Bancos de Dados

Deborah Ribeiro Carvalho 2019

Declarativa x Operacional

o Declarativa:

Operacional:

Declarativa x Operacional

o Declarativa:

Quero um misto-quente

Operacional:

 Quero duas fatias de pão de forma, recheadas com uma fatia de queijo e uma fatia de presunto. Tudo isto bem tostado.

Álgebra Relacional Operações básicas

Básicas

- Seleção (σ) seleciona um subconjunto de linhas de uma relação
- Projeção (π) apaga colunas desnecessárias de uma relação
- Produto cartesiano (X) permite combinar duas relações
- União (U) tuplas na relação 1 e na relação 2
- Diferença (-) tuplas na relação 1 mas não na relação 2
- Renomeação (ρ) renomeia tabela
- ▶ Atribuição (←) Atribui valores a variaveis

Derivadas

Junção, interseção, divisão

 Seleciona tuplas da relação argumento que satisfaçam à condição de seleção

 $\sigma_{\text{condição_seleção}}$ (relação argumento)

- pode envolver operadores de comparação (=, <, ≤, >, ≥, ≠)
- pode combinar condições usando-se ∧, ∨, ¬

- relação
- resultado de alguma operação da álgebra relacional

 Produz uma nova relação contendo um subconjunto vertical da relação argumento, sem duplicações

 $\pi_{\text{lista_atributos}}$ (relação argumento)

- · lista de atributos
- os atributos são separados por vírgula

- relação
- resultado de alguma operação da álgebra relacional

Álgebra Relacional Seleção e Projeção - exercício de fixação

Ambulatórios(<u>nroa</u>, andar, capacidade)

Médicos(<u>codm</u>, CPF, nome, idade, cidade, especialidade, *nroa*)

Pacientes(codp, CPF, nome, idade, cidade, doença)

Consultas(*codm*, *codp*, data, hora)

Funcionários(<u>codf</u>, CPF, nome, idade, cidade, salário)

Quais são os dados dos médicos com idade superior a 30 anos?

 σ idade > 30 (medicos)

Álgebra Relacional Seleção e Projeção - exercício de fixação

Ambulatórios(<u>nroa</u>, andar, capacidade)

Médicos(<u>codm</u>, CPF, nome, idade, cidade, especialidade, *nroa*)

Pacientes(codp, CPF, nome, idade, cidade, doença)

Consultas(*codm*, *codp*, data, hora)

Funcionários(<u>codf</u>, CPF, nome, idade, cidade, salário)

Qual é o nome e CPF dos médicos médicos com superior a 30 anos?

 Π nome, CPF (σ idade > 30 (medicos))

Álgebra Relacional Atribuição

- associa uma relação argumento a uma relação temporária
- permite o uso da relação temporária em expressões subseqüentes

relação temporária ← relação argumento

 resultado de alguma operação da álgebra relacional relação

 Liste o número e o nome de todos os clientes que possuam saldo inferior a R\$ 200,00 e que morem na Rua X.

```
\pi_{\text{nro\_cli, nome\_cli}} (\sigma_{\text{saldo\_dev} < 200,00 ^ end\_cli = "Rua X"} (cliente))
```

- Usando atribuição
 - temp ← $\sigma_{\text{saldo dev < 200,00 ^ end cli = "Rua X"}}$ (cliente)
 - $-\pi_{\text{nro cli, nome cli}}$ (temp)

Álgebra Relacional Atribuição

Características adicionais

- permite renomear os atributos de relações intermediárias e final
- R(código, nome) $\leftarrow \pi_{\text{nro cli, nome cli}}$ (temp)

Observações

- não adiciona potência adicional à álgebra relacional
- geralmente utilizada para expressar consultas complexas

Álgebra Relacional atribuição

- Armazena o resultado de uma expressão algébrica em uma variável de relação
 - permite o processamento de uma consulta complexa em etapas
- Notação
 - ▶ nomeVariável ← expressãoÁlgebra
- Exemplo
 - r1 ← σ_{nome='bob'} (estudante)

Renomeia

- nome da relação
- nomes dos atributos da relação
- nome da relação e nomes dos atributos

- Notação: ρ_S (R) ou ρ_{S(A1,A2,...)} (R)
 - Renomeia R para S ou renomeia R para S com atributos renomeados A1, A2, ...
- Entrada: Tabela (R)
- Propósito: redefinir nome tabelas / ou colunas num contexto
- Saída: Tabela renomeada com mesmas linhas de R
- Usada para
 - Útil para auto-relacionamentos, onde precisamos fazer a junção de uma tabela com ela mesma, e nesse caso cada versão da tabela precisa receber um nome diferente da outra.
 - Cria colunas idênticas numa junção natural

Exemplos

- ρ_{comprador} (cliente)
- ρ_(código, nome, rua, saldo, vendedor) (cliente)
- ρ_{comprador (código, nome, rua, saldo, vendedor)} (cliente)

Observação

 indicada para ser utilizada quando uma relação é usada mais do que uma vez para responder à consulta

 $\begin{aligned} \text{DEP4_SAL2000} \leftarrow \sigma_{\text{NumDep = 4 AND Salário > 2000}} \text{(EMPREGADO)} \\ \text{RESULT} \leftarrow \pi_{\text{NumBI, NomeP, NomeF}} \text{(DEP4_SAL2000)} \end{aligned}$

DEP4_SAL2000	NomeP	NomeF	NumBI	•••	Salário	NumDep
	João	Santos	798764544	:	2500	4
	Ana	Feio	342342324	:	3000	4

RESULT	NumBI	NomeP	NomeF
	798764544	João	Santos
	342342324	Ana	Feio

 $\rho_{\text{DEP4_SAL2000}}(\sigma_{\text{NumDep}= 4 \text{ AND Salário} > 2000}(\text{EMPREGADO}))$

 $\rho_{RESULT(BI,\ Nome,\ Apelido)}(\pi_{NumBI,\ NomeP,\ NomeF}(DEP4_SAL2000))$

RESULT	BI	Nome	Apelido
	798764544	João	Santos
	342342324	Ana	Feio

Álgebra Relacional

- Unárias
 - seleção
 - projeção
 - renomear

operam sobre uma única relação

- Binárias
 - produto cartesiano
 - união
 - diferença de conjuntos
 - intersecção de conjuntos
 - junção natural
 - divisão

operam sobre duas relações

- Notação: R X S
- Entrada: Tabela (R) e Tabela (S)
- Propósito: gera combinações de linhas das duas tabelas
- Saída: Para cada linha r em R e cada linha sem S, gerar a tupla rs

cliente (nro cli, nome_cli, end_cli, saldo, cod_vend)

nro_cli	nome_cli	end_cli	saldo	cod_vend
1	Márcia	Rua X	100,00	1
2	Cristina	Avenida 1	10,00	1
3	Manoel	Avenida 3	234,00	1
4	Rodrigo	Rua X	137,00	2

vendedor (cod vend, nome_vend)

cod_vend	nome_vend
1	Adriana
2	Roberto

•	nro_cli	nome_cli	end_cli	saldo	cliente. cod_vend	vendedor. cod_vend	nome_vend
	1	Márcia	Rua X	100,00	1	1	Adriana
	1	Márcia	Rua X	100,00	1	2	Roberto
	2	Cristina	Avenida 1	10,00	1	1	Adriana
	2	Cristina	Avenida 1	10,00	1	2	Roberto
	3	Manoel	Avenida 3	234,00	1	1	Adriana
	3	Manoel	Avenida 3	234,00	1	2	Roberto
	4	Rodrigo	Rua X	137,00	2	1	Adriana
	4	Rodrigo	Rua X	137,00	2	2	Roberto

grau: número de atributos de cliente + número de atributos de vendedor número de tuplas: número de tuplas de cliente * número de tuplas de vendedor

- Considere as seguintes relações
 - usuário (<u>cliente nome</u>, gerente_nome)
 - cliente (<u>cliente nome</u>, rua, cidade)

cliente_nome	gerente_nome
Márcia	Manoel
Rodrigo	Maria

cliente_nome	rua	cidade
Márcia	Rua X	Itambé
Rodrigo	Rua X	Maringá

 Liste o nome de todos os usuários atendidos pelo gerente Manoel, assim como as cidades nas quais eles vivem.

```
usuário ( <u>cliente nome</u>, gerente_nome )

    cliente ( <u>cliente nome</u>, rua, cidade )

temp_1 \leftarrow \pi_{cliente\_nome} (\sigma_{gerente\_nome = "Manoel"} (usuário))
 temp_2 \leftarrow temp_1 \times cliente
 temp_3 \leftarrow \sigma_{temp1.cliente\_nome = cliente.cliente\_nome} (temp<sub>2</sub>)
 \pi_{\text{temp1.cliente\_nome, cidade}} (temp3)
```

