Johns Hopkins Engineering for Professionals 605.767 Applied Computer Graphics

Brian Russin

Module 12B Animation Sequences

Animation Clip

- Pre-defined set of poses associated with time
 - Every frame's pose is defined
 - Memory-intensive
 - Key poses at specific times
 - Intermediate frames interpolated
 - Compute-intensive, but generally preferred
- Applies to entire model, or portions of a model

Animation Clip (cont.)

- Playing a clip
 - Play 1, n, or **infinite** number or times
 - Infinite means indefinite; until application received an interrupt
- Video Game Animation Types
 - NIS Non-Interactive Sequence
 - e.g. character movements
 - IGC In-Game Cinematic
 - Uses game assets
 - Longer that NIS (typically)
 - Cannot be interrupted
 - FMV Full Motion Video
 - Pre-rendered and stored as video file

Animation Timeline

- Timeline defined from 0 to 1
 - Does not equate to 0-seconds to 1-second
 - Any interval would work, but 0-1 is simple
 - 0-1 easily scales to any time interval
 - Sync two animations (walking and running) easily
 - Some animations repeat (or loop)
 - Key frames at 0 and 1 are equal
- Key frames distributed throughout
 - Not necessarily uniformly distributed
- Essential to use floating point time
 - e.g. std::chrono::high_resolution_clock
 - Interpolate key frames for intermediate poses (called samples)
 - Loss of precision is acceptable in most cases

Synchronizing Time

- Start a local timeline at a global time
 - Trivial managed by the parent process
- Synchronize two or more animation clips
 - Animation timelines to begin and end with others
 - e.g. Character opens a door, and the car door opens
 - Character reaches hand for car door, then pulls the hand back
 - Car door opens as the character's hand pulls back
 - Door opening may need to scale to match the hand's motion
 - Chaining animations
 - · Controlled my a parent process to align the local timelines with the global timeline

Animation Blending

- Interpolating between key frames
- More than one animation contributes to the final pose
 - Same technique as interpolation
 - Examples:
 - Injured-Walk blends walk animation with an injured pose
 - Player interrupts an animation
 - Application smoothly blends the end of the active animation with beginning of the triggered animation
 - Other options
 - wait until current animation ends may be too long
 - · abruptly end the current animation may be too jarring

Animation Blending Techniques

- Blending Poses
 - Transformation matrices cannot easily be interpolated
 - Better to use the raw scale, rotation (as a quaternion), and translation values
- Freeze blending
 - Blend final pose of one clip with some portion of the next clip

Animation Blending Techniques (cont.)

- Overlap two animation clips
 - Ensures C0 continuity
 - Linear interpolation

•
$$c_t = c_A + t(c_B - c_A), t: [0, 1]$$

Smooth-step interpolation

•
$$c_t = c_A + (3t^2 - 2t^3)(c_B - c_A), t: [0, 1]$$

Additive Animation Blending

- Add the difference between two animations
 - First compute the difference between two clips
 - Reference clip (R): Running animation
 - Source clip (S): Tired running animation (S)
 - Difference clip (D): The change in poses to get from R to S
 - D = S R or S = D + R
 - SRT differences in the key poses
- Difference clips
 - Can be applied to other clips as well
 - Beware: can cause incorrect transformations, like over-rotation of a joint
 - Small poses like the character looking to the left or right while moving

Procedural Animation

- Pose based on user interaction or the environment
 - Movement or pose added to a base pose
 - e.g. character looks left as controller moves left
 - e.g. car chassis oriented on the terrain
 - Poses can be precomputed, but not the time of execution
- Inverse kinematics (IK)
 - Intermediate joints positioned based on the desired leaf position
 - End effector: the target joint's position
 - e.g. Character reaches for a door knob, but the character's exact position, and the position of the door knob are unknown
 - Best if model is within a distance threshold
 - Error minimization problem
 - Has one, many, or no solution

Procedural Animation (cont.)

- Rag doll effect
 - Mimics a limp character model
 - Model's appendages can be in any position
 - Incorporates some physics into the pose
 - e.g. Each joint has a physics-enabled bounding sphere

Constraints

- Joint transformation should be reasonable
 - Restricted articulation
 - e.g. A knee only bends (rotates) so far
 - Joint information can have its constraints as member data
- Inverse Kinematics
- Two or more relative models
 - Can use a special joint
 - e.g. objects inside or held by another
 - e.g. two models standing and facing each other

