अक्षावता

অনুশীলনী-১৪

অধ্যায়টি পড়ে যা জানতে পারবে—

- সম্ভাবনার ধারণা ব্যাখ্যা।
- দৈনন্দিন বিভিন্ন উদাহরদের সাহায্যে নিশ্চিত ঘটনা, অসম্ভব ঘটনা ও সম্ভাব্য ঘটনা বর্ণনা ৷
- একই ঘটনার পুনরাবৃত্তি ঘটলে সম্ভাব্য ফলাফল বর্ণনা।
- একই ঘটনার পুনরাবৃত্তি ঘটলে সম্ভাবনা নির্ণয়।
- সম্ভাবনার সহজ ও বাস্ত্রভিত্তিক স্মস্যার সমাধান।

ইংলিশ পরিসংখ্যাবিদ আর এ ফিশার (R.A.Fisher, 1890-1962) (4 আধুনিক পরিসংখ্যানের জনক বলা হয়।

তিনি পরিসংখ্যানে কম্পিউটারের পরিচিতি ঘটান এবং সম্ভাব্যতাকে সিম্বান্ত গ্রহণের মূল ধারণা হিসাবে প্রতিষ্ঠিত করেন।

১৭টি জনুশীলনীর প্রস্নু

৮০টি বহুনির্বাচনি প্রশ্ন 🗷 ২৭টি সাধারণ বহুনির্বাচনি 🗷 ১৪টি বহুপদী সমান্তিসূচক 🗷 ৩৯টি অভিনু তথ্যভিত্তিক ২৫টি সৃজনশীল প্রশ্ন ■ ১টি অনুশীলনী ■ ৫টি শ্রেণির কাজ ■ ৯টি মাস্টার ট্রেইনার প্রণীত ■ ১০টি প্রশ্নব্যাংক

অনুশীলনীর সূজনশীল বহুনির্বাচনি প্রশু

একটি হকা মারলে 3 উঠার সম্ভাবনা কোমটি?

T 3

- 1, 2, 3, 4, 5, 6
- 3 উঠার অনুকৃল ফলাফল সংখ্যা = 1

সুতরাং, 3 উঠার সম্ভাবনা $=\frac{1}{6}$.

নিচের তথ্য থেকে (২-৩) নম্বর প্রশ্নের উত্তর দাও:

একটি থলিতে নীল বল 12টি, সাদা বল 16টি এবং কালো বল 20টি আছে। দৈবভাবে একটা ব**ল নেও**য়া হলো।

২. বলটি নীল হওয়ার সম্ভাবনা কতা

- ∴ বলটি নীল হওয়ার সম্ভাবনা = $\frac{12}{48} = \frac{1}{4}$
- ৩. বলটি সাদা না হওয়ার সম্ভাবনা কতা

- ∴ সাদা বল ছাড়া অন্য বল = (48 16)টি = 32 টি।
- ∴ সাদা বল না হওয়ার সম্ভাবনা = $\frac{32}{48} = \frac{2}{3}$

নিচের তথ্য থেকে (৪-৫) নম্মর প্রল্লের উত্তর দাও:

একটি মুদ্রাকে তিনবার নিক্ষেপ করা হলো।

- সর্বাধিক বার H আসার সম্ভাবনা কত?
 - 🤕 । বার

- প্র বার থ 4 বার বি:দ্র: পাঠাপুস্তকের প্রশুটি ভুল। প্রশুটি হবে "সর্বাধিক H কতবার আসতে

- সবচেয়ে কম সংখ্যক বার T আসার সম্ভাবনা কতা

0

- ∴ সবচেয়ে কম সংখ্যক বার T আসার সম্ভাবনা = ½.
- চটগ্রাম আবহাজ্যা অকিসের রিপোর্ট অনুযায়ী ২০১২ সালের পুলাই মালের ১ম সম্ভাহে বৃক্তি হয়েছে মৌট 5 দিন। লোম্বার বৃক্তি না হওয়ার সম্ভাবনা কতা

- :. যেকোনো একদিন বৃষ্টি হওয়ার সম্ভাবনা = $\frac{3}{7}$
- ∴ সোমবার বৃষ্টি হওয়ার সম্ভাবনা = ³⁄₇
- ∴ সোমবার বৃষ্টি না হওয়ার সম্ভাবনা = $1 \frac{5}{7} = \frac{7-5}{7} = \frac{2}{7}$

