Aggregation methods in classification: optimality and adaptation

Guillaume Lecué

Université Paris 6

ISI 2007, Lisboa. August, 27, 2007

Optimality in classification

Motivation

M prior estimators ('weak' estimators) : f_1, \ldots, f_M

n observations : D_n

Motivation

M prior estimators ('weak' estimators): f_1, \ldots, f_M

n observations : D_n

Aim

Construction of a new estimator which is approximatively as good as the best 'weak' estimator:

Aggregation method or Aggregate

Optimality in classification

Examples

Adaptation:

Observations : D_{m+n}

Estimation : $D_m \rightarrow \text{non-adaptive estimators } f_1, \dots, f_M$.

learning : $D_{(n)} \rightarrow \text{aggregate } \tilde{f}_n \text{ (adaptive)}.$

Optimality in classification

Examples

```
Adaptation:
```

Observations : D_{m+n}

Estimation : $D_m \rightarrow \text{non-adaptive estimators } f_1, \dots, f_M$.

learning : $D_{(n)} \rightarrow \text{aggregate } \tilde{f}_n \text{ (adaptive)}.$

Estimation:

 ϵ -net : f_1, \ldots, f_M (functions)

learning : $D_n \rightarrow \text{aggregate } \tilde{f}_n$.

 $(\mathcal{X}, \mathcal{A})$ a measurable space, $(X, Y) \sim \pi$ valued in $\mathcal{X} \times \{-1, 1\}$,

Model of classification

 $(\mathcal{X}, \mathcal{A})$ a measurable space, $(X, Y) \sim \pi$ valued in $\mathcal{X} \times \{-1, 1\}$, $D_n = ((X_1, Y_1), \dots, (X_n, Y_n)) : n \text{ i.i.d. observations.}$

 $(\mathcal{X}, \mathcal{A})$ a measurable space, $(X,Y) \sim \pi$ valued in $\mathcal{X} \times \{-1,1\}$, $D_n = ((X_1, Y_1), \dots, (X_n, Y_n)) : n \text{ i.i.d. observations.}$ Problem of prediction : $x \in \mathcal{X} \to \text{label } y \in \{-1,1\}$?

Model of classification

 $(\mathcal{X}, \mathcal{A})$ a measurable space, $(X,Y) \sim \pi$ valued in $\mathcal{X} \times \{-1,1\}$, $D_n = ((X_1, Y_1), \dots, (X_n, Y_n)) : n \text{ i.i.d. observations.}$ Problem of prediction : $x \in \mathcal{X} \to \text{label } y \in \{-1, 1\}$? $f: \mathcal{X} \longmapsto \{-1, 1\}$: prediction rule.

Model of classification

 $(\mathcal{X}, \mathcal{A})$ a measurable space. $(X,Y) \sim \pi$ valued in $\mathcal{X} \times \{-1,1\}$. $D_n = ((X_1, Y_1), \dots, (X_n, Y_n)) : n \text{ i.i.d. observations.}$ Problem of prediction : $x \in \mathcal{X} \to \text{label } y \in \{-1, 1\}$? $f: \mathcal{X} \longmapsto \{-1, 1\}$: prediction rule. Bayes risk : $A_0(f) = \mathbb{P}[f(X) \neq Y]$

```
(\mathcal{X}, \mathcal{A}) a measurable space.
                     (X,Y) \sim \pi valued in \mathcal{X} \times \{-1,1\}.
                     D_n = ((X_1, Y_1), \dots, (X_n, Y_n)) : n \text{ i.i.d. observations.}
Problem of prediction : x \in \mathcal{X} \to \text{label } y \in \{-1,1\}?
                     f: \mathcal{X} \longmapsto \{-1, 1\}: prediction rule.
                     Bayes risk : A_0(f) = \mathbb{P}[f(X) \neq Y]
  Bayes rule: f^*(x) = \text{Sign}(2\eta(x) - 1) where \eta(x) = \mathbb{P}[Y = 1 | X = x].
                     A_0^* \stackrel{\text{def}}{=} \min_f A_0(f) = A_0(f^*)
```

```
(\mathcal{X}, \mathcal{A}) a measurable space.
                     (X, Y) \sim \pi valued in \mathcal{X} \times \{-1, 1\},
                     D_n = ((X_1, Y_1), \dots, (X_n, Y_n)) : n \text{ i.i.d. observations.}
Problem of prediction : x \in \mathcal{X} \to \text{label } y \in \{-1,1\}?
                     f: \mathcal{X} \longmapsto \{-1, 1\}: prediction rule.
                     Bayes risk : A_0(f) = \mathbb{P}[f(X) \neq Y]
  Bayes rule : f^*(x) = \text{Sign}(2\eta(x) - 1) where \eta(x) = \mathbb{P}[Y = 1 | X = x].
                     A_0^* \stackrel{\text{def}}{=} \min_f A_0(f) = A_0(f^*)
```

Prediction \rightarrow estimation : estimation of f^* .

```
(\mathcal{X}, \mathcal{A}) a measurable space.
```

$$(X,Y) \sim \pi$$
 valued in $\mathcal{X} \times \{-1,1\}$,

$$D_n = ((X_1, Y_1), \dots, (X_n, Y_n)) : n \text{ i.i.d. observations.}$$

Problem of prediction : $x \in \mathcal{X} \to \text{label } y \in \{-1,1\}$?

 $f: \mathcal{X} \longmapsto \{-1, 1\}$: prediction rule.

