MyVensim

Generated by Doxygen 1.9.6

1 bcc-322	1
2 Hierarchical Index	3
2.1 Class Hierarchy	3
3 Class Index	5
3.1 Class List	5
4 File Index	7
4.1 File List	7
5 Class Documentation	9
5.1 Flow Class Reference	9
5.1.1 Detailed Description	10
5.1.2 Constructor & Destructor Documentation	10
5.1.2.1 Flow() [1/3]	11
5.1.2.2 Flow() [2/3]	11
5.1.2.3 Flow() [3/3]	11
5.1.2.4 ~Flow()	12
5.1.3 Member Function Documentation	12
5.1.3.1 execute()	12
5.1.3.2 getName()	12
5.1.3.3 getSource()	13
5.1.3.4 getTarget()	13
5.1.3.5 operator"!=()	14
5.1.3.6 operator=()	14
5.1.3.7 operator==()	15
5.1.3.8 setName()	15
5.1.3.9 setSource()	16
5.1.3.10 setTarget()	16
5.1.4 Member Data Documentation	16
5.1.4.1 name	16
5.1.4.2 source	16
5.1.4.3 target	17
5.2 FlowExponential Class Reference	17
5.2.1 Detailed Description	19
5.2.2 Constructor & Destructor Documentation	19
5.2.2.1 FlowExponential() [1/3]	19
5.2.2.2 FlowExponential() [2/3]	19
5.2.2.3 FlowExponential() [3/3]	20
5.2.2.4 ~FlowExponential()	20
5.2.3 Member Function Documentation	20
5.2.3.1 execute()	20
5.3 FlowLogistical Class Reference	21

5.3.1 Detailed Description	22
5.3.2 Constructor & Destructor Documentation	22
5.3.2.1 FlowLogistical() [1/3]	23
5.3.2.2 FlowLogistical() [2/3]	23
5.3.2.3 FlowLogistical() [3/3]	23
$5.3.2.4 \sim$ FlowLogistical()	24
5.3.3 Member Function Documentation	24
5.3.3.1 execute()	24
5.4 Model Class Reference	24
5.4.1 Detailed Description	26
5.4.2 Member Typedef Documentation	26
5.4.2.1 itFlow	26
5.4.2.2 itSystem	26
5.4.3 Constructor & Destructor Documentation	26
5.4.3.1 Model() [1/3]	26
5.4.3.2 Model() [2/3]	26
5.4.3.3 Model() [3/3]	27
5.4.3.4 ~Model()	27
5.4.4 Member Function Documentation	27
5.4.4.1 add() [1/2]	27
5.4.4.2 add() [2/2]	27
5.4.4.3 clear()	29
5.4.4.4 getFlowBegin()	30
5.4.4.5 getFlowEnd()	30
5.4.4.6 getFlowSize()	30
5.4.4.7 getName()	30
5.4.4.8 getSystemBegin()	31
5.4.4.9 getSystemEnd()	31
5.4.4.10 getSystemSize()	31
5.4.4.11 remove() [1/2]	31
5.4.4.12 remove() [2/2]	32
5.4.4.13 run()	32
5.4.4.14 setName()	33
5.4.4.15 show()	33
5.4.5 Member Data Documentation	34
5.4.5.1 flows	34
5.4.5.2 name	34
5.4.5.3 systems	34
5.5 System Class Reference	35
5.5.1 Detailed Description	35
5.5.2 Constructor & Destructor Documentation	35
5.5.2.1 System() [1.75]	36

	5.5.2.2 System() [2/5]	36
	5.5.2.3 System() [3/5]	36
	5.5.2.4 System() [4/5]	36
	5.5.2.5 System() [5/5]	37
	5.5.2.6 ~System()	37
	5.5.3 Member Function Documentation	37
	5.5.3.1 getName()	37
	5.5.3.2 getValue()	38
	5.5.3.3 operator=()	38
	5.5.3.4 setName()	39
	5.5.3.5 setValue()	39
	5.5.4 Member Data Documentation	40
	5.5.4.1 name	40
	5.5.4.2 value	40
o I	File Documentation	41
	6.1 README.md File Reference	41
	6.2 src/flow.cpp File Reference	41
	6.3 src/flow.h File Reference	41
	6.3.1 Detailed Description	42
	6.4 flow.h	43
	6.5 src/main.cpp File Reference	43
	6.6 test/funcional/main.cpp File Reference	43
	6.6.1 Macro Definition Documentation	
	6.6.1.1 MAIN_FUNCIONAL_TESTS	44
	6.6.2 Function Documentation	44
	6.6.2.1 main()	44
	6.7 src/model.cpp File Reference	45
	6.8 src/model.h File Reference	45
	6.8.1 Detailed Description	47
	6.9 model.h	47
	6.10 src/system.cpp File Reference	48
	6.11 src/system.h File Reference	48
	6.11.1 Detailed Description	49
	6.12 system.h	49
	6.13 test/funcional/flowExponential.cpp File Reference	50
	6.14 test/funcional/flowExponential.h File Reference	50
	6.14.1 Detailed Description	51
	6.15 flowExponential.h	52
	6.16 test/funcional/flowLogistical.cpp File Reference	52
	6.17 test/funcional/flowLogistical.h File Reference	53
	6.17.1 Macro Definition Documentation	54

6.17.1.1 FLOWLOGISTIC_H	54
6.18 flowLogistical.h	54
6.19 test/funcional_funcional_tests.cpp File Reference	54
6.19.1 Function Documentation	55
6.19.1.1 complexFuncionalTest()	55
6.19.1.2 exponentialFuncionalTest()	56
6.19.1.3 logisticalFuncionalTest()	56
6.20 test/funcional_funcional_tests.h File Reference	57
6.20.1 Detailed Description	58
6.20.2 Function Documentation	59
6.20.2.1 complexFuncionalTest()	59
6.20.2.2 exponentialFuncionalTest()	60
6.20.2.3 logisticalFuncionalTest()	60
6.21 funcional_tests.h	61
Index	63

Chapter 1

bcc-322

Código referente ao trabalho prático desenvolvido para a disciplina Engenharia de Software I.

2 bcc-322

Chapter 2

Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Flow																						9
FlowExponential							 					 				 					 1	7
FlowLogistical .							 					 				 					 2	21
Model																					2	24
System				 																	3	35

4 Hierarchical Index

Chapter 3

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Flow		
	Define the interface with the methods to be implemented	9
FlowExp	onential	
	This flow class connects two systems to evaluate their final values after running an equation for	
	a given time	17
FlowLog	istical	
	This flow class connects two systems to evaluate their final value after running an equation for a	
	given time	21
Model		
	Store vectors containing the name of the model and flows and systems related to it	24
System		
	Define the interface with the methods to be implemented	35

6 Class Index

Chapter 4

File Index

4.1 File List

Here is a list of all files with brief descriptions:

src/flow.cpp	41
src/flow.h	
Contains the specifications of the flow class	41
src/main.cpp	43
src/model.cpp	45
src/model.h	
Represents the simulation model	45
src/system.cpp	48
src/system.h	
Describes the system class	48
test/funcional/flowExponential.cpp	5 0
test/funcional/flowExponential.h	
Contains the code used to run the functional exponential tests	50
test/funcional/flowLogistical.cpp	52
test/funcional/flowLogistical.h	53
test/funcional_tests.cpp	54
test/funcional_tests.h	
Runs the functional tests	57
test/funcional/main.cpp	43

8 File Index

Chapter 5

Class Documentation

5.1 Flow Class Reference

Define the interface with the methods to be implemented.

#include <flow.h>

Inheritance diagram for Flow:

Collaboration diagram for Flow:

Public Member Functions

• Flow ()

Construct a new Flow object.

• Flow (Flow &obj)

Copy a Flow object.

• Flow (const string name, System *source, System *target)

Construct a new Flow object.

virtual ∼Flow ()

Destroy the Flow object.

• string getName () const

Get the Name object.

void setName (const string name)

Set the Name object.

• System * getSource () const

Get the Source object.

void setSource (System *source)

Set the Source object.

• System * getTarget () const

Get the Target object.

void setTarget (System *target)

Set the Target object.

- bool operator== (const Flow &obj) const
- bool operator!= (const Flow &obj) const
- Flow & operator= (const Flow &obj)

Overload the '=' operator, cloning from one to the other.

• virtual float execute ()=0

Purely virtual method to be inherited by subclasses created by the user.

Protected Attributes

• string name

Name the flow.

• System * source

Assign the flow's source.

• System * target

Assign the flow's target.

5.1.1 Detailed Description

Define the interface with the methods to be implemented.

5.1.2 Constructor & Destructor Documentation

5.1 Flow Class Reference

5.1.2.1 Flow() [1/3]

```
Flow::Flow ( )
```

Construct a new Flow object.

5.1.2.2 Flow() [2/3]

```
Flow::Flow (
     Flow & obj )
```

Copy a Flow object.

Parameters

```
obj flow to be copied
```

Here is the call graph for this function:

5.1.2.3 Flow() [3/3]

Construct a new Flow object.

Parameters

name	of the flow
source	system
G <i>eneligi</i> eti by	DSY SJ&M

5.1.2.4 ∼Flow()

```
Flow::\simFlow ( ) [virtual]
```

Destroy the Flow object.

5.1.3 Member Function Documentation

5.1.3.1 execute()

```
virtual float Flow::execute ( ) [pure virtual]
```

Purely virtual method to be inherited by subclasses created by the user.

Returns

float

Implemented in FlowExponential, and FlowLogistical.

5.1.3.2 getName()

```
string Flow::getName ( ) const
```

Get the Name object.

Returns

string The name of a flow

Here is the caller graph for this function:

5.1 Flow Class Reference

5.1.3.3 getSource()

```
System * Flow::getSource ( ) const
```

Get the Source object.

