This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Burean

TERNATIONAL APPLICATION PURILISHED LINDER THE PATENT COOPERATION TREATY (PCT)

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PARENT COOPERSTON						
(51) International Patent Classification 6:		(11) International Publication Number:	WO 95/07922			
C07H 21/00, 21/04, C07K 14/435, C12N 15/00, C12Q 1/00	A1	(43) International Publication Date:	23 March 1995 (23.03.95)			
(21) International Application Number: PCT/US		Road, Malvern, PA 19353 (C	JS). McDONNELL, Peter,			

(30) Priority Data:

08/123,175 08/250,975

Filed on

17 September 1993 (17.09.93) US

31 May 1994 (31.05.94) US

(60) Parent Application or Grant

(63) Related by Continuation US

08/250,975 (CON) 31 May 1994 (31.05.94)

(71) Applicant (for all designated States except US): SMITHKLINE BEECHAM CORPORATION [US/US]; Corporate Intellectual Property, UW2220, 709 Swedeland Road, P.O. Box 1539, King of Prussia, PA 19406-0939 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LEE, John, C. [US/US]; 245 Gulph Hills Road, Radnor, PA 19087 (US). ADAMS, Jerry, L. [US/US]; 611 Forest Road, Wayne, PA 19087 (US). GALLAGHER, Timothy, F. [US/US]; 255 Manor Road, Harleysville, PA 19438 (US). GREEN, David, W. [US/US]; 835 Old Lancaster Road, Bryn Mawr, PA

PA 19034 (US). McNULTY, Dean, E. [US/US]; 229 C Fulton Street, Philadelphia, PA 19147 (US). STRICKLER, James, E. [US/US]; Apartment 307, 141 Audubon Road, Weymouth, MA 02188 (US). YOUNG, Peter, R. [US/US]; 32 Hendrickson Road, Lawrenceville, NJ 08648 (US).

(74) Agents: JERVIS, Herbert, H. et al.; SmithKline Beecham Corporation, Corporate Intellectual Property, UW2220, 709 Swedeland Road, P.O. Box 1539, King of Prussia, PA 19406-0939 (US).

(81) Designated States: AM, AU, BB, BG, BR, BY, CA, CN, CZ, EE, FI, GE, HU, IP, KE, KG, KP, KR, KZ, LK, LR, LT, MD, MG, MN, MW, NO, NZ, PT, RO, RU, SD, SI, SK, TI, TT, UA, US, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BI, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: DRUG BINDING PROTEIN

(57) Abstract

This invention relates to drug binding proteins, to genes encoding same and to assays and methods for screening pharmaceuticals. More specifically, this invention relates to a Cytokine Suppressive Anti-Inflammatory Drug (CSAID) binding protein, to a gene encoding same and to assays and screens useful in the evaluation and characterization of drugs of this pharmacologic class.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MIR	Mauritania
AU	Anstralia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	, NE	Niger
BE	Belghen	GR	Greece	NL	Netherlands
BF	Burkina Faso	BU	Hungary	NO	Norway
BG	Bulgaria	IE.	beland	NZ	New Zesland .
BJ	Benin	П	Inly	PL	Poland.
BR	Brazil	JP	Japan	PT	Portugal
BY	Beigrus	KCB.	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Soden
CG	Congo	•	of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
Cī	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroca	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	. TG	Togo
CZ	Czech Republic	LV	Latvia .	TJ	Tajikistan
DB	Germany	MC	Mozaco	TT	Trinided and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Paland	ML	Mali	UZ '	Uzbekistan
FR	Prance .	MN	Mongolia	VN	Vict Nam
GA	Gabon		, -		

DRUG BINDING PROTEIN

Field of the Invention:

This invention relates to drug binding proteins, to genes encoding same and to assays and methods for screening pharmaceuticals. More specifically, this invention relates to Cytokine Suppressive Anti-Inflammatory Drug (CSAID) binding proteins, to genes encoding same and to assays and screens useful in the evaluation and characterization of drugs of this pharmacologic class.

Background of the Invention:

Cytokines play an important role in regulating the cellular response during inflammation and other immune functions. Of particular interest are the cytokines interleukin-1 (IL-1, α and β) and tumor necrosis factor (TNF, α and β), which are the intercellular proteins involved in the initial step of the inflammatory response cascade (Arai, et al., Ann. Rev. Biochem. 59: 783-836 (1990)). Thus, there has been a substantial amount of research recently devoted to interfering with the production of IL-1 and TNF in response to an inflammatory stimulus.

One therapeutic approach involves suppressing the production of IL-1 and TNF at the level of transcription and/or translation and/or secretion. The activities associated with certain of pyridinyl imidazoles led to a class of compounds referred to as "CSAIDs", or Cytokine Suppressing Anti-Inflammatory Drugs (Figure 1). These compounds appear to arrest the expression of IL-1 and TNF predominantly at the translational level, although a lesser effect on transcription has also been observed but effects on other steps cannot be ruled out.

The pyridinyl imidazole, 5-(4-pyridyl)-6(4-fluorophenyl)-2,3-dihydroimidazo(2,1-b)thiazole (SK&F 86002) was identified as the prototypic CSAID. The basis for its activity has been established and characterized (Lee, et al., Int'l. J. Immunopharm. 10(7): 835-843 (1988); Agents and Actions 27(3/4): 277-279 (1989) and Int'l. J. Immunother. 6(1):1-12 (1990)). SAR studies (discussed herein) suggest that cytokine suppressive effect of the pyridinyl imidazoles represents a unique activity independent of their inhibitory effects on eicosanoid and leukotriene production. However, no compound of the initial series was selective for cytokine suppressive activity or was particularly potent.

Since the CSAIDs have substantial potential as novel anti-inflammatory therapeutic agents, there is significant interest in characterizing their mechanism of action at the molecular level, as well as obtaining compounds with increased selectivity and potency. Specifically, identification and characterization of the CSAID molecular target would enhance the understanding of the biochemical processes involved in inflammation and aid in the design and screening of more potent anti-inflammatory drugs. This invention discloses, inter alia, the purification and characterization of such CSAID binding proteins (CSBPs).

The DNAs of this invention, such as the specific sequences disclosed herein, are useful in that they encode the genetic information required for the expression of the novel CSBPs. Additionally, the sequences may be used as probes in order to isolate and identify any additional members of the CSBP family as well as forming the basis of antisense therapy for disease conditions which are characterized by atypical expression of the CSBP gene. The novel protein itself is useful directly as a therapeutic or diagnostic agent as well as a component in a screening system for compounds which are antagonists or agonists of CSAID binding activity. The protein is also useful for eliciting antibody production in heterologous species, said antibodies being useful for the aforesaid diagnostic, therapeutic and screening applications. These and additional uses for the reagents described herein will become apparent to those of ordinary skill in the art upon reading this specification.

Brief Description of the Invention:

5

10

15

20

25

30

35

This invention provides isolated nucleic acid molecules encoding a CSAID binding protein, including mRNAs, DNAs, cDNAs as well as antisense analogs thereof and biologically active and diagnostically or therapeutically useful fragments thereof.

This invention also provides recombinant vectors, such as cloning and expression plasmids useful as reagents in the recombinant production of CSAID binding proteins or peptides, as well as recombinant prokaryotic and/or eukaryotic host cells comprising the CSBP encoding nucleic acid sequence.

This invention also provides methods of identifying ligands capable of binding to the CSBP by measuring the binding of the ligand to be identified relative to known ligands.

This invention also provides methods for screening drugs to identify compounds which interact with and bind to the CSBP. The binding protein may be in isolated form in solution, or in immobilized form, or may be genetically

engineered to be expressed on the surface of recombinant host cells such as in phage display system or as fusion proteins. Alternatively, whole cells or cytosolic fractions comprising the CSBP may be employed in screening protocols. Regardless of the form of the binding protein, a plurality of compounds are contacted with the binding protein under conditions sufficient to form a compound/binding protein complex and compound capable of forming, enhancing or interfering with said complexes are detected.

This invention also provides nucleic acid probes comprising nucleic acid molecules of sufficient length to specifically hybridize to CSAID binding protein-like sequences.

This invention also provides an antisense oligonucleotide having a sequence capable of binding with mRNAs encoding the CSBP so as to prevent the translation of said mRNA.

This invention also provides transgenic non-human animals comprising or lacking a nucleic acid molecule encoding a CSBP. Also provided are methods for use of said transgenic animals as models for differential binding protein expression, mutation and SAR evaluation as well as in ligand and drug screens.

This invention also provides fusion proteins comprising a CSAID binding domain and a binding protein/ligand binding indicator domain capable of providing an analytically detectable signal. Also provided are methods of screening drugs by forming, enhancing or interfering with the detectable signal.

This invention also provides method of screening compounds to identify those compounds which bind to a CSAID binding protein comprising: providing a recombinant host cell expressing on the surface thereof a CSAID binding protein, said protein being associated with a second component capable of providing a detectable signal in response to the binding of a compound to said protein; contacting a plurality of candidate compounds with said host cells under conditions sufficient to permit binding of compounds to the binding protein; and identifying those compounds capable of binding by detecting the signal produced by said second component.

Brief Description of the Figures

10

15

20

25

30

35

Figure 1 illustrates the correlation of IC₅₀ of the pyridinyl imidazole CSAIDs for IL-1β biosynthesis in THP.1 cells and human monocytes. A Log-Log scatter plot of ~50 compounds with regard to their IC₅₀s for inhibiting IL-1 or TNF

was generated. Regression analysis was performed and the correlation coefficient is 0.881.

Figure 2 illustrates the time dependent and reversible uptake of ³H-Compound I in intact THP.1 cells. 2 million THP.1 cells were incubated alone (appropriate solvent control) or with radiolabeled Compound I (50 nM) in the absence (0 - 0) or presence of excess non-radioactive ligand (50 µM) Compound I (square) and Compound VIII (triangle). At various intervals, the cells were centrifuged over a 8% sucrose cushion and the cell pellet was assessed for radioactivity by scintillation counting. Saturable binding was achieved at 15 minutes.

5

10

15

20

25

30

35

Figure 3 illustrates the subcellular localization of binding activity. 10 million THP.1 cells were incubated with 50 nM radiolabeled Compound I for 30 minutes at 22°C. The cells were disrupted by dounce homogenization. The cell lysate was fractionated into nuclear, particulate and soluble fraction by differential centrifugation. The bulk of radioactivity was associated with the cytosolic fraction. An identical result was obtained in a binding assay using previously fractionated samples.

Figure 4 illustrates the binding isotherm and Scatchard plot analysis of Compound I binding by THP.1 cytosol. Titration of radiolabeled Compound (0 to 1 μ M) in the presence of constant excess cold ligand (50 μ M) was performed in the binding assay using crude THP.1 cytosol. The specific binding is saturable. Scatchard plot analysis demonstrated a Kd of 3.6 nM, Bmax of 5 pmol/mg protein and a single site binding.

Figure 5 illustrates the specificity of the CSAID binding activity. A large number of the pyridinyl imidazole compounds spanning three different structural classes with known IC50s for cytokine synthesis inhibition were tested in a competitive binding assay in which radiolabeled Compound I was used. There was a high degree of correlation between the two activities (R=0.889) suggesting that the binding event is a necessary step in the inhibition of cytokine production.

Figure 6 illustrates the regioselectivity of the CSAIDs. Four pairs of regioisomeric forms of the CSAIDs were tested in the bioassay and the competitive binding assay. Only one isomeric form of the respective pair was active with identical IC50s in both assays.

Figure 7 illustrates that the binding of radiolabeled SB 202190 is saturable, specific and reversible. THP.1 cytosol was in cubated with 50 nM radiolabeled SB Compound I for 15 minutes to allow saturable binding to equilibrate, at which time

 $30~\mu\text{M}$ of the cold ligand was added and at various intervals, specific binding was determined. The binding is reversible with Compound VII and to a lesser extent, Compound XI and not at all with Compound VIII, the IC50s of these compounds in the bioassay were 20 nM, 50 nM and >5 μ M respectively.

5

10

15

20

25

30

35

Figure 8 illustrates the CSAID binding activity is protease and heat sensitive. THP.1 cytosol was subjected to trypsin (100 µg/ml) (Panel A) and heat (56°C)(Panel B) treatment. Maximum abrogation of binding activity was achieved within 2 minutes after treatment with trypsin. The binding activity was abrogated after incubation at 56°C, showed a gradual loss at 37°C and was relatively stable at 22°C and 4°C.

Figure 9 illustrates the analysis of photoaffinity labeling of CSBP by SDS-PAGE and Autoradiography. Approximately 40 μ g of protein was pre-incubated with the inhibitors listed above the gel at 10 μ M before photoaffinity labeling with 125 Compound IV (2.5 nM). The reactions were analyzed by SDS-PAGE and autoradiography as described herein.

Figure 10 illustrates that analysis of fractions from preparative isoelectric focusing. Protein labeled with ¹²⁵I Compound IV was applied to the Rainin RF3 and analyzed as described herein.

Figure 11 illustrates the analysis of preparative SDS-PAGE fractions by (A) SDS-PAGE and Silver Staining, and (B) Radioactivity. Fractions were analyzed as described hereinbelow.

Figure 12 illustrates the homology of unique amino acid sequence discovered during analysis of CSBP to MAP kinase. The peptide sequence is listed below the linear representation of MAP kinase of the 15 residues; 9 identical (60%), 13 identical or homologous (87%).

Figure 13 illustrates the nucleic acid sequence and amino sequence of a portion of the CSAIDs Binding Protein.

Figure 14 illustrates the nucleic acid sequence of a second portion of the CSAIDs Binding Protein.

Figure 15 illustrates diagramatically the various CSBP cDNAs described herein.

Figure 16 illustrates the cDNA and amino acid sequence of one of the CSBP disclosed herein.

Figure 17 illustrates the difference in nucleotide and amino acid sequence between CSBP-1 and CSBP-2.

Figure 18 illustrates a phylogenetic tree of various protein kinases.

Figure 19 illustrates the alignment of the amino acid sequences of CSBP-1 and CSBP-2 with selected members of the protein kinase family.

Figure 20 illustrates the results of expression of CSBP in E. coli.

Figure 21 illustrates the full length nucleic acid sequence of CSBP-1 cDNA.

Figure 22 illustrates the full length nucleic acid sequence of CSBP-2 cDNA.

Detailed Description of the Invention:

5

10

15

20

25

30

35

In further describing the present invention, the following additional terms will be employed, and are intended to be defined as indicated below.

An "antigen" refers to a molecule containing one or more epitopes that will stimulate a host's immune system to make a humoral and/or cellular antigen-specific response. The term is also used herein interchangeably with "immunogen."

The term "epitope" refers to the site on an antigen or hapten to which a specific antibody molecule binds. The term is also used herein interchangeably with "antigenic determinant" or "antigenic determinant site."

"Fusion protein" is a protein resulting from the expression of at least two operatively-linked heterologous coding sequences. The protein comprising a CSAIDs binding protein or fragment thereof and a second unrelated peptide sequence is an example of a fusion protein.

A coding sequence is "operably linked to" another coding sequence when RNA polymerase will transcribe the two coding sequences into a single mRNA, which is then translated into a single polypeptide having amino acids derived from both coding sequences. The coding sequences need not be contiguous to one another so long as the expressed sequence is ultimately processed to produce the desired protein.

"Recombinant" polypeptides refer to polypeptides produced by recombinant DNA techniques; i.e., produced from cells transformed by an exogenous DNA construct encoding the desired polypeptide. "Synthetic" polypeptides are those prepared by chemical synthesis.

A "replicon" is any genetic element (e.g., plasmid, chromosome, virus) that functions as an autonomous unit of DNA replication <u>in vivo</u>; i.e., capable of replication under its own control.

A "vector" is a replicon, such as a plasmid, phage, or cosmid, to which another DNA segment may be attached so as to bring about the replication of the attached segment.

A "double-stranded DNA molecule" refers to the polymeric form of deoxyribonucleotides (bases adenine, guanine, thymine, or cytosine) in a double-stranded helix, both relaxed and supercoiled. This term refers only to the primary and secondary structure of the molecule, and does not limit it to any particular tertiary forms. Thus, this term includes double-stranded DNA found, inter alia, in linear DNA molecules (e.g., restriction fragments), viruses, plasmids, and chromosomes. In discussing the structure of particular double-stranded DNA molecules, sequences may be described herein according to the normal convention of giving only the sequence in the 5' to 3' direction along the nontranscribed strand of DNA (i.e., the strand having the sequence homologous to the mRNA).

A DNA "coding sequence of" or a "nucleotide sequence encoding" a particular protein, is a DNA sequence which is transcribed and translated into a polypeptide when placed under the control of appropriate regulatory sequences.

10

15

20

25

30

35

A "promoter sequence" is a DNA regulatory region capable of binding RNA polymerase in a cell and initiating transcription of a downstream (3' direction) coding sequence. For purposes of defining the present invention, the promoter sequence is bound at the 3' terminus by a translation start codon (e.g., ATG) of a coding sequence and extends upstream (5' direction) to include the minimum number of bases or elements necessary to initiate transcription at levels detectable above background. Within the promoter sequence will be found a transcription initiation site (conveniently defined by mapping with nuclease S1), as well as protein binding domains (consensus sequences) responsible for the binding of RNA polymerase. Eukaryotic promoters will often, but not always, contain "TATA" boxes and "CAT" boxes. Prokaryotic promoters contain Shine-Dalgarno sequences in addition to the -10 and -35 consensus sequences.

DNA "control sequences" refers collectively to promoter sequences, ribosome binding sites, polyadenylation signals, transcription termination sequences, upstream regulatory domains, enhancers, and the like, which collectively provide for the expression (i.e., the transcription and translation) of a coding sequence in a host cell.

A control sequence "directs the expression" of a coding sequence in a cell when RNA polymerase will bind the promoter sequence and transcribe the coding sequence into mRNA, which is then translated into the polypeptide encoded by the coding sequence.

A "host cell" is a cell which has been transformed or transfected, or is capable of transformation or transfection by an exogenous DNA sequence.

PCT/US94/10529 WO 95/07922

A cell has been "transformed" by exogenous DNA when such exogenous DNA has been introduced inside the cell membrane. Exogenous DNA may or may not be integrated (covalently linked) into chromosomal DNA making up the genome of the cell. In prokaryotes and yeasts, for example, the exogenous DNA may be maintained on an episomal element, such as a plasmid. With respect to eukaryotic cells, a stably transformed or transfected cell is one in which the exogenous DNA has become integrated into the chromosome so that it is inherited by daughter cells through chromosome replication. This stability is demonstrated by the ability of the eukaryotic cell to establish cell lines or clones comprised of a population of daughter cell containing the exogenous DNA.

5

10

15

25

30

35

A "clone" is a population of cells derived from a single cell or common ancestor by mitosis. A "cell line" is a clone of a primary cell that is capable of stable growth in vitro for many generations.

Two DNA or polypeptide sequences are "substantially homologous" or "substantially the same" when at least about 85% (preferably at least about 90%, and most preferably at least about 95%) of the nucleotides or amino acids match over a defined length of the molecule. As used herein, substantially homologous also refers to sequences showing identity to the specified DNA or polypeptide sequence. DNA sequences that are substantially homologous can be identified in a Southern hybridization experiment under, for example, stringent conditions, as defined for 20 that particular system. Defining appropriate hybridization conditions is within the skill of the art. See, e.g., "Current Protocols in Mol. Biol." Vol. I & II, Wiley Interscience. Ausbel, et al. (ed.) (1992). Protein sequences that are substantially the same can be identified by proteolytic digestion, gel electrophoresis and microsequencing.

The term "functionally equivalent" with respect to CSBP intends that the amino acid sequence of the subject protein is one that will display the CSAIDs binding activity disclosed herein.

A "heterologous" region of a DNA construct is an identifiable segment of DNA within or attached to another DNA molecule that is not found in association with the other molecule in nature. Thus, when the heterologous region encodes a receptor gene, the gene will usually be flanked by DNA that does not flank the gene in the genome of the source animal. Another example of a heterologous coding sequence is a construct where the coding sequence itself is not found in nature (e.g., synthetic sequences having codons different from the native gene). Allelic variation,

alternative splicing or naturally occurring mutational events do not give rise to a heterologous region of DNA, as used herein.

Development of Molecular Reagents:

5

10

Radioligand Synthesis

In order to isolate and purify the CSBP of this invention, it was first necessary to provide several labeled molecular reagents. The phenolic triaryl imidazole, Compound I, was chosen as an alternative radioligand because of its nanomolar potency and the relative ease of synthesis of the radiolabeled compound through catalytic reduction of the corresponding aryl bromide in the presence of tritium gas.

15

Compound I was prepared according to the following reaction protocol:

2-(3,5-Dibromo-4-hydroxyphenyl)-4-(4-fluorophenyl)-5-(4-pyridyl)imidazole MW.489.141

4-(4-Fluorophenyl)-

2-(4-hydroxyphenyl-

3,5-12)-5-(4-

pyridyl)imidazole

331.349

48.6 mCi

2-(3-Bromo-4-hydroxy-5-t)

-4-(4-fluorophenyl)-5-(4-

pyridyl)imidazole

M.W. 410.245

10.1 mCi

HPLC 12.2 mCi

4-(4-Fluorophenyl)-

2-(4-hydroxyphenyl-

3,5-6)-5-(4-

pyridyl)imidazole

Compound I

9.3 mCi

Preparation of 4-(Fluorophenyl)-2-(4-hydroxyphenyl-3,5-t₂)-5-(4-pyridyl)imidazole, (Compound I).

