DIE GAMMAFUNKTION UND IHRE EIGENSCHAFTEN

erstellt von Artur Sanin.

Inhaltsverzeichnis

Ei	iv	
1	Gammafunktion	1
2	Funktionalgleichung der Gammafunktion	3
3	Euler'sche Produktdarstellung der Gammafunktion	6
4	Eulerscher Ergänzungssatz	8
5	Legendresche Verdopplungsformel	10
6	Spezielle Werte der Gammafunktion	12
7	Integrale mit Bezug zur Gammafunktion	19
Literaturverzeichnis		

Einleitung

1 Gammafunktion

In diesem Abschnitt wird die Gammafunktion sowohl über das Eulersche Integral der zweiten Gattung als auch über die Gaußsche Darstellung der Gammafunktion definiert.

Definition 1.1 (Gammafunktion).

Für postive reelle Zahlen x > 0 wird die Gammafunktion durch das folgende Integral definiert:

$$\Gamma(x) \coloneqq \int_0^\infty t^{x-1} e^{-t} \, \mathrm{d}t \,. \tag{1.1}$$

Für eine komplexe Zahl $z \in \mathbb{C}$ mit Re(z) > 0 ist die Gammafunktion ebenfalls durch das Integral definiert:

$$\Gamma(z) := \int_0^\infty t^{z-1} e^{-t} \, \mathrm{d}t. \tag{1.2}$$

Mit der Gaußschen Darstellung der Gammafunktion wird der Definitionsbereich auf alle komplexen Zahlen $z \in \mathbb{C} \setminus \{0, -1, -2, -3\}$ erweitert:

$$\Gamma(z) := \lim_{n \to \infty} \frac{n^z \cdot n!}{z \cdot (z+1) \cdot (z+2) \cdot \dots \cdot (z+n)}.$$
 (1.3)

Für die reelle Gammafunktion werden nun durch Substitution zwei weitere Integraldarstellungen hergeleitet.

Aufgabe 1.1 (Gammafunktion Integraldarstellung 2).

Für positive reelle Zahlen x > 0 gilt:

$$\Gamma(x) = \int_0^1 (-\ln(u)) du. \qquad (1.4)$$

Beweis.

Sei x > 0 eine beliebige positive reelle Zahl. Mit der Substitution $u = e^{-t}$ gilt $t = -\ln(u)$ und $dt = -e^t du$. Die untere Integrationsgrenze ist $u = e^{-0} = 1$ und die obere Integrationsgrenze $u = e^{-t} \xrightarrow{t \to \infty} 0$. Damit folgt:

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$$

$$= -\int_1^0 (-\ln(u))^{x-1} e^{-t} e^t du$$

$$= -\int_1^0 (-\ln(u))^{x-1} du$$

$$= \int_0^1 (-\ln(u))^{x-1} du.$$

Das letzte Integral lässt sich auch wie folgt darstellen:

$$\Gamma(x) = \int_0^1 (-\ln(u))^{x-1} du = \int_0^1 \ln\left(\frac{1}{u}\right)^{x-1} du.$$

Aufgabe 1.2 (Gammafunktion Integraldarstellung 3). Für positive reelle Zahlen x > 0 gilt:

$$\Gamma(x) = \int_{-\infty}^{\infty} e^{xu - e^u} \, \mathrm{d}u \,. \tag{1.5}$$

Beweis.

Sei x > 0 eine beliebige positive reelle Zahl. Mit der Substitution $u = \ln(t)$ gilt $t = e^u$ und dt = t du. Die untere Integrationsgrenze ist $u = \ln(t) \xrightarrow{t \to 0} -\infty$ und die obere Integrationsgrenze $u = \ln(t) \xrightarrow{t \to \infty} \infty$. Damit folgt:

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$$

$$= \int_{-\infty}^\infty t^{x-1} e^{-t} du$$

$$= \int_{-\infty}^\infty t^x e^{-t} du$$

$$= \int_{-\infty}^\infty e^{x \ln(t)} e^{-t} du$$

$$= \int_{-\infty}^\infty e^{x \ln(t) - t} du$$

$$= \int_{-\infty}^\infty e^{x u - e^u} du.$$

2 Funktionalgleichung der Gammafunktion

Aufgabe 2.1 (Funktionalgleichung der Gammafunktion für positive reelle Zahlen).

Für alle positiven reellen Zahlen x>0 gilt die folgende Funktionalgleichung:

$$\Gamma(x+1) = x \cdot \Gamma(x). \tag{2.1}$$

Beweis.

Sei x > 0 eine beliebige positive reelle Zahl. Weiter sei $n \in \mathbb{N}$ so gewählt, dass n+1 > x+1 gilt. Für nicht negative Werte $R \ge 0$ folgt zusammen mit der Reihenentwicklung der Exponentialfunktion:

$$\frac{R^x}{e^R} = \frac{R^x}{\sum_{k=0}^{\infty} \frac{R^k}{k!}}$$

$$\leq \frac{R^x}{\frac{R^{n+1}}{(n+1)!}}$$

$$= \frac{R^x \cdot (n+1)!}{R^{n+1}}$$

$$= \frac{(n+1)!}{R^{n+1-x}} \xrightarrow{R \to \infty} 0.$$

Zusammen mit diesem Grenzwert erhalten wir:

$$\Gamma(x+1) = \int_0^\infty t^x \cdot e^{-t} \, dt$$

$$= \lim_{R \to \infty} \int_0^R t^x \cdot e^{-t} \, dt$$

$$= \lim_{R \to \infty} \left(-\frac{t^x}{e^t} \Big|_0^R + x \cdot \int_0^R t^{x-1} \cdot e^{-t} \, dt \right)$$

$$= \lim_{R \to \infty} \left(-\frac{R^x}{e^R} + \frac{0^x}{e^0} + x \cdot \int_0^R t^{x-1} \cdot e^{-t} \, dt \right)$$

$$= \lim_{R \to \infty} \left(-\frac{R^x}{e^R} + x \cdot \int_0^R t^{x-1} \cdot e^{-t} \, dt \right)$$

$$= -\lim_{R \to \infty} \frac{R^x}{e^R} + x \cdot \lim_{R \to \infty} \int_0^R t^{x-1} \cdot e^{-t} \, dt$$

$$\begin{split} &=x\cdot\lim_{R\to\infty}\int_0^R t^{x-1}\cdot e^{-t}\,\mathrm{d}t\\ &=x\cdot\int_0^\infty t^{x-1}\cdot e^{-t}\,\mathrm{d}t\\ &=x\cdot\Gamma\left(x\right). \end{split}$$

Zusammen mit der Gaußschen Darstellung der Gammafunktion (1.3) lässt sich die Funktionalgleichung (2.2) auf komplexen Zahlen $z \in \mathbb{C} \setminus \{0, -1, -2, -3, \ldots\}$ erweitern.

