Matrizenmultiplikation mit dem Falkschema

	Falksches Schema für die						2 -1	3	= B
Matrixmultiplikation						3	4	1	
AB = C						-3	4	0	
						1	-3	4	
A =	2	-1	0	3	-4	-7	29	-12	= C
	3	-2	2	1	0	13	20	7	
	-1	3	-1	-2	-4	-9	-5	-14	
	3	3	-4	2	-2	-20	1	3	

Das Matrixelement c_{32} entsteht aus dem Skalarprodukt der 3. Zeile von A und der 2. Spalte von B: $(-1) \cdot 2 + 3 \cdot (-1) + (-1) \cdot 4 + (-2) \cdot 4 + (-4) \cdot (-3) = -5$

Einfache Ableitungsregeln

Faktroregel:

$$y = C \cdot f(x) \Rightarrow y' = C \cdot f'(x)$$

Summenregel:

$$y = f_1(x) + f_2(x) + \dots + f_n(x)$$

$\Rightarrow y' = f_1'(x) + f_2'(x) + \dots + f_n'(x)$

Produktregel:

$$y = u(x) \cdot v(x) \Rightarrow y' = u'(x) \cdot v(x) + u(x) \cdot v'(x)$$

Quotientenregel:

$$y = \frac{u(x)}{v(x)} \Rightarrow y' = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{[v(x)]^2}$$

Kettenregel:

$$y = a(b(c(x))) \Rightarrow y' = a'(x) \cdot b'(x) \cdot c'(x)$$

Wichtige Ableitungen:

$$f(x) \Rightarrow f'(x)$$

 $\ln(x) \Rightarrow \frac{1}{x}$
 $\arccos(x) \Rightarrow -\frac{1}{\sqrt{1-x^2}}$

Wichtige Rechnungen:

$$\ln(1) = 0$$

$$\sin^2(x) + \cos^2(x) = 1$$

$$\sin\left(\frac{\pi}{2}\right) = \sin\left(\frac{3\pi}{2}\right) = 0$$

$$\cos(0) = \cos(\pi) = \cos(2\pi) = 0$$

$$\sin(0) = \sin(\pi) = \sin(2\pi) = 1$$

$$\cos\left(\frac{\pi}{2}\right) = \cos\left(\frac{3\pi}{2}\right) = 1$$

Partielle Ableitungen

Bildung partieller Ableitungen: Die partiellen Ableitungen einer Funktion $f(x_1, x_2, x_3) = x_1 \cdot x_2 + x_3$ lassen sich wie folgt bestimmen:

$$\frac{\partial f}{\partial x_1}(x_1, x_2, x_3) = 1 \cdot x_2$$
$$\frac{\partial f}{\partial x_2}(x_1, x_2, x_3) = x_1 \cdot 1$$
$$\frac{\partial f}{\partial x_3}(x_1, x_2, x_3) = 1$$

Berechnung der Tangentialebene: Es seien $\mathbb{D} \subset \mathbb{R}^2$, $f : \mathbb{D} - > \mathbb{R}$ eine partiell differenzierbare Funktion und $(x_{01}, x_{02}) \in \mathbb{D}$. Dann lautet die Gleichung der Tangentialebene für den Punkt (x_{01}, x_{02}) :

$$x_{3} = f(x_{01}, x_{02}) + \frac{\partial f}{\partial x_{1}}(x_{01}, x_{02})(x_{1} - x_{01}) + \frac{\partial f}{\partial x_{2}}(x_{01}, x_{02})(x_{2} - x_{02})$$

$$= f(x_{01}, x_{02}) + \left(\frac{\partial f}{\partial x_{1}}(x_{01}, x_{02}) \quad \frac{\partial f}{\partial x_{2}}(x_{01}, x_{02})\right) \cdot \begin{pmatrix} (x_{1} - x_{01}) \\ (x_{2} - x_{02}) \end{pmatrix}$$

Zuerst den Punkt (x_{01}, x_{02}) an den Stellen x_{01} und x_{02} einsetzen. Dann ausrechnen und am Ende den Punkt für x_1 und x_2 einsetzen um zum Ergebnis für x3 an dem genannten Punkt zu kommen.

Berechnung Gradient: Es sei $\mathbb{D} \subset \mathbb{R}^n$ und $f: \mathbb{D} \to \mathbb{R}$ partiell differenzierbar. Dann heißt der Vektor

$$\operatorname{grad} f(x) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(x) \\ \frac{\partial f}{\partial x_2}(x) \\ \vdots \\ \frac{\partial f}{\partial x_n}(x) \end{pmatrix} \text{ der Gradient von } f \text{ im Punkt } x \in \mathbb{D} = (x_1, \dots, x_n).$$

Anstelle von $\operatorname{grad} f(x)$ wird auch häufig $\nabla f(x)$ geschrieben.

Partielle Ableitungen k-ter Ordnung:

Es sei $D \subset \mathbb{R}^n$, $f: D \to \mathbb{R}$ eine partiell differenzierbare Funktion und $x_0 \in D$. Die Funktion f heißt zweimal **partiell differenzierbar** in x_0 , wenn alle partiellen Ableitungen $\frac{\partial f}{\partial x_i}$ in x_0 wieder partiell differenzierbar sind.

