Notas2

Juan Tornero

21 de marzo de 2017

Ejemplo Red Neuronal Artificial

Veremos a continuación un par de aplicaciones de una ANN, usando el algoritmo de Resilient Backpropagation.

El primer ejemplo entrenaremos una red neuronal para que sea capaz de calcular el cuadrado de un número.

Usaremos una muestra aleatoria de 50 números entre el 0 y el 10 como inputs, y el cuadrado de estos números como output de una ANN con 10 neuronas ocultas y un error de $\delta = 0.01$.

En el gráfico se muestra un esquema de esta ANN, cuanto mayor es el peso de la conexión más oscuro es el color de la representación de esta conexión.

Veamos la precisión de esta ANN calculando el cuadrado de los naturales del 1 al 10.

Table 1:	Resultad	os ANN
Input	Output	Error
1.00	0.92	0.08
2.00	4.00	0.00
3.00	8.99	0.01
4.00	16.00	0.00
5.00	25.00	0.00
6.00	36.00	0.00
7.00	49.00	0.00
8.00	64.00	0.00
9.00	81.00	0.00
10.00	99.95	0.05

El otro ejemplo que veremos será una ANN entrenada para deducir la relación entre la temperatura (°C) y la presión de vapor de mercurio en milímetros (de mercurio), a partir de 19 observaciones.

Table 2: Observaciones		
temperature	pressure	
0	0.0002	
20	0.0012	
40	0.0060	
60	0.0300	
80	0.0900	
100	0.2700	
120	0.7500	
140	1.8500	
160	4.2000	
180	8.8000	
200	17.3000	
220	32.1000	
240	57.0000	
260	96.0000	
280	157.0000	
300	247.0000	
320	376.0000	
340	558.0000	
360	806.0000	

