Themes of Powerdot Package

- autumn
- binder
- blends
- rico

- UNLTheme
- winter
- wj

autumn

Some title

Some author name emailid@some.insti

Some Institute Name

Left-footer notes

Right-footer notes – 1 / 1

The quest for π

 $\ \mbox{\ \, }$ The quest for π

■ The following formula computes 8 correct digits per iteration (Ramanujan):

$$\frac{1}{\pi} = \sum_{n=0}^{\infty} \frac{\left(\frac{1}{4}\right)_n \left(\frac{2}{4}\right)_n \left(\frac{3}{4}\right)_n}{n!^3} \left(2\sqrt{2}(1103 + 26390n)\right) \frac{1}{(99^2)^{2n+1}}$$

Left-footer notes

binder

Some title

Some author name emailid@some.insti

Some Institute Name

Left-footer notes Right-footer notes – 1 / 1

The quest for π

The quest for π

■ The following formula computes 8 correct digits per iteration (Ramanujan):

$$\frac{1}{\pi} = \sum_{n=0}^{\infty} \frac{\left(\frac{1}{4}\right)_n \left(\frac{2}{4}\right)_n \left(\frac{3}{4}\right)_n}{n!^3} \left(2\sqrt{2}(1103 + 26390n)\right) \frac{1}{(99^2)^{2n+1}}$$

Left-footer notes

blends

Some title

Some author name emailid@some.insti

Some Institute Name

Right-footer notes - 1 / 1 Left-footer notes

The quest for $\boldsymbol{\pi}$

• The following formula computes 8 correct digits per iteration (Ramanujan):

$$\frac{1}{\pi} = \sum_{n=0}^{\infty} \frac{\left(\frac{1}{4}\right)_n \left(\frac{2}{4}\right)_n \left(\frac{3}{4}\right)_n}{n!^3} \left(2\sqrt{2}(1103 + 26390n)\right) \frac{1}{(99^2)^{2n+1}}$$

Left-footer notes

Some title

Some author name emailid@some.insti

Some Institute Name

Left-footer notes Right-footer notes – 1 / 1

The quest for π

 \triangleright The quest for π

The following formula computes 8 correct digits per iteration (Ramanujan):

$$\frac{1}{\pi} = \sum_{n=0}^{\infty} \frac{\left(\frac{1}{4}\right)_n \left(\frac{2}{4}\right)_n \left(\frac{3}{4}\right)_n}{n!^3} \left(2\sqrt{2}(1103 + 26390n)\right) \frac{1}{(99^2)^{2n+1}}$$

Left-footer notes

 $Right\text{-}footer\ notes-1\ /\ 1$

UNLTheme

Some title

Some author name emailid@some.insti

Some Institute Name

 $Left-footer\ notes - 1\ /\ 1$

The quest for π

The quest for π

■ The following formula computes 8 correct digits per iteration (Ramanujan):

$$\frac{1}{\pi} = \sum_{n=0}^{\infty} \frac{\left(\frac{1}{4}\right)_n \left(\frac{2}{4}\right)_n \left(\frac{3}{4}\right)_n}{n!^3} \left(2\sqrt{2}(1103 + 26390n)\right) \frac{1}{(99^2)^{2n+1}}$$

Left-footer notes

 $Right\text{-}footer\ notes-1\ /\ 1$

winter

Some title

Some author name emailid@some.insti

Some Institute Name

Left-footer notes

Right-footer notes -1/1

The quest for π

✓ The following formula computes 8 correct digits per iteration (Ramanujan):

$$\frac{1}{\pi} = \sum_{n=0}^{\infty} \frac{\left(\frac{1}{4}\right)_n \left(\frac{2}{4}\right)_n \left(\frac{3}{4}\right)_n}{n!^3} \left(2\sqrt{2}(1103 + 26390n)\right) \frac{1}{(99^2)^{2n+1}}$$

Left-footer notes

Some title

Some author name emailid@some.insti

Some Institute Name

Left-footer notes

Right-footer notes - 1 / 1

The quest for $\boldsymbol{\pi}$

The quest for π

The following formula computes 8 correct digits per iteration (Ramanujan):

$$\frac{1}{\pi} = \sum_{n=0}^{\infty} \frac{\left(\frac{1}{4}\right)_n \left(\frac{2}{4}\right)_n \left(\frac{3}{4}\right)_n}{n!^3} \left(2\sqrt{2}(1103 + 26390n)\right) \frac{1}{(99^2)^{2n+1}}$$

Left-footer notes