Bayes risk : $A_0(f) = \mathbb{P}[f(X) \neq Y]$

Bayes rule :
$$f^*(x) = \operatorname{Sign}(2\eta(x) - 1)$$
 where $\eta(x) = \mathbb{P}[Y = 1 | X = x]$.

$$A_0^* \stackrel{\mathrm{def}}{=} \min_f A_0(f) = A_0(f^*)$$

Prediction \rightarrow estimation : estimation of f^* .

excess risk : $A_0(f) - A_0^*$

Model of classification

General Framework

$$(f:\mathcal{X}\longmapsto\mathbb{R}) o \mathrm{risk}\;A_0(f)=\mathbb{E}[\phi_0(\mathit{Yf}(X))]$$
 where $\phi_0(x)=1\!\!\mathrm{I}_{(x<0)}$ classical loss or $0-1$ loss

Model of classification

$$(f: \mathcal{X} \longmapsto \mathbb{R}) \rightarrow \operatorname{risk} \ A_0(f) = \mathbb{E}[\phi_0(Yf(X))] \ \text{where}$$

$$\phi_0(x) = \mathrm{II}_{(x \leq 0)} \qquad \text{classical loss of }$$

$$\phi_1(x) = \max(0, 1 - x) \qquad \text{hinge loss or } ($$

$$x \longmapsto \log_2(1 + \exp(-x)) \qquad \text{'Logit-Boostin}$$

$$x \longmapsto \exp(-x) \qquad \text{exponential Boosting}$$

$$x \longmapsto (1 - x)^2 \qquad \text{quadratic loss}$$

$$x \longmapsto \max(0, 1 - x)^2 \qquad 2\text{-norm soft m}$$

classical loss or 0-1 loss hinge loss or (SVM loss) 'Logit-Boosting' loss exponential Boosting loss quadratic loss 2-norm soft margin loss

Optimality in classification

Optimality in classification

Model of classification

$$(f: \mathcal{X} \longmapsto \mathbb{R}) \to \operatorname{risk} A_0(f) = \mathbb{E}[\phi_0(Yf(X))] \text{ where }$$

$$\phi_0(x) = \mathbb{I}_{(x \leq 0)} \qquad \text{classical loss or } 0-1 \text{ loss }$$

$$\phi_1(x) = \max(0, 1-x) \qquad \text{hinge loss or (SVM loss)}$$

$$x \longmapsto \log_2(1+\exp(-x)) \qquad \text{'Logit-Boosting' loss }$$

$$x \longmapsto \exp(-x) \qquad \text{exponential Boosting loss }$$

$$x \longmapsto (1-x)^2 \qquad \text{quadratic loss }$$

$$x \longmapsto \max(0, 1-x)^2 \qquad \text{2-norm soft margin loss }$$

$$\phi-\operatorname{risk}:\ A^{\phi}(f)=\mathbb{E}[\phi(Yf(X))],\quad A^{\phi*}\stackrel{\mathrm{def}}{=}\inf_{f}A(f)=A(f^{\phi*}),$$
 excess $\phi-\operatorname{risk}:\ A^{\phi}(f)-A^{\phi*}.$ empirical $\phi-\operatorname{risk}:\ A^{\phi}_{n}(f)=\frac{1}{n}\sum_{i=1}^{n}\phi(Y_{i}f(X_{i})).$

Selectors

$$\phi: \mathbb{R} \longmapsto \mathbb{R}$$
 a loss, $\mathcal{F}_0 = \{f_1, \dots, f_M\} \subset \mathcal{F}$ a dictionary.

Empirical Risk Minimization (ERM): (Vapnik, Chervonenkis...)

$$\tilde{f}_n^{ERM} \in \operatorname{Arg} \min_{f \in \mathcal{F}_0} A_n^{\phi}(f).$$

Optimality in classification

$\phi: \mathbb{R} \longmapsto \mathbb{R}$ a loss, $\mathcal{F}_0 = \{f_1, \dots, f_M\} \subset \mathcal{F}$ a dictionary.

Empirical Risk Minimization (ERM): (Vapnik, Chervonenkis...)

$$\tilde{f}_n^{ERM} \in \operatorname{Arg} \min_{f \in \mathcal{F}_0} A_n^{\phi}(f).$$

Optimality in classification

penalized Empirical Risk Minimization (pERM) :

$$\tilde{f}_n^{ERM} \in \operatorname{Arg} \min_{f \in \mathcal{F}_0} [A_n^{\phi}(f) + \operatorname{pen}(f)],$$

where pen is a penalty function. (Barron, Bartlett, Birgé, Boucheron, Koltchinski, Lugosi, Massart,...)

Aggregation methods with exponential weights

 $\phi: \mathbb{R} \longmapsto \mathbb{R}$ a loss, $\mathcal{F}_0 = \{f_1, \dots, f_M\} \subset \mathcal{F}$ a dictionary.

Aggregate with Exponential weights (AEW) :

$$\tilde{f}_{n,T}^{AEW} = \sum_{f \in \mathcal{F}_0} w_T^{(n)}(f) f, \text{ where } w_T^{(n)}(f) = \frac{\exp\left(-nTA_n^{\phi}(f)\right)}{\sum_{g \in \mathcal{F}_0} \exp\left(-nTA_n^{\phi}(g)\right)},$$

Optimality in classification

 T^{-1} : temperature parameter.

Aggregation methods with exponential weights

 $\phi: \mathbb{R} \longmapsto \mathbb{R}$ a loss, $\mathcal{F}_0 = \{f_1, \dots, f_M\} \subset \mathcal{F}$ a dictionary.

Aggregate with Exponential weights (AEW) :

$$\tilde{f}_{n,T}^{AEW} = \sum_{f \in \mathcal{F}_0} w_T^{(n)}(f)f, \text{ where } w_T^{(n)}(f) = \frac{\exp\left(-nTA_n^{\phi}(f)\right)}{\sum_{g \in \mathcal{F}_0} \exp\left(-nTA_n^{\phi}(g)\right)},$$

Optimality in classification

 T^{-1} : temperature parameter.

