Chapter 8 Statistical Intervals for a Single Sample

Part 1: Confidence intervals (CI) for population mean μ

Section 8.1:

CI for μ when σ^2 known & drawing from normal distribution

Section 8.1.2:

Sample size calculation for estimating μ with specified error, σ^2 known

Section 8.2:

Cl for μ when σ^2 unknown & drawing from normal distribution

Confidence Intervals

- We end the last chapter with a phrase: "Moving beyond point estimates"
- Point estimates are a good start, but we should also give the client some idea of the confidence in our estimate.
- More data gives more information. We will have more confidence in an estimate for μ from an n=50 sample, than an estimate from an n=3 sample.
- The confidence in an estimate is related to the size (or width) of such an interval.

- We use the observed \bar{x} as the point estimate for μ .
- We provide a two-sided CI for μ as a 'window' or interval for which we are fairly confident the unknown population mean μ lies.
- \bar{x} will be at the center of our two-sided CIs

$$[\bar{x} - cushion, \bar{x} + cushion]$$

ullet For example, suppose $ar{x}=8$ and our cushion is 3

- We want to have high confidence that our interval contains μ .
- How do we choose this \pm 'cushion' so that we have high confidence that it contains μ ? Or the length of our interval?
- ullet We use the behavior (or probability distribution) of $ar{X}...$

$$ar{X} \sim N(\mu, rac{\sigma^2}{n})$$
 for any sample size n

to form our CI in such a way that we can say something very powerful, like...

"We are 95% confident that the true mean μ falls in this interval."

Right now, we are estimating μ and we say that we know σ^2 . Perhaps not terribly realistic, but we will loosen this up later...

• Let X_1, X_2, \ldots, X_n be a random sample drawn from a normal distribution with $X_i \sim N(\mu, \sigma^2)$ for all i, then

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

Using this probability distribution, we have

$$P(-z_{0.025} \le Z \le z_{0.025}) = 0.95$$

 $P(-z_{0.025} \le \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le z_{0.025}) = 0.95$

where $z_{0.025}$ is the 97.5th percentile of the standard normal (next slide).

$$P(-z_{0.025} \le \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le z_{0.025}) = 0.95$$

• Manipulating what's inside the parentheses give us the Upper and Lower end-points for our 95% CI for $\mu...$

$$P(\bar{X} - z_{0.025} \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X} + z_{0.025} \frac{\sigma}{\sqrt{n}}) = 0.95$$

NOTATION: $z_{0.025}$ is the z-value such that 97.5% of the distribution is below and 2.5% is above it (an upper tail z-value).

• We can state the lower and upper end-points of the 95% CI for μ from a random sample of size n drawn from a normally distributed population with variance σ^2 and sample mean of \bar{x} as:

Lower end-point (L)
$$= \bar{x} - z_{0.025} rac{\sigma}{\sqrt{n}}$$

Upper end-point (U) =
$$\bar{x} + z_{0.025} \frac{\sigma}{\sqrt{n}}$$

NOTE: \bar{x} lies in the center of the 2-sided confidence interval.

• 95% CI for μ when σ^2 known and drawing from a normally distributed population:

$$\bar{x} - z_{0.025} \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{x} + z_{0.025} \frac{\sigma}{\sqrt{n}}$$

Or...

$$\boxed{\bar{x} - 1.96 \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{x} + 1.96 \frac{\sigma}{\sqrt{n}}}$$

Example (Fill weights of boxes)

The sample mean for the fill weights of 100 boxes is $\bar{x}=12.050$. The population variance of the fill weights is known to be $(0.100)^2$. Find a **95% confidence interval** for the population mean μ fill weight of the boxes.

ANS:
$$L = \bar{x} - z_{0.025} \cdot \frac{\sigma}{\sqrt{n}} = 12.050 - 1.96 \cdot \frac{0.100}{\sqrt{100}} = 12.030.$$

$$U = \bar{x} + z_{0.025} \cdot \frac{\sigma}{\sqrt{n}} = 12.050 + 1.96 \cdot \frac{0.100}{\sqrt{100}} = 12.070.$$

The 95% confidence interval for μ is [12.030, 12.070].

