Математический анализ

Дима Трушин

Семинар 1

Эта серия семинаров будет посвящена математическому анализу. Математический анализ – это такое ОФП в мире математики. Вы занимаетесь всякой вычислительной фигней, пока не нарастите «научные мышцы» в вашей голове до некого минимума. И задача матанализа даже не в том, чтобы научить вас чему-то конкретному, а чтобы привести мозги в форму. Матанализ можно рассказывать по-разному. Можно с нуля последовательно излагать какую-то теорию, а можно рассказывать идеи задач и как их решать. И эти два подхода кардинально отличаются друг от друга. Первый подход вы скорее всего уже видели на младших курсах технических (или кому повезло (или не повезло)) математических факультетов. Задача первого подхода – показать вам, что есть в матанализе и какой у всего этого геометрический смысл. И тут сложно будет удивить вас чем-то новым или чем-то, чего вы не знаете. При изложении линейной алгебры или теории вероятности так получилось, что все, чем я вас мог удивить из матанализа, укладывалось в пару слов между делом. Потому мы этим путем не пойдем, а пойдем по пути идей и задач. Тем более, именно этот подход приблизит нас к умению решать задачи.

Ряды

Пусть a_n – некоторая числовая последовательность, тогда выражение $\sum_{n=1}^{\infty} a_n$ называется числовым рядом с членом a_n . Строго, мы должны сформировать выражение $S_m = \sum_{n=1}^m a_n$ и тогда $\sum_{n=1}^{\infty} a_n = \lim_{m \to \infty} S_m$. А как мы знаем предел последовательности может и не существовать. Если этот предел существует, то говорят, что ряд $\sum_{n=1}^{\infty} a_n$ сходится. Это так называемая обычная сходимость ряда. Кроме нее есть еще абсолютная сходимость. Говорят, что ряд $\sum_{n=1}^{\infty} a_n$ абсолютно сходится, если сходится ряд $\sum_{n=1}^{\infty} |a_n|$.

Прежде, чем двигаться дальше, я хочу сделать пару общих замечаний. Сходимость рядов – благодатная тема для того, чтобы сделать бесконечное количество занятий с бесконечным числом задач. Для того, чтобы сориентироваться в том, что надо знать, стоит иметь перед собой некоторую дорожную карту идей и технических трюков, которые могут пригодиться. Потому я хочу начать с изложения этой самой дорожной карты.

Обзор идей

Напомню, что задача у нас такая: есть числовая последовательность a_n и мы хотим понять сходится ли ряд $\sum_{n=1}^{\infty} a_n$ (в обычном и абсолютном смысле).

Что нужно знать

- 1. Некоторые общие факты о сходимости любых рядов.
 - Ну, это просто необходимый джентельменский минимум, про который хорошо бы вспоминать в трудную минуту. Особенно, чтобы избежать анализа в глупых ситуациях, когда и так все ясно (например, если a_n не стремится к нулю, то уж точно ряд расходится, об этом чуть ниже). Благо тут фактов не много.
- 2. Некоторый список «всем известных» рядов с информацией об их сходимости.
 - К этим рядам надо относиться как к некоторому стартовому материалу. Кроме того, многие задачи построены так, что разными трюками проверка сходимости сводится к этим самым известным рядам.
- 3. Некоторые общеизвестные ряды тейлора для популярных функций.
 - Ряды тейлора это один из неиссякаемых источников для построения обычных рядов. Во-первых, полезно распознать в сумме $\sum_{n=1}^{\infty} \frac{1}{n!}$ число e. Во-вторых, ряды тейлора можно дифференцировать и

умножать на переменную, тем самым порождая новые ряды, которые пусть нам и не знакомы, но сводятся к знакомым.

