Modelling and Parametric Study of a Micro-Fluidic Pump

Fakultät für angewandte Naturwissenschaften und Mechatronik der Hochschule München

Simulations-Studie

im Studiengang Mikro- und Nanotechnik

vorgelegt von

Timo Stubler and Kristjan Axelsson

im November 2020

Erstprüfer: Prof. Dr. A. Kersch

Table of Contents

1	Einleitung
2	Systemkomponenten
	2.1 Pumpkammer
	2.2 Ventile
	2.3 Rohrleitungen
	2.4 Speicher
	2.5 Fluid
3	Γheorie
	B.1 Einzelstrang
	3.2 Systemmodell
	3.2.1 Elektrisches Ersatzschaltbild

1 Einleitung

Story über Micro-Pumpen Motivation Paar Coole Pumpen Bilder aus EMFT. Story auf Anwendungsbeispiel bezogen

2 Systemkomponenten

- 2.1 Pumpkammer
- 2.2 Ventile
- 2.3 Rohrleitungen
- 2.4 Speicher
- 2.5 Fluid

blabla bla ω_i . some equation example

$$\Delta E = \hbar(\omega_i - \omega_s) \tag{2.1}$$

3 Theorie

3.1 Einzelstrang

3.2 Systemmodell

3.2.1 Elektrisches Ersatzschaltbild

modellansätze etc. , nur first order second order sachen imm outlook some example equation harmonic oscillator

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega_{vib} \tag{3.1}$$

List of Figures