Clase teórica 2 Jerarquía de la computabilidad

Iniciamos el viaje imaginario

• De problemas de búsqueda a problemas de decisión (o problemas sí/no).

Los resolvemos con máquinas de Turing (MT) que aceptan lenguajes: problemas "=" lenguajes.

Ejemplos:

 $L(M_1) = \{G \mid G \text{ es un grafo que tiene un camino del vértice 1 al vértice n}\}.$

L(M₁) representa el problema de decisión: "¿El grafo G tiene un camino del vértice 1 al vértice n?".

 $L(M_2) = \{ \phi \mid \phi \text{ es una fórmula booleana satisfactible, es decir, existe una asignación de valores de verdad que la hace verdadera \}.$

 $L(M_2)$ representa el problema de decisión: "¿La fórmula booleana ϕ es satisfactible?".

Tres posibilidades:

1) Lenguajes con MT que los aceptan y siempre paran:

- Si $w \in L(M)$, M acepta.
- Si w ∉ L(M), M rechaza.

Lenguajes recursivos.

Llamaremos R al conjunto de estos lenguajes.

2) Lenguajes con MT que los aceptan pero no siempre paran:

- Si $w \in L(M)$, M acepta.
- Si w ∉ L(M), M rechaza o loopea.

Lenguajes recursivamente enumerables.

Llamaremos **RE** al conjunto de estos lenguajes.

3) Lenguajes sin MT que los acepten.

Primera versión de la jerarquía de la computabilidad

Formalizando las definiciones:

• Un lenguaje L es **recursivo** (L ∈ R) sii existe una MT M_I que lo **acepta y para siempre**.

Para toda cadena w del conjunto universal de cadenas Σ^* :

- Si w ∈ L, entonces M_L a partir de w para en su estado q_A
- Si w ∉ L, entonces M_L a partir de w para en su estado q_R
- Un lenguaje L es recursivamente numerable (L ∈ RE) sii existe una MT M_L que lo acepta.

Para toda cadena w del conjunto universal de cadenas Σ^* :

- Si w ∈ L, entonces M_L a partir de w para en su estado q_A
- Si w ∉ L, entonces M_L a partir de w para en su estado q_R o no para
- Se cumple por definición que $R \subseteq RE \subseteq \Omega$ (ejercicio).
- También se cumple $R \subset RE \subset \mathfrak{L}$ (lo probamos en la próxima clase).

Algunas propiedades de la clase R

Lema 1. Si $L \in \mathbb{R}$, entonces $L^{C} \in \mathbb{R}$, tal que L^{C} es el complemento de L.

Definición: $L^{C} = (\Sigma^* - L)$, o en otras palabras, L^{C} tiene las cadenas que no tiene L.

Prueba.

1. Idea general.

Dada una MT M_L que acepta L y para siempre, la idea es construir una MT M_L^C que acepte L^C y pare siempre. Propuesta de solución: construir M_L^C como M_L pero permutando sus estados finales:

 M_L acepta L y para siempre por hipótesis (L \in R). Entonces $M_L{}^C$ acepta L^C y para siempre, y así también $L^C \in$ R.

2. Construcción de la MT M_L ^C.

Si:
$$M_L = (Q, \Sigma, \delta, q_0, q_A, q_R)$$

entonces:
$$M_L^C = (Q, \Sigma, \delta', q_0, q_A, q_R)$$

tal que δ y δ ' son idénticas salvo que con los estados q_A y q_R **permutados.**

Formalmente, para todos los estados q y q´, símbolos s y s´, y movimientos d de {L, R, S} de la MT M_L:

- Si $\delta(q, s) = (q_A, s', d)$, entonces $\delta'(q, s) = (q_B, s', d)$
- Si $\delta(q, s) = (q_R, s', d)$, entonces $\delta'(q, s) = (q_A, s', d)$
- Si $\delta(q, s) = (q', s', d)$, con $q' \neq q_A$ y $q' \neq q_R$, entonces $\delta'(q, s) = (q', s', d)$

Claramente, M_L^c acepta L^c y para siempre, y por lo tanto L^c ∈ R, que era lo que queríamos demostrar.

