Université Ibn Tofail Faculté des Sciences Département de Mathématique Kénitra

Année universitaire 2024-2025

Filière : MIP Semestre : S2 Module : Analyse 2

Solution de la série n° 2

Exercice 1. 1) Soit $n \in \mathbb{N}^*$ un entier naturel non nul fixé. Considérons la subdivision régulière \mathcal{S}_n de [0,1] donnée par

$$0 = x_0 < x_1 < \ldots < x_n = 1,$$

avec $x_i = \frac{i}{n}$ pour tout entier naturel i tel que $0 \le i \le n$. Il est évident que f est constante sur chaque sous-intervalle $[x_i, x_{i+1}]$ pour $0 \le i \le n-1$, avec

$$\forall x \in]x_i, x_{i+1}[, f(x) = \frac{i^2}{n^2} = c_i.$$

Ce qui montre que f est bien une fonction en escalier.

2) Par définition de l'intégrale des fonctions en escalier, on a :

$$\int_0^1 f(x) dx = \sum_{i=0}^{n-1} (x_{i+1} - x_i) \cdot c_i$$
$$= \sum_{i=0}^{n-1} \frac{1}{n} \cdot \frac{i^2}{n^2}$$
$$= \frac{1}{n^3} \sum_{i=0}^{n-1} i^2.$$

Or on sait que

$$\sum_{i=0}^{n-1} i^2 = 1^2 + 2^2 + \dots + (n-1)^2 = \frac{(n-1) \cdot n \cdot (2n-1)}{6}.$$

Par suite,

$$\int_0^1 f(x) dx = \frac{(n-1) \cdot n \cdot (2n-1)}{6n^3}$$
$$= \frac{(n-1)(2n-1)}{6n^2}.$$

Remarque. (Voir remarque 2 : page 9 (chapitre 2)). En faisant le changement de variable k = i + 1, la fonction f peut aussi s'écrire pour tout entier k tel que $1 \le k \le n$ sous la forme :

$$\forall x \in]x_{k-1}, x_k[, f(x) = \frac{(k-1)^2}{n^2}.$$

La valeur de l'intégrale de f dans ce cas est donc la même

$$\int_0^1 f(x) \, \mathrm{d}x = \sum_{k=1}^n (x_k - x_{k-1}) \cdot \frac{(k-1)^2}{n^2} = \frac{(n-1)(2n-1)}{6n^2}.$$

Exercice 2. 1) Soit $S = \{x_0, x_1, \dots, x_n\}$ une subdivision de [a, b] adaptée en même temps aux fonctions en escalier ϕ et ψ . Puisque \mathbb{Q} est dense dans \mathbb{R} , pour chaque $1 \leq i \leq n$, il existe $\alpha_i \in \mathbb{Q}$ tel que $\alpha_i \in]x_{i-1}, x_i[$. Comme $f(\alpha_i) = 1$ et ψ est constante sur $]x_{i-1}, x_i[$, on obtient

$$\forall x \in]x_{i-1}, x_i[, f(x) \leqslant \psi(x) \implies f(\alpha_i) \leqslant \psi(\alpha_i)$$
$$\implies 1 \leqslant \psi(x).$$

De même puisque $\mathbb{R}\setminus\mathbb{Q}$ est dense dans \mathbb{R} , pour chaque $1 \leq i \leq n$, il existe $\beta_i \in \mathbb{R}\setminus\mathbb{Q}$ tel que $\beta_i \in]x_{i-1}, x_i[$. Comme $f(\beta_i) = 0$ et ϕ est constante sur $]x_{i-1}, x_i[$, on obtient

$$\forall x \in]x_{i-1}, x_i[, \ \phi(x) \leqslant f(x) \implies \phi(\beta_i) \leqslant f(\beta_i)$$
$$\implies \phi(x) \leqslant 0.$$

Donc

$$\forall x \in [a, b] \setminus \{x_0, x_1, \dots, x_n\}, \quad 1 \leqslant \psi(x) \text{ et } \phi(x) \leqslant 0.$$

Puisque les valeurs de ϕ et ψ aux points x_i ne sont importantes (voir remarque 1 page 9 : chapitre 2), on a

$$1 \leqslant \psi$$
 et $\phi \leqslant 0$.

2) 1^{re} méthode. On va utiliser la caractérisation de l'intégrabilité (voir proposition 1.6 : page 18 (chapitre 2)). D'après la question 1), si ϕ et ψ sont des fonctions en escalier quelconques telles que $\phi \leqslant f \leqslant \psi$, alors $\phi \leqslant 0$ et $1 \leqslant \psi$. D'où $\psi - \phi \geqslant 1$. Il vient de la croissance de l'intégrale (des fonctions en escalier) que $\int_a^b (\psi - \phi)(x) \, \mathrm{d}x \geqslant b - a$. Ainsi on a montré qu'il existe $\varepsilon_0 = b - a > 0$ telles que si ϕ et ψ sont des fonctions en escalier quelconques sur [a, b], alors on a

$$\phi \leqslant f \leqslant \psi$$
 et $\int_a^b (\psi - \phi)(x) \, \mathrm{d}x \geqslant \varepsilon_0$.

Donc d'après la proposition 1.6 (chapitre 2), f n'est pas intégrable (au sens de Riemann) sur [a, b].

