

University of Trento

Part V: Camera Geometry and Multi-View

Nicola Conci

From the beginning, in 2D

■ Typically we represent a point (pixel) as:

$$P = [x, y]^t = \begin{bmatrix} x \\ y \end{bmatrix}$$

Often convenient to use homogeneous coordinates:

$$P = [x, y]^t = [sx, sy, s]$$

- s is a scaling factor, commonly 1.0 $P = [x,y]^t = [x,y,1]$
- For simplicity we can omit "†"

Affine transformations

- Spatial transformations represented as:
 - Multiplication of a matrix and a homogeneous point
- Different types
 - Scaling
 - Rotation
 - Translation
 - Combination of them

Scaling

Linear transformation applied to all points. It can be uniform or non uniform:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} c & 0 \\ 0 & c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} c_x & 0 \\ 0 & c_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Rotation

■ P=[x,y] rotated by θ

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \cos \theta - y \sin \theta \\ x \sin \theta + y \cos \theta \end{bmatrix}$$

Translation

- Uniform shift of the object points
- Equivalent to changing the origin
- The displacement $D([x,y]) = [x+x_0, y+y_0]$
- Using the homogeneous coordinates:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & x_0 \\ 0 & 1 & y_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x + x_0 \\ y + y_0 \\ 1 \end{bmatrix}$$

Rotation, scaling, and translation

- Image *I(r,c)*
- Planar surface W(x,y)
- Need to map: real world \leftarrow image plane
- Combination of rotation R, scaling S, translation D
- 4 parameters:
 - Rotation angle
 - Scale factor
 - Translation vector

Rotation, scaling, and translation

- $P_j = D_{x0,y0} S_s R_\theta^i P_j$
- $w \rightarrow world$, $i \rightarrow image$, $j \rightarrow generic point$

Rotation, scaling, and translation

- To obtain the transformation matrix
 - Take two points, called control points
 - Control points must be clearly visible
 - Determine the position vector in the world and in the image plane
- Now solve the system...

$$\begin{bmatrix} x_w \\ y_w \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & x_0 \\ 0 & 1 & y_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\vartheta & -\sin\vartheta & 0 \\ \sin\vartheta & \cos\vartheta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix} \quad \begin{array}{l} \text{For P}_1 \\ \text{Then the same for P}_2 \\ \end{array}$$

General affine transformation

■ It handles parameters in a single matrix

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

- 6 params determined using 3 matching pairs
- Errors may occur
- The higher the number of points, the smaller the error
- This is defined as the CAMERA MATRIX

General affine transformation

Error (deviation) using least-squares method:

$$\varepsilon(a_{11}, a_{12}, a_{13}, a_{21}, a_{22}, a_{23}) = \sum_{j=1}^{n} ((a_{11}x_j + a_{12}y_j + a_{13} - u_j)^2 + (a_{21}x_j + a_{22}y_j + a_{23} - v_j)^2$$

- To determine the matrix coefficients, take partial derivatives of the error function and set them to zero.
- The resulting equation system is:

$$\begin{bmatrix} \sum x_j^2 & \sum x_j y_j & \sum x_j & 0 & 0 & 0 \\ \sum x_j y_j & \sum y_j^2 & \sum y_j & 0 & 0 & 0 \\ \sum x_j & \sum y_j & \sum 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \sum x_j^2 & \sum x_j y_j & \sum x_j \\ 0 & 0 & 0 & \sum x_j y_j & \sum y_j^2 & \sum y_j \\ 0 & 0 & 0 & \sum x_j y_j & \sum y_j & \sum 1 \end{bmatrix} = \begin{bmatrix} \sum u_j x_j \\ \sum u_j y_j \\ \sum u_j y_j \\ \sum v_j x_j \\ \sum v_j y_j \\ \sum v_j y_j \end{bmatrix}$$

