STAT347: Generalized Linear Models Lecture 8

Today's topics: Chapter 6.2-6.3

- Ordinal response models
- Examples of multinomial GLM

1 Ordinal response

Say the response (disease status of the sample) is one of these 4 categories: healthy, mild, moderate, severe. How do we build a model to predict the response / understand the covariates' effect?

- The categories have an order
- \bullet One naive solution: ignore the categorical nature of y
 - Encode $y_i = 1, 2, 3, 4$ as a score for healthy, mild, moderate, severe. Build a linear regression model

$$y_i = X_i^T \beta + \epsilon_i$$

- Usually no clear-cut choice for the scores
- A more detailed comparison between this OLS and the model will be introduced later

1.1 Cumulative logit/probit models: latent variable motivation

Denote $y_i = k$ if the response is in the kth ordered category. Assume that there is a continuous latent variable for each sample y_i^* that satisfy

$$y_i^* = X_i^T \beta + \epsilon_i$$

where ϵ_i are i.i.d. with the cdf function $F(\cdot)$. Suppose that there are some cutpoints

$$-\infty = \alpha_0 \le \alpha_1 \le \dots \le \alpha_c = \infty$$

such that we observe

$$y_i = k$$
 if $\alpha_{k-1} < y_i^* \le \alpha_k$

Then, we have

$$P(y_i \le k) = P(y_i^* \le \alpha_k) = F(\alpha_k - X_i^T \beta)$$

When we take F as the cdf of standard logistic/Gaussian distribution, we get the cumulative logit/probit models.

- For identifiability, X_i here does not include the intercept term. This is because that with the unknown intercept term, the data has no information to tell the value of the unknown α_0 (we can simultaneously include β_0 and $\alpha_0, \dots, \alpha_c$ by any same constant).
- We assume constant β across categories

Another equivalent way to define the cumulative logit model

$$\operatorname{logit}[\mathbb{P}(y_i \le k)] = \log \frac{p_{i1} + \dots + p_{ik}}{p_{i,k+1} + \dots + p_{ic}} = \alpha_k + X_i^T \tilde{\beta}$$

where $\tilde{\beta} = -\beta$.

Proportional odds:

$$\begin{aligned} & \operatorname{logit}[\mathbb{P}(y_i \leq k | X_i = u)] - \operatorname{logit}[\mathbb{P}(y_i \leq k | X_i = v)] \\ & = \operatorname{log} \frac{\mathbb{P}(y_i \leq k | X_i = u) / \mathbb{P}(y_i > k | X_i = u)}{\mathbb{P}(y_i \leq k | X_i = v) / \mathbb{P}(y_i > k | X_i = v)} \\ & = (u - v)^T \tilde{\beta} \end{aligned}$$

So this odds between two samples keeps the same for all k.

• Settings are stochastically ordered. If $X_i^T \tilde{\beta} \geq X_{i'}^T \tilde{\beta}$ then we have $P(y_i \leq k) \geq P(y_{i'} \leq k)$ for ALL k.

1.2 Fitting cumulative link models

We assume that $P(y_i \leq k) = F(\alpha_j + X_i^T \tilde{\beta})$, then the likelihood for ungrouped data is

$$\prod_{i=1}^{N} \left(\prod_{k=1}^{c} p_{ik}^{y_{ik}} \right) = \prod_{i=1}^{N} \left\{ \prod_{k=1}^{c} [P(y_i \le k) - P(y_i \le k - 1)]^{y_{ik}} \right\}$$

The log-likelihood is

$$L(\alpha, \tilde{\beta}) = \sum_{i=1}^{N} \sum_{k=1}^{c} y_{ik} \log[F(\alpha_k + X_i^T \tilde{\beta}) - F(\alpha_{k-1} + X_i^T \tilde{\beta})]$$

and the score equation for $\tilde{\beta}_i$ is

$$\frac{\partial L}{\partial \tilde{\beta}_i} = \sum_{i=1}^{N} \sum_{k=1}^{c} y_{ik} x_{ij} \frac{f(\alpha_k + X_i^T \tilde{\beta}) - f(\alpha_{k-1} + X_i^T \tilde{\beta})}{F(\alpha_k + X_i^T \tilde{\beta}) - F(\alpha_{k-1} + X_i^T \tilde{\beta})} = 0$$

for α_k is

$$\frac{\partial L}{\partial \alpha_k} = \sum_{i=1}^N \left\{ \frac{y_{ik} f(\alpha_k + X_i^T \tilde{\beta})}{F(\alpha_k + X_i^T \tilde{\beta}) - F(\alpha_{k-1} + X_i^T \tilde{\beta})} - \frac{y_{i,k+1} f(\alpha_k + X_i^T \tilde{\beta})}{F(\alpha_{k+1} + X_i^T \tilde{\beta}) - F(\alpha_k + X_i^T \tilde{\beta})} \right\} = 0$$

The computation is complicated, but we can still use Fisher-scoring/Newton's method to solve it and we can still calculate the asymptotic variances of $\hat{\beta}$ and each $\hat{\alpha}_k$.

1.3 Comparison with OLS

Limitation of the cumulative link models:

- Settings are stochastically ordered. If $X_i^T \tilde{\beta} \geq X_{i'}^T \tilde{\beta}$ then we have $P(y_i \leq k) \geq P(y_{i'} \leq k)$ for ALL k.
- When c=4, the model can not allow the probability of each ordered category to be (0.3, 0.2, 0.2, 0.3) for one sample and (0.1, 0.4, 0.4, 0.1) for the other sample.
- \bullet Read Chapter 6.2.4 for how to build more flexible models under this scenario

Disadvantages of modeling ordered categories using a linear model:

- Usually no clear cut for the numerical scores
- Linear model does not allow for the measurement error is discretization
- From the linear model you can not get estimated probabilities of each category for a particular sample
- Linear model ignores that the variability in each category can be different

(Read Chapter 6.2.5)

A simulation example (Figure 6.3)

$$y_i^* = 2 + 0.6x_i - 4z_i + \epsilon_i$$

where $x_i \overset{i.i.d.}{\sim}$ Uniform[0, 100], $z_i \overset{i.i.d.}{\sim}$ Bernoulli(0.5) and $\epsilon_i \overset{i.i.d.}{\sim} N(0, 1)$. Set $\alpha_1 = 2$, $\alpha_2 = 4$, $\alpha_3 = 6$ and $\alpha_4 = 8$.

Check details in the R notebook 4.

2 Nominal and ordinal response data examples

Chapter 6.3.2 and Chapter 6.3.3. Please check the R notebook 4.

Next time: Chapters 7.1 and 7.2