

EPCQA Serial Configuration Device Datasheet

CF52014 2017.08.02

Contents

1.1 Supported Devices	3
1.2 Features	3
1.3 Operating Conditions	4
1.3.1 Absolute Maximum Ratings	4
1.3.2 Recommended Operating Conditions	4
1.3.3 DC Operating Conditions	4
1.3.4 AC Measurement Conditions	5
1.3.5 ICC Supply Current	5
1.3.6 Capacitance	
1.4 Pin Information	
1.4.1 Pin-Out Diagram for EPCQ4A, EPCQ16A and EPCQ32A Devices	
1.4.2 Pin-Out Diagram for EPCQ64A and EPCQ128A Devices	
1.4.3 EPCQA Device Pin Description	
1.5 Device Package and Ordering Code	
1.5.1 Package	
1.5.2 Ordering Code	
1.6 Memory Array Organization	
1.6.1 Address Range for EPCQ4A	
1.6.2 Address Range for EPCQ16A	10
1.6.3 Address Range for EPCQ32A	11
1.6.4 Address Range for EPCQ64A	12
1.6.5 Address Range for EPCQ128A	13
1.7 Memory Operations	15
1.7.1 Timing Requirements	15
1.8 Status Register	16
1.8.1 Read Status Operation	16
1.8.2 Write Status Operation	19
1.9 Summary of Operation Codes	20
1.9.1 Read Bytes Operation (03h)	20
1.9.2 Fast Read Operation (0Bh)	
1.9.3 Extended Dual Input Fast Read Operation (BBh)	
1.9.4 Extended Quad Input Fast Read Operation (EBh)	
1.9.5 Read Device Identification Operation (9Fh)	
1.9.6 Read Silicon Identification Operation (ABh)	
1.9.7 Write Enable Operation (06h)	
1.9.8 Write Disable Operation (04h)	
1.9.9 Write Bytes Operation (02h)	
1.9.10 Quad Input Fast Write Bytes Operation (32h)	
1.9.11 Erase Bulk Operation (C7h)	
1.9.12 Erase Sector Operation (D8h)	
1.9.13 Erase Subsector Operation (20h)	
1.10 Power Mode	
1.11 Timing Information	
1.11.1 Write Operation Timing	
1.11.2 Read Operation Timing	
1.12 Programming and Configuration File Support	
1 13 Document Revision History	32

1 EPCQA Serial Configuration Device Datasheet

Related Links

AN822: Intel® Configuration Device Migration Guideline

1.1 Supported Devices

Table 1. Supported Intel EPCQA Devices

Device	Memory Size (bits)	On-Chip Decompression Support	ISP Support	Cascading Support	Reprogrammable	Recommended Operating Voltage (V)
EPCQ4A	4,194,304	No	Yes	No	Yes	3.3
EPCQ16A	16,777,216	No	Yes	No	Yes	3.3
EPCQ32A	33,554,432	No	Yes	No	Yes	3.3
EPCQ64A	67,108,864	No	Yes	No	Yes	3.3
EPCQ128A	134,217,728	No	Yes	No	Yes	3.3

1.2 Features

EPCQA devices offer the following features:

- Serial or quad-serial FPGA configuration in devices that support active serial (AS) x1 or AS x4⁽¹⁾ configuration schemes
- · Low cost, low pin count, and non-volatile memory
- 2.7-V to 3.6-V operation
- Available in 8-pin small-outline integrated circuit (SOIC) package for EPCQ4A, EPCQ16A, and EPCQ32A devices
- Available in 16-pin SOIC package for EPCQ64A and EPCQ128A devices
- Reprogrammable memory more than 100,000 program-erase cycles
- Write protection support for memory sectors using status register bits
- Fast read, extended dual input fast read, and extended quad input fast read of the entire memory using a single operation code
- Reprogrammable with an external microprocessor using the SRunner software driver

⁽¹⁾ AS x4 is not applicable for EPCQ4A.

- In-system programming (ISP) support with the SRunner software driver
- ISP support with Intel® FPGA Download Cable II, Intel FPGA Download Cable, or Intel FPGA Ethernet Cable
- By default, the memory array is erased and the bits are set to 1

1.3 Operating Conditions

1.3.1 Absolute Maximum Ratings

Table 2. Absolute Maximum Ratings for EPCQA Devices

Symbol	Parameter	Condition	Min	Max	Unit
V _{CC}	Supply voltage	With respect to GND	-0.6	4.6	V
VI	DC input voltage	With respect to GND	-0.6	V _{CC} +0.4	V
T _{STG}	Storage temperature	No bias	-65	150	°C

1.3.2 Recommended Operating Conditions

Table 3. Recommended Operating Conditions for EPCQA Devices

Symbol	Parameter Condition		Min	Max	Unit
V _{CC}	Supply voltage	(2)	2.7	3.6	V
T _A	Operating temperature	For industrial use	-40	85	°C

1.3.3 DC Operating Conditions

Table 4. DC Operating Conditions for EPCQA Devices

Symbol	Parameter	Condition	Min	Max	Unit
V _{IH}	High-level input voltage	_	0.7 x V _{CC}	V _{CC} + 0.4	V
V _{IL}	Low-level input voltage	_	-0.5	0.3 x V _{CC}	V
V _{OH}	High-level output voltage	I _{OH} = -100 μA	V _{CC} - 0.2	_	V
V _{OL}	Low-level output voltage for EPCQ4A	I _{OL} = 100 μA	_	0.4	V
	Low-level output voltage for EPCQ16A, EPCQ32A, EPCQ64A, and EPCQ128A		-	0.2	V
I _I	Input leakage current	V _I =V _{CC} or GND	-2	2	μΑ
I _{OZ}	Tri-state output off-state current	$V_0 = V_{CC}$ or GND	-2	2	μΑ

 $^{^{(2)}}$ V_{CC} voltage during a Read operation can operate across the min and max range but should not exceed $\pm 10\%$ of the programming (erase/write) voltage.