Returns

System* The system that acts as a source for the flow

Here is the caller graph for this function:

5.1.3.4 getTarget()

```
System * Flow::getTarget ( ) const
```

Get the Target object.

Returns

System* The system that acts as a target for the flow

Here is the caller graph for this function:

5.1.3.5 operator"!=()

```
bool Flow::operator!= (  {\tt const\ Flow\ \&\ obj\ )}\ {\tt const}
```

5.1.3.6 operator=()

Overload the '=' operator, cloning from one to the other.

Parameters

obj flow to be cloned

Returns

Flow& A clone of the flow

5.1 Flow Class Reference 15

Here is the call graph for this function:

5.1.3.7 operator==()

```
bool Flow::operator== ( {\tt const\ Flow\ \&\ obj\ )\ const}
```

Here is the call graph for this function:

5.1.3.8 setName()

Set the Name object.

Parameters

5.1.3.9 setSource()

Set the Source object.

Parameters

source	system
--------	--------

5.1.3.10 setTarget()

Set the Target object.

Parameters

target system

5.1.4 Member Data Documentation

5.1.4.1 name

```
string Flow::name [protected]
```

Name the flow.

5.1.4.2 source

```
System* Flow::source [protected]
```

Assign the flow's source.

5.1.4.3 target

```
System* Flow::target [protected]
```

Assign the flow's target.

The documentation for this class was generated from the following files:

- src/flow.h
- src/flow.cpp

5.2 FlowExponential Class Reference

This flow class connects two systems to evaluate their final values after running an equation for a given time.

```
#include <flowExponential.h>
```

Inheritance diagram for FlowExponential:

Collaboration diagram for FlowExponential:

Public Member Functions

FlowExponential ()

Construct a new Flow Exponential object.

FlowExponential (Flow &obj)

Copy a Flow Exponential object.

• FlowExponential (const string name, System *source, System *target)

Construct a new Flow Exponential object.

virtual ∼FlowExponential ()

Destroy the Flow Exponential object.

virtual float execute ()

Run the flow's equation.

Public Member Functions inherited from Flow

• Flow ()

Construct a new Flow object.

• Flow (Flow &obj)

Copy a Flow object.

• Flow (const string name, System *source, System *target)

Construct a new Flow object.

virtual ∼Flow ()

Destroy the Flow object.

• string getName () const

Get the Name object.

void setName (const string name)

Set the Name object.

• System * getSource () const

Get the Source object.

void setSource (System *source)

Set the Source object.

System * getTarget () const

Get the Target object.

void setTarget (System *target)

Set the Target object.

- bool operator== (const Flow &obj) const
- bool operator!= (const Flow &obj) const
- Flow & operator= (const Flow &obj)

Overload the '=' operator, cloning from one to the other.

• virtual float execute ()=0

Purely virtual method to be inherited by subclasses created by the user.

Additional Inherited Members

Protected Attributes inherited from Flow

• string name

Name the flow.

· System * source

Assign the flow's source.

• System * target

Assign the flow's target.

5.2.1 Detailed Description

This flow class connects two systems to evaluate their final values after running an equation for a given time.

5.2.2 Constructor & Destructor Documentation

5.2.2.1 FlowExponential() [1/3]

```
FlowExponential::FlowExponential ( )
```

Construct a new Flow Exponential object.

5.2.2.2 FlowExponential() [2/3]

Copy a Flow Exponential object.

Parameters

obj flow to be copied

Here is the call graph for this function:

5.2.2.3 FlowExponential() [3/3]

Construct a new Flow Exponential object.

Parameters

name	of the flow
source	system
target	system

5.2.2.4 ~FlowExponential()

```
FlowExponential::~FlowExponential ( ) [virtual]
```

Destroy the Flow Exponential object.

5.2.3 Member Function Documentation

5.2.3.1 execute()

```
float FlowExponential::execute ( ) [virtual]
```

Run the flow's equation.

Returns

float The result of the calculations

Implements Flow.

The documentation for this class was generated from the following files:

- test/funcional/flowExponential.h
- test/funcional/flowExponential.cpp

5.3 FlowLogistical Class Reference

This flow class connects two systems to evaluate their final value after running an equation for a given time.

#include <flowLogistical.h>

Inheritance diagram for FlowLogistical:

Collaboration diagram for FlowLogistical:

Public Member Functions

• FlowLogistical ()

Construct a new Flow Logistical object.

FlowLogistical (Flow &obj)

Construct a new Flow Logistical object.

• FlowLogistical (const string name, System *source, System *target)

Construct a new Flow Logistical object.

virtual ∼FlowLogistical ()

Destroy the Flow Logistical object.

• virtual float execute ()

Run the flow's equation.

Public Member Functions inherited from Flow

• Flow ()

Construct a new Flow object.

• Flow (Flow &obj)

Copy a Flow object.

• Flow (const string name, System *source, System *target)

Construct a new Flow object.

virtual ∼Flow ()

Destroy the Flow object.

• string getName () const

Get the Name object.

void setName (const string name)

Set the Name object.

