REPASO Y APOYO OBJETIVO 1

RECONOCER Y DIFERENCIAR ENTRE POBLACIÓN Y MUESTRA

Nombre:	Curso:	Fecha:	
			

POBLACIÓN Y MUESTRA

- **Estadística** es la ciencia encargada de recopilar y ordenar datos referidos a diversos fenómenos para su posterior análisis e interpretación.
- Población es el conjunto de elementos en los que se estudia un determinado aspecto o característica.
- **Muestra** es una parte de la población. Es importante escoger correctamente la muestra: debe ser representativa, es decir, dar una información similar a la obtenida si estudiásemos toda la población.

EJEMPLO

Considera tu clase como la población y completa el siguiente cuestionario.

Nombre:	Apellidos:			
Marca con una cruz la	a respuesta elegida y	responde.		
Sexo:	☐ Hombre	☐ Mujer		
Deporte preferido:				
☐ Fútbol	□ Baloncesto	☐ Tenis	☐ Balonmano	□ Otros
¿Cuántos hermanos tier	nes?			
□ 0	□ 1	□ 2	☐ 3 o más hermanos	
¿Cuántos años tienes?				
☐ 13 años	☐ 14 años	☐ 15 años	☐ 16 años	
¿Qué altura tienes?				
¿Cuánto pesas?				

Puede ocurrir que el día en que se reparta el cuestionario falte alguien en clase o que algún alumno no conteste y, aunque nuestro objetivo sea toda la **población**, es decir, el conjunto de los alumnos de clase, usaremos una parte de la población llamada **muestra**, que en nuestro caso estará formada por aquellos alumnos que hayan contestado al cuestionario.

ACTIVIDADES

- Señala en qué casos es más conveniente estudiar la población o una muestra.
 - a) La longitud de los tornillos que fabrica una máquina de manera ininterrumpida.
 - b) La estatura de todos los visitantes extranjeros en un año en España.
 - c) El peso de un grupo de cinco amigos.
 - d) Los efectos de un nuevo medicamento en el ser humano.
 - e) El número de hijos de las familias de una comunidad de vecinos.
 - f) La talla de camisa de los varones de una comunidad autónoma.
 - g) Los gustos musicales de los jóvenes de una ciudad.
 - h) La altura media de veinte alumnos de una clase.

REPASO Y APOYO OBJETIVO 2

CLASIFICAR LAS VARIABLES ESTADÍSTICAS

Nombre:	Curso:	Fecha:
1101110101	00001	

VARIABLE ESTADÍSTICA

- Variable estadística es toda característica o aspecto de los elementos de una población o muestra que se puede estudiar.
- Las variables estadísticas pueden ser cuantitativas o cualitativas.
- Variables cuantitativas: los valores que puede tomar son números. Pueden ser discretas o continuas.
 - Variables cuantitativas discretas: toman un número determinado de valores.
 - Variables cuantitativas continuas: pueden tomar cualquier valor comprendido entre dos dados.
- Variables cualitativas: no se pueden medir.

EJEMPLO

En el cuestionario del ejemplo anterior, diferencia las variables cuantitativas y cualitativas.

- Variables estadísticas cuantitativas: número de hermanos, edad, peso y altura.
 - Estas variables las expresamos mediante números.
 - Variables estadísticas cuantitativas discretas: número de hermanos y edad.
 - Variables estadísticas cuantitativas continuas: peso y altura.
- Variables estadísticas cualitativas: sexo y deporte preferido.
 - Estas variables no se expresan mediante números.

