

SEQUENCE LISTING

<110> Lassner, M
5 Post-Beittenmiller, D
Savidge, B
Weiss, J

<120> Nucleic Acid Sequences Involved in
10 Tocopherol Synthesis

<130> 17133/02/US

<150> 60/129,899
15 <151> 1999-04-15

<150> 60/146,461
16 <151> 1999-07-30

<160> 94

<170> FastSEQ for Windows Version 4.0

<210> 1
25 <211> 1182
<212> DNA
<213> Arabidopsis sp

<400> 1
30 atggagtc tgctctctag ttcttcttt gttccgctg ctgggggtt ttgttggaaag 60
aaggcataatc taaaagctcca ctctttatca gaaatccgag ttctgcgttg tgattcgagt 120
aaagttgtcg caaaaaccgaa gtttaggaac aatcttgtt agcctgtatgg tcaaggatct 180
tcattgttgt tgatatccaaa acataagtgc agatttcggg ttaatgccac tgcgggtcag 240
cctgaggcct tcgactcgaa tagcaaacag aagtctttt aagactcggtt agatgcgttt 300
35 tacagggttt ctaggcctca tacagttatt ggacacagtgc ttagcatttt atctgtatct 360
ttcttagcag tagagaaggt ttctgtatata tctcccttac ttttcaactgg catcttggag 420
gctgttgtg cagctctcat gatgaacatt tacatagttt ggctaaatca gttgtctgtat 480
gttgaatag ataaggttaa caagccctat cttccattgg catcaggaga atattctgtt 540
aacaccggca ttgcaatagt agttcccttc tccatcatga gtttctggct tgggtggatt 600
40 gttggttcat ggcattgtt ctggcattttttt tttgtgagtt tcatgctcgg tactgcatac 660

tctatcaatt	tgccactttt	acgggtggaaa	agatttgcatt	tggttgcagc	aatgtgtatc	720											
ctcgctgtcc	gagctattat	tgttcaaatac	gccttttatac	tacatattca	gacacatgtg	780											
tttggaaagac	caatcttgtt	cactaggcct	cttattttcg	ccactgcgtt	tatgagcttt	840											
5	ttctctgtcg	ttattgcatt	gtttaaggat	atacctgata	tcgaaggggaa	taagatattc	900										
ggaatccat	cattctctgt	aactctgggt	cagaaacggg	tgtttggac	atgtgttaca	960											
ctacttcaaa	tggcttacgc	tgttgcaatt	ctagttggag	ccacatctcc	attcatatgg	1020											
agcaaagtca	tctcggttgt	gggtcatgtt	atactcgcaa	caactttgtg	ggctcgagct	1080											
aagtccgtt	atctgagtag	caaaaaccgaa	ataacttcat	gttatatgtt	catatggaag	1140											
ctctttatg	cagagtactt	gctgttacct	ttttgaagt	ga		1182											
10	<210> 2																
<211>	393																
<212>	PRT																
<213>	Arabidopsis sp																
15	<400> 2																
Met	Glu	Ser	Leu	Leu	Ser	Ser	Ser	Ser	Leu	Val	Ser	Ala	Ala	Gly	Gly		
1									10					15			
Phe	Cys	Trp	Lys	Lys	Gln	Asn	Leu	Lys	Leu	His	Ser	Leu	Ser	Glu	Ile		
20									25					30			
Arg	Val	Leu	Arg	Cys	Asp	Ser	Ser	Lys	Val	Val	Ala	Lys	Pro	Lys	Phe		
35								40					45				
Arg	Asn	Asn	Leu	Val	Arg	Pro	Asp	Gly	Gln	Gly	Ser	Ser	Leu	Leu	Leu		
50								55					60				
Tyr	Pro	Lys	His	Lys	Ser	Arg	Phe	Arg	Val	Asn	Ala	Thr	Ala	Gly	Gln		
65								70					75				
Pro	Glu	Ala	Phe	Asp	Ser	Asn	Ser	Lys	Gln	Lys	Ser	Phe	Arg	Asp	Ser		
85								90					95				
Leu	Asp	Ala	Phe	Tyr	Arg	Phe	Ser	Arg	Pro	His	Thr	Val	Ile	Gly	Thr		
100								105					110				
Val	Leu	Ser	Ile	Leu	Ser	Val	Ser	Phe	Leu	Ala	Val	Glu	Lys	Val	Ser		
115								120					125				
Asp	Ile	Ser	Pro	Leu	Leu	Phe	Thr	Gly	Ile	Leu	Glu	Ala	Val	Val	Ala		
130								135					140				
35	Ala	Leu	Met	Met	Asn	Ile	Tyr	Ile	Val	Gly	Leu	Asn	Gln	Leu	Ser	Asp	
145								150					155			160	
Val	Glu	Ile	Asp	Lys	Val	Asn	Lys	Pro	Tyr	Leu	Pro	Leu	Ala	Ser	Gly		
165								170					175				
Glu	Tyr	Ser	Val	Asn	Thr	Gly	Ile	Ala	Ile	Val	Ala	Ser	Phe	Ser	Ile		
180								185					190				
40	Met	Ser	Phe	Trp	Leu	Gly	Trp	Ile	Val	Gly	Ser	Trp	Pro	Leu	Phe	Trp	

	195	200	205	
	Ala Leu Phe Val Ser Phe Met	Leu Gly Thr Ala Tyr Ser Ile Asn Leu		
	210	215	220	
	Pro Leu Leu Arg Trp Lys Arg Phe Ala Leu Val Ala Ala Met Cys Ile			
5	225	230	235	240
	Leu Ala Val Arg Ala Ile Ile Val Gln Ile Ala Phe Tyr Leu His Ile			
	245	250	255	
	Gln Thr His Val Phe Gly Arg Pro Ile Leu Phe Thr Arg Pro Leu Ile			
10	260	265	270	
	Phe Ala Thr Ala Phe Met Ser Phe Phe Ser Val Val Ile Ala Leu Phe			
	275	280	285	
	Lys Asp Ile Pro Asp Ile Glu Gly Asp Lys Ile Phe Gly Ile Arg Ser			
	290	295	300	
	Phe Ser Val Thr Leu Gly Gln Lys Arg Val Phe Trp Thr Cys Val Thr			
15	305	310	315	320
	Leu Leu Gln Met Ala Tyr Ala Val Ala Ile Leu Val Gly Ala Thr Ser			
	325	330	335	
	Pro Phe Ile Trp Ser Lys Val Ile Ser Val Val Gly His Val Ile Leu			
	340	345	350	
20	Ala Thr Thr Leu Trp Ala Arg Ala Lys Ser Val Asp Leu Ser Ser Lys			
	355	360	365	
	Thr Glu Ile Thr Ser Cys Tyr Met Phe Ile Trp Lys Leu Phe Tyr Ala			
	370	375	380	
	Glu Tyr Leu Leu Leu Pro Phe Leu Lys	.		
25	385	390		
	<210> 3			
	<211> 1224			
	<212> DNA			
30	<213> Arabidopsis sp			

<400> 3
atggcgttt ttgggctctc ccgtgtttca agacggttgt tgaaatcttc cgtctccgta 60
actccatctt ctgcctctgc tctttgcaa tcacaacata aatcctgtc caatcctgtg 120
35 actaccatt acacaaatcc tttcactaag tgttatcctt catggaatga taattaccaa 180
gtatggagta aaggaagaga attgcatca gagaagtttt ttgggtgttgg ttggattac 240
agattaattt gtggaatgtc gtcgtttct tcgggtttgg agggaaagcc gaagaaagat 300
gataaggaga agagtgtatgg tgttgttgg aagaaagctt cttggataga tttgtattt 360
ccagaagaag ttagaggtta tgctaagctt gctcgattgg ataaaacccat tggaaacttgg 420
40 ttgcttgcgt ggcctgtat gtggtcgatt gcgttggctg ctgatcctgg aagccttcca 480
agttttaaat atatqgcttt atttgggttgc ggagcattac ttcttagagg tgctgggtgt 540

	actataaaatg atctgcttga tcaggacata gatacaaagg ttgatcgtaaaaactaaga	600
	cctatcgcca gtggctttt gacaccattt caagggattt gatttctcggtgcagttt	660
	cttttagct taggattct tctccaaactt aacaattaca gccgtgtttt agggcctca	720
	tcttgttac ttgtcttttccatccactt atgaagaggt ttacatggcgcctcaagcc	780
5	tttttagtt tgaccataaa ctggggagca ttgttaggtt ggactgcagt taaaggaagc	840
	atagcaccat ctattgtact ccctctctat ctctccggag tctgctggac ccttgtttat	900
	gatactattt atgcacatca ggacaaaagaa gatgatgtaa aagttggtgt taagtcaaca	960
	gcccttagat tcggtgataa tacaaagctt tggttaactg gatttggcac agcatccata	1020
	ggttttcttgcacttctgg attcagtgcgatctcgggtt ggcaatattt cgcatcactg	1080
10	gcccgtgcattcggacagtttggcaaataggacag ctgacttatac atctgggtgt	1140
	gactgcagta gaaaattttgtt gtcgaacaag tggttgggtt ctattatatt tagtggagtt	1200
	gtacttgaa gaagttttca ataa	1224

<210> 4

15 <211> 407

<212> PRT

<213> Arabidopsis sp

<400> 4

20	Met Ala Phe Phe Gly Leu Ser Arg Val Ser Arg Arg Leu Leu Lys Ser	
	1 5 10 15	
	Ser Val Ser Val Thr Pro Ser Ser Ser Ala Leu Leu Gln Ser Gln	
	20 25 30	
	His Lys Ser Leu Ser Asn Pro Val Thr Thr His Tyr Thr Asn Pro Phe	
25	35 40 45	
	Thr Lys Cys Tyr Pro Ser Trp Asn Asp Asn Tyr Gln Val Trp Ser Lys	
	50 55 60	
	Gly Arg Glu Leu His Gln Glu Lys Phe Phe Gly Val Gly Trp Asn. Tyr	
	65 70 75 80	
30	Arg Leu Ile Cys Gly Met Ser Ser Ser Ser Val Leu Glu Gly Lys	
	85 90 95	
	Pro Lys Lys Asp Asp Lys Glu Lys Ser Asp Gly Val Val Val Lys Lys	
	100 105 110	
	Ala Ser Trp Ile Asp Leu Tyr Leu Pro Glu Glu Val Arg Gly Tyr Ala	
35	115 120 125	
	Lys Leu Ala Arg Leu Asp Lys Pro Ile Gly Thr Trp Leu Leu Ala Trp	
	130 135 140	
	Pro Cys Met Trp Ser Ile Ala Leu Ala Ala Asp Pro Gly Ser Leu Pro	
	145 150 155 160	
40	Ser Phe Lys Tyr Met Ala Leu Phe Gly Cys Gly Ala Leu Leu Leu Arg	
	165 170 175	

	Gly Ala Gly Cys Thr Ile Asn Asp Leu Leu Asp Gln Asp Ile Asp Thr		
	180	185	190
	Lys Val Asp Arg Thr Lys Leu Arg Pro Ile Ala Ser Gly Leu Leu Thr		
	195	200	205
5	Pro Phe Gln Gly Ile Gly Phe Leu Gly Leu Gln Leu Leu Leu Gly Leu		
	210	215	220
	Gly Ile Leu Leu Gln Leu Asn Asn Tyr Ser Arg Val Leu Gly Ala Ser		
	225	230	235
	Ser Leu Leu Leu Val Phe Ser Tyr Pro Leu Met Lys Arg Phe Thr Phe		
10	245	250	255
	Trp Pro Gln Ala Phe Leu Gly Leu Thr Ile Asn Trp Gly Ala Leu Leu		
	260	265	270
	Gly Trp Thr Ala Val Lys Gly Ser Ile Ala Pro Ser Ile Val Leu Pro		
	275	280	285
15	Leu Tyr Leu Ser Gly Val Cys Trp Thr Leu Val Tyr Asp Thr Ile Tyr		
	290	295	300
20	Ala His Gln Asp Lys Glu Asp Asp Val Lys Val Gly Val Lys Ser Thr		
	305	310	315
	320		
25	Ala Leu Arg Phe Gly Asp Asn Thr Lys Leu Trp Leu Thr Gly Phe Gly		
	325	330	335
30	Thr Ala Ser Ile Gly Phe Leu Ala Leu Ser Gly Phe Ser Ala Asp Leu		
	340	345	350
	Gly Trp Gln Tyr Tyr Ala Ser Leu Ala Ala Ala Ser Gly Gln Leu Gly		
	355	360	365
35	Trp Gln Ile Gly Thr Ala Asp Leu Ser Ser Gly Ala Asp Cys Ser Arg		
	370	375	380
	Lys Phe Val Ser Asn Lys Trp Phe Gly Ala Ile Ile Phe Ser Gly Val		
	385	390	395
	400		
	Val Leu Gly Arg Ser Phe Gln		
	405		
	<210> 5		
	<211> 1296		
	<212> DNA		
35	<213> Arabidopsis sp		
	<400> 5		
	atgtggcgaa gatctgttgt ttctcggtta tcttcaagaa tctctgtttc ttcttcgtta	60	
	ccaaacccta gactgattcc ttggtcccgc gaattatgtg ccgttaatag cttctcccgag	120	
40	cctccggctc cgacggaatc aactgctaag ttagggatca ctgggtttag atctgatgcc	180	
	aatcgagttt ttgccactgc tactgccgccc gctacagcta cagctaccac cggtgagatt	240	

	tcgtctagag ttgcggctt ggctggatta gggcatcaact acgctcggtt ttattggag	300
	ctttctaaag ctaaacttag tatgcttggt gttgcaactt ctggaaactgg gtatattctg	360
	ggtagggaa atgctgcaat tagcttcccg gggcttggtt acacatgtgc aggaaccatg	420
	atgattgctg catctgctaa ttcccttgaat cagattttg agataagcaa tgattctaag	480
5	atgaaaagaa cgatgctaa gcccattgcct tcaggacgtt ttagtgttcc acacgctgtt	540
	gcatgggcta ctattgctgg tgcttctggt gcttgggttgg tggccagcaa gactaatatg	600
	ttggctgctg gacttgcattc tgccaatctt gtactttatg cgtttggttt tactccgtt	660
	aagcaacttc accctatcaa tacatgggtt ggcgctgttgg ttgggtctat cccaccctt	720
	cttgggtggg cggcagcgctc tggtcagatt tcatacaatt cgatgattct tccagctgct	780
10	ctttactttt ggcagatacc tcattttatg gcccttgcac atctctgccg caatgattat	840
	gcagctggag gttacaagat gttgtcactc tttgatccgt cagggaaagag aatagcagca	900
	gtggctctaa ggaactgctt ttacatgatc cctctcggtt tcatcgctta tgactgggg	960
	ttaacctcaa gttgggttttgc cctcgaatca acacttctca cactagcaat cgctgcaaca	1020
	gcattttcat tctaccgaga ccggaccatg cataaagcaa ggaaaatgtt ccattgcagt	1080
15	cttctcttcc ttccctgtttt catgtctggt cttttctac accgtgtctc taatgataat	1140
	cagcaacaac tcgtagaaga agccggatta acaaattctg tatctgggtga agtcaaaact	1200
	cagaggcgaa agaaaacgtgt ggctcaacct ccggtggctt atgcctctgc tgaccgtt	1260
	ccttcctcc cagtccttc cttctactct ccatga	1296

