Vollstndige Induktion und Rekursion

* Summenzeichen, Teil 1. Schreiben Sie ausführlich, also ohne Summenzeichen:
$$1. \sum_{i=0}^{10} i^2 = 0 + 1 + 2 + 3 + \dots + 10$$

2.
$$\sum_{i=1}^{10} (-1)^{i+1} i^2 = (-1)^{1+1} 1^2 + (-1)^{2+1} 2^2 + ... + (-1)^{10+1} 10^2$$

3.
$$\sum_{k=2}^{11} 2^{k-1} = 2 + 2 + 2 + \dots + 2$$

1.
$$\sum_{i=0}^{10} i^2$$

2.
$$\sum_{i=1}^{10} (-1)^{i+1} i^2$$

3.
$$\sum_{k=2}^{11} 2^{k-1}$$

Summenzeichen, Teil 2. Schreiben Sie mit Hilfe des Summenzeichens:

1.
$$\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n} = \sum_{i=2}^{n} \frac{1}{i}$$

2.
$$\frac{1}{2} - \frac{1}{3} + \frac{1}{4} \pm \cdots \pm \frac{1}{n} = \sum_{i=2}^{n} \left(-1\right)^{i} \frac{1}{i}$$

3.
$$1+3+5+\cdots+(2n-1) = \sum_{i=1}^{n} (2i-1)$$

1.
$$\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n}$$

2.
$$\frac{1}{2} - \frac{1}{3} + \frac{1}{4} \pm \cdots \pm \frac{1}{n}$$

3.
$$1+3+5+\cdots+(2n-1)$$

Vollständige Induktion, Teil 1. Man beweise durch vollständige Induktion:

* 1.
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$
 für alle $n \in \mathbb{N} = \{1, 2, 3, 4, \dots \}$

2. $11^n - 6$ ist für alle $n \in \mathbb{N}$ durch 5 teilbar.

Lösung.

1. I.d.:
$$h = 1$$
: $LS = \sum_{k=1}^{n} k^{2} = 1^{2} = 1$
 $RS = \frac{1}{(N+1)[2N+1)} = 1$
 $RS = \frac{1}{6} \frac{(N+1)[2N+1)}{6} = 1$
 $RS = \frac{1}{6} \frac{(N+1)$

$$\pm A: N=1$$
 5 = $M^{1}-6$ $\sqrt{}$

5
$$10.11^{n} + 10^{n} - 6 = 11.11^{n} - 6 = 11.11^{n} - 6$$

Still 5.(2.11) 5 till (10+1) < Trick!

$$\frac{\text{ODER}: M^{n+1} - 6 = M \cdot M^{n} - 6 = 10 \cdot 10^{n} + 10^{n} - 6}{\text{IV} 5 \cdot 9} = \frac{10 \cdot 10^{n} + 5 \cdot 9}{2 \cdot 5} = \frac{5 \cdot (2 \cdot 10^{n} + 9)}{4 \cdot 4 \cdot 5}$$

$$= \frac{10 \cdot 10^{n} + 5 \cdot 9}{2 \cdot 5} = \frac{10 \cdot 10^{n} + 5 \cdot 9}{2 \cdot 5} = \frac{10 \cdot 10^{n} + 5 \cdot 9}{2 \cdot 5} = \frac{10 \cdot 10^{n} + 9}{2 \cdot 5} = \frac{1$$

Eigener Lösungsversuch.

ODER:
$$TV: \exists q \in \mathbb{Z}: 5q = M^n - 6 \iff 5q + 6 \stackrel{?}{=} M^n$$

$$M^{n+1} - 6 = M \cdot M^n - 6 = M \cdot 5 \cdot q + M \cdot 6 - 6 = 5 \cdot (Mq + 12)$$

$$= (5q + 6)$$

$$= \sqrt{5q + 6}$$

$$= \sqrt{M^{n+1} - 6}$$

ODER: oline Induktion:
$$5 | 11^{m} - 6 \iff 11^{n} - 6 \mod 5 = 0$$

$$\lim_{N \to \infty} \frac{1}{N} = \frac{1}{N} - 1 = 0 \pmod{5}$$

ODER: Mn hat als Einer (in Dezimalsysten) immes eine 1.

 $\frac{136}{10}: M^{n} \mod 10 = 1. \qquad 11 \mod 10 = 1 \implies 11^{n} \mod 10 = 1^{n} = 1$

Eine Zahl, die als Einer eine 1 besitzt, besitzt -6 genommen als Einer eine 5, d.h. dweh 5 teilher.

Vollständige Induktion, Teil 2. Für welche $n \in \mathbb{N}$ gilt $2^n > n^2$? Formulieren Sie durch Probieren eine Vermutung und beweisen Sie sie dann mit vollständiger Induktion.

