

Project 1 - Energy Sustainability Modeling

ENME 489X

Group 1

Gerald Mace Michael Wolak Nate Crispel Raghav Agarwal Tyler Heinrich

Table of contents

Background and Purpose of the Report

Struc	ture of Report	3
т	D 1: C :	
I.	Baseline Scenario	Δ
	Energy Consumption in New York city	۷
	Converting British Thermal Unit (BTUS) to Terawatt hours (TWh)	(
	Renewables	(
	Energy Supply	ϵ
	Baseline Scenario Analysis	7
	Baseline Scenario Conclusion	10
II.	Renewables Scenario	
	Introduction	10
	Renewable Scenario Analysis	11
	Cost conversion	13
	Cost comparison: Baseline vs. 5% Renewable	14
	CO2 Emission Comparison: Baseline vs. 5% Renewable	16
	Discussion of Other Energy Sources	19
Conc	lusion	20
Refer	rences	22

3

Background and Purpose of the Report

This report deals with the study of the potential for end-use energy efficiency and renewable energy in New York City to better understand future options for New York's energy supply. The primary objective of this report is to create a baseline scenario for meeting all the energy needs(electrical, heat, cooling and transportation) detailing the associated costs, efficiencies and energy capacities using non renewable sources of energy.

The secondary objective is to increase the energy sustainability of the New York City by using the renewable sources of energy. For our group, the team needs to make use of at least 5% of renewable energy sources to replace the current non renewable energy sources being used. The team also needs to provide detailed justification for the renewable source chosen and the associated costs, efficiencies and energy capacities.

Structure of Report

Baseline Scenario

- Meeting energy needs of the New York City using no renewable sources of energy
- Associated costs, efficiencies and energy capacities of the non renewable energy sources.
- Economic costs and greenhouse gas emissions from this scenario

• Secondary Scenario

- Increase sustainability by using renewable energy sources.
- Replacing at 5% of the non renewable energy sources with the renewable energy sources.

 Estimating the costs, efficiencies and energy capacities of the renewable energy sources selected.

I. Baseline scenario

Energy Consumption in New York city

New York Energy Consumption Estimates, 2016

Source: Energy Information Administration, State Energy Data System

Fig 1: Energy consumption by different sectors.

The figure above shows the total energy consumption for different sectors for New York city. The energy consumption for different sectors can be added to estimate the total energy that was consumed by the New York city.

From the data provided by EIA,

Total energy consumed (in trillion BTUS) = 30 (coal) + 1335 (natural gas) + 635 (gasoline) + 330 (distillate fuel oil) + 201 (jet fuel) + 40 (residual fuel) + 66 (other petroleum) + 435 (nuclear electric power) + 248 (hydroelectric power) + 132 (biomass) + 48 (other petroleum)

renewables) + 61 (net electricity imports) + 67 (net interstate flow of electricity) + 33 (HGL) = 3661 Trillion BTUS

Energy Source	Amount of energy consume (in Trillion BTUS)
Coal	30
Natural gas	1335
Gasoline	635
Distillate fuel oil	330
Jet fuel	201
Residual fuel	40
Other Petroleum	66
Nuclear electric power	435
Hydroelectric power	248
Biomass	132
Other renewables	48
Net Electricity Imports	61
Net Interstate Flow of Electricity	67
HGL (hydrocarbon gas liquids)	33
Total energy consumed:	3661

Converting British Thermal Unit (BTUS) to Terawatt hours (TWh)

1 BTU = 2.9307 e- 13 TWh

Similarly 3661 Trillion BTUS = 3.661e+15 BTUS = (3.661e+15) * (2.9307e-13)

=1072.93 TWh

Total energy consumed by the New York City was about 1072.93 TWh. This amount of energy consumed was assumed to be the total energy demand that the city required. The team then decided to use this total energy demand to create a baseline scenario for the amount of non renewable sources required to meet the total needs of the city. The value that will be used will be rounded to the nearest integer, thus taken as 1073 TWh.

Renewables

Given our data on the energy consumption for New York City, 428 Trillion Btus are consumed from renewable sources, including Hydroelectric power, biomass and other renewables. This accounts for approximately 11.7% of the total energy consumed. This tells us that we can increase the renewable energy demand by 5% quite easily. Our value of 1073 TWh does not account for this 11.7% renewables. The EnergyPLAN software does not account for this, so we can zero all renewable source data and increase it from 0 to 5%. This will create a 5% increase on top of the existing 11.7%, lifting renewable sources to account for 16.7% of all energy consumed. This, however, will not be represented in our baseline scenario from energyPLAN.

Energy Supply

To supply New York City's energy demand of 1073 TWh, a power plant capacity of 187,000 MW-e at an efficiency of 33% is required.

