```
SEQUENCE LISTING
     <110> Degussa AG
 5
   <120> Process for preparing optically active amino acids using a whole-
     cell catalyst
     <130> 040055 AM
10
   <160> 13
     <170> PatentIn version 3.1
     <210> 1
     <211> 47
<212> DNA
<213> Artificial
15
     <220>
2<u>0</u> <2<u>23</u>> _Primer_
     <400> 1
                                                                            47
     aaaaaactta agaaggagat atacatatga cattagaaat cttcgaa
25
     <210> 2
     <211> 32
     <212> DNA
     <213> Artificial
30
     <220>
     <223> Primer
     <400> 2
35
                                                                            32
    aaaaaactgc agttagcgac ggctaataat at
     <210> 3
     <211> 30
    <212> DNA
40
     <213> Artificial
     <220>
     <223> Primer
45
     <400> 3
     aaaaaacata tgaagattgt cttagttctt
                                                                            30
50
     <210> 4
     <211> 32
     <212> DNA
     <213> Artificial
55
    <220>
     <223> Primer
```

<400> 4 aaaaaagacg tcttatttct tatcgtgttt ac 32 2/26

5	<210 <211 <212 <213	L> 1 2> I	5 1120 DNA Bacil	llus	cere	eus												
10	<220 <221 <222 <223	L> (}>	CDS (20).	(11	L20)													
15	<400 ttaa			gatat	cacat											a aaa 1 Lys		52
20	tat Tyr	gat Asp	tat Tyr	gag Glu 1 <u>5</u>	caa Gln	gta Val	gta Val	Phe	tgt Cys 20_	caa Gln	gat Asp	aaa Lys	gaa Glu	tct Ser 25	ggt Gly	tta Leu		100
0.5	aaa Lys	gca Ala	att Ile 30	att Ile	gca Ala	att Ile	cat His	gat Asp 35	aca Thr	aca Thr	ctt Leu	gga Gly	ccg Pro 40	gct Ala	ctt Leu	ggt Gly	-	148
25	gga Gly	aca Thr 45	aga Arg	atg Met	tgg Trp	aca Thr	tat Tyr 50	gat Asp	tct Ser	gaa Glu	gaa Glu	gcg Ala 55	gcg Ala	att Ile	gaa Glu	gat Asp		196
30	gca Ala 60	ttg Leu	cgt Arg	ctt Leu	gca Ala	aaa Lys 65	gly ggg	atg Met	aca Thr	tac Tyr	aaa Lys 70	aac Asn	gca Ala	gca Ala	gct Ala	ggt Gly 75		244
35	tta Leu	aac Asn	tta Leu	ggt Gly	ggt Gly 80	gcg Ala	aaa Lys	aca Thr	gta Val	att Ile 85	atc Ile	ggt Gly	gat Asp	cct Pro	cgt Arg 90	aaa Lys		292
40	gat Asp	aag Lys	agc Ser	gaa Glu 95	gca Ala	atg Met	ttc Phe	cgt Arg	gca Ala 100	cta Leu	gga Gly	cgt Arg	tat Tyr	atc Ile 105	caa Gln	gga Gly		340
	cta Leu	aac Asn	gga Gly 110	cgt Arg	tac Tyr	att Ile	aca Thr	gct Ala 115	Glu	Asp	Val	ggt Gly	Thr	Thr	gta Val	gat Asp		388
45	gat Asp	atg Met 125	gat Asp	att Ile	atc Ile	cat His	gaa Glu 130	gaa Glu	act Thr	gac Asp	ttt Phe	gta Val 135	aca Thr	ggt Gly	atc Ile	tca Ser		436
50	cca Pro 140	tca Ser	ttc Phe	ggt Gly	tct Ser	tct Ser 145	ggt Gly	aac Asn	cca Pro	tct Ser	ccg Pro 150	gta Val	act Thr	gca Ala	tac Tyr	ggt Gly 155		484
55	gtt Val	tac Tyr	cgt Arg	ggt Gly	atg Met 160	aaa Lys	gca Ala	gct Ala	gca Ala	aaa Lys 165	gaa Glu	gct Ala	ttc Phe	ggt Gly	act Thr 170	gac Asp		532
	aat Asn	tta Leu	gaa Glu	gga Gly	aaa Lys	gta Val	att Ile	gct Ala	gtt Val	caa Gln	ggc Gly	gtt Val	ggt Gly	aac Asn	gta Val	gca Ala		580

3/26

				175					180					185			
5	tat Tyr	cac His	cta Leu 190	tgc Cys	aaa Lys	cat His	tta Leu	cac His 195	gct Ala	gaa Glu	gga Gly	gca Ala	aaa Lys 200	tta Leu	att Ile	gtt Val	628
10	aca Thr	gat Asp 205	att Ile	aat Asn	aaa Lys	gaa Glu	gct Ala 210	gta Val	caa Gln	cgt Arg	gct Ala	gta Val 215	gaa Glu	gaa Glu	ttc Phe	ggt Gly	676
10	gca Ala 220	tca Ser	gca Ala	gtt Val	gaa Glu	cca Pro 225	aat Asn	gaa Glu	att Ile	tac Tyr	ggt Gly 230	gtt Val	gaa Glu	tgc Cys	gat Asp	att Ile 235	724
15	tac Tyr	gca Ala	cca Pro	tgt Cys	gca Ala 240	cta Leu	ggc Gly	gca Ala	aca Thr	gtt Val 245	aat Asn	gat Asp	gaa Glu	act Thr	att Ile 250	cca Pro	772
20	caa Gln	ctt Leu	aaa Lys	gca Ala 255	aaa Lys	gta Val	atc Ile	gca Ala	ggt Gly 260	tct Ser	gcg Ala	aat Asn	aac Asn	caa Gln 265	Leu	aaa Lys	820
25	gaa Glu																868
30	cca Pro	gat Asp 285	tat Tyr	gta Val	att Ile	aat Asn	gca Ala 290	ggt Gly	ggc	gta Val	att Ile	aac Asn 295	gta Val	gca Ala	gac Asp	gaa Glu	916
30	tta Leu 300	tat Tyr	gga Gly	tac Tyr	aat Asn	aga Arg 305	gaa Glu	cgt Arg	gca Ala	cta Leu	aaa Lys 310	cgt Arg	gtt Val	gag Glu	tct Ser	att Ile 315	964
35	tat Tyr	gac Asp	acg Thr	att Ile	gca Ala 320	aaa Lys	gta Val	atc Ile	gaa Glu	att Ile 325	tca Ser	aaa Lys	cgc Arg	gat Asp	ggc Gly 330	ata Ile	1012
40	gca Ala	act Thr	tat Tyr	gta Val 335	gcg Ala	gca Ala	gat Asp	cgt Arg	cta Leu 340	gct Ala	gaa Glu	gag Glu	cgc Arg	att Ile 345	gca Ala	agc Ser	1060
45	ttg Leu	aag Lys	aat Asn 350	tct Ser	cgt Arg	agc Ser	act Thr	tac Tyr 355	tta Leu	cgc Arg	aac Asn	ggt Gly	cac His 360	gat Asp	att Ile	att Ile	1108
50	agc Ser	_	-	taa													1120
55	<210 <211 <212 <213	> 3 > I	5 366 PRT 3aci:	llus	cere	eus											
	<400	> 6	5														
	Met	Thr	Leu	Glu	Ile	Phe	Glu	Tyr	Leu	Glu	Lys	Tyr	Asp	Tyr	Glu	Gln	

	1				5					10					15	
5	Val	Val	Phe	Суз 20	Gln	Asp	Lys	Glu	Ser 25	Gly	Leu	Lys	Ala	Ile 30	Ile	Ala
10	Ile	His	Asp 35	Thr	Thr	Leu	Gly	Pro 40	Ala	Leu	Gly	Gly	Thr 45	Arg	Met	Trp
	Thr	Туr 50	Asp	Ser	Glu	Glu	Ala 55	Ala	Ile	Glu	Asp	Ala 60	Leu	Arg	Leu	Ala
15	Lys 65	Gly	Met	Thr	Туг	Lys 70	Asn	Ala	Ala	Ala	Gly 75	Leu	Asn	Leu	Gly	Gly 80
20_	_Ala	ГЛЗ	_Thr	<u>V</u> al	Ile 85	Ιle	Gly.	Asp_	Pro	Arg 90	Lys	Asp	ŗħż	Ser	Gl <u>u</u> 95	Ala
25	Met	Phe	Arg	Ala 100	Leu	Gly	Arg	Tyr	Ile 105	Gln	Gly	Leu	Asn	Gly 110	Arg	Tyr
30	Ile	Thr	Ala 115	Glu	Asp	Val	Gly	Thr 120	Thr	Val	Asp	Asp	Met 125	Asp	Ile	Ile
	His	Glu 130	Glu	Thr	Asp	Phe	Val 135	Thr	Gly	Ile	Ser	Pro 140	Ser	Phe	Gly	Ser
35	Ser 145	Gly	Asn	Pro	Ser	Pro 150	Val	Thr	Ala	Tyr	Gly 155	Val	Tyr	Arg	Gly	Met 160
40	Lys	Ala	Ala	Ala	Lys 165	Glu	Ala	Phe	Gly	Thr 170	Asp	Asn	Leu	Glu	Gly 175	Lys
45	Val	Ile	Ala	Val 180	Gln	Gly	Val	Gly	Asn 185	Val	Ala	Tyr	His	Leu 190	Cys	Lys
50	His	Leu	His 195	Ala	Glu	Gly	Ala	Lys 200	Leu	Ile	Val	Thr	Asp 205	Ile	Asn	Lys
	Glu	Ala 210	Val	Gln	Arg	Ala	Val 215	Glu	Glu	Phe	Gly	Ala 220	Ser	Ala	Val	Glu
55	Pro 225	Asn	Glu	Ile	Tyr	Gly 230	Val	Glu	Cys	Asp	Ile 235	Tyr	Ala	Pro	Cys	Ala 240

