

AGRICULTURAL RESEARCH INSTITUTE
PUSA



## Erratum

Volumes 2-5 of Second Supplement Published by J. W. Edwards Ann Arbor, Michigan

# BEILSTEINS HANDBUCH DER ORGANISCHEN CHEMIE

## VIERTE AUFLAGE

## ZWEITES ERGÄNZUNGSWERK

DIE LITERATUR VON 1920-1929 UMFASSEND

HERAUSGEGEBEN VON DER

DEUTSCHEN CHEMISCHEN GESELLSCHAFT
(ARBEITSKREIS IM NSBDT)

BEARBEITET VON

### FRIEDRICH RICHTER

## FÜNFTER BAND

ALS ERGANZUNG DES FÜNFTEN BANDES DES HAUPTWERKES

Published and distributed in the Public Interest by Authority of the Alien Property Custodian under License No. A-524

Photo-Lithoprint Reproduction

## EDWARDS BROTHERS, INC.

PUBLISHERS
ANN ARBOR, MICHIGAN
1 9 4 4

BERLIN SPRINGER-VERLAG 1943

#### Stellvertretender Redakteur: Rudolf Ostertag

#### Mitarbeiter:

GÜNTHER AMMERLAHN FRITZ HÖHN MARGARETE BAUMANN HERMANN HOMANN ERNA BEGER KONRAD ILBERG ERNST BEHRLE MARIE ILBERG ANNA FIEDLER RUDOLF KNOBLOCH ILSE GAEDE MARIA KOBEL EMIL GERISCH Benno Kühn CARL GOTTFRIED ELISABETH MATERNE EBERHARD HACKENTHAL HEINZ PALLUTZ BERTHOLD HILLGER OTTO SACHTLEBEN

GERT TREWENDT

Copyright vested in the Alien Froperty Custodian, 1944, pursuant to law.

Alle Rechte, insbesondere das der Übersetzung in fremde Sprachen, vorbehalten.

Copyright 1943 by Springer-Verlag OHG. in Berlin.

Printed in Germany.

## Inhalt.

|                                                               |    |    | Seite  |
|---------------------------------------------------------------|----|----|--------|
| Verzeichnis der Kürzungen für die Literatur-Quellen           |    |    | VI     |
| Zeittafel der wichtigsten Zeitschriften                       |    |    | XXVIII |
| Weitere Abkürzungen                                           |    |    | XXXI   |
| Übertragung der griechischen Buchstaben in Zahlen             |    |    | XXXI   |
| Zusammenstellung der Zeichen für Maßeinheiten                 |    |    | XXXII  |
| Erklärung der Hinweise auf das Hauptwerk und die Ergänzungswe | rk | Сe | XXXII  |

## Zweite Abteilung.

## Isocyclische Verbindungen.

### I. Kohlenwasserstoffe.

|    |                                                                                                                  | Seite | Seit                                           |
|----|------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------|
| 1. | Kohlenwasserstoffe CnH2n                                                                                         | 3     | 4. Kohlenwasserstoffe CnH2n-6 (aro-            |
|    | Cyclopropan C <sub>8</sub> H <sub>6</sub>                                                                        | 3     | matische Kohlenwasserstoffe) 11                |
|    | Kohlenwasserstoffe C.H                                                                                           | 3     | Benzol $C_6H_6$ 11                             |
|    | Kohlenwasserstoffe $C_5H_{10}$                                                                                   | 4     | Konstitution, Vorkommen 11                     |
|    | Kohlenwasserstoffe C <sub>6</sub> H <sub>12</sub>                                                                | 6     | Bildung                                        |
|    | Kohlenwasserstoffe C <sub>7</sub> H <sub>14</sub>                                                                | 15    | Darstellung, Physikalische Eigen-              |
|    | Kohlenwasserstoffe C <sub>8</sub> H <sub>16</sub>                                                                | 20    | schaften                                       |
|    | Kohlenwasserstoffe $C_9H_{18}$                                                                                   | 23    | Physikalische Eigenschaften von                |
|    | Kohlenwasserstoffe C <sub>10</sub> H <sub>20</sub>                                                               | 25    | Gemischen 12                                   |
|    | Kohlenwasserstoffe C <sub>11</sub> H <sub>22</sub> , C <sub>12</sub> H <sub>24</sub>                             |       | Chemisches Verhalten 13                        |
|    | usw                                                                                                              | 32    | Physiologisches Verhalten, Ver-                |
| •) | Kohlenwasserstoffe CnH2n-2                                                                                       | 35    | wendung 14                                     |
|    | Kohlenwasserstoffe C <sub>3</sub> H <sub>4</sub> , C <sub>4</sub> H <sub>6</sub> , C <sub>5</sub> H <sub>8</sub> | 35    | Analytisches 14                                |
|    | Kohlenwasserstoffe $C_6H_{10}$                                                                                   | 37    | Additionelle Verbindungen und                  |
|    | Kohlenwasserstoffe C <sub>7</sub> H <sub>12</sub>                                                                | 42    | Umwandlungsprodukte unge-                      |
|    | Kohlenwasserstoffe C <sub>8</sub> H <sub>14</sub>                                                                | 45    | wisser Konstitution aus Benzol 14              |
|    | Kohlenwasserstoffe C <sub>9</sub> H <sub>16</sub> (z. B.                                                         |       | Substitutionsprodukte des Benzols 14           |
|    | Tetrahydrocumol, Hydrindan)                                                                                      | 48    | Fluorderivate 14                               |
|    | Kohlenwasserstoffe C <sub>10</sub> H <sub>18</sub> (z. B.                                                        |       | Chlorbenzol 14                                 |
|    | Menthene, Dekalin, Caran, Thujan,                                                                                |       | Fernere Chlorderivate 15                       |
|    | Pinan, Camphan, Fenchan)                                                                                         | 51    | Brombenzol                                     |
|    | Kohlenwasserstoffe $C_{11}H_{20}$ Kohlenwasserstoffe $C_{12}H_{22}$ (z. B. Di-                                   | 68    | Fernere Bromderivate 16                        |
|    | Kohlenwasserstoffe C <sub>12</sub> H <sub>22</sub> (z. B. Di-                                                    |       | Jodderivate                                    |
|    | cyclohexyl)                                                                                                      | 70    | Nitrosoderivate 16                             |
|    | Kohlenwasserstoffe C <sub>13</sub> H <sub>24</sub> , C <sub>14</sub> H <sub>26</sub>                             |       | Nitrobenzol 17                                 |
|    | usw                                                                                                              | 72    | Fernere Nitroderivate 18                       |
| 2  | Kohlenwasserstoffe CnH2n-4                                                                                       | 77    | Azidoderivate 20                               |
| •• | Cyclopentadien $C_5H_6$                                                                                          |       | Toluol C <sub>7</sub> H <sub>8</sub> 20        |
|    | Pirylen C <sub>5</sub> H <sub>6</sub>                                                                            | 79    | Substitutionsprodukte des Toluols 22           |
|    | Kohlenwasserstoffe C <sub>6</sub> H <sub>8</sub>                                                                 | 79    | Fluorderivate                                  |
|    | Kohlenwasserstoffe $C_7H_{10}$ , $C_8H_{12}$ .                                                                   | 81    | Chlorderivate                                  |
|    | Kohlenwasserstoffe C <sub>9</sub> H <sub>14</sub> (z. B.                                                         | -     | Bromderivate 23                                |
|    | Santen)                                                                                                          | 82    | Jodderivate 24                                 |
|    | Santen)                                                                                                          |       | Nitroso- und Nitroderivate 24                  |
|    | vestren, Terpinene, Phellandrene,                                                                                |       | Azidoderivate 27                               |
|    | Terpinolen, Limonen, Oktaline,                                                                                   |       | Äthylbenzol $C_8H_{10}$ 27                     |
|    | Caren, Sabinen, Pinene, Camphen,                                                                                 |       | o-Xylol C <sub>8</sub> H <sub>10</sub> 28      |
|    | Tricyclen)                                                                                                       | 83    | o-Xylol C <sub>8</sub> H <sub>10</sub>         |
|    | Kohlenwasserstoffe C <sub>11</sub> H <sub>18</sub>                                                               | 111   | p-Xylol                                        |
|    | Kohlenwasserstoffe C <sub>18</sub> H <sub>20</sub> , C <sub>18</sub> H <sub>28</sub>                             |       | Isopropylidencyclopentadien 30                 |
|    | usw                                                                                                              | 113   | Propylbenzol C <sub>2</sub> H <sub>12</sub> 30 |

