CAN THO UNIVERSITY COLLEGE OF ICT

COMPUTER NETWORK (CT106H)

Name: Trương Đặng Trúc Lâm

ID: B2111933

Group: M04

Construct a network system as follows:

- LAN A has a single network address of 156.156.0/24, using static routing. LAN A is divided into 2 subnets, consisting of A1 and A2. In addition, there is a Web server running a simple webpage showing "YEAH! My name is YOUR_FULL_NAME" (replace YOUR FULL NAME by your full name) in LAN A1.
- LAN B1 has a network address of 140.140.140.0/27, using the RIPv2 protocol.
- LAN B2 has a network address of 140.140.140.128/27, using the RIPv2 protocol.
- LAN B3 has a network address of 140.140.140.192/27, using the RIPv2 protocol.
- LAN C includes PC1 and Router 4. The IP address of PC1 is 150.150.150.150.150/28.

Please take screenshots showing:

- 1. (0,5 point) select and assign the IP addresses for all of the Ethernet interfaces.
- 2. (1,0 point) the directory tree structure of this network system (using the *tree* command).
- 3. (1,0 point) the content of the file *lab.conf*?
- 4. (5,0 points) the content of all files *. startup
- 5. (1,0 point) the contents of all files and commands you use in order to set up the web service on the web server
- 6. (0,5 point) the command line to check the hops for transmitting data from PC1 to the web server? List all hops between PC1 and the Web server.
- 7. (1,0 points) check the network system constructed (using the *ping* command).

************GOOD LUCK********

Table Of Contents

1. Select and assign the IP addresses for all of the Ethernet Interfaces	3
2. The directory tree structure of this network system	4
3. the content of the file <i>lab.conf</i>	5
4. the content of all files *. startup	6
5. The contents of all files and commands you use in order to set up the service on the web server	
6. The command line to check the hops for transmitting data from PC1 t	o the
web server? List all hops between PC1 and the Web server	11
7. Check the network system constructed	12

1. Select and assign the IP addresses for all of the Ethernet interfaces.

2. The directory tree structure of this network system

3. the content of the file *lab.conf*

ntuB2111933 (Snapshot) [Running] - Oracle VM VirtualBox

chine Input Devices Help ities Terminal lamb2111933@lamb2111933-VirtualBox: ~/lab6 Ħ lamb2111933@lamb2111933-VirtualBox:~/lab6\$ cat lab.conf server[0]=A1 r2[0]=A1 r2[1]=A2 r1[0]=A2 r1[1]=B1 r1[2]=B3 r3[0]=B1 r3[1]=B2 r4[0]=B3 r4[1]=B2 r4[2]=C pc1[0]=C lamb2111933@lamb2111933-VirtualBox:~/lab6\$

4. the content of all files *. startup

*RIPv2 configuration

tuB2111933 (Snapshot) [Running] - Oracle VM VirtualBox hine View Input Devices Help ies Terminal Thg 11 20 19:4 lamb2111933@lamb2111933-VirtualBox: ~/lab6 Qlamb2111933@lamb2111933-VirtualBox:~/lab6\$ cat r1/etc/quagga/daemons zebra=yes bapd=no ospfd=no ospfd6d=no ripd=yes ripngd=no lamb2111933@lamb2111933-VirtualBox:~/lab6\$ cat r1/etc/quagga/ripd.conf hostname ripd password zebra enable password zebra router rip redistribute connected network 140.140.140.0/24 log file /var/log/quagga/ripd.log lamb2111933@lamb2111933-VirtualBox:~/lab6\$ cat r1/etc/quagga/zebra.conf hostname r1 password zebra enable password zebra log file /var/log/quagga/zebra.log lamb2111933@lamb2111933-VirtualBox:~/lab6\$ cat r3/etc/quagga/zebra.conf hostname r2 password zebra enable password zebra log file /var/log/quagga/zebra.log lamb2111933@lamb2111933-VirtualBox:~/lab6\$ cat r4/etc/quagga/zebra.conf hostname r3 password zebra enable password zebra log file /var/log/quagga/zebra.log lamb2111933@lamb2111933-VirtualBox:~/lab6\$

5. The contents of all files and commands you use in order to set up the web service on the web server

The contents of file **index.html**:

Start the lab with \$ kathara lstart

On server:

From **client**, test connectivity:

Use links command from client

Press F10, then select "Go to URL"

Enter the IP Address of server

Successful!

6. The command line to check the hops for transmitting data from PC1 to the web server? List all hops between PC1 and the Web server.

The command is **traceroute:** The output from **traceroute 156.156.156.10** indicates how many servers or hops it takes for transmitting data from **pc1** to the **server**. (from **150.150.150.150** to **156.156.10**).

The destination is **156.156.10** and we need **4 hops**:

- The first next hop is **150.150.150.145** (**r4**).
- The second is 140.140.193 (r1).
- The third is 156.156.129 (r2).
- The fourth (as the last) is **156.156.10** (server).

7. Check the network system constructed.

This is the only way that we need to check:

Test connectivity on the route from **pc1** to **r3**:

Test connectivity on the route from **server** to **r3**:

Listing network routing tables:

The End