SD 204 Linear Model

François Portier, Joseph Salmon

http://josephsalmon.eu Télécom Paristech, Institut Mines-Télécom

Plan

Moindres carrés pour deux variables explicatives

Moindres carrés multi-dimensionnels

Modélisation matricielle

Définition des moindres carrés

Optimisation

Questions d'unicité

Formule explicite, prédiction et résidus

Vers des modèles multi-variés

Volume d'arbres en fonction de leur hauteur / circonférence

Vers des modèles multi-variés

Volume d'arbres en fonction de leur hauteur / circonférence

Commandes sous python

```
# Load data
url = 'http://vincentarelbundock.github.io/
       Rdatasets/csv/datasets/trees.csv'
dat3 = pd.read csv(url)
# Fit regression model
X = dat3[['Girth', 'Height']]
X = sm.add constant(X)
y = dat3['Volume']
results = sm.OLS(y, X).fit().params
XX = np.arange(8, 22, 0.5)
YY = np.arange(64, 90, 0.5)
xx, yy = np.meshgrid(XX, YY)
zz = results[0] + results[1]*xx + results[2]*yy
fig = plt.figure()
ax = Axes3D(fig)
ax.plot(X['Girth'],X['Height'],y,'o')
ax.plot wireframe(xx, yy, zz, rstride=10, cstride=10)
plt.show()
```

Sommaire

Moindres carrés pour deux variables explicatives

Moindres carrés multi-dimensionnels

Modélisation matricielle

Définition des moindres carrés

Optimisation

Questions d'unicité

Formule explicite, prédiction et résidus

Modélisation

On dispose de p variables explicatives

Modèle en dimension p

$$y_{i} = \theta_{0}^{\star} + \sum_{j=1}^{p} \theta_{j}^{\star} x_{i,j} + \varepsilon_{i}$$

$$\varepsilon_{i} \stackrel{i.i.d}{\sim} \varepsilon, \text{ pour } i = 1, \dots, n$$

$$\mathbb{E}(\varepsilon) = 0$$

<u>Rem</u>: on fait l'hypothèse qu'il existe un vrai paramètre (point de vue fréquentiste)

Dimension p

Modèle matriciel

$$\underbrace{\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}}_{\mathbf{y}} = \underbrace{\begin{pmatrix} 1 & x_{1,1} & \dots & x_{1,p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n,1} & \dots & x_{n,p} \end{pmatrix}}_{X} \underbrace{\begin{pmatrix} \theta_0^{\star} \\ \vdots \\ \theta_p^{\star} \end{pmatrix}}_{\boldsymbol{\theta}} + \underbrace{\begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}}_{\boldsymbol{\varepsilon}}$$

De manière équivalente :
$$\mathbf{y} = X \boldsymbol{\theta}^\star + \boldsymbol{\varepsilon}$$

Notation colonne :
$$X=(\mathbf{x}_0,\mathbf{x}_1,\ldots,\mathbf{x}_p)$$
 avec $\mathbf{x}_0=\mathbf{1}_n$

Notation ligne:
$$X = \begin{pmatrix} x_1^\top \\ \vdots \\ x_n^\top \end{pmatrix} = (x_1, \dots, x_n)^\top$$

Vocabulaire

$$\mathbf{y} = X\boldsymbol{\theta}^{\star} + \boldsymbol{\varepsilon}$$

- $\mathbf{y} \in \mathbb{R}^n$: vecteur des observations
- $X \in \mathbb{R}^{n \times (p+1)}$: la matrice des variables explicatives (design)
- $heta^\star \in \mathbb{R}^{p+1}$: le **vrai** paramètre (inconnu) du modèle que l'on veut retrouver
- $\varepsilon \in \mathbb{R}^n$: vecteur de bruit

point de vue "observations" : $y_i = \langle x_i, \boldsymbol{\theta}^{\star} \rangle + \varepsilon_i$ pour $i = 1, \dots, n$ point de vue "variables explicatives" : $\mathbf{y} = \sum_{j=0}^p \theta_j^{\star} \mathbf{x}_j + \varepsilon$