2º méthode. D'après la question 1), si ϕ et ψ sont des fonctions en escalier telles que $\phi \leqslant f \leqslant \psi$, alors $\phi \leqslant 0$ et $1 \leqslant \psi$. Il vient que $\int_a^b \phi(x) \, \mathrm{d}x \leqslant 0$. On en déduit que 0 est un majorant de la partie $\left\{ \int_a^b \phi(x) \, \mathrm{d}x \mid \phi \text{ en escalier et } \phi \leqslant f \right\}$. Or

$$I^{-}(f) = \sup \left\{ \int_{a}^{b} \phi(x) \, \mathrm{d}x \mid \phi \text{ en escalier et } \phi \leqslant f \right\}.$$

Donc $I^-(f) \leq 0$. On a aussi $b-a \leq \int_a^b \psi(x) \, \mathrm{d}x$. On en déduit que b-a est un minorant de la partie $\left\{ \int_a^b \psi(x) \, \mathrm{d}x \, | \, \psi$ en escalier et $f \leq \psi \right\}$. Or

$$I^+(f) = \inf \left\{ \int_a^b \psi(x) \, \mathrm{d}x \mid \psi \text{ en escalier et } f \leqslant \psi \right\}.$$

Donc $b-a \le I^+(f)$. Comme 0 < b-a car a < b, on en déduit que $I^-(f) < I^+(f)$. Par suite, f n'est pas intégrable (au sens de Riemann) sur [a,b].

Exercice 3. 1) Il est clair que la fonctions f est continue sur \mathbb{R} car c'est un polynôme. En particulier, elle est continue sur tout intervalle fermé et borné de \mathbb{R} . D'après le théorème 2.1 (voir page 21 : chapitre 2), on sait que toute fonction continue sur un intervalle fermé borné de \mathbb{R} est intégrable sur cet intervalle. Par suite, f est intégrable sur tout intervalle fermé borné de \mathbb{R} .

2) Calculons $\int_0^1 f(x) dx$. Soit $n \in \mathbb{N}^*$. Considérons la subdivision régulière \mathcal{S}_n de [0,1] définie par

$$\mathcal{S}_n = \left(0, \frac{1}{n}, \dots, \frac{i}{n}, \dots, \frac{n-1}{n}, 1\right).$$

Puisque f est croissante sur [0,1], pour tout $1 \le i \le n$, on a

$$\forall x \in \left[\frac{i-1}{n}, \frac{i}{n}\right], \quad \left(\frac{i-1}{n}\right)^2 \leqslant x^2 \leqslant \left(\frac{i}{n}\right)^2. \tag{*}$$

Nous définissons une fonction en escalier $\phi_0: [0,1] \to \mathbb{R}$ pour tout entier $1 \le i \le n$ par :

$$\phi_0(x) = \begin{cases} \left(\frac{i-1}{n}\right)^2 & \text{si } x \in \left[\frac{i-1}{n}, \frac{i}{n}\right], \\ 1 & \text{si } x = 1. \end{cases}$$

Remarquons que ϕ_0 est la fonction en escalier vu en exercice 1. Donc ϕ_0 est bien une fonction en escalier. Nous définissons aussi une autre fonction en escalier $\psi_0: [0,1] \to \mathbb{R}$ pour tout entier $1 \le i \le n$ par :

$$\psi_0(x) = \begin{cases} \frac{i^2}{n^2} & \text{si } x \in \left[\frac{i-1}{n}, \frac{i}{n}\right], \\ 1 & \text{si } x = 1. \end{cases}$$

On montre de la même manière qu'en exercice 1 que ψ_0 est une fonction en escalier. D'après la question 2 (exercice 1), l'intégrale de ϕ_0 est :

$$\int_0^1 \phi_0(x) \, \mathrm{d}x = \frac{(n-1)(2n-1)}{6n^2}.$$

Pour l'intégrale de la fonction ψ_0 , on trouve

$$\int_{0}^{1} \psi_{0}(x) dx = \sum_{i=1}^{n} \left(\frac{i}{n} - \frac{i-1}{n} \right) \cdot \left(\frac{i}{n} \right)^{2}$$
$$= \frac{(n+1)(2n+1)}{6n^{2}}.$$

En utilisant les fonctions ϕ_0 et ψ_0 , l'inégalité (*) devient $\phi_0 \leqslant f \leqslant \psi_0$. D'après le cours, on sait que

$$I^-(f) = \sup \left\{ \int_0^1 \phi(x) \, \mathrm{d}x \mid \phi \text{ en escalier et } \phi \leqslant f \right\} \text{ et } I^+(f) = \inf \left\{ \int_0^1 \psi(x) \, \mathrm{d}x \mid \psi \text{ en escalier et } f \leqslant \psi \right\} \cdot \left\{ \int_0^1 \phi(x) \, \mathrm{d}x \mid \psi \text{ en escalier et } f \leqslant \psi \right\} \cdot \left\{ \int_0^1 \phi(x) \, \mathrm{d}x \mid \psi \text{ en escalier et } f \leqslant \psi \right\} \cdot \left\{ \int_0^1 \phi(x) \, \mathrm{d}x \mid \psi \text{ en escalier et } f \leqslant \psi \right\} \cdot \left\{ \int_0^1 \phi(x) \, \mathrm{d}x \mid \psi \text{ en escalier et } f \leqslant \psi \right\} \cdot \left\{ \int_0^1 \phi(x) \, \mathrm{d}x \mid \psi \text{ en escalier et } f \leqslant \psi \right\} \cdot \left\{ \int_0^1 \phi(x) \, \mathrm{d}x \mid \psi \text{ en escalier et } f \leqslant \psi \right\} \cdot \left\{ \int_0^1 \phi(x) \, \mathrm{d}x \mid \psi \text{ en escalier et } f \leqslant \psi \right\} \cdot \left\{ \int_0^1 \phi(x) \, \mathrm{d}x \mid \psi \text{ en escalier et } f \leqslant \psi \right\} \cdot \left\{ \int_0^1 \phi(x) \, \mathrm{d}x \mid \psi \text{ en escalier et } f \leqslant \psi \right\} \cdot \left\{ \int_0^1 \phi(x) \, \mathrm{d}x \mid \psi \text{ en escalier et } f \leqslant \psi \right\} \cdot \left\{ \int_0^1 \phi(x) \, \mathrm{d}x \mid \psi \text{ en escalier et } f \leqslant \psi \right\} \cdot \left\{ \int_0^1 \phi(x) \, \mathrm{d}x \mid \psi \text{ en escalier et } f \leqslant \psi \right\} \cdot \left\{ \int_0^1 \phi(x) \, \mathrm{d}x \mid \psi \text{ en escalier et } f \leqslant \psi \right\} \cdot \left\{ \int_0^1 \phi(x) \, \mathrm{d}x \mid \psi \text{ en escalier et } f \leqslant \psi \right\} \cdot \left\{ \int_0^1 \phi(x) \, \mathrm{d}x \mid \psi \text{ en escalier et } f \leqslant \psi \right\} \cdot \left\{ \int_0^1 \phi(x) \, \mathrm{d}x \mid \psi \text{ en escalier et } f \leqslant \psi \right\} \cdot \left\{ \int_0^1 \phi(x) \, \mathrm{d}x \mid \psi \text{ en escalier et } f \leqslant \psi \right\} \cdot \left\{ \int_0^1 \phi(x) \, \mathrm{d}x \mid \psi \text{ en escalier et } f \leqslant \psi \right\} \cdot \left\{ \int_0^1 \phi(x) \, \mathrm{d}x \mid \psi \text{ en escalier et } f \leqslant \psi \right\} \cdot \left\{ \int_0^1 \phi(x) \, \mathrm{d}x \mid \psi \text{ en escalier et } f \leqslant \psi \right\} \cdot \left\{ \int_0^1 \phi(x) \, \mathrm{d}x \mid \psi \text{ en escalier et } f \leqslant \psi \right\} \cdot \left\{ \int_0^1 \phi(x) \, \mathrm{d}x \mid \psi \text{ en escalier et } f \leqslant \psi \right\} \cdot \left\{ \int_0^1 \phi(x) \, \mathrm{d}x \mid \psi \text{ en escalier et } f \leqslant \psi \right\} \cdot \left\{ \int_0^1 \phi(x) \, \mathrm{d}x \mid \psi \text{ en escalier et } f \leqslant \psi \right\} \cdot \left\{ \int_0^1 \phi(x) \, \mathrm{d}x \mid \psi \text{ en escalier et } f \leqslant \psi \right\} \cdot \left\{ \int_0^1 \phi(x) \, \mathrm{d}x \mid \psi \text{ en escalier et } f \leqslant \psi \right\} \cdot \left\{ \int_0^1 \phi(x) \, \mathrm{d}x \mid \psi \text{ en escalier et } f \leqslant \psi \right\} \cdot \left\{ \int_0^1 \phi(x) \, \mathrm{d}x \mid \psi \right\} \cdot \left\{ \int_0^1 \phi(x) \, \mathrm{d}x \mid \psi \right\} \cdot \left\{ \int_0^1 \phi(x) \, \mathrm{d}x \mid \psi \right\} \cdot \left\{ \int_0^1 \phi(x) \, \mathrm{d}x \mid \psi \right\} \cdot \left\{ \int_0^1 \phi(x) \, \mathrm{d}x \mid \psi \right\} \cdot \left\{ \int_0^1 \phi(x) \, \mathrm{d}x \mid \psi \right\} \cdot \left\{ \int_0^1 \phi(x) \, \mathrm{d}x \mid \psi \right\} \cdot \left\{ \int_0^1 \phi(x) \, \mathrm{d}x \mid \psi \right\} \cdot \left\{ \int_0^1 \phi(x) \, \mathrm{d}x \mid \psi \right\} \cdot \left\{ \int_0^1 \phi(x) \, \mathrm{d}x \mid \psi \right\} \cdot \left\{ \int_0^1 \phi(x) \, \mathrm{d}x \mid \psi \right\} \cdot \left\{ \int_0^1 \phi(x) \, \mathrm{d}x$$

Il vient que $\int_a^b \phi_0(x) dx \leqslant I^-(f)$ et $I^+(f) \leqslant \int_0^1 \psi_0(x) dx$. Or f est intégrable sur [0,1]. Donc on a l'égalité $I^-(f) = I^+(f) = \int_0^1 f(x) dx$. On en déduit que

$$\frac{(n-1)(2n-1)}{6n^2} \leqslant \int_0^1 f(x) \, \mathrm{d}x \leqslant \frac{(n+1)(2n+1)}{6n^2}.$$

