1 Homomorphism

Note. Homomorphism is a structure preserving map.

In linear algebra: it preserves vector addition and scalar multiplication (linear maps).

In group theory: preserves group operation.

Definition

Let (G,*) and (H,*) be groups. A **homomorphism** (of groups) from G to H is a function $\phi: G \to H$ such that

$$\phi(g_1 *_G g_2) = \phi(g_1) *_H \phi(g_2).$$

Note. This resembles linear maps T(u+v) = T(u) + T(v). Any linear map is a group homomorphism. An isomorphism is a bijective homomorphism.

Example (uninteresting). $T: V \to W$? Let T(v) = 0 for all $v \in V$. Similarly, let $(G, *_G), (H, *_H)$ be groups. Define $\phi: G \to H$ by $\phi(g) = e_H$ for all $g \in G$. Then ϕ is a homomorphism.

Proof

$$\phi(x *_G y) = e_H = e_H *_H e_H = \phi(x) *_H \phi(y)$$

Example. $T:V\to V$. Another trivial example of homomorphism is the identity map T(v)=v. Similarly, $(G,*_G)$ is a group. Let $\phi:G\to G$ be defined as $\phi(g)=g$. The proof is trivial.

Example (interesting, not isomorphism). Consider $GL_n(\mathbb{R})$: $n \times n$ invertible matrices with entries from \mathbb{R} under matrix multiplication.

Is it abelian? Counterexample: use 2×2 upper and lower triangle of all 1 as non-zero entries. Then we can just insert this to any $n \times n$ identity matrices to the top left.

 $GL_1(\mathbb{R}) \simeq \mathbb{R}^*$. This is abelian.

So it is abelian if and only if n = 1.

It is an infinite group. Just change one element of an identity matrix with infinite number of choices.

$$\det: GL_n(\mathbb{R}) \to \mathbb{R}^*, A \mapsto \det(A).$$

Claim. det is a homomorphism of groups.

It is surjective but not injective. It isn't an isomorphism because det is abelian. $\det(AB) = \det(A) \det(B)$ by a Theorem from linear algebra. This satisfies the definition of homomorphism.

Example (sign map). $\varepsilon: S_n \to \mathbb{Z}_2$.

$$\varepsilon(g) \begin{cases} 0 & \text{if } g \text{ is even} \\ 1 & \text{if } g \text{ is odd} \end{cases}$$

WLOG assume x is even, y is odd. Then

$$\varepsilon(x * y) = ?\varepsilon(x) * \varepsilon(y)$$
$$1 = 0 +_2 1$$

True by table.

Note. Given linear map $T: V \to W$. Then $T(0_V) = 0_W$. T(-v) = -T(v). Similarly, for group homomorphism $\phi: G \to H$.

Claim. $\phi(e_G) = e_H$.

Proof

$$\phi(x *_G y) = \phi(x) *_H \phi(y)$$

$$\phi(e_G) = \phi(e_G * e_G) = \phi(e_G) *_H \phi(e_G)$$

$$Y = Y *_H Y \Rightarrow Y = \phi(e_G) = e_H$$

Claim. $\phi(g^{-1}) = \phi(g)^{-1}$.

Proof

$$\phi(x *_G x^{-1}) = \phi(x) *_H \phi(x^{-1})$$

$$e_H = \phi(e_G) =$$

Thus $\phi(x^{-1}) = \phi(x)^{-1}$.

Example. Consider det : $GL_n(\mathbb{R}) \to \mathbb{R}^*$. By the theorem above:

$$\det(A^{-1}) = \frac{1}{\det A}$$

.

Note. In linear algebra, $T: V \to W$ linear map,

$$\ker T = \{ v \in V : T(v) = 0_W \}$$

and

$$\operatorname{im} T = \{w \in W : T(v) = w, v \in V\}$$

Definition: kernel and image

 $\phi:G\to H$ a homomorphism of groups.

$$\ker \phi = \{ g \in G : \phi(g) = e_H \}.$$

$$\operatorname{im} \phi = \{ h \in H : \phi(g) = h, g \in G \}.$$

 $\ker \phi \leq G$, $\operatorname{im} \phi \leq H$.

See screenshot for illustration.

Proof

 $\ker \phi \subseteq G$ by definition. Then

- 1) $\phi(e_G) = e_H$ by previous proof.
- 2) closure: If $x,y \in \ker \phi$, $\phi(x) = e_H, \phi(y) = e_H$, and $\phi(x*y) = e_H*e_H = e_H$.
- 3) If $x \in \ker \phi$, $\phi(x^{-1}) = \phi(x)^{-1} = e_H^{-1} = e_H$.