Aufgabe 2.2 (Funktionalgleichung der Gammafunktion für komplexe Zahlen). Für komplexe Zahlen $z \in \mathbb{C} \setminus \{0, -1, -2, -3, ...\}$ gilt die Funktionalgleichung:

$$\Gamma(z+1) = z \cdot \Gamma(z). \tag{2.2}$$

Beweis.

Sei $z \in \mathbb{C} \setminus \{0, -1, -2, -3, \ldots\}$ eine komplexe Zahl. Dann gilt zunächst:

$$\frac{n! \cdot n^{z+1}}{(z+1) \cdot (z+2) \cdot \ldots \cdot (z+n) \cdot (z+1+n)} = \frac{n}{z+n+1} \cdot \frac{n! \cdot n^z}{(z+1) \cdot (z+2) \cdot \ldots \cdot (z+n)}$$
$$= z \cdot \frac{n}{z+n+1} \cdot \frac{n! \cdot n^z}{z \cdot (z+1) \cdot (z+2) \cdot \ldots \cdot (z+n)}.$$

Damit folgt:

$$\Gamma(z+1) = \lim_{n \to \infty} \frac{n! \cdot n^{z+1}}{(z+1) \cdot (z+2) \cdot \dots \cdot (z+n) \cdot (z+1+n)}$$

$$= \lim_{n \to \infty} \left[z \cdot \frac{n}{z+n+1} \cdot \frac{n! \cdot n^z}{z \cdot (z+1) \cdot (z+2) \cdot \dots \cdot (z+n)} \right]$$

$$= z \cdot \left[\lim_{n \to \infty} \frac{n}{z+n+1} \right] \cdot \left[\lim_{n \to \infty} \frac{n! \cdot n^z}{z \cdot (z+1) \cdot (z+2) \cdot \dots \cdot (z+n)} \right]$$

$$= z \cdot \Gamma(z).$$

Durch Anwendung von (2.2) erhält man induktiv:

Aufgabe 2.3 (Folgerung aus der Funktionalgleichung der Gammafunktion). Für komplexe Zahlen $z \in \mathbb{C} \setminus \{0, -1, -2, -3, \ldots\}$ gilt:

$$\Gamma(z) = \frac{\Gamma(z+n+1)}{z \cdot (z+1) \cdot (z+2) \cdot \dots \cdot (z+n)}.$$
 (2.3)

Beweis.

Sei $z \in \mathbb{C} \setminus \{0, -1, -2, -3, \ldots\}$ eine komplexe Zahl. Zusammen mit (2.2) folgt:

$$\Gamma(z+n+1) \stackrel{(2.2)}{=} (z+n) \cdot \Gamma(z+n)$$

$$\stackrel{(2.2)}{=} (z+n) \cdot (z+n-1) \cdot \Gamma(z+n-1)$$

$$\stackrel{(2.2)}{=} (z+n) \cdot (z+n-1) \cdot (z+n-2) \cdot \Gamma(z+n-2)$$

$$\vdots$$

$$\stackrel{(2.2)}{=} (z+n) \cdot (z+n-1) \cdot (z+n-2) \cdot \dots \cdot (z+2) \cdot (z+1) \cdot \Gamma(z+1)$$

$$\stackrel{(2.2)}{=} (z+n) \cdot (z+n-1) \cdot (z+n-2) \cdot \dots \cdot (z+2) \cdot (z+1) \cdot z \cdot \Gamma(z)$$

Durch die Wahl von z sind alle Linearfaktoren auf der rechten Seite der Gleichung ungleich 0. Teilt man die Gleichung durch die Linearfaktoren, so folgt:

$$\frac{\Gamma(z+n+1)}{z\cdot(z+1)\cdot(z+2)\cdot\ldots\cdot(z+n)}=\Gamma(z).$$

3 Euler'sche Produktdarstellung der Gammafunktion

Lemma 3.1 (Euler-Mascheroni-Konstante). Die folgende Folge ist konvergent:

$$\gamma_n = \sum_{k=1}^n \frac{1}{k} - \ln(n). \tag{3.1}$$

Der Grenzwert γ der Folge heißt die Euler-Mascheroni-Konstante.

Aufgabe 3.1 (Euler'sche Produktdarstellung der Gammafunktion). Für alle komplexen Zahlen $z \in \mathbb{C} \setminus \{0, -1, -2, -3\}$ gilt:

$$\frac{1}{\Gamma(z)} = z \cdot e^{\gamma z} \cdot \prod_{k=1}^{\infty} \left(1 + \frac{z}{n} \right) \cdot e^{-\frac{z}{n}}.$$
 (3.2)

Beweis.

Sei $z \in \mathbb{C} \setminus \{0, -1, -2, -3\}$ eine komplexe Zahl. Die Euler'sche Produktdarstellung folgt wie folgt aus der Gaußschen Darstellung:

$$\frac{z \cdot (z+1) \cdot (z+2) \cdot \ldots \cdot (z+n)}{n^z \cdot n!} = n^{-z} \cdot \frac{z \cdot (z+1) \cdot (z+2) \cdot \ldots \cdot (z+n)}{1 \cdot 2 \cdot \ldots \cdot n}$$

$$= z \cdot e^{-z \ln(n)} \cdot \frac{z+1}{1} \cdot \frac{z+2}{2} \cdot \ldots \cdot \frac{z+n}{n}$$

$$= z \cdot e^{-z \ln(n)} \cdot \left(1 + \frac{z}{1}\right) \cdot \left(1 + \frac{z}{2}\right) \cdot \ldots \cdot \left(1 + \frac{z}{n}\right)$$

$$= z \cdot e^{-z \ln(n)} \cdot \prod_{k=1}^{n} \left(1 + \frac{z}{k}\right)$$

$$= z \cdot e^{z \cdot \sum_{k=1}^{n} \frac{1}{k} - z \cdot \sum_{k=1}^{n} \frac{1}{k} - z \cdot \ln(n)} \cdot \prod_{k=1}^{n} \left(1 + \frac{z}{k}\right)$$

$$= z \cdot e^{z \cdot \left(\sum_{k=1}^{n} \frac{1}{k} - \ln(n)\right)} \cdot e^{-z \cdot \sum_{k=1}^{n} \frac{1}{k}} \cdot \prod_{k=1}^{n} \left(1 + \frac{z}{k}\right)$$

$$= z \cdot e^{z \cdot \left(\sum_{k=1}^{n} \frac{1}{k} - \ln(n)\right)} \cdot \prod_{k=1}^{n} \left(1 + \frac{z}{k}\right)$$

$$= z \cdot e^{z \cdot \left(\sum_{k=1}^{n} \frac{1}{k} - \ln(n)\right)} \cdot \prod_{k=1}^{n} \left(1 + \frac{z}{k}\right)$$