Baseline Scenario Analysis

Inpu	t	S	tarto	lata	ì																The	e Ei	ner	gyP	LAI	۷ m	ode	113	3.0	
Electricity Fixed de Electric h Electric d	mand neating + cooling	1073.0 HP 0.0	00 I	Fixed i Transp Total	mp/ex ortation	kp. 0.0 on 0.0 1073.0	0 0 0			Group CHP Heat I Boiler			33	MJ/s 0 0.00	elec.	3.0	COF	CEEF Minim Stabil	regula num Sta isation	trate:Te tion abilisation share o	000 on shar of CHP	00000	0 0 0		Hydro	Price le	Capa MV	/-e G	Storage Whele 0 0.80	ec. Th
District h District h Solar The Industria Demand	eating de ermal I CHP (C	emand		Gr. 0.00 0.00 0.00 0.00	.1 10.0 0.0 0.0 10.0	00 0	0.00 0.00 0.00 0.00	r.3 20.00 0.00 0.00 20.00	0	Group CHP Heat I Boiler Conde	Pump	10	-		0.9	3.0	0	Minim Heat I Maxin Distr.	num PP Pump r	naximu port/ex	m shar port ur_nord	e 0.5 160	0 MV 0 MV d	v	Electr Electr Electr Ely. N	Turbin ol. Gr.: ol. Gr.: ol. tran dicroCh fuel ri	2: 0 3: 0 is.: 0 HP: 0		0.90 0 0.73 0 0.73 0 0.73 0 0.73	3 0.05 3 0.05 3
Wind Photo Vo Offshore			0 MW 0 MW 0 MW	0.	0 7	ΓWh/ye	ar 0.0	00 Grid 10 stabi 10 satio		Fixed	Boiler	gr.2: gr.20	0.0 Per	cent	gr(10 GW 0.0 Per (TWh/)	cent	Multip Deper	olication ndency	factor factor ket Pric	2.00 0.00 ce227	DKK/I	vivvh p	or. MW	CB Use or reco	/year)	Coal	Oil 0.00	Ngas	Biom 0.00
River Hy Hydro Po Geotherr	ower	ear	0 MW 0 MW 0 MW		0 7	ΓWh/ye ΓWh/ye ΓWh/ye	ar	0 share	e	Gr.1: Gr.2: Gr.3:			0.0 0.0 0.0	0.0	0			Synga	Storage as capa s max	icity	0	GWh MW MW			House Indus Vario	try	0.00	0.00 0.00 0.00	0.00	0.00 0.00 0.00
Outp	out																											-		
-				Distr	ict He	eating														Electri	city								Excl	hange
	Demand	i			Produ	uction							Consu	ımptior	1				E	roducti	on				Е	Balance)		_	
	Distr. heating	Solar	Waste- CSHP I		CHP	HP	ELT	Boiler			demar	Flex.8	p HP			Hydro Pump	bine	RES	Hy- dro th	nermal	Waste CSHP	CHP	PP		Imp	Exp	CEEP		Payn Imp	Exp
	MW	MW		MW	MW	MW	MW	MW	MW	MW	GW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	GW	%	MW	MW	MW	MW		n DKK
anuary ebruary	3856 3644	0	0	0	0	300	0	3556 3344	0	0	138 137	0	100	0	0	0	0	0	0	0	0	0	138 137	333	2	0	0	0	4	(
/ebluary //arch	3140	0	0	0	0	300	0	2840	0	0	131	0	100	0	0	0	0	0	0	0	0	0	132	333	0	0	0	0	0	(
pril	2346	o	0	0	0	300	0	2046	0	0	116	0	100	0	0	0	0	0	0	0	0	0	116	333	0	0	0	0	0	
Лау	1538	0	0	0	0	288	0	1250	0	0	113	0	96	0	0	0	0	0	0	0	0	0	113	333	0	0	0	0	0	(
lune	1124	0	0	0	0	281	0	843	0	0	110	0	94	0	0	0	0	0	0	0	0	0	110	333	0	0	0	0	0	(
luly	913	0	0	0	0	228	0	684	0	0	100	0	76	0	0	0	0	0	0	0	0	0	100	333	0	0	0	0	0	(
August Septembe	946	0	0	0	0	235 300	0	711 1033	0	0	115 118	0	78 100	0	0	0	0	0	0	0	0	0	115 118	333	0	0	0	0	0	(
October	2072	0	0	0	0	300	133		0	0	123	0	100	0	0	0	0	0	0	0	0	0	123	333	0	0	0	0	0	(
lovembe		0	0	0	0	300	0	2623	0	ō	133	0	100	0	0	0	0	0	0	0	0	0	133	333	0	0	0	0	0	(
ecembe	r 3533	0	0	0	0	300	0	3233	0	0	133	0	100	0	0	0	0	0	0	0	0	0	133	333	3	0	0	0	1	(
Average	2277	0	0	0	0	286	0	1991	0	0	122	0	95	0	0	0	0	0	0	0	0	0	122	333	0	0	0	0	Averag	ge price
Maximum		0	0	0	0	300			0	0	188	0	100	0	0	0	0	0	0	0	0	0	187	333	1494	0	0	0		K/MWh
∕linimum	820	0	0	0	0	205	0	615	0	0	61	0	68	0	0	0	0	0	0	0	0	0	61	333	0	0	0	0	1098	313
Wh/year	20.00	0.00	0.00	0.00	0.00	2.51	0.00	17.49	0.00	0.00	1073	0.00	0.84	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1074		0.00	0.00	0.00	0.00	4	(
FUEL BA	ALANCE DHP		rear): 2 CHP:	3 Boi	ler2 E	Boiler3	PP	Geo/N	lu Hydr	o Wa		AES Bi c.ly. ve			Wind	PV	Offs	h. Hyd	dro Sc	dar.TtT	ransp.h	nouseh	Indus Nario	stry us Tota		mp/Exp	Corrected Net		2 emiss otal N	
Coal	н	-	-	2.7	8 2	2.08 81	3.51	-	-	Н		-	-	-	=	-	-	н		-	-	-	-	818.3			318.37	279	.88279	.88
Oil	-	-	-	2.7	200	2.08 81		-	-	-		-	-	-	-	-	-	-		-	-	-	=	818.3	2 7		318.37	33556	3.01218	
N.Gas		-	-	2.7		2.08 81		-	-	-		-	*	-	-	-	-	-		-	-	*	-	818.3			318.37		.05167	
Biomass Renewal		115		2.7	0 2	2.08 81	3.51	-				-	2	-	-	-	-			ā. 2	-	2	-	818.3		0.00	0.00			.00
H2 etc.	-	-	0	0.0	0 0	0.00	0.00	10	50 90	0			-	6	8	10	0			a =	(1) (4)	8	8	0.0		0.00	0.00			.00
Biofuel	-	-	-	-		-	-		-	-				-	5	-	-	-		-			-	0.0		0.00	0.00			.00
Nuclear/	ccs -	-	-	-		-	-	-	21	=		-	-	-	-	-	2	_		-	-	-	-	0.0	0 0	0.00	0.00	(0.00	.00

