# **Graphs: Basics**



On-line/Off-line Social Network



Internet Connectivity



#### WebBlog Connections



#### Navigator



### Other Applications

- Electronic circuits
  - Printed circuit board
  - Integrated circuit
- Transportation networks
  - Highway network
  - Flight network
- Computer networks
  - Local area network
  - Internet
  - Web
- Databases
  - Entity-relationship diagram



#### Graphs

- lack A graph is a pair (V, E), where
  - V is a set of nodes, called vertices
  - E is a collection of pairs of vertices, called edges
  - Vertices and edges are positions and store elements
- Example:
  - A vertex represents an airport and stores the three-letter airport code
  - An edge represents a flight route between two airports and stores the mileage of the route



### Edge Types

- Directed edge
  - ordered pair of vertices (u,v)
  - first vertex u is the origin
  - second vertex v is the destination
  - e.g., a flight
- Undirected edge
  - unordered pair of vertices (u,v)
  - e.g., a flight route
- Directed graph
  - all the edges are directed
  - e.g., route network
- Undirected graph
  - all the edges are undirected
  - e.g., flight network





### Terminology

- End vertices (or endpoints) of an edge
  - U and V are the endpoints of a
- Edges incident on a vertex
  - a, d, and b are incident on V
- Adjacent vertices
  - U and V are adjacent
- Degree of a vertex
  - X has degree 5
- Parallel edges
  - h and i are parallel edges
- Self-loop
  - j is a self-loop



## Terminology (cont.)

- Path
  - sequence of alternating vertices and edges
  - begins with a vertex
  - ends with a vertex
  - each edge is preceded and followed by its endpoints
- Simple path
  - path such that all its vertices and edges are distinct
- Examples
  - $P_1=(V,b,X,h,Z)$  is a simple path
  - P<sub>2</sub>=(U,c,W,e,X,g,Y,f,W,d,V) is a path that is not simple



### Terminology (cont.)

- Cycle
  - circular sequence of alternating vertices and edges
  - each edge is preceded and followed by its endpoints
- Simple cycle
  - cycle such that all its vertices and edges are distinct
- Examples
- Note) Tree is a graph without cycles



### Subgraphs

- A subgraph S of a graph G is a graph such that
  - The vertices of S are a subset of the vertices of G
  - The edges of S are a subset of the edges of G
- A spanning subgraph of G is a subgraph that contains all the vertices of G



Subgraph



Spanning subgraph

#### Connectivity

- A graph is connected if there is a path between every pair of vertices
- A connected component of a graph G is a maximal connected subgraph of G
- "Maximal"?





Non connected graph with two connected components

#### Trees and Forests

- A (free) tree is an undirected graph T such that
  - T is connected
  - T has no cycles

This definition of tree is different from the one of a rooted tree

- A forest is an undirected graph without cycles
- The connected components of a forest are trees



Tree



**Forest** 

## **Spanning Trees and Forests**

- A spanning tree of a connected graph is a spanning subgraph that is a tree
- A spanning tree is not unique unless the graph is a tree
- Spanning trees have applications to the design of communication networks
- A spanning forest of a graph is a spanning subgraph that is a forest



Graph



Spanning tree

## Some Properties for Undirected Graphs

#### Property 1

 $\Sigma_{v} \deg(v) = 2m$ 

Proof: each edge is counted twice

#### **Property 2**

In an undirected graph with no self-loops and no multiple edges

$$m \le n (n-1)/2$$

Proof: each vertex has degree at most (n-1)

What is the bound for a directed graph?

#### **Notation**

n

m

deg(v)

number of vertices number of edges degree of vertex *v* 

#### Example

- n=4
- $\mathbf{m} = 6$
- $\bullet \deg(v) = 3$



## Main Methods of the Graph ADT

- Vertices and edges
  - are positions
  - store elements
- Accessor methods
  - e.endVertices(): a list of the two
     endvertices of e
  - e.opposite(v): the vertex opposite of v on e
  - u.isAdjacentTo(v): true iff u and v are adjacent
  - \*v: reference to element associated with vertex v
  - \*e: reference to element associated with edge e

- Update methods
  - insertVertex(o): insert a vertex storing element o
  - insertEdge(v, w, o): insert an edge (v,w) storing element o
  - eraseVertex(v): remove vertex v(and its incident edges)
  - eraseEdge(e): remove edge e
- Iterable collection methods
  - incidentEdges(v): list of edges incident to v
  - vertices(): list of all vertices in the graph
  - edges(): list of all edges in the graph

What is a data structure to represent a graph?

