ELECTRIC VEHICLE DATA ANALYSIS PROJECT

COURSE-5 PYTHON

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

FEV_df=pd.read_excel("FEV-data-Excel.xlsx")

→ Data Preparation

 $\label{thm:constraint} \mbox{Up_FEV_df=FEV_df.dropna(how="all")} \quad \mbox{\#drops rows only if all values are NaN}$

Up_FEV_df.fillna({"Type of brakes":'NA',})
Up_FEV_df.head()

ř	Car full name	Make	Model	Minimal price (gross) [PLN]	Engine power [KM]	Maximum torque [Nm]	OT	Drive type	Battery capacity [kWh]	Range (WLTP) [km]		Permissable gross weight [kg]	Maximum load capacity [kg]	Number of seats		size	Maximum speed [kph]	Boot capacity (VDA) [1]	Accele 0-1
(Audi e- tron 55 quattro	Audi	e-tron 55 quattro	345700	360	664	disc (front + rear)	4WD	95.0	438		3130.0	640.0	5	5	19	200	660.0	
	Audi e- tron 50 quattro	Audi	e-tron 50 quattro	308400	313	540	disc (front + rear)	4WD	71.0	340	•••	3040.0	670.0	5	5	19	190	660.0	
:	Audi e- tron S quattro		e-tron S quattro	414900	503	973	disc (front + rear)	4WD	95.0	364		3130.0	565.0	5	5	20	210	660.0	
;	Audi e- tron 3 Sportback 50 quattro		e-tron Sportback 50 quattro	319700	313	540	disc (front + rear)	4WD	71.0	346		3040.0	640.0	5	5	19	190	615.0	
	Audi e- tron 4 Sportback 55 quattro	Audi	e-tron Sportback 55 quattro	357000	360	664	disc (front + rear)	4WD	95.0	447		3130.0	670.0	5	5	19	200	615.0	

Column names changed to make them shorter and easy to use

Up_FEV_df.columns=["Car Full Name", "Make","Model", "Minimal_Price", "Engine_Power_km", "Maximum_torque_Nm", "Type_of_brakes", "Drive_type", "Bat_capacity_kwh",

"Range_km", "WHeelbase_cm", "Length_cm", "Width_cm", "Height_cm", "Empty_weight_kg", "P_gross_weight_kg", "Max_load_capa_kg", "Num_of_seats",

"Num_of_doors", "Tire_size_in", "Max_speed_kph", "Boot_capacity_liter", "Acceleration_kph", "Charging_power_kw", "Mean_EC"]

Up_FEV_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 53 entries, 0 to 52
Data columns (total 25 columns):

#	Columns (total 25 co	Non-Null Count	Dtype
0	Car Full Name	53 non-null	object
1	Make	53 non-null	object
2	Model	53 non-null	object
3	Minimal Price	53 non-null	int64
4	Engine_Power_km	53 non-null	int64
5	Maximum_torque_Nm	53 non-null	int64
6	Type_of_brakes	52 non-null	object
7	Drive_type	53 non-null	object
8	Bat_capacity_kwh	53 non-null	float64
9	Range_km	53 non-null	int64
10	WHeelbase_cm	53 non-null	float64
11	Length_cm	53 non-null	float64
12	Width_cm	53 non-null	float64
13	Height_cm	53 non-null	float64
14	Empty_weight_kg	53 non-null	int64
15	P_gross_weight_kg	45 non-null	float64
16	Max_load_capa_kg	45 non-null	float64
17	Num_of_seats	53 non-null	int64
18	Num_of_doors	53 non-null	int64
19	Tire_size_in	53 non-null	int64
20	Max_speed_kph	53 non-null	int64
21	Boot_capacity_liter	52 non-null	float64
22	Acceleration_kph	50 non-null	float64
23	Charging_power_kw	53 non-null	int64
24	Mean_EC	44 non-null	float64
dtype	es: float64(10), int6	4(10), object(5)	

