FORMAL LANGUAGES AND AUTOMATA THEORY

Giridhar N S

Peter Linz, An Introduction to Formal Languages and Automat, (6e), Jones & Bartlett Learning, 2016

INTRODUCTION TO THE THEORY OF COMPUTATION AND FINITE AUTOMATA

REGULAR LANGUAGES, REGULAR GRAMMARS AND PROPERTIES OF REGULAR LANGUAGES:

CONTEXT-FREE LANGUAGES AND SIMPLIFICATION OF CONTEXT-FREE GRAMMARS AND NORMAL FORMS

CONTEXT-FREE LANGUAGES AND SIMPLIFICATION OF CONTEXT-FREE GRAMMARS AND NORMAL FORMS

TURING MACHINES AND OTHER MODELS OF TURING MACHINES & A HIERARCHY OF FORMAL LANGUAGES & AUTOMATA

Computation

Example:
$$f(x) = x^3$$

$$f(x) = x^3$$

temporary memory

$$f(x) = x^3$$

$$z = 2 * 2 = 4$$

$$f(x) = z * 2 = 8$$

input memory

$$x=2$$

Program memory output memory

CPU

compute x * x

compute $x^2 * x$

temporary memory

$$f(x) = x^3$$

$$z = 2 * 2 = 4$$

$$f(x) = z * 2 = 8$$

CPU

input memory

$$x = 2$$

Program memory

$$f(x) = 8$$

output memory

compute x * xcompute $x^2 * x$

Automaton

Different Kinds of Automata

Automata are distinguished by the temporary memory

• Finite Automata: no temporary memory

· Pushdown Automata: stack

• Turing Machines: random access memory

Finite Automaton

Example: Vending Machines (small computing power)

Pushdown Automaton

Example: Compilers for Programming Languages (medium computing power)

Turing Machine

Examples: Any Algorithm

(highest computing power)

Power of Automata

Finite Pushdown Turing
Automata Automata Machine

Less power

Solve more

computational problems

Three Basic concepts

Languages, Grammars & Automata

A language is a set of strings

String: A sequence of letters

Examples: "cat", "dog", "house", ...

Defined over an alphabet:

$$\Sigma = \{a, b, c, \dots, z\}$$

Alphabets and Strings

Alphabet: Finite nonempty set Σ of symbols, called the alphabet

Strings: Finite sequence of symbols from the alphabet Strings

For example, if the alphabet is $\Sigma=\{a,b\}$, then abab & aaabbba are strings on Σ . We use lowercase letters a, b,c,... for elements of Σ & u,v,w... for string names

ab

abba

baba

u = ab

v = bbbaaa

w = abba

aaabbbaabab

String Operations

$$w = a_1 a_2 \cdots a_n$$

$$v = b_1 b_2 \cdots b_m$$

Concatenation

$$wv = a_1 a_2 \cdots a_n b_1 b_2 \cdots b_m$$

abbabbbaaa

$$w = a_1 a_2 \cdots a_n$$

ababaaabbb

Reverse

$$w^R = a_n \cdots a_2 a_1$$

bbbaaababa

String Length

$$w = a_1 a_2 \cdots a_n$$

Length:
$$|w| = n$$

Examples:
$$|abba| = 4$$

$$|aa| = 2$$

$$|a| = 1$$

Length of Concatenation

$$|uv| = |u| + |v|$$

Example:
$$u = aab$$
, $|u| = 3$
 $v = abaab$, $|v| = 5$

$$|uv| = |aababaab| = 8$$

 $|uv| = |u| + |v| = 3 + 5 = 8$

Empty String

Empty string: A string with no symbols and it is denoted by λ

$$|\lambda| = 0$$

Observations:

$$\lambda w = w\lambda = w$$

$$\lambda abba = abba\lambda = abba$$

Substring

Substring of string: a subsequence of consecutive characters

String	Substring
<u>ab</u> bab	ab
<u>abba</u> b	abba
ab <u>b</u> ab	b
abbab	bbab

Prefix and Suffix

abbab

Prefixes Suffixes

 λ abbab

a bbab

ab bab

abb ab

abba b

abbab λ

Another Operation

$$w^n = \underbrace{ww\cdots w}_n$$

Example:
$$(abba)^2 = abbaabba$$

Definition:
$$w^0 = \lambda$$

$$(abba)^0 = \lambda$$

The * Operation

 $\Sigma^*\colon$ the set of all possible strings from alphabet Σ

$$\Sigma = \{a,b\}$$

$$\Sigma^* = \{\lambda,a,b,aa,ab,ba,bb,aaa,aab,...\}$$

The + Operation

 Σ^+ : the set of all possible strings from alphabet Σ except $\, \lambda$

$$\Sigma = \{a,b\}$$

$$\Sigma^* = \{\lambda,a,b,aa,ab,ba,bb,aaa,aab,...\}$$

$$\Sigma^{+} = \Sigma^{*} - \lambda$$

$$\Sigma^{+} = \{a, b, aa, ab, ba, bb, aaa, aab, ...\}$$

Languages

```
A language is any subset of \Sigma^* Example: \Sigma = \{a,b\} Languages: \Sigma^* = \{\lambda,a,b,aa,ab,ba,bb,aaa,\ldots\} \{\lambda\} \{a,aa,aab\}
```

The set $L = \{a^nb^n : n \ge 0\}$ is also a language on Σ . The strings aabb and aaaabbbb are in L, but strings abb is not in L. This language is infinite

 $\{\lambda,abba,baba,aa,ab,aaaaaa\}$

Note that:

$$\emptyset = \{ \} \neq \{\lambda\}$$

$$|\{\ \}| = |\varnothing| = 0$$

$$|\{\lambda\}| = 1$$

String length
$$|\lambda| = 0$$

$$|\lambda| = 0$$

Another Example

An infinite language
$$L = \{a^n b^n : n \ge 0\}$$

$$\left. \begin{array}{c} \lambda \\ ab \\ aabb \end{array} \right\} \in L \qquad abb
otin L \\ aaaaaabbbbb \end{array}$$

Operations on Languages

The usual set operations

$${a,ab,aaaa} \cup {bb,ab} = {a,ab,bb,aaaa}$$

 ${a,ab,aaaa} \cap {bb,ab} = {ab}$
 ${a,ab,aaaa} - {bb,ab} = {a,aaaa}$

Complement:
$$\overline{L} = \Sigma * -L$$

$$\overline{\{a,ba\}} = \{\lambda,b,aa,ab,bb,aaa,\ldots\}$$

Reverse

Definition:
$$L^R = \{w^R : w \in L\}$$

Examples:
$$\{ab, aab, baba\}^R = \{ba, baa, abab\}$$

$$L = \{a^n b^n : n \ge 0\}$$

$$L^R = \{b^n a^n : n \ge 0\}$$

Concatenation

Definition:
$$L_1L_2 = \{xy : x \in L_1, y \in L_2\}$$

Example:
$$\{a,ab,ba\}\{b,aa\}$$

 $= \{ab, aaa, abb, abaa, bab, baaa\}$

Another Operation

Definition:
$$L^n = \underline{LL\cdots L}$$

$${a,b}^3 = {a,b}{a,b}{a,b} =$$

 ${aaa,aab,aba,abb,baa,bab,bba,bbb}$

Special case:
$$L^0 = \{\lambda\}$$

$$\{a,bba,aaa\}^0 = \{\lambda\}$$

More Examples

$$L = \{a^n b^n : n \ge 0\}$$

$$L^{2} = \{a^{n}b^{n}a^{m}b^{m} : n, m \ge 0\}$$

$$aabbaaabbb \in L^2$$

Star-Closure (Kleene *)

Definition:
$$L^* = L^0 \cup L^1 \cup L^2 \cdots$$

Example:
$$\left\{a,bb\right\}* = \left\{\begin{matrix} \lambda,\\ a,bb,\\ aa,abb,bba,bbb,\\ aaa,aabb,abba,abbb,\ldots \end{matrix}\right\}$$

Positive Closure

Definition:
$$L^+ = L^1 \cup L^2 \cup \cdots$$

= $L^* - \{\lambda\}$

$$\{a,bb\}^{+} = \begin{cases} a,bb, \\ aa,abb,bba,bbb, \\ aaa,aabb,abba,abbb, \dots \end{cases}$$

