MATH 259: Homework #7

Jesse Farmer

18 May 2005

- 1. Let K/F be a Galois extension with $\operatorname{Gal}(K/F) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/12\mathbb{Z}$. How many intermediate fields L are there such that:
 - (a) [L:F]=4

By FTG it is sufficient and necessary to find subgroups H of Gal(K/F) with index 4, i.e., subgroups of order 6. Let $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/12\mathbb{Z} = \langle x, y | x^2 = y^{12} = 1, xyx^{-1}y^{-1} = 1 \rangle$. The only subgroups of order 6 are therefore $\langle y^6 \rangle$ and $\langle xy^4 \rangle$. Therefore there exist two intermediate fields L such that [L:F]=4.

(b) [L:F] = 9

As $9 \nmid 24$, there are no such fields.

(c) $Gal(K/L) \cong \mathbb{Z}/4\mathbb{Z}$

Using the same presentation as in (a), it is easy to see that the only possible subgroups of order 4 are $\langle y^3 \rangle$, $\langle x, y^6 \rangle$, and $\langle xy^3 \rangle$. Only the first and last are cyclic, and therefore are isomorphic to $\mathbb{Z}/4\mathbb{Z}$. Hence there are two such intermediate fields.

2. (a) Let F be a field with char F = p > 0, $f = x^p - x + a \in F[x]$. Let E/F be a field extension with $\alpha \in E$ where $f(\alpha) = 0$. Show that $\alpha, \alpha + 1, \ldots, \alpha + (p-1)$ are all roots of f. Let $1 \le n \le p-1$ and assume $f(\alpha) = 0$. Then

$$f(\alpha + n) = (\alpha + n)^p - \alpha - n + a = \alpha^p + n^p - \alpha - n + a = n^p - n = 0$$

Since $p \mid n^p - n$ by Fermat's Little Theorem.

(b) With F and f as above, show that f is irreducible over F if and only if f has no roots in F. By the first part if f has any root in F then f has all of its roots in F, and therefore f is reducible. Indeed, it splits completely into linear factors over F.

Assume f has no roots in F. Let E/F be the splitting field of f and suppose for contradiction that f = gh, $g, h \in F[x]$ with deg g = r < p, i.e., f is reducible. Hence $gh = \prod_{i=0}^{p-1} (x - \alpha - i)$ by the first part. Write $g(x) = x + cx^{r-1} + \cdots c_0$. Calculating c gives $c = r\alpha + b$ for some $b \in F$, and hence $\alpha \in F$, a contradiction.

(c) With F and f as above, suppose f has no roots in F. Let E/F be the splitting field of f over F. Show that $E = F(\alpha)$ for all $\alpha \in E$ such that $f(\alpha) = 0$ and E/F is cyclic of degree p. Exhibit the elements of Gal(E/F).

Let $\alpha \in E$ such that $f(\alpha) = 0$. Then from the first part $\alpha + 1, \dots, \alpha + (p-1)$ are also roots, each of which is clearly in E. Since deg f = p these are all the roots and therefore $E = F(\alpha)$.

Let $E = F(\alpha)$. Then $p = [E : F] = |\operatorname{Gal}(E/F)|$. Define $\sigma \in \operatorname{Gal}(E/F)$ by $\sigma(\alpha) = \alpha + 1$. Then $|\sigma| = p$ and hence $\operatorname{Gal}(E/F) = \langle \sigma \rangle$, i.e., $\operatorname{Gal}(E/F)$ is cyclic of degree p.

3. Determine the Galois group of $x^4 + x^2 + 4$ over \mathbb{Q} .

- 4. (a) Suppose $H \subseteq S_4$ and $S_3 \subseteq H$. Show that $H = S^4$. Let H be such that $S_3 \subseteq H \subseteq S_4$. Since H is normal it contains all conjugates of transpositions in S_3 . But it is easy to see that this requires H to contain all transpositions in S_4 since for $(ab) \in S_3$ and $(cd) \in S_4$, distinct transpositions, conjugating (ab) by (acbd) gives (cd). Hence $H = S_4$.
 - (b) Let E/F be a Galois extension with $G = Gal(E/F) \cong S_4$ via $\eta : S_4 \to G$. Let $H = \eta(S_3)$. Let F' be the fixed field of H. Compute [F' : F]. Show that for any intermediate field L either L = F' or L = F.

First, $[F':F] = |S_4:S_3| = 4$. Assume $F \subsetneq L \subsetneq F'$, since otherwise we are done. By the Galois correspondence H, the elements in Gal(E/F) fixing L is isomorphic to a proper subgroup of S_4 properly containing S_3 . But if this is so then |H| = 12 and |Gal(E/F): H| = 2. Hence H is normal, and by the first part $H \cong S_4$. It then follows that L = F.

