Foundations of Computing Lecture 23

Arkady Yerukhimovich

April 15, 2025

Remaining Class Schedule

- We have only 2 weeks left of lectures!
- HW7 is due tomorrow
- HW8 is out, due next Wednesday
- Thursday, April 24 will be a review lecture

Final Exam

Final exam will be on Tuesday, May 6, 10:20-12:20.

Outline

1 Lecture 22 Review

2 \mathcal{NP} -Intermediate Languages

 \bigcirc co- \mathcal{NP}

Lecture 22 Review

- More \mathcal{NP} -complete problems
 - SAT
 - 3SAT
 - CLIQUE
 - VERTEX-COVER
 - NAE-SAT
 - 3-coloring

Vertex Cover Problem

Vertex Cover Problem

VERTEX-COVER = $\{\langle G, k \rangle \mid G \text{ has a vertex cover of size } \leq k\}$

Goal: Prove that VC is \mathcal{NP} -Complete

- **1** Show that $VC \in \mathcal{NP}$
- **2** Show that 3-SAT \leq_p VC

$3-SAT \leq_p VC$

Goal: Show reduction f from 3-SAT to VC s.t.

- if ϕ is satisfiable, $f(\phi) = \langle G, k \rangle$ s.t. G has VC of size $\leq k$
- if ϕ is not satisfiable, $f(\phi) = \langle G, k \rangle$ s.t. G has no VC of size $\leq k$

$3-SAT \leq_p VC$

Goal: Show reduction f from 3-SAT to VC s.t.

- if ϕ is satisfiable, $f(\phi) = \langle G, k \rangle$ s.t. G has VC of size $\leq k$
- if ϕ is not satisfiable, $f(\phi) = \langle G, k \rangle$ s.t. G has no VC of size $\leq k$

Variable gadget: For every variable x_1 , draw pair of nodes

Clause gadget: For every (3-term) clause draw a triangle

Observations:

- For each variable need 1 node in cover
- For each triangle need at least 2 nodes
- Need to connect variables to clauses

$3-SAT \leq_p VC Example$

$$\phi = (x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_2} \vee \overline{x_3} \vee x_4)$$

$3-SAT \leq_p VC Example$

$$\phi = (x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_2} \vee \overline{x_3} \vee x_4)$$

1 A satisfying assignment implies cover C, $|C| \le 2c + v$

$3-SAT \leq_p VC Example$

$$\phi = (x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_2} \vee \overline{x_3} \vee x_4)$$

- **1** A satisfying assignment implies cover C, $|C| \le 2c + v$
- $oldsymbol{\circ}$ No satisfying assignment implies smallest cover needs $|\mathcal{C}|>2c+v$

Satisfying assignment $\Rightarrow |C| = 2c + v$:

• Include the node corresponding to the 1 value in C (i.e., if $x_1 = 1$ then include x_1 , otherwise include $\overline{x_1}$).

- Include the node corresponding to the 1 value in C (i.e., if $x_1 = 1$ then include x_1 , otherwise include $\overline{x_1}$).
- Since $\phi(x) = 1$, for every triangle at least one edge between triangle and variable gadgets is already covered (i.e., at least one variable in each clause is satisfied).

- Include the node corresponding to the 1 value in C (i.e., if $x_1 = 1$ then include x_1 , otherwise include $\overline{x_1}$).
- Since $\phi(x) = 1$, for every triangle at least one edge between triangle and variable gadgets is already covered (i.e., at least one variable in each clause is satisfied).
- Can include the remaining two nodes in triangle in C to cover the remaining edges.

- Include the node corresponding to the 1 value in C (i.e., if $x_1 = 1$ then include x_1 , otherwise include $\overline{x_1}$).
- Since $\phi(x) = 1$, for every triangle at least one edge between triangle and variable gadgets is already covered (i.e., at least one variable in each clause is satisfied).
- Can include the remaining two nodes in triangle in C to cover the remaining edges.
- This results in a cover of size 2c + v.

