Bis(perfluor-n-hexyl)- und Bis(perfluor-n-octyl)cadmium: Darstellung, Eigenschaften, NMR-spektroskopische und massenspektrometrische Untersuchungen

DIETER NAUMANN*, KLAUS GLINKA und WIELAND TYRRA

Köln, Institut für Anorganische Chemie der Universität

Frau Professor Marianne Baudler zum 70. Geburtstage am 27. April 1991 gewidmet

Inhaltsübersicht. Die Perfluoralkylcadmium-Verbindungen $Cd(C_6F_{13})_2$ und $Cd(C_8F_{17})_2$ werden sowohl unkomplexiert als auch als Komplexe mit DMF, CH_3CN , Glyme und Diglyme dargestellt. Die Reaktionsgeschwindigkeit der $Cd(R_1)_2$ -Verbindungen mit PhHgCl nimmt mit der durch Leitfähigkeitsmessungen in verschiedenen Lösungsmitteln bestimmten Dissoziation zu. Die NMRsowie die Massenspektren werden diskutiert.

Bis(perfluoro-n-hexyl) and Bis(perfluoro-n-octyl) Cadmium: Preparations, Properties, NMR Spectroscopic and Mass Spectrometric Investigations

Abstract. The perfluoroalkyl cadmium compounds $Cd(C_6F_{13})_2$ and $Cd(C_8F_{17})_2$ are isolated in pure states as well as complexes with dmf, CH_3CN , glyme, and diglyme. The reaction rate of $Cd(R_f)_2$ with PhHgCl increases with increasing dissociation, which is established by conductivity measurements. The NMR and the mass spectra are discussed.

Key words: Perfluoroalkyl Cadmium Compounds; Polar Perfluoralkylation Reactions; Conductivity Measurements; ¹⁹F, ¹³C NMR, Mass Spectra.

1. Einleitung

Bis(perfluororgano)cadmium-Komplexe, insbesondere Bis(trifluormethyl)cadmium-Verbindungen, sind hervorragende Perfluoralkylgruppenüberträger sowohl in der metallorganischen [1] als auch der organischen Synthese [2]. Während für die Darstellung von $Cd(CF_3)_2$ -Komplexen verschiedene Synthesewege entwickelt worden sind [3–8], gibt es bisher nur 2 allgemein anwendbare Möglichkeiten für die Synthese der höheren Homologen. Durch die Umsetzungen von R_tI (R_t : CF_3 , C_2F_5 , n- C_3F_7 , n- C_4F_9 , n- C_6F_{13} , n- C_7F_{15} , n- C_8F_{17}) mit elementarem Cadmium in DMF werden Produktgemische aus $Cd(R_t)_2$, $Cd(R_t)I$ und CdI_2 in 25-93% Ausbeute erhalten [7]. Dagegen verlaufen die Umsetzungen von R_tI (R_t : CF_3 , C_2F_5 , i- C_3F_7 , n- C_3F_7 , n- C_4F_9 , C_6F_5) mit $(CH_3)_2Cd$ in Gegenwart eines Komplexbildners quantitativ zu den entsprechenden Bis(perfluororgano)cadmium-Kom-

plexen [8], und bilden das bisher einzige Verfahren zur selektiven Darstellung zahlreicher Bis(perfluororgano)cadmium-Komplexe.

Über Reaktionen längerkettiger und auch verzweigter Perfluoriodalkane mit Cadmium in verschiedenen Lösungsmitteln oberhalb Raumtemperatur berichten Chen und Tamborski [9], wobei besonders die Kopplungsprodukte R_fR_f und R_fH beobachtet werden.

Die Anwendbarkeit längerkettiger Perfluoralkylzink-Derivate, die durch Reaktionen von elementarem Zink mit den entsprechenden Perfluoriodalkanen im DMF erhalten werden, in der organischen Synthese wird z. B. von KITAZUME und ISHIKAWA [10] sowie LANG [11] untersucht.

Klabunde und Campostrini [12] beschreiben die Darstellung von n-Perfluoroctylzink- und -palladiumbromid als Reaktionsprodukte der Umsetzungen der entsprechenden Metalldämpfe mit n-Perfluorbromoctan; diese koordinativ ungesättigten Verbindungen zeigen eine bemerkenswerte thermische Stabilität. Über längerkettige Perfluoralkylcadmium-Derivate als Synthone in der metallorganischen Synthese wird bisher erst zweimal berichtet. Bei den Umsetzungen von $\mathrm{Cd}(R_{\mathrm{f}})_2 \cdot \mathrm{D}(R_{\mathrm{f}} \colon \mathrm{C_2F_5}, \, \mathrm{n\text{-}C_3F_7}, \, \mathrm{n\text{-}C_4F_9}, \, \mathrm{n\text{-}C_6F_{13}}, \, \mathrm{n\text{-}C_8F_{17}})$ mit $\mathrm{BiCl_3}$ bzw. $\mathrm{BiBr_3}$ entstehen die entsprechenden Derivate $\mathrm{Bi}(\mathrm{R_{\mathrm{f}}})_3$ [1]. Durch die Reaktionen von $\mathrm{Me_3EOCOCF_3}$ (E: Sn, Pb) mit $\mathrm{Cd}(\mathrm{R_{\mathrm{f}}})_2 \cdot \mathrm{D}$ ($\mathrm{R_{\mathrm{f}}} \colon \mathrm{C_2F_5}, \, \mathrm{C_3F_7}$) können die entsprechenden Perfluoralkylzinn- und -bleiderivate dargestellt werden [13].

Ein Ziel dieser Arbeit ist es, weitere Aufschlüsse über die Bindungsverhältnisse in Perfluoralkylcadmium-Derivaten zu erhalten und diese mit massenspektrometrischen Untersuchungen und Leitfähigkeitsmessungen zu belegen.

