Fundamentals of Chip-Type Machining Processes

Machining

Removing unwanted material in the form of chips:

- Drilling
- Sawing
- Milling
- Turning
- Filing

Machining Process

Affected by:

- Machine tool (the machine itself)
- Cutting tool (geometry and material)
- Workpiece (properties and material)
- Cutting tool parameters
 - Speed
 - Feed
 - ❖ Depth of cut
- Workpiece holding devices

Cutting Parameters

Seven Basic Machining Processes

Four Cutting Tool Parameters

- 1. Speed
- 2. Depth of Cut (DOC)
- 3. Feed Rate (f_r)
- 4. Material Removal Rate (MRR)

Speed

Speed – velocity of workpiece relative to cutting tool; the **primary cutting motion**

- $V = \pi D_1 N_s / 12 \text{ ft/min}$
- D_1 = original diameter, inches
- $N_s = RPM$
- RPM $\approx 3.8 \text{V/D}_1$

Depth of Cut

Depth of Cut (DOC) – distance tool plunged into workpiece

•
$$d = (D_1 - D_2)/2$$

Feed Rate

Feed Rate (f_r) – amount of material removed per revolution (in/rev)

Material Removal Rate

Material Removal Rate (MRR) = (volume removed)/(cutting time) - (in³/min)

- MRR ≈ 12Vf_rd, in³/min
- $\approx \pi D_1 N_s f_r d$, in³/min
- d = depth of cut

Milling Material Removal Rate

Multiple-tooth cutter is used

- Table feed: $f_m = f_t nN_s$
- f_t = feed per tooth
- n = number of teeth
- $N_s = RPM$
- MRR = Wd f_m

Slab/Face Milling Basics

Slab milling - multiple tooth

Slab milling is usually performed on a horizontal milling machine. Equations for T_m and MRR derived in Chapter 25.

The tool rotates at rpm N_s. The workpiece

Face milling Multiple-tooth cutting

Shop Formulas for Varioius Materials

Shop Formulas for Turning, Milling, Drilling, and Broaching (English Units)

Parameter	Turning	Milling	Drilling	Broaching
Cutting speed, fpm	$V = 0.262 \times D_I \times rpm$	$V = 0.262 \times D_m \times \text{rpm}$	$V = 0.262 \times D_d \times rpm$	V
Revolutions per minute, N_s	$rpm = 3.82 \times V_c/D_I$	$rpm = 3.82 \times V_c/D_m$	$rpm = 3.82 \times V_c/D_d$	_
Feed rate, in./min	$f_m = f_r \times \text{rpm}$	$f_m = f_r \times \text{rpm}$	$f_m = f_r \times \text{rpm}$	
Feed per rev tooth pass, in./rev	f,	f_i	f.	_
Cutting time, min, T_m	$T_m = L/f_m$	$T_m = L f_m$	$T_m = L/f_m$	$T_{m}=L/12V$
Rate of metal removal, in.3/min	$MRR = 12 \times d \times f_r \\ \times V_c$	$MRR = w \times d \times f_m$	$MRR = \pi D^2 d/4 \times f_m$	$\begin{array}{l} \text{MRR} = 12 \times w \times d \\ \times V \end{array}$
Horsepower required at spindle	$hp = MRR \times HP_s$	$hp = MRR \times HP_s$	$hp = MRR \times HP_s$	-
Horsepower required at motor	$hp_m = MRR \times HP/E$	$hp_m = MRR \times HP/E$	$hp_m = MRR \times HP/E$	$hp_m = MRR \times HP_s/E$
Torque at spindle	$t_s = 63,030$ hp/rpm	$t_s = 63,030$ hp/rpm	$t_s = 63,030$ hp/rpm	_
Symbols	 D_I = Diameter of workpiece in turning, inches D_m = Diameter of milling cutter, inches D_d = Diameter of drill, inches d = Depth of cut, inches E = Efficiency of spindle drive f_m = Feed rate, inches per minute f_r = Feed, inches per revolution f_l = Feed, inches per tooth hp_m = Horsepower at motor MRR = Metal removal rate, in.3/min 		hp = horsepower at spindle L = Length of cut, inches n = Number of teeth in cutter HP _s = Unit power, horsepower per cubic inch per minute, specific horsepower N _s = Revolution per minute of work or cutter t _s = Torque at spindle, inch-pound T _m = Cutting time, minutes V = Cutting speed, feet per minute w = Width of cut, inches	

Lathe Turning

Lathe Turning

Turning

Speed, stated in surface feet per minute (sfpm), is the peripheral speed at the cutting edge. Feed per revolution in turning is a linear motion of the tool parallel to the rotating axis of the workpiece. The depth of cut reflects the third dimension.

L = length of cut

$$T_m = \frac{L + A}{f_r N_s}$$

Boring Basics

Boring

Enlarging hole of diameter D_1 to diameter D_2 . Boring can be done with multiple cutting tools. Feed in inches per revolution, f_r

Facing Basics

Facing

Tool feeds to center of workpiece so L = D/2. The cutting speed is decreasing as the tool approaches the center of the workpiece.

Grooving, Parting or Cut-off

Grooving, parting, or cutoff

Tool feed perpendicular to the axis of rotation. The width of the tool produces the depth of cut (DOC).

Slab/Face Milling Basics

Slab milling - multiple tooth

Slab milling is usually performed on a horizontal milling machine. Equations for T_m and MRR derived in Chapter 25.

The tool rotates at rpm N_s . The workpiece translates past the cutter at feed rate f_m , the table feed. The length of cut, L, is the length of workpiece plus allowance, L_A ,

$$L_A = \sqrt{\frac{D^2}{4} - \left(\frac{D}{2} - d\right)^2} = \sqrt{d(D - d)}$$
 inches

$$T_m = (L + L_A)/f_m$$

The MRR = Wdf_m where W = width of the cut and d = depth of cut.

Face milling Multiple-tooth cutting

Given a selected cutting speed V and a feed per tooth f_t , the rpm of the cutter is $N_s = 12 V/\pi D$ for a cutting of diameter D. The table feed rate is $f_m = f_t \, n N_s$ for a cutter with n teeth.

The cutting time, $T_m = (L + L_A + L_o)/f_m$ where $L_o = L_A = \sqrt{M(D - W)}$ for W < D/2or $L_o = L_A = D/2$ for $W \ge D/2$. The MRR = Wdf_m where d = depth of cut.

Drilling Basics

Drilling multiple-edge tool

Broaching Basics

Shaping/Planing Basics

Understanding Chip Formation

Removing a Chip

Effect of Workpiece Material Properties

Energy and Power in Machining

Power

```
    Power = F<sub>c</sub>V (ft-lbs/min)
    V = fpm
    F<sub>c</sub> = lbs
```

- HP = $F_cV/33,000$
- HP_s = specific hp = HP/MRR energy/unit vol

TOOL FAILURE MODES

Watch Video Here