广告流水灯 预习报告

实验内容

用触发器、组合函数器件和门电路设计一个广告流水灯,该流水灯由8个LED组成,工作时始终为1暗7亮,且这一个暗灯循环右移。

- 1) 写出设计过程, 画出设计的逻辑电路图, 按图搭接电路
- 2) 将单脉冲加到系统时钟端,静态验证实验电路
- 3) 用 Multisim 中 Agilent 函数发生器产生 TTL 连续脉冲信号加到系统时钟端,用 Tektronix 示波器观察并记录时钟脉冲 CP、触发器的输出端 Q2、Q1、Q0 和 8 个 LED 上的波形。

实验设计方案

状态转移表

根据题目可知,一共有8个状态,可以使用3个触发器和一个74138译码器实现,得到状态转移表如表1。

输入			输出			
Q2 (n)	Q1 (n)	Q0 (n)	Q2 (n+1)	Q2 (n+1) Q1 (n+1)		
0	0	0	0	0	1	
0	0	1	0	1	0	
0	1	0	0	1	1	
0	1	1	1	0	0	
1	0	0	1	0	1	
1	0	1	1	1	0	
1	1	0	1	1	1	
1	1	1	0	0	0	

表 1

逻辑函数化简

由卡诺图(图1)化简得到Q2Q1Q0的逻辑表达式如下:

$$Q_2^{n+1} = Q_2^n \oplus (Q_1^n \cdot Q_0^n)$$
$$Q_1^{n+1} = Q_1^n \oplus Q_0^n$$
$$Q_0^{n+1} = \overline{Q_0^n}$$

\Q0 Q2Q1	0	1	
00	0	0	
01	0	1	
11	1	0	
10	1	1	

\Q0 Q2Q1	0	1
00	0	1
01	1	0
11	1	0
10	0	1

\Q0 Q2Q1	0	1	
00	1	0	
01	1	0	
11	1	0	
10	1	0	

图 1

时钟方程

本次实验选择使用同步时序逻辑电路设计,因此时钟方程为:

$$CP = CP_2 = CP_1 = CP_0$$

激励方程

选择使用 D 触发器实现逻辑电路图。由 D 触发器的特征方程得激励方程如下:

$$D_2 = Q_2^n \oplus (Q_1^n \cdot Q_0^n)$$

$$D_1 = Q_1^n \oplus Q_0^n$$

$$D_0 = \overline{Q_0^n}$$

逻辑电路图

根据逻辑表达式,在Multisim软件中绘制逻辑电路图如图2所示。

静态验证实验电路

将单脉冲加到系统时钟端,观察 LED 指示灯的输出情况,LED 亮则输出为 1,灭则输出为 0,将测试结果填入表 2。

状态	Y0	Y1	Y2	Ү 3	Y4	Y5	Y6	Y7
0	0	1	1	1	1	1	1	1
1	1	0	1	1	1	1	1	1
2	1	1	0	1	1	1	1	1
3	1	1	1	0	1	1	1	1
4	1	1	1	1	0	1	1	1
5	1	1	1	1	1	0	1	1
6	1	1	1	1	1	1	0	1
7	1	1	1	1	1	1	1	0

表 2

动态验证实验电路

用 Multisim 中 Agilent 函数发生器产生 TTL 连续脉冲信号加到系统时钟端,用 Tektronix 示波器观察并记录时钟脉冲 CP、触发器的输出端 Q2、Q1、Q0 和 8 个 LED 上的波形。

实验电路图及时钟脉冲 CP 的波形如图 3 所示。

图 3

Q2、Q1、Q0的波形如图 4 所示。

图 4

Y7、Y6、Y5、Y4、Y3、Y2、Y1、Y0的波形如图 5 所示。

图 5