PCT WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE

ENARBEIT AUF DEM GEBIET DES P

NTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

INTERNATIONALE ZUSA

C07D 239/00

A2

(11) Internationale Veröffentlichungsnummer: WO 99/23078

(43) Internationales

Veröffentlichungsdatum:

14. Mai 1999 (14.05.99)

(21) Internationales Aktenzeichen:

PCT/EP98/06571

(22) Internationales Anmeldedatum: 16. Oktober 1998 (16.10.98)

(30) Prioritätsdaten:

197 48 238.4 197 52 904.6 31. Oktober 1997 (31.10.97) DE 28. November 1997 (28.11.97) DE

198 09 376.4

5. März 1998 (05.03.98) DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BASF AK-TIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen (DE).

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): AMBERG, Wilhelm [DE/DE]; Schälzigweg 79, D-68723 Schwetzingen (DE). JANSEN, Rolf [DE/DE]; C 2.20, D-68159 Mannheim (DE). HERGENRÖDER, Stefan [DE/DE]; Hans-Böckler-Strasse 108, D-55128 Mainz (DE). RASCHACK, Manfred [DE/DE]; Donnersbergstrasse 7, D-67256 Weisenheim (DE). UNGER, Liliane [DE/DE]; Wollstrasse 129, D-67065 Ludwigshafen (DE).
- (74) Gemeinsamer Vertreter: BASF AKTIENGESELLSCHAFT: D-67056 Ludwigshafen (DE).

(81) Bestimmungsstaaten: AL, AU, BG, BR, BY, CA, CN, CZ, GE, HU, ID, IL, JP, KR, KZ, LT, LV, MK, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TR, UA, US, eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht

Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

- (54) Title: NEW CARBOXYLIC ACID DERIVATIVES, CARRYING AMIDO SIDE-CHAINS; PRODUCTION AND USE AS ENDOTHELIN RECEPTOR ANTAGONISTS
- (54) Bezeichnung: NEUE CARBONSÄUREDERIVATE, DIE AMIDSEITENKETTEN TRAGEN, IHRE HERSTELLUNG UND VER-WENDUNG ALS ENDOTHELIN-REZEPTORANTAGONISTEN

(57) Abstract

The invention relates to carboxylic acid derivatives of formula (I), wherein the substituents have the meaning as commented in the description. It also relates to the production and use of same as endothelin receptor antagonists.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft Carbonsäurederivate der Formel (I), wobei die Substituenten die in der Beschreibung erläuterte Bedeutung haben, die Herstellung und Verwendung als Endothelinrezeptorantagonisten.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
ΑŪ	Australien	GA	Gabun	LV	Lettland	· SZ	Swasiland
ΑZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten vor
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	. NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	zw	Zimbabwe
CM	Kamerun		Котеа	PL	Polen	2,,,	Ziiiioabwc
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumänien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		•
DK	Dänemark	LK	Sri Lanka	SE	Schweden ·		
EE	Estland	LR	Liberia	SG	Singapur		

WO 99/23078 PCT/EP98/06571

Neue Carbonsäurederivate, die Amidseitenketten tragen, ihre Herstellung und Verwendung als Endothelin-Rezeptorantagonisten

5 Beschreibung

Die vorliegende Erfindung betrifft neue Carbonsäuredrivate, deren Herstellung und Verwendung.

- 10 Endothelin ist ein aus 21 Aminosäuren aufgebautes Peptid, das von vaskulärem Endothel synthetisiert und freigesetzt wird. Endothelin existiert in drei Isoformen, ET-1, ET-2 und ET-3. Im Folgenden bezeichnet "Endothelin" oder "ET" eine oder alle Isoformen von Endothelin. Endothelin ist ein potenter Vasokonstrik-
- 15 tor und hat einen starken Effekt auf den Gefäßtonus. Es ist bekannt, daß diese Vasokonstriktion von der Bindung von Endothelin an seinen Rezeptor verursacht wird (Nature, 332, 411-415, 1988; FEBS Letters, 231, 440-444, 1988 und Biochem. Biophys. Res. Commun., 154, 868-875, 1988).

Erhöhte oder abnormale Freisetzung von Endothelin verursacht eine anhaltende Gefäßkontraktion in peripheren, renalen und zerebralen Blutgefäßen, die zu Krankheiten führen kann. Wie in der Literatur berichtet, ist Endothelin in einer Reihe von Krankheiten invol-

- 25 viert. Dazu zählen: Hypertonie, akuter Myokardinfarkt, pulmonäre Hypertonie, Raynaud-Syndrom, zerebrale Vasospasmen, Schlaganfall, benigne Prostatahypertrophie, Atherosklerose und Asthma (J. Vascular Med. Biology 2, 207 (1990), J. Am. Med. Association 264, 2868 (1990), Nature 344, 114 (1990), N. Engl. J. Med. 322, 205
- 30 (1989), N. Engl. J. Med. <u>328</u>, 1732 (1993), Nephron <u>66</u>, 373 (1994), Stroke <u>25</u>, 904 (1994), Nature <u>365</u>, 759 (1993), J. Mol. Cell. Cardiol. <u>27</u>, A234 (1995); Cancer Research <u>56</u>, 663 (1996)).

Mindestens zwei Endothelinrezeptorsubtypen, ETA- und ETB-Rezeptor, 35 werden zur Zeit in der Literatur beschrieben (Nature 348, 730 (1990), Nature 348, 732 (1990)). Demnach sollten Substanzen, die die Bindung von Endothelin an die beiden Rezeptoren inhibieren, physiologische Effekte von Endothelin antagonisieren und daher wertvolle Pharmaka darstellen.

40

20

In der Patentanmeldung DE 19636046.3 wurden gemischte ET_A/ET_B-Rezeptorantagonisten beschrieben. Wichtig für diese Verbindungen ist der Spacer Q (Siehe Formel II), der in seiner Länge einer C₂-C₄-Alkylkette entspricht, und die Funktion hat, in den Verbindungen der Formel II einen definierten Abstand zwischen R⁶ und W herzustellen.

Weiterhin sind in der Patentanmeldung WO 97/38980 folgende Verbindungen der Formel VII als Endothelinrezeptorantagonisten 10 beschrieben:

20 Als Vorteil dieser Verbindungen wird die niedrige Plasmabidung genannt.

Überraschenderweise wurde gefunden, daß mittels des Spacers $Q = R^6CR^7R^8$ (siehe Formel I) in Abhängigkeit von $R^6 = Amid$ die 25 Rezeptoraffinität und -selektivität beeinflußt werden kann. Somit können entweder ET_A -selektive, ET_B -selektive oder aber gemischte Reptorantogonisten hergestellt werden.

Als ET_A (ET_B)-spezifische Antagonisten bezeichnen wir hier solche 30 Antagonisten, deren Affinität zum ET_A (ET_B)-Rezeptor mindestens zehnfach höher ist als ihre Affinität zum ET_B (ET_A)-Rezeptor. Bevorzugt sind solche Verbindungen, deren Affinitätsunterschied zu den beiden Rezeptoren mindestens zwanzig beträgt.

35 Gemischte Endothelinrezeptorantagonisten sind solche Verbindungen, die mit ungefähr gleicher Affinität an den ET_A und den ET_B Rezeptor binden. Ungefähr gleiche Affinität zu den Rezeptoren besteht, wenn der Quotient der Affinitäten größer 0,05 (bevorzugt 0,1) und kleiner 20 (bevorzugt 10) ist.

Es bestand nun die Aufgabe Verbindungen zu identifizieren, die zu einer der drei Selektivitätsgruppen gehören.

40

Gegenstand der Exindung sind Carbonsäurederi

e der Formel I

10 R1 steht für Tetrazol oder für eine Gruppe

in der R folgende Bedeutung hat:

15

5

a) ein Rest OR9, worin R9 bedeutet:

Wasserstoff, das Kation eines Alkalimetalls, das Kation eines Erdalkalimetalls, ein physiologisch verträgliches organisches Ammoniumion wie tertiäres C_1 - C_4 -Alkylammonium oder das Ammoniumion;

C₃-C₈-Cycloalkyl, C₁-C₈-Alkyl, CH₂-Phenyl, die durch einen oder mehrere der folgenden Reste substituiert sein können:

Halogen, Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl,

Hydroxy, C₁-C₄-Alkoxy, Mercapto, C₁-C₄-Alkylthio, Amino,

NH(C₁-C₄-Alkyl), N(C₁-C₄-Alkyl)₂;

Eine C₃-C₆-Alkenyl - oder eine C₃-C₆-Alkinylgruppe, wobei 30 diese Gruppen ihrerseits ein bis fünf Halogenatome tragent können;

R⁹ kann weiterhin ein Phenylrest sein, welcher ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste tragen kann: Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, Hydroxy, C₁-C₄-Alkoxy, Mercapto, C₁-C₄-Alkylthio, Amino, NH(C₁-C₄-Alkyl), N(C₁-C₄-Alkyl)₂;

b) ein über ein Stickstoffatom verknüpfter 5-gliedriger Heteroaromat wie Pyrrolyl, Pyrazolyl, Imidazolyl und Triazolyl,
welcher ein bis zwei Halogenatome, oder eins bis zwei
C₁-C₄-Alkyl oder eins bis zwei C₁-C₄-Alkoxygruppen tragen
kann.

45

c) eine Grappe

$$-o - (CH_2)_p - s - R^{10}$$

in der k die Werte 0, 1 und 2, p die Werte 1, 2, 3 und 4 annehmen und R^{10} für

10

 $C_1-C_4-Alkyl$, $C_3-C_8-Cycloalkyl$, $C_3-C_6-Alkenyl$, $C_3-C_6-Alkinyl$ oder Phenyl steht, das durch einen oder mehrere, z.B. ein bis drei der folgenden Reste substituiert sein kann:

- Halogen, Nitro, Cyano, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, Hydroxy, C_1-C_4 -Alkoxy, C_1-C_4 -Alkylthio, Mercapto, Amino, NH(C_1-C_4 -Alkyl), N(C_1-C_4 -Alkyl)₂.
 - d) ein Rest

20

25

30

worin R11 bedeutet:

 $C_1-C_4-Alkyl$, $C_1-C_4-Halogenalkyl$ $C_3-C_6-Alkenyl$, $C_3-C_6-Alkinyl$, $C_3-C_8-Cycloalkyl$, wobei diese Reste einen $C_1-C_4-Alkoxy-$, $C_1-C_4-Alkylthio-und/oder$ einen Phenylrest wie unter c) genannt tragen können;

Phenyl, das durch ein bis drei der folgenden Reste substituiert sein kann: Halogen, Nitro, Cyano, C₁-C₄-Alkyl,

C₁-C₄-Halogenalkyl, Hydroxy, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio,

Mercapto, Amino, NH(C₁-C₄-Alkyl), N(C₁-C₄-Alkyl)₂

. Die übrigen Substituenten haben die folgende Bedeutung:

40 R² Wasserstoff, Hydroxy, NH₂, NH(C_1 - C_4 -Alkyl), N(C_1 - C_4 -Alkyl)₂, Halogen, C_1 - C_4 -Alkyl, C_2 - C_4 -Alkenyl, C_2 - C_4 -Alkinyl, C_1 - C_4 -Hydroxyalkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkylthio, oder CR² ist mit CR¹⁰ wie unter Z angegeben zu einem 5- oder 6-gliedrigen Ring verknüpft.

- X Stickstoff oder Methin.
- Y Stickstoff oder Methin.
- Stickstoff oder CR^{12} , worin R^{12} Wasserstoff, Halogen oder C_1 - C_4 -Alkyl, bedeutet oder CR^{12} bildet zusammen mit CR^2 oder CR^3 einen 5- oder 6-gliedrigen Alkylen- oder Alkenylenring, der durch eine oder zwei C_1 - C_4 -Alkylgruppen substituiert sein kann und worin jeweils eine oder mehrere Methylengruppen
- durch Sauerstoff, Schwefel, -NH oder $N(C_1-C_4-Alkyl)$ ersetzt sein können.

Mindestens eines der Ringglieder X, Y oder Z ist Stickstoff.

- 15 R³ Wasserstoff, Hydroxy, NH₂, NH(C_1 - C_4 -Alkyl), N(C_1 - C_4 -Alkyl)₂, Halogen, C_1 - C_4 -Alkyl, C_2 - C_4 -Alkenyl, C_2 - C_4 -Alkinyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkylthio, oder CR³ ist mit CR¹² wie unter Z angegeben zu einem 5- oder 6-gliedrigen Ring verknüpft.
 - R⁴ und R⁵ (die gleich oder verschieden sein können):
- Phenyl oder Naphthyl, die durch einen oder mehrere der folgenden Reste substituiert sein können: Halogen, Nitro, Cyano, Hydroxy, Mercapto, C₁-C₄-Alkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, Phenoxy, Carboxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, Amino, NH(C₁-C₄-Alkyl), N(C₁-C₄-Alkyl)₂ oder Phenyl, das ein- oder mehrfach substituiert sein kann, z.B. ein- bis dreifach durch Halogen, Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy oder C₁-C₄-Alkylthio; oder
- Phenyl oder Naphthyl, die orthoständig über eine direkte Bindung, eine Methylen-, Ethylen- oder Ethenylengruppe, ein Sauerstoff- oder Schwefelatom oder eine SO₂-, NH- oder N-Alkyl-Gruppe miteinander verbunden sind;

 $C_3-C_8-Cycloalkyl.$

40 R6 eine Gruppe

45
$$R^{14} N-C$$
 oder $R^{18} N-C$ $R^{19} N-C$

R¹³ und R¹⁴ (die gleich oder verschieden sein können):

Wasserstoff mit der Maßgabe, daß R^{13} und R^{14} nicht gleichzeitig Wasserstoff sein dürfen,

5

 $C_1-C_8-Alkyl$, $C_3-C_8-Alkenyl$ oder $C_3-C_8-Alkinyl$, wobei diese Reste jeweils ein- oder mehrfach substituiert sein können durch: Halogen, Hydroxy, Mercapto, Carboxy, Nitro, Amino, Carboxamid, Cyano, $C_1-C_4-Alkoxy$, $C_3-C_6-Alkenyloxy$,

C₃-C₆-Alkinyloxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkoxycarbonyl, C₃-C₈-Alkylcarbonylalkyl, C₃-C₈-Cycloalkyl, Indan-1-yl, Indan-2-yl, Tetrahydronaphthalin-1-yl, Tetrahydronaphthalin-2-yl, NH(C₁-C₄-Alkyl), N(C₁-C₄-Alkyl)₂, Phenoxy oder Phenyl, wobei

die genannten Arylreste ihrerseits ein- oder mehrfach substituiert sein können, z.B. ein- bis dreifach durch Halogen, Hydroxy, Mercapto, Carboxy, Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy, Amino, NH(C_1 - C_4 -Alkyl), N(C_1 - C_4 -Alkyl), oder C_1 - C_4 -Alkylthio;

20

25

30

35

15

 $\label{eq:c3-C8-Cycloalkyl, wobei diese Reste jeweils ein- oder mehrfach substituiert sein können durch: Halogen, Hydroxy, Mercapto, Carboxy, Nitro, Cyano, C1-C4-Alkyl, C2-C4-Alkenyl, C2-C4-Alkinyl, C1-C4-Alkoxy, C1-C4-Alkylthio, C1-C4-Halogen-alkoxy;$

Phenyl oder Naphthyl, die jeweils durch einen oder mehrere der folgenden Reste substituiert sein können: Halogen, Nitro, Carboxamid, Mercapto, Carboxy, Cyano, Hydroxy, Amino, R^{15} , C_1 - C_4 -Alkyl, C_2 - C_4 -Alkenyl, C_2 - C_4 -Alkinyl, C_3 - C_6 -Alkenyloxy, C_1 - C_4 -Halogenalkyl, C_3 - C_6 -Alkinyloxy, C_1 - C_4 -Alkoxycarbonyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylthio, NH(C_1 - C_4 -Alkyl), N(C_1 - C_4 -Alkyl), Dioxomethylen, Dioxoethylen oder Phenyl, das ein- oder mehrfach substituiert sein kann, z.B. ein- bis dreifach durch Halogen, Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy,

oder R¹³ und R¹⁴ bilden gemeinsam eine zu einem Ring geschlossene C₃-C₇-Alkylenkette, die ein- oder mehrfach substituiert sein kann mit C₁-C₄-Alkyl, C₁-C₄-Alkylthio, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, und in der eine Alkylengruppe durch Sauerstoff, Schwefel, Stickstoff oder N(C₁-C₄-Alkyl), ersetzt sein kann, wie -(CH₂)₄-, -(CH₂)₅-, -(CH₂)₆-, -(CH₂)₇-, -(CH₂)₂-O-(CH₂)₂-, -(CH₂)₂-S-(CH₂)₂-, -(CH₂)₂-, -(CH₂)₂-, -(CH₂)₂-, -(CH₂)₂-, -(CH₂)₂-, -(CH₂)₂-;

C₁-C₄-Halogenalkoxy oder C₁-C₄-Alkylthio;

. 7

oder R^{13} und bilden gemeinsam eine zu em Ring geschlossene C_3 - C_7 -Alkylenkette oder C_4 - C_7 -Alkenylenkette, die jeweils ein- bis dreifach mit C_1 - C_4 -Alkyl substituiert sein kann, und an die jeweils ein Phenylring annelliert ist, der ein- oder mehrfach substituiert sein kann durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkylthio, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Halogenalkoxy, Hydroxy, Carboxy, Amino, Carboxamid.

 ${\bf R}^7$ und ${\bf R}^8$ (die gleich oder verschieden sein können):

Wasserstoff, C_1 - C_4 -Alkyl.

R¹⁵ C₁-C₄-Alkyl, C₁-C₄-Alkylthio, C₁-C₄-Alkoxy, die einen der folgenden Reste tragen: Hydroxy, Carboxy, Amino, NH(C₁-C₄-Alkyl), N(C₁-C₄-Alkyl)₂, Carboxamid oder CON(C₁-C₄-Alkyl)₂.

R¹⁸ Wasserstoff;

5

c1-C8-Alkyl, C3-C8-Alkenyl oder C3-C8-Alkinyl, wobei diese Reste jeweils ein- oder mehrfach substituiert sein können durch: Halogen, Carboxy, Cyano, C1-C4-Alkoxy, C1-C4-Alkylthio, C1-C4-Halogenalkoxy, C1-C4-Alkylcarbonyl, C1-C4-Alkoxycarbonyl, C3-C8-Cycloalkyl, Amino, NH(C1-C4-Alkyl), N(C1-C4-Alkyl)2, Phenoxy oder Phenyl, wobei die genannten Arylreste ihrerseits ein- oder mehrfach substituiert sein können, z.B. ein- bis dreifach durch Halogen, Hydroxy, Mercapto, Carboxy, Nitro, Cyano, C1-C4-Alkyl, C1-C4-Halogenalkyl, C1-C4-Alkoxy, C1-C4-Halogenalkoxy, Amino, NH(C1-C4-Alkyl), N(C1-C4-Alkyl)2, oder C1-C4-Alkylthio;

 $C_3-C_8-Cycloalkyl$, wobei diese Reste jeweils ein- oder mehrfach substituiert sein können durch: Halogen, $C_1-C_4-Alkyl$;

Phenyl oder Naphthyl, die jeweils durch einen oder mehrere

der folgenden Reste substituiert sein können: Halogen, Nitro,
 Mercapto, Carboxy, Cyano, Hydroxy, Amino, R¹⁵, C₁-C₄-Alkyl,
 C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkyl carbonyl, C₁-C₄-Alkoxycarbonyl, C₁-C₄-Alkoxy, C₁-C₄-Halogen alkoxy, Phenoxy, C₁-C₄-Alkylthio, NH(C₁-C₄-Alkyl),
 N(C₁-C₄-Alkyl)₂, Dioxomethylen, Dioxoethylen oder Phenyl, das
 ein- oder mehrfach substituiert sein kann, z.B. ein- bis
 dreifach durch Halogen, Nitro, Cyano, C₁-C₄-Alkyl,
 C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy oder
 C₁-C₄-Alkylthio;

45

30

5

10

30

35

- R¹⁹ C₁-C₈-Alkylcarbonyl, C₂-C₈-Alkenylcarbonyl oder C₂-C₈-Alkinylcarbonyl, wobei diese Reste jeweils ein- oder mehrfach substituiert sein können durch: Halogen, C1-C4-Alkoxy, $C_1-C_4-Alkylthio$, $C_1-C_4-Halogenalkoxy$, $C_1-C_4-Alkoxycarbonyl$, C3-C8-Cycloalkyl, Phenoxy oder Phenyl, wobei die genannten Arylreste ihrerseits ein- oder mehrfach substituiert sein können, z.B. ein- bis dreifach durch Halogen, Hydroxy, Mercapto, Carboxy, Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy, Amino,
- Benzyloxycarbonyl, $C_3-C_8-Cycloalkylcarbonyl$, wobei diese Reste

 $NH(C_1-C_4-Alkyl)$, $N(C_1-C_4-Alkyl)_2$, oder $C_1-C_4-Alkylthio$;

jeweils ein- oder mehrfach substituiert sein können durch: Halogen, $C_1-C_4-Alkyl$;

15 Phenylcarbonyl oder Naphthylcarbonyl, die jeweils durch einen oder mehrere der folgenden Reste substituiert sein können: Halogen, Nitro, Mercapto, Carboxy, Cyano, Hydroxy, Amino, R15, $C_1-C_4-Alkyl$, $C_2-C_4-Alkenyl$, $C_2-C_4-Alkinyl$, $C_3-C_6-Alkenyloxy$,

 C_1-C_4 -Halogenalkyl, C_3-C_6 -Alkinyloxy, C_1-C_4 -Alkylcarbonyl, 20 C_1-C_4 -Alkoxycarbonyl, C_1-C_4 -Alkoxy, C_1-C_4 -Halogenalkoxy, Phenoxy, C_1-C_4 -Alkylthio, $NH(C_1-C_4$ -Alkyl), $N(C_1-C_4$ -Alkyl)₂, Dioxomethylen, Dioxoethylen oder Phenyl, das ein- oder mehrfach substituiert sein kann, z.B. ein- bis dreifach durch Halogen, Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, 25

 C_1-C_4 -Halogenalkoxy oder C_1-C_4 -Alkylthio;

 $C_1-C_8-Alkylsulfonyl$, $C_3-C_8-Alkenylsulfonyl$ oder $C_3-C_8-Alkinyl$ sulfonyl, wobei diese Reste jeweils ein- oder mehrfach substituiert sein können durch: Halogen, C1-C4-Alkoxy, Phenyl, wobei der genannte Arylrest seinerseits ein- oder mehrfach substituiert sein können, z.B. ein- bis dreifach durch Halogen, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkoxy, Amino, $NH(C_1-C_4-Alkyl)$, $N(C_1-C_4-Alkyl)_2$, oder $C_1-C_4-Alkylthio$;

C₃-C₈-Cycloalkylsulfonyl;

Phenylsulfonyl oder Naphthylsulfonyl, die jeweils durch einen oder mehrere der folgenden Reste substituiert sein können: 40 Halogen, Cyano, Hydroxy, Amino, R15, C1-C4-Alkyl, $C_2-C_4-Alkenyl$, $C_2-C_4-Alkinyl$, $C_3-C_6-Alkenyloxy$, $C_1-C_4-Halogen-C_4-Alkenyloxy$ alkyl, C_1-C_4 -Alkoxycarbonyl, C_1-C_4 -Alkoxy, C_1-C_4 -Halogenalkoxy, Dioxomethylen, Dioxoethylen oder Phenyl, das ein- oder mehrfach substituiert sein kann, z.B. ein- bis dreifach durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, 45 C_1-C_4 -Halogenalkoxy oder C_1-C_4 -Alkylthio.

- 6

R²⁰ Wasserstoff;

 C_1-C_4 -Alkyl, wobei diese Reste jeweils ein- oder mehrfach substituiert sein können durch: Halogen, Hydroxy, Mercapto,

- Carboxy, Amino, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylthio, C_1 - C_4 -Halogen-alkoxy, C_1 - C_4 -Alkoxycarbonyl, C_3 - C_8 -Cycloalkyl, NH(C_1 - C_4 -Alkyl), N(C_1 - C_4 -Alkyl)₂, Indolyl, Phenoxy oder Phenyl, wobei die genannten Arylreste ihrerseits ein- oder mehrfach substituiert sein können, z.B. ein bis dreifach
- durch Halogen, Hydroxy, Mercapto, Carboxy, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy, Amino, NH(C_1 - C_4 -Alkyl), N(C_1 - C_4 -Alkyl)₂ oder C_1 - C_4 -Alkylthio.

 R^{21} Wasserstoff, C_1 - C_4 -Alkyl.

15

W Schwefel oder Sauerstoff.

Hierbei und im weiteren gelten folgende Definitionen:

20 Ein Alkalimetall ist z.B. Lithium, Natrium, Kalium;

Ein Erdalkalimetall ist z.B. Calcium, Magnesium, Barium;

 C_3-C_8 -Cycloalkyl ist z.B. Cyclopropyl, Cyclobutyl, Cyclopentyl, 25 Cyclohexyl, Cycloheptyl oder Cyclooctyl;

 C_1-C_4 -Halogenalkyl kann linear oder verzweigt sein wie z.B. Fluormethyl, Difluormethyl, Trifluormethyl, Chlordifluormethyl, Dichlorfluormethyl, Trichlormethyl, 1-Fluorethyl, 2-Fluorethyl,

- 30 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2,2-difluorethyl,
 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl oder Pentafluorethyl;
- C₁-C₄-Halogenalkoxy kann linear oder verzweigt sein wie z.B.
 35 Difluormethoxy, Trifluormethoxy, Chlordifluormethoxy, 1-Fluorethoxy, 2,2-Difluorethoxy, 1,1,2,2-Tetrafluorethoxy, 2,2,2-Trifluorethoxy, 2-Chlor-1,1,2-trifluorethoxy, 2-Fluorethoxy oder
 Pentafluorethoxy;
- 40 C₁-C₄-Alkyl kann linear oder verzweigt sein wie z.B. Methyl, Ethyl, 1-Propyl, 2-Propyl, 2-Methyl-2-propyl, 2-Methyl-1-propyl, 1-Butyl oder 2-Butyl;
- C₂-C₄-Alkenyl kann linear oder verzweigt sein wie z.B. Ethenyl, 45 1-Propen-3-yl, 1-Propen-2-yl, 1-Propen-1-yl, 2-Methyl-1-propenyl, 1-Butenyl oder 2-Butenyl;

C₂-C₄-Alkiny1 kann linear oder verzweigt sein wie z.B. Ethinyl, 1-Propin-1-yl, 1-Propin-3-yl, 1-Butin-4-yl oder 2-Butin-4-yl;

C₁-C₄-Alkoxy kann linear oder verzweigt sein wie z.B. Methoxy,
5 Ethoxy, Propoxy, 1-Methylethoxy, Butoxy, 1-Methylpropoxy,
2-Methylpropoxy oder 1,1-Dimethylethoxy;

C₃-C₆-Alkenyloxy kann linear oder verzweigt sein wie z.B. Allyloxy, 2-Buten-1-yloxy oder 3-Buten-2-yloxy;

10

C₃-C₆-Alkinyloxy kann linear oder verzweigt sein wie z.B. 2-Propin-1-yloxy, 2-Butin-1-yloxy oder 3-Butin-2-yloxy;

C₁-C₄-Alkylthio kann linear oder verzweigt sein wie z.B. Methyl
15 thio, Ethylthio, Propylthio, 1-Methylethylthio, Butylthio,

1-Methylpropylthio, 2-Methylpropylthio oder 1,1-Dimethylethylthio;

C₁-C₄-Alkylcarbonyl kann linear oder verzweigt sein wie z.B.
20 Acetyl, Ethylcarbonyl oder 2-Propylcarbonyl, 1-Propylcarbonyl,
1-Butylcarbonyl;

C₁-C₄-Alkoxycarbonyl kann linear oder verzweigt sein wie z.B.
Metoxycarbonyl, Ethoxycarbonyl, n-Propoxycarbonyl, i-Propoxycar25 bonyl oder n-Butoxycarbonyl;

C₃-C₈-Alkylcarbonylalkyl kann linear oder verzweigt sein, z.B. 2-Oxo-prop-1-yl, 3-Oxo-but-1-yl oder 3-Oxo-but-2-yl

30 C₁-C₈-Alkyl kann linear oder verzweigt sein wie z.B. C₁-C₄-Alkyl, Pentyl, Hexyl, Heptyl oder Octyl;

C₁-C₈-Alkylcarbonyl kann linear oder verzweigt sein wie z.B.
C₁-C₄-Alkylcarbonyl, 1-Pentylcarbonyl, 1-Hexylcarbonyl, 1-Heptyl35 carbonyl oder 1-Octylcarbonyl;

C₂-C₈-Alkenylcarbonyl kann linear oder verzweigt sein wie z.B. Ethenylcarbonyl, 1-Propen-3-ylcarbonyl, 1-Propen-2-ylcarbonyl, 1-Propen-1-ylcarbonyl, 2-Methyl-1-propenylcarbonyl, 1-Buten-1-yl-40 carbonyl, 1-Penten-1-ylcarbonyl, 1-Octen-1-ylcarbonyl;

C₂-C₈-Alkinylcarbonyl kann linear oder verzweigt sein wie z.B. Ethinylcarbonyl, 1-Propin-3-ylcarbonyl, 1-Propin-1-ylcarbonyl, 1-Butin-1-ylcarbonyl, 1-Pentin-1-ylcarbonyl, 1-Octin-1-yl- carbonyl;

C₃-C₈-Cycloalkylcarbonyl, Cyclopropylcarbonyl, clobutylcarbonyl, Cyclopentylcarbonyl, Cyclohexylcarbonyl, 4-Methylcyclohex-1-yl-carbonyl Cycloheptylcarbonyl oder Cyclooctylcarbonyl;

- 5 C_1-C_4 -Alkylsulfonyl kann linear oder verzweigt sein wie z.B. Methylsulfonyl, Ethylsulfonyl oder 2-Propylsulfonyl, 1-Propylsulfonyl, 2-Methyl-1-propylsulfonyl, 1-Butylsulfonyl;
- C_1-C_8 -Alkylsulfonyl kann linear oder verzweigt sein wie z.B. 10 C_1-C_4 -Alkylsulfonyl, 1-Pentylsulfonyl, 1-Hexylsulfonyl, 1-Heptylsulfonyl oder 1-Octylsulfonyl;
- C₃-C₈-Alkenylsulfonyl kann linear oder verzweigt sein wie z.B. 1-Propen-3-ylsulfonyl, 1-Propen-2-ylsulfonyl, 1-Propen-1-ylsulfo-15 nyl, 2-Methyl-1-propen-1-ylsulfonyl, 1-Buten-1-ylsulfonyl, 1-Penten-1-ylsulfonyl, 1-Octen-1-ylsulfonyl
- C₃-C₈-Alkinylsulfonyl kann linear oder verzweigt sein wie z.B. 1-Propin-3-ylsulfonyl, 1-Propin-1-ylsulfonyl, 1-Butin-1-ylsulfo-20 nyl, 1-Pentin-1-ylsulfonyl, 1-Octin-1-ylsulfonyl

 $C_3-C_8-Cycloalkylsulfonyl$ ist z.B. Cyclopropylsulfonyl, Cyclobutylsulfonyl, Cyclopentylsulfonyl, Cyclohexylsulfonyl, 4-Methylcyclohex-1-ylsulfonyl Cycloheptylsulfonyl oder Cyclooctylsulfonyl;

Halogen ist z.B. Fluor, Chlor, Brom, Jod.

Ein weiterer Gegenstand der Erfindung sind solche Verbindungen, aus denen sich die Verbindungen der Formel I freisetzen lassen 30 (sog. Prodrugs).

Bevorzugt sind solche Prodrugs, bei denen die Freisetzung unter solchen Bedingungen abläuft, wie sie in bestimmten Körperkompartimenten, z.B. im Magen, Darm, Blutkreislauf, Leber, vorherr35 schen.

Die Verbindungen I und auch die Zwischenprodukte zu ihrer Herstellung, wie z.B. III, IV und V, können ein oder mehrere asymmetrisch substituierte Kohlenstoffatome besitzen. Solche

- 40 Verbindungen können als reine Enantiomere bzw. reine Diastereomere oder als deren Mischung vorliegen. Bevorzugt ist die Verwendung einer enantiomerenreinen Verbindung als Wirkstoff.
- Gegenstand der Erfindung ist weiter die Verwendung der oben ge- 45 nannten Carbonsäurederivate zur Herstellung von Arzneimitteln, insbesondere zur Herstellung von Hemmstoffen für ET_A und ET_B Rezeptoren. Die erfindungsgemäßen Verbindungen eignen sich als

selektive und als gemischte Antagonisten, wie sie eingangs definiert wurden.

Die Herstellung der Verbindungen mit der allgemeinen Formel V, in 5 denen W Schwefel oder Sauerstoff ist, kann wie in WO 96/11914 beschrieben, erfolgen.

Verbindungen der Formel V können in enantionmerenreiner Form er-15 halten werden, indem man von enantiomerenreinen Verbindungen der Formel III ausgeht und sie wie in WO 96/11914 beschrieben mit Verbindungen der Formel IV umsetzt.

Weiterhin kann man enantiomere Verbindungen der Formel V erhal20 ten, indem man mit racemischen bzw. diastereomeren Verbindungen
der Formel V eine klassische Racematspaltung mit geeigneten
enantiomerenreinen Basen durchführt. Als solche Basen eigenen
sich z.B. 4-Chlorphenylethylamin und die Basen, die in
WO 96/11914 genannt werden.

Darüberhinaus kann man enantiomerenreine Verbindungen der Formel V über eine sauer katalysierte Umetherung erhalten, wie dies in DE 19636046.3 beschrieben wurde.

30 Die Herstellung von Verbindungen der allgemeinen Formel III wurde in WO 96/11914 beschrieben, während Verbindungen der allgemeinen Formel IVa (R^6 = Amid) bzw. IVb (R^6 = Sulfonamid/ Amid) entweder bekannt sind oder durch allgemein bekannte Methoden synthetisiert werden können wie z.B:

40

35

45

15 Die erfindungsgemäßen Verbindungen, in denen die Substituenten die unter der allgemeinen Formel I angegebenen Bedeutung haben, können beispielsweise derart hergestellt werden, daß man die Carbonsäurederivate der allgemeinen Formel V, in denen die Substituenten die angegebene Bedeutung haben, mit Verbindungen der allgemeinen Formel VI zur Reaktion bringt.

$$v + R^{16} \xrightarrow{Y} Z \xrightarrow{\mathbb{R}^2} I$$

$$v = X = X$$

$$V = \mathbb{R}^3$$

In Formel VI bedeutet R¹⁶ Halogen oder R¹⁷-SO₂-, wobei R¹⁷
30 C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl oder Phenyl sein kann. Ferner ist mindestens eines der Ringglieder X oder Y oder Z Stickstoff. Die Reaktion findet bevorzugt in einem inerten Lösungs- oder Verdünnungsmittel unter Zusatz einer geeigneten Base, d.h. einer Base, die eine Deprotonierung des Zwischenproduktes V bewirkt, in einem Temperaturbereich von Raumtemperatur bis zum Siedepunkt des Lösungsmittels statt.

