

Computational Astrophysics

03A. Introduction to Statistics

Eduard Larrañaga Observatorio Astronómico Nacional Universidad Nacional de Colombia

Kolmogorov Axioms

Kolmogorov Axioms

Let Ω be a collection of possible elementary events and let A and B be two events such that $A, B \in \Omega$.

The *probability* of occurrence of the event A is a real number denoted as P(A), satisfying the following axioms (Kolmogorov),

- 1. $P(A) \ge 0$ for each A
- $2. P(\Omega) = 1$
- 3. For all countable disjoint sets $A_1, A_2, \ldots \in \Omega$,

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P\left(A_i\right)$$

Kolmogorov Axioms

As a result of the above axioms, we have the following results,

$$P(A) + P(A^c) = 1$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Random Variables

A **random**, or **stochastic**, variable is that whose value results from the measurement of a quantity that is subject to random variations. It can take on a set of possible different values, each with an associated probability.

There are discrete and continuos random variables.

$$P(\boxed{0}) = \frac{1}{6}$$

$$P(\square) = \frac{1}{6}$$

$$P(\bigcirc) = \frac{1}{6}$$

$$P(\square) = \frac{1}{6}$$

$$P(\bigotimes) = \frac{1}{6}$$

$$P(\square) = \frac{1}{6}$$

Independent Random Variables Unconditional Probability

Two random variables, x and y are independent if

$$p(x,y) = p(x \cap y) = p(x)p(y)$$

i.e., the knowledge of the value of x tells nothing about the value of y.

$$P(\blacksquare,\boxdot) = P(\blacksquare \cap \boxdot)$$

$$\frac{1}{6}$$
 $\frac{1}{6}$

$$P(\blacksquare, \boxdot) = P(\blacksquare \cap \boxdot) = \frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$$

Conditional Probabilities

When the variables are not independent, we have a conditional probability, defined by

$$P(A \cap B) = P(A \mid B)P(B)$$

 $P(A \mid B)$:

Probability of event A given that B occurs.

$$P(7, \mathbf{x}) = P(7 \cap \mathbf{x})$$

$$\frac{1}{6}$$
 $\frac{1}{6}$

$$P(7, :::) = P(7 \cap :::) = \frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$$

Conditional Probabilities

When the variables are not independent, we have a conditional probability,

$$P(A \cap B) = P(A \mid B)P(B)$$

 $P(A \mid B)$

Probability of event A given that B occurs.

Law of Total Probability

Given a set $B_1, B_2, \ldots, B_N \in \Omega$ of disjoints events and such that

$$\bigcup_{i=1}^{\infty} B_i = \Omega,$$

then

$$P(A) = \sum_{i} P(A \cap B_i) = \sum_{i} P(A \mid B_i) P(B_i)$$

<u>.</u> 2.	3.	4.	5.	6	
3.	4.	5	6.		8
4.	5.	6		8	9
5.	6.	7	8	9	
6.	7.	8	9	10	
	8	9			2:

2.	3.	4	5.	6	
3.	4.	5	6.		8
4.	5.	6		8	9
5.	6.	7	8.	9	
6.		8	6	10:	
	8	9			2:

$$P(8) = 0 + \frac{1}{36} + \frac{1}{36} + \frac{1}{36} + \frac{1}{36} + \frac{1}{36} + \frac{1}{36}$$

<u>2.</u>	3	4	5.	6	
3.	4.	5.	6.		8
4.	5.	6.		8	9
55	6	7	8.	9	10:
6.	7.	8	9.	10:	
	8	9.			2:

$$P(8) = \frac{5}{36}$$

Law of Total Probability

Given a set $B_1, B_2, \ldots, B_N \in \Omega$ of disjoints events, such that

$$\bigcup_{i=1}^{\infty} B_i = \Omega$$

and assuming that an event C is not mutually exclusive with A or any of the events B_i , then

$$P(A \mid C) = \sum_{i} P(A \mid C \cap B_i) P(B_i \mid C)$$

Random Variables and Bayes' Rule

Random Variables and Probability Density Functions

A **random**, or **stochastic**, variable is that whose value results from the measurement of a quantity that is subject to random variations. It can take on a set of possible different values, each with an associated probability.

There are discrete and continuos random variables.

The function which ascribes a probability value to each outcome of the random variable is called **probability density function** or **pdf**.

Random Variables and Probability Density Functions

Independent Identically Distributed or iid random variables are drawn from the same distribution and are independent. Two random variables, x and y are independent if

$$p(x, y) = p(x)p(y)$$

i.e., the knowledge of the value of x tells nothing about the value of y.

