# CC7221: Reconocimiento Visual con Deep Learning Tarea 1: Evaluación de redes convolucionales para clasificación de imágenes

Prof: José M. Saavedra Rondo Ayudantes: Pablo Torres, Cristóbal Lovola

Abril 2021

# 1. Objetivo

Familiarizarse con la implementación, entrenamiento y evaluación de modelos convolucionales para la clasificación de imágenes.

# 2. Descripción

En esta tarea, los estudiantes deberán entrenar tres diferentes arquitecturas convolucionales para clasificación de prendas de vestir, según el dataset que se describe en Sección 2.2. Las arquitecturas a evaluar son AlexNet, ResNet-50<sup>1</sup> y ResNext<sup>2</sup> (compatible con ResNet-50).

Para implementar las redes se sugiere seguir el código descrito en https://github.com/jmsaavedrar/convnet2, que trae la implementación de AlexNet y ResNet. La arquitectura ResNext no viene incluída, por lo que es parte de la tarea extender la implementación existente para soportar ResNext.

Todas las redes descritas deben se entreanadas sin pre-entrenamiento de pesos, con imágenes de tamaño  $224 \times 224$ . Para la optimización deberán utilizar Adam, con los parámetros por defecto. Los modelos son entrenado por aproximadamente 20 épocas. Se recomienda un tamaño de batch de 64.

## 2.1. Gráficos y Métricas

Para la parte de análisis de resultados, deberán calcular mediciones y generar gráficos que muestren el comportamiento de sus modelos. Así, se pide incluir lo siguiente:

- Gráfico epoch vs. loss y epoch vs. accuracy, para cada una de las redes descritas.
- Accuracy de cada modelo, total y separado por clases. Un gráfico de barras ayudaría!! Un ejemplo de gráfico esperado se muestra en la Figura 1
- Caracterización de casos difíciles y fáciles.

#### 2.2. Datasets

La redes descritas anteriormente deberán se entrenadas en el contexto de clasificación de prendas de vestir. Para este fin, se dispone del dataset *Impresee-Clothing* que puede ser descargado de https://www.dropbox.com/s/2jt9086zlm9fj5u/impresee-clothing.tar. Este dataset contiene 121.930 imágenes distribuido en 19 clases. El dataset está dividido en 100.000 imágenes de entrenamiento y 21.930 imágenes de test. Un ejemplo de las imágenes contenidas en este dataset se muestran en Figura 2.

<sup>&</sup>lt;sup>1</sup>ResNet: https://arxiv.org/pdf/1512.03385.pdf

<sup>&</sup>lt;sup>2</sup>ResNext: https://arxiv.org/pdf/1611.05431.pdf



Figura 1: Ejemplos de accuracy por diferentes clases. Los métodos aplicados se diferencian por color. Ojo, el gráfico mostrado corresponde a otro problema, pero sirve para ilustrar lo que se espera en este trabajo.



Figura 2: Ejemplos de imágenes del dataset clothing

En caso de presentar problemas de memoria durante el entrenamiento con el dataset completo, se permitirá realizar experimentos con una versión reducida del dataset *Impresee-Clothing*. El dataset reducido contiene 31.977 imágenes para entrenamiento y 1.900 imágenes para test. Este dataset puede ser descargado de https://www.dropbox.com/s/c3h9e0o6ajydbao/clothing-small.zip

Es importante que en el informe se indique claramente qué dataset ocuparon para los experimentos.

## 2.3. Implementación

Para esta tarea se recomienda fuertemente utilizar la implementación de https://github.com/jmsaavedrar/convnet2. Aquí encontrarán las arquitecturas AlexNet y ResNet.

## 2.4. Arquitecturas más pequeñas

En caso de tener problemas de recursos computacionales para entrenar los modelos ResNet-50 y ResNext, se aceptarán experimentos con la versión de ResNet-34 y su correspodiente versión ResNext.

## 3. Informe

- 1. Abstract o Resumen: es el resumen del trabajo.
- 2. Introducción: Aquí se describe el problema y el contexto. Comente las diferencias entre Alex-Net, ResNet y ResNext. (10%)
- 3. **Desarrollo**: Aquí se describe el diseño e implementación de los programas necesarios para realizar sus experimentos. Describa los pasos seguidos para entrenar. Además, aquí es obligatorio que describa detalladamente cómo se implementó ResNext. (40%).
- 4. Resultados Experimentales y Discusión: Aquí se prensentan los resultados, pero lo más importante es analizarlos. Observe y describa el comportamiento de los modelos en base a las métricas mencionadas anteriormente. ¿Puede genera algunas recomendaciones en base a sus observaciones? (40%).
- 5. Conclusiones (10%)

# 4. Entrega

La entrega se realiza por u-cursos hasta el domingo 25 de abril, 2020, 23:50 hrs. Se debe incluir:

- 1. Código fuente (en Python)
- 2. Informe