Institution University of Illinois at Urbana-Champaign

|--|

Vehicle Properties			
Total Length (in)	110 in		
Diameter (in)	4 in (body) / 6 in (fairing)		
Gross Lift Off Weight (lb)	27.1 lbm		
Airframe Material(s)	Blue Tube (body tube), Fiberglass (nose cone), PLA (streamlining interstage)		
Fin Material and Thickness (in)	1/8 in Fiberglass		
Coupler Length(s)/Shoulder Length(s) (in)	10"/4" (coupler); /3" (nose cone)		

Motor Properties				
Motor Brand/Designation	AeroTech K1050W			
Max/Average Thrust (lb)	488.3/254.7			
Total Impulse (lbf-s)	533			
Mass Before/After Burn (lb)	4.857/2.068			
Liftoff Thrust (lb)	220.3			
Motor Retention Method	54mm Aero Pack motor retainer			

Stability Analysis				
Center of Pressure (in. from nose)	81.6 in			
Center of Gravity (in. from nose)	59.6 in			
Static Stability Margin (on pad)	3.67 cal			
Static Stability Margin (at rail exit)	2.65 cal			
Thrust-to-Weight Ratio	8.1			
Rail Size/Type and Length (in)	144 in, 1515 rail			
Rail Exit Velocity (ft/s)	87.6			

Ascent Analysis				
Maximum Velocity (ft/s)	601			
Maximum Mach Number	0.54			
Maximum Acceleration (ft/s^2)	351			
Target Apogee (ft)	4450			
Predicted Apogee (From Sim.) (ft)	4481			

Recovery System Properties - Overall			
Total Descent Time (s) 87.2			
Total Drift in 20 mph winds (ft)	2300		

Recovery System Properties - Energetics				
Ejection System Energetics (ex	Black Powder			
Energetics Mass - Drogue	Primary	2.8 grams		
Chute (grams)	Backup	3.3 grams		
Energetics Mass - Main Chute	Primary	5.4 grams		
(grams)	Backup	5.9 grams		
Energetics Mass - Other	Primary	(CO2 Ejection)		

Payload Deployment				
Location: Air or Ground (if applicable)	Air			
Altitude of Deployment (if applicable)	400 ft			

Recovery System	Properties - I	Recovery Electronics			
Primary Altimeter Make	e/Model	Perfectflite StratologgerCF			
Secondary Altimeter Mal	ke/Model	Altus Metrum Telemetrum			
Other Altimeters (if app	olicable)				
Rocket Locator (Make/Model)		Altus Metrum Telemetrum			
Additional Locators (if ap	oplicable)				
Transmitting Frequencies (all payload)	l - vehicle and	Telemetrum: 433 MHz; Xbee Pro S3B 900 MHz			
Pad Stay Time (Launch Cor	nfiguration) 2 Hours			Pad Stay Time (Launch Configuration)	
Describe Redundancy Plan (batteries, switches, etc.)	Redundant altimeters with separately connected batteries for each unit				

Recovery System Properties - Drogue Parachute						
Manufacturer/Model			Fruity Chutes Elliptical			
Size	or Diameter (in	or ft)	28 in			
Main Altir	neter Deployme	nt Setting	Apogee			
Backup Alt	imeter Deploym	ent Setting	1 second	after Apogee		
Velocit	ty at Deploymen	t (ft/s)	<5			
Terminal Velocity (ft/s)			70			
•	ness Material, S '2 in. tubular Nyl Kevlar strap)		0.25 in tubular Kevlar shock cord			
Recove	ery Harness Len	gth (ft)	20 ft			
Harness/Airfra	ame Interfaces	U-bolt on coupler and eye bolt on motor				
Kinetic Energy	Section 1	Section 2	Section 3	Section 4		
(Ft-lbs)	142	530	211 10			

Recovery System Properties - Main Parachute					
Manufacturer/Mo	del	Fruity Chutes Elliptical			
Size or Diameter (in	or ft)	60 in			
Main Altimeter Deploymen	t Setting (ft)	800 ft			
Backup Altimeter Deployme	nt Setting (ft)	700 ft			
Velocity at Deployment (ft/s)		70			
Terminal Velocity (f	ft/s)	20.7			
Recovery Harness Material, Size, and Type (examples - 1/2 in. tubular Nylon or 1 in. flat Kevlar strap)		0.25 in tubular Kevlar shock core			
Recovery Harness Len	gth (ft)	20 ft			
Harness/Airframe Interfaces	U-bolt on coupler and eye bolt on upper section				