Verbindungen des Typs I mit R^1 = COOH lassen sich sich auf diese Weise direkt erhalten, wenn man das Zwischenprodukt V, in dem

- 40 R¹ COOH bedeutet, mit zwei Equivalenten einer geeigneten Base deprotoniert und mit Verbindungen der allgemeinen Formel V zur Reaktion bringt. Auch hier findet die Reaktion in einem inerten Lösungsmittel und in einem Temperaturbereich von Raumtemperatur bis zum Siedepunkt des Lösungsmittels statt.
- 45 Beispiele für solche Lösungsmittel beziehungsweise Verdünnungsmittel sind aliphatische, alicyclische und aromatische Kohlenwasserstoffe, die jeweils gegebenenfalls chloriert sein können,

wie zum Be Jiel Hexan, Cyclohexan, Petrofether, Ligroin, Benzol, Toluol, Xylol, Methylenchlorid, Chloroform, Kohlenstofftetrachlorid, Ethylchlorid und Trichlorethylen, Ether, wie zum Beispiel Diisopropylether, Dibutylether, Methyl-tert.-Butylether, Propylenoxid, Dioxan und Tetrahydrofuran, Nitrile, wie zum Beispiel Acetonitril und Propionitril, Säureamide, wie zum Beispiel Dimethylformamid, Dimethylacetamid und N-Methylpyrrolidon, Sulfoxide und Sulfone, wie zum Beispiel Dimethylsulfoxid und Sulfolan.

10

Verbindungen der Formel VI sind bekannt, teilweise käuflich oder können nach allgemein bekannter Weise hergestellt werden.

Als Base kann ein Alkali- oder Erdalkalimetallhydrid wie Natrium15 hydrid, Kaliumhydrid oder Calciumhydrid, ein Carbonat wie Alkalimetallcarbonat, z.B. Natrium- oder Kaliumcarbonat, ein Alkalioder Erdalkalimetallhydroxid wie Natrium- oder Kaliumhydroxid,
eine metallorganische Verbindung wie Butyllithium oder ein Alkaliamid wie Lithiumdiisopropylamid oder Lithiumamid dienen.

20

Verbindungen der Formel I können auch dadurch hergestellt werden, indem man von den entsprechenden Carbonsäuren, d. h. Verbindungen der Formel I, in denen R¹ COOH bedeutet, ausgeht und diese zunächst auf übliche Weise in eine aktivierte Form wie ein Säurebalogenid, ein Anhydrid oder Imidazolid überführt und dieses dann mit einer entsprechenden Hydroxylverbindung HOR³ umsetzt. Diese Umsetzung läßt sich in den üblichen Lösungsmitteln durchführen und erfordert oft die Zugabe einer Base, wobei die oben genannten in Betracht kommen. Diese beiden Schritte lassen sich beispielsweise auch dadurch vereinfachen, daß man die Carbonsäure in Gegenwart eines wasserabspaltenden Mittels wie eines Carbodiimids auf die Hydroxylverbindung einwirken läßt.

Außerdem können Verbindungen der Formel I auch dadurch hergestellt werden, indem man von den Salzen der entsprechenden Carbonsäuren ausgeht, d. h. von Verbindungen der Formel I, in denen R¹ für eine Gruppe COOM stehen, wobei M ein Alkalimetallkation oder das Equivalent eines Erdalkalimetallkations sein kann. Diese Salze lassen sich mit vielen Verbindungen der Formel R-A zur Reaktion bringen, wobei A eine übliche nucleofuge Abgangsgruppe bedeutet, beispielsweise Halogen wie Chlor, Brom, Iod oder gegebenenfalls durch Halogen, Alkyl oder Halogenalkyl substituiertes Aryl- oder Alkylsulfonyl wie z.B. Toluolsulfonyl und Methylsulfonyl oder eine andere äquivalente Abgangsgruppe. Verbindungen der Formel R-A mit einem reaktionsfähigen Substituenten A sind bekannt oder mit dem allgemeinen Fachwissen leicht zu erhalten. Diese Umsetzung läßt sich in den üblichen Lösungsmitteln durch-

7

führen und wird teilhaft unter Zugabe eine ase, wobei die oben genannten in Betracht kommen, vorgenommen.

In einigen Fällen ist zur Herstellung der erfindungsgemäßen

5 Verbindungen I die Anwendung allgemein bekannter Schutzgruppentechniken erforderlich. Soll beispielsweise R¹³ = 4-Hydroxyphenyl bedeuten, so kann die Hydroxygruppe zunächst als Benzylether geschützt sein, der dann auf einer geeigneten Stufe in der Reaktionssequenz gespalten wird.

10

Verbindungen der Formel I, in denen R¹ Tetrazol bedeutet, können wie in WO 96/11914 beschrieben, hergestellt werden.

Im Hinblick auf die biologische Wirkung sind Carbonsäurederivate

15 der allgemeinen Formel I - sowohl als reine Enantiomere bzw.

reine Diastereomere oder als deren Mischung - bevorzugt, in denen
die Substituenten folgende Bedeutung haben:

- R² Wasserstoff, Hydroxy, Halogen, N(C₁-C₄-Alkyl)₂, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, C₁-C₄-Hydroxyalkyl, oder CR² ist mit CR¹² wie unter Z angegeben zu einem 5- oder 6-gliedrigen Ring verknüpft;
- 25 X Stickstoff oder Methin;
 - Y Stickstoff oder Methin;
- Stickstoff oder CR¹², worin R¹² Wasserstoff, Fluor oder C₁-C₄-Alkyl bedeutet oder CR¹² bildet zusammen mit CR² oder CR³ einen 5- oder 6-gliedrigen Alkylen- oder Alkenylenring, der durch eine oder zwei Methylgruppen substituiert sein kann, und worin jeweils eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt sein kann wie -CH₂-CH₂-O-, -CH₂-CH₂-O-, -CH=CH-O-, -CH=CH-CH₂O-, -CH(CH₃)-CH(CH₃)-O-, -CH=C(CH₃)-O-, -C(CH₃)=C(CH₃)-O-, oder -C(CH₃)-C(CH₃)-S;

Mindestens eines der Ringglieder X, Y oder Z ist Stickstoff.

- Wasserstoff, Hydroxy, Halogen, N(C₁-C₄-Alkyl)₂, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkyl, C₁-C₄-Hydroxyalkyl, C₁-C₄-Halogenalkoxy, oder CR³ ist mit CR¹⁰ wie unter Z angegeben zu einem 5- oder 6-gliedrigen Ring verknüpft;
 45
 - R^4 und R^5 (die gleich oder verschieden sein können):

5

Phenyl der Naphthyl, die durch eine oder mehrere der folgenden Reste substituiert sein können: Halogen, Cyano, Hydroxy, Mercapto, Amino, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy, Phenoxy, C_1 - C_4 -Alkylthio, NH(C_1 - C_4 -Alkyl) oder N(C_1 - C_4 -Alkyl) oder Phenyl, das einoder mehrfach substituiert sein kann, z.B. einobis dreifach durch Halogen, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy oder C_1 - C_4 -Alkylthio; oder

- Phenyl oder Naphthyl, die orthoständig über eine direkte Bindung, eine Methylen-, Ethylen- oder Ethenylengruppe, ein Sauerstoff- oder Schwefelatom oder eine SO_2 -, NH- oder N-Alkyl-Gruppe miteinander verbunden sind
- 15 C₃-C₈-Cycloalkyl;

R6 eine Gruppe

wobei das Molgewicht der Gruppen R^{13} und R^{14} zusammengenommen mindestens 60 betragen muß.

R¹³ und R¹⁴ (die gleich oder verschieden sein können):

Wasserstoff, C₁-C₈-Alkyl, C₃-C₈-Alkenyl oder C₃-C₈-Alkinyl, wobei diese Reste jeweils ein- oder mehrfach substituiert sein können durch: Halogen, Hydroxy, Mercapto, Carboxy, Amino, Cyano, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkoxycarbonyl, C₃-C₈-Cycloalkyl,

NH(C_1 - C_4 -Alkyl), N(C_1 - C_4 -Alkyl)₂, Phenoxy oder Phenyl, wobei die genannten Arylreste ihrerseits ein- bis dreifach substituiert sein können durch Halogen, Hydroxy, Carboxy, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy, N(C_1 - C_4 -Alkyl)₂, oder C_1 - C_4 -Alkylthio;

 C_3-C_8 -Cycloalkyl, wobei diese Reste jeweils ein- oder mehrfach substituiert sein können durch: Halogen, Hydroxy, Mercapto, Carboxy, Cyano, C_1-C_4 -Alkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Alkylthio, C_1-C_4 -Halogenalkoxy;

40

Phenyl oder I hthyl, die jeweils durch e oder mehrere der folgenden Reste substituiert sein können: Halogen, Carboxy, Hydroxy, Amino, R^{15} , C_1 - C_4 -Alkyl, C_1 - C_4 -Alkylthio, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkylcarbonyl,

5 C₁-C₄-Alkoxycarbonyl, C₁-C₄-Halogenalkoxy, Phenoxy,

NH(C₁-C₄-Alkyl), N(C₁-C₄-Alkyl)₂, Dioxomethylen, Dioxoethylen oder Phenyl, das ein- bis dreifach substituiert sein kann, durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy oder C₁-C₄-Alkylthio;

10

15

20

oder R¹³ und R¹⁴ bilden gemeinsam eine zu einem Ring geschlossene C_3 - C_7 -Alkylenkette, die ein- oder mehrfach substituiert sein kann mit C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, und in der eine Alkylengruppe durch Sauerstoff oder Schwefel, ersetzt sein kann, wie - $(CH_2)_3$ -, - $(CH_2)_4$ -, - $(CH_2)_5$ -, - $(CH_2)_6$ -, - $(CH_2)_7$ -, - $(CH_2)_2$ -O- $(CH_2)_2$ -, - $(CH_2)_2$ -S- $(CH_2)_2$ -;

oder R^{13} und R^{14} bilden gemeinsam eine zu einem Ring geschlossene C_3 - C_7 -Alkylenkette oder C_4 - C_7 -Alkenylenkette, an die ein Phenylring anneliert ist, wie 7-aza-bi-cyclo[4.2.0]-octa-1,3,5-trien, 2,3-Dihydroindol, Indol,

1,3-Dihydroisoindol, 1,2,3,4-Tetrahydrochinolin, 1,2,3,4-Tetrahydroisochinolin, wobei jeweils der Phenylring ein- bis dreifach substituiert sein kann durch Halogen,

25 $C_1-C_4-Alkyl$, $C_1-C_4-Alkoxy$, $C_1-C_4-Halogenalkyl$, $C_1-C_4-Haloge$

Das Molgewicht der Gruppen R^{13} und R^{14} zusammengenommen muß mindestens 46 sein.

30

R⁷ und R⁸ (die gleich oder verschieden sein können):

Wasserstoff, $C_1-C_4-Alkyl$.

35 R^{15} $C_1-C_4-Alkyl$, $C_1-C_4-Alkoxy$, die einen der folgenden Reste tragen: Hydroxy, Carboxy, Amino, NH($C_1-C_4-Alkyl$), $N(C_1-C_4-Alkyl)_2$, Carboxamid oder $CON(C_1-C_4-Alkyl)_2$.

R¹⁸ Wasserstoff;

40

45

 $C_1-C_4-Alkyl$, $C_3-C_4-Alkenyl$ oder $C_3-C_4-Alkinyl$, wobei diese Reste jeweils ein- oder mehrfach substituiert sein können durch: Halogen, $C_1-C_4-Alkoxy$, $C_1-C_4-Alkylthio$, $C_1-C_4-Halogen-alkoxy$, $C_3-C_8-Cycloalkyl$, Phenoxy oder Phenyl, wobei die genannten Arylreste ihrerseits ein- oder mehrfach substituiert sein können, z.B. ein- bis dreifach durch Halogen, Hydroxy,

25

 C_1-C_4-A yl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkoxy oder C_1-C_4 -Alkylthio;

 $C_3-C_8-Cycloalkyl$, wobei diese Reste jeweils ein- oder mehrfach substituiert sein können durch: $C_1-C_4-Alkyl$;

Phenyl oder Naphthyl, die jeweils durch einen oder mehrere der folgenden Reste substituiert sein können: Halogen, Hydroxy, R¹⁵, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxycarbonyl, C_1 - C_4 -Alkoxy,

- C₁-C₄-Alkylthio, Dioxomethylen, Dioxoethylen oder Phenyl, das ein- oder mehrfach substituiert sein kann, z.B. ein- bis dreifach durch Halogen, C_1 -C₄-Alkyl, C_1 -C₄-Halogenalkyl, C_1 -C₄-Alkoxy;
- 15 R¹⁹ C₁-C₄-Alkylcarbonyl, C₂-C₄-Alkenylcarbonyl oder C₂-C₄-Alkinylcarbonyl, wobei diese Reste jeweils ein- oder mehrfach substituiert sein können durch: Halogen, C₁-C₄-Alkoxy, C₃-C₈-Cycloalkyl, Phenoxy oder Phenyl, wobei die genannten Arylreste ihrerseits ein- oder mehrfach substituiert sein können, z.B. ein- bis dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder C₁-C₄-Alkylthio;

 $C_3-C_8-Cycloalkylcarbonyl$, wobei diese Reste jeweils ein- oder mehrfach substituiert sein können durch: $C_1-C_4-Alkyl$;

- Phenylcarbonyl oder Naphthylcarbonyl, die jeweils durch einen oder mehrere der folgenden Reste substituiert sein können:
 Halogen, Cyano, Hydroxy, R¹⁵, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl,
 C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkoxycarbonyl, C₁-C₄-Alkoxy, Phenoxy, C₁-C₄-Alkylthio, Dioxomethylen, Dioxoethylen oder Phenyl,
 das ein- oder mehrfach substituiert sein kann, z.B. ein- bis
 dreifach durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl,
 C₁-C₄-Alkoxy, oder C₁-C₄-Alkylthio;
- C₁-C₄-Alkylsulfonyl, wobei diese Reste jeweils ein- oder mehrfach substituiert sein können durch: Halogen, C₁-C₄-Alkoxy, Phenyl, wobei der genannte Arylrest seinerseits ein- bis dreifach substituiert sein kann, durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder C₁-C₄-Alkylthio;
- C₃-C₈-Cycloalkylsulfonyl;
 Phenylsulfonyl oder Naphthylsulfonyl, die jeweils durch einen oder mehrere der folgenden Reste substituiert sein können:
 Halogen, Cyano, R¹⁵, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Dioxomethylen,
 Dioxoethylen oder Phenyl, das ein- bis dreifach substituiert sein kann durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl,

 $C_1-C_4-Alkoxy$ r $C_1-C_4-Alkylthio$;

R²⁰ Wasserstoff;

- C₁-C₄-Alkyl, wobei diese Reste jeweils einfach substituiert sein können durch: Hydroxy, Mercapto, Carboxy, Amino, C₃-C₈-Cycloalkyl, Indolyl, Phenoxy oder Phenyl, wobei die genannten Arylreste ihrerseits ein- bis dreifach substituiert sein können durch Halogen, Hydroxy, Mercapto, Carboxy,
- 10 $C_1-C_4-Alkyl$, $C_1-C_4-Alkoxy$, Amino oder $C_1-C_4-Alkylthio$.

 R^{21} Wasserstoff, C_1 - C_4 -Alkyl.

W Schwefel oder Sauerstoff;

15

Besonders bevorzugt sind Verbindungen der Formel I - sowohl als reine Enantiomere bzw. reine Diastereomere oder als deren Mischung - in denen die Substituenten folgende Bedeutung haben:

- 20 R^2 Trifluormethyl, $C_1-C_4-Alkyl$, $C_1-C_4-Alkoxy$, $C_1-C_4-Alkyl$ thio, Hydroxymethyl, oder CR^2 ist mit CR^{12} wie unter Z angegeben zu einem 5- oder 6-gliedrigen Ring verknüpft;
 - X Stickstoff oder Methin;

25

- Y Stickstoff oder Methin;
- Z Stickstoff oder CR¹², worin R¹² Wasserstoff, Fluor oder C₁-C₄-Alkyl bedeuten oder CR¹² bildet zusammen mit CR² oder CR³ einen 5- oder 6-gliedrigen Alkylen- oder Alkenylenring, der durch eine oder zwei Methylgruppen substituiert sein kann, und worin jeweils eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt sein kann wie -CH₂-CH₂-O-, -CH=CH-O-, -CH(CH₃)-CH(CH₃)-O-, -C(CH₃)=C(CH₃)-O-;

35

Mindestens eines der Ringglieder X, Y oder Z ist Stickstoff

- R³ Trifluormethyl, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Hydroxymethyl, oder CR³ ist mit CR¹² wie unter Z angegeben zu einem 5- oder 6-gliedrigen Ring verknüpft;
 - R⁴ und R⁵ (die gleich oder verschieden sein können):
- Phenyl oder Naphthyl, die durch einen oder mehrere der folgenden Reste substituiert sein können: Halogen, Hydroxy,
 C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, NH(C₁-C₄-Alkyl), N(C₁-C₄-Alkyl)₂, Phenoxy oder Phenyl,

das eil ois dreifach substituiert sein kann durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy oder C_1 - C_4 -Halogenalkoxy; oder

- Phenyl oder Naphthyl, die orthoständig über eine direkte Bindung, eine Methylen-, Ethylen- oder Ethenylengruppe, ein Sauerstoff- oder Schwefelatom oder eine SO₂-, NH- oder N-Alkyl-Gruppe miteinander verbunden sind
- 10 C₅-C₇-Cycloalkyl;

R6 eine Gruppe

15
$$R^{14} N - C - oder$$
 $R^{18} N - C - R^{19} N$

wobei das Molgewicht der Gruppen R¹³ und R¹⁴ zusammengenommen mindestens 60 sein muß.

R¹³ und R¹⁴ (die gleich oder verschieden sein können):

Wasserstoff, $C_1-C_5-Alkyl$, $C_3-C_5-Alkenyl$ oder $C_3-C_5-Alkinyl$, wobei diese Reste jeweils ein- oder mehrfach substituiert sein können durch: Halogen, Hydroxy, Carboxy, Amino, $C_1-C_4-Alkoxy$, $C_1-C_4-Halogenalkoxy$, $C_5-C_6-Cycloalkyl$, $NH(C_1-C_4-Alkyl)$, $N(C_1-C_4-Alkyl)_2$, Phenoxy oder Phenyl, wobei die genannten

Arylreste ihrerseits ein- bis dreifach substituiert sein können durch Halogen, Hydroxy, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, N(C₁-C₄-Alkyl)₂;
C₃-C₈-Cycloalkyl, wobei diese Reste jeweils ein- oder mehrfach

 C_3 - C_8 -Cycloalkyl, wobei diese Reste jeweils ein- oder mehrfach substituiert sein können durch: Halogen, Carboxy, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy;

C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy;

Phenyl, das ein- bis dreifach substituiert sein kann durch:

Halogen, Carboxy, Hydroxy, Amino, R¹⁵, C₁-C₄-Alkyl,

C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkyl, C₁-C₄-Alkyl
carbonyl, C₁-C₄-Alkoxycarbonyl, C₁-C₄-Halogenalkoxy,

NH(C_1 - C_4 -Alkyl), N(C_1 - C_4 -Alkyl)₂, Dioxomethylen, Dioxoethylen oder Phenyl, das ein- bis dreifach substituiert sein kann durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy oder C_1 - C_4 -Alkylthio; oder R^{13} und R^{14} bilden gemeinsam eine zu einem Ring geschlossene C_3 - C_7 -Alkylenkette, die ein- oder mehrfach substituiert

sein kann mit C_1 - C_4 -Alkyl und in der eine Alkylengruppe durch Sauerstoff oder Schwefel, ersetzt sein kann, wie - $(CH_2)_3$ -, - $(CH_2)_4$ -, - $(CH_2)_5$ -, - $(CH_2)_6$ -, - $(CH_2)_7$ -, - $(CH_2)_2$ -O- $(CH_2)_2$ -,

Æ.

-(CH₂)₂-S-(CH₂)₂-;

oder R¹³ und R¹⁴ bilden gemeinsam eine zu einem Ring geschlossene C₃-C₇-Alkylenkette an die Phenylring anneliert ist wie 2,3-Dihydroindol, Indol, 1,3-Dihydroisoindol, 1,2,3,4-Tetrahydrochinolin, 1,2,3,4-Tetrahydroisochinolin, wobei der Phenylring jeweils ein- bis dreifach substituiert sein kann durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, Hydroxy, Carboxy.

10

Die Gruppen R^{13} und R^{14} zusammengenommen müssen mindestens 5 Kohlenstoffatome enthalten.

R⁷ und R⁸ (die gleich oder verschieden sein können): 15

Wasserstoff, $C_1-C_4-Alkyl$.

 R^{15} $C_1-C_4-Alkyl$, $C_1-C_4-Alkoxy$, die einen der folgenden Reste tragen: Hydroxy, $NH(C_1-C_4-Alkyl)$, $N(C_1-C_4-Alkyl)_2$, Carboxamid oder $CON(C_1-C_4-Alkyl)_2$.

R¹⁸ Wasserstoff;

C₁-C₄-Alkyl, wobei diese Reste jeweils ein- bis dreifach substituiert sein können durch: Halogen, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₃-C₈-Cycloalkyl, Phenoxy oder Phenyl, wobei die genannten Arylreste ihrerseits ein- bis dreifach substituiert sein können durch: Halogen, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy;

30

 $C_3-C_8-Cycloalkyl;$

Phenyl, der ein- bis dreifach substituiert sein kann durch: Halogen, Hydroxy, R¹⁵, C₁-C₄-Alkyl, C₁-C₄-Alkoxycarbonyl, C₁-C₄-Alkoxy, Dioxomethylen, Dioxoethylen oder Phenyl, das ein- bis dreifach substituiert sein kann durch: Halogen, C₁-C₄-Alkyl, Trifluormethyl, C₁-C₄-Alkoxy;

- R¹⁹ C₁-C₄-Alkylcarbonyl, wobei diese Reste jeweils ein- bis dreifach substituiert sein können durch: Halogen, C₁-C₄-Alkoxy, C₃-C₈-Cycloalkyl, Phenyl, das seinerseits ein- bis dreifach substituiert sein kann durch: Halogen, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy;
- 45 C₃-C₈-Cycloalkylcarbonyl;

Phenylcarbonyl oder Naphthylcarbonyl, die jeweils durch einen oder mehrere der folgenden Reste substituiert sein können: Halogen, R^{15} , C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, Phenoxy, Dioxomethylen, Dioxoethylen oder Phenyl, das ein- bis dreifach substituiert sein kann durch: Halogen, C_1 - C_4 -Alkyl oder

5 tuiert sein kann durch: Halogen, C_1-C_4 -Alkyl oder C_1-C_4 -Alkoxy;

C₁-C₄-Alkylsulfonyl, wobei diese Reste jeweils ein- bis dreifach substituiert sein kann durch: Halogen, C₁-C₄-Alkoxy,

Phenyl, der seinerseits ein- bis dreifach substituiert sein
kann durch: Halogen, C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder
C₁-C₄-Alkylthio;

C₃-C₈-Cycloalkylsulfonyl;

15

Phenylsulfonyl oder Naphthylsulfonyl, wobei diese Reste jeweils ein- bis dreifach substituiert sein kann durch: Halogen, R^{15} , C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, Dioxomethylen, Dioxoethylen oder Phenyl;

20

R²⁰ Wasserstoff; C₁-C₄-Alkyl.

 R^{21} Wasserstoff, C_1 - C_4 -Alkyl.

25 W Schwefel oder Sauerstoff;

Die Verbindungen der vorliegenden Erfindung bieten ein neues therapeutisches Potential für die Behandlung von Hypertonie, pulmonalem Hochdruck, Myokardinfarkt, Angina Pectoris, Arrhythmie,

30 akutem/chronischem Nierenversagen, chronischer Herzinsuffizienz,
Niereninsuffizienz, zerebralen Vasospasmen, zerebraler Ischämie,
Subarachnoidalblutungen, Migräne, Asthma, Atherosklerose, endotoxischem Schock, Endotoxin-induziertem Organversagen, intravaskulärer Koagulation, Restenose nach Angioplastie und by-pass

35 Operationen, benigne Prostata-Hyperplasie, ischämisches und durch
Intoxikation verursachtes Nierenversagen bzw. Hypertonie, Metastasierung und Wachstum mesenchymaler Tumoren, Kontrastmittel-induziertes Nierenversagen, Pankreatitis, gastrointestinale Ulcera

- 40 Ein weiterer Gegenstand der Erfindung sind Kombinationen aus Endothelinrezeptorantagonisten der Formel I und Inhibitoren des Renin-Angiotensin Systems. Inhibitoren des Renin-Angiotensin-Systems sind Reninhemmer, Angiotensin-II-Antagonisten und Angiotensin-Converting-Enzyme (ACE)-Hemmer. Bevorzugt sind Kombinationen
- 45 aus Endothelinrezeptorantagonisten der Formel I und ACE-Hemmern. Ein weiterer Gegenstand der Erfindung sind Kombinationen aus Endothelinrezeptorantagonisten der Formel I und Beta-Blockern.

Ein weiterer Gegenstand der Erfindung sind Kombinationen aus Endothelinrezeptorantagonisten der Formel I und Diuretika.

Ein weiterer Gegenstand der Erfindung sind Kombinationen aus Endothelinrezeptorantagonisten der Formel I und Substanzen, die die

- 5 Wirkung von VEGF (vascular endothelial growth factor) blockieren.
 solche Substanzen sind Beispielsweise gegen VEGF gerichtete Antikörper oder spezifische Bindeproteine oder auch niedermolekulare
 Substanzen, die VEGF Freisetzung oder Rezeptorbindung spezifisch
 Hemmen können.
- 10 Die vorstehend genannten Kombinationen können gleichzeitig oder nacheinander zeitlich abgestuft verabreicht werden. Sie können sowohl in einer einzigen galenischen Formulierung oder auch in getrennten Formulierungen eingesetzt werden. Die Applikationsform kann auch unterschiedlich sein, beispielsweise können die Endo-
- 15 thelinrezeptorantagonisten oral und VEGF- Hemmer parenteral verabreicht werden.

Diese Kombinationspräparate eignen sich vor allem zur Behandlung und Verhütung von Hypertension und deren Folgeerkrankungen, sowie zur Behandlung von Herzinsuffizienz.

20 Die gute Wirkung der Verbindungen läßt sich in folgenden Versuchen zeigen:

Ein weiterer Gegenstand der Erfindung ist ein strukturelles Fragment der Formel

- 25

TE TO 271

30

worin die Reste R^1 , R^4 , R^5 , R^6 , R^7 , R^8 und W die oben genannte Bedeutung haben.

35 Solche strukturellen Fragmente eignen sich als strukturelle Bestandteile von Endothelin-Rezeptorantagonisten.

Ein weiterer Gegenstand der Erfindung sind Endothelin-Rezeptorantagonisten, bestehend aus einem strukturellen Fragment der Formel

45

worin die Reste R^1 , R^2 , R^3 , R^4 , R^5 , R^7 , R^8 , W, X, Y und Z die oben genannte Bedeutung haben, kovalent verknüpft mit einer Gruppe, die ein Molekulargewicht von mindestens 30, bevorzugt 40, aufweist.

5

- Ein weiterer Gegenstand der Erfindung sind

Endothelin-Rezeptorantagonisten, bestehend aus einem strukturellen Fragment der Formel

10

15

worin die Reste R¹, R², R³, R⁴, R⁵, R⁷, R⁸, R²⁰, R²¹, W, X, Y und Z die in Anspruch 1 angegebene Bedeutung haben, über ein N-Atom 20 kovalent verknüpft mit einer Gruppe, die ein Molekulargewicht von mindestens 58 aufweist.

Ein weiterer Gegenstand der Erfindung sind Verbindungen der Formel Ia

25

30

worin die Reste R^1 , R^2 , R^3 , R^4 , R^5 , R^7 , R^8 , R^{20} , R^{21} , W. X, Y und Z die in Anspruch 1 angegebene Bedeutung haben.

35 Rezeptorbindungsstudien

Für Bindungsstudien wurden klonierte humane ET_{A} - oder ET_{B} -Rezeptor-exprimierende CHO-Zellen eingesetzt.

40 Membranpräparation

Die ET_A - oder ET_B -Rezeptor-exprimierenden CHO-Zellen wurden in DMEM NUT MIX F_{12} -Medium (Gibco, Nr. 21331-020) mit 10 % fötalem Kälberserum (PAA Laboratories GmbH, Linz, Nr. A15-022), 1 mM 45 Glutamin (Gibco Nr. 25030-024), 100 E/ml Penicillin und 100 μ g/ml Streptomycin (Gibco, Sigma Nr P-0781) vermehrt. Nach 48 Stunden wurden die Zellen mit PBS gewaschen und mit 0,05 % trypsin-halti-

ger PBS 5 Minuten bei 37°C inkubiert. Danach wurde mit Medium neutralisiert und die Zellen durch Zentrifugation bei 300~x g gesammelt.

- 5 Für die Membranpräparation wurden die Zellen auf eine Konzentration von 10⁸ Zellen/ml Puffer (50 mM Tris·HCL Puffer, pH 7.4) eingestellt und danach durch Ultraschall desintegriert Branson Sonifier 250, 40-70 Sekunden/constant/output 20).
- 10 Bindungstests

Für den ET $_A$ - und ET $_B$ -Rezeptorbindungstest wurden die Membranen in Inkubationspuffer (50 mM Tris-HCl, pH 7,4 mit 5 mM MnCl $_2$, 40 mg/ml Bacitracin und 0,2 % BSA) in einer Konzentration von 50 μg

- 15 Protein pro Testansatz suspendiert und bei 25°C mit 25 pM [125J]-ET $_1$ (ET $_A$ -Rezeptortest) oder 25 pM [125J]-ET $_3$ (ET $_B$ -Rezeptortest) in Anwesenheit und Abwesenheit von Test-substanz inkubiert. Die unspezifische Bindung wurde mit 10 $^{-7}$ M ET $_1$ bestimmt. Nach 30 min wurde der freie und der gebundene Radioligand durch Filtra-
- tion über GF/B Glasfaserfilter (Whatman, England) an einem Skatron-Zellsammler (Skatron, Lier, Norwegen) getrennt und die Filter mit eiskaltem Tris-HCl-Puffer, pH 7,4 mit 0,2 % BSA gewaschen. Die auf den Filtern gesammelte Radioaktivität wurde mit einem Packard 2200 CA Flüssigkeits-zintillationszähler quantifiziert.

Testung der ET-Antagonisten in vivo:

Männliche 250 - 300 g schwere SD-Ratten wurden mit Amobarbital 30 narkotisiert, künstlich beatmet, vagotomisiert und despinalisiert. Die Arteria carotis und Vena jugularis wurden kathetisiert.

In Kontrolltieren führt die intravenöse Gabe von 1 μ g/kg ET1 zu 35 einem deutlichen Blutdruckanstieg, der über einen längeren Zeitraum anhält.

Den Testtieren wurde 30 min vor der ET1 Gabe die Testverbindungen i.v. injiziert (1 ml/kg). Zur Bestimmung der ET-antagonistischen 40 Eigenschaften wurden die Blutdruckänderungen in den Testtieren mit denen in den Kontrolltieren verglichen.

- p.o. Testung der gemischten ET_A und ET_B -Antagonisten:
- 45 Männliche 250-350g schwere normotone Ratten (Sprague Dawley, Janvier) werden mit den Testsubstanzen oral vorbehandelt. 80 Minuten später werden die Tiere mit Urethan narkotisiert und die A.

carotis (für Blutdruckmessung) sowie die V. jugularis (Applikation von big Endothelin/Endothelin 1) katheterisiert.

Nach einer Stabilisierungsphase wird big Endothelin (20 µg/kg, 5 Appl. Vol. 0.5 ml/kg) bzw. ET1 (0.3 µg/kg, Appl. Vol. 0.5 ml/kg) intravenös gegeben. Blutdruck und Herzfrequenz werden kontinuierlich über 30 Minuten registriert. Die deutlichen und langanhaltenden Blutdruckänderungen werden als Fläche unter der Kurve (AUC) berechnet. Zur Bestimmung der antagonistischen Wirkung der Testsubstanzen wird die AUC der Substanzbehandelten Tiere mit der AUC der Kontrolltiere verglichen.

Die erfindungsgemäßen Verbindungen können in üblicher Weise oral oder parenteral (subkutan, intravenös, intramuskulär, intraperitoneal) verabfolgt werden. Die Applikation kann auch mit Dämpfen oder Sprays durch den Nasen-Rachenraum erfolgen.

Die Dosierung hängt vom Alter, Zustand und Gewicht des Patienten sowie von der Applikationsart ab. In der Regel beträgt die tägli20 che Wirkstoffdosis zwischen etwa 0,5 und 50 mg/kg Körpergewicht bei oraler Gabe und zwischen etwa 0,1 und 10 mg/kg Körpergewicht bei parenteraler Gabe.

Die neuen Verbindungen können in den gebräuchlichen galenischen

25 Applikationsformen fest oder flüssig angewendet werden, z.B. als
Tabletten, Filmtabletten, Kapseln, Pulver, Granulate, Dragees,
Suppositorien, Lösungen, Salben, Cremes oder Sprays. Diese werden
in üblicher Weise hergestellt. Die Wirkstoffe können dabei mit
den üblichen galenischen Hilfsmitteln wie Tablettenbindern, Füll
30 stoffen, Konservierungsmitteln, Tablettensprengmitteln, Fließreguliermitteln, Weichmachern, Netzmitteln, Dispergiermitteln,
Emulgatoren, Lösungsmitteln, Retardierungsmitteln, Antioxidantien
und/oder Treibgasen verarbeitet werden (vgl. H. Sucker et al.:
Pharmazeutische Technologie, Thieme-Verlag, Stuttgart, 1991). Die

35 so erhaltenen Applikationsformen enthalten den Wirkstoff
normalerweise in einer Menge von 0,1 bis 90 Gew.-%.

Synthesebeispiele

40 Beispiel 1:

2-Benzyloxyessigsäure-di-n-butylamid

Bei -10°C wurden 5 g 2-Benzyloxyessigsäure in 50 ml THF vorgelegt und nacheinander 3 g N-Methylmorpholin und 4 g Chlorameisensäureisobutylester zugetropft. Es wurde 10 Minuten nachgerührt und dann wurden 5 ml di-n-Butylamin und weitere 3 g N-Methylmorpholin

zugegeben. Nach einer Stunde wurde der Ansatz aut 500 ml Wasser gegeben und mehrmals mit Ether extrahiert. Die gesammelten organischen Phasen wurden über Magnesiumsulfat getrocknet und nach dem Abdestillieren des Lösungsmittels wurden 7 g eines Öls isobiert, welches gleich weiter eingesetzt wurde.