	Leu (Gly	Ala	Thr	Val 245	Asn	Asp	Glu	Thr	Ile 250	Pro	Gln	Leu	Lys	Ala 255	Lys		
5	Val 1	Ile	Ala	G1y 260	Ser	Ala	Asn	Asn	Gln 265	Leu	Lys	Glu	Asp	Arg 270	His	Gly		
10	Asp l	Ile	Ile 275	His	Glu	Met	Gly	Ile 280	Val	Tyr	Ala	Pro	Asp 285	Tyr	Val	Ile		
15	Asn 2	Ala 290	Gly	Gly	Val	Ile	Asn 295	Val	Ala	Asp	Glu	Leu 300	Tyr	Gly	Tyr	Asn		
	Arg (Glu	Arg	Ala	Leu	Lys 310	Arg	Val	Glu	Ser	Ile 315	Tyr	Asp	Thr	Ile	Ala 320		
20	Lys V	Val	Ile	Glu	Ile 325	Ser	Lys	Arg	Asp	Gly 330	Ile	Ala	Thr	Tyr	Val 335	Ala		
25	Ala 2	Asp	Arg	Leu 340	Ala	Glu	Glu	Arg	Ile 345	Ala	Ser	Leu	Lys	Asn 350	Ser	Arg		
30	Ser '	Thr	Туг 355	Leu	Arg	Asn	Gly	His 360	Asp	Ile	Ile	Ser	Arg 365	Arg				
35	<210: <211: <212: <213:	> 1 > I	7 L095 DNA Candi	ida 1	ooid:	inii												
40	<220: <221: <222: <223:	> (CDS (1).	. (109	95)													
45	<400: atg : Met : 1	aaq	att	gtc Val	tta Leu 5	gtt Val	ctt Leu	tat Tyr	gat Asp	gct Ala 10	ggt Gly	aag Lys	cac His	gct Ala	gct Ala 15	gat Asp	e	48
50	gaa (Glu (gaa Glu	aaa Lys	tta Leu 20	tat Tyr	ggt Gly	tct Ser	act Thr	gaa Glu 25	aat Asn	aaa Lys	tta Leu	ggt Gly	att Ile 30	gct Ala	aat Asn		96
EE	tgg Trp	tta Leu	aaa Lys 35	gat Asp	caa Gln	ggt Gly	cat His	gaa Glu 40	cta Leu	att Ile	act Thr	act Thr	tct Ser 45	gat Asp	aaa Lys	gaa Glu		144
55	ggt Gly	gaa Glu 50	aca Thr	agt Ser	gaa Glu	ttg Leu	gat Asp 55	aaa Lys	cat His	atc Ile	cca Pro	gat Asp 60	gct Ala	gat Asp	att Ile	atc Ile		192

WO 2005/093081 PCT/EP2005/002933 6/26

									tat Tyr								240
5									gtt Val								288
10									caa Gln 105								336
15									gtc Val								384
20									aat Asn								432
									gct Ala								480
25	gat Asp	atc Ile	gaa Glu	ggt Gly	aaa Lys 165	act Thr	atc Ile	gct Ala	acc Thr	att Ile 170	ggt Gly	gct Ala	ggt Gly	aga Arg	att Ile 175	ggt Gly	528
30	tac Tyr	aga Arg	gtc Val	ttg Leu 180	gaa Glu	aga Arg	tta Leu	ctc Leu	cca Pro 185	ttt Phe	aat Asn	cca Pro	aaa Lys	gaa Glu 190	tta Leu	tta Leu	576
35	tac Tyr	tac Tyr	gat Asp 195	tat Tyr	caa Gln	gct Ala	tta Leu	cca Pro 200	aaa Lys	gaa Glu	gct Ala	gaa Glu	gaa Glu 205	aaa Lys	gtt Val	ggt Gly	624
40	gct Ala	aga Arg 210	aga Arg	gtt Val	gaa Glu	aat Asn	att Ile 215	gaa Glu	gaa Glu	tta Leu	gtt Val	gct Ala 220	caa Gln	gct Ala	gat Asp	atc Ile	672
	gtt Val 225	aca Thr	gtt Val	aat Asn	gct Ala	cca Pro 230	tta Leu	cac His	gca Ala	ggt Gly	aca Thr 235	aaa Lys	ggt Gly	tta Leu	att Ile	aat Asn 240	720
45	aag Lys	gaa Glu	tta Leu	tta Leu	tct Ser 245	aaa Lys	ttt Phe	aaa Lys	aaa Lys	ggt Gly 250	gct Ala	tgg Trp	tta Leu	gtc Val	aat Asn 255	acc Thr	768
50	gca Ala	aga Arg	ggt Gly	gct Ala 260	att Ile	gct Ala	gtt Val	gct Ala	gaa Glu 265	gat Asp	gtt Val	gca Ala	gca Ala	gct Ala 270	tta Leu	gaa Glu	816
55	tct Ser	ggt Gly	caa Gln 275	tta Leu	aga Arg	ggt Gly	tac Tyr	ggt Gly 280	ggt Gly	gat Asp	gtt Val	tgg Trp	ttc Phe 285	cca Pro	caa Gln	cca Pro	864
	gct Ala	cca Pro 290	aag Lys	gat Asp	cac His	cca Pro	tgg Trp 295	aga Arg	gat Asp	atg Met	aga Arg	aat Asn 300	aaa Lys	tat Tyr	ggt Gly	gct Ala	912

-	ggt aat g Gly Asn A	gcc atg Ala Met	act cct Thr Pro 310	cac tac His Tyr	tct Ser	Gly '	act a Thr 1 315	act tta Thr Leu	gac Asp	gct Ala	caa Gln 320	960
5	aca aga t Thr Arg T				Asn							1008
10	ggt aaa t Gly Lys I	tt gat Phe Asp 340	tac aga Tyr Arg	cca caa Pro Gln	gat Asp 345	att a	atc t Ile I	ta tta Geu Leu	aat Asn 350	ggt Gly	gaa Glu	1056
15	tac gtt a Tyr Val 1				His							1095
20	<210> 8 <211> 36 <212> PF <213> Ca	54 RT	ooidinii									
25	<400> 8											
	Met Lys I	Ile Val	Leu Val 5	Leu Tyr		Ala (10	Gly I	Lys His	Ala	Ala 15	Asp	
30	Glu Glu I	Lys Leu 20	Tyr Gly	Ser Thr	Glu 25	Asn :	Lys I	Leu Gly	Ile 30	Ala	Asn	
35	Trp Leu I	Lys Asp 35	Gln Gly	His Glu 40	Leu	Ile '	Thr 1	Thr Ser 45	Asp	Lys	Glu	
40	Gly Glu 5	Thr Ser	Glu Leu	Asp Lys 55	His	Ile		Asp Ala 50	Asp	Ile	Ile	
	Ile Thr 3	Thr Pro	Phe His	Pro Ala	. Tyr		Thr I 75	Lys Glu	Arg	Leu	Asp 80	
45	Lys Ala I	Lys Asn	Leu Lys 85	Leu Val	. Val	Val . 90	Ala (Gly Val	Gly	Ser 95	Asp	
50	His Ile A	Asp Leu 100	Asp Tyr	Ile Asr	Gln 105	Thr	Gly I	Lys Lys	Ile 110	Ser	Val	
55	Leu Glu Y	Val Thr 115	Gly Ser	Asn Val		Ser '	Val <i>I</i>	Ala Glu 125	His	Val	Val	
	Met Thr I	Met Leu	Val Leu	Val Arg	, Asn	Phe '	Val E	Pro Ala 140	His	Glu	Gln	

5	Ile 145	Ile	Asn	His	Asp	Trp 150	Glu	Val	Ala	Ala	Ile 155	Ala	Lys	Asp	Ala	Tyr 160
	Asp	Ile	Glu	Gly	Lys 165	Thr	Ile	Ala	Thr	Ile 170	Gly	Ala	Gly	Arg	Ile 175	Gly
10	Tyr	Arg	Val	Leu 180	Glu	Arg	Leu	Leu	Pro 185	Phe	Asn	Pro	Lys	Glu 190	Leu	Leu
15	Tyr	Tyr	Asp 195	Tyr	Gln	Ala	Leu	Pro 200	Lys	Glu	Ala	Glu	Glu 205	Lys	Val	Gly
20	Ala	Arg 210	Arg	Val	Glu	Asn	Ile 215	Glu	Glu	Leu	Val	Ala 220	Gln	Ala	Asp	Ile
25	Val 225	Thr	Val	Asn	Ala	Pro 230	Leu	His	Ala	Gly	Thr 235	Lys	Gly	Leu	Ile	Asn 240
	Lys	Glu	Leu	Leu	Ser 245	Lys	Phe	Lys	Lys	Gly 250	Ala	Trp	Leu	Val	Asn 255	Thr
30	Ala	Arg	Gly	Ala 260	Ile	Ala	Val	Ala	Glu 265	Asp	Val	Ala	Ala	Ala 270	Leu	Glu
35	Ser	Gly	Gln 275	Leu	Arg	Gly	Tyr	Gly 280	Gly	Asp	Val	Trp	Phe 285	Pro	Gln	Pro
40	Ala	Pro 290	Lys	Asp	His	Pro	Trp 295	Arg	Asp	Met	Arg	Asn 300	Lys	Tyr	Gly	Ala
45	Gly 305	Asn	Ala	Met	Thr	Pro 310	His	Tyr	Ser	Gly	Thr 315	Thr	Leu	Asp	Ala	Gln 320
	Thr	Arg	Tyr	Ala	Glu 325	Gly	Thr	Lys	Asn	Ile 330	Leu	Glu	Ser	Phe	Phe 335	Thr
50	Gly	Lys	Phe	Asp 340	Tyr	Arg	Pro	Gln	Asp 345	Ile	Ile	Leu	Leu	Asn 350	Gly	Glu
55	Tyr	Val	Thr 355	Lys	Ala	Tyr	Gly	Lys 360	His	Asp	Lys	Lys				

