Unit 5 Interpolation

Numerical Analysis

EE/NTHU

Apr. 5, 2017

Numerical Analysis (EE/NTHU)

Unit 5 Interpolation

Apr. 5, 2017

1 / 40

Data and Functions

- In real world, one uses limited data points to represent a real math function
 - Can one get the function values in-between data points accurately?
 - Or to find the underlying function given the limited data points.
 - Interpolation problems

Interpolation Problems

Definition 5.1.1. Interpolation problem

Given a set of n+1 support points

$$\{(x_i, y_i)\}, i = 0, 1, \dots, n, \text{ with } x_j \neq x_k \text{ for } j \neq k,$$
 (5.1.1)

find the function $F(x; a_0, \dots, a_n)$ with n+1 coefficients, a_0, a_1, \dots, a_n , such that

$$F(x_i; a_0, \dots, a_n) = y_i, \qquad i = 0, \dots, n.$$
 (5.1.2)

Definition 5.1.2.

Given the interpolation problem as in the definition above we have the followings:

Support abscissas: $\{x_i\}$, Support ordinates: $\{y_i\}$.

Linear interpolation: if F can be expressed as

$$F(x; a_0, \dots, a_n) = a_0 F_0(x) + a_1 F_1(x) + \dots + a_n F_n(x).$$

Trigonometric interpolation: if F can be expressed as

$$F(x; a_0, \dots, a_n) = a_0 F_0(x) + a_1 e^{xi} + a_2 e^{2xi} + \dots + a_n e^{nxi}, \text{ with } i^2 = -1.$$

Numerical Analysis (Interpolation)

Unit 5 Interpolation

Apr. 5, 2017

3 / 4

Interpolation of Polynomials

Definition 5.1.3.

The symbol Π_n denotes the set of all polynomials of order not greater than n.

Definition 5.1.4. Polynomial interpolation

Given the n+1 support points, find $F(x; a_0, \dots, a_n) \in \Pi_n$

$$F(x; a_0, \dots, a_n) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

such that Eq. (5.1.2) is satisfied, then it is a polynomial interpolation problem.

• Note that there are n+1 support points, the order of F cannot be greater than n.

Numerical Analysis (Interpolation)

Unit 5 Interpolation

Apr. 5, 2017

Interpolation of Polynomials - Example

Example 5.1.5.

Find $F(x) \in \Pi_2$ such that F(0) = 2, F(1) = 1, F(2) = 2.

• Answer: $F(x) = x^2 - 2x + 2$

• Note that $F(x) = a_0 + a_1 x + a_2 x^2$ can be found with the constraints

$$F(0) = a_0 + a_1 \cdot 0 + a_2 \cdot 0^2 = 2$$

$$F(1) = a_0 + a_1 \cdot 1 + a_2 \cdot 1^2 = 1$$

$$F(2) = a_0 + a_1 \cdot 2 + a_2 \cdot 2^2 = 2$$

Or

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$$

Solution: $a_0 = 2$, $a_1 = -2$, $a_2 = 1$.

- Given n+1 support points $\{(x_i,y_i), 0 \le i \le n\}$, the system of equations can be formulated easily and the solution found.
- Note that with the condition, $x_j \neq x_k$ if $j \neq k$, then the system is non-singular and there is only one solution.

Numerical Analysis (Interpolation)

Unit 5 Interpolation

Apr. 5, 2017

5 / 4

Interpolation of Polynomials - Lagrange Interpolation

• The solution can also be found using Lagrange Interpolation Formula

$$F(x) = F(0)\frac{(x-1)(x-2)}{(0-1)(0-2)} + F(1)\frac{(x-2)(x-0)}{(1-2)(1-0)} + F(2)\frac{(x-0)(x-1)}{(2-0)(2-1)}$$

$$= 2\frac{(x-1)(x-2)}{2} - x(x-2) + 2\frac{x(x-1)}{2}$$

$$= (x-1)(x-2) = x(x-2) + x(x-1) = x^2 - 2x + 2$$

Definition 5.1.6. Lagrange Interpolation Formula

Given support points $\{(x_i, y_i), 0 \leq i \leq n\}$, then the Lagrange interpolation formula is

$$F(x) = \sum_{i=0}^{n} y_i \prod_{k=0, k \neq i}^{n} \frac{x - x_k}{x_i - x_k}.$$
 (5.1.3)

Or let

$$L_i(x) = \prod_{k=0}^{n} \frac{x - x_k}{x_i - x_k}$$
 (5.1.4)

then

$$F(x) = \sum_{i=0}^{n} y_i L_i(x).$$
 (5.1.5)

Numerical Analysis (Interpolation)

Unit 5 Interpolation

Apr. 5, 2017

Lagrange Interpolation Formula

Note that

$$L_{i}(x) = \prod_{k=0, k \neq i}^{n} \frac{x - x_{k}}{x_{i} - x_{k}}$$

$$= \frac{(x - x_{0}) \cdots (x - x_{i-1})(x - x_{i+1}) \cdots (x - x_{n})}{(x_{i} - x_{0}) \cdots (x_{i} - x_{i-1})(x_{i} - x_{i+1}) \cdots (x_{i} - x_{n})}.$$

And we have

$$L_i(x_i) = 1, (5.1.6)$$

$$L_i(x_j) = 0, \text{ if } i \neq j.$$
 (5.1.7)

Thus $F(x_i) = y_i$ always holds. Since the degrees of Eqs. (5.1.3), (5.1.4), (5.1.5) are all n, the Lagrange Interpolation Formula is the solution to the polynomial interpolation problem.

Theorem 5.1.7

Given n+1 support points, $\{(x_i,y_i), 0 \le i \le n\}$ with $x_i \ne x_j$ if $i \ne j$, then there exists a unique polynomial $F \in \Pi_n$ with

$$F(x_i) = y_i, 0 \le i \le n.$$

Numerical Analysis (Interpolation)

Unit 5 Interpolation

Apr. 5, 2017

7 / 40

Interpolation of Polynomials, n=4 Case

- In the right figure, $F_i = y_i L_i(x)$.
- Note that
 - $F(x_i) = y_i, 0 \le i \le 4.$
 - Between support points, the function can be different than one's expectation.
 - Especially for small x and large x.

Interpolation of Polynomials

- Note that
 - Higher order interpolations (more support points) the interpolation is more accurate.
 - But it is relatively less accurate for the regions closer to x_0 and x_n .
 - It is not a good idea to use this formula for extrapolation.

Lagrange Formula Plots, II

Lagrange Formula Plots, III

- $L_i(x_j) = \delta_{i,j}$ for x_i , $0 \le i \le n$ • $L_i(x)$, $x \ne x_i$, is relatively small in the vicinity of x_i
 - $\bullet \ \, \text{But it can be large for small } x \\ \text{and large } x \\$

Lagrange Formula Plots, $y_i = 1$

Lagrange Formula Plots, $y_i=1$, II

- Sum of L_i reproduces $y_j = F(x_j)$ when F's order is low
 - If the data can be represented using polynomial of order less than n, then the Lagrange Interpolation should give exact solution
- For large n, watch out for numerical errors

1

Simplifying Calculation - Example

In the following, we use the notation

$$F_{i_0 i_1 \cdots i_k}(x) = \sum_{k=i_0, i_1, \cdots, i_k} y_k L_k(x)$$

ullet Example with 3 support points, $\{(x_0,y_0),(x_1,y_1),(x_2,y_2)\}$, the Lagrange interpolation formula is

$$F_{012}(x) = y_0 \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} + y_1 \frac{(x - x_2)(x - x_0)}{(x_1 - x_2)(x_1 - x_0)} + y_2 \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

And

$$\frac{(x-x_0)F_{12}(x) - (x-x_2)F_{01}(x)}{x_2 - x_0} = \frac{x-x_0}{x_2 - x_0}F_{12}(x) - \frac{x-x_2}{x_2 - x_0}F_{01}(x)$$

$$= \frac{x-x_0}{x_2 - x_0} \left(y_1 \frac{x-x_2}{x_1 - x_2} + y_2 \frac{x-x_1}{x_2 - x_1}\right) - \frac{x-x_2}{x_2 - x_0} \left(y_0 \frac{x-x_1}{x_0 - x_1} + y_1 \frac{x-x_0}{x_1 - x_0}\right)$$

$$= y_2 \frac{(x-x_0)(x-x_1)}{(x_2 - x_0)(x_2 - x_1)} + y_1 \frac{(x-x_0)(x-x_2)}{x_2 - x_0} \left(\frac{1}{x_1 - x_2} - \frac{1}{x_1 - x_0}\right)$$

$$+ y_0 \frac{(x-x_1)(x-x_2)}{(x_0 - x_1)(x_0 - x_2)}$$

$$= F_{012}(x)$$

Unit 5 Interpolation

Neville's Algorithm

Thus

$$F_{012}(x) = \frac{(x-x_0)F_{12}(x) - (x-x_2)F_{01}(x)}{x_2 - x_0}$$
 • In general, it can be shown

$$F_{i_0 i_1 \cdots i_k}(x) = \frac{(x - x_{i_0}) F_{i_1 i_2 \cdots i_k}(x) - (x - x_{i_k}) F_{i_0 i_1 \cdots i_{k-1}}(x)}{x_{i_k} - x_{i_0}}.$$
 (5.1.8)

Theorem 5.1.8. Neville's Algorithm

Given n+1 support points $\{(x_i,y_i)\}, i=0,\cdots,n$, with $x_j\neq x_k$ if $j\neq k$, then the Lagrange interpolation at the point x, $F_{01\cdots n}(x)$, can be calculated using the following recursion formula:

$$F_i(x) = y_i, (5.1.9)$$

$$F_{i_0 i_1 \cdots i_k}(x) = \frac{(x - x_{i_0}) F_{i_1 i_2 \cdots i_k}(x) - (x - x_{i_k}) F_{i_0 i_1 \cdots i_{k-1}}(x)}{x_{i_k} - x_{i_0}}.$$
 (5.1.10)

Neville's Algorithm – Implementation

- Neville's algorithm is a recursion formula and can be implemented using recursive function directly
- Assuming the support points are stored in two arrays XS and YS then following function calculates Lagrange interpolation at point x using Neville's algorithm

Algorithm 5.1.9. Neville's Algorithm

```
double NEV(double x,double XS[],double YS[],int i0,int ik)
{
    if (i0==ik) return YS[i0];
    else return
        ((x-XS[i0])*NEV(x,XS,YS,i0+1,ik)
         -(x-XS[ik])*NEV(x,XS,YS,i0,ik-1))/(XS[ik]-XS[i0]);
}
```

• For example (5.1.5), XS[3]= $\{0,1,2\}$, YS[3]= $\{2,1,2\}$ and NEV(x, XS, YS, 0, 2) calculates the value of Lagrange Interpolation formula at x.

Neville's Algorithm Evaluation

- The recursive form of Neville's algorithm is not the most efficient implementation.
- For example, with 4 support points, Neville's algorithm expands to

$$\begin{array}{c}
-\frac{x-X_{2}}{X_{2}-X_{0}}F_{01} & \begin{array}{c}
-\frac{x-X_{1}}{X_{1}-X_{0}}F_{0} \\
+\frac{x-X_{0}}{X_{1}-X_{0}}F_{1}
\end{array} \\
+\frac{x-X_{0}}{X_{2}-X_{0}}F_{12} & \begin{array}{c}
-\frac{x-X_{2}}{X_{1}-X_{0}}F_{1} \\
+\frac{x-X_{1}}{X_{2}-X_{1}}F_{2}
\end{array} \\
+\frac{x-X_{1}}{X_{2}-X_{1}}F_{2} & \begin{array}{c}
-\frac{x-X_{2}}{X_{2}-X_{1}}F_{1} \\
+\frac{x-X_{1}}{X_{2}-X_{1}}F_{2}
\end{array} \\
+\frac{x-X_{1}}{X_{3}-X_{0}}F_{123} & \begin{array}{c}
-\frac{x-X_{3}}{X_{3}-X_{1}}F_{12} \\
+\frac{x-X_{1}}{X_{3}-X_{1}}F_{23}
\end{array} \\
+\frac{x-X_{1}}{X_{3}-X_{1}}F_{23} & \begin{array}{c}
-\frac{x-X_{3}}{X_{3}-X_{2}}F_{2} \\
+\frac{x-X_{2}}{X_{3}-X_{2}}F_{3}
\end{array}$$

- Many repeated evaluations were performed
- Total number of function calls is $2^{n+1} 1$ for n+1 support points

Improving Neville's Algorithm

Note that Neville's evaluation sequence can be rearranged as the following

- In this way, the number of evaluation is reduced to $\frac{(n+1)(n+2)}{2}$
 - Very efficient, around 2X faster than Lagrange interpolation formula
- Furthermore, all values of $F_{i\cdots k}$ can be stored in the same array NS

Numerical Analysis (Interpolation)

