الجمهورية الجزائرية الديمقراطية الشعبية

وزارة التربية الوطنية

دورة: 2020

الديوان الوطنى للامتحانات والمسابقات امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

المدة: 03 سا و 30 د

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

التمرين الأوّل: (04 نقاط)

عين الاقتراح الصحيح الوحيد من بين الاقتراحات الثلاثة في كلّ حالة من الحالات التالية، مع التبرير:

: المقابل المتغيّر العشوائي X معرّف بالجدول المقابل (1)

 $p(X=x_i)$

. الأمل الرياضياتي
$$E(X)$$
 للمتغيّر العشوائي X هو

$$-\frac{3}{20}$$
 (\div $-\frac{1}{10}$ (\div $-\frac{1}{20}$

 $w_n = 4 \times 5^n - 2n + 1$: بالمتتالية العددية (w_n) معرّفة على مجموعة الأعداد الطبيعية ((w_n) معرّفة على مجموعة الأعداد الطبيعية ((w_n)

 $S_n = w_0 + w_1 + w_2 + \dots + w_n$: n نضع من أجل كل عدد طبيعي

$$5^n - n^2$$
 (\Rightarrow

$$5^{n+1}-n^2$$
 (ب

$$5^{n+1} - n^2$$
 (\hookrightarrow $5^{n+1} - (n+1)^2$ ()

:سىاوي
$$S_n$$

$$-2e^{2x} + 5e^x - 2 \ge 0$$

 $-2e^{2x} + 5e^{x} - 2 \ge 0$: x نعتبر المتراجحة ذات المجهول الحقيقى (3

مجموعة حلول هذه المتراجحة في مجموعة الأعداد الحقيقية هي:

$$[\ln 2; +\infty]$$
 (=

$$[-1;-\ln 2]$$
 (ب

$$[-\ln 2; \ln 2]$$
 (

التمرين الثاني: (04 نقاط)

يحتوي وعاء U على 4 كريات حمراء و 6 سوداء، ويحتوي وعاء V على 5 كريات حمراء و 8 سوداء وكل الكريات متماثلة ولا نفرّق بينها عند اللّمس. نسحب عشوائيا كريتين في آنِ واحد من أحد الوعاءين بالكيفية التالية:

نقوم بسحب بطاقة واحدة عشوائيا من كيس يحتوي على 6 بطاقات متماثلة ومرقمة من 1 إلى 6 ، إذا تحصلنا على . V أو V نسحب الكريتين من V و في باقي الحالات نسحب الكريتين من

نسمّي A الحدث: " الحصول على أحد الرقمين 3 أو 5 " .

نسمّى М الحدث: " الحصول على كريتين من نفس اللّون".

علماً أنّ الكريتين المسحوبتين من U، بيّن أنّ احتمال أن تكونا $oldsymbol{(2)}$

من نفس اللّون هو $\frac{7}{15}$.

احسب $P_{\overline{M}}(A)$ احتمال السّحب من الوعاء U علما أنّ الكريتين المسحوبتين مختلفتا اللّون؟ (4

اختبار في مادة: الرياضيات \ الشعبة: علوم تجريبية \بكالوريا 2020

التمرين الثالث: (05 نقاط)

و في الدِّيام أنَّه من أمار كار مدد ماري

 $u_n = -4: n$ برهن بالتّراجع أنّه من أجل كل عدد طبيعي

 $\cdot \alpha \neq -4$ نفرض أنّ (2

 $v_n = u_n + 4$: بالمعرّفة على مجموعة الأعداد الطبيعية \mathbb{N} بعتبر المتتالية العددية (v_n) المعرّفة على مجموعة الأعداد الطبيعية

 $rac{3}{4}$ أ. أثبت أنّ المتتالية $\left(v_{n}
ight)$ هندسية أساسها

 u_n متقاربة. α و α ثمّ بيّن أنّ المتتالية u_n متقاربة. u_n

 $S_n = u_0 + u_1 + u_2 + \dots + u_n : n$ عدد طبيعي من أجل كل عدد طبيعي

 $\lim_{n\to +\infty} S_n$ احسب S_n و α و α بدلالة ا

التمرين الرابع: (07 نقاط)

