

Mark Scheme (Final)

October 2019

Pearson Edexcel International A Level in Statistics S2 (WST02/01)

## **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <a href="https://www.edexcel.com">www.edexcel.com</a> or <a href="https://www.edexcel.com">www.btec.co.uk</a>. Alternatively, you can get in touch with us using the details on our contact us page at <a href="https://www.edexcel.com/contactus">www.edexcel.com/contactus</a>.

## Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2019
Publications Code WST02\_01\_1910\_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

## **General Marking Guidance**

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

#### PEARSON EDEXCEL GCE MATHEMATICS

# **General Instructions for Marking**

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

#### 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol  $\sqrt{\phantom{a}}$  will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- \* The answer is printed on the paper or ag- answer given
- L or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Ignore wrong working or incorrect statements following a correct answer.

# **Special notes for marking Statistics exams (for AAs only)**

- If a method leads to "probabilities" which are greater than 1 or less than 0 then M0 should be awarded unless the mark scheme specifies otherwise.
- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.
- If a candidate gives multiple solutions we mark the last complete solution. If in doubt send to review.

# October 2019 WST02 STATISTICS 2 Mark Scheme

| Question | Scheme                                                                                                                           | Marks     |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------|-----------|--|
| 1(a)     | $X \sim B(4, p) \text{ or } Y \sim B(4, 1 - p)$                                                                                  | B1        |  |
|          | $P(X > 2) = P(X = 3) + P(X = 4) = 4p^{3}(1-p) + p^{4}$ oe                                                                        | M1        |  |
|          | $= p^3(4(1-p)+p)$                                                                                                                |           |  |
|          | $=p^{3}(4-3p)*$                                                                                                                  | Alcso     |  |
|          |                                                                                                                                  | (3)       |  |
| (b)      | $\sqrt{4p(1-p)} = 0.96$                                                                                                          | M1        |  |
|          | $4p(1-p) = 0.9216 \rightarrow 4p^2 - 4p + 0.9216 = 0$                                                                            | M1        |  |
|          | $p = \frac{16}{25}$ or 0.64                                                                                                      | A1        |  |
|          | P(X>2) = 0.54525952 awrt <u><b>0.545</b></u>                                                                                     | A1        |  |
|          | · · · · · · · · · · · · · · · · · · ·                                                                                            | (4)       |  |
| (c)      | $P(X=3 \mid X>2) = \frac{4' p'^{3} (1-' p')}{'(b)'} = \frac{4 \times 0.64^{3} (0.36)}{0.545}, = \frac{9}{13}$ awrt <b>0.692</b>  | M1, A1    |  |
|          |                                                                                                                                  | (2)       |  |
|          |                                                                                                                                  | Total [9] |  |
|          | Notes                                                                                                                            |           |  |
| (a)      | B1 writing or using B(4, $p$ ) or B(4, $1 - p$ ).<br>For using, a correct term for P( $X = a$ ) where $1 \le a \le 3$ is needed. |           |  |
|          | M1 correct expression for $P(X > 2)$ in terms of p. Allow ${}^4C_0$ etc oe                                                       |           |  |
|          | A1 cso correct working leading to given answer (must see at least one line of intermediate                                       |           |  |
|          | working eg $p^4 + 4p^3 - 4p^4$ ). NB Do not allow same line but with ${}^4C_0$ etc calculated as an                              |           |  |
|          | intermediate line. If they use $P(X > 2) = 1 - P(X = 0) - P(X = 1) - P(X = 2)$ then we need to                                   |           |  |
|          | see a completely correct solution as per the alternatives given below.                                                           |           |  |
| (b)      | 1 <sup>st</sup> M1 for a correct <b>equation</b> for standard deviation or variance. Allow with "their $p$ " eg $\frac{p}{4}$    |           |  |
|          | from part(a)                                                                                                                     |           |  |
|          | 2 <sup>nd</sup> M1 rearranging their equation correctly to form a 3TQ with attempt to solve. If equation                         |           |  |
|          | or answer is incorrect then the method to solve it must be shown. Allow one sign error                                           |           |  |
|          | $1^{\text{st}} \text{ A1 } p = \frac{16}{25} \text{ or } 0.64 \text{ seen}$                                                      |           |  |
|          | 2 <sup>nd</sup> A1 awrt 0.545 needs to have rejected any other solutions. Must be seen as answer to                              |           |  |
|          | part(b)                                                                                                                          |           |  |
|          | <b>NB</b> $4p(1-p) = 0.96$ leading to 0.6 is M0M1A0A0                                                                            |           |  |
| (c)      | M1 ft their value of $p$ (0 < $p$ <1). For a ratio in the form $\frac{4' \text{their } p'^3 (1-' \text{their } p')}{q}$ where    |           |  |
|          | 0 < q < 1 Need to see working if incorrect answer. Can be awarded even if leads to answer $> 1$ .                                |           |  |
|          | Allow in terms of $p$ eg $\frac{4p^3(1-p)}{p^3(4-3p)}$ or $\frac{4(1-p)}{(4-3p)}$ Allow with "their $p$ " substituted.           |           |  |
|          | A1 awrt 0.692 allow awrt 0.693                                                                                                   |           |  |

For A1 cso: Use as guidance to check for cso and required equivalent working eg may use  $1-2p+p^2$  instead of  $(1-p)^2$ 

$$X \sim B(4,p)$$

Need to see the ticked lines and at least one of the \* lines (oe) as the intermediate working

$$P(X>2) = 1 - P(X=0) - P(X=1) - P(X=2)$$

$$= 1 - (1-p)^4 - 4p(1-p)^3 - 6p^2(1-p)^2 \checkmark$$

$$= 1 - \left(1 - 4p + 6p^2 - 4p^3 + p^4\right) - 4p(1 - 3p + 3p^2 - p^3) - 6p^2(1 - 2p + p^2) *$$

$$= 1 - 1 + 4p - 6p^2 + 4p^3 - p^4 - 4p + 12p^2 - 12p^3 + 4p^4 - 6p^2 + 12p^3 - 6p^4 *$$

$$= 4p^3 - 3p^4 \checkmark$$

$$= p^3(4 - 3p) \checkmark$$

Need to see the ticked lines and at least two of the \* lines (oe) as the intermediate working

$$P(X>2) = 1 - P(X=0) - P(X=1) - P(X=2)$$

$$= 1 - (1-p)^4 - 4p(1-p)^3 - 6p^2(1-p)^2 \checkmark$$

$$= 1 - (1-p)^2 [(1-p)^2 + 4p(1-p) + 6p^2] *$$

$$= 1 - (1-2p+p^2)[1-2p+p^2+4p-4p^2+6p^2] *$$

$$= 1 - (1-2p+p^2)[1+2p+3p^2] *$$

$$= 1 - (1+2p+3p^2-2p-4p^2-6p^3+p^2+2p^3+3p^4) \checkmark$$

$$= 4p^3 - 3p^4 \checkmark$$

$$= p^3(4-3p) \checkmark$$

$$Y \sim B(4, 1-p)$$

need to see the ticked lines and 1 line of intermediate working before answer as per original

$$P(X>2) = P(Y=0) + P(Y=1)$$

$$= (p)^{4} + 4(1-p)(p)^{3}$$

$$= p^{3}(p+4(1-p))$$

$$= 4p^{3} - 3p^{4}$$

$$= p^{3}(4-3p)$$

| Question | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Marks            |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|
| 2(a)     | $\frac{x - (-3)}{12 - (-3)} = 0.75$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1               |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |  |
|          | x = 8.25 oe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A1 (2)           |  |
| (b)      | 12_(5) 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (2)              |  |
| (b)      | $P(5 \le X < 14) = P(5 \le X < 12) = \frac{12 - (5)}{12 - (-3)} = \frac{7}{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M1 A1            |  |
|          | 12 - (-3) 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (2)              |  |
| (c)      | $E(X) = 4.5 \rightarrow E(Y) = 7.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B1               |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |  |
|          | $Var(X) = \frac{(12 - (-3))^2}{12} \left[ = \frac{75}{4} \text{ or } 18.75 \right] \text{ or } Var(Y) = \frac{(12 - (-3))^2}{48} \left[ = \frac{75}{16} \text{ or } 4.6875 \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B1               |  |
|          | $\frac{a+b}{2}$ = '7.5' and $\frac{(b-a)^2}{12}$ = '4.6875' or $(b-a)^2 = \frac{225}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M1               |  |
|          | $\frac{1}{2} = 7.5$ and $\frac{1}{12} = 4.0675$ or $(b-a) = \frac{1}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |  |
|          | $(b-(15-b))^2 = 56.25$ oe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dM1              |  |
|          | (b-(15-b)) = 36.23  de $a = 3.75  b = 11.25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A1               |  |
|          | $\underline{u-3.75}$ $\underline{b-11.25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (5)              |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>Total</b> [9] |  |
|          | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |  |
| (a)      | M1 for correct expression or correct area on sketch. If using integration they nee<br>to this equivalent expression. Implied by correct answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ed to get        |  |
|          | A1 $\frac{33}{4}$ or 8.25 oe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |  |
| (b)      | M1 for a correct probability statement or correct ratio,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |  |
|          | e.g. $1 - P(-3 \le X \le 5)$ or $1 - P(X \le 5)$ or $P(5 \le X \le 12)$ . Allow $\le$ instead of $\le$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | and vice         |  |
|          | versa. Implied by a correct answer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |  |
|          | <b>NB</b> Do not allow $P(5 \le X < a)$ where a is >12 oe unless correct answer is given                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |  |
|          | A1 $\frac{7}{15}$ or awrt 0.467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |  |
| (c)      | 1st D1 (D2) 7.5 M 1 $\cdot$ 1 11 $\cdot$ 1 | . 4.5            |  |
| , ,      | 1 <sup>st</sup> B1 [E(Y)] = 7.5 May be implied by a correct equation for a and b eg $\frac{a+b}{2}$ - 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |  |
|          | $2^{\text{nd}}$ B1 correct expression for $\text{Var}(X)$ or $\text{Var}(Y)$ . May be implied by a correct equ $1^{\text{st}}$ M1 Setting up simultaneous equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ation.           |  |
|          | $\frac{a+b}{2} = \text{"their E}(Y)\text{" or their E}(X) + 3 \text{ and } \frac{(b-a)^2}{12} = \frac{1}{4}\text{"their Var}(X)\text{" oe}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |  |
|          | 2 <sup>nd</sup> dM1 dependent on first M1 being awarded. Solving simultaneously leading to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | an equation      |  |
|          | in just $a$ or just $b$ . Full method must be shown and correct if equations are incorre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ct.              |  |
|          | A1 both $a = \frac{15}{4}$ or 3.75 and $b = \frac{45}{4}$ or 11.25 oe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |  |
|          | SC. If the first 2 B marks are awarded and then 0.25 $Var(Y)$ is used leading to $a = -7.5$ and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |  |
|          | b = 22.5 award B1 – mark as M0M0 A1 on epen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |  |
|          | Alternative: 1st B1 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |  |
|          | $2^{\text{nd}}B1$ Range of $X = 15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |  |
|          | $1^{\text{st}} \text{ M1 Var}(X) = 4 \text{Var}(Y) \text{ Range of } X = 2 \text{ Range of } Y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |  |
|          | $2^{\text{nd}} \text{ M1 } 7.5 \pm 7.5/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |  |

