Class 09:Mini Project

Anyoleth Alarcon PID: A17347293

Table of contents

2. Explanatory Analysis	2
3. Winpercent vs Pricepercent	10
4. Correlation Structure	12
5. Principal Component Analysis (PCA)	14

Today, we will take a step back to some data we can taste, and explore the correlation structure and principal components of some Halloween candy. ## 1. Data Import

```
candy_file <- "candy-data.csv"

candy = read.csv(candy_file, row.names=1)
head(candy)</pre>
```

	choco	olate	fruity	caramel	peanu	tyalmondy	nougat	crispedr	ricewafer
100 Grand		1	0	1		0	0		1
3 Musketeers		1	0	0		0	1		0
One dime		0	0	0		0	0		0
One quarter		0	0	0		0	0		0
Air Heads		0	1	0		0	0		0
Almond Joy		1	0	0		1	0		0
	hard	bar	pluribus	sugarp	ercent	priceper	cent wi	npercent	
100 Grand	0	1	C)	0.732	0	.860	66.97173	
3 Musketeers	0	1	C)	0.604	0	.511	67.60294	
One dime	0	0	C)	0.011	0	.116	32.26109	
One quarter	0	0	C)	0.011	0	.511	46.11650	
Air Heads	0	0	C)	0.906	0	.511	52.34146	
Almond Joy	0	1	C)	0.465	0	.767	50.34755	

Q1. How many different candy types are in this dataset?

nrow(candy)

- [1] 85
 - Q2. How many fruity candy types are in the dataset?

```
sum(candy$fruity)
```

- [1] 38
- Q3. What is your favorite candy in the dataset and what is it's winpercent value?

```
# rownames(candy)
# I did `rownames` to see which candies are in the dataset
candy["Hershey's Milk Chocolate",]$winpercent
```

- [1] 56.4905
 - Q4. What is the winpercent value for "Kit Kat"?

```
candy["Kit Kat",]$winpercent
```

- [1] 76.7686
- Q5. What is the winpercent value for "Tootsie Roll Snack Bars"?

```
candy["Tootsie Roll Snack Bars",]$winpercent
```

[1] 49.6535

2. Explanatory Analysis

Want a package to give a quick overview of given dataset. Let's install the **skimr** package and use it on the **candy** data. This can be useful for the first time you encounter a new data set.

skimr::skim(candy)

Table 1: Data summary

Name	candy
Number of rows	85
Number of columns	12
Column type frequency:	
numeric	12
Group variables	None

Variable type: numeric

skim_variable n_	_missingcom	plete_ra	ntmenean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset?

For candy\$winpercent, it seems to be on a different scale as it surpasses the scale from 0 to 1

apply(candy, 2, sd)

peanutyalmondy	caramel	fruity	chocolate
0.3731162	0.3731162	0.5001400	0.4987379
bar	hard	crispedricewafer	nougat

0.2765332	0.2765332	0.3834825	0.4338609
pluribus	sugarpercent	pricepercent	winpercent
0.5026540	0.2827779	0.2857396	14.7143574

Q7. What do you think a zero and one represent for the candy\$chocolate column?

In the *chocolate* column, a zero represents that the candy is not chocolate; and the one represents that the candy is chocolate. AKA 1 = TRUE and 0 = FALSE.

Now we want to start with exploratory analysis w/ histogram.

Q8. Plot a histogram of winpercent values.

hist(candy\$winpercent, col= "lightblue")

Histogram of candy\$winpercent

Q9. Is the distribution of winpercent values symmetrical?

No.

Q10. Is the center of the distribution above or below 50%?

summary(candy\$winpercent)

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 22.45 39.14 47.83 50.32 59.86 84.18
```

As seen, median is below 50%.

Q11. On average is chocolate candy higher or lower ranked than fruit candy?

