|   | STAT 2509 Assignment Three:                                                                                     |
|---|-----------------------------------------------------------------------------------------------------------------|
|   | D Solve the following Questions Reguarding the relation between Profits & Capital investment/Ads:               |
|   | a) State the MLIR model & all assumptions:                                                                      |
|   | the model has three variables: (one y-intercept w/ 2 Slopes)                                                    |
|   | y=Bo+Bix,+Baxa+E, Where E is the error                                                                          |
|   | The Assumptions are:                                                                                            |
|   | (I) All x's are observed without error                                                                          |
|   | II) 95 are independently distributed with mean: E(4) = Bot B, X, +BaXa                                          |
|   | III) Varience of 4's Constant                                                                                   |
|   | II) I's or emors are $N\sim (E(H), \sigma^2)$                                                                   |
|   | b) Find the estimates of the population parameters Bo, B1, B2 & get the least-Squares line:                     |
|   | 1.620.04450.269 78                                                                                              |
|   | $(xTx)^{-1}(xTy) = -0.04450.001690.00584$                                                                       |
|   | -0.269 0.00584 0.0587 \[ 383 \]                                                                                 |
|   | [Note: (xTx) is Shortened for brenity, Please See 21 for (xTx) in full]                                         |
|   | - [1.62(98) -0.0445(1433) -0.269(383) [-8.1770184769] BO                                                        |
|   | $[\hat{B}] = -0.0445(98) + 0.09169(1433) + 0.00584(383) = 0.2721319818 = B_1$                                   |
|   | -0.269(98)+0.00584(1433)+0.0587(383) 4.4343028367 83                                                            |
|   | thus:                                                                                                           |
|   | y=-8.1770184764+0.2921319818x1+4.4343028367x2                                                                   |
|   | $(=-8.1770+0.2921X_1+4.4343X_2)$                                                                                |
|   | C) Find the predicted value of y for the new x vector, x = 13:                                                  |
|   | $y = -8.1770 x_0 + 0.2721 x_1 + 4.4343 x_2$                                                                     |
|   | =-8.1770(1)+0.2921(2)+4.4343(6)                                                                                 |
|   | = -8.1770+0.6842+26.6058                                                                                        |
| 1 | (= 19.013)                                                                                                      |
|   | d) Setup the ANOVA table and test for the Significance of the model for 0 = 0.05:                               |
| - | Profits = $B_0 + B_1$ (investment) + $B_2$ (adds)                                                               |
|   | $TSS = yTy - \frac{(\Sigma y)^2}{n} = \sum y_i^2 - \frac{(\Sigma y_i)^2}{n} = 1372 - \frac{(78)^2}{10} = 431.6$ |
|   |                                                                                                                 |
|   | SSR=67(xy)-(21)3=[-8.1770 0.2721 4.4343] 78 = -(98)3 +0.03821(1433)                                             |
|   | 383 =                                                                                                           |
|   | _000                                                                                                            |

|                                                 |           |                        | A TOUR                              |              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------|-----------|------------------------|-------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SSIR = -8.17701                                 | 8476      | 4(18) +0.2921.         | 319818(1433) +4.43                  | 43028367     | (383)=160,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| = 355.21530                                     | 57)       |                        |                                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SSE=TSS-SSIR                                    | 1):==     | - A - A -              | K=2 as there's                      | two conditio | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| = 431.6-355                                     | 21530     | 57                     | of = K=2                            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| = 76.384694                                     | 3)        |                        | df==n-K-1=10.                       | 1-2=(7)      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MSE=SSE/(n-                                     |           | 10.                    | df=n-1=9                            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| = 76.38469                                      |           |                        |                                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (=10.9120991                                    |           |                        |                                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MSR = SSR/(n-                                   |           |                        |                                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| =355,2153                                       |           | 10-7-1)                |                                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| €177.6076                                       |           |                        |                                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $f^2 = \frac{8512}{755} = \frac{355.215}{431.}$ | 3057      | 0.823019707            |                                     |              | THE STATE OF THE S |
| F= r2/K                                         |           |                        |                                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (1-r2)/(n-1                                     | (-1)      | (1-0.823019            | 707)(10-2-1)                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |           |                        |                                     | 11216        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (0.1769802                                      | 92)/(7    | 7) 0.025282            | 3 = 16,2762                         | (1)16        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |           |                        | then 0.005, r                       |              | (0.002)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| _ANOVA Table:                                   |           |                        |                                     | 0 0          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Source                                          | df        | Sum of Squares         | Mean Sauare                         | F Value      | Pr>F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Regression                                      | 2         | 355.2153057            | 177.6076529                         | 16.28        | 0,002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Error                                           | 7         | 76.3846943             | 10.91209919                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Corrected Total                                 | -         | 431.6                  |                                     |              | 473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Test Significance                               | ei.       |                        | I HUMBEY                            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| I) (Raim i                                      | The n     | nodel is Statistically | s Significant at                    | aredictina 1 | Profits based                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| on Capit                                        | fal inves | Ement & advertis       | ing expendature,                    | Given d=0    | .05.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ho:                                             | 的知识。      | 05 - Null: H           | ing expendature, ne model is Not si | apificant to | o 95% Considence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ta: f                                           | (F) < C   | 0.05 -D Alternati      | ive: the model's signifi            | eant to 95%  | 6 Confidence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| I) F-value                                      |           |                        | 0                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| from                                            | ANOVI     | 4-table, we see        | F=16.28                             |              | Just to Just to the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| III) Rejection                                  | Regis     | on!                    |                                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| P(F                                             | 188.      | 05                     |                                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |           |                        |                                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

P(F=16.28)=0.002 (See AvovA table) thus: 0.002 ≤ 0.05 therefore we reject the null hypothesis II) Conclusion! Since ?(F)=0.002 < 0.05= \times we reject the null hypothesis We thus take the alternative hypothesis which States that the model is accurate within a 75% Level of Confidence.

e) Find the Std. error for 
$$\hat{B}_{1}$$
's, where  $j=0/1,2$ :

 $\hat{B}_{1}$ 's Std. error  $\rightarrow$   $Var(\hat{B}_{1}) = \sqrt{Vis'MSE}$ 

S.E.  $Bo = \sqrt{VooMSE} = \sqrt{1.62||(|0.7|2|)} = (4.2059)$ 
 $B_{1} = \sqrt{V_{11}MSE} = \sqrt{0.001688(|0.7|2|)} = (0.1367)$ 
 $B_{2} = \sqrt{VaaMSE} = \sqrt{0.05869(|0.7|2|)} = (0.8003)$ 

Where  $MSE$  is from SAS autout on Sheet 1

f) Test whether is term Contributes to the model, USC t-test with  $\alpha=0.05$ :

 $2 = Bo+B_{1}K_{1}+B_{2}X_{2}$ 

I) Raimi The term  $X_{2}$  Contributes to the model

 $A_{1} = B_{2} = 0 \rightarrow N_{11}|| \cdot \lambda_{2} \cdot \lambda_{2} \cdot \lambda_{3} \cdot \lambda_{4} \cdot \lambda_{4}$ 

4) Find the values of the coessisient of determination, 12, & adjust 12 & interpret their meanings:  $\gamma^2 = \frac{(SSR)}{TSS} = \frac{355.2153057}{431.6} = 0.82302 = (82.30\%)$  $r_{adj}^2 = \frac{MSE}{TSS/n-1} = \begin{vmatrix} -\frac{10.91209857}{76.38403/(6-24)} = \begin{vmatrix} -\frac{10.91209857}{20.91209857} = 0.77245 \end{vmatrix}$ = 0.7725 = (77.25%) (Since r2=82,30% & r2 = 77.25%), we see that r2 & radi have a roughly (5.06%) difference which means the model can use some improment. 195 Too improve the model we could add more variables That Said, the model - though very rough - is Still good enough to Pass for many experimental Purposes. Calculations requiring high precision Shouldn't use this morel. h) Use SAS to verify results, What's the Conclusion about the goodness of the model: We find & Plot the residuals with the following model: , 4=9==== (Bo+B, X, +B2X2) = 4;-(-8.1770184764+0.2721319818x,+4,4343028367) See Graph 4 for more info. the residual plot Checks the assumption of independence (Graph 1) We see in the residual plot all the values are independent Since there's no clear trend. this means the x-values are all independent from each other Thus, the Assumption of independence (Assumption II) is valid. Theck graph I for the SAS output Saying the same as above Check annotations over graph 2.1/22 three to See into on the Assumptions three & four. LB Assumption three NOT violated 45 Assumption four violated But Sixable