We will discuss three ways

#### 1. Edge List Structure

- Vertex object
  - element
  - reference to position in vertex sequence
- Edge object
  - element
  - origin vertex object
  - destination vertex object
  - reference to position in edge sequence
- Vertex sequence (e.g., list)
  - sequence of vertex objects
- Edge sequence (e.g., list)
  - sequence of edge objects





#### Performance

| <ul> <li>n vertices, m edges</li> <li>no parallel edges</li> <li>no self-loops</li> </ul> | Edge<br>List | Adjacency<br>List   | Adjacency<br>Matrix   |
|-------------------------------------------------------------------------------------------|--------------|---------------------|-----------------------|
| Space                                                                                     | n + m        | n + m               | <b>n</b> <sup>2</sup> |
| v.incidentEdges()                                                                         | m            | deg(v)              | n                     |
| u.isAdjacentTo (v)                                                                        | m            | min(deg(v), deg(w)) | 1                     |
| insertVertex(o)                                                                           | 1            | 1                   | <b>n</b> <sup>2</sup> |
| insertEdge(v, w, o)                                                                       | 1            | 1                   | 1                     |
| eraseVertex(v)                                                                            | m            | deg(v)              | <b>n</b> <sup>2</sup> |
| eraseEdge(e)                                                                              | 1            | 1                   | 1                     |

v.incidentEdges() and u.isAdjacneTo(v)

Need to check all the edges

### 2. Adjacency List Structure

- Basic: Edge list structure
- Supports direct access to the incident edges from a node
  - Incidence edge sequence for each vertex
- Augmented edge objects
  - references to associated positions in incidence sequences of end vertices
- Provides direct access
  - From the edges to the vertices
  - From the vertices to their incident edges



#### Performance

| <ul> <li>n vertices, m edges</li> <li>no parallel edges</li> <li>no self-loops</li> </ul> | Edge<br>List | Adjacency<br>List             | Adjacency<br>Matrix |
|-------------------------------------------------------------------------------------------|--------------|-------------------------------|---------------------|
| Space                                                                                     | n+m          | n + m                         | $n^2$               |
| v.incidentEdges()                                                                         | m            | deg( <b>v</b> )               | n                   |
| u.isAdjacentTo (v)                                                                        | m            | min(deg(v), deg(w))           | 1                   |
| insertVertex(o)                                                                           | 1            | 1                             | $n^2$               |
| insertEdge(v, w, o)                                                                       | 1            | 1                             | 1                   |
| eraseVertex(v)                                                                            | m            | size of adjacency list deg(v) | $n^2$               |
| eraseEdge(e)                                                                              | 1            | 1                             | 1                   |

v.incidentEdges(): direct access to incident edges

<sup>•</sup> u.isAdjacentTo(v):

### 3. Adjacency Matrix Structure

- Edge list structure
- Augmented vertex objects
  - Integer key (index) associated with vertex
- 2D-array adjacency array
  - Reference to edge object for adjacent vertices
  - Null for non nonadjacent vertices
- The "old fashioned" version just has 0 for no edge and 1 for edge



#### Performance

| <ul> <li>n vertices, m edges</li> <li>no parallel edges</li> <li>no self-loops</li> </ul> | Edge<br>List | Adjacency<br>List   | Adjacency<br>Matrix   |
|-------------------------------------------------------------------------------------------|--------------|---------------------|-----------------------|
| Space                                                                                     | n+m          | n+m                 | <b>n</b> <sup>2</sup> |
| v.incidentEdges()                                                                         | m            | deg(v)              | n                     |
| u.isAdjacentTo (v)                                                                        | m            | min(deg(v), deg(w)) | 1                     |
| insertVertex(o)                                                                           | 1            | 1                   | <b>n</b> <sup>2</sup> |
| insertEdge(v, w, o)                                                                       | 1            | 1                   | 1                     |
| eraseVertex(v)                                                                            | m            | deg(v)              | <b>n</b> <sup>2</sup> |
| eraseEdge(e)                                                                              | 1            | 1                   | 1                     |

