Competitive Equilibrium with Complete Markets: Part I

Timothy Kam

Outline

Motivation

Outline

- 2 Model Setup
 - Heterogeneous Agents
 - Markovian Histories?
 - Feasibility
- **Pareto**
 - Social Planner's problem
- Markets Pt. 1
 - Arrow-Debreu economy
 - Equivalence
 - Asset Pricing
 - Pricing redundant assets
 - Pricing tail assets
 - Pricing one-period returns

Previously ...

Previously we look at a *planned* economy:

- Single optimizing planner.
- Characterized recursive optimal allocations as a DP problem.
- In reality, we have decentralized or competitive economies.

Osamu Tezuka's Metropolis

And few lectures ahead ...

- Want to work toward the stochastic growth model as also basic recursive competitive equilibrium model.
- As a dynamic outcome where individuals and firms solve their decentralized optimal allocation problems independently.
- No planner.
- History (or State)-contingent, intertemporal relative prices, as the allocative mechanism.
- Resulting versions of first- and second fundamental welfare theorems.
 (Why?)

General:

- What do we mean by "equilibrium"?
- Equilibrium as a "mapping" from the physical/primitive environment (preference, technology, information sets and market structure) to real allocations, s.t.
 - agents optimize (they select their best actions),
 - 2 agents actions are consistent with each other's actions, and
 - the allocations are feasible.
- An example of such an (economic) equilibrium concept is the Walrasian, or valuation equilibrium.
- Typically we want to show such equilibria exist and are unique.
- Inefficient (non-Paretian) equilibria when there exist externalities, incomplete information or incentive problems.

Today ...

But, we take a small step first. Look at a model with no production.

- **①** Recall pretty Edgeworth box analysis of 2×2 pure-exchange economy?
- 2 So what's new here?
 - A model of pure exchange infinite horizon economy.
 - With stochastic process for endowments.
 - So, just infinite number of goods indexed by time and history (current state, if Markov).
 - How to model intertemporal trading:
 - between decentralized/competitive agents,
 - in the presence of endowment risk?
 - and, what do people trade?

Today's Roadmap ...

But, we take a "small" step first. Look at a model with no production.

Model Setup

- Set up a pure-exchange-infinite-horizon economy with stochastic endowments.
- Benchmark: Characterizing social planner's (Pareto) allocation (PO).
- Two market trading assumptions:
 - Arrow-Debreu time-0-trading economy (ADE) with Arrow-Debreu securities
 - Radner sequential-trading economy (SME) with Arrow securities.
 - So, just infinite number of goods indexed by time and history (current state, if Markov).
- 4 Allocative "equivalence" between ADE and SME and PO.
- 5 Finance: Asset pricing implications of the model.
- **1** Tractable specialization: Markovian endowments ⇒ Recursive competitive equilibrium.
- Some examples by hand.

Model Setup

- Stochastic event $s_t \in S = \{s_1, ..., s_n\}$ for $t \in \mathbb{N}$.
- Publicly observable history of events up to and including t: $h^t = (s_0, s_1, ..., s_t) \in S^t$.
- Unconditional probability of h^t given by probability measure $\pi_t\left(h^t\right)$.
- W.I.o.g., assume $\pi(s_0) = 1$.
- Probability of observing h^t conditional on realization of h^τ is $\pi\left(h^t|h^\tau\right)$, for any $t\geq \tau$.

Model Setup

0

- I agents indexed by i = 1, ..., I.
- Agent i's
 - Endowment: $y_t^i(h^t)$
 - history-dependent consumption plan, $c^{i} = \left\{c_{t}^{i}\left(h^{t}\right)\right\}_{t=0}^{\infty}$ for each $h^{t} \in S^{t}$
 - expected utility criterion:

$$U\left(c^{i}\right) = \mathbb{E}_{0}\left\{\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}^{i}\left(h^{t}\right)\right)\right\} = \sum_{t=0}^{\infty} \sum_{h^{t}} \beta^{t} u\left(c_{t}^{i}\left(h^{t}\right)\right) \pi_{t}\left(h^{t}\right)$$

where

•
$$u'(c) > 0, u''(c) < 0$$

•
$$\lim_{c \searrow 0} u'(c) = +\infty$$

to ensure $c_t > 0$ for all t

Remark. In the special case, $\pi_t\left(h^t\right)$ can be induced by a Markov process.

ullet So if $h^t \sim \mathsf{Markov}$, then, we can write

$$\pi_t\left(h^t\right) = \pi_t(s_t),$$

and recursively,

$$\pi_t(s_t) = \pi_t(s_t|s_{t-1}) \pi_t(s_{t-1}).$$

 For now we don't need to make this restriction, so we will keep track of all t-histories, h^t.

Model Setup

Model Setup

○○

A feasible allocation must satisfy

$$\sum_{i=1}^{I} c_t^i \left(h^t \right) \le \sum_{i=1}^{I} y_t^i \left(h^t \right) \tag{1}$$

for all t and for all h^t .

What does this say?

What Next?

Model Setup

0

- Benchmark: Characterizing social planner's (Pareto) allocation (PO).
- Competitive/Decentralized equilibrium:
 - Arrow-Debreu time-0-trading economy (ADE) with Arrow-Debreu securities.
 - Radner sequential-trading economy (SME) with Arrow securities.
- Allocative "equivalence" between ADE and SME and PO.

Benchmark: Pareto allocation

Model Setup

- Pareto weights $\lambda_i \geq 0$ for all i = 1, ..., I agents.
- The planner allocates plans $c^i = \left\{c_t^i\left(h^t\right)\right\}_{t=0}^{\infty}$ for all i=1,...,I, by solving the following problem:

$$\max_{(c^i)_{i=1}^I} W = \sum_{i=1}^I \lambda_i U\left(c^i\right)$$

subject to

$$\sum_{i=1}^{I} c_t^i \left(h^t \right) \leq \sum_{i=1}^{I} y_t^i \left(h^t \right)$$

for all t and for all h^t .

 larkets Pt. 1 0000000000 0 0000000

Recall:

$$U\left(c^{i}\right) = \sum_{t=0}^{\infty} \sum_{h^{t}} \beta^{t} u\left(c_{t}^{i}\left(h^{t}\right)\right) \pi_{t}\left(h^{t}\right).$$

• So we can re-write this problem out as

$$\max_{\left(c^{i}\right)_{i=1}^{I}} W = \sum_{t=0}^{\infty} \sum_{h^{t}} \sum_{i=1}^{I} \lambda_{i} \beta^{t} u\left(c_{t}^{i}\left(h^{t}\right)\right) \pi_{t}\left(h^{t}\right)$$

subject to

$$\sum_{i=1}^{I} c_t^i \left(h^t \right) \le \sum_{i=1}^{I} y_t^i \left(h^t \right)$$

for all t and for all h^t .

The Lagrangian for the planner's problem is

$$L = \sum_{t=0}^{\infty} \sum_{h^t} \left\{ \sum_{i=1}^{I} \lambda_i \beta^t u \left(c_t^i \left(h^t \right) \right) \pi_t \left(h^t \right) + \theta_t \left(h^t \right) \sum_{i=1}^{I} \left[y_t^i \left(h^t \right) - c_t^i \left(h^t \right) \right] \right\}$$

Note:

- Langrange multiplier is time and history dependent.
- Langrange multiplier independent of i. Why?
- $\theta_t(h^t) \geq 0$ for all h^t and all t. Why?

A first-order neccesary condition for a maximum is

$$\beta^{t} u'\left(c_{t}^{i}\left(h^{t}\right)\right) \pi_{t}\left(h^{t}\right) = \frac{\theta_{t}\left(h^{t}\right)}{\lambda_{i}}$$

for all i = 1, ..., I, and for all $t \ge 0$ and all h^t .

Intuition: Following each history h^t , at any t, Pareto optimality requires,

- For each agent i of importance λ^i in the planner's criterion,
- the P.V. of the marginal utility of h^t -consumption, $c_t^i\left(h^t\right)$, which occurs with probability $\pi_t\left(h^t\right)$,
- is equated with the P.V. marginal social cost (following history h^t) of providing $c_t^i \left(h^t \right)$.