2. Ergebnisse und Diskussion

2.1. Darstellungen der Bis(perfluororgano) cadmium-Verbindungen

Wie bereits von Lange und Naumann [8] beschrieben, reagieren Perfluoriodalkane mit Dimethylcadmium unter Austausch der Methyl- gegen Perfluoralkylgruppen. Die Reaktionen, die sich gut ^{19}F -NMR spektroskopisch verfolgen lassen, verlaufen über einen sukzessiven Austausch über die Zwischenstufe CH_3CdR_f hin zu $Cd(R_f)_2$. Als iodhaltige Verbindung wird immer CH_3I gebildet.

$$\begin{split} R_{f}I &+ (CH_{3})_{2}Cd \rightarrow CH_{3}CdR_{f} + CH_{3}I \\ R_{f}I &+ CH_{3}CdR_{f} \rightarrow Cd(R_{f})_{2} + CH_{3}I \\ \hline \\ 2 &R_{f}I + (CH_{3})_{2}Cd \rightarrow Cd(R_{f})_{2} + 2 CH_{3}I \\ R_{f} &= n\text{-}C_{6}F_{13}, \text{ n-}C_{8}F_{17} \end{split}$$

Werden die Umsetzungen in Methylenchlorid durchgeführt, bilden sich die unkomplexierten Bis(perfluoralkyl)cadmium-Derivate, die als weiße Feststoffe isoliert werden können.

Die Reaktionen in Gegenwart stöchiometrischer Mengen eines Komplexbildners wie CH₃CN, DMF, Glyme oder Diglyme verlaufen ebenfalls selektiv unter Bildung der 1:2-Addukte $\operatorname{Cd}(R_f)_2 \cdot 2$ D (D: CH₃CN, DMF) bzw. der 1:1-Addukte $\operatorname{Cd}(R_f)_2 \cdot D'$ (D': (CH₃OCH₂)₂, (CH₃OCH₂CH₂)₂O). Diese Derivate sind bei Raumtemperatur im Gegensatz zu den nicht-komplexierten festen Derivaten hochviskose Flüssigkeiten, die bei etwa 10°C erstarren.

Die Darstellung der Verbindungen erfolgt bei Raumtemperatur. Während der zweitägigen Reaktionszeit trüben sich die Reaktionsansätze. Die Verbindungen

Tabelle 1	Vergleich der	¹⁹ F-NMR	chemischen	Verschiebungen	$\delta(\alpha\text{-CF}_2)$	und	der	Kopplungskon-
stanten ² J((¹¹³ Cd — ¹⁹ F) (in	CH ₂ Cl ₂)						

Verbindung	$egin{aligned} \mathrm{R_f} &= \mathrm{n\text{-}C_6F_{13}} \ \delta(lpha\text{-}\mathrm{CF_2})/\mathrm{ppm} \end{aligned}$	$^2\mathrm{J/Hz}$	$ m R_f = n ext{-} C_8 F_{17} \ \delta(\alpha ext{-} CF_2)/ppm$	$^2\mathrm{J/Hz}$
$Cd(R_f)_2$	-117,0	239	-117,3	240
$Cd(R_f)_2 \cdot 2 DMF$	118,0	199	-118,6	201
$Cd(R_f)_2 \cdot 2 CH_3CN$	-116,2	234	-118,8	236
$Cd(R_f)_2 \cdot Glyme$	119,0	215	-116,5	226
$\operatorname{Cd}(\operatorname{R}_{\operatorname{f}})_2 \cdot \operatorname{Diglyme}$	-118,0	211	-117,6	212

Tabelle 2 – Zusammenstellung der $^{19}{\rm F-NMR-Daten}$ von n-C $_6{\rm F}_{13}$ - und n-C $_8{\rm F}_{17}$ -Derivaten

$\mathrm{R_{f}}=\mathrm{n\text{-}C_{6}F_{13}}$	$\delta(\alpha ext{-CF}_2)/ ext{ppm}$	$\delta(eta ext{-CF}_2)/ ext{ppm}$	$\delta(\mathrm{CF_3})/\mathrm{ppm}$	δ (sonstige CF_2)	Lösungsm. Lit.
$\overline{\operatorname{Cd}(\operatorname{R}_{\operatorname{f}})_2 \cdot \operatorname{Glyme}}$	-119,0	-120,5	-80,7	-121,8/-122,5/-125,9	Glyme
$\mathrm{Cd}(\mathrm{R_{f}})_{2}\cdot 2~\mathrm{CH_{3}CN}$	-116,2	-118,4	-81,2	-121,8/-122,9/-126,1	\mathbf{MeCN}
$R_f I$	-64,5	-113,0	-81,1	-121,3/-122,4/-126,4	\mathbf{Glyme}
$\mathrm{Bi}(\mathrm{R_f})_3$	-95,2	-115,5	-82,2	-121,2/-123,8/-124,3	MeCN [1]
$\mathrm{PhHgR}_{\mathbf{f}} \cdot \mathrm{Bipy}$	$-109,9^{a}$)	$-118,5^{b}$)	-80,7	-121,5/-122,5/-125,5	$\operatorname{Aceton-d}_6$
$\mathrm{R_f}= ext{n-C_8F_{17}}$					
$\mathrm{Cd}(\mathrm{R_f})_2$	-117,3	-119,7	-81,4	-120,6/-122,2/-124,5	$\mathrm{CH_2Cl_2}$
				-125,2/-126,6	
$\mathrm{Cd}(\mathrm{R_f})_2\cdot\mathrm{Glyme}$	-117,0	-118,8	-81,0	-121,5/-122,2 (2 CF ₂ -Gr.)	Glyme
				-123,0/-126,5	
$Cd(R_f)_2 \cdot 2 CH_3CN$	-118,5	—120,8	-81,0	$-122~(3~{ m CF_2 ext{-}Gr.})$	MeCN
				-122,6/-126,2	
R_fI	-63,8	-112,5	-80,5	$-120,0/-121,1 (2 \text{ CF}_2\text{-Gr.})$	Glyme
				-122,1/-125,5	
$\mathrm{Bi}(\mathrm{R_f})_3$	-97,7	118,9	-81,7	-119,7/-122,2/-122,5	MeCN [1]
				-123,1/-126,6	
$ m Zn(R_f)Br$	-116,3	-120,5	-80,5	-121,3/-122,0/-122,2	$Aceton-d_6$ [12]
				$(2 \text{ CF}_2\text{-Gr.})/-125,6$	
$\mathrm{Pd}(\mathrm{R_f})\mathrm{Br}$	-113,29	-120,3	-80,8	-120,8/-121,3/-121,5	$Aceton-d_6$ [12]
				-122,3/-125,2	
$\mathrm{PhHgR}_{\mathrm{f}}\cdot\mathrm{Bipy}$	$-107,5^{c}$)	-117,5	-79,5	-120,5/-121,5/-122,0	CDCl_3
				$(2 \text{ CF}_2\text{-Gr.})/-125,2$	
$\mathrm{PhHgR}_{\mathbf{f}}$	-107,3d)	-119,8	-81,8	-122,3/-122,5 (2 CF ₂ -Gr.)	$\mathrm{CH_2Cl_2}$
				-123,4/126,9	

a) $^2J(^{199}Hg-^{19}F)$ 605,3 Hz; b) $^3J(^{199}Hg-^{19}F)$ 132 Hz; c) $^2J(^{199}Hg-^{19}F)$ 625 Hz (z. Vgl.: $Hg(CF_2CF_3)_2$ in Pyridin: $^2J(^{199}Hg-^{19}F)$ 684 Hz; $^3J(^{199}Hg-^{19}F)$ 88,6 Hz [16]; d) $^2J(^{199}Hg-^{19}F)$ 740 Hz (z. Vgl.: $Hg(CF_2CF_3)_2$ in CH_2Cl_2 : $^2J(^{199}Hg-^{19}F)$ 787 Hz).

können auf einfache Weise durch Abdestillieren des Lösungsmittels ($\mathrm{CH_2Cl_2}$ für $\mathrm{Cd}(\mathrm{R_f})_2$), des überschüssigen $\mathrm{R_fI}$ sowie des entstandenen $\mathrm{CH_3I}$ zwischen 0°C und 40°C isoliert werden. Die Ausbeuten sind quantitativ.

Die so dargestellten Verbindungen wurden durch $^{19}\text{F-NMR-Spektren}$, $^{13}\text{C-NMR-Spektren}$ (für $\text{Cd}(R_{\rm f})_2 \cdot 2 \text{ CH}_3\text{CN}$), Cd-Bestimmung und Massenspektren identifiziert und charakterisiert.

Die ¹⁹F-NMR-Daten sind in Tab. 1 zusammengefaßt und in Tab. 2 weiteren ¹⁹F-NMR-Daten bekannter Derivate gegenübergestellt. Die Massenspektren werden in einem gesonderten Kapitel behandelt.

2.2. Eigenschaften der Bis(perfluoralkyl) cadmium-Verbindungen

 $\operatorname{Cd}(n\text{-}C_6F_{13})_2$ und $\operatorname{Cd}(n\text{-}C_8F_{17})_2$ sind bei Raumtemperatur weiße Feststoffe, die sich bei Temperaturen oberhalb 112°C bzw. 170°C langsam zersetzen. Eine Farbänderung von weiß nach braun kann erst bei Temperaturen oberhalb 240°C beobachtet werden. Die komplexierten Derivate bilden bei Raumtemperatur hochviskose Flüssigkeiten, die bei etwa 10°C erstarren. Alle Derivate sind unempfindlich gegenüber Luftsauerstoff, und nur die Komplexe sind mäßig hydrolyseempfindlich, wie es auch für die leichteren Homologen beschrieben ist [8]. Die Verbindungen lösen sich mäßig in Dichlormethan, gut in Acetonitril, DMF und Ethern. $\operatorname{Cd}(R_f)_2$ ist in Wasser nahezu unlöslich; Hydrolyse wird nicht beobachtet.

Um die Reaktivitäten der Perfluoralkylcadmium-Derivate abzuschätzen, wurden diese mit Phenylquecksilberchlorid in $\mathrm{CH_2Cl_2}$ umgesetzt. Ph $\mathrm{Hg^+}$ bildet im Sinne des Pearsonschen HSAB-Konzeptes [14] eine weiche Lewis-Säure und erfüllt damit eine wichtige Voraussetzung für einen erfolgreichen Perfluoralkylgruppentransfer.

```
\begin{split} &\operatorname{Cd}(R_{\mathbf{f}})_2 \cdot D + 2 \; \operatorname{PhHgCl} \to \operatorname{CdCl}_2 \cdot D + 2 \; \operatorname{PhHgR}_{\mathbf{f}} \\ &R_{\mathbf{f}} : \; \operatorname{n-C_6F_{13}}, \; \operatorname{n-C_8F_{17}}; \; D \colon 2 \; \operatorname{DMF}, \; 2 \; \operatorname{CH_3CN}, \; \operatorname{Glyme}, \; \operatorname{Diglyme}. \end{split}
```

Dabei sind folgende Abstufungen in der Reaktivität zu beobachten. Während $\operatorname{Cd}(n\text{-}C_6F_{13})_2 \cdot 2$ DMF und $\operatorname{Cd}(n\text{-}C_8F_{17})_2 \cdot 2$ DMF mit PhHgCl innerhalb von 7 Tagen bei Raumtemperatur fast quantitativ zu den entsprechenden Quecksilberderivaten und Cadmiumchlorid reagieren, sind bei der Reaktion mit $\operatorname{Cd}(n\text{-}C_6F_{13})_2 \cdot 2$ CH $_3\operatorname{CN}$ nach 7 Tagen noch erhebliche Mengen unumgesetzter Cadmium-Komplex $^{19}F\text{-}\operatorname{NMR}$ -spektroskopisch detektierbar. Bei den Umsetzungen mit den Ether-Komplexen können nur Spuren von PhHgR $_f$ NMR-spektroskopisch nachgewiesen werden. Bei der Umsetzung mit $\operatorname{Cd}(n\text{-}C_6F_{13})_2 \cdot \operatorname{Diglyme}$ beschränkt sich der Nachweis für eine Reaktion darauf, daß nur $^{19}F\text{-}\operatorname{NMR}$ -spektroskopische Hinweise auf sehr geringe Mengen $\operatorname{Cd}(n\text{-}C_6F_{13})\operatorname{Cl} \cdot \operatorname{Diglyme}$ gefunden werden (zwischen der $\alpha\text{-}\operatorname{CF}_2\text{-}\operatorname{Gruppe}$ in $\operatorname{Cd}(R_f)_2$ und der in $\operatorname{Cd}(R_f)\operatorname{Cl}$ kann anhand des Betrages der $^2J(^{111/113}\operatorname{Cd}-^{19}F)\text{-}\operatorname{Kopplung}$ unterschieden werden, da die Kopplungskonstante der Derivate $\operatorname{Cd}(R_f)\operatorname{Cl}$ um etwa 50 Hz größer ist als die der entsprechenden $\operatorname{Cd}(R_f)_2\text{-}\operatorname{Verbindung})$.

