Spatial Data (Part 2)

Cmpt 767 Visualization
Steven Bergner
sbergner@sfu.ca

[Weiskopf/Machiraju/Möller]

Overview

- Basic strategies
- Function plots and height fields
- Isolines
- Color coding
- Volume visualization (overview)
- Classification
- Segmentation
- Volumetric illumination
- Scalar Data in High-D

Color Coding

- Example
 - Special color table to visualize the brain tissue
 - Special color table to visualize the bone structure

Original

Brain

Tissue

 $\Omega \in \mathbb{R}^3 \to \mathbb{R}$

- Scalar volume data
- Medical Applications:
 CT, MRI, confocal microscopy, ultrasound, etc.

- Representation of scalar 3D data set $\Omega \in \mathbb{R}^3 \to \mathbb{R}$
- Analogy: pixel (picture element)
- Voxel (volume element), with two interpretations:
 - Values between grid points are resampled by interpolation

Uniform grid

- Challenges
 - Essential information in the interior
 - Occlusion?
 - Often data sets cannot be described by geometric representation (fire, clouds, gaseous phenomena)

- Slicing:

 Display the volume data, mapped to colors, on a slice plane
- Isosurfacing:
 Generate
 opaque/semi-opaque
 surfaces
- Transparency effects:
 Volume material
 attenuates reflected
 or emitted light

Semi-transparent material

Isosurface

- Alternative: Oblique slicing (MPR multiplanar reformating)
 - Resample the data on arbitrarily oriented slices
 - Resampling on CPU or on graphics hardware (trilinear interpolation)
 - Exploit 3D texture mapping functionality
 - Store volume in 3D texture
 - Compute sectional polygon (clip plane with volume bounding box)
 - Render textured polygon

- Goals and issues:
 - Empowers user to select "structures"
 - Extract important features of the data set
 - Classification is non trivial
 - Histogram can be a useful hint
 - Often interactive manipulation of transfer functions needed
- Usually needed for volume visualization
- Standard approach: Transfer function
 - Color table for volume visualization
 - Maps raw voxel value into presentable entities: color, intensity, opacity, etc.

 Examples of different transfer functions

- Most widely used approach for transfer functions:
 - Assign each scalar value a different color value
 - Assignment via transfer function *T* T: scalarvalue → colorvalue
 - Common choice for color representation: RGBA
 - Alpha value is very important, describes opacity
 - Code color values into a color lookup table
 - On-the-fly update of color LUT

. .

 Heuristic approach, based on measurements of many data sets

- Hounsfield units (HU) for CT data sets
 - Describes x-ray attenuation, i.e., density of material
 - 12-bit CT-measurements
 - Range of values from -1024 to +3071 HU
 - Typical values:
 - Air: -1024
 - Fat: -100 to -20
 - Water: 0
 - Soft tissue such as muscle: +20 to +80
 - Bone: > +500
 - For visualization, 12 bits are often reduced to 8 bits by windowing (loss of dynamic range)

- Usually not only interested in a particular isosurface but also in regions of "change"
- Feature extraction High value of opacity in regions of change
 - Homogeneous regions less interesting transparent
- Surface "strength" depends on gradient
- Gradient of the scalar field is taken into account

 Scalar value and gradient of the scalar field in a transfer function to emphasize isosurfaces [Levoy 1988]

- Multidimensional transfer functions
 [Kindlmann & Durkin 98, Kniss, Kindlmann, Hansen 01]
- Problem: How to identify boundary regions/surfaces
- Approach: 2D/3D transfer functions, depending on
 - Scalar value, magnitude of the gradient

- Multidimensional transfer functions
- Extraction of two boundaries
- Triangle function in histogram

Segmentation

- Different features with same value
 - Example CT: different organs have similar X-ray absorption
 - Classification cannot be distinguished
- Label voxels indicating a type
- Segmentation = pre-processing
- Semi-automatic process

Segmentation

Anatomic atlas

- Illumination:
 - Simulate reflection of light
 - Simulate effect on color
- Use human visual system ability to interpret surface illumination

- Review of the Phong illumination model
 - Ambient light + diffuse light + specular light
- Ambient light: C = k_aC_aO_d
 - k_a is ambient contribution
 - Ca is color of ambient light
 - O_d is diffuse color of object
- **Diffuse** light: $C = k_d C_p O_d \cos(\theta)$
 - k_d is diffuse contribution
 - C_n is color of point light
 - O_d is diffuse color of object
 - $-\cos(\theta)$ is angle of incoming light
- Specular light: C = k_sC_pO_scosⁿ(σ)
 k_s is specular contribution

 - $\mathring{C_{D}}$ is color of point light
 - $\cos(\sigma)$ is angle of reflected light and eye
 - n is the specular exponent

 $k_a = 0.1$ $k_d = 0.5$ $k_s = 0.4$

- What is the normal vector in a scalar field?
- Use the gradient!
- Gradient is perpendicular to isosurface (direction of largest change)
- Numerical computation of the gradient:
 - Central difference
 - Intermediate difference (forward/backward difference)
 - Sobel operator (3×3 kernel for each partial derivative)

Central differences

Intermediate differences

Central differences

Sobel operator