- Include the node corresponding to the 1 value in C (i.e., if $x_1 = 1$ then include x_1 , otherwise include $\overline{x_1}$).
- Since $\phi(x) = 1$, for every triangle at least one edge between triangle and variable gadgets is already covered (i.e., at least one variable in each clause is satisfied).
- Can include the remaining two nodes in triangle in C to cover the remaining edges.
- This results in a cover of size 2c + v.

$$|C| = 2c + v \Rightarrow Satisfying assignment$$

Satisfying assignment $\Rightarrow |C| = 2c + v$:

- Include the node corresponding to the 1 value in C (i.e., if $x_1 = 1$ then include x_1 , otherwise include $\overline{x_1}$).
- Since $\phi(x) = 1$, for every triangle at least one edge between triangle and variable gadgets is already covered (i.e., at least one variable in each clause is satisfied).
- Can include the remaining two nodes in triangle in C to cover the remaining edges.
- This results in a cover of size 2c + v.

 $|C| = 2c + v \Rightarrow$ Satisfying assignment

• C must contain 2 nodes per triangle and 1 node per variable gadget

Satisfying assignment $\Rightarrow |C| = 2c + v$:

- Include the node corresponding to the 1 value in C (i.e., if $x_1 = 1$ then include x_1 , otherwise include $\overline{x_1}$).
- Since $\phi(x) = 1$, for every triangle at least one edge between triangle and variable gadgets is already covered (i.e., at least one variable in each clause is satisfied).
- Can include the remaining two nodes in triangle in C to cover the remaining edges.
- This results in a cover of size 2c + v.

 $|C| = 2c + v \Rightarrow$ Satisfying assignment

- C must contain 2 nodes per triangle and 1 node per variable gadget
- At least one edge connecting each triangle to variable gadgets can not be covered by the triangle nodes (that would require all 3 nodes).

Satisfying assignment $\Rightarrow |C| = 2c + v$:

- Include the node corresponding to the 1 value in C (i.e., if $x_1 = 1$ then include x_1 , otherwise include $\overline{x_1}$).
- Since $\phi(x) = 1$, for every triangle at least one edge between triangle and variable gadgets is already covered (i.e., at least one variable in each clause is satisfied).
- Can include the remaining two nodes in triangle in C to cover the remaining edges.
- This results in a cover of size 2c + v.

 $|C| = 2c + v \Rightarrow$ Satisfying assignment

- C must contain 2 nodes per triangle and 1 node per variable gadget
- At least one edge connecting each triangle to variable gadgets can not be covered by the triangle nodes (that would require all 3 nodes).
- This edge needs to be covered by the variable node.

Satisfying assignment $\Rightarrow |C| = 2c + v$:

- Include the node corresponding to the 1 value in C (i.e., if $x_1 = 1$ then include x_1 , otherwise include $\overline{x_1}$).
- Since $\phi(x) = 1$, for every triangle at least one edge between triangle and variable gadgets is already covered (i.e., at least one variable in each clause is satisfied).
- Can include the remaining two nodes in triangle in C to cover the remaining edges.
- This results in a cover of size 2c + v.

 $|C| = 2c + v \Rightarrow$ Satisfying assignment

- C must contain 2 nodes per triangle and 1 node per variable gadget
- At least one edge connecting each triangle to variable gadgets can not be covered by the triangle nodes (that would require all 3 nodes).
- This edge needs to be covered by the variable node.
- Variable nodes in *C* must cover at least one edge to each triangle implying a satisfying assignment.

Outline

Lecture 22 Review

 \bigcirc \mathcal{NP} -Intermediate Languages

 \bigcirc co- \mathcal{NP}

ullet Recall that we know that $\mathcal{P} \subseteq \mathcal{NP}$

- ullet Recall that we know that $\mathcal{P} \subseteq \mathcal{NP}$
- Suppose that $P \neq \mathcal{NP}$:

- ullet Recall that we know that $\mathcal{P} \subseteq \mathcal{NP}$
- Suppose that $\mathcal{P} \neq \mathcal{NP}$:

Question: Are all languages either easy or very hard?

- Recall that we know that $\mathcal{P} \subseteq \mathcal{NP}$
- Suppose that $P \neq \mathcal{NP}$:

Question: Are all languages either easy or very hard?

Math version: Is there an $L \in \mathcal{NP}$, s.t. $L \notin \mathcal{P}$ and L is not \mathcal{NP} -Complete?