Least square method

- Developed to solve overdetermined equation systems
- Over-determined = more equations than unknowns
- Goal: minimize the sum of the squares of the errors
- Error is the distance between the observed value (*u* and *v* in our case) and the value obtained by applying the transformation (*x* and *y* after transformation)
- A simple case: $y = f(x) = Ax + B \implies \varepsilon = \sum_{j=1}^{N} (Ax_j + B y_j)^2$
- The solution is found by computing the minimum of the error = compute the partial derivative with respect to each unknown and set them to zero

$$\frac{\partial \varepsilon}{\partial A}, \frac{\partial \varepsilon}{\partial B}$$

Going 3D

- One view in some cases is not sufficient
 - Depth of a point cannot be perceived
- Need to acquire images from different perspectives for:
 - 3D mesh reconstruction
 - Point Cloud acquisition
 - Position estimation
 - Structure from motion
 - Mosaicking
 - Etc...

Going 3D

- 3D analysis handles the structure of objects and their real motion in space
 - More robust than 2D estimation
- 3D computation requires at least two 2D projections
- Calibration is needed
 - Intrinsic parameters
 - **Extrinsic** parameters

Examples

Point Clouds

Examples

Structure From Motion

Examples

Mesh Reconstruction

Intrinsic and extrinsic parameters

- Intrinsic parameters
 - Specific for the sensor
 - Link pixel coordinates with the corresponding coordinates in the camera reference system
 - Optical, geometric, digital features
 - Focal length
 - Image distortion
 - Size of the pixel
- Extrinsic parameters:
 - Position of the camera in the world coordinates
 - Translation vector
 - Rotation matrix

3D affine transformations

- Extension to the 3D of what we have seen for 2D
- Rotation, translation, scaling
- In homogeneous coordinates, go from
- Each point has in general 4 coordinate systems
 - Model
 - World
 - **■** C1
 - **■** C2

3D affine transformations

- $^{\text{WP}}$ = \mathbf{TR}^{MP} , same for 1 P and 2 P
- 1P!= 2P
- C1 and C2 can have opposite views, thus there is in general no one-to-one mapping of all points

Translation

$$\begin{bmatrix}
{}^{2}P_{x} \\
{}^{2}P_{y} \\
{}^{2}P_{z} \\
1
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 & x_{0} \\
0 & 1 & 0 & y_{0} \\
0 & 0 & 1 & z_{0} \\
0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
{}^{1}P_{x} \\
{}^{1}P_{y} \\
{}^{1}P_{z} \\
1
\end{bmatrix}$$

Add a translation vector to map point ¹P in coordinate of C1 to ²P in coordinate C2

Scaling

$$\begin{bmatrix}
{}^{2}P_{x} \\
{}^{2}P_{y} \\
{}^{2}P_{z} \\
1
\end{bmatrix} = \begin{bmatrix}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
{}^{1}P_{x} \\
{}^{1}P_{y} \\
{}^{1}P_{z} \\
1
\end{bmatrix}$$

Scaling can be applied differently on the image coordinates

Rotation

- Rotation x, y, or z axis
- In case of rotation about z, it is the same as in 2D

$$\begin{bmatrix}
^{2}P_{x} \\
^{2}P_{y} \\
^{2}P_{z} \\
1
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & \cos\vartheta & -\sin\vartheta & 0 \\
0 & \sin\vartheta & \cos\vartheta & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
^{1}P_{x} \\
^{1}P_{y} \\
^{1}P_{z} \\
1
\end{bmatrix} \qquad \begin{bmatrix}
^{2}P_{x} \\
^{2}P_{y} \\
^{2}P_{z} \\
1
\end{bmatrix} = \begin{bmatrix}
\cos\vartheta & 0 & \sin\vartheta & 0 \\
0 & 1 & 0 & 0 \\
-\sin\vartheta & 0 & \cos\vartheta & 0 \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
^{1}P_{x} \\
^{1}P_{y} \\
^{1}P_{z} \\
1
\end{bmatrix}$$

$$\begin{bmatrix}
{}^{2}P_{x} \\
{}^{2}P_{y} \\
{}^{2}P_{z} \\
1
\end{bmatrix} = \begin{bmatrix}
\cos\vartheta & \sin\vartheta & 0 & 0 \\
-\sin\vartheta & \cos\vartheta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
{}^{1}P_{x} \\
{}^{1}P_{y} \\
{}^{1}P_{z} \\
1
\end{bmatrix}$$