৭. 30টি টিকেটে 1 থেকে 30 পর্যন্ত ক্রমিক নম্বর পেয়া আছে। টিকেটপুলো ভালভাবে মিলিয়ে একটি টিকেট দৈবভাবে নেয়া হলো। টিকেটটি (i) জ্বোড় সংখ্যা (ii) চার ঘারা বিভাজ্য (iii) ৪ এর ক্রয়ে ছোট (iv) 22 এর ক্রয়ে বড়-হওয়ার সম্ভাবনাপুলো নির্ণয় কর।

সমাধান: টিকেটগুলো ভালভাবে মিশিয়ে একটি টিকেট দৈবভাবে নেয়া হলে সম্ভাব্য ফলাফল, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30.

এখানে, ফলাফলগুলো সমসম্ভাব্য অর্থাৎ, যেকোনো ফলাফল আসার সম্ভাবনা সমান।

(i) ধরি, জোড় সংখ্যা হওয়ার ঘটনা A।

এখানে, জ্বোড় সংখ্যা : 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30.

এদের মধ্যে যেকোনো একটি সংখ্যা আসলেই জোড় সংখ্যা হবে। সূতরাং, জোড় সংখ্যা আসার অনুকৃল ফলাফল ≈ 15.

$$P(A) = \frac{15}{30} = \frac{1}{2}$$

(ii) ধরি, চার দারা বিভাজ্য সংখ্যা হওয়ার ঘটনা B। এখানে, চার দারা বিভাজ্য সংখ্যা : 4, 8, 12, 16, 20, 24, 28 এদের যেকোনো একটি সংখ্যা আসলেই চার দারা বিভাজ্য সংখ্যা হবে।

স্তরাং, চার দ্বারা বিভাজ্য সংখ্যা আসার অনুকৃল ফলাফল = 7

$$\therefore P(B) = \frac{7}{30}$$

(iii) ধরি, ৪ এর চেয়ে ছোট সংখ্যা হওয়ার ঘটনা C। এখানে, ৪ এর চেয়ে ছোট সংখ্যা: 1, 2, 3, 4, 5, 6, 7 এদের যেকোনো একটি সংখ্যা আসলেই ৪ এর চেয়ে ছোট হবে। সূত্রাং, ৪ এর চেয়ে ছোট সংখ্যা আসার অনুকূল ফলাফল = 7

$$\therefore P(C) = \frac{7}{30}$$

(iv) ধরি, 22 এর চেয়ে বড় সংখ্যা হওয়ার ঘটনা D। এখানে, 22 এর চেয়ে বড় সংখ্যা: 23, 24, 25, 26, 27, 28, 29, 30 এদের যেকোনো একটি সংখ্যা আসলেই 22 এর চেয়ে বড় হবে। সূতরাং, 22 এর চেয়ে বড় সংখ্যা আসার অনুকৃল ফলাফল = 8

$$\therefore P(D) = \frac{8}{30} = \frac{4}{15}$$

উত্তর: (i) $\frac{1}{2}$; (ii) $\frac{7}{30}$; (iii) $\frac{7}{30}$; (iv) $\frac{4}{15}$

৮. কোনো একটি লটারিতে 570টি টিকেট বিক্রি হয়েছে। রহিম 15টি টিকেট কিনেছে। টিকেটপুলো ভালভাবে মিশিয়ে একটি টিকেট দৈবভাবে প্রথম প্রকারের জন্য ভোলা হলো। রহিমের প্রথম প্রকার পাওয়ার সম্ভাবনা কত ?

সমাধান: লটারিতে মোট 570টি টিকেট বিক্রি হয়েছে। অর্থাৎ, সমগ্র সম্প্রতির ফলাফল 570. রহিম কিনেছে 15 টি টিকেট। অর্থাৎ, অনুকৃল ফলাফল 15.

সূতরাং, প্রথম প্রস্কারের জন্য যে টিকেটটি তোলা হয়েছে তা রহিমের টিকেট হওয়ার সম্ভাবনা = $\frac{15}{570} = \frac{1}{38}$

উ**ভর**: $\frac{1}{38}$

১. একটা ছকা একবার নিক্ষেপ করা হলে জ্বোড় সংখ্যা অথবা তিন ছারা বিভাজ্য সংখ্যা উঠার সম্ভাবনা কত !