10_October_2018 [10:16]

Fig 2

											Dist	trict He	atina P	roducti	ion													VIII
	G	r.1		T						Gr.2									Gr.3						R	ES speci	ification	
	District				District					222222			Stor-	Ва-	District								Stor-	Ва-	RES1	RES2	RES3 F	RES Tota
	heating	Solar	CSHP	DHP	heating	Solar	CSHP	CHP	HP	ELT	Boiler	EH	age	lance	heating	Solar	CSHP	CHP	HP	ELT	Boiler	EH	age	lance	Wind	Photo (Offshc 4	-7 √in
	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	/ MW	MW	MW N
lanuary	0	0	0	0	1928	0	0	0	0	0	1928	0	0	0	1928	0	0	0	300	0	1628	0	0	0	0	0 (0	0
ebruary	0	0	0	0	1822	0	0	0	0	0	1822	0	0	0	1822	0	0	0	300	0	1522	0	0	0	0	0 0	0	0
//arch	0	0	0	0	1570	0	0	0	0	0	1570	0	0	0	1570	0	0	0	300	0	1270	0	0	0	0	-	0	0
April	0	0	0	0	1173	0	0	0	0		1173	0	0	0	1173	0	0	0	300	0	873	0	0	0	0		0	0
Лау	0	0	0	0	769	0	0	0	0	0	769	0	0	0	769	0	0	0	288	0	481	0	0	0	0		0	0
une	0	0	0	0	562	0	0	0	0	0	562	0	0	0	562	0	0	0	281	0	281	0	0	0	0		0	0
uly	0	0	0	0	456	0	0	0	0	0	456	0	0	0	456	0	0	0	228	0	228	0	0	0	0	8	0	0
August	0	0	0	0	473	0	0	0	0	0	473	0	0	0	473	0	0	0	235	0	238	0	0	0	0		0	0
Septembe		0	0	0	666	0	0	0	0	0	666	0	0	0	666	0	0	0	300	0	366	0	0	0	0	5 5	0	0
otober	0	0	0	0	1036	0	0	0	0	0	1036	0	0	0	1036	0	0	0	300	0	736	0	0	0	0		0	0
ovembe		0	0	0	1462	0	0	0	0	0	1462	0	0	0	1462	0	0	0	300		1162	0	0	0	0		0	0
Decembe	1 0	U	U	U	1766	U	U	U	U	U	1766	U	U	U	1766	0	U	0	300	0	1466	0	U	U		U	U	U
verage	0	0	0	0	1138	0	0	0	0		1138	0	0	0	1138	0	0	0	286	0	853	0	0	0	0		0	0
Maximum		0	0	0	2025	0	0	0	0		2025	0	0	0	2025	0	0	0	300		1725	0	0	0	0		0	0
/linimum	0	0	0	0	410	0	0	0	0	0	410	0	0	0	410	0	0	0	205	0	205	0	0	0	0	0	0	0
otal for t	he whole	year																										
Wh/year	0.00	0.00	0.00	0.00	10.00	0.00	0.00	0.00	0.00	0.00	10.00	0.00		0.00	10.00	0.00	0.00	0.00	2.51	0.00	7.49	0.00		0.00	0.00	0.00	0.00	0.00 0
ranium oal uelOil asoil/Dietrol/JP			0 133	07370	,			Janua Febru March	ry 9 ary 9	oilers MW 988 929 789	0	MV 104666 10354 9967	V 1 6 4 8	idual MW 0 0 0	port MW 0 0 0	0	Sur MV 105654 104473 100462	V 1 1 3 2	gas VIW 0 0 0	gas MW 0 0	gas MV 0	/ r))	gas VIVV 0 0 0	gas MW 0 0	0 -	104473 100462	port MW 105654 104473 100462	/ MV
as hanc		13	224					April		568	0	8784		0	0	0	88412		0	0	C		0	0	0	88412	88412	
iomass	=	217						May		347	0	8570		0	0	0	86053		0	0	0		0	0	0	86053	86053	
ood inco	me =		0					June		234	0	8329		0	0	0	83534		0	0	0		0	0	0	83534	83534	
Vaste	=		0					July		190	0	7594		0	0	0	76132		0	0	0		0	0	0	76132	76132	
-1-1 11			-1	00046				Augus		197	0	8736		0	0	0	87564		0	0	0		0	0	0	87564	87564 89960	
otal Nga	s exciia	nge co	ISIS =	26810	,			Septe		287 492	0	89673 9301		0	0	0	89960 93500		0	0	0		0	0	0	89960 93503	93503	
Marginal	operation	n costs	=	2833	3			Octob Nover		729		10050		0	0	-	101232		0	0	0		0	0			101232	
otal Elec	tricity ex	chang	e =	4	ı			Decer		398		10053		0	0		101433		0	0	0		0	0			101433	
mport	=		4					Avera	ao 1	553	0	92613	2	0	0	0	93166		0	0	C	í	0	0	0	93166	93166	. (
xport	=		0					Maxim	•			14166		0	0		142623		0	0	0		0	0			142623	
ottlenec			0					Minim		171	0	4641		0	0	0	46598		0	0	C		0	0	0	46598	46598	
ixed imp	/ex=		0									4041		U	U	J	40000	,	U	J	·	,	U	U	U	-0000	40000	
	emissio	on cost	ts =	19017	7			Total f			year 0.00	813.5	1 0	0.00	0.00	0.00	818.37	7 0	.00	0.00	0.00) 0	.00	0.00	0.00	818.37	818.37	0.00
otal CO2				116641	i																							
otal CO otal vari ixed ope				11695																								
otal vari		osts =			5																							

