Глава III ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ

§ 9. Электростатика

Если в условии задачи не указано, в какой среде находятся заряды, то будем считать, что они находятся в воздухе, относительная диэлектрическая проницаемость которого $\varepsilon = 1$. Для некоторых других диэлектриков значение относительной диэлектрической проницаемости приведено в таблице 14 приложения. Если в задаче приведена графическая зависимость нескольких величин от какой-либо одной и при этом все кривые изображены на одном графике, то по оси y задаются условные единицы. В задачах 9.32, 9.122, 9.123 дан авторский вариант решения.

9.1. Найти силу F притяжения между ядром атома водорода и электроном. Радиус атома водорода $r = 0.5 \cdot 10^{-10}$ м; заряд ядра равен по модулю и противоположен по знаку заряду электрона.

Решение:

По закону Кулона сила электростатического взаимодействия между двумя заряженными телами, размеры которых малы по сравнению с расстоянием r между ними, опреде-

Условия задач приводятся в учебных целях и в необходимом объеме — как иллюстрационный материал. Имя автора и название цитируемого издания указаны на титульном листе данной жниги. (Ст. 19 п.2 Закона РФ об авторском праве и смежных правах от 9 июня 1993г.)

ляется формулой $F=\frac{q_1q_2}{4\pi\varepsilon_0\kappa r^2}$, где q_1 и q_2 — электрические заряды тел. ε — относительная диолектрическая проницаемость среды, $\varepsilon_0\approx 8.85\cdot 10^{-12}\, \Phi/\mathrm{M}$ — электрическая постоянная. В условиях данной задачи $q_1=|q_2|=1.6\cdot 10^{-19}\,\mathrm{Kr}$. Подставив числовые значения, получим $F=92.3\cdot 10^{-9}\,\mathrm{H}$.

9.2. Два точечных заряда, находясь в воздухе ($\varepsilon = 1$) на расстоянии $r_1 = 20$ см друг от друга, взаимодействуют с некоторой силой. На каком расстоянии r_2 нужно поместить эти заряды в масле, чтобы получить ту же силу взаимодействия?

Решение:

Согласно закону Кулона два точечных заряда в воздухе взаимодействуют с силой $F = \frac{q_1 q_2}{4\pi \varepsilon_0 \varepsilon_1 r_1^2}$ — (1), а в масле с

такой же силой $F = \frac{q_1 q_2}{4\pi \varepsilon_0 \varepsilon_2 r_2^2}$ — (2). Приравняв правые

части уравнений (1) и (2), найдем $r_2 = \sqrt{\frac{\varepsilon_1}{\varepsilon_2}} r_1$. Диэлектрическая проницаемость воздуха $\varepsilon_1 = 1$. диэлектрическая проницаемость масла (таблица 14) $\varepsilon_2 = 5$. Подставив числовые значения, получим $r_2 = 8.94$ см.

9.3. Построить график зависимости силы F взаимодействия между двумя точечными зарядами от расстояния r между пими в интервале $2 \le r \le 10$ см через каждые 2см. Заряды $|q_1| = 20$ иКл и $|q_2| = 30$ иКл.

По закону Кулона $F = \frac{q_1 q_2}{4\pi \varepsilon_0 \omega^2}$. Подставив числовые зна-

чения, получим $F = \frac{5.4 \cdot 10^{-6}}{r^2}$. Характер зависимости F от r отражен на графике.

<i>r</i> , cm	2	4	6	8	10
F, 10 ⁻⁷ ⋅Kл	13,500	3,375	1,500	0,844	0,540

9.4. Во сколько раз сила гравитационного притяжения между двумя протонами меньше силы их электростатического отталкивания? Заряд протона равен по модулю и противоположен по знаку заряду электрона.

Решение:

Сила гравитационного притяжения $F_{\rm r} = G \frac{m^2}{r^2}$. Сила

электростатического отталкивания $F_3 = \frac{q^2}{2\pi\epsilon_0\sigma^2}$. Тогда

$$\frac{F_{\gamma}}{F_{\rm r}} = \frac{q^2}{4\pi\varepsilon_0\varepsilon\,Gm^2} = 1.24 \cdot 10^{36} \ .$$

9.5. Найти силу F электростатического отталкивания между ядром атома натрия и бомбардирующим его протоном, считая, что протон подошел к ядру атома натрия на расстояние $r = 6 \cdot 10^{-14}$ м. Заряд ядра натрия в 11 раз больше заряда протона. Влиянием электронной оболочки атома натрия пренебречь.