Filled up coloumns having NaN values with 0.0 or NA

Mod_FEV_df=Up_FEV_df.fillna({"Type_of_brakes":"NA","P_gross_weight_kg":0.0,"Max_load_capa_kg":0.0,"Boot_capacity_liter":0.0,"Acceleration_kph":0.0,"Mean_EC":0.0})

Mod_FEV_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 53 entries, 0 to 52

Data columns (total 25 columns): Non-Null Count Dtype # Column -----0 Car Full Name 53 non-null object Make 53 non-null 1 object Model 53 non-null object Minimal Price 53 non-null int64 Engine_Power_km 53 non-null int64 Maximum_torque_Nm 53 non-null int64 Type_of_brakes 53 non-null object Drive_type 53 non-null object Bat_capacity_kwh 53 non-null Range_km 53 non-null int64 10 WHeelbase_cm 53 non-null float64 11 Length_cm 53 non-null float64 12 Width_cm 53 non-null float64 13 Height_cm 53 non-null float64 14 Empty_weight_kg 53 non-null int64 15 P_gross_weight_kg 53 non-null float64 16 Max_load_capa_kg 53 non-null float64 17 Num_of_seats 53 non-null int64 18 Num_of_doors 53 non-null int64 19 Tire_size_in 53 non-null int64 int64 20 Max speed kph 53 non-null float64 21 Boot_capacity_liter 53 non-null 22 Acceleration kph 53 non-null float64 23 Charging_power_kw 53 non-null int64 24 Mean EC 53 non-null float64 dtypes: float64(10), int64(10), object(5) memory usage: 10.5+ KB

Task 1: A customer has a budget of 350,000 PLN and wants an EV with a minimum range of 400 km.

(a) Your task is to filter out EVs that meet these criteria.

_

filtered_EVs=Mod_FEV_df[(Mod_FEV_df['Minimal_Price']<=350000) & (Mod_FEV_df['Range_km']>=400)] #This filters rows where Minimal_price is less than or equal to 350,6 filtered_EVs=filtered_EVs[['Car Full Name','Make','Model','Minimal_Price','Range_km','Bat_capacity_kwh']] # and range is equal to 400 or above filtered_EVs.sort_values("Minimal_Price",ascending=False)

7		Car Full Name	Make	Model	Minimal_Price	Range_km	Bat_capacity_kwh
	0	Audi e-tron 55 quattro	Audi	e-tron 55 quattro	345700	438	95.0
	22	Mercedes-Benz EQC	Mercedes-Benz	EQC	334700	414	80.0
	8	BMW iX3	BMW	iX3	282900	460	80.0
	41	Tesla Model 3 Performance	Tesla	Model 3 Performance	260490	567	75.0
	40	Tesla Model 3 Long Range	Tesla	Model 3 Long Range	235490	580	75.0
	49	Volkswagen ID.4 1st	Volkswagen	ID.4 1st	202390	500	77.0
	39	Tesla Model 3 Standard Range Plus	Tesla	Model 3 Standard Range Plus	195490	430	54.0
	48	Volkswagen ID.3 Pro S	Volkswagen	ID.3 Pro S	179990	549	77.0
	15	Hyundai Kona electric 64kWh	Hyundai	Kona electric 64kWh	178400	449	64.0
	18	Kia e-Niro 64kWh	Kia	e-Niro 64kWh	167990	455	64.0
	20	Kia e-Soul 64kWh	Kia	e-Soul 64kWh	160990	452	64.0
	47	Volkswagen ID.3 Pro Performance	Volkswagen	ID.3 Pro Performance	155890	425	58.0
-	•						

b) Group them by the manufacturer (Make).

Group_make=filtered_EVs.groupby("Make")["Range_km"].mean() # This groups the manufacturer based on the aggregate range Group_make.sort_values(ascending=False)

→		
*	Range	km

Make	
Tesla	525.666667
Volkswagen	491.333333
BMW	460.000000
Kia	453.500000
Hyundai	449.000000
Audi	438.000000
Mercedes-Benz	414.000000
dt	

(c) Calculate the average battery capacity for each manufacturer.