- Considere a seguinte relação
 - cliente (cliente nome, rua, cidade)

cliente_nome	rua	cidade
Márcia	Rua X	Itambé
Rodrigo	Rua X	Maringá
Cristina	Rua XTZ	Maringá
Sofia	Rua X	Maringá
Ricardo	Rua AAA	Itambé

 Liste o nome dos clientes que moram na mesma rua e na mesma cidade que Rodrigo

- cliente (cliente nome, rua, cidade)

- Primeiro passo
 - determinar o nome da rua e o nome da cidade na qual Rodrigo mora

$$temp_1 \leftarrow \pi_{rua,cidade} (\sigma_{cliente nome = "Rodrigo"} (cliente))$$

relação resultado temp₁

rua	cidade
Rua X	Maringá

- cliente (<u>cliente nome</u>, rua, cidade)
- → Segundo passo
 - realizar o produto cartesiano das relações
 temp₂ ← temp₁ × cliente
 - relação resultado temp₂

temp ₁ .rua	temp ₁ .cidade	cliente_nome	cliente.rua	cliente.cidade
Rua X	Maringá	Márcia	Rua X	Itambé
Rua X	Maringá	Rodrigo	Rua X	Maringá
Rua X	Maringá	Cristina	Rua XTZ	Maringá
Rua X	Maringá	Sofia	Rua X	Maringá
Rua X	Maringá	Ricardo	Rua AAA	Itambé

- cliente (cliente nome, rua, cidade)
- ◆ Terceiro passo
 - eliminar informações indesejadas

$$temp_3 \leftarrow \sigma_{cliente_nome} \Leftrightarrow \text{``Rodrigo''} (temp_2)$$

relação resultado temp₃

temp ₁ .rua	temp ₁ .cidade	cliente_nome	cliente.rua	cliente.cidade
Rua X	Maringá	Márcia	Rua X	Itambé
Rua X	Maringá	Cristina	Rua XTZ	Maringá
Rua X	Maringá	Sofia	Rua X	Maringá
Rua X	Maringá	Ricardo	Rua AAA	Itambé

- cliente (cliente nome, rua, cidade)
- → Quarto passo
 - exibir as informações solicitadas

$$\pi_{\text{cliente_nome}} \left(\sigma_{\text{temp}_1,\text{rua} = \text{cliente},\text{rua} \land \text{temp}_1,\text{cidade} = \text{cliente},\text{cidade}} \left(\text{temp}_3 \right) \right)$$

relação resultado

cliente_nome
Sofia

- cliente (cliente nome, rua, cidade)
- Liste o nome dos clientes que moram na mesma rua e na mesma cidade que Rodrigo

```
\begin{split} temp_1 &\leftarrow \pi_{rua,cidade} \left( \sigma_{cliente\_nome = "Rodrigo"} (cliente) \right) \\ temp_2 &\leftarrow temp_1 \times cliente \\ temp_3 &\leftarrow \sigma_{cliente\_nome <> "Rodrigo"} (temp_2) \\ \pi_{cliente\_nome} \left( \sigma_{temp_1.rua = cliente.rua \land temp_1.cidade = cliente.cidade} (temp_3) \right) \end{split}
```

Obtenha o nome dos dependentes dos empregados do sexo feminino.

$$\begin{split} & EMP_FEM \leftarrow \sigma_{Sexo \ = \ `F'}(EMPREGADO) \\ & FEM_DEPS \leftarrow \sigma_{NumBI \ = \ EmpBI}(EMP_FEM \times DEPENDENTES) \\ & RESULT \leftarrow \pi_{Nome}(FEM_DEPS) \end{split}$$

Alternativa de resolução mais eficiente:

$$\begin{split} & EMP_FEM \leftarrow \pi_{NumBI}(\sigma_{Sexo \ = \ `F'}(EMPREGADO)) \\ & DEPS_NOME \leftarrow \pi_{EmpBI, \ Nome}(DEPENDENTES) \\ & FEM_DEPS \leftarrow \sigma_{NumBI \ = \ EmpBI}(EMP_FEM \times DEPS_NOME) \\ & RESULT \leftarrow \pi_{Nome}(FEM_DEPS) \end{split}$$

A ordem das colunas não é importante

Assim a operação é comutativa

RXS=SXR

SID	CID
142	CPS116
183	CPS114
898	CPS116

SID	Nome	Idade	CR
142	Roberto	23	5,8
183	Andrea	20	8,1
898	Carlos	18	9,2
453	Bruno	20	7,5

SID	Nome	Idade	CR	SID	CID
142	Roberto	23	5,8	142	CPS116
142	Roberto	23	5,8	183	CPS114
142	Roberto	23	5,8	898	CPS116
183	Andrea	20	8,1	142	CPS116

- Notação: R⋈S
- Entrada: Tabela (R) e Tabela (S)
- Propósito: relaciona linhas das tabelas
 - Reforça a igualdade de seus atributos
 - Elimina 1 cópia dos atributos comuns
- Saída: Para cada linha r em R e cada linha sem S, gerar a tupla rs se, e somente se,atenderem a condição p

- Notação: R ⋈₅S
 - "p" é a condição/predicado da junção
- Entrada: Tabela (R) e Tabela (S)
- Propósito: gera linhas de acordo com um critério
- Saída: Para cada linha r em R e cada linha sem S, gerar a tupla rs se, e somente se,atenderem a condição p
- Abreviação para σ_p (R X S)

Obtenha o nome dos dependentes dos empregados do sexo feminino.

$$\begin{split} & \text{EMP_FEM} \leftarrow \sigma_{Sexo \, = \, `F'}(\text{EMPREGADO}) \\ & \text{RESULT} \leftarrow \pi_{Nome}(\text{EMP_FEM} \bowtie_{NumBI \, = \, \text{EmpBI}} \text{DEPENDENTES}) \end{split}$$

Obtenha o nome e o endereço de todos os empregados que trabalham no departamento de Produção.

$$\begin{split} & EMP_DEP \leftarrow EMPREGADO \bowtie_{NumDep = Num} DEPARTAMENTO \\ & RESULT \leftarrow \pi_{NomeP, \ NomeF, \ Endereço}(\sigma_{Nome = \ 'Produção'}(EMP_DEP)) \end{split}$$

Para todos os projectos localizados no Porto, obtenha o nome do projecto e o último nome do respectivo gerente.

```
\begin{aligned} & \text{PROJ\_PORTO} \leftarrow \sigma_{PLocal \ = \ 'Porto'}(\rho_{(PNome, \ PNum, \ PLocal, \ PDep)}(PROJECTO)) \\ & \text{PORTO\_DEP} \leftarrow \text{PROJ\_PORTO} \bowtie_{PDep \ = \ Num} \text{DEPARTAMENTO} \\ & \text{RESULT} \quad \leftarrow \quad \pi_{PNome, \quad NomeF}(PORTO\_DEP \quad \bowtie_{GerenteBI} \ = \quad \text{NumBI} \\ & \text{EMPREGADO)} \end{aligned}
```

 Ex: encontrar todos os nomes de clientes que tenham um empréstimo no banco, bem como o total emprestado.

Utilizando apenas as operações fundamentais, poderia ser resolvido assim:

Thome_cliente, emprestimo.num_emprestimo, total(Odevedor.num_emprestimo = emprestimo.num_emprestimo (devedor x emprestimo))

No entanto, é possível simplificar esta operação utilizando o símbolo da junção natural: M A junção natural forma um produto cartesiano das duas relações, e já executa uma seleção, fazendo a equivalência dos atributos que aparecem em ambos os esquemas da relação, e por último, remove os atributos em duplicidade.

πnome_cliente, num_emprestimo total(devedor ⋈ empréstimo)

Ambulatórios(<u>nroa</u>, andar, capacidade)

Médicos(<u>codm</u>, CPF, nome, idade, cidade, especialidade, *nroa*)

Pacientes(<u>codp</u>, CPF, nome, idade, cidade, doença)

Consultas(*codm*, *codp*, data, hora)

Funcionários(<u>codf</u>, CPF, nome, idade, cidade, salário)

Qual é o nome do médico que atende no ambulatorio 15?

Ambulatórios(<u>nroa</u>, andar, capacidade)

Médicos(<u>codm</u>, CPF, nome, idade, cidade, especialidade, *nroa*)

Pacientes(codp, CPF, nome, idade, cidade, doença)

Consultas(*codm*, *codp*, data, hora)

Funcionários(<u>codf</u>, CPF, nome, idade, cidade, salário)

Qual é o nome do médico que atende no ambulatorio 15?

