

## RAFFLES INSTITUTION

#### **RAFFLES PROGRAMME 2021**

Year Three Mathematics

Topic 9: Exponential and Logarithmic Equations and Functions

Remedial Worksheet (Logarithmic and Exponential Graphs 01)

| Name: | ( ) | Class: 3( ) | Date: |  |
|-------|-----|-------------|-------|--|
|-------|-----|-------------|-------|--|

## Things to know:

- Graphs of exponential functions of the form  $y = a^{bx+c}$ .
- Graphs of logarithmic functions of the form  $y = \log_a(bx + c)$ .

### Level 1

- 1. Sketch the graph of  $y = 2 2e^{-0.5x}$ .
- 2. Sketch the graph of  $y = \ln(3x+1)$  for  $x > -\frac{1}{3}$ .
- 3. (a) Sketch the graph of  $y = 3\ln(x-1)$ , indicating clearly the asymptote and the intercept(s).
  - (b) By drawing an additional straight line on the same axes, state the number of solutions of the equation  $x = e^{\frac{x-1}{3}} + 1$ .

#### Level 2

- 4. (a) Sketch the graph of  $y = \ln(3x+2)$ , indicating clearly the asymptote(s) and intercept(s).
  - (b) By drawing an additional straight line on the same axes, state the number of solutions of the equation  $e^{2x-1} 2 = 3x$ .
- 5. (a) Sketch the graphs of  $y = \ln \sqrt{x+4}$  for x > -4, indicating clearly the asymptote(s) and intercept(s).
  - (b) By drawing an additional straight line on the same axes, state the number of solutions of the equation  $xe^2 = e^{2x} 4e^2$ .
- 6. (a) Sketch the graph of  $y = e^{-2x}$ , indicating clearly the asymptote(s) and intercept(s).
  - (b) Find the equation of the straight line required to be drawn on the graph of  $y = e^{-2x}$  to obtain a solution of the equation  $x + \ln \sqrt{5x 2} = 0$ .
- 7. (a) Sketch the graph of  $y = \ln \sqrt{2x-1}$  for  $x > \frac{1}{2}$ , indicating clearly the asymptote(s) and intercept(s).
  - (b) Find the equation of the straight line required to be drawn on the graph of  $y = \ln \sqrt{2x-1}$  to obtain a solution of the equation  $e^{2-x} + 1 = 2x$ .

- 8. The curve  $y = 8 2e^{3x}$  intersects the x-axis at P and y-axis at Q.
  - (a) The line PQ passes through the point  $(2 \ln 2, k)$ . Find the value of k.
  - (b) Find the equation of the straight line required to solve the equation  $x = \ln \sqrt[3]{\frac{11-2x}{2}}$ .
- 9. The mass, m grams, of a radioactive substance present at time, t days, after first being observed is given by the formula  $m = ae^{-kt}$ , where a and k are constants. Initially, 36 g of radioactive substance was observed. After 40 days, its mass was reduced to 16 g.
  - (a) Find the value of a and of k.
  - (b) Sketch the graph of m against t.
- 10. In the recent years, the release of greenhouse gases has accelerated the melting of glaciers and thus, resulted in a rise of global temperatures. With minimal actions taken to prevent global warming, the average temperature,  $T^{\circ}C$ , projected to rise after x years is given by  $T = 31(1.5)^{0.1x}$ . The average temperature in Singapore in 2016 is expected to be  $31^{\circ}C$ .
  - (a) Find the projected average temperature in Singapore in 2018.
  - (b) Find the length of time, to the nearest year, for the average temperature in Singapore to increase by at least 10% of its initial temperature in 2016.
  - (c) Sketch the graph of T against x.
- 11. In a simplified prey-predator model, fifty wolves were deliberately introduced to an island to curb the population of wild rabbits. The decline in population of rabbits, R, was given by  $R = 300 + 6000e^{-0.02t}$  where t represented the number of days since the introduction of wolves.
  - (a) State the initial number of rabbits.
  - (b) Find how long it would take before the population of rabbits dropped below half the original population, correct to the nearest day.
- 12. A certain radioactive material, radium-226, decomposes according to the formula  $A = A_0 e^{kt}$  where A is the remaining mass after decomposition,  $A_0$  is the original mass, t is the time in years and k is a constant. A radioactive substance is often described in terms of its half-life, which is the time required for half the material to decompose.
  - (a) Given that after 500 years, a sample of radium-226v has decayed to 80.4% of its original mass, find the value of k.
  - (b) Hence, find the half-life of radium-226.
  - (c) Sketch the graph of A against t.

# [Answer]

(3b) 
$$y = 1 - x$$

(4b) 
$$y = 2x - 1$$
, 2 solutions

(5b) 
$$y = x - 1$$
, 2 solutions

(6b) 
$$y = 5x - 2$$
, 1 solution

(7b) 
$$y = 1 - \frac{x}{2}$$

(8a) 
$$k = -12$$

(b) 
$$y = 2x - 3$$

(b) 3 years

(9a) 
$$a = 36$$
,  $k = 0.0203$ 

(12a) 
$$k = -0.000436$$









(3)





(5)



(6)









