Introduction to ROS

ROS

- Robot Operating System
 - Not an operating system like mac/windows
 - A framework for robotic program communication and open source libraries
- Runs best on Linux (ubuntu)
 - ROS 1 Melodic (outdated) Ubuntu 18
 - o ROS 1 Noetic Ubuntu 20
 - ROS 2 Ubuntu 22/ window 11

Running Ubuntu

- Dedicated machine
 - A computer that runs ubuntu exclusively
- Dual Boot
 - A machine with both ubuntu and window/MAC
 - Segment the drive when installing
 - Requires reboot when switching between OS
- Virtual Machine
 - Simulating a different OS as a program in the native OS
 - Very resource hungry
 - May have problem when interfacing with hardware
 - Example: Oracle VirtualBox

Ubuntu Basics

- APT
 - Advanced Packaging Tools
 - Package installing tool for Linux
 - o E.g.
 - apt-get install (instal package)
 - apt-get update (update package list version)
 - apt-get upgrade (upgrade package to the newest version according to package list)
- Sudo
 - Superuser do
 - "Run as admin", if the command requires permission
 - o E.g.
 - sudo apt-get install "package"
- cd
 - change directory

Instal ROS

http://wiki.ros.org/noetic/Installation/Ubuntu

ROS basics - ROS Master

ROS Master

- The main program running the entire ROS system
- Handling Parameter server
- How to run:
 - o roscore
 - Will automatically start when you run a ros package without existing rosore
 - Bad practice

ROS basics

ROS core

ROS basics - Topic and Messages

- Information is handled as messages
- messages are organized by topic
- Example 1:
 - Topic: camera/image
 - Message: RGB value of image at each timestep
- Example 2:
 - Topic: velocity_command
 - Message: velocity input to the robot
- Topic is like a postboard and message is like postnote, multiple program can read/ write messages to the same topic at the same time

- Nodes are standalone programs that running within the ROS system
- Nodes are not inherently synchronized
- Node can receive message from ROS by subscribing to a topic
 - and Write message to ROS by publishing to a topic
- Example 1
 - Image processing node subscribes to image topic, process the image, and publish the label to a new topic
- Example 2
 - SLAM node subscribes to image topic and odometry topic and publish the map and localization

- Custom ROS node can be written in python or c++
- http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28python%29
- Subscriber nodes are event based
 - The script wait for message to arrive
 - Once message arrived, it triggers the callback function
 - Message can be processed in the callback function
- Publisher nodes usually publish at constant rate
 - Or at the end of callback function
 - Or whenever, doesn't matter
- You can do whatever else you want in the script

ROS file system

- ROS packages are libraries that contain nodes, scripts, configuration files etc.
 for accomplishing a specific task
- Can be installed via binary (apt-get)
- Or build from source (catkin) (recommended)
- Check ros wiki for package documentation

ROS file system - Launch file

- ROS nodes are created by launch file
 - roslaunch [package] [launch file]
 - You can set parameters and which script to run in the launch file
- alternatively, rosrun can be used to launch a single script
 - For python, the script needs to be made executable by
 - chmod +x [scriptname].py
 - rosrun [package] [scriptname].py
 - For c++, the script needs to be added into the Cmake file, and compiled with catkin_make every time

Exercise - turtlesim

- 1. Install package
 - http://wiki.ros.org/turtlesim
- 2. Clone tutorial package to src
 - https://github.com/blue-ring-octopus/ros-tutorial
- 3. catkin make
- 4. Create move_turtle.py
- 5. chmod +x move_turtle.py
- 6. Try remote master
 - export ROS_MASTER_URI=[URI]
 - rosrun ros_tutorial move_turtle.py

Exercise - turtlebot gazebo

- Install turtlebot dependency
 - https://emanual.robotis.com/docs/en/platform/turtlebot3/guick-start/
 - o Run 3.1.3 3.1.4 (from source)
- Install turtlebot gazebo simulation
 - https://emanual.robotis.com/docs/en/platform/turtlebot3/simulation/#gazebo-simulation

Debugging Tools

- Rqt-graph
- TF-Tree
- Rostopic echo, list
- RVIZ