Решение:

По закону Кулона
$$F = \frac{q_1 q_2}{4\pi \varepsilon_0 r^2}$$
; $F = 0.7$ H.

9.6. Два металлических одинаково заряженных шарика массой m=0,2 кг каждый находятся на некотором расстоянии друг от друга. Найти заряд q шариков, если известно, что на этом расстоянии энергия $W_{\rm 30}$ их электростатического взаимодействия в миллион раз больше энергии $W_{\rm 1p}$ их гравитационного взаимодействия.

Решение:

Энергия электростатического взаимодействия шариков $W_{\rm 3D}=\frac{q}{4\pi\varepsilon\varepsilon_0 r}$, энергия их гравитационного взаимодействия $W_{\rm TP}=\frac{Gm_1m_2}{r}$. По условию $W_{\rm 3D}=nW_{\rm TP}$, т. е. $\frac{q^2}{4\pi\varepsilon\varepsilon_0 r}=\frac{nGm_1m_2}{r}$, где $n=10^6$; отсюда $q=\sqrt{n\varepsilon\varepsilon_04\pi Gm_1m_2}=17\,{\rm HKD}$.

9.7. Во сколько раз энергия W_{23} электростатического взаимодействия двух частиц с зарядом q и массой m каждая больше энергии W_{rp} их гравитационного взаимодействия? Задачу решить для: а) электронов; б) протонов.

Энергия электростатического взаимодействия двух частиц $W_{\rm rp} = k \frac{q^2}{r}$; энергия их гравитационного взаимодействия $W_{\rm rp} = \gamma \frac{m^2}{r}$, где r — расстояние между частицами. Тогда для электронов $W_{\rm sn}/W_{\rm rp} = 4\cdot 10^{42}$. Для протонов $W_{\rm sn}/W_{\rm rp} = 1,24\cdot 10^{36}$.

9.8. Построить график зависимости энергии W_{23} электростатического взаимодействия двух точечных зарядов от расстояния между ними в интервале $2 \le r \le 10$ см через каждые 2 см. Заряды $q_1 = 1$ нКл и $q_2 = 3$ нКл. График построить для: а) одноименных зарядов; б) разноименных зарядов.

Решение:

Энергия электростатического взаимодействия двух точечных зарядов $W = \frac{q_1 q_2}{4\pi \varepsilon_0 \varepsilon \cdot r}$. Подставив числовые значения,

получим
$$W_1 = \frac{27 \cdot 10^{-3}}{r}$$
 — для одноименных зарядов.

 $W_2 = -\frac{27 \cdot 10^{-3}}{r}$ — для разноименных зарядов. Характер зависимости W от r дан на графике.

<i>r</i> , м	0.02	0,04	0,06	0,08	0,10
W_l , Дж	1,35	0,68	0,45	0,34	0,27
₩2, Дж	-1,35	-0,68	-0,45	-0,34	-0,27

9.9. Найти напряженность E электрического поля в точке, лежащей посередине между точечными зарядами $q_1 = 8$ нКл и $q_2 = -6$ нКл. Расстояние между зарядами r = 10 см; $\varepsilon = 1$.

Решение:

Согласно принципу суперпо q_1 \vec{E}_1 \vec{E}_2 q_2 зиции $\vec{E} = \vec{E}_1 + \vec{E}_2$ или в проекции на ось $x = E_1 + E_2$. Напряженность электрического поля точечного заряда

$$E = \frac{q}{4\pi\varepsilon_0 r^2}$$
, где r — расстояние от заряда до точки, в

которой определяется напряженность. $\bar{E}_1 = \frac{q_1}{4\pi\varepsilon_0 r^2/4} =$

$$=rac{q_1}{\pi arepsilon_0 r^2}$$
; $E_2=rac{\left|q_2
ight|}{\pi arepsilon_0 r^2}$. Суммарная напряженность $E=rac{q_1+\left|q_2
ight|}{\pi arepsilon_0 r^2}=50.4~{
m kB/m}$.