20 <210> 6

<211> 431

<212> PRT

<213> Arabidopsis sp

25 <400> 6

Met Trp Arg Arg Ser Val Val Tyr Arg Phe Ser Ser Arg Ile Ser Val

1	5	10	15
---	---	----	----

Ser Ser Ser Leu Pro Asn Pro Arg Leu Ile Pro Trp Ser Arg Glu Leu

20	25	30
----	----	----

30 Cys Ala Val Asn Ser Phe Ser Gln Pro Pro Val Ser Thr Glu Ser Thr

35	40	45
----	----	----

Ala Lys Leu Gly Ile Thr Gly Val Arg Ser Asp Ala Asn Arg Val Phe

50	55	60
----	----	----

Ala Thr Ala Thr Ala Ala Ala Thr Ala Thr Thr Gly Glu Ile

35 65 70 75 80

Ser Ser Arg Val Ala Ala Leu Ala Gly Leu Gly His His Tyr Ala Arg

85	90	95
----	----	----

Cys Tyr Trp Glu Leu Ser Lys Ala Lys Leu Ser Met Leu Val Val Ala

100	105	110
-----	-----	-----

40 Thr Ser Gly Thr Gly Tyr Ile Leu Gly Thr Gly Asn Ala Ala Ile Ser

115	120	125
-----	-----	-----

Phe Pro Gly Leu Cys Tyr Thr Cys Ala Gly Thr Met Met Ile Ala Ala
130 135 140
Ser Ala Asn Ser Leu Asn Gln Ile Phe Glu Ile Ser Asn Asp Ser Lys
145 150 155 160
5 Met Lys Arg Thr Met Leu Arg Pro Leu Pro Ser Gly Arg Ile Ser Val
165 170 175
Pro His Ala Val Ala Trp Ala Thr Ile Ala Gly Ala Ser Gly Ala Cys
180 185 190
Leu Leu Ala Ser Lys Thr Asn Met Leu Ala Ala Gly Leu Ala Ser Ala
10 195 200 205
Asn Leu Val Leu Tyr Ala Phe Val Tyr Thr Pro Leu Lys Gln Leu His
210 215 220
Pro Ile Asn Thr Trp Val Gly Ala Val Val Gly Ala Ile Pro Pro Leu
225 230 235 240
15 Leu Gly Trp Ala Ala Ala Ser Gly Gln Ile Ser Tyr Asn Ser Met Ile
245 250 255
Leu Pro Ala Ala Leu Tyr Phe Trp Gln Ile Pro His Phe Met Ala Leu
260 265 270
20 Ala His Leu Cys Arg Asn Asp Tyr Ala Ala Gly Gly Tyr Lys Met Leu
275 280 285
Ser Leu Phe Asp Pro Ser Gly Lys Arg Ile Ala Ala Val Ala Leu Arg
290 295 300
25 Asn Cys Phe Tyr Met Ile Pro Leu Gly Phe Ile Ala Tyr Asp Trp Gly
305 310 315 320
Leu Thr Ser Ser Trp Phe Cys Leu Glu Ser Thr Leu Leu Thr Leu Ala
325 330 335
Ile Ala Ala Thr Ala Phe Ser Phe Tyr Arg Asp Arg Thr Met His Lys
340 345 350
Ala Arg Lys Met Phe His Ala Ser Leu Leu Phe Leu Pro Val Phe Met
30 355 360 365
Ser Gly Leu Leu Leu His Arg Val Ser Asn Asp Asn Gln Gln Leu
370 375 380
Val Glu Glu Ala Gly Leu Thr Asn Ser Val Ser Gly Glu Val Lys Thr
385 390 395 400
35 Gln Arg Arg Lys Lys Arg Val Ala Gln Pro Pro Val Ala Tyr Ala Ser
405 410 415
Ala Ala Pro Phe Pro Phe Leu Pro Ala Pro Ser Phe Tyr Ser Pro
420 425 430
40 <210> 7
<211> 479

<212> DNA

<213> Arabidopsis sp

<400> 7

5 ggaaactccc ggagcacctg tttgcaggta ccgctaacct taatcgataa tttatttctc 60
ttgtcaggaa ttatgttaagt ctggcggaa gctcgcatac cattttgca ttgccttcg 120
ctatgatcg gtttactttg ggtgtatga gaccaggcgt ggctttatgg tatggcgaaa 180
acccatttt atccaatgct gcattccctc ccgatgattc gttctttcat tcctatacag 240
gtatcatgct gataaaaactg ttactggtae tggtttgtat ggtatcagca agaagcgcgg 300
10 cgatggcgtt taaccggat ctcgacaggc attttgacgc gaagaacccg cgtactgcc 360
tccgtgaaat acctgcgggc gtcatactg ccaacagtgc gctggtgtt acgataggtc 420
gctgcgttgtt attctgggtg gcctgttatt tcattaacac gatctgttt tacctggcg 479

<210> 8

15 <211> 551

<212> DNA

<213> Arabidopsis sp

<220>

20 <221> misc_feature

<222> (1)...(551)

<223> n = A,T,C or G

<400> 8

25 ttgtggctta caccttaatg agcatacgcc agnccattac ggctcgtaa tcggcgccat 60
ngccggngct gntgcaccgg tagtggccta ctgcgccgtg accaatcagc ttgatctagc 120
ggctcttatt ctgttttaa tttactgtt ctggcaaatg ccgcattttt acgcgatttc 180
catttcagg ctaaaagact tttcagcggc ctgtattccg gtgctgcca tcattaaaga 240
cctgcgttat accaaaatca gcatgcttgtt tacgtgggc ttatttacac tggctgctat 300
30 catgcccccc ctcttagggt atgccgggtt gatttatggg atagccgcct taattttagg 360
cttgtattgg ctttatattt ccatacaagg attcaagacc gccgatgatc aaaaatggtc 420
tcgtaaatg tttggatctt cgattttaat cattaccctc ttgtcgtaa tgatgcttgt 480
ttaaacttac tgccctctga agtttatata tcgataattt cagcttaagg aggcttagtg 540
gttaattcaa t 551

35

<210> 9

<211> 297

<212> PRT

<213> Arabidopsis sp

40

<400> 9

Met Val Leu Ala Glu Val Pro Lys Leu Ala Ser Ala Ala Glu Tyr Phe
1 5 10 15
Phe Lys Arg Gly Val Gln Gly Lys Gln Phe Arg Ser Thr Ile Leu Leu
20 25 30
Leu Met Ala Thr Ala Leu Asn Val Arg Val Pro Glu Ala Leu Ile Gly
5 35 40 45
Glu Ser Thr Asp Ile Val Thr Ser Glu Leu Arg Val Arg Gln Arg Gly
50 55 60
Ile Ala Glu Ile Thr Glu Met Ile His Val Ala Ser Leu Leu His Asp
10 65 70 75 80
Asp Val Leu Asp Asp Ala Asp Thr Arg Arg Gly Val Gly Ser Leu Asn
85 90 95
Val Val Met Gly Asn Lys Val Val Ala Leu Leu Ala Thr Ala Val Glu
100 105 110
His Leu Val Thr Gly Glu Thr Met Glu Ile Thr Ser Ser Thr Glu Gln
115 120 125
Arg Tyr Ser Met Asp Tyr Tyr Met Gln Lys Thr Tyr Tyr Lys Thr Ala
130 135 140
Ser Leu Ile Ser Asn Ser Cys Lys Ala Val Ala Val Leu Thr Gly Gln
145 150 155 160
Thr Ala Glu Val Ala Val Leu Ala Phe Glu Tyr Gly Arg Asn Leu Gly
165 170 175
Leu Ala Phe Gln Leu Ile Asp Asp Ile Leu Asp Phe Thr Gly Thr Ser
180 185 190
Ala Ser Leu Gly Lys Gly Ser Leu Ser Asp Ile Arg His Gly Val Ile
195 200 205
Thr Ala Pro Ile Leu Phe Ala Met Glu Glu Phe Pro Gln Leu Arg Glu
210 215 220
Val Val Asp Gln Val Glu Lys Asp Pro Arg Asn Val Asp Ile Ala Leu
225 230 235 240
Glu Tyr Leu Gly Lys Ser Lys Gly Ile Gln Arg Ala Arg Glu Leu Ala
245 250 255
Met Glu His Ala Asn Leu Ala Ala Ala Ala Ile Gly Ser Leu Pro Glu
260 265 270
Thr Asp Asn Glu Asp Val Lys Arg Ser Arg Arg Ala Leu Ile Asp Leu
275 280 285
Thr His Arg Val Ile Thr Arg Asn Lys
290 295
40 <210> 10
<211> 561

<212> DNA

<213> *Arabidopsis* sp

<400> 10

5 aagcgcatcc gtcctttct acgattgccg ccagccgcgtatggctgc ataaaccgacc 60
gcccctatcc gctcgccgcccgcgtcaat tcattcacac cgccgacgctg ctgcatacg 120
acgtcgatcgatgaaaggcgat ttgcgcgcg gccgcgaaag cgccgcataag gtttccggca 180
atcaggcgag cgtgctcgccggatttcc ttttctcccg cgccctccag ctgatggtgg 240
aagacggctc gctcgacgcgctgcgatcgattc tctcgatgc ctccgcgcgtg atcgccagg 300
10 gcgaaagtatgcagctcgaccgcgacgcaatcttgcgaaac caatatgagc cagtatctcg 360
atgtgatcag cgccgaagacc gccgcgtctttgcgcgcgtatgcgaaatcgccccggta 420
tggcgaacgcgaaaggcgatgcgtgcgatcgatgcgatcgatcgaaatctcgatcgatcg 480
tcgccttcca gatcatcgac gaccttctcg attacggcac cgccggccac gccgagcttg 540
qcaagaacac gggcgacgat t 561

<210> 11

<211> 966

<212> DNA

<213> *Arabidopsis* sp

<400> 11

40 <210> 12

<211> 321

<212> PRT

<213> Arabidopsis sp

<400> 12

5 Met Val Leu Ala Glu Val Pro Lys Leu Ala Ser Ala Ala Glu Tyr Phe
1 5 10 15
Phe Lys Arg Gly Val Gln Gly Lys Gln Phe Arg Ser Thr Ile Leu Leu
20 25 30
Leu Met Ala Thr Ala Leu Asn Val Arg Val Pro Glu Ala Leu Ile Gly
10 35 40 45
Glu Ser Thr Asp Ile Val Thr Ser Glu Leu Arg Val Arg Gln Arg Gly
50 55 60
Ile Ala Glu Ile Thr Glu Met Ile His Val Ala Ser Leu Leu His Asp
65 70 75 80
Asp Val Leu Asp Asp Ala Asp Thr Arg Arg Gly Val Gly Ser Leu Asn
15 85 90 95
Val Val Met Gly Asn Lys Met Ser Val Leu Ala Gly Asp Phe Leu Leu
100 105 110
Ser Arg Ala Cys Gly Ala Leu Ala Ala Leu Lys Asn Thr Glu Val Val
20 115 120 125
Ala Leu Leu Ala Thr Ala Val Glu His Leu Val Thr Gly Glu Thr Met
130 135 140
Glu Ile Thr Ser Ser Thr Glu Gln Arg Tyr Ser Met Asp Tyr Tyr Met
145 150 155 160
Gln Lys Thr Tyr Tyr Lys Thr Ala Ser Leu Ile Ser Asn Ser Cys Lys
25 165 170 175
Ala Val Ala Val Leu Thr Gly Gln Thr Ala Glu Val Ala Val Leu Ala
180 185 190
Phe Glu Tyr Gly Arg Asn Leu Gly Leu Ala Phe Gln Leu Ile Asp Asp
30 195 200 205
Ile Leu Asp Phe Thr Gly Thr Ser Ala Ser Leu Gly Lys Gly Ser Leu
210 215 220
Ser Asp Ile Arg His Gly Val Ile Thr Ala Pro Ile Leu Phe Ala Met
225 230 235 240
35 Glu Glu Phe Pro Gln Leu Arg Glu Val Val Asp Gln Val Glu Lys Asp
245 250 255
Pro Arg Asn Val Asp Ile Ala Leu Glu Tyr Leu Gly Lys Ser Lys Gly
260 265 270
Ile Gln Arg Ala Arg Glu Leu Ala Met Glu His Ala Asn Leu Ala Ala
40 275 280 285
Ala Ala Ile Gly Ser Leu Pro Glu Thr Asp Asn Glu Asp Val Lys Arg

290 295 300
Ser Arg Arg Ala Leu Ile Asp Leu Thr His Arg Val Ile Thr Arg Asn
305 310 315 320
Lys

5

<210> 13

<211> 621

<212> DNA

10 <213> Arabidopsis sp

<400> 13
gctttctcct ttgctaattc ttgagcttc ttgatccac cgcgatttct aactatttca 60
atcgcttctt caagcgatcc aggctcacaa aactcagact caatgatctc tcttagcctt 120
ggctcattct ctagcgcgaa gatcactggc gccgttatgt tacctttggc taagtcattha 180
gctgcaggct tacctaactg ctctgtggac tgagtgaagt ccagaatgtc atcaactact 240
tgaaaagata aaccgagatt ctccccaaac tgatacattt gctctgcgac cttgctttcg 300
actttactga aaattgctgc tcctttggtg ctgcagcta ctaatgaagc tgtcttgtag 360
taactctta gcatgttagtc atcaagcttg acatcacaat cgaataaact cgatgcttgc 420
tttatctcac cgcttgcaaa atctttgatc acctgcaaaa agataaatca agattcagac 480
caaatgttct ttgttatttag tagcttcatc taatctcaga aaggaatatt acctgactta 540
tgagcttaat gacttcaagg ttttcgagat ttgtaagtac catgatgctt gagcaacatg 600
aaatccccag ctaatacagc t 621

<210> 14

<211> 741

<212> DNA

<213> Arabidopsis sp

30 <400> 14
ggtaggttt gttaatagtt atgagattca tctatTTTg tcataaaatt gtttggtttg 60
gtttaaactc tggatataat tgcaggaaag gaaacagttc atgagctttt cgccacaaga 120
gtagcgggtc tagctggaga tttcatgttt gctcaagcgt catggactt agcaaatctc 180
gagaatctt aagttattaa gctcatcagt caggtactta gttactctta cattgttttt 240
35 ctatgaggtt gagctatgaa tctcattcg ttgaaaaatg ctgtgcctca aactttttt 300
catgtttca ggtgatcaaa gacttgcaa ggccggagat aaagcaggcg tccagcttat 360
ttgactgcga caccaagctc gacgagact tactcaaaag tttctacaag acagcctctt 420
tagtggtgc gaggccaaa ggagctgcca ttttcagcag agttgagcct gatgtgacag 480
aacaaatgta cgagttggg aagaatctcg gtctctctt ccagatagtt gatgatattt 540
40 tggatttcac tcaatcgaca gaggcagctcg ggaaggccagc agggagtgat ttggctaaag 600
gtaacttaac agcacctgtg atttcgctc tggagaggga gccaaggcta agagagatca 660

ttgagtcaaa gttctgtgag gcgggttctc tggagaagaagc gattgaagcg gtgacaaaag 720
gtggggggat taagagagca c 741

<210> 15
5 <211> 1087
<212> DNA
<213> Arabidopsis sp

<400> 15
10 cctcttcagc caatccagag gaagaagaga caactttta tcttcgtca agagtctccg 60
aaaacgcacg gtttatgt ctctttctg ccctcacctc acaagacgca gggcacatga 120
ttcaaccaga gggaaaaagc aacgataaca actctgttt tgatttcaag ctgtatatga 180
tccgcaaagc cgagtctgta aatgcggctc tcgacgttcc cgtagccctt ctgaaacccc 240
ttacgatcca agaagcggtc aggtacttt tgctagccgg cgaaaaacgt gtgaggcctc 300
tgctctgcat tgccgcttgt gagcttggggcgacga ggctactgccc atgtcagccg 360
cttgcgcgtt cgagatgatc cacacaagct ctctcattca tgacgatctt ccgtgcattgg 420
acaatgccga cttccgtaga ggcaagccca ccaatcacaa ggtatgttgt ttaatttat 480
gaaggcttag agataatgct gaactagtgt tgaaccaatt ttgtctcaaa caaggttat 540
ggagaagaca tggcggttt ggcagggtat gcactccttgcattggcggt tgagcacatg 600
acggtttgtt cgagtgggtt ggtcgctccc gagaagatga ttgcgcgcgt ggtagctg 660
gccaggccca tagggactac agggctagtt gctggacaaa tgatagaccc agccagcgaa 720
agactgaatc cagacaaggt tggattggag catctagatc tcatccatct ccacaaaacg 780
gcggcattgt tggaggcagc ggcagttta ggggtataa tggaggtgg aacagaggaa 840
gaaatcgaaa agcttagaaa gtatgttagg tggattggac tactgtttca ggtagttgtat 900
gacattctcg acgtaacaaa atctactgag gaattgggtt agacagccgg aaaagacgta 960
atggccgaa agctgacgta tccaaggctg ataggtttgg agggatccag ggaagttgca 1020
gagcacctga ggagagaagc agagggaaag cttaaagggt ttgatccaag tcaggcggcg 1080
cctctgg 1087

30 <210> 16
<211> 1164
<212> DNA
<213> Arabidopsis sp

35 <400> 16
atgacttcga ttctcaacac tgtctccacc atccactctt ccagagttac ctccgtcgat 60
cgagtcgag tcctctctct tcggaattcg gattccgtt agttcactcg ccggcggtct 120
ggtttctcgat cgttgcgtcta cgaatcaccc gggcgagat ttgttgcg tgccggcgag 180
actgataactg ataaagttaa atctcagaca cctgacaagg caccagccgg tggttcaagc 240
40 attaaccagc ttctcggtat caaaggagca tctcaagaaa ctaataatg gaagattcgt 300
cttcagctta caaaaaccagt cacttggct ccactgggtt gggagtcgt ctgtgggtct 360

	gctgcttcag ggaactttca ttggacccca gaggatgttgcata	tctttgcattg	420
	atgatgtctg gtccttgct tactggctat acacagacaa tcaacgactg gtatgataga		480
	gatatcgacg caattaatga gccatatcg ccaattccat ctggagcaat atcagagcca		540
	gaggttatta cacaagtctg ggtgctatta ttgggaggc ttggatttgc tgaaatatta		600
5	gatgtgtggg cagggcatac cactcccact gtcttctatc ttgctttggg aggatcattg		660
	ctatcttata tatactctgc tccaccttta aagctaaaac aaaatggatg gttggaaat		720
	tttgcacttg gagcaagcta tattagtttgc catgggtggg ctggccaagc attgtttggc		780
	actcttacgc cagatgttgt ttttctaaaca ctcttgcata gcatacgctgg gtttaggaata		840
	gccattgtta acgacttcaa aagtgttcaa ggagatagag cattaggact tcagtcctc		900
10	ccagtagctt ttggcaccga aactgcaaaa tggatatgcg ttggcttat agacattact		960
	cagcttctg ttggccgata tctatttagca tctggaaac cttattatgc gttggcgttg		1020
	tttgcttga tcatttcctca gattgttttc cagtttaat actttctcaa ggaccctgtc		1080
	aaatacgcacg tcaagtacca ggcaagcgcg cagccattct ttggctcgg aatatttgc		1140
	acggcatttag catcgcaaca ctga		1164