1.3.4 AC Measurement Conditions

 Table 5.
 AC Measurement Conditions for EPCQA Devices

Symbol	Parameter	Min	Max	Unit
C _L	Load Capacitance	_	30	pF
T _R , T _F	Input Rise and Fall Times	_	5	ns
V _{IN}	Input Pulse Voltages	0.1 V _{CC} t	V	
IN	Input Timing Reference Voltages	0.3 V _{CC} to 0.7 V _{CC}		V
Out	Output Timing Reference Voltages	0.5 V _{CC} t	V	

Figure 1. AC Measurement I/O Waveform

1.3.5 ICC Supply Current

Table 6.I_{CC} Supply Current AC Measurement

Symbol	Parameter	Condition	Min	Max	Unit
I _{CC0}	V _{CC} supply current for EPCQ4A, EPCQ16A, EPCQ32A, and EPCQ64A			50	μΑ μΑ
	V _{CC} supply current for EPCQ128A		10	60	
I _{CC1}	V _{CC} supply current for EPCQ4A	During active power mode	1	5	mA
	V _{CC} supply current for EPCQ16A, EPCQ32A, and EPCQ64A		1	15	
	V _{CC} supply current for EPCQ128A		1	20	

1.3.6 Capacitance

Table 7. Capacitance for EPCQA Devices

Capacitance is sample-tested only at T_A = 25 $^{\circ}\text{C}$ and at V_{CC} = 3.0 V.

Symbol	Parameter	Parameter Condition		Max	Unit
C _{IN}	Input pin capacitance	V _{IN} =0 V	_	6	pF
C _{OUT}	Output pin capacitance	V _{OUT} =0 V	_	8	pF

1.4 Pin Information

1.4.1 Pin-Out Diagram for EPCQ4A, EPCQ16A and EPCQ32A Devices

Figure 2. AS x1 and AS x4 Pin-Out Diagrams for EPCQ4A, EPCQ16A, and EPCQ32A Devices

Note: EPCQ4A supports AS x1 only.

1.4.2 Pin-Out Diagram for EPCQ64A and EPCQ128A Devices

Figure 3. AS x1 and AS x4 Pin-Out Diagrams for EPCQ64A and EPCQ128A Devices

Notes:

N.C pins must be left unconnected.

There is an internal pull-up resistor for the dedicated nRESET pin. If the reset function is not needed, connect this pin to Vcc or leave it unconnected.

1.4.3 EPCQA Device Pin Description

EPCQA Device Pin Description Table 8.

Pin Name							Pin Type	Description
	Pin Number in 8-Pin SOIC Package	Pin Number in 16- Pin SOIC Package	Pin Number in 8-Pin SOIC Package	Pin Number in 16- Pin SOIC Package				
DATAO	5	15	5	15	I/O	For AS x1 mode, use this pin as an input signal pin to write or program the EPCQA device. During write or program operations, data are latched at rising edges of the DCLK signal. This pin is equivalent to the ASDI pin in EPCS devices. For AS x4 mode, use this pin as an I/O signal pin. During write or program operations, this pin acts as an input pin that serially transfers data into the EPCQA device. The data are latched at rising edges of the DCLK signal. During read or configuration operations, this pin acts as an output signal pin that serially transfers data out of the EPCQA device to the FPGA. The data is shifted out at falling edges of the DCLK signal. During the quad input fast write bytes operation, this pin acts as an input pin that serially transfers data into the EPCQA device. The data is latched at rising edges of the DCLK signal. During extended dual input fast read or extended quad input fast read operations, this pin acts as an output signal pin that serially transfers data out of the EPCQA device to the FPGA. The data is shifted out at falling edges of the DCLK signal.		
DATA1	2	8	2	8	I/O	For AS x1 and x4 modes, use this pin as an output signal pin that serially transfers data out of the EPCQA device to the FPGA during read or configuration operations. The transition of the signal is at falling edges of the DCLK signal. This pin is equivalent to the DATA pin in EPCS devices. During the quad input fast write bytes operation, this pin acts as an input signal pin that serially transfers data into the EPCQA device. The data is latched at rising edges of the DCLK signal. During extended quad input fast read operations, this pin acts as an output signal pin that serially transfer data out of the EPCQA device to the FPGA. The data is shifted out at falling edges of the DCLK signal. During read, configuration, or program operations, you can enable the EPCQA device by pulling the nCS signal low.		
DATA2	_	_	3	9	I/O	For AS x1 mode, this pin must connect to V _{CC} . For AS x4 mode, use this pin as an output signal that serially transfers data out of the EPCQA device to the FPGA during read or configuration operations. The transition of the signal is at falling edges of the DCLK signal. During the extended quad input fast read operation, this pin acts as an output signal pin that serially transfers data out of the EPCQA device to the FPGA. The data is shifted out at falling edges of the DCLK signal.		

Pin Name	AS x1 Pin-Out A				Pin Type	Description
	Pin Number in 8-Pin SOIC Package	Pin Number in 16- Pin SOIC Package	Pin Number in 8-Pin SOIC Package	Pin Number in 16- Pin SOIC Package		
DATA3	_	_	7	1	I/O	For AS x1 mode, this pin must connect to V_{CC} . For AS x4 mode, use this pin as an output signal that serially transfers data out of the EPCQA device to the FPGA during read or configuration operations. The transition of the signal is at falling edges of the DCLK signal. During the extended quad input fast read operation, this pin acts as an output signal pin that serially transfers data out of the EPCQA device to the FPGA. The data is shifted out at falling edges of the DCLK signal.
nCS	1	7	1	7	Input	The active low nCS input signal toggles at the beginning and end of a valid operation. When this signal is high, the device is deselected and the DATA[3:0] pins are tri-stated. When this signal is low, the device is enabled and is in active mode. After power up, the EPCQA device requires a falling edge on the nCS signal before you begin any operation.
DCLK	6	16	6	16	Input	The FPGA provides the DCLK signal. This signal provides the timing for the serial interface. The data presented on the DATA[3:0] pins are latched to the EPCQA device at rising edges of the DCLK signal. The data on the DATA[3:0] pins change after the falling edge of the DCLK signal and are latched in to the FPGA on the next falling edge of the DCLK signal.
nRESET	_	3	_	3	Input	Dedicated hardware reset pin. When it's driven low for a minimum period of $\sim 1\mu S$, the EPCQA device will terminate any external or internal operations and return to its power-on state. There is an internal pull-up resistor for the dedicated nRESET pin on the SOIC-16 package. If the reset function is not needed, you can connect it to V_{CC} or leave it unconnected.
V _{CC}	8	2	8	2	Power	Connect the power pins to a 3.3-V power supply.
GND	4	10	4	10	Ground	Ground pin.

