Technische Hochschule Rosenheim Applied Artificial Intelligence - Bachelor Analysis 1

Priv.-Doz. Dr. S.-J. Kimmerle

WiSe 2021/22

Thursday, 21.10.2021

Homework 3: induction

To submit: on Thursday, 28.10.2021, 9:30 a.m., online by the learning campus

Exercise 1

Show:

a)
$$(4 \text{ pts.})$$
 for all $n \in \mathbb{N}$:
$$\sum_{k=1}^{n} (4k-1) = 2n^2 + n$$
b) (4 pts.) for all $n \in \mathbb{N}$:
$$\sum_{k=1}^{n-1} \frac{1}{k(k+1)} = 1 - \frac{1}{n}$$

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = 1 - \frac{1}{n}$$

$$\sum_{k=1}$$

$$n^{3} + 2n \% 3 = 0$$
 $n \in \mathbb{N}$ $n \ge 1$

Base $n = 1$ $1^{3} + 2 \cdot 1 = 3$ $\sqrt{2}$
 $\exists n \in \mathbb{N}: n^{3} + 2 \text{ divisible by } 3$
 $n \to (n+1)$ $(n+1)^{3} + 2(n+1)$

Proof $= n^{3} + 3n^{2} \cdot 1 + 3n \cdot 1^{2} + 1^{3} + 2n + 2$
 $= n^{3} + 3n^{2} + 5n + 3$
(2) $= n^{3} + 3n^{2} + 5n + 3$
(3) $= n^{3} + 3n^{2} + 5n + 3$
(4) $= n^{3} + 3n^{2} + 5n + 3$
(5) $= n^{3} + 3n^{2} + 5n + 3$
(7) $= n^{3} + 3n^{2} + 5n + 3$
(8) $= n^{3} + 3n^{2} + 5n + 3$
(9) $= n^{3} + 3n^{2} + 5n + 3$
(1) $= n^{3} + 3n^{2} + 5n + 3$
(1) $= n^{3} + 3n^{2} + 5n + 3$
(1) $= n^{3} + 3n^{2} + 5n + 3$
(1) $= n^{3} + 3n^{2} + 5n + 3$
(1) $= n^{3} + 3n^{2} + 5n + 3$
(1) $= n^{3} + 3n^{2} + 5n + 3$
(2) $= n^{3} + 3n^{2} + 5n + 3$
(3) $= n^{3} + 3n^{2} + 5n + 3$
(4) $= n^{3} + 3n^{2} + 5n + 3$
(5) $= n^{3} + 3n^{2} + 5n + 3$
(6) $= n^{3} + 3n^{2} + 5n + 3$
(7) $= n^{3} + 3n^{2} + 5n + 3$
(8) $= n^{3} + 3n^{2} + 5n + 3$
(9) $= n^{3} + 3n^{2} + 5n + 3$
(9) $= n^{3} + 3n^{2} + 5n + 3$
(1) $= n^{3} + 3n^{2} + 5n + 3$
(1) $= n^{3} + 3n^{2} + 5n + 3$
(1) $= n^{3} + 3n^{2} + 5n + 3$
(1) $= n^{3} + 3n^{2} + 5n + 3$
(2) $= n^{3} + 3n^{2} + 5n + 3$
(3) $= n^{3} + 3n^{2} + 5n + 3$
(4) $= n^{3} + 3n^{2} + 5n + 3$
(5) $= n^{3} + 3n^{2} + 5n + 3$
(7) $= n^{3} + 3n^{2} + 5n + 3$
(8) $= n^{3} + 3n^{2} + 5n + 3$
(9) $= n^{3} + 3n^{2} + 5n + 3$
(9) $= n^{3} + 3n^{2} + 5n + 3$
(1) $= n^{3} + 3n^{2} + 5n + 3$
(1) $= n^{3} + 3n^{2} + 5n + 3$
(1) $= n^{3} + 3n^{2} + 5n + 3$
(1) $= n^{3} + 3n^{2} + 5n + 3$
(1) $= n^{3} + 3n^{2} + 5n + 3$
(1) $= n^{3} + 3n^{2} + 5n + 3$
(1) $= n^{3} + 3n^{2} + 5n + 3$
(1) $= n^{3} + 3n^{2} + 5n + 3$
(1) $= n^{3} + 3n^{2} + 5n + 3$
(2) $= n^{3} + 3n^{2} + 5n + 3$
(3) $= n^{3} + 3n^{2} + 5n + 3$
(4) $= n^{3} + 3n^{2} + 5n + 3$
(5) $= n^{3} + 3n^{2} + 5n + 3$
(7) $= n^{3} + 3n^{2} + 5n + 3$
(8) $= n^{3} + 3n^{2} + 5n + 3$
(9) $= n^{3} + 3n^{2} + 5n + 3$
(1) $= n^{3} + 3n^{2} + 5n + 3$
(1) $= n^{3} + 3n^{2} + 5n + 3$
(1) $= n^{3} + 3n^{2} + 5n + 3$
(1) $= n^{3} + 3n^{2} + 5n + 3$
(1) $= n^{3} + 3n^{2} + 5n + 3$
(1) $= n^{3} + 3n^{2} + 5n + 3$
(1)

n=5 125+25 = 150