Дискретная математика. Коллоквиум весна 2017. Теоремы

Ваномас

12 марта 2017 г.

Содержание

Теорема	1			•		•						•			 	•		•				•		 •	2
Теорема	2		•			•	•						•		 						•		 		2
Теорема	3		•			•							•		 						•		 		3
Теорема	4		•			•							•		 						•		 		3
Теорема	5													•	 								 		3
Теорема	7			•			•							•	 								 		4
Теорема	14			•			•							•	 								 		5
Теорема	18			•		•							•		 						•				5
Теорема	19			•		•							•		 						•				6
Теорема	20			•		•							•		 						•				6
Теорема	21			•			•								 								 		7
Тоорома	22																								7

Теорема 1

Теорема. Пусть $(\Omega, \mathfrak{F}, \mathcal{P})(\Omega, \mathfrak{F}, \mathcal{P})$ — вероятностное пространство. Тогда для произвольных событий $A_1, A_2, \ldots, A_n A_1, A_2, \ldots, A_n$ справедлива формула

$$\mathcal{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i} \mathcal{P}(A_{i}) - \sum_{i < j} \mathcal{P}(A_{i} \cap A_{j}) + \sum_{i < j < k} \mathcal{P}(A_{i} \cap A_{j} \cap A_{k}) + \dots + (-1)^{n-1} \mathcal{P}\left(\bigcap_{i=1}^{n} A_{i}\right) \cdot \mathcal{P}\left(\bigcup_{i=1}^{n} A_{i}\right) \cdot \mathcal$$

Доказательство. Её можно получить из принципа включений-исключений в форме индикаторных функций:

$$\mathbf{1}_{\bigcup_{i} A_{i}} = \sum_{i} \mathbf{1}_{A_{i}} - \sum_{i < j} \mathbf{1}_{A_{i} \cap A_{j}} + \sum_{i < j < k} \mathbf{1}_{A_{i} \cap A_{j} \cap A_{k}} + \ldots + (-1)^{n-1} \mathbf{1}_{A_{1} \cap \ldots \cap A_{n}} \cdot \mathbf{1}_{\bigcup_{i} A_{i}} = \sum_{i} \mathbf{1}_{A_{i}} - \sum_{i < j} \mathbf{1}_{A_{i} \cap A_{j}} + \sum_{i < j < k} \mathbf{1}_{A_{i} \cap A_{j} \cap A_{k}} + \ldots + (-1)^{n-1} \mathbf{1}_{A_{1} \cap \ldots \cap A_{n}}.$$

Пусть A_iA_i — события вероятностного пространства $(\Omega, \mathfrak{F}, \mathcal{P})(\Omega, \mathfrak{F}, \mathcal{P})$, то есть $A_i \in \mathfrak{F}A_i \in \mathfrak{F}$. Возьмем математическое ожидание $\mathcal{M}\mathcal{M}$ от обеих частей этого соотношения, и, воспользовавших линейностью математического ожидания и равенством $\mathcal{P}(A) = \mathcal{M}(\mathbf{1}_A)\mathcal{P}(A) = \mathcal{M}(\mathbf{1}_A)$ для произвольного события $A \in \mathfrak{F}A \in \mathfrak{F}$, получим формулу включения-исключения для вероятностей.

[:|||:]

Теорема 2

Теорема. Условную вероятность Pr[A|B] можно вычислить по формуле Байеса:

$$Pr[A|B] = \frac{Pr[B|A]}{Pr[B]} \cdot Pr[A]$$

Доказательство.

$$Pr[A|B] = \frac{Pr[B|A]}{Pr[B]} \cdot Pr[A]$$

$$\updownarrow$$

$$Pr[A|B] \cdot Pr[B] = Pr[B|A] \cdot Pr[A]$$

$$\updownarrow$$

$$\frac{Pr[A \cap B]}{Pr[B]} \cdot Pr[B] = \frac{Pr[B \cap A]}{Pr[A]} \cdot Pr[A]$$

$$\updownarrow$$

$$Pr[A \cap B] = Pr[B \cap A]$$

Т.к. $A \cap B = B \cap A$, то последнее равенство верно, а значит верна формула Байеса. [:|||:]

Теорема 3

Теорема. Условной вероятностью события A при условии события B называется

$$\mathbb{P}(A\mid B)=rac{\mathbb{P}(A\cap B)}{\mathbb{P}(B)}\mathbb{P}(A\mid B)=rac{\mathbb{P}(A\cap B)}{\mathbb{P}(B)},\ \textit{где}\ \mathbb{P}(A\cap B)\mathbb{P}(A\cap B)\ -\ \textit{вероятность наступления}$$
 обоих событий сразу.

Доказательство. Пусть ровно г исходов события В входят и в событие А. Исходы события В уже реализовались В данном испытании произошло одно из t событий, входящих в В. Все элементарные события равновероятны, следовательно, для данного испытания вероятность наступления произвольного элементарного события, входящего в В равна 1/t. Тогда по классическому определению вероятности, в данном испытании событие А произойдет с вероятностью r/t. $P(A|B) = \frac{r}{\frac{t}{m}} = \frac{P(AB)}{PB}$

[:|||:]

Теорема 4

Теорема. Математическое ожидание Е линейно.

Доказательство. Пусть ξ и η — случайные величины, заданные на одном вероятностном пространстве. Тогда выполняется равенство

$$E(\xi + \eta) = \sum_{w} (\xi(w) + \eta(w))p(w) = \sum_{w} \xi(w)p(w) + \sum_{w} \eta(w)p(w) = E(\xi) + E(\eta)$$

То есть математическое ожидание суммы случайных величин равно сумме математического ожидания каждой из этих величин. Пусть теперь ξ — случайная величина, α — действительное число. Тогда выполняется равенство

$$E(\alpha \cdot \xi) = \sum_{w} (\alpha \cdot \xi(w)p(w)) = \alpha \cdot \sum_{w} \xi(w)p(w) = \alpha \cdot E(\xi)$$

То есть математическое ожидание произведения константы и случайной величины равно произведению этой константы и математического ожидания самой величины.

Таким образом, линейность математического ожидания доказана.

[:|||:]

Теорема 5

Теорема. Неравенство Маркова в теории вероятностей дает оценку вероятности, что случайная величина превзойдет по модулю фиксированную положительную константу, в терминах её математического ожидания. Получаемая оценка обычно груба, однако она позволяет получить определённое представление о распределении, когда последнее не известно явным образом.

Пусть случайная величина $X: \Omega \to \mathbb{R}+$ определена на вероятностном пространстве (Ω, F, \mathbb{R}) , u ее математическое ожидание $\mathbb{E}|\xi| < \infty$. Тогда $\forall \ x > 0 \ \mathbb{P}(|\xi| \ge x) \le \frac{\mathbb{E}|\xi|}{x}$

Доказательство. Возьмем для доказательства следующее понятие:

Пусть A - некоторое событие. Назовем индикатором события A случайную величину I, равную единице если событие A произошло, и нулю в противном случае. По определению величина I(A) имеет распределение Бернулли с параметром

$$p = \mathbb{P}(I(A) = 1) = \mathbb{P}(A),$$

и ее математическое ожидание равно вероятности успеха $p = \mathbb{P}(A)$. Индикаторы прямого и противоположного событий связаны равенством $I(A) + I(\overline{A}) = 1$. Поэтому $|\xi| = |\xi| * I(|\xi| < x) + |\xi| * I(|\xi| \ge x) \ge |\xi| * I(|\xi| \ge x) \ge x * I(|\xi| \ge x)$. Тогда $\mathbb{E}|\xi| \ge \mathbb{E}(x * I(|\xi| \ge x)) = x * \mathbb{P}(|\xi| \ge x)$.

Разделим обе части на х:

$$\mathbb{P}(|\xi| \ge x) \le \frac{\mathbb{E}|\xi|}{x}$$

Пример:

Ученики в среднем опаздывают на 3 минуты. Какова вероятность того, что ученик опоздает на 15 минут и более? Дать грубую оценку сверху.

$$\mathbb{P}(|\xi| \ge 15) \le 3/15 = 0.2$$

[:|||:]

Теорема 7

Теорема. Объединение счетного числа счетных или конечных множеств счетно или конечно

Доказательство. Пусть имеется счётное число счётных множеств А1, А2, . . .