5

10

15

20

25

A 2.9 mg (0.0059 mmol) portion of 2(3,5-Dibromo-4-hydroxyphenyl)-4-(4fluorophenyl)-5-(4-pyridyl)imidazole, Compound I(p), was dissolved in 0.95 mL of dry DMF and 0.05 mL of triethylamine in a 2.4 mL round bottom flask equipped with a small magnetic stirring bar. A 1.7 mg portion of 5% Pd/C (Engelhard lot 28845) was added, and the flask was attached to the stainless steel tritium manifold. The mixture was degassed through four freeze-pump-thaw cycles, then tritium gas (5.3 Ci, 0.091 mmol) was introduced. The reaction mixture was allowed to warm to room temperature and was stirred vigorously for 20h. The mixture was frozen in liquid nitrogen, the remaining tritium gas (2.4 Ci) was removed, and the flask was removed from the manifold. The reaction mixture was transferred, using 3 x 1 mL of methanol as rinsings, into a 10 mL round bottom flask, and the solvents were removed by static vacuum transfer. A 1.5 mL portion of methanol was added to the residue, then removed by static vacuum transfer. The latter process was repeated. Finally, the residue was suspended in 1.5 mL of ethanol and filtered through a syringe-tip Millipore filter (0.45 micron), along with 3 x ca. 1 mL ethanol rinsings. The total filtrate volume was determined to be 3.9 mL, and the total radioactivity, 94.2 mCi. Solution was determined to be 3.9 mL, and the total radioactivity, 94.2 mCi. HPLC analysis of filtrate (Partisil 5 ODS-3, 4.6 mm I.D. x 25 cm, 1 mL/min of 70:30:01 water/acetonitrile/trifluoroacetic acid, Radiomatic Flo-One Beta radio detector with 3 mL/min of Ecoscint-H cocktail through a 0.75 mL cell) showed the presence of Compound I ($R_1 = 60 \text{ min. ca. } 37\% \text{ of total radioactivity}$), and a discrete intermediate presumed to be the monobromo derivative Compound Ia ($R_t = 11.8$ min. ca. 9%).

The filtrate solution was evaporated to near dryness with a stream of nitrogen, and the residue was dissolved in about 1.2 mL of the HPLC mobile phase.

PCT/US94/10529 WO 95/07922

The solution was separated by HPLC as shown below, and the peaks corresponding to Compounds I and Ia and SB collected separately.

HPLC Method

10

15

Altex Ultrasphere Column

10 mm LD. x 25 cm

Mobile Phase 70:30:0.1

water/acetonitrile/trifluoroacetic acid

5 mL/min Flow Rate 210nm UV detection 0.05 - 0.4 m:

Injection Volumes

Retention Times 7.8 min Compound I 24 min Compound Ia

The pooled Compound I fractions totaled 32 mL in volume and the 5 radioactive concentration was 1.52 mCi/mL (total 48.6 m Ci). The pooled SB Compound Ia [3H] fractions (totaling 10.1 mCi) were evaporated to dryness and the residue was transferred quantitatively into a glass vial using 3.8 mL of absolute ethanol for further analysis.

An 8 mL (12.2 mCi) portion of Compound I was evaporated to dryness in vacuo at <5°C, then redissolved in 0.5 mL of mobile phase. The whole volume was injected into the HPLC system described above, and the appropriate peak was collected. Evaporation of the collected eluate in vacuo at <35°C and transfer of the vellow residue into a vial with absolute ethanol provided a solution (3.8 mL, 2.44 mCi/mL) of Compound I. The portion of this solution used for NMR analyses

PCT/US94/10529 WO 95/07922

Analysis of 4-(4-Fluorophenyl)-2-(4-hydroxyphenyl-3,5-t2)-5-(4pyridyl)imidazole, Compound I.

Radiochemical Purity by HPLC

Method

Ultrasphere Octyl, 5µm, 4.6 mm Column

I.D. x 25 cm, Beckman

350:150:0.5(v/v/v) Mobile Phase

water/acetonitrile/trifluoroacetic acid

Flow Rate

1.0 mL/min

Mass detection

UV at 210 nm

Radioactivity detection

Ramona-D radioactivity flow

detector

Scintillator

Tru-Count (Tru-Lab Supply Co.)

Flow rate

5.0 mL/min $0.75 \, mL$

Cell volume Retention time

7.7 min

Result

98.7

Radioactive Concentration by Scintillation Counting

Method

Scintillator

Ready Safe (Beckman Instruments,

Inc.)

Instrument

TM Analytic model 6881

Efficiency

Automated DPM calculation from

quench curve

Result

2.44 mCi/mL

Specific Activity by Mass Spectrometry

Method

CI-MS, NH3 reagent gas

Result

20.0 Ci/mmol ³H Distribution:

44%

Unlabeled

Single Label Double Label

43% 13%

³H <u>NMR</u>9

Method

Brunker AM 400

Instrument Experiment

Proton decoupled ³H NMR

Proton non-decoupled ³H NMR Proton non-decoupled ³H NMR

Peak Referencing

Solvent Peak of methanol 3.3

Solvent

Methanol-da

Result

Tritium is incorporated exclusively

on the carbon atoms ortho to aromatic hydroxyl group

-13-

Analytical Summary

Assay
Radiochemical purity determined by HPLC

Radioactivity concentration determined by scintillation

counting

Specific activity determined by mass spectrometry 3H NMR

20.0 Ci/mmol agrees with the

proposed structure

2.44 mCi/mL

Result

98.7%

Photoaffinity Radiolabeled Ligand

Additionally, a photoaffinity radiolabel was synthesized. Ideally, the radiophotoaffinity reagent should have a submicromolar binding affinity, a convenient site for the attachment of a radiolabel (preferable a gamma emitter) and allow for the positioning of the photoreactive group, (e.g. an azide) proximal to the binding site. The SAR leading to the proposal of Compound IV as the candidate for the photoaffinity reagent is illustrated in Table I below.

Formula II

Formula III

Table I

Compound	х	BioAssay IC50, μΜ	Compound	Y	BioAssay IC50, μM
IIa	4-F	> 0.1	IIIa	H	0.15
Пр	4-H	0.5	Шь	4-N3	0.05
Пс	4-CI	0.05	IIIc	3-I-4-NH ₂	0.48
Пđ	3-Cl	0.04	IIId	4-NH2	0.28
Пе	2-Cl	0.25			
IIf	4-I	0.58			
Пд	3-I	0.05	1		

In addition, a specific ELISA assay may also be usefully employed to determine IL-1β and TNFα levels (see: PCT Applications US93/00674 and US93/00675)

Compound IV CSAIDs binding IC₅₀ = $0.72 \mu M$

10

The synthesis of radioiodinated photoaffinity label, Compound IV, employed a palladium-mediated stannylation of the aryl iodide and subsequent electrophilic radioiodination, according to the following protocol.

PCT/US94/10529

[3-[2-(4-azidophenyl)-5-(4-pyridinyl)-1H-(4-pyridinyl)-imidazol-4-yl]phenyl]phenyl]tributylstannane

M.W.627.40 Compound IV (p) 250 μg

4-[2-(4-azidophenyl)-5-(3-¹²⁵Iodo-phenyl)-1*H*imidazol-4-yl]pyridine
Compound IV
3.60 mCi

5

Process Description

Synthesis and purification of 4-[2-(4-azidophenyl)-5-(3-125Iodo-phenyl)-1*H*-imidazol-4-yl]pyridine.

10

15

[3-[2-(4-Azidophenyl)-5-(4-pyridinyl)-1H imidazol-4-yl]phenyl]-tributylstannane, Compound IV (p) (250 µg, 0.398 µmol, was dissolved in 100 µL of 3% acetic acid in ethanol. To this solution was added 2.85 µg of chloramine-T hydrate (0.013 µmol) in 11.4 µL of water and 5.19 mCi of sodium [125 Π]iodine in 45 µL of 0.1 N sodium hydroxide. Another 50 µL of 3% acetic acid in ethanol was added to make

the reaction mixture homogeneous. The reaction was stirred 60 minutes at room temperature (in the dark). The reaction was then blown to dryness under a stream of dry nitrogen and the residue partitioned between chloroform (1 mL) and saturated aqueous sodium bicarbonate (1 mL). The aqueous layer was extracted with chloroform (2 x 1 mL), the organic layers were combined and dried by passing through a pipet filled with granular sodium sulfate. The solvent was removed under stream of dry nitrogen; the residue was found to contain 4.36 mCi of iodine-125 (assayed on the Capintec dose calibrator). The aqueous layers were found to contain 310 µCi of iodine-125. The residue from the organic layer was taken up in 80 µL of HPLC mobile phase and purified on a Baker SiO2 column, 5µm, 4.6 mm I.D. x 250 10 mm, eluted at 1.5 mL/min with 90:10:1 (v/v/v) hexane/isopropanol/triethylamine, with UV monitoring at 260 nm. The product fractions were combined and blown to dryness under a stream of dry nitrogen. The product was taken up in 3.0 mL of absolute ethanol. This procedure gave 3.60 mCi of Compound IV at a radiochemical purity of 99.0%, radioactive concentration of 1.20 mCi/mL and a 15 specific activity of 1736 Ci/mmol.

Analysis of 4-[2-azidophenyl)-5-(3-iodo-125I-phenyl)-1H-imidazol-4yl]pyridine, Compound IV.

Radiochemical Purity by HPLC

Method

Column

Baker, Silica, 5 µm, 120 A,

4.6 mm I.D. x 25 cm.

90:10:1 (v/v/v) Mobile Phase

hexane/isopropanol/triethylamine

1.3 mL/min Flow Rate

Mass detection UV at 260 nm

Radioactivity detection

B-RAM radioactivity flow detector Detector Tru-Count (Tru-Lab Supply Co.) Scintillator

5.0 mL/min Flow rate $0.8 \, \mathrm{mL}$ Cell size 17.0 min Retention time

99.0% Result

PCT/US94/10529

Mass Concentration by HPLC

Baker, Silica, 5 µm, 120 A,

<u>Method</u>

4.6 mm I.D. x 25 cm.

Column

Mobile Phase

90:10:1 (v/v/v)

hexane/isopropanol/triethylamine

Flow Rate

1.5 mL/min UV at 260 nm

Mass detection Retention time

11.2 min

Result

99.0%

Radioactive Concentration by Scintillation Counting - external standard method

Method

Solvent Instrument Ready Safe (Beckman)

TM Analytic model 6881

Efficiency

Automated DPM calculation from

quench curve

Result

1.2 mCi/mL

Specific Activity Derived from Mass and Radioactive

Concentrations

derived from mass and radioactive

Method

concentrations

Result

1736 Ci/mmol

Analytical Summary

Assay
Radiochemical purity by HPLC
Massive concentration by HPLC

<u>Result</u> 99.0%

0.32 μg/mL 1.2 mCi/mL

Radioactive concentration
Specific activity derived from mass and radioactive

1736 Ci/mmol

concentrations

The photoaffinity label has an IC50 of 0.5-0.8 μM in a competitive binding assay and IC50 of 3 μM in a CSAIDs bioassay.

CSAIDs Bioassay

The biological assay employed to evaluate CSAIDs activity was the IL-1 dependent EL-4/IL2 induction assay (Simon, P. L. et al., J. Immuno. Meth. 84: 85-94 (1985)). Briefly, Human monocytes were plated in 24-well plates in LPS-free RPMI 1640 media containing 1% human AB serum at a concentration of 10⁶

10

5

per millilitre per well and allowed to adhere for 1 h at 37°C; non-adherent cells were removed by gentle washing. Test compounds or media were added to the cells 0 or 1 h before the addition of bacterial lipopolysaccharide (E. coli 001:B4; Difco, Detroit) at 10 ng/ml. The cultures were then incubated at various intervals as indicated at 37°C in a humidified 5% CO₂ atmosphere. At the end of the incubation period, culture supernatants were collected. The residual adherent monocytes were lysed in a buffer containing 0.15M octyl-glucopyranoside, 25 mM Hepes, and 0.5mM phenylmethylsulfonylfluoride in saline. Both supernatants and cell lysates were clarified by centrifugation and assayed for IL-1 activity.

IL-1 activity was measured by its ability to stimulate the secretion of IL-2 by EL-4 (ATCC TIB181) cells in the presence of A23187 ionophore. Serial dilutions of the samples were incubated with 10^5 EL-4 cells in the presence of 2 x 10^{-7} M calcium ionophore A23187. After overnight incubation, 0.1 ml of a cell-free supernatant from each culture was taken and incubated with 10^4 IL-2-dependent CTLL-20 (ATCC-TIB214) cells. Following an additional 20 hours of incubation, the cultures were pulsed with 1 μ Ci of tritiated thymidine for 4 h. The cells were then harvested onto glass-fibre filters and the radioactivity determined by liquid scintillation counting. All determinations of IL-1 activity were made in comparison to a standard.

20

25

. 30

35

5

10

15

CSAIDs Binding Assay

The next phase of the isolation and purification of CSBP required the development and validation of a cell-based CSAIDs binding assay. As mentioned above the early CSAID studies were conducted in human monocytes. A more convenient cell source, the human monocytic leukemia cell line, THP.1, (ATCC TIB 202) was selected and was shown to be an adequate surrogate cell source for mechanistic studies by virtue of its response to stimuli to produce IL-1 and TNF as well as a sensitivity towards CSAIDs comparable to human monocytes (Figure 1).

Radiolabeled Compound I was taken up by intact THP.1 cells in a time-dependent manner (Figure 2). The uptake of the radiolabel was rapid and reached a maximum level at 3-5 minutes at 37°C. In addition, the uptake of radiolabel was saturable and specific.

Upon subcellular fractionation of radiolabeled ligand loaded THP.1 cells, the predominant subcellular site of accumulation of the radioactivity was found to be the cytosol. (Figure 3).

A specific and reproducible CSAID binding assay was developed using soluble cystosolic fraction from THP.1 cells and radiolabeled Compound I. In brief, THP.1 cytosol was routinely prepared from cell lysate obtained by nitrogen cavitation followed by a 10 K x g low speed and a 100 K x g high speed centrifugation, the supernatant of which was designated as the cytosolic fraction. THP.1 cytosol was incubated with appropriately diluted radioligand at room temperature for a pre-determined time to allow the binding to achieve equilibrium. The sample was added to a G-10 column and eluted with 20 mm TRN, 50μMβ - mercaptoethanol, NaN3. The fraction encompassing the void volume was collected and the radioactivity was assessed by liquid scintillation counting. This was determined to reflect bound radioligand since the radioactive signal was abrogated by the presence of excess cold ligand in the incubation mixture or when there was no cytosolic fraction present.

More specifically, the CSAID Binding Assay is performed as follows:

15

10

· Materials:

Incubation buffer: 20 mM Tris, 1 mM MgCl₂, 20 μM Hepes, 0.02% NaN₃, store at 4°C. Elution buffer: 20 mM Tris, 50 μM 2-mercaptoethanol, NaN₃, store at 4°C.

20 G-10 Sephadex: add 100 g Sephadex G-10 (Pharmacia, Uppsala, Sweden) to 400 mL dd H₂O and allow to swell at room temperature for 2 hours. Decant fines and wash 3 times. Add NaN₃ and QS with dd H₂O to 500 mLs and store at 4°C.

Assemble Columns: Straw column, filter frit and tip (Konotes, SP 420160-000, 420162-002). Lowsorb tubes (Nunc) used in binding reaction. THP.1 cytosol spun at 15000 rpm for 5 min to clarify. THP.1 cytosol prepared by hypnotic treatment of cells and lysis by decompression in nitrogen. Nuclei and membrane fragments removed by differential centrifugation (10,000 g for 1 hour and 100,000 g for 1 hour).

30

Compounds: Non-radioactive Compound I with corresponding EtOH control (dilutions made in incubation buffer) and ³H-Compound I (dilutions in incubation buffer)

Method:

A. Column Preparation

- 1. Begin 30 min before anticipated elution of reaction mixture.
- 2. Add 3 mL of G-10 slurry to column for bed vol of 1.5 ml.
- 3. Rinse with 7 mL elution buffer (fill to top of column)
 - 4. Cut columns down to size.

B. Sample Incubation

- 1. 15 min incubation at 4°C.
- 2. Binding reaction mixture; 100 μL cytosol, 10 uL cold Compound I or EtOH control, 10 μL ³H-Compound I (molar concentration depends on nature of study).
 - 3. "Free" control = 100 μL incubation buffer in lieu of cytosol preparation.

15

5

C. Sample Elution

- 1. Elute at 4°C.
- 2. Add total reaction volume to G-10 column.
- 3. Add 400 µL elution buffer to column and discard eluate.
- 20 4. Add 500 µL elution buffer to column, collecting eluted volume in 20 ml scintillation vial.
 - 5. Add 15 mL Ready Safe scintillation fluid.
 - Vortex and count in liquid scintillation counter for 5 minutes.
 Include a "total input counts control" (10 μL of labeled ligand).

25

D. Data Analysis

- Plot DPMS as outtut in graphic form and analyze by regression analysis and
- "Lundon ligand binding" software for the determination of IC 50 and Kd/Ki respectively.
 - 2. Rank order the IC50s of the tested compounds in the CSAID bioassay and compare to that generated by the CSAID binding assay and establish a correlation curve.

The binding assay was further validated by the following criteria:

- THP.1 cytosol demonstrated saturable and specific binding of radiolabeled Compound I (Figure 4).
- A substantial number of pyridinyl imidazole CSAIDs were tested in the
 radiolabel competitive binding assay. The rank order potency and the
 IC50s of the compounds was highly correlative to that determined by the
 human monocyte bioassay (Figure 5). Furthermore, the competitive
 binding activity was regioselective (Figure 6). These results underline
 the particular usefulness of the binding assay to the cytokine suppressive
 effects of these compounds and is considered particularly advantageous
 for SAR development and providing the means to help eludicate the
 molecular target.
- Binding is highly specific for the pyridinyl imidazole CSAIDs. A series of non-structurally related compounds of varied pharmacological activities were tested in the competitive binding assay. They include the specific cyclooxygenase inhibitors, 5-lipoxygenase inhibitors, dual CO/LO inhibitors, PDE IV inhibitors, immunosuppressive macrolides, steroids, and others (Table II). None of the compounds tested at 100 µM demonstrated competitive binding.

A list of non-pyridinyl imidazole CSAIDs, related anti-inflammatory or immunosuppressive compounds tested in the competitive CSAID binding assay is provided in Table II. Unless otherwise indicated, no competitive binding was observed up to $100 \, \mu M$.

25

5

10

15

20

TABLE II

Cyclooxygenase Inhibitors • Indomethacin	Steroid Dexamethasone	
• Naproxen		
Selective 5-Lipoxygenase Inhibitors	Novel Anti-Inflammatories	
Hydroxyurea class	• IX270	
Aminophenol class	• Tenidap (IC50 = 139 μλ	
•	Romazarit	

5-Lipoxygenase Translocation InhibitorMK886	Peroxisome Proliferators • Wyeth 14643 • Clofibrate
 Dual Inhibitors Phenidone NDGA (IC50 = 154 μM) 	AH Receptor Agonists • 3-Methylcholanthrene • βNaphthoflavone
Immunosuppressives • FK506 • Azaspirane • Rapamycin & Analogs	Miscellaneous Tibenelast Tetrandrine
PDE _{TV} Inhibitor • Rolipram	

Having established a cell source and a binding assay, further characterization of CSBP established that the CSAID binding is saturable, specific and reversible (Figure 7), follows a rapid on and off rate, the binding activity is sensitive to protease and heat treatment (Figure 8) and is protein concentration dependent (data not shown).

The CSAID binding activity in human monocytes is indistinguishable from that determined for THP.1 by the criteria established for the binding activity listed above.

The binding is pH dependent with an optimal pH range from 5 to 8 and is independent of divalent cations and is sensitive to high salt concentration which is reversible.

Purification of CSBP

5

10

15

The purification of the CSBP from THP.1 cells was accomplished as follows:

Materials

The following compounds were synthesized by the methods outlined in PCT application, US93/00674 and US93/00675 both filed January 13, 1993.

The radiolabeled compounds II and IV were prepared as described above. Polyclonal and monoclonal antibodies against actin (rabbit (cat #65-096) and mouse (cat. #69-100), respectively) were purchased from ICN Biomedicals. The peptide NH2-IIe-Thr-Ala-Ala-Gln-Ala-Leu-Ala-His-Ala-Tyr-Phe-Ala-Gln-Tyr-Cys-COOH (Seq. I.D. No. 1) was synthesized by standard solid phase FMOC chemistry (see for example: Fields, G.B., et al. Int'l. Peptide Protein Res. 35: 161-214 (1990), purified and coupled to maleimide activated keyhole limpet hemocyanin (KLH) (Pierce Chemical Co. Cat # 77105A) by conventional methods, and used to inoculate rabbits. All other chemicals were of reagent grade and unless otherwise specified, were not purchased from a particular vendor.

Growth of THP.1 Cells

5

10

15

20

25

30

35

THP.1 cells were grown and processed as follows:

THP. 1 cells are grown in RPMI - 1640 medium with 25 mM Hepes, 10% FBS (8% in reactors), 10mM glutamine, and .05% pluronic F-68. The cells were passed on a 3/4 days cycle with an average cell count of 2×10^6 (seeding density between 2×10^5 and 3×10^5). A high density cell recycle in shake flasks was used to scale-up the cells to the large reactors. In this process, the total volume of the shake flask was spun down and resuspended with the same volume of fresh medium. Therefore, seeding density increased with each passage, giving a higher density of cells per volume. The densities ranged from 6×10^6 to 12×10^6 .