<210> 9

<211> 5686 <212> DNA <213> Artificial <220>

5 <220> '
<223> Plasmid pAM3.25

<400> 9 tatgaagatt gtcttagttc tttatgatgc tggtaagcac gctgctgatg aagaaaaatt 60 10 atatggttct actgaaaata aattaggtat tgctaattgg ttaaaagatc aaggtcatga 120 actaattact acttctgata aagaaggtga aacaagtgaa ttggataaac atatcccaga 180 15 tgctgatatt atcatcacca ctcctttcca tcctgcttat atcactaagg aaagacttga 240 300 caaggctaag aacttaaaat tagtcgttgt cgctggtgtt ggttctgatc acattgattt agattatatt aatcaaacag gtaagaaaat ctcagtcctg gaagttacag gttctaatgt 360 20 tgtctctgtt gctgaacacg ttgtcatgac catgcttgtc ttggttagaa atttcgttcc 420 agcacatgaa caaattatta accacgattg ggaggttgct gctatcgcta aggatgctta 480 25 540 cgatatcgaa ggtaaaacta tcgctaccat tggtgctggt agaattggtt acagagtctt 600 ggaaagatta ctcccattta atccaaaaga attattatac tacgattatc aagctttacc aaaaqaaqct qaaqaaaaaq ttggtgctag aagagttgaa aatattgaag aattagttgc 660 30 tcaaqctqat atcqttacag ttaatgctcc attacacgca ggtacaaaaag gtttaattaa 720 780 taaggaatta ttatctaaat ttaaaaaagg tgcttggtta gtcaataccg caagaggtgc 840 35 tattgctgtt gctgaagatg ttgcagcagc tttagaatct ggtcaattaa gaggttacgg tggtgatgtt tggttcccac aaccagctcc aaaggatcac ccatggagag atatgagaaa 900 960 taaatatggt gctggtaatg ccatgactcc tcactactct ggtactactt tagacgctca 40 aacaagatac gctgaaggta ctaaaaatat tttggaatca ttctttaccg gtaaatttga 1020 1080 ttacagacca caagatatta tcttattaaa tggtgaatac gttactaaag cttacggtaa 1140 45 acacgataag aaataagacg tcaagcttgg ctgttttggc ggatgagaga agattttcag cctgatacag attaaatcag aacgcagaag cggtctgata aaacagaatt tgcctggcgg 1200 cagtagegeg gtggteecae etgaeeceat geegaaetea gaagtgaaae geegtagege 1260 50 cgatggtagt gtggggtctc cccatgcgag agtagggaac tgccaggcat caaataaaac 1320 gaaaggctca gtcgaaagac tgggcctttc gttttatctg ttgtttgtcg gtgaacgctc 1380 tcctgagtag gacaaatccg ccgggagcgg atttgaacgt tgcgaagcaa cggcccggag 1440 55 ggtggcgggc aggacgcccg ccataaactg ccaggcatca aattaagcag aaggccatcc 1500 tgacggatgg cctttttgcg tttctacaaa ctcttttgtt tatttttcta aatacattca 1560

WO 2005/093081 PCT/EP2005/002933 10/26

	aatatgtatc	cgctcatgag	acaataaccc	tgataaatgc	ttcaataata	ttgaaaaagg	1620
5	aagagtatga	gtattcaaca	tttccgtgtc	gcccttattc	ccttttttgc	ggcattttgc	1680
J	cttcctgttt	ttgctcaccc	agaaacgctg	gtgaaagtaa	aagatgctga	agatcagttg	1740
	ggtgcacgag	tgggttacat	cgaactggat	ctcaacagcg	gtaagatcct	tgagagtttt	1800
10	cgccccgaag	aacgttttcc	aatgatgagc	acttttaaag	ttctgctatg	tggcgcggta	1860
	ttatcccgtg	ttgacgccgg	gcaagagcaa	ctcggtcgcc	gcatacacta	ttctcagaat	1920
15	gacttggttg	agtactcacc	agtcacagaa	aagcatctta	cggatggcat	gacagtaaga	1980
10	gaattatgca	gtgctgccat	aaccatgagt	gataacactg	cggccaactt	acttctgaca	2040
	acgatcggag	gaccgaagga	gctaaccgct	tttttgcaca	acatggggga	tcatgtaact	2100
20	cgccttgatc	gttgggaacc	ggagctgaat	gaagccatac	caaacgacga	gcgtgacacc	2160
	acgatgcctg	tagcaatggc	aacaacgttg	cgcaaactat	taactggcga	actacttact	2220
25	ctagettece	ggcaacaatt	aatagactgg	atggaggcgg	ataaagttgc	aggaccactt	2280
۷.	ctgcgctcgg	cccttccggc	tggctggttt	attgctgata	aatctggagc	cggtgagcgt	2340
	gggtctcgcg	gtatcattgc	agcactgggg	ccagatggta	agccctcccg	tatcgtagtt	2400
30	atctacacga	cggggagtca	ggcaactatg	gatgaacgaa	atagacagat	cgctgagata	2460
	ggtgcctcac	tgattaagca	ttggtaactg	tcagaccaag	tttactcata	tatactttag	2520
35	attgatttaa	aacttcattt	ttaatttaaa	aggatctagg	tgaagatcct	ttttgataat	2580
33	ctcatgacca	aaatccctta	acgtgagttt	tcgttccact	gagcgtcaga	ccccgtagaa	2640
	aagatcaaag	gatcttcttg	agatcctttt	tttctgcgcg	taatctgctg	cttgcaaaca	2700
40	aaaaaaccac	cgctaccagc	ggtggtttgt	ttgccggatc	aagagctacc	aactctttt	2760
	ccgaaggtaa	ctggcttcag	cagagcgcag	ataccaaata	ctgtccttct	agtgtagccg	2820
45	tagttaggcc	accacttcaa	gaactctgta	gcaccgccta	catacctcgc	tctgctaatc	2880
40	ctgttaccag	tggctgctgc	cagtggcgat	aagtcgtgtc	ttaccgggtt	ggactcaaga	2940
	cgatagttac	cggataaggc	gcagcggtcg	ggctgaacgg	ggggttcgtg	cacacagccc	3000
50	agcttggagc	gaacgaccta	caccgaactg	agatacctac	agcgtgagct	atgagaaagc	3060
	gccacgcttc	ccgaagggag	aaaggcggac	aggtatccgg	taagcggcag	ggtcggaaca	3120
55	ggagagcgca	cgagggagct	tccaggggga	aacgcctggt	atctttatag	tcctgtcggg	3180
J.J	tttcgccacc	tctgacttga	gcgtcgattt	ttgtgatgct	cgtcaggggg	geggageeta	3240
	tggaaaaacg	ccagcaacgc	ggccttttta	cggttcctgg	ccttttgctg	gccttttgct	3300

	cacatgttct	ttcctgcgtt	atcccctgat	tctgtggata	accgtattac	cgcctttgag	3360
	tgagctgata	cegetegeeg	cagccgaacg	accgagcgca	gcgagtcagt	gagcgaggaa	3420
5	gcggaagagc	gcctgatgcg	gtattttctc	cttacgcatc	tgtgcggtat	ttcacaccgc	3480
	atatatggtg	cactctcagt	acaatctgct	ctgatgccgc	atagttaagc	cagtatacac	3540
1.0	tccgctatcg	ctacgtgact	gggtcatggc	tgcgccccga	caccegecaa	cacccgctga	3600
10	cgcgccctga	cgggcttgtc	tgctcccggc	atccgcttac	agacaagctg	tgaccgtctc	3660
	cgggagctgc	atgtgtcaga	ggttttcacc	gtcatcaccg	aaacgcgcga	ggcagctgcg	3720
15	gtaaagctca	tcagcgtggt	cgtgaagcga	ttcacagatg	tctgcctgtt	catccgcgtc	3780
	cagctcgttg	agtttctcca	gaagcgttaa	tgtctggctt	ctgataaagc	gggccatgtt	3840
20	aagggcggtt	ttttcctgtt	tggtcacttg	atgcctccgt	gtaaggggga	atttctgttc	3900
20	atgggggtaa	tgataccgat	gaaacgagag	aggatgctca	cgatacgggt	tactgatgat	3960
	gaacatgccc	ggttactgga	acgttgtgag	ggtaaacaac	tggcggtatg	gatgcggcgg	4020
25	gaccagagaa	aaatcactca	gggtcaatgc	cagcgcttcg	ttaatacaga	tgtaggtgtt	4080
	ccacagggta	gccagcagca	tcctgcgatg	cagatccgga	acataatggt	gcagggcgct	4140
30	gacttccgcg	tttccagact	ttacgaaaca	cggaaaccga	agaccattca	tgttgttgct	4200
30	caggtcgcag	acgttttgca	gcagcagtcg	cttcacgttc	gctcgcgtat	cggtgattca	4260
	ttctgctaac	cagtaaggca	accccgccag	cctagccggg	tcctcaacga	caggagcacg	4320
35	atcatgcgca	cccgtggcca	ggacccaacg	ctgcccgaga	tgcgccgcgt	gcggctgctg	4380
	gagatggcgg	acgcgatgga	tatgttctgc	caagggttgg	tttgcgcatt	cacagttctc	4440
40	cgcaagaatt	gattggctcc	aattcttgga	gtggtgaatc	cgttagcgag	gtgccgccgg	4500
40	cttccattca	ggtcgaggtg	gcccggctcc	atgcaccgcg	acgcaacgcg	gggaggcaga	4560
	caaggtatag	ggcggcgcct	acaatccatg	ccaacccgtt	ccatgtgctc	gccgaggcgg	4620
45	cataaatcgc	cgtgacgatc	agcggtccag	tgatcgaagt	taggctggta	agagccgcga	4680
	gcgatccttg	aagctgtccc	tgatggtcgt	catctacctg	cctggacagc	atggcctgca	4740
50	acgcgggcat	cccgatgccg	ccggaagcga	gaagaatcat	aatggggaag	gccatccagc	4800
30	ctcgcgtcgc	gaacgccagc	aagacgtagc	ccagcgcgtc	ggccgccatg	ccggcgataa	4860
	tggcctgctt	ctcgccgaaa	cgtttggtgg	cgggaccagt	gacgaaggct	tgagcgaggg	4920
55	cgtgcaagat	tccgaatacc	gcaagcgaca	ggccgatcat	cgtcgcgctc	cagcgaaagc	4980
	ggtcctcgcc	gaaaatgacc	cagagcgctg	ccggcacctg	tcctacgagt	tgcatgataa	5040
	agaagacagt	cataagtgcg	gcgacgatag	tcatgccccg	cgcccaccgg	aaggagctga	5100