Beispiel 2:

2-Hydroxyessigsäure-di-n-butylamid

10

In 50 ml Ethanol wurden 4 g 2-Benzyloxyessigsäure-di-n-butylamid gelöst und eine Spatelspitze Pd/Kohle zugegeben. Der Ansatz wurde 16 Stunden unter Wasserstoffatmosphäre gerührt, anschliessend der Katalysator abfiltriert und das Lösungsmittel abdestilliert. Es wurden 3 g eines Öls isoliert, welches direkt weiter umgesetzt wurden.

Beispiel 3:

20 2-Hydroxy-3-(N,N-di-n-butyl-carbamoyl-methoxy)-3,3-diphenylpropionsäuremethylester

Es wurden in 30 ml Methylenchlorid 1,3 g des 2-Hydroxy-essigsäure-di-n-butylamids und 1,8 g des 2,3-Epoxy-3,3-diphenylpropionsäuremethylesters gelöst und bei Eiskühlung eine katalytische Menge p-Toluolsulfonsäure zugegeben. Nach 24 Stunden rühren bei Raumtemperatur wurde der Ansatz auf Natriumhydrogencarbonatlösung gegeben, die abgetrennte organische Phase über Magnesiumsulfat getrocknet und das Lösungsmittel abdestilliert. Der Rückstand 30 wurde mittels Chromatographie gereinigt und es wurden 1,4 g eines Öls isoliert, welches direkt weiter umgesetzt wurden.

Beispiel 4:

35 2-Hydroxy-3-(N,N-dibutyl-carbamoyl-methoxy)-3,3-diphenylpropion-säure

Es wurden 1,42 g des 2-Hydroxy-3-(N,N-dibutyl-carbamoyl-me-thoxy)-3,3-diphenylpropionsäuremethylester in 10 ml Dioxan und

- 40 4,8 ml 1 N Natronlauge gelöst und drei Stunden bei Raumtemperatur gerührt. Anschliessend wurde der Ansatz mit Wasser versetzt und die wässrige Phase mit Ether extrahiert. Die wässrige Phase wurde mit Salzsäure angesäuert, mit Essigester extrahiert und die organische Phase über Magnesiumsulfat getrocknet. Nach dem Ab-
- **45** destillieren des Lösungsmittels wurden 1,1 g Öl isoliert, welches direkt weiter eingesetzt wurde.

Beispiel 5:

2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N,N-dibutyl-carbamoyl-me-thoxy)-3,3-diphenylpropionsäure (I-347)

5

- In THF wurden 560 mg der 2-Hydroxy-3-(N,N-dibutyl-carbamoyl-me-thoxy)-3,3-diphenylpropionsäure vorgelegt und 63 mg Lithiumamid und 10 Minuten später 256 mg 2-Methylsulfon-4,6-dimethylpyrimidin zugegeben. Das Gemisch wurde 5 Stunden bei 50°C gerührt und dann
- 10 mit Wasser versetzt. Mit Zitronensäure wurde die wässrige Phase angesäuert und mit Essigester wurde extrahiert. Die organische Phase wurde getrocknet, das Lösunsmittel abdestilliert und der Rückstand chromatographisch gereinigt. Das isolierte Produkt wurde aus Ether/n-Hexan auskristallisiert.

15

¹H-NMR (200 MHz): 7,30-7,20 ppm (10 H, m), 6,75 (1 H, s), 6,15 (1 H, s), 4,50 (1 H, d), 4,20 (1 H, d),3,30 (2 H, dd), 2,95 (2 H, dd) 2,35 (6 H, s), 1,55-1,00 (8 H, m), 0,95 (3 H, tr), 0,80 (3 H, tr).

20

ESI-MS: $M^+ = 533$

Beispiel 6:

25 N-Propyl-N-(2-hydroxy-ethyl)-benzolsulfonamid

Bei 0°C wurden 5,16 g (50 mmol) N-Propylethanolamin in 70 ml Methylenchlorid vorgelegt und nacheinander 9,7 g (55 mmol) Benzolsulfonsäurechlorid und 7,6 g (75 mmol) Triethylamin zugegeben.

- 30 Nach 2 Stunden Rühren bei 0°C, ließ man auf Raumtemperatur aufwärmen, rührte eine weitere Stunde, extrahierte dann mit 1M Salzsäure und anschließend mit 2M Natronlauge. Die organische Phase wurde über Na₂SO₄ getrocknet, filtriert, eingeengt und der so erhaltene Rückstand (13,2 g) an Kieselgel chromatographiert (Me-
- 35 thylenchlorid/Methanol 19:1). Ausbeute: 7,4 g als Öl, das direkt weiter umgesetzt wurde.

Beispiel 7:

40 2-Hydroxy-3-(2-(N-propyl-N-benzolsulfonyl-amino)-ethoxy)-3,3-diphenylpropionsäuremethylester

In 40 ml Methylenchlorid wurden 7,3 g (30 mmol) N-Propyl-N-(2-hydroxy-ethyl)-benzolsulfonamid und 7,6 g (30 mmol)

45 2,3-Epoxy-3,3-diphenylpropionsäuremethylesters gelöst und bei Eiskühlung 0.57 g (3 mmol) p-Toluolsulfonsäure zugegeben. Nach 24 Stunden rühren bei Raumtemperatur wurde der Ansatz mit Methylen-

chlorid Verdünnt, mit 2M Natronlauge extrahiert, die abgetrennte organische Phase über Natriumsulfat getrocknet und das Lösungsmittel abdestilliert. Der Rückstand (12,0 g eines Öls) wurde direkt weiter umgesetzt.

5

Beispiel 8:

2-Hydroxy-3-(2-(N-propyl-N-benzolsulfonyl-amino)-ethoxy)-3,3-diphenylpropionsäure

10

In 70 ml Dioxan wurden 6,0 g 2-Hydroxy-3-(2-(N-propoyl-N-benzol-sulfonyl-amino)-ethoxy)-3,3-diphenylpropionsäure-methylester (aus Beispiel 7) gelöst mit 36 ml 1M KOH versetzt und über Nacht bei Raumtemperatur gerührt. Anschliessend wurde der Ansatz mit Wasser versetzt und die wässrige Phase mit Ether extrahiert. Die wässrige Phase wurde mit Salzsäure angesäuert, mit Ether extrahiert, die organische Phase über Natriumsulfat getrocknet und das Lösungsmittel abdestilliert. Der Rückstand (3,3 g) wurde an Kieselgel (Methylenchlorid/Methanol 9:1) chromatographiert wobei 20 2,6 g Produkt erhalten wurden.

Smp: 144-146°C (aus Ether)

Beispiel 9:

25

2-(4-Methyl-6-methoxy-pyrimidin-2-yloxy)-3-(2-(N-propyl-N-benzol-sulfonyl-amino)-ethoxy)-3,3-diphenylpropionsäure (II-2)

In 5 ml Dimethylformamid wurden 135 mg (5,6 mmol) Lithiumamid

30 (95%) suspendiert, auf 0°C abgekühlt, mit 0,9 g (1,9 mmol)

2-Hydroxy-3-(2-(N-propoyl-N-benzolsulfonyl-amino)-ethoxy)-3,3-diphenylpropionsäure, gelöst in 4 ml Dimethylformamid, versetzt und

30 min bei 0°C gerührt. Dann wurden 0,56 g (2,8 mmol)

2-Methylsulfon-4-methyl-6-methoxy-pyrimidin zugegeben, über Nacht bei

35 Raumtemperatur gerührt und dann mit Wasser versetzt. Die wässrige Phase wurde mit Ether extrahiert, die so erhaltene organische Phase verworfen, die wäßrige Phase mit Salzsäure auf pHl eingestellt und mit Ether extrahiert. Die organische Phase wurde über Natriumsulfat getrocknet, das Lösunsmittel abdestilliert und der Rückstand (1,26 g) in Ether/Heptan ausgerührt. Ausbeute 0,9 g weißer Feststoff.

ESI-MS: 606 (M+H) +

45

```
<sup>1</sup>H-NMR (270 MHz, CDCl<sub>3</sub>): 7,70-7,85 ppm (2 H, m); 7,20-7,55 (13 H, m); 6,25 (1 H, s); 6,15 (1 H, s); 3,9 (3 H, s); 3,50-3,75 (2 H, m); 3,20-3,50 (2 H, m); 3,00-3,15 (2 H, m); 2,30 (3 H, s); 1,35-1,55 (2 H, m); 0,75 (3 H, tr).
```

5

Beispiel 10:

2-Hydroxy-3-(2-benzyloxycarbonylamino-ethoxy)-3,3-diphenyl-propionsäuremethylester

10

In 80 ml Methylenchlorid wurden 9,8 g (50 mmol) (2-hydroxy-ethyl)-carbaminsäure-benzylester und 12,7 g (50 mmol) 2,3-Epoxy-3,3-diphenylpropionsäuremethylester gelöst und unter Eiskühlung 0.95 g (5 mmol) p-Toluolsulfonsäure zugegeben. Nach 24 Stunden rühren bei Raumtemperatur wurde der Ansatz mit Methylen-chlorid verdünnt, mit 2M Natronlauge extrahiert, die abgetrennte organische Phase über Natriumsulfat getrocknet und das Lösungs-mittel abdestilliert. Der Rückstand (22,2 g Öl) wurde direkt weiter umgesetzt.

20

Beispiel 11:

2-Hydroxy-3-(2-benzyloxycarbonylamino-ethoxy)-3,3-diphenylpro-pionsäure

25

In 300 ml Dioxan wurden 22,2 g 2-Hydroxy-3-(2-benzyloxy-carbony-lamino-ethoxy)-3,3-diphenylpropionsäuremethylester (aus Beispiel 10) gelöst mit 148 ml 1M KOH versetzt und über Nacht bei Raumtemperatur gerührt. Anschliessend wurde der Ansatz mit Wasser versetzt und die wässrige Phase mit Ether extrahiert. Die wäss-

rige Phase wurde mit Salzsäure angesäuert, mit Ether extrahiert, die organische Phase über Natriumsulfat getrocknet und das Lösungsmittel abdestilliert. Der Rückstand (17,5 g) wurde direkt weiter eingesetzt.

35

Beispiel 12:

2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(2-benzyloxycarbonylamino-ethoxy)-3,3-diphenylpropionsäure (II-32)

40

In 60 ml Dimethylformamid wurden 2,5 g (103 mmol) Lithiumamid (95%) suspendiert, auf 0°C abgekühlt, mit 15 g (34,4 mmol) 2-Hy-droxy-3-(2-benzyloxycarbonylamino-ethoxy)-3,3-diphenylpropionsäure, gelöst in 60 ml Dimethylformamid, versetzt und 30 min bei

45 0°C gerührt. Dann wurden 8,34 g (44,7 mmol) 2-Methylsulfon-4-methyl-6-methoxy-pyrimidin in 30 ml Dimethylformamid zugegeben, 3 Tage bei Raumtemperatur gerührt und dann mit Wasser versetzt. Die wäßrige Phase wurde mit Ether extraniert, die so erhaltene organische Phase verworfen, dann die wäßrige Phase mit Salzsäure auf pH 1 eingestellt und mit Ether extrahiert. Die organische Phase wurde über Natriumsulfat getrocknet, das Lösunsmittel abdestilliert und der Rückstand an Kieselgel chromatographiert (Methylenchlorid/Methanol 9:1). Ausbeute 14,0 g weißer Schaum.

¹H-NMR (270 MHz, DMSO): 12,0-13,0 ppm (1H, br); 7,10-7,45 (16 H, **10** m); 6,95 (1 H, s); 6,20 (1 H, s); 5,0 (2 H, s); 3,80-3,95 (2 H, m); 3,55-3,70 (2 H, m); 3,20-3,40 (2 H, m); 2,30 (6 H, s).

Beispiel 13:

15 2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(2-amino-ethoxy)-3,3-diphenylpropionsäure

Eine Lösung von 13,1 g (24,2 mmol) 2-(4,6-Dimethyl-pyrimi-din-2-yloxy)-3-(2-benzyloxycarbonylamino-ethoxy)-3,3-diphenyl-propionsäure in 200 ml Methanol wurde unter Verwendung von 800 mg Palladium auf Aktivkohle (10%) mit Wasserstoff unter Normaldruck bei Raumtemperatur über Nacht. Der Ansatz wurde mit Methanol verdünnt, um ausgefallenes Produkt zu lösen, filtriert und eingeengt. Ausbeute 9,6 g weißer Feststoff.

¹H-NMR (270 MHz, DMSO): 7,10-7,40 ppm (10 H, m); 6,90 (1 H, s); 6,00 (1 H, s); 3,60-3,75 (2 H, m); 2,90-3,00 (2 H, m); 2,25 (6 H, s).

30 Beispiel 14:

25

2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(2-(3,4-dimethoxybenzoyl-amino)-ethoxy)-3,3-diphenylpropionsäure (II-62)

- 35 Eine Lösung von 1,0 g (2,5 mmol) 2-(4,6-Dimethyl-pyrimidin-2-yl-oxy)-3-(2-amino-ethoxy)-3,3-diphenyl-propionsäure in 10 ml Methylenchlorid wurde bei Raumtemperatur nacheinander versetzt mit 0,35 g (2,7 mmol) N-Ethyldiisopropylamin, 0,03 g (0,2 mmol) Dimethyl-aminopyridin und 0,54 g (2,7 mmol) 3,4-Dimethoxy-ben-
- 40 zoylchlorid. Nach 4 Tagen rühren bei Raumtemperatur wurde mit Diethylether verdünnt, mit 1M Salzsäure und 1M Natronlauge extrahiert, die vereinigten alkalischen Phasen sauer gestellt und mit Ether extrahiert. Die organische Phase wurde über Natriumsulfat getrocknet, das Lösunsmittel abdestilliert und der Rückstand
- **45** (0,9g) an Kieselgel chromatographiert (Methylen-chlorid/Methanol 9:1). Ausbeute 280 mg weißer Schaum.

ESI-MS: 571 (M+H)+

¹H-NMR (360 MHz, DMSO): 7,10-7,55 ppm (12 H, m); 7,00 (1 H, d); 6,90 (1 H, s); 6,20 (1 H, s); 3,65-4,00 (2 H, m); 3,80 (3 H, s); 5 3,75 (3 H, s); 3,45-3,55 (2 H, m); 2,30 (6 H, s).

Beispiel 15:

(S)-5,5-Diphenyl-2-oxo-1,4-dioxan-6-carbonsäurebenzylester

Es wurden 38 g (100 mmol) des (S)-2-Hydroxy-3-methoxy-3,3-diphenylpropionsäurebenzylesters mit 9,8 g (130 mmol) der Glycolsäure zusammengegeben und mit 300 mg wasserfreier para-Toluolsulfonsäure 20 Minuten unter Vakuum bei 70°C am Rotationsverdampfer gerührt. Der Kolbeninhalt wurde in Dichlormethan aufgenommen, die Säure mit Natriumhydrogensulfat-Lösung abgetrennt, die organische Phase abgetrennt, getrocknet und das Lösungsmittel abdestilliert. Der Rückstand wurde aus Ether umkristallisiert und es wurden 21 g (54 mmol) Produkt isoliert.

20

 $[\alpha]_D = +283$ bei 20°C in Ethanol

Beispiel 16:

25 (S)-(1,1-Diphenyl-2-hydroxy-2-benzyloxycarbonyl-ethoxy)-essigsäure

Es wurden 14 g (36 mmol) (S)-5,5-Diphenyl-2-oxo-1,4-dioxan-6-carbonsäurebenzylester in 50 ml DMF gelöst und bei Eiskühlung 43 ml 30 l N NaOH-Lösung zugegeben. Nach zehn Minuten wurde mit 300 ml Wasser verdünnt, mit 43 ml l N Salzsäure neutralisiert und mit Ether die wässrige Phase extrahiert. Die Etherphase wurde getrocknet, das Lösungsmittel abdestilliert und der Rückstand (8,8 g, 21 mmol eines Öls) direkt weiter umgesetzt.

35

Beispiel 17:

(S)-(1,1-Diphenyl-2-(4,6-dimethyl-pyrimidin-2-yloxy)-2-benzyloxy-carbonyl-ethoxy)-essigsäure

40

Es wurden 6,6 g (15 mmol) (S)-(1,1-Diphenyl-2-hydroxy-2-benzylo-xycarbonyl-ethoxy)-essigsäure in 75 ml DMF vorgelegt und 1,4 g NaH (30 mmol, 50% Suspension) portionsweise bei Eiskühlung zugegeben. Anschliessend wurden 3,6 g (19,5 mmol) 4,6-Dimethyl-2-me-

45 thylsulfonpyrimidin zugegeben, eine Viertelstunde gerührt und dann auf Raumtemperatur erwärmt. Nach 45 Minuten war die Umsetzung vollständig und die Reaktionslösung wurde auf 500 ml Eiswas-

ser gegossen. Die wässrige Phase wurde mit Essigester extrahiert, die gesammelten organischen Phasen wurden getrocknet und das Lösungsmittel abdestilliert. Der ölige Rückstand wurde mit Ether/Hexan verrührt und es konnten 6,4 g Kristalle isoliert werden.

5

_ Beispiel 18:

(S)-2-(4,6-dimethyl-pyrimidin-2-yloxy)-3-(N-methyl-N-(3-methyl-phenyl)-carbamoyl-methoxy-3,3-diphenylpropionsäure-benzylester

10

Unter Schutzgas wurden bei -10°C 512 mg (1 mmol) S-(1,1-Diphenyl-2-(4,6-dimethyl-pyrimidin-2-yloxy)-2-benzyloxy-carbonyl-ethoxy)essigsäure in 20 ml Dichlormethan gelöst und nacheinander 121 mg (1 mmol) N-(3-Methylphenyl)-N-methylamin,

- 15 92 ml (1 mmol) Ethyldiisopropylamin und 191 mg (1 mmol) N-(3-Dimethylamino-propyl)-N-ethylcarbodiimid zugegeben. Nach einer
 Stunde wurde auf Raumtemperatur erwärmt und weitere 16 Stunden
 gerührt. Anschliessend wurde mit Dichlormethan auf 100 ml verdünntund mit Zitronensäure und Wasser gewaschen. Die organische
- 20 Phase wurde getrocknet und das Lösungsmittel abdestilliert. Der Rückstand wurde zur weiteren Reinigung einer Flashchromatographie unterzogen (Essigester/Cyclohexan 1/1) und es wurden 290 mg Produkt isoliert, welche gleich weiter eingesetzt wurden.
- 25 Beispiel 19:
 - (S)-2-(4,6-dimethyl-pyrimidin-2-yloxy)-3-(N-methyl-N-(3-methyl-phenyl)-carbamoyl-methoxy)-3,3-diphenylpropionsäure
- 30 In Essigester wurden 260 mg S-2-(4,6-dimethyl-pyrimidin-2-yl-oxy)-3-(N-methyl-N-(3-methylphenyl)-carbamoyl-methoxy-3,3-diphenylpropionsäurebenzylester in 50 ml Essigester gelöst und eine Spatelspitz Pd/C zugegeben. Das Gemisch wurde 2 Stunden unter einer Wasserstoffatmosphäre gerührt. Anschliessend wurde das Pd/C abfiltriert und der Essigester abdestilliert. Der Rückstand wurde mit Ether/Hexan verührt und es konnten 127 mg Kristalle isoliert werden.

 $[\alpha]_D$ = + 90 bei 20°C in Ethanol

40

¹H-NMR (200 MHz): 7,40-7,00 ppm (14 H, m), 6,75 (1 H, s), 6,05 (1 H, s), 4,15 (1 H, d), 3,75 (1 H, d), 3,25 (3 H, s), 2,40 (6 H, s), 2,20 (3 H, s).

45 ESI-MS: $M^+ = 525$

Die folgenden Verbindungen wurden analog zu den oben genannten Beispielen hergestellt

Beispiel 20:

5

2-(4-Methyl-6-methoxy-pyrimidin-2-yloxy)-3-(N,N-dibutyl-carbamoyl-methoxy)-3,3-diphenylpropionsäure (I-349)

1H-NMR (200 MHz): 7,30-7,20 ppm (10 H, m), 6,25 (1 H, s), 6,00 (1
10 H, s), 4,50 (1 H, d), 4,25 (1 H, d), 3,95 (3 H, s), 3,30 (2 H, dd), 2,95 (2 H, dd) 2,25 (3 H, s), 1,55-1,00 (8 H, m), 0,95 (3 H, tr), 0,80 (3 H, tr).

ESI-MS: $M^+ = 549$

15

Beispiel 21:

2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-methyl-N-phenyl-carbamoyl-methoxy)-3,3-diphenylpropionsäure (I-109)

20

ESI-MS: $M^+ = 511$

¹H-NMR (200 MHz): 7,40-7,20 ppm (15 H, m), 6,80 (1 H, s), 6,15 (1 H, s), 4,15 (1 H, d), 3,8 (1 H, d),3,30 (3 H, s), 2,35 (6 H, s).

25

Beispiel 22:

2-(4-Methyl-6-methoxy-pyrimidin-2-yloxy)-3-(N-methyl-N-phenyl-carbamoyl-methoxy)-3,3-diphenylpropionsäure (I-111)

30

¹H-NMR (200 MHz): 7,40-7,20 ppm (15 H, m), 6,30 (1 H, s), 6,00 (1 H, s), 4,20 (1 H, d), 3,80 (3 H, s), 3,75 (1 H, d),3,25 (3 H, s), 2,30 (3 H, s).

35 ESI-MS: $M^+ = 527$

Beispiel 23:

2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(2-oxo-2-(1,2,3,4-tetra-hy-40 droisochinolin-2-yl)-ethoxy)-3,3-diphenylpropionsäure (I-307)

¹H-NMR (200 MHz): 7,40-7,10 ppm (14 H, m), 6,60 (1 H, s), 6,05 (1 H, s), 4,75-4,25 (4 H, m), 3,85 (1 H, m), 3,50-3,25 (1 H, m), 3,00-2,75 (2 H, m), 2,25 (3 H, s), 2,10 (3 H, s).

45

ESI-MS: $M^+ = 537$

Beispiel 24:

2-(4-Methyl-6-methoxy-pyrimidin-2-yloxy)-3-(2-oxo-2-(1,2,3,4-tetrahydroisochinolin-2-yl)-ethoxy)-3,3-diphenylpropionsäure **5** (I-309)

H-NMR (200 MHz): 7,40-7,10 ppm (14 H, m), 6,20 (1 H, s), 6,00 (1 H, s), 4,75-4,25 (4 H, m), 3,85 (1 H, m), 3,75 (3 H, s), 3,40 (1 H, m), 3,00-2,75 (2 H, m), 2,10 (3 H, s).

10 ...

 $ESI-MS: M^{+} = 553$

Beispiel 25:

15 2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-ethoxymethylen-N-(2,6-diethylphenyl)-carbamoyl-methoxy)-3,3-diphenylpropionsäure (I-325)

1H-NMR (200 MHz): 7,40-7,10 ppm (13 H, m), 6,75 (1 H, s), 6,15 (1 20 H, s), 5,10 (1 H, d), 4,90 (1 H, d), 4,00-3,70 (4 H, m), 2,70-2,30 (4 H, m), 2,40 (6 H, s), 1,25 (6 H, m), 1,10 (3 H, tr).

ESI-MS: $M^{+} = 611$.

25 Beispiel 26:

2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-isopropyl-N-phenyl-carbamoyl-methoxy)-3,3-diphenylpropionsäure (I-271)

30 ¹H-NMR (200 MHz): 7,30-7,10 ppm (15 H, m), 6,70 (1 H, s), 6,10 (1 H, s), 5,10 (1 H, m), 4,00 (1 H, d), 3,60 (1 H, d),2,30 (6 H, s), 1,10 (6 H, m).

ESI-MS: $M^{+} = 539$.

35

Beispiel 27:

2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-methoxymethylen-N-(2,6-diisopropylphenyl)-carbamoyl-methoxy)-3,3-diphenyl-pro-40 pionsäure (I-334)

¹H-NMR (200 MHz): 7,40-7,10 ppm (13 H, m), 6,75 (1 H, s), 6,15 (1 H, s), 5,10 (1 H, d), 4,90 (1 H, d), 4,10 (1 H, d), 3,75 (1 H, d), 3,50 (3 H, s), 3,30 (1 H, m), 2,9 (1 H, m), 2,30 (6 H, s), 45 1,20 (9 H, m), 0,6 (3 H, d).

ESI-MS: $M^{+} = 625$.

Beispiel 28:

2-(4,6-Dimethylpyrimidin-2-yloxy)-3-(2-(N-propyl-N-benzol-sulfo-nyl-amino)-ethoxy)-3,3-diphenylpropionsäure (II-48)

5

_ ESI-MS: 590 (M+H)+

¹H-NMR (270 MHz, CDCl₃): 7,75-7,85 ppm (2 H, m); 7,20-7,55 (13 H, m); 6,70 (1 H, s); 6,25 (1 H, s); 3,55-3,75 (2 H, m); 3,20-3,50 (2 H, m); 3,00-3,15 (2 H, m); 2,35 (6 H, s); 1,35-1,50 (2 H, m); 0,75 (3 H, tr).

Beispiel 29:

15 2-(4,6-Dimethylpyrimidin-2-yloxy)-3-(2-(N-butyl-N-benzol-sulfo-nyl-amino)-ethoxy)-3,3-diphenylpropionsäure (II-20)

ESI-MS: $604 (M+H)^+$

- 20 ¹H-NMR (200 MHz, CDCl₃): 7,75-7,85 ppm (2 H, m); 7,20-7,55 (13 H, m); 6,70 (1 H, s); 6,20 (1 H, s); 3,20-3,75 (4 H, m); 3,00-3,15 (2 H, m); 2,35 (6 H, s); 1,35-1,50 (2 H, m); 1,10-1,30 (2 H, m); 0,75 (3 H, tr).
- 25 Beispiel 30:

2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-(4-methoxyphenyl)-carbamoyl-methoxy)-3,3-diphenylpropionsäure (I-37)

30 ¹H-NMR (200 MHz, DMSO): 9,75 ppm (NH),7,50-7,10 (12 H, m), 6,90 (1 H, s), 6,80 (2 H, d), 6,10 (1 H, s), 4,25 (1 H, d), 4,10 (1 H, d), 3,75 (3 H, s), 2,25 (6 H, s).

 $ESI-MS: M^+ = 527$

35

Beispiel 31:

2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-phenyl-carbamoyl-methoxy)-3,3-diphenylpropionsäure (I-19)

40

 1 H-NMR (200 MHz, DMSO): 9,90 ppm (NH),7,70-7,20 (14 H, m), 7,10 (1 H, tr), 6,80 (1 H, s), 6,20 (1 H, s), 4,30 (1 H, d), 4,20 (1 H, d), 2,30 (6 H, s).

 $45 \text{ ESI-MS: } M^+ = 497$

Beispiel 32:

2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-(4-methylphenyl)- carbamoyl-methoxy)-3,3-diphenylpropionsäure (I-28)

5

¹H-NMR (200 MHz, DMSO): 9,80 ppm (NH),7,50-7,20 (12 H, m), 7,10 (2 H, d), 6,80 (1 H, s), 6,10 (1 H, s), 4,25 (1 H, d), 4,05 (1 H, d), 2,30 (6 H, s), 2,20 (3 H, s).

10 ESI-MS: $M^+ = 511$

Beispiel 33:

2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-butyl-N-phenyl- carba-15 moyl-methoxy)-3,3-diphenylpropionsäure (I-190)

 $^{1}\text{H-NMR}$ (200 MHz): 7,25-7,10 ppm (15 H, m), 6,70 (1 H, s), 6,10 (1 H, s), 4,20 (1 H, d), 3,7 (2 H, m), 2,25 (6 H, s), 1,5-1,1 (4 h, m), 0.8 (3 H, tr).

20

ESI-MS: $M^+ = 553$

Beispiel 34:

25 2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(2-oxo-2-(6,7-dimeth-oxy-1,2,3,4-tetrahydroisochinolin-2-yl)-ethoxy)-3,3-diphenylpropionsäure

ESI-MS: $M^+ = 597$

30

Smp.: 145-148°C

Beispiel 35:

35 2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(2-oxo-2-(4,4-di-methyl-1,2,3,4-tetrahydroisochinolin-2-yl)-ethoxy)-3,3-diphenyl-propionsäure

ESI-MS: $M^+ = 565$

40

Smp.: 185-187°C

45

Beispiel 36:

(S)-2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-(3-methylphenyl)-carbamoyl-methoxy)-3,3-diphenylpropionsäure

5

- 1H-NMR (200 MHz): 9,10 ppm (NH),7,50-7,25 (12 H, m), 7,10 (1 H, tr), 6,80 (1 H, d), 6,60 (1 H, s), 6,20 (1 H, s), 4,10 (1 H, d), 3,80 (1 H, d), 2,30 (6 H, s), 2,25 (3 H, s).
- **10** ESI-MS: $M^+ = 511$

Beispiel 37:

2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-methyl-N-(2-naphth-2-ylethyl)-carbamoyl-methoxy)-3,3-diphenylpropionsäure

1H-NMR (200 MHz): 8,20 ppm (1 H, m), 7,90-7,70 (3 H, m), 7,50-7,15
(14 H, m), 6,60/6,65 (1 H, s, Rotamere), 6,20/6,15 (1 H, s, Rotamere), 4,50 (1 H, d, Rotamere), 4,25 (1 H, d, Rotamere), 3,9 (1
20 H, m), 3,50-3,20 (3 H, m), 3,05/2,70 (3 H, s, Rotamere) 2,30/2,25
(6 H, s, Rotamere).

 $ESI-MS: M^+ = 589$

25 Beispiel 38:

30 ¹H-NMR (200 MHz): 7,50-7,05 (12 H, m), 6,95-6,60 (3 H, m), 6,05 (1 H, s, Rotamere), 4,50-4,00 (2 H, m, Rotamere), 3,75 (3 H, d, Rotamere), 3,2-2,8 (3 H, m, Rotamere), 2,9 (3 H, s, Rotamere), 2,30 (6 H, s, Rotamere), 1,70-1,50 (2 H, m), 0,70-0,60 (3 H, m, Rotamere).

35

 $ESI-MS: M^+ = 597$

Beispiel 39:

40 2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-methyl-N-(2-iso-propyl-2-(3,4-dimethoxyphenyl)-3-methyl-butyl)-carbamoyl-methoxy)-3,3-diphenylpropionsäure

¹H-NMR (200 MHz): 7,30-7,20 (10 H, m), 6,95-6,60 (4 H, m), 6,20 (1 **45** H, s), 4,40 (2 H, m), 4,05 (1 H, d) 3,85 (7 H, m), 2,5 (3 H, s), 2,3 (6 H, s), 2,30-2,20 (2 H, m), 1,00-0,70 (12 H).

ESI-MS: $M^+ = 683$

Beispiel 40:

5 (S)-2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-methyl-N-benzyl-carbamoyl-methoxy)-3,3-diphenylpropionsäure

1H-NMR (200 MHz): 7,30-7,10 ppm (15 H, m), 6,75 (1 H, s), 6,20 (1
H, s), 4,75-4,20 (4 H, m, Rotamere), 3,00/2,60 (3 H, s, Rota10 mere), 2,35/2,30 (6 H, s, Rotamere).

 $ESI-MS: M^+ = 525$

Beispiel 41:

15

2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-(2,6-diethylphenyl)-carbamoyl-methoxy)-3,3-diphenylpropionsäure (I-82)

1H-NMR (200 MHz): 8,30 ppm (NH), 7,50-7,00 (13 H, m), 6,75 (1 H,
20 s), 6,25 (1 H, s), 4,25 (1 H, d), 3,90 (1 H, d), 2,60 (4 H, q),
2,30 (6 H, s), 1,20 (6 H, tr).

ESI-MS: $M^+ = 533$

25 Beispiel 42:

2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-(4-chlorphenyl)-carbamoyl-methoxy)-3,3-diphenylpropionsäure (I-46)

30 ¹H-NMR (200 MHz): 10,00 ppm (NH), 7,70 (2 H, d), 7,50-7,10 (12 H, m), 6,75 (1 H, s), 6,20 (1 H, s), 4,20 (1 H, d), 3,80 (1 H, d), 2,30 (6 H, s).

 $ESI-MS: M^+ = 531$

35

Beispiel 43:

2-(4,6-Diethyl-pyrimidin-2-yloxy)-3-(N-methyl-N-phenyl-carbamoyl-methoxy)-3,3-diphenylpropionsäure

40

¹H-NMR (200 MHz): 7,50-7,10 ppm (15 H, m), 6,80 (1 H, s), 6,10 (1 H, s), 4,20 (1 H, d), 3,30 (1 H, s), 2,70 (4 H, q), 1,20 (6 H, tr).

45 ESI-MS: $M^+ = 539$

Beispiel 44:

2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-(3-methoxyphenyl)-carbamoyl-methoxy)-3,3-diphenylpropionsäure

5

- 1H-NMR (200 MHz): 9,80 ppm (NH), 7,50-7,10 (13 H, m), 6,75 (1 H, s), 6,60 (1 H, dtr), 6,20 (1 H, s), 4,10 (1 H, d), 3,80 (1 H, d), 3,75 (3 H, s), 2,30 (6 H, s).

10 ESI-MS: $M^+ = 527$

Beispiel 45:

(S)-2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-benzyl-carbamoyl-methoxy)-3,3-diphenylpropionsäure

¹H-NMR (200 MHz): 7,50-7,10 ppm (15 H, m), 6,75 (1 H, s), 6,20 (1 H, s), 4,45 (1 H, dd), 4,40 (1 H, dd), 4,10 (1 H, d), 3,90 (1 H, d), 2,40 (6 H, s).

20

ESI-MS: $M^+ = 511$

Beispiel 46:

25 (S)-2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-methyl-N-(4-methoxy-benzyl)-carbamoyl-methoxy)-3,3-diphenylpropionsäure

1H-NMR (200 MHz): 7,50-7,10 ppm (13 H, m), 6,75 (3 H, m, Rotamere), 6,20 (1 H, s, Rotamere), 4,70-4,00 (4 H, m, Rotamere), 3,75 (3 H, s), 3,00/2,70 (3 H, s, Rotamere), 2,40/2,35 (6 H, s

30 3,75 (3 H, s), 3,00/2,70 (3 H, s, Rotamere), 2,40/2,35 (6 H, s, Rotamere).

