LaPIS Diagnostic Test Workbook - Mathematics

Name : Asmitha A S

Class: 7

Section : C

School : AKV Public School

Login ID : AKV186

Asmitha A S's Performance Report

Score: 25/40 Percentage: 62.5%

Asmitha A S's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sign
		Teacher's Fe	edback to Student		
	Class Teacher S	Signature	Princi	pal Signature	

Data handling

Topics to be Improved			
Chance of probability	Sample space in probability		
1 0	1 1 1		

.....

Hi, here in this video you will learn Basics of probability

Question: 1

Which of the following contains list of all possible outcomes.

Probability

Sample space

Sure events

......

Impossible events

Answer:

Probability is the measure of ______ (chance /number) of an events happenings. Sample space consists of ______ (possible/ impossible) outcomes. Sure events always _____ (occurs/don't occurs). Impossible events _____ (occurs/ don't occurs). Therefore, _____ contains list of possible outcomes.

Question: 2

Write the possible outcomes while spinning the given wheel.

Answer:	
\ -	pssible/impossible) results of an experiment. ning wheel are 70 , 710 ,
$\underline{Question: \ 3} \qquad \dots \dots$	
A bag contains three balss of colo are taken out.	our blue, green and red. Write the possible outcomes if two balls
Answer:	
A bag contains, _	and balls.
If one of the ball is blue in colour	, then other ball can be or
If one of the ball is green in colou	r, then other ball can be or
If one of the ball is red in colour,	then other ball can be or
Therefore, if two balls are taken of	out then possible outcomes are blue +,
_	_

Geometry

Topics to be Improved		
Transversal angle made by transversal Basics of Transversal angle		
Related angles	Basic of angles	
Right angle triangle and pythagoras property	Basics of Pythagoras property	
Angle sum property of triangle	Angle sum property of triangle	
Faces vertex and edges	Idenfication of faces, edges and vertices	
Sum of lengths of two sides of a triangle	Sum of two sides of a triangle	

Hi, here in this video you will learn Basics of Transversal angle

Question: 4

......

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

Angle that lies on different vertices and on the opposite sides of transversal is _____ angles.

Angle that lies on different vertices and on the same sides of transversal is _____ angles.

Therefore, $\angle 1$ and $\angle 7$ are _____

Question: 5

Find the transversal, alternate angles and corresponding angles in a given diagram.

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

In a given diagram, _____ is a transversal line. (BF/AD/CE)

Alternate angles	Corresponding angles
$\angle a$ and $\angle g$, $\angle b$ and $\angle h$,	$\angle a$ and $\angle e$, $\angle b$ and $\angle f$,

Question: 6

Find $\angle e$ and $\angle g$ if $\angle a = 30^{\circ}$.

Answer:

When parallel lines cut by a transversal,

- (i) Alternate angles are _____ (equal / not equal).
- (ii) Corresponding angles are _____ (equal / not equal).

	alternate angle of $\angle a$ is and its value is esponding angle of $\angle a$ is and its value is
Hi,	here in this video you will learn Related Angles
Que	<u>stion: 7</u>
(i)	When two rays of an angle are perpendicular, then the angle formed between them is a angle .
(ii)	When two rays of an angle are in opposite sides, then the angle formed between them is a angle .
\underline{Ans}	wer:
Α	(line segment /ray) begins from one point and travels endlessly in a direction.
(i)	The angle formed between two perpendicular rays is° and it is called angle.
(ii)	If two rays starting at same point moves in opposite direction, they form a (straight / perpendicular) line. The measure of the angle formed is and it is called angles.

Question: 8

Find the angle of $\angle DBE$

Answer:

BA and BC are _____ (parallel / perpendicular) rays. The angle formed between this rays is ____, $\angle ABC$ = ____.

$$\angle ABC = \angle ABE + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$
= 30° + ____ + ____

Therefore, $\angle DBE = \underline{\hspace{1cm}}$

Question: 9

Find the complementary angles in the given diagram.

Two	angles	are	said	be	complementary	if sum	of their	angles is	equal	to	

 $\angle AOB =$ ______, and its complement angle is ______.

 $\angle BOC =$ _____, and its complement angle is _____.

 $\angle COD =$ _____, and its complement angle is _____.

 $\angle DOE =$ _____, and its complement angle is _____.

Therefore, in the given figure the complementary angles are $\angle AOB$, _____ and $\angle BOC$, _____

Hi, here in this video you will learn Pythagoras property

Question: 10

In a right angled triangle, square of the _____ = sum of the squares of the legs.

Answer:

Pythagoras theorem is only applicable for _	triangle.
Longest side of the triangle is	_ (hypotenuse/ legs) and other two sides are called
(hypotenuse/legs)	

Pythagoras theorem states that _______

Question: 11

Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.

