Группа	P3215	К работе допущен	
Студент	Барсуков М.А.	Работа выполнена	
Преподаватель	Хвастунов Н.Н.	Отчет принят	

Рабочий протокол и отчет по лабораторной работе № 1.09 Определение момента инерции методом крутильных колебаний

1 Цели работы

- 1. Определение момента инерции различных твердых тел методом крутильных колебаний.
- 2. Проверка справедливости теоремы Гюйгенса-Штейнера.

2 Задачи, решаемые при выполнении работы

- 1. Измерить силы упругости с разным плечом и углом поворота крутильных весов. Рассчитать коэффициент угловой жесткости спиральной пружины.
- 2. Измерить периоды периода крутильных колебаний для тел различной формы.
- Рассчитать момент инерции тел с помощью массы и геометрических размеров, с помощью периода колебаний.
- 4. Сравнить полученные значения.

3 Объект исследования

Момент инерции различных тел.

4 Метод экспериментального исследования

Многократные совместные измерения.

5 Рабочие формулы и исходные данные

1. Угловая жесткость пружины.

$$k = -\frac{M}{\varphi} \tag{1}$$

где $M=r\cdot F$ - момент силы упругости спиральной пружины, φ - угол поворота крутильных весов.

2. Момент инерции тела через период колебаний.

$$I = \frac{kT^2}{4\pi^2} \tag{2}$$

где T - период колебаний крутильных весов.

3. Центральный момент инерции цилиндра относительно оси перпендикулярной оси симметрии.

$$I_c = m\left(\frac{r^2}{4} + \frac{h^2}{12}\right) \tag{3}$$

где r - радиус груза, h - высота груза.

Исходные данные

Тело	Массы, г	Диаметры, м	Высоты, м
Штанга	175	0,006	0,60
Шар	923	0,10	-
Полый ци- линдр	363	0,10	0,10
Сплошной цилиндр	458	0,14	0,10
Сплошной диск	288	0,22	-
Диск с отверстиями	442	0,30	-
Грузы	229	0,03	0,04

6 Измерительные приборы

№ п/п	Наименование	Предел измерений		Погрешность
			диапазон	прибора
1	Электронный секундомер	60 мин	0 - 10 с	0,005 с
2	Угольник	40 см	0 - 30 см	0,5 мм
3	Электронные весы	1000 г	100 - 1000 г	0,1 г
4	Электронный динамометр	100 H	0 - 2 H	0,03 H

7 Результаты прямых измерений и их обработки

Таблица 1. Определение коэффициента угловой жесткости пружины

_	-270°	-1	80°	-90^{o}		90°		180°		270°	
F, H	<i>r</i> , м	F, H	<i>r</i> , м	F, H	<i>r</i> , м	F, H	<i>r</i> , м	F, H	<i>r</i> , м	F, H	<i>r</i> , м
0,36	0,29	0,24	0,29	0,12	0,29	0,13	0,29	0,23	0,29	0,36	0,29
0,53	0,19	0,36	0,19	0,19	0,19	0,21	0,19	0,36	0,19	0,54	0,19
1,21	0,09	0,76	0,09	0,4	0,09	0,43	0,09	0,76	0,09	1,2	0,09
M, H	$M(-3\pi/2)$	M, H.	$M(-\pi)$	$M, \mathbf{H} \cdot \mathbf{m}(-\pi/2)$		M, H.	$M(\pi/2)$	M, H	$M(\pi)$	M, H ·	$M(3\pi/2)$
(),105	0,0)69	0,036		0,039		0,068		0,105	
$k = 0,02256 \pm 0,00097 \; \mathrm{H \cdot M}$											

Таблица 2. Теорема Гюйгенса-Штейнера для штанги с грузами

		-			1
<i>l</i> , м	T_1 , c	T_2 , c	T_3 , c	l^2 , M^2	$T_{\rm cp}^2, {\rm c}^2$
0,00	2,58	2,56	2,61	0,00	6,68
0,06	3,08	3,06	3,08	0,00	9,47
0,08	3,43	3,43	3,35	0,01	11,58
0,10	3,79	3,80	3,77	0,01	14,35
0,12	4,18	4,17	4,17	0,01	17,39
0,14	4,70	4,68	4,69	0,02	21,96
0,16	5,24	5,08	5,13	0,03	26,55