সমাধান: একটি ছক্কা নিক্ষেপ করলে সম্ভাব্য ফলাফলগুলো: 1, 2, 3, 4, 5, 6. ছক্কাটি নিরপেক্ষ হলে ফলাফলগুলো সমসম্ভাব্য হবে অর্থাৎ, যে কোনো ফলাফল আসার সম্ভাবনা সমান।

এখানে, জোড় সংখ্যা অথবা তিন দ্বারা বিভাজ্য সংখ্যা হলো 2, 3, 4, 6 এই 4টি।

এদের যেকোনো একটি সংখ্যা আসলেই তা জ্বোড় সংখ্যা অথবা 3 দারা বিভাজ্য হবে।

সুতরাং, অনুকৃদ ফলাফল = 4

.. $P(জোড় সংখ্যা অথবা তিন দ্বারা বিভাজ্য) = <math>\frac{4}{6} = \frac{2}{3}$

উ**ভন্ন:** $\frac{2}{3}$

১০. কোনো একটি ষাস্থা কেন্দ্রের রিপোর্ট অনুযায়ী 155 শিশু কম ওজনের, 386 শিশু ষাভাবিক ওজনের এবং 98টি শিশু বেশি ওজনের জন্ম নেয়। এখান হতে একটি শিশু দৈবভাবে নির্বাচন করলে নির্বাচিত শিশুটি বেশি ওজনের হবে তার সম্ভাবনা কত ? সমাধান: এখানে, মোট শিশুর সংখ্যা = (155 + 386 + 98)

639 টি শিশুর মধ্যে বেশি ওজনের শিশু অর্থাৎ অনুকৃল ফলাফল সংখ্যা = 98

∴ দৈবভাবে একটি শিশু নির্বাচন করা হলে শিশুটি বেশি ওজনের হওয়ার সম্ভাবনা = $\frac{98}{639}$

উख्त: $\frac{98}{639}$

১১. দুই হাজার লাইসেল প্রাশ্ত ড্রাইভার এক বছরে নিমুলিখিত সংখ্যক ট্রাফিক আইন ভজা করে।

ট্রাফিক আইন ভজোর সংখ্যা	দ্রাইভারের সংখ্যা
0	1910
1	46
2	18
3	12
4	9
5 বা তার অধিক	5

একজন দ্রাইভারকে দৈবভাবে নির্বাচন করলে দ্রাইভারটির 1টি অইন ভজা করার সম্ভাবনা কড়ঃ দ্রাইভারটির 4 এর অধিক অইন ভজা করার সম্ভাবনা কড় ঃ

সমাধান: এখানে, মোট ড্রাইভারের সংখ্যা

= (1910 + 46 + 18 + 12 + 9 + 5) = 2000 জন।

এখন, একটি আইন ভক্তা করে এমন ড্রাইভারের সংখ্যা = 46 জন।

∴ নির্বাচিত ড্রাইভারটির 1টি আইন ভক্ষা করার সম্ভাবনা

$$=\frac{46}{2000}=\frac{23}{1000}$$

আবার, 4 এর অধিক অর্থাৎ, 5 বা তার অধিক আইন ভক্তা করে এমন ড্রাইভারের সংখ্যা = 5 জন।

.. নির্বাচিত ড্রাইভারটির 4 এর অধিক আইন ভঙ্গা করার সম্ভাবনা = $\frac{5}{2000} = \frac{1}{400}$

উত্তর: $\frac{23}{1000}$; $\frac{1}{400}$

www.pathagar.com

১২. কোনো একটি ফাউরীতে নিয়োগকৃত লোকদের কাজের ধরণ \ ১৪. Probability tree এর সাহায্যে নিচের ছকটি পুরণ কর: অনযায়ী নিম্নভাবে শ্ৰেণিকড করা যায় :

শ্রেণি করণ	সংখ্যা
ব্যবস্থাপনায়	157
পরিদর্শক হিসেবে	,52
উৎপাদন কাজে	1473
অফিসিয়াল কাজে	215

একজনকে দৈবভাবে নির্বাচন করলে লোকটি ব্যবস্থাপনায় নিয়োজিত তার সম্ভাবনা কতা লোকটি ব্যবস্থাপনায় জ্ববা উৎপাদন কাজে নিয়োজিত তার সম্ভাবনা কতঃ লোকটি উৎপাদন কাজে নিয়োজিত নয় তার সম্ভাবনা কত ?