From the shake flasks, two scale-up procedures were used to obtain the required volumes. Initially, two 80L artisan reactors (60L working volume) were used. Every five days, 50L was taken out of both reactors and harvested. The cells were then fed with an additional 50L until the total required volume was reached. Alternatively, cells were grown in a 30L artisan and used to seed the 250L Abec reactor (totaling working volume was 150L). 120L was harvested every-five days and the 30L left was refed. The seeding density was between 3 x 10⁵ and 5 x 10⁵. The pH for both types of reactors was controlled between 7.0 and 7.2. CO₂ was used as the controlling acid and sodium bicarbonate as the buffer. The D.O. was set at 30 percent for the Artisans reactors and 20 percent for the Abec reactor.

Preparation of THP.1 Cytosol

Cells were lysed by nitrogen cavitation in 20 mM TrisHCl pH 7.4, 1mM MgCl₂, 1mM PMSF, 1 μ M pepstatin A and 1 μ M leupeptin. Insoluble material was pelleted at 10,000 x g for 10 min and the supernatant further clarified by a 100,000

x g centrifugation for 1 h at 4°C. The supernatant from the final centrifugation was collected and is hereafter referred to as the THP.1 cytosol.

Measurement of CSAID Binding Activity

The same (typically 200 μg protein) was incubated with appropriately diluted ³H - Compound I (50 nM) at room temperature for 60 min to allow the binding to achieve equilibrium. Free ligand was separated from bound ligand on a 1.5ml Sephadex G-10 column in 20 mM TrisHCl pH 7.4. The fraction encompassing the void volume was collected and the radioactivity was assessed by liquid scintillation counting. Protein concentrations were determined by the bicinchoninic acid assay (Pierce).

Superose 12 Chromatography

15

25

30

Approximately 100 to 250 ml of THP.1 cytosol was applied at 14.5 cm h⁻¹ to a 5 L Superose 12 column (Pharmacia; 11.5 x 50 cm) equilibrated in 10 mM NaPO₄ pH 7.0 and 150 mM NaCl at 4°C. Fractions were collected (50ml) and assayed for CSAID binding activity; a single peak of activity corresponding to an elution volume for a protein of $M_T \sim 50,000$ was pooled (200 to 500 ml).

20 Hydroxylapatite Chromatography

The material from the Superose 12 column were applied at 30 cm h⁻¹ to a 160 ml Hydroxylapatite HA column (Cal. Biochem; 5.0 x 8.0 cm) equilibrated in 10 mM NaPO₄ pH 7.0 at room temperature. The column was eluted with a 10 to 200 mM NaPO₄ gradient over 2.5 column volumes. Fractions (30 ml) were collected and assayed for CSAIDs binding activity. A protein peak containing approximately 60% of the CSAID binding activity applied to the column was pooled (50 to 250 ml).

Radiophotoaffinity Labeling of CSBP

The following protocol was used for about 30 ml of sample but can be adapted for larger or smaller volumes. The hydroxylapatite pool was concentrated to about 30 ml using an Amicon stir cell (YM30 membrane, 70 psi N₂). Insoluble material in the concentrate was removed by centrifugation (10,000 x g for 30 min in SS34 rotor at 4°C). The supernatant (450 mg protein) was used in the labeling reactions, which were performed in 6-well microtiter plates (Nunc). Six reactions were carried out using the following reagents and protocol. Approx. 60 mg. of

protein (4 ml) was added to 0.25 ml buffer (10 mM NaPO₄ pH 7.0, 150 mM NaCl) and 0.25 ml 50 nM radioactive (i.e. "hot") ¹²⁵I Compound IV (final concentration of 2.5 nM, 250 µCi) in dim light and allowed to stand on ice for 10 to 15 min. The microtiter plate was exposed to > 300 nm light at a distance of 5 to 10 cm for 2 min while on ice. The reactions were chased with Compound IV (Compound VI being the "cold" (i.e. non-radioactive) form of Compound IV) as follows. A 1 mM stock of Compound VI was prepared by adding 0.3 ml 10mM Compound VI to 2.7 ml 50% ethanol in 10 mM NaPO₄ pH 7.0 and 150 mM NaCl. Compound VI (0.5 ml 1 mM) was added to each labeling reaction in dim light and allowed to stand for 10 to 15 min on ice. The reactions were exposed to light as for the radioactive labeling. Unreacted Compounds IV and VI can be removed from labeled protein by the preparative isoelectric focusing or electrophoresis steps; or for samples of smaller volume, removed by gel filtration chromatography on Sephadex G-25 (1.6 x 12 cm) in 20 mM NaPO₄ pH 7.4 and 150 mM NaCl.

15

10

Analytical Electrophoresis, Autoradiography and Immunoblotting

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was performed under reducing conditions essentially as described by Smith B.J., Meth. in Mol. Biol., Vol I, pp. 44-57 (1984). Samples were run on 0.75 mm 20 thickness 16 cm (4% stacking, 10 or 12% separating) or 10 cm (12% pre-cast, Jule) stab gels using the Hoefer SE 600 or Mighty Small electrophoresis systems. respectively. Protein was stained by either coomassie blue R350 (Pharmacia) or silver (Silver Stain Plus, BioRad). Molecular weight protein standards were purchased from Amersham or BioRad. For blotting, proteins were transferred to a 25 polyvinylidene difluoride membrane (Millipore) in 192 mM glycine/25 mM Tri pH 8.3 and 20% (v/v) methanol using a Genie electrophoretic blotter (Idea Scientific) at 15 V. Protein labeled with ¹²⁵I was visualized by autoradiography using Hyperfilm-MP (Amersham) after overnight exposures at -70°C. The membrane was blocked with 5% gelatin in 20 mM TrisHCl pH 7.5 and 500 mM NaCl before 30 incubation with the appropriate antiserum diluted 1,000 to 5,000-fold in buffer. The antibody complexes were detected with anti-mouse or anti-rabbit immunoglobulin G (Amersham) coupled to horse radish peroxidase and visualized by luminol phosphorescence on Hyperfilm-ECL (Amersham).

PCT/US94/10529 WO 95/07922

Preparative Isoelectric Focusing

Preparative isoelectric focusing was performed using a Rainin RF3 recycling free flow focusing protein fractionator at 4°C overnight, concentrated to about 3 ml with an Amicon stir cell (YM30 membrane, 70 psi N2), and brought to 10% glycerol and 1% ampholyte (Pharmacia Ampholine or Pharmalyte pH 4 to 6) for a final volume of about 10 ml. Before the sample was applied to the RF3, a 1% ampholyte/10% glycerol solution was pre-focused for 1 to 1.5 h (until the voltage, current, power and temperature were at baseline). The sample was injected into bubble port 14 using a needle and syringe. The system was allowed to equilibrate as for the pre-focusing before collecting 3 ml fractions. Labeled CSBP was identified 10 by monitoring the radioactivity, and the appropriate fractions pooled.

Preparative SDS-Page

Preparative SDS-PAGE was performed using the BioRad Model 491 Preparative cell. The pooled fractions from the preparative isoelectric focusing 15 were concentrated to 2 to 3 ml with an Amicon stir cell (YM30 membrane, 70 psi N₂). Approximately 2 to 2.5 ml of the concentrate was brought to about 3 ml in 100 mM Tris pH 6.8, 2% SDS, 100 mM 2-mercaptoethanol, 10% glycerol and 0.01% bromophenyl blue before incubating at 100°C for 3 to 5 min. The sample was applied to the gel (2 cm 4% stacking gel, 6 cm 11% separating gel) and run at 20 40 mA in 192 mM glycine/25 mM Tris pH 8.3 and 0.1% SDS at room temperature. Fractions (2.5ml) were collected and assayed for radioactivity in order to identify where labeled CSBP eluted from the gel.

25 Results

30

35

5

Partial Purification of CSBP

A typical partial purification of CSBP from THP.1 cytosol is summarized in Table III. As indicated, the recovery of activity is 20% and the level of purification is 3-fold. This was characteristic of CSBP recovery and purification during evaluation of a number of chromatography resins (anion and cation exchange, hydrophobic interaction with (NH4)2SO4, blue sepharose, heparin sepharose, etc.); the purification scheme as listed in the Table III gave the best recovery and most reproducible results. Since attempts to purify CSBP further while following CSAID binding activity resulted in poor recovery of activity, this was as far as the purification was taken before photoaffinity labeling.

Table III

Purification of CSBP from THP.1 cytosol

Sample	Activity, dpm ⁸	Protein, mg	Specific Activity, dpm mg ⁻¹
THP.1 cytosolb	5.0 x 10 ⁸	6800	7.4×10^4
Superose 12	1.6 x 10 ⁸	1200	1.3 x 10 ⁵
Hydroxylapatite	9.6 x 10 ⁷	500	1.9 x 10 ⁵

^aactivity is expressed as the ³H radioactivity (disintegration per minute, dpm) collected in the CSAID binding assayed as described above and corrected for the total sample.

bTHP.1 cytosol was prepared from starting material equivalent to approximately 10¹¹ cells.

10

15

20

25

30

Photoaffinity Labeling of CSBP

CSBP was covalently labeled with the 125 I, aryl azide CSAID derivative Compound IV. The reaction was very specific as illustrated in Figure 9, which shows that a single protein of M_T 43,000 was labeled (the lanes labeled "None"). During the partial purification described above the CSAID binding activity eluted as a single peak from the Superose 12 gel filtration chromatography with a molecular weight corresponding to a protein of M_T 45,000 to 50,000. Collectively, these two

analyses indicate the CSBP is a single-chain, or "monomeric" protein of M_r 43,000.

Figure 9 also illustrates the specificity of the labeling. In the middle lanes of the gel, protein was preincubated with a non-radioactive CSAID (10 μ M) before the photoaffinity labeling with 125I Compound IV (2.5 nM). The extent to which each CSAID competed with the photoaffinity label correlates well with its potency in a cellular assay. That is, the more potent the compound is in its ability to suppress IL-1 production in human monocytes, the more effectively it prevented photaffinity labeling of the CSBP. Thus, CSBP is the protein labeled with Compound IV.

Purification of Labeled CSBP

In order to identify CSBP by its amino acid sequence, the labeled protein was further purified from the partially-purified CSBP used for photaffinity labeling. The strategy to accomplish this was preparative isoelectric focusing, preparative SDS-PAGE and reversed-phase HPLC. The results of the preparative isoelectric

focusing are shown in Figure 10. The isoelectric point of the labeled protein corresponded to a pH of about 4.5. Western analysis indicated that some, but not all, of the actin was removed by this procedure. In addition, almost 70% of the protein applied cluted with the labeled protein (50% recovery of radioactivity). This was also demonstrated by SDS-PAGE and silver staining analysis (data not shown). Thus, for this application preparative isoelectric focusing did not provide a substantial purification of the desired protein.

The most substantial purification of labeled CSBP was obtained by preparative SDS-PAGE. The material pooled from preparative isoelectric focusing was applied to a gel using the BioRad Model 491 Preparative Cell. As illustrated in Figure 11, the radioactive fraction corresponding to a protein of about 43 kDa (fraction 56) has at least 90% of the non-radioactive protein removed by this procedure. In addition, unincorporated label is also removed.

15 Characterization of CSBP

10

20

25

30

35

After preparative SDS-PAGE, labeled CSBP was applied to reversed-phase HPLC, where a protein peak coeluting with the radioactivity was collected. Comparison of the protein concentration (determined by amino acid analysis) to the specific radioactivity of the sample demonstrated that only 10% of this protein was labeled (assuming a protein M_r of 43,000). N-terminal sequence analysis identified actin sequences corresponding to 30 to 40 amino acids downstream from the expected amino terminus. Internal sequence analysis following fragmentation with trypsin or CNBr generated approximately 90% actin sequences, but about 10% of the pepides gave unique sequences. One of the sequences from the tryptic digest had strong (85%) homology, but was not identical, to a C-terminal sequence found in a family of Ser/Thr protein kinases known as the mitogen-activated (MAP) kinases (Figure 12; See also: Ray, L.B. & Sturgill, T.W., Proc. Natl. Acad. Sci. (USA), 85:3753-3757 (1988)).

A peptide based on the sequence with homology to the MAP kinases was synthesized and used to inoculate rabbits for the production of antisera. Western analysis and autoradiography of labeled THP.1 cytosol 2-D gels demonstrated that 1) antibodies against actin or MAP kinases did recognize proteins on the blot, but not the radiolabeled protein; 2) the antibody prepared from the tryptic peptide recognized the radiolabeled protein. Thus, CSBP appears to have homology to, but is distinct from, the MAP kinases. Given the role of kinases in regulating translation (Pelech and Sanghera, Science 257:1355-66 (1992)) and the effect of

CSAIDs on IL-1 and TNF translation, a kinase is not inconsistent as the molecular target for CSAIDs.

Isolation and Characterization of

5 the CSBP gene:

This invention provides an isolated nucleic acid molecule encoding the human CSBP. Two amino-terminal peptide sequences were obtained from the protein fraction comigrating with the radioactive photoaffinity probe. One of these was derived from a trypsin digest of the radioactive protein fraction but was not itself radioactive, and had the sequence:

ILE THR ALA ALA GLN ALA LEU ALA HIS ALA TYR PHE ALA GLN TYR (Seq. I.D. No. 1)

The second was obtained from an 8KDa cyanogen bromide fragment associated with radioactivity and had the sequence:

XXX (GLN) LEU LEU ASN ASN ILE (VAL/PHE) LYS (PHE) GLN LYS LEU THR (Seq. I.D. No. 2)

- where () represents an uncertain assignment and / represents an uncertainty between two amino acids. XXX is an unknown amino acid. A search of Genbank indicated that peptide sequence I.D. No. 1 was homologous to the MAP kinase family of protein kinases, whereas peptide sequence I.D. No. 2 was unique. Based on these two sequences, two degenerate oligonucleotide DNA probes were synthesized using the genetic code to reverse translate the protein sequences, and tables of mammalian cell codon preferences (Grantham, R. et al., Nucl. Acid Res. 9
 - tables of mammalian cell codon preferences (Grantham, R. et al., <u>Nucl. Acid Res. 9</u>: (1981)).
 - 1. GCYCAYGCTAYTTYGCYCARTA (Seq. LD. No. 3) and
 - 2. AAYAAYATYKTBAARTTYCAAA (Seq. I.D. No. 4)

30 where Y = C or T

R = A or G

K = G or T

B = G, C or T

Hence the two mixed oligonucleotides consist of 128 and 384 unique sequences respectively. A cDNA library made from human monocytes treated with GM-CSF (Livi, G.P. et al., Mol. Cell Biol, 10: 2678-86 (1990) in the commercial vector

λZAP (Stratagene) which was screened at low stringency by hybridization to a 50:50 combination of the two synthetic oligonucleotide mixtures labeled with γ-32 P ATP. Labeling of the oligonuleotides followed published methods (Current Protocols in Molecular Biology), typically labeling 3 μg of mixed oligonucleotide with 250 μCi γ-32 P ATP and using all of this in a 250 μl hybridization volume. The manufacturer's recommended conditions for plating and lifting phage were followed (see Stratagene λZAP protocol, Stratagene, La Jolla, Ca.) using the BB4 host strain. One additional step was to prewash the filterlifts at 65°C in 2xSSPE/0.1%SDS twice for 30 min. prior to prehybridization to remove bacterial debris.

Subsequently, prehybridization and hybridization with the labeled oligonucleotide probes were performed at 37°C for 24-72h in 6xSSPE, 5xDenhardt's solution, 0.1% SDS and 100 µg/ml phenol/chloroform extracted yeast tRNA. (20xSSPE is 3M NaCl, 0.2M NaH₂PO₄, 0.02M EDTA pH7.4.50 x Denhardt's solution is 10 g polyvinylpyrrolidone (MW 40,000), 10g Bovine serum albumin and 10 g Ficoll 400 per liter H₂O

After hybridization the filters were washed twice under each of the following conditions.

- 1. 6xSSPE, 0.1% SDS, room temp, 10-15 min.
- 2. 6xSSPE, 0.1% SDS, 37°C, 10-15 min.

5

10

15

20

25

30

- 3. 3M tetramethylammonium chloride solution (500g Me₄NCl, 1.38 liter H₂0, 73 ml 1M tris pH 8.0, 5.8ml 0.5M EDTA, 7.3ml; 20% SDS filtered through 0.45 µM filter), 37°C, 30 min (see: <u>Proc. Natl. Acad. Sci. USA</u> 82: 1585-1588 (1985) for a description of this technique).
- Filters were exposed to Kodak film for 3-5 days in the presence of intensifying screens, and overlapping positives in duplicate filters picked and cycled through the same procedure until pure plaques obtained.

Phage was excised with M13 helper phage R408 in the recA⁻ E. coli host XL-1 blue according to manufacturers procedures (Stratagene).

After two subsequent rounds of replating and hybridization of positively hybridizing plaques using just the oligonucleotide mixture #1, a single homogeneous phage was obtained which hybridized in a Southern blot with the oligonucleotide #1 (Seq. I.D. No. 3) but not with oligonucleotide #2 (Seq. I.D. No. 4). Sequencing of the DNA insert of this phage revealed an open reading frame at

one end which encoded part of the No. 2 unique peptide sequence. I.D. No. 2 above. The amino sequence so encoded was:

Asn He Val Lys Cys Gln Lys Leu Thr. (Seq. I.D. No. 5).

The rest of the open reading frame (Figure (13) Seq. I.D. No. 6 and 7 was homologous to several protein kinases including the cdc2 and the MAP kinase families. Based on this homology, it is predicted to be missing approximately 130 amino acids from the amino terminus which is obtained via a second round of library screening with the amino terminal region of the obtained cDNA clone.

The other end of the cDNA contains the poly A sequence corresponding to the 3' terminus of the mRNA from which it was obtained (Figure 14, Seq. I.D. No. 8).

10

15

20

25

30

Accordingly, based on initial cDNA (Figure 13), oligonucleotides (5'-CCTCGGAGAATTTGGTAGATAAGG-3' (Seq. I.D. No. 9) and 5'-AACATTGTGAAATGTCAGAAGCTTACAGATGACCAT-3' (Seq. I.D. No. 10)) were designed from the 5' end of the sense strand, and used to screen for cDNAs encoding the amino terminus of CSBP. The oligonucleotides were labelled at their 5' ends with polynucleotide kinase and γ -32P-ATP. 106 plaques from a GM-CSF stimulated human monocyte library constructed in \(\lambda ZAP\) were screened on duplicate nitrocellulose filters which had been prewashed prior to hybridization in 2xSSPE, 0.1% SDS at 50°C. After blocking for 48h with 50% formamide, 6 x SSPE. 5 x Denhardt's and 100 µg/ml sheared, denatured salmon sperm DNA, filters were hybridized in the same buffer with the above labelled oligonucleotides for 24 hours at 42°C. The filters were then washed twice with 2 x SSPE, 0.1% SDS at room temperature, followed by two washes in 1 x SSPE, 0.1% SDS at 42°C and two washes in 0.5 x SSPE, 0.1% SDS at 42°C before detection of hybridizing plaques by autoradiography. Positive plaques which appeared on duplicate filters were picked and replated and the procedure repeated twice until unique plaques could be isolated and phagemid DNA released according to manufacturer's protocol (Stratagene Cloning Systems, LaJolla, CA). The cDNAs were sequenced on an Applied Biosystems automated DNA sequencer (ABI 373A) using universal and specific oligonucleotide primers and Taq polymerase cycle sequencing, and the sequences merged and examined using Lasergene software on a Macintosh IIci. Both strands were completely sequenced at least once in each cDNA clone.

Description of cDNAs.

10

15

20

25

30

A summary of the cDNAs isolated is illustrated schematically in Figure 15. There are four different cDNAs which have been completely sequenced and are identical in regions of overlap, with one exception to be described below. BP01/02 is the cDNA first isolated above, the partial sequence of which is given in Figures 13 and 14. The longest cDNA is 3.8 kb long (N5) Seq. I.D. No. 11 and contains 370 nucleotides of 5' untranslated sequence, a 1.1kb coding region and 2.4kb of 3' untranslated sequence. The extreme 3' end is terminated by a poly A stretch characteristic of mRNA, and is preceded by the expected consensus sequence for polyadenylation. The N7 cDNA has a 3' untranslated region of only 1.4kb terminating in a site and poly A run suggesting an alternative polyadenylation site. On a Northern blot a probe derived from the coding region hybridizes to an ca. 4.2kb mRNA suggesting that the longest cDNA isolated is close to full length.

The coding translates into a protein of 360 amino acids with calculated molecular weight of 41.5 kDA, matching the size of the protein identified by photoaffinity crosslinking with ¹²⁵I-labelled Compound IV (Figure 16). The predicted isoelectric point (ca. 5.6) is also close to that observed (Ca. 5.0). Examination of the sequence indicates that it contains both the tryptic peptide sequence ITAAQ... and the cyanogen bromide sequence LNNIVK...(boxed) obtained by sequencing of the CSAIDs binding protein in THP.1 cells. These sequences are preceded by the appropriate cleavage sites (arrows). The predicted size of the cynaogen bromide fragment (8kDa) matches the size of the fragment which remains associated with the ¹²⁵I-labelled radiophotoaffinity label [Compound IV] after cyanogen bromide treatment of the CSAIDs binding protein.

