FCC REPORT

Report No: CCISE160401003

(Bluetooth)

Applicant: Plus One Marketing Ltd.

Address of Applicant: Sumitomofudosan Hibiya building 2F, 2-8-6 Shinbashi, Minatoku,

Tokyo, Japan

Equipment Under Test (EUT)

Product Name: Smart Phone

Model No.: ÖWN Fun+, FTU161G

Trade mark: ÖWN, Freetel

FCC ID: 2AG5L-FTU161G-PE

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 12 Apr., 2016

Date of Test: 13 Apr., to 27 Apr., 2016

Date of report issued: 28 Apr., 2016

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	28 Apr., 2016	Original

Tested by:

| | | CMG | Date: 28 Apr., 2016

Test Engineer

Reviewed by: Over then Date: 28 Apr., 2016

3 Contents

		F	Page
1	C	OVER PAGE	1
2	V	/ERSION	2
3		CONTENTS	
3	_		
4	Т	EST SUMMARY	4
5	G	SENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST MODE	
	5.4	LABORATORY FACILITY	
	5.5	LABORATORY LOCATION	
	5.6	TEST INSTRUMENTS LIST	8
6	т	EST RESULTS AND MEASUREMENT DATA	a
·			
	6.1	Antenna requirement	
	6.2	CONDUCTED EMISSIONS	
	6.3	CONDUCTED OUTPUT POWER	
	6.4	20DB OCCUPY BANDWIDTH	
	6.5 6.6	CARRIER FREQUENCIES SEPARATION	
	6.7	DWELL TIME	
	6.8	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	6.9	BAND EDGE	
	0.5	.9.1 Conducted Emission Method	
	_	.9.2 Radiated Emission Method	
	6.10		
	6	.10.1 Conducted Emission Method	
	6	.10.2 Radiated Emission Method	57
7	Т	EST SETUP PHOTO	62
8	_	UT CONSTRUCTIONAL DETAILS	63
v		.U UUNU NUU IUNAL	03

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Plus One Marketing Ltd.
Address of Applicant:	Sumitomofudosan Hibiya building 2F, 2-8-6 Shinbashi, Minatoku, Tokyo, Japan
Manufacturer:	Nollec Wireless Co.,Ltd.
Address of Manufacturer:	Tower A North, TCL Building, High-tech Industrial Park, Nanshan Dist, Shenzhen, China

5.2 General Description of E.U.T.

Product Name:	Smart Phone
Model No.:	ÖWN Fun+, FTU161G
Operation Frequency:	2402MHz~2480MHz
Transfer rate:	1/2/3 Mbits/s
Number of channel:	79
Modulation type:	GFSK, π/4-DQPSK, 8DPSK
Modulation technology:	FHSS
Antenna Type:	Internal Antenna
Antenna gain:	2.1 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-2800mAh
AC adapter:	Model: ÖWN Fun+ Input: AC100-240V 50/60Hz 0.2A Output: DC 5.0V, 1A
Remark:	The No.: ÖWN Fun+, FTU161G were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Report No: CCISE160401003

5.3 Test mode

Transmitting mode:	Keep the EUT in transmitting mode with worst case data rate.
Remark	GFSK (1 Mbps) is the worst case mode.

The sample was placed 0.8m above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working with a fresh battery, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

● IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Report No: CCISE160401003

5.6 Test Instruments list

Radia	Radiated Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017				
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-25-2016	03-25-2017				
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-25-2016	03-25-2017				
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2016	03-31-2017				
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2016	03-31-2017				
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2016	03-31-2017				
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2016	03-31-2017				
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2016	03-28-2017				
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2016	03-28-2017				
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2016	03-31-2017				
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				

Cond	Conducted Emission:										
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)					
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017					
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-24-2016	03-24-2017					
3	LISN	CHASE	MN2050D	CCIS0074	03-26-2016	03-26-2017					
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2016	03-31-2017					
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A					

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is an integral antenna which permanently attached, and the best case gain of the antenna is 2.1 dBi.

6.2 Conducted Emissions

Test Requirement:	FCC Part 15 C Section 15.207	7					
Test Method:	ANSI C63.4:2009						
Test Frequency Range:	150 kHz to 30 MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9 kHz, VBW=30 kHz, S	weep time=auto					
Limit:	Frequency range (MHz) Limit (dBuV) Ouasi-peak Average						
	Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46*						
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithm of the frequency.						
Test setup:	Reference Plane						
	AUX Equipment E.U.T EMI Receiver Remark E.U.T: Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m						
Test procedure:	 The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling impedance. The peripheral devices are LISN that provides a 50ohm termination. (Please refer to photographs). Both sides of A.C. line are interference. In order to find positions of equipment and according to ANSI C63.4: 2 	n network (L.I.S.N.). The dance for the measuring also connected to the n/50uH coupling imped to the block diagram of the checked for maximum did the maximum emissionall of the interface cabo	nis provides a ng equipment. main power through a dance with 50ohm the test setup and conducted on, the relative bles must be changed				
Test Uncertainty:	-		\pm 3.28 dB				
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Bluetooth (Continuous transm	itting) mode					
Test results:	Pass						
	1						

Measurement Data:

Line:

Trace: 35

: CCIS Shielding Room : FCC PART15 B QP LISN LINE : Smart Phone : OWN Fun+ Site Condition

EUT Model Test Mode : BT mode Power Rating : AC120/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: YT Remark :

vewark								
		Read	LISN	Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu∀	<u>dB</u>	āB	dBu₹	−−dBuV	<u>dB</u>	
1	0.150	16.74	0.14	10.78	27.66	66.00	-38.34	QP
2	0.318	9.07	0.18	10.74	19.99	49.75	-29.76	Average
3	0.369	20.82	0.22	10.73	31.77	58.52	-26.75	QP
4	0.373	11.50	0.22	10.73	22.45	48.43	-25.98	Average
2 3 4 5 6 7 8 9	0.402	22.26	0.24	10.72	33.22		-24.59	
6	0.402	13.25	0.24	10.72	24.21	47.81	-23.60	Average
7	0.589	23.87	0.28	10.77	34.92	56.00	-21.08	QP
8	0.601	13.66	0.28	10.77	24.71	46.00	-21.29	Average
9	0.686	12.65	0.31	10.77	23.73	46.00	-22.27	Average
10	0.751	23.23	0.31	10.79	34.33	56.00	-21.67	QP
11	0.835	11.08	0.29	10.82	22.19	46.00	-23.81	Average
12	1.324	20.94	0.28	10.91	32.13	56.00	-23.87	QP

Neutral:

Trace: 33

: CCIS Shielding Room Site

: FCC PART15 B QP LISN NEUTRAL Condition

: Smart Phone : OWN Fun+ EUT Model Test Mode : BT mode Power Rating : AC120/60Hz

Environment : Temp: 23 °C Huni: 56% Atmos: 101KPa

Test Engineer: YT

Re

emark	:							
		Read	LISN	Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu∜	<u>dB</u>	dB	dBu₹	dBu₹	<u>dB</u>	
1	0.266	16.08	0.18	10.75	27.01	61.25	-34.24	QP
2	0.286	18.29	0.19	10.74	29.22	60.63	-31.41	QP
2	0.318	8.22	0.20	10.74	19.16	49.75	-30.59	Average
4	0.402	21.92	0.23	10.72	32.87	57.81	-24.94	QP
4 5 6 7 8	0.402	10.08	0.23	10.72	21.03	47.81	-26.78	Average
6	0.585	23.65	0.28	10.77	34.70	56.00	-21.30	QP
7	0.598	10.41	0.29	10.77	21.47	46.00	-24.53	Average
8	0.708	23.79	0.33	10.77	34.89	56.00	-21.11	QP
9	0.708	12.41	0.33	10.77	23.51	46.00	-22.49	Average
10	1.367	20.60	0.26	10.91	31.77	56.00	-24.23	QP
11	1.433	9.95	0.26	10.92	21.13	46.00	-24.87	Average
12	2.155	8.59	0.27	10.95	19.81	46.00	-26.19	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)	
Test Method:	ANSI C63.10:2009 and DA00-705	
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)	
Limit:	125 mW(21 dBm)	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Non-hopping mode	
Test results:	Pass	

Measurement Data:

	GFSK mo	de		
Test channel	Peak Output Power (dBm) Limit (dBm)		Result	
Lowest	2.30	21.00	Pass	
Middle	2.12	21.00	Pass	
Highest	1.61	21.00	Pass	
	π/4-DQPSK ι	mode		
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	1.89	21.00	Pass	
Middle	1.68	21.00	Pass	
Highest	1.28	21.00	Pass	
	8DPSK mode			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	2.05	21.00	Pass	
Middle	1.77	21.00	Pass	
Highest	1.43	21.00	Pass	

Test plot as follows:

Modulation mode: GFSK

Date: 15.APR.2016 16:05:30 Lowest channel

Middle channel

Date: 15.APR.2016 16:06:19 Highest channel

Modulation mode: π/4-DQPSK

Date: 15.APR.2016 16:07:29

Lowest channel

Date: 15.APR.2016 16:07:06

Middle channel

Date: 15.APR.2016 16:06:48

Highest channel

Modulation mode: 8DPSK

Date: 15.APR.2016 16:08:16 Lowest channel

Date: 15.APR.2016 16:08:32 Middle channel

Date: 15.APR.2016 16:08:54

Highest channel

6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2009 and DA00-705	
Receiver setup:	RBW=30 kHz, VBW=100 kHz, detector=Peak	
Limit:	NA	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Non-hopping mode	
Test results:	Pass	

Measurement Data:

Teet channel	20dB Occupy Bandwidth (kHz)		
Test channel	GFSK	π/4-DQPSK	8DPSK
Lowest	844	1124	1172
Middle	840	1124	1172
Highest	844	1124	1172

Test plot as follows:

Modulation mode: GFSK

Date: 15.APR.2016 16:10:47 Lowest channel

Date: 15.APR.2016 16:12:00 Middle channel

Date: 15.APR.2016 16:13:47

Highest channel

Modulation mode: $\pi/4$ -DQPSK

Date: 15.APR.2016 16:15:43 Lowest channel

Date: 15.APR.2016 16:17:00 Middle channel

Date: 15.APR.2016 16:18:35 Highest channel

Modulation mode: 8DPSK

Date: 15.APR.2016 16:20:09

Lowest channel

Date: 15.APR.2016 16:23:19

Middle channel

Date: 15.APR.2016 16:26:45

Highest channel

6.5 Carrier Frequencies Separation

	<u>-</u>	
Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2009 and DA00-705	
Receiver setup:	RBW=100 kHz, VBW=300 kHz, detector=Peak	
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data:

GFSK mode				
Test channel	Carrier Frequencies Separation (kHz) Limit (kHz)		Result	
Lowest	1004	562.67	Pass	
Middle	1004	562.67	Pass	
Highest	1004	562.67	Pass	
	π/4-DQPSK mo	de		
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result	
Lowest	1004	749.33	Pass	
Middle	1008	749.33	Pass	
Highest	1004	749.33	Pass	
	8DPSK mode			
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result	
Lowest	1000	781.33	Pass	
Middle	1000	781.33	Pass	
Highest	1008 781.33 Pass		Pass	

Note: According to section 6.4

Mode	20dB bandwidth (kHz)	Limit (kHz)	
Wode	(worse case)	(Carrier Frequencies Separation)	
GFSK	844	562.67	
π/4-DQPSK	1124	749.33	
8DPSK	1172	781.33	

Test plot as follows:

Modulation mode: GFSK

Date: 18.APR.2016 18:36:18

Lowest channel

Date: 18.APR.2016 18:37:35 Middle channel

Date: 18.APR.2016 18:38:52

Highest channel

Modulation mode: π/4-DQPSK

Date: 18.APR.2016 18:47:35 Lowest channel

Date: 18.APR.2016 18:48:58 Middle channel

Date: 18.APR.2016 18:50:04

Highest channel

Modulation mode: 8DPSK

Date: 18.APR.2016 18:51:39

Lowest channel

Date: 18.APR.2016 18:53:46

Middle channel

Date: 18.APR.2016 19:00:23

Highest channel

6.6 Hopping Channel Number

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2009 and DA00-705	
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak	
Limit:	15 channels	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK, π/4-DQPSK, 8DPSK	79	15	Pass

Test plot as follows:

Date: 18.APR.2016 19:14:02

π/4-DQPSK

Date: 18.APR.2016 19:17:31

8DPSK

Date: 18.APR.2016 19:22:07

6.7 Dwell Time

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2009 and KDB DA00-705	
Receiver setup:	RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak	
Limit:	0.4 Second	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data (Worse case):

Mode	Packet	Dwell time (second)	Limit (second)	Result
	DH1	0.12352		
GFSK	DH3	0.26784	0.4	Pass
	DH5	0.31061		
	2-DH1	0.12544		
π/4-DQPSK	2-DH3	0.26688	0.4	Pass
	2-DH5	0.31061		
	3-DH1	0.12864		
8DPSK	3-DH3	0.26688	0.4	Pass
	3-DH5	0.31317		

For GFSK, $\pi/4$ -DQPSK and 8DPSK:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

DH1 time slot=0.386*(1600/(2*79))*31.6=123.52ms DH3 time slot=1.674*(1600/(4*79))*31.6=267.84ms DH5 time slot=2.912*(1600/(6*79))*31.6=310.61ms

2-DH1 time slot=0.392*(1600/(2*79))*31.6=125.44ms

2-DH3 time slot=1.668*(1600/ (4*79))*31.6=266.88ms

2-DH5 time slot=2.912*(1600/ (6*79))*31.6=310.61ms

3-DH1 time slot=0.402*(1600/ (2*79))*31.6=128.64ms

3-DH3 time slot=1.668*(1600/ (4*79))*31.6=266.88ms

3-DH5 time slot=2.936*(1600/ (6*79))*31.6=313.17ms

Test plot as follows:

Modulation mode: GFSK

Date: 18.APR.2016 19:04:39

DH1

Date: 18.APR.2016 19:05:17

DH3

Date: 18.APR.2016 19:05:59

DH5

Modulation mode: π/4-DQPSK

Date: 18.APR.2016 19:06:45

2-DH1

Date: 18.APR.2016 19:07:31

2-DH3

Date: 18.APR.2016 19:08:24

2-DH5

Modulation mode: 8DPSK

Date: 18.APR.2016 19:09:28

3-DH1

Date: 18.APR.2016 19:10:10

3-DH3

Date: 18.APR.2016 19:10:42

3-DH5

Report No: CCISE160401003

6.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part 15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.9 Band Edge

6.9.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)	
Test Method:	ANSI C63.10:2009 and DA00-705	
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Non-hopping mode and hopping mode	
Test results:	Pass	

Test plot as follows:

GFSK

Lowest Channel

Date: 18.APR.2016 18:14:02

No-hopping mode

Date: 18.APR.2016 18:24:39

Hopping mode

Highest Channel

Date: 18.APR.2016 18:21:38

No-hopping mode

Date: 18.APR.2016 18:33:46

Hopping mode

$\pi/4$ -DQPSK

Lowest Channel

Date: 18.APR.2016 18:16:19

No-hopping mode

Date: 18.APR.2016 18:26:27

Hopping mode

Highest Channel

Date: 18.APR.2016 18:20:56

No-hopping mode

Date: 18.APR.2016 18:31:47

Hopping mode

8DPSK

Lowest Channel

Date: 18.APR.2016 18:17:48

No-hopping mode

Date: 18.APR.2016 18:28:31

Hopping mode

Highest Channel

Date: 18.APR.2016 18:19:39

No-hopping mode

Date: 18.APR.2016 18:30:25

Hopping mode

6.9.2 Radiated Emission Method

T . D	500 D 445 O	0 15.00			1				
Test Requirement:	FCC Part 15 C		9 and 15.205						
Test Method:	ANSI C63.10: 2								
Test Frequency Range:	2.3GHz to 2.5G	Hz							
Test site:	Measurement D	Distance: 3m							
Receiver setup:	Frequency	Detector	RBW 1MHz	VBW	Remark				
	Above 1GHz	Peak RMS	3MHz 3MHz	Peak Value Average Value					
Limit:	Freque		/m @3m)	Remark					
Littie.			0	Average Value					
	Above 1	IGHZ	74.00 Peak Value						
Test setup:	Horn Antenna Tower Controller Controlle								
Test Procedure:	ground at a 3 determine th 2. The EUT wa antenna, white tower. 3. The antenna ground to de horizontal an measuremer 4. For each sus and then the and the rota maximum resortied Ba 6. If the emissic limit specified EUT would be 10dB margin.	B meter cambe e position of the set 3 meters che was mount the manner of the of	er. The table of the highest races away from the ted on the top ed from one maximum value arizations of the tuned to heigh ed from 0 de was set to Pea Maximum Hole EUT in peak arould be stop therwise the ested one by	was rotated diation. The interference of a variable of a variable of the field the antenna was arranging from 1 rigrees to 36 at Detect Field Mode. The mode was apped and the missions the one using processing processing and the mode using processing pro	r meters above the distrength. Both are set to make the ed to its worst case meter to 4 meters 0 degrees to find the function and 10dB lower than the five peak values of the nat did not have beak, quasi-peak or				
Test Instruments:	Refer to section	5.7 for details	S						
Test mode:	Non-hopping m	ode							
Test results:	Passed								

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK, and all data were shown in report.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.

GFSK mode

Test channel: Lowest

Horizontal:

Site 3m chamber

Condition

: SM Chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Smart Phone : OWN Fun+ : DH1-L Mode EUT Model Test mode Power Rating: AC 120V/60Hz
Environment: Temp:25.5°C Huni:55%
Test Engineer: YT
REMARK:

T HUTT	-		Antenna Factor						
,	MHz	<u>dBu</u> ₹	<u>dB</u> /m	dB	<u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B	
1 2	2390.000 2390.000	Control of the Contro			0.00 0.00		THE PERSON NAMED IN		THE STREET STREET, SAN

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Smart Phone : OWN Fun+ : DH1-L Mode EUT Model Test mode Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: YT REMARK:

			Antenna Factor			Limit Line		Remark
	MHz	dBu∇	<u>dB</u> /π	 <u>d</u> B	dBuV/m	dBuV/m	<u>ab</u>	
1 2	2390.000 2390.000			0.00 0.00				

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Smart Phone Condition EUT

: Smart Phone

Model : OWN Fun+
Test mode : DHI-H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: YT
REMARK :

	200		Antenna Factor						
,	MHz	dBu∜	<u>dB</u> /m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500				0.00 0.00				

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Smart Phone

Model : OWN Fun+
Test mode : DH1-H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: YT
REMARK :

			Antenna Factor						
-	MHz	dBuV	<u>dB</u> /m	dB	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
	2483.500 2483.500					50.54 38.29			

π/4-DQPSK mode Test channel: Lowest

Horizontal:

Site Condition

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : Smart Phone : OWN Fun+ : 2DH1-L Mode Model Test mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55% Test Engineer: YT

REMARK

		Read	Antenna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
-	MHz	dBu∜	dB/m		<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>		
	2390.000 2390.000									

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Smart Phone : OWN Fun+ : 2DH-L Mode Condition

EUT Model Test mode Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: YT REMARK:

1 2

Fre					Preamp Factor				Remark
MH	z —dE	Bu₹	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
2390.00 2390.00					0.00 0.00				Peak Average

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

: FCC PART 15 (PK) 3m B
EUT : Smart Phone
Model : OWN Fun+
Test mode : 2DH1-H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: YT
REMARK :

2)IICHU		Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
2	MHz	dBu₹	—dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2483.500 2483.500				0.00 0.00				

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Smart Phone : OWN Fun+ EUT Model Test mode : 2DH1-H Mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: YT

REMARK

Freq			Antenna Factor					
	MHz	−−dBuV	dB/m	 <u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
	2483.500 2483.500							

8DPSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Smart Phone : OWN Fun+ : 3DH1-L Mode EUT Model Test mode Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: YT

REMARK

CHUILO	0.000		Antenna Factor						
-	MHz	—dBuV	<u>d</u> B/m	ā <u>ā</u>	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	āB	
1 2	2390.000 2390.000					47.63 37.45			

	Freq		Antenna Factor						
-	MHz	dBu∜	<u>dB</u> /m	d <u>B</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	 _
	2390.000 2390.000					47.76 37.46			

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: FCC FART 15 : Smart Phone : OWN Fun+ : 3DH1-H Mode EUT Model Test mode Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: YT REMARK:

Fred		ReadAntenr eq Level Facto							Remark	
-	MHz	dBu₹	<u>dB</u> /m	d <u>B</u>	<u>dB</u>	dBuV/m	dBuV/m	dB		-
	2483.500 2483.500									

Site Condition

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

: FCC PART 15 (PK) 3m B
EUT : Smart Phone
Model : OWN Fun+
Test mode : 3DH1-H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: YT
REMARK :

			Antenna Factor					
-	MHz	—dBu∇		 <u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B	
	2483.500 2483.500				49.45 38.31			

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2009 and DA00-705					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Non-hopping mode					
Test results:	Pass					

Test plot as follows:

GFSK Lowest channel

Date: 19.APR.2016 14:38:07

30MHz~25GHz

Middle channel

Date: 19.APR.2016 14:39:10

30MHz~25GHz

Highest channel

Date: 19.APR.2016 14:40:04

30MHz~25GHz

π/4-DQPSK

Lowest channel

Date: 19.APR.2016 14:41:35

30MHz~25GHz

Middle channel

Date: 19.APR.2016 14:42:12

30MHz~25GHz

Highest channel

Date: 19.APR.2016 14:43:15

30MHz~25GHz

Date: 19.APR.2016 14:44:23

30MHz~25GHz

Middle channel

Date: 19.APR.2016 14:45:18

30MHz~25GHz

Highest channel

Date: 19.APR.2016 14:47:00

30MHz~25GHz

6.10.2 Radiated Emission Method

6.10.2 Radiated Emission Me	etnoa							
Test Requirement:	FCC Part 15 C Se	ection 15.209)					
Test Method:	ANSI C63.10: 200	09						
Test Frequency Range:	9 kHz to 25 GHz							
Test site:	Measurement Dis	tance: 3m						
Receiver setup:	Frequency Detector RBW VBW Remark							
	30MHz-1GHz							
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	Above 1G112	RMS	1MHz	3MHz	Average Value			
Limit:	Frequen	су	Limit (dBuV/	/m @3m)	Remark			
	30MHz-88I	MHz	40.0)	Quasi-peak Value			
	88MHz-216	MHz	43.5	5	Quasi-peak Value			
	216MHz-960	OMHz	46.0)	Quasi-peak Value			
	960MHz-1	GHz	54.0)	Quasi-peak Value			
	Above 1G	Hz	54.0)	Average Value			
	Above 10	11 12	74.0)	Peak Value			
Test setup:	Tum Table 0.8 Ground Plane — Above 1GHz	EUT Jam	Pa	Antenna Tower Antenna Tower				

Test Procedure: 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Report No: CCISE160401003

Remark:

Test Uncertainty:

Test Instruments:

Test mode:

Test results:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK modulation, and found the GFSK modulation is the worst case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.

Refer to section 5.7 for details

Non-hopping mode

Pass

3. 9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.

Project No.: CCISE1604010

±4.88 dB

Measurement data:

Below 1GHz

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL : Smart Phone : OWN Fun+ Condition

EUT : OWN Fun+
Test mode : BT Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: YT
REMARK :

PHETTAL	•								
	Freq		Antenna Factor					Over Limit	Remark
-	MHz	dBu∇	<u>dB</u> /m	d <u>B</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	33.680	46.21	14.08	0.98	29.96	31.31	40.00	-8.69	QP
1 2	81.212	44.06	6.73	1.69	29.63	22.85	40.00	-17.15	QP
3	135.982	39.43	11.95	2.35	29.29	24.44	43.50	-19.06	QP
4	219.075	31.64	11.42	2.85	28.71	17.20	46.00	-28.80	QP
5	360.448	31.99	14.53	3.10	28.61	21.01	46.00	-24.99	QP
6	785.093	29.95	20.54	4.35	28.28	26.56	46.00	-19.44	QP

Horizontal:

Site

Condition

EUT Model Test mode : BT Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT REMARK :

Freq							Over Limit	Remark
MHz	−dBuV	dB/m		<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
34.156	33.45	14.28	0.98	29.95	18.76	40.00	-21.24	QP
46.503	30.30	16.96	1.28	29.85	18.69	40.00	-21.31	QP
89.276	37.29	8.09	2.04	29.57	17.85	43.50	-25.65	QP
158.112	31.51	10.01	2.57	29.15	14.94	43.50	-28.56	QP
455.906	29.61	16.28	3.25	28.88	20.26	46.00	-25.74	QP
726.805	28.29	19.84	4.28	28.57	23.84	46.00	-22.16	QP
	MHz 34.156 46.503 89.276 158.112 455.906	MHz dBuV 34.156 33.45 46.503 30.30 89.276 37.29 158.112 31.51 455.906 29.61	Freq Level Factor MHz dBuV dB/m 34.156 33.45 14.28 46.503 30.30 16.96 89.276 37.29 8.09 158.112 31.51 10.01 455.906 29.61 16.28	Freq Level Factor Loss MHz dBuV dB/m dB 34.156 33.45 14.28 0.98 46.503 30.30 16.96 1.28 89.276 37.29 8.09 2.04 158.112 31.51 10.01 2.57 455.906 29.61 16.28 3.25	MHz dBuV dB/m dB dB 34.156 33.45 14.28 0.98 29.95 46.503 30.30 16.96 1.28 29.85 89.276 37.29 8.09 2.04 29.57 158.112 31.51 10.01 2.57 29.15 455.906 29.61 16.28 3.25 28.88	Freq Level Factor Loss Factor Level MHz dBuV dB/m dB dB dBuV/m 34.156 33.45 14.28 0.98 29.95 18.76 46.503 30.30 16.96 1.28 29.85 18.69 89.276 37.29 8.09 2.04 29.57 17.85 158.112 31.51 10.01 2.57 29.15 14.94 455.906 29.61 16.28 3.25 28.88 20.26	MHz dBuV dB/m dB dB dBuV/m dBuV/m 34.156 33.45 14.28 0.98 29.95 18.76 40.00 46.503 30.30 16.96 1.28 29.85 18.69 40.00 89.276 37.29 8.09 2.04 29.57 17.85 43.50 158.112 31.51 10.01 2.57 29.15 14.94 43.50 455.906 29.61 16.28 3.25 28.88 20.26 46.00	Freq Level Factor Loss Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 34.156 33.45 14.28 0.98 29.95 18.76 40.00 -21.24 46.503 30.30 16.96 1.28 29.85 18.69 40.00 -21.31 89.276 37.29 8.09 2.04 29.57 17.85 43.50 -25.65 158.112 31.51 10.01 2.57 29.15 14.94 43.50 -28.56 455.906 29.61 16.28 3.25 28.88 20.26 46.00 -25.74 38.25 28.88 20.26 46.00 -25.74 39.276 37.29 37.29 37.29 37.29 37.29 49.276 37.29 37.29 37.29 37.29 49.276 37.29 37.29 37.29 49.276 37.29 37.29 49.276 37.29 37.29 49.276 37.29 37.29 49.276 37.29 37.29 49.276 37.29 37.29 49.276

Above 1GHz:

Te	st channel:		Lowest		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	45.36	35.99	10.57	40.24	51.68	74.00	-22.32	Vertical
4804.00	46.97	35.99	10.57	40.24	53.29	74.00	-20.71	Horizontal
Te	st channel:		Lowest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	35.13	35.99	10.57	40.24	41.45	54.00	-12.55	Vertical
4804.00	36.69	35.99	10.57	40.24	43.01	54.00	-10.99	Horizontal

Te	st channel:		Middle		Lev	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	46.21	36.38	10.66	40.15	53.10	74.00	-20.90	Vertical
4882.00	45.38	36.38	10.66	40.15	52.27	74.00	-21.73	Horizontal
Te	st channel:		Middle		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	36.97	36.38	10.66	40.15	43.86	54.00	-10.14	Vertical
4882.00	35.02	36.38	10.66	40.15	41.91	54.00	-12.09	Horizontal

Te	st channel:		Highest		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	46.98	36.71	10.73	40.03	54.39	74.00	-19.61	Vertical
4960.00	45.74	36.71	10.73	40.03	53.15	74.00	-20.85	Horizontal
Te	st channel:		Highest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	36.85	36.71	10.73	40.03	44.26	54.00	-9.74	Vertical
4960.00	35.46	36.71	10.73	40.03	42.87	54.00	-11.13	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.