1.2. Теорема Безу. Схема Горнера

Определение 1.2.1. Полиномом степени п называется сумма

$$f(x) = a_0 x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n$$

где $a_i, i=\overline{0,n}$ — комплексные числа, причем $a_0\neq 0$. Число n называется cmenehbo nолинома <math>f(x) и обозначается $n=\deg f(x)$. Если $a_0=1$, то полином называется npuвe dehhbo.

Непосредственно из определения следует, что число a_0 является полиномом нулевой степени. Число 0 также является полиномом, но его степень не определена.

Определение 1.2.2. Два полинома $f(x) = a_0 x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n$ и $g(x) = b_0 x^n + b_1 x^{n-1} + ... + b_{n-1} x + b_n$ называются *равными* (обозначение f(x) = g(x)), если для любого $k = \overline{0, n}$ справедливы равенства $a_k = b_k$.

Теорема 1.2.1. Для любых двух полиномов f(x) и g(x), $\deg f \ge \deg g$, существуют такие однозначно определяемые полиномы q(x) и r(x), что

$$f(x) = g(x)q(x) + r(x),$$
 (1.2.1)

причем $\deg r(x) < \deg g(x)$, либо $r(x) \equiv 0$.

<u>Доказательство.</u> Пусть $f(x) = a_0 x^n + ... + a_{n-1} x + a_n$, $g(x) = b_0 x^m + ... + b_{m-1} x + b_m$, $n \ge m$, $a_0 \ne 0$, $b_0 \ne 0$. Построим вспомогательный полином

$$f_1(x) = f(x) - \frac{a_0}{b_0} x^{n-m} g(x).$$
 (1.2.2)

Очевидно, что степень построенного полинома $n_1 = \deg f_1(x) < n$. Пусть a_{10} — старший коэффициент полинома $f_1(x)$, таким образом, $f_1(x) = a_{1,0}x^{n_1} + ... + a_{1,n_1-1}x + a_{1,n_1}$. Если $n_1 \ge m$, то строим следующий полином

$$f_2(x) = f_1(x) - \frac{a_{1,0}}{b_0} x^{n_1 - m} g(x).$$
 (1.2.3)

Ясно, что справедливо соотношение $n_2=\deg f_2(x)< n_1$, причем $f_2(x)=a_{2,0}x^{n_2}+...+a_{2,n_2-1}x+a_{2,n_2}$, где коэффициент $a_{2,0}\neq 0$. Если $n_2\geq m$, то находим другой полином

$$f_3(x) = f_3(x) - \frac{a_{2,0}}{b_0} x^{n_2 - m} g(x), \qquad (1.2.4)$$

причем $n_3 = \deg f_3(x) < n_2$ и т. д.

По построению $n>n_1>n_2>n_3>\dots$, поэтому после конечного числа шагов получаем полином $f_k(x)$ такой, что $n_k=\deg f_k(x)< m$, где

$$f_k(x) = f_{k-1}(x) - \frac{a_{k-1,0}}{b_0} x^{n_{k-1}-m} g(x).$$
 (1.2.5)

Глава 1. Полиномы и их корни

Складывая последовательно записанные равенства, получаем

$$f_1(x) + f_2(x) + ... + f_{k-1}(x) + f_k(x) =$$

$$= f(x) + f_1(x) + \dots + f_{k-1}(x) - \left[\frac{a_0}{b_0} x^{n-m} + \frac{a_{1,0}}{b_0} x^{n_1-m} + \dots + \frac{a_{k-1,0}}{b_0} x^{n_{k-1}-m} \right] g(x).$$

Тогда после сокращений окончательно имеем

$$f_k(x) = f(x) - \left[\frac{a_0}{b_0} x^{n-m} + \frac{a_{1,0}}{b_0} x^{n_1-m} + \dots + \frac{a_{k-1,0}}{b_0} x^{n_{k-1}-m} \right] g(x),$$

поэтому если

$$q(x) = \frac{a_0}{b_0} x^{n-m} + \frac{a_{1,0}}{b_0} x^{n_1-m} + \dots + \frac{a_{k-1,0}}{b_0} x^{n_{k-1}-m}, \ r(x) = f_k(x),$$

то получаем равенство (1.2.1).