Bat_capacity_kwh

Make	
Audi	95.000000
BMW	80.000000
Mercedes-Benz	80.000000
Volkswagen	70.666667
Tesla	68.000000
Hyundai	64.000000
Kia	64.000000
dtupe: float64	

INSIGHTS

- 1.Multiple VW models (ID.3, ID.4) offer 450-550 km range at under 200k PLN.
- 2. Volkswagen ID.3 Pro S achieves 549 km range on 77 kWh, showing high energy efficiency compared to larger battery vehicles.
- 3. Hyundai and Kia offer 450+ km range with 64 kWh batteries priced between 160k-180k PLN.
- 4. Tesla has an Average range of approx. 526 km, well above other brands.
- 5.With an average range of 491 km(approx), VW is emerging as a serious competitor to Tesla in the affordable EV space.
- 6.Audi (438 km) and Mercedes-Benz (414 km) have lower average ranges despite higher prices.
- 7.Lower-priced brands like Tesla (Model 3) and Volkswagen offer higher average range than premium brands like Audi and Mercedes.
- 8. Audi leads with the highest average battery capacity among selected EVs.
- 9.BMW and Mercedes-Benz offer a good balance between battery size and premium branding.
- 10.Volkswagen and Tesla provide relatively smaller battery capacities but compensate with longer ranges, especially Tesla.
- Task 2: You suspect some EVs have unusually high or low energy consumption. Find the outliers in the mean Energy consumption [kWh/100 km] column.(16 Marks)

Mod_FEV_df[['Car Full Name','Make','Model','Mean_EC']].head(10)

₹		Car Full Name	Make	Model	Mean_EC
	0	Audi e-tron 55 quattro	Audi	e-tron 55 quattro	24.45
	1	Audi e-tron 50 quattro	Audi	e-tron 50 quattro	23.80
	2	Audi e-tron S quattro	Audi	e-tron S quattro	27.55
	3	Audi e-tron Sportback 50 quattro	Audi	e-tron Sportback 50 quattro	23.30
	4	Audi e-tron Sportback 55 quattro	Audi	e-tron Sportback 55 quattro	23.85
	5	Audi e-tron Sportback S quattro	Audi	e-tron Sportback S quattro	27.20
	6	BMW i3	BMW	i3	13.10
	7	BMW i3s	BMW	i3s	14.30
	8	BMW iX3	BMW	iX3	18.80
	9	Citroën ë-C4	Citroën	ë-C4	0.00

r	-	_
-	→	₩

,	Car Full Name	Make	Model	Minimal_Price	Engine_Power_km	Maximum_torque_Nm	Type_of_brakes	Drive_type	Bat_capacity_kwh	Range_km	 P_gross_weight_kg
	Audi e- tron 55 quattro	Audi	e-tron 55 quattro	345700	360	664	disc (front + rear)	4WD	95.0	438	 3130.0
	Audi e- tron 50 quattro	Audi	e-tron 50 quattro	308400	313	540	disc (front + rear)	4WD	71.0	340	 3040.0
	Audi e- tron S quattro	Audi	e-tron S quattro	414900	503	973	disc (front + rear)	4WD	95.0	364	 3130.0
	Audi e- tron Sportback 50 quattro	Audi	e-tron Sportback 50 quattro	319700	313	540	disc (front + rear)	4WD	71.0	346	 3040.0
	Audi e- tron Sportback 55 quattro	Audi	e-tron Sportback 55 quattro	357000	360	664	disc (front + rear)	4WD	95.0	447	 3130.0
	Audi e- tron Sportback S quattro	Audi	e-tron Sportback S quattro	426200	503	973	disc (front + rear)	4WD	95.0	369	 3130.0
	6 BMW i3	BMW	i3	169700	170	250	disc (front + rear)	2WD (rear)	42.2	359	 1730.0
	7 BMW i3s	BMW	i3s	184200	184	270	disc (front + rear)	2WD (rear)	42.2	345	 1730.0
	8 BMW iX3	BMW	iX3	282900	286	400	disc (front + rear)	2WD (rear)	80.0	460	 2725.0
	DS DS3 10 Crossback e-tense	DS	DS3 Crossback e-tense	159900	136	260	disc (front + rear)	2WD (front)	50.0	320	 1975.0