সমাধান: এখানে, মোট নিয়োগকৃত লোকসংখ্যা

- = (157 + 52 + 1473 + 215) জন
- = 1897 জন।

এখন, ব্যবস্থাপনায় নিয়োজিত লোকসংখ্যা = 157 জন।

∴ নির্বাচিত লোকটির ব্যবস্থাপনায় নিয়োজিত হওয়ার সম্ভাবনা $=\frac{157}{1897}$

আবার, ব্যবস্থাপনায় অথবা উৎপাদন কাজে নিয়োজিত লোকসংখ্যা = (157 + 1473) = 1630 জন।

নির্বাচিত লোকটির ব্যবস্থাপনায় অথবা উৎপাদন কাজে নিয়োজিত হওয়ার সম্ভাবনা = $\frac{1630}{1897}$

আবার, উৎপাদন কাজে নিয়োজিত লোক = 1473 জন।

- উৎপাদন কাজে নিয়োজিত নয় এমন লোকসংখ্যা
- = (1897 1473) জন
- . = 424 জন
- ∴ নির্বাচিত লোকটি উৎপাদন কাজে নিয়োজিত নয় তার সম্ভাবনা = $\frac{424}{1897}$

157 ; 1630 : 424 1897 : 1897 : 1897

১৩. 1টি মুদ্রা ও 1টি ছকা নিকেপ ঘটনায় Probability tree ভৈরি

সমাধান: একটি মুদ্রা ও একটি ছক্কা নিক্ষেপ ঘটনার Probability_ tree नित्स प्रिथात्ना इत्ला :

युष्ठा निरक्त	সকল সম্ভাব্য ফলাফল	সম্ভাবনা
একবার মুদ্রা নিক্ষেপ	•	P(T) =
দুইবার মুদ্রা নিক্ষেপ		P(iH) = P(HT) =
তিনবার মৃদ্রা নিকেপ		P(HHT) = P(2H) =

সমাধান: একবার মুদ্রা নিক্ষেপের Probability tree হবে ঃ

দুই বার মৃদ্রা নিক্ষেপের Probability tree হবে ঃ

তিনবার মৃদ্রা নিক্ষেপের Probability tree হবে ঃ

श्रीयं ऋजो ऋस

र्मात क्या दकः		
মূদ্রা নিক্ষেপ	সকল সম্ভাব্য ফলাফল	সম্ভাবনা
একবার মুদ্রা নিক্ষেপ	н, т	$P(T) = \frac{1}{2}$
দুইবার মুদ্রা নিক্ষেপ	нн, нт, тн, тт	$P(1H) = \frac{2}{4} = \frac{1}{2}$ $P(H'\Gamma) = \frac{1}{4}$
তিনবার মৃদ্রা নিক্ষেপ	HHH, HHT, HTH, HTT, THH, THT, TTH, TTT	$P(HHT) = \frac{1}{8}$ $P(2H) = \frac{3}{8}$

১৫. কোনো একজন লোকের ঢাকা হতে রাজশাহী ট্রনে যাওয়ার সম্ভাবনা 3 এবং রাজশাহী হতে খুলনা বাসে যাওয়ার সম্ভাবনা 2. Probability tree ব্যবহার করে লোকটি ঢাকা হতে রাজশাহী ট্রনে নয় এবং রাজশাহী হতে শুপ্না বাসে যাজয়ার সম্ভাবনা কত বের কর। লোকটি রাজশাহী ট্রেনে কিম্তু খুলনা বাসে না যাওয়ার সম্ভাবনা বের কর।

সমাধান: লোকটির বিভিন্ন উপায়ে ঢাকা হতে রাজ্ঞশাহী এবং রাজশাহী হতে খুলনা যাওয়ার Probability tree নিমে দেখানো হলো:

সম্ভাবনার মাধ্যমে Probability tree দেখানো হলো:

সূতরাং, লোকটির ঢাকা হতে রাজশাহী ট্রেনে নয় এবং রাজশাহী হতে খুলনা বাসে যাওয়ার সম্ভাবনা = P রাজশাহী ট্রেনে নয়, খুলনা বাসে] = $\frac{4}{9} \times \frac{2}{7} = \frac{8}{63}$