| Question | Scheme                                                                                                                            | Marks             |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------|--|
| Question | Scheme                                                                                                                            | Marks             |  |
| 3(a)     | [Let $X =$ number of hacking attempts per hour]                                                                                   |                   |  |
|          | $P(X \ge 1) = 1 - P(X = 0) =$                                                                                                     | M1                |  |
|          | $1 - e^{-0.3} = 0.2591$ awrt <u><b>0.259</b></u> *                                                                                | Alcso             |  |
| (b)      | $Y \sim \text{Po}(7.2)$                                                                                                           | B1 (2)            |  |
| (0)      |                                                                                                                                   | Di                |  |
|          | $P(Y=6) = \frac{e^{-7.2} \times 7.2^6}{6!} = 0.144458$ awrt <b>0.144</b>                                                          |                   |  |
|          |                                                                                                                                   | (3)               |  |
| (c)      | $H_0: \lambda = 0.3 \text{ or } \mu = 50.4$                                                                                       | B1                |  |
|          | $H_1: \lambda < 0.3 \text{ or } \mu < 50.4$                                                                                       |                   |  |
|          | $W \sim \text{Po}(50.4)$ can be approximated by N(50.4, 50.4)                                                                     | B1                |  |
|          | $P(W \le 38) \approx P\left(Z < \frac{38.5 - 50.4}{\sqrt{50.4}}\right)$                                                           | M1 M1             |  |
|          | ` ' '                                                                                                                             |                   |  |
|          | $\approx P(Z < -1.676) = 0.0468 \text{ (calc)} $ $\approx P(Z < -1.68) = 0.0465 \text{ (tables)}$                                 | A1                |  |
|          | Reject H <sub>0</sub> /significant                                                                                                | dM1               |  |
|          | There is evidence of a <u>decrease</u> in the <u>rate</u> of <u>hacking attempts</u> or <u>Saira's belief</u>                     | Alcso             |  |
|          | is supported.                                                                                                                     | ATCSO             |  |
|          |                                                                                                                                   | (7)               |  |
|          | Notes                                                                                                                             | <b>Total</b> [12] |  |
| (a)      | M1 writing or using $1 - P(X = 0)$                                                                                                |                   |  |
| ()       |                                                                                                                                   |                   |  |
|          | A1cso correct expression $1 - e^{-0.3}$ (allow $1 - \frac{e^{-0.3}0.3^0}{0!}$ ) and awrt 0.259                                    |                   |  |
| (b)      | B1 writing or using Po(7.2)                                                                                                       |                   |  |
|          | M1 correct expression                                                                                                             |                   |  |
|          | A1 awrt 0.144 (allow 0.1445)                                                                                                      |                   |  |
| (c)      | 1st B1 both hypotheses correct must be $\lambda$ or $\mu$                                                                         |                   |  |
|          | 2 <sup>nd</sup> B1 writing or using N(50.4, 50.4)                                                                                 |                   |  |
|          | 1 <sup>st</sup> M1 for $\pm \left(\frac{37.5/38/38.5 - their mean}{their sd}\right)$ If they do not have not given a mean and     |                   |  |
|          | variance they must be correct in here. (allow $1 \pm \text{standardisation}$ ) If no mean or var given                            |                   |  |
|          | they must be correct here.                                                                                                        |                   |  |
|          | 2 <sup>nd</sup> M1 use of continuity correction 38±0.5                                                                            |                   |  |
|          | $1^{\text{st}}$ A1 for answer in the range 0.0465 - 0.04685 Allow awrt 0.9532 > 0.95 or 0.95                                      | 535 >             |  |
|          | 0.95<br>3 <sup>rd</sup> dM1 Dependent on the 1 <sup>st</sup> M1.                                                                  |                   |  |
|          | For a correct statement i.e. significant/reject $H_0$ May be a contextual on                                                      | e.                |  |
|          | Follow through their probability and their H <sub>1</sub>                                                                         |                   |  |
|          | Do not allow non-contextual conflicting statements                                                                                |                   |  |
|          | NB Do not award if no hypotheses given but can award if letter missin                                                             | g or              |  |
|          | incorrect letter used.                                                                                                            | Wordsin           |  |
|          | 2 <sup>nd</sup> A1cso all previous marks must be awarded and correct contextual statement. bold or their equivalent must be seen. | vv OIUS III       |  |
|          | Allow equivalent words for decrease eg lessened, for rate eg number, for belief e                                                 | eg claim,         |  |
|          | for supported eg true, right, correct, for Saira's eg her                                                                         |                   |  |
|          |                                                                                                                                   |                   |  |

