Logistic Regression (Reading: <u>17.1 - 17.5</u>)

Learning goals:

- Understand similarities and differences between classification and regression.
- Introduce the logistic model and the cross-entropy loss.

UC Berkeley Data 100 Summer 2019 Sam Lau

(Slides adapted from John DeNero)

Announcements

- HW6 due Tuesday
- Project 2 out Tuesday
 - Due the following Tuesday, Aug 5.

Classifiers are functions used to make predictions about a categorical variable.

- Kawhi Leonard takes a 21-foot jump shot against the 76ers. Will it go in?
- A 21-year-old white female from Florida is arrested for assault a second time.
 - If let free, will she be arrested again for a violent crime in the next two years?

Classification and Regression

Classification is not so different from regression:

- Fit a model using labeled training examples (x, y), then apply it to unlabeled examples x.
- We assume unlabeled examples have similar labels.

And, we usually have the following questions:

- Is association between (x, y) in training set representative?
- Are there enough training examples?
- Will the model generalize?

Linear Regression Review

Prediction problem: Predict y from covariates (features) x.

Regression: Estimate $f^*(x)$ for unknown distribution over (X, Y).

Linear Regression: Assume $f^*(x) = \theta^* \cdot x$ and estimate θ^* , a vector of parameters.

Model: Set of all distributions $\theta \cdot x$ you can get by choosing θ .

To Fit Model: Choose a loss, then minimize loss.

Linear Regression Review

Squared Loss for Linear Regression: $(y - \theta \cdot x)^2$

Average Loss / Empirical Risk:

For training (i.e. learning) set of observations $(x_1, y_1), \ldots, (x_n, y_n)$

$$L(\boldsymbol{\theta}, \boldsymbol{X}, \boldsymbol{y}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \boldsymbol{\theta} \cdot \boldsymbol{X}_i)^2 + \lambda \sum_{i=1}^{p} |\theta_i|$$

Regularization: Add a term to average loss that encourages small θ .

Classification prediction problem: Predict y from features x.

- Now, y in a fixed set of possible classes, e.g., {make, miss}.
- Suppose we assign *make* = 1 and *miss* = 0.
 - Two classes = binary classification problem
- Intuition: y feels like a Bernoulli RV with p dependent on x!
- Let's use (X, Y) to refer to the pair of RVs drawn from population. X contains features, Y contains the true value.
- Interested in E(Y | X): if I know X, what is Y (on average)?

$$E(Y|X) = 1 \cdot P(Y = 1|X) + 0 \cdot P(Y = 0|X)$$
$$= P(Y = 1|X) = f_{\theta}^{*}(X)$$

- Want to estimate P(Y = 1 | X). This is numeric!
- Intuition: Tweak regression to predict probabilities.
- Linear Regression: $f(x) = \theta \cdot x$
- Logistic Regression: $f_{m{ heta}}(m{x}) = \sigma(m{ heta} \cdot m{x})$ Linear Regression

With a tweak

(Demo)

Logistic Regression bit.ly/at-d100

Logistic Regression for Binary Classification

As usual, we pick model + loss, then fit with GD.

$$f_{\theta}(\mathbf{x}) = \sigma(\theta \cdot \mathbf{x})$$
 where $\sigma(t) = \frac{1}{1 + \exp(-t)}$

Let $z_i = f_{\boldsymbol{\theta}}(\boldsymbol{X_i})$.

$$L(\boldsymbol{\theta}, \boldsymbol{X}, \boldsymbol{y}) = -\frac{1}{n} \sum_{i=1}^{n} [y_i \log z_i + (1 - y_i) \log(1 - z_i)] + \sum_{j=1}^{p} \theta_j^2$$

- To predict category, set a **decision rule**:
 - \circ E.g. if $f(x) \ge 0.5$, predict 1

(Demo)

Why use the sigmoid function?

- The function $\sigma(t)$ is called the **sigmoid** (or **logistic**) function.
- Arises from assuming that the log-odds ratio is linear:

$$\log\left(\frac{P(Y=1|X)}{P(Y=0|X)}\right) = X \cdot \theta \implies P(Y=1|X) = \frac{1}{1 + \exp(-X \cdot \theta)}$$
$$= \sigma(X \cdot \theta)$$

Why use the sigmoid function?

θ feels like the "slope" of logistic model.

If θ is +, higher values of x give higher probabilities.

Why Not Squared Loss?

$$L(\boldsymbol{\theta}, \boldsymbol{X}, \boldsymbol{y}) = -\frac{1}{n} \sum_{i=1}^{n} [y_i \log z_i + (1 - y_i) \log(1 - z_i)]$$

- We use average **cross-entropy loss** for logistic regression.
- Squared loss actually not a terrible choice.
- However, the corresponding empirical risk function can be non-convex, and therefore difficult to minimize.
- Cross-entropy loss has other motivations that you can learn about in a machine learning or probability course: maximum likelihood or minimum KL-divergence.

Practice with Cross Entropy Loss

$$L(\boldsymbol{\theta}, \boldsymbol{X}, \boldsymbol{y}) = -\frac{1}{n} \sum_{i=1}^{n} \left[y_i \log z_i + (1 - y_i) \log(1 - z_i) \right]$$
$$\ell(\boldsymbol{\theta}, \boldsymbol{x}, y_i) = -y_i \log z_i - (1 - y_i) \log(1 - z_i)$$

Suppose we only have one feature (and no intercept).

If $\theta = 2$, what is the point loss for:

- (x, y) = (5, 1)?
- (0, 1)? (0, 0)?
- (-1, 1)?
- If running SGD, in what direction would θ be updated?

Practice with Cross Entropy Loss

$$\ell(\boldsymbol{\theta}, \boldsymbol{x}, y_i) = -y_i \log z_i - (1 - y_i) \log(1 - z_i) \qquad \theta = 2$$

For
$$(5,1): z = \sigma(5\cdot 2) \approx 1$$
 $\ell = -1 \cdot \log 1 - 0 = 0$

For
$$(0,1): z = \sigma(0\cdot 2) = \frac{1}{2}$$

$$\ell = -1 \cdot \log \frac{1}{2} - 0 = 0.693$$

For
$$(1,1): z = \sigma(0 \cdot 2) = \frac{1}{2}$$

$$\ell = 0 - 1 \cdot \log \frac{1}{2} = 0.693$$

For
$$(-1,1): z = \sigma(-1\cdot 2) = 0.119$$
 $\ell = 0 - 1 \cdot \log 0.119 = 2.129$

Notice how one term in the loss is always 0?

Demo: Logistic Regression

Summary

- Classification can be framed as a regression problem.
- Logistic regression uses two new pieces of machinery:
 - The logistic model: arises from assumption on probabilities.
 - The cross-entropy loss: convex for the logistic model.

The wrong predictions can be the most interesting ones!