Задача 1 Да се построи минимален тотален краен детерминиран автомат \mathcal{A} с език $\mathcal{L}(\mathcal{A}) = \{a, b, c\}^* \circ \{ab, ba\} \circ \{a, b, c\}^*$.

Обосновете, че вашият автомат има желаните свойства като:

- (i) се позовете на подходящи места на изучавани алгоритми/конструкции. (не е необходимо да ги описвате формално)
- или (ii) дадете пълно и изчерпателно доказателство.

Задача 2 Да се построи минимален тотален краен детерминиран автомат \mathcal{A} с език $\mathcal{L}(\mathcal{A}) = \{01,0\} \circ \{11\}^* \circ \{0\}$.

Обосновете, че вашият автомат има желаните свойства като:

- (i) се позовете на подходящи места на изучавани алгоритми/конструкции. (не е необходимо да ги описвате формално)
- или (ii) дадете пълно и изчерпателно доказателство.

Задача 3 Да се построи краен автомат с азбука $\Sigma = \{1, 2, 3\}$, разпознаващ езика $L = \Sigma^* \setminus (\{1, 2\}\Sigma^* \cap \Sigma^*\{3\}) \cup \{123\}^*$ като:

- се използват изучавани конструкции,
- ullet или се докаже, че построеният автомат разпознава точно езика L.

Задача 4 Да се построи минимален тотален краен детерминиран автомат с азбука $\Sigma = \{a,b\}$ и език $L = \Sigma^* \{a^2b\} \cup \{aba\} \Sigma^*$ като:

- се използват изучавани конструкции,
- или се докаже, че построеният автомат има желаните свойства.

Задача 5 Да се докаже, че езикът $L = \{ w0^n w^R \mid w \in \{0,1\}^*, |w| > n \}$ не е регулярен.

Задача 6 За дума $\alpha \in \{a,b\}^*$ с $A(\alpha)$ бележим броя на буквите a в α . Да се докаже, че езикът $L = \{ xy \in \{a,b\}^* \mid |x| > |y|, \ A(x) = A(y) \}$ не е регулярен.

Задача 7 Да се построи минимален краен тотален детерминиран автомат за езика $L = \{ \alpha \in \{0,1\}^* \mid \alpha \text{ съдържа поне две срещания на 010 като поддума } \}.$

Задача 8 Да се построи минимален краен тотален детерминиран автомат за езика $L = \{ \alpha \in \{a, b, c\}^* \mid \alpha \text{ съдържа всяка от буквите } a, b, c \text{ поне веднъж } u \mid \alpha \mid = 0 \pmod{3} \}.$

Задача 9 За дума $\alpha \in \{0,1\}^+$ с $\overline{\alpha}$ означаваме числото в двоична бройна система, чийто запис е α .

$$L(p,r) = \{ \alpha \in \{0,1\}^+ \mid \overline{\alpha} \equiv r \pmod{p} \}.$$

- 1. Да се докаже, че L(p,r) е регулярен за всяко p.
- 2. Нека $L'(p,r) = \{\alpha \in L(p,r) \mid \alpha \text{ не съдържа водещи нули}\}$. Регулярен ли е L'(p,r)?
- 3. Регулярен ли е езикът, който е съставен точно от думите α , за които $\overline{\alpha}$ се дели на p, но не се дели на p^2 за дадено просто число p?

Задача 10 Нека Σ е крайна непразна азбука. Докажете, че за всяка дума $w \in \Sigma^*$ минималният автомат с език $\Sigma^* \cdot \{w\}$ има поне |w|+1 състояния.

Задача 11 Нека Σ е крайна непразна азбука. Докажете, че за всяка дума $w \in \Sigma^*$ минималният автомат с език $\Sigma^* \cdot \{w\}$ има точно |w|+1 състояния.