| Que          | stion                                                                                                                                                                                                                                                                                                        | Scheme                                                                                                                                                                                                                                                                                                                                        | Marks        |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|              |                                                                                                                                                                                                                                                                                                              | Ignore any incorrect comparison eg $0.0465 < 0.025$ if all previous marks have been                                                                                                                                                                                                                                                           |              |
| Que          | estion                                                                                                                                                                                                                                                                                                       | Scheme                                                                                                                                                                                                                                                                                                                                        | Marks        |
|              | 4(a)                                                                                                                                                                                                                                                                                                         | $E(X^{2}) = \int_{1}^{3} \frac{1}{15} (3x^{4} - x^{5}) dx + \int_{3}^{5} \frac{3}{10} (x^{3} - 3x^{2}) dx$                                                                                                                                                                                                                                    | M1           |
|              |                                                                                                                                                                                                                                                                                                              | $= \left[ \frac{1}{15} \left( \frac{3x^5}{5} - \frac{x^6}{6} \right) \right]_1^3 + \left[ \frac{3}{10} \left( \frac{x^4}{4} - x^3 \right) \right]_3^5$                                                                                                                                                                                        | M1 A1        |
|              | (b)                                                                                                                                                                                                                                                                                                          | $=\frac{2923}{225} = 12.99$ awrt <u>13.0</u>                                                                                                                                                                                                                                                                                                  | A1 (4)       |
|              | (0)                                                                                                                                                                                                                                                                                                          | $\int_{1}^{x} \frac{1}{15} (3t^{2} - t^{3}) dt \qquad \text{or} \qquad \int_{1}^{x} \frac{1}{15} (3x^{2} - x^{3}) dx \text{ with } + c \text{ and } F(1) = 0$ $\int_{1}^{3} \frac{1}{15} (3t^{2} - t^{3}) dt + \int_{3}^{x} \frac{3}{10} (t - 3) dt  \text{or}  \int_{1}^{3} \frac{3}{10} (x - 3) dx \text{ with } + d \text{ and } F(5) = 1$ | M1           |
|              |                                                                                                                                                                                                                                                                                                              | $\int_{1}^{3} \frac{1}{15} (3t^2 - t^3) dt + \int_{3}^{x} \frac{3}{10} (t - 3) dt  \text{or}  \int_{3}^{3} \frac{3}{10} (x - 3) dx  \text{with } + d \text{ and } F(5) = 1$                                                                                                                                                                   | M1           |
|              |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                               | B1           |
|              |                                                                                                                                                                                                                                                                                                              | $\int_{\Gamma(x)} \left  \frac{1}{15} x^3 - \frac{1}{60} x^4 - \frac{1}{20} \right  $ $1 \le x < 3$                                                                                                                                                                                                                                           | A1<br>A1     |
|              |                                                                                                                                                                                                                                                                                                              | $[F(x) = \int \frac{3}{20} x^2 - \frac{9}{10} x + \frac{7}{4} \text{ or } \frac{3}{20} (x - 3)^2 + 0.4 \qquad 3 \le x \le 5$                                                                                                                                                                                                                  |              |
|              |                                                                                                                                                                                                                                                                                                              | $[F(x) =] \begin{cases} 0 & x < 1 \\ \frac{1}{15}x^3 - \frac{1}{60}x^4 - \frac{1}{20} & 1 \le x < 3 \\ \frac{3}{20}x^2 - \frac{9}{10}x + \frac{7}{4} & \text{or } \frac{3}{20}(x - 3)^2 + 0.4 & 3 \le x \le 5 \\ 1 & x > 5 \end{cases}$                                                                                                       | (5)          |
|              | (c)                                                                                                                                                                                                                                                                                                          | $P(2 < X < 4) = F(4) - F(2)$ or $\int_{2}^{3} \frac{1}{15} (3x^{2} - x^{3}) dx + \int_{3}^{4} \frac{3}{10} (x - 3) dx$                                                                                                                                                                                                                        | M1           |
|              |                                                                                                                                                                                                                                                                                                              | $P(2 < X < 4) = F(4) - F(2)  \text{or}  \int_{2}^{3} \frac{1}{15} (3x^{2} - x^{3})  dx + \int_{3}^{4} \frac{3}{10} (x - 3)  dx$ $\frac{3}{20} (4^{2}) - \frac{9}{10} (4) + \frac{7}{4} - (\frac{1}{15} (2^{3}) - \frac{1}{60} (2^{4}) - \frac{1}{20}) = \frac{1}{3}$                                                                          | A1 (2)       |
|              | (d)                                                                                                                                                                                                                                                                                                          | $1 - F(k) = 0.2$ or $\int_{k}^{5} \frac{3}{10} (x - 3) dx = 0.2$                                                                                                                                                                                                                                                                              | M1           |
|              |                                                                                                                                                                                                                                                                                                              | $\frac{3}{20}k^2 - \frac{9}{10}k + \frac{7}{4} = 0.8$ or $\frac{3}{20}(k-3)^2 = 0.4 \rightarrow k = 4.63299$ awrt <b>4.63</b>                                                                                                                                                                                                                 | dM1 A1 (3)   |
|              |                                                                                                                                                                                                                                                                                                              | Notes                                                                                                                                                                                                                                                                                                                                         | Total [14]   |
| (a)          | 1st M1                                                                                                                                                                                                                                                                                                       | for sum of two integrals $\int x^2 f(x) dx$ (ignore limits)                                                                                                                                                                                                                                                                                   |              |
|              | $2^{\text{nd}}$ M1 for attempting to integrate one part of $\int x^2 f(x) dx$ (one term correct) Implied by 11.4 or awrt 1.59 $1^{\text{st}}$ A1 correct integration with limits – both integrals but do not need to add the two integrals. A1: accept exact fraction or awrt 13.0                           |                                                                                                                                                                                                                                                                                                                                               |              |
| <b>(b)</b> 1 | 1st M1 Attempting to integrate 1st line of pdf (1 term correct) with correct limits or $+c$ and $F(1)=0$ or $F(3)=0.4$                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                               |              |
|              | $2^{\text{nd}}$ M1 for attempting to integrate (1 term correct) $2^{\text{nd}}$ line of pdf with correct limits + $\int_{10}^{x} \frac{3}{10}(t-3)  dt$ or                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                               |              |
|              | + F(3) <u>or</u> correct ft expression for their F(3) <u>or</u> + $d$ and F(5) = 1<br>B1 1 <sup>st</sup> and 4 <sup>th</sup> line correct. Allow one to have range of otherwise<br>1 <sup>st</sup> A1 correct 2 <sup>nd</sup> line with limits. Allow $\leq$ for $\leq$ and $\geq$ for $\geq$ and vice versa |                                                                                                                                                                                                                                                                                                                                               |              |
|              | $2^{nd} A1$                                                                                                                                                                                                                                                                                                  | correct $3^{rd}$ line with limits. Allow $\leq$ for $\leq$ and $\geq$ for $\geq$ and vice versa                                                                                                                                                                                                                                               |              |
|              | express                                                                                                                                                                                                                                                                                                      | ting or using $F(4) - F(2)$ or addition of correct integrals. Implied by $11/20 - 13/60$ oe. All sion if cdf incorrect.                                                                                                                                                                                                                       | ow for ft    |
|              | 1 <sup>st</sup> M1 v                                                                                                                                                                                                                                                                                         | virting or using $1 - F(k) = 0.2$ (or $F(k) = 0.8$ ) or correct integral. Allow either line of their                                                                                                                                                                                                                                          | cdf for F(k) |
|              | 2 <sup>nd</sup> dM                                                                                                                                                                                                                                                                                           | 1 dep on previous method mark being awarded. Setting up 3TQ using $2^{nd}$ line of cdf = 0.8                                                                                                                                                                                                                                                  |              |

| Question | Scheme                                                                                                                                                                                              | Marks                                                                                        |  |  |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|--|
| A1 Al    | low $k = 3 + \frac{2\sqrt{6}}{3}$ or awrt 4.63 only (must reject other root if found)                                                                                                               |                                                                                              |  |  |  |
| Question | Scheme                                                                                                                                                                                              |                                                                                              |  |  |  |
| 5(a)     | $(1,1,2) \rightarrow \frac{2}{5} \times \frac{2}{5} \times \frac{1}{5}$                                                                                                                             |                                                                                              |  |  |  |
|          | $(1,1,5) \xrightarrow{2} \frac{2}{5} \times \frac{2}{5} \times \frac{4}{5}$                                                                                                                         | B1                                                                                           |  |  |  |
|          | $(1,2,2)(2,1,2) \to 2 \times \frac{2}{5} \times \frac{3}{5} \times \frac{1}{5}$                                                                                                                     | M1                                                                                           |  |  |  |
|          | $(1,2,5)(2,1,5) \to 2 \times \frac{2}{5} \times \frac{3}{5} \times \frac{4}{5}$                                                                                                                     | M1                                                                                           |  |  |  |
|          | $(2,2,2) \rightarrow \frac{3}{5} \times \frac{3}{5} \times \frac{1}{5}$                                                                                                                             |                                                                                              |  |  |  |
|          | $(2,2,5) \rightarrow \frac{3}{5} \times \frac{3}{5} \times \frac{4}{5}$                                                                                                                             |                                                                                              |  |  |  |
|          | [t] 4 <b>5</b> 6 7 <b>8</b> 9                                                                                                                                                                       | B1                                                                                           |  |  |  |
|          | $[P(T=t)]  \underline{4}  \underline{12}  \underline{9}  \underline{16}  \underline{48}  \underline{36}$                                                                                            | A1                                                                                           |  |  |  |
|          | 125   125   125   125   125   125   125   (0.032)   (0.096)   (0.072)   (0.128)   (0.384)   (0.288)                                                                                                 | Al                                                                                           |  |  |  |
|          | [ (0.032)   (0.090)   (0.072)   (0.128)   (0.384)   (0.288)                                                                                                                                         | (7)                                                                                          |  |  |  |
| (b)      | m=1 $m=2$                                                                                                                                                                                           | B1                                                                                           |  |  |  |
|          | $P(M=1) = \frac{4}{125} + \frac{16}{125}$                                                                                                                                                           |                                                                                              |  |  |  |
|          | 120 120                                                                                                                                                                                             | M1 dM1                                                                                       |  |  |  |
|          | $P(M=2) = \frac{12}{125} + \frac{9}{125} + \frac{48}{125} + \frac{36}{125}, \text{ or } 1 - \left(\frac{4}{125} + \frac{16}{125}\right)$                                                            |                                                                                              |  |  |  |
|          |                                                                                                                                                                                                     |                                                                                              |  |  |  |
|          | [M] 1 2 A1                                                                                                                                                                                          |                                                                                              |  |  |  |
|          | $\left[ P(M = m) \right] \left[ \frac{4}{25} \text{ or } (0.16) \right] \left[ \frac{21}{25} \text{ or } (0.84) \right]$                                                                            | $ \frac{[P(M=m)]}{25} \frac{4}{25} \text{ or } (0.16) \frac{21}{25} \text{ or } (0.84) $ (4) |  |  |  |
|          | Notes                                                                                                                                                                                               | (4) <b>Total [11]</b>                                                                        |  |  |  |
| (a)      | NB allow incorrect prob for first 2 B marks and M marks if clear what the prob                                                                                                                      |                                                                                              |  |  |  |
|          | B1 for the 6 samples (1,1,2) (1,1,5) (2,2,2) (2,2,5) (1,2,2) (1,2,5) Allow more th                                                                                                                  |                                                                                              |  |  |  |
|          | arrangement for each sample. May be implied by correct answers or product of probabilities ignoring any integer multiplier. Do not award if there are incorrect extras                              |                                                                                              |  |  |  |
|          | eg $(5,5,1)$ unless they have a probability of zero or are ignored                                                                                                                                  | reet extras                                                                                  |  |  |  |
|          | B1 for having just the 8 samples. Must recognise that only one combination of                                                                                                                       |                                                                                              |  |  |  |
|          | (1,1,5) and $(2,2,2)$ and $(2,2,5)$ are possible and two combinations of $(1,2,2)$ and $(1,2,5)$ are possible. May be implied by correct answers or product of probabilities with correct           |                                                                                              |  |  |  |
|          | multipliers. Do not award if there are incorrect extras eg (5,5,1) unless they have a                                                                                                               |                                                                                              |  |  |  |
|          | probability of zero or ignored                                                                                                                                                                      |                                                                                              |  |  |  |
|          | 1 <sup>st</sup> M1 for correct product of probabilities for (1,1,2) or (1,1,5) or (2,2,2) or (2,2,5) 2 <sup>nd</sup> M1 for correct product of probabilities for (1,2,2) or (1,2,5) Must have x2 oe |                                                                                              |  |  |  |
|          | B1 all totals correct. (Allow duplicates) Incorrect totals must have probability of 0                                                                                                               |                                                                                              |  |  |  |
|          | A1 all probabilities correct with associated totals.                                                                                                                                                |                                                                                              |  |  |  |
|          | A1 all probabilities correct with associated totals. Totals must only appear once. Extra totals must have probability of 0                                                                          |                                                                                              |  |  |  |
| (b)      | B1 both values of <i>m</i> . Any extras must have probability of 0                                                                                                                                  |                                                                                              |  |  |  |
|          | 1st M1 Follow through part(a). Correct method for $P(M=1)$ or $P(M=2)$ Prob in (a) <1                                                                                                               |                                                                                              |  |  |  |
|          | $2^{\text{nd}}$ dM1 dependent on previous M being awarded. ft part(a). For correct method for $P(M=1)$ and $P(M=2)$ Allow 1 – their $P(M=1)$ or 1 – their $P(M=2)$ Prob in (a) <1                   |                                                                                              |  |  |  |
|          | A1 fully correct Useful alternative fractions 20/125 and 105/125                                                                                                                                    | (3)                                                                                          |  |  |  |

