(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 20 February 2003 (20.02.2003)

PCT

(10) International Publication Number WO 03/014330 A2

(51) International Patent Classification7:

C12N 1/00

(21) International Application Number: PCT/EP02/08465

(22) International Filing Date: 30 July 2002 (30.07.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/309,877

6 August 2001 (06.08.2001)

(71) Applicant (for all designated States except US): DE-GUSSA AG [DE/DE]; Bennigsenplatz 1, 40474 Düsseldorf (DE).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): BATHE, Brigitte [DE/DE]; Twieten 1, 33154 Salzkotten (DE). KREUTZER, Caroline [DE/DE]; Poststrasse 16, 49326 Melle (DE). MÖCKEL, Bettina [DE/DE]; Benrodestrasse 35, 40597 Düsseldorf (DE). THIERBACH, Georg [DE/DE]; Gunststrasse 21, 33613 Bielefeld (DE).
- (74) Common Representative: DEGUSSA AG; Intellectual Property Management, Patents and Trademarks, Location Hanau, P. O. Box 13 45, 63403 Hanau (DE).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,

SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW, ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GO, GW, ML, MR, NE, SN, TD. TG)
- of inventorship (Rule 4.17(iv)) for US only

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: CORYNEFORM BACTERIA WHICH PRODUCE CHEMICAL COMPOUNDS II

(57) Abstract: The invention relates to coryneform bacteria, which instead of the singular copy of an open reading frame (ORF), gene or allele naturally present at the particular desired site (locus), have at least two copies of the open reading frame (ORF), gene or allele in question, preferably in tandem arrangement, and optionally at least a third copy of the open reading frame (ORF), gene or allele in question at a further gene site, and processes for the preparation of chemical compounds by fermentation of these bacteria. WO 03/014330 PCT/EP02/08465

Coryneform Bacteria which Produce Chemical Compounds II

Prior Art

30

Chemical compounds, which means, in particular, L-amino acids, vitamins, nucleosides and nucleotides and D-amino acids, are used in human medicine, in the pharmaceuticals industry, in cosmetics, in the foodstuffs industry and in animal nutrition.

Numerous of these compounds are prepared by fermentation from strains of coryneform bacteria, in particular 10 Corynebacterium glutamicum. Because of their great importance, work is constantly being undertaken to improve the preparation processes. Improvements to the process can relate to fermentation measures, such as, for example, stirring and supply of oxygen, or the composition of the 15 nutrient media, such as, for example, the sugar concentration during the fermentation, or the working up to the product form by, for example, ion exchange chromatography, or the intrinsic output properties of the microorganism itself.

Methods of mutagenesis, selection and mutant selection are 20 used to improve the output properties of these microorganisms. Strains which are resistant to antimetabolites or are auxotrophic for metabolites of regulatory importance and which produce the particular compounds are obtained in this manner. 25

Methods of the recombinant DNA technique have also been employed for some years for improving the strain of Corynebacterium strains, by amplifying individual biosynthesis genes and investigating the effect on production.

A common method comprises amplification of certain biosynthesis genes in the particular microorganism by means of episomally replicating plasmids. This procedure has the

disadvantage that during the fermentation, which in industrial processes is in general associated with numerous generations, the plasmids are lost spontaneously (segregational instability).

PCT/EP02/08465

- Another method comprises duplicating certain biosynthesis genes by means of plasmids which do not replicate in the particular microorganism. In this method, the plasmid, including the cloned biosynthesis gene, is integrated into the chromosomal biosynthesis gene of the microorganism

 (Reinscheid et al., Applied and Environmental Microbiology 60(1), 126-132 (1994); Jetten et al., Applied Microbiology and Biotechnology 43(1):76-82 (1995)). A disadvantage of this method is that the nucleotide sequences of the plasmid and of the antibiotic resistance gene necessary for the
- selection remain in the microorganism. This is a disadvantage, for example, for the disposal and utilization of the biomass. Moreover, the expert expects such strains to be unstable as a result of disintegration by "Campbell type cross over" in a corresponding number of generations such as are usual in industrial fermentations.

Object of the Invention

The inventors had the object of providing new measures for improved fermentative preparation of chemical compounds using coryneform bacteria.

25 Summary of the Invention

The invention provides coryneform bacteria, in particular of the genus Corynebacterium, which produce one or more desired chemical compounds, characterized in that

a) instead of the singular copy of an open reading frame (ORF), gene or allele naturally present at the particular desired site (locus), these have at least two copies of the said open reading frame (ORF), gene or allele, preferably in tandem arrangement, no

10

nucleotide sequence which is capable of/enables episomal replication in microorganisms, no nucleotide sequence which is capable of/enables transposition and no nucleotide sequence which imparts resistance to antibiotics being present at the particular site, and in that these

- b) optionally have at least a third copy of the open reading frame (ORF), gene or allele in question at a further gene site, no nucleotide sequence which is capable of/enables episomal replication in microorganisms, no nucleotide sequence which is capable of/enables transposition and no nucleotide sequence which imparts resistance to antibiotics being present at the further gene site.
- The invention also provides processes for the preparation of one or more chemical compounds, which comprise the following steps:
 - a) fermentation of coryneform bacteria, in particular of the genus Corynebacterium, which
- i) instead of the singular copy of an open reading frame (ORF), gene or allele naturally present at the particular desired site (locus), have at least two copies of the said open reading frame (ORF), gene or allele, preferably in tandem arrangement, no nucleotide sequence which is capable of/enables episomal replication in microorganisms, no nucleotide sequence which is capable of/enables transposition and no nucleotide sequence which imparts resistance to antibiotics being present at the particular site, and in that these
 - ii) optionally have at least a third copy of the said open reading frame (ORF), gene or allele at a

WO 03/014330 PCT/EP02/08465

further gene site, no nucleotide sequence which is capable of/enables episomal replication in microorganisms, no nucleotide sequence which is capable of/enables transposition and no nucleotide sequence which imparts resistance to antibiotics being present at the further gene site,

under conditions which allow expression of the said open reading frames (ORFs) genes or alleles,

- b) concentration of the chemical compound(s) in the fermentation broth and/or in the cells of the bacteria,
 - c) isolation of the chemical compound(s), optionally
- d) with constituents from the fermentation broth and/or the biomass to the extent of > (greater than) 0 to 100%.

Detailed Description of the Invention

5

20

25

30

Chemical compounds are to be understood, in particular, as meaning amino acids, vitamins, nucleosides and nucleotides. The biosynthesis pathways of these compounds are known and are available in the prior art.

Amino acids mean, preferably, L-amino acids, in particular the proteinogenic L-amino acids, chosen from the group consisting of L-aspartic acid, L-asparagine, L-threonine, L-serine, L-glutamic acid, L-glutamine, glycine, L-alanine, L-cysteine, L-valine, L-methionine, L-isoleucine, L-leucine, L-tyrosine, L-phenylalanine, L-histidine, L-lysine, L-tryptophan, L-proline and L-arginine and salts thereof, in particular L-lysine, L-methionine and L-threonine. L-Lysine is very particularly preferred.

Proteinogenic amino acids are understood as meaning the amino acids which occur in natural proteins, that is to say in proteins of microorganisms, plants, animals and humans.

Vitamins mean, in particular, vitamin B1 (thiamine),

5 vitamin B2 (riboflavin), vitamin B5 (pantothenic acid),
vitamin B6 (pyridoxines), vitamin B12 (cyanocobalamin),
nicotinic acid/nicotinamide, vitamin M (folic acid) and
vitamin E (tocopherol) and salts thereof, pantothenic acid
being preferred.

Nucleosides and nucleotides mean, inter alia, S-adenosylmethionine, inosine-5'-monophosphoric acid and guanosine-5'-monophosphoric acid and salts thereof.

15

20

The coryneform bacteria are, in particular, those of the genus Corynebacterium. Of the genus Corynebacterium, the species Corynebacterium glutamicum, Corynebacterium ammoniagenes and Corynebacterium thermoaminogenes are preferred. Information on the taxonomic classification of strains of this group of bacteria is to be found, inter alia, in Kämpfer and Kroppenstedt (Canadian Journal of Microbiology 42, 989-1005 (1996)) and in US-A-5,250,434.

Suitable strains of the species Corynebacterium glutamicum (C. glutamicum) are, in particular, the known wild-type strains

Corynebacterium glutamicum ATCC13032

Corynebacterium acetoglutamicum ATCC15806
Corynebacterium acetoacidophilum ATCC13870
Corynebacterium lilium ATCC15990
Corynebacterium melassecola ATCC17965
Corynebacterium herculis ATCC13868

Arthrobacter sp ATCC243
Brevibacterium chang-fua ATCC14017
Brevibacterium flavum ATCC14067
Brevibacterium lactofermentum ATCC13869

PCT/EP02/08465 WO 03/014330

> Brevibacterium divaricatum ATCC14020 Brevibacterium taipei ATCC13744 and Microbacterium ammoniaphilum ATCC21645

and mutants or strains, such as are known from the prior art, produced therefrom which produce chemical compounds.

5

10

20

25

30

Suitable strains of the species Corynebacterium ammoniagenes (C. ammoniagenes) are, in particular, the known wild-type strains

Brevibacterium ammoniagenes ATCC6871 Brevibacterium ammoniagenes ATCC15137 and Corynebacterium sp. ATCC21084

and mutants or strains, such as are known from the prior art, produced therefrom which produce chemical compounds.

Suitable strains of the species Corynebacterium thermoaminogenes (C. thermoaminogenes) are, in particular, 15 the known wild-type strains

> Corynebacterium thermoaminogenes FERM BP-1539 Corynebacterium thermoaminogenes FERM BP-1540 Corynebacterium thermoaminogenes FERM BP-1541 and Corynebacterium thermoaminogenes FERM BP-1542

and mutants or strains, such as are known from the prior art, produced therefrom which produce chemical compounds.

Strains with the designation "ATCC" can be obtained from the American Type Culture Collection (Manassas, VA, USA). Strains with the designation "FERM" can be obtained from the National Institute of Advanced Industrial Science and Technology (AIST Tsukuba Central 6, 1-1-1 Higashi, Tsukuba Ibaraki, Japan). The strains of Corynebacterium thermoaminogenes mentioned (FERM BP-1539, FERM BP-1540, FERM BP-1541 and FERM BP-1542) are described in US-A 5,250,434.

Open reading frame (ORF) describes a section of a nucleotide sequence which codes or can code for a protein or polypeptide or ribonucleic acid to which no function can be assigned according to the prior art.

After assignment of a function to the nucleotide sequence section in question, it is in general referred to as a gene.

Alleles are in general understood as meaning alternative forms of a given gene. The forms are distinguished by differences in the nucleotide sequence.

10

15

20

In the context of the present invention, endogenous, that is to say species-characteristic, open reading frames, genes or alleles are preferably used. These are understood as meaning the open reading frames, genes or alleles or nucleotide sequences thereof present in the population of a species, such as, for example, Corynebacterium glutamicum.

A "singular copy of an open reading frame (ORF), gene or allele naturally present at the particular desired site (locus)" is understood as meaning the circumstances that a gene in general naturally occurs in one (1) copy in the form of its nucleotide sequence at its site or gene site in the corresponding wild-type or corresponding parent organism or starting organism. This site is preferably in the chromosome.

Thus, for example, the lysC gene or an lysC^{FBR} allele which codes for a "feed back" resistant aspartate kinase is present in one copy at the lysC site or lysC locus or lysC gene site and is flanked by the open reading frame orfX and the leuA gene on one side and by the asd gene on the other side.

"Feed back" resistant aspartokinases are understood as meaning aspartokinases which, compared with the wild-type form, have a lower sensitivity to inhibition by mixtures of lysine and threonine or mixtures of AEC (aminoethylcysteine) and threonine or lysine by itself or AEC by itself. Strains which produce L-lysine typically contain such "feed back" resistant or desensitized aspartokinases.

5

The nucleotide sequence of the chromosome of
Corynebacterium glutamicum is known and can be found in the
patent application EP-A-1108790 and Access Number
(Accession No.) AX114121 of the nucleotide sequence

10 databank of the European Molecular Biologies Laboratories
(EMBL, Heidelberg, Germany and Cambridge, UK). The
nucleotide sequences of orfX, the leuA gene and the asd
gene have the Access Numbers AX120364 (orfX), AX123517
(leuA) and AX123519 (asd).

- Further databanks, such as, for example, that of the National Center for Biotechnology Information (NCBI, Bethesda, MD, USA) or that of the Swiss Institute of Bioinformatics (Swissprot, Geneva, Switzerland) or that of the Protein Information Resource Database (PIR, Washington, 20 DC, USA) can also be used.
 - "Tandem arrangement" of two or more copies of an open reading frame (ORF), gene or allele is referred to if these are arranged in a row directly adjacent in the same orientation.
- "A further gene site" is understood as meaning a second gene site, the nucleotide sequence of which is different from the sequence of the ORF, gene or allele which has been at least duplicated at the natural site. This further gene site, or the nucleotide sequence present at the further gene site, is preferably in the chromosome and is in general not essential for growth and for production of the desired chemical compounds.

The "further gene sites" mentioned include, of course, not only the coding regions of the open reading frames or genes mentioned, but also the regions or nucleotide sequences lying upstream which are responsible for expression and regulation, such as, for example, ribosome binding sites, promoters, binding sites for regulatory proteins, binding sites for regulatory ribonucleic acids and attenuators.

These regions in general lie in a range of 1-800, 1-600, 1-400, 1-200, 1-100 or 1-50 nucleotides upstream of the coding region. In the same way, regions lying downstream, such as, for example, transcription terminators, are also included. These regions in general lie in a range of 1-400, 1-200, 1-100, 1-50 or 1-25 nucleotides downstream of the coding region.

15 Intergenic regions in the chromosome, that is to say nucleotide sequences without a coding function, can furthermore be used. Finally, prophages or defective phages contained in the chromosome can be used for this.

A prophage is understood as meaning a bacteriophage, in
20 particular the genome thereof, where this is replicated
together with the genome of the host and the formation of
infectious particles does not take place. A defective phage
is understood as meaning a prophage, in particular the
genome thereof, which, as a result of various mutations,
25 has lost the ability to form so-called infectious

particles. Defective phages are also called cryptic.

Prophages and defective phages are often present in integrated form in the chromosome of their host. Further details exist in the prior art, for example in the textbook

by Edward A. Birge (Bacterial and Bacteriophage Genetics, 3rd ed., Springer-Verlag, New York, USA, 1994) or in the textbook by S. Klaus et al. (Bakterienviren, Gustav Fischer Verlag, Jena, Germany, 1992).

30

To produce the coryneform bacteria according to the invention, the nucleotide sequence of the desired ORF, gene

or allele, preferably including the expression and/or regulation signals, is isolated, at least two copies are arranged in a row, preferably in tandem arrangement, these are then transferred into the desired coryneform bacterium, preferably with the aid of vectors which do not replicate or replicate to only a limited extent in coryneform bacteria, and those bacteria in which two copies of the ORF, gene or allele are incorporated at the particular desired natural site instead of the singular copy 10 originally present are isolated, no nucleotide sequence which is capable of/enables episomal replication in microorganisms, no nucleotide sequence which is capable of/enables transposition and no nucleotide sequence which imparts resistance to antibiotics remaining at the particular natural site (locus). 15

PCT/EP02/08465

The expression and/or regulation signals mentioned, such as, for example, the ribosome binding sites, promoters, binding sites for regulatory proteins, binding sites for regulatory ribonucleic acids and attenuators lying upstream of the coding region of the ORF, gene or allele, are in general in a range of 1-800, 1-600, 1-400, 1-200, 1-100 or 1-50 nucleotides upstream of the coding region. The expression and/or regulation signals mentioned, such as, for example, the transcription terminators lying downstream of the coding region of the ORF, gene or allele, are in general in a range of 1-400, 1-200, 1-100, 1-50 or 1-25 nucleotides downstream of the coding region.

20

25

30

Preferably, also, no residues of sequences of the vectors used or species-foreign DNA, such as, for example, restriction cleavage sites, remain on the flanks of the ORFs, genes or alleles amplified according to the invention. In each case a maximum of 24, preferably a maximum of 12, particularly preferably a maximum of 6 nucleotides of such DNA optionally remain on the flanks.

At least a third copy of the open reading frame (ORF), gene or allele in question is optionally inserted at a further gene site, or several further gene sites, no nucleotide sequence which is capable of/enables episomal replication in microorganisms, no nucleotide sequence which is capable of/enables transposition and no nucleotide sequence which imparts resistance to antibiotics being present at the further gene site.

Preferably, also, no residues of sequences of the vectors

10 used or species-foreign DNA, such as, for example,
restriction cleavage sites, remain at the further gene
site. A maximum of 24, preferably a maximum of 12,
particularly preferably a maximum of 6 nucleotides of such
DNA upstream or downstream of the ORF, gene or allele
incorporated optionally remain at the further gene site.

The invention accordingly also provides a process for the production of coryneform bacteria which produce one or more chemical compounds, characterized in that

- a) the nucleotide sequence of a desired ORF, gene or 20 allele, preferably including the expression and/or regulation signals, is isolated
 - b) at least two copies of the nucleotide sequence of the ORF, gene or allele are arranged in a row, preferably in tandem arrangement
- 25 c) the nucleotide sequence obtained according to b) is incorporated in a vector which does not replicate or replicates to only a limited extent in coryneform bacteria.
 - d) the nucleotide sequence according to b) or c) is transferred into coryneform bacteria, and

30

e) coryneform bacteria which have at least two copies of the desired ORF, gene or allele at the particular

20

25

30

35

desired natural site instead of the singular copy of the ORF, gene or allele originally present are isolated, no nucleotide sequence which is capable of/enables episomal replication in microorganisms, no nucleotide sequence which is capable of/enables transposition and no nucleotide sequence which imparts resistance to antibiotics remaining at the particular natural site (locus), and

at least a third copy of the open reading frame · 10 (ORF), gene or allele in question is optionally introduced at a further gene site, no nucleotide sequence which is capable of/enables episomal replication in microorganisms, no nucleotide sequence which is capable of/enables transposition and no 15 nucleotide sequence which imparts resistance to antibiotics remaining at the further gene site.

By the measures according to the invention, the productivity of the coryneform bacteria or of the fermentative processes for the preparation of chemical compounds is improved in respect of one or more of the features chosen from the group consisting of concentration (chemical compound formed, based on the unit volume), yield (chemical compound formed, based on the source of carbon consumed) and product formation rate (chemical compound formed, based on the time) by at least 0.5 - 1.0% or at least 1.0 to 1.5% or at least 1.5 - 2.0%.

Instructions on conventional genetic engineering methods, such as, for example, isolation of chromosomal DNA, plasmid DNA, handling of restriction enzymes etc., are found in Sambrook et al. (Molecular Cloning - A Laboratory Manual (1989) Cold Spring Harbor Laboratory Press). Instructions on transformation and conjugation in coryneform bacteria are found, inter alia, in Thierbach et al. (Applied Microbiology and Biotechnology 29, 356-362 (1988)), in Schäfer et al. (Journal of Bacteriology 172, 1663-1666

(1990) and Gene 145, 69-73 (1994)) and in Schwarzer and Pühler (Bio/Technology 9, 84-87 (1991)).

Vectors which replicate to only a limited extent are understood as meaning plasmid vectors which, as a function of the conditions under which the host or carrier is cultured, replicate or do not replicate. Thus, a temperature-sensitive plasmid for coryneform bacteria which can replicate only at temperatures below 31°C has been described by Nakamura et al. (US-A-6,303,383).

- 10 The invention also provides coryneform bacteria, in particular of the genus Corynebacterium, which produce L-lysine, characterized in that
- a) instead of the singular copy of an open reading frame (ORF), a gene or allele of lysine production

 15 naturally present at the particular desired site (locus), these have at least two copies of the said open reading frame (ORF), gene or allele, preferably in tandem arrangement, no nucleotide sequence which is capable of/enables episomal replication in microorganisms, no nucleotide sequence which is capable of/enables transposition and no nucleotide sequence which imparts resistance to antibiotics being present at the particular site, and in that these
- b) optionally have at least a third copy of the said open reading frame (ORF), gene or allele of L-lysine production at a further gene site, no nucleotide sequence which is capable of/enables episomal replication in microorganisms, no nucleotide sequence which is capable of/enables transposition and no nucleotide sequence which imparts resistance to antibiotics being present at the further gene site.

15

20

25

30

WO 03/014330 PCT/EP02/08465

The invention also furthermore provides a process for the preparation of L-lysine, which comprises the following steps:

- a) fermentation of coryneform bacteria, in particular of
 the genus Corynebacterium, which
 - i) instead of the singular copy of an open reading frame (ORF), gene or allele of lysine production present at the particular desired site (locus), have at least two copies of the open reading frame (ORF), gene or allele in question, preferably in tandem arrangement, no nucleotide sequence which is capable of/enables episomal replication in microorganisms, no nucleotide sequence which is capable of/enables transposition and no nucleotide sequence which imparts resistance to antibiotics being present at the particular site, and in that these
 - ii) optionally have at least a third copy of the open reading frame (ORF), gene or allele of L-lysine production in question at a further gene site, no nucleotide sequence which is capable of/enables episomal replication in microorganisms, no nucleotide sequence which is capable of/enables transposition and no nucleotide sequence which imparts resistance to antibiotics being present at the further gene site,

under conditions which allow expression of the said open reading frames (ORFs), genes or alleles,

 b) concentration of the L-lysine in the fermentation broth, c) isolation of the L-lysine from the fermentation broth, optionally

5

10

d) with constituents from the fermentation broth and/or the biomass to the extent of > (greater than) 0 to 100%.

A "copy of an open reading frame (ORF), gene or allele of lysine production" is to be understood as meaning all the, preferably endogenous, open reading frames, genes or alleles of which enhancement/over-expression can have the effect of improving lysine production. Enhancement is understood as meaning an increase in the intracellular concentration or activity of the particular gene product, protein or enzyme.

These include, inter alia, the following open reading

frames, genes or alleles: accBC, accDA, cstA, cysD, cysE,
cysH, cysK, cysN, cysQ, dapA, dapB, dapC, dapD, dapE, dapF,
ddh, dps, eno, gap, gap2, gdh, gnd, lysC, lysCFBR, lysE,
msiK, opcA, oxyR, ppc, ppcFBR, pgk, pknA, pknB, pknD, pknG,
ppsA, ptsH, ptsI, ptsM, pyc, pyc P458S, sigC, sigD, sigE,
sigH, sigM, tal, thyA, tkt, tpi, zwa1, zwf and zwf A213T.
These are summarized and explained in Table 1.

These include, in particular, the lysC^{FBR} alleles which code for a "feed back" resistant aspartate kinase. Various lysC^{FBR} alleles are summarized and are explained in Table 2.

The following lysC^{FBR} alleles are preferred: lysC A279T (replacement of alanine at position 279 of the aspartate kinase protein coded, according to SEQ ID NO: 2, by threonine), lysC A279V (replacement of alanine at position 279 of the aspartate kinase protein coded, according to SEQ ID NO: 2, by valine), lysC S301F (replacement of serine at position 301 of the aspartate kinase protein coded, according to SEQ ID NO: 2, by phenylalanine), lysC T308I (replacement of threonine at position 308 of the aspartate

kinase protein coded, according to SEQ ID NO: 2, by isoleucine), lysC S301Y (replacement of serine at position 308 of the aspartate kinase protein coded, according to SEQ ID NO: 2, by tyrosine), lysC G345D (replacement of glycine at position 345 of the aspartate kinase protein coded, according to SEQ ID NO: 2, by aspartic acid), lysC R320G (replacement of arginine at position 320 of the aspartate kinase protein coded, according to SEQ ID NO: 2, by glycine), lysC T311I (replacement of threonine at position 311 of the aspartate kinase protein coded, according to SEQ ID NO: 2, by isoleucine), lysC S381F (replacement of serine at position 381 of the aspartate kinase protein coded, according to SEQ ID NO: 2, by phenylalanine).

The lysC^{FBR} allele lysC T311I (replacement of threonine at position 311 of the aspartate kinase protein coded, according to SEQ ID NO: 2, by isoleucine), the nucleotide sequence of which is shown as SEQ ID NO:3, is particularly preferred; the amino acid sequence of the aspartate kinase protein coded is shown as SEQ ID NO:4.