The N13 cDNA (Figure 15) Seq. I.D. No. 12 is identical to the other three cDNAs with the exception of a 75 nucleotide region starting at position 1054 of the N5 cDNA. This difference results in a protein of identical size with amino acids 230-255 altered. (Figure 17). The two different sequences are 43% identical at the nucleotide level, and 44% identical at the amino acid level. Without wishing to be bound by any particular theory, it is likely that the two variants result from alternative internal exon splicing, although allelic variation cannot be excluded. For ease of description, two proteins are referred to herein as CSBP1 (corresponding to the N5 cDNA) and CSBP2 (corresponding to the N13 cDNA).

Comparison of the CSBP sequence to proteins in the GenBank/EMBL or Swissprot databases indicated close homology to a family of proteins known as MAP (Mitogen Activated Protein) or erk (extracellular regulated) kinases (Boulton, et al., "Erks; A Family of Protein Serine-Threonine Kinases that are Activated and Tyrosine Phosphorylated in Response to Insulin and NGF", Cell. 65: 663-675 (1993). This family of protein kinases is conserved from yeast to man as indicated in the phylogenetic tree in Figure 18 with the closest published homologue being the yeast HOG1 gene (Brewster et al., Science 259: 1760-63 (1993). An alignment of the CSBPs with selected members of this family (Figure 19) shows a conservation of all 11 protein kinase motifs (I through XI), including residues identical in all protein kinases (bold) (Hanks et al., Science, 241: 42-52 (1988). Two boxed motifs in regions VI and VIII indicate that the kinases phosphorylate serines and threonines (Hanks et al., 1988). Hence the CSBPs are protein kinases.

A threonine and tyrosine in a TxY sequence (asterisks) proximal to domain 15 VIII are known to be regulatory phosphorylation sites for Erk 1 and Erk 2 (Payne, et al., EMBO. J., 10: 885-892, 1991). These two residues are phosphorylated by MEK (MAPK or ERK Kinase) in response to various extracellular signals, resulting in an activation of the serine/threonine kinase activity of the MAP kinases (Kosako, et al., EMBO. L., 12: 787-794 (1993). The conservation of these amino acids in the 20 CSBPs suggests that they are also regulated by a MEK in response to extracellular stimuli such as LPS. These findings suggest that the CSBPs lie within a cascade of protein phosphorylation events which communicate cell surface stimuli to events such as translational regulation, within the cell. Much of the behavior of the CSBP in suitably stimulated cells can be predicted based on analogy with the known 25 properties and behavior of the MAP kinases (Marshall, et al., Curr. Opin. Genetics & Develop., 4: 82-89 (1994).

A multiple tissue Northern blot with a coding region cDNA probe suggests expression of CSBP mRNA in most tissues. A Southern blot at high stringency (0.1% SSPE, 0.1% SDS) suggested a single gene; however lower stringency washes may reveal closely related kinases. Gene mapping experiments using a panel of human/mouse hybrid cell lines available commercially indicated that the gene for CSBP resides on human chromosome 6.

· 30

Expression in E. coli

To confirm that the proteins encoded by the isolated cDNAs can bind to CSAIDs, the cDNAs were expressed in E. coli and yeast. In E. coli the CSBPs were expressed as fusion proteins with β-galactosidase and/or an enterokinase cleavable

5 FLAG epitope tag (Figure 20) (FLAG is a commercial epitope for which reagents are available through IBI-Kodak). In the latter case this was achieved by the design of a synthetic oligonucleotide linker with an initiation site, antibody recognition sequence, and enterokinase cleavage site. Proteins were expressed under the control of either the pLac (eg Bluescript KS vector from Stratagene, LaJolla, CA.) or λpL

10 (Shatman, et al., N.Y. Acad. Sci., 478: 233-248 (1986)) promoters and the radiophotoaffinity probe [Compound IV] shown to specifically crosslink proteins of the expected sizes in cell lysates. Lysates also contain Compound IA specific binding activity. One can conclude that both CSBP1 and CSBP2 are the molecular targets of the CSAIDs within cells.

Protein expressed in <u>E. coli</u> was purified by passage over an affinity matrix containing a monoclonal antibody to the FLAG epitope according to manufacturer's instructions.

Expression in Yeast

15

30

35

An alternative system for expression of CSBP is <u>Saccharomyces cerevisiae</u>, not only for purfication but also to assess function. The yeast *HOG1* (High Osmolarity Glycerol response) gene, (Brewster et al., <u>surpa</u>) encodes a MAP kinase which is a close homologue of CSBP. Mutant <u>hog1D</u> strains show reduced growth on high-osmolarity medium and functional complementation of this phenotype with CSBP was tested.

CSBP2 was engineered for yeast expression as follows. A XhoI site was introduced at the initiation codon of CSBP2 by the polymerase chain reaction (Mullis, and Faloona, Method in Enzymd., 155: 335-50 (1987) using the following oligonucleotide primers: 5'-cgccctcgagatgtctcaggagaggcccacg-3' Seq. I.D. No. 13 and 3'-ctaagacctaaaacctgaccg-5', Seq. No. 14. The 525-bp PCR fragment was digested with XhoI and BgIII and subcloned into the same sites in p138NBU, a modification of p138NB (McHale et al., Mol. Pharm. 39: 109-113 (1991) in which the TRP1 selectable marker was replaced with URA 3. The resulting plasmid was then digested with BgIII and SalI and ligated with a BgIII XhoII fragment containing the 3' end of CSBP2. The final construct contains partial 2micron sequences for maintenance at high copy number, with CSBP2 mRNA expression

driven by the copper-inducible CUP1 promoter and terminated by the yeast CYC1 transcriptional terminator. Plasmid p138NBU-CSBPN13B was found encode the wild-type CSBP2 protein. Transformations of parent (YPH499 MATa ura3-52 lvs2-801 am ade2-101 mp1-D63 his3D200 leu2-D1) and hog1D (JBY10 [YPH499 + 5 hog1::TRP1]) strains (Brewster, et al., J. Bacteriol. 153: 163-168 (1983) Ura+ prototrophs were isolated and grown to A540 of 1.0 in synthetic complete medium lacking uracil (Hicks et al., Genetics 83: 245 (1976). CSBP2 expression was induced by the addition of 150 mM CuSO₄: Cells were harvested at 5 hr. resuspended 20 mM Tris-HC1 pH7, 1 mM MgCl2, 1 mM 10 phenylmethylsulfonylfluoride and disrupted by vortexing in the presence of 0.45 mm glass beads. Extracts were centrifuged at 1,500 x g for 5 min at 4°.

Radiophotoaffinity probe (Compound IV) was shown to specifically crosslink a protein of the expected size in lysates of both p138NBU-CSBPN13A and p138NBU-CSBPN13B, which was not present in wild type or hog1D strains containing control plasmid (p138NBU) and grown under similar conditions. Lysates also contained ³H Compound Ia specific binding activity, Therefore both CSB1 and CSB2 bind CSAIDS.

15

30

35

The proteins of this invention are preferably made by recombinant generic engineering techniques. The isolated nucleic acids particularly the DNAs can be introduced into expression vectors by operatively linking the DNA to the necessary 20 expression control regions (e.g. regulatory regions) required for gene expression. The vectors can be introduced into the appropriate host cells such as prokaryotic (e.g., bacterial), or eukaryotic (e.g., yeast or mammalian) cells by methods well known in the art (Ausubel et al., supra). The coding sequences for the desired proteins 25 having been prepared or isolated, can be cloned into any suitable vector or replicon. Numerous cloning vectors are known to those of skill in the art, and the selection of an appropriate cloning vector is a matter of choice. Examples of recombinant DNA vectors for cloning and host cells which they can transform include the bacteriophage λ (E. ∞ li), pBR322 (E. ∞ li), pACYC177 (E. ∞ li), pKT230 (gram-negative bacteria), pGV1106 (gram-negative bacteria), pLAFR1 (gram-negative bacteria). pME290 (non-E. coli gram-negative bacteria), pHV14 (E. coli and Bacillus subrilis). pBD9 (Bacillus), pIJ61 (Streptomyces), pUC6 (Streptomyces), YIp5 (Saccharomyces), a baculovirus insect cell system, YCp19 (Saccharomyces). See. generally, "DNA Cloning": Vols. I & II, Glover et al., eds. IRL Press Oxford (1985) (1987) and; T. Maniatis et al. "Molecular Cloning", Cold Spring Harbor Laboratory (1982).

The gene can be placed under the control of a promoter, ribosome binding site (for bacterial expression) and, optionally, an operator (collectively referred to herein as "control" elements), so that the DNA sequence encoding the desired protein is transcribed into RNA in the host cell transformed by a vector containing this expression construction. The coding sequence may or may not contain a signal peptide or leader sequence. The subunit antigens of the present invention can be expressed using, for example, the <u>E. coli</u> tac promoter or the protein A gene (spa) promoter and signal sequence. Leader sequences can be removed by the bacterial host in post-translational processing. <u>See</u>, <u>e.g.</u>, U.S. Patent Nos. 4,431,739; 4,425,437; 4,338,397.

10

15

20

25

30

35

In addition to control sequences, it may be desirable to add regulatory sequences which allow for regulation of the expression of the protein sequences relative to the growth of the host cell. Regulatory sequences are known to those of skill in the art, and examples include those which cause the expression of a gene to be turned on or off in response to a chemical or physical stimulus, including the presence of a regulatory compound. Other types of regulatory elements may also be present in the vector, for example, enhancer sequences.

An expression vector is constructed so that the particular coding sequence is located in the vector with the appropriate regulatory sequences, the positioning and orientation of the coding sequence with respect to the control sequences being such that the coding sequence is transcribed under the "control" of the control sequences (i.e., RNA polymerase which binds to the DNA molecule at the control sequences transcribes the coding sequence). Modification of the sequences encoding the particular protein of interest may be desirable to achieve this end. For example, in some cases it may be necessary to modify the sequence so that it may be attached to the control sequences with the appropriate orientation; i.e., to maintain the reading frame. The control sequences and other regulatory sequences may be ligated to the coding sequence prior to insertion into a vector, such as the cloning vectors described above. Alternatively, the coding sequence can be cloned directly into an expression vector which already contains the control sequences and an appropriate restriction site.

In some cases, it may be desirable to add sequences which cause the secretion of the polypeptide from the host organism, with subsequent cleavage of the secretory signal. Alternatively, gene fusions may be created whereby the gene encoding the binding protein of interested is fused to a gene encoding a product with other desirable properties. For example, a fusion partner could provide known assayable

activity (e.g. enzymatic) which could be used as an alternative means of selecting the binding protein. The fusion partner could be a structural element, such as a cell surface element such that the binding protein (a normally cytosolic component) could be displayed on the cell surfacte in the form of a fusion protein. It may also be desirable to produce mutants or analogs of the protein of interest. Mutants or analogs may be prepared by the deletion of a portion of the sequence encoding the protein, by insertion of a sequence, and/or by substitution of one or more nucleotides within the sequence. Techniques for modifying nucleotide sequences, such as site-directed mutagenesis and the formation of fusion proteins, are well known to those skilled in the art. See, e.g., T. Maniatis et al., supra; DNA Cloning, Vols. I and II, supra; Nucleic Acid Hybridization, supra.

5

10

30

35

A number of prokaryotic expression vectors are known in the art. See, e.g., U.S. Patent Nos. 4.578,355; 4.440,859; 4.436,815; 4.431,740; 4.431,739; 4.428,941; 4,425,437; 4,418,149; 4,411,994; 4,366,246; 4,342,832; see also U.K. Patent 15 Applications GB 2,121,054; GB 2,008,123; GB 2,007,675; and European Patent Application 103,395. Yeast expression vectors are also known in the art. See, e.g., U.S. Patent Nos. 4,446,235; 4,443,539; 4,430,428; see also European Patent Applications 103,409; 100,561; 96,491. pSV2neo (as described in J. Mol. Appl. Genet. 1:327-341) which uses the SV40 late promoter to drive expression in mammalian cells or pCDNA1neo, a vector derived from pCDNA1(Mol. Cell Biol. 20 7:4125-29) which uses the CMV promoter to drive expression. Both these latter two vectors can be employed for transient or stable(e.g. using G418 or hygromycin resistance) expression in mammalian cells. Insect cell expression systems, e.g., Drosophila, are also useful, see for example, PCT applications US 89/05155 and US 25 91/06838 as well as EP application 88/304093.3 and Baculovirus expression systems.

Depending on the expression system and host selected, the proteins of the present invention are produced by growing host cells transformed by an expression vector described above under conditions whereby the protein of interest is expressed. The protein is then isolated from the host cells and purified. If the expression system secretes the protein into growth media, the protein can be purified directly from the media. If the protein is not secreted, it is isolated from cell lysates or recovered from the cell membrane fraction. The selection of the appropriate growth conditions and recovery methods are within the skill of the art.

An alternative method to identify proteins of the present invention is by constructing gene libraries, using the resulting clones to transform <u>E. coli</u> and pooling

and screening individual colonies using polyclonal serum or monoclonal antibodies to the desired binding protein.

The proteins of the present invention may also be produced by chemical synthesis such as solid phase peptide synthesis, using known amino acid sequences or amino acid sequences derived from the DNA sequence of the genes of interest. Such methods are known to those skilled in the art. Chemical synthesis of peptides is not particularly preferred.

5

10

15

The binding proteins of the present invention or their fragments comprising at least one epitope can be used to produce antibodies, both polyclonal and monoclonal. If polyclonal antibodies are desired, a selected mammal, (e.g., mouse, rabbit, goat, horse, etc.) is immunized with a binding protein of the present invention, or its fragment, or a mutated binding protein. Serum from the immunized animal is collected and treated according to known procedures. When serum containing polyclonal antibodies is used, the polyclonal antibodies can be purified by immunoaffinity chromatography or other known procedures.

Monoclonal antibodies to the proteins of the present invention, and to the fragments thereof, can also be readily produced by one skilled in the art. The general methodology for making monoclonal antibodies by using hybridoma technology is well known. Immortal antibody-producing cell lines can be created by cell fusion, and also by other techniques such as direct transformation of B lymphocytes with 20 oncogenic DNA, or transfection with Epstein-Bart virus. See, e.g., M. Schreier et al., "Hybridoma Techniques" (1980); Hammerling et al., "Monoclonal Antibodies and Tcell Hybridomas" (1981); Kennett et al., "Monoclonal Antibodies" (1980); see also U.S. Patent Nos. 4,341,761; 4,399,121; 4,427,783; 4,444,887; 4,452,570; 4,466,917; 4,472,500; 4,491,632; and 4,493,890. Panels of monoclonal antibodies produced 25 against the protein of interest, or fragment thereof, can be screened for various properties; i.e., for isotype, epitope, affinity, etc. Alternatively, genes encoding the monoclonals of interest may be isolated from the hybridomas by PCR techniques known in the art and cloned and expressed in the appropriate vectors. Monoclonal antibodies are useful in purification, using immunoaffinity techniques, of the individual 30 proteins against which they are directed. The antibodies of this invention, whether polyclonal or monoclonal have additional utility in that they may be employed reagents in immunoassays, RIA, ELISA, and the like. In addition they can be used to isolate the CSBP from human cells and determine the effect of different stimuli and compounds on the phosphorylation state and protein kinase activity of endogenous 35 CSBP. The antibodies could be used to establish a tissue culture based assay for

discovery or modification of novel compounds which block the phosphorylation or kinase activity of CSBP. An example of such an assay would be to incubate human monocytes or monocytic cell lines with a compound or compound mixture prior to treatment with LPS for a defined time period, followed by immunoprecipitation of CSBP with antibody and assessment of its phosphorylation state via immunoblot or chromatography or measurement of its kinase activity with appropriate protein or peptide substrate.

10

15

20

25

30

35

This invention provides a method for determining whether a ligand previously not known to bind to a CSBP can bind to such a protein. The method comprises contacting the ligand to be identified with cytosolic fraction from THP.1 cells and measuring its ability to compete with a known radioactive CSAID, as descibed above, in a CSAIDs binding assay. Alternative methods include contacting the ligand to be identified with a whole-cell expressing the coding sequence of a CSBP under conditions sufficient for binding of ligands previously identified as binding to such a receptor. In other embodiments cell membrane fractions comprising the CSBP fusions or isolated CSBP free or immobilized on solid supports may be used to measure binding of the ligand to be tested. When recombinant cells are used for purposes of expression of the CSBP it is preferred to use cells with little or no endogenous CSBP activity so that binding if any is due to the presence of the expressed protein of interest. As mentioned previously, a specifically designed indicator of receptor binding can be constructed. For example a fusion protein can be made by fusing the CSBP of this invention with a protein domain which is sensitive to CSBP/ligand binding. Such a domain referred to here as an indicator domain is capable, itself, or in association with accessory molecules, of generating an analytically detectable signal which is indicative of receptor ligand binding. A variation of this approach is to express CSBP as a fusion protein (e.g., fused to FLAG peptide) in THP.1 or other mammalian cells, and to use the fusion peptide as a means of isolating the recombinant CSBP after suitable stimulation and pretreatment of THP.1 cells. Such expression can be achieved with numerous mammalian expression vectors which utilize viral promoters, eg CMV, RSV and polyadenylation sequences, et. SV40, bovine growth hormone, and a selectable marker such as G418 or hygromycin for selection of stable transfectants.

Cytosolic preparations from transfected or transformed cells expressing such fusions may be employed. All of the above techniques that are useful for ligand identification are also useful in drug screening and drug development protocols.

5

10

15

20

25

30

Alternatively, the purified recombinant protein could be used to substitute for crude THP.1 cell lysates in a competitive binding assay with Compound Ia. This assay is useful to screen for novel compound which bind CSBP, or as a way to assess alterations to compound which is known to bind. The availability of purified protein allows alternative configurations of the assay from those described previously for the crude material. For example, if the protein is covalently linked to a tag, such a protein binding site for configuration in a colorimetic assay, e.g., conjugated antibody, or to an enzyme for direct detection of enzyme activity, e.g., horseradish peroxidase or alkaline phosphatase, binding to novel compounds displayed on a solid matrix could be detected. Such compounds could include low molecular weight organic molecules, peptides, peptoids, and proteins. In the latter case, the protein can be used as a way to isolate other proteins in its signaling cascade, for example, those that are in the pathway for activation of cytokine translation in activated monocytes. The protein may also be used to isolate naturally occurring regulatory molecules within mammalian cells that act by a CSAIDs binding mechanism. Finally, the protein can be used to identify target peptides displayed on the surface of phage.

The knowledge that the CSBPs encode protein kinases suggest that recombinant forms can be used to establish a protein kinase activity. Typically this would involve the direct incubation of CSBP with a protein or peptide substrate in the presence of γ -32P- ATP, followed by the measurement of radioactivity incorporated into the substrate by separation and counting. Separation methods include immunoprecipitation, conjugation of substrate to a bead allowing separation by centrifugation or determination of incorporation by scintillation proximity assay, SDS-PAGE followed by autoradiography or biosensor analysis. While the specific substrates are not yet known, candidates include CSBP itself (autophosphorylation) and peptides related to known MAP kinase substrates. Other substances might be discovered by incubating CSBP with random peptides conjugated to solid supports or displayed by phage (see above) or by incubation of CSBP with mammalian cell lysates (e.g. THP.1 cell lysates) and γ^{-32} P- ATP, followed by separation of the labelled target proteins, and sequencing. Kinase activity may also be detected by use of antiphosphotyrosine antibodies. The protein kinase activity of CSBP may require incubation with a specific MEK. This may be achieved by preincubating CSBP with lysates from stimulated eukaryotic cells (e.g., LPS treated THP.1 cells) and ATP. Alternatively, it may be possible to isolate a more active form of CSBP from HOG1 deletion strains of yeast expressing the human CSBP and grown in high osmolarity conditions.

These assays permit the discovery and modification of compounds which inhibit CSBP kinase activity in vitro. Such compounds would be expected to block cytokine synthesis in a comparable fashion to the compounds described herein. They could also lead to the discovery of novel substrates which themselves may be viable targets for discovery of novel compounds which block cytokine production.

It is expected that CSBPs, like other MAP kinases, will be activated by a MEK, hence the recombinant protein would allow the establishment of a second assay which measures the ability of CSBP to be phosphorylated by putative MEKs. In this case fractions from stimulated cell lysates (eg THP.1 cells stimulated with LPS) are incubated with CSBP in the presence of γ -32P-ATP, and the incorporation of 32P-label into CSBP measured by separation and counting. Separation can be achieved in a number of ways: one way is to use a CSBP fused to an peptide or protein and separate via affinity chromatography or immunoprecipitation with the peptide or protein directed antibody. Alternatively the CSBP can be directly conjugated to beads or bound through a fusion peptide or protein (e.g., FLAG (peptide), glutathionine-S-transferase) and separated by centrifugation after incubation with cell lysates. Also tyrosine phosphorylation of CSBP could be detected by immunoprecipitation or immunoblot with commercially available anti-phosphotyrosine antibodies.

10

15

20

25

30

35

These assays can be used to discover compounds which block the activation of CSBP protein kinase activity and to improve the potency of already discovered compounds. These compounds would be expected to have utility due to their blocking of cytokine synthesis. The assays are also useful to discover novel MEKs which themselves may become targets for novel compounds which would block cytokine synthesis.