| (b) $X \sim B(10, {}^{\circ}0.95^{\circ})$ $P(X \geq 9) = P(X = 9) + P(X = 10) = 10(0.95)^9(0.05) + 0.95^{10}$ awrt $0.914$ Al $1$ (c) $1 \times 10^{11}$ awrt $1 \times $ | Question | Scheme                                                                                                             | Marks                      |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------|----------------------------|--|
| (b) $X \sim B(10, `0.95')$ $P(X \ge 9) = P(X = 9) + P(X = 10) = 10(0.95)^9(0.05) + 0.95^{10}$ awrt $0.91386$ awrt $0.91386$ awrt $0.91386$ awrt $0.91386$ awrt $0.91386$ awrt $0.91386$ (c) $Y = \text{Number of bolts that cannot be used}$ $Y \sim B(120, 0.05)$ can be approximated by $PO(6)$ $P(\text{more than }117 \text{ bolts can be used}) = P(Y \le 2)$ $P(Y \le 2) = 0.06196$ awrt $0.062$ Al awrt $0.062$ awriting or using $0.062$ awriting or using $0.062$ awriting or using $0.062$ awriting or using $0.062$ awriting or using $0.062$ are awriting or using $0.062$ and $0.062$ awriting or using $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _        | 0.95                                                                                                               |                            |  |
| $P(X \ge 9) = P(X = 9) + P(X = 10) = 10(0.95)^9(0.05) + 0.95^{10}$ $0.91386$ awrt $0.914$ A1  (c) $Y = \text{Number of bolts that cannot be used}$ $Y \sim B(120, 0.05) \text{ can be approximated by Po(6)}$ $P(M) = \text{Po(10)} = 0.06196$ A1  (d) $P(Y \le 2) = 0.06196$ A1  (e) $P(Y \le 2) = 0.06196$ A1  (f) $P(Y \le 2) = 0.06196$ A1  (h) B1 writing or using B(10, '0.95') Allow for a probability of the form ${}^nC_r(0.95)^n(0.05)^{10.76}$ where $1 \le n \le 9$ must be seen or a correct answer given  M1 for writing or using $P(X = 9) + P(X = 10)$ . For using we must see a calculation for each probability using B(10, '0.95') (Condone missing/incorrect ${}^nC_r$ ), ie allow $(0.95)^n(0.05) + 0.95^{10}$ May be implied by a correct answer.  or  for writing or using $1 - P(X = 0) - P(X = 1) - P(X = 2) - P(X = 3) - P(X = 4) - P(X = 5) - P(X = 6) - P(X = 7) - P(X = 8)$ . For writing allow but need a minimum of 3 terms. For using we must see calculation for each probability using B(10, '0.95') (Condone missing/incorrect ${}^nC_r$ ). May be implied by a correct answer.  Do not allow for writing $P(X \ge 9)$ or $P(X \ge 8)$ or $1 - P(X \le 8)$ or $1 - P(X \le 9)$ . A1 awrt 0.914  NB SC Using Po(9.5) gets B1M0A0  Alternative  B1 writing or using B(10, 0.05)  M1 using $P(Y \le 1) = P(Y = 1) + P(Y = 0) = 10(0.05)(0.95)^9 + 0.95^{10}$ ] oe but must use B(10, 0.05) A1 0.9139 from tables  NB Using Po(0.5) gets B1M0A0  (c) 1 <sup>st</sup> M1 using a Poisson distribution.  1 <sup>st</sup> A1 Po(6) is written or used. 2 <sup>nd</sup> dM1 dep on first M1 being awarded writing or using $P(Y \le 1) = P(Y \le 1)$ and the point of the bing awarded writing or using $P(Y \le 1) = P(Y \le 1)$ and $P(Y \le 1) = P(Y \le 1)$ being awarded writing or using $P(Y \le 1) = P(Y \le 1)$ being awarded writing or using $P(Y \le 1) = P(Y \le 1)$ being awarded writing or using $P(Y \le 1) = P(Y \le 1)$ being awarded writing or using $P(Y \le 1) = P(Y \le 1)$ being awarded writing or using $P(Y \le 1) = P(Y \le 1)$ being awarded writing or using $P(Y \le 1) = P(Y \le 1)$ be an awart 0.0713 (calc) or 0.0708 (tables) with cc and awart 0.0713                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                                                    | (1)                        |  |
| $P(X \ge 9) = P(X = 9) + P(X = 10) = 10(0.95)^9(0.05) + 0.95^{10}$ $0.91386$ awrt $0.914$ A1  (c) $Y = \text{Number of bolts that cannot be used}$ $Y \sim B(120, 0.05) \text{ can be approximated by Po(6)}$ $P(M) = \text{Po(10)} = 0.06196$ A1  (d) $P(Y \le 2) = 0.06196$ A1  (e) $P(Y \le 2) = 0.06196$ A1  (f) $P(Y \le 2) = 0.06196$ A1  (h) B1 writing or using B(10, '0.95') Allow for a probability of the form ${}^nC_r(0.95)^n(0.05)^{10.76}$ where $1 \le n \le 9$ must be seen or a correct answer given  M1 for writing or using $P(X = 9) + P(X = 10)$ . For using we must see a calculation for each probability using B(10, '0.95') (Condone missing/incorrect ${}^nC_r$ ), ie allow $(0.95)^n(0.05) + 0.95^{10}$ May be implied by a correct answer.  or  for writing or using $1 - P(X = 0) - P(X = 1) - P(X = 2) - P(X = 3) - P(X = 4) - P(X = 5) - P(X = 6) - P(X = 7) - P(X = 8)$ . For writing allow but need a minimum of 3 terms. For using we must see calculation for each probability using B(10, '0.95') (Condone missing/incorrect ${}^nC_r$ ). May be implied by a correct answer.  Do not allow for writing $P(X \ge 9)$ or $P(X \ge 8)$ or $1 - P(X \le 8)$ or $1 - P(X \le 9)$ . A1 awrt 0.914  NB SC Using Po(9.5) gets B1M0A0  Alternative  B1 writing or using B(10, 0.05)  M1 using $P(Y \le 1) = P(Y = 1) + P(Y = 0) = 10(0.05)(0.95)^9 + 0.95^{10}$ ] oe but must use B(10, 0.05) A1 0.9139 from tables  NB Using Po(0.5) gets B1M0A0  (c) 1 <sup>st</sup> M1 using a Poisson distribution.  1 <sup>st</sup> A1 Po(6) is written or used. 2 <sup>nd</sup> dM1 dep on first M1 being awarded writing or using $P(Y \le 1) = P(Y \le 1)$ and the point of the bing awarded writing or using $P(Y \le 1) = P(Y \le 1)$ and $P(Y \le 1) = P(Y \le 1)$ being awarded writing or using $P(Y \le 1) = P(Y \le 1)$ being awarded writing or using $P(Y \le 1) = P(Y \le 1)$ being awarded writing or using $P(Y \le 1) = P(Y \le 1)$ being awarded writing or using $P(Y \le 1) = P(Y \le 1)$ being awarded writing or using $P(Y \le 1) = P(Y \le 1)$ being awarded writing or using $P(Y \le 1) = P(Y \le 1)$ be an awart 0.0713 (calc) or 0.0708 (tables) with cc and awart 0.0713                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (b)      | $X \sim B(10^{\circ}0.95^{\circ})$                                                                                 | B1                         |  |
| 0.91386 awrt 0.914 A1  (c) $Y = \text{Number of bolts that cannot be used } Y \sim B(120, 0.05) \text{ can be approximated by Po(6)} P(\text{more than }117 \text{ bolts can be used}) = P(Y \le 2)                                  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                                                    |                            |  |
| (c) $Y = \text{Number of bolts that cannot be used}$ $Y \sim B(120, 0.05)$ can be approximated by Po(6) P(more than 117 bolts can be used) = P( $Y \le 2$ ) awrt $0.062$ art $0.062$ awrt $0.062$ are awrt $0.062$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                                                                                                                    | A1                         |  |
| Y ~ B(120, 0.05) can be approximated by Po(6) P(more than 117 bolts can be used) = P(Y ≤ 2) and MI A1 MI P(Y ≤ 2) = 0.06196 awrt $0.062$ Notes  (b) B1 writing or using B(10, '0.95') Allow for a probability of the form " $C_{\Gamma}(0.95)^{\circ}(0.05)^{10-n}$ where $1 \le n \le 9$ must be seen or a correct answer given M1 for writing or using $P(X = 9) + P(X = 10)$ . For using we must see a calculation for each probability using B(10, '0.95') (Condone missing/incorrect " $C_{\Gamma}$ ), ie allow $(0.95)^{\circ}(0.05) + 0.95^{10}$ May be implied by a correct answer.  or  for writing or using $1 - P(X = 0) - P(X = 1) - P(X = 2) - P(X = 3) - P(X = 4) - P(X = 5) - P(X = 6) - P(X = 7) - P(X = 8)$ . For writing allow but need a minimum of 3 terms. For using we must see calculation for each probability using B(10, '0.95') (Condone missing/incorrect " $C_{\Gamma}$ ). May be implied by a correct answer.  Do not allow for writing $P(X \ge 9)$ or $P(X \ge 8)$ or $1 - P(X \le 8)$ or $1 - P(X \le 9)$ . A1 awrt 0.914  NB SC Using Po(9.5) gets B1M0A0  Alternative B1 writing or using B(10, 0.05) M1 using $P(Y \le 1) = P(Y = 1) + P(Y = 0) = 10(0.05)(0.95)^9 + 0.95^{10}$ ] oe but must use B(10, 0.05) A1 0.9139 from tables  NB Using Po(0.5) gets B1M0A0  (c) $P(X \le 8) = P(X \le 8) = P(X \le 8) = P(X \le 8)$ or $P(X \le 8) = P(X \le 8) = P(X \le 8)$ or $P(X \le 8) = P(X \le 8) = P(X \le 8)$ or $P(X \le 8) = P(X \le 8) = P(X \le 8)$ or $P(X \le 8) = P(X \le $                                                                                                                                                                                                                                                                                                                                                                  |          |                                                                                                                    | (3)                        |  |