```
choc.inds <- candy$chocolate ==1
choc.candy <- candy[choc.inds,]
choc.win <- choc.candy$winpercent
mean(choc.win)</pre>
```

[1] 60.92153

```
fruit.inds <- candy$fruity ==1
fruit.candy <- candy[fruit.inds,]
fruit.win <- fruit.candy$winpercent
mean(fruit.win)</pre>
```

[1] 44.11974

Q12. Is this difference statistically significant?

```
ans <- t.test(choc.win, fruit.win)</pre>
```

Yes, with a p-value of 2.8713778×10^{-8} meaning the differences in average win percents are statistically significant.

Q13. What are the five least liked candy types in this set?

There are 2 related functions that can help here. One is the classic sort() and order()

```
x < c(5,10,1,4)
sort(x)
```

[1] 1 4 5 10

```
order(x)
```

[1] 3 4 1 2

inds <- order(candy\$winpercent) head(candy[inds,], 5)</pre>

		chocolate	fruity	cara	nel j	peanutyaln	nondy	nougat	
Nik L Nip		0	1		0		0	0	
Boston Baked	Beans	0	0		0		1	0	
Chiclets		0	1		0		0	0	
Super Bubble		0	1		0		0	0	
Jawbusters		0	1		0		0	0	
		crispedrio	cewafer	${\tt hard}$	bar	pluribus	sugar	percent	${\tt pricepercent}$
Nik L Nip			0	0	0	1		0.197	0.976
Boston Baked	${\tt Beans}$		0	0	0	1		0.313	0.511
Chiclets			0	0	0	1		0.046	0.325
Super Bubble			0	0	0	0		0.162	0.116
Jawbusters			0	1	0	1		0.093	0.511
		winpercent	5						
Nik L Nip		22.44534	1						
Boston Baked	${\tt Beans}$	23.41782	2						
Chiclets		24.52499	9						
Super Bubble		27.30386	3						
Jawbusters		28.1274	1						

Q14. What are the top 5 all time favorite candy types out of this set?

tail(candy[inds,],5)

	chocolate	fruity	carar	nel 1	peanutyalr	nondy	nougat
Snickers	1	0		1		1	1
Kit Kat	1	0		0		0	0
Twix	1	0		1		0	0
Reese's Miniatures	1	0		0		1	0
Reese's Peanut Butter cup	1	0		0		1	0
	crispedrio	cewafer	${\tt hard}$	bar	pluribus	sugar	percent
Snickers		0	0	1	0		0.546
Kit Kat		1	0	1	0		0.313
Twix		1	0	1	0		0.546
Reese's Miniatures		0	0	0	0		0.034
Reese's Peanut Butter cup		0	0	0	0		0.720
	priceperce	ent win	percer	nt			
Snickers	0.6	351 76	6.6737	78			
Kit Kat	0.5	511 76	5.7686	60			

```
Twix 0.906 81.64291
Reese's Miniatures 0.279 81.86626
Reese's Peanut Butter cup 0.651 84.18029
```

```
inds <- order(candy$winpercent, decreasing=T)
head(candy[inds,], 5)</pre>
```

		chocolate	fruity	caran	nel 1	peanutvalr	nondy	nougat
Reese's Peanut Butter	cup	1	0		0		1	0
Reese's Miniatures	•	1	0		0		1	0
Twix		1	0		1		0	0
Kit Kat		1	0		0		0	0
Snickers		1	0		1		1	1
		crispedrio	cewafer	hard	bar	pluribus	sugar	percent
Reese's Peanut Butter	cup	_	0	0	0	0	_	0.720
Reese's Miniatures			0	0	0	0		0.034
Twix			1	0	1	0		0.546
Kit Kat			1	0	1	0		0.313
Snickers			0	0	1	0		0.546
		priceperce	ent winp	percer	nt			
Reese's Peanut Butter	cup	0.6	S51 84	1.1802	29			
Reese's Miniatures		0.2	279 81	1.8662	26			
Twix		0.9	906 81	1.6429	91			
Kit Kat		0.5	511 76	5.7686	60			
Snickers		0.6	S51 76	6.6737	78			

Q15. Make a first barplot of candy ranking based on winpercent values.

Make a bar plot with ggplot and order it by winpercent values.

