

# 빅데이터 분석 01

최대선 소프트웨어학부 숭실대학교



# 내용

- ▶ 강의 개요
- ▶ 4차 산업 혁명과 데이터 과학
- ▶ 파이썬 리뷰



# 강의 개요



## 목표

- ▶ 데이터 과학 및 빅데이터 분석 이론 습득
- ▶ 파이썬을 이용한 데이터 분석 능력 개발
- ▶실제 데이터를 활용한 프로젝트 수행 경험



# 과정

| 주차       | 내용                        | 주차 | 내용           |
|----------|---------------------------|----|--------------|
| 1        | 강의소개, 데이터과학,<br>파이썬 리뷰    | 9  | 군집분석         |
| 2        | 빅데이터 활용과 이해,<br>파이썬 라이브러리 | 10 | 지리정보 분석      |
| 3        | 크롤링                       | 11 | 텀 프로젝트 제안 발표 |
| 4        | 통계분석1                     | 12 | 텍스트 마이닝1     |
| 5        | 통계분석2                     | 13 | 텍스트 마이닝2     |
| 6        | 회귀예측                      | 14 | 딥러닝          |
| 7        | 분류                        | 15 | 텀 프로젝트 발표    |
| 8 (4/26) | 중간고사                      |    |              |



# 데이터 수집

- ▶ 공개 데이터
- ► API 활용
- ▶ 페이지 스크레이핑

#### SNS 개인정보 노출 심각

페북 이름 • 학교 등 조합 이용자 45% 식별...피싱 등 악용소지 커

이준기 기자 | 입력: 2013-10-13 20:00



페이스북과 트위터 등 소셜네트워크서비스(SNS)를 통한 개인정보 노출이 심각하다는 연구결과가 나왔다. SNS 사용자의 이름과 성별, 학교 정보 등이 그대로 노출돼 있어 개인 신상정보 조합만을 통해 이용자 절반가량을 식별해낼 수 있는 것으로 확인됐다.

한국전자통신연구원(ETRI) 사이버보안연구단은 13일 빅데이터 개인정보 분석기술을 개발, 페이스북 657만개와 트위터 277만개 등 SNS 이용자 계정 934만개를 대상으로 개인정보 노출현황을 분석한 연구결과를 발표했다.

연구결과에 따르면 페이스북의 경우 성별(92%), 고등학교(47%), 혈액 형(40%), 관심사(19%), 좋아하는 음악(14%) 등의 순으로 개인 신상정보



# 데이터 가공

- ▶ 파이썬 라이브러리
  - Pandas, numpy



# 통계분석

### ▶ 1 변수

Nominal : 명목형

• Numeric : 수치형

▶ 2 변수 간 관계 분석

|      |     | 종속변수                    |                         |  |
|------|-----|-------------------------|-------------------------|--|
|      |     | 연속형<br>(명목형 중 순서)       | 비연속형<br>( 수치형 중<br>이산형) |  |
| 독립변수 | 연속  | 상관분석 (cor)<br>회귀분석 (lm) |                         |  |
| ㅋᆸ근ㅜ | 비연속 | 평균치 비교<br>(t.test, aov) | 도수,<br>chisq            |  |



# 텍스트 분석

- ▶ 빈도 분석
- 임베딩
- ▶ 감성 분석







# 지리정보

### ▶ 위치와 매출의 상관관계 등



Residential burglaries in the

(June 1999 - May 2000).

London Borough of Croydon.



# 분류, 회귀 예측

### ► Train



클래스 (Classification) ex) A~ Z, 신용불량 or not

수치 값 (Regression) ex) 내년도 매출, 사기 가능성, ..



