Sampler for Different Ranking Models

Shuxiao Chen

Simulating farmers' preference for different varieties requires sampling from different ranking models. Here I code samplers for sampling from Thurstone Model [8], Bradley-Terry Model [1], Plackett-Luce Model [7][5], and Mallows Model [6]. The samplers all sample a complete ranking from one farmer.

1 Problem Statement

We are given a set of |V| varieties $V = \{v_1, \ldots, v_{|V|}\}$ and a set of |G| farmers $G = \{g_1, \ldots, g_{|G|}\}$. Each farmer g_i is provided with k < |V| varieties and returns a ranking σ_{g_i} as an ordered list of the form $\{v_1^{(g_i)}, \succ \cdots \succ v_k^{(g_i)}\}$. The data we get is a collection of |G| rankings $\Sigma = \{\sigma_{g_1}, \ldots, \sigma_{g_{|G|}}\}$. Let $v_i \succ_{\sigma} v_j$ denote that v_i ranks higher than v_j according to the pairwise preferences expressed by σ , and let $\sigma_{g_i} \subset \sigma_{g_j}$ denote that all varieties ranked by σ_{g_i} are ranked by σ_{g_j} and their relative orders are preserved in σ_{g_j} . Furthermore we let $r_{v_i}^{(g)}$ denote the rank of v_i in σ_g .

A ranking model \mathcal{P} is a probability distribution that assigns different probabilities to all possible rankings of V. And we want to sample from \mathcal{P} given the parameters of \mathcal{P} .

2 Thurstone Model

Thurstone proposed a ranking process [8] where the ranking σ of |V| varieties (full ranking) given by a certain farmer is determined by the ordering of a set of latent values $\mathbf{y} = (y_{v_1}, \dots, y_{v_{|V|}})$ and

$$\mathbf{v} \sim \mathcal{N}(S, \Gamma)$$
.

Here $S = \{s_{v_1}, \ldots, s_{v_{|V|}}\}$ is called the *score* parameter. For simplicity we assume Γ is diagonal, i.e. elements in \mathbf{y} are independent with each other,

since farmers won't have prior knowledge on the kinship between varieties and they draw each y_{v_i} independently (however elements in S may have dependence between each other). Algorithm 1 gives a detailed description of the sampling process.

Algorithm 1 Sampler for Thurstone Model

- 1: **procedure** RTHURSTONE(S, var)
- 2: $\mathbf{y} \leftarrow \text{independent normal variables according to } S, var$
- 3: Sort \mathbf{y} in the decreasing order
- 4: **return** indexes of sorted **y**

Now consider all pairwise comparisons. Following independence, we have

$$y_{v_i} - y_{v_j} \sim \mathcal{N}(s_{v_i} - s_{v_j}, \Gamma_{ii} + \Gamma_{jj}).$$

Hence the ranking model is given by

$$\mathcal{P}(\sigma|S,\Gamma) = \prod_{v_i \succ \sigma v_j} \Phi(\frac{s_{v_i} - s_{v_j}}{\sqrt{\Gamma_{ii} + \Gamma_{jj}}}),\tag{1}$$

where Φ is the C.D.F. of the standard normal distribution.

3 Bradley-Terry Model

This model was proposed by Bradley and Terry [1] and has various extensions. This model is also parameterized by the *score* parameter $S = (s_{v_1}, \ldots, s_{v_{|V|}})$ with the constaint $s_{v_1} = 0$ in order to be identifiable. It also focuses on pairwise comparisons, namely we have

$$\mathbb{P}(v_i \succ_{\sigma} v_j) = \frac{1}{1 + \exp\{-(s_{v_i} - s_{v_j})\}}.$$
 (2)

Assuming independence among pairwise comparisons, the ranking model is given by

$$\mathcal{P}(\sigma|S) = \prod_{v_i \succ_{\sigma} v_j} \frac{1}{1 + \exp\{-(s_{v_i} - s_{v_j})\}}.$$
 (3)

Algorithm 2 provides a detailed description of the sampling process.

