Machine Learning for Data Science (CS4786) Lecture 2

Dimensionality Reduction &

Principal Component Analysis

Quiz

- Let Σ be the empirical covariance matrix of n points in d dimensions
 - A. Σ is an n x n matrix
 - B. Σ is a d x d matrix
 - C. Σ is a m x m matrix where m is the underlying dimensionality of the n points (which can be at most d)
 - D. $rank(\Sigma)$ is m where m is the underlying dimensionality of the n points

We can compress the following images using JPEG?

What if our dataset looked like this?

PRINCIPAL COMPONENT ANALYSIS (PCA)

Turk & Pentland'91

Eigen Face:

- Write down each data point as a linear combination of small number of basis vectors
- Data specific compression scheme
- One of the early successes: in face recognition: classification based on nearest neighbor in the reduced dimension space

REPRESENTING DATA AS FEATURE VECTORS

- How do we represent data?
- Each data-point often represented as vector referred to as feature vector

EXAMPLE: IMAGES

EXAMPLE: TEXT (BAG OF WORDS)

Documents:

car engine hood tires truck trunk car emissions hood make model trunk Chomsky corpus noun parsing tagging wonderful

car Changer is entire and make noted and pare into the truck runk and the line of the line of

DIMENSIONALITY REDUCTION

Given *n* data points in high-dimensional space, compress them into corresponding *n* points in lower dimensional space.

DIMENSIONALITY REDUCTION

WHY DIMENSIONALITY REDUCTION?

- For computational ease
 - As input to supervised learning algorithm
 - Before clustering to remove redundant information and noise
- Data compression & Noise reduction
- Data visualization

DIMENSIONALITY REDUCTION

Desired properties:

- Original data can be (approximately) reconstructed
- Preserve distances between data points
- "Relevant" information is preserved
- 4 Noise is reduced

Can we reduce to 1 dim?

0.95225911	-1.90451821	2.85677732
0.60681578	-1.21363156	1.82044733
0.76419773	-1.52839546	2.29259318
0.44430217	-0.88860435	1.33290652
0.98425485	-1.9685097	2.95276456
0.04590113	-0.09180227	0.1377034
0.52408131	-1.04816263	1.57224394
0.2887897	-0.5775794	0.8663691
0.4289135	-0.857827	1.2867405
0.23877452	-0.47754905	0.71632357
0.50031855	-1.00063711	1.50095566
0.7155322	-1.43106441	2.14659661
0.19638816	-0.39277632	0.58916448
0.06743744	-0.13487488	0.20231232
0.18019499	-0.36038997	0.54058496
0.68941225	-1.37882451	2.06823676
0.51882043	-1.03764087	1.5564613
0.71398952	-1.42797904	2.14196857

Example: Students in classroom

DIM REDUCTION: LINEAR TRANSFORMATION

PRINCIPAL COMPONENT ANALYSIS (PCA)

Turk & Pentland'91

Eigen Face:

- Each xt (each row of X) is a face image (vectorized version)
- Each yt is the set of coefficients we multiply to the eigen face
- Each column of W is an Eigenface

Prelude: Reducing to 1 Dim

- W is a d x 1 matrix (d dimensional vector)
- Each data point is compressed to a single number
- How do we pick this W?

DIM REDUCTION: LINEAR TRANSFORMATION

Prelude: reducing to 1 dimension

without loss of generality that ||w|| = 1

Pick directions along which data varies the most

Variance
$$= \frac{1}{n} \sum_{t=1}^{n} \left(y_t - \frac{1}{n} \sum_{s=1}^{n} y_s \right)^2$$
$$= \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{w}^{\top} \mathbf{x}_t - \frac{1}{n} \sum_{s=1}^{n} \mathbf{w}^{\top} \mathbf{x}_s \right)^2$$
$$= \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{w}^{\top} \mathbf{x}_t - \mathbf{w}^{\top} \left(\frac{1}{n} \sum_{s=1}^{n} \mathbf{x}_s \right) \right)^2$$
$$= \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{w}^{\top} (\mathbf{x}_t - \mu) \right)^2$$

= average squared inner product

Which Direction?