|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Seite | 1    |                                                               | Seite       |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|---------------------------------------------------------------|-------------|
|    | Taannanulhangal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 306   | i    | Kohlenwasserstoffe $C_{11}H_{12}$                             | 419         |
|    | Isopropylbenzol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200   |      | Kahlanwaggargtoffe C H /z R                                   |             |
|    | Athyltoluole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 308   |      | Kohlenwasserstoffe C <sub>12</sub> H <sub>14</sub> (z. B.     |             |
|    | Dimethyl-methylen-cyclohexadien .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | 1    | Phenylcyclohexen, Tetrahydro-                                 | 440         |
|    | Hemellitol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |      | acenaphthen)                                                  | 419         |
|    | Pseudocumol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 312   | 1    | Kohlenwasserstoffe C <sub>13</sub> H <sub>16</sub> (z. B.     |             |
|    | Mesitylen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 1    | Benzylidencyclohexan)                                         | 421         |
|    | Kohlenwasserstoffe C <sub>10</sub> H <sub>14</sub> (z. B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 1    | Kohlenwasserstoffe $C_{14}H_{18}$ (z. B.                      |             |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 1    | Okta hydroanthragen)                                          | 422         |
|    | Butylbenzol, Isobutylbenzol, Cy-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 1    | Oktahydroanthracen)                                           | 722         |
|    | mol, Diäthylbenzol, Durol, Ver-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _     | 1    | Kohlenwasserstoffe $C_{15}H_{20}$ (z. B.                      |             |
|    | benen, Camphenen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 317   | }    | Dihydrocadalin) usw                                           | 425         |
|    | Kohlenwasserstoffe $C_{11}H_{16}$ (z. B. Pen-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 1 -  | Vahlansvaggangtolla C U                                       | 420         |
|    | tylbenzol, Propylxylol, Pentame-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 1 .  | Kohlenwasserstoffe C <sub>n</sub> H <sub>2n-12</sub>          | 432         |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 331   |      | Azulen $C_{10}H_8$                                            | 432         |
|    | thylbenzol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 001   | 1    | Naphthalin C <sub>10</sub> H <sub>8</sub>                     | 432         |
|    | Kohlenwasserstoffe C <sub>12</sub> H <sub>18</sub> (z. B. Di-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00=   |      | Substitutionsprodukte des Naphtha-                            |             |
|    | äthylxylol, Hexamethylbenzol) .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |      | lins                                                          | 444         |
|    | Kohlenwasserstoffe $C_{13}H_{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 342   | 1    | Kohlenwasserstoffe C <sub>11</sub> H <sub>10</sub> (Methyl-   |             |
|    | Kohlenwasserstoffe $C_{14}H_{22}$ Kohlenwasserstoffe $C_{15}H_{24}$ (Sesqui-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 343   |      |                                                               | 100         |
|    | Kohlenwasserstoffe C.H., (Sesqui-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | 1    | naphthaline)                                                  | 460         |
|    | tomenwasserstone Oliginal (Scapar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |      | Kohlenwasserstoffe $C_{12}H_{12}$ (z. B. Di-                  |             |
|    | terpene, z. B. Bisabolen, Zingi-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |      | methylnaphthaline, Allylinden).                               | 466         |
|    | beren, Cadinen, Eudesmen, Ce-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |      | Kohlenwasserstoffe C <sub>13</sub> H <sub>14</sub> (z. B.     |             |
|    | dren, β-Curcumen, Elemen, Caryo-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |      |                                                               | 470         |
|    | phyllen, Aromadendren)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 345   |      | Sapotalin)                                                    | 470         |
|    | Kohlenwasserstoffe C <sub>16</sub> H <sub>26</sub> , C <sub>18</sub> H <sub>30</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 358   |      | Kohlenwasserstoffe C <sub>14</sub> H <sub>16</sub> (z. B. Eu- |             |
|    | Kohlenwasserstoffe $C_{19}H_{32}$ , $C_{20}H_{34}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 359   |      | dalin)                                                        | 471         |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000   |      | Kohlenwasserstoffe C <sub>15</sub> H <sub>18</sub> (z. B. Ca- |             |
|    | Kohlenwasserstoffe $C_{22}H_{38}$ usw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 360   |      | dalin, Tricyclopentadien)                                     | 473         |
| 5  | Kohlenwasserstoffe CnH2n-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 362   |      |                                                               | 475         |
| ٠. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |      | Kohlenwasserstoffe $C_{16}H_{20}$ usw                         | 110         |
|    | Styrol C <sub>8</sub> H <sub>8</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 8.   | Kohlenwasserstoffe $C_nH_{2n-14}$                             | 479         |
|    | Polystyrol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 364   |      | Methylphenyldiacetylen C <sub>11</sub> H <sub>8</sub>         | 470         |
|    | Substitutionsprodukte des Styrols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |      | Dinhand C U                                                   |             |
|    | (z. B. 4-Chlor-styrol, ω-Nitro-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1     |      | Diphenyl $C_{12}H_{10}$                                       | 479         |
|    | styrol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 367   |      | Substitutionsprodukte des Diphenyls                           | 482         |
|    | Wohlanguage and offe CII /- D. D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100   |      | Vinylnaphthaline                                              | 494         |
|    | Kohlenwasserstoffe C <sub>9</sub> H <sub>10</sub> (z. B. Pro-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |      | Acenaphthen                                                   | 494         |
|    | penylbenzol, Allylbenzol, Isopro-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |      | Kohlenwasserstoffe C <sub>13</sub> H <sub>12</sub> (z. B. Di- |             |
|    | penylbenzol, Vinyltoluol, Hydrin-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | !     |      |                                                               |             |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 371   |      | phenylmethan, 4-Methyl-diphenyl,                              | 400         |
|    | Kohlenwasserstoffe C <sub>10</sub> H <sub>12</sub> (z. B. Cro-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |      | Perinaphthindan)                                              | 498         |
|    | tylbongol Totaglin Disvelopents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -     |      | Kohlenwasserstoffe C <sub>14</sub> H <sub>14</sub> (z. B. Di- |             |
|    | tylbenzol, Tetralin, Dicyclopenta-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |      | benzyl, Tetrahydroanthracen)                                  | <b>5</b> 06 |
|    | dien)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 378   |      |                                                               | 000         |
|    | Kohlenwasserstoffe $C_{11}H_{14}$ (z. B. Phe-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |      | Kohlenwasserstoffe C <sub>15</sub> H <sub>16</sub> (z. B. Di- | EAC         |
|    | nylamylen, Trimethylphenyläthy-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | į     |      | benzylmethan)                                                 | 516         |
|    | len, Phenylcyclopentan, Methyl-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |      | Kohlenwasserstoffe C <sub>16</sub> H <sub>18</sub> (z. B. Di- |             |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200   |      | phenylbutane)                                                 | 519         |
|    | tetralin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 392   |      | Kohlenwasserstoffe C <sub>17</sub> H <sub>20</sub>            | 523         |
|    | Kohlenwasserstoffe C <sub>12</sub> H <sub>16</sub> (z. B. Phe-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |      |                                                               | 524         |
|    | nylcyclohexan, Athyltetralin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 395   |      | Kohlenwasserstoffe C <sub>18</sub> H <sub>22</sub>            |             |
|    | KohlenwasserstoffeC <sub>13</sub> H <sub>18</sub> (z.B.Jonen,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |      | Kohlenwasserstoffe C <sub>19</sub> H <sub>24</sub> usw        | 527         |
|    | Hexahydroperinaphthindan)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 398   | 9    | Kohlenwasserstoffe $C_nH_{2n-16}$                             | <b>53</b> 0 |
|    | Kohlenwasserstoffe C <sub>14</sub> H <sub>20</sub> (z. B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 500   | ••   | Kohlonwagangtoffe C U (r D Ass                                | <b>500</b>  |
|    | Dakahydroanthra am                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 400   |      | Kohlenwasserstoffe C <sub>12</sub> H <sub>8</sub> (z. B. Ace- | F00         |
|    | Dekahydroanthracen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 400   |      | naphthylen)                                                   | <b>53</b> 0 |
|    | Kohlenwasserstoffe C <sub>15</sub> H <sub>22</sub> (z. B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |      | Kohlenwasserstoffe C <sub>13</sub> H <sub>10</sub> (z. B.     |             |
|    | $\alpha$ -Curcumen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 401   |      |                                                               | 531         |
|    | Kohlenwasserstoffe C18H24, C17H26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 403   |      | Kohlenwasserstoffe $C_{14}H_{18}$ (z. B. Stil-                |             |
|    | Kohlenwasserstoffe C.H. C.H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 404   |      | han Dihydroanthaganal                                         | 537         |
|    | Kohlenwasserstoffe $C_{18}H_{28}^{42}$ , $C_{19}H_{30}^{2}$ . Kohlenwasserstoffe $C_{20}H_{32}$ (Diter-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 101   |      | ben, Dihydroanthracene)                                       | 001         |
|    | none a D a Control of the control of |       |      | Kohlenwasserstoffe $C_{15}H_{14}$ (z. B. Di-                  |             |
|    | pene, z. B. a-Camphoren, Phyllo-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |      | pnenylpropene)                                                | 552         |
|    | claden)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 404   |      | phenylpropene)                                                |             |
|    | claden)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 406   |      | phenylbutene)                                                 | 556         |
| e  | Voblement of the Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |      | Kohlenwasserstoffe C <sub>17</sub> H <sub>18</sub> usw        |             |
| υ. | Kohlenwasserstoffe CnH2n-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 406   |      | 120menwasserscore O171118 dsw                                 | 561         |
|    | Phenylacetylen $C_8H_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 406   | 10.  | Kohlenwasserstoffe C <sub>n</sub> H <sub>2n-18</sub>          | 568         |
|    | Kohlenwasserstoffe C <sub>9</sub> H <sub>8</sub> (z. B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -     | - 00 | Phonyltriacetylen C U                                         |             |
|    | Benzylacetylen, Inden)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100   |      | Phenyltriacetylen C <sub>12</sub> H <sub>6</sub>              | 568         |
|    | Kohlenwaggergtoffe C U /- D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *00   |      | Tolan C <sub>14</sub> H <sub>10</sub>                         | 568         |
|    | Kohlenwasserstoffe C <sub>10</sub> H <sub>10</sub> (z. B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |      | Anunracen C <sub>14</sub> n <sub>10</sub>                     | 569         |
|    | rnenylbutadien, Dihydronaph.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1     |      | Substitutionsprodukte des Anthra-                             |             |
|    | thaline)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 413   |      |                                                               | 574         |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |      |                                                               | J. I        |