Par passage à la limite (lorsque $n \to +\infty$), on obtient finalement

$$\int_0^1 f(x) \, \mathrm{d}x = \frac{1}{3}.$$

- 3) *) On sait que la fonctions exponentielle $x \mapsto e^x$ est continue sur \mathbb{R} . En particulier, elle est continue sur tout intervalle fermé et borné de \mathbb{R} . Or d'après le théorème 2.1 (voir chapitre 2 : page 21), toute fonction continue sur un intervalle fermé borné de \mathbb{R} est intégrable sur cet intervalle. Par suite, g est intégrable sur tout intervalle fermé borné de \mathbb{R} .
- **) Calcul de $\int_0^1 g(x) dx$. Considérons la même subdivision S_n de [0,1] qu'en question 2). Puisque g est croissante, pour tout entier i tel que $1 \le i \le n$, on a

$$\forall x \in \left[\frac{i-1}{n}, \frac{i}{n}\right], \ e^{(i-1)/n} \leqslant e^x \leqslant e^{i/n}. \tag{1}$$

Nous considérons ensuite deux fonctions en escalier $\phi_1, \psi_1 \colon [0,1] \longrightarrow \mathbb{R}$ définies (pour tout $1 \leqslant i \leqslant n$) par :

$$\forall x \in \left[\frac{i-1}{n}, \frac{i}{n}\right], \ \phi_1(x) = e^{(i-1)/n} \ \text{et} \ \psi_1(x) = e^{i/n} \ \text{et} \ \phi_1(1) = \psi_1(1) = 1.$$

D'après l'inégalité (1), on a $\phi_1 \leqslant f \leqslant \psi_1$. De plus, l'intégral de ϕ_1 est donnée par :

$$\int_0^1 \phi_1(x) \, \mathrm{d}x = \sum_{i=1}^n \frac{1}{n} \cdot \left(e^{\frac{1}{n}}\right)^{i-1} = \frac{1}{n} \cdot \frac{e-1}{e^{1/n} - 1}.$$

De même l'intégral de ψ_1 est donnée par :

$$\int_0^1 \psi_1(x) \, \mathrm{d}x = \sum_{i=1}^n \frac{1}{n} . \left(e^{\frac{1}{n}}\right)^i = \frac{1}{n} . e^{1/n} . \frac{e-1}{e^{1/n} - 1} \cdot$$

Ensuite de la même façon que dans la question 2), on trouve l'inégalité suivante :

$$(e-1).\frac{1/n}{e^{1/n-1}} \le \int_0^1 g(x) \, \mathrm{d}x \le (e-1).e^{1/n}.\frac{1/n}{e^{1/n}-1}$$

Par passage à la limite (lorsque $n \to +\infty$), on obtient

$$\int_0^1 g(x) \, \mathrm{d}x = e - 1.$$

4) i) La fonction h peut aussi s'écrire sous la forme :

$$h(x) = \begin{cases} x & \text{si } x \in [0, 1[\\ x - 1 & \text{si } x \in [1, 2[\\ 0 & \text{si } x = 2. \end{cases}$$

Il en résulte que h est continue par morceaux sur [0,2]. Par suite, h est intégrable sur [0,2].

ii) Rappelons que toute fonction intégrable (au sens de Riemann) sur un intervalle fermé bornée est nécessairement bornée. Il est évident que la fonction k n'est pas bornée sur [0,2]. Par suite, k n'est pas intégrable sur [0,2].

Exercice 4. 1) Supposons que f est nulle sauf en un nombre fini $x_1 < x_2 < \ldots < x_{n-1}$ de points de [a, b]. Considérons la subdivision S_n de [a, b] définie par :

$$a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b.$$

Par hypothèse sur f, on a donc pour tout entier i tel que $1 \leq i \leq n$:

$$\forall x \in]x_{i-1}, x_i[, f(x) = 0.$$

Ainsi f est une fonction en escalier sur [a, b]. Il vient que f est intégrable sur [a, b], et on a :

$$\int_0^1 f(x) dx = \sum_{i=1}^n (x_i - x_{i-1}).0$$
= 0.

2) Supposons maintenant que f est intégrable sur [a,b], et que l'on change les valeurs de f en un nombre fini $x_1 < x_2 < \ldots < x_{n-1}$ de points de [a,b]. Considérons la fonction $g: [a,b] \to \mathbb{R}$ définie par :

$$\forall x \in [a, b] \setminus \{x_1, \dots, x_{n-1}\}, \ g(x) = f(x) \text{ et } g(x_i) \neq f(x_i) \text{ pour tout } 1 \leqslant i \leqslant n.$$

Il vient en particulier que

$$\forall x \in [a, b] \setminus \{x_1, \dots, x_{n-1}\}, \ g(x) - f(x) = 0 \ \text{et} \ (g - f)(x_i) \neq 0 \ \text{pour tout} \ 1 \leqslant i \leqslant n.$$

Ainsi la fonction g-f est nulle sauf en un nombre fini de points de [a,b]. D'après la question 1), la fonction g-f est intégrable sur [a,b], et $\int_a^b (g-f)(x) dx = 0$.

