

Packet Tracer - Настройка адресов IPv6 на сетевых устройствах - Режим симуляции физического оборудования Топология

Таблица адресации

Устройство	Интерфейс	IPv6-адрес	Длина префикса	Шлюз по умолчанию
R1	G0/0/0	2001:db8:acad:a::1	64	_
	G0/0/1	2001:db8:acad:1::1	64	_
S1	VLAN 1	2001:db8:acad:1::b	64	N/A (fe80::1)
PC-A	NIC	2001:db8:acad:1::3	64	fe80::1
РС-В	NIC	2001:db8:acad:a:: 3	64	fe80::1

Задачи

Часть 1. Настройка топологии и конфигурация основных параметров маршрутизатора и коммутатора

Часть 2. Ручная настройка IPv6-адресов

Часть 3. Проверка сквозного соединения

Общие сведения/сценарий

В этом задании Packet Tracer в режиме симуляции физического оборудования (PTPM) вы будете настраивать хосты и интерфейсы устройств с адресами IPv6. Для просмотра индивидуальных и групповых IPv6-адресов вы будете использовать команду **show**. Вы также будете проверять сквозное соединение с помощью команд **ping** and **traceroute**.

Инструкции

Часть 1. Настройка топологии и конфигурация основных параметров маршрутизатора и коммутатора

В этой части вы будете соединять кабелями устройства в сеть, подавать питание на устройства, а затем будете настраивать маршрутизатор и коммутатор, а так же выполнять базовую настройку устройств.

Шаг 1. Соедините кабелями сеть и запитайте устройства.

Подключите сеть в соответствии с топологией. Питание устройств по мере необходимости.

Шаг 2. Настройте маршрутизатор.

Назначьте имя хоста и настройте основные параметры устройства.

Шаг 3. Настройте коммутатор.

Назначьте имя хоста и настройте основные параметры устройства.

Часть 2. Ручная настройка IPv6-адресов

В этой части вы вручную настроили ІРv6-адресацию на всех устройствах в сети.

Шаг 1. Назначьте IPv6-адреса интерфейсам Ethernet на R1.

- а. Назначьте глобальные индивидуальные IPv6-адреса, указанные в таблице адресации обоим интерфейсам Ethernet на R1.
- b. Введите команду show ipv6 interface brief, чтобы проверить, назначен ли каждому интерфейсу корректный индивидуальный IPv6-адрес.
 - Примечание. Отображаемый локальный адрес канала основан на адресации EUI-64, которая автоматически использует MAC-адрес интерфейса для создания 128-битного локального IPv6-адреса канала.
- с. Чтобы обеспечить соответствие локальных адресов канала индивидуальному адресу, вручную введите локальные адреса канала на каждом интерфейсе Ethernet на R1.
 - **Примечание**. Каждый интерфейс маршрутизатора относится к отдельной сети. Пакеты с локальным адресом канала никогда не выходят за пределы локальной сети, а значит, для обоих интерфейсов можно указывать один и тот же локальный адрес канала.
- d. Используйте выбранную команду, чтобы убедиться, что локальный адрес канала изменен на **fe80::1.**

Какие группы многоадресной рассылки назначены интерфейсу G0/0?

Шаг 2. Активируйте IPv6-маршрутизацию на R1.

а. В командной строке на PC-В введите команду **ipconfig**, чтобы получить данные IPv6-адреса, назначенного интерфейсу PC.

Назначен ли индивидуальный IPv6-адрес сетевой интерфейсной карте (NIC) на PC-B?

- b. Активируйте IPv6-маршрутизацию на R1 с помощью команды IPv6 unicast-routing.
- с. Используйте команду, чтобы убедиться, что новая многоадресная группа назначена интерфейсу G0/0/0. Обратите внимание, что в списке групп для интерфейса G0/0 отображается группа многоадресной рассылки всех маршрутизаторов (FF02::2).
 - **Примечание**: Это позволит компьютерам получать IP-адреса и данные шлюза по умолчанию с помощью функции SLAAC (Stateless Address Autoconfiguration (Автоконфигурация без сохранения состояния адреса)).
- d. Теперь, когда **R1** входит в группу многоадресной рассылки всех маршрутизаторов, еще раз введите команду **ipconfig** на **PC-B**. Проверьте данные IPv6-адреса.

Почему **PC-В** получил глобальный префикс маршрутизации и идентификатор подсети, которые вы настроили на **R1**?

Шаг 3. Назначьте IPv6-адреса интерфейсу управления (SVI) на S1.

а. Назначьте адрес IPv6 для **S1**. Также назначьте этому интерфейсу локальный адрес канала.

Примечание: Коммутатор автоматически получит свой адрес шлюза по умолчанию из сообщения RA, отправленного маршрутизатором. Он будет использовать IPv6-адрес источника сообщения RA, который является локальным адресом канала маршрутизатора. Однако ваша версия Packet Tracer может еще не поддерживать это на коммутаторе.

b. Проверьте правильность назначения IPv6-адресов интерфейсу управления с помощью команды show ipv6 interface vlan1.

Шаг 4. Назначьте компьютерам статические IPv6-адреса.

- а. Откройте на каждом компьютере окно IP Configuration и назначьте IPv6-адрес.
- b. Убедитесь, что оба компьютера имеют правильную информацию адреса IPv6. Каждый компьютер должен иметь два глобальных адреса IPv6: один статический и один SLACC

Часть 3. Проверка сквозного подключения

- а. С **РС-А** отправьте эхо-запрос на **FE80::1**. Это локальный адрес канала, назначенный G0/1 на **R1**.
- b. Введите команду tracert на PC-A, чтобы проверить наличие сквозного подключения к PC-B.
- с. С РС-В отправьте эхо-запрос на РС-А.
- d. С PC-В отправьте эхо-запрос на локальный адрес канала G0/0 на R1.

Примечание. В случае отсутствия сквозного подключения проверьте, правильно ли указаны IPv6адреса на всех устройствах.

Вопросы для повторения

- 1. Почему обоим интерфейсам Ethernet на **R1** можно назначить один и тот же локальный адрес канала FE80::1?
- 2. Каков идентификатор подсети одноадресного IPv6-адреса 2001:db8:acad::aaaa:1234/64, если префикс глобальной маршрутизации /48?