The ability of human CSBP to rescue a HOG1 deletion strain upon growth in conditions of high osmolarity allows for the direct screening of compounds which block CSBP activity in vivo. For example, compounds could be screened for their ability to block growth of a CSBP +/HOG1- yeast strain in high osmolarity but which have no effect on growth of the same strain in standard osmolarity or on a CSBP-/HOG1+ in high osmolarity. The sensitivity of the yeast based assay can be increased by introducing host mutations that affect the cell membrane and permeability (Gaber, et al., Mol. Cell. Biol. 2: 3447-3456. (1989).

In a compound screening embodiment of this invention, the CSBP in isolated, immobilized or cell bound form is contacted with a plurality of candidate molecules and those candidates are selected which bind to and interact with the protein. The

binding or interaction can be measured directly by using radioactively labeled candidate of interest or indirectly by measuring an effect resulting from the interaction or binding of the candidate compound. Alternatively, the candidate compounds can be subjected to a competition screening assays, in which a known ligand, preferably labeled with an analytically detectable reagent, most notably radioactivity, is introduced with the compounds to be tested and the compound's capacity to inhibit or enhance the binding of the labeled ligand is measured. Compounds are screened for their increased affinity and selectivity for the CSBP.

To illustrate this aspect of the invention a natural product screen was performed.

5

10

15

20

25

30

35

The standard assay in which bound ligand is separated from free by exclusion chromatography using mini-columns was used to initiate a screening effort.

Approximately 625 marine extracts, 202 microbial extracts and 233 extracts of plant material were tested for inhibition of ³H-Compound I binding to THP.1 cytosol.

Two extracts were confirmed as antagonists of this binding, with IC50's of around 200 and 80 µg/ml respectively. This low hit-rate (0.2%) coupled with the failure to observe inhibition by any of a selected group of "nuisance extracts" indicates that the assay is sufficiently selective and robust to support a screening effort. While the potency of these two hits is rather weak, they were nevertheless accepted as leads for isolation of their active principle so that the primary assay could be evaluated as well as identification of the bioactive compounds.

The two extracts were subsequently fractionated and characterized.

Further refinement of the binding assay to facilitate high throughout screening can be achieved by the minor modification of separating bound ligand from free ligand using spin columns.

This invention also contemplates pharmaceutical compositions comprising compounds when identified by the above methods and a pharmaceutically acceptable carrier. Pharmaceutical compositions of proteineous drugs of this invention are particularly useful for parenteral administration, i.e., subcutaneously, intramuscularly or intravenously. The compositions for parenteral administration will commonly comprise a solution of the compounds of the invention or a cocktail thereof dissolved in an acceptable carrier, preferably an aqueous carrier. A variety of aqueous carriers may be employed, e.g., water, buffered water, 0.4% saline, 0.3% glycine, and the like. These solutions are sterile and generally free of particulate matter. These solutions may be sterilized by conventional, well known sterilization techniques. The compositions may contain pharmaceutically acceptable auxiliary substances as

required to approximate physiological conditions such as pH adjusting and buffering agents, etc. The concentration of the compound of the invention in such pharmaceutical formulation can very widely, i.e., from less than about 0.5%, usually at or at least about 1% to as much as 15 or 20% by weight and will be selected primarily based on fluid volumes, viscosities, etc., according to the particular mode of administration selected.

5

10

15

20

25

30

35

Thus, a pharmaceutical composition of the invention for intramuscular injection could be prepared to contain 1 mL sterile buffered water, and 50 mg of a compound of the invention. Similarly, a pharmaceutical composition of the invention for intravenous infusion could be made up to contain 250 ml of sterile Ringer's solution, and 150 mg of a compound of the invention. Actual methods for preparing parenterally administrable compositions are well known or will be apparent to those skilled in the art and are described in more detail in, for example, Remington's Pharmaceutical Science, 15th ed., Mack Publishing Company, Easton, Pennsylvania.

The compounds described herein can be lyophilized for storage and reconstituted in a suitable carrier prior to use. This technique has been shown to be effective with conventional proteins and art-known lyophilization and reconstitution techniques can be employed.

In situations where the identified drug is non-proteineous, it may be administered alone or in combinantion with pharmaceutically acceptable carriers. The proportion of which is determined by the solubility and chemical nature of the compound, chosen route of administration and standard pharmaceutical practice. For example, they may be administered orally in the form of tablets or capsules containing such excipients as starch, milk sugar, certain types of clay and so forth. They may be administered sublingually in the form of troches or lozenges in which the active ingredient is mixed with sugar and corn syrups, flavoring agents and dyes; and then dehydrated sufficiently to make it suitable for pressing into a solid form. They may be administered orally in the form of solutions which may be injected parenterally, that is, intramuscularly, intravenously or subcutaneously. For parenteral administration they may be used in the form of a sterile solution containing other solutes, for example, enough saline or glucose to make the solution isotonic.

The physician will determine the dosage of the present therapeutic agents which will be most suitable and it will vary with the form of administration and the particular compound chosen, and furthermore, it will vary with the particular patient under treatment. He will generally wish to initiate treatment with small dosages substantially less than the optimum dose of the compound and increase the dosage by

small increments until the optimum effect under the circumstances is reached. It will generally be found that when the composition is administered orally, larger quantities of the active agent will be required to produce the same effect as a smaller quantity given parenterally. The compounds are useful in the same manner as other serotonergic agents and the dosage level is of the same order of magnitude as is generally employed with these other therapeutic agents. The therapeutic dosage will generally be from 1 to 10 milligrams per day and higher although it may be administered in several different dosage units. Tablets containing from 0.5 to 10 mg. of active agent are particularly useful.

5

10

15

20

25

30

35

Depending on the patient condition, the pharmaceutical composition of the invention can be administered for prophylactic and/or therapeutic treatments. In therapeutic application, compositions are administered to a patient already suffering from a disease in an amount sufficient to cure or at least partially arrest the disease and its complications. In prophylactic applications, compositions containing the present compounds or a cocktail thereof are administered to a patient not already in a disease state to enhance the patient's resistance.

Single or multiple administrations of the pharmaceutical compositions can be carried out with dose levels and pattern being selected by the treating physician. In any event, the pharmaceutical composition of the invention should provide a quantity of the compounds of the invention sufficient to effectively treat the patient.

The nucleic acid embodiment of this invention is particularly useful in providing probes capable of specific hybridization with human CSBP sequences. Probing technology is well known in the art and it is appreciated that the size of the probes can vary widely but it is preferred that the probe be at least 15 nucleotides in length. It is also appreciated that such probes can be and are preferably labeled with an analytically detectable reagent to facilitate identification of the probe. Useful reagents include but are not limited to radioactivity, fluorescent dyes or enzymes capable of catalyzing the formation of a detectable product. This invention contemplates, for example using receptor encoding probes in the diagnostic evaluation of disease states characterized by an abnormal, i.e. increased or decreased level of receptor gene expression. Alternatively, the probes can be used to identify individuals carrying chromosomal or molecular mutations in the gene encoding the receptor. Depending on the conditions employed by the ordinary skilled artisan, the probes can be used to identify and recover additional examples of this receptor (in its genomic or cDNA form) from other cell types and individuals. As a general rule the

more stringent the hybridization conditions the more closely related genes will be that are recovered.

5

10

15

20

25

30

35

Also within the scope of this invention are antisense oligonucleotides predicated upon the sequences disclosed herein for the CSBP. Synthetic oligonucleotides or related antisense chemical structural analogs are designed to recognize and specifically bind to a target nucleic acid encoding the receptor gene and inhibit gene expression, e.g., the translation of the gene when the target nucleic acid is mRNA. Although not wishing to be bound to a particular theory for the mechanism of action of antisense drugs, it is believed that such drugs can act by one or more of the following mechanisms: by binding to mRNA and inducing degradation by endogenous nucleases such as RNase I or by inhibiting the translation of mRNA by inhibiting its binding to regulatory factors or ribosomal components necessary for productive protein synthesis. Additionally the antisense sequences can be use as components of a complex macromolecular arrays in which the sequences are combined with ribozyme sequences or reactive chemical groups and are used to specifically target mRNAs of interest and degrade or chemically modify said mRNAs. The general field of antisense technology is illustrated by the following disclosures which are incorporated herein by reference for purposes of background (Cohen, J.S., Trends in Pharm. Sci. 10:435(1989) and Weintraub, H.M. Scientific American Jan.(1990) at page 40).

This invention also contemplates the use of the DNA sequences disclosed herein in gene therapy. Because CSBP is a protein kinase it is possible to make a site specific mutant which is inactive as a kinase but will block activation of the endogenous CSBP when coexpressed in the same cell, i.e., it is a dominant negative mutant (Kolch et al., Nature 349: 426-428 (1991). The DNA encoding this mutant protein could be used in gene therapy to reduce chronic inflammation. There are many vector and delivery systems available to direct DNA into target cells in vivo, e.g. adenovirus, retroviruses.

This invention also contemplates antibodies, monoclonal or polyclonal directed to epitopes corresponding to amino acid sequences disclosed herein from the CSBP. Particularly important regions of the receptor for immunological purposes are those regions associated with ligand binding domains of the protein. Antibodies directed to the regions are particularly useful in diagnostic and therapeutic applications because of their effect upon protein- ligand interaction. Methods for the production of polyclonal and monoclonal antibodies are well known, see for example Chap. 11 of Ausubel et al. (supra).

This invention also provides pharmaceutical compositions comprising an effective amount of antibody or fragment thereof directed against the CSBP to block binding of the naturally occurring ligands to that protein in order to treat or ameliorate disease states associated with protein activation.

5

10

15

20

25

30

35

Transgenic, non-human, animals may be obtained by transfecting appropriate fertilized eggs or embryos of a host with nucleic acids encoding the CSBP disclosed herein, see for example U.S.Patents 4,736,866; 5,175,385; 5,175,384 and 5,175,386. The resultant transgenic animal may be used as a model for the study of CSBP/ligand interaction. Particularly, useful transgenic animals are those which display a detectable phenotype associated with the expression of the protein. Drugs may then be screened for their ability to reverse or exacerbate the relevant phenotype. This invention also contemplates operatively linking the CSBP coding gene to regulatory elements which are differentially responsive to various temperature or metabolic conditions, thereby effectively turning on or off the phenotypic expression in response to those conditions.

The nucleic acid probes disclosed herein can be used to clone the cognate version of the human CSBP gene from a desired experimental animal species; for example the murine version. Strains of mice can be developed in which said gene has been eliminated by conventional gene knock-out technology. The gene can then be substituted/or replaced by the human CSBP DNA of this invention to yield a mouse for screening candidate drugs <u>in vivo</u>. Similar gene knockout and human protein inhibition studies can also be performed with yeast.

The purified protein of this invention is also useful in a reagent for structural studies with and without bound drug candidates as a means for the rational design of novel drugs affecting CSBP. For example, the recombinant protein may be used to derive the structure of the protein alone or complexed with Compound Ia and related compounds through X-ray crustallography, NMR or modelling from published structures of related protein kinases, e.g., CSK. A structure fosters an understanding of how the inhibitory compounds bind, and can lead to the design or discovery of further compounds which can block CSBP activity and hence be inhibitors of cytokine synthesis. There are now several examples of such structure-based design for other protein targets, e.g., HIV protease. Given the similarity of CSBP to several other kinases (e.g. the MAP and CDC kinases), such structural information will be useful in designing novel compounds which inhibit other members of the kinase family.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

5 (i) APPLICANT: Lee, John C.
Adams, Jerry L.
Gallagher, Timothy F.
Green, David W.
Heys, J. Richard
McDonnell, Peter
McNulty, Dean E.
Strickler, James E.
Young, Peter R.

- 15 (ii) TITLE OF INVENTION: Drug Binding Protein
 - (iii) NUMBER OF SEQUENCES: 16
 - (iv) CORRESPONDENCE ADDRESS:
- 20 (A) ADDRESSEE: SmithKline Beecham Corporation
 - (B) STREET: Corporate Intellectual Property/ P.O. Box 1539
 - (C) CITY: King of Prussia
 - (D) STATE: PA
- 25 (E) COUNTRY: USA
 - (F) ZIP: 19406-0939
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
- 30 (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
 - (vi) CURRENT APPLICATION DATA:
- 35 (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
 - (vii) PRIOR APPLICATION DATA:
- 40 (A) APPLICATION NUMBER: US 08/123,175
 - (B) FILING DATE: 17-SEP-1993

(viii) ATTORNEY/AGENT INFORMATION: (A) NAME: Jervis, Herbert H. (B) REGISTRATION NUMBER: 31,171 (C) REFERENCE/DOCKET NUMBER: P50195-1 5 (ix) TELECOMMUNICATION INFORMATION: (A) TELEPHONE: (610) 270-5019 (B) TELEFAX: (610). 270-5090 10 (2) INFORMATION FOR SEQ ID NO:1: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids 15 (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 20 (111) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO 25 (v) FRAGMENT TYPE: internal (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (G) CELL TYPE: Monocyte (H) CELL LINE: THP.1 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1: Ile Thr Ala Ala Gln Ala Leu Ala His Ala Tyr Phe Ala Gln Tyr 35

```
(2) INFORMATION FOR SEQ ID NO:2:
```

- (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 14 amino acids
- 5 (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide

10

- (111) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- 15 (v) FRAGMENT TYPE: internal
 - (V1) ORIGINAL SOURCE:
 - (A) ORGANISM: HOMO SAPIENS
 - (G) CELL TYPE: MONOCYTE
- 20 (H) CELL LINE: THP.1
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
- 25 Xaa Gln Leu Leu Asn Asn Ile Val Lys Phe Gln Lys Leu Thr
 1 5 10
 - (2) INFORMATION FOR SEQ ID NO:3:
- 30 (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 22 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: YES
- 40 (iv) ANTI-SENSE: NO

	(**************************************		
	(A) ORGANISM: HOMO SAPIENS	·	
	(G) CELL TYPE: MONOCYTE	•	
	•		
5			•
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	•	
	the conformation of the to the conformation of		
	GCYCAYGCTA YTTYGCYCAR TA		22
	GCICAIGCIA IIIIGCICAR IA		22
10	(2) INFORMATION FOR SEQ ID NO:4:		
10	(2) INFORMATION FOR SEQ ID NO:4:		
	(i) SEQUENCE CHARACTERISTICS:		
	(A) LENGTH: 22 base pairs	•	
1.5	(B) TYPE: nucleic acid		
15	(C) STRANDEDNESS: single		
	(D) TOPOLOGY: linear		
			i
	(ii) MOLECULE TYPE: DNA (genomic)		
20		•	
20	(iii) Hypothetical: Yes		
	41	1	
	(iv) ANTI-SENSE: NO	•	
25	(vi) ORIGINAL SOURCE:	· ·	
25	(A) ORGANISM: HOMO SAPIENS		
	(G) CELL TYPE: MONOCYTE		1
	·	·	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:		
30			
	AAYAAYATYK TBAARTTYCA AA	1	22
		•	
	(2) INFORMATION FOR SEQ ID NO:5:	•	
35	(i) SEQUENCE CHARACTERISTICS:		
	(A) LENGTH: 9 amino acids		
	(B) TYPE: amino acid		
	(C) STRANDEDNESS: single		
	(D) TOPOLOGY: linear	•	
40			
	(ii) MOLECULE TYPE: peptide		

```
(111) HYPOTHETICAL: NO
         (1v) ANTI-SENSE: NO
5
          (v) FRAGMENT TYPE: internal
         (vi) ORIGINAL SOURCE:
              (A) ORGANISM: HOMO SAPIENS
            (G) CELL TYPE: MONOCYTE
10
            (H) CELL LINE: THP.1
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:
15
        Asn Ile Val Lys Cys Gln Lys Leu Thr
     (2) INFORMATION FOR SEQ ID NO:6:
20
          (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 285 base pairs
               (B) TYPE: nucleic acid
               (C) STRANDEDNESS: single
25
               (D) TOPOLOGY: linear
        (ii) MOLECULE TYPE: CDNA
         (iii) HYPOTHETICAL: NO
30
         (iv) ANTI-SENSE: NO
         (vi) ORIGINAL SOURCE:
               (A) ORGANISM: HOMO SAPIENS
                (G) CELL TYPE: MONOCYTE
35
                (H) CELL LINE: THP.1
          (ix) FEATURE:
```

(A) NAME/KEY: CDS
(B) LOCATION: 1..285

(xi)	SEQUENCE	DESCRIPTION:	SEO	ID	NO:6:
------	----------	--------------	-----	----	-------

	AAC	ATT	GTG	AAA	TGT	CAG	AAG	CTT	ACA	GAT	GAC	CAT	GTT	CAG	TTC	CTT	48
5	Asn	Ile	Val	Lys	ayɔ	Gln	Lys	Leu	Thr	Asp	Asp.	His	Val	Gln	Phe	Leu	
	1	1 4		1	5					10					15	1 '	
		í	ı i	1			,									,	
		•		•							ATA						96
	Ile	Tyr	Gln		Leu	Arg	Gly	Leu	Lys	Tyr	Ile	His	Ser	Ala	Asp	Ile	
0			ı	20				·	25					30			
	3. Tr (T	CAC	N-C-C	CNC	~m>												
											GCT						144
	116	UTS	35	wsp	TEI	пÃ2	PIO	3er 40	ASI	ren	AIS	Val	ASN 45	GIU	Asp	Cys .	
15		•						-					43		٠		
	GAG	CTG	AAG	ATT	CTG	GAT	TTT	GGA	CTG	GCT	CGG	CAC	ACA	GAT	GAT	GAA	192
											Arg						-5-
		50					55	- '	1			60		•	•		
*								j									
20			1 '								AGG						240
		Thr	Gly	Tyr	Val		Thr	Arg	Trp	Tyr	Arg	Ala	Pró	Glu	Ile	Met	
	65					70					75					80	
	CTC	220	TCC	NTC.	CAT	mac	330	C) C		CC=	GGT						
25											Gly					•	285
	204			1100	85	-3-	·	GIII.	1111	90	GIŞ	TTG	TIP	vaı	ьуs 95		
															33		
		1															
	(2)	INF	ORMA:	rion	FOR	SEQ	ID 1	10:7	:			•					
30																	
			(i) !	SEQUI													
					LEI					cids							
					TY												
				(D)	TOI	OLO(έ¥:	Line	ar .								

35

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

40 Asn Ile Val Lys Cys Gln Lys Leu Thr Asp Asp Ris Val Gln Phe Leu
1 5 10 15

																,
	Ile	Tyr	Gln	Ile 20	Leu	Arg	Gly	Leu	Lys 25	Tyr	Ile	His	Ser	Ala 30	Asp	Ile
5	Ile	His	Arg 35	Asp	Leu	Lys	Pro	Ser 40	Asn	Leu	Ala	Val	Asn 45	Glu	Asp	Cys
	Glu	Leu 50	Lys	Ile	Leu	Asp	Phe 55	_	Leu	Ala	Aṛg	His 60	Thr	Asp	Asp	Glu
10	Met 65	Thr	Gly	Tyr	Val	Ala 70	Thr	Arg	Trp	Tyr	Arg 75	Ala	Pro	Glu	Ile	Met 80
15	Leu	Asn	Trp	Met	His 85	Tyr	Asn	Gln	Thr	Gly 90	Gly	Île	Trp	Val	Lys 95	
	(2)	INF	ORMA!	TION	FOR	SEQ	ו מו	NO : 8	:			4				
20		(1)	() ()	A) Li B) T: C) S:	CE CI ENGTI YPE: TRANI OPOLA	nuc: DEDN	92 b leic ESS:	ase ; aci sin	pair: d	5						*
25		(33) MO:	LECU	LE T	YPE:	cDN	A								
		(111) HY	Poth	ETIC	AL: 1	NO					•				
30		(iv) AN	TI-S	ense	: NO										
35		(vi	()	A) 0	al sergani Ell :	ism: Type	HOM OM:	NOCY		S						
,		(ix	(•	e: ame/i ocat:											

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
	CAAGTCCCAA TCCTCCCCAA CCACAGCAAG TTGAATTTAT CAACCATGTT GGGTTGTAAA	60
5	TGCTCGTGTG ATTTCCTACA AGAAATACCT GCTCTGAATA TTTTTGTAAT AAAGGTCTTT	120
	GCACATGTGA CCCACAATAC GTGTTAGGAG CCTGCATGCT CTGGAAGCCT GGACTCTAAG	18
0	CTGGAGCTCT TGGAAGAGCT CTTCGGTTTC TGAGCATAAT GCTCCCATCT CCTGATTTCT	24
U	CTGAACAGAA AACAAAAGAG AGAATGAGGG AAATTGCTAT TTTATTTGTA TTGATGAACT	300
	TGGCTGTAAT CAGTTATGCC GTATAGGATG TCAGACAATA CCACTGGTTA AAATAAAGCC	360
15	TATTTTCAA ATTTAAAAAA AAAAAAAAA AA	392
	(2) INFORMATION FOR SEQ ID NO:9:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
25	(ii) MOLECULE TYPE: cDNA	
	(iii) HYPOTHETICAL: NO	
30	(iv) ANTI-SENSE: NO	
JU	(vi) ORIGINAL SOURCE:	

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

(A) ORGANISM: Homo sapiens(G) CELL TYPE: Monocyte

CCTCGGAGAA TTTGGTAGAT AAGG

35

40

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

36

	(2) INFORMATION FOR SEQ ID NO:10:		,
	(i) SEQUENCE CHARACTERISTICS:	1	
	(A) LENGTH: 36 base pairs		
5	(B) TYPE: nucleic acid		
	(C) STRANDEDNESS: single		
	(D) TOPOLOGY: linear		
10	(ii) MOLECULE TYPE: CDNA		٠
	(iii) HYPOTHETICAL: NO		
	(iv) ANTI-SENSE: NO		
15	(vi) ORIGINAL SOURCE:		
	' (A) ORGANISM: Homo sapiens		
	(G) CELL TYPE: Monocyte		
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:		
	AACATTGTGA AATGTCAGAA GCTTACAGAT GACCAT	. 1	
25	(2) INFORMATION FOR SEQ ID NO:11:		•
	(1) SEQUENCE CHARACTERISTICS:		
	(A) LENGTH: 3813 base pairs		
	(B) TYPE: nucleic acid		•
	(C) STRANDEDNESS: single	*	-
30	(D) TOPOLOGY: linear	٠,	
	(ii) MOLECULE TYPE: cDNA		
	(iii) HYPOTHETICAL: NO		

-57-

(A) ORGANISM: Homo sapiens

(G) CELL TYPE: Monocyte

(ix)	FEATURE:
------	----------

(A) NAME/KEY: CDS

(B) LOCATION: 379..1461

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

	CCTC	CTGG	TA :	TAAT	CTGG2	AA C	CGCG	ACCA	C TG	SAGC	CTŢA	GCG	GGCG	CAG	CAGC!	iggaa	C, 60
10	GGGA	GTAC	TG (CGAC	CAGO	cc c	GGAG:	rcgg	C CT	rgta(GGGG	CGA	aggt	GCA (GGGA	Gatcg	C 120
	GGCG	GGC	SCA (STCT:	rgago	CG C	CGGA	SCGC	s TC	CCTG	CCCT	TAG	CGGG	SCT '	TGCC	CAGT	C 180
16	GCAG	GGGC	CAC 2	ATCC	AGCCC	SC T	GCGGG	CTGA	C AGO	CAGCO	CGCG	CGC	CGG	GAG '	TCTG	CGGGG	T 240
15	CGCG	GCAG	CC (GCAC	CTGCC	SC G	GGCG	ACCA	s cc	AAGO	STCC	CCG	CCGG	SCT (GGGC	GGCA	G 300
	CAAG	GGCC	GG (GGAG!	AGGG1	rg c	GGGT	SCAGO	G CGC	GGGG	ccc	ACA	GGC	CAC	CTTC:	rtgcc	С 360
20	GGCG		SCC (GCTG	AAA							•					411
						net 1	Set	GIII	GIU	\'5	PIO	THE	rne	туг	Arg 10	GIN	
25	GAG																459
<i>4.</i> 3	Glu :	ren	NSII	15	THE	TIE	TEP	GIU	20	PIO	GTØ	Arg	туг	25	ASN	ren	
	TCT																507
30	Ser	PTO	30	СТĀ	ser	GIĀ	ATS	Tyr 35	Gly	Ser	Val	Cys	Ala 40	Ala	Phe	Asp	
	ACA																555
	Thr	Lys 45	Thr	Gly	Leu	Arg	Val 50	Ala	Val	Lys	Lys	Leu 55	Ser	Arg	Pro	Phe	
35					~ _	606	•••			mic		~	080				
	CAG																603
	Gln :	oę I	776	776	UTD	65	-	wrâ	1111	TYL	70		TOU	wid	Ter	75	

	AAA	CAT	ATG	AAA	CAT	GAA	TAA	GTG	ATT	GGT	CTG	TTG	GAC	GTT	TTT	ACA	651
	Lys	His	Met	Lys	His	Glu	Asn	Val	Ile	Gly	Leu	Lėu	Asp	Val	Phe	Thr	
					80					85					90		
5	CCT	GCA	AGG	TCT	CTG	GAG	GAA	TTC	TAA	GAT	GTG	TAT	CTG	GTG	ACC	CAT	699
												Tyr					
			_	95					100	•		•		105		-	
	CTC	ATG	GGG	GCA	GAT	CTG	AAC	AAC	ATT	GTG	AAA	TGT	CAG	AAG	CTT	ACA	747
10	Leu	Met	Gly	Ala	Asp	Leu	Asn	Asn	Ile	Val	Lys	Cys	Gln	Lys	Leu	Thr	
			110					115					120				
	GAT	GAC	CÁT	GTT	CAG	TTC	CTT	ATC	TAC	CAA	ATT	CTC	CGA	GGT	CTA	AAG .	795
	Asp	Asp	His	Val	Gln	Phe	Leu	Ile	Tyr	Gln	Ile	Leu	Arg	Gly	Leu	Lys	
15		125			·		130					135					
	TAT	ATA	CAT	TCA	GCT	GAC	ATA	ATT	CAC	AGG	GAC	CTA	AAA	CCT	AGT	AAT	843
	Tyr	Ile	His	Ser	Aļa	Asp	Ile	Ile	His	Arg	Asp	Leu	Lys	Pro	Ser	Asn	
20	140					145					150		•			155	
20	CTA	GCT	GTG	AAT	GAA	GAC	TGT	GAG	CTG	AAG	ATT	CTG	GAT	TTT	GGA	CTG	891
	Leu	Ala	V al	Asn	Glu	qzA	Cys	Glu	Leu	Lys	Ile	Leu	Asp	Phe	Gly	Leu	
					160					165					170		
25	GCT	CGG	CAC	ACA	GAT	GAT	GAA	ATG	ACA	GGC	TAC	GTG	GCC	ACT	AGG	TGG	939
	Ala	Arg	His	Thr	Asp	Asp	Glu	Met	Thr	Gly	Tyr	Val	Ala	Thr	Arg	Trp	•
			•	175	.•				180					185			
	TAC	AGG	GCT	CCT	GAG	ATC	ATG	CTG	AAC	TGG	ATG	CAT	TAC	AAC	CAG	ACA	987
30	Tyr	Arg	Ala	Pro	Glu	Ile	Met	Leu	Asn	Trp	Met	His	Tyr	Asn	Gln	Thr	
			190					195			•		200	1			
	GTT	GAT	ATT	TGG	TCA	GTG	GGA	TGC	ATA	ATG	GCC	GAG	CTG	TTG	ACT	GGA	1035
	Val	Asp	Ile	Trp	Ser	Val	Gly	Cys	Ile	Met	Ala	Glu	Leu	Leu	Thr	Gly	
35		205					210					215					
	AGA	ACA	TTG	TTT	CCT	GGT	ACA	GAC	CAT	ATT	AAC	CAG	CTT	CAG	CAG	ATT	108
	Arg	Thr	Leu	Phe	Pro	Gly	Thr	Asp	His	Ile			Leu	Gln	Gln	Ile	•
	220					225					230					235	
40														•			

																and the second s	
	ATG	CGT	CTG	ACA	GGA	ACA	CCC	CCC	GCT	TAT	CTC	ATT	AAC	AGG	ATG	CCA	1131
	Met	Arg	Leu	Thr	Gly	Thr	Pro	Pro	Ala	Tyr	Leu	Ile	Asn	Arg	Met	Pro	
					240					245		1			250		
					*									: .			
5	AGC	CAT	GAG	GCA	AGA	AAC	TAT	ATT	CAG	TCT	TTG	ACT	CAG	ATG	CCG	AAG	1179
	Ser	His	Glu	Ala	Arg	Asn	Tyr	Ile	Gln	Ser	Leu	Thr	Gln	Met	Pro	Lys	
				255					260		1	•		265			
							•										٠.
	ATG	AAC	TTT	GCG	AAT	GTA	TTT	ATT	GGT	GCC	AAT	CCC	CTG	GCT	GTC	GAC	1227
10	Met	Asn	Phe	Ala	Asn	Val	Phe	lle	Gly	Ala	Asn	Pro	Leu	Ala	Val	Asp	
			270					275					280				
																•	
	TTG	CTG	GAG	AAG	ATG	CTT	GTA	TIG	GAC	TCA	GAT	AAG	AGA	ATT	ACA	GCG	1275
	Leu	Leu	Glu	Lys	Met	Leu	Val	Leu	Asp	Ser	Asp	Lys	Arg	Ile	Thr	Ala	
15		285					290					295					-
	ĢCC	CAA	GCC	CTT	GCA	CAT	GCC	TAC	TTT	GCT	CAG	TAC	CAC	GAT	CCT	GAT	1323
	Ala	Gln	Ala	Leu	Ala	His	Ala	Tyr	Phe	Ala	Gln	Tyr	His	Asp	Pro	Asp	, .
	300	•				305					310					315	
20																	
	GAT	GAA	CCA	GTG	GCC	GAT	CCT	TAT	GAT	CAG	TCC	TTT	GAA	AGC	AGG	GAC	1371
	Asp	Glu	Pro	Val	Ala	Asp	Pro	Tyr	Asp	Gln	Ser	Phe	Glu	Ser	Arg	Asp	
					320					325					330	i	
							•				•						
25	CTC	CTI	ATA	GAT	GAG	TGG	AAA	AGC	CTG	ACC	TAT	GAT	GAA	GTC	ATC	AGC	1419
	Leu	Leu	Ile	Asp	Glu	Trp	Lys	Sez	Leu	Thr	Tyr	Asp	Glu	Val	. Ile	Ser	1
				335	,				340)				345	,		
																•	
									GAA			_			CCAC	CTG	1468
30	Phe	Val			Pro	Lev	Asp		Glu	Glu	Met	Glu			•		
			350)				355	•				360)			
														,			
	GTI	TCTG	STTC	TGT	GATC	:CC 3	CTIC	ACTO	ST GA	GGGG	SAAGG	s cc:	TTTTC	CACG	GGA	ACTCTCC	1528
35	AAA	TATI	TTA	CAAG	TGCC	TC 1	TGT	(GCA	SA GA	\TTT(CTC	C ATC	GTG	SAAG	GGG	STGTGCG	1588
																200=110	1640
	TGC	GTGT	rgcg	TGC	TGT	'AG	rgtg:	rgtg	A TO	STGT	STGT	. TG:	rcit.	rgrg	GGA	GGTAAG	1648
								, cec	. ~ ~	nm n 🗥		~ Cm	mcmc.	2 N PP C	CMC	ראככככי	1700
	AC	ATA.	rgaa	CAA	CTAT	GA :	CACI	ig TG	HC T	TAC)AUUN	3 GT	1016	JAIG		CAGGGCA	1708
40							#OF***	. ~ ~ ~ ~	TT (*		V C C C C	A (C.N.	これ かご	3 C C T	COM	GTCCTTT	1769
	~~′	·m/~/~		44.12.144						TL. 1 1	へいつしかし - バ	- 49-41			131-		4/00

	TAGGAATATG	TTCAATGCAA	AGTAAAAAA	TATGAATTGT	CCCCAATCCC	GGTCATGCTT	1826
5	TTGCCACTTT	GGCTTCTCCT	GTGACCCCAC	CTTGACGGTG	GGGCGTAGAC	TTGACAACAT	1888
	CCCACAGTGG	CACGGAGAGA	AGGCCCATAC	CTTCTGGTTG	CTTCAGACCŢ	GACACCGTCC	1948
	CTCAGTGATA	CGTACAGCCA	AAAAGGACCA	ACTGGCTTCT	GTGCACTAGC	CTGTGATTAA	2008
10		ATGGTTCTCA	GATCTTGACA	GTATATTTGA	AACTGTAAAT	ATGTTTGTGC	2068
	CTTAAAAGGA	GAGAAGAAAG	TGTAGATAGT	TAAAAGACTG	CAGCTGCTGA	AGTTCTGAGC	2128
15	CGGGCAAGTC	GAGAGGGCTG	TTGGACAGCT	GCTTGTGGGC	CCGGAGTAAT	CAGGCAGCCT	2188
	TCATAGGCGG	TCATGTGTGC	ATGTGAGCAC	ATGCGTATAT	GTGCGTCTCT	CTTTCTCCCT	2248
	CACCCCCAGG	TGTTGCCATT	TCTCTGCTTA	CCCTTCACCT	TTGGTGCAGA	GGTTTCTTGA	2308
20	ATATCTGCCC	CAGTAGTCAG	AAGCAGGTTC	TIGATGTCAT	GTACTTCCTG	TGTACTCTTT	2368
	ATTTCTAGCA	GAGTGAGGAT	GTGTTTTGCA	CGTCTTGCTA	TTTGAGCATG	CACAGCTGCT	2428
25	TGTCCTGCTC	TCTTCAGGAG	GCCCTGGTGT	CAGGCAGGTT	TGCCAGTGAA	GACTTCTTGG	2488
	GTAGTTTAGA	TCCCATGTCA	CCTCAGCTGA	TATTATGGCA	AGTGATATCA	CCTCTCTTCA	2548
	GCCCCTAGTG	CTATTCTGTG	TTGAACACAA	TTGATACTTC	AGGTGCTTTT	GATGTGAAAA	2608
30	TCATGAAAAG	AGGAACAGGT	GGATGTATAG	CATTTTATT	CATGCCATCT	GTTTTCAACC	2668
	AACTATTTT	GAGGAATTAT	CATGGGAAAA	GACCAGGGCT	TTTCCCAGGA	ATATCCCAAA	2728
35	CTTCGGAAAC	AAGTTATTCT	CTTCACTCCC	AATAACTAAT	GCTAAGAAAT	GCTGAAAATC	2788
	AAAGTAAAA	ATTAAAGCCC	ATAAGGCCAG	AAACTCCTTT	TGCTGTCTTT	CTCTAAATAT	2848
	GATTACTTTA	AAAAAATAAA	GTAACAAGGT	GTCTTTTCCA	CTCCTATGGA	AAAGGGTCTT	2908
40	CTTGGCAGCT	TAACATTGAC	TTCTTGGTTT	GGGGAGAAAT	AAATTTTGTT	TCAGAATTTT	2968

	GTATATTGTA	GGAATCCCTT	TGAGAATGTG	ATTCCTTTTG	ATGGGGAGAA	AGGGCAAATT	3028
•	ATTTTAATAT	TTTGTATTTT	CAACTITATA	AAGATAAAAT	ATCCTCAGGG	GTGGAGAAGT	3088
5 ,	GTCGTTTTCA	TAACTTGCTG	AATTTCAGGC	ATTTTGTTCT	ACATGAGGAC	TCATATATTT	3148
	AAGCCTTTTG	TGTAATAAGA	AAGTATAAAG	TCACTTCCAG	TGTTGGCTGT	GTGACAGAAT	3208
10	CTTGTATTTG	GGCCAAGGTG	TTTCCATTTC	TCAATCAGTG	CAGTGATACA	TGTACTCCAG	3268
10	AGGGACGGGT	GGACCCCCTG	AGTCAACTGG	AGCAAGAAGG	AAGGAGGCAG	ACTGATGGCG	3328
	ATTCCCTCTC	ACCCGGGACT	CTCCCCCTTT	CAAGGAAAGT	GARCCTTTAA	AGTAAAGGCC	3388
15	TCATCTCCTT	TATTGCAGTT	CAAATCCTCA	CCATCCACAG	CAAGATGAAT	TTTATCAGCC	3448
	ATGTTTGGTT	GTAAATGCTC	GTGTGATTTC	CTACAGAAAT	ACTGCTCTGA	ATATTTTGTA	3508
20	ATAAAGGTCT	TTGCACATGT	GACCACATAC	GTGTTAGGAG	GCTGCATGCT	CTGGAAGCCT	3568
	GGACTCTAAG	CTGGAGCTCT	TGGAAGAGCT	CTTCGGTTTC	TGAGCATAAT	GCTCCCATCT	3628
•	CCTGATTTCT	CTGAACAGAA	AACAAAAGAG	AGAATGAGGG	AAATTGCTAT	TTTATTTGTA	3688
25	TTCATGAACT	TGGCTGTAAT	CAGTTATGCC	GTATAGGATG	TCAGACAATA	CCACTGGTTA	3748
	AAATAAAGCC	TATTTTCAA	AAAAAATTTA	AAAAAAAA	AAGTCCAGCA	ATTTCGTTAC	3808
	TTATG						3813

(2) INFORMATION FOR SEQ ID NO:12:

(1) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 360 amino acids
- (B) TYPE: amino acid

20

35

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Met Ser Gln Glu Arg Pro Thr Phe Tyr Arg Gln Glu Leu Asn Lys Thr.

1 5 10 15

15 Ile Trp Glu Val Pro Glu Arg Tyr Gln Asn Leu Ser Pro Val Gly Ser 20 25 30

Gly Ala Tyr Gly Ser Val Cys Ala Ala Phe Asp Thr Lys Thr Gly Leu 35 40 45

Arg Val Ala Val Lys Lys Leu Ser Arg Pro Phe Gln Ser Ile Ile His
50 55 60

Ala Lys Arg Thr Tyr Arg Glu Leu Arg Leu Leu Lys His Met Lys His 25 65 70 75 80

Glu Asn Val Ile Gly Leu Leu Asp Val Phe Thr Pro Ala Arg Ser Leu 85 90 ' 95

30 Glu Glu Phe Asn Asp Val Tyr Leu Val Thr His Leu Met Gly Ala Asp
100 105 110

Leu Asn Asn Ile Val Lys Cys Gln Lys Leu Thr Asp Asp His Val Gln
115 120 125

Phe Leu Ile Tyr Gln Ile Leu Arg Gly Leu Lys Tyr Ile Ris Ser Ala 130 135 140

Asp Ile Ile His Arg Asp Leu Lys Pro Ser Asn Leu Ala Val Asn Glu 40 145 150 155 160

	Asp	cys	GIU	ren	ьуз 165	Ile	Leu	Asp	Phe	G1y 170	Leu	Ala	Arg	His	175	Asp
5	Asp	Glu	Met	Thr 180	Gly	Tyr	Val _.	Ala	Thr 185	Arg	Trp	Tyr	Arg	Ala 190	Pro	Glu
	Ile	Met	Leu 195	Asn	Trp	Met	His	Туг 200	Asn	Gln	Thr	Val	Asp 205	Ile	Trp	Ser
10	Val	Gly 210	Cys	Ile	Met	Ala	G1u 215	Leu	Leu	Thr	Gly	Arg 220	Thr	Leu	Phe	Pro
15	Gly 225	Thr	Asp	His	Ile	Asn 230	Gln.	Leu	Gln	Gln	11e 235	Met	Arg	Leu	Thr	Gly 240
	Thr	Pro	Pro	Ala	Tyr 245	Leu	Ile	Asn	Arg	Met 250	Pro	Ser	His	Glu	Ala 255	Arg
20	Asn	Tyr	Ile	Gln 260	Ser	Leu	Thr	Gln	Met 265	Pro	Lys	Met	Asn	Phe 270	Ala	Asn ·
	Val	Phe	Ile 275	Gly	Ala	Asn	Pro	Leu 280	Ala	Val	Asp	Leu	Leu 285	Glu	Lys	Met
25	Leu	Val 290	Leu	Asp	Ser	Asp	Lys 295	Arg	Ile	Thr	Ala	Ala 300	Gln	Ala	Leu	Ala
30	His 305	Ala	Tyr	Phe	Ala	Gln 310	Tyr	His	Asp	Pro	Asp 315	Asp	Glu	Pro	Val	Ala 320
	Asp	Pro	Tyr	Asp	Gln 325	Ser	Phe	Glu	Ser	Arg 330	Asp	Leu	Leu	Ile	Asp 335	Glu
35	Trp	Lys	Ser	Leu 340	Thr	Tyr	Asp	Glu	Val 345	Ile	Ser	Phe	Val	Pro 350	Pro	Pro
	Leu	Asp	Gln 355	Glu	Glu	Met	Glu	Ser 360								

	(2) INFORMATION FOR SEQ ID NO:13:	
5	(1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1423 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10	(11) MOLECULE TYPE: cDNA	
	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
15	(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (G) CELL TYPE: Monocyte	
20	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 2271309	•
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
	CCACTCCTGG TATALTCTCG CCCCAGTCGC AGGGGCACAT CCAGCCGCTG CGGCTGACAG	60
	CAGCCGCGC CGCGGGAGTC TGCGGGGTCG CGGCAGCCGC ACCTGCGCGG GCGACCAGCG	120
30	CAAGGTCCCC GCCCGGCTGG GCGGGCAGCA AGGGCCGGGG AGAGGGTGCG GGTGCAGGCG	180
	GGGGCCCCAC AGGGCCACCT TCTTGCCCGG CGGCTGCCGC TGGAAA ATG TCT CAG Met Ser Gln 1	235