Die unkomplexierten Cadmiumderivate reagieren bei diesen Bedingungen nicht mit PhHgCl; nach 7 Tagen Reaktionszeit zeigen die ¹⁹F-NMR-Spektren ausschließlich die Signale der Edukte.

Daraus ergibt sich folgende Abstufung in der Reaktivität gegenüber PhHgCl:

$$\mathrm{Cd}(\mathrm{R}_{\mathbf{f}})_2 \cdot 2 \; \mathrm{DMF} \, > \mathrm{Cd}(\mathrm{R}_{\mathbf{f}})_2 \cdot 2 \; \mathrm{CH_3CN} \, > \mathrm{Cd}(\mathrm{R}_{\mathbf{f}})_2 \cdot \mathrm{Glyme}$$

 $\approx \operatorname{Cd}(R_f)_2 \cdot \operatorname{Diglyme} > \operatorname{Cd}(R_f)_2$

Werden die Reaktionen in Gegenwart stöchiometrischer Mengen 2, 2'-Bipyridin durchgeführt, wird in allen oben beschriebenen Fällen die Reaktivität erhöht, wozu auch eine erhöhte Dissoziation des PhHgCl beiträgt, was durch Leitfähigkeitsmessungen bestätigt wird.

2.3. Leitfähigkeitsmessungen an den Perfluoralkylcadmium-Derivaten in Methylenchlorid und Acetonitril

Ein Vergleich der molaren Leitfähigkeiten (Tab. 3) zeigt, daß die Leitfähigkeit für den $\mathrm{Cd}(\mathrm{n\text{-}C_8F_{17}})_2 \cdot 2$ DMF-Komplex signifikant größer ist als die für die übrigen Komplexe. Diese höhere Leitfähigkeit kann auf ein Gleichgewicht in der Lösung hinweisen:

$$Cd(n-C_8F_{17})_2 \cdot 2 DMF \rightleftharpoons [Cd(n-C_8F_{17}) \cdot 2 DMF]^+ + C_8F_{17}^-.$$

In abgeschwächter Form wird dieser Effekt auch für die Acetonitril- und Diglyme-Komplexe beobachtet; jedoch liegt dabei das Gleichgewicht stärker auf der linken Seite.

Verbindung	$\begin{array}{c} \operatorname{CH_2Cl_2} \\ \varLambda \\ (\Omega^{-1} \operatorname{cm^2} \operatorname{mol^{-1}}) \end{array}$	$ m c$ (mol em $^{-3}$)	$\begin{array}{l} {\rm CH_3CN} \\ {\it \Lambda} \\ (\Omega^{-1}~{\rm cm^2~mol^{-1}}) \end{array}$	c (mol cm ⁻³)
$Cd(C_8F_{17})_2$	0,323	$4,65 \cdot 10^{-7}$	2,812	7,11 · 10-7
			$5,665^{a}$)	$6,95 \cdot 10^{-7}$
			78,412b)	$2,79 \cdot 10^{-6}$
$Cd(C_8F_{17})_2 \cdot 2 DMF$	39,325	$5,63 \cdot 10^{-7}$	45,696	$5,03 \cdot 10^{-7}$
$Cd(C_8F_{17})_2 \cdot 2 CH_3CN$	1,716	$9,96\cdot 10^{-7}$	6,439	$8,08 \cdot 10^{-7}$
$Cd(C_6F_{13})_2$	1,179	$4,92 \cdot 10^{-7}$	1,590	$1,89 \cdot 10^{-6}$
. • • • • • • • • • • • • • • • • • • •			$5,355^{a}$)	$1,89 \cdot 10^{-6}$
			149,110 ^b)	$5,06 \cdot 10^{-7}$
$Cd(C_6F_{13})_2 \cdot Diglyme$	0,112	$8,97 \cdot 10^{-7}$		-
. 0 20.4	0,078	$2,19 \cdot 10^{-6}$	4,114	$2,16 \cdot 10^{-6}$
	0,053	$6.05 \cdot 10^{-6}$	8,102	$2,74 \cdot 10^{-4}$

 $Tabelle\ 3\quad Molare\ Leitfähigkeiten\ ausgewählter\ Cd(R_f)_2\text{-}Derivate\ in\ CH_2Cl_2\ und\ CH_3CN\ bei\ T=21^\circ Cl_2\ und$

Beachtenswert erscheinen ferner die Leitfähigkeitswerte für $\mathrm{Cd}(\mathrm{n\text{-}C_8F_{17}})_2$ im Vergleich mit denen für $\mathrm{Cd}(\mathrm{n\text{-}C_8F_{17}})_2 \cdot 2~\mathrm{CH_3CN}$. Während die molare Leitfähigkeit von $\mathrm{Cd}(\mathrm{n\text{-}C_8F_{17}})_2 \cdot 2~\mathrm{CH_3CN}$ in $\mathrm{CH_2Cl_2}$ etwa 5mal so groß wie die des unkomplexierten $\mathrm{Cd}(\mathrm{n\text{-}C_8F_{17}})_2$ ist, reduziert sich dieser Unterschied auf den Faktor 2,3 bei Messungen in Acetonitril. Löst man jedoch $\mathrm{Cd}(\mathrm{n\text{-}C_8F_{17}})_2$ in Acetonitril bei etwa 50°C und läßt die Lösung auf Raumtemperatur abkühlen, nehmen

a) Nach Erwärmen der Lösung auf 45°C; bei T = 21°C gemessen; b) in DMF.

die Leitfähigkeitswerte Beträge in der Größenordnung von reinem $\operatorname{Cd}(n-C_8F_{17})_2$. 2 $\operatorname{CH_3CN}$ an. Diese Ergebnisse lassen den Schluß zu, daß $\operatorname{Cd}(n-C_8F_{17})_2$ bei Raumtemperatur nur wenig, bei höherer Temperatur jedoch in zunehmendem Maße mit $\operatorname{CH_3CN}$ komplexiert wird.

Vergleichbare Effekte werden auch bei den Leitfähigkeitsmessungen von $\mathrm{Cd}(\mathrm{C_6F_{13}})_2$ beobachtet. Zusätzlich wurde die unkomplexierte Verbindung auch in DMF gelöst. Gegenüber der $\mathrm{CH_3CN}$ -Lösung wird eine Leitfähigkeitserhöhung um nahezu den Faktor 100 beobachtet.

