

# **WHM200A**

P/N: WSWHM200A00

DATA SHEET / REV0.31

SJIT Co.,Ltd

54-11, Dongtanhana 1-gil, Hwaseong-si, Gyeonggi-do, South Korea

http://sjit.company

#### **Document Information**

| File name   | DS_WHM200A_HaLow_US_High_Power_R031_240215.pdf |
|-------------|------------------------------------------------|
| Created     | 2024-02-15                                     |
| Total pages | 25page                                         |

### **Revision History**

| Rev. | Date     | Note                                                                     | Remark  |
|------|----------|--------------------------------------------------------------------------|---------|
| 0.0  | 23.07.14 | Preliminary                                                              |         |
| 0.1  | 23.12.23 | 1) Change Company name<br>SJI → SJIT                                     | 1 page  |
| 0.2  | 24.01.19 | 1) Change Packing Quantity - Reel: 500EA → 480EA - Box: 2,500EA → 2400EA | 21 page |
| 0.3  | 24.02.08 | 1) FCC certification completed                                           | 19 page |
| 0.31 | 24.02.15 | - Update Transmitter(Max Power by Country Code)                          | 8 page  |
|      |          |                                                                          |         |

### Aim of this Document

The aim of this document is to give a detailed product description including interfaces, features and performance of the module WHM200A.

### **Table of Contents**

| 1. Ir | ntroduction                                    | 4  |
|-------|------------------------------------------------|----|
| 1.1   | Key Features                                   | 4  |
| 1.2   | Applications                                   | 4  |
| 2. D  | Description                                    | 5  |
| 2.1   | CPU                                            | 5  |
| 2.2   | Memory                                         | 5  |
| 3. E  | Electrical Characteristics                     | 6  |
| 3.1   | Absolute Maximum Ratings                       | 6  |
| 3.2   | Recommended Operating Condition                |    |
| 3.3   | Electrical Specification                       | 7  |
| 3.4   | RF Characteristics                             | 8  |
| 3.    | .4.1 Transmitter(Max Power by Country Code)    | 8  |
| 3.    | .4.2 Transmitter(TBD)                          | 9  |
| 3.    | .4.3 Receive Sensitivity                       | 10 |
| 3.    | .4.4 Output Power vs. Input Voltage(VDD) table | 11 |
| 4. N  | lodule Package                                 | 12 |
| 4.1   | Pinout Description                             | 12 |
| 4.2   | Module Dimensions                              | 14 |
| 4.3   | Recommended Footprint                          | 14 |
| 4.4   | Recommended PCB design guide                   | 15 |
| 4.5   | Reflow Profile of Module                       | 16 |
| 5. Ir | ntegration Guide                               | 17 |
| 5.1   | Mode Pin Setting                               | 17 |
| 5.2   | Typical Application Schematic                  | 18 |
| 6. L  | aser Marking                                   | 19 |
| 7. P  | Packing                                        | 21 |
| 7.1   | Reel Packing                                   | 21 |
| 7.2   | Packing Box                                    |    |
| 7.2   | Packing Bag & Silica Gel                       | 23 |
| 8. N  | lotice                                         | 24 |

#### 1. Introduction

The WHM200A uses the new Wi-Fi standard IEEE 802.11ah, which uses the Sub 1 GHz license-exempt band. It has long range, low power and high permeability and is optimized for IoT modules.

The WHM200A includes a RF switch and an internal PA in the SoC to increase transmit power up to 28dBm.





Figure 1-1: Picture of WHM200A

#### 1.1 Key Features

- Compact module 14 x 17.5 x 2.8mm. (Typ.)
- Full IEEE 802.11ah compatibility with enhanced performance
- AP and STA, mesh network support
- UART and SPI support for host interface
- Low-Power Long Range Transceiver operating in the sub-1GHz ISM band
- RF interface optimized to 50  $\Omega$ .
- Output Power Level up to +28dBm (MCS10)
- -107 dBm minimum receive sensitivity (MCS10)

#### 1.2 Applications

- Smart home and home security
- Smart factory and factory automation
- Smart city and public transportation management
- Smart grid/metering
- Surveillance camera and remote monitoring of wildlife
- Wireless sensor network
- Health care
- Electric vehicle and charging
- Commercial drone
- Wireless Alarm and Security Systems.