# 군집 분석

### Unsupervised learning





## 수업 방법

- ▶ 수업 : 이론, 실습, 과제 풀이
- ▶ 과제 : 수업 중 수행한 과제 + 숙제
- ▶ 퀴즈: 2회 정도, 기존 강의 복습 차원
- ▶ 중간고사 : 실습 과제와 유사
- ▶ 텀 프로젝트
  - 개인 별로 주제를 정하고 데이터를 찾아서 분석
  - 분석 결과 = findings

#### 중실대학교 Soongsil University

# 평가

- ▶ 중간고사 30
- ▶ 텀 프로젝트 30
- ▶ 출석 10
- ▶ 과제 20
- ▶ 퀴즈 등 기타 10

#### 중실대학교 Soongsil University

# 공지 및 Q/A

### 공지

- 주로 오픈카톡방
  - https://open.kakao.com/o/gQo7rq7e
  - 반드시 실명으로 참여 바람
- 스마트캠퍼스

### ► Q/A

- 공유할 만한 질문 : 오픈카톡방에 올리기
- 개인적 질문 : 메일로 sunchoi@ssu.ac.kr
- 스마트캠퍼스 질문은 잘 안봄



# 4차 산업혁명과 데이터 과학



▶ 1차 산업혁명 : 증기기관을 기반으로 한 기계화 혁명

2차 산업혁명 : 전기를 사용한 대량 생산 혁명

▶ 3차 산업혁명 : 컴퓨터와 인터넷이 보급, 지식 정보 혁명

4차 산업혁명 : 지능 정보 기술 혁명

• 초연결, 초지능, 초융합



그림 1-1 산업혁명의 흐름(출처: 미래창조과학부 블로그)



### ▶ 초연결

- 사물과 공간, 인터넷의 상호의존성 증폭, 제품과 서비스의 연결성이 무한 확장
- 대표적 기술: 사물인터넷, 5세대 통신(5G)

### ▶ 사물인터넷

- IoT: 언제나, 어디서나, 어느 것과도 연결될 수 있는 새로운 통신 환경
- RFID태그를 읽는 센서 네트워크(USN)에서 시작
- 사물과 사물 간 통신을 의미하는 M2M으로 발전
- 사람, 업무, 데이터까지 모든 것이 연결되어 상호 통신하는 만물인터 넷 (loE)으로 발전할 전망



#### **▶** 5G

- 초고속
  - 최대 20Gpbs, 일상적으로는 100Mbps
  - 1만배 이상 더 많은 트래픽을 수용
- 초연결
  - 평방 킬로 미터 당 1백만 개의 기기 사용 가능
  - 배터리 하나로 10년 간 구동 가능한 고에너지 효율
- 초저지연
  - 1ms 이하의 낮은 지연시간
  - 이동 간 제로 중단을 실현하는 고안정성

표 1-1 5G의 특징

| 특징   | 설명                                                                                                                                                                                |  |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 초고속  | 초광대역 무선통신(eMBB)enhanced Mobile BroadBand  • 유선과 무선의 차이가 없는 <b>대용량</b> 및 <b>고속</b> 의 데이터 이용 환경 제공  • 4G에 비해 최대 20배 더 빠른 20Gbps까지 구현 가능(일상적으로는 100Mbps 보장 목표)  • 모바일로 8K 콘텐츠 송수신 가능 |  |  |
| 초연결  | 대규모 사물통신(mMTC)massive Machine Type Communication  • 산업 또는 일반인에게 IoT 사용 환경 제공  • 현재보다 최대 500배 더 많은 기기와 고밀집 연결 가능  • 고에너지 효율  • 스마트폰의 인터넷, PC의 인터넷을 넘어 진정한 IoT 가능                   |  |  |
| 초저지연 | 고신뢰/초저지연 통신(uRLLC)ultra-Reliable Low-Latency Communication • 최대 1ms까지의 <b>낮은 지연성</b> 과 <b>고안정성</b> 을 목표로 데이터 통신 서비스의 품질(QoS)을 제공                                                  |  |  |