ACTIVIDADES

1 Señala en cada caso lo que corresponda.

Variable	CUANTITATIVA		Cualitativa
variable	Discreta	Continua	Cualitativa
Provincia de residencia			
Número de vecinos de un edificio			
Profesión de la madre			
Altura de un edificio			
Número de llamadas telefónicas diarias			
Número de primos			
Tipo de música preferida			
Barras de pan consumidas en una semana en un colegio			
Consumo de gasolina por cada 100 km			
Número de la puerta de tu casa			
Color de pelo			
Talla de pantalón			

OBTENER LA TABLA ESTADÍSTICA ASOCIADA A UN CONJUNTO DE DATOS

Nombre:	Curso:	Fecha:

TABLAS ESTADÍSTICAS

- Las **tablas estadísticas** sirven para organizar los datos de una variable estadística y estudiarlos con mayor facilidad.
- Si la variable es discreta y tenemos un conjunto de datos pequeño, se forma una tabla con dos columnas. En una de las columnas se colocan los distintos valores de la variable, y en la otra columna, el número de veces que aparece cada uno de ellos.
- Si la variable es continua, se agrupan los valores en intervalos de igual amplitud, se establece la marca de clase, que es el punto medio de cada intervalo, y se hace el recuento de los datos de cada intervalo.

EJEMPLO

Daniel ha comprado 5 bolsas de palomitas, 7 caramelos, 2 chicles de menta y 10 piruletas. Organiza este conjunto de datos en una tabla.

Si queremos recoger la información en una tabla, ponemos en una columna los distintos valores de la variable: bolsas de palomitas, caramelos, chicles de menta y piruletas, y en la otra, el número de veces que aparece cada uno de ellos.

Artículos	Recuento
Bolsas de palomitas	5
Caramelos	7
Chicles de menta	2
Piruletas	10

EJEMPLO

Las estaturas (en cm) de 27 jóvenes son:

155, 178, 170, 165, 173, 168, 160, 166, 176, 169, 158, 170, 179, 161, 164, 156, 170, 171, 167, 151, 163, 158, 164, 174, 176, 164, 154

Forma una tabla, efectúa el recuento y obtén las marcas de clase.

En este caso, la variable es continua. Por tanto, debemos agrupar los datos en intervalos.

Para ello obtenemos la diferencia entre el valor mayor y el menor:

$$179 - 151 = 28$$

Para incluir todos los valores, tomamos 6 intervalos de amplitud 5 (6 \cdot 5 = 30, que es mayor que la diferencia entre el mayor y el menor).

Empezamos por el valor 150.

Marcas de clase: (150 + 155)/2 = 152,5

(155 + 160)/2 = 157,5

(160 + 165)/2 = 162,5

(165 + 170)/2 = 167,5

(170 + 175)/2 = 172,5

(175 + 180)/2 = 177,5

Intervalo	Marca de clase	Recuento
[150, 155)	152,5	2
[155, 160)	157,5	4
[160, 165)	162,5	6
[165, 170)	167,5	5
[170, 175)	172,5	6
[175, 180]	177,5	4

13

OBTENER LA TABLA ESTADÍSTICA ASOCIADA A UN CONJUNTO DE DATOS

Nombre: Curso:	Fecha:	
----------------	--------	--

ACTIVIDADES

1 Las edades (en años) de 20 alumnos son:

13, 15, 14, 16, 13, 15, 14, 16, 15, 14, 13, 13, 13, 15, 14, 16, 14, 14, 15, 13 $\stackrel{\cdot}{\iota}$ Qué tipo de variable es? Construye la correspondiente tabla.

Edades	Recuento

2 El sexo de 20 alumnos es:

M, V, V, M, M, M, V, V, M, M, V, W, M, M, M, M, M, M, W, M ¿Qué tipo de variable es? Construye la tabla asociada a estos datos.

Sexo	Recuento

3 El peso (en kg) de 20 alumnos es:

66,5; 59,2; 60,1; 64,2; 70; 50; 41,6; 47,9; 42,8; 55; 52,2; 50,3; 42,2; 61,9; 52,4; 49,2; 41,6; 38,8; 36,5; 45 ¿Qué tipo de variable es? Construye la tabla asociada a estos datos.

Intervalo	Marca de clase	Recuento
		,

4 El número de horas diarias de estudio de 30 alumnos es:

3, 4, 3, 5, 5, 1, 1, 1, 1, 2, 3, 4, 5, 0, 2, 0, 3, 2, 2, 1, 2, 1, 3, 2, 0, 1, 2, 1, 4, 2

Obtén una tabla del recuento de datos.