Man schreibt
$$\frac{\partial^2 f}{\partial x_j x_i}(x_0) = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i}\right)(x_0) = f_{x_j x_i}(x_0)$$

Dieser Ausdruck heißt dann zweite partielle Ableitung von f.

Allgemein heißt f k-mal partiell differenzierbar, wennn alle (k-1)-ten partiellen Ableitungen von f wieder partiell differenzierbar sind. Man schreibt:

$$\frac{\partial f}{\partial x_{ik}\partial x_{i(k-1)}\dots\partial x_{i1}}(x_0) = \frac{\partial}{\partial x_{ik}}\left(\frac{\partial^{k-1} f}{\partial x_{i(k-1)}\dots\partial x_{i1}}\right)(x_0) = f_{x_{ik}\dots x_{i1}}$$

Satz von Schwarz: Es sei $D \subset \mathbb{R}^n, f: D \to \mathbb{R}$ zweimal stetig partiell differenzierbar. Dann ist $\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$ für alle $i, j \in \{1, \dots, n\}$. Die Reihenfolge der Ableitungsvariablen spielt also keine Rolle.

Totale Differenzierbarkeit

Vektorfunktion: Eine eindeutige Abbildung $f: \mathbb{D} \to W, \mathbb{D} \subset \mathbb{R}^n, W \subset \mathbb{R}^m, m > 1$ mit mehrdimensionalem Wertebereich heißt Vektorfunktion.

Beispiel: Es sei $\mathbb{D} \subset \mathbb{R}^3 \to \mathbb{R}^2$ gegeben durch

$$f(x_1, x_2, x_3) = \begin{pmatrix} x_1 + x_3 \\ x_2 + x_3 \end{pmatrix}$$

Jacobi-Matrix: Es sei $f: \mathbb{D} \to \mathbb{R}^m, \mathbb{D} \subset \mathbb{R}^n$ eine Abbildung und $x_0 \in \mathbb{D}$. Weiterhin sei f in x_0 total differenzierbar mit der Matrix

$$A = (a_{ij}); i = 1, \dots, m; j = 1, \dots, n \in \mathbb{R}^{m \times n}$$

 $f(x_1, x_2, x_3)$ hat 2 Ergebniskomponenten:

$$f_1(x_1, x_2, x_3) = x_1 + x_2$$

$$f_2(x_1, x_2, x_3) = x_2 + x_3$$

Jacobi-Matrix von f und wird mit $Df(x_0)$ oder $J_f(x_0)$ bezeichnet.

$$A = (a_{ij}); i = 1, \dots, m; j = 1, \dots, n \in \mathbb{R}^{m \times n}$$
Dann ist f in x_0 stetig und alle Komponentenfunktionen $f_1, \dots, f_m : \mathbb{R}^n \to \mathbb{R}$ sind in x_0 partiell differenzierbar, wobei gilt: $a_{ij} = \frac{\partial f_i}{\partial x_j}(x_0)$.

Die Matrix heißt Funktionalmatrix oder auch
$$Df(x_0) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x_0) & \frac{\partial f_1}{\partial x_2}(x_0) & \cdots & \frac{\partial f_1}{\partial x_n}(x_0) \\ \frac{\partial f_2}{\partial x_1}(x_0) & \frac{\partial f_2}{\partial x_2}(x_0) & \cdots & \frac{\partial f_2}{\partial x_n}(x_0) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(x_0) & \frac{\partial f_m}{\partial x_2}(x_0) & \cdots & \frac{\partial f_m}{\partial x_n}(x_0) \end{pmatrix}$$

Totale Differenzierbarkeit: Sei $f: \mathbb{R}^2 \to \mathbb{R}$ eine total differenzierbare Funktion. Dann kann f in der

Nähe eines Punktes $(x_{01}, x_{02}) \in \mathbb{R}^2$ durch $f(x_{01}, x_{02}) + Df(x_{01}, x_{02}) \begin{pmatrix} x_1 - x_{01} \\ x_2 - x_{02} \end{pmatrix}$ angenähert werden.

Es gilt also
$$f(x_1, x_2) = f(x_{01}, x_{02}) + \left(\frac{\partial f}{\partial x_1}(x_{01}, x_{02}) - \frac{\partial f}{\partial x_2}(x_{01}, x_{02})\right) \begin{pmatrix} x_1 - x_{01} \\ x_2 - x_{02} \end{pmatrix}$$

$$f(x_1, x_2) - f(x_{01}, x_{02}) \approx \frac{\partial f}{\partial x_1} (x_{01}, x_{02}) \cdot \underbrace{(x_1 - x_{01})}_{=:\Delta x_1} + \frac{\partial f}{\partial x_2} (x_{01}, x_{02}) \cdot \underbrace{(x_2 - x_{02})}_{=:\Delta x_2}$$

also gilt: $\Delta f \approx \frac{\partial f}{\partial x_1} \cdot \Delta x_1 + \frac{\partial f}{\partial x_2} \cdot \Delta x_2$

Für "beliebig kleines" Δx_1 und Δx_2 schreiben wir "d" statt " Δ " und "=" statt " \approx ".

$$df = \frac{\partial f}{\partial x_1} (x_{01}, x_{02}) \cdot dx_1 + \frac{\partial f}{\partial x_2} (x_{01}, x_{02}) \cdot dx_2$$

Diesen Ausdruck bezeichnet man als totales Differenzial der Funktion f.