D'après la linéarité de l'intégrale (voir Proposition 3.4 du chapitre 2 page 34), il vient que la fonction g = g - f + f est intégrable sur [a, b], et on a

$$\int_{a}^{b} g(x) dx = \int_{a}^{b} (g - f)(x) dx + \int_{a}^{b} f(x) dx$$
$$= 0 + \int_{a}^{b} f(x) dx$$
$$= \int_{a}^{b} f(x) dx.$$

3) Remarquons que le résultat est vrai pour les fonctions en escalier car la restriction d'une fonction en escalier est encore une fonction en escalier. Supposons que f soit intégrable sur [a, b]. Soit $[c, d] \subseteq [a, b]$. Soit $\varepsilon > 0$. Puisque f est intégrable sur [a, b] et en utilisant la proposition 1.6 (c.f. chapitre 2 page 18), il existe deux fonctions en escalier ϕ et ψ sur [a, b] telles que

$$\phi \leqslant f \leqslant \psi \text{ et } \int_a^b (\psi - \phi)(x) \, \mathrm{d}x < \varepsilon.$$

Comme $\phi|_{[c,d]}$ et $\psi|_{[c,d]}$ sont des fonctions en escalier sur [c,d] telles que

$$\phi|_{[c,d]} \leqslant f|_{[c,d]} \leqslant \psi|_{[c,d]} \text{ et } \int_{c}^{d} (\psi|_{[c,d]} - \phi|_{[c,d]})(x) \, \mathrm{d}x \leqslant \int_{a}^{b} (\psi - \phi)(x) \, \mathrm{d}x < \varepsilon.$$

Ceci étant vrai pour tout $\varepsilon > 0$. Par suite, la fonction $f|_{[c,d]}$ est intégrable sur [c,d] d'après proposition 1.6.

Exercice 5. 1) Considérons la fonction $f:[0,1] \to \mathbb{R}$ définie par :

$$\forall x \in [0, 1], \ f(x) = \frac{1}{1 + x^2}.$$

Soit S_0 la subdivision régulière de [0,1] définie par $S_0 = \{0,1/2,1\}$. Puisque f est décroissante sur [0,1], on a pour tout $1 \le i \le 2$:

$$m_i = \inf_{x \in [x_{i-1}, x_i]} f(x) = f(x_i) \text{ et } M_i = \sup_{x \in [x_{i-1}, x_i]} f(x) = f(x_{i-1}).$$

La somme de Darboux inférieure de f pour S_0 est donc :

$$D_{s_0}^-(f) = \sum_{i=1}^2 (x_i - x_{i-1}) \cdot m_i$$

= $\frac{1}{2} \cdot f(\frac{1}{2}) + \frac{1}{2} \cdot f(1) = \frac{1}{2} \cdot \frac{4}{5} + \frac{1}{2} \cdot \frac{1}{2} = \frac{13}{20}$

De même, la somme de Darboux supérieure de f pour S_0 est :

$$D_{s_0}^+(f) = \sum_{i=1}^2 (x_i - x_{i-1}) \cdot M_i$$

= $\frac{1}{2} \cdot f(0) + \frac{1}{2} \cdot f(\frac{1}{2}) = \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot \frac{4}{5} = \frac{9}{10}$

2) Considérons maintenant la subdivision S_1 de [0,1] définie par $S_1 = \{0,1/4,2/4,3/4,1\}$. De même que dans la question précédente, on a pour tout entier i tel que $1 \le i \le 4$:

$$\inf_{x \in [x_{i-1}, x_i]} f(x) = f(x_i) \text{ et } \sup_{x \in [x_{i-1}, x_i]} f(x) = f(x_{i-1}).$$

La somme de Darboux inférieure de f pour S_1 est donc

$$D_{s_1}^-(f) = \sum_{i=1}^4 (x_i - x_{i-1}) \cdot m_i$$

$$= \frac{1}{2} \cdot f(1/4) + \frac{1}{4} \cdot f(\frac{1}{2}) + \frac{1}{4} \cdot \frac{4}{5} + f(\frac{3}{4}) + \frac{1}{4} \cdot f(1)$$

$$= \frac{1}{4} (\frac{16}{17} + \frac{4}{5} + \frac{16}{25} + \frac{1}{2}) = \frac{2449}{3400}.$$

De même, la somme de Darboux supérieure de f pour S_1 est

$$D_{s_1}^+(f) = \sum_{i=1}^4 (x_i - x_{i-1}) \cdot M_i$$

$$= \frac{1}{4} \cdot f(0) + \frac{1}{4} \cdot f(\frac{1}{4}) + \frac{1}{4} \cdot f(\frac{1}{2}) + \frac{1}{4} \cdot f(\frac{3}{4})$$

$$= \frac{1}{4} (1 + \frac{16}{17} + \frac{4}{5} + \frac{16}{25}) = \frac{1437}{1700}.$$

3) Rappel. Soient $a, b, x \in \mathbb{R}$ tels que a < b. On dit que l'inégalité a < x < b est un **encadrement** de x. On dit aussi que a est une **valeur approchée par défaut** de x à b-a près, et que b est une **valeur approchée par excès** de x à b-a près.