 Cumulative Aggregate with Exponential Weights (CAEW): (Catoni, Yang....)

$$\tilde{f}_{n,T}^{CAEW} = \frac{1}{n} \sum_{k=1}^{n} \tilde{f}_{k,T}^{AEW}.$$

Aim of Aggregation(1): Optimal rate of aggregation

Definition

$$orall \mathcal{F}_0 = \{f_1, \dots, f_M\} \subseteq \mathcal{F}, \ \exists \tilde{f}_n \ ext{such that} \ \forall \pi \in \mathcal{P}, \ \forall n \geq 1$$

$$\mathbb{E}\left[A(\tilde{f}_n)-A^*\right]\leq \min_{f\in\mathcal{F}_0}\left(A(f)-A^*\right)+C_0\gamma(n,M).$$

Optimality in classification

Definition

$$\forall \mathcal{F}_0 = \{f_1, \dots, f_M\} \subseteq \mathcal{F}, \ \exists \tilde{f}_n \text{ such that } \forall \pi \in \mathcal{P}, \ \forall n \geq 1$$

$$\mathbb{E}\left[A(\tilde{f}_n)-A^*\right]\leq \min_{f\in\mathcal{F}_0}\left(A(f)-A^*\right)+C_0\gamma(n,M).$$

Optimality in classification

$$\exists \mathcal{F}_0 = \{f_1, \dots, f_M\}$$
 such that for any aggregate $ar{f}_n$, $\exists \pi \in \mathcal{P}$, $orall n \geq 1$

$$\mathbb{E}\left[A(\overline{f}_n)-A^*\right] \geq \min_{f \in \mathcal{F}_0} (A(f)-A^*) + C_1 \gamma(n,M).$$

Definition

 $\forall \mathcal{F}_0 = \{f_1, \dots, f_M\} \subseteq \mathcal{F}, \ \exists \tilde{f}_n \text{ such that } \forall \pi \in \mathcal{P}, \ \forall n \geq 1$

$$\mathbb{E}\left[A(\tilde{f}_n)-A^*\right] \leq \min_{f \in \mathcal{F}_0} (A(f)-A^*) + C_0 \gamma(n, M).$$

Optimality in classification

 $\exists \mathcal{F}_0 = \{f_1, \dots, f_M\}$ such that for any aggregate \bar{f}_n , $\exists \pi \in \mathcal{P}$, $\forall n \geq 1$

$$\mathbb{E}\left[A(\overline{f}_n)-A^*\right]\geq \min_{f\in\mathcal{F}_n}\left(A(f)-A^*\right)+C_1\gamma(n,M).$$

 $\gamma(n, M)$ is an optimal rate of aggregation and f_n is an optimal aggregation procedure.

Aim of Aggregation(2): Adaptation

Definition (Oracle Inequality)

$$\forall \mathcal{F}_0 = \{f_1, \dots, f_M\} \subseteq \mathcal{F}, \ \exists \tilde{f}_n \text{ such that } \forall \pi \in \mathcal{P}, \ \forall n \geq 1$$

$$\mathbb{E}\left[A(\tilde{f}_n)-A^*\right] \leq C \min_{f \in \mathcal{F}_0} \left(A(f)-A^*\right) + C_0 \gamma(n,M),$$

Optimality in classification

where C > 1.

Classification problem : $A^{\phi}(f) = \mathbb{E}[\phi(Yf(X))], Y \in \{-1, 1\}, X \in \mathcal{X}.$

Optimality in classification

$$\phi(x) = \phi_h(x) = \begin{cases} (1 - h)\phi_0(x) + h\phi_1(x) & \text{if } 0 \le h \le 1\\ (h - 1)x^2 - x + 1 & \text{if } h > 1, \end{cases} \quad \forall x \in \mathbb{R}$$

Classification problem : $A^{\phi}(f) = \mathbb{E}[\phi(Yf(X))], Y \in \{-1, 1\}, X \in \mathcal{X}.$

Optimality in classification

$$\phi(x) = \phi_h(x) = \begin{cases} (1 - h)\phi_0(x) + h\phi_1(x) & \text{if } 0 \le h \le 1\\ (h - 1)x^2 - x + 1 & \text{if } h > 1, \end{cases} \quad \forall x \in \mathbb{R}$$

$$h = 1/3$$

Classification problem : $A^{\phi}(f) = \mathbb{E}[\phi(Yf(X))], Y \in \{-1, 1\}, X \in \mathcal{X}.$

Optimality in classification

$$\phi(x) = \phi_h(x) = \begin{cases} (1 - h)\phi_0(x) + h\phi_1(x) & \text{if } 0 \le h \le 1\\ (h - 1)x^2 - x + 1 & \text{if } h > 1, \end{cases} \quad \forall x \in \mathbb{R}$$

$$h = 2/3$$

Classification problem : $A^{\phi}(f) = \mathbb{E}[\phi(Yf(X))], Y \in \{-1, 1\}, X \in \mathcal{X}.$

Optimality in classification

$$\phi(x) = \phi_h(x) = \begin{cases} (1 - h)\phi_0(x) + h\phi_1(x) & \text{if } 0 \le h \le 1\\ (h - 1)x^2 - x + 1 & \text{if } h > 1, \end{cases} \quad \forall x \in \mathbb{R}$$

Classification problem : $A^{\phi}(f) = \mathbb{E}[\phi(Yf(X))], Y \in \{-1, 1\}, X \in \mathcal{X}.$

