Seminar: Debating Statistical Inference Schools

Stefan Dietrich, Julian Rodemann & Thomas Augustin

Department of Statistics, LMU Munich

Statistical Inference

"Statistical inference is the process of using data analysis to infer properties of an underlying distribution of probability."

— Oxford Dictionary of Statistics

Schools

Schools

Not Mutually Exclusive

Probability

What Exactly is Probability?

- The coin will show heads with a 50% probability.
- There is a 30% probability of rain.
- The probability that 1860 Munich will win is 80%.
- ...

Frequentists

- Probability is Frequency
- Parameter is Fixed
- Parameter is Unknown ¹

Frequentists

Frequency Equals Probability ²

$$P(A) = \frac{\text{times A happens}}{\text{times Experiments}}$$

Calculate: Repeat experiment very often

Example: Coin toss

Coin Toss Experiment

Coin Toss Experiment Results

- We repeat a coin toss a number of times and calculate the frequency of heads.
- **Expectation:** It gets to 0.5 over time.
- Reality:
 - Never exactly 0.5, often very close, sometimes off.
 - Gets better over time.

Law of Large Numbers

- The Law of Large Numbers states that as the number of trials increases, the sample mean will converge to the expected value.
- In the context of a coin toss:
 - The expected value of heads is 0.5.
 - As we increase the number of tosses, the proportion of heads will approach 0.5.

Formula:

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}\stackrel{P}{\to}\mu\quad\text{as }n\to\infty$$

³Comparative Statistical Inference Chapter 5

Limitations of Infinite Repetitions

One-time Events:

- Some events occur only once (e.g., a unique historical event).
- Cannot apply frequentist methods that assume repeated trials.

Non-Independent Trials:

- Trials may be dependent (e.g., in a time series).
- Assumption of independence is violated.

Limited Resources:

- In practice, repeating an experiment infinitely is not feasible.
- Resource constraints limit the number of trials

Running example: blood pressure

We are analyzing systolic blood pressure and have data from 10 patients:

120, 125, 130, 110, 115, 140, 135, 128, 118, 122

The goals are to:

- ullet Estimate the mean μ using different inference methods
- Construct intervals (Confidence, Credibility, Fiducial)
- Perform hypothesis tests: Is the mean greater than 125?

Frequentist Inference - Point Estimator

Point Estimator: The sample mean:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{120 + 125 + \dots + 122}{10} = 124.3$$

This serves as our estimate for the population mean μ .

Frequentist Inference - Confidence Interval

Constructing the 95% Confidence Interval:

$$\bar{x} \pm z \cdot \frac{s}{\sqrt{n}} = 124.3 \pm 1.96 \cdot \frac{8.57}{\sqrt{10}}$$

Confidence Interval: [117.98, 130.62]

This interval means that if we repeated this process many times, 95% of such intervals would contain the true mean.⁵

Frequentist Inference - Hypothesis Test

Hypothesis Test:

- Null Hypothesis: H_0 : $\mu \le 125$
- Alternative Hypothesis: H_A : $\mu > 125$

$$z = \frac{\bar{x} - 125}{\frac{s}{\sqrt{n}}} = \frac{124.3 - 125}{\frac{8.57}{\sqrt{10}}} = -0.26$$

Since $z < z_{1-\alpha}$, we do not reject H_0 .

Bayesian

- Based on Bayes' Theorem
- Parameter is a random variable
- Parameter is function⁶

Theorem of Bayes

$$P(\theta|X) = \frac{P(X|\theta) \cdot P(\theta)}{P(X)}$$

- $P(\theta|X)$: Posterior probability of θ given Data X.
- $P(X|\theta)$: Likelihood of Data X given that θ is true.
- $P(\theta)$: Prior probability of θ .
- P(X): Marginal likelihood of the Data X^{7}

⁷Comparative Statistical Inference Chapter 6

Posterior Probability $P(\theta|X)$

- Represents the updated probability of the hypothesis θ after observing evidence X. This is a function and not a number as in frequentism.
- Meaning: It reflects our belief about θ considering both prior information and new evidence.
- Challenges:
 - May be sensitive to the prior choice, leading to biases.
 - Computationally intensive to derive, especially with complex models.⁸

Likelihood Function $P(X|\theta)$

- The probability of observing the data X given that the hypothesis θ is true.
- Meaning: Indicates how well the model with hypothesis θ explains the observed data.
- Challenges:
 - Requires an accurate model of the data generation process.⁹