Расположив элементы каждого из них слева направо в последовательность (${
m Ai}={
m ai0,\,ai1,}$.

. .) и поместив эти последовательности друг под другом, получим таблицу

```
a00 a01 a02 a03 . . . a10 a11 a12 a13 . . . a20 a21 a22 a23 . . . a30 a31 a32 a33 . . .
```

Теперь эту таблицу можно развернуть в последовательность, например, проходя по очереди диагонали: a00, a01, a10, a02, a11, a20, a03, a12, a21, a30, . . . Если множества Ai не пересекались, то мы получили искомое представление для их объединения.

Если пересекались, то из построенной последовательности надо выбросить повторения. Если множеств конечное число или какие-то из множеств конечны, то в этой конструкции части членов не будет — и останется либо конечное, либо счётное множество.

[:|||:]

Теорема 14

Теорема. Верхняя оценка $O(n2^n)$ схемной сложности булевой функции от n переменных.

Доказательство. Для всякого $a \in 0, 1^n$ рассмотрим функцию $f_a:0,1^n \to 0,1$, такую что $f_a(x)=1$ тогда и только тогда, когда x=a. Будет удобно ввести обозначение $x^1=x$ и $x_0=\neg x$. Тогда функцию f_a можно записать формулой

$$f_a(x) = \bigwedge_{i=1}^n x_i^{a_i},$$

где $x = (x_1, \ldots, x_n)$ и $a = (a_1, \ldots, a_n)$. Для произвольной функции f уже не сложно записать формулу через функции

$$f(x) = \bigvee_{a \in f^{-1}(1)} f_a(x).$$

Теперь эти формулы можно переделать в схему. Наша схема сначала будет вычислять отрицания всех переменных, на это нужно n элементов. После этого можно вычислить все функции f_a . Для вычисления каждого нужно n-1 раз применить конъюнкцию. Всего получается $2^n(n-1)$ элемент. Наконец, для вычисления f нужно взять дизъюнкцию нужных функций f_a , на это уйдет не более 2^n элементов (всего различных функций f_a ровно 2^n — над каждым аргументом отрицание либо есть, либо нет). Суммарно в нашей схеме получается $O(n2^n)$ элементов.

Теорема 18

Теорема. Множество M u его дополнение \overline{M} разрешимы тогда u только тогда, когда M u \overline{M} перечислимы.

Доказательство.

Необходимость:

Пусть M и \overline{M} разрешимы. Случаи, когда $M=\mathbb{N}$ или $M=\emptyset$, тривиальны. Будем считать, что $M\neq\emptyset$ и $M\neq\mathbb{N}$. Тогда существуют такие a и b, что $a\in M$ и $b\in\overline{M}$. Поскольку M разрешимо, его характеристическая функция χ_M вычислима. Рассмотрим функцию

$$f(x) = \begin{cases} x \text{ при } \chi_M(x) = 1 \\ a \text{ при } \chi_M(x) = 0 \end{cases}$$

M является множеством значений f: ничего, кроме значений M, в E(f), очевидно, быть не может, а для любого $m \in M$ верно, что f(m) = m. Аналогично, рассмотрим функцию

$$g(x) = \begin{cases} x \text{ при } \chi_M(x) = 0 \\ b \text{ при } \chi_M(x) = 1 \end{cases}$$

 \overline{M} является областью значений g. Таким образом, M и \overline{M} перечислимы (перечисляющие алгоритмы могут быть, например, устроены так: последовательно для всех натуральных n, начиная с нуля, алгоритм выводит значение f(n) или g(n) соответственно).

