Arithmetic geometry notes

Soham Chowdhury July 26, 2017

Contents

I	Bas	sic notions	1	
1	Alg	ebraic integers	2	
	1.1	Properties of integrality	2	
	1.2	The trace and the norm	3	
	1.3	Galois-theoretic interpretations	4	
	1.4	Integral bases	4	
A	Con	nplex analysis	6	
	A.1	Holomorphy and complex differentiability	6	
		Initial definitions	6	
		Properties	7	
	A.2	Power series	10	
		Zeroes and poles	13	
В	Fourier analysis			
	B.1	Fourier expansions	14	
	B.2		14	
C	Modular forms		16	
	C .1	The hyperbolic plane	16	
	C.2	Möbius transformations	16	
	C .3	The modular group	16	
		A fundamental domain for $PSL_2(\mathbf{Z})$	17	
	C.5	Congruence subgroups	17	

Part I Basic notions

Chapter 1

Algebraic integers

Pellentesque condimentum, magna ut suscipit hendrerit, ipsum augue ornare nulla, non luctus diam neque sit amet urna.

The Dude

Fix a domain A integrally closed in K := K(A). Let L|K be a finite extension, and B the integral closure of A in L. This is the AKLB *diagram*:

$$\begin{array}{ccc}
\mathsf{K} & \longrightarrow & \mathsf{L} \\
\uparrow & & \uparrow \\
\mathsf{A} & \longrightarrow & \mathsf{B}
\end{array}$$

1.1 Properties of integrality

Integrality is stable under the ring operations: one would like the following to hold, and they do:

This is a corollary of the following:

Theorem 1.1.1 (Module-theoretic characterization of integrality). A finite number of b_i are integral over $A \iff the \ ring \ A[b_1, \ldots, b_n]$ is finitely generated as an A-module.

Corollary 1.1.2. *If* α *and* b *are integral over* A, *so are* $\alpha + b$ *and* αb .

Theorem 1.1.3 (Integrality is transitive). *Consider ring extensions* $A \subseteq B \subseteq C$. $A \subseteq B$ *integral and* $B \subseteq C$ *integral* $\iff A \subseteq C$ *integral*.

Proof.
$$A \subseteq C$$
 integral implies $A \subseteq B$ integral. (Why?)

Theorem 1.1.4. Any element $l \in L$ is equal to b/α for $b \in B$ and $\alpha \in A$.

Proof. Consider an element $l \in L$. The minimal polynomial m_l of l over K gives rise to a polynomial over A

$$a_n l^n + a_{n-1} l^{n-1} + \cdots + a_0 = 0$$

by clearing denominators. Now observe that $\ell:=\mathfrak{a}_n l$ is integral over A: multiplying by \mathfrak{a}_n^{n-1} gives an equation of the form

$$\ell^n + \alpha'_{n-1}\ell^{n-1} + \cdots + \alpha'_0 = 0.$$

This shows that taking $b/a = \ell/a_n$ works.

Remark 1.1.5. Notice that K(B) = L. Indeed, $B \subset L$ so $K(B) \subset L$, and the result above shows that $L \subset K(B)$ (set-theoretically, $L \subset B \times A \subset B \times B$).

Theorem 1.1.6. $l \in L$ is integral over A iff its minimal polynomial μ_l over K has coefficients in A.

Proof. If $\mu := \mu_l \in A[x]$ then we have integrality of l over A by definition. Consider now the case of an integral l with minimal polynomial $\mu \in K[x]$. From integrality over A we know that l is a root of some $g \in A[x]$. Then $\mu|g$ in K[x], so all zeros of μ are zeros of g and hence integral over A.

By Vietà, the coefficients a_i are given by elementary symmetric polynomials in the roots and are hence, by Corollary 1.1.2, integral over A themselves. The a_i are elements of K, so, in this case, integrality over A means that $a_i \in K$, and hence $\mu \in A[x]$.

1.2 The trace and the norm

Given $x \in L$, multiplication by x determines an endomorphism

$$T_x: \alpha \mapsto x\alpha$$

of the K-vector space L. We define the trace and norm maps

$$\operatorname{Tr}_{\mathsf{L}|\mathsf{K}}(z) = \operatorname{tr}\mathsf{T}_{\mathsf{z}}$$

 $\operatorname{Nm}_{\mathsf{L}|\mathsf{K}}(z) = \det\mathsf{T}_{\mathsf{z}}$

Let n = [L : K]. The characteristic polynomial

$$\begin{split} \chi_z(t) &= det(tI - T_z) \\ &= t^n - \alpha_1 t^{n-1} + \dots + (-1)^n \alpha_n \in K[\mathfrak{i}] \end{split}$$

contains coefficients $a_1 = Tr_{L|K}(z)$ and $a_n = Nm_{L|K}(z)$.

Remark 1.2.7. If this isn't immediately clear, think Vietà. (This will be one of the recurring themes throughout this chapter.)

1.3 Galois-theoretic interpretations

Fix an algebraic closure $\bar{K} = K^{alg}$ of K.

Proposition 1.3.8. *If* L|K *is separable, letting* $\sigma:L\to \bar{K}$ *vary over the* K-embeddings of L *into* \bar{K} , we have

1.
$$\chi_z(t) = \prod_{\sigma} (t - \sigma z)$$

2.
$$\operatorname{Tr}_{\mathsf{L}|\mathsf{K}}(z) = \sum_{\sigma} \sigma z$$

3.
$$\operatorname{Nm}_{L|K}(z) = \prod_{\sigma} \sigma z$$

Proof. Let d = [L : K(x)]. The characteristic polynomial is a power

$$\chi_z = \mu_z^d$$

where d = [L : K(z)]. Part 1 easily implies the others, by Vietà's formulas.

Theorem 1.3.9. *For a tower of finite extensions* $K \subseteq L \subseteq M$ *, we have*

$$\begin{split} Tr_{L|K} \circ Tr_{M|L} &= Tr_{M|K} \\ Nm_{L|K} \circ Nm_{M|L} &= Nm_{M|K} \end{split}$$

1.4 Integral bases

Definition 1.4.10. The **discriminant** of a basis α_i of a separable extension L|K is defined by

$$d(\alpha_1, \ldots, \alpha_n) = det((\sigma_i \alpha_j))^2$$

where the σ_i are the K-embeddings $L \hookrightarrow \bar{K}$.

Proposition 1.4.11. For L|K a separable extension with basis α_i , the function

$$(x,y) = Tr_{L|K}(xy)$$

yields a nondegenerate bilinear form on the K-vector space L.

Corollary 1.4.12. *For* L|K *and* α_i *as above,*

$$d(\alpha_1,\ldots,\alpha_n)\neq 0.$$

Proof. The form has matrix

$$M = Tr_{L|K}((\alpha_i \alpha_j))$$

with respect to the given basis. The nondegeneracy of the form, which we have from Proposition 1.4.11, is equivalent to the statement that $\det M \neq 0$, whence the claim follows.

Lemma 1.4.13. Let (α_i) be a basis of L|K contained in B, with $d = d(\alpha_1, \ldots, \alpha_n)$. Then

$$dB \subseteq A\alpha_1 + \cdots + A\alpha_n$$
.

Proposition 1.4.14. *If* L|K *is separable and* A *is a PID, every finitely generated* B-submodule $M \neq 0$ of L s a free A-module of rank [L:K].

Corollary 1.4.15. B admits an integral basis over A.

Proposition 1.4.16. Let M|K and N|K be two Galois extensions with $M \cap N = K$, with m = [M:K] and n = [N:K]. Fix integral bases $(\alpha_i)_{1 \le i \le m}$ of M|K and $(\beta_j)_{1 \le j \le n}$ of N|K respectively, with discriminants μ and ν respectively. If μ and ν are relatively prime, with $x\mu + y\nu = 1$ for some $x, y \in A$, then $(\alpha_i\beta_j)$ is an integral basis of MN, with discriminant $m^{\nu}n^{\mu}$.

Proposition 1.4.17. *If* $i \subseteq j$ *are two nonzero finite* \mathcal{O}_K -submodules of K, then (j:i) is finite. *Moreover,*

$$d(\mathfrak{i}) = (\mathfrak{j} : \mathfrak{i})^2 d(\mathfrak{j})$$

holds.

Appendix A

Complex analysis

A.1 Holomorphy and complex differentiability

There are, broadly speaking, two criteria that we would like nice complex-valued functions to satisfy. The first is a notion of differentiability similar to the one from calculus, where every function can be linearly approximated by a *derivative*, while the second asks that every function be locally representable by a *power series* expansion.

This section will develop these notions, demonstrate relations between the two, and discuss some simple consequences of these conditions.

Initial definitions

Let $\Omega \subseteq \mathbf{C}$ be an open set.

Definition A.1.1. *A function* $f : \Omega \to \mathbf{C}$ *is* complex differentiable at z_0 *if the limit*

$$f'(z_0) = \lim_{h\to 0} \frac{f(z_0 + h) - f(z_0)}{h}$$

exists. f *is said to be* complex differentiable on Ω *if it is complex differentiable at all* $z_0 \in \Omega$.

Definition A.1.2 (Narasimhan). $f: \Omega \to \mathbf{C}$ *is* holomorphic on Ω *if, for all* $z_0 \in \Omega$ *, there exists a neighborhood* $U \subseteq \Omega$ *of* z_0 *and a sequence* $\{c_n\}_{n\geqslant 0}$ *of complex numbers such that, for all* $z \in U$, *the series*

$$\sum_{n=0}^{\infty} c_n (z-z_0)^n$$

converges to f(z).

These two definitions are in fact equivalent: holomorphy on Ω is the same as C-differentiability on Ω . This is the content of the Cauchy-Goursat theorem, which we will prove later (TODO ref).

Properties

Holomorphy and complex differentiability imply relations between the "x-behavior" and "y-behavior" of a function, so that there are certain rigidity properties we can be assured of. We now show a few properties which are all roughly similar in nature, culminating in Definition A.1.6.

Proposition A.1.3. Let $f: \Omega \to \mathbf{C}$ be \mathbf{C} -differentiable at $\alpha \in \Omega$. Then $\partial_{\alpha} f(\alpha)$ and $\partial_{y} f(\alpha)$ exist, and

$$\frac{\partial f}{\partial x}(\alpha) = -i\frac{\partial f}{\partial y}(\alpha) = f'(\alpha)$$

holds.

Proof. In the Riemann tradition, write $a = \sigma + it$. We will calculate f'(a) in two ways, by approaching 0 along the real axis, then along the imaginary axis.

Taking $0 \neq \xi \in \mathbf{R}$,

$$\begin{split} f'(\alpha) &= \lim_{\xi \to 0} \frac{f(\alpha+\xi) - f(\alpha)}{\xi} \\ &= \lim_{\xi \to 0} \frac{f(\sigma+\xi,t) - f(\sigma,t)}{\xi} \\ &= \frac{\partial f}{\partial x}(\alpha). \end{split}$$

Taking $0 \neq \eta \in \mathbf{R}$,

$$\begin{split} f'(\alpha) &= \lim_{\xi \to 0} \frac{f(\alpha + \eta) - f(\alpha)}{i\eta} \\ &= \lim_{\xi \to 0} \frac{f(\sigma, t + \eta) - f(\sigma, t)}{i\eta} \\ &= \frac{1}{i} \frac{\partial f}{\partial y}(\alpha). \end{split}$$

Equating these two expressions to f'(a) is then enough.

Note that x and y can be expressed in terms of z and \bar{z} :

$$x = \frac{z + \bar{z}}{2}$$
$$y = \frac{z - \bar{z}}{2i}$$

This means one can (formally?) write, using the chain rule,

$$\frac{\partial f}{\partial z} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial z} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial z} = \frac{1}{2} \cdot \frac{\partial f}{\partial z} + \frac{1}{2i} \cdot \frac{\partial f}{\partial y} = \frac{1}{2} (f_z - if_y)$$

Exercise A.1.A. What is the analogous expression for $\partial_{\bar{z}}$?

This motivates the following definition.

Definition A.1.4. *The* Wirtinger derivatives *are differential operators defined as follows:*

$$\partial_z = \frac{\partial}{\partial z} = \frac{1}{2} (\partial_x - i\partial_y)$$
$$\partial_{\bar{z}} = \frac{\partial}{\partial \bar{z}} = \frac{1}{2} (\partial_x + i\partial_y)$$

Proposition A.1.5. *If* $f : \Omega \to \mathbf{C}$ *is* \mathbf{C} -differentiable at $\alpha \in \Omega$,

$$\frac{\partial f}{\partial z}(\alpha) = f'(\alpha)$$
$$\frac{\partial f}{\partial \bar{z}}(\alpha) = 0$$

Exercise A.1.B. *Prove this.* (This is essentially a restatement of Proposition A.1.3 using the new notation.)

Definition A.1.6. *Let* $f : \Omega \to \mathbf{C}$ *be written as* f = u + iv, *where* $u, v : \Omega \to \mathbf{R}$. *Then the equations*

$$\frac{\partial f}{\partial x} = i \frac{\partial f}{\partial y}$$
$$\frac{\partial f}{\partial z} = \frac{\partial f}{\partial x}$$
$$\frac{\partial f}{\partial \bar{z}} = 0$$

are each equivalent to the following pair of equations:

$$u_{x} = v_{y} \tag{A.1}$$

$$-\mathbf{u}_{\mathsf{u}} = \mathbf{v}_{\mathsf{x}} \tag{A.2}$$

These differential equations are called the Cauchy-Riemann equations.

Define an R-isomorphism of fields

$$\mu: \mathbf{C} \to \mathbf{R}^2$$

 $x + iy \mapsto (x, y)$

Let $f : \Omega \to \mathbf{C}$ have first partial derivatives at w. We have the *Jacobian map*, represented in the standard basis by

$$J_{w}(u,v) = \begin{bmatrix} u_{x}(w) & u_{y}(w) \\ v_{x}(w) & v_{y}(w) \end{bmatrix}$$

This is a local isomorphism of ${\bf R}^2$ onto the tangent space $T_w {\bf R}^2 \simeq {\bf R}^2$. We "lift" this to ${\bf C}$:

Definition A.1.7. *The* tangent map *of* f = u + iv *at* w *is*

$$d_w f := \mu^{-1} \triangleleft J_w(u, v) \triangleleft \mu$$

Proposition A.1.8. We have $\partial_{\bar{z}} f(w) = 0$ iff $d_w f$ is **C**-linear, that is, if

$$d_{w}f(\lambda \cdot z) = \lambda \cdot d_{w}f(z)$$

in which case

$$d_{w} f(z) = z \cdot \partial_{z} f(w) = z \cdot f'(w)$$

Notice that this says exactly that f is locally linear.

Proof. TODO. Pretty weird in Narasimhan.

C-differentiable functions satisfy the expected properties:

1. Given differentiable f, $g : \Omega \to \mathbb{C}$ and $\lambda \in \mathbb{C}$,

$$f + g : z \mapsto f(z) + g(z)$$

 $f \cdot g : z \mapsto f(z) \cdot g(z)$
 $\lambda \cdot f : z \mapsto \lambda \cdot f(z)$

are all C-differentiable.

2. Consider open sets U, V in C. If $f: U \to C$ and $g: V \to C$ are complex differentiable, then $g \triangleleft f: U \to C$ is complex differentiable if it is defined — that is, if $f(U) \subseteq V$. Further, for $z_0 \in U$, we have a *chain rule*:

$$(g \triangleleft f)' = (g' \triangleleft f) \cdot f'$$

Recall that a function is C^k on some domain if all partial derivatives of orders $\leqslant k$ exist and are continuous.

Proposition A.1.9. Let $f: \Omega \to \mathbf{C}$ be C^1 and satisfy the Cauchy-Riemann equations on Ω . Then f is \mathbf{C} -differentiable on Ω .

In fact, the partial derivatives only need to exist: the Looman–Menchoff theorem (TODO ref) says that they need not be assumed to be continuous themselves.

Proof. Let $\zeta = \xi + i\eta$. Write f = u + iv, and let $w = \alpha + i\beta \in \Omega$. Using Taylor's theorem for C^1 functions,

$$\begin{split} u(w+\zeta) - u(w) &= \tilde{u}(\alpha+\zeta,\beta+\eta) - \tilde{u}(\alpha,\beta) \\ &= \frac{\partial \tilde{u}}{\partial x}(\alpha,\beta) \cdot \xi + \frac{\partial \tilde{u}}{\partial y}(\alpha,\beta) \cdot \eta + \epsilon_1(\xi,\eta) \\ &= \frac{\partial u}{\partial x}(w) \cdot \xi + \frac{\partial u}{\partial y}(w) \cdot \eta + \epsilon_1(\xi,\eta) \end{split}$$

Similarly, we have

$$v(w+\zeta)-v(w)=\frac{\partial u}{\partial x}(w)\cdot \xi+\frac{\partial u}{\partial y}(w)\cdot \eta+\varepsilon_2(\xi,\eta)$$

Crucially, as $\xi, \eta \to 0$, we have the bounds

$$\begin{aligned} &\frac{\varepsilon_{1}(\xi,\eta)}{|\xi|+|\eta|} \to 0 \\ &\frac{\varepsilon_{2}(\xi,\eta)}{|\xi|+|\eta|} \to 0 \\ &\frac{\varepsilon(\xi,\eta)}{|\zeta|} \to 0 \text{(how?)} \end{aligned}$$

where $\varepsilon = \varepsilon_1 + i\varepsilon_2$.

We combine the previous two equations to get

$$f(w + \zeta) - f(w) = f_x(w) \cdot \xi + f_u(w) \cdot \eta + \varepsilon(\zeta)$$

and, using the Cauchy-Riemann equations to write f_y as if_x , we see that the limit

$$\lim_{\zeta \to 0} \frac{f(w+\zeta) - f(w)}{\zeta} = \frac{f_x(w) \cdot (\xi + i\eta)}{\zeta} + \lim_{\zeta \to 0} \frac{\varepsilon(\zeta)}{\zeta}$$
$$= \frac{\partial f}{\partial x}(w)$$

exists (and is differentiable?).

Erratum A.1. In his proof of Proposition A.1.9, where Narasimhan writes $\zeta = \zeta + i\eta$, he means $\zeta = \xi + i\eta$.

A.2 Power series

Lemma A.2.10 (Abel). Given a sequence $\{c_n\}_{n\geqslant 0}$ in \mathbf{C} , there exists $0\leqslant R\in\mathbf{R}_{\infty}=\mathbf{R}\cup\{\infty\}$ such that the series

$$\sum_{n=0}^{\infty} c_n z^n$$

converges for |z| < R and diverges for |z| > R. Further, the series converges **uniformly** on any compact subset of $D_R(0)$.

This means that, given any power series, there exists a disc inside which it converges and outside which it diverges. Abel's lemma does not say what will happen on the boundary circle |z| = R (funny things do sometimes).

Proof. Choose

$$R = \sup \{r \geqslant 0 : \exists M. \forall n \geqslant 0. |c_n| r^n \leqslant M \}$$

or, in words, R is the "biggest" disc inside which $|c_n||z|^n$ is bounded. By construction,

$$|z| > R \implies |c_n||z|^n$$
 is not bounded

so (why? TODO) $\sum c_n z^n$ cannot converge.

Let $K \subseteq D_R$ be compact. Choose $\rho < R$ such that $K \subseteq D_\rho$, and r such that $\rho < r < R$. There exists (?) M > 0 such that $|c_n|r^n \le M$. For $z \in K$,

$$|c_n z^n| \leqslant |c_n| \rho^n \leqslant M \left(\frac{\rho}{r}\right)^n$$

Since $\rho < r$, we have $M \sum_{n=0}^{\infty} \left(\frac{\rho}{r}\right)^n < \infty$, so that $\sum_{n=0}^{\infty} c_n z^n$ converges uniformly on K.

Definition A.2.11. The real number R is called the radius of convergence of $\sum_{n=0}^{\infty} c_n z^n$.

Corollary A.2.12. Holomorphy on an open set $\Omega \subseteq \mathbf{C}$ implies continuity on Ω .

Lemma A.2.13. *The radius of convergence of*

$$\sum_{n=1}^{\infty} n c_n z^{n-1}$$

is equal to that of

$$\sum_{n=0}^{\infty} c_n z^n.$$

Proof.

Derivatives of power series

Lemma A.2.14. Let $a,b \in \mathbf{C}$. We have

$$|(a+b)^n - a^n| \le n|b| (|a|+|b|)^{n-1}$$

for $n \geqslant 1$.

Proof. From high-school algebra, we have the factorization

$$(a+b)^{n} - a^{n} = (a+b-a) \sum_{k=0}^{n-1} (a+b)^{n-1-k} - a^{k}$$
$$= b \sum_{k=0}^{n-1} (a+b)^{n-1} \left(\frac{a}{a+b}\right)^{k}$$

We take absolute values of both sides and apply the triangle inequality:

$$|(a+b)^{n} - a^{n}| = |b| \left| \sum_{k=0}^{n-1} (a+b)^{n-1} \left(\frac{a}{a+b} \right)^{k} \right|$$

$$\leq |b| \sum_{k=0}^{n-1} |a+b|^{n-1} \left| \frac{a}{a+b} \right|^{k}$$

$$\leq |b| \sum_{k=0}^{n-1} |a+b|^{n-1}$$

$$= n|b|(|a|+|b|)^{n-1}$$

Proposition A.2.15. *Let* R > 0, *and consider a power series*

$$\sum_{n=0}^{\infty} c_n (z-z_0)^n \to f(z) \quad \text{for } z \in D_R(z_0)$$

Then f is C-differentiable on $D_R(z_0)$ and

$$f'(z) = \sum_{n=1}^{\infty} nc_n (z - z_0)^{n-1}$$
 for $z \in D_R(z_0)$

Proof. Let $z \in D_R(z_0)$. Set

$$R_{\pm} = \frac{1}{2}(R \pm |z - z_0|)$$

and choose a complex number ζ satisfying $0 < |\zeta| < R_-$. Then

$$\frac{f(z+\zeta) - f(z)}{\zeta} = \sum_{n=1}^{\infty} c_n \frac{(z+\zeta-z_0)^n - (z-z_0)^n}{\zeta}$$

By Lemma A.2.14,

$$\left| \sum_{n>N} c_n \frac{(z+\zeta-z_0)^n - (z-z_0)^n}{\zeta} \right| \leq \sum_{n>N} n|c_n|(|\zeta| + |z-z_0|)^{n-1}$$

$$\leq \sum_{n>N} n|c_n|R_+^{n-1}$$

A.3 Zeroes and poles

Definition A.3.16 (Zeros).

Definition A.3.17. *A function* $f : \mathbf{C} \to \mathbf{C}$ *is* elliptic *if, for all* λ *in some lattice* Λ , $f(z + \lambda) = f(z)$ *for all* $z \in \mathbf{C}$.

Theorem A.3.18 (Liouville). *Any bounded entire function is constant.*

Definition A.3.19. *If* f *is holomorphic on all of* C*, it is said to be* entire.

Appendix B

Fourier analysis

B.1 Fourier expansions

Let $g: \mathbf{C} \to \widehat{\mathbf{C}}$ be a continuous function with period 1. The nth *Fourier coefficient* $\mathfrak{a}_n(y)$ is

$$a_n(y) = \hat{g}(n) = \int_0^1 g(z) exp(-2\pi i n z) dx$$

Then we have the Fourier expansion

$$g(z) = \sum_{n=-\infty}^{\infty} a_n(y) \exp(2\pi i n z)$$

B.2 Meromorphicity

The *nome* is a common building block for interesting functions.

$$q = q(z) := exp(2\pi i z)$$

Let g be meromorphic in the notation of the previous section. Then there exists a unique meromorphic $G: \mathbb{C}^{\times} \to \hat{\mathbb{C}}$ such that $g(z) = G(\mathfrak{q})$ (TODO why?): in other words, a period-1 meromorphic function of z is in fact a function of $\mathfrak{q}(z)$.

Note that G has a removable singularity at 0, so, by Theorem ???, G extends to a meromorphic function on C iff

$$\lim_{q\to 0} G(q)|q|^m = 0$$

for some m. What does it mean for q to go to 0?

$$q \to 0 \implies exp(2\pi i(x+iy)) \to 0$$

 $\implies exp(2\pi ix)e^{-2\pi y} \to 0$
 $\implies y \to \infty$

so we have $g(z)|q|^m \to 0$ as $g(z)\exp(-2\pi my) \to 0$, so we need

as
$$\Im(z) \to \infty$$
, $\exists m \ |g(z)| < \exp(2\pi my)$

The meromorphy of G(q) at 0 thus requires $\Im(z) \to \infty$, in which case we say g is *meromorphic at* $i\infty$. Then G, being meromorphic at 0, has a Laurent series expansion

$$g(z) = G(q) = \sum_{n=-m}^{\infty} c_n q^n = \sum_{n=-m}^{\infty} c_n e^{2\pi i n z}$$

Here m is the order of the pole of G at 0. However, we also have a Fourier expansion

$$g(z) = \sum_{n=-\infty}^{\infty} a_n(y) e^{2\pi i n z}$$

and, equating coefficients,

$$\begin{split} \alpha_n(y) &= c_n & \text{for } n \geqslant -m \\ \alpha_n(y) &= 0 & \text{for } n < -m \end{split}$$

Appendix C

Modular forms

C.1 The hyperbolic plane

Definition C.1.1. *The* upper half-plane *in* **C** *is*

$$\mathfrak{H} := \{ h \in \mathbf{C} : Im(h) > 0 \}$$

C.2 Möbius transformations

$$\frac{az+b}{cz+d}$$

C.3 The modular group

Define Möbius transformations

$$S = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
$$T = \begin{bmatrix} 1 & 1 \\ & 1 \end{bmatrix}$$

As before, the actions of these two matrices are as follows:

$$Sz = \frac{0z+1}{-1z+0} = -\frac{1}{z}$$

$$Tz = \frac{1z+1}{0z+1} = z+1$$

S is an inversion about the unit circle $(z \mapsto 1/z)$ followed by reflection across the imaginary axis $(z \mapsto -z)$, while T is a simple translation.

These form a "basis", a generating set, for the modular group:

Proposition C.3.2. $PSL_2(\mathbf{Z}) = \langle S, T \rangle$.

C.4 A fundamental domain for $PSL_2(\mathbf{Z})$

Definition C.4.3. *Let* $F \subset \mathfrak{H}$ *be a closed set with connected interior, and let* Γ *be a subgroup of* $PSL_2(\mathbf{Z})$. *We say* F *is a* fundamental domain *for* $\Gamma \setminus \mathfrak{H}$ *or for* Γ *if*

- 1. any $h \in \mathfrak{H}$ is Γ -equivalent to some point in Γ
- 2. no two interior points of F are equivalent under the Γ action
- 3. the boundary of F is piecewise smooth

Define $\mathbf{M} = PSL_2(\mathbf{Z})$.

We now exhibit a fundamental domain for $PSL_2(\mathbf{Z})$. Let

$$F=\{h\in\mathfrak{H}:|\mathfrak{R}(h)|\leqslant\frac{1}{2},|h|\geqslant1\}$$

Proposition C.4.4. F is a fundamental domain for M.

C.5 Congruence subgroups

Definition C.5.5. *Let* $N \in \mathbb{Z}_{>0}$. *The* modular group *of* level N *is*

$$\Gamma_0(N) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbf{M} : c \equiv 0 \; (\text{mod } N) \right\}$$

We also have

$$\Gamma_1(N) = \left\{ \begin{bmatrix} \alpha & b \\ c & d \end{bmatrix} \in \mathbf{M} : \begin{bmatrix} \alpha & b \\ c & d \end{bmatrix} \equiv \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix} \; (\text{mod } N) \right\}$$

and the principal congruence subgroups

$$\Gamma(N) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbf{M} : \begin{bmatrix} a & b \\ c & d \end{bmatrix} \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \pmod{N} \right\}$$