```
library(ggplot2)
ggplot(candy) +
  aes(winpercent, reorder(rownames(candy), winpercent))+
  geom_col()
```


Let's add some color now.

```
library(ggplot2)
ggplot(candy) +
  aes(x = winpercent, y = reorder(rownames(candy), winpercent), fill = chocolate) +
  geom_col()
```


Here we want a custom color vector to color each bar the way we want - with chocolate and fruity candy together with whether it is a bar or not.

```
mycols <- rep("gray", nrow(candy))
mycols[as.logical(candy$chocolate)] <- "chocolate"
mycols[as.logical(candy$fruity)] <- "pink"
mycols[as.logical(candy$bar)] <- "brown"

ggplot(candy) +
   aes(winpercent, reorder(rownames(candy), winpercent)) +
   geom_col(fill=mycols)</pre>
```



```
ggsave("mybarplot.png", width = 3, height = 10)
```

To inset an image with a preffered size:

Q17. What is the worst ranked chocolate candy?

Charleston Chew

Q18. What is the best ranked fruity candy?

Starburst

3. Winpercent vs Pricepercent

```
# Pink and gray are too light, lets change to red and black
mycols <- rep("black", nrow(candy))
mycols[as.logical(candy$chocolate)] <- "chocolate"
mycols[as.logical(candy$fruity)] <- "red"
mycols[as.logical(candy$bar)] <- "brown"
library(ggrepel)
# How about a plot of price vs win
ggplot(candy) +</pre>
```

```
aes(winpercent, pricepercent, label=rownames(candy)) +
geom_point(col=mycols) +
geom_text_repel(col=mycols, size=3.3, max.overlaps = 9)
```

Warning: ggrepel: 49 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Q19. Which candy type is the highest ranked in terms of winpercent for the least money - i.e. offers the most bang for you buck?

Reese's Miniatures

Q20. What are the top 5 most expensive candy types in the dataset and of these which is the least popular?

Top 5 most expensive types:

```
inds <- order(candy$price)
tail(candy[inds,], 5)</pre>
```

Mr Good Bar	1	0		0		1	0
Ring pop	0	1		0		0	0
Nik L Nip	0	1		0		0	0
Nestle Smarties	1	0		0		0	0
	crispedricew	afer	hard	bar	pluribus	sugar	percent
Hershey's Special Dark		0	0	1	0		0.430
Mr Good Bar		0	0	1	0		0.313
Ring pop		0	1	0	0		0.732
Nik L Nip		0	0	0	1		0.197
Nestle Smarties		0	0	0	1		0.267
	pricepercent	wing	percer	nt			
Hershey's Special Dark	0.918	59	9.2361	l2			
Mr Good Bar	0.918	54	1.5264	1 5			
Ring pop	0.965	35	5.2907	76			
Nik L Nip	0.976	22	2.4453	34			
Nestle Smarties	0.976	37	7.8871	L9			

Least popular candy:

```
inds <- order(candy$winpercent)
head(candy[inds,], 1)</pre>
```

4. Correlation Structure

```
cij <- cor(candy)
cij</pre>
```

	chocolate	fruity	caramel	peanutyalmondy	nougat
chocolate	1.0000000	-0.74172106	0.24987535	0.37782357	0.25489183
fruity	-0.7417211	1.00000000	-0.33548538	-0.39928014	-0.26936712
caramel	0.2498753	-0.33548538	1.00000000	0.05935614	0.32849280
peanutyalmondy	0.3778236	-0.39928014	0.05935614	1.00000000	0.21311310
nougat	0.2548918	-0.26936712	0.32849280	0.21311310	1.00000000
crispedricewafer	0.3412098	-0.26936712	0.21311310	-0.01764631	-0.08974359