Задача 12 Казваме, че език $L \subseteq \{a,b,c\}^*$ е интересен, ако има естествено число $n \in \mathbb{N}$ и крайни автомати P_1, P_2, \ldots, P_n и S_1, S_2, \ldots, S_n с азбука $\{a,b,c\}$ със следните три свойства:

- $\bigcup_{i=1}^n \mathcal{L}(P_i) = \{u \in \{a,b,c\}^* \mid u \ e \ npeфикс на дума от L\}$
- $\bigcup_{i=1}^n \mathcal{L}(S_i) = \{u \in \{a,b,c\}^* \mid u \ e \ cyфикс на дума от L\}$
- $L = \bigcup_{i=1}^{n} (\mathcal{L}(P_i) \circ \mathcal{L}(S_i)).$

Вярно ли е, че:

- 1. всеки интересен език е регулярен?
- 2. всеки регулярен език над $\{a, b, c\}$ е интересен?

Обосновете отговорите си!

Задача 13 Нека $w \in \{0,1,2\}^*$ е дума с дължина n, L е език. Казваме, че L покрива срещането на дума $\alpha = w[i..j]$ на позиция $i \le n$ в w ако думите w[i+k..n] за $k=0,1,\ldots,j-i$ започват с дума от L.

Нека L_1 и L_2 са езици над $\{0,1,2\}$, L' и L'' са езиците:

 $L' = \{w \in \{0,1,2\}^* \mid \text{ има префикс на } w, \text{ който } e \text{ от } L_1, \text{ но } \mathbf{нe} \text{ се покрива от } L_2\}$ $L'' = \{w \in \{0,1,2\}^* \mid \text{ всяко срещане на дума от } L_1 \text{ в } w \text{ е покрито от } L_2\}.$

Вярно ли e, че винаги когато L_1 и L_2 са регулярни:

- 1. L' е регулярен?
- 2. L" е регулярен?

Обосновете отговорите си!

Задача 14 *Нека* $\Sigma = \{0,1\}$ *е азбука. Нека:*

$$\begin{array}{rcl} L^{\leq} & = & \{w\alpha w^{rev} \, | \, \alpha, w \in \Sigma^* \ u \ |w| \leq |\alpha| \} \\ L^{\geq} & = & \{w\alpha w^{rev} \, | \, \alpha, w \in \Sigma^* \ u \ |w| \geq |\alpha| \} \end{array}$$

Вярно ли е, че:

- 1. L≤ е регулярен?
- 2. L≥ е регулярен?

Обосновете отговорите си!

Задача 15 За естествени числа $d,n \in \mathbb{N}$ с $A_{d,n} \subseteq \{0,1\}^*$ означаваме езика:

$$A_{d,n} = \{0^d 10^{2d} 1 \dots 0^{kd} 1 \mid k \le n\}$$

Нека $A_d = \bigcup_{n=0}^{\infty} A_{d,n}$. Вярно ли $e, \ чe$:

1. $A_{d,n}$ е регулярен за всеки избор на $d,n \in \mathbb{N}$?

2. A_d е регулярен за всеки избор на $d \in \mathbb{N}$?

Обосновете отговорите си!

Задача 16 Нека $Var = \{x, y, z\}$ е множество от променливи, $\Sigma = Var \cup \{bind_v \mid v \in Var\} \cup \{unbind_v \mid v \in Var\}$. Една променлива $v \in Var$, наричаме свързана при срещането ѝ на позиция i във $f \in \Sigma^*$, ако на някоя позиция j < i се среща $bind_v$ така че на никоя позиция k, j < k < i не се среща $unbind_v$.

Ако $v_1, v_2 \in Var$, $f \in \Sigma^*$, то субституцията на v_1 с v_2 във f бележим с $f\langle v_1 \mapsto v_2 \rangle$ и наричаме думата, получена от f чрез непосредствената замяна на всяко несвързано срещане на v_1 във f с v_2 . $f\langle v_1 \mapsto v_2 \rangle$ наричаме коректна, ако не променя позициите на които v_2 се среща като свързана.

 $A\kappa o \ w, u, v \in \Sigma^*, \ w[2k] = u[k], \ w[2k+1] = v[k] \ \text{sa } k \ \text{om } 0 \ \text{do } |u|, \ |w| = 2|u| = 2|v|, \ mo \ w = intersperse(u, v).$

$$L = \{intersperse(f, f\langle v_1 \mapsto v_2 \rangle) \mid f \in \Sigma^*, v_1, v_2 \in Var, , f\langle v_1 \mapsto v_2 \rangle \ e \ \kappa ope \kappa m + a``\}$$

L регулярен език ли е и защо?

