1 курс 1 семестр

Модуль 1. Векторная алгебра. Прямая и плоскость в пространстве. Домашнее задание N 1.

Дано: точки $A,\,B,\,D,\,A_1$; числа $a,\,b$; угол $\varphi.$

Задание:

- 1. Найти длину вектора $|\boldsymbol{m}+\boldsymbol{n}|$, если $\boldsymbol{m}=\boldsymbol{p}+a\boldsymbol{q},\,\boldsymbol{n}=b\boldsymbol{p}+\boldsymbol{q},$
- где p и q единичные векторы, угол между которыми равен φ .
 - 2. Найти координаты точки M, делящей вектор \overrightarrow{AB} в отношении a:1.
- 3. Проверить, можно ли на векторах \overrightarrow{AB} и \overrightarrow{AD} построить параллелограмм. Если да, то найти длины сторон параллелограмма.
 - 4. Найти углы между диагоналями параллелограмма ABCD.
 - 5. Найти площадь параллелограмма ABCD.
- 6. Убедиться, что на векторах \overrightarrow{AB} , \overrightarrow{AD} , $\overrightarrow{AA_1}$ можно построить параллелепипед. Найти объем этого параллелепипеда и длину его высоты.
- 7. Найти координаты вектора \overrightarrow{AH} , направленного по высоте параллелепипеда, проведенной из точки A к плоскости основания $A_1B_1C_1D_1$, координаты точки H и координаты единичного вектора, совпадающего по направлению с вектором \overrightarrow{AH} .
 - 8. Найти разложение вектора \overrightarrow{AH} по векторам \overrightarrow{AB} , \overrightarrow{AD} , $\overrightarrow{AA_1}$.
 - 9. Найти проекцию вектора \overrightarrow{AH} на вектор $\overrightarrow{AA_1}$.
 - 10. Написать уравнения плоскостей:
 - а) P, проходящей через точки A, B, D;
 - б) P_1 , проходящей через точку A и прямую A_1B_1 ;
 - в) P_2 , проходящей через точку A_1 параллельно плоскости P;
 - г) P_3 , содержащей прямые AD и AA_1 ;
 - д) P_4 , проходящей через точки A и C_1 , перпендикулярно плоскости P.
- 11. Найти расстояние между прямыми, на которых лежат ребра AB и CC_1 ; написать канонические и параметрические уравнения общего к ним перпендикуляра.
- 12. Найти точку A_2 , симметричную точке A_1 относительно плоскости основания ABCD.
- 13. Найти угол между прямой, на которой лежит диагональ A_1C и плоскостью основания ABCD.
- 14. Найти острый угол между плоскостями ABCD (плоскость P) и ABB_1A_1 (плоскость P_1).

Примечание.

Зачётное число задач – 12 из 14.

Оценка: 10 баллов — за 12 правильно решённых задач; 2 балла — за остальные решённые задачи ДЗ.

Сроки выполнения: выдача – 2 неделя; приём – 9 неделя.

Варианты задания

	\boldsymbol{A}	B	D	A_1	a	b	φ
1	1, 0, 0	1, 2, 0	0, 1, 0	0, 1, 2	5	-6	0
2	2, -1, 3	3, -2, 2	2, 2, 3	2, 0, 1	1	-1	$\pi/6$
3	1, 0, 1	1, 2, 3	0, 1, 0	1, 0, 2	2	-1	$\pi/2$
4	1, 1, 1	0, 1, 0	0, 2, 1	2, 0, 3	3	-1	$2\pi/3$
5	0, 0, -1	0, 1, 0	0, 2, -3	1, 0, 2	4	-1	$11\pi/6$
6	2, 0, 1	3, -1, 1	2, 2, 1	0, -2, 3	5	-1	$5\pi/6$
7	0, 1, 0	1, 0, 0	0, 3, 0	-1, 2, 2	6	-1	$7\pi/6$
8	3, -2, 2	3, 1, 2	2, -1, 3	3, -1, 0	7	-1	$11\pi/6$
9	1, 2, 3	0, 3, 2	1, 0, 1	1, 2, 4	8	-1	$3\pi/2$
10	0, 1, 0	-1, 2, 0	1, 1, 1	1, 0, 2	9	-1	$4\pi/3$
11	0, 1, 0	0, 3, -2	0, 0, -1	1, 1, 3	10	-1	$\pi/6$
12	3, -1, 1	3, 1, 1	2, 0, 1	1, -3, 3	7	19	π
13	0, 3, 0	0, 1, 0	1, 2, 0	-1, 4, 2	12	-1	$\pi/3$
14	3, 1, 2	2, 2, 3	3, -2, 2	3, 2, 0	13	-1	$4\pi/3$
15	0, 3, 2	0, 1, 0	1, 2, 3	0, 3, 3	14	-1	$5\pi/6$
16	-1, 2, 0	0, 2, 1	0, 1, 0	0, 1, 2	15	-1	$7\pi/6$
17	0, 3, -2	0, 2, -3	0, 1, 0	1,3,1	16	-1	$\pi/3$
18	3, 1, 1	2, 2, 1	3, -1, 1	1, -1, 3	17	-1	$\pi/4$
19	1, 2, 0	0, 3, 0	1, 0, 0	0, 3, 2	18	-1	$\pi/3$
20	2, 2, 3	2, -1, 3	3, 1, 2	2, 3, 1	19	-1	$5\pi/3$
21	0, 1, 0	1, 0, 1	0, 3, 2	0, 1, 1	20	-1	$\pi/2$
22	0, 2, 1	1, 1, 1	-1, 2, 0	1, 1, 3	21	-1	$11\pi/6$
23	0, 2, -3	0, 0, -1	0, 3, -2	1, 2, 0	22	-1	$\pi/4$
24	2, 2, 1	2, 0, 1	3, 1, 1	0, 0, 3	23	-1	$7\pi/4$
25	2, 0, 1	3, -1, 0	2, 3, 1	2, -1, 3	24	-1	$\pi/2$
26	3, -1, 0	3, 2, 0	2, 0, 1	3, -2, 2	25	-1	π
27	3, 2, 0	2, 3, 1	3, -1, 0	3, 1, 2	26	-1	$3\pi/4$
28	2, 3, 1	2, 0, 1	3, 2, 0	2, 2, 3	27	-1	$5\pi/4$
29	0, 1, 2	0, 3, 2	-1, 2, 2	1, 0, 0	28	-1	$2\pi/3$
30	-1, 2, 2	0, 1, 2	-1, 4, 2	0, 1, 0	29	-1	$4\pi/3$
31	-1, 4, 2	-1, 2, 2	0, 3, 2	0, 3, 0	30	-1	$5\pi/6$
32	0, 3, 2	-1, 4, 2	0, 1, 2	1, 2, 0	31	-1	$7\pi/6$