CALCULAR LA FRECUENCIA ABSOLUTA Y RELATIVA **DE UN CONJUNTO DE DATOS**

Nombre: Curso: Fecha:

FRECUENCIA ABSOLUTA Y RELATIVA

• Frecuencia absoluta, f_i , de un conjunto de datos es el número de veces que se repite cada valor de la variable, x_i , en el total de los datos.

La suma de las frecuencias absolutas es igual al número total de datos, N.

- Frecuencia relativa, h_i , es el cociente entre la frecuencia absoluta y el número total de datos: $h_i = \frac{f_i}{N}$ La frecuencia relativa es siempre un número comprendido entre 0 y 1. La suma de las frecuencias relativas es 1.
- Porcentaje (%) es el resultado de multiplicar la frecuencia relativa por 100.

EJEMPLO

Las edades (en años) de 20 alumnos de un instituto son:

13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16

Obtén la tabla de frecuencias y porcentajes.

Comenzamos a construir la tabla.

- En la primera columna colocamos los valores de la variable.
- En la segunda columna colocamos el número de veces que aparece cada dato. A este número se le llama frecuencia absoluta.
- En la tercera columna colocamos el cociente entre la frecuencia absoluta de cada dato y el número total de datos (20). A este número se le denomina frecuencia relativa.

$$h_1 = \frac{f_1}{N} = \frac{6}{20} = 0.30$$

$$h_2 = \frac{f_2}{N} = \frac{7}{20} = 0.35$$

$$h_3 = \frac{f_3}{N} = \frac{4}{20} = 0.20$$

$$h_1 = \frac{f_1}{N} = \frac{6}{20} = 0,30$$
 $h_2 = \frac{f_2}{N} = \frac{7}{20} = 0,35$ $h_3 = \frac{f_3}{N} = \frac{4}{20} = 0,20$ $h_4 = \frac{f_4}{N} = \frac{3}{20} = 0,15$

- En la cuarta columna colocamos el porcentaje, resultado de multiplicar la frecuencia relativa por 100.

ACTIVIDADES

1 Las notas de inglés de 20 alumnos fueron:

6, 5, 3, 1, 2, 5, 6, 5, 9, 8, 7, 4, 9, 10, 7, 7, 8, 6, 5, 5

Construye la tabla de frecuencias absolutas, frecuencias relativas y porcentajes.

X _i	f _i	h _i	%
1	1	0,05	5
2			
3			
4			
5			
6			
7			
8			
9			
10			
Suma	20		

 f_i

6

7

4

3

20

 X_i

13

14

15

16

Suma

h,

0,30

0,35

0,20

0,15

1

%

30

35

20

15

100

13

CALCULAR LA FRECUENCIA ABSOLUTA Y RELATIVA DE UN CONJUNTO DE DATOS

Nombre:	Curso:	Fecha:	

EJEMPLO

Los resultados de un test de inteligencia hecho a 25 personas fueron:

REPASO Y APOYO

100, 80, 92, 101, 65, 72, 121, 68, 75, 93, 101, 100, 102, 97, 89, 73, 121, 114, 113, 113, 106, 84, 94, 83, 74 Obtén la tabla de frecuencias y de porcentajes tomando intervalos de amplitud 10.

- En la primera columna colocamos los valores de la variable, tomando 6 intervalos de amplitud 10, ya que la diferencia entre los valores extremos es 121 65 = 56.
- En la segunda columna colocamos la marca de clase de cada intervalo.
- En la tercera columna colocamos el número de veces que aparece cada dato. A este número se le llama frecuencia absoluta.
- En la cuarta columna colocamos el cociente entre la frecuencia absoluta de cada dato y el número total de datos (20). A este número se le denomina frecuencia relativa.
- En la quinta columna colocamos el porcentaje, que es el resultado de multiplicar la frecuencia relativa por 100.

