Machine Learning Overview

How do humans learn?

How can you learn to play chess?

How can you learn to play chess?

Hire a chess tutor – who will supervise your learning

Suppose you don't have a tutor or chess book?

Go to the park and observe games

Maybe try a combination

- Use a tutor for game basics
- Observe games and refine your skills

How does human learning relate to Machine Learning?

Which approach is best?

....It depends

- Do you have a good tutor?
 - supervised works
- Do you have lots of observations but no tutor?
 - unsupervised
- Do you have both?
 - semi-supervised
- Downsides?
 - bad tutor
 - poor observations

Reinforcement Learning

Q-Learning

- States
- Actions
- Q = Quality of outcome
- What actions lead to better states get a higher Q value
- Unsupervised learning based on playing numerous games

Alpha Go

- AlphaGo's first formal match was against the reigning 3-times European Champion, Mr Fan Hui, in October 2015.
- Unsupervised Learning studied thousands of Go Games

Alpha Go Zero

- 5 months later
- Alpha Go Zero outplays Alpha GO
- Uses Q-Learning

70 hours

AlphaGo Zero plays at super-human level.

The game is disciplined and involves multiple challenges across the board.

Reinforcement Learning

• See: https://skymind.ai/wiki/deep-reinforcement-learning

Categories of Supervised Learning

- Binary
- Multiclass
- Regression

Binary Classification

Approaches to Machine Learning

- Decision Trees
- k-nearest neighbor
- K-mean clustering
- Regression
 - we have looked at single variable and multiple variable regression

Decision Trees

 Use for binary classification with supervised machine learning. Should Yash go to the beach?

Predictors Outcome • Sky • Yash goes to the beach • Weekend • Wind speed

ervised Training Set			
Predictors			Outcome
Sky	Weekend	Wind	Yash goes to the beach
Sunny	Weekday	Low	No
Sunny	Weekday	High	No
Overcast	Weekday	Low	Yes
Rain	Weekday	Low	Yes
Rain	Weekend	Low	Yes
Rain	Weekend	High	No
Overcast	Weekend	High	Yes
Sunny	Weekday	Low	No
Sunny	Weekend	Low	Yes
Rain	Weekend	Low	Yes
Sunny	Weekend	High	Yes
Overcast	Weekday	High	Yes
Overcast	Weekend	Low	Yes
Rain	Weekday	High	No

k-nearest neighbor

k-nearest neighbor

- KNN one of simplest and most commonly used classifiers
- Does not actually train a model to predict
- An observation is predicted based on the class with the largest proportion of nearest neighbors
- If observation is surrounded by class Z, then we conclude our observation is class Z

make predictions by classifying your data with what you already know

a form of supervised learning

Code – k-nearest neighbor

Iris - dataset

The data set consists of 50 samples from each of three species of *Iris* (*Iris setosa*, *Iris virginica* and *Iris versicolor*). Four <u>features</u> were measured from each sample: the length and the width of the <u>sepals</u> and <u>petals</u>, in centimeters. Based on the combination of these four features, Fisher developed a linear discriminant model to distinguish the species from each other.

Ronald Fisher

K-Nearest Neighbor

```
1 # Load libraries
2 from sklearn.neighbors import KNeighborsClassifier
3 from sklearn.preprocessing import StandardScaler
4 from sklearn import datasets
1 # Load data
2 iris = datasets.load_iris()
3 X = iris.data
4 y = iris.target
1 # create standardizer
2 standardizer = StandardScaler()
4 # standarize features
5 X_std = standardizer.fit_transform(X)
```

```
1 # train KNN classifier with 5 neighbors
 2 knn = KNeighborsClassifier(n_neighbors=5, n_jobs=-1).fit(X_std,y)
 1 # create two observations
 2 new_observations = [[0.75, 0.75, 0.75, 0.75],
                       [1, 1, 1, 1]]
 5 # predict the class
 6 knn.predict(new_observations)
array([1, 2])
 1 # view probability of our observations is in one of three classes
 2 knn.predict_proba(new_observations)
array([[0. , 0.6, 0.4],
      [0.,0.,1.]])
```


k-Means Clustering

k-Means Clustering ≠ k-NN

k-means clustering is an unsupervised machine learning algorithm – developed in 1967

Use it to create clusters based on what the machine sees in the data

Assumes there are groups that are not labeled that have different characteristics

K-means clustering algorithm

- Input: K, set of points x₁ ... x_n
- Place centroids c₁ ... c_K at random locations
- Repeat until convergence:

distance (e.g. Euclidian) between instance x_i and cluster center c_i

- for each point x_i:
 - find nearest centroid c_i arg $\min_i D(x_i, c_j)$
 - · assign the point x_i to cluster j
- for each cluster $j = 1 \dots K$: $c_j(a) = \frac{1}{n} \sum x_i(a)$ for $a = 1 \dots d$
 - new centroid c_j = mean of all points x_i assigned to cluster j in previous step

STOP when none of the cluster assignments change

k-means assumptions

- Assumes clusters are convex shapes (circles, ellipses)
- All features equally scaled
- Groups are balanced have roughly the same number of observations

See: https://www.datascience.com/blog/k-means-clustering

Code

```
from sklearn import datasets
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans

#Load data
iris = datasets.load_iris()
features = iris.data

# standardize features
scaler = StandardScaler()
features_std = scaler.fit_transform(features)

# create K-means object
cluster = KMeans(n_clusters=3, random_state=0, n_jobs= -1)
```

Readings

- · Reinforcement Learning:
 - See: https://skymind.ai/wiki/deep-reinforcement-learning
- K-Means Clustering
 - See: https://www.datascience.com/blog/k-meansclustering
- KNN K-Nearest Neighbor
 - https://medium.com/@adi.bronshtein/a-quickintroduction-to-k-nearest-neighbors-algorithm-62214cea29c7
- Decision Trees
 - https://towardsdatascience.com/decision-trees-in-machine-learning-641b9c4e8052