

Reinforcement learning

- Basic idea:
 - ✓ Receive feedback in the form of rewards
 - ✓ Agent's utility is defined by the reward function
 - ✓ Must (learn to) act so as to maximize expected rewards
 - ✓ All learning is based on observed samples of outcomes!

Reinforcement learning

- Examples:
 - ✓ How a 2 year old child walk?
 - ✓ How we recognize colors?
 - ✓ How to deal with situations we haven't faced or encountered before?

MDP: what we have seen?

- A Markov decision process (MDP) has:
 - ✓ A set of states $s \in S$
 - ✓ A set of actions (per state) A
 - ✓ A model T(s,a,s')
 - ✓ A reward function R(s,a,s')
- A policy $\pi(s)$

Reinforcement learning

- Still assume a Markov decision process (MDP):
 - ✓ A set of states $s \in S$
 - ✓ A set of actions (per state) A
 - ✓ A model T(s,a,s')
 - ✓ A reward function R(s,a,s')
- Still looking for a policy $\pi(s)$
- New twist: don't know T or R
 - ✓ I.e. we don't know which states are good or what the actions do
 - ✓ Must actually try out actions and states to learn

Learning

• Online: Reinforcement

Offline: MDPs

- Model-Based Idea:
 - ✓ Learn an approximate model based on experiences
 - ✓ Solve for values as if the learned model were correct
- Step 1: Learn empirical MDP model
 - ✓ Count outcomes s' for each s, a
 - ✓ Normalize to give an estimate of $\widehat{T}(s, a, s')$
 - \checkmark Discover each $\widehat{R}(s, a, s')$ when we experience (s, a, s')
- Step 2: Solve the learned MDP
 - ✓ For example, use value iteration, as before

Input Policy π

Assume: $\gamma = 1$

Input Policy π

Assume: $\gamma = 1$

Observed Episodes (Training)

Ep 1

B, east, C, -1

C, east, D, -1

D, exit, x, +10

Ep 2

B, east, C, -1

C, east, D, -1

D, exit, x, +10

Ep 3

E, north, C, -1

C, east, D, -1

D, exit, x, +10

Ep 4

E, north, C, -1

C, east, A, -1

A, exit, x, -10

Input Policy π

Assume: $\gamma = 1$

Observed Episodes (Training)

Ep 1
B, east, C, -1

C, east, D, -1 D, exit, x, +10

Ep 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10 Ep 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Ep 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

Learned Model

 $\widehat{T}(s, a, s')$

T(B, east, C) = 1.00 T(C, east, D) = 0.75 T(C, east, A) = 0.25

 $\hat{R}(s, a, s')$

R(B, east, C) = -1 R(C, east, D) = -1 R(D, exit, x) = +10

Model-Free Learning

Example: Expected Age

Goal: Compute expected age of 3ENC6-10 students

Unknown P(A): "Model Based"

$$\hat{P}(a) = \frac{\text{num}(a)}{N}$$

$$E[A] \approx \sum_{a} \hat{P}(a) \cdot a$$

Unknown P(A): "Model Free"

$$E[A] \approx \frac{1}{N} \sum_{i} a_{i}$$

Model-Free Learning: Passive Reinforcement Learning

- Simplified task: policy evaluation
 - ✓ Input: a fixed policy $\pi(s)$
 - ✓ You don't know the transitions T(s,a,s')
 - ✓ You don't know the rewards R(s,a,s')
 - ✓ Goal: learn the state values
- In this case:
 - ✓ Learner is "along for the ride"
 - ✓ No choice about what actions to take
 - ✓ Just execute the policy and learn from experience
 - ✓ This is NOT offline planning! You actually take actions in the world.

Model-Free Learning: Passive Reinforcement Learning: Direct Evaluation

- Goal: Compute values for each state under π
- Idea: Average together observed sample values
 - \checkmark Act according to π
 - ✓ Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - ✓ Average those samples
- This is called direct evaluation.

Model-Free Learning: Passive Reinforcement Learning: Direct Evaluation

Input Policy π

Observed Episodes (Training)

Output Values

Assume: $\gamma = 1$

Exp 1

B, east, C, -1

C, east, D, -1

D, exit, x, +10

Exp 3

E, north, C, -1

C, east, D, -1

D, exit, x, +10

Exp 2

B, east, C, -1

C, east, D, -1

D, exit, x, +10

Exp 4

E, north, C, -1

C, east, A, -1

A, exit, x, -10

	A	
В	С	D
	E	

Model-Free Learning: Passive Reinforcement Learning: Direct Evaluation

Input Policy π

Observed Episodes (Training)

Output Values

Assume: $\gamma = 1$

Exp 1

B, east, C, -1

C, east, D, -1

D, exit, x, +10

Exp 3

E, north, C, -1

C, east, D, -1

D, exit, x, +10

Exp 2

B, east, C, -1

C, east, D, -1

D, exit, x, +10

Exp 4

E, north, C, -1

C, east, A, -1

A, exit, x, -10

	-10 A	
B +8	C ⁺⁴	+10 D
	-2 E	

Problems with Direct Evaluation

- What's good about direct evaluation?
 - It's easy to understand
 - It doesn't require any knowledge of T, R
 - It eventually computes the correct average values, using just sample transitions
- What bad about it?
 - It wastes information about state connections
 - Each state must be learned separately
 - So, it takes a long time to learn
- How to make this work?