Mathematical Preliminaries

Mathematical Preliminaries

- Sets
- Functions
- Relations
- · Graphs
- Proof Techniques

SETS

A set is a collection of elements

$$A = \{1, 2, 3\}$$

$$B = \{train, bus, bicycle, airplane\}$$

We write

$$1 \in A$$

$$ship \notin B$$

Set Representations

$$C = \{a, b, c, d, e, f, g, h, i, j, k\}$$

$$C = \{a, b, ..., k\} \longrightarrow finite set$$

$$S = \{2, 4, 6, ...\} \longrightarrow infinite set$$

$$S = \{j : j > 0, and j = 2k \text{ for some } k > 0\}$$

$$S = \{j : j \text{ is nonnegative and even}\}$$

$$A = \{1, 2, 3, 4, 5\}$$

Universal Set: all possible elements

Set Operations

$$A = \{1, 2, 3\}$$

$$B = \{ 2, 3, 4, 5 \}$$

Union

Intersection

$$A \cap B = \{2, 3\}$$

· Difference

$$A - B = \{1\}$$

$$B - A = \{4, 5\}$$

Venn diagrams

Complement

Universal set = $\{1, ..., 7\}$ $A = \{1, 2, 3\}$ $\overline{A} = \{4, 5, 6, 7\}$

{ even integers } = { odd integers }

Integers

DeMorgan's Laws

$$\overline{A \cup B} = \overline{A \cap B}$$

$$\overline{A \cap B} = \overline{A \cup B}$$

Empty, Null Set: Ø

$$\emptyset = \{\}$$

$$SUØ =$$

Empty, Null Set: Ø

$$\emptyset = \{\}$$

$$SUØ = S$$

$$S \cap \emptyset = \emptyset$$

$$S - \emptyset = S$$

$$\emptyset - S = \emptyset$$

$$\overline{\emptyset}$$
 = Universal Set

Subset

$$A = \{1, 2, 3\}$$
 $B = \{1, 2, 3, 4, 5\}$
 $A \subseteq B$

Proper Subset: $A \subseteq B$

Disjoint Sets

$$A = \{1, 2, 3\}$$
 $B = \{5, 6\}$

$$A \cap B = \emptyset$$

Set Cardinality

For finite sets

$$A = \{ 2, 5, 7 \}$$

$$|A| = 3$$

(set size)

Powersets

A powerset is a set of sets

$$S = \{ a, b, c \}$$

Powerset of S = the set of all the subsets of S

$$2^{5} = { \emptyset, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c} }$$

Observation:
$$|2^{5}| = 2^{|5|}$$
 (8 = 2^{3})

Cartesian Product

$$A = \{ 2, 4 \}$$

$$B = \{ 2, 3, 5 \}$$

$$A \times B = \{ (2, 2), (2, 3), (2, 5), (4, 2), (4, 3), (4, 5) \}$$

$$|A \times B| = |A| |B|$$

Generalizes to more than two sets

Functions and Relations

A function is a rule that assigns to elements of

one set a unique element of another set.

If f denotes a function, then the first set S1 is called the domain of f, & the second set S2 is its range. We write

FUNCTIONS

 $f:A \rightarrow B$

If A = domain

then f is a total function (every element of domain is associated with one element of range)

otherwise f is a partial function

RELATIONS

$$R = \{(x_1, y_1), (x_2, y_2), (x_3, y_3), ...\}$$

$$x_i R y_i$$

e. g. if
$$R = '>': 2 > 1, 3 > 2, 3 > 1$$

Equivalence Relations

- · Reflexive: x R x
- · Symmetric: xRy yRx
- Transitive: x R y and $y R z \longrightarrow x R z$

Example: R = '='

- x = x
- $\cdot x = y$ y = x
- x = y and y = z x = z

Equivalence Classes

For equivalence relation R

equivalence class of
$$x = \{y : x R y\}$$

Example:

$$R = \{ (1, 1), (2, 2), (1, 2), (2, 1), (3, 3), (4, 4), (3, 4), (4, 3) \}$$

Equivalence class of $1 = \{1, 2\}$

Equivalence class of $3 = \{3, 4\}$

GRAPHS

A directed graph

Nodes (Vertices)

$$V = \{ a, b, c, d, e \}$$

Edges

$$E = \{ (a,b), (b,c), (b,e), (c,a), (c,e), (d,c), (e,b), (e,d) \}$$

Labeled Graph

Walk

Walk is a sequence of adjacent edges (e, d), (d, c), (c, a)

Path

Path is a walk where no edge is repeated

Simple path: no node is repeated

Cycle

Cycle: a walk from a node (base) to itself

Simple cycle: only the base node is repeated

Euler Tour

A cycle that contains each edge once

Hamiltonian Cycle

A simple cycle that contains all nodes

Finding All Simple Paths

- (c, a) (c, e)

(c, a), (a, b)

(c, e)

(c, a)

(c, e), (e, b)

(c, e), (e, d)

(c, a)

(c, a), (a, b)

(c, a), (a, b), (b, e)

(c, e)

(c, e), (e, b)

(c, e), (e, d)

Binary Trees

PROOF TECHNIQUES

Proof by induction

Proof by contradiction

Induction

We have statements P_1 , P_2 , P_3 , ...