We are 95% confident that the true parameter value lies in this interval.

NOTE: Because σ^2 was very small and n was fairly large, we have a very narrow confidence interval for μ (which is good).

CI for any choice of confidence level, or $100(1-\alpha)\%$ confidence

- The confidence level of choice is stated as $100(1-\alpha)$ %.
 - For a 95% confidence interval, $\alpha = 0.05$. For an 80% confidence interval, $\alpha = 0.20$.
- ullet We can re-write the earlier Z probability as

$$P(-z_{\alpha/2} \le \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le z_{\alpha/2}) = 1 - \alpha$$

and this leads to the $100(1-\alpha)\%$ confidence interval for μ

$$P(\bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}) = 1 - \alpha$$

• In a two-sided confidence interval, the α amount is split between the two tails, thus we see $\alpha/2$ or specifically, $z_{\alpha/2}$ in the formula.

• 100(1- α)% Confidence interval on the mean, variance known If \bar{x} is the sample mean of a random sample of size n from a normal population with known variance σ^2 , a $100(1-\alpha)$ % confidence interval for μ is given by

$$\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

where $z_{\alpha/2}$ represents the z-value from the standard normal distribution with $\alpha/2$ in the upper tail (e.g. if $\alpha=.05$, $z_{\alpha/2}=z_{.025}=1.96$).

Commonly used z scores

Conf. Level	α	$\alpha/2$	$z_{\alpha/2}$
90%	0.10	0.05	1.645
95%	0.05	0.025	1.96
99%	0.01	0.005	2.576

Example (Fill weights of boxes)

The sample mean for the fill weights of 100 boxes is $\bar{x}=12.050$. The population variance of the fill weights is known to be $(0.100)^2$. Find a **80% confidence interval** for the population mean μ fill weight of the boxes.

ANS:
$$L = \bar{x} - z_{0.10} \cdot \frac{\sigma}{\sqrt{n}} = 12.050 - 1.28 \cdot \frac{0.100}{\sqrt{100}} = 12.037.$$

$$U = \bar{x} + z_{0.10} \cdot \frac{\sigma}{\sqrt{n}} = 12.050 + 1.28 \cdot \frac{0.100}{\sqrt{100}} = 12.063.$$

The 80% confidence interval for μ is [12.037, 12.063].

We are 80% confident that the true parameter value lies in this interval.

NOTE: Because σ^2 was very small and n was fairly large, we have a very narrow confidence interval for μ (which is good).

• Compare the 80% and 95% confidence intervals:

The 80% confidence interval for μ is $[12.037,\ 12.063]$ (The width of this interval is 0.026)

The 95% confidence interval for μ is $[12.030,\ 12.070]$ (The width of this interval is 0.040)

The 95% CI is wider... i.e. All else being held constant, if you want to be more confident you capture μ , you'll have to make your *net* bigger.

• Looking at the form of the confidence interval:

- More narrow CIs are desirable.
- How can this be achieved?

- Increase your sample size (Good idea if possible)
- Decrease σ ? Not an option, it's fixed by original distribution
- Decrease your confidence level? (Not a great idea. You reduce the CI width, but you're less likely to capture μ)

Confidence Interval Interpretation

- Once the confidence interval is formed (based on observed \bar{x}), it either does or does not contain the fixed unknown value μ
- ullet For example, the 95% CI for box fill weights was: $[12.030,\ 12.070]$ and the true population mean either is or isn't in this interval.
- The confidence interval level arises based on the <u>randomness</u> of the interval. BEFORE we collect the data, the CI is a <u>random interval</u> and it could take on many different values due to the <u>randomness</u> of \bar{X} .

Confidence Interval Interpretation

• For a 95% CI, we are 95% confident that the true μ lies in the interval. This statement of confidence reflects the following...

If we repeated this process 100 times (i.e. collect a sample, compute \bar{x} , compute the CI), 95 out of 100 times we will capture the true μ on average, in the long run.

The confidence relates to the method used to calculate the CI. We don't know if our CI captured μ or not (μ is unknown), but using the same method, 95 out of 100 times I'll get it (on average).

