

# MULTIPLE CLOCK LOW POWER SYSTEM RTL TO GDS



# System specs



• Reserved Registers Description: -

1) REGO (Address: 0x0)

ALU Operand A

2) REG1 (Address: 0x1)

ALU Operand B

3) REG2 (Address: 0x2)

**UART Config** 

REG2[0]: Parity Enable

(Default = 1)

REG2[1]: Parity Type

(Default = 0)

REG2[7:2]: Prescale

(Default = 32)

4) REG3 (Address: 0x3)

Div Ratio

REG3[7:0]: Division ratio (Default = 32)

# Test bench snippets for some of the test cases



#### Clock relations



Gated clk is on when the alu is doing its operation but it is turned on before the alu calulates the result to be stable and ready

## 1. Register File Write command (3 frames)





## 2. Register File Read command (2 frames)



## 3. ALU Operation command with operand (4 frames)



Busy signal is high from the start state to the stop state and then goes low in idle state

### 4. ALU Operation command with No operand (2 frames)



# synthesis

#### Worst setup path

Operating Conditions: scmetro\_tsmc\_cl013g\_rvt\_ss\_1p08v\_125c Library: scmetro\_tsmc\_cl013g\_rvt\_ss\_1p08v\_125c Wire Load Model Mode: top Startpoint: dut3/reg\_file\_reg[1][6] (rising edge-triggered flip-flop clocked by Ref\_clk) Endpoint: dut4/alu\_out\_reg[0] (rising edge-triggered flip-flop clocked by ALU\_CLK) Path Group: ALU\_CLK Path Type: max data arrival time 9.66 clock ALU CLK (rise edge) 10.00 10.00 clock network delay (ideal) 0.00 10.00 -0.20 9.80 clock uncertainty dut4/alu out reg[0]/CK (DFFRQX1M) 0.00 9.80 r library setup time -0.13 9.67 data required time 9.67 data required time 9.67 data arrival time -9.66 slack (MET) 0.01

#### Worst hold path

Startpoint: dut4/alu\_out\_reg[8]

(rising edge-triggered flip-flop clocked by ALU\_CLK)

Endpoint: dut4/alu\_out\_reg[8]

(rising edge-triggered flip-flop clocked by ALU\_CLK)

Path Group: ALU\_CLK Path Type: min

| Point                                                                                                                                                                                                | Incr                                  | Path                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------|
| clock ALU_CLK (rise edge) clock network delay (ideal) dut4/alu_out_reg[8]/CK (DFFRQX2M) dut4/alu_out_reg[8]/Q (DFFRQX2M) dut4/U123/Y (OAI2B11X2M) dut4/alu_out_reg[8]/D (DFFRQX2M) data arrival time | 0.00<br>0.00<br>0.00<br>0.46<br>0.20  | 0.00<br>0.00 <br>0.00 r<br>0.46 f<br>0.66 f<br>0.66 f |
| <pre>clock ALU_CLK (rise edge) clock network delay (ideal) clock uncertainty dut4/alu_out_reg[8]/CK (DFFRQX2M) library hold time data required time</pre>                                            | 0.00<br>0.00<br>0.10<br>0.00<br>-0.03 | 0.00<br>0.00<br>0.10<br>0.10 r<br>0.07                |
| data required time<br>data arrival time                                                                                                                                                              |                                       | 0.07<br>-0.66                                         |
| slack (MET)                                                                                                                                                                                          |                                       | 0.59                                                  |