5 <210> 17

<211> 387

<212> PRT

<213> Arabidopsis sp

20 <400> 17

Met Thr Ser Ile Leu Asn Thr Val Ser Thr Ile His Ser Ser Arg Val

1 5 10 15

Thr Ser Val Asp Arg Val Gly Val Leu Ser Leu Arg Asn Ser Asp Ser

20 25 30

Val Glu Phe Thr Arg Arg Ser Gly Phe Ser Thr Leu Ile Tyr Glu

35 40 45

Ser Pro Gly Arg Arg Phe Val Val Arg Ala Ala Glu Thr Asp Thr Asp

50 55 60

30 Lys Val Lys Ser Gln Thr Pro Asp Lys Ala Pro Ala Gly Gly Ser Ser

65 70 75 80

Ile Asn Gln Leu Leu Gly Ile Lys Gly Ala Ser Gln Glu Thr Asn Lys

85 90 95

Trp Lys Ile Arg Leu Gln Leu Thr Lys Pro Val Thr Trp Pro Pro Leu

100 105 110

35 Val Trp Gly Val Val Cys Gly Ala Ala Ala Ser Gly Asn Phe His Trp

115 120 125

Thr Pro Glu Asp Val Ala Lys Ser Ile Leu Cys Met Met Met Ser Gly

130 135 140

40 Pro Cys Leu Thr Gly Tyr Thr Gln Thr Ile Asn Asp Trp Tyr Asp Arg

145 150 155 160

	Asp Ile Asp Ala Ile Asn Glu Pro Tyr Arg Pro Ile Pro Ser Gly Ala	
	165	170
	Ile Ser Glu Pro Glu Val Ile Thr Gln Val Trp Val Leu Leu Leu Gly	
	180	185
5	Gly Leu Gly Ile Ala Gly Ile Leu Asp Val Trp Ala Gly His Thr Thr	
	195	200
	Pro Thr Val Phe Tyr Leu Ala Leu Gly Gly Ser Leu Leu Ser Tyr Ile	
	210	215
	220	225
10	Tyr Ser Ala Pro Pro Leu Lys Leu Lys Gln Asn Gly Trp Val Gly Asn	
	230	235
	Phe Ala Leu Gly Ala Ser Tyr Ile Ser Leu Pro Trp Trp Ala Gly Gln	
	245	250
	255	260
	Ala Leu Phe Gly Thr Leu Thr Pro Asp Val Val Val Leu Thr Leu Leu	
	265	270
15	Tyr Ser Ile Ala Gly Leu Gly Ile Ala Ile Val Asn Asp Phe Lys Ser	
	275	280
	285	290
	Val Glu Gly Asp Arg Ala Leu Gly Leu Gln Ser Leu Pro Val Ala Phe	
	295	300
20	Gly Thr Glu Thr Ala Lys Trp Ile Cys Val Gly Ala Ile Asp Ile Thr	
	310	315
	320	305
	Gln Leu Ser Val Ala Gly Tyr Leu Leu Ala Ser Gly Lys Pro Tyr Tyr	
	325	330
	335	340
	Ala Leu Ala Leu Val Ala Leu Ile Ile Pro Gln Ile Val Phe Gln Phe	
	345	350
25	Lys Tyr Phe Leu Lys Asp Pro Val Lys Tyr Asp Val Lys Tyr Gln Ala	
	355	360
	365	370
	Ser Ala Gln Pro Phe Leu Val Leu Gly Ile Phe Val Thr Ala Leu Ala	
	375	380
	Ser Gln His	
30	385	
	<210> 18	
	<211> 981	
	<212> DNA	
35	<213> Arabidopsis sp	
	<400> 18	
	atgttgttta gtggttcagc gatccattta agcagcttct gctctttcc ggagaaaaccc	60
	cacactcttc ctatgaaact ctctcccgct gcaatccgat cttcatcctc atctgccccg	120
40	gggtcggtga acttcgatct gaggacgtat tggacgactc tgatcaccga gatcaaccag	180
	aagctggatg aggccatacc ggtcaagcac cctgcgggga tctacgaggc tatgagatac	240

tctgtactcg cacaaggcgc caagcgtgcc cctccctgtga ttttgtggc ggccctgcgag 300
ctcttcgtgt gcgatcgctt cgcgcgttcc cccaccgcct gtgccttaga aatgtgcac 360
gcggcttcgt tgatacacga cgacccccc ttgtatggacg acgatccgt gcgcagagga 420
aagccatcta accacactgt ctacggctt ggcattggcca ttctcgccgg tgacgcctc 480
5 ttcccactcg ccttccagca cattgtctcc cacacgcctc ctgacccctgt tccccgagcc 540
accatccca gactcatcac tgagattgcc cgactgtcg gctccactgg tatggctgca 600
ggccagtacg tcgacccgtga aggagggtccc tttccctttt cctttgttca ggagaagaaa 660
ttcggagcca tgggtgaatg ctctggcggttgcc tattggggcg tgccactgag 720
gatgagctcc agagtctccg aaggtacccgg agagccgtcg ggatgctgta tcaggtggc 780
10 gatgacatca ccgaggacaa gaagaagagc tatgtatggtg gagcagagaa ggaaatgatg 840
gaaatggccgg aagagctcaa ggagaaggcg aagaaggagc ttcaagtgtt tgacaacaag 900
tatggaggag gagacacact tgccctctc tacaccctcg ttgactacgc tgctcatcga 960
cattttcttc ttccctctg a 981

15 <210> 19
<211> 245
<212> DNA
<213> GLycine sp

20 <400> 19
gcaacatctg ggactgggtt tttttttttt agtggtagtg ctgttgcattt ttcggcactt 60
tcttgcattt gctgggtac catgtgggtt gctgcattt ctaactctt gaatcagggt 120
tttggatca ataatgtgc taaaatgttggc agaacaagtc gcaggccactt accctcagga 180
cgcatttccaa tacctcatgc agttggctgg gcatccctcg ttggatttttgc tggtagggct 240
25 ctact 245

30 <210> 20
<211> 253
<212> DNA
<213> Glycine sp

40 <400> 20
attggcttc caagatcatt gggttttttt gttgcattca tgaccccttta ctccctgggt 60
ttggcattgtt ccaaggatat acctgacgtt gaaggagata aagagcacgg cattgattct 120
35 tttgcgtac gttttttttt gttttttttt gttttttttt gttttttttt gttttttttt 180
gctttccggat ttggatccctt ggccggagca tcatgctcac actttttttttt gttttttttt 240
acgggtatgg gaa 253

40 <210> 21
<211> 275
<212> DNA

<213> Glycine sp

<400> 21

5 tgatcttcta ctctctgggt atggcattgt ccaaggatat atctgacgtt aaaggagata 60
aagcataacgg catcgatact ttagcgatac gtttgggtca aaaatgggtta ttttggattt 120
gcattatcct ttttgaatg gctttggag ttgccttgc ggcaggagca acatcttctt 180
acctttggat taaaattgtc acgggtctgg gacatgctat tcttgcttca attcttctgt 240
accaagccaa atctatatac ttgagcaaca aagtt 275

10 <210> 22

<211> 299

<212> DNA

<213> Glycine sp

15 <220>

<221> misc_feature

<222> (1)...(299)

<223> n = A, T, C or G

20 <400> 22

25 ccanaatang tncatcttng aaagacaatt ggctcttca acacacaagt ctgcacatgtga 60
agaagaggcc aattgtctt ccaagatcac ttatngtggc tattgttaatc atgaacttct 120
tctttgtgg tatggcattt gcaaaggata tacctanctg ttgaaggaga taaaatatat 180
ggcattgata ctttgcaat acgtataaggta caaaaacaag tattttggat ttgtatttc 240
cttttgaaa ggctttcgga gtttccttag tggcaggagc aacatcttct agccttgg 299

30 <210> 23

<211> 767

<212> DNA

30 <213> Glycine sp

<400> 23

35 gtggaggctg tggttgctgc cctgtttatg aatatttata ttgttggttt gaatcaattt 60
tctgatgtt aatagacaa gataaacaag ccgtatctt cattagcatc tgggaatat 120
tcctttgaaa ctgggtgtcac tattgttgc tcttttcaa ttctgagttt ttggcttggc 180
tgggtttag gttcatggcc attattttgg gcccctttttaa taagctttgt gcttaggaact 240
gcttattcaa tcaatgtgcc tctgttgaga tggaaaggaggt ttgcagtgct tgcagcgatg 300
tgcattcttag ctgttcgggc agtaatagtt caacttgcattttcattca catgcagact 360
catgtgtaca agaggccacc tgtctttca agaccattga tttttgttac tgcattcatg 420
40 agcttcttct ctgttagttat agcactgttt aaggatatac ctgacattga aggagataaa 480
gtattttggca tccaatctt ttcagttgtt ttaggtcaga agccgggtt ctggacttgt 540

gttacccttc ttgaaatagc ttatggagtc gccctcctgg tggagctgc atctccttgt
ctttggagca aaattttcac gggctggga cacgctgtgc tggcttcaat tctctggttt
catgccaaat ctgttagattt gaaaagcaaa gcttcgataa catccttcta tatgtttatt
tggaagctat tttatgcaga atacttactc attccctttt tagatg 600
660
720
767

5

<210> 24
<211> 255
<212> PRT
<213> Glycine sp

10

<400> 24
Val Glu Ala Val Val Ala Ala Leu Phe Met Asn Ile Tyr Ile Val Gly
1 5 10 15
Leu Asn Gln Leu Ser Asp Val Glu Ile Asp Lys Ile Asn Lys Pro Tyr
20 25 30
Leu Pro Leu Ala Ser Gly Glu Tyr Ser Phe Glu Thr Gly Val Thr Ile
35 40 45
Val Ala Ser Phe Ser Ile Leu Ser Phe Trp Leu Gly Trp Val Val Gly
50 55 60
Ser Trp Pro Leu Phe Trp Ala Leu Phe Val Ser Phe Val Leu Gly Thr
65 70 75 80
Ala Tyr Ser Ile Asn Val Pro Leu Leu Arg Trp Lys Arg Phe Ala Val
85 90 95
Leu Ala Ala Met Cys Ile Leu Ala Val Arg Ala Val Ile Val Gln Leu
100 105 110
Ala Phe Phe Leu His Met Gln Thr His Val Tyr Lys Arg Pro Pro Val
115 120 125
Phe Ser Arg Pro Leu Ile Phe Ala Thr Ala Phe Met Ser Phe Phe Ser
130 135 140
30 Val Val Ile Ala Leu Phe Lys Asp Ile Pro Asp Ile Glu Gly Asp Lys
145 150 155 160
Val Phe Gly Ile Gln Ser Phe Ser Val Cys Leu Gly Gln Lys Pro Val
165 170 175
Phe Trp Thr Cys Val Thr Leu Leu Glu Ile Ala Tyr Gly Val Ala Leu
180 185 190
Leu Val Gly Ala Ala Ser Pro Cys Leu Trp Ser Lys Ile Phe Thr Gly
195 200 205
Leu Gly His Ala Val Leu Ala Ser Ile Leu Trp Phe His Ala Lys Ser
210 215 220
40 Val Asp Leu Lys Ser Lys Ala Ser Ile Thr Ser Phe Tyr Met Phe Ile
225 230 235 240

Trp Lys Leu Phe Tyr Ala Glu Tyr Leu Leu Ile Pro Phe Val Arg
245 250 255

<210> 25

5 <211> 360

<212> DNA

<213> Zea sp

<220>

10 <221> misc_feature

<222> (1)...(360)

<223> n = A,T,C or G

<400> 25

15 ggcgtctca ctgttctgg tcttctcgta tccctgtatg aagaggta cattttggcc 60
tcaggcttat ctggcctga cattcaactg gggagctta cttagggtgg ctgttattaa 120
ggaaagcata gaccctgcaa atcatcccttc cattgtatac agctggatt tgttggacgc 180
tggtgtatga tactatatat gcgcattcagg tgttcgcta tccctacttt catattaatc 240
cttgatgaag tggccatttc atgttgcgc ggtggctta tacttgata tctccatgca 300
20 tctcaggaca aagangatga cctgaaaatgtt ggagtccaag tccacagctt aagatttggg 360

<210> 26

<211> 299

<212> DNA

25 <213> Zea sp

<220>

<221> misc_feature

<222> (1)...(299)

30 <223> n = A,T,C or G

<400> 26

gatggttgca gcattctgcaa ataccctcaa ccaggtgttt gngataaaaa atgatgctaa 60
aatgaaaaagg acaatgcgtg ccccccgtcca tctggcgcata tttagcctgc acatgctgcg 120
35 atgtgggcta caagtgttgg agttgcagga acagctttgt tggcctggaa ggctaatggc 180
ttggcagctg ggcttgcagc ttctaatctt gttctgtatg catttgcata tacggccgttg 240
aagcaaatac accctgttaa tacatgggtt gggcagtcg ttggtgccat cccaccact 299

<210> 27

40 <211> 255

<212> DNA

<213> Zea sp

<220>

<221> misc_feature

5 <222> (1)...(255)

<223> n = A, T, C or G

<400> 27

10	anacttgcat atctccatgc ntctcaggac aaagangatg acctgaaagt aggtgtcaag	60
	tccacagcat taagatttg agatttgacc nnatactgna tcagtggctt tggcgccga	120
	tgcttcggca gcttagcact cagtggtac aatgctgacc ttggtttgtg ttttagtgtga	180
	tgcttgagcg aagaatggta tngttttac ttgatattga ctccagacct gaaatcatgt	240
	tggacagggg ggccc	255

15 <210> 28

<211> 257

<212> DNA

<213> Zea sp

20 <400> 28

20	attgaagggg ataggactct ggggcttcag tcacttcctg ttgctttgg gatggaaact	60
	gcaaaatgga tttgtgttgg agcaattgat atcactaat tatctgtgc agttaccta	120
	ttgagcaccc gtaagctgta ttatgccctg gtgttgcttgg ggctaacaat tcctcagggt	180
	ttctttcaagt tccagttactt cctgaaggac cctgtgaagt atgatgtcaa atatcaggca	240
25	agcgcacaac cattttt	257

25 <210> 29

<211> 368

<212> DNA

30 <213> Zea sp

<400> 29

30	atccagttgc aaataataat ggcgttcttc tctgttgtaa tagcactatt caaggatata	60
	cctgacatcg aaggggaccg catattcggg atccgatcct tcagcgtccg gttaggccaa	120
35	aagaaggctt tttggatctg cgttggcttg cttagatgg cctacagcgt tgcgatactg	180
	atggggacta cctcttcctg tttgtggagc aaaacagcaa ccatcgctgg ccattccata	240
	cttggccgcga tcctatggag ctgcgcgcga tcgggtggact tgacgagcaa agccgcaata	300
	acgtccttct acatgttcat ctgaaagctg ttctacgcgg agtacctgct catccctctg	360
	gtgcgggtg	368

40 <210> 30

<211> 122
<212> PRT
<213> Zea sp

5 <400> 30
Ile Gln Leu Gln Ile Ile Met Ala Phe Phe Ser Val Val Ile Ala Leu
1 5 10 15
Phe Lys Asp Ile Pro Asp Ile Glu Gly Asp Arg Ile Phe Gly Ile Arg
20 25 30
10 Ser Phe Ser Val Arg Leu Gly Gln Lys Lys Val Phe Trp Ile Cys Val
35 40 45
Gly Leu Leu Glu Met Ala Tyr Ser Val Ala Ile Leu Met Gly Ala Thr
50 55 60
Ser Ser Cys Leu Trp Ser Lys Thr Ala Thr Ile Ala Gly His Ser Ile
15 65 70 75 80
Leu Ala Ala Ile Leu Trp Ser Cys Ala Arg Ser Val Asp Leu Thr Ser
85 90 95
Lys Ala Ala Ile Thr Ser Phe Tyr Met Phe Ile Trp Lys Leu Phe Tyr
100 105 110
20 Ala Glu Tyr Leu Leu Ile Pro Leu Val Arg
115 120