| i) use the I) State | the hypothesis                                        |                                          | 0                                                                             |                   |
|---------------------|-------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------|-------------------|
| Ho: B:              |                                                       |                                          |                                                                               |                   |
| Ha: Ba              | <i>±</i> 0                                            |                                          | Market and the second                                                         |                   |
| II) Find            | the Farop using t                                     | the full & reduced mode                  | 1:                                                                            |                   |
| E                   | SSEn-SSE                                              | / dfsser - dfsses                        | $f: g = B_0 + B_1 X_1 + B_2 X_1$                                              | (2+E              |
| drop                | MS                                                    | SEp                                      | f: y=Bo+B, x,+E                                                               |                   |
|                     | _ (411,4396-                                          | 76.38486)/(8-7)                          | $f: y = B_0 + B_1 x_1 + B_2 x_1$<br>$f: y = B_0 + B_1 x_1 + E_2$<br>335.05474 | 100               |
|                     |                                                       | 10.91312                                 | 10.91212                                                                      |                   |
|                     | - 2. 70                                               |                                          | Qu)                                                                           | ÷                 |
| (                   | = 30.70                                               |                                          | 00                                                                            |                   |
| III) Reje           | ction Region!                                         |                                          |                                                                               |                   |
|                     | V                                                     | -(5 60)                                  |                                                                               | 1                 |
|                     | drop > 10,00                                          | 5(1,7) = (5.59)                          |                                                                               |                   |
|                     | ,                                                     |                                          |                                                                               |                   |
|                     |                                                       |                                          | we reject the null .                                                          | hypothes          |
| (ih                 | thus Fdrop > 1<br>le Conclude that                    | Fo.05(1,7) Meaning advertising expenditu | we reject the null re (X2) Contributes                                        | hypothesito the   |
| (*h                 | thus Fdrop > 1<br>le Conclude that                    | Fo.05(1,7) Meaning advertising expenditu | re (X2) Contributes.                                                          | hypothes.         |
| J                   | thus Fora > 1<br>le Conclude that<br>iven model, with | Fo.05(1,7) Meaning advertising expenditu | re (X2) Contributes.                                                          | hypothes. to the  |
| J                   | thus Fora > 1<br>le Conclude that<br>iven model, with | Fo.05(1,7) Meaning advertising expenditu | re (X2) Contributes.                                                          | hypothes. to the  |
| J                   | thus Fora > 1<br>le Conclude that<br>iven model, with | Fo.05(1,7) Meaning advertising expenditu | re (X2) Contributes.                                                          | hypothesis to the |
| J                   | thus Fora > 1<br>le Conclude that<br>iven model, with | Fo.05(1,7) Meaning advertising expenditu | re (X2) Contributes.                                                          | hypothesis to the |
| J                   | thus Fora > 1<br>le Conclude that<br>iven model, with | Fo.05(1,7) Meaning advertising expenditu | re (X2) Contributes.                                                          | hypothesis to the |
| J                   | thus Fora > 1<br>le Conclude that<br>iven model, with | Fo.05(1,7) Meaning advertising expenditu | re (X2) Contributes.                                                          | hypothesis to the |
| J                   | thus Fora > 1<br>le Conclude that<br>iven model, with | Fo.05(1,7) Meaning advertising expenditu | re (X2) Contributes.                                                          | hypothesis to the |
| J                   | thus Fora > 1<br>le Conclude that<br>iven model, with | Fo.05(1,7) Meaning advertising expenditu | re (X2) Contributes.                                                          | hypothesis to the |
| J                   | thus Fora > 1<br>le Conclude that<br>iven model, with | Fo.05(1,7) Meaning advertising expenditu | re (X2) Contributes.                                                          | hypothesis to the |
| J                   | thus Fora > 1<br>le Conclude that<br>iven model, with | Fo.05(1,7) Meaning advertising expenditu | re (X2) Contributes.                                                          | hypothesis to the |
| J                   | thus Fora > 1<br>le Conclude that<br>iven model, with | Fo.05(1,7) Meaning advertising expenditu | re (X2) Contributes.                                                          | hypothesis to the |
| J                   | thus Fora > 1<br>le Conclude that<br>iven model, with | Fo.05(1,7) Meaning advertising expenditu | re (X2) Contributes.                                                          | hypothesis to the |
| J                   | thus Fora > 1<br>le Conclude that<br>iven model, with | Fo.05(1,7) Meaning advertising expenditu | re (X2) Contributes.                                                          | hypothesis to the |