Intervalo	Xi	fi	h i	%
[65, 75)	70	5	0,20	20
[75, 85)	80	4	0,16	16
[85, 95)	90	4	0,16	16
[95, 105)	100	6	0,24	24
[105, 115)	110	4	0,16	16
[115, 125]	120	2	0,08	8

2 El peso (en kg) de 24 personas es:

68,5; 34,2; 47,5; 39,2; 47,3; 79,2; 46,5; 58,3; 62,5; 58,7; 80; 63,4; 58,6; 50,2; 60,5; 70,8;

30,5; 42,7; 59,4; 39,3; 48,6; 56,8; 72; 60

Agrúpalo en intervalos de amplitud 10 y obtén la tabla de frecuencias absolutas, frecuencias relativas y porcentajes.

Intervalo	Xi	f _i	h _i	%

3 Completa la siguiente tabla.

Xi	fi	h _i	%
10		4	
20	5		10
30		61	
40	10		
50		41	
60			18

CALCULAR LAS FRECUENCIAS ACUMULADAS DE UN CONJUNTO DE DATOS

Nombre: Curso: Fecha:

FRECUENCIAS ACUMULADAS

- Frecuencia absoluta acumulada, F_i , de un valor x_i es la suma de las frecuencias f_j de todos los valores menores o iguales que él.
- **Frecuencia relativa acumulada, H**_i, de un valor x_i es el cociente entre la frecuencia absoluta acumulada y el número total de datos:

$$H_{i} = \frac{F_{i}}{N}$$

EJEMPLO

Las edades (en años) de 20 alumnos de un instituto son:

13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16

Obtén la tabla de frecuencias absolutas acumuladas y frecuencias relativas acumuladas.

• Para obtener la frecuencia absoluta acumulada de cada valor hay que sumar las frecuencias absolutas de los valores menores o iguales que él:

$$F_1 = f_1 = 6$$
 $F_3 = f_1 + f_2 + f_3 = 6 + 7 + 4 = 17$ $F_2 = f_1 + f_2 = 6 + 7 = 13$ $F_4 = f_1 + f_2 + f_3 + f_4 = 6 + 7 + 4 + 3 = 20$

• Para obtener la frecuencia relativa acumulada de un valor hay que dividir la frecuencia absoluta acumulada de cada valor entre el número total de datos:

$$H_{1} = \frac{F_{1}}{N} = \frac{f_{1}}{N} = \frac{6}{20} = 0,30$$

$$H_{3} = \frac{F_{3}}{N} = \frac{f_{1} + f_{2} + f_{3}}{N} = \frac{6 + 7 + 4}{20} = \frac{17}{20} = 0,20$$

$$H_{4} = \frac{F_{2}}{N} = \frac{f_{1} + f_{2}}{N} = \frac{6 + 7 + 4 + 3}{20} = \frac{20}{20} = 1$$

Xi	f i	F _i	h i	H _i
13	6	6	0,30	0,30
14	7	13	0,35	0,65
15	4	17	0,20	0,85
16	3	20	0,15	1)

ACTIVIDADES

Dados los datos de una variable estadística y las frecuencias absolutas, completa la tabla de frecuencias relativas y frecuencias absolutas y relativas acumuladas.

Xi	fi	F _i	h _i	H _i
1	4			
2	4			
3	3			
4	7			
5	5			
Suma	,			

CALCULAR LAS FRECUENCIAS ACUMULADAS DE UN CONJUNTO DE DATOS

Nombre:	Curso:	Fecha:	

2 Los datos de la tabla se refieren a la estatura (en cm) de 40 alumnos. Obtén la tabla de frecuencias asociada a estos datos.

