データマイニング

Data Mining

13: ニューラルネットワーク① Neural Network

土居 裕和 Hirokazu Doi

長岡技術科学大学 Nagaoka University of Technology

神経細胞 Neuron

神経細胞の興奮 Neuronal Excitation

神経系の活動 = 神経細胞が電気活動を発生させ、神経細胞間で 伝えていくこと Inter-neuronal transmission of electrical activity

パーセプトロン Perceptron

アステス
$$w_0$$
 Bias
$$x_1 \longrightarrow x_1 \longrightarrow x_1 \longrightarrow x_1 \longrightarrow x_1 \longrightarrow x_2 \longrightarrow x_2 \longrightarrow x_3 \longrightarrow x_4 \longrightarrow x_4$$

活性化関数 Activation Function

Sigmoid

Linear

https://machinelearning.paperspace.com/wiki/activ ation-function パーセプトロン学習則 Learning Rule of Perceptron

線型分離可能なデータは、符号反転により、すべてf>0の領域にくる If linearly separable, all the data can be moved to the region f>0 by sign inversion

パーセプトロン学習則 Learning Rule of Perceptron

パーセプトロン学習則 Learning Rule of Perceptron

超平面を回転させることで、 識別性能が向上する

Rotation of hyperplane improves classification performance

Boolean Logic Gate and Perceptron

0

Abels et al, 2015

単層パーセプトロンでは排他的論理和を構成できない Single-layered perceptron cannot compose XOR

Boolean Logic Gate and Perceptron

XORはORとNANDの論理積 XOR is logical conjunction of OR and NAND

XORと多層パーセプトロン XOR and Multi-layered Perceptron

多層パーセプトロン Multi-layered Perceptron

w_{ji} : 入力層から隠れ層へ の重み Weights from input to hidden layer

 $w_{kj}^{(2)}$: 隠れ層から出力層へ の重み Weights from hidden to output layer

$$i = 0, 1, 2 \cdots d$$

$$j = 0, 1, 2 \cdots M$$

$$k = 1, 2 \cdots C$$

多層パーセプトロン Multi-layered Perceptron

隠れ層の出力 Output of Hidden Layer

$$x_{1}^{n} \xrightarrow{w_{j1}^{(1)}} j \xrightarrow{y_{j}^{(1)}} y_{j}^{(1)}$$

$$\vdots \qquad y_{j}^{(1)} = f\left(\sum_{i=0}^{i=d} w_{ji}^{(1)} x_{i}^{n}\right) = f\left(\mathbf{w}_{j}^{(1)} \mathbf{x}^{nT}\right)$$

$$x_{d}^{n} \xrightarrow{w_{j0}^{(1)}} v_{j0}^{(1)}$$

$$x_{0}^{n} = 1 \qquad v_{j}^{(1)} = \sum_{i=0}^{i=d} w_{ji}^{(1)} x_{i}^{n}$$

出力 Output

$$x_{1}^{n} \xrightarrow{w_{j1}^{(1)}} y_{j}^{(1)} \xrightarrow{w_{kj}^{(2)}} x_{kj}^{(2)} \xrightarrow{y_{kj}^{(2)}} y_{kj}^{(2)} \xrightarrow{y_{kj}^{(2)}} y_{kj}^{(2)} y_{j}^{(1)} = f\left(\mathbf{w}_{k}^{(2)}\mathbf{y}^{(1)}\right)$$

$$v_{k}^{(2)} = \sum_{j=0}^{j=M} w_{kj}^{(2)} y_{j}^{(1)}$$

$$v_{k}^{(2)} = \sum_{j=0}^{j=M} w_{kj}^{(2)} y_{j}^{(1)}$$

合成関数の微分 Derivative of Composite Function

$$\frac{df(g(x))}{dx} \quad u = g(x)$$

$$\frac{df(g(x))}{dx} = \frac{du}{dx} \frac{df(u)}{du}$$

$$= g'(x) f'(u) = g'(x) f'(g(x))$$

勾配降下 Gradient Descent

$$-\nabla J = \left(-\frac{\partial J}{\partial w}, -\frac{\partial J}{\partial b}\right)$$

$$w \leftarrow w - \eta \, \frac{\partial J}{\partial w}$$

-∇J の方向に変数を変化させることで、関数J の値を最も素早く減少させることが出来る

The output value of function J decreases most rapidly along the direction of $-\nabla J$