5 <210> 31
<211> 278
<212> DNA
<213> Zea sp

25 <400> 31
tattcagcac cacctctcaa gctcaagcag aatggatgga ttgggaactt cgctctgggt 60
30 gcgagttaca tcagcttgcc ctggggct ggccaggcgt tatttggAAC tcttacacca 120
gatatcattg tcttgactac tttgtacagc atagctgggc tagggattgc tattgtaaat 180
gatttcaaga gtattgaagg ggataggact ctggggcttc agtcacttcc tttttttt 240
gggatggaaa ctgaaaaatg gatttgtt ggagcaat 278
35 <210> 32
<211> 292
<212> PRT
<213> Synechocystis sp
40 <400> 32
Met Val Ala Gln Thr Pro Ser Ser Pro Pro Leu Trp Leu Thr Ile Ile

1 5 10 15
Tyr Leu Leu Arg Trp His Lys Pro Ala Gly Arg Leu Ile Leu Met Ile
20 25 30
Pro Ala Leu Trp Ala Val Cys Leu Ala Ala Gln Gly Leu Pro Pro Leu
5 35 40 45
Pro Leu Leu Gly Thr Ile Ala Leu Gly Thr Leu Ala Thr Ser Gly Leu
50 55 60
Gly Cys Val Val Asn Asp Leu Trp Asp Arg Asp Ile Asp Pro Gln Val
65 70 75 80
10 Glu Arg Thr Lys Gln Arg Pro Leu Ala Ala Arg Ala Leu Ser Val Gln
85 90 95
Val Gly Ile Gly Val Ala Leu Val Ala Leu Leu Cys Ala Ala Gly Leu
100 105 110
Ala Phe Tyr Leu Thr Pro Leu Ser Phe Trp Leu Cys Val Ala Ala Val
115 120 125
15 Pro Val Ile Val Ala Tyr Pro Gly Ala Lys Arg Val Phe Pro Val Pro
130 135 140
Gln Leu Val Leu Ser Ile Ala Trp Gly Phe Ala Val Leu Ile Ser Trp
145 150 155 160
20 Ser Ala Val Thr Gly Asp Leu Thr Asp Ala Thr Trp Val Leu Trp Gly
165 170 175
Ala Thr Val Phe Trp Thr Leu Gly Phe Asp Thr Val Tyr Ala Met Ala
180 185 190
25 Asp Arg Glu Asp Asp Arg Arg Ile Gly Val Asn Ser Ser Ala Leu Phe
195 200 205
Phe Gly Gln Tyr Val Gly Glu Ala Val Gly Ile Phe Phe Ala Leu Thr
210 215 220
Ile Gly Cys Leu Phe Tyr Leu Gly Met Ile Leu Met Leu Asn Pro Leu
225 230 235 240
30 Tyr Trp Leu Ser Leu Ala Ile Ala Ile Val Gly Trp Val Ile Gln Tyr
245 250 255
Ile Gln Leu Ser Ala Pro Thr Pro Glu Pro Lys Leu Tyr Gly Gln Ile
260 265 270
Phe Gly Gln Asn Val Ile Ile Gly Phe Val Leu Leu Ala Gly Met Leu
35 275 280 285
Leu Gly Trp Leu
290

<210> 33
40 <211> 316
<212> PRT

<213> Synechocystis sp

<400> 33

Met Val Thr Ser Thr Lys Ile His Arg Gln His Asp Ser Met Gly Ala
5 1 5 10 15
Val Cys Lys Ser Tyr Tyr Gln Leu Thr Lys Pro Arg Ile Ile Pro Leu
20 25 30
Leu Leu Ile Thr Thr Ala Ala Ser Met Trp Ile Ala Ser Glu Gly Arg
35 40 45
10 Val Asp Leu Pro Lys Leu Leu Ile Thr Leu Leu Gly Gly Thr Leu Ala
50 55 60
Ala Ala Ser Ala Gln Thr Leu Asn Cys Ile Tyr Asp Gln Asp Ile Asp
65 70 75 80
Tyr Glu Met Leu Arg Thr Arg Ala Arg Pro Ile Pro Ala Gly Lys Val
85 90 95
Gln Pro Arg His Ala Leu Ile Phe Ala Leu Ala Leu Gly Val Leu Ser
100 105 110
Phe Ala Leu Leu Ala Thr Phe Val Asn Val Leu Ser Gly Cys Leu Ala
115 120 125
Leu Ser Gly Ile Val Phe Tyr Met Leu Val Tyr Thr His Trp Leu Lys
130 135 140
Arg His Thr Ala Gln Asn Ile Val Ile Gly Gly Ala Ala Gly Ser Ile
145 150 155 160
Pro Pro Leu Val Gly Trp Ala Ala Val Thr Gly Asp Leu Ser Trp Thr
165 170 175
Pro Trp Val Leu Phe Ala Leu Ile Phe Leu Trp Thr Pro Pro His Phe
180 185 190
Trp Ala Leu Ala Leu Met Ile Lys Asp Asp Tyr Ala Gln Val Asn Val
195 200 205
30 Pro Met Leu Pro Val Ile Ala Gly Glu Glu Lys Thr Val Ser Gln Ile
210 215 220
Trp Tyr Tyr Ser Leu Leu Val Val Pro Phe Ser Leu Leu Val Tyr
225 230 235 240
Pro Leu His Gln Leu Gly Ile Leu Tyr Leu Ala Ile Ala Ile Leu
245 250 255
Gly Gly Gln Phe Leu Val Lys Ala Trp Gln Leu Lys Gln Ala Pro Gly
260 265 270
Asp Arg Asp Leu Ala Arg Gly Leu Phe Lys Phe Ser Ile Phe Tyr Leu
275 280 285
40 Met Leu Leu Cys Leu Ala Met Val Ile Asp Ser Leu Pro Val Thr His
290 295 300

Gln Leu Val Ala Gln Met Gly Thr Leu Leu Leu Gly
305 310 315

<210> 34
5 <211> 324
<212> PRT
<213> Synechocystis sp

<400> 34

10 Met Ser Asp Thr Gln Asn Thr Gly Gln Asn Gln Ala Lys Ala Arg Gln
1 5 10 15
Leu Leu Gly Met Lys Gly Ala Ala Pro Gly Glu Ser Ser Ile Trp Lys
20 25 30

Ile Arg Leu Gln Leu Met Lys Pro Ile Thr Trp Ile Pro Leu Ile Trp
25 35 40 45

Gly Val Val Cys Gly Ala Ala Ser Ser Gly Gly Tyr Ile Trp Ser Val
50 55 60

Glu Asp Phe Leu Lys Ala Leu Thr Cys Met Leu Leu Ser Gly Pro Leu
65 70 75 80

Met Thr Gly Tyr Thr Gln Thr Leu Asn Asp Phe Tyr Asp Arg Asp Ile
70 85 90 95

Asp Ala Ile Asn Glu Pro Tyr Arg Pro Ile Pro Ser Gly Ala Ile Ser
100 105 110

Val Pro Gln Val Val Thr Gln Ile Leu Ile Leu Val Ala Gly Ile
115 120 125

Gly Val Ala Tyr Gly Leu Asp Val Trp Ala Gln His Asp Phe Pro Ile
130 135 140

Met Met Val Leu Thr Leu Gly Gly Ala Phe Val Ala Tyr Ile Tyr Ser
145 150 155 160

Ala Pro Pro Leu Lys Leu Lys Gln Asn Gly Trp Leu Gly Asn Tyr Ala
160 165 170 175

Leu Gly Ala Ser Tyr Ile Ala Leu Pro Trp Trp Ala Gly His Ala Leu
180 185 190

Phe Gly Thr Leu Asn Pro Thr Ile Met Val Leu Thr Leu Ile Tyr Ser
195 200 205

Leu Ala Gly Leu Gly Ile Ala Val Val Asn Asp Phe Lys Ser Val Glu
210 215 220

Gly Asp Arg Gln Leu Gly Leu Lys Ser Leu Pro Val Met Phe Gly Ile
225 230 235 240

40 Gly Thr Ala Ala Trp Ile Cys Val Ile Met Ile Asp Val Phe Gln Ala
245 250 255

Gly Ile Ala Gly Tyr Leu Ile Tyr Val His Gln Gln Leu Tyr Ala Thr
260 265 270
Ile Val Leu Leu Leu Ile Pro Gln Ile Thr Phe Gln Asp Met Tyr
275 280 285
5 Phe Leu Arg Asn Pro Leu Glu Asn Asp Val Lys Tyr Gln Ala Ser Ala
290 295 300
Gln Pro Phe Leu Val Phe Gly Met Leu Ala Thr Gly Leu Ala Leu Gly
305 310 315 320
His Ala Gly Ile
10

<210> 35
<211> 307
<212> PRT
15 <213> Synechocystis sp

<400> 35
Met Thr Glu Ser Ser Pro Leu Ala Pro Ser Thr Ala Pro Ala Thr Arg
1 5 10 15
Lys Leu Trp Leu Ala Ala Ile Lys Pro Pro Met Tyr Thr Val Ala Val
20 25 30
Val Pro Ile Thr Val Gly Ser Ala Val Ala Tyr Gly Leu Thr Gly Gln
35 40 45
Trp His Gly Asp Val Phe Thr Ile Phe Leu Leu Ser Ala Ile Ala Ile
50 55 60
Ile Ala Trp Ile Asn Leu Ser Asn Asp Val Phe Asp Ser Asp Thr Gly
65 70 75 80
Ile Asp Val Arg Lys Ala His Ser Val Val Asn Leu Thr Gly Asn Arg
85 90 95
30 Asn Leu Val Phe Leu Ile Ser Asn Phe Phe Leu Leu Ala Gly Val Leu
100 105 110
Gly Leu Met Ser Met Ser Trp Arg Ala Gln Asp Trp Thr Val Leu Glu
115 120 125
Leu Ile Gly Val Ala Ile Phe Leu Gly Tyr Thr Tyr Gln Gly Pro Pro
35 130 135 140
Phe Arg Leu Gly Tyr Leu Gly Glu Leu Ile Cys Leu Ile Thr
145 150 155 160
Phe Gly Pro Leu Ala Ile Ala Ala Tyr Tyr Ser Gln Ser Gln Ser
165 170 175
40 Phe Ser Trp Asn Leu Leu Thr Pro Ser Val Phe Val Gly Ile Ser Thr
180 185 190

	Ala Ile Ile Leu Phe Cys Ser His Phe His Gln Val Glu Asp Asp Leu			
	195	200	205	
	Ala Ala Gly Lys Lys Ser Pro Ile Val Arg Leu Gly Thr Lys Leu Gly			
	210	215	220	
5	Ser Gln Val Leu Thr Leu Ser Val Val Ser Leu Tyr Leu Ile Thr Ala			
	225	230	235	240
	Ile Gly Val Leu Cys His Gln Ala Pro Trp Gln Thr Leu Leu Ile Ile			
	245	250	255	
10	Ala Ser Leu Pro Trp Ala Val Gln Leu Ile Arg His Val Gly Gln Tyr			
	260	265	270	
	His Asp Gln Pro Glu Gln Val Ser Asn Cys Lys Phe Ile Ala Val Asn			
	275	280	285	
	Leu His Phe Phe Ser Gly Met Leu Met Ala Ala Gly Tyr Gly Trp Ala			
	290	295	300	
15	Gly Leu Gly			
	305			
20	<210> 36			
	<211> 927			
	<212> DNA			
	<213> Synechocystis sp			
25	<400> 36			
	atggcaacta tccaagcttt ttggcgcttc tcccgcccc ataccatcat tggtacaact	60		
	ctgagcgtct gggctgtgta tctgttaact attctcgggg atggaaactc agttaactcc	120		
	cctgctccc tggatttagt gttcggcgct tggctggcct gcctgttggg taatgtgtac	180		
	attgtcggcc tcaaccaatt gtggatgtg gacattgacc gcatcaataa gccgaatttg	240		
	cccctagcta acggagattt ttctatcgcc caggccggtt ggattgtggg actttgtggc	300		
	gttgcttcct tggcgatcgc ctggggatta gggctatggc tggggctaac ggtggcatt	360		
30	agtttgatta ttggcacggc ctattcggtg ccggcagtga ggttaaagcg ctttccctg	420		
	ctggcgcccc tgtgtattct gacggtgccgg ggaattgtgg ttaacttggg cttatttta	480		
	tttttagaa ttggtttagg ttatcccccc acttaataa ccccatctg ggttttgact	540		
	ttatttatct tagtttcac cgtggcgatc gccatttta aagatgtgcc agatatggaa	600		
	ggcgatcggc aatthaagat tcaaacttta acttgcaaa tcggcaaaca aaacgttttt	660		
35	cggggAACCT taatTTACT cactgggttatgt tatTTAGCCA tggcaatctg gggcttatgg	720		
	gcggctatgc cttaaatac tgctttctt attgtttccc atttgtgctt attagcctta	780		
	ctctggtgcc ggagtcgaga tgtacactta gaaagcaaaa ccgaaattgc tagttttat	840		
	cagtttattt ggaagctatt ttcttagag tacttgctgt atcccttggc tctgtggta	900		
	cctaattttt ctaatactat ttTTAG	927		
40	<210> 37			

<211> 308

<212> PRT

<213> Synechocystis sp

5 <400> 37

Met Ala Thr Ile Gln Ala Phe Trp Arg Phe Ser Arg Pro His Thr Ile
1 5 10 15
Ile Gly Thr Thr Leu Ser Val Trp Ala Val Tyr Leu Leu Thr Ile Leu
20 25 30
Gly Asp Gly Asn Ser Val Asn Ser Pro Ala Ser Leu Asp Leu Val Phe
10 35 40 45
Gly Ala Trp Leu Ala Cys Leu Leu Gly Asn Val Tyr Ile Val Gly Leu
50 55 60
Asn Gln Leu Trp Asp Val Asp Arg Ile Asn Lys Pro Asn Leu
65 70 75 80
Pro Leu Ala Asn Gly Asp Phe Ser Ile Ala Gln Gly Arg Trp Ile Val
85 90 95
Gly Leu Cys Gly Val Ala Ser Leu Ala Ile Ala Trp Gly Leu Gly Leu
100 105 110
Trp Leu Gly Leu Thr Val Gly Ile Ser Leu Ile Ile Gly Thr Ala Tyr
115 120 125
Ser Val Pro Pro Val Arg Leu Lys Arg Phe Ser Leu Leu Ala Ala Leu
130 135 140
Cys Ile Leu Thr Val Arg Gly Ile Val Val Asn Leu Gly Leu Phe Leu
145 150 155 160
Phe Phe Arg Ile Gly Leu Gly Tyr Pro Pro Thr Leu Ile Thr Pro Ile
165 170 175
Trp Val Leu Thr Leu Phe Ile Leu Val Phe Thr Val Ala Ile Ala Ile
180 185 190
30 Phe Lys Asp Val Pro Asp Met Glu Gly Asp Arg Gln Phe Lys Ile Gln
195 200 205
Thr Leu Thr Leu Gln Ile Gly Lys Gln Asn Val Phe Arg Gly Thr Leu
210 215 220
Ile Leu Leu Thr Gly Cys Tyr Leu Ala Met Ala Ile Trp Gly Leu Trp
225 230 235 240
35 Ala Ala Met Pro Leu Asn Thr Ala Phe Leu Ile Val Ser His Leu Cys
245 250 255
Leu Leu Ala Leu Leu Trp Trp Arg Ser Arg Asp Val His Leu Glu Ser
260 265 270
40 Lys Thr Glu Ile Ala Ser Phe Tyr Gln Phe Ile Trp Lys Leu Phe Phe
275 280 285

