Checking algorithm

Zhuoyan Xu

After I check algorithm, I find the result in my previous note and what I reported on last week's meeting is not wrong, but in a extreme case. I'll explain in this note.

In following setting, U is ground truth, i.e. logit (tensor).

1 Unsupervised

I dig into the condition and some issue I ran into last week, and I find something interesting.

The erratic pattern shows because of the generated value I set. This is basically how I generated values in simulation.

```
whole_shape = rep(20,3) ; core_shape = rep(4,3)
d1 = whole_shape[1] ; d2 = whole_shape[2] ; d3 = whole_shape[3]
r1 = core_shape[1] ; r2 = core_shape[2] ; r3 = core_shape[3]

####----- generate data
set.seed(37)
A = randortho(d1)[,1:r1]
B = randortho(d2)[,1:r2]
C = randortho(d3)[,1:r3]

### G: sd = 1
G = as.tensor(array(data = rnorm(r1*r2*r3,sd = 1),dim = core_shape))
U = ttl(G,list(A,B,C),ms = c(1,2,3))@data

ts = rbinom(d1*d2*d3,1,prob = as.vector( 1/(1 + exp(-U)) ))
ts = as.tensor(array(ts,dim = c(d1,d2,d3)))@data
```

The different G(core tensor) result in different result. I use rnorm to generate data, and all the elements in G is Gaussian with mean zero.

1.1 sd = 1

When I set sd = 1, the results are not ideal.

It might because sometimes I think it converge, but actually it didn't. (Since the improvement for logLik for each update may not show a monotone deceasing trend when updating times increasing). To make sure I set updating times up to 100. The logLik is shown like:

Figure 1: logLik

I plot one of the slices of the U and U-hat (they basically shows all the same pattern). It shows a erratic pattern. Like this:

Figure 2: U slice in real value

Figure 3: U slicer in logic scale

Figure 4: U tensor in real scale

1.2 sd = 10 or 20

I plot one of the slices of the U and U-hat(they basically shows all the same pattern). It makes more sense. Like this:

Figure 5: U slice in real value

Figure 6: U slicer in logic scale

Figure 7: U tensor in real scale

Figure 8: U tensor in real scale

And under this condition, logLik shows it converges faster than sd=1.

1.3 sd = 100

I plot one of the slices of the U and U-hat(they basically shows all the same pattern). It's more erratic than sd=10 or 20. And MSE is higher, say 1961873(idea case would be 4000

6000). The case is still convergent(by logLik). But I think the result is OK, the bad MSE it's just because more noise. Since the slices comparison makes sense, as shown below:

Figure 9: U slice in real value

Figure 10: U slicer in logic scale

Figure 11: U tensor in real scale

Figure 12: U tensor in real scale

1.4 Uniform distribution to Generate core tensor

Then I set runif to generate core tensor.

1.4.1 [0,1]

When I set unif[0,1], the results are not ideal.

It might because sometimes I think it converge, but actually it didn't. (Since the improvement for logLik for each update may not show a monotone deceasing trend when updating times increasing). To make sure I set updating times up to 100. The logLik is shown like:

Figure 13: logLik

The MSE of U-hat is 2.930119e+19.

I plot one of the slices of the U and U-hat(they basically shows all the same pattern). It shows a erratic pattern. Like this:

Figure 14: U slice in real value

Figure 15: U slicer in logic scale

Figure 16: U tensor in real scale

Figure 17: U tensor in log scale

$1.4.2 \quad [-10,10]$

When I set uniform to be [-10,10], it basically shows the same result as rnorm(0,10), except relatively lower convergence than Gaussian case.

1.5 Check with initialization

In this case, it shows the same as the result without initialization. (The result is in my previous note [Check_Algorithm_and_some_Evidence_Theory])

2 Supervised

Still, I set

$$d_1 = d_2 = d_3 = 20$$
$$r_1 = r_2 = r_3 = 2$$

First I start with simple version, I set covariate matrix to be diag(20), identity matrix with 20 rows/columns.

Then the supervised(U-hat1) and unsupervised(U-hat2) should have same result.

The Frobenious norm of two U-hats is 8.088389e-05.

The tensor of U-hat1 and U-hat2 is:

Figure 18: 2 U-hat tensor in real scale

Figure 19: 2 U-hat tensor in log scale

The comparison of one of factor matrix is(others are the same):

Figure 20: 2 factor matrices

The comparison of core tensor is:

Figure 21: core tensor