• System * getSource () const

Get the Source object.

void setSource (System *source)

Set the Source object.

System * getTarget () const

Get the Target object.

void setTarget (System *target)

Set the Target object.

- bool operator== (const Flow &obj) const
- bool operator!= (const Flow &obj) const
- Flow & operator= (const Flow &obj)

Overload the '=' operator, cloning from one to the other.

• virtual float execute ()=0

Purely virtual method to be inherited by subclasses created by the user.

Additional Inherited Members

Protected Attributes inherited from Flow

• string name

Name the flow.

• System * source

Assign the flow's source.

System * target

Assign the flow's target.

5.3.1 Detailed Description

This flow class connects two systems to evaluate their final value after running an equation for a given time.

5.3.2 Constructor & Destructor Documentation

5.3.2.1 FlowLogistical() [1/3]

```
FlowLogistical::FlowLogistical ( )
```

Construct a new Flow Logistical object.

5.3.2.2 FlowLogistical() [2/3]

Construct a new Flow Logistical object.

Parameters

```
obj flow to be copied
```

Here is the call graph for this function:

5.3.2.3 FlowLogistical() [3/3]

Construct a new Flow Logistical object.

Parameters

name	of the flow
source	system
G ðiððiGlét i by	DSYSJem

5.3.2.4 ~FlowLogistical()

```
FlowLogistical::~FlowLogistical ( ) [virtual]
```

Destroy the Flow Logistical object.

5.3.3 Member Function Documentation

5.3.3.1 execute()

```
float FlowLogistical::execute ( ) [virtual]
```

Run the flow's equation.

Returns

float The result of the calculations

Implements Flow.

The documentation for this class was generated from the following files:

- · test/funcional/flowLogistical.h
- test/funcional/flowLogistical.cpp

5.4 Model Class Reference

Store vectors containing the name of the model and flows and systems related to it.

```
#include <model.h>
```

Public Types

- typedef vector < Flow * >::iterator itFlow
 Set the flow vector type.
- typedef vector < System * >::iterator itSystem
 Set the system vector type.

5.4 Model Class Reference 25

Public Member Functions

• Model ()

Empty constructor of the class.

• Model (const string name)

Construct a new Model object.

Model (const string name, vector< Flow * > &flows, vector< System * > &systems)

Construct a new Model object.

virtual ∼Model ()

Destroy the Model object.

• string getName () const

Get the Name object.

void setName (const string name)

Set the Name object.

itFlow getFlowBegin ()

Get the flow from the beginning of the vector.

• itFlow getFlowEnd ()

Get the flow from the end of the vector.

• int getFlowSize ()

Get the size of the flow vector.

• itSystem getSystemBegin ()

Get the system from the beginning of the vector.

itSystem getSystemEnd ()

Get the system from the end of the vector.

• int getSystemSize ()

Get the size of the system vector.

void add (System *)

Add a system to the model.

void add (Flow *)

Add a flow to the model.

bool remove (System *)

Remove a system from the model.

bool remove (Flow *)

Remove a flow from the model.

• void clear ()

Clean the model.

• void show ()

Display the model.

• void run (int, int, int)

Execute the model based on initial time, end time and time intervals.

Protected Attributes

• string name

Name of the model.

vector< Flow * > flows

Store an array of pointer-to-flow variables.

vector< System * > systems

Store an array of pointer-to-system variables.

5.4.1 Detailed Description

Store vectors containing the name of the model and flows and systems related to it.

5.4.2 Member Typedef Documentation

5.4.2.1 itFlow

```
typedef vector<Flow*>::iterator Model::itFlow
```

Set the flow vector type.

5.4.2.2 itSystem

```
typedef vector<System*>::iterator Model::itSystem
```

Set the system vector type.

5.4.3 Constructor & Destructor Documentation

5.4.3.1 Model() [1/3]

```
Model::Model ( )
```

Empty constructor of the class.

5.4.3.2 Model() [2/3]

Construct a new Model object.

Parameters

name	of the model
------	--------------

5.4 Model Class Reference 27

5.4.3.3 Model() [3/3]

Construct a new Model object.

Parameters

name	of the model
flows	array of pointer-to-flow variables
systems	array of pointer-to-system variables

5.4.3.4 ∼Model()

```
Model::~Model ( ) [virtual]
```

Destroy the Model object.

5.4.4 Member Function Documentation

5.4.4.1 add() [1/2]

```
void Model::add (
    Flow * flow )
```

Add a flow to the model.

Parameters

```
pointer to a flow
```

5.4.4.2 add() [2/2]

Add a system to the model.

5.4 Model Class Reference 29

Parameters

pointer	to a system
---------	-------------

Here is the caller graph for this function:

5.4.4.3 clear()

void Model::clear ()

Clean the model.

Here is the caller graph for this function:

5.4.4.4 getFlowBegin()

```
Model::itFlow Model::getFlowBegin ( )
```

Get the flow from the beginning of the vector.

Returns

itFlow The flow from the beginning

5.4.4.5 getFlowEnd()

```
Model::itFlow Model::getFlowEnd ( )
```

Get the flow from the end of the vector.

Returns

itFlow The flow from the end

5.4.4.6 getFlowSize()

```
int Model::getFlowSize ( )
```

Get the size of the flow vector.

Returns

int The size of the flow vector

5.4.4.7 getName()

```
string Model::getName ( ) const
```

Get the Name object.

Returns

string The name of a model

5.4 Model Class Reference 31

5.4.4.8 getSystemBegin()

```
Model::itSystem Model::getSystemBegin ( )
```

Get the system from the beginning of the vector.

Returns

itSystem The system from the beginning

5.4.4.9 getSystemEnd()

```
Model::itSystem Model::getSystemEnd ( )
```

Get the system from the end of the vector.

Returns

itSystem The system from the end

5.4.4.10 getSystemSize()

```
int Model::getSystemSize ( )
```

Get the size of the system vector.

Returns

int The size of the system vector

5.4.4.11 remove() [1/2]

```
bool Model::remove ( {\tt Flow} \ * \ obj \ )
```

Remove a flow from the model.

Returns

true If the object and item have the same memory address false If the object and item have different memory addresses

32 Class Documentation

5.4.4.12 remove() [2/2]

Remove a system from the model.

Returns

true If the object and item have the same memory address false If the object and item have different memory addresses

5.4.4.13 run()

Execute the model based on initial time, end time and time intervals.

Parameters

int	start time
int	end time
int	how many units of time shall pass between one execution and the next

Here is the call graph for this function:

5.4 Model Class Reference 33

Here is the caller graph for this function:

5.4.4.14 setName()

Set the Name object.

Parameters

name	the model

Here is the caller graph for this function:

5.4.4.15 show()

```
void Model::show ( )
```

34 Class Documentation

Display the model.

Here is the caller graph for this function:

5.4.5 Member Data Documentation

5.4.5.1 flows

```
vector<Flow*> Model::flows [protected]
```

Store an array of pointer-to-flow variables.

5.4.5.2 name

```
string Model::name [protected]
```

Name of the model.

5.4.5.3 systems

```
vector<System*> Model::systems [protected]
```

Store an array of pointer-to-system variables.

The documentation for this class was generated from the following files:

- src/model.h
- src/model.cpp

5.5 System Class Reference

Define the interface with the methods to be implemented.

```
#include <system.h>
```

Public Member Functions

• System ()

Empty constructor of the class.

• System (const string name)

Construct a new System object.

System (float value)

Construct a new System object.

• System (System &obj)

Copy a System object.

• System (const string name, float value)

Assigns name and value to a system.

virtual ∼System ()

Destroy the System object.

• string getName () const

Get the Name object.

• void setName (const string name)

Set the Name object.

float getValue () const

Get the Value object.

void setValue (float value)

Set the Value object.

System & operator= (const System &obj)

Overload the '=' operator, cloning from one to the other.

Protected Attributes

· string name

Name the system.

• float value

Store a value for the system.

5.5.1 Detailed Description

Define the interface with the methods to be implemented.

5.5.2 Constructor & Destructor Documentation

36 Class Documentation

5.5.2.1 System() [1/5]

```
System::System ( )
```

Empty constructor of the class.

5.5.2.2 System() [2/5]

Construct a new System object.

Parameters

name of the system

5.5.2.3 System() [3/5]

Construct a new System object.

Parameters

value to be contained in that system

5.5.2.4 System() [4/5]

Copy a System object.

Parameters

obj system to be copied

Here is the call graph for this function:

5.5.2.5 System() [5/5]

Assigns name and value to a system.

Parameters

1	name	assigned to the system
١	⁄alue	assigned to the system

5.5.2.6 \sim System()

```
\texttt{System::} \sim \texttt{System ( )} \quad [\texttt{virtual}]
```

Destroy the System object.

5.5.3 Member Function Documentation

5.5.3.1 getName()

```
string System::getName ( ) const
```

Get the Name object.

38 Class Documentation

Returns

string The name of a system

Here is the caller graph for this function:

5.5.3.2 getValue()

```
float System::getValue ( ) const
```

Get the Value object.

Returns

float Value assigned to a system

Here is the caller graph for this function:

5.5.3.3 operator=()

Overload the '=' operator, cloning from one to the other.

Parameters

obj system to be cloned

Returns

System& A clone of the system

Here is the call graph for this function:

5.5.3.4 setName()

Set the Name object.

Parameters

name the system

5.5.3.5 setValue()

Set the Value object.

Parameters

value float value to be assigned to a system

40 Class Documentation

Here is the caller graph for this function:

5.5.4 Member Data Documentation

5.5.4.1 name

string System::name [protected]

Name the system.

5.5.4.2 value

float System::value [protected]

Store a value for the system.

