High Speed Division

- Use High Speed Multiplier
- Follows Newton-Raphson iteration method
- Can find correct answer after few iterations

High Speed Divide

 $\frac{A}{B}$

High Speed Divide

$$\frac{A \times f_0}{B \times f_0}$$

High Speed Divide

$$\frac{A \times f_0}{B \times f_0}$$
let B = 1 - x, then
$$x = 1 - B, \text{ and let}$$

$$f_0 = 1 + x = 2 - B$$

High Speed Divide

$$\frac{A \times f_0}{B \times f_0}$$

$$= 1 - B, \text{ and let}$$

$$f_0 = 1 + x = 2 - B$$

$$AND:$$

$$B \times f_0 = (1 - x) \times (1 + x)$$

$$= 1 - x^2$$

High Speed Divide

$$\frac{A \times f_0 \times f_1 \times f_2 \times f_3 \times f_4}{B \times f_0 \times f_1 \times f_2 \times f_3 \times f_4}$$

Step 1: A_VAL <= AD Step 2: B_VAL <= AD

Step 3: Start algorithm – ask for AD <= divided value

Step 1: A_VAL <= AD

Step 2: B_VAL <= AD

Step 3: Start algorithm – ask for AD <= divided value

Algorithm:

Step A: A_PRIME <= A_VAL ; B_PRIME <= B_VAL ; Clear CNT

```
Step 1: A_VAL <= AD
```

Step 3: Start algorithm – ask for AD <= divided value

Algorithm:

```
Step A: A_PRIME <= A_VAL ; B_PRIME <= B_VAL ; Clear CNT
```

Step B: A_PRIME <= A_PRIME
$$\times$$
 F_K; increment CNT

Step 1: A_VAL <= AD

Step 2: B_VAL <= AD

Step 3: Start algorithm – ask for AD <= divided value

Algorithm:

Step A: A_PRIME <= A_VAL ; B_PRIME <= B_VAL ; Clear CNT

Step B: A_PRIME \leftarrow A_PRIME \times F_K; increment CNT

Step C: $B_PRIME \leftarrow B_PRIME \times F_K$

Step 1: A_VAL <= AD

Step 2: B_VAL <= AD

Step 3: Start algorithm – ask for AD <= divided value

Algorithm:

Step A: A_PRIME <= A_VAL; B_PRIME <= B_VAL; Clear CNT

Step B: A_PRIME <= A_PRIME × F_K; increment CNT

Step C: B_PRIME <= B_PRIME × F_K

Repeat B – C pair until CNT = 5

```
Step 2: B_VAL <= AD

Step 3: Start algorithm – ask for AD <= divided value

Algorithm:

Step A: A_PRIME <= A_VAL; B_PRIME <= B_VAL; Clear CNT

Step B: A_PRIME <= A_PRIME \times F<sub>K</sub>; increment CNT

Step C: B_PRIME <= B_PRIME \times F<sub>K</sub>

Repeat B – C pair until CNT = 5

Note: At this point, Answer is:

(SignA \oplus SignB) & (ExpA – ExpB) & A_PRIME
```

Step 1: A_VAL <= AD

```
Step 1: A_VAL <= AD
Step 2: B_VAL <= AD
Step 3: Start algorithm – ask for AD <= divided value
Algorithm:
```

Step A: A_PRIME <= A_VAL ; B_PRIME <= B_VAL ; Clear CNT

Step B: A_PRIME \leftarrow A_PRIME \times F_K; increment CNT

Step C: B_PRIME \leftarrow B_PRIME \times F_K Repeat B - C pair until CNT = 5

Note: At this point, Answer is:

 $(SignA \oplus SignB) & (ExpA - ExpB) & A_PRIME$

Step D: AD <= Answer ; assert DATA_H Step E: release AD ; release DATA_H

Algorithm:

Step A: A_PRIME ← A_VAL; B_PRIME ← B_VAL; Clear CNT

Step B: A_PRIME \leftarrow A_PRIME \times F_K; increment CNT

Step C: B_PRIME \leftarrow B_PRIME \times F_K Repeat B – C pair until CNT = 5

Answer is in A_PRIME