1.5 Device Package and Ordering Code

1.5.1 Package

The EPCQ4A, EPCQ16A, and EPCQ32A devices are available in 8-pin SOIC packages. The EPCQ64A and EPCQ128A devices are available in 16-pin SOIC packages.

1.5.2 Ordering Code

Table 9. EPCQA Device Ordering Codes

Device	Ordering Code ⁽³⁾
EPCQ4A	EPCQ4ASI8N
EPCQ16A	EPCQ16ASI8N
EPCQ32A	EPCQ32ASI8N
EPCQ64A	EPCQ64ASI16N
EPCQ128A	EPCQ128ASI16N

1.6 Memory Array Organization

Table 10. Supported Memory Array Organization in EPCQA Devices

Details	EPCQ4A	EPCQ16A	EPCQ32A	EPCQ64A	EPCQ128A	
Bytes	524,288 bytes [4 megabits (Mb)]	2,097,152 bytes [16 Mb]	4,194,304 bytes (32 Mb)	8,388,608 bytes (64 Mb)	16,777,216 bytes (128 Mb)	
Number of sectors	8	32	64	128	256	
Bytes per sector	65,536 bytes [512 kilobits (Kb)]					
Total numbers of subsectors (4)	128	512	1,024	2,048	4,096	
Bytes per subsector		4	,096 bytes (32 Kb))		
Pages per sector	256					
Total number of pages	2,048	8,192	16,384	32,768	65,536	
Bytes per page	256 bytes					

1.6.1 Address Range for EPCQ4A

Table 11. Address Range for Sectors 7..0 and Subsectors 127..0 in EPCQ4A Devices

Sector	Subsector	Address Range (Byte Addresses in HEX)	
		Start	End
7	127	7F000	7FFFF
	126	7E000	7EFFF
	114	72000	72FFF
	113	71000	71FFF
		-	continued

⁽³⁾ N indicates that the device is lead free.

Every sector is further divided into 16 subsectors with 4 KB of memory. Therefore, there are 128 (32 \times 16) subsectors for the EPCQ4A device, 512 (32 \times 16) subsectors for the EPCQ16A device, 1,024 (64 \times 16) subsectors for the EPCQ32A device, 2,048 (128 \times 16) subsectors for the EPCQ64A device, and 4,096 (256 \times 16) subsectors for the EPCQ128A device.

Sector	Subsector	Address Range (By	te Addresses in HEX)
		Start	End
	112	70000	70FFF
6	111	6F000	6FFFF
	110	6E000	6EFFF
	98	62000	62FFF
	97	61000	61FFF
	96	60000	60FFF
1	31	1F000	1FFFF
	30	1E000	1EFFF
	18	12000	12FFF
	17	11000	11FFF
	16	10000	10FFF
0	15	F000	FFFF
	14	E000	EFFF
	2	2000	2FFF
	1	1000	1FFF
	0	H'0000000	H'0000FFF

1.6.2 Address Range for EPCQ16A

 Table 12.
 Address Range for Sectors 31..0 and Subsectors 511..0 in EPCQ16A Devices

Sector	Subsector	Address Range (Byte Addresses in HEX)	
		Start	End
31	511	1FF000	1FFFFF
	510	1FE000	1FEFFF
	498	1F2000	1F2FFF
	497	1F1000	1F1FFF
	496	1F0000	1F0FFF
30	495	1EF000	1EFFFF
	494	1EE000	1EEFFF
	482	1E2000	1E2FFF
	481	1E1000	1E1FFF
			continued

Sector	Subsector	Subsector Address Range (Byte Addresses in	
		Start	End
	480	1E0000	1E0FFF
1	31	1F000	1FFFF
	30	1E000	1EFFF
	18	12000	12FFF
	17	11000	11FFF
	16	10000	10FFF
0	15	F000	FFFF
	14	E000	EFFF
	2	2000	2FFF
	1	1000	1FFF
	0	Н'0000000	H'0000FFF

1.6.3 Address Range for EPCQ32A

Table 13. Address Range for Sectors 63..0 and Subsectors 1023..0 in EPCQ32A Devices

Sector	Subsector	Address Range (Byte Addresses in HEX)	
		Start	End
63	1023	3FF000	3FFFFF
	1022	3FE000	3FEFFF
	1010	3F2000	3F2FFF
	1009	3F1000	3F1FFF
	1008	3F0000	3F0FFF
62	1007	3EF000	3EFFFF
	1006	3EE000	3EEFFF
	994	3E2000	3E2FFF
	993	3E1000	3E1FFF
	992	3E0000	3E0FFF
1	31	1F000	1FFFF
	30	1E000	1EFFF
	18	12000	12FFF
	17	11000	11FFF
	,	•	continued

Sector	Subsector	Address Range (Byte Addresses in HEX)	
		Start	End
	16	10000	10FFF
0	15	F000	FFFF
	14	E000	EFFF
	2	2000	2FFF
	1	1000	1FFF
	0	H'0000000	H'0000FFF

1.6.4 Address Range for EPCQ64A

Table 14. Address Range for Sectors 127..0 and Subsectors 2047..0 in EPCQ64A Devices

Sector	Subsector	Address Range (Byt	e Addresses in HEX)
		Start	End
127	2047	7FF000	7FFFF
	2046	7FE000	7FEFFF
	2034	7F2000	7F2FFF
	2033	7F1000	7F1FFF
	2032	7F0000	7F0FFF
64	1039	40F000	40FFFF
	1038	40E000	40EFFF
	1026	402000	402FFF
	1025	401000	401FFF
	1024	400000	400FFF
63	1023	3FF000	3FFFFF
	1022	3FE000	3FEFFF
	1010	3F2000	3F2FFF
	1009	3F1000	3F1FFF
	1008	3F0000	3F0FFF
62	1007	3EF000	3EFFFF
	1006	3EE000	3EEFFF
			continued

Sector	Subsector	Address Range (By	te Addresses in HEX)
		Start	End
	994	3E2000	3E2FFF
	993	3E1000	3E1FFF
	992	3E0000	3E0FFF
1	31	1F000	1FFFF
	30	1E000	1EFFF
	18	12000	12FFF
	17	11000	11FFF
	16	10000	10FFF
0	15	F000	FFFF
	14	E000	EFFF
	2	2000	2FFF
	1	1000	1FFF
	0	н'0000000	H'0000FFF