The documentation for this class was generated from the following files:

- src/system.h
- src/system.cpp

Chapter 6

File Documentation

6.1 README.md File Reference

6.2 src/flow.cpp File Reference

#include "flow.h"
Include dependency graph for flow.cpp:

6.3 src/flow.h File Reference

Contains the specifications of the flow class.

```
#include <iostream>
#include <string>
#include "system.h"
Include dependency graph for flow.h:
```


This graph shows which files directly or indirectly include this file:

Classes

· class Flow

Define the interface with the methods to be implemented.

6.3.1 Detailed Description

Contains the specifications of the flow class.

Author

lago Andrade (iago.andrade@aluno.ufop.edu.br)

Copyright

Copyright (c) 2023

6.4 flow.h 43

6.4 flow.h

Go to the documentation of this file.

```
00001
00010 #ifndef FLOW_H
00011 #define FLOW_H
00012
00013 #include <iostream>
00014 #include <string>
00015 #include "system.h"
00016
00021 class Flow {
00022
          protected:
00027
               string name;
00032
               System *source;
00037
               System *target;
          public:
00038
00043
               Flow();
00049
               Flow(Flow &obj);
00057
               Flow(const string name, System *source, System *target);
00062
               virtual ~Flow();
00063
00069
               string getName() const;
00075
               void setName(const string name);
               System *getSource() const;
00081
00087
               void setSource(System *source);
00093
                System *getTarget() const;
00099
               void setTarget(System *target);
00100
               bool operator==(const Flow &obj) const;
bool operator!=(const Flow &obj) const;
00101
00102
00109
               Flow & operator = (const Flow & obj);
               virtual float execute() = 0;
00116 };
00117
00118 #endif
```

6.5 src/main.cpp File Reference

6.6 test/funcional/main.cpp File Reference

```
#include "funcional_tests.h"
#include "..\.\src\model.h"
#include "..\.\src\system.h"
#include dependency graph for main.cpp:
```


Macros

• #define MAIN_FUNCIONAL_TESTS

Functions

• int main ()

6.6.1 Macro Definition Documentation

6.6.1.1 MAIN_FUNCIONAL_TESTS

#define MAIN_FUNCIONAL_TESTS

6.6.2 Function Documentation

6.6.2.1 main()

int main ()

Here is the call graph for this function:

6.7 src/model.cpp File Reference

```
#include "model.h"
Include dependency graph for model.cpp:
```


6.8 src/model.h File Reference

Represents the simulation model.

```
#include <cstring>
#include <ostream>
#include <vector>
#include "flow.h"
#include "system.h"
#include "model.h"
```

Include dependency graph for model.h:

This graph shows which files directly or indirectly include this file:

Classes

• class Model

Store vectors containing the name of the model and flows and systems related to it.

6.9 model.h 47

6.8.1 Detailed Description

Represents the simulation model.

Author

```
lago Andrade ( iago.andrade@aluno.ufop.edu.br)
```

Copyright

Copyright (c) 2023

6.9 model.h

Go to the documentation of this file.

```
00001
00010 #ifndef MODEL_H
00011 #define MODEL_H
00012 #include <cstring>
00013 #include <ostream>
00014 #include <vector>
00015 #include "flow.h"
00016 #include "system.h"
00017 #include "model.h"
00018
00023 class Model {
00024
        protected:
00029
              string name;
00034
               vector<Flow*> flows;
00039
              vector<System*> systems;
00040
          private:
00041
              Model(Model& obj);
00054
               Model& operator= (const Model& obj);
00055
00056
          public:
              Model();
00061
00067
               Model(const string name);
               Model(const string name, vector<Flow*> &flows, vector<System*> &systems);
08000
               virtual ~Model();
00081
              typedef typename vector<Flow*> :: iterator itFlow;
00086
00091
              typedef typename vector<System*> :: iterator itSystem;
00092
00098
               string getName() const;
00104
               void setName(const string name);
00105
00111
               itFlow getFlowBegin();
              itFlow getFlowEnd();
int getFlowSize();
00117
00123
00124
               itSystem getSystemBegin();
00136
               itSystem getSystemEnd();
00142
               int getSystemSize();
00143
              void add(System*);
00149
00155
              void add(Flow*);
00162
               bool remove(System*);
00169
               bool remove(Flow*);
00174
               void clear();
00179
              void show();
              void run(int, int, int);
00187
00188 };
00189
00190 #endif
```

6.10 src/system.cpp File Reference

#include "system.h"
Include dependency graph for system.cpp:

6.11 src/system.h File Reference

Describes the system class.

#include <string>
#include <ostream>
Include dependency graph for system.h:

6.12 system.h 49

This graph shows which files directly or indirectly include this file:

Classes

· class System

Define the interface with the methods to be implemented.

6.11.1 Detailed Description

Describes the system class.

