Translational Motion Concept Map

Timothy C. Burt November 10, 2019

t	time
$ec{r}$	position
$ec{v}$	velocity
\vec{a}	acceleration
\overline{m}	mass
$ec{p}$	momentum
$ec{p} \ ec{F}$	force
$P \ ec{J}$	power
$ec{J}$	impulse
W	work
\overline{U}	potential energy
K	kinetic energy
$U_{\rm cons}$	potential due to conservative
	interactions
$W_{\rm cons}$	work done by conservative in-
	teractions
$U_{ m int}$	internal energy
W_{other}	work done by interactions not
	accounted for explicitly
E	total energy
\overline{q}	generic variable for discussion
	of operations
Δq	difference between final and
	initial values of q (Δq \equiv
	$q_{ m final} - q_{ m initial})$
dq	differential element q
$\vec{q}_1 \cdot \vec{q}_2$	scalar (dot) product be-
	tween q_1 and q_2 $(\vec{q}_1 \cdot \vec{q}_2 =$
_	$ \vec{q}_1 \vec{q}_2 \cos(\phi_{1,2}))$
∇q	gradient of the scalar q