2.4. Massenspektren der Bis(perfluoralkyl)cadmium-Verbindungen

Die relativen Intensitäten der wichtigsten positiven Ionen der Perfluoralkylcadmium-Derivate in den Massenspektren sind in den Tab. 4 und 5 zusammengestellt.

Tabelle 4 Relative Intensitäten der positiven Ionen in den EI-Massenspektren der Komplexe $(C_6F_{13})_2$ Cd · D (70 eV/50 °C)

m/e	Ion	Relativ —	ve Intensitäten (% $2~{ m CH_3CN}$	%) für D = 2 DMF	Glyme	Diglyme
41	CH ₃ CN ⁺	······································	73			
45	$C_2H_5O^+$	1	1		100	10
51	$CHF_{2}^{+}/C_{4}H_{3}^{+}$	8	66	78	37	16
59	$\mathrm{C_3H_2O^+}$	2			12	100
69	$\mathrm{CF_3}^+$	100	100	100	77	1
73	$\mathrm{DMF^+/C_4H_9O^+}$			94	4	
90	${ m C_4H_{10}O_2}^+$				12	1
100	$C_2F_4^+$	24	44	6	17	
114	Cd+	79	28	9	37	5
119	$\mathrm{C_2F_5}^+$	27	22	14	26	
131	$C_{3}^{2}F_{5}^{+}$	82	81	22	45	11
169	$\mathrm{C_3F_7^+}$	9	9	7	7	
181	$C_{4}F_{7}^{+}$	27	18	4	15	6
231	$C_5 F_9 +$	15	13	6	9	-
281	$C_{6}F_{11}^{+}$	75	26	10	37	9
433	$\mathrm{C_6F_{13}Cd^+}$	28	11	7	16	14
483	$C_6F_{13}CdCF_2^+$	5	0,8	1,7	3	
506	$\mathrm{C_6F_{13}Cd\cdot DMF^+}$	-	-,-	2	-	
523	${ m C_6F_{13}Cd\cdot Glyme^+}$				5	
567	$C_6F_{13}Cd \cdot Diglyme^+$				•	11

In sämtlichen Massenspektren sind die Ionen der Form $Cd(R_f)^+$ mit Massenzahlen um 433 m/e für die Perfluorhexylderivate und um 533 m/e für die Perfluoroctylderivate mit Intensitäten zwischen 7 und 28% zu beobachten. Weitere Ionen mit Massenzahlen um 483 m/e bzw. 583 m/e deuten auf Fragmente der Form $Cd(R_f)CF_2^+$ hin. Positive Ionen, an die noch ein Komplexligand koordiniert ist, werden für die DMF-Komplexe $(Cd(R_f) \cdot DMF^+)$ sowie die Etherderivate beob-

Tabelle 5 Relative Intensitäten der positiven Ionen in den EI-Massenspektren der Komplexe $(C_8F_{17})_2Cd\cdot D$ (70 eV/70 °C)

m/e	Ion	Relative	Relative Intensitäten (%) für $D =$						
'			2 CH ₃ CN	2 DMF	Glyme	Diglyme			
41	CH ₃ CN ⁺		100						
45	$\mathrm{C_2H_5O^+}$	2		2	100	33			
51	$CHF_{2}^{+}/C_{4}H_{3}^{+}$	61	94	31	6	22			
59	$C_3H_7O^+$	63	1		6	100			
69	$\mathbf{CF_3}^+$	100	95	100	6	61			
73	$DMF/C_4H_9O^+$	1		51	50				
90	$C_4H_{10}O_2^+$				1 9				
100	$C_2F_4^+$	63	35	26	5	19			
114	Cd^+	72	45	66	8	31			
119	$\mathrm{C_2F_5^+}$	81	44	27	1	23			
131	$\mathrm{C_3F_5}^+$	87	83	87	39	50			
169	$\mathrm{C_3F_7}^+$	67	28	24	3	15			
181	$\mathrm{C_4F_7}^+$	35	15	18	1,5	15			
219	$\mathrm{C_4F_9}^+$	24	8	6	2	6			
231	$\mathrm{C_5F_9}^+$	23	10	13	1,5	9			
281	$\mathrm{C_6F_{11}^+}$	11	5	8	1,3	6			
331	${ m C_7F_{13}}^+$	9	5	3	0,3	3			
381	$C_8F_{15}^+$	62	27	49	11	29			
419	${ m C_8F_{17}}^+$	16	1,4		0,2	1,2			
533	$\mathrm{C_8F_{17}Cd^+}$	24	16	22	14	14			
583	$\mathrm{C_8F_{17}CdCF_2^+}$	3	1,7	3		1,7			
606	$\mathrm{C_8F_{17}Cd\cdot DMF^+}$			0,8					
623	$\mathrm{C_8F_{17}Cd\cdot Glyme^+}$				4				
667	$\mathrm{C_8F_{17}Cd \cdot Diglyme^{+}}$	-				8			

achtet. Aus den Tab. 4 und 5 ist zu erkennen, daß die Ionen $\mathrm{CdR_f}^+$ und $\mathrm{Cd}(R_\mathrm{f})\mathrm{CF_2}^+$ bei den nicht-komplexierten Cadmium-Derivaten im Vergleich zu den Perfluoralkylcadmium-Komplexen jeweils die größten Intensitäten haben. Dieser Befund kann als ein weiteres Indiz für die besonderen Eigenschaften der nicht-komplexierten Cadmium-Derivate gewertet werden. Cadmium-Derivate mit kürzerkettigen Perfluoralkylresten werden nicht detektiert. Daraus kann geschlossen werden, daß die Perfluoralkylreste als Ganzes abgespalten werden und dann in Ionen mit Massen zwischen 69 m/e ($\mathrm{CF_3}^+$) und 281 m/e bzw. 381 m/e ($\mathrm{C_6F_{11}}^+$ bzw. $\mathrm{C_8F_{15}}^+$) fragmentieren. Im Gegensatz dazu werden bei einer erstmals durchgeführten Untersuchung verschiedener Perfluoriodalkane neben den oben erwähnten Fragmenten auch Bruchstücke gefunden, die auf einen Zerfall des Perfluoriodalkans unter Beibehaltung der Kohlenstoff-Iod-Bindung hindeuten (Tab. 7).

