

第五讲 空间解析几何题目

厦门大学数学科学学院 庄平辉

1. 设 P 是球内一定点, A, B, C是球面上三个动点,

$$\angle APB = \angle BPC = \angle CPA = \frac{\pi}{2}$$
,

以PA, PB, PC为棱作平行六面体, 记与P相对的顶点为 Q, 求 Q 的轨迹.

2. 设 \vec{a} , \vec{b} 是三维空间中的两个非零向量,且 $|\vec{b}| = 1$,

$$(\vec{a}, \vec{b}) = \frac{\pi}{3}, \text{ x} \text{ k} \text{ k} \lim_{x \to 0} \frac{\left| \vec{a} + x\vec{b} \right| - \left| \vec{a} \right|}{x}.$$

3. 以O为圆心的单位圆上有相异两点 P、Q, 向量 \overrightarrow{OP} 与

 \overrightarrow{OQ} 的夹角为 $\theta(0 \le \theta \le \pi)$, 设 a, b 为正常数, 求极限

$$\lim_{\theta \to 0} \frac{1}{\theta^2} (\left| a\overrightarrow{OP} \right| + \left| b\overrightarrow{OQ} \right| - \left| a\overrightarrow{OP} + b\overrightarrow{OQ} \right|).$$

- **4.** 有一束平行于直线 L: x = y = -z 的平行光照射到不透明的球面 $S: x^2 + y^2 + z^2 = 2z$ 上,求 S 在该平行光的照射下在 xoy 平面留下的阴影部分的边界曲线方程.
- 5. 已知直线 L_1 : $\frac{x-9}{4} = \frac{y+2}{-3} = \frac{z}{1}$, L_2 : $\frac{x}{-2} = \frac{y+7}{9} = \frac{z-2}{2}$, 试求 L_1 与 L_2 的公垂线的方程.
- 6. 平面通过两直线 $L_1: \frac{x-1}{1} = \frac{y+2}{2} = \frac{z-5}{1}$ 和 $L_2: \frac{x}{1} = \frac{y+3}{3} = \frac{z+1}{2}$ 的公垂线 L, 且平行于向量 c = (1,0,-1), 求此平面的方程.

7. 已知曲面 $x^2 - 2y^2 + z^2 - 4yz - 8zx + 4xy - 2x + 8y - 4z - 2 = 0$ 与某一平面的交线的对称中心在坐标原点, 求该平面的方程.

- 8. 试求过点 A(-2,0,0) 和 B(0,-2,0),且与锥面 $x^2 + y^2 = z^2$ 交成抛物线的平面方程.
 - 9. 试求顶点在原点,且三个坐标轴的正半轴都在其上的圆锥面方程.

10. 已知椭球面
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
 $(c < a < b)$.

试求过 x 轴与椭球面的交线是圆的平面.

- 11. 将边长为6的正方形*ABCD*用平行于*AB*的线段*EF、GH* 三等分(图1)并折成正三棱柱,将此三棱柱放在空间直角系中(图2).
- (1) 求线段PQ 绕 z 轴旋转所形成的旋转曲面方程;
- (2) 过点*P*、*Q*分别作平行于*xOy*面的两平面,求此两平面与(1)中旋转曲面所围成的立体的体积.

12. 试求通过三条直线:

$$\begin{cases} x = 0 \\ y - z = 0 \end{cases} \begin{cases} x = 0 \\ x + y - z = -2 \end{cases} \begin{cases} x = \sqrt{2} \\ y - z = 0 \end{cases}$$

的圆柱面方程.

- **13.** 过椭球面 $ax^2 + by^2 + cz^2 = 1$ 外一定点 (x_0, y_0, z_0) 作其切平面,再过原点作切平面的垂线,求垂足的轨迹方程.
- 14. 与曲面 $ax^2 + by^2 + cz^2 = 1(a,b,c > 0)$ 相切的三个互相垂直的平面的交点在球面 $x^2 + y^2 + z^2 = \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$ 上.

15. 设有两条直线 $L_1: x = y = z$, $L_2: \frac{x}{1} = \frac{y}{a} = \frac{z - b}{1}$,

问: (1) L_1 与 L_2 何时异面? (2)若 L_1 与 L_2 不重合,求直线 L_2 绕直线 L_1 旋转一周所得曲面 Σ 的方程,并且指出类型.

16. 设

$$L_{1}: \begin{cases} A_{1}x + B_{1}y + C_{1}z + D_{1} = 0 \\ A_{2}x + B_{2}y + C_{2}z + D_{2} = 0 \end{cases}, L_{2}: \begin{cases} A_{3}x + B_{3}y + C_{3}z + D_{3} = 0 \\ A_{4}x + B_{4}y + C_{4}z + D_{4} = 0 \end{cases}$$

证明: 直线
$$L_1$$
与 L_2 共面的充要条件是
$$\begin{vmatrix} A_1 & B_1 & C_1 & D_1 \\ A_2 & B_2 & C_2 & D_2 \\ A_3 & B_3 & C_3 & D_3 \\ A_4 & B_4 & C_4 & D_4 \end{vmatrix} = 0.$$