Задача 17 За дума $\alpha = a_1 a_2 \dots a_n \in \{0,1\}^*$ с $E(\alpha)$ означаваме редицата от позиции $i_1 < i_2 < \dots < i_m$, за които $a_{i_j} = 1$. Вярно ли е, че езикът:

$$L = \{\alpha \in \{0,1\}^* \,|\, E(\alpha) \,\,e\,$$
 аритметична прогресия $\}$

е регулярен? Защо?

Задача 18 За дума $w = a_1 a_2 \dots a_n$ с even(w) означаваме думата:

$$even(w) = a_2 a_4 \dots a_{2\left[\frac{n}{2}\right]}.$$

Нека L_1 и L_2 са произволни регулярни езици над азбука Σ с поне два елемента. Винаги ли е вярно, че:

- 1. езикът $\{even(w) \mid w \in L_1\}$ е регулярен? Защо?
- 2. езикът $\{w \mid even(w) \in L_2\}$ е регулярен? Защо?
- 3. езикът от всички думи $\alpha \in \Sigma^*$, в които всяко срещане на дума $v \in L_1$ в α не е от вида v = even(w) за никоя дума $w \in L_2$? Защо?

Задача 19 За думи $w = w_1 \dots w_n$, α и β казваме, че срещанията на $\alpha = w_{i+1} \dots w_j$ и $\beta = w_{k+1} \dots w_l$ се застъпват в w ако i < k < j < l или k < i < l < j.

Нека L_1 и L_2 са регулярни езици над азбука Σ с поне два елемента. Винаги ли е вярно, че е регулярен:

- 1. езикът от точно онези думи w, които се записват като $w = \alpha \beta \gamma$ за някои непразни думи α, β, γ със свойството, че $\alpha \beta \in L_1$ и $\beta \gamma \in L_2$? Защо?
- 2. езикът от точно онези думи w, за които всяко срещане на дума от L_1 в w не се застъпва с никое срещане на дума от L_2 в w? Защо?

Задача 20 Нека Σ е азбука с поне два елемента. За език $L \subseteq \Sigma^*$ с Max(L) и Min(L) бележим езиците:

$$Max(L) = \{ w \in L \mid \forall u \in \Sigma^+(wu \notin L) \}$$

$$Min(L) = \{ w \in L \mid \forall u \in L(w \notin u\Sigma^+) \}.$$

Вярно ли e, че за всеки регулярен език L:

- 1. Min(L) е регулярен? Защо?
- $2. \ Max(L) \ e \ perулярен? Защо?$

Задача 21 Нека:

$$L_1 = \{uv \mid u, v \in \{0, 1\}^* (|u| \ge |v|)\}$$

$$L_2 = \{uv \mid u, v \in 1\{0, 1\}^* (|u| \ge |v|)\}.$$

Вярно ли е, че:

- 1. L_1 е регулярен? Защо?
- $2. \ L_2$ е регулярен? Защо?

Задача 22 $\textit{Heкa } \Sigma = \{0,1\}.$ За език $L \subseteq \Sigma^*$ дефинираме:

$$PS(L) = \{w \in \Sigma^* \mid w$$
 е префикс на някоя дума от L и суфикс на някоя дума от $L\}$

$$PS_{unique}(L) = \{ w \in \Sigma^* \mid w \quad e \text{ префикс } u \text{ суфикс } e \text{ една } u \text{ съща дума от } L \}$$

 $PS_{distinct}(L) = \{ w \in \Sigma^* \mid w \quad e \text{ префикс } e \text{ една } u \text{ суфикс } e \text{ друга дума от } L \}$

Вярно ли e, че за всеки регулярен език L:

- 1. PS(L) е регулярен? Защо?
- 2. $PS_{unique}(L)$ е регулярен? Защо?
- 3. $PS_{distinct}(L)$ е регулярен? Защо?

Задача 23 Нека Σ е азбука с поне два елемента. За езици $L_1 \subseteq \{1\}^*$ и $L_2 \subseteq \Sigma^*$ казваме, че $w = w_1 \dots w_n \in \Sigma^*$ е (L_1, L_2) -хубава, ако за всяко $i \leq n$, за което $1^i \in L_1$ е изпълнено, че някой от инфиксите на w, който започва на позиция i е в L_2 .