Sommaire

Moindres carrés pour deux variables explicatives

Moindres carrés multi-dimensionnels

Modélisation matricielle

Définition des moindres carrés

Optimisation

Questions d'unicité

Formule explicite, prédiction et résidus

Estimateur des moindres carrés

 ${\underline{\bf Un}}$ estimateur des moindres carrées est solution du problème d'optimisation :

$$\hat{\boldsymbol{\theta}} \in \underset{\boldsymbol{\theta} \in \mathbb{R}^{p+1}}{\operatorname{arg \, min}} \left(\frac{1}{2} \| \mathbf{y} - X \boldsymbol{\theta} \|_{2}^{2} \right)$$

$$\hat{\boldsymbol{\theta}} \in \underset{\boldsymbol{\theta} \in \mathbb{R}^{p+1}}{\operatorname{arg \, min}} \frac{1}{2} \sum_{i=1}^{n} \left[y_{i} - \left(\theta_{0} + \sum_{j=1}^{p} \theta_{j} x_{i,j} \right) \right]^{2}$$

$$\hat{\boldsymbol{\theta}} \in \underset{\boldsymbol{\theta} \in \mathbb{R}^{p+1}}{\operatorname{arg \, min}} \frac{1}{2} \sum_{i=1}^{n} \left[y_{i} - \left(\langle x_{i}, \boldsymbol{\theta} \rangle \right) \right]^{2}$$

<u>Rem</u>: le minimiseur n'est pas toujours unique! <u>Rem</u>: le terme $\frac{1}{2}$ ne change rien au problème de minimisation, mais facilite certains calculs

Sommaire

Moindres carrés pour deux variables explicatives

Moindres carrés multi-dimensionnels

Modélisation matricielle

Définition des moindres carrés

Optimisation

Questions d'unicité

Formule explicite, prédiction et résidus

Condition nécessaire du premier ordre pour un minimum local (CNO)

Théorème : règle de Fermat

Si f est différentiable en un minimum local θ^* alors le gradient de f est nul en θ^* , i.e., $\nabla f(\theta^*) = 0$.

Rem: ce n'est une condition suffisante que si f est en plus convexe

$$\begin{split} \text{lci } f: \pmb{\theta} &\mapsto \frac{1}{2} \|\mathbf{y} - X \pmb{\theta}\|_2^2 \\ f(\pmb{\theta}) &= \frac{1}{2} \|\mathbf{y} - X \pmb{\theta}\|_2^2 = \frac{1}{2} \|\mathbf{y}\|^2 - \langle X \pmb{\theta}, \mathbf{y} \rangle + \frac{1}{2} \pmb{\theta}^\top X^\top X \pmb{\theta} \\ &= \frac{1}{2} \|\mathbf{y}\|^2 - \langle \pmb{\theta}, X^\top \mathbf{y} \rangle + \frac{1}{2} \pmb{\theta}^\top X^\top X \pmb{\theta} \end{split}$$

Le gradient de f en θ est défini comme le vecteur $\nabla f(\theta)$ tel que :

$$f(\boldsymbol{\theta} + h) = f(\boldsymbol{\theta}) + \langle h, \nabla f(\boldsymbol{\theta}) \rangle + o(h)$$

$$f(\boldsymbol{\theta} + h) = \frac{1}{2} \|\mathbf{y}\|^2 - \langle \boldsymbol{\theta} + h, X^{\top} \mathbf{y} \rangle + \frac{1}{2} (\boldsymbol{\theta} + h)^{\top} X^{\top} X (\boldsymbol{\theta} + h)^{\top} X (\boldsymbol{\theta}$$

Le gradient de f en θ est défini comme le vecteur $\nabla f(\theta)$ tel que :

$$f(\boldsymbol{\theta} + h) = f(\boldsymbol{\theta}) + \langle h, \nabla f(\boldsymbol{\theta}) \rangle + o(h)$$

$$f(\boldsymbol{\theta} + h) = \frac{1}{2} \|\mathbf{y}\|^2 - \langle \boldsymbol{\theta} + h, X^{\top} \mathbf{y} \rangle + \frac{1}{2} (\boldsymbol{\theta} + h)^{\top} X^{\top} X (\boldsymbol{\theta} + h)$$
$$= \frac{1}{2} \|\mathbf{y}\|^2 - \langle \boldsymbol{\theta}, X^{\top} \mathbf{y} \rangle - \langle h, X^{\top} \mathbf{y} \rangle$$
$$+ \frac{1}{2} \boldsymbol{\theta}^{\top} X^{\top} X \boldsymbol{\theta} + \frac{1}{2} h^{\top} X^{\top} X h + \boldsymbol{\theta}^{\top} X^{\top} X h$$