Lösung.

n	2 ⁿ	۸۷ II	n ²
1	2^= 2	V	12=1
2	22= 4	11	2 ² = 4
3	23 = 8	<	3 ² = 9
ધ	24 = 16	1	u²= 16
2	2 ⁵ = 32	>	5 ² = 25
6	2 ⁶ = 64	>	6 ² =36
7	2 ⁷ = 128	>	7 ² = 49
රී	28=256	>	82-64

Vermuling:
$$\forall n \geq 5: 2^n > n^2$$

$$IA: N=5: 2^5 = 32 > 25 = 5^2.$$

$$2^{n+1} = 2 \cdot 2^n > 2n^2$$

$$2^n > 2n^2$$

$$u^2 + 2u + 1 = (u+1)^2$$

$$\frac{2n^2}{2}$$
: $2n^2 \ge n^2 + 2n + 1 \stackrel{n^2}{\rightleftharpoons} n^2 \ge 2n + 1 \stackrel{:}{\rightleftharpoons} n \ge 2 + \frac{1}{n}$

Fig.:
$$2n^2 \ge h^2 + 2n + 1 \stackrel{-n^2}{\rightleftharpoons} n^2 \ge 2n + 1 \stackrel{:}{\rightleftharpoons} n \ge 2 + \frac{1}{n}$$

Rem: $n \ge 3$ winder hist reichen, ober dann geht $1A$ schief!

ODER:
$$n^{2} \ge 2n + 1 \iff n^{2} - 2n \ge 1 \iff (n - 1)^{2} - 1 \ge 1 \iff (n - 1)^{2} \ge 2$$

$$(n - 1)^{2}$$

$$(n - 1)^{2}$$

$$(5 - 1)^{2}$$

$$1$$

Bubble-Sort. Gegeben seien n Zahlen in einer beliebigen Reihenfolge $x_1x_2...x_n$. Bei einem Sortieralgorithmus sollen sie in aufsteigender Reihenfolge sortiert werden. Es werden zwei nebeneinander stehende Zahlen verglichen und gegebenenfalls vertauscht. Sei M_n die maximale Anzahl an notwendigen Vertauschungen.

- 1. Bestimmen Sie M_1, M_2, M_3, M_4 . M_2, M_3, \dots M_n Releasters away 2. Begründen Sie die Rekursion: $M_{n+1} = \underline{M_n} + \underline{n}$ für $n \in \mathbb{N}, M_1 = 0$.
- 3. Bestimmen Sie eine explizite Formel für M_n , also eine Formel für M_n , die nur von n nicht aber von M_{n-1}, \ldots abhängt. Beweisen Sie die Formel mit vollständiger Induktion.

Lösung.		‡ Zahlen	# Vortainschryen				
1.	h	Zallen Xn+1, Xn	Mn				
	1	×1 (Nichols an sortieren!)	0				
	2	× ₁ × ₂	1				
	3	×1×2×3 Toursche größlic Full rach winter ×2×3×1 3 M2 Verlauschige	15				
	Ч	×1×2×3×4 Toursdre größle ×2×3×41×1 ×3×4×1 ×	3 2 2 1 1	18 723,13 7 3,13,18 3 1,7 18			
2. X ₁ X ₂ X _{N2} X _{N+19} <u>N Votoubelingen (Touselie größle</u> Tall rach winter)							
	× z × n × n + 1 × n Mn Vertauschrijer N Zahler						
	lasges	$2ut: M_{u+1} = \underline{n} + \underline{M_n}$	z.R. M ₅ = 4+	My = 16			
		Cabuz1					
		mit Retensionsanfa	$M_1 = 0$.				

$$M_1 = 0$$
 $M_2 = 1$
 $M_3 = 1 + 2$
 $M_4 = 1 + 2 + 3$

Summaracichen
$$\begin{bmatrix} \sum_{i=1}^{N-1} \hat{x} = 1+2+...+(N-1) \end{bmatrix}$$

$$M_{H} = 1 + ... + (N-1) = \frac{6ayl}{2} \frac{N(N-1)}{2} \quad (N \ge 1)$$

Vollst. hd:
$$IA: M=1: LS: M_1 = 0$$

Rekursions aufong (*)

RS: $1(1-1) = 0$

RS:
$$\frac{1(1-1)}{2} = 0$$

$$\frac{15:}{N-1}: \qquad \frac{1}{N+1}: \qquad \frac$$

$$= \frac{n(n-1)+2n}{2} = \frac{n(n-1)+2}{2}$$

$$= \frac{N(N+1)}{2} = \frac{(N+1)(N+1)-1}{2}$$