(2) Run SAS to test if the 3 lines are Amillel, wing 0 = 0.05. y=Bo+Bixi+B2X2+B3X3+B4XiX2+B5XiX3+E checks to see if we need these We have 3 drugs:  $PrugA = B_0 + B_1X_1 + E \longrightarrow No X_2 = 0, X_3 = 0$ Drug  $B = B_0 + B_1 X_1 + B_2 + B_4 X_1 X_1 \longrightarrow X_3 = 0$ ,  $X_2 = 1$ Drug  $L = B_0 + B_1 X_1 + B_3 + B_5 X_1 \longrightarrow X_3 = 0$ ,  $X_3 = 1$ Drug B = (B0 + B2) + X1 (B1 + B4) Drug (= B0 + B3 + X1 (B1 + B5) Qaim: We Claim that the 3 lines are parallel I) State the hypothesis! Ho: B4 = B5 = 0 Ha: at least one of B's = 0 Here, we are testing if the lines are Parallel, if they are then to is true, otherwise Ha is true II) Find Fyron = [(SSEr - SSEx)/(dfsser - dfssex)]/MSEx:

Foron MSEx <u> (7.13833 - 0.689)/(8-6) = (6.44933)/2</u> 0.1/483 0.11483 = 3.224665 0.11483 = 28.0821 = **28** III) Find the Rejection Region: F0.05(2/8) = 4.46 < Forop = 28 II) Conclusion: Since forop > 5 we reject to, thus we conclude to 95% Considence that the lines of the three days are not Parallel.

3 Given MSE is an unbiased estimator of on, under what conditions Will MSR be one: under what conditions Can E(MSR) = 52: By the given formula:  $E(MSR) = \sigma^2 + \frac{1}{2} \left[ B_i^2 \sum (X_{i1} - \overline{X})^2 + B_2^2 \sum (X_{i2} - \overline{X})^2 \right]$  $+2\beta_1\beta_2\sum (\chi_{ij}-\overline{\chi}_i)(\chi_{i2}-\overline{\chi}_2)$ We can find the Solution if we let BI=Ba=0: E(MSIR) = 0 2 + 2 10 2 (x x)2 + 60 2 (x x)2 1 2(0)(0) \(\int \text{X}\_1 \) \(\text{X}\_2 \)  $E(MSR) = 5^2 + 0 = 5^2$ thus, E(MSIZ) is an unbiased estimator of or when both B, & Ba are Zero. : B1 = B2 = 0

