<u>Help</u>

sandipan_dey >

<u>Calendar</u> **Discussion** <u>Notes</u> <u>Course</u> <u>Progress</u> <u>Dates</u>

☆ Course / Unit 2: Geometry of Derivat... / Lecture 4: Introduction to vectors and dot pro...

You are taking "Exam (Timed, No Correctness Feedback)" as a timed exam. Show more

End My Exam

44:20:30

Lecture due Aug 18, 2021 20:30 IST Completed

Reflect

Poll setup

you all the question. On the board that we just erased,

PROFESSOR: Let me pause and ask

Start of transcript. Skip to the end.

it said that a vector is something that has

a magnitude and a direction. So if we can describe its magnitude and we can describe its direction,

we should be able to figure out what

0:00 / 0:00

▶ 2.0x X CC

Video

Download video file

Transcripts

Download SubRip (.srt) file Download Text (.txt) file

"

vector it is.

Changing perspective on magnitude and direction

1/1 point (graded)

Find the vector \vec{v} in terms of θ .

 $ec{v} = \langle \sin heta, \cos heta
angle$

 $\bigcirc \ \, ec{v} = \langle \cos heta, \sin heta
angle$

 $\bigcirc \; ec{v} = \langle 3\sin heta, 3\cos heta
angle$

 $ec{m{v}} = \langle 3\cos heta, 3\sin heta
angle$

⊞ Calculator

Solution:

The x-component of the vector is $3\cos\theta$. The y-component is $3\sin\theta$. Therefore the answer is that $\vec{v}=\langle 3\cos\theta, 3\sin\theta \rangle$.

Submit

You have used 1 of 2 attempts

1 Answers are displayed within the problem

Direction vectors

2.0/2 points (graded)

Find the unit vector that points in the same direction as \vec{v} , where \vec{v} is the vector of length 3 that makes an angle θ above the horizontal axis.

(Enter the vector as **[a,b]** for the vector $\langle a,b \rangle$. Type **theta** for θ .)

Determine the angle heta in terms of the vector components $ec{v} = \langle v_1, v_2
angle$.

(Enter your answer in terms of v_1 and v_2 . Type v_1 for v_1 .)

$$\theta = \boxed{\arctan(v_2/v_1)}$$

$$\arctan\left(\frac{v_2}{v_1}\right)$$

? INPUT HELP

Solution:

The vector $\vec{v} = \langle 3\cos{(\theta)}, 3\sin{(\theta)} \rangle$. This is a vector of length 3.

The vector with unit length pointing in the same direction as $ec{v}$ is

$$\hat{v} = rac{1}{3} \langle 3\cos{(heta)}\,, 3\sin{(heta)}
angle = \langle \cos{(heta)}\,, \sin{(heta)}
angle.$$

Observe that to determine the angle $oldsymbol{ heta}$, we can use the fact that

$$rac{\sin heta}{\cos heta}=rac{v_2}{v_1},$$

thus solving for $oldsymbol{ heta}$ we get

$$\arctan\left(rac{v_2}{v_1}
ight)= heta.$$

Submit

You have used 1 of 15 attempts

1 Answers are displayed within the problem

Take away

Note that we can determine the angle of any unit vector $\hat{\boldsymbol{w}}$ as we did in the previous problem, but it is not particularly useful. Instead, we use the unit vector itself as the indication of the direction.

Definition 7.1

The vector \vec{v} has magnitude $|\vec{v}|$ and direction \hat{v} .

7. Changing perspective on magnitude and direction

Hide Discussion

Topic: Unit 2: Geometry of Derivatives / 7. Changing perspective on magnitude and direction

Add a Post

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

Blog

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>