

Keyword analysis: Progress through regression (?)

Lukas Sönning
University of Bamberg

Isoenning.github.io

Objectives

Explore use of regression for keyness analysis

Illustration: Key verbs in academic writing

Advantages + disadvantages

Conclusion

• Manuscript: Ψ psyarxiv.com/25mwj

Keyness analysis

- Identification of items that are typical of a particular text variety
- Target corpus vs. reference corpus
- Keyness metrics: Ranking of items

Keyness as a multidimensional construct

- Most keyness metrics: Frequency comparisons (target vs. reference corpus)
- Different aspects of keyness: Distinctiveness vs. generality Egbert & Biber 2019, Gries 2021
- Frequency-oriented vs. dispersion-oriented approaches

Four dimensions

Target corpus in isolation

Frequency-oriented

Discernibility

• Occurrence rate (e.g. pmw)

Dispersion-oriented

Generality

- Range ¹
- *TD* m
- D_{KI} g
- D, S_{adj}, D_{2,} D_{P,} D_A b

Descriptive Inferential

Comparison to reference

Distinctiveness

- Rate ratio ^a
- Rate difference b
- PS b
- Log ratio ^c
- Difference coefficient d
- %DIFF e
- Odds ratio f
- Signed D_{KL} g
- Chi-squared test ^d
- Likelihood-ratio test h
- Wilcoxon test j
- t-test j
- BIC k

Comparative generality

- TD ratio m
- TD differenceb
- D_{KI} difference ^g
- D, S_{adj} , D_2 , D_P , D_A difference b
- TD-based LR test ^m

- ^a Kilgarriff 2009
- ^b Sönning 2022a
- ^c Hardie 2014
- d Hofland & Johansson 1982
- e Gabrielatos & Marchi 2011
- ^f Pojanapunya & Watson Todd 2016
- ⁹ Gries 2021
- h Dunning 1993
- ^j Kilgarriff 1996
- k Wilson 2013
- Rayson 2003
- m Egbert & Biber 2019

Count regression models

- Data type: Non-negative integers
- Large family e.g. Cameron & Trivedi 2013
- Basic version: Poisson regression
- Count regression underused in linguistics Winter & Bürkner 2021
- We will use: Negative binomial regression

Negative binomial regression

- Poisson too restrictive: Assumes probability of actually is constant across speakers/situations
- Negative binomial: Allows for variation among speakers/texts

Additional parameter describing variability

Variability parameter can be converted into a dispersion measure (D_{NB})

Relative deviation from mean (factors)

Data: SpokenBNC2014 Love et al. 2017

Keyness metrics

Target

Target corpus in isolation

Frequency-oriented

Occurrence rate
(normalized frequency)
+ 95% CI

Discernibility

Dispersion-oriented

Generality

Dispersion *D_{NB}* + 95% CI

Distinctiveness

Comparison to reference corpus

Rate ratio + 95% CI

Comparative generality

Difference in dispersion D_{NB} + 95% CI

Case study

Key verbs in published academic writing

- COCA Davies 2008-
 - Year 2019 only
 - Target corpus: ACAD
 - Reference corpus: NEWS
- Focus on 578 verb lemmas (data: Sönning 2022b)
 - Higher normalized frequency in ACAD
 - Normalized frequency > 10 pmw in ACAD

Advantages

- Text-level analysis e.g. Baroni & Evert 2009; Lijffijt et al. 2014
- Confidence intervals for all keyness metrics cf. Gries 2022
- Descriptive and inferential information
- Interpretable metrics cf. Sönning 2022a

Disadvantages

- Specialized statistical software needed
 - R package gamlss Rigby & Stasinopoulos 2005
- Data-hungry
- Computationally expensive

Conclusion

Keyness regression (?)

- Unsuited as a routine tool
- Implementation in corpus analysis software not possible
- Generally: Use of simpler metrics as screening devices
- Feasibility depends on analysis task
 - Unattractive for supplementary keyness analyses
 - Attractive for first-rate keyness analyses (e.g. for producing vocabulary lists)

Thanks for listening.

Baroni, Marco & Stefan Evert. 2009. Statistical methods for corpus exploitation. In Anke Lüdeling & Merjy Kytö (eds.), *Corpus linguistics: An international handbook*. Berlin: Mouton de Gruyter, 777–803.