Die Abbildung $w\mapsto e^{z\cdot w}$ ist stetig. Daraus folgt:

$$e^{z \cdot \left(\sum_{k=1}^{n} \frac{1}{k} - \ln(n)\right)} = e^{\lim_{n \to \infty} z \cdot \left(\sum_{k=1}^{n} \frac{1}{k} - \ln(n)\right)}$$
$$= e^{\gamma \cdot z}.$$

Schließlich erhalten wir:

$$\frac{1}{\Gamma(z)} = \lim_{n \to \infty} \frac{z \cdot (z+1) \cdot (z+2) \cdot \dots \cdot (z+n)}{n^z \cdot n!}$$

$$= \lim_{n \to \infty} \left[z \cdot e^{z \cdot (\sum_{k=1}^n \frac{1}{k} - \ln(n))} \cdot \prod_{k=1}^n \left(1 + \frac{z}{k} \right) \cdot e^{-\frac{z}{k}} \right]$$

$$= z \cdot \left[\lim_{n \to \infty} e^{z \cdot (\sum_{k=1}^n \frac{1}{k} - \ln(n))} \right] \cdot \left[\lim_{n \to \infty} \prod_{k=1}^n \left(1 + \frac{z}{k} \right) \cdot e^{-\frac{z}{k}} \right]$$

$$= z \cdot e^{\gamma z} \cdot \prod_{k=1}^{\infty} \left(1 + \frac{z}{n} \right) \cdot e^{-\frac{z}{n}}.$$

4 Eulerscher Ergänzungssatz

Lemma 4.1 (Produktdarstellung der Sinusfunktion).

Für alle $z \in \mathbb{C} \setminus \mathbb{Z}$ gilt:

$$\prod_{k=1}^{\infty} \left(1 - \frac{z^k}{k^2} \right) = \frac{\sin(\pi z)}{\pi z}.$$
(4.1)

Beweis.

Vgl. (Eberhard Freitag, 2000, S. 213 ff.).

Aufgabe 4.1 (Eulerscher Ergänzungssatz).

Für alle $z \in \mathbb{C} \setminus \mathbb{Z}$ gilt:

$$\Gamma(z) \cdot \Gamma(1-z) = \frac{\pi}{\sin(\pi z)}.$$
 (4.2)

gilt.

Beweis.

Sei $z \in \mathbb{C} \setminus \mathbb{Z}$ eine komplexe Zahl. Zunächst gilt:

$$\frac{n^{z} \cdot n!}{z \cdot (z+1) \cdot (z+2) \cdot \dots \cdot (z+n)} \cdot \frac{n^{1-z} \cdot n!}{(1-z) \cdot (2-z) \cdot (3-z) \cdot \dots \cdot (n-z) \cdot (n+1-z)}$$

$$= \frac{n}{z \cdot (n+1-z)} \cdot \frac{n!}{(z+1) \cdot (z+2) \cdot \dots \cdot (z+n)} \cdot \frac{n!}{(1-z) \cdot (2-z) \cdot (3-z) \cdot \dots \cdot (n-z)}$$

$$= \frac{n}{z \cdot (n+1-z)} \cdot \frac{n!}{(z+1) \cdot (z+2) \cdot \dots \cdot (z+n)} \cdot \frac{n!}{(1-z) \cdot (2-z) \cdot (3-z) \cdot \dots \cdot (n-z)}$$

$$= \frac{n}{z \cdot (n+1-z)} \cdot \frac{1 \cdot 2 \cdot 3 \cdot \dots \cdot n}{(z+1) \cdot (z+2) \cdot \dots \cdot (z+n)} \cdot \frac{1 \cdot 2 \cdot 3 \cdot \dots \cdot n}{(1-z) \cdot (2-z) \cdot (3-z) \cdot \dots \cdot (n-z)}$$

$$= \frac{n}{z \cdot (n+1-z)} \cdot \frac{1}{\frac{(z+1) \cdot (z+2) \cdot \dots \cdot (z+n)}{2} \cdot \frac{(z+n)}{3} \cdot \dots \cdot \frac{(z+n)}{n}} \cdot \frac{1}{\frac{(1-z) \cdot (2-z) \cdot (3-z) \cdot \dots \cdot (n-z)}{3} \cdot \dots \cdot \frac{(n-z)}{n}}$$

$$= \frac{n}{z \cdot (n+1-z)} \cdot \frac{1}{(1+\frac{z}{1}) \cdot (1+\frac{z}{2}) \cdot (1+\frac{z}{3}) \cdot \dots \cdot (1+\frac{z}{n})} \cdot \frac{1}{(1-\frac{z}{1}) \cdot (1-\frac{z}{3}) \cdot \dots \cdot (1+\frac{z}{n})}$$

$$= \frac{n}{z \cdot (n+1-z)} \cdot \frac{1}{(1+\frac{z}{1}) \cdot (1-\frac{z}{2}) \cdot (1-\frac{z^2}{3^2}) \cdot \dots \cdot (1-\frac{z^2}{n^2})}$$

$$= \frac{n}{z \cdot (n+1-z)} \cdot \frac{1}{(1-\frac{z^2}{1^2}) \cdot (1-\frac{z^2}{2^2}) \cdot (1-\frac{z^2}{3^2}) \cdot \dots \cdot (1-\frac{z^2}{n^2})}$$

$$= \frac{n}{z \cdot (n+1-z)} \cdot \frac{1}{\prod_{k=1}^{n} (1-\frac{z^2}{k^2})}$$

