RELATÓRIO DE TRABALHO PRÁTICO DE ELETRÓNICA IV

TRABALHO 8 - BOLA NA CALHA

André Vicente N° 74228

Ricardo Pina N° 59796

Índice

1.	Introdução	1
2.	Projeção inicial do <i>hardware</i>	2
3.	Eletrónica de acondicionamento	3
	3.1. Dimensionamento do circuito de acondicionamento	3
	3.1.1. Ensaios práticos com valores de resistências calculados	4
	3.2. Dimensionamento do regulador de tensão de referência	5
4.	Estruturação e desenvolvimento de código	8
	4.1. Aquisição de pontos	8
	4.2. Temporizador do <i>PID</i>	8
	4.3. Comunicação Tensão e Posição	8
5.	Controlador PID	10
6.	Conclusão	12
Α.	Diagrama de blocos do projeto	15
В.	Circuito Elétrico	17

Lista de Figuras

2.1.	Diagrama de blocos do <i>hardware</i>	2
3.1.	Capturas de osciloscópio com a bola no extremo longínquo(esq.) e próximo(dir.).	
		3
3.2.	Amplificador Diferencial	4
3.3.	Captura de osciloscópio de V_{ref}	5
3.4.	Tensão de referência	5
3.5.	Capturas de osciloscópio com a bola no extremo longínquo (esq.) e próximo	
	(dir.)	7
5.1.	Diagrama de blocos de <i>PID[3]</i>	1(

Lista de Tabelas

3.1.	Parâmetros de entrada para cálculo de R_4	4
3.2.	Parâmetros de entrada para dimensionamento do regulador de tensão	6
3.3.	Valores de resistências calculadas para o regulador de tensão	6

1. Introdução

No âmbito da componente prática da disciplina Eletrónica IV, pretende-se construir um sistema com a capacidade de controlar a posição de uma bola colocada numa calha, cuja inclinação é manipulada por um servo-motor.

A posição da bola é medida por 2 sensores de distância por infravermelhos. O sistema de medição deve ter a capacidade medir posição da bola com precisão de 1 mm.

A posição da bola deve ser regulada por um controlador PID implementado dentro de um MCU^1 , com a capacidade de ajustar a posição com a precisão igualmente de $1 \, mm$. O Setpoint (posição pretendida) é regulado pelo utilizador que digita o seu valor num PC que está ligado ao MCU via RS232. O MCU usado é o PIC32MX795F512H.

O trabalho divide-se em 3 Fases:

- I. Realizar um diagrama de blocos de todo o projeto, esboçar o circuito elétrico inicial, verificação dos sinais medida nos intervalo de distâncias em questão e definição das variáveis de principais de controlo (por exemplo frequência de sinal a enviar para o servomotor).
- II. Escrever *device-drivers*, montar circuitos elétricos, construir controlador *PID*, e estabelecer a interface com o operador. Nesta mesma fase inicia-se o relatório. Poderão ser feitas correções no trabalho realizado na Fase I.
- III. Concluir toda a parte prática do trabalho, assim como se termina o relatório e escrevese o manual de utilizador.

No início do projeto realizou-se um diagrama de blocos de todo o trabalho a desenvolver ao longo das aulas. Este diagrama encontra-se no anexo A.

¹Microcontroller Unit

2. Projeção inicial do hardware

Como já referido e exigido, na Fase I é exigido a elaboração de um diagrama de blocos do hardware de todo o projeto. Isto implica que é necessário definir quais o processos (blocos) terão que ser realizados por cada elemento do *hardware*.

Na figura é ilustrado o diagrama de blocos de todo o hardware do projeto.

Figura 2.1.: Diagrama de blocos do hardware

Tal como demonstra o diagrama de blocos os sensores não serão ligados diretamente ao *PIC*, será realizado um acondicionamento de sinais, como justificado e explicado na capítulo 3.

No *PIC* será feita a conversão analógico para digital dos sinais de ambos sensores de distância, o cálculo da posição. A abordagem destes processos será explicada no capítulo 4. Outro importante processo realizado no *PIC* é controlador *PID*, processo este que é explicado no capítulo 5.

3. Eletrónica de acondicionamento

Os sensores de distância disponíveis no Set-Up do projeto atual, para as distâncias a medir apresentam uma tensão máxima de mínima de $3,1\,V$ e $0,8\,V$ respetivamente. Este últimos valores foram retirados de medições realizadas na prática conforme ilustra a figura 3.1.

Figura 3.1.: Capturas de osciloscópio com a bola no extremo longínquo(esq.) e próximo(dir.).