Докажем теперь, что полиномы q(x) и r(x) определяются однозначно. Предположим, что существуют полиномы $\overline{q}(x)$ и $\overline{r}(x)$, причем $f(x) = g(x)\overline{q}(x) + \overline{r}(x)$, deg $\overline{r}(x) < \deg g(x)$ (или $\overline{r}(x) \equiv 0$). Вычитая указанное равенство из (1.2.1), получаем

$$g(x)[q(x)-\overline{q}(x)] = \overline{r}(x)-r(x)$$
.

Но $\deg\{g(x)[q(x)-\overline{q}(x)]\}\geq \deg g(x)$, в то время как $\deg[\overline{r}(x)-r(x)]<\deg g(x)$. Полученное противоречие доказывает однозначность определения полиномов q(x) и r(x), т. е. $q(x)=\overline{q}(x)$, $r(x)=\overline{r}(x)$.

Определение 1.2.3. Полином q(x) называется *частным*, а r(x) — *остатком от* деления полинома f(x) на полином g(x).

Определение 1.2.4. Если $r(x) \equiv 0$, то говорят, что полином f(x) делится нацело на полином g(x) (обозначение f : g), а сам полином g(x) при этом называется делителем полинома f(x).

Теорема 1.2.2 (**Теорема Безу**). Полином g(x) = x - c является делителем полинома f(x) тогда и только тогда, когда f(c) = 0.

<u>Доказательство.</u> *Необходимость*. Если полином g(x) = x - c является делителем полинома f(x), то последний представим в виде f(x) = (x - c)q(x), поскольку $r(x) \equiv 0$. Поэтому, очевидно, что f(c) = 0.

Достаточность. Пусть f(c) = 0. Согласно формуле (1.2.1) имеем соотношение f(x) = (x-c)q(x) + r(x), причем $\deg r(x) < \deg g(x) = \deg(x-c) = 1$. Следовательно, $r(x) = \operatorname{const}$, тогда r(c) = f(c) = 0, отсюда $f \vdots g$.

Следствие 1.2.1. Остаток от деления полинома f(x) на полином g(x) = x - c равен f(c).

<u>Доказательство.</u> Заметим, что f(x) = (x-c)q(x) + r, где r = const. Поэтому при x = c получаем r = f(c), что и требовалось доказать.

Глава 1. Полиномы и их корни

Возьмем произвольно полином $f(x)=a_0x^n+a_1x^{n-1}+...+a_{n-1}x+a_n$. Пусть f(x)=(x-c)q(x)+r, где $r={\rm const}$. Ясно, что $q(x)=b_0x^{n-1}+b_1x^{n-2}+...+b_{n-2}x+b_{n-1}$. Тогда для определения остатка r и коэффициентов b_k , $k=\overline{0,n-1}$ имеем очевидное соотношение

$$a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n = (x - c)(b_0 x^{n-1} + b_1 x^{n-2} + \dots + b_{n-2} x + b_{n-1}) + r$$
.

Сравнивая коэффициенты полиномов при одинаковых степенях x, имеем

$$a_0 = b_0$$
, $a_k = b_k - b_{k-1}c$, $k = \overline{1, n-1}$, $a_n = r - b_{n-1}c$,

поэтому окончательно получаем

$$b_0 = a_0, b_k = a_k + b_{k-1}c, k = \overline{1, n-1}, r = a_n + b_{n-1}c.$$
 (1.2.6)

Формулы (1.2.6), позволяющие производить последовательные вычисления коэффициентов частного и остатка от деления, носят название *схемы* Горнера.

Определение 1.2.5. Корнем полинома f(x) называется число c, такое что f(c) = 0

Пусть x=c — корень полинома f(x). Так как в этом случае f(c)=0, то полином x-c является делителем полинома f(x), т. е. $f(x)=(x-c)f_1(x)$. Если $f_1 \\cdots (x-c)$, то $f(x)=(x-c)^2 f_2(x)$. Понятно, что существует такое значение k, для которого $(x-c)^k$ является делителем полинома f(x), но $(x-c)^{k+1}$ уже таковым не является. Это означает, что $f(x)=(x-c)^k f_k(x)$, причем $f_k(c)\neq 0$.

Определение 1.2.6. Указанное число k называется *кратностью корня* x = c полинома f(x). Если k = 1, то соответствующий корень называется *простым*, а при k > 1 — *кратным*.

1.2. Теорема Безу. Схема Горнера