#### Master and generated clocks

```
9 Attributes:
   d - dont touch network
    f - fix hold
.1
.2
   p - propagated clock
.3
   G - generated clock
   g - lib generated clock
.4
.5
.6 Clock Period Waveform Attrs Sources
.7 -----
8 ALU_CLK 10.00 {0 5} G {dut9/gated_clk}
9 Ref_clk 10.00 {0 5} {Ref_clk}
0 UART_CLK 271.00 {0 135} {Uart_clk}
1 UART_RX_CLK 271.00 {0 135} G {rx_div/o_div_clk}
2 UART_TX_CLK 8672.00 {0 4336} G {tx_div/o_div_clk}
.8 ALU_CLK Ref_clk {dut9/gated_clk}
...
Ref_clk ...
                                         Ref_clk
                                                     divide by(1)
O UART_RX_CLK Uart_clk {rx_div/o_div_clk}
                                                      divide by(1)
31
                                          UART CLK
2 UART_TX_CLK Uart_clk
                          {tx_div/o_div_clk}
                                     UART CLK
                                                   divide by(32)
34 -----
35 1
```

#### Total area

```
6 Number of ports:
                                                        745
7 Number of nets:
                                                       2814
8 Number of cells:
                                                      2027
                                                    1563
9 Number of combinational cells:
0 Number of sequential cells:
                                                      423
1 Number of macros/black boxes:
2 Number of buf/inv:
                                                         286
3 Number of references:
                                                         24
5 Combinational area: 15683.057873
6 Buf/Inv area: 1139.045623
7 Noncombinational area: 10699.732988
8 Macro/Black Box area: 0.000000
9 Net Interconnect area: undefined (No wire load specified)
1 Total cell area:
                                           26382.790861
```

# Total power

| 4 |           |          |       |          |       |
|---|-----------|----------|-------|----------|-------|
| 5 |           | Switch   | Int   | Leak     | Total |
|   | Hierarchy |          | Power |          | Power |
| 7 |           |          |       |          |       |
| В | sys_top   | 1.37e-02 | 0.493 | 1.63e+07 | 0.524 |

# Synthesis gate level netlist snippets



# Post synthesis formality

|   | ********* Verific                    | ation Result                                  | s <sup>3</sup> | *********                  | ******              | ******   |
|---|--------------------------------------|-----------------------------------------------|----------------|----------------------------|---------------------|----------|
|   | ************************             | ****                                          | 8              | ******                     | ******              | *******  |
|   | This design has no violated constrai | nts.                                          | _              | No aborted compare points. |                     | points.  |
|   | 1                                    |                                               | 2              | 1                          |                     |          |
| 1 | No failing compare points.           | 8 ********<br>9<br>10 No unveri<br>11<br>12 1 | fi             | ***********<br>ed compare  | ********<br>points. | ******** |
| 8 |                                      | ********                                      | **             |                            |                     |          |
|   | 413 Passing compare points:          |                                               |                |                            |                     |          |

# **DFT**

#### Calculate number of chains

#### Worst setup path

```
wire Load moder mode: tob
5 Startpoint: alu/alu_out_reg[1]
                 (rising edge-triggered flip-flop clocked by ALU CLK)
7
  Endpoint: alu/alu out reg[1]
               (rising edge-triggered flip-flop clocked by ALU CLK)
  Path Group: ALU CLK
0
  Path Type: max
1
                                                  Incr
2 Point
                                                               Path
3

      clock ALU_CLK (rise edge)
      0.00
      0.00

      clock network delay (ideal)
      0.00
      0.00

      alu/alu_out_reg[1]/CK (SDFFRQX2M)
      0.00
      0.00

      alu/alu_out_reg[1]/Q (SDFFRQX2M)
      0.43
      0.43

      alu/U88/Y (A0I222X1M)
      0.26
      0.69

                                                                0.00 r
                                                                0.43 f
                                                               0.69 r
8
                                                  0.14
                                                               0.84 f
9
   alu/U49/Y (NAND4X2M)
   alu/alu out reg[1]/D (SDFFRQX2M) 0.00
                                                               0.84 f
   data arrival time
1
                                                                0.84
                                                             10.00
3 clock ALU CLK (rise edge)
                                                10.00
  clock network delay (ideal)
                                                  0.00
                                                             10.00
   clock uncertainty
                                                 -0.20
                                                              9.80
   alu/alu_out_reg[1]/CK (SDFFRQX2M)
                                                 0.00
                                                               9.80 r
7
                                                               9.37
   library setup time
                                                  -0.43
                                                                9.37
8 data required time
   data required time
                                                                9.37
   data arrival time
                                                               -0.84
    .....
3
   slack (MET)
                                                                8.54
```