আবার, লোকটির রাজশাহী ট্রেনে কিল্ডু খুপনা বাসে না যাওয়ার मम्बावमा =

P[রাজশাহী ট্রেনে, খুলনা বাসে নয়] = $\frac{5}{9} \times \frac{5}{7} = \frac{25}{63}$

Ans. $\frac{8}{63}$; $\frac{25}{63}$

১৬. একজন লোক ঢাকা হতে রাজশাহী ট্রেনে যাওয়ার সম্ভাবনা 🕹 , বাসে যাওয়ার সম্ভাবনা $\frac{3}{7}$, প্লেনে যাওয়ার সম্ভাবনা $\frac{1}{9}$ । লোকটির রাজশাহী হতে খুলনায় বাসে যাওয়ার সম্ভাবনা $\frac{2}{5}$ এবং खेंदन योजप्रात नण्डावनो न । Probability tree व्यवहात करत লোকটি রাজপাহী ট্রেনে এবং খুলনায় বাসে যাওয়ার সম্ভাবনা বের কর। সমাধান: লোকটির বিভিন্ন উপায়ে ঢাকা হতে রাজশাহী এবং রাজশাহী হতে খুলনা যাওয়ার Probability tree দেখানো হলো:

এখন লোকটির রাজশাহী ট্রেনে এবং খুলনায় বাসে যাওয়ার সম্ভাবনা = P[রাজশাহী ট্রেনে, খুলনা বাসে $] = \frac{2}{9} \times \frac{2}{5} = \frac{4}{45}$

Ans. $\frac{4}{45}$

অনুশীলনীর সৃজনশীল রচনামূলক প্রশ্ন

প্রতি দুই টাকার মুদ্রা চার বার নিক্লেপ করা হলো। (এর শাপলার পিঠকে L এবং প্রাথমিক শিকার শিশুর পিঠকে C বিবেচনা কর।)

- ক. যদি মৃদ্রাটিকে চারবারের পরিবর্তে দুইবার নিক্ষেপ করা হয় তবে একটি 1. আসার সম্ভাবনা এবং একটি C না আসার সম্ভাবনা কত?
- থ. সম্ভাব্য ঘটনার Probability tree অঞ্চন কর। এবং নমুনা ক্ষেত্রটি লিখ।
- গ. দেখাও যে, মৃদ্রাটি n সংখ্যক বার নিক্ষেপ করলে সংঘটিত ঘটনা

 2° কে সমর্থন করে।

১৭ নং প্রশ্নের সমাধান

একটি দুই টাকার মুদ্রার শাপলার পিঠকে L এবং প্রাথমিক শিক্ষার শিশুর পিঠকে C বিবেচনা করা হলো।

মুদ্রাটিকে দুইবার নিক্ষেপ করা হলে নমুনা ক্ষেত্র,

S = {LL, LC, CL, CC}

এখানে নমুনা বিন্দু 4টি।

একটি L আসার অনুকৃল ফলাফল = {LC, CL}

অর্থাৎ 2টি।

 \therefore একটি \perp আসার সম্ভাবনা = $\frac{2}{4} = \frac{1}{2}$.

একটি C আসার অনুকূল ফলাফল = {LC, CL}
অর্থাৎ 2টি।

একটি C আসার সম্ভাবনা $=\frac{2}{4}$

 $=\frac{1}{2}$

∴ একটি C না আসার সম্ভাবনা = $1 - \frac{1}{2}$ $= \frac{2 - 1}{2}$

Ans. $\frac{1}{2}$; $\frac{1}{2}$

১ম বার মুদ্রার শিঠ

ः नभूना त्कवा, S = {LLLL, LLLC, LLCL, LLCC, LCLL, LCLC, LCCL, LCCC, CLLL, CLLC, CLCL, CLCC, CCLL, CCCL, CCCC, CCLL, CCCC, CCCL, CCCC}

থেহেতু একটি মৃদ্রায় 2টি পিঠ থাকে সৃতরাং মৃদ্রাটি একবার নিক্ষেপ করলে সম্ভাব্য ফলাফল 2টি। আবার, মৃদ্রাটি ২য় বার নিক্ষেপ করলে সম্ভাব্য ফলাফল 4টি। এমনভাবে,