Microprocessador (processador- CPU)

Executar cálculos e tomar decisões

Sistema binário

Entrada -> processamento-> saida

ULA (unidade de lógica e aritmética)

Registradores

Apontador de instrução -> endereço da próxima execução Registrador da instrução -> possui as instruções que serão executadas Apontador de Pilha -> endereço da pilha de execução do programa

O que analisar? arquitetura de pontos flutuantes

Clock

Modelo de computação

Microcontrolador

"um pequeno computador" (SoC) Sistema em um chip núcleo de processamento, memórias, I/O (E/S)

sleep ou wait

Circuito integrado (IC)

Circuito integrado de aplicação específica (ASIC)

MSP482p401r ARM Cortex-M4 ASIC²

Analisar a arquitetura

ARM Cortex-M0+ is Inside the NXP MKL25Z Chip

MKL25Z128 Integrated Circuit¹

Features mais importantes

Tamanho da palavra 32, 64, 128

Número de registradores

Tamanhos de Flash/RAM

Suporte de previsão de ramificação

Quais as intruções aritiméticas que ele opera

suporte a cache de dados ponto fluturante aritmético

arquitetura de processamento

Quanta memória eu vou precisar para a minha aplicação?

O quão rápido a aplicação precisa rodar?

Que tipo de suporte matemático eu preciso?

Selector guide | guide compare

Memory Features									√ Package																				
	Part Number			人		1											Ė					FM	FT	DA	LH	LK	ш	MP	МС
Sub- Family			CPU (MHz)	Flash (KB)	SRAM (KB)	DMA	Low-Power UART	UART	ISO7 816-3	SPI	l³C	TSI	PS	Flex IO	RTC	12-bit DAC	16-bit ADC w/DP C	12-bit ADC	Total I/Os	Oth	er 	32 QFN (5 x 5, 0.5 mm)	48 QFN (7 x 7, 0.5 mm)	36X FBGA (3.5 x 3.5, 0.5 mm)	64 LOFP (10 x 10, 0.5 mm)	80 LOFP (12 x 12, 0.5 mm)	100 LQFP (14 x 14, 0.5 mm)	64 MAPBGA (5 x 5, 0.5 mm)	121 MAPBGA (8 x 8, 0.65 mm)
KI 24	MKL24Z32xxx4		18 IHz	32	4	1	1	2		2	2				√			√	23~66	USB 2.0 F Host/Do		1	1	1	√				
KL24	MKL24Z64xxx4		18 1Hz	64	8	1	1	2		2	2				1			J	23~66	USB 2.0 F Host/De		1	1	J	J				
	MKL25Z32xxx4		48 IHz	32	4	1	1	2		2	2	√			1	√	1		23~66	USB 2.0 F: Host/De		1	1	J	√				
KL25	MKL25Z64xxx4	M	48 1Hz	64	8	1	1	2		2	2	1			1	√	1		23~66	USB 2.0 F: Host/De		1	1	J	J				
	MKL25Z128xxx4	M	18 IHz	128	16	1	1	2		2	2	1			1	1	1		23~66	USB 2.0 F: Host/De		1	1	1	√				
	MKL26Z32xxx4	M	18 IHz	32	4	1	1	2		2	2	√	1		√	√	1		23~50	USB 2.0 F3 Host/De		1	1	1					
	MVI 26764sov4		1 8	44	0	,	1	2		2	2	1	,		,	,	,		2250	USB 2.0 F	S OTG/	,	,	,					

Manual do usuário

Hapidly prototype AHM® Cortex®-M4 and Cortex-MU+ processors

Freescale Freedom Development Platform

Overview

The Pressare Preedom development platform is a small, low-power, cost-effective evaluation and development system for quick application prototyping and demonstration of Rinetts MCU families.

Esch platform offere an essy-to-use mass-storage device mode flash programmer, virtual serial port and classic programming and run-control capsibilities.

It's easy to get started. Simply choose your preferred Freedom development hardware, select compatible software, connect with the community and go.

Example Freescale Freedom Development Platform: FRDM-KL25Z

Features

- . Cost-effective (starting at \$12.95)
- Small size (approximately 3.25° x 2°), fits within a mint tin
- Arouno" toolprint-compatible with support for a rich set of third-party expansion boards ("shields")
- Hinelis MCUs based on ARM technology
- Easy scores to the MCU VO pins
- Integrated open-standard serial and debug adapter (OpenSDA) with a poort for several industrystandard debug interfaces.
- Capacitive louds silicer and tillcolor LED
- Flexible power supply options coin cell battery, external source

Datasheet

Eletricas

Timing

Ambiente de depuração

pacote físico

1.4 Voltage and current operating ratings

Table 4. Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V_{DD}	Digital supply voltage	-0.3	3.8	V
I _{DD}	Digital supply current	_	120	mA
V _{IO}	IO pin input voltage	-0.3	V _{DD} + 0.3	V
I _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V_{DDA}	Analog supply voltage	$V_{DD} - 0.3$	V _{DD} + 0.3	V
V _{USB_DP}	USB_DP input voltage	-0.3	3.63	V
V _{USB_DM}	USB_DM input voltage	-0.3	3.63	V
V _{REGIN}	USB regulator input	-0.3	6.0	V

- 1. If configured as an output.
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 14. SPI master mode timing (CPHA = 0)

2.4.1 Thermal operating requirements Table 15. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit
T _J	Die junction temperature	-4 0	125	ပ္
T _A	Ambient temperature	-4 0	105	ပ္

11.2.2 Modes of operation

11.2.2.1 Run mode

In Run mode, the PORT operates normally.

11.2.2.2 Wait mode

In Wait mode, PORT continues to operate normally and may be configured to exit the Low-Power mode if an enabled interrupt is detected. DMA requests are still generated during the Wait mode, but do not cause an exit from the Low-Power mode.

11.2.2.3 Stop mode

In Stop mode, the PORT can be configured to exit the Low-Power mode via an asynchronous wakeup signal if an enabled interrupt is detected.

11.2.2.4 Debug mode

In Debug mode, PORT operates normally.

CHIP ERRATA

Errata ID	Errata Title
3863	ADC: In 16-bit differential mode, ADC may result in a conversion error when positive input is near upper rail reference voltage
5751	FTFx: Launching the Read 1's Section command (RD1SEC) on an entire flash block results in access error (ACCER).
6070	I2C: Repeat start cannot be generated if the I2Cx_F[MULT] field is set to a non-zero value
5746	PIT: When using the PIT to trigger DMA transfers using cycle steal mode, two data transfers per request are generated
5666	PMC: Maximum current consumption in VLPR, VLPW, VLPS, LLS and VLLS modes may be higher than data sheet specification.
5667	PMC: When used as an input to ADC or CMP modules, the PMC bandgap 1-V voltage reference is not available in VLPx, LLS, or VLLSx modes
5472	SMC: Mode transition VLPR->VLLS0(POR disabled)->RUN, will cause POR & LVD.
5745	SPI1: Back to back DMA data transfers are not possible if the core:bus frequency ratio is greater than 4:1
5490	SPI1: DMA data transfers at the maximum baud rate can result in corrupted data
5515	TSI: The end of scan flag is not automatically cleared when continuously scanning
5744	UART0: Receiver wakeup control bit cannot be set immediately after a wakeup event
5563	UART0: When the Receiver Wake Up control bit is set, an IDLE condition is not detected correctly
5753	UART1 / UART2: When the Receiver Wake Up control bit is set, an IDLE condition is not detected correctly
5928	USBOTG: USBx_USBTRC0[USBRESET] bit does not operate as expected in all cases

kits de desenvolvimento