- 4. Признаки сходимости. Тут можно выделить три класса рядов:
 - (а) а_п положительные и убывают (не возрастают). В этом классе оказывается, что все определено асимптотикой последовательности а_п, на сколько она быстро идет к нулю. Потому тут огромное количество методов, завязанных на замене последовательности на эквивалентные. Еще одно важное наблюдение, в этом случае вопрос сходимости рядов можно сходить к вопросу сходимости интегралов и наоборот.
 - (b) а_п неотрицательные. В случае неотрицательности последовательность может идти к нулю с разными скоростями, потому говорить о какой-то асимптотике часто не приходится. Однако, в случае положительных чисел, можно легко делить неравенства на члены последовательностей. На этом приеме завязано много критериев и признаков, которые не работают в общем случае.
 - (c) a_n любое, но представляется в виде $a_n = b_n c_n$ с какими-то дополнительными свойствами. Идея тут в том, чтобы разделить в a_n две компоненты: одна отвечает за флуктуации (колебания), а вторая за стремление к нулю. Подобные методы основаны на «суммировании по частям», аналоге интегрирования по частям.
- 5. Еще может понадобится всякая техническая белиберда, позволяющая находить асимптотику выражений. Особенно в качестве подобных выражений любят использовать интегралы. Потому надо уметь отвечать на подобные вопросы.

Предварительные факты

Верхняя и нижняя грани Пусть $X\subseteq\mathbb{R}$ – произвольное подмножество на прямой, тогда можно определить его верхнюю грань – супремум $\sup X$ и нижнюю грань – инфимум $\inf X$. Число $a\in\mathbb{R}$ – это супремум для X, то есть $a=\sup X$, если $x\leqslant a$ для любого $x\in X$ и a самое маленькое число с таким свойством. Аналогично, число $b\in\mathbb{R}$ – это инфимум для X, то есть $b=\inf X$, если $b\leqslant x$ для любого $x\in X$ и b самое большое число с таким свойством. Если X ограничено сверху, то супремум будет конечным числом, иначе ∞ . Аналогично, если множество X ограничено снизу, то инфимум будет конечным числом, иначе $-\infty$.

Верхний и нижний пределы Пусть есть последовательность $a_n \in \mathbb{R}$. Тогда можно определить ее верхний и нижний пределы: $\varinjlim_{n \to \infty} a_n$ и $\varliminf_{n \to \infty} a_n$. Хочу сразу отметить, что в отличие от пределов, они будут существовать всегда (но могут быть бесконечностями). Формальное определение следующее

$$\overline{\lim}_{n \to \infty} a_n = \lim_{n \to \infty} \left(\sup_{k \geqslant n} a_k \right) \quad \text{if} \quad \underline{\lim}_{n \to \infty} a_n = \lim_{n \to \infty} \left(\inf_{k \geqslant n} a_k \right)$$

Давайте разберемся, что это на примере первого. Мы из последовательности a_n строим новую последовательность $b_n = \sup_{k \geqslant n} a_k$ и уже берем ее предел. Как устроена b_n ? Мы рассматриваем элементы a_k для всех $k \geqslant n$ и берем из них «самый большой» (самого большого может не быть, по этому берем супремум). То есть мы подходим к пределу по самым большим значениям внутри последовательности a_n . Можно аккуратно показать, что если $a = \overline{\lim_{n \to \infty}} a_n$, то существует подпоследовательность a_{nk} такая, что $a = \lim_{k \to \infty} a_{nk}$, и при этом для любой другой сходящейся подпоследовательности ее предел будет не больше a. То есть последовательность a_n может сама не сходиться, но мы можем рассмотреть сходящуюся подпоследовательность с наибольшим пределом. Вот этот наибольший предел и будет верхним пределом. Аналогичные рассуждения для нижнего предела я опущу.

Примеры

- Возьмем последовательность $a_n = (-1)^n$. Тогда эта последовательность не сходится. Однако, $\sup_{k\geqslant n} (-1)^k = 1$, а $\inf_{k\geqslant n} (-1)^k = -1$. Потому $\overline{\lim_{n\to\infty}} (-1)^n = 1$, а $\underline{\lim_{n\to\infty}} (-1)^n = -1$. Кроме того, обратите внимание, что эта последовательность по четным номерам идет к 1, а по нечетным к -1.
- Пусть $a_n = \frac{1}{n}$. Тогда $\sup_{k \geqslant n} \frac{1}{k} = \frac{1}{n}$, а $\inf_{k \geqslant n} \frac{1}{k} = 0$. В этом случае $\overline{\lim}_{n \to \infty} \frac{1}{n} = 0$ и $\underline{\lim}_{n \to \infty} \frac{1}{n} = 0$. Это не удивительно, последовательность сходится к числу 0 это ее единственная предельная точка.

Общие факты о сходимости

Пусть у нас есть ряд $\sum_{n=0}^{\infty} a_n$. Давайте обсудим несколько общих вещей.

