Corresponding Manuscript: Conditional Operation of Hole Spin Qubits above 1 K — [Notebook: F3-b_CROT_SIM_f1-ctrl_f3-targ_J38.7MHZ_v160925_v1.nb]

Uploaded/curated in current form by (blame): M.J. Carballido | ORCID: https://orcid.org/0000-0001-7385-8284

Date: Oct. 4th, 2025

Project mirror: https://github.com/carmig00/Publications-OpenAccess-Code-Conditional2Q **License:** CC BY-NC-SA 4.0 International – https://creativecommons.org/licenses/by-nc-sa/4.0/

How to run: Evaluate top-to-bottom (Evaluation \rightarrow Evaluate Notebook).

Outputs: HDF5 (.h5) written to ./exports. Human readable output available as PDF.

Figure mapping: This notebook reproduces the simulation of the conditional rotations shown in figure 3b of the main text. Here, f1 is applied as the control and f3 as the target frequency.

Comment/Note:

- -The fast qubit (high f_Rabi), at lower Larmor frequency, is the one located physically on the right and is represented by pink/purple color tones, here qubit 1.
- The slow qubit (low f_Rabi), at higher Larmor frequency, is the one located physically on the left and is represented by orange/yellow color tones, here qubit 2.

```
(* Parameters*)
(* f_Rabi,MHz *)
(* We assume this to be the bare Rabi frequency of the two ideally isolated
 spin qubits. Sometimes also referred to as bare Rabi frequency, for J=0 ∗)
fR1t = 24;
fR2t = 13;
(*Units in MHz *)
(* Effective exchnage interaction J, MHz*)
Jval = 38.7;
(*Larmor frequencies, 2*Pi*MHz*)
\omegaz1 = 2 Pi 2075;
\omegaz2 = 2 Pi 2270;
(* Empirical frequency choices for f1-f4, see supplementary information. *)
(* 2*Pi*MHz *)
\omegaxexp1 = 2 Pi 2057;
\omega x = 2 Pi 2094;
\omegaxexp3 = 2 Pi 2257;
\omega x = 2 Pi 2284;
(*NOTE: Block below not used, just for testing.*)
resTg = 100;
(*initial time*)
```

```
Tg0 = 0;
(*final time, 66.6ns*)
Tgf = 3 * 1 / 30;
Tgarr = Table [t, {t, Tg0, Tgf, \frac{\text{Tgf} - \text{Tg0}}{\text{resTg} - 1}}];
(* Theta is the SO-angle. In an accurate and complete microscopic description,
his accounts for the angle by which the spin is rotated due to SOI,
i.e. the angle in the rotation matrix R. To avoid over-
 fitting this angle is set to 0 as we consider an effective J,
J_eff between the two qubits *)
\thetaso = 0;
(* Phases of the drives. *)
\varphi1 = 0;
\varphi 2 = 0;
(* Populations:
 These are the states that are blocked in PSB and which we initialize in. *)
\psi0a = {1, 0, 0, 0};
\psi0b = {0, 0, 0, 1};
(* SO-vector *)
\{nx, ny, nz\} = \{1, 0, 0\};
(* Effective exchange interaction*)
(* Relevant component parallel with respect to external magnetic field B.\star)
Jpar[J_] = 2 Pi J (nz^2 + (1 - nz^2) Cos[\theta so]);
(*λx00=2 Pi 30; (*Russ/Burkard resonance condition for driving*)*)
(* 2-Qubit Hamiltonian *)