1. Вярно ли е, че за всеки регулярен език $L_1 \subseteq \{1\}^*$ езикът:

$$\{w \in \Sigma^* \mid 1^{|w|} \in L_1\}$$

е регулярен? Защо?

2. Вярно ли е, че за всеки два регулярни езика $L_1 \subseteq \{1\}^*$ и $L_2 \subseteq \Sigma^*$ езикът от точно (L_1, L_2) -хубавите думи е регулярен? Защо?

Задача 24 Нека $\Sigma = \{0, 1, v, \langle , \rangle, ; , \{,\}\}$. Връх наричаме всяка дума над Σ , която започва с v и е следвана от двоичен запис на число. Ребро е дума от езика от вида $\langle \alpha; \beta \rangle$, където α и β са върхове. Вярно ли е, че:

- 1. множеството от върхове е регулярен език над Σ ?
- 2. множеството от ребра е регулярен език над Σ ?

Граф e всяка дума над Σ от вида:

$$G = \{u_1; u_2 \dots; u_n\}\{e_1; e_2; \dots; e_m\},\$$

където u_i е връх, а e_j е ребро за всяко $i \leq n, j \leq m$.

- 1. Вярно ли e, че множеството от графи e регулярен език над Σ ?
- 2. Истински граф e граф $G = \{u_1; u_2 \dots; u_n\} \{e_1; e_2; \dots; e_m\}$, за който всяко ребро $e_j = \langle u_{i_1}; u_{i_2} \rangle$ за някои $1 \leq i_1, i_2 \leq n$. Вярно ли e, че множеството от истински графи e регулярен език над Σ ?

Упътване за задача 5:

- 1. Допуснете, че има краен детерминиран автомат A, който разпознава езика L.
- 2. Нека m е броят на състоянията на автомата A.
- 3. Разгледайте думите $1^0, 1^1, ..., 1^m$.
- 4. Тогава за някои $0 \le i < j \le m$ автоматът A, обработвайки 1^i и 1^j достига до едно и също състояние q.
- 5. Съобразете A разпознава $1^{j}0^{j}1^{j}$.
- 6. Аргументирайте, че A разпознава и $1^i 0^j 1^j$.
- 7. Покажете, че $1^{i}0^{j}1^{j}$ не е в езика L.

Упътване за задача 6:

- 1. Допуснете, че има краен детерминиран автомат A, който разпознава езика L.
- 2. Нека m е броят на състоянията на автомата A.
- 3. Разгледайте думите $a^0, a^1, ..., a^m$.
- 4. Тогава за някои $0 \le i < j \le m$ автоматът A, обработвайки a^i и a^j достига до едно и също състояние q.
- 5. Съобразете A разпознава $a^i b^{j-i+1} a^i$.
- 6. Аргументирайте, че A разпознава и $a^jb^{j-i+1}a^i.$
- 7. Покажете, че ако $a^jb^{j-i+1}a^i=xy$ с |x|>|y| то x има за представка a^jb , а y е суфикс на $b^{j-i}a^i$.
- 8. Заключете, че $a^{j}b^{j-i+1}a^{i}$ не е в L.

Упътване за задача 7:

- 1. Докажете, че $\{0,1\}^*\{010\}\{0,1\}^*\{010\}\{0,1\}^*\subseteq L$.
- 2. Забележете, че $\{0,1\}^*\{01010\}\{0,1\}^*\subseteq L$.

- 3. Докажете, че $L \subseteq \{0,1\}^*\{010\}\{0,1\}^*\{010\}\{0,1\}^*\cup\{0,1\}^*\{01010\}\{0,1\}^*$.
- 4. Постройте минимален тотален краен детерминиран автомат за

$$\{0,1\}^*\{010\}\{0,1\}^*\{010\}\{0,1\}^* \cup \{0,1\}^*\{01010\}\{0,1\}^*.$$

Упътване за задача 8:

- 1. Постройте краен детерминиран автомат за езика $L_a = \{\alpha \in \{a, b, c\}^* \mid \alpha \text{ съдържа } a\}.$
- 2. Дефинирайте L_b и L_c аналогично на L_a .
- 3. Постройте краен детерминиран автомат за езика

$$L_3 = \{ \alpha \in \{a, b, c\}^* \mid |\alpha| \equiv 0 \pmod{3} \}.$$

- 4. Докажете, че $L = L_a \cap L_b \cap L_c \cap L_3$.
- 5. Приложете конструкция за сечение на (детерминирани) крайни автомати и минимизирайте.

