FILE OF TRANSPORT OF TRANSPOR

2013年10月21日 11:31:10 阅读数:4878

Nicolas Staelens 等人在《Constructing a No-Reference H.264/AVC Bitstream-based Video Quality Metric using Genetic Programming-based Sy mbolic Regression》论文中研究了H.264的视频质量评价方法。这篇论文我感觉真的是把无参考视频质量评价做到了很高的水平,很有必要记录一下其中的关键信息。

注:并不是特别了解基于遗传编程方法的符号回归,在此就不多讲述这方面的了。

文章首先回顾了一下客观视频质	5量评价算法:	
	0	
选择的8个测试序列如下表所示	。分别标明了来源以及描述。	
		_

8个测试序列的内容如下图所示。

†算了8个测试序列的SI(空间复杂度)和TI(时间复杂度),并以散点图的形式画成如下图所示的图表。	
主:有关SI(空间复杂度)和TI(时间复杂度)可以参考: 衡量视频序列特性的TI(时间信息)和SI(空间信息)	
见频编码选项设定如下:	
莫拟丢包的时候,使用了名为nalu-drop classifier的工具。]

本文打算从下列参数中选择可以用于建立视频质量评价模型的参数,备选参数数量真是大的惊人啊。

	_lost, i_loss, slices, p_loss, B_pictures, imp_cons_slice_drops, I_perc_8x8 and per	rc_i_8x8。
有一些不明白的地方,先不多说		
有一些不明日的地方,先不多说 上图可以写成如下公式:		
上图可以写成如下公式:		D是,该模型的性能竟然比这两种
上图可以写成如下公式: 对此模型进行验证的结果如下表算法都要好。		D是,该模型的性能竟然比这两种
上图可以写成如下公式: 对此模型进行验证的结果如下表算法都要好。 注:PSNR介绍: http://b	表所示。作为对比,引入了两种视频质量评价算法:PSNR和VQM。非常令人震惊的	是,该模型的性能竟然比这两种
上图可以写成如下公式: 对此模型进行验证的结果如下表算法都要好。 注:PSNR介绍: http://b	表所示。作为对比,引入了两种视频质量评价算法:PSNR和VQM。非常令人震惊的 plog.csdn.net/leixiaohua1020/article/details/11729289	D是,该模型的性能竟然比这两种
上图可以写成如下公式: 对此模型进行验证的结果如下表算法都要好。 注:PSNR介绍: http://b	表所示。作为对比,引入了两种视频质量评价算法:PSNR和VQM。非常令人震惊的 plog.csdn.net/leixiaohua1020/article/details/11729289	是,该模型的性能竟然比这两种
上图可以写成如下公式: 对此模型进行验证的结果如下表算法都要好。 注:PSNR介绍: http://b	表所示。作为对比,引入了两种视频质量评价算法:PSNR和VQM。非常令人震惊的 plog.csdn.net/leixiaohua1020/article/details/11729289	是,该模型的性能竟然比这两种
上图可以写成如下公式: 对此模型进行验证的结果如下表算法都要好。 注:PSNR介绍: http://b	表所示。作为对比,引入了两种视频质量评价算法:PSNR和VQM。非常令人震惊的 plog.csdn.net/leixiaohua1020/article/details/11729289	D是,该模型的性能竟然比这两种
上图可以写成如下公式: 对此模型进行验证的结果如下表算法都要好。 注:PSNR介绍: http://blog.cs	表所示。作为对比,引入了两种视频质量评价算法:PSNR和VQM。非常令人震惊的 plog.csdn.net/leixiaohua1020/article/details/11729289	是,该模型的性能竟然比这两种
上图可以写成如下公式: 对此模型进行验证的结果如下表算法都要好。 注:PSNR介绍: http://blog.cs	表所示。作为对比,引入了两种视频质量评价算法:PSNR和VQM。非常令人震惊的 plog.csdn.net/leixiaohua1020/article/details/11729289 sdn.net/leixiaohua1020/article/details/12685297	是,该模型的性能竟然比这两种

此PDF由spygg生成,请尊重原作者版权!!!

我的邮箱:liushidc@163.com