. $f(x)=x-1-\frac{\ln x}{x^2}$ بين $f(x)=x-1-\frac{\ln x}{x^2}$ بين أf(x)=x-1

(2cm في مستوٍ منسوب إلى المعلم المتعامد المتعامد وحدة الطول). ($O; \vec{i}, \vec{j}$) التمثيل البياني لf في مستوٍ منسوب إلى المعلم المتعامد المتعامد المتعامد المتعامد المتعامد المتعامد المتعامد المتعامد وحدة الطول

 $\lim_{x \to +\infty} f(x) = +\infty$ و فسّر النتيجة هندسيا ثمّ بيّن أنّ $\lim_{x \to +\infty} f(x) = +\infty$ أ . احسب

 $+\infty$ عند (\mathcal{C}_f) عند مائل للمنحنى y=x-1 عند عند عند المعادلة بيّن أنّ المستقيم (Δ)

 (Δ) بالنسبة إلى المستقيم (\mathcal{C}_f) بالنسبة الى المستقيم

 $g(x) = x^3 - 1 + 2\ln x$ بادالة العددية g معرّفة على المجال g(x) = 0 بادالة العددية والمجال g(x) = 0

 $[0;+\infty]$ متزايدة تماماً على $[0;+\infty]$ متزايدة ماماً على

.]0;+ ∞ [ثمّ استنتج إشارة g(x) حسب قيم x من المجال g(1)

. $f'(x) = \frac{g(x)}{x^3}$: $]0; +\infty[$ من المجال x عدد حقیقي عدد حقیقي . $f'(x) = \frac{g(x)}{x^3}$. $[0; +\infty[$ المجال x عدد حقیقی x من المجال x من المجال x عدد حقیقی x من المجال x عدد حقیقی x من المجال x من المج

 $oldsymbol{+}$ ب. استنتج اتجاه تغیّر الدالهٔ f ثمّ شکّل جدول تغیّراتها.

بيّن أنّ التمثيل البياني (\mathcal{C}_f) يقبل مماسا (T) موازيا للمستقيم (Δ)، ويُطلب تعيين معادلة له.

 (\mathfrak{C}_f) و (Δ) (T) أنشئ (\mathfrak{T})

 $h(x) = -|x| + 1 + \frac{\ln|x|}{x^2}$: ب $-\infty; 0[\cup]0; +\infty[$ معرّفة على h معرّفة على (6)

أ. بيّن أنّ h دالة زوجية.

 (C_h) الممثّل للدالة h انطلاقا من (C_f) الممثّل للدالة h الممثّل للدالة المنحنى بنم إنشاء المنحنى الممثّل الدالة المحتنى الممثّل الدالة المحتنى المح

انتهى الموضوع الأول

الموضوع الثاني

التمرين الأول: (04 نقاط)

عين الاقتراح الصحيح الوحيد من بين الاقتراحات الثلاثة في كل حالة من الحالات التالية، مع التبرير:

. $f(x) = -x + \ln x$: بالشكل $f(x) = -x + \ln x$ نعتبر الدّالة $f(x) = -x + \ln x$ نعتبر الدّالة والمعرّفة على المجال

:f على المجال $]0;+\infty$ الدّالة

ب) متناقصة تماما أ) متزايدة تماما ج) غير رتيبة

2) يتكون فربق عمل من 4 إناث و 3 ذكور ، يراد تشكيل لجنة تضم 3 أعضاء.

احتمال أن تكون اللجنة من الجنسين هو:

 $\frac{1}{7}$ (\Rightarrow $\frac{4}{7}$ (ب $\frac{6}{7}$ (1)

(نيبيري) لتكن $u_0 = e^{-\frac{1}{2}}$. $u_0 = e^{-\frac{1}{2}}$ الأول $u_0 = e^{-\frac{1}{2}}$ التكن $u_0 = e^{-\frac{1}{2}}$ $S_n = \ln(u_0 \times u_1 \times \cdots \times u_n)$ من أجل كل عدد طبيعي n نضع:

 S_n يساوي:

 $\frac{n^2+1}{2}$ (ب $\frac{n^2}{2}$ (\Rightarrow

 $\frac{n^2-1}{2}$ (5)

التمرين الثاني: (04 نقاط)

كيس به ثلاث كريات بيضاء وكريتين حمراوين لا نميّز بينها عند اللمس، نسحب عشوائيا كريتين على التوالي من الكيس بالكيفية التالية: إذا كانت الكرية المسحوبة بيضاء نعيدها إلى الكيس و إذا كانت حمراء لا نعيدها إلى الكيس.

