Tillståndsgraf och tillståndsdiagram

Tillståndsgraf

Figur 1: Tillståndsmaskinen tillståndsgraf.

Tillståndsdiagram

- Q₁Q₂ utgör aktuellt tillstånd
- X utgör insignal för att uppdatera till nästa tillstånd
- Y utgör grindnätets utsignal
- Q₁⁺Q₂⁺ utgör nästa tillstånd

\mathbf{Q}_{1}	Q_2	X	Y	Q_1^+	Q_2^+
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	0	1
0	1	1	0	1	0
1	0	0	0	1	0
1	0	1	0	1	1
1	1	0	1	1	1
1	1	1	1	0	0

Tabell 1: Tillståndsmaskinens tillståndsdiagram.

• Ur ovanstående tillståndsgraf kan följande ekvationer härledas med Karnaugh-diagram:

$$Y = Q_1 Q_2$$

$$Q_1^+ = Q_1 Q_2' + Q_2 (Q_1^{\ \wedge} X)$$

$$Q_2^+ = Q_2^{\ \wedge} X$$