HW#2

UFID - 16446159

Algorithm

Here is the map-reduce input/output used in page rank algorithm(RankMapReducer.java).

From map, I am emitting link as key and title of the page,pagerank and outlink as value. Now reducer will get the output from all the maps where key was this link.
 Value in the reducer input will be combined value of, all the nodes pointing to this node and their respective page rank. In reducer we will use the following formula to calculate page rank –

Rank contributed by a individual node -> rank(node)/degree(node), then we will sum up all of these calculated ranks to get something called say - sum.

Now, use below formula –
sum = lambda * sum + 1 - lambda;

Мар:

- Input:
 - key: index.html
 - value: <pagerank> 1.html 2.html...

to get final rank.

- Output for each outlink:
- key: "1.html"
- value: "index.html <pagerank> <number of outlinks>"

Reduce

- Input:
 - Key: "1.html"
 - Value: "index.html 0.5 23"Value: "2.html 2.4 2"Value: ...
- . Output:
 - Key: "1.html"
 - Value: "<new pagerank> index.html 2.html..."

After that, the graph information is output using another simple MapReduce.

We also retain original graph structure to be used in next iteration.

• To get top 10 Nodes with high page rank, I have used another job SortMapReducer.java. In mapper of SortMapReduce, I am emitting (100-pagerank) as key and node as value. In reducer, we will sorted key-value pair sorted based on keys. Then we will emit (100-key) as key and node as value. We will emit key-value pair, 10 times to get top 10 page ranks. Below is graphical represention of map-reduce function of Sorter.

Map:

- . Input:
 - Key: "index.html"
 - Value: "<pagerank> <outlinks>"
- . Output:
 - Key: "<pagerank>"Value: "index.html"
 - 3rd job in program is to generate additional graph information(AdditionalPropertyMapperReducer.java). Input to this program would be the original graph structure which we retained. Now in mapper of this job, we will emit "addinfo" as key and their degree as value. In reducer input we will get degree for all the nodes in one reduce call. Then we will do simple operations to get all the additional info.

Convergence criteria-

- If top 10 ranks don't change for 3 iterations.
- If page rank remain constant for 3 consecutive iterations.

of iteration to converge

- Small 13
- Medium 11
- Large 16

AWS EMR cluster run

Created EMR cluster with 1, m1.medium master instance and , m1.medium slave instance.

luster: My cluster	Running Ru	nning step	
Connections:	Enable Web	ger (View All)	
Master public DNS: ec2-54-190-21-74.us-west-2.compute.amazonaws.com			SSH
Tags:	View All /	Edit	
Summary		Configuration Details	Network and Hardware
ID: j-TJURE	SIBFLYL	Release label: emr-5.0.0	Availability us-west-2a
Creation date: 2016-10	-16 00:11 (UTC-4)	Hadoop Amazon 2.7.2	zone:
Elapsed time: 15 minut	es	distribution:	Subnet ID: subnet-04a3fa72
Auto- No		Applications: Ganglia 3.7.2, Hive 2.1.0,	Master: Running 1 m1.medium
terminate:		Hue 3.10.0, Mahout	Core: Running 2 m1.medium
Termination Off Change		0.12.2, Pig 0.16.0, Tez 0.8.4	Task:

AWS s3 bucket-

All Buckets / cloudhw21

Name	Storage Class	Size
cloudhw,jar	Standard	34.7 MB
prog2-sample-large.txt	Standard	193.7 KB
prog2-sample-medium.txt	Standard	28.9 KB
prog2-sample-small.bt	Standard	11.1 KB

Adding steps -

For small file -

For medium file -

For large file -

Results -

AWS results link -

Generated folders -

All Buckets / cloudhw21					
	Name	Storage Class	Size		
	cloudhwjar	Standard	34.7 MB		
	output-large				
	output-largeadditionalInfo				
	output-medium				
	output-mediumadditionalInfo				
	output-small	-			
	output-smalladditionalInfo				
	prog2-sample-large.txt	Standard	193.7 KB		
	prog2-sample-medium.txt	Standard	28.9 KB		
	prog2-sample-small.txt	Standard	11.1 KB		

Generated output files -

For small file -

https://s3-us-west-2.amazonaws.com/cloudhw21/output-small/part-00000

https://s3-us-west-2.amazonaws.com/cloudhw21/output-small/part-00001

https://s3-us-west-2.amazonaws.com/cloudhw21/output-small/part-00002

Additional info -

https://s3-us-west-2.amazonaws.com/cloudhw21/output-smalladditionalInfo/part-00001

For medium file -

https://s3-us-west-2.amazonaws.com/cloudhw21/output-medium/part-00000

https://s3-us-west-2.amazonaws.com/cloudhw21/output-medium/part-00001

https://s3-us-west-2.amazonaws.com/cloudhw21/output-medium/part-00002

Additional Info -

https://s3-us-west-2.amazonaws.com/cloudhw21/output-mediumadditionalInfo/part-00001

For large file-

https://s3-us-west-2.amazonaws.com/cloudhw21/output-large/part-00000

https://s3-us-west-2.amazonaws.com/cloudhw21/output-large/part-00001

https://s3-us-west-2.amazonaws.com/cloudhw21/output-large/part-00002

Additional info -

https://s3-us-west-2.amazonaws.com/cloudhw21/output-largeadditionalInfo/part-00001

Google cloud run -

Cluster creation -

Google cloud bucket -

uckets / cloudhwbucket / input			
Name	Size	Туре	Last modified
☐	34.79 MB	binary/octet-stream	16/10/2016, 00:53
prog2-sample-large.txt	193.79 KB	text/plain	16/10/2016, 00:49
prog2-sample-medium.txt	28.91 KB	text/plain	16/10/2016, 00:49
prog2-sample-small.txt	11.14 KB	text/plain	15/10/2016, 20:23

