

ข้อสอบแข่งขันคอมพิวเตอร์โอลิมปิกระดับชาติ ครั้งที่ 18 ณ มหาวิทยาลัยเชียงใหม่ ข้อสอบข้อที่ 1 จากทั้งหมด 3 ข้อ วันพฤหัสบดีที่ 2 มิถุนายน 2565 เวลา 09.00 - 12.00 น.

แอ่วม่อน (Mountain)

"ดอย" และ "ม่อน" เป็นภาษาถิ่นทางภาคเหนือ โดยดอยแปลว่าภูเขา และม่อนแปลว่าดอยหรือยอดเขา เตี้ย ๆ จังหวัดเชียงใหม่มีแหล่งท่องเที่ยวที่เป็นม่อนที่สุดชิวแถมวิวยังสวยอยู่เยอะ เช่น ม่อนแจ้ม ม่อนอิงดาว ม่อนตะวัน และม่อนวิวงาม ม่อนต่าง ๆ จึงเป็นที่ดึงดูดนักท่องเที่ยวให้มาเยี่ยมเยือนเชียงใหม่เป็นระยะ แต่การที่ นักท่องเที่ยวจะได้สัมผัสบรรยากาศธรรมชาติ รับลมหนาว ชมทะเลหมอกสวยอย่างแท้จริง จำเป็นต้องเดินทางด้วย เท้าไปให้ถึงยอดม่อนด้วยตนเอง เพื่อเป็นการช่วยเหลือให้นักท่องเที่ยวสามารถเดินทางได้อย่างปลอดภัย ทาง เจ้าหน้าที่ได้กำหนดจุดพักไว้หลายจุดเพื่อให้นักท่องเที่ยวได้แวะดื่มน้ำหรือรับประทานอาหาร ก่อนที่จะเดินทางไป ยังจุดหมายที่ต้องการ เพื่อความสะดวกในการประสานงานและช่วยเหลือหากมีเหตุถุกเฉิน เจ้าหน้าที่จะกำหนดให้ การเดินทางไปยังจุดพักต่าง ๆ ต้องเดินทางไปในแนวเส้นรุ้ง (แนวแกน x) หรือแนวเส้นแวง (แนวแกน y) เท่านั้น พร้อมทั้งกำหนดพิกัดและระยะทางเป็นจำนวนเต็ม และการวัดระยะทางระหว่างจุดพักต่าง ๆ จะเป็นผลรวมของ ระยะในแนวแกน x และแกน y (ไม่วัดในแนวทแยง) ทั้งนี้จากการสำรวจพบว่านักท่องเที่ยวแต่ละคนมีความ แข็งแรงที่แตกต่างกัน ทำให้สามารถเดินทางได้ในระยะทางที่จำกัด ต้องหยุดพักเป็นระยะ ดังนั้นการเดินทาง ระหว่างจุดพักของนักท่องเที่ยวแต่ละคนต้องไม่เกิน<mark>ขีดจำกัด</mark>ของนักท่องเที่ยวคนนั้น ๆ

ด้วยนักท่องเที่ยวที่มามีจำนวนมากถึง m คน แต่ละคนอยากจะไปให้ถึงจุดหมายให้เร็วซึ่งหมายถึงต้องการ หยุดพัก ณ จุดพักที่เจ้าหน้าที่เตรียมไว้ให้<u>น้อยครั้ง</u>ที่สุด แต่ก็ต้องดูแลสุขภาพโดยนักท่องเที่ยวคนที่ k สามารถ เดินทางได้ไกลไม่เกินระยะทาง s_k หน่วย ($k=1,\ldots,m$) ก่อนจะหยุดพักในแต่ละครั้ง และเดินทางต่อไปจนถึง

ยอดม่อน ทางเจ้าหน้าที่จะต้องรวบรวมข้อมูลของจำนวนการหยุดพักเหล่านั้นของนักท่องเที่ยว เพื่อนำไปใช้ในการ จัดเตรียมน้ำและอาหารให้กับนักท่องเที่ยวทุกคนที่จะได้รับ ณ ทุกจุดพัก รวมไปถึงยอดม่อนที่นับเป็นจุดพักอีกจุด หนึ่ง

