

Contents

G. Gaertner, Y. Wang, D. Barratt, D. den Engelsen, F. Liao, J. Feng and J. Li	
Electron emission phenomena	
Electron emission and work function—Past, present and future S. Yamamoto	
A work function study of ultra-thin alumina formation on NiAl(1 1 0) surface W. Song and M. Yoshitake	14
Two-dimensional Child-Langmuir law of planar diode with finite-radius emitter Y. Li, H. Wang, C. Liu and J. Sun	19
Thermionic Emission	
Oxide cathode-100th anniversary Hundred years anniversary of the oxide cathode—A historical review G. Gaertner and D. den Engelsen	2
The base metal of the oxide-coated cathode F. Poret and J.M. Roquais	3
Analytical interfacial studies of double carbonate thermionic oxide cathodes over accelerated operational life D.K. Barber, S.N. Jenkins, M.J. Whiting and M.A. Baker	4
Model of dopant action in oxide cathodes D. den Engelsen and G. Gaertner	5
Stretched exponential degradation of oxide cathodes B.M. Weon and J.H. Je	5
Development of new types of oxide cathodes X. Liao, X. Wang, Q. Zhao and M. Meng	6
An improved reservoir oxide cathode X. Wang, X. Liao, J. Luo and Q. Zhao	6
Thermionic emission fundamentals Life-limiting mechanisms in Ba-oxide, Ba-dispenser and Ba-Scandate cathodes G. Gaertner and D. Barratt	7
Operating model for scandia doned matrix scandate cathodes	

W. Liu, K. Zhang, Y. Wang, K. Pan, X. Gu, J. Wang, J. Li and M. Zhou

Emission efficiency optimization of RE_2O_3 doped molybdenum thermionic cathode by application of pattern recognition method	
J. Wang, W. Liu, Y. Liu and M. Zhou	89
Preparation and "in situ" analysis of La coated Mo cathodes S. Hao, Z. Nie, J. Yang and X. Xi	97
Thermionic emission technology Weld techniques for reservoir cathodes B.K. Vancil and E.G. Wintucky	101
Characteristics of scandate-impregnated cathodes with sub-micron scandia-doped matrices H. Yuan, X. Gu, K. Pan, Y. Wang, W. Liu, K. Zhang, J. Wang, M. Zhou and J. Li	106
Scandate Cathode for TWT W. Shuguang	114
Correlation of cathode parameters of high power grid tubes with material characteristics of cathode-grid units I.P. Melnikova, I.V. Polyakov and D.A. Usanov	120
A new dispenser cathode with dual-layer Y. Li, H. Zhang, P. Liu and M. Zhang	126
Emission and surface characteristic of ternary alloy Ir/Re/W-coated impregnated tungsten cathodes H. Zhang, Y. Liu, M. Zhang and Y. Li	130
Study on preparation and emission properties of nano-composite W-La ₂ O ₃ material X. Xi, Z. Nie, W. Wang, J. Yang, S. Hao, Y. Guo and T. Zuo	134
Thermionic emission applications The decline of impregnated cathodes in CRTs D. den Engelsen and L. Tong	139
Aging process of I-cathode with magnetic ion trap X. Zhang, W. Lei, N. Feng, J. Havekes, L. Tong and D. den Engelsen	146
High current density M-type cathodes for vacuum electron devices J. Li, Z. Yu, W. Shao, K. Zhang, Y. Gao, H. Yuan, H. Wang, K. Huang, Q. Chen, S. Yan and S. Cai	151
Field Emission	
Field emission applications Application of vitreous and graphitic large-area carbon surfaces as field-emission cathodes C.E. Hunt and Y. Wang	159
Special features of electron sources with CNT field emitter and micro grid W. Knapp and D. Schleußner	164
Characteristics of a cold cathode electron source combined with secondary electron emission in a FED W. Lei, X. Zhang, X. Zhou, Z. Zhu, C. Lou and H. Zhao	170
Field emission fundamentals Theoretical analysis of the field enhancement in a two-dimensional triple junction M.S. Chung, T.S. Choi and BG. Yoon	177
Analysis of the transverse energy distribution of hopping electrons through a glass funnel X. Zhang, W. Lei, M. Liu, L. Zhang, D. den Engelsen, X. Zhou and Q. Wang	182

Contents	xiii
Analysis of the carrier concentration for field emission from Al _x Ga _{1-x} N T.S. Choi and M.S. Chung	191
Field emission technology Field emission cathodes based on milled carbon fibers E.P. Sheshin, A.S. Baturin, K.N. Nikolskiy, R.G. Tchesov and V.B. Sharov	196
Fabrications of Spindt-type cathodes with aligned carbon nanotube emitters M.Q. Ding, X. Li, G. Bai, J.J. Feng, F. Zhang and F. Liao	201
Atomic-scale field emitter with self-repairable function and thermodynamically stable structure: FEM study on Pd-covered nanopyramids on W<1 1 l> tips E. Rokuta, T. Itagaki, D. Miura, T. Moriyama, T. Ishikawa, BL. Cho, T.Y. Fu, T.T. Tsong and C. Oshima	205
Effect of ageing process on performance of molybdenum field emission arrays X. Li, C. Yang, J. Feng, J. Cai, G. Bai, M. Ding, F. Zhang and F. Liao	210
Field emission characteristics of oriented-AlN thin film on tungsten tip S.L. Yue, C.Z. Gu, C.Y. Shi and C.Y. Zhi	215
Synthesis and field emission properties of aluminum nitride nanocones C. Liu, Z. Hu, Q. Wu, X. Wang, Y. Chen, W. Lin, H. Sang, S. Deng and N. Xu	220
Enhanced electron emission from diamond film deposited on pre-seeded Si substrate with nanosized diamond power C.Z. Gu	225
Cathode units with a carbon fiber field emitter M. Chupina, O. Ivanov, O. Maslennikov and E. Orekhov	230
Field emission properties of diamond-like carbon films annealed at different temperatures J.J. Li, C.Z. Gu, H.Y. Peng, H.H. Wu, W.T. Zheng and Z.S. Jin	236
Electrophoretic deposition and field emission properties of patterned carbon nanotubes H. Zhao, H. Song, Z. Li, G. Yuan and Y. Jin	242
Field electron emission from branched nanotubes film B. Zeng, S. Tian and Z. Yang	245
Fabrication and characterization of high-current-density carbon-nanotube cold cathodes C. Zhu, C. Lou, W. Lei and X. Zhang	249
New method to fabricate field-emission cathode of carbon nanotubes C. Lou, X. Zhang, W. Lei and C. Qi	254
Electron field emission properties of carbon nanotubes-deposited flexible film H. Ma, L. Zhang, J. Zhang, L. Zhang, N. Yao and B. Zhang	258
Investigations of the multi-pulsed emission characteristics of velvet L. Xia, K. Zhang, J. Shi and L. Zhang	262
Photoelectron Emission Angle-dependent XPS study of the mechanisms of "high-low temperature" activation of GaAs photocathode X. Du and B. Chang	267
The variation of spectral response of transmission-type GaAs photocathode in the seal process L. Lei, C. BenKang, D. YuJie, Q. YunSheng and G. Pin	273

1

IV

Author Index

Subject Index

