MSDS 596 Regression & Time Series

Lecture 02 Gauss Markov theorem and the R^2

Department of Statistics Rutgers University

Sept 19, 2022

Do not reproduce or distribute lecture slides without permission

Welcome to MSDS 596: Regression & Time Series

- Meeting time: Mondays 6-9pm
- Instructor: Koulik Khamaru (kk1241@rutgers.edu)
 Office hour: Monday 4-5pm, 479 Hill center
- Teaching Assistant: **Suvrojit Ghosh** (sg1565@scarletmail.rutgers.edu) Office hour: Wednesdays 3:30-4:30pm, 260 Hill center.
- Course website (piazza):

```
https://piazza.com/rutgers/fall2022/
1695459602
```

The course website is our main means of communication for all things class-related.

Gauss-Markov Theorem

Gauss-Markov Theorem

Suppose $\mathbb{E}(y) = X\beta$, where X has full rank and $Var(y) = \sigma^2 I$. The least squares estimator

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y}$$

is the **best linear unbiased estimator (BLUE)** of β , in the sense that for any $\psi = c'\beta$, of all unbiased estimators of ψ that are linear in y, $c'\hat{\beta}$ has minimum variance.

Gauss Markov theorem proof

Let

$$\tilde{\beta} = By = \left\{ (X^{\top}X)^{-1}X^{\top} + G \right\} y$$

- Show that GX = 0.
- Show var $(Gy) = \text{var}(\hat{\beta}_{OLS}) + \sigma^2 G G^{\top}$.

Variance estimate

Recall the linear model is

$$y_i = \mathbf{x}_i' \mathbf{\beta} + \epsilon_i, \quad 1 \le i \le n,$$

assuming $\epsilon_1, \epsilon_2, \dots, \epsilon_n$ are independent and identically distributed (iid) with mean zero and variance σ^2 .

• The estimate of σ^2 is given by

$$\hat{\sigma}^2 = \frac{1}{n - (p+1)} \sum_{i=1}^n (y_i - \hat{y}_i)^2.$$

- Unbiased estimate, i.e. $\mathbb{E}\hat{\sigma}^2 = \sigma^2$.
- The covariance matrix of $\hat{\beta}$ is

$$Cov(\hat{\boldsymbol{\beta}}) = \sigma^2 (\boldsymbol{X}' \boldsymbol{X})^{-1}.$$

- It is estimated by $\widehat{\mathsf{Cov}}(\hat{\boldsymbol{\beta}}) = \hat{\sigma}^2(\boldsymbol{X}'\boldsymbol{X})^{-1}$.

Variance estimate

Recall the linear model is

$$y_i = \mathbf{x}_i' \boldsymbol{\beta} + \epsilon_i, \quad 1 \le i \le n,$$

assuming $\epsilon_1, \epsilon_2, \dots, \epsilon_n$ are independent and identically distributed (iid) with mean zero and variance σ^2 .

• The estimate of σ^2 is given by

$$\hat{\sigma}^2 = \frac{1}{n - (p+1)} \sum_{i=1}^n (y_i - \hat{y}_i)^2.$$

- Unbiased estimate, i.e. $\mathbb{E}\hat{\sigma}^2 = \sigma^2$.
- The covariance matrix of $\hat{\beta}$ is

$$Cov(\hat{\boldsymbol{\beta}}) = \sigma^2 (\boldsymbol{X}' \boldsymbol{X})^{-1}.$$

- It is estimated by $\widehat{\mathsf{Cov}}(\hat{\boldsymbol{\beta}}) = \hat{\sigma}^2(\boldsymbol{X}'\boldsymbol{X})^{-1}$.

Variance estimate

Recall the linear model is

$$y_i = \mathbf{x}_i' \mathbf{\beta} + \epsilon_i, \quad 1 \le i \le n,$$

assuming $\epsilon_1, \epsilon_2, \dots, \epsilon_n$ are independent and identically distributed (iid) with mean zero and variance σ^2 .

• The estimate of σ^2 is given by

$$\hat{\sigma}^2 = \frac{1}{n - (p+1)} \sum_{i=1}^n (y_i - \hat{y}_i)^2.$$

- Unbiased estimate, i.e. $\mathbb{E}\hat{\sigma}^2 = \sigma^2$.
- The covariance matrix of $\hat{\beta}$ is

$$Cov(\hat{\boldsymbol{\beta}}) = \sigma^2(\boldsymbol{X}'\boldsymbol{X})^{-1}.$$

- It is estimated by $\widehat{\mathsf{Cov}}(\hat{\boldsymbol{\beta}}) = \hat{\sigma}^2(\boldsymbol{X}'\boldsymbol{X})^{-1}$.

We need to measure how well the model fits the data.

- Total sum of squares (Total SS): $\sum_{i=1}^{n} (y_i \bar{y})^2$.
- Residual sum of squares (RSS): $\sum_{i=1}^{n} (y_i \hat{y}_i)^2$.
- Coefficient of determination:

$$R^2 := 1 - \frac{RSS}{\text{Total SS}},$$

noting that $0 \le R^2 \le 1$.

We need to measure how well the model fits the data.

- Total sum of squares (Total SS): $\sum_{i=1}^{n} (y_i \bar{y})^2$.
- Residual sum of squares (RSS): $\sum_{i=1}^{n} (y_i \hat{y}_i)^2$.
- Coefficient of determination:

$$R^2 := 1 - \frac{RSS}{\text{Total SS}},$$

noting that $0 \le R^2 \le 1$.

We need to measure how well the model fits the data.

