PRSTENI I POLJA

Neka je R neprazan skup, a +i · binarne operacija skupa R. Uređena trojka $(R, +, \cdot)$ je **prsten** ako je

- (1) (R, +) komutativna grupa,
- (2) (R, \cdot) polugrupa (asocijativan grupoid),
- (3) operacija \cdot je distributivna u odnosu na operaciju +, tj. za svako $x, y, z \in R$ važi

leva distributivnost: $x \cdot (y+z) = x \cdot y + x \cdot z$,

desna distributivnost: $(y+z) \cdot x = y \cdot x + z \cdot x$.

Napomena: Ako je operacija · komutativna dovoljno je proveriti samo jednu, npr. levu distributivnost jer iz nje i komutativnosti sledi i desna distributivnost. Inače se moraju proveravati obe distributivnosti.

Neutralni element operacije +, ako postoji, naziva se nula prstena i obično se označava sa 0, a neutralni element operacije ·, ako postoji, naziva se jedinica prstena i obično se označava sa 1.

Prsten $(R, +, \cdot)$ je:

- prsten sa jedinicom ako postoji neutralni elemenat multiplikativne operacije -;
- komutativan prsten ako je operacija · komutativna;
- domen integriteta ako je komutativan prsten sa jedinicom (koja mora biti različita od nule prstena) u kome ne postoje delitelji nule, tj. u kome važi

$$a \cdot b = 0 \Longrightarrow a = 0 \ \lor \ b = 0$$
 ili $a \neq 0 \ \land \ b \neq 0 \Longrightarrow a \cdot b \neq 0$.

• **polje** ako je $(R \setminus \{0\}, \cdot)$ komutativna grupa.

Svako polje je domen integriteta.

Svaki konačan domen integriteta je polje, ali za beskonačne to ne mora da važi.

U prstenu $(R, +, \cdot)$ za sve $a, b \in R$ važi:

- $\bullet \ a \cdot 0 = 0 \cdot a = 0;$
- $(-a) \cdot b = a \cdot (-b) = -(a \cdot b);$
- $\bullet (-a) \cdot (-b) = a \cdot b.$

Primer:

	prsten	domen integriteta	polje
$(\mathbb{N},+,\cdot)$	-, nema neutralni elemenat	/	
$(\mathbb{Z},+,\cdot)$	+	+	$-,(Z\setminus\{0\},\cdot)$ nema svaki elemenat inverzni
$(\mathbb{Q},+,\cdot)$	+	+	+
$(\mathbb{R},+,\cdot)$	+	+	+
$(\mathbb{C},+,\cdot)$	+	+	+
$(\{3k \mid k \in \mathbb{Z}\}, +, \cdot)$	+	-, nema jedinicu	$-, (\{3k \mid k \in \mathbb{Z}\} \setminus \{0\}, \cdot)$ nema svaki elemenat inverzni

Prsten (polje) $\mathcal{R}_1 = (R_1, +, \cdot)$ je **potprsten** (**potpolje**) prstena (polja) $\mathcal{R} = (R, +, \cdot)$ ako je R_1 neprazan podskup od R, a operacije + i \cdot iz R_1 su restrikcije operacija + i \cdot iz R.

Neka su $\mathcal{R}_1 = (R_1, +_1, \cdot_1)$ i $\mathcal{R}_2 = (R_2, +_2, \cdot_2)$ prsteni (polja). Funkcija $f: R_1 \longrightarrow R_2$ je **homomorfizam** iz \mathcal{R}_1 u \mathcal{R}_2 ako za sve $x, y \in R_1$ važi

$$f(x +_1 y) = f(x) +_2 f(y)$$
 i $f(x \cdot_1 y) = f(x) \cdot_2 f(y)$.

Ako je funkcija f još i bijekcija, tada se ona naziva **izomorfizam**.