Lema 2. Si $L_1 \in \mathbb{R}$ y $L_2 \in \mathbb{R}$, entonces $L_1 \cap L_2 \in \mathbb{R}$, tal que $L_1 \cap L_2$ es la intersección de L_1 y L_2 .

Definición: $L_1 \cap L_2$ tiene las cadenas que están en $L_1 y L_2$.

Prueba.

1. Idea general.

Dadas dos MT M_1 y M_2 que respectivamente aceptan L_1 y L_2 y paran siempre, la idea es construir una MT M que acepte $L_1 \cap L_2$ y pare siempre.

Propuesta de solución: ejecutar secuencialmente las dos MT, M₁ y M₂:

M acepta sólo las cadenas que pasan por los "filtros" de M₁ y M₂.

M para siempre porque M_1 y M_2 paran siempre. Por lo tanto, $L_1 \cap L_2 \in R$.

2. Idea de construcción de la MT M.

M tiene 2 cintas. Dada la entrada w en la cinta 1, M hace:

- Copia w en la cinta 2.
- 2. Ejecuta M₁ sobre w en la cinta 2. Si M₁ para en q_R, entonces para en q_R.
- 3. Borra el contenido de la cinta 2 y copia de nuevo w en la cinta 2.
- 4. Ejecuta M₂ sobre w en la cinta 2. Si M_2 para en $q_A(q_R)$, entonces para en $q_A(q_R)$.

Los pasos 2 y 4 pueden entenderse como invocaciones a rutinas, que no son más que las funciones de transición δ₁ de M_1 y δ_2 de M_2 .

También se cumple que si $L_1 \in R$ y $L_2 \in R$, entonces $L_1 \cup L_2 \in R$ (ejercicio).

Algunas propiedades de la clase RE

Lema 3. Si $L_1 \in RE$ y $L_2 \in RE$, entonces $L_1 \cup L_2 \in RE$, tal que $L_1 \cup L_2$ es la unión de $L_1 \cup L_2$.

Definición: $L_1 \cup L_2$ tiene las cadenas que están en $L_1 \circ L_2$.

Prueba.

1. Idea general.

(Primera) propuesta de solución: como antes, ejecutar secuencialmente las dos MT:

¿Es correcta esta solución?

 L_2

 $L_1 \cup L_2$

¡No! Si M₂ acepta w,
y M₁ no para sobre w,
entonces M, que debe aceptar w,
no lo hace.

La forma correcta es ejecutar "en paralelo" M₁ y M₂. M acepta w sii una de las dos MT lo acepta. (Ejecutar en paralelo M₁ y M₂ es simplemente ejecutar alternativamente un paso de cada una de las MT)

2. Idea de construcción de la MT M.

M tiene 3 cintas.

En la cinta 1 tiene la entrada w.

En las cintas 2 y 3 ejecuta M_1 y M_2 , respectivamente.

La MT M hace:

- 1. Copia w de la cinta 1 a las cintas 2 y 3.
- 2. Ejecuta 1 paso de M₁ en la cinta 2. Si M₁ acepta, acepta.
- 3. Ejecuta 1 paso de M₂ en la cinta 3. Si M₂ acepta, acepta.
- 4. Si M₁ y M₂ rechazan, rechaza.
- 5. Vuelve al paso 2.
- · M acepta, rechaza o no para.
- En cada iteración memoriza los estados y posiciones de las 2 ejecuciones.

También se cumple que si $L_1 \in RE$ y $L_2 \in RE$, entonces $L_1 \cap L_2 \in RE$ (ejercicio). Por otro lado, $L \in RE$ NO IMPLICA que $L^C \in RE$ (diferencia con R).

Segunda versión de la jerarquía de la computabilidad

Primera versión

Segunda versión

CO-RE tiene los complementos de los lenguajes de RE

Región 1 (los lenguajes más "fáciles").

R es la clase de los lenguajes recursivos. Si L₁ está en R, entonces también L₁^C está en R.

Región 2.

Clase de los lenguajes (RE – R). Si L_2 está en RE, entonces L_2 ^C está en CO-RE.

Región 3.

Clase de los lenguajes (CO-RE – R). Si L_2 está en CO-RE, entonces L_2 ^C está en RE.