| Y ~ B(120, 0.05) can be approximated by Po(6) P(more than 117 bolts can be used) = P(Y ≤ 2) and MI A1 MI P(Y ≤ 2) = 0.06196 awrt $0.062$ Notes  (b) B1 writing or using B(10, '0.95') Allow for a probability of the form " $C_{\Gamma}(0.95)^{\circ}(0.05)^{10-n}$ where $1 \le n \le 9$ must be seen or a correct answer given M1 for writing or using $P(X = 9) + P(X = 10)$ . For using we must see a calculation for each probability using B(10, '0.95') (Condone missing/incorrect " $C_{\Gamma}$ ), ie allow $(0.95)^{\circ}(0.05) + 0.95^{10}$ May be implied by a correct answer.  or  for writing or using $1 - P(X = 0) - P(X = 1) - P(X = 2) - P(X = 3) - P(X = 4) - P(X = 5) - P(X = 6) - P(X = 7) - P(X = 8)$ . For writing allow but need a minimum of 3 terms. For using we must see calculation for each probability using B(10, '0.95') (Condone missing/incorrect " $C_{\Gamma}$ ). May be implied by a correct answer.  Do not allow for writing $P(X \ge 9)$ or $P(X \ge 8)$ or $1 - P(X \le 8)$ or $1 - P(X \le 9)$ . A1 awrt 0.914  NB SC Using Po(9.5) gets B1M0A0  Alternative B1 writing or using B(10, 0.05) M1 using $P(Y \le 1) = P(Y = 1) + P(Y = 0) = 10(0.05)(0.95)^9 + 0.95^{10}$ ] oe but must use B(10, 0.05) A1 0.9139 from tables  NB Using Po(0.5) gets B1M0A0  (c) $P(X \le 8) = P(X \le 8) = P(X \le 8) = P(X \le 8)$ or $P(X \le 8) = P(X \le 8) = P(X \le 8)$ or $P(X \le 8) = P(X \le 8) = P(X \le 8)$ or $P(X \le 8) = P(X \le 8) = P(X \le 8)$ or $P(X \le 8) = P(X \le $                                                                                                                                                                                                                                                                                                                                                                  | (0)      | V = Number of holts that connet be used                                                                            |                            |  |
| P(more than 117 bolts can be used) = $P(Y \le 2)$ awrt $0.062$ dM1 $A1$ P( $Y \le 2$ ) = 0.06196 awrt $0.062$ awrt $0.062$ awrt $0.062$ awrt $0.062$ awrt $0.062$ l $0.062$ awrt $0.062$ l $0.062$ awrt $0.062$ l $0.062$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (c)      |                                                                                                                    | M1A1                       |  |
| P( $Y \le 2$ ) = 0.06196 awrt 0.062  Notes    Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | · · · · / · · · · / · · · · · · · · ·                                                                              |                            |  |
| Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                                                                                                                    |                            |  |
| (b) B1 writing or using B(10, '0.95') Allow for a probability of the form "C <sub>r</sub> (0.95)"(0.05)"0.05) where 1 ≤ n ≤ 9 must be seen or a correct answer given  M1 for writing or using P(X = 9) + P(X = 10). For using we must see a calculation for each probability using B(10, '0.95') (Condone missing/incorrect "C <sub>r</sub> ), ie allow (0.95)°(0.05) + 0.95¹0 May be implied by a correct answer.  or  for writing or using 1 − P(X = 0) − P(X = 1) − P(X = 2) − P(X = 3) − P(X = 4) − P(X = 5) − P(X = 6) − P(X = 7) − P(X = 8). For writing allow but need a minimum of 3 terms. For using we must see calculation for each probability using B(10, '0.95') (Condone missing/incorrect "C <sub>r</sub> ). May be implied by a correct answer.  Do not allow for writing P(X ≥ 9) or P(X > 8) or 1 − P(X ≤ 8) or 1 − P(X < 9).  A1 awrt 0.914  NB SC Using Po(9.5) gets B1M0A0  Alternative  B1 writing or using B(10, 0.05)  M1 using P(Y ≤ 1) [= P(Y = 1) + P(Y = 0) = 10(0.05) (0.95)° + 0.95¹0] oe but must use B(10, 0.05)  A1 0.9139 from tables  NB Using Po(0.5) gets B1M0A0  (c)  1st M1 using a Poisson distribution. 1st A1 Po(6) is written or used. 2nd 4M1 dep on first M1 being awarded writing or using P(Y ≤ 2) oe eg P(Y < 3) 2nd A1 awrt 0.062 (0.0620 from tables) Do not ISW  Note exact binomial gives 0.0575 Note normal approximation gives awrt 0.0713 (calc) or 0.0708 (tables) with cc and awrt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                                                                                                                    | (4)                        |  |
| <ul> <li>(b) B1 writing or using B(10, '0.95') Allow for a probability of the form "C<sub>r</sub> (0.95)" (0.05) 10-n where 1 ≤ n ≤ 9 must be seen or a correct answer given M1 for writing or using P(X = 9) + P(X = 10). For using we must see a calculation for each probability using B(10, '0.95') (Condone missing/incorrect "C<sub>r</sub>), ie allow (0.95)°(0.05) + 0.95¹¹⁰ May be implied by a correct answer.</li> <li>or     for writing or using 1 - P(X = 0) - P(X = 1) - P(X = 2) - P(X = 3) - P(X = 4) - P(X = 5) - P(X = 6) - P(X = 7) - P(X = 8). For writing allow but need a minimum of 3 terms. For using we must see calculation for each probability using B(10, '0.95') (Condone missing/incorrect "C<sub>r</sub>). May be implied by a correct answer.     Do not allow for writing P(X ≥ 9) or P(X &gt; 8) or 1 - P(X ≤ 8) or 1 - P(X &lt; 9).     A1 awrt 0.914  NB SC Using Po(9.5) gets B1M0A0  Alternative B1 writing or using B(10, 0.05) M1 using P(Y ≤ 1) [= P(Y = 1) + P(Y = 0) = 10(0.05) (0.95)° + 0.95¹¹⁰] oe but must use B(10, 0.05) A1 0.9139 from tables  NB Using Po(0.5) gets B1M0A0  (c) 1st M1 using a Poisson distribution. 1st A1 Po(6) is written or used. 2nd dM1 dep on first M1 being awarded writing or using P(Y ≤ 2) oe eg P(Y &lt; 3) 2nd A1 awrt 0.062 (0.0620 from tables) Do not ISW  Note exact binomial gives 0.0575 Note normal approximation gives awrt 0.0713 (calc) or 0.0708 (tables) with cc and awrt</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                                                                                                                    | Total [8]                  |  |
| where $1 \le n \le 9$ must be seen or a correct answer given M1 for writing or using $P(X = 9) + P(X = 10)$ . For using we must see a calculation for each probability using B(10, '0.95') (Condone missing/incorrect "C <sub>r</sub> ), ie allow $(0.95)^9(0.05) + 0.95^{10}$ May be implied by a correct answer.  or for writing or using $1 - P(X = 0) - P(X = 1) - P(X = 2) - P(X = 3) - P(X = 4) - P(X = 5) - P(X = 6) - P(X = 7) - P(X = 8)$ . For writing allow but need a minimum of 3 terms. For using we must see calculation for each probability using B(10, '0.95') (Condone missing/incorrect "C <sub>r</sub> ). May be implied by a correct answer.  Do not allow for writing $P(X \ge 9)$ or $P(X \ge 8)$ or $1 - P(X \le 8)$ or $1 - P(X \le 9)$ .  Al awrt 0.914  NB SC Using Po(9.5) gets B1M0A0  Alternative B1 writing or using B(10, 0.05) M1 using $P(Y \le 1) [= P(Y = 1) + P(Y = 0) = 10(0.05) (0.95)^9 + 0.95^{10}]$ oe but must use B(10, 0.05) A1 0.9139 from tables  NB Using Po(0.5) gets B1M0A0  (c)  1 <sup>St</sup> M1 using a Poisson distribution. 1 <sup>St</sup> A1 Po(6) is written or used. 2 <sup>nd</sup> dM1 dep on first M1 being awarded writing or using $P(Y \le 2)$ oe eg $P(Y \le 3)$ 2 <sup>nd</sup> A1 awrt 0.062 (0.0620 from tables) Do not ISW  Note exact binomial gives 0.0575 Note normal approximation gives awrt 0.0713 (calc) or 0.0708 (tables) with cc and awrt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.5     |                                                                                                                    | ) n (0, 0, <b>n</b> ) 10 n |  |
| M1 for writing or using $P(X = 9) + P(X = 10)$ . For using we must see a calculation for each probability using B(10, '0.95') (Condone missing/incorrect "Cr), ie allow $(0.95)^9(0.05) + 0.95^{10}$ May be implied by a correct answer.  or  for writing or using $1 - P(X = 0) - P(X = 1) - P(X = 2) - P(X = 3) - P(X = 4) - P(X = 5) - P(X = 6) - P(X = 7) - P(X = 8)$ . For writing allow but need a minimum of 3 terms. For using we must see calculation for each probability using B(10, '0.95') (Condone missing/incorrect "Cr). May be implied by a correct answer.  Do not allow for writing $P(X \ge 9)$ or $P(X \ge 8)$ .  All awrt 0.914  NB SC Using Po(9.5) gets B1M0A0  Alternative B1 writing or using B(10, 0.05) M1 using $P(Y \le 1) = P(Y = 1) + P(Y = 0) = 10(0.05)(0.95)^9 + 0.95^{10}$ oe but must use B(10, 0.05) A1 0.9139 from tables  NB Using Po(0.5) gets B1M0A0  (c) $P(X \ge 8) = P(X \ge 8) = P(X \ge 8)$ or $P(X \ge 8) = P(X$                                                                                                                                                                                                                                                                                                                                            | (b)      |                                                                                                                    | $)^{n}(0.05)^{10-n}$       |  |
