3.4: De Moivre's Theorem

Alex L.

October 4, 2024

Theorem: De Moivre's Theorem: $(\cos \theta + i \sin \theta)^n = (e^{i\theta})^n = e^{in\theta} = \cos n\theta + i \sin n\theta$

Roots of Unity 0.1

Def: The *n*th roots of unity are complex numbers z that fulfill the equation $z^n = 1$

To solve, rewrite the equation as $z^n=e^{ik2\pi}$ with $k\in\mathbb{Z}$ (any number with modulus 1 and argument as a multiple of 2π is equal to 1). Now, we take the nth root of each side to get $z = e^{\frac{ik2\pi}{n}}$, and you can find solutions by plugging in n and iterating over values for k.

Solving Polynomial Equations 0.2

Ex: Solve the equation $z^6 - z^5 + 4z^4 - 6z^3 + 2z^2 - 8z + 8 = 0$ Solution: We factorize to get $(z^3 - 2)(z^2 + 4)(z - 1) = 0$. This means that $z^3 = 2 = 2e^{ik2\pi}$. By taking the cube root of both sides, we get $z=2^{\frac{1}{3}}e^{\frac{ik2\pi}{3}}$, and we find that we get three solutions, $z_1=2^{\frac{1}{3}}$ $z_2=2^{\frac{1}{3}}(-\frac{1}{2}+\frac{\sqrt{3}}{2}i)$, and $z_3=2^{\frac{1}{3}}(-\frac{1}{2}-\frac{\sqrt{3}}{2}i)$. Paired with the other three solutions from our other terms, $z_4=2i$, $z_5=-2i$, $z_6=1$, we have six solutions for a sixth order equation.