Damit folgt:

$$\begin{split} &\Gamma(z) \cdot \Gamma(1-z) \\ &= \left(\lim_{n \to \infty} \frac{n^z \cdot n!}{z \cdot (z+1) \cdot (z+2) \cdot \dots \cdot (z+n)}\right) \cdot \left(\lim_{n \to \infty} \frac{n^{1-z} \cdot n!}{(1-z) \cdot (2-z) \cdot (3-z) \cdot \dots \cdot (n-z) \cdot (n+1-z)}\right) \\ &= \lim_{n \to \infty} \left(\frac{n^z \cdot n!}{z \cdot (z+1) \cdot (z+2) \cdot \dots \cdot (z+n)} \cdot \frac{n^{1-z} \cdot n!}{(1-z) \cdot (2-z) \cdot (3-z) \cdot \dots \cdot (n-z) \cdot (n+1-z)}\right) \\ &= \lim_{n \to \infty} \left(\frac{n}{z \cdot (n+1-z)} \cdot \frac{1}{\prod_{k=1}^n \left(1 - \frac{z^2}{k^2}\right)}\right) \\ &= \left(\lim_{n \to \infty} \frac{n}{z \cdot (n+1-z)}\right) \cdot \left(\lim_{n \to \infty} \frac{1}{\prod_{k=1}^n \left(1 - \frac{z^2}{k^2}\right)}\right) \\ &= \frac{1}{z} \cdot \frac{1}{\prod_{k=1}^\infty \left(1 - \frac{z^2}{k^2}\right)} \\ &= \frac{1}{z} \cdot \frac{1}{\sin(\pi z)} \\ &= \frac{1}{z} \cdot \frac{\pi z}{\sin(\pi z)} \\ &= \frac{\pi}{\sin(\pi z)}. \end{split}$$

5 Legendresche Verdopplungsformel

Aufgabe 5.1 (Legendresche Verdopplungsformel für natürlichen Zahlen). Man zeige, für alle $n \in \mathbb{N}$ gilt:

$$\Gamma\left(\frac{n}{2}\right) \cdot \Gamma\left(\frac{n+1}{2}\right) = \frac{\sqrt{\pi}}{2^{n-1}} \cdot \Gamma\left(n\right). \tag{5.1}$$

gilt.

Beweis.

Beweis per vollständiger Induktion nach n.

I. Induktionsanfang:

Für n = 1 gilt:

$$\Gamma\left(\frac{1}{2}\right) \cdot \Gamma\left(\frac{1+1}{2}\right) = \Gamma\left(\frac{1}{2}\right) \cdot \Gamma(1)$$
$$= \sqrt{\pi} \cdot \Gamma(1)$$
$$= \frac{\sqrt{\pi}}{2^{1-1}} \cdot \Gamma(1).$$

II. Induktionsvoraussetzung:

Angenommen für ein $n \in \mathbb{N}$ gelte:

$$\Gamma\left(\frac{n}{2}\right) \cdot \Gamma\left(\frac{n+1}{2}\right) = \frac{\sqrt{\pi}}{2^{n-1}} \cdot \Gamma\left(n\right). \tag{5.2}$$

III. Induktionsschritt:

Damit folgt für (n + 1):

$$\Gamma\left(\frac{n+1}{2}\right) \cdot \Gamma\left(\frac{n+2}{2}\right) = \Gamma\left(\frac{n+1}{2}\right) \cdot \Gamma\left(1+\frac{n}{2}\right)$$

$$\stackrel{(2.2)}{=} \Gamma\left(\frac{n+1}{2}\right) \cdot \frac{n}{2} \cdot \Gamma\left(\frac{n}{2}\right)$$

$$\stackrel{(5.2)}{=} \frac{n}{2} \cdot \frac{\sqrt{\pi}}{2^{n-1}} \cdot \Gamma\left(n\right)$$

$$= \frac{\sqrt{\pi}}{2^n} \cdot n \cdot \Gamma\left(n\right)$$

$$= \frac{\sqrt{\pi}}{2^n} \cdot \Gamma\left(n+1\right).$$

Aufgabe 5.2 (Legendresche Verdopplungsformel).

Für alle komplexen Zahlen $z \in \mathbb{C} \setminus \{0, -1, -2, -3, \ldots\}$ gilt:

$$\Gamma\left(\frac{z}{2}\right) \cdot \Gamma\left(\frac{z+1}{2}\right) = \frac{\sqrt{\pi}}{2^{z-1}} \cdot \Gamma\left(z\right). \tag{5.3}$$

gilt.

Bemerkung 5.1 (Variation der Legendresche Verdopplungsformel).

Setzt man in (5.3) z=2w, wobei $w\in\mathbb{C}\smallsetminus\{0,-1,-2,-3,\ldots\}$ gilt, so ergibt sich die folgende Formel:

$$\Gamma(w) \cdot \Gamma\left(w + \frac{1}{2}\right) = \frac{\sqrt{\pi}}{2^{2w-1}} \cdot \Gamma(2w).$$

6 Spezielle Werte der Gammafunktion

Lemma 6.1 (Gaußsche Integral).

Es gilt:

$$\int_{-\infty}^{\infty} e^{-u^2} \, \mathrm{d}u = \sqrt{\pi}. \tag{6.1}$$

Aufgabe 6.1 (Funktionswert der Gammafunktion an der Stelle 1/2). Es gilt:

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}.\tag{6.2}$$

Beweis.

Wir Substitution $u = \sqrt{t} = t^{\frac{1}{2}}$. Dann ist $t = u^2$ und $dt = 2\sqrt{t} du$. Für die untere Integrationsgrenze gilt $u = \sqrt{0} = 0$ während die obere Integrationsgrenze $u = \sqrt{t} \xrightarrow{t \to \infty} \infty$ lautet. Damit folgt:

$$\Gamma\left(\frac{1}{2}\right) = \int_{0}^{\infty} t^{\frac{1}{2}-1} e^{-t} dt$$

$$= 2 \int_{0}^{\infty} t^{-\frac{1}{2}} e^{-t} t^{\frac{1}{2}} du$$

$$= 2 \int_{0}^{\infty} e^{-t} du$$

$$= 2 \int_{0}^{\infty} e^{-u^{2}} du$$

$$= \int_{0}^{\infty} e^{-u^{2}} du + \int_{0}^{\infty} e^{-u^{2}} du$$

$$= \int_{-\infty}^{0} e^{-u^{2}} du + \int_{0}^{\infty} e^{-u^{2}} du$$

$$= \int_{-\infty}^{\infty} e^{-u^{2}} du$$

$$= \int_{-\infty}^{\infty} e^{-u^{2}} du$$

$$= \int_{-\infty}^{\infty} e^{-u^{2}} du$$

$$= \int_{-\infty}^{\infty} e^{-u^{2}} du$$

Aufgabe 6.2 (Funktionswert der Gammafunktion an der Stelle 1/n). Man zeige, für alle $n \in \mathbb{N}$ gilt:

$$\Gamma\left(\frac{1}{n}\right) = n \cdot \int_0^\infty e^{-t^n} \, \mathrm{d}t \,. \tag{6.3}$$

Beweis.