 See confidence interval applet website: http://www.rossmanchance.com/applets/ConfSim.html

Confidence Interval Interpretation & Simulation

Simulating Confidence Intervals

Sample Size Calculation for μ

- The length of the CI is a measure of precision of estimation.
- Precision is related to sample size n.
 Higher precision coincides with a larger sample size (all else being held constant).
- What sample size should you choose? (when you CAN choose) Let E be the error in estimating μ , distance of observed \bar{x} from target.

$$E=|\bar{x}-\mu|$$

• Choose a sample size that gives you a pre-specified level of precision.

Sample Size Calculation for μ

• Choose n to provide a certain bound on the error E with confidence $100(1-\alpha)$.

$$\bar{x} \, \pm \, \underbrace{z_{\alpha/2} \, \cdot \, \frac{\sigma}{\sqrt{n}}}_{\uparrow}$$
 CI half-width or E

- Pre-specified error: $E=z_{\alpha/2}\cdot\frac{\sigma}{\sqrt{n}}$ \Rightarrow $n=\left(\frac{z_{\alpha/2}\cdot\sigma}{E}\right)^2$
- Sample size for estimating μ with 100(1- α)% confidence and error E:

$$n = \left(\frac{z_{\alpha/2} \cdot \sigma}{E}\right)^2$$

Sample Size Calculation for μ

Example (The fill weight example)

In the fill weight example, how many boxes must be sampled to obtain a 99% confidence interval of full width 0.024 oz.? (i.e. E=0.012)

ANS:
$$\sigma=0.100$$
 from before, and we want 99% CI, so $\alpha=0.01$ and $z_{0.005}=2.576$.

Error E is set at 0.012 (half-width of CI).

$$n = \left(\frac{z_{\alpha/2} \cdot \sigma}{E}\right)^2 = \left(\frac{z_{0.01/2} \cdot 0.100}{0.012}\right)^2 = \left(\frac{2.576 \times 0.1}{0.012}\right)^2 = 460.8$$

We can't sample a fraction of a box, so we **round-up** to ensure our confidence level is at least 99%, thus the required **sample size** is n=461.

NOTE: Read sample size problems closely to determine if they are giving precision as a half-width of a CI which is E (the cushion up or down), or the full width of the CI which is 2E.

One-sided Confidence Bounds for μ

Occasionally, you may be interested in finding a bound for μ on only one side.

ullet A 100(1-lpha)% upper-confidence bound for μ is

$$\mu \leq \bar{x} + z_{\alpha}\sigma/\sqrt{n} \qquad \text{and this gives an interval } (-\infty, \ \bar{x} + z_{\alpha}\sigma/\sqrt{n}).$$
 (an upper bound on μ)

• A $100(1-\alpha)\%$ lower-confidence bound for μ is

$$ar x-z_{lpha}\sigma/\sqrt n\le\mu$$
 and this gives an interval $(ar x-z_{lpha}\sigma/\sqrt n,~\infty).$ (a lower bound on μ)

• What if we don't know σ ? Can I just plug-in my estimator for σ (or s) and again have the same 95% CI?

$$\hat{\sigma}^2 = s^2 = \frac{\sum (x_i - \bar{x})^2}{n - 1}$$

This was a 95% CI for μ when σ was known

$$\bar{x} - z_{0.025} \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{x} + z_{0.025} \frac{\sigma}{\sqrt{n}}$$

Is this a 95% CI for μ ?

$$\bar{x} - z_{0.025} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + z_{0.025} \frac{s}{\sqrt{n}}$$

• HINT: This feels like cheating. If I don't know σ , I must have more uncertainty in trying to capture μ than when I do know σ .

So, how do we incorporate this extra uncertainty (for not knowing σ)?

• The answer comes from the t-distribution.

The 95% CI for
$$\mu$$
 when σ unknown
$$\bar{x}-t_{0.025,n-1}\frac{s}{\sqrt{n}}\leq~\mu~\leq\bar{x}+t_{0.025,n-1}\frac{s}{\sqrt{n}}$$

where...

