Keras 1장

Neural networks foundations 오세진

목차

- 1. Perceptron
 - 1. The 1st example of
- 2. Multilayer perceptron the first example for a network
 - 1. Problems in training the perceptron and a solution
 - 2. Activation f(x)
 - 1. sigmoid, ReLU, others
- 3. Backpropagation

정의

 Simple algorithm which, given an input vector x outputs either 1 (yes) or 0 (no)

정의

 Simple algorithm which, given an input vector x outputs either 1 (yes) or 0 (no)

정의

 Simple algorithm which, given an input vector x outputs either 1 (yes) or 0 (no)

$$f(x) = \begin{cases} 1 & wx + b > 0 \\ 0 & otherwise \end{cases}$$
 입력별 가중치

$$wx = \sum_{j=1}^{m} w_j x_j$$

b: bias

w: weight

정의

 Simple algorithm which, given an input vector x outputs either 1 (yes) or 0 (no)

$$f(x) = \begin{cases} 1 & wx + b > 0 \\ 0 & otherwise \end{cases}$$
 입력 벡터 $wx = \sum_{j=1}^{m} w_j x_j$ $b: bias$ $w: weight$ $\begin{bmatrix} x^1 \\ \cdot \\ \cdot \\ xm \end{bmatrix}$

정의

 Simple algorithm which, given an input vector x outputs either 1 (yes) or 0 (no)

$$f(x) = \begin{cases} 1 & wx + b > 0 \\ 0 & otherwise \end{cases}$$

Activation 강도 조절

$$wx = \sum_{j=1}^{m} w_j x_j$$

b: bias

w: weight

-Simple and multilayer

AND

x1	x2	у
0	0	0
0	1	0
1	0	0
1	1	1

NAND

x1	x2	у
0	0	1
0	1	1
1	0	1
1	1	0

OR

x1	x2	у
0	0	0
0	1	1
1	0	1
1	1	1

XOR

x1	x2	у
0	0	0
0	1	1
1	0	1
1	1	0

- Simple and multilayer Simple

AND				
x1	x2	у		
0	0	0		
0	1	0		
1	0	0		
1	1	1		

x 1	x2	у
0	0	1
0	1	1
1	0	1
1	1	0

NAND

x1	x2	у
0	0	0
0	1	1
1	0	1
1	1	1

OR

x1	x2	у
0	0	0
0	1	1
1	0	1
1	1	0

XOR

-Single and multilayer

Simple Multilayer **AND NAND** OR **XOR x2 x1 x2** x1**x2** x1**x2 x1** У y У y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

x2

-Single and multilayer

Multilayer

XOR

x1	x2	у
0	0	0
0	1	1
1	0	1
1	1	0

Problems in training the perceptron and a solution

- So far, we need to adjust parameters for single neuron (weight and bias)
- Ideally, providing a set of training set and let the computer adjust the weight and the bias such a way that the errors produced in the output are minimized
- A big output jump cannot progressively learn without knowing whether improving (Perceptron only returns 0 or 1, Need to use nonlinear f(x))
- Stacking layers is useless (ex. h(x)=ax, $y(x)=h(h(h(x)))=a^3x=bx$

Activation F(x)

-Sigmoid and ReLU

- A neuron can use the sigmoid for computing the nonlinear function
- ReLU: Rectified linear unit

One-hot encoding

-Transform categorical into numerical variables

One-hot encoding

day	temperature [F]	cloudy	sunny	raining	
3	76	1.	0	0	543
4	72	0	0	1	173
5	78	0	1	0	674
6	68	0	0	1	124

0	1	0
0	0	1

0

One-hot encoding

- -Transform categorical into numerical variables
- Usually in bioinformatics.....

-4	А	В	С	D	E	F	G	Н	I
1	sym	KATOIII	SKGT2	NCC59	AGS	SNU638	NUGC3	IM95	YCC3
2	A1CF	1	1	0	0	0	0	0	0
3	A2ML1	0	0	1	1	0	0	0	0
4	AACS	0	0	1	1	0	0	0	0
5	AADAC	0	0	0	0	1	0	0	0
6	AADACL4	0	1	0	0	0	0	0	0
7	AADAT	0	0	0	0	0	1	0	0
8	AAR2	0	0	1	0	0	0	1	1
9	AARS	0	0	0	0	0	0	0	1
10	AASDH	0	0	0	0	0	0	0	0
11	AATK	0	0	0	0	0	0	0	0
12	ABAT	0	0	0	0	0	0	0	0
13	ABCA10	0	0	1	0	0	0	0	0
14	ABCA12	0	0	1	1	1	0	1	0
15	ABCA13	0	0	0	1	0	0	0	0

1 = 돌연변이 0 = 돌연변이 없음.

Objective f(x)

- Optimizer that optimize parameters
- Loss f(x), Cost f(x)

MSE

Mean squared error between the predictions and the true values

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (\Upsilon - Y)^2$$

Binary cross-entropy

Binary logarithmic loss. Predicting p while the target is t Suitable for binary labels prediction 0

$$-t\log(p) - (1-t)\log(1-p)$$

Categorical cross-entropy

Multicalss logarithmic loss. If the target is t(i,j) and the prediction is p(i,j)

$$L_i = -\Sigma_j t_{i,j} \log(p_{i,j})$$

Performance

Accuracy

The proportion of correct predictions with respect to the target (Average of precision)

Σ True positive + Σ True negative
Σ Total population

Precision & Recall

How many selected items are relevant for multilabel classification

Key Metrics:
$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$Recall = \frac{TP}{TP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

https://en.wikipedia.org/wiki/Precision_and_recall

Performance

Epochs

N of times the model is exposed to the training set.

Batch_size

N of training instances observed before the optimizer performs weight update

• Useful to observe how accuracy increases on training and test sets

Adopting regularization for avoiding overfitting

Overfitting

- To solve overfitting problems, need to capture the complexity of a model.
- Choose the simplest model that has the minimum N of nonzero weights.

 $\min : \{loss(Training \ Data|Model)\} + \lambda * complexity(Model)\}$

λ : Strigency parameter, Increasing lambda will reduce weight of fittures.

Adopting regularization for avoiding overfitting

Regularization

Lasso (L1 regularization)

Ridge (L2 regularization)

Elastic net (Lasso+Ridge)

Dropout

Randomly training some of neuron in input or hidden layer

(a) Standard Neural Net

(b) After applying dropout.

A practical overview of backpropagation

- Multilayer perceptrons learn from training data via backpropagation
- A way of progressively correcting mistakes as soon as they are detected
- 1. Starting all neuron with random weight
- 2. Activated for each input in the training set -> propagated forward
- 3. Calculate the error made in prediction
- 4. Backtracking, to propagate the error back and apply optimizer
- 5. Repeating the process and reduce error