Output Values

	-10 A	
B +8	C ⁺⁴	+10 D
	-2 E	

If B and E both go to C under this policy, how can their values be different?

Problems with Direct Evaluation

- What's good about direct evaluation?
 - It's easy to understand
 - It doesn't require any knowledge of T, R
 - It eventually computes the correct average values, using just sample transitions
- What bad about it?
 - It wastes information about state connections
 - Each state must be learned separately
 - So, it takes a long time to learn
- How to make this work?
 - Collect huge large data.

Output Values

	-10 A	
B +8	C ⁺⁴	+10 D
	-2 E	

If B and E both go to C under this policy, how can their values be different?

Why Not Use Policy Evaluation?

Can we use policy evaluation to find values?

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

Why Not Use Policy Evaluation?

- Can we use policy evaluation to find values?
 - ✓ No, because we do not have T, R.
- Still can we find values?
 - Yes, but some modification is needed.

Sample-Based Policy Evaluation

 $V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{i} sample_{i}$

• Idea: Take samples of outcomes s' (by doing the action!) and average

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

$$sample_1 = R(s, \pi(s), s'_1) + \gamma V_k^{\pi}(s'_1)$$

 $sample_2 = R(s, \pi(s), s'_2) + \gamma V_k^{\pi}(s'_2)$
...
 $sample_n = R(s, \pi(s), s'_n) + \gamma V_k^{\pi}(s'_n)$

Temporal difference learning

- We can learn from every experience.
- This formula can be re-written as:

$$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{i} sample_{i}$$

Sample of V(s):
$$sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$$

Update to V(s):
$$V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + (\alpha)sample$$

Same update:
$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$$

Decreasing learning rate (alpha) can give converging averages

States

B, east, C, -2

	Α	
В	C	D
	E	

Assume: $\gamma = 1$, $\alpha = 1/2$

■ Find the **sample value** of **red** dot, and update **v-value**.

States

	Α	
В	С	D
	E	

Assume: $\gamma = 1$, $\alpha = 1/2$

B, east, C, -2

	0	
0	0	8
	0	

$$5ample = R + YV$$

= -2+1.0
= -2
= (1-4)V + d (sample)

• Find the **sample value** of **red** dot, and update **v-value**.

States

Observed Transitions

B, east, C, -2

C, east, D, -2

	Α	
В	С	D
	E	

Assume: $\gamma = 1$, $\alpha = 1/2$

■ Find the **sample value** of **red** dot, and update **v-value**.

States

Observed Transitions

B, east, C, -2

C, east, D, -2

Assume: $\gamma = 1$, $\alpha = 1/2$

Problems with TD Value Learning

• We can only evaluate the policy, but can not update it.

Problems with TD Value Learning

- We can only evaluate the policy, but can not update it.
- However, if we want to turn values into a (new) policy, we're sunk:

$$\pi(s) = \arg\max_{a} Q(s, a)$$

$$Q(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V(s') \right]$$

Solution: learn Q-values

Active Reinforcement Learning

- Full reinforcement learning: optimal policies (like value iteration)
 - ✓ You don't know the transitions T(s,a,s')
 - ✓ You don't know the rewards R(s,a,s')
 - ✓ You choose the actions now
 - ✓ Goal: learn the optimal policy / values
- In this case:
 - ✓ Learner makes choices!
 - ✓ Fundamental tradeoff: exploration vs. exploitation (will see this in some time)
 - ✓ This is NOT offline planning! You actually take actions in the world and find out what happens

Q-Learning: recap

- Value iteration: find successive (depth-limited) values
 - Start with $V_0(s) = 0$, which we know is right
 - Given V_k, calculate the depth k+1 values for all states:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- But Q-values are more useful, so compute them instead
 - Start with $Q_0(s,a) = 0$, which we know is right
 - Given Q_k, calculate the depth k+1 q-values for all q-states:

$$Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]$$

Q-Learning

Q-Learning: sample-based Q-value iteration

$$Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]$$

- Learn Q(s,a) values as you go
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: Q(s, a)
 - Consider your new sample estimate:

$$sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$$

• Incorporate the new estimate into a running average:

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) [sample]$$

+ reward = 10

- reward = -100

Alpha = 0.5

Discounting = 1

Sample = ?