Достаточность:

Пусть M и \overline{M} перечислимы. Тогда существуют алгоритмы соответственно $\mathfrak A$ и $\mathfrak B$, с помощью которых могут быть получены все элементы этих множеств. Рассмотрим алгоритм, запускающий $\mathfrak A$ и $\mathfrak B$ паралленьно, который выводит сначала первое число, полученное $\mathfrak A$, затем — первое число, полученное $\mathfrak B$, затем — второе число, полученное $\mathfrak A$, и так далее. Такой алгоритм будет являться перечисляющим алгоритмом $\mathbb N$, который получает элементы M на нечётных выводах и элементы $\overline M$ — на чётных. Соответсвенно, для любого элемента x верно, что он будет выведен рассматриваемым алгоритмом за конечное число шагов. Если он был выведен как нечётный по счёту вывод, то $\chi_M(x)=1$, если как чётный — $\chi_M(x)=0$. Таким образом, χ_M вычислима, а значит, M и $\overline M$ разрешимы.

Теорема 19

Теорема. Перечислимые множества являются множествами значений вычислимых функций.

Доказательство. Пусть M — перечислимое множество. Тогда существует алгоритм \mathfrak{A} , выводящий все его элементы. Рассмотрим алгоритм, который принимает на вход натуральное число n, после чего запускает \mathfrak{A} и считает его выводы. Дойдя до n-го по счёту (начиная с 0) вывода, алгоритм останавливается, выводя n-й вывод алгоритма \mathfrak{A} как результат своей работы.

Множество значений функции, которую вычисляет вышеописанный алгоритм, будет совпадать с множеством чисел, выводимых \mathfrak{A} , то есть с M.

[:|||:]

Теорема 20

Теорема. Перечислимые множества являются множествами значений всюду определённых вычислимых функций.

Доказательство. Пусть M — перечислимое множество. Тогда существует алгоритм \mathfrak{A} , выводящий все его элементы. Рассмотрим алгоритм, который принимает на вход натуральное число n, после чего запускает \mathfrak{A} и считает его выводы. Дойдя до n-го по счёту (начиная с 0) вывода, алгоритм останавливается, выводя n-й вывод алгоритма \mathfrak{A} как результат своей работы

Множество значений функции f, которую вычисляет вышеописанный алгоритм, будет совпадать с множеством чисел, выводимых \mathfrak{A} , то есть с M. Если множество M бесконечно, то f также будет всюду определённой по построению. Если же M конечно, рассмотрим функцию

 $f_1(x) = f(x \mod (l+1))$, где l — номер вывода \mathfrak{A} , после которого количество различных выведенных \mathfrak{A} элементов станет равно [M]. Значение l будет конечным, так как любой элемент M выводится \mathfrak{A} за конечное число шагов. Данная функция будет всюду определённой, поскольку \mathfrak{A} до своей остановки совершает не менее l шагов, и множество её значений будет совпадать с M, поскольку по построению в множестве её значений [M] различных элементов, и все они являются результатом работы \mathfrak{A} .

[:|||:]

Теорема 21

Теорема. Множества значений всюду определённых функций перечислимы.

Доказательство. Пусть $M = f(\mathbb{N})$ — множество значений некоторой всюду определённой функции f. Рассмотрим алгоритм, последовательно выводящий для каждого натурального числа n, начиная с 0, значение f(n). Он будет являться перечисляющий алгоритмом для M: для любого $m \in M$ верно, что $\exists x \in \mathbb{N} : f(x) = m$, следовательно, вышеописанный алгоритм выведет m на своём x-ом шаге. [:||:]

Теорема 22

Теорема. Множество значений всюду опрелённой вычислимой функции является областью определения вычислимой функции.

Доказательство. Пусть f — всюду определённая вычислимая функция. Рассмотрим алгоритм, принимающий на вход натуральное число x, который последовательно вычисляет значения f(n) для всех натуральных n, начиная с 0, и, если полученное в какой-то момент значение равно x, выводит 1. Если $x \in E(f)$, то $\exists m \in \mathbb{N} : f(m) = x$. Тогда вышеописанный алгоритм остановится за конечное число шагов: он завершит свою работу, вычислив значения f(n) для всех $n \leqslant m$, а для этого требуется конечное число шагов, поскольку f вычислима и всюду определена. Если же $x \notin E(f)$, то данный алгоритм никогда не остановится, поскольку условие его остановки — существование такого $m \in \mathbb{N}$, что f(m) = x. Таким образом, функция, вычисляемая вышеопианным алгоритмом, определена в точности на E(f).