Für eine Funktion $f: \mathbb{R}^n \to \mathbb{R}$ gilt:

$$df = \frac{\partial f}{\partial x_1} \cdot dx_1 + \frac{\partial f}{\partial x_2} \cdot dx_2 + \dots + \frac{\partial f}{\partial x_2} \cdot dx_n$$

Berechnung linearer maximaler absoluter Fehler:

$$|\Delta f| \approx \left| \frac{\partial f}{\partial x_1} (x_1, \dots, x_n) \right| \cdot |\Delta x_1| + \dots + \left| \frac{\partial f}{\partial x_n} (x_1, \dots, x_n) \right| \cdot |\Delta x_n|$$

3

Extremwerte

Bestimmung lokales Extremum: Es sei $U \subset \mathbb{R}^n$ eine offene Menge und $f: U \to \mathbb{R}$ differenzierbar. Besitzt f in $x_0 \in U$ ein lokales Extremum, so gilt: $\nabla f(x_0) = 0$ d.h. $\frac{\partial f}{\partial x_1}(x_0) = \cdots = \frac{\partial f}{\partial x_r}(x_0) = 0$

Definitheit einer Matrix: Eine Matrix $A = (a_{ij}), i, j = 1, \dots, n \in \mathbb{R}^{n \times n}$ heißt **positiv definit**, falls gilt:

$$a_{11} > 0, \det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} > 0, \dots, \det \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} > 0, \quad \begin{vmatrix} \mathbf{Berechnung \ der \ Determin \ det} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a \cdot d) - (c \cdot b)$$

also det
$$\begin{pmatrix} a_{11} & \cdots & a_{1k} \\ a_{21} & \cdots & a_{2k} \\ \vdots & \ddots & \vdots \\ a_{k1} & \cdots & a_{kk} \end{pmatrix} > 0 \text{ für alle } k = 1, \dots, n.$$

A heißt negativ definit, falls -A positiv definit ist.

Berechnung der Determinante einer 2x2 Matrix:

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a \cdot d) - (c \cdot b)$$

Berechnung der Determinante einer 3x3 Matrix:

$$\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = (a \cdot e \cdot i) + (b \cdot f \cdot g) + (c \cdot d \cdot h)$$
$$- (g \cdot e \cdot c) - (h \cdot f \cdot a) - (i \cdot d \cdot b)$$

Hesse Matrix: Es seien $U \subset \mathbb{R}^n$ eine offene Menge, $f: U \to \mathbb{R}$ eine zweimal stetig partiell differenzierbare Funktion und $x_0 \in U$. Unter der <u>Hesse-Matrix</u> von f in x_0 versteht man die Matrix:

$$H_f(x_0) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2}(x_0) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(x_0) \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(x_0) & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n}(x_0) \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(x_0) & \cdots & \frac{\partial^2 f}{\partial x_n^2}(x_0) \end{pmatrix}$$

Aussagen über Extremstellen: Es sei $U \subset \mathbb{R}^n$ eine offene Menge, $f: U \to \mathbb{R}$ zweimal stetig differenzierbar und $x_0 \in U$ ein Punkt mit $\nabla f(x_0) = 0$.

- 1. Ist $H_f(x_0)$ positiv definit, so hat f in x_0 ein lokales Minimum.
- 2. Ist $H_f(x_0)$ negative definit, so hat f in x_0 ein lokales Maximum.
- 3. Ist $U \subset \mathbb{R}^2$ und gilt $\det H_f(x_0) < 0$, so liegt kein Extremwert vor.

Beispiel: Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ durch $f(x_1, x_2) = \cos(x_1) + \cos(x_2)$

Gradient:
$$\nabla f(x_1, x_2) = \begin{pmatrix} -\sin x_1 \\ -\sin x_2 \end{pmatrix} := \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow -\sin x_1 = -\sin x_2 = 0$$

$$(k_1 \pi, k_2 \pi), k_1, k_2 \in \mathbb{Z}$$

Hesse-Matrix
$$H_f(x_1, x_2) = \begin{pmatrix} -\cos x_1 & 0\\ 0 & -\cos x_2 \end{pmatrix}$$

$$H_f(k_1 \pi, k_2 \pi) = \begin{pmatrix} -(-1)^{k_1} & 0\\ 0 & -(-1)^{k_2} \end{pmatrix}$$

	k_1 gerade	k_1 ungerade		
k_2 gerade	lokales Maximum	kein Extremwert		
k_2 ungerade	kein Extremwert	lokales Minimum		