Sei $n \in \mathbb{N}$ eine beliebige natürliche Zahl. Wir substituieren $u = t^n$. Daraus folgt $t = u^{\frac{1}{n}}$ und:

$$\frac{\mathrm{d}u}{\mathrm{d}t} = nt^{n-1} \qquad \Leftrightarrow \qquad dt = \frac{1}{n}t^{1-n}\,\mathrm{d}u\,.$$

Mit dieser Substitution folgt:

$$n \cdot \int_0^\infty e^{-t^n} dt = n \cdot \int_0^\infty \frac{1}{n} t^{1-n} e^{-u} du$$
$$= \int_0^\infty u^{\frac{1-n}{n}} e^{-u} du$$
$$= \int_0^\infty u^{\frac{1}{n}-1} e^{-u} du$$
$$= \Gamma\left(\frac{1}{n}\right).$$

Aufgabe 6.3 (Funktionswert der Gammafunktion an der Stelle $1/\alpha$). Für alle positiven reellen Zahlen $\alpha > 0$ gilt:

$$\Gamma\left(\frac{1}{\alpha}\right) = \alpha \cdot \int_0^\infty e^{-t^\alpha} \, \mathrm{d}t \,. \tag{6.4}$$

Beweis.

Sei $\alpha>0$ eine beliebige natürliche Zahl. Wir substituieren $u=t^{\alpha}$. Daraus folgt $t=u^{1/\alpha}$ und:

$$\frac{\mathrm{d}u}{\mathrm{d}t} = \alpha t^{\alpha - 1} \qquad \Leftrightarrow \qquad dt = \frac{1}{\alpha} t^{1 - \alpha} \, \mathrm{d}u \,.$$

Mit dieser Substitution folgt:

$$\alpha \cdot \int_0^\infty e^{-t^\alpha} dt = \alpha \cdot \int_0^\infty \frac{1}{\alpha} t^{1-\alpha} e^{-u} du$$

$$= \int_0^\infty u^{\frac{1-\alpha}{\alpha}} e^{-u} du$$

$$= \int_0^\infty u^{\frac{1}{\alpha} - 1} e^{-u} du$$

$$= \Gamma\left(\frac{1}{\alpha}\right).$$

Aufgabe 6.4.

Man zeige, dass für alle $n \in \mathbb{N}_0$

$$\Gamma\left(n+\frac{1}{2}\right) = \frac{(2n)!}{4^n \cdot n!} \cdot \sqrt{\pi} \tag{6.5}$$

gilt.

Beweis.

Beweis mittles vollständiger Induktion nach n.

I. Induktionsanfang:

Für n = 0 gilt:

$$\Gamma\left(0+\frac{1}{2}\right) = \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}.$$

II. Induktionsvoraussetzung:

Angenommen für ein $n \in \mathbb{N}_0$ gelte:

$$\Gamma\left(n+\frac{1}{2}\right) = \frac{(2n)!}{4^n \cdot n!} \cdot \sqrt{\pi} \tag{6.6}$$

III. Induktionsschritt:

Dann folgt für (n+1):

$$\Gamma\left(n+1+\frac{1}{2}\right) \stackrel{(2.1)}{=} \left(n+\frac{1}{2}\right) \cdot \Gamma\left(n+\frac{1}{2}\right)$$

$$\stackrel{(6.6)}{=} \left(n+\frac{1}{2}\right) \cdot \frac{(2n)!}{4^n \cdot n!} \cdot \sqrt{\pi}$$

$$= \frac{(2n+1) \cdot (2n)!}{2 \cdot 4^n \cdot n!} \cdot \sqrt{\pi}$$

$$= \frac{(2n+2) \cdot (2n+1) \cdot (2n)!}{2 \cdot (2n+2) \cdot 4^n \cdot n!} \cdot \sqrt{\pi}$$

$$= \frac{(2n+2)!}{2 \cdot 2 \cdot (n+1) \cdot 4^n \cdot n!} \cdot \sqrt{\pi}$$

$$= \frac{(2n+2)!}{4 \cdot (n+1) \cdot 4^n \cdot n!} \cdot \sqrt{\pi}$$

$$= \frac{(2n+2)!}{4^{n+1} \cdot (n+1)!} \cdot \sqrt{\pi}.$$

Bemerkung 6.1.

Wir berechnen mit der Formel (6.5) einige Werte der Gammafunktion.

1. Für n = 1 erhalten wir:

$$\Gamma\left(\frac{3}{2}\right) = \frac{2!}{4^1 \cdot 1!} \cdot \sqrt{\pi} = \frac{1}{2} \cdot \sqrt{\pi}.$$

2. Für n = 2 erhalten wir:

$$\Gamma\left(\frac{5}{2}\right) = \frac{4!}{4^2 \cdot 2!} \cdot \sqrt{\pi} = \frac{3}{4} \cdot \sqrt{\pi}.$$

3. Für n = 3 erhalten wir:

$$\Gamma\left(\frac{7}{2}\right) = \frac{6!}{4^3 \cdot 3!} \cdot \sqrt{\pi} = \frac{15}{8} \cdot \sqrt{\pi}.$$

4. Für n = 4 erhalten wir:

$$\Gamma\left(\frac{9}{2}\right) = \frac{8!}{4^4 \cdot 4!} \cdot \sqrt{\pi} = \frac{105}{16} \cdot \sqrt{\pi}.$$

5. Für n = 5 erhalten wir:

$$\Gamma\left(\frac{11}{2}\right) = \frac{10!}{4^5 \cdot 5!} \cdot \sqrt{\pi} = \frac{945}{32} \cdot \sqrt{\pi}.$$

Aufgabe 6.5.

Man zeige, dass für alle $n \in \mathbb{N}_0$

$$\Gamma\left(\frac{1}{2} - n\right) = \frac{\left(-4\right)^n \cdot n!}{(2n)!} \cdot \sqrt{\pi} \tag{6.7}$$

gilt.

Beweis.

Beweis per vollständiger Induktion nach n.