Ladner's Theorem

If $P \neq \mathcal{NP}$ then there exists an $L \in \mathcal{NP}$ s.t.

- \bullet $L \notin \mathcal{P}$, and
- 2 *L* is not \mathcal{NP} -Complete

- ullet Recall that we know that $\mathcal{P} \subseteq \mathcal{NP}$
- Suppose that $\mathcal{P} \neq \mathcal{NP}$:

Question: Are all languages either easy or very hard?

Math version: Is there an $L \in \mathcal{NP}$, s.t. $L \notin \mathcal{P}$ and L is not \mathcal{NP} -Complete?

Ladner's Theorem

If $P \neq \mathcal{NP}$ then there exists an $L \in \mathcal{NP}$ s.t.

- \bullet $L \notin \mathcal{P}$, and
- 2 L is not \mathcal{NP} -Complete

Comment: All languages useful for crypto are such \mathcal{NP} -intermediate languages

A Useful Language

$$SAT_H = \{\phi 01^{n^{H(n)}} \mid \phi \in SAT, n = |\phi|\}$$

A Useful Language

$$SAT_{H} = \{\phi 01^{n^{H(n)}} \mid \phi \in SAT, n = |\phi|\}$$

1 If H(n) = n, then $SAT_H \in \mathcal{P}$

A Useful Language

$$SAT_{H} = \{\phi 01^{n^{H(n)}} \mid \phi \in SAT, n = |\phi|\}$$

- If H(n) = n, then $SAT_H \in \mathcal{P}$
- ② If $H(n) \leq c$, then SAT_H is \mathcal{NP} -Complete

A Useful Language

$$SAT_{H} = \{\phi 01^{n^{H(n)}} \mid \phi \in SAT, n = |\phi|\}$$

- If H(n) = n, then $SAT_H \in \mathcal{P}$
- ② If $H(n) \leq c$, then SAT_H is \mathcal{NP} -Complete
- We will define H to be in between these two cases

Let M_1, M_2, \ldots be an enumeration of all TM's (can do this since TM's are countable)

- Smallest $i \leq \log \log n$ s.t. for all $x \in \{0,1\}^*$, with $|x| \leq \log n$
 - $M_i(x)$ halts in $i|x|^i$ steps and accepts iff $x \in SAT_H$
- If no such M_i exists, $H(n) = \log \log n$

Let M_1, M_2, \ldots be an enumeration of all TM's (can do this since TM's are countable)

- Smallest $i \le \log \log n$ s.t. for all $x \in \{0,1\}^*$, with $|x| \le \log n$ $M_i(x)$ halts in $i|x|^i$ steps and accepts iff $x \in SAT_H$
- If no such M_i exists, $H(n) = \log \log n$
- **1** H(n) is computable since can enumerate all short x

Let M_1, M_2, \ldots be an enumeration of all TM's (can do this since TM's are countable)

- Smallest $i \leq \log \log n$ s.t. for all $x \in \{0,1\}^*$, with $|x| \leq \log n$
 - $M_i(x)$ halts in $i|x|^i$ steps and accepts iff $x \in SAT_H$
- If no such M_i exists, $H(n) = \log \log n$
- **1** H(n) is computable since can enumerate all short x
- ② Claim: $SAT_H \in \mathcal{P}$ iff H(n) < c for all n

Let $M_1, M_2, ...$ be an enumeration of all TM's (can do this since TM's are countable)

- Smallest $i \le \log \log n$ s.t. for all $x \in \{0,1\}^*$, with $|x| \le \log n$
 - $M_i(x)$ halts in $i|x|^i$ steps and accepts iff $x \in SAT_H$
- If no such M_i exists, $H(n) = \log \log n$
- **1** H(n) is computable since can enumerate all short x
- Claim: SAT_H ∈ P iff H(n) < c for all n
 (⇒) By definition of P, there is machine M_k that decides SAT_H in kn^k steps so H(n) = k

Claim

 $SAT_H \in \mathcal{P}$ iff H(n) < c for all n

Already proved (⇒)

- Already proved (⇒)
- (\Leftarrow) If H(n) < c for all $n \to \infty$, then there is infinitely long stretch where H(n) = i for some $1 \le i \le c$.