If we know

- for some b that P_1 , P_2 , ..., P_b are true
- for any k >= b that

$$P_1, P_2, ..., P_k$$
 imply P_{k+1}

Then

Every P_i is true

Proof by Induction

Inductive basis

Find P₁, P₂, ..., P_b which are true

Inductive hypothesis

Let's assume P_1 , P_2 , ..., P_k are true, for any $k \ge b$

Inductive step

Show that P_{k+1} is true

Example

Theorem: A binary tree of height n has at most 2ⁿ leaves.

Proof by induction:

let L(i) be the maximum number of leaves of any subtree at height i

Inductive basis

$$L(0) = 1$$
 (the root node)

Inductive hypothesis

Let's assume
$$L(i) \leftarrow 2^i$$
 for all $i = 0, 1, ..., k$

Induction step

we need to show that
$$L(k + 1) \leftarrow 2^{k+1}$$

Induction Step

From Inductive hypothesis: $L(k) \leftarrow 2^k$

Induction Step

$$L(k+1) \leftarrow 2 * L(k) \leftarrow 2 * 2^{k} = 2^{k+1}$$

(we add at most two nodes for every leaf of level k)

Proof by Contradiction

We want to prove that a statement P is true

- we assume that P is false
- then we arrive at an incorrect conclusion
- therefore, statement P must be true

Example

Theorem: $\sqrt{2}$ is not rational

Proof:

Assume by contradiction that it is rational

$$\sqrt{2}$$
 = n/m

n and m have no common factors

We will show that this is impossible

$$\sqrt{2}$$
 = n/m 2 m² = n²

Therefore,
$$n^2$$
 is even $n = 2 k$

$$2 m2 = 4k2 m2 = 2k2 m is even m = 2 p$$

Thus, m and n have common factor 2

Contradiction!

Formal Languages Finite Automata

Finite Automaton

Transition Graph

Initial Configuration

Input String

a b b a

Reading the Input

Input finished

Rejection

| a b a |

Input finished

Acceptance or Rejection?

Initial State

Rejection

Language?

Another Example

Input finished

Rejection Example

Input finished

Languages Accepted by FAs FA M

Definition:

The language L(M) contains all input strings accepted by M

$$L(M)$$
 = { strings that bring M to an accepting state}

Example: L(M) = ?

M

Example

M

Example: L(M) = ?

M

Example

$$L(M) = \{\lambda, ab, abba\}$$

Example: L(M) = ?

Example

$$L(M) = \{a^n b : n \ge 0\}$$

Formal Definition

Finite Automaton (FA)

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q: set of states

 Σ : input alphabet

 δ : transition function

 q_0 : initial state

F: set of accepting states

Input Alphabet Σ

$$\Sigma = \{a,b\}$$

Set of States Q

$$Q = \{q_0, q_1, q_2, q_3, q_4, q_5\}$$

Initial State q_0

Set of Accepting States F

$$F = \{q_4\}$$

Transition Function δ

$$\delta: Q \times \Sigma \to Q$$

$$\delta(q_0, a) = q_1$$

$$\delta(q_0,b)=q_5$$

$$\delta(q_2,b)=q_3$$

Transition Function δ

δ	а	Ь	
q_0	q_1	<i>q</i> ₅	
q_1	9 5	92	
<i>q</i> ₂	q_5	q_3	,
<i>q</i> ₃	q_4	<i>q</i> ₅	a,b
94	<i>q</i> ₅	q_5	
<i>q</i> ₅	<i>q</i> ₅	<i>q</i> ₅	q_5
b a a b a,b			
$ \overrightarrow{q_0} \xrightarrow{a} \overrightarrow{q_1} \xrightarrow{b} \overrightarrow{q_2} \xrightarrow{b} \overrightarrow{q_3} \xrightarrow{a} (\overrightarrow{q_4}) $			