General configuration

The generic 3D affine transformation can be expressed through

$$\begin{bmatrix} {}^{2}P_{x} \\ {}^{2}P_{y} \\ {}^{2}P_{z} \\ 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_{x} \\ r_{21} & r_{22} & r_{23} & t_{y} \\ r_{31} & r_{32} & r_{33} & t_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} {}^{1}P_{x} \\ {}^{1}P_{y} \\ {}^{1}P_{z} \\ 1 \end{bmatrix}$$

Camera model

It consists of the transformation that maps the 3D point into the image plane, so:

$$^{I}P=_{W}^{I}C^{W}P$$

According to our knowledge:

$$\begin{bmatrix} s^{I} P_{r} \\ s^{I} P_{c} \\ s \end{bmatrix} = {}_{w}^{I} C \begin{bmatrix} {}_{w} P_{x} \\ {}_{w} P_{y} \\ {}_{w} P_{z} \\ 1 \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & c_{13} & c_{14} \\ c_{21} & c_{22} & c_{23} & c_{24} \\ c_{31} & c_{32} & c_{33} & 1 \end{bmatrix} \begin{bmatrix} {}_{w} P_{x} \\ {}_{w} P_{y} \\ {}_{w} P_{z} \\ 1 \end{bmatrix}$$

 Using the 3x4 camera matrix we can handle rotation, translation and scaling

Nice, but

- In general camera coordinates differ from world coordinates
- Need to apply a roto-translation transformation to go from ${}^{W}P$ to ${}^{C}P$ ${}^{C}P$

from WP to CP
$$\begin{bmatrix}
{}^{C}P_{x} \\
{}^{C}P_{y} \\
{}^{C}P_{z} \\
1
\end{bmatrix} = \begin{bmatrix}
r_{11} & r_{12} & r_{13} & t_{x} \\
r_{21} & r_{22} & r_{23} & t_{y} \\
r_{31} & r_{32} & r_{33} & t_{z} \\
0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix} {}^{W}P_{x} \\ {}^{W}P_{y} \\ {}^{W}P_{z} \\
1
\end{bmatrix}$$

$$^{C}P = _{W}^{C}TR(\alpha, \beta, \gamma, t_{x}, t_{y}, t_{z})^{W}P$$

 Furthermore, ^CP is about the camera coordinates, and not the image coordinates ^FP

From world to image coordinates 🗸

From world to camera, from camera to image

$$^{F}P =_{C}^{F}\Pi(f)^{C}P$$

$${}^{F}P = {}^{F}_{C}\Pi(f)_{W}^{C}TR(\alpha,\beta,\gamma,t_{x},t_{y},t_{z})^{W}P$$

$$\begin{bmatrix} s^{F} P_{r} \\ s^{F} P_{c} \\ s \end{bmatrix} = \begin{bmatrix} d_{11} & d_{12} & d_{13} & d_{14} \\ d_{21} & d_{22} & d_{23} & d_{24} \\ d_{31} & d_{32} & d_{33} & 1 \end{bmatrix} \begin{bmatrix} {}^{W} P_{x} \\ {}^{W} P_{y} \\ {}^{W} P_{z} \\ 1 \end{bmatrix}$$

From mm to pixels

- It consists of a scaling factor that is related to the real size of the pixel
 - d_x is the horizontal size
 - d_v is the vertical size
- Not only that, origin is usually bottom-left
- In the image, origin is top-left

$${}^{I}P = {}^{I}S^{F}P$$

$${}^{I}S = \begin{bmatrix} 0 & -1/d_{y} & 0\\ 1/d_{x} & 0 & 0\\ 0 & 0 & 1 \end{bmatrix}$$