Big Love. Consider two agents, $i \neq j$. The ratio of their marginal utilities at each period, for all possible histories, is

Model Setup

$$\frac{u'\left(c_{t}^{i}\left(h^{t}\right)\right)}{u'\left(c_{t}^{j}\left(h^{t}\right)\right)} = \frac{\lambda_{j}}{\lambda_{i}}$$

i.e. The planner's MRS of consumption between i-van and j-elena is a function of Her relative love for each individual.

This implies:

$$c_t^i\left(h^t\right) = u'^{-1} \left[\frac{\lambda_j}{\lambda_i} u'\left(c_t^j\left(h^t\right)\right) \right] \tag{2}$$

where u'^{-1} is the inverse function of u'.

Summing up all i and invoking the resource constraint we have

$$\sum_{i=1}^{I} c_t^i \left(h^t \right) = \sum_{i=1}^{I} u'^{-1} \left[\frac{\lambda_j}{\lambda_i} u' \left(c_t^j \left(h^t \right) \right) \right] = \sum_{i=1}^{I} y_t^i \left(h^t \right) \tag{3}$$

The LHS is one equation in $c_t^j\left(h^t\right)$ and thus $c_t^j\left(h^t\right)$ depends only on *current realization* of aggregate endowment (RHS), for all j=1,...,I, for all t, for all h^t .

We summarize our result as follows.

Theorem

A Pareto optimal allocation is a function of the realized aggregate endowment and does not depend on

- lacktriangledown the particular history h^t leading up to that outcome, nor
- 2 the realization of individual endowments,

so that if $h^t \neq h^\tau$ are such that $\sum_j y_t^j \left(h^t\right) = \sum_j y_\tau^j \left(h^\tau\right)$ then $c_t^i \left(h^t\right) = c_\tau^i \left(h^\tau\right)$.

Remark. Agent i's share of aggregate endowment depends on on time-invariant Pareto weight, λ_i . This may no longer be true in economies with incentive problems due to lack of enforcement or incomplete information.

Example

Let $u(c)=\ln(c)$ and I=2. Then for all $i,j\in\{1,2\}$ and $i\neq j$, the Pareto allocation is characterized by

$$\frac{u'(c_t^2(h^t))}{u'(c_t^1(h^t))} = \frac{c_t^1(h^t)}{c_t^2(h^t)} = \frac{\lambda_1}{\lambda_2} \Rightarrow c_t^1(h^t) = \frac{\lambda_1 c_t^2(h^t)}{\lambda_2}.$$

at each $t \in \mathbb{N}$, following each h^t .

Interior solution: By feasibility constraint,

$$\frac{\lambda_1 c_t^2(h^t)}{\lambda_2} + c_2(h^t) = \sum_{i=1}^2 y_t^i(h^t).$$

at each $t \in \mathbb{N}$, following each h^t .

Example (Cont'd)

So then

$$c_2(h^t) = \left(\frac{\lambda_2}{\lambda_1 + \lambda_2}\right) \sum_{i=1}^2 y_t^i(h^t).$$

and

$$c_1(h^t) = \left(\frac{\lambda_1}{\lambda_1 + \lambda_2}\right) \sum_{i=1}^2 y_t^i(h^t).$$

For example, if planner cares equally about both agents, $\lambda_1=\lambda_2$, then the Pareto allocation at each $t\in\mathbb{N}$, following each h^t , is to split the realized total endowment equally between them.

What Next?

- Competitive/Decentralized equilibrium:
 - Arrow-Debreu time-0-trading economy (ADE) with Arrow-Debreu securities.
 - Radner sequential-trading economy (SME) with Arrow securities.
- Allocative "equivalence" between ADE and SME and PO.

