

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра системного анализа

Отчёт по практикуму

«Построение множества достижимости нелинейной системы»

Студент 315 группы А.А. Анашкина

Pуководитель практикума к.ф.-м.н., доцент П. А. Точилин

Содержание

1	Постановка задачи	2
2	Решение задачи	2
	2.1 Применение принципа максимума Л. С. Понтрягина	2
	2.2 Применение теоремы о чередовании нулей переменных	5
	2.3 Вычисление особых точек	8
3	Алгоритм решения залачи	10

1 Постановка задачи

Задано обыкновенное дифференциальное уравнение:

$$\ddot{x} + \beta x - 2\sin(3x^3) + x\dot{x} = u,\tag{1}$$

где $x \in \mathbb{R}, u \in \mathbb{R}$. На возможные значения управляющего параметра u наложено ограничение: $u \in [-\alpha, \alpha]$, $\alpha > 0$. Задан начальный момент времени $t_0 = 0$ и начальная позиция $x(t_0) = 0, \dot{x}(t_0) = 0$. Необходимо построить множество достижимости $\mathcal{X}(t, t_0, x(t_0), \dot{x}(t_0))$ в классе программных управлений в заданный момент времени $T \geqslant t_0$, а также исследовать его свойства. В ходе решения задачи необходимо:

- 1. Написать в среде MatLab функцию [X, Y, X1, Y1, X2, T2] = reachset (alpha, beta, t), которая по заданным параметрам $\alpha > 0$, $\beta, t >= t_0$ рассчитывает приближённо множество достижимости управляемой системы $\mathcal{X}(t,t_0,x(t_0),\dot{x}(t_0))$. Массивы X, Y содержат упорядоченные координаты точек многоугольника, образующего границу искомого множества. Вторая пара массивов X1, Y1 содержит координаты линий переключения оптимального управления. Массив X2 содержит координаты x стационарных точек замкнутой системы. При этом в массиве T2 должны запоминаться номера подсистем, для которых были найдены эти точки.
- 2. Реализовать визуализацию результатов вычислений, полученных при помощи функции reachset при заданных параметрах α, β, t .
- 3. Реализовать функцию reachsetdyn(alpha, beta, t1, t2, N, filename), которая, используя функцию reachset(alpha, beta, t), строит множества достижимости для моментов времени $\tau_i = t_1 + \frac{(t_2-t_1)\,i}{N}, i = -,1,...,N$. Здесь $t_2 \geqslant t_1 \geqslant t_0,\,N$ натуральное число.

2 Решение задачи

2.1 Применение принципа максимума Л. С. Понтрягина

Рассмотрим следующую задачу оптимального управления:

$$\dot{x}(t) = f(x, u). \tag{2}$$

Здесь $x = (x_1, ..., x_n)^T$, $f = (f_1, ..., f_n)^T$. Функция f является непрерывной по обеим переменным и непрерыно дифференцируемой по x.

$$u = (u_1, ..., u_m)^T, \quad u(t) \in \mathcal{P},$$

где \mathcal{P} — замкнутое множество.

$$x(t_0) = x^0, \quad x(t_1) = x^1 \in \mathcal{X}.$$

Здесь $\mathcal{X} = \mathcal{X}\left(t, t_0, x\left(t_0\right), \dot{x}\left(t_0\right)\right)$ — множество достижимости.

В нашей задаче t_0, t_1, x^0 — фиксированы.

Введём дополнительную координату $x_{n+1} = t$. Тогда нетрудно заметить, что

$$\begin{cases} \dot{x}_{n+1} = 1, \\ x_{n+1} = t_0. \end{cases}$$
 (3)

Теперь будем рассматривать расширенную систему:

$$\dot{\widetilde{x}}\left(t\right) = \widetilde{f}\left(x, u\right),\,$$

где $\widetilde{x} = (x_1, ..., x_n, x_{n+1})^T$, $\widetilde{f} = (f_1, ..., f_n, 1)^T$. Введём векторы сопряжённых переменных:

$$\psi = (\psi_1, ..., \psi_n)^T,$$

$$\widetilde{\psi} = (\psi_1, ..., \psi_n, \psi_{n+1})^T.$$

Рассмотрим функции Гамильтона—Понтрягина:

$$\widetilde{\mathcal{H}} = \langle \psi, f \rangle + \psi_{n+1},$$

Заметим, что для $\widetilde{\mathcal{H}}$ справедлива гамильтонова система:

$$\begin{cases} \dot{x} = \frac{\partial \widetilde{\mathcal{H}}}{\partial \psi} = f(x, u), \\ \dot{\psi} = -\frac{\partial \widetilde{\mathcal{H}}}{\partial x}. \end{cases}$$
(4)