- The following open reading frames, genes or nucleotide sequences, inter alia, can be used as the "further gene site" which is not essential for growth or lysine production: aecD, ccpA1, ccpA2, citA, citB, citE, fda, gluA, gluB, gluC, gluD, luxR, luxS, lysR1, lysR2, lysR3, menE, mqo, pck, pgi, poxB and zwa2, in particular the genes aecD, gluA, gluB, gluC, gluD and pck. These are summarized and explained in Table 3. Intergenic regions in the
- 30 prophages or defective phages contained in the chromosome can be used.

coding function, can furthermore be used. Finally,

chromosome, that is to say nucleotide sequences without a

Name	Description of the coded enzyme or	Reference	Access
	protein		Number _
accBC	Acyl-CoA Carboxylase	Jäger et al.	บ35023
	EC 6.3.4.14	Archives of	
	(acyl-CoA carboxylase)	Microbiology	
		(1996) 166:76-	
		82	
		EP1108790;	AX123524
		WO0100805	AX066441
accDA	Acetyl-CoA Carboxylase	EP1055725	
	EC 6.4.1.2	EP1108790	AX121013
	(acetyl-CoA carboxylase)	WO0100805	AX066443
cstA	Carbon Starvation Protein A	EP1108790	AX120811
00011	(carbon starvation protein A)	WO0100804	AX066109
cysD	Sulfate Adenylyltransferase	EP1108790	AX123177
CARD	sub-unit II	21 11 00 1 5 0	
	EC 2.7.7.4		
	(sulfate adenylyltransferase small		
	chain)		
cysE	Serine Acetyltransferase	EP1108790	AX122902
Cyse	EC 2.3.1.30	WO0100843	AX063961
	(serine acetyltransferase)	W00100043	1111003301
cysH	3'-Phosphoadenyl Sulfate Reductase	EP1108790	AX123178
Cysn	EC 1.8.99.4	WO0100842	AX066001
	(3'-phosphoadenosine 5'-	W00100042	MOOGOOI
	phosphosulfate reductase)		
cysK	Cysteine Synthase	EP1108790	AX122901
Cysk	EC 4.2.99.8	WO0100843	AX063963
	(cysteine synthase)	WOO100043	AX003303
cysN	Sulfate Adenylyltransferase sub-	EP1108790	AX123176
Cysi	unit I	EF1100750	AX127152
	EC 2,7.7.4		ARIZITIE
	(sulfate adenylyltransferase)		
	Transport protein CysQ	EP1108790	AX127145
cysQ	(transporter cysQ)	WO0100805	AX066423
- A A	Dihydrodipicolinate Synthase	Bonnassie et	X53993
dapA		al. Nucleic	K23993
	EC 4.2.1.52	1	
	(dihydrodipicolinate synthase)	Acids Research	
		18:6421 (1990)	
		Pisabarro et	
		al., Journal of	721502
		Bacteriology	Z21502
		175:2743-	<u> </u>
		2749 (1993)	
		EP1108790	
		WO0100805	
		EP0435132	
		EP1067192	AX123560
		EP1067193	AX063773
dapB	Dihydrodipicolinate Reductase	EP1108790	AX127149
	EC 1.3.1.26	WO0100843	AX063753
1	(dihydrodipicolinate reductase)	EP1067192	AX137723
L		EP1067193	AX137602

			
		Pisabarro et	X67737
		al., Journal of	221502
		Bacteriology	
		175:2743-	
		2749 (1993)	
,		JP1998215883	E16749
		JP1997322774	E14520
		JP1997070291	E12773
		JP1995075578	E08900
dapC	N-Succinyl Aminoketopimelate	EP1108790	AX127146
	Transaminase	WO0100843	AX064219
	EC 2.6.1.17	EP1136559	1
	(N-succinyl diaminopimelate		
	transaminase)	Ì	
dapp	Tetrahydrodipicolinate Succinylase	EP1108790	AX127146
	EC 2.3.1.117	WO0100843	AX063757
	(tetrahydrodipicolinate	Wehrmann et al.	AJ004934
	succinylase)	Journal of	
		Bacteriology	
		180:3159-	
		3165 (1998)	
dapE	N-Succinyl Diaminopimelate	EP1108790	AX127146
	Desuccinylase	WO0100843	AX063749
	EC 3.5.1.18	Wehrmann et al.	X81379
	(N-succinyl diaminopimelate	Microbiology	
	desuccinylase)	140:3349-3356	
		(1994)	
dapF	Diaminopimelate Epimerase	EP1108790	AX127149
	EC 5.1.1.7	WO0100843	AX063719
	(diaminopimelate epimerase)	EP1085094	AX137620
ddh	Diaminopimelate Dehydrogenase	EP1108790	AX127152
	EC 1.4.1.16	WO0100843	AX063759
	(diaminopimelate dehydrogenase)	Ishino et al.,	Y00151
		Nucleic Acids	
		Research	
		15:3917-	
		3917 (1987)	
		JP1997322774	E14511
		JP1993284970	E05776
		Kim et al.,	D87976
		Journal of	
		Microbiology	
	•	and	
		Biotechnology	
		5:250-256(1995)	
dps	DNA Protection Protein	EP1108790	AX127153
	(protection during starvation		
	protein)		
eno	Enolase	EP1108790	AX127146
	EC 4.2.1.11	WO0100844	AX064945
	(enolase)	EP1090998	AX136862
		Hermann et al.,	
		Electrophoresis	
		19:3217-3221	
		(1998)	
gap	Glyceraldehyde 3-Phosphate	EP1108790	AX127148
-	Dehydrogenase	WO0100844	AX064941
	EC 1.2.1.12	Eikmanns et	X59403

			
	(glyceraldehyde 3-phosphate	al., Journal of	
	dehydrogenase)	Bacteriology	
		174:6076-	
	02 221 2 0 01	6086 (1992)	
gap2	Glyceraldehyde 3-Phosphate	EP1108790	AX127146
	Dehydrogenase	WO0100844	AX064939
	EC 1.2.1.12		
	(glyceraldehyde 3-phosphate		
	dehydrogenase 2)		
gdh	Glutamate Dehydrogenase	EP1108790	AX127150
	EC 1.4.1.4	WO0100844	AX063811
	(glutamate dehydrogenase)	Boermann et	X59404
		al., Molecular	l
		Microbiology	
		6:317-326	
		(1992).	
		Guyonvarch et	X72855
		al. NCBI	
gnd	6-Phosphogluconate Dehydrogenase	EP1108790	AX127147
	EC 1.1.1.44		AX121689
	(6-phosphogluconate dehydrogenase)	WO0100844	AX065125
lysC	Aspartate Kinase	EP1108790	AX120365
	EC 2.7.2.4	WO0100844	AX063743
	(aspartate kinase)	Kalinowski et	X57226
		al., Molecular	
		Microbiology	
		5:1197-204	
	·	(1991)	
lysCFB	Aspartate Kinase feedback	see Table 2	
R	resistent (fbr)	•	
	EC 2.7.2.4		
	(aspartate kinase fbr)		
lysE	Lysine Exporter	EP1108790	AX123539
	(lysine exporter protein)	WO0100843	AX123539
		Vrljić et al.,	X96471
		Molecular	•
		Microbiology	
		22:815-826	
		(1996)	
msiK	G T		
, 1	Sugar Importer	EP1108790	AX120892
	(multiple sugar import protein)		AX120892
opcA	(multiple sugar import protein) Glucose 6-Phosphate Dehydrogenase	WO0104325	AX120892 AX076272
opcA	(multiple sugar import protein)		
opcA	(multiple sugar import protein) Glucose 6-Phosphate Dehydrogenase		
opcA oxyR	(multiple sugar import protein) Glucose 6-Phosphate Dehydrogenase (subunit of glucose 6-phosphate		
охуR	(multiple sugar import protein) Glucose 6-Phosphate Dehydrogenase (subunit of glucose 6-phosphate dehydrogenase)	WO0104325	AX076272
	(multiple sugar import protein) Glucose 6-Phosphate Dehydrogenase (subunit of glucose 6-phosphate dehydrogenase) Transcription Regulator	WO0104325	AX076272
охуR	(multiple sugar import protein) Glucose 6-Phosphate Dehydrogenase (subunit of glucose 6-phosphate dehydrogenase) Transcription Regulator (transcriptional regulator)	WO0104325 EP1108790	AX076272
охуR	(multiple sugar import protein) Glucose 6-Phosphate Dehydrogenase (subunit of glucose 6-phosphate dehydrogenase) Transcription Regulator (transcriptional regulator) Phosphoenol Pyruvate Carboxylase	W00104325 EP1108790 EP0723011	AX076272
охуR	(multiple sugar import protein) Glucose 6-Phosphate Dehydrogenase (subunit of glucose 6-phosphate dehydrogenase) Transcription Regulator (transcriptional regulator) Phosphoenol Pyruvate Carboxylase feedback resistent	W00104325 EP1108790 EP0723011	AX076272
охуR	(multiple sugar import protein) Glucose 6-Phosphate Dehydrogenase (subunit of glucose 6-phosphate dehydrogenase) Transcription Regulator (transcriptional regulator) Phosphoenol Pyruvate Carboxylase feedback resistent EC 4.1.1.31	W00104325 EP1108790 EP0723011	AX076272
охуR	(multiple sugar import protein) Glucose 6-Phosphate Dehydrogenase (subunit of glucose 6-phosphate dehydrogenase) Transcription Regulator (transcriptional regulator) Phosphoenol Pyruvate Carboxylase feedback resistent EC 4.1.1.31 (phosphoenol pyruvate carboxylase	W00104325 EP1108790 EP0723011	AX076272
oxyR ppc ^{FBR}	(multiple sugar import protein) Glucose 6-Phosphate Dehydrogenase (subunit of glucose 6-phosphate dehydrogenase) Transcription Regulator (transcriptional regulator) Phosphoenol Pyruvate Carboxylase feedback resistent EC 4.1.1.31 (phosphoenol pyruvate carboxylase feedback resistant)	W00104325 EP1108790 EP0723011 W00100852	AX076272 AX122198 AX127149
oxyR ppc ^{FBR}	(multiple sugar import protein) Glucose 6-Phosphate Dehydrogenase (subunit of glucose 6-phosphate dehydrogenase) Transcription Regulator (transcriptional regulator) Phosphoenol Pyruvate Carboxylase feedback resistent EC 4.1.1.31 (phosphoenol pyruvate carboxylase feedback resistant) Phosphoenol Pyruvate Carboxylase feedback resistant) Phosphoenol Pyruvate Carboxylase EC 4.1.1.31	W00104325 EP1108790 EP0723011 W00100852	AX122198 AX127149 AX127148 AX123554
oxyR ppc ^{FBR}	(multiple sugar import protein) Glucose 6-Phosphate Dehydrogenase (subunit of glucose 6-phosphate dehydrogenase) Transcription Regulator (transcriptional regulator) Phosphoenol Pyruvate Carboxylase feedback resistent EC 4.1.1.31 (phosphoenol pyruvate carboxylase feedback resistant) Phosphoenol Pyruvate Carboxylase	W00104325 EP1108790 EP0723011 W00100852 EP1108790 O'Reagan et	AX122198 AX127149
oxyR ppc ^{FBR}	(multiple sugar import protein) Glucose 6-Phosphate Dehydrogenase (subunit of glucose 6-phosphate dehydrogenase) Transcription Regulator (transcriptional regulator) Phosphoenol Pyruvate Carboxylase feedback resistent EC 4.1.1.31 (phosphoenol pyruvate carboxylase feedback resistant) Phosphoenol Pyruvate Carboxylase feedback resistant) Phosphoenol Pyruvate Carboxylase EC 4.1.1.31	W00104325 EP1108790 EP0723011 W00100852 EP1108790 O'Reagan et al., Gene	AX122198 AX127149 AX127148 AX123554
oxyR ppc ^{FBR}	(multiple sugar import protein) Glucose 6-Phosphate Dehydrogenase (subunit of glucose 6-phosphate dehydrogenase) Transcription Regulator (transcriptional regulator) Phosphoenol Pyruvate Carboxylase feedback resistent EC 4.1.1.31 (phosphoenol pyruvate carboxylase feedback resistant) Phosphoenol Pyruvate Carboxylase feedback resistant) Phosphoenol Pyruvate Carboxylase EC 4.1.1.31	W00104325 EP1108790 EP0723011 W00100852 EP1108790 O'Reagan et	AX122198 AX127149 AX127148 AX123554

	EC 2.7.2.3		
1	(phosphoglycerate kinase)		AX127148
	(phosphoglycerate kinase)	WO0100844	AX064943
		Eikmanns,	X59403
l		Journal of	
]		Bacteriology	
	`	174:6076-6086	Ì
pknA	Duck sing Tile	(1992)	
DVIW	Protein Kinase A (protein kinase A)	EP1108790	AX120131
pknB			AX120085
PKIIB	Protein Kinase B (protein kinase B)	EP1108790	AX120130
pknD	Protein Kinase D		AX120085
PAIL	(protein kinase D)	EP1108790	AX127150
	(procein kindse D)		AX122469
pknG	Protein Kinase G		AX122468
PMIG	(protein kinase G)	EP1108790	AX127152
nnañ		ļ <u></u>	AX123109
ppsA	Phosphoenol Pyruvate Synthase EC 2.7.9.2	EP1108790	AX127144
			AX120700
ptsH	(phosphoenol pyruvate synthase)		AX122469
pcsn	Phosphotransferase System Protein	EP1108790	AX122210
	EC 2.7.1.69		AX127149
	(phosphotransferase system	WO0100844	AX069154
	(phosphotransferase system component H)		
ptsI	Phosphotransferase System Enzyme I	PP1100700	
pest	EC 2.7.3.9	EP1108790	AX122206
	(phosphotransferase system enzyme		AX127149
	I)		
ptsM	Glucose-specific	Lee et al.,	L18874
	Phosphotransferase System Enzyme	FEMS	L188/4
1	II	Microbiology	1
	EC 2.7.1.69	Letters 119(1-	
	(glucose phosphotransferase-system	2):137-145	
	enzyme II)	(1994)	
рус	Pyruvate Carboxylase	W09918228	A97276
	EC 6.4.1.1	Peters-Wendisch	
	(pyruvate carboxylase)	et al.,	1200010
		Microbiology	
		144:915-927	
		(1998)	
рус	Pyruvate Carboxylase	EP1108790	1
P458S	EC 6.4.1.1		
	(pyruvate carboxylase)		l
	amino acid exchange P458S		
sigC	Sigma Factor C	EP1108790	AX120368
	EC 2.7.7.6		AX120085
	(extracytoplasmic function		
	alternative sigma factor C)		
sigD	RNA Polymerase Sigma Factor D	EP1108790	AX120753
	EC 2.7.7.6	•	AX127144
	(RNA polymerase sigma factor)		
sigE	Sigma Factor E	EP1108790	AX127146
	EC 2.7.7.6		AX121325
	(extracytoplasmic function		
	alternative sigma factor E)		[
			
sigH	Sigma Factor H	EP1108790	AX127145
sigH		EP1108790	AX127145 AX120939

sigM	Sigma Factor M	EP1108790	AX123500
	EC 2.7.7.6		AX127153
	(sigma factor SigM)		
tal	Transaldolase	WO0104325	AX076272
	EC 2.2.1.2		1
	(transaldolase)		
thyA	Thymidylate Synthase	EP1108790	AX121026
	EC 2.1.1.45	ļ	AX127145
	(thymidylate synthase)		
tkt	Transketolase	Ikeda et al.,	AB023377
	EC 2.2.1.1	NCBI	
	(transketolase)		
tpi	Triose Phosphate Isomerase	Eikmanns,	X59403
	EC 5.3.1.1	Journal of	
1	(triose phosphate isomerase)	Bacteriology	
	}	174:6076-6086	
		(1992)	
zwa1	Cell Growth Factor 1	EP1111062	AX133781
	(growth factor 1)		
zwf	Glucose 6-Phosphate 1-	EP1108790	AX127148
1	Dehydrogenase		AX121827
	EC 1.1.1.49	WO0104325	AX076272
	(glucose 6-phosphate 1-		
	dehydrogenase)		
zwf	Glucose 6-Phosphate 1-	EP1108790	
A213T	Dehydrogenase	· [
j	EC 1.1.1.49		
	(glucose 6-phosphate 1-	1	
	dehydrogenase)		
L	amino acid exchange A213T		

 $\frac{\text{Table 2}}{\text{lysC}^{\text{FBR}}} \text{ alleles which code for feed back resistant aspartate}$ kinases

Name of the	Amino acid	Reference	Access
allele	replacement		Number
lysCFBR-E05108		JP 1993184366-A	E05108
		(sequence 1)	
lysCFBR-E06825	lysC A279T	JP 1994062866-A	E06825
		(sequence 1)	
lysCFBR-E06826	lysC A279T	JP 1994062866-A	E06826
		(sequence 2)	
lysCFBR-E06827		JP 1994062866-A	E06827
		(sequence 3)	
lysCFBR-E08177		JP 1994261766-A	E08177
		(sequence 1)	
lysC ^{FBR} -E08178	lysC A279T	JP 1994261766-A	E08178
		(sequence 2)	
lysC ^{FBR} -E08179	lysC A279V	JP 1994261766-A	E08179
		(sequence 3)	
lysC ^{FBR} -E08180	lysC S301F	JP 1994261766-A	E08180
		(sequence 4)	
lysC ^{FBR} -E08181	lysC T308I	JP 1994261766-A	E08181
		(sequence 5)	
lysC ^{FBR} -E08182		JP 1994261766-A	E08182
lysC ^{FBR} -E12770		JP 1997070291-A	710770
TASC ETS / / /			E12770
7 OFBR TAKE		(sequence 13)	71 451 4
lysC ^{FBR} -E14514		JP 1997322774-A	E14514
7 CFBR		(sequence 9)	71.6350
lysC ^{FBR} -E16352		JP 1998165180-A	E16352
1 SFBR 71 CD 45		(sequence 3)	71.67.45
lysC ^{FBR} -E16745		JP 1998215883-A	E16745
1 CFBR 771 C714 C		(sequence 3)	71.6746
lysC ^{FBR} -E16746		JP 1998215883-A	E16746
7 CFBR TT 4500		(sequence 4)	774500
lysC ^{FBR} -174588		US 5688671-A	174588
THE THE PERSON		(sequence 1)	-54500
lysC ^{FBR} -174589	lysC A279T	US 5688671-A	174589
T OFBR		(sequence 2)	774500
lysC ^{FBR} -I74590		US 5688671-A	174590
PRR		(sequence 7)	774501
lysC ^{FBR} -I74591	lysC A279T	US 5688671-A	174591
- PRP	ļ	(sequence 8)	
lysC ^{FBR} -I74592		US 5688671-A	174592
		(sequence 9)	

lvsC ^{FBR} -I74593	lysC A279T	US 5688671-A	174593
TASC -114232	TYSC AZ/91	1	114333
lvsC ^{FBR} -174594		(sequence 10)	774504
1ysc1/4594		US 5688671-A	174594
PBP 1		(sequence 11)	
lysC ^{FBR} -I74595	lysC A279T	US 5688671-A	174595
200		(sequence 12)	<u> </u>
lysC ^{FBR} -I74596		US 5688671-A	I74596
		(sequence 13)	
lysC ^{FBR} -I74597	lysC A279T	US 5688671-A	I74597
		(sequence 14)	
lysC ^{FBR} -X57226	lysC S301Y	EP0387527	X57226
		Kalinowski et	
		al., Molecular	,
		and General	
		Genetics	
		224:317-324	
		(1990)	
lysC ^{FBR} -L16848	lysC G345D	Follettie and	L16848
_	_	Sinskey	
		NCBI Nucleotide	
		Database (1990)	
lysCFBR-L27125	lysC R320G	Jetten et al.,	L27125
-	lysC G345D	Applied	
	-	Microbiology	
		Biotechnology	
		43:76-82 (1995)	
lysC ^{FBR}	lysC T311I	WO0063388	
-	-	(sequence 17)	
lysCFBR	lysC S301F	US3732144	
-	_		
lysC ^{FBR}	lysC S381F		·
1 -	-		1
lysC ^{FBR}		JP6261766	
		(sequence 1)	
lysC ^{FBR}	lysC A279T	JP6261766	
		(sequence 2)	
lysCFBR	lysC A279V	JP6261766	
-100		(sequence 3)	
lysC ^{FBR}	lysC S301F	JP6261766	
		(sequence 4)	
lysC ^{FBR}	lysc T308I	JP6261766	
Tysc	173C 13001	(sequence 5)	
	1	Leedrence 21	L

Table 3

Further gene sites for integration of open reading frames, genes and alleles of lysine production

Gene	Description of the coded	Reference	Access
name	enzyme or protein		Number
aecD	beta C-S Lyase	Rossol et al., Journal	M89931
	EC 2.6.1.1	of Bacteriology	110000
	(beta C-S lyase)	174(9):2968-77 (1992)	
ccpA1	Catabolite Control	WO0100844	AX065267
	Protein	EP1108790	AX127147
1	(catabolite control		
	protein A1)		
ccpA2	Catabolite Control	WO0100844	AX065267
	Protein	EP1108790	AX121594
ļ	(catabolite control		
	protein A2)		
citA	Sensor Kinase CitA	EP1108790	AX120161
	(sensor kinase CitA)		
citB	Transcription Regulator	EP1108790	AX120163
i I	CitB		
	(transcription regulator		
	CitB)		
citE	Citrate Lyase	WO0100844	AX065421
	EC 4.1.3.6	EP1108790	AX127146
	(citrate lyase)		
fda	Fructose Bisphosphate	von der Osten et al.,	X17313
	Aldolase	Molecular Microbiology	
	EC 4.1.2.13	3(11):1625-37 (1989)	
u	(fructose 1,6-		
	bisphosphate aldolase)		
gluA	Glutamate Transport ATP-	Kronemeyer et al.,	X81191
	binding Protein	Journal of Bacteriology	
	(glutamate transport	177(5):1152-8 (1995)	
	ATP-binding protein)		
gluB	Glutamate-binding	Kronemeyer et al.,	X81191
	Protein	Journal of Bacteriology	
	(glutamate-binding	177(5):1152-8 (1995)	
			

	protein)		
gluC	Glutamate Transport	Kronemeyer et al.,	X81191
	Permease	Journal of Bacteriology	V01131
	(glutamate transport	177(5):1152-8 (1995)	
	system permease)	177 (37:1132-8 (1993)	
gluD	Glutamate Transport	Kronemeyer et al.,	V01101
9202	Permease	1	X81191
		Journal of Bacteriology	
	(glutamate transport	177(5):1152-8 (1995)	
luxR	system permease)		
luxk	Transcription Regulator	WO0100842	AX065953
	LuxR	EP1108790	AX123320
	(transcription regulator		
	LuxR)		
luxS	Histidine Kinase LuxS	EP1108790	AX123323
	(histidine kinase LuxS)		AX127153
lysR1	Transcription Regulator	EP1108790	AX064673
	LysR1		AX127144
	(transcription regulator		
	LysR1)		
lysR2	Transcription Activator	EP1108790	AX123312
	LysR2		
	(transcription regulator		
	LysR2)		
lysR3	Transcription Regulator	WO0100842	AX065957
	LysR3	EP1108790	AX127150
	(transcription regulator		
	LysR3)		
menE	O-Succinylbenzoic Acid	WO0100843	AX064599
	CoA Ligase	EP1108790	AX064193
	EC 6.2.1.26		AX127144
	(O-succinylbenzoate CoA		
	ligase)		
mqo	Malate-Quinone	Molenaar et al., Eur.	AJ224946
	Oxidoreductase	Journal of Biochemistry	
	(malate-quinone-	1;254(2):395-403 (1998)	
	oxidoreductase)		
pck	Phosphoenol Pyruvate	WO0100844	AJ269506
	Carboxykinase		AX065053
	(phosphoenol pyruvate		
	T PITTONE		

WO 03/014330 PCT/EP02/08465

	carboxykinase)		
pgi	Glucose 6-Phosphate	EP1087015	AX136015
	Isomerase	EP1108790	AX127146
	EC 5.3.1.9		
1	(glucose-6-phosphate		
	isomerase)		
рохВ	Pyruvate Oxidase	WO0100844	AX064959
	EC 1.2.3.3	EP1096013	AX137665
	(pyruvate oxidase)		
zwa2	Cell Growth Factor 2	EP1106693	AX113822
	(growth factor 2)	EP1108790	AX127146

The invention accordingly also provides a process for the production of coryneform bacteria which produce L-lysine, characterized in that

- 5 a) the nucleotide sequence of a desired ORF, gene or allele of lysine production, optionally including the expression and/or regulation signals, is isolated
 - b) at least two copies of the nucleotide sequence of the ORF, gene or allele of lysine production are arranged in a row, preferably in tandem arrangement
 - c) the nucleotide sequence obtained according to b) is incorporated in a vector which does not replicate or replicates to only a limited extent in coryneform bacteria,
- 15 d) the nucleotide sequence according to b) or c) is transferred into coryneform bacteria, and

10

e) coryneform bacteria which have at least two copies of the desired ORF, gene or allele of lysine production at the particular desired natural site instead of the singular copy of the ORF, gene or allele originally present are isolated, no nucleotide sequence which is capable of/enables episomal replication in

microorganisms, no nucleotide sequence which is capable of/enables transposition and no nucleotide sequence which imparts resistance to antibiotics remaining at the particular natural site (locus), and optionally

f) at least a third copy of the open reading frame (ORF), gene or allele of lysine production in question is introduced at a further gene site, no nucleotide sequence which is capable of/enables episomal replication in microorganisms, no nucleotide sequence which is capable of/enables transposition and no nucleotide sequence which imparts resistance to antibiotics remaining at the further gene site.

The invention also provides coryneform bacteria, in

particular of the genus Corynebacterium, which produce Lmethionine and/or L-threonine, characterized in that

- a) instead of the singular copy of an open reading frame (ORF), a gene or allele of methionine production or threonine production naturally present at the particular desired site (locus), these have at least two copies of the said open reading frame (ORF), gene or allele, preferably in tandem arrangement, no nucleotide sequence which is capable of/enables episomal replication in microorganisms, no nucleotide sequence which is capable of/enables transposition and no nucleotide sequence which imparts resistance to antibiotics being present at the particular site, and in that these
- b) optionally have at least a third copy of the open reading frame (ORF), gene or allele of methionine production or threonine production mentioned at a further gene site, no nucleotide sequence which is capable of/enables episomal replication in microorganisms, no nucleotide sequence which is

30

capable of/enables transposition and no nucleotide sequence which imparts resistance to antibiotics being present at the further gene site.

The invention also furthermore provides a process for the preparation of L-methionine and/or L-threonine, which comprises the following steps:

- a) fermentation of coryneform bacteria, in particular of the genus Corynebacterium, which
- instead of the singular copy of an open reading i) 10 frame (ORF), gene or allele of methionine production or threonine production present at the particular desired site (locus), have at least two copies of the open reading frame (ORF), gene or allele in question, preferably in tandem 15 arrangement, no nucleotide sequence which is capable of/enables episomal replication in microorganisms, no nucleotide sequence which is capable of/enables transposition and no nucleotide sequence which imparts resistance to 20 antibiotics being present at the particular site, and
 - ii) optionally have at least a third copy of the open reading frame (ORF), gene or allele of methionine production or threonine production in question at a further gene site, no nucleotide sequence which is capable of/enables episomal replication in microorganisms, no nucleotide sequence which is capable of/enables transposition and no nucleotide sequence which imparts resistance to antibiotics being present at the further gene site,

under conditions which allow expression of the

said open reading frames (ORFs), genes or alleles,

- b) concentration of the L-methionine and/or L-threonine in the fermentation broth,
- 5 c) isolation of the L-methionine and/or L-threonine from the fermentation broth, optionally
 - d) with constituents from the fermentation broth and/or the biomass to the extent of > (greater than) 0 to 100%.
- A "copy of an open reading frame (ORF), gene or allele of methionine production" is to be understood as meaning all the, preferably endogenous, open reading frames, genes or alleles of which enhancement/over-expression can have the effect of improving methionine production.
- These include, inter alia, the following open reading frames, genes or alleles: accBC, accDA, aecD, cstA, cysD, cysE, cysH, cysK, cysN, cysQ, dps, eno, fda, gap, gap2, gdh, gnd, glyA, hom, hom^{FBR}, lysC, lysC^{FBR}, metA, metB, metE, metH, metY, msiK, opcA, oxyR, ppc, ppc^{FBR}, pgk, pknA, pknB,
- pknD, pknG, ppsA, ptsH, ptsI, ptsM, pyc, pyc P458S, sigC, sigD, sigE, sigH, sigM, tal, thyA, tkt, tpi, zwal, zwf and zwf A213T. These are summarized and explained in Table 4. These include, in particular, the lysCFBR alleles which code for a "feed back" resistant aspartate kinase (see Table 2)
- and the hom^{FBR} alleles which code for a "feed back" resistant homoserine dehydrogenase.

