Atomic-scale investigation of doping effects in the anti-perovskite Na₃OCl sodium-ion battery material

Ben Goldmann, Matt Clarke, James Dawson and Saiful Islam

Department of Chemistry, University of Bath, BA2 7AY, UK email: bag27@bath.ac.uk, web: www.csct.ac.uk

Solid-state batteries

Advantages:

- stability
- safety
- energy density

Issues:

- ↓ ionic conductivity
- dopant effects
- interfaces
- grain boundaries

Sodium vs. Lithium

Sodium batteries:

- abundance
- cost
- sustainability
- for renewables

Lithium batteries:

- energy density
- for portable electronics and electric vehicles

Project aims

Atomistic modelling of Na₃OCl solid electrolyte to gain insight into:

- cation doping to increase relevant defect concentration
- Na-ion conduction mechanism and performance

Fig. 1 – The anti-perovskite Na₃OCI structure.

Doping and ion conduction

- Na-ion conduction via vacancy migration along curved pathway at octahedral edges
- Aliovalent doping to induce 1.2% Na-vacancy conc. → increased ionic conductivity

Fig. 2 – Temperaturedependent Na⁺ conductivities doped Na₃OCl with 1.2% vacancy concentration.

Clustering effects

- Increased defect clustering in doped materials compared to undoped
- Leads to higher E_a of Na-ion migration

Fig. 3 – Na ion trajectories (blue) in (a) undoped and (b) Al-doped Na₃OCl.

Conclusions and publication

- Atomistic model reproduces Na₃OCl structure accurately
- Favourable dopants include Mg²⁺, Ca²⁺, Al³⁺ and Ga³⁺
- Smallest clustering effect and highest conductivity with Mg²⁺ dopant at 1.2% vacancy conc.

Atomic-scale investigation of cation doping and defect clustering in the anti-perovskite Na₃OCl

sodium-ion conductor† Benedek A. Goldmann, ^{© a} Matt J. Clarke, ^{© a} James A. Dawson ^{© bo} and M. Saiful Islam ^{© 4a}

