# Введение в нейронные сети и глубокое обучение

Лекция 1

# План лекции

- Литература
- Нейронные сети и глубокое обучение
  - Основные понятия, достоинства и недостатки, примеры применения, инструменты
- Головной мозг человека
  - Нейрон, кора головного мозга, нейропластичность
- Персептрон
  - История, модель нейрона, функция активации, функция ошибки, обучение, примеры
- Функции активации

# Литература

- Николенко С., Кадурин А., Архангельская Е. Глубокое обучение. СПб.: Питер, 2018
- Гудфеллоу Я., Бенджио И., Курвилль А. Глубокое обучение.
   2-е изд., испр. М.: ДМК Пресс, 2018
- Пойнтер Я. Программируем с PyTorch: Создание приложений глубокого обучения. СПб.: Питер, 2020
- Шолле Ф. Глубокое обучение на Python. СПб.: Питер, 2018
- Buduma N., Buduma N., Papa J. Fundamentals of Deep Learning. 2<sup>nd</sup> ed. – O'Reilly Media, 2022
- Zhang A., Lipton Z.C., Li M., Smola A.J. Dive into Deep Learning. https://d2l.ai

# Нейронные сети и глубокое обучение





- Революция в машинном обучении глубокое обучение (Deep Learning)
  - 2005-2006 группы Джеффри Хинтона (Geoffrey Hinton) и Йошуа Бенджио (Yoshua Bengio) научились обучать глубокие нейронные сети
- Artificial Intelligence (AI) > Machine Learning (ML) > Neural Networks (NN) > Deep Learning (DL)
- Основные идеи 1980–1990-е гг.
- Причины успеха:
  - Предобучение без учителя
  - Повышение мощности вычислительной техники
     + GPU (Graphical Processing Unit)
  - Доступность больших наборов данных
  - Развитие алгоритмов обучения

# Достоинства и недостатки

#### • Достоинства:

- Высокое качество решения задач
- Универсальность
- Способны самостоятельно генерировать новые признаки (не требуется feature engineering)
- Способны обучаться на неразмеченных данных

#### • Недостатки:

- Требуют значительного объема данных для обучения
- Требуют высоких вычислительных мощностей и длительного времени обучения
- Плохая интерпретируемость моделей

## Примеры применения













# Инструменты

TensorFlow – Google (2015)



 Keras – Франсуа Шолле (François Chollet) (2015)



PyTorch – Facebook\* (2016)



<sup>\*</sup> Запрещенная на территории Российской Федерации организация

# Нейроны

• Нейрон (neuron) – нервная клетка

# Структура нейрона



# Нейроны

- Нейрон (neuron) нервная клетка
- Состоит из тела клетки, аксона и дендритов
- Тело клетки 3..130 мкм
- Аксон: диаметр несколько мкм, длина до 1 м
- Синапс место связи аксона и дендритов
  - Может как возбуждать, так и тормозить нейрон
- Частота: 10..200 Гц = 5..100 мс
- Распознавание лица: 200 мс
- Распознавание факта наличия животного в естественной сцене: 50 мс

#### Головной мозг человека

- Головной мозг орган центральной нервной системы человека
- Содержит примерно 86 млрд нейронов (1011)
- Каждый нейрон в среднем связан с 7-10 тысячами других нейронов (до 20 000 связей)
  - Общее количество связей 10<sup>15</sup>
- Отделы:
  - продолговатый мозг
  - задний мозг (мост, мозжечок и эпифиз)
  - средний мозг
  - промежуточный мозг
  - передний мозг (большие полушария)



#### Головной мозг человека

- Кора больших полушарий головного мозга (cerebral cortex) слой серого вещества, покрывающий большие полушария
- Толщина 1.3–4.5 мм, более 80% массы мозга
- В коре содержится 10–14 млрд нейронов

4 типа коры (неокортекс – 95.6%)

- 5 долей, 6 слоев
- Blue Brain Project (c 2005)
- Human Brain Project (c 2013)



# Нейропластичность



# Первая модель нейрона

 1943 год: Уоррен Мак-Каллок (Warren McCulloch, 1898-1969) и Уолтер Питтс (Walter Pitts, 1923-1969) предложили модель нейрона для логического вывода







# Персептрон

• 1957 год: Фрэнк Розенблатт (Frank Rozenblatt, 1928–1971) предложил алгоритм обучения для определенной структуры нейронной сети, названной им персептроном (perceptron)





