# CSC 206 Algorithms and Paradigms CSC 140 Advanced Algorithm Design and Analysis Spring 2022

# Assignment 2: Recurrences Due Monday, February 28, 2022

Solve <u>all</u> the following recurrences using the Master Method (if possible) and the <u>first five</u> of them using the recursion tree method. Each of the five recursion tree solutions is worth 12 points, and each of the eight Master Theorem solutions is worth 5 points. To get full credit, you must show all steps. You will lose points for any missing steps, especially on the recursion tree problems.

1. 
$$T(n) = T(\frac{3n}{4}) + c$$

## **Recursion Tree Method:**

a=1 b=4 H=log<sub>4</sub>n L=1<sup>log<sub>4</sub>n</sup> =  $n^{log_4}$ <sup>1</sup>= $n^0$  = 1 Base cost = d # of operations = 1c Internal cost = c \* log<sub>4</sub>n = clog<sub>4</sub>n Total cost = d + clog<sub>4</sub>n =  $\theta$ (logn)

#### **Master's Method:**

L= 
$$n^{\log_4 1} = n^0 = 1$$
  
F(n)=1

L is equal to F(n) so condition 2 holds. Therefore, its runtime is  $\theta(logn)$ .

$$2. \quad T(n) = T(\frac{n}{4}) + cn$$

#### **Recursion Tree Method:**

b=4 H=log<sub>4</sub>n L=1<sup>log<sub>4</sub>n</sup> =  $n^{log_4}$ <sup>1</sup>= $n^0$  = 1 Base cost = d # of operations = 1cn Internal cost = cn \* log<sub>4</sub>n = cnlog<sub>4</sub>n Total cost = d + cnlog<sub>4</sub>n =  $\theta$ (logn)

## **Master's Method:**

L= 
$$n^{\log_4 1} = n^0 = 1$$
  
F(n) = n

1<n. So, L<F(n). Now to check the regularity condition which has no value that meets the requirement. Therefore, we cannot use this method.

3. 
$$T(n) = 5T(\frac{n}{2}) + n^2$$

## **Recursion Tree Method:**

a=5 b=2 H=log<sub>2</sub>n L=  $5^{\log_2 n} = n^{\log_2 5}$ Base cost=  $dn^{\log_2 5}$ # of operations =  $(5/4)^i n^2$ 



# **Master's Method:**

$$L= n^{\log_2 5}$$

$$F(n)=n^2$$

L>n. So, condition 1 is met. Therefore, the solution is  $\theta(n^{\log_2 5})$ .

**4.** 
$$T(n) = 8T(\frac{n}{2}) + n^3$$

#### **Recursion Tree Method:**

a=8  
b=2  
H=log<sub>2</sub>n  
L= 
$$8^{\log_2 n}$$
 =  $n^{\log_2 8}$  =  $n^3$   
Base cost=  $dn^3$   
# of operations=  $(8/8)^i n^2$   
Internal cost =  $dn^3 + dn^3 \log_2 n$   
Total cost =  $dn^3 + dn^3 \log_2 n$ 

# Master's Method:

L= 
$$n^{\log_2 8} = n^3$$
  
F(n) =  $n^3$ 

L==F(n). So, condition 2 was met. Therefore, the solution is  $\theta(n^3 \log n)$ .

5. 
$$T(n) = 8T(\frac{n}{3}) + n^2$$

#### **Recursion Tree Method:**

a=8 b=3 H= $8^{\log_3 n} = n^{\log_3 8}$ Base cost = d  $n^{\log_3 8}$ # of operations=  $(8/9)^i n^2$ 



# **Master's Method:**

$$L= n^{\log_3 8}$$

$$F(n) = n^2$$

L<F(n). So, now we must check the regularity condition. Where there is a solution for k where k=(8/9). Therefore, we can use case 3 and say the solution is  $\theta(n^2)$ .

$$6. \quad T(n) = 7T(\frac{n}{6}) + n\log n$$

#### **Master's Method:**

L=n<sup>log</sup>6<sup>7</sup>

F(n)=nlogn

L>F(n). The thing is L is not greater by a term of a polynomial degree so we cannot use the Master's Method on this problem.

7. 
$$T(n) = 4T(\frac{n}{2}) + n^2 \log^3 n$$

#### **Master's Method:**

$$L=n^{\log_2 4} = n^2$$
  
F(n) =  $n^2 \log^3 n$ 

L<F(n). The thing is F(n) is not greater by a term of a polynomial degree so we cannot use the Master's Method on this problem.

8. 
$$T(n) = 5T(\frac{n}{6}) + n \log n$$

#### **Master's Method:**

L=n<sup>log</sup>6<sup>5</sup> F(n)= nlogn

L<F(n). So, now we must check the regularity conditions which is satisfied by the value of k=(5/6). Therefore, the solution must be  $\theta(n\log n)$ .