ESI-MS: $M^+ = 555$

35 Beispiel 47:

- (S)-2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-ethyl-N-benzyl-carbamoyl-methoxy)-3,3-diphenylpropionsäure
- 40 ¹H-NMR (200 MHz): 7,50-7,20 ppm (15 H, m), 6,70 (1 H, s), 6,20 (1 H, s, Rotamere), 4,75-4,10 (4 H, m, Rotamere), 3,70/3,30/3,00 (2 H, m, Rotamere), 2,35/2,30 (6 H, s, Rotamere), 1,10/1,00 (3 H, tr, Rotamere).
- **45** ESI-MS: $M^+ = 539$

Beispiel 48:

(S)-2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-methyl-N-(2,6-dich-lorbenzyl)-carbamoyl-methoxy)-3,3-diphenylpropionsäure

5 ESI-MS: M+ = 593

Smp.: 105-110°C

Beispiel 49:

10

2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-methyl-N-(2-phenyl-ethyl)-carbamoyl-methoxy)-3,3-diphenylpropionsäure

1H-NMR (200 MHz): 7,50-7,20 ppm (14 H, m), 6,75 (1 H, m), 6,70 (1
15 H, s, Rotamere), 6,15/6,10 (1 H, s, Rotamere), 4,50-4,00 (2 H, d, Rotamere), 3,70 (1 H, m), 3,50 (1 H, m), 3,20/2,70 (5 H, m, Rotamere), 2,35/2,30 (6 H, s, Rotamere).

ESI-MS: $M^+ = 539$

20

Beispiel 50:

2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(N-methyl-N-(2-(3,4-dimethoxyphenyl)-ethyl)-carbamoyl-methoxy)-3,3-diphenylpropionsäure

25

 $^{1}\text{H-NMR}$ (200 MHz): 7,50-7,25 ppm (10 H, m), 6,80-6,70 (3 H, m), 6,35 (1 H, m), 4,50-4,00 (2 H, m, Rotamere), 3,75 (3 H, s, Rotamere), 3,50-2,70 (5 H, m, Rotamere), 2,30/2,25 (6 H, s, Rotamere).

30

 $ESI-MS: M^+ = 599$

Beispiel 51:

35 2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(2-(3,4-dimethoxybenzoyl-N-methyl-amino)-ethoxy)-3,3-diphenylpropionsäure (II-78)

¹H-NMR (200 MHz): 7,30-7,00 ppm (10 H, m), 7,00-6,80 (3 H, m), 6,60 (1 H, s), 6,20 (1 H, s), 3,90 (6 H, s), 3,90-3,50 (4 H, m), 40 3,10 (3 H, s), 2,30 (6 H, s).

ESI-MS: $M^+ = 585$

```
42
    Beispiel 52:
    2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(2-(2,6-dimethoxybenzovl-
   N-methyl-amino)-ethoxy)-3,3-diphenylpropionsäure (II-88)
 5
 - <sup>1</sup>H-NMR (200 MHz): 7,50-7,00 ppm (10 H, m), 6,70-6,40 (4 H, m),
    6,30/6,20 (1 H, s, Rotamere), 4,10-3,30 (4 H, m),
    3,80/3,75/3,65/3,60 (6 H, s, Rotamere), 3,10/2,80 (3 H, s),
    2,35/2,30 (6 H, s).
10
   ESI-MS: M^{+} = 585
   Beispiel 53:
15 2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(2-(3,4-dichlorbenzoyl-
   amino)-ethoxy)-3,3-diphenylpropionsäure (II-115)
   ESI-MS: 580 (M+H)+
20 1H-NMR (270 MHz, DMSO): 12,0-13,0 ppm (1 H, br); 8,80 (1 H, t);
   7,15-7,65 (13 H, m); 6,95 (1 H, s); 6,20 (1 H, s); 3,85 (1 H, m);
   3,65-3,80 (1 H, m); 3,45-3,60 (2 H, m); 2,30 (6 H, s).
   Beispiel 54:
25
   2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(2-(2,6-dimethoxybenzoyl-
   amino) - ethoxy) -3,3-diphenylpropionsäure (II-122)
   ESI-MS: 572 (M+H)^+
30
   ^{1}H-NMR (270 MHz, CDCl<sub>3</sub>): 7,45-7,55 ppm (2 H, m); 7,20-7,40 (10 H,
   m); 6,65 (1 H, s); 6,55 (1 H, d); 6,35 (1 H, t); 6,25 (1 H, s);
   3,60-3,90 (4 H, m); 3,80 (6 H, s); 2,35 (6 H, s).
35 Beispiel 55:
   2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(2-(2,4,6-trimethylbenzoyl-
   amino)-ethoxy)-3,3-diphenylpropionsäure (II-169)
40 ESI-MS: 554 (M+H)+
   ^{1}\text{H-NMR} (270 MHz, CDCl<sub>3</sub>): 7,15-7,55 ppm (10 H, m); 6,90 (1 H, s);
   6,80 (1 H, s); 6,70 (1 H, s); 6,60 (1 H, tr); 6,25 (1 H, s);
   3,60-3,80 (2 H, m); 2,30 (6 H, s); 2,20 (6 H, s); 2,15 (3 H, s).
```

45

Beispiel 56:

 $2-(4,6-{\tt Dimethyl-pyrimidin-2-yloxy})-3-(2-(2,3-{\tt dimethylbenzoyl-amino})-{\tt ethoxy})-3,3-{\tt diphenylpropions} \\ {\tt auino})-{\tt ethoxy} \\ {\tt auino})-{\tt ethoxy} \\ {\tt auino})-{\tt ethoxy} \\ {\tt auino})-{\tt ethoxy} \\ {\tt auino}-{\tt ethoxy} \\ {\tt ethoxy}-{\tt ethoxy} \\ {\tt ethoxy}-{\tt ethoxy} \\ {\tt ethoxy}-{\tt ethoxy} \\ {\tt ethoxy}-{\tt ethoxy}-{\tt ethoxy} \\ {\tt ethoxy}-{\tt ethoxy}-{\tt ethoxy}-{\tt ethoxy}-{\tt ethoxy}-{\tt ethoxy} \\ {\tt ethoxy}-{\tt ethoxy}-{$

- ESI-MS: 540 (M+H)+

1H-NMR (200 MHz, DMSO): 8,30 ppm (1 H, t); 7,10-7,55 ppm (13 H, m); 6,95 (1 H, s); 6,15 (1 H, s); 3,85-4,00 (1 H, m); 3,65-3,80
10 (1 H, m); 3,45-3,60 (2 H, m); 2,35 (6 H, s); 2,30 (3 H, s); 2,25 (3 H, s)...

Beispiel 57:

15 2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(2-(3,5-dichlorbenzoyl-amino)-ethoxy)-3,3-diphenylpropionsäure (II-205)

ESI-MS: 580 (M+H)+

- 20 1H-NMR (200 MHz, DMSO): 12,4-13,0 ppm (1 H, br); 8,80 (1 H, tr); 7,80 (2 H, m); 7,75 (1 H, m); 7,10-7,45 (10 H, m); 6,90 (1 H, s); 6,15 (1 H, s); 3,80-4,00 (1 H, m); 3,60-3,80 (1 H, m); 3,45-3,60 (2 H, m); 2,30 (6 H, s).
- 25 Beispiel 58:

2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(2-(1-naphthoyl-amino)-ethoxy)-3,3-diphenylpropionsäure (II-210)

30 ESI-MS: 562 (M+H)+

¹H-NMR (200 MHz, DMSO): 12,4-13,0 ppm (1 H, br); 8,70 (1 H, tr); 8,20-8,30 (1 H, m); 7,85-8,80 (2 H, m); 7,10-7,60 (14 H, m); 6,90 (1 H, s); 6,15 (1 H, s); 3,80-4,00 (1 H, m); 3,65-3,80 (1 H, m); 3,50-3,60 (2 H, m); 2,30 (3 H, s).

Analog oder wie im allgemeinen Teil beschrieben lassen sich die Verbindungen in der Tabelle I herstellen.

40

45

X X X	, E
-c	
-C	
72 X	Ia

			4	4												
×	0	S	0	٥	0	0	0	S	c) C) v	, c) c) c) c	2
<u>~</u>	z	z	z	z	z	z	z	z	z	z	z	Z	z	z	z	
×	z	z	z	z	z	z	z	z	z	Z	z	Z	z	z	z	
Z	CH	CH	HS	H)	CH ₂ -CH ₂ -CH ₂ -C	O-CH ₂ -CH ₂ -C	CH	EH	H	СН	E	E	E	CH2-CH2-CH3-C	O-CHCH-C	7
R³	Me	OMe	Me	Me	CH ₂ -CI	O-CH	Ethyl	Me	ÇF3	Me	OMe	Me	Me	CH ² -CI	O-CH	
R ²	Me	OMe	OMe	CH ₂ OH	OMe	OMe	Ethyl	CF ₃	OMe	Me	OMe	OMe	СН,ОН	OMe	OMe	
R8	Me	H	H	H	Н	H	H	Н	H	H	H	H	H	H	H	
R7	Me	Н	Н	H	H	H	H	Н	H	Н	Me	H	Butyl	Н	Н	
R ²²	Me ₂ N	Me ₂ N	MeyN	Mc ₂ N	Mc2N	Me ₂ N	Me2N	Me ₂ N	MeyN	Butyl-HN	Butyl-HN	Butyl-HN	Butyl-HN	Butyl-HN	Butyl-HN	
R ⁴ , R ⁵	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	
R.	СООН	Н000	СООН	СООН	СООМе	Н000	Н000	Н000	СООН	СООН	Н000	Н000	Н000	СООН	Н000	
Ä.	I	I-2	I-3	1-4	I-5	9	1-7	<u>1-8</u>	6-1	I-10	1-11	1-12	I-13	I-14	I-15	
									-	_						

\mathbb{R}^1	R4, R5	R ²²	R7	R8	R ²	R3	Z	×	Σ	 ≽
СООН	Phenyl	Butyl-HN	Н	H	Ethyl	Ethyl	СН	z	z	0
СООН	4-F-Phenyl	Butyl-HN	Н	H	GF3	Me	CH	z	z	S
СООН	Phenyl	Butyl-HN	Н	Н	OMe	CF3	CH	z	z	0
Н000	Phenyl	Phenyl-HN	Н	Н	Me	Me	CH	z	z	0
СООН	Phenyl	Phenyl-HN	Н	Н	OMe	OMe	HJ	z	z	S
СООН	Phenyl	Phenyl-HN	Н	Н	OMe	Me	CH	z	z	0
СООН	Phenyl	Phenyl-HN	Н	H	CH ₂ OH	Me	CH	z	z	0
Н000	4-F-Phenyl	Phenyl-HN	Me	Me	OMe	CH ₂ -CH	CH2-CH2-CH2-C	z	z	0
СООН	Phenyl	Phenyl-HN	Н	Н	OMe	0-CH ₂	0-CH ₂ -CH ₂ -C	Z	z	0
СООН	Phenyl	Phenyl-HN	н	H	Ethyl	Ethyl	CH	z	z	S
СООН	4-F-Phenyl	Phenyl-HN	Н	Н	GF ₃	Me	CH	z	z	0
Н000	4-F-Phenyl	Phenyl-HN	Н	Н	OMe	CF ₃	E	z	z	0
Н000	Phenyl	(4-Methylphenyl)-HN	Н	Н	Me	Me	CH	z	z	0
НООЭ	Phenyl	(4-Methylphenyl)-HN	Н	Н	OMe .	OMe	CH	z	z	0
Н00Э	Phenyl	(4-Methylphenyl)-HN	Н	Н	OMe	Me	CH	z	z	0
СООМе	Phenyl	(4-Methylphenyl)-HN	Н	Н	CH ₂ OH	Me	CH	z	z	0
Н000	Phenyl	(4-Methylphenyl)-HN	Н	Н	OMe	CH2-CH2-CH2-C	CH2-C	z	z	0
Н00Э	Phenyl	(4-Methylphenyl)-HN	Me	Me	OMe	0-CH ₂ -	O-CH ₂ -CH ₂ -C	z	z	0
СООН	Phenyi	(4-Methylphenyl)-HN	Н	Н	Ethyl	Ethyl	£	Z	z	S
НООЭ	Phenyl	(4-Methylphenyl)-HN	Н	Н	CF ₃	Me	CH	z	z	0
Н000	4-F-Phenyl	(4-Methylphenyl)-HN	Н	Н	OMe	CF ₃	CH	z	z	0
Н000	Phenyl	(4-Methoxylphenyl)-HN	H	Н	Me	Me	CH	z	z	0
Н000	Phenyl	(4-Methoxylphenyl)-HN	Н	Н	OMe	OMe	CH	z	z	S
Н000	Phenyl	(4-Methoxylphenyl)-HN	Н	Н	OMe	Me	CH	z	z	0
СООН	4-F-Phenyl	(4-Methoxylphenyl)-HN	Н	H	СН2ОН	Me	H	Z	z	0
C00H	Phenyl	(4-Methoxylphenyl)-HN	Н	Н	OMe	CH2-CH2-CH2-C	CH2-C	z	z	0

N.	R1	R4, R5	R ²²	R7	88 88	R ²	R3	Z	×	X	×
1–42	СООН	Phenyl	(4-Methoxyiphenyl)-HN	H	H	OMe	0-CH2-CH2-C	CH ₂ -C	z	z	S
143	Н000	Phenyl	(4-Methoxylphenyl)-HN	Н	H	Ethyl	Ethyl	CH	z	z	0
14	Н000	Phenyl	(4-Methoxylphenyl)-HN	Н	H	CF ₃	Me	СН	z	z	0
145	Н000	Phenyl	(4-Methoxylphenyl)-HN	Ethyl	Н	OMe	CF3	CH	z	z	0
1 4 6	Н000	Phenyl	(4-Chlorphenyl)-HN	Н	H	Me	Me	CH	z	z	0
147	Н000	Phenyl	(4-Chlorphenyl)-HN	H	H	ОМе	OMe	H	z	z	0
148	Н000	Phenyl	(4-Chlorphenyl)-HN	Me	Н	ОМе	Me	CH	z	z	0
149	Н000	Phenyl	(4-Chlorphenyl)-HN	Н	Н	СН2ОН	Me	CH	z	z	S
I-50	СООН	Phenyl	(4-Chlorphenyl)-HN	Н	Н	OMe	CH2-CH2-CH2-C	CH2-C	Z	z	0
I-51	СООМе	Phenyl	(4-Chlorphenyl)-HN	Н	H	OMe	O-CH ₂ -CH ₂ -C	CH ₂ -C	Z	z	0
1–52	Н000	Phenyl	(4-Chlorphenyl)-HN	Н	Н	Ethyl	Ethyl	CH	z	z	0
I-53	Н000	Phenyl	(4-Chlorphenyl)-HN	н	Н	CF ₃	Me	CH	z	z	0
I-54	СООН	4-F-Phenyl	(4-Chlorphenyl)-HN	H	Н	OMe	CF ₃	CH	z	z	0
I-55	Н000	Phenyl	(3,4-Dichlorphenyl)-HN	Н	Н	Me	Me	CH	z	z	0
I-56	Н000	Phenyl	(3,4-Dichlorphenyl)-HN	Н	Н	OMe	ОМе	CH	z	z	S
1-57	Н000	Phenyl	(3,4-Dichlorphenyl)-HN	H	Н	OMe	Me	CH	Z	z	0
I-58	Н000	Phenyl	(3,4-Dichlorphenyl)-HN	Н	Н	СН2ОН	Me	СН	z	z	0
I-59	Н000	4-F-Phenyl	(3,4-Dichlorphenyl)-HN	н	Н	OMe	CH2-CH2-CH2-C	-CH2-C	z	z	0
09 <u>-</u>	Н000	Phenyl	(3,4-Dichlorphenyl)-HN	Me	Me	OMe	O-CH2-CH2-C	CH ₂ -C	z	z	0
<u>1</u> 9	Н000	Phenyl	(3,4-Dichlorphenyl)-HN	н	Н	Ethyl	Ethyl	CH	z	z	0
I-62	Н000	Phenyl	(3,4-Dichlorphenyl)-HN	Me	Me	CF ₃	Me	СН	z	z	0
I-63	Н000	Phenyl	(3,4-Dichlorphenyl)-HN	Н	Н	OMe	CF_3	СН	z	z	0
49-	Н000	Phenyl	(3,4-Dimethoxyphenyl)-HN	H	Н	Me	Me	Э	z	z	0
1-65	Н000	Phenyl	(3,4-Dimethoxyphenyl)HN	Н	Н	оМе	OMe	СН	z	z	0
99 <u>-</u> 1	Н000	Phenyl	(3,4-Dimethoxyphenyl)-HN	Me	Н	ОМе	Me	СН	z	z	0
1-67	Н000	Phenyl	(3,4-Dimethoxyphenyl)-HN	Н	Н	CH ₂ OH	Me	СН	z	z	0
											Ī

J 99.	/230)/8 											4	7					-				PC	CT/1	EP9	8/06
W	0	S	0	0	0	0	0	0	0	S	0	0	0	S	0	0	0	0	0	0	0	0	0	0	0	0
<u>X</u>	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
×	Z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
7	CH2-CH2-CH2-C	O-CH ₂ -CH ₂ -C	СН	СН	НЭ	H	CH	СН	CH	CH2-CH2-CH2-C	O-CH ₂ -CH ₂ -C	СН	CH	CH	НЭ	CH	СН	CH	CH2-CH2-CH2-C	O-CH2-CH2-C	HO	H	CH	CH	H	CH
R3	CH2-CI	O-CH	Ethyl	Me	CF3	Me	OMe	Me	Me	CH ₂ -Cl	O-CH	Ethyl	Me	CF ₃	Me	OMe	Me	Me	CH2-CI	O-CH	Ethyl	Me	CF ₃	Me	ОМе	Me
R ²	OMe	ОМе	Ethyl	CF3	OMe	Me	OMe	OMe	СН2ОН	OMe	OMe	Ethyl	G,	OMe	Me	OMe	OMe	СН2ОН	OMe	OMe	Ethyl	CF ₃	OMe	Me	OMe	OMe
R8	H	Н	Н	Н	Н	Н	Me	н	Н	Н	Н	Н	H	H	Н	Н	Н	Me	Н	Н	Н	Н	Н	Н	Н	Н
R7	H	Н	Н	Н	Н	Н	Me	Н	Н	Н	Н	Н	Н	H	Н	Н	Н	Me	Н	Н	Et	Н	Н	Н	Н	Н
R ²²	(3,4-Dimethoxyphenyl)-HN	(3,4-Dimethoxyphenyl)-HN	(3,4-Dimethoxyphenyl)-HN	(3,4-Dimethoxyphenyl)-HN	(3,4-Dimethoxyphenyl)-HN	(3,4-Dimethoxyphenyl)-HN	(2,6-Dimethoxyphenyl)-HN	(2,6-Dimethoxyphenyl)-HN	(2,6-Dimethoxyphenyl)-HN	(2,6-Dimethoxyphenyl)-HN	(2,6-Dimethoxyphenyl)-HN	(2,6-Dimethoxyphenyl)-HN	(2,6-Dimethoxyphenyl)-HN	(2,6-Dimethoxyphenyl)-HN	(2,6-Diethylphenyl)-HN	(2,6-Diisopropylphenyl)-HN	(2,6-Diisopropylphenyl)-HN	(2,6-Diisopropylphenyl)-HN								
R4, R5	Phenyl	4-F-Phenyl	Phenyl	Phenyi	Phenyl	Phenyl	Phenyl	Phenyl	4-F-Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	4-F-Phenyl	Phenyl	4-F-Phenyl	Phenyl						
R1	Н000	Н000	Н000	Н000	С00Н	Н00Э	Н000	Н000	Н000	Н000	Н000	Н000	Н000	Н000	COOMe	H000	Н000	Н000	Н000	Н000	Н000	H000	H000	Н000	Н000	Н000
Nr.	89 - 1	69-I	0/-1	1-71	I-72	I-73	1-74	I-75	9 <i>L</i> -1	11-11	8 <i>L</i> -1	I-79	0 8 -I	I-81	I-82	I-83	1-84	I-85	1–86	I-87	I-88	I-89	06-I	I6-I	1-92	1-93

R1	R4, R5	R ²²	R7	\mathbb{R}^8	R ²	R3	7	×	Y	×
	Phenyl	(2,6-Diisopropylphenyl)-HN	Н	H	СН2ОН	Me	СН	z	z	lo
	Phenyl	(2,6-Diisopropylphenyl)-HN	超	Н	OMe	CH ₂ -CH	CH2-CH2-CH2-C	z	z	
	Phenyi	(2,6-Diisopropylphenyl)-HN	Н	Н	OMe	0-CH ₂ -	O-CH ₂ -CH ₂ -C	z	z	S
- 1	Phenyl	(2,6-Diisopropylphenyl)-HN	Н	Н	Ethy1	Ethyl	CH	z	z	0
•	Phenyi	(2,6-Diisopropylphenyl)-HN	Н	Н	CF ₃	Me	CH	z	z	S
- 1	Phenyl	(2,6-Diisopropylphenyl)-HN	Me	Me	OMe	CF ₃	CH	z	z	0
	Phenyl	(N-Butyl-N-Me)-N	Н	Н	Me	Me	CH	z	z	0
	Phenyl	(N-Butyl-N-Me)-N	Н	H	OMe	ОМе	НЭ	z	z	0
	4-F-Phenyl	(N-Butyl-N-Me)-N	Н	Н	OMe	Me	CH	z	z	0
- 1	Phenyl	(N-Butyl-N-Me)-N	Н	Н	СН2ОН	Me	СН	z	z	0
. t	Phenyl	(N-Butyl-N-Me)-N	Butyl	Н	OMe	CH ₂ -CH	CH2-CH2-CH2-C	z	z	0
- 1	Phenyl	(N-Butyl-N-Me)-N	Н	Н	OMe	0-CH ₂ -CH ₂ -C	CH ₂ -C	z	z	S
- 1	Phenyl	(N-Butyl-N-Me)-N	Н	Н	Ethyl	Ethyl	CH	z	z	0
- 1	4-F-Phenyl	(N-Butyl-N-Me)-N	Н	Н	CF_3	Me	Ж	z	z	0
- 1	Phenyi	(N-Butyl-N-Me)-N	Н	Н	э <u>М</u> О	CF_3	СН	z	z	0
- 1	Phenyl	(N-Phenyl-N-Me)-N	Н	Н	Me	Me	СН	z	z	0
- 1	Phenyl	(N-Phenyl-N-Me)-N	Н	Н	OMe	ОМе	СН	z	z	0
- 1	Phenyl	(N-Phenyl-N-Me)-N	Н	Н	OMe	Me	СН	z	z	0
- 1	Phenyl	(N-Phenyl-N-Me)-N	Ethyl	Н	СН2ОН	Me	CH	z	z	0
- 1	4-F-Phenyl	(N-Phenyl-N-Me)-N	Н	Н	ОМе	CH2-CH2-CH2-C	-CH ₂ -C	z	z	0
	Phenyl	(N-Phenyl-N-Me)-N	H	Н	ОМе	O-CH2-CH2-C	CH ₂ -C	z	z	S
- 1	Phenyl	(N-Phenyl-N-Me)-N	Etthyl	Н	Ethyl	Ethyl	CH	z	z	0
- 1	Phenyl	(N-Phenyl-N-Me)-N	Н	Н	CF ₃	Me	CH	Z	z	0
- 1	Phenyl	(N-Phanyl-N-Me)-N	Н	Н	ОМе	CF ₃	HJ	z	z	0
- 1	Phenyl	(N-4-Methylphenyl-N-Methyl)-N	Н	Н	Me	Me	CH	z	z	0
- 1	Phenyl	(N-4-Methylphenyl-N-Methyl)-N	Н	Н	ОМе	ОМе	СН	z	z	0
										1

R ⁴ , R ⁵ R ²²	R ²²		R7	R8	R ²	R³	Z	×	Y	×
Phenyl (N-4-MethylphenylN-Methyl)N		Ų.	Н	Н	OMe	Me	НЭ	z	z	S
Phenyl (N-4-Methylphenyl-N-Methyl)-N	(N-4-Methylphenyl-N-Methyl)-	N.	Me	Me	CH ₂ OH	Me	НЭ	z	z	0
Phenyl (N-4-Methylphenyl-N-Methyl)-N		N-	Н	Н	OMe	CH ₂ -CH	CH2-CH2-CH2-C	z	z	0
Phenyl (N-4-Methylphenyl-N-Methyl)-N		N-	Н	Н	ОМе	O-CH	O-CH2-CH2-C	z	z	0
4-F-Phenyl (N-4-Methylphenyl-N-Methyl)-N	(N-4-Methylphenyl-N-Methyl)	N-	Н	Н	Ethyl	Ethyl	CH	z	z	0
Phenyl (N-4-Methylphenyl-N-Methyl)-N		Y.	Н	H	CF3	Me	H	z	z	0
Phenyl (N-4-Methylphenyl-N-Methyl)N	(N-4-Methylphenyl-N-Methyl)-	N-	Н	H	OMe	CF ₃	H	z	ż	0
Phenyl (N-4-Methoxylphenyl-N-Me)-N	(N-4-Methoxylphenyl-N-Me)-1	7	Н	н	Me	Me	E	z	z	0
Phenyl (N-4-Methoxylphenyl-N-Me)-N	(N-4-Methoxylphenyl-N-Me)-N		Н	Н	OMe	ОМе	СН	z	z	0
	(N-4-Methoxylphenyl-N-Me)-N		Н	Н	OMe	Me	НЭ	z	z	0
Phenyl (N-4-Methoxylphenyl-N-Me)-N	(N-4-Methoxylphenyl-N-Me)-N		Me	Me	СН2ОН	Me	CH	z	z	0
enyl	(N-4-Methoxylphenyl-N-Me)-N		H	Н	OMe	CH ₂ -CH	CH2-CH2-CH2-C	z	z	0
	(N-4-Methoxylphenyl-N-Me)-N		Н	Н	OMe	⁷ НЭ-0	O-CH ₂ -CH ₂ -C	z	z	S
Phenyl (N-4-Methoxylphenyl-N-Me)-N	(N-4-Methoxylphenyl-N-Me)-N		Н	Н	Ethyl	Ethyl	CH	z	z	0
4-F-Phenyl (N-4-Methoxylphenyl-N-Me)-N	(N-4-Methoxylphenyl-N-Me)-N		H	Н	CF3	Me	СН	z	z	0
			H	Н	OMe	CF3	СН	z	z	0
(N-3,4-Dime		N-(e	Н	н	Me	Me	СН	N	z	0
		e)-N	Butyl	Н	ОМе	ОМе	СН	z	z	0
(N-3,4-Dimo	(N-3,4-Dimethoxylphenyl-N-M	le)-N	Н	H	OMe	Me	СН	z	z	0
(N-3,4-Dim	(N-3,4-Dimethoxylphenyl-N-M	(c)N	Н	Н	СН2ОН	Me	СН	z	z	0
	(N-3,4-Dimethoxylphenyl-N-M	(e)-N	H	Н	OMe	сн ⁷ -сн	CH2-CH2-CH2-C	z	z	0
		e-N	Н	Н	ОМе	⁷ НЭ-0	O-CH ₂ -CH ₂ -C	z	z	S
ᅥ	(N-3,4-Dimethoxylphenyl-N-M	c)-N	Н	H	Ethyl	Ethyl	НЭ	z	z	0
lenyi	(N-3,4-Dimethoxylphenyl-N-N	/le)N	Н	Н	CF3	Me	СН	z	z	0
		√e)-N	Н	Н	OMe	${ m CF}_3$	СН	z	z	0
Phenyl (N-3,4-Dichlorphenyl-N-Me)-N		Z.	H	Н	Me	Me	СН	z	z	0

R ² R ³
ОМе
OMe Me
CH ₂ OH Me
OMe CH2-CH2-CH2-C
OMe
Ethyl Ethyl
CF ₃ Me
OMe CF ₃
Me Me
ОМе ОМе
ОМе Ме
CH ₂ OH Me
OMe CH2-CH2-CH2-C
ОМе
Ethyl Ethyl
CF ₃ Me
OMe CF ₃
Me Me
ОМе ОМе
ОМе Ме
CH ₂ OH Me
OMe CH2-CH2-CH2-C
OMe
Ethyl Ethyl
CF ₃ Me
OMe CF ₃

×	S	0	0	0	0	0	0	0	0	0	0	0	0	0	0	S	0	0	0	0	0	0	S	0	
X	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	
×	z	z	z	z	z	Z	z	z	Z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	
Z	HU	CH	CH	H	CH2-CH2-CH2-C	O-CH2-CH2-C	CH	CH	HO	EH	СН	CH	EH	CH2-CH2-CH2-C	O-CH ₂ -CH ₂ -C	H	EH	H	H	H	CH	EH	CH2-CH2-CH2-C	O-CH ₂ -CH ₂ -C	
R ³	Me	ОМе	Me	Me	CH2-CH	O-CH ₂	Ethyl	Me	CF3	Me	ОМе	Me	Me	CH2-CH	O-CH2	Ethyl	Me	CF3	Me	ОМе	Me	Me	CH ₂ -CH	O-CH ₂	
R ²	Me	ОМе	ОМе	СН2ОН	ОМе	OMe	Ethyl	CF3	ОМе	Me	OMe	OMe	СН2ОН	ОМе	ОМе	Ethyl	CF3	OMe	Me	OMe	OMe	СН2ОН	ОМе	OMe	
R8	H	H	Н	Н	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Me	Н	Н	Н	Н	Н	Н	Me	Н	Н	
R7	Н	H	Н	Н	Ethyl	Н	H	Н	Н	Н	Н	Н	Н	Н	Me	Н	Н	Н	Н	Н	Н	Me	Н	Н	**
R ²²	(N-2,6-Dicthylphenyl-N-Me)-N	l (N-2,6-Diethylphenyl-N-Me)-N	(N-2,6-Diethylphenyl-N-Me)-N	(N-2,6-Diethylphenyl-N-Me)-N	(N-2,6-Dicthylphcnyl-N-Me)-N	(N-2,6-Diethylphenyl-N-Me)-N	(N-2,6-Dicthylphanyl-N-Me)-N	(N-2,6-Diethylphenyl-N-Me)-N	(N-2,6-Diethylphenyl-N-Me)-N	I (N-2,6-Diisopropylpheayl-N-Me)-N	(N-2,6-Diisopropylphenyl-N-Me)-N	(N-2,6-Diisopropylphenyl-N-Me)-N	(N-2,6-Diisopropylphenyl-N-Me)-N	(N-2,6-Diisopropylphenyl-N-Me)-N	(N-2,6-Diisopropylphenyl-N-Me)-N	(N-2,6-Diiso	(N-2,6-Diisopropylphenyl-N-Me)-N	(N-2,6-Diisopropylphenyl-N-Me)-N	(N-Phenyl-N-Butyl)-N	(N-Phenyl-N-Butyl)-N	(N-Phenyl-N-Butyl)-N	(N-Phenyl-N-Butyl)-N	(N-Phenyl-N-Butyl)-N	(N-Phenyl-N-Butyl)-N	At Diament Mt Descrip Mt
R4, R5	Phenyl	4-F-Phenyl	Phenyl	4-F-Phonyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	4-F-Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	4-F-Phenyl	Dhoney						
\mathbb{R}^1	сооме	Н000	Н000	Н000	СООН	Н000	СООН	СООН	Н000	СООН	Н000	Н000	СООМе	Н000	Н000	Н000	СООН	Н002	Н000	Н002	Н000	Н00Э	H000	СООН	ווייי
Nr.	1-172	1-173	1-174	1-175	1–176	1-177	I-178	I-179	1-180	I-181	I-182	I-183	1-184	1-185	I-186	I-187	I-188	I-189	1-190	1-101	1-192	1-193	1-194	1-195	100

Ž	Ια	D4 D5	n 22	15.3	9-		,				Ī
11.	٧	N, N	K	Κ,	R°	R ²	ار	2	×	>	≥
I-198	Н000	Phenyl	(N-Phenyl-N-Butyl)-N	Н	Н	OMe	GF3	CH	z	z	ļo
1–199	СООН	Phenyl	(N-4-Methylphenyl-N-Butyl)-N	H	Н	Me	Me	CH	z	z	0
1–200	Н000	Phenyl	(N-4-Methylphenyl-N-Butyl)-N	Me	Н	OMe	OMe	СН	z	z	0
1-201	СООМе	Phenyl	(N-4-Methylphenyl-N-Butyl)-N	H	Н	OMe	Me	НЭ	Z	z	0
1–202	СООН	Phenyl	(N-4-Methylphenyl-N-Butyl)-N	H	王	СН2ОН	Me	CH	z	z	0
1-203	Н002	4-F-Phenyl	(N-4-Methylphenyl-N-Butyl)-N	H	H	OMe	CH2-CH	CH2-CH2-CH2-C	z	z	0
1–204	Н002	Phenyl	(N-4-Methylphenyl-N-Butyl)-N	H	H	ОМе	O-CH ₂ -	O-CH ₂ -CH ₂ -C	z	z	10
1–205	СООН	Phenyl	(N-4-Methylphenyl-N-Butyl)-N	Н	H	Ethyl	Ethyl	H	z	z	0
1-206	Н002	Phenyl	(N-4-Methylphenyl-N-Butyl)-N	Me	Me	CF ₃	Me	CH	z	z	0
1-207	Н000	Phenyi	(N-4-Methylphenyl-N-Butyl)-N	Н	H	ОМе	CF ₃	CH	z	z	0
I-208	Н000	Phenyl	(N-4-Methoxyphenyl-N-Butyl)-N	Н	H	Me	Me	CH	z	z	0
1-209	Н002	Phenyl	(N-4-Methoxyphenyl-N-Butyl)-N	Me	Me	ОМе	OMe	CH	z	z	0
1-210	Н000	Phenyl	(N-4-Methoxyphenyl-N-Butyl)-N	Н	Н	OMe	Me	СН	z	z	
1–211	Н00Э	4-F-Phenyl	(N-4-Methoxyphenyl-N-Butyl)-N	H	H	СН2ОН	Me	CH	z	z	0
1-212	Н00Э	Phenyl	(N-4-Methoxyphenyl-N-Butyl)-N	Me	Н	OMe	CH2-CH2-CH2-C	-CH ₂ -C	z	z	0
1-213	Н000	Phenyl	(N-4-Methoxyphenyl-N-Butyl)-N	Н	Н	OMe	O-CH ₂ -CH ₂ -C	CH2-C	z	z	S
I-214	Н000	Phenyl	(N-4-Methoxyphenyl-N-Butyl)-N	Н	Н	Ethyl	Ethyl	CH	z	z	0
I-215	H000	Phenyl	(N-4-Methoxyphenyl-N-Butyl)-N	Н	Н	CF ₃	Me	СН	z	z	0
I-216	Н000	Phenyl	(N-4-Methoxyphenyl-N-Butyl)-N	Bu	Н	OMe	CF ₃	CH	z	z	0
1-217	Н000	Phenyl	(N-3,4-Dimethoxyphenyl-N-Butyl)-N	Н	Н	Me	Me	CH	z	z	0
I-218	Н00Э	Phenyl	(N-3,4-Dimethoxyphenyl-N-Butyl)-N	Propyl	Н	OMe	OMe	CH	z	z	
I-219	H000	Phenyl	(N-3,4-Dimethoxyphenyl-N-Butyl)-N	Н	Н	OMe	Me	CH	z	z	0
1-220	Н000	Phenyl	(N-3,4-Dimethoxyphenyl-N-Butyl)-N	Н	Н	СН2ОН	Me	CH	z	z	
1-221	Н000	4-F-Phenyl	(N-3,4-Dimethoxyphenyl-N-Butyl)-N	Н	Н	OMe	CH2-CH2-CH2-C	-CH ₂ -C	z	z	0
1-222	C00H	Phenyl	(N-3,4-Dimethoxyphenyl-N-Butyl)-N	Н	Н	ОМе	O-CH2-CH2-C	CH ₂ -C	z	z	0
1-223	СООН	4-F-Phenyl	(N-3,4-Dimethoxyphenyl-N-Butyl)-N	Н	Н	Ethyl	Ethyl	СН	z	z	0