v.incidentEdges(): matrix row check

<sup>•</sup> u.isAdjacentTo(v): using v's key

#### Performance

| <ul> <li>n vertices, m edges</li> <li>no parallel edges</li> <li>no self-loops</li> </ul> | Edge<br>List | Adjacency<br>List   | Adjacency<br>Matrix   |
|-------------------------------------------------------------------------------------------|--------------|---------------------|-----------------------|
| Space                                                                                     | n + m        | n + m               | <b>n</b> <sup>2</sup> |
| v.incidentEdges()                                                                         | m            | deg( <b>v</b> )     | n                     |
| u.isAdjacentTo (v)                                                                        | m            | min(deg(v), deg(w)) | 1                     |
| insertVertex(o)                                                                           | 1            | 1                   | <b>n</b> <sup>2</sup> |
| insertEdge(v, w, o)                                                                       | 1            | 1                   | 1                     |
| eraseVertex(v)                                                                            | m            | deg( <b>v</b> )     | <b>n</b> <sup>2</sup> |
| eraseEdge(e)                                                                              | 1            | 1                   | 1                     |

v.incidentEdges(): direct access to incident edges

u.isAdjacentTo(v):

# Depth-First Search



## Depth-First Search

- Depth-first search (DFS) is a general technique for traversing a graph
- Why is this traversal important?
- Let's first see the example



## Example



# Example (cont.)



### Depth-First Search

- A DFS traversal of a graph G
  - Visits all the vertices and edges of G
  - Determines whether G is connected (how?)
  - Computes the connected components of G (how?)
  - Computes a spanning forest of G

- The DFS on a graph with n vertices and m edges takes O(n + m) time
- DFS can be further extended to solve other graph problems
  - Find and report a path between two given vertices
  - Find a cycle in the graph

### **DFS Algorithm**

The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

```
Algorithm DFS(G)
   Input graph G
   Output labeling of the edges of G
       as discovery edges and
       back edges
  for all u \in G.vertices()
   u.setLabel(UNEXPLORED)
  for all e \in G.edges()
   e.setLabel(UNEXPLORED)
  for all v \in G.vertices()
  if v.getLabel() = UNEXPLORED
      DFS(G, v)
```

```
Algorithm DFS(G, v)
  Input graph G and a start vertex v of G
  Output labeling of the edges of G
    in the connected component of v
    as discovery edges and back edges
  v.setLabel(VISITED)
  for all e \in G.incidentEdges(v)
    if e.getLabel() = UNEXPLORED
       w \leftarrow e.opposite(v)
      if w.getLabel() = UNEXPLORED
         e.setLabel(DISCOVERY)
         DFS(G, w)
      else
         e.setLabel(BACK)
```



#### **DFS and Maze Traversal**

- The DFS algorithm is similar to a classic strategy for exploring a maze
  - We mark each intersection, corner and dead end (vertex) visited
  - We mark each corridor (edge) traversed
  - We keep track of the path back to the entrance (start vertex) by means of a rope (recursion stack)





#### Properties of DFS

#### Property 1

DFS(G, v) visits all the vertices and edges in the connected component of v

#### Property 2

The discovery edges labeled by DFS(G, v) form a spanning tree of the connected component of v



### Analysis of DFS

- $\bullet$  Setting/getting a vertex/edge label takes O(1) time
- Each vertex is labeled twice
  - once as UNEXPLORED
  - once as VISITED
- Each edge is labeled twice
  - once as UNEXPLORED
  - once as DISCOVERY or BACK
- Method incidentEdges is called once for each vertex
  - Complexity of v.incidentEdges: deg(v)
- lackloss DFS runs in O(n+m) time provided the graph is represented by the adjacency list structure
  - Recall that  $\sum_{v} \deg(v) = 2m$



#### Path Finding

- We can specialize the DFS algorithm to find a path between two given vertices u and z using the template method pattern
- We call DFS(G, u) with u as the start vertex
- We use a stack S to keep track of the path between the start vertex and the current vertex
- As soon as destination vertex z is encountered, we return the path as the contents of the stack



```
Algorithm pathDFS(G, v, z)
  v.setLabel(VISITED)
  S.push(v)
  if v = z
    return S.elements()
  for all e \in v.incidentEdges()
    if e.getLabel() = UNEXPLORED
       w \leftarrow e.opposite(v)
       if w.getLabel() = UNEXPLORED
         e.setLabel(DISCOVERY)
         S.push(e)
         pathDFS(G, w, z)
         S.pop(e)
       else
         e.setLabel(BACK)
  S.pop(v)
```