Answer:

Pythagoras theorem states that square of the _____ = sum of the squares of its

Given: Base = _____, Altitude = _____,

Base and altitude are _____ (hypotenuse/ legs) of the triangle.

Therefore, hypotenuse of the triangle is _____.

Question: 12

Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.

Answer:

Pythagoras theorem states that square on the _____ = sum of the squares on

Is Pythagoras theorem applicable in rectangle? ____ (yes/ no).

Given: breadth = _____, length of diagonal = _____

By Pythagoras theorem,
$$(____)^2 = (____)^2 + (____)^2$$

Therefore, diagonal of the rectangle is _____

Hi, here in this video you will learn Angle sum property

Question: 13

Sum of the angles of triangle is _____

Answer:

.....

$$\angle A + \angle B + \angle C = \underline{\hspace{1cm}}$$

Angle sum formula = $(n-2) \times 180^{\circ}$, n = number of sides

Triangle has _____ sides.

Sum of the angles of triangle = $(\underline{} - 2) \times 180^{\circ} = \underline{}$

Question: 14

Which of the following triangle satisfy the angle sum property.

......

Answer:

Angle sum property of triangle: sum of the angles of a triangle is ____

In $\triangle ABC$, Sum of the angles $= \angle A + \angle B + \angle C = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

In $\triangle PQR$, Sum of the angles = _____ = ___ = ___

In $\triangle KLM$, Sum of the angles = ____ = ___ = ___

In $\triangle XYZ$, Sum of the angles = ____ = __ = ___

Therefore, the triangles that satisfy the angle sum property are = $_$

Question: 15

Find the angles of triangle, if their angles are in the ratio 8:6:4.

Answer:

Ratio of angles in the triangle is ___

Let's consider the angles of triangle be 8x, ___ and ___

We know sum of the angles of a triangle is ____

Therefore, $8x + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = 180^{\circ}$. The value of $x = \underline{\hspace{1cm}}$

The angles of the triangle are _____

Hi, here in this video you will learn Basics of 3D model

Question: 16

A point at which two or more lines segments meet is called(Vertex/ edges/ faces).
Answer:
has two end point (line/line segment/ray). A is a point where two or more line segments meet(Vertex/ edges/ faces). Mark the vertices in the diagram,
Question: 17
Mark and find the number of vertices, edges and faces in a cube.
Answer:
Mark the vertex, edges and faces in a cube.
Count the number of vertex, edges and faces in a cube. Cube have vertices, edges and faces.
Question: 18
How many vertices, edges and faces does dices have?

Answer:
The shape of dice is
Dices have vertices, edges and faces.
Hi, here in this video you will learn Sum of the length of sides of the triangle
Question: 19
Find the greatest distance to reach C from A in the given diagram.
$\begin{array}{c} A \\ \hline 30m \\ B \\ \hline 60m \\ \end{array}$
Answer:
The sides of the given triangle are The possible way to reach point C from point A are and AB then to
Question: 20
$\underline{\hspace{1cm}}$ (Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side.
Answer:
There are sides in a triangle. The sum of the two sides of a triangle is than the other side of the triangle. The difference of the two sides of a triangle is than the other side of the triangle. Example: In triangle XYZ,

The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall?

Answer:

- 1. The sum of the two sides of a triangle is ______ than the third side of the triangle. Therefore, the third side should be _____ (less/ greater) than sum of other two sides. Here, sum of the two sides = _____ + ___ = ____ Therefore, the length of the third side is less than _____
- 2. The difference of the two sides of a triangle is ______ than the third side of the triangle.

 Therefore, the third side should be ______(less/ greater) than sum of other two sides.

 Here, difference of the two sides = _____ ___ = ____

 Therefore, the length of the third side is greater than ______

Therefore, length of the third side is greater than ______ but less than _____.

Number system

Topics to be Improved		
Positive and negative rational numbers	ra- Identification of positive rational numbers	
Operations on rational numbers	Subtraction of rational numbers, Division of rational numbers	
Properties of integers	Associative property	
Exponents	Solving exponents	

.....

Hi, here in this video you will learn **Positive and Negative rational numbers**

Question: 22

Segregate positive and negative rational number.

Answer:

- If either the numerator and the denominator of a rational number are negative, then it is _____ (positive/negative) rational number.

In the given circle, positive rational numbers are _____ and negative rational numbers are

Question: 23

 $\frac{-3}{-4}$ is a _____ (positive /negative / neither positive nor negative) rational number.

1	nswer	
71	nswei	

-3 is a _____ number, -4 is a ____ number.