10 rows × 25 columns

out_FEV_df.info()

<class 'pandas.core.frame.DataFrame'>
 Index: 44 entries, 0 to 52
 Data columns (total 25 columns):

#	Column	Non-Null Count	Dtype
0	Car Full Name	44 non-null	object
1	Make	44 non-null	object
2	Model	44 non-null	object
3	Minimal_Price	44 non-null	int64
4	Engine_Power_km	44 non-null	int64
5	Maximum_torque_Nm	44 non-null	int64
6	Type_of_brakes	44 non-null	object
7	Drive_type	44 non-null	object
8	Bat_capacity_kwh	44 non-null	float64
9	Range_km	44 non-null	int64
10	WHeelbase_cm	44 non-null	float64
11	Length_cm	44 non-null	float64
12	Width_cm	44 non-null	float64
13	Height_cm	44 non-null	float64
14	Empty_weight_kg	44 non-null	int64
15	P_gross_weight_kg	44 non-null	float64
16	Max_load_capa_kg	44 non-null	float64
17	Num_of_seats	44 non-null	int64
18	Num_of_doors	44 non-null	int64
19	Tire_size_in	44 non-null	int64
20	Max_speed_kph	44 non-null	int64
21	Boot_capacity_liter	44 non-null	float64
22	Acceleration_kph	44 non-null	float64
23	Charging_power_kw	44 non-null	int64
24	Mean_EC	44 non-null	float64
	es: float64(10), int6	4(10), object(5)	
memor	ry usage: 8.9+ KB		

out_FEV_df['Mean_EC'].mean()

p.float64(18.994318181818183)

out_FEV_df['Mean_EC'].median()

→ 17.05

Since mean and median are very close to each other, but still there is some difference between mean and median, so there can be some outliers.

```
out_FEV_df['Mean_EC'].var() #Variance of Mean_EC column
```

Double-click (or enter) to edit

→ 19.520955338266386

out_FEV_df['Mean_EC'].std() #Standard deviation of Mean_EC column

→ 4.418252520880443

sns.kdeplot(x='Mean_EC',data=out_FEV_df)
plt.title("kde plot of Energy Consumption")

→ Text(0.5, 1.0, 'kde plot of Energy Consumption')

sns.boxplot(x=out_FEV_df['Mean_EC'])
plt.title("Energy Consumption")
plt.show()

To find outliers in the Mean_EC column. We need to find Lower Bound(LB), Upper Bound(UB),Interquartile range, quartile 1(q1) and quartile 2(q2). The formular for IQR

IQR=q3-q1

```
q1=out_FEV_df['Mean_EC'].quantile(0.25) #formula to find q1 q3=out_FEV_df['Mean_EC'].quantile(0.75) #formula to find q3
```

q1

→ np.float64(15.6)

```
→ np.float64(23.5)
IOR=q3-q1 #calculation of IOR
IQR
→ np.float64(7.9)
LB=a1-1.5*IOR
UB=q3+1.5*IQR
LB.UB
                              # So any value below LB and above UB will be an outlier
→ (np.float64(3.74999999999999), np.float64(35.35))
out_FEV_df['Mean_EC'].min()
<del>_</del> 13.1
out_FEV_df['Mean_EC'].max()
→ 28.2
# so we can see that there is no value below the lower bound value of 3.74 in the mean EC column.
# The maximum value in the Mean_EC column fall below the upper bound. so there is no outlier on this side as well
Outliers=out_FEV_df[(out_FEV_df['Mean_EC']<LB) | (out_FEV_df['Mean_EC']>UB)]
                                                                                 # This will extract rows having values below LB and above UB if there is any.
Outliers=Outliers[["Car Full Name", "Make", "Model", "Mean_EC"]]
       Car Full Name Make Model Mean EC
```

