Homework 2

Eigen Value Suppose $\lambda_1, \lambda_2, ..., \lambda_n$ are eigen-values of matrix A. Prove :

- $\lambda_1 + ... + \lambda_n = trace(A)$
- $\lambda_1...\lambda_n = |A|$
- AB and BA have the set of eigen values.

Matrix derivative Prove the followings.

- $\frac{\partial a.x}{\partial x} = a^T$
- $\bullet \quad \frac{\partial^2 x^T A x}{\partial x \partial x^T} = A + A^T$
- $\frac{\partial trace(X^T A X)}{\partial X} = X^T (A + A^T)$

Eigen value and rank

- 1. Prove that if P is a full rank matrix, matrices M and $P^{-1}MP$ have the same set of eigen values
- 2. Prove that sum of dimensions of eigenspaces of an n * n matrix M can't exceed n. (M has at most n different eigenvalues)

Symmetric positive definite Prove that every symmetric positive definite matrix A has a unique factorization of the form $A = LL^T$, where L is a lower triangular matrix with positive diagonal entries.

Basic Concepts

- 1. Random variable X has PMF $f(x) = \begin{cases} a*(1/3)^{x-2} & x=2,3,\dots\\ 0 & \text{o.w} \end{cases}$.
 - (a) Find a
 - (b) Find CDF $F_X(x)$
 - (c) Find P(X > 5)
 - (d) Find P(X > 5 | X < 7)
- 2. X, Y are R.Vs:
 - (a) Prove E[E[X|Y]] = E[X]
 - (b) Prove var(X) = E[var(X|Y)] + var(E[X|Y])
- 3. Assume $X_1, X_2, ...$ are i.i.d. Now we define another R.V as N such that:

$$X_1 \ge X_2 \ge ... \ge X_{N-1} < X_N$$

for $N \geq 2$ find E[N]

Dirichlet We recorded the attendance of students at week 1 and week 2. Let the probability that a student attends in both weeks be θ_{11} , the probability that a student attends in week 1 but not Week 2 be θ_{10} and so on. The data are as follows.

Attendance	Probability	Observed frequency
Week1 & Week2	θ_{11}	$n_{11} = 25$
Week1 but not Week2	$ heta_{10}$	$n_{10} = 7$
Week2 but not Week1	$ heta_{01}$	$n_{01} = 6$
Neither weeks	$ heta_{00}$	$n_{00} = 13$

Suppose that the prior distribution for $(\theta_{11}, \theta_{10}, \theta_{01}, \theta_{00})$ is a Dirichlet distribution with density proportional to

$$\theta_{11}^3 \theta_{10} \theta_{01} \theta_{00}^2$$

- 1. Find the prior means and prior variances of $\theta_{11}, \theta_{10}, \theta_{01}, \theta_{00}$
- 2. Find the posterior distribution.
- 3. Find the posterior means and posterior variances of $\theta_{11}, \theta_{10}, \theta_{01}, \theta_{00}$

Multivariate Gaussian Suppose
$$X \sim N_3(\mu, \Sigma)$$
 where $\mu^T = (2, -3, 1)$ and $\Sigma = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 2 & 2 \end{pmatrix}$

- 1. Find the distribution of $3X_1 2X_2 + X_3$
- 2. Relabel the variables if necessary, and find a 2×1 vector a such that X_2 and $X_2 a^T \begin{pmatrix} X_1 \\ X_3 \end{pmatrix}$ are independent.

ML & MAP Suppose X,Y are independent Normal R.Vs with mean μ and variance 1, where $\mu \sim Uni(0,1)$. $f_{\mu}(t) = \begin{cases} 1 & t \in [0,1] \\ 0 & o.w \end{cases}$

- 1. Find joint distribution of μ, X, Y .(Find $f_{\mu,X,Y}(t,x,y)$)
- 2. Find the MAP estimate of μ .
- 3. Evaluate the estimator you found in part (2) if the data is as given below.
 - (a) x = 3/4, y = 1
 - (b) x = 1/2, y = 2