### ▶ 인공지능(AI)

- 1950년) 앨런 튜링의 튜링 머신 이미테이션 게임
- 1956년) 다트머스대학교의 하계 컨퍼런스에서 Artificial Intelligence라는 용 어가 처음 사용 (1차 전성기)
- 1970년대) 컴퓨터의 계산 기능과 논리 체계의 한계로 인공지능 이론 구현에 실패 (1차 인공지능 겨울)
- 1980년대) 신경망 다층 퍼셉트론 개발(2차 전성기)
- 신경망의 성능을 높이기 위한 학습 데이터 부족 및 계산 능력의 한계에 도달 (2 차 인공지능 겨울)
  - Back propagation의 한계
- 2000년대) 메모리, CPU, GPU 등의 하드웨어 성능 향상으로 신경망 연구가 다시 활발해짐
  - Back propagation 해결
- 딥러닝의 성능 향상이 가속, 구글 딥마인드의 알파고가 바둑대회에서 우승(3차 전성기)
- 2023년 생성 AI 붐 : ChatGPT 등



### ▶초지능

- 초지능 하이퍼 인텔리전스
  - 인간의 지능과 인공지능이 협력하여 더 스마트한 서비스를 제공
  - 인공지능 기능을 추가하여 사물을 더 스마트하게 만드는 사물의 지능화
- 초지능 슈퍼 인텔리전스
  - 특이점: 인공지능의 지능이 인간을 넘어섬
  - AGI (Artificial General Intelligence): 모든 분야의 범용 인공지능
- 하이퍼 인텔리전스 -> 슈퍼 인텔리전스로 진화



### ▶ 빅데이터

- 디지털 환경에서 발생하는 모든 데이터를 의미
- 4차 산업 전 분야에서 분석, 활용
- 인공지능의 소스

#### 현황

- 빅데이터를 활용한 금융·유통·의료 분 야의 서비스 및 응용 산업이 활발
- 산업 전반의 데이터 분석 수요 증가로 빅데이터 분석 기술 확보 경쟁 치열

#### 시사점

• 빅데이터 산업 인프라의 고도화를 위해 데이터 처리 통합 솔루션 산업에 대한 종합적 지원 요구

#### 현황

• 빅데이터 기반의 금융·의료·생활안전 맞춤 서비스와 빅데이터·AI 교육 과정 개설에 대한 관심 증가

#### 시사점

 빅데이터 전문가 양성에 대한 높은 수 요를 충족시킬 수 있는 현장 맞춤형 교 육 과정으로 확대 필요

#### 현황

 산업에서 필수 요소로 인식되어 영상, 미디어, 텍스트 등의 다양한 데이터를 활용한 머신러닝, 딥러닝 분석 기술 개발에 박차

#### 시사점

• 기반 기술에서 응용 기술로 전환 중이며 국산 소프트웨어 활용 및 기술 개발을 통한 자생력 확보가 필수

#### 현황

빅데이터

- 금용·보안·교통 등 부처별 빅데이터 기술 활용과 데이터 교환 및 기술 교류 등으로 국가간 협력 확대
- 빅데이터 활용 인프라 구축과 관련 제도 개 선도 함께 추진

#### 시사점

- 산업 분야의 적극적인 데이터 공유 및 활용을 위한 유관 분야의 체계적 연계 중요
- 전문 인력 양성 시스템 구축과 선진 사례를 벤치마킹한 규제 기준 마련 필요



### **▶** 초융합

- 디지털 트랜스포메이션
  - 디지털 기술을 활용하여 기존 산업의 운영 및 생산의 효율성과 경쟁력을 높이는 프로세스의 변화를 의미
  - 기업은 디지털 기술을 활용하여 다양한 산업 분야에서 지속적인 혁신을
     추진, 특히 제조업에 주목
  - 기존 비즈니스 모델뿐만 아니라 고객의 경험을 변화시키고 추가 수익
     흐름을 창출