Таблица 3. Теорема Гюйгенса-Штейнера для диска с отверстиями

<i>l</i> , м	T_1 , c	T_2 , c	T_3 , c	l^2 , M^2	$T_{\rm cp}^2,~{\rm c}^2$
0,00	2,59	2,65	2,65	0,00	6,91
0,03	2,79	2,77	2,78	0,00	7,73
0,06	3,13	3,14	3,08	0,00	9,71
0,09	3,51	3,50	3,48	0,01	12,23
0,12	4,09	4,07	4,00	0,01	16,45

Таблица 4. Центральные моменты инерции объектов измерения

Объект	T_1 , c	T_2 , c	T_3 , c	$T_{\rm cp}^2, \ {\rm c}^2,$	I , $\Gamma \cdot M^2$	$I_{\text{reop}}, \ \Gamma \cdot \text{m}^2$
Сплошной диск	1,573	1,533	1,543	2,403	1,373	1,706
Полый ци- линдр	1,093	1,050	1,103	1,171	0,669	0,902
Сплошной ци-	0,873	0,887	0,887	0,778	0,445	0,581
Шар	1,523	1,553	1,530	2,358	1,347	1,768

8 Расчет результатов косвенных измерений

Коэффициент k рассчитан по формуле (1), погрешность рассчитана по МНК из зависимости $M = -k \cdot \varphi$. Рассчитаем по формуле (2) момент инерции штанги используя первые значения из Таблицы 2:

$$I_{rod} = \frac{kT^2}{4\pi^2} = \frac{0,02256 \cdot 6,68}{4\pi^2} = 3,816 \text{ f} \cdot \text{m}^2$$

Рассчитаем момент инерции штанги относительно оси перпендикулярной оси симметрии:

$$I_{rod,\text{Teop}} = 0,00525 \text{ K} \cdot \text{M}^2$$

Для формулы (2) проведем линейную аппроксимацию по МНК $T^2(l^2) = y = a \cdot x + b$, где

$$T^{2} = \frac{8\pi^{2}m}{k} \cdot l^{2} + \frac{4\pi^{2}}{k} (2I_{c} + I_{rod})$$

$$a = \frac{8\pi^{2}m}{k} = 775,429 \pm 21,417 \frac{\text{K}\Gamma}{\text{H} \cdot \text{M}}$$

$$b = \frac{4\pi^{2}}{k} (2I_{c} + I_{rod}) = 6,609 \pm 0,303 \text{ c}^{2}$$

Отсюда найдем массу m одного груза и их центральный момент инерции относительно оси перпендикулярной оси симметрии (I_c) .

$$m = \frac{a \cdot k}{8\pi^2} = \frac{775,429 \cdot 0,02256}{8\pi^2} = 0,2215 \text{ кг}$$

$$I_c = \frac{1}{2} \left(\frac{b \cdot k}{4\pi^2} - I_{rod} \right) = \frac{1}{2} \left(\frac{6,609 \cdot 0,02256}{4\pi^2} - 0,00525 \right) = 0,115 \text{ г} \cdot \text{м}^2$$

$$I_{c,\text{теор}} = \frac{m}{4} \left(r^2 + \frac{h^2}{3} \right) = 0,134 \text{ г} \cdot \text{м}^2$$

Аналогично для таблицы 3 проведем линейную аппроксимацию $T^2(l^2) = y = ax + b$, где

$$T^2 = \frac{4\pi^2 m}{k} \cdot l^2 + \frac{4\pi^2}{k} I_c$$

$$a = \frac{4\pi^2 m}{k} = 649,1698 \pm 48,5285 \frac{\text{K}\Gamma}{\text{H} \cdot \text{M}}$$

$$b = \frac{4\pi^2}{k} \cdot I_c = 7,1005 \pm 0,3675 \text{ c}^2$$

Также рассчитаем массу диска с отверстиями и центральный момент инерции:

$$m=rac{ak}{4\pi^2}=0,371\ {
m K} \Gamma$$
 $I_c=rac{bk}{4\pi^2}=4,057\ {
m r\cdot m}^2$ $I_{c,{
m reop}}=rac{mr^2}{2}=4,939\ {
m r\cdot m}^2$

Для Таблицы 4 рассчитаем момент инерции тела по формуле (2) и по теоретическим формулам:

Кольцо или цилиндр с тонкими стенками радиуса r . Ось вращения совпадает с осью симметрии.	mr^2
Однородный тонкий стержень длиной ℓ . Ось вращения перпендикулярна стержню.	$\frac{m\ell^2}{12}$
Однородный сплошной диск (цилиндр) радиусом r относительно оси симметрии.	$\frac{mr^2}{2}$
Полый толстостенный цилиндр с внешним радиусом r_2 и внутренним радиусом r_1 относительно оси симметрии.	$\frac{m}{2}\left(r_1^2+r_2^2\right)$
Полый тонкостенный цилиндр высоты h и радиуса r . Ось вращения перпендикулярна к оси симметрии.	$\frac{m}{2}\left(r^2 + \frac{h^2}{6}\right)$
Однородный сплошной цилиндр высоты h и радиуса r . Ось вращения перпендикулярна к оси симметрии.	$\frac{m}{4}\left(r^2 + \frac{h^2}{3}\right)$
Тонкостенная сфера радиуса r .	$\frac{2}{3}mr^2$
Однородный сплошной шар радиуса r .	$\frac{2}{5}mr^2$

Занесем результаты в 6 и 7 столбцы таблицы 4.

9 Расчет погрешностей измерений

Погрешность рассчитана по методу наименьших квадратов из зависимости $M = -k \cdot \varphi$. Оценим погрешность момента инерции штанги.

$$\Delta I_{rod} = I_{rod} \sqrt{\left(\frac{\Delta k}{k}\right)^2 + \left(\frac{2\Delta T}{T}\right)^2} = 0,520826~\mathrm{f\cdot m^2}$$

Оценим погрешность периода:

$$\Delta T = \frac{T_{max} - T_{min}}{2} = 0,0217 \text{ c}$$

Аналогично оценим погрешность косвенного измерения моментов инерции тел из таблицы 4.

Объект	ΔI , $\Gamma \cdot M^2$
Сплошной диск	0,228
Полый цилиндр	0,151
Сплошной цилиндр	0,058
Шар	0,197

10 Графики

График 1. Зависимость квадрата периода колебаний от квадрата расстояния до грузов.

График 2. Зависимость квадрата периода колебаний от квадрата смещения оси вращаения диска от оси симметрии.

11 Окончательные результаты

1. Коэффициент угловой жесткости спиральной пружины.

$$k = (22,558 \pm 0,972) \cdot 10^{-3} \text{ H} \cdot \text{M}$$

2. Центральный момент инерции штанги.

$$I_{rod} = 3,816 \pm 0,521 \ \text{f} \cdot \text{m}^2$$

$$I_{rod.\text{Teop}} = 5,250 \text{ } \Gamma \cdot \text{m}^2$$

3. Масса груза.

$$m = 221, 5$$
 г

$$m = 229 \ \Gamma$$

4. Центральный момент инерции грузов.

$$I_c = 0.115 \ \text{f} \cdot \text{m}^2$$

$$I_{c,\text{Teop}} = 0,134 \text{ } \Gamma \cdot \text{M}^2$$

5. Центральный момент инерции диска с отверстиями.

$$I_c = 4,057 \text{ } \Gamma \cdot \text{m}^2$$

$$I_{c,\text{Teop}} = 4,939 \text{ } \Gamma \cdot \text{m}^2$$

6. Центральный момент инерции шара.

$$I_c = 1,347 \pm 0,197 \ \text{f} \cdot \text{m}^2$$

$$I_{c,\text{Teop}} = 1,768 \text{ } \Gamma \cdot \text{m}^2$$

7. Центральный момент инерции сплошного диска.

$$I_c = 1,372 \pm 0,228 \ \text{f} \cdot \text{m}^2$$

$$I_{c,\text{Teop}} = 1,706 \text{ } \Gamma \cdot \text{M}^2$$

8. Центральный момент инерции полого цилиндра.

$$I_c = 0,669 \pm 0,151 \text{ } \Gamma \cdot \text{M}^2$$

$$I_{c,\text{Teop}} = 0,902 \text{ } \Gamma \cdot \text{m}^2$$

9. Центральный момент инерции сплошного цилиндра.

$$I_c = 0.445 \pm 0.058 \,\mathrm{r \cdot m^2}$$

$$I_{c,\text{Teop}} = 0,581 \text{ } \Gamma \cdot \text{m}^2$$

12 Выводы и анализ результатов работы

Как видно по графикам зависимости периода колебаний от смещения тел близки к линейным, что говорит о справедливости теоремы Гюйгенса-Штейнера.

Момент инерции большинства исследуемых тел несколько отличается от теоретических значений (примерно на 20%). Вероятная причина недостоверности некоторых полученных значений в недостаточно хорошем закреплением оси вращения вместе с телом на установке, из-за люфта смещалось положение равновесия тела относительно пружины. Результаты оказались занижены, так как из-за плохого закрепления период колебаний уменьшался, и, следовательно, уменьшалось и экспериментальное значение момента инерции тела.