Extended Transition Function δ^*

$$\delta^*: Q \times \Sigma^* \to Q$$

$$\delta * (q_0, ab) = q_2$$

$$\delta * (q_0, abba) = q_4$$

$$\delta * (q_0, abbbaa) = q_5$$

Observation: if there is a walk from q to q' with label $\mathcal W$ then

$$\delta * (q, w) = q'$$

$$w = \sigma_1 \sigma_2 \cdots \sigma_k$$

$$q \xrightarrow{\sigma_1} \xrightarrow{\sigma_2} \xrightarrow{\sigma_2} q$$

Example: There is a walk from q_0 to q_5 with label abbbaa

$$\delta * (q_0, abbbaa) = q_5$$

Recursive Definition

$$\delta * (q, \lambda) = q$$

$$\delta * (q, w\sigma) = \delta(\delta * (q, w), \sigma)$$

$$\delta * (q_0, ab) =$$

$$\delta(\delta * (q_0, a), b) =$$

$$\delta(\delta(\delta * (q_0, \lambda), a), b) =$$

$$\delta(\delta(q_0, a), b) =$$

$$\delta(q_1, b) =$$

$$q_2$$

$$q_5$$

$$q_4$$

$$q_4$$

Language Accepted by FAs

For a FA
$$M = (Q, \Sigma, \delta, q_0, F)$$

Language accepted by M:

$$L(M) = \{ w \in \Sigma^* : \delta^*(q_0, w) \in F \}$$

Observation

Language rejected by M:

$$\overline{L(M)} = \{ w \in \Sigma^* : \mathcal{S}^*(q_0, w) \notin F \}$$

L(M)?

Example

L(M)= { all strings with prefix ab }

Try-Starting with a and ending with b

L(M)?

Example

```
L(M) = \{ all strings without substring 001 \}
```

Example

 $L(M) = \{ all strings without substring 001 \}$

L(M)?

Example

$$L(M) = \{awa : w \in \{a,b\}^*\}$$

Regular Languages

Definition:

A language L is regular if there is FA M such that L = L(M)

Observation:

All languages accepted by FAs form the family of regular languages

Examples of regular languages:

```
 \{abba\} \quad \{\lambda, ab, abba\}   \{awa: w \in \{a,b\}^*\} \quad \{a^nb: n \geq 0\}   \{all \ strings \ with \ prefix \ ab\}   \{all \ strings \ without \ substring \quad 001 \ \}
```

There exist automata that accept these Languages (see previous slides).

There exist languages which are not Regular:

Example:
$$L=\{a^nb^n:n\geq 0\}$$

There is no FA that accepts such a language

Formal Languages Non-Deterministic Automata

Nondeterministic Finite Automaton (NFA)

Alphabet =
$$\{a\}$$

Alphabet = $\{a\}$

Alphabet = $\{a\}$

All input is consumed

Input cannot be consumed

An NFA accepts a string:

when there is a computation of the NFA that accepts the string

There is a computation: all the input is consumed and the automaton is in an accepting state

Example

aa is accepted by the NFA:

computation accepts aa

Rejection example

An NFA rejects a string:

when there is no computation of the NFA that accepts the string.

For each computation:

 All the input is consumed and the automaton is in a non final state

OR

The input cannot be consumed

Example

a is rejected by the NFA:

All possible computations lead to rejection

Rejection example

Input cannot be consumed

Input cannot be consumed

aaa is rejected by the NFA:

All possible computations lead to rejection

L(M)?

Language accepted: $L = \{aa\}$

Lambda Transitions

(read head does not move)

all input is consumed

String aa is accepted

Rejection Example

(read head doesn't move)

No transition: the automaton hangs

Input cannot be consumed

String aaa is rejected

L(M)?

Language accepted: $L = \{aa\}$

Another NFA Example: L(M)?

Another String

Language accepted

$$L = \{ab, abab, ababab, ...\}$$

= $\{ab\}^+$

Another NFA Example: L(M)?

Language accepted

$$L(M) = {\lambda, 10, 1010, 101010, ...}$$

= ${10}*$

Remarks:

• The λ symbol never appears on the input tape

·Simple automata: Languages?

$$L(M_1) = \{\}$$

$$L(M_2) = \{\lambda\}$$

λ-transition in deterministic automata?