ตัวอย่างเช่น ถ้าจุดเริ่มต้นออกเดินทางอยู่ที่พิกัด (0,1) จุดพักอยู่ที่พิกัด (2,2), (3,6) และ (6,6) และ จุดยอดม่อน อยู่ที่พิกัด (9,10) (กำหนดให้มีจำนวนจุดพัก รวมจุดเริ่มต้นและจุดยอดม่อน เป็นค่า n=5) จากข้อมูล ดังกล่าวแสดงเป็นแผนภาพดังรูปที่ 1 เมื่อ S แทนจุดเริ่มต้นออกเดินทาง B แทนจุดพัก และ T แทนจุดยอดม่อน (ซึ่ง ณ ตำแหน่งนี้ก็เป็นจุดพักด้วย)

รูปที่ 1. แสดงแผนภาพประกอบพิกัดจุดเริ่มต้นออกเดินทาง จุดพัก และจุดยอดม่อน

หากว่ามีนักท่องเที่ยวจำนวน m=2 คนโดยที่นักท่องเที่ยวคนแรกมีขีดจำกัดในการเดินทางได้ไกลสุด ไม่เกิน 10 หน่วย ($s_1=10$) และ นักท่องเที่ยวคนที่สองมีขีดจำกัดในการเดินทางได้ไกลสุด ไม่เกิน 15 หน่วย ($s_2=15$) เพื่อให้มีการหยุดพักน้อยที่สุดนักท่องเที่ยวคนแรกจะต้องไปหยุดพักที่จุดพัก (3,6) ก่อนเดินทางไปยังจุดยอดม่อน (เจ้าหน้าที่ต้องเตรียมอาหารและน้ำให้ 2 ชุด) ส่วนนักท่องเที่ยวคนที่สองจะเลือกเดินทางไปหยุดพักที่จุดพัก (3,6) หรือ จุดพัก (6,6) ก็ได้ ก่อนเดินทางไปยังจุดยอดม่อน (เจ้าหน้าที่ต้องเตรียมอาหารและน้ำให้อีก 2 ชุด) ดังนั้น เจ้าหน้าที่จะต้องเตรียมน้ำและอาหาร รวมทั้งหมด 2+2=4 ชุด

แต่ถ้าหากนักท่องเที่ยวคนที่สองมีขีดจำกัดในการเดินทางได้ไกลสุด ไม่เกิน 30 หน่วย ($s_2=30$) นักท่องเที่ยวคนที่สองจะสามารถเดินทางจากจุดเริ่มต้นไปยังจุดยอดม่อน ได้โดยไม่ต้องแวะจุดพักเลย ทำให้ เจ้าหน้าที่ลดการเตรียมน้ำและอาหารลง เหลือเพียง 2+1=3 ชุด

งานของคุณ จงเขียนโปรแกรมที่มีประสิทธิภาพเพื่อหาว่าเมื่อกำหนดพิกัดเริ่มต้นเดินทาง พิกัดยอดม่อน พิกัดจุด พักต่าง ๆ จำนวนนักท่องเที่ยวและระยะทางสูงสุดที่นักท่องเที่ยวแต่ละคนเดินทางด้วยเท้าได้ก่อนหยุดพัก แล้ว เจ้าหน้าที่จะต้องเตรียมน้ำและอาหาร รวมกัน<u>น้อยที่สุด</u>ทั้งหมดกี่ชุด

ข้อมูลนำเข้า (Input)