Optimality in classification

$$\phi(x) = \phi_h(x) = \begin{cases} (1-h)\phi_0(x) + h\phi_1(x) & \text{if } 0 \le h \le 1\\ (h-1)x^2 - x + 1 & \text{if } h > 1, \end{cases} \quad \forall x \in \mathbb{R}$$

Classification problem : $A^{\phi}(f) = \mathbb{E}[\phi(Yf(X))], Y \in \{-1, 1\}, X \in \mathcal{X}.$

Optimality in classification

$$\phi(x) = \phi_h(x) = \begin{cases} (1-h)\phi_0(x) + h\phi_1(x) & \text{if } 0 \le h \le 1\\ (h-1)x^2 - x + 1 & \text{if } h > 1, \end{cases} \quad \forall x \in \mathbb{R}$$

Loss function	$0 \le h < 1$	h = 1	h > 1
Optimal rate of aggregation (ORA)	$\sqrt{\frac{\log M}{n}}$	$\sqrt{\frac{\log M}{n}}$	$\frac{\log M}{n}$
Optimal aggregation procedure	ERM	ERM, AEW, CAEW	CAEW

ORA in classification

Loss function	$0 \le h < 1$	h = 1	h > 1
Optimal rate of aggregation (ORA)	$\sqrt{\frac{\log M}{n}}$	$\sqrt{\frac{\log M}{n}}$	log M n
Optimal aggregation procedure	ERM	ERM, AEW, CAEW	CAEW

Loss function	$0 \le h < 1$	h = 1	h > 1
Optimal rate of aggregation (ORA)	$\sqrt{\frac{\log M}{n}}$	$\sqrt{\frac{\log M}{n}}$	$\frac{\log M}{n}$
Optimal aggregation procedure	ERM	ERM, AEW, CAEW	CAEW

Loss function	$0 \le h < 1$	h = 1	h > 1
Optimal rate of aggregation (ORA)	$\sqrt{\frac{\log M}{n}}$	$\sqrt{\frac{\log M}{n}}$	$\frac{\log M}{n}$
Optimal aggregation procedure	ERM	ERM, AEW, CAEW	CAEW

Loss function	$0 \le h < 1$	h = 1	h > 1
Optimal rate of aggregation (ORA)	$\sqrt{\frac{\log M}{n}}$	$\sqrt{\frac{\log M}{n}}$	$\frac{\log M}{n}$
Optimal aggregation procedure	ERM	ERM, AEW, CAEW	CAEW

Loss function	$0 \le h < 1$	h = 1	h > 1
Optimal rate of aggregation (ORA)	$\sqrt{\frac{\log M}{n}}$	$\sqrt{\frac{\log M}{n}}$	$\frac{\log M}{n}$
Optimal aggregation procedure	ERM	ERM, AEW, CAEW	CAEW

Question 1: Why is there such a breakdown just after the Hinge loss?

Optimality in classification

2 Questions

General Framework

Question 1: Why is there such a breakdown just after the Hinge loss?

$$0 \le h \le 1, \sqrt{\frac{\log M}{n}} \longrightarrow \frac{\log M}{n}, h > 1.$$

2 Questions

Question 1: Why is there such a breakdown just after the Hinge loss?

$$0 \le h \le 1, \sqrt{\frac{\log M}{n}} \longrightarrow \frac{\log M}{n}, h > 1.$$

Question 2: Do we really need aggregation procedures with exponential weights to achieve the optimal rates of aggregation?

2 Questions

Question 1: Why is there such a breakdown just after the Hinge loss?

$$0 \le h \le 1, \sqrt{rac{\log M}{n}} \longrightarrow rac{\log M}{n}, h > 1.$$
 ERM \longrightarrow CAEW

Optimality in classification

Question 2: Do we really need aggregation procedures with exponential weights to achieve the optimal rates of aggregation?

Margin assumption for the loss function ϕ :

The probability measure π satisfies the ϕ -margin assumption ϕ -MA(κ), with margin parameter $\kappa \geq 1$ if

Optimality in classification

$$\mathbb{E}[(\phi(Yf(X)) - \phi(Yf^{\phi*}(X)))^2] \leq c_{\phi}(A^{\phi}(f) - A^{\phi*})^{1/\kappa},$$

for any $f: \mathcal{X} \longmapsto \mathbb{R}$.

cf. Mammen and Tsybakov 99 (discriminant analysis) and Tsybakov 04 (classification).

Margin assumption for the loss function ϕ :

The probability measure π satisfies the ϕ -margin assumption ϕ -MA(κ), with margin parameter $\kappa > 1$ if

Optimality in classification

$$\mathbb{E}[(\phi(\mathsf{Y} f(\mathsf{X})) - \phi(\mathsf{Y} f^{\phi*}(\mathsf{X})))^2] \leq c_{\phi}(\mathsf{A}^{\phi}(f) - \mathsf{A}^{\phi*})^{1/\kappa},$$

for any $f: \mathcal{X} \longmapsto \mathbb{R}$.

cf. Mammen and Tsybakov 99 (discriminant analysis) and Tsybakov 04 (classification).

$$\phi_0 - \mathsf{MA}(\kappa) \Longleftrightarrow \mathbb{P}[|2\eta(X) - 1| \le t] \le t^{\alpha}, \forall 0 < t < 1, \alpha = \frac{1}{\kappa - 1}$$

$$\eta(x) = \mathbb{P}[Y = 1 | X = x]$$

Margin assumption for the loss function ϕ :

The probability measure π satisfies the ϕ -margin assumption ϕ -MA(κ), with margin parameter $\kappa > 1$ if

Optimality in classification

$$\mathbb{E}[(\phi(Yf(X)) - \phi(Yf^{\phi*}(X)))^2] \leq c_{\phi}(A^{\phi}(f) - A^{\phi*})^{1/\kappa},$$

for any $f: \mathcal{X} \longmapsto \mathbb{R}$.

cf. Mammen and Tsybakov 99 (discriminant analysis) and Tsybakov 04 (classification).

$$\phi_0 - \mathsf{MA}(\kappa) \Longleftrightarrow \mathbb{P}[|2\eta(X) - 1| \le t] \le t^{\alpha}, \forall 0 < t < 1, \alpha = \frac{1}{\kappa - 1}$$

$$\eta(x) = \mathbb{P}[Y = 1 | X = x]$$

$$(\kappa = 1 \Longleftrightarrow \exists h > 0, |2\eta(X) - 1| \ge h)$$

General Framework

$$\kappa = +\infty$$
 for any $0 \le h \le 1$.