$$\frac{1}{n} \sum_{t=1}^{n} (\mathbf{w}^{\top} (\mathbf{x}_{t} - \mu))^{2} = \frac{1}{n} \sum_{t=1}^{n} ||\mathbf{x}_{t} - \mu||^{2} \operatorname{cosine}(w, x_{t} - \mu)$$

- Pick directions along which data varies the most
- First principal component:

$$\mathbf{w}_{1} = \arg \max_{\mathbf{w}: \|\mathbf{w}\|_{2}=1} \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{w}^{\mathsf{T}} \mathbf{x}_{t} - \frac{1}{n} \sum_{t=1}^{n} \mathbf{w}^{\mathsf{T}} \mathbf{x}_{t} \right)^{2}$$

$$= \arg \max_{\mathbf{w}: \|\mathbf{w}\|_{2}=1} \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{w}^{\mathsf{T}} (\mathbf{x}_{t} - \boldsymbol{\mu}) \right)^{2}$$

$$= \arg \max_{\mathbf{w}: \|\mathbf{w}\|_{2}=1} \frac{1}{n} \sum_{t=1}^{n} \mathbf{w}^{\mathsf{T}} (\mathbf{x}_{t} - \boldsymbol{\mu}) (\mathbf{x}_{t} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{w}$$

$$= \arg \max_{\mathbf{w}: \|\mathbf{w}\|_{2}=1} \mathbf{w}^{\mathsf{T}} \boldsymbol{\Sigma} \mathbf{w}$$

 Σ is the covariance matrix

Covariance Matrix

• Its a $d \times d$ matrix, $\sum [i, j]$ measures "covariance" of features i and j

$$\Sigma[i,j] = \frac{1}{n} \sum_{t=1}^{n} (\mathbf{x}_t[i] - \mu[i]) (\mathbf{x}_t[j] - \mu[j])$$

Covariance matrix:

$$\Sigma = \frac{1}{n} \sum_{t=1}^{n} (\mathbf{x}_t - \boldsymbol{\mu}) (\mathbf{x}_t - \boldsymbol{\mu})^{\top}$$

• Its a $d \times d$ matrix, $\sum [i, j]$ measures "covariance" of features i and j

$$\Sigma[i,j] = \frac{1}{n} \sum_{t=1}^{n} (\mathbf{x}_t[i] - \mu[i]) (\mathbf{x}_t[j] - \mu[j])$$

- Pick directions along which data varies the most
- First principal component:

$$\mathbf{w}_1 = \underset{\mathbf{w}:\|\mathbf{w}\|_2=1}{\text{arg } \max} \mathbf{w}^\mathsf{T} \mathbf{\Sigma} \mathbf{w}$$

 Σ is the covariance matrix

Solution: $\mathbf{w}_1 = \text{Largest Eigenvector of } \Sigma$

What are Eigen Vectors?

Which Direction?

Top Eigenvector of covariance matrix

- What if we want more than one number for each data point?
- That is we want to reduce to K > 1 dimensions?

• How do we find the *K* components?

Ans: Maximize sum of spread in the K directions

- How do we find the *K* components?
- We are looking for orthogonal directions that maximize total spread in each direction
- Find orthonormal W that maximizes $\sum_{k=1}^{d} \mathbf{w}_i[k] \mathbf{w}_j[k] = 0 \& \sum_{k=1}^{d} \mathbf{w}_i[k] = 1$

$$\sum_{j=1}^{K} \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{y}_{t}[j] - \frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}[j] \right)^{2} = \sum_{j=1}^{K} \frac{1}{n} \sum_{t=1}^{n} \left(\mathbf{w}_{j}^{\mathsf{T}} \left(\mathbf{x}_{t} - \frac{1}{n} \sum_{t=1}^{n} \mathbf{x}_{t} \right) \right)^{2}$$
$$= \sum_{j=1}^{K} \mathbf{w}_{j}^{\mathsf{T}} \Sigma \mathbf{w}_{j}$$

Intuition: Remove top direction, now reduce dimension for remaining d-1 dimensions

• This solutions is given by W = Top K eigenvectors of Σ

PRINCIPAL COMPONENT ANALYSIS

1.

$$\sum = \operatorname{cov}\left(X\right)$$

2.

$$= eigs(\Sigma, K)$$

3.

Can we reconstruct the original data points?