Автор: Євген Пенцак

Домашнє завдання №10 (від 18.11.2020)

Виконав: Трохимович Микола

Заняття 15-16. Формули реальних опціонів Самуельсона-Маккіна та Марграба. Параметричні та непараметричні функції щільності розподілів доходності фінансових інструментів та значень інвестиційних критеріїв. Нормалізовані моменти вибірки доходності акцій, їх візуалізація та використання у фінансовій аналітиці. Калібрування параметрів функцій щільності.

Завдання 1 (60 балів).

Margrabe [1978] запропонував формулу обміну одного активу на інший, коли ціна виконання X=0. Вартість опціону обміну активу А на актив В визначається формулою:

$$eo = S_B e^{-y_B t} N(d_1) - S_A e^{-y_A t} N(d_2)$$

$$d_1 = \frac{ln(S_B/S_A) + (y_A - y_B + \sigma^2/2)t}{\sigma \sqrt{t}}$$

$$d_2 = d_1 - \sigma \sqrt{t}$$

$$\sigma = \sqrt{\sigma_A^2 + \sigma_B^2 - 2\sigma_A \sigma_B \rho_{A,B}}$$

Параметр σ тут визначає волатильність спреду, тобто різниці між цінами А та В. Розглянемо приклад. Нехай є два активи вартістю $S_A=1$, $S_B=1$ і інвестор має право через 1 рік (t=1) обміняти актив А на актив В, активи А і В не приносять жодних дивідендів, тобто $y_A=y_B=0$, волатильність доходності кожного активу $\sigma_A=0$,1, $\sigma_B=0$,1 і коефіцієнт кореляції $\rho_{AB}=0$.

- 1.1 (10 балів) Яка вартість опціону обміну активу А на актив В?
- 1.2 **(10 балів)** Знайдіть чутливість опціону обміну A на B від коефіцієнта кореляції ρ_{AB} (-1:0.01:1).
- 1.3 **(10 балів)** Знайдіть чутливість опціону обміну A на B від волатильності σ_A (0.01:0.01:0.3).
- 1.4 **(10 балів)** Знайдіть чутливість опціону обміну A на B від дивідендної доходності y_A (0.01:0.01:0.1).
- 1.5 **(10 балів)** Знайдіть чутливість опціону обміну A на B від ціни S_A (0.5:0.01:2).
- 1.6 **(10 балів)** Знайдіть чутливість опціону обміну А на В від часу t (0.5:0.01:2)

Розв'язок:

1.7 **(10 балів)** Яка вартість опціону обміну активу А на актив В? Розв'яжу дану задачу за допомогою python, це дозволить в подальшому легко оцінити чутливість параметрів та побудувати відповідні графіки.

Визначимо функцію для оцінки вартості опціону обміну за заданими параметрами:

```
In [16]: def price(S_a, S_b, t, y_a, y_b, sig_a, sig_b, ro_ab):
    sigma = np.sqrt(sig_a**2 + sig_b**2 - 2*sig_a*sig_b*ro_ab)
    d1 = (np.log(S_b/S_a)+(y_a-y_b*sigma**2/2)*t)/sigma/np.sqrt(t)
    d2 = d1 - sigma*np.sqrt(t)
    N_d1 = scipy.stats.norm(0, 1).cdf(d1)
    N_d2 = scipy.stats.norm(0, 1).cdf(d2)
    eo = S_b*np.exp(-y_b*t)*N_d1 - S_a*np.exp(-y_a*t)*N_d2
    return eo
```

Підставивши наші початкові значення у функцію знайдемо вартість опціону обміну:

```
S_a = 1
s_b = 1
t = 1
y_a = 0
y_b = 0
sig_a = 0.1
sig_b = 0.1
ro_ab = 0

print(f'Bapricts опціону обміну становить {round((price(S_a, S_b, t, y_a, y_b, sig_a, sig_b, ro_ab)*100),3)}%')

Вартість опціону обміну становить 5.637%
```

Отже за нашими початковими параметрами вартість опціону обміну **5.637%** від вартості кожного з активів A і B, що не є так мало.

- 1.2 **(10 балів)** Знайдіть чутливість опціону обміну A на B від коефіцієнта кореляції ho_{AB} (-1:0.01:1).
- 1.3 **(10 балів)** Знайдіть чутливість опціону обміну A на B від волатильності σ_A (0.01:0.01:0.3).
- 1.4 **(10 балів)** Знайдіть чутливість опціону обміну A на B від дивідендної доходності y_A (0.01:0.01:0.1).
- 1.5 **(10 балів)** Знайдіть чутливість опціону обміну A на B від ціни S_A (0.5:0.01:2).
- 1.6 (10 балів) Знайдіть чутливість опціону обміну А на В від часу t (0.5:0.01:2)

Далі для знаходження чутливості вартості опціону до кожного з параметрів найкраще побудувати відповідні графіки де по осі х матимемо значення параметра з заданої області значень а по осі у відповідне значення вартості опціону обміну. Побудуємо та проінтерпретуємо такі графіки:

Дане дослідження показує, що зі збільшенням коефіцієнта кореляції ціна опціону обміну зменшується, що впринципі інтуїтивно зрозуміло, адже чим кореляція показує схожість, а обмін схожими товарами по логіці повинен бути дешевшим.