Puisque f est continue (ou décroissante) sur [0,1], on a f est intégrable sur [0,1]. D'après la proposition 2.7 (voir chapitre 2 page 31), on a l'inégalité suivante :

$$D_{s_0}^-(f) \leqslant \int_0^1 f(x) \, \mathrm{d}x \leqslant D_{s_0}^+(f).$$
 (**)

Or $D_{s_0}^-(f) = \frac{13}{20}$, $D_{s_0}^+(f) = \frac{9}{10}$ et $\frac{\pi}{4} = \int_0^1 f(x) dx$. En utilisant l'inégalité (**), on obtient un encadrement de π par des nombres rationnels suivant :

$$\frac{13}{5} < \pi < \frac{18}{5}$$

Remarque. En utilisant la subdivision S_1 de [0,1], on obtient un autre encadrement de π par des nombres rationnels suivant :

$$\frac{2449}{850} < \pi < \frac{1437}{425}.$$

4) Soit S_n une subdivision régulière de pas 1/n de [0,1]. D'après la proposition 2.7 (cf chapitre 2 page 31) et comme $\pi/4 = \int_0^1 f(x) dx$, on a l'inégalité :

$$D_{\mathbb{S}_n}^-(f) \leqslant \frac{\pi}{4} \leqslant D_{\mathbb{S}_n}^+(f).$$

Puisque f est décroissante sur [0,1], pour tout entier i tel que $1 \le i \le n$ on a :

$$m_i = \inf_{x \in [x_{i-1}, x_i]} f(x) = f(x_i) \text{ et } M_i = \sup_{x \in [x_{i-1}, x_i]} f(x) = f(x_{i-1}).$$

On en déduit que

$$D_{S_n}^+(f) - D_{S_n}^-(f) = \sum_{i=1}^n (x_i - x_{i-1}) \cdot (f(x_{i-1}) - f(x_i))$$

$$= \sum_{i=1}^n \frac{1}{n} \cdot (f(x_{i-1}) - f(x_i))$$

$$= \frac{1}{n} \sum_{i=1}^n (f(x_{i-1}) - f(x_i))$$

$$= \frac{1}{n} (f(x_0) - f(x_1) + f(x_1) - f(x_2) + \dots + f(x_{n-1}) - f(x_n))$$

$$= \frac{1}{n} (f(x_0) - f(x_n))$$

$$= \frac{1}{n} (f(0) - f(1))$$

$$= \frac{1}{2n} \cdot \frac{1}{n} \cdot$$

(Notons que les nombres $D_{\mathbb{S}_n}^+(f)$ et $D_{\mathbb{S}_n}^-(f)$ sont rationnels car f est une fraction rationnelle et le pas de la subdivision \mathbb{S}_n est 1/n). On en déduit que pour que le nombre rationnel $4\,D_{\mathbb{S}_n}^+(f)$ soit une valeur approchée par excès de π à 10^{-3} près, il suffit que $\frac{2}{n} \leqslant 10^{-3}$. C'est-à-dire $n \geqslant 2 \cdot 10^3 = 2000$.

Exercice 6. 1) 1^{er} cas (cas trivial) : f est identiquement nulle sur [a, b]. Alors f s'annule évidemment au moins une fois sur [a, b].

2º cas : f non identiquement nulle sur [a, b]. Puisque f est continue sur [a, b], alors f est intégrable sur [a, b]. De plus et d'après la formule de la moyenne, il existe une constante $c \in [a, b]$ telle que

$$f(c) = \frac{1}{(b-a)} \cdot \int_a^b f(x) \, \mathrm{d}x.$$

Or par hypothèse $\int_a^b f(x) dx = 0$. Il s'ensuit qu'il existe $c \in [a, b]$ tel que f(c) = 0. Par suite, f s'annule au moins une fois sur [a, b].

2) Supposons maintenant que $\int_a^b f(x) dx = \frac{b^2 - a^2}{2}$. On sait que la fonction $x \longmapsto \frac{x^2}{2}$ est une primitive de la fonction $x \longmapsto x$ (voir chapitre 3). D'où

$$\int_{a}^{b} x \, \mathrm{d}x = \left[\frac{x^{2}}{2}\right]^{b} = \frac{b^{2} - a^{2}}{2}.$$

Ainsi $\int_a^b f(x) dx = \int_a^b x dx$. D'après la linéarité de l'intégrale, il vient que $\int_a^b (f(x) - x) dx = 0$. Or la fonction $x \mapsto f(x) - x$ est continue sur [a, b]. Donc d'après la question 1), il existe $c \in [a, b]$ telle que f(c) - c = 0. C'est-à-dire f(c) = c. Ce qui montre que f admet au moins un point fixe sur [a, b].

3) Supposons maintenant que f est positive ou nulle. Il est clair que

$$(\forall x \in [a, b], f(x) = 0) \implies \int_a^b f(x) dx = 0.$$

Réciproquement, supposons que $\int_a^b f(x) dx = 0$. Montrons que f est nulle sur [a, b]. Supposons par l'absurde qu'il existe $x_0 \in [a, b]$ tel que $f(x_0) \neq 0$. Comme f est positive ou nulle, on a donc $f(x_0) > 0$. La continuité de f en x_0 permet d'affirmer qu'il existe un voisinage fermé $[\alpha, \beta]$ de x_0 avec $[\alpha, \beta] \subseteq [a, b]$ t.q.

$$\forall x \in [\alpha, \beta], f(x) > 0.$$

La continuité de f sur $[\alpha, \beta]$ permet d'affirmer que f est minorée et atteint sa borne inférieure sur $[\alpha, \beta]$. Autrement dit, il existe $c \in [\alpha, \beta]$ tel que

$$\forall x \in [\alpha, \beta], \ f(x) \geqslant \inf_{t \in [\alpha, \beta]} f(t) = f(c) > 0.$$