 Π nome (σ nroa = 15 (medicos))

Ambulatórios(<u>nroa</u>, andar, capacidade)

Médicos(<u>codm</u>, CPF, nome, idade, cidade, especialidade, *nroa*)

Pacientes(codp, CPF, nome, idade, cidade, doença)

Consultas(*codm*, *codp*, data, hora)

Funcionários(<u>codf</u>, CPF, nome, idade, cidade, salário)

Qual é o nome do médico que atende no ambulatorio 15, bem como o respectivo andar?

Condicao

Ambulatórios(<u>nroa</u>, andar, capacidade)

Médicos(<u>codm</u>, CPF, nome, idade, cidade, especialidade, *nroa*)

Pacientes(codp, CPF, nome, idade, cidade, doença)

Consultas(*codm*, *codp*, data, hora)

Funcionários(<u>codf</u>, CPF, nome, idade, cidade, salário)

Qual é o nome do médico que atende no ambulatorio 15, bem como o respectivo andar?

```
\Pi medicos. nome, ambulatórios. andar (\sigma medicos. nroa = 15 ((medicos) [X] (ambulatorios)))
```

Ambulatórios(nroa, andar, capacidade)

Médicos(<u>codm</u>, CPF, nome, idade, cidade, especialidade, *nroa*)

Pacientes(<u>codp</u>, CPF, nome, idade, cidade, doença)

Consultas(*codm*, *codp*, data, hora)

Funcionários(codf, CPF, nome, idade, cidade, salário)

Qual é o nome do médico que atende no ambulatorio 15, bem como o respectivo andar?

```
Π medicos.nome, ambulatórios.andar
    (σ medicos.nroa = 15 ((medicos) [X]
          medicos.nroa = ambulatorios.nroa (ambulatorios)))
```

Ambulatórios(<u>nroa</u>, andar, capacidade)

Médicos(<u>codm</u>, CPF, nome, idade, cidade, especialidade, *nroa*)

Pacientes(<u>codp</u>, CPF, nome, idade, cidade, doença)

Consultas(*codm*, *codp*, data, hora)

Funcionários(<u>codf</u>, CPF, nome, idade, cidade, salário)

Qual é o nome dos médicos que tiveram consulta em maio de 2019?

Ambulatórios(<u>nroa</u>, andar, capacidade)

Médicos(<u>codm</u>, CPF, nome, idade, cidade, especialidade, *nroa*)

Pacientes(codp, CPF, nome, idade, cidade, doença)

Consultas(codm, codp, data, hora)

Funcionários(codf, CPF, nome, idade, cidade, salário)

Qual é o nome dos médicos que tiveram consulta em maio de 2019?

```
PASS01 \leftarrow (\sigma mes(consultas.data) = 5 \wedge ano(consultas.data) = 2019 (consultas))
```

```
Π medicos.nome ((medicos) [X]
medicos.codm = PASSO1.codm (PASSO1))
```

Ambulatórios(<u>nroa</u>, andar, capacidade)

Médicos(<u>codm</u>, CPF, nome, idade, cidade, especialidade, *nroa*)

Pacientes(<u>codp</u>, CPF, nome, idade, cidade, doença)

Consultas(*codm*, *codp*, data, hora)

Funcionários(<u>codf</u>, CPF, nome, idade, cidade, salário)

Qual é o nome dos médicos e respectivos pacientes que tiveram consulta em maio de 2019?

Ambulatórios(nroa, andar, capacidade)

```
Médicos(<u>codm</u>, CPF, nome, idade, cidade, especialidade, nroa)
```

Pacientes(codp, CPF, nome, idade, cidade, doença)

Consultas(codm, codp, data, hora)

Funcionários(<u>codf</u>, CPF, nome, idade, cidade, salário)

Qual é o nome dos médicos e respectivos pacientes que tiveram consulta em maio de 2019?

Álgebra Relacional Operações da teoria dos conjuntos

A álgebra relacional empresta da teoria de conjuntos quatro operadores: União, Intersecção, Diferença e Produto Cartesiano

Sintaxe da União: <tabela> 1 ∪ <tabela> 2

Sintaxe da Intersecção: <tabela> 1 ∩ <tabela> 2

Sintaxe da **Diferença**: <tabela> 1 – <tabela> 2

Nos três casos, a operação possui duas tabelas como operando. E as tabelas devem ser compatíveis:

- possuir o mesmo número de colunas;
- o mesmo domínio para cada posição da lista de atributos;
- quando os nomes das colunas forem diferentes, adota- se os nomes das colunas da primeira tabela.

Álgebra Relacional Operações da teoria dos conjuntos

Nos dois operadores valem as regras apresentadas para a união:

- mesmo número de colunas nos operandos;
- colunas posicionalmente correspondentes com tipos compatíveis.

- Notação: R U S
 - R e S devem ter o mesmo esquema
- Entrada: Tabela (R) e Tabela (S)
- Propósito: gera linhas de acordo com um critério
- Saída: Contém todas as linhas de R e de S
 - O esquema é o mesmo das tabelas de entrada
 - Duplicidade é eliminada

$C1 \cup C2$

CliId	Nome
1532	Asdrúbal
1755	Doriana
1780	Quincas

CliId	Nome
1532	Asdrúbal
1644	Jepeto
1780	Quincas
1982	Zandor

CliId	Nome
1532	Asdrúbal
1644	Jepeto
1755	Doriana
1780	Quincas
1982	Zandor

Selecione todos os empregados que trabalham no departamento número 2 ou que supervisionam empregados que trabalham no departamento número 2.

```
Ex:
Aluno = { nome, idade, curso}
Professor = { nome, idade, depto.}
Funcionario = { nome, depto, idade}
```

Dom(nome) = varchar(30)

Dom(idade) = int

Dom(curso) = varchar(5)

Dom(depto) = varchar(5)

Apresente uma relação com todos os alunos e também com todos os professores:

```
Aluno = {nome, idade, curso}

{Zeca, 25, comput.

Zico, 21, eletr.

Juca, 19, odonto.

Tuca, 19, comput.}

Professor = {nome, idade, depto.}

{Ari, 35, comput.

Wilma, 32, eletr.

Zeca, 25, comput.}
```

Aluno O Professor = {nome, idade, curso} { Zeca, 25, comput. Zico, 21, eletr. Juca, 19, odonto. Tuca, 19, comput. Ari, 35, comput. Wilma, 32, eletr. }

Ambulatórios(<u>nroa</u>, andar, capacidade)

Médicos(<u>codm</u>, CPF, nome, idade, cidade, especialidade, *nroa*)

Pacientes(<u>codp</u>, CPF, nome, idade, cidade, doença)

Consultas(codm, codp, data, hora)

Funcionários(<u>codf</u>, CPF, nome, idade, cidade, salário)

Qual é o nome, idade, cidade de médicos ou pacientes que tenham Silva no nome?

Ambulatórios(nroa, andar, capacidade)

Médicos(<u>codm</u>, CPF, nome, idade, cidade, especialidade, *nroa*)

Pacientes(codp, CPF, nome, idade, cidade, doença)

Consultas(codm, codp, data, hora)

Funcionários(codf, CPF, nome, idade, cidade, salário)

Qual é o nome, idade, cidade de médicos ou pacientes que tenham Silva no nome?

MEDSILVA ← (Π nome, idade, cidade(σ nome like '%Silva%'(medicos)))

PACSILVA ← (Π nome, idade, cidade(σ nome like '%Silva%'(pacientes)))

MEDSILVA ∪ **PACSILVA**

Álgebra Relacional diferença

- Notação: R S
 - R e S devem ter o mesmo esquema
- Entrada: Tabela (R) e Tabela (S)
- Propósito: gera linhas de acordo com um critério
- Saída: Contém todas as linhas de R e que não são encontradas em S
 - O esquema é o mesmo das tabelas de entrada

Álgebra Relacional diferença

$$C1 - C2$$

CliId	Nome
1532	Asdrúbal
1755	Doriana
1780	Quincas

CliId	Nome
1532	Asdrúbal
1644	Jepeto
1780	Quincas
1982	Zandor

CliId	Nome
1755	Doriana

Operação de Diferença

EMPREGADO	NomeP	NomeF	NumBI	 Salário	SuperBI	NumDep
	João	Santos	798764544	 2500	487563546	4
	Inês	Pereira	345673451	 2000	487563546	1
	Rui	Silva	487563546	 1500	123456789	2
	Ana	Feio	342342324	 3000	798764544	4

Obtenha o número do BI dos empregados que trabalham no departamento 4 e que não supervisionam um empregado que trabalha no departamento 4.

$$EMP_DEP4 \leftarrow \sigma_{NumDep=4}(EMPREGADO)$$

RESULT1
$$\leftarrow \pi_{\text{NumBI}}(\text{EMP_DEP4})$$

$$RESULT2 \leftarrow \pi_{SuperBI}(EMP_DEP4)$$

RESULT	NumBI
	342342324

Álgebra Relacional diferença

Apresente uma relação de todos os alunos que **não são** professores

Aluno = {nome, idade, curso} {Zeca, 25, comput. Zico, 21, eletr.

