课程编号: A073003

北京理工大学 2012-2013 学年第一学期

线性代数B试题B卷

班级 ______ 学号 ______ 姓名 ______ 成绩 ______

题 号	1	11	11]	四	五.	六	七	八	九	十	总分
得 分											
签 名											

一、
$$(10 \, \%)$$
 已知 $A = \begin{pmatrix} 0 & 2 & 5 \\ 0 & 1 & 3 \\ -1 & 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 3 & 0 & 2 \\ 4 & 0 & 4 \\ 2 & 1 & 3 \end{pmatrix}$, 求行列式 $\begin{vmatrix} A^* & 0 \\ 0 & 2B^{-1} \end{vmatrix}$ 的值,其

中 A^* 为A的伴随矩阵。

二、
$$(10 \, \%)$$
 例设矩阵 X 满足 $AX = A + 2X$, 其中 $A = \begin{pmatrix} 4 & 2 & 3 \\ 1 & 1 & 0 \\ -1 & 2 & 3 \end{pmatrix}$ 。

(1) 证明 A - 2I 可逆: (2) 求 X 。

三、(10分)对下列线性方程组

$$\begin{cases} ax_1 + x_2 + x_3 = 1 \\ x_1 + ax_2 + x_3 = a \\ x_1 + x_2 + ax_3 = a^2 \end{cases}$$

试讨论: 当a取何值时,它有唯一解?无解?有无穷多解?并在有无穷多解时求其通解。(用导出组的基础解系表示通解)。

四、(10分)已知

$$\alpha_{1} = (1,0,1)^{T}, \alpha_{2} = (0,1,0)^{T}, \alpha_{3} = (1,2,2)^{T}, \quad \beta_{1} = (1,0,{}^{T}0)\beta_{2} = (\overline{1}, \overline{1}\beta_{1})\beta_{2} = (\overline{1}, \overline{1}\beta_{2})\beta_{2} = (\overline{1}, \overline{1}\beta_{1})\beta_{2} = (\overline{1}, \overline{1}\beta_{2})\beta_{2} = (\overline{1}, \overline{1}\beta_{2})\beta_{2} = (\overline{1}, \overline{1}\beta_{2})\beta_{2} = (\overline{1}, \overline{1}\beta_{2})\beta_{2} = (\overline{1}\beta_{1})\beta_{2} = (\overline{1}\beta_{2})\beta_{2} = (\overline{1}\beta_{$$

- (1) 求基 $\alpha_1, \alpha_2, \alpha_3$ 到基 $\beta_1, \beta_2, \beta_3$ 的过渡矩阵;
- (2) 求向量 $\gamma = (1,3,0)^T$ 关于基 $\alpha_1, \alpha_2, \alpha_3$ 的坐标。

五、(10分)已知

$$\alpha_1 = (0,4,2)^T$$
, $\alpha_2 = (1,1,0)^T$, $\alpha_3 = (-2,4,3)^T$, $\alpha_4 = (-1,1,1)^T$

求生成子空间 $L(\alpha_1,\alpha_2,\alpha_3,\alpha_4)$ 的维数和一组基。

六、(10 分) 已知 $\alpha_1 = (1,1,-1)^T$, $\alpha_2 = (0,1,0)^T$, $\alpha_3 = (1,0,1)^T$,把 $\alpha_1,\alpha_2,\alpha_3$ 化为欧氏空间 R^3 的标准正交基。

七、(10 分) 设A 与 B 是同阶方阵,且 $A \setminus B \setminus A + B$ 都可逆,证明: $A^{-1} + B^{-1}$ 也可逆。

八、(10 分) 实二次型
$$f(x_1, x_2, x_3) = X^T A X$$
, 其中已知 $A = \begin{bmatrix} 2 & -2 & 0 \\ -2 & 1 & -2 \\ 0 & -2 & 0 \end{bmatrix}$ 。

- (1) 求一正交变换 X=QY,将二次型 $f(x_1,x_2,x_3)$ 化为标准形;
- (2) 判断二次型 $f(x_1, x_2, x_3)$ 是否正定。

九、(10 分) 已知 A, B 都是 4 阶矩阵, $A = [\alpha_1, \alpha_2, \alpha_3, \beta_1]$ 、 $B = [\alpha_1, \alpha_2, \alpha_3, \beta_2]$ 且 |A| = 3, |B| = -1,求行列式|A + B|的值。

十、 $(10\,
m 分)$ 设 A 是 3 阶矩阵, α 是 3 元列向量,已知向量组 α , $A\alpha$, $A^2\alpha$ 线性无关,且 $A^3\alpha=3A\alpha-2A^2\alpha$.

- (1) 记 $P = (\alpha, A\alpha, A^2\alpha)$, 求矩阵B, 使得 $A = PBP^{-1}$;
- (2) 证明: 矩阵 $C = (\alpha, A\alpha, A^4\alpha)$ 可逆;
- (3) 证明: 矩阵 CC^T 正定。

