Conteúdo

- Procedimentos para comparações múltiplas
- Teste de Tukey
- Teste de Duncan

Procedimentos para comparações múltiplas

Como já vimos, a análise da variância serve para verificar se há alguma diferença significativa entre as médias dos níveis de um fator a um determinado nível de significância. No caso em que o teste F for significativo, ou seja, a hípótese de nulidade for rejeitada, vimos que existe pelo menos um contraste entre médias estatisticamente diferente de zero.

Os procedimentos de comparações múltiplas a seguir, visam identificar quais são estes contrastes para podermos como consequência, identificar qual é o nível do fator em estudo que apresentou maior média.

Alguns procedimentos para comparações múltiplas

Dentre os vários procedimentos existentes para comparações múltiplas, serão apresentados quatro: teste de Tukey, teste de Duncan, teste t e o teste de Scheffé.

• Teste de Tukey

Usaremos o teste de Tukey para comparar a totalidade dos contrastes entre duas médias, ou seja, $C=m_i-m_u$. Este teste baseia-se na diferença mínima significativa (d.m.s.), dada por:

$$\Delta = q\sqrt{\frac{1}{2}\bar{V}(\bar{C})},$$

onde $q=q_{\alpha}(I,n_2)$ é o valor tabelado da amplitude total estudentizada, na qual α é o nível de significância, I é o número de níveis do fator em estudo, n_2 são os graus de liberdade do resíduo e $\bar{V}(\bar{C})=QMRes\left(\frac{1}{r_i}+\frac{1}{r_u}\right)$.

No caso em que todos os tratamentos apresentarem o mesmo número de repetições, ou seja, $r_i = r_u = K$, então o valor de Δ é simplificado para a seguinte expressão:

$$\Delta = q\sqrt{\frac{QMRes}{K}}$$

Para realizar o teste de Tukey, a um nível de signifiância α , deve-se seguir os seguintes passos:

- lacktriangle calcular Δ
- 2 ordenar as médias do fator em estudo em ordem decrescente
- montar grupos de comparação entre os contrastes e obter as estimativas dos contrastes, com base nos valores amostrais
- concluir usando a seguinte relação: se $|\bar{C}| \geq \Delta$, rejeita-se H_0 e se $|\bar{C}| < \Delta$, não rejeita-se H_0 . No último caso, indicar as médias iguais, seguidas por uma mesma letra

Teste de Duncan

Assim como o teste de Tukey, o teste de Duncan será válido para a totalidade dos contrastes de duas médias, ou seja, $C=m_i-m_u$. Este teste baseia-se na amplitude total mínima significativa dada por:

$$D_n = z_n \sqrt{\frac{1}{2}} \bar{V}(\bar{C}),$$

onde $z_n=z_{\alpha}(n,n_2)$ é o valor tabelado da amplitude total estudentizada, na qual α é o nível de significância, n é o número de médias ordenadas abrangidas pelo contraste entre os níveis do fator em estudo, n_2 são os graus de liberdade do resíduo e $\bar{V}(\bar{C})=QMRes\left(\frac{1}{r_i}+\frac{1}{r_u}\right)$.

No caso em que todos os tratamentos apresentarem o mesmo número de repetições, ou seja, $r_i = r_u = K$, então o valor de D_n é simplificado para a seguinte expressão:

$$D_n = z_n \sqrt{\frac{QMRes}{K}}$$

Para realizar o teste de Duncan, a um nível de signifiância α , deve-se seguir os seguintes passos:

- calcular o valor D_n , para $n=2,\cdots,I$
- 2 ordenar as médias do fator em estudo em ordem decrescente
- montar grupos de comparação entre os contrastes e obter as estimativas dos contrastes, com base nos valores amostrais
- concluir usando a seguinte relação: se $|\bar{C}| \geq D_n$, rejeita-se H_0 e se $|\bar{C}| < D_n$, não rejeita-se H_0 . No último caso, indicar as médias iguais, seguidas por uma mesma letra

Aplique os testes de Tukey e Duncan para o seguinte exemplo:

Exemplo1 (Exercício 4.1, pág. 42): Para comparar a produtividade de quatro variedades de milho, um agrônomo tomou vinte parcelas similares e distribuiu inteiramente ao acaso, cada uma das 4 variedades em 5 parcelas experimentais. A partir dos dados experimentais fornecidos abaixo, é possível concluir que existe diferença significativa entre as variedades com relação a produtividade, utilizando o nível de significância de 5%?

	Variedades			
	Α	В	С	D
_	25	31	22	33
	26	25	26	29
	20	28	28	31
	23	27	25	34
	21	24	29	28
Totais	115	135	130	155
Médias	23	27	26	31