Homework 4

Problem 1. Count the number of linear extensions for the following partial ordering:

X is a disjoint union of sets X_1, X_2, \ldots, X_k of sizes r_1, r_2, \ldots, r_k , respectively. Each X_i is linearly ordered by \leq , and no two elements from the different X are comparable.

Solution.
$$\binom{r_1+r_2+\cdots+r_k}{r_1,r_2,\cdots,r_k}$$
.

Problem 2. Given a set X with |X| = n, determine the number of ordered set pairs $\langle A, B \rangle$ where $A \subseteq B \subseteq X$.

Solution. As a set B of size b has exactly 2^b subsets A, the number of such ordered pairs is

$$\sum_{0 \le b \le n} 2^b \binom{n}{b} = (1+2)^n = 3^n.$$

Problem 3. There are n married couples attending a dance. How many ways are there to form n pairs for dancing if no wife should dance with their husband.

Solution. It is
$$D(n)$$
.

Problem 4. Count the permutations with exactly k fixed points. (Remark: π is a permutation of the set $\{1,2,\ldots,n\}$. Call an index i with $\pi(i)=i$ a fixed point of the permutation π .)

Solution. First choose the points that are fixed. It will have $\binom{n}{k}$ possible choices. The rest is counting the number of permutation without a fixed point, which is D(n-k).

In all, the answer is
$$\binom{n}{k} \cdot D(n-k)$$
.

Problem 5. What is wrong with the following inductive proof that D(n) = (n-1)! for all $n \ge 2$? Can you find a false step in it? For n = 2, the formula holds, so assume $n \ge 3$. Let π be a permutation of $\{1, 2, ..., n-1\}$ with no fixed point. We want to extend it to a permutation π' of $\{1, 2, ..., n\}$ with no fixed point. We choose

a number $i \in \{1, 2, ..., n-1\}$, and we define $\pi'(n) = \pi(i), \pi'(i) = n$, and $\pi'(j) = \pi(j)$ for $j \neq i$, n. This defines a permutation of $\{1, 2, ..., n\}$, and it is easy to check that it has no fixed point. For each of the D(n-1) = (n-2)! possible choices of π , the index i can be chosen in n-1 ways. Therefore, $D(n) = (n-2)! \cdot (n-1) = (n-1)!$.

Solution. Basically it says that the extended function π' is totally decided by the choice of i. However this is not the case: after letting $\pi'(n) = \pi(i)$, $\pi'(i) = n$ could not be the only choice for keeping π' bijective. In another word, the construction is an undercount.

Problem 6. How many ways are there to seat n married couples at a round table with 2n chairs in such a way that the couples never sit next to each other?

Solution.(hint)

 $A_i = \{\text{the ways of seating in which the } i\text{th couple is adjacent.}\}$

- $|A_i| = (2n-1)! \cdot 2^1/(2n-1);$
- $|A_i \cap A_j| = (2n-2)! \cdot 2^2/(2n-2)$ for $i \neq j$;
- · · · :
- $|A_{i1} \cap \cdots \cap A_{ik}| = (2n-k)! \cdot 2^k/(2n-k)$ for different A_{ij} s.

The final result should be $(2n)!/(2n) - |A_1 \cup A_2 \cup \cdots \cup A_k|$. Then by PIE....

2