# NYCU Introduction to Machine Learning, Homework 4 [111550149], [林悦揚]

Part. 1, Kaggle (70% [50% comes from the competition]):

(10%) Implementation Details

Model Architecture & Hyperparameters (5%):

ResNet18 with pretrain weight:

Bagging ensemble inference uses multiple pre-trained models, specifically ResNet18 models traine d on Kaggle's dataset, to predict test data and generate final classification results based on probabil ity averaging:

```
def bagging_inference(weight_files, test_dir='./data/Images/test'):
    print(f"[INFO] Loading model weights from {len(weight_files)} models...")

transform = transforms.Compose([
        transforms.ToPILImage(),
        transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])

])

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    models = []
    for weight_file in weight_files:
        print(f" Loading weights from '{weight_file}'...")
        model = ResNet18(num_classes=7)
        model.load_state_dict(torch.load(weight_file, map_location=device))
        model.to(device)
        model.append(model)
    print("[INFO] All models loaded successfully.")
```

#### hyperparameters:

```
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=64, shuffle=False)

model = ResNet18(num_classes=num_classes)
model.to(device)
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()

train_losses = []
val_accuracies = []
for epoch in range(num_epochs):
    model.train()
    train_loss = 0.0
    for batch_idx, (inputs, labels) in enumerate(train_loader):
        inputs, labels = inputs.to(device), labels.to(device)
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.zero_step()
        train_loss += loss.item()

        val_transform = transforms.Compose([
```

| Model backbone (e.g., VGG16, VGG19, Custom, et c) | ResNet18 (using PyTorch pre-trained weight s:ResNet18_Weights.IMAGENET1K_V1)                                                                                                                                                                                                                                                                      |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number of model parameters                        | 11.7M                                                                                                                                                                                                                                                                                                                                             |
| Other hyperparameters ···                         | 1.Learning Rate: 0.001 2.Optimizer: Adam 3.Loss Function: CrossEntropyLoss 4.Batch Size: 64 5.Epochs: Bagging Models 1 - 5: 30 Epochs Bagging Model 6: 20 Epochs 6.Dropout Rate: 0.5 7.Scheduler: none 8.Weight Initialization: Using PyTorch pre-tra ined weights for initialization 9.Normalization: Mean: [0.5, 0.5, 0.5] Std: [0.5, 0.5, 0.5] |

# Training Strategy (5%):

# 1. Bagging Models:

- Bagging Models 1 5 trained on bootstrap sampled subsets of the training set.
- Bagging Model 6 trained on the full training set without bootstrap sampling.
- Adding Bag6 improves the ensemble's performance by leveraging the full dataset, enhancing feature coverage, reducing data bias, increasing diversity, and boosting generalization ability.
- Bagging Model 6 with weight 3 has improved the accuracy.

# 2. Data Augmentation:

```
train_transform = transforms.Compose([
    transforms.RandomHorizontalFlip(p=0.5),
    transforms.RandomRotation(15),
    transforms.RandomResizedcrop(size=(224, 224), scale=(0.8, 1.0)),
    transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.2),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])

])
val_transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
```

- RandomHorizontalFlip (p=0.5)
- RandomRotation (±15°)
- o RandomResizedCrop (224×224, scale=(0.8, 1.0))
- o ColorJitter (Brightness, Contrast, Saturation, Hue)
- Data augmentation is applied to increase the diversity of the training dataset and i mprove the model's robustness and generalization ability.

#### 3. Validation:

```
from sklearn.model_selection import train_test_split

train_paths, val_paths, train_labels, val_labels = train_test_split(
    image_paths, labels, test_size=0.2, random_state=42)

model.eval()
val_preds, val_true = [], []
with torch.no.grnd():
for inputs, labels in val_loader:
    inputs = inputs.tod(evice)
    outputs = model.(inputs)
    preds = outputs.argmax(dis=1)
    val_preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(preds.extend(p
```

- Validation split: 20% of the training data (stratified sampling).
- Each epoch computes validation accuracy to monitor performance.

