Equations for Competitive Markets

Linear Demand: $q_d = a - bp$ **Linear Supply**: $q_S = x + yp$

Log-linear demand: $\ln(q_d) = \ln(a) + \varepsilon_d \ln p$ **Log-Linear Supply**: $\ln(q_s) = \ln(x) + \varepsilon_s \ln p$

Total Surplus=Consumer Surplus+Producer Surplus; Revenue=Producer Surplus + Variable Cost

Total Cost=Fixed Cost + Variable Cost; Profit=Revenue-Total Cost=Producer Surplus-Fixed Cost

Quantity Tax (tax per unit): $p_d = p_S + t$; Value Tax (tax on percentage spent): $p_d = (1 + t)p_S$

Price Elasticity of Demand: $\varepsilon_d = \frac{\partial \ln(D)}{\partial \ln(p)} = \frac{\partial D}{\partial p} \frac{p}{D}$; If $|\varepsilon| > 1$ then curve is elastic

 $\textbf{Tax Incidence Formula: } p_{S}(t) = p^{*} - \frac{t|D'|}{S' + |D'|}; p_{d} = p^{*} + \frac{tS'}{S' + |D'|}; \text{If } \varepsilon_{d} \text{ is constant: } \frac{\partial p_{d}}{\partial t} = \frac{\varepsilon_{S}}{|\varepsilon_{J}| + \varepsilon_{S}} = \frac{\varepsilon_{S}}{|\varepsilon_{J}| + \varepsilon_{S}}$

Equations for Consumer Choice and Demand

Marginal Utility: $MU_i = \frac{\partial u}{\partial x_i}$; Marginal Rate of Substitution: $MRS_{ij} = \frac{\frac{\partial u}{\partial x_j}}{\frac{\partial u}{\partial x_i}}$ and at interior optimum $= \frac{p_i}{p_j}$

Perfect Substitutes: $u(x_1,x_2)=x_1+cx_2$; Cobb-Douglas: $u(x_1,x_2)=\ln(x_1)+c\ln(x_2)$

CES Utility: $u(x_1, x_2) = \frac{1}{\rho} \ln(x_1^{\rho} + x_2^{\rho}); \rho \in (-\infty, 1];$ **Quasilinear**: $u(x_0, x_1) = x_0 + g(x_1)$

Dual Problem; Hicksian Demand: $h_i^*(\mathbf{p},u_0): \min_{x} \mathbf{p} \cdot \mathbf{x} s.t. u(\mathbf{x}) \geq u_0$

Roy's Identity: $x_i^*(\mathbf{p},m) = -\frac{\partial v}{\partial p_i}/\frac{\partial v}{\partial m}$; Shepard's Lemma: $h_i^*(\mathbf{p},u) = \frac{\partial e(\mathbf{p},u)}{\partial p_i}$

 $\textbf{Slutsky Equation:} \ \, \frac{\partial x_i(\mathbf{p},m)}{\partial p_i} = \frac{\partial h_i(\mathbf{p},v(\mathbf{p},m))}{\partial p_i} - \frac{\partial x_i^*}{\partial m} x_i^*(\mathbf{p},m); \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ s_i = \frac{p_i x_i}{m} s_i^*(\mathbf{p},m); \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ s_i = \frac{p_i x_i}{m} s_i^*(\mathbf{p},m); \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ s_i = \frac{p_i x_i}{m} s_i^*(\mathbf{p},m); \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon$

Demand Elasticity for product i, homogeneous of degree 0: $\varepsilon_{im} + \varepsilon_{ii} + \sum_{j \neq i} \varepsilon_{ij} = 0$

Equations for Cost and Technology

Technical Rate of Substitution: $TRS_{ij} = -\frac{\frac{\partial f}{\partial x_j}}{\frac{\partial f}{\partial y}} = -\frac{mp_i}{mp_j}$; MC: $MC(y) = \frac{\partial c}{\partial y} = \frac{\partial c_{\mathcal{V}}}{\partial y}$ MC to VC: $\int MC = VC$

Factor Prices: $\mathbf{w} = (w_1, w_2, ..., w_n)$; **Production Function:** $y = f(x_1, y_2)$

Cost Function with two factors: $c(\mathbf{w}, y) = w_1 x_1^*(w_1, w_2, y) + w_2 x_2^*(w_1, w_2, y)$

 $\min_{x_1, x_2 \ge 0} w_1 x_1 + w_2 x_2 \text{ s.t. } y = f(x_1, x_2)$

Shepard's Lemma conditional factor demand: $x_i^*(\mathbf{w}, y) = \frac{\partial c(\mathbf{w}, y)}{\partial w_i}$

Learning Curve: The typical specification is for $Y_t = \Sigma_{s < t} y_s$, AC falls proportionately, $\ln AC_t = AC_0 - b \ln Y_t$

Equations for Competitive Firms

 $\textbf{SR Profit Maximization:} \max_{y,x_{\mathcal{U}}\geq 0} \pi = \max_{y\geq 0} [\max_{x_{\mathcal{U}}\geq 0} R(y) - w_{\mathcal{U}}x_{\mathcal{U}} - w_fx_fs.t.y = f(x_{\mathcal{U}},\bar{x}_f)] = \max_{y\geq 0} [R(y) - c(y)]$

Revenue if firm is competitive: $R(y) = py = f(x_{\mathcal{U}}, \bar{x}_f)$ FOC of unconditional factor demand: $p\frac{\partial f(x_{\mathcal{U}}, \bar{x}_f)}{\partial x_{\mathcal{U}}} = w_{\mathcal{U}}$ Hotelling's Lemma, Supply: $y^*(p, \mathbf{w}) = \frac{\partial \pi(p, \mathbf{w})}{\partial p}$; unconditional factor demands: $x_i(p, \mathbf{w}) = -\frac{\partial \pi(p, \mathbf{w})}{\partial w_i}$

Shutdown Condition (Competitive Firms): $-F > py - c_{\mathcal{V}}(y) - F \to AVC = \frac{c_{\mathcal{V}}(y)}{y} > p$

Equations for Monopolies

FOC for a monopolist: p(y) + p'(y)y = c'(y) which can be rewritten as $p = \frac{1}{1+\frac{1}{2}}MC$; valid if $\varepsilon < -1$

Passing Along Costs: $\frac{\partial p}{\partial c} = \frac{1}{2 + uv''(u)/p'(y)}$