TECHNISCHE UNIVERSITÄT DORTMUND FAKULTÄT STATISTIK LEHRSTUHL COMPUTERGESTÜTZTE STATISTIK UWE LIGGES
MARIEKE STOLTE
LUCA SAUER
RUDI ZULAUF

Übung zur Vorlesung Computergestützte Statistik Wintersemester 2022/2023

Musterlösung zu Übungsblatt Nr. 13

Aufgabe 2 (4 Punkte)

Wir wissen: $||X||_F = \left(\sum_{i,j} x_{ij}^2\right)^{0.5}$ und $K_F(X) = ||X||_F ||X^+||_F$.

- Zunächst $||X||_F$: Der kleinste Eintrag von X ist Z-1, dieser kommt exakt einmal vor. Danach kommen jeweils (n+1) mal die Einträge Z+i für i in 0,...,n-2. Für i=n-2 kommt er tatsächlich nur n-1 mal vor, dafür gibt es den Eintrag noch einmal zusätzlich für n-1. Zusammengefasst lässt sich sagen: Da wir Z>>n annehmen, ist jeder Eintrag ungefähr Z. Daraus folgt direkt: $||X||_F \approx \sqrt{n^2 Z^2} = nZ$.
- Da wir aktuell noch über die invertierbaren Z1-Matrizen reden gilt: $X^+ = X^{-1}$. Weiterhin enthält X^{-1} nur 4 Einträge, die von Z abhängen (in den 4 Ecken der Matrix), dazu recht viele Einträge die 1 oder -1 sind. Da wir weiterhin annehmen, dass Z >> n gilt, haben wir: $||X^+||_F \approx \sqrt{4Z^2} = 2Z$.
- Jetzt die beiden vorherigen Zwischenergebnisse multiplizieren und wir haben: $K_F \approx 2nZ^2$.