CS 319 – Applied Programming

Lecture # 19

Wednesday, December 09, 2015

FALL 2015

FAST - NUCES, Chiniot-Faisalabad Campus

Mian Rizwan Ul Haq rizwan.haq@nu.edu.pk (Adelson-Velsky and Landis)

Complete tree

- Want a complete tree after every operation
 - tree is full except possibly in the lower right
- This is expensive
 - ► For example, insert 2 in the tree on the left and then rebuild as a complete tree

- A perfectly balanced tree
 - The heights of the left and right subtrees of the root are equal.
 - The left and right subtrees of the root are perfectly balanced binary trees

Perfectly Balanced Tree

- If T is a tree of height h then it can be proved that number of nodes in the tree T is $2^h 1$
- What should be the number of elements in a data set of height h to construct a perfectly balanced tree from it???

Height-Balanced tree (AVL Tree)

- A binary search tree such that (Not perfectly balanced)
 - The heights of the left and right subtrees of the root differ by at most 1
 - The left and right subtrees of the root are AVL trees

Proposition for AVL

- Proposition: Let T be an AVL tree and x be a node in T and x_l and x_h be the height of left and right sub tree respectively. Then $|x_h x_l| \le 1$, where $|x_h x_l|$ denotes the absolute value of x_h - x_l .
- Let x be a node in the AVL tree T.
 - ■If $x_1 > x_h$, we say that x is left high. In this case, $x_1 = x_h + 1$
 - \blacksquare If $x_1 = x_h$, we say that x is equal high
 - If $x_h > x_l$, we say that x is right high. In this case, $x_h = x_l + 1$

AVL Trees

- The height of the left subtree minus the height of the right subtree of a node is called the balance of the node(Balancing Factor).
- \blacksquare Balance factor of a node x is written as bf(x)
- $\rightarrow bf(x) = x_1 x_h$
- Let x be a node in tree T then
 - If x is left high, bf(x) = 1.
 - If x is equal high, bf(x) = 0.
 - If x is right high, bf(x) = -1.
- ■The height of an empty tree is defined to be 0.

Node Heights

AVL Trees

Given an AVL tree, if insertions or deletions are performed, the AVL tree may not remain height balanced.

Node Heights after Insert 7

AVL Tree node

```
template<class elemType>
struct AVLNode
  elemType info;
  int bfactor; //balance factor
  AVLNode<elemType> *llink;
  AVLNode<elemType> *rlink;
};
```

AVL Trees

- To maintain the height balanced property of the AVL tree after insertion or deletion, it is necessary to perform a transformation on the tree so that
 - The inorder traversal of the transformed tree is the same as for the original tree (i.e., the new tree remains a binary search tree)
 - The tree after transformation is height balanced

Insert and Rotation in AVL Trees

- ■Insert operation may cause balance factor to become 2 or –2 for some node
 - only nodes on the path from insertion point to root node have possibly changed in height
 - Follow the path up to the root, find the first node (i.e., deepest) whose new balance violates the AVL condition. Call this node **a**
 - ■If \boldsymbol{a} new balance factor (the difference h_l - h_h) is 2 or –2, adjust tree by rotation around the node

Single Rotation in an AVL Tree

Left Rotation (LL) in an AVL Tree

- Node **b** will takes place of node **a** (it will become new Root).
- Node a will become root of left sub-tree(or left child of new Root)
- If there was any left child of node b, it will become right child of node a now

Right Rotation (RR) in an AVL Tree

- → Node b will takes place of node a (it becomes root now)
- Node **a** will become root of the right sub-tree (or right child of new root)
- If there was any right child of node b, it will become left child of node a now.

Single Rotation may be Insufficient

- c becomes the new root.
- child as its right child, in this case, b.
 - c takes ownership of a as its left child.

- **a** becomes the new root.
- ϕ takes ownership of c's left -c takes ownership of a's right child as its left child, **b**.
 - **a** takes ownership of **c** as its right child.

Left-Right Rotation (LR) or Double Left

- perform a right rotation on the right becomes the new root. subtree.

 - a takes ownership of b's left child as its right child, in this case null
 - **b** takes ownership of **a** as its left child

Right-Left Rotation (RL) or Double Right

- perform **a** left rotation on the left subtree.
- **b** becomes the new root.
- c takes ownership of b's right child as its left child, in this case null.
- **b** takes ownership of **c** as its right child.

How and when to rotate?

- If the BF values of A and its immediate node(B) are both positive: Make a single right rotation(RR)
- ■If the BF values of A and its immediate node(B) are both negative: Make a single left rotation(LL)
- If the BF value of A is positive and its immediate node(B) has a negative BF value: Make a double right rotation(RL)
- ■If the BF value of A is negative and its immediate node(B) has a positive BF value: Make double left rotation(LR)

How and when to rotate?

- Double Left Rotation
 - Make Single Right Rotation at node B
 - Make Single Left Rotation at node A
- Double Right Rotation
 - Make a Single Left Rotation at node B
 - Make a single Right Rotation at node A

Working Example

Example: 40 30 20 10 5 15 65 33 31

Exercise - I

Insert the following data into the empty AVL tree, "Mar, May, Nov, Aug, Apr, Jan, Dec, July, Feb, June, Oct, Sept"

Reading Material

- Schau Mullines: Chapter #7
- D. S. Malik: Chapter # 11
- Nell Dale: Chapter # 8
- → Allen Weiss: Chapter # 4
- Tenebaum: Chapter # 5