·NFAs are interesting because we can express languages easier than FAs

·NFAs are interesting because we can express languages easier than FAs

Formal Definition of NFAs

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q: Set of states, i.e. $\{q_0, q_1, q_2\}$

 Σ : Input alphabet, i.e. $\{a,b\}$

 δ : Transition function

 q_0 : Initial state

F: Accepting states

Transition Function δ

$$\delta(q_0,1) = \{q_1\}$$

$$\delta(q_1,0) = \{q_0,q_2\}$$

$$\delta(q_0,\lambda) = \{q_0,q_2\}$$

$$\delta(q_2,1) = \emptyset$$

Extended Transition Function δ^*

$$\delta * (q_0, a) = \{q_1\}$$

$$\delta * (q_0, aa) = \{q_4, q_5\}$$

$$\delta * (q_0, ab) = \{q_2, q_3, q_0\}$$

Formally

 $q_j \in \delta^*(q_i, w)$: there is a walk from q_i to q_j with label w

$$w = \sigma_1 \sigma_2 \cdots \sigma_k$$

$$q_i \xrightarrow{\sigma_1} \xrightarrow{\sigma_2} \xrightarrow{\sigma_2} q_j$$

L(M)?

The Language of an NFA $\,M\,$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$a$$

$$q_1$$

$$b$$

$$q_2$$

$$\lambda$$

$$\lambda$$

$$\delta * (q_0, aa) = \{q_4, \underline{q_5}\} \qquad aa \in L(M)$$

$$\stackrel{\searrow}{\sim} \in F$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$a$$

$$a$$

$$q_1$$

$$b$$

$$q_2$$

$$\lambda$$

$$\lambda$$

$$\delta * (q_0, ab) = \{q_2, q_3, \underline{q_0}\} \qquad ab \in L(M)$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$a \quad a$$

$$q_0$$

$$\lambda$$

$$\lambda$$

$$\lambda$$

$$\delta * (q_0, abaa) = \{q_4, \underline{q_5}\} \quad aaba \in L(M)$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$a$$

$$a$$

$$a$$

$$b$$

$$q_3$$

$$\lambda$$

$$\delta * (q_0, aba) = \{q_1\} \qquad aba \notin L(M)$$

$$L(M) = \{\lambda\} \cup \{ab\}^* \{aa\}$$

Formally

The language accepted by NFA M is:

$$L(M) = \{w_1, w_2, w_3, ...\}$$

where
$$\delta^*(q_0, w_m) = \{q_i, q_j, ..., q_k, ...\}$$
 and there is some $q_k \in F$ (accepting state)

$$w \in L(M)$$
 $\mathcal{S}^*(q_0, w)$ q_i $q_k \in F$

Formal Languages NFAs Accept the Regular Languages

Equivalence of Machines

Definition:

Machine $\,M_1\,$ is equivalent to machine $\,M_2\,$

if
$$L(M_1) = L(M_2)$$

Example of equivalent machines

$$L(M_1) = \{10\} *$$

We will prove:

Languages
accepted
by NFAs
Regular
Languages
Languages

accepted

NFAs and FAs have the same computation power

We will show:

 Languages

 accepted

 by NFAs

 Regular

 Languages

Languages
accepted
by NFAs
Regular
Languages

Proof-Step 1

Languages
accepted
by NFAs

Regular
Languages

Proof?

Proof-Step 1

Proof: Every FA is trivially an NFA

Any language L accepted by a FA is also accepted by an NFA

Proof-Step 2

```
Languages
accepted
by NFAs
Regular
Languages
```

Proof: Any NFA can be converted to an equivalent FA

Any language L accepted by an NFA is also accepted by a FA

NFA to FA Conversion

We are given an NFA M

We want to convert it to an equivalent $FA\ M'$

With
$$L(M) = L(M')$$

What we need to construct

Finite Automaton (FA)

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q: set of states

 Σ : input alphabet

 δ : transition function

 q_0 : initial state

F: set of accepting states

If the NFA has states

$$q_0, q_1, q_2, \dots$$

the FA has states in the power set

$$\emptyset, \{q_0\}, \{q_1\}, \{q_1, q_2\}, \{q_3, q_4, q_7\}, \dots$$

Procedure NFA to FA

1. Initial state of NFA: q_0

Initial state of FA: $\{q_0\}$

Procedure NFA to FA

2. For every FA's state $\{q_i, q_i, ..., q_m\}$

$$\{q_i,q_j,...,q_m\}$$

Compute in the NFA

$$\left.\begin{array}{l}
\delta^*(q_i,a), \\
\delta^*(q_j,a), \\
\dots
\end{array}\right\} = \left\{q_i',q_j',\dots,q_m'\right\}$$

Add transition to FA

$$\delta(\{q_i, q_j, ..., q_m\}, a) = \{q'_i, q'_j, ..., q'_m\}$$

Procedure NFA to FA

Repeat Step 2 for all letters in alphabet, until no more transitions can be added.