- Если ряд сходится, то обязательно $a_n \to 0$ при $n \to \infty$. То есть, если вы видите, что член ряда не идет к нулю, то у вас нет никакой сходимости.
- Если $S_n = \sum_{k=0}^n a_k$, то сходимость ряда это сходимость последовательности S_n . А для сходимости последовательности есть критерий Коши. По простому он формулируется так: последовательность S_n сходится при $n \to \infty$ тогда и только тогда, когда $|S_n S_m| \to 0$ при $m, n \to \infty$. Более точно, S_n сходится при $n \to \infty$ тогда и только тогда, когда для любого $\varepsilon > 0$ существует n_0 такое, что $|S_n S_m| < \varepsilon$ для любых $n, m \geqslant n_0$.

Для рядов этот критерий формулируется так: ряд $\sum_{n=0}^{\infty} a_n$ сходится тогда и только тогда, когда для любого $\varepsilon > 0$ существует номер n_0 такой, что $|\sum_{k=m}^n a_k| < \varepsilon$ при $n, m \geqslant n_0$. Для абсолютной сходимости будет так: ряд $\sum_{n=0}^{\infty} a_n$ сходится абсолютно тогда и только тогда, когда для любого $\varepsilon > 0$ существует номер n_0 такой, что $\sum_{k=m}^{n} |a_k| < \varepsilon$ при $n, m \geqslant n_0$.

У критерия Коши есть пара бонусов. Во-первых, это критерий, то есть это условие равносильно сходимости, и если оно не выполнено, то сходимости нет. Во-вторых, оно позволяет избавиться от неизвестного предела и пользоваться оценками на a_n сверху. Если не получилось подогнать ни под какой более специализированный признак сходимости, то этот критерий – ваша последняя надежда, чтобы справиться в лоб.

• Если $a_n \geqslant 0$ то ряд $\sum_{n=0}^{\infty} a_n$ сходится тогда и только тогда, когда он ограничен сверху. То есть частичные суммы $S_n = \sum_{k=0}^n a_k$ ограничены сверху для любого n.

Ряды Wanted

Список тех, кого надо знать в лицо:

- Ряд $1+q+q^2+\ldots+q^n+\ldots$ сходится при |q|<1 абсолютно, при $|q|\geqslant 1$ расходится.
- Ряд $\sum_{k=1}^{\infty} \frac{1}{n^a}$ сходится при a>1 и расходится при $a\leqslant 1.$ В частности:
 - Ряд $\sum_{k=1}^{\infty} \frac{1}{n}$ расходится.
 - Ряд $\sum_{k=1}^{\infty} \frac{1}{n^2}$ сходится.

Ряды тейлора Most Wanted

В начале общий факт про степенные ряды. Пусть у вас есть ряд вида $f(x) = \sum_{n=0}^{\infty} a_n x^n$ и пусть $r = \frac{1}{\overline{\lim_{n \to \infty} \sqrt[n]{|a_n|}}}$ (то есть последовательность $\sqrt[n]{|a_n|}$ сходиться не обязана, но мы берем ее самую большую предельную точку). Тогда

- 1. Ряд абсолютно сходится при |x| < r и расходится при |x| > r. Поведение в точках |x| = r зависит от ряда и может быть разным.
- 2. На любом отрезке внутри интервала (-r,r) сходимости ряд сходится равномерно, то есть его там можно интегрировать. То есть для любых $a,b \in (-r,r)$ верно

$$\int_{a}^{b} \sum_{n=0}^{\infty} a_n x^n dx = \sum_{n=0}^{\infty} \int_{a}^{b} a_n x^n dx = \sum_{n=0}^{\infty} a_n \left. \frac{x^{n+1}}{n+1} \right|_{a}^{b} = \sum_{n=0}^{\infty} a_n \frac{b^{n+1} - a^{n+1}}{n+1}$$

3. Внутри интервала сходимости (-r,r) ряд можно дифференцировать. То есть для любого $x \in (-r,r)$ верно

$$\left(\sum_{n=0}^{\infty} a_n x^n\right)' = \sum_{n=0}^{\infty} a_n n x^{n-1}$$

Список тех, кого стоит знать в лицо:

• Экспонента

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \ldots + \frac{x^n}{n!} + \ldots = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Сходится при всех $x \in \mathbb{R}$ абсолютно.