Región 4 (los lenguajes más "difíciles").

Clase de los lenguajes \mathfrak{L} – (RE U CO-RE). Si L_3 está en la clase, también está L_3^{C} .

Lema 4. $R = RE \cap CO-RE$.

Es decir: $L \in R$ sii ($L \in RE$ y $L \in CO$ -RE) sii ($L \in RE$ y $L^C \in RE$).

a) $R \subseteq RE \cap CO$ -RE: Si $L \in R$, entonces:

L ∈ RE por definición.

 $L^{C} \in R$ por el Lema 1, y entonces $L^{C} \in RE$ por definición.

Por lo tanto, $L \in RE$ y $L^C \in RE$, es decir $L \in RE$ y $L \in CO$ -RE,

es decir $L \in RE \cap CO$ -RE.

Los lenguajes de CO-RE son los complementos de los lenguajes de RE

b) RE \cap CO-RE \subseteq R: Si L \in RE \cap CO-RE, entonces:

 $L \in RE \ y \ L \in CO-RE$.

 $L \in RE \ y \ L^C \in RE$.

Existe una MT M que acepta L y existe una MT M^C que acepta L^C.

Mostramos en la próxima hoja cómo construir a partir de M y M^C una MT M´ que acepta L y para siempre, lo que prueba que $L \in \mathbb{R}$.

CONCLUSIÓN: Contar con dos MT, una para aceptar L (puede no parar siempre) y otra para aceptar L^C (puede no parar siempre), permite contar con una MT para decidir L (lo acepta y para siempre).

Idea general de la prueba de RE \cap CO-RE \subset R.

Hipótesis: existen una MT M que acepta L y una MT M^C que acepta L^C.

Construimos una MT M´ que ejecuta "en paralelo" M y M^C:

Se cumple que M' acepta L y para siempre:

- Para todo w, $\mathbf{w} \in \mathbf{L}$ o $\mathbf{w} \in \mathbf{L}^{\mathbf{C}}$. Así, **M acepta w** o $\mathbf{M}^{\mathbf{C}}$ acepta w, respectivamente. Por lo tanto, M' para siempre.
- M´acepta L porque acepta una cadena w sii M acepta w.

16

Anexo de la clase teórica 2 Jerarquía de la computabilidad

Ejemplos clásicos de lenguajes no recursivos

Problema de la parada de una MT (Halting Problem)

Dada una MT M y una cadena w, ¿M para a partir de w?

El lenguaje HP = {(<M>, w) | M para a partir de w} pertenece al conjunto RE - R.

A. Turing lo demostró en 1936.

<M> es el código de una MT.

Ejercicio: ¿cómo sería una MT M´ que acepta el lenguaje HP?

Problema de resolución de las ecuaciones diofánticas

Dada una ecuación algebraica con coeficientes enteros y variables enteras (conocida como ecuación diofántica), como por ejemplo $2x^3 + 5y^3 = 6z^3$, ¿tiene solución?

El lenguaje $L = \{\Psi \mid \Psi \text{ es una ecuación diofántica y tiene solución}\}$ pertenece al conjunto RE - R.

Fue el décimo de los famosos 23 problemas formulados por D. Hilbert en 1900 que desarrollaron fuertemente las matemáticas del siglo XX. En 1970, Y. Matiyasevich demostró que el lenguaje L no es recursivo.

Problema de decisión en la lógica de predicados (Entscheidungsproblem)

Dada una fórmula de la lógica de predicados Φ, ¿Φ es un teorema?

El lenguaje $L = \{\Phi \mid \Phi \text{ es un teorema de la lógica de predicados}\}\$ pertenece al conjunto RE - R.

