Introdução

Conclusão

LTMS - Lups Transactional Memory Scheduler: Um escalonador NUMA-Aware para STM

Michael Alexandre Costa

Prof. Dr. André Rauber Du Bois (Orientador)

Mestrado em Computação Centro de Desenvolvimento Tecnológico Universidade Federal de Pelotas macosta@inf.ufpel.edu.br

20 de junho de 2021

Escalonadores

1 Introdução

Introdução

- 2 Memórias Transacionais
- 3 Escalonadores
- 4 Arquiteturas
- 5 LTMS
- **6** Experimentos
- Resultados
- 8 Conclusão

Memórias Transacionais Escalonadores

Arquiteturas

Introdução

Motivação

- Programação Paralela;
- Memórias Transacionais;
- Escalonadores de Transações; e
- Arquiteturas NUMA.

Memórias Transacionais Escalonadores Arquiteturas LTMS Experimentos

Introdução

Introdução

Objetivos

Investigar escalonadores de Memórias Transacionais em NUMA.

Contribuições

- Projeto de um escalonador de STM intitulado LTMS;
- Prototipação do escalonador LTMS; e
- Análise de desempenho do LTMS comparado a TinySTM.

Resultados

Conclusão

Experimentos

Conclusão

Introdução

Introdução

Características

- Mecanismo para leitura da arquitetura e criação de filas;
- Duas diferentes heurísticas de distribuição inicial de threads;
- Mecanismo que em tempo de execução coleta informações sobre as threads:
- Mecanismo de migração de threads entre as filas de execução; e
- Duas heurísticas de migração.

Introdução

Escalonadores

Memórias Transacionais

Características

- Fornece abstração de código; e
- Ausência de deadlocks.

Transações

- Atomicidade;
- Consistência; e
- Isolamento.

Problemas

- Somente reinicia a transação conflitante;
- Não evita que conflitos futuros aconteçam; e

Escalonadores

Em ambientes de alta contenção, tende a perder desempenho.

Experimentos

Conclusão

Escalonadores

Introdução

Escalonadores de Transações

- Buscam reduzir os números de conflitos;
- Utilizam diferentes Heurísticas de escalonamento; e
- Serializa as transações conflitantes.

Experimentos

Conclusão

Escalonadores

Introdução

Classificação das técnicas

- Baseado em Heurística:
 - · Feedback:
 - Predição;
 - · Reativo; e
 - Heurística Mista.
- Baseado em Modelo:
 - Aprendizado de Máquina;
 - Modelo Analítico; e
 - Modelo Misto.

Escalonadores

Introdução

Tabela: Comparativo entre os escalonadores apresentados

Escalonadores	LTMS	STMap	ATS	Shrink	LUTS	ProVIT	CAR-STM
Distribuição inicial de threads	Sim	Não	Não	Não	Sim	Não	Não
Coleta de dados por threads	Sim	Sim	Não	Sim	Não	Não	Não
Migração entre filas	Sim	Não	Não	Não	Não	Não	Sim
Avalia a arquitetura	Sim	Sim	Não	Não	Não	Não	Não
NUMA	Sim	Sim	Não	Não	Não	Não	Não
Técnica de escalonamento	Reativo	Predição	Feedback	Predição	Mista	Mista	Reativo

Conclusão

Arquiteturas

UMA

Introdução

- Uniform Memory access;
- Possui um único barramento de acesso à memória; e
- Único custo de acesso à memória.

NUMA

- Non-uniform Memory access;
- Possui mais de um barramento de acesso à memória; e
- O custo de acesso à memória é diferente conforme o núcleo utilizado.

Memórias Transacionais Escalonadores Arquiteturas LTMS Experimentos Resultados

LTMS

Introdução

Estágios

- Inicialização do sistema;
- Coleta de dados em tempo de execução; e
- Migração de Threads.

Conclusão

LTMS

Introdução

Figura: Fluxograma do LTMS

13

Conclusão

Experimentos

Conclusão

Introdução

Inicialização do sistema

- · Criação de filas; e
- Distribuição das threads.

Heurísticas de Distribuição

- Sequential; e
- Chunks.

14

Introdução

Escalonadores Arquiteturas

Conclusão

LTMS - Heurísticas

Figura: Heurística Sequential

Memórias Transacionais Escalonadores Arquiteturas LTMS Experimentos

LTMS - Heurísticas

Introdução

Figura: Heurística Chunks

16

Resultados

Conclusão

Escalonadores

Arquiteturas

Experimentos

Conclusão

Introdução

Coleta de dados em tempo de execução

- Aborts e Commits;
- Matriz de Comunicação; e
- Matriz de Endereços.

