All hw should be uploaded to canvas as a pdf. All homework should be legible and oriented correctly so make sure your scans are correctly done.

Problem 1. Consider a linear map $\mathcal{L}: U \to \mathbb{F}$. Let $\mathcal{N}(\mathcal{L}) = \{u \in U | \mathcal{L}(u) = 0\}$. Prove that if $u \in U$ is not in $\mathcal{N}(\mathcal{L})$, then $U = \mathcal{N}(\mathcal{L}) \oplus \{au | a \in \mathbb{F}\}$. Hint: use Proposition 2 from Lec 3.

Problem 2. Prove that if $\{v_1, \ldots, v_n\}$ is linearly independent in V, then so is the set $\{v_1 - v_2, v_2 - v_3, \ldots, v_{n-1} - v_n, v_n\}$.

Problem 3. Let V be a subspace of \mathbb{R}^n and let v_1, \ldots, v_ℓ and w_1, \ldots, w_m in V. Prove that if v_1, \ldots, v_ℓ are linearly independent and w_1, \ldots, w_m span V, then $\ell \leq m$.

Problem 4. Let $\mathcal{E} = \{e_1, e_2\}$ be the standard basis for \mathbb{R}^2 and let

$$\mathcal{V} = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$$

be another basis for \mathbb{R}^2 . Consider the linear map $\mathcal{A}: \mathbb{R}^2 \to \mathbb{R}^2$ which is the counterclockwise rotation through $\pi/4$. Its matrix representation is a rotation matrix of the form

$$A = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

- 1. Write out A explicitly?
- 2. Given that vectors in the domain on which \mathcal{A} operates are represented with respect to basis \mathcal{E} —i.e. $x \in \mathbb{R}^2$ has coordinates wrt basis \mathcal{E} and we denote it as $(x)_{\mathcal{E}}$ —and suppose that vectors in the co-domain are represented with respect to \mathcal{V} —i.e. $y \in \mathbb{R}^2$ has coordinates wrt basis \mathcal{V} and we denote it as $(y)_{\mathcal{V}}$. Find the matrix representation of \mathcal{A} in these bases. Hint: take what we did in class for writing a vector in one basis in another basis and apply that to $\mathcal{A}(e_i)$ for i=1,2.

Problem 5. Let

$$S = \{2 + x + x^2 + 3x^3, 4 + 2x + 4x^2 + 6x^3, 6 + 3x + 8x^2 + 7x^3, 2 + x + 5x^3, 4 + x + 9x^3\}$$

and $V = \operatorname{span}(S)$ be the subspace of order three polynomials with real coefficients (denoted by $\mathbb{R}_3[x]$) generated by S.

- 1. Find a basis for $\mathbb{R}_3[x]$. What is the dimension of $\mathbb{R}_3[x]$?
- 2. Find the dimension of V by reducing (if necessary) S to a basis for V.

Problem 6. Consider the linear map $A: U \to V$.

- 1. Prove that $\mathcal{R}(\mathcal{A})$ and $\mathcal{N}(\mathcal{A})$ are subspaces of V and U, respectively.
- 2. If $b \in \mathcal{R}(\mathcal{A})$, then prove that

$$[\mathcal{A}(u) = b \text{ has a unique solution}] \iff [\mathcal{N}(\mathcal{A}) = \{0\}]$$

3. Suppose $b \in \mathcal{R}(\mathcal{A})$, and let u_0 be such that $\mathcal{A}(u_0) = b$. Prove that

$$[\mathcal{A}(u) = b] \iff [u - u_0 \in \mathcal{N}(\mathcal{A})]$$

Problem 7. Let $A:(U,\mathbb{F})\to (V,\mathbb{F})$ with $\dim U=n$ and $\dim V=m$ be a linear map with $\operatorname{rank}(A)=k$. Show that there exist bases $(u_i)_{i=1}^n$ and $(v_j)_{j=1}^m$ of U,V respectively such that with respect to these bases A is represented by the block diagonal matrix

$$A = \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} \tag{1}$$

What are the dimensions of the different blocks?

Problem 8. Suppose that V and W are finite dimensional and that U is a subspace of V. Prove that there exists $A \in \mathcal{L}(V, W)$ such that $\ker(A) = U$ if and only if $\dim U \ge \dim V - \dim W$.