Universidad Nacional Autónoma de Honduras

Departamento de Matemática Aplicada Sistemas Dinámicos II

Ejercicios de Repaso para el Parcial II

Profesor: Dr. Fredy Vides

- 1. Para cada uno de los siguientes sistemas no lineales,
 - (1a) Calcular todos los puntos de equilibrio y descibir el comportamiento del sistema linealizado asociado.
 - (1b) Calcular el diagrama de fase de cada sistema no lineal utilizando Matlab/Octave.
 - (i) x' = sen(x), y' = cos(y)
 - (ii) $x' = x(x^2 + y^2), y' = y(x^2 + y^2)$
 - (iii) $x' = x + y^2, y' = 2y$
 - (iv) $x' = y^2, y' = y$
 - (v) $x' = x^2, y' = y^2$
- 2. Considere el sistema

$$x' = x^2 + y$$
$$y' = x - y + a$$

donde a es un parámetro.

- (a) Encontrar todos los puntos de equilibrio y calcular la ecuación linealizada en cada punto de equilibrio.
- (b) Describir el comportamiento del sistema linealizado en ca cada punto de equilibrio.
- 3. Para cada una de las funciones V(X), bosquejar el diagrama de fase del flujo gradiente $X' = -\nabla V(X)$. Bosquejar las curvas de nivel de V en el mismo diagrama. Encontrar todos los puntos de equilibrio y determinar su tipo.
 - (a) $x^2 + y^2$
 - (b) $x^2 y^2 2x + 4y + 5$
 - (c) $y \operatorname{sen}(x)$
 - (d) $x^2 + y^2 z$
- 4. Bosquejar los diagramas de fase de los sistemas siguientes . Determinar en el proceso si los sistemas son gradientes o Hamiltonianos.
 - (a) x' = x + 2y, y' = -y
 - (b) $x' = y^2 + 2xy, y' = x^2 + 2xy$
 - (c) $x' = x^2 2xy, y' = y^2 x^2$
- 5. Sea X' = AX un sistema lineal donde $A \in \mathbb{R}^{2 \times 2}$.

- (a) Determinar las condiciones sobre las componentes de A que garantizan que el sistema es gradiente. Calcular la función gradiente correspondiente en tal caso.
- (b) Repetir la pregunta anterior para un sistema Hamiltoniano.
- 6. Considere el sistema planar

$$\begin{cases} x' = f(x, y) \\ y' = g(x, y). \end{cases}$$

Determinar condiciones para f,g que garantizan que el sistema es Gradiente, o Hamiltoniano.

- 7. Sea \mathbb{T}^2 el toro definido como el cuadrado $0 \leq \theta_1, \theta_2 \leq 2\pi$ con lados opuestos identificados. Sea $F(\theta_1, \theta_2) = \cos(\theta_1) + \cos(\theta_2)$. Bosquejar el diagrama de fase del sistema $\Theta' = -\nabla F$ en \mathbb{T}^2 , con \mathbb{T}^2 representado como $\mathbb{T}^2 \simeq \mathbb{S}^1 \times \mathbb{S}^1$.
- 8. Probar que todos los autovalores de cualquier matrix simétrica $A \in \mathbb{R}^{3 \times 3}$ son reales.
- 9. Dada una matriz $A \in \mathbb{R}^{n \times n}$, probar que $(e^{tA})^{\top} = e^{tA^{\top}}$ para cada $t \in \mathbb{R}$.
- 10. Dada una matriz antisimétrica $A \in \mathbb{R}^{n \times n}$, probar que $(e^{tA})^{\top} = (e^{tA})^{-1}$ para cada $t \in \mathbb{R}$.
- 11. Dada una matriz antisimétrica $A \in \mathbb{R}^{n \times n}$, probar que el flujo $\phi(t, X)$ del sistema X' = AX, cumple la condición $|\phi(t, X)| = |\phi(0, X)|$ para cada $t \in \mathbb{R}$ y para cada $X \in \mathbb{R}^n$.
- 12. Dada una matriz simétrica $A \in \mathbb{R}^{n \times n}$ tal que $x^{\top} A x < 0$ para cada $x \in \mathbb{R}^n$, probar que el flujo $\phi(t,X)$ del sistema X' = A X, cumple con la condicón $\lim_{t \to \infty} \phi(t,X) = 0$ para todo $X \in \mathbb{R}^n$.