Intervalo	Xi	fi	h _i	%
[150, 155)		3		
[155, 160)		6		
[160, 165)		9		
[165, 170)		10		
[170, 175)		7		
[175, 180]		5		

3 Dados los siguientes datos de una variable estadística, calcula su tabla de frecuencias.

Intervalo	[0, 2)	[2, 4)	[4, 6)	[6, 8]
Frecuencia	10	8	4	2)

4 Completa la siguiente tabla.

X _i	fi	Fi	h _i	Hi	%
10	5				
11		13			
12	10				
13		35			
14	7				
15	8				16

UTILIZAR E INTERPRETAR LOS GRÁFICOS ESTADÍSTICOS

Nombre:	Curso:	Fecha:	

GRÁFICOS ESTADÍSTICOS

Los **gráficos** ayudan a representar fácilmente la información que contienen las tablas estadísticas. Según sea la variable, se usa un tipo u otro de gráfico.

- **Diagrama de barras:** se usa para representar datos cualitativos o cuantitativos discretos. Sobre el eje *X* se señalan los valores de la variable y se levantan barras de altura igual a la frecuencia representada (absoluta, absoluta acumulada, relativa o relativa acumulada).
- **Polígono de frecuencias:** es una línea poligonal que se obtiene a partir del diagrama de barras, uniendo cada extremo de una barra con el extremo de la barra siguiente.
- **Histograma:** se usa para representar variables cuantitativas continuas. Se señalan sobre el eje horizontal los extremos de los intervalos y se levantan rectángulos de altura igual a la frecuencia representada.
- Polígono de frecuencias: se obtiene al unir los puntos medios de los lados superiores de los rectángulos del histograma.

EJEMPLO

Representa el diagrama de barras y el polígono de frecuencias del conjunto de datos.

Xi	1	3	5	7
f _i	4	1	3	2

EJEMPLO

Representa el diagrama de barras y el polígono de frecuencias del siguiente conjunto de datos.

Xi	1	3	5	7
fi	10	8	4	2

13

UTILIZAR E INTERPRETAR LOS GRÁFICOS ESTADÍSTICOS

Nombre:	Curso:	Fecha:	

ACTIVIDADES

1 La talla de calzado que utilizan 20 alumnos en una clase de Educación Física es:

37, 40, 39, 37, 38, 38, 38, 41, 42, 37, 43, 40, 38, 38, 38, 40, 37, 37, 38, 38

Construye la tabla de frecuencias y representa el diagrama de barras y el polígono de frecuencias para las frecuencias absolutas y para las frecuencias absolutas acumuladas.

X _i	f _i	F _i	h _i	H _i
37	5			
38	8			
39	1			
40	3			
41	1			
42	1			
43	1			
Suma	,			

2 En un edificio hay 25 viviendas y el número de vehículos por vivienda es:

Construye la tabla de frecuencias y representa el diagrama de barras y el polígono de frecuencias para las frecuencias relativas y las frecuencias relativas acumuladas.

Xi	f,	F _i	h _i	H _i
0				
1				
2				
3				
4				
Suma				

UTILIZAR E INTERPRETAR LOS GRÁFICOS ESTADÍSTICOS

Nombre:	Curso:	Fecha:	

- Al efectuar una encuesta a 50 clientes de un supermercado sobre los kilos de carne comprados a la semana, el 10% afirmó que compraba de 1 a 2,5 kg; 20 de ellos compraban de 2,5 a 4 kg; el 30% compraba de 4 a 5,5 kg y el resto de 5,5 a 7 kg.
 - a) Completa la tabla de frecuencias.
 - b) Representa el histograma de frecuencias relativas.

Intervalo	Marca de clase	fi	h _i	F _i	H _i	%

- 4 Observa el histograma de frecuencias absolutas referido a los libros vendidos diariamente en una librería.
 - a) Completa la tabla de frecuencias.
 - b) Representa el histograma de frecuencias absolutas acumuladas.
 - c) ¿Qué porcentaje de días se vendieron más de 200 libros? ¿Y menos de 100?

Intervalo	Marca de clase	fi	h _i	F _i	Hi	%

CALCULAR E INTERPRETAR LAS MEDIDAS DE CENTRALIZACIÓN DE UN CONJUNTO DE DATOS

Nombre:	Curso:	Fecha:
		. 55.161

La media, la mediana y la moda se llaman **medidas de centralización** y son valores que resumen la información de la muestra.