Escalonadores

Arquiteturas

Experimentos

Conclusão

Introdução

Matriz de Comunicação

- Quantidade de comunicação entre pares de threads;
- Eventos de Comunicação; e
- Coletado 1 evento a cada 100 acessos.

Escalonadores

Arquiteturas

Experimentos

Conclusão

Introdução

Matriz de Endereços

- Endereços em comum mais acessados entre os pares de threads;
- Utiliza uma Tabela Hash;
- Chave: Endereços de memória; e
- Valor: Quantidade de acessos recebidos.

Escalonadores

Arquiteturas

Conclusão

Introdução

Migração de Threads

- Quando ocorre um abort;
- Identificar a melhor fila; e
- Heurísticas de migração.

20

Introdução

Experimentos

Conclusão

LTMS - Filas e Threads

Escolha das filas

- Identifica os pares de threads; e
- Matriz de comunicação.

Experimentos

Conclusão

Threshold

Introdução

- Avalia o nível de contenção (Abort/Commit);
- Limiar alto Maior contenção Menos migrações;
- Limiar baixo Menor contenção Mais migrações; e
- Limiar de 0.8 (80% de contenção).

Experimentos

Conclusão

Latency

Introdução

- Avalia a latência de acesso à memória;
- Matriz de endereços;
- Nodos NUMA; e
- Bancos de memória.

Escalonadores Arquiteturas

LTMS

Conclusão

Experimentos

Introdução

Aplicação

- TinySTM 1.0.5; e
- STMAP 0.9.10.

Arquitetura

- Intel Xeon E5-4650;
- 96 núcleos e 192 threads:
- 468Gb de memória RAM.

Escalonadores

Conclusão

Experimentos

Testes

Introdução

- Cenários de threads:
 - 1, 2, 4, 8, 16, 32, 64, 128, 256, e 512;
- Heurísticas de Distribuição-Migração:
 - Sequential-Threshold;
 - · Chunks-Threshold:
 - · Sequential-Latency;
 - Chunks-Latency;
- TinySTM; e
- Baterias de 30 execuções.

LTMS - Lups Transactional Memory Scheduler: Um escalonador NUMA-Aware para STM Defesa de Mestrado

Resultados

Introdução

Benchmarks

- Bayes;
- Intruder;
- Kmeans:
- Labyrinth;
- · Vacation; e
- Yada.

Memórias Transacionais **Escalonadores Arquiteturas** Experimentos Resultados

Intruder

Introdução

Conclusão

Memórias Transacionais Escalonadores Arquiteturas LTMS Experimentos **Resultados** Conclusão

Kmeans

Introdução

28

LTMS - Lups Transactional Memory Scheduler: Um escalonador NUMA-Aware para STM
Defesa de Mestrado

Memórias Transacionais **Escalonadores Arquiteturas** Resultados Conclusão

Labyrinth

Introdução

□ Tiny □ Latency-Sequential □ Latency-Chunks □ Threshold-Sequential □ Threshold-Chunks

Memórias Transacionais **Escalonadores Arquiteturas** Experimentos Resultados Conclusão

Vacation

Introdução

Memórias Transacionais Escalonadores Arquiteturas LTMS Experimentos **Resultados** Conclusão

Yada

Introdução

□ Tiny □ Latency-Sequential □ Latency-Chunks □ Threshold-Sequential □ Threshold-Chunks

Experimentos

Conclusão

Introdução

Analise

- Aplicações com conjunto pequeno de leitura e escrita;
- Melhor execução com tempo médio de transação;
- Melhor execução com alta contenção;
- Melhor caso com redução de 96% no tempo de execução; e
- Melhor caso com redução de 99% na ocorrência de aborts.

32

Escalonadores

Arquiteturas

Experimentos

Introdução

Trabalhos futuros

- Novas Heurísticas de distribuição;
- Heurísticas de migração híbrida; e
- Impacto energético dos escalonadores de STM.

Introdução

Escalonadores

Experimentos

Conclusão

LTMS - Lups Transactional Memory Scheduler: Um escalonador NUMA-Aware para STM

Michael Alexandre Costa

Prof. Dr. André Rauber Du Bois (Orientador)

Mestrado em Computação Centro de Desenvolvimento Tecnológico Universidade Federal de Pelotas macosta@inf.ufpel.edu.br

20 de junho de 2021