Procedure NFA to FA

3. For any FA state $\{q_i, q_j, ..., q_m\}$

If q_j is accepting state in NFA

Then, $\{q_i,q_j,...,q_m\}$ is accepting state in FA

Theorem

Take NFA M

Apply procedure to obtain FA M'

Then M and M' are equivalent:

$$L(M) = L(M')$$

Proof

$$L(M) = L(M')$$

$$L(M) \subseteq L(M')$$
 AND $L(M) \supseteq L(M')$

First we show:
$$L(M) \subseteq L(M')$$

Take arbitrary:
$$w \in L(M)$$

We will prove:
$$w \in L(M')$$

$$w \in L(M)$$

$$M: \rightarrow q_0$$
 W

denotes

We will show that if $w \in L(M)$

$$w = \sigma_1 \sigma_2 \cdots \sigma_k$$
 $M: \longrightarrow q_0 \overset{\sigma_1}{\longrightarrow} \overset{\sigma_2}{\longrightarrow} \overset{\sigma_2}{\longrightarrow} \overset{\sigma_k}{\longrightarrow} \overset{\sigma_k$

More generally, we will show that if in M:

(arbitrary string)
$$v = a_1 a_2 \cdots a_n$$

$$M: -q_0 \stackrel{a_1}{\smile} q_i \stackrel{a_2}{\smile} q_j \stackrel{a_2}{\smile} q_l \stackrel{a_n}{\smile} q_m$$

$$M': \xrightarrow{a_1} \underbrace{a_2}_{\{q_0\}} \underbrace{a_2}_{\{q_1,...\}} \underbrace{a_2}_{\{q_j,...\}} \underbrace{a_q}_{\{q_l,...\}} \underbrace{a_q}_{\{q_m,...\}}$$

Proof by induction on |v|

Induction Basis:
$$v = a_1$$

$$M: -q_0 \stackrel{a_1}{-} q_i$$

$$M'$$
: q_0 q_i ...}

Is true by construction of M':

Induction hypothesis: $1 \le |v| \le k$

$$v = a_1 a_2 \cdots a_k$$

$$M: -q_0 \stackrel{a_1}{\longrightarrow} q_i \stackrel{a_2}{\longrightarrow} q_j \stackrel{a_k}{\longrightarrow} q_d$$

$$M': \xrightarrow{a_1} \xrightarrow{a_2} \xrightarrow{a_2} \xrightarrow{a_2} \xrightarrow{a_k} \xrightarrow{a_k} \xrightarrow{q_c,...} \{q_c,...\}$$

Induction Step: |v| = k + 1

$$v = \underbrace{a_1 a_2 \cdots a_k}_{v'} a_{k+1} = v' a_{k+1}$$

$$M: \overline{q_0}^{a_1} \overline{q_i}^{a_2} \overline{q_j}^{a_2} \overline{q_j}^{a_2} \overline{q_c}^{a_k} \overline{q_d}$$

$$M': \longrightarrow \underbrace{a_1 \cdots a_2 \cdots a_2 \cdots a_k \cdots a_$$

Induction Step: |v| = k + 1

$$v = \underbrace{a_1 a_2 \cdots a_k}_{v'} a_{k+1} = v' a_{k+1}$$

$$M: -q_0^{a_1} q_i^{a_2} q_j^{a_2} q_j^{a_3} q_c^{a_k} q_d^{a_{k+1}} q_e$$

$$M': \xrightarrow{a_1} \underbrace{a_2}_{\{q_0\}} \underbrace{a_2}_{\{q_i,...\}} \underbrace{a_k}_{\{q_c,...\}} \underbrace{a_{k+1}}_{\{q_c,...\}} \underbrace{a_{k+1}}_{\{q_e,...\}}$$

