Telecom Churn Case Study

Srinidhi Ramesh Shagun Sharma Mohit Dubey

Churn in Telecom Sector

- 1. Telecommunications industry experiences an average of 15-25% annual churn rate
- 2. To reduce customer churn, telecom companies need to predict which customers are at high risk of churn
- 3. In the Indian and Southeast Asian markets, approximately 80% of revenue comes from the top 20% of customers (called high-value customers).
- 4. Thus, reducing churn of high-value customers, will help in reducing significant revenue leakage
- 5. <u>OBJECTIVE</u>: To define high-value customers based on a certain metric and predict churn only on high-value customers

Business Objective

Predict Churn

To predict the churn in the last (i.e. the ninth) month using the data (features) from the first three months

Filtering customers

Filtering dataset for "High-value customers" by calculating average recharge amounts for months 6 and 7

Recommendations

Recommendations on offers and policies based on Churn predictive exercise.

To identify most effective target set of customers and aim to increase customer retention

Churn - Exploratory Data Analysis

Customers with decreasing minutes and recharges calling are more likely to churn

Churn - Exploratory Data Analysis

Customers with decreasing recharge amount and data usage are more likely to churn

Churn - Bivariate Analysis

Churn - Scatter Plot

Average recharge number and recharge amounts follow the same pattern in both kinds of customers

Churn - Train and Testing

Confusion matrix and Metrics Evaluation

```
In [198]: # Confusion matrix
          confusion = metrics.confusion matrix(y test pred final['churn'], y test pred final['test predicted'])
          print(confusion)
          [[4540 808]
           [ 46 147]]
In [199]: TP = confusion[1,1] # true positive
          TN = confusion[0,0] # true negatives
          FP = confusion[0,1] # false positives
          FN = confusion[1,0] # false negatives
In [200]: # Accuracy
          print("Accuracy:-",metrics.accuracy score(y test pred final['churn'], y test pred final['test predicted']))
          # Sensitivity
          print("Sensitivity:-",TP / float(TP+FN))
          # Specificity
          print("Specificity:-", TN / float(TN+FP))
          Accuracy: - 0.8458761956325573
          Sensitivity:- 0.7616580310880829
          Specificity:- 0.8489154824233358
```

Key Factors

Average revenue per user is an important ARPU variable for Churn prediction Incoming and Outgoing Calls on roaming are Incoming / Outgoing minutes of usage strong indicators of churn behaviour Tenure of Customer at the company is key to Tenure predicting churn/creating offers catered to them 2G/3G network network is important in Network Connectivity predicting Customer churn

Observations on Churn

Decreasing Data Usage

• Customers decreasing monthly 2g usage for August are most probable to churn.

Decreasing Incoming

• Customers having decreasing incoming minutes of usage in August

Decreasing Recharge amounts

 Customers with decreasing recharge amounts are more likely to discontinue

Churn Observations/Predictors

- Customers decreasing monthly 2g usage for August are most probable to churn.
- Customers having decreasing incoming minutes of usage in August are likely to Churn
- To target customers where minutes of usage of the incoming local calls and outgoing ISD calls are less as they maybe be likely to churn

Recommendations

- Focus on "high value customers" as they are less likely to churn
 - Efforts must be taken to convert more customers into "high value"
- Offers can be catered to customers with the below patterns in an effort to increase customer retention
 - Target customers with decreasing incoming/outgoing calls
 - Target customers with decreasing 2G/3G data usage
 - Target customers with erratic recharge patterns
 - Target customers with

Thank You