出力と教師信号の誤差 Error of network output

$$\begin{split} \Delta w_{kj}^{(2)} &= -\eta \, \frac{\partial E}{\partial w_{kj}^{(2)}} == -\eta \left(y_k^{(2)} - t_k \, \right) \, \frac{\partial y_k^{(2)}}{\partial w_{kj}^{(2)}} \\ &= -\eta \left(y_k^{(2)} - t_k \, \right) \frac{\partial v_k^{(2)}}{\partial w_{kj}^{(2)}} \frac{\partial f \left(v_k^{(2)} \right)}{\partial v_k^{(2)}} \\ &= -\eta \left(y_k^{(2)} - t_k \, \right) y_j^{(1)} f' \left(v_k^{(2)} \right) \qquad v_k^{(2)} = \sum_{j=0}^{j=M} w_{kj}^{(2)} y_j^{(1)} \end{split}$$

$$\Delta w_{kj}^{(2)} = -\eta \left(y_k^{(2)} - t_k \right) y_j^{(1)} f' \left(v_k^{(2)} \right)$$
誤差 Error 出力層への入力 Input to output layer

隠れ層の出力 Output of hidden layer

$$w_{kj}^{(2)} = w_{kj}^{(2)} + \Delta w_{kj}^{(2)}$$

$$\Delta w_{kj}^{(2)} = -\eta \, \delta_k^{(2)} y_j^{(1)}$$

$$\delta_k^{(2)} = \left(y_k^{(2)} - t_k\right) f'\left(v_k^{(2)}\right)$$

誤差 Error

出力層への入力 Input to output layer

$$\Delta w_{ji}^{(1)} = -\eta \frac{\partial E}{\partial w_{ji}^{(1)}} = -\eta \frac{\partial}{\partial w_{ji}^{(1)}} \frac{1}{2} \sum_{k=1}^{C} \left(y_k^{(2)} - t_k \right)^2$$

$$= -\eta \sum_{k=1}^{C} \left(y_k^{(2)} - t_k \right) \frac{\partial y_k^{(2)}}{\partial w_{ji}^{(1)}}$$

$$v_k^{(2)} = \sum_{j=0}^{j=M} w_{kj}^{(2)} y_j^{(1)} \qquad y_k^{(2)} = f\left(v_k^{(2)}\right)$$

$$\Delta w_{ji}^{(1)} = -\eta \sum_{k=1}^{C} \left(y_k^{(2)} - t_k \right) \frac{\partial f\left(v_k^{(2)} \right)}{\partial w_{ji}^{(1)}}$$

$$= -\eta \sum_{k=1}^{C} \left(y_k^{(2)} - t_k \right) \frac{\partial v_k^{(2)}}{\partial w_{ji}^{(1)}} \frac{\partial f\left(v_k^{(2)} \right)}{\partial v_k^{(2)}}$$

$$v_k^{(2)} = \sum_{j=0}^{j=M} w_{kj}^{(2)} y_j^{(1)} \quad v_j^{(1)} = \sum_{i=0}^{i=d} w_{ji}^{(1)} x_i^n \quad y_j^{(1)} = f\left(v_j^{(1)}\right)$$

$$\frac{\partial v_k^{(2)}}{\partial w_{ji}^{(1)}} = \frac{\partial v_j^{(1)}}{\partial w_{ji}^{(1)}} \frac{\partial v_k^{(2)}}{\partial v_j^{(1)}} = x_i^n \frac{\partial}{\partial v_j^{(1)}} \sum_{l=0}^{l=M} w_{kl}^{(2)} f\left(v_l^{(1)}\right)$$

