УДК 591.69-7

СЕЗОННАЯ ДИНАМИКА СУТОЧНОЙ ПРОДУКЦИИ И РИТМА ВЫХОДА ЦЕРКАРИЙ DIPLOSTOMUM VOLVENS NORDMANN, 1832 ИЗ МОЛЛЮСКОВ РОДА LYMNAEA В ОЗЕРАХ КАРАСУКСКОЙ СИСТЕМЫ

© С. М. Соусь

Изучена зараженность моллюсков церкариями трематоды *Diplostomum volvens* в естественной среде. Экспериментально выявлено влияние погодных факторов на суточную продукцию и ритм выхода церкарий из моллюсков.

В водоемах Западной Сибири рядом исследователей проведено всестороннее изучение трематоды Diplostomum volvens (Андреюк, Размашкин, 1979; Юрлова, 1990; Соусь, 1991). Эти работы посвящены анализу морфологии, экологии и распространению рассматриваемого вида на разных этапах реализации его жизненного цикла. Настоящее сообщение посвящено малоизученным аспектам экологии церкарий в данном регионе, сезонным изменениям суточной продукции церкарий, ритму их выхода и влиянию на эти процессы погодных факторов — температуры воды, освещенности и атмосферного давления. Озера юга Западной Сибири имеют неустойчивый водный режим (Шнитников, 1969). Цикличность обводнения озер отражается на численности хозяев и их паразитов (Соусь, 1990). В связи с неустойчивостью водного режима в задачи исследования входило изучение численности, возрастной структуры и зараженности моллюсков в периоды обмеления и обводнения озер. В течение сезона происходило чередование выхода из моллюсков церкарий D. volvens и других видов фуркоцеркарий, а также церкарий из других групп. Предпринята попытка провести сравнительный анализ сроков выхода церкарий разных групп из различных видов моллюсков при одинаковых погодных условиях. Работа была проведена на озерах Карасукской системы — оз. Кротовая Ляга и Кусган.

В период исследования в маловодные годы (1990—1992 гг.) уровень воды в оз. Кротовая Ляга падал до 0.1 м, а в полноводные (1993, 1994 гг.) — поднимался до 2.4 м. В эти годы исследовано 3634 экз. брюхоногих моллюсков: Lymnaea stagnalis — 2816, L. ovata — 500, $Planorbis\ planorbis\ 318$ экз.

Сезонная динамика выхода церкарий от спонтанно зараженных моллюсков прослежена в период маловодья с мая по сентябрь 1990 г., в мае, июне и сентябре 1991 г. в июне 1992 г. В период высокого уровня воды в озере — в мае и июле 1993 г. и мае 1994 г. Опытные работы по изучению величины суточной продукции церкарий от моллюсков L. ovata проведены 13—31 августа, 1-7 октября 1990 г., 5-10 июня, 1-31 сентября 1991 г. и от моллю-