I. Induktionsanfang:

Für n = 0 gilt:

$$\Gamma\left(\frac{1}{2} - 0\right) = \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}.$$

II. Induktionsvoraussetzung:

Angenommen für ein $n \in \mathbb{N}_0$ gelte:

$$\Gamma\left(\frac{1}{2} - n\right) = \frac{\left(-4\right)^n \cdot n!}{(2n)!} \cdot \sqrt{\pi}.\tag{6.8}$$

III. Induktionsschritt:

Aus (2.1) folgt:

$$\Gamma(x) = \frac{\Gamma(x+1)}{x}.$$
 (6.9)

Damit folgt für (n + 1):

$$\Gamma\left(\frac{1}{2} - n - 1\right) \stackrel{(6.9)}{=} \frac{\Gamma\left(\frac{1}{2} - n\right)}{\frac{1}{2} - n - 1}$$

$$= (-2) \cdot \frac{\Gamma\left(\frac{1}{2} - n\right)}{2n + 1}$$

$$\stackrel{(6.8)}{=} (-2) \cdot \frac{(-4)^n \cdot n!}{(2n + 1) \cdot (2n)!} \cdot \sqrt{\pi}$$

$$= (-2) \cdot \frac{(2n + 2) \cdot (-4)^n \cdot n!}{(2n + 2) \cdot (2n + 1) \cdot (2n)!} \cdot \sqrt{\pi}$$

$$= (-2) \cdot \frac{2 \cdot (n + 1) \cdot (-4)^n \cdot n!}{(2n + 2)!} \cdot \sqrt{\pi}$$

$$= \frac{(-4)^{n+1} \cdot (n + 1)!}{(2n + 2)!} \cdot \sqrt{\pi}.$$

Bemerkung 6.2.

Wir berechnen mit der Formel (6.7) einige weitere Werte der Gammafunktion.

1. Für n = 1 erhalten wir:

$$\Gamma\left(-\frac{1}{2}\right) = \frac{\left(-4\right)^{1} \cdot 1!}{2!} \cdot \sqrt{\pi} = -2 \cdot \sqrt{\pi}.$$

2. Für n = 2 erhalten wir:

$$\Gamma\left(-\frac{3}{2}\right) = \frac{(-4)^2 \cdot 2!}{4!} \cdot \sqrt{\pi} = \frac{4}{3} \cdot \sqrt{\pi}.$$

3. Für n = 3 erhalten wir:

$$\Gamma\left(-\frac{5}{2}\right) = \frac{(-4)^3 \cdot 3!}{6!} \cdot \sqrt{\pi} = -\frac{8}{15} \cdot \sqrt{\pi}.$$

4. Für n = 4 erhalten wir:

$$\Gamma\left(-\frac{7}{2}\right) = \frac{(-4)^4 \cdot 4!}{8!} \cdot \sqrt{\pi} = \frac{16}{105} \cdot \sqrt{\pi}.$$

5. Für n = 5 erhalten wir:

$$\Gamma\left(-\frac{9}{2}\right) = \frac{(-4)^5 \cdot 5!}{10!} \cdot \sqrt{\pi} = -\frac{32}{945} \cdot \sqrt{\pi}.$$

Zwischen den Werten $\Gamma(\frac{1}{3})$ und $\Gamma(\frac{1}{6})$ besteht der folgende Zusammenhang:

Aufgabe 6.6 (Zusammenhang zwischen $\Gamma(1/3)$ und $\Gamma(1/6)$). Es gilt:

$$\Gamma\left(\frac{1}{6}\right) = 2^{-1/3} \cdot \sqrt{\frac{3}{\pi}} \cdot \Gamma\left(\frac{1}{3}\right)^2. \tag{6.10}$$

Beweis.

Aus der Legendrschen Verdopplungsformel (5.3) ergibt sich für z=1/3 der folgende Zusammenhang:

$$\Gamma\left(\frac{1}{6}\right) \cdot \Gamma\left(\frac{2}{3}\right) = \Gamma\left(\frac{\frac{1}{3}}{2}\right) \cdot \Gamma\left(\frac{\frac{4}{3}}{2}\right)$$

$$= \Gamma\left(\frac{\frac{1}{3}}{2}\right) \cdot \Gamma\left(\frac{\frac{1}{3}+1}{2}\right)$$

$$\stackrel{(5.3)}{=} \frac{\sqrt{\pi}}{2^{1/3-1}} \cdot \Gamma\left(\frac{1}{3}\right)$$

$$= \frac{\sqrt{\pi}}{2^{-2/3}} \cdot \Gamma\left(\frac{1}{3}\right)$$

$$= 2^{2/3} \cdot \sqrt{\pi} \cdot \Gamma\left(\frac{1}{3}\right).$$

Aus dieser Identität und dem Eulerschen Ergänzungssatz für z=1/3 folgt:

$$\Gamma\left(\frac{1}{6}\right) = 2^{2/3} \cdot \sqrt{\pi} \cdot \frac{\Gamma\left(\frac{1}{3}\right)}{\Gamma\left(\frac{2}{3}\right)}$$

$$= 2^{2/3} \cdot \sqrt{\pi} \cdot \frac{\Gamma\left(\frac{1}{3}\right) \cdot \Gamma\left(\frac{1}{3}\right)}{\Gamma\left(\frac{1}{3}\right) \cdot \Gamma\left(\frac{2}{3}\right)}$$

$$= 2^{2/3} \cdot \sqrt{\pi} \cdot \frac{\Gamma\left(\frac{1}{3}\right)^2}{\Gamma\left(\frac{1}{3}\right) \cdot \Gamma\left(1 - \frac{1}{3}\right)}$$

$$\stackrel{(4.2)}{=} 2^{2/3} \cdot \sqrt{\pi} \cdot \frac{\Gamma\left(\frac{1}{3}\right)^2}{\frac{\pi}{\sin(\frac{\pi}{3})}}$$

$$= 2^{2/3} \cdot \sqrt{\pi} \cdot \frac{\sin(\frac{\pi}{3})}{\pi} \cdot \Gamma\left(\frac{1}{3}\right)^2$$

$$= 2^{2/3} \cdot \sqrt{\pi} \cdot \frac{\sqrt{3}}{2\pi} \cdot \Gamma\left(\frac{1}{3}\right)^2$$

$$= 2^{2/3-1} \cdot \frac{\sqrt{3}}{\sqrt{\pi}} \cdot \Gamma\left(\frac{1}{3}\right)^2$$
$$= 2^{-1/3} \cdot \sqrt{\frac{3}{\pi}} \cdot \Gamma\left(\frac{1}{3}\right)^2$$

7 Integrale mit Bezug zur Gammafunktion

Aufgabe 7.1.

Für alle $n \in \mathbb{N}_0$ gilt:

$$\int_0^1 t^n (1-t)^n dt = \frac{\Gamma(n+1)^2}{\Gamma(2n+2)}.$$
 (7.1)

Beweis.

