Quiz - 2

Instructions

- The following questions may have more than one correct answers.
- There is no negative marking for wrong answers.
- Correct answers are worth one point. Partially correct answers are worth half a point.
- There is no negative marking.
- 'i' represents the imaginary number, $i^2 = -1$.

Questions

- 1. The tensor product of $\begin{pmatrix} a \\ b \end{pmatrix}$ and $\begin{pmatrix} c \\ d \end{pmatrix}$ is:
 - a. $\begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$
 - b. $\begin{pmatrix} ab & bc \\ cd & ad \end{pmatrix}$
 - c. $\begin{pmatrix} ac \\ ad \\ bc \\ bd \end{pmatrix}$
 - $d. \begin{pmatrix} ac \\ bd \\ bc \\ ad \end{pmatrix}$

- 2. The norm of a two qubit state vector is _____.
 - a. 2n
 - b. 2^{2n}
 - c. 2
 - d. 1
- 3. Given two matrices $A = \begin{pmatrix} a_0 & a_1 \\ a_2 & a_3 \end{pmatrix}$ and $B = \begin{pmatrix} b_0 \\ b_1 \end{pmatrix}$, which of the following matrices are valid tensor products of A and B?

a.
$$\begin{pmatrix} b_0 a_0 & b_0 a_1 \\ b_0 a_2 & b_0 a_3 \\ b_1 a_0 & b_1 a_1 \\ b_1 a_2 & b_1 a_3 \end{pmatrix}$$

b.
$$\begin{pmatrix} b_0 a_0 & b_0 a_1 \\ b_1 a_0 & b_1 a_1 \\ b_0 a_2 & b_0 a_3 \\ b_1 a_2 & b_1 a_3 \end{pmatrix}$$

c.
$$\begin{pmatrix} b_0 a_0 & b_0 a_1 \\ b_1 a_2 & b_1 a_3 \\ b_1 a_0 & b_1 a_1 \\ b_0 a_2 & b_0 a_3 \end{pmatrix}$$

d.
$$\begin{pmatrix} b_0 a_0 & b_0 a_1 \\ b_1 a_2 & b_1 a_3 \\ b_0 a_2 & b_0 a_3 \\ b_1 a_0 & b_1 a_1 \end{pmatrix}$$

- 4. If $C = A \otimes B$, where A is of size $m \times n$ and B is of size $p \times q$. What is the size of C?
 - a. $mn \times pq$
 - b. $mp \times nq$
 - c. $mq \times np$
 - d. none of the above
- 5. Which of the following state vectors represent an entangled state? [Assume the appropriate normalization constants]

a.
$$\begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}$$

b.
$$\begin{pmatrix} -1\\1\\1\\1 \end{pmatrix}$$

c.
$$\begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

$$d. \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix}$$

6. A two-qubit system is initially in the state, $|+\rangle \otimes |1\rangle$ and the gate $Z \otimes H$ is applied to these qubits. What is the matrix of the resultant state vector? [Assume the appropriate normalization constants.]

a.
$$\begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}$$

b.
$$\begin{pmatrix} -1 \\ -1 \\ 1 \\ 1 \end{pmatrix}$$

$$c. \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}$$

$$d. \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix}$$

- 7. A two-qubit system is in an unknown initial state. Applying the $H \otimes H$ gate, the state is seen to be entangled. What can be said of the initial state?
 - a. The initial state is entangled.
 - b. The initial state is NOT entangled.
 - c. Nothing can be said of the initial state.
 - d. Insufficient information has been provided.

8. Consider the following quantum circuit: [The two-qubit gate is the CNOT gate.]

$$|0\rangle - U - |\psi\rangle$$

$$|1\rangle - U - |\psi\rangle$$

The choice(s) of U for which the resultant $|\psi\rangle$ is entangled are

- a. $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- b. $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$
- c. $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
- d. $\frac{1}{2} \begin{pmatrix} \sqrt{3} & 1\\ 1 & -\sqrt{3} \end{pmatrix}$

9. Which of the following quantum state(s) is NOT entangled. [Ignore Normalization]

- a. $|++\rangle \frac{1}{2}(|0\rangle |+\rangle)$
- b. $|++\rangle \frac{1}{2}(|00\rangle + |11\rangle)$
- c. $\frac{1}{2}(|00\rangle |01\rangle + |10\rangle + |11\rangle)$
- d. none of the above.

10. Consider the following questions:

Question - 1 Ignoring the global phase, how many states are orthonormal to a given single qubit state?

Question - 2 Ignoring the global phase, how many states are orthonormal to a given two-state?

Choose the correct set of answers:

- a. 1 One state only; 2 One state only.
- b. 1 One state only; 2 Infinitely many states.
- c. 1 Infinitely many states; 2 Infinitely many states.
- d. none of the above.