

Comprehensive data annotation and findable data: Mapping odML to RDF

Michael Sonntag¹, Yaroslav Shalivskyy¹, Achilleas Koutsou¹, Christian Garbers¹, Jan Grewe², Thomas Wachtler¹

¹German Neuroinformatics Node, Department Biologie II, Ludwig-Maximilians-Universität München, Germany; ²Institut für Neurobiologie, Universität Tübingen, Germany

External

formats

Metadata

The odML flavored RDF

and equipped to handle

in-house

graph

is extremely flexible,

any metadata format.

Metadata

Overview

Annotation of research data with metadata is vital to provide context for analysis and data re-use. The odML[1] format enables collecting metadata from different sources in an organized, flexible, human and machine-readable fashion[2] and is easy to use for the scientist. odML specifies the format, not the content, so any metadata necessary to describe a given dataset can be stored.

Building on the odML format we present an approach utilizing Semantic Web technologies to effortlessly make even diverse metadata interoperable, findable and accessible according to the FAIR principles[3]. With a small set of terms derived from the odML format we defined a mapping from the odML data model to a general repesentation in RDF[4] and developed a straightforward conversion pipeline.

Thus, metadata collected via the convenient odML format can be fed to a single local or distributed searchable RDF graph. Taking advantage of the powerful OWL language[5], each distinct set of metadata can be subclassed further to the benefit of maintaining the original relations without losing the common structure, achieving interoperability without sacrificing findability. To enable easy access to large collections of metadata, we developed a custom "fuzzy search" feature and further introduce an augmented SPARQL server based on Apache Jena Fuseki[6] that offers a convenient search interface for the scientist by using the powerful SPARQL query language.

Data / Metadata acquisition workflow using odML

Data Data Aquisition Annotation Storage NIX manual nixpy Data + Metadata Data ÷ ÷ ÷ ÷ odML Data automated and Metadata Metadata py-odml Metadata py-odml

odML data model

G-Node formats

automatic

validation

Repository

Server

automatic

conversion

gin

Checkout our

gin poster for

more features!

RDF representation of odML data model

Opening Metadata to the Semantic Web via odML

odML

py-odml

odML

flavored

Using OWL to fine-tune RDF Metadata

Extend the basic odML OWL ontology by subclassing the basic odML flavored RDF to

- retain your own metadata structure and terms even in RDF.
- enable more specific SPARQL queries for your needs while enabling general searches through odML terms.
- ### https://g-node.org/projects/odml-rdf#Cell :Cell rdf:type owl:Class ; rdfs:subClassOf :Section ; rdfs:comment "Description"^^xsd:string; rdfs:label "Cell" ### https://g-node.org/projects/odml-rdf#Electrode :Electrode rdf:type owl:Class ; rdfs:subClassOf :Section ; rdfs:comment "Description"^^xsd:string;

https://g-node.org/projects/odml-rdf#Stimulus :Stimulus rdf:type owl:Class; rdfs:subClassOf :Section ;

rdfs:label "Electrode" .

rdfs:label "Stimulus"

RDF documents can be easily merged into a single, searchable graph, making even Custom fuzzy diverse metadata findable. **SPARQL** queries Public access to diverse and searchable metadata. public SPARQL resource **SPARQL** rdfs:comment "Description of the Stimulus."^^xsd:string; meta.g-node.org results

odML

Optional automatic conversion to RDF and upload to a public metadata graph database.

Using odML or NIX

together with GIN

file validation.

provides automatic

The meta.g-node.org server provides access to diverse metadata datasets based on the odML flavored RDF format. All datasets are publicly available and searchable by SPARQL via API and web interface.

Resources and references

Find the odML, NIX and GIN projects at

http://meta.g-node.org https://github.com/G-Node/python-odml https://github.com/G-Node/nixpy https://gin.g-node.org

Find out about more G-Node projects at https://g-node.github.io

Contact: dev@g-node.org

References

- [1] Grewe et al (2011); doi:10.3389/fninf.2011.00016 [2] Zehl et al (2016); doi:10.3389/fninf.2016.00026
- [3] Wilkinson et al (2016); doi:10.1038/sdata.2016.18 [4] https://www.w3.org/RDF/
- [5] https://www.w3.org/TR/owl-features/
- [6] https://jena.apache.org/documentation/fuseki2/

Poster presented at **INCF Neuroinformatics 2018** Montréal, Canada

Hosted by

LMU Munich

Federal Ministry of Education and Research

Supported by BMBF grants 01GQ1302 and 01GQ1509

doi:10.12751/incf.ni2018.0110