Inteligencia Artificial y Aprendizaje Automático

Proyectos Finales y Conclusiones

Presentan:

Ulises Olivares Pinto
Yoshelyn Yanori Mendoza Alfaro
Alan Poisot Palacios

Contenido

Avances Recientes

Descripción de proyectos finales

Exposición y entrega

Conclusiones y cierre

Figure

La startup de robótica Figure recauda 675 mdd de Microsoft, Nvidia y OpenAI

Figure, con sede en Sunnyvale, California, también dijo que firmó una colaboración con OpenAI para desarrollar inteligencia artificial generativa para sus robots humanoides.

Figure Robot Humanoide

Figure Robot Humanoide

Figure Robot Humanoide

Open Al Sora

We're sharing our research progress early to get feedback from people outside of OpenAl and to give people a sense of what Al capabilities are on the horizon.

We will be taking several important safety steps before this research becomes available in any of our products.

Sora is a new Al model that can create realistic and imaginative scenes from text prompts.

¿Cómo funciona SORA?

Entrenamiento de modelos y robots

Desarrollo de proyectos

- Se deberán formar equipos de 5 8 personas.
- Se deberá seleccionar un proyecto y desarrollarlo durante la sesión.
- Se deberá presentar un demo funcional a través de una presentación.
- La calificación final del curso dependerá de este proyecto.

1. Clasificación de Imágenes con CNN

- Utilizar un subset del dataset Chest X-Ray Images (Pneumonia) para identificar presencia o ausencia de neumonía.
- Actividad: Preprocesamiento básico de imágenes, diseño de una CNN simple, entrenamiento y evaluación del modelo.

2. Generación de Texto con RNN

- Generar texto usando un conjunto pequeño de ejemplos de textos literarios, por ejemplo, poemas de un autor específico.
- Actividad: Carga de texto, tokenización, creación de secuencias, diseño de una RNN simple, entrenamiento y generación de texto.

3. Predicción de Series Temporales con LSTM

- Utilizar el dataset de <u>Air Quality</u> para predecir los niveles de contaminación del aire en las próximas 24 horas.
- Actividad: Preparación de datos para series temporales, diseño de una red LSTM, entrenamiento y predicción.

Proyectos

Proyectos

4. Modelado Generativo con Autoencoders Variacionales (VAE)

- Tarea Simplificada: Generar dígitos manuscritos utilizando el dataset MNIST como ejemplo de estructuras simples.
- Actividad: Implementación de un VAE simple, entrenamiento con MNIST y generación de imágenes nuevas.

5. Reconocimiento de Voz con CNNs y RNNs

- Tarea Simplificada: Clasificar comandos de voz simples usando el dataset Speech Commands.
- Actividad: Preprocesamiento de señales de audio, diseño de un modelo combinado de CNN y RNN, entrenamiento y clasificación.

6. Análisis de Sentimientos con Redes Neuronales

- Tarea Simplificada: Analizar el sentimiento (positivo/negativo) de críticas de películas utilizando el dataset IMDB.
- Actividad: Preprocesamiento de texto, diseño de una red neuronal simple para análisis de sentimientos, entrenamiento y evaluación.

7. Detección de Objetos con YOLO

- Tarea Simplificada: Identificar y clasificar objetos en imágenes usando un modelo YOLO preentrenado sobre un conjunto limitado de categorías.
- Actividad: Uso de un modelo YOLO preentrenado, interpretación de resultados en imágenes de prueba.

8. Creación de Arte Generativo con GANs

- Tarea Simplificada: Generar imágenes que imiten el dataset MNIST para introducir el concepto de arte generativo.
- Actividad: Implementación de una GAN simple, entrenamiento con MNIST y generación de imágenes.

Proyectos