Physics-Informed Neural Network for Option Pricing

Overview

A Physics-Informed Neural Network (PINN) is a type of neural network that incorporates physical laws into the training process. In this project, the PINN is trained to approximate the solution of the Black-Scholes-Merton (BSM) equation, a fundamental partial differential equation (PDE) in financial mathematics used for pricing European call options.

Features

- Neural Network Architecture: The network is built using Tensor-Flow's Keras API with dense and dropout layers for regularization.
- Custom Loss Function: The loss function includes the residual of the Black-Scholes-Merton equation, ensuring the solution adheres to the underlying financial model.
- Training Process: The network is trained using a custom training loop with the Adam optimizer.
- **Visualization**: Includes functionality to plot the predicted option prices against true values.

Installation

Ensure you have the following libraries installed:

TensorFlow NumPy Matplotlib SciPy

You can install these dependencies using pip:

pip install tensorflow numpy matplotlib scipy

Code Description

Initialization

The PINN class is initialized with the following parameters:

- layers: List of neural network layers.
- optimizer: Optimizer for training the network.
- r: Risk-free interest rate.
- sigma: Volatility of the underlying asset.

BSM Residual

The function bsm_residual computes the residual of the Black-Scholes-Merton equation:

$$V_t + 0.5\sigma^2 S^2 V_{SS} + rSV_S - rV$$

Loss Function

The loss_fn function calculates the loss, which includes the mean squared error between the predicted and true option prices, as well as the residual of the Black-Scholes-Merton equation.

Training

The train_step and train functions handle the training process. The model is trained over a specified number of epochs, printing the loss every 100 epochs.

Prediction and Plotting

The predict function generates option price predictions for given stock prices and times to maturity. The plot function visualizes the predicted vs. true option prices.

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgments

• Inspired by various works on Physics-Informed Neural Networks and financial mathematics.

• TensorFlow for providing an excellent framework for building and training neural networks.