MATH 202,	Spring 2024
-----------	-------------

Name: ___

In class work 13

Row and Seat:_

In class work 13 has questions 1 through 3 with a total of 6 points.

"A linguistic construction is called referentially transparent when for any expression built from it, replacing a subexpression with another one that denotes the same value does not change the value of the expression." (Wikipedia)

Theorem 1 (CT) Let a and b be sequences. And suppose that $(\forall k \in \mathbb{Z}_{\geq 0})$ $(0 \leq a_k \leq b_k)$. Then $\sum b$ converges $\Longrightarrow \sum a$ converges.

Theorem 2 (LCT) *Let a and b be sequences. And suppose that there is and integer N such that for all k* \in $\mathbb{Z}_{\geq N}$, we have $0 < a_k$ and $0 < b_k$. Then

•
$$\lim_{k \to \infty} \left(\frac{a_k}{b_k} \right) \in \mathbb{R}_{>0} \implies \left(\sum a \text{ converges} \equiv \sum b \text{ converges} \right)$$

•
$$\lim_{k \to \infty} \left(\frac{a_k}{b_k} \right) = 0 \Longrightarrow \left(\sum b \text{ converges} \Longrightarrow \sum a \text{ converges} \right)$$

•
$$\lim_{k \to \infty} \left(\frac{a_k}{b_k} \right) = \infty \implies \left(\sum a \text{ converges} \implies \sum b \text{ converges} \right)$$

2 1. Use the CT to show that $\sum_{k=0}^{\infty} \frac{1}{k^2 + k + 28}$ converges.

2. Use the LCT to show that $\sum_{k=0}^{\infty} \begin{cases} (-1)^k k! & k < 10^9 \\ \frac{1}{k^8+1} & k \ge 10^9 \end{cases}$ converges.

2 3. After an arduous calcuation spanning tweleve pages of engineering paper, my friend Lilly Poole has (correctly) shown that

$$\int_{0}^{\infty} \frac{1}{x^8 + 1} \, \mathrm{d}x = \frac{\pi}{8 \sin\left(\frac{\pi}{8}\right)}.$$

After that, Ms. Poole (spouse of Mr. Wade Poole) cocludes that $\sum_{k=0}^{\infty} \frac{1}{1+k^8} = \frac{\pi}{8\sin(\frac{\pi}{8})}$. Is Ms. Poole's conclusion correct? Explain.