Class 10

Thm 2. *u* signed measure

Then \exists measures u_1 , u_2 , one is finite $\ni u = u_1 - u_2$.

Pf: Let $u^+(E) = u(E \cap A)$ for $E \in a$

$$u^{-}(E) = -u(E \cap B)$$

Then (1) $u^+, u^-: a \to [0, \infty]$

(2)
$$u^+(\phi) = u(\phi) = 0$$

$$u^{-}(\phi) = -u(\phi) = 0$$

(3)
$$u^+(\underset{i}{\cup}E_i) = u((\underset{i}{\cup}E_i) \cap A) = u(\underset{i}{\cup}(E_i \cap A)) = \sum_i u(E_i \cap A) = \sum_i u^+(E_i)$$

for disjoint $\{E_i\}$. Also for u^- .

$$(4) \ u^{+}(X) = u(A)$$

$$u^{-}(X) = -u(B)$$

 \Rightarrow one of them finite

(Ex. In proof of Thm 1, $-\infty < u(B) \le 0$).

$$(5) u^{+}(E) - u^{-}(E) = u(E \cap A) + u(E \cap B) = u(E)$$

$$\therefore u = u^+ - u^-$$

Note: 1. In general,
$$\mu_1, \mu_2$$
 not unique. (Ex. $\mu = \mu_1 - \mu_2 = (\mu_1 + \mu_0) - (\mu_2 + \mu_0)$).

2.
$$u = u^+ - u^-$$
 Jordan decomposition of u

Def. u^+ upper variation of u

 u^{-} lower variation of u

$$|u| = u^+ + u^-$$
 total variation of u . ($|u|$ measure)

u finite if |u| finite measure

 $u \sigma$ -finite if $|u| \sigma$ -finite measure

Homework: Ex.1.10.3, 1.10.4

Analogue:

1.
$$a = a^{+} - a^{-}$$
, where $a^{+} = \frac{1}{2}(|a| + a) \ge 0$ & $a^{-} = \frac{1}{2}(|a| - a) \ge 0$

2.
$$|a| = a^+ + a^-$$

3.
$$\forall a \in [-\infty, \infty], a = a_1 - a_2$$
, where $a_1, a_2 \in [-\infty, \infty]$, one is finite.

4.
$$a_1, a_2$$
 not unique.