The REG Procedure Model: MODEL1 Dependent Variable: profits

| Number of Observations Read | 10 |
|-----------------------------|----|
| Number of Observations Used | 10 |

|       | 100       |        | Analy          | sis of         | Variance          |         |            | indicates the null hypothesis is    |
|-------|-----------|--------|----------------|----------------|-------------------|---------|------------|-------------------------------------|
| Sourc | ce        | DI     |                | um of<br>uares | Mean<br>Square    |         | ue Pr>F    | 1100 11 10 11 11 11 11              |
| Mode  | 1         | 2      | 355.           | 21514          | 177.60757         | 16.     | 28 (0.0023 |                                     |
| Error |           | 7      | 76.            | 38486          | 10.91212          | )MSE    |            | See B, B, B2                        |
| Corre | cted Tota | 1 9    | 431.           | 60000          | )+>SSE            |         |            | verify d:<br>see MSE, MSR, SSE, SSR |
|       |           |        |                | 43             | > TSS             |         |            | See MSE, MSR, SSE, SSR              |
|       | Root M    | SE     |                | 3.303          | 35 R-Squa         | re (0.8 | 230 17     | Venide a                            |
|       | Depend    | lent N | lean           | 9.800          | 00 Adj R-S        | q (0.7  | 725 N      | See r2 & r2                         |
|       | Coeff V   | ar     | 4              | 33.707         | 66                |         |            | JEE That A Padj                     |
|       |           | 1      | Bo<br>Param    | neter E        | SE  <br>stimates  | 30 SEI  | 3,         |                                     |
| Var   | riable    | DF     | Param<br>Estin |                | Standard<br>Error | tyalue  | Pr >  t    |                                     |
| Inte  | ercept    | 1      | -8.17          | 7702           | 4.20599           | -1.94   | 0.0930     |                                     |
| inv   | estment   | 1      | 0.29           | 213            | 0.13571           | 2.15    | 0.0684     |                                     |
| ads   | 3         | 1/     | 4.43           | 430            | 0.80024           | (5.54)  | 0.0009     |                                     |

full model

#### The REG Procedure Model: MODEL2 Dependent Variable: profits

| Number of | Observations | Read | 10 |
|-----------|--------------|------|----|
| Number of | Observations | Used | 10 |

|                 |    | Analysis of V     | ariance        |         |        |
|-----------------|----|-------------------|----------------|---------|--------|
| Source          | DF | Sum of<br>Squares | Mean<br>Square | F Value | Pr > F |
| Model           | 1  | 20.16040          | 20.16040       | 0.39    | 0.5487 |
| Error           | 8  | 411.43960         | 51.42995       | MSEr    | ĸ      |
| Corrected Total | 9  | 431.60000         | SEL.           |         |        |

| Root MSE       | 7.17147  | R-Square | 0.0467  |
|----------------|----------|----------|---------|
| Dependent Mean | 9.80000  | Adj R-Sq | -0.0725 |
| Coeff Var      | 73.17824 |          |         |

| Parameter Estimates |    |                       |                   |         |         |  |  |  |  |  |
|---------------------|----|-----------------------|-------------------|---------|---------|--|--|--|--|--|
| Variable            | DF | Parameter<br>Estimate | Standard<br>Error | t Value | Pr >  t |  |  |  |  |  |
| Intercept           | 1  | 12.18938              | 4.43928           | 2.75    | 0.0252  |  |  |  |  |  |
| investment          | 1  | -0.14934              | 0.23852           | -0.63   | 0.5487  |  |  |  |  |  |

Connor, 101041125

Reduced model









The y-values in Graphs 2.1 & 2.2 have no pattern - D Assumption three's not violated



Connor, 101041125

h)

The residual Hist. tests for normality

LD Not normal: violates normality

LD Not normal: violates normality

Can fix this

So, Although the histogram violates assumption four, the experiment can be easily altered so it does not.

