

Chapitre NFperf Performances (1^{er} aperçu)

Paramètres de performance Analyse de la latence

Performances et qualité de service

Beaucoup de critères à prendre en compte

- *Débit* (moyen, *crête*)
- Attente de mise en relation
- Volume de données, trafic
- Délai entre départ et arrivée de l'information: latence
- Stabilité / Variabilité (*jigue*)
- Taux de pertes
- Volume utile(utilisateur) « payload » / overhead
- ...
- Qualité de service = spécification des critères retenus

Plan du chapitre NFperf

1^{er} aperçu de performance: <u>latence</u>, <u>débit</u>, <u>trafic</u>

- Réseaux par paquets: estimer les délais induits par le réseau
 - Indicateurs de performance
 - Analyse de la <u>latence</u>
 - Débit et temps d'attente
- Réseaux à commutation de circuits: capacité à écouler ur Pasicau programme en 2021
 - Trafic
 - Loi d' Erlang
 - Valeurs typiques

Performances des réseaux par paquets

Débit

- nombre de bits par unité de temps (unités : b/s, kb/s = 1000 b/s, Mb/s = 10e+06 b/s, Gb/s=10e+09 b/s)
- bandwidth, throughput, bit rate
- Délai ou latence
 - le temps entre l'émission d'un paquet et sa réception
 - delay or latency
- Temps aller-retour (RTT Round-Trip Time)

Latence dans les réseaux de commutation de paquets

 Quatre sources de délai à <u>chaque</u> passage de routeur

1. propagation:

 pas forcément le plus important

2. traitement:

- vérifier le code d'erreurs
- choix de liens de sortie
- petit par rapport aux autres

3. transmission:

- délai entre début et fin de paquet (selon débit du canal)

Temps de propagation

- Propagation entre A et B
 - le temps nécessaire pour que le front du signal arrive de A à B : s_i - t_i

Latence

Latence

- Latence
 - Latence = Propagation + Transmission + Attente

```
en fait: \Sigma Propag + \Sigma Trans + \Sigma Att liens noeuds
```

- Propagation = Distance / Vitesse
 - cuivre : Vitesse = 2.3×108 m/s
 - verre : Vitesse = 2×10⁸ m/s
- <u>Transmission = Taille / Débit</u>
- Vitesse de propagation (fibre): 5μs/km (tour du monde en 0.2s)
- Exemple sur Lisbonne New York (propagation en 35 ms)
 - requête 1 octet, réponse 1 octet : 70 ms
 - fichier 25 Moctets sur 10 Mb/s : 20 s

Exemple

• à l'instant 0, A envoie un paquet de 1000 octets à B; quand est-il reçu par B (vitesse = 2e+08 m/s) ?

distance	20 km	20000 km	2 km	20 m
débit	10 kb/s	1 Mb/s	10 Mb/s	1 Gb/s
propagation	0.1 ms	100 ms	0.01 ms	0.1 µs
transmission	800 ms	8 ms	0.8 ms	8 µs
latence	800.1 ms	108 ms	0.81 ms	8.1 µs

Calcul du débit et de l'attente (TP)

- Mesures par ping (pour débit et attente supposés constants)
 - 50 octets: 100 ms (latence, 1/2 RTT)
 - 1500 octets : 200 ms
 - distance : 10000 km
- Calculez: Débit et Attente

Temps d'attente: modèle math.

- File d'attente M/M/1
 - temps distribués exponentiellement $P(\Delta > t) = e^{-\lambda t}$, distribution du temps Δ entre 2 arrivées, et temps de sortie (traitement-transmission) avec e - µt
 - taux d'arrivée λ (pag/s), taux de service μ , $\rho = \lambda/\mu$ (<1)
 - On cherche: nombre (moyen) de clients N, délai T (attente moyenne dans le routeur)

Intervalle moyen

$$N = \frac{\rho}{(1-\rho)}$$

$$T = \frac{1}{\mu(1-\rho)}$$

$$T = \frac{N}{\lambda}$$

Exemples numériques

- Paquet de 1500 octets (en moyenne) (=12000 bits)
 - liaison de 1 Mb/s (distance = 0)
 - temps de transmission12 ms
 - taux de service $\mu = 1/(12x10^{-3})$ 83 paq/s

$$\lambda$$
 [paq/s] 10 40 60 70 80 $1/\lambda$ [ms] (inter-arrivée)100 25 16 14 12,5

Temps d'attente dans le routeur

Dimensionnement du tampon

N= taille moyenne de la file

Soit M (> N) la taille du tampon

Si un paquet arrive alors que le tampon est plein, il est perdu.

- 1. Quelle est la probabilité de perte d'un paquet (que le réseau perde au moins 1 paquet)
 - Pour M=2N
 - Pour M=10N
 - Pour M=100N
- 2. Calculer M pour que:
 - Taux de perte de paquet < 10⁻⁶
 - Réponse: en cours « Évaluation de performances »

Bilan chapitre NFperf: notions essentielles

- Qualité de service
 - nombreux paramètres pour caractériser les performances
- Notion de latence
 - facteurs intervenant dans la latence
 - importance des facteurs « temps de transmission », débit
- Importance de modèles mathématiques
 - caractérisation et modélisation de phénomènes aléatoires
- Conception de nouveaux réseaux ou systèmes: basée sur des calculs de performances attendues