In the end

The final expression becomes then

$$[p_r, p_c]^T = {}^I P = {}^I_F S_C^F \Pi(f)_W^C TR(\alpha, \beta, \gamma, t_x, t_y, t_z)^W P$$

$$\begin{bmatrix} s^{I}P_{r} \\ s^{I}P_{c} \\ s \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & c_{13} & c_{14} \\ c_{21} & c_{22} & c_{23} & c_{24} \\ c_{31} & c_{32} & c_{33} & 1 \end{bmatrix} \begin{bmatrix} {}^{W}P_{x} \\ {}^{W}P_{y} \\ {}^{W}P_{z} \\ 1 \end{bmatrix}$$

- To make a real measurement in 3D
- The camera matrix we derive is appropriate but the coefficients of the matrix have to be determined
- 11 parameters using least squares

- 1. Typically an object of known size is used
- 2. A set of points in the image/world are taken
- 3. 6 pairs are ok, but a higher number is preferable

- From the camera matrix
 - Given a 3D point $[{}^{W}P_{x}, {}^{W}P_{y}, {}^{W}P_{z}] = [x, y, z]$
 - Given the 2D projection $[^IP_n, ^IP_c] = [u, v]$
 - For each point in the calibration process we have:

$$\begin{bmatrix} x_{j} & y_{j} & z_{j} & 1 & 0 & 0 & 0 & -x_{j}u_{j} & -y_{j}u_{j} & -z_{j}u_{j} \\ 0 & 0 & 0 & 0 & x_{j} & y_{j} & z_{j} & 1 & -x_{j}v_{j} & -y_{j}v_{j} & -z_{j}v_{j} \end{bmatrix} \begin{bmatrix} c_{11} \\ c_{12} \\ c_{21} \\ c_{21} \\ c_{22} \\ c_{23} \\ c_{24} \\ c_{31} \\ c_{32} \\ c_{33} \end{bmatrix} = \begin{bmatrix} u_{j} \\ v_{j} \end{bmatrix}$$

- Overdetermined system: 11 unknowns and 12 or more equations
- No vector can satisfy all the equations
- Need to use a least squares approach
- Objective: minimize the sum of all the square differences

The error between the actual image point measurements and the world points comes from

$$^{I}P=_{W}^{I}C^{W}P$$

 Need to minimize the residuals, as in the example:

Compute 3D position of a point

If the cameras are calibrated we can determine the 3D position of a generic point [x, y, z] given two projections $[r_1, c_1]$ & $[r_2, c_2]$

$$\begin{bmatrix} sr_1 \\ sc_1 \\ s \end{bmatrix} = \begin{bmatrix} b_{11} & b_{12} & b_{13} & b_{14} \\ b_{21} & b_{22} & b_{23} & b_{24} \\ b_{31} & b_{32} & b_{33} & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \qquad \begin{bmatrix} tr_2 \\ tc_2 \\ t \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & c_{13} & c_{14} \\ c_{21} & c_{22} & c_{23} & c_{24} \\ c_{31} & c_{32} & c_{33} & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} tr_2 \\ tc_2 \\ t \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & c_{13} & c_{14} \\ c_{21} & c_{22} & c_{23} & c_{24} \\ c_{31} & c_{32} & c_{33} & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Compute 3D position of a point

■ If we drop the scaling factors we obtain four equations to compute r_1 , r_2 , c_1 , c_2

$$r_{1} = (b_{11} - b_{31}r_{1})x + (b_{12} - b_{32}r_{1})y + (b_{13} - b_{33}r_{1})z + b_{14}$$

$$c_{1} = (b_{21} - b_{31}c_{1})x + (b_{22} - b_{32}c_{1})y + (b_{23} - b_{33}c_{1})z + b_{24}$$

$$r_{2} = (c_{11} - c_{31}r_{2})x + (c_{12} - c_{32}r_{2})y + (c_{13} - c_{33}r_{2})z + c_{14}$$

$$c_{2} = (c_{21} - c_{31}c_{2})x + (c_{22} - c_{32}c_{2})y + (c_{23} - c_{33}r_{2})z + c_{24}$$