• Логарифм

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n+1} \frac{x^n}{n} + \dots = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}$$

Сходится при всех |x| < 1 абсолютно, в точке x = 1 сходится, но не абсолютно, в других расходится.

• Бином

$$(1+x)^{\alpha} = 1 + \frac{\alpha}{1!}x + \frac{\alpha(\alpha-1)}{2!}x^2 + \dots + \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!}x^n + \dots = 1 + \sum_{n=1}^{\infty} {\binom{\alpha}{n}}x^n$$

Сходится при всех |x|<1 абсолютно. При других x его поведение зависит от конкретного значения α .

• Геометрический ряд

$$\frac{1}{1-x} = 1 + x + x^2 + \ldots + x^n + \ldots = \sum_{n=0}^{\infty} x^n$$

Сходится абсолютно для всех |x| < 1 и расходится при $|x| \ge 1$.

• Синус

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

Сходится абсолютно для любого $x \in \mathbb{R}$.

• Косинус

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

Сходится абсолютно для любого $x \in \mathbb{R}$.

Теперь, обратим внимание на трюки. Пусть вам, скажем, выдали ряд вида

$$\sum_{n=0}^{\infty} (-1)^n \frac{(n+1)}{n!}$$

Тогда

$$e^{-x} = \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{n!}$$

Умножим на x эту функцию и продифференцируем, получим

$$\phi(x) = (xe^{-x})' = \sum_{n=0}^{\infty} (-1)^n \frac{(n+1)x^n}{n!}$$

Значит, искомый ряд есть $\phi(1)$ и надо лишь посчитать выражение $(xe^{-x})'$.

Сходимость монотонных положительных

Теперь пора приступить к более специализированным признакам. Здесь везде предполагается, что $a_n > 0$, a_n не возрастает и стремится к нулю.

- Пусть $f: \mathbb{R} \to \mathbb{R}$ невозрастающая функция такая, что $a_n = f(n)$. Тогда ряд $\sum_{n=0}^{\infty} a_n$ сходится тогда и только тогда, когда сходится интеграл $\int\limits_0^{\infty} f(x) \, dx$.
- Ряд $\sum_{n=0}^{\infty} a_n$ сходится тогда и только тогда, когда сходится ряд $\sum_{n=0}^{\infty} 2^n a_{2^n}$.

Сходимость положительных

Напомню, что тут мы рассматриваем ряд $\sum_{n=0}^{\infty} a_n$ с условием, что $a_n \geqslant 0$. Начнем с общих фактов:

- Если последовательность a_n эквивалентна последовательности b_n , то есть $\frac{a_n}{b_n}$ стремится к ненулевому числу c, то ряд $\sum_{n=0}^{\infty} a_n$ сходится тогда и только тогда, когда сходится ряд $\sum_{n=0}^{\infty} b_n$.
- Еще полезно перед глазами держать всякие неравенства. Если выполняется

$$a_n \leqslant b_n$$
 или $\frac{a_{n+1}}{a_n} \leqslant \frac{b_{n+1}}{b_n}$

 $a_n\leqslant b_n$ или $\frac{a_{n+1}}{a_n}\leqslant \frac{b_{n+1}}{b_n}$ то из сходимости ряда $\sum_{n=0}^\infty b_n$ следует сходимость ряда $\sum_{n=0}^\infty a_n$, а из расходимости ряда $\sum_{n=0}^\infty a_n$ следует расходимость ряда $\sum_{n=0}^\infty b_n$.

Проверка асимптотики Очень часто так бывает, что $a_n = f(n)$ для некоторой дифференцируемой функции. Если же так оказалось, что $b_n = g(n)$, где g – дифференцируемая функция и выходите проверить эквивалентна ли a_n и b_n . То вам достаточно посчитать $\lim_{x\to\infty}\frac{f(x)}{g(x)}$. В общем случае, если функции f и g произвольные, возможны следующие варианты:

	$\lim f(x) = 0$	$\lim f(x) = a$	$\lim f(x) = \infty$
$\lim g(x) = 0$?	∞	∞
$\lim g(x) = b$	0	$\frac{a}{b}$	∞
$\lim g(x) = \infty$	0	0	?