HQ[\omega z lin_, \omega z 2in_] = KroneckerProduct[PauliMatrix[3]] \frac{\omega z lin_}{2}, PauliMatrix[0]] +
    KroneckerProduct [PauliMatrix[0], PauliMatrix[3] \frac{\omega z 21n}{2}];
Rso = {
    \left\{ nx^2 + \left( 1 - nx^2 \right) \cos \left[ \theta so \right] \right\}
      nx ny - nx ny Cos[\theta so] - nz Sin[\theta so], nx nz - nx nz Cos[\theta so] + ny Sin[\theta so]
     \left\{ \text{nx ny - nx ny Cos}\left[\theta\text{so}\right] + \text{nz Sin}\left[\theta\text{so}\right] \text{, ny}^2 + \left(1-\text{ny}^2\right) \text{Cos}\left[\theta\text{so}\right] \text{,} \right.
      ny nz – ny nz Cos [\thetaso] – nx Sin [\thetaso] \Big\}, \Big\{nx nz – nx nz Cos [\thetaso] – ny Sin [\thetaso],
      2 \sin \left[\frac{\theta so}{2}\right] \left( nx \cos \left[\frac{\theta so}{2}\right] + ny nz \sin \left[\frac{\theta so}{2}\right] \right), nz^{2} + \left(1 - nz^{2}\right) \cos \left[\theta so\right] \right)
   };
(* Exchange Hamiltonian *)
HJ[J_] =
```

```
J
Sum[KroneckerProduct[PauliMatrix[i], (Rso.Array[PauliMatrix, 3])[i]]], {i, 1, 3}];
(* driving amplitudes,
here normalised to 2 Pi and equal to each other. One could choose to e.g. drive
 one qubit harder than the other one. (this could lead to over-fitting)*)
\lambdax10 = 2 Pi; (* Drive amplitude Q1*)
\lambda x20 = 2 Pi; (* Drive amplitude Q2*)
(*turn on time of pulses*)
dt0 = 0.001;
(*wait time between pulses*)
Tw = 0.001;
(*first pulse for a time Tflip1*)
\lambda x1[t_{-}] = \lambda x10 \left( \frac{1}{2} + \frac{1}{2} Erf[(Tflip1 - t) / dt0] \right);
(*second pulse after a time Tflip1+Tw*)
\lambda x2[t_{-}] = \lambda x20 \left( \frac{1}{2} + \frac{1}{2} Erf[(t - Tflip1 - Tw) / dt0] \right);
(* Drive Hamiltonian *)
H\lambda[t_{-}] = \lambda x1[t] \cos[\omega x1t + \varphi 1]
      (fR1 KroneckerProduct[{nx, ny, nz}.Array[PauliMatrix, 3], PauliMatrix[0]] +
        fR2 KroneckerProduct[PauliMatrix[0],
            {nx, ny, nz}.Array[PauliMatrix, 3]]) + \lambdax2[t] Cos[\omegax2 t + \varphi2]
      (fR1 KroneckerProduct[{nx, ny, nz}.Array[PauliMatrix, 3], PauliMatrix[0]] +
        fR2 KroneckerProduct[PauliMatrix[0], {nx, ny, nz}.Array[PauliMatrix, 3]]);
(*Total Hamiltonian*)
Htot[t_{,} J_{,} \omega z1in_{,} \omega z2in_{]} = HQ[\omega z1in, \omega z2in] + HJ[J] + H\lambda[t];
\rho Sf =
   Function \{\psi 0, \psi \text{ro, Tflip1in, Tflip2in, } \omega \text{z1in, } \omega \text{z2in, } \omega \text{x1in, } \omega \text{x2in, fR1in, fR2in, Jin}\}
    sub = {Tflip1 \rightarrow Tflip1in, Tflip2 \rightarrow Tflip2in, \omegax1 \rightarrow \omegax1in,
       \omega x2 \rightarrow \omega x2in, fR1 \rightarrow fR1in, fR2 \rightarrow fR2in};
    Tfin = Tflip1 + Tw + Tflip2 /. sub;
    ψfin[t_] = {a[t], b[t], c[t], d[t]} /. NDSolve[