9.10. В центр квадрата, в каждой вершине которого находится заряд q = 2,33 нКл, помещен отрицательный заряд q_0 . Найти этот заряд, если на каждый заряд q действует результирующая сила F=0.

Рассмотрим силы, действующие на любой из зарядов в вершинах, например, на заряд q_2 . Со стороны зарядов $q_1,\ q_3,\ q_4$ на него действуют силы $\vec{F}_1,\ \vec{F}_3$ и \vec{F}_4 соответственно, причем $F_1=F_3=\frac{kq^2}{a^2}$, где $k=\frac{1}{4\pi\varepsilon_0}$; $F_4=k\frac{q^2}{2a^2}$.

Сила, действующая на заряд q,

со стороны заряда q_0 , равна $F_0=\frac{2kq|q_0|}{a^2}$. Условие равновесия заряда q_2 : $\vec{F_1}+\vec{F_3}+\vec{F_4}+\vec{F_0}=0$ — (1). В проекции на ось x (1) имеет вид: $F_1\cos 45^\circ+F_3\cos 45^\circ+F_4-F_0=0$, или $k\frac{q^2}{a^2}\sqrt{2}+k\frac{2q|q_0|}{a^2}=0$. Отсюда находим $|q_0|=\frac{q}{4}\Big(1+2\sqrt{2}\Big)=0.95q$; $q_0=-2.23$ нКл.

9.11. В вершинах правильного шестиугольника расположены три положительных и три отрицательных заряда. Найти напряженность E электрического поля в центре шестиугольника при различных комбинациях в расположении этих зарядов. Каждый заряд q = 1,5 нКл; сторона шестиугольника a = 3 см.

Решение:

Напряженность поля электрического заряда $E = \frac{q}{4\pi\varepsilon_0\varepsilon r^2}$. Найдем напряженность поля E_0 одного заряда. $E_0 = |q|/4\pi\varepsilon_0 a^2$ (очевидно, что расстояние от зарядов до центра шестиугольника равно стороне треугольника a),

 $E_0 = 15 \, \mathrm{kB/m}$. Согласно принципу суперпозиции результирующая напряженность \vec{E} находится по правилу векторного сложения $\vec{E} = \sum_{n=1}^6 \vec{E}_n$, причем $E_1 = E_2 = \ldots = E_6 = E_0$.

Рассмотрим три варианта расположения зарядов:

а) В проекции на ось x: $E=2E_0\cos 60^\circ+2E_0+2E_0\cos 60^\circ;$ $E=4E_0;\;E=60\,\mathrm{kB/m}.$

б) В проекции на ось x: $E = -2E_0 \cos 60^\circ - 2E_0 + 2E_0 \cos 60^\circ;$ E = 0.

в) В проекции на ось x: $E = 2E_0$; E = 30 кВ/м.

9.12. Решить предыдущую задачу при условии, что все шесть зарядов, расположенных в вершинах шестиугольника, положительны.

На рисунке мы видим три пары противоположно направленных и равных по модулю векторов. Каждая такая пара в сумме дает напряженность равную нулю. Таким образом, результирующая напряженность \vec{E} в центре шестиугольника равна нулю.

9.13. Два точечных заряда $q_1 = 7.5$ нКл и $q_2 = -14.7$ нКл расположены на расстоянии r = 5 см. Найти напряженность E электрического поля в точке, находящейся на расстояниях a = 3 см от положительного заряда и b = 4 см от отрицательного заряда.

Решение:

Стороны треугольника BCA a, b и r удовлетворяют условию $r^2 = a^2 + b^2$, следовательно, треугольник прямоугольный, угол $\alpha = 90^\circ$. Согласно принципу суперпозиции результирующая напряженность в точке C: $\vec{E} = \vec{E}_1 + \vec{E}_2$, где \vec{E}_1 — на-

пряженность, создаваемая положительным зарядом q_1 , \vec{E}_2 — напряженность, создаваемая отрицательным зарядом q_2 . По правилу сложения двух взаимноперпендикулярных векторов в скалярном виде $E = \sqrt{E_1^2 + E_2^2}$. По-