INSIGHTS

- 1.All EVs fall within expected range (13 to 28 kWh/100 km).
- 2. Skewed distibution, a few high-consumption EVs may be influencing the mean more than the median.
- $3. Highest\ mean\ energy\ consumption:\ 28.2\ kWh/100\ km. Suggests\ this\ EV\ might\ be\ heavy\ or\ performance-oriented.$
- $4. Lowest\ consumption: 13.1\ kWh/100\ km, Indicates\ exceptional\ efficiency. Left\ boundary\ near\ 13.1-these\ may\ be\ city-oriented\ EVs.$
- 5.Energy consumption is centered around 17 kWh/100 km most EVs are energy efficient.
- 6.No visual or statistical outliers.

Since no rows apears in the result, so it can be concluded that there is no outlier in the Mean_EC

Task 3: Your manager wants to know if there's a strong relationship between battery capacity and range.

a) Create a suitable plot to visualize.

```
Mod_FEV_df['Bat_capacity_kwh'].corr(Mod_FEV_df['Range_km']) #the correlation value of 0.81 represents
#that there is a strong positive relationship between Battery capacity and Rnage

pn.float64(0.8104385771936846)

correlation=np.corrcoef(Mod_FEV_df['Bat_capacity_kwh'],Mod_FEV_df['Range_km'])[0,1]

correlation

np.float64(0.8104385771936846)

sns.regplot(data=Mod_FEV_df,x='Bat_capacity_kwh',y='Range_km') #Scatter plot has been used here to check for a linear or non-linear relationship plt.title("Battery capacity vs Range") #between battery capacity and range plt.xlabel("Battery Capacity(kwh)") #between battery capacity and range plt.ylabel("Range(km)") plt.grid()
plt.show()
```


b) Highlight any insights.

Insights:

- 1. Correlation Coefficient of 0.81 Indicates a strong positive linear relationship between battery capacity and driving range.
- 2.(0.81) coeff means larger batteries provide longer driving range.
- 3. The plot shows a clear upward trend—as battery capacity increases, so does range.
- 5. Some spread at higher capacities suggests lower returns or it may be due to influence of other factors like weight, and aerodynamics.

Task 4: Build an EV recommendation class. The class should allow users to input their budget,

desired range, and battery capacity. The class should then return the top three EVs matching their criteria. (8+8 Marks)

```
class EVrecommender:
                       #defined a class
       _init__(self,Mod_FEV_df): #init method initialize the object
   self.df=Mod FEV df
                               #assigns the dataset to the object
 def recommend(self,budget,desired_range,battery_capacity): # Function named "recommend" created inside the class with three parameters
     recommended_EVs=self.df[(self.df['Minimal_Price']<=budget) & (self.df['Range_km']>=desired_range) & # filters dataset based on user inputs
      (self.df['Bat capacity kwh']>=battery capacity)]
     Top3_EVs=recommended_EVs.sort_values(['Minimal_Price'],ascending=True) #Sorts the filtered dataset by price
     return Top3_EVs[['Car Full Name','Model','Model','Minimal_Price','Bat_capacity_kwh','Range_km']].head(3) #return top 3 EVs and store them in Top3_EVs
```

EVs=EVrecommender(Mod FEV df) #creates an object EVs inside the class and loads the dataset Recommendations=EVs.recommend(budget=500000,desired_range=400,battery_capacity=80) #calls the recommend method with customer preferences Recommendations

₹		Car Full Name	Make	Model	Minimal_Price	Bat_capacity_kwh	Range_km
	8	BMW iX3	BMW	iX3	282900	80.0	460
	22	Mercedes-Benz EQC	Mercedes-Benz	EQC	334700	80.0	414
	0	Audi e-tron 55 quattro	Audi	e-tron 55 quattro	345700	95.0	438
	_						

