Incorrecta

Puntúa como

2

Marcar pregunta

Para una juntura PN con $\Phi_B = 0.7$ V a temperatura ambiente (300K) y sin tensión aplicada, calcular la capacidad de juntura por unidad de área C'_{J0} [F/cm²] sabiendo que $x_n = 4$ x_p .

NOTA: No realice aproximaciones en el cálculo de la tensión térmica.

Respuesta:

35,2E-9F/cm²

La respuesta correcta es: 1,883E-8 F/cm2

Incorrecta

Puntúa como

 Marcar pregunta

cm⁻⁴), en la base (-4,93 \times 10¹⁸ cm⁻⁴) y en el colector (1,35 \times 10¹⁴

Un transistor TBJ NPN está polarizado en MAD a temperatura ambiente. En estas condiciones, se conocen las pendientes de los perfiles de concentración de minoritarios en el emisor (8,2 \times 10¹⁶

Seleccione una:

a. 93

b. 33 🗶

c. 280

d. 108

e. 630

La respuesta correcta es: 280

 μ_n

Colector 1450 cm²/Vs 550 cm²/Vs

cm⁻⁴). Determinar el valor de la ganancia de corriente (β) conocidos

los valores de las movilidades en cada una de las regiones.

 μ_{p}

Emisor 900 cm²/Vs 300 cm²/Vs

Base 1400 cm²/Vs 500 cm²/Vs

Correcta

Puntúa como 2

Marcar pregunta

En el proceso de diseño de un amplifiador emisor común, se determina que $R_C = 100~\Omega$ y $R_{IN} = 500~\Omega$. El transistor utilizado en el circuito tiene un $\beta = 250$, $V_{BE(ON)} = 0.7~V$ y $V_{CE(sat)} = 0.2~V$, y la tensión de alimentación es 1,8 V. ¿Cuál debe ser el valor aproximado de R_B para cumplir con el R_{IN} determinado?

Seleccione una:

- Ω $R_B = 13 \text{ k}\Omega$
- $R_B = 0.5 \text{ k}\Omega$
- $R_B = 21 \text{ k}\Omega \checkmark$
- $R_R = 27 \text{ k}\Omega$

La respuesta correcta es: $R_B = 21 \text{ k}\Omega$

Puntúa como 2

Marcar pregunta

Se tiene una fuente de valor V_S , un SCR y una resistencia de valor 8 Ω conectados en serie. El terminal de gate del SCR está conectado a una fuente V_G . Los valores de V_S y V_G se ven en la siguiente imagen:

EI SCR tiene adosado un disispador de $\theta_{dis} = 5$ °C/W

- Los datos del SCR son:
- Tensión de encendido: V_{AK} = 2 V
- Temperatura de juntura máxima: T_{j-max} = 125 °C
- Potencia máxima sin disipador cuando la temperatura ambiente es 25 °C: P_{max}(T_a=25°C) = 4 W

- Potencia máxima sin disipador cuando la temperatura ambiente es 25 °C: P_{max}(T_a=25°C) = 4 W
 Potencia máxima sin disipador cuando la temperatura de carcaza
- es 25 °C: $P_{max}(T_c=25$ °C) = 50 W Sabiendo que la temperatura ambiente máxima es de 40 °C, calcule

la temperatura de juntura [°C] bajo la cual funciona el circuito.

Respuesta:

98.7ºC

La respuesta correcta es: 77,4 °C

Incorrecta

Puntúa como

Marcar pregunta

Considerando que el circuito de la figura se fabrica integrado en un chip CMOS y se conecta una resistencia R entre el Drain de M4 y $V_{\text{DD}}. \label{eq:VDD}$

Hallar el máximo valor que puede tener dicha resistencia R $[\Omega]$ sin que el circuito deje de funcionar como copia de corriente.

Datos: I_{REF} =200 μ A, $\mu_n C_{'ox}$ = 110 μ A/V 2 , V_{TN} = 0,6 V, $\mu_p C_{'ox}$ = 70 μ A/V 2 , V_{TP} = -0,7 V λ = 0, V_{DD} = 3,3 V y para todos los transistores W/L = 4.