1.6.5 Address Range for EPCQ128A

Table 15. Address Range for Sectors 255..0 and Subsectors 4095..0 in EPCQ128A Devices

Sector	Subsector	Address Range (Byte Addresses in HEX)		
		Start	End	
255	4095	FFF000	FFFFF	
	4094	FFE000	FFEFFF	
	4082	FF2000	FF2FFF	
	4081	FF1000	FF1FFF	
	4080	FF0000	FF0FFF	
254	4079	FEF000	FEFFFF	
	4078	FEE000	FEEFFF	
	4066	FE2000	FE2FFF	
	4065	FE1000	FE1FFF	
	4064	FE0000	FE0FFF	
129	2079	81F000	81FFFF	
	•		continued	

Sector	Subsector	Address Range (Byte Addresses in HEX)	
		Start	End
	2078	81E000	81EFFF
	2066	812000	812FFF
	2065	811000	811FFF
	2064	810000	810FFF
128	2063	80F000	80FFFF
	2062	80E000	80EFFF
	2050	802000	802FFF
	2049	801000	801FFF
	2048	800000	800FFF
127	2047	7FF000	7FFFFF
	2046	7FE000	7FEFFF
	2034	7F2000	7F2FFF
	2033	7F1000	7F1FFF
	2032	7F0000	7F0FFF
64	1039	40F000	40FFFF
	1038	40E000	40EFFF
	1026	402000	402FFF
	1025	401000	401FFF
	1024	400000	400FFF
63	1023	3FF000	3FFFFF
	1022	3FE000	3FEFFF
	1010	3F2000	3F2FFF
	1009	3F1000	3F1FFF
	1008	3F0000	3F0FFF
62	1007	3EF000	3EFFFF
	1006	3EE000	3EEFFF
	994	3E2000	3E2FFF
	993	3E1000	3E1FFF
			continued

Sector	Subsector	Address Range (Byte Addresses in HEX)		
		Start	End	
	992	3E0000	3E0FFF	
1	31	1F000	1FFFF	
	30	1E000	1EFFF	
	18	12000	12FFF	
	17	11000	11FFF	
	16	10000	10FFF	
0	15	F000	FFFF	
	14	E000	EFFF	
	2	2000	2FFF	
	1	1000	1FFF	
	0	Н.0000000	H'0000FFF	

1.7 Memory Operations

This section describes the operations that you can use to access the memory in EPCQA devices. When performing the operation, addresses and data are shifted in and out of the device serially, with the MSB first.

1.7.1 Timing Requirements

When the active low chip select (nCS) signal is driven low, shift in the operation code into the EPCQA device using theDATAO pin. Each operation code bit is latched into the EPCQA device at rising edges of the DCLK signal.

While executing an operation, shift in the desired operation code, followed by the address or data bytes. See related information for more information about the address and data bytes. The device must drive the nCS pin high after the last bit of the operation sequence is shifted in.

For read operations, the data read is shifted out on the DATA[3:0] pins. You can drive the nCS pin high when any bit of the data is shifted out.

For write and erase operations, drive the nCS pin high at a byte boundary, that is in a multiple of eight clock pulses. Otherwise, the operation is rejected and not executed.

All attempts to access the memory contents while a write or erase cycle is in progress are rejected, and the write or erase cycle continues unaffected.

1.8 Status Register

Table 16. Status Register Bits

Bit	R/W	Default Value	Name	Value	Description
7	R/W	0 ⁽⁵⁾		Reserved	
6	R/W	0 ⁽⁵⁾		Reserved	
5	R/W	0	TB (Top/Bottom Bit)	1=Protected area starts from the bottom of the memory array. 0=Protected area starts from the top of the memory array.	Determine that the protected area starts from the top or bottom of the memory array.
4	R/W	0	BP2 ⁽⁶⁾	Table 17 on page 17 through Table 21 on page	Determine the area of
3	R/W	0	BP1 ⁽⁶⁾	19 list the protected area with reference to the block protect bits.	the memory protected from being written or erased unintentionally.
2	R/W	0	BP0 ⁽⁶⁾		
1	R	0	WEL (Write Enable Latch Bit)	1=Allows the following operation to run: — Write Bytes — Write Status Register — Erase Bulk — Erase Sector 0=Rejects the above mentioned operations.	Allows or rejects certain operation to run.
0	R	0	WIP (Write in Progress Bit)	1=One of the following operation is in progress: Write Status Register Write Bytes Erase 0=no write or erase cycle in progress	Indicates if there is a command in progress.

1.8.1 Read Status Operation

The status register can be read continuously and at anytime, including during a write or erase operations.

Figure 4. Read Status Operation Timing Diagram

⁽⁵⁾ Do not program these bits to 1.

⁽⁶⁾ The erase bulk and erase die operation is only available when all the block protect bits are set to 0. When any of the block protect bits are set to 1, the relevant area is protected from being written by a write bytes operation or erased by an erase sector operation.

Table 17. Block Protection Bits in EPCQ4A

	Status Register Content			Memory Content		
TB Bit	BP2 Bit	BP1 Bit	BP0 Bit	Protected Area	Unprotected Area	
х	0	0	0	None	All sectors	
0	0	0	1	Sector 7	Sectors (0 to 6)	
0	0	1	0	Sectors (6 to 7)	Sectors (0 to 5)	
0	0	1	1	Sectors (4 to 7)	Sectors (0 to 3)	
1	0	0	1	Sector 0	Sectors (1 to 7)	
1	0	1	0	Sectors (0 to 1)	Sectors (2 to 7)	
1	0	1	1	Sectors (0 to 3)	Sectors (4 to 7)	
×	1	х	х	All sectors	None	