15

GAG AGG CCC ACG TTC TAC CGG CAG GAG CTG AAC AAG ACA ATC TGG GAG

Glu Arg Pro Thr Phe Tyr Arg Gln Glu Leu Asn Lys Thr Ile Trp Glu

10

283

35

	GTG	CCC	GAG	CGT	TAC	CAG	AAC	CTG	TCT	CCA	GTG	GGC	TCT	GGC	GCC	TAT	331
	Val	Pro	Glu	Arg	Tyr	Gln	Asn	Leu	Ser	Pro	Val	Gly	Ser	Gly	Ala	Tyr	
	20				· ·	25	•				. 30		•			35	
				1							1						
5	GGC	TCT	GTG	TGT	GCT	GCT	TTT	GAC	ACA	AAA	ACG	GGG	TTA	CGT	GTG	GCA	379
	Gly	Ser	Val	Cys	Ala	Ala	Phe	Asp	Thr	Lys	Thr	Gly	Leu	Arg	Val	Ala	
		I .		1	40			_		45		-		-	50	, ,	
		,	1				•										
	GTG	AAG	AAG	CTC	TCC	AGA	CCA	TTT	CAG	TCC	ATC	ATT	CAT	GCG	AAA	AGA	427
10															Lys		
		- ,	•	55		•		1	60					65	•	•	
		. 16	1.11														
	ACC		AGA	GAA	CTG	CGG	TTA	CTT	AAA	CAT	ATG	AAA	CAT	GAA	AAT	GTG	475
															Asn		
15			70					75					80				
	ATT	GGT	CTG	TIG	GAC	GTT	TTT	ACA	CCT	GCA	AGG	TCT	CTG	GAG	GAA	TTC	523
					•										Glu		
		85	,		•		90				5	95					
20								1									
	AAT	GAT	GTG	TAT	CTG	GTG	ACC	CAT	CTC	ATG	GGG	GCA	GAT	CTG	AAC	AAC	571
															Asn		
	100	_				105					110		•			115	
				•													
25	ATT	GTG	AAA	TGT	CAG	AAG	CTT	ACA	GAT	GAC	CAT	GTT	CAG	TTC	CTT	ATC	619
	Ile	Val	Lys	Cys	Gln	Lys	Leu	Thr	Asp	Asp	His	Val	Gln	Phe	Leu	Ile	
			_		120					125					130		
		,															
	TAC	CAA	ATT	CTC	CGA	GGT	CTA	AAG	TAT	ATA	CAT	TCA	GCT	GAC	ATA	ATT	667
30	Tyr	Gln	Ile	Leu	Arg	Gly	Leu	Lys	Tyr	Ile	His	Ser	Ala	Asp	Ile	Ile	
				135					140					145			
	CAC	AGG	GAC	CTA	AAA	CCT	AGT	AAT	CTA	GCT	GTG	AAT	GAA	GAC	TGT	GAG	715
	His	Arg	Asp	Leu	Lys	Pro	Ser	Asn	Leu	Ala	Val	Asn	Glu	Asp	Cys	Glu	
35			150					155					160				
	CTG	AAG	ATT	CTG	GAT	TTT	GGA	CTG	GCT	CGG	CAC	ACA	GAT	GAT	GAA	ATG	763
	Leu	Lys	Ile	Leu	Asp	Phe	Gly	Leu	Ala	Arg	His	Thr	Asp	Asp	Glu	Met	
-		165			•		170			_		175					

	ACA	GGC	TAC	GTG	GCC	ACT	AGG	TGG	TAC	AGG	GCT	CCT	GAG	ATC	ATG	CTG	811
	Thr	Gly	Tyr	Val	Ala	Thr	Arg	Trp	Tyr	Arg	Ala	Pro	Glu	Ile	Met	Leu	٠
	180					185			_		190	•				195	
5	AAC	TGG	ATG	CAT	TAC	AAC	CAG	ACA	GTT	GAT	ATT	TGG	TCA	GTG	GGA	TGC	859
-											Ile						
		,			200					205					210		
	ATA	ATG	GCC	GAG	CTG	TTG	ACT	GGA	AGA	ACA	TTG	<u> ተ</u> ተታ	CCT	GGT	ACA	GAC	907
10								٠.			Leu						
••				215				O ₂ ,	220		200			225		,	
	ርልጥ	F dads	CAT	CAG	ጥጥር	AAC	CTC	2 ጥጥ	ጥጥል	262	CTC	CTT	GGA	ACC.	CCA	രദേ	955
											Leu						333
15	nrs	116	230	GIL	Deu	шys	L eu	235	Den	ary	Ten	VAI	240	1111	110	GLY	• .
13			230					233					240			*	
	CCT	CAG	CTT	ጥጥር	AAC		እ ሞድ	TCC	TC N	CNC	TCT	CCN	n C n	220	TT R TT	3 mm	1003
																	,1003
	WIG	245	ren	Ten	тÃ2	rys		ser	ser	GIU	Ser		Arg	ASII	TYE	TIE	
20		243					250					255					
20	616	mom.	mmc	3.00	C) C										-		
											TTT						1051
		Ser	Leu	Thr	GIN		PIG	гÃ2	met	ASN	Phe	ATS	ASII	ATT	Pne		
	260					265					270					275	
25																	
25											GAG						1099
	GIĀ	TE	Asn	PIO		AIA	vaı	ASP	Leu		Glu	rys	Met	ren		Leu	•
					280					285					290		
														~~~			
20											GCC						1147
30	Asp	Ser	Asp	•	Arg	He	Thr	Ala		Gln	Ala	Leu	Ala		Ala	Tyr	
				295					300					305			
				·													
											CCA						1195
, _	Phe	Ala		Tyr	His	Asp	Pro	_	Asp	Glu	Pro	Val	•	Asp	Pro	Tyr	
35			310					315					320				
																AGC	1243
	Asp	Gln	Ser	Phe	Glu	Ser	Arg	Asp	Leu	Leu	Ile	Asp	Glu	Trp	Lys	Ser	
		325					330					335					
40																	

	CTG ACC TAT GAT GAA GTC ATC AGC TTT GTG CCA CCA CCC CTT GAC CAA Leu Thr Tyr Asp Glu Val Ile Ser Phe Val Pro Pro Pro Leu Asp Gln 340 345 350 355	1291
5	GAA GAG ATG GAG TCC TGAGCACCTG GTTTCTGTTC TGTTGATCCC ACTTCACTGT Glu Glu Met Glu Ser 360	1346
10	GAGGGGAAGG CCTTTTCACG GGAACTCTCC AAATATTATT CAAGTGCCAA AAAGGTCCAG	1406
	CAATTTCGTT ACTTATG	1423
15	(2) INFORMATION FOR SEQ ID NO:14:  (1) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 360 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
20	(ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:	
25	Met Ser Gln Glu Arg Pro Thr Phe Tyr Arg Gln Glu Leu Asn Lys Thr 1 5 10 15	
a à	Ile Trp Glu Val Pro Glu Arg Tyr Gln Asn Leu Ser Pro Val Gly Ser 20 25 30	
30	Gly Ala Tyr Gly Ser Val Cys Ala Ala Phe Asp Thr Lys Thr Gly Leu 35 40 45	
35	Arg Val Ala Val Lys Lys Leu Ser Arg Pro Phe Gln Ser Ile Ile His 50 55 60	
	Ala Lys Arg Thr Tyr Arg Glu Leu Arg Leu Leu Lys His Met Lys His 65 70 75 80	
40	Glu Asn Val Ile Gly Leu Leu Asp Val Phe Thr Pro Ala Arg Ser Leu 85 90 95	

	Glu	Glu	Phe	Asn 100	Asp	Val-	Tyr	Leu	Val 105	Thr	His	Leu	Met	Gly 110	Ala	Asp
<b>5</b>	Leu	Asn	Asn 115	Ile	Val	Lys	Cys	Gln 120	Lys	Leu	Thr	Asp	Asp 125	His	Val	Gln
10	Phe	Leu 130	Ile	Tyr	Gln	Ile	Leu 135	Arg	Gly	Leu	Lys	Tyr 140	Ile	His	Ser	Ala
,	Asp 145	Ile	Ile	His	Arg	Asp 150	Leu	Lys	Pro	Ser	Asn 155	Leu	Ala	Val	Asn	Glu 160
15	Asp	Cys	Glu	Leu	Lys 165	Ile	Leu	Asp	Phe	Gly 170	Leu	Ala	Arg	His	Thr 175	Asp
	Asp	Glu	Met	Thr 180	Gly	Tyr	Val	Ala	Thr 185	Arg	Trp	Tyr	Arg	Ala 190	Pro	Glu
20	Ile	Met	Leu 195	Asn	Trp	Met	His	Tyr 200	Asn	Gln	Thr	Val	Asp 205	Ile	Trp	Ser
25	Val	Gly 210	Cys	Ile	Met		Glu 215	Leu	Leu	Thr	Gly	Arg 220	Thr	Leu	Phe	Pro
	Gly 225	Thr	Asp	His	Ile	Asp 230	Gln	Leu	Lys	Leu	Ile 235	Leu	Arg	Leu	Val	Gly 240
30	Thr	Pro	Gly	Ala	Glu 245	Leu	Leu	Lys	Lys	Ile 250	Ser	Ser	Glu	Ser	Ala 255	Arg
	Asn	Tyr	Ile	Gln 260	Ser	Leu	Thr	Gln	Met 265	Pro	Lys	Met	Asn	Phe 270	Ala	Asn
35	Val	Phe	Ile 275	Сĵу	Ala	Asn	Pro	Leu 280	Ala	Val	Asp	Leu	Leu 285	Glu	Lys	Met
40	Leu	Val 290	Leu	Asp	Ser	Asp	Lys 295	Arg	Ile	Thr	Ala	Ala 300		Ala	Leu	Ala

	His Ala Tyr Phe Ala Gin Tyr His Asp Pro Asp Giu Pro Val Ala 305 310 315 320	
5	Asp Pro Tyr Asp Gln Ser Phe Glu Ser Arg Asp Leu Leu Ile Asp Glu 325 330 335	
	Trp Lys Ser Leu Thr Tyr Asp Glu Val Ile Ser Phe Val Pro Pro Pro 340 345 350	
10	Leu Asp Gln Glu Glu Met Glu Ser  355 360	
15	(2) INFORMATION FOR SEQ ID NO:15:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 31 base pairs  (B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: single (D) TOPOLOGY: linear  (ii) MOLECULE TYPE: cDNA	,
25	(iii) HYPOTHETICAL: NO  (iv) ANTI-SENSE: NO	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
	CGCCCTCGAG ATGTCTCAGG AGAGGCCCAC G	31
35	(2) INFORMATION FOR SEQ ID NO:16:	
	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 21 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single	
40	(D) TOPOLOGY: linear	

(ii) MOLECULE TYPE: CDNA

(iii) HYPOTHETICAL: NO

5 (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

10

GCCAGTCCAA AATCCAGAAT C

## WHAT IS CLAIMED IS

5

1. An isolated nucleic acid molecule encoding a cytokine suppressive antiinflammatory drug binding protein.

- 2. The molecule according to Claim 1 wherein said nucleic acid is DNA.
- 3. The molecule according to Claim 2 having the sequence characterized by Figures 21 and 22.
  - 4. An isolated protein which is a human CSBP.
- 5. The protein according to Claim 4 characterized by the amino acid sequence Figure 16.
  - 6. The protein according to Claim 4 further characterized as being isolatable from human monocytes, having  $M_W$  of about 43,000 and having a pI of about 4.5.
    - 7. A vector comprising the nucleic acid of Claim 1.
- 15 8. The vector according to Claim 7 which is a plasmid.
  - 9. The plasmid according to Claim 8 which is a cloning plasmid.
  - 10. The plasmid according to Claim 8 which is an expression plasmid.
  - 11. A recombinant host cell comprising the vector of Claim 7.
  - 12. The host cell according to Claim 11 which is a prokaryotic cell.
  - 13. The host cell according to Claim 11 which is an eukayrotic cell.
    - 14. A method for the production of CSBP comprising culturing a recombinant host cell capable of expressing CSBP in a medium and under conditions sufficient form such expression and recovering CSBP from the host cell.
  - 15. A method for identifying a compound as a CSAID comprising: (a) contacting a known CSAID labelled with an analytically detectable reagent with a CSBP under conditions sufficient to form a CSAID/CSBP complex; (b) contacting said complex with a sample comprising a compound to be identified; and (c) identifying the compound as a CSAID by detecting the ability of said compound to alter the amount of labelled CSAID in said complex.
- 30 16. The method according to Claim 15 wherein the CSBP is in a form selected form the group consisting of whole cells, cytosolic cell fractions, membrane cell fractions, and purified or partially purified form.
  - 17. A method for identifying a compound as a CSAID comprising:
    - a. forming soluble cytosolic fraction from a cell expressing a
       CSBP.

35

20

b. contact said fraction with a CSAID labelled with an analytically detectable reagent under conditions sufficient to form a reagent CSAID/CSBP complex;

c. contacting said complex with a sample containing a CSAID;

- d. detecting the CSAID by measuring a decrease of the amount of reagent in the labelled CSAID/CSBP complex.
- 18. The method according to Claim 17 wherein said cell is a human monocyte.

5

20

- 10 19. The method according to Claim 17 wherein said cell is a recombinant host cell.
  - 20. The method according to Claim 17 wherein said reagent is a radioactive label.
- 21. A method for identifying ligands capable of binding to a CSBP to comprising: contacting a recombinant host cell expressing a CSBP with a ligand to be identified under conditions to permit binding and detecting the presence of any ligand-bound protein.
  - 22. The method according to Claim 21 wherein the recombinant host cell expresses said CSBP at its cell surface.
  - 23. The method according to Claim 21 wherein the protein or a membrane fraction containing the protein is isolated from said cell prior to contacting with the ligand to be identified.
    - 24. An antagonist or agonist compound identified by the method of Claim 15.
- 25. A pharmaceutical composition comprising a compound identified by the method of Claim 15 and a pharmaceutically acceptable carrier.
  - 26. A antisense oligonucleotide having sequence capable of binding specifically with any sequence of an mRNA molecule which encodes the human CSBP containing the amino acid sequence of Figure 16 so as to prevent the translation thereof.
    - 27 An antibody directed to the human CSBP of Claim 5.
    - 28. The antibody according to Claim 26 which is a monoclonal antibody.
  - 29. A transgenic non-human mammal capable of expressing in any cell thereof the DNA of Claim 3.

30. A method of screening compounds to identify those compounds which bind to a human CSBP comprising contacting the fusion protein comprising a CSBP domain and a binding protein/ligand binding indicator domain with a pluarality of compound, under conditions to permit binding to the CSBP domain, and identifying those candidate drugs capable of enhancing or inhibiting the activity of the protein/ligand binding indicator domain.



1/26

SUBSTITUTE SHEET (RULE 26)





SUBSTITUTE SHEET (RULE 26)





FIG.4B

3/26



4/26

	VALUES ARE IC ₅₀ ,μΜ	IL-1 TNF THP-1 CYTOSOL BINDING	<0.1	0	-0 - 	ъ. 4. г	0.5	01<
	ES /	TAF	0.5 0.4	<b>V</b> 2	V 25	2.7	, wi	Ω
	MLM	1-1	0.5	75	0.2 0.2 >5 >5	2.7 2.7		ი ი
×ZZZ	×	χΥ	-CH2CH2S-	-CH2CH2S-	-CH2CH2CH2-	-CH2CH2CH2-	-CH2CH2OAC, H 0.5	- これとこれとしない。 お
A B	J	RI/R2	4-pyridyl/4-FPh	4-FPh/4-pyridyl	4-pyridyl/4-FPh 4-FPh/4-pyridyl	XI(e) 4-pyridyl/4-MeSPh -CH2CH2CH2-XI(f) 4-MeSPh/4-pyridyl -CH2CH2CH2-	4-pyridyl/4-FPh	4-r-h/4-pyridyl
		COMPOUND	XI(a)	XI(b)	XI(c)	XI(e)	XI(g)	ZI(II)

F16.6

5/26



6/26





7/26 SUBSTITUTE SHEET (RULE 26)





F1G.9





FIG.IIA





9/26 SUBSTITUTE SHEET (RULE 26)



10/26 Substitute **Sheet** (Rule **26)** 

	CTGAACTGGATGCATTACAACCAGACAGGTGGTATTTGGGTCAAG 285 LeuAsnTrpMetHisTyrAsnGlnThrGlyGlyIleTrpValLys	241
240	ACAGATGATGAAATGACAGGCTACGTGGCCACTAGGTGGTACAGGGCTCCTGAGATCATG ThrAspAspGluMetThrGlyTyrValAlaThrArgTrpTyrArgAlaProGluIleMet	181
180	AATCTAGCTGTGAATGAAGACTGTGAGCTGAAGATTTCTGGATTTTTGGACTGGCTCGGCAC AsnLeuAlaValAsnGluAspCysGluLeuLysIleLeuAspPheGlyLeuAlaArgHis	121
120	CTCCGAGGTCTAAAGTATATACATTCAGCTGACATAATTCACAGGGACCTAAAACCTAGT LeuArgGlyLeuLysTyrIleHisSerAlaAspIleIleHisArgAspLeuLysProSer	61
09	AACATTGTGAAATGTCAGAAGCTTACAGATGACCATGTTCAGTTCCTTATCTACCAAATT AsnilevallysCysGlnLysLeuThrAspAspHisValGlnPheLeuIleTyrGlnIle	<b>T</b>

-10°.

CAAGTCCCAATCCTCCCCAACCACAGCAAGTTGAATTTATCAACCATGTTGGGTTGTAAA

FIG.14

TATTTTCAAATTTAAAAAAAAAAAAAAAA

12/26



13/26

SUBSTITUTE SHEET (RULE 26)

420	495	570	645	720	795	870	945
18	43	68	93	118	143	168	193
355ntsGCCGCTGGAAATGTCTCAGGAGGCCCACGTTCTACCGGCAGGAGCTGAACAAGACAATCTGG M S Q E R P T F Y R Q E L N K T I W	GAGGTGCCCGAGCGTTACCAGAACCTGTCTCCAGTGGGCTCTGGCGCCTATGGCTCTGTGTGTG	ACAAAAACGGGGTTACGTGTGGCAGTGAAGAAGCTCTCCAGACCATTTCAGTCCATCATCATGCGAAAAGAACC T K T G L R V A V K K L S R P F Q S I I H A K R T	TACAGAGAACTGCGGTTACTTAAACATGAAACATGAAAATGTGATTGGTCTGTTGGACGTTTTTACACCTGCA	AGGICTCTGGAGGAATTCAATGATGTGTATCTGGTGACCCATCTCATGGGGGCAGATCTGAACAACATTGTGAAAAAAAA	TGTCAGAAGCTIACAGATGACCATGTTCAGTTCCTACCAAATTCTCGAGGTCTAAAGTATATACATTCA	GCTGACATAATTCACAGGGACCTAAAACCTAGTAATCTAGCTGAATGAA	TTTGGACTGGCTCGGCACACAGATGACAGGCTACGTGGCCACTAGGTGGTACAGGGCTCCTGAGATC

F16.16

1020	1095	1170	1245	1320	1395	
218	243	268	293	318	343	
ATGCTGAACTGGATGCATTACAACCAGACAGTTGATATTTGGTCAGTGGGATGCATAATGGCCGAGCTGTTGACT 1020	GGAAGAACATTGTTTCCTGGTACAGACCATATTAACCAGCTTCAGCAGTTATGCGTCTGACAGGAACACCCCCCC	GCTTATCTCATTAACAGGATGCCAAGGCAAGGCAAGAACTATATTCAGTCTTTGACTCAGATGCCGAAGATG	AACTITGCGAATGTATTTATTGGTGCCAATCCCCTGGCTGTCGACTTGCTGGAGAAGATGCTTGTATTGGACTCA	GATAAGAGAATTACAGCGGCCCAAGCCCTTGCACATGCCTACTTTGCTCAGTACCACGATCCTGATGATGACCA	GTGGCCGATCCTTATGATCAGTCCTTTGAAAGCAGGACCTCCTTATAGATGAGTGGAAAAGCCTGACCTATGAT	GAAGTCATCAGCTTTGTGCCACCACCCTTGACCAAGAAGAGGATGGAGTCCTGAGCACCT2330nts E V I S F V P P P L D Q E E M E S

