Final Project

October 4, 2016

In this final project you are asked to design a basic database with tree tables:

- A table of names with addresses (Table 1).
- A table of invoices (Table 2).
- $\bullet\,$ A table of expenses (Table 3).

Name	Address
Isaac	
Bernie	
Andres	
	•
	•
	:
	:
	•

Table 1: Table of Names

Name	Invoices Number	Payment
Isaac	0010	\$1000.00
Isaac	0011	
Andres	0021	
	:	
	:	
	:	

Table 2: Table of Expenses

Invoices Number	Item	Expense		
0010	Beer	\$10.00		
0010	Food	\$25.00		
0010	Beer	\$30.00		
:				
<u>:</u>				
:				
•				

Table 3: Table of Expenses

A more detailed relation can be seen in (Fig. 1)

Figure 1: The Relations between the tables

For your project you need to build a database with the ability of

- 1. Insert the different quantities in the different tables by primary id.
- 2. Delete quantities by their primary id at each table.
- 3. Select names from the first table and see their total expenses. Basically a table like (Table 4).
- 4. Select names from the first table and see their total payments (Similar to table 4)

- 5. Return the earning after expenses in a similar fashion.
- 6. Calculate how similar are different users by expense. Basically given two users x and y then $w\left(x,y\right)=|TotalExpenses_{x}-TotalExpenses_{y}|$

Name	Invoice	Expense
Issac	Beer	\$10.00
	Food	\$25.00
	Beer	\$30.00

Table 4: Table of Expenses

Basically, you need to build a series of dictionaries using possible

- 1. Hash tables.
- 2. Rapid indexation using binary trees.
- 3. Basic Search in Graphs.