3. Афинни координати. Афинни координатни системи.

Нека V е векторно пространетво и $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$ са такива линейно независими вектори, те всеки вектор от V се представа като T яхна линейна комбинация. Тогава нареденото многнество от вектори $K = \{\vec{e}_1, \vec{e}_2, ..., \vec{e}_n\}$ се нарита база на V. От това се $\vec{e}_1, ..., \vec{e}_n$ са линейно независими следва се всеки вектор се представа по единствен начин кото T яхна линейна комбинация.

Нека $\vec{a} \in V$ и $\vec{a} = a_1\vec{e}_1 + a_2\vec{e}_2 + \dots + a_n\vec{e}_n$. Тислата от наредената n-орка (a_1, a_2, \dots, a_n) се наритат координати на \vec{a} спрямо наредената база K. Записваме \vec{a} (a_1, a_2, \dots, a_n) обратно, всяка наредена n-орка числа (a_1, a_2, \dots, a_n) придава координати на тосно един вектор спрямо K.

Пример: Тъй като $\vec{e}_1 = 1.\vec{e}_1 + 0.\vec{e}_2 + \cdots + 0.\vec{e}_n$, то координатите на \vec{e}_1 епрямо K са $\vec{e}_1(1,0,0,0,\ldots,0)$. На $\vec{e}_2(0,1,0,\ldots,0)$, $\vec{e}_n(0,0,\ldots,0,1)$ В сила е следната теорема

Теорема. Нека вектор е минейна конбинация на храен брай вектори. Тогава координатите на вектора са същите минейни комбинации от съответните кардинати на векторите. В коказателство. Ще ливориши доказателството стрямо наредена ваза $K = \{\vec{e}_i, \vec{e}_2\}$, т.е. за 2-мерно пространство. В п-мерния случий доказателството е аналогитно. Нека $C = \lambda \vec{a} + \mu \vec{b}$, като $\vec{a}(a_i, a_2)$, $\vec{b}(b_i, b_2)$ и $\vec{c}(c_i, c_2)$ стрямо $K = \vec{c} = c_i \vec{e}_i + c_2 \vec{e}_2 = \lambda(a_i \vec{e}_i + a_2 \vec{e}_2) + \mu(b_i \vec{e}_i + b_2 \vec{e}_2)$ — $(1\vec{e}_i + c_2 \vec{e}_2 = (\lambda a_i + \mu b_i)\vec{e}_i + (\lambda a_2 + \mu b_2)\vec{e}_2$ Той като \vec{e}_i и \vec{e}_i са минейно независими, то $c_i = \lambda a_i + \mu b_i$ и $c_2 = \lambda a_2 + \mu b_2$ (Пема 2). Например за координатите на сбор, разлика на вектори и т.н. имаме $\vec{a} + \vec{b}(a_i + b_i, a_2 + b_2)$, $\vec{a} - \vec{b}(a_i - b_i, a_2 - b_2)$ $\frac{1}{2}\vec{a}(\frac{1}{2}a_i, \frac{1}{2}b_i)$...

1. <u>Координати във V_1 </u>.

За база във V_1 избираме кой да е ненулев вектор \vec{e} . За всеки вектор \vec{a} \in V_1 \neq ! $\lambda \in \mathbb{R}$: $\vec{a} = \lambda \vec{e}$, λ -координата на \vec{a} спряно базата $K = \{\vec{e}\}; \vec{a}(\lambda)$.

2. Координати във V_2 . Нека векторите $\vec{e_1}$ и $\vec{e_2}$ са неколинеарни и $K = \{\vec{e_1}, \vec{e_2}\}$ е наредена база. Вектор $\vec{a} \in V_2 \Longleftrightarrow \vec{a}$ е ком-планарен с каз да е равнина, компланарна с $\vec{e_1}$ и $\vec{e_2} \Longrightarrow \vec{a} = \alpha_1 \vec{e_1} + \alpha_2 \vec{e_2}$. Записване $\vec{a}(\alpha_1, \alpha_2)$ спряно K. Да отбеленим, те нтевият вектор \vec{o} има координати (0,0) спрямо всяка база.

3. Координати във V_3 . Нека $\vec{\ell}_1, \vec{\ell}_2, \vec{\ell}_3$ са некомпланарни и $K = \{\vec{\ell}_1, \vec{\ell}_2, \vec{\ell}_3\}$ е наредена база. Тогава за всеки вектор $\vec{a} \in V_3$ $\exists!$ наредена тройка реални исла (a_1, a_2, a_3): $\vec{a} = a_1 \vec{\ell}_1 + a_2 \vec{\ell}_2 + a_3 \vec{\ell}_3$ - $\vec{a}_1 a_4, a_2, a_3$) - координати на \vec{a} спрямо K. Ясно е те спрямо K $\vec{\ell}_1(1,0,0)$ - имаме $\vec{\ell}_1 = 1 \cdot \vec{\ell}_1 + 0 \cdot \vec{\ell}_2 + 0 \cdot \vec{\ell}_3$. $\vec{\ell}_2(0,1,0)$ и $\vec{\ell}_3(0,0,1)$.

Аналогисно вев V_3 . Нека спрямо $K = \{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ векторите $\vec{a}_1, \vec{b}_2, \vec{b}_3\}$ и \vec{e}_1 са с координати съответно $\vec{a}_1(a_1, a_2, a_3)$, $\vec{b}_1(b_1, b_2, b_3)$ и $\vec{c}_1(c_1, c_2, c_3)$. Тогава $\vec{a}_1, \vec{b}_2 = \vec{c}_1 \vec{c}_1 + \vec{c}_2 = \vec{c}_2 \vec{c}_1 + \vec{c}_2 = \vec{c}_3 \vec{c}_1 + \vec{c}_2 + \vec{c}_3 \vec{c}_1 + \vec{c}_3 \vec{c}_3 + \vec{c}_3 + \vec{c}_3 \vec{c}_3 + \vec{c}_3 + \vec{c}_3 \vec{c}_3 + \vec{c}_3 \vec{c}_3 + \vec{c}_3 \vec{c}_3 + \vec{c}_3 \vec{c}_3$

3. В пространството. Нека са фиксирани тогка 0 и 7 ри произволно избрани нентлеви некомпланарни вектора \vec{e}_1 , \vec{e}_2 , \vec{e}_3 . Совкупността $K = \{0, \vec{e}_1, \vec{e}_2, \vec{e}_3\}$ се нарита афинна \vec{e}_3 в \vec{e}_3 координатна система в пространетвото с център 0. За всяка тогка M имаме $\vec{OM} = x \vec{e}_1 + y \vec{e}_2 + z \vec{e}_3$. Наредената тройка (x, y, z) наритаме координати \vec{e}_3 \vec{e}_4 \vec{e}_5 на M спръзмо афинната координатна система \vec{e}_4 \vec{e}_5 \vec{e}_5 на M всяка наредена тройка сисла (x, y, z) придава координати на тохно една тогка в пространството. Осно \vec{e}_1 се координатите на \vec{e}_5 секторът \vec{e}_6 наритаме радиус вектор на M. Нека тогките \vec{e}_1 , \vec{e}_2 и \vec{e}_3 са такива, се \vec{o}_{1} = \vec{e}_1 , \vec{o}_{2} = \vec{e}_2 , \vec{o}_{3} = \vec{e}_3 . Тогава спрямо K те имат съответно координати \vec{e}_6 со \vec{e}_1 на \vec{e}_6 со \vec{e}_6 на \vec{e}_6 на \vec{e}_6 на \vec{e}_6 со \vec{e}_6 на \vec{e}_6 н