| probability using B(10, '0.95') (Condone missing/incorrect "C <sub>r</sub> "), ie allow $(0.95)^9(0.05) + 0.95^{10}$ May be implied by a correct answer.  or  for writing or using $1 - P(X = 0) - P(X = 1) - P(X = 2) - P(X = 3) - P(X = 4) - P(X = 5) - P(X = 6) - P(X = 7) - P(X = 8)$ . For writing allow but need a minimum of 3 terms. For using we must see calculation for each probability using B(10, '0.95') (Condone missing/incorrect "C <sub>r</sub> "). May be implied by a correct answer.  Do not allow for writing $P(X \ge 9)$ or $P(X > 8)$ or $P(X \le 8)$ or $P(X \le 8)$ or $P(X \le 8)$ or $P(X \le 8)$ .  NB SC Using Po(9.5) gets B1M0A0  Alternative  B1 writing or using B(10, 0.05)  M1 using $P(Y \le 1) = P(Y = 1) + P(Y = 0) = 10(0.05)(0.95)^9 + 0.95^{10}$ oe but must use B(10, 0.05)  A1 0.9139 from tables  NB Using Po(0.5) gets B1M0A0  (c) $P(X \le 8) = P(X \le 8)$ or                                                                                                                                                                                                                                                                                                            |          |                                                                                                                    | on for each                |  |
| (0.95) $^9(0.05) + 0.95^{10}$ May be implied by a correct answer. or for writing or using $1 - P(X = 0) - P(X = 1) - P(X = 2) - P(X = 3) - P(X = 4) - P(X = 5) - P(X = 6) - P(X = 7) - P(X = 8)$ . For writing allow but need a minimum of 3 terms. For using we must see calculation for each probability using B(10, '0.95') (Condone missing/incorrect "C <sub>r</sub> ). May be implied by a correct answer.  Do <b>not</b> allow for <b>writing</b> $P(X \ge 9)$ or $P(X \ge 8)$ or $P(X \le 8)$ or $P(X \le 8)$ or $P(X \le 8)$ or $P(X \le 8)$ . All awrt 0.914  NB SC Using Po(9.5) gets B1M0A0  Alternative B1 writing or using B(10, 0.05) M1 using $P(Y \le 1) = P(Y = 1) + P(Y = 0) = 10(0.05)(0.95)^9 + 0.95^{10}$ oe but must use B(10, 0.05) A1 0.9139 from tables  NB Using Po(0.5) gets B1M0A0  (c) 1st M1 using a Poisson distribution. 1st A1 Po(6) is written or used. 2nd dM1 dep on first M1 being awarded writing or using $P(Y \le 2)$ oe eg $P(Y \le 3)$ 2nd A1 awrt 0.062 (0.0620 from tables) Do not ISW  Note exact binomial gives 0.0575 Note normal approximation gives awrt 0.0713 (calc) or 0.0708 (tables) with cc and awrt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                                                                                                                    | on for each                |  |
| for writing or using $1 - P(X = 0) - P(X = 1) - P(X = 2) - P(X = 3) - P(X = 4) - P(X = 5) - P(X = 6) - P(X = 7) - P(X = 8)$ . For writing allow but need a minimum of 3 terms. For using we must see calculation for each probability using B(10, '0.95') (Condone missing/incorrect "C <sub>r</sub> ). May be implied by a correct answer.  Do <b>not</b> allow for <b>writing</b> $P(X \ge 9)$ or $P(X \ge 8)$ or $1 - P(X \le 8)$ or $1 - P(X \le 9)$ . A1 awrt 0.914  NB SC Using Po(9.5) gets B1M0A0  Alternative B1 writing or using B(10, 0.05) M1 using $P(Y \le 1) = P(Y = 1) + P(Y = 0) = 10(0.05)(0.95)^9 + 0.95^{10}$ ] oe but must use B(10, 0.05) A1 0.9139 from tables  NB Using Po(0.5) gets B1M0A0  (c) 1st M1 using a Poisson distribution. 1st A1 Po(6) is written or used. 2nd dM1 dep on first M1 being awarded writing or using $P(Y \le 2)$ oe eg $P(Y \le 3)$ 2nd A1 awrt 0.062 (0.0620 from tables) Do not ISW  Note exact binomial gives 0.0575 Note normal approximation gives awrt 0.0713 (calc) or 0.0708 (tables) with cc and awrt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                                                                                                                    |                            |  |
| <ul> <li>P(X=7) – P(X=8). For writing allow but need a minimum of 3 terms. For using we must see calculation for each probability using B(10, '0.95') (Condone missing/incorrect "C<sub>r</sub>). May be implied by a correct answer.  Do not allow for writing P(X ≥ 9) or P(X&gt;8) or 1 – P(X≤8) or 1 – P(X&lt;9). Al awrt 0.914</li> <li>NB SC Using Po(9.5) gets B1M0A0</li> <li>Alternative B1 writing or using B(10, 0.05) M1 using P(Y≤1) [= P(Y=1) + P(Y=0) = 10(0.05) (0.95)<sup>9</sup> + 0.95<sup>10</sup>] oe but must use B(10, 0.05) A1 0.9139 from tables</li> <li>NB Using Po(0.5) gets B1M0A0</li> <li>(c) 1st M1 using a Poisson distribution. 1st A1 Po(6) is written or used. 2nd dM1 dep on first M1 being awarded writing or using P(Y≤2) oe eg P(Y&lt;3) 2nd A1 awrt 0.062 (0.0620 from tables) Do not ISW</li> <li>Note exact binomial gives 0.0575 Note normal approximation gives awrt 0.0713 (calc) or 0.0708 (tables) with cc and awrt</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                                                                                                                    |                            |  |
| calculation for each probability using B(10, '0.95') (Condone missing/incorrect "C <sub>r</sub> ). May be implied by a correct answer. Do <b>not</b> allow for <b>writing</b> $P(X \ge 9)$ or $P(X > 8)$ or $1 - P(X \le 8)$ or $1 - P(X \le 9)$ . A1 awrt 0.914 <b>NB SC</b> Using Po(9.5) gets B1M0A0  Alternative B1 writing or using B(10, 0.05) M1 using $P(Y \le 1)$ [= $P(Y = 1) + P(Y = 0) = 10(0.05)(0.95)^9 + 0.95^{10}$ ] oe but must use B(10, 0.05) A1 0.9139 from tables <b>NB</b> Using Po(0.5) gets B1M0A0  (c) 1st M1 using a Poisson distribution. 1st A1 Po(6) is written or used. 2nd dM1 dep on first M1 being awarded writing or using $P(Y \le 1) = P(Y \le 1) = P(Y \le 1)$ awrt 0.062 (0.0620 from tables) Do not ISW  Note exact binomial gives 0.0575 Note normal approximation gives awrt 0.0713 (calc) or 0.0708 (tables) with cc and awrt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | for writing or using $1 - P(X = 0) - P(X = 1) - P(X = 2) - P(X = 3) - P(X = 4) - P(X = 5)$                         | -P(X=6)-                   |  |
| be implied by a correct answer. Do <b>not</b> allow for <b>writing</b> $P(X \ge 9)$ or $P(X \ge 8)$ or $1 - P(X \le 8)$ or $1 - P(X \le 9)$ . A1 awrt 0.914 <b>NB SC</b> Using Po(9.5) gets B1M0A0  Alternative B1 writing or using B(10, 0.05) M1 using $P(Y \le 1) = P(Y = 1) + P(Y = 0) = 10(0.05)(0.95)^9 + 0.95^{10}$ oe but must use B(10, 0.05) A1 0.9139 from tables <b>NB</b> Using Po(0.5) gets B1M0A0  (c) 1st M1 using a Poisson distribution. 1st A1 Po(6) is written or used. 2nd dM1 dep on first M1 being awarded writing or using $P(Y \le 2)$ oe eg $P(Y \le 3)$ 2nd A1 awrt 0.062 (0.0620 from tables) Do not ISW  Note exact binomial gives 0.0575 Note normal approximation gives awrt 0.0713 (calc) or 0.0708 (tables) with cc and awrt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                                                                                                                    |                            |  |
| Do <b>not</b> allow for <b>writing</b> $P(X \ge 9)$ or $P(X > 8)$ or $1 - P(X \le 8)$ or $1 - P(X \le 9)$ . A1 awrt 0.914 <b>NB SC</b> Using Po(9.5) gets B1M0A0  Alternative B1 writing or using B(10, 0.05) M1 using $P(Y \le 1) = P(Y = 1) + P(Y = 0) = 10(0.05)(0.95)^9 + 0.95^{10}$ ] oe but must use B(10, 0.05) A1 0.9139 from tables <b>NB</b> Using Po(0.5) gets B1M0A0  (c) $P(X \le 1) = P(Y = 1) + P(Y = 0) = 10(0.05)(0.95)^9 + 0.95^{10}$ ] oe but must use B(10, 0.05) A1 0.9139 from tables  NB Using Po(0.5) gets B1M0A0  (c) $P(X \le 1) = P(X \le 1) = 10(0.05)(0.95)^9 + 0.95^{10}$ ] oe but must use B(10, 0.05) A1 0.9139 from tables  NB Using Po(0.5) gets B1M0A0  (d) $P(X \le 1) = P(X \le 1) = 10(0.05)(0.95)^9 + 0.95^{10}$ ] oe but must use B(10, 0.05) A1 0.9139 from tables  NB Using Po(0.5) gets B1M0A0  (e) $P(X \le 1) = P(X \le 1) = 10(0.05)(0.95)^9 + 0.95^{10}$ ] oe but must use B(10, 0.05) A1 0.9139 from tables  NB Using Po(0.5) gets B1M0A0  (e) $P(X \le 1) = P(X \le 1) = 10(0.05)(0.95)^9 + 0.95^{10}$ ] oe but must use B(10, 0.05) A1 0.9139 from tables  NB Using Po(0.5) gets B1M0A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | calculation for each probability using B(10, '0.95') (Condone missing/incorrect <sup>n</sup> C <sub>r</sub> ). May |                            |  |