Market Structure 1: Arrow-Debreu economy

Model Setup

- ullet All trades happen at the beginning of time, time 0, after s_0 is known.
- At t=0 agents exchange date and history-contingent claims on $c_t(h^t)$ at price $q_t^0\left(h^t\right)$. ("Forward contracts".)
- ullet (Assume) a complete set of securities for all possible histories h^t .
- ullet After time 0 trades agreed to at t=0 are executed as events unfold (no ex-post deviation). No more trades occur after t=0.

Remark. This implies that each agent faces only one budget constraint accounting for all trades across time and probable histories.

Example

Consider consumer 1 whose endowments are such that $y_{H}>y_{L}$ and

$$y_t(s_t) = \begin{cases} y_H = 1, & \text{if } s_t = 0 \\ \\ y_L = 0, & \text{if } s_t = 1 \end{cases}$$

Suppose $s_0 = 0$ known.

Example (Cont'd)

Consider consumer 1 whose endowments are such that $y_{H}>y_{L}$ and

$$y_t^1(s_t) = \begin{cases} y_H = 1, & \text{if } s_t = 0 \\ y_L = 0, & \text{if } s_t = 1 \end{cases}.$$

Example (Cont'd)

So for a realized history $h^3=(0,1,1,1)$, Consumer 1 at t=0 would have executed a subset of the financial contracts s.t.

- ullet He transfers some of his endowment to another consumer at t=0,
- He receives delivery of some endowment from others at t = 1, 2, 3.

Model Setup

$$\max_{\left\{c_t^i(h^t)\right\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \sum_{h^t} \beta^t u\left(c_t^i\left(h^t\right)\right) \pi_t\left(h^t\right)$$

subject to

$$\sum_{t=0}^{\infty} \sum_{h^t} q_t^0 \left(h^t \right) c_t^i \left(h^t \right) \le \sum_{t=0}^{\infty} \sum_{h^t} q_t^0 \left(h^t \right) y_t^i \left(h^t \right) \tag{4}$$

where $q_t^0\left(h^t\right)$ is the relative price, determined at time 0, of time t, history h^t consumption good.

What is the price relative to? We have let one good be the numeraire good (more on this later).

Model Setup

$$\frac{\partial U\left(c^{i}\right)}{\partial c_{t}^{i}\left(h^{t}\right)} = \beta^{t} u'\left(c_{t}^{i}\left(h^{t}\right)\right) \pi_{t}\left(h^{t}\right) = \mu_{i} q_{t}^{0}\left(h^{t}\right) \tag{5}$$

$$\sum_{t=0}^{\infty} \sum_{h^t} q_t^0 (h^t) c_t^i (h^t) = \sum_{t=0}^{\infty} \sum_{h^t} q_t^0 (h^t) y_t^i (h^t)$$
 (6)

for each $t \ge 0$ and $h^t \in S^t$.

Remark. Notice that μ^i is agent i's time-independent Lagrange multiplier on their time-0 intertemporal budget constraint.

Definition (Arrow-Debreu competitive equilibrium)

A competitive equilibrium is an allocation $\{c_t^i(h^t)\}_{t=0}^{\infty}$ and a price system $\left\{q_t^0\left(h^t\right)\right\}_{t=0}^{\infty}$ such that

Model Setup

- Agents optimize, so (5) and (6) hold, and
- Markets clear (feasible allocation):

$$\sum_{i=1}^{I} c_t^i \left(h^t \right) = \sum_{i=1}^{I} y_t^i \left(h^t \right)$$

for all i = 1, ..., I, and for all histories h^t .

Notice that (5) implies

$$u'\left(c_{t}^{i}\left(h^{t}
ight)
ight)$$
 μ

 $\frac{u'\left(c_t^i\left(h^t\right)\right)}{u'\left(c_t^j\left(h^t\right)\right)} = \frac{\mu_i}{\mu_j} \Rightarrow c_t^i\left(h^t\right) = u'^{-1}\left[\frac{\mu_i}{\mu_j}u'\left(c_t^j\left(h^t\right)\right)\right]$

Pareto

for all i,j=1,...,I. Using this and the binding feasibility constraint

Model Setup

$$\sum_{i=1}^{I} c_t^i \left(h^t \right) = \sum_{i=1}^{I} y_t^i \left(h^t \right)$$

we have

$$\sum_{i=1}^{I} u'^{-1} \left[\frac{\mu_i}{\mu_j} u' \left(c_t^j \left(h^t \right) \right) \right] = \sum_{i=1}^{I} y_t^i \left(h^t \right)$$

(8)

Markets Pt. 1

which looks just like (3) in the Pareto problem.