MEDIA

Dado un conjunto de datos: $x_1, x_2, ..., x_n$, con frecuencias $f_1, f_2, ..., f_n$, la **media**, \bar{x} , es igual a:

$$\bar{X} = \frac{f_1 X_1 + f_2 X_2 + \dots + f_n X_n}{f_1 + f_2 + \dots + f_n}$$

Si los datos están agrupados en intervalos, el valor x_i es la marca de clase de cada intervalo.

EJEMPLO

Halla la media del siguiente conjunto de datos.

Xi	f _i	$f_i \cdot x_i$
26	6	156
28	7	196
30	4	120
32	3	96
Suma	20	568

$$\bar{x} = \frac{568}{20} = 28.4$$

En la tabla de frecuencias hemos añadido una tercera columna donde se calcula el producto de cada valor por su frecuencia relativa.

ACTIVIDADES

- 1 Dados los datos 2, 5, 7, 8 y 7, calcula su media.
- 2 Halla la media del siguiente conjunto de datos.

Intervalo	Xi	fi	$f_i \cdot x_i$
[0, 20)	10	50	
[20, 40)	30	67	
[40, 60)	50	30	
[60, 80]	70	42	
	Suma		,

3 Una alumna ha realizado 8 exámenes de una asignatura obteniendo estas notas: 7, 5, 6, 10, 9, 7, 6 y 6. ¿Qué nota media obtendrá en esa asignatura? Ten en cuenta que para hallar la media hay que sumar los datos y dividir el resultado entre el número total de datos.

CALCULAR E INTERPRETAR LAS MEDIDAS DE CENTRALIZACIÓN DE UN CONJUNTO DE DATOS

Nombre:	Curso:	Fecha:

MEDIANA Y MODA

- La **mediana** de un conjunto de datos es el valor tal que, ordenados los datos de forma creciente, la mitad son menores que él y la otra mitad son mayores. Se representa por **Me**.
 - Si el conjunto de datos es un número impar, la mediana es el valor central.
 - Si el conjunto de datos es un número par, la mediana es la media de los dos valores centrales.
- La moda de un conjunto de datos es el valor o valores de la variable que más se repite.
 Se representa por Mo.

El valor de la moda puede no ser único, es decir, puede haber varias modas.

EJEMPLO

Obtén la mediana y la moda del siguiente conjunto de datos: 2, 2, 1, 6, 4, 3 y 9.

- Mediana:
 - Ordenamos de forma creciente los datos: 1, 2, 2, 3, 4, 6, 9.
 - Como el número de datos es impar, la mediana es el valor central: Me = 3.
- Moda:
 - El valor que más se repite es 2; por tanto, Mo = 2.
- 4 Se estudia el número de usuarios de 20 autobuses, obteniendo los siguientes datos.

- a) Realiza la tabla, agrupando los valores de 5 en 5 y empezando desde cero.
- b) Calcula la moda, la mediana y la media.
- c) Realiza un histograma con las frecuencias acumuladas.

Intervalo	Marca de clase	fi	Fi	$f_i \cdot x_i$
				,

Media: $\bar{x} =$

Mediana: Me =

Moda: Mo =

CALCULAR E INTERPRETAR LAS MEDIDAS DE CENTRALIZACIÓN DE UN CONJUNTO DE DATOS

Nombre:	Curso:	Fecha:

5 Calcula la media, la mediana y la moda del siguiente conjunto de datos.

4, 7, 10, 8, 3, 2, 1, 2, 2, 8

Las tallas de calzado que usan los 20 alumnos de una clase de 3.º ESO son:

34, 34, 35, 35, 35, 36, 36, 36, 37, 37, 37, 38, 38, 38, 39, 39, 39, 39, 40, 40

Halla la media, la mediana y la moda.

Un deportista quiere comprarse una bicicleta de montaña y analiza el precio y el peso de estas bicicletas.

