

DO NOT WRITE ANYTHING ON QUESTION PAPER EXCEPT YOUR NAME, DEPARTMENT AND ENROLMENT NO.

POSSESSION OF MOBILE, SMART WATCH ETC, IN EXAMINATION IS A UFM PRACTICE

Name of Student	Enrolment No. ESSCEU082
BENNETT UNIVERSITY, C End Term Examination, EVEN COURSE CODE: EPHY108L COURSE NAME: Mechanics COURSE CREDIT: 3 Note Programable calculator is not allowed. All questions are compulsory.	GREATER NOIDA N SEMESTER 2022-23 MAX. DURATION: TWO HOURS Weightage: 40 MAX. MARKS: 40
 Write short answers: If the unit vectors in a spherical coordin. φ̂ × r̂. If velocity of a particle is described as v̄ acceleration at t = 1. A particle of mass m is following a circuvelocity is ωĵ. The radial vector is rî the d. If the angular velocity of a particle of min the non-inertial frame is v̄_{rot} = vĵ, the e. A particle is rotating in the xy-plane, ald direction, with angular speed ω, about z Given r̄(0) = aî. Some general vector A precessing with the in direction n̂, then what will be dA/dt? The relation between inertial and a rotation. 	$(t) = e^t(t^2 - 2t)\hat{r}$, then determine the 2 ular trajectory such that the angular of determine the centrifugal force. 2 ass m is defined as $\omega \hat{k}$ and linear velocity en determine the Coriolis force. 2 ong a circular path in counter-clockwise eaxis. What is the position vector $\vec{r}(t)$? 2 constant angular velocity $\vec{\omega}$ about the axis
 Answer the following questions: a) A planet moves around the Sun. Show that t 	he radius vector joining the planet to Sun

sweeps out equal area in equal interval of time.

- b) A planet of mass M is moving under the influence of central force $\vec{F}(r) = -\frac{A}{r^3}\hat{r}$, where A is positive constant. Determine the non-zero values of angular momentum L for which the planet will move in circular orbit.
- tor which the plane.

 (c) Assuming a right-handed coordinate system, f and g are given as f = xyz and fAssuming a region g g = x + y + z. Find the value of $\vec{\nabla} \cdot (\vec{\nabla}(fg))$ at point P (2,0,1). 4
- 3. Answer the following questions:
 - a) Calculate moment of inertia for a uniform thin ring of mass M and radius R, around the following axis
 - (i) Symmetry axis of the ring
 - (ii) Tangent to the ring and lying in the plane of the ring.
 - (iii) Diameter of the ring.

6

b) The figure below shows four identical masses m connected through massless rods. The rods make an angle α with respect to z axis. Distance of each mass from the intersection point of the rods is l. Find the moment of Inertia tensor of the system.

4

c) In the figure below, a block weighing 14.0 N, which can slide without friction on an incline at angle $\alpha = 40.0^{\circ}$, is connected to the top of the incline by a massless spring of unstretched length 0.450 m and spring constant 120 N/m.

- (i) How far from the top of the incline is the block's equilibrium point?
- (ii) If the block is pulled slightly down the incline and released, what is the period of the resulting oscillations? 4

Best of Luck