Также введём обозначение:

$$\widetilde{\mathcal{M}} = \sup_{u \in \mathcal{P}} \widetilde{\mathcal{H}} \left(t, \widetilde{x}, \widetilde{\psi}, u \right),$$
$$\mathcal{M} = \sup_{u \in \mathcal{P}} \mathcal{H} \left(t, x, \psi, u \right).$$

Теперь можем сформулировать основную теорему.

Теорема 1 (ПМП для задачи достижимости). Пусть u^* — некоторое управление в задаче $2,\ \widetilde{x}$ — траектория, заданная уравнением $\dot{\widetilde{x}}=\widetilde{f}(\widetilde{x},u^*)$, причём $\widetilde{x}(t_1)$ лежит на границе множества достижимости \mathcal{X} . Тогда существует вектор сопряжённых переменных $\widetilde{\psi}:[t_0,t_1]\to\mathbb{R}^{n+1}$ такой, что $\widetilde{\psi}\not\equiv 0$ ($\widetilde{\psi}\not\equiv 0$), и выполняются следующие условия: Сопряжённая система:

Условие максимума:

$$\widetilde{\mathcal{H}}\left(t,\widetilde{\psi}^{*}\left(t\right),\widetilde{x}\left(t\right),u^{*}\left(t\right)\right)=\sup_{u\in\mathcal{P}}\widetilde{\mathcal{H}}\left(t,\widetilde{\psi}^{*}\left(t\right),\widetilde{x}\left(t\right),u\left(t\right)\right)=\widetilde{\mathcal{M}}\left(t,\widetilde{\psi}^{*}\left(t\right),\widetilde{x}\left(t\right)\right).\tag{6}$$

Условие на гамильтониан:

$$\mathcal{M} \equiv const.$$
 (7)

Рассмотрим ОДУ

$$\ddot{x} + \beta x - 2\sin(3x^3) + x\dot{x} = u.$$
 (8)

Проведём замену $x_1 = x, x_2 = \dot{x}$. Тогда уравнение 8 преобразуется к системе:

$$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = u + 2\sin(3x_1^3) - \beta x_1 - x_1 x_2. \end{cases}$$
 (9)

Запишем функцию Гамильтона—Понтрягина:

$$\mathcal{H} = \psi_1 x_2 + \psi_2 \left(2\sin\left(3x_1^3\right) - \beta x_1 - x_1 x_2 \right) + u\psi_2. \tag{10}$$

Тогда сопряжённая система выглядит следующим образом:

$$\begin{cases} \dot{\psi}_1 = -\frac{\partial \mathcal{H}}{\partial x_1} = \psi_2 \left(\beta + x_2 - 18x_1^2 \cos \left(3x_1^3 \right) \right), \\ \dot{\psi}_2 = -\frac{\partial \mathcal{H}}{\partial x_2} = -\psi_1 + x_1 \psi_2. \end{cases}$$
(11)

Для решения задачи необходимо максимизировать значение функции \mathcal{H} . Заметим, что в выражении 10 только последнее слагаемое зависит от управления, значит необходимо рассматривать следующие значения управления:

$$u^* = \begin{cases} \alpha \operatorname{sgn} \psi_2(t), & \psi_2 \neq 0, \\ [-\alpha, \alpha], & \psi_2 = 0. \end{cases}$$
 (12)

Далее рассмотрим возможен ли особый режим. Если, действительно, $\psi_2=0$, то из сопряжённой системы 11 получим, что

$$\dot{\psi}_1 = 0, \quad \dot{\psi}_2 = -\psi_1 = 0$$

Значит $\psi = 0$, что противоречит условию *Теоремы* 1. Таким образом, особый режим невозможен, значит

$$u^* = \alpha \operatorname{sgn} \psi_2(t)$$
.