Leu Glu Tyr Leu Leu Tyr Pro Leu Ala Leu Trp Leu Pro Asn Phe Ser
290 295 300

Asn Thr Ile Phe

305

5

<210> 38

<211> 1092

<212> DNA

<213> Synechocystis sp

10

<400> 38

atgaaatttc cgccccacag tggttaccat tggcaaggc aatcacctt ctttgaaggt 60
tggtacgatgc gcctgcttt gccccaaatcc ggggaaagtt ttgcctttat gtactccatc 120
gaaaatcctg cttagcgatca tcattacggc ggcggtgctg tgcaaattt agggccggct 180
acgaaaaaac aagaaaatca ggaagaccaa cttgtttggc ggacatttcc ctgcgtaaaa 240
aaattttggg ccagtccctcg ccagtttgc cttagggcatt ggggaaaatg tagggataac 300
aggcaggcga aaccctact ctccgaagaa ttttttgcctt cggtaagga aggttatcaa 360
atccatcaaa atcagcacca aggacaaatc attcatggcg atcgccatttgc tgcgtggcag 420
ttcacccgtt aaccggaagt aacttgggg agtcttaacc gatttcctcg ggctacagcg 480
gttggcttt ccttttacc ctgtttgttgc cccgggttggc aaatttcttt agcccaaggt 540
agagcgcacg gctggctgaa atggcagagg gaacagtatg aatttgcacca cgccttagtt 600
tatgccaaaa aaaatttgggg tcactccctt ccctcccgct ggttttggct ccaagcaaat 660
tattttccctg accatccagg actgagcgtc actgcccgtt gccccggaaacg gatttttctt 720
ggtcgccccg aagaggttagc tttaatttgc ttacatcacc aaggtaattt ttacgaattt 780
ggcccccggcc atggcacagt cacttggcaa gtagctccct ggggcccgtt gcaattaaaa 840
gccagcaatg ataggatttgc ggtcaagtttgc tccggaaaaaa cagataaaaaa aggagttt 900
gtccacactc ccacccggccca gggcttacaa ctcaactgccc gagataccac tagggctat 960
ttgtatttgc aatttggatc tgggggtcac ggctctgatag tgcaaggggaa aacggacacc 1020
gcggggcttag aagttggagg tgattgggt ttaacagagg aaaatttgc caaaaaaaaaaca 1080
30 gtgccatttttgc 1092

30 gtgccatttttgc

<210> 39

<211> 363

<212> PRT

35 <213> Synechocystis sp

<400> 39

Met Lys Phe Pro Pro His Ser Gly Tyr His Trp Gln Gln Ser Pro

1

5

10

15

40 Phe Phe Glu Gly Trp Tyr Val Arg Leu Leu Leu Pro Gln Ser Gly Glu
20 25 30

Ser Phe Ala Phe Met Tyr Ser Ile Glu Asn Pro Ala Ser Asp His His
35 40 45
Tyr Gly Gly Gly Ala Val Gln Ile Leu Gly Pro Ala Thr Lys Lys Gln
50 55 60
5 Glu Asn Gln Glu Asp Gln Leu Val Trp Arg Thr Phe Pro Ser Val Lys
65 70 75 80
Lys Phe Trp Ala Ser Pro Arg Gln Phe Ala Leu Gly His Trp Gly Lys
85 90 95
Cys Arg Asp Asn Arg Gln Ala Lys Pro Leu Leu Ser Glu Glu Phe Phe
10 100 105 110
Ala Thr Val Lys Glu Gly Tyr Gln Ile His Gln Asn Gln His Gln Gly
115 120 125
Gln Ile Ile His Gly Asp Arg His Cys Arg Trp Gln Phe Thr Val Glu
130 135 140
15 Pro Glu Val Thr Trp Gly Ser Pro Asn Arg Phe Pro Arg Ala Thr Ala
145 150 155 160
Gly Trp Leu Ser Phe Leu Pro Leu Phe Asp Pro Gly Trp Gln Ile Leu
165 170 175
Leu Ala Gln Gly Arg Ala His Gly Trp Leu Lys Trp Gln Arg Glu Gln
180 185 190
Tyr Glu Phe Asp His Ala Leu Val Tyr Ala Glu Lys Asn Trp Gly His
195 200 205
Ser Phe Pro Ser Arg Trp Phe Trp Leu Gln Ala Asn Tyr Phe Pro Asp
210 215 220
His Pro Gly Leu Ser Val Thr Ala Ala Gly Gly Glu Arg Ile Val Leu
225 230 235 240
Gly Arg Pro Glu Glu Val Ala Leu Ile Gly Leu His His Gln Gly Asn
245 250 255
Phe Tyr Glu Phe Gly Pro Gly His Gly Thr Val Thr Trp Gln Val Ala
260 265 270
30 Pro Trp Gly Arg Trp Gln Leu Lys Ala Ser Asn Asp Arg Tyr Trp Val
275 280 285
Lys Leu Ser Gly Lys Thr Asp Lys Lys Gly Ser Leu Val His Thr Pro
290 295 300
35 Thr Ala Gln Gly Leu Gln Leu Asn Cys Arg Asp Thr Thr Arg Gly Tyr
305 310 315 320
Leu Tyr Leu Gln Leu Gly Ser Val Gly His Gly Leu Ile Val Gln Gly
325 330 335
Glu Thr Asp Thr Ala Gly Leu Glu Val Gly Gly Asp Trp Gly Leu Thr
40 340 345 350
Glu Glu Asn Leu Ser Lys Lys Thr Val Pro Phe

355

360

<210> 40
<211> 56
5 <212> DNA
<213> Artifical Sequence

<400> 40
cgcgattaa atggcgccgc ctgcaggcg ccgcctgcag ggccgcgc cat ttat 56
10 <210> 41
<211> 32
<212> DNA
<213> Artifical Sequence

15 <400> 41
tcgaggatcc gcggccgcaa gcttcctgca gg 32
20 <210> 42
<211> 32
<212> DNA
<213> Artifical Sequence

25 <400> 42
tcgacctgca ggaagttgc ggccgcggat cc 32
30 <210> 43
<211> 32
<212> DNA
<213> Artifical Sequence

35 <400> 43
tcgacctgca ggaagttgc ggccgcggat cc 32
40 <210> 44
<211> 32
<212> DNA
<213> Artifical Sequence

45 <400> 44
tcgaggatcc gcggccgcaa gcttcctgca gg 32

<210> 45
<211> 36
<212> DNA
5 <213> Artifical Sequence

<400> 45 tcgaggatcc gcggccgcaa gcttcctgca ggagct 36 .

10 <210> 46
<211> 28
<212> DNA
<213> Artifical Sequence

15 <400> 46 cctgcaggaa gcttgcgccc gcggatcc 28

20 <210> 47
<211> 36
<212> DNA
<213> Artifical Sequence

25 <400> 47 tcgacctgca ggaagcttgc ggccgcggat ccagct 36

30 <210> 48
<211> 28
<212> DNA
<213> Artifical Sequence

35 <400> 48 ggatccgcgg ccgcaagctt cctgcagg 28

<210> 49
<211> 39
<212> DNA
<213> Artifical Sequence

40 <400> 49 gatcacctgc aggaagcttg cggccgcgga tccaatgca 39

<210> 50
<211> 31
<212> DNA
<213> Artifical Sequence

5

<400> 50
ttggatccgc ggccgcaagc ttcctgcagg t

31

<210> 51
10 <211> 41
<212> DNA
<213> Artifical Sequence

<400> 51
5 ggatccgcgg ccgcacaatg gagtctctgc tctcttagttc t

41

<210> 52
<211> 38
<212> DNA
<213> Artifical Sequence

<400> 52
20 ggatcctgca ggtcacttca aaaaaggtaa cagcaagt

38

<210> 53
<211> 45
<212> DNA
<213> Artifical Sequence

30 <400> 53
ggatccgcgg ccgcacaatg gcgttttttg ggctctcccg tgttt

45

<210> 54
<211> 40
35 <212> DNA
<213> Artifical Sequence

<400> 54
ggatcctgca ggttattgaa aacttcttcc aagtacaact

40

40 <210> 55

<211> 38
<212> DNA
<213> Artifical Sequence

5 <400> 55
ggatccgcgg ccgcacaatg tggcgaagat ctgttgtt

38

<210> 56
<211> 37
10 <212> DNA
<213> Artifical Sequence

<400> 56
ggatcctgca ggtcatggag agtagaaagga aggagct

37

15 <210> 57
<211> 50
<212> DNA
<213> Artifical Sequence

20 <400> 57
ggatccgcgg ccgcacaatg gtacttgccg aggttccaaa gcttgcctct

50

25 <210> 58
<211> 38
<212> DNA
<213> Artifical Sequence

30 <400> 58
ggatcctgca ggtcaattgt ttctggtgat gactctat

38

35 <210> 59
<211> 38
<212> DNA
<213> Artifical Sequence

<400> 59
ggatccgcgg ccgcacaatg acttcgattc tcaacact

38

40 <210> 60
<211> 36

<212> DNA
<213> Artifical Sequence

<400> 60

5 ggatcctgca ggtcagtgtt gcgcgtgctaa tgccgt

36

<210> 61

<211> 22

<212> DNA

10 <213> Artifical Sequence

<400> 61

taatgtgtac attgtcgccc tc

22

5 <210> 62

<211> 60

<212> DNA

<213> Artifical Sequence

20 <400> 62

gcaatgtaac atcagagatt ttgagacaca acgtggcttt ccacaattcc ccgcaccgtc

60

5 <210> 63

<211> 22

<212> DNA

25 <213> Artifical Sequence

<400> 63

aggctaataa gcacaaatgg ga

22

30

<210> 64

<211> 63

<212> DNA

<213> Artifical Sequence

35

<400> 64

ggtatgagtc agcaacacct tcttcacgag gcagacacta gcggaattgg ttttaggttat

60

ccc

63

40 <210> 65

<211> 26

<212> DNA

<213> Artifical Sequence

<400> 65

5 gatatccatgg ttgcccaaac cccatc

26

<210> 66

<211> 61

<212> DNA

10 <213> Artifical Sequence

<400> 66

gcaatgtaac atcagagatt ttgagacaca acgtggctt gggtaagcaa caatgaccgg

60

61

c

15 <210> 67

<211> 25

<212> DNA

<213> Artifical Sequence

20 <400> 67

gaattctcaa agccagccca gtaac

25

25 <210> 68

<211> 63

<212> DNA

<213> Artifical Sequence

30 <400> 68

ggtatgagtc agcaacacct tcttcacgag gcagaccta gcgggtgcga aaagggttt

60

63

ccc

35 <210> 69

<211> 23

<212> DNA

<213> Artifical Sequence

40 <400> 69

ccagtggttt aggctgtgtg gtc

23

<210> 70

<211> 21
<212> DNA
<213> Artifical Sequence

5 <400> 70
ctgagttgga tgtattggat c

21

<210> 71
<211> 28
10 <212> DNA
<213> Artifical Sequence

<400> 71
ggatccatgg ttacttcgac aaaaatcc

28

15 <210> 72
<211> 60
<212> DNA
<213> Artifical Sequence

20 <400> 72
gcaatgtAAC atcagAGATT ttgAGACACA acgtggCTTT gctaggcaAC cgcttagtAC

60

25 <210> 73
<211> 28
<212> DNA
<213> Artifical Sequence

30 <400> 73
gaattcttaa cccAACAGTA aagtTccc

28

35 <210> 74
<211> 63
<212> DNA
<213> Artifical Sequence

<400> 74
ggtatgagTC agcaACACCT tcttcACGAG gcAGACCTCA gCGCCGGCAT tgtCTTTAC
atg

60

63

40 <210> 75

<211> 20
<212> DNA
<213> Artifical Sequence

5 <400> 75 20
ggaacccttg cagccgcttc

<210> 76
<211> 22
10 <212> DNA
<213> Artifical Sequence

<400> 76 22
gtatgcccaa ctggtgacaa gg

15 <210> 77
<211> 28
<212> DNA
<213> Artifical Sequence

20 <400> 77 28
ggatccatgt ctgacacacaa aaataccg

25 <210> 78
<211> 62
<212> DNA
<213> Artifical Sequence

30 <400> 78 60
gcaatgtaac atcagagatt ttgagacaca acgtggctt cgccaataacc agccaccaac
62
ag

35 <210> 79
<211> 27
<212> DNA
<213> Artifical Sequence

<400> 79 27
gaattctcaa atccccgcatt ggccttag

40 <210> 80

<211> 65
<212> DNA
<213> Artifical Sequence

5 <400> 80
ggtatgagtc agcaacacct tcttcacgag gcagacctca gccccctacg gcttggacgt 60
gtggg 65

<210> 81
10 <211> 21
<212> DNA
<213> Artifical Sequence

<400> 81 21
15 cacttggatt cccctgatct g

<210> 82
<211> 21
<212> DNA
<213> Artifical Sequence

<400> 82 21
gcaatacccg ctggaaaaac g

<210> 83
<211> 29
<212> DNA
<213> Artifical Sequence

30 <400> 83 29
ggatccatga ccgaatcttc gccccctagc

<210> 84
<211> 61
35 <212> DNA
<213> Artifical Sequence

<400> 84 60
gcaatgtaac atcagagatt ttgagacaca acgtggcttt caatcctagg tagccgaggc 61
40 g

<210> 85
<211> 27
<212> DNA
<213> Artifical Sequence
5
<400> 85 27
gaattcttag cccaggccag cccagcc

10 <210> 86
<211> 66
<212> DNA
<213> Artifical Sequence

15 <400> 86 60
ggtatgagtc agcaacacct tcttcacgag gcagacctca gcggggaaatt gattgttta 66
attacc

20 <210> 87
<211> 21
<212> DNA
<213> Artifical Sequence

25 <400> 87 21
gcgatcgcca ttatcgcttg g

30 <210> 88
<211> 24
<212> DNA
<213> Artifical Sequence

35 <400> 88 24
gcagactggc aattatcagt aacg

39 <210> 89
<211> 25
<212> DNA
<213> Artifical Sequence

40 <400> 89 25
ccatggattc gagtaaagt gtgcgc

<210> 90
<211> 0
<213> Artifical Sequence

5 <400> 90
gaattcactt caaaaaaggt aacag

<210> 91
<211> 4550
10 <212> DNA
<213> Arabidopsis sp

<400> 91
attttacacc aatttgatca cttaactaaa ttaattaaat tagatgatta tcccaccata 60
15 ttttgagca ttaaaccata aaaccatagt tataagtaac tgtttaatc gaatatgact 120
cgattaagat tagaaaaat ttataaccgg taattaagaa aacattaacc gtagtaaccg 180
taaatgcga ttccctccct gtctaaaaga cagaaaacat atattttatt ttgccccata 240
tgtttcactc tatttaattt caggcacaat acttttggtt ggtaacaaaa ctaaaaagga 300
caacacgtga tactttcct cgtccgtcag tcagattttt tttaaactag aaacaagtgg 360
caaatctaca ccacatttt tgcttaatct attaacttgt aagttttaaa ttccctaaaaa 420
agtctaacta attttctaa tataagtaca ttccctaaat ttcccaaaaaa gtcaaattaa 480
taatttcaa aacttaatct aaatatctaa taattcaaaa tcattaaaaa gacacgcaac 540
aatgacacca attaatcatc ctgcacccac acaattctac agttctcatg ctaaaccata 600
tttttgctc tctgttcctt caaaatcatt tctttcttctt ctggattcc caaagatcac 660
20 ttctttgtct ttgatttttgc atttttttc tctctggcgt gaaggaagaa gctttatttc 720
atggagtctc tgctctctag ttcttcttctt gttccgctg gttaatctcg tcctttctg 780
gtttcagggtt ttatttgttg tttaggttgc gttttgtga ttcagaacca tacaaaaagtt 840
ttgaactttt ctgaatataa aataaggaaa aagtttcgtat tttataatg aattgtttac 900
tagatcgaag tagtgacaa agtttattgt gtggagaagc ataatttctg ggcttgactt 960
30 tgaattttgt ttctcatgca tgcaacttat caatcagctg gtgggttttgc ttgaagaag 1020
cagaatctaa agtccactc tttatcaggt tcgttaggtt tttatgggtt ttgaaattta 1080
aatactcaat catcttagtc tcattattct attgggttgc tcacattttc taatttggaa 1140
tttatgagac aatgtatgtt ggacttagtt gaagttcttc tctttggta tagtgaagt 1200
35 gttactgtatg ttgttagct cttaacacca atatatacac ccaattttgc agaaatccga 1260
gttctgcgtt gtgattcgtat taaagtgtc gcaaaaaccga agtttaggaa caatcttgc 1320
aggcctgatg gtcaaggatc ttcatgttg ttgtatccaa aacataagtc gagatttcgg 1380
gttaatgcca ctgcgggtca gcctgaggct ttgcactcga atagcaaaaca gaagtctttt 1440
agagactcgt tagatgcgtt ttacaggtt tctaggcctc atacagttat tggcacagtt 1500
aagtttctct taaaaatgt aacttttaaaacgcaatc ttccagggtt ttcaaggaga 1560
40 taacatttgc tctgtgattt gatttgcagg tgcttagcat tttatctgtc tctttcttag 1620
cagtagagaa ggtttctgat atatctcctt tactttcac tggcatctt gaggtaatga 1680