General Framework

$$\kappa = +\infty$$
 for any $0 \le h \le 1$.

$$\kappa = +\infty$$
 for any $0 \le h \le 1$.

General Framework

$$\kappa = +\infty$$
 for any $0 \le h \le 1$.

Optimality in classification

00000000

Question 1 : Why there is a breakdown at h = 1?

General Framework

$$\kappa = 1$$
 for any $h > 1$.

General Framework

$$\kappa = 1$$
 for any $h > 1$.

Optimality in classification

Question 2 : Do we really need agg. with exp. weights?

Theorem (suboptimality of selectors)

For any $M \geq 2$, $\phi : \mathbb{R} \longmapsto \mathbb{R}$ s.t. $\phi(-1) \neq \phi(1)$, $\exists f_1, \dots, f_M : \mathcal{X} \longmapsto \{-1, 1\}$ s.t. for any selector f_n , $\exists \pi$ s.t.

$$\mathbb{E}\left[A^{\phi}(\widetilde{f}_{n})-A^{\phi*}\right] \geq \min_{i=1,\dots,M}\left(A^{\phi}(f_{i})-A^{\phi*}\right) + C\sqrt{\frac{\log M}{n}}.$$

Optimality in classification

Question 2: Do we really need agg. with exp. weights?

Theorem (suboptimality of selectors under the margin assumption)

For any $M \geq 2$, $\kappa \geq 1$, $\phi : \mathbb{R} \longmapsto \mathbb{R}$ s.t. $\phi(-1) \neq \phi(1)$, $\exists f_1, \dots, f_M : \mathcal{X} \longmapsto \{-1, 1\}$ s.t. for any selector f_n , $\exists \pi$ satisfying the ϕ_0 -MA(κ) s.t.

$$\mathbb{E}\left[A^{\phi}(\frac{\tilde{\mathbf{f}}_{\mathbf{n}}}{\mathbf{f}}) - A^{\phi*}\right] \geq \min_{j=1,\ldots,M} \left(A^{\phi}(f_j) - A^{\phi*}\right) + C\left(\frac{\log M}{n}\right)^{\frac{\kappa}{2\kappa-1}}.$$

Optimality in classification

$$\sqrt{\frac{\log M}{n}} >> \left(\frac{\log M}{n}\right)^{\frac{\kappa}{2\kappa-1}} >> \frac{\log M}{n}, 1 < \kappa < \infty.$$

Suboptimality of Penalized ERM.

For any $M \geq 2$, $\kappa > 1$ and $\phi : \mathbb{R} \longmapsto \mathbb{R}$ s.t. $\phi(-1) \neq \phi(1)$, $\exists f_1, \dots, f_M : \mathcal{X} \longmapsto \{-1, 1\}, \exists \pi \text{ satisfying the } \phi_0 - \mathsf{MA}(\kappa) \text{ s.t. the pERM}$

aggregate

$$\tilde{f}_n^{pERM} \in \operatorname{Arg} \min_{j=1,\dots,M} (A_n^{\phi}(f_j) + \operatorname{pen}(f_j)),$$

Optimality in classification

where $|pen(f)| < \frac{1}{6} \sqrt{\frac{\log M}{n}}$, satisfies

$$\mathbb{E}\left[A^{\phi}(\tilde{f}_{n}^{\mathsf{pERM}}) - A^{\phi*}\right] \ge \min_{j=1,\dots,M}\left(A^{\phi}(f_{j}) - A^{\phi*}\right) + C\sqrt{\frac{\log M}{n}}$$

if $\sqrt{M \log M} < \sqrt{n}/(132e^3)$, for any integer n > 1.

General Framework

• The margin parameter characterizes the quality of aggregation and estimation in a given model.

Conclusion on optimality

• The margin parameter characterizes the quality of aggregation and estimation in a given model.

• We need convex aggregates to achieve the optimal rate of aggregation for convex losses.

Exact Oracle Inequality

 $\mathcal{F}_0 = \{f_1, \dots, f_M\}, \ \phi : \mathbb{R} \longmapsto \mathbb{R} \text{ bounded, } \kappa \geq 1. \text{ Assume that } \pi \text{ satisfies } \phi - \mathsf{MA}(\kappa).$

$$\mathbb{E}[A^{\phi}(\tilde{f}_{n}^{ERM}) - A^{\phi*}] \leq \min_{f \in \mathcal{F}_{0}}(A^{\phi}(f) - A^{\phi*}) + C\gamma(n, M, \kappa),$$

where the residual term is

$$\gamma(n, M, \kappa) = \begin{cases} \left(\frac{\mathcal{B}^{\frac{1}{\kappa}} \log M}{n}\right)^{1/2} & \text{if } \mathcal{B} \ge \left(\frac{\log M}{n}\right)^{\frac{\kappa}{2\kappa - 1}} \\ \left(\frac{\log M}{n}\right)^{\frac{\kappa}{2\kappa - 1}} & \text{otherwise,} \end{cases}$$

where $\mathcal{B} = \min_{f \in \mathcal{F}_0} \left(A^{\phi}(f) - A^{\phi*} \right)$.