Prior Probability $P(\theta)$

- Represents the initial belief about the hypothesis θ before observing any evidence.
- Meaning: Captures existing knowledge or assumptions about θ and influences the posterior.
- Challenges:
 - Choice of prior can significantly impact the results.
 - Eliciting a subjective prior can be difficult and controversial.¹⁰

Choosing the Prior

- Types of Priors:
 - Informative Priors:
 - Based on previous studies or expert knowledge.
 - Provides strong influence on the posterior.
 - Uninformative (or Weak) Priors:
 - Reflects minimal prior knowledge (e.g., uniform distribution).
 - Aims to let the data dominate the inference.¹¹
- Importance of Reporting Priors:
 - In scientific work, it is essential to specify the chosen prior.
 - This transparency allows for discussion and scrutiny of the assumptions made during analysis.

¹¹Comparative Statistical Inference Chapter 6

Informative vs. Uninformative Prior

Prior Distributions: Informative and Uninformative

Conjugate Priors

- Conjugate priors are a class of prior distributions that, when used in Bayesian analysis, yield a posterior distribution that is in the same family as the prior.
- This property simplifies the computation of the posterior distribution.

¹²Comparative Statistical Inference Chapter 6

Examples of Conjugate Priors

- **Bernoulli Likelihood:** Prior: Beta Distribution Beta (α, β) Posterior: Beta $(\alpha + k, \beta + n k)$ where k is the number of successes and n is the number of trials.
- **Normal Likelihood:** Prior: Normal Distribution $N(\mu_0, \sigma_0^2)$ Posterior: $N(\mu_0, \sigma_0^2)^{13}$

¹³Comparative Statistical Inference Chapter 6

Updating the Mean for a Normal Distribution

Setup:

- Prior: $\theta \sim N(\mu_0, \sigma_0^2)$
- Likelihood: $x|\theta \sim N(\theta, \sigma^2)$

Posterior Distribution:

$$\theta | x \sim N(\mu_n, \sigma_n^2)$$

Updated Mean:

$$\mu_n = \frac{\frac{x}{\sigma^2} + \frac{\mu_0}{\sigma_0^2}}{\frac{1}{\sigma^2} + \frac{1}{\sigma_0^2}}$$

Updated Variance:

$$\sigma_n^2 = \frac{1}{\frac{1}{\sigma^2} + \frac{1}{\sigma_0^2}}$$

Interpretation:

• The posterior mean μ_n is a weighted average of the prior mean μ_0 and the observed data x, where the weights depend on their respective precisions. ¹⁴

¹⁴Comparative Statistical Inference Chapter 6

Advantages of Conjugate Priors

- Simplifies calculations, making Bayesian analysis more tractable.
- Provides a clear understanding of how prior beliefs combine with data.

Marginal likelihood P(X)

- The total probability of observing the data X across all possible hypotheses θ .
 - Meaning: Acts as a normalizing constant to ensure the posterior probability sums to one.
- Challenges:
 - Often difficult to compute in practice, especially in high-dimensional spaces.
 May require complex integration or approximation techniques.¹⁵

¹⁵Comparative Statistical Inference Chapter 6

Example: Marginal Likelihood

The marginal likelihood with logistic regression and normal prior is:

$$P(X) = \int_{\Theta} \left(\prod_{i=1}^{n} \left(\frac{1}{1 + \exp(-x_i^{\top} \theta)} \right)^{y_i} \left(1 - \frac{1}{1 + \exp(-x_i^{\top} \theta)} \right)^{1 - y_i} \right)$$
$$\times \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(\theta - \mu)^2}{2\sigma^2} \right) d\theta$$

Approximation Methods for Marginal Likelihood

- Approximation Techniques:
 - Monte Carlo Methods (MCMC):
 - Random sampling from the distribution to estimate the integral.
 - Variational Inference:
 - Approximates the integral with optimization techniques to find simpler distributions.¹⁷
 - Laplace Approximation:
 - Uses a quadratic approximation around the mode of the posterior to estimate the integral.¹⁸

¹⁶Comparative Statistical Inference Chapter 6

¹⁷A Tutorial on Variational Bayes

¹⁸The Classical Laplace Method

Updating a Prior

Blood Pressure (mmHg)

Bayesian Inference - Point Estimator

Point Estimator: Posterior Mean $\mathbb{E}[\mu|X]$:

$$\mu_{\text{posterior}} = \frac{\frac{1}{\sigma^2} \bar{\mathbf{x}} + \frac{1}{\tau^2} \mu_0}{\frac{1}{\sigma^2} + \frac{1}{\tau^2}}$$