Bei 20 eV aufgenommene Massenspektren der Perfluoralkylcadmium-Derivate zeigen ein ähnliches Fragmentierungsmuster wie die in den Tab. 4 und 5 beschriebenen 70 eV Spektren. Jedoch treten die cadmiumhaltigen Ionen höherer Massen mit größerer Intensität auf.

m/e	Ion	Relative	e Intensitäten (
		_	2 CH ₃ CN	2 DMF	Glyme	Diglyme
45	$C_2H_5O^+$				52	28
69	$\mathrm{CF_3}^+$				91	
73	DMF^+			100		
90	$C_4H_{10}O_2^+$				100	
400	$C_8F_{16}^{+}$	20	28	43	39	47
533	$\mathrm{CdC_8F_{17}}^+$	100	100	31	44	32
574	$\mathrm{Cd}(\mathrm{C_8F_{17}})\cdot\mathrm{CH_3CN^+}$		23			
606	$\mathrm{Cd}(\mathrm{C_8F_{17}})\cdot\mathrm{DMF^+}$			8		
623	$\mathrm{Cd}(\mathrm{C_8F_{17}})\cdot\mathrm{Glyme^+}$				82	
667	$\mathrm{Cd}(\mathrm{C_8F_{17}})\cdot\mathrm{Diglyme^+}$					100
679	$Cd(C_8F_{17}) \cdot 2 DMF^+$			8		
952	$Cd(C_8F_{17})_2^+$	6				

Tabelle 6 Relative Intensitäten der positiven Ionen in den FI-Massenspektren der Komplexe $(C_8F_{17})_2$ Cd · D (6 kV/100 °C)

Bei den Feldionisierungsmassenspektren der Perfluoroctylcadmium-Derivate (Tab. 6) treten drei in den EI-Spektren nicht beobachtete Ionen auf. Zum einen gelingt es, Cd(C₈F₁₇) · CH₃CN⁺ nachzuweisen; zum anderen gelingt mit den FI-Spektren erstmals der Nachweis, daß tatsächlich zwei DMF-Moleküle an das Cadmiumzentrum koordiniert sind.

Mit dem Auffinden des Molekülpeaks bei 952 m/e mit seinem charakteristischen Cadmiumisotopengatter gelingt zum ersten Mal der Nachweis, daß $\mathrm{Cd}(\mathrm{C_8F_{17}})_2^+$ -Ionen unter schonendsten Ionisierungsbedingungen als Molekülionen existent und detektierbar sind. Das Fehlen des Molekülpeaks in den FI-Spektren der Perfluoroctylcadmium-Komplexe bei gleichen Meßbedingungen kann als Indiz dafür gewertet werden, daß es sich bei der unkomplexierten Form des $\mathrm{Cd}(\mathrm{n-C_8F_{17}})_2$ um eine Verbindung mit hohen kovalenten Bindungsanteilen handelt, während bei den komplexierten Derivaten ein erhöhter ionischer Bindungsanteil den Nachweis des Molpeaks nicht erlaubt.

2.5. Interpretation der Ergebnisse

Die hohe thermische Stabilität der unkomplexierten C_6F_{13} - und C_8F_{17} -Cd-Verbindungen ist vergleichbar mit der der koordinativ ungesättigten n- C_8F_{17} -Pd-und -Zn-Verbindungen [12]. Die große Differenz der Schmelzpunkte der unkomplexierten und komplexierten Perfluoralkylcadmium-Verbindungen läßt auf unterschiedliche Wechselwirkungen schließen. Ob diese "Stabilisierung" der unkomplexierten Cd-Verbindungen mit der von Stone und Treichel [15] postulierten $d_n-\sigma^*$ -Wechselwirkung zwischen Metall-d-Orbitalen als Donatoren und σ^* -Orbitalen der C-F-Bindungen als Akzeptoren oder aber auf intermolekulare Wechselwirkungen, die durch eine Komplexbildung der Cd-Verbindung aufgehoben werden, zurückzuführen ist, läßt sich mit diesen Beobachtungen alleine noch nicht erklären. Ein Vergleich mit der bis nur etwa 0°C in verdünnter Lösung

Tabelle 7 Relative Intensitäten der positiven Ionen in den EI-Massenspektren der Perfluoriodalkane $R_f I$ (70 eV/20 °C)

m/e	Ion	Relative i- $\mathrm{C_3F_7}$	Intensitäten $n-C_3F_7$	$(\%)$ für $R_f = n \cdot C_4 F_9$	$\text{n-C}_6\text{F}_{13}$	$ ext{n-C}_8 ext{F}_{17}$
		1-031 7			11-O6L 13	
50	$\mathbf{CF_2}^+$	5	9	9	4	3
69	$\mathrm{CF_{3}^{+}}$	99	100	100	100	100
93	$\mathrm{C_3F_3}^+$	4	3	8	6	15
100	$C_2F_4^+$	34	42	37	19	51
119	$\mathrm{C_2F_5}^+$	11	21	29	39	63
127	I +	85	81	70	30	57
131	$\mathrm{C_3F_5}^+$	29	23	37	22	61
150	$C_{3}F_{6}^{+}$	21	13	3	1	3
158	CFI+	4	5	3		3
169	$\mathrm{C_3F_7}^+$	23	99	2	13	57
177	$\mathrm{CF_2I^+}$	29	50	38	22	49
181	$\mathrm{C_4F_7}^+$			15	4	18
208	$\mathrm{C_2F_3I^+}$	4	5	6	2	6
219	$C_4F_9^+$			81		22
227	$C_2F_4I^+$	10	3	2	2	10
231	$\mathrm{C_5F_9^+}$				5	8
239	$C_3F_4I^+$			6	2	5
269	$\mathrm{C_5F_{11}^+}$					4
277	$\mathrm{C_3F_6I^+}$	25	14			2
281	$C_6F_{11}^+$				3	2
296	$\mathrm{C_3F_7I^+}$	100	97			
319	$C_{\bf 6}F_{{f 13}}{}^+$				21	
327	$\mathrm{C_4F_8I^+}$			3		
331	$C_7F_{13}^+$					5
346	$C_4F_9I^+$			47		
381	${ m C_8F_{15}}^+$					6
419	${ m C_8F_{17}}^+$					32
427	$\mathbf{C_6F_{12}I^+}$				1	
446	$\mathrm{C_6F_{13}I^+}$				12	
527	${ m C_8F_{16}I^+}$					4
546	${ m C_8F_{17}I^+}$					23

in nichtkomplexierenden Lösungsmitteln stabilen $\operatorname{Cd}(\operatorname{CF}_3)_2$ -Verbindung [6] kann eine vorläufige Interpretation ermöglichen. Perfluoralkylcadmium-Derivate sind in der Regel vierfach koordiniert. Im Falle der unkomplexierten Verbindung wird die Koordination des Cd durch Wechselwirkung mit den F-Atomen der α -CF $_2$ -Gruppen erhöht. Bei den CF $_3$ Cd-Verbindungen ist dadurch die Difluorcarben-Abspaltung vorgeprägt, wie sie auch experimentell nachgewiesen wurde [17]. Bei längerkettigen Perfluoralkylgruppen wird die Eliminierung von Perfluorolefin durch die hohe Elektronendichte der benachbarten Fluoratome kompensiert. Dies kann auch erklären, warum z. B. CF $_3$ MgX bisher noch nicht dargestellt werden konnte.

