机器学习与数据挖掘-HW1

—Monte Carlo Method—

19335253 葉珺明

1 计算PI的近似值

- 随机投点法
- 随机投点法中, 以随机投100个点为例, 有图像如下:

• 重复一次的实验结果:

N	20	50	100	200	300	500	1000	5000
PI	3.200	3.280	3.120	3.260	3.187	3.160	3.104	3.162

• 重复100次的实验结果:

N	20	50	100	200	300	500	1000	5000
MEAN	3.082	3.153	3.144	3.130	3.135	3.146	3.141	3.141
VAR	0.147	0.055	0.036	0.012	0.009	0.007	0.002	0.001

分析

随着N的增大,积分结果的近似值计算趋于平稳,逐渐接近PI的真实值,方差逐渐减小。

2 求解积分

$$\int_0^1 x^3 dx = \frac{1}{4} = 0.25$$

2.1 随机投点法

(x, y) 在区域中均匀分布

• 随机投点法中, 以随机投50个点为例, 有图像如下:

• 重复一次的实验结果:

N	5	10	20	30	40	50	60	70	80	90	100
RES	0.200	0.300	0.350	0.367	0.300	0.180	0.250	0.329	0.275	0.222	0.260

• 重复100次的实验结果:

N	5	10	20	30	40	50	60	70	80	90	100
MEAN	0.244	0.260	0.257	0.234	0.255	0.246	0.239	0.254	0.250	0.253	0.246
VAR	0.046	0.023	0.009	0.006	0.004	0.004	0.003	0.002	0.002	0.002	0.002

分析

随着N的增大,积分结果的近似值计算趋于平稳,逐渐接近积分的真实值,方差逐渐减小。

2.2 数学期望法

x通过(0, 1)均匀分布得到

• 数学期望法中, 在区间随机取50个点为例, 有图像如下:

• 重复一次的实验结果:

N	5	10	20	30	40	50	60	70	80	90	100
RES	0.370	0.393	0.174	0.243	0.236	0.165	0.222	0.166	0.300	0.307	0.319

• 重复100次的实验结果:

N	5	10	20	30	40	50	60	70	80	90	100
MEAN	0.237	0.254	0.246	0.241	0.251	0.249	0.254	0.251	0.255	0.25	0.25
VAR	0.014	0.008	0.005	0.002	0.002	0.002	0.001	0.001	0.001	0.001	0.001

分析

随着N的增大,积分结果的近似值计算趋于平稳,逐渐接近积分的真实值,方差逐渐减小。

2.3 方法对比

从上述两种实验方法对比可以看出,两种方法都随着采样点的增多,估计值逐渐趋近积分的真实值;取相同采样点的情况下,数学期望法所得结果向真实值趋近的速度要比随机投点法的快,从方差的比较可以看出数学期望法的计算结果更为稳定。

3 计算积分

$$\int_{x=2}^4 \int_{y=-1}^1 f(x,y) dx dy = \int_{x=2}^4 \int_{y=-1}^1 rac{y^2 * e^{x^2 - y^2}}{x} + x^3 dx dy pprox 1.1296 * 10^5$$

3.1 随机投点法

(x, y, z) 在区域中均匀分布

• 随机投点法中,以随机投100个点为例,有图像如下: (下图没有红点,即没有点投在所求积分区域内)

• 重复一次的实验结果:

N	10	20	30	40	50	60	70	80	100	200	500
RES(e+5)	0	0	1.333	0	0.800	3.333	1.143	1.000	0	1.600	0.720

• 重复100次的实验结果:

N	10	20	30	40	50	60
MEAN(e+5)	1.440	1.280	1.213	1.170	1.200	1.147
VAR(e+9)	52.86	26.00	15.00	9.811	8.256	6.052
N	70	80	100	200	500	
MEAN(e+5)	1.183	1.150	1.044	1.172	1.163	

分析

随着N的增大,积分结果的近似值计算趋于平稳,逐渐接近积分的真实值,方差逐渐减小。

3.2 数学期望法

x通过 (2, 4) 均匀分布得到, y通过 (-1, 1) 均匀分布得到

• 数学期望法中, 在区域随机取100个点为例, 有图像如下:

• 重复一次的实验结果:

N	10	20	30	40	50	60
RES(e+5)	3.090	1.218	1.384	1.606	0.634	0.853
N	70	80	100	200	500	
RES(e+5)	0.737	1.232	0.924	1.144	1.265	

• 重复100次的实验结果:

N	10	20	30	40	50	60
MEAN(e+5)	1.090	1.120	1.151	1.131	1.147	1.154
VAR(e+9)	12.00	5.897	3.949	3.406	2.698	2.042
N	70	80	100	200	500	
MEAN(e+5)	1.078	1.147	1.114	1.132	1.148	
VAR(e+9)	1.886	1.608	1.266	0.746	0.217	

分析

随着N的增大,积分结果的近似值计算趋于平稳,逐渐接近积分的真实值,方差逐渐减小。

3.3 方法对比

所得结论与2.3中的相同,并且在本次求积分的过程中,可以更容易看出,在这种函数分布极其不均匀的情况下,采用随机投点的方法有可能无法将点撒在所求积分区域内,故有结果为0的现象,方差也比较大,相比之下,使用数学期望的方法求得的结果会比较符合预期。

4探索路

• 思路

- 当前状态探索, 记录所经路径, 对下一时刻的行走方向随机选择
- 当前状态下,对可行路径进行探索,判断是否越界或重复经过或到达终点,当可选路径为空,即上下左右都不可以走时判定为无解,同时清空所经路径记录;有可行路径时,随机选择前进方向,再对下一时刻状态可行路径进行探索;判断达到终点,则返回记录的路径。
- 最终当记录的路径不为空时,则判定顺利到达终点;否则,没有成功达到终点。

• 核心代码

```
def SEEK_PATH(route, visited, x, y):
    route.append((x,y))
    if x==SIZE-1 and y==SIZE-1:
        return route

path = orientation_exsist(visited, x, y)
    if len(path)==0:
        return []

x, y = random.choice(path)
    if x==int(SIZE/2) and y==int(SIZE/2):
        visited[x, y] += 1
    else:
        visited[x, y] += 2

return SEEK_PATH(route, visited, x, y)
```

实验结果

进行了20000次模拟, 最终能够成功跑通的概率为0.25705

5系统可靠性计算

思路

o 同时测试系统上路和下路能否通行,即记录至少有一条路是通,最后所得即为该系统的可靠性

实验代码

```
import random
randn = [100, 200, 500, 1000, 2000, 5000, 10000]
```

```
def processA():
    if random.random() <= 0.85:</pre>
        return 1
    else:
        return 0
def processBC():
    if random.random() < 0.95 and random.random() < 0.90:</pre>
       return 1
    else:
       return 0
rel = []
for n in range (len(randn)):
   inn = randn[n]
   sum = 0.0
   for i in range (inn):
        if processA() or processBC():
           sum += 1
    rel.append(sum/inn)
print('reliability: ', rel)
```

• 实验结果

N	100	200	500	1000	2000	5000	10000
REL	0.98	0.975	0.964	0.968	0.9745	0.9774	0.979

随着实验次数的增加, 计算所得与逐渐趋近预测值0.97825。