Ŋŗ.	R1	R4, R5	R ²²	R7	R8	R ²	R3	7	×	>	8
I-224	Н000	Phenyl	(N-3,4-Dimethoxyphenyl-N-Butyl)-N	E	H	CF ₃	Me	CH	z	z	S
1-225	Н000	Phenyl	(N-3,4-Dimethoxyphenyl-N-Butyl)-N	Н	H	OMe	CF ₃	СН	z	z	0
1-226	H000	Phenyl	(N-3,4-Dichlorphenyl-N-Butyl)-N	Н	Н	Me	Me	CH	z	z	0
1-227	H000	Phenyl	(N-3,4-Dichlorphenyl-N-Butyl)-N	Me	Me	OMe	ОМе	СН	z	z	0
1-228	H003	Phenyl	(N-3,4-Dichlorphenyl-N-Butyl)-N	Н	Н	OMe	Me	CH	z	z	0
1-229	Н00Э	Phenyl	(N-3,4-Dichlorphenyl-N-Butyl)-N	Н	H	CH ₂ OH	Me	CH	z	z	S
1-230	Н00Э	Phenyl	(N-3,4-Dichlorphenyl-N-Butyl)-N	Н	Н	OMe	CH2-CH2-CH2-C	CH2-C	z	z	0
1-231	Н00Э	Phenyl	(N-3,4-Dichlorphenyl-N-Butyl)-N	Н	Н	OMe	O-CH2	O-CH ₂ -CH ₂ -C	z	z	0
1-232	СООМе	Phenyl	(N-3,4-Dichlorphenyl-N-Butyl)-N	Н	Н	Ethyl	Ethyl	CH	z	z	0
1-233	Н00Э	4-F-Phenyl	(N-3,4-Dichlorphenyl-N-Butyl)-N	Н	Н	G3	Me	CH	z	z	0
I-234	Н00Э	Phenyl	(N-3,4-Dichlorphenyl-N-Butyl)-N	Propyl	Н	OMe	CF ₃	CH	z	z	0
1-235	Н000	Phenyl	(N-4-Chlorphenyl-N-Butyl)-N	Н	Н	Me	Me	НЭ	z	z	0
1-236	Н000	Phenyl	(N-4-Chlorphenyl-N-Butyl)-N	Н	Н	OMe	ОМе	CH	z	z	0
1-237	H000	Phenyl	(N-4-Chlorphenyl-N-Butyl)-N	Me	Me	OMe	Me	CH	z	z	0
I-238	Н00Э	Phenyl	(N-4-Chlorphenyl-N-Butyl)-N	Н	Н	СН2ОН	Me	CH	z	z	S
1-239	Н00Э	Phenyl	(N-4-Chlorphenyl-N-Butyl)-N	Н	Н	OMe	CH2-CH2-CH2-C	-CH ₂ -C	z	z	0
1-240	Н000Н	4-F-Phenyl	(N-4-Chlorphenyl-N-Butyl)-N	H	Н	ОМе	0-CH ₂ -CH ₂ -C	CH2-C	z	z	0
I-241	Н000	Phenyl	(N-4-Chlorphenyl-N-Butyl)-N	Н	Н	Ethyl	Ethyl	СН	z	z	0
I-242	C00H	Phenyl	(N-4-Chlorphenyl-N-Butyl)-N	Н	Н	CF3	Me	СН	z	z	0
I-243	Н000	Phenyl	(N-4-Chlorphenyl-N-Butyl)-N	Н	Н	OMe	CF ₃	СН	z	z	0
I-244	Н00Э	Phenyl	(N-2,6-Dimethoxylphenyl-N-Butyl)-N	Н	Н	Me	Me	НЭ	z	z	0
I-245	H000H	Phenyl	(N-2,6-Dimethoxylphenyl-N-Butyl)-N	Butyl	Н	OMe	OMe	СН	z	z	S
I-246	H000H	4-F-Phenyl	(N-2,6-Dimethoxylphenyl-N-Butyl)-N	Н	H	ОМе	Me	СН	Z	z	0
1-247	Н000	Phenyl	(N-2,6-Dimethoxylphenyl-N-Butyl)-N	Н	Н	СН2ОН	Me	СН	z	z	0
1-248	Н000	Phenyl	(N-2,6-Dimethoxylphenyl-N-Butyl)-N	Н	Н	OMe	CH2-CH2-CH2-C	-CH ₂ -C	z	z	0
I-249	Н000	Phenyl	(N-2,6-Dimethoxylphenyl-N-Butyl)-N	Butyl	Н	ОМе	O-CH2-CH2-C	CH ₂ -C	z	Z.	0

Nr.	R1	R4, R5	R ²²	R7	R8	R ²	R3	Z	×	<u>></u>	3
1–250	СООН	Phenyl	(N-2,6-Dimethoxylphenyl-N-Butyl)-N	H	H	Ethyl	Ethyl	HJ	z	z	
1-251	НООЭ	Phenyl	(N-2,6-Dimethoxylphenyl-N-Butyl)-N	H	Н	CF ₃	Me	CH	z	z	0
1-252	Н000	Phenyl	(N-2,6-Dimethoxylphenyl-N-Butyl)-N	H	H	OMe	GF ₃	НЭ	z	z	0
1-253	Н000	Phenyl	(N-2,6-Diethylphenyl-N-Butyl)-N	Н	Н	Me	Me	CH	z	z	0
I-254	Н000	Phenyl	(N-2,6-Diethylphenyl-N-Butyl)-N	Н	Н	OMe	OMe	СН	z	z	0
1–255	Н000	Phenyl	(N-2,6-Diethylphenyl-N-Butyl)-N	Me	Me	OMe	Me	H	z	z	0
I-256	Н000	Phenyl	(N-2,6-Diethylphenyl-N-Butyl)-N	Н	H	СН2ОН	Me	H	z	z	0
1–257	НООЭ	Phenyi	(N-2,6-Diethylphenyl-N-Butyl)-N	Н	H	OMe	CH ₂ -CH	CH2-CH2-CH2-C	z	z	0
1-258	Н000	Phenyl	(N-2,6-Diethylphenyl-N-Butyl)-N	Ethyl	Н	OMe	O-CH ₂	O-CH ₂ -CH ₂ -C	z	z	0
1-259	Н000	Phenyl	(N-2,6-Diethylphenyl-N-Butyl)-N	Н	Н	Ethyl	Ethyl	СН	z	z	0
I-260	Н000	Phenyl	(N-2,6-Diethylphenyl-N-Butyl)-N	Н	Н	GF3	Me	CH	z	z	0
1-261	Н000	Phenyl	(N-2,6-Diethylphenyl-N-Butyl)-N	Н	Н	OMe	CF ₃	CH	z	z	0
1-262	Н000	Phenyl	(N-2,6-Diisopropylphenyl-N-Butyl)-N	Н	Н	Me	Me	CH	z	z	S
1-263	СООМе	Phenyl	(N-2,6-Diisopropylphenyl-N-Butyl)-N	Н	Н	ОМе	OMe	CH	z	z	0
1-264	Н000	Phenyl	(N-2,6-Diisopropylphenyl-N-Butyl)-N	Н	Н	ОМе	Me	CH	z	z	0
I-265	Н000	Phenyl	(N-2,6-Diisopropylphenyl-N-Butyl)-N	Н	Н	СН2ОН	Me	CH	z	z	0
1-266	Н000	4-F-Phenyl	(N-2,6-Diisopropylphenyl-N-Butyl)-N	Н	Н	ОМе	CH ₂ -CH	CH2-CH2-CH2-C	z	z	0
1-267	Н000	4-F-Phenyl	(N-2,6-Diisopropylphenyl-N-Butyl)-N	Н	Н	OMe	O-CH ₂	O-CH ₂ -CH ₂ -C	z	z	S
I-268	H000	Phenyl	(N-2,6-Diisopropylphenyl-N-Butyl)-N	Н	Н	Ethyl	Ethyl	CH	z	z	0
I-269	Н000	Phenyl	(N-2,6-Diisopropylphenyl-N-Butyl)-N	Н	Н	CF ₃	Me	CH	z	z	0
I-270	Н000	Phenyl	(N-2,6-Diisopropylphenyl-N-Butyl)-N	Butyl	Н	OMe	CF ₃	CH	z	z	0
1-271	Н000	Phenyl	(N-Phanyl-N-Isopropyl)-N	Н	Н	Me	Me	H	z	z	0
1-272	Н000	Phenyl	(N-Phenyl-N-Isopropyl)-N	Н	Н	OMe	0Me	СН	Z	z	0
1-273	H000	Phenyl	(N-Phenyl-N-Isopropyl)-N	Н	H	OMe	Me	CH	z	z	0
I-274	Н000	Phenyl	(N-Phenyl-N-Isopropyl)-N	Me	Me	СН2ОН	Me	CH	z	z	0
1-275	Н000	Phenyl	(N-Phenyl-N-Isopropyl)-N	Н	Н	ОМе	CH2-CH2-CH2-C	-CH2-C	z	z	0

	т-	Τ	1	T	т	т—	_	_	Τ-	T-	1	Т	_)	_	т		_	·	_	_	1		,		т—
*	0	S	0	0	0	0	0	c	0	0	S	0	0	0	0	0	0	0	0	S	0	0	0	0	S	0
X	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
×	z	z	z	z	z	z	z	z	z	z	z	z	Z	z	z	z	z	z	z	z	z	z	z	z	z	z
Z	O-CH ₂ -CH ₂ -C	СН	CH	CH	EH	Æ	H	CH	CH2-CH2-CH2-C	0-сн2-сн2-с	CH	EH	СН	СН	CH	CH	НЭ	CH2-CH2-CH2-C	0-сн2-сн2-с	CH	E	H	СН	CH	H	H
R3	O-CH2	Ethyl	Me	GF3	Me	OMe	Me	Me	CH ₂ -CH	O-CH ₂	Ethyl	Me	CF ₃	Me	ОМе	Me	Me	CH ₂ -CH	O-CH ₂ -	Ethyl	Me	CF ₃	Me	OMe	Me	Me
R ²	OMe	Ethyl	Ę.	OMe	Me	OMe	OMe	СН2ОН	OMe	OMe	Ethyl	CF ₃	OMe	Me	OMe	ОМе	CH ₂ OH	ОМе	ОМе	Ethyl	CF3	OMe	Me	OMe	ОМе	СН2ОН
8 8	H	H	H	Н	H	H	H	H	Н	Н	H	Н	Me	н	н	Н	Н	Н	Н	Н	H	Н	Н	Н	Н	Н
R7	Н	Н	Н	Н	H	Н	Н	Н	Propyl	Н	Н	Н	Me	Н	Н	Н	Н	Н	Н	Me	Н	H	Н	Н	Н	Н
R ²²	(N-Phenyl-N-Isopropyl)-N	(N-Phenyl-N-Isopropyl)-N	(N-Phenyl-N-Isopropyl)-N	(N-Phenyl-N-Isopropyl)-N	(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -)N	(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -)N	(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -)N		(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -)N	(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -)N		(-CH ₂ -CH ₂ -CH ₂ -)N	(-CH ₂ -CH ₂ -CH ₂ -)N	(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -)N	(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -)N		(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -)N					(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -)N		(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -)N	(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -)N	(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -)N
R ⁴ , R ⁵	4-F-Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	4-F-Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	4-F-Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	4-F-Phenyl
R1	H000	Н000	Н000	Н000	Н000	Н000	Н000	Н000	Н000	Н000	Н000	Н000	Н000	Н000	Н000	Н000	Н000	Н000	Н000	H000	Н000	Н00Э	Н000	Н000	H000	H003
Nr.	1–276	1-277	1-278	1-279	I-280	1-281	1–282	1-283	I-284	I-285	I-286	I-287	1-288	I-289	I-290	I-291	I-292	I-293	I-294	I-295	1-296	I-297	I-298	1-299	I-300	I-301

	_	_		,	T	T -		Т	7 20					
×	0	0	0	0	S	0	c	0	S	0	0	0	0	0
<u>></u>	z	z	z	z	z	z	z	z	z	z	z	z	z	z
×	z	z	Z	z	z	z	z	z	z	z	z	z	z	z
2	CH2-CH2-CH2-C	O-CH ₂ -CH ₂ -C	CH	CH	CH	СН	СН	СН	СН	CH ₂ -CH ₂ -CH ₂ -C	-CH ₂ -C	СН	CH	НЭ
R³	CH ₂ -CH	O-CH2	Ethy1	Me	CF ₃	Me	ОМе	Me	Me	CH2-CH	0-CH ₂ -CH ₂ -C	Ethyl	Me	CF ₃
R ²	OMe	OMe	Ethyl	G ₃	OMe	Me	OMe	OMe	СН2ОН	ОМе	ОМе	Ethyl	CF ₃	ОМе
R8	E	E	F	H	Н	Н	н	H	H	H	Me	H	H	H
R7	H	Propyl	Н	Н	Н	Н	H	H	H	н	Me	æ	H	Н
R ²²	(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -)N		(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -)N	(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -)N	(-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -)N	<u>‡</u>	<u>‡</u>	<u>‡</u>	<u>1</u>	<u>+</u>	<u>‡</u>	<u>1</u>	<u>+</u>	<u> </u>
R4, R5	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyi	Phenyl	Phenyl	Phenyl	4-F-Phenyl	Phenyl	Phenyl	Phenyl	Phenyl
\mathbb{R}^1	Н000	Н000	Н000	Н000	Н000	СООН	СООН	СООН	СООН	СООН	соон	СООН	СООН	1000
Nr.	I-302	1-303	1-30 4	I-305	1-306	I-307	I-308		1-310	I-311	1–312	1–313		1-315

r-	T	7		т	T		7	 		_		T	-	_	т
*	0	0	0	0	S	0	0	0	0	0	0	0	0	0	0
>	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
×	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
Z	СН	СН	СН	СН	CH ₂ -CH ₂ -CH ₂ -C	0-сн ₂ -сн ₂ -с	CH	СН	СН	Œ	Æ	CH	СН	CH2-CH2-CH2-C	O-CH2-CH2-C
R3	Me	ОМе	Me	Me	СН2-СН	0-CH ₂ -	Ethy1	Me	CF ₃	Me	ОМе	Me	Me	CH ₂ -CH	O-CH ₂
R ²	Me	ОМе	ОМе	СН2ОН	ОМе	ОМе	Ethyl	දි	ОМе	Me	ОМе	OMe	CH ₂ OH	OMe	OMe
R8	Œ	H	Н	H	H	I	H	H	Н	H	Н	Н	Н	Н	Н
R7	H	H	H	Ethyl	H	H	H	H	н	Н	Н	Н	Н	Н	Н
R ²²			<u>+</u>				1	1	<u>+</u>	(N-2,6-Diethylphenyl-N-Ethoxymethylen)-N	(N-2,6-Diethylphenyl-N-Ethoxymethylen)-N	(N-2,6-Diethylphenyl-N-Ethoxymethylen)-N		(N-2,6-Diethylphenyl-N-Ethoxymethylen)-N	(N-2,6-Diethylphenyl-N-Ethoxymethylen)-N
R4, R5	Phenyl	4-F-Phenyl	Phenyl	Phenyi	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyi	Phenyl
R1	СООН	Н000	соон	соон	СООН	СООН	СООН	СООН	соон	Н000	Н000	Н000	Н000	Н000	Н000
Nr.	1-316	I-317	1-318	1-319	I-320	I-321	1–322	1–323	1–324	1–325	1-326	I-327	I-328	I-329	I-330

ž	R1	R4, R5	R ²²	R7	R8	R ²	R3	Z	×	>	M
1-331	СООН	4-F-Phenyl	(N-2,6-Diethylphenyl-N-Ethoxynnethylen)-N	H	H	Ethyl	Ethyl	EH	z	Z	S
1-332	Н000	Phenyl	(N-2,6-Diethylphenyl-N-Ethoxymethylen)-N	H	Н	CF3	Me	CH.	z	z	0
1-333	Н000	Phenyi	(N-2,6-Diethylphenyl-N-Ethoxymethylen)-N	н	H	ОМе	GF ₃	HO	z	z	10
I-334	Н000	Phenyl	(N-2,6-Diisopropylphenyl-N-Methoxymethy- len)-N	H	H	Me	Me	HO	z	z	0
I-335	нооэ	Phenyl	(N-2,6-Diisopropylphenyl-N-Methoxymethy- len)-N	H	Н	ОМе	ОМе	CH	z	z	0
1–336	С00Н	Phenyl	(N-2,6-Diisopropylphenyl-N-Methoxymethy- len)-N	Me	Me	ОМе	Me	CH	z	z	0
I-337	Н000		(N-2,6-Diisopropylphenyl-N-Methoxymethy- len)-N	E	Н	СН2ОН	Me	СН	z	z	S
I-338	Н000	4-F-Phenyl	(N-2,6-Diisopropylphenyl-N-Methoxymethy- len)-N	н	Н	ОМе	CH ₂ -CH	CH2-CH2-CH2-C	z	z	0
I-339	С00Н	Phenyl	(N-2,6-Diisopropylphenyl-N-Methoxymethy-len)-N	н	H	OMe	O-CH ₂ -	0-сн2-сн2-с	z	z	0
I-340	Н00Э	Phenyl	(N-2,6-Diisopropylphenyl-N-Methoxymethy-len)-N	Н	H	Ethyl	Ethyl	СН	z	z	0
1–341	Н000	Phenyl	(N-2,6-Diisopropylphenyl-N-Methoxymethy-len)-N	н	H	CF ₃	Ме	НЭ	z	z	0
I–342	Н000	Phenyl		Н	Н	Me	Me	СН	z	z	0
1–343	НООО	Phenyl	-	H	Н	ОМе	ОМе	СН	z	z	0
1–344	Н00Э	Phenyl		Н	Н	ОМе	Me	СН	z	z	0
I-345	Н000	Phenyl	1	Н	Н	СН2ОН	Me	CH	z	z	S

_	,										23						
×	0	0	S	0	0	0	0	0	S	0	S	0	0	0	0	0	S
×	z	z	z	z	z	z	z	z	z	z	z	z	z	z	Z	z	z
×	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
Z	CH ₂ -CH ₂ -CH ₂ -C	СН	CH	CH	CH	CH2-CH2-CH2-C	0-сн2-сн2-с	EH	CH	СН	СН	СН	СН	CH ₂ -CH ₂ -CH ₂ -C	о-сн ₂ -сн ₂ -с	СН	СН
R3	СН2-СН	Me	OMe	Me	Me	CH2-CH	O-CH ₂	Ethyl	Me	Me	ОМе	Me	Me	СН2-СН	0-CH ₂ -	Ethyl	Me
R ²	ОМе	Me	OMe	OMe	CH ₂ OH	OMe	OMe	Ethyl	G3	Me	ОМе	ОМе	СН2ОН	ОМе	ОМе	Ethyl	CF ₃
R8	Н	H	H	H	H	H	H	H	E	Me	H	Н	H	H	H	H	Н
R7	Н	Н	Me	Н	Butyl	Н	Н	Н	Н	Me	Н	н	н	Н	Н	Ħ	Н
R ²²	-	Bu ₂ N	Bu ₂ N	Bu ₂ N	Bu ₂ N	Bu ₂ N	Bu ₂ N	Bu ₂ N	i Bu ₂ N	J- Mezn	Phenyl-HN	i, (N-Butyl-N-Me)-N	ı- (N-Phenyl-N-Me)-N	1, (4-Chlorphenyl)-HN	1, (2,6-Dimethoxyphenyl)-HN	(2,6-Diethylphenyl)-HN	‡
R4, R5	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	4-F-Phenyl	Phenyl, 4 Cl- Phenyl	4-Cl-Phenyl, 4-F-Phenyl	4-F-Phenyl, Phenyl	4-Me-Phen- yl, Naphthyl	2-F-Phenyl, Phenyl	2-F-Phenyl, 4-Mc-Phen- yl	Naphthyl, Phenyl	Phenyl, 4 Cl Phenyl
\mathbb{R}^1	соон	С00Н	СООН	СООН	С00Н	СООН	1000	СООН	СООН	соон	СООН	СООН	СООН	сооме	нооэ	соон	нооэ
Nr.	I-346	I-347	I-348	I-349	I-350	1-351	I-352	I-353	I-354	1–355	1–356	1-357	1–358	1-359	098-1	1–361	1-362

	5	200 100							-		
Nr.	K	K', K ³	K ²	R ,	8 %	R ²	R³	7.	×	>	3
1-363	CODH	A C' Dhe			T			2	ı		
3				Ξ.		OMe	Ę.	בת	Z	7	-
		nyl, 4-F-	1		}		5	5			
		Phenyl)					,			
1 264	11000 176 1	17.17									_
100-1	E000	Napnmyi,	Megn	Me	Me	Me	Me	CH	Z	2	6
		Naphthyl						;		 :	
398 1	ו זענ כייים	Manhoh	7								
COCL	U000	INapiluiyi,	ruenyi-Hiv	H	Ξ	OMe	OMe	H	z	Z	U
		Naphthyi						:			2
1 266	1 366 COOT	7 7 7									
2000	מסס	fr-rucinyi,	f-r-rucilyi, (N-buryi-n-me)-n	H	Ξ	OMe	Me	Ę.	2	N	
		4 Cl Phenyl						;		-	_
1 3/2	1300										
1-30/	1-30/ COOH	4-r-rhenyl, Bu ₂ N	BuzN	H	H	Me	Me	HJ	2	Z	6
		Phenyl					·				_

Tabelle II

	8	: c	2 0) c		٥
	<u>></u>	· z	. z	; z	: z	: 2
	×	: z	Z	; z	2	 2
	Z	E	E	£	CH3-CH3-CH3-C	O-CH ₂ -CH ₂ -C
	R3	Me	Me	OMe	CH ² -Cl	O CH
	R ²	Me	OMe	OMe	OMe	OMe
	R8	三	트	E	三	H
X X X	R7	E	H	E	Ξ	H
R - C - W - C - C - O - (R - R - R - R - R	R6	(N-(2-OMe-PhenylCO)-N-Propyl)-N-CH2-	(N-PhenylSO ₂ -N-Propyl)-N-CH ₂ -	(N-PhenylSO ₂ -N-Propyl)-N-CH ₂ -	(N-PhenyISO ₂ -N-Me)-N-CH ₂ -	(N-PhenylSO ₂ -N-Me)-N-CH ₂ -
	R4, R5	Phenyl	Phenyl	Phenyi	Phenyl	Phenyi
	R¹	НООО	СООН	СООН	СООМе	000
	Nr.	11-1	11-2	II-3	4	II-5

١١-٧			* * * * * * * * * * * * * * * * * * *	4	<u>}</u>	<u>*</u>	2	7	×	>	3
,	соон	Phenyl	(N-PhenylSO ₂ -N-Me)-N-CH ₂ -	Н	Н	Ethyl	Ethyl	СН	z	z	0
II-7	СООН	Phenyl	(N-PhenylSO ₂ -N-Me)-N-CH ₂ -	Н	Н	CF3	Me	СН	z	z	S
8-11	СООН	Phenyl	(N-PhenylSO ₂ -N-Me)-N-CH ₂ -	Н	Н	OMe	CF ₃	СН	z	z	0
6-II	СООН	Phenyl, 4 Cl Phenyl	(MeCO-N-Me)-N-CH ₂ -	Me	Me	Me	Me	СН	z	z	0
II-10	соон	Phenyl	(N-PhenylCO-N-Butyl)-N-CH ₂ -	H	Н	Me	Me	СН	z	z	0
11-11	СООН	Phenyl	(N-PhenylCO-N-Propyl)-N-CH ₂ -	Me	Н	OMe	OMe	СН	z	z	S
II-12	соон	Phenyl	(N-PhenylCO-N-Propyl)-N-CH ₂ -	Н	Н	OMe	Me	СН	z	z	0
11-13	СООН	Phenyl	(N-PhenylCO-N-Me)-N-CH ₂ -	Butyl	Н	СН2ОН	Me	СН	z	z	0
II-14	СООН	Phenyl	(N-PhenylCO-N-Me)-N-CH2-	Н	H	OMe	CH2-CH2-CH2-C	CH2-C	z	z	0
11–15	СООН	4-Cl-Phenyl, 4-F-Phenyl	(N-PhenylSO ₂ -N-Me)-N-CH ₂	Н	Н	ОМе	OMe	СН	z	z	S
91-11	СООН	Phenyl	(N-PhenyICO-N-Me)-N-CH ₂ -	Н	Н	OMe	0-CH ₂ -CH ₂ -C	CH2-C	z	z	0
11-17	Н00Э	Phenyl	(N-PhenylCO-N-Me)-N-CH ₂ -	Н	Н	Ethyl	Ethyl	CH	z	z	0
11-18	СООН	4-F-Phenyl	(N-(4-OMe-PhenylCO)-N-Butyl)-N-CH2-	Н	Н	CF3	Me	СН	z	z	S
ヿ	Н000	Phenyl	(N-(3-OMe-PhenylCO)-N-Propyl)-N-CH2-	Н	Н	OMe	CF3	H)	z	z	0
\neg	НООЭ	Phenyl	(N-PhenylSO ₂ -N-Butyl)-N-CH ₂ -	Н	Н	Me	Me	HO	z	z	0
\neg	Н000	Phenyl	(N-(3,4-Di-OMe-PhenylCO)-N-Me)-N-CH ₂ -	Н	Н	OMe	ОМе	СН	z	z	S
	Н000	Phenyl	(N-(3,4-Di-OMe-PhenylCO)-N-Me)-N-CH ₂ -	Н	Н	OMe	Me	СН	z	z	0
11-23	Н00Э	Phenyl	(N-(3,4-Di-OMe-PhenylCO)-N-Me)-N-CH ₂ -	Н	Н	СН2ОН	Me	СН	z	z	0
	Н000	4-F-Phenyl	(N-(3,4-Di-OMe-PhenylCO)-N-Me)-N-CH ₂ -	Me	Me	OMe	CH2-CH2-CH2-C	-CH ₂ -C	z	z	0
11–25	Н000	Phenyi	(N-(3,4-Di-OMe-PhenylCO)-N-Me)-N-CH ₂ -	Н	Н	OMe	O-CH2-CH2-C	CH ₂ -C	z	z	0
11-26	СООН	Phenyl	(N-(2,6-Di-OMe-PhenylCO)-N-Me)-N-CH ₂ -	Н	Н	Ethyl	Ethyl	СН	z	z	S
11-27	Н000	4-F-Phenyl	(N-(2,6-Di-OMe-PhenylCO)-N-Me)-N-CH ₂ -	Н	Н	CF3	Me	СН	z	z	0
11-28	Н000	4-F-Phenyl	(N-(2,6-Di-OMe-PhenylCO)-N-Me)-N-CH ₂ -	Н	Н	ОМе	CF3	СН	z	z	0
II-29	Н000	Phenyl	(N-(2,6-Di-OMe-PhanylCO)-N-Me)-N-CH2-	Н	Н	Me	Me	Z	CH	z	0

