Assignment 2

EE24Btech11024 - G. Abhimanyu Koushik

A. Multiple Choice				
1) The least value of $ z $ $\log_{\sqrt{2}} 5\sqrt{7} + 9i , i =$		number which satisfies the i	nequality $\exp\left(\frac{(z +3)(z +3)}{ z +3}\right)$	$\frac{z -1)}{1 }\log_e 2\Big) \ge$
2 1/2 1/	1			(Mar 2021)
a) 8	b) 3	c) $\sqrt{5}$	d) 2	
2) Let $f: S \to S$ where $S = (0, \infty)$ be a twice differentiable function such that $f(x+1) = xf(x)$. If				
$g:S\to\mathbb{R}$ be defined	d as $g(x) = \log_e f(x)$, then the value of $ g''(5) $	-g''(1) is equal to	(Mar 2021)
a) $\frac{197}{144}$	b) $\frac{187}{144}$	c) $\frac{205}{144}$	d) 1	
3) If $y = y(x)$ is the solution of the differential equation $\left(\frac{dy}{dx}\right) + (\tan x)y = \sin x$, $0 \le x \le \frac{\pi}{3}$, with $y(0) = 0$, then $y\left(\frac{\pi}{4}\right)$ is equal to:				
then $y\left(\frac{1}{4}\right)$ is equal to	J.			(Mar 2021)
a) $\log_e 2$	b) $\frac{1}{2} \log_e 2$	c) $\frac{1}{2\sqrt{2}}\log_e 2$	d) $\frac{1}{4}\log_e 2$	
4) If the foot of perpendicular from the point $(4,2,8)$ on the $L_1: \frac{x-a}{l} = \frac{y-2}{3} = \frac{z-b}{4}$, $l \neq 0$ is $(3,5,7)$, then find the shortest distance between the line L_1 and line $L_2: \frac{x-2}{3} = \frac{y-4}{4} = \frac{z-5}{5}$ is equal to				
2000 000 0000 000		4	5 20 04000 00	(Mar 2021)
a) $\frac{\sqrt{2}}{3}$	b) $\frac{1}{\sqrt{3}}$	c) $\frac{1}{2}$	d) $\frac{1}{\sqrt{6}}$	
5) If (x, y, z) be an arbitrary point lying on the plane P which passes through the points $(42, 0, 0)$, $(0, 42, 0)$, and $(0, 0, 42)$, then the value of expression $3 + \frac{x-11}{(y-19)^2(z-12)^2} + \frac{y-19}{(x-11)^2(z-12)^2} + \frac{z-12}{(x-11)^2(y-19)^2} - \frac{z-12}{(x-11)^2(y-19)^2} = \frac{z-12}{(x-11)^2(y-19)$				
$\frac{x+y+z}{14(x-11)(y-19)(z-12)}$ is eq	quai to			(Mar 2021)
a) 3	b) 0	c) 39	d) -45	
B. Numericals				
1) Let $n \in \mathbb{N}$ and $[x]$ denote the greatest integer less than or equal to x . If the sum of $(n+1)$ terms ${}^{n}C_{0}$, $3 \cdot {}^{n}C_{1}$, $5 \cdot {}^{n}C_{2}$, $7 \cdot {}^{n}C_{3}$ is equal to $2^{1}00 \cdot 101$, then $2\left[\frac{n-1}{2}\right]$ is equal to				
2) Let A (-1, 1), B (3, 4) and <i>BC</i> at point P and) and $\mathbf{C}(2,0)$ be give	en three points. A line $y = x$ and A_2 be the areas of	mx, m > 0, interse	respectively,
(Mar 2021) 3) Let f be a real-valued function, defined on $\mathbb{R} - \{-1, 1\}$ and given by $f(x) = 3 \log_e \left(\frac{ (x-1) }{ (x+1) }\right) - \frac{2}{x-1}$. Then in which of the following intervals, function $f(x)$ is increasing?				
in which of the folio	owing intervals, funct	non j (x) is increasing?		(Mar 2021)

4) Let the lengths of intercepts on x-axis and y-axis made by the circle $x^2 + y^2 + ax + 2ay + c = 0$, (a < 0) be $2\sqrt{2}$ and $2\sqrt{5}$, respectively. Then the shortest distance from origin to a tangent to this circle which is perpendicular to the line x + 2y = 0, is equal to:

(Mar 2021)

5) Let A denote the event that a 6-digit integer formed by 0, 1, 2, 3, 4, 5, 6 without repetitions, be divisible by 3. Then the probability of event A is equal to:

(Mar 2021)

6) Let $\alpha \in \mathbb{R}$ be such that the function $f(x) = \begin{cases} \frac{\cos^{-1}(1-\{x\}^2)\sin^{-1}(1-\{x\})}{\{x\}-\{x\}^3\}} & x \neq 0, \\ \alpha & x = 0. \end{cases}$ is continuous at x = 0, where $\{x\} = x - [x]$, [x] is the greatest integer less than or equal to x. Then:

(Mar 2021)

7) The maximum value of $f(x) = \begin{vmatrix} \sin^2 x & 1 + \cos^2 x & \cos 2x \\ 1 + \sin^2 x & \cos^2 x & b \cos 2x \\ \sin^2 x & \cos^2 x & \sin 2x \end{vmatrix}, x \in \mathbb{R}$ is:

(Mar 2021)

8) Consider a rectangle *ABCD* having 5, 7, 6, 9 points in the interior of the line segments *AB*, *BC*, *CD*, *DA* respectively. Let α be the number of triangles having these points from the different sides as vertices and β be the number of quadrilaterals having these points from different sides as vertices. Then $(\beta - \alpha)$ is equal to:

(Mar 2021)

9) Let C be the locus of the mirror image of a point on the parabola $y^2 = 4x$ with respect to the line y = x. Then the equation of tangent to C at P(2, 1) is:

(Mar 2021)

10) Given that the inverse trigonometric functions take principal values only. Then, the number of real value of x which satisfy $\sin^{-1}\left(\frac{3x}{5}\right) + \sin^{-1}\left(\frac{4x}{5}\right) = \sin^{-1}x$ is

(Mar 2021)