Wintersemester 2020/2021

Lösungshinweise zur 4. Übung

Logik für Informatiker

Gruppenübungen:

(G 1)Allgemeine Induktion 1

Wurde in der Vorlesung behandelt.

(G 2) Allgemeine Induktion 2

Ähnlich wie in der Vorlesung, nur wird hier die Funktion AO(F) in AO1(F) und AO2(F) gespaltet. Die Struktur des Beweises ändert sich nicht.

(G 3)KNF und DNF

Wir wenden die in der Vorlesung angegebene Schritte an:

$$\neg(A \to B) \to (A \leftrightarrow \neg(B \land C)) \equiv \\ \neg(A \to B) \to ((A \to \neg(B \land C)) \land (\neg(B \land C) \to A)) \equiv \text{(Doppelpfeilelimination)} \\ \neg(\neg A \lor B) \to ((\neg A \lor \neg(B \land C)) \land (\neg \neg(B \land C) \lor A)) \equiv \text{(Pfeilelimination)} \\ \neg(\neg A \lor B) \to ((\neg A \lor \neg(B \land C)) \land (\neg \neg(B \land C) \lor A)) \equiv \text{(Pfeilelimination)} \\ (\neg A \lor B) \lor ((\neg A \lor \neg(B \land C)) \land ((B \land C) \lor A)) \equiv \text{(doppelte Negation Elimination)} \\ (\neg A \lor B) \lor ((\neg A \lor \neg B \lor \neg C)) \land ((B \land C) \lor A)) \equiv \text{(de Morgan)} \\ (\neg A \lor B) \lor ((\neg A \lor \neg B \lor \neg C)) \land ((A \lor B) \land (A \lor C)) \equiv \text{(Distributivität)} \\ (\neg A \lor B \lor \neg A \lor \neg B \lor \neg C) \land (\neg A \lor B \lor A \lor B) \land (\neg A \lor B \lor A \lor C) \equiv \text{(Distributivität)} \\ (B \lor \neg B \lor \neg A \lor \neg C) \land (A \lor \neg A \lor B) \land (A \lor \neg A \lor B \lor C) \equiv \text{(Kommutativität)} \\ \neg B \vdash \neg B \vdash \neg A \vdash \neg C \vdash \neg$$

Die Formel ist allgemeingültig.

(G 4)KNF und DNF

Bringe folgende Formeln in kanonischer KNF und DNF mit und ohne Wahrheitstafel:

a)
$$(a \lor b) \land c$$

b)
$$\neg((\neg a \land b) \lor (\neg c \lor (\neg b \lor a)))$$

c)
$$\neg a \land (b \lor (c \land \neg d))$$
.

LÖSUNG:

a)
$$(a \lor b) \land c$$

DNF: $(a \lor b) \land c = (a \land c) \lor (b \land c)$. Daraus folgt durch Erweiterung mit $\top \equiv x_i \lor \neg x_i$

$$(a \land b \land c) \lor (a \land \neg b \land c) \lor (\neg a \land b \land c).$$

KNF: durch Erweiterung mit $\perp \equiv x_i \land \neg x_i$

$$(a \lor b \lor c) \land (a \lor b \lor \neg c) \land (\neg a \lor b \lor c) \land (a \lor \neg b \lor c) \land (\neg a \lor \neg b \land c).$$

b)
$$\neg((\neg a \land b) \lor (\neg c \lor (\neg b \lor a)))$$

DNF:

$$\neg((\neg a \land b) \lor (\neg c \lor (\neg b \lor a))) \equiv (a \lor \neg b) \land (c \lor (b \land \neg a)) \equiv (a \land c) \lor (a \land b \land \neg a) \lor (\neg b \land c) \lor (\neg b \land b \land \neg a) \equiv (a \land c) \lor \bot \lor (\neg b \land c) \lor \bot \equiv (a \land c) \lor (\neg b \land c).$$

Daraus folgt durch Erweiterung mit $\bot \equiv a \lor \neg x_i$

$$(a \land b \land c) \lor (a \land \neg b \land c) \lor (\neg a \land \neg b \land c).$$

KNF:

$$(a \vee \neg b) \wedge (c \vee (b \wedge \neg a)) \equiv (a \vee \neg b) \wedge (c \vee b) \wedge (c \vee \neg a).$$

Daraus folgt durch Erweiterung mit $\perp \equiv x_i \land \neg x_i$

$$(a \vee \neg b \vee c) \wedge (a \vee \neg b \vee \neg c) \wedge (a \vee b \vee c) \wedge (\neg a \vee b \vee c) \wedge (\neg a \vee \neg b \vee c).$$

c)
$$\neg a \land (b \lor (c \land \neg d)) \equiv (\neg a \land b) \lor (\neg a \land c \land \neg d).$$

(G 5)Allgemeine Induktion 3

Induktionsverankerung

Angenommen $F \in \Pi \cup \{\top, \bot\}$. Laut Definition sind L(F) = 1 und H(F) = 1. Die Ungleichung $L(F) < 2^{H(F)} - 1$ ist erfüllt, weil $1 < 2^1 - 1$ ist.

Induktionsvoraussetzung

Sei $F \in \mathsf{PROP}$ eine aussagenlogische Formel. Angenommen die Ungleichung $L(R) \leq 2^{H(R)} - 1$ gilt für jede Teilformel R von F.

Induktionsschritt

Wir beweisen, unter der obigen Induktionsvorausetzung, dass $L(F) \leq 2^{H(F)} - 1$ gilt. Dafür müssen wir folgende Fälle unterscheiden:

- a) $F = \neg F_1$. In diesem Fall gilt $H(F) = 1 + H(F_1)$ und $L(F) = 1 + L(F_1)$ (laut Definition). Dann gilt $L(F_1) \le 1 + L(F_1) = L(F) \le 1 + 2^{H(F_1)} 1 = 2^{H(F_1)} \le 2^{1 + H(F_1)} 1$.
- b) $F = F_1 \circ F_2$ wir analog gelöst.