Дане дослідження показує, що зі збільшенням коефіцієнту волатильності сігма а, також і зростає ціна опціону. Це можна пояснити тим, що волатильність напряму впливає на ризиковість, а отже і ціна зростає з ризиками.

Дане дослідження показує, що зі збільшенням дивіденду дохідності, також і зростає ціна опціону.

Дане дослідження показує, що зі збільшенням ціни товару а, ціна опціону падає, при чому дане падіння спочатку є стрімким, а потім виходить на плато в 0% за ціни товару A 1.4 і більше.

Дане дослідження показує, що з плином часу, ціна опціону зростає.

Завдання 2. (20 балів)

Розгляньте цінні папери AAPL, GOOG, MSFT, AMZN, YHOO, NFLX та індекс S&P500, тижневі котування яких знаходяться у файлі stock_data.xls.

2.1 **(5 балів)** Для кожного активу знайдіть значення: середню доходність, стандартне відхилення, скіс, ексцес та матрицю варіацій-коваріацій для доходностей відповідних активів.

Розв'язок:

Зчитаємо дані з файлу, маємо там такі дані:

```
In [55]: stocks = pd.read_excel('stock_data.xlsx') stocks.dropna(inplace = True)

Out[55]:

DATE AAPL GOOGL MSFT AMZN YHOO NFLX S&P500 RAAPL RGOOGL RMSFT RAMZN RYHOO RNFLX RS&P500

0 2009-10-30 25.50 268.33 24.20 118.81 15.90 53.45 1036.19 0.030980 0.027951 0.028512 0.062200 0.002516 0.045089 0.031954

1 2009-11-06 26.29 275.83 24.89 126.20 15.94 55.86 1069.30 0.052111 0.037994 0.038971 0.053645 -0.000627 0.062120 0.022613

2 2009-11-13 27.66 286.31 25.86 132.97 15.93 59.33 1093.48 -0.022054 -0.003632 0.004254 -0.024893 -0.034526 0.010787 -0.001920

3 2009-11-20 27.05 285.27 25.97 129.66 15.38 59.97 1091.38 0.003327 0.017177 -0.013477 0.016042 -0.024707 -0.035351 0.000101

4 2009-11-27 27.14 290.17 25.62 131.74 15.00 57.85 1091.49 -0.036478 0.009064 0.025761 0.044330 0.012667 -0.028003 0.013275
```

Для заданих цінних паперів обрахуємо відповідні статистики:

Також знайдемо матрицю варіацій-коваріацій для доходностей відповідних активів:

```
print('Maтриця коваріацій буде становити:')
stocks[columns_to_use].cov()

Матриця коваріацій буде становити:
```

	AAPL	GOOGL	MSFT	AMZN	YHOO	NFLX	S&P500
AAPL	527.988504	1992.932548	139.020410	1362.854836	172.491301	1598.326369	5842.228863
GOOGL	1992.932548	13757.575130	794.456318	8219.559815	1144.632557	12552.657964	34045.016839
MSFT	139.020410	794.456318	55.210235	443.020698	73.199260	728.024784	2095.309664
AMZN	1362.854836	8219.559815	443.020698	5895.927653	668.023192	7486.323971	21253.214308
YHOO	172.491301	1144.632557	73.199260	668.023192	111.072833	1122.412623	2980.977212
NFLX	1598.326369	12552.657964	728.024784	7486.323971	1122.412623	16127.889552	32249.483119
S&P500	5842.228863	34045.016839	2095.309664	21253.214308	2980.977212	32249.483119	91521.840821

2.2 **(10 балів)** Зобразіть графічно характеристики портфелів з різними ваговими коефіцієнтами при інвестуванні в акції компаній AAPL та AMZN:

$$\mu_p = w_1 \times RAAPL + w_2 \times RAMZN$$

$$\sigma_{p}^{2} = (w_{1} w_{2}) \times (cov(1; 2)) \times {w_{1} \choose w_{2}}$$

Побудуємо графіки для характеристик портфелів за умови, що $w_1+w_2=1$:

Як бачимо, хоча зі збільшенням частки AAPL в портфелі, прибутковість падає, проте варто зазначити, що значно і падає варіація прибутковості портфелю, що вказує на його більшу надійність і меншу ризиковість.