#### Worst hold path

```
14
15
     Startpoint: alu/alu out reg[6]
                   (rising edge-triggered flip-flop clocked by ALU_CLK)
16
17
     Endpoint: alu/alu_out_reg[7]
     (rising edge-triggered flip-flop clocked by ALU_CLK)
Path Group: ALU_CLK
18
19
20
     Path Type: min
21
22
     Point
                                                   Incr
                                                                Path
23
     clock ALU_CLK (rise edge)
                                      0.00
24
                                                                0.00
25
     clock network delay (ideal)
                                                   0.00
                                                                0.00
    alu/alu_out_reg[6]/CK (SDFFRQX2M) 0.00
alu/alu_out_reg[6]/Q (SDFFRQX2M) 0.37
alu/alu_out_reg[7]/SI (SDFFRQX2M) 0.00
data arrival time
26
                                                                0.00 r
                                                                0.37 r
27
28
                                                                0.37 r
29
                                                                0.37
30
     clock ALU_CLK (rise edge)
clock network delay (ideal)
                                                   0.00
31
                                                                0.00
32
                                                   0.00
                                                                0.00
33
     clock uncertainty
                                                   0.10
                                                                0.10
     alu/alu_out_reg[7]/CK (SDFFRQX2M)
                                                  0.00
                                                                0.10 r
34
35
     library hold time
                                                   -0.18
                                                               -0.08
36
                                                               -0.08
     data required time
37
38
     data required time
                                                               -0.08
39
     data arrival time
                                                               -0.37
41
     slack (MET)
                                                                0.45
42
```

#### Master and generated clocks

| 15<br>16 Clock<br>17 |          | Waveform     | Attrs  | Sources                       |
|----------------------|----------|--------------|--------|-------------------------------|
| 18 ALU_CLK           |          | {0 5}        | G      | {clock_gating_cell/gated_clk} |
| 19 REF CLK           | 10.00    | {0 5}        |        | {Ref clk}                     |
| 20 SCAN CLK          | 100.00   | {0 50}       |        | {SCAN CLK}                    |
| 21 UART CLK          | 271.00   | {0 135}      |        | {Uart clk}                    |
| 22 UART RX CLK       | 271.00   | {0 135}      | G      | {rx_div/o_div_clk}            |
| 23 UART TX CLK       | 8672.00  | {0 4336}     | G      | {tx_div/o_div_clk}            |
| 24                   |          |              |        |                               |
| 25                   |          |              |        |                               |
| 26 Generated         | Master   | Generated    | Master | Waveform                      |
|                      |          |              |        | Modification                  |
|                      |          |              |        |                               |
|                      | Ref_clk  | {clock_gati  |        |                               |
| 30                   |          |              |        | divide_by(1)                  |
|                      | Uart_clk | {rx_div/o_d: |        |                               |
| 32                   |          |              |        | divide_by(1)                  |
|                      | Uart_clk | {tx_div/o_d: |        |                               |
| 34                   |          |              |        | divide_by(32)                 |
|                      |          |              |        |                               |
| 36 1                 |          |              |        |                               |

#### Total area

```
14
      scmetro_tsmc_cl013g_rvt_ss_1p08v_125c (File: /home/IC/FINAL PROJE
15
16 Number of ports:
17 Number of nets:
                                           2910
18 Number of cells:
                                           2012
19 Number of combinational cells:
                                           1543
20 Number of sequential cells:
                                           421
21 Number of macros/black boxes:
                                            Θ
22 Number of buf/inv:
                                            300
23 Number of references:
                                             35
25 Combinational area:
                                  14725.224061
26 Buf/Inv area:
                                   1227.298124
27 Noncombinational area:
                                   13537.933994
28 Macro/Black Box area:
                                       0.000000
29 Net Interconnect area: undefined (No wire load specified)
                                28263.158055
31 Total cell area:
```

