CS 760 Midterm Note Sheet

Overview

 $\mathcal{X} \to \text{input space}$

 $\mathcal{Y} \to \text{output space}$

 $\mathcal{H} \to \text{hypothesis class}$

Goal:

model $h \in \mathcal{H}$ that best approximates $f: \mathcal{X} \to \mathcal{Y}$

Empirical Risk Minimization

$$\overline{\hat{f}} = \arg\min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell(h(x^{(i)}), y^{(i)})$$

k Nearest Neighbors

 $\hat{y} = \sum_{i=1}^{k} y^{(i)}$ for k closest points

Distances:

Hamming: $d_H(x^{(i),x^{(j)}}) = \sum_{a=1}^d \mathbb{1}(x_a^{(i)} \neq x_a^{(j)})$

Euclidean: $d(x^{(i)}, x^{(j)}) = \left(\sum_{a=1}^{d} (x_a^{(i)} - x_a^{(j)})^2\right)^{-\frac{1}{2}}$

Manhattan: $d(x^{(i)}, x^{(j)}) = \sum_{a=1}^{d} |x_a^{(i)} - x_a^{(j)}|^2$

Information Theory

Entropy: $H(Y) = -\sum_{y \in Y} \mathbb{P}(y) \log_2(\mathbb{P}(y))$

Conditional: $H(Y|X) = \sum_{x} \mathbb{P}(X=x)H(Y|X=x)$

Information Gain: H(Y) - H(Y|X)

Gain Ratio: $\frac{H(Y)-H(Y|S)}{H(S)}$

Evaluation

Observed Class

	True	False
True	TP	FP
False	FN	TN

Accuracy: $\frac{TP+TN}{TP+FP+TN+FN}$ Error: 1 - Accuracy

Precision: $\frac{TP}{TP+FP}$ Recall: $\frac{TP}{TP+FN}$

Predicted Class

False Positive Rate: $\frac{FP}{TN+FP}$

ROC Curve: recall (TPR) vs. false positive rate Precision/Recall Curve: downward sloping with

asymptote

Decision Trees

Algorithm:

MakeSubtree:

Determine Candidate Splits if stopping criteria: make leaf else: MakeSubtree with best split return subtree rooted at N

Linear Regression

Loss: $\ell(f_{\theta}) = \frac{1}{n} ||\mathbf{X}\theta - y||_2^2$

Gradient: $\nabla_{\theta} = \frac{1}{n} (2\mathbf{X}^T \mathbf{X} \theta - 2\mathbf{X}^T y)$

Solution: $\theta = (\mathbf{X}^n \mathbf{X})^{-1} \mathbf{X}^T y$

Ridge Loss: $\ell(f_{\theta}) = \frac{1}{n} ||\mathbf{X}\theta - y||_2^2 + \lambda ||\theta||_2^2$ Ridge Sol: $\theta = (\mathbf{X}^T \mathbf{X}^n + \lambda nI)^{-1} \mathbf{X}^T y$

Logistic Regression

Sigmoid: $\sigma(z) = \frac{1}{1 + \exp(-z)} = \frac{\exp(z)}{1 + \exp(z)} \in (0, 1)$

Properties: $1 - \sigma(z) = \sigma(-z), \ \sigma'(z) = \sigma(z)(1 - \sigma(z))$

Cross Entropy Loss:

Estimation

Maximum Likelihood:

 $\hat{\theta}_{MLE} = \arg\max_{\alpha} \mathcal{L}(\theta; Y, X)$ $\mathcal{L}(\theta; Y, X) = \prod_{i=1}^{n} \mathbb{P}_{\theta}(y_i | x_i)$

Maximum a posteriori Probability:

 $\hat{\theta}_{MAP} = \arg\max_{\theta} \prod_{i=1}^{n} p(x^{(i)}|\theta)p(\theta)$

Gradient Descent

Convergence Criteria:

1. Convex: $f(\lambda x_1 + (1-\lambda)x_2) \le \lambda f(x_1) + (1-\lambda)f(x_2)$

2. Differentiable

3. Lipschitz-continuous: $\nabla^2 f(x) \leq LI$

recall: $(B - A \text{ is positive semidefinite if } A \leq B)$ recall: if C is positive semidefinite then $x^T C x > 0 \ \forall x$

Probability Distributions

Binomial: $\binom{x}{n}\theta^x(1-\theta)^{n-x}$

Normal: $(2\pi\sigma^2)^{-\frac{1}{2}} \exp\left\{-\frac{1}{2\sigma^2} (x-\mu)^2\right\}$

Beta: $\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha,\beta)}x^{\alpha-1}(1-x)^{\beta-1}$ Gamma: $\frac{r^s}{\Gamma(s)}x^{s-1}e^{-rx}$

Exponential: $\lambda e^{-\lambda x}$

Naive Bayes

Assumes conditional independence of features:

$$P(X_1, \dots, X_k, Y) \propto P(X_1, \dots, X_k \mid Y) P(Y)$$
$$= \left(\prod_{k=1}^K P(X_k \mid Y) \right) P(Y)$$

Perceptrons

$$\hat{y}(x) = \begin{cases} 1, & w^T x \ge 0 \\ 0, & \text{otherwise} \end{cases}$$

Algorithm:

for index i:

if $y^{(i)}w^Tx^{(i)} < 1$ (i.e prediction is wrong):

then $w_{t+1} = w_t + y^{(i)}x^{(i)}$

else $w_{t+1} = w_t$

Mistake Bound: $(2 + D(S)^2)\gamma(S)^{-2}$

where D(S) is the max diameter and $\gamma(S)$ is the largest margin we can have with dataset S

Neural Networks

For a single internal node:

Input: x, Weights: w, Bias: b, Activation Function: rOutput: $r(w^Tx + b)$ which feeds into the next layer Gradient Components: $\frac{\partial l}{\partial w} = (\hat{y} - y)x$, $\frac{\partial l}{\partial x} = (\hat{y} - y)w$ 2-Layer: $\frac{\partial l}{\partial w_{11}} = \frac{\partial l}{\partial a_{11}} \frac{\partial a_{11}}{\partial w_{11}^{(1)}} = (\hat{y} - y)w_{11}^{(2)} a_{11}(1 - a_{11})x_1$

2-Layer:
$$\frac{\partial l}{\partial w_{11}} = \frac{\partial l}{\partial a_{11}} \frac{\partial a_{11}}{\partial w_{11}^{(1)}} = (\hat{y} - y) w_{11}^{(2)} a_{11} (1 - a_{11}) x$$