Author

```
lago Andrade ( iago.andrade@aluno.ufop.edu.br)
```

Copyright

Copyright (c) 2023

6.12 system.h

Go to the documentation of this file.

```
00001
00010 #ifndef SYSTEM H
00011 #define SYSTEM_H
00012
00013 #include <string>
00014 #include <ostream>
00015
00016 using namespace std;
00017
00022 class System {
00023
         protected:
00028
              string name;
00033
              float value;
00034
00035
          public:
00040
              System();
00046
              System(const string name);
00052
              System(float value);
00058
              System(System& obj);
00065
              System(const string name, float value);
00070
              virtual ~System();
00071
00077
              string getName() const;
00083
              void setName(const string name);
00089
              float getValue() const;
00095
              void setValue(float value);
00096
00103
              System& operator= (const System& obj);
00104 };
00105
00106 #endif
```

6.13 test/funcional/flowExponential.cpp File Reference

#include "flowExponential.h"
Include dependency graph for flowExponential.cpp:

6.14 test/funcional/flowExponential.h File Reference

Contains the code used to run the functional exponential tests.

#include "../../src/flow.h"

Include dependency graph for flowExponential.h:

This graph shows which files directly or indirectly include this file:

Classes

class FlowExponential

This flow class connects two systems to evaluate their final values after running an equation for a given time.

6.14.1 Detailed Description

Contains the code used to run the functional exponential tests.

Contains the code used to run the functional logistical tests.

Author

```
lago Andrade( iago.andrade@aluno.ufop.edu.br)
```

Copyright

Copyright (c) 2023

6.15 flowExponential.h

Go to the documentation of this file.

```
00001
00010 #ifndef FLOWEXPONENTIAL_H
00011 #define FLOWEXPONENTIAL_H
00012
00013 #include "../../src/flow.h"
00020 class FlowExponential : public Flow {
00021
        public:
             FlowExponential();
FlowExponential(Flow &obj);
FlowExponential(const string name, System *source, System *target);
00026
00031
00039
               virtual ~FlowExponential();
00050
               virtual float execute();
00051 };
00052
00053 #endif
```

6.16 test/funcional/flowLogistical.cpp File Reference

```
#include "flowLogistical.h"
Include dependency graph for flowLogistical.cpp:
```


6.17 test/funcional/flowLogistical.h File Reference

#include "../../src/flow.h"
Include dependency graph for flowLogistical.h:

This graph shows which files directly or indirectly include this file:

Classes

· class FlowLogistical

This flow class connects two systems to evaluate their final value after running an equation for a given time.

Macros

• #define FLOWLOGISTIC_H

6.17.1 Macro Definition Documentation

6.17.1.1 FLOWLOGISTIC_H

#define FLOWLOGISTIC_H

6.18 flowLogistical.h

Go to the documentation of this file.

```
00001
00010 #ifndef FLOWLOGISTICAL_H
00011 #define FLOWLOGISTIC_H
00012
00013 #include "../../src/flow.h"
00014
00020 class FlowLogistical : public Flow {
00021 public:
00026
          FlowLogistical();
00032
           FlowLogistical(Flow &obj);
           FlowLogistical(const string name, System *source, System *target);
virtual ~FlowLogistical();
virtual float execute();
00040
00045
00051
00052 };
00053
00054 #endif
```

6.19 test/funcional/funcional_tests.cpp File Reference

#include "funcional_tests.h"
Include dependency graph for funcional_tests.cpp:

Functions

• void exponentialFuncionalTest ()

Run the exponential test.

• void logisticalFuncionalTest ()

Run the logistical test.

• void complexFuncionalTest ()

Run the complex test, with multiple systems and flows.

6.19.1 Function Documentation

6.19.1.1 complexFuncionalTest()

```
void complexFuncionalTest ( )
```

Run the complex test, with multiple systems and flows.

Here is the call graph for this function:

Here is the caller graph for this function:

6.19.1.2 exponentialFuncionalTest()

void exponentialFuncionalTest ()

Run the exponential test.

Here is the call graph for this function:

Here is the caller graph for this function:

6.19.1.3 logisticalFuncionalTest()

void logistical Funcional Test () $\,$

Run the logistical test.

Here is the call graph for this function:

Here is the caller graph for this function:

6.20 test/funcional/funcional tests.h File Reference

Runs the functional tests.

```
#include "../../src/model.h"
#include "../../src/system.h"
#include "../../src/flow.h"
#include "flowExponential.h"
#include "flowLogistical.h"
#include <assert.h>
#include <cmath>
#include <iostream>
#include <cstdlib>
#include <cstring>
```

Include dependency graph for funcional_tests.h:

This graph shows which files directly or indirectly include this file:

Functions

• void exponentialFuncionalTest ()

Run the exponential test.

• void logisticalFuncionalTest ()

Run the logistical test.

• void complexFuncionalTest ()

Run the complex test, with multiple systems and flows.

6.20.1 Detailed Description

Runs the functional tests.

Author

lago Andrade(iago.andrade@aluno.ufop.edu.br)

Copyright

Copyright (c) 2023

6.20.2 Function Documentation

6.20.2.1 complexFuncionalTest()

```
void complexFuncionalTest ( )
```

Run the complex test, with multiple systems and flows.

Here is the call graph for this function:

Here is the caller graph for this function:

6.20.2.2 exponentialFuncionalTest()

void exponentialFuncionalTest ()

Run the exponential test.

Here is the call graph for this function:

Here is the caller graph for this function:

6.20.2.3 logisticalFuncionalTest()

void logistical Funcional Test () $\,$

Run the logistical test.

6.21 funcional_tests.h 61

Here is the call graph for this function:

Here is the caller graph for this function:

6.21 funcional_tests.h

Go to the documentation of this file.

```
00001
00010 #include "../../src/model.h"
00011 #include "../../src/system.h"
00012 #include "../../src/flow.h"
00013 #include "flowExponential.h"
00014 #include "flowLogistical.h"
00015
00016 #include <assert.h>
00017 #include <cmath>
00018 #include <cstdlib>
00020 #include <cstdlib>
00202 #include <cstring>
0021
0022 #ifndef FUNCIONAL_TESTS
0023 #define FUNCIONAL_TESTS
00024
00029 void exponentialFuncionalTest();
0034 void logisticalFuncionalTest();
0039 void complexFuncionalTest();
00040
00041 #endif
```

Index

-	E
~Flow	FlowLogistical, 21
Flow, 12	\sim FlowLogistical, 24
~FlowExponential	execute, 24
FlowExponential, 20	FlowLogistical, 22, 23
\sim FlowLogistical	flowLogistical.h
FlowLogistical, 24	FLOWLOGISTIC_H, 54
\sim Model	flows
Model, 27	Model, 34
\sim System	funcional tests.cpp
System, 37	complexFuncionalTest, 55
- , , -	exponentialFuncionalTest, 55
add	logisticalFuncionalTest, 56
Model, 27	funcional_tests.h
	complexFuncionalTest, 59
clear	-
Model, 29	exponentialFuncionalTest, 59
complexFuncionalTest	logisticalFuncionalTest, 60
funcional_tests.cpp, 55	act Claw Do ain
funcional_tests.h, 59	getFlowBegin
idificional_tests.ff, 55	Model, 29
execute	getFlowEnd
Flow, 12	Model, 30
FlowExponential, 20	getFlowSize
•	Model, 30
FlowLogistical, 24	getName
exponentialFuncionalTest	Flow, 12
funcional_tests.cpp, 55	Model, 30
funcional_tests.h, 59	System, 37
Flore 0	getSource
Flow, 9	Flow, 12
∼Flow, 12	getSystemBegin
execute, 12	Model, 30
Flow, 10, 11	getSystemEnd
getName, 12	Model, 31
getSource, 12	getSystemSize
getTarget, 13	Model, 31
name, 16	
operator!=, 14	getTarget
operator=, 14	Flow, 13
operator==, 15	getValue
setName, 15	System, 38
setSource, 16	viet.
setTarget, 16	itFlow
source, 16	Model, 26
	itSystem
target, 16	Model, 26
FlowExponential, 17	
~FlowExponential, 20	logisticalFuncionalTest
execute, 20	funcional_tests.cpp, 56
FlowExponential, 19	funcional_tests.h, 60
FLOWLOGISTIC_H	
flowLogistical.h, 54	main

64 INDEX

main.cpp, 44	source
main.cpp	Flow, 16
main, 44	src/flow.cpp, 41
MAIN_FUNCIONAL_TESTS, 44	src/flow.h, 41, 43
MAIN_FUNCIONAL_TESTS	src/main.cpp, 43
main.cpp, 44	src/model.cpp, 45
Model, 24	src/model.h, 45, 47
~Model, 27	src/system.cpp, 48
add, 27	src/system.h, 48, 49
clear, 29	System, 35
flows, 34	∼System, 37
getFlowBegin, 29	getName, 37
getFlowEnd, 30	getValue, 38
getFlowSize, 30	name, 40
getName, 30	operator=, 38
getSystemBegin, 30	setName, 39
getSystemEnd, 31	setValue, 39
getSystemSize, 31	System, 35–37
itFlow, 26	value, 40
itSystem, 26	systems
Model, 26, 27	Model, 34
	Model, 54
name, 34	target
remove, 31	Flow, 16
run, 32	
setName, 33	test/funcional/flowExponential.cpp, 50
show, 33	test/funcional/flowExponential.h, 50, 52
systems, 34	test/funcional/flowLogistical.cpp, 52
	test/funcional/flowLogistical.h, 53, 54
name	test/funcional/funcional_tests.cpp, 54
Flow, 16	test/funcional/funcional_tests.h, 57, 61
Model, 34	test/funcional/main.cpp, 43
System, 40	
	value
operator!=	System, 40
Flow, 14	
operator=	
Flow, 14	
System, 38	
operator==	
Flow, 15	
1.6.1, 10	
README.md, 41	
remove	
Model, 31	
run Madal 00	
Model, 32	
setName	
Flow, 15	
Model, 33	
System, 39	
setSource	
Flow, 16	
setTarget	
Flow, 16	
setValue	
System, 39	
show	
Model, 33	