Universidad Mayor de San Simón	
Facultad de Ciencias y Tecnología	l

Nota:			
			_

Fecha de entrega:

UMSS

CIRCUITOS ELÉCTRICOS I

TEMA 2: ELEMENTOS DE CIRCUITOS ELÉCTRICOS, SUS PRINCIPALES LEYES Y APLICACIONES – PRÁCTICA 2

Grupo:	
Apellido (s) y	Nombre (s):
	·
Docentes:	M.Sc. Ing. Juan José E. MONTERO G. – Ing. Yuri PÉREZ P.
Auxiliares:	
Asignatura:	Circuitos Eléctricos I
Carrera:	Ingeniería: Eléctrica - Electrónica - Electromecánica
Semestre:	2° Semestre – 4° Semestre

Cbba / ____ / ___ / 20____

Universidad Mayor de San Simón Facultad de Ciencias y Tecnología

Ingeniería: Eléctrica — Electrónica — Electromecánica Circuitos Eléctricos I : 2º Semestre — 4º Semestre

A 2: ELEMENTOS DE CIRCUITOS ELÉCTRICOS Y SUS PRINCIPALES LEYES

PRÁCTICA 2

Problema 1.

En base a las definiciones de las fuentes ideales de voltaje y de corriente independien-tes, determinar cuáles de las interconexiones de la siguiente figura son válidas y cuáles violan las restricciones que imponen las fuentes ideales.

R.: Válidas: (a), (b), (e)

Problema 2.

En base a las definiciones de las fuentes ideales de voltaje independientes y dependientes, determinar cuáles de las interconexiones de la siguiente figura son válidas y cuáles violan las restricciones impuestas por las fuentes ideales.

R.: Válidas: (b), (c)

Problema 3.

Si la interconexión de la figura es válida, calcular la potencia total generada en el circuito, pero si la interconexión no es válida, explique por qué

R.: No es válida

≥80 Ω

Problema 4.

En cada circuito de la figura se desconoce el valor de "v" o de "i".

- a) Calcular los valores de "v" ó "i" según corresponda. R.: 8[V]; 10[A]; -20[V]: -2[A]
- b) Determinar la potencia disipada en la resistencia. R.: 8[W]; 500[W]; 20[W]; 100[W];

200 V

Problema 5.

Dado el circuito de la figura, encuentre lo siguiente:

- a) El valor de ia; i b y Vo.
- b) La potencia que disipa cada resistencia.
- c) La potencia que suministra la fuente de 200[V].

4Ω

Problema 6.

- a) En base a las leyes de Kirchhoff y la ley de Ohm, encontrar i₀ en el circuito de la siguiente figura.
- b) Comprobar la solución de i₀ verificando que la potencia total generada es igual a la potencia total disipada.

 $i_a \downarrow \lesssim 20 \Omega$

$$R.: i_0 = -3[A] \; ; \; i_1 = 3[A] \; ; \; P_{50} = 450[W] \; ; \; P_{10} = 90[W] \; ; \; \; P_{120} = 360[W] \; ; \; P_6 = -900[W]$$

Problema 7.

Para el circuito que se muestra en la figura, calcular:

- a) i_5 ; V_1 ; V_2 y V_5 .
- b) La potencia suministrada por la fuente de 24[V].

R.:
$$i_5 = 3[A]$$
; $V_1 = -3[V]$; $V_2 = 6[V]$; $V_5 = 15[V]$; $P_{24} = -72[W]$

Problema 8.

Utilice la ley de Ohm y las leyes de Kirchhoff para encontrar el valor de "R" en el circuito que se muestra a continuación.

R.: $2[\Omega]$

Problema 9.

- a) En base a las leyes de Kirchhoff y en la ley de Ohm encontrar " v_0 " en el circuito que se muestra en la siguiente figura.
- b) Mostrar que la solución de v_0 es consistente con la restricción de que la potencia total generada en el circuito es igual a la potencia total disipada.

R.: 480[V] ; – 11600[W] ; 11600[W]

Problema 10.

En el circuito que se muestra encuentre:

- a) La corriente "ί₁" en [μA].
- b) El voltaje "v" en voltios.

R.: $50[\mu A]$; 4.175[V]

Problema 11.

Encuentre la resistencia equivalente R_{ab} para cada uno de los circuitos. $R.: 20[\Omega]$; $15[\Omega]$; $10[\Omega]$

Problema 12.

