COVID-19 DATA SETS

Junaid ShujaDepartment of Computer Science

COMSATS University Islamabad Abbottabad Campus, Pakistan And Umm Al-Qura University Makkah, Saudi Arabia

Eisa Alanazi

Computer Science Department Umm Al-Qura University Makkah, Saudi Arabia

Waleed Alasmary

Computer Engineering Department Umm Al-Qura University Makkah, Saudi Arabia

Abdulaziz Alashaikh

Computer Engineering & Networks Department University of Jeddah Jeddah, Saudi Arabia

1 COVID-19 medical image data sets

Table 1: Comparison of COVID-19 medical image data sets

Study	Application	Data Type	Machine Learning	Link	
[1]	COVID-19 diagnosis	X-ray and CT Scan	Proposed Deep and trans- fer learning	https://github.com/ieee8023/ covid-chestxray-dataset	
[2]	COVID-19 diagnosis	CT scans	Deep Convolutional net-	https://github.com/UCSD-AI4H/COVID-CT	
[3]	COVID-19 diagnosis	CT scans	work Deep Convolutional net- work, Transfer learning	https://ai.nscc-tj.cn/thai/deploy/ public/pneumonia_ct	
[4]	COVID-19 infected	Segmented CT	Deep Convolutional Net-	NA	
[5]	area segmentation COVID-19 infected area segmentation	scans Segmented CT scans	work NA	https://zenodo.org/record/3757476	
Medical seg- mentation	COVID-19 infected	Segmented CT	U-Net model	http://medicalsegmentation.com/covid19/	
Coronacases Initiative	area segmentation COVID-19 diagnosis	3D CT scans	NA	https://coronacases.org/	
BSTI	COVID-19 diagnosis and reference	Miscellaneous	NA	https://www.bsti.org.uk/ training-and-education/ covid-19-bsti-imaging-database/	
SIRM	COVID-19 diagnosis and reference	Miscellaneous	NA	https://www.sirm.org/en/category/ articles/covid-19-database/	
Radiopaedia	COVID-19 diagnosis and reference	Miscellaneous	NA	https://radiopaedia.org/articles/ covid-19-3	
[6]	COVID-19 diagnosis	X-ray images	Deep Convolutional network, transfer learning	https://github.com/lindawangg/ COVID-Net, https://github.com/agchung/ Actualmed-COVID-chestxray-dataset	
[7]	COVID-19 diagnosis	X-ray	Deep learning	https://github.com/ieee8023/ covid-chestxray-dataset	
[8]	COVID-19 diagnosis	X-ray	CNN and transfer learning	https://github.com/ieee8023/ covid-chestxray-dataset + [9] + Kaggle convid19-X-rays	
[10]	COVID-19 diagnosis, extract biomarkers	X-ray	CNN and transfer learning	[1] + SIRM + RSNA + Radiopaedia + [9]	
[11]	COVID-19 diagnosis	X-ray	CNN	[1] + https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia	
[12]	COVID-19 diagnosis	X-ray	CNN + SVM	https://github.com/ieee8023/ covid-chestxray-dataset + Kaggle + [9]	
[13]	COVID-19 diagnosis	X-ray	Capsule network + Trans- fer learning	https://github.com/ShahinSHH/COVID-CAPS	
[14]	COVID-19 diagnosis	X-ray	CNN + SVM	Cohen et al. [1]	
[15]	COVID-19 data set augmentation	X-ray and CT Scan	NA	https://data.mendeley.com/datasets/8h65ywd2jr/3	
[16]	COVID-19 diagnosis	X-ray	CNN	https://www.kaggle.com/tawsifurrahman/covid19-radiography-database	
[17]	COVID-19 diagnosis	Ultra-sound	CNN	https://tinyurl.com/yckfqrcg	