Unit 5 Interpolation

Non-recursive Neville's Algorithm

• Assuming NS stores the temporary values of F(x), Neville's algorithm can be rewritten in the following non-recursive form

gorithm 5.1.10. Non-recursive Neville's Algorithm

```
double NEV(double x,double XS[],double YS[],int n)
{
    double NS[n];
    int i,j,k;
    for (i=0; i<n; i++) NS[i]=YS[i];
    for (k=1; k< n; k++) {
        for (j=0; j< n-k; j++) {
            NS[j] = ((x-XS[j])*NS[j+1]-(x-XS[k+j])*NS[j])
                   /(XS[j+k]-XS[j]);
        }
    }
    return NS[0];
}
```

- The argument n is the number of support points
 - Instead of n+1 support points

Neville's Algorithm - the 2nd Form

• The equation for Neville's algorithm, Eq. (5.1.10), can be rewritten as

$$F_{i_{0}i_{1}\cdots i_{k}}(x) = F_{i_{1}i_{2}\cdots i_{k}}(x) + \frac{F_{i_{1}i_{2}\cdots i_{k}}(x) - F_{i_{0}i_{1}\cdots i_{k-1}}(x)}{\frac{x - x_{i_{0}}}{x - x_{i_{k}}} - 1}$$

$$= F_{i_{1}i_{2}\cdots i_{k}}(x) + \frac{(F_{i_{1}i_{2}\cdots i_{k}}(x) - F_{i_{0}i_{1}\cdots i_{k-1}}(x))(x - x_{i_{k}})}{x_{i_{k}} - x_{i_{0}}}$$

$$= \frac{F_{i_{1}i_{2}\cdots i_{k}}(x)(x_{i_{k}} - x_{i_{0}} + x - x_{i_{k}}) - F_{i_{0}i_{1}\cdots i_{k-1}}(x)(x - x_{i_{k}})}{x_{i_{k}} - x_{i_{0}}}$$

$$= \frac{(x - x_{i_{0}})F_{i_{1}i_{2}\cdots i_{k}}(x) - (x - x_{i_{k}})F_{i_{0}i_{1}\cdots i_{k-1}}(x)}{x_{i_{k}} - x_{i_{0}}}$$

- This leads to a slightly different implementation
 - Recursive version is straightforward
 - Non-recursive version is also straightforward

Numerical Analysis (Interpolation)

Unit 5 Interpolation

Apr. 5, 2017

21 / 4

Neville's Algorithm - the 3rd Form

- The 3rd form of Neville's algorithm can be defined as following
- Given n+1 support points $\{(x_i,y_i), 0 \leq i \leq n\}$, let

$$Q_{i}(x) = D_{i}(x) = y_{i}$$

$$Q_{i_{0}i_{1}\cdots i_{k}}(x) = F_{i_{0}i_{1}\cdots i_{k}}(x) - F_{i_{1}i_{2}\cdots i_{k}}(x)$$

$$D_{i_{0}i_{1}\cdots i_{k}}(x) = F_{i_{0}i_{1}\cdots i_{k}}(x) - F_{i_{0}i_{1}\cdots i_{k-1}}(x)$$
(5.1.12)

- Note that $Q_{i_0 i_1 \cdots i_k}(x)$ is the difference of two polynomial interpolations; one for the support points $\{(x_i,y_i), 0 \leq i \leq k\}$ and the other for the support points $\{(x_i,y_i), 1 \leq i \leq k\}$. The order of the first polynomial is k; while the latter is k-1.
- $D_{i_0 i_1 \cdots i_k}(x)$ is also the difference of polynomials of two sets of support points. And their orders differ by 1 also.
- Then

$$Q_{i_{0}i_{1}\cdots i_{n}}(x) + Q_{i_{1}i_{2}\cdots i_{n}}(x) + \cdots + Q_{i_{n-1}i_{n}}(x) + Q_{i_{n}}(x)$$

$$= F_{i_{0}i_{1}\cdots i_{n}}(x) - F_{i_{1}i_{2}\cdots i_{n}}(x) + F_{i_{1}i_{2}\cdots i_{n}}(x) - F_{i_{2}i_{3}\cdots i_{n}}(x) + \cdots$$

$$+ F_{i_{n-1}i_{n}}(x) - F_{i_{n}}(x) + F_{i_{n}}(x)$$

$$= F_{i_{0}i_{1}\cdots i_{n}}(x)$$

Neville's Algorithm - the 3rd Form, II

Thus,

$$\sum_{j=0}^{n} Q_{i_{j}\cdots i_{n}}(x) = F_{i_{0}i_{1}\cdots i_{n}}(x). \tag{5.1.13}$$
Eve