OMe OMe CF OMe Me CH Me CH CH OMe Me CH CH ₂ OH Me CH OMe CH ₂ -CH ₂ -CH ₂ -C OMe O-CH ₂ -CH ₂ -C Ethyl Ethyl CH		C W EFF W W W W O	M C N E N E N E N E N E N E N E N E N E N	O K C K E K K K K K K K K K K K K K K K K	OMe CF Me CH Me CH Me CH CH ₂ -CH ₂	OMe CF Me CH Me CH Me CH CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-	Me CF Me CH Me CH Me CH CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-	Me CF le CH le CH le CH CH2-CH2-C CH liyl CH le CH	Me CF CH CH CH CH CH CH CH CH CH	CF CF CH CH CH CH CH CH CH CH	6 CF CH CH HI2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH	CH C	GR GR<	CH CH<	GB GB GB <
e W W W W	OH W W W W		Ž Č Ž E Ž Ž Ž Ž		Me Me CF ₃ OMe Me Me Me	Me Me CF ₃ Me	Me M			円[の[式]					
Me OMe OMe OMe	3 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6										WEEL WWW WOOD COMEN WE	WE EL WE WE WOUND TO WE	C W WE ET W W W O W C W ET W W W	WE CHE WE	O W C W W Et W W W W C W E W W W
 - - - -		OMe OMe CF ₃	OMe OMe OMe CF ₃ OMe CF ₃	OMe OMe OMe OMe Ethyl CF ₃ OMe Me OMe OMe	OMe OMe OMe CF ₃ OMe Me OMe OMe	HO 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 HO 9 HO 9 HO	 		ET WWW WONDER W	WEEL WWW WO W COME W	WE ET WWW WO WO WE ET W		WE GIVE THE THE THE THE THE THE THE THE THE TH	ONE CHEET WE WE WE CHEET WE WE
H H H	υ	υ	a)	υ	D.	<u>u</u>	<u>.</u>	<u>u</u>	<u></u>	ည	<u></u>	<u></u>	H H H H H H H H H H H H H H H H H H H		H H H H H H H H H H H H H H H H
H H H Me M Me M									ū	ا ا	9	٥	le le		
e-rnenyico-rnv-ch ₂ - e-Phenyico-HN-CH ₂ - e-Phenyico-HN-CH ₂ -	e-rienylCO-HN-CH ₂ - e-PhenylCO-HN-CH ₂ - e-PhenylCO-HN-CH ₂ - e-PhenylCO-HN-CH ₂ -	e-rnenylCO-HN-CH ₂ - e-PhenylCO-HN-CH ₂ - e-PhenylCO-HN-CH ₂ - e-PhenylCO-HN-CH ₂ - e-PhenylCO-HN-CH ₂ -	e-rhenylCO-HN-CH ₂ - e-PhenylCO-HN-CH ₂ -	7- 2- 2- (Me)-	e-FhenylCO-HN-CH ₂ - e-PhenylCO-HN-CH ₂ - e-PhenylCO-HN-CH ₂ - e-PhenylCO-HN-CH ₂ - e-PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ -	7- 	7- -2- -2- -2- -2- -2- -2- -2- -2- -2- -	e-FhenylCO-HN-CH ₂ - e-PhenylCO-HN-CH ₂ - e-PhenylCO-HN-CH ₂ - e-PhenylCO-HN-CH ₂ - e-PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - e-PhenylCO-HN-CH ₂ - e-PhenylCO-HN-CH ₂ - e-PhenylCO-HN-CH ₂ - e-PhenylCO-HN-CH ₂ -	e-FhenylCO-HN-CH ₂ - e-PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ PhenylCO-HN-CH ₂ PhenylCO-HN-CH ₂ PhenylCO-HN-CH ₂ - e-PhenylCO-HN-CH ₂ - e-PhenylCO-HN-CH ₂ - e-PhenylCO-HN-CH ₂ -	e-FhenylCO-HN-CH ₂ - e-PhenylCO-HN-CH ₂ - e-PhenylCO-HN-CH ₂ - e-PhenylCO-HN-CH ₂ - e-PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - e-PhenylCO-HN-CH ₂ -	e-FhenylCO-HN-CH ₂ - e-PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - e-PhenylCO-HN-CH ₂ - o-N-Butyl)-N-CH ₂ - e-PhenylCO-HN-CH ₂ - o-PhenylCO-HN-CH ₂ - o-PhenylCO-HN-	e-FrienyicoHNCH ₂ - e-PhenyicoHNCH ₂ - e-PhenyicoHNCH ₂ - e-PhenyicoHNCH ₂ - e-PhenyicoHNCH ₂ - PhenyicoHNCH ₂ Phenyico	e-rhenylCO-HN-CH ₂ - e-PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ -	e-FhenylCO-HN-CH ₂ - e-PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - c-PhenylCO-HN-CH ₂ - c-PhenylCO-HN-C	e-rhenylCO-HN-CH ₂ - e-PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - O-N-Butyl)-N-CH ₂ - e-PhenylCO-HN-CH ₂ - o-PhenylCO-HN-CH ₂ - o ₂ -N-Propyl)-N-CH ₂ - O ₂ -N-Propyl)-N-CH ₂ - O ₂ -N-Ethyl)-N-CH ₂ -
2,6-Di-OMe-PhenylCO-HN-CH ₂ -2,6-Di-OMe-PhenylCO-HN-CH ₂ -2,6-Di-OMe-PhenylCO-HN-CH ₂ -	2,6-Di-OMe-PhenylCO-HN-CH ₂ 2,6-Di-OMe-PhenylCO-HN-CH ₂ 2,6-Di-OMe-PhenylCO-HN-CH ₂ 2,5-Di-OMe-PhenylCO-HN-CH ₂	2,6-Di-OMe-PhenylCO-HN-CH ₂ 2,6-Di-OMe-PhenylCO-HN-CH ₂ 2,6-Di-OMe-PhenylCO-HN-CH ₂ 2,5-Di-OMe-PhenylCO-HN-CH ₂ 2,4-Di-OMe-PhenylCO-HN-CH ₂	2,6-Di-OMe-PhenylCO-HN-CH ₂ 2,6-Di-OMe-PhenylCO-HN-CH ₂ 2,6-Di-OMe-PhenylCO-HN-CH ₂ 2,5-Di-OMe-PhenylCO-HN-CH ₂ 2,4-Di-OMe-PhenylCO-HN-CH ₂ 2,3-Di-Me-PhenylCO-HN-CH ₂	2,6-Di-OMe-PhenylCO-HN-CH ₂ 2,6-Di-OMe-PhenylCO-HN-CH ₂ 2,5-Di-OMe-PhenylCO-HN-CH ₂ 2,4-Di-OMe-PhenylCO-HN-CH ₂ 2,4-Di-OMe-PhenylCO-HN-CH ₂ 2,3-Di-Me-PhenylCO-HN-CH ₂ 2,3-Di-Me-PhenylCO-HN-CH ₂	2,6-Di-OMe-PhenylCO-HN-CH ₂ 2,6-Di-OMe-PhenylCO-HN-CH ₂ 2,5-Di-OMe-PhenylCO-HN-CH ₂ 2,4-Di-OMe-PhenylCO-HN-CH ₂ 2,3-Di-Me-PhenylCO-HN-CH ₂ 2,3-Di-Me-PhenylCO-HN-CH ₂ 2,3-Di-Me-PhenylCO-HN-CH ₂ 2,3-Di-Me-PhenylCO-HN-CH ₂	2,6-Di-OMe-PhenylCO-HN-CH ₂ 2,6-Di-OMe-PhenylCO-HN-CH ₂ 2,5-Di-OMe-PhenylCO-HN-CH ₂ 2,5-Di-OMe-PhenylCO-HN-CH ₂ 2,3-Di-Me-PhenylCO-HN-CH ₂ 2,3-Di-Me-PhenylCO-HN-CH ₂ 2,3-Di-Me-PhenylCO-HN-CH ₂ 3,4-Di-Me-PhenylCO-HN-CH ₂ 3,4-Di-Me-PhenylCO-HN-CH ₂	2,6-Di-OMe-PhenylCO-HN-CH ₂ -2,6-Di-OMe-PhenylCO-HN-CH ₂ -2,5-Di-OMe-PhenylCO-HN-CH ₂ -2,4-Di-OMe-PhenylCO-HN-CH ₂ -2,3-Di-Me-PhenylCO-HN-CH ₂ -2,3-Di-Me-PhenylCO-HN-CH ₂ -3,3-Di-Me-PhenylCO-HN-CH ₂ -3,4-Di-Me-PhenylCO-HN-CH ₂ -3,5-Di-OMe-PhenylCO-HN-CH ₂ -3,5-Di-OMe-PhenylCO-	2,6-Di-OMe-PhenylCO-HN-CH ₂ 2,6-Di-OMe-PhenylCO-HN-CH ₂ 2,5-Di-OMe-PhenylCO-HN-CH ₂ 2,4-Di-OMe-PhenylCO-HN-CH ₂ 2,3-Di-Me-PhenylCO-HN-CH ₂ 2,3-Di-Me-PhenylCO-HN-CH ₂ 2,3-Di-Me-PhenylCO-HN-CH ₂ 3,4-Di-Me-PhenylCO-HN-CH ₂ 3,4-Di-OMe-PhenylCO-HN-CH ₂ 3,4-Di-OMe-PhenylCO-HN-CH ₂ 3,4-Di-OMe-PhenylCO-HN-CH ₂	2,6-Di-OMe-PhenylCO-HN-CH ₂ 2,6-Di-OMe-PhenylCO-HN-CH ₂ 2,5-Di-OMe-PhenylCO-HN-CH ₂ 2,4-Di-OMe-PhenylCO-HN-CH ₂ 2,3-Di-Me-PhenylCO-HN-CH ₂ 2,3-Di-Me-PhenylCO-HN-CH ₂ 3,4-Di-Me-PhenylCO-HN-CH ₂ 3,4-Di-Me-PhenylCO-HN-CH ₂ 3,4-Di-OMe-PhenylCO-HN-CH ₂ 3,5-Di-OMe-PhenylCO-HN-CH ₂ 3,4-Di-OMe-PhenylCO-HN-CH ₂	2,6-Di-OMe-PhenylCO-HN-CH ₂ 2,6-Di-OMe-PhenylCO-HN-CH ₂ 2,5-Di-OMe-PhenylCO-HN-CH ₂ 2,4-Di-OMe-PhenylCO-HN-CH ₂ 2,3-Di-Me-PhenylCO-HN-CH ₂ 2,3-Di-Me-PhenylCO-HN-CH ₂ 2,3-Di-Me-PhenylCO-HN-CH ₂ 3,4-Di-Me-PhenylCO-HN-CH ₂ 3,4-Di-OMe-PhenylCO-HN-CH ₂ 3,4-Di-OMe-PhenylCO-HN-CH ₂ 3,4-Di-OMe-PhenylCO-HN-CH ₂ (N-PhenylSO ₂ -N-Propyl)-N-CH ₂	2,6-Di-OMe-PhenylCO-HN-CH ₂ 2,6-Di-OMe-PhenylCO-HN-CH ₂ 2,5-Di-OMe-PhenylCO-HN-CH ₂ 2,4-Di-OMe-PhenylCO-HN-CH ₂ 2,3-Di-Me-PhenylCO-HN-CH ₂ 2,3-Di-Me-PhenylCO-HN-CH ₂ 3,4-Di-Me-PhenylCO-HN-CH ₂ 3,4-Di-OMe-PhenylCO-HN-CH ₂ 3,5-Di-OMe-PhenylCO-HN-CH ₂ (N-PhenylSO ₂ -N-Propyl)-N-CH ₂ (N-PhenylSO ₂ -N-Propyl)-N-CH ₂	2,6-Di-OM6-PhenylCO-HN-CH ₂ 2,6-Di-OM6-PhenylCO-HN-CH ₂ 2,5-Di-OM6-PhenylCO-HN-CH ₂ 2,4-Di-OM6-PhenylCO-HN-CH ₂ 2,3-Di-M6-PhenylCO-HN-CH ₂ 2,3-Di-M6-PhenylCO-HN-CH ₂ 3,4-Di-M6-PhenylCO-HN-CH ₂ 3,4-Di-M6-PhenylCO-HN-CH ₂ 3,4-Di-OM6-PhenylCO-HN-CH ₂ 3,4-Di-OM6-PhenylCO-HN-CH ₂ (N-PhenylSO ₂ -N-Propyl)-N-CH ₂ (N-PhenylSO ₂ -N-Propyl)-N-CH ₂ (N-PhenylSO ₂ -N-Propyl)-N-CH ₂	2,6-Di-OM6-PhenylCO-HN-CH ₂ 2,6-Di-OM6-PhenylCO-HN-CH ₂ 2,5-Di-OM6-PhenylCO-HN-CH ₂ 2,4-Di-OM6-PhenylCO-HN-CH ₂ 2,3-Di-M6-PhenylCO-HN-CH ₂ 2,3-Di-M6-PhenylCO-HN-CH ₂ 3,4-Di-M6-PhenylCO-HN-CH ₂ 3,4-Di-OM6-PhenylCO-HN-CH ₂ 3,4-Di-OM6-PhenylCO-HN-CH ₂ 3,4-Di-OM6-PhenylCO-HN-CH ₂ (N-PhenylSO ₂ -N-Propyl)-N-CH ₂	2,6-Di-OM6-PhenylCO-HN-CH ₂ 2,6-Di-OM6-PhenylCO-HN-CH ₂ 2,5-Di-OM6-PhenylCO-HN-CH ₂ 2,4-Di-OM6-PhenylCO-HN-CH ₂ 2,3-Di-M6-PhenylCO-HN-CH ₂ 2,3-Di-M6-PhenylCO-HN-CH ₂ 2,3-Di-M6-PhenylCO-HN-CH ₂ 3,4-Di-M6-PhenylCO-HN-CH ₂ 3,4-Di-OM6-PhenylCO-HN-CH ₂ 3,4-Di-OM6-PhenylCO-HN-CH ₂ (N-PhenylSO ₂ -N-Propyl)-N-CH ₂	2,6-Di-OMe-PhenylCO-HN-CH ₂ 2,6-Di-OMe-PhenylCO-HN-CH ₂ 2,5-Di-OMe-PhenylCO-HN-CH ₂ 2,4-Di-OMe-PhenylCO-HN-CH ₂ 2,4-Di-OMe-PhenylCO-HN-CH ₂ 2,3-Di-Me-PhenylCO-HN-CH ₂ 2,3-Di-Me-PhenylCO-HN-CH ₂ 2,3-Di-Me-PhenylCO-HN-CH ₂ 3,4-Di-OMe-PhenylCO-HN-CH ₂ 3,4-Di-OMe-PhenylSO ₂ -N-Ethyl)-N-CH ₂ 3,4-Di-OMe-PhenylSO ₂ -N-Ethyl
2,6-Di-OMe-PhenylCO-HN-CH ₂ - 2,6-Di-OMe-PhenylCO-HN-CH ₂ -	2,6-Di-OMe-PhenylCO-HN-CH ₂ - 2,6-Di-OMe-PhenylCO-HN-CH ₂ - 2,5-Di-OMe-PhenylCO-HN-CH ₂ -	2,6-Di-OMe-PhenylCO-HN-CH ₂ - 2,6-Di-OMe-PhenylCO-HN-CH ₂ - 2,5-Di-OMe-PhenylCO-HN-CH ₂ - 2,4-Di-OMe-PhenylCO-HN-CH(Me)-	2,6-Di-OMe-PhenylCO-HN-CH ₂ - 2,6-Di-OMe-PhenylCO-HN-CH ₂ - 2,5-Di-OMe-PhenylCO-HN-CH ₂ - 2,4-Di-OMe-PhenylCO-HN-CH ₂ - 2,3-Di-Me-PhenylCO-HN-CH ₂ -	2,6-Di-OMe-PhenylCO-HN-CH ₂ - 2,6-Di-OMe-PhenylCO-HN-CH ₂ - 2,5-Di-OMe-PhenylCO-HN-CH ₂ - 2,4-Di-OMe-PhenylCO-HN-CH ₂ - 2,3-Di-Me-PhenylCO-HN-CH ₂ - 2,3-Di-Me-PhenylCO-HN-CH ₂ -	2,6-Di-OMe-PhenylCO-HN-CH ₂ - 2,6-Di-OMe-PhenylCO-HN-CH ₂ - 2,5-Di-OMe-PhenylCO-HN-CH ₂ - 2,4-Di-OMe-PhenylCO-HN-CH ₂ - 2,3-Di-Me-PhenylCO-HN-CH ₂ - 2,3-Di-Me-PhenylCO-HN-CH ₂ - (N-PhenylCO-N-Butyl)-N-CH ₂ -	2,6-Di-OMe-PhenylCO-HN-CH ₂ - 2,6-Di-OMe-PhenylCO-HN-CH ₂ - 2,5-Di-OMe-PhenylCO-HN-CH ₂ - 2,4-Di-OMe-PhenylCO-HN-CH ₂ - 2,3-Di-Me-PhenylCO-HN-CH ₂ - 2,3-Di-Me-PhenylCO-HN-CH ₂ - 3,4-Di-Me-PhenylCO-HN-CH ₂ - 3,4-Di-Me-PhenylCO-HN-CH ₂ -	2,6-Di-OMe-PhenylCO-HN-CH ₂ - 2,6-Di-OMe-PhenylCO-HN-CH ₂ - 2,5-Di-OMe-PhenylCO-HN-CH ₂ - 2,4-Di-OMe-PhenylCO-HN-CH ₂ - 2,3-Di-Me-PhenylCO-HN-CH ₂ - 2,3-Di-Me-PhenylCO-HN-CH ₂ - (N-PhenylCO-N-Butyl)-N-CH ₂ - 3,4-Di-Me-PhenylCO-HN-CH ₂ - 3,5-Di-OMe-PhenylCO-HN-CH ₂ -	2,6-Di-OMe-PhenylCO-HN-CH ₂ - 2,6-Di-OMe-PhenylCO-HN-CH ₂ - 2,5-Di-OMe-PhenylCO-HN-CH ₂ - 2,4-Di-OMe-PhenylCO-HN-CH ₂ - 2,3-Di-Me-PhenylCO-HN-CH ₂ - 2,3-Di-Me-PhenylCO-HN-CH ₂ - 3,4-Di-Me-PhenylCO-HN-CH ₂ - 3,4-Di-Me-PhenylCO-HN-CH ₂ - 3,4-Di-OMe-PhenylCO-HN-CH ₂ - 3,4-Di-OMe-PhenylCO-HN-CH ₂ -	2,6-Di-OMe-PhenylCO-HN-CH ₂ - 2,6-Di-OMe-PhenylCO-HN-CH ₂ - 2,5-Di-OMe-PhenylCO-HN-CH ₂ - 2,3-Di-Me-PhenylCO-HN-CH ₂ - 2,3-Di-Me-PhenylCO-HN-CH ₂ - (N-PhenylCO-N-Butyl)-N-CH ₂ - 3,4-Di-Me-PhenylCO-HN-CH ₂ - 3,5-Di-OMe-PhenylCO-HN-CH ₂ - 3,5-Di-OMe-PhenylCO-HN-CH ₂ - 3,4-Di-OMe-PhenylCO-HN-CH ₂ - 3,4-Di-OMe-PhenylCO-HN-CH ₂ -	2,6-Di-OMe-PhenylCO-HN-CH ₂ - 2,6-Di-OMe-PhenylCO-HN-CH ₂ - 2,5-Di-OMe-PhenylCO-HN-CH ₂ - 2,4-Di-OMe-PhenylCO-HN-CH ₂ - 2,3-Di-Me-PhenylCO-HN-CH ₂ - 2,3-Di-Me-PhenylCO-HN-CH ₂ - 3,4-Di-Me-PhenylCO-HN-CH ₂ - 3,4-Di-OMe-PhenylCO-HN-CH ₂ - 3,4-Di-OMe-PhenylCO-HN-CH ₂ - 3,4-Di-OMe-PhenylCO-HN-CH ₂ - 3,4-Di-OMe-PhenylCO-HN-CH ₂ - (N-PhenylSO ₂ -N-Propyl)-N-CH ₂ -	2,6-Di-OMe-PhenylCO-HN-CH ₂ - 2,6-Di-OMe-PhenylCO-HN-CH ₂ - 2,5-Di-OMe-PhenylCO-HN-CH ₂ - 2,3-Di-Me-PhenylCO-HN-CH ₂ - 2,3-Di-Me-PhenylCO-HN-CH ₂ - 3,4-Di-Me-PhenylCO-HN-CH ₂ - 3,4-Di-Me-PhenylCO-HN-CH ₂ - 3,5-Di-OMe-PhenylCO-HN-CH ₂ - 3,5-Di-OMe-PhenylCO-HN-CH ₂ - 3,5-Di-OMe-PhenylCO-HN-CH ₂ - (N-PhenylSO ₂ -N-Propyl)-N-CH ₂ - (N-PhenylSO ₂ -N-Propyl)-N-CH ₂ -	2,6-Di-OMe-PhenylCO-HN-CH ₂ - 2,6-Di-OMe-PhenylCO-HN-CH ₂ - 2,5-Di-OMe-PhenylCO-HN-CH ₂ - 2,3-Di-Me-PhenylCO-HN-CH ₂ - 2,3-Di-Me-PhenylCO-HN-CH ₂ - 2,3-Di-Me-PhenylCO-HN-CH ₂ - 3,4-Di-Me-PhenylCO-HN-CH ₂ - 3,4-Di-Me-PhenylCO-HN-CH ₂ - 3,4-Di-OMe-PhenylCO-HN-CH ₂ - 3,4-Di-OMe-PhenylCO-HN-CH ₂ - (N-PhenylSO ₂ -N-Propyl)-N-CH ₂ - (N-PhenylSO ₂ -N-Propyl)-N-CH ₂ - (N-PhenylSO ₂ -N-Propyl)-N-CH ₂ -	2,6-Di-OMe-PhenylCO-HN-CH ₂ - 2,6-Di-OMe-PhenylCO-HN-CH ₂ - 2,5-Di-OMe-PhenylCO-HN-CH ₂ - 2,4-Di-OMe-PhenylCO-HN-CH ₂ - 2,3-Di-Me-PhenylCO-HN-CH ₂ - 2,3-Di-Me-PhenylCO-HN-CH ₂ - 3,4-Di-Me-PhenylCO-HN-CH ₂ - 3,4-Di-OMe-PhenylCO-HN-CH ₂ - 3,4-Di-OMe-PhenylCO-HN-CH ₂ - (N-PhenylSO ₂ -N-Propyl)-N-CH ₂ -	2,6-Di-OMe-PhenylCO-HN-CH ₂ - 2,6-Di-OMe-PhenylCO-HN-CH ₂ - 2,5-Di-OMe-PhenylCO-HN-CH ₂ - 2,4-Di-OMe-PhenylCO-HN-CH ₂ - 2,3-Di-Me-PhenylCO-HN-CH ₂ - 2,3-Di-Me-PhenylCO-HN-CH ₂ - 3,4-Di-Me-PhenylCO-HN-CH ₂ - 3,4-Di-OMe-PhenylCO-HN-CH ₂ - 3,4-Di-OMe-PhenylCO-HN-CH ₂ - 3,4-Di-OMe-PhenylCO-HN-CH ₂ - 3,4-Di-OMe-PhenylCO-HN-CH ₂ - (N-PhenylSO ₂ -N-Propyl)-N-CH ₂ -	2,6-Di-OMe-PhenylCO-HN-CH ₂ - 2,6-Di-OMe-PhenylCO-HN-CH ₂ - 2,5-Di-OMe-PhenylCO-HN-CH ₂ - 2,4-Di-OMe-PhenylCO-HN-CH ₂ - 2,3-Di-Me-PhenylCO-HN-CH ₂ - 2,3-Di-Me-PhenylCO-HN-CH ₂ - 3,3-Di-Me-PhenylCO-HN-CH ₂ - 3,4-Di-Me-PhenylCO-HN-CH ₂ - 3,5-Di-OMe-PhenylCO-HN-CH ₂ - 3,5-Di-OMe-PhenylCO-HN-CH ₂ - 3,5-Di-OMe-PhenylCO-HN-CH ₂ - N-PhenylSO ₂ -N-Propyl)-N-CH ₂ - N-PhenylSO ₂ -N-Propyl)-N-CH ₂ - N-PhenylSO ₂ -N-Ethyl)-N-CH ₂ -
e-PhenylCO-HN-CH ₂ -	e-PhenylCO-HN-CH ₂ - H	e-PhenylCO-HN-CH ₂ - e-PhenylCO-HN-CH ₂ - H e-PhenylCO-HN-CH(Me)- H	e-PhenylCO-HN-CH ₂ - H- e-PhenylCO-HN-CH ₂ - H- e-PhenylCO-HN-CH(Me)- PhenylCO-HN-CH ₂ - H	7- H 2- H (Me)- H H	7- H (Me)- H H H H H H H	7- H (Me)- H H H	7- H (Me)- H (Me)- H H H H H T H H T H H H H H	e-PhenylCO-HN-CH ₂ - H e-PhenylCO-HN-CH ₂ - H e-PhenylCO-HN-CH ₂ - H PhenylCO-HN-CH ₂ - H O-N-Butyl)-N-CH ₂ - H PhenylCO-HN-CH ₂ - H e-PhenylCO-HN-CH ₂ - H e-PhenylCO-HN-CH ₂ - H	e-PhenylCO-HN-CH ₂ - H e-PhenylCO-HN-CH ₂ - H e-PhenylCO-HN-CH ₂ - H PhenylCO-HN-CH ₂ - H :O-N-Butyl)-N-CH ₂ - H :O-N-Butyl)-N-CH ₂ - H e-PhenylCO-HN-CH ₂ - H e-PhenylCO-HN-CH ₂ - H e-PhenylCO-HN-CH ₂ - H o-PhenylCO-HN-CH ₂ - H o-PhenylCO-HN-CH ₂ - H	e-PhenylCO-HN-CH ₂ - H e-PhenylCO-HN-CH ₂ - H e-PhenylCO-HN-CH ₂ - H PhenylCO-HN-CH ₂ - H O-N-Butyl)-N-CH ₂ - H PhenylCO-HN-CH ₂ - H e-PhenylCO-HN-CH ₂ - H e-PhenylCO-HN-CH ₂ - H e-PhenylCO-HN-CH ₂ - H O ₂ -N-Propyl)-N-CH ₂ - H O ₂ -N-Propyl)-N-CH ₂ - H	e-PhenylCO-HN-CH ₂ - e-PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - O-N-Butyl)-N-CH ₂ - PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - P-PhenylCO-HN-CH ₂ - P-PhenylCO-HN-CH ₂ - D ₂ -N-Propyl)-N-CH ₂ - H O ₂ -N-Propyl)-N-CH ₂ - H O ₂ -N-Propyl)-N-CH ₂ - H	e-PhenylCO-HN-CH ₂ - H e-PhenylCO-HN-CH ₂ - H e-PhenylCO-HN-CH ₂ - H PhenylCO-HN-CH ₂ - H O-N-Butyl)-N-CH ₂ - H PhenylCO-HN-CH ₂ - H e-PhenylCO-HN-CH ₂ - H e-PhenylCO-HN-CH ₂ - H O ₂ -N-Propyl)-N-CH ₂ - H	e-PhenylCO-HN-CH ₂ - H e-PhenylCO-HN-CH ₂ - H e-PhenylCO-HN-CH ₂ - H PhenylCO-HN-CH ₂ - H O-N-Butyl)-N-CH ₂ - H PhenylCO-HN-CH ₂ - H e-PhenylCO-HN-CH ₂ - H b-PhenylCO-HN-CH ₂ - H o-PhenylCO-HN-CH ₂ - H O ₂ -N-Propyl)-N-CH ₂ - H	e-PhenylCO-HN-CH ₂ - h-PhenylCO-HN-CH ₂ - P-PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - P-PhenylCO-HN-CH ₂ - P-Ph	e-PhenylCO-HN-CH ₂ - e-PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - O-N-Butyl)-N-CH ₂ - PhenylCO-HN-CH ₂ - PhenylCO
	e-PhenylCO-HN-CH ₂ -	e-PhenylCO-HN-CH ₂ - e-PhenylCO-HN-CH(Me)- H	e-PhenylCO-HN-CH ₂ - e-PhenylCO-HN-CH(Me)- PhenylCO-HN-CH ₂ - H	7— Н (Ме)— Н Н	7— Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н	7— Н (Ме)— Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н	7- H (Ме)- H H H H H H H H H H H H H H H H H H H	e-PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - H	e-PhenylCO-HN-CH2- H e-PhenylCO-HN-CH(Me)- H PhenylCO-HN-CH2- H PhenylCO-HN-CH2- H CO-N-Butyl)-N-CH2- H e-PhenylCO-HN-CH2- H e-PhenylCO-HN-CH2- H o-PhenylCO-HN-CH2- H o-PhenylCO-HN-CH2- H	e-PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - O-N-Butyl)-N-CH ₂ - PhenylCO-HN-CH ₂ - PhenylCO-H	e-PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - O-N-Butyl)-N-CH ₂ - PhenylCO-HN-CH ₂ - P-PhenylCO-HN-CH ₂ - P-Pheny	e-PhenylCO-HN-CH ₂ - H- e-PhenylCO-HN-CH ₂ - H- PhenylCO-HN-CH ₂ - H- PhenylCO-HN-CH ₂ - H- PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - H- e-PhenylCO-HN-CH ₂ - H- O ₂ -N-Propyl)-N-CH ₂ - H- O ₃ -N-Propyl)-N-CH ₂ - H- O ₃ -N-Propyl)-N-CH ₂ - H- O ₄ -N-Propyl)-N-CH ₂ - H- O ₅ -N-Propyll-N-CH ₂ - H-	e-PhenylCO-HN-CH ₂ - HenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - HenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - O ₂ -N-Propyl)-N-CH ₂ - H	e-PhenylCO-HN-CH ₂ - H- e-PhenylCO-HN-CH ₂ - H- PhenylCO-HN-CH ₂ - H- PhenylCO-HN-CH ₂ - HPhenylCO-HN-CH ₂ - H- e-PhenylCO-HN-CH ₂ - H- b-PhenylCO-HN-CH ₂ - H- c-PhenylCO-HN-CH ₂ - H- d ₂ -N-Propyl)-N-CH ₂ - H- d ₃ -N-Propyl	e-PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - O-N-Butyl)-N-CH ₂ - PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - PhenylCO-HN-CH ₂ - O ₂ -N-Propyl)-N-CH ₂ - D ₂ -N-Propyl)-N-CH ₂ - H O ₃ -N-Propyll-N-CH ₂ - H O ₄ -N-Propyll-N-CH ₂ - H O ₅ -N-Propyll-N-CH ₂ - H O

Phenyl (N-PhenylSO₂-N-Ethyl)-N-CH₂- H H Phenyl (N-(3-Cl-4-Me-PhenylSO₂)-N-Ethyl)-N-CH₂- H H Phenyl (N-(3-Cl-4-Me-PhenylSO₂)-N-Ethyl)-N-CH₂- H H Phenyl (N-(3-CM6-4-Me-PhenylSO₂)-N-Ethyl)-N-CH₂- H H 4-F-Phenyl (N-(3-CM6-4-Me-PhenylSO₂)-N-Ethyl)-N-CH₂- H H Phenyl (N-(3-Cl-4-Me-PhenylSO₂)-N-Ethyl)-N-CH₂- H H Phenyl (N-(3-Cl-4-Me-PhenylSO₂)-N-Ethyl)-N-CH₂- H H Phenyl (N-(3-Cl-PhenylSO₂)-N-Ethyl)-N-CH₂- H H Phenyl (N-(3-C-PhenylSO₂)-N-Ethyl)-N-CH₂- H H Phenyl (N-(3-C-Di-OMe-PhenylSO₂)-N-Ethyl)-N-CH₂- H H Phenyl (N-(3-C-Di-OMe-PhenylSO₂)-N-Ethyl)-N-CH₂- H H Phenyl (N-(3-C-Di-OMe-PhenylSO₂)-N-Ethyl)-N-CH₂- H H Phenyl (N-(3-Cl-4-Me-PhenylSO₂)-N-Ethyl)-N-CH₂- H H Phenyl (N-(3-Cl-4-Me-PhenylSO₂)-N-Me)-N-CH₂- H H Phenyl (N-(3-Cl-4-Me-PhenylSO₂)-N-Ethyl)-N-CH₂- H	R ¹ I	R ⁴ , R ⁵	R6	R7	R8	\mathbb{R}^2	R3	Z	×	Y	A
 Phenyl (N-(3-OMe-4-Me-PhenylSO₂)-N-Ethyl)-N-CH₂- Phenyl (N-(3-CL-4-Me-PhenylSO₂)-N-Ethyl)-N-CH₂- Phenyl (N-(3-OMe-4-Me-PhenylSO₂)-N-Ethyl)-N-CH₂- Phenyl (N-(3-CL-4-Me-PhenylSO₂)-N-Ethyl)-N-CH₂- Phenyl (N-(3-CL-4-Me-PhenylSO₂)-N-Ethyl)-N-CH₂- Phenyl (N-(3-CL-4-Me-PhenylSO₂)-N-Ethyl)-N-CH₂- Phenyl (N-(3-CL-4-Me-PhenylSO₂)-N-Ethyl)-N-CH₂- Phenyl (N-(3-CL-4-Me-PhenylSO₂)-N-Ethyl)-N-CH₂- Phenyl (N-(3-4-Di-CL-PhenylSO₂)-N-Ethyl)-N-CH₂- Phenyl (N-(3-4-Di-CL-PhenylSO₂)-N-Ethyl)-N-CH₂- Phenyl (N-(3-4-Di-CL-PhenylSO₂)-N-Ethyl)-N-CH₂- Phenyl (N-(3-4-Di-CL-PhenylSO₂)-N-Ethyl)-N-CH₂- Phenyl (N-(3-CDi-OMe-PhenylSO₂)-N-Ethyl)-N-CH₂- Phenyl (N-(3-CDi-OMe-PhenylSO₂)-N-Ethyl)-N-CH₂- Phenyl (N-(3-CDi-OMe-PhenylSO₂)-N-Ethyl)-N-CH₂- Phenyl (N-(3-CDi-OMe-PhenylSO₂)-N-Me)-N-CH₂- Phenyl (N-(3-CDi-OMe-PhenylSO₂)-N-Me)-N-CH₂- Phenyl (N-(3-CDi-OMe-PhenylSO₂)-N-Me)-N-CH₂- Phenyl (N-(3-CDi-OMe-PhenylSO₂)-N-Me)-N-CH₂- Phenyl (N-(3-CD-PhenylSO₂)-N-Me)-N-CH₂- Phenyl (N-(3-CD-PhenylSO₂)-N-Me)-N-CH₂- Phenyl (N-(3-Di-CD-PhenylSO₂)-N-Me)-N-CH₂- Phenyl (N-(3-Di-CD-PhenylSO₂)-N		Phenyl	(N-PhenylSO ₂ -N-Ethyl)-N-CH ₂ -	Н	Н	$\mathrm{CH}_2\mathrm{F}$	Me	CH	z	z	S
 Phenyi (N-(3-CI-4-Me-PhenyiSO₂)-N-Eithyl)-N-CH₂- H Phenyi (N-(3-OMe-4-Me-PhenyiSO₂)-N-Eithyl)-N-CH₂- H Phenyi (N-(3-CI-4-Me-PhenyiSO₂)-N-Eithyl)-N-CH₂- H Phenyi (N-(3-CI-4-Me-PhenyiSO₂)-N-Eithyl)-N-CH₂- H Phenyi (N-(3-CI-4-Me-PhenyiSO₂)-N-Eithyl)-N-CH₂- H Phenyi (N-(3-4-Di-CI-PhenyiSO₂)-N-Eithyl)-N-CH₂- H Phenyi (N-(3,4-Di-CI-PhenyiSO₂)-N-Eithyl)-N-CH₂- H Phenyi (N-(3,6-Di-OMe-PhenyiSO₂)-N-Eithyl)-N-CH₂- H Phenyi (N-(3,6-Di-OMe-PhenyiSO₂)-N-Eithyl)-N-CH₂- H Phenyi (N-(3,6-Di-OMe-PhenyiSO₂)-N-Me)-N-CH₂- H Phenyi (N-(3-CI-4-Me-PhenyiSO₂)-N-Me)-N-CH₂- H Phenyi (N-(3-4-Di-CI-PhenyiSO₂)-N-Me)-N-CH₂- H		Phenyl		H	H	OMe	CH2-CH2	CH2-CH2-CH2-C	z	z	0
Phenyl (N-(3-OMe-4-Me-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(3-Cl-4-Me-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(3-Cl-4-Me-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(3-Cl-4-Me-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(3,4-Di-Cl-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(3,4-Di-Cl-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(3,4-Di-Cl-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(3,6-Di-OMe-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(3,6-Di-OMe-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(3-Cl-4-Me-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(3,6-Di-OMe-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-Cl-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-OMe-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-OMe-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N		Phenyl	_	H	H	OMe	O-CH2-	0-сн2-сн2-с	z	z	0
Phenyl (N-(3-OMe-4-Me-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H 4-F-Phenyl (N-(3-Cl-4-Me-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(3-Cl-4-Me-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(3,4-Di-Cl-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(3,6-Di-OMe-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(3-Cl-4-Me-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(3-Cl-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3		Phenyl	(N-(3-OMe-4-Me-PhenylSO ₂)-N-Ethyl)-N-CH ₂ -	H	H	Ethyl	Ethyl	CH	z	z	0
4-F-Phenyl (N-(3-C1-4-Me-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H Phenyl (N-(3-C1-4-Me-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(3,4-Di-C1-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(3,6-Di-OMe-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(3-C1-4-Me-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(3-C1-4-Me-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(3-C1-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-C1-4-Me-PhenylSO ₂)		Phenyl		H	H	CF ₃	Me	СН	z	z	0
Phenyl (N-(3-Cl-4-Me-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(3,4-Di-Cl-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(3,4-Di-Cl-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(3,4-Di-Cl-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H 4-F-Phenyl (N-(3,6-Di-OMe-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(3-Cl-4-Me-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(3-Cl-4-Me-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(3-Cl-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-Cl-4-M		4-F-Phenyl		H	H	ОМе	CF ₃	CH	z	z	0
Phenyl (N-(3,4-Di-Cl-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl 3,4-Di-OMe-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(3,4-Di-Cl-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H 4-F-Phenyl (N-(3,4-Di-Cl-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(2,6-Di-OMe-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(3,6-Di-OMe-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(3,6-Di-OMe-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(3-Cl-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-Cl-4-Me-		Phenyl		Н	Н	Me	Me	CH	z	z	0
Phenyl 3,4-Di-OMe-PhenylCO-HN-CH₂- H H Phenyl (N-(3,4-Di-Cl-PhenylSO₂)-N-Ethyl)-N-CH₂- H H Phenyl (N-(3,4-Di-Cl-PhenylSO₂)-N-Ethyl)-N-CH₂- H H 4-F-Phenyl (N-(2,6-Di-OMe-PhenylSO₂)-N-Ethyl)-N-CH₂- H H Phenyl (N-(2,6-Di-OMe-PhenylSO₂)-N-Ethyl)-N-CH₂- H H Phenyl (N-(3-Cl-4-Me-PhenylSO₂)-N-Ethyl)-N-CH₂- H H Phenyl (N-(3-Cl-4-Me-PhenylSO₂)-N-Me)-N-CH₂- H H Phenyl (N-(3-OMe-4-Me-PhenylSO₂)-N-Me)-N-CH₂- H H Phenyl (N-(3-OMe-4-Me-PhenylSO₂)-N-Me)-N-CH₂- H H Phenyl (N-(3-Cl-4-Me-PhenylSO₂)-N-Me)-N-CH₂- H H Phenyl (N-(3-Cl-4-Me-PhenylSO₂)-N-Me)-N-CH₂- H H Phenyl (N-(3-Cl-4-Me-PhenylSO₂)-N-Me)-N-CH₂- H H Phenyl (N-(3-Cl-4-Me-PhenylSO₂)-N-Me)-N-CH₂- H H Phenyl (N-(3-Di-Cl-4-Me-PhenylSO₂)-N-Me)-N-CH₂- H H Phenyl (N-(3-Di-Cl-4-Me-PhenylSO₂)-N-Me)-N-CH₂- H H		Phenyl	(N-(3,4-Di-Cl-PhenylSO ₂)-N-Ethyl)-N-CH ₂ -	Н	Н	ОМе	OMe	CH	z	z	S
Phenyl (N-(3,4-Di-Cl-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(3,4-Di-Cl-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H 4-F-Phenyl (N-(2,6-Di-OMe-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(2,6-Di-OMe-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(3-Cl-4-Me-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(3-OMe-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-Cl-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-Cl-4-Me-		Phenyl		Н	H	Me	Me	CH	z	z	0
Phenyl (N-(3,4-Di-Cl-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H 4-F-Phenyl (N-(2,6-Di-OMe-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(2,6-Di-OMe-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H c 2-F-Phenyl, (N-(3-Cl-4-Me-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(2,6-Di-OMe-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-Cl-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-Cl-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-OMe-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-Cl-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-Di-Cl-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-Di-Cl-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-Di-Cl-Phen		Phenyl	(N-(3,4-Di-Cl-PhenylSO ₂)-N-Ethyl)-N-CH ₂ -	н	H	OMe	Me	CH	z	z	0
4-F-Phenyl (N-(2,6-Di-OMe-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(2,6-Di-OMe-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(3-Cl-4-Me-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(3-Cl-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-OMe-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-Cl-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-Di-Cl-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-Di-Cl-PhenylSO ₂)-		Phenyl	-Cl-PhenylSO ₂)-N-Ethyl)-N-CH ₂ -	H	Н	Н	Me	C-Me	z	z	0
e 2-F-Phenyl, (N-(3-C1-4-Me-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - Me Me Phenyl (N-(3-C1-4-Me-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(3-Di-OMe-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-OMe-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-C1-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-C1-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3,4-Di-C1-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3,4-Di-C1-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3,6-Di-OMe-PhenylSO ₂)-N-Me)-N-CH ₂ - H H		4-F-Phenyl	(N-(2,6-Di-OMe-PhenyISO ₂)-N-EthyI)-N-CH ₂ -	H	H	OMe	CH2-CH2	CH2-CH2-CH2-C	z	z	0
c 2-F-Phenyl, (N-(3-Cl-4-Me-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(2,6-Di-OMe-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(3-OMe-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-Cl-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-OMe-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-Cl-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-Cl-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H 4-F-Phenyl (N-(3,4-Di-Cl-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3,4-Di-Cl-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3,4-Di-Cl-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3,6-Di-Cl-PhenylSO ₂)-N-Me)-N-CH ₂ - H H		Phenyl	(N-(2,6-Di-OMe-PhenyISO ₂)-N-Ethyl)-N-CH ₂ -	Me	Me	OMe	O-CH2-CH2-C	CH ₂ -C	z	z	0
Phenyl (N-(2,6-Di-OMe-PhenylSO ₂)-N-Ethyl)-N-CH ₂ - H H Phenyl (N-(3-OMe-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - Me Me Phenyl (N-(3-CI-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-OMe-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-CI-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-CI-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-CI-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H 4-F-Phenyl (N-(3,4-Di-CI-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3,4-Di-CI-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3,4-Di-CI-PhenylSO ₂)-N-Me)-N-CH ₂ - H H		2–F–Phenyl, Phenyl	(N-(3-CI-4-Me-PhenyISO ₂)-N-EthyI)-N-CH ₂ -	Н	H	ОМе	CH ₂ —CH	CH ₂ -CH ₂ -CH ₂ -C	z	z	0
Phenyl (N-(3-OMe-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - Me Me Phenyl (N-(3-CI-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-OMe-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-OMe-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-CI-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-CI-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H 4-F-Phenyl (N-(3,4-Di-CI-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3,4-Di-CI-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(2,6-Di-OMe-PhenylSO ₂)-N-Me)-N-CH ₂ - H H		Phenyl		Н	H	Ethyl	Ethyl	z	СН	z	0
Phenyl (N-(3-CI-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-OMe-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-OMe-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-CI-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-CI-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H 4-F-Phenyl (N-(3,4-Di-CI-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3,4-Di-CI-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(2,6-Di-OMe-PhenylSO ₂)-N-Me)-N-CH ₂ - H H		Phenyl	(N-(3-OMe-4-Me-PhenyISO ₂)-N-Me)-N-CH ₂ -	Me	Me	CF3	Me	CH	z	z	0
Phenyl (N-(3-OMe-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-OMe-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-CI-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-CI-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H 4-F-Phenyl (N-(3,4-Di-CI-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3,4-Di-CI-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(2,6-Di-OMe-PhenylSO ₂)-N-Me)-N-CH ₂ - H H		Phenyl	-	Н	Н	OMe	CF ₃	CH	z	z	0
Phenyl (N-(3-OMe-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3-Cl-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - Me H Phenyl (N-(3-Cl-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3,4-Di-Cl-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3,4-Di-Cl-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(2,6-Di-OMe-PhenylSO ₂)-N-Me)-N-CH ₂ - H H		Phenyl	(N-(3-OMe-4-Me-PhenyISO ₂)-N-Me)-N-CH ₂ -	Н	Н	Me	Me	CH	z	z	0
Phenyl (N-(3-C!-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - Me H Phenyl (N-(3-C!-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3,4-Di-C!-PhenylSO ₂)-N-Me)-N-CH ₂ - H H 4-F-Phenyl (N-(3,4-Di-C!-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(2,6-Di-OMe-PhenylSO ₂)-N-Me)-N-CH ₂ - H H		Phenyl	(N-(3-OMe-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ -	Н	Н	OMe	OMe	H	z	z	0
Phenyl (N-(3-CI-4-Me-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(3,4-Di-CI-PhenylSO ₂)-N-Me)-N-CH ₂ - H H 4-F-Phenyl (N-(3,4-Di-CI-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(2,6-Di-OMe-PhenylSO ₂)-N-Me)-N-CH ₂ - H H		Phenyl	•	Me	Н	OMe	Me	Æ	z	z	0
Phenyl (N-(3,4-Di-Cl-PhenylSO ₂)-N-Me)-N-CH ₂ - H H 4-F-Phenyl (N-(3,4-Di-Cl-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(2,6-Di-OMe-PhenylSO ₂)-N-Me)-N-CH ₂ - H H		Phenyl	-	Н	Н	H	OMe	C-Me	z	z	0
4-F-Phenyl (N-(3,4-Di-Cl-PhenylSO ₂)-N-Me)-N-CH ₂ - H H Phenyl (N-(2,6-Di-OMe-PhenylSO ₂)-N-Me)-N-CH ₂ - H H		Phenyl	(N-(3,4-Di-Cl-PhenyISO ₂)-N-Me)-N-CH ₂ -	Н	Н	OMe	CH2-CH2	CH2-CH2-CH2-C	z	z	0
Phenyl (N-(2,6-Di-OMe-PhenylSO ₂)NMe)NCH ₂ - H H		4-F-Phenyl	-CI-PhenylSO ₂)-N-Me)-N-CH ₂ -	Н	Н	OMe	0-CH ₂ -	O-CH2-CH2-C	z	z	S
		Phenyi	-OMe-PhenyISO ₂)-N-Me)-N-CH ₂ -	Н	Н	Ethyl	Ethyl	CH	z	z	0
Phenyl (N-(3,4-Di-OMe-Phenyl-CO)-N-Me)-N-CH ₂ - H H	Н000	Phenyl	(N-(3,4-Di-OMe-Phenyl-CO)-N-Me)-N-CH ₂ -	Н	H	Me	Me	CH	z	z	0

