Técnica de Projeto Diagrama de Atividades

Diagrama de Atividades

- Usado para modelar os aspectos dinâmicos dos sistemas.
- Os diagramas de atividades geralmente são usados para modelar processos de negócios, workflows, fluxos de dados e algoritmos complexos.
- Um diagrama de atividade é essencialmente um flowchart (diagrama de fluxo) que enfatiza as atividades que são executadas, mostrando o fluxo de controle de atividade para atividade.
- Graficamente, um diagrama de atividade é uma coleção de nodos e arcos.

Diagrama de Atividades

→ Exemplo de modelagem de um processo de construção de uma casa

Notação

Diagramas de atividades contêm:

- Ações
- Nodos de Atividade
- Fluxos de Controle (seleção, forking e joining, raia)
- Fluxos de Objetos

Notação - Ação

AÇÕES: são computações atômicas.

Exemplos: avaliar alguma expressão que atribui o valor de um atributo ou que retorna algum valor; chamar uma operação de um objeto; enviar um sinal a um objeto; criar ou destruir um objeto; etc.

→ Uma ação é representada por uma caixa com cantos arredondados, contendo uma expressão

Ação

Características:

- Ações não podem ser decompostas.
- → Uma parte da ação não pode ser executada sozinha, ou toda a ação é executada ou nada é executado.
- A UML não define uma linguagem para expressar uma ação.
- → Pode ser usado um texto estruturado ou a sintaxe de uma linguagem de programação.

Notação - Fluxo de Atividade

NODO DE ATIVIDADE: é o agrupamento aninhado de ações ou outros nodos de atividade.

- Não existe distinção na notação de ação e nodo de atividade.
- → Uma ação pode ser vista como um caso especial de nodo de atividade.

Notação - Fluxo de Controle

<u>FLUXO DE CONTROLE</u>: quando uma ação ou um nodo de atividade completa a execução, o fluxo de controle passa imediatamente para a próxima ação ou nodo de atividade.

→ O fluxo de controle é representado por uma seta simples.

Notação - Seleção

<u>SELEÇÃO (BRANCHING)</u>: um diagrama de atividades pode incluir uma seleção, que especifica caminhos alternativos que são tomados de acordo com alguma expressão booleana.

→ A palavra <u>else</u> pode ser usada na transição de saída.

Notação - Forking e Joining

FORKING E JOINING: um diagrama de atividades pode incluir fluxos que são concorrentes.

Para representar o forking e o joining são usadas barras de sincronização (linhas verticais ou horizontais).

Notação - Forking e Joining

Exemplo - Dispositivo que imita a fala e gestos humanos.

→ O número de fluxos que saem de um fork deve combinar com o número de fluxos que entram no correspondente join.

Notação – Swinlanes (Raias)

SWIMLANE (RAIAS): um diagrama de atividades pode particionar as atividades em grupos.

• Cada grupo é chamado de swimlane e especifica um conjunto de atividades que compartilham alguma propriedade organizacional.

Swinlanes

Swinlanes

Comentários:

- Cada swimlane tem um nome único dentro do seu diagrama.
- Swimlanes não tem nenhuma semântica específica.

Notação - Fluxo de Objeto

<u>FLUXO DE OBJETO</u>: os objetos que estão envolvidos em um diagrama de atividades podem ser colocados no diagrama e conectados por setas às ações que os produzem e os consomem.

- Não é necessário desenhar o fluxo de controle entre as ações conectadas pelos fluxos de objetos.
- O estado de um objeto pode ser mostrado adicionando seu nome entre colchetes.

Fluxo de Objeto

Notação - Região de Expansão

REGIÃO DE EXPANSÃO: representa um fragmento do modelo de atividade que é executado sob os elementos de uma lista ou conjunto.

- Uma linha tracejada é desenhada ao redor da região no diagrama.
- As entradas e saídas destas regiões são coleções de valores.

Notação - Rake

<u>RAKE</u>: Para expandir um diagrama de atividade em outro diagrama de atividade utilize o símbolo <u>rake</u> (ancinho).