```
hard
               -0.3441769 0.39067750 -0.12235513
                                                  -0.20555661 -0.13867505
bar
                0.5974211 -0.51506558 0.33396002
                                                   0.26041960 0.52297636
pluribus
               -0.3396752 0.29972522 -0.26958501
                                                  -0.20610932 -0.31033884
                0.1041691 -0.03439296 0.22193335
                                                   0.08788927
                                                              0.12308135
sugarpercent
pricepercent
                0.5046754 -0.43096853 0.25432709
                                                   0.30915323 0.15319643
winpercent
                0.6365167 -0.38093814 0.21341630
                                                   0.40619220 0.19937530
               crispedricewafer
                                     hard
                                                        pluribus
chocolate
                     0.34120978 - 0.34417691 \ 0.59742114 - 0.33967519
                    -0.26936712  0.39067750  -0.51506558  0.29972522
fruity
caramel
                     0.21311310 -0.12235513 0.33396002 -0.26958501
peanutyalmondy
                    -0.01764631 -0.20555661 0.26041960 -0.20610932
                    -0.08974359 -0.13867505 0.52297636 -0.31033884
nougat
crispedricewafer
                     1.00000000 -0.26516504 0.01453172
hard
                    -0.13867505
bar
                     0.42375093 -0.26516504 1.00000000 -0.59340892
pluribus
                    sugarpercent
                     0.06994969
                                0.09180975 0.09998516 0.04552282
                     0.32826539 -0.24436534 0.51840654 -0.22079363
pricepercent
winpercent
                     sugarpercent pricepercent winpercent
chocolate
                 0.10416906
                              0.5046754 0.6365167
                             -0.4309685 -0.3809381
fruity
                -0.03439296
caramel
                 0.22193335
                              0.2543271 0.2134163
peanutyalmondy
                              0.3091532 0.4061922
                 0.08788927
nougat
                 0.12308135
                              0.1531964 0.1993753
crispedricewafer
                 0.06994969
                              0.3282654 0.3246797
hard
                             -0.2443653 -0.3103816
                 0.09180975
bar
                 0.09998516
                              0.5184065 0.4299293
                             -0.2207936 -0.2474479
pluribus
                 0.04552282
sugarpercent
                 1.00000000
                              0.3297064 0.2291507
pricepercent
                 0.32970639
                              1.0000000 0.3453254
winpercent
                 0.22915066
                              0.3453254 1.0000000
```

library(corrplot)

corrplot 0.95 loaded

```
cij <- cor(candy)
corrplot(cij)</pre>
```


Q22. Examining this plot what two variables are anti-correlated (i.e. have minus values)?

Chocolate and fruity are negatively correlated

```
round(cij["chocolate", "winpercent"], 2)
```

[1] 0.64

5. Principal Component Analysis (PCA)

We need to be sure to scale our input candy data before PCA as we have the winpercent column on a different scale to all others in the data set.

```
pca <- prcomp(candy, scale. = TRUE)
summary(pca)</pre>
```

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7 Standard deviation 2.0788 1.1378 1.1092 1.07533 0.9518 0.81923 0.81530 Proportion of Variance 0.3601 0.1079 0.1025 0.09636 0.0755 0.05593 0.05539

First main result figure is my "PCA plot"

```
ggplot(pca$x) +
  aes(PC1, PC2, label=rownames(pca$x))+
  geom_point(col=mycols)+
  geom_text_repel(max.overlaps=6, col=mycols)+
  theme_bw()
```

Warning: ggrepel: 67 unlabeled data points (too many overlaps). Consider increasing max.overlaps

The second main PCA result is in the pca\$rotation we can plot this to generate a so-called "loadings" plot.

```
ggplot(pca$rotation) +
  aes(PC1, rownames(pca$rotation))+
  geom_col()
```



```
ggplot(pca$rotation)+
aes(PC1, reorder(rownames(pca$rotation), PC1), fill = PC1)+
geom_col()
```


Q24. What original variables are picked up strongly by PC1 in the positive direction? Do these make sense to you?

Pluribus, hard, and fruity.