

Encadrement: Étienne Baudrier, Sylvain Faisan, Alexandre Stenger

Introduction

Source data (chemical fixation)

Target data (cryo-fixation)

Covariate shift

Introduction: Batch Norm adaptation

What is Batch Norm?

Introduction: Batch Norm adaptation

What is Batch Norm <u>adaptation</u>?

- we take the **target dataset** and pass it through the network, freezing all parameters but updating $\hat{\mu}$ and $\hat{\sigma}$

Introduction: The work of my équipe

FAST AND INTERPRETABLE UNSUPERVISED DOMAIN ADAPTATION FOR FIB-SEM CELL SEGMENTATION

Alexandre Stenger *†

Luc Vedrenne *† Étienne Baudrier †

Patrick Schultz [‡] Benoît Naegel [†]

Sylvain Faisan †

Architecture	$FS1 \rightarrow FS2$	$FS2 \rightarrow FS1$
U-Net (source trained)	0.556	0.006
Y-Net ([6])	0.614	0.014
CellSegUDA ([4])	0.673	0.041
BatchNorm (ours)	0.736	0.024
U-Net (target trained)	0.881	0.803

https://publis.icube.unistra.fr/docs/17711/ISBI_paper_559.pdf

Introduction: The work of my équipe

Asymmetric behaviour of BN (Batch Norm adaptation)

Pros:

- Simple implementation
- Extremely fast

Cons:

- we don't know when it works

My internship goal

When (and why) does Batch Norm adaptation work?

Dataset Generation

Dataset generation

Source data

Add noise

Dataset generation

2) set a threshold 1) generate a Perlin Noise 3) "look from above"

07/21/2023

~40s for 10.000 images

Dataset generation

When BN adaptation works

(means of mask and background white noises)

(μ_1, μ_2)

Target dataset

Mask predictions

Source dark, target bright \rightarrow all white Source bright, target dark \rightarrow all black

Target dataset

Target dataset

When BN adaptation ..kinda works?

(means of mask and background white noises)

 (μ_1, μ_2)

U-Net WITHOUT batch norm adaptation

Target dataset

Target dataset

Difference between the two graphs

Target dataset

What is going on???

Removed weight decay + Before ReLU

1024-dimensional distributions

Projection per-dimension

We can work with this!

	WASSERSTEIN	SLICED WASSERSTEIN	BHATTACHARYYA
Accounts for	full distribution	projections	projections
Assumptions	Gaussianity	•	!
Sparsity of data	causes less issues	causes issues	causes issues
Computations	Rounding errors	[?]	manageable

BN adaptation improvement

Bhattacharyya

Close! But not there yet ...

Synthesis and future ideas

Synthesis

- BN adaptation works well with **brightness shifts**
- it can **correct irregular training**

- We need <u>more</u> <u>experiments</u> to find a good predictor for the improvement!

- in some cases it <u>does not</u> <u>improve</u> the performance

Future ideas

What is the plan for my next 2 months?

What I'm working on

- keep experimenting with different datasets combinations
- test on all latent spaces of UNet
- test different distance measures (e.g. sliced Wasserstein)
- test for different image transformations (cropping, affine transformations, deformations, brighness, contrast, hue, ...)

- extra slides -

EXTRA

U-Net WITH batch norm adaptation