1) أ. انقل شجرة الاحتمالات المقابلة ثم أكملها.

يرمز إلى الحصول على كرية بيضاء و R إلى Bالحصول على كربة حمراء.

ب. احسب احتمال أن تكون الكربة المسحوبة الثانية حمراء.

ليكن X المتغير العشوائي الذي يرفق بكل سحب لكربتين عدد (2)الكربات الحمراء المسحوبة.

أ. عين مجموعة قيم المتغير العشوائي X.

X. بيّن أنّ: $\frac{27}{50} = P(X=1)$ ، ثمّ عرّف قانون احتمال المتغير العشوائي

X الأمل الرباضياتي للمتغير العشوائي X .

اختبار في مادة: الرياضيات \ الشعبة: علوم تجريبية \بكالوريا 2020

التمرين الثالث: (05 نقاط)

 $u_{n+1}=3u_n-2n+3$: n عدد طبيعي عدد $u_0=0$ و من أجل كل عدد $u_n=0$ معرفة كما يلي:

- (u_n) احسب کلا من u_1 و u_2 ثم خمّن اتجاه تغیّر المتتالیة (1
- . $v_n=u_n-n+1$: بالمتتالية العددية المعرّفة على بالمتتالية العددية المعرّفة ($v_n=u_n-n+1$

أ . بيّن أنّ (v_n) متتالية هندسية أساسها 3 ، يُطلب حساب حدّها الأول.

- . n بدلالة n ثم استنتج عبارة الحدّ العام v_n بدلالة n
 - (u_n) درس اتجاه تغیّر المتتالیة
- . $S_n=u_0+u_1+\cdots+u_n$ نضع: n نضع عدد طبیعي من أجل كل عدد طبیعي (3

 $S_n = \frac{1}{2}(3^{n+1} + n^2 - n - 3)$: n عدد طبیعي الله من أجل كل عدد طبیعي . n

 $\lim_{n\to+\infty} S_n$: ب

التمرين الرابع: (07 نقاط)

 $\cdot \left(O; \overrightarrow{i}, \overrightarrow{j} \right)$ المستوي منسوب إلى المعلم المتعامد المتجانس (I

 $g(x)=2x^2+2x-2xe^x$: في الشّكل المرفق، $\mathbb R$ المعرّفة g المعرّفة g المعرّفة على المّنكل المرفق، $g(x)=2x^2+2x-2xe^x$

 $x\mapsto e^x$: المستقيم ذو المعادلة: y=x و (γ) المنحنى الممثل للدالة: (Δ)

بقراءة بيانية:

.
$$g(0) = 0$$
 علما أنّ $g(x)$ علما العدد الحقيقي $g(x)$ علما العدد الحقيقي و (2

.
$$f(x) = -1 + \frac{2e^x}{e^x - x}$$
 : ب \mathbb{R} بالدّالة العددية f معرّفة على (II

. المعلم البياني في المستوي المنسوب إلى المعلم السابق (C_f) ليكن

.
$$f'(x) = \frac{2e^x(1-x)}{(e^x-x)^2}$$
 : یکون: x عدد حقیقی x عدد حقیقی x یکون: (2

 $oldsymbol{\psi}$. استنتج اتجاه تغیّر الدّالة f ثمّ شکِّل جدول تغیّراتها.

 (C_f) في النّقطة (T) المماس للمنحنى المنطنة (C_f) في النّقطة (T) في النّعطة ((T)

$$f(x) - (2x+1) = \frac{g(x)}{e^x - x}$$
 يكون: x عدد حقيقي x يكون: وأنّه من أجل كلّ عدد حقيقي x

 (C_f) و (T_f) و النسبي لـ (C_f) و النسبي لـ (C_f) على (C_f) على النسبة الوضع النسبي لـ (C_f)

$$-0.6\langlelpha\langle-0.5:$$
 ثم تحقق أنّ $]-\infty;1]$ بيّن أنّ المعادلة $f(x)=0$ تقبل حلا وحيدا $lpha$ في المجال $[-\infty;1]$

. (C_f) والمستقيمين المقاربين ثم المنحنى (T) والمستقيمين المقاربين ثم المنحنى

