Дефиниция за сходимост

Казваме, че редицата A е сходяща и има граница L ако за всяко положително число ϵ можем да намерим такова число n_0 , че всички членове от n_0 -вия нататък са на разстояние по-малко от ϵ от L.

$$\forall \epsilon > 0, \exists n_0 \in \mathbb{N}: \forall n > n_0 \Rightarrow |a_n - L| < \epsilon$$

Граница на редица записваме по този начин:

$$\lim_{n\to\infty} a_n = L$$

След определено число n всички членове са в ϵ околност на L.

И след като това е изпълнено за всяко $\epsilon > 0$, колкото и малко да е то, значи можем да твърдим, че от когато п клони към безкрайност, членовете на редицата са произволно близки до L. Безкрайно близки до L.

Дефиниция за сходимост на Коши

Съществува още една дефиниция за сходяща редица, която ще наричаме дефиниция на Коши.

Дефиниция:

Една редица е сходяща, ако за всяко $\epsilon > 0$ можем да намерим някакво число N такова, че за всяко m и n по-големи от N да следва:

$$|a_n-a_m|<\epsilon$$

Забележете, че тук нищо не се казва за самата граница на редицата. Тази дефиниция се използва основно когато не сме сигурни за стойността на границата.

Диференцируема функция

Функцията f(x) се нарича диференцируема в точката а, ако в дадена вътрешна точка X_0 от дефиниционната област на функцията съществува границата

$$\lim_{x \to x_0} \left(\frac{f(x) - f(x_0)}{x - x_0} \right)$$

Теорема на Лагранж (Теорема за крайните нараствания)

Теорема:

Ако f(x) e

- 1. Непрекъсната над [*a*,*b*]
- 2. $\exists f'(x) \forall x \in (a,b)$

то $\exists c \in (a,b)$, за която

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Забележете, че първият интервал е затворен, а вторият - отворен.

Доказателство:

Доказателсвото се основава на теоремата на Рол. Съставяме си помощна функция

$$F(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - b)$$

която е непрекъсната над [a,b] и диференцируема над (a,b) (използването на помощни функции е черна магия - много силно оръжие, но е трудно за научаване).

Нашата помощна функция има равни стойности в края на интервала [a,b], специално сме си я избракли такава за да можем да приложим теоремата а Рол.

$$F(a) = f(a) - \frac{f(b) - f(a)}{b - a}(a - b) = f(b)$$

$$F(b) = f(b) - \frac{f(b) - f(a)}{b - a}(b - b) = f(b)$$

$$F'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$$

От теоремата на Рол имаме, че за F има точка $c \in (a,b)$ за която F'(c) = 0. Което означава $F'(c) = f'(c) - \frac{f(b) - f(a)}{b - a} = 0 \Rightarrow f'(c) = \frac{f(b) - f(a)}{b - a}$ и така намерихме C което да отговаря на условията на теоремата. С което доказахме нашата теорема. В това доказателство трябва да запомните, че се използва теоремата на Рол и да намерите начин да запомните помощната функция(хубаво ще е да се позамислите малко, за да започнете сами да намирате подходящи помощни функции за целите които искате да постигнете).

Теорема, свързваща първа производна и монотонност на функция теорема:

Ако f(x) е дифенерцируема над интервала <a,b>, можем да определим нейната монотонност чрез първата производна както следва:

- 1. f(x)≥0⇔ върху интервала <a,b>, то функцията е монотонно растяща върху интервала <a,b>
- 2. $f(x) \le 0 \Leftrightarrow$ върху интервала <a,b>, то функцията е монотонно намаляваща върху интервала <a,b>
- 3. $f(x)>0 \Longrightarrow$ върху интервала <a,b>, то функцията е строго монотонно растяща върху интервала <a,b>
- 4. $f(x)<0 \Longrightarrow$ върху интервала <a,b>, то функцията е строго монотонно намаляваща върху интервала <a,b>

Доказателство:

Права посока

Имаме, че f(x)≥0 над <a,b>, ще докажем, че функцията е монотонно растяща за интервала <a,b>.

Взимаме си произволни x_1,x_2 такива, че $x_1,x_2 \in \langle a,b \rangle$, $x_1 < x_2$ (когато си взимаме произволни, означава че това което ще докажем важи за всички x_1, x_2 отговарящи на условитео). Взимаме интервала $[x_1,x_2]$ и Прилагаме теоремата на Лагранж за него :

$$\exists c \in [x_1, x_2]$$
: $F'(c) = f'(c) - \frac{f(x_1) - f(x_2)}{x_1 - x_2}$ по условие имаме $f'(x) \ge 0$ от което следва

$$\frac{f(x_1) - f(x_2)}{x_1 - x_2} \ge 0$$

имаме и $x_2-x_1>0$ следователно $f(x_2)-f(x_1)\geq 0 \Longrightarrow f(x_2)\geq f(x_1)$ това важи за прозиволно избрани x_1,x_2 от което следва че теоремата е вярна в първия случай. Остналите случаи са аналогични.

Обратна посока

Имаме че функцията е монотонно растяща за интервала <a,b>, ще докажем че $f(x) \ge 0$.

От дефиницията за производна имаме че $f'(x) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$. От монотонноста имаме, че

за
$$x_1,x_2$$
 ∈< a,b >, x_1 < x_2 \Longrightarrow $f(x_1)$ ≤ $f(x_2)$ и така:

$$x_0 > x$$
, $f'(x) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$

имаме граница на положително число върху положително, което е положително, а за $x_0 < x$ имаме граница на отрицателно върху отрицателно, което също е положително, като добавим и че знаменателят не може да става $0 \implies f(x) \ge 0$.