Exact Oracle Inequality

 $\mathcal{F}_0 = \{f_1, \dots, f_M\}, \ \phi : \mathbb{R} \longmapsto \mathbb{R} \text{ bounded, } \kappa \geq 1. \text{ Assume that } \pi \text{ satisfies } \phi - \mathsf{MA}(\kappa). \quad \text{If } \phi \text{ is convex then,}$

$$\mathbb{E}[A^{\phi}(\tilde{f}_{n}^{AEW}) - A^{\phi*}] \leq \min_{f \in \mathcal{F}_{0}}(A^{\phi}(f) - A^{\phi*}) + C\gamma(n, M, \kappa),$$

where the residual term is

$$\gamma(n, M, \kappa) = \begin{cases} \left(\frac{\mathcal{B}^{\frac{1}{\kappa}} \log M}{n}\right)^{1/2} & \text{if } \mathcal{B} \ge \left(\frac{\log M}{n}\right)^{\frac{\kappa}{2\kappa - 1}} \\ \left(\frac{\log M}{n}\right)^{\frac{\kappa}{2\kappa - 1}} & \text{otherwise,} \end{cases}$$

where $\mathcal{B} = \min_{f \in \mathcal{F}_0} \left(A^{\phi}(f) - A^{\phi*} \right)$.

Idea of SVM

Observations : $(X_1, Y_1), ..., (X_n, Y_n) \in \mathcal{X} \times \{-1, 1\}.$ \mathcal{X} small dimension \Rightarrow linear separation unlikely.

Optimality in classification

General Framework

Observations :
$$(X_1, Y_1), \dots, (X_n, Y_n) \in \mathcal{X} \times \{-1, 1\}.$$

 \mathcal{X} small dimension \Rightarrow linear separation unlikely.

Transfer function : $\phi: \mathcal{X} \longmapsto \mathcal{H} (\dim \infty)$.

Observations : $(X_1, Y_1), \dots, (X_n, Y_n) \in \mathcal{X} \times \{-1, 1\}.$ \mathcal{X} small dimension \Rightarrow linear separation unlikely.

Optimality in classification

Transfer function : $\phi: \mathcal{X} \longmapsto \mathcal{H} (\dim \infty)$.

New observations : $(\phi(X_1), Y_1), \dots, (\phi(X_n), Y_n)$.

Optimality in classification

Observations : $(X_1, Y_1), \ldots, (X_n, Y_n) \in \mathcal{X} \times \{-1, 1\}.$ \mathcal{X} small dimension \Rightarrow linear separation unlikely.

Transfer function : $\phi: \mathcal{X} \longmapsto \mathcal{H} (\dim \infty)$.

New observations : $(\phi(X_1), Y_1), \dots, (\phi(X_n), Y_n)$.

Best linear separation in \mathcal{H} .

Kernel : Symmetric function $k : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ s.t. $\forall n \geq 1$, $\forall x_1, \dots, x_n \in \mathcal{X}$, the matrix

$$(k(x_i, x_i))_{1 \le i,j \le n}$$
 is semi-definite positive.

Optimality in classification

 \Leftrightarrow there exists a Hilbert space \mathcal{H} and a transfer function $\phi: \mathcal{X} \mapsto \mathcal{H}$ s.t.

$$k(x, x') = \langle \phi(x), \phi(x') \rangle, \quad \forall x, x' \in \mathcal{X}.$$

Kernel : Symmetric function $k : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ s.t. $\forall n \geq 1$, $\forall x_1, \dots, x_n \in \mathcal{X}$, the matrix

$$(k(x_i, x_i))_{1 \le i, j \le n}$$
 is semi-definite positive.

Optimality in classification

 \Leftrightarrow there exists a Hilbert space \mathcal{H} and a transfer function $\phi: \mathcal{X} \mapsto \mathcal{H}$ s.t.

$$k(x, x') = \langle \phi(x), \phi(x') \rangle, \quad \forall x, x' \in \mathcal{X}.$$

Gaussian kernel : For all $\sigma > 0$ (σ is called the window),

$$k(x, x') = \exp(-\sigma^2 ||x - x'||_2^2), \quad x, x' \in \mathbb{R}^d.$$

RKHS: k is a kernel. The Reproducing Kernel Hilbert Space (RKHS) \mathcal{H} associated to k is the completion of the pre-hilbert space

Optimality in classification

$$\left\{\sum_{i=1}^n \alpha_i k(x_i,.): n \in \mathbb{N}, \alpha_1,...,\alpha_n \in \mathbb{R}, x_1,...,x_n \in \mathcal{X}\right\},\,$$

endowed with the inner product :

$$\left\langle \sum_{i=1}^n \alpha_i k(x_i,.), \sum_{j=1}^m \beta_i k(y_i,.) \right\rangle = \sum_{i=1}^n \sum_{j=1}^m \alpha_i \beta_j k(x_i,x_j).$$

RKHS: k is a kernel. The Reproducing Kernel Hilbert Space (RKHS) \mathcal{H} associated to k is the completion of the pre-hilbert space

Optimality in classification

$$\left\{\sum_{i=1}^n \alpha_i k(x_i,.): n \in \mathbb{N}, \alpha_1,...,\alpha_n \in \mathbb{R}, x_1,...,x_n \in \mathcal{X}\right\},\,$$

endowed with the inner product :

$$\left\langle \sum_{i=1}^n \alpha_i k(x_i,.), \sum_{j=1}^m \beta_i k(y_i,.) \right\rangle = \sum_{i=1}^n \sum_{j=1}^m \alpha_i \beta_j k(x_i,x_j).$$

Transfer function : $\phi: \mathcal{X} \mapsto \mathcal{H}, \phi(x) = k(x, .)$

• For the gaussian kernel

$$\mathcal{H}_{\sigma} = \left\{ f \in \mathcal{C}(\mathbb{R}^d, \mathbb{R}) \cap L^2(\mathbb{R}^d) : \int_{\mathbb{R}^d} |\hat{f}(w)|^2 \exp(\frac{\sigma^2 w^2}{2}) dw < \infty \right\}.$$

Optimality in classification

If $\mathcal{X} \subset \mathbb{R}^d$ is a compact subset then, \mathcal{H}_{σ} is dense in $\mathcal{C}(\mathcal{X}, \mathbb{R})$.