Sei $n \in \mathbb{N}_0$ eine beliebige natürliche Zahl. Mit partieller Integration erhalten wir:

$$\int_{0}^{1} t^{n} (1-t)^{n} dt = \frac{t^{n+1} (1-t)^{n}}{n+1} \bigg|_{0}^{1} + \frac{n}{n+1} \int_{0}^{1} t^{n+1} (1-t)^{n-1} dt$$

$$= \frac{n}{n+1} \int_{0}^{1} t^{n+1} (1-t)^{n-1} dt$$

$$= \frac{n}{n+1} \left(\frac{t^{n+2} (1-t)^{n-1}}{n+2} \right)_{0}^{1} + \frac{n-1}{n+2} \int_{0}^{1} t^{n+2} (1-t)^{n-2} dt$$

$$= \frac{n \cdot (n-1)}{(n+1) \cdot (n+2)} \int_{0}^{1} t^{n+2} (1-t)^{n-2} dt$$

$$= \frac{n \cdot (n-1)}{(n+1) \cdot (n+2)} \left(\frac{t^{n+3} (1-t)^{n-2}}{n+3} \right)_{0}^{1} + \frac{n-2}{n+3} \int_{0}^{1} t^{n+3} (1-t)^{n-3} dt$$

$$\vdots$$

$$= \frac{n \cdot (n-1) \cdot (n-2)}{(n+1) \cdot (n+2) \cdot (n+3)} \int_{0}^{1} t^{n+3} (1-t)^{n-3} dt$$

$$\vdots$$

$$= \frac{n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 1}{(n+1) \cdot (n+2) \cdot (n+3) \cdot \dots \cdot 2n} \int_{0}^{1} t^{2n} dt$$

$$= \frac{n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 1}{(n+1) \cdot (n+2) \cdot (n+3) \cdot \dots \cdot 2n \cdot (2n+1)} t^{2n+1} \Big|_{0}^{1}$$

$$= \frac{n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 1}{(n+1) \cdot (n+2) \cdot (n+3) \cdot \dots \cdot 2n \cdot (2n+1)}$$

$$= \frac{n!}{(n+1) \cdot (n+2) \cdot (n+3) \cdot \dots \cdot 2n \cdot (2n+1)}$$

$$= \frac{n! \cdot n!}{n! \cdot n!}$$

$$= \frac{(n!)^2}{(2n+1)!}$$
$$= \frac{\Gamma(n+1)^2}{\Gamma(2n+2)}.$$

Aufgabe 7.2.

Für alle $n, m \in \mathbb{N}_0$ gilt:

$$\int_0^1 t^n (1-t)^m dt = \frac{\Gamma(n+1) \cdot \Gamma(m+1)}{\Gamma(m+n+2)}.$$
 (7.2)

Beweis.

Seien $n, m \in \mathbb{N}_0$ zwei beliebige natürliche Zahl. Mit partieller Integration folgt:

$$\int_{0}^{1} t^{n} (1-t)^{m} dt = \frac{t^{n+1} (1-t)^{m}}{n+1} \Big|_{0}^{1} + \frac{m}{n+1} \int_{0}^{1} t^{n+1} (1-t)^{m-1} dt$$

$$= \frac{m}{n+1} \int_{0}^{1} t^{n+1} (1-t)^{m-1} dt$$

$$= \frac{m}{n+1} \left(\frac{t^{n+2} (1-t)^{m-1}}{n+2} \right)_{0}^{1} + \frac{m-1}{n+2} \int_{0}^{1} t^{n+2} (1-t)^{m-2} dt$$

$$= \frac{m \cdot (m-1)}{(n+1) \cdot (n+2)} \int_{0}^{1} t^{n+2} (1-t)^{m-2} dt$$

$$= \frac{m \cdot (m-1)}{(n+1) \cdot (n+2)} \left(\frac{t^{n+3} (1-t)^{m-2}}{n+3} \right)_{0}^{1} + \frac{m-2}{n+3} \int_{0}^{1} t^{n+3} (1-t)^{m-3} dt$$

$$\vdots$$

$$= \frac{m \cdot (m-1) \cdot (m-2)}{(n+1) \cdot (n+2) \cdot (n+3)} \int_{0}^{1} t^{n+3} (1-t)^{m-3} dt$$

$$\vdots$$

$$= \frac{m \cdot (m-1) \cdot (m-2) \cdot \dots \cdot 1}{(n+1) \cdot (n+2) \cdot (n+3) \cdot \dots \cdot (n+m)} \int_{0}^{1} t^{n+m} dt$$

$$= \frac{m \cdot (m-1) \cdot (m-2) \cdot \dots \cdot 1}{(n+1) \cdot (n+2) \cdot (n+3) \cdot \dots \cdot (n+m) \cdot (n+m+1)} t^{n+m+1} \Big|_{0}^{1}$$

$$= \frac{m \cdot (m-1) \cdot (m-2) \cdot \dots \cdot 1}{(n+1) \cdot (n+2) \cdot (n+3) \cdot \dots \cdot (n+m) \cdot (n+m+1)}$$

$$= \frac{m!}{(n+1) \cdot (n+2) \cdot (n+3) \cdot \dots \cdot (n+m) \cdot (n+m+1)}$$

$$= \frac{m! \cdot m!}{n! \cdot m!}$$

$$= \frac{n! \cdot m!}{(n+m+1)!}$$
$$= \frac{\Gamma(n+1) \cdot \Gamma(m+1)}{\Gamma(n+m+2)}.$$

Aufgabe 7.3 (Betafunktion).

Seien x, y > 0 zwei positive reelle Zahlen. Man zeige:

$$\int_0^1 t^{x-1} \left(1 - t\right)^{y-1} dt = \frac{\Gamma(x) \cdot \Gamma(y)}{\Gamma(x+y)}.$$
 (7.3)

Beweis.

Seien x, y > 0 zwei positive reelle Zahlen.

Aufgabe 7.4.

Seien x, y > 0 zwei positive reelle Zahlen. Man zeige:

$$\int_0^{\pi/2} \sin^{2x-1}(\psi) \cos^{2y-1}(\psi) d\psi = \frac{1}{2} \cdot \frac{\Gamma(x) \cdot \Gamma(y)}{\Gamma(x+y)}.$$
 (7.4)

Beweis.