Para conseguir aproveitar de toda excursão de sinal admissível nos pinos do PIC32MX795F512H, que está entre os $0\ V$ e $3,3\ V$, realizou-se a subtração e amplificação dos sinais provenientes dos sensores de distância com amplificadores diferenciais (uma para cada sensor), como se verifica no anexoB. A subtração de sinal, que tem o objetivo de remover a componente DC do sinal de entrada, exige uma tensão de referência.

Outro facto significante no acondicionamento que se pode observar, é a existência de um *buffer* para cada sensor distância. Estes *buffers* são necessários pois o efeito de carga nos circuitos de acondicionamento têm um efeito significativo nos níveis de tensão do sensores, como verificado em ensaios práticos.

3.1. Dimensionamento do circuito de acondicionamento

Na figura 3.2, ilustra-se um exemplo de amplificador diferencial usado no presente projeto.

Figura 3.2.: Amplificador Diferencial.

Notar que o $OPAMP\ MCP6022$ trata-se de um $OPAMP\ Rail$ -to- $Rail\ [2]$, o que significa que as suas tensões de saturação são as mesmas que as tensões de alimentação. A necessidade de usar OPAMP's deste tipo deve-se ao facto de estes deverem saturar negativamente a $0\ V$, porque só assim se justifica usar um circuito de acondicionamento pois os sensores têm um tensão mínima baixa $(0,8\ V)$.

A equação do sinal de saída é dada pela expressão explicita na equação 3.1.1.

$$V_o = \frac{R_3}{R_1} \cdot (V_2 - V_1)$$

$$| R_1 = R_2$$

$$| R_3 = R_4$$
(3.1.1)

Pela equação sabe-se que para conseguir uma tensão mínima de saída de 0V, é necessário que a tensão de referência V_1 tenha o valor da componente DC de V_2 (0, 8V).

Na tabela 3.1, ilustram-se os parâmetros assumidos e considerados no dimensionamento do amplificador diferencial.

Tabela 3.1.: Parâmetros de entrada para cálculo de R_4 .

$R_3 [\Omega]$	37 k
V_1 $[V]$	0, 8
V_2 $[V]$	3, 1
$V_o[V]$	3, 3

Pela equação 3.1.1, pelos valores da tabela 3.1 calculou-se que $R_1=25,8\,k\Omega$.

3.1.1. Ensaios práticos com valores de resistências calculados

Com vários ensaios práticos com associações de resistências o mais próximo possível ao calculado, verificou-se que a tensão de saída mínima (quando a bola está no extremo mais afastado do sensor) era significativamente superior a $0\,V$ e que a tensão máxima estava

próximo do pretendido. Para solucionar este último problema aumentou-se V_1 para $1\,V$, conforme ilustra a figura 3.3, e o valor de R_1 foi aumentado de forma a que a subida de V_1 não se refleti-se na tensão máxima de saída.

Figura 3.3.: Captura de osciloscópio de V_{ref}

Os valores das resistências usadas na prática podem ser consultadas no circuito elétrico contido no anexo B.

3.2. Dimensionamento do regulador de tensão de referência

Para obter a tensão de referência necessária, recorreu-se ao regulador de tensão de referência paralelo *TL431*. A implementação deste componente é ilustrada na figura 3.4. Esta implementação foi baseada num exemplo referido no *datasheet* [1] deste componente.

Figura 3.4.: Tensão de referência.

Segundo o datasheet deste componente da tensão de saída é dada pela expressão 3.2.1.

$$V_x = \left(1 + \frac{R_6}{R_7}\right) \cdot 2,5 \tag{3.2.1}$$

Pela expressão anterior verifica-se que apenas por este circuito é impossível obter a tensão de referência de $0,8\,V$. Para resolver este último problema colocou-se um divisor resistivo

na saída, sucedido por um *buffer*, como se verifica na figura anterior e no circuito global contido no anexo B.

O dimensionamento deste circuito teve em conta as seguintes afirmações referidas no *datasheet* do *TL431* [1].

- Segundo o datasheet do TL431 a corrente de cátodo do componente deve ser superior a 1 mA.
- Este circuito integrado garante uma tensão aproximadamente de $2,5\,V$ no terminal 1 (neste caso aos terminais de R_7).
- A corrente no pino 1 do TL431 tem valores na ordem dos μA e assim esta é desprezada.
- A corrente de entrada no buffer é igualmente desprezada.