D'après la croissance de l'intégrale, il vient que

$$\int_{\alpha}^{\beta} f(x) \, \mathrm{d}x \geqslant \int_{\alpha}^{\beta} f(c) \, \mathrm{d}x = (\beta - \alpha) \cdot f(c) > 0.$$

D'après la relation de Charles, on a :

$$\int_{a}^{b} f(x) dx = \int_{a}^{\alpha} f(x) dx + \int_{\alpha}^{\beta} f(x) dx + \int_{\beta}^{b} f(x) dx > 0.$$

Contradiction avec $\int_a^b f(x) dx = 0$. Par suite,

$$\forall x \in [a, b], \ f(x) = 0.$$

4) Soit $P \in \mathbb{R}[X]$ un polynôme réel. Puisque la fonction $x \mapsto P^2(x)$ est continue et positive ou nulle, d'après la question 3), on a :

$$\int_a^b P^2(x) \, \mathrm{d}x = 0 \implies \forall \, x \in [a,b], \ P^2(x) = 0$$

$$\implies \forall \, x \in [a,b], \ P(x) = 0$$

$$\implies P = 0 \ \text{car un polynôme non nul admet un nombre fini de racines}.$$

Exercice 7. 1) Soit $n \ge 1$. On a

$$R_n = \sum_{k=1}^n \frac{n}{n^2 \left(1 + \frac{k^2}{n^2}\right)} = \frac{1}{n} \cdot \sum_{k=1}^n \frac{1}{1 + \left(\frac{k}{n}\right)^2}$$
$$= \frac{(1-0)}{n} \cdot \sum_{k=1}^n \frac{1}{1 + \left(0 + k \cdot \frac{(1-0)}{n}\right)^2}$$

Ainsi R_n s'écrit sous la forme d'une somme de Riemann de la fonction intégrable (puisqu'elle est continue) $f: [0,1] \to \mathbb{R}, x \mapsto \frac{1}{1+x^2}$. On sait alors que

$$\lim_{n \to +\infty} R_n = \int_0^1 f(x) \, dx = \int_0^1 \frac{dx}{1 + x^2}$$
$$= \left[\arctan(x) \right]_0^1 = \frac{\pi}{4}.$$

2) De même, (S_n) est une somme de Riemann car

$$S_n = \frac{(\pi/2 - 0)}{n} \cdot \sum_{k=1}^n \sin\left(0 + k \cdot \frac{(\pi/2 - 0)}{n}\right).$$

Par suite, $(S_n)_{n\geqslant 1}$ est convergente, et on a

$$\lim_{n \to +\infty} S_n = \int_0^{\pi/2} \sin(x) \, \mathrm{d}x = [-\cos(x)]_0^{\pi/2} = 1.$$

3) De même, (T_n) est une somme de Riemann car

$$T_n = \frac{(1-0)}{n} \cdot \sum_{k=1}^n \left(0 + k \cdot \frac{(1-0)}{n} \right)^2 \sin\left(\pi \left(0 + k \frac{(1-0)}{n} \right) \right).$$

Par suite, (T_n) est convergente et on a

$$\lim_{n \to +\infty} T_n = \int_0^1 x^2 \sin(\pi x) \, \mathrm{d}x = \frac{1}{\pi} \left(1 - \frac{4}{\pi^2} \right).$$

4) On (U_n) n'est pas une somme de Riemann, mais on a l'encadrement suivant vrai pour tout $1 \le k \le n$:

$$\frac{n+k}{n^2+n} \leqslant \frac{n+k}{n^2+k} \leqslant \frac{n+k}{n^2}$$

En sommant ces inégalités, on obtient :

$$\frac{1}{n^2 + n} \sum_{k=1}^{n} (n+k) \leqslant \sum_{k=1}^{n} \frac{n+k}{n^2 + k} \leqslant \frac{1}{n^2} \sum_{k=1}^{n} (n+k).$$

Or $\frac{1}{n^2} \sum_{k=1}^n (n+k) = \frac{(1-0)}{n} \cdot \sum_{k=1}^n \left(1 + k \cdot \frac{(1-0)}{n}\right)$ est une somme de Riemann qui converge vers l'intégrale $\int_0^1 (1+x) \, \mathrm{d}x = \left[x + \frac{x^2}{2}\right]_0^1 = \frac{3}{2} \cdot \text{ D'autre part, on a la suite}$

$$\frac{1}{n^2 + n} \sum_{k=1}^{n} (n+k) = \frac{1}{\left(1 + \frac{1}{n}\right) \cdot n^2} \cdot \sum_{k=1}^{n} (n+k) = \frac{1}{\left(1 + \frac{1}{n}\right)} \cdot \frac{1}{n} \cdot \sum_{k=1}^{n} \left(1 + \frac{k}{n}\right)$$

converge vers $1 \cdot \frac{3}{2} = \frac{3}{2}$. D'après le théorème des gendarmes, on en déduit que $\lim_{n \to +\infty} U_n = \frac{3}{2}$.