Table 18. Block Protection Bits in EPCQ16A

	Status Regis	ster Content		Memory Content		
TB Bit	BP2 Bit	BP1 Bit	BP0 Bit	Protected Area	Unprotected Area	
0	0	0	0	None	All sectors	
0	0	0	1	Sector 31	Sectors (0 to 30)	
0	0	1	0	Sectors (30 to 31)	Sectors (0 to 29)	
0	0	1	1	Sectors (28 to 31)	Sectors (0 to 27)	
0	1	0	0	Sectors (24 to 31)	Sectors (0 to 23)	
0	1	0	1	Sectors (16 to 31)	Sectors (0 to 15)	
0	1	1	0	All sectors	None	
0	1	1	1	All sectors	None	
1	0	0	0	None	All sectors	
1	0	0	1	Sector 0	Sectors (1 to 31)	
1	0	1	0	Sectors (0 to 1)	Sectors (2 to 31)	
1	0	1	1	Sectors (0 to 3)	Sectors (4 to 31)	
1	1	0	0	Sectors (0 to 7)	Sectors (8 to 31)	
1	1	0	1	Sectors (0 to 15)	Sectors (16 to 31)	
1	1	1	0	All sectors	None	
1	1	1	1	All sectors	None	

Table 19. Block Protection Bits in EPCQ32A

	Status Regi	ster Content		Memory Content			
TB Bit	BP2 Bit	BP1 Bit	BP0 Bit	Protected Area	Unprotected Area		
0	0	0	0	None	All sectors		
0	0	0	1	Sector 63	Sectors (0 to 62)		
0	0	1	0	Sectors (62 to 63)	Sectors (0 to 61)		
	continued						

	Status Regi	ster Content		Memory	/ Content
TB Bit	BP2 Bit	BP1 Bit	BP0 Bit	Protected Area	Unprotected Area
0	0	1	1	Sectors (60 to 63)	Sectors (0 to 59)
0	1	0	0	Sectors (56 to 63)	Sectors (0 to 55)
0	1	0	1	Sectors (48 to 63)	Sectors (0 to 47)
0	1	1	0	Sectors (32 to 63)	Sectors (0 to 31)
0	1	1	1	All sectors	None
1	0	0	0	None	All sectors
1	0	0	1	Sector 0	Sectors (1 to 63)
1	0	1	0	Sectors (0 to 1)	Sectors (2 to 63)
1	0	1	1	Sectors (0 to 3)	Sectors (4 to 63)
1	1	0	0	Sectors (0 to 7)	Sectors (8 to 63)
1	1	0	1	Sectors (0 to 15)	Sectors (16 to 63)
1	1	1	0	Sectors (0 to 31)	Sectors (32 to 63)
1	1	1	1	All sectors	None

Block Protection Bits in EPCQ64A Table 20.

:	Status Register Content			Memory Content		
TB Bit	BP2 Bit	BP1 Bit	BPO Bit	Protected Area	Unprotected Area	
0	0	0	0	None	All sectors	
0	0	0	1	Sectors (126 to 127)	Sectors (0 to 125)	
0	0	1	0	Sectors (124 to 127)	Sectors (0 to 123)	
0	0	1	1	Sectors (120 to 127)	Sectors (0 to 119)	
0	1	0	0	Sectors (112 to 127)	Sectors (0 to 111)	
0	1	0	1	Sectors (96 to 127)	Sectors (0 to 95)	
0	1	1	0	Sectors (64 to 127)	Sectors (0 to 63)	
0	1	1	1	All sectors	None	
1	0	0	0	None	All sectors	
1	0	0	1	Sectors (0 to 1)	Sectors (2 to 127)	
1	0	1	0	Sectors (0 to 3)	Sectors (4 to 127)	
1	0	1	1	Sectors (0 to 7)	Sectors (8 to 127)	
1	1	0	0	Sectors (0 to 15)	Sectors (16 to 127)	
1	1	0	1	Sectors (0 to 31)	Sectors (32 to 127)	
1	1	1	0	Sectors (0 to 63)	Sectors (64 to 127)	
1	1	1	1	All sectors	None	

Table 21. Block Protection Bits in EPCQ128A

:	Status Regis	ster Conten	t	Memory	Memory Content		
TB Bit	BP2 Bit	BP1 Bit	BPO Bit	Protected Area	Unprotected Area		
0	0	0	0	None	All sectors		
0	0	0	1	Sectors (252 to 255)	Sectors (0 to 251)		
0	0	1	0	Sectors (248 to 255)	Sectors (0 to 247)		
0	0	1	1	Sectors (240 to 255)	Sectors (0 to 239)		
0	1	0	0	Sectors (224 to 255)	Sectors (0 to 223)		
0	1	0	1	Sectors (192 to 255)	Sectors (0 to 191)		
0	1	1	0	Sectors (128 to 255)	Sectors (0 to 127)		
0	1	1	1	All sectors	None		
1	0	0	0	None	All sectors		
1	0	0	1	Sectors (0 to 3)	Sectors (4 to 255)		
1	0	1	0	Sectors (0 to 7)	Sectors (8 to 255)		
1	0	1	1	Sectors (0 to 15)	Sectors (16 to 255)		
1	1	0	0	Sectors (0 to 31)	Sectors (32 to 255)		
1	1	0	1	Sectors (0 to 63)	Sectors (64 to 255)		
1	1	1	0	Sectors (0 to 127)	Sectors (128 to 255)		
1	1	1	1	All sectors	None		

1.8.2 Write Status Operation

The write status operation does not affect the write enable latch and write in progress bits. You can use the write status operation to set the status register block protection and top or bottom bits. Therefore, you can implement this operation to protect certain memory sectors. After setting the block protect bits, the protected memory sectors are treated as read-only memory. You must execute the write enable operation before the write status operation.

Figure 5. Write Status Operation Timing Diagram

Immediately after the nCS signal drives high, the device initiates the self-timed write status cycle. The self-timed write status cycle usually takes 10 ms for all EPCQA devices and is guaranteed to be less than 15 ms. For details about t_{WS} , refer to the related information below. You must account for this delay to ensure that the status register is written with the desired block protect bits. Alternatively, you can check the

write in progress bit in the status register by executing the read status operation while the self-timed write status cycle is in progress. Write in progress bit is 1 during the self-timed write status cycle and 0 when it is complete.

