Цель работы

Построить модель конкуренции двух фирм

Задача

Случай 1. Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.) Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. В этом случае динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

где $a_1 = \frac{p_{cr}}{\frac{p$

Также введена нормировка $t = c_1$

Случай 2. Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы — формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед \$M_1M_2\$ будет отличаться. Пусть в рамках рассматриваемой модели динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

Для обоих случаев рассмотрим задачу со следующими начальными условиями и параметрами:

 $M_0^1 = 6.8$, $M_0^2 = 6$, $p_{cr} = 35$, N = 31, Q = 1, $tau_1 = 18$, $tau_2 = 23$, $verline\{p\}_1 = 11.5$, $verline\{p\}_2 = 8.7$ \$.

Необходимо построить графики изменения оборотных средств фирм 1 и 2 для обоих случаев.

Теоретическое введение

Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования,

когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют.

Обозначим:

N – число потребителей производимого продукта.

S – доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения.

М – оборотные средства предприятия

т – длительность производственного цикла

р – рыночная цена товара

 \tilde{p} – себестоимость продукта, то есть переменные издержки на производство единицы продукции.

δ – доля оборотных средств, идущая на покрытие переменных издержек.

к – постоянные издержки, которые не зависят от количества выпускаемой продукции.

Q(S/p) – функция спроса, зависящая от отношения дохода S к цене p. Она равна количеству продукта, потребляемого одним потребителем в единицу времени.

Функцию спроса товаров долговременного использования часто представляют в простейшей форме:

 $\ Q = q-k\frac{p}{S}=q(1-\frac{p}{p_{cr}}) \ \ (1) \$

где q — максимальная потребность одного человека в продукте в единицу времени. Эта функция падает с ростом цены и при $p = p_{cr}$ (критическая стоимость продукта) потребители отказываются от приобретения товара. Величина $p_{cr} = q_k$. Параметр $q_{cr} = q_k$ пороговой (то есть, $q_{cr} = q_k$ при $q_{cr} = q_k$ пороговой (то есть, $q_{cr} = q_k$ при $q_{cr} = q_k$ пороговой (то есть, $q_{cr} = q_k$ при $q_{cr} = q_k$ пороговой (то есть, $q_{cr} = q_k$ при $q_{cr} = q_k$ пороговой (то есть, $q_{cr} = q_k$ при $q_{cr} = q_k$ пороговой (то есть, $q_{cr} = q_k$ при q_{cr}

Уравнения динамики оборотных средств можно записать в виде

 $\$ $\frac{M}{dt}=-\frac{M\delta}{\tau} + NQp - k = -\frac{M\delta}{\tau} + NQ(1-\frac{p}{p_{cr}})p-k$

Равновесное значение цены \$р\$ равно

 $p = p_{cr}(1-\frac{M\delta}{\lambda})$

Из-за чего уравнение динамики обротных средств принимает следующий вид:

Выполнение работы

Julia

Открыв Pluto.jl я приступил к написанию кода. Сначала я подключил библиотеки Plots и DiffetentialEquations:

```
using Plots, DiffetentialEquations
```

Далее я ввёл начальные данные, представленные в условии задачи, коэффиценты, временные рамки и интервал моделирования.

```
# Начальные условия
M_0_1 = 6.8
M_0_2 = 6
p_{cr} = 35
N = 31
q = 1
\tau 1 = 18
\tau 2 = 23
p_1 = 11.5
p_2 = 8.7
a1 = p_cr / (\tau 1^2 * p_1^2 * N * q)
a2 = p_cr / (\tau 2^2 * p_2^2 * N * q)
b = p_cr / (\tau 1^2 * p_1^2 * \tau 2^2 * p_2^2 * N * q)
c1 = (p_cr - p_1) / (\tau 1 * p_1)
c2 = (p_cr - p_2) / (\tau 2 * p_2)
timespan = (0, 20)
dt = 0.01
```

Далее я задал и решил систему ОДУ для обоих случаев, предварительно выразив $\frac{t}{dt}$ приведя тем самым $\frac{dM}{dt}$:

```
# Система ОДУ:
# Первый случай:

function ode_fn_1(du, u, p, t)
    M_1, M_2 = u
    du[1] = (M_1/c1) - (b/c1^2) * M_1 * M_2 - (a1/c1^2) * M_1^2
    du[2] = ((c2 * M_2) / c1^2) - (b/c1^2) * M_1 * M_2 - (a2/c1^2) * M_2^2
end

prob1 = ODEProblem(ode_fn_1, [M_0_1, M_0_2], timespan)

# Решение системы ОДУ

sol1 = solve(prob1, dtmax = dt)
```

Далее, использовав plot, я построил графики изменения для обоих случаев:

```
# Построение графиков М1 и М2:
# Первый случай
plt1 = plot(
    diffT1,
    diffM1 1,
    label = "Оборотные средства фирмы 1"
)
plot!(
    diffT1,
    diffM2_1,
    label = "Оборотные средства фирмы 2"
)
# Второй случай
plt2 = plot(
    diffT2,
    diffM1_2,
    label = "Оборотные средства фирмы 1"
)
plot!(
    diffT2,
    diffM2_2,
```

label = "Оборотные средства фирмы 2")

OpenModelica

Открыв OpenModelica, я создал два файла модели - по одному на каждый случай. Далее, задав начальные условия и коэффициенты, я ввёл уравнение математической модели, описанное в задании, для каждого из случаев.

Первый случай:

```
model lab08_1
  Real M1;
  Real M2;
  Real p_{cr} = 35;
  Real N = 31;
  Real q = 1;
  Real tau1 = 18;
  Real tau2 = 23;
  Real p1 = 11.5;
  Real p2 = 8.7;
  Real a1 = p_{cr} / (tau1^2 * p1^2 * N * q);
  Real a2 = p_cr / (tau2^2 * p2^2 * N * q);
  Real b = p_cr / (tau1^2 * p1^2 * tau2^2 * p2^2 * N * q);
  Real c1 = (p_cr - p1) / (tau1 * p1);
  Real c2 = (p_cr - p2) / (tau2 * p2);
initial equation
  M1 = 6.8;
  M2 = 6;
equation
  der(M1) = (M1/c1) - (b/c1^2) * M1 * M2 - (a1/c1^2) * M1^2;
  der(M2) = ((c2 * M2) / c1^2) - (b/c1^2) * M1 * M2 - (a2/c1^2) * M2^2;
end lab08 1;
```

Второй случай:

```
model lab08_2

Real M1;
Real M2;
Real p_cr = 35;
Real N = 31;
Real q = 1;
Real tau1 = 18;
Real tau2 = 23;
Real p1 = 11.5;
Real p2 = 8.7;
Real a1 = p_cr / (tau1^2 * p1^2 * N * q);
Real a2 = p_cr / (tau2^2 * p2^2 * N * q);
Real b = p_cr / (tau1^2 * p1^2 * tau2^2 * p2^2 * N * q);
Real c1 = (p_cr - p1) / (tau1 * p1);
Real c2 = (p_cr - p2) / (tau2 * p2);
```

```
initial equation

M1 = 6.8;
M2 = 6;

equation

der(M1) = (M1/c1) - (b/c1 + 0.00067) * M1 * M2 / c1 - (a1/c1^2) * M1^2;
   der(M2) = ((c2 * M2) / c1^2) - (b/c1^2) * M1 * M2 - (a2/c1^2) * M2^2;

end lab08_2;
```

Далее я смоделировал их со следующими установками:

И отобразил графики изменения оборотный средств:

Вывод

В ходе выполнения лабораторной работы была построена модель изменения оборотных средств для двух случаев на языках Julia и OpenModelica