Assignment I

January 17, 2019

Notation

- \mathbb{N} : Set of natural numbers, *i.e.*, $\mathbb{N} := \{1, 2, 3, \dots\}$.
- \mathbb{Z} : Set of intergers, *i.e.*, $\mathbb{Z} := \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$.
- \mathbb{R} : Set of real numbers.
- P: Set of positive reals, *i.e.*, $P := \{x \in \mathbb{R} | x > 0\}$.

Problems

- 1. Prove the following:
 - (a) If $x \in P$, then $x^{-1} \in P$. (Also show this for $x \in -P$, *i.e.*, If $x \in -P$, then $x^{-1} \in -P$).
 - (b) If $x, y \in P$ or $x, y \in -P$, then we have x > y iff $y^{-1} > x^{-1}$.
- 2. Prove that if $a, b \in \mathbb{N}$ and a > b, then $a b \in \mathbb{N}$.
- 3. Prove the following:
 - (a) if $a, b \in \mathbb{Z}$, then $a + b \in \mathbb{Z}$ and $a \cdot b \in \mathbb{Z}$.
 - (b) $a \in \mathbb{N}$ iff $a \in \mathbb{Z}$ and a > 0.
- 4. For x > 0, there exists an $n \in \mathbb{N}$ s.t. $n 1 \le x < n$.
- 5. Prove the following:
 - (a) |x| = |-x|.
 - (b) For y > 0, we have $-y \le x \le y$ iff $|x| \le y$.
- 6. Prove that a subset of a countable set is countable. (Reading assignment. The solution is provided in the lecture notes)
- 7. Prove that for x > 0 and $n \in \mathbb{N}$, we have $x^{1/n}$ exists.
- 8. Prove that for $A \subset \mathbb{R}$ with A bounded above, we have $\sup A = -\inf (-A)$.

9. Find the supremum and infimum of the set

$$A:=\{\frac{m}{n}:m,n\in\mathbb{N},m<2n\}.$$

- 10. Find the limit of the sequence $a_n = \frac{n}{2^n}$, $n \in \mathbb{N}$.
- 11. Show the following:

$$\lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n = e^{-1}.$$