### 2. Description

The WHM200A is a long range, high-performance module for wireless communication. The module is solder-able like a SMD component and can easily be mounted on a simple carrier board with a minimum of required external connections.

It includes all necessary passive components for wireless communication as depicted in the following figure.



Figure 2-1: Block Diagram

#### 2.1 CPU

- ARM® Cortex-M3 for IEEE 802.11ah WLAN and application
- Clock frequencies for processor(Max 32MHz)

#### 2.2 Memory

- CPU Internal Memory
  - ▲ 32KB Boot ROM
  - ▲ 1,088KB system SRAM
  - ▲ 192KB Key Memory for security
  - ▲ 16KB cache for XIP
- CPU External Memory
  - ▲ 32Mbit Flash Memory

### 3. Electrical Characteristics

In the following different electrical characteristics of the WHM200A are listed.

 Note: Stress exceeding of one or more of the limiting values listed under "Absolute Maximum Ratings" may cause permanent damage to the radio module

### 3.1 Absolute Maximum Ratings

| Paramete       | er      | Min  | Max  | Unit |
|----------------|---------|------|------|------|
| Storage Tempe  | erature | -40  | +125 | °C   |
| Supply Voltage | VBATT   | -0.5 | 3.8  | V    |
|                | VDD_IO  | -0.5 | 3.8  | V    |
|                | VDD_FEM | -0.5 | 3.8  | V    |

Table 3-1-1: Absolute Maximum Ratings

### 3.2 Recommended Operating Condition

| Parameter                                   | r           | Min  | Тур    | Max | Unit |
|---------------------------------------------|-------------|------|--------|-----|------|
| Operating temperat                          | ure range   | -40  | -      | +85 | ℃    |
|                                             | VBATT       | 2.4  | 3.3    | 3.6 | V    |
| Operating Voltage                           | VDD_IO      | 1.68 | 3.3    | 3.6 | V    |
|                                             | VDD_FEM     | 3.0  | 3.3    | 4.5 | V    |
|                                             | VBATT       | 170  |        |     | mA   |
| Operating current (peak) Tx @1M/MCS10/27dBm | VDD_IO      | 2    |        |     | mA   |
|                                             | VDD_FEM     | 800  |        |     | mA   |
| Operation Clock                             | Transceiver |      | 32     |     | MHz  |
| Frequency                                   | MCU RTC     |      | 32.768 |     | kHz  |

Table 3-2-1: Operating Condition

## 3.3 Electrical Specification

| MODE     | DUT Status              | VDD_IO<br>(mA) | VBATT<br>(mA) | VDD_FEM<br>(mA) |
|----------|-------------------------|----------------|---------------|-----------------|
|          | Tx @ 0 dBm              | 1.0            | 94            | 110             |
|          | Tx @ 10 dBm             | 1.0            | 99            | 141             |
| 902 11ab | Tx @ 15 dBm             | 1.0            | 101           | 182             |
| 802.11ah | Tx @ 20 dBm             | 1.0            | 120           | 300             |
|          | Tx @ 25 dBm             | 1.0            | 142           | 471             |
|          | Continuous Rx @ -85 dBm | 2              | 25            | -               |

Notes:

Unless otherwise specified, TA.=25°C, VBATT= 3.3V, Continuous Mode, 1M, MCS0, 915.5MHz