Le gradient de f en $m{\theta}$ est défini comme le vecteur $\nabla f(m{\theta})$ tel que :

$$f(\boldsymbol{\theta} + h) = f(\boldsymbol{\theta}) + \langle h, \nabla f(\boldsymbol{\theta}) \rangle + o(h)$$

$$f(\boldsymbol{\theta} + h) = \frac{1}{2} \|\mathbf{y}\|^2 - \langle \boldsymbol{\theta} + h, X^{\top} \mathbf{y} \rangle + \frac{1}{2} (\boldsymbol{\theta} + h)^{\top} X^{\top} X (\boldsymbol{\theta} + h)$$

$$= \frac{1}{2} \|\mathbf{y}\|^2 - \langle \boldsymbol{\theta}, X^{\top} \mathbf{y} \rangle - \langle h, X^{\top} \mathbf{y} \rangle$$

$$+ \frac{1}{2} \boldsymbol{\theta}^{\top} X^{\top} X \boldsymbol{\theta} + \frac{1}{2} h^{\top} X^{\top} X h + \boldsymbol{\theta}^{\top} X^{\top} X h$$

$$= f(\boldsymbol{\theta}) - \langle h, X^{\top} \mathbf{y} \rangle + \frac{1}{2} h^{\top} X^{\top} X h + \boldsymbol{\theta}^{\top} X^{\top} X h$$

Le gradient de f en θ est défini comme le vecteur $\nabla f(\theta)$ tel que :

$$f(\boldsymbol{\theta} + h) = f(\boldsymbol{\theta}) + \langle h, \nabla f(\boldsymbol{\theta}) \rangle + o(h)$$

$$f(\boldsymbol{\theta} + h) = \frac{1}{2} \|\mathbf{y}\|^{2} - \langle \boldsymbol{\theta} + h, X^{\top} \mathbf{y} \rangle + \frac{1}{2} (\boldsymbol{\theta} + h)^{\top} X^{\top} X (\boldsymbol{\theta} + h)$$

$$= \frac{1}{2} \|\mathbf{y}\|^{2} - \langle \boldsymbol{\theta}, X^{\top} \mathbf{y} \rangle - \langle h, X^{\top} \mathbf{y} \rangle$$

$$+ \frac{1}{2} \boldsymbol{\theta}^{\top} X^{\top} X \boldsymbol{\theta} + \frac{1}{2} h^{\top} X^{\top} X h + \boldsymbol{\theta}^{\top} X^{\top} X h$$

$$= f(\boldsymbol{\theta}) - \langle h, X^{\top} \mathbf{y} \rangle + \frac{1}{2} h^{\top} X^{\top} X h + \boldsymbol{\theta}^{\top} X^{\top} X h$$

$$= f(\boldsymbol{\theta}) + \langle h, X^{\top} X \boldsymbol{\theta} - X^{\top} y \rangle + \frac{1}{2} h^{\top} X^{\top} X h$$

Le gradient de f en θ est défini comme le vecteur $\nabla f(\theta)$ tel que :

$$f(\boldsymbol{\theta} + h) = f(\boldsymbol{\theta}) + \langle h, \nabla f(\boldsymbol{\theta}) \rangle + o(h)$$

$$f(\boldsymbol{\theta} + h) = \frac{1}{2} \|\mathbf{y}\|^{2} - \langle \boldsymbol{\theta} + h, X^{\top} \mathbf{y} \rangle + \frac{1}{2} (\boldsymbol{\theta} + h)^{\top} X^{\top} X (\boldsymbol{\theta} + h)$$

