SM-like B — L model

Field	$U(1)_{B-L}$
L	-1
Н	0
$(u_R)_i^\dagger$	$ u_{i}$

If $\nu_i \neq 0$

- No neutrino masses.
- · No DM,

 $SM+\nu_R$ with exotic B-L charges is equivalent to SM

six massless neutrinos instead of three

 $N_{c}=1$.

if we impose $U(1)_{B-L}$ to be local:

 $(N_c, 2)_{1/2}$

Seesaw mechanism

For Dirac neutrino masses: we require to introduce at least one SM-singlet heavy Dirac fermión (Weyl fermion notation)

$$\mathcal{L} = i \left(\psi_L \right)^{\dagger} \overline{\sigma}^{\mu} \partial_{\mu} \psi_L - m \left(\psi_R \right)^{\dagger} \psi_L + \text{h.c.}$$
 (1)

The required U(1) symmetry is identified with B-L

Field	$U(1)_{B-L}$
L	-1
Н	0
$(u_R)_i^\dagger$	$ u_{i}$
$(\psi_{R})^\dagger$	r
ψ_{L}	-r

	$(u_R)_1^\dagger$	$(u_R)_2^\dagger$	$(\nu_R)_3^{\dagger}$
$U(1)_{B-L}$	+4	+4	- 5
$U(1)_{B-L}$	-6	$+\frac{10}{2}$	$+\frac{17}{2}$

Exotic $(\nu_R)^{\dagger}$ with $\nu \neq -1$, and vector-like Dirac fermion with $r \neq 1$ Soft breaking term induced: $\mathcal{L} \supset \kappa \sigma \eta^{\dagger} H$, where $\kappa = \lambda \langle S \rangle$. Particles $(SU(3)_c, SU(2)_L)_Y$ $U(1)_{B-L}$ $(1,2)_{-1/2}$ **-1** $-1 + \eta = -r$ $(1,2)_{1/2}$ 0 -r = -r $(\nu_{Ri})^{\dagger}$ $(1,1)_0$ u $-\mathbf{r} = -\nu + \sigma$ $(N_c,1)_0$ <u>-r</u> $(\psi_{\mathsf{R}})^\dagger$ $(N_c,1)_0$ $\sigma = \eta + S$ $(N_c,1)_0$ ν – r1 – *r* $(N_c, 2)_{1/2}$

To have at least a rank 2 neutrino mass matrix we need: At least two sets of scalars η_a , σ_a

 ν – 1

 $\mathcal{L} \supset \left[\mathsf{M}_{\mathcal{Q}} \left(\mathcal{Q}_{R} \right)^{\dagger} \mathcal{Q}_{L} + h_{i}^{a} \left(\mathcal{Q}_{R} \right)^{\dagger} \widetilde{\eta}_{a}^{\dagger} \mathsf{L}_{i} + y_{i}^{a} \overline{\nu_{Ri}} \ \sigma_{a}^{*} \mathcal{Q}_{L} + \text{h.c.} \right] + \kappa^{ab} \ \sigma_{a} \eta_{b}^{\dagger} \mathsf{H} + \dots$

Colored dark matter: De Luca , Mitridate, Redi, Smirnov & Strumia, arXiv:1801.01135 (Switch to Dirac fermions) Because \mathcal{Q} is a Dirac fermion, $\mathcal{Q}\mathcal{Q}$ is also stable $\begin{array}{c} \mathcal{Q}\mathcal{Q} \neq g \\ \mathcal{Q} \neq g \end{array}$ $\begin{array}{c} \mathcal{Q}\mathcal{Q} \neq g \\ \mathcal{Q}\mathcal{Q} \neq g \end{array}$ $\begin{array}{c} \mathcal{Q}\mathcal{Q}\mathcal{Q} \neq g \\ \mathcal{Q}\mathcal{Q}\mathcal{Q} \neq g \end{array}$ Step one Step two

Direct detection & Collider Physics

Long lived hadrons

$$p + p \longrightarrow Q + \overline{Q}$$

$$\downarrow \downarrow$$

$$Q \rightarrow Qg \qquad \qquad Q \rightarrow Qq\overline{q}$$

 \sqrt{s} =65 TeV needed to discover M_Q =9.5 TeV.

Conclusions

Standard Model with right-handed neutrinos of exotic B - L charges

From: http://bit.ly/Mitridate_53d_53rd_Rencontres_de_Moriond

Dirac neutrino masses and DM

- Spontaneously broken $U(1)_{B-L}$ generates a radiative Dirac Type-I seesaw.
- A remnant symmetry makes the lightest field circulating the loop stable and good dark matter candidate.
- If color is also circulating the loop, the colored dark matter scenario can be realized DM is made of two color octets with mass around 9.5 TeV
- For standard cosmology:
 - A single point to be discovered in Direct Detection.
 - · Crosscheck at future colliders possible.