Однако, если a_n и b_n взялись из рядов и вы проверили необходимые условия, то оба предела равны 0. Для разрешения указанных неопределенностей используется правило Лопиталя, а именно: пусть $f,g\colon\mathbb{R}\to\mathbb{R}$ – дифференцируемые функции такие, что либо $\lim_{x\to x_0}f(x)=\lim_{x\to x_0}g(x)=0$ или $\lim_{x\to x_0}f(x)=\lim_{x\to x_0}g(x)=\infty$, тогда

$$\lim_{x\to x_0}\frac{f(x)}{g(x)}=\lim_{x\to x_0}\frac{f'(x)}{g'(x)}\quad \text{при условии }g'(x)\neq 0 \text{ в окрестности }x_0^{\bf 1}$$

В этом случае точка x_0 может быть равной ∞ или $-\infty$.

Правило Лопиталя объясняет почему $\frac{\sin x}{x}$ принимает значение 1 при x=0. Действительно,

$$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\cos x}{1} = 1$$

Серия признаков на асимптотику Теперь я сформулирую несколько других признаков. Обратите внимание, что последние три уточняют друг друга. Хочу заметить, что у всех этих признаков есть две формы: громоздкая через неравенства и кратка через предел. Недостаток первой – ее сложнее запомнить. Недостаток второй - она дает результат чуть хуже, чем первая. Однако, можно воспользоваться верхним или нижним пределом и записать признак в удобной форме без потери его силы. Я предпочел третий способ.²

- Рассмотрим $q = \overline{\lim}_{n \to \infty} \sqrt[n]{a_n}$. Если q < 1, то ряд сходится, если q > 1, то ряд расходится. Если q = 1 и начиная с некоторого номера выполнено $\sqrt[n]{a_n} \geqslant 1$, то ряд расходится. В остальных случаях признак
- Рассмотрим $q_0 = \overline{\lim}_{n \to \infty} \frac{a_{n+1}}{a_n}$. Если $q_0 < 1$, то ряд сходится, если $q_0 > 1$, то ряд расходится. Если $q_0 = 1$ и начиная с некоторого номера выполнено $\frac{a_n}{a_{n+1}} \geqslant 1$, то ряд расходится. В остальных случая признак
- Предположим, что $q_0=1$, тогда рассмотрим $p_1=\varliminf_{n\to\infty}\Big(n\left(\frac{a_n}{a_{n+1}}-1\right)\Big)$. Обратите внимание, что тут дробь в перевернутом виде по сравнению с предыдущим пунктом! Потому я называю предельное число p_1 , чтобы это запомнить. Если $p_1>1$, то ряд сходится, а при $p_1<1$ ряд расходится. Если $p_1=1$ и начиная с некоторого номера $n\left(\frac{a_n}{a_{n+1}}-1\right)\leqslant 1$, то ряд расходится. В остальных случаях признак

 $^{^{1}}$ Это условие никогда не является проблемой, ибо оно говорит, что функция q(x) была константой, а в этом случае не было смысла применять правило Лопиталя.

 $^{^{2}}$ Тут надо понимать, что первым делом надо броситься считать обычные пределы. Если они существуют, то вопросов к признаку нет. Верхний и нижний пределы нужны, если обычные не существуют, но так бывает крайне редко в хорошо подобранных задачах. Ну только если вам не пытаются устроить геноцид или пытку.

• Предположим $p_1=1$. Тогда рассмотрим $p_2=\varliminf_{n\to\infty}\left(\ln n\left(n\left(\frac{a_n}{a_{n+1}}-1\right)-1\right)\right)$. Если $p_2>1$, то ряд сходится. Если $p_2<1$, то ряд расходится. Если $p_2=1$ и начиная с некоторого номера $\ln n\left(n\left(\frac{a_n}{a_{n+1}}-1\right)-1\right)\leqslant 1$, то ряд расходится. В остальных случаях признак бессилен.

Сходимость общих рядов

В этом случае появляется разница между сходимостью и абсолютной сходимостью. Есть три варианта: ряд может расходиться, может расходиться абсолютно, но все же сходиться или может сходиться абсолютно. Чтобы проверить абсолютную сходимость ряда $\sum_{n=0}^{\infty} a_n$, надо рассмотреть ряд $\sum_{n=0}^{\infty} |a_n|$ и мы находимся в предположениях предыдущего раздела. Потому тут будем обсуждать исключительно сходимость ряда (не абсолютную). В этом случае обычно последовательность a_n представляют в виде произведения $a_n = b_n c_n$, где b_n отвечает за смену знака, а c_n за стремление к нулю.

