AIFA Basic State Space Search

08/01/2024

Koustav Rudra

- Initialize: Set OPEN={s}
- Fail:
 - If OPEN={}, Terminate with failure
- Select: Select a state, n, from OPEN
- Terminate:
 - If n∈G, terminate with success
- Expand:
 - Generate the successors of n using O and insert them in OPEN
- Loop:
 - Go to step 2

Which data structure should we use for OPEN?

Open Set	Select State	Goal State	Terminate	Expanded Set
[1]	1	N	N	[4,3,2]
[4,3,2]	2	N	N	[4,3,6]
[4,3,6]	6	N	N	[4,3]
[4,3]	3	N	N	[4,5]
[4,5]	5	N	N	[4,7]
[4,7]	7	Υ	Y	

Stack

Tie: Descending

Open Set	Select State	Goal State	Terminate	Expanded Set
[1]	1	N	N	[4,3,2]
[4,3,2]	4	N	N	[3,2,7]
[3,2,7]	3	N	N	[2,7,5]
[2,7,5]	2	N	N	[7,5,6]
[7,5,6]	7	Υ	Υ	

Queue

Tie: Descending

• We don't want to make whole state space explicit

• We only want to unfold that portion of the state space which is necessary to find out the goal

Open Set	Select State	Goal State	Terminate	Expanded Set
[1]	1	N	N	[4,2]
[4,2]	2	N	N	[4,6]
[4,6]	6	N	N	[4,3]
[4,3]	3	N	N	[4,5]
[4,5]	5	N	N	[4,6]
[4,6]	6	N	N	[4,3]
[4,3]	3	N	N	[4,5]

Stack

Tie: Descending

How to maintain part of the state space that are already visited?

• OPEN is a queue (FIFO) vs a stack (LIFO)

• Is this algorithm guaranteed to terminate?

• Under what circumstances will it terminate?

Complexity

• b: branching factor d: depth of the goal

• Breadth first search:

• Time: $O(b^d)$

• Space: $O(b^d)$

• Depth first search:

• Time: $O(b^m)$

• m: depth of state space tree

• **Space**: *O*(*bm*)

• State space tree is the tree that is obtained by applying the state transition operators repeatedly on the set of states

Trade-off between Space and Time

- Iterative deepening
 - Perform DFS repeatedly using increasing depth bounds
 - Works in $O(b^d)$ time and O(bd) space
- Can we do something with time complexity?

Trade-off between Space and Time

• Iterative deepening

- Perform DFS repeatedly using increasing depth bounds
- Works in $O(b^d)$ time and O(bd) space

• Bi-directional search

- Possible only if the operators are reversible
- Works in $O(b^{\frac{d}{2}})$ time and $O(b^{\frac{d}{2}})$ space

Complexity Comparison

Criterion	BFS	DFS	Depth Limited
Time	b^d	b^m	b^l
Space	b^d	bm	bl
Optimal?	Yes	No	No
Complete?	Yes	No	Yes, if l>=d

Open Set	Select State	Goal State	Terminate	Expanded Set
[1]	1	N	N	[4,2]
[4,2]	2	N	N	[4,6]
[4,6]	6	N	N	[4,3]
[4,3]	3	N	N	[4,5]
[4,5]	5	N	N	[4,6]
[4,6]	6	N	N	[4,3]
[4,3]	3	N	N	[4,5]

Stack

Tie: Descending

How to maintain part of the state space that are already visited?

Search Algorithm: Saving Explicit Space

- Initialize: Set OPEN={s}, CLOSED = {}
- Fail:
 - If OPEN={}, Terminate with failure
- Select: Select a state, n, from OPEN and
 - Save n is CLOSED
- Terminate:
 - If n∈G, terminate with success
- Expand:
 - Generate the successors of n using O
 - For each successor, m, insert m in OPEN,
 - Only if $m \notin [OPEN \cup CLOSED]$
- Loop:
 - Go to step 2

Open Set	Select State	Goal State	Terminate	Expanded Set
[1]	1	N	N	[4,2]
[4,2]	2	N	N	[4,6]
[4,6]	6	N	N	[4,3]
[4,3]	3	N	N	[4,5]
[4,5]	5	N	N	[4, 6]
[4]	4	N	N	[7]
[7]	7	Υ	Υ	

Stack

Tie: Descending

Search Algorithm: Saving Explicit Space

- Initialize: Set OPEN={s}, CLOSED = {}
- Fail:
 - If OPEN={}, Terminate with failure
- Select: Select a state, n, from OPEN and
 - Save n is CLOSED
- Terminate:
 - If n∈G, terminate with success
- Expand:
 - Generate the successors of n using O
 - For each successor, m, insert m in OPEN,
 - Only if $m \notin [OPEN \cup CLOSED]$
- Loop:
 - Go to step 2

How to maintain data structure to trace the path from start to goal?

Open Issues

• What will happen if state transition operators have associated cost?

• What will happen if the goal state have associated cost?

Thank You