When the variables are not independent, we have

$$p(x, y) = p(x | y)p(y) = p(y | x)p(x).$$

Marginal Probability Functions

The Marginal Probability Function is defined as

$$p(x) = \int p(x, y) dy$$

Or equivalently

$$p(x) = \int p(x | y)p(y)dy$$

Bayes' Rule

From the above results, we obtain the Bayes' rule,

$$p(y | x) = \frac{p(x | y)p(y)}{p(x)} = \frac{p(x | y)p(y)}{\int p(x | y)p(y)dy}.$$

For discrete random variables, y_i , this expression is writen as

$$p(y_j|x) = \frac{p(x|y_j)p(y_j)}{p(x)} = \frac{p(x|y_j)p(y_j)}{\sum_i p(x|y_i)p(y_i)}$$

Descriptive Statistics. Continuous Variable

Consider an arbitrary distribution function h(x) of a continuous variable. In the following, we present some important definitions of descriptive statistics.

Arithmetic Mean (Expectation value)

$$\bar{x} = E(x) = \mu = \int_{-\infty}^{\infty} xh(x)dx$$

Variance

$$\mathbf{var} = \sigma^2 = \int_{-\infty}^{\infty} (x - \bar{x})^2 h(x) dx$$

Standard Deviation

$$\sigma = \sqrt{\sigma^2} = \sqrt{\int_{-\infty}^{\infty} (x - \bar{x})^2 h(x) dx}$$

*Variance is also known as the second central moment of the distribution.

Skewness

$$\Sigma = \int_{-\infty}^{\infty} \left(\frac{x - \bar{x}}{\sigma}\right)^3 h(x) dx$$

Kurtosis

$$K = \int_{-\infty}^{\infty} \left(\frac{x - \bar{x}}{\sigma}\right)^4 h(x)dx - 3$$

* Skewness and Kurtosis are the central moments of order 3 and 4, respectively, for the distribution.

Absolute deviation about x_0

$$\delta = \int_{-\infty}^{\infty} |x - x_0| h(x) dx$$

Mode (most probable value for unimodal functions) : x_m

$$\frac{dh(x)}{dx} \bigg|_{x=x_m} = 0$$

p% quantiles: q_p

$$\frac{p}{100} = \int_{-\infty}^{q_p} h(x)dx$$

p is called a percentile.

The Uniform Distribution

The simplest example of a probability distribution function is the **Uniform (top-hat or box) Distribution**, given by the relation

$$p(x; \mu, W) = \begin{cases} \frac{1}{W} & \text{for } |x - \mu| \le \frac{W}{2} \\ 0 & \text{otherwise}. \end{cases}$$

The constant W is the width of the box. Some well known results are:

$$^* \sigma = \frac{W}{\sqrt{12}} \sim 0.3W$$

- * Skewness: $\Sigma = 0$
- * Kurtosis: K = -1.2 (i.e. the distribution is platykurtic)

The Gaussian Distribution

Other important example is the **Gaussian (or Normal) Distribution**, given by

$$p(x; \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left[-\frac{(x - \mu)^2}{2\sigma^2} \right]$$

Note that this distribution incorporates explicitly the average μ and the standard deviation σ .

Descriptive Statistics. Discrete Variable

Some Definitions in Descriptive Statistics. Discrete Variable

Now consider an arbitrary distribution function w(k) of a discrete variable. The definitions of descriptive statistics are given below, defining $w_i = w(k_i)$,

Arithmetic Mean (Expectation value)

$$\bar{k} = E(k) = \mu = \frac{\sum_{i=1}^{N} k_i w_i}{\sum_{i=1}^{N} w_i}$$

Some Definitions in Descriptive Statistics. Discrete Variable

Variance

$$\mathbf{var} = \sigma^2 = \frac{\sum_{i=1}^{N} (k_i - \bar{k})^2 w_i}{\sum_{i=1}^{N} w_i}$$

Standard Deviation

$$\sigma = \sqrt{\sigma^2} = \sqrt{\frac{\sum_{i=1}^{N} (k_i - \bar{k})^2 w_i}{\sum_{i=1}^{N} w_i}}$$

*Variance is also known as the second central moment of the distribution.

Some Definitions in Descriptive Statistics. Discrete Variable

Skewness

$$\sum_{i=1}^{N} \left(\frac{k_i - \bar{k}}{\sigma}\right)^3 w_i$$

$$\sum_{i=1}^{N} \frac{\sum_{i=1}^{N} w_i}{v_i}$$

Kurtosis

$$K = \frac{\sum_{i=1}^{N} \left(\frac{k_i - \bar{k}}{\sigma}\right)^4 w_i}{\sum_{i=1}^{N} w_i} - 3$$

^{*} Skewness and Kurtosis are the central moments of order 3 and 4, respectively, for the distribution.

The Binomial Distribution

The Binomial distribution describes a variable that can take only two discrete values, say 0 or 1. If the probability to obtain the number 1 is b, the distribution of the discrete variable k that measures how many times the result 1 occurred in N trials is given by the expression

$$p(k; b, N) = \frac{N!}{k!(N-k)!} b^k (1-b)^{N-k}$$

The particular case N=1 is known as the Bernoulli distribution.

For the binomial distribution, the expected value of successes is k=bN and its standard deviation is $\sigma=\sqrt{Nb(1-b)}$.

@astronomia OAN

AstronomiaOAN

@astronomia OAN