16-th Austrian Mathematical Olympiad 1985

Final Round

First Day

1. Determine all quadruples (a,b,c,d) of nonnegative integers satisfying

$$a^2 + b^2 + c^2 + d^2 = a^2b^2c^2$$
.

- 2. For $n \in \mathbb{N}$, let $f(n) = 1^n + 2^{n-1} + 3^{n-2} + \dots + n^1$. Determine the minimum value of $\frac{f(n+1)}{f(n)}$.
- 3. A line meets the lines containing sides BC, CA, AB of a triangle ABC at A_1 , B_1 , C_1 , respectively. The points A_2 , B_2 , C_2 are symmetric to A_1 , B_1 , C_1 with respect to the midpoints of BC, CA, AB, respectively. Prove that A_2 , B_2 , and C_2 are collinear.

Second Day

4. Find all natural numbers n such that the equation

$$a_{n+1}x^2 - 2x\sqrt{a_1^2 + a_2^2 + \dots + a_{n+1}^2} + a_1 + a_2 + \dots + a_n = 0$$

has real solutions for all real numbers a_1, a_2, \dots, a_{n+1} .

- 5. A sequence (a_n) of positive integers satisfies $a_n = \sqrt{\frac{a_{n-1}^2 + a_{n+1}^2}{2}}$ for all $n \ge 1$. Prove that this sequence is constant.
- 6. Find all functions $f : \mathbb{R} \to \mathbb{R}$ satisfying

$$x^{2} f(x) + f(1-x) = 2x - x^{4}$$
 for all $x \in \mathbb{R}$.