Juca, 19, odonto.

Tuca, 19, comput.}

Professor = {nome, idade, depto.}

{Ari, 35, comput. Wilma, 32, eletr.

Zeca, 25, comput.}

Aluno - Professor = {nome, idade, curso}

{ Zico, 21, eletr.

Juca, 19, odonto.

Tuca, 19, comput.}

Professor - Aluno = {nome, idade, depto.} {Ari, 35, comput. Wilma, 32, eletr.}

Ambulatórios(nroa, andar, capacidade)

Médicos(<u>codm</u>, CPF, nome, idade, cidade, especialidade, *nroa*)

Pacientes(codp, CPF, nome, idade, cidade, doença)

Consultas(codm, codp, data, hora)

Funcionários(codf, CPF, nome, idade, cidade, salário)

Qual é o nome, idade, cidade de médicos que não são pacientes?

Ambulatórios(<u>nroa</u>, andar, capacidade)

Médicos(<u>codm</u>, CPF, nome, idade, cidade, especialidade, *nroa*)

Pacientes(<u>codp</u>, CPF, nome, idade, cidade, doença)

Consultas(codm, codp, data, hora)

Funcionários(codf, CPF, nome, idade, cidade, salário)

Qual é o nome, idade, cidade de médicos que não são pacientes?

MED ← (Π nome, idade, cidade(medicos))

PAC ← (Π nome, idade, cidade(pacientes))

MED-PAC

Liste os nomes dos empregados que não têm dependentes?

Álgebra Relacional Operaçoes Básicas

- 1 União $R \cup S$
 - é o conjunto das tuplas que estão em R, em S, ou em ambas
 - R e S da mesma aridade
 - nomes dos atributos a especificar
- 2 Diferença R S
 - tuplas de R que não estão em S
 - R e S da mesma aridade

R			S		
Α	В	С	D	E	F
а	b	С	b	g	а
d	а	f	d	а	f
С	b	d			

$R \subseteq$	JS				
Α	В	С	R -	S	
а	b	С	Α	В	С
d	а	f	а	b	С
С	b	d	С	b	d
b	g	a			

- Notação: R ∩ S
 - R e S devem ter o mesmo esquema
- Entrada: Tabela (R) e Tabela (S)
- Propósito: gera linhas de acordo com um critério
- Saída: Contém todas as linhas de R que são encontradas em S também
 - O esquema é o mesmo das tabelas de entrada
 - ▶ R (R S) ou S (S R) ou R ⋈ S

$C1 \cap C2$

CliId	Nome
1532	Asdrúbal
1755	Doriana
1780	Quincas

CliId	Nome
1532	Asdrúbal
1644	Jepeto
1780	Quincas
1982	Zandor

CliId	Nome
1532	Asdrúbal
1780	Quincas

Apresente uma relação de todos os alunos que são professores

Aluno = {nome, idade, curso}

{Zeca, 25, comput.

Zico, 21, eletr.

Juca, 19, odonto.

Tuca, 19, comput.}

Professor = {nome, idade, depto.}

(Ari, 35, comput.)

Wilma, 32, eletr.

Zeca, 25, comput.}

Aluno Professor = {nome, idade, curso} { Zeca, 25, comput}

Operadores derivados

há operadores de álgebra que são deriváveis de outros. A operação de intersecção é derivável de união e diferença:

$$A \cap B = A - (A - B)$$

EMPREGADO	NomeP	NomeF	NumBI	 Salário	SuperBI	NumDep
	João	Santos	798764544	 2500	487563546	4
	Inês	Pereira	345673451	 2000	487563546	1
	Rui	Silva	487563546	 1500	123456789	2
	Ana	Feio	342342324	 3000	798764544	4

Obtenha o número do BI dos empregados que trabalham no departamento 4 e que supervisionam um empregado que trabalha no departamento 4.

$$EMP_DEP4 \leftarrow \sigma_{NumDep=4}(EMPREGADO)$$

$$RESULT1 \leftarrow \pi_{NumBI}(EMP_DEP4)$$

$$RESULT2 \leftarrow \pi_{SuperBI}(EMP_DEP4)$$

RESULT
$$\leftarrow$$
 RESULT1 \cap RESULT2

RESULT	NumBI	
	798764544	

Ambulatórios(<u>nroa</u>, andar, capacidade)

Médicos(<u>codm</u>, CPF, nome, idade, cidade, especialidade, *nroa*)

Pacientes(codp, CPF, nome, idade, cidade, doença)

Consultas(codm, codp, data, hora)

Funcionários(codf, CPF, nome, idade, cidade, salário)

Qual é o nome, idade, cidade de médicos são pacientes?

Ambulatórios(nroa, andar, capacidade)

Médicos(<u>codm</u>, CPF, nome, idade, cidade, especialidade, *nroa*)

Pacientes(<u>codp</u>, CPF, nome, idade, cidade, doença)

Consultas(*codm*, *codp*, data, hora)

Funcionários(<u>codf</u>, CPF, nome, idade, cidade, salário)

Qual é o nome, idade, cidade de médicos são pacientes?

MED ← (Π nome, idade, cidade(medicos))

PAC ← (Π nome, idade, cidade(pacientes))

MED ∩ **PAC**

Álgebra Relacional Operações Compostas

Interseção $R \cap S$

R

- contém as tuplas que pertencem a R e a S simultaneamente
 - R e S da mesma aridade
- $R \cap S = R (R-S)$

A B C a b c

c b d

S

D	E	F
b	g	а
d	а	f

 $R \cap S$

Α	В	С
d	а	f

Álgebra Relacional Propriedades

- União e interseção são
 - comutativas:

$$\circ R \cup S = S \cup R$$

$$\circ R \cap S = S \cap R$$

associativas:

$$\circ R \cup (S \cup T) = (R \cup S) \cup T$$

$$\circ (\mathsf{R} \cap \mathsf{S}) \cap \mathsf{T} = \mathsf{R} \cap (\mathsf{S} \cap \mathsf{T})$$

Diferença não é comutativa

$$R - S \neq S - R$$

Álgebra Relacional Otimizacao de consultas

Álgebra Relacional Expressões verdadeiras?

a -
$$(R-S) \cup S = R$$

b - $(R-S) \cup (R \cap S) = R$
d - $(R-S) \cup (S-R) = (R \cup S) - (R \cap S)$

Demonstre a resposta com exemplos de conjuntos

Álgebra Relacional Expressões verdadeiras?

$$(R-S) \cup S = R$$

$$R=\{a,b\}$$
 $S=\{a\}$

$$R-S=\{b\}$$

Álgebra Relacional Expressões verdadeiras?

$$(R-S) \cup (R \cap S) = R$$

$$R=\{a,b\}$$
 $S=\{a\}$

$$R-S = \{b\}$$

$$R \cap S = \{a\}$$

Álgebra Relacional Expressões verdadeiras?

$$(R-S) \cup (S-R) = (R \cup S) - (R \cap S)$$

$$R=\{a,b\}$$
 $S=\{a\}$

$$R-S = \{b\}$$

$$S-R = \{\}$$

$$R \cup S = \{a,b\}$$

$$R \cap S = \{a\}$$

- Notação: R ÷ S
- Entrada: Tabela (R) e Tabela (S)
 - Seja grau a medida de atributos de mesmo nome
 - ▶ R tem grau ("m"+"n")
 - S tem grau "n"
- Propósito: gera linhas de acordo com um critério
- Saída: atributos de S cujos valores associam-se com todos os valores de R
 - Grau "m"

 Encontre clientes que tenham andado em todos os táxis da Marca Ford

ClId	Placa
1532	DAE6534
1532	DKL4586
1644	DKL7878
1644	JDM8776
1780	JJM3692
1982	DAE6534
1982	DKL4598
1982	DKL7878

- Procurar em uma dada relação as "subtuplas" que são completadas por TODAS as tuplas de outra relação
- $Q (A_1, A_2, ..., A_p) =$ $R(A_1, A_2, ..., A_p, A_{p+1}, ..., A_n) / S(A_{p+1}, ..., A_n)$
- Q contém tuplas tais que, concatenadas à todas as tuplas de S, formam tuplas de R.

