter ses éléments de 1 à n. Par conséquent, un ordre sur E peut être vu comme une bijection de $[\![1,n]\!]$ dans E, ou encore comme une permutation de E. Il y a donc n! façons d'ordonner un ensemble à n éléments.

Ainsi, pour chaque choix de p éléments parmi n, il existe p! p-arrangements contenant ces p-éléments : il y a donc exactement p! fois plus de p-arrangements que de p-combinaisons. Ainsi, $\binom{n}{p} = \frac{1}{p!} \times \frac{n!}{(n-p)!}$.

Exercice 2.4.6.

Vous jouez au hasard au tiercé lors d'une course avec 10 partants : combien avez-vous de chance d'avoir le tiercé dans le désordre ?

Proposition 2.4.7 (Formule du triangle de Pascal).

Si
$$n \in \mathbb{N}^*$$
 et si $p \in \mathbb{N}$, $\binom{n}{p} = \binom{n-1}{p-1} + \binom{n-1}{p}$.

Démonstration.

On donne ici une preuve combinatoire. Le cas où $p \notin [1, n-1]$ est évident. Sinon, soit E de cardinal n et $a \in E$. Notons F_p l'ensemble des parties de E a p éléments, A_p l'ensemble de ces parties qui contiennent a et B_p l'ensemble de ces parties qui ne contiennent pas a, i.e

$$F_p = \{A \subset E | |A| = p\}$$

$$A_p = \{A \in F_p | a \in A\}; B_p = \{A \in F_p | a \notin A\}.$$

Alors $F_p = A_p \sqcup B_p$.

De plus, A_p est en correspondance bijective avec l'ensemble des parties de $E \setminus \{a\}$ ayant p-1 éléments (par $A \mapsto A \setminus \{a\}$) et possède donc $\binom{n-1}{p-1}$ éléments. De même, B_p est en correspondance bijective avec l'ensemble des parties de $E \setminus \{a\}$ ayant p éléments (par $A \mapsto A$) et possède donc $\binom{n-1}{p}$ éléments. Cela permet donc de conclure, car $|F_p| = |A_p| + |B_p|$.

Proposition 2.4.8 (Formule du binôme de Newton).

Soit x et y deux éléments d'un anneau $(A, +, \cdot)$ commutant l'un avec l'autre (xy = yx), soit $n \in \mathbb{N}$. Alors

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}.$$

Démonstration.

En voici une preuve combinatoire. On montre d'abord aisément par récurrence que toutes les puissances de x et de y commutent. Ensuite, lorsque l'on développe le produit

$$(x+y)^n = \underbrace{(x+y)\cdots(x+y)}_{n \text{ fois}}$$

on obtient des termes qui sont des produits de k facteurs valant x, et de n-k facteurs valant y, pour k allant de 0 à n. Or, pour chacun de ces k, il y a k parmi n possibilités d'obtenir un produit de k facteurs valant x, et de n-k facteurs valant y, d'où le résultat.

Théorème 2.4.9.

Si E est fini, l'ensemble $\mathscr{P}(E)$ des parties l'est aussi et

$$\operatorname{Card} \mathscr{P}(E) = 2^{\operatorname{Card} E}.$$

Démonstration.

Pour tout $i \in [\![0,n]\!]$, notons P_i l'ensemble des parties de E ayant i éléments. Nous avons alors $\mathscr{P}(E) = \bigsqcup_{i=0}^n P_i$. Or chaque P_i est de cardinal $\binom{n}{i}$, donc $\mathscr{P}(E)$ est fini et :

Card
$$\mathscr{P}(E) = \sum_{i=0}^{n} \binom{n}{i}$$

= $(1+1)^n$ (binôme de Newton)
= 2^n

On peut aussi voir qu'il y a une correspondance bijective entre les parties de E et les applications à variables dans E et à valeurs dans $\{0,1\}$, par $\mathscr{P}(E) \to \{0,1\}^E$, $A \mapsto \mathbf{1}_A$.

Exercice 2.4.10.

Dans une urne, on place quatre boules rouges (numérotées 1 à 4) et trois boules vertes (numérotées 5 à 7). On réalise trois tirages avec remise, un résultat est le triplet des boules tirées.

Combien y a-t-il de résultats contenant exactement une boule rouge ? Au moins une boule rouge ? Au plus deux boules rouges ? Dont les deux dernières boules sont de couleurs différentes ?

Et si les tirages se font sans remise?

Notes

 $^1\mathrm{Pour}$ mémoire, il y a plus de 43.10^{12} combinaisons possibles sur un Rubik's Cube classique.

²L'idée est d'utiliser des différences.

On remarque que $6 \times 329 = 1974$ donc au moins 330 membres viennent d'un même pays. Appelons ce pays P_1 . Notons $a_1 < a_2 < \cdots < a_{330}$ les numéros des membres de ce pays. Considérons maintenant les 329 différences $a_2 - a_1$, $a_3 - a_1$, \cdots , $a_{330} - a_1$. Si l'un de ces nombres est dans P_1 , nous avons fini.

Sinon, ils sont tous dans l'un des 5 pays restants. On réitère le procédé : au moins 66 de ces nouveaux nombres doivent venir d'un même pays noté P_2 . On les note b_1, \dots, b_{66} et on regarde les différences $b_2 - b_1, \dots, b_{66} - b_1$. Si l'un de ces nombres est le numéro d'un membre de P_2 , c'est terminé. Mais ces nombres sont de la forme $(a_i - a_1) - (a_j - a_1) = a_i - a_j$, donc si l'un d'eux est dans P_1 , c'est terminé aussi. Sinon, au moins 17 viennent de l'un des quatre pays restants, noté P_3 . On les note c_1, \dots, c_{17} . Si l'un des $c_i - c_1$ est dans P_1 , P_2 ou P_3 , c'est fini.

Sinon, au moins 6 viennent de l'un des trois pays restants, noté P_4 . On les note d_1, \dots, d_6 . Si l'un des 5 $d_i - d_1$ est dans P_1, P_2, P_3 ou P_4 , c'est fini.

Sinon, au moins 3 viennent de l'un des deux pays restants, noté P_5 . On les note e_1, \dots, e_3 . Si l'un des 2 $e_i - e_1$ est dans P_1, P_2, P_3, P_4 ou P_5 , c'est fini.

Sinon, les deux sont dans le dernier pays, P_6 . Et donc leur différence est obligatoirement dans l'un des pays, et voilà.