• For the gaussian kernel

$$\mathcal{H}_{\sigma} = \left\{ f \in \mathcal{C}(\mathbb{R}^d, \mathbb{R}) \cap L^2(\mathbb{R}^d) : \int_{\mathbb{R}^d} |\hat{f}(w)|^2 \exp(\frac{\sigma^2 w^2}{2}) dw < \infty \right\}.$$

Optimality in classification

If $\mathcal{X} \subset \mathbb{R}^d$ is a compact subset then, \mathcal{H}_{σ} is dense in $\mathcal{C}(\mathcal{X}, \mathbb{R})$.

$$ullet$$
 For $k(x,x')=\min(x,x'), \quad \forall x,x'\in [0,1]$
$$\mathcal{H}=\left\{f\in \mathcal{C}([0,1],\mathbb{R}) \text{ a.e. differentiable}, f'\in L^2([0,1]), f(0)=0\right\}.$$

Optimality in classification

General Framework

k: kernel on \mathcal{X} , \mathcal{H}_k : RKHS of k, $\lambda > 0$. General Framework

SVM Estimators

k: kernel on \mathcal{X} . \mathcal{H}_k : RKHS of $k, \lambda > 0$.

SVM Estimator:

$$\hat{f}_n^{\lambda} = \operatorname{Arg} \min_{f \in \mathcal{H}_k} \left(A_n^{\phi_1}(f) + \lambda ||f||_{\mathcal{H}_k}^2 \right),$$

Optimality in classification

fo
$$A_n^{\phi_1}(f) = \frac{1}{n} \sum_{i=1}^n (1 - Y_i f(X_i))_+$$

 λ : regularization parameter.

k: kernel on \mathcal{X} .

 \mathcal{H}_k : RKHS of $k, \lambda > 0$.

Optimality in classification

SVM Estimator:

$$\hat{f}_n^{\lambda} = \operatorname{Arg} \min_{f \in \mathcal{H}_k} \left(A_n^{\phi_1}(f) + \lambda ||f||_{\mathcal{H}_k}^2 \right),$$

fo
$$A_n^{\phi_1}(f) = \frac{1}{n} \sum_{i=1}^n (1 - Y_i f(X_i))_+$$

 λ : regularization parameter.

SVM classifier:

$$\hat{F}_n^{\lambda}(x) = \operatorname{sign}(\hat{f}_n^{\lambda}(x)).$$

SVM Estimators

$$\hat{f}_n^{\lambda}(x) = \sum_{i=1}^n \hat{C}_i k(X_i, x), \forall x \in \mathcal{X},$$

Optimality in classification

where $\hat{C}_1, \ldots, \hat{C}_n$ are solutions of

$$\max_{0 \le 2\lambda C_i Y_i \le n^{-1}} \left\{ 2 \sum_{i=1}^n C_i Y_i - \sum_{i,j=1}^n C_i C_j k(X_i, X_j) \right\}.$$

Convergence rates for SVM

(GNA) Geometric noise assumption. (Steinwart and Scovel) $\mathcal{X} \subseteq \mathbb{R}^d$, $\exists C_1 > 0$ and $\gamma > 0$ s.t.

$$\mathbb{E}\left[|2\eta(X)-1|\exp\left(-\frac{\tau(X)^2}{t}\right)\right] \leq C_1 t^{\frac{\gamma d}{2}}, \quad \forall t>0.$$

$$\tau(x) = \left\{ \begin{array}{ll} d(x, G_0 \cup G_1), & \text{if } x \in G_{-1}, \\ d(x, G_0 \cup G_{-1}), & \text{if } x \in G_1, \\ 0, & \text{otherwise}, \end{array} \right. \text{for all } x \in \mathcal{X},$$

$$G_0 = \{x \in \mathcal{X} : \eta(x) = 1/2\},\$$

$$G_1 = \{x \in \mathcal{X} : \eta(x) > 1/2\},\$$

$$G_{-1} = \{x \in \mathcal{X} : \eta(x) < 1/2\}.$$

Optimality in classification

General Framework

Théorème (Steinwart and Scovel (2005)):

i) \mathcal{X} : unit ball of \mathbb{R}^d , k: gaussian kernel.

General Framework

Convergence rates for SVM

Théorème (Steinwart and Scovel (2005)):

- i) \mathcal{X} : unit ball of \mathbb{R}^d , k: gaussian kernel.
- ii) π satisfies ϕ_0 -MA(($\alpha+1$)/ α) and GNA(γ).

Théorème (Steinwart and Scovel (2005)):

- i) \mathcal{X} : unit ball of \mathbb{R}^d , k: gaussian kernel.
- ii) π satisfies ϕ_0 -MA($(\alpha+1)/\alpha$) and GNA(γ).

