Research methods 05

Experimental Design III

Caryn Block ORLJ 5040 Teachers College Columbia University

Operationalizing variables

Measurement

assigning numbers to people

vs. Manipulation

 changing people's experience and behavior in a systematic way

via Manipulation

What issues do you need to consider to design **effective manipulations** of independent variables?

The cover story

Create a convincing cover story

"I still don't believe that this experiment is all about selfidentity..."

The cover story

- Answers the question: Why are you here?
- The cover story should be
 - Simple
 - Involving
 - Unrelated to manipulations
 - O Inducing the same psychological state
- Must provide a framework for interpreting the experiment

Operationalizing the IV:

2 sources of error: random error

- Random error: extraneous variables whose average influence on the outcome is the same in all conditions.
- Random errors usually result from events that occur in experimental settings, subject variables, or any variable not under experimenter's control.

- Random errors obscure the relationship between the IV and the DV
- To reduce hold extraneous variables constant

2 sources of error: systematic error

- Systematic error: extraneous variables whose influence on the outcome is different across conditions of the IV
- Systematic error variables are a threat to internal validity

Operationalizing the IV:

2 sources of error: systematic error

- Systematic error results from extraneous variables that cannot be separated from the IV
 - OCan be part of the experimental setting or manipulation
 - Can be subject variables (differences in subjects across conditions)
- Systematic error distorts the relationship between the IV and the DV
- To reduce systematic error
 - Carefully operationalize variables so that extraneous variables don't occur with the IV
 - Random assignment of subjects to conditions

Pilot-testing

- Purpose: Determine if manipulations (IV) have intended effect
- An initial study is done to examine whether you manipulated the IV effectively
- Manipulate IV and measure it's effects on the psychological state you were trying to manipulate
 - OExample: Manipulating gender-typing of a job

Manipulation checks

- Purpose: Determine if manipulations (IV) have intended effect
- Questions in the main study to determine if your IV had it's intended effect
- Measure the effect of your manipulation on psychological state of participants
 - Example: Manipulating hiring status of job applicant

Operationalizing the IV:

Internal Analysis

- What if my manipulation check fails?
- Internal analysis
 - Ouse manipulation check responses to assign subjects to a condition
 - OForm new "groups" based on those who the manipulation worked for
- But, not an experimental design, a preexperimental design

Operationalizing the IV: Realism

- Realism is another desiderata of a manipulation
- 2 senses in which a manipulation can be realistic
 - Experimental realism
 - 'Psychological reality'
 - Manipulation is realistic to subjects and has an impact to them
 - Mundane realism
 - 'Physical reality'
 - Manipulation is similar to real-life events
- Not opposites, but differentially important

Operationalizing the IV Types of bias in lab experiments

- Demand characteristics
 - Cues provided by the experimental setting that help the subject to develop naïve hypotheses about the experiment's purpose and to behave accordingly.
 - Subject is not a passive responder in the experiment, but a thinking person.
- Cues can be related to:
 - Information about the experiment (rumors, announcement)
 - Physical setting
 - O Experimental instructions, procedures, tasks
 - Experimenter
- Demand characteristics are a source of systematic error

Demand Characteristics in Action

Types of bias in lab experiments

Strategies for minimizing demand characteristics

- •A deceptive cover story
- •Collect DVs unobtrusively
- Expose subjects to only one condition
 - Separate IV manipulation from experimental session
 - Subjects are unaware

that they are in an experiment

 Behavioral Measures as DVs

Types of bias in lab experiments

- Demand characteristics
 - Subjects may respond to demand characteristics in various ways:
 - Good subject
 - Bad subject
 - Normal subject
 - O Can demand characteristics be eliminated?
 - Which designs are most susceptible?

Types of bias in experiments

- Experimenter effects
 - Unintentional errors experimenters make in eliciting desired responses from subjects
 - O Experimenter is not passive stimulus in experiment
 - Knows the hypothesis and wants it confirmed
 - Behaves selectively
 - O Problem: subjects respond to IV and experimenter cues
 - Creates a self-fulfilling prophecy
 - Experimenter cues become source of systematic error

Types of bias in experiments

Minimizing Experimenter's expectancy

- Experimenter is unaware of condition
- Experimenter is unaware of hypothesis
- Multiple experimenters within sessions
- Multiple experimenters within sessions
 Multiple experimenters across sessions
- Experimenter is unaware of condition as long as possible
 - •Randomly assign experimenters to conditions
 - •Experimenters are trained

Minimizing experimenter's role in the experiment

- Use of other media to communicate instructions
 Minimize experimenter - subject
- interactions

Types of bias in lab experiments

- How pervasive is experimenter bias?
 - ONot found on intelligence tests
 - ORosenthal studies differ from most lab studies in that:
 - Setting deprived of other cues
 - Experimenters ran only 1 condition
 - Highly subjective DV
- What behaviors cause experimenter bias?
 - ONot all verbal
 - Ounclear on what experimenters do to cause this