Упътване за задача 9:

- 1. (a) Докажете $\overline{\alpha 0} = 2\overline{\alpha}$.
 - (б) Докажете $\overline{1\alpha} = 2^{|\alpha|} + \overline{\alpha}$.
 - (в) Дефинирайте $L_i = L(p,i) = \{\alpha \in \{0,1\}^* \mid \overline{\alpha} \equiv i \pmod{p}\}$ и използвайте първото наблюдение, за да установите какво следва от $\alpha \in L_i$ за думите $\alpha 0$ и $\alpha 1$.
 - (г) Постройте детерминиран краен автомат за L(p,r) със състояния, съответни на езиците L(p,i),
 - (д) Дефинирайте $\hat{L}_i = \{\alpha \in \{0,1\}^* \mid i2^{|\alpha|} + \overline{\alpha} \equiv r \pmod{p}\}$. Какво може да кажете за езиците $0^{-1}\hat{L}_i$ и $1^{-1}\hat{L}_i$?
 - (e) Постройте детерминиран краен автомат за L(p,r) със състояния, съответни на езиците \hat{L}_i .
- 2. Забележете, че условието α да не съдържа водещи нули е еквивалентно на $\alpha \in \{0\} \cup \{1\}\{0,1\}^*$. Какво може да кажете за сечението на регулярни езици?

3. Може ли да изразите търсеното множество от думи чрез някои от езиците L(q,r), съюза "и" и частицата "не"? Как?

Упътване за задача 10:

- 1. Разгледайте краен детерминиран автомат A с език $\Sigma^*\{w\}$ и за всяко $i \leq |w|$ нека α_i е представката с дължина i на w, а β_i е суфиксът с дължина |w|-i на w. Колко префикса и кобко суфикса дефинирахте?
- 2. Докажете, че $w = \alpha_i \beta_i$ за всяко i.
- 3. Вярно ли е, че $\alpha_i \beta_j \in \Sigma^* \{ w \}$ при i < j? Защо?
- 4. Заключете, че ако A достига до състояние q_i след обработката на α_i , то $q_i \neq q_j$ за $i \neq j$.

Упътване за задача 11:

- 1. Използвайте представянията на $w=lpha_ieta_i$ от предишната задача.
- 2. За всяко дума $x \in \Sigma^*$ покажете, че има префикс α_i на w, който е суфикс на x.
- 3. Нека p(x) е най-дългият префикс α_i на w, който е суфикс на x.
- 4. Докажете, че $x^{-1}L = (p(x))^{-1}L$, където $L = \Sigma^*\{w\}$.
- 5. Аргументирайте с метода на Brzozowski, че има краен детерминиран автомат с |w|+1 състояния и език $\Sigma^*\{w\}$.

Упътване за задача 12

- 1. Припомнете си дефиницията за регулярен език.
- 2. Припомнете си дефиницията за автоматен език и че класовете на автоматните и регулярните езици съвпадат.
- 3. Забележете, че ако $\mathcal{L}(P_i)$ и $\mathcal{L}(S_i)$ са регулярни, те L е крайно обединение от конкатенация на регулярни езици!

4. За обратната посока, разгледайте краен (детерминиран) автомат $A = \langle \Sigma, Q, s, \delta, F \rangle$ с език L, в който всяко състояние е кодостижимо. Нека $Q = \{q_1, q_2, \dots, q_n\}$ и дефинирайте:

$$P_i = \langle \Sigma, Q, s, \delta, \{q_i\} \rangle$$
 и $S_i = \langle \Sigma, Q, q_i, \delta, F \rangle$.

5. Проверете, че P_1, P_2, \dots, P_n и S_1, S_2, \dots, S_n имат желаните свойства.