มีจำนวน m+n+1 บรรทัด ดังนี้

บรรทัดที่ 1	จำนวนเต็ม 2 จำนวน n และ m แต่ละจำนวนคั่นด้วยช่องว่าง " " เมื่อ n แทนจำนวนจุดพัก (รวมจุดเริ่มต้นออกเดินทางและจุดยอดม่อน) โดย $5 \leq n \leq 500$ m แทนจำนวนนักท่องเที่ยว เมื่อ $1 \leq m \leq 200,\!000$
บรรทัดที่ $i+1$ เมื่อ $i=1$ ถึง n	จำนวนเต็ม 2 จำนวน x_i และ y_i แต่ละจำนวนคั่นด้วยช่องว่าง "" แทนพิกัด (x_i,y_i) ของจุดพักที่ i เมื่อ $i=1,,n$ กำหนดให้ (x_1,y_1) แทนจุดออกเดินทาง และ (x_n,y_n) แทนจุดยอดม่อน โดย $0\leq x_i,y_i\leq 2^{60}$
บรรทัดที่ $k+n+1$ เมื่อ $k=1$ ถึง m	แต่ละบรรทัดประกอบด้วยจำนวนเต็ม 1 จำนวน s_k เมื่อ $k=1,\dots,m$ แทนระยะทางสูงสุด ที่นักท่องเที่ยวคนที่ k สามารถเดินได้โดยไม่หยุดพัก โดย $1\leq s_k\leq 2^{60}$

ข้อมูลส่งออก (Output)

มีจำนวน 1 บรรทัด

บรรทัดที่ 1	จำนวนน้ำและอาหารที่น้อยชุดที่สุดที่เจ้าหน้าที่จะต้องเตรียมให้กับนักท่องเที่ยว
-------------	---

ตัวอย่างที่ 1

ข้อมูลนำเข้า	ข้อมูลส่งออก
5 2	4
5 2 0 1	
2 2	
2 2 3 6 6 6	
6 6	

9 10	
10	
15	

ตัวอย่างที่ 2

ข้อมูลนำเข้า	ข้อมูลส่งออก
5 2	3
01	
2 2	
3 6	
66	
9 10	
10	
30	

ตัวอย่างที่ 3

ข้อมูลนำเข้า	ข้อมูลส่งออก
5 2	5
00	
2 0	
70	
40	
10 0	
10	
3	

ข้อกำหนด

หัวข้อ	เงื่อนไข
ข้อมูลนำเข้า	Standard Input (คีย์บอร์ด)
ข้อมูลส่งออก	Standard Output (จอภาพ)
ระยะเวลาสูงสุดที่ใช้ในการประมวลผล	1 วินาที
หน่วยความจำสูงสุดที่ใช้ในการประมวลผล	1024MB
คะแนนสูงสุดของโจทย์	100 คะแนน
เงื่อนไขการรันโปรแกรม	โปรแกรมจะต้องคอมไพล์ผ่าน

ข้อกำหนดอื่น ๆ

ผู้เข้าแข่งขันต้องระบุส่วนหัวของโปรแกรม ดังนี้

/×

TASK: TaskName

AUTHOR: YourName YourLastName

CENTER: YourCenter

*/

ข้อมูลเพิ่มเติมเกี่ยวกับชุดทดสอบ

ข้อมูลแนะนำที่เกี่ยวข้องกับชุดทดสอบ มีดังนี้

ŭ	•	
กลุ่ม ชุดทดสอบที่	คะแนนสูงสุดของ กลุ่มชุดทดสอบนี้	เงื่อนไข
1	12	$n \le$ 10, $m \le$ 12 และ $0 \le x, y \le$ 1,000
2	16	n ≤250 และ m ≤400
3	7	$n \leq$ 100 และ y_i =0
4	14	$n \leq$ 100 และ s_k เรียงจากน้อยไปมาก
5	9	n ≤200 และ 0 ≤ x,y ≤10 ⁸
6	42	ไม่มีข้อกำหนดอื่นใด

คำแนะนำในการเขียนโปรแกรม

หากผู้เข้าแข่งขันใช้คำสั่ง cin/cout แนะนำให้เพิ่มคำสั่ง 2 บรรทัด ดังนี้
std::ios_base::sync_with_stdio(false);
std::cin.tie(NULL);