Fig 3

In our baseline scenario, energy demand is being supplied by fossil fuels including coal, oil, natural gas, and also the use of biomass.

With a power plant efficiency of 33% for all fossil fuel plants (to reduce complexity), we would need about 3250 TWh/year worth of fuel to be sourced. As the EnergyPlan report reflects, there is a total of 3273.47 TWh/year being sourced from a power plant and two boilers.

Energy Source	Amount of CO2 Emission (in Mt)
Coal	279.88
Oil	218.01
Natural Gas	167.05
Total CO2 Emission:	664.94

Costs using energy plan are computed in DKK. To make it better understandable, we have converted these costs into USD using the conversion 1 DKK = 0.154 USD.

	Annual Cost (in Million DKK)	Annual Cost (in Million USD)
Coal	9133	1406
Oil	35847	5520
Gas Handling	1224	188
Biomass	21772	3353
Natural Gas Exchange	26810	4129
Marginal Operation	2833	436
Electricity Exchange	4	1
CO2 Emission	19017	2929
Fixed Operation	11695	1801
Annual Investment	12761	1965
Total Cost:	141097	21729

Baseline Scenario Conclusion

As we can see from the above data, there is a large amount of CO2 being emitted from fossil fuel plants and there is also a large cost attached to it. Excess amounts of CO2 in the air not only harm the environment with problems such as global warming, but if it reaches a certain concentration, our air quality will actually be hindered enough to cause harm to humans.

If we could implement a plan to utilize renewable resources as a source of power, we could reduce CO2 emissions and cost associated with it, thus creating a more sustainable future. In our case, we will be converting 5% of the total power need of New York City into that of renewable resources.

II. Renewables Scenario

Introduction

Currently, New york city receives most of its electricity from instate NY from power plants, solar/wind fields, and hydropower from many rivers.

Given that New York city is a very condensed area filled with buildings and people, it is hard to integrate renewable resources close to or inside city limits. Wind power could be used to an extent offshore. Furthermore, instate rivers could be utilized for hydropower; however, using sources farther away from the city would increase costs due to loss of efficiency in transporting the power as well as infrastructure changes and additions.

If we were to increase the amount of renewable energy used from 0% to 5%, we would need 53.65 or about **54 TWh** of the 1073 TWh of energy coming from these chosen renewable resources.