The at least third, optionally fourth or fifth copy of the open reading frame (ORF), gene or allele of methionine production in question can be integrated at a further site.

The following open reading frames, genes or nucleotide sequences, inter alia, can be used for this: brnE, brnF, brnQ, ccpAl, ccpA2, citA, citB, citE, ddh, gluA, gluB, gluC, gluD, luxR, luxS, lysR1, lysR2, lysR3, menE, metD,

metK, pck, pgi, poxB and zwa2. These are summarized and explained in Table 5. Intergenic regions in the chromosome, that is to say nucleotide sequences without a coding function, can furthermore be used. Finally, prophages or defective phages contained in the chromosome can be used for this.

Name	Description of the coded enzyme or	Reference	13
Hame	protein	Reference	Access
accBC	Acyl-CoA Carboxylase	Jäger et al.	Number U35023
accec	EC 6.3.4.14	Archives of	035023
	(acyl-CoA carboxylase)	Microbiology	
	(acyl-cox calboxylase)	(1996) 166:76-82	
		EP1108790;	27102504
		•	AX123524
accDA	Acetyl-CoA Carboxylase	WO0100805	AX066441
accoa	EC 6.4.1.2	EP1055725	
	1	EP1108790	AX121013
aecD	(acetyl-CoA carboxylase)	WO0100805	AX066443
aech	Cystathionine beta-Lyase	Rossol et al.,	M89931
	EC 4.4.1.8	Journal of	
	(cystathionine beta-lyase)	Bacteriology	
		174:2968-2977	· i
	Contraction of the contraction o	(1992)	
cstA	Carbon Starvation Protein A	EP1108790	AX120811
	(carbon starvation protein A)	WO0100804	AX066109
cysD	Sulfate Adenylyltransferase	EP1108790	AX123177
	sub-unit II		
	EC 2.7.7.4		
	(sulfate adenylyltransferase small		
	chain)		
cysE	Serine Acetyltransferase	EP1108790	AX122902
	EC 2.3.1.30	WO0100843	AX063961
TT	(serine acetyltransferase)	22110220	
cysH	3'-Phosphoadenyl Sulfate Reductase EC 1.8.99.4	EP1108790	AX123178
	(3'-phosphoadenosine 5'-	WO0100842	AX066001
	phosphosulfate reductase)		
	Cysteine Synthase	771100700	1
cysK	EC 4.2.99.8	EP1108790	AX122901
		WO0100843	AX063963
NT	(cysteine synthase)		
cysN	Sulfate Adenylyltransferase sub- unit I	EP1108790	AX123176
	EC 2.7.7.4		AX127152
			•
	(sulfate adenylyltransferase)	771100000	
cysQ	Transport protein CysQ	EP1108790	AX127145
	(transporter cysQ)	WO0100805	AX066423
dps	DNA Protection Protein	EP1108790	AX127153
	(protection during starvation		
	protein)	PD1100000	
eno	Enolase	EP1108790	AX127146
	EC 4.2.1.11	WO0100844	AX064945
	(enolase)	EP1090998	AX136862
		Hermann et al.,	1
		Electrophoresis	
		19:3217-3221	
		(1998)	
fda	Fructose Bisphosphate Aldolase	van der Osten et	X17313
	EC 4.1.12.13	al., Molecular	L

	1/6		
	(fructose bisphosphate aldolase)	Microbiology	
	1	3:1625-1637	
		(1989)	
gap	Glyceraldehyde 3-Phosphate	EP1108790	AX127148
ļ	Dehydrogenase	WO0100844	AX064941
1	EC 1.2.1.12	Eikmanns et al.,	X59403
ĺ	(glyceraldehyde 3-phosphate	Journal of	
	dehydrogenase)	Bacteriology	
		174:6076-	
	·	6086 (1992)	
gap2	Glyceraldehyde 3-Phosphate	EP1108790	AX127146
	Dehydrogenase	WO0100844	AX064939
	EC 1.2.1.12	· ·	
	(glyceraldehyde 3-phosphate	•	
	dehydrogenase 2)		
gdh	Glutamate Dehydrogenase	EP1108790	AX127150
	EC 1.4.1.4	WO0100844	AX063811
	(glutamate dehydrogenase)	Boermann et al.,	X59404
	1	Molecular	
}		Microbiology	
		6:317-326 (1992)	
		Guyonvarch et al,	X72855
		NCBI	A72033
glyA	Glycine/Serine	EP1108790	AX127146
	Hydroxymethyltransferase	211100750	AX121194
	EC 2.1.2.1		AKIZILI
	(glycine/serine		
	hydroxymethyltransferase)		}
gnd	6-Phosphogluconate Dehydrogenase	EP1108790	AX127147
] 5	EC 1.1.1.44	BF1100790	AX121689
	(6-phosphogluconate dehydrogenase)	WO0100844	AX065125
hom	Homoserine Dehydrogenase	Peoples et al.,	Y00546
	EC 1.1.1.3	Molecular	100540
	(homoserine dehydrogenase)	Microbiology	1
	(2:63-72 (1988)	1 .
homFBR	Homoserine Dehydrogenase feedback	Reinscheid et	
	resistant (fbr)	al., Journal of	
	EC 1.1.1.3	Bacteriology	
	(homoserine dehydrogenase fbr)	173:3228-30	
	((1991)	
lysC	Aspartate Kinase	EP1108790	AX120365
-,, 50	EC 2.7.2.4	WO0100844	AX120365 AX063743
	(aspartate kinase)	Kalinowski et	X57226
	(appur and Armad)	al., Molecular	A57440
		Microbiology	
	•	5:1197-204 (1991)	
lysC ^{FB}	Aspartate Kinase feedback	see Table 2	
TYSC R	resistent (fbr)	See Table 2]
	EC 2.7.2.4		[
	(aspartate kinase fbr)		<u> </u>
mo+3		Paris of si	77050555
metA	Homoserine Acetyltransferase EC 2.3.1.31	Park et al.,	AF052652
		Molecular Cells	[
	(homoserine acetyltransferase)	8:286-94 (1998)	
metB	Cystathionine γ-Lyase	Hwang et al.,	AF126953
	EC 4.4.1.1	Molecular Cells	
	(cystathionine gamma-synthase)	9:300-308 (1999)	
metE	Homocysteine Methyltransferase	EP1108790	AX127146
	EC 2.1.1.14		AX121345

(Vitamin B12-dependent) EC 2.1.1.14 (homocysteine methyltransferase) mety Acetylhomoserine Sulfhydrolase (acetylhomoserine sulfhydrolase) msiK Sugar Importer (multiple sugar import protein) opcA Glucose 6-Phosphate Dehydrogenase (subunit of glucose 6-phosphate dehydrogenase) oxyR Transcription Regulator (transcriptional regulator) ppc Phosphoenol Pyruvate Carboxylase feedback resistent EC 4.1.1.31 (phosphoenol pyruvate carboxylase feedback resistant) ppc Phosphoenol Pyruvate Carboxylase EC 4.1.1.31 (phosphoenol Pyruvate Carboxylase) EC 4.1.1.31 (phosphoglycerate Kinase EC 2.7.2.3 (phosphoglycerate kinase) EP1108790 A EC 2.7.2.3 (phosphoglycerate kinase) EP1108790 A Eikmanns, Journal of Bacteriology 174:6076-6086 (1992) pknA Protein Kinase A EP1108790 A	AX127148 AX120810 AX127145 AX120892 AX076272 AX122198 AX127149 AX127148 AX127148 AX123554 M25819 AX121838 AX127148 AX127148 AX127148 AX127148 AX127148
Witamin B12-dependent) EC 2.1.1.14 (homocysteine methyltransferase) mety Acetylhomoserine Sulfhydrolase (acetylhomoserine sulfhydrolase) msik Sugar Importer (multiple sugar import protein) opcA Glucose 6-Phosphate Dehydrogenase (subunit of glucose 6-phosphate dehydrogenase) oxyk Transcription Regulator (transcriptional regulator) ppc Phosphoenol Pyruvate Carboxylase feedback resistent EC 4.1.1.31 (phosphoenol pyruvate carboxylase feedback resistant) ppc Phosphoenol Pyruvate Carboxylase EC 4.1.1.31 (phosphoenol Pyruvate Carboxylase) EC 4.1.1.31 (phosphoglycerate Kinase EC 2.7.2.3 (phosphoglycerate kinase) EP1108790 A EC 2.7.2.3 (phosphoglycerate kinase) EP1108790 A Eikmanns, Journal of Bacteriology 174:6076-6086 (1992) pknA Protein Kinase A EP1108790 A EP1108790 A	AX121747 AX120810 AX127145 AX120892 AX076272 AX122198 AX127149 AX127148 AX123554 M25819 AX121838 AX127148 AX127148 AX127148 AX064943
metY Acetylhomoserine Sulfhydrolase (acetylhomoserine sulfhydrolase) msiK Sugar Importer (multiple sugar import protein) opcA Glucose 6-Phosphate Dehydrogenase (subunit of glucose 6-phosphate dehydrogenase) oxyR Transcription Regulator (transcriptional regulator) ppcFBR Phosphoenol Pyruvate Carboxylase feedback resistent EC 4.1.1.31 (phosphoenol pyruvate Carboxylase feedback resistant) ppc Phosphoenol Pyruvate Carboxylase EP1108790 EC 4.1.1.31 (phosphoenol Pyruvate Carboxylase feedback resistant) ppc Phosphoenol Pyruvate Carboxylase EP1108790 EC 4.1.1.31 (phosphoenol Pyruvate Carboxylase)	AX120810 AX127145 AX120892 AX076272 AX122198 AX127149 AX127148 AX123554 M25819 AX121838 AX127148 AX127148 AX127148 AX127148
metY Acetylhomoserine Sulfhydrolase (acetylhomoserine sulfhydrolase) A A msiK Sugar Importer (multiple sugar import protein) OpcA Glucose 6-Phosphate Dehydrogenase (subunit of glucose 6-phosphate dehydrogenase) OxyR Transcription Regulator (transcriptional regulator) A	AX127145 AX120892 AX076272 AX122198 AX127149 AX127148 AX123554 M25819 AX121838 AX127148 AX127148 AX127148
metY Acetylhomoserine Sulfhydrolase (acetylhomoserine sulfhydrolase) A A msiK Sugar Importer (multiple sugar import protein) OpcA Glucose 6-Phosphate Dehydrogenase (subunit of glucose 6-phosphate dehydrogenase) OxyR Transcription Regulator (transcriptional regulator) A	AX127145 AX120892 AX076272 AX122198 AX127149 AX127148 AX123554 M25819 AX121838 AX127148 AX127148 AX127148
msiK Sugar Importer (multiple sugar import protein) opcA Glucose 6-Phosphate Dehydrogenase (subunit of glucose 6-phosphate dehydrogenase) oxyR Transcription Regulator (transcriptional regulator) ppc Phosphoenol Pyruvate Carboxylase feedback resistent EC 4.1.1.31 (phosphoenol pyruvate carboxylase feedback resistant) ppc Phosphoenol Pyruvate Carboxylase EC 4.1.1.31 (phosphoenol pyruvate carboxylase feedback resistant) ppc Phosphoenol pyruvate carboxylase EC 4.1.1.31 (phosphoenol pyruvate carboxylase) ppc Phosphoenol pyruvate carboxylase EC 4.1.1.31 (phosphoenol pyruvate carboxylase) ppc Phosphoglycerate Kinase EP1108790 A EC 2.7.2.3 (phosphoglycerate kinase) ppknA Protein Kinase A EP1108790 A EP1108	AX120892 AX076272 AX122198 AX127149 AX127148 AX123554 M25819 AX121838 AX127148 AX127148 AX127148
msiK Sugar Importer (multiple sugar import protein) opcA Glucose 6-Phosphate Dehydrogenase (subunit of glucose 6-phosphate dehydrogenase) oxyR Transcription Regulator (transcriptional regulator) ppc Phosphoenol Pyruvate Carboxylase feedback resistent EC 4.1.1.31 (phosphoenol pyruvate carboxylase feedback resistant) ppc Phosphoenol Pyruvate Carboxylase EC 4.1.1.31 (phosphoenol pyruvate carboxylase feedback resistant) ppc Phosphoenol pyruvate carboxylase EC 4.1.1.31 (phosphoenol pyruvate carboxylase) ppc Phosphoenol pyruvate carboxylase EC 4.1.1.31 (phosphoenol pyruvate carboxylase) ppc Phosphoglycerate Kinase EP1108790 A EC 2.7.2.3 (phosphoglycerate kinase) ppknA Protein Kinase A EP1108790 A EP1108	AX122198 AX127149 AX127148 AX123554 M25819 AX121838 AX127148 AX127148 AX064943
(multiple sugar import protein) opcA Glucose 6-Phosphate Dehydrogenase (subunit of glucose 6-phosphate dehydrogenase) oxyR Transcription Regulator (transcriptional regulator) ppcFBR Phosphoenol Pyruvate Carboxylase feedback resistent EC 4.1.1.31 (phosphoenol pyruvate carboxylase feedback resistant) ppc Phosphoenol Pyruvate Carboxylase feedback resistant) ppc Phosphoenol Pyruvate Carboxylase EP1108790 A EC 4.1.1.31 (phosphoenol pyruvate carboxylase) ppc Phosphoenol pyruvate carboxylase) EC 4.1.1.31 (phosphoenol pyruvate carboxylase) EC 4.1.1.31 (phosphoenol pyruvate carboxylase) EC 2.7.2.3 (phosphoglycerate Kinase EP1108790 A Eixmanns, Journal of Bacteriology 174:6076-6086 (1992) pknA Protein Kinase A EP1108790 A	AX122198 AX127149 AX127148 AX123554 M25819 AX121838 AX127148 AX064943
(subunit of glucose 6-phosphate dehydrogenase) oxyR Transcription Regulator (transcriptional regulator) ppcFBR Phosphoenol Pyruvate Carboxylase feedback resistent EC 4.1.1.31 (phosphoenol pyruvate carboxylase feedback resistant) ppc Phosphoenol Pyruvate Carboxylase EC 4.1.1.31 (phosphoenol pyruvate Carboxylase EC 4.1.1.31 (phosphoenol pyruvate carboxylase EC 4.1.1.31 (phosphoenol pyruvate carboxylase) pgk Phosphoglycerate Kinase EP1108790 A EC 2.7.2.3 (phosphoglycerate kinase) pgk Phosphoglycerate kinase EP1108790 A Eikmanns, Journal of Bacteriology 174:6076-6086 (1992) pknA Protein Kinase A EP108790 A	AX122198 AX127149 AX127148 AX123554 M25819 AX121838 AX127148 AX064943
dehydrogenase) oxyR Transcription Regulator (transcriptional regulator) ppcFBR Phosphoenol Pyruvate Carboxylase feedback resistent EC 4.1.1.31 (phosphoenol pyruvate carboxylase feedback resistant) ppc Phosphoenol Pyruvate Carboxylase EP1108790 EC 4.1.1.31 (phosphoenol pyruvate carboxylase) EC 4.1.1.31 (phosphoenol pyruvate carboxylase) O'Reagan et al., Gene 77(2):237-251(1989) pgk Phosphoglycerate Kinase EP1108790 EC 2.7.2.3 (phosphoglycerate kinase) W00100844 Eikmanns, Journal of Bacteriology 174:6076-6086 (1992) pknA Protein Kinase A EP1108790 A	AX127149 AX127148 AX123554 M25819 AX121838 AX127148 AX064943
oxyR Transcription Regulator (transcriptional regulator) ppcFER Phosphoenol Pyruvate Carboxylase EP0723011 feedback resistent EC 4.1.1.31 (phosphoenol pyruvate carboxylase feedback resistant) ppc Phosphoenol Pyruvate Carboxylase EP1108790 EC 4.1.1.31 (phosphoenol pyruvate carboxylase) (phosphoenol pyruvate carboxylase) O'Reagan et al., Gene 77(2):237-251(1989) pgk Phosphoglycerate Kinase EC 2.7.2.3 (phosphoglycerate kinase) EC 2.7.2.3 (phosphoglycerate kinase) W00100844 Eikmanns, Journal of Bacteriology 174:6076-6086 (1992) pknA Protein Kinase A EP1108790 A	AX127149 AX127148 AX123554 M25819 AX121838 AX127148 AX064943
(transcriptional regulator) ppc Phosphoenol Pyruvate Carboxylase	AX127149 AX127148 AX123554 M25819 AX121838 AX127148 AX064943
ppc Phosphoenol Pyruvate Carboxylase feedback resistent EC 4.1.1.31 (phosphoenol pyruvate carboxylase feedback resistant) ppc Phosphoenol Pyruvate Carboxylase EP1108790 A EC 4.1.1.31 (phosphoenol pyruvate carboxylase) O'Reagan et al., Gene 77(2):237-251(1989) pgk Phosphoglycerate Kinase EP1108790 A EC 2.7.2.3 (phosphoglycerate kinase) W00100844 Eikmanns, Journal of Bacteriology 174:6076-6086 (1992) pknA Protein Kinase A EP1108790 A	AX127148 AX123554 M25819 AX121838 AX127148 AX064943
feedback resistent EC 4.1.1.31 (phosphoenol pyruvate carboxylase feedback resistant) ppc Phosphoenol Pyruvate Carboxylase EC 4.1.1.31 (phosphoenol pyruvate carboxylase) CFReagan et al., Gene 77(2):237- 251(1989) pgk Phosphoglycerate Kinase EC 2.7.2.3 (phosphoglycerate kinase) EC 2.7.2.3 (phosphoglycerate kinase) WO0100844 Eikmanns, Journal of Bacteriology 174:6076-6086 (1992) pknA Protein Kinase A EP1108790 A	AX123554 M25819 AX121838 AX127148 AX064943
EC 4.1.1.31 (phosphoenol pyruvate carboxylase feedback resistant) ppc Phosphoenol Pyruvate Carboxylase EP1108790 EC 4.1.1.31 (phosphoenol pyruvate carboxylase) (phosphoenol pyruvate carboxylase) pgk Phosphoglycerate Kinase EC 2.7.2.3 (phosphoglycerate kinase) EC 2.7.2.3 (phosphoglycerate kinase) W00100844 Eikmanns, Journal of Bacteriology 174:6076-6086 (1992) pknA Protein Kinase A EP1108790 A	AX123554 M25819 AX121838 AX127148 AX064943
(phosphoenol pyruvate carboxylase feedback resistant) ppc Phosphoenol Pyruvate Carboxylase EP1108790 A EC 4.1.1.31 (phosphoenol pyruvate carboxylase) O'Reagan et al., Gene 77(2):237-251(1989) pgk Phosphoglycerate Kinase EP1108790 A EC 2.7.2.3 (phosphoglycerate kinase) W00100844 Eikmanns, Journal of Bacteriology 174:6076-6086 (1992) pknA Protein Kinase A EP1108790 A	AX123554 M25819 AX121838 AX127148 AX064943
feedback resistant) ppc Phosphoenol Pyruvate Carboxylase EP1108790 A A EC 4.1.1.31 (phosphoenol pyruvate carboxylase) O'Reagan et al., Gene 77(2):237-251(1989) pgk Phosphoglycerate Kinase EP1108790 A EC 2.7.2.3 (phosphoglycerate kinase) W00100844 Eikmanns, Journal of Bacteriology 174:6076-6086 (1992) pknA Protein Kinase A EP1108790 A	AX123554 M25819 AX121838 AX127148 AX064943
ppc Phosphoenol Pyruvate Carboxylase EP1108790 EC 4.1.1.31 (phosphoenol pyruvate carboxylase) O'Reagan et al., Gene 77(2):237-251(1989) pgk Phosphoglycerate Kinase EP1108790 EC 2.7.2.3 (phosphoglycerate kinase) W00100844 Eikmanns, Journal of Bacteriology 174:6076-6086 (1992) pknA Protein Kinase A EP1108790 A	AX123554 M25819 AX121838 AX127148 AX064943
EC 4.1.1.31 (phosphoenol pyruvate carboxylase) pgk Phosphoglycerate Kinase EC 2.7.2.3 (phosphoglycerate kinase) W00100844 Eikmanns, Journal of Bacteriology 174:6076-6086 (1992) pknA Protein Kinase A EC 4.1.1.31 O'Reagan et al., Mand Mand Mand Mand Mand Mand Mand Mand	AX123554 M25819 AX121838 AX127148 AX064943
(phosphoenol pyruvate carboxylase) O'Reagan et al., Gene 77(2):237-251(1989) pgk Phosphoglycerate Kinase EP1108790 A EP1108790 A Eikmanns, Journal of Bacteriology 174:6076-6086 (1992) pknA Protein Kinase A EP1108790 A	M25819 AX121838 AX127148 AX064943
Gene 77(2):237- 251(1989)	AX121838 AX127148 AX064943
Description	AX127148 AX064943
pgk Phosphoglycerate Kinase EP1108790 A A EC 2.7.2.3 (phosphoglycerate kinase) W00100844 Eikmanns, Journal of Bacteriology 174:6076-6086 (1992) pknA Protein Kinase A EP1108790 A	AX127148 AX064943
EC 2.7.2.3 (phosphoglycerate kinase) W00100844 Eikmanns, Journal of Bacteriology 174:6076-6086 (1992) pknA Protein Kinase A EP1108790 A	AX127148 AX064943
(phosphoglycerate kinase) W00100844 Eikmanns, Journal of Bacteriology 174:6076-6086 (1992) pknA Protein Kinase A EP1108790 A	AX064943
Eikmanns, Journal x of Bacteriology 174:6076-6086 (1992) pknA Protein Kinase A EP1108790 A	
of Bacteriology	
174:6076-6086 (1992)	
pknA Protein Kinase A EP1108790 A	
* · · · · · · · · · · · · · · · · · · ·	:
(protein kinase A)	AX120131
	AX120085
	AX120130
<u></u>	AX120085
(•) · · · · · · · · · · · · · · · · · ·	AX127150
l '-	AX122469
	AX122468
•	AX127152
	AX123109 AX127144
	AX12/144 AX120700
	AX122469
	AX122210
	AX127149
1 1	AX069154
(phosphotransferase system	
component H)	
	AX122206
	AX127149
(phosphotransferase system enzyme	
1 * 1 : : : : :	ւ18874
Phosphotransferase System Enzyme Microbiology	,
II Letters 119(1-	
EC 2.7.1.69 (1994)	
(glucose phosphotransferase-system	1
enzyme II)	

	Pyruvate Carboxylase	Two001 0220	A97276
рус	-	W09918228	
	EC 6.4.1.1	Peters-Wendisch	Y09548
	(pyruvate carboxylase)	et al.,]
		Microbiology	
	•	144:915-927	
	Daniel Carlos III	(1998) EP1108790	
рус	Pyruvate Carboxylase	EPI108/90	
P458S	EC 6.4.1.1		İ
	(pyruvate carboxylase)		
	amino acid exchange P458S	EP1108790	27120260
sigC	Sigma Factor C EC 2.7.7.6	EPI108/90	AX120368 AX120085
	(extracytoplasmic function		WYTZ0092
	alternative sigma factor C)		
sigD	RNA Polymerase Sigma Factor D	EP1108790	AX120753
sign	EC 2.7.7.6	EF1108/30	AX120733
	(RNA polymerase sigma factor)		LV17/144
sigE	Sigma Factor E	EP1108790	AX127146
Prop	EC 2.7.7.6	E51100130	AX12/146 AX121325
	(extracytoplasmic function	1	AAIZISZS
	alternative sigma factor E)	•	
sigH	Sigma Factor H	EP1108790	AX127145
Sign	EC 2.7.7.6	BF1100750	AX120939
	(sigma factor SigH)		ILLIE
sigM	Sigma Factor M	EP1108790	AX123500
Jign	EC 2.7.7.6	21233734	AX127153
	(sigma factor SigM)		
tal	Transaldolase	WO0104325	AX076272
	EC 2.2.1.2		
	(transaldolase)		
thyA	Thymidylate Synthase	EP1108790	AX121026
	EC 2.1.1.45		AX127145
<u> </u>	(thymidylate synthase)		
tkt	Transketolase	Ikeda et al.,	AB023377
İ	EC 2.2.1.1	NCBI	
<u></u>	(transketolase)		
tpi	Triose Phosphate Isomerase	Eikmanns, Journal	X59403
[EC 5.3.1.1	of Bacteriology	
	(triose phosphate isomerase)	174:6076-6086	-
		(1992)	
zwa1	Cell Growth Factor 1	EP1111062	AX133781
	(growth factor 1)		37100140
zwf	Glucose 6-Phosphate 1-	EP1108790	AX127148
	Dehydrogenase	W001 04325	AX121827
	EC 1.1.1.49	WO0104325	AX076272
	(glucose 6-phosphate 1-		
-	dehydrogenase)	EP1108790	
zwf	Glucose 6-Phosphate 1-	ELTTO8/20	
A213T	Dehydrogenase		
	EC 1.1.1.49		
	(glucose 6-phosphate 1-		
1	dehydrogenase)		
	amino acid exchange A213T	<u> </u>	

 $\frac{{\tt Table}\ 5}{{\tt Further}\ {\tt gene}\ {\tt sites}\ {\tt for}\ {\tt integration}\ {\tt of}\ {\tt open}\ {\tt reading}\ {\tt frames},}$ genes and alleles of methionine production

Gene	Description of the	In-6	Τ
name		Reference	Access
11anie	coded enzyme or protein	1	Number
brnE	Manage and a set a set a		
DIHE	Transporter of	EP1096010	AX137709
	branched-chain amino		AX137714
	acids		
	(branched-chain amino		
	acid transporter)		•
brnF	Transporter of	EP1096010	AX137709
	branched-chain amino		AX137714
	acids		
	(branched-chain amino		1
	acid transporter)	1	1
brnQ	Carrier protein of	Tauch et al., Archives	M89931
	branched-chain amino	of Microbiology	AX066841
	acids	169(4):303-12 (1998)	AX127150
	(branched-chain amino	WO0100805	}
	acid transport system	EP1108790	
	carrier protein)		
ccpA1	Catabolite Control	WO0100844	AX065267
	Protein	EP1108790	AX127147
	(catabolite control		
	protein A1)	}	
ccpA2	Catabolite Control	WO0100844	AX065267
	Protein	EP1108790	AX121594
	(catabolite control		
	protein A2)		
citA	Sensor Kinase CitA	EP1108790	AX120161
L	(sensor kinase CitA)		
citB	Transcription Regulator	EP1108790	AX120163
	CitB		
	(transcription	·	
	regulator CitB)		
citE	Citrate Lyase	WO0100844	AX065421
	EC 4.1.3.6	EP1108790	AX127146
	(citrate lyase)		
ddh	Diaminopimelate	Ishino et al., Nucleic	S07384
	Dehydrogenase	Acids Research 15: 3917	AX127152
	EC 1.4.1.16	(1987)	
	(diaminopimelate	EP1108790	. 1
	dehydrogenase)		
gluA	Glutamate Transport	Kronemeyer et al.,	X81191
_	ATP-binding Protein	Journal of Bacteriology	
	(glutamate transport	177(5):1152-8 (1995)	
	ATP-binding protein)		
gluB	Glutamate-binding	Kronemeyer et al.,	X81191
J	Protein	Journal of Bacteriology	
	(glutamate-binding	177(5):1152-8 (1995)	1
	protein)	2,,(3),1132 0 (1333)	
gluC	Glutamate Transport	Kronemeyer et al.,	X81191
3440	Permease	Journal of Bacteriology	201131
	- cruedae	COULTIST OF PACCELLOTOGY	L

	(glutamata tuanganat	T455 4450 0 4460	
}	(glutamate transport	177(5):1152-8 (1995)	
	system permease)		
gluD	Glutamate Transport	Kronemeyer et al.,	X81191
	Permease	Journal of Bacteriology	İ
1	(glutamate transport	177(5):1152-8 (1995)	1
1	system permease)	<u> </u>	
luxR	Transcription Regulator	WO0100842	AX065953
	LuxR	EP1108790	AX123320
	(transcription		
7	regulator LuxR)	·	
luxS	Histidine Kinase LuxS	EP1108790	AX123323
<u> </u>	(histidine kinase LuxS)		AX127153
lysR1	Transcription Regulator	EP1108790	AX064673
	LysR1		AX127144
	(transcription	-	
-	regulator LysR1)		
lysR2	Transcription Activator	EP1108790	AX123312
	LysR2		
	(transcription		
<u> </u>	regulator LysR2)		
lysR3	Transcription Regulator	WO0100842	AX065957
	LysR3	EP1108790	AX127150
	(transcription		
<u> </u>	regulator LysR3)		
menE	O-Succinylbenzoic Acid	WO0100843	AX064599
}	CoA Ligase	EP1108790	AX064193
	EC 6.2.1.26		AX127144
	(O-succinylbenzoate CoA		
	ligase)		
metD	Transcription Regulator	EP1108790	AX123327
	MetD (transcription		AX127153
metK	regulator MetD) Methionine Adenosyl	1,001,000,17	
Meck	Transferase	WO0100843	AX063959
	EC 2.5.1.6	EP1108790	AX127148
	(S-adenosylmethionine		,
	synthetase)		
pck	Phosphoenol Pyruvate	WO0100844	17060506
PCK	Carboxykinase	MO0100844	AJ269506
	(phosphoenol pyruvate	1	AX065053
	carboxykinase)		
pgi	Glucose 6-Phosphate	EP1087015	AX136015
-5-	Isomerase	EP11087015 EP1108790	
	EC 5.3.1.9		AX127146
	(glucose-6-phosphate		
	isomerase)]
рохВ	Pyruvate Oxidase	WO0100844	AVOCADED
	EC 1.2.3.3	EP1096013	AX064959
	(pyruvate oxidase)	EE T030013	AX137665
zwa2	Cell Growth Factor 2	EP1106693	AV112022
2002	(growth factor 2)		AX113822
	1 19 LOWEII LACEOF 21	EP1108790	AX127146

A "copy of an open reading frame (ORF), gene or allele of threonine production" is to be understood as meaning all the, preferably endogenous, open reading frames, genes or alleles of which enhancement/over-expression can have the effect of improving threonine production.