Bicicleta	Precio (€)	Peso (kg)
Marin Rift Zone	1 474	13,12
Kastle Degree 12.0	2879	12,2
Sistesi Bazooka	3 540	15,7
Bianchi NTH	4 350	11,52
Arrow Spyce HPR	1799	13,1
Pro-Flex Beast	1 788	13,46
DBR V-Link Pro	4 494	11,66
Specialized M-2 S-Works	2 934	10,35
Sunn Revolt 2	2 172	11,21
BH Top Line Expert 001	2 550	9,95

- a) Halla el precio medio.
- b) Calcula el peso medio.

CALCULAR E INTERPRETAR LAS MEDIDAS DE DISPERSIÓN DE UN CONJUNTO DE DATOS

Nombre:	C	curso:	Fecha:

Las **medidas de dispersión** son medidas estadísticas que indican el mayor o menor grado de agrupamiento, alrededor de las medidas centrales, de los valores que forman un conjunto de datos.

El recorrido, la desviación, la desviación media, la varianza y la desviación típica son medidas de dispersión.

RANGO Y DESVIACIÓN RESPECTO DE LA MEDIA

- El rango o recorrido se calcula como la diferencia entre el mayor valor y el menor de la variable estadística.
- La **desviación respecto a la media** es la diferencia entre cada valor de la variable y la media. La suma de las desviaciones siempre es cero.

EJEMPLO

Las estaturas (en cm) de los jugadores de dos equipos de baloncesto son:

Equipo A	180	165	170	173	162
Equipo B	168	173	171	169	169

Calcula el rango o recorrido y la desviación para cada uno de los equipos.

• Recorrido = mayor valor de la variable — menor valor de la variable

Equipo A: Recorrido = 180 - 162 = 18 cm

Equipo B: Recorrido = 173 - 168 = 5 cm

Se observa que las estaturas de los jugadores del equipo A están más dispersas que las del equipo B, ya que la diferencia entre el valor mayor y el menor es mayor en el equipo A.

• Desviación respecto a la media = valor de la variable — media

Equipo A: Media = (180 + 165 + 170 + 173 + 162)/5 = 170 cm

$$180 - 170 = 10 \text{ cm}$$

$$165 - 170 = -5 \text{ cm}$$

$$170 - 170 = 0 \text{ cm}$$

$$173 - 170 = 3 \text{ cm}$$

Equipo B: Media = (168 + 173 + 171 + 169 + 169)/5 = 170 cm

$$168 - 170 = -2 \text{ cm}$$

$$173 - 170 = 3 \text{ cm}$$

$$171 - 170 = 1 \text{ cm}$$

$$169 - 170 = -1 \text{ cm}$$

$$169 - 170 = -1 \text{ cm}$$

162 - 170 = -8 cm

Observamos que la suma de las desviaciones es siempre cero:

Equipo A:
$$10 + (-5) + 0 + 3 + (-8) = 0$$

Equipo B:
$$(-2) + 3 + 1 + (-1) + (-1) = 0$$

ACTIVIDADES

1 En un examen de Matemáticas se han obtenido las siguientes notas.

3, 5, 7, 2, 9, 5, 3

Obtén el recorrido y la desviación.

CALCULAR E INTERPRETAR LAS MEDIDAS DE DISPERSIÓN DE UN CONJUNTO DE DATOS

Nombre:	Curso:	Fecha:
---------	--------	--------

2 Las edades de los alumnos de una clase vienen dadas por la siguiente tabla. Obtén el rango y la desviación.

Edad (x _i)	f _i	$f_i \cdot x_i$	$\chi_i - \overline{\chi}$	$f_i \cdot (x_i - \overline{x})$
13	6			
14	7			
15	4			
16	3			
Suma				

3 Calcula el recorrido y la desviación de los datos.

Intervalo	X _i	fi	$f_i \cdot x_i$	$x_i - \overline{x}$	$f_i \cdot (x_i - \overline{x})$
[0, 4)		3			
[4, 8)		10			
[8, 12)		5			
[12, 16]		2			
Suma					