сков *L. stagnalis* — 15—19 июля 1991 г. В эксперименте моллюсков содержали по одному в 100 мл озерной воды в стеклянных сосудах не в лаборатории, а на открытом воздухе вблизи водоема. При исследовании суточной продукции церкарий учет последних производили в пробе воды из каждого сосуда содержания в нем моллюска в течение одних суток, при изучении суточного ритма выхода церкарий их численность учитывали каждый час. Одновременно фиксировали данные о погодных условиях: температуру воды (°С), освещенность (разрешающая возможность прибора от 500 до 10000 тыс. люкс), атмосферное давление (мм рт. ст.). Взаимосвязь между количеством церкарий, выделенных моллюском в течение каждого часа суток, и погодными условиями в эти промежутки времени, а также тип распределения церкарий в водной среде установлены статистическими методами (Плохинский, 1970).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В оз. Кротовая Ляга в годы маловодья численность моллюсков L. ovata основных промежуточных хозяев трематоды D. volvens в весенний период была небольшой — 1-3 экз./м², а в летние месяцы в связи с размножением моллюсков их численность увеличилась до 3-60 экз./м², в сентябре из-за ухода моллюсков на зимовку вновь понизилась до 1-9 экз./м². В разные сезоны маловодных лет в передаче инвазии принимали участие лишь определенные размерно-возрастные группы хозяев. В мае церкарии выходили из мелких моллюсков с длиной раковины 6—10 мм. Весной после зимних заморов эта мелковозрастная группа моллюсков составляла основу популяции хозяев (42.8 %). В летне-осенний период основная масса церкарий выходила из моллюсков средних размеров (11-15 мм). Они составляли большую часть популяции в июне, августе и сентябре (42.8—66.6 %). В разные годы маловодья отмечены сезонные особенности динамики выхода церкарий. В 1990 г. моллюски, выделяющие церкарий, найдены только в августе. Их число составляло 4.7 %. В последующем выход церкарий из моллюсков отмечен в мае (2.4 %), июле (1.2 %) и сентябре (6.6 %) 1991 г. и в июне (3.3 %) 1992 г.

Обобщая данные за весь период маловодья (1990—1992 гг.), можно сделать вывод, что в сезонной динамике наибольшее количество моллюсков, выделяющих церкарий, встречается в озере весной (2.1 %), в последнем месяце лета и осенью (4.7—6.3 %). В начале и середине лета число моллюсков, из которых выходили церкарии, невелико (1.1—0.9 %). В летний период в поддержании численности гемипопуляции церкарий принимали участие также моллюски L. stagnalis. Среди моллюсков этого вида в июле церкарий выделяли 0.68 % особей, а в августе их число увеличилось до 2.4 %. От начала периода маловодья (1990 г.) к его концу (1992 г.) количество моллюсков обоих видов, выделяющих церкарий, постепенно возрастало и составляло по годам 2.2, 3.2 и 3.3 % соответственно.

В полноводные годы (1993—1994 гг.) численность моллюсков L. ovata была низкой — 1—9 экз./м², выделение ими церкарий в весенне-летний период не обнаружено. В таком же маловодном оз. Кусган в 1990 г. выход церкарий из моллюсков отмечен в июле у 2.4, в августе у 1.1 и в октябре у 6.6 % особей.

Церкарии *Diplostomum volvens*, вышедшие из спонтанно зараженных моллюсков, имели следующие размеры: длина тела — 0.180—0.190 мм, его ширина — 0.051-0.060, расстояние от начала тела до заднего края брюшной присоски — 0.052-0.080, длина терминального органа — 0.040-0.050, длина хвостового стволика — 0.192-0.0268, его ширина — 0.260-0.268, длина фурки — 0.240-0.298, диаметр брюшной присоски — 0.040. В терминальном органе 8-12 крючьев, число венчиков на брюшной присоске 2, в первом — 56 крючьев, во втором — 66-74. Морфометрические показатели церкарий в целом соответствуют описанным ранее для данного региона (Андреюк, Размашкин, 1977; Юрлова, 1990).

Установлена сезонная периодичность выхода церкарий из моллюсков под влиянием погодных факторов. Наиболее интенсивный выход церкарий из моллюсков L. ovata наблюдали в начале второй декады июня и третьей декады августа—начале сентября (рис. 1, A—I). На рис. 1, 2; I—III видно, что показатели суточной продукции церкарий обычно повышены в дни понижения температуры воды и освещенности, при атмосферном давлении свыше 740 мм рт. ст. Влияние указанных факторов погоды на величину эмиссии церкарий D. volvens из моллюсков L. ovata и L. stagnalis наиболее подробно рассмотрено при изучении суточного ритма их выхода в летнеосенний период. В июне (5.06 и 21.06) при нестабильных погодных условиях (резких колебаниях температуры воды от 11 до 31° и атмосферного давле-

Рис. 1. Сезонные изменения суточной продукции церкарий *Diplostomum volvens* из моллюсков рода *Lymnaea*.