- Total sum of squares (Total SS): $\sum_{i=1}^{n} (y_i \bar{y})^2$.
- Residual sum of squares (RSS): $\sum_{i=1}^{n} (y_i \hat{y}_i)^2$.
- Coefficient of determination:

$$R^2 := 1 - \frac{RSS}{\text{Total SS}},$$

noting that $0 \le R^2 \le 1$.

We need to measure how well the model fits the data.

- Total sum of squares (Total SS): $\sum_{i=1}^{n} (y_i \bar{y})^2$.
- Residual sum of squares (RSS): $\sum_{i=1}^{n} (y_i \hat{y}_i)^2$.
- Coefficient of determination:

$$R^2 := 1 - \frac{RSS}{\text{Total SS}},$$

noting that $0 \le R^2 \le 1$.

We need to measure how well the model fits the data.

- Total sum of squares (Total SS): $\sum_{i=1}^{n} (y_i \bar{y})^2$.
- Residual sum of squares (RSS): $\sum_{i=1}^{n} (y_i \hat{y}_i)^2$.
- Coefficient of determination:

$$R^2 := 1 - \frac{RSS}{\text{Total SS}},$$

noting that $0 \le R^2 \le 1$.

Coefficient of determination:

$$R^2 := 1 - \frac{RSS}{Total SS}.$$

- Large value of R^2 indicates better fit.
 - In biological and social sciences, and finances, the variables are usually weakly correlated, with a lot of noise, we would expect low values of R^2 .
 - In physics and engineering, most data come from controlled experiments, typically get higher R^2 .
 - Background knowledge may be required to judge the R^2 value.
- Do NOT rely on R^2 as the only measure of fit! (Chapters 6,7,8,10)

Maximum Likelihood Estimation (Next class)

- Linear model $y_i = \mathbf{x}_i' \boldsymbol{\beta} + \epsilon_i$, $1 \le i \le n$.
- If the assumption is stronger: $\epsilon_1, \epsilon_2, \dots, \epsilon_n$ are iid $N(0, \sigma^2)$, then...
- In the simple regression case, likelihood and log likelihood

$$L(\beta) = \prod_{i=1}^{n} \left\{ \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(y_i - \beta_0 - \beta_1 x_i)^2}{2\sigma^2}\right] \right\},$$

$$\log L(\beta) = -\frac{n}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2.$$

Solve for the MLEs: $\frac{\partial \log L}{\partial \beta_0} \mid_{\hat{\beta}_0, \hat{\beta}_1} = 0$ and $\frac{\partial \log L}{\partial \beta_1} \mid_{\hat{\beta}_0, \hat{\beta}_1} = 0$

• $\hat{\beta}$ is also the maximum likelihood estimate (MLE) of β .

¹Read chap 1 and 3 of the book Statisical Inference 2nd ed. by Casella and Berger

MSDS 596 Lecture 02 Sept 19, 2022

8/9

Maximum Likelihood Estimation (Next class)

- Linear model $y_i = \mathbf{x}_i' \boldsymbol{\beta} + \epsilon_i$, $1 \le i \le n$.
- If the assumption is stronger: $\epsilon_1, \epsilon_2, \dots, \epsilon_n$ are iid $N(0, \sigma^2)$, then...
- In the simple regression case, likelihood and log likelihood:

$$L(\beta) = \prod_{i=1}^{n} \left\{ \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(y_i - \beta_0 - \beta_1 x_i)^2}{2\sigma^2}\right] \right\},$$

$$\log L(\beta) = -\frac{n}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2.$$

Solve for the MLEs: $\frac{\partial \log L}{\partial \beta_0}\mid_{\hat{\beta}_0,\hat{\beta}_1}=0$ and $\frac{\partial \log L}{\partial \beta_1}\mid_{\hat{\beta}_0,\hat{\beta}_1}=0$.

• $\hat{\beta}$ is also the maximum likelihood estimate (MLE) of β .

¹Read chap 1 and 3 of the book Statisical Inference 2nd ed. by Casella and Berger

MSDS 596 Lecture 02 Sept 19, 2022

8/9

Maximum Likelihood Estimation (Next class)

- Linear model $y_i = \mathbf{x}_i' \boldsymbol{\beta} + \epsilon_i$, $1 \le i \le n$.
- If the assumption is stronger: $\epsilon_1, \epsilon_2, \dots, \epsilon_n$ are iid $N(0, \sigma^2)$, then...
- In the simple regression case, likelihood and log likelihood:

$$L(\beta) = \prod_{i=1}^{n} \left\{ \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(y_i - \beta_0 - \beta_1 x_i)^2}{2\sigma^2}\right] \right\},$$

$$\log L(\beta) = -\frac{n}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2.$$

Solve for the MLEs: $\frac{\partial \log L}{\partial \beta_0} \mid_{\hat{\beta}_0, \hat{\beta}_1} = 0$ and $\frac{\partial \log L}{\partial \beta_1} \mid_{\hat{\beta}_0, \hat{\beta}_1} = 0$.

• $\hat{\beta}$ is also the maximum likelihood estimate (MLE) of β .

¹Read chap 1 and 3 of the book Statisical Inference 2nd ed. by Casella and Berger

MSDS 596 Lecture 02 Sept 19, 2022

8/9

Distribution of $\hat{\beta}$ (Next class)

- \bullet σ knwon
 - Distribution of $\hat{\beta}$.
 - Distribution of $a^{\top}\hat{\beta}$.
 - What happends when σ^2 is unknown?
- σ^2 is uknown
 - What is the MLE for $\hat{\beta}$?
 - What is the MLE for $\hat{\sigma}^2$?