- Already proved (⇒)
- (\Leftarrow) If H(n) < c for all $n \to \infty$, then there is infinitely long stretch where H(n) = i for some $1 \le i \le c$.
 - We will prove that in this case M_i decides SAT_H

- Already proved (⇒)
- (\Leftarrow) If H(n) < c for all $n \to \infty$, then there is infinitely long stretch where H(n) = i for some $1 \le i \le c$.
 - We will prove that in this case M_i decides SAT_H
 - Assume that M_i does not halt on some x after $i|x|^i$ steps

- Already proved (⇒)
- (\Leftarrow) If H(n) < c for all $n \to \infty$, then there is infinitely long stretch where H(n) = i for some $1 \le i \le c$.
 - We will prove that in this case M_i decides SAT_H
 - Assume that M_i does not halt on some x after $i|x|^i$ steps
 - Let $n > 2^{|x|}$. For any such n, if H(n) = i, $M_i(x)$ must halt in $i|x|^i$ steps.

- Already proved (⇒)
- (\Leftarrow) If H(n) < c for all $n \to \infty$, then there is infinitely long stretch where H(n) = i for some $1 \le i \le c$.
 - We will prove that in this case M_i decides SAT_H
 - Assume that M_i does not halt on some x after $i|x|^i$ steps
 - Let $n > 2^{|x|}$. For any such n, if H(n) = i, $M_i(x)$ must halt in $i|x|^i$ steps.
 - So, $H(n) \neq i$ for all $n > 2^{|x|}$. Contradiction!

Claim

 $SAT_H \in \mathcal{P}$ iff H(n) < c for all n

Claim

$$SAT_H \in \mathcal{P}$$
 iff $H(n) < c$ for all n

- **1** SAT_H $\notin \mathcal{P}$:
 - Suppose it is in \mathcal{P} , then H(n) < c
 - Can reduce any SAT formula to SAT_H formula by padding with H(n) 1s
 - ullet But, SAT is $\mathcal{NP} ext{-}\mathsf{Complete}$, contradiction!

Claim

$$SAT_H \in \mathcal{P}$$
 iff $H(n) < c$ for all n

- **1** SAT_H $\notin \mathcal{P}$:
 - Suppose it is in \mathcal{P} , then H(n) < c
 - Can reduce any SAT formula to SAT_H formula by padding with H(n) 1s
 - ullet But, SAT is $\mathcal{NP} ext{-}\mathsf{Complete}$, contradiction!
- **2** SAT_H is not \mathcal{NP} -Complete

Claim

$$SAT_H \in \mathcal{P}$$
 iff $H(n) < c$ for all n

- **1** SAT_H $\notin \mathcal{P}$:
 - Suppose it is in \mathcal{P} , then H(n) < c
 - Can reduce any SAT formula to SAT_H formula by padding with H(n) 1s
 - But, SAT is \mathcal{NP} -Complete, contradiction!
- 2 SAT_H is not \mathcal{NP} -Complete
 - Assume it is, then $SAT \leq_p SAT_H$

Claim

$$SAT_H \in \mathcal{P}$$
 iff $H(n) < c$ for all n

- **1** SAT_H $\notin \mathcal{P}$:
 - Suppose it is in \mathcal{P} , then H(n) < c
 - Can reduce any SAT formula to SAT_H formula by padding with H(n) 1s
 - ullet But, SAT is \mathcal{NP} -Complete, contradiction!
- 2 SAT_H is not \mathcal{NP} -Complete
 - Assume it is, then $SAT \leq_p SAT_H$
 - Reduction maps ψ of length n to $\phi 01^{H(n)}$ where $|\phi 01^{H(n)}| = n^c$

Claim

$$SAT_H \in \mathcal{P}$$
 iff $H(n) < c$ for all n

- **1** SAT_H \notin \mathcal{P} :
 - Suppose it is in \mathcal{P} , then H(n) < c
 - Can reduce any SAT formula to SAT_H formula by padding with H(n) 1s
 - ullet But, SAT is \mathcal{NP} -Complete, contradiction!
- 2 SAT_H is not \mathcal{NP} -Complete
 - Assume it is, then $SAT \leq_p SAT_H$
 - Reduction maps ψ of length n to $\phi 01^{H(n)}$ where $|\phi 01^{H(n)}| = n^c$
 - But $H(n) \to \infty$ so the padding is super-poly in size of ϕ