I — количество церкарий, выделенных моллюском Lymnaea ovata с длиной раковины: A — 12 мм (июнь 1990 г.), B — 14 мм (август 1990 г.), B — 13 мм (сентябрь 1991 г.), Γ — 13 мм (октябрь 1990 г.); Z — количество церкарий, выделенных моллюском Lymnaea stagnalis с длиной раковины 45 мм (июль 1991 г.). I — температура воды; II — освещенность, люкс; III — атмосферное давление, мм рт. ст.

Fig. 1. Seasonal changes of the diurnal production of the cercariae *Diplostomum volvens* by molluscs of the genus *Lymnaea*.

Рис. 2. Суточный ритм выхода церкарий *Diplostomum volvens* 5 июня 1991 г. из моллюска *Lymnaea ovata* с длиной раковины 11.5 мм.

I- количество церкарий, экз.; 2- температура воды, °C; 3- освещенность, люкс; 4- атмосферное давление, мм рт. ст.

Fig. 2. Diurnal rhythm of the cercaria *Diplostomum volvens* production by the individual mollusc *Lymnaea ovalis* with the shell length 11.5 mm, June 5, 1991.

ния от 725 до 750 мм рт. ст.) и короткого периода максимальной освещенности (14—16 ч) выход церкарий в течение суток из моллюска L. ovata, длиной 11.5 мм, происходил равномерно (до 100-200 экз./ч) как днем, так и ночью (рис. 2, 3). В сентябре (12, 13.09) в течение суток наблюдалось два пика выхода церкарий из моллюска L. ovata с длиной раковины 14 мм, наибольший выход церкарий в 13 (1000 экз.) и 18 ч (350 экз.) при стабильном давлении 744 мм рт. ст. и менее резких колебаниях температуры воды, чем в июне, но такой же освещенности — 0.5-10 тыс. люкс. Выход церкарий из моллюска L. stagnalis с длиной раковины 45 мм в июле отмечен от 0 до 24 ч

Рис. 3. Суточный ритм выхода церкарий *Diplostomum volvens* 21 июня 1991 г. из моллюска *Lymnaea ovata* с длиной раковины 11.5 мм.

Обозначения те же, что и на рис. 2.

Fig. 3. Diurnal rhythm of the cercaria *Diplostomum volvens* production by the individual mollusc *Lymnaea ovata* with the shell length 11.5 mm, June 21, 1991.

при температуре воды $18-25^\circ$, освещенности 3-10 тыс. люкс, атмосферном давлении 735-737 мм рт. ст., но особенно интенсивной эмиссия церкарий была с 8 до 18 ч (рис. 4). Корреляционный анализ показал, что между количеством вышедших церкарий и температурой воды существует достоверная отрицательная связь (r=-0.6, p=0.05). Наиболее благоприятной для выхода церкарий, очевидно, следует считать температуру воды $14-19^\circ$, при которой в течение июня и сентября вышло наибольшее количество церкарий. Вода такой температуры чаще всего бывает в озере весной и осенью. В эти же периоды зарегистрировано и наибольшее количество моллюсков, выделяющих церкарий.

Известно, что церкарии D. volvens обладают отрицательным фототаксисом. Изучение взаимосвязи между показателями освещенности и количеством выделенных церкарий выявили отрицательную достоверную связь между этими величинами (r=-0.72, p=0.01). Для выхода церкарий, видимо, наиболее благоприятна освещенность 5-9 тыс. люкс. Наблюдения за выходом церкарий при колебаниях атмосферного давления 724-756 мм рт. ст. показали, что наиболее интенсивный выход церкарий происходит при давлении 744-745 мм рт. ст. Однако корреляционный анализ, проведенный между этими показателями, выявил положительную, но не достоверную связь (r=0.3, p<0.05).