#### 4. Load and clean data:

```
def is_blurry(image_path, threshold=100):
    image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
    laplacian_var = cv2.Laplacian(image, cv2.CV_64F).var()
    return laplacian_var < threshold

def load_and_clean_data(data_dir, threshold=100):
    print(f"[INFO] Loading and cleaning data from {data_dir}...")
    image_paths = []
    emotions = os.listdir(data_dir)
    for label, emotion in enumerate(emotions):
        folder_path = os.path.join(data_dir, emotion)
        for img_path in glob.glob(f"{folder_path}/*.jpg"):
        if not is_blurry(img_path, threshold):
              image_paths.append(img_path)
              labels.append(label)
    print(f"[INFO] Loaded {len(image_paths)} images after filtering.")
    return image_paths, labels</pre>
```

• The data loading and cleaning process filters out blurry images based on their Lapl acian variance to ensure only high-quality data is used for training, improving mod el performance and reliability.

#### 5. Weight Saving:

```
torch.save(model.state_dict(), f'resnet18_bagging_{model_idx}.pth')
print(f"[Model {model_idx}] Training complete. Model weights saved.")
return model
```

Saved each model's weights after training (resnet18\_bagging\_1.pth to resnet18\_bagging\_6.pth).

# (10%) Experimental Results

Evaluation metrics and learning curve (5%):

Evaluation metrics: Validation Accuracy learning curve & Validation Accuracy:

Resnet18 epoch =50:



Resnet18 bagging model from 1~5 epoch=30 with bootstrap sampling.:



Resnet18 bagging model 6 epoch=20 without bootstrap sampling:



validation accuracy of the Bagging ensemble model from 1~5:

```
Loading weights from 'resnet18_bagging_2.pth'...

Loading weights from 'resnet18_bagging_3.pth'...

Loading weights from 'resnet18_bagging_4.pth'...

Loading weights from 'resnet18_bagging_5.pth'...

[INFO] All models loaded successfully.

[INFO] Starting Bagging inference on validation set...

[INFO] Bagging validation accuracy: 0.6957

Final validation accuracy with Bagging: 0.6957
```

validation accuracy of the Bagging ensemble model from 1~6:

```
Loading weights from 'resnet18_bagging_2.pth'...
Loading weights from 'resnet18_bagging_3.pth'...
Loading weights from 'resnet18_bagging_4.pth'...
Loading weights from 'resnet18_bagging_5.pth'...
Loading weights from 'resnet18_bagging_6.pth'...
[INFO] All models loaded successfully.
[INFO] Starting Bagging inference on validation set...
[INFO] Bagging validation accuracy: 0.7028
Final validation accuracy with Bagging: 0.7028
```

validation accuracy of the Bagging ensemble model from 1~6(6 with weight 3)

```
Loading weights from './resnet18_bagging_2.pth'...
Loading weights from './resnet18_bagging_3.pth'...
Loading weights from './resnet18_bagging_4.pth'...
Loading weights from './resnet18_bagging_5.pth'...
Loading weights from './resnet18_bagging_6.pth'...
Loading weights from './resnet18_bagging_6.pth'...
Loading weights from './resnet18_bagging_6.pth'...
[INFO] All models loaded successfully.
[INFO] Starting Bagging inference on validation set...
INFO] Bagging validation accuracy: 0.7047
[Inal validation accuracy with Bagging: 0.7047
```

ResNet18 with 50 epochs showed the highest accuracy at epoch 20. Based on this observation, I ai med to further improve the accuracy. Therefore, I trained ResNet18 models (resnet18\_bagging\_1 t o resnet18\_bagging\_5) using bootstrap sampling. Finally, these five models were combined with R esNet18\_bagging\_6 (trained for 20 epochs without bootstrap sampling) through bagging ensemble to enhance the overall accuracy.I further enchance the weight of the bag 6 to weight=3, can furth er improve the accuracy.

# Ablation Study (5%):

Resnet18 bagging model from 1~5 epoch=30 with bootstrap sampling.:



# Resnet18 bagging model 6 epoch=20 without bootstrap sampling:



validation accuracy of the Bagging ensemble model from 1~5:

```
model.load_state_dict(torch.load(weight_file, map_location=device))
Loading weights from 'resnet18_bagging_2.pth'...
Loading weights from 'resnet18_bagging_3.pth'...
Loading weights from 'resnet18_bagging_3.pth'...
Loading weights from 'resnet18_bagging_4.pth'...
Loading weights from 'resnet18_bagging_5.pth'...
[INFO] All models loaded successfully.
[INFO] Starting Bagging inference on validation set...
[INFO] Bagging validation accuracy: 0.6957
Final validation accuracy with Bagging: 0.6957
```

