GRP. Groupes

QCOP GRP.1

- **1.** Résultat. $\forall x, y \in G_1$, $f(x *_1 y) = f(x) *_2 f(y)$.
- 2. a) On rappelle que $e_1 *_1 e_1 = e_1$ et $f(e_1)$ est inversible dans G_2 .
 - **b)** Utiliser que, pour $x \in G_1$, $x *_1 x^{-1} = e_1$.
 - c) Procéder par récurrence pour les entiers positifs, exploiter la question précédente pour les négatifs.

QCOP GRP.2

3. Remarquer que $H = f^{\langle -1 \rangle}[\mathbb{Z}]$ où $f : \begin{vmatrix} \mathbb{Z} & \longrightarrow & \mathbb{Z}^2 \\ k & \longmapsto & (k,0) \end{vmatrix}$ est un morphisme de groupes de $(\mathbb{Z},+)$ dans $(\mathbb{Z}^2,+)$.

QCOP GRP.3

3. On peut écrire $\{-1,1\}$ comme l'image directe de \mathbb{R}^* par l'application

signe :
$$\mathbb{R}^* \longmapsto \{-1,1\}x \begin{cases} 1 & \text{si} \quad x > 0 \\ -1 & \text{si} \quad x < 0. \end{cases}$$

On vérifie que cette application définit bien un morphisme de groupes.

QCOP GRP.4

- **3.** a) ♦ L'implication ⇐ se traite sans difficulté, connaissant la définition de morphisme de groupes.
 - \blacklozenge Pour \Longrightarrow , on peut raisonner par récurrence pour montrer la propriété sur $\mathbb N$ et raisonner avec $-n\geqslant 0$ pour $n\leqslant 0$.
 - **b)** Soit f un morphisme de groupes de $(\mathbb{Z},+)$ dans $(\mathbb{Z},+)$. On peut fixer $\alpha \in \mathbb{Z}$ tel que $\forall n \in \mathbb{Z}, \quad f(n) = n\alpha.$

Raisonner ensuite avec la caractérisation de l'injectivité par le noyau.

Résultat. Tous les morphismes sauf le morphisme nul.