Таким образом, статистическими методами установлено, что среди погодных факторов на выход церкарий *D. volvens* из моллюсков оказывает влияние температура воды и освещенность. Сведения, имеющиеся в литературе, не противоречат полученному результату. Атаев (1988, 1991) также считает основными регуляторами эмиссии церкарий трематоды *Philophthalmus rhionica* температуру воды и освещенность.

В озерах вышедшие из моллюсков церкарии, вероятно, распределяются в водной среде не равномерно, что способствует неравномерному заражению рыб трематодой. Изучение типа распределения церкарий в момент выхода их из моллюсков проведено в экспериментальных условиях. Распределение церкарий в эксперименте было недорассеянным в июне и сентябре

Рис. 4. Суточный ритм выхода церкарий *Diplostomum volvens* 17 июля 1991 г. из моллюска *Lymnaea stagnalis* с длиной раковины 45 мм.

Обозначения те же, что и на рис. 2.

Fig. 4. Diurnal rhythm of the cercaria *Diplostomum volvens* production by the individual mollusc *Lymnaea stagnalis* with the shell length 45 mm, July 17, 1991.

(соответственно $S^2/X = 0.9$ и 0.9), а в июле и августе — перерассеянным (5.7 и 8.12 соответственно).

В связи с полученными данными можно предположить, что в естественной среде расселение церкарий, так же как и в эксперименте, подчиняется различным типам распределения. В водоеме в периоды перерассеянного распределения церкарий, вероятно, происходит наиболее интенсивное инвазирование рыб церкариями трематоды и появление гиперинвазированных особей хозяина.

В природных условиях нередко наблюдается одновременная эмиссия церкарий D. volvens вместе с фуркоцеркариями других видов. В связи с этим проведены наблюдения за выходом фуркоцеркарий трематод разных видов из различных хозяев в течение одних суток при одинаковых погодных условиях. Установлено, что выход фуркоцеркарий D. chromatophorum из моллюска L. stagnalis, D. volvens из L. ovata, Cercaria microphora Brown, 1926 из Planorbis planorbis происходит в основном с 10 до 20 ч, а максимальный пик выхода приходится на 13 ч. У последних двух видов церкарий, имеющих отрицательный фототаксис, отмечены еще дополнительные пики выхода церкарий в вечерние и ночные часы — в 17, 20 и 23 ч. Если ритм выхода церкарий зависит от погодных условий, то величина эмиссии церкарий определяется, вероятно, видом моллюска и его размером. Объем суточной эмиссии церкарий D. volvens из одного и того же хозяина находится в прямой зависимости от размеров моллюска (Юрлова, 1990). Обилие выделяемых фуркоцеркарий разных видов из различных видов хозяев подчиняется той же зависимости. Так, 12 сентября 1991 г. при температуре 23°, освещенности 9 тыс. люкс и атмосферном давлении 745 мм рт. ст. с 12 до 13 ч крупный моллюск L. stagnalis с длиной раковины 34 мм выделял 4120, L. ovata меньших размеров (13 мм) — лишь 1074, мелкий моллюск Pl. planorbis с диаметром раковины 12 мм выделил наименьшее количество фуркоцеркарий — 221 экз.

Рассмотрено влияние одних и тех же погодных условий на сроки выхода фуркоцеркарий (D. volvens, D. chromatophorum) и церкарий трематод из прочих групп (стилетные, нотокотилидные и эхиностоматидные церкарии) из одного вида моллюсков L. stagnalis. В сезонной динамике у представителей каждой группы церкарий в сроках выхода имеются как сходство, так и различие. В оз. Кротовая Ляга в течение весенне-летнего-осеннего периода выход фуркоцеркарий зарегистрирован в мае, июле и августе 1990 г., стилетных церкарий лишь летом (июнь-август), нотокотилидных и эхиностоматидных — только в середине и конце лета (июль, август) (Соусь, 1998). Периоды выхода церкарий указанных групп из моллюсков совпадали по времени от начала второй декады июля по первую декаду августа, и у этих же групп церкарий, за исключением стилетных, — в третьей декаде августа. Церкарии из различных групп различаются по продолжительности выхода их из моллюсков в течение сезона. Так, фуркоцеркарии имеют самый продолжительный период выхода — 7 декад (третья декада мая, вторая — июня—третья — августа), менее продолжительный у эхиностоматидных — 5 (вторая декада июля—третья декада августа) и самый короткий срок выделения — по 4 декады у нотокотилидных (вторая декада июля-вторая декада августа) и стилетных церкарий (третья июня-первая августа).

