Exercícios de avaliação

Exercício 10.1 Um sistema combinacional S de 4 bits de entrada $(x_3, x_2, x_1 e x_0)$ e dois bits de saída $(z_1 e z_0)$ possui a seguinte funcionalidade:

- A saída z_1 é igual a 1 se houver três ou mais *bits* iguais a 1 nas entradas do sistema $(x_3, x_2, x_1 e x_0)$ e 0 caso contrário.
- A saída z_0 é igual a 1 se houver um número múltiplo de 4 nas entradas do sistema (x_3 , x_2 , x_1 e x_0 , considere essa ordem e x_3 MSB) e 0 caso contrário.

Aplique o teorema da expansão de Shannon na forma SDP na ordem x_0 , x_1 , x_2 e x_3 e implemente o sistema S usando mux-2x1. Mostre as expressões encontradas e a implementação com circuito.

Solução:

Primeiro passo é encontrar as expressões algébricas para as saídas z_0 e z_1 ,. É possível se preencher diretamente o mapa-K para ambas as saídas observando que para z_1 tem de haver três ou mais variáveis iguais a 1 o que corresponde a:

		1 0				
		00	01	11	10	
<i>x</i> ₃ <i>x</i> ₂	00	0	0	0	0	
	01	0	0	1	0	
	11	0	1	1	1	
	10	0	0	1	0	

 x_1x_0

e que para z_0 os múltiplos de 4 são os binários que terminam com $x_1x_0 = 00$ o que corresponde a

		x_1x_0					
		00	01	11	10		
<i>x</i> ₃ <i>x</i> ₂	00	1	0	0	0		
	01	1	0	0	0		
	11	1	0	0	0		
	10	1	0	0	0		

A partir dos agrupamentos dos mapas-K as funções mínimas para as saídas z_1 e z_0 são:

$$z_1 = x_3 \cdot x_2 \cdot x_0 + x_2 \cdot x_1 \cdot x_0 + x_3 \cdot x_2 \cdot x_1 + x_3 \cdot x_1 \cdot x_0$$

e

$$z_0 = \overline{x_1} \cdot \overline{x_0}$$

Implementando z_1 com mux-2x1:

Implementando z_0 com mux-2x1:

