reeller Widerstand $R_2 = SWR \cdot Z$

TH406

Lösung:

Gesucht wird der reelle Widerstand R_2 , der momentan an der Antenne herrscht : R_2 = SWR • Z 3 • 50 Ohm = **150 Ohm**

Reflexions faktor
$$r = (R_2 - Z) \div (R_2 + Z)$$

Gesucht wird nun der Reflexionsfaktor r:

$$r = R_2 - Z$$
 150 Ohm $-$ 50 Ohm $=$ 100 geteilt durch:
 $R_2 + Z$ 150 Ohm $+$ 50 Ohm $=$ 200; Reflexionsfaktor $=$ 0,5

Rückflußfaktor Prück = r² • Pvorlauf (Pvor 100 W)

Rückflußfaktor = r² • Vorlauf = (0,5² = 0,25) • 100 Watt = 25 % = 25 Watt Leistung an der Antenne = 75 Watt

Rücklauffaktor: Bei ${\bf r^2}$ handelt es sich um ${\bf r}$ zum Quadrat - also ${\bf r}$ mal ${\bf r}$.