Safe-Eye

HAI927I - Projet IMAGE

FLORENTIN DENIS KHÉLIAN LARVET

Plan

Obscurcissement et sécurité visuelle

Interface utilisateur

Classification

Tâches prévues

Introduction

Objectif: Mesurer la sécurité visuelle d'une image obscurcie

Introduction

Technologies utilisées

L'obscurcissement des images

Plusieurs techniques possibles appartenant à diverses catégories :

La Déformation

Le Remplacement

La Suppression

Compromis "intimité-utilité"

La sécurité visuelle des images

Plusieurs mesures de sécurité sur divers contenus possibles :

Reconnaissance par un utilisateur

Reconnaissance par un classifieur

Reconnaissance après une attaque

La sécurité visuelle des images

Mesures de distance :

PSNR (Peak Signal to Noise Ratio):

Si inférieur à 25dB, l'information est dégradée.

SSIM (Structural Similarity Index Measure):

Si proche de 0, l'information est dégradée.

HaarPSI (Haar Wavelet-based Perceptual Similarity Index):

Si proche de 0, l'information est dégradée.

Avancement: Filtrages

Avancement: Interface utilisateur

Tkinter

Pillow ImageTK

Selection par drag and drop

Application et gestion de filtre

Avancement: Classification

Yolov3 sur le dataset "COCO"

MTCNN

Tâches prévues

Créer des GAN pour attaquer nos images obscurcies

Évaluation de la sécurité via CNN avec nos mesures quantitatives

Évaluation de la sécurité visuelle par des utilisateurs

Merci de votre attention!

References

[1] - Hanaa Abbas, Roberto Di Pietro (2022): Sanitization of Visual Multimedia Content: A Survey of Techniques, Attacks, and Future Directions.