Graph 4:

| Profits(Y) | Capital Investment(X1) | Advertising Expenditure(X2) | Predicted Values | Residuals    |
|------------|------------------------|-----------------------------|------------------|--------------|
| 15         | 25                     | 4                           | 16.86349242      | -1.863492415 |
| 16         | 1                      | 5                           | 14.28662769      | 1.713372311  |
| 2          | 6                      | 3                           | 6.878681925      | -4.878681925 |
| 3          | 30                     | 1                           | 5.021243814      | -2.021243814 |
| 12         | 29                     | 2                           | 9.163414669      | 2.836585331  |
| 1          | 20                     | 0                           | -2.33437884      | 3.33437884   |
| 16         | 12                     | 4                           | 13.06577665      | 2.934223348  |
| 18         | 15                     | 5                           | 18.37647543      | -0.376475434 |
| 13         | 6                      | 4                           | 11.31298476      | 1.687015239  |
| 2          | 16                     | 2                           | 5.365698906      | -3.365698906 |
|            |                        |                             |                  |              |

**Sum of Residuals** 

-1.7E-05

The REG Procedure Model: MODEL1 Dependent Variable: profits

|     |                       |                    | Ou                              | tput Statis | tics    |                |          |          |  |
|-----|-----------------------|--------------------|---------------------------------|-------------|---------|----------------|----------|----------|--|
| Obs | Dependent<br>Variable | Predicted<br>Value | Std<br>Error<br>Mean<br>Predict | 95% CI      | L Mean  | 95% CL Predict |          | Residual |  |
| 1   | 15                    | 16.8635            | 2.0907                          | 11.9197     | 21.8072 | 7.6193         | 26.1077  | -1.8635  |  |
| 2   | 16                    | 14.2866            | 1.9929                          | 9.5742      | 18.9990 | 5.1641         | 23.4092  | 1.7134   |  |
| 3   | 2                     | 6.8787             | 1.7126                          | 2.8290      | 10.9284 | -1.9199        | .15.6772 | -4.8787  |  |
| 4   | 3                     | 5.0212             | 1.9216                          | 0.4774      | 9.5650  | -4.0154        | 14.0579  | -2.0212  |  |
| 5   | 12                    | 9.1634             | 1.7851                          | ,4.9423     | 13.3845 | 0.2846         | 18.0422  | 2.8366   |  |
| 6   | 1                     | -2.3344            | 2.3705                          | -7.9397     | 3.2710  | -11.9487       | 7.2799   | 3.3344   |  |
| 7   | 16                    | 13.0658            | 1.2314                          | 10.1541     | 15.9775 | 4.7296         | 21.4020  | 2.9342   |  |
| 8   | 18                    | 18.3765            | 1.8483                          | 14.0060     | 22.7470 | 9.4257         | 27.3272  | -0.3765  |  |
| 9   | 13                    | 11.3130            | 1.5160                          | 7.7282      | 14.8978 | 2.7185         | 19.9075  | 1.6870   |  |
| 10  | 2                     | 5.3657             | 1.3159                          | 2.2541      | 8.4773  | -3.0424        | 13.7738  | -3.3657  |  |

| Sum of Residuals              | 0         |
|-------------------------------|-----------|
| Sum of Squared Residuals      | 76.38486  |
| Predicted Residual SS (PRESS) | 166.56530 |

Connor, 101041125

#### The REG Procedure Model: MODEL1 Dependent Variable: potency

| Number of Observations Read | 12 |
|-----------------------------|----|
| Number of Observations Used | 12 |

|                 | P  | Analysis of \     | /ariance       |               |        |
|-----------------|----|-------------------|----------------|---------------|--------|
| Source          | DF | Sum of<br>Squares | Mean<br>Square | F Value       | Pr > F |
| Model           | 5  | 55.29350          | 11.05870       | MJIR<br>96.30 | <.0001 |
| Error           | 6  | 0.68900           | 0.11483        | MSE           | V.     |
| Corrected Total | 11 | 55,98250          | TSS            |               |        |

|   | indicates null.                  |
|---|----------------------------------|
| N | hupothesis n = 0.03              |
|   | rejected do ANOVA With the ANOVA |
|   | model.                           |

| Root MSE       | 0.33887 | R-Square | 0.9877 €2    |
|----------------|---------|----------|--------------|
| Dependent Mean | 3.97500 | Adj R-Sq | 0.9774) radi |
| Coeff Var      | 8.52505 |          |              |