Упътване за задача 13

- 1. Използвайте предишната задача, за да представите езика $L_1=\bigcup_{i=1}^n(P_i\cdot S_i)$ за регулярни езици P_1,P_2,\ldots,P_n и $S_1,S_2,\ldots,S_n.$
- 2. Съобразете, че ако w има префикс $x \in L_1$, който не се покрива от L_2 , то $x = p_i s_i z$, за които $p_i \in P_i$, $s_i \in S_i \setminus \{\varepsilon\}$ и $s_i z \notin L_2 \Sigma^*$.
- 3. Докажате, че $L' = \bigcup_{i=1}^n (P_i \cdot (S_i \setminus \{\varepsilon\}\Sigma^* \cap L_2\Sigma^*).$
- 4. Заключете, че L' е регулярен като използвате, че регулярните езици са затворени относно допълнение и сечение.
- 5. Забележете, че $w \in \Sigma^* \setminus L''$ точно когато w може да се представи като $w = x \cdot y$ и y започва с дума от L_1 , която не се покрива от L_2 .
- 6. Заключете, че $\Sigma^* \setminus L'' = \Sigma^* L'$ и след това довършете.

Упътване за задача 14

- 1. За L^{\leq} обърнете внимание на това, че $|\varepsilon| \leq |\alpha|$ за всяка дума $\alpha \in \Sigma^*$.
- 2. Заключете, че $\Sigma^* \subseteq L^{\leq}$ и довършете.
- 3. За L^{\geq} допуснете, че има краен детерминиран автомат A с n състояния.
- 4. Разгледайте думите $0^{j}1$ за $j \leq n$.
- 5. Обосновете, че има $0 \le i < j \le n$, за които A достига до едно и също състояние q след обработката както на 0^j1 , така и на 0^i1 .
- 6. Докажете, че $0^{j}10^{j+1}10^{j} \in L^{\geq}$.
- 7. Обосновете, че A разпознава $0^{i}10^{j+1}10^{j}$.

- 8. Колко е дължината на най-дългата дума w, която хем е префикс на $0^i10^{j+1}10^j$, хем w^{rev} е суфикс наf, $0^i10^{j+1}10^j$?
- 9. Заключете, че $0^i 10^{j+1} 10^j \not\in L^{\geq}$.

Упътване за задача 15

- 1. За фиксирани d и n езикът $A_{d,n}$ е краен!
- 2. Ако само d е фиксирано, расъждавайте за езика A_d по начин подобен на задача $14~L^{\geq}$ и задачи 5,~6.

Упътване за задача 16:

1. Нека за $v_1, v_2 \in Var$,

$$L(v_1, v_2) = \{intersperse(f, f\langle v_1 \mapsto v_2 \rangle) \mid f \in \Sigma^*\} \cap L.$$

- 2. Проверете, че $L = \bigcup_{v_1, v_2 \in Var} L(v_1, v_2)$.
- 3. Покажете, че $L(v_1, v_2)$ е регулярен за всеки две $v_1, v_2 \in Var$.
- 4. За целта съобразете, че $w \notin L(v_1, v_2)$ точно когато: (1) w не е $intersperse(f, f\langle v_1 \mapsto v_2 \rangle)$ или (2) $f\langle v_1 \mapsto v_2 \rangle$ не е коректна замяната.
- 5. Разгледайте поотделно двете ситуации.
 - (a) w не е $intersperse(f, f\langle v_1 \mapsto v_2 \rangle)$ точно когато има четна позиция 2i, за която: (1.1) w[2i] не е свободно срещане на v_1 и $w[2i+1] \neq w[2i]$ или (1.2) w[2i] е свободно срещане на v_1 , но $w[2i+1] \neq v_2$.
 - (б) Съборазете, че w[2i] не е свободно срещане на v_1 в f точно когато:

$$w[0..2i] \in (\Sigma^2)^* \{bind_{v_1}\} \Sigma (\Sigma \setminus \{unbind_{v_1}\} \cdot \Sigma)^+ \{v_1\} \cup (\Sigma^2)^* (\Sigma \setminus \{v_1\})$$

(в) Покажете, че множеството от думи w, които не са $intersperse(f, f\langle v_1 \mapsto v_2 \rangle)$ за никое $f \in \Sigma^*$ образуват регулярен език.