Table 3-3-1: Current Consumption

#### 3.4 RF Characteristics

## 3.4.1 Transmitter(Max Power by Country Code)

| Country Code | BandWidth | CF        | Max Power                  | USE        |
|--------------|-----------|-----------|----------------------------|------------|
|              | 1 MHz     | 902.5 MHz | -                          | Not Use    |
|              | 1 MHz     | 903.5 MHz | 23dBm ± 2dB                | USE        |
|              | 1 MHz     | 904.5 MHz | 23dBm ± 2dB                | USE        |
|              | 1 MHz     | 905.5 MHz | 23dBm ± 2dB                | USE        |
|              | 1 MHz     | 906.5 MHz | 23dBm ± 2dB                | USE        |
|              | 1 MHz     | 907.5 MHz | 23dBm ± 2dB                | USE        |
|              | 1 MHz     | 908.5 MHz | 23dBm ± 2dB                | USE        |
|              | 1 MHz     | 909.5 MHz | 23dBm ± 2dB                | USE        |
|              | 1 MHz     | 910.5 MHz | 23dBm ± 2dB                | USE        |
|              | 1 MHz     | 911.5 MHz | 23dBm ± 2dB                | USE        |
|              | 1 MHz     | 912.5 MHz | 23dBm ± 2dB                | USE        |
|              | 1 MHz     | 913.5 MHz | 23dBm ± 2dB                | USE        |
|              | 1 MHz     | 914.5 MHz | 23dBm ± 2dB                | USE        |
|              | 1 MHz     | 915.5 MHz | 23dBm ± 2dB                | USE        |
|              | 1 MHz     | 916.5 MHz | 23dBm ± 2dB                | USE        |
|              | 1 MHz     | 917.5 MHz | 23dBm ± 2dB                | USE        |
|              | 1 MHz     | 918.5 MHz | 23dBm ± 2dB                | USE        |
|              | 1 MHz     | 919.5 MHz | 23dBm ± 2dB                | USE        |
|              | 1 MHz     | 920.5 MHz | 23dBm ± 2dB                | USE        |
|              | 1 MHz     | 921.5 MHz | 23dBm ± 2dB                | USE        |
|              | 1 MHz     | 922.5 MHz | 23dBm ± 2dB                | USE        |
|              | 1 MHz     | 923.5 MHz | 23dBm ± 2dB                | USE        |
| US           | 1 MHz     | 924.5 MHz | 23dBm ± 2dB                | USE        |
|              | 1 MHz     | 925.5 MHz | 23dBm ± 2dB                | USE        |
|              | 1 MHz     | 926.5 MHz | 23dBm ± 2dB                | USE        |
|              | 1 MHz     | 927.5 MHz | -                          | Not Use    |
|              | 2 MHz     | 903.0 MHz | - 00 dD - 0 dD             | Not Use    |
|              | 2 MHz     | 905.0 MHz | 23dBm ± 2dB                | USE        |
|              | 2 MHz     | 907.0 MHz | 23dBm ± 2dB                | USE        |
|              | 2 MHz     | 909.0 MHz | 23dBm ± 2dB                | USE        |
|              | 2 MHz     | 911.0 MHz | 23dBm ± 2dB                | USE        |
|              | 2 MHz     | 913.0 MHz | 23dBm ± 2dB                | USE        |
|              | 2 MHz     | 915.0 MHz | 23dBm ± 2dB                | USE        |
|              | 2 MHz     | 917.0 MHz | 23dBm ± 2dB                |            |
|              | 2 MHz     | 919.0 MHz | 23dBm ± 2dB                | USE        |
|              | 2 MHz     | 921.0 MHz | 23dBm ± 2dB                | USE        |
|              | 2 MHz     | 923.0 MHz | 23dBm ± 2dB<br>23dBm ± 2dB | USE        |
|              | 2 MHz     | 925.0 MHz | ZOUDIII ± ZUD              |            |
|              | 2 MHz     | 927.0 MHz | -<br>21dBm ± 2dB           | Not Use    |
|              | 4 MHz     | 906.0 MHz | 23dBm ± 2dB                | USE<br>USE |
|              | 4 MHz     | 910.0 MHz | 23dBm ± 2dB                | USE        |
|              | 4 MHz     | 914.0 MHz | 23dBm ± 2dB                | USE        |
|              | 4 MHz     | 918.0 MHz | 23dBm ± 2dB                | USE        |
|              | 4 MHz     | 922.0 MHz | ZOUDIII ± ZUD              |            |
|              | 4 MHz     | 926.0 MHz | <u>-</u>                   | Not Use    |

Table 3-4-1-1: Technical Regulations.