Division of $\frac{-3}{-4} = \square$ and this _____ rational number.

(Positive / Negative / Neither positive nor negative rational number)

Question: 24

The product of a positive rational number and a negative rational number is ______rational number. (Positive/ Negative/ neither positive nor negative)

......

......

.....

Answer:

Examples for positive rational numbers: _____

Examples for negative rational numbers:

Positive rational number × Negative rational number = ____ × ___ = ___ and this is ____ rational number

Hi, here in this video you will learn **Operation on rational numbers**

Question: 25

Solve: $\frac{-3}{3} + \frac{1}{3}$

Answer:

Fractions with same denominators are called ______ (like/ unlike) fractions. Fraction can be added only if they are _____ (like/ unlike) fractions.

$$\frac{-3}{3} + \frac{1}{3} = \frac{}{} =$$

Question: 26

Find the addition of shaded part of box A and shaded part of box B.

Answer:

Total number of square in box $A = \underline{\hspace{1cm}}$.

Number of shaded square in box $A = \underline{\hspace{1cm}}$.

Shaded part of box A in fraction = _____

Total number of square in box $B = \underline{\hspace{1cm}}$.

Number of shaded square in box $B = \underline{\hspace{1cm}}$. Shaded part of box B in fraction = _____.

Shaded part of box A + Shaded part of box B = $___$ + $___$

Question: 27

Find the missing values in the given figure.

Answer:

One litre = $\underline{\hspace{1cm}}$ ml $\frac{7}{10}$ of one liter = $\frac{7}{10}$ x $\underline{\hspace{1cm}}$ ml = $\underline{\hspace{1cm}}$ ml

Given: $1 = \frac{7}{10} +$ _____ Transposing $\frac{7}{10}$ to other sides, $1 = \frac{7}{10} =$ _____

Therefore, result is _____.

Hi, here in this video you will learn **Properties of integers**

Question: 28

Match the following based on the properties of integers

i	Closure
ii	Associative
iii	Commutative
iv	Identity

a	(5+7)+3=3+(7+5)
b	21 + 0 = 21
c	15 + 17 = 32
d	1 + 99 = 99 + 1

.....

Answer:

(i) Closure property:

The sum of integers is always _____(integer / not a integer).

Therefore, $___ + ___ = ___$

From the given option ______ satisfies the closure property.

(ii) Associative property:

Rearranging the parentheses (brackets) _____ (does not/does) change the sum.

Therefore, (a + b) + c =______.

From the given option ______ satisfies the Associative property.

	1 1 0		_ (does not/ does) chang	ge the sum.	
			sisfies the Commutative p	property.	
. ,	property: The sur, $a + \underline{\qquad} = a$		nd any number always re	turns same number.	
From the	given option	sat	sisfies the Identity proper	rty.	
Question: 29					
Mark the opera	tions in which co	mmutative prop	perty holds true for any t	two integers.	
Ad	dition	Subtraction	Multiplication	Division	
$\underline{Answer:}$					
	e property, changi (does not/ does)		(order/ brackets) of the operands	
The commutati	egers, commutative property for a ve property for m	ddition is			
$Question:\ 30$					
Are additive ide	entity and multip	olicative identity	the same? (Yes or No)		
$\underline{Answer:}$					
v			· , ————		
· -	- •		and additive identi and multiplic	v	
Therefore, addi	tive identity is	(equal /	not equal) to multiplica	tive identity.	
Hi, here in t	his video you	will learn Ex	xponents and power	er	
Question: 31					
Find the expone	ential form of 100	00.			
$\underline{Answer:}$					
to get the desire	ed result.	,		ould be multiplied by its	elf
Exponents is als	so called as	(Base / Pow	ver).		
	100	00 can be writte	en as = $10 \times $ \times		
	10 is raised	to the power of	= (10)		

Question: 32

Find the value of $(-2)^3$.

Answer:

_____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

In this exponential form $(-2)^3$, base = ____, power = ____. $(-2)^3$ = ____ × ___ = ___.

Question: 33

- (i) Tenth power of 100 is $((10)^{100})$ or $(100)^{10}$).
- (ii) k is raised to the power of 5 is ____ ($(k)^5$ or $(5)^k$).

Answer:

Exponential form = (Base)

- (i) Tenth power of 100: Base = ____, Power/Exponents = ____, exponential form = ____.
- (ii) k is raised to the power of 5: Base = ____, Power/Exponent = ____, exponential form = ____.

Hi, here in this video you will learn **Operation on rational numbers**

Question: 34

Fill in the boxes to make the given expression correct.

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square$$

.....

Answer:

When any fraction is divided by a fraction, we multiply the dividend by the ______ (same/reciprocal) of the divisor.