Adding jobs -

For small files -

7636e524-32c6-47ad-8e06-237870d4a658

Start time: 16 Oct 2016, 00:54:19 Elapsed time: 45 min 50 sec Status: Succeeded

Output Configuration

Cluster	cluster-1
Job type	Hadoop
Jar files	
Main class or jar	gs://cloudhwbucket/input/cloudhw.jar
Arguments	gs://cloudhwbucket/input/prog2-sample-small.txt gs://cloudhwbucket/output-small 13

Equivalent REST

For medium file -

21d3b873-72e1-4057-8428-5ec0214c56df

Start time: 16 Oct 2016, 11:35:14 Elapsed time: 37 min 24 sec Status: Succeeded

Output Configuration

Cluster	cluster-1
Job type	Hadoop
Jar files	
Main class or jar	gs://cloudhwbucket/input/cloudhw.jar
Arguments	gs://cloudhwbucket/input/prog2-sample-medium.txt gs://cloudhwbucket/output-medium 11

Equivalent REST

For large file -

✓ 07c56cae-8c59-414d-84c7-3dc9d057f25b
Start time: 16 Oct 2016, 12:04:34 Elapsed time: 55 min 11 sec Status: Succeeded
Output Configuration
Cluster cluster-2
Job type Hadoop
Jar files
Main class or jar gs://cloudhwbucket/input/cloudhw.jar
Arguments gs://cloudhwbucket/input/prog2-sample-large.txt gs://cloudhwbucket/output-large
16

Equivalent REST

Results on google cloud -

Name
input/
output-large/
output-largeadditionalInfo/
output-medium/
output-mediumadditionalInfo/
output-small/
output-smalladditionalInfo/

Small file -

https://storage.googleapis.com/cloudhwbucket/output-small/part-00000

https://storage.googleapis.com/cloudhwbucket/output-small/part-00001

https://storage.googleapis.com/cloudhwbucket/output-small/part-00002

https://storage.googleapis.com/cloudhwbucket/output-small/part-00003

https://storage.googleapis.com/cloudhwbucket/output-small/part-00004

https://storage.googleapis.com/cloudhwbucket/output-small/part-00005

https://storage.googleapis.com/cloudhwbucket/output-small/part-00006

https://storage.googleapis.com/cloudhwbucket/output-smalladditionalInfo/part-00006

Medium file -

https://storage.googleapis.com/cloudhwbucket/output-medium/part-00000

https://storage.googleapis.com/cloudhwbucket/output-medium/part-00001

https://storage.googleapis.com/cloudhwbucket/output-medium/part-00002

https://storage.googleapis.com/cloudhwbucket/output-medium/part-00003

https://storage.googleapis.com/cloudhwbucket/output-medium/part-00004

https://storage.googleapis.com/cloudhwbucket/output-medium/part-00005

https://storage.googleapis.com/cloudhwbucket/output-medium/part-00006

https://storage.googleapis.com/cloudhwbucket/output-medium/part-00007

https://storage.googleapis.com/cloudhwbucket/output-mediumadditionalInfo/part-00006

Large file -

https://storage.googleapis.com/cloudhwbucket/output-large/part-00000

https://storage.googleapis.com/cloudhwbucket/output-large/part-00001

https://storage.googleapis.com/cloudhwbucket/output-large/part-00002

https://storage.googleapis.com/cloudhwbucket/output-large/part-00003

https://storage.googleapis.com/cloudhwbucket/output-large/part-00004

https://storage.googleapis.com/cloudhwbucket/output-large/part-00005

https://storage.googleapis.com/cloudhwbucket/output-large/part-00006

https://storage.googleapis.com/cloudhwbucket/output-large/part-00007

https://storage.googleapis.com/cloudhwbucket/output-largeadditionalInfo/part-00006

Google cloud vs. Amazon web services -

Cloud Type (machine gen)	Small Input	Medium Input	Large Input
Google Cloud (n1-standard-1)	45 min 50 sec	37 min 24 sec	55 min 11 sec
Amazon EMR (m1.med)	19 minutes	15 minutes	21 minutes

First 10 iterations time -

Cloud Type (machine gen)	Small Input	Medium Input	Large Input
Amazon EMR(m1.med)	10 min 12 sec	11 min 16 sec	10 min 01 sec
Google Cloud(n1-standard-1)	30 min 48 sec	27 min 55 sec	29 min 27 sec

Iteration vs time -

Below are the graphs for the small, medium and large files on AWS and google cloud. It is evident from the graphs that iteraion progresses linearily with time.

Small File

Medium File

Large File

Result from local hadoop execution -

For small file

• For medium file

```
MyPageRank.java
prog2-sample-sm
                                        1.2805 111981443422667599916101641267414970874
  0.7044
          30442676062515284415598723418014355061
  0.5928
          217182398344717121985059912345853998316
          104105844697470013276372331783894076726
  0.5148
  0.5059
          64363282148945876210890336872865755343
          255141271871887572604204954207769279563
  0.4697
  0.4468 298690743135077500802007851608046438995
  0.438
          116480772629362012002460626777081605400
  0.4249 303806832053566290572095716352649981643
  0.4135 148511838361064104411653673322648403910
```


For large file

How to run program -

Create an EMR/dataproc cluster at-least with 3 VM instances. Upload input jar file clouhw.jar in s3/googlecloud bucket and all input files. Now, once EMR/dataproc cluster is up add step. In arguments first argument must be the input file path in s3, second argument must be output folder and third and last argument must be no. of iterations. If no of iterations are not provided, then it will take iteration number as 16.

GitHubLink

https://github.com/raviprakashmishra/PageRank/tree/master/HW