$$= \frac{1}{2} \|\mathbf{y}\|^{2} - \langle \boldsymbol{\theta}, X^{\top} \mathbf{y} \rangle - \langle h, X^{\top} \mathbf{y} \rangle$$

$$+ \frac{1}{2} \boldsymbol{\theta}^{\top} X^{\top} X \boldsymbol{\theta} + \frac{1}{2} h^{\top} X^{\top} X h + \boldsymbol{\theta}^{\top} X^{\top} X h$$

$$= f(\boldsymbol{\theta}) - \langle h, X^{\top} \mathbf{y} \rangle + \frac{1}{2} h^{\top} X^{\top} X h + \boldsymbol{\theta}^{\top} X^{\top} X h$$

$$= f(\boldsymbol{\theta}) + \langle h, X^{\top} X \boldsymbol{\theta} - X^{\top} \mathbf{y} \rangle + \underbrace{\frac{1}{2} h^{\top} X^{\top} X h}_{o(h)}$$

Ainsi,
$$\nabla f(\boldsymbol{\theta}) = X^{\top} X \boldsymbol{\theta} - X^{\top} \mathbf{y} = X^{\top}$$

Le gradient de f en θ est défini comme le vecteur $\nabla f(\theta)$ tel que :

$$f(\boldsymbol{\theta} + h) = f(\boldsymbol{\theta}) + \langle h, \nabla f(\boldsymbol{\theta}) \rangle + o(h)$$

$$f(\boldsymbol{\theta} + h) = \frac{1}{2} \|\mathbf{y}\|^{2} - \langle \boldsymbol{\theta} + h, X^{\top} \mathbf{y} \rangle + \frac{1}{2} (\boldsymbol{\theta} + h)^{\top} X^{\top} X (\boldsymbol{\theta} + h)$$

$$= \frac{1}{2} \|\mathbf{y}\|^{2} - \langle \boldsymbol{\theta}, X^{\top} \mathbf{y} \rangle - \langle h, X^{\top} \mathbf{y} \rangle$$

$$+ \frac{1}{2} \boldsymbol{\theta}^{\top} X^{\top} X \boldsymbol{\theta} + \frac{1}{2} h^{\top} X^{\top} X h + \boldsymbol{\theta}^{\top} X^{\top} X h$$

$$= f(\boldsymbol{\theta}) - \langle h, X^{\top} \mathbf{y} \rangle + \frac{1}{2} h^{\top} X^{\top} X h + \boldsymbol{\theta}^{\top} X^{\top} X h$$

$$= f(\boldsymbol{\theta}) + \langle h, X^{\top} X \boldsymbol{\theta} - X^{\top} \mathbf{y} \rangle + \underbrace{\frac{1}{2} h^{\top} X^{\top} X h}_{o(h)}$$

$$|\nabla f(\boldsymbol{\theta}) = X^{\top} X \boldsymbol{\theta} - X^{\top} \mathbf{y} = X^{\top} (X \boldsymbol{\theta} - \mathbf{y})|$$

Rappel sur le gradient

Le gradient de f en $\pmb{\theta}$ est défini comme le vecteur $\nabla f(\pmb{\theta})$ tel que :

$$f(\boldsymbol{\theta} + h) = f(\boldsymbol{\theta}) + \langle h, \nabla f(\boldsymbol{\theta}) \rangle + o(h)$$

 $\frac{\text{Propriét\'e}}{\text{d\'eriv\'ees}} : \text{le gradient peut aussi être d\'efini comme le vecteur des }$

$$\nabla f(\boldsymbol{\theta}) = \begin{pmatrix} \frac{\partial f}{\partial \theta_0} \\ \vdots \\ \frac{\partial f}{\partial \theta_p} \end{pmatrix}$$

Moindres carrés - équation(s) normale(s)

$$\nabla f(\boldsymbol{\theta}) = 0 \Leftrightarrow X^{\top} X \boldsymbol{\theta} - X^{\top} \mathbf{y} = X^{\top} (X \boldsymbol{\theta} - \mathbf{y}) = 0$$

Théorème

La CNO nous assure qu'un minimiseur $\hat{m{ heta}}$ satisfait l'équation :