These include, inter alia, the following open reading frames, genes or alleles: accBC, accDA, cstA, cysD, cysE, cysH, cysI, cysN, cysQ, dps, eno, fda, gap, gap2, gdh, gnd, hom, hom^{FBR}, lysC, lysC^{FBR}, msiK, opcA, oxyR, ppc, ppc^{FBR}, pgk, pknA, pknB, pknD, pknG, ppsA, ptsH, ptsI, ptsM, pyc, pyc P458S, sigC, sigD, sigE, sigH, sigM, tal, thyA, tkt, tpi, thrB, thrC, thrE, zwal, zwf and zwf A213T. These are summarized and explained in Table 6. These include, in particular, the lysC^{FBR} alleles which code for a "feed back" resistant aspartate kinase (See Table 2) and the hom^{FBR} alleles which code for a "feed back" resistant homoserine dehydrogenase.

The at least third, optionally fourth or fifth copy of the open reading frame (ORF), gene or allele of threonine

20 production in question can be integrated at a site. The following open reading frames, genes or nucleotide sequences, inter alia, can be used for this: ccpA1, ccpA2, citA, citB, citE, ddh, gluA, gluB, gluC, gluD, glyA, ilvA, ilvBN, ilvC, ilvD, luxR, luxS, lysR1, lysR2, lysR3, mdh,

25 menE, metA, metD, pck, poxB, sigB and zwa2. These are summarized and explained in Table 7. Intergenic regions in the chromosome, that is to say nucleotide sequences without a coding function, can furthermore be used. Finally, prophages or defective phages contained in the chromosome

30 can be used for this.

Name	Description of the coded enzyme or	Reference	Access
Ivanie	protein	Keretence	Number
	procern		Mounter
accBC	Acyl-CoA Carboxylase	Jäger et al.	บ35023
40020	EC 6.3.4.14	Archives of	055025
	(acyl-CoA carboxylase)	Microbiology	
	(degr con carboxyrase)	(1996) 166:76-	ì
		82	AX123524
		EP1108790;	AX066441
		WO0100805	AX000441
accDA	Acetyl-CoA Carboxylase	EP1055725	-
4000	EC 6.4.1.2	EP1108790	AX121013
	(acetyl-CoA carboxylase)	WO0100805	AX066443
cstA	Carbon Starvation Protein A	EP1108790	AX120811
CSCA	(carbon starvation protein A)	WO0100804	AX120811 AX066109
cysD	Sulfate Adenylyltransferase	· · · · · · · · · · · · · · · · · · ·	
CASD	sub-unit II	EP1108790	AX123177
	EC 2.7.7.4		
	(sulfate adenylyltransferase small		
İ	chain)		
cysE	Serine Acetyltransferase	EP1108790	AX122902
Cyse	EC 2.3.1.30	W00100843	AX063961
j	(serine acetyltransferase)	WOOT00943	AV003301
сузн	3'-Phosphoadenyl Sulfate Reductase	EP1108790	AX123178
Cybii	EC 1.8.99.4	WO0100842	AX066001
	(3'-phosphoadenosine 5'-phosphosulfate	WOO100042	ALUUUUI
	reductase)		
cysK	Cysteine Synthase	EP1108790	AX122901
) -2	EC 4.2.99.8	WO0100843	AX063963
	(cysteine synthase)		
cysN	Sulfate Adenylyltransferase sub-unit I	EP1108790	AX123176
-,	EC 2.7.7.4		AX127152
	(sulfate adenylyltransferase)		
cysQ	Transport protein CysQ	EP1108790	AX127145
-1-2	(transporter cysQ)	WO0100805	AX066423
dps	DNA Protection Protein	EP1108790	AX127153
	(protection during starvation protein)		
eno	Enolase	EP1108790	AX127146
	EC 4.2.1.11	WO0100844	AX064945
	(enolase)	EP1090998	AX136862
	, 	Hermann et al.,	
:		Electrophoresis	
		19:3217-3221	
		(1998)	
fda	Fructose Bisphosphate Aldolase	van der Osten	X17313
	EC 4.1.2.13	et al.,	
	(fructose bisphosphate aldolase)	Molecular	
•		Microbiology	
		3:1625-1637	
		(1989)	
gap	Glyceraldehyde 3-Phosphate Dehydrogenase	EP1108790	AX127148
		·	

	EC 1.2.1.12	W00100044	TAVACAGA-
	(glyceraldehyde 3-phosphate	WO0100844	AX064941
	dehydrogenase)	Eikmanns et	X59403
	denydrogenase)	al., Journal of	1
	·	Bacteriology	
ŀ		174:6076-	
<u> </u>		6086 (1992)	
gap2	Glyceraldehyde 3-Phosphate Dehydrogenase	l .	AX127146
l	EC 1.2.1.12	WO0100844	AX064939
	(glyceraldehyde 3-phosphate		
	dehydrogenase 2)		<u> </u>
gdh	Glutamate Dehydrogenase	EP1108790	AX127150
1	EC 1.4.1.4	WO0100844	AX063811
	(glutamate dehydrogenase)	Boermann et	X59404
		al., Molecular	
		Microbiology	
ŀ		6:317-326	
]		(1992)	X72855
· .		Guyonvarch et	
		al, NCBI	
gnd	6-Phosphogluconate Dehydrogenase	EP1108790	AX127147
	EC 1.1.1.44		AX121689
ļ	(6-phosphogluconate dehydrogenase)	WO0100844	AX065125
hom	Homoserine Dehydrogenase	Peoples et al.,	Y00546
	EC 1.1.1.3	Molecular	
	(homoserine dehydrogenase)	Microbiology	
		2:63-72 (1988)	i
hom ^{FBR}	Homoserine Dehydrogenase feedback	Reinscheid et	
1	resistant (fbr)	al., Journal of	
	EC 1.1.1.3	Bacteriology	
	(homoserine dehydrogenase fbr)	173:3228-30	
		(1991)	
lysC	Aspartate Kinase	EP1108790	AX120365
	EC 2.7.2.4	WO0100844	AX063743
	(aspartate kinase)	Kalinowski et	X57226
	·	al., Molecular	
	<u>.</u>	Microbiology	
		5:1197-204	
		(1991)	
lysC ^{FBR}	Aspartate Kinase feedback resistent	see Table 2	
	(fbr)		
·	EC 2.7.2.4		
	(aspartate kinase fbr)		
msiK	Sugar Importer	EP1108790	AX120892
	(multiple sugar import protein)		
opcA	Glucose 6-Phosphate Dehydrogenase	WO0104325	AX076272
l	(subunit of glucose 6-phosphate		
	dehydrogenase)		
oxyR	Transcription Regulator	EP1108790	AX122198
	(transcriptional regulator)		AX127149
ppcFBR	Phosphoenol Pyruvate Carboxylase	EP0723011	
	feedback resistent	WO0100852	
	EC 4.1.1.31		l
i	(phosphoenol pyruvate carboxylase		ļ
	feedback resistant)		
ppc	Phosphoenol Pyruvate Carboxylase	EP1108790	AX127148
	EC 4.1.1.31		AX123554
ł	(phosphoenol pyruvate carboxylase)	O'Reagan et	M25819
·	""E	al., Gene	
1			

		77(2):237-	
		251 (1989)	
pgk	Phosphoglycerate Kinase	EP1108790	AX121838
	EC 2.7.2.3		AX127148
	(phosphoglycerate kinase)	WO0100844	AX064943
		Eikmanns,	X59403
		Journal of	
		Bacteriology	
		174:6076-6086	1
	•	(1992)	İ
pknA	Protein Kinase A	EP1108790	AX120131
	(protein kinase A)		AX120085
pknB	Protein Kinase B	EP1108790	AX120130
	(protein kinase B)		AX120085
pknD	Protein Kinase D	EP1108790	AX127150
_	(protein kinase D)		AX122469
		1	AX122468
pknG	Protein Kinase G	EP1108790	AX127152
-	(protein kinase G)		AX123109
ppsA	Phosphoenol Pyruvate Synthase	EP1108790	AX127144
	EC 2.7.9.2		AX120700
	(phosphoenol pyruvate synthase)	1	AX122469
ptsH	Phosphotransferase System Protein H	EP1108790	AX122210
_	EC 2.7.1.69		AX127149
	(phosphotransferase system component H)	WO0100844	AX069154
ptsI	Phosphotransferase System Enzyme I	EP1108790	AX122206
-	EC 2.7.3.9		AX127149
	(phosphotransferase system enzyme I)		
ptsM	Glucose-specific Phosphotransferase	Lee et al.,	L18874
-	System Enzyme II	FEMS	
	EC 2.7.1.69	Microbiology	1
	(glucose phosphotransferase-system	Letters 119(1-	
	enzyme II)	2):137-145	
		(1994)	
рус	Pyruvate Carboxylase	WO9918228	A97276
	EC 6.4.1.1	Peters-Wendisch	Y09548
	(pyruvate carboxylase)	et al.,	ļ
		Microbiology	
		144:915-927	
		(1998)	<u> </u>
рус	Pyruvate Carboxylase	EP1108790	
P458S	EC 6.4.1.1		1
	(pyruvate carboxylase)		
	amino acid exchange P458S		
sigC	Sigma Factor C	EP1108790	AX120368
	EC 2.7.7.6		AX120085
	(extracytoplasmic function alternative		
	sigma factor C)		
sigD	RNA Polymerase Sigma Factor D	EP1108790	AX120753
	EC 2.7.7.6		AX127144
	(RNA polymerase sigma factor)		
sigE	Sigma Factor E	EP1108790	AX127146
	EC 2.7.7.6		AX121325
	(extracytoplasmic function alternative		
	sigma factor E)		
sigH	Sigma Factor H	EP1108790	AX127145
	EC 2.7.7.6		AX120939
	(sigma factor SigH)		

sigM	Sigma Factor M	EP1108790	AX123500
_	EC 2.7.7.6		AX127153
	(sigma factor SigM)		
tal	Transaldolase	WO0104325	AX076272
	EC 2.2.1.2		
	(transaldolase)		
thrB	Homoserine Kinase	Peoples et al.,	Y00546
	EC 2.7.1.39	Molecular	
	(homoserine kinase)	Microbiology	
		2:63-72 (1988)	
thrC	Threonine Synthase	Han et al.,	X56037
	EC 4.2.99.2	Molecular	
	(threonine synthase)	Microbiology	
		4:1693-1702	1
		(1990)	
thrE	Threonine Exporter	EP1085091	AX137526
	(threonine export carrier)		
thyA	Thymidylate Synthase	EP1108790	AX121026
_	EC 2.1.1.45	i i	AX127145
	(thymidylate synthase)		
tkt	Transketolase	Ikeda et al.,	AB023377
	EC 2.2.1.1	NCBI .	
	(transketolase)		
tpi	Triose Phosphate Isomerase	Eikmanns,	X59403
	EC 5.3.1.1	Journal of	
	(triose phosphate isomerase)	Bacteriology	
		174:6076-6086	
		(1992)	244 22 501
zwa1	Cell Growth Factor 1	EP1111062	AX133781
	(growth factor 1)	774100700	<u> </u>
zwf	Glucose 6-Phosphate 1-Dehydrogenase	EP1108790	
	EC 1.1.1.49		
	(glucose 6-phosphate 1-dehydrogenase)	WO0104325	
zwf	Glucose 6-Phosphate 1-Dehydrogenase	EP1108790	AX127148
A213T	EC 1.1.1.49		AX121827
	(glucose 6-phosphate 1-dehydrogenase)		AX076272
	amino acid exchange A213T		

Table 7 Further gene sites for integration of open reading frames, genes and alleles of threonine production

Gene	Description of the coded	12.5	
		Reference	Access
name	enzyme or protein		Number
			1
ccpA1	Catabolite Control	WO0100844	AX065267
	Protein	EP1108790	AX127147
1	(catabolite control		
L	protein A1)		
ccpA2	Catabolite Control	WO0100844	AX065267
1	Protein	EP1108790	AX121594
	(catabolite control	12220730	WY121234
	protein A2)	}	1
citA	Sensor Kinase CitA	EP1108790	237100151
	(sensor kinase CitA)	EP1108/90	AX120161
citB	Transcription Regulator		
CICB	CitB	EP1108790	AX120163
	(transcription regulator		
<u> </u>	CitB)		
citE	Citrate Lyase	WO0100844	AX065421
ł	EC 4.1.3.6	EP1108790	AX127146
	(citrate lyase)		1
ddh	Diaminopimelate	Ishino et al., Nucleic	S07384
	Dehydrogenase	Acids Research 15: 3917	AX127152
	EC 1.4.1.16	(1987)	
	(diaminopimelate	EP1108790	
	dehydrogenase)		1
gluA	Glutamate Transport ATP-	Kronemeyer et al.,	X81191
	binding Protein	Journal of Bacteriology	MO1131
	(glutamate transport ATP-	177(5):1152-8 (1995)	
	binding protein)	(0,12232 0 (2333)	
gluB	Glutamate-binding Protein	Kronemeyer et al.,	X81191
_	(glutamate-binding	Journal of Bacteriology	V01131
	protein)	177 (5):1152-8 (1995)	Í [
gluC	Glutamate Transport		-
grac	Permease	Kronemeyer et al.,	X81191
	(glutamate transport	Journal of Bacteriology	1
		177(5):1152-8 (1995)	1
-1D	system permease)		
gluD	Glutamate Transport	Kronemeyer et al.,	X81191
	Permease	Journal of Bacteriology	1
	(glutamate transport	177(5):1152-8 (1995)	}
	system permease)		1
glyA	Glycine	WO0100843	AX063861
	Hydroxymethyltransferase		AF327063
	EC 2.1.2.1	ļ	
	(glycine		
	hydroxymethyltransferase)		
ilvA	Threonine Dehydratase	Möckel et al., Journal	A47044
	EC 4.2.1.16	of Bacteriology 174	1
	(threonine dehydratase)	(24), 8065-8072 (1992)	L01508
	committee denyuracase)		AX127150
ilvBN	Acetolactate Synthase	EP1108790	240512
7 T A 1714	_	Keilhauer et al.,	A48648
	EC 4.1.3.18	Journal of Bacteriology	L09232

	(acetolactate synthase)	175(17):5595-603 (1993) EP1108790	AX127147
ilvC	Reductoisomerase	Keilhauer et al.,	C48648
1140	EC 1.1.1.86	Journal of Bacteriology	AX127147
	(ketol-acid	175(17):5595-603 (1993)	
	reductoisomerase)	EP1108790	
ilvD	Dihydroxy-acid	EP1006189	AX136925
TIAD	Dehydratase	211000103	122230323
	EC 4.2.1.9		
	(dihydroxy-acid	.)	
	dehydratase)		
luxR	Transcription Regulator	W00100842	AX065953
IUXK	LuxR	EP1108790	AX123320
	(transcription regulator	LE 1100750	121223320
3	LuxR) Histidine Kinase LuxS	EP1108790	AX123323
luxS	(histidine kinase LuxS)	EF1100/90	AX127153
1		EP1108790	AX064673
lysR1	Transcription Regulator	EP1108/90	AX127144
	LysR1	1	WY12/144
	(transcription regulator		
1 70	LysR1)	EP1108790	AX123312
lysR2	Transcription Activator	EP1108/90	AA123312
	LysR2		1
	(transcription regulator	I	
	LysR2)	1,001,000,40	AX065957
lysR3	Transcription Regulator	W00100842	AX127150
	LysR3	EP1108790	AXIZ/ISO
	(transcription regulator		1
- 31	LysR3)	WO0100844	AX064895
mdh	Malate Dehydrogenase EC 1.1.1.37	MO0100944	MOOTOJ
	(malate dehydrogenase) O-Succinylbenzoic Acid	WO0100843	AX064599
menE		EP1108790	AX064193
	CoA Ligase	EP1100/90	AX127144
	EC 6.2.1.26		INTE / I TT
	(O-succinylbenzoate CoA	1	
	ligase) Homoserine O-	Park et al., Molecular	AX063895
metA		Cells 30;8(3):286-94	AX127145
	Acetyltransferase EC 2.3.1.31	(1998)	AATZ/143
	(homoserine O-	W00100843	
		EP1108790	
- 1.5	acetyltransferase)	EP1108790	AX123327
metD	Transcription Regulator	EP1108790	AX127153
	MetD (transcription regulator		AAIZIIJ
	I .		
1-	MetD) Phosphoenol Pyruvate	W00100844	АJ269506
pck		MO0100944	AX065053
	Carboxykinase		AX003033
	(phosphoenol pyruvate		
	carboxykinase)	WO0100844	AX064959
рохВ	Pyruvate Oxidase	EP1096013	AX137665
	EC 1.2.3.3	ELIUSOUTS	WY73 1002
	(pyruvate oxidase)	77711007700	AV127140
sigB	RNA Polymerase	EP1108790	AX127149
	Transcription Factor		1
	(RNA polymerase		1
	transcription factor) Cell Growth Factor 2	EP1106693	AX113822
zwa2		1 003 3 116 6 11 4	

(growth factor 2) EP1108790 AX127146

The invention accordingly also provides a process for the production of coryneform bacteria which produce L-methionine and/or L-threonine, characterized in that

- 5 a) the nucleotide sequence of a desired ORF, gene or allele of methionine production or threonine production, optionally including the expression and/or regulation signals, is isolated
- b) at least two copies of the nucleotide sequence of the
 ORF, gene or allele of methionine production or
 threonine production are arranged in a row, preferably
 in tandem arrangement
- c) the nucleotide sequence obtained according to b) is incorporated in a vector which does not replicate or replicates to only a limited extent in coryneform bacteria,
 - d) the nucleotide sequence according to b) or c) is transferred into coryneform bacteria, and
- e) coryneform bacteria which have at least two copies of
 the desired ORF, gene or allele of methionine or
 threonine production at the particular desired natural
 site instead of the singular copy of the ORF, gene or
 allele originally present are isolated, no nucleotide
 sequence which is capable of/enables episomal
- replication in microorganisms, no nucleotide sequence which is capable of/enables transposition and no nucleotide sequence which imparts resistance to antibiotics remaining at the particular natural site (locus), and optionally
- 30 f) at least a third copy of the open reading frame (ORF), gene or allele of methionine production or threonine

production in question is introduced at a further gene site, no nucleotide sequence which is capable of/enables episomal replication in microorganisms, no nucleotide sequence which is capable of/enables transposition and no nucleotide sequence which imparts resistance to antibiotics remaining at the further gene site.

The invention also provides coryneform bacteria, in particular of the genus Corynebacterium, which produce L10 valine, characterized in that

- a) instead of the singular copy of an open reading frame (ORF), a gene or allele of valine production naturally present at the particular desired site (locus), these have at least two copies of the said open reading frame (ORF), gene or allele, preferably in tandem arrangement, no nucleotide sequence which is capable of/enables episomal replication in microorganisms, no nucleotide sequence which is capable of/enables transposition and no nucleotide sequence which imparts resistance to antibiotics being present at the particular site, and in that these
- b) optionally have at least a third copy of the open reading frame (ORF), gene or allele of valine production mentioned at a further gene site, no
 nucleotide sequence which is capable of/enables episomal replication in microorganisms, no nucleotide sequence which is capable of/enables transposition and no nucleotide sequence which imparts resistance to antibiotics being present at the further gene site.
- The invention also furthermore provides a process for the preparation of L-valine, which comprises the following steps:

10

- a) fermentation of coryneform bacteria, in particular of the genus Corynebacterium, which
 - i) instead of the singular copy of an open reading frame (ORF), gene or allele of valine production present at the particular desired site (locus), have at least two copies of the open reading frame (ORF), gene or allele in question, preferably in tandem arrangement, no nucleotide sequence which is capable of/enables episomal replication in microorganisms, no nucleotide sequence which is capable of/enables transposition and no nucleotide sequence which imparts resistance to antibiotics being present at the particular site, and
- ii) optionally have at least a third copy of the open
 reading frame (ORF), gene or allele of valine
 production in question at a further gene site, no
 nucleotide sequence which is capable of/enables
 episomal replication in microorganisms, no
 nucleotide sequence which is capable of/enables
 transposition and no nucleotide sequence which
 imparts resistance to antibiotics being present at
 the further gene site,
- under conditions which allow expression of the said open reading frames (ORFs), genes or alleles,
 - b) concentration of the L-valine in the fermentation broth,
 - c) isolation of the L-valine from the fermentation broth, optionally
- 30 d) with constituents from the fermentation broth and/or the biomass to the extent of > (greater than) 0 to 100%.

A "copy of an open reading frame (ORF), gene or allele of valine production" is to be understood as meaning all the, preferably endogenous, open reading frames, genes or alleles of which enhancement/over-expression can have the effect of improving valine production.

These include, inter alia, the following open reading frames, genes or alleles: brnE, brnF, brnEF, cstA, cysD, dps, eno, fda, gap, gap2, gdh, ilvB, ilvN, ilvBN, ilvC, ilvD, ilvE msiK, pgk, ptsH, ptsI, ptsM, sigC, sigD, sigE, sigH, sigM, tpi and zwal. These are summarized and explained in Table 8. These include in particular the acetolactate synthase ilvBN alleles which code for a valine-resistant.

The at least third, optionally fourth or fifth copy of the

open reading frame (ORF), gene or allele of valine
production in question can be integrated at a further site.
The following open reading frames, genes or nucleotide
sequences, inter alia, can be used for this: aecD, ccpA1,
ccpA2, citA, citB, citE, ddh, gluA, gluB, gluC, gluD, glyA,

ilvA, luxR, lysR1, lysR2, lysR3, panB, panC, poxB and zwa2.
These are summarized and explained in Table 9. Intergenic
regions in the chromosome, that is to say nucleotide
sequences without a coding function, can furthermore be
used. Finally, prophages or defective phages contained in

the chromosome can be used for this.