### 2

# Cycle Finding

- We can specialize the DFS algorithm to find a simple cycle using the template method pattern
- We use a stack S to keep track of the path between the start vertex and the current vertex
- As soon as a back edge (v, w) is encountered, we return the cycle as the portion of the stack from the top to vertex w



```
Algorithm cycleDFS(G, v, z)
  v.setLabel(VISITED)
  S.push(v)
  for all e \in v.incidentEdges()
     if e.getLabel() = UNEXPLORED
        w \leftarrow e.opposite(v)
        S.push(e)
        if w.getLabel() = UNEXPLORED
           e.setLabel(DISCOVERY)
          pathDFS(G, w, z)
           S.pop(e)
        else
           T \leftarrow new empty stack
           repeat
             o \leftarrow S.pop()
              T.push(o)
           until o = w
           return T.elements()
  S.pop(v)
```

# **Breadth-First Search**



#### **Breadth-First Search**

- Breadth-first search (BFS) is another general technique for traversing a graph
- Let's look at the example

# Example



# Example (cont.)



# Example (cont.)



#### **Breadth-First Search**

- A BFS traversal of a graph G
  - Visits all the vertices and edges of G
  - Determines whether G is connected
  - Computes the connected components of G
  - Computes a spanning forest of G

- $lacktriangleday{lacktriangleday}{lacktriangleday}{
  m BFS on a graph with } {\it n} {
  m vertices} \ {
  m and } {\it m} {
  m edges takes } {\it O}(n+m) \ {
  m time}$
- BFS can be further extended to solve other graph problems
  - Find and report a path between two given vertices
  - Can label each vertex by the length of a shortest path (in terms of # of edges) from the start vertex s
  - Find a simple cycle, if there is one

## **BFS Algorithm**

The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

```
Algorithm BFS(G)
   Input graph G
   Output labeling of the edges
       and partition of the
       vertices of G
  for all u \in G.vertices()
   u.setLabel(UNEXPLORED)
  for all e \in G.edges()
   e.setLabel(UNEXPLORED)
  for all v \in G.vertices()
  <u>if v.getLabel() = UNEXPLORED</u></u>
       BFS(G, v)
```

```
Algorithm BFS(G, s)
  L_0 \leftarrow new empty sequence
  L_0-insertBack(s)
  s.setLabel(VISITED)
  i \leftarrow 0
  while \neg L_i empty()
     L_{i+1} \leftarrow new empty sequence
     for all v \in L_i elements()
        for all e \in v.incidentEdges()
          if e.getLabel() = UNEXPLORED
             w \leftarrow e.opposite(v)
             if w.getLabel() = UNEXPLORED
                e.setLabel(DISCOVERY)
                w.setLabel(VISITED)
                L_{i+1}.insertBack(w)
             else
                e.setLabel(CROSS)
     i \leftarrow i + 1
```



## **Properties**

#### **Notation**

 $G_s$ : connected component of s

#### Property 1

BFS(G, s) visits all the vertices and edges of  $G_s$ 

#### **Property 2**

The discovery edges labeled by BFS(G, s) form a spanning tree  $T_s$  of  $G_s$ 

#### **Property 3**

For each vertex v in  $L_i$ 

- The path of  $T_s$  from s to v has i edges
- Every path from s to v in G<sub>s</sub> has at least i edges (i.e., find a shortest path)





# **Analysis**

- $\bullet$  Setting/getting a vertex/edge label takes O(1) time
- Each vertex is labeled twice
  - once as UNEXPLORED
  - once as VISITED
- Each edge is labeled twice
  - once as UNEXPLORED
  - once as DISCOVERY or CROSS
- lacktriangle Each vertex is inserted once into a sequence  $L_i$
- Method incidentEdges is called once for each vertex
- lacktriangle BFS runs in O(n+m) time provided the graph is represented by the adjacency list structure
  - Recall that  $\sum_{v} \deg(v) = 2m$

# **Applications**

- lacktriangle Using the template method pattern, we can specialize the BFS traversal of a graph G to solve the following problems in O(n+m) time
  - Compute the connected components of G
  - Compute a spanning forest of G
  - Find a simple cycle in G, or report that G is a forest
  - Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists

## DFS vs. BFS

| Applications                                         | DFS      | BFS      |
|------------------------------------------------------|----------|----------|
| Spanning forest, connected components, paths, cycles | <b>V</b> | <b>√</b> |
| Shortest paths                                       |          | √        |
| Biconnected components (how?)                        | <b>V</b> |          |

#### Biconnected components:

- Connected
- Even after removing any vertex the graph remains connected





# DFS vs. BFS (cont.)

#### Back edge (v, w)

 w is an ancestor of v in the tree of discovery edges

#### Cross edge (v, w)

w is in the same level as vor in the next level





# Questions?