Q-value = ?

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you're acting sub-optimally!
- This is called off-policy learning
- Limitations:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly

Summary so far ...

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, π * Value / policy iteration

Evaluate a fixed policy π Policy evaluation

Unknown MDP: Model-Based

Goal Technique

Compute V*, Q*, π * VI/PI on approx. MDP

Evaluate a fixed policy π PE on approx. MDP

Unknown MDP: Model-Free

Goal Technique

Compute V^* , Q^* , π^* Q-learning

Evaluate a fixed policy π Value Learning

How to Explore?

- random actions (∈-greedy)
 - ✓ With (small) probability ϵ , act randomly
 - ✓ With (large) probability 1- ϵ , act on current policy
- Problems with random actions?
 - ✓ You do eventually explore the space, but keep thrashing around once learning is done
 - \checkmark One solution: lower ϵ over time
 - ✓ Another solution: exploration functions

Exploration Functions

- When to explore?
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established, eventually stop exploring
- Exploration function
 - Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g. f(u,n) = u + k/n

Regular Q-Update:
$$Q(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} Q(s', a')$$

Modified Q-Update:
$$Q(s,a) \leftarrow_{\alpha} R(s,a,s') + \gamma \max_{a'} f(Q(s',a'),N(s',a'))$$

Note: this propagates the "bonus" back to states that lead to unknown states as well!

Approximate Q-Learning

Why ?

Generalizing Across States

- Basic Q-Learning keeps a table of all q-values
- In realistic situations, we cannot possibly learn about every single state!
 - ✓ Too many states to visit them all in training
 - ✓ Too many states to hold the q-tables in memory.
- Instead, we want to generalize:
 - ✓ Learn about some small number of training states from experience
 - ✓ Generalize that experience to new, similar situations
 - ✓ This is a fundamental idea in machine learning, and we'll see it over and over again

Generalizing Across States: example

- Lets say a person is having a glass of hot water just after the ice-cream or vice versa at Patiala.
- Is this experience bad?
- Lets say he repeats the same process in Delhi, Mumbai, etc.
- Is his experience change?
- What can be done?

Generalizing Across States: example

Feature-Based Representations

Solution: describe a state using a vector of features (properties)

- Features are functions from states to real numbers (often 0/1) that capture important properties of the state
- Example features:
 - ✓ Distance to closest ghost
 - ✓ Distance to closest dot
 - ✓ Number of ghosts
 - \checkmark 1 / (dist to dot)²
 - ✓ Is Pacman in a tunnel? (0/1)
 - ✓ etc.
- Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Approximate Q-Learning

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

Q-learning with linear Q-functions:

$$\begin{aligned} & \text{transition} &= (s, a, r, s') \\ & \text{difference} &= \left[r + \gamma \max_{a'} Q(s', a')\right] - Q(s, a) \\ & Q(s, a) \leftarrow Q(s, a) + \alpha \text{ [difference]} \end{aligned} \quad & \text{Exact Q's} \\ & w_i \leftarrow w_i + \alpha \text{ [difference]} f_i(s, a) \quad & \text{Approximate Q's} \end{aligned}$$

- Intuitive interpretation:
 - Adjust weights of active features
 - E.g., if something unexpectedly bad happens, blame the features that were on: dis-prefer all states with that state's features
- Formal justification: online least squares

Example: Q-Pacman

$$Q(s,a) = 4.0 f_{DOT}(s,a) - 1.0 f_{GST}(s,a)$$

$$f_{DOT}(s,a)$$
 Distance to closest DOT

$$f_{GST}(s, a)$$
 Distance to closest ghost

Example: Q-Pacman

$$Q(s,a) = 4.0 f_{DOT}(s,a) - 1.0 f_{GST}(s,a)$$

 $f_{DOT}(s, NORTH) = 0.5$

 $f_{GST}(s, NORTH) = 1.0$

a = NORTH r = -500

S'

 $Q(s',\cdot) = ?$

$$Q(s, NORTH) = ?$$

 $r + \gamma \max_{a'} Q(s', a') = ?$

difference = ?

Example: Q-Pacman

$$Q(s,a) = 4.0 f_{DOT}(s,a) - 1.0 f_{GST}(s,a)$$

$$f_{DOT}(s, NORTH) = 0.5$$

$$f_{GST}(s, NORTH) = 1.0$$

$$Q(s, NORTH) = +1$$

 $r + \gamma \max_{a'} Q(s', a') = -500 + 0$

difference =
$$-501$$
 $w_{DOT} \leftarrow 4.0 + \alpha [-501] \ 0.5$ $w_{GST} \leftarrow -1.0 + \alpha [-501] \ 1.0$

$$Q(s,a) = 3.0 f_{DOT}(s,a) - 3.0 f_{GST}(s,a)$$