5. Given any monic polynomial $f(x) \in \mathbb{Z}[x]$ of degree at least one show that there are infinitely many distinct prime divisors of the integers $f(1), f(2), \ldots, f(n), \ldots$

Assume for contradiction that there exist a finite number of primes p_1, \ldots, p_k which divide each of $f(1), \ldots, f(n)$. Let $N \in \mathbb{Z}$ such that $f(N) = a \neq 0$ and let $\beta = ap_1p_2 \cdots p_k$. Define

$$g(x) = a^{-1}f(N + \beta x)$$

Every term in $f(N + \beta x)$ has a coefficient containing β except the constant term, which is exactly

$$N^{n} + a_{n-1}N^{n-1} + \dots + a_{0} = f(N) = a$$

Hence each term is divisible by a and $g(x) \in \mathbb{Z}[x]$. Furthermore, since each term containing β is congruent to $0 \mod p_1 \cdots p_k$, and the constant term of g is just 1, it must be the case that

$$g(n) \equiv 1 \mod p_1 p_2 \cdots p_k$$

for $n \in \mathbb{Z}_+$.

If g(b) = 1 for all $n \in \mathbb{Z}_+$ then f would be the constant polynomial, contradicting the hypothesis that $\deg f \geq 1$. So there exists an m with $g(m) \neq 1$. Since $g(m) \equiv 1 \mod p_1 \cdots p_k$, $g(m) \equiv 1 \mod p_i$ for all $1 \leq i \leq k$. In particular this means that none of the p_i divide g(m). Since $g(m) \neq 1$ it must be divisible by a prime number not among the p_i and therrefore $f(N + \beta m)$ has a prime factor not among the p_i , also.

6. Let p be an odd prime not dividing m and let $\Phi_m(x)$ be the m^{th} cyclotomic polynomial. Suppose $a \in \mathbb{Z}$ satisfies $\Phi_m(a) \equiv 0 \mod p$. Prove that a is relatively prime to p and that the order of a in $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is precisely m.

Write

$$x^{m} - 1 = \prod_{d|m} \Phi_d(x) = \Phi_m(x) \prod_{\substack{d|m\\d < m}} \Phi_d(x)$$

If $\Phi_m(a) = 0$ then $a^m \equiv 1 \mod p$. The only possible divisors of p are 1 and p, so if $\gcd(a, p) \neq 1$ then $\gcd(a, p) = p$. But then $a^m \equiv 0 \mod p$ so that $1 \equiv 0 \mod p$, which is absurd.

Assume for contradiction that the order of a is less than m, so that there exists a d < m with $a^d \equiv 1 \mod p$. Then a would be a root of $\Phi_m(x)$ and $\Phi_d(x)$, which would mean that $x^m - 1$ is not separable – a contradiction since $p \nmid m$.

- 7. Let $a \in \mathbb{Z}$. Show that p is an odd prime dividing $\Phi_m(a)$ then either $p \mid m$ or $p \equiv 1 \mod m$.
- 8. Prove there are infinitely many primes p with $p \equiv 1 \mod m$.

There are infinitely many odd primes, and only finitely many primes dividing m. From the previous exercises we know that there are infinitely many primes dividing $\Phi_m(a)$ for $a \in \mathbb{Z}_+$, and since there are only finitely many primes dividing m, there are infinitely many primes not dividing m which do divide $\Phi_m(a)$. Hence there are infinitely many such that primes p such that $p \equiv 1 \mod m$.

9. Deduce that if G is any finite abelian group then there exists a Galois extension E/\mathbb{Q} such that $\operatorname{Gal}(E/\mathbb{Q}) \cong G$.

By the fundamental theorem of finite abelian groups

$$G \cong \prod_{i=1}^r \mathbb{Z}/n_i\mathbb{Z}$$

for some integers n_1, \ldots, n_r . By the previous exercise there exist r distinct primes such that $p_i \equiv 1 \mod n_i$. Let L/\mathbb{Q} be the splitting field of $x^m - 1$ for $m = p_1 p_2 \cdots p_k$. Then

$$\operatorname{Gal}(L/\mathbb{Q}) \cong (\mathbb{Z}/m\mathbb{Z})^{\times} \cong \prod_{i=1}^{r} (\mathbb{Z}/p_{i}\mathbb{Z})^{\times}$$

Thus $\operatorname{Gal}(L/\mathbb{Q}) \cong \prod_{i=1}^r G_i$ where G_i is a cyclic group of order p_i-1 . For each $n_i \mid (p_i-1)$ there exists $H_i \unlhd G_i$ with $|H_i| = \frac{p_i-1}{n_i}$. Hence G_i/H_i is cyclic of order n_i . Recall from group theory that for groups $\{G_i\}$ and normal subgroups $\{H_i \subseteq G_i\}$ that

$$\frac{\prod_{i=1}^k G_i}{\prod_{i=1}^k H_i} \cong \prod_{i=1}^k G_i/H_i$$

by consideration of the first isomorphism theorem. Let $H = \prod_{i=1}^r H_i$ and E the fixed field of H. Then by the above

$$\operatorname{Gal}(E/\mathbb{Q}) \cong \frac{\prod_{i=1}^r G_i}{\prod_{i=1}^r H_i} \cong \prod_{i=1}^r G_i/H_i \cong \prod_{i=1}^r \mathbb{Z}/n_i \mathbb{Z} \cong G$$