| Parameter Estimates |    |                       |                   |         |         |  |
|---------------------|----|-----------------------|-------------------|---------|---------|--|
| Variable            | DF | Parameter<br>Estimate | Standard<br>Error | t Value | Pr >  t |  |
| Intercept           | 1  | 7,30722               | 0.21029           | 34.75   | <.0001  |  |
| X1                  | 1  | 3.30377               | 0.21864           | 15.11   | <.0001  |  |
| X2                  | 1  | -2.15481              | 0.29740           | -7.25   | 0.0004  |  |
| хз                  | 1  | -4.34865              | 0.29740           | -14.62  | <.0001  |  |
| interact12          | 1  | -1.50040              | 0.30920           | -4.85   | 0.0028  |  |
| interact13          | 1  | -2.27946              | 0.30920           | -7.37   | 0.0003  |  |
|                     |    |                       |                   |         |         |  |

Connor, 101041125 ods graphics off

The REG Procedure Model: MODEL1 Dependent Variable: potency





Connor, 101041125 ods graphics off

The REG Procedure Model: MODEL2 Dependent Variable: potency

| Number of Observations Read | 12 |
|-----------------------------|----|
| Number of Observations Used | 12 |

|                 | 1  | Analysis of Variance                      |
|-----------------|----|-------------------------------------------|
| Source          | DF | Sum of Mean Squares Square F Value Pr > F |
| Model           | 3  | 48.84417 16.28139 18.25 0.0006            |
| Error           | 8  | 7.13833 0.89229 MSE                       |
| Corrected Total | 11 | 65.98250 TSS'r                            |

| Root MSE       | 0.94461  | R-Square 0.8725 12   |
|----------------|----------|----------------------|
| Dependent Mean | 3.97500  | Adj R-Sq 0.8247 72dj |
| Coeff Var      | 23.76382 |                      |

|           |    | Parameter             | Estimates         |         |         |
|-----------|----|-----------------------|-------------------|---------|---------|
| Variable  | DF | Parameter<br>Estimate | Standard<br>Error | t Value | Pr >  t |
| Intercept | 1  | 6.58940               | 0.51309           | 12.84   | <.0001  |
| X1        | 1  | 2.04382               | 0.35187           | 5.81    | 0.0004  |
| X2        | 1  | -1.30000              | 0.66794           | -1.95   | 0.0875  |
| хз        | 1  | -3.05000              | 0.66794           | -4.57   | 0.0018  |

Connor, 101041125 ods graphics off

The REG Procedure Model: MODEL2 Dependent Variable: potency





Connor, 101041125 ods graphics off

```
Footnote 'Connor, 101041125';
ods graphics off;
Data corporate;
input profits investment ads @@;
Cards;
15 25 4
16 1 5
2 6 3
3 30 1
12 29 2
1 20 0
16 12 4
18 15 5
13 6 4
2 16 2
run;
proc reg;
model profits=investment ads;
model profits=investment;
run;
run;
Proc Reg;
model profits=investment ads/CLM CLI;
run;
Proc Reg;
Model profits=investment ads;
Plot R.*P.;
Plot R.*ads;
Plot R.*investment;
Output out=res R=resids;
run;
Proc Chart data=res;
```

vbar resids;

run;

Footnote:

Name: Connor Raymond Stewart Student Number: 101041125 File: SAS Code for Question 1

```
Footnote:
Footnote 'Connor, 101041125'
                                  Name: Connor Raymond Stewart
ods graphics off;
Data drug;
                                  Student Number: 101041125
input dose X2 X3 potency;
                                  File: SAS Code for Question 2
X1=log(dose);
interact12=X1*X2;
interact13=X1*X3;
Cards;
0.2 0 0 2.0
0.4 0 0 4.3
0.8 0 0 6.5
1.6 0 0 8.9
0.2 1 0 1.8
0.4 1 0 4.1
0.8 1 0 4.9
1.6 1 0 5.7
0.2 0 1 1.3
0.4 0 1 2.0
0.8 0 1 2.8
1.6 0 1 3.4
run;
proc reg;
model potency=X1 X2 X3 interact12 interact13;
model potency=X1 X2 X3;
```

run;