#### Total power

#### DFT gate level netlist snippets





#### Scan chain distribution

```
0 Number of chains: 5
1 Scan methodology: full_scan
2 Scan style: multiplexed flip flop
3 Clock domain: no_mix
5 Chain
             Scan Ports (si --> so)
                                           # of Cells
                                                        Inst/Chain
                                                                                 Clock (port, time, edge)
6 ----
7 S 1
             SI[4] --> S0[4]
                                                   82
                                                        UART_tx/uut0/current_state_reg[0]
                              (SCAN_CLK, 30.0, rising)
8
9 S 2
             SI[3] --> S0[3]
                                                        async_fifo/dut2/fifo_reg[5][1]
                              (SCAN_CLK, 30.0, rising)
                                                        async fifo/dut2/fifo reg[15][3]
1 S 3
             SI[2] --> S0[2]
                              (SCAN CLK, 30.0, rising)
3 S 4
                                                        register_file/reg_file_reg[2][4]
             SI[1] --> S0[1]
                              (SCAN_CLK, 30.0, rising)
5 S 5
             SI[0] --> S0[0]
                                                        register file/reg file reg[12][6]
                              (SCAN_CLK, 30.0, rising)
6
7 1
```

#### Coverage percentage

#### Uncollapsed Stuck Fault Summary Report

| fault class       | code | #faults |
|-------------------|------|---------|
|                   |      |         |
| Detected          | DT   | 16829   |
| Possibly detected | PT   | Θ       |
| Undetectable      | UD   | 86      |
| ATPG untestable   | AU   | 70      |
| Not detected      | ND   | 21      |
|                   |      |         |
| total faults      |      | 17006   |
| test coverage     |      | 99.46%  |
|                   |      |         |

Information: The test coverage above may be inferior than the real test coverage with customized protocol and test simulation library.

1

#### Post dft formality

```
. Hed hay 20 2012/100 2027
                                   No aborted compare points.
10 This design has no violated constraints.
11
12 1
                                   2 1
7 Date
      : Thu Aug 29 00:38:41 2024
10 No failing compare points.
11
12 1
/ Date
         : IIIU AUG 29 00:30:41 2024
8 ****************
0 No unverified compare points.
2 1
****************
413 Passing compare points:
          : Thu Aug 29 00:38:41 2024
No failing compare points.
1
```

# **PNR**

# Floor planning





#### Power planning



#### **Placement**



# Add filler cells



## Routing (post route)



#### Check connectivity

```
End Time: Wed Aug 28 22:08:05 2024

****** End: VERIFY CONNECTIVITY *******

Verification Complete : 0 Viols. 0 Wrngs.

(CPU Time: 0:00:00.1 MEM: 0.000M)
```

#### Check geometry

```
Verification Complete : 0 Viols. 0 Wrngs.
*******End: VERIFY GEOMETRY*******
```

#### Check if there are any gaps after adding filler cells

```
0: Total number of gaps found: 0
```

#### Check drc violations

```
# 24401

#Total number of DRC violations = 0

#Total number of net violated process antenna rule = 0

#Total number of violations on LAYER METAL1 = 0

#Total number of violations on LAYER METAL2 = 0

#Total number of violations on LAYER METAL3 = 0

#Total number of violations on LAYER METAL4 = 0

#Total number of violations on LAYER METAL5 = 0

#Total number of violations on LAYER METAL6 = 0

#Total number of violations on LAYER METAL6 = 0

#Total number of violations on LAYER METAL7 = 0
```

#### Check process antenna

```
******* START VERIFY ANTENNA *******
Report File: system_TOP.antenna.rpt
LEF Macro File: system_TOP.antenna.lef
Verification Complete: 0 Violations
******* DONE VERIFY ANTENNA *******
```

#### Setup and hold timing analysis (post route)

- Link for the rtl code of the system and all backend scripts and files: github link
- > Link for the rtl code and functional verification of each block :github link