Recap

• *L* is in **NP** means:

There is a language
$$L'$$
 in **P** and a polynomial p so that $\forall x : x \in L \Leftrightarrow [\exists y \in \{0,1\}^* : |y| \leq p(|x|) \land \langle x, y \rangle \in L']$

• $L_1 \le L_2$ means: For some polynomial time computable map r:

$$\forall x : x \in L_1 \Leftrightarrow r(x) \in L_2$$

• L is **NP**-hard means:

$$\forall L' \in \mathbf{NP} : L' \leq L$$

• L is in **NPC** means: $L \in \mathbf{NP}$ and L is **NP**-hard

How to establish NP-hardness

Lemma

If L_1 is NP-hard and $L_1 \leq L_2$, then L_2 is NP-hard

SAT and close relatives

SAT

- Given: CNF formula F on n variables.
- Question: Does there exist $x \in \{0,1\}^n$ such that F(x) = 1?

CircuitSAT

- Given: Boolean Circuit C on n variables.
- Question: Does there exist $x \in \{0,1\}^n$ such that C(x) = 1?

kSAT

- Given: kCNF formula F on n variables.
- Question: Does there exist $x \in \{0,1\}^n$ such that F(x) = 1?
- A kCNF formula is a CNF formula where each clause has at most k literals.

SAT

•SAT is in NP.

•Cook's theorem (1972): SAT is NP-hard.

3SAT is NP-complete

Recall reduction CircuitSAT \leq SAT (Tseitin transformation):

Let C be a Boolean circuit on n variables.

Construct CNF formula F with

- Variables: One variable g for every gate g of C.
- Clauses:
 - For each gate of C, clauses that express the computation of the gate. E.g., $g \Leftrightarrow h_1 \land h_2$ expresses that gate g is the Boolean conjunction of gates h_1 and h_2 . For every gate this is a Boolean function on at most 3 variables, which can be expressed as a CNF formula.

$$(\neg g \lor h_1) \land (\neg g \lor h_2) \land (g \lor \neg h_1 \lor \neg h_2)$$

• For the output gate $g_{\rm out}$ of C, the unit clause $(g_{\rm out})$.

SAT ≤ 3SAT

Construct $r(F) \to F'$ such that $F \in SAT \Leftrightarrow F' \in 3SAT$

<u>Idea:</u> Break up clauses $(\ell_1 \vee \cdots \vee \ell_k)$ for k > 3 into smaller clauses

Example: $(\ell_1 \lor \ell_2 \lor \ell_3 \lor \ell_4)$

Can be generalized for arbitrary $(\ell_1 \lor \cdots \lor \ell_k)$

Resolution

Let *F* be the following CNF formula:

$$\begin{array}{l} (x \vee P_1) \wedge (x \vee P_2) \wedge \cdots \wedge (x \vee P_k) \wedge \\ (\neg x \vee Q_1) \wedge (\neg x \vee Q_2) \wedge \cdots \wedge (\neg x \vee Q_\ell) \wedge \\ R \end{array}$$

where R does not contain the variable x.

Then Resolve(F, x) is defined to be the following CNF formula:

$$\begin{array}{c} (P_1 \vee Q_1) \wedge (P_2 \vee Q_1) \wedge \cdots \wedge (P_k \vee Q_1) \wedge \\ (P_1 \vee Q_2) \wedge (P_2 \vee Q_2) \wedge \cdots \wedge (P_k \vee Q_2) \wedge \\ \cdots \\ (P_1 \vee Q_\ell) \wedge (P_2 \vee Q_\ell) \wedge \cdots \wedge (P_k \vee Q_\ell) \wedge \\ R \end{array}$$

The Davis-Putnam procedure

```
Input: CNF formula F
Output: Satisfiability of F
while F is not empty do:

if F contains an empty clause then:

return false
let x \in vars(F)
let F := resolve(F, x)
return true
```

The implication graph of a 2CNF

$$(x \lor y) \equiv (\neg x \Rightarrow y) \equiv (x \Leftarrow \neg y)$$

Let F be a 2CNF formula. Define the directed graph G(F):

- The nodes of G(F) are variables of F and their negations (i.e. all possible literals)
- The arcs of G(F) represent the two equivalent implications of every clause of F.

2SAT and connectivity

Theorem

F is satisfiable if and only if:

there is no variable x such that there is **both** a path from x to $\neg x$ and from $\neg x$ to x in G(F)

Finding a satisfying assignment

Input: 2CNF formula F

Output: Satisfiability of *F*

S = empty set (Set of "fixed" variables.)

while $S \neq vars(F)$, do:

Pick x in vars(F) but not in S. Add x to S.

If there is a path in G(F) from x to $\neg x$, then set x=0, else set x=1.

If literal ℓ is set to 1, then explore the graph G(F) from ℓ . Set all unset literals ℓ' reachable from ℓ to 1.