Implementación de Robótica Inteligente TE3002B.101

Profesor: Alfredo García Suárez

Examen Localización de un robot diferencial

Alumno: Yonathan Romero Amador

1.- Un robot diferencial se encuentra en la posición inicial (-1, -5, 0°), posteriormente genera el siguiente historial de pasos:

Paso	v(m/s)	ω (rad/s)	Δt (s)
1	1.0	0.0	1.0
2	0.0	π/3	1.0
3	1.0	0.0	1.0
4	0.0	π/3	1.0
5	1.0	0.0	1.0
6	0.0	π/3	1.0
7	1.0	0.0	1.0
8	0.0	π/3	1.0
9	1.0	0.0	1.0
10	0.0	π/3	1.0
11	1.0	0.0	1.0
12	0.0	π/3	1.0

a) Obtén la pose del robot en cada paso, integrando numéricamente siguiendo la suposición de Markov. Muestra tus resultados en una tabla.

Paso	X(t)	Y(t)	0(t)
1	0	-5	0
2	0	-5	Pi * 1/3
3	0.5	-4.13	Pi * 1/3
4	0.5	-4.13	Pi * 2/3
5	0	-3.26	Pi * 2/3
6	0	-3.26	Pi
7	-1	-3.26	Pi
8	-1	-3.26	Pi * 4/3
9	-1.5	-4.13	Pi * 4/3
10	-1.5	-4.13	Pi * 5/3
11	-1	-5	Pi * 5/3
12	-1	-5	2* Pi

Implementación de Robótica Inteligente TE3002B.101

Profesor: Alfredo García Suárez

b) Calcula la pose final (x, y, θ) del robot tras completar los 12 pasos.

2.- Un robot diferencial con los siguientes parámetros:

Radio de las ruedas: 0.1m.

Distancia entre ruedas (eje): L= 0.4m

Pose inicial $(x_0, y_0, \theta_0) = (0, 0, 0^\circ)$

Recibe las siguientes señales de entrada:

t (s)	v (m/s)	ω (rad/s)	ω_R (rad/s)	ω_L (rad/s)	x (m)	y (m)	Θ (grados)
0			4.582	1.701			
1			4.773	2.353			
2			5.291	3.676			
3			5.960	4.856			
4			6.490	5.618			

Implementación de Robótica Inteligente TE3002B.101 Profesor: Alfredo García Suárez

Tecnológico de Monterrey

t (s)	v (m/s)	ω (rad/s)	ω_R (rad/s)	ω_L (rad/s)	x (m)	y (m)	Θ (grados)
5			-1.168	13.735			
6			-1.364	13.472			
7			5.960	4.856			
8			5.291	3.676			
9			4.773	2.353			
10			4.582	1.701			
11			4.773	2.353			
12			5.291	3.676			
13			5.960	4.856			
14			6.490	5.618			
15			6.686	5.881			
16			6.490	5.618			
17			5.960	4.856			
18			5.291	3.676			
19			4.773	2.353			
20			4.582	1.701			

Completa la tabla y genera la simulación de la trayectoria del robot en Matlab

Α	В	С	D	E	F
		sa	salida1		
t_s	v_mps	w_radps	x_m	y_m	theta_deg
Number	▼Number	▼Number '	Number •	Number •	Number •
t_s	v_mps	w_radps	x_m	y_m	theta_deg
0	0.31415	0.72025	0	0	0
1	0.3563	0.605	0.31415	0	41.2672851
2	0.44835	0.40375	0.58195963	0.23500571	75.9312317
3	0.5408	0.276	0.69094738	0.66990731	99.0644027
4	0.6054	0.218	0.60574727	1.20395373	114.878037
5	0.62835	-3.72575	0.35106270	1.75317584	127.368517
6	0.6054	-3.709	-0.0303075	2.25255589	-86.101232
7	0.5408	0.276	0.01085589	1.64855694	-298.61127
8	0.44835	0.40375	0.26982591	2.12331917	-282.79764
9	0.3563	0.605	0.36913919	2.56053146	-259.66447
10	0.31415	0.72025	0.30521461	2.91105013	-225.00052
11	0.3563	0.605	0.08307905	3.13318977	-183.73324
12	0.44835	0.40375	-0.2724648	3.15638891	-149.06929
13	0.5408	0.276	-0.6570548	2.92593655	-125.93612
14	0.6054	0.218	-0.9744411	2.48806604	-110.12248
15	0.62835	0.20125	-1.1827158	1.91962009	-97.632008
16	0.6054	0.218	-1.2661670	1.29683632	-86.101232
17	0.5408	0.276	-1.2250036	0.69283738	-73.610752
18	0.44835	0.40375	-1.0724107	0.17401173	-57.797117
19	0.3563	0.605	-0.8334765	-0.2053669	-34.663946
20	0.31415	0.72025	-0.5404190	-0.4080168	-6.3611093
21	NaN	NaN	-0.2262690	-0.4080168	41.2672851

Implementación de Robótica Inteligente TE3002B.101

Profesor: Alfredo García Suárez

3.- Considerando los parámetros del robot descrito en el reactivo 2. Obtén la tabla de las señales de entrada ω_R (rad/s) y ω_L (rad/s) requeridas en cada instante de muestreo si se desea obtener una trayectoria circular con un radio de 20m, cuyo centro sea el origen (0,0). Genera la simulación en Matlab.