Theorem

The Arrow-Debreu competitive equilibrium allocation is a function of the realized aggregate endowment and does not depend on

• the particular history h^t leading up to that outcome, nor

Model Setup

2 the realization of individual endowments

so that if
$$h^t \neq h^{\tau}$$
 and $\sum_j y_t^j \left(h^t\right) = \sum_j y_{\tau}^j \left(h^{\tau}\right)$ then $c_t^i \left(h^t\right) = c_{\tau}^i \left(h^{\tau}\right)$.

Remark. This result echoes the allocation delivered under a Pareto planner.

Corollary (First fundamental welfare theorem)

The competitive equilibrium is a particular Pareto optimal allocation, where $\mu_i = \lambda_i^{-1}$ for all i=1,...,I, is unique (up to a multiplication by a positive scalar). Furthermore, the shadow prices for the planner θ_t (h^t) are equal to Arrow-Debreu equilibrium price q_t^0 (h^t) .

Note the equilibrium price system $\{q_t^0(h^t)\}_{t=0}^{\infty}$, s.t.

$$q_t^0\left(h^t\right) = \mu_i^{-1} \frac{\partial U\left(c^i\right)}{\partial c_t^i\left(h^t\right)} = \frac{\beta^t}{\mu_i} u'\left(c_t^i\left(h^t\right)\right) \pi_t\left(h^t\right)$$

is a function of equilibrium allocations $\left\{c_t^i\left(h^t\right)\right\}_{t=0}^{\infty}$ for all i=1,...,I; and has arbitrary units.

Set numeraire as $q_0^0\left(s_0\right)=1$, so the price system is relative to time 0 goods.

This also implies $\mu_i = u'\left(c_0^i\left(s_0\right)\right)$. Then,

$$q_t^0\left(h^t\right) = \beta^t \frac{u'\left(c_t^i\left(h^t\right)\right)}{u'\left(c_0^i\left(s_0\right)\right)} \pi_t\left(h^t\right).$$

Asset Pricing Implications

Model Setup

Pricing redundant assets. Suppose the claim on consumption contingent on the realization of time t and history h^t is given by $d_t(h^t)$ such that

$$d_t (h^t) = \begin{cases} 0 & \text{if } \widetilde{h}^t \neq h^t \\ 1 & \text{if } \widetilde{h}^t = h^t \end{cases}.$$

So holder of $d_t(h^t)$ has right to claim delivery of one unit of consumption if at time t the history were to be $h^t = \tilde{h}^t$. The price of that unit of consumption is just $q_t^0(h^t)$.

Therefore, the price of any asset at time 0 that can synthesize this stream of contingent claims has to be

$$p_0^0(s_0) = \sum_{t=0}^{\infty} \sum_{h^t} q_t^0(h^t) d_t(h^t).$$

Otherwise, there exists profitable arbitrage!

Pricing tail assets. Suppose we have an investor who wishes to know what the price of an asset that entitles her to a stream of dividends starting from some future date $\tau \geq t \geq 1$ is.

Time 0 price of an asset that pays dividend stream $\{d_{\tau}\left(h^{\tau}\right)\}_{\tau\geq t}$, if h^{t} is realized:

$$p_{t}^{0}\left(h^{t}\right) = \sum_{\tau \geq t} \sum_{h^{\tau} \mid h^{t}} q_{\tau}^{0}\left(h^{\tau}\right) d_{\tau}\left(h^{\tau}\right)$$

We can write the state price deflator in time $t \leq \tau$ terms, for all agents i, as

