

Overview

- Introduction
- Mathematical formulation
- One-dimensional minimization
- Newton's Method
- Conjugate gradient method

Optimization is used everywhere in nature:

- Physics
- Chemistry
- Economics
- Engineering
- Etc...

and of course STATISTICS!

• Example 1: Industry

How to produce a cylindrical beer can 0.5L so it requires minimum material?

Continuous optimization

• Example 2: Economics

Factories F1, F2
Retail outlets R1, R2, R3
Cost of shipping a product c_{ij} Production a_i each week
Requirement b_i each week

Network flow optimization

Example 3: Statistics

Maximize Likelihood $L(X, \theta)$

Almost all model fitting requires optimization!

Maximum likelihood

Consider a sample $(X_1, ..., X_n)$ which is drawn from a probability distribution $P(X|\Theta)$ where Θ are parameters.

If the Xs are independent with probability density function $P(X_i | \Theta)$ then the joint probability of the whole set is

$$P(X_1,...,X_n/\Theta) = \prod_{i=1}^n P(X_i/\Theta)$$

Find the parameters that maximize this function

Mathematical formulation

We need to minimize or maximize

 Objective function f(x) (I - cost, II - profit, IIIlikelihood)

dependent on

Parameters or Unknowns x (I-height & diameter, II-supply, III – parameters

Mathematical formulation

• Sometimes we have constraints $c_i(x)$ satisfying equations or inequalities. Formulation:

$$\min_{x \in \mathbb{R}^n} f(x) \text{ subject to } c_i(x) = 0, i \in E$$

$$c_i(x) \ge 0, i \in I$$

What if:

- Max instead of min
- Constraints are not like these

Mathematical formulation

- Example 1: Constraints volume=0.5L
- Example 2- cont.

$$\min \sum_{ij} c_{ij} x_{ij}$$

$$\sum_{j=1}^{3} x_{ij} \le a_i, i = 1,2$$

$$s.t. \sum_{i=1}^{2} x_{ij} \ge b_j, j = 1,2,3$$

$$x_{ij} \ge 0$$

Example 3 – no constraints UNCONSTRAINED MINIMIZATION

Exercise

- Split into groups of three-four and
- Find an application when optimization is needed (your personal experience, research, university courses)
- 2. State your problem
 - Objective function
 - Parameters
 - Constraints if any
- 3. You have max 10 minutes

Where we are

Why different algorithms?

- Speed
- Memory
- Historically

Steepest descent

Newton method

Quasi-Newton-Methods

Conjugate gradients

One-dimensional minimization

- One-dimensional minimization=one parameter
- Algorithm Golden Section: finds local minimum on interval [A,B]
- It narrows down the search interval, constant reduction factor $1-\alpha=(\sqrt{5}-1)/2\approx0.62$

One-dimensional minimization

Golden section

- 1. Choose interval $[x_1, x_3]$
- 2. Choose $a=\alpha(x_3-x_1)$
- 3. $x_2=x_1+a$, $x_4=x_3-a$
- 4. If $f_4 > f_2$ select RED
- 5. If $f_4 < f_2$ select BLUE
- 6. Continue with new interval until it is small

Note: f should be unimodal

R: One-dimensional minimization

• Brent's method – improved golden search

```
optimize(f, interval,...)
```

Multidimensional optimization

The problem:

 $\min_{\mathbf{x}\in R^n} f(\mathbf{x})$

Gradient

$$\nabla f(\mathbf{x}) = \begin{pmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} \\ \dots \\ \frac{\partial f(\mathbf{x})}{\partial x_n} \end{pmatrix}$$

Hessian

$$\nabla^{2} f(\mathbf{x}) = \begin{pmatrix} \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1} \partial x_{1}} & \dots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1} \partial x_{n}} \\ \dots & \dots & \dots \\ \frac{\partial^{2} f(\mathbf{x})}{\partial x_{n} \partial x_{1}} & \dots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{n} \partial x_{n}} \end{pmatrix}$$

General methodology:

- 1. Given starting point x_0 , $x=x_0$
- 2. Choose direction p and step α
- 3. Move to $x:=x+\alpha p$
- 4. Repeat from 2 until convergence

Multidimensional optimization

How to choose direction leading to function decrease?

