Advanced Engineering Mathematics Vectors, Matrices, and Vector Calculus by Dennis G. Zill Notes

Chris Doble

June 2023

Contents

1	Vec	tors														1
	1.1	Vectors in 2-Space														
		Vectors in 3-Space														
	1.3	Dot Product														-

1 Vectors

1.1 Vectors in 2-Space

- The zero vector can be assigned any direction
- The vectors **i** and **j** are known as the **standard basis vectors** for \mathbb{R}^2

1.2 Vectors in 3-Space

• In \mathbb{R}^3 the octant in which all coordinates are positive is known as the **first** octant. There is no agreement for naming the other seven octants.

1.3 Dot Product

- \bullet The dot product is also known as the inner product or the scalar product and is denoted $a \cdot b$
- Two non-zero vectors are orthogonal iff their dot product is 0
- The zero vector is considered orthogonal to all vectors
- The angles α , β , and γ between a vector and the unit vectors \mathbf{i} , \mathbf{j} , and \mathbf{k} , respectively are called the **direction angles** of the vector

 \bullet The cosines of a vectors direction angles (the ${\bf direction}\ {\bf cosines})$ can be calculated as

$$\cos \alpha = \frac{\mathbf{a} \cdot \mathbf{i}}{||\mathbf{a}||||\mathbf{i}||}$$

$$= \frac{a_1}{||\mathbf{a}||}$$

$$\cos \beta = \frac{\mathbf{a} \cdot \mathbf{j}}{||\mathbf{a}||||\mathbf{j}||}$$

$$= \frac{a_2}{||\mathbf{a}||}$$

$$\cos \gamma = \frac{\mathbf{a} \cdot \mathbf{k}}{||\mathbf{a}||||\mathbf{k}||}$$

$$= \frac{a_3}{||\mathbf{a}||}$$

Equivalently, these can be calculated as the components of the unit vector $\mathbf{a}/||\mathbf{a}||$.

 \bullet To find the component of a vector ${\bf a}$ in the direction of a vector ${\bf b}$

$$\mathrm{comp}_{\mathbf{b}}\mathbf{a} = ||\mathbf{a}||\cos\theta = \frac{\mathbf{a}\cdot\mathbf{b}}{||\mathbf{b}||}$$

 $\bullet\,$ To project a vector ${\bf a}$ onto a vector ${\bf b}$

$$\mathrm{proj}_{\mathbf{b}}\mathbf{a} = (\mathrm{comp}_{\mathbf{b}}\mathbf{a})\frac{\mathbf{b}}{||\mathbf{b}||} = \left(\frac{\mathbf{a}\cdot\mathbf{b}}{\mathbf{b}\cdot\mathbf{b}}\right)\mathbf{b}$$