Claim

$$SAT_H \in \mathcal{P}$$
 iff $H(n) < c$ for all n

- **1** SAT_H $\notin \mathcal{P}$:
 - Suppose it is in \mathcal{P} , then H(n) < c
 - Can reduce any SAT formula to SAT_H formula by padding with H(n) 1s
 - ullet But, SAT is \mathcal{NP} -Complete, contradiction!
- 2 SAT_H is not \mathcal{NP} -Complete
 - Assume it is, then $SAT \leq_p SAT_H$
 - Reduction maps ψ of length n to $\phi 01^{H(n)}$ where $|\phi 01^{H(n)}| = n^c$
 - But $H(n) \to \infty$ so the padding is super-poly in size of ϕ
 - Hence $|\phi| << n$, so have reduced solving long formula to solving a much shorter one.

Claim

$$SAT_H \in \mathcal{P}$$
 iff $H(n) < c$ for all n

- **1** SAT_H $\notin \mathcal{P}$:
 - Suppose it is in \mathcal{P} , then H(n) < c
 - Can reduce any SAT formula to SAT_H formula by padding with H(n) 1s
 - But, SAT is \mathcal{NP} -Complete, contradiction!
- 2 SAT_H is not \mathcal{NP} -Complete
 - Assume it is, then $SAT \leq_p SAT_H$
 - Reduction maps ψ of length n to $\phi 01^{H(n)}$ where $|\phi 01^{H(n)}| = n^c$
 - But $H(n) \to \infty$ so the padding is super-poly in size of ϕ
 - Hence $|\phi| <<$ n, so have reduced solving long formula to solving a much shorter one.
 - Repeat this enough times to make $|\phi| = O(1)$ and solve.

Takeaway

If $\mathcal{P} \neq \mathcal{NP}$, then $\mathcal{NP}\text{-intermediate languages exist!}$

Outline

Lecture 22 Review

2 \mathcal{NP} -Intermediate Languages

 \bigcirc co- \mathcal{NP}

Question

Do all languages have poly-size witnesses?

Question

Do all languages have poly-size witnesses?

Consider the following language:

UNSAT

 $\mathsf{UNSAT} = \{ \langle \phi \rangle \mid \phi \text{ is not satisfiable} \}$

Question

Do all languages have poly-size witnesses?

Consider the following language:

UNSAT

 $\mathsf{UNSAT} = \{ \langle \phi \rangle \mid \phi \text{ is not satisfiable} \}$

• For all possible assignments $w \in \{0,1\}^n$, $\phi(w) = 0$

Question

Do all languages have poly-size witnesses?

Consider the following language:

UNSAT

$$\mathsf{UNSAT} = \{ \langle \phi \rangle \mid \phi \text{ is not satisfiable} \}$$

- For all possible assignments $w \in \{0,1\}^n$, $\phi(w) = 0$
- Note that this language consists of all formulas that are not in SAT. I.e., $UNSAT = \overline{SAT}$

Question

Do all languages have poly-size witnesses?

Consider the following language:

UNSAT

$$\mathsf{UNSAT} = \{ \langle \phi \rangle \mid \phi \text{ is not satisfiable} \}$$

- For all possible assignments $w \in \{0,1\}^n$, $\phi(w) = 0$
- Note that this language consists of all formulas that are not in SAT. I.e., $UNSAT = \overline{SAT}$

Question

Is UNSAT in \mathcal{NP} ?

We define a new complexity class co- $\mathcal{N}\mathcal{P}$ to capture such languages.

Co-NP is the class of languages that:

We define a new complexity class co- $\mathcal{N}\mathcal{P}$ to capture such languages.

Co-NP is the class of languages that:

We define a new complexity class co- \mathcal{NP} to capture such languages.

Co-NP is the class of languages that:

- ② There exists poly-time DTM V s.t. for $x \in L$ for all w, V(x, w) = 0

Observations:

• co- \mathcal{NP} is not the complement of \mathcal{NP} (i.e., it does not consist of all languages not in \mathcal{NP})

We define a new complexity class co- $\mathcal{N}\mathcal{P}$ to capture such languages.

