Matematik baskurs, med diskret matematik

SF1671

Föreläsare: Petter Brändén

Föreläsning 1

► Kurshemsida med all info på Canvas.

- Kurshemsida med all info på Canvas.
- Föreläsningar: Digitala på Zoom.
- Övningar: Fysiska på Campus och digitala på Zoom. Läraren går igenom exempel, ni räknar själva och får tillfälle att ställa frågor.

- Kurshemsida med all info på Canvas.
- Föreläsningar: Digitala på Zoom.
- Övningar: Fysiska på Campus och digitala på Zoom. Läraren går igenom exempel, ni räknar själva och får tillfälle att ställa frågor.
- ► Seminarier:
 - 4 seminarier.
 - Inlämningsuppgift. Vardera ger ett bonus på tentan.
 - Frivillig diskussion i grupp.

- Kurshemsida med all info på Canvas.
- Föreläsningar: Digitala på Zoom.
- Övningar: Fysiska på Campus och digitala på Zoom. Läraren går igenom exempel, ni räknar själva och får tillfälle att ställa frågor.
- Seminarier:
 - 4 seminarier.
 - Inlämningsuppgift. Vardera ger ett bonus på tentan.
 - Frivillig diskussion i grupp.
- Supplemental Instruction (SI): Extra hjälp med övningar (fristående från kursen).
- ► Tentamen: Skriftlig tentamen 27/10 och omtenta 22/12.

Kurslitteratur

- R. A. Adams and C. Essex, Calculus, A Complete Course, nionde eller tionde upplagan (Pearson).
- K. Eriksson och H. Gavel, Diskret matematik och diskreta modeller, andra upplagan (Studentlitteratur).

Innehåll

Två delar basmatte och diskret matematik.

Innehåll

- Två delar basmatte och diskret matematik.
- Diskret matematik:
- Diskret som i motsatsen till kontinuerlig.
- Matematisk grund för datalogi.

Diskret matematik

- På hur många olika sätt kan jag utföra en uppgift?
- Vad är sannolikheten att få Royal Straight Flush på given i poker?
- Analysera nätverk. Hur ska en lastbilschaufför som ska besöka flera ställen hitta en optimal rutt (minst kostsam)?

Mängder

▶ $S = \{a, b, c\}$, $b \in S$, b är ett element i S (b tillhör S).

Mängder

- $ightharpoonup S = \{a, b, c\}, b \in S, b \text{ är ett element i } S \text{ (b tillhör } S).$
- **▶ Naturliga tal**: $\mathbb{N} = \{0, 1, 2, 3, ...\}$
- ► Heltal: $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$
- ▶ Rationella tal: $\mathbb{Q} = \{ \frac{a}{b} \mid a \in \mathbb{Z} \text{ och } b \in \mathbb{Z}, b \neq 0 \}$

$$2/3$$
, -1 , $44444 \cdots$, $1/5 - 12 + 8/3$, ...

Mängder

- ▶ $S = \{a, b, c\}$, $b \in S$, b är ett element i S (b tillhör S).
- **▶ Naturliga tal**: $\mathbb{N} = \{0, 1, 2, 3, ...\}$
- ► Heltal: $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$
- ▶ Rationella tal: $\mathbb{Q} = \{ \frac{a}{b} \mid a \in \mathbb{Z} \text{ och } b \in \mathbb{Z}, b \neq 0 \}$

$$2/3, -1, 44444 \cdots, 1/5 - 12 + 8/3, \dots$$

Reella tal: Gränsvärden av rationella tal. T.ex. e = 2,71828...

Olikheter

- ▶ Låt a och b vara reella tal.
 A är tik vänster om b på tallingen.
 ▶ Vi skriver a < b om b − a är positivt. (a är mindre än b)
- ightharpoonup Vi skriver $a \leq b$ om b-a är positivt eller noll.

Olikheter

- Låt a och b vara reella tal.
- ▶ Vi skriver a < b om b a är positivt. (a är mindre än b)
- ▶ Vi skriver $a \le b$ om b a är positivt eller noll.
- ightharpoonup $a < b \Rightarrow a + c < b + c$ för alla $c \in \mathbb{R}$.

ty
$$(b+c) - (a+c) = b - a$$
.

Olikheter

- Låt a och b vara reella tal.
- ▶ Vi skriver a < b om b a är positivt. (a är mindre än b)
- ▶ Vi skriver $a \le b$ om b a är positivt eller noll.
- $ightharpoonup a < b \Rightarrow a + c < b + c$ för alla $c \in \mathbb{R}$.

ty
$$(b+c) - (a+c) = b - a$$
.

