- **Ex 1** Calculer $\arccos\cos\left(-\frac{\pi}{4}\right)$, $\arcsin\sin\left(\frac{5\pi}{6}\right)$, $\arccos\cos\left(6\right)$, $\arcsin\sin\left(3\right)$, $\arctan\tan\left(\frac{8\pi}{7}\right)$
- **Ex 2** Comparer $x = \arccos\left(\frac{7}{8}\right)$, $y = \arccos\left(\frac{-7}{8}\right)$, $z = 2\arccos\left(\frac{1}{4}\right)$.
- $\mathbf{Ex} \; \mathbf{3} \; \; \mathrm{Soit} \; \theta \in \left] -1, 1\right[. \; \mathrm{R\acute{e}soudre} \; \mathrm{dans} \; \left[\frac{\pi}{2}, \frac{3\pi}{2}\right] \, \mathrm{l}' \mathrm{\acute{e}quation} \; \sin x = \theta.$
- **Ex 4** Déterminer l'ensemble des solutions sur $I = [0, 2\pi]$ de l'équation $\arccos(\cos(2x)) = \frac{2\pi}{3}$
- **Ex 5** Pour $x \in [-1, 1]$, simplifier les expressions : $\cos(2 \arccos x)$ et $\sin(2 \arcsin x)$
- **Ex 6** Soit $f: x \mapsto \arccos(x-1) \frac{\pi}{3}$
 - a) Tracer sans calculs la courbe de f, en précisant l'intersection avec l'axe (Ox) .
 - b) Tracer alors les courbes des fonctions $g: x \mapsto \left| \arccos(x-1) \frac{\pi}{3} \right|$ et $h: x \mapsto \arccos(|x|-1) \frac{\pi}{3}$
- **Ex 7** a) Tracer la courbe de la fonction $f: x \mapsto \arcsin(\sin x)$ à l'aide de considérations de parité et de périodicité.
 - b) Simplifier l'expression f(x) lorsque $x \in \left[-\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right]$, $k \in \mathbb{Z}$ (discuter sur la parité de k)
- **Ex 8** En simplifiant son expression, tracer la courbe sur $[0, 2\pi]$ de $f: x \mapsto \arccos(\cos(x)) + \frac{1}{2}\arccos(\cos(2x))$.
- **Ex 9** Calculer la dérivée (où elle existe) des fonctions $f: x \mapsto \arctan\left(\frac{x-1}{x+1}\right)$ et $g: x \mapsto \arcsin\left(\sqrt{x-1}\right)$
- **Ex 10** a) Montrer que $\forall k \ge 0$, $\arctan \frac{1}{1+k+k^2} = \arctan (k+1) \arctan k$.
 - b) En déduire une simplification de l'expression $S_n = \sum_{k=0}^n \arctan\left(\frac{1}{1+k+k^2}\right)$ et sa limite.
- **Ex 11** Résoudre dans \mathbb{R} l'équation $\arcsin x = \arcsin \frac{4}{5} + \arcsin \frac{5}{13}$. On pourra remarquer que $\frac{4}{5} < \frac{\sqrt{3}}{2}$ et $\frac{5}{13} < \frac{1}{2}$
- **Ex 12** Résoudre en faisant attention l'équation $\arccos(x) = \arcsin(2x)$
- $\textbf{Ex 13 a)} \ \ \text{Montrer que}: \forall t>0 \ , \ \arctan(t)=\arccos\left(\frac{1}{\sqrt{1+t^2}}\right) \quad \text{(on pourra poser $\theta=\arctan t$)}.$
 - b) En déduire la résolution de l'équation : $\arctan\left(\sqrt{\frac{1-x}{1+x}}\right) + \arcsin(x) = \frac{\pi}{2}$
- **Ex 14** a) Trouver la valeur exacte de : $A = \arctan 2 + \arctan 5 + \arctan 8$.
 - b) Résoudre l'équation $\arctan(x-3) + \arctan x + \arctan(x+3) = \frac{5\pi}{4}$
- Ex 15 a) Etudier la fonction cotan sur l'intervalle $]0, \pi[$, et tracer sa courbe représentative dans un repère orthonormé.
 - b) Montrer que \cot réalise une bijection de $]0,\pi[$ sur $\mathbb{R},$ dont on note \arctan la réciproque Calculer $\arctan 1$ et $\arctan \cot \arctan \frac{11\pi}{6},$ puis tracer la courbe représentative de \arctan .
 - c) Montrer que $\forall x \in \mathbb{R}$, $\operatorname{arccotan} x = \frac{\pi}{2} \arctan x$, et en déduire sa dérivée sur \mathbb{R} .
- **Ex 16** On considère les fonctions f et g définies par $f(x) = \frac{1}{2}\arctan(\sinh x)$ et $g(x) = \arctan\left(\frac{\sinh x}{1 + \cosh x}\right)$
 - a) Préciser (en justifiant) l'ensemble sur lequel f et g sont définies, et celui où elles sont dérivables, puis donner une expression simplifiée de f' et de g' (ne faisant intervenir que ch).
 - b) En déduire que f=g sur un intervalle à préciser.
 - c) Application : donner une expression simple de $\operatorname{ch}\left(\frac{1}{2}\ln 3\right)$ et de $\operatorname{sh}\left(\frac{1}{2}\ln 3\right)$. En écrivant $f\left(\frac{1}{2}\ln 3\right)=g\left(\frac{1}{2}\ln 3\right)$, en déduire une expression simple de $\tan\frac{\pi}{12}$

PCSI 1 Thiers 2019/2020