Nr.	R1	R4, R5	R6	R7	R8	R2	R3	7	X	Y	₩
61-11	Н000	Phenyl	(N-(2,6-Di-OMe-PhenyISO ₂)-N-Me)-N-CH ₂ -	Н	=	CF ₃	Me	CH.	z	z	0
1I-80	Н000	Phenyi	(N-(2,6-Di-OMe-PhenyISO ₂)-N-Me)-N-CH ₂ -	Н	田田	OMe	CF3	CH	z	z	0
11-81	СООН	Phenyl	PhenylSO ₂ -HN-CH(Benzyl)-	Н	田田	Me	Me	CH	z	z	0
II-82	СООН	Phenyl	PhenylSO ₂ -HN-CH ₂ -	Me	Me	OMe	OMe	CH	z	z	0
11–83	соон	2-F-Phenyl, 4-Me-Phenyl	3-H00CCH ₂ O-4-0Me-PhenylCO-HN-CH ₂ -	н	H	ОМе	0-CH ₂ -	O-CH ₂ -CH ₂ -C	z	z	0
II-84	СООН	Phenyl	PhenylSO ₂ -HN-CH ₂ -	Н	H	ОМе	Me	CH	z	z	0
II-85	соон	4-F-Phenyl	PhenylSO ₂ -HN-CH ₂ -	Н	H	H	OMe	C-OMe	z	z	0
II-86	СООН	Phenyl	PhenylSO ₂ -HN-CH ₂ -	H	H	OMe	CH2-CH2-CH2-C	2-CH2-C	z	z	S
11-87	СООН	Phenyl	(N-ButyISO ₂ -N-Me)-N-CH ₂ -	Н	田田	OMe	O-CH ₂ -CH ₂ -C	CH ₂ -C	z	z	0
II–88	соон	Phenyl	(N-(2,6-Di-OMe-Phenyl-CO)-N-Me)-N-CH ₂ -	Н	H	Me	Me	CH	Z	z	0
11–89	СООН	Phenyl	(N-ButyISO ₂ -N-Me)-N-CH ₂ -	Н	H	Ethyl	Ethyl	СН	z	z	0
06-II	СООН	Phenyl	(N-ButylSO ₂ -N-Me)-N-CH ₂ -	Н	Н	CF ₃	Me	CH	z	z	0
1191	СООН	Phenyl	(N-MeSO ₂ -N-Me)-N-CH ₂ -	Н	H	OMe	CF ₃	CH	z	z	S
11–92	СООМе	Phenyi	(N-MeSO ₂ -N-Me)-N-CH ₂ -	Н	Н	Me	Me	НЭ	z	z	0
11-93	СООН	Phenyl	(N-MeSO ₂ -N-Me)-N-CH(iso-Propyl)-	Н	Н	OMe	OMe	CH	z	z	0
II-94	НООЭ	4-F-Phenyl	(N-MeSO ₂ -N-Me)-N-CH ₂ -	Н	Н	OMe	Me	СН	z	z	0
II-95	СООН	Phenyl	(N-MeSO ₂ -N-Me)-N-CH ₂	Me	Me	H	Me	СН	z	z	0
96 - 11	НООЭ	Phenyl	(N-MeSO ₂ -N-Ethyl)-N-CH ₂ -	Н	Н	ОМе	CH2-CH2-CH2-C	-CH2-C	z	z	0
11–97	С00Н	Naphthyl, Phenyl	2,3-Di-Me-PhenylCO-HN-CH ₂ -	Н	Н	Ethyl	Ethyl	СН	z	z	0
86 - II	СООН	Phenyl	(N-MeSO ₂ -N-Ethyl)-N-CH ₂ -	H	Н	ОМе	O-CH2-CH2-C	CH ₂ -C	z	z	
II-99	Н000	Phenyl	(N-MeSO ₂ -N-Ethyl)-N-CH ₂ -	Et	Н	Ethyl	Ethyl	CH	z	z	0
II-100	Н000	Phenyl	(N-MeSO ₂ -N-Ethyl)-N-CH ₂ -	Н	Н	CF3	Me	CH	z	z	0
	Tetrazol	Phenyl	(N-MeSO2-N-Ethyl)-N-CH2-	Н	H	Me	Me	CH	z	z	0
II-102	СООН	Phenyl	(N-ButylSO ₂ -N-Propyl)-N-CH ₂ -	Н	Н	Me	Me	СН	z	z	0

OME OME CH OME Me CH OME CH2-CH2-CH2-C OME CH2-CH2-CH2-C OME O-CH2-CH2-C Ethyl Ethyl CH CF3 Me CH OME CF3 CH		O W C W E		Me CH Me CH CH ₂ -CH ₂ -CH ₂ -C CH ₂ -CH ₂ -C CH ₂ -CH ₂ -C Ethyl CH Me CH CF ₃ CH Me CH	Me CH Me CH CH2-CH2-CH2-C CH2-CH2-CH2-C CH2-CH2-CH2-C CH2-CH2-CH2-C O-CH2-CH2-CH2-C CH Me CH Me CH Me CH Me CH Me CH Me CH OMe CH OMe CH OMe CH OMe CH	Me CH Me CH CH2-CH2-C CH2-CH2-C CH3-CH2-C CH2-CH2-C CH3-CH2-C CH Ethyl CH Me CH OMe CH Me CH OMe CH OMe CH OMe CH CH2-CH2-C CHe	OWNE CH Me CH CH2-CH2-CH2-C CH2-CH2-CH3-C CH2-CH2-CH3-C CH O-CH2-CH2-C CH Me CH Me CH Me CH OMe CH OMe CH CH2-CH2-CH2-C CHC OMe CH CH2-CH2-CH2-C CHC CH2-CH2-CH2-C CH	Me CH Me CH CH2-CH2-CH2-C CH2-CH2-CH2-C CH2-CH2-CH2-C CH2-CH2-CH2-C O-CH2-CH2-CH2-C CH Me CH Me CH Me CH Me CH CH2-CH2-CH2-C CMe CH2-CH2-CH2-C CH Me CH CH2-CH2-CH2-C C Me CH	CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-	CF GF
	M C M E	O W C W Ed	W O W C W E	Me CH2-CI CH2-CI CH2-CI Me CF3 Me OMe Me	Me CH ₂ -Cl CH ₂ -Cl CH ₂ -Cl CH ₂ -Cl O-CH Ethyl Me OMe Me Me OMe Me	Me CH ₂ -Cl CH ₂ -Cl CH ₂ -Cl O-CH Ethyl Me OMe OMe OMe CH ₂ -Cl	Me CH ₂ -CI CH ₂ -CI O-CH Ethyl Me OMe Me OMe Me Me Me Me	Me CH ₂ -CI CH ₂ -CI CH ₂ -CI O-CH O-CH O-CH OMe Me M	CH ₂ -Cl CH ₂ -Cl CH ₂ -Cl CH ₂ -Cl CH ₂ -Cl	
								>	3 4 5 E 3 5 5 5 5 6 15	
<u> </u>	M M M M M M M M M M M M M M M M M M M	'E'E'E'E'E'E'E'E								We en we on we can en
1 1 1	 	S & C E S S	OM6 OM6 OM6	OMe	OMe OMe OMe OMe OMe OMe OMe OMe	OMe	OMe OMe OMe OMe OMe OMe H H H Me			WE EN WO W CE WEEL TO THE WOOL WE
ж н н	H H H	H H H	H H H H	H H We	H H H H H H	н н н н н н н	H H H H H H H	н н н н н н н н	H H H H H H H H	н н н н н н н н н
H H	H H H	H H H H	H We H	H H H	H H H H H H H H H H H H H H H H H H H	H H H H H H H H Butyl	H H H H H H H H H H H H H H H H H H H	H H H H H H H H H H H H H H H H H H H	H H H H H H H H H H H H H H H H H H H	H H H H H H H H H H H H H H H H H H H
	(N-(3,4-Di-OMe-PhenylCO)-N-Ethyl)-N-CH ₂ - H (N-(3,4-Di-OMe-PhenylCO)-N-Ethyl)-N-CH ₂ - N (N-(3-H ₂ NCOCH ₂ -PhenylCO)-N-Me)-N-CH ₂ - H			OMe-PhenylCO)-N-Ethyl)-N-CH ₂ -OMe-PhenylCO)-N-Ethyl)-N-CH ₂ -COCH ₂ -PhenylCO)-N-Me)-N-CH ₂ -COCH ₂ -PhenylCO)-N-Me)-N-CH ₂ -COCH ₂ -4-Me-Phe-Me)-N-CH ₂ -Me)-N-CH ₂ -Me)-N-CH ₂ -Me)-N-CH ₂ -MenylCO-HN-CH ₂ -	OMe-PhenylCO)-N-Ethyl)-N-CH ₂ -OMe-PhenylCO)-N-Ethyl)-N-CH ₂ -OCH ₂ -PhenylCO)-N-Me)-N-CH ₂ -OCH ₂ -PhenylCO)-N-Me)-N-CH ₂ -OCH ₂ -PhenylCO)-N-Me)-N-CH ₂ -OCH ₂ -A-Me-Phe-henylCO-N-CH ₂ -henylCO-HN-CH ₂ -henylCO-HN-CH ₂ -henylCO-HN-CH ₂ -A-Me-Phe-henylCO-HN-CH ₂ -A-Me-Phe-henylCO-HN-CH ₂ -A-Me-Phe-henylCO-HN-CH ₂ -A-Me-Phe-henylCO-Hy-henyl	OMe-PhenylCO)-N-Ethyl)-N-CH ₂ -OMe-PhenylCO)-N-Ethyl)-N-CH ₂ -COCH ₂ -PhenylCO)-N-Me)-N-CH ₂ -COCH ₂ -PhenylCO)-N-Me)-N-CH ₂ -COCH ₂ -4-Me-Phe-Me)-N-CH ₂ -N-CH ₂ -Me)-N-CH ₂ -COCH ₂ -4-Me-Phe-Me)-N-CH ₂ -CCH ₂ -4-Me-Phe-Me)-N-CH ₂ -CCH ₂ -4-Me-Phe-Me)-N-CH ₂ -CCH ₂ -4-Me-Phe-Me)-N-CH ₂ -CCH ₂ -4-OMe-Phe-Me)-N-CH ₂ -CCH ₂ -4-OMe-Phe-Me)-Me)-Me)-Me)-Me)-Me)-Me)-Me)-Me)-Me	OMe-PhenylCO)-N-Ethyl)-N-CH ₂ - OMe-PhenylCO)-N-Ethyl)-N-CH ₂ - OCH ₂ -PhenylCO)-N-Me)-N-CH ₂ - OCH ₂ -PhenylCO)-N-Me)-N-CH ₂ - COCH ₂ -PhenylCO)-N-Me)-N-CH ₂ - COCH ₂ -Me-Phe- Me)-N-CH ₂ - COCH ₂ -Me-Phe- Me)-N-CH ₂ - CCH ₂ -Me-Phe- CCH ₂ -Me-Phe- Me)-N-CH ₂ - CCH ₂ -Me-Phe- CCH ₂ -Me-Phe- Me)-N-CH ₂ - CCH ₂ -Me-Phe- CC	OMe-PhenylCO)-N-Ethyl)-N-CH ₂ - OMe-PhenylCO)-N-Ethyl)-N-CH ₂ - OCH ₂ -PhenylCO)-N-Me)-N-CH ₂ - COCH ₂ -PhenylCO)-N-Me)-N-CH ₂ - COCH ₂ -A-Me-Phe- Me)-N-CH ₂ - Me-N-CH ₂ - CCH ₂ -4-OMe-Phe- Me)-N-CH ₂ - CCH ₂ -4-OMe-Phe- CCH ₂ -4-OMe-Phe-	OMe-PhenylCO) -N-Ethyl)-N-CH ₂ - OMe-PhenylCO)-N-Ethyl)-N-CH ₂ - OCH ₂ -PhenylCO)-N-Me)-N-CH ₂ - OCH ₂ -PhenylCO)-N-Me)-N-CH ₂ - COCH ₂ -PhenylCO)-N-Me)-N-CH ₂ - COCH ₂ -Me-Phe- Me)-N-CH ₂ - CCH ₂ -Me-Phe- Me)-Me-Phe-	OMe-PhenylCO)-N-Ethyl)-N-CH ₂ - OMe-PhenylCO)-N-Ethyl)-N-CH ₂ - OCH ₂ -PhenylCO)-N-Me)-N-CH ₂ - OCH ₂ -PhenylCO)-N-Me)-N-CH ₂ - OCH ₂ -4-Me-Phe- Me)-N-CH ₂ - CCH ₂ -4-OMe-Phe- Me)-N-CH ₂ - CCH ₂ -4-Cl-Phe-
4-Di-OMe-PhenylCO)-N-Ethy 4-Di-OMe-PhenylCO)-N-Ethy	,4-Di-OMe-PhenylCO)-N-Ethy ,4-Di-OMe-PhenylCO)-N-Ethy -H2NCOCH2-PhenylCO)-N-Me	,4-Di-OMe-PhenyICO)-N-Ethy ,4-Di-OMe-PhenyICO)-N-Ethy -H ₂ NCOCH ₂ -PhenyICO)-N-Me -H ₂ NCOCH ₂ -PhenyICO)-N-Me	,4-Di-OMe-PhenylCO)-N-Ethy ,4-Di-OMe-PhenylCO)-N-Ethy -H ₂ NCOCH ₂ -PhenylCO)-N-Me -H ₂ NCOCH ₂ -PhenylCO)-N-Me -H ₂ NCOCH ₂ -4-Me-Phe-	4-Di-OMe-PhenylCO)-N-Ethy 4-Di-OMe-PhenylCO)-N-Ethy H ₂ NCOCH ₂ -PhenylCO)-N-Me H ₂ NCOCH ₂ -PhenylCO)-N-Me -N-Me)-N-CH ₂ CI-PhenylCO-HN-CH ₂ -	H-Di-OMe-PhenylCO)-N-Ethy H-Di-OMe-PhenylCO)-N-Ethy H-2NCOCH2-PhenylCO)-N-Me H-2NCOCH2-PhenylCO)-N-Me H-2NCOCH2-4-Me-PheN-Me)-N-CH2CI-PhenylCO-HN-CH2CI-PhenylCO-HN-CH2N-Me)-N-CH2-	-Di-OMe-PhenylCO)-N-Ethy 42NCOCH2-PhenylCO)-N-Ethy 42NCOCH2-PhenylCO)-N-Me 42NCOCH2-4-Me-PheN-Me)-N-CH2- CI-PhenylCO-HN-CH2- I2NCOCH2-4-Me-PheN-Me)-N-CH2N-Me)-N-CH2N-Me)-N-CH2N-Me)-N-CH2N-Me)-N-CH2-	-Di-OMe-PhenylCO)-N-Ethy -Di-OMe-PhenylCO)-N-Ethy J2NCOCH2-PhenylCO)-N-Me J2NCOCH2-4-Me-PheN-Me)-N-CH2- CI-PhenylCO-HN-CH2- J2NCOCH2-4-Me-Phe- N-Me)-N-CH2- I2NCOCH2-4-Me-Phe- N-Me)-N-CH2- CH-CO-HN-CH2- CH-CO-HN-CH2-	-Di-OMe-PhenylCO)-N-Ethy -Di-OMe-PhenylCO)-N-Ethy 12NCOCH2-PhenylCO)-N-Me 12NCOCH2-HenylCO)-N-Me 12NCOCH2-4-Me-PheN-Me)-N-CH2- I2NCOCH2-4-Me-Phe- I3NCOCH2-4-Me-PheN-Me)-N-CH2N-Me)-N-CH2CH-CO-HN-CH2CH-CO-HN-CH2CH-CO-HN-CH2CH-CO-HN-CH2CH-CO-HN-CH2CH-CO-HN-CH2CH-CO-HN-CH2CH-CO-HN-CH2CH-CO-HN-CH2CH-CO-HN-CH2CH-CO-HN-CH2CH-CO-HN-CH2CH-CO-HN-CH2-	-Di-OMe-PhenylCO)-N-Ethy -Di-OMe-PhenylCO)-N-Ethy -InCOCH2-PhenylCO)-N-Me -InCOCH2-PhenylCO)-N-Me -InCOCH2-A-Me-PheInCOCH2-A-Me-PheInCOCH2-A-Me-PheInCOCH2-A-Me-PheInCOCH2-A-Me-PheInCOCH2-A-Me-PheInCOCH2-A-OMe-PheIn-Me)-N-CH2-	Di-OMe-PhenylCO)-N-Ethy Di-OMe-PhenylCO)-N-Ethy NCOCH2-PhenylCO)-N-Me NCOCH2-PhenylCO)-N-Me NCOCH2-PhenylCO)-N-Me N-Me)-N-CH2- N-Me)-N-CH2- N-Me)-N-CH2- N-Me)-N-CH2- OOCCH2-4-OMe-Phe- N-Me)-N-CH2- OOCCH2-4-OMe-Phe- N-Me)-N-CH2- OOCCH2-4-CI-Phe- N-Me)-N-CH2- OOCCH2-4-CI-Phe- N-Me)-N-CH2- OOCCH2-4-CI-Phe- N-Me)-N-CH2- OOCCH2-4-CI-Phe- N-Me)-N-CH2- OOCCH2-4-CI-Phe- N-Me)-N-CH2-
			OMe-PhenylCO)-N-Ethyl)-N-CH ₂ - COCH ₂ -PhenylCO)-N-Me)-N-CH ₂ - COCH ₂ -PhenylCO)-N-Me)-N-CH ₂ - COCH ₂ -4-Me-Phe- de)-N-CH ₂ -	OMe-PhenylCO)-N-Ethyl)-N-CH ₂ -COCH ₂ -PhenylCO)-N-Me)-N-CH ₂ -COCH ₂ -PhenylCO)-N-Me)-N-CH ₂ -COCH ₂ -4-Me-Phe-Me)-N-CH ₂ -Me)-N-CH ₂ -Me)-N-CH ₂ -MenylCO-HN-CH ₂ -	OMe-PhenylCO)-N-Ethyl)-N-CH ₂ -COCH ₂ -PhenylCO)-N-Me)-N-CH ₂ -COCH ₂ -PhenylCO)-N-Me)-N-CH ₂ -COCH ₂ -4-Me-Phe-He-He-N-CH ₂ -henylCO-HN-CH ₂ -henylCO-HN-CH ₂ -henylCO-HN-CH ₂ -henylCO-HN-CH ₂ -COCH ₂ -4-Me-Phe-He-He-N-CH ₂ -COCH ₂ -4-Me-Phe-He-He-N-CH ₂ -COCH ₂ -4-Me-Phe-He-He-N-CH ₂ -COCH ₂ -4-Me-Phe-He-He-N-CH ₂ -COCH ₂ -4-Me-Phe-He-He-He-He-He-He-He-He-He-He-He-He-He	OM6-PhenylCO)-N-Ethyl)-N-CH ₂ - COCH ₂ -PhenylCO)-N-Me)-N-CH ₂ - COCH ₂ -PhenylCO)-N-Me)-N-CH ₂ - COCH ₂ -4-Me-Phe- ThenylCO-HN-CH ₂ - COCH ₂ -4-Me-Phe- A(e)-N-CH ₂ - COCH ₂ -4-Me-Phe- A(e)-N-CH ₂ - COCH ₂ -4-OMe-Phe- A(e)-N-CH ₂ -	OM6-PhenylCO)-N-Ethyl)-N-CH ₂ - 20CH ₂ -PhenylCO)-N-Me)-N-CH ₂ - 20CH ₂ -PhenylCO)-N-Me)-N-CH ₂ - 20CH ₂ -4-Me-Phe- 46)-N-CH ₂ - 50CH ₂ -4-Me-Phe- 46)-N-CH ₂ - CCH ₂ -4-Me-Phe- 46)-N-CH ₂ - CCH ₂ -4-Me-Phe- 46)-N-CH ₂ - CCH ₂ -4-OMe-Phe- 46)-N-CH ₂ - CCH ₂ -4-OMe-Phe- 46)-N-CH ₂ -	OM6-PhenylCO)-N-Ethyl)-N-CH ₂ - COCH ₂ -PhenylCO)-N-Me)-N-CH ₂ - COCH ₂ -PhenylCO)-N-Me)-N-CH ₂ - COCH ₂ -4-Me-Phe- COCH ₂ -4-Me-Phe- Ae)-N-CH ₂ - CCH ₂ -4-OMe-Phe- Ae)-N-CH ₂ -	OM6-PhenylCO)-N-Ethyl)-N-CH ₂ - 20CH ₂ -PhenylCO)-N-Me)-N-CH ₂ - 20CH ₂ -PhenylCO)-N-Me)-N-CH ₂ - 20CH ₂ -4-Me-Phe- 46)-N-CH ₂ - CCH ₂ -4-Me-Phe- 46)-N-CH ₂ - CCH ₂ -4-OMe-Phe- 46)-N-CH ₂ -	OM6-PhenyICO)-N-Ethyl)-N-CH ₂ - 20CH ₂ -PhenyICO)-N-Me)-N-CH ₂ - 20CH ₂ -PhenyICO)-N-Me)-N-CH ₂ - 20CH ₂ -4-Me-Phe- 46)-N-CH ₂ - 30CH ₂ -4-Me-Phe- 46)-N-CH ₂ - 30CH ₂ -4-OMe-Phe- 46)-N-CH ₂ - 30CH ₂ -4-OMe-Phe- 46)-N-CH ₂ - 30CH ₂ -4-CI-Phe- 46)-N-CH ₂ -
	H	Н	20CH ₂ -PhenylCO)-N-Me)-N-CH ₂ - H 20CH ₂ -PhenylCO)-N-Me)-N-CH ₂ - H COCH ₂ -4-Me-Phe- H Ae)-N-CH ₂ -	OCH ₂ -PhenylCO)-N-Me)-N-CH ₂ - H COCH ₂ -PhenylCO)-N-Me)-N-CH ₂ - H COCH ₂ -4-Me-Phe- H Me)-N-CH ₂ - H	20CH ₂ -PhenylCO)-N-Me)-N-CH ₂ - H 20CH ₂ -PhenylCO)-N-Me)-N-CH ₂ - H COCH ₂ -4-Me-Phe- H Me)-N-CH ₂ - ThenylCO-HN-CH ₂ - H COCH ₂ -4-Me-Phe- H COCH ₂ -4-Me-Phe- H Me)-N-CH ₂ - H	COCH2-PhenylCO)-N-Me)-N-CH2- H COCH2-PhenylCO)-N-Me)-N-CH2- H COCH2-4-Me-Phe- H MenylCO-HN-CH2- H COCH2-4-Me-Phe- H Ae)-N-CH2- H CCH2-4-Me-Phe- H Ac)-N-CH2- CCH2-4-Me-Phe- CCH2-4-OMe-Phe- H Ac)-N-CH2- Butyl	20CH ₂ -PhenylCO)-N-Me)-N-CH ₂ - H 20CH ₂ -PhenylCO)-N-Me)-N-CH ₂ - H 20CH ₂ -4-Me-Phe- H 4e)-N-CH ₂ - H COCH ₂ -4-Me-Phe- H COCH ₂ -4-Me-Phe- H 4e)-N-CH ₂ - CCH ₂ - H Ae)-N-CH ₂ - H CCH ₂ -4-Me-Phe- H Ae)-N-CH ₂ - H Ae	20CH2-PhenylCO)-N-Me)-N-CH2- H 20CH2-PhenylCO)-N-Me)-N-CH2- H 20CH2-4-Me-Phe- H 46)-N-CH2- H 50CH2-4-Me-Phe- H 46)-N-CH2- H CCH2-4-Me-Phe- H 46)-N-CH2- CCH2-4-OMe-Phe- CCH2-4-OMe-Phe- H 46)-N-CH2- H CCH2-4-OMe-Phe- H 46)-N-CH2- H	20CH ₂ -PhenylCO)-N-Me)-N-CH ₂ - H 20CH ₂ -PhenylCO)-N-Me)-N-CH ₂ - H 20CH ₂ -A-Me-Phe- H 4e)-N-CH ₂ - H COCH ₂ -A-Me-Phe- H 4e)-N-CH ₂ - CCH ₂ - H CCH ₂ -A-OMe-Phe- H 4e)-N-CH ₂ - CCH ₂ - H CCH ₂ -A-OMe-Phe- H 4e)-N-CH ₂ - CCH ₂	20CH2-PhenylCO)-N-Me)-N-CH2- H 20CH2-PhenylCO)-N-Me)-N-CH2- H 20CH2-PhenylCO)-N-Me)-N-CH2- H 30CH2-4-Me-Phe- H 46)-N-CH2- H CCH2-4-Me-Phe- H 46)-N-CH2- H CCH2-4-OMe-Phe- H 46)-N-CH2- H CCH2-4-OMe-Phe- H 46)-N-CH2- H CCH2-4-Cl-Phe- H 46)-N-CH2- H CCH2-4-Cl-Phe- H 46)-N-CH2- H CCH2-4-Cl-Phe- H 46)-N-CH2- H CCH2-4-Cl-Phe- H 46)-N-CH2- H

R4, R5 R6		R7	R8	R ²	R ³	Z	X	χ	*
3-H00CC	CH2-4-CI-PhenylCO-HN-CH2-	H	H	Me	Me	CH	z	z	0
3-H00CCI	:CH ₂ -4-Cl-PhenylCO-HN-CH ₂ -	H	Н	OMe	OMe	HJ	Z	z	0
3-H00CC	:CH ₂ O-4-OMe-PhenylCO-HN-CH ₂ -	Н	Н	OMe	Me	H	Z	z	0
3-H00CC	CH ₂ O-4-OMe-PhenylCO-HN-CH ₂ -	Ethyl	Н	H	OMe	CH	Z	z	0
3-H00CC	CH ₂ O-4-OMe-PhenylCO-HN-CH ₂ -	Н	H	OMe	CH ₂ -CH	CH2-CH2-CH2-C	z	z	0
(N-McCO-	O-N-(4-OMe-3-Me-Phenyl))-N-CH ₂ -	Н	Н	Me	Me	CH	z	z	0
3-H00CC	:CH ₂ O-4-OMe-PhenylCO-HN-CH ₂ -	Н	H	OMe	O-CH2	0-CH2-CH2-C	z	z	S
2,6-Diethyl	ıylphenylCO-HN-CH ₂ -	Me	Me	Me	Me	СН	z	z	0
3-H00CCI	CH ₂ O-4-OMe-PhenylCO-HN-CH ₂ -	Ethyl	H	Ethyl	Ethyl	CH	z	z	0
3-Me00C(CCH ₂ O 4 OMe-PhenylCO-HN-CH ₂ -	Н	H	CF ₃	Me	CH	z	z	0
8	3-MeOOCCH ₂ O-4-OMe-PhenylCO-HN-CH ₂ -	Н	Н	OMe	CF ₃	СН	z	z	0
3-Me00CC	CCH ₂ O-4-OMe-PhenylCO-HN-CH ₂ -	Н	Н	Me	Me	CH	z	z	0
出	Me-CH=CH-CO-HN-CH ₂	Н	H	OMe	CF ₃	CH	z	z	0
4-Me00C(CCH ₂ O-3-OMe-PhenylCO-HN-CH ₂ -	Н	Н	оМе	OMe	CH	z	z	0
4-MeOOCC	CCH2O-3-OMe-PhenylCO-HN-CH2-	Н	Н	OMe	Me	СН	z	Z	S
잃	4-MeOOCCH ₂ O-3-OMe-PhenylCO-HN-CH ₂ -	Me	Me	Ethyl	Me	Z	H	z	0
9	(N-(4-OMe-Phenyl-CH2-CO)-N-Butyl)-N-CH2-	Н	Н	OMe	CH ₂ -CH	CH ₂ -CH ₂ -CH ₂ -C	z	z	0
(N-EthylCO	CO-N-(4-OMe-Phenyl))-N-CH2-	Н	Н	ОМе	CF ₃	СН	z	z	0
(N-(3-OMe pyl)-N-CH ₂	(N-(3-OMe-Phenyl-CH ₂ -CO)-N-Pro- pyl)-N-CH ₂ -	Н	Н	ОМе	0-CH ₂ -	0-CH ₂ -CH ₂ -C	z	z	0
(N-(2-0Me pyl)-N-CH ₂	(N-(2-OMe-Phenyl-CH ₂ -CO)-N-Propyl)-N-CH ₂ -	H	Н	Ethyl	Ethyl	СН	z	z	0
3,4 CH2	(N-(3,4-Di-OMe-Phe-nyl-CH ₂ -CO)-N-Me)-N-CH ₂ -	Ж	Н	CF ₃	Me	НЭ	z	z	0
(N-(3,4-Dinyl-CH2-C	(N-(3,4-Di-OMe-Phe-ny-ly-CH ₂ CO)-N-Me)-N-CH ₂	Н	Н	ОМе	CF ₃	НЭ	z	z	0