Co-NP is the class of languages that:

- ② There exists poly-time DTM V s.t. for $x \in L$ for all w, V(x, w) = 0

Observations:

- co- \mathcal{NP} is not the complement of \mathcal{NP} (i.e., it does not consist of all languages not in \mathcal{NP})
- ullet In particular, there are many languages in $\mathcal{NP}\cap\mathsf{co} ext{-}\mathcal{NP}$

We define a new complexity class co- $\mathcal{N}\mathcal{P}$ to capture such languages.

Co-NP is the class of languages that:

- ② There exists poly-time DTM V s.t. for $x \in L$ for all w, V(x, w) = 0

Observations:

- co- \mathcal{NP} is not the complement of \mathcal{NP} (i.e., it does not consist of all languages not in \mathcal{NP})
- ullet In particular, there are many languages in $\mathcal{NP}\cap\mathsf{co} ext{-}\mathcal{NP}$
- In fact, $\mathcal{P} \subseteq (\mathcal{NP} \cap \text{ co-}\mathcal{NP})$

 $\overline{\mathcal{P}}$

 $L \in \mathcal{P}$ if there exists poly-time DTM M s.t $M(x) = [x \in L]$

\mathcal{P}

 $L \in \mathcal{P}$ if there exists poly-time DTM M s.t $M(x) = [x \in L]$

\mathcal{NP}

 $L \in \mathcal{NP}$ if there exists poly-time DTM V s.t. for $x \in L$ there exists a witness w s.t. V(x, w) = 1

\mathcal{P}

 $L \in \mathcal{P}$ if there exists poly-time DTM M s.t $M(x) = [x \in L]$

$\overline{\mathcal{N}}\mathcal{P}$

 $L \in \mathcal{NP}$ if there exists poly-time DTM V s.t. for $x \in L$ there exists a witness w s.t. V(x, w) = 1

co- \mathcal{NP}

 $L \in \text{co-}\mathcal{NP}$ if there exists poly-time DTM V s.t. for $x \in L$ for all w, V(x,w) = 0

\mathcal{P}

 $L \in \mathcal{P}$ if there exists poly-time DTM M s.t $M(x) = [x \in L]$

\mathcal{NP}

 $L \in \mathcal{NP}$ if there exists poly-time DTM V s.t. for $x \in L$ there exists a witness w s.t. V(x, w) = 1

$co-\mathcal{NP}$

 $L\in ext{co-}\mathcal{NP}$ if there exists poly-time DTM V s.t. for $x\in L$ for all w, V(x,w)=0

Question:

Can you prove that $x \in L$, when $L \in \text{co-}\mathcal{NP}$?

The Problem

Suppose, I am given an input formula ϕ and I want to prove that ϕ is not satisfiable.

The Problem

Suppose, I am given an input formula ϕ and I want to prove that ϕ is not satisfiable.

 It is widely believed that there is no poly-size, efficiently verifiable proof w that you could give for UNSAT

The Problem

Suppose, I am given an input formula ϕ and I want to prove that ϕ is not satisfiable.

- It is widely believed that there is no poly-size, efficiently verifiable proof w that you could give for UNSAT
- I.e., $\mathcal{NP} \neq \text{co-}\mathcal{NP}$

The Problem

Suppose, I am given an input formula ϕ and I want to prove that ϕ is not satisfiable.

- It is widely believed that there is no poly-size, efficiently verifiable proof w that you could give for UNSAT
- I.e., $\mathcal{NP} \neq \text{co-}\mathcal{NP}$
- But, we don't know how to prove this

• There are many other complexity classes

- There are many other complexity classes
- We know some relationships between classes

- There are many other complexity classes
- We know some relationships between classes
- But, most big questions (e.g., $\mathcal{P} = \mathcal{NP}$, $\mathcal{NP} = \text{co-}\mathcal{NP}$, etc.) are still not known!!!

- There are many other complexity classes
- We know some relationships between classes
- But, most big questions (e.g., $\mathcal{P} = \mathcal{NP}$, $\mathcal{NP} = \text{co-}\mathcal{NP}$, etc.) are still not known!!!

Complexity Zoo

The complexity zoo (https://complexityzoo.net/Complexity_Zoo) now has 550 complexity classes.