скольку
$$E_1 = \frac{\left|q_2\right|}{4\pi\varepsilon_0\varepsilon a^2}$$
, a $E_2 = \frac{\left|q_2\right|}{4\pi\varepsilon_0\varepsilon b^2}$, то $E = \frac{1}{4\pi\varepsilon_0\varepsilon} \times$

$$\times \sqrt{\frac{q_1^2}{a^4} + \frac{q_2^2}{b^4}} = 112 \text{ kB/m}.$$

нитях одинаковои длины так, что их поверхности соприкасаются. После сообщения шарикам заряда $q_0 = 0.4$ мкКл они оттолкнулись друг от друга и разошлись на угол $2\alpha = 60^\circ$. Найти массу m каждого шарика, если расстояние от центра шарика до точки подвеса l = 20 см.

Решение:

На каждый шарик действуют три силы (см. рисунок к задаче 9.15): сила тяжести $m\vec{g}$, сила натяжения нити \vec{T} и сила электростатического отталкивания \vec{F} . Запишем условие равновесия шариков в векторной форме $\vec{F} + \vec{T} + m\vec{g} = 0$ или в проекциях на ось x: $F - T \sin \alpha = 0$ — (1), на ось y: $T \cos \alpha - mg = 0$ — (2). Из (1) найдем $T = \frac{F}{\sin \alpha}$, из (2) найдем $T = \frac{mg}{\cos \alpha}$. Следовательно, $\frac{F}{\sin \alpha} = \frac{mg}{\cos \alpha}$, откуда $mg \cdot tg\alpha = F$ — (3). Из рисунка видно, что $r/2 = l \sin \alpha$ — (4). Поскольку $F = \frac{q^2}{4\pi\varepsilon\varepsilon_0 r^2}$, то, с учетом (3) и (4), имеем $mg \cdot tg\alpha = \frac{q^2}{16\pi\varepsilon\varepsilon_0 l^2 \sin^2 \alpha}$, где $q = \frac{q_0}{2}$ — заряд на каждом шарике. Отсюда $m = \frac{q^2}{4\pi\varepsilon\varepsilon_0 4 l^2 \sin^2 \alpha \cdot t\sigma\alpha} = 15.6 \, \text{г}$.

9.15. Два шарика одинаковых радиуса и массы подвешены на нитях одинаковой длины так, что их поверхности соприкасаются. Какой заряд q нужно сообщить шарикам, чтобы сила натяжения нитей стала равной $T=98\,\mathrm{mH}$? Расстояние от центра шарика до точки подвеса $l=10\,\mathrm{cm}$; масса каждого шарика $m=5\,\mathrm{G}$.

После сообщения шарикам заряда q каждый из них отклонился от вертикали на угол α и остановился в положении равновесия. Поскольку условия равновесия для обоих шариков одинаковы, рассмотрим один из них. По закону сохранения заряда заряд q распределится на два шарика равномерио. Тогда каж-

дый шарик получит заряд $q_0 = \frac{q}{2}$. На шарик действуют три

силы: сила Кулона \vec{F} , сила натяжения нити \vec{T} и сила тяжести $m\vec{g}$. Условие равновесия шарика $\vec{F}+\vec{T}+m\vec{g}=0$ или в проекциях на ось x: $F-T\sin\alpha=0$ — (1), на ось y: $T\cos\alpha-mg=0$ — (2). Расстояние между шариками равно $2l\sin\alpha$. Кулоновская сила определяется формулой $F=\frac{1}{4\pi\varepsilon}\frac{q_0^2}{\epsilon^2 l^2 \sin^2\alpha}$ — (3). Выразим величину $\sin\alpha$. Из (2)

$$\cos \alpha = \frac{mg}{T}$$
 или $1 - \sin^2 \alpha = \left(\frac{mg}{T}\right)^2$, отсюда $\sin \alpha = \left(\frac{mg}{T}\right)^2$

 $=\sqrt{1-\left(\frac{mg}{T}\right)^2}$ — (4). Из (1) найдем $F=T\sin\alpha$ — (5). При-

равняв правые части уравнений (5) и (3) и разделив полученное выражение на $sin \alpha$, получни $T = \frac{1}{4\pi \varepsilon_* \varepsilon} \frac{q_0^2}{4l^2 sin^3 \alpha}$.