Таким образом, наибольшее количество моллюсков, выделяющих фуркоцеркарий, встречена в первой половине лета (до 13.5% по сравнению с его второй половиной — до 6%), нотокотилидных и стилетных церкарий —

в середине лета (10-12%) и эхиностоматидных — во второй половине лета (20.4%).

Полученные сведения по экологии церкарий могут быть использованы при разработке мер борьбы с церкариозным диплостомозом рыб в озерных хозяйствах южной зоны западно-сибирского региона.

Список литературы

- Андреюк Г.И., Размашкин Д.А. Церкарии рода Diplostomum (Trematoda: Diplostomatidae) из озер Тюменской области // Болезни рыб и меры борьбы с ними. М.: ВНИПРХ, 1979. С. 232—247.
- Атаев Г.А. Развитие и биология личинок и партеногенетических поколений трематод Philophthalmus rhionica Tichomirov Автореф. дис. ... канд. биол. наук. Л., 1988. 16 с.
- Атаев Г.А. Влияние температуры на развитие и биологию редий и церкарий Philophthalmus rhionica (Trematoda) // Паразитология. 1991. Т. 25, вып. 4. С. 349—359.
- Плохинский Г.Н. Биометрия. М.: Изд-во МГУ, 1970. 336 с.
- Соусь С. М. Временное распределение паразитов рыб в регрессивную фазу увлажнения (на примере карася золотого оз. Кротовая Ляга) // Изв. СО АН СССР. Сер. биол. 1990. Вып. 1. С. 56—65.
- Соусь С. М. Паразиты Барабинской низменности (Новосибирская область), их эпизоотологическое и эпидемиологическое значение, прогнозирование паразитологической ситуации, меры борьбы и профилактики. ВИНИТИ. 06.05.91, 1991. № 1832-В91. 409 с.
- Соусь С. М. Годовые изменения зараженности трематодами моллюсков рода Lymnaea в озерах Карасукской системы // Экологические проблемы бассейнов крупных рек. Тольятти, 1998. С. 250—251.
- Шнитников В.А. Внутривековая изменчивость компонентов общей увлажненности. Л.: Наука, 1969. 224 с.
- Юрлова Н. И. Зараженность моллюсков рода Lymnaea партенитами Diplostomum volvens Nordmann, 1832 в бассейне оз. Чаны // Паразиты и болезни гидробионтов Ледовитоморской провинции. Новосибирск: Наука, 1990. С. 99—106.
- Институт систематики и экологии животных СО РАН, Поступила 16 VII 2004 Новосибирск

SEASONAL DYNAMICS OF DIURNAL PRODUCTION AND RHYTHMIC OF DIURNAL PRODUCTION OF THE CERCARIA DIPLOSTOMUM VOLVENS NORDMANN, 1832 IN MOLLUSCS OF THE GENUS LYMNAEA FROM LAKES OF THE KARASUK WATER SYSTEM

S. M. Sous

Key words: cercaria, production, dynamics, temperature, light.

SUMMARY

Infection rate of the cercariae *Diplostomum volvens* in molluscs of the genus *Lymnaea* in natural conditions (Western Siberia) was examined in 1990—1994. Experimental studies have shown that light and water temperatire are main factors regulating rhythmic of diurnal production of cercariae by molluscs.