Therefore if $w \in L(M)$

We have shown:
$$L(M) \subseteq L(M')$$

We also need to show:
$$L(M) \supseteq L(M')$$

(proof is similar)

Induction Step: |v| = k + 1

$$v = \underbrace{a_1 a_2 \cdots a_k}_{v'} a_{k+1} = v' a_{k+1}$$

$$M: \longrightarrow q_0^{a_1} q_i^{a_2} q_j^{a_2} q_j^{a_3} q_c^{a_k} q_d^{a_{k+1}} q_e$$

$$M': \xrightarrow{a_1} \underbrace{a_2} \underbrace{a$$

v' All cases covered?

Single Accepting State for NFAs

Any NFA can be converted

to an equivalent NFA

with a single accepting state

NFA

Equivalent NFA with single accepting state?

NFA

In General

NFA

Equivalent NFA

Single accepting state

Extreme Case

NFA without accepting state

Add an accepting state without transitions

Properties of Regular Languages

For regular languages L_1 and L_2 we will prove that:

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: L_1*

Reversal: L_1^R

Complement: L_1

Intersection: $L_1 \cap L_2$

Are regular Languages

We say: Regular languages are closed under

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: L_1*

Reversal: L_1^R

Complement: $\overline{L_1}$

Intersection: $L_1 \cap L_2$

Regular language L_1

Regular language $\,L_{2}\,$

$$L(M_1) = L_1$$

$$L(M_2) = L_2$$

NFA M_2

Single accepting state

Single accepting state

$$L_2 = \{ba\} \qquad \qquad b \qquad a \qquad \qquad b$$

Union

NFA for $L_1 \cup L_2$

NFA for
$$L_1 \cup L_2 = \{a^n b\} \cup \{ba\}$$

Concatenation

NFA for L_1L_2

NFA for
$$L_1L_2 = \{a^nb\}\{ba\} = \{a^nbba\}$$

$$L_{1} = \{a^{n}b\}$$

$$A = \{ba\}$$

$$L_{2} = \{ba\}$$

$$A = \{ba\}$$

How do we construct automata for the remaining operations?

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: L_1*

Reversal: L_1^R

Complement: L_1

Intersection: $L_1 \cap L_2$

Star Operation

NFA for L_1*

NFA for
$$L_1^* = \{a^n b\}^*$$

$$w = w_1 w_2 \cdots w_k$$
$$w_i \in L_1$$

Reverse

- 1. Reverse all transitions
- 2. Make initial state accepting state and vice versa

$$L_1^R = \{ba^n\}$$

Complement

- 1. Take the ${\bf F}{m A}$ that accepts L_1
- 2. Make final states non-final, and vice-versa

Intersection

$$L_1$$
 regular $L_1 \cap L_2$ L_2 regular regular

DeMorgan's Law: $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$

$$L_1$$
, L_2 regular $\overline{L_1}$, $\overline{L_2}$ regular $\overline{L_1} \cup \overline{L_2}$ regular $\overline{L_1} \cup \overline{L_2}$ regular $\overline{L_1} \cup \overline{L_2}$ regular $\overline{L_1} \cap \overline{L_2}$ regular

$$L_1 = \{a^nb\} \quad \text{regular} \\ L_1 \cap L_2 = \{ab\} \\ L_2 = \{ab,ba\} \quad \text{regular} \\ \\ \text{regular}$$

Another Proof for Intersection Closure

Machine M_1 FA for L_1

Machine M_2 FA for L_2

Construct a new FA M that accepts $L_1 \cap L_2$

 $\,M\,$ simulates in parallel $\,M_1\,$ and $\,M_2\,$

States in M

transition

Both constituents must be accepting states

 $\,M\,$ simulates in parallel $\,M_1\,$ and $\,M_2\,$

M accepts string w if and only if

 M_1 accepts string w and M_2 accepts string w

$$L(M) = L(M_1) \cap L(M_2)$$

$$L_{1} = \{a^{n}b\}$$

$$M_{1}$$

$$a$$

$$b$$

$$q_{0}$$

$$a,b$$

$$q_{2}$$

$$a,b$$

Construct machine for intersection

Automaton for intersection

$$L = \{a^n b\} \cap \{ab^n\} = \{ab\}$$

Note how easy it was to prove closure under union, star, concatenation with NFAs. Would be much harder with DFAs.