- ightharpoonup a < b och $c > 0 \Rightarrow ac < bc$
- ightharpoonup $a < b \text{ och } c < 0 \Rightarrow ac > bc$

Räknerester fir dlikheter. Exempel. Lös olikheten $3x^2 \ge 5x + 2$.

Addera
$$-(5x+2)$$
 p_{9}° hada sidor aw \geq .

Fig.: $3x^{2} - (5x+2) \geq 5x + 2 - (5x + 2)$

Mus $3x^{2} - 5x - 2 \geq 0$ (Hilter riflerma till vainsfer ledet)

 $x^{2} - \frac{5}{3}x - \frac{2}{3} = 0$, $x = \frac{5}{2\cdot 3} + \sqrt{\frac{5^{2}}{2^{2} \cdot 3}}e^{\pm \frac{2}{3}}$

So $x^{2} - \frac{5x}{3} - \frac{2}{3} = (x-2)(x+\frac{1}{3}) = \frac{5}{6} \pm \sqrt{\frac{25}{2^{2} \cdot 3}}e^{\pm \frac{2}{3}}$

Reducerat problement till aft lists $= \frac{5}{6} \pm \frac{1}{6}\sqrt{25+24} = \frac{5+7}{6}$
 $(x-2)(x+\frac{1}{3}) \geq 0$ Function $x=2, -\frac{1}{3} = 2$
 $(x-1)(x+\frac{1}{3}) = 1$
 $(x-1)(x+\frac{1}{3}) = 1$

Fig. 1. Show $x=1$ and $x=1$
 $(x-1)(x+\frac{1}{3}) = 1$
 $(x-1)(x+\frac{1}{3}) = 1$

- ▶ Öppet intervall $(a, b) = \{x \in \mathbb{R} \mid a < x < b\}$.
- ▶ Slutet intervall $[a, b] = \{x \in \mathbb{R} \mid a \le x \le b\}.$
- ▶ Halvöppet intervall $(a, b] = \{x \in \mathbb{R} \mid a < x \leq b\}$.
- ▶ Obegränsat intervall $(-\infty, b] = \{x \in \mathbb{R} \mid -\infty < x \leq b\}$.

Absolutbeloppet av ett reellt tal x är

 $|x| = \begin{cases} x & \text{om } x \ge 0, \\ -x & \text{om } x < 0 \end{cases}$ Grafen för IXI:

► Absolutbeloppet av ett reellt tal x är

$$|x| = \begin{cases} x & \text{om } x \ge 0, \\ -x & \text{om } x < 0 \end{cases}.$$

► Alternativ definition $|x| = \sqrt{x^2}$.

Absolutbeloppet av ett reellt tal x är

$$|x| = \begin{cases} x & \text{om } x \ge 0, \\ -x & \text{om } x < 0 \end{cases}.$$

- ► Alternativ definition $|x| = \sqrt{x^2}$.
- För reella tal a och b gäller

$$|ab| = |a| \cdot |b|$$
 och $\left| \frac{1}{a} \right| = \frac{1}{|a|}$ om $a \neq 0$.

Exempel: Lös
$$|3x + 4| = 2$$
.

Samua som alt lösa
$$(3x+4)^{2} = |3x+4|^{2} = 2^{2} = 4$$

Dividera med 3:
$$|X + \frac{4}{3}| = \frac{2}{3}$$

Il växlar techen da
$$x + \frac{4}{3} = 0$$
 dus $x = -\frac{4}{3}$

Fall 1:
$$X \le \frac{-4}{3}$$
: $|X + \frac{4}{3}| = -(X + \frac{4}{3}) = \frac{2}{3} = 0$

$$=\frac{2}{3} \quad ()$$

$$-\frac{4}{3} = -\frac{6}{3} - 2$$

$$X = -2$$

$$\text{Att } A$$

X = -2

Kolla gama

3

ligger i homeht intervall!