# 02. 4차 산업혁명을 실현하는 데이터 과학



- ▶ 데이터 과학
  - 정형, 비정형 다양한 데이터로부터 지식과 인사이트를 추출하는데 과학적 방법론, 프로세스, 알고리즘, 시스템을 동원하는 융합분야 (위키)
- ▶ 데이터 과학과 IoT + 빅데이터 + AI
  - loT 를 구성하는 센서와 기기의 노드 : 감각 및 행동 기관
  - 빅데이터 : 외부 센싱 데이터, 내부 처리 결과 데이터
  - 인터넷/4G/5G: 인지된 자극과 명령을 전달하는 신경계
  - AI: 인지된 자극을 처리하고 분석하여 명령을 내리는 두뇌
  - IoT와 빅데이터, AI가 함께 선순환하며 발전하고 진화해야 함



### ▶ 자율주행차

- 인지-판단-제어라는 3가지 단계로 동작
- 도로 환경에서 빅데이터를 수집하여 상황을 인지하고 판단한 뒤 신속하게 제어
- 핵심 기반 기술
  - 센서 [카메라, 라이다, 레이더] 주변 환경의 빅데이터 수집 및 분석
  - 차량 부품의 <mark>빅데이터</mark> 수집 및 분석 (AI)
  - 차량 제어
- 자율주행차 5레벨

| 레벨       | 설명                                                            |
|----------|---------------------------------------------------------------|
| 레벨 0     | 자동화 기능이 미적용된 상태                                               |
| 레벨 1     | 운전자 보조주행: 운전자가 속도 또는 방향을 통제                                   |
| 레벨 2(현재) | 부분적 자율주행: 차간 거리 및 속도 유지 등이 가능하지만 운전자가 주행에 적극 개입해야 하는<br>상태    |
| 레벨 3     | 조건부 자율주행: 자율주행 시스템을 운행하지만 비상시 몇 초 안에 운전자가 개입해야 하는 상태          |
| 레벨 4     | 고수준 자율주행: 비상시 차량이 일정 시간은 자체 대응하는 상태로 운전자가 차량 내에서 책을 읽어도 되는 수준 |
| 레벨 5     | 완전 자율주행: 어떠한 도로 환경에서도 무인 자율주행이 기능한 상태                         |



#### ▶ 커넥티드 카

- 정보통신기술과 자동차를 연결시킨 것으로 양방향 인터넷 및 모바일 서비스가 가능한 차량
  - V2X: V2V(Vehicle to Vehicle), V2I(Vehicle to Infrastructure), V2N (Vehicle to Nomadic Device),
     V2P(Vehicle to Pedestrian)
- 차량과 도시의 모든 곳이 연결되어 스스로 위험을 감지하고 다른 자동차와의 거리나 속도를 제어하며 운전할 수 있음
- 스스로 고장을 진단하여 필요한 조치를 취함
- 인포테인먼트: 영화 스트리밍 서비스나 실시간 날씨 및 뉴스 검색, 소셜 네트워크 서비스 등다양한 운전자 맞춤형 서비스를 제공





#### ▶ 스마트 시티

- 도시 구성원과 시설 기관들이 네트워킹이 가능하도록 인터넷과 IoT 등의 통신 인프라가 갖 춰진 것
- 빅데이터 및 AI와 융합하여 보다 편리하고 안전한 생활 및 업무 환경을 구현하는 4차 산업혁명 시대의 진화된 도시