Here, dividend = _____ and divisor = ____

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square = \square$$

Question:~35	
--------------	--

Solve: $\frac{18}{7} \div 0.6$

Answer:

Fraction form of 0.6 =______,

when any fraction is divided by a fraction, we multiply the dividend by the ______ (same/reciprocal) of the divisor. Here, dividend = _____ and divisor = _____.

$$\frac{18}{7} \div \boxed{\square} = \frac{18}{7} \times \boxed{\square} = \boxed{\square}$$

Question: 36

Find the missing number in the expression $\frac{8}{3} \div \frac{16}{\Box} = 2$

Answer:

$$\frac{8}{3} \div \frac{16}{\square} = 2$$

$$\frac{8}{3} \times \frac{\square}{16} = 2$$

Transposing 8/3 to RHS,

$$\frac{\square}{16} = 2 \square \frac{8}{3}$$

$$\frac{\square}{16} = 2 \times \boxed{\square}$$

$$\frac{\square}{16} = \frac{\square}{\square}$$

Transposing 16 to other side, the result is _____

Comparing Quantities

Topics to be Improved

Conversion of fraction into percentage

Conversion of fraction into percentage

.....

Hi, here in this video you will learn Converting fraction into percentage

Question: 37

Complete the box in the given equation.

$$5\% = \frac{5}{}$$

Answer:

Percentage are the fraction with the denominator _____.

Therefore, 5% can be expressed as _____

......

Question: 38

Mark the correct conversion form of fraction $\frac{1}{2}$ to percentage.

(i)
$$\frac{1}{2} \times \frac{50}{50} = \frac{50}{100} = 50\%$$

(ii)
$$\frac{1}{2} \times \frac{100}{100} = \frac{100}{200} = 200\%$$

(iii)
$$\frac{1}{2} \times 100 = \frac{100}{2} = 50\%$$

Answer:

To convert fraction into percentage, the value of ______ (denominator / numerator)should be 100 or _____ (multiply / divide) the fraction with 100 %.

Therefore, correct conversion form is _____

Question: 39

Find the percentage of shaded part of square.

Answer:	
The square shape is divided into parts.	
Number of shaded part of square is	
Shaded part of square in fraction is	
To Convert into percentage ,	x 100

Algebra

Topics to be Improved		
Addition and subtraction of algebraic expressions	Like terms and Unlike terms	
Basics of simple equation	Solving of simple equation	

Hi, here in this video you will learn Addition on expression

Question: 40

Shade the like terms.

Answer:

Given terms are _____

Two or more term have _____ (same/ different) variables is called like terms.

Here, like terms are ______.

Question: 41

Complete the expression $7r^2 + r \square - 2 \square = \underline{\qquad} r^2$

Answer:

_____ (Like / Unlike) terms can be added or subtracted.

$$_{7r^2+ \ r} \square_{-2} \square = (7 + _ - 2)_{r^2} = _$$

 $\underline{Question:~42}$

Sam have 3a chocolates and 9y icecream. Ram have 7a chocolates and 5y icecream.

- (i) Total chocolates Ram and Sam have: _____.
- (ii) How many icecreams Sam have more than Ram : ______

Answer:

	Chocolates	Icecream
Sam		
Ram		

Ram's chocolate + Sam's chocolates = _____ + ____ = ___

(ii) How many icecreams Sam have more than Ram:

_____ icecream - ____ icecream = ____ - __ = ____

......

......

......

Hi, here in this video you will learn Solving an equation

Question: 43

If ©=5, then 5 © +5 =

Answer:

The value of the given smiley © is _____.

Substituting the value in the expression $= 5(\underline{\hspace{1cm}}) + 5 = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

Question: 44

Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, 2)

 $7 \cap + 3 = -4$

Answer:

The given equation is 7 = -4 Substitute the values (-2, -1, 0, 1, 2) in the circle,

7× ____+3= ____

7× ____+3 = ____

 $7 \times __+3 = __$

 $7 \times$ _____+3 = _____

 $7 \times __+3 = __$

Therefore, _____ is the number that can be placed in a box to make the equation correct.

Question: 45

Arrange the terms in the descending order when the value of x is 2.

2x $5x \times 1$ x+3 2x-4 $\frac{1}{2}x$

Answer:

The given expression are _____

The value of x is _____.

substituting value of $\mathbf x$

$$2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} 2x - 4 = 2 \times \underline{\hspace{1cm}} - 4 = \underline{\hspace{1cm}}$$
 $x + 3 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$
 $5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$

Arranging in descending order: ____, ____, ____, ____.

Their respective algebraic terms are ____, ____, ____, ____.