Аналогично и за останалите случаи.

Смяна на променливата в неопределен интеграл.

Нека функцията f'(x) е непрекъсната в отворения интервал Δx , а $\varphi(t)$ е непрекъснато диференцируема в отворения интервал Δt , при което $\varphi(\Delta t) \subset \Delta x$. Тогава, ако

$$\int f(x)dx = F(x) + C$$

To

$$\int f(\varphi(t))\varphi'(t) dt = F(\varphi(t)) + C$$

Доказателство. Да положим $\Phi'(t) = F(\varphi(t))$. Съгласно верижното правило за диференциране на съставни функции имаме

$$\Phi'(t) = F'(\varphi(t))\varphi'(t) = f(\varphi(t))\varphi'(t)$$

понеже по определение F'(x) = f(x). Това показва, че $\Phi(t)$ е една примитивна за функцията $(\varphi(t))\varphi'(t)$, откъдето следва верността на формулата

$$\int f(\varphi(t))d\varphi(t) = F(\varphi(t)) + C$$

и да се разглежда като получена след полагането $x = \varphi(t)$ и затова се нарича формула за смяна на променливата.

Важен частен случай е, когато знаем

$$\int f(t)dt = F(t) + C$$

Тогава след линейната смяна t = ax + b, $a \neq 0$, получаваме

$$\int f(ax+b)d(ax+b) = a \int f(ax+b)dx = F(ax+b) + C$$

=>

$$\int f(ax+b)dx = \frac{1}{a}F(ax+b) + C$$

Кога една функция клони към $+\infty$

Коши

Казваме че функцията f(x) има граница $+\infty$ при $x -> +\infty$ ако за всяко $\forall N(N$ -число) може да се намери число A такова че за всяко $\forall x \in D$ и x > A да бъде изпълнено f(x) > N

Хайне

Дадена ни е функцията f(x). Ако за всяка безкрайно голяма редица от стойности на аргумента $\{x_n\}$, всички членове на която са положителни, съответната редица от стойности на функцията $\{f(x_n)\}$ клони към $+\infty$, то казваме, че и функция f(x) клони към $+\infty$,

Теорема за равномерната непрекъснатост

Теорема:

f(x) дефинирана върху X.

Ако f(x) е непрекъсната върху крайния затворен интервал [a,b], то f(x) е равномерно непрекъсната в него.

Интегриране по части

Формулата за интегриране по части гласи следното:

$$\int f(x)dg(x) = f(x)g(x) - \int g(x)df(x)$$

Доказателство:

Ще разпишем производната на f(x)g(x):

[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)

И ще използваме факта, че интеграл от производната на нещо е самото нещо (+ константа разбира се):

$$\int (h(x))' dx = h(x)$$

сега просто заместваме h(x) със f(x)g(x):

$$f(x)g(x) = \int (f(x)g(x))'dx$$

$$= \int [f'(x)g(x) + f(x)g'(x)]dx$$

$$= \int g(x)f'(x)dx + \int f(x)g'(x)dx = \int g(x)df(x) + \int f(x)dg(x)$$

Прехвърляме от правилната страна и получаваме:

$$\int f(x)dg(x) = f(x)g(x) - \int g(x)df(x)$$

Точка на сгъстяване

Дефиниция:

Нека X ⊂ R

Една стойност x_0 от множеството X наричаме *точка на сгъстяване*, ако във всяка ненулева нейна околност има точка от X, различна от x_0 :

 $\forall \delta > 0, \exists x \in X \ x \neq x 0 : x \in (x_0 - \delta, x_0 + \delta)$

Теорема на Вайерщрас

Теорема:

Ако f(x) е непрекъсната и дефинирана над интервала [a,b]то нейните точни горна и долна граници в интервала [a,b] съществуват и освен това се достигат в интервала.

Теорема на Рол

Теорема:

Нека f(x) е определена върху краен затворен интервал [a,b] и такава че:

- 1. f(x) е непрекъсната върху [a, b]
- 2. $\exists f'(x) \forall x \in (a,b)$
- 3. f(a)=f(b)

 $\Rightarrow \exists c \in (a,b): f'(c)=0$

Доказателство:

Ще използваме теоремата на Вайерщрас, която гласи, че всяка непрекъсната функция върху краен затворен интервал достига своята най-голяма и най-малка стойност за някакви стойности принадлежащи на интервала. Т.е

$$\exists x_0, x_1 \in [a,b] : f(x_1) = \max_{x \in [a,b]} f(x) f(x); f(x_0) = \min_{x \in [a,b]} f(x)$$

- Ако минимумът и максимумът са равни, тогава функцията е константа, т.е производна нула навсякъде т.е теоремата е доказана
- Ако минимумът и максимумът се различават, тогава със сигурност поне едно от x_0, x_1 ще бъде различно от a и b (защото $f(x_0) \neq f(x_1)$, а f(a) = f(b)). Без ограничение на общността допускаме, че $x_0 \neq a$ и $x_0 \neq b$.

Тогава $x_0 \in (a,b)$, x_0 локален екстремум $\Rightarrow (0$ т теоремата на Ферма) $f'(x_0) = 0$.

Готово - намерихме точка от отворения интервал, с нулева производна.