Équation(s) normale(s) :
$$(X^{\top}X)\hat{\boldsymbol{\theta}} = X^{\top}\mathbf{y}$$

 $\hat{\boldsymbol{\theta}}$ est donc solution d'un système linéaire "Ax = b" pour une matrice $A = X^{\top}X$ et un second membre $b = X^{\top}\mathbf{y}$

<u>Rem</u>: si les variables sont redondantes il n'y pas unicité de la solution, tout comme cela arrivait en dimension un

Exo: coder en python une descente de gradient pour résoudre le problème des moindres carrées

Vocabulaire (et abus de langage)

Définition

On appelle matrice de Gram (Gramian matrix) la matrice

$$X^{\top}X$$

dont le terme général est $\langle \mathbf{x}_i, \mathbf{x}_j \rangle$. Elle est parfois aussi appelée matrice des corrélations

Rem: si on normalise les variables pour que $\forall j \in [0, p], \|\mathbf{x}_j\|^2 = n$, la diagonale de la matrice est (n, \dots, n)

Le terme
$$X^{\top}\mathbf{y} = \begin{pmatrix} \langle \mathbf{x}_0, \mathbf{y} \rangle \\ \vdots \\ \langle \mathbf{x}_p, \mathbf{y} \rangle \end{pmatrix}$$
 représente le vecteur des

corrélations entre variables explicatives et observations

Sommaire

Moindres carrés pour deux variables explicatives

Moindres carrés multi-dimensionnels

Modélisation matricielle

Définition des moindres carrés

Optimisation

Questions d'unicité

Formule explicite, prédiction et résidus

Estimateur des moindres carrés et unicité

Prenons $\hat{\boldsymbol{\theta}}$ (une) solution de $(X^{\top}X)\hat{\boldsymbol{\theta}} = X^{\top}\mathbf{y}$

Non unicité : si $\operatorname{Ker}(X) = \{ \boldsymbol{\theta} \in \mathbb{R}^{p+1} : X\boldsymbol{\theta} = 0 \} \neq \{ 0 \}$ (noyau non trivial), prenons $\boldsymbol{\theta}_K \in \operatorname{Ker}(X)$ non nul, alors

$$X(\hat{\boldsymbol{\theta}} + \boldsymbol{\theta}_K) = X\hat{\boldsymbol{\theta}}$$

puis
$$(X^{\top}X)(\hat{\boldsymbol{\theta}} + \boldsymbol{\theta}_K) = X^{\top}\mathbf{y}$$

Cela montre que l'espace des solutions de l'équation normale peut s'écrire comme un sous espace (affine) :

$$\hat{\boldsymbol{\theta}} + \operatorname{Ker}(X)$$

Cas d'une fonction convexe, e.g., $f(\theta) = \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2$, dont l'ensemble des minimiseurs n'est pas unique :

Cas d'une fonction convexe, e.g., $f(\theta) = \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2$, dont l'ensemble des minimiseurs n'est pas unique :

Cas d'une fonction convexe, e.g., $f(\theta) = \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2$, dont l'ensemble des minimiseurs n'est pas unique :

Cas d'une fonction convexe, e.g., $f(\theta) = \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2$, dont l'ensemble des minimiseurs n'est pas unique :

Cas d'une fonction convexe, e.g., $f(\theta) = \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2$, dont l'ensemble des minimiseurs n'est pas unique :

Non unicité : interprétation pour une variable

Rappel:
$$X = \begin{pmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix}$$

Si
$$\operatorname{Ker}(X)=\{\boldsymbol{\theta}\in\mathbb{R}^2:X\boldsymbol{\theta}=0\}\neq\{0\}$$
 il existe $(\theta_0,\theta_1)\neq(0,0)$:

$$\begin{cases} \theta_0 + \theta_1 x_1 &= 0\\ \vdots &\vdots &= \vdots\\ \theta_0 + \theta_1 x_n &= 0 \end{cases}$$

