Appunti di Fisica

Jasin Atipi

September 2017

2 Marzo 2018

Introduzione - Cinematica del punto

Definizione di:

Accuratezza: taratura/calibrazione di uno strumento.

Precisione: risoluzione di uno strumento.

Moto degli oggetti

Cominciamo a pensare alla posizione di un punto su una retta (orientata). Abbiamo bisogno di un origine e una misura. La misura ci aiuta a definire la distanza di un punto dall'origine. Per fare ciò usiamo un sistema di riferimento (retta) e un sistema di misura (metri).

Una domanda importante è: cosa succede quando il punto si muove? Dobbiamo introdurre il concetto di tempo.

Sia x la posizione del punto (m lontano dall'origine) e t il tempo in secondi.

t(s)	x(m)	
0	2	Questo è un modo di definire una legge oraria, ovvero un map-
2	$\begin{array}{c c} 2 \\ 3,5 \end{array}$	Questo e un modo di definire una legge oraria, ovvero un map-
5	3	

ping $t \to x$, nel caso della tabella è di tipo discreto (non continuo).

Tutto ciò lo possiamo rappresentare in un piano cartesiano dove le ascisse rappresentano il tempo t(s) e le ordinate rappresentano la distanza dall'origine x(m). Nel caso della tabella si tratterà di un grafico discreto.

Un altro modo per defiire una legge oraria è in maniera analistica (funzione continua), endavremo una posizione definita tramite x(t) (x in funzione del tempo). Per esempio x(t)=22m rappresenta un punto fermo nel tempo (sempre $22\ m$). Un altro esempio è x(t)=5t. Abbiamo un punto che si muove sempre di più lontano dall'origine man mano che il tempo passa. In questa maniera so dove si trova continuamente il punto. Il numero 5 ha una dimensione. Dato che il t è espresso in secondi e x(t) è espresso in metri, il prodotto delle dimensioni di 5 e t deve restituire t. Quindi t deve essere rappresentato in t.

Abbiamo quindi capito che il 5 è una velocità Un punto fermo ha sempre velocità 0. Se prendiamo due posizioni x_1, x_2 , possiamo determinare lo spostamento dell'oggetto $\Delta x = x_2 - x_1$. Il segno della velocità indica se ci si sta spostando "avanti" o "indietro" in base al passaggio del tempo.

Una importante osservazione da fare riguardo allo spostamento è che se si cambia l'origine della retta, lo spostamento di due punti x_1, x_2 rimane uguale. Se usiamo un'origine O in cui $x_1 = 3m, x_2 = 5m$, possiamo cambiare l'origine in O' dove $x_1 = 2m, x_4 = 4m$ e notiamo che $\Delta x = \Delta x' = x_2 - x_1 = x_1' - x_2'$. Questo ci aiuterà a definire la velocità (spostamento nel tmepo).

t(s)	x(m)				
0	1	-			
1	2	Possiamo dire che dall'istante 0 all'istante 1:			
4	1				
5	3,5				
$ \begin{array}{c c} 4 & 1 \\ 5 & 3,5 \\ \Delta x = 1m, \Delta t = 1s \end{array} $					

Possiamo anche dire che la velocità media $\frac{\Delta x}{\Delta t}$

Nel nostro caso quindi la velocità media $v_{media} = \frac{1m}{c}$

La velocità in cinematica ha dimensione $[V] = [LT^{-1}].$

Possiamo calcolare la velocità media per una coppia arbitraria di istanti, es:

$$t=1$$
 e $t=4$

$$v_{media}=\frac{(1-2)m}{(4-1)s}=-\frac{1m}{3s}\approx 0,33\frac{m}{s}$$
Possiamo ricavare che $\Delta x=v_{media}\Delta t$

Possiamo ricavare che $\Delta x = v_{media} \Delta t$.

7 Marzo 2018

Moto rettilineo uniforme e moto rettilineo variabile

La velocità può essere caratterizzata in velocità media ed istantanea.

$$v_{media} = \frac{\Delta x}{\Delta t}.$$

v (istantanea) = $\lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$ (derivata in rispetto a t). Consideriamo una v costante, allora:

$$v_{media} = \frac{\Delta x}{\Delta t} = v$$
, possiamo allora dire che $\Delta x = v \Delta t$.

Detto ciò, possiamo fare una legge oraria anche della velocità, oltre che della

Data questa legge oraria, possiamo determinare lo spostamento Δx tramite il prodotto $v \cdot \Delta t$, che corrisponde all'area sottesa al grafico nell'intervallo di tempo voluto.