#### 3.4.2 Transmitter

| Donal | BW      | MCS           | Modulation/      | EVM spec | Max. Power<br>[dBm] |                 |  |
|-------|---------|---------------|------------------|----------|---------------------|-----------------|--|
| Band  | BW      | MICS          | Coding Rate      | [dB]     | VDD_FEM<br>3.3V     | VDD_FEM<br>4.5V |  |
|       |         | 10            | BPSK 1/2 rep. 2x | -4       | 28                  | 28              |  |
|       |         | 0             | BPSK 1/2         | -5       | 28                  | 28              |  |
|       |         | 1             | QPSK 1/2         | -10      | 28                  | 28              |  |
|       |         | 2             | QPSK 3/4         | -13      | 28                  | 28              |  |
|       | 1 MHz   | 3             | 16QAM 1/2        | -16      | 27                  | 27              |  |
|       |         | 4             | 16QAM 3/4        | -19      | 27                  | 27              |  |
|       |         | 5             | 64QAM 2/3        | -22      | 26                  | 26              |  |
|       |         | 6             | 64QAM 3/4        | -25      | 24                  | 25              |  |
|       |         | 7             | 64QAM 5/6        | -27      | 22                  | 23              |  |
|       |         | 0             | BPSK 1/2         | -5       | 28                  | 28              |  |
|       |         | 1             | QPSK 1/2         | -10      | 28                  | 28              |  |
| 902   |         | 2             | QPSK 3/4         | -13      | 28                  | 28              |  |
| 928   | 0.1411  | 3             | 16QAM 1/2        | -16      | 27                  | 27              |  |
| MHz   | 2 MHz   | 4             | 16QAM 3/4        | -19      | 26                  | 27              |  |
|       |         | 5             | 64QAM 2/3        | -22      | 25                  | 26              |  |
|       |         | 6             | 64QAM 3/4        | -25      | 24                  | 25              |  |
|       |         | 7             | 64QAM 5/6        | -27      | 24                  | 24              |  |
|       |         | 0             | BPSK 1/2         | -5       | 29                  | 29              |  |
|       |         | 1             | QPSK 1/2         | -10      | 29                  | 29              |  |
|       |         | 2             | QPSK 3/4         | -13      | 28                  | 29              |  |
|       | 4 8411  | 3             | 16QAM 1/2        | -16      | 27                  | 28              |  |
|       | 4 MHz   | 4             | 16QAM 3/4        | -19      | 27                  | 27              |  |
|       |         | 5             | 64QAM 2/3        | -22      | 26                  | 26              |  |
|       |         | 6             | 64QAM 3/4        | -25      | 25                  | 26              |  |
|       |         | 7             | 64QAM 5/6        | -27      | 25                  | 26              |  |
| ж т   | = 25°C, | if nothing el | se stated        | 1        | 1                   |                 |  |

Table 3-4-2-1: Transmitter(Module's Max Power)

## 3.4.3 Receive Sensitivity

| BW    | MCS   | Modulation                        | 11ah spec  | Min. Sensitivity [dBm] |      |     |  |
|-------|-------|-----------------------------------|------------|------------------------|------|-----|--|
| DVV   | IVICS | / Coding Rate                     | Trail spec | Min                    | Тур  | Max |  |
|       | 10    | BPSK ½ rep. 2x                    | -98        |                        | -106 |     |  |
|       | 0     | BPSK ½                            | -95        |                        | -103 |     |  |
|       | 1     | QPSK ½                            | -92        |                        | -102 |     |  |
|       | 2     | QPSK ¾                            | -90        |                        | -100 |     |  |
| 1 MHz | 3     | 16QAM ½                           | -87        |                        | -97  |     |  |
|       | 4     | 16QAM ¾                           | -83        |                        | -94  |     |  |
|       | 5     | 64QAM <sup>2</sup> / <sub>3</sub> | -79        |                        | -89  |     |  |
|       | 6     | 64QAM ¾                           | -78        |                        | -88  |     |  |
|       | 7     | 64QAM 5/6                         | -77        |                        | -87  |     |  |
|       | 0     | BPSK ½                            | -92        |                        | -100 |     |  |
|       | 1     | QPSK ½                            | -89        |                        | -98  |     |  |
|       | 2     | QPSK ¾                            | -87        |                        | -96  |     |  |
|       | 3     | 16QAM ½                           | -84        |                        | -93  |     |  |
| 2 MHz | 4     | 16QAM ¾                           | -80        |                        | -90  |     |  |
|       | 5     | 64QAM ⅔                           | -76        |                        | -86  |     |  |
|       | 6     | 64QAM ¾                           | -75        |                        | -83  |     |  |
|       | 7     | 64QAM 5/6                         | -74        |                        | -82  |     |  |
|       | 0     | BPSK 1/2                          | -89        |                        | -98  |     |  |
|       | 1     | QPSK 1/2                          | -86        |                        | -95  |     |  |
|       | 2     | QPSK 3/4                          | -84        |                        | -93  |     |  |
| 4 85  | 3     | 16QAM 1/2                         | -81        |                        | -90  |     |  |
| 4 MHz | 4     | 16QAM 3/4                         | -77        |                        | -87  |     |  |
|       | 5     | 64QAM 2/3                         | -73        |                        | -83  |     |  |
|       | 6     | 64QAM 3/4                         | -72        |                        | -81  |     |  |
|       | 7     | 64QAM 5/6                         | -71        | _                      | -80  |     |  |

