Universidad de La Habana Facultad de Matemática y Computación

PENDING

Autor: Amanda Cordero Lezcano

Tutores: MSc. Celia T. González González MSc. Wilfredo Morales Lezca

Trabajo de Diploma presentado en opción al título de Licenciado en Ciencia de la Computación

Junio 2025

Agradecimientos

Opinión de los tutores

Resumen

Abstract

Índice general

Introducción				10
1.	Estado del Arte		11 12	
2.	Preliminares			
	2.1.	Conte	xto microbiológico: Streptococcus pneumoniae	12
		2.1.1.	Características clave	12
		2.1.2.	Importancia de la vacunación	13
	2.2.	Inmur	nología básica	13
		2.2.1.	Respuesta inmune a Streptococcus pneumoniae: rol de	
			linfocitos B, memoria inmunológica y producción de	
			anticuerpos	13
		2.2.2.	Características únicas en lactantes	13
		2.2.3.	Definiciones clave	14
	2.3.	Vacun	as antineumocócicas conjugadas	14
		2.3.1.	Mecanismo de acción	14
	2.4.	Model	ado computacional aplicado	14
		2.4.1.	Tipos de modelos	14
Co	Conclusiones			
Re	Recomendaciones			
Referencias				18

Índice de figuras

Índice de cuadros

Introducción

Capítulo 1 Estado del Arte

Capítulo 2

Preliminares

2.1. Contexto microbiológico: Streptococcus pneu-moniae

Streptococcus pneumoniae (neumococo) es una bacteria Gram-positiva, encapsulada, de forma lanceolada, que coloniza las vías respiratorias superiores en humanos. Es un patógeno de relevancia clínica global, asociado a:

- Enfermedades invasivas: Meningitis, neumonía bacteriemica y sepsis.
- Infecciones no invasivas: Otitis media aguda y sinusitis.

2.1.1. Características clave

- Variabilidad serotípica: Posee más de 90 serotipos diferenciados por la composición química de su cápsula polisacárida, siendo aproximadamente 20 los responsables del 80% de las enfermedades invasivas.
- Mecanismos de patogenicidad:
 - Evasión inmunológica mediante la cápsula polisacárida (resistencia a la fagocitosis).
 - Producción de toxinas como la neumolisina.
 - Adhesinas que facilitan la colonización nasofaríngea.
- Poblaciones vulnerables: Lactantes, adultos mayores (>65 años) e inmunocomprometidos.

2.1.2. Importancia de la vacunación

La amplia distribución de serotipos y la emergencia de cepas resistentes a antibióticos (ej. penicilina, macrólidos) subrayan la necesidad de estrategias preventivas. Las vacunas conjugadas han reducido la incidencia de enfermedad neumocócica al inducir inmunidad específica contra los serotipos más prevalentes.

2.2. Inmunología básica

El sistema inmunitario tiene dos componentes principales que responden a patógenos como *Streptococcus pneumoniae*:

- Sistema innato: Actúa como primera línea de defensa con componentes celulares (neutrófilos, macrófagos y células dendríticas) y humorales (sistema del complemento).
- Sistema adquirido: Proporciona especificidad y memoria inmunológica, con linfocitos T (CD4+, CD8+) y B como actores principales.

2.2.1. Respuesta inmune a *Streptococcus pneumoniae*: rol de linfocitos B, memoria inmunológica y producción de anticuerpos

Los linfocitos B son esenciales en la respuesta a vacunas antineumocócicas:

- Producen anticuerpos específicos tras la activación.
- Experimentan maduración de afinidad y cambio de isotipo (ej. IgM \rightarrow IgG).
- Generan células de memoria para respuestas futuras más rápidas y eficientes.

2.2.2. Características únicas en lactantes

- Efecto de anticuerpos maternos:
 - Transferencia placentaria de IgG (especialmente IgG1) mediante el receptor FcRn.
 - Protección adicional mediante IgA secretora en la lactancia.

- Posible *efecto blunting* (interferencia de anticuerpos maternos con la respuesta infantil), aunque su relevancia clínica es limitada.
- Desarrollo del sistema inmune: El sistema inmunitario fetal es funcional pero inmaduro, dependiendo inicialmente de la protección materna.

2.2.3. Definiciones clave

- Inmunogenicidad vs. efectividad clínica:
 - Inmunogenicidad: Capacidad de una vacuna para inducir una respuesta inmunitaria (ej. producción de anticuerpos).
 - Efectividad clínica: Protección real contra la enfermedad en condiciones del mundo real.
- Conjugación proteica: Las vacunas conjugadas unen polisacáridos a proteínas carrier para mejorar la respuesta inmunitaria, especialmente en niños.

2.3. Vacunas antineumocócicas conjugadas

2.3.1. Mecanismo de acción

Las vacunas antineumocócicas conjugadas utilizan polisacáridos capsulares conjugados a proteínas para:

- Inducir una respuesta inmunitaria más robusta y duradera.
- Generar memoria inmunológica mediante la activación de linfocitos T y B.

2.4. Modelado computacional aplicado

2.4.1. Tipos de modelos

- Modelos estocásticos:
 - Útiles para simular interacciones célula-célula (ej. autómatas celulares).
 - Capturan la variabilidad inherente a sistemas biológicos.

• Modelos deterministas:

- Ecuaciones diferenciales ordinarias (ODE) para dinámica de poblaciones de linfocitos.
- Ideales para sistemas con grandes números de células.

Conclusiones

Recomendaciones

Referencias