

IIC2223 — Teoría de Autómatas y Lenguajes Formales 2020-2

Tarea 7 – Respuesta Pregunta 1

1.1

Sea $k \ge 1$. Sea L el lenguaje definido por la expresión regular $R = ab^*$. Como está definido por una expresión regular, sabemos que L es regular. Sea

$$\mathcal{G}: S \to Sb \mid a$$

Primero demostraremos que $\mathcal{L}(\mathcal{G}) = L$ y luego que \mathcal{G} no es LL(k).

$\mathcal{L}(\mathcal{G}) \subset L$

Demostraremos por inducción sobre el largo de la derivación.

- Caso Base:
 - $S \Rightarrow a$. Podemos ver que $a \in L$ $S \Rightarrow Sb \Rightarrow ab$. Podemos ver tambien que $ab \in L$
- Hipótesis Inductiva: Para $S \stackrel{*}{\Rightarrow} w$ en n pasos, $w \in L$.
- Tesis Inductiva: Asumiremos HI. Luego, tenemos que una derivación de n+1 pasos debe ser de la forma $S \Rightarrow Sb \stackrel{*}{\Rightarrow} w'$. Por HI, sabemos que $S \stackrel{*}{\Rightarrow} w, w \in L$. Luego, $Sb \stackrel{*}{\Rightarrow} wb = w'$. A cada palabra en L podemos agregarle una b y seguirá estando en L, debido a la clausura de Kleene. Luego, $w' \in L$. Como es la unica forma de generar una palabra en n+1 pasos, hemos demostrado lo pedido.

$L \subseteq \mathcal{L}(\mathcal{G})$

Demostraremos por inducción sobre el largo de w.

- Caso Base: Para $w \in L, |w| = 1$, tenemos que la unica opción es w = a. Tomando la derivación $S \Rightarrow a$, podemos ver que $w \in \mathcal{L}(\mathcal{G})$.
- Hipótesis Inductiva: Para $w \in L, |w| = n$, se cumple que $w \in \mathcal{L}(\mathcal{G})$
- Tesis Inductiva: Demostraremos para un w' = wb, |w'| = n + 1. Por HI, sabemos que $w \in \mathcal{L}(\mathcal{G})$, por lo que existe la derivación $S \stackrel{*}{\Rightarrow} w$. Luego, podemos tomar $S \Rightarrow Sb \stackrel{*}{\Rightarrow} wb = w'$. Como hemos encontrado una derivación para w', entonces $w' \in \mathcal{L}(\mathcal{G})$.

Con esto, hemos demostrado que $\mathcal{L}(\mathcal{G}) = L$, por lo que \mathcal{G} define un lenguaje regular.

Finalmente, podemos ver que \mathcal{G} es reducida y recursiva por la izquierda. Por el teorema visto en clases, sabemos entonces que \mathcal{G} no es $LL(k) \ \forall k \geq 1$.

Por lo tanto, demostramos que para todo k existe una GLC \mathcal{G} tal que $\mathcal{L}(\mathcal{G})$ es regular y \mathcal{G} no es LL(k).

1.2

Sea L un lenguaje regular. Luego, existe un autómata $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ tal que $\mathcal{L}(\mathcal{A}) = L$. Asociado a este autómata, podemos definir una gramática $\mathcal{G} = (V, \Sigma', P, S)$, con

$$\begin{split} V &= Q \\ \Sigma' &= \Sigma \\ P &= \{X \to aY \mid \forall a \in \Sigma, \forall X, Y \in Q, X \xrightarrow{a} Y \in \delta \ \land Y \notin F\} \ \cup \\ \{X \to a \mid \forall a \in \Sigma, \forall X, Y \in Q, X \xrightarrow{a} Y \in \delta \ \land Y \in F\} \\ S &= q_0 \end{split}$$

A continuación demostraremos que $\mathcal{L}(\mathcal{G}) = L$.

$$\mathcal{L}(\mathcal{G}) \subseteq L$$

Primero demostramos que para cada derivación $X \stackrel{*}{\Rightarrow} w$ en n pasos, existe una secuencia $p_0 \stackrel{a_1}{\rightarrow} p_1 \stackrel{a_2}{\rightarrow} p_2 \stackrel{a_3}{\rightarrow} \dots \stackrel{a_n}{\rightarrow} p_n$ en \mathcal{A} , donde $p_n \in F$ y p_0 no necesariamente es igual a q_0 .