2.3 **(5 балів)** Дослідіть поведінку індексу S&P500, наскільки його розподіл доходності є близьким до нормального. Знайдіть описові характеристики доходності індексу, а також його непараметрично задану функцію щільності. Результат зобразіть графічно.

Для початку апроксимуємо дані нормальним розподілом і намалюємо графіки відповідного реального і теоретичного щільності розподілу для наших даних.

```
In [83]: import numpy as np from scipy.stats import norm import matplotlib.pyplot as plt import seaborn as sns

# Generate some data for this demonstration.
data = stocks['S&P500'].values

# Fit a normal distribution to the data:
mu, std = norm.fit(data)

# Plot the histogram.
sns.distplot(data, color='g', hist = False, label = 'real distribution')

# Plot the PDF.
xmin, xmax = plt.xlim()
x = np.linspace(xmin, xmax, 100)
p = norm.pdf(x, mu, std)
plt.plot(x, p, 'k', linewidth=2, label = 'theoretical distribution')

title = "Teoperwhunn i peanshunn posnoginn для індексу S&P500"
plt.title(title)
plt.legend()

plt.show()
```


Як ми вже бачимо, розподіл не дуже схожий на нормальний. В попередньому завданні також знайшли відповідні статистичні характеристики:

	цінні папери	середня дохідність	стандартне відхилення	скіс	ексцес
6	S&P500	1467.38365	302.525769	0.511557	-1.01055

З даних характеристик ми бачимо, що розподіл має скошення вліво, так як скіс>0, це ми також спостерігаємо і на графіку.

Щодо ексцесу, то розподіл ϵ не дуже гострий, так як значення ексцесу -1, з графіку можна також припустити, що розподіл бімодальний, що не властиво нормальному роподілу.

Завдання 3. (20 балів) Розглянемо тижневі дані цін компанії TRIP у файлі ADJ_PRICES.xls

- **3.1 (5 балів)** Побудуйте функцію щільності розподілу доходностей TRIP у припущенні нормального розподілу (normpdf) і з використанням непараметрично заданого розподілу (ksdensity). Зобразіть їх графічно.
- **3.2 (5 балів)** Побудуйте функцію щільності розподілу доходностей TRIP у припущенні логнормального розподілу (lognpdf) і з використанням непараметрично заданого розподілу (ksdensity). Зобразіть їх графічно.
- **3.3 (5 балів)** Побудуйте функцію щільності розподілу доходностей TRIP у припущенні гамма розподілу (gampdf) і з використанням непараметрично заданого розподілу (ksdensity). Зобразіть їх графічно.

Розв'язок:

Маємо такі дані:

Teopeтична (norm) і реальний функції щільності для доходностей TRIP

Як можемо бачити є певна схожість розподілів, проте реальний розподіл дещо скошений вліво.

В даному випадку, бачимо, що даний розподіл дещо краще апроксимує наші дані.

Як бачимо, у випадку gamma розподілу, нам не вдалося апроксимувати дані дохідності TRIP. Так як графіки зовсім різні.

3.4 (5 балів) Зобразіть графічно криву скосу та ексцесу для розподілу Вейбула з різними допустимими параметрами.

Для цього завдання використаємо **scipy.stats.weibull_min, що дозволить нам генерувати** Weibull distribution

Виходячи з опису методу будемо дослужувати зміну скосу і ексцесу від параметру с (shape parameter:

scipy.stats.weibull_min

 $scipy.stats. \textbf{Weibull_min(*} \textit{args, **kwds)} = < scipy.stats._continuous_distns. \textit{weibull_min_gen object} > scipy.stats._continuous_distns.$

[source]

Weibull minimum continuous random variable.

The Weibull Minimum Extreme Value distribution, from extreme value theory (Fisher-Gnedenko theorem), is also often simply called the Weibull distribution. It arises as the limiting distribution of the rescaled minimum of iid random variables.

As an instance of the rv_continuous class, weibull_min object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

See also:

weibull_max, numpy.random.RandomState.weibull, exponweib

Notes

The probability density function for weibull_min is:

$$f(x,c) = cx^{c-1}\exp(-x^c)$$

for x > 0, c > 0.

 $\begin{tabulous}{ll} weibull_min\ takes\ c\ as\ a\ shape\ parameter\ for\ c.\ (named\ k\ in\ Wikipedia\ article\ and\ a\ in\ numpy.random.weibull). Special\ shape\ values\ are\ c=1\ and\ c=2\ where\ Weibull\ distribution\ reduces\ to\ the\ expon\ and\ rayleigh\ distributions\ respectively.$

The probability density above is defined in the "standardized" form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, weibull_min.pdf(x, c, loc, scale) is identically equivalent to weibull_min.pdf(y, c) / scale with y = (x - loc) / scale.

3 збільшенням параметру с скіс і ексцес зменшуються і сходяться до нуля.