	atatataaca cataatgacc gatgaagaag atacatttt ttcgtctc tc tgaaaaaca	1740	
	attgggtttt gtttcaggc tgggttgca gctctcatga tgaacattt catagttggg	1800	
	ctaaatca gttctgatgt taaaatagat aagtaacat gcaaatttc ttcatatgag	1860	
5	ttcgagagac tggagatt aatagcact agtgcctaga tcatcttat gtgggtttt	1920	
	gcaggtaac aagccatc ttccattggc atcaggagaa tattctgtt acaccggcat	1980	
	tgcaatagta gcttccttct ccatcatgtt atgggccat tttcacaaaa tttcaacttt	2040	
	tagaattcta taagttactg aaatagttt ttataaaatcg ttatagagtt tctggcttgg	2100	
	gtggattttt ggttcatggc cattgttctg ggctttttt gtgagttca tgctcggtag	2160	
	tgcatactt atcaatgtt caatactaga atttggctca aatcaaaaatc	2220	
10	tgcagtttct agtttaggt taatgagggt ttaataactt acttctacta caaacagttg	2280	
	ccacttttac ggtggaaaag atttgcattt gttcagcaa tgtgtatcct cgctgtccga	2340	
	gctattattt ttcaaattcgc cttttatcta catattcagg tactaaacca ttttccttat	2400	
	gtttttagt tgtttcatc aaaatcattt ttatattact aaagctgtga aactttgtt	2460	
	cagacacatg tggggaaag accaatctt ttcacttaggc ctcttattt cgccactg	2520	
15	tttatgagct tttctctgt cgttatttgc ttgtttaagg taaaacaaaga tggaaaaaga	2580	
	ttaatctat gtatacttaa agtaaagcat tctactgtt ttatgagaa gtttctttt	2640	
	ttgggtggat gcaggatata cctgatatcg aagggtataa gatattcgga atccgatcat	2700	
	tctctgttac tctgggtcag aaacgggtac gatatctaa ctaaagaaat tgtttgact	2760	
	caagtgttgg attaagatta cagaagaaag aaaactgtt ttgttctt caaaattcag	2820	
20	gtgttttggc catgtgttac actacttca atgcttacg ctgttcaat tctagttgg	2880	
	gccacatctc cattcatatg gagcaaagtc atctcgtaa caatcttct ttaccatcg	2940	
	aaaactcgct aattcatcg ttgagtggta ctgggttcat ttgttccgt tctgttgatt	3000	
	tttttcagg ttgtggta tttataactc gcaacaactt tggggctcg agctaagtcc	3060	
	gttgatctga gtagcaaaac cgaaataact tcatgttata ttatgcataatg gaaggtaga	3120	
	ttcgttata aatagagtct ttactgcctt ttatgcgtt ccaatttggaa attaaaatag	3180	
	ccttcagtt tcatgaatc accattatac tgataaattc tcatttctgc atcagcttt	3240	
	ttatgcagag tacttgctt taccttttta gaagtgtactg acattagaag agaagaagat	3300	
	ggagataaaa gaataagtca tcactatgct tctgtttta ttacaagttc atgaaattag	3360	
	gtatgtact agtgaattag agtttatttca tggaaatcg cagactgcaaa aatatgtca	3420	
30	aagatgttca ttctgttgg gtaaagaagt ctctgttgg gcaaatctt aagttcggt	3480	
	gtgttgcata aatgcttaacg gaaatctcg attctatgtt gaaatttccg aaactatgtt	3540	
	taaacatgtc agaacatctc cattctatat ctcttctgc aagaaagctc tgttttatc	3600	
	acctaaatctc ttatctctg tgtagttaa atatgtatat gtacgtact acatttttt	3660	
	gttgatgttca ttgcagaac gtatggattt ttgttagaaa gcatgagttc gaaagtata	3720	
	35	gtttatataat atggataatt cagaccaac gtcgaagctc acaagcataa attctact	3780
	atagttgct ctgtataga tagttccatt gatgttgc aactgtacgt aactgcctgg	3840	
	gcgtttgtg gttgatactg actactgactt gttctttgtg agtggtaa gtatacaaga	3900	
	agaagaatatt aggctcacgg gaaacgtactgt ggtggaaagat gaaatggaga tcatacgt	3960	
	gcggcttgc caaagaccga gtcacgatcg agtctatgaa gtcttacag ctgtgttca	4020	
40	tgattgacca ttgttagag acgcattggaa atcttacttag ggacttgcct ggagtttct	4080	
	tcaagtacgt gtcagatcat acgtatgttgg agatttcaccg gctttgtatgt gttgtttgg	4140	

agt	cacaatg	cttaatggc	ttattggcc	aataatagct	agctctttg	cttagccgt	4200
	ttcg	tttgc	ccctgggt	gagtattt	aggatgtgt	gtgaccaaag	4260
	tag	gtat	gtgtgtgt	ttttttttt	ttttttttt	ttttttttt	4320
5	atga	acaatt	cttttgtaa	ggaaaactt	tatatagt	acgtttacta	4380
	agtt	gaacta	acttcgtgca	attgcataat	aatgggtgt	aatagagggt	4440
	ataa	acattt	cgacgtacca	agagttcgaa	acaataagca	aaatagattt	4500
	gact	aaattt	tacaatgaat	ggttaataaa	ccattgaagc	tttttattaat	4550

<210> 92
 10 <211> 4450
 <212> DNA
 <213> Arabidopsis sp

	<400>	92					
15	tttagttac	aaaatcaatg	atattcgta	tgtcaactat	aaaagccaaa	agtaaagcct	60
	cttgg	tttgc	cagaagg	tgtatcattt	atacatacag	ccaaactacc	120
	aaag	acatgg	atccaaaca	acaacaatag	cttcttttac	aagaaccagt	180
	cact	aatcta	aaagagttaa	gtttcagtt	ttctggcaat	ggctccttga	240
20	cct	gaagg	accactttt	tagcaagacc	atgtcctctg	tttcacttac	300
	aaa	gtctac	ttcaatttctt	catatatagg	ttcctcacac	tacagttca	360
	ttg	acag	gagagtctt	attgaaaact	tcttccaagt	acaactccac	420
	agc	ccaaac	cacttgtcg	acacaaatct	gtacagatat	aaaaacacta	480
	caagg	aaat	cacataattt	gattgtgaaa	gagttacaaa	gataaaccca	540
25	ctt	ctact	cagtcagcac	cagatgataa	gtcagctgtc	ccttatttgc	600
	tc	tcgt	atgcgtata	ttgccaccct	taatcatag	agcgagaaac	660
	aaa	aaa	aaaagacagt	aaatggaaatt	aggaatcaca	aatgagtcct	720
	att	att	attgagtacc	gagatctgca	ctgaatccag	aaagtgc	780
	ca	cc	attgagtacc	ctgaatccag	aaagtgc	aaaacctatg	840
	ca	ca	caatccagt	taaccaaagc	tttgttattt	caccgaatct	900
30	ca	act	caatccat	ttgtccgttga	gacacaatat	attagacatt	960
	aaaa	ttt	aaaaatga	tttaacctag	aatatctaa	aattacttgc	1020
	aa	ttt	aaaaatga	tttaacctag	aatatctaa	aattacttgc	1080
	aa	ttt	aaaaatga	tttaacctag	aatatctaa	aattacttgc	1140
	aa	ttt	aaaaatga	tttaacctag	aatatctaa	aattacttgc	1200
35	aa	ttt	aaaaatga	tttaacctag	aatatctaa	aattacttgc	1260
	aa	ttt	aaaaatga	tttaacctag	aatatctaa	aattacttgc	1320
	aa	ttt	aaaaatga	tttaacctag	aatatctaa	aattacttgc	1380
	aa	ttt	aaaaatga	tttaacctag	aatatctaa	aattacttgc	1440
40	aa	ttt	aaaaatga	tttaacctag	aatatctaa	aattacttgc	1500
	aa	ttt	aaaaatga	tttaacctag	aatatctaa	aattacttgc	1560
	aa	ttt	aaaaatga	tttaacctag	aatatctaa	aattacttgc	1620

ccccctaaaac acggctgcag aatatacata ctgaaatgag ctcaagtaga aaagaatttg 1680
atcacaaaac taaagacaag acctgagaac atatcttag aatttggcc aactacataa 1740
gggtgaacca tatgtgtatg tgaatttttta aacaaacact tgcaaatacg cgactttagg 1800
gcaagtaaaa aatccaaaca aacctgtaat tgttaagttg gagaagaatc cctaagccta 1860
5 aaagcaactg cagcccgaga aatccaatcc cttgaaatgg tgtcaaaaaga ccactggcga 1920
taggtcttag ttttgtacga tcaacctgga tataaaagaa atttgtaaga caacataatc 1980
taaaaacaaaaa caaccataca aaatcttgag cttagatcac aagcaaccca tctttgttta 2040
tggagaatg aatccagttt catgaatgtgttatctac cctaactact aaacacatata 2100
ttcaatcgaa aaacatattc cacccatcc atatctaaca cctgaagttt ttcactttt 2160
10 gaacgaagtc atcagaacat gcagataagc tattacccaa aacagagata tgactggaaa 2220
tgttgtcgta aattgatcca acatagaaaaa atcaagacca gttccagatg tcaaagcaat 2280
aacactttcc caccatggtt acagaaacca tagtacaca aaacatgttt cctaaaccaa 2340
catactaaag ggatatataa atttgacatc actttatcac cataccataa gatagcttaa 2400
aaacaaactg acctttgtat ctatgtcctg atcaaggaga tcatttatacataaccaggc 2460
15 acctctaaga agtaatgctc cgcaacccaa taaagccata tattttaaac ttggaggct 2520
tccaggatca gcagccaaacg caatcgacct atacaacaat gatggagatt cagagtatcg 2580
atcttattac atagctctgg aactagatcc atgacgaaac atggaacatc gttataatata 2640
ctaaagactt ccaaacagat tcctgagtaa gaaacccagt ggaactatag tactgttaaca 2700
tatataaaat caaagaaaac tcaggtttt agcattatcc aatcctgatt tctgccaatc 2760
cttaaccact ctcccatgtt atcaaaaacc tcagctcaag atcataactac ctaattgcct 2820
atgagctctt gggaaagatca ttatggattt gataactgaa aaaagtaaca gagaaatagc 2880
agactgcaag aactactcca aacttctcca ctgatatgta tgtatctaa caataataaa 2940
cagacataaa ttctttatc aagcttcaag agcaagtttgc tcaaaaaaca tcacagccaa 3000
accaaccagg aaaacacata actttatcac ataaaactaa atttaatgta atctgactta 3060
30 acataaaacca tcctttggga cgaaaggaaa ctatataaac atgcagttt tcttccctc 3120
agctatttctt tcggatggat tataatgatctcaaaaatgtaaattgtctt attctcagtt 3180
acattactca aaggcgaaga taaacttacc acatacaagg ccacgcaagc aaccaagtcc 3240
caatgggtt atccaatcga gcaagcttag cataacctct aacttcttctt ggtttatata 3300
aatctatcca agaagcttcc ttaacaacaa caccatcaat cttctccat tcatcttctt 3360
35 tcggcttcc ctccaaaacc gaagaagacg acgacattcc acaaattaat ctgttaattcc 3420
aaccaacacc aaaaaacttc tcctgtatcga attcttccat tttactccat acttggtaat 3480
tatcatccatca tgaaggataa cacttagtga aaggattttgt gtaatggta gtcacaggat 3540
tggacaagga ttatgttgtt gattgcaaaa gagcagagga agaagatgga gttacggaga 3600
cggaagattt caacaaccgtt cttgaaacac gggagagccc aaaaaacgcc atctttgaga 3660
gaaatttttg cctggaagaa acaaagactt gagatttcaaa acgtaagtga attcttacga 3720
35 acgaaagcta acttctcaag agaattcagat tagtattcc tcaaaaacaa acaaactat 3780
ctaatttcag tttcgagtta tgaagccatc agaattctaga acctccatgg cgtttctaat 3840
ctctcagaga taatcgaaatt cttaaacaa tcaaagctta gaaagagaag aacaacaaca 3900
acaacaaaaaa aaatcgattt aacaaccgac cagagagcaa cgacgacgccc ggcgagaaag 3960
40 agcacgtcgt ctcggagcaa gacttcttctt ccagtaaccc ggtatggatcg ttaatggcc 4020
tgttagattt tatattttggg ccgaaacaaat tgggtcagca aaaacttggg ggataatgaa 4080

gaaacacgta cagtagatgc tttaggctcca aattaattgg ccatataatt cgaatcaga 4140
aaactaatca accccttacct tacttttac tcactgtttt tatttctacc ttagtagttg 4200
aagaaaacact ttttattttatc ttttcgggac ccaaatttga taggatcggg ccattactca 4260
tgagcgctcag acacatatta gccttatcag attagtgggg taaggttttt ttaattcgg 4320
aagaagcaac aatcaatgtc ggagaaaatta aagaatctgc atgggcgtgg cgtgatgata 4380
tgtgcataatg gagtcagttg ccgatcatat ataactattt ataaaactaca tataaaagact 4440
actaatagat 4450

<210> 93
10 <211> 2850
<212> DNA
<213> *Arabidopsis* sp

	tatggccctt gcacatctc gcccgaatga ttatgcagct ggagggttaag accatatggt	1680
	gtcatatgag attagaatgt ctccctccat gtatgttga tcttgaacta gttcaatttc	1740
	gtggaaatgt cagagtgtcc tagatagtg cacagcagtc gacattttag tggctagata	1800
	atagtttctt tccgttagag ataaacattc gcgaacattg tttccagctt ccgcgaccca	1860
5	acttctgatt ttgtttcttg gtaccttgc ttcaagttaca agatgttgc actctttgat	1920
	ccgtcagggaa agagaatagc agcagtggct ctaaggaact gctttacat gatccctctc	1980
	ggtttcatcg cctatgactg tgagtcttgt agatccatct ttttttgtt gtttattgac	2040
	tgcattgtcg tatctgattt ttgctgttcc ttcaaatttt tgtgacaggg gggtaacct	2100
10	caagttggtt ttgcctcgaa tcaacacattc tcacactagc aatcgctgca acagcattt	2160
	cattctaccg agaccggacc atgcataaaag caaggaaaat gttccatgcc agtcttctc	2220
	tccttcctgt tttcatgtct ggtcttctc tacaccgtgt ctctaattgt aatcagcaac	2280
	aactcgtaga agaagccgga ttaacaattt ctgtatctgg tgaagtcaaa actcagaggc	2340
	gaaagaaacg tggggctcaa cctccgggtt cttatgcctc tgctgcaccg tttccttcc	2400
	tcccaagctcc ttcccttctac tctccatgt aaccttaag caagctattt aatttttggaa	2460
15	aacagaaaatt aaaaaaaaaa tctgaaaagt tcttaagttt aatcttttgtt taataatgaa	2520
	gtggagaacg catacaagtt tatgtatttt ttctcatctc cacataattt tattttttct	2580
	ctaagtatgt ttcaaatgtt aaaaaataca tactttatca attatctgtt caaattgtat	2640
	aattttttagt ctttgacgtg ttaggtctat ctaataaacg tagtaacaa tttgggttttgg	2700
20	gaaatgaaat ccgataaccg atgatgggtt agagttaaac gattaaaccg ggttggttaa	2760
	aggctctcgag tctcgacggc tgcggaaatc ggaaaatcac gattgaggac tttgagctgc	2820
	cacgaagatg gcgatgaggt tgaaatcaat	2850
	<210> 94	
	<211> 3660	
25	<212> DNA	
	<213> Arabidopsis sp	
	<400> 94	
	tatttgtatt ttattttgtt aattttatga tttcacccgg tatatatcat cccatattaa	60
30	tattagattt attttttggg ctttatggg gttttcgatt taaactgggc ccattctgt	120
	tcaatgaaac cctaattgggt tttgtttggg ctttggattt aaaccggggcc cattctgtt	180
	caatgaaggt ctttgtcca aaaaaactaa catccgacac aacttagtatt gccaaagagga	240
	tcgtgccaca tggcagttat tgaatcaaag gccgccaaaa ctgtaacgtt gacattactt	300
	atctccgtt acggacaacc actcgttcc cgaaacagca actcacagac tcacaccact	360
35	ccagtctccg gcttaactac caccagagac gattctctt tccgtcggtt ctatgacttc	420
	gattctcaac actgtctcca ccatccactc ttccagagtt acctccgtcg atcgagtcgg	480
	agtccctctt cttcgaaatt cgattccgt ttagttcaact cggccggcggtt ctggtttctc	540
	gacgttgatc tacgaatcac ccggtagtta gcattctgtt ggatagattt atgaatgttt	600
	tcttcgattt tttttttact gatcttggt tggatctctc gttagggcgga gatttgggtt	660
40	gcgtgcggcg gagactgata ctgataaaagg tatgattttt tagttttttt tattttctt	720
	ctcttcaaaa ttctcttttc aaacactgtg gcgttgaat ttccgacggc agttaaatct	780