Taylor theorem
$$f(x + \alpha p) = f(x) + \alpha p^{T} \nabla f(x_{k}) + o(\alpha^{2})$$
The minimum is
$$p = \frac{-\nabla f(x)}{\|\nabla f(x)\|}$$
Should be minimized

$$\angle (d, -\nabla f(x)) < \frac{\pi}{2}$$

Any direction having $\angle(d, -\nabla f(x)) < \frac{\pi}{2}$ is descent direction

Multidimensional optimization

- How to choose step size α ?
 - Find global minimum along direction p (expensive)
 - Find a sufficient decrease

BACKTRACKING

Choose
$$\alpha_0 > 0$$
, ρ in (0,1), c in (0,1), $\alpha := \alpha_0$
REPEAT until $f(x_k + \alpha p_k) \le f(x_k) + c \alpha \nabla f_k^T(p_k)$
 $\alpha := \rho \alpha$
END

Newton's method

 In statistics called Newton-Raphson method

General idea:

Quadratic model

$$f(\mathbf{p}) = \frac{1}{2}\mathbf{p}^T A \mathbf{p} + b^T \mathbf{p} + c$$

Minimum

$$\mathbf{p}^* = A^{-1}b$$

When general function,
 Tailor expansion

$$f(x+\alpha p) \approx f(x) + a\nabla f(x)^T p + \frac{\alpha^2}{2} p^T \nabla^2 f(x) p$$

Proceed to next point

$$x:=x+\alpha p$$

$$p = -(\nabla^2 f(x))^{-1} \nabla f(x)$$

Newton's method

Illustration:

- Steepest descent
- Newton's direction

Newton's method

Comments

- Under mild conditions: Converges quickly, especially near optimum
- For *p* to be a descent direction Hessian should be **positive definite** (see why)—strong requirement!
- Can be very expensive to compute reverse of Hessian on each iteration!
- Need to store n*n matrix (Hessian) memory requirements

Quasi-Newton methods

Idea:

In Newton's method instead computing inverse of Hessian on each step

- Compute approximate Hessian B_k and reverse H_k
- BFGS: Using knowledge about H_k , function and gradient in x_k and x_{k+1} , compute H_{k+1}

$$p_k = -H_k \nabla f(x_k)$$

BFGS

How to compute H_{k+1} ?

Quadratic model

$$m_{k+1}(p) = f(x) + \nabla f(x)^T p + \frac{1}{2} p^T B_{k+1} p$$

should have the same function values and gradients as f(x) in points x_k and x_{k+1}

-> Secant condition

$$H_{k+1}(\nabla f_{k+1} - \nabla f_k) = (x_{k+1} - x_k)$$

BFGS

How to compute H_{k+1} ?

Distance between H_k and H_{k+1} should be minimal

$$\min_{H} ||H - H_{k}||$$
s.t. $H = H^{T}$, secant condition

Updating formula

$$H_{k+1} = H_k - \frac{H_k y_k y_k^T H_k}{y_k^T H_k y_k} + \frac{S_k S_k^T}{y_k^T S_k}$$

BFGS

Comments

- Typically takes more iterations than Newton's method
- Each iteration takes less time (no matrix inversion!)
- Quasi-Newton Methods are particularly good for large-scale problems.
- How to choose initial Hessian?

Conjugate Gradient method

Quadratic function

$$f(x) = \frac{1}{2}x^T A x - b^T x$$

Gradient
$$\nabla f(x) = Ax - b = r(x)$$

A- symmetric, positive definite

Def. Directions p and q are conjugate with respect to A if

$$p^T A q = 0$$

Conjugate Gradient method

Conjugate gradient method:

Choose

$$p_{k+1} = -r_{k+1} + \beta_{k+1} p_k$$

$$p_0 = -r_0$$

 p_i should satisfy conjugacy condition, therefore

$$\bullet \quad \beta_k = \frac{r_k^T A p_{k-1}}{p_{k-1}^T A p_{k-1}}$$

Converges in dim(A) steps

Nonlinear CG method

Idea: Consider general f(x) and substitute r_k with ∇f_k

Given
$$x_0$$
, f_0 , ∇f_0
 p_0 :=- ∇f_0
while ∇f_k !=0
compute α_k , x_{k+1} = x_k + $\alpha_k p_k$
 β_{k+1} = ($\nabla f^T_{k+1} \nabla f_{k+1}$)/($\nabla f^T_k \nabla f_k$)
 p_{k+1} =- ∇f_{k+1} + $\beta_{k+1} p_k$
 p_{k+1} =- p_k +1

Nonlinear CG method

- Converges to local minimum
- Much faster than steepest descent in general
- Slower than Newton and Quasi-Newton but much less memory

R: Multidimensional optimization

• Quasi-Newton and CG incorporated in one procedure optim(par, fn, gr=Null, method, ...)

Look also

```
nls(...)
```