4 Comprueba, para los pesos de 20 alumnos, que la suma de las desviaciones es cero.

Peso	X _i	fi	$x_i - \overline{x}$	$f_i \cdot (x_i - \overline{x})$
[35, 41)		2		
[41, 47)		5		
[47, 53)		6		
[53, 59)		1		
[59, 65)		4		
[65, 71]		2		

CALCULAR E INTERPRETAR LAS MEDIDAS DE DISPERSIÓN DE UN CONJUNTO DE DATOS

Nombre: Curso: Fecha:

DESVIACIÓN MEDIA, VARIANZA Y DESVIACIÓN TÍPICA

- Desviación media (DM): es la media de los valores absolutos de las desviaciones.
- Varianza: es la media de los valores absolutos de las desviaciones al cuadrado.
- **Desviación típica**: es la raíz cuadrada de la varianza. Se designa con la letra σ .

EJEMPLO

La tabla muestra los resultados obtenidos en un test de 120 preguntas. Halla la desviación media, la varianza y la desviación típica.

Intervalo	Xi	fi	$f_i \cdot x_i$	$ x_i - \overline{x} $	$(x_i - \overline{x})^2$	$f_i \cdot (x_i - \overline{x})^2$
[0, 30)	15	12	180	15 - 52,35 = 36,73	1349,02	12 · 1349,02 = 16726228,28
[30, 60)	45	20	900	45 - 52,35 = 7,35	54,02	20 · 54,02 = 1080,4
[60, 90)	75	10	750	75 - 52,35 = 22,65	513,02	10 · 513,02 = 5130,2
[90, 120]	105	7	735	105 - 52,35 = 52,65	2772,02	7 · 2772,02 = 19404,14
	Suma	49	2565			42343,02

Desviación media =
$$\frac{36,73 \cdot 12 + 7,35 \cdot 20 + 22,65 \cdot 10 + 52,65 \cdot 7}{49} = 24,14$$

$$Varianza = \frac{42343,20}{49} = 864,14$$

Desviación típica =
$$\sqrt{\text{varianza}} = \sqrt{864,14} = 29,4$$

5 Calcula las medidas de centralización y las medidas de dispersión.

Xi	fi	F _i	$f_i \cdot x_i$	$ \mathbf{x}_i - \overline{\mathbf{x}} $	$(x_i - \overline{x})^2$	$f_i \cdot (x_i - \overline{x})^2$	$ f_i\cdot \pmb{x}_i-ar{\pmb{x}} ^2$
20							
21							
22							
23							
24							
25							,
Suma							

Media = \bar{x} =

Mediana = Me =

Moda = Mo =

Rango =

Desviación media =

Varianza =

Desviación típica $= \sigma =$

CALCULAR E INTERPRETAR LAS MEDIDAS DE DISPERSIÓN DE UN CONJUNTO DE DATOS

Nombre:	Curso:	Fecha:

6 La basura (en kg) producida por cada habitante al año en 10 países europeos es la que muestra la siguiente tabla.

País	Basura (kg)
Alemania	337
Bélgica	313
España	214
Francia	288
Gran Bretaña	282
Italia	246
Noruega	415
Países Bajos	381
Suecia	300
Suiza	336

- a) Calcula la media de basura producida por cada habitante en estos países.
- b) ¿Cuánto vale la mediana de los datos?
- c) ¿Cuál es el recorrido de la distribución?

d) Completa la tabla.

País	Basura (kg)	$ x_i - \overline{x} $	$(x_i - \overline{x})^2$
Alemania	337		
Bélgica	313		
España	214		
Francia	288		
Gran Bretaña	282		
Italia	246		
Noruega	415		
Países Bajos	381		
Suecia	300		
Suiza	336		
Total	,		

- e) ¿Cuánto suman las desviaciones respecto de la media?
- f) ¿Cuánto vale la varianza?
- g) ¿Y cuánto vale la desviación típica?