Renewable Scenario Analysis

Inpu	t	S	tartd	lata																	The	e Er	ner	gyPl	LAN	1 m	ode	113	3.0	
Electricity Fixed der Electric h	mand leating +	1073.0	00 F	Flexible Fixed in Franspo Fotal	mp/exp ortation	. 0.0	0			Group CHP Heat I) (MJ/s 0 0.40 0	elec. 0 0.5	3.0	COP	CEEP Minim	regula	tion bilisation	on share	000000		0. 1		Price le	Capa	V-e G	Storage Wh ele	
District he District he Solar The Industrial Demand	eating de ermal CHP (C	shP)	(Gr. 0.00 0.00 0.00 0.00	1 10.00 0.00 0.00 10.00	0	G 0.00 0.00 0.00	20.00 0.00 0.00 20.00)	Group CHP Heat I Boiler Conde	ump	100	30 500	0 0.40	0.9	0 3.0	0	Minim Heat I Maxin	um CH um PP Pump n num im Name :	naximu port/ex	m share	0.50 1600) MV	v	Hydro Electr Electr Electr	Turbii ol. Gr.: ol. Gr.: ol. tran	ine: (2: (3: (ns.: (0.90 0 0.73 0 0.73 0 0.73 0 0.73	0.05
Wind			0 MW	0.0	00 TV	Vh/yea	ar 0.0	0 Grid	\exists	Heats	torage	gr.2:1		/h	gr.	10 GW			on facto			DKK/N	//Wh	-	10.00	fuel n	ratio: Coal	0.00 Oil	7	Di
Photo Vo Offshore River Hydro Po Geothern	Wind dro wer	550	0 MW 00 MW 00 MW 0 MW 0 MW	5.5 48.3	55 TV 31 TV	Vh/yea Vh/yea Vh/yea	ar 0.0 ar 0.0	0 stabil 0 sation 0 share	1			gr.2:0 od. from		6HP V 0 0.00	Vaste	(TWh/y		Avera Gas S Synga	ndency ige Mar Storage as capa s max t	ket Pric	0 0	DKK/N DKK/N GWh MW MW		r. MW	Trans House Indust Variou	port ehold try	0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00	0.00 0.00 0.00 0.00
Outp	ut																													
-				_	ict Hea				-	-										Electri				_	-				Exch	ange
	Demand Distr. heating	12000	Waste-	i Service services	Produc	HP	ELT	Boiler	EH	Ba-	Elec.	Flex.&		Elec- trolyser	90000	Hydro		RES	Ну-	Geo- nermal	Waste CSHP		PP	Stab- Load	Imp	Exp	CEEP	EED	Paym	ent Exp
-	MW	MW		MW	MW	MW	MW	MW	MW	MW	GW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	GW	%	MW	MW	MW	MW	Million	DKK
January	3856	0	0	0	0	300	0	3556	0	0	138	0	100	0	0	0	0	6435	0	0	0	0	132	100	0	0	0	0	0	0
February March	3644 3140	0	0	0	0	300	0	3344 2840	0	0	137	0	100	0	0	0	0	6130 6520	0	0	0	0	131	100	0	0	0	0	0	0
April	2346	0	0	0	0	300	0	2046	0	0	116	0	100	0	0	0	0	6056	0	0	0	0	110	100	0	0	0	0	0	(
May	1538	0	0	0	0	288	0	1250	0	0	113	0	96	0	0	0	0	5888	0	0	0	0	107	100	0	0	0	0	0	(
June	1124	0	0	0	0	281	0	843	0	0	110	0	94	0	0	0	0	6195	0	0	0	0	104	100	0	0	0	0	0	0
July	913	0	0	0	0	228	0	684	0	0	100	0	76	0	0	0	0	5673	0	0	0	0	95	100	0	0	0	0	0	6
August	946	0	0	0	0	235 300	0	711	0	0	115	0	78 100	0	0	0	0	5880	0	0	0	0	109	100	0	0	0	0	0	(
Septembe October	r 1333 2072	0	0	0	0	300	0	1772	0	0	118	0	100	0	0	0	0	6070 6102	0	0	0	0	117	100	0	0	0	0	0	
November		0	0	0	0	300		2623	0	0	133	0	100	0	0	0	0	6301	0	0	0	0	126	100	0	0	7.7	0	0	(
December		0	0	0	0	300		3233	0	0	133	0	100	0	0	0		6333	0	0	0	0	126	100	0	0		0	0	
Average	2277	0	0	0	0	286	0	1991	0	0	122	0	95	0	0	0	0	6132	0	0	0	0	116	100	0	0	0	0	Averag	e nrice
Maximum	4049	0	0	0	0	300	0	3749	0	0	188	0	100	0	0	0		7900	0	0	0	0	182	100	0	0	0	0	(DKK	
Minimum	820	0	0	0	0	205	0	615	0	0	61	0	68	0	0	0	0	5500	0	0	0	0	56	100	0	0	0	0	176	246
TWh/year	20.00	0.00	0.00	0.00	0.00	2.51	0.00	17.49	0.00	0.00	1073	0.00	0.84	0.00	0.00	0.00	0.00	53.86	0.00	0.00	0.00	0.00	1020		0.00	0.00	0.00	0.00	0	(
FUEL BA	DHP		rear): 2 CHP3	3 Boil	er2 Bo	iler3	PP	Geo/N	uHydi	o Wa		AES Bio			Wind	PV	Offs	h. Hyd	dro So	lar.Tt T	ransp.t	nouseh	Indus Vario	try us Tota		mp/Exp	Corrected p Net	1000	2 emissi otal Ne	
Coal	17.21		0	2.78	-	08 77	-	-		0.2		-			-		020	-				-	-	777.57	100		777.57		.93265.9	_
Oil		-	-	2.78		08 77			-	-		-		-		-	-	-		-	-	-	-	777.57			777.57		.14207.	
N.Gas		-	-	2.78		08 77		-	-	-				-		-	-	-		-	-		-	777.57 777.57			777.57		.72158.7	
Biomass Renewal	de -	-	-	2.78	2.	08 77	2.71		-					-	-	-	5.55	48.3	1			-	-	53.86		0.00	777.57 53.86		.00 0.0	
H2 etc.	-	-		0.00	0.0	00	-		-								0.00	. 40.3				0		0.00		0.00	0.00		.00 0.0	
Biofuel	0000	-		3.01	J.		-			-				-						-	-	-	-	0.00		0.00	0.00	100	.00 0.0	
Nuclear/0	ccs -	-	-	-			-	-				-				-	-	-				-	-	0.00	0 0	0.00	0.00	0	.00 0.0	00