|     |                                                                                                                                                     | Seite   |                                                                                                                                           | Seite       |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|     | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                | 584     | Kohlenwasserstoffe $C_nH_{2n-36}$ (z. B. Difluorenyliden, Hexaphen, Tetraphenylbutatrien, Triphenylnaphthaline)                           | 699         |
|     | thylanthracene, Athylidenfluoren)                                                                                                                   | 585 26. | Kohlenwasserstoffe C <sub>n</sub> H <sub>2n-37</sub>                                                                                      |             |
|     | Kohlenwasserstoffe $C_{16}H_{14}$ (z. B. Distyryl, Pimanthren) Kohlenwasserstoffe $C_{17}H_{16}$ Kohlenwasserstoffe $C_{18}H_{18}$ (z. B. Distyryl) | 589 27. | Kohlenwasserstoffe C <sub>n</sub> H <sub>2n-38</sub> (z. B. Rubicen, Dianthranyl, Quinquiphenyl, Pentaphenyläthan)                        |             |
|     | benzylbutadien, Reten)                                                                                                                              |         | Kohlenwasserstoffe C <sub>n</sub> H <sub>2n-39</sub>                                                                                      | 712         |
| 44  | Kohlenwasserstoffe $C_{19}H_{20}$ usw Kohlenwasserstoffe $C_{n}H_{2n-20}$ (z. B.                                                                    | 29.     | Kohlenwasserstoffe $C_nH_{2n-40}$                                                                                                         | 712         |
| 11. | Phenylnaphthaline, Diphensuccin-                                                                                                                    |         | Kohlenwasserstoffe $C_nH_{2n-41}$                                                                                                         | 713         |
|     | den, Diphenylhexatrien, Diinden)                                                                                                                    | 602 31. | Kohlenwasserstoffe $C_nH_{2n-42}$                                                                                                         | 713         |
| 12. | $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                               | 609 32. | $\begin{array}{c} \textbf{Kohlen wasserstoffe} \ C_n H_{2n-44} \ (z. \ B. \\ Chalkacen, \ Rhodacen) \ . \ . \ . \end{array}$              | 714         |
|     | Pyren)                                                                                                                                              | 609 33. | Kohlenwasserstoffe $C_nH_{2n-45}$                                                                                                         | 715         |
|     | Kohlenwasserstoffe C <sub>17</sub> H <sub>12</sub> (Chrysofluoren, Benzanthren) Kohlenwasserstoffe C <sub>18</sub> H <sub>14</sub> (z. B. Ter-      | 610 34. | $ \begin{array}{ll} \textbf{Kohlenwasserstoffe} \ C_n H_{2n-46} \ (z. \ B. \\ \textbf{Sexiphenyl}, \ \ Hexabenzyläthan) \ . \end{array} $ | 715         |
|     | phenyl)                                                                                                                                             | 611 35. | Kohlenwasserstoffe $C_nH_{2n-47}$                                                                                                         | 718         |
|     | pnenylmetnan)                                                                                                                                       | 013     | Kohlenwasserstoffe C <sub>n</sub> H <sub>2n-48</sub> (z. B. Dichrysofluorenyliden, Methylenbis-triphenylmethyl)                           | 718         |
| 10  | cinnamylidenäthan)                                                                                                                                  | 622 37. | Kohlenwasserstoffe $C_nH_{2n-50}$ (z. B. Hexaphenylbutin)                                                                                 | 721         |
|     | Kohlenwasserstoffe $C_nH_{2n-23}$ (z. B. Triphenylmethyl)                                                                                           | 626 38. | Kohlenwasserstoffe $C_nH_{2n-52}$ (z. B. Tribenzodifluorenyl)                                                                             | 722         |
| 14. | Naphthacen, Chrysen, Triphenylen, Triphenyläthylen, Carotin).                                                                                       | 628 39. | Kohlenwasserstoffe $C_nH_{2n-54}$ (z. B. Dekacyclen)                                                                                      |             |
| 15. | Kohlenwasserstoffe $C_nH_{2n-25}$                                                                                                                   | 638 40. | Kohlenwasserstoffe C <sub>n</sub> H <sub>2n-56</sub> (z. B.                                                                               |             |
| 16. | Kohlenwasserstoffe C <sub>n</sub> H <sub>2n-26</sub> (z. B. Phenylanthracen, Benzyliden-                                                            |         | Rubren, Tetranaphthyläthylen) . Kohlenwasserstoffe $C_nH_{2n-58}$ (z. B.                                                                  | 725         |
|     | fluoren, Dinaphthyle, Diphenylindene)                                                                                                               |         | Tetrabenzodifluorenyl)                                                                                                                    | 727         |
| 17. | Kohlenwasserstoffe C <sub>n</sub> H <sub>2n-28</sub> (z. B.                                                                                         | 42.     | Kohlenwasserstoffe $C_nH_{2n-59}$                                                                                                         |             |
|     | Perylen, Dibenzofluoren)                                                                                                                            |         | Kohlenwasserstoffe C <sub>n</sub> H <sub>2n-60</sub>                                                                                      |             |
|     | Kohlenwasserstoffe C <sub>n</sub> H <sub>2n-29</sub>                                                                                                | 1       | Kohlenwasserstoffe $C_nH_{2n-62}$                                                                                                         |             |
| 19. | Kohlenwasserstoffe $C_nH_{2n-30}$ (z. B. Pentacen, Pentaphen, Quater-                                                                               | 4       | Kohlenwasserstoffe C <sub>n</sub> H <sub>2n-64</sub>                                                                                      |             |
|     | phenyl, Triphenylbenzol, Tetra-                                                                                                                     | 47      | Kohlenwasserstoffe $C_nH_{2n-66}$ Kohlenwasserstoffe $C_nH_{2n-68}$ (z. B.                                                                | 128         |
|     | phenylmethan, Dibenzhydryl)                                                                                                                         |         | Fluorocyclen)                                                                                                                             | 729         |
|     | Kohlenwasserstoffe C <sub>n</sub> H <sub>2n-31</sub>                                                                                                | 678 48. | Kohlenwasserstoffe C <sub>n</sub> H <sub>2n-70</sub>                                                                                      |             |
| 21. | Kohlenwasserstoffe $C_nH_{2n-32}$ (z. B. Tetraphenyläthylen)                                                                                        | 678 49. | Kohlenwasserstoffe $C_nH_{2n-72}$                                                                                                         | <b>73</b> 0 |
|     | Kohlenwasserstoffe $C_nH_{2n-33}$                                                                                                                   | 1 50    | Kohlenwasserstoffe $C_nH_{2n-76}$ (z. B. Leukacen)                                                                                        | 731         |
| 28. | Kohlenwasserstoffe C <sub>n</sub> H <sub>2n-34</sub> (z. B. Diphenylanthracen, Difluorenyl,                                                         | 51.     | Kohlenwasserstoffe CnH <sub>2n-78</sub>                                                                                                   |             |
|     | Triphenylindene)                                                                                                                                    |         | Kohlenwasserstoffe $C_nH_{2n-80}$                                                                                                         |             |
| 24. | Kohlenwasserstoffe $C_nH_{2n-35}$                                                                                                                   | li i    | Kohlenwasserstoffe $C_nH_{2n-120}$                                                                                                        |             |
|     | -                                                                                                                                                   |         | _                                                                                                                                         |             |
| Alp | habetisches Register                                                                                                                                |         |                                                                                                                                           | <b>73</b> 2 |
| Nac | chträge und Berichtigungen                                                                                                                          |         |                                                                                                                                           | 761         |
|     |                                                                                                                                                     |         |                                                                                                                                           |             |

## Verzeichnis der Kürzungen für die Literatur-Quellen\*).

| Kürzung                              | Titel                                                                                                                                                                                                 |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A.                                   | JUSTUS LIEBIGS Annalen der Chemie                                                                                                                                                                     |
| Aarsskr. Veterin<br>Landboh.         | Den Kongelige Veterinaer- og Landbohøjskole: Aarsskrift                                                                                                                                               |
| Abh. Ges. Wiss. Göt-<br>tingen       | Abhandlungen der Gesellschaft der Wissenschaften zu Göttingen,<br>Mathematisch-physikalische Klasse                                                                                                   |
| Abh. Kenntnis Kohle                  | Gesammelte Abhandlungen zur Kenntnis der Kohle                                                                                                                                                        |
| Abh. preu $\beta$ . Akad.            | Abhandlungen der Preußischen Akademie der Wissenschaften,<br>Physikalisch-mathematische Klasse                                                                                                        |
| Abh. sächs. Akad.                    | Abhandlungen der Mathematisch-physischen Klasse der Sächsischen Akademie der Wissenschaften zu Leipzig                                                                                                |
| Abstr. Bacteriol.                    | Abstracts of Bacteriology                                                                                                                                                                             |
| A. ch.                               | Annales de Chimie                                                                                                                                                                                     |
| Acta Acad. Abo.<br>Acta chem. Szeged | Acta Academiae Aboensis, Ser. B: Mathematica et Physica<br>Acta Litterarum ac Scientiarum Regiae Universitatis Hungaricae<br>Francisco-Josephinae: Acta Chemica, Mineralogica et Phy-<br>sica. Szeged |
| Acta Comment. Univ.<br>dorpat.       | [Učenyja Zapiski Imp. Jurevskago Universiteta.] Acta et Com-<br>mentationes Imp. Universitatis Jurievensis (olim Dorpatensis)<br>(bis 1917).                                                          |
|                                      | Eesti Vabariigi Tartu Ülikooli Toimetused. Acta et Commentationes<br>Universitatis [Tartuensis] Dorpatensis (1921 ff.)                                                                                |
| Acta latviens. Chem.                 | Latvijas Universitātes Raksti, Kīmijas Fakultātes Serija. Acta<br>Universitatis Latviensis, Chemicorum Ordinis Series                                                                                 |
| Acta Lit. Sci. Szeged,<br>Sect. Med. | Acta Litterarum ac Scientiarum Regiae Universitatis Hungaricae<br>Francisco-Josephinae, Sectio Medicorum. Szeged                                                                                      |
| Acta med. scand.                     | Acta Medica Scandinavica                                                                                                                                                                              |
| Acta physicoch.                      | Acta Physicochimica U.R.S.S.                                                                                                                                                                          |
| Acta phys. polon.                    | Acta Physica Polonica                                                                                                                                                                                 |
| Acta phytoch.                        | Acta Phytochimica. Tokyo                                                                                                                                                                              |
| Acta Polon. pharm.                   | Acta Poloniae Pharmaceutica (Beilage zu Farmacja Wspólczesna)                                                                                                                                         |
| Acta Sch. med. Univ.<br>Kioto        | Acta Scholae Medicinalis Universitatis Imperialis in Kioto                                                                                                                                            |
| Acta Soc. Sci. fenn.                 | Acta Societatis Scientiarum Fennicae                                                                                                                                                                  |
| Akust. Z.                            | Akustische Zeitschrift                                                                                                                                                                                |
| Am.                                  | American Chemical Journal                                                                                                                                                                             |
| Ambix                                | Ambix. The Journal of the Society for the Study of Alchemy and<br>Early Chemistry                                                                                                                     |
| Am. Dyest. Rep.                      | American Dyestuff Reporter                                                                                                                                                                            |
| Am. J. Bot.                          | American Journal of Botany                                                                                                                                                                            |
| Am. J. Cancer                        | The American Journal of Cancer                                                                                                                                                                        |
| Am. J. Diseases Child.               | American Journal of Diseases of Children                                                                                                                                                              |
| Am. J. Hyg.                          | The American Journal of Hygiene                                                                                                                                                                       |
| Am. J. med. Sci.                     | The American Journal of the Medical Sciences                                                                                                                                                          |
| Am. J. Pharm.                        | American Journal of Pharmacy                                                                                                                                                                          |
| Am. J. Physiol.                      | The American Journal of Physiology                                                                                                                                                                    |
| Am. J. publ. Health<br>Am. J. Sci.   | American Journal of Public Health [and The Nation's Health] [The] American Journal of Science. [Established by Benjamin Silliman]                                                                     |

<sup>\*)</sup> Erläuternde Zusätze der Redaktion sind durch ( > kenntlich gemacht. In eekige Klammern [] eingeschlossene Wörter gehörten dem Titel nur zeitweise an. Runde Klammern () gehören zum Titel. Die in geschweifte Klammern {} eingeschlossenen Wörter treten von einem bestimmten Zeitpunkt ab an die Stelle der vorangehenden.

| Kürzung                                       | Titel                                                                                                                                                                                                          |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Am. Perfumer                                  | 7—32: The American Perfumer and Essential Oil Review;                                                                                                                                                          |
| 4 74 7 4 0 4                                  | 33 ff.: The American Perfumer. Cosmetics. Toilet Preparations                                                                                                                                                  |
| Am. Petr. Inst. Quart.                        | American Petroleum Institute Quarterly                                                                                                                                                                         |
| Am. Soc.<br>Anal. Min. România                | The Journal of the American Chemical Society Analele Minelor din România. Annales des Mines de Roumanie                                                                                                        |
| Analyst                                       | The Analyst. London                                                                                                                                                                                            |
| An. Asoc. quim. arg.                          | Anales de la Asociación Química Argentina                                                                                                                                                                      |
| An. Farm. Bioquim.                            | Anales de Farmacia y Bioquímica. Buenos Aires                                                                                                                                                                  |
| Ang. Ch.                                      | Angewandte Chemie. Zeitschrift des Vereins Deutscher Chemiker, A                                                                                                                                               |
| Anilinokr. Promyšl.                           | Anilinokrasočnaja Promyšlennost' (russ.)                                                                                                                                                                       |
| Ann. Acad. Sci. fenn.                         | Suomalaisen Tiedeakatemian Toimituksia. Annales Academiae<br>Scientiarum Fennicae                                                                                                                              |
| Ann. agron.                                   | Annales Agronomiques                                                                                                                                                                                           |
| Ann. appl. Biol.                              | Annals of Applied Biology                                                                                                                                                                                      |
| Ann. Botany<br>Ann. Brass. Dist.              | Annals of Botany Appales de la Braccorio et de la Distillerio                                                                                                                                                  |
| Ann. Chim. anal.                              | Annales de la Brasserie et de la Distillerie<br>Annales de Chimie Analytique et Revue de Chimie Analytique                                                                                                     |
| Ann. Chim. anal. appl.                        | Annales de Chimie Analytique et de Chimie Appliquée et Revue de<br>Chimie Analytique Réunies                                                                                                                   |
| Ann. Chim. applic.                            | Annali di Chimica Applicata                                                                                                                                                                                    |
| Ann. Chim. farm.                              | Annali di Chimica Farmaceutica (Beilage zu Farmacista Italiano)                                                                                                                                                |
| Ann. Clin. med.                               | Annali di Clinica Medica [e di Medicina Sperimentale]                                                                                                                                                          |
| Ann. Falsificat.                              | Annales des Falsifications [et des Fraudes]                                                                                                                                                                    |
| Ann. Fermentat.                               | Annales des Fermentations                                                                                                                                                                                      |
| Ann. Inst. Pasteur                            | Annales de l'Institut Pasteur                                                                                                                                                                                  |
| Ann. internal Med.<br>Ann. Off. Combust. liq. | Annals of Internal Medicine. Lancaster, Pa.                                                                                                                                                                    |
| Ann. Phys.                                    | Annales de l'Office National des Combustibles Liquides<br>Annalen der Physik                                                                                                                                   |
| Ann. Physiol. Physico-<br>ch. biol.           | Annales de Physiologie et de Physicochimie Biologique                                                                                                                                                          |
| Ann. Physique                                 | Annales de Physique                                                                                                                                                                                            |
| Ann. Rep. Progr. Chem.                        | Annual Reports on the Progress of Chemistry                                                                                                                                                                    |
| Ann. Sci. agron.<br>franç. étr.               | Annales de la Science Agronomique Française et Étrangère                                                                                                                                                       |
| Ann. scient. Univ. Jassy                      | Annales Scientifiques de l'Université de Jassy                                                                                                                                                                 |
| Ann. Sci. nat. Bot.                           | Annales des Sciences Naturelles, Botanique [et Biologie Végétale]                                                                                                                                              |
| Ann. Soc. scient. Bru-<br>xelles              | Annales de la Société Scientifique de Bruxelles, Serie B: Sciences                                                                                                                                             |
| Ann. Sperim. agrar.                           | Physiques et Naturelles                                                                                                                                                                                        |
| Ann. Surv. am. Chem.                          | Annali della Sperimentazione Agraria Annual Survey of American Chemistry                                                                                                                                       |
| Ann. Tecn. agrar.                             | Istituto Fascista di Tecnica e Propaganda Agraria: Annali di<br>Tecnica Agraria                                                                                                                                |
| Ann. Univ. fenn. Abo.                         | Turun Suomalaisen Yliopiston Julkaisuja. Annales Universitatis<br>Fennicae Aboensis                                                                                                                            |
| Ann. Zymol.                                   | Annales [de la Société] de Zymologie                                                                                                                                                                           |
| An. Soc. cient. arg.                          | Anales de la Sociedad Científica Argentina                                                                                                                                                                     |
| An. Soc. españ.                               | Anales de la Sociedad Española de Física y Química                                                                                                                                                             |
| An. Soc. quim. arg.<br>Anz. Akad. Krakau      | Anales de la Sociedad Química Argentina                                                                                                                                                                        |
| Anz. Akuu. Kiukuu                             | Anzeiger der Akademie der Wissenschaften in Krakau, Mathematisch-naturwissenschaftliche Klasse. Bulletin International de l'Académie des Sciences de Cracovie, Classe des Sciences Mathématiques et Naturelles |
| Anz. Akad. Wien                               | Mathématiques et Naturelles<br>Anzeiger der Akademie der Wissenschaften in Wien, Mathematisch-<br>naturwissenschaftliche Klasse                                                                                |
| A. P.                                         | Amerikanisches Patent                                                                                                                                                                                          |
| ApothZtg.                                     | Apotheker-Zeitung. Berlin                                                                                                                                                                                      |
| Ar.                                           | Archiv der Pharmazie [(1924ff:) und Berichte der Deutschen                                                                                                                                                     |
| Ant tiet Div                                  | Pharmazeutischen Gesellschaft]                                                                                                                                                                                 |
| Arb. biol. Reichsanst.                        | Arbeiten aus der Biologischen Reichsanstalt für Land- und Forst-<br>wirtschaft zu Berlin-Dahlem                                                                                                                |
| Arb. dtsch. LandwGes.                         | Arbeiten der Deutschen Landwirtschafts-Gesellschaft                                                                                                                                                            |