validation accuracy of the Bagging ensemble model from 1~6:

```
model.load_state_dict(torch.load(weight_file, map_location=device))
Loading weights from 'resnet18_bagging_2.pth'...
Loading weights from 'resnet18_bagging_3.pth'...
Loading weights from 'resnet18_bagging_4.pth'...
Loading weights from 'resnet18_bagging_5.pth'...
Loading weights from 'resnet18_bagging_6.pth'...
[INFO] All models loaded successfully.
[INFO] Starting Bagging inference on validation set...
[INFO] Bagging validation accuracy: 0.7028
Final validation accuracy with Bagging: 0.7028
```

validation accuracy of the Bagging ensemble model from 1~6(6 with weight 3)

```
Loading weights from './resnet18_bagging_2.pth'...
Loading weights from './resnet18_bagging_3.pth'...
Loading weights from './resnet18_bagging_4.pth'...
Loading weights from './resnet18_bagging_5.pth'...
Loading weights from './resnet18_bagging_6.pth'...
Loading weights from './resnet18_bagging_6.pth'...
Loading weights from './resnet18_bagging_6.pth'...
[INFO] All models loaded successfully.
[INFO] Starting Bagging inference on validation set...
INFO] Bagging validation accuracy: 0.7047
Final validation accuracy with Bagging: 0.7047
```

Based on the accuracy comparison above, using bootstrap sampling results in a decrease in accura cy. The accuracy of individual models (Bag1 to Bag5) trained with bootstrap sampling mostly falls around 0.64. When combining these models into a Bagging ensemble model, the accuracy improve s to 0.6957. On the other hand, the model trained without bootstrap sampling (Bag6), which utilize s the full dataset for training, achieves a higher accuracy of around 0.68 because it learns more comprehensive features. By combining Bag6 with Bag1 to Bag5 in a Bagging ensemble model, the a ccuracy further increases to 0.7028. Further, Bag6 with weight 3, can further enhance the accuracy to 0.7047. Therefore, this combination is selected as the final implementation.

# Part. 2, Questions (30%):

1. (10%) Explain the support vector in SVM and the slack variable in Soft-margin SVM. Plea se provide a precise and concise answer. (each in two sentences)

Support vectors: the data points closest to the decision boundary in a Support Vector Machine. They are critical because they determine the position and orientation of the hyperplane, maximizing the margin between classes.

Slack variables: Allow some data points to violate the margin or be misclassified in Soft-margin S VM. They provide a trade-off between maximizing the margin and minimizing classification error s, controlled by the regularization parameter.

2. (10%) In training an SVM, how do the parameter C and the hyperparameters of the kernel function (e.g.,  $\gamma$  for the RBF kernel) affect the model's performance? Please explain their roles and describe how to choose these parameters to achieve good performance.

#### 1. Parameter C:

- Controls the trade-off between maximizing the margin and minimizing misclassification er rors.
- Small C: Simpler model, may underfit.
- Large C: Complex model, may overfit.

# 2. Kernel Hyperparameter ( $\gamma$ for RBF):

- Determines the influence of each support vector.
- Small  $\gamma$ : Smooth decision boundary, may underfit.
- Large  $\gamma$ : Complex boundary, may overfit.
- 3. (10%) SVM is often more accurate than Logistic Regression. Please compare SVM and Logistic Regression in handling outliers.

Logistic Regression (LR):

Sensitive to outliers because all points contribute to the loss function.

Outliers can distort the decision boundary significantly.

Mitigation requires preprocessing (e.g., outlier removal) or regularization (L1/L2).

Support Vector Machines (SVM):

More robust to outliers, as only support vectors near the margin affect the decision boundary. Soft-margin SVMs allow tolerance for misclassified points, reducing the influence of outliers. Outliers close to the margin can still affect SVM performance.

| Aspect             | Logistic Regression                     | Support Vector Machines              |
|--------------------|-----------------------------------------|--------------------------------------|
| Impact of Outliers | Strongly influenced; outliers distort t | Less influenced; focuses only on sup |
|                    | he decision boundary.                   | port vectors.                        |

| Aspect                    | Logistic Regression                                        | Support Vector Machines                                   |
|---------------------------|------------------------------------------------------------|-----------------------------------------------------------|
| Handling Mechanism        | Uses regularization to limit the impact of extreme values. | Uses soft margins to tolerate margin violations.          |
|                           | Sensitive, as all points contribute to loss.               | Can become sensitive if outliers are support vectors.     |
| Preprocessing Need        | Requires careful preprocessing to handle outliers.         | Less preprocessing required, but tuning CCC is important. |
| Scalability with Outliers | Computationally less impacted.                             | More computationally intensive if ou tliers are numerous. |