Name	Description of the coded enzyme or protein	Reference	Access Number
brnEF	Export of branched-chain amino	EP1096010	
	(branched chain amino acid export)	Kennerknecht et al., NCBI	AF454053
cstA	Carbon Starvation Protein A	EP1108790	AX120811
<u> </u>	(carbon starvation protein A)	WO0100804	AX066109
dps	DNA Protection Protein (protection during starvation protein)	EP1108790	AX127153
eno	Enolase	EP1108790	AX127146
	EC 4.2.1.11	WO0100844	AX064945
	(enolase)	EP1090998	AX136862
	(3332337)	Hermann et al.,	
		Electrophoresis	
		19:3217-3221	
		(1998)	
fda	Fructose Bisphosphate Aldolase	van der Osten et	X17313
	EC 4.1.2.13	al., Molecular	
	(fructose bisphosphate aldolase)	Microbiology	
		3:1625-1637	ł
	Classical debude 2 Phomphoto	(1989) EP1108790	AX127148
gap	Glyceraldehyde 3-Phosphate	WO0100844	AX12/146 AX064941
!	Dehydrogenase EC 1.2.1.12	Eikmanns et al.,	x59403
	(glyceraldehyde 3-phosphate	Journal of	
	dehydrogenase)	Bacteriology	
	many among among a	174:6076-	
ļ		6086 (1992)	
gap2	Glyceraldehyde 3-Phosphate	EP1108790	AX127146
•	Dehydrogenase	WO0100844	AX064939
İ	EC 1.2.1.12		1
	(glyceraldehyde 3-phosphate		
L 	dehydrogenase 2)	EP1108790	AX127150
gđh	Glutamate Dehydrogenase	WO0100844	AX063811
	(glutamate dehydrogenase)	Boermann et al.,	X59404
1	(910camace denyarogenase)	Molecular	
Ì		Microbiology]
		6:317-326	1
		(1992);	
		Guyonvarch et	X72855
		al., NCBI	
ilvBN	Acetolactate Synthase	Keilhauer et	L09232
	EC 4.1.3.18	al., Journal of	
	(acetolactate synthase)	Bacteriology	
		175(17):5595-603	
		(1993)	72107147
		EP1108790	AX127147
ilvC	Isomeroreductase	Keilhauer et	C48648
	EC 1.1.1.86	al., Journal of	AX127147

		D	
,	(acetohydroxy acid	Bacteriology	
	isomeroreductase)	175(17):5595-603	
		(1993)	
		EP1108790	
ilvD	Dihydroxy-acid Dehydratase	EP1006189	AX136925
1	EC 4.2.1.9	•	
	(dihydroxy acid dehydratase)		
ilvE	Transaminase B	EP1108790	AX127150
	EC 2.6.1.42		AX122498
	(transaminase B)		
msiK	Sugar Importer	EP1108790	AX120892
mstr	(multiple sugar import protein)		
	Phosphoglycerate Kinase	EP1108790	AX121838
pgk	EC 2.7.2.3		AX127148
		WO0100844	AX064943
	(phosphoglycerate kinase)	Eikmanns,	X59403
		Journal of	X33403
		Bacteriology	
•		174:6076-6086	
		(1992)	77100010
ptsH	Phosphotransferase System Protein H	EP1108790	AX122210
	EC 2.7.1.69		AX127149
	(phosphotransferase system	WO0100844	AX069154
	component H)		
ptsI	Phosphotransferase System Enzyme I	EP1108790	AX122206
-	EC 2.7.3.9	1	AX127149
	(phosphotransferase system enzyme		
	I)		
ptsM	Glucose-specific Phosphotransferase	Lee et al., FEMS	L18874
P	System Enzyme II	Microbiology	
	EC 2.7.1.69	Letters 119(1-	1
	(glucose phosphotransferase-system	2):137-145	
	enzyme II)	(1994)	
sigC	Sigma Factor C	EP1108790	AX120368
brac	EC 2.7.7.6		AX120085
	(extracytoplasmic function		
	alternative sigma factor C)		
	RNA Polymerase Sigma Factor D	EP1108790	AX120753
sigD	EC 2.7.7.6	1	AX127144
	(RNA polymerase sigma factor)		
		EP1108790	AX127146
sigE	Sigma Factor E		AX121325
	EC 2.7.7.6		
	(extracytoplasmic function		
	alternative sigma factor E)	EP1108790	AX127145
sigH	Sigma Factor H	FATTOOLAG	AX127145 AX120939
	EC 2.7.7.6		AVI70333
	(sigma factor SigH)	1 1 0 0 7 0 0	27122500
sigM	Sigma Factor M	EP1108790	AX123500
	EC 2.7.7.6		AX127153
	(sigma factor SigM)		
tpi	Triose Phosphate Isomerase	Eikmanns,	x59403
-	EC 5.3.1.1	Journal of	1
	(triose phosphate isomerase)	Bacteriology	1
	,	174:6076-6086	1
		(1992)	
zwa1	Cell Growth Factor 1	EP1111062	AX133781
PMCT	(growth factor 1)		

 $\frac{\text{Table 9}}{\text{Further gene sites for integration of open reading frames,}}$ genes and alleles of value production

Gene	Description of the coded	Reference	Access
name	enzyme or protein		Number
11anc	Circle of Stoppin	·	
aecD	beta C-S Lyase	Rossol et al., Journal	M89931
	EC 2.6.1.1	of Bacteriology	
	(beta C-S lyase)	174(9):2968-77 (1992)	1
ccpA1	Catabolite Control	WO0100844	AX065267
1	Protein	EP1108790	AX127147
	(catabolite control		
	protein A1)		
ссрА2	Catabolite Control	WO0100844	AX065267
	Protein	EP1108790	AX121594
	(catabolite control		
	protein A2)		
citA	Sensor Kinase CitA	EP1108790	AX120161
	(sensor kinase CitA)		
citB	Transcription Regulator	EP1108790	AX120163
0202	CitB		
	(transcription regulator		1
İ	CitB)		
citE	Citrate Lyase	WO0100844	AX065421
	EC 4.1.3.6	EP1108790	AX127146
	(citrate lyase)		
ddh	Diaminopimelate	Ishino et al., Nucleic	S07384
	Dehydrogenase	Acids Research 15: 3917	AX127152
	EC 1.4.1.16	(1987)]
	(diaminopimelate	EP1108790]
	dehydrogenase)		
gluA	Glutamate Transport ATP-	Kronemeyer et al.,	X81191
	binding Protein	Journal of Bacteriology	}
	(glutamate transport ATP-	177(5):1152-8 (1995)	
	binding protein)		
gluB	Glutamate-binding Protein	Kronemeyer et al.,	X81191
	(glutamate-binding	Journal of Bacteriology	
	protein)	177(5):1152-8 (1995)	
gluC	Glutamate Transport	Kronemeyer et al.,	X81191
	Permease	Journal of Bacteriology	1
	(glutamate transport	177(5):1152-8 (1995)	
	system permease)		
gluD	Glutamate Transport	Kronemeyer et al.,	X81191
	Permease	Journal of Bacteriology	
	(glutamate transport	177(5):1152-8 (1995)	
	system permease)		
glyA	Glycine	WO0100843	AX063861
	Hydroxymethyltransferase		AF327063
	EC 2.1.2.1		
-	(glycine		1
L.,	hydroxymethyltransferase)		1 2004
ilvA	Threonine Dehydratase	Möckel et al., Journal	A47044
	EC 4.2.1.16	of Bacteriology 174	L01508
	(threonine dehydratase)	(24), 8065-8072 (1992)	AX127150

		EP1108790	
luxR	Transcription Regulator LuxR (transcription regulator LuxR)	WO0100842 EP1108790	AX065953 AX123320
lysR1	Transcription Regulator LysR1 (transcription regulator LysR1)	EP1108790	AX064673 AX127144
lysR2	Transcription Activator LysR2 (transcription regulator LysR2)	EP1108790	AX123312
lysR3	Transcription Regulator LysR3 (transcription regulator LysR3)	W00100842 EP1108790	AX065957 AX127150
panB	Ketopantoate Hydroxymethyltransferase EC 2. 1. 2. 11 (ketopantoate hydroxymethyltransferase)	US6177264	X96580
panC	Pantothenate Synthetase EC 6.3.2.1 (pantothenate synthetase)	US6177264	X96580
рохВ	Pyruvate Oxidase EC 1.2.3.3 (pyruvate oxidase)	WO0100844 EP1096013	AX064959 AX137665
zwa2	Cell Growth Factor 2 (growth factor 2)	EP1106693 EP1108790	AX113822 AX127146

The invention accordingly also provides a process for the production of coryneform bacteria which produce L-valine, characterized in that

- 5 a) the nucleotide sequence of a desired ORF, gene or allele of valine production, optionally including the expression and/or regulation signals, is isolated
- b) at least two copies of the nucleotide sequence of the ORF, gene or allele of valine production are arranged
 in a row, preferably in tandem arrangement
 - c) the nucleotide sequence obtained according to b) is incorporated in a vector which does not replicate or replicates to only a limited extent in coryneform bacteria,

- d) the nucleotide sequence according to b) or c) is transferred into coryneform bacteria, and
- e) coryneform bacteria which have at least two copies of the desired open ORF, gene or allele of valine production at the particular desired natural site instead of the singular copy of the ORF, gene or allele originally present are isolated, no nucleotide sequence which is capable of/enables episomal replication in microorganisms, no nucleotide sequence which is capable of/enables transposition and no nucleotide sequence which imparts resistance to antibiotics remaining at the particular natural site (locus), and optionally
- f) at least a third copy of the open reading frame (ORF), gene or allele of valine production in question is introduced at a further gene site, no nucleotide sequence which is capable of/enables episomal replication in microorganisms, no nucleotide sequence which is capable of/enables transposition and no nucleotide sequence which imparts resistance to antibiotics remaining at the further gene site.

During work on the present invention, it was possible to incorporate two copies, arranged in tandem, of an lysC^{FBR} allele at the lysC gene site of Corynebacterium glutamicum such that no nucleotide sequence which is capable

25 of/enables episomal replication in microorganisms, no nucleotide sequence which is capable of/enables transposition and no nucleotide sequence which imparts resistance to antibiotics remain at the lysC gene site.

Such a strain is, for example, the strain

30 DSM139921ysC^{FBR}::lysC^{FBR}.

The plasmid pK18mobsacB2xlysCSma2/1, with the aid of which two copies of an lysC^{FBR} allele can be incorporated into the lysC gene site of Corynebacterium glutamicum, is shown in Figure 1.

During work on the present invention, it was furthermore possible to incorporate two copies, arranged in tandem, of the lysE gene at the lysE gene site of Corynebacterium glutamicum such that no nucleotide sequence which is capable of/enables episomal replication in microorganisms, no nucleotide sequence which is capable of/enables transposition and no nucleotide sequence which imparts resistance to antibiotics remained at the lysE gene site. Such a strain is, for example, the strain

10 ATCC21513_17lysE::lysE.

A plasmid with the aid of which two copies of an lysE gene can be incorporated into the lysE gene site of Corynebacterium glutamicum is shown in Figure 2. It carries the name pK18mobsacB2xlysESma1/1.

- During work on the present invention, finally, it was possible to incorporate two copies, arranged in tandem, of the zwal gene at the zwal gene site of Corynebacterium glutamicum such that no nucleotide sequence which is capable of/enables episomal replication in microorganisms, no nucleotide sequence which is capable of/enables transposition and no nucleotide sequence which imparts resistance to antibiotics remained at the zwal gene site. Such a strain is, for example, the strain ATCC21513_17zwal::zwal.
- 25 A plasmid with the aid of which two copies of a zwal gene can be incorporated into the zwal gene site of Corynebacterium glutamicum is shown in Figure 3. It carries the name pK18mobsacBzwalzwal.
 - The coryneform bacteria produced according to the invention can be cultured continuously or discontinuously in the batch process (batch culture) or in the fed batch (feed process) or repeated fed batch process (repetitive feed process) for the purpose of production of chemical compounds. A summary of known culture methods is described

10

25

30

in the textbook by Chmiel (Bioprozesstechnik 1. Einführung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) or in the textbook by Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)).

The culture medium to be used must meet the requirements of the particular strains in a suitable manner. Descriptions of culture media for various microorganisms are contained in the handbook "Manual of Methods for General Bacteriology" of the American Society for Bacteriology (Washington D.C., USA, 1981).

Sugars and carbohydrates, such as e.g. glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose, oils and fats, such as e.g. soya oil, sunflower oil, groundnut oil and coconut fat, fatty acids, such as e.g. palmitic acid, stearic acid and linoleic acid, alcohols, such as e.g. glycerol and ethanol, and organic acids, such as e.g. acetic acid or lactic acid, can be used as the source of carbon. These substances can be used individually or as a mixture.

Organic nitrogen-containing compounds, such as peptones, yeast extract, meat extract, malt extract, corn steep liquor, soya bean flour and urea, or inorganic compounds, such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and ammonium nitrate, can be used as the source of nitrogen. The sources of nitrogen can be used individually or as a mixture.

Phosphoric acid, potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts can be used as the source of phosphorus. The culture medium must furthermore comprise salts of metals, such as e.g. magnesium sulfate or iron sulfate, which are necessary for growth. Finally, essential growth substances, such as amino acids and vitamins, can be

employed in addition to the above-mentioned substances. Suitable precursors can moreover be added to the culture medium. The starting substances mentioned can be added to the culture in the form of a single batch, or can be fed in during the culture in a suitable manner.

Basic compounds, such as sodium hydroxide, potassium hydroxide, ammonia or aqueous ammonia, or acid compounds, such as phosphoric acid or sulfuric acid, can be employed in a suitable manner to control the pH of the culture.

5

25

30

Antifoams, such as e.g. fatty acid polyglycol esters, can be employed to control the development of foam. Suitable substances having a selective action, such as e.g. antibiotics, can be added to the medium to maintain the stability of plasmids. To maintain aerobic conditions,

oxygen or oxygen-containing gas mixtures, such as e.g. air, are introduced into the culture. The temperature of the culture is usually 20°C to 45°C, and preferably 25°C to 40°C. Culturing is continued until a maximum of the desired chemical compound has formed. This target is usually reached within 10 hours to 160 hours.

It has been found that the coryneform bacteria according to the invention, in particular the coryneform bacteria which produce L-lysine, have an unexpectedly high stability. They were stable for at least 10-20, 20-30, 30-40, 40-50, preferably at least 50-60, 60-70, 70-80 and 80-90 generations or cell division cycles.

The following microorganisms have been deposited:

The Corynebacterium glutamicum strain

DSM13992lysC^{FBR}::lysC^{FBR} was deposited in the form of a pure

culture on 5th June 2002 under number DSM15036 at the

Deutsche Sammlung für Mikroorganismen und Zellkulturen

(DSMZ, Braunschweig, Germany) in accordance with the

Budapest Treaty.

The plasmid pK18mobsacB2xlysCSma2/1 was deposited in the form of a pure culture of the strain E. coli DH50mcr/pK18mobsacB2xlysCSma2/1 (= DH5alphamcr/pK18mobsacB2xlysCSma2/1) on 20th April 2001 under number DSM14244 at the Deutsche Sammlung für Mikroorganismen und Zellkulturen (DSMZ, Braunschweig, Germany) in accordance with the Budapest Treaty.

The Corynebacterium glutamicum strain
ATCC21513_171ysE::lysE was deposited in the form of a pure
culture on 5th June 2002 under number DSM15037 at the
Deutsche Sammlung für Mikroorganismen und Zellkulturen
(DSMZ, Braunschweig, Germany) in accordance with the
Budapest Treaty.

The Corynebacterium glutamicum strain

ATCC21513_17zwa1::zwa1 was deposited in the form of a pure culture on 5th June 2002 under number DSM15038 at the Deutsche Sammlung für Mikroorganismen und Zellkulturen (DSMZ, Braunschweig, Germany) in accordance with the Budapest Treaty.

20 Example 1

Generation of a tandem duplication of the lysC^{FBR} allele lysC T311I in the chromosome of Corynebacterium glutamicum

- 1.1. Construction of the tandem vector pK18mobsacB2xlysCSma2/1
- 25 From the Corynebacterium glutamicum strain DSM13994, chromosomal DNA is isolated by the conventional methods (Eikmanns et al., Microbiology 140: 1817 1828 (1994)).

The strain DSM13994 was produced by multiple, non-directed mutagenesis, selection and mutant selection from C.

30 glutamicum ATCC13032. The strain is resistant to the lysine analogue S-(2-aminoethyl)-L-cysteine and has a feed back-resistant aspartate kinase which is insensitive to

WO 03/014330 PCT/EP02/08465 57

inhibition by a mixture of lysine and threonine (in each case 25 mM). The nucleotide sequence of the lysCFBR allele is shown as SEQ ID NO:3. It is also called lysC T311I in the following. The amino acid sequence of the aspartate kinase protein coded is shown as SEQ ID NO:4. A pure culture of this strain was deposited on 16th January 2001 at the Deutsche Sammlung für Mikroorganismen und Zellkulturen (DSMZ, Braunschweig, Germany) in accordance with the Budapest Treaty.

With the aid of the polymerase chain reaction, a DNA section which carries the lysC gene or allele is amplified. On the basis of the sequence of the lysC gene known for C. glutamicum (Kalinowski et al., Molecular Microbiology, 5 (5), 1197 - 1204(1991); Accession Number X57226), the following primer oligonucleotides were chosen for the PCR: 15

lysC1beg (SEQ ID No: 15):

5 TA (G GAT CC) T CCG GTG TCT GAC CAC GGT G 3

lysC2end: (SEQ ID NO: 16):

5 AC (G GAT CC) G CTG GGA AAT TGC GCT CTT CC 3

The primers shown are synthesized by MWG Biotech and the 20. PCR reaction is carried out by the standard PCR method of Innis et al. (PCR Protocols. A Guide to Methods and Applications, 1990, Academic Press). The primers allow amplification of a DNA section of approx. 1.7 kb in length, which carries the lysC gene or allele. The primers moreover 25 contain the sequence for a cleavage site of the restriction endonuclease BamHI, which is marked by parentheses in the nucleotide sequence shown above.

The amplified DNA fragment of approx. 1.7 kb in length 30 which carries the lysC FBR allele lysC T311I of the strain DSM13994 is identified by electrophoresis in a 0.8% agarose gel, isolated from the gel and purified by conventional methods (QIAquick Gel Extraction Kit, Qiagen, Hilden).

protein is shown in SEQ ID NO:4.

5

25

30

Ligation of the fragment is then carried out by means of the Topo TA Cloning Kit (Invitrogen, Leek, The Netherlands, Cat. Number K4600-01) in the vector pCRII-TOPO. The ligation batch is transformed in the E. coli strain TOP10 (Invitrogen, Leek, The Netherlands). Selection of plasmid-carrying cells is made by plating out the transformation batch on kanamycin (50 mg/l)-containing LB agar with X-Gal (5-bromo-4-chloro-3-indolyl β -D-galactopyranoside, 64 mg/l).

The plasmid obtained is checked by means of restriction cleavage, after isolation of the DNA, and identified in agarose gel. The resulting plasmid is called pCRIITOPOlysC.

The nucleotide sequence of the amplified DNA fragment or PCR product is determined by the dideoxy chain termination method of Sanger et al. (Proceedings of the National Academy of Sciences USA, 74:5463-5467 (1977)) using the "ABI Prism 377" sequencing apparatus of PE Applied Biosystems (Weiterstadt, Germany). The sequence of the coding region of the PCR product is shown in SEQ ID No:3.

The amino acid sequence of the associated aspartate kinase

The base thymine is found at position 932 of the nucleotide sequence of the coding region of the lysC^{FBR} allele of strain DSM13994 (SEQ ID NO:3). The base cytosine is found at the corresponding position of the wild-type gene (SEQ ID NO:1).

The amino acid isoleucine is found at position 311 of the amino acid sequence of the aspartate kinase protein of strain DSM13994 (SEQ ID No:4). The amino acid threonine is found at the corresponding position of the wild-type protein (SEQ ID No:2).

The lysC allele, which contains the base thymine at position 932 of the coding region and accordingly codes for

25

an aspartate kinase protein which contains the amino acid isoleucine at position 311 of the amino acid sequence, is called the lysCFBR allele lysC T311I in the following.

The plasmid pCRIITOPOlysC, which carries the lysCFBR allele lysC T311I, was deposited in the form of a pure culture of the strain E. coli TOP 10/pCRIITOPOlysC under number DSM14242 on 20th April 2001 at the Deutsche Sammlung für Mikroorganismen und Zellkulturen (DSMZ = German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany) in accordance with the Budapest Treaty.

Plasmid DNA was isolated from the strain DSM14242, which carries the plasmid pCRIITOPOlysC, and cleaved with the restriction enzyme BamHI (Amersham-Pharmacia, Freiburg, Germany), after separation in an agarose gel (0.8%) the lysCFBR-containing DNA fragment approx. 1.7 kb long is isolated from the agarose gel with the aid of the QIAquick Gel Extraction Kit (Qiagen, Hilden, Germany), and the overhanging ends are completed with Klenow polymerase (Boehringer Mannheim) and employed for ligation with the mobilizable cloning vector pK18mobsacB described by Schäfer 20 et al., Gene, 14, 69-73 (1994). This is cleaved beforehand with the restriction enzyme SmaI and dephosphorylated with alkaline phosphatase (Alkaline Phosphatase, Boehringer Mannheim), mixed with the $lysC^{FBR}$ -containing fragment of approx. 1.7 kb and the mixture is treated with T4 DNA Ligase (Amersham-Pharmacia, Freiburg, Germany).

The E. coli strain DH5 α (Grant et al.; Proceedings of the National Academy of Sciences USA, 87 (1990) 4645-4649) is then transformed with the ligation batch (Hanahan, In. DNA Cloning. A Practical Approach. Vol. 1, ILR-Press, Cold 30 Spring Harbor, New York, 1989). Selection of plasmidcarrying cells is made by plating out the transformation batch on LB agar (Sambrook et al., Molecular Cloning: A Laboratory Manual. 2nd Ed., Cold Spring Harbor, New York, 1989), which was supplemented with 25 mg/l kanamycin. 35

Plasmid DNA is isolated from a transformant with the aid of the QIAprep Spin Miniprep Kit from Qiagen and checked by restriction cleavage with the enzyme HindIII and subsequent agarose gel electrophoresis. The plasmid is called pK18mobsacB1xlysCSma2.

In a second step, the plasmid pCRII-TOPOlysC is in turn cleaved with the restriction enzyme BamHI (Amersham-Pharmacia, Freiburg, Germany), after separation in an agarose gel (0.8%) the lysCFBR-containing fragment of 10 approx. 1.7 kb was isolated from the agarose gel with the aid of the QIAquick Gel Extraction Kit (Qiagen, Hilden, Germany) and employed for ligation with the vector pK18mobsacB1xlysCSma2 described in this Example. This is cleaved beforehand with the restriction enzyme BamHI and 15 dephosphorylated with alkaline phosphatase (Alkaline Phosphatase, Boehringer Mannheim), mixed with the lysCFBRcontaining fragment of approx. 1.7 kb and the mixture is treated with T4 DNA Ligase (Amersham-Pharmacia, Freiburg, Germany).

The E. coli strain DH5α (Grant et al.; Proceedings of the National Academy of Sciences USA, 87 (1990) 4645-4649) is then transformed with the ligation batch (Hanahan, In. DNA Cloning. A Practical Approach. Vol. 1, ILR-Press, Cold Spring Harbor, New York, 1989). Selection of plasmid-carrying cells is made by plating out the transformation batch on LB agar (Sambrook et al., Molecular Cloning: A Laboratory Manual. 2nd Ed., Cold Spring Harbor, New York, 1989), which was supplemented with 25 mg/l kanamycin.

Plasmid DNA is isolated from a transformant with the aid of the QIAprep Spin Miniprep Kit from Qiagen and checked by restriction cleavage with the enzyme HindIII and subsequent agarose gel electrophoresis. The plasmid is called pK18mobsacB2xlysCSma2/1. A map of the plasmid is shown in Figure 1.

The plasmid pK18mobsacB2xlysCSma2/1 was deposited in the form of a pure culture of the strain E. coli DH5omcr/pK18mobsacB2xlysCSma2/1 (= DH5alphamcr/pK18mobsacB2xlysCSma2/1) on 20th April 2001 under number DSM14244 at the Deutsche Sammlung für Mikroorganismen und Zellkulturen (DSMZ, Braunschweig, Germany) in accordance with the Budapest Treaty.

- 1.2. Generation of a tandem duplication of the lysC^{FBR} allele lysC T311I in C. glutamicum strain DSM13992
- 10 The vector pK18mobsacB2xlysCSma2/1 mentioned in Example 1.1 is transferred by a modified protocol of Schäfer et al. (1990 Journal of Microbiology 172: 1663-1666) into the C. glutamicum strain DSM13992.

The Corynebacterium glutamicum strain DSM13992 was produced

by multiple, non-directed mutagenesis, selection and mutant
selection from C. glutamicum ATCC13032. The strain is
resistant to the antibiotic streptomycin and phenotypically
resistant to the lysine analogue S-(2-aminoethyl)-Lcysteine. However, the strain has a wild-type aspartate

kinase (see SEQ ID NO:1 and 2), which is sensitive to
inhibition by a mixture of lysine and threonine (in each
case 25 mM). A pure culture of this strain was deposited on
16th January 2001 at the Deutsche Sammlung für
Mikroorganismen und Zellkulturen (DSMZ, Braunschweig,

Germany) in accordance with the Budapest Treaty.

The vector pK18mobsacB2xlysCSma2/1 cannot replicate independently in DSM13992 and is retained in the cell only if it has integrated into the chromosome.

Selection of clones with integrated pK18mobsacB2xlysCSma2/1 is carried out by plating out the conjugation batch on LB agar (Sambrook et al., Molecular Cloning: A Laboratory Manual. 2nd Ed., Cold Spring Harbor, New York, 1989), which was supplemented with 15 mg/l kanamycin and 50 mg/l

nalidixic acid. Clones which have grown on are plated out on LB agar plates with 25 mg/l kanamycin and incubated for 16 hours at 33°C. To achieve excision of the plasmid with only one copy of the lysC gene, the clones are cultured on LB agar with 10% sucrose, after incubation for 16 hours in LB liquid medium. The plasmid pK18mobsacB contains a copy of the sacB gene, which converts sucrose into levan sucrase, which is toxic to C. glutamicum.

Only those clones in which the pK18mobsacB2xlysCSma2/1

integrated has been excised again therefore grow on LB agar with sucrose. Approximately 40 to 50 colonies are tested for the phenotype "growth in the presence of sucrose" and "non-growth in the presence of kanamycin". During the excision, either two copies of the lysC gene or only one can be excised together with the plasmid.

To demonstrate that two copies of lysC have remained in the chromosome, approximately 20 colonies which show the phenotype "growth in the presence of sucrose" and "nongrowth in the presence of kanamycin" are investigated with the aid of the polymerase chain reaction by the standard PCR method of Innis et al. (PCR Protocols. A Guide to Methods and Applications, 1990, Academic Press). A DNA fragment which carries the lysC gene and surrounding regions is amplified here from the chromosomal DNA of the colonies. The following primer oligonucleotides are chosen for the PCR.

lysCK1 (SEQ ID NO: 5): 5 TCG GTG TCA TCA GAG CAT TG 3

lysCK2 (SEQ ID NO: 6):

30 5' TCG GTT GCC TGA GTA ATG TC 3'

The primers allow amplification of a DNA fragment approx.

1.9 kb in size in control clones with the original lysC locus. In clones with a second copy of the lysC gene in the

chromosome at the lysC locus, DNA fragments with a size of approx. 3.6 kb are amplified.