# Модель нейрона



# Модель нейрона

- $\mathbb{X} = \mathbb{R}^d$  пространство объектов
- $Y = \{-1, +1\}$  множество допустимых ответов
- $X = \{(\vec{x}_i, y_i)\}_{i=1}^l$  обучающая выборка

$$a(\vec{x}) = sign(\langle \vec{w}, \vec{x} \rangle + w_0) = sign\left(\sum_{j=1}^{d} w_j x_j + w_0\right)$$

$$\vec{x} = (1, x_1, ..., x_d), \qquad \vec{w} = (w_0, w_1, ..., w_d)$$

$$a(\vec{x}) = sign(\langle \vec{w}, \vec{x} \rangle) = sign\left(\sum_{j=0}^{d} w_j x_j\right)$$

• Сигмоидальная (логистическая) функция активации:

$$h(u) = \frac{1}{1 + e^{-u}}$$



# Многослойный персептрон



# Многослойный персептрон

#### Виды персептронов:

- Однослойный персептрон линейная модель
- Персептрон с одним скрытым слоем классический персептрон Розенблатта
- Многослойный персептрон (по Розенблатту) персептрон с несколькими необучаемыми слоями и одним обучаемым (выходным) слоем
- Многослойный персептрон (по Румельхарту) персептрон с несколькими обучаемыми слоями
  - Multilayer Perceptron (MLP)
  - Feedforward Neural Network (FFNN) часто как синоним

# Пример: AND

| $x_1$ | $x_2$ | $x_1$ AND $x_2$ |  |
|-------|-------|-----------------|--|
| 0     | 0     | 0               |  |
| 0     | 1     | 0               |  |
| 1     | 0     | 0               |  |
| 1     | 1     | 1               |  |



$$a(\vec{x}) = h(w_0 + w_1 x_1 + w_2 x_2)$$

$$w_0 + w_1 x_1 + w_2 x_2 = 0$$

$$-2 + x_1 + x_2 = 0$$

$$x_2 = -x_1 + 2$$



# Пример: AND

| $x_1$ | $x_2$ | $x_1$ and $x_2$ |  |
|-------|-------|-----------------|--|
| 0     | 0     | 0               |  |
| 0     | 1     | 0               |  |
| 1     | 0     | 0               |  |
| 1     | 1     | 1               |  |

$$a(\vec{x}) = h(w_0 + w_1 x_1 + w_2 x_2)$$

$$w_0 + w_1 x_1 + w_2 x_2 = 0$$

$$-2 + x_1 + x_2 = 0$$

$$x_2 = -x_1 + 2$$





# Пример: OR

| $x_1$ | $x_2$ | $x_1$ OR $x_2$ |  |
|-------|-------|----------------|--|
| 0     | 0     | 0              |  |
| 0     | 1     | 1              |  |
| 1     | 0     | 1              |  |
| 1     | 1     | 1              |  |



$$a(\vec{x}) = h(w_0 + w_1 x_1 + w_2 x_2)$$

$$w_0 + w_1 x_1 + w_2 x_2 = 0$$

$$-1 + x_1 + x_2 = 0$$

$$x_2 = -x_1 + 1$$



# Пример: OR

| $x_1$ | $x_2$ | $x_1$ OR $x_2$ |
|-------|-------|----------------|
| 0     | 0     | 0              |
| 0     | 1     | 1              |
| 1     | 0     | 1              |
| 1     | 1     | 1              |



$$a(\vec{x}) = h(w_0 + w_1 x_1 + w_2 x_2)$$

$$w_0 + w_1 x_1 + w_2 x_2 = 0$$

$$-1 + x_1 + x_2 = 0$$

$$x_2 = -x_1 + 1$$



| $x_1$ | $x_2$ | $x_1$ XOR $x_2$ |  |
|-------|-------|-----------------|--|
| 0     | 0     | 0               |  |
| 0     | 1     | 1               |  |
| 1     | 0     | 1               |  |
| 1     | 1     | 0               |  |