Seien x, y > 0 zwei positive reelle Zahlen. Mit der Substitution $t = \sin^2(\psi)$, $dt = 2\sin(\psi)\cos(\psi)d\psi$.

$$\frac{1}{2} \cdot \frac{\Gamma(x) \cdot \Gamma(y)}{\Gamma(x+y)} = \frac{1}{2} \cdot \int_0^1 t^{x-1} (1-t)^{y-1} dt$$

$$= \frac{1}{2} \cdot 2 \int_0^{\pi/2} (\sin^2(\psi))^{x-1} (1-\sin^2(\psi))^{y-1} \sin(\psi) \cos(\psi) d\psi$$

$$= \int_0^{\pi/2} (\sin^2(\psi))^{x-1} (\cos^2(\psi))^{y-1} \sin(\psi) \cos(\psi) d\psi$$

$$= \int_0^{\pi/2} \sin^{2x-2}(\psi) \cos^{2y-2}(\psi) \sin(\psi) \cos(\psi) d\psi$$

$$= \int_0^{\pi/2} \sin^{2x-1}(\psi) \cos^{2y-1}(\psi) d\psi.$$

Bemerkung 7.1.

Wir berechnen mit der Formel (7.5) einige Integrale.

1. Für x = n + 1 und y = m + 1, $n, m \in \mathbb{N}$, erhalten wir das Integral:

$$\int_0^{\pi/2} \sin^{2n+1}(\psi) \cos^{2m+1}(\psi) d\psi = \frac{1}{2} \cdot \frac{\Gamma(n+1) \cdot \Gamma(m+1)}{\Gamma(n+m+2)}$$
$$= \frac{1}{2} \cdot \frac{(n)! \cdot (m)!}{(n+m+1)!}.$$

2. Für $x=\frac{1}{2}$ und $y=n+1,\;n\in\mathbb{N},$ erhalten wir das Integral:

$$\int_0^{\pi/2} \cos^{2n+1}(\psi) d\psi = \frac{1}{2} \cdot \frac{\Gamma\left(\frac{1}{2}\right) \cdot \Gamma(n+1)}{\Gamma\left(\frac{1}{2} + n + 1\right)}$$

$$= \frac{1}{2} \cdot \frac{\Gamma\left(\frac{1}{2}\right) \cdot \Gamma(n+1)}{\left(n + \frac{1}{2}\right) \cdot \Gamma\left(\frac{1}{2} + n\right)}$$

$$= \frac{1}{2} \cdot \frac{\sqrt{\pi} \cdot 4^n \cdot n! \cdot n!}{\left(n + \frac{1}{2}\right) \cdot (2n)! \cdot \sqrt{\pi}}$$

$$= \frac{4^n \cdot (n!)^2}{(2n+1)!}.$$

3. Für x = n + 1 und $y = \frac{1}{2}$, $n \in \mathbb{N}$, erhalten wir das Integral:

$$\int_0^{\pi/2} \sin^{2n+1}(\psi) d\psi = \frac{1}{2} \cdot \frac{\Gamma(n+1) \cdot \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(n+1+\frac{1}{2}\right)}$$
$$= \frac{4^n \cdot (n!)^2}{(2n+1)!}.$$

Aufgabe 7.5.

Seien x, y > 0 zwei positive reelle Zahlen. Man zeige:

$$\int_0^\infty \frac{u^{x-1}}{(1+u)^{x+y}} du = \frac{\Gamma(x) \cdot \Gamma(y)}{\Gamma(x+y)}.$$
 (7.5)

Beweis.

Seien x, y > 0 zwei positive reelle Zahlen. Mit der Substitution $t = 1 - \frac{1}{1+u}$, d $t = \frac{1}{(1+u)^2} du$ und $u = \frac{1}{1-t} - 1$.

$$\frac{\Gamma(x) \cdot \Gamma(y)}{\Gamma(x+y)} = \int_0^1 t^{x-1} (1-t)^{y-1} dt$$

$$= \int_0^\infty \left(1 - \frac{1}{1+u}\right)^{x-1} \left(1 - \left(1 - \frac{1}{1+u}\right)\right)^{y-1} \frac{1}{(1+u)^2} du$$

$$= \int_0^\infty \frac{u^{x-1}}{(1+u)^{x-1}} \frac{1}{(1+u)^{y-1}} \frac{1}{(1+u)^2} du$$

$$= \int_0^\infty \frac{u^{x-1}}{(1+u)^{x+y}} \frac{1}{(1+u)^{-2}} \frac{1}{(1+u)^2} du$$

$$= \int_0^\infty \frac{u^{x-1}}{(1+u)^{x+y}} du.$$

Aufgabe 7.6.

Seien $m, n \in \mathbb{N}$ zwei natürliche Zahlen. Man zeige:

$$\int_0^1 \frac{u^{m-1}}{\sqrt{1-u^n}} \, \mathrm{d}t = \frac{\Gamma\left(\frac{m}{n}\right)}{\Gamma\left(\frac{m}{n} + \frac{1}{2}\right)} \cdot \frac{\sqrt{\pi}}{n}.\tag{7.6}$$

Beweis.

Man setze in (7.3) x = m/n und y = 1/2 und substituiere $t = u^n$, $dt = nu^{n-1} du$:

$$\frac{\Gamma\left(\frac{m}{n}\right)}{\Gamma\left(\frac{1}{2} + \frac{m}{n}\right)} \cdot \frac{\sqrt{\pi}}{n} \stackrel{(6.1)}{=} \frac{1}{n} \cdot \frac{\Gamma\left(\frac{m}{n}\right) \cdot \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2} + \frac{m}{n}\right)}$$

$$\stackrel{(7.3)}{=} \frac{1}{n} \cdot \int_{0}^{1} t^{\frac{m}{n} - 1} \left(1 - t\right)^{\frac{1}{2} - 1} dt$$

$$= \frac{1}{n} \cdot \int_{0}^{1} \frac{t^{\frac{m}{n} - 1}}{\sqrt{1 - t}} dt$$

$$= \frac{1}{n} \cdot \int_{0}^{1} \frac{u^{n \cdot (\frac{m}{n} - 1)}}{\sqrt{1 - u^{n}}} \cdot n \cdot u^{n - 1} du$$

$$= \int_{0}^{1} \frac{u^{m - n}}{\sqrt{1 - u^{n}}} \cdot u^{n - 1} du$$

$$= \int_{0}^{1} \frac{u^{m - 1}}{\sqrt{1 - u^{n}}} \cdot u^{n - 1} du$$

Literaturverzeichnis

Eberhard Freitag, R. B. (2000). Funktionentheorie 1 (3. Aufl.). Springer-Verlag. Gammafunktion. (o. J.). Website. Zugriff auf https://de.wikipedia.org/wiki/Gammafunktion

Königsberger, K. (2001). Analysis 1 (5. Aufl.). Springer-Verlag.