Furthermore, we also have

$$Q_{i_0 \cdots i_k}(x) = \left[D_{i_1 \cdots i_k}(x) - Q_{i_0 \cdots i_{k-1}}(x) \right] \frac{x_i - x}{x_{i-k} - x_i}$$
 (5.1.14)

ore, we also have
$$Q_{i_0\cdots i_k}(x) = \left[D_{i_1\cdots i_k}(x) - Q_{i_0\cdots i_{k-1}}(x)\right] \frac{x_i-x}{x_{i-k}-x_i} \tag{5.1.14}$$

$$D_{i_0\cdots i_k}(x) = \left[D_{i_1\cdots i_k}(x) - Q_{i_0\cdots i_{k-1}}(x)\right] \frac{x_{i-k}-x}{x_{i-k}-x_i} \tag{5.1.15}$$
 ag Eqs (5.1.12, 5.1.13, 5.1.14, 5.1.15) we have the 3rd form of

- Combining Eqs (5.1.12, 5.1.13, 5.1.14, 5.1.15) we have the 3rd form of Neville's algorithm
- This form improves the accuracy of the interpolation since the difference of polynomials are calculated and then summed up

Numerical Analysis (Interpolation)

Newton's Interpolation Formula

- Neville's algorithm can calculate a single interpolated value F(x) rather than the interpolating formula.
- Newton's interpolation formula can calculate the interpolating polynomial
- Given the n+1 support points $\{(x_i,y_i)\}$, $0 \le i \le n$ with $x_j \ne x_k$ if $j \ne k$, the interpolating polynomial is assumed to have the following form

$$F(x) = F_{01}...n(x)$$

$$= a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \cdots$$

$$+ a_n(x - x_0) \cdots (x - x_{n-1}). \tag{5.1.16}$$
ave
$$y_0 = F(x_0) = a_0$$

• Thus, we have

$$y_0 = F(x_0) = a_0$$

$$y_1 = F(x_1) = a_0 + a_1(x_1 - x_0)$$

$$y_2 = F(x_2) = a_0 + a_1(x_2 - x_0) + a_2(x_2 - x_0)(x_2 - x_1)$$

Numerical Analysis (Interpolation)

Newton's Interpolation Formula, II

The coefficients can be calculated as following

$$a_{1} = \frac{y_{1} - a_{0}}{x_{1} - x_{0}}$$

$$a_{2} = \frac{y_{2} - a_{0} - a_{1}(x_{2} - x_{0})}{(x_{2} - x_{0})(x_{2} - x_{1})}$$

$$\dots$$

$$y_{n} - a_{0} - \dots - a_{n-1} \prod_{i=0}^{n-2} (x_{n} - x_{i})$$

$$a_{n} = \frac{\sum_{i=0}^{n-1} (x_{n} - x_{i})}{\sum_{i=0}^{n-1} (x_{n} - x_{i})}$$
(5.1.17)

• It needs n(n-1) multiplications and n-1 divisions to calculate all coefficients.

Divided Difference

• Let $F_{i_0 i_1 \cdots i_{k-1}}(x)$ be the polynomial of the support points $\{(x_{i_i},y_{i_j})\}$, $j=0,\cdots,k-1$, and $F_{i_0i_1\cdots i_k}(x)$ be the polynomial of the support points $\{(x_{i_j},y_{i_j})\}$, $j=0,\cdots,k$. Then there is a unique coefficient $a_{i_0\,i_1\cdots i_k}$ such that

$$F_{i_0 i_1 \cdots i_k}(x) = F_{i_0 i_1 \cdots i_{k-1}}(x) + a_{i_0 i_1 \cdots i_k}(x - x_{i_0})(x - x_{i_1}) \cdots (x - x_{i_{k-1}})$$

And thus

$$F_{i_0 i_1 \dots i_k}(x) = a_{i_0} + a_{i_0 i_1}(x - x_{i_0}) + \dots + a_{i_0 i_1 \dots i_k}(x - x_{i_0})(x - x_{i_1}) \dots (x - x_{i_{k-1}}).$$