	cagacacacctg acaaggcacc agccggtggt tcaagcatta accagcttct cggtatcaa	840
	ggagcatctc aagaaactgt aattttgttc atctccctcg aatcttttaa attatcatat	900
	tttgtggataa tgatgtgtta gtttaggaat ttccctacta aaggtaatct ctgttgagga	960
	caagtcttgc ttttagctt gaaatgtatgt gaaaatgtt gttgttagct aaaaagagtt	1020
5	tgttgttata ttctgttattc agaataaaatg gaagattcgt cttcagctt caaaaccagt	1080
	cacttggcct ccactggttt ggggagtcgt ctgtggtgct gctgcttcag gtaatcatac	1140
	gaacctctt tggatcatgc aataactgtac agaaagttt ttcattttcc ttccaattgt	1200
	ttcttctggc agggacttt cattggaccc cagaggatgt tgctaagtctg attcttgca	1260
10	tgatgtgtc tggcttgc tttactggct atacacaggt ctggtttac acaacaaaaa	1320
	gctgacttgt tcttattcta gtgcatttgc ttggtgctac aataacctag acttgcgtat	1380
	ttccagacaa tcaacgactg gtatgataga gatatcgacg caattaatga gccatatcg	1440
	ccaattccat ctggagcaat atcagagcca gaggttaactg agacagaaca ttgtgagctt	1500
	ttatctctt tgtgattctg atttctcctt actccttaaa atgcaggta ttacacaagt	1560
	ctgggtgcta ttattggag gtcttggat tgctggaata ttagatgtgt ggtaagttg	1620
15	gcccttctga cattaactag tacagttaaa gggcacatca gatttgctaa aatctccct	1680
	tatcaggcag ggcataccac tcccactgtc ttctatctt ctttgggagg atcatgtcta	1740
	tcttatatat actctgtcc acctcttaag gtaagtttta ttcctaactt ccactctcta	1800
	gtgataagac actccatcca agttttggag tttgaatat cgatatctga actgatctca	1860
	ttgcagctaa aacaaaatgg atgggttga aattttgcac ttggagcaag ctatattagt	1920
20	ttgccatggt aagatatctc gtgtatcaat aatatatggc gttgttctca tctcattgt	1980
	ttgtttctt ctcacttgac tgatagggtt gctggccaag cattgtttgg cactcttac	2040
	ccagatgtt ttgttctaact ctcttgcgtc agcatagctg gggtaactt ttggcaaaacc	2100
	ttttatgtt ctttttcgt tatctgttgt aatatgtct tgcttcatgt tgtacctttg	2160
	tgataatgca gtaggttata gcccattgtt acgacttcaa aagtgttga ggagatagag	2220
25	cattaggact tcagtctctc ccagtagctt ttggcaccga aactgcaaaa tggatatgca	2280
	ttggtgctat agacattact cagctttctg ttggccgtat gtactatcca ctgttttgc	2340
	gcagctgtt cttctatttc tttccttga tcttatcaac tggatattca ccaatggtaa	2400
	agcacaaaatt aatgaagctg aatcaacaaa ggcaaaacat aaaagtacat tctaataaaa	2460
	tgagctaata gaggaggc atctactttt atgtttcatt agtgtgattt atggattttc	2520
30	atttcatgtc tctaaaacaa gtattttcaa cagtgcatg aaataacaga acttataatc	2580
	tcattttgtac ttttactagt ggttaggtt cacaatcatt gttatagaac caaatcaaag	2640
	gttagagatca tcatttagtat atgtcttattt tggttgccagg atatcttata gcacatggta	2700
	aaccttata tgcgttggcg ttgggttgc ttgcattcc tcagattgtt ttccaggtaa	2760
	agacgttaac agtctcacat tataattaat caaattcttgc tcactcgctt gattgtaca	2820
35	ctcgcttcta taaaactgcag tttaaataact ttctcaagga ccctgtcaaa tacgacgtca	2880
	agtaccaggta aagtcaactt agtacacatg tttgtgttct tttgaaatat ctggagagg	2940
	tctcttaatc agaagttgtc tgaaacactc atcttgatta caggcaagcg cgccaggcatt	3000
	cttggtgctc ggaatatttg taacggcatt agcatcgcaaa cactgaaaaa ggcgtat	3060
	gatgggttt tgtcgaaagc agaggtgtt acacatcaaa tggggcaag tgatggcatc	3120
40	aactagtttta aaagattttg taaaatgtat gtaccgttat tactagaaac aactctgtt	3180
	gtatcaattt agcaaaaacgg ctgagaaatt gtaattgtat ttaccgtatt tgccgtccat	3240

ttttgcattt cctgctcata tcgaggattg gggtttatgt tagttctgtc acttctctgc 3300
tttcagaatg ttttgaaaa ctgttagtggaa ttttaactat tttcatcaact ttttgattt 3360
attctaaaca tgtatccaca taaaaacagt aatataaaaa aatgataactt cctcaaactt 3420
5 ttataatct aaatctaaca actagctgt aacccaacta acttcataca attaattga 3480
gaaactacaa agactagact atacatatgt tatttaacaa cttgaaaactg tgttattact 3540
acctgattt tttctattct acagccattt gatatgctc aatcttaaca tatcaagtct 3600
cacgttgg gacacaacat actatcacaa gtaagacacg aagtaaaaacc aaccggcaac 3660

<210> 95
10 <211>
<212> DNA
<213> soy

15 ATGGATTCACTGCTTCTCGATCTTCCCTAATATTAATAACGCCTTCTCACCAACTGGTGCAAATTCTCC
AGGACTAAATCTTCGCCAACATTACATGCAAGTTCTTATGCCCCAATGCTTCATGGCACAATAGGAAAATCCA
AAAGAATATAATTTTGAGGTTTCCGGTGGCCAAGTTGAACCATCATTACAAAGCATTGAGGGAGCGTGTACATGT
AAAAAATGTAATATAAAATTTGTTGTGAAAGCGACCTCTGAAAATCTTGTAGTCTGAACCTCAAGCTTTGATCCA
AAAAGCATTTGGACTCTGTCAAGAATTCTTGGATGCTTCTACAGGTTTCCAGGCCACACAGTTATTGGCACA
GCATTAAGCATAATTCTGTGTCCTCTGCTGTTGAGAAAATATCAGATATATCTCATTATTTTACTGGTGTG
TTGGAGGCTGTGGTTGCTGCCGTGTTATGAATATTATATTGTGGTTGAATCAATTGTCATGTTGAAATAGAC
AAGATAAACAAAGCCGTATCTCCATTAGCATCTGGGAATATTCTTGAACACTGGTGTCACTATTGTCATCTTT
TCAATTCTGAGTTTTGGCTGGCTGGGTGTAGGTTCATGGCATTATTGGGCCCTTTGTAAGCTTGTGCTA
GGAACTGCTTATTCAATCAATGTGCCCTGTTGAGATGGAAGAGGTTGCAGTGCAGCGATGTGCATTCTAGCT
GTTCGGGCAGTAATAGTCACATTGCATTTCCTCACATGCAAGACTCATGTGTCAGAAGAGGCCACCTGCTTTCA
AGACCATTTGACTGCATTGCATTGAGCTTCTCTGTAGTTAGCACTGTTAAGGATATACTGACATT
GAAGGAGATAAGTATTGGCATCCAATCTTTCAGTGCAGTTAGGTCAAGAAGCCGGTGTCTGGACTTGTGTTACC
CTTCTGAAATAGCTTATGGAGTCGCCCTCTGGAGCTGCATCTCTGTCTTGGAGCAAATTTCACGGGT
CTGGGACACGCTGTGCTGGCTCAATTCTGTTTATGCAAATCTGTAGATTGAAAAGCAAAGCTTCGATAACA
TCCTCTATATGTTATTGGAAAGCTATTGAGATGA
30

<210> 96
<211>
<212> DNA
<213> soy

35 ATGGATTCGATGCTTCTCGATCTTCCCTAATATTAACAACGCTTCTCTGCCACCACTGGTTCTTATTGCCA
AATGCTTCATGGCACAATAGGAAAATCCAAAAGAATATAATTGGGTTGGTGGCCAAGTTGAACCAACCAT
TACAAAAGCATTGAAGGAGGGTGTACATGTAATATAAAATTGTTGTGAAAGCGACCTCTGAAAATCT
40 TTTGAGCTCTGAACCCCAAGCTTGTATGCAAAAGCATTGGACTCTGTCAAGAATTCTTGATGCTTCTACAGG
TTTCCAGACCTCACACAGTTGGCACAGCATTAGCATAATTCTGTGTCCTCTGCTGTTGAGAAAATATCT
GATATATCTCCATTATTTTACTGGTGTGTTGGAGGCTGTGGTGTGCCCTGTTATGAATATTATATTGTTGGT
TTGAATCAATTGTCATGTTGAAATAGACAAGATAAACAGCGTATCTCCATTAGCATCTGGGAATATTCTTT
45 GAAACTGGTGTCACTATTGTTGCATCTTCAATTGAGTTTGCTGGCTGGCTGGGTGTAGGTTCATGGCCATTA
TTTGGGCCCTTTGTAAGCTTGTGCTAGGAACCTGCTATTCAATCAATGTCCTCTGTTGAGATGGAAGAGGTT
GCAGTGCCTGCAGCGATGTGCATTCTAGCTTCCGGCAGTAATAGTCACATTGCACTTGCATTCTCACATCCAGACT
CATGTATAACAAGAGGCCACCTGTCTTCAAGATCATTGATTTGCTACTGCATTCAATGAGCTTCTCTGTAGTT
50 ATAGCACTGTTAAGGATATACTGACATTGAAGGAGATAAAAGTATTGGCATCCAATCTTTCAGTGCCTTGTAGGT
CAGAAGCCGGTATCTGGACTTGTGTTATCCTCTGAAATAGCTTATGGAGTCGCCCTCTGGTGGAGCTGCATCT
CCTTGCTTTGGAGCAAATGTCACGGGTCTGGGACACGCTGTTCTGGCTCAATTCTCTGGTTCATGCCAAATCT
GTAGATTGAAAAGCAAAGCTTCGATAACATCCTCTATATGTTATTGGAGCTATTGAGATGA
ATTCCCTTTGTTAGATGA

<210> 97

<211>

<212> PRT

5 <213> soy

MDSMLLRSPNINNASSLATTGSYLPNASWHNRKIQKEYNFLRFRWPSLNHHYKSIEGGCTKKCNIKFVVKATSEKS
FESEPQAFDPKSILDSVKNSLDAYRFSRPTHVTGTAISIISVSLAVEKISDISPLFFTGVLEAVVAALFMNIYIVG
10 LNQLSDVEIDKINKPVLPLASGEYSFETGVIVASFISILSFWLGVVGSWPLFWALFVSVLGTAYSINVPLLRWKRF
AVLAAMCILAVRAVIVQLAFFLHQTHVYKRPPVFSRSLIFATAFMSFFSVVIALFKDIPDIEGDVKFGIQSFSVRLG
QKPVFVCVILLEIAYGVALLVGAASPCLWSKIVTGLGHAVLASILWFHAKSVDLKSKASITSFYMFIWKLFYAEYLL
IPFVR

<210> 98

15 <211>

<212> PRT

<213> soy

MDSMLLRSPNINNASSLTTGANFSRTKSFANIYHASSYVPNASWHNRKIQKEYNFLRFRWPSLNHHYKGIEGACTC
KKCNIKFVVKATSEKSLESEPQAFDPKSILDSVKNSLDAYRFSRPTHVTGTAISIISVSLAVEKISDISPLFFTGV
LEAVVAALFMNIYIVGLNQLSDVEIDKINKPVLPLASGEYSFETGVIVASFISILSFWLGVVGSWPLFWALFVSVL
GTAYSINVPLLRWKRFAVLAAMCILAVRAVIVQLAFFLHMQTHVYKRPPVFSRPLIFATAFMSFFSVVIALFKDIPDI
EGDKVFGIQSFSVRLGQKPVFWTCVTLLEIAYGVALLVGAASPCLWSKIFTGLGHAVLASILWFHAKSVDLKSKASIT
SFYMFIWKLFYAEYLLIPFVR

20 <210> 99

<211>

<212> DNA

<213> rice

25 GAGCAGCACTGGGTCTTACATTCCAATGGAGCTCGCCTGTTGCTTCATTACATGCTTC
TGACTTTATTGCTTGGTCATTGCTATAACCAAAGATCTCCAGATGTTGAAGGGATC
30 GGAAGTCAAATATCAACTTTGGCGACAAAGCTCGGTGTCAGAACATTGCATTCTTG
GCTCTGGTTATTGATAGCAAATTATGTTGCTGCTATTGCTGTAGCTTTCTCATGCC
35 AGGCTTCAGGCGCACTGTAATGGTGCCTGTCATGCTGCCCTGCCGTTGGTATAATT
TCCAGACATGGGTTCTGGAGCAAGCAAATATACTAAGGATGCTATTTCACAGTACTACC
GGTTCAATTGGAATCTCTTATGCTGAATACATCTTCTCCGTTGATATAGAGACCAA
40 GCAATCTGATATTGCTGTCATGTTGAGTCGGCAAAAAGCTAGAAGCCCATTGAAACAGTG
GGAGTAGGGGAACGAAACATGCCATCCATGGGAAGACTCTGATAACTCTCTCGCCCGGG
45 CTGTAAGGGTAAGCACTGTTGGCATATATATGAAAGGAAGGTGATAAAGCAGGGATGC
TAAATTGCTACTGGATCCTCAAAGGCTTATAGTGGTCACCCAGTGGAAATGTGCCCTAATA
ATTGGTTACCCAGAGCAAGTTTTGCAGGTTATTAGGTAATATCTTGAGGGAAATG
AACTTAGATTTCATTGTTAAGGCTGGTCACACAACGGGTAGTAGTGTGGAGCGGCA
AAAAACGACCTGTTTACACTACCAAGGGAGGTTAACTCTAGTTTCTATGTGACCACCT
ACCTTGAGAGTTGAGGACATGGGAACTACTGTGCGACTCCTCGGTTGTATATTCTAGTG
50 TCAGCATTGCAATTCTCTCCCCACTTGTACTTGAAAAGTTGAAGACAACCTTTGTT
GTGT

<210> 100

55 <211>

<212> DNA

<213> wheat

CGTCCCGGGACCGCTGGGTGCTTATTCACTGCAATCTGCCGACTTTCTATGGAAGAGATC
55 TGCTGTTGTCAGCACTCTGCATATTAGCAGTGCCTGCCGTGATAGTCAACTGGCATT

5 TTTTCTCCACATTAGACATTGTTTCAGAAGGCCGGCAGACTTTCAAAGCCATTGAT
ATTGCAACTGCCTTCATGACATTCTCTCAGTTGTAATAGCATTATTCAAGGATATAACC
CGATAATTGAAGGGGACCGCATTTGGAATCCAATCTTTAGTGGTAGACTAGGTCAAAG
CAGGGGTTCTGGACTTGCCTGGCTACTTGAGGTTGCCTACGGTGTGCGATACTGAG
GGGGGTAACTTCTCCAGTTGTGGAGCAAATCTATAACTGTTGTGGGCCATGCAATCCT
C

10 <210> 101

15 <211>

<212> DNA

<213> leek

20 15 GTTCCCCCCCCTGAATTTTTTTTTTTACTCATTTCCTGTGAATAAAATTCT
TAAAAAAAGACAAAGAAAACCCTGGATATCCTAAATTCAACATAGGCTATTGTCATTCAA
TGATAATCTTAACACAACATACAACATGAATAATAATTAAAGGAGAAATGATCTGCAATTG
TTGAAAGAACCTCCGTTTTAAGATGACAATTAAAGCGTTGTTAATTCCAGCCATTCT
GCCTCCATTATCTACTCATCTTCTCTTGCATTCTTCATGTAGGTCTAAACCCCTCA
TCTTACAAAAGGAATGAGCAAGTACTCAGCATAGAAGAGCTCCACAGAACATATAAAA
TCTTACAAAAGGAATGAGCAAGTACTCAGCATAGAAGAGCTCCACAGAACATATAAAA
AGATGTAATAGTGGTTGGTCATTGGTCATGAGATCTAGCACGATTCCAAGAACGAA
CCCAAGAATTGCATGACCTATCACTGTTAACGATTTGCTCCATAGGCATGAGGAAGTAGC
TCCAACAAACCATGACAACAGTGTAGGCCATCTCAAGGAGATATAACATATCCAAAACAC
CCTCTCTGGCCAAGGCGCACGCTGAAAGAATGGATGCCAAATATTTGTCTCGTCTAT
ATCAGGTATATCCTAAATAGAGCAATAACAACGTAGAGAAGAAGCTCATGAAGGCAGTTGC
AAATATCAATGGCCTTGTGAAACTTGCTGGTCTTTGAAAACAAA