| A1 awrt 0.914  NB SC Using Po(9.5) gets B1M0A0  Alternative B1 writing or using B(10, 0.05) M1 using P(Y ≤ 1) [= P(Y = 1) + P(Y = 0) = 10(0.05) (0.95) <sup>9</sup> + 0.95 <sup>10</sup> ] oe but must use B(10, 0.05) A1 0.9139 from tables  NB Using Po(0.5) gets B1M0A0  (c) 1 <sup>st</sup> M1 using a Poisson distribution. 1 <sup>st</sup> A1 Po(6) is written or used. 2 <sup>nd</sup> dM1 dep on first M1 being awarded writing or using P(Y ≤ 2) oe eg P(Y < 3) 2 <sup>nd</sup> A1 awrt 0.062 (0.0620 from tables) Do not ISW  Note exact binomial gives 0.0575 Note normal approximation gives awrt 0.0713 (calc) or 0.0708 (tables) with cc and awrt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                                                                                                                    |                            |  |
| <ul> <li>NB SC Using Po(9.5) gets B1M0A0</li> <li>Alternative B1 writing or using B(10, 0.05) M1 using P(Y ≤ 1) [= P(Y = 1) + P(Y = 0) = 10(0.05) (0.95)<sup>9</sup> + 0.95<sup>10</sup>] oe but must use B(10, 0.05) A1 0.9139 from tables</li> <li>NB Using Po(0.5) gets B1M0A0</li> <li>(c) 1<sup>st</sup> M1 using a Poisson distribution. 1<sup>st</sup> A1 Po(6) is written or used. 2<sup>nd</sup> dM1 dep on first M1 being awarded writing or using P(Y ≤ 2) oe eg P(Y &lt; 3) 2<sup>nd</sup> A1 awrt 0.062 (0.0620 from tables) Do not ISW</li> <li>Note exact binomial gives 0.0575 Note normal approximation gives awrt 0.0713 (calc) or 0.0708 (tables) with cc and awrt</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                                                                                                                    |                            |  |
| Alternative B1 writing or using B(10, 0.05) M1 using $P(Y \le 1) = P(Y = 1) + P(Y = 0) = 10(0.05) (0.95)^9 + 0.95^{10}$ oe but must use B(10, 0.05) A1 0.9139 from tables  NB Using Po(0.5) gets B1M0A0  (c) 1st M1 using a Poisson distribution. 1st A1 Po(6) is written or used. 2nd dM1 dep on first M1 being awarded writing or using $P(Y \le 2)$ oe eg $P(Y < 3)$ 2nd A1 awrt 0.062 (0.0620 from tables) Do not ISW  Note exact binomial gives 0.0575 Note normal approximation gives awrt 0.0713 (calc) or 0.0708 (tables) with cc and awrt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | AT awn 0.914                                                                                                       |                            |  |
| B1 writing or using B(10, 0.05) M1 using P(Y ≤ 1) [= P(Y = 1) + P(Y = 0) = 10(0.05) (0.95) <sup>9</sup> + 0.95 <sup>10</sup> ] oe but must use B(10, 0.05) A1 0.9139 from tables  NB Using Po(0.5) gets B1M0A0  (c) 1 <sup>st</sup> M1 using a Poisson distribution. 1 <sup>st</sup> A1 Po(6) is written or used. 2 <sup>nd</sup> dM1 dep on first M1 being awarded writing or using P(Y ≤ 2) oe eg P(Y < 3) 2 <sup>nd</sup> A1 awrt 0.062 (0.0620 from tables) Do not ISW  Note exact binomial gives 0.0575 Note normal approximation gives awrt 0.0713 (calc) or 0.0708 (tables) with cc and awrt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | NB SC Using Po(9.5) gets B1M0A0                                                                                    |                            |  |
| B1 writing or using B(10, 0.05) M1 using P(Y ≤ 1) [= P(Y = 1) + P(Y = 0) = 10(0.05) (0.95) <sup>9</sup> + 0.95 <sup>10</sup> ] oe but must use B(10, 0.05) A1 0.9139 from tables  NB Using Po(0.5) gets B1M0A0  (c) 1 <sup>st</sup> M1 using a Poisson distribution. 1 <sup>st</sup> A1 Po(6) is written or used. 2 <sup>nd</sup> dM1 dep on first M1 being awarded writing or using P(Y ≤ 2) oe eg P(Y < 3) 2 <sup>nd</sup> A1 awrt 0.062 (0.0620 from tables) Do not ISW  Note exact binomial gives 0.0575 Note normal approximation gives awrt 0.0713 (calc) or 0.0708 (tables) with cc and awrt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | Alternative                                                                                                        |                            |  |
| M1 using $P(Y \le 1)$ [= $P(Y = 1) + P(Y = 0) = 10(0.05) (0.95)^9 + 0.95^{10}$ ] oe but must use $B(10, 0.05)$ A1 0.9139 from tables  NB Using $Po(0.5)$ gets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | B1 writing or using B(10, 0.05)                                                                                    |                            |  |
| Al 0.9139 from tables  NB Using Po(0.5) gets B1M0A0  (c) $1^{st}$ M1 using a Poisson distribution. $1^{st}$ A1 Po(6) is written or used. $2^{nd}$ dM1 dep on first M1 being awarded writing or using P( $Y \le 2$ ) oe eg P( $Y < 3$ ) $2^{nd}$ A1 awrt 0.062 (0.0620 from tables) Do not ISW  Note exact binomial gives 0.0575  Note normal approximation gives awrt 0.0713 (calc) or 0.0708 (tables) with cc and awrt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                                                                                                                    | st use                     |  |
| NB Using Po(0.5) gets B1M0A0  (c) $1^{st}$ M1 using a Poisson distribution. $1^{st}$ A1 Po(6) is written or used. $2^{nd}$ dM1 dep on first M1 being awarded writing or using P( $Y \le 2$ ) oe eg P( $Y < 3$ ) $2^{nd}$ A1 awrt 0.062 (0.0620 from tables) Do not ISW  Note exact binomial gives 0.0575  Note normal approximation gives awrt 0.0713 (calc) or 0.0708 (tables) with cc and awrt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                                                                                                                    |                            |  |
| (c) $1^{st}$ M1 using a Poisson distribution. $1^{st}$ A1 Po(6) is written or used. $2^{nd}$ dM1 dep on first M1 being awarded writing or using $P(Y \le 2)$ oe eg $P(Y \le 3)$ $2^{nd}$ A1 awrt 0.062 (0.0620 from tables) Do not ISW  Note exact binomial gives 0.0575  Note normal approximation gives awrt 0.0713 (calc) or 0.0708 (tables) with cc and awrt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | A1 0.9139 from tables                                                                                              |                            |  |
| $1^{\text{st}}$ A1 Po(6) is written or used.<br>$2^{\text{nd}}$ dM1 dep on first M1 being awarded writing or using P(Y \le 2) oe eg P(Y \le 3)<br>$2^{\text{nd}}$ A1 awrt 0.062 (0.0620 from tables) Do not ISW<br>Note exact binomial gives 0.0575<br>Note normal approximation gives awrt 0.0713 (calc) or 0.0708 (tables) with cc and awrt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | NB Using Po(0.5) gets B1M0A0                                                                                       |                            |  |
| $1^{\text{st}}$ A1 Po(6) is written or used.<br>$2^{\text{nd}}$ dM1 dep on first M1 being awarded writing or using P(Y \le 2) oe eg P(Y \le 3)<br>$2^{\text{nd}}$ A1 awrt 0.062 (0.0620 from tables) Do not ISW<br>Note exact binomial gives 0.0575<br>Note normal approximation gives awrt 0.0713 (calc) or 0.0708 (tables) with cc and awrt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (c)      | 1 <sup>st</sup> M1 using a Poisson distribution.                                                                   |                            |  |
| 2 <sup>nd</sup> A1 awrt 0.062 (0.0620 from tables) Do not ISW  Note exact binomial gives 0.0575  Note normal approximation gives awrt 0.0713 (calc) or 0.0708 (tables) with cc and awrt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 1 <sup>st</sup> A1 Po(6) is written or used.                                                                       |                            |  |
| Note exact binomial gives 0.0575  Note normal approximation gives awrt 0.0713 (calc) or 0.0708 (tables) with cc and awrt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | $2^{\text{nd}}$ dM1 dep on first M1 being awarded writing or using P( $Y \le 2$ ) oe eg P( $Y \le 3$               | 3)                         |  |
| Note normal approximation gives awrt 0.0713 (calc) or 0.0708 (tables) with cc and awrt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | 2 <sup>nd</sup> A1 awrt 0.062 (0.0620 from tables) Do not ISW                                                      |                            |  |
| Note normal approximation gives awrt 0.0713 (calc) or 0.0708 (tables) with cc and awrt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | Note exact binomial gives 0.0575                                                                                   |                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                                                                                                                    | and awrt                   |  |
| 1 2.2.25 (2002) 22 2.2.25 (2002)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 0.0469 (calc) or 0.0465 (tables) without cc                                                                        |                            |  |