Ŋŗ.	\mathbb{R}^1	R4, R5	R6	R7	R8	R ²	R3	Z :	×	X	M
II-146	Н000	Phenyl	(N-(3,4-Di-OMe-Phe nyl-CH ₂ -CO)-N-Me)-N-CH ₂ -	н	H	Me	Me	СН	z	z	0
II-147	нооэ	Phenyl	(N-(3,4-Di-OMe-Phe nyl-CH ₂ -CO)-N-Me)-N-CH ₂ -	Н	Н	ОМе	ОМе	СН	z	z	0
II-148	СООН	Phenyl	(N-(3,4-Di-OMe-Phe nyl-CH ₂ -CO)-N-Me)-N-CH ₂ -	Н	Н	ОМе	Me	СН	z	z	0
II-149	С00Н	Phenyl	(N-(2,6-Di-OMe-Phe nyl-CH ₂ -CO)-N-Me)-N-CH ₂ -	Me	Me	СН2ОН	Me	H	z	z	0
11-150	СООН	4-F-Phenyl	(N-(2,6-Di-OMe-Phe nyl-CH ₂ -CO)-N-Me)-N-CH ₂ -	Н	Н	ОМе	СН2-СН	CH ₂ -CH ₂ -C	z	z	0
	Н000	Phenyi	(N-MeCO-N-(4-Cl-Phenyl))-N-CH ₂ -	Н	H	CF ₃	Me	CH	z	z	0
	С00Н	Phenyl	(N-(2,6-Di-OMe-Phe nyl-CH ₂ -CO)-N-Me)-N-CH ₂ -	Н	н	ОМе	0-CH ₂	0-СН2-СН2-С	z	z	S
	СООН	Phenyl	(N-(2,6-Di-OMe-Phe- nyl-CH ₂ -CO)-N-Me)-N-CH ₂ -	Н	Н	Ethyl	Ethyl	СН	z	z	0
	СООН	4-F-Phenyl	(N-(2,6-Di-OMe-Phe nyl-CH ₂ -CO)-N-Me)-N-CH ₂ -	Н	Н	CF ₃	Me	СН	z	z	0
	Н000	Phenyl	(N-(2,6-Di-OMe-Phe nyl-CH ₂ -CO)-N-Me)-N-CH ₂ -	H	H	OMe	CF ₃	HO	z	z	0
	СООМе	Phenyl	(N-(3,4-Di-OMe-PhenylCO)-N-Benzyl)-N-CH2-	Н	Н	Me	Me	CH	z	z	0
	H000	Phenyl	Iso-PropylCO-HN-CH ₂ -	Н	Н	CF3	Me	H	z	z	0
II-158	HO00H	Phenyl	(N-(3,4-Di-OMe-PhenylCO)-N-Benzyl)-N-CH2-	Butyl	Н	ОМе	OMe	CH	z	z	0
	СООН	Phenyl	(N-(3,4-Di-OMe-PhenylCO)-N-Benzyl)-N-CH2-	Н	Н	ОМе	Me	HO	z	z	0
	H000	Phenyl	(N-(3,4-Di-OMe-PhenylCO)-N-Benzyl)-N-CH2-	Н	Н	Н	OMe	СМе	z	z	0
	Н000	Phenyl	(N-(3,4-Di-OMe-PhenylCO)-N-Benzyl)-N-CH2-	Н	Н	OMe	CH ₂ -CH	CH2-CH2-CH2-C	z	z	0
	СООН	enyl	(N-McCO-N-(4-OMe-Phenyl))-N-CH ₂ -	Н	Н	Ethyl	Ethyl	НЭ	z	z	S
II-163	СООН	Phenyl	(N-(2,6-Di-OMe-Phenyl-CH ₂ -CO)-N- Ethyl)-N-CH ₂ -	н	Н	ОМе	7 О-СН ⁵ -	о-сну-сну-с	z	z	S

Nr.	R1	R4, R5	R6	R7	R8	R ²	R ³	7	×	Y	×
11–164	соон	Naphthyl, Naphthyl	(N-(3-CI-4-Me-PhenyISO ₂)-N-Me)-N-CH ₂ -	Н	H	ОМе	ОМе	СН	z	z	S
11–165	СООМе	Phenyl	(N-(2,6-Di-OMe-Phenyl-CH ₂ -CO)-N- Ethyl)-N-CH ₂ -	Н	Н	Ethyl	Ethyl	HO	z	z	0
11–166	соон	4-F-Phenyl	(N-(2,6-Di-OMe-Phenyl-CH ₂ -CO)-N- Ethyl)-N-CH ₂ -	H	Н	CF ₃	Me	Æ	z	z	0
11–167	нооэ	Phenyl	(N-(2,6-Di-OMe-Phenyl-CH ₂ -CO)-N- Ethyl)-N-CH ₂ -	н	Н	ОМе	CF ₃	СН	z	z	0
II-168	СООН	Phenyl	(N-(2,6-Di-OMe-Phanyl-CH ₂ -CO)-N- Ethyl)-N-CH ₂ -	H	H	Me	Me	СН	z	z	0
11–169	Н000	Phenyl	2,4,6-Tri-Me-PhenylCO-HN-CH ₂ -	Н	Н	Me	Me	CH	z	z	0
II-170	Н000	Phenyl	(N-(2,6-Di-OMe-Phenyl-CH ₂ -CO)-N- Ethyl)-N-CH ₂ -	Н	H	ОМе	ОМе	Ю	z	z	0
11-171	Н000	Phenyl	(N-(2-Me-3-CI-4-OMe-PhenylCO)-N-Me)-N-CH ₂ -	Me	Me	OMe	Me	СН	z	z	0
11–172	Н000	Phenyl	(N-(3-Me-2-CI-4-OMe-PhenylCO)-N-Me)-N-CH ₂ -	H	Н	H	Me	С-Ме	z	z	0
11-173	нооэ	Phenyl	(N-(3-Me-4-CI-5-OMe-Phe-nyICO)-N-Me)-N-CH ₂ -	H	Н	OMe	CH ₂ -CH;	CH2-CH2-CH2-C	z	z	0
	Н000	Phenyl	(N-(3-Me-4-CI-5-OMe-Phe-nyICO)-N-Me)-N-CH ₂ -	H	H	ОМе	0-CH ₂ -	0-сн ₂ -сн ₂ -с	z	z	0
11–175	Н000	4–F–Phenyl	(N-(3,5-Di-Me-4-OMe-Phe-nylCO)-N-Me)-N-CH ₂ -	Me	Me	Ethyl	Ethyl	СН	z	z	S
11–176	НООО	Phenyl	(N-(3,5-Di-Me-4-OMe-PhenylCO)-N-Me)-N-CH ₂ -	Ħ	H	CF ₃	Me	СН	z	z	0
	Н000	Phenyl	(N-(3,5-Di-Me-4-OMe-PhenylCO)-N-Me)-N-CH ₂ -	Ħ	Ħ.	ОМе	CF ₃	СН	z	z	0
	\Box	Phenyl	(N-PhenylCO-N-MeOMe)-N-CH ₂ -	Ethyl	Н	Me	Me	CH	z	z	0
II-179	Н000	Phenyi	(N-PhenylCO-N-McOMe)-N-CH2-	Н	Н	ОМе	ОМе	СН	z	z	S

Nr.	\mathbb{R}^1	R4, R5	R6	R7	R8	\mathbb{R}^2	R ³	Z	X	Y	W
II-180	нооэ	Phenyl	(N-(4-OMe-PhenylCO)-N-McOButyl)-N-CH2-	Н	Н	ОМе	Me	CH	z	z	0
11-181	СООН	4-F-Phenyl	(N-(3-OMe-PhenylCO)-N-MeOEthyl)-N-CH ₂ -	Ethyl	Н	Н	ОМе	E	z	z	0
11–182	СООН	4-F-Phenyl, 4 Cl Phenyl	(N-PhenylCO-N-Me)-N-CH ₂ -	Н	Н	ОМе	Me	НЭ	z	z	0
II-183	Н000	Phenyl	(N-(2-OMe-PhenyICO)-N-MeOMe)-N-CH2-	H	Н	OMe	CH2-CH2-CH2-C	-CH2-C	z	z	To
11-184	Н000	Phenyl	(N-MeCO-N-Phenyl)-N-CH ₂ -	Me	Me	ОМе	O-CH2-CH2-C	CH ₂ -C	z	z	0
11-185	Н000	Phenyl	(N-(3,4-Di-OMe-Phe-nyICO)-N-MeOMe)-N-CH ₂ -	Н	Н	ОМе	о-сн-сн-с	CH ₂ -C	z	z	0
11–186	С00Н	4-F-Phenyl	(N-(3,4-Di-OMe-PhenylCO)-N-MeOE-thyl)-N-CH ₂ -	Н	Н	Ethyl	Ethyl	СН	z	z	0
11-187	Н000	Phenyl	(N-(3,4-Di-OMe-PhenylCO)-N-MeOBu- tyl)-N-CH ₂ -	Me	Me	CF ₃	Me	СН	z	z	0
II-188	СООН	Phenyl	(N-(3,4-Di-OMe-PhenylCO)-N-MeOMe)-N-CH ₂ -	н	Н	ОМе	CF ₃	СН	z	z	0
11–189	нооэ	Phenyl	(N-(3,4-Di-OMe-Phe- nyICO)-N-McOMe)-N-CH ₂ -	н	Н	Me	Me	СН	z	z	S
II-190	СООН	Phenyl	2,3-Di-Me-PhenylCO-HN-CH ₂ -	Н	H	Me	Me	CH	z	z	0
161-11	СООН	4-F-Phenyl	(N-PhenylCO-N-(4-OMe-Phenyl-CH ₂))-N-CH ₂ -	Н	H	OMe	OMe	CH	z	z	0
11-192	Н000	Phenyl	(N-PhenyICO-N-(4-OMe-Phenyl-CH2))-N-CH2-	Me	Н	ОМе	Me	СН	z	z	0
11-193	НООЭ	Phenyl	(N-PhenylCO-N-(4-OMe-Phenyl-CH2))-N-CH2-	Н	Н	CH ₂ OH	Me	CH	z	z	0
11-194	H000	4-F-Phenyl	(N-PhenylCO-N-(4-OMe-Phenyl-CH ₂))-N-CH ₂ -	Н	Н	OMe	CH2-CH2-CH2-C	-CH2-C	z	z	0
11-195	Н000	4-F-Phenyl	PropyICO-HN-CH2-	Н	Н	Ethyl	Ethyl	СН	z	z	S
II-196	Н000	Phenyl	(N-PhenylCO-N-(3-OMe-Phenyl-CH2))-N-CH2-	Н	Н	OMe	O-CH2-CH2-C	CH ₂ -C	z	z	S
II-197	Н000	Phenyl	(N-PhenylCO-N-(2-OMe-Phenyl-CH ₂))-N-CH ₂ -	Н	H	Ethyl	Ethyl	СН	z	z	0
11-198	НООЭ	Phenyl	(N-PhenylCO-N-(3-Me-Phenyl-CH ₂))-N-CH ₂ -	Н	Н	CF_3	Me	НЭ	z	Z	0
11-199	Н000	Phenyl	(N-PhenylCO-N-(4-Me-Phenyl-CH ₂))-N-CH ₂ -	Н	Н	OMe	CF_3	CH	z	z	0
II-200	Н000	Phenyl	(N-EthylCO-N-Me)-N-CH ₂ -	H	Н	ОМе	CH2-CH2-CH2-C	-CH ₂ -C	z	Z	0

Nr.	R¹	R4, R5	R6	R7	R8	R2	R ³	Z	×	Y	×
11–201	сооме	Phenyl	(N-PhenylCO-N-(4-OMe-Phenyl))-N-CH2-	Н	Н	Me	Me	СН	z	z	S
11–202	Н00Э	4-F-Phenyl	(N-PhenylCO-N-(4-OMe-Phenyl))-N-CH ₂ -	Н	Н	OMe	OMe	СН	z	z	0
11-203	Н000	Phenyl	(N-PhenylCO-N-(4-OMe-Phenyl))-N-CH ₂ -	Н	Н	ОМе	Me	СН	z	z	0
II-204	Н000	Phenyl	(N-PhenylCO-N-(4-OMe-Phenyl))-N-CH ₂ -	Н	Н	Н	OMe	C-Me	z	z	0
11-205	Н002	Phenyl	3,5-Di-Cl-PhenylCO-HN-CH ₂ -	Н	Н	Me	Me	CH	z	z	0
11–206	H000	Phenyl	(N-PhenylCO-N-(3-OMe-Phenyl))-N-CH ₂ -	Ethyl	Н	OMe	CH2-CH2-CH2-C	CH2-C	z	z	0
11–207	Н000	Phenyl	MeCO-HN-CH ₂ -	Н	Н	OMe	CH2-CH2-CH2-C	CH2-C	z	z	0
11–208	Н000	Phenyl	(N-PhenylCO-N-(2-OMe-Phenyl))-N-CH2-	Н	Н	OMe	0-CH ₂ -CH ₂ -C	CH2-C	z	z	0
11-209	H000	Phenyl	(N-PhenylCO-N-(3-Me-Phenyl)-N-CH ₂ -	Н	H	Ethyl	Ethyl	СН	z	z	0
11-210	Н000	Phenyl	Naphthyl-1-CO-HN-CH ₂ -	Н	Н	Me	Me	CH.	z	z	0
11-211	Н000	Phenyl	(N-PhenylCO-N-(4-Me-Phenyl)-N-CH ₂ -	Н	Н	CF_3	Me	СН	z	z	0
11–212	Н000	Phenyl	CyclohexylCO-HN-CH ₂ -	Me	Me	эмо	0-CH ₂ -	O-CH ₂ -CH ₂ -C	z	z	0
II-213	Н000	Phenyl	(N-2,6-DiethylphenylCO-N-Me)-N-CH ₂ -	Н	Н	OMe	$\mathbb{C}\mathbf{F_3}$	CH	z	z	0
II-214	H000	4-F-Phenyl	(N-2,6-DiisopropylphenylCO-N-Me)-N-CH2-	Н	Н	Me	Me	CH	z	z	0
11-215	Н000	Phenyl	(N-2,6-DiisopropylphenylCO-N-Me)-N-CH2-	Н	H	OMe	ОМе	CH	z	z	0
11-216	Н000	Phenyl	(N-MeCO-N-Me)-N-CH ₂ -	Н	Н	ОМе	CH2-CH2-CH2-C	-CH2-C	z	z	0
11-217	Н000	Phenyl	(N-2,6-DiethylphenylCO-N-Me)-N-CH ₂ -	Н	Н	ОМе	Me	НЭ	z	z	0
11–218	Н000	4-F-Phenyl, Phenyl	2,4,6-Tri-Me-PhanylCO-HN-CH2-	Н	Н	Me	Me	СН	z	z	0
11–219	СООМе	Phenyl	(N-2,6-DiethylphenylCO-N-Me)-N-CH2-	Н	H	СН2ОН	Me	CH	z	z	0
	НООЭ	Phenyl	2,6-DiethylphenylCO-HN-CH ₂ -	Н	Н	OMe	CH2-CH2-CH2-C	-CH2-C	z	z	0
	НООЭ	Phenyl	2,6-DiethylphenylCO-HN-CH2-	Me	Me	OMe	0-сн ₂ -сн ₂ -с	CH2-C	z	z	0
11-222	НООЭ	4-F-Phenyl	2,6-DiethylphenylCO-HN-CH2-	Н	Н	Ethyl	Ethyl	Э	z	z	S
11–223	НООЭ	Phenyl	2,6-DiethylphenylCO-HN-CH2-	Н	Н	CF_3	Me	H	z	z	0
	СООН	Phonyl	2,6-DimethylphenylCO-HN-CH ₂ -	Н	Н	ОМе	CF_3	СН	z	z	0
11-225	H000	Phenyl	2,6-DimethylphenylCO-HN-CH2-	Н	Н	Me	Me	CH	z	z	0

Beispiel 59:

Gemäß dem oben beschriebenen Bindungstest wurden für die nachfolgend aufgeführten Verbindungen Rezeptorbindungsdaten gemessen.

Die Ergebnisse sind in Tabelle 3 dargestellt.

Tabelle 3

10

Rezeptorbindungsdaten (K_i -Werte)

	Verbindung	ET _A [nM/1]	ET _B [nM/1]
15			
	I-109	0,4	142
	I-111	0,3	109
	I-347	3,8	155
	I=349	3,0	142
20	I-307	1,6	10
	I-309	1	12

25

30

35

40

Patentansprüche

1. Carbonsäurederivate der Formel I

5

wobei R1 Tetrazol oder eine Gruppe

15

in der R folgende Bedeutung hat:

20 a) ein Rest OR9, worin R9 bedeutet:

Wasserstoff, das Kation eines Alkalimetalls, das Kation eines Erdalkalimetalls oder ein physiologisch verträgliches organisches Ammoniumion;

25

$$C_3-C_8-Cycloalkyl$$
, $C_1-C_8-Alkyl$,

CH2-Phenyl gegebenenfalls substituiert,

30 C₃-C₆-Alkenyl- oder eine C₃-C₆-Alkinylgruppe gegebenfalls substituiert oder

Phenyl gegebenfalls substituiert.

- b) ein über ein Stickstoffatom verknüpfter 5-gliedriger Heteroaromat.
 - c) eine Gruppe

40

in der k die Werte 0, 1 und 2, p die Werte 1, 2, 3 und 4 annehmen kann und R^{10} für

- C₁-C₄-Alkyl, C₃-C₈-Cycloalkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl
 oder gegebenenfalls substituiertes Phenyl steht.
 - d) ein Rest

10

worin R11 bedeutet:

 C_1 - C_4 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl, C_3 - C_8 -Cyclo-alkyl, wobei diese Reste einen C_1 - C_4 -Alkoxy-, C_1 - C_4 -Alkyl-thio-und/oder einen Phenylrest tragen können;

20

25

Phenyl, gegebenenfalls substituiert.

- R^2 Wasserstoff, Hydroxy, NH_2 , $NH(C_1-C_4-Alky1)$, $N(C_1-C_4-Alky1)_2$, Halogen, $C_1-C_4-Alky1$, $C_2-C_4-Alkeny1$, $C_2-C_4-Alkiny1$, $C_1-C_4-Halogenalky1$, $C_1-C_4-Alkoxy$, $C_1-C_4-Halogenalkoxy$ oder $C_1-C_4-Alky1$ thio, oder CR^2 ist mit CR^{12} wie unter Z angegeben zu einem 5- oder 6-gliedrigen Ring verknüpft;
- 30 X Stickstoff oder Methin;
 - Y Stickstoff oder Methin:
- Z Stickstoff oder CR¹², worin R¹² Wasserstoff, Halogen oder C₁-C₄-Alkyl bedeutet oder CR¹² zusammen mit CR² oder CR³ einen 5- oder 6-gliedrigen Alkylen- oder Alkenylenring bildet, der gegebenfalls substituiert sein kann, und worin jeweils eine oder mehrere Methylengruppen durch Sauerstoff, Schwefel, -NH oder -N(C₁-C₄-Alkyl), ersetzt sein können;
 - $\label{eq:R3} \textbf{Wasserstoff, Hydroxy, NH$_2$, NH$(C$_1-C$_4-Alkyl),} \\ \textbf{N(C$_1-C$_4-Alkyl)$_2$, Halogen, C$_1-C$_4-Alkyl, C$_2-C$_4-Alkenyl,} \\ \textbf{C$_2-C$_4-Alkinyl, C$_1-C$_4-Halogenalkyl, C$_1-C$_4-Alkoxy,} \\ \textbf{C$_1-C$_4-Halogenalkoxy, C$_1-C$_4-Alkylthio; oder CR3 ist mit CR12}$

wie unter Z angegeben zu einem 5- oder 6-gliedrigen Ring verknüpft;

R4 und R5 (die gleich oder verschieden sein können):

5

10

30

35

40

Phenyl oder Naphthyl, gegebenenfalls substituiert, oder

Phenyl oder Naphthyl, die orthoständig über eine direkte Bindung, eine Methylen-, Ethylen- oder Ethenylengruppe, ein Sauerstoff- oder Schwefelatom oder eine SO₂-, NH- oder N-Alkyl-Gruppe miteinander verbunden sind,

C3-C8-Cycloalkyl gegebenfalls substituiert;

15 R6 eine Gruppe

wobei R¹³ und R¹⁴ gleich oder verschieden sein können und folgende Bedeutung haben:

Wasserstoff mit der Maßgabe, daß R^{13} und R^{14} nicht gleichzeitig Wasserstoff sein dürfen,

 C_1 - C_8 -Alkyl, C_3 - C_8 -Cycloalkyl, C_3 - C_8 -Alkenyl, C_3 - C_8 -Alkinyl, Benzyl, Phenyl, Naphthyl, jeweils gegebenenfalls substituiert,

oder R^{13} und R^{14} bilden gemeinsam eine zu einem Ring geschlossene, gegebenenfalls substituierte C_3 - C_7 -Alkylenkette, in der eine Alkylengruppe durch Sauerstoff, Schwefel oder Stickstoff ersetzt sein kann,

oder R^{13} und R^{14} bilden gemeinsam eine zu einem Ring geschlossene, gegebenenfalls substituierte C_3 - C_7 -Alkenylenkette, an die ein gegebenfalls substituierter Phenylring annelliert ist;

 R^7 und R^8 (die gleich oder verschieden sein können): Wasserstoff, $C_1-C_4-Alkyl$;

45 R¹⁸ Wasserstoff;

 C_1 - C_8 -Alkyl, C_3 - C_8 -Alkenyl oder C_3 - C_8 -Alkinyl, Phenyl, Naphthyl, C_3 - C_8 -Cycloalkyl wobei diese Reste gegebenenfalls substituiert sein können;

- R¹⁹ C₁-C₈-Alkylcarbonyl, C₂-C₈-Alkenylcarbonyl, C₂-C₈-Alkinyl-carbonyl, Benzyloxycarbonyl, C₃-C₈-Cycloalkylcarbonyl, Phenylcarbonyl oder Naphthylcarbonyl wobei die genannten Reste gegebenenfalls substituiert sein können;
- C₁-C₈-Alkylsulfonyl, C₃-C₈-Alkenylsulfonyl oder
 C₃-C₈-Alkinylsulfonyl, Phenylsulfonyl oder Naphthylsulfonyl jeweils gegebenenfalls substituiert;
 C₃-C₈-Cycloalkylsulfonyl;
- 15 R^{20} Wasserstoff, C_1 - C_4 Alkyl gegebenfalls substituiert.
 - R^{21} Wasserstoff, C_1-C_4 Alkyl.
 - W Schwefel oder Sauerstoff.

- bedeuten, sowie die physiologisch verträglichen Salze und die enantiomerenreinen sowie diastereomerenreinen Formen.
- Arzneimittelzubereitungen zur peroralen, parenteralen Anwendung, enthaltend pro Einzeldosis, neben den üblichen Arzneimittelhilfsstoffen, mindestens ein Carbonsäurederivat I gemäß Anspruch 1.
- Verwendung der Carbonsäurederivate gemäß Anspruch 1 zur Be handlung von Krankheiten.
 - Verwendung der Verbindungen I gemäß Anspruch 1 als Endothelin-Rezeptorantagonisten.
- 35 5. Verwendung der Carbonsäurederivate I gemäß Anspruch 1 zur Herstellung von Arzneimitteln zur Behandlung von Krankheiten, bei denen erhöhte Endothelinspiegel auftreten.
- 6. Verwendung der Carbonsäurederivate I gemäß Anspruch 1 zur
 40 Herstellung von Arzneimitteln zur Behandlung von Krankheiten,
 bei denen Endothelin zur Entstehung und/oder Progression beiträgt.
- 7. Verwendung der Carbonsäurederivate I gemäß Anspruch 1 zur Be-45 handlung von chronischer Herzinsuffizienz, Restenose, Bluthochdruck, pulmonalem Hochdruck, akutem/chronischen Nieren-

versagen, zerebraler Ischämie, benigne Prostatahyperplasie und Prostatakrebs.

- 8. Kombinationen aus Carbonsäurederivaten der Formel I gemäß Anspruch 1 und einem oder mehreren Wirkstoffen, ausgewählt aus Inhibitoren des Renin-Angiotensin Systems wie Reninhemmer, Angiotensin-II-Antagonisten, Angiotensin-Converting-Enzyme (ACE)-Hemmer, gemischten ACE/Neutrale Endopeptidase (NEP)-Hemmern, ß-Blockern, Diuretika, Calciumantagonisten und VEGF-blockierenden Substanzen.
 - 9. Verwendung von Verbindungen der Formel V

- worin die Reste R^1 , R^4 , R^5 , R^6 , R^7 , R^8 und W die in Anspruch 1 angegebene Bedeutung haben, als Ausgangsmaterial zur Synthese von Endothelin-Rezeptorantagonisten.
- Ein strukturelles Fragment der Formel

30

worin die Reste R^1 , R^4 , R^5 , R^6 , R^7 , R^8 und W die in Anspruch 1 angegebene Bedeutung haben.

- 35 11. Verwendung eines strukturellen Fragments gemäß Anspruch 10 als struktureller Bestandteil eines Endorthelin-Rezeptorantagonisten
- 12. Endothelin-Rezeptorantagonist, bestehend aus einem struktu40 rellen Fragment der Formel

5

15

20

worin die Reste R¹, R², R³, R⁴, R⁵, R⁷, R⁸, W, X, Y und Z die in Anspruch 1 angegebene Bedeutung haben, kovalent verknüpft mit einer Gruppe, die ein Molekulargewicht von mindestens 30 aufweist.

13. Endothelin-Rezeptorantagonist, bestehend aus einem strukturellen Fragment der Formel

worin die Reste R¹, R², R³, R⁴, R⁵, R⁷, R⁸, R²⁰, R²¹, W, X, Y und Z die in Anspruch 1 angegebene Bedeutung haben, über ein N-Atom kovalent verknüpft mit einer Gruppe, die ein Molekulargewicht von mindestens 58 aufweist.

14. Verbindungen der Formel Ia

worin die Reste R^1 , R^2 , R^3 , R^4 , R^5 , R^7 , R^8 , R^{20} , R^{21} , W, X, Y und Z die in Anspruch 1 angegebene Bedeutung haben.

45

35

48° • 19 ; (i)

(51) Internati nale Patentklassifikation 6:

C07D 239/52, 239/36, 239/60, 401/12, A61K 31/505

A3

(11) Internationale Veröffentlichungsnummer: WO 99/23078

(43) Internati nales Veröffentlichungsdatum:

14. Mai 1999 (14.05.99)

(21) Internationales Aktenzeichen:

PCT/EP98/06571

(22) Internationales Anmeldedatum: 16. Oktober 1998 (16.10.98)

(30) Prioritätsdaten:

197 48 238.4 197 52 904.6 198 09 376.4 31. Oktober 1997 (31.10.97) DE 28. November 1997 (28.11.97) DE 5. März 1998 (05.03.98) DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BASF AK-TIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen (DE).

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): AMBERG, Wilhelm [DE/DE]; Schälzigweg 79, D-68723 Schwetzingen (DE). JANSEN, Rolf [DE/DE]; C 2.20, D-68159 Mannheim (DE). HERGENRÖDER, Stefan [DE/DE]; Hans-Böckler-Strasse 108, D-55128 Mainz (DE). RASCHACK, Manfred [DE/DE]; Donnersbergstrasse 7, D-67256 Weisenheim (DE). UNGER, Liliane [DE/DE]; Wollstrasse 129, D-67065 Ludwigshafen (DE).
- (74) Gemeinsamer Vertreter: BASF AKTIENGESELLSCHAFT; D-67056 Ludwigshafen (DE).

(81) Bestimmungsstaaten: AL, AU, BG, BR, BY, CA, CN, CZ, GE, HU, ID, IL, JP, KR, KZ, LT, LV, MK, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TR, UA, US, eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht

Mit internationalem Recherchenbericht.

(88) Veröffentlichungsdatum des internationalen Recherchenbe-10. September 1999 (10.09.99) richts:

- (54) Title: NEW CARBOXYLIC ACID DERIVATIVES, CARRYING AMIDO SIDE-CHAINS; PRODUCTION AND USE AS ENDOTHELIN RECEPTOR ANTAGONISTS
- (54) Bezeichnung: NEUE CARBONSÄUREDERIVATE, DIE AMIDSEITENKETTEN TRAGEN, IHRE HERSTELLUNG UND VER-WENDUNG ALS ENDOTHELIN-REZEPTORANTAGONISTEN

$$R^{14}$$
 $N-C$ (a) R^{19} $N-C$ R^{21} R^{21} (b)

(57) Abstract

The invention relates to carboxylic acid derivatives of formula (I), wherein R^6 represents a group (a) or (b), R^{13} and R^{14} being the same or different and having the following meaning: hydrogen; on the condition that R^{13} and R^{14} are not hydrogen at the same time, C_1 - C_8 -alkyl, C₃-C₈-cycloalkyl, C₃-C₈-alkenyl, C₃-C₈-alkenyl, benzyl, phenyl, naphthyl, optionally substituted; or R¹³ and R¹⁴ together form an optionally substituted C₃-C₇-alkylene chain which is closed in a ring and in which an alkylene group can be replaced by oxygen, sulphur or nitrogen; or R13 and R14 together form an optionally substituted C3-7-alkylene chain or C3-C7-alkenylene chain which is closed in a ring and to which an optionally substituted phenyl ring is anellated. The other substituents have the meanings given in the description. The invention also relates to the production of the novel carboxylic acid derivatives and to their use as endothelin receptor antagonists.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft Carbonsäurederivate der Formel (I), wobei R⁶ eine Gruppe (a) oder (b) wobei R¹³ und R¹⁴ gleich oder verschieden sein können und folgende Bedeutung haben; Wasserstoff mit der Maßgabe, daß R¹³ und R¹⁴ nicht gleichzeitig Wasserstoff sein dürfen, C₁-C₈-Alkyl, C₃-C₈-Cycloalkyl, C₃-C₈-Alkenyl, C₃-C₈-Alkinyl, Benzyl, Phenyl, Naphthyl, jeweils gegebenenfalls substituiert, oder R¹³ und R¹⁴ bilden gemeinsam eine zu einem Ring geschlossene, gegebenenfalls substituierte C₃-C₇-Alkylenkette, in der eine Alkylengruppe durch Sauerstoff, Schwefel oder Stickstoff ersetzt sein kann, oder R¹³ und R¹⁴ bilden gemeinsam eine zu einem Ring geschlossene, gegebenenfalls substituierte C₃-C₇-Alkylenkette oder C₃-C₇-Alkenylenkette, an die ein gegebenfalls substituierter Phenylring annelliert ist; und wobei die anderen Substituenten die in der Beschreibung erläuterte Bedeutung haben, die Herstellung von Verwendung als Endothelinrezeptorantagonisten.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Słowakei
ΑT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
ΑU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
ΑZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	U2	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
Cī	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	ZW	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumānien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dānemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		,
DE DK	Deutschland Dänemark	LI LK	Liechtenstein Sri Lanka	SD SE	Sudan Schweden		,

INTERNATIONAL SEARCH REPORT

Inte. PCT/EP 98/06571

	PCI/EP 98/005/1				
A. CLASSI IPC 6	FICATION OF SUBJECT MATTER C07D239/52 C07D239/36 C07D23	39/60 CO7D401/12 A61	K31/505		
According to	o International Patent Classification (IPC) or to both national class	dification and IPC			
B. FIELDS	SEARCHED				
Minimum do IPC 6	ocumentation searched (classification system followed by classifi CO7D A61K	cation symbols)			
	tion searched other than minimum documentation to the extent th				
Electronic d	ata base consulted during the international search (name of data	base and. where practical, search terms us	ed)		
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT				
Category °	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.		
X	DE 196 14 534 A (BASF AG) 16 Oc see page 8, line 50 - page 10, claim 1; table 1 & WO 97 38980 A	tober 1997 line 15;	1-8		
	cited in the application				
	V.				
			:		
	,				
Furt	her documents are listed in the continuation of box C.	Patent family members are liste	d in annex.		
° Special ca	tegories of cited documents :	"T" later document published after the in			
consid	ent defining the general state of the art which is not lered to be of particular relevance document but published on or after the international	or priority date and not in conflict wi cited to understand the principle or invention "X" document of particular relevance; the	theory underlying the		
filing of "L" docume which	ot be considered to document is taken alone e claimed invention				
"O" docum other	citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but "Condition or other special reason (as specified) "Cannot be considered to involve an indicator of cannot be considered to				
later ti	actual completion of the international search	"&" document member of the same pate Date of mailing of the international s			
	9 April 1999	03/05/1999	each ispoil		
Name and r	nailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2	Authorized officer			
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040. Tx. 31 651 epo ni. Fax: (+31-70) 340-3016 Bosma, P				

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

rmation on patent family members

te.	.ona	Application No
PCT.	/EP	98/06571

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
DE 19614534 A	16-10-1997	AU 2294097 A CA 2251381 A WO 9738980 A EP 0892786 A HR 970199 A NO 984714 A	07-11-1997 23-10-1997 23-10-1997 27-01-1999 30-06-1998 09-10-1998

Form PCT/ISA/210 (patent family annex) (July 1992)

INTERNATIONALER RECHERCHENBERICHT

Inte. Aktenzeichen PCT/EP 98/06571

A. KLASS IPK 6	FIZIERUNG DES ANMELDUNGSGEGENSTANDES C07D239/52 C07D239/36 C07D239/	/60 C07D401/12 A61	K31/505				
Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK							
	RCHIERTE GEBIETE						
IPK 6	rter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbo CO7D A61K	ole)					
	rte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, so						
	er internationalen Recherche konsultierte elektronische Datenbank (N	łame der Datenbank und evti. verwendet	e Suchbegriffe)				
	SENTLICH ANGESEHENE UNTERLAGEN		- p				
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angab	e der in Betracht kommenden Teile	Betr. Anspruch Nr.				
X	DE 196 14 534 A (BASF AG) 16. Okt siehe Seite 8, Zeile 50 - Seite 1 15; Anspruch 1; Tabelle 1 & WO 97 38980 A in der Anmeldung erwähnt 		1-8				
entn	Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen X Siehe Anhang Patentfamilie						
*Besondere Kategorien von angegebenen Veröffentlichungen "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist der Proritätsdatum veröffentlicht worden ist und mit der Anmeldedatum veröffentlicht worden ist "T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum veröffentlicht worden ist "T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum veröffentlicht worden ist "T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum veröffentlicht worden ist "T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist "T" Spätere Veröffentlichung, die enach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlichtung and berinden prioritätsdatum veröffentlichtung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden "Y" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem Internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung erfinderischer Tätigkeit beruhend betrachtet werden "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung mit einer oder mehreren anderen "Veröffentlichung, die vor dem Internationalen Anmeldedatum der internationalen Anmeldedatum oder dem Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist "Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung die beanspruchte Erfindung veröffentlichung, wenn die Veröffentlichung die beanspruchte Erfindung veröffentlichung, eine							
1	9. April 1999	03/05/1999	· 				
Name und F	Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016 Bevollmächtigter Bedlensteter Bevollmächtigter Bedlensteter						

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlicht

mental to

die zur selben Patentfamilie gehören

ter. .nales Aktenzeichen
PCT/EP 98/06571

im Recherchenbericht	Datum der .		tglied(er) der	Datum der
angeführtes Patentdokument	Veröffentlichung		at ntfamilie	Veröffentlichung
DE 19614534 A	16-10-1997	AU CA WO EP HR NO	2294097 A 2251381 A 9738980 A 0892786 A 970199 A 984714 A	07-11-1997 23-10-1997 23-10-1997 27-01-1999 30-06-1998 09-10-1998

Formblatt PCT/ISA/210 (Anhang Patentiamilie)(Juli 1992)