Причём переключения будут происходить в момент, когда $\psi_2\left(t\right)=0$. При данных значениях управления получим:

$$\begin{cases}
\dot{x}_1 = x_2, \\
\dot{x}_2 = 2\sin(3x_1^3) - \beta x_1 - x_1 x_2 + \alpha \operatorname{sgn} \psi_2, \\
\dot{\psi}_1 = \psi_2 \left(\beta + x_2 - 18x_1^2 \cos(3x_1^3)\right), \\
\dot{\psi}_2 = -\psi_1 + x_1 \psi_2.
\end{cases} \tag{13}$$

При подстановке полученного управления в выражение 10 получим гамильтониан:

$$\mathcal{M} = \psi_1 x_2 + \psi_2 \left(2 \sin \left(3x_1^3 \right) - \beta x_1 - x_1 x_2 \right) + |\psi_2|.$$

Можем значительно упростить решение задачи, обратив внимание на поведение x_2, ψ_2 .

2.2 Применение теоремы о чередовании нулей переменных

Если рассмотреть графики зависимости функций $x_2(t)$, $\psi_2(t)$ от времени, можно заметить, что возможны два варианта:

- 1. Нули функций совпадают.
- 2. Нули функций чередуются.

Сформулируем это наблюдение более точно в виде теоремы.

Теорема 2 (О чередовании нулей переменных). *Если существует момент времени* $\tau_1 < \tau_2, \quad [\tau_1, \tau_2] \subseteq [0, t_1], \ mo:$

1. Если выполнено

$$\begin{cases} \psi_2(\tau_1) = \psi_2(\tau_2) = 0, \\ x_2(\tau_1) = 0, \end{cases}$$
 (14)

 $mo \ x_2(\tau_2) = 0.$

2. Если выполнено

$$\begin{cases} \psi_2(\tau_1) = \psi_2(\tau_2) = 0, \\ x_2(\tau_1) \neq 0, \end{cases}$$
 (15)

mo $x_2(\tau_2) \neq 0$ $u \exists \tau \in (\tau_1, \tau_2) : x_2(\tau) = 0$.

3. Если выполнено

$$\begin{cases} x_2(\tau_1) = x_2(\tau_2) = 0, \\ \psi_2(\tau_1) = 0, \end{cases}$$
 (16)

 $mo \ \psi_2(\tau_2) = 0.$

4. Если выполнено

$$\begin{cases} x_2(\tau_1) = x_2(\tau_2) = 0, \\ \psi_2(\tau_1) \neq 0, \end{cases}$$
 (17)

$$mo \ \psi_2(\tau_2) \neq 0 \ u \ \exists \tau \in (\tau_1, \tau_2) : \psi_2(\tau) = 0.$$

Доказательство. Запишем гамильтониан в виде

$$\mathcal{M} = \psi_1 x_2 - \psi_2 f(x_1, x_2) + |\psi_2|.$$

Ввиду выполнения условий $Teopemu\ 1:\mathcal{M}=const.$

1. Запишем гамильтониан в момент времени τ_1 :

$$\mathcal{M} = \psi_1(\tau_1) x_2(\tau_1) - \psi_2(\tau_1) f + |\psi_2(\tau_1)| = \{14\} = 0. \tag{18}$$

Теперь рассмотрим значение гамильтониана в момент времени τ_2 :

$$\mathcal{M} = \psi_1(\tau_2) x_2(\tau_2) - \psi_2(\tau_2) f + |\psi_2(\tau_2)| = \{14\} = \psi_1(\tau_2) x_2(\tau_2). \tag{19}$$

Ввиду того, что $\mathcal{M}=const$, можем приравнять значения выражений 18 и 19. Тогда получим

$$\psi_1(\tau_2) x_2(\tau_2) = 0.$$

Из условия Teopemu 1 $\psi\left(\tau_{2}\right)\neq0$, то есть $\psi_{1}\left(\tau_{2}\right)\neq0$. Значит

$$x_2(\tau_2) = 0.$$

2. Запишем гамильтониан в момент времени τ_1 :

$$\mathcal{M} = \psi_1(\tau_1) x_2(\tau_1) - \psi_2(\tau_1) f + |\psi_2(\tau_1)| = \{14\} = \psi_1(\tau_1) x_2(\tau_1). \tag{20}$$

