Página inicial / Meus cursos / CSA30 S73 / Análise Assintótica / Questões 1 Iniciado em Wednesday, 23 Jun 2021, 14:55 Estado Finalizada Concluída em Wednesday, 23 Jun 2021, 14:58 **Tempo** 2 minutos 53 segundos empregado **Notas** 6,00/6,00 **Avaliar** 10,00 de um máximo de 10,00(100%) Questão **1** Correto Atingiu 1,00 de 1,00 Se $f(n) = \log_3 n$ e $g(n) = \log_8 n$, então: Escolha uma opção: $lacksquare f(n) \in O(g(n)) \ \mathrm{e} \ g(n) \in O(f(n))$ $\bigcirc \ f(n)
ot \in O(g(n)) \ {
m e} \ g(n) \in O(f(n))$ $\bigcirc \ f(n) \in O(g(n)) \ \mathrm{e} \ g(n)
ot \in O(f(n))$ Your answer is correct. A resposta correta é: $f(n) \in O(g(n))$ e $g(n) \in O(f(n))$ Questão **2** Correto Atingiu 1,00 de 1,00 Escolha as alternativas corretas: Escolha uma ou mais: 8 $^n \in \Theta(4^n)$ $oxed{8}^n \in O(4^n)$ $\square 8^n \in \Omega(4^n)$

Your answer is correct.

A resposta correta é: $8^n \in \Omega(4^n)$

Correto Atingiu 1,00 de 1,00
Alligid 1,00 de 1,00
Qual a sequência ascendente correta de ordem de crescimento?
$n^2 \log n$, $n^{2.5}$, $n!$, 10^n .
$lacksquare n^2 \log n$, $n^{2.5}$, 10^n , $n!$.
$n^{2.5}$, $n^2 \log n$, $n!$, 10^n .
$n^{2.5}$, $n^2 \log n$, 10^n , $n!$.
Sua resposta está correta.
A resposta correta é: $n^2 \log n$, $n^{2.5}$, 10^n , $n!$.
Questão 4 Correto
Atingiu 1,00 de 1,00
Podemos dizer que a complexidade do insertion sort é $\Theta(n^2)$?
Escolha uma opção:
○ Verdadeiro
Falso ✓
A resposta correta é 'Falso'.
Questão 5
Correto
Atingiu 1,00 de 1,00
Assumindo constantes $k \geq 1$ e $c > 1$, escolha as alternativas corretas:
Escolha uma ou mais:
$\ \ \ \ \ n^k \in \Omega(c^n)$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$lacksquare n^k \in O(c^n)$
Your answer is correct.
A resposta correta é: $n^k \in O(c^n)$

Questão **3**

Questão 6
Correto
Atingiu 1,00 de 1,00
Considere algoritmos com os seguintes tempos de execução: $1.\ n^2,$ $2.\ n^3,$ $3.\ 100n^2,$ $4.\ 2^n.$
Suponha que um computador é capaz de realizar 10^{10} operações por segundo. Respectivamente, para cada algoritmo, qual é a maior tamanho de entrada n que o computador é capaz de processar em um hora?
1. 600,000; 2. 60,000; 3. 33,019; 4. 45.
1. 6,000,000; 2. 33,019; 3. 600,000; 4. 45.
1. 6,000,000; 2. 33,019; 3. 60,000; 4. 45.
1. 600,000; 2. 600,000; 3. 33,019; 4. 45.
Sua resposta está correta.
A resposta correta é: 1. 6,000,000; 2. 33,019; 3. 600,000; 4. 45.
→ Análise assintótica
Seguir para

Merge sort ►