Yield analysis maize part 2

Kathi

Contents

L
1
L
3
3
4
4
7
3
1
6
9
4

Setup

Installing and loading required packages

```
# Store package names, required for the analysis in a vector
packages <- c("tidyverse", "DBI", "RSQLite", "broom", "treemapify", "ggrepel", "scales")

# Install packages that are not yet installed
installed_packages <- packages %in% rownames(installed.packages())
if (any(installed_packages == FALSE)) {
  install.packages(packages[!installed_packages])
}

# Load packages
invisible(lapply(packages, library, character.only = TRUE))</pre>
```

Import data from the SQL database.

In the first part of this project the global timeseries data on maize yield was retrieved from ncf4 files and stored in a database. In this section the data that is required for the planned data analysis is retrieved from the database.

```
# Create a connection to the DB
con = dbConnect(
```

```
drv = RSQLite::SQLite(),
 dbname = "yield.db"
)
# Import the yield data from the database
query = "SELECT
            yield,
            year,
            country,
            continent,
            area_ha
          FROM maize_yield
          WHERE TRUE
            AND country IS NOT NULL;"
# Store the retrieved data in a dataframe
yield_data <- dbFetch(dbSendQuery(con, query))</pre>
# Change the class of the year and area_ha to numeric
yield_data = yield_data %>%
  mutate(year = as.numeric(year),
         area_ha = as.numeric(area_ha))
# Check the first entries of the dataframe
head(yield_data)
##
    yield year country continent area ha
## 1
        NA 1981 Antarctica Antarctica 1342.707
## 2
        NA 1982 Antarctica Antarctica 1342.707
## 3
        NA 1983 Antarctica Antarctica 1342.707
## 4
        NA 1984 Antarctica Antarctica 1342.707
## 5
        NA 1985 Antarctica Antarctica 1342.707
        NA 1986 Antarctica Antarctica 1342.707
# Import the demographic data from the database
query = "SELECT
            country,
            population,
            gdp,
            income,
            export,
            import,
            year
        FROM demographic_data;"
# Store the retrieved data in a dataframe
demographic_data <- dbFetch(dbSendQuery(con, query))</pre>
## Warning: Closing open result set, pending rows
## Warning in result_fetch(res@ptr, n = n): Column `population`: mixed type, first
## seen values of type integer64, coercing other values of type string
## Warning in result_fetch(res@ptr, n = n): Column `gdp`: mixed type, first seen
## values of type real, coercing other values of type integer64, string
```

```
## Warning in result_fetch(res@ptr, n = n): Column `income`: mixed type, first seen
## values of type integer64, coercing other values of type real, string
## Warning in result_fetch(res@ptr, n = n): Column `export`: mixed type, first seen
## values of type real, coercing other values of type integer64, string
## Warning in result fetch(res@ptr, n = n): Column `import`: mixed type, first seen
## values of type real, coercing other values of type integer64, string
# Change the class of the population, income, import and year to numeric
demographic data = demographic data %>%
  mutate(population = as.numeric(population),
         income = as.numeric(income),
         year = as.numeric(year))
# Check the first entries of the dataframe
head(demographic_data)
##
         country population
                                          income
                                                    export
                                                               import year
                                   gdp
## 1 Afghanistan
                  13171679 3478787909 3.241e+09 766300000 1080500000 1981
## 2 Afghanistan
                  12882518
                                    NA
                                              NA 798000000 989600000 1982
## 3 Afghanistan
                                    NA
                                              NA 806200000 1062900000 1983
                 12537732
## 4 Afghanistan
                 12204306
                                    NA
                                              NA 841500000 1419400000 1984
                                              NA 697400000 1084300000 1985
## 5 Afghanistan
                  11938204
                                    NA
## 6 Afghanistan
                 11736177
                                    NΑ
                                              NA 550100000 1354700000 1986
# Close the connection to the database
dbDisconnect(con)
## Warning in connection release(conn@ptr): There are 1 result in use. The
```

Data analysis

In this section the global timeseries data on maize yield is analysed by calculating summary statistics and creating visualizations of the results.

Data summary example

connection will be released when they are closed

This sections creates a dataframe containing summary statistics that are used for several of the following data visualizations. These are:

- the amount of maize produced per ha for each country per year (weighted mean of the yield, weighted by the area at that point)
- the total amount of maize produced per country per year (sum of the yield multiplied by the area at that point)
- the total country area (sum of the area of each point assigned to a country)

```
# Calculate summary statistics and store the results in a dataframe
yield_summary = yield_data %>%
    # Replace NA values in the yield column with 0
    # Assumption: when a yield value is NA it means that in that area
    # no maize was produced!
mutate(yield = replace_na(yield, 0)) %>%
group_by(year, country) %>%
summarise(yield_per_area = weighted.mean(yield, area_ha),
    sum_yield = sum(yield * area_ha, na.rm = TRUE),
```

```
country_area = sum(area_ha),
            continent = first(continent)) # first() returns the first observation of the
## `summarise()` has grouped output by 'year'. You can override using the
## `.groups` argument.
                                          # group in combination with group by
# Show the first entries of the summary dataframe
head(yield_summary)
## # A tibble: 6 x 6
## # Groups:
              year [1]
##
     year country
                      yield_per_area sum_yield country_area continent
##
                                          <dbl>
     <dbl> <chr>
                                <dbl>
                                                       <dbl> <chr>
## 1 1981 Afghanistan
                               0
                                             0
                                                   64707697. Asia
## 2 1981 Aland
                               0
                                             0
                                                     152954. Europe
                                       8889816.
## 3 1981 Albania
                              3.18
                                                    2793843. Europe
## 4 1981 Algeria
                              0
                                                  233348440. Africa
                                                  125956983. Africa
## 5 1981 Angola
                              0.0237
                                       2987265.
## 6 1981 Antarctica
                                                 1218741074. Antarctica
```

Data visualizations

In this section data visualizations are created to illustrate the findings of the data analysis.

How did the global maize yield change over 35 years?

• Calculate the sum of the maize yield produced by all countries per year

```
# Global growth (bar chart)
global_yield_growth_bar <- yield_summary %>%
  # Calculate the total amount of maize produced per year worldwide
  group by(year) %>%
  summarise(global_yield = sum(sum_yield)) %>%
  # Create a plot of the global yield (in mio t) vs year
  ggplot(aes(x = year, y = global_yield/1000000)) +
    # Create a bar chart and customize its appearance
   geom_bar(stat = "identity") +
   theme classic() +
    scale_y_continuous(name = "yield (mio t)", # change label of y-axis
                     limits = c(0, 20000), # adjust the min and max of the y-axis
                     breaks = seq(0, 20000, 5000), # adjust the y-axis ticks and labels
                     labels = comma, # adjust the appearance of the y-axis tick labels
                     expand = c(0, 0)) +
    scale_x_continuous(name = NULL, # delete x-axis label
                       breaks = seq(1981, 2016, 1), # adjust the x-axis ticks and labels
                       expand = c(0, 0.1)) +
    guides(x = guide_axis(angle = 90)) + # turn x-axis tick labels by 90 degree
    ggtitle("Global Maize yield (1981 - 2016)") # add a title
# Show the plot
global_yield_growth_bar
```

Global Maize yield (1981 – 2016) 15,000 15,000 5,000 4 Save the plot as a jpeg file

Saving 6.5 x 4.5 in image

- Define the timespan without 1981, as that data contains incomplete information when the growing season of maize spans two calendar years (see https://doi.pangaea.de/10.1594/PANGAEA.909132)
- Calculate the sum of the maize yield produced by all countries per year
- Calculate the difference ("delta") in global maize yield to the preceding year in percent

ggsave(device = "jpeg", "global_yield_growth_bar", plot = global_yield_growth_bar)

```
# Global growth (line chart)
global_yield_growth_line <- yield_summary %>%
  # Calculate the total amount of maize produced per year
  subset(year >= 1982 & year <= 2016) %>% # exclude 1981 from the analysis due to
                                          # incomplete data
  group_by(year) %>%
  summarise(global_yield = sum(sum_yield)) %>%
  # Calculate the difference in global yield to the preceding year in percent
  mutate(global_yield_delta = 100/global_yield * (global_yield - lag(global_yield)),
         # add a conditional coloring label
         color = case_when(global_yield_delta > 0 ~ "green",
                           global_yield_delta <= 0 ~ "red")) %>%
  # Create a plot of change in global yield (percent) vs year
  ggplot(aes(x = year, y = global_yield_delta)) +
    # Create a connected scatter plot and customize its appearance
   geom_point(aes(color = color), size = 3) +
   geom_line() +
```

```
# mark points >0 in green and <0 in red
    scale_color_manual(values = c("green" = "#6f9460", "red" = "#D7504D")) +
   theme classic() +
    scale_y_continuous(name = "yield growth (%)") + # change label of y-axis
    scale_x_continuous(name = NULL, # delete x-axis label
                       limits = c(1983, 2016), # 1982 is excluded as it serves as basis
                                               # for the growth in 1983 but has no growth
                                               # rate, as no data is available from the
                                               # preceding year.
                       breaks = seq(1983, 2016, 1)) + # adjust the y-axis ticks and labels
    guides(x = guide_axis(angle = 90)) + # turn x-axis tick labels by 90 degree
   theme(legend.position = "none") + # delete the legend
    geom_hline(yintercept = 0) + # add a horizontal line at y=0
    # add a title and a subtitle
    ggtitle("Global development of Maize yield",
            subtitle = "Displaying the percent difference to the previous year")
# Show the plot
global_yield_growth_line
```

Warning: Removed 1 rows containing missing values (geom_point).

Warning: Removed 1 row(s) containing missing values (geom_path).

Global development of Maize yield

Displaying the percent difference to the previous year


```
# Save the plot as a jpeg file
ggsave(device = "jpeg", "global_yield_growth_line", plot = global_yield_growth_line)
```

```
## Saving 6.5 x 4.5 in image
## Warning: Removed 1 rows containing missing values (geom_point).
## Removed 1 row(s) containing missing values (geom path).
```

How ist the maize production divided among continents?

- Calculate the sum of the maize yield produced by each continent per year

```
    Calculate the proportion on global maize yield of each continent

# Create a custom color palette
Colors_continent <- c(Africa = "#8635D5",
                      Asia = "#F24982",
                      Australia = "#F98617",
                      Europe = "#F9C823",
                      "North America" = "#2DC574",
                      "South America" = "#006CDC")
# percentage on yield production by continent over time (stacked area chart)
global_yield_percentage_by_continent <- yield_summary %>%
  subset(year >= 1982 & year <= 2016) %>% # exclude 1981 from the analysis due to
                                          # incomplete data
  group_by(year, continent) %>%
  summarise(sum yield continent = sum(sum yield)) %>%
  # Calculate the proportion on global maize yield of each continent in percent
  mutate(percent global yield = (100 / sum(sum yield continent)) * sum yield continent) %>%
  # Create a stacked area chart change showing the share of maize production by continent
  ggplot(aes(x = year, y = percent_global_yield, fill = continent)) +
    # Create a stacked area chart and customize its appearance
   geom area() +
   theme_classic() +
    scale_y_continuous(name = "Share of global maize yield (%)", # change label of y-axis
                     limits = c(0, 105), # adjust the min and max of the y-axis
                     breaks = seq(0, 105, 25), # adjust the y-axis ticks and labels
                     labels = comma,
                     expand = c(0, 0)) +
   scale_x_continuous(name = NULL, # delete x-axis label
                       breaks = seq(1982, 2016, 1), # adjust the x-axis ticks and labels
                       expand = c(0, 0)) +
   guides(x = guide_axis(angle = 90)) + # turn x-axis tick labels
    # change the area colors to the custom color palette
   scale_fill_manual(values = Colors_continent) +
    # add a title
   ggtitle("Global development of the share of Maize production by continent")
## `summarise()` has grouped output by 'year'. You can override using the
## `.groups` argument.
# Show the plot
global_yield_percentage_by_continent
```

Global development of the share of Maize production by continent

Saving 6.5×4.5 in image

How is the maize production divided among countries?

```
# Global maize production divided by country (scatter plot)
overview_absolut_yield_by_country <- yield_summary %>%
  subset(sum_yield != 0) %>%
  # Create a scatter plot showing the maize production by country vs year
  ggplot(mapping = aes(x = year, y = sum_yield/1000000, color = continent)) +
    # Create a scatter plot and customize its appearance
   geom_point() +
   theme_classic() +
    scale_y_continuous(name = "yield (mio t)", # change label of y-axis
                     limits = c(0, 5000), # adjust the min and max of the y-axis
                     breaks = seq(0, 5000, 1000), # adjust the y-axis ticks and labels
                     labels = comma,
                     expand = c(0, 0)) +
   scale_x_continuous(name = NULL, # delete x-axis label
                       breaks = seq(1981, 2016, 1), # adjust the x-axis ticks and labels
                       expand = c(0, 0.5)) +
    guides(x = guide_axis(angle = 90)) + # turn x-axis tick labels
    # change point colors to the custom palette
```

```
scale_color_manual(values = Colors_continent) +
    ggtitle("Development of Maize production separated by country") # add a title

# Show the plot
overview_absolut_yield_by_country
```


Saving 6.5×4.5 in image

- Define three points from the timeseries (1982, 1998, 2015).
- Calculate the difference in yield between 1982 and 1998, as well as 1998 and 2015.
- Calculate the quotient of (1998 1982)/(2015 1998).

```
# Difference in maize yield growth among countries (lollipop chart)
yield_summary_growth_lollipop <- yield_summary %>%
    dplyr::select(country, continent, sum_yield, year) %>%
    subset(year %in% c(1982, 1998, 2015)) %>% # Select three specific timepoints
    group_by(country) %>%
    arrange(year) %>%
    mutate(yield_1982 = sum_yield[year == 1982],
        yield_1998 = sum_yield[year == 1998],
        yield_2015 = sum_yield[year == 2015],
        yield_growth = (yield_1998 - yield_1982)/(yield_2015 - yield_1998)) %>%
    mutate(label = case_when(yield_growth > 0 ~ "green",
```

```
TRUE ~ "red")) %>% # add a conditional coloring label
  subset(yield_growth > 1 | yield_growth < -1) %>%
  # Create a lollipop chart showing the yield growth by country
  ggplot(aes(x = country, y = yield_growth)) +
    # Create a lollipop chart and customize its appearance
    geom_segment(aes(x = country, xend = country, y = 0, yend = yield_growth),
                 color = "gray", # customize the lines of the lollipop chart
                 1wd = 1.5) +
    geom_point(aes(color = label), size = 3) + # add and customize points
    # change the colors of the points
   scale_color_manual(values = c("green" = "#00B050", "red" = "#FF0000")) +
   theme_classic() +
   theme(legend.position = "none") + # delete legend
   ylab("") + # delete y-axis label
   xlab ("") + # delete x-axis label
    scale_x_discrete(limits = rev) + # reverse the order of x-axis categories
    coord_flip() + # change x- and y-axis
    # add a title and subtitle
    ggtitle(label = "Maize yield growth from 1981 - 2016",
            subtitle = ("Displaying the ratio of yield differences \n
                        from 1998 - 1982 and from 2015 - 1998"))
# Show the plot
yield_summary_growth_lollipop
```

Maize yield growth from 1981 – 2016 Displaying the ratio of yield differences

How does country size influence maize yield?

- Define three points from the timeseries (1982, 1998, 2015)
- Create a scatterplot of yield vs. country size for each year
- Add a regression line
- Fit a regression model

```
# Yield vs country area in three distinct years, double logarithmic scale (scatter plot)
overview_absolut_log_yield_size <- yield_summary %>%
  subset(sum_yield != 0) %>%
  subset(year %in% c(1982, 1998, 2015)) %>% # Select three specific timepoints
   # Create a plot of yield vs country area for each selected year
  ggplot(mapping = aes(x = log10(country_area),
                        y = log10(sum_yield), # double logarithmic scale
                        color = continent)) +
    # Create scatter plot and customize its appearance
    geom point() +
    facet_wrap("year") + # create three plots (one for each year selected before)
    theme classic() +
    scale_y_continuous(name = "yield (t)", # change the label of the y-axis
                      limits = c(5, 10), # change min and max of the y-axis
                      # change the appearance of th y-axis tick labels
                      labels = c(expression(10^5), expression(10^6), expression(10^7),
                                 expression(10<sup>8</sup>), expression(10<sup>9</sup>), expression(10<sup>10</sup>),
                      expand = c(0, 0)) +
    scale_x_continuous(name = "country area (ha)", # change the label of the x-axis
                        # change the appearance of th x-axis tick labels
                        labels = c(expression(10<sup>6</sup>), expression(10<sup>7</sup>),
                                   expression(10<sup>8</sup>), expression(10<sup>9</sup>))) +
    guides(x = guide_axis(angle = 45)) + # turn x-axis tick labels by 45 degree
    # add a regression line
    geom_smooth(method = "lm", se=FALSE, color="black", formula = y ~ x) +
    # change the color to the custom color palette
    scale color manual(values = Colors continent) +
    # add a title and a subtitle
    ggtitle("Correlation of Maize production and country size",
            subtitle = "Displaying a double logarithmic scale")
# Show the plot
overview absolut log yield size
```

Correlation of Maize production and country size

Displaying a double logarithmic scale

```
1982
                                                                                                    2015
    10<sup>10</sup>
      10<sup>9</sup>
                                                                                                                               continent
                                                                                                                                      Africa
     10<sup>8</sup>
                                                                                                                                      Asia
yield (t)
                                                                                                                                      Australia
                                                                                                                                      Europe
      10<sup>7</sup>
                                                                                                                                      North America
                                                                                                                                      South America
      10<sup>6</sup>
      10<sup>5</sup>
                               ő
                                         Ĉ,
                     O,
                                               °°
                                                                    ő
                                                                              Ő,
                                                                                    Ő
                                                                                               O,
                                                                                                         ő
                                                                                                                   õ,
           ő
                                                    country area (ha)
```

```
## Saving 6.5 \times 4.5 in image
```

```
# Fit a regression model
regression_1982 <- yield_summary %>%
   subset(sum_yield != 0) %>%
   subset(year == "1982") %>%
   lm(log10(sum_yield) ~ log10(country_area), .)
# Show summary statistics
print(summary(regression_1982))
```

```
##
## lm(formula = log10(sum_yield) ~ log10(country_area), data = .)
##
## Residuals:
        Min
                  1Q
                       Median
                                            Max
## -2.06283 -0.28963 0.06887 0.41487 1.25926
##
## Coefficients:
##
                       Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                        2.19701
                                   0.56927
                                             3.859 0.000182 ***
## log10(country_area) 0.67692
                                   0.07622
                                             8.881 6.28e-15 ***
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.5926 on 124 degrees of freedom
## Multiple R-squared: 0.3888, Adjusted R-squared: 0.3839
## F-statistic: 78.88 on 1 and 124 DF, p-value: 6.281e-15
# Add columns (predictions, residuals and cluster assignments)
# to the original dataset based on the statistical model
res_1982 <- augment(regression_1982)</pre>
# Fit a regression model
regression 1998 <- yield summary %>%
 subset(sum_yield != 0) %>%
 subset(year == "1998") %>%
 lm(log10(sum_yield) ~ log10(country_area), .)
# Show summary statistics
print(summary(regression_1998))
##
## Call:
## lm(formula = log10(sum_yield) ~ log10(country_area), data = .)
##
## Residuals:
      Min
##
               1Q Median
                               30
                                      Max
## -1.9354 -0.3140 0.1239 0.3942 1.2345
## Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                       0.07755 8.846 7.61e-15 ***
## log10(country_area) 0.68601
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.6029 on 124 degrees of freedom
## Multiple R-squared: 0.3869, Adjusted R-squared: 0.382
## F-statistic: 78.26 on 1 and 124 DF, p-value: 7.609e-15
# Add columns (predictions, residuals and cluster assignments)
# to the original dataset based on the statistical model
res_1998 <- augment(regression_1998)</pre>
# Fit a regression model
regression_2015 <- yield_summary %>%
 subset(sum_yield != 0) %>%
 subset(year == "2015") %>%
 lm(log10(sum_yield) ~ log10(country_area), .)
# Show summary statistics
print(summary(regression_2015))
##
## Call:
## lm(formula = log10(sum_yield) ~ log10(country_area), data = .)
##
```

```
## Residuals:
##
      Min
               1Q Median
                               30
                                      Max
## -1.4916 -0.4616 0.0380 0.4899 1.3154
##
## Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
##
                        2.30704
                                            3.727 0.000295 ***
## (Intercept)
                                  0.61905
                                            8.113 4.46e-13 ***
## log10(country_area) 0.67203
                                  0.08284
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.6325 on 122 degrees of freedom
## Multiple R-squared: 0.3504, Adjusted R-squared: 0.3451
## F-statistic: 65.81 on 1 and 122 DF, p-value: 4.464e-13
# Add columns (predictions, residuals and cluster assignments)
# to the original dataset based on the statistical model
res_2015 <- augment(regression_2015)</pre>
```

- => A 1 % increase in country area is associated with an approximately 68 % increase in maize yield in each year under investigation.
 - Select one time point (2015)
 - Create a barplot of yield/area vs. country

```
# yield/area vs country in 2015 (Bar plot)
yield_area_vs_country_plot <- yield_summary %>%
  subset(sum_yield != 0) %>%
  subset(year == 2015) %>%
  arrange(desc(yield_per_area)) %>%
  # add a column based on rank of the yield_per_area
  mutate(color = case_when(rank(-yield_per_area) <= 3 ~ "blue",</pre>
                           rank(yield_per_area) <= 3 ~ "red",</pre>
                           TRUE ~ "grey")) %>%
  # Create a plot of yield/area vs country for the selected year
  ggplot(aes(x = reorder(country, yield per area),
             y = log(yield_per_area),
             fill = color)) +
    # Create a bar plot and customize its appearance
    geom_bar(stat = "identity") +
    # Change the colors of the bars
    scale_fill_manual(values = c("blue", "darkgrey", "red")) +
   theme_classic() +
   ylab("log of yield/area (t/ha)") + # Change the label of the y-axis
   xlab(NULL) + # Delete the label of the x-axis
   theme(legend.position = "none") + # Delete the legend
    theme(axis.line.x = element_blank(), # Delete the x-axis
          axis.text.x = element_blank(), # Delete the x-axis tick labels
          axis.ticks.x = element_blank()) + # Delete the x-axis ticks
    geom_label(aes(x = 30, y = -4, label = "yield/area < 0.028 t/ha"),
               color = "red", fill = "white") + # Add a label explaining the coloring
    geom_label(aes(x = 100, y = 2, label = "yield/area > 8 t/ha"),
               color = "blue", fill = "white") + # Add a label explaining the coloring
    # add a title and a subtitle
    ggtitle("Maize yield per Area (2015)",
            subtitle = "Displaying a logarithmic scale to highlight the extremes of maize
```

```
yield/area")
# Show the plot
yield_area_vs_country_plot
```

Maize yield per Area (2015)

Displaying a logarithmic scale to highlight the extremes of maize yield/area

Which are the 6 countries with the highest/lowest yield/area value?

- Create a dataframe
- Filter the countries with the highest/lowest yield/area values based on their rank

```
# write a dataframe that contains the 6 countries with the highest/lowest yield/area value
yield_top_low_performer_yield_per_area_subset <- yield_summary %>%
   subset(sum_yield != 0)%>%
   subset(year == 2015) %>%
   arrange(desc(yield_per_area)) %>%
   dplyr::select(country, sum_yield, country_area , yield_per_area) %>%
   # filter based on the rank of the yield/area value
   filter(rank(-yield_per_area) <= 3 | rank(yield_per_area) <= 3)</pre>
```

```
## Adding missing grouping variables: `year`
```

```
# Show the resulting dataframe
yield_top_low_performer_yield_per_area_subset
```

```
## # A tibble: 6 x 5
## # Groups: year [1]
     year country
                      sum_yield country_area yield_per_area
    <dbl> <chr>
##
                          <dbl>
                                       <dbl>
                                                     <dbl>
## 1 2015 Slovenia
                      21018759.
                                    2140689.
                                                     9.82
## 2 2015 Spain
                     485008748.
                                   50150367.
                                                     9.67
## 3 2015 France
                     457795832.
                                                     8.39
                                   54571626.
## 4 2015 Somaliland
                                                     0.0274
                        485614.
                                   17702955.
## 5 2015 Mongolia
                       3731034.
                                 156347560.
                                                     0.0239
                      23674644. 1682390531.
## 6 2015 Russia
                                                     0.0141
# Save the dataframe as a .csv file
write.csv2(yield_top_low_performer_yield_per_area_subset,
          file ="yield_top_low_performer_yield_per_area_subset.csv")
```

How is prosperity distributed among maize producing countries?

- Join the yield_summary and demographic_data dataframes into one
- Create a treemap in which box size represents the GDP and color gradient represents yield

```
# Create a treemap with GDP as boxsize and yield as heatmap (red to green = low to high)
yield_GDP_yield_treemap <- demographic_data %>%
  right_join(., yield_summary) %>%
  subset(sum_yield != 0 & gdp != "NA" & year == 2015) %>%
  # Create a plot with GDP as boxsize and yield as heatmap
  ggplot(aes(area = gdp, fill = sum_yield/1000000, label = country)) +
    # Create a treemap and customize its appearance
   geom_treemap() +
    geom_treemap_text() + # Add a text label to each tile
    scale_fill_gradient2(low = "red", # Customize the color gradient
                        mid = "white",
                        high = "green",
                        guide = "colorbar",
                        midpoint = 1100) +
   labs(fill = "yield (mio t)") + # Change the legend title
     # Add a title
    ggtitle("Gradient of Gross Domestic Product (GDP) and Maize production in 2015")
## Joining, by = c("country", "year")
```

```
## Joining, by = c("country", "year")
# Show the plot
yield_GDP_yield_treemap
```

Gradient of Gross Domestic Product (GDP) and Maize production in 2015

Saving 6.5 x 4.5 in image

- Join the yield_summary and demographic_data dataframes into one
- Assign ranks for the amount of maize produced and gdp per country

```
# Create a Slope Chart showing the top10 countries in yield and GDP respectively and the
# respective other rank
yield_GDP_slopechart <- demographic_data %>%
  right_join(., yield_summary) %>%
  subset(sum_yield != 0 & gdp != "NA") %>%
  subset(year == 2015) %>%
  # Assign a rank based on the amount of maize produced
  mutate(rank_yield = rank(-sum_yield),
         # Assign a rank based on the gdp
         rank_gdp = rank(-gdp)) %>%
  subset(rank_yield <= 10 | rank_gdp <= 10) %>%
  # lengthen the data, turning columns of the ranks for yield and gdp into one column
  pivot_longer(cols = c(rank_yield, rank_gdp),
              names_to = "rank_groups",
              values_to = "ranks") %>%
  # add a column based on rank of the yield_per_area
  mutate(cy_label = case_when(rank_groups == "rank_yield" ~ "",
                              TRUE ~ country)) %>%
```

```
# Create a plot ranks vs. rank_groups
  ggplot(aes(x = rank_groups, y = -ranks, color = country, group = country)) +
    # Create a slope chart and customize its appearance
   geom point() +
   geom_text(aes(label = cy_label), # Add country labels to the points
              nudge_x = 0.05,
              size = 3,
              hjust = 0) +
   geom_line() + # connect the rank in yield and gdp for each country
   theme_classic() +
   theme(legend.position = "none") + # remove the legend
    scale_y_continuous(name = "Global Rank", # change the label of the y-axis
                      limits = c(-55, 0), # change min and max of y-axis
                      expand = c(0, 0),
                      # change tick labels of the y-axis
                      labels = c("50", "40", "30", "20", "10", "0")) +
    scale_x_discrete(limits = c("rank_yield",
                                "rank_gdp"), # change the order of x-axis groups
                    label = c("Yield", "GDP"), # change tick labels of the x-axis
                     name = NULL) + # delete the x-axis label
    # add a title
    ggtitle("Gradient of Maize production and Gross Domestic Product (GDP) in 2015")
## Joining, by = c("country", "year")
# Show the plot
yield_GDP_slopechart
## Warning: Removed 1 rows containing missing values (geom_point).
## Warning: Removed 1 rows containing missing values (geom_text).
## Warning: Removed 1 row(s) containing missing values (geom_path).
```

Gradient of Maize production and Gross Domestic Product (GDP) in 2015


```
## Warning: Removed 1 rows containing missing values (geom_point).
```

- ## Warning: Removed 1 rows containing missing values (geom_text).
- ## Warning: Removed 1 row(s) containing missing values (geom_path).

How did maize production and population change among countries?

- Define three points from the timeseries (1982, 1998, 2015).
- Calculate the difference in yield and population between 1982 and 1998, as well as 1998 and 2015.
- Calculate the quotient of (1998 1982)/(2015 1998).
- Calculate yield_growth/population_growth

```
sum_yield[year == "2015"],
            population_1982 =
              population[year == "1982"],
            population 1998 =
              population[year == "1998"],
            population_2015 =
              population[year == "2015"],
            yield_growth =
              (yield_1998 - yield_1982)/(yield_2015 - yield_1998),
            population growth =
              (population_1998 - population_1982)/(population_2015 - population_1998),
            yield_population_growth = yield_growth/population_growth) %>%
  subset(yield population growth > 10 | yield population growth < -10) %%
  # add a column based on rank of yield_population growth
  mutate(color = case_when(yield_population_growth == max(yield_population_growth) ~ "blue",
                           yield_population_growth == min(yield_population_growth) ~ "red",
                           TRUE ~ "grey")) %>%
  # Create plot yield growth/ population growth vs country
  ggplot(aes(x = reorder(country, yield_population_growth), # reorder the countries on the
                                                            # x-axis based on their y-value
             y = yield_population_growth,
             fill = color)) +
    # Create a bar plot and customize its appearance
    geom_bar(stat = "identity") +
    # change the color of the bars
   scale_fill_manual(values = c("blue", "darkgrey", "red")) +
   theme classic() +
    guides(x = guide_axis(angle = 90)) + # turn the x-axis tick labels by 90 degree
   ylab("Yield growth/Population growth") + # change the y-axis label
    annotate(geom="text", x = "Egypt", y=30, label="Egypt",
              color="black") + # add a text label
    annotate(geom="text", x = "Italy", y=500, label="Italy", # add a text label
              color="black") +
    theme(legend.position = "none") + # delete the legend
    theme(axis.title.x = element_blank(), # delete the x-axis title
          axis.text.x = element_blank(), # delete the x-axis tick labels
          axis.ticks.x = element_blank(), # delete the x-axis ticks
          axis.line.x = element_blank()) + # delete the x-axis
    # Add a title
    ggtitle("Development of yield/population over 33 years")
## Joining, by = c("country", "year")
# Show the plot
yield_population_growth
```

Development of yield/population over 33 years

Saving 6.5 x 4.5 in image

- Join the yield_summary and demographic_data dataframes into one
- Select data for egypt

```
# Case study Egypt (Scatter plot)
yield_population_development_egypt <- demographic_data %>%
  right_join(., yield_summary) %>%
  filter(country == "Egypt") %>%
  # Create a plot population vs year and yield vs year
  ggplot(aes(x = year)) +
    # Create a scatter plot with two y-axis
   geom_point(aes(y = population), colour = "black") +
   geom_point(aes(y = sum_yield/1.8), colour = "red") + # Adjust values of second y-axis
   theme_classic() +
    scale_y_continuous(name = "Population", # change the y-axis label
                      limits = c(0, 100000000), # change min and max of the y-axis
                      labels = comma,
                      expand = c(0, 0),
                      sec.axis = sec_axis(~. * 1.8, # adjust values of second y-axis
                                          name = "Yield (t)", # change second y-axis label
                                          labels = comma)) +
    scale_x_continuous(name = NULL,
```

```
## Joining, by = c("country", "year")

# label

# Show the plot
yield_population_development_egypt
```


Saving 6.5×4.5 in image

- Join the yield_summary and demographic_data dataframes into one
- Select data for italy

```
# Case study Italy
yield_population_development_italy <- demographic_data %>%
    right_join(., yield_summary) %>%
    filter(country == "Italy") %>%
    # Create a plot population vs year and yield vs year
    ggplot(aes(x = as.numeric(year))) +
```

```
# Create a scatter plot with two y-axis
   geom_point(aes(y = as.numeric(population)), colour = "black") +
    # Adjust the values of the second y-axis
   geom_point(aes(y = as.numeric(sum_yield)/0.3), colour = "blue") +
   theme_classic() +
    scale_y_continuous(name = "Population", # change the y-axis label
                       limits = c(0, 700000000), # change min and max of the y-axis
                       labels = comma,
                       expand = c(0, 0),
                       sec.axis = sec_axis(~. * 0.3, # adjust values of the second y-axis
                                          name = "Yield (t)", # change second y-axis label
                                          labels = comma)) +
   scale_x_continuous(name = NULL,
                       breaks = seq(1981, 2016, 1)) +
   guides(x = guide_axis(angle = 90)) + # turn the x-axis tick labels by 90 degree
    # add a title
    ggtitle("Italys development of population and maize production ") +
    theme(axis.title.y = element_text(color = "black"), # change color of y-axis label
         axis.title.y.right = element_text(color = "blue")) # change color of second
## Joining, by = c("country", "year")
                                                             # y-axis label
# Show the plot
yield_population_development_italy
```

Warning: Removed 1 rows containing missing values (geom_point).

Italys development of population and maize production

Saving 6.5 x 4.5 in image

Warning: Removed 1 rows containing missing values (geom_point).

Case study germany

- Join the yield_summary and demographic_data dataframes into one
- Select data for germany
- normalize the data for yield, population, gdp, income, import and export to the value of 1982

```
pivot_longer(cols = c(percent_yield,
                        percent_pop,
                        percent_gdp,
                        percent_income,
                        percent_import,
                        percent_export),
              names_to = "percent_groups",
              values to = "percents") %>%
  mutate(label = case_when(year == 2016 & percent_groups == "percent_yield" ~ "Yield",
                           year == 2016 & percent_groups == "percent_pop" ~ "Population",
                           year == 2016 & percent_groups == "percent_gdp" ~ "GDP",
                           year == 2016 & percent_groups == "percent_income" ~ "Income",
                           year == 2016 & percent_groups == "percent_import" ~ "Import",
                           year == 2016 & percent_groups == "percent_export" ~ "Export",
                           TRUE ~ "")) %>% # Create a label for each category
  # Create a plot percents vs year
  ggplot(aes(x = year, y = percents, color = percent_groups)) +
    # Create a connected scatter plot and customize its appearance
   geom_point() +
   geom_line() +
   theme_classic() +
    scale_y_continuous(name = NULL, # delete the y-axis label
                       # change appearance of y-axis tick labels
                       labels = percent_format(scale = 1)) +
    scale x continuous(name = NULL, # delete the x-axis label
                       breaks = seq(1982, 2016, 1),
                       expand = expansion(add = c(0.5, 3)) +
   guides(x = guide_axis(angle = 90)) + # turn the x-axis tick labels by 90 degree
    # Add a title and subtitle
   ggtitle("Development of Germany",
            subtitle = "Displaying the percent difference to 1982") +
    geom_text_repel(aes(label = label, hjust = 0.7)) + # Display the category labels
    theme(legend.position = "none") # delete the legend
## Joining, by = c("country", "year")
# Show the plot
development_germany
```

Development of Germany

Displaying the percent difference to 1982

```
# Save the plot as a jpeg file
ggsave (device = "jpeg", "development_germany",
plot = development_germany, width = 7, height = 5)
```