	ctgggttgaa	ggctctcaag	ggcatcggtc	gacgctctcc	cttatgcgac	tcctgcatta	5160
5	ggaagcagcc	cagtagtagg	ttgaggccgt	tgagcaccgc	cgccgcaagg	aatggtgcat	5220
5	gctcgatggc	tacgagggca	gacagtaagt	ggatttacca	taatccctta	attgtacgca	5280
	ccgctaaaac	gcgttcagcg	cgatcacggc	agcagacagg	taaaaatggc	aacaaaccac	5340
10	cctaaaaact	gcgcgatcgc	gcctgataaa	ttttaaccgt	atgaatacct	atgcaaccag	5400
	agggtacagg	ccacattacc	cccacttaat	ccactgaagc	tgccattttt	catggtttca	5460
15	ccatcccagc	gaagggccat	gcatgcatcg	aaattaatac	gacgaaatta	atacgactca	5520
10	ctatagggca	attgcgatca	ccacaattca	gcaaattgtg	aacatcatca	cgttcatctt	5580
	tccctggttg	ccaatggccc	attttcctgt	cagtaacgag	aaggtcgcga	attcaggcgc	5640
20	tttttagact	ggtcgtaatg	aacaattctt	aagaaggaga	tataca		5686
25	<220>	ificial	<u>L</u>	•	ı		
30	<400> 10	tacatatgac	attagaaatc	ttcgaatact	tagaaaaata	tgattatgag	60
				ggtttaaaag			120
35				agaatgtgga			180
				gggatgacat			240
40				atcggtgatc			300
	gcaatgttcc	gtgcactagg	acgttatatc	caaggactaa	acggacgtta	cattacagct	360
	gaagatgttg	gtacaacagt	agatgatatg	gatattatcc	atgaagaaac	tgactttgta	420
45	acaggtatct	caccatcatt	cggttcttct	ggtaacccat	ctccggtaac	tgcatacggt	480
	gtttaccgtg	gtatgaaagc	agctgcaaaa	gaagctttcg	gtactgacaa	tttagaagga	540
50	aaagtaattg	ctgttcaagg	cgttggtaac	gtagcatatc	acctatgcaa	acatttacac	600
	gctgaaggag	caaaattaat	tgttacagat	attaataaag	aagctgtaca	acgtgctgta	660
	gaagaattcg	gtgcatcagc	agttgaacca	aatgaaattt	acggtgttga	atgcgatatt	720
55	tacgcaccat	gtgcactagg	cgcaacagtt	aatgatgaaa	ctattccaca	acttaaagca	780
	aaagtaatcg	caggttctgc	gaataaccaa	ttaaaagaag	atcgtcatgg	tgacatcatt	840

WO 2005/093081 PCT/EP2005/002933 13/26

	catgaaatgg	gtattgtata	cgcaccagat	tatgtaatta	atgcaggtgg	cgtaattaac	900
	gtagcagacg	aattatatgg	atacaataga	gaacgtgcac	taaaacgtgt	tgagtctatt	960
5	tatgacacga	ttgcaaaagt	aatcgaaatt	tcaaaacgcg	atggcatagc	aacttatgta	1020
	gcggcagatc	gtctagctga	agagcgcatt	gcaagcttga	agaattctcg	tagcacttac	1080
1.0	ttacgcaacg	gtcacgatat	tattagccgt	cgctaacgcg	tttgcggttg	gcaaaatggc	1140
10	gcagcagcaa	ggcgtggcgg	tgaaaacctc	tgccgaagcc	ctgcaacagg	ccattgacga	1200
	taatttctgg	caagccgaat	accgcgacta	ccgccgtacc	tccatctaaa	agcttatcga	1260
15	tgataagctg	tcaaacatga	gaattacaac	ttatatcgta	tggggctgac	ttcaggtgct	1320
	acatttgaag	agataaattg	cactgaaatc	tagaaatatt	ttatctgatt	aataagatga	1380
2.0	tcttcttgag	atcgttttgg	tctgcgcgta	atctcttgct	ctgaaaacga	aaaaaccgcc	1440
20	ttgcagggcg	gtttttcgaa	ggttctctga	gctaccaact	ctttgaaccg	aggtaactgg	1500
	cttggaggag	cgcagtcacc	aaaacttgtc	ctttcagttt	agccttaacc	ggcgċatgac	1560
25	ttcaagacta	actcctctaa	atcaattacc	agtggctgct	gccagtggtg	cttttgcatg	1620
	tettteeggg	ttggactcaa	gacgatagtt	accggataag	gcgcagcggt	cggactgaac	1680
2.0	ggggggttcg	tgcatacagt	ccagcttgga	gcgaactgcc	tacccggaac	tgagtgtcag	1740
30	gcgtggaatg	agacaaacgc	ggccataaca	gcggaatgac	accggtaaac	cgaaaggcag	1800
	gaacaggaga	gcgcacgagg	gagccgccag	gggaaacgcc	tggtatcttt	atagtcctgt	1860
35	cgggtttcgc	caccactgat	ttgagcgtca	gatttcgtga	tgcttgtcag	gggggcggag	1920
	cctatggaaa	aacggctttg	ccgcggccct	ctcacttccc	tgttaagtat	cttcctggca	1980
4.0	tcttccagga	aatctccgcc	ccgttcgtaa	gccatttccg	ctcgccgcag	tegaaegaee	2040
40	gagcgtagcg	agtcagtgag	cgaggaagcg	gaatatatcc	tgtatcacat	attctgctga	2100
	cgcaccggtg	cagccttttt	tctcctgcca	catgaagcac	ttcactgaca	ccctcatcag	2160
45	tgccaacata	gtaagccagt	atacactccg	ctagcgctga	tgtccggcgg	tgcttttgcc	2220
	gttacgcacc	accccgtcag	tagctgaaca	ggagggacag	ctgatagaaa	cagaagccac	2280
F.O.	tggagcacct	caaaaacacc	atcatacact	aaatcagtaa	gttggcagca	tcacccgacg	2340
50	cactttgcgc	cgaataaata	cctgtgacgg	aagatcactt	cgcagaataa	ataaatcctg	2400
	gtgtccctgt	tgataccggg	aagccctggg	ccaacttttg	gcgaaaatga	gacgttgatc	2460
55	ggcacgtaag	aggttccaac	tttcaccata	atgaaataag	atcactaccg	ggcgtatttt	2520
	ttgagttatc	gagattttca	ggagctaagg	aagctaaaat	ggagaaaaaa	atcactggat	2580
	ataccaccgt	tgatatatcc	caatggcatc	gtaaagaaca	ttttgaggca	tttcagtcag	2640