Encuentre la resistencia equivalente R_{ab} para cada uno de los siguientes circuitos:

a) En los siguientes circuitos: (a), (b) y (c), encuentre la resistencia equivalente R_{ab}.

R.: (a) $3[\Omega]$; (b) $12[\Omega]$; (c) $11[\Omega]$

b) Encuentre la potencia que suministra la fuente en cada uno de los circuitos.

Problema 14.

Un circuito se alimenta por dos generadores de tensión constante, como se indica en la siguiente figura. Hallar la potencia "P" suministrada por cada generador.

R.:
$$P_{25} = -75[W]$$
; $P_5 = -15[W]$

Problema 15.

En el circuito cerrado de la figura la tensión aplicada es V = 45 [V]. Hallar la intensidad de la corriente que circula por é1, así como la caída de tensión y la potencia disipada en cada elemento resistivo del mismo.

R.: 3[A]; 6[V], 18[W]; 18[V], 54[W]; 21[V], 63[W]

Problema 16.

Una corriente I_T se divide entre dos ramas en paralelo de resistencias R_1 , y R_2 respectivamente, como indica en la figura. Deducir las expresiones de las intensidades de corriente I_1 , e I_2 en cada una de las ramas.

Problema 17.

El circuito de la figura contiene dos fuentes de tensión constante, V_A y V_B ¿Qué energía suministra cada una de ellas?.

R.:
$$P_A = -200[W]$$
; $P_B = 500[W]$

Problema 18.

Encontrar i s, i 1 e i 2 en el circuito de la figura.

R.:
$$i_s = 12[A]$$
; $i_1 = 4[A]$; $i_1 = 8[A]$

Problema 19.

La corriente i \(\phi \) en el circuito es 2[A]. Calcule:

- a) V_s .
- b) la potencia absorbida por la fuente de voltaje independiente.
- c) La potencia suministrada por la fuente de corriente independiente.
- d) La potencia suministrada por la fuente de corriente controlada.
- e) La potencia total disipada en las dos resistencias.

R.: a)
$$70[V]$$
; b) $210[W]$; c) $-300[W]$; d) $-40[W]$; e) $130[W]$

Problema 20.

Las corrientes i_1 e i_2 , del circuito de la siguiente figura valen 2l y 14[A], respectivamente.

- a) Encuentre la potencia que suministra cada fuente de voltaje.
- b) Demuestre que la potencia total suministrada es igual a la potencia total disipada en las resistencias.

R.:
$$P_{superior} = -4116[W]$$
; $P_{inferior} = -3087[W]$; $P_{dis} = |P_{gen}| = 7203[W]$

6

Problema 21.

Utilizando las leyes de Kirchhoff y la ley de Ohm en el circuito que se muestra en la figura se pide:

- a) Hallar la tensión "V₀".
- b) Calcular la potencia que disipa cada resistencia.
- c) Verifique que la potencia total que disipa el circuito es igual a la potencia generada por las fuentes.

R.: 3[V]; $P_{6\Omega} = 16.67[W]$; $P_{2\Omega} = 2[W]$; $P_{3\Omega} = 3[W]$; $P_{dis} = 21.67[W]$; $P_{gen} = -21.67[W]$

Problema 22.

La corriente i o de la siguiente figura es de 1[A].

- a) Encuentre i₁.
- b) Encuentre la potencia que disipa cada resistencia.
- Verifique que la potencia total que disipa el circuito es igual a la potencia generada por la fuente de 150[V].

R.: 2[A]; $P_4 = 100[W]$; $P_{10} = 90[W]$; $P_{25} = 400[W]$; $P_{50} = 50[W]$; $P_{65} = 260[W]$; $P_{dis} = 900[W]$; $P_{gen} = -900[W]$

Problema 23.

- a) Encuentre el voltaje V_y en el circuito de la siguiente figura. R.: 5.55[V]
- b) Muestre que la potencia consumida total en el circuito es igual la potencia total generada.

Problema 24.

En el circuito de la figura determinar:

a) R.

- $R.: 42[\Omega]$
- b) La potencia suministrada por la fuente de 500[V]. R.: 2666.67[W]

Problema 25.

En el circuito de la figura:

- a) Calcular $V_1 y V_2$.
- b) Mostrar que la Potencia Generada es igual a la Potencia Disipada.

R.: 25.6[V]; 24[V]; $P_{gen} = -60.16[W]$; $P_{dis} = 60.16[W]$; $P_{suminis} = -7818.24[W]$; $P_{absorvida} = 7758.08[W]$