Definitions used in Brezis' Functional Analysis, Sobolev Spaces and Partial Differential Equations (first edition)

Gustaf Bjurstam bjurstam@kth.se

Preliminaries – not in the book

Definition 0.1. Let E be a vector space over \mathbb{R} . A functional is a function $f:A\to\mathbb{R}$ where A is some subspace of E.

1 The Hahn-Banach Theorems. Introduction to Conjugate Convex Functions

Definition 1.1. Let E be a vector space over \mathbb{R} . A *Minkowski functional* is a function $p: E \to \mathbb{R}$ satisfying

$$p(\lambda x) = \lambda p(x), \qquad \forall x \in E \text{ and } \lambda > 0.$$
 (1)

$$p(x+y) \le p(x) + p(y), \qquad \forall x, y \in E.$$
 (2)

Definition 1.2. Let P be a set with a (partial) order relation \leq . A subset $Q \subseteq P$ is *totally ordered* if for any pair (a, b) in Q at least one of $a \leq b$ and $b \leq a$ holds.

Definition 1.3. Let P be a set with a partial order relation \leq , and let $Q \subset P$. We say that $c \in P$ is an *upper bound* for Q if $a \leq c$ for all $a \in Q$. We say that $m \in P$ is a maximal element of P if there is no element $x \in P \setminus \{m\}$ such that $m \leq x$. If every totally ordered subset Q of P has an upper bound, we call P inductive.