| Kürzung                                       | Titeİ                                                                                                                                         |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Arb. GesundhAmt<br>Arb. med. Fak. Oka-        | Arbeiten aus dem Reichsgesundheits-Amte<br>Arbeiten aus der Medizinischen Fakultät Okayama                                                    |
| yama<br>Arch. biol. Nauk                      | Archiv Biologičeskich Nauk (russ.). Archives des Sciences Bio-                                                                                |
| Arch. Dermatol.                               | logiques Archive für Dormatalogia und Symbilia                                                                                                |
| Arch. Eisenhüttenw.                           | Archiv für Dermatologie und Syphilis<br>Archiv für das Eisenhüttenwesen                                                                       |
| Arch. Farmacol. sperim.                       | Archivio di Farmacologia Sperimentale e Scienze Affini                                                                                        |
| Arch. Fisiol.                                 | Archivio di Fisiologia. Firenze                                                                                                               |
| Arch. Gewerbe-Path.                           | Archiv für Gewerbepathologie und Gewerbehygiene                                                                                               |
| Arch. Hyg.                                    | Archiv für Hygiene                                                                                                                            |
| Arch. Hyg. Bakt.                              | Archiv für Hygiene und Bakteriologie                                                                                                          |
| Arch. Inst. Pasteur<br>Algérie                | Archives de l'Institut Pasteur d'Algérie                                                                                                      |
| Arch. internal Med.                           | Archives of Internal Medicine. Chicago                                                                                                        |
| Arch. int. Pharmacod.                         | Archives Internationales de Pharmacodynamie [et de Thérapie]                                                                                  |
| Arch. int. Physiol.                           | Archives Internationales de Physiologie                                                                                                       |
| Arch. Ist. biochim. ital.                     | Archivio dello Istituto Biochimico Italiano                                                                                                   |
| Arch. Kinderheilk.                            | Archiv für Kinderheilkunde                                                                                                                    |
| Arch. Math. Naturvid.<br>Archiwum Chem. Farm. | Archiv for Mathematik og Naturvidenskab                                                                                                       |
| Archiwam Chem. Parm.                          | Archiwum Chemji i Farmacji [Archive de Chimie et de Pharmacie]. Warszawa                                                                      |
| Arch. Med. legal                              | Archivo de Medicina Legal. Lisboa                                                                                                             |
| Arch. Mikrobiol.                              | Archiv für Mikrobiologie                                                                                                                      |
| Arch. mikrosk. Anat.                          | Archiv für Mikroskopische Anatomie [<98ff.:> und Entwicklungs-<br>mechanik]                                                                   |
| Arch. néerl. Physiol.                         | Archives Néerlandaises des Sciences Exactes et Naturelles, Serie<br>III C: Archives Néerlandaises de Physiologie de l'Homme et<br>des Animaux |
| Arch. néerl. Sci. exactes                     | Archives Néerlandaises des Sciences Exactes et Naturelles, Serie<br>III A: Sciences Exactes                                                   |
| Arch. Path.                                   | Archives of Pathology and Laboratory Medicine. Chicago                                                                                        |
| Arch. Patol. Clin.                            | Archivio di Patologia e Clinica Medica                                                                                                        |
| Arch. Pharm. Chemi<br>Arch. Phys. biol.       | Archiv for Pharmaci og Chemi. København<br>Archives de Physique Biologique [et de Chimie-Physique des Corps<br>Organisés]                     |
| Arch. Physiol.                                | Archiv für Anatomie und Physiologie, Physiologische Abteilung  — Archiv für Physiologie (Hrsg. v. Du Bois-Reymond, Wal- DEYER u. a.)          |
| Arch. Rubbercult.<br>NederlIndië              | Archief voor de Rubbercultuur in Nederlandsch-Indië                                                                                           |
| Arch. Schiffshyg.                             | Archiv für Schiffs- und Tropenhygiene                                                                                                         |
| Arch. Sci. biol.                              | Archivio di Scienze Biologiche                                                                                                                |
| Arch. Sci. phys. nat.                         | Archives des Sciences Physiques et Naturelles. Genève                                                                                         |
| Arch. Tierheilk.<br>Arch. Verdauungskr.       | Archiv für Wissenschaftliche und Praktische Tierheilkunde<br>Archiv für Verdauungskrankheiten, Stoffwechselpathologie und                     |
| Arh. Hem. Farm.                               | Diatetik<br>Arhiv za Hemiju i Farmaciju. Archives de Chimie et de Pharmacie.<br>Zagreb                                                        |
| 1rh. Hem. Tehn.                               | Arhiv za Hemiju i Tehnologiju. Archives de Chimie et de Technologie. Zagreb                                                                   |
| lrk. Kemi                                     | Arkiv för Kemi, Mineralogi och Geologi                                                                                                        |
| Ir. Pth.                                      | [Naunyn-Schmiedebergs] Archiv für Experimentelle Pathologie<br>und Pharmakologie                                                              |
| strophys. J.                                  | The Astrophysical Journal                                                                                                                     |
| teneo parm.                                   | L'Ateneo Parmense. Bollettino della Società Medica di Parma                                                                                   |
| Itti Accad. Torino                            | Atti della Reale Accademia delle Scienze di Torino, Classe di Scienze Fisiche, Matematiche e Naturali                                         |
| ltti Congr. naz. Chim.<br>ind.                | Atti del Congresso Nazionale di Chimica Industriale                                                                                           |