Task 5: Inferential Statistics - Hypothesis Testing: Test whether there is a significant difference in the average Engine power [KM] of vehicles manufactured by two leading manufacturers i.e. Tesla and Audi. What insights can you draw from the test results? Recommendations and Conclusion: Provide actionable insights based on your analysis. (Conduct a two sample t-test using ttest_ind from scipy.stats module) (16 Marks)

Hypothesis Testing: Comparison of Engine Power of Tesla and Audi.

Objective: To test whether there is statistically significant difference in the average engine power of EVs manufactured by Tesla and Audi.

Null Hypothesis (Ho):

There is no significant difference in the average engine power of vehicles manufactured by Tesla and Audi.

Alternative Hypothesis(H1)

There is significant difference in the average engine power of vehicles manufactured by Tesla and Audi.

from scipy.stats import ttest_ind

Mod_FEV_df[Mod_FEV_df['Make'] == 'Audi'][['Make','Engine_Power_km']]

Mod_FEV_df[Mod_FEV_df['Make']=='Tesla'][['Make','Engine_Power_km']]

Codes to filter the data frame Mod_FEV_df to select the engine power

Tesla_Power=Mod_FEV_df[Mod_FEV_df['Make']=='Tesla']['Engine_Power_km'] # This code filters rwos where the brand is Tesla and creates a series of engine powers of Tes

Audi_Power=Mod_FEV_df[Mod_FEV_df['Make']=='Audi']['Engine_Power_km']# This code filters rows where the brand is Audi and creates a series of engine powers of Audi

```
Average_Tesla=Tesla_Power.mean()
Average_Audi=Audi_Power.mean()
print(Average_Tesla,Average_Audi)
```

print("T-Statistic:",t_stat)

→ 533.0 392.0

#two sample independent t test using ttest_ind
t_stat, p_value=ttest_ind(Tesla_Power,Audi_Power,equal_var=False) #ttest_ind compares the means of two independent groups i.e. Tesla_Power and Audi_Power
#equal_var=false doesnot assume varinces of

```
print("P-value:",p_value)

T-Statistic: 1.7939951827297178
P-value: 0.10684105068839565

alpha=0.05
#i.e. 5% siginicance level
# p-value less than 0.05 suggests strong evidence against the null hypothesis
# Large p-value suggests weak evidence against the null hypothesis
if p_value<alpha:
    print("Null hypotheis is rejected:There is significant difference in engine power")
else:
    print("Fail to reject the null hypothesis:There is no significant difference in engine power.")</pre>
```

Fail to reject the null hypothesis:There is no significant difference in engine power.

INSIGHTS

→ RECOMMENDATIONS:

- 1. Promote Tesla models as they offer superior range at competitive prices.
- 2. Highlight value models like VW ID.3 Pro S and Kia -e niro provide excellent range under 200000 PLN. They are ideal for budget conscious customers.
- 3. Avoidn over priced low range models like Audi e-tron in a value market.
- 4. VW and Tesla outperform others in average range, so these can be marketed for long range EV seekers.
- 5. Models with energy usage greater than 28 KWH/100KM are inefficient, manufacturer should analyze these products or consider price change for these EVs.
- 6. Promote EVS having less than 17kwh/100km energy consumption for energy conscious customers.
- 7. Battery capacity can be used as key selling point.
- 8. Companies should focus on efficiency rather than simply increasing battery size.
- 9. Since the difference in engine power of Tesla and Audi is not statiscally significant so companies should emphasize other features like range, features or efficiency.

Project Video Explanation Link

https://www.google.com/url?

 $a = https\%3A\%2F\%2Fdrive \ accordence com\%2Ffile\%2Fd\%2F1S7ullFeRedlwGGYefmbi0KGHpGOs0X7cv\%2Fview\%3Fusp%3Dsharing and the state of the$