Fig 4

										-		2 5 2		825													
				18					0.0	Dist	trict Hea	ating P	roducti	on				0.0					- 1				. Uv
		r.1							Gr.2						_			Gr.3					-		S speci		
	District heating MW	Solar	CSHP DH		Solar		CHP	HP MW	ELT	Boiler	EH	Stor- age MW	Ba- lance MW	District heating MW	Solar	CSHP	CHP	HP MW	ELT	Boiler	EH	Stor- age MW	Ba- lance MW	Wind MW	Photo (RES Tota -7 /in MW N
January	0	0		0 1928	0	0	0	0	0	1928	0	0	0	1928	0	0	0	300	0	1628	0	0	0	0	0	935	5500 64
ebruary	0	0	0	1822	0	0	0	0	0	1822	0	0	0	1822	0	0	0	300	0	1522	0	0	0	0	0	630	5500 61
March	0	0	100	0 1570	0	0	0	0	0	1570	0	0	0	1570	0	0	0	300	0	1270	0	0	0	0	0		5500 65
April	0	0		0 1173	0	0	0	0	0	1173	0	0	0	1173	0	0	0	300	0	873	0	0	0	0	0		5500 60
/lay	0	0		769	0	0	0	0	0	769	0	0	0	769	0	0	0	288	0	481	0	0	0	0			5500 5
une	0	0		562	0	0	0	0	0	562	0	0	0	562	0	0	0	281	0	281	0	0	0	0	0		5500 6
uly	0	0		0 456	0	0	0	0	0	456	0	0	0	456	0	0	0	228	0	228	0	0	0	0	0		5500 5
August	0 er 0	0	_	0 473	0	0	0		0	473	0	0	0	473	0	0	7	235	0	238	0	0	0	0	0		5500 5
Septembe	er U	0		0 666	0	0	0	0	0	666 1036	0	0	0	666 1036	0	0	0	300	0	366 736	0	0	0	0			5500 60 5500 6
October Novembe		0		1462	0	0	0	0	0	1462	0	0	0	1462	0	0	0	300		1162	0	0	0	0			5500 6
Decembe		0		0 1766	0	0	0	0		1766	0	0	0	1766	0	0	0	300	0	1466	0	0	0	0		833	
	0	0	-	0 1138	0	0	0	0	- 0	20000000	0	0	0	1138	0	0	0	286	0	853	0	0	0	0	7.0	120,300,00	5500 6
Average Maximum		0		2025	0	0	0	0	0	2025	0	0	0	2025	0	0	0	300		1725	0	0	0	0			5500 79
Minimum	0	0		0 410	0	0	0	0	0	410	0	0	0	410	0	0	0	205	0	205	0	0	0	0			5500 5
Total for t		e year	<u> </u>	1	1,050	- 5	353	74		200	- 55			11070		1/42/3	- 5		1070	07000	17.1		-			1000	
Wh/year	0.00	0.00	0.00 0.0	0 10.00	0.00	0.00	0.00	0.00	0.00	10.00	0.00		0.00	10.00	0.00	0.00	0.00	2.51	0.00	7.49	0.00		0.00	0.00	0.00	5.55 4	8.31 53
Own use	of heat f	rom inc	dustrial CH	.00 TWh/ye	ar																						
																N	IATUR	AL GAS	EXCH	ANGE							
ANNUAL	COSTS	(Milli	on DKK)						OHP &	CHP2	PP	li	ndi-	Trans	Indu.	Der	mand i	Bio-	Syn-	CO2	Hy S	ynHy	SynHy	Stor-	Sum	lm-	Ex-
Total Fue	l ex Nga	s excha	ange = 64	589				E	Boilers	CHP3	CAE	S v	ridual	port	Var.	Su	m g	gas	gas	gas	ç	gas	gas	age		port	por
Jranium	=		0						MW	MW	MW	1	MW	MW	MW	MV	V	WW	MW	MW	1	MW	MW	MW	MW	MW	MV
Coal	=		78				Januar	v	988	0	99793	3	0	0	0	10078	0	0	0	0	1	0	0	0 1	00780	100780	
FuelOil	=	340					Februa		929	0	98900		0	0	0	9982		0	0	0		0	0	0	99829	99829	
Gasoil/Di			0				March		789	0	94733		0	0	0	9552		0	0	0		0	0	0	95522	95522	
Petrol/JP			0				April		568	0	83255	5	0	0	0	8382	4	0	0	0	1	0	0	0	83824	83824	
Sas hand			64				May		347	0	81246	5	0	0	0	8159	3	0	0	0	1	0	0	0	81593	81593	
Biomass	=	206					June		234	0	78606	5	0	0	0	7884	0	0	0	0	1	0	0	0	78840	78840	
ood inco	ome =		0				July		190	0	71644	1	0	0	0	7183	4	0	0	0	1	0	0	0	71834	71834	
Vaste	-		U				August	t	197	0	82912	2	0	0	0	8310	9	0	0	0	1	0	0	0	83109	83109	9
otal Nga	s Excha	nge co	sts = 25	473		3	Septer	nber	287	0	85075	5	0	0	0	8536	2	0	0	0	1	0	0	0	85362	85362	
Marginal	oporatio	n costs	- 2	692			Octobe	er	492	0	88389)	0	0	0	8888	1	0	0	0	1	0	0	0	88881	88881	
	S. and the second					1	Novem		729	0	95730		0	0	0	9645		0	0	0		0	0	0	96458	96458	
otal Elec		change		0			Decem	nber	898	0	95740)	0	0	0	9663	8	0	0	0	1	0	0	0	96638	96638	
	=		0				Averag	je .	553	0	87968	3	0	0	0	8852	1	0	0	0	1	0	0	0	88521	88521	
Export	=		0				Maxim		041	0	137754		0	0	0	13868		0	0	0	1	0	0		38681	138681	
Bottlenec			0				Minimu	um	171	0	42201	i i	0	0	0	4238	3	0	0	0	1	0	0	0	42383	42383	
			13.7% 10.7%				Total fo	or the	whole	vear																	
Total CO				069			TWh/y				772.71	(0.00	0.00	0.00	777.5	7 (.00	0.00	0.00	0	.00	0.00	0.00	777.57	777.57	0.00
Total vari			110																								
ixed ope				178																							
	vestmen	it costs	- 13	101																							
OTAL A		0005	5 = 136																								