R	A	В
	a1	b1
	a2	b1
	a3	b1
	a4	b1
	a1	b2
	a3	b2
	a2	b 3
	a3	b 3
	a4	b 3
	a1	b4
	a2	b4
	a3	b4

S	A
	a1
	a2
	a3

$R \div S$	В
	b1
	b4

 Obtenha o nome dos empregados que trabalham em TODOS os projectos nos quais o Rui Silva também trabalha.

```
\begin{split} EMP\_SILVA \leftarrow \sigma_{NomeP = `Rui` \ AND \ NomeF = `Silva`}(EMPREGADO) \\ SILVA\_PROJ \leftarrow \pi_{NumProj}(TRABALHA\_EM \bowtie_{EmpBI} = numBI \\ EMP\_SILVA) \\ BI\_PROJ \leftarrow \pi_{EmpBI, \ NumProj}(TRABALHA\_EM) \\ RESULT\_BI \leftarrow \rho_{(NumBI)}(BI\_PROJ \div SILVA\_PROJ) \\ RESULT \leftarrow \pi_{NomeP, \ NomeF}(RESULT\_BI * EMPREGADO) \end{split}
```

É uma operação adicional que produz como resultado a projeção de todos os elementos da primeira tabela que se relacionam com todos os elementos da segunda tabela.

Ex.: queremos saber os nomes dos departamentos que possuem todos os cargos:

 $\pi_{\text{NmDepto, CdCargo}}$ (depto |x| funcionário) ÷ π_{CdCargo} (cargo)

Operação de Divisão: a divisão de duas relações R ÷ S, onde os atributos de S estão contidos nos atributos de R, A(R) ⊆ A(S), resulta na relação T, onde A(T) = { A(R) − A(S) }, onde para cada tupla t que aparece no resultado, os valores de t devem aparecer em R, combinando com cada tupla de S. Esta operação é utilizada nas consultas em que se emprega a frase "para todos";

R	
A1	A2
al	b1
a2	b1
a3	b1
84	b1
al	Ь2
a3	b2
a2	Ь3
a3	ьз
84	Ь3
al	b4
a2	b4
a3	b4

 Ex: encontrar todos os clientes que tenham conta em todas as agências localizadas em São Leopoldo.

conta		
nome_agencia	numero_conta	saldo
SAL-1	0001	1200
SAL-1	0002	3000
NOH-1	0003	4500
POA-1	0004	4000
POA-1	0005	1500
NOH-1	0006	200
SAL-2	0007	3750
SAL-2	0008	1800

agencia				
nome_agencia	cidade_agencia	saldo		
NOH-1	Novo Hamburgo	260 050		
SAL-1	São Leopoldo	455 580		
POA-1	Porto Alegre	125 0369		
SAL-2	São Leopoldo	125 588		

depositante	
nome_cliente	numero_conta
João	0001
Pedro	0002
Francisco	0003
Maria	0004
Paulo	0007
José	0006
Ana	0005
João	0008

πnome_agencia(σcidade_agencia = "S& Leopoldo"(agencia))

nome_agência	cidade_agência	saldo	1
SAL-1	São Leopoldo	455 580	1
SAL-2	São Leopoldo	125 588	1

nome_agência SAL-1 SAL-2

πnome_clente, nome_agencia(depositante ⋈ conta)

nome_cliente	nome_agencia	
João	SAL-1	
Pedro	SAL-1	
Francisco	NOH-1	
Maria	POA-1	
Paulo	SAL-2	
José	NOH-1	
Ana	POA-1	
João	SAL-2	

R_{j}	l		R_2a	R_2b	R_2c	$R_1 \xrightarrow{\cdot} R_2 a$	$R_1 \stackrel{\cdot}{\longrightarrow} R_2 b$
x	y	Z	Z	y = z	y	x y	X
1	1	1	1	1 1	1	1 1	1
1	2	1	_		2	1 2	2
2	1	1			_	2 1	$R_1 \stackrel{\cdot}{\longrightarrow} R_2 c$
2	2	2					x z
3	1	3					1 1

Divisão R/S

- aridade de R é r e de S é s, r>s, S≠∅
- contém as (r-s)-tuplas (a₁, ..., a_{r-s}) tais que, para todas as s-tuplas (a_{r-s+1}, ..., a_r) em S, a tupla (a₁, ..., a_r) está em R

- Forma de proceder à divisão
 - reordenar as colunas de forma a que as últimas correspondam ao quociente
 - ordenar a tabela pelas primeiras colunas
 - cada subtupla das primeiras colunas pertence ao resultado se o conjunto de subtuplas das últimas colunas que lhe corresponde contiver o quociente

EQUIPE

ID_EMP	COD_PROJ
17206-2	001
12584-7	002
16764-6	001
17206-2	002
15698-3	003
17206-2	003

PROJETOS

COD_PROJ	DESCRICAO
001	Sistema IRPF
002	Sistema RH
003	Sistema Banco

FUNCIONARIO

ID_EMP	NOME	CARGO
17206-2	Jorge	Analista
12584-7	Paula	Programadora
16764-6	Frederico	DBA
15698-3	Heloisa	Web Master

Imagine a situação de querermos saber quais os funcionários que trabalham em todos os projetos:

RESULT <---- (π cod_proj (Projetos)) $\stackrel{\bullet}{\overline{\bullet}}$ (π Id_emp, cod_proj (Equipe))

RESULT

ID_EMP 17206-2 Álgebra Relacional

Divisão

□ x e y podem ser quaisquer listas de campos

Álgebra Relacional Divisão

- x ∪ y é a lista de campos na relação A
- y é a lista de campos na relação B
- □ A/B
 - $A/B = \{ \langle x \rangle \mid \exists \langle x,y \rangle \in A \forall \langle y \rangle \in B \}$
 - A/B contém todas tuplas x (clientes) tal que para cada tupla y (táxi de marca MA1) em B, há uma tupla xy em A.
 - Ou: Se o conjunto de valores y (marca do táxi) associados com valores x (clientes) em A contiverem todos os valores y em B, o valor x está em A/B.

X	Υ]	Y	Υ
x1	y1	y2		
X1	y2] [y 2	y2	y1 y2
X1	у3	B1	y4	
X1	y4		B2	y4
x2	у1			В3
x2	y2	X		
x3	y2	x1		
X4	y2	x2	X	
x4	y4	x3	x1	X
	^	x4	x4	x1
•	A	A/B1	A/B2	A/B3

TΥ

Placa	Marca	Modelo	Ano
AAA0101	Ma1	Mo1	2000
FFF0606	Ma1	Mo2	2004

Consulta:

Encontrar clientes que tenham andado em táxis da marca Ma1

Corrida (C)

CliId	Placa	Data
0101	AAA0101	10/01/2001
0101	FFF0606	
0202	FFF0606	
0202	BBB0202	
0303	DDD0404	
0404	AAA0101	
0404	FFF0606	19/02/2002
0404	DDD0404	20/02/2002

Corrida2

CliId	Placa
0101	AAA0101
0101	FFF0606
0202	FFF0606
0202	BBB0202
0303	DDD0404
0404	AAA0101
0404	FFF0606
0404	DDD0404

$$\rho(\mathsf{Corrida2,}\pi_{\mathsf{ClId},\mathsf{Placa}}(\mathsf{Corrida}))$$

O(Taxi2,
$$\pi_{Placa}$$
(TY)) Taxi2

AAA0101

FFF0606

Corrida2

CliId	Placa
0101	AAA0101
0101	FFF0606
0202	FFF0606
0202	BBB0202
0303	DDD0404
0404	AAA0101
0404	FFF0606
0404	DDD0404

Taxi2

Placa
AAA0101
FFF0606

Corrida2/Taxi2

CliId	
0101	
0404	

- □ F(<u>numfd</u>,nomef)
- □ D(<u>numfd,nomed</u>,par)

F	
numfd	nomef
01	F1
02	F2
03	F3
04	F4

D		
numfd	nomed	par
01	Alice	filha
02	Alice	esposa
02	Clara	filha
03	José	filho

Quais os nomes e parentescos de todos os dependentes?

