드론의 제어원리

Professor H.J. Park, Dept. of Mechanical System Design, Seoul National University of Science and Technology.

An Unmanned aerial vehicle (UAV) is a Unmanned Aerial Vehicle. UAVs include both autonomous (means they can do it alone) drones and remotely piloted vehicles (RPVs).

CONTENTS

- 01 드론이란 무엇인가? 드론의 어원, 역사 등을 알아본다.
- **02** 드론의 분류 드론의 분류에 대하여 알아본다.
- **03** 제어원리 드론의 위치와 자세를 제어하는 원리에 대하여 알아본다.
- 04 드론용 센서 IMU 센서의 원리와 센서 융합에 대하여 알아본다.

드론이란 무엇인가?

Drone 의 어원

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

■ 정의:

- 영어 고어 **Drone** = male bee = lazy people
- 역사
 - 1915: 1차 세계대전 중 무선조종 비행기 개발
 - 1935: 영국해군 DH 82B Queen Bee
 - 1939: Radioplane → Drone

영국 DH 82B "Queen Bee"

미국 Radioplane - 1939

공식명칭

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

Official Names

- Unmanned Aerial Vehicle UAV
- Unmanned Aerial System UAS
- Remotely Piloted Aircraft Systems RPAS
- <u>UAS 연방항공국(FAA) 공식이름</u>

드론의 분류

2차원 운동 - 차량, 선박

- 2D상의 차량 상태
 - (*x*, *y*, *θ*) 로 결정
 - 3개의 구동으로 위치/자세를 임의로 결정
 → Holonomic (구동수 = 상태수)
- 상태 결정 방법

Holonomic

비행체

- 공간상의 비행체 상태
 - $(x, y, z, \phi, \theta, \psi)$ 로 결정
 - 6개의 구동으로 6개의 위치/자세를 임의로 결정
 - → Holonomic
- 상태 결정 방법

드론의 종류

공식 Multi-copter

- 로터의 수는 주로 짝수개
 - 회전 반작용 상쇄에 유리

제어원리

Quadrotor 제어방식

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

■ 4개의 프로펠러 회전속도 → 4개의 작용력 → 4개의 운동

Quadrotor 제어방식

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

$\blacksquare U_1$ Throttle 제어: Z_B 방향의 가속 \ddot{Z}

- 기본 Hovering + Δ_T
 - $\Omega_1 = \Omega_H + \Delta_T$:
 - $\Omega_2 = \Omega_H + \Delta_T$:
 - $\Omega_3 = \Omega_H + \Delta_T$:
 - $\Omega_4 = \Omega_H + \Delta_T$:

where Ω_H : speed required for hovering

• $\sum_{i} \Omega_{i} = 4(\Omega_{H} + \Delta_{T})$

$$m\ddot{Z} = -m g + c\theta c\phi f_R(\Delta_R)$$

= $-m g + c\theta c\phi U_1$

$$\Omega_1 = \Omega_H + \Delta_T$$

\blacksquare U_2 Roll 제어: X_B 방향의 회전가속 $\ddot{\Phi}$

- $\Omega_1 = \Omega_H + \Delta_R$:
- $\Omega_2 = \Omega_H \Delta_R$:
- $\Omega_3 = \Omega_H \Delta_R$:
- $\Omega_4 = \Omega_H + \Delta_R$:
- $\sum_{i} \Omega_{i} = 4\Omega_{H}$

$$I_{xx}\ddot{\Phi} = 4\ell f_R(\Delta_R) = U_2$$

Quadrotor 제어방식

- $\blacksquare U_3$ Pitch 제어: Y_B 방향의 회전가속 Θ
 - 기본 Hovering+△P
 - $\Omega_1 = \Omega_H \Delta_P$:
 - $\Omega_2 = \Omega_H \Delta_P$:
 - $\Omega_3 = \Omega_H + \Delta_P$:
 - $\Omega_4 = \Omega_H + \Delta_P$:
 - $\sum_{i} \Omega_{i} = 4\Omega_{H}$

$$I_{yy}\ddot{\Theta} = 4\ell f_P(\Delta_P) = U_3$$

- $lackbox{ iny }U_4$ Yaw 제어: Z_B 방향의 회전가속 $\ddot{\Psi}$
 - $\Omega_1 = \Omega_H + \Delta_Y$:
 - $\Omega_2 = \Omega_H \Delta_Y$:
 - $\Omega_3 = \Omega_H + \Delta_Y$:
 - $\Omega_4 = \Omega_H \Delta_Y$:
 - $\sum_{i} \Omega_{i} = 4\Omega_{H}$

$$I_{zz}\ddot{\Psi}=4f_Y(\Delta_Y)=U_4$$

Quadrotor 제어시스템

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

Overall control system diagram

Quadrotor 제어시스템

드론용 센서

센서융합 (Fusion)

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

■ IMU 센서의 Fusion

MEMS IMU 센서

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

- 가속도 측정센서
 - mass-spring-capacitance sensor

출처: http://www.freescale.com/files/sensors/doc/app_note/AN3461.pdf

MEMS IMU 센서

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

- MEMS IMU 센서의 원리
- 물체가 직선운동을 시키고 회전을 시키면 Coriolis force가 발생
 - $F_c = -2m\Omega \times v$
 - F_c : Coriolis force vector, Ω : rotation vector, v: linear velocity vector
- F_c 에 의한 변위를 capacitive 센서로 측정

Image credit:

http://www.digikey.com/us/en/techzone/sensors/resources/articles/MEMS-Accelerometers.html

각도측정의 원리 - Accelerometer

- \blacksquare 가속도 센서를 이용한 pitch θ
 - $\theta = 0$ 인 경우 $a_z = -g$, $a_x = 0$
 - $\theta > 0$ 인 경우 $a_z = -g\cos\theta$, $a_x = -g\sin\theta$

•
$$\therefore \theta = \tan^{-1} \frac{a_x}{a_z}$$

- 문제점
 - 잡음에 취약하다.
 - 운동 가속도에도 영향을 받는다.

1)
$$\theta = 0$$

2)
$$\theta > 0$$

각도측정의 원리-Gyro

- Gyro 센서를 이용한 pitch θ
 - gyro 센서는 근본적으로 각속도를 측정하는 센서
 - θ 를 구하려면 각속도 $\dot{\theta}$ 를 적분

- 문제점: Drift 현상
 - 작은 오차 적분에 의하여

$$\theta = \int_0^t \dot{\theta} d\tau$$

센서융합 (Fusion)

Dept. of Mechanical System Design, Seoul National University of Science and Technology.

■ 상보 (Complementary) 필터

Sensor fusion

드론의 구성

Ardupilot Components

PX4

Dept. of Mechanical System Design, Seoul

THANK YOU

An Unmanned aerial vehicle (UAV) is a Unmanned Aerial Vehicle. UAVs include both autonomous (means they can do it alone) drones and remotely piloted vehicles (RPVs).