Note that

$$F_{i_0\,i_1\cdots i_k}(x)=F_{i_0\,i_1\cdots i_{k-1}}(x)+a_{i_0\,i_1\cdots i_k}(x-x_{i_0})(x-x_{i_1})\cdots(x-x_{i_{k-1}}).$$
 In the finite is a unique estimation
$$F_{i_0\,i_1\cdots i_k}(x)=F_{i_0\,i_1\cdots i_{k-1}}(x)+a_{i_0\,i_1\cdots i_k}(x-x_{i_0})(x-x_{i_1})\cdots(x-x_{i_{k-1}}).$$
 In the finite is a unique estimation
$$F_{i_0\,i_1\cdots i_k}(x)=a_{i_0}+a_{i_0\,i_1}(x-x_{i_0})+\cdots\\ +a_{i_0\,i_1\cdots i_k}(x-x_{i_0})+\cdots\\ +a_{i_0\,i_1\cdots i_{k-1}}(x-x_{i_0})(x-x_{i_1})\cdots(x-x_{i_{k-1}}).$$
 The finite is a unique estimation of the finite is a unique esti

Both are polynomial interpolation formulas and (5.1.10) applies

Divided Difference, II

And $(x_{i_k} - x_{i_0}) F_{i_0 i_1 \cdots i_k}(x) = (x - x_{i_0}) F_{i_1 i_2 \cdots i_k}(x) - (x - x_{i_k}) F_{i_0 i_1 \cdots i_{k-1}}(x)$

• Compare the coefficient of the x^k term

$$(x_{i_k} - x_{i_0})a_{i_0 i_1 \cdots i_k} = a_{i_1 i_2 \cdots i_k} - a_{i_0 i_1 \cdots i_{k-1}}$$

Thus

$$(x_{i_k} - x_{i_0}) a_{i_0 i_1 \dots i_k} = a_{i_1 i_2 \dots i_k} - a_{i_0 i_1 \dots i_{k-1}}$$

$$a_{i_0 i_1 \dots i_k} = \frac{a_{i_1 i_2 \dots i_k} - a_{i_0 i_1 \dots i_{k-1}}}{x_{i_k} - x_{i_0}}$$
(5.1.18)

- This is the k'th divided differences.
- Since this divided difference is uniquely determined by the k support points, it is invariant to the permutation of the support points.

Theorem 5.1.11.

The divided differences $a_{i_0\,i_1\cdots i_k}$ are invariant to permutations of the indices i_0, i_1, \cdots, i_k . That is, if

$$(j_0, j_1, \cdots, j_k) = (i_{s_0}, i_{s_1}, \cdots, i_{s_k})$$

is a permutation of the indices i_0, i_1, \dots, i_k m then

$$a_{j_0,j_1,\dots,j_k} = a_{i_0,i_1,\dots,i_k}.$$

Numerical Analysis (Interpolation)

Divided Differences – Implementation

• The coefficients of Eq. (5.1.16) can be calculated efficiently using the following algorithm.

Algorithm 5.1.12. Divided Difference

```
double DDif(double XS[], double YS[], double A[], int i0, int ik)
{
  double result;
  if (i0==ik) result=YS[i0];
  else {
    result=(DDif(XS,YS,A,i0+1,ik)-DDif(XS,YS,A,i0,ik-1))
      /(XS[ik]-XS[i0]);
  }
  if (i0==0) A[ik]=result;
  return result;
}
```

- After executing DDif(XS,YS,A,O,n), the array element A[k] contains the k'th divided difference.
- This algorithm is more efficient than the direction implementation of Eq. (5.1.17) – Twice faster.

Divided Differences Function

 The divided differences is a useful function in numerical analysis and it is defined as following.

Definition 5.1.13. Divided differences.

Given a function $f: \mathbb{R} \to \mathbb{R}$ and a set $\{x_i\}$, $x_i \in \mathbb{R}$, the divided differences is

$$f[x_i] = f(x_i),$$

$$f[x_0, x_1, \dots, x_k] = \frac{f[x_1, x_2, \dots, x_k] - f[x_0, x_1, \dots, x_{k-1}]}{x_k - x_0}$$
(5.1.19)

• Example:

$$f[x_0] = f(x_0)$$

$$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$$

$$= \frac{f(x_0)(x_1 - x_2) + f(x_1)(x_2 - x_0) + f(x_2)(x_0 - x_1)}{(x_1 - x_0)(x_2 - x_1)(x_0 - x_2)}$$

Numerical Analysis (Interpolation)

Unit 5 Interpolation

Apr. 5, 2017

29 / 40

Divided Differences Function - Properties

Theorem 5.1.14.

The divided difference $f[x_0, x_1, \cdots, x_k]$ is invariant to the permutation of x_0, x_1, \cdots, x_k .