Подставив в это выражение уравнение (4), выразим

$$q_0 = 4I\sqrt{\pi T \varepsilon_0 \varepsilon \left(1 - \left(\frac{mg}{T}\right)^{\frac{3}{2}}\right)} = 5.32 \cdot 10^{-7} \, \text{Kл.}$$
 Тогда заряд,

сообщенный обоим шарикам, $q = 2q_c \approx 1.1 \cdot 10^{-6} \text{ K}л.$

9.16. Найти плотность материала ρ шариков задачи 9.14, если известно, что при погружении этих шариков в керосин угол расхождения нитей стал равным $2\alpha_s = 54^\circ$.

Решение:

Для шарика, находящегося в воздухе (см. рисунок к задаче 9.15), имеем (см. задачу 9.14) $mg = \frac{q^2}{4\pi \epsilon \epsilon_0 \cdot 4l^2 \sin^2 \alpha \cdot t \sigma \alpha}$ — (1), где диэлектрическая проницаемость воздуха $\varepsilon = 1$. При погружении шариков в керосин на каждый щарик стала действовать выталкивающая сила Архимеда $F_{\rm A}$. Для шарика, находящегося в керосине, имеем $mg - F_{A} =$ $= \frac{q^2}{4\pi\varepsilon_0\varepsilon_\kappa \cdot 4l^2\sin^2\alpha_{\star}tg\alpha_{\star}} - (2). \text{ T. K. } mg - F_{\Lambda} = \rho Vg -\rho_{\kappa}Vg = (\rho - \rho_{\kappa})Vg$ — (3), где ρ — плотность материала щарика, $\rho_{\kappa} = 0.8 \cdot 10^3 \, \text{кг/м}^3$ — плотность керосина, $\varepsilon_{\kappa}=2$ — диэлектрическая проницаемость керосина, V — объем шарика, то из (1) — (3) имеем $\frac{mg - F_A}{mg}$ = $=\frac{\rho-\rho_{\kappa}}{\rho}=\frac{\varepsilon\sin^{2}\alpha tg\alpha}{\varepsilon_{\kappa}\sin^{2}\alpha_{\kappa}tg\alpha_{\kappa}},$ откуда плотность материала данные, получим $\rho = 2.55 \cdot 10^3 \,\text{кг/м}^3$.

9.17. Два заряженных шарика одинаковых радиуса и массы подвешены на нитях одинаковой длины и опущены в жидкий диэлектрик, плотность которого равна ρ и диэлектрическая проницаемость равна ε . Какова должна быть плотность ρ_0

материала шариков, чтобы углы расхождения нитей в воздухе и в диэлектрике были одинаковыми?

Решение:

Воспользуемся итоговой формулой, полученной в предыдущей задаче, учитывая, что α_{κ} и α равны. Применительно к данной задаче получим плотность диэлектрика

$$\rho_0 = \rho \frac{\varepsilon \sin^2 \alpha \cdot tg\alpha}{\varepsilon \sin^2 \alpha \cdot tg\alpha - \sin^2 \alpha tg\alpha} \text{ или } \rho_0 = \frac{\rho \varepsilon}{\varepsilon - 1}.$$

9.18. На рисунке AA — заряженная бесконечная плоскость с поверхностной плотпостью заряда $\sigma = 40 \,\mathrm{mkKn/m^2}$ и B — одноименно заряженный шарик с массой $m = 1 \,\mathrm{r}$ и зарядом $q = 1 \,\mathrm{rKn}$. Какой угол α с плоскостью AA образует нить, на которой висит шарик?

Решение:

Заряженный щарик находится в электрическом поле плоскости AA. Напря-

женность поля $E=rac{\sigma}{2arepsilon_0arepsilon}$. На шарик дей-

ствуют три силы: электростатическая сила \vec{F} \vec{x} \vec{F} , сила натяжения нити \vec{T} и сила тяжести $m\vec{g}$. Условие равновесия шарика $\vec{F} + \vec{T} + m\vec{g} = 0$ или в проекциях на ось x:

$$F - T \sin \alpha = 0$$
 — (1), Ha och y: $T \cos \alpha - mg = 0$ — (2).