- We have three unknowns
- From any three of these four eq. we can find a solution
- The solution is subject to errors though

Approximation errors

- If we took the four equations all together they would be inconsistent
 - Approximation in image points
 - Approximation in camera model
 - In practice the rays do not intersect where they should in the real world

Binocular stereo

- Two images grab a scene from different positions
- Human Visual System is stereo
- Identification of two main problems
 - Compute correspondences
 - Reconstruction

Two co-planar cameras

Only for the points "seen" by both cameras, the depth information can be extracted

Two co-planar cameras

- Offset in the view, due to the camera shift
- Same point is projected in a different place
- Depending on the depth of the point, shift is different
- The closer the object, the higher the shift
- Parallax: Apparent motion → closer objects move faster

Compute correspondences

- Find points in the images that correspond to the projection of the same point in the real scene
- Image coupling is possible because the two images do not differ much between each other.
- False correspondences may be present → introduction of other constraints

■ Epipolar constraint:

 Correspondences can be met along a horizontal line called "epipolar line"

Reconstruction

- Once the points in the two images are matched, reconstruction is possible.
- Before computing correspondences it is necessary to calibrate the cameras to determine:
 - Extrinsic parameters
 - Intrinsic parameters

Stereo vision

- Based on the so-called epipolar geometry
- Estimation of the depth of a point using the horizontal disparity of the projections
- The problem consists in computing:
 - Correspondences of intensity points (correlation)
 - Correspondences of features (edges, contours)

Epipolar geometry

- Epipolar plane given by: P, f_L and f_R
- The intersection between the epipolar plane with the image planes defines the epipolar lines
- All epipolar lines pass through a point called **epipole**.
- The projection of each point in the epipolar plane falls onto the epipolar line.
- Epipolar planes are a set of planes that share the line (baseline) connecting fland

Reconstruction from two static images

- Hypothesis: $f_L = f_R = f$
- We obtain:

$${}^{R}\mathbf{P} = ({}^{R}P_{x}, {}^{R}P_{y}, {}^{R}P_{z}), \qquad {}^{L}\mathbf{P} = ({}^{L}P_{x}, {}^{L}P_{y}, {}^{L}P_{z}), \qquad {}^{W}\mathbf{P} = ({}^{W}P_{x}, {}^{W}P_{y}, {}^{W}P_{z})$$

$${}^{R}\mathbf{P} = {}^{R}\mathbf{R}^{W}\mathbf{P} + {}^{R}\mathbf{T}, \qquad {}^{L}\mathbf{P} = {}^{L}\mathbf{R}^{W}\mathbf{P} + {}^{L}\mathbf{T}$$

where RR, RT, LR, and LT are the extrinsic parameters of the cameras that indicate the positioning of RC and LC with respect to WC

Reconstruction from two static images

From the previous eq:

$$L \mathbf{P} = L \mathbf{R}^{R} \mathbf{R}^{-1} P - L \mathbf{R}^{R} \mathbf{R}^{-1} T + L \mathbf{T}$$
$$= \mathbf{M}^{R} \mathbf{P} + \mathbf{B}$$

Using the simplified perspective projections (Z>>f) we obtain the coordinates on the two image planes

$${}^{L}p_{x} = \frac{f^{L}P_{x}}{{}^{L}P_{z}}, \qquad {}^{L}p_{y} = \frac{f^{L}P_{y}}{{}^{L}P_{z}}$$

$${}^{R}p_{x} = \frac{f^{R}P_{x}}{{}^{R}P_{z}}, \qquad {}^{R}p_{y} = \frac{f^{R}P_{y}}{{}^{R}P_{z}}$$

$$(1)$$

From which we obtain: $\frac{{}^{L}P_{z}}{f}\begin{bmatrix} {}^{L}p_{x} \\ {}^{L}p_{y} \\ f \end{bmatrix} = \frac{{}^{R}P_{z}}{f}\mathbf{M}\begin{bmatrix} {}^{R}p_{x} \\ {}^{R}p_{y} \\ f \end{bmatrix} + \mathbf{B} \quad (2)$

