INTRODUCTION

The final project for this class addresses applying the techniques learned in this class on the Ames Housing data set. The techniques were applied to the prior best performing model. This involved applying principal component analysis, factor analysis and cluster analysis to the model. The goal was to see if a better model with an improved accuracy could be modeled. I spent multiple days with Python to try and get the model to fit. I also submitted to Kaggle multiple times, but unfortunately, I was unable to beat the best score I had submitted previously to the site.

PRINCIPLE COMPONENT ANALYSIS

1). Can you do a dimension reduction using PCA and make the model more intuitive? Run it and show the results.

The main goal of PCA was to reduce dimensionality in the data. After multiple attempts to reduce the amount of variability through PCA, I came to the conclusion that my original model was the most accurate based upon better scores on Kaggle on and also a solid R squared score of .863. Below are some of the results I came across when I ran the PCA on my best performing model.

	eigenvalues	0
0	1.759157	1
1	0.505695	2
2	1.102185	3
3	0.784933	4
4	0.848030	5
5	NaN	6
6	NaN	7
7	NaN	8
8	NaN	9

		coef	std err	t	P> t	[0.025	0.975]
Intercept	1.728	e+05	1.431	1.21e+05	0.000	1.73e+05	1.73e+05
pca1	0.9	9997	2.17e-05	4.61e+04	0.000	1.000	1.000
pca2	-0.0	0139	0.000	-37.572	0.000	-0.015	-0.013
Omr	nibus:	48.39	95 Dur b	oin-Watson:	2.	.074	
Prob(Omn	ibus):	0.00	00 Jarqu e	e-Bera (JB):	106.	260	
	Skew:	-0.13	33	Prob(JB):	8.43	e-24	
Kur	tosis:	4.21	16	Cond. No.	6.59e	+04	

Based on the results, the number of factors to use appears to be one. If the first PCA component is chosen, the proportion of variance explained is 78%. The bar chart illustrates the percentages well in regard to giving the data in a visual form. The scree plot shows the same data as well, with where the falloff happens. I believe that suggests that one PCA component should be used. Unfortunately, this model did not score well on Kaggle and produced a score of 92,238, which is just slightly better than using the average. I moved on to the factor analysis portion next hoping for a better result.

FACTOR ANALYSIS

2). Will a PCA or FA set of variables provide a model improvement? Run it and show the results.

The factor analysis I ran did not improve the model either. Below are the results of running the regression. The model scored a poor R Squared and also did not do well on Kaggle, scoring

worse than my model with PCA. In hindsight, I noticed that these two new techniques tended to help making the model more explainable. Although, this did not tend to improve their performances and accuracies when it came time to provide results.

	Model:		OLS	Adj.	R-square	d: 0	.144
Method:		Lea	st Squares		F-statisti	c: 4	1.54
	Date:	Sun, 10	0 Mar 2019	Prob (F-statistic	;): 8.98	e-25
	Time:		22:10:44	Log-	Likelihoo	d: -26	10.0
No. Obser	vations:		726		Ald	C: 5	228.
Df Re	siduals:		722		ВІС	C: 5	246.
D	f Model:		3				
Covarian	ce Type:		nonrobust				
	coe	f std er	r t	P> t	[0.025	0.975]	
Intercept	34.103	3 0.32	8 103.988	0.000	33.459	34.747	
fa1	0.819	2 0.32	8 2.498	0.013	0.175	1.463	
fa2	0.587	8 0.32	8 1.792	0.074	-0.056	1.232	
fa3	3.519	7 0.32	8 10.732	0.000	2.876	4.164	
Omi	nibus:	65.019	Durbin-W	atson:	1.852		
Prob(Omn	ibus):	0.000	Jarque-Ber	a (JB):	264.400		
	Skew:	0.299	Pro	b(JB):	3.86e-58		
Kur	tosis:	5.895	Con	ıd. No.	1.00		

CLUSTER ANALYSIS

3). Will a cluster analysis result in a realignment of the neighborhoods? Run it and show the results.

The cluster analysis was the most interesting part of the assignment. I used parts of the second tutorial and built upon that with information I researched online to help give me a better visual representation of the data. The neighborhood clusters still ended up being very similar to the prior groupings. I have attached a picture of that as well. This is mainly due to the neighborhoods having similar features and selling prices. Some examples include similar lot frontages as well as lot areas.

Here are the prior groupings for reference, non- cluster analysis.

prima(grouping_borod_r)						
	neighborhood	actual_ppsf	predicted_ppsf	Neighborhood_Group		
0	GrnHill	123.318386	123.318386	1		
1	Blmngtn	118.892612	117.839159	1		
2	NridgHt	116.384053	119.373685	1		
3	Somerst	110.542232	111.702139	1		
4	StoneBr	103.866523	105.737218	1		
5	Timber	103.230292	103.698200	1		
6	Gilbert	101.491760	100.569597	1		
7	CollgCr	99.736694	99.986461	1		
8	NoRidge	97.265357	97.242276	1		
9	Crawfor	96.726724	96.512449	2		
10	Blueste	95.722814	95.435617	2		
11	SawyerW	92.704506	92.312512	2		
12	Greens	91.696116	91.476015	2		
13	BrkSide	89.799890	90.008079	2		
14	Veenker	88.186158	88.504960	2		
15	Mitchel	86.356609	86.364205	2		
16	IDOTRR	85.426961	83.905890	2		
17	OldTown	85.169046	83.848181	2		
18	ClearCr	85.027752	84.657259	3		
19	NWAmes	83.790941	83.103876	3		
20	NPkVill	82.931444	82.055189	3		
21	NAmes	82.390030	81.178871	3		
22	Sawyer	81.652367	80.182541	3		
23	Edwards	80.688669	79.396191	3		
24	BrDale	77.510648	77.060749	3		
25	SWISU	76.376106	75.010812	3		
26	MeadowV	68.985885	67.620480	3		

This is the output I used to decide, when grouping the data into four clusters. I also used the silhouette coefficient for advice as well on this. The coefficient was high enough that I felt confident in the grouping logic.

Below are my four clusters after running the Python code. One thing that I found interesting was that each cluster seemed to have very distinct statistics. There was not much similarity between the groups in the means outputs.

Attribute means SubClass LotFrontage LotArea OverallQual OverallCond YearBuilt TotalBsmtSF FirstFlrSF SecondFlrSF LowQualFinSF GrLivArea Fireplaces GarageYrBlt GarageCars GarageArea YrSold SalePrice dtype: float64	for segment: 0 77.14287 71.714286 8776.714286 6.142857 5.857143 1960.428571 1030.428571 1022.714286 468.857143 0.000000 1491.571429 0.857143 1966.714286 2.142857 569.000000 2007.571429 188857.142857
Attribute means SubClass LotFrontage LotArea OverallQual OverallCond YearBuilt TotalBsmtSF FirstFlrSF SecondFlrSF LowQualFinSF GrLivArea Fireplaces GarageYrBlt GarageCars GarageArea YrSold SalePrice dtype: float64	for segment: 1 190.0 75.0 11625.0 5.0 4.0 1965.0 1039.0 0.0 0.0 1039.0 0.0 1965.0 2.0 504.0 2010.0 131500.0
Attribute means SubClass LotFrontage LotArea OverallQual OverallCond YearBuilt TotalBsmtSF FirstFlrSF SecondFlrSF LowQualFinSF GrLivArea Fireplaces GarageYrBlt GarageCars GarageArea YrSold SalePrice dtype: float64	for segment: 2 20.0 91.0 11375.0 6.0 5.0 1954.0 967.0 1299.0 0.0 1299.0 1.0 1954.0 2.0 494.0 2007.0 150000.0
Attribute means SubClass LotFrontage LotArea	for segment: 3 59.44444 53.111111 7931.555556

Assignment 4A -- MSDS 410 -- Logan Strouse

OverallQual	5.111111
OverallCond	5.222222
YearBuilt	1959.555556
TotalBsmtSF	784.777778
FirstFlrSF	1009.777778
SecondFlrSF	242.555556
LowQualFinSF	0.000000
GrLivArea	1252.333333
Fireplaces	0.333333
GarageYrBlt	1966.666667
GarageCars	1.44444
GarageArea	401.111111
YrSold	2007.222222
SalePrice	134050.000000
dtype: float64	

The main difference I noticed was that the grouping of neighborhoods became four instead of the three original. If there was a question on whether I felt three were doable, I would answer yes. I would point to the graph which provides visual proof of three distinct clusters and also the silhouette coefficient values.

CONCLUSION

This assignment proved to be a very fun challenge and it introduced many different concepts that I hope to build on in the future to become a modeler. The concept of parsimony is very important and I learned that if too many variables or features are added, it can skew the intended results of the analysis.