For the regularization parameter

$$\lambda_n^{\alpha,\gamma} = \begin{cases} n^{-\frac{\gamma+1}{2\gamma+1}} & \text{if } \gamma \leq \frac{\alpha+2}{2\alpha}, \\ n^{-\frac{2(\gamma+1)(\alpha+1)}{2\gamma(\alpha+2)+3\alpha+4}} & \text{otherwise,} \end{cases}$$

Optimality in classification

and $\sigma_n^{\alpha,\gamma} = (\lambda_n^{\alpha,\gamma})^{-\frac{1}{(\gamma+1)d_0}}$ for window,

Théorème (Steinwart and Scovel (2005)):

- i) \mathcal{X} : unit ball of \mathbb{R}^d , k: gaussian kernel.
- ii) π satisfies ϕ_0 -MA(($\alpha+1$)/ α) and GNA(γ).

For the regularization parameter

$$\lambda_n^{\alpha,\gamma} = \left\{ \begin{array}{ll} n^{-\frac{\gamma+1}{2\gamma+1}} & \text{if } \gamma \leq \frac{\alpha+2}{2\alpha}, \\ n^{-\frac{2(\gamma+1)(\alpha+1)}{2\gamma(\alpha+2)+3\alpha+4}} & \text{otherwise,} \end{array} \right.$$

Optimality in classification

and $\sigma_n^{\alpha,\gamma}=\left(\lambda_n^{\alpha,\gamma}\right)^{-\frac{1}{(\gamma+1)d_0}}$ for window, the SVM estimator satisfies $(\forall \epsilon>0)$

$$\mathbb{E}\left[A_0(\hat{F}_n^{(\sigma_n^{\alpha,\gamma},\lambda_n^{\alpha,\gamma})}) - A_0^*\right] \le C_\epsilon \left\{ \begin{array}{ll} n^{-\frac{\gamma}{2\gamma+1}+\epsilon} & \text{if } \gamma \le \frac{\alpha+2}{2\alpha}, \\ n^{-\frac{2\gamma(\alpha+1)}{2\gamma(\alpha+2)+3\alpha+4}+\epsilon} & \text{otherwise,} \end{array} \right.$$

General Framework

This estimator depends on α (margin) and γ (geometric margin)

Optimality in classification

General Framework

This estimator depends on α (margin) and γ (geometric margin)

Optimality in classification

Problem : simultaneous adaptation to α and γ

Problem of adaptation

This estimator depends on α (margin) and γ (geometric margin)

Optimality in classification

Problem : simultaneous adaptation to α and γ

Aggregation methods

Adaptation Problem

Split the observations in two parts:

•
$$I = \left\lceil \frac{n}{\log n} \right\rceil$$
 et $m = n - I$.

•
$$D_m^1 = ((X_1, Y_1), \dots, (X_m, Y_m))$$
 (training sample)

Optimality in classification

Construction of SVM estimators

$$\mathcal{F} = \left\{ \hat{F}_m^{(\sigma_k, \lambda_l)}: \begin{array}{cc} \sigma_k = m^{\frac{k}{2\Delta d_0}}, & k = 1, \dots, 2\lfloor \Delta \rfloor \\ \lambda_l = m^{-(\frac{1}{2} + \frac{l}{\Delta})}, & l = 1, \dots, \lfloor \Delta/2 \rfloor \end{array} \right\}$$

for $\Delta = \log n$.

•
$$D_l^2 = ((X_{m+1}, Y_{m+1}), \dots, (X_n, Y_n))$$
 (learning sample).

Construction of the weights:

Optimality in classification

$$w^{[I]}(F) = \frac{\exp\left(\sum_{i=m+1}^{n} Y_i F(X_i)\right)}{\sum_{\bar{F} \in \mathcal{F}} \exp\left(\sum_{i=m+1}^{n} Y_i \bar{F}(X_i)\right)}, \forall F \in \mathcal{F}.$$

Optimality in classification

Construction of the weights:

$$w^{[I]}(F) = \frac{\exp\left(\sum_{i=m+1}^{n} Y_i F(X_i)\right)}{\sum_{\bar{F} \in \mathcal{F}} \exp\left(\sum_{i=m+1}^{n} Y_i \bar{F}(X_i)\right)}, \forall F \in \mathcal{F}.$$

• $\tilde{F}_n^{adp} = \operatorname{sign}(\tilde{f}_n^{adp})$ where

$$\tilde{f}_n^{adp} = \sum_{F \subset \mathcal{F}} w^{[I]}(F)F,$$

Two compact subsets $K \subset \mathcal{U} = \{(\alpha, \gamma) \in (0, +\infty)^2 : \gamma > \frac{\alpha+2}{2\alpha}\}$ and $K' \subset \mathcal{U}' = \{(\alpha, \gamma) \in (0, +\infty)^2 : \gamma \leq \frac{\alpha+2}{2\alpha}\}$. We have $(\forall \epsilon > 0)$,

$$\sup_{\pi \in \mathcal{P}_{\alpha,\gamma}} \mathbb{E}\left[A_0(\tilde{F}_n^{adp}) - A_0^*\right] \leq C_\epsilon \left\{ \begin{array}{ll} n^{-\frac{\gamma}{2\gamma+1} + \epsilon} & \text{if } (\alpha,\gamma) \in K', \\ n^{-\frac{2\gamma(\alpha+1)}{2\gamma(\alpha+2) + 3\alpha + 4} + \epsilon} & \text{if } (\alpha,\gamma) \in K, \end{array} \right.$$

Optimality in classification

 $\forall (\alpha, \gamma) \in K \cup K'$ and $\mathcal{P}_{\alpha, \gamma}$ is the set of probility measure on $\mathcal{X} \times \{-1, 1\}$ satisfying $\mathsf{MA}(\alpha)$ and $\mathsf{GNA}(\gamma)$.