- □ F(<u>numfd</u>,nomef)
- □ D(<u>numfd,nomed</u>,par)

F		
numfd	nomef	
01	F1	
02	F2	
03	F3	
04	F4	

D		
numfd	nomed	par
01	Alice	filha
02	Alice	esposa
02	Clara	filha
03	José	filho

- Quais os nomes e parentescos de todos os dependentes?
 - $\blacksquare \pi_{\text{nomed,par}} (D)$

- □ F(<u>numfd</u>,nomef)
- □ D(<u>numfd,nomed</u>,par)

F		
numfd	nomef	
01	F1	
02	F2	
03	F3	
04	F4	

D		
numfd	nomed	par
01	Alice	filha
02	Alice	esposa
02	Clara	filha
03	José	filho

Quais funcionários possuem dependentes filhas?

$$\blacksquare \pi_{\text{numfd}} (\sigma_{\text{par}='\text{filha}'} (D))$$

- □ F(<u>numfd</u>,nomef)
- □ D(<u>numfd,nomed</u>,par)

F		
numfd	nomef	
01	F1	
02	F2	
03	F3	
04	F4	

D		
numfd	nomed	par
01	Alice	filha
02	Alice	esposa
02	Clara	filha
03	José	filho

Quais funcionários não possuem dependentes?

- □ F(<u>numfd</u>,nomef)
- □ D(<u>numfd,nomed</u>,par)

F		
numfd	nomef	
01	F1	
02	F2	
03	F3	
04	F4	

D		
numfd	nomed	par
01	Alice	filha
02	Alice	esposa
02	Clara	filha
03	José	filho

Quais funcionários não possuem dependentes?

$$\blacksquare \pi_{\text{numfd}}$$
 (F) - π_{numfd} (D)

- □ F(<u>numfd</u>,nomef)
- □ D(<u>numfd,nomed</u>,par)

F	
numfd	nomef
01	F1
02	F2
03	F3
04	F4

D		
numfd	nomed	par
01	Alice	filha
02	Alice	esposa
02	Clara	filha
03	José	filho

- Dê os nomes dos funcionários que possuem algum dependente.
- Dê o nome de cada funcionário que possui uma dependente chamada Alice.
- Quais funcionários não têm Alice como dependente?

- □ F(<u>numfd</u>,nomef)
- □ D(<u>numfd,nomed</u>,par)

F	
numfd	nomef
01	F1
02	F2
03	F3
04	F4

D		
numfd	nomed	par
01	Alice	filha
02	Alice	esposa
02	Clara	filha
03	José	filho

- Dê os nomes dos funcionários que possuem algum dependente.
 - $\blacksquare \pi_{\text{nomef}} (F | X | D)$

- □ F(<u>numfd</u>,nomef)
- □ D(<u>numfd,nomed</u>,par)

F		
numfd	nomef	
01	F1	
02	F2	
03	F3	
04	F4	

D			
numfd	nomed	par	
01	Alice	filha	
02	Alice	esposa	
02	Clara	filha	
03	José	filho	

- Dê o nome de cada funcionário que possui uma dependente chamada Alice.
 - $\blacksquare \pi_{\text{nomef}} (F | X | (\sigma_{\text{nomed='Alice'}} (D)))$

- □ F(<u>numfd</u>,nomef)
- □ D(<u>numfd,nomed</u>,par)

F		
numfd	nomef	
01	F1	
02	F2	
03	F3	
04	F4	

D			
numfd	nomed	par	
01	Alice	filha	
02	Alice	esposa	
02	Clara	filha	
03	José	filho	

- Quais funcionários não têm Alice como dependente?
 - $\blacksquare \pi_{\text{numfd}} (D) \pi_{\text{numfd}} (\sigma_{\text{nomed='Alice'}} (D))$

branch (branch-name, branch-city, assets)

customer (customer-name, customer-street, customer-only)

Álgebra Relacional Exercícios de Fixação

account (account-number, branch-name, balance)

loan (loan-number, branch-name, amount)

depositor (customer-name, account-number)

borrower (customer-name, loan-number)

- Determinar todos os empréstimos superiores a \$1200
- Encontrar os números dos empréstimos de montante superior a \$1200
- Listar os nomes de todos os clientes que têm um empréstimo, uma conta, ou ambas as coisas
- Encontrar os clientes que têm um empréstimo e uma conta no banco.
- Determinar todos os clientes que têm um empréstimo na agência de Perryridge.
- Listar os nomes dos clientes que possuem um empréstimo na agência de Perryridge mas que não tem nenhuma conta no banco.
- Determinar todos os clientes que têm um empréstimo na agência de Perryridge.
- Determinar o saldo mais elevado entre todas as contas

pacientes(<u>nBI</u>,nomeP,telefone,morada,idade)

fármacos(<u>codF</u>,nomeF)

consultas(nConsulta,data,nBI,nEmpr)

receitas(codF,nConsulta,quantidade)

- Quais os pacientes com mais de 50 anos de idade?
- Quais os nomes dos pacientes com mais de 50 anos de idade?
- Quais os fármacos que já foram receitados em consultas da clínica?
- Quais os fármacos que nunca foram receitados?
- Qual a idade do paciente mais velho?
- E quais os (nomes dos) pacientes com essa idade?

Algebra Relacional Expressão Quociente

T =
$$\Pi_{1, ..., r-s}$$
 (R) = universo das tuplas possíveis no resultado

□
$$V = \Pi_{1, ..., r-s}$$
 (W) = tuplas que não interessam

$$R/S = T-V$$
 = tuplas que interessam

reunindo numa só expressão algébrica

$$R / S = \Pi_{1, \dots, r-s} (R) - \Pi_{1, \dots, r-s} [(\Pi_{1, \dots, r-s} (R) \times S) - R]$$

В
b
С
d

Álgebra Relacional Funções Agregadas

- Para aquelas consultas que não podem ser resolvidas simplesmente através da álgebra relacional, introduz-se um conjunto de funções agregadas
- Funções comumente aplicadas a conjuntos de dados são: Média, Máximo, Mínimo, Soma, Contador

Álgebra Relacional Funções Agregadas

 Funções agregadas: são aquelas que, quando aplicadas, tomam uma coleção de valores e retornam um valor simples como resultado.

sum salario

14505

 função sum: descobrir a soma total dos salários de todos os empregados de tempo integral.

 nome_empregado
 nome_agencia
 salario

 José
 NOH-1
 5000

 Ana
 POA-1
 4800

 Flávia
 SAL-1
 3200

 Maria
 POA-1
 6500

trabalhador_integral

-função count: descobrir o número de agências existentes

na tabela de tempo integral.

count nome acencia (trabalhador_integral)

count-distinct nome_soencis (trabalhador_integral)

- função avg: descobrir a média dos salários.

avg salario (trabalhador_integral)

- função min: descobrir o menor salário.

min salario (trabalhador_integral)

- função max: descobrir o maior salário.

max salario (trabalhador_integral)

Álgebra Relacional Resumo

Símbolo	Operação	Sintaxe	Tipo
σ	Seleção / Restrição	σ _{condição} (Relação)	Primitiva
π	Projeção	π _{expressões} (Relação)	Primitiva
U	União	Relação1 ∪ Relação2	Primitiva
0	Intersecção	Relação1 ∩ Relação2	Adicional
-	Diferença de conjuntos	Relação1 - Relação2	Primitiva
X	Produto cartesiano	Relação1 x Relação2	Primitiva
x	Junção	Relação1 x Relação2	Adicional
÷	Divisão	Relação1 ÷ Relação2	Adicional
ρ	Renomeação	ρ _{nome} (Relação)	Primitiva
←	Atribuição	variável ← Relação	Adicional

Álgebra Relacional Resumo

SÍMBOLO	OPERAÇÃO	SINTAXE	TIPO
<	Atribuição	Variável < Relação	Primitiva
σ	Seleção (Select)	σ <condicao de="" elecao="">(Relação)</condicao>	Primitiva
π	Projeção (Project)	π <lista atributos="" de="">(Relação)</lista>	Primitiva
U	União (Union)	(Relação 1) ∪ (Relação 2)	Primitiva
\cap	Interseção (Intersection)	(Relação 1) ∩ (Relação 2)	Adicional
_	Diferença (Difference)	Sintaxe: (Relação 1) - (Relação 2)	Primitiva
X	Produto Cartesiano (Product)	(Relação 1) X (Relação 2)	Primitiva
x	Junção (Join)	(Relação 1) X <condição de<br="">junção> (Relação 2)</condição>	Adicional
•	Divisão (Divide)	(Relação 1) ⊕ (Relação 2)	Adicional

Álgebra Relacional Exemplo

- ▶ Estud (<u>SID</u>, nome, idade, CR)
- Curso (CID, titulo)
- Matr (SID, CID)