Figure 3-4-3-1: Receive Sensitivity

#### 3.4.4 Output Power vs. Input Voltage(VDD) table

| Input Voltage(VDD)           | 2.4V  | 2.6V | 2.8V | 3.0V  | 3.2V  | 3.3V  | 3.6V | 3.8V  | 4.0V  | 4.2V | 4.5V  |
|------------------------------|-------|------|------|-------|-------|-------|------|-------|-------|------|-------|
| Output Power (Typ.)<br>/ dBm | 15.55 | 19.9 | 21.4 | 21.99 | 22.06 | 22.15 | 22.1 | 22.11 | 22.04 | 22.1 | 22.04 |

X T = 25°C, MCS7, VDD\_IO=3.3V, 1M Bandwidth, Target Power : 22dB

Table 3-4-4-1: Output Power vs. Input Voltage



Figure 3-4-4-1: Output Power vs. Input Voltage Graph

### 4. Module Package

In the following the WHM200A module package is described. This description includes the WHM200A pinout as well as the modules dimensions. Furthermore a recommendation for a suitable footprint is given, which should be used for further mounting on appropriate carrier boards.

### 4.1 Pinout Description

Figure 4-1-1 depicts a description of the WHM200A's pads on the bottom side. The figure shows the module with its pinout in top view (right figure). A detailed description of the individual pins can be found in Table 4-1-1: Pinout Table.



Figure 4-1-1: Description of module pins and top view

| Pin<br>No | Name           | Direction | Description                          | GPIO<br>Function |
|-----------|----------------|-----------|--------------------------------------|------------------|
| 1         | GND            | GND       |                                      |                  |
| 2         | UART1_TXD/GP12 | 0         | UART channel1 Tx data                | GP12             |
| 3         | UART1_RXD/GP13 | I         | UART channel1 Rx data                | GP13             |
| 4         | UART1_CTS/GP14 | I         | UART channel1 clear to send          | GP14             |
| 5         | UART1_RTS/GP20 | 0         | UART channel1 request to send        | GP20             |
| 6         | Mode/GP19      | I         | Boot mode (0: ROM boot, 1: XIP boot) | GP19             |
| 7         | ADC0/GP17      | I         | Auxiliary ADC channel 0              | GP17             |
| 8         | ADC1/GP18      | I         | Auxiliary ADC channel 1              | GP18             |
| 9         | GP25           | I/O       | GPIO                                 | GP25             |
| 10        | GND            | GND       |                                      |                  |
| 11        | VDD_IO         | Р         | NRC7394 I/O power input              |                  |

