安徽大学 2023—2024 学年第一学期

《概率论与数理统计 A》期末考试试卷(A 卷) 时间 120 分钟) (闭卷

考场登记表序号

一、选择题(每小题3分,共15分)

1. 设随机事件 $A \cap B$ 满足 $P(A) = P(B) = \frac{1}{2} \cap P(A \cup B) = 1$,则有()
---	---

(A)
$$A \cup B = \Omega$$

亭

$$(B)$$
 $AB = \Phi$

(C)
$$P(A-B) = 0$$

(B)
$$AB = \Phi$$
 (C) $P(A-B) = 0$ (D) $P(\overline{A} \cup \overline{B}) = 1$

2. 设随机变量 X 的分布函数为 F(x) ,概率密度函数为 f(x) , Y=1+X , Y 的分布函数为 G(y),概率密度函数为g(y),则有()

(A)
$$G(y) = F(1-y)$$

(B)
$$G(v) = 1 - F(1 - v)$$

(A)
$$G(y) = F(1-y)$$
 (B) $G(y) = 1 - F(1-y)$ (C) $g(y) = f(y-1)$ (D) $g(y) = 1 - f(y)$

3. 设总体 $X \sim N(\mu, \sigma^2)$, X_1 , X_2 , X_3 是来自总体X 的简单随机样本,则下列估计量中不

(A)
$$\hat{\mu}_1 = \frac{1}{5}X_1 + \frac{3}{10}X_2 + \frac{1}{2}X_3$$
 (B) $\hat{\mu}_2 = \frac{1}{4}X_1 + \frac{1}{5}X_2 + \frac{1}{2}X_3$ (C) $\hat{\mu}_3 = \frac{1}{3}X_1 + \frac{1}{4}X_2 + \frac{5}{12}X_3$ (D) $\hat{\mu}_4 = \frac{1}{3}X_1 + \frac{1}{6}X_2 + \frac{1}{2}X_3$

(B)
$$\hat{\mu}_2 = \frac{1}{4}X_1 + \frac{1}{5}X_2 + \frac{1}{2}X_3$$

(C)
$$\hat{\mu}_3 = \frac{1}{3}X_1 + \frac{1}{4}X_2 + \frac{5}{12}X_3$$

(D)
$$\hat{\mu}_4 = \frac{1}{3}X_1 + \frac{1}{6}X_2 + \frac{1}{2}X_3$$

4. 设总体 $X \sim N(\mu, \sigma^2)$, 其中 σ^2 已知, μ 为未知参数,则 μ 的双侧置信度长度 L 与置信 度 $1-\alpha$ 的关系是().

- (A) 当 $1-\alpha$ 减小时,L变小
- (B) 当1- α 减小时,L变大
- (C) 当 $1-\alpha$ 减小时,L 不变 (D) 当 $1-\alpha$ 减小时,L 增减不定
- 5. 设总体X 服从[-1,1]上的均匀分布, X_1 , X_2 ,…, X_n 为来自总体X的简单随机样本,

$$\Phi(x)$$
 为标准正态分布函数,则 $\lim_{n\to\infty} P\left\{\frac{\sum_{i=1}^{n} X_{i}}{\sqrt{n}} \le 1\right\} = ($)

(A)
$$\Phi\left(\frac{1}{2}\right)$$

$$(B) \Phi(1)$$

(C)
$$\Phi(\sqrt{3})$$

(A)
$$\Phi\left(\frac{1}{2}\right)$$
 (B) $\Phi\left(1\right)$ (C) $\Phi\left(\sqrt{3}\right)$ (D) $\Phi\left(\frac{1}{\sqrt{3}}\right)$

二、填空题(每小题3分,共15分)

6. 设随机变量 X 服从参数为 λ 的泊松分布,且已知 E[(X-1)(X-2)]=1 ,则 $\lambda=$ ______.

7. 设
$$X \sim B(2, \frac{1}{3})$$
, 则 $P(X \ge 1) =$ ______.

8. 设随机变量(X,Y)服从二维正态分布,X与Y的期望均为0,方差均为1,它们的协方 差为 0,记 $Z_1 = 2X + Y$, $Z_2 = 2X - Y$,则 Z_1 和 Z_2 的协方差为____

9. 设随机变量 X 的数学期望 E(X) = 75 , 方差 D(X) = 5 , 则根据切比雪夫不等式 $P(|X-75| \ge 10) \le$

10. 设总体 $X \sim N(0,1)$, X_1 , X_2 , X_3 , X_4 为来自总体 X 的简单随机样本,则 $\frac{X_1 + X_2}{\sqrt{X_3^2 + X_4^2}}$ 服

从的分布为 . (分布须含自由度)

- 三、计算题(每小题10分,共50分)
- **11.** 两台车床加工同样的零件,第一台出现不合格品的概率是 0.04,第二台出现不合格品的概率是 0.07,加工出来的零件放在一起,并且已知第一台加工的零件数比第二台加工的零件数多一倍.
- (1) 求任取一个零件是合格品的概率;
- (2) 如果取出的零件是不合格品,求它是第二台车床加工的概率.
- 12. 设连续型随机变量 X 的密度为 $f(x) = \begin{cases} Ke^{-5x}, & x > 0 \\ 0, & x \le 0. \end{cases}$
- (1) 确定常数 K; (2) 求 $P\{X > 0.2\}$; (3) 求分布函数 F(x).
- 13. 设 X 与 Y 两个相互独立的随机变量, 其概率密度分别为

$$f_X(x) = \begin{cases} 1, & 0 \le x \le 1; \\ 0, & \cancel{\sharp} \ \text{E}. \end{cases} \qquad f_Y(y) = \begin{cases} e^{-y}, & y > 0; \\ 0, & y \le 0. \end{cases}$$

求随机变量Z = X + Y的概率密度函数

- **14.** 设连续型随机变量(X,Y) 服从区域 $G = \{(x,y) | 0 < x < 1, |y| < x\}$ 上的均匀分布.
- (1) 求边缘概率密度 $f_X(x), f_Y(y)$; (2) 问 X 与 Y 是否独立?
- **15.** 设总体 **X** 的密度函数为 $f(x,\theta) = \begin{cases} \theta x^{\theta-1}, \ 0 < x < 1, \\ 0, &$ 其它 其中 θ 未知, X_1, X_2, \cdots, X_n 是从该总体中抽取的一个样本,求 θ 的矩估计量与极大似然估计量.

四、应用题(每小题10分,共10分)

16. 已知某机器生成出的零件长度 X (单位: cm) 服从正态分布 $N(\mu, \sigma^2)$, 现从中随意抽取容量为 16 的一个样本,测得样本均值 x=10,样本方差 $S^2=0.16$.问在显著性水平为 0.05下能否接受假设: 这批零件长度的均值为 9.7.

(可能用到的数据: $t_{0.05}(15) = 1.7531$, $t_{0.05}(16) = 1.7459$, $t_{0.025}(15) = 2.1315$, $t_{0.025}(16) = 2.1199$)

五、证明题(每小题10分,共10分)

17. 设随机变量 X 与 Y 独立同分布,且 X 的概率分布为

X	1	2
p	$\frac{2}{3}$	$\frac{1}{3}$

记 $U = \max(X, Y)$, $V = \min(X, Y)$. 证明: $U = \overline{U}$ 不独立, 但相关.