$$= x_i^n w_{kj}^{(2)} \frac{\partial f(v_j^{(1)})}{\partial v_j^{(1)}} = x_i^n w_{kj}^{(2)} f'(v_j^{(1)})$$

$$\Delta w_{ji}^{(1)} = -\eta \sum_{k=1}^{C} \left(y_k^{(2)} - t_k \right) \frac{\partial v_k^{(2)}}{\partial w_{ji}^{(1)}} \frac{\partial f\left(v_k^{(2)} \right)}{\partial v_k^{(2)}}$$

$$= -\eta \sum_{k=1}^{C} \left(y_k^{(2)} - t_k \right) x_i^n w_{kj}^{(2)} f'\left(v_j^{(1)} \right) \frac{\partial f\left(v_k^{(2)} \right)}{\partial v_k^{(2)}}$$

$$\delta_k^{(2)} = \left(y_k^{(2)} - t_k \right) f'\left(v_k^{(2)} \right)$$

$$\Delta w_{ji}^{(1)} = -\eta \sum_{k=1}^{C} \left(y_k^{(2)} - t_k \right) x_i^n w_{kj}^{(2)} f' \left(v_j^{(1)} \right) \frac{\partial f \left(v_k^{(2)} \right)}{\partial v_k^{(2)}}$$

$$= -\eta \underline{x_i^n} f' \left(v_j^{(1)} \right) \sum_{k=1}^{C} w_{kj}^{(2)} \delta_k^{(2)}$$
入力 Input input to hidden layer

$$w_{ji}^{(1)} = w_{ji}^{(1)} + \Delta w_{ji}^{(1)}$$

$$\Delta w_{ji}^{(1)} = -\eta \, \delta_j^{(1)} x_i^n$$
入力 Input

$$\delta_j^{(1)} = f'\left(v_j^{(1)}\right) \sum_{k=1}^{k=c} w_{kj}^{(2)} \cdot \delta_k^{(2)}$$

シグモイド関数 Sigmoid Function

$$f'(x) = \frac{1 + e^{-x}}{(1 + e^{-x})^2} = f(x)(1 - f(x))$$

https://en.wikipedia.org/wiki/Sigmoid_function

ソフトマックス関数 Softmax Function

ソフトマックス関数で出力を各クラスに属する確率に変換する

Convert output of NN to the probability of belonging to each class by softmax function

$$P_k = \frac{exp\left(y_k^{(2)}\right)}{\sum_{k=1}^{k=c} exp\left(y_k^{(2)}\right)}$$

C: クラスの総数
Total number of classes

損失関数 Loss Function

Minimize loss function that reflects divergence between output of network and teacher signal

二乗誤差の和も損失関数の一つ

Sum of squared error is one type of loss function

$$E = \frac{1}{2} \sum_{k=1}^{k=C} \left(y_k^{(2)} - t_k \right)^2$$

交差エントロピー Cross Entropy

KLダイバージェンスを拡張した損失関数

Loss function based on the concept of KL divergence

$$CE = -\sum_{k=1}^{k=C} t_k \log(P_k) \qquad P_k = \frac{exp(y_k^{(2)})}{\sum_{k=1}^{k=C} exp(y_k^{(2)})}$$

交差エントロピー Cross Entropy

$$KL(p(x)|q(x)) = \int p(x) \log\left(\frac{p(x)}{q(x)}\right)$$

$$p = (t_1, t_2 \cdots t_C)$$
 $t_k \in \{0, 1\}$ $\sum_{k=1}^{k=C} t_k = 1$

$$q = (P_1, P_2 \cdots P_C)$$

交差エントロピー Cross Entropy

$$KL(p|q) = \sum_{k=1}^{k=C} t_k \log\left(\frac{t_k}{P_k}\right)$$

$$= \sum_{k=1}^{k=C} t_k \log(t_k) - \sum_{k=1}^{k=C} t_k \log(P_k)$$

教師信号にのみ関係 交差エントロピー Relevant only to teacher signal

Cross Entropy