#### Kürzung Titel Atti del Congresso Nazionale di Chimica Pura ed Applicata Atti Congr. naz. Chim. pura appl. Atti Ist. veneto Atti del Reale Istituto Veneto di Scienze, Lettere ed Arti, Parte II: Scienze Matematiche e Naturali Atti Soc. liquet. Sci. Atti della Società Ligustica di Scienze e Lettere Australas. J. Pharm. The Australasian Journal of Pharmacy. Melbourne Austral. chem. Inst. Australian Chemical Institute Journal and Proceedings J. Pr.Austral. J. Biol. med. The Australian Journal of Experimental Biology and Medical Sci. Australian Science Abstracts Austral. Sci. Abstr. Autotech. Auto-Technik Avh. norske Vid.-Akad. Avhandlinger utgitt av det Norske Videnskaps-Akademi i Oslo, Matematisk-naturvidenskapelig Klasse Berichte der Deutschen Chemischen Gesellschaft [<52ff.:> Teil B] Beitr. Physiol. Beiträge zur Physiologie Ber. dtsch. bot. Ges. Berichte der Deutschen Botanischen Gesellschaft Ber. dtsch. pharm. Ges. Ber. Forsch.-Inst. čsl. Berichte der Deutschen Pharmazeutischen Gesellschaft Bericht des Forschungsinstitutes der Čechoslovakischen Zucker-Zuckerind. industrie [in Prag] Berichte der Gesellschaft für Kohlentechnik (Dortmund-Eving) Ber. Ges. Kohlentech. Berl. klin. Wschr. Berliner Klinische Wochenschrift Ber. Ohara-Inst. Berichte des Ohara-Instituts für Landwirtschaftliche Forschungen in Kuraschiki, Provinz Okayama, Japan Ber. Physiol. Berichte über die gesamte Physiologie [(1921 ff.:) und Experimentelle Pharmakologie] = Berichte über die gesamte Biologie, Abt. B Ber. Roure-Bertrand Wissenschaftliche und Industrielle Berichte von ROURE-BERTRAND Fils. Grasse Berichte über die Verhandlungen der Sächsischen Akademie der Ber. sächs. Akad. Wissenschaften zu Leipzig, Mathematisch-physikalische Klasse Bericht von Schimmel & Co. [in] Miltitz b. Leipzig über Ätherische Ber. Schimmel Ole, Riechstoffe usw.; (1928ff.:) Bericht der Schimmel & Co. Aktiengesellschaft Miltitz bei Leipzig über... Ber. schweiz. bot. Ges. Berichte der Schweizerischen Botanischen Gesellschaft. Bulletin de la Société Botanique Suisse Ber. wiss. Biol. Berichte über die Wissenschaftliche Biologie -= Berichte über die gesamte Biologie, Abt. A Beton Eisen Beton und Eisen Bidr. Känn. Finl. Nat. Bidrag till Kännedom af Finlands Natur och Folk FolkBiochem. J. The Biochemical Journal Biochimija Biochimija (russ.). Biochimia Biochim. Terap. sperim. Biochimica è Terapia Sperimentale Biol. Bl. Biological Bulletin of the Marine Biological Laboratory; (1930 ff.:) The Biological Bulletin Biologiske Meddelelser udgivne af det Kongelige Danske Viden-Biol. Medd. danske Vid. Selsk. skabernes Selskab Biological Reviews of the Cambridge Philosophical Society Biologičeskij Žurnal (russ.) [Zeitschrift für Biologie. Journal de Biologie. Biologicheskij Zhurnal] Biol. Rev. Cambridge Biol. Z. Bio. Z. Biochemische Zeitschrift Bl.Bulletin de la Société Chimique de France, [([5] 1ff.:) Mémoires] Bl. Acad. Belgique Académie Royale de Belgique: Bulletins de la Classe des Sciences; ([5] 18ff. mit Nebentitel:) Koninklijke Belgische Academie, Mededeelingen van de Afdeeling Wetenschappen Académie Royale Serbe: Bulletin de l'Académie des Sciences

Physiques. Belgrade

Mathématiques et Naturelles, A, Sciences Mathématiques et

Bl. Agad. Belgrade

Bl. Soc. Sci. Poznań

Bl. Soc. vaud. Sci.

Bl. Trav. Pharm.

Bordeaux

#### Kürzung Titel Bulletin International de l'Académie des Sciences de Cracovie, Bl. Acad. Cracovie Classe des Sciences Mathématiques et Naturelles. 1918 Bulletin International de l'Académie Polonaise des Sciences et Bl. Acad. polon. des Lettres, Classe des Sciences Mathématiques et Naturelles Bulletin International de l'Académie Yougoslave des Sciences et Bl. Acad. yougosl. des Beaux-Arts, Classe des Sciences Mathém. et Naturelles Bulletin of the Agricultural Chemical Society of Japan Bl. agric. chem. Soc. Japan Bulletin of the American Institute of Mining [(1919:) and Bl. am. Inst. Mining Metallurgical] Engineers Bulletin of the American Physical Society Bl. am. phys. Soc. Bl. Assoc. belge Bulletin de l' Association Belge des Chimistes Chimistes Bl. Assoc. Chimistes Bulletin de l'Association des Chimistes. Paris Bulletin de l'Association des Chimistes de Sucrerie et de Distil-Bl. Assoc. Chimistes Sucr. Dist. lerie de France et des Colonies {(48-51:) de Sucrerie, de Distillerie et des Industries Agricoles de France et des Colonies ? Bulletin de l'Association Française des Techniciens du Pétrole Bl. Assoc. Techniciens $P\acute{e}tr.$ Bl. biol. France Belg. Bulletin Biologique de la France et de la Belgique Bl. Biol. Méd. URSS Bulletin de Biologie et de Médecine Expérimentale de l'URSS Bl. Bur. Mines Department of the Interior, Bureau of Mines: Bulletin. Washington Bl. Bur. Plant Ind. U.S. Department of Agriculture, Bureau of Plant Industry. Washington: Bulletin Bl. chem. Soc. Japan Bulletin of the Chemical Society of Japan Bl. Doc. Bulletin de la Société Chimique de France, Documentations Bl. imp. Inst. Bl. Inst. Fermentat. Bulletin of the Imperial Institute. London Bulletin de l'Association des Anciens Elèves de l'Institut Supérieur Gand des Fermentations de Gand Bl. Inst. Pin Bulletin de l'Institut du Pin Bl. Inst. Refrig. Bulletin of the International Institute of Refrigeration Bl. Jardin bot. Buit. Bulletin du Jardin Botanique de Buitenzorg Bl. Johns Hopkins Hosp. [The] Bulletin of the Johns Hopkins Hospital Bl. Mat. grasses Mar-Bulletin des Matières Grasses de l'Institut Colonial de Marseille seille Bl. nation. Res. Coun. Bulletin of the National Research Council Bulletin of the Institute of Physical and Chemical Research. Abstracts. Tokyo Bl. phys. chem. Res. Tokyo Bl. Roure-Bertrand Bulletin Scientifique et Industriel de la Maison Roure-Bertrand Fils de Grasse Bulletin des Sciences Pharmacologiques Bl. Sci. pharmacol. Bl. Sect. scient. Acad. Bulletin de la Section Scientifique de l'Académie Roumaine roum. Bl. Soc. chim. Belg. Bulletin de la Société Chimique de Belgique Bl. Soc. Chim. biol. Bulletin de la Société de Chimie Biologique Bl. Soc. Chim. ind. Bulletin de la Société de Chimie Industrielle Bl. Soc. franç. Min. Bulletin de la Société Française de Mineralogie Bl. Soc. franc. Phot. Bulletin de la Société Française de Photographie [(16ff.:) et de Cinématographie] Bl. Soc. ind. Mulh. Bulletin de la Société Industrielle de Mulhouse Bl. Soc. mycolog. Bulletin de la Société Mycologique de France Bl. Soc. Natural. Bulletin de la Société [Impériale] des Naturalistes de Moscou Moscou [Bjulleteń Moskovskogo Obščestva Ispytatelej Prirody (russ.)] Bl. Soc. neuchâtel. Sci. Bulletin de la Société Neuchâteloise des Sciences Naturelles Bl. Soc. roum. Phys. Bulletin de la Société Roumaine de Physique

