Chamblandes 2003 - 1.4

a)
$$f(x) = e^{-3x} - 2 = 0$$

 $e^{-3x} = 2$
 $-3x = \ln(2)$
 $x = -\frac{1}{3}\ln(2) \approx -0.23$

b)
$$f'(x) = (e^{-3x} - 2)' = e^{-3x} \cdot (-3x)' - 0 = -3e^{-3x}$$

La pente de la tangente à la courbe y=f(x) au point d'abscisse $\ln(2)$ vaut : $f'(\ln(2))=-3\,e^{-3\,\ln(2)}=-3\,(e^{\ln(2)})^{-3}=-3\cdot 2^{-3}=-3\cdot \frac{1}{2^3}=-3\cdot \frac{1}{8}=-\frac{3}{8}$