- Caso Base: Para $X \Rightarrow a$ (deriva en un paso), tenemos que existe la regla $X \rightarrow a$. Luego, construcción de \mathcal{G} debe existir una transición $X \stackrel{a}{\rightarrow} Y \in \delta$ tal que $Y \in F$.
- \bullet Hipótesis Inductiva: Asumiremos lo que queremos demostrar para una derivación con n pasos.
- Tesis Inductiva: Para $X \Rightarrow a_0 Y \stackrel{*}{\Rightarrow} w$, una derivación de n+1 pasos, tenemos que debe existir la transición $X \stackrel{a_0}{\to} Y$ en \mathcal{A} . Por **HI**, sabemos que existe una secuencia para la derivación $Y \stackrel{*}{\Rightarrow} w$. Uniendo ambas secuencias, tenemos que existe la secuencia $X \stackrel{a_0}{\to} Y \stackrel{a_1}{\to} \dots \stackrel{a_n}{\to} Z, Z \in F$.

Habiendo demostrado eso, sabemos que para cada $S \stackrel{*}{\Rightarrow} w$ de \mathcal{G} , existe una secuencia en \mathcal{A} que termina en un estado final. Ya que $S = q_0$. Tenemos que esas secuencias son ejecuciones en \mathcal{A} , donde cada letra en w coincide con cada transición de esa ejecución, por lo que $w \in L$.

$$L \subseteq \mathcal{L}(\mathcal{G})$$

Demostraremos que para secuencia de estados $p_0 \stackrel{a_1}{\to} p_1 \stackrel{a_2}{\to} p_2 \stackrel{a_3}{\to} \dots \stackrel{a_n}{\to} p_n$ de \mathcal{A} , con $p_n \in F$, existe una derivación $S \stackrel{*}{\Rightarrow} w = a_1 a_2 \dots a_n$ en \mathcal{G} . Usaremos inducción sobre el largo de la ejecución.

- Caso Base: Para una secuencia $p_0 \stackrel{a}{\to} p_1, p_1 \in F$, por construcción de \mathcal{G} existe una regla de la forma $p_0 \to a$
- Hipótesis Inductiva: Asumiremos lo que queremos demostrar para una secuencia con n pasos.
- Tesis Inductiva: Para $p_0 \stackrel{a_1}{\to} p_1 \stackrel{a_2}{\to} p_2 \stackrel{a_3}{\to} \dots \stackrel{a_{n+1}}{\to} p_{n+1}$, tenemos que por construcción de \mathcal{G} , debe existir la regla $p_0 \to a_1 p_1$. Por **HI**, sabemos que para el resto de la secuncia (que es de largo n) existe una derivación $p \stackrel{*}{\to} w = a_2 a_3 \dots a_{n+1}$. Luego, $p_0 \Rightarrow a_1 p_1 \stackrel{*}{\to} a_1 a_2 \dots a_{n+1}$ es una derivación válida en \mathcal{G} .

Ahora, para una ejecución de aceptación de \mathcal{A} sobre w, como sabemos que $S = q_0$, tendremos que existe una derivación $S \stackrel{*}{\Rightarrow} w$ en \mathcal{G} , por lo que hemos demostrado que $L \subseteq \mathcal{L}(\mathcal{G})$.

Por último, demostraremos que ${\mathcal G}$ es una gramática LL(1). Sean dos derivaciones

$$S \stackrel{*}{\underset{\mathrm{lm}}{\Rightarrow}} uY\beta \stackrel{*}{\underset{\mathrm{lm}}{\Rightarrow}} u\gamma_1\beta \stackrel{*}{\underset{\mathrm{lm}}{\Rightarrow}} uv_1$$

$$S \underset{\text{lm}}{\stackrel{*}{\Rightarrow}} uY\beta \underset{\text{lm}}{\Rightarrow} u\gamma_2\beta \underset{\text{lm}}{\stackrel{*}{\Rightarrow}} uv_2$$

Notemos que cada regla solo agrega terminales a la izquierda, por lo que $\beta = \epsilon$. Sabemos que \mathcal{A} es DFA. Luego, como cada regla fue creada a partir de una transición y ya que desde un estado en Q solo se puede llegar con una misma letra a un solo estado (y no múltiples), entonces si tenemos $v_1|_1 = v_2|_1$ implica que $\gamma_1 = \gamma_2$.

Dicho de otra forma, si tenemos las reglas $X \to aY$ y $X \to bZ$ y sabemos que a = b, entonces Y = Z ya que las transiciones de \mathcal{A} dada una letra, solo pueden llegar a un estado de destino por el hecho de ser DFA.

Por lo tanto, G es LL(1) y hemos demostrado que para todo lenguaje regular L, existe una GCL \mathcal{G} tal que $L = \mathcal{L}(\mathcal{G})$ y \mathcal{G} es una gramática LL(k) para algún k.