Теперь рассмотрим значение гамильтониана в момент времени au_2 :

$$\mathcal{M} = \psi_1(\tau_2) x_2(\tau_2) - \psi_2(\tau_2) f + |\psi_2(\tau_2)| = \{14\} = \psi_1(\tau_2) x_2(\tau_2). \tag{21}$$

Ввиду условия *Теоремы* 1: $\psi \neq 0$, значит $\psi_1(\tau_1) \neq 0, \psi_1(\tau_2) \neq 0$. По условию 15 $x_2(\tau_1) \neq 0$. Значит, приравняв значения выраженй 20 и 21, получим, что

$$x_2\left(\tau_2\right) \neq 0.$$

Далее без ограничения общности полагаем $\psi_2(\tau) \neq 0 \, \forall \tau \in (\tau_1, \tau_2)$. Ввиду того, что ψ_2 — непрерывная функция, получим

$$\dot{\psi}_2\left(\tau_1\right)\dot{\psi}_2\left(\tau_2\right) < 0. \tag{22}$$

Теперь из сопряжённой системы запишем:

$$\dot{\psi}_{2}(\tau_{1}) = -\psi_{2}(\tau_{1}) + \psi_{2}(\tau_{1}) \frac{\partial f}{\partial x_{2}} = \{15\} = -\psi_{1}(\tau_{1}),$$

$$\dot{\psi}_{2}(\tau_{2}) = -\psi_{2}(\tau_{2}) + \psi_{2}(\tau_{2}) \frac{\partial f}{\partial x_{2}} = \{15\} = -\psi_{1}(\tau_{2})$$

Значит, с учётом 22 получим

$$\psi_1\left(\tau_1\right)\psi_1\left(\tau_2\right) < 0. \tag{23}$$

Из равенства гамильтонианов

$$\psi_1(\tau_1) x_2(\tau_1) = \psi_1(\tau_2) x_2(\tau_2) \neq 0.$$

Значит с учётом неравенства 23 $x_2(\tau_1)x_2(\tau_2)<0$. Знаем, что $x_2(t)$ — непрерывная функция, принимающая разные по знаку значения на концах отрезка $[\tau_1,\tau_2]$. Значит по теореме Вейерштрасса $\exists \, \tau \in (\tau_1,\tau_2): \, x_2(\tau)=0$.

3. Введём вспомогательную функцию

$$z(t) = \psi_1(t) x_2(t) + \psi_2(t) \dot{x_2}(t) = \psi_1(t) x_2(t) + \psi_2(t) (-f + u)$$
.

Заметим, что функция z(t) является кусочно-непрерывной, так как разрывы могут происходить в моменты переключений. Пусть t_0 — точка непрерывности. Рассмотрим производную z(t) по времени в окрестности точки непрерывности:

$$\frac{dz}{dt} = \psi_2 \frac{\partial f}{\partial x_1} x_2 + \psi_1 \left(-f + u \right) + \left(-\psi_1 + \psi_2 \frac{\partial f}{\partial x_2} \right) \left(-f + u \right) + \psi_2 \left(-\frac{\partial f}{\partial x_1} x_2 - \frac{\partial f}{\partial x_2} \left(-f + u \right) \right) = 0.$$

Таким образом, получили, что z(t) — кусочно-постоянная функция.

Так как $u^* = \alpha \operatorname{sgn} \psi_2$, то разрывы могут происходить при $\psi_2 = 0$. Значит если t_0 — момент переключения, то при подстановке в выражение для z(t) получим $z(t_0 - 0) = z(t_0 + 0)$. Значит

$$z(t) = const.$$

Рассмотрим значение функции z(t) в моменты времени τ_1 и τ_2 :

$$z(\tau_1) = \psi_1(\tau_1) x_2(\tau_1) + \psi_2(\tau_1) \dot{x}_2(\tau_1) = \{16\} = 0, \tag{24}$$

$$z(\tau_2) = \psi_1(\tau_2) x_2(\tau_2) + \psi_2(\tau_2) \dot{x}_2(\tau_2) = \psi_2(\tau_2) \dot{x}_2(\tau_2). \tag{25}$$