Durch starke N-oder O-Donatoren wird das Elektronendefizit am Cadmium so weit erniedrigt, daß die Wechselwirkung mit den α -F-Atomen geschwächt wird. Dies hat zur Folge, daß die höheren Perfluoralkylcadmium-Komplexe in polaren Lösungsmitteln ohne Zersetzung dissozijeren können und als polare Perfluoralkylierungsmittel reagieren. Damit werden auch die Ergebnisse der Leitfähigkeits- und der MS-Messungen erklärt.

3. Experimentelles

NMR-Spektren: Bruker WM 300; ¹⁹F: 282,4 MHz, CCl₃F ext.; ¹³C: 75,4 MHz, TMS ext. Massen-Spektren: Varian CH 5 (modifiziert); EI: 70 und 20 eV; FJ: 6 kV; die Substanzproben wurden im Direkteinlaßverfahren in die auf 180°C thermostatisierte kombinierte EI/FI-Ionenquelle eingebracht; Ergebnisse als Mittelwerte von jeweils 5 Massendurchläufen. Cd-haltige Ionen sind auf ¹¹⁴Cd bezogen (rel. Häufigkeit 28,86%); Umrechnung auf monoisotope Verhältnisse mit Faktor 100/28,86. Leitfähigkeitsmessungen: Metrohm Conductometer 660. Schmelz- und Zersetzunsgpunkte: Gallenkamp Schmelzpunktapparat MFB-595 in einseitig offenen Glaskapillaren. Cadmium-Bestimmungen: gemäß [18].

Es wurden kommerziell erhältliche Chemikalien eingesetzt (n-C₆F₁₃I, Fa. Merck, Darmstadt; n-C₆F₁₇I, Fa. Aldrich, Steinheim; PhHgCl, Fa. Johnson Matthey, Karlsruhe), die nach Standardmethoden gereinigt wurden. Die Darstellung von (CH₃)₂Cd erfolgte gemäß [19].

Darstellung der Bis (perfluoralkyl) cadmium-Derivate

Unter Schutzgas und Feuchtigkeitsausschluß werden zu einem auf $-196\,^{\circ}$ C gekühlten Gemisch aus 5 mmol $\operatorname{Cd}(\operatorname{CH}_3)_2$ in 5 ml $\operatorname{CH}_2\operatorname{Cl}_2$ bzw. 5 mmol eines zweizähnigen oder 10 mmol eines einzähnigen Liganden 12,5 mmol des entsprechenden Perfluoriodalkans pipettiert. Die Reaktionsmischung wird langsam auf Raumtemperatur erwärmt und bei dieser Temperatur etwa 2 Tage lang gerührt. Alle leichtflüchtigen Komponenten werden im Hochvakuum bei 0 °C bis $+40\,^{\circ}$ C destillativ entfernt. Die $\operatorname{Cd}(R_f)_2$ -Derivate werden quantitativ als weiße Feststoffe oder bei etwa 10 °C erstarrende, farblose, viskose Flüssigkeiten ($\operatorname{Cd}(R_f)_2 \cdot \operatorname{D}$; D = Glyme, Diglyme, 2 $\operatorname{CH}_3\operatorname{CN}$, 2 DMF) erhalten.

Cadmium-Bestimmungen:	$\mathrm{R_f}=\mathrm{n ext{-}C_6F_{13}}$		$\mathrm{R_{f}=n\text{-}C_{8}F_{17}}$	
	gef.	ber.	gef.	ber.
$\mathrm{Cd}(\mathrm{R_f})_2$	14,78%	14,98%	12,00%	11,82%
$Cd(R_f)_2 \cdot 2 CH_3CN$	13,56%	1 3,50%	10,84%	10,89%
$Cd(R_f)_2 \cdot 2 DMF$	12,33%	12,53%	10,35%	10,25%
$\mathrm{Cd}(\mathrm{R}_{\mathrm{f}})_2\cdot\mathrm{Glyme}$			10,30%	10,36%
$Cd(R_f)_2 \cdot Diglyme$	12,75%	12,70%		

Die Schmelzpunkte der einmal mit kaltem Dichlormethan gewaschenen Derivate $Cd(n-C_6F_{13})_2$ und $Cd(n-C_8F_{17})_2$ liegen bei 1.12 °C bzw. 170 °C.

Die 19F-NMR-Daten der Verbindungen sind in Tab. 1 und 2 zusammengefaßt.

Die ¹³C-NMR-Spektren von Cd(n-C₆F₁₃)₂ · 2 CH₃CN und Cd(n-C₈F₁₇)₂ · 2 CH₃CN zeigen die Resonanz der α -CF₂-Gruppe bei δ +145,1 ppm bzw. δ +141,7 ppm. Beide Signale sind in erster Näherung zu Tripletts von Tripletts aufgespalten; die Kopplungen ¹J(¹⁹F—¹³C) haben die Beträge 293 Hz und 303 Hz. Der Betrag der ²J(¹⁹F—¹³C)-Kopplung kann in beiden Fällen als 60 Hz bestimmt werden. Die CF₃-Gruppe des Cd(n-C₆F₁₃)₂ · 2 CH₃CN zeigt bei δ +121,5 ppm Resonanz, die des Cd(n-C₈F₁₇)₂ · 2 CH₃CN bei δ +117,5 ppm. Beide Signale sind in erster Näherung als Quartetts von Tripletts anzusehen. Die Resonanzen der inneren CF₂-Gruppen erstrecken sich als komplexe, sich überlagernde Multipletts zwischen δ +120 ppm und δ +109 ppm bzw. δ +120 ppm und δ +104 pm.