- Cameron, A. Colin & Pravin K. Trivedi. 2013. Regression analysis of count data. Cambridge: CUP.
- Davies, Mark. 2008-. The Corpus of Contemporary American English. www.english-corpora.org/coca.
- Dunning, Ted. 1993. Accurate Methods for the Statistics of Surprise and Coincidence. Computational Linguistics 19(1), 61–74. doi:10.5555/972450.972454
- Egbert, Jesse & Douglas Biber. 2019. Incorporating text dispersion into keyword analysis. Corpora 14(1), 77–104. doi:10.3366/cor.2019.0162
- Gabrielatos, Costas & Anna Marchi. 2011. Keyness: Matching metrics to definitions. *Corpus Linguistics in the South* 1, University of Portsmouth, 5 November 2011. Available online at: http://eprints.lancs.ac.uk/51449
- Gries, Stefan Th. 2021. A new approach to (key) keywords analysis: Using frequency, and now also dispersion. *Research in Corpus Linguistics* 9(2): 1–33. doi:10.32714/ricl.09.02.02
- Gries, Stefan Th. 2022. Toward more careful corpus statistics: uncertainty estimates for frequencies, dispersions, association measures, and more. *Research Methods in Applied Linguistics* 1(1), 100002. doi:10.1016/j.rmal.2021.100002
- Hardie, Andrew. 2014. Log ratio An informal introduction. Post on the website of the ESRC Centre for Corpus Approaches to Social Science CASS. Available online at: http://cass.lancs.ac.uk/?p=1133
- Hofland, Knut & Stig Johansson. 1982. Word frequencies in British and American English. London: Longman.
- Kilgarriff, Aadam. 1996. Which words are particularly characteristic of a text? A survey of statistical approaches. In L. J. Evett & T. G. Rose (eds.) Language Engineering for Document Analysis and Recognition (LEDAR). AISB96 Workshop proceedings, Brighton, England. Faculty of Engineering and Computing, Nottingham Trent University, UK, 33–40.
- Kilgarriff, Adam. 2009. Simple maths for keywords. In M. Mahlberg, V. González-Díaz & C. Smith (eds.) *Proceedings of the Corpus Linguistics Conference*, *CL2009*. Liverpool: University of Liverpool. Available online at: http://ucrel.lancs.ac.uk/publications/CL2009/171_FullPaper.doc
- Lijffijt, Jefrey, Terttu Nevalainen, Tanja Säily, Panagiotis Papapetrou, Kai Puolamaki & Heikki Mannila. 2014. Significance testing of word frequencies in corpora. *Digital Scholarship in the Humanities*. doi:10.1093/llc/fqu064
- Pojanapunya, Punjaporn & Richard Watson Todd. 2018. Log-likelihood and odds ratio: Keyness statistics for different purposes of keyword analysis. *Corpus Linguistics and Linguistic Theory* 14(1), 133–167. doi:10.1515/cllt-2015-0030.
- Rayson, Paul. 2003. Matrix: A statistical method and software tool for linguistic analysis through corpus comparison. PhD thesis, Lancaster University.
- Rigby, Robert A. & Mikis D. Stasinopoulos. 2005. Generalized additive models for location, scale and shape (with discussion), Applied Statistics 54(3): 507–554.
- Sönning, Lukas. 2022a. Evaluation of keyness metrics: Reliability and interpretability. PsyArXiv preprint. https://psyarxiv.com/eb2n9/
- Sönning, Lukas. 2022b. Key verbs in academic writing: Dataset for "Evaluation of keyness metrics: Reliability and interpretability", https://doi.org/10.18710/EUXSMW, DataverseNO, DRAFT VERSION
- Wilson, Andrew. 2013. Embracing Bayes Factors for key item analysis in corpus linguistics. In Markus Bieswanger & Amei Koll-Stobbe (eds.), *New approaches to the study of linguistic variability*, 3-11. Frankfurt: Peter Lang.
- Winter, Bodo & Paul-Christian Bürkner. 2021. Poisson regression for linguists: A tutorial introduction to modelling count data with brms. *Language and Linguistics Compass*, e12439. https://doi.org/10.1111/lnc3.12439

Gamma shape parameter

Dispersion measure D_{NB}

Estimates (+ 95% CIs) from 100 different data subsets Verb: DEFINE

(a) Dispersion in the corpus-linguistic sense: Distribution of word tokens in the corpus

(b) Dispersion in the statistical sense: Distribution of text-level ocurrence rates