Álgebra Relacional Exemplo

- SID dos estudantes que assistem a pelo menos 2 cursos
- ▶ r1 ← SELECIONE Matric COM SID=SID1 E CID = CID1
- r2 ← SELECIONE Matric COM SID=SID2 E CID = CID2
- r3 ← JUNTE r1 A r2 COM r1.SID=r2.SID E r1.CID ≠ r2.CID
- r4 ← PROJETE r3 SOBRE SID

Álgebra Relacional Exemplo

Listar todos os cursos que Bob NÃO assiste

Cursos que Bob NÃO assiste

Álgebra Relacional Exemplo

Listar todos os cursos que Bob NÃO assiste

- r1 ← SELECIONE Estud COM nome='Bob'
- r2 ← JUNTE r1 A Matric COM r1.CID= Matric.CID
- r3 ← PROJETE r2 SOBRE CID
- r4 ← PROJETE Curso SOBRE CID
- r5 ← r4 r3

Listar nomes dos estudantes na classe de Bob

Álgebra Relacional Exemplo

- Listar nomes dos estudantes na classe de Bob
- r1 ← SELECIONE Estud COM nome='Bob'
- r2 ← JUNTE r1 A Matric COM r1.CID= Matric.CID
- r3 ← PROJETE r2 SOBRE CID
- r4 ← JUNTE r3 A Matric COM r3.CID= Matric.CID
- r5 ← PROJETE r4 SOBRE CID
- ▶ r6 ← JUNTE r5 A Estud COM r5.SID= Estud.SID
- ▶ r7 ← PROJETE r6 SOBRE nomes

8 - θ-Junção R ⋈ S

- * se a aridade de R for r e a de S, s a aridade da θ -junção é r+s
- contém as tuplas do produto cartesiano de R por S tais que o componente i está na relação θ com o componente r+j (i.e., o correspondente ao j em S).
- Expressão da θ-junção

$$\begin{array}{ll} \square & R \bowtie_{i \theta j} S = \sigma_{\S_{i} \, \theta \, \S(r+j)} \, (R \times S) \\ \bullet & \text{se} \, \theta \, \, \text{for} = \text{, a operação designa-se equijunção} \end{array}$$

- (7, 8, 9) é uma tupla pendente de R pois não aparece na θ-junção

R			_
Α	В	O	
1	2	З	
4	5	6	
7	8	9	_

S	
۵	Ε
3	1
6	2

R	$R \bowtie S = R \bowtie S$				
Α	В	С	D	Ш	
1	2	3	3	1	
1	2	3	6	2	
4	5	6	6	2	

9 - Junção natural R ⋈ S

- só é aplicável se os componentes das tuplas em R e S forem designados por atributos.
- a operação implícita na junção natural é a igualdade dos atributos com o mesmo nome.
- cada par de atributos iguais dá origem a um único atributo, com o mesmo nome, no resultado

$$\square \ \text{expressão:} \ R \bowtie S = \Pi_{i_1, \dots, i_m} \left(\sigma_{R.A_1 = S.A_1. \wedge \dots \wedge R.A_k = S.A_k} (R \times S) \right)$$

• k é o número de atributos comuns a R (aridade r) e S (aridade s) e

- tuplas pendentes, isto é desemparelhadas, quer em R quer em S, desaparecem na θ-junção e na junção natural
- a junção externa (θ- ou natural) inclui as tuplas pendentes de R ou S completados a nulos
 - (7, 8, 9) é uma tupla pendente de R pois não aparece na θ-junção
 - (b, b, f) idem, na junção natural

	R ⋈ S B≤D				
Α	В	С	D	E	
1	2	3	3	1	
1	2	3	6	2	
4	5	6	6	2	
7	8	9	\perp	\perp	

R	≭ S	•	
A	В	C	O
a	b	С	p
а	b	С	е
d	b	С	d
d	b	C	е
С	а	d	b
b	b	f	\perp

10 - Semi-junção R⋉S

- projecção nos atributos de R da junção natural de R e S
- \square R \ltimes S = Π_R (R \bowtie S)
 - R em Π_R representa os atributos de R (o seu esquema); em R⋈S R representa a relação (a instância)
- \square outra expressão: $R \ltimes S = R \bowtie \Pi_{R \cap S}(S)$
- dá as tuplas de R que têm par em S

R⋉S				
Α	В	С		
a d c	b	С		
d	b	С		
С	а	d		

Álgebra Relacional Relacoes com atributos

- na junção natural e na semi-junção os atributos são importantes; para os tornar explícitos escreve-se $R(A_1, ..., A_n)$
- é possível renomear colunas e fazer junções naturais como:

ß	С	D
b	С	d
b	C	е
а	d	b

•	S(E,F,G) S(G,H,I)					
	Е	F	G	Н	_	
	а	d	b	С	d	
	а	d	b	С	е	

- uma junção natural entre duas relações sem atributos comuns redunda num produto cartesiano porque, após este, não há nenhuma selecção a fazer (equivalente a fazer uma selecção com a condição True)
- □ R(A,B,C) ⋈ S(G,H,I) = R × S

Álgebra Relacional Propriedades Algebricas

Reunião

 \square associativa: $R \cup (S \cup T) = (R \cup S) \cup T$

 \square comutativa: $R \cup S = S \cup R$

Produto cartesiano

 \square associativo: $R \times (S \times T) = (R \times S) \times T$

 \square não comutativo: $R \times S \neq S \times R$

Junção natural

 □ associativa e comutativa (independência da ordem das colunas devida aos atributos): R ⋈ S = S ⋈ R

□ Por isso \bowtie generaliza facilmente: $R = R_1 \bowtie ... \bowtie R_n$

 R contém os tuplos μ tais que, para 1≤ i ≤ n, μ restringido aos atributos de R_i é um tuplo de R_i

O θ - junção

 não é comutativa mas é associativa (no caso de os índices serem válidos)

 $R \bowtie_{i\theta_1 j} (S \bowtie_{k\theta_2 l} T) = (R \bowtie_{i\theta_1 j} S) \bowtie_{(r+k)\theta_2 l} T$

- Álgebra Relacional pode ser usada como linguagem de interrogação à BD
- O P1 Relativamente à BD "Cursos", quais os nomes dos professores do 12° grupo?

 Π_{nome} [σ_{grupo='12'} (Professor)]
- P2 Quais os nomes e datas de nascimento dos alunos do curso 'CG1' nascidos antes de 1983?

 $\Pi_{\text{nome, data_nasc}} \left[\sigma_{\text{codcurso}} = \text{`CG1'} \land \text{data_nasc} < 1983-01-01 (Aluno) \right]$

- P3 Nomes dos alunos inscritos à disciplina 327?
 - nenhuma relação contém nomes de alunos e códigos de disciplina
 - □ mas a junção Aluno ⋈ Inscrito = R contém:
 - R (<u>bia</u>, nome, morada, telefone, data_nasc, codcurso, ano, letra, coddis, resultado)
 - (i) Π_{nome} [σ_{coddis = 327} (Aluno ⋈ Inscrito)]
 - (ii) Π_{nome} [Aluno $\bowtie \sigma_{coddis = 327}$ (Inscrito)]
 - esta maneira de ligar informações no modelo de dados dá muita liberdade para exprimir perguntas arbitrárias mas exige uma fase de optimização para executar (ii) mesmo que a pergunta seja (i)

Núcleo da álgebra relacional : Π , σ , \bowtie

o renomeação de atributos

- \square R(A,B,C)
- \square R'(X,Y,Z) = $\prod_{X=A,Y=B,Z=C} [R(A,B,C)]$
 - onde não houver ambiguidades, a simples menção dos atributos, em conjunto com o nome da relação, faz a renomeação

OU
- R'(X, Y, Z) = R(A, B, C)
OU
- R' =
$$\Pi_{X=A,Y=B,Z=C}(R)$$

- expressões aritméticas (+, -, *, /)
- este mecanismo serve para dar nomes a expressões

$$\square S = \prod_{W=A*_{B-C, U=C/B,A}} (R)$$
OU

$$\Box$$
 S (W, U, A)= $\Pi_{A^*B-C, C/B, A}(R)$

- P4 Obtenha uma relação de inscrições com as classificações inflaccionadas de 20%.
 - □ Π_{coddis, bia, resultado, novo = resultado*1.2} (Inscrito)
 - □ Π_{coddis, bia, resultado, novo = resultado + (20-resultado)/10} (Inscrito)
- o nos parâmetros da projecção:
 - no membro direito só podem ser usados nomes de atributos do argumento de Π; no esquerdo só pode estar um atributo (novo...)