Diagrama de Atividades

- Usado para modelar algum aspecto dinâmico de um sistema: sistema como um todo, um subsistema, um caso de uso, uma operação ou uma classe.
- Geralmente, diagramas de atividades são usados para modelar:

Workflows e processos de negócios: foca nas atividades vistas pelos atores que colaboram com o sistema.

Operações: usado como um flowchart para modelar os detalhes de uma computação.

Modelando um Workflow

- Estabeleça o foco do workflow.
- Crie uma swimlane para organizações de negócio importantes.
- Identifique as pré-condições do estado inicial e as pós-condições do estado final, para ajudar a definir os limites do workflow.
- Inicie no estado inicial, especificando as ações que são executadas.
- Ações complicadas ou que aparecem várias vezes são colocadas em um diagrama de atividades separado.
- Desenhe os fluxos que conectam as ações e nodos de atividades, na seguinte sequência: fluxos sequencias, seleção, e forking e joining.
- Se existirem valores de objetos importantes envolvidos no workflow, inclua-os no diagrama.

Modelando um Workflow

Workflow da devolução de um item

Modelando uma Operação

- Identifique as abstrações envolvidas na operação: parâmetros da operação, atributos da classe da operação e as classes envolvidas.
- Identifique as pré-condições do estado inicial e as pós-condições do estado final, e também as invariantes da classe durante a operação.
- Inicie com o estado inicial, especificando as ações que são executadas.
- Use seleção quando necessário para especificar caminhos condicionais e iteração.
- Use forking e joining quando necessário para especificar fluxos paralelos de controle.

Modelando uma Operação

Operação intersecção da classe Linha

Modelando um Caso de Uso

Processo do caso de uso Processar Venda.

 Na realidade este diagrama n\u00e3o precisaria ser criado, pois o texto do caso de uso \u00e9 suficiente.

Comentário

• Diagramas de atividades são úteis para processos bem complexos, usualmente envolvendo várias partes. Os textos dos casos de uso são suficientes para processos simples.

Modelagem de Fluxo de Dados

Os diagramas de atividades também podem ser usados para modelar o fluxo de dados, substituindo a notação tradicional de DFD.

Modelagem de Fluxo de Dados

Exercício 1: Modele o seguinte caso de uso com um diagrama de atividades.

Caso de Uso Submeter um artigo

- Para submeter um artigo, o autor fornece os seguintes dados: nome do artigo, autores do artigo (nome e instituição de origem), resumo e os tópicos (dentre os tópicos da conferência) nos quais o artigo se encaixa.
- 2. O sistema confere se todos os dados foram fornecidos e se não existe nenhum outro artigo com o mesmo nome e o mesmo conjunto de autores.
- 3. O autor faz o upload do artigo.
- 4. O sistema gera um identificador para o artigo e o apresenta ao autor.

Exercício 2: Modele o método a seguir com um diagrama de atividades.

```
public class ListBoxChoice extends MultiChoice {
  JawtList list;
   Vector choices;
public JPanel getUI() {
    JPanel p = new JPanel();
     list = new JawtList(choices.size());
     list.setMultipleMode(true);
     p.add(list);
     for (int i=0; i< choices.size(); i++)
       list.add((String)choices.elementAt(i));
     return p;
```

Exercício 3: Modele o método a seguir com um diagrama de atividades.

```
public class TimeSwimData extends SwimData {
 protected Vector swimmers;
 public <u>TimeSwimData(String filename)</u> {
   String s = "";
   swimmers = new Vector();
   InputFile f = new InputFile(filename);
   s= f.readLine();
   while (s != null) {
     swimmers.addElement(new Swimmer(s));
     s= f.readLine();
   f.close();
```

Exercício 4: Modele o método a seguir com um diagrama de atividades.

```
public class ContadorPalavras {
public TabelaHash contaPalavras (String frase){
 TabelaHash tabela = new TabelaHash(13);
 StringTokenizer st = new StringTokenizer (frase, " ", false);
 while (st.hasMoreTokens()){
    String token = st.nextToken();
     Integer ocorrencia = (Integer) tabela.retorna(token);
    if (ocorrencia != null) {
         int numOcorrencia = ocorrencia.intValue();
         tabela.remove(token);
         tabela.insere(token, new Integer(numOcorrencia+1));
    else{
         tabela.insere(token, new Integer(1));
 return tabela; }
```