Fig 5

Cost conversion:

	Annual Cost (in Million DKK)	Annual Cost (in Million USD)
Coal	8678	1336
Oil	34061	5245
Gas Handling	1164	179
Biomass	20687	3186
Natural Gas Exchange	25473	3923
Marginal Operation	2692	415
Electricity Exchange	0	0
CO2 Emission	18069	2783
Fixed Operation	12178	1875
Annual Investment	13761	2119
Total Cost:	136761	21061

Cost comparison: Baseline vs. 5% Renewable

	Baseline Cost (in Million USD)	5% Renewable Cost (in Million USD)	Cost Difference (in Million USD)
Coal	1406	1336	-70
Oil	5520	5245	-275
Gas Handling	188	179	-9
Biomass	3353	3186	-167
Natural Gas Exchange	4129	3923	-206
Marginal Operation	436	415	-21
Electricity Exchange	1	0	-1
CO2 Emission	2929	2783	-146
Fixed Operation	1801	1875	+74
Annual Investment	1965	2119	+154
Total Cost:	21729	21061	-668

As we can see through the cost comparison table above between the two different scenarios, it is clear that the total annual cost will be noticeably lower with the use of renewable resources. To be exact, it would be 3.1% lower.. While working with billions of dollars, this small change is actually quite significant. Through the minor replacement of clean, renewable resources with the previous fossil fuels and biomass, the cost reduces as expected in these areas.

Another notable difference is the reduction to 0 in electricity exchange cost. This is most likely due to the more direct and more efficient process that wind power and hydropower use to convert their mechanical energy into electrical energy. In our case, these changes were enough to make these costs negligible in the grand scheme of things.

However, not all cost areas were reduced in the switch to a more sustainable scenario. Fixed operation cost and annual investment increased after utilizing wind and hydropower. This is because of the increase in power producing units such as wind turbines and hydropower plants. For example, it would take sixty(60) 10MW wind turbines to produce the same power of a small 600 MW fossil fuel plant. The annual investment cost is higher using renewables due to clean energy's large investments to implement. As time goes on the investment costs will lower. Below is a diagram for visualization.

Long term cost trends at constant consumption

As we can see, initially relative cost of renewables is higher than that of fossil fuel plants but renewable energy will continue to drop over time while non renewables rise in price.

In the long term, it is cheaper to use renewable resources making this scenario very appealing and a common sense direction to take for a more sustainable future.

CO2 Emission Comparison: Baseline vs. 5% Renewable

Energy Source	Baseline CO2 Emission (in Mt)	5% Renewable CO2 Emission (in Mt)	Emission Difference (in Mt)
Coal	279.88	265.93	-13.95
Oil	218.01	207.14	-10.87
Natural Gas	167.05	158.72	-8.33
Total CO2 Emission:	664.94	631.79	-33.15

As expected, replacing 5% of power production with hydropower and wind power reduced the total CO2 output by 5%. Specifically by 33.15 megatons. Again, this scenario will be cleaner, thus reducing environmental damage and making it a very rational solution.

As can be seen in *Figure 7*, where the stems represent energy demand by month and the blue dashed line represents average energy demand, there is not a consistent electricity demand throughout the year. Since heating makes up a huge proportion of energy consumption, the winter months require more energy to be produced. This will be discussed later when the viability of the proposed energy plan is examined.

Fig 7

Unsurprisingly, hydroelectric energy production is consistent over the year. This is a huge benefit of hydroelectricity, and is part of the reason that New York City currently uses it to produce almost 7% of its current electricity supply. This consistency is something that most other renewables lack. This is illustrated in the graph of offshore wind production, there is far less consistency in production capabilities. This is a major weakness of wind power, but despite this, New York State plans to install over 2400 MW of offshore wind production by 2030 (1). Much of the proposed wind farm area is near NYC and could provide far more than the 5.5 TW.hr/year the current EnergyPLAN simulation includes.