5) V_n n'est pas une somme de Riemann, mais on a l'encadrement suivant vrai pour tout $1 \le k \le n$:

$$\sqrt{k} - 1 \leqslant E(\sqrt{k}) \leqslant \sqrt{k}.$$

En sommant ces inégalités, on obtient :

$$\frac{1}{n\sqrt{n}}\sum_{k=1}^{n}\sqrt{k} - \frac{1}{\sqrt{n}} \leqslant V_n \leqslant \frac{1}{n\sqrt{n}} \cdot \sum_{k=1}^{n}\sqrt{k}.$$

Or $\frac{1}{n\sqrt{n}}\sum_{k=1}^n\sqrt{k}=\frac{1}{n}\sum_{k=1}^n\sqrt{\frac{k}{n}}$ est une somme de Riemann qui converge vers $\int_0^1\sqrt{x}\,\mathrm{d}x=\frac{2}{3}$. De plus, on a $\lim_{n\to+\infty}\frac{1}{\sqrt{n}}=0$. D'après le théorème des gendarmes, on en déduit que $\lim_{n\to+\infty}V_n=\frac{2}{3}$.

6) On a (W_n) n'est pas une somme de Riemann, mais on remarque que

$$W_n = \sum_{k=1}^n \frac{1}{n+k} + \sum_{k=n+1}^{2n} \frac{1}{n+k}.$$

Or $\sum_{k=1}^{n} \frac{1}{n+k} = \frac{1}{n} \sum_{k=1}^{n} \frac{1}{1+\frac{k}{n}}$ est une somme de Riemann qui converge vers $\int_{0}^{1} \frac{\mathrm{d}x}{1+x} = [\ln(1+x)]_{0}^{1} = \ln 2$.

D'autre part, en faisant le changement de variable i = k - n on a aussi :

$$\sum_{k=n+1}^{2n} \frac{1}{n+k} = \sum_{i=1}^{n} \frac{1}{n+n+i} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2+\frac{i}{n}}$$

est une somme de Riemann qui converge vers $\int_0^1 \frac{\mathrm{d}x}{2+x} = [\ln(2+x)]_0^1 = \ln\left(\frac{3}{2}\right)$. Par suite, $\lim_{n\to+\infty} W_n = \ln(3)$.

7) On a (X_n) est une somme de Riemann. En effet, en faisant le changement de variable i = k - n on a :

$$X_n = \frac{1}{2} \sum_{i=0}^{n-1} \frac{1}{n+i} = \frac{1}{2} \frac{1}{n} \cdot \sum_{i=0}^{n-1} \frac{1}{1 + \frac{i}{n}}.$$

Or $\frac{1}{n} \cdot \sum_{i=0}^{n-1} \frac{1}{1+\frac{i}{n}}$ est une somme de Riemann qui converge vers $\int_0^1 \frac{\mathrm{d}x}{1+x} = [\ln(1+x)]_0^1 = \ln 2$. Par suite,

 (X_n) est convergente et on a $\lim_{n\to+\infty} X_n = \frac{1}{2} \cdot \ln(2) = \ln(\sqrt{2})$.

8) On a (Y_n) n'est pas une somme de Riemann, mais on remarque que

$$\ln Y_n = -\ln n + \frac{1}{n} \cdot \sum_{k=1}^n \ln(n+k) = -\ln n + \frac{1}{n} \cdot \sum_{k=1}^n \ln\left(n\left(1 + \frac{k}{n}\right)\right).$$

$$= -\ln n + \frac{1}{n} \cdot \sum_{k=1}^n \left[\ln n + \ln\left(1 + \frac{k}{n}\right)\right]$$

$$= -\ln n + \frac{1}{n} \cdot n \ln n + \frac{1}{n} \cdot \sum_{k=1}^n \ln\left(1 + \frac{k}{n}\right) = \frac{1}{n} \cdot \sum_{k=1}^n \ln\left(1 + \frac{k}{n}\right).$$

Or $\frac{1}{n} \cdot \sum_{\iota=1}^n \ln \left(1 + \frac{k}{n}\right)$ est une somme de Riemann qui converge vers

$$\int_0^1 \ln(1+x) \, \mathrm{d}x = [(1+x)\ln(1+x) - x]_0^1 = 2\ln 2 - 1.$$

Par suite, $\lim_{n \to +\infty} Y_n = e^{2 \ln 2 - 1} = \frac{4}{e}$.

9) On a Z_n n'est pas une somme de Riemann, mais on remarque que

$$\ln Z_n = \frac{1}{n} \left[\ln((2n)!) - \ln(n!) - n \ln n \right].$$

Or $\ln((2n)!) = \sum_{k=1}^{2n} \ln k$ et $\ln(n!) = \sum_{k=1}^{n} \ln k$ et $n \ln n = \sum_{k=1+n}^{2n} \ln n$. D'où

$$\ln Z_n = \frac{1}{n} \sum_{k=1+n}^{2n} \ln \left(\frac{k}{n} \right) = \frac{1}{n} \sum_{i=1}^n \ln \left(\frac{n+i}{n} \right)$$
$$= \frac{1}{n} \sum_{i=1}^n \ln \left(1 + \frac{i}{n} \right).$$

On a $\frac{1}{n}\sum_{i=1}^n \ln\left(1+\frac{i}{n}\right)$ est une somme de Riemann qui converge vers

$$\int_0^1 \ln(1+x) \, \mathrm{d}x = [(1+x)\ln(1+x)]_0^1 - [x]_0^1 = 2\ln 2 - 1.$$

Par suite, (Z_n) est convergente, et on a $\lim_{n\to+\infty} Y_n = \frac{4}{e}$.