 R_5 deve ter um valor que garanta a mínima corrente de cátodo. Para tal deve cumprir a equação 3.2.2.

$$\frac{V_{cc} - V_x}{R_5} - I_{R6} - I_{R8} \geqslant 1 \, mA \Leftrightarrow R_5 \le \frac{V_{cc} - V_x}{I_{R6} + I_{R8} + 1} \tag{3.2.2}$$

Por fim, a tensão de saída é dada pela equação 3.2.3.

$$V_1 = R_9 \cdot I_{R9} \tag{3.2.3}$$

Na tabela 3.2, ilustram-se os parâmetros assumidos e considerados no dimensionamento do regulador de tensão.

Tabela 3.2.: Parâmetros de entrada para dimensionamento do regulador de tensão.

I_{R6} $[mA]$	0,29
$I_{R8} [mA]$	0, 13
$V_{cc} [V]$	8
$V_x [V]$	3
V_1 $[V]$	0,8

Tendo em conta as equações 3.2.1, 3.2.2 e 3.2.3 e as considerações da tabela 3.2, obtêm-se os valores das resistências que estão registados na tabela 3.3.

Tabela 3.3.: Valores de resistências calculadas para o regulador de tensão.

$R_5(m\acute{a}ximo) [k\Omega]$	1,72
$R_6 [k\Omega]$	0,14
$R_7 [k\Omega]$	8,62
$R_8 [k\Omega]$	16, 9
$R_9 [k\Omega]$	6, 15

Os valores das resistências usadas na prática podem ser consultadas no anexo B. Este últimos valores diferem dos calculados devido à associação de resistências que se realizou

é impossível conseguir valores resistivos iguais ao necessário. Outro motivo é que a tensão de referência V_1 tinha de ser superior ao calculado, como já referido anteriormente.

Com este circuito conseguiu-se ampliar a gama conforme ilustra a figura 3.5.

No entanto salienta-se que o valor de tensão máximo está um pouco alto, porque os sensores são influenciados pela luminosidade e assim medem-se valores diferentes em cada ensaio. Acabou-se por concluir que o valor apresentado não é prejudicial. Outro facto que infere perturbações no sinal são as oscilações da calha.

Figura 3.5.: Capturas de osciloscópio com a bola no extremo longínquo (esq.) e próximo (dir.).

Estruturação e desenvolvimento de código

Na elaboração do trabalho em *C* usou-se o compilador *XC32*. O trabalho tem diversos aspetos que devem ter especial atenção. A não linearidade dos valores dos sensores o ruído existente na leitura e a utilização de temporizador para aquisição do valor instantâneo de cada sensor, são alguns dos pontos com os quais teve-se especial atenção.

4.1. Aquisição de pontos

Na aquisição de pontos deparou-se com algum ruído existente, para que tal seja minimizado, optou-se por, em cada ponto obtido, o *PIC* adquire 10 valores seguidos de tensão, e será feita a respetiva média. Com isto minimizou-se o ruído existente no valor lido.

Esta aquisição torna-se necessária, porque a variação da tensão ao longo da "régua" não é linear. Assim sendo, optou-se por fazer aprximações lineares de primeiro grau. Para que tal seja possível, é necessário, sempre que o PIC é ligada, obter-se determinados pontos e, com estes, seja possível calcular 6 retas, com intervalo entre cada ponto medido de $50\,mm$, num total de 7 pontos.

Sendo dois sensores, iria obter-se dois gráficos. Simplificando um pouco o código, e deste modo tentar diminuir o erro obtido. Optou-se por fazer a leitura dos dois sensores, e subtrair o valor de tensão lido pelo sensor da direita, pelo da esquerda. Com isto obteve-se uma só reta.

4.2. Temporizador do PID

Usar um temporizador também se torna importante, com valor muito elevado, faz com que o funcionamento seja lento, difícil de coincidir com o ponto pretendido, e um valor baixo demais pode tornar o funcionamento do *PIC* muito "pesado". Por isso optou-se por um valor de 10ms para o temporizador de aquisição de valores do sensor.

4.3. Comunicação Tensão e Posição

A leitura é feita por uma função denominada *mon_getc* que utiliza *URXDA* para ler o valor recebido. Na comunicação e leitura dos valores *ADC*, usou-se um caráter auxiliar para as

diferentes *strings* enviadas para o *PIC*. Para analisar o que se pretende receber é comparado o primeiro carater com o "+" ou "p", caso seja valor de gráfico ou posição de destino pretendida respetivamente. Usou-se a instrução *atoi* para converter o valor da *string* para inteiro.