	ttgctcaatg	tacctataac	cagaccgttc	agctggatat	tacggccttt	ttaaagaccg	2700
5	taaagaaaaa	taagcacaag	ttttatccgg	cctttattca	cattcttgcc	cgcctgatga	2760
S	atgctcatcc	ggaattccgt	atggcaatga	aagacggtga	gctggtgata	tgggatagtg	2820
	ttcacccttg	ttacaccgtt	ttccatgagc	aaactgaaac	gttttcatcg	ctctggagtg	2880
10	aataccacga	cgatttccgg	cagtttctac	acatatattc	gcaagatgtg	gcgtgttacg	2940
	gtgaaaacct	ggcctatttc	cctaaagggt	ttattgagaa	tatgtttttc	gtctcagcca	3000
15	atccctgggt	gagtttcacc	agttttgatt	taaacgtggc	caatatggac	aacttcttcg	3060
TO	ccccgtttt	caccatgggc	aaatattata	cgcaaggcga	caaggtgctg	atgccgctgg	3120
	cgattcaggt	tcatcatgcc	gtctgtgatg	gcttccatgt	cggcagaatg	cttaatgaat	3180
20	tacaacagta	ctgcgatgag	tggcagggcg	gggcgtaatt	tttttaaggc	agttattggt	3240
	gcccttaaac	gcctggtgct	acgcctgaat	aagtgataat	aagcggatga	atggcagaaa	3300
25	ttcgaaagca	aattcgaccc	ggtcgtcggt	tcagggcagg	gtcgttaaat	agccgcttat	3360
45	gtctattgct	ggtttaccgg	tttattgact	accggaagca	gtgtgaccgt	gtgcttctca	3420
	aatgcctgag	gccagtttgc	tcaggctctc	cccgtggagg	taataattga	cgatatgatc	3480
30	atttattctg	cctcccagag	cctgataaaa	acggttagcg	cttcgttaat	acagatgtag	3540
	gtgttccaca	gggtagccag	cagcatcctg	cgatgcagat	ccggaacata	atggtgcagg	3600
35	gcgcttgttt	cggcgtgggt	atggtggcag	gccccgtggc	cgggggactg	ttgggcgctg	3660
33	ccggcacctg	tcctacgagt	tgcatgataa	agaagacagt	cataagtgcg	gcgacgatag	3720
	tcatgccccg	cgcccaccgg	aaggagctac	cggacagcgg	tgcggactgt	tgtaactcag	3780
40	aataagaaat	gaggccgctc	atggcgttga	ctctcagtca	tagtatcgtg	gtatcaccgg	3840
	ttggttccac	tctctgttgc	gggcaacttc	agcagcacgt	aggggacttc	cgcgtttcca	3900
4 =	gactttacga	aacacggaaa	ccgaagacca	ttcatgttgt	tgctcaggtc	gcagacgttt	3960
45	tgcagcagca	gtcgcttcac	gttcgctcgc	gtatcggtga	ttcattctgc	taaccagtaa	4020
	ggcaaccccg	ccagcctagc	cgggtcctca	acgacaggag	cacgatcatg	cgcacccgtg	4080
50	gccaggaccc	aacgctgccc	gagatgcgcc	gcgtgcggct	gctggagatg	gcggacgcga	4140
	tggatatgtt	ctgccaaggg	ttggtttgcg	cattcacagt	tctccgcaag	aattgattgg	4200
EE	ctccaattct	tggagtggtg	aatccgttag	cgaggtgccg	ccggcttcca	ttcaggtcga	4260
55	ggtggcccgg	ctccatgcac	cgcgacgcaa	cgcggggagg	cagacaaggt	atagggcggc	4320
	gcctacaatc	catgccaacc	cgttccatgt	gctcgccgag	gcggcataaa	tcgccgtgac	4380

	gatcagcggt ccagtgatcg aagttaggct ggtaagagcc gcgagcgatc cttgaagctg	4440
	tecetgatgg tegteateta cetgeetgga cageatggee tgeaacgegg geatecegat	4500
5	gccgccggaa gcgagaagaa tcataatggg gaaggccatc cagcctcgcg tcgcgaacgc	4560
	cagcaagacg tagcccagcg cgtcggccgc catgccggcg ataatggcct gcttctcgcc	4620
10	gaaacgtttg gtggcgggac cagtgacgaa ggcttgagcg agggcgtgca agattccgaa	4680
10	taccgcaage gacaggeega teategtege getecagega aageggteet egeegaaaat	4740
	gacccagage getgeeggea cetgteetae gagttgeatg ataaagaaga cagteataag	4800
15	tgcggcgacg atagtcatgc cccgcgccca ccggaaggag ctgactgggt tgaaggctct	4860
	caagggcatc ggtcgacgct ctcccttatg cgactcctgc attaggaagc agcccagtag	4920
2.0	taggttgagg ccgttgagca ccgccgccgc aaggaatggt gcatgcatcg atcaccacaa	4980
20	ttcagcaaat tgtgaacatc atcacgttca tctttccctg gttgccaatg gcccattttc	5040
	ctgtcagtaa cgagaaggtc gcgaattcag gcgcttttta gactggtcgt aatgaacaat	5100
25	tcttaa	5106
30 35 40	<pre><210> 11 <211> 5597 <212> DNA <213> Unknown <220> <223> Plasmid <220> <221> CDS <222> (25)(1749) <223> scfA - malic enzyme gene</pre>	
45	aattottaag aaggagatat acat atg gat att caa aaa aga gtg agt gac Met Asp Ile Gln Lys Arg Val Ser Asp 1 5	51
50	atg gaa cca aaa aca aaa cag cgt tcg ctt tat atc cct tac gct Met Glu Pro Lys Thr Lys Lys Gln Arg Ser Leu Tyr Ile Pro Tyr Ala 10 25	99
20	ggc cct gta ctg ctg gaa ttt ccg ttg ttg aat aaa ggc agt gcc ttc Gly Pro Val Leu Leu Glu Phe Pro Leu Leu Asn Lys Gly Ser Ala Phe 30 35 40	147
55	agc atg gaa gaa cgc cgt aac ttc aac ctg ctg ggg tta ctg ccg gaa Ser Met Glu Glu Arg Arg Asn Phe Asn Leu Leu Gly Leu Leu Pro Glu 45 50 55	195
	gtg gtc gaa acc atc gaa gaa caa gcg gaa cga gca tgg atc cag tat	243

WO 2005/093081 PCT/EP2005/002933 16/26

	Val	Val	Glu 60	Thr	Ile	Glu	Glu	Gln 65	Ala	Glu	Arg	Ala	Trp 70	Ile	Gln	Tyr	
5	cag Gln	gga Gly 75	ttc Phe	aaa Lys	acc Thr	gaa Glu	atc Ile 80	gac Asp	aaa Lys	cac His	atc Ile	tac Tyr 85	ctg Leu	cgt Arg	aac Asn	atc Ile	291
10	cag Gln 90	gac Asp	act Thr	aac Asn	gaa Glu	acc Thr 95	ctc Leu	ttc Phe	tac Tyr	cgt Arg	ctg Leu 100	gta Val	aac Asn	aat Asn	cat His	ctt Leu 105	339
4 =						gtt Val											387
15						atc Ile											435
20	tac Tyr	cag Gln	aac Asn 140	cgg Arg	cac His	aat Asn	atg Met	gac Asp 145	gat Asp	att Ile	ctg Leu	caa Gln	aac Asn 150	gtg Val	ccg Pro	aac Asn	483
25	cat His	aat Asn 155	att Ile	aaa Lys	gtg Val	att Ile	gtg Val 160	gtg Val	act Thr	gac Asp	ggt Gly	gaa Glu 165	cgc Arg	att Ile	ctg Leu	Gly aaa	531
30	ctt Leu 170	ggt Gly	gac Asp	cag Gln	ggc Gly	atc Ile 175	Gly ggc	GJA āāā	atg Met	ggc Gly	att Ile 180	ccg Pro	atc Ile	ggt Gly	aaa Lys	ctg Leu 185	579
2.5	tcg Ser	ctc Leu	tat Tyr	acc Thr	gcc Ala 190	tgt Cys	ggc Gly	ggc Gly	atc Ile	agc Ser 195	ccg Pro	gcg Ala	tat Tyr	acc Thr	ctt Leu 200	ccg Pro	627
35	gtg Val	gtg Val	ctg Leu	gat Asp 205	gtc Val	gga Gly	acg Thr	aac Asn	aac Asn 210	caa Gln	cag Gln	ctg Leu	ctt Leu	aac Asn 215	gat Asp	ccg Pro	675
40	ctg Leu	tat Tyr	atg Met 220	ggc Gly	tgg Trp	cgt Arg	aat Asn	ccg Pro 225	cgt Arg	atc Ile	act Thr	gac Asp	gac Asp 230	gaa Glu	tac Tyr	tat Tyr	723
45	gaa Glu	ttc Phe 235	gtt Val	gat Asp	gaa Glu	ttt Phe	atc Ile 240	cag Gln	gct Ala	gtg Val	aaa Lys	caa Gln 245	cgc Arg	tgg Trp	cca Pro	gac Asp	771
50	gtg Val 250	ctg Leu	ttg Leu	cag Gln	ttt Phe	gaa Glu 255	gac Asp	ttt Phe	gct Ala	caa Gln	aaa Lys 260	aat Asn	gcg Ala	atg Met	ccg Pro	tta Leu 265	819
	ctt Leu	aac Asn	cgc Arg	tat Tyr	cgc Arg 270	aat Asn	gaa Glu	att Ile	tgt Cys	tct Ser 275	ttt Phe	aac Asn	gat Asp	gac Asp	att Ile 280	cag Gln	867
55	ggc	act Thr	gcg Ala	gcg Ala 285	gta Val	aca Thr	gtc Val	ggc Gly	aca Thr 290	ctg Leu	atc Ile	gca Ala	gca Ala	agc Ser 295	cgc Arg	gcg Ala	915