- **1**. si $\theta_1 = 0$ **absurde**, car alors $\theta_0 = 0$, et donc $(\theta_0, \theta_1) \neq (0, 0)$
- 2. si $\theta_1 \neq 0$
 - **2.1** si $\forall i, x_i = 0$ alors $X = (\mathbf{1}_n, 0)$
 - 2.2 sinon il existe $x_{i_0} \neq 0$ puis $\forall i, x_i = -\theta_0/\theta_1 = x_{i_0}$, i.e., $X = (\mathbf{1}_n \quad x_{i_0} \cdot \mathbf{1}_n)$

Interprétation en dimension quelconque

Rappel: on note $X=(\mathbf{1}_n,\mathbf{x}_1,\ldots,\mathbf{x}_p)$, les colonnes étant les variables explicatives (de taille n)

La propriété $\operatorname{Ker}(X) = \{ \boldsymbol{\theta} \in \mathbb{R}^{p+1} : X\boldsymbol{\theta} = 0 \} \neq \{ 0 \}$ signifie qu'il existe une relation linéaire entre les variables explicatives $\mathbf{1}_n, \mathbf{x}_1, \dots, \mathbf{x}_p$ (on dit aussi que les variables sont liées), *i.e.*, il existe un vecteur non nul $\boldsymbol{\theta} = (\theta_0, \dots, \theta_p)^{\top} \in \mathbb{R}^{p+1}$ tel que

$$\theta_0 \mathbf{1}_n + \sum_{j=1}^p \theta_j \mathbf{x}_j = 0$$

Quelques rappels d'algèbre

Définition

Rang d'une matrice : $\operatorname{rang}(X) = \dim(\operatorname{vect}(\mathbf{1}_n, \mathbf{x}_1, \dots, \mathbf{x}_p))$

Propriété : $rang(X) = rang(X^{\top})$

Théorème du rang

$$\operatorname{rang}(X) + \dim(\operatorname{Ker}(X)) = p + 1$$

 $\operatorname{rang}(X^{\top}) + \dim(\operatorname{Ker}(X^{\top})) = n$

Exo: $Ker(X) = Ker(X^{T}X)$

Rem: $\operatorname{rang}(X) \leqslant \min(n, p+1)$

Détails sur ce thème : cf. Golub et Van Loan (1996)

Quelques rappels d'algèbre (suite)

Caractérisation de l'inversion

Une matrice carrée $A \in \mathbb{R}^{m \times m}$ est inversible

- si et seulement si son noyau est nul : $Ker(A) = \{0\}$
- si et seulement elle est de plein rang rang(A) = m

Exo: Montrer que $Ker(A) = \{0\}$ est équivalent au fait que la matrice $A^{T}A$ est inversible.

Sommaire

Moindres carrés pour deux variables explicatives

Moindres carrés multi-dimensionnels

Modélisation matricielle

Définition des moindres carrés

Optimisation

Questions d'unicité

Formule explicite, prédiction et résidus

Formule des moindres carrés

Formule pour le cas d'un noyau non trivial

Si la matrice X est de plein rang (i.e., si $X^{\top}X$ inversible) alors

$$\hat{\boldsymbol{\theta}} = (X^{\top} X)^{-1} X^{\top} \mathbf{y}$$

Rem: on retrouve pour la moyenne pour le cas simple $X=\mathbf{1}_n$:

$$\hat{\boldsymbol{\theta}} = (\langle \mathbf{1}_n, \mathbf{1}_n \rangle)^{-1} \langle \mathbf{1}_n, \mathbf{y} \rangle = \bar{y}_n$$

<u>Rem</u>: dans le cas simple $X = \mathbf{x} = (x_1, \dots, x_n)^\top : \hat{\boldsymbol{\theta}} = \langle \frac{\mathbf{x}}{\|\mathbf{x}\|^2}, \mathbf{y} \rangle$

Exo: retrouver le cas unidimensionnel avec constante

ATTENTION: en pratique éviter de calculer l'inverse de X^TX :

- cela est coûteux en temps de calcul
- une matrice $(p+1) \times (p+1)$ peut être volumineuse, si " $p \gg n$ " (e.g., en biologie n patients, p gènes...)