1.9 Summary of Operation Codes

Operation	Operation Code ⁽⁷⁾	Address Bytes	Dummy Cycles	Data Bytes	DCLK f _{MAX} (MHz)
Read status	05h	0	0	1 to infinite ⁽⁸⁾	100
Read bytes	03h	3	0	1 to infinite ⁽⁸⁾	50
Read device identification	9Fh	0	2	1	100
Read silicon identification ⁽⁹⁾	ABh	0	3	1	100
Fast read	0Bh	3	8	1 to infinite ⁽⁸⁾	100
Extended dual input fast read	BBh	3	4	1 to infinite ⁽⁸⁾	100
Extended quad input fast read (10)	EBh	3	6	1 to infinite ⁽⁸⁾	100
Write enable	06h	0	0	0	100
Write disable	04h	0	0	0	100
Write status	01h	0	0	1	100
Write bytes	02h	3	0	1 to 256 ⁽¹¹⁾	100
Quad input fast write bytes ⁽¹⁰⁾	32h	3	0	1 to 256 ⁽¹¹⁾	100
Erase bulk	C7h	0	0	0	100
Erase sector	D8h	3	0	0	100
Erase subsector	20h	3	0	0	100

1.9.1 Read Bytes Operation (03h)

When you execute the read bytes operation, you first drive the nCS pin low and shift in the read bytes operation code, followed by a 3-byte address (A[23..0]). Each address bit must be latched in at rising edges of the DCLK signal. After the address is latched in, the memory contents of the specified address are shifted out serially on the DATA1 pin, beginning with the MSB. For reading Raw Programming Data File (.rpd),

⁽⁷⁾ List MSB first and LSB last.

⁽⁸⁾ The status register or data is read out at least once and is continuously read out until the nCS pin is driven high.

⁽⁹⁾ Only applicable to EPCQ4A, EPCQ16A and EPCQA64A devices only.

⁽¹⁰⁾ This operation is not applicable for EPCQ4A.

⁽¹¹⁾ A write bytes operation requires at least one data byte. If more than 256 bytes are sent to the device, only the last 256 bytes are written to the memory.

the content is shifted out serially beginning with the LSB. Each data bit is shifted out at falling edges of the DCLK signal. The maximum DCLK frequency during the read bytes operation is 50 MHz.

Figure 6. Read Bytes Operation Timing Diagram

The first byte address can be at any location. The device automatically increases the address to the next higher address after shifting out each byte of data. Therefore, the device can read the whole memory with a single read bytes operation. When the device reaches the highest address, the address counter restarts at 0×000000 , allowing the memory contents to be read out indefinitely until the read bytes operation is terminated by driving the nCS signal high. If the read bytes operation is shifted in while a write or erase cycle is in progress, the operation is not executed and does not affect the write or erase cycle in progress.

1.9.2 Fast Read Operation (0Bh)

When you execute the fast read operation, you first shift in the fast read operation code, followed by a 3-byte address (A[23..0]), and 8 dummy cycles with each bit being latched-in at rising edges of the DCLK signal. Then, the memory contents at that address is shifted out on DATA1 with each bit being shifted out at a maximum frequency of 100 MHz at falling edges of the DCLK signal.

Figure 7. Fast Read Operation Timing Diagram

The first byte address can be at any location. The device automatically increases the address to the next higher address after shifting out each byte of data. Therefore, the device can read the whole memory with a single fast read operation. When the device reaches the highest address, the address counter restarts at 0×000000 , allowing the read sequence to continue indefinitely.

You can terminate the fast read operation by driving the nCS signal high at any time during data output. If the fast read operation is shifted in while an erase, program, or write cycle is in progress, the operation is not executed and does not affect the erase, program, or write cycle in progress.

1.9.3 Extended Dual Input Fast Read Operation (BBh)

This operation is similar to the fast read operation except that the data and addresses are shifted in and out on the DATAO and DATAO pins.

Figure 8. Extended Dual Input Fast Read Operation Timing Diagram

1.9.4 Extended Quad Input Fast Read Operation (EBh)

This operation is similar to the extended dual input fast read operation except that the data and addresses are shifted in and out on the DATAO, DATA1, DATA2, and DATA3 pins.

Figure 9. Extended Quad Input Fast Read Operation

1.9.5 Read Device Identification Operation (9Fh)

This operation reads the 8-bit device identification of the EPCQA device from the DATA1 output pin. If this operation is shifted in while an erase or write cycle is in progress, the operation is not executed and does not affect the erase or write cycle in progress.

Table 22. EPCQA Device Identification

EPCQA Device	Device ID (Binary Value)
EPCQ4A	b'0001 0011
EPCQ16A	b'0001 0101
EPCQ32A	b'0001 0110
EPCQ64A	b'0001 0111
EPCQ128A	b'0001 1000

The 8-bit device identification of the EPCQA device is shifted out on the DATA1 pin at falling edges of the DCLK signal.

Figure 10. Read Device Identification Operation Timing Diagram

1.9.6 Read Silicon Identification Operation (ABh)

This operation reads the 8-bit silicon ID of the EPCQA device from the DATA1 output pin. If this operation is shifted in during an erase or write cycle, it is ignored and does not affect the cycle that is in progress.

Note: This operation is applicable to EPCQ4A, EPCQ16A and EPCQA64A devices only.

The device implements the read silicon ID operation by driving the nCS signal low and then shifting in the read silicon ID operation code, followed by three dummy bytes on the DATA1 pin. The 8-bit silicon ID of the EPCQA device is then shifted out on the DATA1 pin at falling edges of the DCLK signal. The device can terminate the read silicon ID operation by driving the nCS signal high after reading the silicon ID at least one time. Sending additional clock cycles on DCLK while nCS is driven low can cause the silicon ID to be shifted out repeatedly.

Table 23. EPCQA Silicon Identification

EPCQA Device	Silicon ID (Binary Value)	
EPCQ4A	b'0001 0010	
EPCQ16A	p,0001 0100	
EPCQ64A	b'0001 0110	

Figure 11. Read Silicon Identification Operation Timing Diagram

1.9.7 Write Enable Operation (06h)

When you enable the write enable operation, the write enable latch bit is set to 1 in the status register. You must execute this operation before the write bytes, write status, erase bulk, erase sector, and quad input fast write bytes operations.

Figure 12. Write Enable Operation Timing Diagram

1.9.8 Write Disable Operation (04h)

The write disable operation resets the write enable latch bit in the status register. To prevent the memory from being written unintentionally, the write enable latch bit is automatically reset when implementing the write disable operation, and under the following conditions:

- Power up
- · Write bytes operation completion
- Write status operation completion
- · Erase bulk operation completion
- Erase sector operation completion
- · Quad input fast write bytes operation completion

Figure 13. Write Disable Operation Timing Diagram

1.9.9 Write Bytes Operation (02h)

This operation allows bytes to be written to the memory. You must execute the write enable operation before the write bytes operation. After the write bytes operation is completed, the write enable latch bit in the status register is set to 0.