2 COVID-19 Case report data sets

Table 2: Comparison of COVID-19 case report data sets

Study	Application	Data Type	Statistical method	Link
[18]	Reporting global cases	COVID-19 cases	NA	https://github.com/CSSEGISandData/ COVID-19
[19]	COVID-19 visual analysis	COVID-19 statis- tics	Exploratory data analysis	WHO + John Hopkins + Chinese Center for Disease Control and Prevention
[20]	COVID-19 city wise case analysis in China	COVID-19 statis- tics	NA	https://github.com/cheongsa/ Coronavirus-COVID-19-statistics-in-China
[21, 22]	Reporting China cases	Location and epi- demiological data	NA	https://github.com/beoutbreakprepared/ nCoV2019/tree/master/latest_data
[23]	US county level data	348 socioeconomic parameters	proposed ML for epi- demiological analysis	https://github.com/JieYingWu/COVID-19_ US_County-level_Summaries
[24]	Estimating new cases	COVID-19 cases	stochastic transmission dynamic	https://github.com/adamkucharski/ 2020-ncov/
[25]	COVID-19 spread	COVID-19 statis- tics	ARIMA	https://github.com/CSSEGISandData/ COVID-19
[26]	Correcting under- reported cases	Reported case and world demographics	Statistical	https://tinyurl.com/y7hbp196
[27]	Mobility-transmission analysis	Mobility and epi- demiological data	Statistical	https://github.com/Emergent-Epidemics/ covid19_npi_china
[28]	Cases exported from China	epidemiological data set	Statistical	http://www.mdpi.com/2077-0383/9/2/601/s1
[29]	Effect of NPI on COVID-19 in China	Location and epi- demiological data	NA	https://github.com/wpgp/BEARmod
[30]	Effect of NPI on COVID-19 in Europe	Location and epi- demiological data	semi-mechanistic Bayesian hierarchical model	https://github.com/ ImperialCollegeLondon/covid19model/ releases/tag/v1.0
[31]	International travel control analysis	COVID-19 statis- tics, flight data	Statistical	https://github.com/WellsRC/ Coronavirus-2019
[32]	COVID-19 Transmission control analysis	COVID-19 statis- tics	regression analysis	https://github.com/huaiyutian/COVID-19_ TCM-50d_China
[33]	Community transmis- sion	COVID-19 cases	Expectation- maximization	https://github.com/carolinecolijn/ ClustersCOVID19
[34]	Community transmission	COVID-19 cases (dates)	maximum likelihood fit- ting and the Akaike infor- mation criterion	https://github.com/MeyersLabUTexas/ COVID-19
[35]	Community transmission	COVID-19 cases (dates)	Bayesian approach	https://github.com/aakhmetz/ nCoVSerialInterval2020

3 COVID-19 Social media and scholarly article data sets

Table 3: Comparison of COVID-19 social media and scholarly article data sets

Study	Application	Data Type	Statistical method	Link	
[36]	Measuring emotions	Textual data	statistical analysis (corre- lation and regression)	https://github.com/ben-aaron188/ covid19worry	
[37]	Social dynamics data	Tweets	Statistical analysis	https://github.com/thepanacealab/ covid19_twitter	
[38]	Conversation dynamics	Tweets	NA	https://github.com/echen102/ COVID-19-TweetIDs	
[39]	Societal issues	Tweets (arabic)	NA	https://github.com/SarahAlqurashi/ COVID-19-Arabic-Tweets-Dataset	
[40]	Government and Media Tweets	Tweets	NA	https://tinyurl.com/y9w3nlnh	
[41]	Perception and policies	Tweets	Proposed NLP, data mining	https://github.com/lopezbec/COVID19_ Tweets_Dataset	
[42]	Fake new identification	Instagram posts	NA	https://github.com/kooshazarei/ COVID-19-InstaPostIDs	
[43]	COVID-19 symptoms identification	Tweets	Data mining	https://sarkerlab.org/covid_sm_data_ bundle/	
[44]	Collecting published articles on COVID-19	Published articles	Proposed data extraction, retrieval mining	https://www.semanticscholar.org/cord19/download	
[45]	Analyzing published articles on COVID-19	Published articles	Statistical analysis	https://tinyurl.com/y9aam6bs	
[46]	Systematic review of COVID-19 diagnosis ar-	Published articles	CHARM and PROBAST tools	https://osf.io/ehc47/	
COVID Scholar	ticles NLP based search portal	Published articles	NLP	https://covidscholar.org	

4 COVID-19 Mobility and NPI data sets

Table 4: Comparison of COVID-19 Mobility and NPI data sets

Type	Organization	Application	Source	Coverage	Format	Link
Mobility	Google	Analyze response to the pandemic	Google loca- tion service	Global	CSV and dash- board	https://www.google.com/covid19/mobility/
	Apple	Analyze mobility patterns in the pandemic	Apple location service	Global	CSV and dash- board	https://www.apple.com/covid19/ mobility
	GeoDS lab	Investigate travel changes at U.S. county level	Descartes Labs and SafeGraph	U.S.	Dashboard	https://geods.geography.wisc. edu/covid19/physical-distancing/
	Baidu Inc.	Investigate migration changes in China	Baidu location service	China	Dashboard	http://qianxi.baidu.com/
NPI	Oxford University [47]	Investigate NPI strin- gency	Media and gov. reports	Global	CSV and dash- board	https://github.com/OxCGRT/ covid-policy-tracker
	A volunteer group	Investigate effectiveness of NPI	Our World in Data	Global	CSV and dash- board	https://www.kaggle.com/davidoj/ covid19-national-responses-dataset
	ACAPS	Investigate NPI	Media and gov. reports	Global	CSV and dash- board	https://www.acaps.org/projects/ covid19/data

5 COVID-19 Speech data sets

Table 5: Comparison of COVID-19 Speech data sets

Study	Application	Data Type	ML method	Sample size	Link
[48]	Cough based COVID-19	Voice data	Deep and ML classifiers	NA	NA
	diagnosis				
[49]	Cough and breath based	Voice data	Logistic Regression, Gradient	7000	https://www.covid-19-sounds.
	COVID-19 diagnosis		Boosting Trees, and SVM		org/en/
[50]	Cough, breath, and	Voice data	NA	approx. 1000	https://github.com/iiscleap/
	speech based COVID-19				Coswara-Dat
1. C	diagnosis		374	16	
Virufy	Cough based COVID-19	Voice data	NA	16	https://github.com/virufy/
	diagnosis				covid
[51]	Breath based COVID-19	Voice data	NA	NA NA	NA
	diagnosis transmission				
[52]	Lung disease classifica-	Breath samples	Stacked AutoEncoders, Long	150	NA
	tion		Short Term Memory Network,		
[52]	COVID 10	37-: 4-4-	and CNN	50	NIA
[53]	COVID-19 speech analy-	Voice data	SVM with linear kernel	52	NA
	sis				

References

- [1] Joseph Paul Cohen, Paul Morrison, and Lan Dao. Covid-19 image data collection. *arXiv preprint* arXiv:2003.11597, 2020.
- [2] Jinyu Zhao, Yichen Zhang, Xuehai He, and Pengtao Xie. Covid-ct-dataset: A ct scan dataset about covid-19. arXiv preprint arXiv:2003.13865, 2020.
- [3] Shuai Wang, Bo Kang, Jinlu Ma, Xianjun Zeng, Mingming Xiao, Jia Guo, Mengjiao Cai, Jingyi Yang, Yaodong Li, Xiangfei Meng, et al. A deep learning algorithm using ct images to screen for corona virus disease (covid-19). *medRxiv*, 2020.
- [4] Fei Shan+, Yaozong Gao+, Jun Wang, Weiya Shi, Nannan Shi, Miaofei Han, Zhong Xue, Dinggang Shen, and Yuxin Shi. Lung infection quantification of covid-19 in ct images with deep learning. *arXiv* preprint arXiv:2003.04655, 2020.
- [5] Ma Jun, Ge Cheng, Wang Yixin, An Xingle, Gao Jiantao, Yu Ziqi, Zhang Minqing, Liu Xin, Deng Xueyuan, Cao Shucheng, Wei Hao, Mei Sen, Yang Xiaoyu, Nie Ziwei, Li Chen, Tian Lu, Zhu Yuntao, Zhu Qiongjie, Dong Guoqiang, and He Jian. COVID-19 CT Lung and Infection Segmentation Dataset, April 2020.
- [6] Linda Wang and Alexander Wong. Covid-net: A tailored deep convolutional neural network design for detection of covid-19 cases from chest radiography images. *arXiv* preprint arXiv:2003.09871, 2020.
- [7] Ezz El-Din Hemdan, Marwa A Shouman, and Mohamed Esmail Karar. Covidx-net: A framework of deep learning classifiers to diagnose covid-19 in x-ray images. *arXiv preprint arXiv:2003.11055*, 2020.
- [8] Ioannis D Apostolopoulos and Tzani A Mpesiana. Covid-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networks. *Physical and Engineering Sciences in Medicine*, page 1, 2020.
- [9] Daniel S Kermany, Michael Goldbaum, Wenjia Cai, Carolina CS Valentim, Huiying Liang, Sally L Baxter, Alex McKeown, Ge Yang, Xiaokang Wu, Fangbing Yan, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. *Cell*, 172(5):1122–1131, 2018.
- [10] Ioannis Apostolopoulos, Sokratis Aznaouridis, and Mpesiana Tzani. Extracting possibly representative covid-19 biomarkers from x-ray images with deep learning approach and image data related to pulmonary diseases. *arXiv* preprint arXiv:2004.00338, 2020.
- [11] Ali Narin, Ceren Kaya, and Ziynet Pamuk. Automatic detection of coronavirus disease (covid-19) using x-ray images and deep convolutional neural networks. *arXiv preprint arXiv:2003.10849*, 2020.
- [12] Prabira Kumar Sethy and Santi Kumari Behera. Detection of coronavirus (covid-19) based on deep features and support vector machine. 5, 2020.
- [13] Parnian Afshar, Shahin Heidarian, Farnoosh Naderkhani, Anastasia Oikonomou, Konstantinos N Plataniotis, and Arash Mohammadi. Covid-caps: A capsule network-based framework for identification of covid-19 cases from x-ray images. *arXiv preprint arXiv:2004.02696*, 2020.

- [14] Saddam Hussain and Asifullah Khan. Coronavirus disease analysis using chest x-ray images and a novel deep convolutional neural network, 04 2020.
- [15] Fathi El-Shafai, Walid; E. Abd El-Samie. Extensive and augmented covid-19 x-ray and ct chest images dataset, 2020.
- [16] Muhammad EH Chowdhury, Tawsifur Rahman, Amith Khandakar, Rashid Mazhar, Muhammad Abdul Kadir, Zaid Bin Mahbub, Khandakar R Islam, Muhammad Salman Khan, Atif Iqbal, Nasser Al-Emadi, et al. Can ai help in screening viral and covid-19 pneumonia? *arXiv preprint arXiv:2003.13145*, 2020.
- [17] Jannis Born, Gabriel Brändle, Manuel Cossio, Marion Disdier, Julie Goulet, Jérémie Roulin, and Nina Wiedemann. Pocovid-net: Automatic detection of covid-19 from a new lung ultrasound imaging dataset (pocus). *arXiv preprint arXiv:2004.12084*, 2020.
- [18] Ensheng Dong, Hongru Du, and Lauren Gardner. An interactive web-based dashboard to track covid-19 in real time. *The Lancet infectious diseases*, 2020.
- [19] Samrat Kumar Dey, Md Mahbubur Rahman, Umme Raihan Siddiqi, and Arpita Howlader. Analyzing the epidemiological outbreak of covid-19: A visual exploratory data analysis (eda) approach. *Journal of Medical Virology*, 2020.
- [20] Wenyuan Liu, Peter Tsung-Wen Yen, and Siew Ann Cheong. Coronavirus disease 2019 (covid-19) outbreak in china, spatial temporal dataset. *arXiv preprint arXiv:2003.11716*, 2020.
- [21] Bo Xu, Moritz UG Kraemer, and Data Curation Group. Open access epidemiological data from the covid-19 outbreak. The Lancet. Infectious Diseases, 2020.
- [22] Bo Xu, Bernardo Gutierrez, Sumiko Mekaru, Kara Sewalk, Lauren Goodwin, Alyssa Loskill, Emily L Cohn, Yulin Hswen, Sarah C Hill, Maria M Cobo, et al. Epidemiological data from the covid-19 outbreak, real-time case information. *Scientific data*, 7(1):1–6, 2020.
- [23] Benjamin D Killeen, Jie Ying Wu, Kinjal Shah, Anna Zapaishchykova, Philipp Nikutta, Aniruddha Tamhane, Shreya Chakraborty, Jinchi Wei, Tiger Gao, Mareike Thies, et al. A county-level dataset for informing the united states' response to covid-19. *arXiv preprint arXiv:2004.00756*, 2020.
- [24] Adam J Kucharski, Timothy W Russell, Charlie Diamond, Yang Liu, John Edmunds, Sebastian Funk, Rosalind M Eggo, Fiona Sun, Mark Jit, James D Munday, et al. Early dynamics of transmission and control of covid-19: a mathematical modelling study. *The lancet infectious diseases*, 2020.
- [25] Domenico Benvenuto, Marta Giovanetti, Lazzaro Vassallo, Silvia Angeletti, and Massimo Ciccozzi. Application of the arima model on the covid-2019 epidemic dataset. *Data in brief*, page 105340, 2020.
- [26] Alexander Lachmann. Correcting under-reported covid-19 case numbers. medRxiv, 2020.
- [27] Moritz UG Kraemer, Chia-Hung Yang, Bernardo Gutierrez, Chieh-Hsi Wu, Brennan Klein, David M Pigott, Louis du Plessis, Nuno R Faria, Ruoran Li, William P Hanage, et al. The effect of human mobility and control measures on the covid-19 epidemic in china. *Science*, 2020.
- [28] Asami Anzai, Tetsuro Kobayashi, Natalie M Linton, Ryo Kinoshita, Katsuma Hayashi, Ayako Suzuki, Yichi Yang, Sung-mok Jung, Takeshi Miyama, Andrei R Akhmetzhanov, et al. Assessing the impact of reduced travel on exportation dynamics of novel coronavirus infection (covid-19). *Journal of clinical medicine*, 9(2):601, 2020.
- [29] Shengjie Lai, Nick W Ruktanonchai, Liangcai Zhou, Olivia Prosper, Wei Luo, Jessica R Floyd, Amy Wesolowski, Chi Zhang, Xiangjun Du, Hongjie Yu, et al. Effect of non-pharmaceutical interventions for containing the covid-19 outbreak: an observational and modelling study. *medRxiv*, 2020.
- [30] Seth Flaxman, Swapnil Mishra, Axel Gandy, H Unwin, H Coupland, T Mellan, H Zhu, T Berah, J Eaton, P Perez Guzman, et al. Report 13: Estimating the number of infections and the impact of non-pharmaceutical interventions on covid-19 in 11 european countries. 2020.
- [31] Chad R Wells, Pratha Sah, Seyed M Moghadas, Abhishek Pandey, Affan Shoukat, Yaning Wang, Zheng Wang, Lauren A Meyers, Burton H Singer, and Alison P Galvani. Impact of international travel and border control measures on the global spread of the novel 2019 coronavirus outbreak. *Proceedings of the National Academy of Sciences*, 117(13):7504–7509, 2020.
- [32] Huaiyu Tian, Yonghong Liu, Yidan Li, Chieh-Hsi Wu, Bin Chen, Moritz UG Kraemer, Bingying Li, Jun Cai, Bo Xu, Qiqi Yang, et al. An investigation of transmission control measures during the first 50 days of the covid-19 epidemic in china. *Science*, 2020.
- [33] Lauren Tindale, Michelle Coombe, Jessica E Stockdale, Emma Garlock, Wing Yin Venus Lau, Manu Saraswat, Yen-Hsiang Brian Lee, Louxin Zhang, Dongxuan Chen, Jacco Wallinga, et al. Transmission interval estimates suggest pre-symptomatic spread of covid-19. *medRxiv*, 2020.

- [34] Zhanwei Du, Xiaoke Xu, Ye Wu, Lin Wang, Benjamin J Cowling, and Lauren Ancel Meyers. The serial interval of covid-19 from publicly reported confirmed cases. *medRxiv*, 2020.
- [35] Hiroshi Nishiura, Natalie M Linton, and Andrei R Akhmetzhanov. Serial interval of novel coronavirus (covid-19) infections. *International journal of infectious diseases*, 2020.
- [36] Bennett Kleinberg, Isabelle van der Vegt, and Maximilian Mozes. Measuring emotions in the covid-19 real world worry dataset. *arXiv preprint arXiv:2004.04225*, 2020.
- [37] Juan M. Banda, Ramya Tekumalla, Guanyu Wang, Jingyuan Yu, Tuo Liu, Yuning Ding, and Gerardo Chowell. A large-scale covid-19 twitter chatter dataset for open scientific research an international collaboration, 2020.
- [38] Emily Chen, Kristina Lerman, and Emilio Ferrara. Covid-19: The first public coronavirus twitter dataset. *arXiv* preprint arXiv:2003.07372, 2020.
- [39] Sarah Alqurashi, Ahmad Alhindi, and Eisa Alanazi. Large arabic twitter dataset on covid-19. *arXiv preprint arXiv:2004.04315*, 2020.
- [40] Jingyuan Yu. Open access institutional and news media tweet dataset for covid-19 social science research. *arXiv* preprint arXiv:2004.01791, 2020.
- [41] Christian E Lopez, Malolan Vasu, and Caleb Gallemore. Understanding the perception of covid-19 policies by mining a multilanguage twitter dataset. *arXiv* preprint arXiv:2003.10359, 2020.
- [42] Koosha Zarei, Reza Farahbakhsh, Noel Crespi, and Gareth Tyson. A first instagram dataset on covid-19. *arXiv* preprint arXiv:2004.12226, 2020.
- [43] Abeed Sarker, Sahithi Lakamana, Whitney Hogg-Bremer, Angel Xie, Mohammed Ali Al-Garadi, and Yuan-Chi Yang. Self-reported covid-19 symptoms on twitter: An analysis and a research resource. *medRxiv*, 2020.
- [44] Lucy Lu Wang, Kyle Lo, Yoganand Chandrasekhar, Russell Reas, Jiangjiang Yang, Darrin Eide, Kathryn Funk, Rodney Kinney, Ziyang Liu, William. Merrill, Paul Mooney, Dewey A. Murdick, Devvret Rishi, Jerry Sheehan, Zhihong Shen, Brandon Stilson, Alex D. Wade, Kuansan Wang, Christopher Wilhelm, Boya Xie, Douglas M. Raymond, Daniel S. Weld, Oren Etzioni, and Sebastian Kohlmeier. Cord-19: The covid-19 open research dataset. 2020.
- [45] Sasmita Poudel Adhikari, Sha Meng, Yu-Ju Wu, Yu-Ping Mao, Rui-Xue Ye, Qing-Zhi Wang, Chang Sun, Sean Sylvia, Scott Rozelle, Hein Raat, et al. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (covid-19) during the early outbreak period: a scoping review. *Infectious diseases of poverty*, 9(1):1–12, 2020.
- [46] Laure Wynants, Ben Van Calster, Marc MJ Bonten, Gary S Collins, Thomas PA Debray, Maarten De Vos, Maria C Haller, Georg Heinze, Karel GM Moons, Richard D Riley, et al. Prediction models for diagnosis and prognosis of covid-19 infection: systematic review and critical appraisal. *bmj*, 369, 2020.
- [47] Thomas Hale, Anna Petherick, Toby Phillips, and Samuel Webster. Variation in government responses to covid-19. *Blavatnik school of government working paper*, 31, 2020.
- [48] Ali Imran, Iryna Posokhova, Haneya N Qureshi, Usama Masood, Sajid Riaz, Kamran Ali, Charles N John, and Muhammad Nabeel. Ai4covid-19: Ai enabled preliminary diagnosis for covid-19 from cough samples via an app. arXiv preprint arXiv:2004.01275, 2020.
- [49] Chloë Brown, Jagmohan Chauhan, Andreas Grammenos, Jing Han, Apinan Hasthanasombat, Dimitris Spathis, Tong Xia, Pietro Cicuta, and Cecilia Mascolo. Exploring automatic diagnosis of covid-19 from crowdsourced respiratory sound data. *arXiv preprint arXiv:2006.05919*, 2020.
- [50] Neeraj Sharma, Prashant Krishnan, Rohit Kumar, Shreyas Ramoji, Srikanth Raj Chetupalli, Prasanta Kumar Ghosh, Sriram Ganapathy, et al. Coswara–a database of breathing, cough, and voice sounds for covid-19 diagnosis. *arXiv preprint arXiv:2005.10548*, 2020.
- [51] Miad Faezipour and Abdelshakour Abuzneid. Smartphone-based self-testing of covid-19 using breathing sounds. *Telemedicine and e-Health*, 2020.
- [52] S. Trivedy, M. Goyal, P. R. Mohapatra, and A. Mukherjee. Design and development of smartphone-enabled spirometer with a disease classification system using convolutional neural network. *IEEE Transactions on Instrumentation and Measurement*, pages 1–1, 2020.
- [53] Jing Han, Kun Qian, Meishu Song, Zijiang Yang, Zhao Ren, Shuo Liu, Juan Liu, Huaiyuan Zheng, Wei Ji, Tomoya Koike, et al. An early study on intelligent analysis of speech under covid-19: Severity, sleep quality, fatigue, and anxiety. *arXiv preprint arXiv:2005.00096*, 2020.