Theorem <u>5.1.15</u>.

If f(x) is a polynomial of degree N, then

$$f[x_0, x_1, \cdots, x_k] = 0$$

for k > N.

 With the definitions of divided differences, the Newton Interpolation formula can be written as

$$F_{i_0 i_1 \cdots i_n}(x) = f[x_{i_0}] + f[x_{i_0}, x_{i_1}](x - x_{i_0}) + \cdots + f[x_{i_0}, x_{i_1}, \cdots x_{i_n}](x - x_{i_0}) \cdots (x - x_{i_{n-1}})$$
(5.1.20)

Numerical Analysis (Interpolation)

Unit 5 Interpolation

Apr. 5, 2017 30

Divided Differences and Derivatives

By definition,

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

If $x_1 = x_0 + h$ and $h \ll 1$

$$f[x_0, x_0 + h] = \frac{f(x_0 + h) - f(x_0)}{h} \longrightarrow f'(x_0)$$
 as $h \to 0$

Thus, $f[x_0, x_0] = f'(x_0)$

• Next, let $x_1 = x_0 + h$ and $x_2 = x_1 + h = x_0 + 2h$

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$$

$$= \frac{f[x_0 + h, x_0 + 2h] - f[x_0, x_0 + h]}{2h}$$

$$\sim \frac{f'(x_0 + h) - f'(x_0)}{2h}$$

$$f''(x_0)$$

Thus, $f[x_0, x_0, x_0] = \frac{f''(x_0)}{2}$

It can be shown that

$$f[x_0, x_1, \cdots, x_k] \sim \frac{f^{(k)}(x_0)}{k!}$$
 if $x_0 = x_1 = \cdots = x_k$

Numerical Analysis (Interpolation)

Newton's Interpolation Formula

Newton's interpolation formula can be written as

$$F(x) = F_{01\cdots n}(x)$$

$$= f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \cdots$$

$$+ f[x_0, x_1, \cdots, x_n](x - x_0) \cdots (x - x_{n-1})$$
(5.1.21)

Compare that to Taylor Series

$$F(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''}{2}(x - x_0)^2 + \dots + \frac{f^{(n)}}{n!}(x - x_0)^n$$

When the support abscissas has x's close to each other then the Newton interpolation formula approaches Taylor series expansion.

Error in Polynomial Interpolation

 To study the error in polynomial approximation, we assume the underlying function, f, of the support points, $\{(x_i, y_i)\}$, $0 \le i \le n$, is known and the error is defined as

$$f(x) - F_{01...n}(x) (5.1.22)$$

- error is defined as $f(x)-F_{01\cdots n}(x) \tag{5.1.}$ Note that $f(x_i)=y_i$. And when $x=x_i,\ 0\leq i\leq n$, the error is zero since $F_{01\cdots n}$ is a polynomial interpolation of the support points.
- Suppose one wants to find the error at $x=\bar{x}$, i.e., $f(\bar{x})-F_{01\cdots n}(\bar{x})$, let's define

$$x_m = \min\{x\}, x \in \{x_0, x_1, \dots, \bar{x}\},\ x_M = \max\{x\}, x \in \{x_0, x_1, \dots, \bar{x}\}.$$

Numerical Analysis (Interpolation)

Error in Polynomial Interpolation, II

Given the above, we have

Theorem 5.1.16.

If f has an (n+1)st derivative, then for any \bar{x} there is a $\xi \in [x_m,x_M]$ such that

$$f(\bar{x}) - F_{01\cdots n}(\bar{x}) = \frac{\omega(\bar{x})f^{(n+1)}(\xi)}{(n+1)!},$$
 (5.1.23)

where

$$\omega(x) = (x - x_0)(x - x_1) \cdots (x - x_n). \tag{5.1.24}$$

PROOF. Consider the following function

$$G(x) = f(x) - F_{01\cdots n}(x) - K\omega(x)$$

 $G(x_i)=0, 0\leq i\leq n$, since $F_{01\cdots n}(x)$ is a polynomial interpolation and by the definition of ω . We also set $G(\bar{x}) = 0$. Thus, G(x) has n+2 zeros in $[x_m, x_M]$. By Rolle's theorem, G'(x) has at least n+1 zeros in $[x_m, x_M]$. And, G''(x) has n zeros in the same interval, and so on. And finally, $G^{(n+1)}$ has at least one zero $\xi \in [x_m, x_M]$.