The amplified DNA fragments are identified by means of electrophoresis in a 0.8% agarose gel. On the basis of the amplified fragment length, a distinction was made between clones with one chromosomal lysC gene copy and clones with two chromosomal lysC gene copies.

10 clones with two complete copies of the lysC gene on the chromosome are investigated with the aid of the LightCycler of Roche Diagnostics (Mannheim, Germany) in order to demonstrate whether the two copies are lysC^{FBR} alleles with the mutation lysC T311I or whether the original wild-type lysC is present alongside an lysC^{FBR} allele lysC T311I. The LightCycler is a combined apparatus of Thermocycler and flourimeter.

A DNA section approx. 500 bp in length which contains the mutation site is amplified in the first phase by means of a PCR (Innis et al., PCR Protocols. A Guide to Methods and Applications, 1990, Academic Press) using the following primer oligonucleotides.

LC-lysC1-fbr (SEQ ID No: 7):
5 aaccgttctgggtatttccg 3

LC-lysC2-fbr (SEQ ID No: 8):
5 tccatgaactctgcggtaac 3

Chemistry, 43:2262-2267 (1997)).

In the second phase, with two additional oligonucleotides of different lengths and marked with different fluorescent dyestuffs (Lightcycler(LC)-Red640 and fluorescein), which hybridize in the region of the mutation site, the presence of the mutation is detected with the aid of the

"Fluorescence Resonance Energy Transfer" method (FRET) using a melting curve analysis (Lay et al., Clinical

lysC311-C (SEQ ID No: 9):

5 LC-Red640 - gcaggtgaagatgatgtcggt - (P) 3

lysC311-A (SEQ ID No: 10):

- 5` tcaagatctccatcgcgcggcggccgtcggaacga fluorescein 3`
- 5 The primers shown are synthesized for the PCR by MWG Biotech and oligonucleotides shown for the hybridization are synthesized by TIB MOLBIOL (Berlin, Germany).

A clone which contains the base thymine at position 932 of the coding regions of the two lysC copies and thus has two lysC^{FBR} alleles lysC T311I was identified in this manner.

The strain was called C. glutamicum DSM13992lysCFBR::lysCFBR.

The strain was deposited as C. glutamicum DSM13992lysC^{FBR}::lysC^{FBR} on 5th June 2002 under number DSM15036 at the Deutsche Sammlung für Mikroorganismen und Zellkulturen (DSMZ, Braunschweig, Germany) in accordance with the Budapest Treaty.

Example 2

10

15

Generation of a tandem duplication of the lysE gene in the chromosome of Corynebacterium glutamicum

20 2.1. Construction of the tandem vector pK18mobsacB2xlysESma1/1

Plasmid DNA was isolated from the Escherichia coli strain DSM12871 (EP-A-1067193), which carries the plasmid pEC7lysE.

25 The plasmid contains the lysE gene which codes for lysine export. A pure culture of this strain was deposited on 10th June 1999 at the Deutsche Sammlung für Mikroorganismen und Zellkulturen (DSMZ, Braunschweig, Germany) in accordance with the Budapest Treaty.

The plasmid pEC71lysE is cleaved with the restriction enzyme BamHI (Amersham-Pharmacia, Freiburg, Germany), after separation in an agarose gel (0.8%) the lysE fragment of approx. 1.1 kb is isolated from the agarose gel with the aid of the QIAquick Gel Extraction Kit (Qiagen, Hilden, Germany), and the overhanging ends are completed with Klenow polymerase (Boehringer Mannheim) and employed for ligation with the mobilizable cloning vector pK18mobsacB described by Schäfer et al., Gene, 14, 69-73 (1994). This is cleaved beforehand with the restriction enzyme SmaI and dephosphorylated with alkaline phosphatase (Alkaline Phosphatase, Boehringer Mannheim), mixed with the lysE fragment of approx. 1.1 kb and the mixture is treated with T4 DNA Ligase (Amersham-Pharmacia, Freiburg, Germany).

The E. coli strain DH5α (Grant et al.; Proceedings of the National Academy of Sciences USA, 87 (1990) 4645-4649) is then transformed with the ligation batch (Hanahan, In. DNA Cloning. A Practical Approach. Vol. 1, ILR-Press, Cold Spring Harbor, New York, 1989). Selection of plasmid-carrying cells is made by plating out the transformation batch on LB agar (Sambrook et al., Molecular Cloning: A Laboratory Manual. 2nd Ed., Cold Spring Harbor, New York, 1989), which was supplemented with 25 mg/l kanamycin.

Plasmid DNA is isolated from a transformant with the aid of the QIAprep Spin Miniprep Kit from Qiagen and checked by restriction cleavage with the enzymes BamHI and EcoRI and subsequent agarose gel electrophoresis. The plasmid is called pK18mobsacBlxlysESma1.

In a second step, the plasmid pEC7lysE is in turn cleaved

30 with the restriction enzyme BamHI (Amersham-Pharmacia,
Freiburg, Germany), after separation in an agarose gel

(0.8%) the lysE fragment of approx. 1.1 kb was isolated
from the agarose gel with the aid of the QIAquick Gel
Extraction Kit (Qiagen, Hilden, Germany) and employed for

1 ligation with the vector pK18mobsacB1xlysESma1 described in

30

this Example. This is cleaved beforehand with the restriction enzyme BamHI and dephosphorylated with alkaline phosphatase (Alkaline Phosphatase, Boehringer Mannheim), mixed with the lysE fragment of approx. 1.1 kb and the mixture is treated with T4 DNA Ligase (Amersham-Pharmacia, Freiburg, Germany).

The E. coli strain DH5α (Grant et al.; Proceedings of the National Academy of Sciences USA, 87 (1990) 4645-4649) is then transformed with the ligation batch (Hanahan, In. DNA Cloning. A Practical Approach. Vol. 1, ILR-Press, Cold Spring Harbor, New York, 1989). Selection of plasmid-carrying cells is made by plating out the transformation batch on LB agar (Sambrook et al., Molecular Cloning: A Laboratory Manual. 2nd Ed., Cold Spring Harbor, New York, 1989), which was supplemented with 25 mg/l kanamycin.

Plasmid DNA is isolated from a transformant with the aid of the QIAprep Spin Miniprep Kit from Qiagen and checked by restriction cleavage with the enzymes EcoRI and SalI or ScaI and subsequent agarose gel electrophoresis. The plasmid is called pK18mobsacB2xlysESma1/1. A map of the plasmid is shown in Figure 2.

2.2. Generation of a tandem duplication of the lysE gene in C. glutamicum strain ATCC21513_17

The vector pK18mobsacB2xlysESma1/1 mentioned in Example 2.1 is transferred by a modified protocol of Schäfer et al. (1990 Journal of Microbiology 172: 1663-1666) into the C. glutamicum strain ATCC21513_17.

The Corynebacterium glutamicum strain ATCC21513_17 was produced by multiple, non-directed mutagenesis, selection and mutant selection from C. glutamicum ATCC21513. The strain is resistant to the lysine analogue S-(2-aminoethyl)-L-cysteine and both leucine- and homoserine-prototrophic.

The vector cannot replicate independently in ATCC21513_17 and is retained in the cell only if it has integrated into the chromosome.

Selection of clones with integrated pK18mobsacB2xlysESma1/1

is carried out by plating out the conjugation batch on LB
agar (Sambrook et al., Molecular Cloning: A Laboratory
Manual. 2nd Ed., Cold Spring Harbor, New York, 1989), which
was supplemented with 15 mg/l kanamycin and 50 mg/l
nalidixic acid. Clones which have grown on are plated out
on LB agar plates with 25 mg/l kanamycin and incubated for
16 hours at 33°C. To achieve excision of the plasmid with
only one copy of the lysE gene, the clones are cultured on
LB agar with 10% sucrose, after incubation for 16 hours in
LB liquid medium. The plasmid pK18mobsacB contains a copy
of the sacB gene, which converts sucrose into levan
sucrase, which is toxic to C. glutamicum.

Only those clones in which the pK18mobsacB2xlysESma1/1 integrated has been excised again therefore grow on LB agar with sucrose. Approximately 40 to 50 colonies are tested for the phenotype "growth in the presence of sucrose" and "non-growth in the presence of kanamycin". During the excision, either two copies of the lysE gene or only one can be excised together with the plasmid.

To demonstrate that two copies of lysE have remained in the

25 chromosome, approximately 20 colonies which show the
phenotype "growth in the presence of sucrose" and "nongrowth in the presence of kanamycin" are investigated with
the aid of the polymerase chain reaction by the standard
PCR method of Innis et al. (PCR Protocols. A Guide to

30 Methods and Applications, 1990, Academic Press). A DNA
fragment which carries the lysE gene and surrounding
regions is amplified here from the chromosomal DNA of the
colonies. The following primer oligonucleotides are chosen
for the PCR.

WO 03/014330 68

lysEK-1 (SEQ ID NO: 11):

5 TGC TTG CAC AAG GAC TTC AC 3

lysek-2 (SEQ ID NO: 12):

5 TAT GGT CCG CAA GCT CAA TG 3

- The primers allow amplification of a DNA fragment approx. 1.2 kb in size in control clones with the original lysE locus. In clones with a second copy of the lysC gene in the chromosome at the lysE locus, DNA fragments with a size of approx. 2.3 kb are amplified.
- 10 The amplified DNA fragments are identified by means of electrophoresis in a 0.8% agarose gel. On the basis of the amplified fragment length, a distinction was made between clones with one chromosomal lysE gene copy and clones with two chromosomal lysE gene copies. It could thus be
- 15 demonstrated that the strain ATCC21513_17 carries two complete copies of the lysE gene on the chromosome.

The strain was called C. glutamicum ATCC21513_17lysE::lysE.

The strain was deposited as C. glutamicum ATCC21513_17lysE::lysE on 5th June 2002 under number 20 DSM15037 at the Deutsche Sammlung für Mikroorganismen und Zellkulturen (DSMZ, Braunschweig, Germany) in accordance with the Budapest Treaty.

Example 3

Generation of a tandem duplication of the zwal gene in the 25 chromosome of Corynebacterium glutamicum

Construction of the tandem vector pK18mobsacBzwa1zwa1

Plasmid DNA was isolated from the Escherichia coli strain DSM13115 (EP-A-1111062), which carries the plasmid pCR2.1zwa1exp.

The plasmid contains the zwal gene which codes for cell growth factor 1. A pure culture of this strain was deposited on 19th October 1999 at the Deutsche Sammlung für Mikroorganismen und Zellkulturen (DSMZ, Braunschweig, Germany) in accordance with the Budapest Treaty.

The plasmid pCR2.1zwalexp is cleaved with the restriction enzyme EcoRI (Amersham-Pharmacia, Freiburg, Germany), and after separation in an agarose gel (0.8%) the zwal fragment of 1 kb is isolated from the agarose gel with the aid of the QIAquick Gel Extraction Kit (Qiagen, Hilden, Germany) and employed for ligation with the mobilizable cloning vector pK18mobsacB described by Schäfer et al., Gene, 14, 69-73 (1994). This is cleaved beforehand with the restriction enzyme EcoRI and dephosphorylated with alkaline phosphatase (Alkaline Phosphatase, Boehringer Mannheim), mixed with the zwal fragment of 1 kb and the mixture is treated with T4 DNA Ligase (Amersham-Pharmacia, Freiburg, Germany).

The E. coli strain DH5α (Grant et al.; Proceedings of the National Academy of Sciences USA, 87 (1990) 4645-4649) is then transformed with the ligation batch (Hanahan, In. DNA Cloning. A Practical Approach. Vol. 1, ILR-Press, Cold Spring Harbor, New York, 1989). Selection of plasmid-carrying cells is made by plating out the transformation batch on LB agar (Sambrook et al., Molecular Cloning: A Laboratory Manual. 2nd Ed., Cold Spring Harbor, New York, 1989), which was supplemented with 25 mg/l kanamycin.

Plasmid DNA is isolated from a transformant with the aid of the QIAprep Spin Miniprep Kit from Qiagen and checked by restriction cleavage with the enzyme NheI and subsequent agarose gel electrophoresis. Checking of the plasmid showed that two zwal fragments were cloned simultaneously and in the desired orientation in the cloning vector pK18mobsac.

WO 03/014330 PCT/

The plasmid is called pK18mobsacBzwa1zwa1. A map of the plasmid is shown in Figure 3.

- 3.2. Generation of a tandem duplication of the zwa1 gene in C. glutamicum strain ATCC21513_17
- 5 The vector pK18mobsacBzwa1zwa1 mentioned in Example 3.1 is transferred by a modified protocol of Schäfer et al. (1990 Journal of Microbiology 172: 1663-1666) into the C. glutamicum strain ATCC21513_17.
- The Corynebacterium glutamicum strain ATCC21513_17 was

 10 produced by multiple, non-directed mutagenesis, selection
 and mutant selection from C. glutamicum ATCC21513. The
 strain is resistant to the lysine analogue S-(2aminoethyl)-L-cysteine and both leucine- and homoserineprototrophic.
- 15 The vector cannot replicate independently in ATCC21513_17 and is retained in the cell only if it has integrated into the chromosome.
- Selection of clones with integrated pK18mobsacBzwalzwal is carried out by plating out the conjugation batch on LB agar (Sambrook et al., Molecular Cloning: A Laboratory Manual. 2nd Ed., Cold Spring Harbor, New York, 1989), which was supplemented with 15 mg/l kanamycin and 50 mg/l nalidixic acid. Clones which have grown on are plated out on LB agar plates with 25 mg/l kanamycin and incubated for 16 hours at 33°C. To achieve excision of the plasmid with only one copy of the zwal gene, the clones are cultured on LB agar with 10% sucrose, after incubation for 16 hours in LB liquid medium. The plasmid pK18mobsacB contains a copy of the sacB gene, which converts sucrose into levan sucrase, which is toxic to C. glutamicum.

Only those clones in which the pK18mobsacBzwa1zwa1 integrated has been excised again therefore grow on LB agar with sucrose. Approximately 40 to 50 colonies are tested

WO 03/014330 PCT/EP02/08465 71

for the phenotype "growth in the presence of sucrose" and "non-growth in the presence of kanamycin". During the excision, either two copies of the zwal gene or only one can be excised together with the plasmid.

To demonstrate that two copies of zwal have remained in the chromosome, approximately 20 colonies which show the phenotype "growth in the presence of sucrose" and "nongrowth in the presence of kanamycin" are investigated with the aid of the polymerase chain reaction by the standard PCR method of Innis et al. (PCR Protocols. A Guide to 10 Methods and Applications, 1990, Academic Press). A DNA fragment which carries the zwal gene and surrounding regions is amplified here from the chromosomal DNA of the colonies. The following primer oligonucleotides are chosen 15 for the PCR.

zwa1-A2 (SEO ID NO: 13): 5' CAC TTG TCC TCA CCA CTT TC 3'

zwa1-E1 (SEQ ID NO: 14): 5 TTC TAC TGG GCG TAC TTT CG 3

- The primers allow amplification of a DNA fragment approx. 20 1.3 kb in size in control clones with the original zwal locus. In clones with a second copy of the zwal gene in the chromosome at the zwal locus, DNA fragments with a size of approx. 2.3 kb are amplified.
- The amplified DNA fragments are identified by means of 25 electrophoresis in a 0.8% agarose gel. On the basis of the amplified fragment length, a distinction was made between clones with one chromosomal zwa1 gene copy and clones with two chromosomal zwal gene copies. It could thus be demonstrated that the strain ATCC21513_17 carries two 30

complete copies of the zwal gene on the chromosome.

The strain was called C. glutamicum ATCC21513_17zwa1::zwa1. The strain was deposited as C. glutamicum

ATCC21513_17zwa1::zwa1 on 5th June 2002 under number DSM15038 at the Deutsche Sammlung für Mikroorganismen und Zellkulturen (DSMZ, Braunschweig, Germany) in accordance with the Budapest Treaty.

5 Example 4

10

15

20

Preparation of Lysine

The C. glutamicum strains DSM13992lysC^{FBR}::lysC^{FBR},
ATCC21513_17lysE::lysE and ATCC21513_17zwa1::zwa1 obtained
in Examples 1 to 3 are cultured in a nutrient medium
suitable for the production of lysine and the lysine
content in the culture supernatant was determined.

For this, the strains are first incubated on an agar plate for 24 hours at 33°C. Starting from this agar plate culture, a preculture is seeded (10 ml medium in a 100 ml conical flask). The medium MM is used as the medium for the preculture. The preculture is incubated for 24 hours at 33°C at 240 rpm on a shaking machine. A main culture is seeded from this preculture such that the initial OD (660 nm) of the main culture is 0.1 OD. The Medium MM is also used for the main culture.

Medium MM

CSL	5 g/l
MOPS	20 g/l
Glucose (autoclaved separately)	50 g/1
Salts:	
(NH ₄) ₂ SO ₄	25 g/l
KH ₂ PO ₄	0.1 g/1
MgSO ₄ * 7 H ₂ O	1.0 g/l

$CaCl_2 * 2 H_2O$	10 mg/l
FeSO ₄ * 7 H ₂ O	10 mg/l
MnSO ₄ * H ₂ O	5.0 mg/l
Biotin (sterile-filtered)	0.3 mg/l
Thiamine * HCl (sterile-filtered)	0.2 mg/l
CaCO ₃	25 g/l

The CSL (corn steep liquor), MOPS (morpholinopropanesulfonic acid) and the salt solution are brought to pH 7 with aqueous ammonia and autoclaved. The sterile substrate and vitamin solutions, as well as the CaCO₃ autoclaved in the dry state, are then added.

Culturing is carried out in a 10 ml volume in a 100 ml conical flask with baffles. Culturing is carried out at 33°C and 80% atmospheric humidity.

After 48 hours, the OD is determined at a measurement
wavelength of 660 nm with a Biomek 1000 (Beckmann
Instruments GmbH, Munich). The amount of lysine formed is
determined with an amino acid analyzer from EppendorfBioTronik (Hamburg, Germany) by ion exchange chromatography
and post-column derivation with ninhydrin detection.

15 The result of the experiment is shown in Table 10.

Table 10

Strain	OD (660 nm)	Lysine HCl g/l					
DSM13992	12.8	18.9					
DSM13992lysC ^{FBR} ::lysC ^{FBR}	12.0	21.6					
ATCC21513_17	10.4	14.0					
ATCC21513_17lysE::lysE	10.0	14.3					
ATCC21513_17zwa1::zwa1	9.9	14.6					

Brief Description of the Figures:

The base pair numbers stated are approximate values

5 obtained in the context of reproducibility of measurements.

Figure 1: Map of the plasmid pK18mobsacB2xlysCSma2/1.

The abbreviations and designations used have the following meaning:

KmR:

Kanamycin resistance gene

HindIII:

Cleavage site of the restriction enzyme

HindIII

BamHI:

Cleavage site of the restriction enzyme

BamHI

lysC:

lysCFBR allele lysC T311I

sacB:

sacB gene

RP4mob:

mob region with the replication origin for

the transfer (oriT)

oriV:

Replication origin V

Figure 2: Map of the plasmid pK18mobsacB2xlysESma1/1.

The abbreviations and designations used have the following meaning:

KanR:

Kanamycin resistance gene

SalI:

Cleavage site of the restriction enzyme SalI

BamHI:

Cleavage site of the restriction enzyme

BamHI

EcoRI:

Cleavage site of the restriction enzyme

EcoRI

ScaI:

Cleavage site of the restriction enzyme ScaI

lysE:

lysE gene

sacB:

sacB gene

RP4mob:

mob region with the replication origin for

the transfer (oriT)

oriV:

Replication origin V

Figure 3: Map of the plasmid pK18mobsacBzwa1zwa1.

5 The abbreviations and designations used have the following meaning:

KanR:

Kanamycin resistance gene

EcoRI:

Cleavage site of the restriction enzyme.

EcoRI

NheI:

Cleavage site of the restriction enzyme NheI

WO 03/014330 PCT/EP02/08465

zwa1: zwa1 gene

sacB: sacB gene

RP4mob: mob region with the replication origin for

the transfer (oriT)

oriV: Replication origin V

BUDAPEST TREATY ON THE INTERNATIONAL RECOGNITION OF THE DEPOSIT OF MICROORGANISMS FOR THE PURPOSES OF PATENT PROCEDURE

INTERNATIONAL FORM

Degussa AG

Kantstr. 2

33790 Halle (Westf.)

RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT issued pursuant to Rule 7.1 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page

											
l identif	L IDENTIFICATION OF THE MICROORGANISM										
	on reference given by the DEPOSITOR: SM13992lysCFBR::lysCFBR	Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY: DSM 15036									
II. SCIENTIFIC DESCRIPTION AND/OR PROPOSED TAXONOMIC DESIGNATION											
The microorganism identified under I. above was accompanied by: (X) a scientific description (X) a proposed taxonomic designation (Mark with a cross where applicable).											
III. RECEIP	T AND ACCEPTANCE										
This Interna (Date of the	tional Depositary Authority accepts the microorganism identified un original deposit).	der I. above, which was received by it on 2002-06-05									
IV. RECEIF	T OF REQUEST FOR CONVERSION	·									
and a reque	The microorganism identified under I above was received by this International Depositary Authority on and a request to convert the original deposit to a deposit under the Budapest Treaty was received by it on for conversion). (date of original deposit) (date of receipt of request										
V. INTERN	ATIONAL DEPOSITARY AUTHORITY										
Name: Address:	DSMZ-DEUTSCHE SAMMLUNG VON MIKROORGANISMEN UND ZELLKULTUREN GmbH Mascheroder Weg 1b D-38124 Braunschweig	Signature(s) of person(s) having the power to represent the International Depositary Authority or of authorized official(s): Date: 2002-06-06									

Where Rule 6.4 (d) applies, such date is the date on which the status of international depositary authority was acquired. Form DSMZ-BP/4 (sole page) 12/2001

INTERNATIONAL FORM

Degussa AG

Kantstr. 2

33790 Halle (Westf.)

VIABILITY STATEMENT issued pursuant to Rule 10.2 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page

I. DEPOSITO	OR	II. IDENTIFICATION OF THE MICROORGANISM								
Name: Address:	Degussa AG Kantstr. 2 33790 Halle (Westf.)	Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY: DSM 15036 Date of the deposit or the transfer!: 2002-06-05								
III. VIABILI	TY STATEMENT									
The viability On that date	of the microorganism identified under II above was tested on 2, the said microorganism was	002-06-05 ² ·								
-	viable no longer viable									
IV. CONDIT	TIONS UNDER WHICH THE VIABILITY TEST HAS BEEN PERF	DRMED¹								
v. intern	ATIONAL DEPOSITARY AUTHORITY									
Name:	Name: DSMZ-DEUTSCHE SAMMLUNG VON MIKROORGANISMEN UND ZELLKULTUREN GmbH Signature(s) of person(s) having the power to represent the International Depositary Authority or of authorized official(s):									
MIKROORGANISMEN UND ZELLKULTUREN GrabH Address: Mascheroder Weg 1b D-38124 Braunschweig Date: 2002-06-06										

Indicate the date of original deposit or, where a new deposit or a transfer has been made, the most recent relevant date (date of the new deposit or date of the transfer).

In the cases referred to in Rule 10.2(a) (ii) and (iii), refer to the most recent viability test.

Mark with a cross the applicable box.

Fill in if the information has been requested and if the results of the test were negative.

BUDAPEST TREAL IT OF THE ENTERNATIONAL RECOGNITION OF THE DEPOSIT OF MICROORGANISMS FOR THE PURPOSES OF PATENT PROCEDURE

INTERNATIONAL FORM

Degussa AG

Kantstr. 2

33790 Halle (Westf.)

VIABILITY STATEMENT issued pursuant to Rule 10.2 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page

l deposito	DR	II. IDENTIFICATION OF THE MICROORGANISM									
Name: Address:	Degussa AG Kantstr. 2 33790 Halle (Westf.)	Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY: DSM 15037 Date of the deposit or the transfer!: 2002-06-05									
IIL VIABILITY STATEMENT											
The viability On that date	The viability of the microorganism identified under II above was tested on 2002-06-05 On that date, the said microorganism was										
	viable P no longer viable										
IV. CONDI	TIONS UNDER WHICH THE VIABILITY TEST HAS BEEN PERF	DRMED ⁴									
v. intern	ATIONAL DEPOSITARY AUTHORITY										
Name: Address:	DSMZ-DEUTSCHE SAMMLUNG VON MIKROORGANISMEN UND ZELLKULTUREN GmbH Mascheroder Weg 1b D-38124 Braunschweig	Signature(s) of person(s) having the power to represent the International Depositary Authority or of authorized official(s): Date: 2002-06-06									

Form DSMZ-BP/9 (sole page) 12/2001

Indicate the date of original deposit or, where a new deposit or a transfer has been made, the most recent relevant date (date of the new deposit or date of the transfer).

In the cases referred to in Rule 10.2(a) (ii) and (iii), refer to the most recent viability test.

Mark with a cross the applicable box.

Fill in if the information has been requested and if the results of the test were negative.