Estimation of the 3D position

Stereo Matching Problem :

Estimate the coordinates of ${}^{W}P$, given $({}^{L}p_{x}, {}^{L}p_{y})$ and $({}^{R}p_{x}, {}^{R}p_{y})$, and the extrinsic parameters of the cameras.

Algorithm:

- 1. From (2) determine the depth of ${}^{W}P$ with respect to ${}^{R}P_{z}$ e ${}^{L}P_{z}$
- 2. From (1) calculate the other coordinates for ${}^{L}P$ e ${}^{R}P$
- 3. Ordinary Least Squares to estimate WP in WC
- If LC and RC are parallel and aligned:

$${}^{W}P_{z} = \frac{fb}{{}^{L}p_{x} - {}^{R}p_{x}}$$

Where b is the distance between the two cameras

From points to images

- $^{L}p_{x}$ $^{R}p_{x}$ is called disparity
- The disparity image is the difference between the left and right image
- To compute the disparity image, need to find a match pixel by pixel
- Issues:
 - Regions can be occluded
 - Regions can be disoccluded
 - Uniform areas do not allow finding correspondences

From points to images

- To find a match, an error function must be evaluated
 - Intensity difference
 - Evaluate edges, windows, segmented known areas

Window-based analysis

- Take a window in the left (right) image
- Along the epipolar line find the windows that best match the right and left image
- Compute an error function (MSE, SAD, SSD)
- Find the minimum
- Winner-take-all → that's the disparity!

Winner-take-all with SAD

Moving the window of analysis, compute:

Image Normalization

- Snapshots may be taken under different conditions
- Reflectance of surfaces could be not ideal (not Lambertian)
- It is preferable to work with normalized values
- A window-based analysis helps preventing acquisition issues

$$\bar{I} = \frac{1}{|W(x,y)|} \sum_{(u,v) \in W(x,y)} I(u,v)$$

$$||I||_{W(x,y)} = \sqrt{\sum_{(u,v)\in W(x,y)}} [I(u,v)]^2$$

$$\hat{I}(x,y) = \frac{I(x,y) - I}{\left\|I - \bar{I}\right\|_{W(x,y)}}$$

Compute the average pixel in the window

Compute the window magnitude

Calculate the normalized value

Normalization and SSD

- Normalization makes windows comparable
- Now comparison can be computed, using for example, SAD or the Sum of Squared Differences (SSD)

$$SSD(x, y, d) = \sum_{(u,v) \in W(x,v)} [\hat{I}_L(u,v) - \hat{I}_R(u-d,v)]^2$$

Correlation

- Compare the intensity in a neighborhood
- Take a window around point (u,v)
 - Arrange the values in a vector $w \in \Re^p$ by scanning the window in the first image row by row
 - Same for w' in the second image
 - Evaluate the correlation using

$$C(d) = \frac{1}{|w - \overline{w}|} \frac{1}{|w' - \overline{w}'|} (w - \overline{w})(w' - \overline{w}')$$

Maximizing the correlation means minimizing the SSD

Correlation

- If the window is 3x3, p=9
- It's a comparison between vectors, and the correlation measure is the angle between

$$w - \overline{w}$$
 and $w' - \overline{w}'$
 $C(d) = \sum \hat{I}(u,v)\hat{I}'(u - d,v) = w \cdot w' = \cos \theta$

 In the normalized case, the correlation is maximum if the original brightness of the two windows is shifted by an offset and a scale factor

$$I' = \lambda I + \mu$$

Comments

- Computing the correlation at each frame for the whole image can be expensive
- Luckily window shifts overlap
- Keep the information about windows in memory
- Usually the computation is carried out considering a range of the disparity
- In computing the correlation, it is assumed that the scene is parallel to the image plane

General stereo configuration

- Stereo rig we have seen:
 - Two cameras
 - Aligned
 - Parallel views
- In general
 - Two cameras with arbitrary positioning in 3D space

What do we need?

- Position of C1 and some internal parameters such as the focal length
 - This information is embedded in the camera matrix
 - The camera matrix defines a ray for each point ^wP mapped on ¹P
- Same thing for C2
- Correspondences: ¹P ←→²P of ^wP
- Compute wP from ¹P and ²P

The world is the shared information 🔏

Fundamental matrix

- Represents the epipolar geometry in case two generic views
- F is a 3x3 matrix that maps p into p'

$$p'^T F p = 0$$

- Independent from the scene structure
- Can be computed using correspondences
- No need to know the intrinsic parameters

Fundamental matrix

- What does the fundamental matrix represent?
- Say we know the intrinsic parameters of the cameras
- The two cameras are shifted by a certain translation vector t and rotated by a matrix R

Fundamental matrix

- The Essential matrix assumes intrinsic parameters are known
- Intrinsic parameters can be modeled through a matrix as:

$$p = K\hat{p}$$
 $p' = K'\hat{p}' \rightarrow F = K^{-T}EK'^{-1}$

- We say p and p' <u>correspond</u>, being different projections of the same point
- So, for each point p in one view, there's a corresponding epipolar line l' in the other image
- $\blacksquare p'$ lies on the epipolar line l'

The camera matrix

- Starting from the fundamental matrix it is possible to derive the camera matrices (¹M and ²M) of the two views
- Conversely to F, camera matrices relate 3D space coordinates with the image
 - Depend on image coordinates
 - Depend on world coordinates
- A change of the world coordinates affects ¹M and ²M, not F
- This tells us:
 - ¹M and ²M determine a unique F
 - F determines ¹M and ²M up to a multiplication by a certain matrix H

Ambiguity

- Given F, for an object, impossible to determine
 - The absolute position (in the world)
 - Orientation (NSWE)
 - Scale
- However, up to a projective transformation, the ambiguity in reconstruction can be solved
- In fact the projected points don't change if:

$$MP = (MH^{-1})(HP)$$

 H is a projective transformation, that does not affect the projection of wP onto the image plane

Localization on a Plane: 2D Homography

 In many applications, the mapping between the cameras can be limited to the computation of correspondences using a common 2D ground plane

2D Homography

- It's an invertible transformation between two planes
 - The image plane
 - The ground plane
- The homography matrix is defined as H that satisfies p'=Hp
- Where p is the point in the world ground plane and p is the point in the image plane
- Since any vector crossed with itself gives 0, we can rewrite it as:

$$p' \times (Hp) = 0$$

Computation of the Matrix

■ Given $p'=(x',y',w')^T$ in homogeneous coordinates the cross product becomes

$$p_{i}' \times Hp_{i} = \begin{pmatrix} y_{i}' \overline{h}^{3T} p_{i} - w_{i}' \overline{h}^{2T} p_{i} \\ w_{i}' \overline{h}^{1T} p_{i} - x_{i}' \overline{h}^{3T} p_{i} \\ x_{i}' \overline{h}^{2T} p_{i} - y_{i}' \overline{h}^{1T} p_{i} \end{pmatrix}$$

• This can be rewritten (since $h_j^T p_i = p_i^T h_j$) as:

$$\begin{bmatrix} 0^T & -w_i p_i^T & y_i p_i^T \\ w_i p_i^T & 0^T & -x_i p_i^T \\ -y_i p_i^T & x_i p_i^T & 0^T \end{bmatrix} = 0$$

Computation of the matrix

Only two of the equations are independent, so the third equation can be discarded since it results as the multiplication of (x' times the first row) + (y' times the second row) up to scale.