WO 2005/093081 PCT/EP2005/002933 17/26

	gca Ala	ggt Gly	ggt Gly 300	cag Gln	tta Leu	agc Ser	gag Glu	aaa Lys 305	aaa Lys	atc Ile	gtc Val	ttc Phe	ctt Leu 310	ggc	gca Ala	ggt Gly	9	63
5	tca Ser	gcg Ala 315	gga Gly	tgc Cys	ggc Gly	att Ile	gcc Ala 320	gaa Glu	atg Met	atc Ile	atc Ile	tcc Ser 325	cag Gln	acc Thr	cag Gln	cgc Arg	1.0	11
10	gaa Glu 330	gga Gly	tta Leu	agc Ser	gag Glu	gaa Glu 335	gcg Ala	gcg Ala	cgg Arg	cag Gln	aaa Lys 340	gtc Val	ttt Phe	atg Met	gtc Val	gat Asp 345	10	59
15		ttt Phe															11	07
20	acc Thr	aaa Lys	ctg Leu	gtg Val 365	cag Gln	aag Lys	cgc Arg	gaa Glu	aac Asn 370	ctc Leu	agt Ser	gac Asp	tgg Trp	gat Asp 375	acc Thr	gac Asp	11	.55
20	agc Ser	gat Asp	gtg Val 380	ctg Leu	tca Ser	ctg Leu	ctg Leu	gat Asp 385	gtg Val	gtg Val	cgc Arg	aat Asn	gta Val 390	aaa Lys	cca Pro	gat Asp	12	03
25	att Ile	ctg Leu 395	att Ile	ggc Gly	gtc Val	tca Ser	gga Gly 400	cag Gln	acc Thr	G17 aaa	ctg Leu	ttt Phe 405	acg Thr	gaa Glu	gag Glu	atc Ile	12	51
30	atc Ile 410	cgt Arg	gag Glu	atg Met	cat His	aaa Lys 415	cac His	tgt Cys	ccg Pro	cgt Arg	ccg Pro 420	atc Ile	gtg Val	atg Met	ccg Pro	ctg Leu 425	. 12	99
35	tct Ser	aac Asn	ccg Pro	acg Thr	tca Ser 430	cgc Arg	gtg Val	gaa Glu	gcc Ala	aca Thr 435	ccg Pro	cag Gln	gac Asp	att Ile	atc Ile 440	gcc Ala	13	47
40	tgg Trp	acc Thr	gaa Glu	ggt Gly 445	aac Asn	gcg Ala	ctg Leu	gtc Val	gcc Ala 450	acg Thr	Gly ggc	agc Ser	ccg Pro	ttt Phe 455	aat Asn	cca Pro	13	95
±0	gtg Val	gta Val	tgg Trp 460	aaa Lys	gat Asp	aaa Lys	atc Ile	tac Tyr 465	cct Pro	atc Ile	gcc Ala	cag Gln	tgt Cys 470	aac Asn	aac Asn	gcc Ala	14	43
45	ttt Phe	att Ile 475	ttc Phe	ccg Pro	ggc Gly	atc Ile	ggc Gly 480	ctg Leu	ggt Gly	gtt Val	att Ile	gct Ala 485	tcc Ser	Gly ggc	gcg Ala	tca Ser	14	91
50	cgt Arg 490	atc Ile	acc Thr	gat Asp	gag Glu	atg Met 495	ctg Leu	atg Met	tcg Ser	gca Ala	agt Ser 500	gaa Glu	acg Thr	ctg Leu	gcg Ala	cag Gln 505	15	39
55	tat Tyr	tca Ser	cca Pro	ttg Leu	gtg Val 510	ctg Leu	aac Asn	ggc ggc	gaa Glu	ggt Gly 515	atg Met	gta Val	ctg Leu	ccg Pro	gaa Glu 520	ctg Leu	15	87
	aaa Lys	gat Asp	att Ile	cag Gln 525	aaa Lys	gtc Val	tcc Ser	cgc Arg	gca Ala 530	att Ile	gcg Ala	ttt Phe	gcg Ala	gtt Val 535	ggc ggc	aaa Lys	16	35

WO 2005/093081 PCT/EP2005/002933 18/26

5	atg gcg cag cag caa ggc gtg gcg gtg aaa acc tct gcc gaa gcc ctg Met Ala Gln Gln Gly Val Ala Val Lys Thr Ser Ala Glu Ala Leu 540 545 550	1683
J	caa cag gcc att gac gat aat ttc tgg caa gcc gaa tac cgc gac tac Gln Gln Ala Ile Asp Asp Asn Phe Trp Gln Ala Glu Tyr Arg Asp Tyr 555 560 565	1731
10	cgc cgt acc tcc atc taa aagcttatcg atgataagct gtcaaacatg Arg Arg Thr Ser Ile 570	1779
15	agaattacaa cttatatcgt atggggctga cttcaggtgc tacatttgaa gagataaatt	1839
13	gcactgaaat ctagaaatat tttatctgat taataagatg atcttcttga gatcgttttg	1899
	gtetgegegt aatetettge tetgaaaaeg aaaaaaeege ettgeaggge ggtttttega	1959
20	aggttctctg agctaccaac tctttgaacc gaggtaactg gcttggagga gcgcagtcac	2019
	caaaacttgt cctttcagtt tagccttaac cggcgcatga cttcaagact aactcctcta	2079
25	aatcaattac cagtggctgc tgccagtggt gcttttgcat gtctttccgg gttggactca	2139
25	agacgatagt taccggataa ggcgcagcgg tcggactgaa cggggggttc gtgcatacag	2199
	tccagcttgg agcgaactgc ctacccggaa ctgagtgtca ggcgtggaat gagacaaacg	2259
30	cggccataac agcggaatga caccggtaaa ccgaaaggca ggaacaggag agcgcacgag	2319
	ggagccgcca ggggaaacgc ctggtatctt tatagtcctg tcgggtttcg ccaccactga	2379
35	tttgagcgtc agatttcgtg atgcttgtca ggggggcgga gcctatggaa aaacggcttt	2439
55	geogeggeee teteacttee etgttaagta tetteetgge atetteeagg aaateteege	2499
	cccgttcgta agccatttcc gctcgccgca gtcgaacgac cgagcgtagc gagtcagtga	2559
40	gcgaggaagc ggaatatatc ctgtatcaca tattctgctg acgcaccggt gcagcctttt	2619
	ttctcctgcc acatgaagca cttcactgac accctcatca gtgccaacat agtaagccag	2679
45	tatacactcc gctagcgctg atgtccggcg gtgcttttgc cgttacgcac caccccgtca	2739
40	gtagctgaac aggagggaca gctgatagaa acagaagcca ctggagcacc tcaaaaacac	2799
	catcatacac taaatcagta agttggcagc atcacccgac gcactttgcg ccgaataaat	2859
50	acctgtgacg gaagatcact tcgcagaata aataaatcct ggtgtccctg ttgataccgg	2919
	gaagccctgg gccaactttt ggcgaaaatg agacgttgat cggcacgtaa gaggttccaa	2979
E E	ctttcaccat aatgaaataa gatcactacc gggcgtattt tttgagttat cgagattttc	3039
55	aggagctaag gaagctaaaa tggagaaaaa aatcactgga tataccaccg ttgatatatc	3099
	ccaatggcat cgtaaagaac attttgaggc atttcagtca gttgctcaat gtacctataa	3159

WO 2005/093081 PCT/EP2005/002933 19/26

	ccagaccgtt	cagctggata	ttacggcctt	tttaaagacc	gtaaagaaaa	ataagcacaa	3219
	gttttatccg	gcctttattc	acattcttgc	ccgcctgatg	aatgctcatc	cggaattccg	3279
5	tatggcaatg	aaagacggtg	agctggtgat	atgggatagt	gttcaccctt	gttacaccgt	3339
	tttccatgag	caaactgaaa	cgttttcatc	gctctggagt	gaataccacg	acgatttccg	3399
10	gcagtttcta	cacatatatt	cgcaagatgt	ggcgtgttac	ggtgaaaacc	tggcctattt	3459
Τ.Ο	ccctaaaggg	tttattgaga	atatgttttt	cgtctcagcc	aatccctggg	tgagtttcac	3519
	cagttttgat	ttaaacgtgg	ccaatatgga	caacttcttc	gcccccgttt	tcaccatggg	3579
15	caaatattat	acgcaaggcg	acaaggtgct	gatgccgctg	gcgattcagg	ttcatcatgc	3639
	cgtctgtgat	ggcttccatg	tcggcagaat	gcttaatgaa	ttacaacagt	actgcgatga	3699
20	gtggcagggc	ggggcgtäat	ttttttaagg	cagttattgg	tgcccttaaa	cgcctggtgc	3759
20	tacgcctgaa	taagtgataa	taagcggatg	aatggcagaa	attcgaaagc	aaattcgacc	3819
	cggtcgtcgg	ttcagggcag	ggtcgttaaa	tagccgctta	tgtctattgc	tggtttaccg	3879
25	gtttattgac	taccggaagc	agtgtgaccg	tgtgcttctc	aaatgcctga	ggccagtttg	3939
	ctcaggctct	ccccgtggag	gtaataattg	acgatatgat	catttattct	gcctcccaga	3999
30	gcctgataaa	aacggttagc	gcttcgttaa	tacagatgta	ggtgttccac	agggtagcca	4059
30	gcagcatcct	gcgatgcaga	tccggaacat	aatggtgcag	ggcgcttgtt	tcggcgtggg	4119
	tatggtggca	ggccccgtgg	ccgggggact	gttgggcgct	gccggcacct	gtcctacgag	4179
35	ttgcatgata	aagaagacag	tcataagtgc	ggcgacgata	gtcatgcccc	gcgcccaccg	4239
	gaaggagcta	ccggacagcg	gtgcggactg	ttgtaactca	gaataagaaa	tgaggccgct	4299
40	catggcgttg	actctcagtc	atagtatcgt	ggtatcaccg	gttggttcca	ctctctgttg	4359
40	cgggcaactt	cagcagcacg	taggggactt	ccgcgtttcc	agactttacg	aaacacggaa	4419
	accgaagacc	attcatgttg	ttgctcaggt	cgcagacgtt	ttgcagcagc	agtcgcttca	4479
45	cgttcgctcg	cgtatcggtg	attcattctg	ctaaccagta	aggcaacccc	gccagcctag	4539
	ccgggtcctc	aacgacagga	gcacgatcat	gcgcacccgt	ggccaggacc	caacgctgcc	4599
50	cgagatgcgc	cgcgtgcggc	tgctggagat	ggcggacgcg	atggatatgt	tctgccaagg	4659
50	gttggtttgc	gcattcacag	ttctccgcaa	gaattgattg	gctccaattc	ttggagtggt	4719
	gaatccgtta	gcgaggtgcc	gccggcttcc	attcaggtcg	aggtggcccg	gctccatgca	4779
55	ccgcgacgca	acgcggggag	gcagacaagg	tatagggcgg	cgcctacaat	ccatgccaac	4839
	ccgttccatg	tgctcgccga	ggcggcataa	atcgccgtga	cgatcagcgg	tccagtgatc	4899
	gaagttaggc	tggtaagagc	cgcgagcgat	ccttgaagct	gtccctgatg	gtcgtcatct	4959