Assuming $\mu_0 = 120$, $\tau^2 = 15^2$, $\bar{x} = 124.3$, and $\sigma^2 = 10^2$:

$$\mu_{\text{posterior}} = \frac{\frac{1}{100} \cdot 124.3 + \frac{1}{225} \cdot 120}{\frac{1}{100} + \frac{1}{225}} \approx 123.4$$

Bayesian Inference - Credibility Interval

Constructing the 95% Credibility Interval: This interval is derived from the posterior distribution:

[118.9, 128.0]

This means that there is a 95% probability that the true mean lies within this interval based on our prior belief and the data. 19

¹⁹Comparative Statistical Inference Chapter 6

Bayesian Inference - Hypothesis Test

Hypothesis Test: We compute the Bayes factor:

$$\frac{P(\mu > 125 \mid X)P(\mu > 125)}{P(\mu \le 125 \mid X)P(\mu \le 125)} = 0.36$$

Since Bayes factor is less than 1, we do not reject H_0 .

Comparing the Results

Frequentist

• What is μ ?

$$\hat{\mu} = 124.3$$
 (Sample Proportion)

• Interval for μ ?

- Conclusion
 - Not rejected the Null

Bayesian

• What is μ ?

$$\mathbb{E}(\mu|y) = 123.4$$
 (Posterior Mean)

- Interval for μ ?
- (117.98, 130.62) (95% Confidence Int.) (118.9, 128.0) (95% Credible Int.)
 - Conclusion

Not rejected the Null

Inverse Probability

What is Inverse Probability?

- Inverse probability is a method of reasoning backward from observed data to infer the probability of underlying causes or parameters.
- It contrasts with direct probability, where we calculate the probability of data given certain parameters.
- Central to Bayesian statistics.²⁰

Fiducial Inference

- Background:
 - The term "fiducial"comes from the Latin for faith.
 - Ronald A. Fisher introduced fiducial inference in the 1930s as a way to derive statistical inferences without relying solely on traditional frequentist or Bayesian approaches.
- Fisher's Key Argument:
 - after estimating parameters from the data, we can construct a fiducial distribution for the parameters based on the observed data and the sampling distribution.
 - inferences about parameters without needing prior distributions
 - Doubts exist about the coherence of fiducial inference as a system of statistical inference ²¹
 - Fiducial distributions lack additivity, preventing them from forming a valid probability (Lindeley) measure.²²

²¹Comparative Statistical Inference Chapter 8.1

²²Lindeley, D.V. (1958) Fiducial Distributions and Bayes' Theorem, Journal of the Royal Statistical Society

Fiducial vs Bayesian Inference

- Fiducial inference does not rely on priors, unlike Bayesian inference.
- Bayesian inference incorporates prior beliefs into the analysis.
- Fiducial argument aims for objectivity, avoiding subjective priors.

²³Comparative Statistical Inference Chapter 8.1

Fiducial Distribution

A random sample of size n from $N(\mu, \sigma_0^2)$ with known variance σ_0^2 has a sample mean \bar{x} , \bar{X} is sufficient for μ and has distribution function $\Phi\left(\frac{(\bar{x}-\mu)\sqrt{n}}{\sigma_0}\right)$. Thus, the fiducial distribution of μ , for given \bar{x} , has density

$$g(\mu;x) = \sqrt{\left(rac{n}{2\pi\sigma_0^2}
ight)} \exp\left\{-rac{n}{2\sigma_0^2}(\mu-ar{X})^2
ight\}$$

The fiducial interval and central confidence interval for μ are identical.²⁴

Interpretation of the Likelihood Function

The fiducial distribution can also be derived by attributing a probability interpretation to the likelihood function $p_{\mu}(x)$, normalized as:

$$p_{\mu}(x) \propto g(\mu; x)$$

If we interpret the likelihood function as measuring relative densities of μ , we arrive at the same probability distribution.

However, this re-interpretation does not always suffice.²⁵

²⁵Comparative Statistical Inference Chapter 8.1

Fiducial Inference - Point Estimator

Point Estimator: The sample mean (same as Frequentist):

$$\bar{x} = 124.3$$

This serves as the fiducial estimate for the population mean.

Fiducial Inference - Fiducial Interval

Fiducial Interval: This interval can be calculated similarly to the confidence interval:

[118.9, 128.0]

This interval provides a fiducial estimate for the true mean based on the observed data.

References

- Oxford Dictionary of Statistics (2024). Definition of Statistical Inference.
- Vic Barnett (1999), Comparative Statistical Inference (Third Edition)
- Lindeley, D.V. (1958) Fiducial Distributions and Bayes' Theorem, Journal of the Royal Statistical Society