Vorlesung 10 – 15.11.2023

• Letztes Mal: Cauchy-scher Integralsatz: Sei $U\subset \mathbb{C}$ offen, $f:U\to \mathbb{C}$ holomorph, $\gamma:[a,b]\to U$ einfache geschlossene Kurve mit $\mathrm{Int}(\gamma)\subset U$. Dann ist

$$\int_{\gamma} f(z) \, dz = 0.$$

- Anwendungen f
 ür reelle Integrale
- Satz (Cauchy-sche Integral-Formel): Sei $U \subset \mathbb{C}$ offen, $f: U \to \mathbb{C}$ holomorph, $\gamma: [a,b] \to U$ einfache geschlossene positiv orientierte Kurve mit $\mathrm{Int}(\gamma) \subset U$. Dann ist für $\zeta \in \mathrm{Int}(\gamma)$

$$\int_{\gamma} \frac{f(z)}{z - \zeta} dz = 2\pi i f(\zeta).$$