Reaktionen mit Phenylquecksilberchlorid

In einem sorgfältig getrockneten Schlenkrohr wird bei Raumtemperatur unter Schutzgas eine Lösung von etwa 1,2 mmol $Cd(R_f)_2$ in 10 ml CH_2Cl_2 mit etwa 0,5 mmol festem PhHgCl versetzt. Das geschlossene Reaktionsgefäß wird 7 Tage bei Raumtemperatur gerührt. Da die Reaktivitäten von $Cd(n-C_6F_{13})$ - und $Cd(n-C_8F_{17})$ -Derivaten vergleichbar sind, wurden nur die folgenden Cadmiumderivate eingesetzt: $Cd(n-C_6F_{13})_2 \cdot 2$ DMF, $Cd(n-C_8F_{17})_2 \cdot 2$ DMF, $Cd(n-C_8F_{17})_2 \cdot 2$ CH₃CN, $Cd(n-C_6F_{13})_2 \cdot Cd(n-C_6F_{13})_2 \cdot Diglyme$, $Cd(n-C_8F_{17})_2 \cdot Diglyme$ sowie $Cd(n-C_6F_{13})_2$ und $Cd(n-C_8F_{17})_2$.

Die ¹⁹F-NMR-Spektren nach einer Reaktionszeit von 7 Tagen zeigen nur die Signale für PhHgR_t, Cd(R_t)₂, Cd(R_t)Cl sowie R_tH (nur bei Reaktionen mit Acetonitril- oder DMF-Komplexen). Eine Zuordnung der Signale zu den Derivaten kann anhand der chemischen Verschiebungen für die α -CF_t-Gruppen erfolgen, da diese sich voneinander signifikant unterscheiden (vgl. Tab. 2).

Die Umsetzungen in Gegenwart von 2,2'-Bipyridin wurden derart durchgeführt, daß PhHgCl in $\mathrm{CH_2Cl_2}$ vorgelegt wurde, die stöchiometrische Menge Bipyridin und anschließend das Cadmiumderivat als Feststoff zugegeben wurde. Aus den Reaktionsansätzen mit $\mathrm{Cd}(\mathrm{n-C_6F_{13}})_2$ · Glyme und $\mathrm{Cd}(\mathrm{n-C_8F_{17}})_2$ · Diglyme in Gegenwart von Bipyridin lassen sich PhHg($\mathrm{C_6F_{13}})$ und PhHg($\mathrm{C_8F_{17}})$ als weiße Feststoffe durch Sublimation aus dem Rückstand isolieren. Sie werden durch ihre ¹⁹F-NMR-Spektren (vgl. Tab. 2) identifiziert. Von PhHgC₆F₁₃ gelingt es ferner, ein Massenspektrum aufzunehmen; MS (70 eV, 20 °C, nur ²⁰²Hg-haltige Fragmente): 598 (1,4%, M+), 329 (2,2%, PhHgCF₂+), 279 (30,0%, PhHg+), 202 (4,2%, Hg+).

Molare Leitfähigkeit von PhHgCl (T=21 °C): $0.1435~\Omega^{-1}~\rm cm^2~mol^{-1}$ in CH₂Cl₂, $3.4928~\Omega^{-1}~\rm cm^2mol^{-1}$ in Gegenwart stöchiometrischer Mengen 2.2'-Bipyridin (c = $4.18 \cdot 10^{-7}~\rm mol~cm^{-3}$).

Dem Minister für Wissenschaft und Forschung des Landes Nordrhein-Westfalen und dem Fonds der Chemischen Industrie danken wir für die Unterstützung dieser Arbeit.

Literatur

- [1] NAUMANN, D.; Tyrra, W.: J. Organomet. Chem. 334 (1987) 323 und dort zitierte Literatur.
- [2] NAUMANN, D.; FINKE, M.; DUKAT, W.; TYRRA, W.: unveröffentlicht.
- [3] DYATKIN, B. L.; MARTYNOV, B. I.; KNUNYANTS, I. L.; STERLIN, S. R.; FEDOROV, L. A.; STUMBREVICHUTE, Z. A.: Tetrahedron Lett. 1971, 1345.
- [4] Krause, L. J.; Morrison, J. A.: J. Am. Chem. Soc. 103 (1981) 2995.
- [5] Burton, D. J.; Wiemers, D. M.: J. Am. Chem. Soc. 107 (1985) 5014.
- [6] GUERRA, M. A.; BIERSCHENK, T. R.; LAGOW, R. J.: J. Am. Chem. Soc. 108 (1986) 4103.
- [7] HEINZE, P. L.; BURTON, D. J.: J. Fluorine Chem. 29 (1985) 359.
- [8] LANGE, H.; NAUMANN, D.: J. Fluorine Chem. 26 (1984) 1.
- [9] CHEN, G. J.; TAMBORSKI, C.: J. Fluorine Chem. 36 (1987) 123.
- [10] KITAZUME, T.; ISHIKAWA, N.: J. Am. Chem. Soc. 107 (1985) 5186.
- [11] LANG, R. W.: Helv. Chim. Acta 71 (1988) 369.
- [12] KLABUNDE, K. J.; CAMPOSTRINI, R.: J. Fluorine Chem. 42 (1989) 93.
- [13] LANGE, H.; NAUMANN, D.: J. Fluorine Chem. 27 (1985) 309.
- [14] Pearson, R. G.: Inorg. Chem. 27 (1988) 734 und dort zitierte Literatur.
- [15] STONE, F. G. A.; TREICHEL, P. M.: Adv. Organomet. Chem. 1 (1964) 143.
- [16] FEDOROV, L. A.; STUMBREVICHUTE, Z. A.; FEDIN, É. I.: Zh. Strukt. Khim. 16 (1975) 976; J. Struct. Chem. 16 (1975) 899.
- [17] LANGE, H.; NAUMANN, D.: J. Fluorine Chem. 27 (1985) 299.
- [18] Komplexometrische Bestimmungsmethoden mit Titriplex; Darmstadt: E. Merck, S. 31.
- [19] Krause, E.: Chem. Ber. 50 (1917) 1813.

Bei der Redaktion eingegangen am 11. Juni 1990.

Anschr. d. Verf.: Prof. Dr. D. Naumann, Dr. K. Glinka, Dr. W. Tyrra, Inst. f. Anorg. Chemie d. Univ., Greinstr. 6, D-5000 Köln 41