Электростатическая сила
$$F=Eq=rac{q\,\sigma}{2arepsilon_{_0}arepsilon}$$
 — (3). Из (2) най-

дем $T = \frac{mg}{\cos \alpha}$. Подставляя это выражение в (1), получим

 $F = mgtg\alpha$ — (4). Приравнивая правые части (3) и (4), найдем $\frac{q\sigma}{2\varepsilon_0\varepsilon}=mgtg\alpha$, откуда $tg\alpha=\frac{q\sigma}{2\varepsilon_0\varepsilon mg}$; $tg\alpha=0.23$; $\alpha = 13^{\circ}$.

9.19. На рисунке АА — заряженная бесконечная плоскость и B — одноименно заряженный шарик с массой m = 0.4 мг и зарядом q = 667 пКл. Сила натяжения нити, на которой висит шарик, $T = 0.49 \,\mathrm{mH}$. Найти поверхностную плотность заряда σ на плоскости АА.

Решение:

Плоскость и шарик заряжены одноименно, поэтому на шарик действует электростатическая сила отталкивания $ec{F}$. Кроме того, на шарик действует сила тяжести $m\vec{g}$ и сила натяжения нити \vec{T} . Нить отклоняется от вертикали до тех пор, пока все силы, действующие на шарик, не уравновесят друг друга. Запишем условие равновесия $\vec{F} + m\vec{g} + \vec{T} = 0$, По теореме Пифагора из прямоугольного треугольника имеем $F = \sqrt{T^2 - (mg)^2}$. Напряженность поля бесконечной заряженной плоскости $E = \frac{\sigma}{2\varepsilon \, \varepsilon}$, с другой стороны,

 $ec{E}=rac{ec{F}}{q}$ или $E=rac{F}{q}$. Тогда $rac{\sigma}{2arepsilon_0 arepsilon}=rac{F}{q}$ или $rac{\sigma}{2arepsilon_0 arepsilon}=rac{\sqrt{T^2-ig(mg)^2}}{q}$. Отсюда поверхност-

$$= 7.8 \cdot 10^{-6} \text{ Km/m}^2$$
.

9.20. Найти силу F, действующую на заряд q=2 СГС $_q$, если заряд помещен: а) на расстоянии r=2 см от заряженной нити с линейной плотностью заряда $\tau=0.2$ мкКл/м; б) в поле заряженной плоскости с поверхностной плотностью заряда $\sigma=20$ мкКл/м²; в) на расстоянии r=2 см от поверхности заряженного шара с радиусом R=2 см и поверхностной плотностью заряда $\sigma=20$ мкКл/м². Диэлектрическая проницаемость среды $\varepsilon=6$.

Решение:

Переведем единицы измерения заряда в СИ: $q = 2 \text{СГС}_q \approx 2 \cdot 3,336 \cdot 10^{-10} \, \text{Кл. a})$ Напряженность электрического поля заряженной нити $E = \frac{\tau}{2\pi\varepsilon\varepsilon_0 r}$, следовательно, на заряд q действует электростатическая сила $F = Eq = \frac{\tau q}{2\pi\varepsilon\varepsilon_0 r}$;

 $2\pi \varepsilon \varepsilon_0 r$. F=20,1 мкН. б) Аналогично для заряженной плоскости $F=\frac{\sigma\,q}{2\varepsilon\varepsilon_0}=126$ мкН. в) Напряженность электрического

поля заряженного шара $E = \frac{q_{\rm in}}{4\pi\varepsilon\varepsilon_0 r^2}$, где заряд шара

 $q = \sigma S = \sigma 4\pi R^2$. Тогда $E = \frac{\sigma R^2}{\varepsilon \varepsilon_0 r^2}$, а сила, действующая на

заряд, $F = \frac{q \sigma R^2}{\varepsilon \varepsilon_0 (r+R)^2} = 63 \text{ мкH}.$

9.21. Построить на одном графике кривые зависимости напряженности E электрического поля от расстояния r в интервале $1 \le r \le 5$ см через каждый 1см, если поле образовано: а) точечным зарядом q=33,3 нКл; б) бесконечно длинной за-

ряженной нитью с линейной плотностью заряда $\tau = 1,67$ мкКл/м; в) бесконечно протяженной плоскостью с поверхностной плотностью заряда $\sigma = 25$ мкКл/м².