- $t_{0.025,n-1}$ is the 97.5th percentile of the t-distribution with n-1 degrees of freedom (next slide).
- \bullet s is the sample standard deviation $s = \sqrt{\frac{\sum (x_i \bar{x})^2}{n-1}}$
- n is the number of observations (the sample size)

Connection to the Z-distribution...

ullet The Z random variable follows a N(0,1) distribution

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

• A T random variable follows a t-distribution

$$T = \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}$$

where t_{n-1} is a t-distribution with n-1 degrees of freedom.

• What does the t-distribution look like?

There is only one Z-distribution, but there are many t-distributions (distinguished by their degrees of freedom df as t_{df}). They look a lot like the N(0,1), except they have heavier tails.

For estimating a single parameter μ , the degrees of freedom is n-1.

The heaviness of the tails depends on the degrees of freedom (the subscript on the t), so it depends on the sample size n.

Differing t-distributions are shown below with df = k.

- For a large sample size n, df = n 1 is very large, and the t_{n-1} looks just like the N(0,1).
- So, $Z \sim N(0,1)$ is the limiting distribution for t_{n-1} as $n \to \infty$.

• 100(1- α)% Confidence interval for mean, variance unknown If \bar{x} is the sample mean and s is the sample standard deviation of a random sample of size n from a normal population, a $100(1-\alpha)$ % confidence interval for μ is given by

$$\bar{x} - t_{\alpha/2,df} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + t_{\alpha/2,df} \frac{s}{\sqrt{n}}$$

ullet How do I get the $t_{lpha/2,n-1}$ value? (next slide)

ullet How do I get the $t_{lpha/2,n-1}$ value? Similar to getting a z-value.

- A t-table can be found in your book Appendix A, Table V, page A-11.
- When $\alpha=0.05$ (for 95% CI) and the sample size is n=10, $t_{\alpha/2,n-1}=t_{0.025,9}$
- This is the t-value for a t_9 distribution with 2.5% above and 97.5% below. Looking at the table...

$$t_{0.025,9} = 2.262$$

Example (CI for μ using t-distribution)

Suppose a sample of size n=10 is taken from a normal population and $\bar{x}=8.94$ and s=4.3. Construct a 95% CI for the population mean.

Upper end-point:

$$\bar{x} + t_{\alpha/2, n-1} \cdot \frac{s}{\sqrt{n}} = \bar{x} + t_{0.025, 9} \cdot \frac{s}{\sqrt{n}} = 8.94 + 2.262 \left(\frac{4.3}{\sqrt{10}}\right) = 10.02$$

Lower end-point:

$$\bar{x} - t_{\alpha/2, n-1} \cdot \frac{s}{\sqrt{n}} = 8.94 - 2.262 \left(\frac{4.3}{\sqrt{10}}\right) = 5.86$$

The 95% confidence interval for μ is [5.86, 10.02].

We are 95% confident that the true mean μ is between 5.86 and 10.02.

Normality assumption for these *t*-based confidence intervals:

- When σ^2 is unknown and we have a rather small sample, we <u>need</u> the parent population to be normally distributed (or nearly normal) to truly achieve our $100(1-\alpha)\%$ confidence level.
 - After we collect our data, we can check this assumption of normality by creating a *normal probability plot* (recall section 6.7).
- If the data are not normally distributed, we have to use a different approach. Something that doesn't depend on this normality assumption, such methods are called *nonparametric methods* (which we won't cover in in this class).

$100(1-\alpha)\%$ Confidence Interval for μ

RULE OF THUMB

- $\bullet \ \ \text{When} \ \ \sigma \ \ \text{is known, use} \ \left| \ \bar{x} z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \ \ \mu \ \ \le \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \right|$
- $\bullet \ \ \text{When} \ \ \sigma \ \ \text{is unknown, use} \ \ \overline{\bar{x} t_{\alpha/2,df} \frac{s}{\sqrt{n}}} \leq \ \ \mu \ \ \leq \bar{x} + t_{\alpha/2,df} \frac{s}{\sqrt{n}}$

When n is REALLY LARGE (n>60) a 95% CI for μ can be

$$\bar{x} - z_{0.025} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + z_{0.025} \frac{s}{\sqrt{n}}$$

NOTE: At n=60 the Z-table and t_{60} -table are very very similar. But just use the rule of thumb, which says s goes with t and σ goes with z.