BUDAPEST INTERNATIONAL RECOGNITION OF THE DEPOSIT OF MICROORGANISMS FOR THE PURPOSES OF PATENT PROCEDURE

INTERNATIONAL FORM

Degussa AG

Kantstr. 2

33790 Halle (Westf.)

RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT issued pursuant to Rule 7.1 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page

											
L IDENTIF	TICATION OF THE MICROORGANISM										
	on reference given by the DEPOSITOR: FCC21513_17lysE::lysE	Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY: DSM 15037									
II. SCIENTIFIC DESCRIPTION AND/OR PROPOSED TAXONOMIC DESIGNATION											
The microo	The microorganism identified under L above was accompanied by:										
	(x) a scientific description										
المارية	(X) a proposed taxonomic designation										
(Mark with	a cross where applicable).										
III. RECEIP	T AND ACCEPTANCE										
This Interna (Date of the	ational Depositary Authority accepts the microorganism identified un original deposit).	der I. above, which was received by it on 2002-06-05									
IV. RECEIP	T OF REQUEST FOR CONVERSION										
and a reques	The microorganism identified under I above was received by this International Depositary Authority on and a request to convert the original deposit to a deposit under the Budapest Treaty was received by it on (date of receipt of request for conversion).										
V. INTERN	ATIONAL DEPOSITARY AUTHORITY										
Name:	DSMZ-DEUTSCHE SAMMLUNG VON MIKROORGANISMEN UND ZELLKULTUREN GmbH	Signature(s) of person(s) having the power to represent the International Depositary Authority or of authorized official(s):									
Address:	Mascheroder Weg 1b D-38124 Braunschweig	V. Weils									
		Date: 2002-06-06									

Where Rule 6.4 (d) applies, such date is the date on which the status of international depositary authority was acquired. Form DSMZ-BP/4 (sole page) 12/2001

BUDAPEST TRE RNATIONAL RECOGNITION OF THE DEPOSIT OF MICROORGANISMS FOR THE PURPOSES OF PATENT PROCEDURE

INTERNATIONAL FORM

Degussa AG

Kantstr. 2

33790 Halle (Westf.)

VIABILITY STATEMENT issued pursuant to Rule 10.2 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page

I. DEPOSIT	TOR	II. IDENTIFICATION OF THE MICROORGANISM								
Name: Address:	Degussa AG Kantstr. 2 33790 Halle (Westf.)	Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY: DSM 15038 Date of the deposit or the transfer!:								
III VIADII I	TY STATEMENT	2002-06-05								
···· · · · · · · · · · · · · · · · · ·	T STATEMENT.									
The viability On that date	of the microorganism identified under II above was tested on 2, the said microorganism was	2002-06-05								
$(\chi)^3$ viable										
IV. CONDIT	TONS UNDER WHICH THE VIABILITY TEST HAS BEEN PERF	ORMED*								
	<u> </u>									
V. INTERNA	ATIONAL DEPOSITARY AUTHORITY									
Address:	DSMZ-DEUTSCHE SAMMLUNG VON MIKROORGANISMEN UND ZELLKULTUREN GmbH Mascheroder Weg 1b D-38124 Braunschweig	Signature(s) of person(s) having the power to represent the International Depositary Authority or of authorized official(s):								
		Date: 2002-06-06								

Form DSMZ-BP/9 (sole page) 12/2001

Indicate the date of original deposit or, where a new deposit or a transfer has been made, the most recent relevant date (date of the new deposit or date of the transfer).

In the cases referred to in Rule 10.2(a) (ii) and (iii), refer to the most recent viability test.

Mark with a cross the applicable box.

Fill in if the information has been requested and if the results of the test were negative.

BUDAPEST TREATY ON THE INTERNATIONAL RECOGNITION OF THE DEPOSIT OF MICROORGANISMS FOR THE PURPOSES OF PATENT PROCEDURE

INTERNATIONAL FORM

Degussa AG

Kantstr. 2

33790 Halle (Westf.)

RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT issued pursuant to Rule 7.1 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page

L IDENTIFI	CATION OF THE MICROORGANISM										
Identification reference given by the DEPOSITOR: ATCC21513_17zwa1::zwa1 Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY: DSM 15038											
II. SCIENT	IFIC DESCRIPTION AND/OR PROPOSED TAXONOMIC DESIG	NATION :									
The microor	ganism identified under l. above was accompanied by:										
(X) a scientific description (X) a proposed taxonomic designation (Mark with a cross where applicable).											
III. RECEIP	T AND ACCEPTANCE										
This Interna (Date of the	tional Depositary Authority accepts the microorganism identified un original deposit).	der I. above, which was received by it on 2002-06-05									
IV. RECEIP	T OF REQUEST FOR CONVERSION										
The microon and a reques for conversi	rganism identified under I above was received by this International I st to convert the original deposit to a deposit under the Budapest Treon).	Depositary Authority on (date of original deposit) aty was received by it on (date of receipt of request									
v. intern	ATIONAL DEPOSITARY AUTHORITY										
Name: DSMZ-DEUTSCHE SAMMLUNG VON MIKROORGANISMEN UND ZELLKULTUREN GmbH Address: Mascheroder Weg 1b D-38124 Braunschweig Signature(s) of person(s) having the power to represent the property of authorized and the property of authorized to the property of the power to represent the property of the property of the power to represent the property of the power to represent the property of the power to represent the property of the power to represent the property of the power to represent the property of the power to represent the power the po											

Where Rule 6.4 (d) applies, such date is the date on which the status of international depositary authority was acquired.

BUDDAPEST TREATY ON THE INTERNATIONAL RECOGNITION OF THE DEPOSIT OF MICROORGANISMS FOR THE PURPOSES OF PATENT PROCEDURE

INTERNATIONAL FORM

Degussa AG Kantstr. 2 33790 Halle/Künsebeck

RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT issued pursuant to Rule 7.1 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page

I. IDENTIFICATION OF THE MICROORGANISM Identification reference given by the DEPOSITOR: Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY: DH5alphamcr/ pK18mobsacB2xlysCSma2/1 DSM 14244 IL SCIENTIFIC DESCRIPTION AND/OR PROPOSED TAXONOMIC DESIGNATION The microorganism identified under I. above was accompanied by: (X) a scientific description (X) a proposed taxonomic designation (Mark with a cross where applicable). III. RECEIPT AND ACCEPTANCE This International Depositary Authority accepts the microorganism identified under I. above, which was received by it on 2001-04-20 (Date of the original deposit)1. IV. RECEIPT OF REQUEST FOR CONVERSION The microorganism identified under I above was received by this International Depositary Authority on (date of original deposit) and a request to convert the original deposit to a deposit under the Budapest Treaty was received by it on (date of receipt of request for conversion). V. INTERNATIONAL DEPOSITARY AUTHORITY Signature(s) of person(s) having the power to represent the Name: DSMZ-DEUTSCHE SAMMLUNG VON MIKROORGANISMEN UND ZELLKULTUREN GmbH International Depositary Authority or of authorized official(s): Address: Mascheroder Weg 1b Web D-38124 Braunschweig Date: 2001-04-26

Form DSMZ-BP/4 (sole page) 0196

Where Rule 6.4 (d) applies, such date is the date on which the status of international depositary authority was acquired.

BUDAPEST TREATY ON THE INTERNATIONAL RECOGNITION OF THE DEPOSIT OF MICROORGANISMS FOR THE PURPOSES OF PATENT PROCEDURE

INTERNATIONAL FORM

Degussa AG Kantstr. 2 33790 Halle/Künsebeck

VIABILITY STATEMENT issued pursuant to Rule 10.2 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page

I. DEPOSITOR	II. IDENTIFICATION OF THE MICROORGANISM							
Name: Degussa AG Kantstr. 2 Address: 33790 Halle/Künsebeck	Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY: DSM 14244 Date of the deposit or the transfer!: 2001-04-20							
III. VIABILITY STATEMENT								
The viability of the microorganism identified under II above was tested on 2 On that date, the said microorganism was (XX) ³ viable () ³ no longer viable	001-04-20 '.							
IV. CONDITIONS UNDER WHICH THE VIABILITY TEST HAS BEEN PE	RFORMED*							
V. INTERNATIONAL DEPOSITARY AUTHORITY								
Name: DSMZ-DEUTSCHE SAMMLUNG VON MIKROORGANISMEN UND ZELLKULTUREN GmbH Address: Mascheroder Weg 1b D-38124 Braunschweig	Signature(s) of person(s) having the power to represent the International Depositary Authority or of authorized official(s): Date: 2001-04-26							

Indicate the date of original deposit or, where a new deposit or a transfer has been made, the most recent relevant date (date of the new deposit or date of the transfer).

In the cases referred to in Rule 10.2(a) (ii) and (iii), refer to the most recent viability test.

Mark with a cross the applicable box.

Fill in if the information has been requested and if the results of the test were negative.

WO 03/014330 PCT/EP02/08465

What is claimed is:

25

- Coryneform bacteria which produce chemical compounds, wherein instead of the singular copy of an open reading frame (ORF), gene or allele naturally present at the particular desired site (locus), these have at least two copies of the open reading frame (ORF), gene or allele in question, preferably in tandem arrangement, no nucleotide sequence which is capable of/enables episomal replication in microorganisms, no nucleotide sequence which is capable stransposition and no nucleotide sequence which imparts resistance to antibiotics being present at the particular site, and in that these optionally
- have at least a third copy of the open reading frame
 (ORF), gene or allele in question at a further gene
 site, no nucleotide sequence which is capable
 of/enables episomal replication in microorganisms, no
 nucleotide sequence which is capable of/enables
 transposition and no nucleotide sequence which imparts
 resistance to antibiotics being present at the further
 gene site.
 - Coryneform bacteria according to claim 1 which produce chemical compounds, wherein the coryneform bacteria belong to the genus Corynebacterium.
 - Coryneform bacteria of the genus Corynebacterium according to claim 2 which produce chemical compounds, wherein these belong to the species Corynebacterium glutamicum.
- 30 4. Coryneform bacteria according to claim 1 which produce chemical compounds, wherein the chemical compound is a compound chosen from the group consisting of L-amino acids, vitamins, nucleosides and nucleotides.

5. Coryneform bacteria according to claim 1 which produce chemical compounds, wherein the chemical compound is one or more L-amino acids chosen from the group consisting of L-aspartic acid, L-asparagine, L-threonine, L-serine, L-glutamic acid, L-glutamine, glycine, L-alanine, L-cysteine, L-valine, L-methionine, L-isoleucine, L-leucine, L-tyrosine, L-phenylalanine, L-histidine, L-lysine, L-tryptophan, L-proline and L-arginine.

5

30

- 10 6. Coryneform bacteria according to claim 1 which produce chemical compounds, wherein the chemical compound is the amino acid L-lysine.
- Coryneform bacteria which produce L-lysine, wherein instead of the singular copy of an open reading frame (ORF), gene or allele of lysine production naturally 15 present at the particular desired site (locus), these have at least two copies of the open reading frame (ORF), gene or allele of lysine production in question, preferably in tandem arrangement, no nucleotide sequence which is capable of/enables episomal 20 replication in microorganisms, no nucleotide sequence which is capable of/enables transposition and no nucleotide sequence which imparts resistance to antibiotics being present at the particular site, and in that these 25

optionally have at least a third copy of the open reading frame (ORF), gene or allele of lysine production in question at a further gene site, no nucleotide sequence which is capable of/enables episomal replication in microorganisms, no nucleotide sequence which is capable of/enables transposition and no nucleotide sequence which imparts resistance to antibiotics being present at the further gene site.

- 8. Coryneform bacteria according to claim 7 which produce L-lysine, wherein the coryneform bacteria belong to the genus Corynebacterium.
- 9. Coryneform bacteria of the genus Corynebacterium
 5 according to claim 8 which produce L-lysine, wherein these belong to the species Corynebacterium glutamicum.
- 10. Coryneform bacteria according to claim 7 which produce L-lysine, wherein the copy of an open reading frame (ORF), gene or allele of lysine production is one or more of the open reading frames, genes or alleles chosen from the group consisting of accBC, accDA, cstA, cysD, cysE, cysH, cysK, cysN, cysQ, dapA, dapB, dapC, dapD, dapE, dapF, ddh, dps, eno, gap, gap2, gdh, gnd, lysC, lysCFBR, lysE, msiK, opcA, oxyR, ppc, ppcFBR, pgk, pknA, pknB, pknD, pknG, ppsA, ptsH, ptsI, ptsM, pyc, pyc P458S, sigC, sigD, sigE, sigH, sigM, tal, thyA, tkt, tpi, zwa1, zwf and zwf A213T.
- 11. Coryneform bacteria according to claim 7 which produce L-lysine, wherein the copy of an open reading frame
 20 (ORF), gene or allele of lysine production is one or more of the genes or alleles chosen from the group consisting of lysCFBR lysE and zwa1.
 - 12. Coryneform bacteria according to claim 7 which produce L-lysine, wherein the copy of an open reading frame (ORF), gene or allele of lysine production is the lysE gene.

30

- 13. Coryneform bacteria according to claim 7 which produce L-lysine, wherein the copy of an open reading frame (ORF), gene or allele of lysine production is the zwal gene.
- 14. Coryneform bacteria according to claim 7 which produce L-lysine, wherein the copy of an open reading frame (ORF), gene or allele of lysine production is an lysC^{FBR}

allele which codes for a feed back resistant form of aspartate kinase.

15. Coryneform bacteria according to claim 14 which produce L-lysine, wherein the feed back resistant form of aspartate kinase coded by the lysCFBR allele contains an amino acid sequence according to SEQ ID NO:2, SEQ ID NO:2 having one or more amino acid exchanges chosen from the group consisting of A279T, A279V, S301F, T308I, S301Y, G345D, R320G, T311I and S381F.

5

20

- 10 16. Coryneform bacteria according to claim 14 which produce L-lysine, wherein the feed back resistant form of aspartate kinase coded by the lysCFBR allele has an amino acid sequence according to SEQ ID NO:4.
- 17. Coryneform bacteria according to claim 14 which produce
 15 L-lysine, wherein the coding region of the lysCFBR
 allele has the nucleotide sequence of SEQ ID NO:3.
 - 18. Coryneform bacteria according to claim 7 which produce L-lysine, wherein the further gene site is one or more of the sites chosen from the group consisting of aecD, ccpA1, ccpA2, citA, citB, citE, fda, gluA, gluB, gluC, gluD, luxR, luxS, lysR1, lysR2, lysR3, menE, mqo, pck, pgi and poxB.
- 19. Coryneform bacteria according to claim 7 which produce L-lysine, wherein the further gene site is one of more of the sites chosen from the group consisting of intergenic regions of the chromosome, prophages contained in the chromosome and defective phages contained in the chromosome.
- 20. Processes for the preparation of one or more chemical compounds, which comprise the following steps:
 - a) fermentation of coryneform bacteria, which

10

15

20

25

WO 03/014330 PCT/EP02/08465

- i) instead of the singular copy of an open reading frame (ORF), gene or allele naturally present at the particular desired site (locus), have at least two copies of the said open reading frame (ORF), gene or allele, preferably in tandem arrangement, no nucleotide sequence which is capable of/enables episomal replication in microorganisms, no nucleotide sequence which is capable of/enables transposition and no nucleotide sequence which imparts resistance to antibiotics being present at the particular site, and which
- ii) optionally have at least a third copy of the said open reading frame (ORF), gene or allele at a further gene site, no nucleotide sequence which is capable of/enables episomal replication in microorganisms, no nucleotide sequence which is capable of/enables transposition and no nucleotide sequence which imparts resistance to antibiotics being present at the further gene site,

under conditions which allow expression of the said open reading frames (ORFs), genes or alleles,

- b) concentration of the chemical compound(s) in the fermentation broth and/or in the cells of the bacteria,
- c) isolation of the chemical compound(s), optionally
- 30 d) with constituents from the fermentation broth and/or the biomass to the extent of > (greater than) 0 to 100%.

- 21. Process according to claim 20, wherein the coryneform bacteria belong to the genus Corynebacterium.
- 22. Process according to claim 20, wherein the coryneform bacteria of the genus Corynebacterium belong to the species Corynebacterium glutamicum.

25

30

- 23. Process according to claim 20, wherein the chemical compound is a compound chosen from the group consisting of L-amino acids, vitamins, nucleosides and nucleotides.
- 24. Process according to claim 20, wherein the chemical compound is one or more L-amino acids chosen from the group consisting of L-aspartic acid, L-asparagine, L-threonine, L-serine, L-glutamic acid, L-glutamine, glycine, L-alanine, L-cysteine, L-valine, L-methionine, L-isoleucine, L-leucine, L-tyrosine, L-phenylalanine, L-histidine, L-lysine, L-tryptophan, L-proline and L-arginine.
 - 25. Process according to claim 20, wherein the chemical compound is L-lysine.
- 20 26. Process for the preparation of L-lysine, which comprises the following steps:
 - a) fermentation of coryneform bacteria, which
 - i) instead of the singular copy of an open reading frame (ORF), gene or allele of lysine production naturally present at the particular desired site (locus), have at least two copies of the said open reading frame (ORF), gene or allele, preferably in tandem arrangement, no nucleotide sequence which is capable of/enables episomal replication in microorganisms, no nucleotide sequence which is capable of/enables transposition and no nucleotide sequence which

10

15

imparts resistance to antibiotics being present at the particular site, and which optionally

PCT/EP02/08465

ii) have at least a third copy of the said open reading frame (ORF), gene or allele of lysine production at a further gene site, no nucleotide sequence which is capable of/enables episomal replication in microorganisms, no nucleotide sequence which is capable of/enables transposition and no nucleotide sequence which imparts resistance to antibiotics being present at the further gene site,

under conditions which allow expression of the said open reading frames (ORFs), genes or alleles,

- b) concentration of the L-lysine in the fermentation broth and/or in the cells of the bacteria,
- c) isolation of the L-lysine, optionally
- d) with constituents from the fermentation broth and/or the biomass to the extent of > (greater than) 0 to 100%.
 - 27. Process for the preparation of L-lysine according to claim 26, wherein the coryneform bacteria belong to the genus Corynebacterium.
- 25 28. Process for the preparation of L-lysine according to claim 26, wherein the coryneform bacteria of the species Corynebacterium belong to the species Corynebacterium glutamicum.
- 29. Process for the preparation of L-lysine according to
 30 claim 26, wherein the copy of an open reading frame
 (ORF), a gene or allele of lysine production is one or
 more of the open reading frames, genes or alleles

10

20

25

30

chosen from the group consisting of accBC, accDA, cstA, cysD, cysE, cysH, cysK, cysN, cysQ, dapA, dapB, dapC, dapD, dapE, dapF, ddh, dps, eno, gap, gap2, gdh, gnd, lysC, lysC^{FBR}, lysE, msiK, opcA, oxyR, ppc, ppc^{FBR}, pgk, pknA, pknB, pknD, pknG, ppsA, ptsH, ptsI, ptsM, pyc, pyc P458S, sigC, sigD, sigE, sigH, sigM, tal, thyA, tkt, tpi, zwa1, zwf and zwf A213T.

- 30. Process for the preparation of L-lysine according to claim 26, wherein the copy of an open reading frame (ORF), gene or allele of lysine production is one or more of the genes or alleles chosen from the group consisting of lysCFBR, lysE and zwal.
- 31. Process for the preparation of L-lysine according to claim 26, wherein the copy of an open reading frame

 (ORF), gene or allele of lysine production is the lyse gene.
 - 32. Process for the preparation of L-lysine according to claim 26, wherein the copy of an open reading frame (ORF), gene or allele of lysine production is the zwal gene.
 - 33. Process for the preparation of L-lysine according to claim 26, wherein the copy of an open reading frame (ORF), gene or allele of lysine production is the lysC^{PBR} allele which codes for a feed back resistant form of aspartate kinase.
 - 34. Process for the preparation of L-lysine according to claim 33, wherein the feed back resistant form of aspartate kinase coded by the lysCFBR allele contains an amino acid sequence according to SEQ ID NO:2, SEQ ID NO:2 having one or more amino acid exchanges chosen from the group consisting of A279T, A279V, S301F, T308I, S301Y, G345D, R320G, T311I and S381F.

- 35. Process for the preparation of L-lysine according to claim 33, wherein the feed back resistant form of aspartate kinase coded by the lysC^{FBR} allele has an amino acid sequence according to SEQ ID NO:4.
- 5 36.Process for the preparation of L-lysine according to claim 33, wherein the coding region of the lysCFBR allele has the nucleotide sequence of SEQ ID NO:3.

- 37. Process for the preparation of L-lysine according to claim 26, wherein the further gene site is one or more of the sites chosen from the group consisting of aecD, ccpA1, ccpA2, citA, citB, citE, fda, gluA, gluB, gluC, gluD, luxR, luxS, lysR1, lysR2, lysR3, menE, mqo, pck, pgi and poxB.
- 38. Process for the preparation of L-lysine according to

 claim 26, wherein the further gene site is one of more

 of the sites chosen from the group consisting of

 intergenic regions of the chromosome, prophages

 contained in the chromosome and defective phages

 contained in the chromosome.
- 20 39. Process for the production of coryneform bacteria which produce one or more chemical compounds, wherein
 - a) the nucleotide sequence of a desired ORF, gene or allele, optionally including the expression and/or regulation signals, is isolated,
- 25 b) at least two copies of the nucleotide sequence of the ORF, gene or allele are arranged in a row, preferably in tandem arrangement,
- the nucleotide sequence obtained according to b)
 is incorporated in a vector which does not
 replicate or replicates to only a limited extent
 in coryneform bacteria,

d) the nucleotide sequence according to b) or c) is transferred into coryneform bacteria, and

- e) coryneform bacteria which have at least two
 copies of the desired ORF, gene or allele at the
 particular desired natural site instead of the
 singular copy of the ORF, gene or allele
 originally present are isolated, no nucleotide
 sequence which is capable of/enables episomal
 replication in microorganisms, no nucleotide
 sequence which is capable of/enables
 transposition and no nucleotide sequence which
 imparts resistance to antibiotics remaining at
 the particular natural site (locus), and
 optionally
- 15 f) at least a third copy of the open reading frame
 (ORF), gene or allele in question is introduced
 at a further gene site, no nucleotide sequence
 which is capable of/enables episomal replication
 in microorganisms, no nucleotide sequence which
 is capable of/enables transposition and no
 nucleotide sequence which imparts resistance to
 antibiotics remaining at the further gene site.
- 40. The plasmid pK18mobsacB2xlysCSma2/1 shown in Figure 1 and deposited in the form of a pure culture of the strain E. coli DH5cmcr/pK18mobsacB2xlysCSma2/1 (=DH5alphamcr/pK18mobsacB2xlysCSma2/1) under number DSM14244.
- 41. The Corynebacterium glutamicum strain
 DSM13992lysC^{FBR}::lysC^{FBR} deposited in the form of a pure
 culture under number DSM15036.
 - 42. The Corynebacterium glutamicum strain
 ATCC21513_17lysE::lysE deposited in the form of a pure
 culture under number DSM15037.

WO 03/014330 PCT/EP02/08465 95

43. The Corynebacterium glutamicum strain ATCC21513_17zwa1::zwa1 deposited in the form of a pure culture under number DSM15038.

Figure 1: Plasmid pK18mobsacB2xlysCSma2/1

Figure 2: Plasmid pK18mobsacB2xlysESma1/1

Figure 3: Plasmid pK18mobsacBzwa1zwa1

WO 03/014330 PCT/EP02/08465

SEQUENCE LISTING

5	<110>	Degus	sa A	AG								•				
3	<120>	Coryn	efor	m ba	acte	ria v	whic	h pro	oduce	e ch	emica	al c	rogmc	ınds	II	
	<130>	01030)3 BI	e												
10	<160>	14														
	<170>	PatentIn version 3.1													•	
15	<210> <211> <212> <213>	1 1263 DNA Corynebacterium glutamicum														
20	<220> <221> CDS <222> (1)(1263) <223> lysC wild-type gene															
25	<400> gtg gcc Met Ala 1															48
30	gaa cgo Glu Ar															96
35	gga aat Gly Ast															144
40	gaa cti Glu Lei 50															192
10	gaa atg Glu Med 65															240
45	gtc gcc Val Ala		Āla													288
50	ggc tct Gly Ser	Gln														336
55	att gtt Ile Val							Val								384
60	aag ato Lys Ile 130	e Cys														432