(г) За условие (2) съобразете, че v_2 на позиция 2i+1 е свързано, ако:

$$w[0..2i+1] \in (\Sigma^2)^*\Sigma\{bind_{v_2}\}(\Sigma \cdot \Sigma \setminus \{undbind_{v_2}\})^*\Sigma\{v_2\}.$$

По подобен начин може да изразим, че v_2 на позиция 2i е свързано в f:

$$w[0..2i+1] \in (\Sigma^2)^* \{bind_{v_2}\} \Sigma (\Sigma \setminus \{undbind_{v_2}\} \Sigma)^* \{v_2\} \Sigma.$$

Сега v_2 е свързано на позиция i в $f\langle v_1 \mapsto v_2$, но v_2 не е свързано на позиция i в f точно когато w[0..2i+1] е в първия, но не и във втория език.

(д) Покажете, че условието, че замяната не е правилна също може да се изрази като регулярен език.

Упътване за задача 17: Сравнете с втората част на задача 15. Упътване за задача 18:

- 1. Разгледайте краен (детерминиран) автомат A за езика L.
- 2. За първата част помислете как да симулирате "прескачането"на всяка втора буква.
- 3. Това води дефиниция на преходите $\Delta' = \{\langle p, a, q \rangle \mid \exists b \in \Sigma (q = \delta(\delta(p,b),a))\}.$
- 4. Какво трябва да направим с финалните състояния?
- 5. За втората част разгледайте две непресичащи се множества от състояния $Q_{even} = \{p_1, \ldots, p_n\}$ и $Q_{odd} = \{q_1, \ldots, q_n\}$, където n е броят на състоянията на A.
- 6. Реализирайте следната идея. С думи с четна дължина да достигаме Q_{even} , а с нечетна Q_{odd} .
- 7. Допълнително осигурете, че при преходи от Q_{odd} симулираме преход от оригиналния автомат A, а от Q_{even} преход с произволна буква.
- 8. Кои трябва да са финалните състояния?

- 9. За третата част мислете за допълнението на езика L'.
- 10. Съобразете, че L' се състои от думи, които съдържат срещане на дума $\alpha \in L_1$, която е в $even(L_2)$.
- 11. Докажете, че $L' = \Sigma^*(L_1 \cap even(L_2))\Sigma^*$ и довършете.

Упътване за задача 19: За първата част използвайте задача 12. Сравенете със задача 13. За втората част отново използвайте идеята от предните задачи, така че да замените "всяко" с "има".

Упътване за задача 20:

- 1. За първата част може да съобразите, че $w \in Min(L)$ точно когато $w \in L$ и $w \notin L\Sigma^+$. Довършете.
- 2. За втората част разгледайте краен детерминиран автомат A за езика L.
- 3. Кога една дума от езика L се разпознава от A? Мислете си за условието като за път в A.
- 4. Кога не може да разширим една дума до дума от L? Как изглежда това условие в термините на пътища в A?
- 5. Получете краен автомат за езика Max(L) като въз основа на горните разсъждения запазите само част от финалните състояния на A като финални.

Упътване за задача 21: Сравнете със задача 14. Упътване за задача 22:

- 1. Разгледайте краен детерминиран автомат $A = \langle \Sigma, Q, s, \delta, F \rangle$ за езика L.
- 2. Докажете, че $A_P = \langle \Sigma, Q, s, \delta, Q \rangle$ разпознава точно префиксите на L.
- 3. Докажете, че $A_S = \langle \Sigma, Q, Q, \delta, F \rangle$ разпознава точно суфиксите на L.
- 4. Завършете първата част на задачата.

- 5. Разгледайте езика $L=(\{0\}\{1\}^*\{0\})^3$. Разгледайте дума в езика $w\in PS_{unique(L)}\cap (\{2\}1^*\{0\})^2$.
- 6. Ако $w=01^k001^l0$ и w е префикс и суфикс в думата $01^r001^s001^t0$ какво може да кажете за k,l,r,s и t.
- 7. Разсъждавайте като в задачи 5 и 6, за да докажете, че $PS_{unique(L)} \cap (\{2\}1^*\{0\})^2$ не е регулярен.
- 8. Заключете, че $PS_{unique}(L)$ не е регулярен.

Упътване за задача 23: За първата част използвайте идеята от конструкцията за сечение на автоматни езици. За втората част използвайте първата и идеите от задачи 13, 16 и 19.