| Question   | Scheme                                                                                                                                                                                                                                                                                                                                                                         |                                            | Marks             |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------|
|            | SC Normal approximation may achieve 2 out of 4                                                                                                                                                                                                                                                                                                                                 |                                            |                   |
|            | B1 for the mean 114 1st A1 on epen                                                                                                                                                                                                                                                                                                                                             |                                            |                   |
| 0          | B1 for either probability 0.0713 or 0.0708 2 <sup>nd</sup> A1 on e                                                                                                                                                                                                                                                                                                             | pen                                        | Manla             |
| Question   | Scheme                                                                                                                                                                                                                                                                                                                                                                         |                                            | Marks             |
| 7(a)       | $f(x) = \frac{1}{3125}(100x^3 - 20x^4)$ or $\frac{4}{125}x^3 - \frac{4}{625}x^4$                                                                                                                                                                                                                                                                                               |                                            | M1                |
|            | $f'(x) = \frac{1}{3125}(300x^2 - 80x^3) = 0$ or $\frac{12}{125}x^2 - \frac{16}{625}x^3$                                                                                                                                                                                                                                                                                        |                                            | M1A1              |
|            | x = 3.75                                                                                                                                                                                                                                                                                                                                                                       |                                            | A1                |
| <b>(b)</b> | F(3.95) = 0.7166 $F(4.05) = 0.7576$                                                                                                                                                                                                                                                                                                                                            |                                            | (4)<br>M1A1       |
| (D)        | F(3.95) = 0.7160 $F(4.05) = 0.7576$ $F(3.95) < 0.75 < F(4.05)$ , therefore the <b>upper quartile</b> (oe)                                                                                                                                                                                                                                                                      | ) is <b>4.0</b> to 1                       |                   |
|            | decimal place.                                                                                                                                                                                                                                                                                                                                                                 | ,                                          | A1                |
|            |                                                                                                                                                                                                                                                                                                                                                                                |                                            | (3)               |
| (c)        | $H_0: p = 0.25$ $H_1: p < 0.25$                                                                                                                                                                                                                                                                                                                                                |                                            | B1                |
|            | $Y \sim B(25, 0.25)$ and $P(Y \le 3) = $ or $P(Y \le 2) = awr$                                                                                                                                                                                                                                                                                                                 | 0.0321                                     | M1                |
|            | $0.0962 \qquad \text{CR } Y \leq 2$                                                                                                                                                                                                                                                                                                                                            |                                            | A1                |
|            | Do not reject H <sub>0</sub> / not significant                                                                                                                                                                                                                                                                                                                                 |                                            | dM1               |
|            | There is <u>not</u> enough evidence to suggest that the model <u>overestimates</u> the <u>proportion</u> of <u>queuing</u> more than 4 minutes/ <u>Olivia's belief</u> is <u>not supported</u> .  SC If H <sub>1</sub> written using > 0.25 and they then go on to use $P(Y \ge 3) = 0.9679$ allow B0M1A0dM0A0. If they go on to use $P(Y \le 3) = 0.9679$ are original scheme |                                            |                   |
|            |                                                                                                                                                                                                                                                                                                                                                                                |                                            |                   |
|            | Notes                                                                                                                                                                                                                                                                                                                                                                          |                                            | <b>Total [12]</b> |
| (a)        | $1^{\text{st}}$ M1 for attempting to finding $f(x)$ (at least one $x^n \to x^{n-1}$ ). May be implied. Condone missing 1/3125 $2^{\text{nd}}$ M1 for attempting to find $f'(x)$ and equating it to 0 Condone missing 1/3125 $1^{\text{st}}$ A1 correct differentiation ie $\frac{1}{3125}(300x^2 - 80x^3)$ Condone missing 1/3125                                              |                                            |                   |
| (L)        | 2 <sup>nd</sup> A1 3.750e only                                                                                                                                                                                                                                                                                                                                                 | M1 C                                       |                   |
| (b)        | M1 for attempting F(3.95) and F(4.05) or a suitable tighter interval (need to check they give values either                                                                                                                                                                                                                                                                    | M1 for setting up                          |                   |
|            | side of 0.75)                                                                                                                                                                                                                                                                                                                                                                  | $\frac{1}{3125}(25x^4-4x^4)$               | (5) = 0.75        |
|            | 1 <sup>st</sup> A1 for both awrt 0.72 and awrt 0.76                                                                                                                                                                                                                                                                                                                            | 3123                                       |                   |
|            | <b>NB</b> check answers and accuracy if other numbers used.                                                                                                                                                                                                                                                                                                                    | ed. $1^{st}$ A1 for $x = 4.03118$ (4.03 or |                   |
|            | 2 <sup>nd</sup> A1 for comparison with "their 0.75" and correct better)                                                                                                                                                                                                                                                                                                        |                                            |                   |
|            | conclusion. Must have bold in conclusion $Q_3 = 4.0$ is $2^{nd}$ A1 for conclusion                                                                                                                                                                                                                                                                                             |                                            |                   |
|            | enough. NB other methods possible – will need to check have bold in conclusion and value for $x$ of 4.03 or better                                                                                                                                                                                                                                                             |                                            |                   |
| (c)        | B1 both hypotheses correct $p$ or $\pi$                                                                                                                                                                                                                                                                                                                                        | value 101 x 01 4.03 (                      | or detter         |
| (C)        | 1 <sup>st</sup> M1 for writing or using $P(Y \le 3)$ or $P(Y \ge 4)$ and writin                                                                                                                                                                                                                                                                                                | g or using $B(25, p)$ r                    | nay be            |
|            | implied Only award for $P(Y \le 2) = \text{awrt } 0.0321$ if CR has                                                                                                                                                                                                                                                                                                            |                                            | J                 |
|            | $1^{\text{st}}$ A1 for awrt 0.0962 or correct CR: <i>Y</i> ≤ 2 or 0.9038 > 0.9038                                                                                                                                                                                                                                                                                              |                                            |                   |
|            | 2 <sup>nd</sup> dM1 Dependent on the 1 <sup>st</sup> M1.                                                                                                                                                                                                                                                                                                                       |                                            |                   |
|            | For a correct statement i.e. not significant/do not reject H <sub>0</sub>                                                                                                                                                                                                                                                                                                      |                                            |                   |
|            | Follow through their probability and their H <sub>1</sub>                                                                                                                                                                                                                                                                                                                      |                                            |                   |

| Question | Scheme                                                                        | Marks |
|----------|-------------------------------------------------------------------------------|-------|
|          | Do not allow non-contextual conflicting statements                            |       |
|          | 2 <sup>nd</sup> A1cso fully correct solution and correct contextual statement |       |
|          | Allow equivalent words to proportion eg fraction but do not allow number      |       |
|          | Allow equivalent words for supported eg true. Allow her for Olivia            |       |

(b) Other methods seen. Answers are for using 3.95 and 4.05. Allow 2 sf

$$F(x) - 0.75 = 0$$
awrt -0.033 and awrt +0.0076
$$(F(x) - 0.75) *3125*4 = 0$$
awrt +95.3 and awrt -416/416.5
$$(F(x) - 0.75) *3125 = 0$$
awrt -104.12 and awrt +23.8

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom