

## RTC **应用指南**

文档版本 02

发布日期 2017-04-10

#### 版权所有 © 深圳市海思半导体有限公司 2016-2017。保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任 何形式传播。

### 商标声明



(上) 、HISILICON、海思和其他海思商标均为深圳市海思半导体有限公司的商标。

本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

#### 注意

您购买的产品、服务或特性等应受海思公司商业合同和条款的约束,本文档中描述的全部或部分产 品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,海思公司对本文档内容不 做任何明示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用 指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

### 深圳市海思半导体有限公司

地址: 深圳市龙岗区坂田华为基地华为电气生产中心 邮编: 518129

网址: http://www.hisilicon.com

客户服务电话: +86-755-28788858

客户服务传真: +86-755-28357515

客户服务邮箱: support@hisilicon.com



## 前言

i

## 概述

本文档主要介绍 RTC 的校准方案,确保 RTC 计时准确。

#### □ 说明

本文以 Hi3536 为例,未有特殊说明,Hi3521A/20DV300, Hi3531A, Hi3518EV20X/16CV200, Hi3519 V100,Hi3519V101,Hi3559V100,Hi3556V100,Hi3516CV300,Hi3536C V100 与Hi3536 完全一致。

## 产品版本

与本文档相对应的产品版本如下。

| 产品名称    | 产品版本 |
|---------|------|
| Hi3536  | V100 |
| Hi3521A | V100 |
| Hi3520D | V300 |
| Hi3531A | V100 |
| Hi3518E | V200 |
| Hi3518E | V201 |
| Hi3516C | V200 |
| Hi3519  | V100 |
| Hi3516C | V300 |
| Hi3519  | V101 |
| Hi3516A | V200 |
| Hi3559  | V100 |
| Hi3556  | V100 |
| Hi3536C | V100 |



## 读者对象

本文档(本指南)主要适用技术支持工程师。

## 修订记录

修订记录累积了每次文档更新的说明。最新版本的文档包含以前所有文档版本的更新内容。

| 修订日期       | 版本    | 修订说明                                                |
|------------|-------|-----------------------------------------------------|
| 2017-04-10 | 02    | 第 2 次正式版本发布<br>添加 Hi3536C V100 和 Hi3516AV200 的相关内容。 |
| 2016-12-01 | 01    | 第1次正式版本发布                                           |
| 2015-11-05 | 00B02 | 第2次临时版本发布                                           |
| 2015-01-19 | 00B01 | 第1次临时版本发布                                           |



## 目 录

| 前      | 言                              | i  |
|--------|--------------------------------|----|
|        | 述                              |    |
| 1 196  | 1.1 RTC 芯片分类                   |    |
|        | 1.2 RTC 工作模式                   |    |
|        | 1.3 温度与频率输出关系                  |    |
| 2 RT   | TC 的硬件参考电路                     |    |
| 2 K I  | 2.1 硬件参考电路                     |    |
|        | 2.1 选择晶体                       |    |
|        | 2.2 选择电容                       |    |
| 0 D.T. |                                |    |
| 3 KT   | C 固定分频模式的实现                    | 6  |
| 4 RT   | TC 校正功能的实现                     | 7  |
| 5 RT   | · C 驱动使用说明                     | 8  |
|        | 5.1 编译                         |    |
|        | 5.2 使用                         |    |
| 6 08   | &A                             |    |
| u Qa   |                                |    |
|        | 6.1 振荡器不振                      |    |
|        | 6.2 振荡器的输出频率是 200K             | 11 |
|        | 6.3 振荡频率虽然是 32.768K 附近、但是频率却不准 | 12 |

1



1 概述

## 1.1 RTC 芯片分类

常见的 RTC 芯片,大致可分为三类:

- 非集成 RTC: 只有 RTC 计时电路,不集成晶体、不集成温度补偿电路。这类芯片的计时精度主要取决于外接晶体的精度,而且受温度影响较大。通常在室温环境下,计时精度较高;随着温度升高或降低,计时偏差逐渐增大。
- 集成晶体的 RTC:将 RTC 计时电路与晶体集成,但没有温度补偿电路。这类芯片在室温环境下,计时精度更高。但仍然无法消除温度的影响。
- 集成 RTC: 将 RTC 计时电路、晶体、温度补偿电路(含温度传感器)都集成在一颗芯片中,出厂时进行调教。这类 RTC 的计时精度可以做到很高,且由于温补电路的作用,受环境温度的影响很小。

## 1.2 RTC 工作模式

内置 RTC 可支持固定分频模式:

与非集成 RTC 相同,内置 RTC 的时钟直接采用外部晶体与振荡电路产生的经过分频后的时钟,工作时分频比固定不变。这种工作模式下,RTC 计时精度取决于外接晶体的频率精度,而且受环境温度影响。在非集成 RTC 这类芯片适用的场景,可以选择内置 RTC 替代外置非集成 RTC, 节省一些器件成本。

Hi3536 RTC 无内置温度补偿电路,只支持工作在固定分频模式,若 RTC 时钟的频偏较大,可通过调节 RTC 的分频系数来微调 RTC 的时钟频率。对计时精度有严格要求的客户,建议选择集成晶体的 RTC,或者带有温度补偿的 RTC。

## 1.3 温度与频率输出关系

RTC 计时时钟计算公式为: RTC 的计时时钟 = 内部振荡电路产生的时钟 / 分频比(327.xx)。



当温度变化时,内部振荡电路产生的时钟受到影响也会变化,此时可通过调节分频比来确保RTC计时时钟恒定。32K晶体的输出振荡频率与温度的关系如图 1-1 所示。





图 1-1 中的曲线可以公式表示:  $F = (K_s * (T - T_0)^2 + 1 + C) * 32768$  其中:

- F 为晶体在温度 T 下的振荡频率,单位为 Hz。
- Ks 为抛物线二次项系数,和选取的晶体相关,图 1-1 中的 Ks 为- $4x10^{-8}$ / $^{\circ}$ C<sup>2</sup>。
- $T_0$  是抛物线的转折温度点,一般为  $25\pm5$ °C。图 1-1 中的值为 24.94°C。(RTC 中一个温度码字表示(140°C (-40°C))/255=0.705882°C,温度码字和温度的对应关系请参见《RTC 晶体校正参数生成表》)
- C为晶体在转折温度点的频率偏差,图 1-1 中为 0。C 受以下两部分因素影响:
  - 负载电容
  - 晶体差异



## 2 RTC 的硬件参考电路

## 2.1 硬件参考电路

RTC 的硬件参考电路如图 2-1 所示,主要涉及晶体和电容的选择。

#### 图2-1 RTC 晶体的硬件参考电路



## 2.1 选择晶体

选择晶体需要注意以下几个指标:

- 标准负载电容(Load capacitance/CL): 晶体的标准负载电容,晶体对负载电容有 着严格的规定,只有实际负载电容和晶体的 SPEC 中的负载电容一致时,晶体频 率才能达到标称频率。
  - 芯片中的晶体振荡电路针对 CL=12.5pF 的晶体设计,且在 32.768K 晶体市场中,CL=12.5pF 的晶体为市场主流,请选用此规格晶体。如果想选用其他规格的晶体,需要按照影响 RTC 精度的因素选择匹配电容。
- 串联电阻(Series resistance/Rs/ESR): 晶体的谐振腔等效串联电阻,当 ESR 越大,表示晶体越难以驱动。晶体规格中会指出 Rs 的典型值与最大值。
  - 芯片晶体振荡电路适用于 Rs 最大值<70KΩ 的晶体,保证 RTC\_XOUT 的电压幅度大于或等于 850mV,请选用满足此规格的晶体。



● 最大驱动级别(Max Drive Level/DL): 表示晶体最大的振荡幅度,当振荡幅度超过一定幅度时,晶体容易发生损坏。

Hi3536 芯片晶体振荡电路内部限制了 RTC\_XIN 与 RTC\_XOUT 管脚振荡的振荡幅度,可以通过以下公式估计电路工作时的实际 Drive Level,并确定此值小于晶体规格中规定的最大 Drive Level。

DL\_actual=0.5\*Rs\_max\*(π\*f\*Vpp<sub>XIN</sub>\*CL\*2)<sup>2</sup> 其中:

- Rs max 为晶体规格书中的串联电阻的最大值
- f 为晶体的谐振频率
- Vpp<sub>XIN</sub> 为示波器测量的 RTC XIN 管脚的 peak to peak 电压
- CL 为晶体规格书的标准负载电容

## 2.2 选择电容

实际 CL 的示意图如图 2-2 所示。

图2-2 实际 CL 的示意图



Pierce 振荡器中,一般将 CL1 与 CL2 取相同的值,可以通过以下公式来确定 CL1 与 CL2 的取值。

CL1=CL2=CL SPEC\*2-3~5pF



其中 CL\_SPEC 为晶体规格书中规定的标准负载电容,3~5pF 代表的 PCB 板可能引入的杂散电容。以12.5pF 的晶体为例,CL1 与 CL2 一般取值为12.5pF\*2-3pF=22pF。因为杂散电容随 PCB 板设计不同而变化,故亦可确定 PCB 板以后,通过选取不同容值的CL1 来获得最接近32.768K的输出频率。



## **3** RTC 固定分频模式的实现

RTC 在固定分频模式下不进行温度补偿。RTC 的时钟直接采用外部晶体与振荡电路产生的进行 327.xx 分频后的时钟,RTC 精度取决于外部晶振提供时钟的准确性。小数分频的分频系数可以调整。本方案与非集成 RTC 芯片具有类似精度。

固定分频模式配置比较简单,涉及的RTC内部寄存器有2个: 0x51和0x52。

0x51 和 0x52,这两个寄存器连在一起为一个 16bit 的寄存器,它们的值决定小数分频的分频系数,具体计算方法如下:

分频系数=327+(寄存器读取值/3052)

例如: 0x51 的值为 0x8, 0x52 寄存器的值为 0x1b, 它们连在一起的 16bit 的值为: 0x81b。 0x81b 的十进制为 2075,分频系数=327+(2075/3052)=327+0.68=327.68。

小数分频的分频系数可以微调是为了使分频后的时钟更加接近 100Hz,这样 RTC 的精度会有所提高。调节分频系数通常应用在时间统一偏快或者偏慢的情况。例如,假设晶振的输出频率为 32767.00Hz,若使用默认分频系数 327.68,则分频后的时钟是99.97Hz,时钟会偏慢。若把分频系数设置为 327.67,则分频后的时钟为 100Hz,会改善时钟偏差的情况。



# 4 RTC 校正功能的实现

Hi3536 不支持 RTC 逻辑校正,若 RTC 时钟的频偏较大,可通过调节 RTC 的分频系数来微调 RTC 的时钟频率。



# 5 RTC 驱动使用说明

## 5.1 编译

在 RTC 目录下执行下述命令即可生成对应的驱动 hirtc.ko 及示例程序 test。

cd rtc
make
make test

## 5.2 使用

将 hirtc.ko 拷贝到单板,并执行如下命令插入驱动模块:

insmod hirtc.ko

RTC 驱动提供的功能通过单板上运行的 test 示例程序说明,如图 5-1 所示。

#### 图5-1 示例程序用法

```
Usage: ./test [options] [parameter1] ...
Options:
                                                 e.g '-s time 2012/7/15/13/37/59'
        -s(set)
                            Set time/alarm,
                            Get time/alarm,
                                                 e.g '-g alarm'
        -g(get)
                            Write RTC register, e.g '-w <reg> <val>'
        -w(write)
        -r(ead)
                            Read RTC register,
                                                 e.g '-r <reg>'
                                                 e.g '-a ON'
                            Alarm ON/OFF',
        -a(alarm)
                            RTC reset
                                                 e.g '-b ON'
        -b(battery monitor) battery ON/OFF,
                            frequency precise adjustment, e.g '-f <val>'
       -f (requency)
```

### 设置获取时间

通过如下命令可设置 RTC 时间:

./test -s time <year/month/day/hour/minute/second>



通过如下命令可获取 RTC 时间:

./test -g time

### 设置获取闹钟时间

通过如下命令可设置 RTC 闹钟时间:

./test -s alarm <year/month/day/hour/minute/second>

通过如下命令可获取 RTC 闹钟时间:

./test -q alarm

通过如下命令设置闹钟到期是否产生中断,驱动中断例程由用户根据需求自由补充。

./test -a ON/OFF

### 读取、设置 RTC 内部寄存器

通过如下命令可读取 RTC 内部寄存器,此功能多用于辅助调试,比如读取内部温度传感器采集的温度值,读取设置的 RTC 更新温度值等。

./test -r <reg>

通过如下命令可设置 RTC 内部寄存器,此功能多用于辅助调试。

./test -w <reg> <value>

reg 取值,请参见《Hi3536 H.265 编解码处理器用户指南.pdf》3.9 节实时时钟部分。

#### 复位 RTC 模块

通过如下命令可复位 RTC 模块。

./test -reset

### 固定分频模式分频系数微调设置

通过如下命令可设置分频系数从而达到调整时钟的快慢效果。

./test -f <val>

< val>值为将要设置的分频系数的 10000 倍,例如要设置分频系数为 327.60,则 val=3276000。通过直接敲 "./test –f"命令可以查看当前分频系数。分频系数可以配置范围为: 327.60~327.70。

#### 打开、关闭电池电量监测功能

通过如下命令可打开 RTC 电池电量监测功能。

./test -b ON

通过如下命令可关闭 RTC 电池电量监测功能。



./test -b OFF

## 用户接口

请参看 hi\_rtc.h 文件。



6 Q&A

## 6.1 振荡器不振

#### 【现象】

32.768K 时钟无输出, RTC 计时电路中的秒寄存器值恒定不变。

#### 【分析】

使用示波器探头观察 RTC\_XIN 管脚振荡波形,引起不同的振荡波形的情况有以下几种:

- 如果无振荡波形,可能是晶体损坏。
- 如果有 32K 左右频率正弦波,且 peak to peak 幅度小于 600mV,则可能是因为 CL1 与 CL2 过大,导致振荡电路驱动不足,从而幅度偏小,振荡波形无法通过后 续的施密特触发器。
- 如果有 200K 左右频率的正弦波,且 peak to peak 幅度小于 600mV,则可能是因为 CL1 与 CL2 偏小,导致振荡电路振荡到 200K 频点,且由于 200K 频点振幅较小,所以无法通过后续的施密特触发器。

#### 【解决】

- 如果确定晶体损坏,请更换晶体。
- 如果为 32K 左右频率正弦波,幅度不够,请检查 CL1 与 CL2 是否偏大,并更换正确的电容
- 如果为 200K 左右频率正弦波,幅度不够,请检查 CL1 与 CL2 是否偏小,并更换 正确的电容。

## 6.2 振荡器的输出频率是 200K

#### 【现象】

32.768K 时钟输出频率接近 200K, RTC 计时电路中的秒寄存器值每秒钟增加 6。

#### 【分析】



因为 32.768K 晶体存在 6.1 倍频的谐振点,如果晶体有异常,则可能振荡到 6 倍频附近。

#### 【解决】

建议首先检查 CL1 与 CL2 是否偏小;如果 CL1 于 CL2 为正确值,但振荡频率仍然为 200K,则可以在电路中添加如图 6-1 所示的 Rd,Rd 取值为  $1/(2\pi \times 32768 \times CL2)$ ,Rd 与 CL2 可以形成一个 RC 滤波器,降低 6.1 倍频处的环路增益。

图6-1 200K 振荡解决方案电路



注意:一般情况不建议增加 Rd,如果采用增加 Rd 的方法,需要确定 RTC\_XOUT 管 脚信号幅度不会过小。

## 6.3 振荡频率虽然是 32.768K 附近, 但是频率却不准

#### 【现象】

32.768K 时钟输出频率偏离 32.768K。

#### 【分析】

振荡电路振荡频率主要由晶体和负载电容共同保证,晶体本身确定了频率的大致范围(即图 6-2 所示中的 0 偏差对应的频率),而实际负载电容的大小则确定了频率的偏移量(即图 6-2 所示中的实际频率偏离 0 的值)。







#### 【解决】

如果频率偏离了 32.768K, 首先需要确认晶体管脚弯折不会对内部晶体部分施加应力, 并确定焊接过程中的温度符合 datasheet 规范; 其次,检查 CL1 与 CL2 取值是否正确,并更换正确的电容。