When you execute the write bytes operation, you shift in the write bytes operation code, followed by a 3-byte address (A[23..0]) and at least one data byte on the DATAO pin. If the eight LSBs (A[7..0]) are not all 0, all sent data that goes beyond the end of the current page is not written into the next page. Instead, this data is written at the start address of the same page. You must ensure the nCS signal is set low during the entire write bytes operation.

Figure 14. Write Bytes Operation Timing Diagram

If more than 256 data bytes are shifted into the EPCQA device with a write bytes operation, the previously latched data is discarded and the last 256 bytes are written to the page. However, if less than 256 data bytes are shifted into the EPCQA device, they are guaranteed to be written at the specified addresses and the other bytes of the same page are not affected.

The device initiates a self-timed write cycle immediately after the nCS signal is driven high. For details about the self-timed write cycle time, refer to t_{WB} in the related information below. You must account for this amount of delay before another page of memory is written. Alternatively, you can check the write in progress bit in the status register by executing the read status operation while the self-timed write cycle is in progress. The write in progress bit is set to 1 during the self-timed write cycle and 0 when it is complete.

Note:

You must erase all the memory bytes of EPCQA devices before you implement the write bytes operation. You can erase all the memory bytes by executing the erase sector operation in a sector or the erase bulk operation throughout the entire memory

1.9.10 Quad Input Fast Write Bytes Operation (32h)

This operation is similar to the write bytes operation except that the data are shifted in on the DATA1, DATA1, DATA2, and DATA3 pins.

DCLK

O 1 2 3 4 5 6 7 8 9 10 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

Operation Code (32h)

24-bit Address
Data In
1 2 3 4 5 6 7

DATA0

DATA1

High Impedance

// 5 1 5 1 5 1 5 1 5 1 5 1

DATA2

MSB MSB

MSR MSR

MSR

Figure 15. Quad Input Fast Write Bytes Operation Timing Diagram

High Impedance

1.9.11 Erase Bulk Operation (C7h)

DATA3

This operation sets all the memory bits to 1 or 0xFF. Similar to the write bytes operation, you must execute the write enable operation before the erase bulk operation.

You can implement the erase bulk operation by driving the nCS signal low and then shifting in the erase bulk operation code on the DATAO pin. The nCS signal must be driven high after the eighth bit of the erase bulk operation code has been latched in.

Figure 16. Erase Bulk Operation Timing Diagram

The device initiates a self-timed erase bulk cycle immediately after the nCS signal is driven high. For details about the self-timed erase bulk cycle time, refer to t_{EB} in the related information below.

You must account for this delay before accessing the memory contents. Alternatively, you can check the write in progress bit in the status register by executing the read status operation while the self-timed erase cycle is in progress. The write in progress bit is set to 1 during the self-timed erase cycle and 0 when it is complete. The write enable latch bit in the status register is reset to 0 before the erase cycle is complete.

1.9.12 Erase Sector Operation (D8h)

The erase sector operation allows you to erase a certain sector in the EPCQA device by setting all the bits inside the sector to 1 or 0xFF. This operation is useful if you want to access the unused sectors as a general purpose memory in your applications. You must execute the write enable operation before the erase sector operation.

When you execute the erase sector operation, you must first shift in the erase sector operation code, followed by the 3-byte address (A[23..0]) of the chosen sector on the DATA0 pin. The 3-byte address for the erase sector operation can be any address inside the specified sector. Drive the nCS signal high after the eighth bit of the erase sector operation code has been latched in.

Figure 17. Erase Sector Operation Timing Diagram

The device initiates a self-timed erase sector cycle immediately after the nCS signal is driven high. For details about the self-timed erase sector cycle time, refer to t_{ES} in the related information below. You must account for this amount of delay before another page of memory is written. Alternatively, you can check the write in progress bit in the status register by executing the read status operation while the self-timed erase cycle is in progress. The write in progress bit is set to 1 during the self-timed erase cycle and 0 when it is complete. The write enable latch bit in the status register is set to 0 before the self-timed erase cycle is complete.

1.9.13 Erase Subsector Operation (20h)

The erase subsector operation allows you to erase a certain subsector in the EPCQA device by setting all the bits inside the subsector to 1 or $0 \times FF$. This operation is useful if you want to access the unused subsectors as a general purpose memory in your applications. You must execute the write enable operation before the erase subsector operation.

When you execute the erase subsector operation, you must first shift in the erase subsector operation code, followed by the 3-byte address (A[23..0]) of the chosen subsector on the DATAO pin. The 3-byte address for the erase subsector operation can be any address inside the specified subsector. For details about the subsector address range, refer to the related information below. Drive the nCS signal high after the eighth bit of the erase subsector operation code has been latched in.

Figure 18. Erase Subsector Operation Timing Diagram

The device initiates a self-timed erase subsector cycle immediately after the nCS signal is driven high. For details about the self-timed erase subsector cycle time, refer to related the information below. You must account for this amount of delay before another page of memory is written. Alternatively, you can check the write in progress bit in the status register by executing the read status operation while the self-timed erase cycle is in progress. The write in progress bit is set to 1 during the self-timed erase cycle and 0 when it is complete. The write enable latch bit in the status register is set to 0 before the self-timed erase cycle is complete.

1.10 Power Mode

EPCQA devices support active and standby power modes. When the nCS signal is low, the device is enabled and is in active power mode. The FPGA is configured while the EPCQA device is in active power mode. When the nCS signal is high, the device is disabled but remains in active power mode until all internal cycles are completed, such as write or erase operations. The EPCQA device then goes into standby power mode. The I_{CC1} and I_{CC0} parameters list the V_{CC} supply current when the device is in active and standby power modes.

