CIS 419/519: Homework 5

Jiatong Sun

03/13/2020

Although the solutions are entirely my own, I consulted with the following people and sources while working on this homework: YuchenSun, JunfanPan

https://stackoverflow.com/questions/50994504/how-to-put-figure-between-items-on-enumerate-list temperature for the contraction of the contractio

1 Logical Functions with Neural Nets

a.

Figure 1: NAND

Truth Table							
x_1	x_2	H(x)					
0	0	$\sigma(30) = 1$					
0	1	$\sigma(10) = 1$					
1	0	$\sigma(10) = 1$					
1	1	$\sigma(-10) = 0$					

Table 1: NAND

Figure 2: NAND

Truth Table									
w_{10}	w_{11}	w_{12}	w_{13}	w_{20}	w_{21}	w_{22}	w_{23}	w_{24}	
-30	20	20	20	-10	20	20	20	-40	

Table 2: Weight table

		Truth Table		
x_1	x_2	x_3	y_1	H(x)
0	0	0	$\sigma(-30) = 0$	$\sigma(-10) = 0$
0	0	1	$\sigma(-10) = 0$	$\sigma(10) = 1$
0	1	0	$\sigma(-10) = 0$	$\sigma(10) = 1$
0	1	1	$\sigma(-10) = 0$	$\sigma(10) = 1$
1	0	0	$\sigma(10) = 1$	$\sigma(-10) = 0$
1	0	1	$\sigma(10) = 1$	$\sigma(-10) = 0$
1	1	0	$\sigma(10) = 1$	$\sigma(-10) = 0$
1	1	1	$\sigma(30) = 1$	$\sigma(10) = 1$

Table 3: Parity

2 Calculating Backprop by Hand

In the following solution, superscript l denotes the number of layer and subscript p denotes the number's position in its matrix.

 z_p^l denotes the dot product of weights and last layer's output, and a_p^l denotes the output of current layer, which is after the activation function.

Since the hidden layer uses a sign function and the output layer uses a sigmoid function, the output can be expressed as follows:

$$a^{2} = Sigmoid(z^{2}) = \frac{1}{1 + e^{-z^{2}}} = \frac{1}{1 + e^{-\mathbf{W}^{2}a^{1}}} = \frac{1}{1 + e^{-\mathbf{W}^{2} \cdot Sign(\mathbf{W}^{1}\mathbf{X})}}$$

where

$$a^{1} = Sign(z_{1}) = Sign(\boldsymbol{W}^{1}\boldsymbol{X}) = Sign(\begin{bmatrix} 0.1 & 0.2 \\ -0.4 & 0.3 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \end{bmatrix}) = Sign(\begin{bmatrix} 1.3 \\ -0.8 \end{bmatrix}) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

and

$$a^{2} = \frac{1}{1 + e^{-\mathbf{W}^{2}a^{1}}} = \frac{1}{1 + e^{-[0.1 \quad 0.2]}\begin{bmatrix} 1\\-1 \end{bmatrix}} = \frac{1}{1 + e^{0.1}} = 0.475$$

To calculate the output gradient with respect to each of the weights, we can use the chain rule. Every part in the partial derivative chain is calculated and listed in:

Figure 3: Forward Propagation

Figure 4: Backprpogation

$$\frac{da^{2}}{d\mathbf{W}^{2}}: \begin{cases} \frac{da^{2}}{\partial w_{1}^{2}} = \frac{\partial a^{2}}{\partial z^{2}} \frac{\partial z^{2}}{\partial w_{1}^{2}} = 0.249 \cdot 1 = 0.249 \\ \frac{da^{2}}{\partial w_{2}^{2}} = \frac{\partial a^{2}}{\partial z^{2}} \frac{\partial z^{2}}{\partial w_{2}^{2}} = 0.249 \cdot (-1) = -0.249 \end{cases}$$

$$\begin{cases} \frac{da^{2}}{\partial w_{11}^{1}} = \frac{\partial a^{2}}{\partial z^{2}} \frac{\partial z^{2}}{\partial a_{1}^{1}} \frac{\partial a_{1}^{1}}{\partial z_{1}^{1}} \frac{\partial z_{1}^{1}}{\partial w_{11}^{1}} = 0.249 \cdot 0.1 \cdot 0 \cdot 5 = 0 \end{cases}$$

$$\frac{da^{2}}{\partial \mathbf{W}^{1}}: \begin{cases} \frac{da^{2}}{\partial w_{11}^{1}} = \frac{\partial a^{2}}{\partial z^{2}} \frac{\partial z^{2}}{\partial a_{1}^{1}} \frac{\partial a_{1}^{1}}{\partial z_{1}^{1}} \frac{\partial z_{1}^{1}}{\partial w_{11}^{1}} = 0.249 \cdot 0.1 \cdot 0 \cdot 4 = 0 \end{cases}$$

$$\frac{da^{2}}{\partial w_{21}^{1}} = \frac{\partial a^{2}}{\partial z^{2}} \frac{\partial z^{2}}{\partial a_{1}^{1}} \frac{\partial a_{2}^{1}}{\partial z_{1}^{1}} \frac{\partial z_{2}^{1}}{\partial w_{12}^{1}} = 0.249 \cdot 0.2 \cdot 1 \cdot 5 = 0.249 \end{cases}$$

$$\frac{da^{2}}{\partial w_{21}^{1}} = \frac{\partial a^{2}}{\partial z^{2}} \frac{\partial z^{2}}{\partial a_{2}^{1}} \frac{\partial a_{2}^{1}}{\partial z_{2}^{1}} \frac{\partial z_{2}^{1}}{\partial w_{21}^{1}} = 0.249 \cdot 0.2 \cdot 1 \cdot 4 = 0.199 \end{cases}$$

So we finally get

$$\frac{da^2}{d\mathbf{W^2}} = \begin{bmatrix} 0.249 \\ -0.249 \end{bmatrix}, \quad \frac{da^2}{d\mathbf{W^1}} = \begin{bmatrix} 0 & 0 \\ 0.249 & 0.199 \end{bmatrix}$$

3 Neural Nets in SuperTuxKart