ESTRUCTURAS DE DATOS AVANZADAS

Miguel Fabrizzio Zamora Hernández
INSTITUTO TECNOLÓGICO AUTÓNOMO DE MÉXICO

En la siguiente tarea se utilizaron y se analizaron los diferentes algoritmos de ordenamiento, tales como: "SelectionSort", "InsertionSort", "BubbleSort", "MergeSort" y "QuickSort". Con el fin de comprobar su desempeño en distintas situaciones, se probaron de 3 maneras distintas: con los datos ordenados, en orden inverso y en orden aleatorio. Para los últimos dos se programaron métodos suplementarios los cuales tenían la función de invertir el arreglo y aleatorizarlo respectivamente. A continuación se muestran las siguientes gráficas mostrando los siguientes resultados.

A) DATOS ORDENADOS

Figura A. Comparaciones

Figura B. Tiempo de ejecución

Para nuestro primer inciso podemos afirmar ciertas cosas, de acuerdo a la Figura A. el método que realiza menos comparaciones resulta ser el MergeSort, y de igual forma es el método que menos tiempo necesita para ejecutarse, en cambio con los otros se nota de manera clara un crecimiento exponencial a medida que el número de datos va aumentando, concluyendo para el inciso A) DATOS ORDENADOS, el método más factible de usar resulta ser el "MergeSort".

B) ORDEN INVERSO

Figura A. Comparaciones

Figura B. Tiempo de ejecución

C) ORDEN ALEATORIO

Figura A. Comparaciones

Figura B. Tiempo de ejecución

CONCLUSIONES

Tras haber analizado detenidamente los diferentes casos presentados y las diferentes gráficas obtenidas, se llega a la conclusión de que el método mergeSort es el método más rápido y presumiblemente efectivo, ya que es aquél que realiza las menores comparaciones durante su ejecución, así como también el menor tiempo posible al realizar dicha ejecución.