25 <210> 102

<211>

<212> DNA

<213> leek

30 130 NATCGGCACGAGTTGAAGAGTTAACGATGGACTCCCTCCTACCAAGCCAGTGT
ATACCTCTGCCTCTCAGTTGTTCACTACCAATCTGCGAGGCAGTTCTGCACCAGGG
CACTATCATGTAGAAACTACAATCCAATAAGAATTCAAAGGTGCCTGTAATTATGAA
CATGTGAAACCAAGGTTACAACATGTAGTAGGTCTCAAAACTGGTCATGTAAAAGCC
ACATCCGAGCATTCTTAACTGGATCCGAAGGATACACTCTAGAACGATATGGGAA
GCCGTACTAGCTTCACTGAATGTTCTATAACAAATTTCACGACCTCACACATAATAGGA
ACAGCAATGGGCATAATGTCAGTTCTTGCTGTTGTCGAGAGCCTATCCGATATTCT
CCTCTGTTTTGTTGGGATTATTAGAGGGCTGTTGCTGCATTGTTATGAATGTTAC
40 40 ATTGTAGGTCTGAATCAATTATTGACATAGAAATAGACAAGGTCAATAACCTGATCTT
CCTCTTGACATCTGGAGAATACTCACCAAGAGCTGGTACTGCTATTGTCATTGCTTCAGCC
ATCATGAGCTTGGCATTGGATGGTAGTTGGCTCTT

<210> 103

45 <211>

<212> DNA

<213> canola

50 55 TTTTTTTTTTTCAAAAAGACCAATCTTAGTATGTACAT
GAACAAAGTGAATTGTCTCCAAGCTACAAAGAAGAAGAGAGGTATACAAAGAAAAC
TACAAATGTTCACCATGAATGCTAGAAGAAGGGATAAACAGATACTCTGCGTAGAAGAG
ATTCCATATAAACCGGTAAATATCTGCTATAGCTTCTTGTGTAGTTGCTTTCTAG
CACCCATGTGGAAAACCAAGCATGAAGCCAAGATCATATGTGCAGGAATCATCAAGCT
ACCTCTAAAACCTGAGGCATGTAGAAAGCTAGTGTATGGCAGAAATATAGTTCACTAG
CAGAAGTCAGAACCGAGGAATGCAATGTTCTCACTCCAAGCTTGTGCTAGTGTGA
TATTTGGAACCTGGCATCTCCTCAACATCAGGAAGATCTTTGTAATAGCAATGACTAG
TGCAAACAGTGTCAAAAAGACGTGATGAAAGGCCACAGGTGCACTCCACTGAAACGAAAG

TCCAAGAGCAGCTCTAGTAGCATGGTACACACCAAAATTAAGAAGAAAACCTCGTACCGT
GGCAATAATAAGAACGCTGCAACTGAAATCTCTTCAATTCAAATGGTGGAACAGAATA
GATGGTCCCCAGATCGGACCGTGGTCGAC

5 <210> 104

<211>

<212> DNA

<213> corn

10 CCACCGTCCGCCCGGCAAGGGATGGACCGCTTCGCCTACGGCCGTCCCTCCTCCCCG
TGGGCCCCGGCGGCCCGCCGAGATCATTCTACCACCATGTTGCCATACAAAC
GAATGGTGAAGGACGAATTGCTTCTAGCAAAGGACCAAGGTCTACCTTGAC
ACCATCAGAAATTCTCGAATGAAATCTCTATTGTAGGATATCACATCGGTCA
ATACTCTGTTAATGCTCGGGCAACAGCTGCAGTCTGAACCTGAAACACATGA
15 CAACCATCTGGAGGGCAATATCATCTCTAGATGCATTACAGATTTCCCGGCC
ATACTGTCATAGGAACGCAATTAGCAGTCTCAGTTCCCTCTAGCTGTCCAGAGCT
TGTCTGATATATCACCTTGTCTCACTGGTTGCTGGAGGCAGTGGTAGCTGCC
TCATGAATATCTATATTGTTGACTGAACCAGTTACGACATTGAGATAGACAAGGTTA
ACAAGCCAACCTTCCATTGGCATTGGGAATACACCCCTTGCAACTGGGTTGCA
20 ATAGTTTCGGCTTTGGCGCATGGAGCTGGCTGGATGGGCTGGATCACAACCTCTG
TTTGGGCTTTCTTCAAGCTTGTCTGGGACTGCATATTCAATCAATCTGGCGT
TCGATGGAAGAGATTGCTGTTGCAGCACTGTCATATTAGCAGTCGTGCA
TTGTTCACTGGCTTTCTCACATTCACTGGACTTTGTTTCAGGAGACCGGCAGTGT
TTTCTAGGCCATTATTATTGCAACTGGATTATGACGTTCTCTCTGTTGTA
25 ATAGCAC
TATTCAAGGATATACCTGACATGAAGGGGACCGCATTGGGATCCGATCCTTCAGCG
TCCGGTTAGGGAAAGAAGGTCTTGGATCTGGCTTGGCTTGAGATGGCCTACA
GGTGGGAGACTGATGGGAGCTACCTCTTCTCTGGTGGAGCAAACAGCA
30 ACCATCGCGCTTCCACTGGCGATCCTATGGAGCTGCGCGGATCGGTGGACTTGACGA
GCAAAGCCGCAATAACGCTCTACATGTCATCTGAAGCTGTTACCGGGAGTAC
TGCTCATCCCTCTGTCGGTGAGCGGAGGGTGGCAGACGGATCGCGT
CGGGCGCAAACAACCTCACGGAGAACTTGAGTGCGGAAGTAAACTCCC
35 GTTGAAGCGTGCACCAACCGGACCGGGCAGAGAGACACGGTGGATGGATA
GGGCCCCCAATAATTCCCCCGTGCATGGTAAAAAAAAAAAAAAA
40 GCGCGCAGCGCAGCGCCACCTGCTGCGCGTGCCTGCGTGTGCGTCC
ACCACTGACCCCGCGCCGCCGCCGCCCCCTGCCACTCCACTTGCTCACTCGT
CGGCCGCTTCCCCCGGCCAAGGGATGGACCGCTTCGCCTACGGCCGT
45 CGTGCGGCCGGCGGCCGCGAGATCATTCTACCACCATGTTGCCATAC
AACAAATGGTGAAGGACGAATTGCTTCTAGCAAAGGACCAAGGTCTAC
ATCACCATCAGAAATTCTCGAATGAAATCTCTTCTAGGATATCACATCG
50 TAAATACTCTGTTAATGCTCGGGCAACAGCTGCAGTCAGTCAG
CTGATATTCAATCTGAGGGCAATATCATCTCTAGATGCATTTCAG
CACACTGTCATAGGAACGCAATTAGCAGTCTCAGTTCCCTCTAGCT
GCTTGTGATATATCACCTTGTCTCACTGGTTGCTGGAGGCAGTGG
55 TAGTTTCGGCTTTGCCGCTATGAGCTTGGCTTGGATGGCTGTTGG
TGTTTGGGCTTTCTCATAAGCTTGTGTTGGACTGCATATTCA
ACATTCCGATGGAAGAGATTGCTGTTGCACTGTCATATTAGCAG
TGATTGTTAGCTGGCTTTCTCCACATTCAAGACTTTGTTTCA
TGTTTCTAGGCCATTATTATTGCAACTGGATTATGACGTTCTCTG
60 CACTATTCAAGGATATACCTGACATGAAGGGACCGCATTGGGATCC
GCGTCCGGTTAGGGAAAGAAGGTCTTGGATCTGCGTTGGCTTGG
ACAGCGTTGCGATACTGATGGGAGCTACCTCTCTGTTGAGGATGG
TCGCTGGCCATTCCATCTGGCGCATCTATGGAGCTGCGCGC
CGAGCAAAGCCGCAATAACGCTCTACATGTCATCTGAAGCT
50

ACCTGCTCATCCCTCTGGTGCCTGAGCGCGAGGCGAGGTGGCAGACGGATCGGCGT
CGCGGGGGCGCAAACAACACTCACGGGAGAACTGAGTGCGGAAAGTAAACTCCGTTG
AAAGTTGAAGCGTGCACCAACCGGCACCGGGCAGAGAGAGACACGGTGGCTGGATGGATAC
GGATGGCCCCCCCATAAAATTCCCCCGTCATGGTACCCACGCTGCTTGATGATATCCC
5 ATGTGTCCGGGTGACGGACCTGATCGTCTCTAGAGAGATTGGITGCACAACGTCCAACA
TAGCCCGTAGGTATTGCTACCAACTGCTAGTATGATACTCCTCCTAGTCCTGCCAGCAC
CAGTGACCCAAACTTGGTCGGCTGAGCTAGCCTCAGCAGCTTACGTGCATCGGCC
TTGACTTGTGCAGTGGCGTCGCTAGCATGAATGATGATGGTGCACGGCCTGACGG
TTCGTCAGTCTGGCCGTGTTTGTCCGAGGAAGATCGTCTGTCAAGAGATCTGGATTG
10 CCTCGCTGCT

<210> 106

<211>

<212> DNA

15 <213> corn

CGGCCGGACTCTCTGACTTGGCAACCGCCGCCAGCGCAGAGGCCACCTGCTTGCT
GCCGCGTGCCTGCGTGTGCGTCCACCCTGACCCCGCCGCCGCCGCCAGG
20 CCCTCCACTCCACTTGCTCACTCGTCGGCTCGTGCAGCTCAGCAGCTTACGTGCATCGGCC
GATGGACCGCCTCGCTACGGCCGTCCCTCCCTCCCGTGCAGCCGGCGGCCGCC
GCGAGGCACTGGTAGCTGCCCTTTCATGAATATCTATATTGTTGACTGAACAGTTAT
TCGACATTGAGATAGACAAGGTTAACAGCAACTCTTCATTGGCATCTGGGAATACA
25 CCCTTGCAACTGGGGTTCGAATAGTTGGCTTTGCCGCTATGAGCTTGGCCTTGGAT
GGGCTTGGATCACACCTCTGTTGGCTTTCTAAGCTTGTCTGGGACTG
CATATTCAATCAATCTGCCGTACCTCGATGAAAGAGATTGCTGTTGCAAGCAGTGT
GCATATTAGCAGTTCGTCAGTGATTGTTCAAGCTGGCCTTTCTCACATTCAAGACTT
TTGTTTCAGGAGACCGCAGTGTCTAGGCCATTATTAT

<210> 107

<211>

<212> DNA

<213> cotton

30 CCCACCGTCCGAACATTGTTGCACTTGTTATTGCCATAACCAAGGATCTTCCAGATGT
AGAAGGAGATCGCAAATTCAAAATATCAACATTAGCAACAAAGCTTGGAGTTAGAAATAT
TGCCATTCTGGTTCGGACTTCTACTGGTGAATTATGTTGCTGCTGTTGGCTGCAAT
35 ATACATGCGTCAGGCTTCAAGCGTAGTTAATGATAACCTGCTCATATTTTGGCGGT
CTGCTTGATTTCAGACATGGGTGTTGAAAGCAAATTACAAAAGGAAGCAATCTC
GGGTTCTATCGTTCATATGGAATCTTCTATGCAAGAGTATGCGATTTCCTCGT

40 GT

<210> 108

<211>

<212> DNA

45 <213> tomato

CAGATCAATTCCAGTTCTGCTGAGTTTCTCCACTCAAAACCAGTTCACATGCAATAGT
ACGGGTTTGAAATGTAAGCATGGAAGAGACCAAAAAAGCACTATTCCCTTCAATGAA
50 GTTGCAGCGGCAGTATACCGCAAGAGACATGTTGGAGGAAGTGTCTAAGCACTATTG
TGCTGATAAAAAACTAAAGGGAGATTGGTGCACGCATCATCTGAACACCCCTTGA
ATCTCAACCTTCTAAAGCTTGGGACTCAGTTAATGATGCGTAGATGCTTCTACAG
GTTCTCGCGGCCCATACCATATAAGGAACAGCATTGAGCATAATTTCAGTTCTCCT
TGCAAGTGAGAAGTCTCTGATTTCCTCCATTATTTCACTGGGGTGTAGGCCAT
55 TGGAGTGATTGTTGTCGTTGCCATT
AATAGACAAGGTAACAAAGCCATATCTCCATTGGCATCAGGGGAATACTCTGTACAAAC
TGGAGTGATTGTTGTCGTTGCCATT

<210> 109

<211>
<212> DNA
<213> *Arabidopsis*

5 AACACCAAACACACAATTACATTCTTTGCATATTCTTCTTCTTCCATTATGGA
GATACGGAGCTGATTGTTCTATGAACCCTAATTATCCTTCAGCTCTCGCCC
TGTATCTCCTCTCACTCGCTCACTAGTTCCGATCGACTAAACTAGTTCCCCGCTC
CATTTCTAGGGGATCCCGTCATCTCACCCGAATAGTGAACACTGACAAGATCTCCGT
TAAACCTGTTACGTCCGACGTCTCCAATCGGAACCTCGGACTCCTCACAGTGGATA
10 CCATTTCGATGGAACACCTCGGAAGTCTCGAGGGATGGTGGATCCGGGTTCCATCCC
AGAGAAGAGGGAGAGTTTGTATGTATCTGTGAGAATCCTGCATTCCGGCAGAG
TTTGTCACTTGGAGTGGCTCTATATGGACCTAGATTCACTGGTGGAGCTCAGAT
TCTGGCGCTAATGATAAATATTATGCCAACATCGAACAGACTCTACAATTCTGGGG
15 AGATCGACATGAGCTAGTTGGGAATACTTTAGTAGTGTGCCAGGGCAGAACAGCTCC
AAACAAGGAGGTCCACCAGAGGAATTAAACAGAACAGAGTGTCCGAAGGGTCCAAGCTAC
TCCATTGGCATCAAGGTACATTGCGATGATGGCCGTACTGACTATGCGAACACTGT
GAAATCTGCTCGTTGGAGTATAGTACTCGTCCCCTACGGTGGGGTGTGTTGGGC
CAAACAGAAGTCAACTGCAGGCTGCCCTGCAGCTTTCTGTATTTGAGCCTCATTGGCA
GATATGCATGGCAGGAGGCCTTCCACAGGGTGGATAGAATGGGGCGGTGAAAGGTTGA
20 GTTTCGGGATGCACCTTCTTATTCAAGAGAACATTGGGGTGGAGGGCTCCAAAGAAAATG
GTTTGGGTCCAGTGTAAATGTCTTGAGGGCAACTGGAGAACATTGCTTAACCGCAGG
TGGCGGGTTGAGGCAATTGCCTGGATTGACTGAGACCTATGAAAATGCTGCACTGGTTG
TGTACACTATGATGGAAAAATGTACGAGTTGCTTGGAAATGGTGTGTTAGATGGGA
25 AATGTCCTCCCTGGGGTATTGGTATATACTGCAGAGAACGAAACCATGTGGTGAAC
AGAGGAAGAACAAATGAAGCGGGTACACCTCTCGCTGCTCCTACCACAGAACGTTGGCT
AGCTACGGCTTGCAGAGATAGTTGTTACGGTGAATTGAAGTTGCAAGATATGGAACGGCT
30 ATATGATGGAAGTAAAGGCAAGGTGATATTAGAGACAAAGAGCTCAATGGCAGCAGTGG
GATAGGAGGAGGACCCTGGTTGGGACATGAAAGGAGATACGAGAACACGCCGAGCT
ACTAAAACAGGCCTTCAGGTCCCATTGGATCTGAAAGCGCCTTAGGTTGGTCCCTT
35 CTTCAAGCCACCGGTCTGTAACATTGATGAGTGTGTTGATAGAGACCATG
GATGAATGAAGCCTAGTCATGTCATTGCTAGCTTCACTATTATGTATGATTAG
TTCGTTCGGTCTTGTGGTAAATGATACGGGCCAGTGTAAAGT

<210> 110
35 <211>
<212> PRT
<213> *Arabidopsis*

40 MEIRSLIVSMNPNLSSFELSRPVSPTRSLVPFRSTKLVPRSI RVSASI
STPNSETDKISVKPVYVPTSPNRELRTPHSGYHFDGTPRKFFEGWYFRVS
IPEKRESFCFMYSVENPAFRQSLSPLEVALYGPRFTGVGAQILGANDKYL
CQYEQDSHNFWDGRHELVLGNTFSAVPGAKAPNKEVPPEEFNRRVSEGFO
ATPFWHQGHICDDGRTDYAEtvksarweySTRPVYWGVDVGAKQKSTAGW
PAAFPVFEPHWQICMAGGLSTGWIEWGERFEFRDAPSSEKNWGGGFPR
45 KWFVWQCNVFEGATGEVALTAGGGLRQLPGLTETYENAALVCVHYDGKMY
EFVFWNGVVRWEMSPWGYWIITAENENHVELEARTNEAGTPLRAPTT
GLATACRDSCYGEKLQIWERLYDGSKGKVILETKSSMAAVEIGGGPWFG
TWKGDTSNTPELLKQALQVPLDLESALGLVPFFKPPGL*