A. Turing lo demostró en 1936 (otro problema planteado por D. Hilbert, en este caso a fines de la década de 1920).

EJEMPLO

Axiomas y Reglas

$$K_1: A \to (B \to A)$$

$$K_2: (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

$$K_3: (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)K_4: (\forall x) A(x) \rightarrow A(x|t)$$

$$K_5: (\forall x) (A \rightarrow B) \rightarrow (A \rightarrow (\forall x) B)$$

Modus Ponens (MP): A y A \rightarrow B implican B

Generalización: A implica (∀x) A

Prueba del Teorema: $\Phi = \neg P \rightarrow (P \rightarrow Q)$

$$1. \neg P \rightarrow (\neg Q \rightarrow \neg P)$$

2.
$$(\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow Q)$$

3.
$$((\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow Q)) \rightarrow (\neg P \rightarrow ((\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow Q)))$$

$$4. \neg P \rightarrow ((\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow Q))$$

$$5. \; (\neg P \rightarrow ((\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow Q))) \rightarrow ((\neg P \rightarrow (\neg Q \rightarrow \neg P)) \rightarrow (\neg P \rightarrow (P \rightarrow Q)))$$

6.
$$(\neg P \rightarrow (\neg Q \rightarrow \neg P)) \rightarrow (\neg P \rightarrow (P \rightarrow Q))$$

7.
$$\neg P \rightarrow (P \rightarrow Q)$$

axioma K₁
axioma K₁
axioma K₁

MP 2 y 3

axioma K₂

MP 4 y 5

MP 1 y 6

Problema de decisión en la aritmética

Dada una fórmula de la aritmética Θ, ¿Θ es verdadera?

El lenguaje L = {Θ | Θ es una fórmula verdadera de la aritmética} pertenece a \mathfrak{L} – (RE U CO-RE).

K. Gödel demostró este teorema, conocido como Teorema de Incompletitud, en 1931.

EJEMPLO

Axiomas y Reglas

$$K_1: A \to (B \to A)$$

$$\mathsf{K}_2 \colon (\mathsf{A} \to (\mathsf{B} \to \mathsf{C})) \to ((\mathsf{A} \to \mathsf{B}) \to (\mathsf{A} \to \mathsf{C}))$$

$$K_3: (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$$

$$K_{\Delta}: (\forall x) A(x) \rightarrow A(x|t)$$

$$K_5: (\forall x) (A \rightarrow B) \rightarrow (A \rightarrow (\forall x) B)$$

K₆ a K₁₀: Axiomas de la Igualdad

$$N_1$$
: $(\forall x) \neg (s(x) = 0)$

$$N_2: (\forall x)(\forall y)(x = y \rightarrow s(x) = s(y))$$

$$N_3: (\forall x)(x+0=x)$$

$$N_4: (\forall x)(\forall y)(x + s(y) = s(x + y))$$

$$N_5: (\forall x) (x \cdot 0 = 0)$$

$$N_6: (\forall x)(\forall y)(x \cdot s(y) = x \cdot y + x)$$

$$N_7: P(0) \rightarrow ((\forall x)(P(x) \rightarrow P(s(x))) \rightarrow (\forall x) P(x))$$

Modus Ponens (MP): A y A \rightarrow B implican B

Generalización: A implica (∀x) A

Prueba de la fórmula: $\Theta = (1 + 1 = 2)$ (extracto)

$$1. (\forall x)(x + 0 = x)$$

2.
$$(\forall x)(x + 0 = x) \rightarrow 1 + 0 = 1$$

$$3.1 + 0 = 1$$

14.
$$s(1 + 0) = s(1) \rightarrow 1 + s(0) = s(1)$$
 MP entre 8 y 13

15.
$$1 + s(0) = s(1)$$

$$16.1 + 1 = 2$$

Problema de cubrimiento (o teselación) del plano

Dado un conjunto finito de figuras poligonales (o mosaicos), ¿con dichas figuras se puede cubrir el plano?

El lenguaje L = {C | C es un conjunto finito de figuras poligonales que cubren el plano} pertenece al conjunto RE – R.

R. Berger lo demostró en 1966.

Problema de pertenencia al Conjunto de Mandelbrot

Dado un conjunto de puntos complejos en el plano definido por la sucesión $z_0 = 0$, $z_{n+1} = z_n^2 + c$, conjunto como Conjunto de Mandelbrot (es un fractal), y dado un complejo c, ¿c pertenece al Conjunto de Mandelbrot?

El lenguaje L = {c | c es un número complejo que está en el Conjunto de Mandelbrot} pertenece a CO-RE – R.