Ввиду того, что z(t) = const, можем приравнять выражения 24 и 25:

$$\psi_2(\tau_2) \dot{x}_2(\tau_2) = 0.$$

Так как нули x_2 изолированы, то есть $x_2(\tau) \neq 0$ при $\tau \in (\tau_1, \tau_2)$, то $\dot{x}_2(\tau_2) \neq 0$. Тогда получим

$$\psi_2\left(\tau_2\right) = 0.$$

4. Рассмотрим значение функции z(t) в моменты времени τ_1 и τ_2 :

$$z(\tau_1) = \psi_1(\tau_1) x_2(\tau_1) + \psi_2(\tau_1) \dot{x}_2(\tau_1) = \{17\} = \psi_2(\tau_1) \dot{x}_2(\tau_1), \qquad (26)$$

$$z(\tau_2) = \psi_1(\tau_2) x_2(\tau_2) + \psi_2(\tau_2) \dot{x}_2(\tau_2) = \{17\} = \psi_2(\tau_2) \dot{x}_2(\tau_2). \tag{27}$$

Так как нули функции $x_2\left(t\right)$ изолированы, $\dot{x}_2\left(\tau_1\right)\neq 0, \dot{x}_2\left(\tau_2\right)\neq 0.$ По условию 17 $\psi_2\left(\tau_1\right)\neq 0.$ Значит

$$\psi_2(\tau_1) \dot{x}_2(\tau_1) = \psi_2(\tau_2) \dot{x}_2(\tau_2) \neq 0.$$

Далее аналогично доказательсту пункта 2 доказывается, что

$$\dot{x}_2(\tau_1)\dot{x}_2(\tau_2) < 0 \quad \Rightarrow \quad \psi_2(\tau_1)\psi_2(\tau_2) < 0.$$

Знаем, что функция $\psi_2(t)$ — непрерывная, принимающая разные по знаку значения на концах отрезка $[\tau_1, \tau_2]$. Значит по теореме Вейерштрасса $\exists \tau \in (\tau_1, \tau_2): \psi_2(\tau) = 0$.

Утверждение 1. Функция $\psi(t)$ является положительно однородной.

Доказательство. Рассмотрим систему для сопряжённых переменных:

$$\begin{cases} \dot{\psi}_1 = \psi_2 \left(\beta + x_2 - 18x_1^2 \cos \left(3x_1^3 \right) \right), \\ \dot{\psi}_2 = -\psi_1 + x_1 \psi_2. \end{cases}$$
 (28)

Подставим в систему 28 вместо $\psi_i(t)$ функцию $\gamma \psi_i(t) \ \forall i=1,2,$ где $\gamma>0.$ Тогда сопряженная система принимает вид:

$$\begin{cases} \gamma \dot{\psi}_1 = \gamma \psi_2 \left(\beta + x_2 - 18x_1^2 \cos \left(3x_1^3 \right) \right), \\ \gamma \dot{\psi}_2 = -\gamma \psi_1 + x_1 \gamma \psi_2. \end{cases}$$

Заметим, что γ сокращается, и мы получаем исходную систему 28. Таким образом, доказали положительную однородность.

Утверждение 2. *Множество достижимости* $\mathcal{X}(t_1) \subseteq \mathcal{X}(t_2)$, $0 \leqslant t_1 \leqslant t_2$.

Доказательство. Рассмотрим систему 9 в точке (0,0)

$$\begin{cases} \dot{x}_1 = 0, \\ \dot{x}_2 = u. \end{cases}$$

Тогда при нулевом значении управления точка (0,0) является точкой покоя. Далее рассмотрим точку из множества $\mathcal{X}(t_1)$ с управлением $u_1(t)$. Составим управление для некоторых точек из множества $\mathcal{X}(t_2)$ следующим образом:

$$u_{2}(t) = \begin{cases} 0, & t \in [0, t_{2} - t_{2}], \\ u_{1}(t - t_{2} + t_{1}), & t \in [t_{2} - t_{1}, t_{2}]. \end{cases}$$

Теперь нетрудно заметить, что исходная точка из множества $\mathcal{X}(t_1)$ будет также содержаться во множестве $\mathcal{X}(t_2)$.

Таким образом, по *Утверждению* 2 множество достижимости монотонно растёт со временем. Этот факт значительно поможет нам при дальнейшем исследовании множества достижимости.

Вернёмся к рассмотрению системы 13. По условию задана начальная точка $x_1(0) = 0, x_2(0)$. Разобъём решение задачи на случаи.

