ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа **Фотонные кристаллы.**

Шульмина Анастасия Сергеевна Группа Б04-007

Зависимость максимума спектра от угла.

Снимем 6 зависимостей максимумов для разных углов.

Рис. 1: $\alpha=20^\circ$

Рис. 2: $\alpha=25^\circ$

Рис. 3: $\alpha=30^\circ$

Рис. 4: $\alpha=35^\circ$

Рис. 5: $\alpha = 40^{\circ}$

Рис. 6: $\alpha=45^{\circ}$

Рис. 7: $\alpha = 50^{\circ}$

Сводная таблица:

alpha, градусы			1				
lambda, нм	612	605	595	583	555	545	540

Нахождение диаметра молекулы SiO2.

Используя теорию Брэгга-Вульфа, имеет уравнение вида:

$$\lambda = 2d\sqrt{n_{eff}^2 - \sin^2\alpha},\tag{1}$$

$$n_{eff}^2 = n_1^2 x_1 + n_2^2 x_2, (2)$$

где x_1 и x_2 относительные объемы веществ. В нашем случае $n_{eff}^2=1,79$

Построим прямую, согласно таблице, и оттуда найдем коэффициент наклона, что, по сути, и будет диаметром нашей молекулы.

Рис. 8: Линейная аппроксимация

Коэффициент наклона k=d=212. Имея соотношение:

$$d = 1,83R \tag{3}$$

получаем, что R=130 нм, в диаметре D=260 нм, что немного не сходится с результатами на атомно-силовом микроскопе. Возможно, большую погрешность внес метод измерение угла, а конкретно : не идеальное зрение исследователя.

Спектр пропускания.

Используя спектры источника и опала, найдем спектр пропускания опала путем деления. Согласно спектру, длина волны пропускания 575 нм.

Рис. 9: Спектр пропускания опала для воды и спирта

Comsol

Задаем основные параметры для моделирования фотонного кристалла.

Отражение: ширина на полувысоте по сравнению с воздухом для спирта и воды уменьшилась на 20 процентов : было 32 нм, стало 25 нм.

Пропускание: результат моделирования совпал с экспериментальными данными.

Интенсивность: значение показателя преломления упали на 92 процента воды и 86 процентов для воздуха.

Рис. 10: Модель

Рис. 11: Спектр пропускания опала и воздуха

Рис. 12: Спектр отражения опала и воздуха

Рис. 13: Спектр отражения опала и спирта

Рис. 14: Спектр отражения опала и спирта

Рис. 15: Спектр пропускания опала и воды

Рис. 16: Спектр отражения опала и воды