#### ▶ 핵심 기반 기술

IoT와 AI, 빅데이터 분석, AR/VR/MR, 건강/교통/교육/기기제어 등의 요소 기술

표 1-4 스마트 시티의 구성 요소

| 구성 요소     | 가능                                                                                              |
|-----------|-------------------------------------------------------------------------------------------------|
| 스마트 홈/사무실 | • 주거, 사무실, 학교, 편의시설 등이 상호 유기적으로 연결되어 사용자 요구를 예측해서 해결<br>• 개인별 편의성 극대화<br>• 재택근무 등 업무 환경의 제한 완화  |
| 스마트 시설 관리 | • 발전, 교량, 환경 등 사회 기간 시설의 실시간 관제를 통해 에너지 절약 및 운영 효율화                                             |
| 스마트 교통    | • 교통 시설이나 도로 상황의 실시간 지능형 관제를 통해 시간 단축 및 운영 효율화<br>• 개인별 이동 상황에 따른 맞춤형 교통 편의 제공                  |
| 스마트 교육    | • 학생별 학습 수준에 따라 맞춤형 교육을 제공하는 AI 기반의 튜터링 시스템 보급                                                  |
| 스마트 치안    | • 빅데이터 분석을 기반으로 범죄, 테러, 사고 등의 징후 예측 및 예방<br>• 유사시 효과적인 구조 조치를 통해 안전한 생활 환경 구축                   |
| 스마트 환경    | • 신재생 및 청정 에너지 기술, 생활 환경의 위생 상태 측정 및 관리, 자원 재활용, 환경오염의<br>측정/예방/처리가 융합되어 쾌적하고 청결하며 안전한 생활 환경 구축 |
| 스마트 문화/여가 | • 문화, 콘텐츠, 스포츠와 VR, AR, MR 기술이 융합하여 개인 맞춤형의 건강, 재미, 지식을 제공하는 복합적 오락, 운동, 문화 체험 환경 제공            |



### ▶ 스마트 헬스 케어

- 개인의 건강에 대한 의료 정보, 기기, 시스템, 플랫폼을 다루는 산업 분야
- 건강 관련 서비스와 의료 IT가 융합된 종합 의료 서비스
- 고령화와 의료비 지출 증가라는 사회적 요인과 AI, 빅데이터, IoT, 5G 등의 기술 발전에 따라 지속적으로 성장
- 핵심 기반 기술
  - 종합 건강 정보 빅데이터 구축, 분야별 지식베이스 구축
  - 웨어러블, 원격 헬스 모니터링: 건강 빅데이터에 대한 실시간 수집 및 분석, 진단 및 처방

표 1-5 헬스 케어 서비스와 ICT 융합의 발전 과정

| 구분        | Tele-헬스 케어 | e-헬스 케어         | u-헬스 케어                                 | 스마트 헬스 케어                                     |
|-----------|------------|-----------------|-----------------------------------------|-----------------------------------------------|
| 시기        | 1999년대 중반  | 2000년대 초반       | 2000년대 후반                               | 2010년 이후                                      |
| 핵심 서비스    | 병원 내 치료    | 치료, 의료 정보<br>제공 | e-헬스 케어 + 원격<br>의료, 만성 질환자<br>관리로 질병 예방 | u-헬스 케어 + 운동 및 식사<br>량 등의 건강 생활 관리, 복지,<br>안전 |
| 공급자       | 병원         | 병원              | 병원, ICT 기업                              | 병원, ICT 기업, 보험사, 헬스<br>케어 서비스 기업              |
| 주요 이용자    | 의료인        | 의료인, 환자         | 의료인, 환자, 일반인                            | 의료인, 환자, 일반인                                  |
| 핵심 ICT 기술 |            | 초고속 인터넷         | 무선 인터넷                                  | 스마트 기기, 앱, AI, 빅데이터                           |



# 파이썬 리뷰



# ANACONDA 설치

- ▶ <u>www.anaconda.com/products/individual</u> 설치
  - 본인의 운영체제에 맞게





## JUPYTER NOTEBOOK 실행

- ▶ 강의 폴더 만들기
  - BA
- ▶ 강의 폴더에서 시작하기
  - 시작 메뉴에서 검색
  - 파일위치 열기
  - 속성 변경





## JUPYTER NOTEBOOK 사용

- ▶ 폴더 만들기 : 강의 주차 # 01
- ▶ 파이썬 파일 만들기





## JUPYTER NOTEBOOK 구성





# 파이썬 데이터 처리 실습

- ▶ Test1.ipynb 파일 참조
- ▶ 파일 읽기
- ▶ 필드 분할
- ▶ 기술 통계
- **Join**
- Group by