- 1. Пусть $\psi_2(0) = 0$. Тогда по условию *Теоремы* 1 $\psi_1(0) \neq 0$. Ввиду *Утвержедения* 1 можем нормировать $\psi_1(0)$:
 - (a) Пусть $\psi_1(0) = 1$. Рассмотрим $\tau \in (0, \delta)$, $\delta > 0$. Из сопряженной системы 11:

$$\dot{\psi}_2 = -\psi_1 + \psi_2 x_1.$$

Здесь $\psi_1 \approx 1, \psi_2 x_1 \approx 0$. Значит $\dot{\psi}_2 < 0$. Так как $\psi_2(0) = 0$, можно сказать, что $\psi_2(\tau) < 0$. Значит $u^* = -1$ при $\tau \in (0, \delta)$. Этому случаю будет удовлетворять система S_- :

$$\begin{cases}
\dot{x}_1 = x_2, & x_1(0) = 0 \\
\dot{x}_2 = 2\sin(3x_1^3) - \beta x_1 - x_1 x_2 - \alpha, & x_2(0) = 0, \\
\dot{\psi}_1 = \psi_2 \left(\beta + x_2 - 18x_1^2\cos(3x_1^3)\right), & \psi_1(0) = 1, \\
\dot{\psi}_2 = -\psi_1 + x_1 \psi_2, & \psi_2(0) = 0.
\end{cases}$$
(29)

Проинтегрировав эту систему, можно найти одну из траекторий системы 9. Обозначим участок полученной траектории до пересечения с осью x_2 как W_- .

(b) Пусть теперь $\psi_1(0) = -1$. Тогда

$$\dot{\psi}_2 = -\psi_1 + \psi_2 x_1 > 0,$$

так как $\psi_1 \approx -1, \psi_2 x_1 \approx 0.$

$$\begin{cases} \dot{\psi}_2 > 0, \\ \psi_2 (0) = 0. \end{cases}$$

Значит $\psi_2\left(\tau\right)>0$ и $u^*=1$ при $\tau\in\left(0,\delta\right)$. Этому случаю удовлетворяет система S_+ :

$$\begin{cases} \dot{x}_{1} = x_{2}, & x_{1}(0) = 0\\ \dot{x}_{2} = 2\sin(3x_{1}^{3}) - \beta x_{1} - x_{1}x_{2} + \alpha, & x_{2}(0) = 0,\\ \dot{\psi}_{1} = \psi_{2} \left(\beta + x_{2} - 18x_{1}^{2}\cos(3x_{1}^{3})\right), & \psi_{1}(0) = -1,\\ \dot{\psi}_{2} = -\psi_{1} + x_{1}\psi_{2}, & \psi_{2}(0) = 0. \end{cases}$$

$$(30)$$

Интегрируя эту систему, найдём одну из траекторий 9. Обозначим участок трактории до пересечения с осью x_2 как W_+ .

Вспомним, что переключения происходят, когда $\psi_2\left(\tau\right)=0\,\forall \tau\in[0,t_1].$ Тогда в нашем случае в момент переключения

$$\begin{cases} \psi_2(0) = \psi_2(\tau) = 0, \\ x_2(0) = 0. \end{cases}$$

Тогда по $Teopeme\ 2\ x_2\ (au)=0$. Таким образом, можем отслеживать моменты переключений управления au_i за счёт условия:

$$x_2(\tau_i) = 0.$$

2. Теперь рассмотрим случай, когда $\psi_2(0) \neq 0$. Заметим, что полученная ранее непрерывня кривая $W_+ \cup W_-$ сохранится. В предыдущих пунктах было показано, что кривая пересекает ось x_2 в какой-то момент времени τ . Значит из условий

$$\begin{cases} x_2(0) = x_2(\tau) = 0, \\ \psi_2(0) \neq 0 \end{cases}$$

по $Teopeme\ 2$ следует, что $\exists \tau^1 \in [0,\tau]: \psi_2\left(\tau^1\right) = 0$. Таким образом, существует момент переключения $\tau^1: x\left(\tau^1\right) \in W_+ \cup W_-$. Дойдя до этой точки, траетория меняется в соотвествии с системами S_+ или S_- . Обозначим полученную кривую как W_+^1 или W_-^1 соотвественно. Так как мы не можем вычислить в какой именно момент произойдёт переключение, необходимо осуществить перебор моментов переключения. В итоге получим $\left(W_+^1 \cup W_+^2 \cup ...\right) \cup \left(W_-^1 \cup W_-^2 \cup ...\right)$. Таким образом, построили картину синтеза.

