ARCHITECTURES – Lesson-2: 8051 IO ports, Circuits and IO Programming and External Memory Circuits

1. IO PORTS

Ports P0 and P1 pins and alternative functions

P0

P0.0 P0.1 P0.2 P0.3 P0.4 P0.5 P0.6 P0.7 Also as AD0- AD7

Lower address bits cum data bus

P1

P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7 Also P1.6 as I²C clock, P1.7 as I²C serial data, and P1.0 and P1.1 for T2 (8052)

Ports P2 and P3 pins and alternative functions

P2

P2.0 P2.1 P2.2 P2.3 P2.4 P2.5 P2.6 P2.7 Also as A8- A15

Higher address-bits bus

P3

P3.0 P3.1 P3.2
P3.3 P3.4 P3.5
P3.6 P3.7
Also
RxD/SyncData,
TxD/SyncClk,
INT0/GT0,
INT1/GT1, T0,
T1, WR, RD

2. IO Circuits

IO port circuit for two stepper motors in a printer

IO port circuit for six servo motors in a robot

3. IO Byte Programming

Port Byte Programming

- 8051 internal IO ports P0, P1, P2 and P3 byte addresses used to access and perform read or write or other operations
- Direct 8-bit addresses of each are specified in the instructions
- Addresses of bytes at P0, P1, P2 and P3— 0x80, 0x90, 0xA0 and 0xB0.

Example 2.1

- MOV 0xA0, #0xFF moves bits to port P2 and P2 bits will become = 111111111b.
- MOV 0x90, #0x1C moves bits at port P1 = 00011100b.
- After this instruction, INC 0x90 will make P1 = 00011100b + 1 = 00011101b.

4. IO Bit Programming

Bit Programming

- Each port P0, P1, P2 and P3 8 bits and each bit has addresses to access and perform read or write or other operations using bit-manipulation instructions.
- Addresses are the *bit addresses*. Each *bit address* is of 8-bits, which are specified in the instructions.
- Bits P0.0 to P0.7 addresses 0x80 to 0x87.
- Bits P1.0 to P1.7 addresses 0x90 to 0x97,
- P2.0 to P2.7 0xA0 to 0xA7 and
- P3.0 to P3.7 0xB0 to 0xB7.

Bit Programming

- All instructions in the instruction set using bit addresses can be used to access and perform complement read or write or other operations.
- C flag in PSW Accumulator for bit logic operations.

Example 2.2

- CPL 0x90 complements the bit 0 at port P1.
- CLR 0x80 makes P0.0 as 0. Now after a delay of period= T1, the SETB 0x80 will make P0.0 as 1. Now after a delay of period= T2, the CLRB 0x80 will make gain P0.0 as 0.

A pulse of time-period T2 and duty cycle 100 ×T1/(T1 + T2) creates if the instructions are executed in a loop.

Example 2.2 (contd.)

- SETB C will set carry bit in PSW to 1. After this operation, ANL C, 0x93 will perform logic AND operation between bits C and P1.3 and result will be in C. If P1.3 = 0 then C will become 0 else C will remain 1.
- CLR C will reset (clear) carry bit in PSW to 0. After this operation, ORL C, 0xB2 will perform logic OR operation between bits C and P3.2 and result will be in C. If P3.2 = 0 then C will remain 0 else C will remain 1. After this operation, MOV 0x85, C will move result in C to P0.5.

5. External Memory and Port Circuits

Memory mapped IO

- 8051 Memory and ports assigned the addresses such each have distinct range of addresses in the data memory address space.
- Interfacing circuit design identical to that for the memory connects the external ports and programmable peripheral interface (PPI).

Connection to the external program and data memory circuits

Interfacing using external PPI port in 8051

Port P0 used in expanded mode and ALE

- AD0-AD7 the multiplexed signals of A0-A7 lower address bits of the address bus and D0-D7 bits of data bus.
- A0-A7 and D0-D7 time division multiplexed. For an interval, the processor activates ALE (address latch enable) in an instruction cycle and the AD0-AD7 lines have A0-A7 and a latch circuit separates A0-A7 signals for the memory

Harvard Memory Architecture

- Two sets of memory—program memory and data memory.
- Two control signals—PSEN and RD to control read from program memory or data memory.
- Control signal ALE to control use of AD0-AD7 as address or data at a given instance

Port P2 expanded mode, PSEN and RD

- A8-A15 address signals —
- When the processor activates PSEN
 (Program store enable), it reads the byte from external program memory through D0-D7 data bus.
- When the processor activates RD (read), it reads the byte from external data memory through D0-D7 data bus.

Addresses outside the internal RAM, SFR and internal program memory when control signal EA inactive

- Then processor always accesses the external memory whether EA active or not.
- Internal RAM and SFR addresses between 0x00 and 0xFF are same as external data memory addresses 0x0000 and 0xFFFF.
- Internal program memory addresses between 0x0000 to 0xFFF (in case of 4 kB internal ROM) are same as external program memory addresses 0x0000 and 0xFFFF.

Control signal EA

When a control signal EA activate —
 processor always accesses the external
 addresses in memory instead of internal
 memory or register addresses

Summary

We learnt

- IO port Pins for P0, P1, P2, P3
- IO port circuit examples
- Examples of IO port byte programming
- Examples of IO port bit programming
- Memory mapped IO
- Interfacing circuits to external memory or Port
- Harvard memory external data and program memory

End of Lesson 2 of Chapter 2