Problem Set 12

Problem R-85K (J. Am. Chem. Soc. 1970, 92, 4095)

(a) The 60 MHz ¹H NMR spectrum of phosphoenolpyruvate (PEP) is shown below. Analyze the multiplets and assign the couplings

$$O_2$$
 OPO $_3$ OPO $_4$ OPO $_5$ OPO $_5$

 $\rm H_A$ and $\rm H_B$ are coupled to each other $(^2J_{\rm HH}),$ and each is coupled to the $^{31}\rm P$ $(^4J_{\rm HP})$ by equal coupling constants (1.5 Hz), giving apparent triplets for each proton. Note that the related $^4J_{\rm H-H}$ allylic coupling (HC=C-CH compared with $^4J_{\rm H-P}$ HC=C-OP) is also largely independent of double bond stereochemistry

(b) The 100 MHz ¹H NMR spectrum of PEP labeled 60% with ¹³C at the carboxyl carbon is shown below. Analyze the multiplets and assign the chemical shifts and couplings.

The central peaks are from the 40% of the sample that has 12 C at the carboxyl carbon, the satellites are from the 60% 13 C.

This allows assignment of the two protons - the upfield one with the large $^3J_{HC}$ is trans to the carboxyl group (H_B) and the other H_A ($^3J_{HC}$ (trans) is always larger than $^3J_{HC}$ (cis))

(c) The 60 MHz ¹H NMR spectrum of PEP labeled with one deuterium atom is shown below. Draw the structure of the compound, include stereochemistry.

H_A has been replaced by deuterium

Problem R-306 (C₁₀H₂₀Sn). Below is the 33.54 MHz ¹¹⁹Sn{¹H} NMR spectrum of a reaction product from the reaction shown (Quintard, J.-P.; Degueil-Castaing, M.; Dumartin, G.; Barbe, B.; Petraud, M. *J. Orgmet. Chem.* **1982**, 234, 36):

Estimate the ratio of the four isomeric products from the NMR spectrum. All materials are racemic.

Each of the ¹¹⁹Sn signals is coupled to the deuterium, to give overlapping 1:1:1 triplets

We would expect the ${}^2J_{\rm SnD}$ (1-d) to be larger than ${}^4J_{\rm SnD}$ (3-d).

The ratio of 3-d to 1-d is 1:1

The *E* to *Z* ratio is 48/100 (32/68)

This experiment was carried out to determine the mechanism of the nucleophilic substition at carbon. A direct S_N2 substitution would have given ony the E-3-d isomer (inversion at carbon), so either a carbonium ion (S_N1 through the allyl cation) or, more likely, a radical mechanism (S_{RN1} through the allyl radical) is involved.

Problem R-307 ($C_5H_5BF_4Se$). Shown below is the 15.17 MHz ⁷⁷Se NMR spectrum of selenapyrylium fluoroborate. Interpret the splitting pattern (Sandor, P.; Radics, L. *Org. Magn. Reson.* **1981**, *16*, 148).

The 77 Se NMR signal is an apparent ttd, J = 47, 6, 3 Hz from coupling to H_A, H_B and H_C. The pattern is actually the X part of an AA'BB'CX spin system (X = Se), which is not strictly first order. Hence the somewhat irregular intensities of the peaks, and small additional splittings.

Problem R-64 ($C_{12}H_{10}S$). Below are four ¹³C NMR spectra (50 MHz). The upper spectra are of diphenyl sulfide (Ph_2S). The lowerr spectra are of Ph_2S partially deuterated. The left set of spectra are proton-decoupled, the right set is fully coupled. Have PLT

(a) Assign the resonances in the unlabelled spectra (C¹, C², C³, C⁴).

JOC 1981, 46, 4950

(b) Assign the various peaks in the D-labelled spectra.

(c) Determine the **position(s)** and roughly estimate the **extent** of deuteration indicated by the upper spectra. Briefly give your reasoning. Hint: calculate the expected C-D couplings and compare to the observed ones before assigning the signals.

 $^{1}J_{CH} = 159 \text{ Hz}$ $^{2}J_{CH} = 1.0 \text{ Hz}$ $^{3}J_{CH} = 7.4 \text{ Hz}$

 $^{4}J_{CH} = -1.1 \text{ Hz}$

The three peaks for C¹ (labelled A, B, C) are separated by 6 Hz. These cannot be due to ${}^3J_{CD}$ since this would be at most 1/6 x 7.4 Hz (if D was meta), or to ${}^2J_{CD}$, if D was ortho (as it actually is) since it would be only 1/6 x 1.0 Hz.

The deuterium seems to be almost entirely at C^2 (this is the only carbon that shows $^1J_{CD}$). The best estimate of the level of labelling at C^2 is probably from the two peaks at C^3 (two-bond isotope shift), (60% D, 40% H). There must a significant amount of 2,6-dideutero, to account for peak C at C^1 , and very little 2,6-diprotio (structure A), otherwise peak A at C^1 would be taller. Peaks B and C are vey weak because they would have long T_1 due to loss of CH DD relaxation, leading to saturation, and possible loss of NOE enhancement.

Problem R-84P. The compound C₁₇H₂₇NO₃Si whose 270 MHz ¹H NMR spectrum (CDCl₃) is shown has part structures:

(a) DBE 6

(b) Identify additional part structures from the NMR spectrum. Give chemical shifts and coupling constants.

(c) Give a complete structure of **R-84P** below and make a note of any additional structural ambiguities (if any) that remain. Assign signals.

(d) Irradiation of the signal at δ 5.7 leads to an increase in area of the signal at δ 3.5 of 24%. However, irradiation of the signal at δ 1.9 leads to no change of the signal at δ 3.5. What experiment is being done here, and what does it tell you about the structure of **R-84P**?

This is a Nuclear Overhauser Effect (NOE) experiment. It tells us that the δ 5.7 and δ 3.5 protons are close in space (i.e., double bond stereochemistry is as shown), and that the proton at δ 5.7 causes a large part of the relaxation of δ 3.5. The protons at δ 1.9 are not very close to δ 3.5 proton.

(e) Explain the origin of the closely spaced doublet at δ 0 (the sample contains no tetramethylsilane).

The molecule is chiral, and hence the gem-dimethyl groups on silicon are diastereotopic.

(c) Give a complete structure of **R-84P** below and make a note of any additional structural ambiguities (if any) that remain. Assign signals.