Прежде чем формулировать признаки, давайте я расскажу на чем они все основаны. Есть такой метод – суммирование по частям, аналог интегрирования по частям. Давайте попробуем применить этот метод для $S_n = \sum_{k=1}^n b_k c_k$. Давайте введем $B_n = \sum_{k=1}^n b_k$. Тогда $b_k = B_k - B_{k-1}$ (при этом считаем, что $B_0 = 0$). Тогда распишем ряд

$$S_n = \sum_{k=1}^n b_k c_k = \sum_{k=1}^n (B_k - B_{k-1}) c_k = \sum_{k=1}^n B_k c_k - \sum_{k=1$$

Теперь чтобы гарантировать сходимость S_n надо гарантировать сходимость B_nc_n и сходимость ряда $\sum_{k=1}^{\infty} B_k(c_k-c_{k+1})$. И тут есть разные варианты. Например, можно потребовать, чтобы B_n были ограничены и c_n шли к нулю, или B_n пусть идут к 0, а c_n ограничены. И так далее. Все признаки, которые я сейчас приведу ниже, основаны ровно на этом трюке и за ними не стоит никакой другой идеи. Если вы вдруг понимаете, что вам нужен подобный признак, а вы его не помните, то вы всегда можете попытаться вывести его, сделав интегрирование по частям и проверив то, что нужно конкретно в вашем случае.

Здесь мы будем рассматривать ряд вида $\sum_{n=0}^{\infty} b_n c_n$.

- Пусть последовательность $B_n = \sum_{k=0}^{\infty} b_k$ ограничена, последовательность c_n не возрастает и стремится к нулю. Тогда ряд $\sum_{n=0}^{\infty} b_n c_n$ сходится.
- Пусть последовательность $B_n = \sum_{k=0}^{\infty} b_k$ ограничена, последовательность c_n стремится к нулю и ряд $\sum_{n=1}^{\infty} (c_n c_{n-1})$ абсолютно сходится. Тогда ряд $\sum_{n=0}^{\infty} b_n c_n$ сходится.
- Ряд $\sum_{n=0}^{\infty} b_n$ сходится, последовательность c_n монотонна и ограничена. Тогда ряд $\sum_{n=0}^{\infty} b_n c_n$ сходится.

Полезный частный случай первого признака такой: пусть ряд $\sum_{n=0}^{\infty} (-1)^n a_n$. Если a_n монотонно стремится к нулю, то ряд сходится.

Оценки для интегралов

Предположим, что член ряда у вас задан в виде

$$a_k = \int_{0}^{\frac{\sin k}{k}} \frac{\sin t}{t} \, dt$$

Мы видим, что по сути член ряда имеет вид

$$b_k = \int_0^{\delta_k} f(x) \, dx$$

где f(x) непрерывна в окрестности нуля, а последовательность δ_k стремится к нулю.

Давайте я объясню, как оценивать асимптотику b_k в этом случае. Интуитивно надо представлять себе так: рядом с нулем, функция приблизительно равна f(0), а интеграл от нее будет приблизительно $f(0)\delta_k$. Остается лишь точно оценить разницу между этими двумя членами. Рассмотрим

$$\int_{0}^{\delta} f(x) \, dx - f(0)\delta = \int_{0}^{\delta} f(x) \, dx - \int_{0}^{\delta} f(0) \, dx = \int_{0}^{\delta} (f(x) - f(0)) \, dx$$

Тогда

$$\left| \int_{0}^{\delta} f(x) \, dx - f(0)\delta \right| \leqslant \int_{0}^{\delta} \left| f(x) - f(0) \right| dx$$

Теперь предположим, что функция f дифференцируема. Тогда для нее есть такое представление $f(x)-f(0)=f'(\theta)x$, где θ между 0 и x. Еще заодно предположим, что производная f' ограничена, а именно $|f'(x)|\leqslant C$ при x в окрестности нуля. Тогда при достаточно малом δ верна оценка

$$\int\limits_{0}^{\delta} |f(x) - f(0)| \, dx = \int\limits_{0}^{\delta} |f'(\theta)x| \, dx \leqslant \int\limits_{0}^{\delta} Cx \, dx = C \frac{\delta^2}{2}$$