- O Operadores de agregação
 - CNT (contagem), SUM (adição), AVG (média), MAX (máximo), MIN (mínimo)
- \circ S = $\Pi_{V = CNT(B)}(R)$
 - □ S(V) tem um único valor, o número de tuplas de R com valor não nulo no atributo B (CNT (*) conta todas as linhas) → toda a relação agregada
- \circ T = $\Pi_{A, M=MAX(B)}(R)$
 - □ T (A, M) tem tantos pares quantos os valores diferentes de A, sendo indicado para cada A o respectivo valor máximo de B (não nulo ...);
 - é feita uma partição segundo os atributos de projecção sem operadores de agregação e cada classe é agregada numa só tupla;
 - é possível misturar agregações e aritmética

- P5 Qual o número de inscrições, nota média das inscrições, soma de todas as notas e número de resultados não nulos ?
 - □ R(NI, M, T, NR) = Π_{CNT(*)}, AVG(resultado), SUM(resultado), CNT(resultado) (Inscrito)
 - □ pode ser M ≠ T/NI se houver inscrições ainda sem resultado (valor nulo); tem que ser M = T/NR

Inscrito

IMSCIICO			
coddis	bia	resultado	
PA	97	14	
PA	38	12	
ITI	97	17	
ITI	25	14	
Н	97	10	
Н	25		

R			
NI	M	Т	NR
6	13.4	67	5

Cliente Particular (CP)

CliId	Nome	CPF
1532	Asdrúbal	448.754.253-65
1755	Doriana	567.387.387-44
1780	Quincas	546.373.762-02

Cliente Empresa (CE)

CliId	Nome	CGC
1532	Asdrúbal	754.856.965/0001-54
1644	Jepeto	478.652.635/0001-75
1780	Quincas	554.663.996/0001-87
1982	Zandor	736.952.369/0001-23

Táxi (TX)

<u>Placa</u>	Marca	Modelo	AnoFab
DAE6534	Ford	Fiesta	1999
DKL4598	Wolksvagen	Gol	2001
DKL7878	Ford	Fiesta	2001
JDM8776	Wolksvagen	Santana	2002
JJM3692	Chevrolet	Corsa	1999

Corrida (R1)

ClId	<u>Placa</u>	<u>DataPedido</u>
1755	DAE6534	15/02/2003
1982	JDM8776	18/02/2003

- Qual a marca de carro mais requisitada pelos clientes?
- Em que mês do ano mais corridas são feitas?
- Qual o nome dos clientes que trabalham em uma determinada empresa que mais se utiliza do serviço de táxi?

- F(<u>numfd</u>,nomef)
- o D(<u>numfd,nomed</u>,par)

F		
numfd	nomef	
01	F1	
02	F2	
03	F3	
04	F4	

D		
numf	nomed	par
01	Alice	filha
02	Alice	esposa
02	Clara	filha
03	José	filho

 Quais os nomes e parentescos de todos os dependentes?

- o F(<u>numfd</u>,nomef)
- o D(<u>numfd,nomed</u>,par)

F		
numfd	nomef	
01	F1	
02	F2	
03	F3	
04	F4	

D		
numf	nomed	par
01	Alice	filha
02	Alice	esposa
02	Clara	filha
03	José	filho

 Quais funcionários possuem dependentes filhas?

- o F(numfd,nomef)
- o D(<u>numfd,nomed</u>,par)

F		
numfd	nomef	
01	F1	
02	F2	
03	F3	
04	F4	

D		
numf	nomed	par
01	Alice	filha
02	Alice	esposa
02	Clara	filha
03	José	filho

 Quais funcionários não possuem dependentes?

- F(<u>numfd</u>,nomef)
- o D(<u>numfd,nomed</u>,par)

F		
numfd	nomef	
01	F1	
02	F2	
03	F3	
04	F4	

D		
numf	nomed	par
01	Alice	filha
02	Alice	esposa
02	Clara	filha
03	José	filho

 Dê os nomes dos funcionários que possuem algum dependente.

- F(<u>numfd</u>,nomef)
- D(<u>numfd,nomed</u>,par)

F		
numfd	nomef	
01	F1	
02	F2	
03	F3	
04	F4	

D		
numf	nomed	par
01	Alice	filha
02	Alice	esposa
02	Clara	filha
03	José	filho

 Dê o nome de cada funcionário que possui uma dependente chamada Alice.

- F(<u>numfd</u>,nomef)
- o D(<u>numfd,nomed</u>,par)

F		
numfd	nomef	
01	F1	
02	F2	
03	F3	
04	F4	

D		
numf	nomed	par
01	Alice	filha
02	Alice	esposa
02	Clara	filha
03	José	filho

 Quais funcionários não têm Alice como dependente (isto é, nenhuma dependente chamada Alice)?

- o F(<u>numfd</u>,nomef)
- D(<u>numfd,nomed</u>,par)

F		
numfd	nomef	
01	F1	
02	F2	
03	F3	
04	F4	

D		
numf	nomed	par
01	Alice	filha
02	Alice	esposa
02	Clara	filha
03	José	filho

o Quais funcionários possuem mais de um dependente?

- F(<u>numfd</u>,nomef)
- o D(<u>numfd,nomed</u>,par)

F		
numfd	nomef	
01	F1	
02	F2	
03	F3	
04	F4	

D		
numf	nomed	par
01	Alice	filha
02	Alice	esposa
02	Clara	filha
03	José	filho

- Quais funcionários possuem mais de um dependente?
 - ρ D₁ (numf,nomed1,par1) (D)
 - ρ D₂ (numf,nomed2,par2) (D)
 - $\pi_{\text{numf}} ((\sigma_{\text{nomed1} \neq \text{nomed2}} (D_1 | X | D_2)))$

Álgebra Relacional Seleção

- Formato: RelResultado = $\sigma_{\text{predicado}}$ (RelEntrada)
- Ex.:Selecione as tuplas da relação
 EMPRÉSTIMOS para quais o nome da agência é "Perryridge"

$$R = \sigma_{\text{e-agência='Perryridge'}}(\text{EMPRÉSTIMOS})$$

```
SELECT *
FROM EMPRESTIMOS
WHERE E_AGENCIA = 'PERRYRIDGE'
```

Álgebra Relacional Projeção

- Formato: RelResult= $\pi_{\text{colunas a copiar}}$ (RelEntrada)
- Ex.: Obter uma tabela que relacione os clientes do banco com as agências onde fizeram empréstimos:

$$\mathsf{Res} {=} \pi_{\mathsf{e}\text{-agencia},\,\mathsf{e}\text{-nome}}(\mathsf{EMPR}\mathsf{\acute{E}STIMOS})$$

SELECT E_AGENCIA, E_NOME FROM EMPRESTIMOS . -

- É possível compor operações mais complexas da álgebra relacional através do aninhamento de operações mais simples
- Exemplo: listar os nomes dos clientes que fizeram empréstimos superiores a 1200:

RelResult = $\pi_{e-\text{nome}}(\sigma_{e-\text{valor}>1200} \text{ (EMPRÉSTIMOS)})$

SELECT DISTINCT E_NOME FROM (SELECT E_NOME FROM EMPRESTIMOS WHERE E_VALOR >1200)

 A operação de seleção que gera uma relação como resultado pode ser usada como relação de entrada para a operação de projeção

Álgebra Relacional Renomear

Em SQL proporciona um mecanismo para renomear tanto atributos quanto relações, usando a cláusula **as**, como segue:

select Atributo **as** Novo_nome **from** relação;

Álgebra Relacional Produto cartesiano

- Exemplo: listar o nome dos clientes que moram em Rye e fizeram empréstimo de menos de 1000.
 - a)RelResult1= CLIENTES x EMPRÉSTIMOS
 - b)RelResult2= $\sigma_{c-name = e-name}$ (RelResult1)
 - c)RelResult3= $\sigma_{e-valor < 1000 \text{ and } c-cidade = Rye}$ (RelResult2)

```
SELECT C_NOME
FROM CLIENTES, EMPRESTIMOS
WHERE C_NOME = E_NOME AND
E_VALOR < 1000 AND C_CIDADE = 'RYE'
```

Faça uma lista com todos os números de projetos nos quais esteja envolvido algum empregado cujo último nome seja 'Smith'; ou como empregado, ou como gerente do departamento que controla o projeto.

```
(select distinct pnumero
from projeto, departamento, empregado
where Dnum = Dnumero and GerSSN = ssn and
unome = 'Smith')
union
(select distinct pnumero
from trabalha_em, projeto, empregado
where pnumero = Pno and essn = SSN and
unome = 'Smith');
```

Obs: Diferença entre conjuntos → except
Interseção de conjuntos → intersect