Model Setup

$$q_{\tau}^{t}(h^{\tau}) = \frac{q_{\tau}^{0}(h^{\tau})}{q_{t}^{0}(h^{t})} = \frac{\beta^{\tau}u'\left(c_{\tau}^{i}(h^{\tau})\right)\pi_{\tau}(h^{\tau})}{\beta^{t}u'\left(c_{t}^{i}(h^{t})\right)\pi_{t}(h^{t})}$$

$$= \beta^{\tau-t}\frac{u'\left(c_{\tau}^{i}(h^{\tau})\right)}{u'\left(c_{t}^{i}(h^{t})\right)}\pi_{t}\left(h^{\tau}|h^{t}\right).$$
(9)

This equation says that the price of time τ delivery, history h^{τ} -contingent consumption, relative to the price of time $t \leq \tau$ delivery, history h^t -contingent consumption is equal to the marginal rate of substitution of consumption across τ and t, taking into account the probability that state h^{τ} is realized, given realization of h^t .

So the price at t of the tail asset is

$$p_{t}^{t}\left(\boldsymbol{h}^{t}\right) = \sum_{\tau \geq t} \sum_{\boldsymbol{h}^{\tau} \mid \boldsymbol{h}^{t}} q_{\tau}^{t}\left(\boldsymbol{h}^{\tau}\right) d_{\tau}\left(\boldsymbol{h}^{\tau}\right)$$

where numeraire is time t, history h^t , consumption good, or $q_t^t\left(h^t\right)=1$. This says that an asset (e.g. equity) bought at time t entitles buyer/owner to dividends from $t\geq 1$ onward.

Pricing one-period returns. The one-period version of the state price deflator (9) is

$$q_{\tau+1}^{\tau} \left(h^{\tau+1} \right) = \beta \frac{u' \left(c_{t+1}^{i} \left(h^{\tau+1} \right) \right)}{u' \left(c_{t}^{i} \left(h^{\tau} \right) \right)} \pi_{\tau+1} \left(h^{\tau+1} | h^{\tau} \right).$$

So the price, at time τ history h^{τ} , of a claim to a random payoff $\omega\left(s_{\tau+1}\right)$ will be

$$p_{\tau}^{\tau}(h^{\tau}) = \sum_{h^{\tau+1}} q_{\tau+1}^{\tau}(h^{\tau+1}) \omega(s_{\tau+1})$$

$$= \sum_{h^{\tau+1}} \left[\beta \frac{u'(c_{\tau+1}^{i}(h^{\tau+1}))}{u'(c_{\tau}^{i}(h^{\tau}))} \omega(s_{\tau+1}) \right] \pi_{\tau+1}(h^{\tau+1}|h^{\tau})$$

$$:= \mathbb{E}_{\tau} \left[\beta \frac{u'(c_{\tau+1}^{i})}{u'(c_{\tau}^{i})} \omega(s_{\tau+1}) \right]$$
(10)

for all $i \in \{1, ..., I\}$.

Dividing through on both sides, we get

$$1 = \mathbb{E}_{\tau} \left[\beta \frac{u'\left(c_{\tau+1}^{i}\right)}{u'\left(c_{\tau}^{i}\right)} \frac{\omega\left(s_{\tau+1}\right)}{p_{\tau}^{\tau}\left(h^{\tau}\right)} \right] := \mathbb{E}_{\tau}\left[m_{\tau+1}R_{\tau+1}\right].$$

 $R_{ au+1} := \omega\left(s_{ au+1}\right)/p_{ au}^{ au}(h^{ au})$ is the one-period gross return on the asset. and $m_{ au+1} = \beta u'\left(c_{ au+1}^i\right)/u'\left(c_{ au}^i\right)$ is called a stochastic discount factor on this return. Both are random variables whose expected values are with respect to the distribution of $s_{ au+1}$ conditional on $h^{ au}$. This is just a stochastic Euler equation relating optimal risky intertemporal consumption allocations to asset returns!

What Next?

Model Setup

- Competitive/Decentralized equilibrium:
 - Arrow-Debreu time-0-trading economy (ADE) with Arrow-Debreu securities.
 - Radner sequential-trading economy (SME) with Arrow securities.
- Show PO \Leftrightarrow ADE \Leftarrow SME \Leftrightarrow PO.