| 12 | GND             | GND |                                                                          |      |
|----|-----------------|-----|--------------------------------------------------------------------------|------|
| 13 | UART0_RXD/GP09  | I   | UART channel0 Rx data                                                    | GP09 |
| 14 | UART0_TXD/GP08  | 0   | UART channel0 Tx data                                                    | GP08 |
| 15 | GND             | GND |                                                                          |      |
| 16 | VBATT           | Р   | NRC7394 PMS, RF/PA power input                                           |      |
| 17 | PMS_nPOR/nRST   | I/O | NRC7394 reset (active low) input,<br>POR reset output (internal pull-up) |      |
| 18 | GND             | GND |                                                                          |      |
| 19 | HSPI_nCS/GP28   | I   | Host SPI – chip select (active low)                                      | GP28 |
| 20 | HSPI_MISO/GP29  | 0   | Host SPI – master in slave out                                           | GP29 |
| 21 | HSPI_MOSI/GP06  | I   | Host SPI – master out slave in                                           | GP06 |
| 22 | HSPI_CLK/GP07   | I   | Host SPI – clock                                                         | GP07 |
| 23 | HSPI_nEIRQ/GP30 | 0   | Host SPI – interrupt (active low)                                        | GP30 |
| 24 | SWD_IO/GP10     | I/O | SWD data                                                                 | GP10 |
| 25 | SWD_CLK/GP11    | I   | SWD clock                                                                | GP11 |
| 26 | GND             | GND |                                                                          |      |
| 27 | GND             | GND |                                                                          |      |
| 28 | VDD_FEM         | Р   | Power AMP Power input                                                    |      |
| 29 | GND             | GND |                                                                          |      |
| 30 | NC              |     |                                                                          |      |
| 31 | NC              |     |                                                                          |      |
| 32 | GND             | GND |                                                                          |      |
| 33 | RF_ANT          | I/O | RF input/output                                                          |      |
| 34 | GND             | GND |                                                                          |      |

Table 4-1-1: Pinout Table

#### 4.2 Module Dimensions

The outer dimensions of the WHM200A are given by Figure 4-2-1.



Figure 4-2-1: Outer Dimensions

#### 4.3 Recommended Footprint

According to Chapter 4.2, a recommendation for the footprint of the WHM200A is given by Figure 4-3-1.



Figure 4-3-1: Recommended footprint (top view)

## 4.4 Recommended PCB design guide

To protect a contact short or electrical shock when WHM200A module is mounted on customer's board, we recommend PSR ink-coating(Green Area) of top side at module mount area on customer's board as Figure 4-4-1.



Figure 4-4-1: PSR ink Coating of mount board

#### 4.5 Reflow Profile of Module

|                            |                                 | Z1                | Z2                           | Z3                                | Z4                | Z5                         | Z6                                | <b>Z</b> 7             | Z8                            | Z9                                |                                         |                                      |                                              | ne No :                              |                                              |                                              |
|----------------------------|---------------------------------|-------------------|------------------------------|-----------------------------------|-------------------|----------------------------|-----------------------------------|------------------------|-------------------------------|-----------------------------------|-----------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|
| Upp<br>Lov<br>Len          |                                 | 150<br>150<br>400 | 160<br>160<br>400            | 170<br>170<br>400                 | 180<br>180<br>400 | 190<br>190<br>400          | 200<br>200<br>400                 | 220 2                  | 250 285<br>250 285<br>400 400 | 285                               |                                         |                                      |                                              | peed: 0.<br>ength: 3                 |                                              |                                              |
| _                          |                                 | .10               | t-coc                        | ov-2                              | 978 T             | 000                        | T2-s                              | 10.00                  |                               | 2-150                             | ature Z                                 | Tallacare                            | 's T2-'C/s                                   | T2 10/a                              | T4_10/a                                      | TE 10/a                                      |
|                            | May                             |                   |                              |                                   |                   |                            |                                   |                        |                               |                                   |                                         |                                      |                                              |                                      |                                              |                                              |
| S1<br>S2<br>S3<br>S4<br>S5 | 241<br>0.0<br>239<br>0.0<br>0.0 | .7 2              | 285.5<br>0.0<br>283.0<br>0.0 | 45.5<br>0.0<br>40.5<br>0.0<br>0.0 | 50                | 66.0<br>0.0<br>66.5<br>0.0 | 83.5<br>0.0<br>84.5<br>0.0<br>0.0 | 66<br>0.0<br>65<br>0.0 | .5                            | 45.5<br>0.0<br>40.5<br>0.0<br>0.0 | 75-s<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | +1.1<br>+0.0<br>+1.1<br>+0.0<br>+0.0 | +0.7<br>+0.0<br>+0.7<br>+0.0<br>+0.0<br>+0.0 | +0.5<br>+0.0<br>+0.5<br>+0.0<br>+0.0 | +0.2<br>+0.0<br>+0.2<br>+0.0<br>+0.0<br>+0.0 | +0.0<br>+0.0<br>+0.0<br>+0.0<br>+0.0<br>+0.0 |



|        | Pre-heat  | Soak       | Ramp      | PEAK  |
|--------|-----------|------------|-----------|-------|
| SPEC   | 50~100'C  | 100~170'C  | 220'C 이상  | 240'C |
|        | 1~2'C/sec | 60~100 sec | 30~50 sec | ±5'C  |
| Result | 1.13      | 84         | 44.3      | 239.4 |
|        | ок        | ок         | ок        | ок    |

## 5. Integration Guide

The WHM200A provides 34 connectors as described in Chapter 5. For integrating the WHM200A into an environment, a typically circuit as given in Chapter 5.1 can be used.