$$A_{i}h=0$$

$$\begin{bmatrix} 0^{T} & -w_{i}^{T}p_{i}^{T} & -y_{i}^{T}p_{i}^{T} \\ w_{i}^{T}p_{i}^{T} & 0^{T} & -x_{i}^{T}p_{i}^{T} \end{bmatrix} \begin{bmatrix} \overline{h}^{1} \\ \overline{h}^{2} \\ \overline{h}^{3} \end{bmatrix} = 0$$

- A_i is a 2x9 matrix
- hⁱ are the lines of matrix H={h₁₁, ..., h₃₃}
- For each point we have two equations. For simplicity we can assume w'=1

Solving for H

- Each correspondence gives two independent equations
- We then need 4 corresponding points, in order to get Ah=0, where A is made up by four A_i contributed from each correspondence
- We want to obtain the coefficients of H, where A is 8x9
- H is determined up to scale
- Scale can be arbitrarily chosen inserting a requirement on the norm, such as norm(h)=1

Overdetermined system

- As in calibration, using more points can be useful.
- If > 4, the system is overdetermined
- Due to measurement errors, the solution Ah = 0 is only satisfied by the trivial case of $h_{ii}=0$
- The non-trivial solution is to minimize the norm $\left\|A\overline{h}\right\|$
- Subject to the constraint $\|\overline{h}\| = 1$
- lacktriangle This corresponds to finding the minimum of $\left\|A\overline{h}\right\|/\left\|h\right\|$
- The solution is found applying the DLT (Direct Linear Transformation)

The inhomogeneous solution

- The matrix can be solved also by imposing the condition $h_j=1$ for some entry of the matrix H, since the matrix is defined up to scale.
- By setting for example $h_{33}=1$ the resulting system becomes:

$$\begin{bmatrix} 0 & 0 & 0 & -x_i w_i' & -y_i w_i' & -w_i w_i' & -x_i y_i' & y_i y_i' \\ x_i w_i' & y_i w_i' & w_i w_i' & 0 & 0 & 0 & -x_i x_i' & -y_i x_i' \end{bmatrix} h = \begin{bmatrix} -w_i y_i' \\ w_i x_i' \end{bmatrix}$$

- In this case we obtain 2 equations per point in the form of Mh=b
- h has 8 unknowns, b is a 8-vector
- Standard solution for 4 points or least squares for more points
- Not recommended if h_i are close to zero

Multiple view geometry

- So far two examples:
 - Stereo
 - Generic two-view
- Extension to multiple views is possible (not trivial) for applications like 3D reconstruction
 - Need to acquire the object from multiple perspectives
 - Different views may not overlap significantly
 - Need to register the pictures
 - Instead of pixels, we talk about voxels

What about three views?

What about three views?!

- Let us assume we know the internal parameters
- Having 3 cameras means having ¹p, ²p, and ³p observing the same point P
- The 3 origins, ¹O, ²O, and ³O intersect forming a trifocal plane that creates three trifocal lines when intersecting the image planes
- Each line passes through the epipoles determined by the two other cameras
- Each pair of cameras defines an epipolar constraint, as:

$$\begin{cases} p_1^T E_{12} p_2 = 0 \\ p_2^T E_{23} p_3 = 0 \\ p_3^T E_{31} p_1 = 0 \end{cases}$$

What about three views?

■ The three equations are not independent since

$$e_{31}^T E_{12} e_{32} = e_{12}^T E_{23} e_{13} = e_{23}^T E_{31} e_{21} = 0$$

- In fact, e₃₁ and e₃₂ are the first and second images of the optical center ³O of the third camera, and are therefore in epipolar correspondence
- Any of the two eq are independent, which means that it is possible to compute the position of ¹p given the position of ²p and ³p, if the essential matrices are known.
- Using eq 1 and 3 from the previous slide, we have a system in the unknown coordinates of ¹p

Problem of Transfer

- To understand the position of a point in W we only need two projections
- Knowing the essential/fundamental matrices it is possible to predict the position of a point in a picture given the other two (or more) projections