          {Htot[t, Jin, \omegaz1in, \omegaz2in].{a[t], b[t], c[t], d[t]} ==
              iD[{a[t], b[t], c[t], d[t]}, t] /. sub,
           a[0] = \psi 0[1], b[0] = \psi 0[2], c[0] = \psi 0[3], d[0] = \psi 0[4],
          {a[t], b[t], c[t], d[t]}, {t, 0, Tfin},
          Method → "PDEDiscretization" → {"MethodOfLines", "SpatialDiscretization" →
                "FiniteElement", MaxCellMeasure → 0.0005 / fR1}] [1];
    (*readout signal*)
    \sum_{i=1}^{\text{Dimensions}[\psi ro][1]} \text{Abs}[(\psi ro[i].\psi fin[Tfin])]^{2}];
```

```
(* CROT experiment driving f1 and f3,
with "noise" averages through random sampled Larmor frequencies*)
(* Ncont_exp = Ntarg_exp = 36 *)
(*Resolution*)
Ncont = 36;
Ntarg = 36;
(* Maximal burst durations *)
Ttargmax = 0.090; (*corresponding to 90 ns*)
Tctrmax = 0.060; (*corresponding to 60 ns*)
(*increments in time, array*)
tcont = Table[t, {t, 0, Tctrmax, Tctrmax / (Ncont - 1) }];
ttarg = Table[t, {t, 0, Ttargmax, Ttargmax / (Ntarg - 1) }];
(*To simulate noise, we averaged over different Larmor
 frequencies sampled from a random, normal distributed set.*)
(*sigma of normal distributuion 2*Pi*MHz *)
\sigma\omegaz1 = 25 × 2 Pi;
\sigma \omega z 2 = 25 \times 2 Pi;
(* Resolution of the array of random Larmor frequencies MHz*)
res\omega z1 = 150;
res\omega z2 = 150;
(* Arrays of random Larmor freqs. MHz*)
\omegaz1arr = Abs[RandomVariate[NormalDistribution[\omegaz1, \sigma\omegaz1], {res\omegaz1}]];
\omegaz2arr = Abs[RandomVariate[NormalDistribution[\omegaz2, \sigma\omegaz2], {res\omegaz2}]];
```

```
(*CROT Experiment driving f1 and f3*)
         resF13a = ParallelTable[\rho Sf[\psi 0a, \{\{0, 1, 0, 0\}, \{0, 0, 1, 0\}\}, tcont[i]],
                 ttarg[j], \u03cdz1arr[k], \u03cdz2arr[k], \u03cdxexp1, \u03cdxexp3, fR1t, fR2t, Jpar[Jval]],
                {k, 1, resωz1}, {i, 1, Ncont}, {j, 1, Ntarg}]; // AbsoluteTiming
         resF13b = ParallelTable[\rho Sf[\psi 0b, \{\{0, 1, 0, 0\}, \{0, 0, 1, 0\}\}, tcont[i]],
                 ttarg[j], \u03cdz1arr[k], \u03cdz2arr[k], \u03cdxexp1, \u03cdxexp3, fR1t, fR2t, Jpar[Jval]],
                \{k, 1, res\omega z1\}, \{i, 1, Ncont\}, \{j, 1, Ntarg\}]; // AbsoluteTiming
         Export | "C:\\Users\\export\\CROT_average_Larmor_sigma" <>
              \label{eq:textstring} \texttt{[Jval]} \mathrel{<>} \texttt{"MHz\_J"} \mathrel{<>} \texttt{TextString[Jval]} \mathrel{<>} \texttt{"MHz\_vDDMMYY\_vX.h5"},
            \left\{ \text{resF13a, resF13b, } \frac{\omega \text{z1arr}}{2 \, \text{Pi}}, \frac{\omega \text{z2arr}}{2 \, \text{Pi}}, \text{tcont, ttarg, fR1t, fR2t} \right\}, \left\{ \text{"Datasets", } \right\}
              {"resF13a", "resF13b", "fz1arr", "fz2arr", "tcont", "ttarg", "fR1t", "fR2t"}}];
Out[0]=
         {1007.25, Null}
Out[0]=
         {1161.6, Null}
```