WO 03/014330 PCT/EP02/08465 2/10

String goa got got ttg aac got gat gat gtg tgt gag att tac tog gac gtt 1528							ggt Gly 150											480
Asp Gly Val Tyr Thr Ala Asp Pro Arg Ile Val Pro Asn Ala Gln Lys 180 180 185 185 190 180 180 185 185 190 180 180 185 185 190 180 180 185 185 185 180 190 180 180 185	5	_	_	_	_	Leu		-	_		Cys					Asp		528
Leu Glu Lys Leu Ser Phe Glu Glu Met Leu Glu Leu Ala Ala Val Gly 200	10				Tyr					Arg					Ala			576
Ser Lys Ile Leu Val Leu Arg Ser Val Glu Tyr Ala Arg Ala Phe Asn 210 210 215 215 220 215 220 215 220	15	Leu	Glu	Lys 195	Leu	Ser	Phe	Glu	Glu 200	Met	Leu	Glu	Leu	Ala 205	Ala	Val	Gly	624
Val Pro Leu Arg Val Arg Ser Ser Tyr Ser Asn Asp Pro Gly Thr Leu 240	20	Ser	Lys 210	Ile	Leu	Va1	Leu	Arg 215	Ser	Val	Glu	Tyr	Ala 220	Arg	Ala	Phe	Asn	
Secondaria Sec		Val 225	Pro	Leu	Arg	Val	Arg 230	Ser	Ser	Tyr	Ser	Asn 235	Asp	Pro	Gly	Thr	Leu 240	720
Solition Solition	25	Ile	Ala	Gly	Ser	Met 245	Glu	qzA	Ile	Pro	Val 250	Glu	Glu	Ala	Val	Leu 255	Thr	768
35 Ser Asp Lys Pro Gly Glu Ala Ala Lys Val Phe Arg Ala Leu Ala Asp 280	30	Gly	Val	Ala	Thr 260	Asp	Lys	Ser	Glu	Ala 265	Lys	Val	Thr	Val	Leu 270	Gly	Ile	816
Ala Glu Ile Asn Ile Asp Met Val Leu Gln Asn Val Ser Ser Val Glu 290 gac ggc acc acc gac atc acc ttc acc tgc cct cgt tcc gac ggc cgc Asp Gly Thr Thr Asp Ile Thr Phe Thr Cys Pro Arg Ser Asp Gly Arg 305 Cgc gcg atg gag atc ttg aag aag ctt cag gtt cag ggc aac tgg acc Arg Ala Met Glu Ile Leu Lys Lys Leu Gln Val Gln Gly Asn Trp Thr 325 aat gtg ctt tac gac gac cag gtc ggc aaa gtc tcc ctc gtg ggt gct Asn Val Leu Tyr Asp Asp Gln Val Gly Lys Val Ser Leu Val Gly Ala 340 Ggc atg aag tct cac cac ggt gtt acc gca gag ttc atg gaa gct ctg Gly Met Lys Ser His Pro Gly Val Thr Ala Glu Phe Met Glu Ala Leu 370 Cgc gat gtc aac gtg aac atc gaa ttg att tcc acc tct gag att cgt Arg Asp Val Asn Val Asn Ile Glu Leu Ile Ser Thr Ser Glu Ile Arg 370 1008 1008 1008 1008 1008 1009 100	35	Ser	Asp	Lys 275	Pro	Gly	Glu	Ala	Ala 280	Lys	Val	Phe	Arg	Ala 285	Leu	Ala	Asp	
Asp Gly Thr Thr Asp Ile Thr Phe Thr Cys Pro Arg Ser Asp Gly Arg 320 45 cgc gcg atg gag atc ttg aag aag ctt cag gtt cag ggc aac ttgg acc Arg Ala Met Glu Ile Leu Lys Lys Leu Gln Val Gln Gly Asn Trp Thr 325 aat gtg ctt tac gac gac cag gtc ggc aaa gtc tcc ctc gtg ggt gct Asn Val Leu Tyr Asp Asp Gln Val Gly Lys Val Ser Leu Val Gly Ala 340 ggc atg aag tct cac cca ggt gtt acc gca gag ttc atg gaa gct ctg Gly Met Lys Ser His Pro Gly Val Thr Ala Glu Phe Met Glu Ala Leu 365 cgc gat gtc aac gtg aac atc gaa ttg att tcc acc tct gag att cgt Asp Val Asn Val Asn Ile Glu Leu Ile Ser Thr Ser Glu Ile Arg 370 1008 1008 1008 1008 1008 1009	40	Ala	Glu 290	Ile	Asn	Ile	Asp	Met 295	Val	Leu	Gln	Asn	Val 300	Ser	Ser	Val	Glu	912
Arg Ala Met Glu Ile Leu Lys Lys Leu Gln Val Gln Gly Asn Trp Thr 325 aat gtg ctt tac gac gac cag gtc ggc aaa gtc tcc ctc gtg ggt gct Asn Val Leu Tyr Asp Asp Gln Val Gly Lys Val Ser Leu Val Gly Ala 340 ggc atg aag tct cac cca ggt gtt acc gca gag ttc atg gaa gct ctg Gly Met Lys Ser His Pro Gly Val Thr Ala Glu Phe Met Glu Ala Leu 355 cgc gat gtc aac gtg aac atc gaa ttg att tcc acc tct gag att cgt Asp Val Asn Val Asn Ile Glu Leu Ile Ser Thr Ser Glu Ile Arg 370 375 Leu Gln Gly Asn Trp Thr 335 1056		Asp 305	Gly	Thr	Thr	Asp	Ile 310	Thr	Phe	Thr	Суз	Pro 315	Arg	Ser	Asp	Gly	Arg 320	960
Asn Val Leu Tyr Asp Asp Gln Val Gly Lys Val Ser Leu Val Gly Ala 340 ggc atg aag tct cac cca ggt gtt acc gca gag ttc atg gaa gct ctg Gly Met Lys Ser His Pro Gly Val Thr Ala Glu Phe Met Glu Ala Leu 355 cgc gat gtc aac gtg aac atc gaa ttg att tcc acc tct gag att cgt Arg Asp Val Asn Val Asn Ile Glu Leu Ile Ser Thr Ser Glu Ile Arg 370 375 Asn Val Leu Tyr Asp Asp Val Ser Leu Val Gly Ala 350 1104 1104 1105 1106 11104	45	cgc Arg	gcg Ala	atg Met	gag Glu	Ile	ttg Leu	aag Lys	aag Lys	ctt Leu	Gln	gtt Val	cag Gln	ggc Gly	aac Asn	Trp	acc Thr	1008
Gly Met Lys Ser His Pro Gly Val Thr Ala Glu Phe Met Glu Ala Leu 355 360 365 cgc gat gtc aac gtg aac atc gaa ttg att tcc acc tct gag att cgt Arg Asp Val Asn Val Asn Ile Glu Leu Ile Ser Thr Ser Glu Ile Arg 370 375 380	50	aat Asn	gtg Val	ctt Leu	Tyr	gac Asp	gac Asp	cag Gln	gtc Val	Gly	aaa Lys	gtc Val	tcc Ser	ctc Leu	Val	ggt Gly	gct Ala	1056
Arg Asp Val Asn Val Asn Ile Glu Leu Ile Ser Thr Ser Glu Ile Arg 370 375 380	55	ggc	atg Met	Lys	tct Ser	cac His	cca Pro	ggt Gly	Val	acc Thr	gca Ala	gag Glu	ttc Phe	Met	gaa Glu	gct Ala	ctg Leu	1104
	60	cgc Arg	Asp	gtc Val	aac Asn	gtg Val	aac Asn	Ile	gaa Glu	ttg Leu	att Ile	tcc Ser	Thr	tct Ser	gag Glu	att Ile	cgt Arg	1152

																gca Ala 400	1200
5															gtt Val 415	tat Tyr	1248
10				gga Gly 420	_												1263
15	<211 <212)> ; l> 4 2> 1 3> (121 PRT	nebad	cter:	ium ç	gluta	amic	ım								
20)> ; Ala		Val	Val 5	Gln	Lys	Тут	Gly	Gly 10	Ser	Ser	Leu	Glu	Ser 15	Ala	
	Glu	Arg	Ile	Arg 20	Asn	Val	Ala	Glu	Arg 25	Ile	Val	Ala	Thr	Lys 30	Lys	Ala	
25	Gly	Asn	Asp 35	Va1	Val	Va1	Val	Cys 40	Ser	Ala	Met	Gly	Asp 45	Thr	Thr	Asp	
30	Glu	Leu 50	Leu	Glu	Leu	Ala	Al a 55	Ala	Va1	Asn	Pro	Val 60	Pro	Pro	Ala	Arg	
30	Glu 65	Met	Asp	Met	Leu	Leu 70	Thr	Ala	Gly	Glu	Arg 75	Ile	Ser	Asn	Ala	Leu 80	
35	Val	Ala	Met	Ala	Ile 85	Glu	Ser	Leu	Gly	Ala 90	Glu	Ala	Gln	Ser	Phe 95	Thr	
	Gly	Ser	Gln	Ala 100	Gly	Val	Leu	Thr	Thr 105	Glu	Arg	His	Gly	Asn 110	Ala	Arg	
40	Ile	Val	Asp 115	Val	Thr	Pro	Gly	Arg 120	Val	Arg	Glu	Ala	Leu 125	Asp	Glu	Gly	
<i>A</i> =	Lys	Ile 130	Cys	Ile	Va1	Ala	Gly 135	Phe	Gln	Gly	Val	Asn 140	Lys	Glu	Thr	Arg	
45	Asp 145	Val	Thr	Thr	Leu	Gly 150	Arg	Gly	Gly	Ser	Asp 155	Thr	Thr	Ala	Val	Ala 160	
50	Leu	Ala	Ala	Ala	Leu 165	Asn	Ala	Asp	Val	Cys 170	Glu	Ile	Tyr	Ser	Asp 175	Val	
	Asp	Gly	Val	Tyr 180	Thr	Ala	Asp	Pro	Arg 185	Ile	Val	Pro	Asn	Ala 190	Gln	Lys	
55	Leu	G1u	Lys 195	Leu	Ser	Phe	Glu	Glu 200	Met	Leu	Glu	Leu	Ala 205	Ala	Val	Gly	
60	Ser	Lys 210	Ile	Leu	Val	Leu	Arg 215	Ser	Val	Glu	Tyr	Ala 220	Arg	Ala	Phe	Asn	

	Val Pro Let 225	ı Arg Val	Arg Ser 230	Ser Tyr	Ser Asn 235		Gly Thr	Leu 240
5	Ile Ala Gly	y Ser Met 245	_	Ile Pro	Val Glu 250	Glu Ala	Val Leu 255	Thr
	Gly Val Ala	Thr Asp 260	Lys Ser	Glu Ala 265	Lys Val	Thr Val	Leu Gly 270	Ile
10	Ser Asp Lys 27	_	Glu Ala	Ala Lys 280	Val Phe	Arg Ala 285		Asp
15	Ala Glu Ile 290	e Asn Ile	Asp Met 295	Val Leu	Gln Asn	Val Ser 300	Ser Val	Glu
	Asp Gly Tho 305	Thr Asp	Ile Thr 310	Phe Thr	Cys Pro 315	_	Asp Gly	Arg 320
20	Arg Ala Me	Glu Ile 325		Lys Leu	Gln Val 330	Gln Gly	Asn Trp 335	
	Asn Val Le	Tyr Asp 340	Asp Gln	Val Gly 345	_	Ser Leu	Val Gly 350	Ala
25	Gly Met Lys		Pro Gly	Val Thr 360	Ala Glu	Phe Met 365		Leu
30	Arg Asp Val	l Asn Val	Asn Ile 375	Glu Leu	Ile Ser	Thr Ser	Glu Ile	Arg
	Ile Ser Val	l Leu Ile	Arg Glu 390	Asp Asp	Leu Asp 395		Ala Arg	Ala 400
35	Leu His Glu	Gln Phe 405		Gly Gly	Glu Asp 410	Glu Ala	Val Val 415	Tyr
	Ala Gly Thi	Gly Arg 420						
40	<210> 3 <211> 1263 <212> DNA <213> Cory	nebacter	ium gluta	micum				
45		.(1263) C-fbr all	ele lysC	T311I				
50	<400> 3 gtg gcc ctg Met Ala Leu 1							
55	gaa cgc att Glu Arg Ile	aga aac Arg Asn 20	gtc gct Val Ala	gaa cgg Glu Arg 25	atc gtt Ile Val	gcc acc Ala Thr	aag aag Lys Lys 30	gct 96 Ala
60	gga aat gat Gly Asn Asr 35	gtc gtg Val Val	gtt gtc Val Val	tgc tcc Cys Ser 40	gca atg Ala Met	gga gac Gly Asp 45	acc acg Thr Thr	gat 144 Asp

	gaa Glu	Leu	cta Leu	gaa Glu	ctt Leu	gca Ala	Ala	gca Ala	gtg Val	aat Asn	ccc Pro	gtt Val 60	ccg Pro	cca Pro	gct Ala	cgt Arg	19	2
5	gaa Glu 65	50 atg Met	gat Asp	atg Met	ctc Leu	ctg Leu 70	55 act Thr	gct Ala	ggt Gly	gag Glu	cgt Arg 75	att Ile	tct Ser	aac Asn	gct Ala	ctc Leu 80	24	10
10	atc	gcc Ala	atg Met	gct Ala	att Ile 85	gag	tcc Ser	ctt Leu	ggc Gly	gca Ala 90	gaa Glu	gcc Ala	caa Gln	tct Ser	ttc Phe 95	acg Thr	28	18
15	ggc	tct Ser	cag Gln	gct Ala 100	ggt Gly	gtg Val	ctc Leu	acc Thr	acc Thr 105	gag Glu	cgc Arg	cac His	gga Gly	aac Asn 110	gca Ala	cgc Arg	33	36
20	att Ile	gtt Val	gat Asp 115	gtc Val	act Thr	cca Pro	ggt Gly	cgt Arg 120	gtg Val	cgt Arg	gaa Glu	gca Ala	ctc Leu 125	gat Asp	gag Glu	ggc	38	34
20	aag Lys	atc Ile 130	tgc Cys	att Ile	gtt Val	gct Ala	ggt Gly 135	ttc Phe	cag Gln	ggt Gly	gtt Val	aat Asn 140	aaa Lys	gaa Glu	acc Thr	cgc Arg	43	32
25	gat Asp 145	gtc Val	acc Thr	acg Thr	ttg Leu	ggt Gly 150	cgt Arg	ggt Gly	ggt Gly	tct Ser	gac Asp 155	acc Thr	act Thr	gca Ala	gtt Val	gcg Ala 160	48	80
30	ttg Leu	gca Ala	gct Ala	gct Ala	ttg Leu 165	aac Asn	gct Ala	gat Asp	gtg Val	tgt Cys 170	gag Glu	att Ile	tac Tyr	tcg Ser	gac Asp 175	gtt Val	52	28
35	Asp	Gly	Val	Туг 180	Thr	Ala	Asp	Pro	Arg 185	Ile	Val	cct Pro	Asn	Ala 190	Gln	Lys		76
40	Leu	Glu	Lys 195	Leu	Ser	Phe	Glu	G1u 200	Met	Leu	Glu	ctt Leu	Ala 205	Ala	Val	Gly	62	24
	Ser	Lys 210	Ile	Leu	Val	Leu	Arg 215	Ser	Val	Glu	Tyr	gct Ala 220	Arg	Ala	Phe	Asn		72
45	Val 225	Pro	Leu	Arg	Val	Arg 230	Ser	Ser	Tyr	Ser	Asn 235	Asp	Pro	Gly	Thr	240		20
50	Ile	Ala	Gly	Ser	Met 245	Glu	Asp	Ile	Pro	Va1 250	Glu	Glu	Ala	Val	Leu 255			68
55	Gly	Val	Ala	Thr 260	Asp	Lys	Ser	Glu	Ala 265	Lys	Val	acc Thr	Val	Leu 270	Gly	Ile		16
60	tcc Ser	gat Asp	aag Lys 275	cca Pro	Gly	gag Glu	gct Ala	gcg Ala 280	Lys	gtt Val	ttc Phe	cgt Arg	gcg Ala 285	Leu	gct Ala	gat Asp	81	64

							atg Met 295										<u>.</u>	912
5	-				-		atc Ile			-		_		-			S	960
10							aag Lys										10	800
15	aat Asn	gtg Val	ctt Leu	tac Tyr 340	gac Asp	gac Asp	cag Gln	gtc Val	ggc Gly 345	aaa Lys	gtc Val	tcc Ser	ctc Leu	gtg Val 350	ggt Gly	gct Ala	10	056
20							ggt Gly										11	104
20							atc Ile 375										13	152
25							gaa Glu										12	200
30							ctg Leu										12	248
35	_	ggc Gly			_												12	263
40	<210 <211 <212 <213	L> 4 2> E	121 PRT	nebac	teri	lum g	gluta	umicu	ım									
	<400)> 4	l															
45	Met 1	Ala	Leu	Val	Val 5	Gln	Lys	Tyr	Gly	Gly 10	Ser	Ser	Leu	Glu	Ser 15	Ala		
	Glu	Arg	Ile	Arg 20	Asn	Val	Ala	Glu	Arg 25	Ile	Val	Ala	Thr	Lys 30	Lys	Ala		
50	Gly	Asn	Asp 35	Val	Val	Val	Val	Cys 40	Ser	Ala	Met	Gly	Asp 45	Thr	Thr	Asp		•
	Glu	Leu 50	Leu	Glu	Leu	Ala	Ala 55	Ala	Val	Asn	Pro	Val 60	Pro	Pro	Ala	Arg		
55	Glu 65	Met	Asp	Met	Leu	Leu 70	Thr	Ala	Gly	Glu	Arg 75	Ile	Ser	Asn	Ala	Leu 80		•
60	Val	Ala	Met	Ala	Ile 85	Glu	Ser	Leu	Gly	Ala 90	Glu	Ala	Gln	Ser	Phe 95	Thr		

WO 03/014330 PCT/EP02/08465 7/10

	Gly	Ser	Gln	Ala 100	Gly	Val	Leu	Thr	Thr 105	Glu	Arg	His	Gly	Asn 110	Ala	Arg
5	Ile	Val	Asp 115	Val	Thr	Pro	Gly	Arg 120	Val	Arg	Glu	Ala	Leu 125	Asp	Glu	Gly
	Lys	Ile 130	Cys	Ile	Val	Ala	Gly 135	Phe	Gln	Gly	Val	Asn 140	Lys	Glu	Thr	Arg
10	Asp 145	Val	Thr	Thr	Leu	Gly 150	Arg	Gly	Gly	Ser	Asp 155	Thr	Thr	Ala	Val	Ala 160
15	Leu	Ala	Ala	Ala	Leu 165	Asn	Ala	Asp	Val	Cys 170	Glu	Ile	Tyr	Ser	Asp 175	Val
	Asp	Gly	Val	Туг 180	Thr	Ala	Asp	Pro	Arg 185	Ile	Val	Pro	Asn	Ala 190	Gln	Lys
20			195					200					205			Gly
		210					215					220				Asn
25	225					230					235					Leu 240
30					245					250					Leu 255	
				260					265					270		Ile
35			275					280					285			Asp
		290					295					300				Glu
40	305					310					315					Arg 320
45					325					330					335	
				340					345					350		Ala
50			355					360					365	•		Leu
		370	1				375					380	1			Arg
55	385					390	1				395	i				Ala 400
60	Leu	His	Glu	Gln	405		Leu	Gly	Gly	410	Asp	Glu	Ala	Val	. Val 415	Tyr
- -	Ala	Gly	Thr	Gly 420	Arg	ſ										

WO 03/014330 PCT/EP02/08465 8/10

```
<210> 5
     <211> 20
     <212> DNA
 5
     <213> Corynebacterium glutamicum
     <220>
     <221> misc_feature
     <222>
           (1)..(20)
10
     <223> Primer lysCK1
     <400> 5
     tcggtgtcat cagagcattg
                                                                          20
15
     <210> 6
     <211> 20
     <212> DNA
     <213> Corynebacterium glutamicum
20
     <220>
     <221> misc_feature
     <222>
           (1)..(20)
     <223> Primer lysCK2
25
    <400> 6
     tcggttgcct gagtaatgtc
                                                                          20
     <210> 7
<211> 20
30
    <212> DNA
     <213> Corynebacterium glutamicum
     <220>
     <221> misc_feature
35
     <222> (1)..(20)
     <223> LC-lysC1-fbr
     <400> 7
                                                                          20
     aaccgttctg ggtatttccg
40
     <210> 8
     <211> 20
     <212> DNA
     <213> Corynebacterium glutamicum
45
     <220>
     <221> misc_feature
           (1)..(20)
     <222>
     <223> LC-lysC2-fbr
50
     <400> 8
                                                                         20
     tccatgaact ctgcggtaac
     <210> 9
55
   <211> 21
     <212> DNA
     <213> Corynebacterium glutamicum
     <220>
60
    <221> misc_feature
     <222> (1)..(21)
     <223> oligonucleotide lysC311-C
```

	<400> gcaggt	9 gaag atgatgtcgg t	21
5	<210> <211> <212> <213>		
10	<222>	misc_feature (1)(35) Oligonukleotid lysC311-A	
15	<400> tcaaga	10 tete categegegg eggeegtegg aacga	35
20	<210> <211> <212> <213>		
25		misc_feature (1)(20) Primer lysEK-1	
30	<400> tgcttg	11 caca aggaetteae	20
	<210> <211> <212> <213>		
35		misc_feature (1)(20) Primer lysEK-2	
40	<400> tatggt	12 ccgc aagctcaatg	20
45	<210> <211> <212> <213>	13 20 DNA Corynebacterium glutamicum	
50	<220> <221> <222> <223>	(1)(20)	
55	<400> cacttg	13 tcct caccacttte	20
60	<210> <211> <212> <213>	DNA	

WO 03/014330 PCT/EP02/08465

10/10

<220>
<221> misc_feature
<222> (1)..(20)
<223> Primer zwa1-E1

<400> 14 ttctactggg cgtactttcg

20

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 20 February 2003 (20.02.2003)

PCT

(10) International Publication Number WO 03/014330 A3

(51) International Patent Classification⁷:
// C12R 1/15

SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(21) International Application Number: PCT/EP02/08465

C12P 13/08

30 July 2002 (30.07.2002)

(25) Filing Language:

English

(26) Publication Language:

(22) International Filing Date:

English

(30) Priority Data:

60/309,877

6 August 2001 (06.08.2001) US

(71) Applicant (for all designated States except US): DE-GUSSA AG [DE/DE]; Bennigsenplatz 1, 40474 Düsseldorf (DE).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): BATHE, Brigitte [DE/DE]; Twieten 1, 33154 Salzkotten (DE). KREUTZER, Caroline [DE/DE]; Poststrasse 16, 49326 Melle (DE). MÖCKEL, Bettina [DE/DE]; Benrodestrasse 35, 40597 Düsseldorf (DE). THIERBACH, Georg [DE/DE]; Gunststrasse 21, 33613 Bielefeld (DE).
- (74) Common Representative: DEGUSSA AG; Intellectual Property Management, Patents and Trademarks, Location Hanau, P. O. Box 13 45, 63403 Hanau (DE).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK,

TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,

GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, Z, UA, UG, UZ, VN, YU, ZA, ZM, ZW, ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)
- of inventorship (Rule 4.17(iv)) for US only

Published:

- with international search report
- (88) Date of publication of the international search report: 18 December 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: CORYNEFORM BACTERIA WHICH PRODUCE CHEMICAL COMPOUNDS II

(57) Abstract: The invention relates to coryneform bacteria, which instead of the singular copy of an open reading frame (ORF), gene or allele naturally present at the particular desired site (locus), have at least two copies of the open reading frame (ORF), gene or allele in question, preferably in tandem arrangement, and optionally at least a third copy of the open reading frame (ORF), gene or allele in question at a further gene site, and processes for the preparation of chemical compounds by fermentation of these bacteria.

PCT/EP 02/08465

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12P13/08 //C12R1/15 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) C12P C12R IPC 7 Documentation searched other than minimum documentation to the extent that such documents are included in the lields searched Electronic data base consulted during the International search (name of data base and, where practical, search terms used) WPI Data, PAJ, EPO-Internal, BIOSIS, MEDLINE C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Category ' Citation of document, with indication, where appropriate, of the relevant passages X EP 1 111 062 A (DEGUSSA) 1 - 4327 June 2001 (2001-06-27) page 5, paragraph 30 -page 6, paragraph 35 X EP 1 108 790 A (KYOWA HAKKO KOGYO KK) 1-43 20 June 2001 (2001-06-20) The copy only comprises the relevant parts of the document. page 24, paragraph 228; figure 1 US 6 200 785 B1 (KREUTZER CAROLINE ET AL) 1-43 X 13 March 2001 (2001-03-13) column 2, line 45 -column 4, line 6 X WO 99 18228 A (PETERS WENDISCH PETRA 1-43 ;EIKMANNS BERND (DE); SAHM HERMANN (DE); KER) 15 April 1999 (1999-04-15) page 7, last paragraph χ | Further documents are listed in the continuation of box C. X Patent family members are listed in annex. Special categories of cited documents: *T* tater document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention 'E' earlier document but published on or after the International "X" document of particular relevance; the claimed invention fling date cannol be considered novel or cannot be considered to 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. O* document reterring to an oral disclosure, use, exhibition or other means *P* document published prior to the international filling date but later than the priority date claimed *&* document member of the same patent family Date of the actual completion of the International search Date of mailing of the international search report 10 June 2003 30/06/2003 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Griesinger, I Fax: (+31-70) 340-3016

PCT/EP 02/08465

		PCT/EP 02	2/08465
	Ation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
A	SCHAEFER A ET AL: "SMALL MOBILIZABLE MULTI-PURPOSE CLONING VECTORS DERIVED FROM THE ESCHERICHIA COLI PLASMIDS PK18 AND PK19: SELECTION OF DEFINED DELETIONS IN THE CHROMOSOME OF CORYNEBACTERIUM GLUTAMICUM" GENE, ELSEVIER BIOMEDICAL PRESS. AMSTERDAM, NL, vol. 145, no. 145, 1994, pages 69-73, XP001093898 ISSN: 0378-1119 abstract		1-43
A	EIKMANNS B J ET AL: "MOLECULAR ASPECTS OF LYSINE, THREONINE, AND ISOLEUCINE BIOSYNTHESIS IN CORYNEBACTERIUM GLUTAMICUM" ANTONIE VAN LEEUWENHOEK, DORDRECHT, NL, vol. 64, no. 2, 1993, pages 145-163, XP000918559 page 151, left-hand column, paragraph 1 page 157, left-hand column, paragraph 2		1-43
Ρ,Χ	WO 02 22632 A (DEGUSSA) 21 March 2002 (2002-03-21) page 11, line 17 -page 15, line 13		1-43
			·

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. X Claims Nos.: 1-43 (each claim partially) because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful international Search can be carried out, specifically:
see FURTHER INFORMATION sheet PCT/ISA/210
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
The second secon
As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
· -
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 1-43 (each claim partially)

The present set of claims refers to products and methods defined by 1. the absence of features, namely the absence of sequences which enable episomal replication and the absence of sequences enabling transposition and the absence of sequences providing antibiotics resistance and by presence of a vague feature, namely the presence of at least two copies of any kind of an ORF at a "particular desired site". The claims cover all products and methods having these characteristics, whereas the application provides support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT for only a very limited number of such products and methods. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Independent of the above reasoning, the claims also lack clarity (Article 6 PCT). The feature of an ORF "at a particular desired site" is completely unclear. The additional features are unclear, since they are defined as a result, which should not be achieved. This lack of clarity renders a meaningful search over the whole of the claimed scope impossible.

Furthermore, the present set of claims refers to any "chemical compound", which can be produced by Corynebacterium. Support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT is to be found, however, for only a very small proportion of the compounds claimed, namely for lysine (see Table 1 and Examples 1-3) and in particular for the use of the genes lysC, lysE and zwal for the production of lysine. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible.

Consequently, the search has been carried out for those parts of the claims which appear to be supported and disclosed, namely 1. the principle of inserting two copies of a gene, which naturally occurs in Corynebacterium glutamicum, into the bacterial chromosome of Corynebacterium glutamicum wherein said two copies are only separated from each other by a "small" number of nucleotides, which do not encode a protein and wherein said bacterial chromosome does not contain any other vector sequences and 2. the specific embodiments relating to the insertion of two copies of the genes lysC, lysE or zwal as disclosed in the Examples 1-3. Said limitations of the search are based on the Examples 1-3.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

Irramation on patent family members

PCT/EP 02/08465

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
EP 1111062	A .	27-06-2001	DE	19959328 A	1 13-06-2001
L. 111100L	^.	27 00 2001	ΑŪ	7201800 A	14-06-2001
			BR	0005804 A	20-11-2001
			CN	1304998 A	25-07-2001
			EP	1111062 A	
			HU	0004880 A	
			JP	2001197893 A	24-07-2002 24-07-2001
			PL	344386 A	
			SK US	18342000 A	
***				2002127663 A	1 12-09-2002
EP 1108790	Α	20-06-2001	EP	1108790 A	
			JP	2002191370 A	09-07-2002
			US	2002197605 A	1 26-12-2002
US 6200785	B1	13-03-2001	DE	19931317 A	1 11-01-2001
•••••			AU	4509900 A	11-01-2001
			BR	0002655 A	05-06-2001
			CA	2310870 A	
			CN	1280184 A	17-01-2001
			EP	1067192 A	
			HU	0002585 A	
			JP	2001061485 A	
			SK	10142000 A	
			US	2002086371 A	
		15 04 1000		10021600 4	15 04 1000
WO 9918228	Α	15-04-1999	DE	19831609 A	
			AU	741038 B	
			AU	1148299 A	27-04-1999
			BR	9813021 A	15-08-2000
			CA	2305577 A	
			CN	1275167 T	29-11-2000
			WO	9918228 A	•
			EP	1015621 A	
			ΗU	0004381 A	
			JP	2002508921 T	26-03-2002
			SK	4812000 A	
			ZA	9809014 A	03-04-2000
WO 0222632	Α	21-03-2002	DE	10120094 A	1 28-03-2002
			ĀŪ	9553901 A	26-03-2002
			WO	0222632 A	
			US	2002039766 A	