	acctgcctgg acago	catgge etgeaacgeg	ggcatcccga	tgeegeegga	agcgagaaga
5	atcataatgg ggaag	ggccat ccagcctcgc	gtcgcgaacg	ccagcaagac	gtageceage
J	gcgtcggccg ccatc	geegge gataatggee	tgcttctcgc	cgaaacgttt	ggtggcggga
	ccagtgacga aggct	tgagc gagggcgtgc	aagattccga	ataccgcaag	cgacaggccg
10	atcatcgtcg cgctc	ccagcg aaagcggtcc	tcgccgaaaa	tgacccagag	cgctgccggc
	acctgtccta cgagt	tgcat gataaagaag	acagtcataa	gtgcggcgac	gatagtcatg
15	ccccgcgccc accgc	gaagga gctgactggg	ttgaaggctc	tcaagggcat	cggtcgacgc
10	tetecettat gegae	ctcctg cattaggaag	cagcccagta	gtaggttgag	gccgttgagc
	accgccgccg caagg	gaatgg tgcatgcatc	gatcaccaca	attcagcaaa	ttgtgaacat !
20	catcacgttc atctt	tccct ggttgccaat	ggcccatttt	cctgtcagta	acgagaaggt !
	cgcgaattca ggcgc	etttt agactggtcg	taatgaac		!
25	<210> 12 <211> 574 <212> PRT <213> Unknown				
30	<220> <223> Plasmid				
	<400> 12				
35	Met Asp Ile Gln 1	Lys Arg Val Ser A	Asp Met Glu 10	Pro Lys Thr	Lys Lys 15
40	Gln Arg Ser Leu 20	Tyr Ile Pro Tyr A	Ala Gly Pro ' 25	Val Leu Leu 30	Glu Phe
45	Pro Leu Leu Asn 35	Lys Gly Ser Ala F 40	Phe Ser Met (Glu Glu Arg 45	Arg Asn
	Phe Asn Leu Leu 50	Gly Leu Leu Pro G 55		Glu Thr Ile 60	Glu Glu
50	Gln Ala Glu Arg 65	Ala Trp Ile Gln T	Tyr Gln Gly 1 75	Phe Lys Thr	Glu Ile 80
55	Asp Lys His Ile	Tyr Leu Arg Asn I 85	lle Gln Asp' 90	Thr Asn Glu	Thr Leu 95

Phe Tyr Arg Leu Val Asn Asn His Leu Asp Glu Met Met Pro Val Ile

				100					105					110		
5	Tyr	Thr	Pro 115	Thr	Val	Gly	Ala	Ala 120	Cys	Glu	Arg	Phe	Ser 125	Glu	Ile	Tyr
10	Arg	Arg 130	Ser	Arg	Gly	Val	Phe 135	Ile	Ser	Tyr	Gln	Asn 140	Arg	His	Asn	Met
	Asp 145	Asp	Ile	Leu	Gln	Asn 150	Val	Pro	Asn	His	Asn 155	Ile	Lys	Val	Ile	Val 160
15	Val	Thr	Asp	Gly	Glu 165	Arg	Ile	Leu	Gly	Leu 170	Gly	qaA	Gln	Gly	Ile 175	Gly
20	Gly	Met	Gly	Ile 180	Pro	Ile	Gly	Lys	Leu 185	Ser	Leu	Tyr	Thr	Ala 190	Cys	Gly
25	Gly	Ile	Ser 195	Pro	Ala	Tyr	Thr	Leu 200	Pro	Val	Val	Leu	Asp 205	Val	Gly	Thr
30	Asn	Asn 210	Gln	Gln	Leu	Leu	Asn 215	Asp	Pro	Leu	Tyr	Met 220	Gly	Trp	Arg	Asn
	Pro 225	Arg	Ile	Thr	Asp	Asp 230	Glu	Tyr	Tyr	Glu	Phe 235	Val	Asp	Glu	Phe	Ile 240
35	Gln	Ala	Val	Lys	Gln 245	Arg	Trp	Pro	Asp	Val 250	Leu	Leu	Gln	Phe	Glu 255	Asp
40	Phe	Ala		Lys 260		Ala	Met	Pro	Leu 265		Asn	Arg	Tyr	Arg 270	Asn	Glu
45	Ile	Cys	Ser 275	Phe	Asn	Asp	Asp	Ile 280	Gln	Gly	Thr	Ala	Ala 285	Val	Thr	Val
50	Gly	Thr 290	Leu	Ile	Ala	Ala	Ser 295	Arg	Ala	Ala	Gly	Gly 300	Gln	Leu	Ser	Glu
	Lys 305	Lys	Ile	Val	Phe	Leu 310	Gly	Ala	Gly	Ser	Ala 315	Gly	Cys	Gly	Ile	Ala 320
55	Glu	Met	Ile	Ile	Ser 325	Gln	Thr	Gln	Arg	Glu 330	Gly	Leu	Ser	Glu	Glu 335	Ala

	Ala	. Arg	Gln	Lys 340		Phe	Met	. Val	Asp 345		, Phe	: Gly	· Leu	ι Leu 350		Asp
5	Lys	Met	Pro 355	Asn	Leu	Leu	Pro	Phe 360		Thr	. Tàs	Leu	Val 365		Lys	Arg
10	Glu	Asn 370		Ser	Asp	Trp	Asp 375		Asp	Ser	Asp	Val 380	Leu	. Ser	Leu	Leu
15	Asp 385		Val	Arg	Asn	Val 390	Lys	Pro	Asp	Ile	Leu 395	Ile	Gly	Val	Ser	Gly 400
2.0	Gln	Thr	Gly	Leu	Phe 405	Thr	Glu	Glu	Ile	Ile 410	Arg	Glu	Met	His	Lys 415	His
20	Cys	Pro	Arg	Pro 420	Ile	Val	Met	Pro	Leu 425	Ser	Asn	Pro	Thr	Ser 430	Arg	Val
25	Glu	Ala	Thr 435	Pro	Gln	Asp	Ile	Ile 440	Ala	Trp	Thr	Glu	Gly 445	Asn	Ala	Leu
30	Val	Ala 450	Thr	Gly	Ser	Pro	Phe 455	Asn	Pro	Val	Val	Trp 460	Lys	Asp	Lys	Ile
35	Tyr 465	Pro	Ile	Ala	Gln	Cys 470	Asn	Asn	Ala	Phe	Ile 475	Phe	Pro	Gly	Ile	Gly 480
4.0	Leu	Gly	Val	Ile	Ala 485	Ser	Gly	Ala	Ser	Arg 490	Ile	Thr	Asp	Glu	Met 495	Leu
40	Met	Ser	Ala	Ser 500	Glu	Thr	Leu	Ala	Gln 505	Tyr	Ser	Pro	Leu	Val 510	Leu	Asn
45	Gly	Glu	Gly 515	Met	Val	Leu	Pro	Glu 520	Leu	Lys	Asp	Ile	Gln 525	Lys	Val	Ser
50	Arg	Ala 530	Ile	Ala	Phe	Ala	Va1 535	Gly	Lys	Met	Ala	Gln 540	Gln	Gln	Gly	Val
55	Ala 545	Val	Lys	Thr	Ser	Ala 550	Glu	Ala	Leu	Gln	Gln 555	Ala	Ile	qaA	Asp	Asn 560
	Phe	Trp	Gln	Ala	Glu 565	Tyr	Arg	Asp	Tyr	Arg 570	Arg	Thr	Ser	Ile		