Prédiction

Définition

Vecteurs des prédictions : $\hat{y} = X\hat{\theta}$

 $\underline{\mathsf{Rem}}$: $\hat{\mathbf{y}}$ est une fonction linéaire des observations \mathbf{y}

Rappel : un projecteur orthogonal est une matrice H telle que

1. H est symétrique : $H^{\top} = H$

2. H est idempotente : $H^2 = H$

Proposition

En notant H_X le projecteur orthogonal sur l'espace engendré par les colonnes de X, on obtient que $\hat{\mathbf{y}} = H_X \mathbf{y}$

Rem: si X est de plein rang, alors $\hat{\mathbf{y}} = X(X^{\top}X)^{-1}X^{\top}\mathbf{y}$. Dans ce cas $H_X = X(X^{\top}X)^{-1}X^{\top}$ est souvent appelée matrice "chapeau" ($\mathbf{x} : hat \ matrix$)

Prédiction (suite)

Si une nouvelle observation $x_{n+1}=(x_{n+1,1},\dots,x_{n+1,p})$ arrive, la prédiction associée est :

$$\hat{y}_{n+1} = \langle \hat{\boldsymbol{\theta}}, (1, x_{n+1,1}, \dots, x_{n+1,p})^{\top} \rangle$$

$$\hat{y}_{n+1} = \hat{\theta}_0 + \sum_{j=1}^p \hat{\theta}_j x_{n+1,j}$$

<u>Rem</u>: l'équation normale assure l'**équi-corrélation** entre des observations et des prédictions avec les variables explicatives :

$$(X^{\top}X)\hat{\boldsymbol{\theta}} = X^{\top}\mathbf{y} \Leftrightarrow X^{\top}\hat{\mathbf{y}} = X^{\top}\mathbf{y}$$

$$\Leftrightarrow \begin{pmatrix} \langle \mathbf{x}_{0}, \hat{\mathbf{y}} \rangle \\ \vdots \\ \langle \mathbf{x}_{p}, \hat{\mathbf{y}} \rangle \end{pmatrix} = \begin{pmatrix} \langle \mathbf{x}_{0}, \mathbf{y} \rangle \\ \vdots \\ \langle \mathbf{x}_{p}, \mathbf{y} \rangle \end{pmatrix}$$

Exo: Soit
$$P = \begin{pmatrix} \frac{1}{n} & \cdots & \frac{1}{n} \\ \vdots & \ddots & \vdots \\ \frac{1}{n} & \cdots & \frac{1}{n} \end{pmatrix} \in \mathbb{R}^{n \times n}$$
.

- 1. Vérifier que P est une matrice de projection orthogonale.
- 2. Déterminer Im(P), l'espace image de P.
- 3. On note $\mathbf{x} = (x_1, \dots, x_n)^{\top}$ et \overline{x}_n la moyenne et σ_x l'écart-type (empirique) :

$$\overline{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$$
 $\sigma_x = \sqrt{\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x}_n)^2}.$

Montrer que $\sigma_x = \|(\operatorname{Id}_n - P)x\|/\sqrt{n}$.

Résidus et équations normales

Définition

Résidu(s):
$$\mathbf{r} = \mathbf{y} - \hat{\mathbf{y}} = \mathbf{y} - X\hat{\boldsymbol{\theta}} = (\mathrm{Id}_n - H_X)\mathbf{y}$$

Rappel:

Équations normales :
$$(X^T X)\hat{\boldsymbol{\theta}} = X^T \mathbf{y}$$

Grâce aux résidus on peut écrire cette équation sous la forme :

$$X^{\top}(X\hat{\boldsymbol{\theta}} - \mathbf{y}) = 0 \Leftrightarrow X^{\top}\mathbf{r} = 0 \Leftrightarrow \mathbf{r}^{\top}X = 0$$

Cela se réécrit avec $X=(\mathbf{1}_n,\mathbf{x}_1,\ldots,\mathbf{x}_p)$ de la manière suivante :

$$\forall j=1,\ldots,p:\langle \mathbf{r},\mathbf{x}_j\rangle=0 \text{ et } \overline{r}_n=0$$

Interprétation : le résidu est orthogonal aux variables explicatives

Visualisation : prédicteurs et résidus (p = 2)