Discussion of Other Energy Sources

Though there is a huge potential for other renewable electricity sources in New York City, the current state of technology limits their use. The lack of solar is especially significant. Solar, especially Photovoltaic, could be implemented on a large scale throughout the city. Rooftop solar, according to Project Sunroof (2), has the potential to provide 9.5 TW.hr/year of electricity. This amounts to just under 1% of the current total energy consumption of NYC, and while that sounds insignificant, that is only one form of implementation. However, the costs of implementing this system are currently prohibitive. At \$3.47/watt (3), the total cost of implementing this solar capacity would be around \$30 Billion.

Cost is not the only issue with solar. As a rapidly evolving and improving technology, large scale solar installations will inevitably be outpaced and outdated in a matter of years. This forces governments to consider the timing of implementation, as the cost of updating technology could be comparable to or greater than the initial cost.

It can be difficult to convince property owners to allow these types of installations. Solar panels are not generally considered aesthetically pleasing, and the installation process can be disruptive. For commercial buildings especially, disruptive construction can incur costs beyond the raw cost of the installation itself, as the building operation is affected by the installation.

The biggest challenge of switching to renewable energy is simply that they cannot match fossil fuel production capacity. Fossil fuels are incredibly energy dense, and as discussed above, even covering all the viable rooftops in NYC only addresses a tiny fraction of the energy consumption. There is, however, a way to cover a larger percentage of energy demand without spending huge sums of money, and that is reducing demand. The United States has an energy consumption higher than any other country in the world, and that shows a clear opportunity for improvement. Changes in lifestyle such as simple as adjusting the thermostat closer to the outdoor temperature can have profound impacts on energy consumption.

Another huge energy draw is lighting, so switching to more efficient lighting options like LEDs can lead to large reductions in total consumption. And as seen in the MacKay lecture on the first day of class, simply increasing awareness of personal energy consumption can cause individuals to reduce their use. It is important to emphasize the cost aspect of reducing use. It is not just good for the environment, it will save consumers money, in some cases significant amounts of money, to be more energy conscious.

Conclusion

Though implementing renewable energy on a large scale can be costly, the benefits more than make up for it. The annual cost of energy generation actually decreases when more renewables are used as fuel costs for many renewables, especially wind and hydroelectric, are zero. After enough time, investment in renewable energy saves money. It isn't just money that is saved when switching to renewable energy.

The IPCC reports that, unless carbon emissions are reduced by 45% of their 2010 levels by 2030 and then reach "net zero" by 2050, then the plane will exceed 1.5 degrees celsius in warming. The planet is already experiencing 1 degree increases per year and had seen some dramatic and irreversible effects, experts fear the what could happen if the world stays on its current track of 2 degrees per year.

The planet is already expected to lose 70-90% of the worlds coral reef ecosystems on the 1.5 degree track, but will be expected to lose them all if on a track of 2 degrees. Staying on the

1.5 degree track will also mean that the world's water levels will increase by 10 cm less than the worse case scenario.

But even if the IPCC's efforts had the world on net zero carbon emission, the effects of global warming will be felt harshly on the environment and the economy. With some hefty optimism, and a lot of research, perhaps the planet can be clean and efficient enough with their energy production and usage to help the planet stabilize for future generations. That is where the importance lies in this report. Simple research and use of programs like EnergyPLAN can help users plan and size the amount of energy required for different cities and even countries. This information can then be used in conjunction with feasibility studies to plan out possible sources of renewable and just how much we can cut out fossil fuels, reduce emissions, and approach sustainability just like what was done in this report.

Lastly, there is a lot of power in just simply spreading the information about the good renewables can bring to cities such as New York let alone the world. This report and ones like it can help educate average people in the importance of renewables and the feasibility behind reaching sustainability. The information in this report can help motivate and maybe even assist researchers in developing more efficient and reasonable processes of generating, transporting and storing renewable energy. Every bit will count when it comes to reaching the IPCC's goals of avoiding catastrophe and helping our planet last for many more generations.

References

- 1. United States, NYSERDA. (n.d.). New York State offshore wind master plan: Charting a course to 2,400 megawatts of offshore wind energy.
- 2. Project Sunroof Data Explorer | New York. (n.d.). Retrieved October 13, 2018, from https://www.google.com/get/sunroof/data-explorer/place/ChIJOwg_06VPwokRYv534QaPC8g/
- 3. Matasci, S. (2018, September 21). 2018 Solar Panel Cost | Updated Avg. Solar System Prices by State. Retrieved from https://news.energysage.com/how-much-does-the-average-solar-panel-installation-cost-in-the-u-s/
- 4. Miller, Brandon. "Planet Has Only until 2030 to Stem Catastrophic Climate Change, Experts Warn." *CNN*, Cable News Network, 8 Oct. 2018, www.cnn.com/2018/10/07/world/climate-change-new-ipcc-report-wxc/index.html.
- 5. Gupta, A. (2018). *3A Energy Conversion Systems for Sustainability* [PowerPoint presentation]. Retrieved from ELMS.