Since $F_{01...n}(x)$ is a polynomial of order n, $F^{(n+1)}(x) = 0$.

Error in Polynomial Interpolation, III

Thus, we have

$$G^{(n+1)}(\xi) = f^{(n+1)}(\xi) - K(n+1)! = 0$$

Thus
$$K = \frac{f^{(n+1)}(\xi)}{(n+1)!}$$
.

And this proves the theorem.

- Note
 - The order of $\omega(\bar{x})$ increases with n
 - If the derivatives of f is bounded in $[x_m, x_M]$, i.e., there is an integer k and a $C \in \mathbb{R}$, $|f^{(j)}(x)| \leq C$ for j > k, then $f(x) F_{01\cdots n}(x) \to 0$ as $n \to \infty$.
- In general, the error of polynomial interpolation does not uniformly decrease as n increases.
 - Example $f(x) = \sqrt{x}$.
 - ullet If f has break points, where the derivatives cannot be defined.

Numerical Analysis (Interpolation)

Unit 5 Interpolation

Apr. 5, 2017

35 / 40

Hermite Interpolation

• Suppose the at each x_i of the support abscissas not only the value of the support ordinates, y_i , $0 \le i \le m$, are known but also the derivatives, $y_i^{(k)}$, $0 \le k \le n_i$, up to n_i th order are also known. The Hermite interpolation problem is to find a polynomial, F, of degree not greater than $n = (\sum_i (n_i + 1)) - 1$ such that

$$F^{(k)}(x_i) = y_i^{(k)}, 0 \le i \le m, 0 \le k \le n_i.$$
 (5.1.25)

Example 5.1.17.

To find a polynomial of degree not greater than 4 such that F(0)=0, F'(0)=0, F(1)=0, F(2)=1, F(3)=1.

- The support abscissas are are $\{x_0, x_1, x_2, x_3\} = \{0, 1, 2, 3\}.$
- The support ordinates are $\{y_0, y_0, y_1, y_2, y_3\}$.
- Note that there are 5 conditions and thus a polynomial of order not greater than 4 can be uniquely determined.

Hermite Interpolation, II

• Assume $F = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4$, then we have

$$a_0 = 0$$

$$a_1 = 0$$

$$a_0 + a_1 + a_2 + a_3 + a_4 = 0$$

$$a_0 + a_1 \cdot 2 + a_2 \cdot 4 + a_3 \cdot 8 + a_4 \cdot 16 = 1$$

$$a_0 + a_1 \cdot 3 + a_2 \cdot 9 + a_3 \cdot 27 + a_4 \cdot 81 = 1$$

This has the following solution:

$$a_0=0, a_1=0, a_2=-\frac{23}{36}, a_3=\frac{5}{6}, a_4=-\frac{7}{36}.$$
 And $F=-\frac{23}{36}x^2+\frac{5}{6}x^3-\frac{7}{36}x^4$

Numerical Analysis (Interpolation)

Unit 5 Interpolation

Apr. 5, 2017

37 / 40

Hermite Interpolation, III

• Note that difference adding $y_0^\prime=0$ to the support points.

Hermite Interpolation, IV

• Interpolation with derivative support ordinates can also be done using Newton's interpolation formula (5.1.21).

$$F(x) = F_{01\cdots n}(x)$$

$$= f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \cdots$$

$$+ f[x_0, x_1, \cdots, x_n](x - x_0) \cdots (x - x_{n-1})$$

• In this example define support abscissas and ordinates as Support abscissas = $\{x_i\} = \{0, 0, 1, 2, 3\}$, Support ordinates = $\{y_i\}$ = $\{0, 0, 0, 1, 1\}$, Thus,

$$f[x_0] = y_0 = 0$$

$$f[x_0, x_1] = y'_0 = 0$$

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} = \frac{0 - 0}{1} = 0$$

$$f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0} = \frac{1}{4}$$

$$f[x_0, x_1, x_2, x_3, x_4] = \frac{f[x_1, x_2, x_3, x_4] - f[x_0, x_1, x_2, x_3]}{x_4 - x_0} = -\frac{7}{36}.$$

Numerical Analysis (Interpolation)

Unit 5 Interpolation

Summary

- Interpolation problems
- Interpolation by polynomials
- Lagrange interpolation formula
- Neville's algorithm
 - Recursive and nonrecursive forms
- Newton's interpolation formula
 - Divided differences
- Errors
- Hermite interpolation