1.11 Timing Information

1.11.1 Write Operation Timing

Figure 19. Write Operation Timing Diagram

Table 24. Write Operation Parameters

Symbol	Parameter	Min	Typical	Max	Unit
fwclk	Write clock frequency (from the FPGA, download cable, or embedded processor) for write enable, write disable, read status, read device identification, write bytes, erase bulk, and erase sector operations.	_	_	100	MHz
t _{CH}	DCLK high time for EPCQ4A.	4	_	_	ns
	DCLK high time for EPCQ16A, EPCQ32A, EPCQ64A, and EPCQ128A.	3.4			
t _{CL}	DCLK low time for EPCQ4A.	4	_	_	ns
	DCLK low time for EPCQ16A, EPCQ32A, EPCQ64A, and EPCQ128A.	3.4			
t _{NCSSU}	Chip select (nCS) setup time	5	_	_	ns
t _{NCSH}	Chip select (nCS) hold time	5	_	_	ns
t _{DSU}	DATA[] in setup time before the rising edge on DCLK	2	_	_	ns
t _{DH}	DATA[] hold time after the rising edge on DCLK for EPCQ4A.	5	_	_	ns
	DATA[] hold time after the rising edge on DCLK for EPCQ16A, EPCQ32A, EPCQ64A, and EPCQ128A.	3			
t _{CSH}	Chip select (nCS) high time for EPCQ4A.	100	_	_	ns
	Chip select (ncs) high time for EPCQ16A, EPCQ32A, EPCQ64A, and EPCQ128A.	10 or 50 ⁽¹²⁾			
t _{WB} (13)	Write bytes cycle time for EPCQ4A.	_	0.4	0.8	ms
					continued

^{(12) 10} ns for read and 50 ns for write, erase or program.

-

Symbol	Parameter	Min	Typical	Max	Unit
	Write bytes cycle time for EPCQ16A.		0.4	3	
	Write bytes cycle time for EPCQ32A and EPCQ128A.		0.7	3	
	Write bytes cycle time for EPCQ64A.		0.8	3	
t _{WS} ⁽¹³⁾	Write status cycle time	_	10	15	ms
t _{EB} ⁽¹³⁾	Erase bulk cycle time for EPCQ4A	_	1	4	S
	Erase bulk cycle time for EPCQ16A		5	25	
	Erase bulk cycle time for EPCQ32A		10	50	
	Erase bulk cycle time for EPCQ64A		20	100	
	Erase bulk cycle time for EPCQ128A		40	200	
t _{ES} ⁽¹³⁾	Erase sector cycle time for EPCQ4A.	_	150	1000	ms
	Erase sector cycle time for EPCQ16A, EPCQ32A, EPCQ64A, and EPCQ128A.			2000	
t _{ESS} (13)	Erase subsector cycle time for EPCQ4A.	_	30	300	ms
	Erase subsector cycle time for EPCQ16A, EPCQ32A, EPCQ64A, and EPCQ128A.		45	400	

1.11.2 Read Operation Timing

Figure 20. Read Operation Timing Diagram

Table 25. Read Operation Parameters

Symbol	Parameter	Min	Max	Unit
f _{RCLK}	Read clock frequency (from the FPGA or embedded processor) for read bytes operations	_	50	MHz
	Fast read clock frequency (from the FPGA or embedded processor) for fast read bytes operation	_	100	MHz
t _{CH}	DCLK high time for EPCQ4A.	4 or 6 ⁽¹⁴⁾	_	ns
				continued

 $^{^{(13)}}$ The Write Operation Timing Diagram does not show these parameters.

^{(14) 4} ns for fast read and 6 ns for read.

Symbol	Parameter	Min	Max	Unit
	DCLK high time for EPCQ16A, EPCQ32A, EPCQ64A, and EPCQ128A.	3.4 or 9 ⁽¹⁵⁾	_	ns
t _{CL}	DCLK low time for EPCQ4A.	4 or 6 ⁽¹⁴⁾	_	ns
	DCLK low time for EPCQ16A, EPCQ32A, EPCQ64A, and EPCQ128A.	3.4 or 9 ⁽¹⁵⁾		ns
t _{ODIS}	Output disable time after read	_	8	ns
t _{nCLK2D}	Clock falling edge to DATA EPCQ4A.	0	8	ns
t _{CLQV}	Clock low to output valid for EPCQ4A.	_	6	ns
	Clock low to output valid for EPCQ16A, EPCQ32A, EPCQ64A, and EPCQ128A.	_	8	
t _{CLQX}	Output hold time for EPCQ4A.	0	_	ns
	Output hold time for EPCQ16A, EPCQ32A, EPCQ64A, and EPCQ128A.	1.5	_	

1.12 Programming and Configuration File Support

The Intel Quartus® Prime software provides programming support for EPCQA devices. When you select an EPCQA device, the Intel Quartus Prime software automatically generates the Programmer Object File (.pof) to program the device. The software allows you to select the appropriate EPCQA device density that most efficiently stores the configuration data for the selected FPGA.

You can program the EPCQA device in-system by an external microprocessor using the SRunner software driver. The SRunner software driver is developed for embedded EPCQA device programming that you can customize to fit in different embedded systems. The SRunner software driver reads <code>.rpd</code> files and writes to the EPCQA devices. The programming time is comparable to the Intel Quartus Prime software programming time. Because the FPGA reads the LSB of the <code>.rpd</code> data first during the configuration process, the LSB of <code>.rpd</code> bytes must be shifted out first during the read bytes operation and shifted in first during the write bytes operation.

Writing and reading the **.rpd** file to and from the EPCQA device is different from the other data and address bytes.

During the ISP of an EPCQA device using the Intel FPGA download cables, the cable pulls the nCONFIG signal low to reset the FPGA and overrides the $10\text{-k}\Omega$ pull-down resistor on the nCE pin of the FPGA. The download cable then uses the interface pins depending on the selected AS mode to program the EPCQA device. When programming is complete, the download cable releases the interface pins of the EPCQA device and the nCE pin of the FPGA and pulses the nCONFIG signal to start the configuration process.

The FPGA can program the EPCQA device in-system using the JTAG interface with the serial flash loader (SFL). This solution allows you to indirectly program the EPCQA device using the same JTAG interface that is used to configure the FPGA.

^{(15) 3.4} ns for fast read and 9 ns for read.

1.13 Document Revision History

Table 26. Document Revision History

Date	Version	Changes	
August 2017	2017.08.02	 Updated ordering code number. Added link to AN822: Configuration Device Migration Guideline. Updated Extended Quad Input Fast Read and Quad Input Fast Write operations timing diagram. 	
July 2017	2017.07.28	Initial release.	