2.3 Вычисление особых точек

Решив следующую систему, найдём особые точки системы 9:

$$\begin{cases} x_2 = 0, \\ 2\sin(3x_1^3) - \beta x_1 - x_1 x_2 + u = 0. \end{cases}$$
 (31)

Решение системы сводится к нахождению корней уравнения

$$\sin\left(3x_1^3\right) - \beta x_1 + u = 0.$$

Заметим, что в нём присутствует параметр, поэтому аналитически найти решения невозможно. Подставив в уравнение значения управления, получим:

$$\sin\left(3x_1^3\right) - \beta x_1 + \alpha = 0.$$

$$\sin\left(3x_1^3\right) - \beta x_1 - \alpha = 0.$$

Рассмотрим подробнее второе уравнение:

$$2\sin\left(3x_1^3\right) = \beta x_1 + \alpha,$$

$$-2 \leqslant 2\sin\left(3x_1^3\right) \leqslant 2.$$

Тогда можем оценить правую часть:

$$-2 \leqslant \beta x_1 + \alpha \leqslant 2,$$

$$\frac{-2 - \alpha}{\beta} \leqslant x_1 \leqslant \frac{2 - \alpha}{\beta}.$$
(32)

Таким образом, если точка $(x_1^*, 0)$ является особой и $u^* = -\alpha$, то x_1^* удовлетворяет 32. Аналогично можем локализовать корни первого уравнения с управлением $u^* = \alpha$:

$$\frac{-2+\alpha}{\beta} \leqslant x_1 \leqslant \frac{2+\alpha}{\beta}.\tag{33}$$

Ниже приведём графики полученных функций при различных значениях параметра.

Рис. 1: Графики функции при $\beta=1$

Перейдём к исследованию устойчивости особых точек. Запишем Якобиан системы и подставим особую точку $(x_1,0)$:

$$A = \begin{pmatrix} 0 & 1\\ 18x_1 \cos(3x_1^3) - \beta & -x_1 \end{pmatrix}$$

Тогда особая точка является устойчивой, если ${\rm Tr}\, A < 0, |A| > 0.$ В нашем случае

$$\begin{cases} |A| = \beta - 18x_1^2 \cos(3x_1^3), \\ \operatorname{Tr} A = -x_1. \end{cases}$$

Значит определить характер устойчивости особой точки можно только при подстановке конкретных значений x_1, β .

3 Алгоритм решения задачи

- 1. Из точки (0,0) выпускаем две траектории, соответствующие системам S_+ и S_- .
- 2. По *Теореме* 2 существуют моменты $\tau_+, \tau_-: x_2(\tau_+) = x_2(\tau_-) = 0$. Строим полученные в предыдущем пункте траектории до этих моментов соотвественно, то есть до обнуления x_2 .
- 3. Осуществляем перебор $\tau^1 \in [0, \tau_+]$ и $\tau^2 \in [0, \tau_-]$. Эти моменты соотвествтуют моментам переключений, то есть $\psi_2\left(\tau^1\right) = \psi_2\left(\tau^2\right) = 0$.
- 4. Из точки траектории в момент времени τ^1 выпускаем траекторию, удовлетворяющую S_- . Продолжаем её до следующего момента переключения и опять меняем её на S_+ и так далее, пока не закончится время.
- 5. Аналогичную процедуру проводим для начально й траектории S_+ и момента переключения τ^2 .
- 6. В массивах X, Y будем хранить конечные точки всех траекторий, а в массивах X1, Y1 точки кривой переключений $W_+ \cup W_-$.
- 7. В конце необходимо удалить самопересечения границы полученного множества путём перебора отрезков из массивов X, Y, а также удалить особые точки.

Список литературы

- [1] https://sawiki.cs.msu.ru/index.php/Oпорная функция множества.
- [2] Арутюнов А. В. Лекции по выпуклому и многозначному анализу. ФИЗМАТ-ЛИТ, 2014.
- [3] Артемьева Л. А. Лекции по методам оптимизации, 2024.
- [4] Чистяков И. А. Лекции по оптимальному управлению, 2024.