$$-1.5 + x_1 + x_2 = 0$$

$$-0.5 + x_1 + x_2 = 0$$

$$-0.5 - u_1 + u_2 = 0$$



$$-1.5 + x_1 + x_2 = 0$$



$$-1.5 + x_1 + x_2 = 0$$

$$-0.5 + x_1 + x_2 = 0$$



$$-1.5 + x_1 + x_2 = 0$$

$$-0.5 + x_1 + x_2 = 0$$

$$u_1 = f(-1.5 + x_1 + x_2)$$

$$u_2 = f(-0.5 + x_1 + x_2)$$



$$-1.5 + x_1 + x_2 = 0$$

$$-0.5 + x_1 + x_2 = 0$$

$$u_1 = f(-1.5 + x_1 + x_2)$$

$$u_2 = f(-0.5 + x_1 + x_2)$$





$$-1.5 + x_1 + x_2 = 0$$

$$-0.5 + x_1 + x_2 = 0$$

$$u_1 = f(-1.5 + x_1 + x_2)$$

$$u_2 = f(-0.5 + x_1 + x_2)$$



$$-1.5 + x_1 + x_2 = 0$$

$$-0.5 + x_1 + x_2 = 0$$

$$u_1 = f(-1.5 + x_1 + x_2)$$

$$u_2 = f(-0.5 + x_1 + x_2)$$



$$-1.5 + x_1 + x_2 = 0$$

$$-0.5 + x_1 + x_2 = 0$$

$$u_1 = f(-1.5 + x_1 + x_2)$$

$$u_2 = f(-0.5 + x_1 + x_2)$$



$$-1.5 + x_1 + x_2 = 0$$

$$-0.5 + x_1 + x_2 = 0$$

$$u_1 = f(-1.5 + x_1 + x_2)$$

$$u_2 = f(-0.5 + x_1 + x_2)$$



$$-1.5 + x_1 + x_2 = 0$$
$$-0.5 + x_1 + x_2 = 0$$

$$-0.5 - u_1 + u_2 = 0$$



$$-1.5 + x_1 + x_2 = 0$$
$$-0.5 + x_1 + x_2 = 0$$

$$-0.5 - u_1 + u_2 = 0$$



## Возможности персептронов



- Однослойный персептрон
  - линейно-разделимые данные
- Двухслойный персептрон любая непрерывная функция
  - Теорема об универсальной аппроксимации (George Cybenko, 1989) нейронная сеть прямого распространения с одним скрытым слоем и сигмоидальной функцией активации может аппроксимировать любую непрерывную функцию многих переменных с произвольной точностью
  - Из теоремы не следует, что один слой является оптимальным

#### 1. Логистический сигмоид

$$h(u) = \frac{1}{1 + e^{-u}}$$

$$\frac{dh}{du} = \frac{d}{du} \left( \frac{1}{1 + e^{-u}} \right) = h(1 - h)$$



#### 2. Гиперболический тангенс

$$h(u) = tanh(u) = \frac{e^{u} - e^{-u}}{e^{u} + e^{-u}}$$

$$\frac{dh}{du} = 1 - \tanh^2(u) = 1 - h^2(u)$$



3. Ступенчатая функция (функция Хевисайда)

$$h(u) = H(u) = \begin{cases} 1, u > 0 \\ 0.5, u = 0 \\ 0, u < 0 \end{cases}$$



#### 4. Rectified Linear Unit (ReLU)

$$h(u) = u^{+} = max(0, u) = \begin{cases} u, u \ge 0 \\ 0, u < 0 \end{cases}$$

$$\frac{dh}{du} = H(u) = \begin{cases} 1, u \ge 0 \\ 0, u < 0 \end{cases}$$



$$h(u) = \sigma\left(x + \frac{1}{2}\right) + \sigma\left(x - \frac{1}{2}\right) + \sigma\left(x - \frac{3}{2}\right) + \sigma\left(x - \frac{5}{2}\right) + \sigma\left(x - \frac{7}{2}\right) + \cdots$$



#### 5. Softplus

$$h(u) = ln(1 + e^u)$$

$$\frac{dh}{du} = sigmoid(u) = \frac{1}{1 + e^{-u}}$$



6. Leaky Rectified Linear Unit (LReLU),
Parametric Rectified Linear Unit (PReLU)

$$h(u) = \begin{cases} u, u \ge 0 \\ au, u < 0 \end{cases}$$

$$\frac{dh}{du} = \begin{cases} 1, u \ge 0 \\ a, u < 0 \end{cases}$$



#### 7. Exponential Linear Unit (ELU)

$$h(u) = \begin{cases} u, u \ge 0 \\ a(e^u - 1), u < 0 \end{cases}$$

$$\frac{dh}{du} = \begin{cases} 1, u \ge 0 \\ ae^u, u < 0 \end{cases}$$



#### 8. SoftSign

$$h(u) = \frac{u}{1 + |u|}$$

$$\frac{dh}{du} = \frac{u}{(1+|u|)^2}$$





• SoftMax – обобщение логистической функции для многомерного случая:

$$SoftMax(z_1, \dots, z_K) = \left(\frac{exp(z_1)}{\sum_{k=1}^{K} exp(z_k)}, \dots, \frac{exp(z_K)}{\sum_{k=1}^{K} exp(z_k)}\right)$$

| i | $z_i$ | $\exp(z_i)$ | $p_{i}$ |
|---|-------|-------------|---------|
| 1 | 5     | 148.4       | 0.21    |
| 2 | 3     | 20.1        | 0.03    |
| 3 | 6.2   | 492.7       | 0.68    |
| 4 | 4     | 54.6        | 0.08    |
| 5 | 1.5   | 4.5         | 0.01    |
| 6 | -2    | 0.1         | 0.00    |
|   |       | 720.5       | 1.00    |