Descriptive statistics

Last updated: August 31, 2017

A dataset consists of observations and variables.

Often represented as a big matrix.

Each row = an observation, or a case. (eg: a person) Each column = a variable (characteristic). (eg: crew)

When we summarize data, we summarize the variables and their relationships.

Descriptive statistics = tell me what you see

- 1. State the questions
- 2. Summarize the data in pictures
- 3. Summarize the data in numbers
- 4. Report findings

Example: Titanic. data/titanic.csv on Canvas. 2201 observations. 4 variables.

- class: crew, first, second, third
- age: adult, child
- sex: male, female
- survived: yes, no

Numbers: what worked: tables.

Pictures: what worked

	class	age	sex	survived	class vs survived	class, sex vs survived
bar	√	√	√	√	√	√
mosaic					✓	✓

A dataset consists of observations and variables.

Often represented as a big matrix.

Each row = an observation, or a case. (eg: a person)

Each column = a variable (characteristic). (eg: crew)

When we summarize data, we summarize the variables and their relationships.

Descriptive statistics = tell me what you see

- 1. State the questions
- 2. Summarize the data in pictures
- 3. Summarize the data in numbers
- 4. Report findings

Example: Titanic. data/titanic.csv on Canvas. 2201 observations. 4 variables.

- class: crew. first. second. third
- age: adult, child
- sex: male, female
- survived: yes, no

Numbers: what worked: tables.

Pictures: what worked

	class	age	sex	survived	class vs survived	class, sex vs survived
bar	√	√	√	✓	✓	<u> </u>
mosaic					✓	✓

Any thing else we could use?

A dataset consists of observations and variables

Often represented as a big matrix.

Each row = an observation, or a case. (eg: a person)

Each column = a variable (characteristic). (eg: crew)

When we summarize data, we summarize the variables and their relationships.

Descriptive statistics = tell me what you see

- 1. State the questions
- 2. Summarize the data in pictures
- 3. Summarize the data in numbers
- 4. Report findings

Example: Titanic. data/titanic.csv on Canvas. 2201 observations, 4 variables.

- class: crew, first, second, third
- age: adult, child
- sex: male, female
- survived: yes, no

Numbers: what worked: tables Pictures: what worked class survived class vs survived class, sex vs survived age sex har mosaic dot plot histogram frequency polygon density violin box plot scatter plot

A dataset consists of observations and variables.

Often represented as a big matrix.

Each row = an observation, or a case. (eg: a person)

Each column = a variable (characteristic). (eg: crew)

When we summarize data, we summarize the variables and their relationships.

Descriptive statistics = tell me what you see

- State the questions
- 2. Summarize the data in pictures
- 3. Summarize the data in numbers
- 4. Report findings

Example: Titanic. data/titanic.csv on Canvas. 2201 observations, 4 variables.

- class: crew, first, second, third
- age: adult, child
- sex: male, female
- survived: yes, no

Numbers: what worked: tables.

Pictures: what worked class

bar mosaic dot plot histogram frequency polygon density violin box plot age sex

survived

class vs survived

class, sex vs survived

scatter plot
When to use what?

When to use what? Key: a variable's type

Each variable has a type, defined by what sort of values this variable can take.

Picture guide

bar mosaic dot plot

histogram frequency polygon density violin box plot scatter plot

Number guide	num.	cat.	num. vs num.	cat. vs cat.	num. vs cat.
frequency table		√			
contingency table				✓	
min, max, median, quantiles	✓				✓
mean, standard deviation	✓				✓
correlation, R ²			✓		

The tables above are GUIDES, not rules. The only rule is: display the most informative pictures and numbers

When to use what? Key: a variable's type

Each variable has a type, defined by what sort of values this variable can take.

Picture guide	num.	cat.	num. v	s num.	cat. vs	cat. num. vs	cat.
bar		√			√		
mosaic					✓		
dot plot	√					✓	
histogram	✓					✓	
frequency polygon	✓					✓	
density	✓					✓	
violin	✓					✓	
box plot	✓					✓	
scatter plot			√	/			
Number guide	9	num.	cat.	num.	vs num.	cat. vs cat.	num. vs cat.
frequency table			√				
contingency table						✓	
min, max, median, quantiles		\checkmark					\checkmark
mean, standard deviation		\checkmark					✓
correlation, R ²					✓		

The tables above are GUIDES, not rules. The only rule is: display the most informative pictures and numbers R assigns default types, but these are often wrong. You must tell R what the correct types are, so commands work as intended.

Example 2: emails

Problem: How can a machine decide if an incoming email is spam or not?

The Emails dataset. data/emails.csv on Canvas. 3921 lines, one per email, 21 variables. Variable description: data/emails-descrip.txt

Variables summary

- spam: yes/no
- to_multiple, from, winner, format, re_subj, exclaim_subj, urgent_subj: yes/no
- number: none, small, big
- line_breaks, cc, image, attach, dollar, inherit, viagra, password, exclaim_mess: integer
- num_char: integer/1000 (unit: thousands)
- time: time

Question: Are any of these variables useful markers for spam?

Example 2: emails

Problem: How can a machine decide if an incoming email is spam or not?

The Emails dataset. data/emails.csv on Canvas.
3921 lines, one per email, 21 variables. Variable description: data/emails-descrip.txt

Variables summary

- spam: yes/no
- to_multiple, from, winner, format, re_subj, exclaim_subj, urgent_subj: yes/no
- number: none, small, big
- line_breaks, cc, image, attach, dollar, inherit, viagra, password, exclaim_mess: integer
- num_char: integer/1000 (unit: thousands)
- time: time

Question: Are any of these variables useful markers for spam? What types are these?

Example 2: emails

Problem: How can a machine decide if an incoming email is spam or not?

The Emails dataset. data/emails.csv on Canvas. 3921 lines, one per email, 21 variables. Variable description: data/emails-descrip.txt

Variables summary

- spam: yes/no categorical
- to_multiple, from, winner, format, re_subj, exclaim_subj, urgent_subj: yes/no categorical
- number: none, small, big ordinal
- line_breaks, cc, image, attach, dollar, inherit, viagra, password, exclaim_mess: integer numeric (integer)
- num_char: integer/1000 (unit: thousands) numeric (real)
- time: time ordinal

Question: Are any of these variables useful markers for spam?

What is a ...

bar plot?

y-axis: count (frequency), x-axis: variable values

mosaic?

 represent each cell in a table by rectangles, whose areas are proportional to the frequency by that group.

scatter plot?

- y vs x for two numerical variables x,y

dot plot?

- A one-variable scatter plot
 - y-axis: one line per observation. x-axis: variable values

histogram?

- A numeric version of barplot
- y-axis: count (frequency), x-axis: variable values, grouped in bins

frequency polygon?

- An interpolated version of histogram
- y-axis: counts (frequency), x-axis: variable values. Starting from a histogram, adjacent y-values are interpolated to create a polygon for all x-values

density plot?

- A scaled and smoothed version of frequency polygon
- y-axis: counts normalized, x-axis: variable values. Starting from a histogram, adjacent y-values are locally averaged to create a smooth curve for all x-values. Then the whole curve is scaled so that the total area sums to 1.

violin plot?

Density plot tilted sideway and mirrored.
 Great for comparison between multiple densities.

box plot?

- Middle line: median, box: 25th and 75th percentile (interquartile ragne), whisker lengths: at most 1.5 times the IQR, dots: points outside.
- Great for detecting extreme values, comparing distributions