5. Controlador PID

Inicialmente para elaborar o controlador para a nosso trabalho, optou-se por usar apenas a PD, sendo que por análise teórica seria possível. A variável P é responsável pela velocidade de resposta do sistema, enquanto que a componente D faz com que reaja mais fortemente à mudança no parâmetro do erro e por sua vez a velocidade de resposta seja maior. A primeira componente depende apenas do erro atual e da variável do processo, enquanto que a D depende da variável de processo, e da diferença do erro atual e o anterior. O controlador atua mediante a taxa de variação de erro, atua sobre transitórios, produzindo amortecimento no sistema.

No entanto com as experiências práticas acabou-se por concluir que a utilização da parte integrativa é importante para, em regime permanente, diminuir o erro e aproximar a bola da posição pretendida. O resultado mesmo com um pequeno erro, fará com que a componente integral aumente lentamente. Por fim limitou-se a variável u (Output), de tal forma a que nos extremos a calha não oscile excessivamente.

A figura 5.1 demonstra um diagrama de blocos de um controlador PID.

Figura 5.1.: Diagrama de blocos de PID[3].

Verifica-se que a variável de entrada do controlador é o erro (diferença entre *Setpoint* e variável de processo).

As componentes P,I e D são as componentes, proporcional, integrativa e derivativa respetivamente. k_p , k_d e k_i são o ganho proporcional, derivativo e integrativo do controlador.

 k_p é ajustado diretamente, enquanto que o ganho derivativo k_d depende de T_d e T_s e k_p . Esta última relação é explicita na equação 5.0.1. O mesmo se passa com k_i que depende de k_p , T_s e T_i , com a relação dada pela equação 5.0.2.

$$k_d = k_p \cdot \frac{T_d}{T_s} \tag{5.0.1}$$

$$k_i = k_p \cdot \frac{T_s}{T_i} \tag{5.0.2}$$

- T_s é o valor do temporizador PID.
- T_i é o tempo de integração.

Desenvolvendo e simplificando por aproximações das equações da figura 5.1, adquiri-se a equação 5.0.3 para P,I e D.

$$u(t) = Kp\left(e(t) + \frac{1}{T_i} \int e(\sigma) \cdot d\sigma + T_d \cdot \frac{de(t)}{dt}\right)$$
 (5.0.3)

Simplificando adquiri-se a equação 5.0.4:

$$u(n) = K_p \cdot e(n) + k_i \cdot \sum e(k) + k_d \cdot (e(n) - e(n-1))$$
(5.0.4)

6. Conclusão

O diagrama de blocos elaborou-se corretamente, sendo esta uma fase inicial importante para todo o desenrolar do trabalho.

Verificou-se a importância do acondicionamento de sinal, para aumentar o intervalo de valores lidos, que inicialmente não abrangia toda a gama do pino do *PIC* (*ANO*,*AN1*).

A utilização do *interface* foi importante, porque simplificou-se a construção do gráfico, e envio da posição de destino, bem como a leitura de alguns valores (posição de bola estimada e variável de saída do controlador) em tempo real.

Verificou-se que a subtração dos valores de tensão atenuou um pouco o erro, sendo que na posição extrema o sensor mais distante tem pouca influência no valor, enquanto que na proximidade da posição central ambos contribuem de forma significativa, e nessa posição o erro é menor. No entanto ter usado um algoritmo para determinar qual o sensor a usar também seria uma boa escolha.

A calha oscila, tenta posicionar a bola na posição pretendida, apesar de não conseguir parar nesta. Conseguiu-se perceber que face a análise teórica, em que seria plausível funcionar sem a parte integrativa, acabou-se por verificar que esta é importante, tendo sido acrescentada na parte final. No entanto a bola não consegue parar na posição destino. Isto deve-se aos valores da *PID* usados não estarem corretamente calibrados. A possibilidade de variar estes valores em tempo real iria facilitar a calibração final, porque estes valores são sensíveis, e alterar em código prolongou o tempo de calibração.

Para melhorar o interface e perceção do sistema de medida de posição da bola, poderia-se visualizar no *LabView* o gráfico da diferença de tensão dos sensores em função da posição.

Por fim o trabalho foi benéfico para ganhar conhecimentos de programação para *PIC32*, e para além de perceber a importância do acondicionamento de sinal em um equipamento para, deste modo, diminuir o erro.

Bibliografia

- [1] Texas Instruments Incorporated. Tl431 precision programmable reference, 2014.
- [2] Microchip. Mcp6021/1r/2/3/4, 2009.
- [3] Dr. Stienecker. 7: Pid control.

Anexos

A. Diagrama de blocos do projeto

B. Circuito Elétrico