(grams) - If Applicable	Backup		Kinetic Energy	Section 1	Section 2	Section 3	Section 4
		-	(Ft-lbs)	9.2	34.2	13.6	65.7

institution	Offiversity of filliflois at Orbana-Champaign	Milestone					
	Payload Payload						
	Overvi	<i>r</i> iew					
Payload 1 (official payload)	The official payload will be an unmanned aerial vehicle (UAV), deployed aerially at cone. The nominal operational period is 12 minutes, wit the UAV descending and Then, the UAV will lower onto the recovery area, retrieving ice samples by way of from the recovery area. The payload will be operated autonomously, with manual operator. Telemetry is also provided for, so that ground control may asc	I navigating to the nearest recovery area by means of GPS and computer vision of an actuatable arm. Having retrieved the sample, the UAV will distance itself all control being possible by way of a remote control link operated by a human					
	Overvi	<i>r</i> iew					
Payload 2 (non- scored payload)							

Test Plans, Status, and Results				
Ejection Charge Tests	The required black powder charges will be determined through calculations and then real-world ejection charge tests. Here, the shear bolt will be tested under volumetric constraints.			
Sub-scale Test Flights	The half-size subscale vehicle was launched on January 6, 2020. The expected altitude with conditions was 1486 feet, and the measured altitude was 1529 feet. The stability margin, mass distribution, and thrust profile were, in general, similar to the full scale. Primary ejection charges for the drogue and main were activated by a StratologgerCF. Secondary charges were set to fire later via a TeleMetrum. All charges were activated succesfully at the expected times. The main parachute did not deploy; investigations revealed that it was packed too tightly and did not slide out as planned. It was instead pushed further into the body by the charges. The appropriate considerations have been made to prevent this in the future.			
Vehicle Demon- stration Flights	Demonstation of full system capabilities, including but not limited to staging, parachute deployment and payload deployment testing. After payload deployment is achieved, the payload will be tested for flight time and reliability when controlled both autonomously and remotely. A mockup of the actual flight environment will be constructed so as to validate the reliability and efficacy of the computer vision and guidance algorithms. Finally, sample retrieval will be demonstrated.			
Payload Demon- stration Flights	In addition to the abovementioned vehicle demonstration flight, the payload will undergo additional testing to validate its flight time, maneuverability, failure tolerance and mission performance.			

Institution University of Illinois at Urbana-Champaign Milestone CDR
--

Transmitter #1				
Location of transmitter:	Avionics Coupler			
Purpose of transmitter:	Recovery Transmitter			
Brand	Altus Metrum	RF Output Power (mW)	40	
Model	TeleMetrum	Specific Frequency used by team (MHz)	433	
Handshake or frequency hopping? (explain)	Fixed frequency			
Distance to closest e-match or altimeter (in)	0			
Description of shielding plan:	Avionics will be shielded by copper mesh lining			

	Transm	nitter #2		
Location of transmitter:	Nose Cone			
Purpose of transmitter:	Recovery Transmitter			
Brand	Altus Metrum	RF Output Power (mW)	40	
Model	TeleMetrum	Specific Frequency used by team (MHz)	433	
Handshake or frequency hopping? (explain)	Fixed frequency			
Distance to closest e-match or altimeter (in)	0			
Description of shielding plan:	Avionics will be shielded by copper mesh lining			

Transmitter #3				
Location of transmitter:	Nose Cone			
Purpose of transmitter:	UAV Deployment System			
Brand	Digi	RF Output Power (mW)	250	
Model	Xbee Pro XSC S3B	Specific Frequency used by team (MHz)	900	
Handshake or frequency hopping? (explain)	Multiple channels are available			
Distance to closest e-match or altimeter (in)	1			
Description of shielding plan:	Avionics will be shielded by copper mesh lining			

Transmitter #4				
Location of transmitter:				
Purpose of transmitter:				
Brand	RF Output Power (mW)			
Model	Specific Frequency used by team (MHz)			
Handshake or frequency hopping? (explain)				
Distance to closest e-match or altimeter (in)				
Description of shielding plan:				

Transmitter #5

Milestone

CDR

University of Illinois at Urbana-Champaign

Institution

Location of transmitter.	
Purpose of transmitter:	
Brand	RF Output Power (mW)
Model	Specific Frequency used by team (MHz)
Handshake or frequency hopping? (explain)	
Distance to closest e-match or altimeter (in)	
Description of shielding plan:	
	Transmitter #6
Location of transmitter:	
Purpose of transmitter:	
Brand	RF Output Power (mW)
Model	Specific Frequency used by team (MHz)
Handshake or frequency hopping? (explain)	
Distance to closest e-match or altimeter (in)	
Description of shielding plan:	
	Additional Comments