Algorithm 2 Sampler for Bradley-Terry Model

- 1: **procedure** RBT(S)
- 2: Sample count matrix C according to pairwise probabilities
- 3: Calculate the number of wins **w** for each variety
- 4: Sort w in the decreasing order
- 5: **return** indexes of sorted **w**

4 Plackett-Luce Model

This model was proposed independently by Plackett [7] and Luce [5]. It is the generalization of Bradley-Terry model, allowing the comparison of more than 2 varieties concurrently, and it is also parameterized by the score $S = (s_{v_1}, \ldots, s_{v_{|V|}})$ with the constraint $s_{v_1} = 0$. The ranking model is given by

$$\mathcal{P}(\sigma|S) = \prod_{v_i \in V} \frac{\exp\{s_{v_i}\}}{\exp\{s_{v_i}\} + \sum_{v_i \succ \sigma v_j} \exp\{s_{v_j}\}}$$
(4)

This model has a Thurstonian interpretation, according to [9]. When each farmer draw latent values \mathbf{y} independently from

$$y_{v_i} \sim \text{Gumbel}(\mu_{v_i}, \beta),$$

where $\beta > 0$ is an arbitrary fixed scale parameter, the ranking induced is identical to the Plackett-Luce model with parameterization:

$$s_{v_i} = \frac{\mu_{v_i}}{\beta} + \ln(\sum_{v_i \in V} \exp\{s_{v_j}\}).$$
 (5)

This interpretation gives rise to algorithm 3.

Algorithm 3 Sampler for Plackett-Luce Model

- 1: **procedure** $RPL(S, \beta)$
- 2: Calculate μ by (5)
- 3: $\mathbf{y} \sim \text{Gumbel}(\boldsymbol{\mu}, \boldsymbol{\beta})$
- 4: Sort \mathbf{y} in the decreasing order
- 5: **return** indexes of sorted **y**

5 Mallows Model

This model was proposed by Mallow [6] and is parameterized by a reference ranking $\bar{\sigma}$ and a dispersion parameter $\phi \in (0,1]$. Intuitively it describes a

distribution over rankings with respect to a distance measure $\delta(\sigma, \bar{\sigma})$. The ranking model is given by

$$p(\sigma|\bar{\sigma},\phi) = \frac{1}{Z}\phi^{\delta(\sigma,\bar{\sigma})},\tag{6}$$

where $Z = \sum_{\sigma'} \phi^{\delta(\sigma',\bar{\sigma})}$. Here we follow the path of [4] and use Kendall's tau distance [3], which is given by

$$\delta(\sigma, \bar{\sigma}) = \sum_{v_i \succ_{\sigma} v_j} \mathbb{1}\{v_j \succ_{\bar{\sigma}} v_i\}$$
 (7)

Doignon et al. introduces the Repeated Insersion Model (RIM) which allows us to sample efficiently from a Mallows model [2]. Let $\bar{\sigma} = \bar{\sigma}_1 \bar{\sigma}_2 \cdots \bar{\sigma}_{|V|}$ be the reference ranking and let an insersion vector $\mathbf{j} = (j_1, \ldots, j_{|V|})$ be any positive integer vector satisfying $j_i \leq i, \forall i \leq |V|$. Then an insersion vector has the one-to-one correspondence to a ranking by placing each $\bar{\sigma}_i$ into rank j_i for all $i \leq |V|$. Each $j_i \leq i$ is drawn with probability p_{ij_i} , which is given by

$$p_{ij} = \frac{\phi^{i-j}}{1 + \phi + \dots, +\phi^{i-1}} \tag{8}$$

for $j \leq i \leq |V|$. The details are shown in Algorithm 4.

Algorithm 4 Sampler for Mallows Model

```
1: procedure RMALLOW(\bar{\sigma}, \phi)
2:
        r \leftarrow \bar{\sigma}_1
                                                                                           ▶ Initialize
        for i = 2, ..., |V| do
3:
              Calculate insertion probabilities p by (8)
4:
             \mathbf{x} \sim \text{Multinomial}(1, \mathbf{p})
5:
             t \leftarrow the index of 1 in x
6:
7:
             Insert \bar{\sigma}_i into rank t
             r \leftarrow the new ranking
8:
9:
        return r
```

References

[1] Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952.

- [2] Jean-Paul Doignon, Aleksandar Pekeč, and Michel Regenwetter. The repeated insertion model for rankings: Missing link between two subset choice models. *Psychometrika*, 69(1):33–54, 2004.
- [3] Maurice George Kendall. Rank correlation methods. 1948.
- [4] Tyler Lu and Craig Boutilier. Learning mallows models with pairwise preferences. In *Proceedings of the 28th international conference on machine learning (icml-11)*, pages 145–152, 2011.
- [5] R.. Ducan Luce. *Individual Choice Behavior a Theoretical Analysis*. John Wiley and sons, 1959.
- [6] Colin L Mallows. Non-null ranking models. i. Biometrika, 44(1/2):114–130, 1957.
- [7] Robin L Plackett. The analysis of permutations. *Applied Statistics*, pages 193–202, 1975.
- [8] Louis L Thurstone. A law of comparative judgment. *Psychological review*, 34(4):273, 1927.
- [9] John I Yellott. The relationship between luce's choice axiom, thurstone's theory of comparative judgment, and the double exponential distribution. *Journal of Mathematical Psychology*, 15(2):109–144, 1977.