► Triangelolikheten: $|a+b| \le |a|+|b|$ \iff $|a+b|^2 \le (|a|+|b|)^2$

Bevis.
$$|a+b|^2 = (a+b)^2 = a^2 + 2ab + b^2$$

► Triangelolikheten: $|a + b| \le |a| + |b|$

Bevis.
$$|a+b|^2 = (a+b)^2 = a^2 + 2ab + b^2$$

= $|a|^2 + 2ab + |b|^2$

► Triangelolikheten: $|a + b| \le |a| + |b|$

Bevis.
$$|a + b|^2 = (a + b)^2 = a^2 + 2ab + b^2$$

 $= |a|^2 + 2ab + |b|^2$
 $\le |a|^2 + 2|a||b| + |b|^2$
 $= (|a| + |b|)^2$

Exempel: Lös |2x + 1| + |3x - 1| = 4.

Exempel.

- ► I matematik används ett formellt språk bestående av t.ex påståenden, variabler och implikationer.
- Betrakta följande påståenden A och B

 $A: x \in \mathbb{Q}$ och $B: x \in \mathbb{Z}$.

- ► I matematik används ett formellt språk bestående av t.ex påståenden, variabler och implikationer.
- Betrakta följande påståenden A och B

$$A: x \in \mathbb{Q}$$
 och $B: x \in \mathbb{Z}$.

▶ Om *B* är sann, så är *A* också sann. Vi skriver då $B \Rightarrow A$ och säger *B* implicerar *A*.

- ► I matematik används ett formellt språk bestående av t.ex påståenden, variabler och implikationer.
- ▶ Betrakta följande påståenden A och B

$$A: x \in \mathbb{Q}$$
 och $B: x \in \mathbb{Z}$.

- ▶ Om *B* är sann, så är *A* också sann. Vi skriver då $B \Rightarrow A$ och säger *B* implicerar *A*.
- ightharpoonup Betrakta följande påståenden C och D om reella tal x

C:
$$x \ge 0 \text{ och } x^2 = 9 \text{ och } D: 3x = 9.$$

- ► I matematik används ett formellt språk bestående av t.ex påståenden, variabler och implikationer.
- ▶ Betrakta följande påståenden *A* och *B*

$$A: x \in \mathbb{Q}$$
 och $B: x \in \mathbb{Z}$.

- ▶ Om *B* är sann, så är *A* också sann. Vi skriver då $B \Rightarrow A$ och säger *B* implicerar *A*.
- ightharpoonup Betrakta följande påståenden C och D om reella tal x

C:
$$x \ge 0$$
 och $x^2 = 9$ och D: $3x = 9$.

Vi har $C \Rightarrow D$ och $D \Rightarrow C$. Detta förhållande brukar skrivas $C \Leftrightarrow D$ och vi säger att C är **ekvivalent** med D.

- ► I matematik används ett formellt språk bestående av t.ex påståenden, variabler och implikationer.
- Betrakta följande påståenden A och B

$$A: x \in \mathbb{Q}$$
 och $B: x \in \mathbb{Z}$.

- ▶ Om *B* är sann, så är *A* också sann. Vi skriver då $B \Rightarrow A$ och säger *B* implicerar *A*.
- ightharpoonup Betrakta följande påståenden C och D om reella tal x

C:
$$x \ge 0 \text{ och } x^2 = 9 \text{ och } D: 3x = 9.$$

- ▶ Vi har $C \Rightarrow D$ och $D \Rightarrow C$. Detta förhållande brukar skrivas $C \Leftrightarrow D$ och vi säger att C är **ekvivalent** med D.
- Implikation och ekvivalens är inte samma sak

Exempel. Lös (a): $3x - 4 \le 6$, (b): $(x^2 + 4)/x > x$. (a): $3x-4 \le 6 \iff 3x-4+4 \le 6+4$ $7 \times \leq 10 \Leftrightarrow \times \leq \frac{10}{3}$ regel for addition vid olikheter division med positivt mult. medx (b): XER, X +0. (H > 0) Alltid sant subtr. x2 fran vada sidor Betyder: x>0 löser alikheten. Fall 2) X<0: Mnlt. med x på bådasidor. (< byter) (x2+4)/x > X (=) x2+4< x2 (=) 4<0. Aldrig sant så i tall 2 tokus ingan løsning. Svav: Alla x>0 ◆□ → ◆□ → ◆ ■ → ● ◆ り へ ○ Exempel. Lös

(X-2)

(X-4)

 $X \in (0,2)$ eller $X \in (4,\infty)$

 $\frac{-x^2}{x-4} < x.$

 $\frac{-x^{2}}{x-4} - x < 0 \in \frac{-x^{2} - x(x-4)}{x-4} < 0$

 $x \neq 7$

odef.