#### 5.1 Mode Pin Setting

MODE pin is provided for boot mode selection to offer flexible and configurable boot options as shown in Table below

In the case of XIP boot, it is necessary to change to XIP boot mode after FW upload, so users need to install a switch that can control the mode pins on the board

| MODE pin | Description                                                                                                                                                           |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VDD      | XIP boot mode  Firmware must be downloaded to external flash memory before power on.  The start address for boot is remapped to the start address of flash memory.    |
| GND      | ROM boot mode  Boot from internal ROM code and wait for external command via HSPI or UART. The start address for boot is remapped to the start address of ROM memory. |
| GND      | FW upload mode  Firmware upgrade to external flash memory or upload to internal SRAM via UART0.                                                                       |

## 5.2 Typical Application Schematic



Figure 5-2-1: Typical Application Schematic

## 6. Laser Marking



| FCC ID |
|--------|
|--------|

<sup>&</sup>quot;This Module may cause radio interference while in use and may cause harmful interference from other devices"

#### WHM200A Lot, No(9digits) Information

| W   | A   | K   | A   | V   | 2   | 0   | 0   | 1   |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) |

| No. |          |                                                                                                  |      | E          | XPLANA | ATION     |            |      |   |  |  |  |  |
|-----|----------|--------------------------------------------------------------------------------------------------|------|------------|--------|-----------|------------|------|---|--|--|--|--|
| 2   | Blue Too | ue Tooth( <b>B</b> ), Wi-Fi( <b>W</b> ), Zigbee( <b>Z</b> ), Combo( <b>C</b> ) , NFC( <b>N</b> ) |      |            |        |           |            |      |   |  |  |  |  |
| 2   |          | ture Area<br>king Lot<br>Area                                                                    | a    | A<br>Korea | С      | B<br>hina | C<br>Vietn | am   |   |  |  |  |  |
|     | Year     |                                                                                                  |      |            |        |           |            |      | 1 |  |  |  |  |
| 3   | Year     | 2021                                                                                             | 2022 | 2023       | 2024   | 2025      | 2026       | 2027 |   |  |  |  |  |
|     | Mark     | Н                                                                                                | I    | J          | K      | K L       |            | N    |   |  |  |  |  |

|     | Month                             |                                               |    |    |    |    |   |     |      |    |   |    |    |    |  |
|-----|-----------------------------------|-----------------------------------------------|----|----|----|----|---|-----|------|----|---|----|----|----|--|
| 4   | Month                             | 1                                             | 2  | 3  | 4  | 5  | 6 | 6 7 | 7 8  | 3  | 9 | 10 | 11 | 12 |  |
|     | Mark                              | A                                             | В  | С  | D  | Е  | F | = 0 | }  - | ł  | I | J  | K  | L  |  |
|     | Day                               |                                               |    |    |    |    |   |     |      |    |   |    |    |    |  |
|     | Day                               | 1                                             | 2  | 3  | 4  | 5  | , | 6   | 7    | 8  | 3 | 9  | 10 |    |  |
|     | Mark                              | 1                                             | 2  | 3  | 4  | 5  |   | 6   | 7    | 8  | 3 | 9  | Α  |    |  |
| (5) | Day                               | 11                                            | 12 | 13 | 14 | 15 | 5 | 16  | 17   | 18 | 8 | 19 | 20 |    |  |
|     | Mark                              | В                                             | С  | D  | Е  | F  |   | G   | Н    | ı  |   | J  | K  |    |  |
|     | Day                               | 21                                            | 22 | 23 | 24 | 2  | 5 | 26  | 27   | 2  | 8 | 29 | 30 | 31 |  |
|     | Mark                              | L                                             | М  | N  | 0  | Р  | ) | Q   | R    | S  | 3 | Т  | U  | V  |  |
| 67  | Model Ser                         | Model Serial Number (WHM200A : US High Power) |    |    |    |    |   |     |      |    |   |    |    |    |  |
| 89  | 89 A Serial Number(1serial: 1Box) |                                               |    |    |    |    |   |     |      |    |   |    |    |    |  |