L. Blum lo demostró en 1989.

CONJUNTO DE MANDELBROT

Existe una MT M que acepta a todos los números complejos c que NO pertenecen al Conjunto de Mandelbrot

Clase práctica 2 Jerarquía de la computabilidad

Ejercicio 1. Probar que la clase R es cerrada con respecto a la operación de concatenación. Es decir que si $L_1 \in R$ y $L_2 \in R$, entonces también $L_1 \cdot L_2 \in R$.

Idea general.

El lenguaje L_1 , L_2 contiene todas las cadenas $w = x_1x_2$, tales que la subcadena $x_1 \in L_1$ y la subcadena $x_2 \in L_2$.

Sea M_1 una MT que decide el lenguaje L_1 y M_2 una MT que decide el lenguaje L_2 . Hay que construir una MT M que decida el lenguaje L_1 , L_2 .

Dado un input w con n símbolos, M hace:

- 1. M ejecuta M₁ a partir de los primeros 0 símbolos de w, y M₂ a partir de los últimos n símbolos de w. Si en ambos casos se acepta, entonces M acepta.
- 2. Si no, M hace lo mismo que en (1) pero ahora con el 1er símbolo y los últimos (n 1) símbolos de w. Si en ambos casos se acepta, entonces M acepta.
- 3. Si no, M hace lo mismo que en (1) pero ahora con los primeros 2 y los últimos (n − 2) símbolos de w. Si en ambos casos se acepta, entonces M acepta.

Y así siguiendo, con 3 y (n - 3), 4 y (n - 4), ..., hasta llegar a n y 0 símbolos de w. Si en ninguno de los casos se acepta, entonces M rechaza.

Queda como ejercicio la construcción de M y la verificación de su correctitud.

Ejercicio 2. Probar que también la clase RE es cerrada con respecto a la operación de concatenación, es decir que si $L_1 \in RE$ y $L_2 \in RE$, entonces también $L_1 \cdot L_2 \in RE$.

Idea general.

Tal como se hizo con los lenguajes recursivos, se tiene que construir una MT M que reconozca L_1 , L_2 ejecutando sobre un input w (de n símbolos) determinadas MT M_1 y M_2 (MT que reconocen L_1 y L_2 , respectivamente, las cuales ahora pueden loopear en casos negativos), primero a partir de 0 y n símbolos de w, después a partir de 1 y n – 1 símbolos de w, y así siguiendo hasta llegar a n y 0 símbolos de w, aceptando eventualmente.

La diferencia con el caso de los lenguajes recursivos está en que ahora, teniendo en cuenta los posibles loops de M₁ y M₂, M debe ejecutarlas "en paralelo":

M primero debe hacer ejecuciones de 1 paso de M_1 y M_2 con todas las posibles particiones de w, luego ejecuciones de 2 pasos con todas las particiones, luego ejecuciones de 3 pasos con todas las particiones, y así siguiendo hasta eventualmente aceptar.

Queda como ejercicio la construcción de M y la verificación de su correctitud.

Ejercicio 3. Probar que la clase RE es cerrada con respecto a la operación de unión, permitiendo como solución una MT no determinística (MTN).

Idea general y construcción.

Sean dos lenguajes L_1 y L_2 de RE, aceptados por MT M_1 y M_2 , con M_1 = (Q_1 , Σ_1 , δ_1 , q'_0 , q_A , q_R) y M_2 = (Q_2 , Σ_2 , δ_2 , q''_0 , q_A , q_R).

Vamos a construir una MTN M que acepta $L_1 \cup L_2$:

Sea q₀ un estado que no está en Q₁ ni en Q₂. La MTN M es:

$$M = (Q = Q_1 \cup Q_2 \cup \{q_0\}, \Sigma = \Sigma_1 \cup \Sigma_2, \Delta, q_0, q_A, q_B), \text{ tal que:}$$

 $\Delta = \delta_1 \cup \delta_2 \cup \{(q_0, s, q'_0, s, S), (q_0, s, q''_0, s, S)\}$, considerando todos los símbolos s de Σ .

Es decir, al comienzo la MTN M pasa no determinísticamente a la configuración inicial de M_1 o de M_2 , y después se comporta determinística como ellas.

Queda como ejercicio la verificación de la correctitud de la construcción de la MTN M.