How we use PCA for dimensionality reduction:

Since earlier we see that eigen vector (V_1) is the dimension at which we have maximum variance among all.

So for dimensionality reduction of 2-D into 1-D we will just project each x_i on V_1 (eigen vector) to obtain new feature x_i ' which is dot product of transponse of x_i and V_1 ie:

$$x_i' = x_i^T$$
. V_1

Why we are picking V₁, because it has maximum variance.

Now what if we have 100 D and want to convert it into 50 dimensions.

As for 2D to 1D we took V_1 , therefore for 100D to 50D, we will take V_1, V_2, \dots, V_{50} . So any particular element in new data-matrix let's say at ith row and jth column will be $X_{ij}' = x_i^T.V_j$ as it's result is scalar.

we can also perform dimensionality reduction in a way as suppose we want 99% of the preservence of variance, now whether it will achieve with 50 V or 60 V, will choose that number of eigen vectors, who will preserve 99% of the variance.