То есть мы показали, что при достаточно малых δ верна оценка

$$\left| \int_{0}^{\delta} f(x) \, dx - f(0) \delta \right| \leqslant C \frac{\delta^{2}}{2}$$

А значит

$$\left| \frac{\int\limits_0^{\delta_k} f(x) \, dx}{f(0) \delta_k} - 1 \right| \leqslant C \frac{\delta_k}{2f(0)} \to 0 \quad \text{при } k \to \infty$$

То есть последовательность b_k эквивалентна последовательности $f(0)\delta_k$. Если вдруг оказывается, что последовательности b_k и $f(0)\delta_k$ не являются знакопостоянными, то можно попытаться напрямую из оценки

$$\left| \int_{0}^{\delta} f(x) \, dx - f(0) \delta \right| \leqslant C \frac{\delta^{2}}{2}$$

выводить эквивалентность сходимости рядов $\sum_{k=0}^{\infty} b_k$ и $\sum_{k=0}^{\infty} f(0)\delta_k$. Например, это можно сделать, если ряд из $C\frac{\delta^2}{2}$ сходится. Давайте проделаем это. В этом случае

$$-C\frac{\delta_k^2}{2} \leqslant \int_0^{\delta_k} f(x) \, dx - f(0)\delta_k \leqslant C\frac{\delta_k^2}{2}$$

А значит

$$-\sum_{k=m}^{n} C \frac{\delta_k^2}{2} \leqslant \sum_{k=m}^{n} \int_{0}^{\delta_k} f(x) \, dx - \sum_{k=m}^{n} f(0) \delta_k \leqslant \sum_{k=m}^{n} C \frac{\delta_k^2}{2}$$

То есть

$$\left|\sum_{k=m}^{n} \int_{0}^{\delta_{k}} f(x) dx - \sum_{k=m}^{n} f(0) \delta_{k}\right| \leqslant \sum_{k=m}^{n} C \frac{\delta_{k}^{2}}{2}$$

Если ряд с членом δ_k^2 сходится, то по критерию Коши левая часть неравенства мала при $m,n\geqslant N,$ а значит и левая часть мала. Если при этом сходится ряд с членом δ_k , то вычитаемое в скобках будет мало, а значит и уменьшаемое мало при $m,n\geqslant N.$ А значит по критерию Коши сходится и ряд из интегралов. Аналогично, если сходится ряд из интегралов, то должен сходиться ряд и из δ_k .

Ограниченность сумм для синуса

В случае знакопеременных рядов приходится доказывать ограниченность частичных сумм некоторых рядов $\sum_{k=0}^{n} a_k$. Одним из самых известных рядов в этом случае является $B_n = \sum_{k=1}^{n} \sin k$. Давайте докажем,

что B_n ограничено. Оказывается, что эту сумму можно просто посчитать в лоб. Но для этого приходится пользоваться комплексными числами. А именно

$$e^{ix} = \cos x + i \sin x$$

Тогда $\sin x = \operatorname{Im} e^{ix}$. В этом случае

$$B_n = \operatorname{Im}(e^i + e^{i2} + \dots + e^{in}) = \operatorname{Im} \sum_{k=1}^n (e^i)^k$$

А в этом случае можно посчитать все с помощью геометрической прогрессии

$$\sum_{k=1}^{n} (e^{i})^{k} = e^{i} \frac{1 - e^{in}}{1 - e^{i}} = e^{i} \cdot e^{i\frac{n}{2}} \cdot e^{-i\frac{1}{2}} \cdot \frac{e^{-i\frac{n}{2}} - e^{i\frac{n}{2}}}{e^{-i\frac{1}{2}} - e^{i\frac{1}{2}}} = e^{i\frac{n+1}{2}} \frac{\sin\left(\frac{n}{2}\right)}{\sin\left(\frac{1}{2}\right)}$$

А значит

$$B_n = \sum_{k=1}^n \sin k = \frac{\sin\left(\frac{n+1}{2}\right)\sin\left(\frac{n}{2}\right)}{\sin\left(\frac{1}{2}\right)}$$

Откуда $|B_n| \leqslant \frac{1}{\sin(1/2)}$.