#### WHM200A QR-code(44digits) Information



← ex) 200AXK1ER01000001G,88571DF1AD1D,88571DF1AD1F

| Digits | QR code info    | Description          |
|--------|-----------------|----------------------|
| 1~18   | Serial(Lot) No. | 200AXK1ER01000001G   |
| 19     | ,               | Comma                |
| 20~31  | WIFI MAC0       | Mac Address 12digits |
| 32     | ,               | Comma                |
| 33~44  | WIFI MAC1       | Mac Address 12digits |

#### Serial No.

|         | 1 | 2    | 3   | 4 | 5    | 6    | 7     | 8   | 9  | 10     | 11  | 12         | 13         | 14  | 15    | 16   | 17 | 18       |
|---------|---|------|-----|---|------|------|-------|-----|----|--------|-----|------------|------------|-----|-------|------|----|----------|
| Model   | M | ODEL | COD | E | ASSY | YEAR | Month | Day | HW | / vers | ion | SW<br>App. | SW<br>Ver. | SEI | RIALI | NUME | ER | Customer |
| WHM200A | 2 | 0    | 0   | Α | Х    | K    | 1     | E   | R  | 0      | 1   | 0          | 0          | 0   | 0     | 0    | 1  | G        |

## 7. Packing

## 7.1 Reel Packing



Figure 7-1: Reel packing

<sup>\*</sup> Reel Bobbin size: 15.4 x 18.4 X 2.9mm(480pcs/Reel)

<sup>\*</sup> Packing Q'ty: 2,400pcs/Box

## 7.2 Packing Box

- Inner Box : 346 X 18 X 346 mm



- Out Box : 365 X 270 X 365 mm

365 270 365 270

SJÍ CO.,Ltd SJÍ C

# 7.2 Packing Bag & Silica Gel





Aluminum Bag

Silica Gel(20g)

#### 8. Notice

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

SJIT MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE.

SJIT disclaims all liability arising from this information and its use. Use of SJIT devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless SJIT from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any SJIT intellectual property rights unless otherwise stated.

**책임의 한계**: 장치 및 응용 프로그램등과 관련하여 본 문서 및 관련 문서에 포함된 정보는 사용자의 편의를 위해서만 제공되며 업데이트로 대체 될 수 있습니다. 본 문서 및 관련 문서에 포함된 정보가 사용자의 제품 규격에 부합하는지 확인하는 것은 귀하의 책임입니다.

㈜에스제이아이티 또는 그 딜러는 손해 가능성에 대한 사전 인지 여부와 관계없이 본 계약에 따라 제공되는 정보와 장비, 부품 또는 서비스의 사용으로 발생될 수 있는 직접, 간접, 부수, 특별 또는 결과적 손해나 기대 이익의 손실 등 어떠한 다른 손해에 대하여 책임을 지지 않습니다.

장치 및 응용프로그램을 생명 유지 및 안전 용도로 사용하는 것은 전적으로 구매자의 위험 부담이며 구매자는 그러한 행위로 인하여 발생하는 일체의 손해, 청구, 소송 또는 경비로부터 ㈜에스제이아이티를 보호하고 면책하며, 면제 할 것에 동의합니다. 수정된 정보 및 Firmware는 ㈜에스제이아이티 기술지원 사이트에 게시를 하며, 개별적으로 통보하지 않습니다.

# **ESD Warning**



This modules are ESD sensitive devices, appropriate precautions should be taken during the module assembly in the final product.

Mechanical impact and harsh tools must be avoided during the module assembly in the final product.

#### Product ESD specification:

▲ HBM ±2kV

The following precautions must be taken:

- ▲ Do not open the protective conductive packaging until you have use the following, and are at an approved anti-static work station.
- ▲ Use a conductive wrist strap attached to a good earth ground.
- ▲ If working on a prototyping board, use a soldering iron or station that is marked as ESD-safe.
- ▲ Use an approved anti-static mat to cover your work surface.