Решение:

а) Напряженность электрического ноля точечного заряда $E=q/4\pi\varepsilon\varepsilon_0 r^2$. Подставляя числовые данные, получим $E=\frac{300}{r^2}\,\mathrm{B/m}$. б) Для нити $E=\frac{r}{2\pi\varepsilon\varepsilon_0 r}=\frac{30\cdot 10^3}{r}\,\mathrm{B/m}$. в) Для

плоскости $E=\frac{\sigma}{2\varepsilon\varepsilon_0}=1.4\cdot 10^6\,{\rm B/m}.$ Зависимость E от r приведена на графике.

γ, м	0,1	_ 0,2	0.3	0,4	0.5
Е. кВ м — точ. заряда	30,0	7.5	3,3	1,9	1.2
<i>E</i> , кВ/м — инти	300	150	100	75	60
Е, кВ'м — плоскости	1400	1400	1400	1400	1400

9.22. Найти напряженность E электрического поля на расстоянии r=0.2 им от одновалентного пона. Заряд нона считать точечным.

Одновалентный иои создает электрическое поле с напряженностью $E = \frac{|q|}{4\pi\varepsilon\varepsilon_0 r^2}$. Заряд одновалентного пона равен по абсолютной величине заряду электрона. Подставив числовые данные, получим $E = 36 \, \Gamma \text{B/M}$.

9.23. С какой силой F_i электрическое поле заряженной бесконечной плоскости действует на единицу длины заряженной бескопечно длинной нити, помещенной в это поле? Линейная плотность заряда на нити $\tau = 3 \text{ мкКи/м}$ и поверхностная плотность заряда на плоскости $\sigma = 20 \text{ мкКл/м}^2$.

Решение:

Напряженность поля бесконечной заряженной нити $E = \frac{\sigma}{2\varepsilon_{\wedge}\varepsilon}$. С другой стороны, $E = \frac{F}{q}$, где $\frac{\sigma}{2\varepsilon_{0}\varepsilon} = \frac{F}{\tau \cdot l}$. Отсюда сила, действующая на единицу длины нити, $F_I = \frac{F}{I} = \frac{\sigma \tau}{2 \text{ s. s.}} = 3.4 \text{ H/m}.$

9.24. С какой силой F_i на единицу длины отталкиваются две одноименно заряженные бесконечно длинные нити с одинаковой линейной плотностью заряда r = 3 мкКи/м, находящиеся на расстоянии $r_i = 2$ см друг от друга? Какую работу A_i на единицу длины надо совершить, чтобы сдвинуть эти нити до расстояния $r_2 = 1 \text{ cm}?$

Решение:

Напряженность поля бескопечной заряженной нити $E = \frac{\tau}{2\pi\varepsilon_0\varepsilon_1}$ — (1). С другой A

стороны, $\vec{E} = \frac{\vec{F}}{q}$ — (2), где \vec{F} — сила электростатического отталкивания; $q = \tau l$. Приравнивая правые части уравнений (1) и (2), получим $\frac{\tau}{2\pi\varepsilon_0\varepsilon r_1} = \frac{F}{\tau l}$. Тогда сила, приходящаяся на единицу длины нити, $F_l = \frac{F}{l} = \frac{\tau^2}{2\pi\varepsilon_0\varepsilon r_1} = 8,1\,\mathrm{H/m}$. Для уменьшения расстояния

между нитями нужно совершить работу A против сил поля A = -A', где A' — работа сил электростатического поля нити AA при перемещении пити BB из точки 1 в точку 2 (нить AA при этом остается неподвижна). Т. к. электростатическая сила изменяется с расстоянием, то

$$A = -A' = -\int\limits_{r_1}^{r_2} F(r) dr$$
. Работа, приходящаяся на единицу

длины,
$$A_l = -\int_{r_1}^{r_2} F_l(r) dr$$
; $A_l = -\int_{r_1}^{r_2} \frac{\tau^2 dr}{2\pi \varepsilon_0 \varepsilon r} = -\frac{\tau^2}{2\pi \varepsilon_0 \varepsilon} \times$

$$\times ln \frac{r_2}{r_1} = 0,112 \, \text{Дж/м}.$$

9.25. Две длинные одноименно заряженные нити расположены на расстоянии r=10 см друг от друга. Линейная плотность заряда на нитях $\tau_1=\tau_2=10$ мкКл/м. Найти модуль и направление напряженности \overrightarrow{E} результирующего электрического поля в точке, находящейся на расстоянин a=10 см от каждой нити.