## -16.16B



16/26 SUBSTITUTE SHEET MHE SE



**FIG.18** 

17/26

Human Erkl Human Erk2 Csbp Yeast Hogl Identity	1 50 MAAAAAQGGG GGEPRRTEGV GPGVPGEVEM VKGQPF DVGPRYTQLO MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Human Erkl Human Erk2 Csbp Yeast Hogl Identity	YIGEGAYGMV SSAYDHVRKT RVAIKKIS P FEHOTYCORT LREIQIELRF YIGEGAYGMV CSAYDNVNKV RVAIKKIS P FEHOTYCORT LREIKIELRF PVGSGAYGSV CAAFDTKTGL RVAVKKLSRP FOSIIHAKRT YRELKLEKHM PVGMGAFGLV CSATDTLTSQ PVAIKKIMKP ESTAVLAKRT YRELKLEKHL .G.GA.G.V .A.DVA.KK. P FRT .RE .L.
Human Erkl Human Erk2 Csbp Yeast Hogl Identity	101 IV RIENVIGIRD IL.RASTLEA MRDVIIVODE METDEYKLLK SQCESNDHIC RIENIIGIND II.RAPTIEQ MKDVIIVODE METDEYKLLK TQHESNDHIC KHENVIGLLD VFTPARSLEE FNDVILVITHE MGADENNIVK CQKETDDHVO RIENLICLOD IFLSP LEDIVFATE QGTDEHRLLQ TRPEKQFVO .HEN.IDLSP LEDIVFATE QGTDEHRLLQ TRPEKQFVO
Human Erkl Human Erk2 Csbp Yeast Hogl Identity	151 VI 200 YFLYOTURGE KYIHSANVLH ROUKPSNLLI NITTEDEKICO EGIARIADPE YFLYOTURGE KYIHSANVLH ROUKPSNLLI NITTEDEKICO EGIARVADPO FLIYOTURGE KYIHSANVLH ROUKPSNLAV NEDCELKILD EGIARVADPO YFLYOTURGE KYYHSAGVIH ROUKPSNLLI NENEDEKICO EGIARIODPOYOTURGE KYYHSAGH ROUKPSNLLI NENEDEKICO EGIARIODPOYOTURGE KYYHSAH ROUKPSN NC.LKI.D FGLARD
Human Erkl Human Erk2 Csbp Yeast Hogl Identity	HDHTGFLTEY VAIRWYRAPE IMENSKGYTK SIDTWSVGCI LAEMLSNRPI IMENSKGYTK SIDTWSVGCI LAEMLSNRPI IMENSKGYTK SIDTWSVGCI LAEMLSNRPI IMENSKGYTK SIDTWSVGCI MAELLTGRTL IMENWHYNG TVDIWSVGCI MAELLTGRTL IMENWHYNG TVDIWSAGCI FAEMIEGKPL V.TR.YRAPE IMEYDIWS.GCI .AE
Human Erkl Human Erk2 Csbp Csbp2 Yeast Hogl Identify	Z51  EPGKHYLDGL NHILGILGSP SQEDLNCIIN MKARNYLOSI PSKTKVAWAK EPGKHYLDGL NHILGILGSP SQEDLNCIIN LKARNYLLSL PHKNKVPWNR EPGTDHINGL QQIMRLTGTR PAYLINRMPS HEARNYIQSL TQMPKMNFAN EPGKDHVHQF SITTDLLGSP PKDVINTICS ENTLKFVTSL PHRDPIPFSE FPG. Q. I. G.P
Human Erkl Human Erk2 Csbp Yeast Hogl Identity	350 LEPKSDSKAL DLEDRMETFN PNKRITVEEA CAHPYLEGYY DPTDEPVAEE LEPNADSKAL DLEDKMETFN PHKRIEVEGA CAHPYLEGYY DPSDERIAEA VEIGANPLAV DLEKMEVLD SDKRITAAGA EAHAYFAGYH DPDDEPVADP REKTVEPDAY DLEKMEVFD PKKRITAADA CAHPYSAPYH DPTDEPVADA .FA. DLL.MLKRIA LAH.YY. DP.DEP.A
Human Erkl Human Erk2 Csbp Yeast Hogl Identity	PFTFAMELDD EPKERLKELI FOETARFOPG VLEAP. PFKFDMELDD EPKEKLKELI FEETARFOPG VRS. YDQSFESRD ELIDEWKSLT YDEVISEVPP PLDQEEMES. KFDWHFNDAD EPVDTWRVMM YSEILDEHKI GGSDGQIDIS ATFDDQVAAA

FIG.19
18/26
SUBSTITUTE SHEET (RULE 26)



19/26 SUBSTITUTE SHEET (BUILE 26)

**GGAACCGCGACCACTGGAGCCTTAGCGGGCGCAGCTGGAACGGGAGTACTGCGACGCAGCCCGGAGTCGGCC** 

<u>TYCTAGGGGGGAAAGGTGCAGGGAGATCGCGGCGGGGGCGCAGTCTTGAGCGCCCGGAGCGCGTCCTGCCCTTAGCGG</u> 96 151

226

**GGTGCGGGTGCAGGCGGGGCCCCACAGGGCCCACCTTCTTGCCCGGCGGCTGCCGGTGGAAAATGTCTCAGGAGA** MetSerGlnGluA 301 -19 GGCCCACGTTCTACCGGCAGGAGCTGAACAAGACAATCTGGGAGGTGCCCGAGCGTTACCAGAACCTGTCTCCAG  ${ t rgProThrPheTyrArgGlnGluLeuAsnLysThrIleTrpGluValProGluArgTyrGlnAsnLeuSerProV}$ 376

TGGGCTCTGGCGCCTATGGCTCTGTGTGCTGCTTTTTGACAAAAAAGGGGGTTACGTGTGGCAGTGAAGAAGC alGlySerGlyAlaTyrGlySerValCysAlaAlaPheAspThrLysThrGlyLeuArgValAlaValLysLysL 451 31

**TCTCCAGACCATTTCAGTCCATCATTCATGCGAAAAGAACCTACAGAGAACTGCGGTTACTTAAACATATGAAAC** euSerArgProPheGlnSerIleIleHisAlaLysArgThrTyrArgGluLeuArgLeuLeuLysHisMetLysH 526

FIG.21A

 ${ t snLeuAlaValAsnGluAspCysGluLeuLysIleLeuAspPheGlyLeuAlaArgHisThrAspAspGluMetT}$ AccagettcagcagATTAtgcgtctgacaggaacACCCCccgcttatctcattaacaggatgccaagccatgagG ATGAAAATGTGATTGGTCTGTTGGACGTTTTTACACCTGCAAGGTCTCTGGAGGAATTCAATGATGTGTATCTGG sGluAsnValIleGlyLeuLeuAspValPheThrProAlaArgSerLeuGluGluPheAsnAspValTyrLeuV TGACCCATCTCATGGGGGGGGAGATCTGAACAACTTGTGAAATGTCAGAAGCTTACAGATGACCATGTTCAGTTTCC al ThrHisLeuMetGlyAlaAspLeuAsnAsnIleValLysCysGlnLysLeuThrAspAspHisValGlnPheL **TTATCTACCAAATTCTCCGAGGTCTAAAGTATATACATTCAGCTGACATAATTCACAGGGACCTAAAACCTAGTA**  ${ t eulle TyrGlnIle LeuArgGlyLeuLysTyrIle HisSerAlaAspIleIle HisArgAspLeuLysProSerA}$ ATCTAGCTGTGAATGAAGACTGTGAGCTGAAGATTCTGGATTTTTGGACTGGCTCGGCACACAGATGAAATGA CAGGCTACGTGGCCACTAGGTGGTACAGGGCTCCTGAGATCATGCTGAACTGGATGCATTACAACCAGACAGTTG  $\mathsf{hrGlyTyrValAlaThrArgTrpTyrArgAlaProGluIleMetLeuAsnTrpMetHisTyrAsnGlnThrValA}$ ATATITIGGICAGIGGGATGCATAATGGCCGAGCTGTTGACTGGAAGAACATITGTTTCCTGGTACAGACCATATTA spIleTrpSerValGlyCysIleMetAlaGluLeuLeuThrGlyArgThrLeuPheProGlyThrAspHisIleA snGlnLeuGlnGlnIleMetArgLeuThrGlyThrProProAlaTyrLeuIleAsnArgMetProSerHisGluA laArgAsnTyrIleGlnSerLeuThrGlnMetProLysMetAsnPheAlaAsnValPheIleGlyAlaAsnProL 1126 826 976 206 1051 9 6 9 106 156 231 601 751 131 901 181 21/26

F16.21E

GTGTGCGTGCGTGTTAGTGTGTGTGTGTGTGTCTTTTTGTGGGAGGGTAAGACAATATGAACAAACTAT TGCCTGTCGACTTGCTGGAGAAGATGCTTGTATTGGACTCAGATAAGAGAATTACAGCGGCCCAAGCCCTTGCAC euAlaValAspLeuLeuGluLysMetLeuValLeuAspSerAspLysArgIleThrAlaAlaGlnAlaLeuAlaH ATGCCTACTTTGCTCAGTACCAGGATCCTGATGAACCAGTGGCCGATCCTTATGATCAGTCCTTTGAAAGCA isAlaTyrPheAlaGlnTyrHisAspProAspAspGluProValAlaAspProTyrAspGlnSerPheGluSerA **GGGACCTCCTTATAGATGGTGGAAAAGCCTGACCTATGATGAAGTCATCAGCTTTGTGCCACCACCCTTGACC** rgAspLeuLeuIleAspGluTrpLysSerLeuThrTyrAspGluValIIeSerPheValProProProLeuAspG AAGAAGAGATGGAGTCCTGAGCACCTGGTTTCTGTTGATCCCACTTCACTGTGAGGGGAAGGCCTTTTCA 1nGluGluMetGluSerEnd 1426 356 1576 1651 1501 1276 306 1351 331 22/26 SUBSTITUTE

SHEET (RULE 26)

CAAAAAGGACCAACTGGCTTCTGTGCACTAGCCTGTGATTAACTTGCTTAGTATGGTTCTCAGATCTTGACAGTA TITCICITECITACCCTICACCTITIGGIGCAGAGGITITCITGAATAICIGCCCCAGTAGTCAGAAGCAGGITCTIG **ATGTCATGTACTTCCTGTGTACTCTTTTATTTTCTAGCAGAGTGAGGATGTGTTTTTGCACGTCTTTGCTATTTTGAGCA GTTTAGATCCCATGTCACCTCAGCTGATATTATGGCAAGTGATATCACCTCTCTTCAGCCCCTAGTGCTATTCTG** TGFTGAACACAATTCATACTTCAGGTGCTTTTTCATGTGAAAATCATGAAAAGAGGAACAGGTGGATGTATAGCAT TITIATICATGCCATCTGTTTTCAACCAACTATTTTTGAGGAATTATCATGGGAAAAGACCAGGGCTTTTCCCAG GAATATCCCAAACTTCGGAAACAAGTTATTCTCTTCACTCCCAATAACTAATGCTAAGAAATGCTGAAAATCAAA CCGGTCA TGCTTTTGCCACTTTGGCTTCTCTGTGACCCCACCTTGACGGTGGGGCGTAGACTTGACATCCC **ACAGTIGGCACGGAGAGAGGCCCATACCTTICTIGGTTTCAGACCTGACACCGTCCCTCAGTGATACGTACAGC** TAITIGAAACIGTAAATAIGITITGIGCCITAAAAGGAGAGAAGAAAGIGTAGATAGTTAAAAGACIGCAGCIGCI GAACITICITGAGCCGGGCAAGICGAGAGGGCTGITIGGACAGCTGCTTGTGGGCCCCGGAGTAATCAGGCAGCCTTCA TAGGCGGTCATGTGCCATGTGAGCACATGCGTATATGTGCGTCTCTCTTTTCTCCCTCACCCCCAGGTGTTGCCA 2476 2326 2626 2701 2026 2101 2176 2401 1801 2551 1876 1951 2251 23/26

F16.21D

**GTAAAAAATTAAAGCCCATAAGGCCCAGAAACTCCTTTTGCTGTCTTTTCTCTAAATATGATTACTTTTAAAATAAAA** <u>AAGTAACAAGGTGTCTTTTCCACTCCTATGGAAAAGGGTCTTCTTGGCAGCTTAACATTGACTTCTTGGTTTGGG</u> gagaaataaattittgitticagaattittgtatattgtaggaatccctittgagaatgtgattcctitttgatggggag aaaggcaaattattttaatatttttgtatttttcaacttttataagataaatatcctcaggggtggagaagtgtc GITITICATAACITIGCIGAATITICAGGCATITITIGITICTACATGAGGACICATATATATITIAAGCCITITIGIGTAATAA GAAAGTATAAAGTCACTTCCAGTGTTGGCTGTGTGACAGAATCTTGTATTTTGGGCCAAGGTGTTTCCATTTTCTCA atcagtgcagtgatacatctacagagggacrgggtggaccccctgagtcaactggagcaagaaggaaggagg CAGACTGATGGCGATTCCCTCTCACCCGGGACTCTCCCCCTTTCAAGGAAAGTGAACCTTTAAAGTAAAGGCCTC **ATCTCCTTTTATTGCAGTTCCAAATCCTCACCACCAAGATGAATTTTTATCAGCCATGTTTGGTTGTAAATG CTCGTGTGATTTTCCTACAGAAATACTGCTCTGAATATTTTTGTAATAAGGTCTTTTGCACATGTGACCACATACGT** GTTAGGAGGCTGCATGCTCTGGAAGCCTGGACTCTAAGCTGGAGCTCTTGGAAGAGCTCTTCGGTTTTCTGAGCAT **CATGAACTTGGCTGTAATCAGTTATGCCGTATAGGATGTCAGACAATACCACTGGTTAAAATAAAGCCTATTTTT** 1088 24/26 3526 3226 2851 2926 3001 3076 3151 3376 3451 3601 3676

SUBSTITUTE SHEET (RULE 26)

F16.21E

CAAATTTAAAAAAAAAAAAAAA 3775

AAATGTGATTGGTCTGTTGGACGTTTTTACACCTGCAAGGTCTCTGGAGGAATTCAATGATGTGTATCTGGTGAC uAsnValIleGlyLeuLeuAspValPheThrProAlaArgSerLeuGluGluPheAsnAspValTyrLeuValTh  CCATCTCATGGGGCAGATCTGAACAACATTGTGAAATGTCAGAAGCTTACAGATGACCATGTTCAGTTCCTTAT  rHisLeuMetGlyAlaAspLeuAsnAsnIleValLysCysGlnLysLeuThrAspAspHisValGlnPheLeuIl  CTACCAAATTCTCCGAGGTCTAAAGTATATACATTCAGCTGACATAATTCACAGGGACCTAAAAACCTAGTAATCT  eTyrGlnIleLeuArgGlyLeuLysTyrIleHisSerAlaAspIleIleHisArgAspLeuLysProSerAsnLe  AGCTGTGAATGAAGACTGTGAGCTGAAGATTCTGGATTTTTGGACTGGCCTCGGCACAAGATGAAATGACAGG  AACTGTGAATGAAGACTGTGAGATTCTGGATTTTTGGACTGGCTCGGCACACAGATGAATGA	451 82 82 107 107 601 132 676
AAATGTGATTGGTCTGTTGGACGTTTTTACACCTGCAAGGTCTCTGGAGGAATTCAATGATGTGTATCTGGTGAC uAsnValileGlyLeuLeuAspValPheThrProAlaArgSerLeuGluGluPheAsnAspValTyrLeuValTh	4
CAGACCATTICAGICCATCATICATGCGAAAAGAACCTACAGAGAACTGCGGTTACTTAAACATATGAAACATGA rArgProPheGlnSerIleIleHisAlaLysArgThrTyrArgGluLeuArgLeuLeuLysHisMetLysHisGl	918 25/2
CTCTGGCGCCTATGGCTCTGTGTGCTGCTTTTTGACAAAAAAGGGGGTTACGTGTGGCAGTGAAGAAGCTCTC ySerGlyAlaTyrGlySerValCysAlaAlaPheAspThrLysThrGlyLeuArgValAlaValLysLysLeuSe	301
CACGTTCTACCGGCAGGAGCTGAACAAGACAATCTGGGAGGTGCCCGAGCGTTACCAGAACCTGTCTCCAGTGGG oThrPheTyrArgGlnGluLeuAsnLysThrIleTrpGluValProGluArgTyrGlnAsnLeuSerProValGl	226
CGGGTGCAGGCGGGCCCCCACAGGCCACCTTCTTGCCCGGCGGCTGCCGGTGGAAAATGTCTCAGGAGGCCC	151 -18
CAGCCGCACCTGCGCGGGGGACCAGCGCAAGGTCCCCGCCCG	16
CGCCCCAGTCGCAGGGGCACATCCAGCCGCTTGCGGCTAGCAGCCGCGCGCG	H

751	751 CTACGTCGCCACTAGGTGGTACAGGGCTCCTGAGATCATGCTGAACTCGATGCATTACAACCAGACAGTTGATAT
182	182 yTyrvalalaThrargTrpTyrargAlaProGluIleMetLeuAsnTrpMetHisTyrAsnGlnThrValAspIl
826	TIGGICAGIGGGAIGCAIAAIGGCCGAGCIGIIGACIGGAAGAACAITGIITICCIGGIACAGACCAIAIIGAICA
207	eTrpSerValGlyCysIleMetAlaGluLeuLeuThrGlyArgThrLeuPheProGlyThrAspHisIleAspGl
901	901 GTIGAAGCICATTITAAGACTCGTTGGAACCCCAGGGGCTGAGCTTTTGAAGAAAATCTCCTCAGAGTCTGCAAG

TGTCGACTTGCTGGAGATGCTTGTATTGGACTCAGATAAGAGAATTACAGCGGCCCAAGCCCTTGCACATGC gAsnTyrIleGlnSerLeuThrGlnMetProLysMetAsnPheAlaAsnValPheIleGlyAlaAsnProLeuAl 257 1051

aValAspLeuLeuGluLysMetLeuValLeuAspSerAspLysArgIleThrAlaAlaGlnAlaLeuAlaHisAl **CTACITIGGICAGGACCAGGATGATGATGAGCGAGTGGCGGATCCITATGATCAGTCCTTTGAAAGCAGGG**A aTyrPheAlaGlnTyrHisAspProAspAspGluProValAlaAspProTyrAspGlnSerPheGluSerArgAs 1126 282 26/26

CCTCCTTATAGATGAGTGGAAAAGCCTGACCTATGATGAAGTCATCAGCTTTGTGCCACCACCCCTTGACCAAGA pLeuLeulleAspGluTrpLysSerLeuThrTyrAspGluValIleSerPheValProProProLeuAspGlnGl 1201 332

AGAGATGGAGTCCTGAGCACCTGGTTTCTGTTGTTGATCCCACTTCACTGTGAGGGGAAGGCCTTTTTCACGG 1276

uGluMetGluSerEnd 357 AACTCTCCAAATATTATTCAAGTGCCAAAAA 1381 1351

SUBSTITUTE SHEET (RULE 26)

A. CLASSIFICATION OF SUBJECT MATTER  IPC/6) COTH 21/00, 21/04, COTK 14/435; CI2N 15/00, CI2O 1/00								
IPC(6) :C07H 21/00, 21/04; C07K 14/435; C12N 15/00; C12Q 1/00 US CL :536/23.5; 530/350; 435/320.1, 252.3, 69.1, 7.2; 436/503, 504								
	o International Patent Classification (IPC) or to both							
B. FIEI	DS SEARCHED							
	ocumentation searched (classification system followed	t by classification symbols)	Į.					
i	536/23.5; 530/350; 435/320.1, 252.3, 69.1, 7.2; 436	•						
0.5.		,						
Documentat	ion searched other than minimum documentation to the	extent that such documents are included	in the fields searched					
	( )							
Electronic d	lata base consulted during the international search (na	ame of data base and, where practicable,	search terms used)					
APS, DIA	ALOG - BIOTECH FILES, GENEMBL SEQUENCE	DATABASES						
C. DOC	UMENTS CONSIDERED TO BE RELEVANT							
		· · · · · · · · · · · · · · · · · · ·						
Category*	Citation of document, with indication, where ap	ppropriate, of the relevant passages	Relevant to claim No.					
A,P	US, A, 5,317,019 (BENDER ET	AL.) 31 May 1994, see	1-20					
	entire document.							
A	US, A, 4,794,114 (BENDER ET AL	127 December 1988 see	1-20					
^	entire document.	., 27 December 1300, see	1-20					
	1							
Α	US, A, 4,780,470 (BENDER ET A	L.) 25 October 1988, see	1-20					
	entire document.							
1.								
Α	US, A, 4,778,806 (BENDER ET A	L.) 18 October 1988, see	1-20					
	entire document.	,						
A	Agents and Actions, Volume 27, N	lo 3/4 issued 1989 .I C	1-20					
			1-20					
Lee et al, "Effect of SK & F 86002 on cytokine production by human monocytes", pages 277-279, see entire document.								
			,					
Further documents are listed in the continuation of Box C. See patent family annex.								
Special entegories of cited documents:     T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the								
A document defining the general state of the art which is not considered principle or theory underlying the invention to be of particular relevance								
*E° earlier document published on or after the international filling date  "X° document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step								
"L" document which may throw doubts on priority claim(s) or which is when the document is taken alone cited to establish the publication date of another citation or other  "Y" document of particular relevance; the claimed invention cannot be								
special reason (as specified)  To decument of particular relevance; the claimed inventors enable to considered to involve an inventive step when the document is combined with one or more other such documents, such combination								
	cument referring to an oral disclosure, use, exhibition or other	combined with one or more other suc being obvious to a person skilled in th						
"P" document published prior to the international filing date but later than "A" document member of the same patent family the priority date claimed								
Date of the actual completion of the international search  Date of mailing of the international search report								
09 DECEMBER 1994 09 JAN 1995								
Name and mailing address of the ISA/US Authorized officer								
Commissioner of Palents and Trademarks  Box PCT  ELIZABETH C. KEMMERER								
Washington, D.C. 20231								
Lacanune M	o. <u>(703)</u> 305-3230	Telephone No. (703) 308-0196						

Form PCT/ISA/210 (second sheet)(July 1992)*

## BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

- Claims 1-20, drawn to nucleic acids encoding a CSBP, the protein, vectors, host cells, a method of expressing the nucleic acids, and a method of identifying a CSAID using the protein.
- П. Claims 21-23, drawn to a method of identifying CSBP ligands.
- Claims 24 and 25, drawn to antagonists and agonists of CSBP, and pharmaceutical compositions comprising Ш. same.
- IV. Claim 26, drawn to antisense molecules.
- V. Claims 27 and 28, drawn to antibodies.
- VI. Claim 29, drawn to a transgenic animal.
- VII. Claim 30, drawn to a method of screening compounds using a fusion protein.

The claims are not so linked by a special technical feature within the meaning of PCT Rule 13.2 so as to form a single inventive concept. Beginning with Invention II, each subsequent invention introduces a new concept not required by Invention I or any of the other Inventions. For example, Invention II introduces the concept of ligands and natural sources thereof, Invention III introduces antagonists/antagonists and chemical sources thereof, Invention IV introduces antisense technology which is useful in gene expression modulation and nucleic acid probing techniques, Invention V introduces antibodies and the entire field of immunology, Invention VI introduces transgenic technology, and Invention VII introduces the field of fusion protein engineering.