<210> 13 <211> 5068 <212> DNA 5 <213> Artificial <220> <223> Plasmid 10 <400> 13 tatgtatccg gatttaaaag gaaaagtcgt cgctattaca ggagctgctt cagggctcgg 60 aaaggcgatg gccattcgct tcggcaagga gcaggcaaaa gtggttatca actattatag 120 15 taataaacaa gatccgaacg aggtaaaaga agaggtcatc aaggcgggcg gtgaagctgt 180 tgtcgtccaa ggagatgtca cgaaagagga agatgtaaaa aatatcgtgc aaacggcaat 240 taaggagttc ggcacactcg atattatgat taataatgcc ggtcttgaaa atcctgtgcc 300 20 atctcacgaa atgccgctca aggattggga taaagtcatc ggcacgaact taacgggtgc 360 ctttttagga agccgtgaag cgattaaata tttcgtagaa aacgatatca agggaaatgt 420 25 cattaacatg tccagtgtgc acgaagtgat tccttggccg ttatttgtcc actatgcggc 480 aagtaaaggc gggataaagc tgatgacaga aacattagcg ttggaatacg cgccgaaggg 540 cattcgcgtc aataatattg ggccaggtgc gatcaacacg ccaatcaatg ctgaaaaatt 600 30 cgctgaccct aaacagaaag ctgatgtaga aagcatgatt ccaatgggat atatcggcga 660 accggaggag atcgccgcag tagcagcctg gcttgcttcg aaggaagcca gctacgtcac 720 35 aggcatcacg ttattcgcgg acggcggtat gacacaatat ccttcattcc aggcaggccg 780 cggttaatag tagaagcttc tgttttggcg gatgagagaa gattttcagc ctgatacaga 840 ttaaatcaga acgcagaagc ggtctgataa aacagaattt gcctggcggc agtagcgcgg 900 40 tggtcccacc tgaccccatg ccgaactcag aagtgaaacg ccgtagcgcc gatggtagtg 960 tggggtctcc ccatgcgaga gtagggaact gccaggcatc aaataaaacg aaaggctcag 1020 45 tcgaaagact gggcctttcg ttttatctgt tgtttgtcgg tgaacgctct cctgagtagg 1080 acaaatccgc cgggagcgga tttgaacgtt gcgaagcaac ggcccggagg gtggcgggca 1140 ggacgcccgc cataaactgc caggcatcaa attaagcaga aggccatcct gacggatggc 1200 50 ctttttgcgt ttctacaaac tcttttgttt atttttctaa atacattcaa atatgtatcc 1260 gctcatgaga caataaccct gataaatgct tcaataatat tgaaaaagga agagtatgag 1320 55 tattcaacat ttccgtgtcg cccttattcc cttttttgcg gcattttgcc ttcctgtttt 1380 tgctcaccca gaaacgctgg tgaaagtaaa agatgctgaa gatcagttgg gtgcacgagt 1440 gggttacatc gaactggatc tcaacagcgg taagatcctt gagagttttc gccccgaaga 1500

	acgttttcca	atgatgagca	cttttaaagt	. tctgctatgt	ggcgcggtat	tatcccgtgt	1560
5	tgacgccggg	caagagcaac	teggtegeeg	catacactat	tctcagaatg	acttggttga	1620
5	gtactcacca	gtcacagaaa	agcatcttac	ggatggcatg	acagtaagag	aattatgcag	1680
	tgctgccata	accatgagtg	ataacactgo	ggccaactta	cttctgacaa	cgatcggagg	1740
10	accgaaggag	ctaaccgctt	ttttgcacaa	catgggggat	catgtaactc	gccttgatcg	1800
	ttgggaaccg	gagctgaatg	aagccatacc	aaacgacgag	cgtgacacca	cgatgcctgt	1860
15	agcaatggca	acaacgttgc	gcaaactatt	aactggcgaa	ctacttactc	tagcttcccg	1920
7.0	gcaacaatta	atagactgga	tggaggcgga	taaagttgca	ggaccacttc	tgcgctcggc	1980
	ccttccggct	ggctggttta	ttgctgataa	atctggagcc	ggtgagcgtg	ggtctcgcgg	2040
20	tatcattgca	gcactggggc	cagatggtaa	gccctcccgt	atcgtagtta	tctacacgac	2100
	ggggagtcag	gcaactatgg	atgaacgaaa	tagacagatc	gctgagatag	gtgcctcact	2160
25	gattaagcat	tggtaactgt	cagaccaagt	ttactcatat	atactttaga	ttgatttaaa	2220
۷.	acttcatttt	taatttaaaa	ggatctaggt	gaagatcctt	tttgataatc	tcatgaccaa	2280
	aatcccttaa	cgtgagtttt	cgttccactg	agcgtcagac	cccgtagaaa	agatcaaagg	2340
30	atcttcttga	gatccttttt	ttctgcgcgt	aatctgctgc	ttgcaaacaa	aaaaaccacc	2400
	gctaccagcg	gtggtttgtt	tgccggatca	agagctacca	actcttttc	cgaaggtaac	2460
35	tggcttcagc	agagcgcaga	taccaaatac	tgtccttcta	gtgtagccgt	agttaggcca	2520
33	ccacttcaag	aactctgtag	caccgcctac	atacctcgct	ctgctaatcc	tgttaccagt	2580
	ggctgctgcc	agtggcgata	agtcgtgtct	taccgggttg	gactcaagac	gatagttacc	2640
40	ggataaggcg	cagcggtcgg	gctgaacggg	gggttcgtgc	acacagecea	gcttggagcg	2700
	aacgacctac	accgaactga	gatacctaca	gcgtgagcta	tgagaaagcg	ccacgcttcc	2760
45	cgaagggaga	aaggcggaca	ggtatccggt	aagcggcagg	gtcggaacag	gagagcgcac	2820
40	gagggagctt	ccagggggaa	acgcctggta	tctttatagt	cctgtcgggt	ttcgccacct	2880
	ctgacttgag	cgtcgatttt	tgtgatgctc	gtcagggggg	cggagcctat	ggaaaaacgc	2940
50	cagcaacgcg	gcctttttac	ggttcctggc	cttttgctgg	ccttttgctc	acatgttctt	3000
	tcctgcgtta	tcccctgatt	ctgtggataa	ccgtattacc	gcctttgagt	gagctgatac	3060
55	cgctcgccgc	agccgaacga	ccgagcgcag	cgagtcagtg	agcgaggaag	cggaagagcg	3120
<i></i>	cctgatgcgg	tattttctcc	ttacgcatct	gtgcggtatt	tcacaccgca	tatatggtgc	3180
	actctcagta	caatctgctc	tgatgccgca	tagttaagcc	agtatacact	ccgctatcgc	3240

	tacgtgactg	ggtcatggct	gcgccccgac	acccgccaac	acccgctgac	gcgccctgac	3300
	gggcttgtct	gctcccggca	tccgcttaca	gacaagctgt	gaccgtctcc	gggagctgca	3360
5	tgtgtcagag	gttttcaccg	tcatcaccga	aacgcgcgag	gcagctgcgg	taaagctcat	3420
	cagcgtggtc	gtgaagcgat	tcacagatgt	ctgcctgttc	atccgcgtcc	agctcgttga	3480
10	gtttctccag	aagcgttaat	gtctggcttc	tgataaagcg	ggccatgtta	agggcggttt	3540
10	tttcctgttt	ggtcacttga	tgcctccgtg	taagggggaa	tttctgttca	tgggggtaat	3600
	gataccgatg	aaacgagaga	ggatgctcac	gatacgggtt	actgatgatg	aacatgcccg	3660
15	gttactggaa	cgttgtgagg	gtaaacaact	ggcggtatgg	atgcggcggg	accagagaaa	3720
	aatcactcag	ggtcaatgcc	agcgcttcgt	taatacagat	gtaggtgttc	cacagggtag	3780
0.0	ccagcagcat	cctgcgatgc	agatccggaa	cataatggtg	cagggcgctg	acttccgcgt	3840
20	ttccagactt	tacgaaacac	ggaaaccgaa	gaccattcat	gttgttgctc	aggtcgcaga	3900
	cgttttgcag	cagcagtcgc	ttcacgttcg	ctcgcgtatc	ggtgattcat	tctgctaacc	3960
25	agtaaggcaa	ccccgccagc	ctagccgggt	cctcaacgac	aggagcacga	tcatgcgcac	4020
	ccgtggccag	gacccaacgc	tgcccgagat	gcgccgcgtg	cggctgctgg	agatggcgga	4080
	cgcgatggat	atgttctgcc	aagggttggt	ttgcgcattc	acagttctcc	gcaagaattg	4140
30	attggctcca	attcttggag	tggtgaatcc	gttagcgagg	tgccgccggc	ttccattcag	4200
	gtcgaggtgg	cccggctcca	tgcaccgcga	cgcaacgcgg	ggaggcagac	aaggtatagg	4260
35	geggeggege	ctacaatcca	tgccaacccg	ttccatgtgc	tegeegagge	ggcataaatc	4320
	gccgtgacga	tcagcggtcc	agtgatcgaa	gttaggctgg	taagagccgc	gagcgatcct	4380
4.0	tgaagctgtc	cctgatggtc	gtcatctacc	tgcctggaca	gcatggcctg	caacgcgggc	4440
40	atcccgatgc	cgccggaagc	gagaagaatc	ataatgggga	aggccatcca	gcctcgcgtc	4500
	gcgaacgcca	gcaagacgta	gcccagcgcg	teggeegeea	tgccggcgat	aatggcctgc	4560
45	ttctcgccga	aacgtttggt	ggcgggacca	gtgacgaagg	cttgagcgag	ggcgtgcaag	4620
	attccgaata	ccgcaagcga	caggccgatc	atcgtcgcgc	tccagcgaaa	geggteeteg	4680
F.0	ccgaaaatga	cccagagcgc	tgccggcacc	tgtcctacga	gttgcatgat	aaagaagaca	4740
50	gtcataagtg	cggcgacgat	agtcatgccc	cgcgcccacc	ggaaggagct	gactgggttg	4800
	aaggctctca	agggcatcgg	tcgacgctct	cccttatgcg	actcctgcat	taggaagcag	4860
55	cccagtagta	ggttgaggcc	gttgagcacc	gccgccgcaa	ggaatggtgc	atgcatcgat	4920
	caccacaatt	cagcaaattg	tgaacatcat	cacgttcatc	tttccctggt	tgccaatggc	4980
	ccattttcct	gtcagtaacg	agaaggtcgc	gaattcaggc	gctttttaga	ctggtcgtaa	5040

WO 2005/093081 PCT/EP2005/002933 26/26

tgaacaattc ttaagaagga gatataca

5068