SUPERMART SALES ANALYSIS

SUMMATIVE CAPSTONE PROJECT BY MICHELLE ANG

01. PROBLEM STATEMENT

SuperMart is interested to understand the demographics of its customers and sales analysis of the products.

Regression Model: Predict the sales amount

Goal: Able to have profitable business and provide attractive pricing based on its demographics to increase its sales.

Target Audience: Sales Department of SuperMart

02. ER diagram

ER diagram

03.

Data Cleaning & Preparation

Customer Age at the time of purchases

- Transaction Date minus Birth Date

Remove rows for Qty & Rate

- Ignoring negative data for the analysis: Took out the repeated transactions because of refund order

transaction_id	cust_id	tran_date	prod_cat_code	prod_subcat_code	Qty	Price	Tax	total_amt Sto	re_type
87125650	268666	09-08-11	4	1	-5	-359.00	188.48	-1983.48 e-9	Shop
87125650	268666	05-08-11	4	1	5	359.00	188.48	1983.48 e-9	Shop

Normalisation - Category & Subcategory

- Create new table for category and subcategory, relabel of their unique identities

Normalisation-Store

- Using the SQL queries to find out the different distinct store

Adding Primary Key And Foreign Key

- Cust_ID, Cat_Code, Sub_Cat_Code, Store_ID -> Primary Keys
- Add this Primary keys to Product Sales Transaction Table as Foreign Keys

Import SQL into Python using pyodbc

Merging Tables for Customer tables and Transaction tables

Removed unneccessary columns for ML

- Unique Customer_ID and Transaction_ID
- Date of Birth and Transaction Date (Year Extracted)
- Price & Tax (colinear to Sales Amount)

04.

Data Analysis & Dashboard

Methodology & Process Workflow

Machine Learning

Methodology

Models

Baseline Model: Multiple Linear Regression
Other Models: Random Forest Regressor, Decision Tree Regressor,
KNN Regressor, Multi-Level Perceptron Regressor, Gradient
Boosting Regressor, Extreme Gradient Boosting

Metrics

R2 score, Mean Square Error

Dataset

Kaggle

Data Transformation

- Nominal Categories Feature (Dummies)

	Gender	Age	Category	SubCategory	Store_Type	Qty	Year
0	М	39	Books	Non-Fiction	e-Shop	2	2013
1	М	39	Clothing	Men's Clothing	e-Shop	1	2013
2	М	38	Clothing	Men's Clothing	TeleShop	3	2012
3	F	21	Books	Fiction	e-Shop	5	2012
4	F	21	Electronics	Mobiles	Flagship store	2	2012

- Split the data into train and test datasets (test size = 0.2)
- Data Normalisation using Standard Scaler
- Finding hyperparameter using Grid Search

Results

Machine Learning

ML Model Training: Multiple Linear Regression

	Model	Training Variance	Testing Variance	Mean Square Error	R2
0	Baseline- Linear Regression	0.864078	0.869686	505011.256143	0.869660

Result for R2 score is 0.8697 and MSE is 505011

Other ML Models Training

	Model	Training Variance	Testing Variance	Mean Square Error	R2
8	Extreme Gradient Boosting	0.999978	0.999819	699.853837	0.999819
7	Gradient Boosting	0.999908	0.999752	961.296706	0.999752
4	Random Forest	0.999949	0.999641	1390.453929	0.999641
3	Decision Tree	0.999977	0.998542	5651.038443	0.998542

Extreme Gradient Boosting: Highest R2 and lowest MSE

Extreme Gradient Boosting Model Prediction

My target value is = 833.47	
This was the input data:	
Category_Bags	0
Category Books	1
Category_Clothing	0
Category_Electronics	0
Category_Footwear	0
Category_Home and Kitchen	0
SubCategory_Academic	0
SubCategory_Audio and Video	0
SubCategory_Bath	0
SubCategory_Cameras	0
SubCategory_Children Books	0
SubCategory_Comics	0
SubCategory_Computers	0
SubCategory_DIY	0
SubCategory_Fiction	0
SubCategory_Furnishing	0
SubCategory Kids' Clothing	0
SubCategory_Kids' Footwear	0

SubCategory Kitchen	0
SubCategory Men's Bag	0
SubCategory Men's Clothing	0
SubCategory Men's Footwear	0
SubCategory Mobiles	0
SubCategory Non-Fiction	1
SubCategory_Personal Appliances	0
SubCategory_Tools	0
SubCategory_Women's Bag	0
SubCategory_Women's Clothing	0
SubCategory_Women's Footwear	0
Store_Type_Flagship store	0
Store_Type_MBR	0
Store Type TeleShop	0
Store_Type_e-Shop	1
Gender	1
Age	33

▶Female

2013 12672

07. Conclusion

Conclusion

- 1. E-shop business highest among all store type
- 2. Age between 19 to 25 years old have a highest purchasing power whereas age between 40 to 45 years old have the lowest purchasing power
- 3. Mobiles, Fiction books and Children Books are the top 3 subcategory purchases

Recommendation

- 1. Will have better analysis during collection process if able to obtain the individual product name, transaction delivery location.
- 2. Include more features to analyse more advanced factors affecting the sale amounts (ie. Brands, Inflation per Year, Shipping Mode)

THANKS!

https://www.kaggle.com/amark720/retail-shop-casestudy-dataset

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik

