MOTOROLA SEMICONDUCTORI TECHNICAL DATA

(Dual MC1741)

Internally Compensated, High Performance Operational Amplifiers

The MC1747 and MC1747C were designed for use as summing amplifiers, integrators, or amplifiers with operating characteristics as a function of the external feedback components. The MC1747L and MC1747CL are functionally and electrically equivalent to the μ A747 and μ A747C respectively.

- No Frequency Compensation Required
- Short Circuit Protection
- Wide Common Mode and Differential Voltage Ranges
- Low-Power Consumption
- No Latch Up
- Offset Voltage Null Capability

Figure 1. High-Impedance, High-Gain Inverting Amplifier V_CC 0.1µF E₀ = 100 E_{in} 1/2 1/2 MC1747.C 1k E_{in} ⊕⊸ $z_i = 200 M\Omega$ 100k ٧FF Terminals not shown are not connected Figure 2. Circuit Schematic √ Vcc Ġ Noninverting input 4.5k Inverting Input 30pF 7.5k Output 50 Offset Null 50k 50 5.0k 1.0k 50k 1 Ok √ VEE

MC1747 MC1747C

(DUAL MC1741) DUAL OPERATIONAL AMPLIFIERS

SILICON MONOLITHIC INTEGRATED CIRCUIT

ORDERING INFORMATION

Device	Temperature Range	Package		
MC1747L	−55° to +125°C	Ceramic DIP		
MC1747CD		SO-14		
MC1747CL	0° to +70°C	Ceramic DIP		
MC1747CP2		Plastic DIP		

MAXIMUM RATINGS (T_A = +25°C, unless otherwise noted.)

Rating	Symbol	MC1747	MC1747C	Unit Vdc	
Power Supply Voltages	V _{CC} VEE	+22 -22	+18 -18		
Differential Input Signal Voltages (Note 1)	V _{ID}	±	٧		
Common Mode Input Swing Voltage (Note 2)	VICR	±15		٧	
Output Short Circuit Duration	tsc	Continuous			
Voltage (Measurement between Offset Null and VEE)		±0.5		٧	
Operating Ambient Temperature Range	TA	-55 to +125	0 to +70	°C	
Storage Temperature Range	T _{stg}	-65 to +150	-65 to +150	°C	
Junction Temperature Ceramic Package Plastic Package	Tj	11	ů		

ELECTRICAL CHARACTERISTICS ($V_{CC} = +15 \text{ V}, V_{EE} = -15 \text{ V}, T_{A} = +25 ^{\circ}\text{C}$, unless otherwise noted.)

	Symbol	MC1747				MC1747C		
Characteristics		Min	Тур	Max	Min	Тур	Max	Unit
Input Bias Current TA = +25°C TA = Thigh (Note 3) TA = Thigh (Note 3)	İΙΒ	_	80 30 300	500 500 1500	- -	80 30 30	500 800 800	nAdc
Input Offset Current TA = +25°C TA = Thigh TA = Tlow	lio	=	20 7.0 85	200 200 500		20 7.0 7.0	200 300 300	nAdc
Input Offset Current TA = +25°C TA = Tlow to TA = Thigh	VIO	_	1.0 1.0	5.0 6.0	_	1.0 1.0	6.0 7.5	mVdc
Offset Voltage Adjustment Range		-	±15	_		±15	_	mV
Differential Input Impedance (Open-loop, f = 20 Hz) Parallel Input Resistance Parallel Input Capacitance	r _i C _i	0.3	2.0 1.4		0.3	2.0 1.4		MΩ pF
Common Mode Input Voltage Swing Tlow ≤ TA ≤ Thigh	V _{ICR}	±12	±13	_	±12	±13	_	V
Common Mode Rejection (R _S = 10 k Ω) $T_{low} \le T_A \le T_{high}$	CMR	70	90	_	70	90	_	dB
Open-Loop Voltage Gain $T_A = +25^{\circ}C$ $T_A = T_{low to} T_A = T_{high}$ (VO = ± 10 V, RL = 2.0 k Ω)	AVOL	50,000 25,000	200,000	_	25,000 15,000	200,000	=	V
Transient Response (Unity Gain) $ (V_{in}=20 \text{ mV}, R_L=2.0 \text{ k}\Omega, C_L \leq 100 \text{ pF}) $ Rise Time $ Overshoot Percentage $	tpLH	=	0.3 5.0	=	_	0.3 5.0	_	μs %
Slew Rate (Unity Gain)	SR	1 –	0.5	_	_	0.5	-	V/µs
Output Impedance	z _o		75	—		75	_	Ω
Short Circuit Output Current	^I sc	_	25	_		25		mAdc
Channel Separation		T -	120	_	_	120		dB
Output Voltage Swing ($T_{low} \le T_A \le T_{high}$) $R_L = 10 \text{ k}\Omega$ $R_L = 2.0 \text{ k}\Omega$	VOR	±12 ±10	±14 ±13	=	±12 ±10	±14 ±13	=	Vpk
$ \begin{array}{l} \mbox{Power Supply Rejection } (T_{low \ to} \ ^{T} \mbox{high}) \\ \mbox{VEE} = \mbox{Constant}, \ \mbox{R}_{S} \leq \mbox{10 k} \Omega \\ \mbox{V}_{CC} = \mbox{Constant}, \ \mbox{R}_{S} \leq \mbox{10 k} \Omega \\ \end{array} $	PSR+ PSR-	75 75	=	=	75 75	_	_	dB
Power Supply Current (each amplifier) TA = +25°C TA = Tlow TA = Thigh	ICC,IEE	_ 	1.7 2.0 1.5	2.8 3.3 2.5	_ _ _	1.7 2.0 2.0	2.8 3.3 3.3	mAdc
DC Power Consumption (each amplifier) TA = +25°C TA = Tlow TA = Thigh	PC	- - -	50 60 45	85 100 75	 -	50 60 60	85 100 100	mW

NOTES:
1. For supply voltages of less than ±15 V, the maximum differential input voltage is equal to ±(V_{CC} +|V_{EE}|).
2. For supply voltages of less than ±15 V, the maximum input voltage is equal to the supply voltage (+V_{CC} -|V_{EE}|).
3. T_{low} = 0°C for MC1747CL

Thigh = +70°C for MC1747CL

+125°C for MC1747L

MC1747, MC1747C

Figure 3. Typical Frequency Shift Keyer Tone Generator Test Circuit

Terminals not shown are not connected.

Figure 4. Typical Frequency Shift Keyer Tone Generator

Figure 5. Open-Loop Voltage Gain versus Power-Supply Voltage

Figure 6. Open-Loop Frequency Response

Figure 7. Power Bandwidth (Large Signal Swing versus Frequency) 28 V_O, OUTPUT VOLTAGE (V_{p-p}) 20 16 12 Voltage Follower ±15 V Supplies 8.0 THD < 5% 10 100 1.0 k 10 k 100 k f, FREQUENCY (Hz)

Figure 8. Power Consumption versus Power Supply Voltage 100 PC, POWER CONSUMPTION (mW) 40 VO = 0 20 (Each Amplifier) 10 7.0 5.0 3.0 2.0 22 10 V_{CC}, V_{EE}, POWER SUPPLY VOLTAGE (V)

Figure 9. Output Voltage Swing versus Load Resistance 28 24 V_O, OUTPUT VOLTAGE (V_{P-P}) 20 ±12 V Supplies 16 12 8.0 1.0kHz THD < 5.0% 2.0 k 100 200 1.0 k 5.0 k 10 k R_L , LOAD RESISTANCE (Ω)

