

A SET IS A WELL DEFINED COLLECTION OF OBJECTS.

1. Power Set

2. EMPTY SET

3. FINITE SET

5. SUBSET

4. EQUAL SET

OPERATION OF SETS

AUBUC=A+B+C-(ANB)-(BNC) -(CNA)+(ANBNC)

FUNCTIONS

A funtion is a relationship where each input has a single output.

It is written as "f(x)", where 'x' is the input

Trigonometric Function

Inverse Trigonometric Function

Exponential Function

Logarithmic Function

Absolute Value Function 5

Greatest Integer Function

Signum Function

Fractional Part Function

Algebraic Function 9

Constructed using +, -, ×, ÷ & √ $Ex. f(x) = \sqrt{(x^4 + 5x^2)}$

Even - Odd Function ODD symmetrical about the

origin (0, 0) or f(-x)=-f(x)

CLASSIFICATION OF FUNCTION

SPECIAL FUNCTIONS

COMPOSITE FUNCTION

Output of 'f' = Input of 'g'

Output of 'f'

Output of 'f' g

"Function Composition" means applying one function to the results of another.

PROPERTIES OF COMPOSITE FUNCTIONS

- \Rightarrow The composite of functions is not commutative. $(gof)(x) \neq (fog)(x)$
- The composite of functions is associative. if f,g,h are three functions Then fo(goh) = (fog)oh
- The composite of two bijections is a bijection. if f and g are two bijections such that gof is defined, then gof is also a bijection.

INVERSE FUNCTION

Let $f: A \to B$ be a bijective function, then there exists a unique $g: B \to A$ such that $f(x) = y \Leftrightarrow g(y) = x$, for all $x \in A$ and $y \in B$. Then 'g' is said to be inverse of 'f'.

PROPERTIES OF INVERSE FUNCTION

- The inverse of a bijection is unique.
- If $f: A \to B$ is a bijection and $g: B \to A$ is the inverse of f, then $f \circ g = I_B$ and $g \circ f = I_A$, where I_A and I_B are identity functions on the sets A and B respectively.
- The inverse of a bijection is also a bijection.
- If f & g are two bijections; $f: A \to B$, $g: B \to C$ then the inverse of gof exists and $(gof)^{-1} = f^{-1}og^{-1}$.