Решение:

Пусть $au_1= au_2= au$, следовательно напряженность поля каждой нити в точке $C:E_1=E_2=rac{ au}{2\piarepsilon_0arepsilon}$. Тогда согласно принципу

суперпозиции результирующая напряженность поля $\vec{E} = \vec{E}_1 + \vec{E}_2$, T. к. по условию r = a, то треугольник АВС — равносторонний, $\angle ACB = 60^{\circ}$. Прямая, которой лежит вектор \vec{E} . перпендикулярна плоскости, прочерез обе нити. По ходящей теореме синусов $\frac{E}{\sin \alpha} = \frac{E_1}{\sin \beta}$, где $\frac{E_1}{A}$ Нить $\frac{E_2}{A}$ Нить $\alpha = 120^{\circ}$, $\beta = 30^{\circ}$, T. e. $E = \sqrt{3}E_{t}$; $E = \frac{\sqrt{3\tau}}{2\pi \epsilon_{-} E_{cl}} = 3.12 \text{ MB/m}.$

9.26. С какой силой F_{κ} на единицу площади отталкиваются две одноименно заряженные бесконечно протяженные плоскости? Поверхностная плотность заряда на $\sigma = 0.3 \text{ MK}_{\text{J}}/\text{M}^2$.

Решение:

Напряженность поля бесконечной заряженной плоскости $E = \frac{\sigma}{2\varepsilon \cdot \varepsilon}$. С другой стороны, $E = \frac{F}{a}$, где $q = \tau S$. При-

равняем $\frac{\sigma}{2\varepsilon_0\varepsilon} = \frac{F}{\tau \cdot S}$, отсюда сила, действующая на едини-

цу площади плоскости, $F_S = \frac{F}{S} = \frac{\sigma^2}{2c.s} = 5.1 \text{ H/м}.$

9.27. Медный шар радиусом R = 0.5 см помещен в масло. Плотность масла $\rho_{\rm M} = 0.8 \cdot 10^3 \, {\rm кг/m}^3$. Найти заряд q шара, если в однородном электрическом поле шар оказался взвешенным в масле. Электрическое поле направлено вертикально вверх и его напряженность E = 3.6 MB/m.

Решение:

На шар действуют три силы: электростатическая сила \vec{F} (вверх), сила тяжести $m\vec{g}$ (вниз) и сила Архимеда \vec{F}_A (вверх). Запишем уравнение равновесия: $m\vec{g}+\vec{F}+\vec{F}_A=0$ или в скалярном виде $mg=F+F_A$ — (1). Здесь $mg=\frac{4\pi R^3 g \rho}{3}$, F=Eq, $F_A=\frac{4\pi R^3 g \rho_M}{3}$ — (2), где ρ и ρ_M — соответственно плотности меди и масла. Из (1) и (2) имеем $q=\frac{4\pi R^3 g (\rho-\rho_M)}{3E}=11$ нКл.

9.28. В плоском горизонтально расположенном конденсаторе заряженная капелька ртути находится в равновесии при напряженности электрического поля $E=60~\mathrm{kB/m}$. Заряд капли $q=2.4\cdot10^{-9}~\mathrm{CFC}_q$. Найти радиус R капли.

Решение:

На капельку ртути в конденсаторе действует электростатичская сила \vec{F} (вверх) и сила тяжести $m\vec{g}$ (вниз), которые уравновешивают друг друга, т. е. $\vec{F}+m\vec{g}=0$ или F=mg. Масса капли $m=\rho V=\frac{3}{4}\pi r^3 \rho$. Сила $\vec{F}=\vec{E}q$. Тогда $Eq=\rho\frac{4}{3}\pi r^3 g$, откуда $r=\sqrt[3]{\frac{3Eq}{4\rho\pi g}}=0,44$ мкм.