Bulletin de la Societé des Amis des Sciences de Poznań

Bulletin des Travaux de la Société de Pharmacie de Bordeaux

Bulletin de la Société Vaudoise des Sciences Naturelles

#### Kürzung Titel Bl. Wagner Inst. Sci. Bulletin of the Wagner Free Institute of Science of Philadelphia Philad. Bodenkunde und Pflanzenernährung Bodenk. Pflanzenernähr. Boletín del Instituto de Medicina Experimental para el Estudio Bol. Inst. Med. exp. y Tratamiento del Cáncer Cáncer Boll. Assoc. ital. Ind. Bolletino dell'Associazione Italiana delle Industrie, dello Zucchero e dell'Alcool Bollettino Chimico-farmaceutico Boll. chim.-farm. Bollettino della Società Italiana di Biologia Sperimentale Boll. Soc. ital. Biol. Boll. Soc. Natural. Bollettino della Società dei Naturalisti in Napoli Napoli Bot. Arch. Botanisches Archiv The Botanical Gazette Bot. Gaz. Bot. Rev. The Botanical Review Interpreting Botanical Progress B. Ph. P. Beiträge zur Chemischen Physiologie und Pathologie Brauer-Hopfen-Ztg. Allgemeine Brauer- und Hopfenzeitung. Nürnberg Braunk. Braunkohle. Halle/S. Fortschritte in der Anorganisch-chemischen Industrie · · · Herausg. von A. Bräuer u. J. D'Ans. Berlin: Springer. 1921 ff. Bräuer-D'Ans Brennstoff-Chemie Brennstoffch. British Journal of Experimental Biology The British Journal of Experimental Pathology Brit. J. exp. Biol. Brit. J. exp. Path. Brit. med. J. The British Medical Journal Bulet. Bis 25: Buletinul Societății Române de Științe; 26-29: Buletinul de Chimie Pură și Aplicată Societății Română de Stiinte; 30 ff.: Buletinul de Chimie Pură și Aplicată al Societății Române de Chimie. Bulletin de Chimie Pure et Appliquée de la Société Roumaine de Chimie Bulet. Clui Buletinul Societății de Științe din Cluj. Bulletin de la Société des Sciences de Cluj. Roumanie Bulet. Soc. chim. Buletinul Societății de Chimie din România Romania Bur, Stand. J. Res. Bureau of Standards Journal of Research Chemisches Zentralblatt Canad. Chem. J. Canadian Chemical Journal Canad. Chem. Met. Canadian Chemistry and Metallurgy Canad. J. Res. National Research Council of Canada: Canadian Journal of Research Caoutch. Guttap. Le Caoutchouc et la Gutta-percha Č. čsl. Lékárn. Časopis Československého Lékárnictva Cellulose Industry. The Journal of the Cellulose Institute, Cell. Ind. Tokyo Tokyo. Abstracts from the Transactions Cellulosech. Cellulosechemie Cereal Chem. Cereal Chemistry Ceylon J. Sci. Ceylon Journal of Science Chaleur Ind. Chaleur et Industrie Chemische Apparatur Ch. Apparatur Chem. Abstr. Chemical Abstracts Chem. Age London The Chemical Age. London Chem. Age N.Y. Chemical Age. New York Chem.-Analyst The Chemist-Analyst Chem. and Ind. Chemistry and Industry [Review] Chem. Bl. Chicago The Chemical Bulletin. Chicago Chem. China Chemistry (China) The Chemical, Color & Oil Record The Chemical Engineer. New York Chemicals. New York Chem. Color Oil Rec. Chem. Engineer Chemicals Chemie Die Chemie. Zeitschrift des Vereins Deutscher Chemiker: A Chem. Listy Chemické Listy pro Vědu a Průmysl

Chemical and Metallurgical Engineering

Chem. met. Eng.

| Kürzung                                    | Titel                                                                                           |
|--------------------------------------------|-------------------------------------------------------------------------------------------------|
| Chem. N.                                   | The Chemical News and Journal of Physical {(122ff:) Industrial} Science                         |
| Chem. Obzor                                | Chemický Obzor. Praha                                                                           |
| Chem. Record-Age                           | Chemical Record-Age                                                                             |
| Chem. Res. spec. Rep.                      | Department of Scientific and Industrial Research; Chemical Research: Special Reports            |
| Chem. Reviews                              | Chemical Reviews. Baltimore                                                                     |
| Chem. Trade $J$ .                          | The Chemical Trade Journal and Chemical Engineer                                                |
| Chem. Weekb.<br>Ch. Fab.                   | Chemisch Weekblad Die Chemische Fabrik. Zeitschrift des Vereins Deutscher Chemiker, B           |
| Ch. F ab.<br>Ch. I.                        | Die chemische Industrie [(57ff.:) Nachrichten-Ausgabe]                                          |
| Chim, et Ind.                              | Chimie et Industrie. Paris                                                                      |
| Chimfarm. Promyšl.                         | Chimiko-farmacevtičeskaja Promyšlennost' (russ.)                                                |
| Chimica e Ind.                             | La Chimica e L'Industria. Milano                                                                |
| Chim. tverd. Topl.                         | Chimija Tverdogo Topliva (russ.)                                                                |
| Chin. J. Physiol.<br>Ch. Rdsch. Mitteleur. | The Chinese Journal of Physiology Chemische Rundschau [(3ff.:) für Mitteleuropa und den Balkan] |
| Balkan                                     | Chemische Rundschau [(511) für Mitteleuropa und den Barkan]                                     |
| Ch. Tech.                                  | Die Chemische Technik. Zeitschrift des Vereins Deutscher<br>Chemiker: B                         |
| Ch. Umschau Fette                          | Chemische Umschau auf dem Gebiet der Fette, Öle, Wachse und Harze                               |
| Ch. Z.                                     | Chemiker-Zeitung                                                                                |
| Ch. Zelle Gewebe<br>Collect. Trav. chim.   | Chemie der Zelle und Gewebe Collection des Travaux Chimiques de Tchécoslovaquie. Collection     |
| Tchécosl.                                  | of Czechoslovak Chemical Communications                                                         |
| Collegium                                  | Collegium. Darmstadt                                                                            |
| Colloid Symp. Mon.                         | Colloid Symposium Monograph                                                                     |
| Comment. biol. Helsing-                    | Societas Scientiarum Fennica: Commentationes Biologicae. Hel-                                   |
| fors                                       | singfors                                                                                        |
| Comment. physmath.                         | Societas Scientiarum Fennica: Commentationes Physico-mathe-                                     |
| Helsingfors Contrib. Boyce Thomp.          | maticae. Helsingfors Contributions from Boyce Thompson Institute                                |
| son Inst.                                  | Continuous nom 20,00 2nompson 2220000                                                           |
| Contrib. Estudio Cienc.                    | Universidad Nacional de la Plata: Contribución al Estudio de las                                |
| fis. La Plata                              | Ciencias físicas y matemáticas; Serie matemático-física                                         |
| C. r.                                      | Comptes Rendus Hebdomadaires des Séances de l'Académie des                                      |
| C. r. Conf. int. Chim.                     | Sciences<br>Comptes Rendus de la Conférence Internationale de la Chimie                         |
| C. r. Congr. Chim. ind.                    | Congrès de Chimie Industrielle. Comptes Rendus                                                  |
| C.r. Doklady                               | Comptes Rendus (Doklady) de l'Académie des Sciences de l'U.R.S.S.                               |
| C. r. Soc. Biol.                           | Comptes Rendus Hebdomadaires des Séances et Mémoires de la                                      |
| C m Sua Plana C.                           | Société de Biologie [et de ses Filiales et Associées]                                           |
| C. r. Soc. Phys. Genève                    | Compte rendu des Séances de la Société de Physique et l'Histoire                                |
|                                            | Naturelle de Genève. Supplément aux Archives des Sciences<br>Physiques et Naturelles            |
| C. r. Trav. Carlsberg                      | Comptes Rendus des Travaux du Laboratoire [de] Carlsberg                                        |
| Cuir tech.                                 | Cuir Technique. Paris                                                                           |
| Curr. Sci.                                 | Current Science. Bangalore                                                                      |
| D.                                         | Description Deleteral of the Town 1                                                             |
| D.A.B.                                     | DINGLERS Polytechnisches Journal<br>Deutsches Arzneibuch (6. Ausg. Berlin 1926)                 |
| Danske Vid. Selsk. Skr.                    | Det Kongelige Danske Videnskabernes Selskabs Skrifter, Natur-                                   |
|                                            | videnskabelig og Mathematisk Afdeling                                                           |
| Dansk Tidskr. Farm.                        | Dansk Tidsskrift for Farmaci                                                                    |
| Desinf.                                    | Desinfektion. Berlin                                                                            |
| Doc. scient. Doklady Akad. S.S.S.R.        | Documentation Scientifique. Paris                                                               |
| - omung Anuu. D.D.D.R.                     | Doklady Akademii Nauk S.S.S.R. (russ.). Comptes Rendus de                                       |
|                                            | l'Académie des Sciences de l'Union des Républiques Soviétiques Socialistes                      |
| Doklady ross. Akad.                        | Doklady Rossijskoj Akademii Nauk (russ.). Comptes Rendus de                                     |
| ı                                          | l'Académie des Sciences de Russie                                                               |
|                                            |                                                                                                 |

#### Kürzung Titel D.R.P.Deutsches Reichspatent Dtsch. A poth.-Ztg. Deutsche Apotheker-Zeitung; (vorübergehend:) Standeszeitung Deutscher Apotheker Dtsch. Arch. klin. Med. Deutsches Archiv für Klinische Medizin Dtsch. Essigind. Die Deutsche Essigindustrie Dtsch. Färber-Ztg. Deutsche Färber-Zeitung Deutsche Medizinische Wochenschrift Dtsch. med. Wschr. Dtsch. Parf.-Ztg. Deutsche Parfümeriezeitung Dtsch. tierärztl. W schr. Deutsche tierärztliche Wochenschrift Das Deutsche Wollen-Gewerbe Dtsch. Wollengew. Dtsch. Z. ger. Med. Dtsch. Zuckerind. Deutsche Zeitschrift für die gesamte Gerichtliche Medizin Die Beutsche Zuckerindustrie. Berlin The Dublin Journal of Medical Science Dublin J. med. Sci. Dyer, Calico Printer The Dyer, Calico Printer, Bleacher, Finisher and Textile Review The Dyer, Textile Printer, Bleacher and Finisher Dyer, Text. Printer El. Ch. Z. Elektrochemische Zeitschrift Electrotech. J. Electrotechnical Journal. Tokyo Endocrinology. Los Angeles Endocrinology. Los Angeles Engineering. London Engineering and Mining Journal Engineering and Mining Journal-Press Engineering and Mining World Englisches Patent Endocrin. Eng.Eng. Mining J. Eng. Mining J .- Press Eng. Mining Wd. E. P. Enzymol. Enzymología. Haag Erdől Teer Erdől und Teer Ergebn. Enzymf. Ergebnisse der Enzymforschung Ergebnisse der Exakten Naturwissenschaften Ergebn.exakt.Naturwiss. Ergebn. Physiol. bis 34: Ergebnisse der Physiologie; 35, 36: Ergebnisse der Physiologie und Experimentellen Pharmakologie; 87ff.: Ergebnisse der Physiologie, Biologischen Chemie und Experimentellen Pharmakologie Ergebn. Vitamin-Ergebnisse der Vitamin- und Hormonforschung Hormont. Ergebn. Zahnheilk. Ergebnisse der gesamten Zahnheilkunde Ernährg. Pfl. Die Ernährung der Pflanze Exp. Stat. Rec. U. S. Department of Agriculture: Experiment Station Record Farbe Lack Farbe und Lack Farben-Ztg. Farben-Zeitung Farmacevtičnij Ž. Farmaceytičnij Žurnal. Charkiv, Kiiv (ukr.) Farmacista ital. Il Farmacista Italiano Farmac. Z. Charkov Farmacevtičeskij Žurnal. Charkov (russ.) Farmacija i Farmakologija (russ.) [Deutsche] Faserstoffe und Spinnpflanzen Farm. i. Farmakol. Faserst. Spinnpf. Fermentf.Fermentforschung Fettch. Úmschau Fettchemische Umschau Fette, Seifen Fette und Seifen Finska Kemistsamf. Finska Kemistsamfundets Meddelanden [Suomen Kemistiseuran Medd. Tiedonantoja] Fiziol. Ž. Fiziologičeskij Žurnal S.S.S.R. (russ.). Journal of Physiology of Flora Flora oder Allgemeine Botanische Zeitung Fol. endocrin. japon. Folia Endocrinologica Japonica Fol. med. Napoli Folia Medica. Napoli Folia Pharmacologica Japonica Fol. pharmacol. japon. Food Manut. Food Manufacture Forh. norske Vidensk. Det Kongelige Norske Videnskabers Selskabs Forhandlinger Selsk.

Indian med. Gaz.

#### Titel Kürzung Forschungen auf dem Gebiete der Milchwirtschaft und des Molkerei-Forschg. Milchwirtsch. wesens Molkereiw. Der Forschungsdienst Forschungsd. Fortsch.Ch. org.Naturst. Fortsch. Ch., Phys. Fortschritte der Chemie Organischer Naturstoffe Fortschritte der Chemie, Physik und Physikalischen Chemie Fortschritte der Landwirtschaft. Wien Fortsch. Landw. Fortschritte der Medizin. Berlin Fortsch. Med. Fortschritte der Mineralogie, Kristallographie und Petrographie. Fortsch. Min. Fortschritte der Therapie Fortsch. Therap. Französisches Patent F. P.Zeitschrift für Analytische Chemie (begründet von Fresenius) Fr.Fortschritte der Teerfarbenfabrikation und verwandter Industrie-Frdl.zweige. Dargestellt von P. FRIEDLÄNDER (Ab 14 fortgeführt von H. E. FIERZ-DAVID. Berlin: Springer. 1888ff. The Fruit Products Journal and American Vinegar Industry Fruit Prod. J. Fuel in Science and Practice Fuel Fukuoka Ikwadaigaku Zasshi. Fukuoka Acta Medica Fukuoka Acta med. Gazzetta Chimica Italiana Gas J.Gas Journal. London Gas-Wasserfach Geneesk. Tijdsch. Das Gas- und Wasserfach Geneeskundig Tijdschrift voor Nederlandsch-Indië Nederl.-Indië Gen. Electr. Rev. General Electric Review. Schenectady Gesundh .- Ing. Gesundheitsingenieur Giorn. Biol. appl. Giornale di Biologia Applicata alla Industria Chimica [ed Alimentare] Giornale di Biologia Industriale, Agraria ed Alimentare Giorn. Biol. ind. Giorn. Chim. ind. appl. Giornale di Chimica Industriale ed Applicata Giorn. Farm. Chim. Giornale di Farmacia, di Chimica e di Scienze Affini Glasnik chem. Društva Glasnik Chemiskog Društva Kral'evine Jugoslavije. Bulletin de la Société Chimique du Royaume de Yougoslavie Glückauf. Berg- und Hüttenmännische Zeitschrift Jugosl.Glückaut Godišnik na Šofijskija Universitet; Fiziko-matemat. Fakultet Godišnik Univ. Sotia (bulg.). Annuaire de l'Université de Sofia; Faculté Physicomathématique Gummi-Ztg. Gummi-Zeitung HOPPE-SEYLERS Zeitschrift für Physiologische Chemie Halle Cuirs Spl. La Halle aux Cuirs. Supplément Technique Mensuel. Heil- und Gewürz-Pflanzen. Mitteilungen der Deutschen Hortus-Heil-Gewürz-Pfl. Gesellschaft Helvetica Chimica Acta Helv. phys. Acta Het Gas Helvetica Physica Acta Het Gas. Hertogenbosch Hospitalstidende. København Hospitalstid. Det Norske Videnskaps-Akademi i Oslo: Hvalrådets Skrifter. Scientific Results of Marine Biological Research Hvalrådets Skr. Ind. Chemist The Industrial Chemist and Chemical Manufacturer Ind. chimica L'Industria Chimica. Il Notiziario Chimico-industriale Ind. chimique L'Industrie Chimique [et le Phosphate Réunis] Ind. Eng. Chem. Industrial and Engineering Chemistry [Industrial Edition] Ind. Eng. Chem. Anal. Analytical Edition Ind. Eng. Chem. News News Edition Indian Forest Rec. The Indian Forest Records Indian J. med. Res. The Indian Journal of Medical Research Indian J. Phys. Indian Journal of Physics and Proceedings of the Indian Association

for the Cultivation of Science

The Indian Medical Gazette

#### Kürzung Titel The India Rubber Journal India Rubber J. L'Industria Saccarifera Italiana Ind. saccarif. ital. L'Ingénieur Chimiste. Bruxelles Ingeniörsvetenskapsakademiens Handlingar Ing. Chimiste Ing. Vet.-Akad. Handl. Iowa State College Journal of Science Iowa Coll. J. Ir. J. med. Sci. The IrishJournal of Medical Science Iron Age The Iron Age Izv. Akad. S.S.S.R. Izvestija Akademii Nauk Sojuza Sovetskich Socialističeskich Respublik (russ.). Bulletin de l'Académie des Sciences de l'Union des Républiques Soviétiques Socialistes. [(1928ff.:) Otdelenie Matematičeskich i Estestvennych Nauk. Classe des Sciences Mathématiques et Naturelles Izvestija Biologičeskogo Naučno-izsledovatel'skogo Instituta i Izv. biol. Inst. Perm. Biologičeskoj Stancii pri Permskom Gosudarstvennom Universitete (russ.). Bulletin de l'Institut des Recherches Biolo-Univ. giques et de la Station Biologique a l'Université de Perm Izvestija Imperatorskoj Akademii Nauk (russ.). Bulletin de l'Aca-Izv. imp. Akad. Petrog. démie Imp. des Sciences. Petrograd Izv. Inst. fiz.-chim. Izvestija Instituta Fiziko-chimičeskogo Analiza (russ.). Annales de l'Institut d'Analyse Physico-chimique Anal. Izv. Inst. Platiny Izvestija Instituta po Izučeniju Platiny i drugich Blagorodnych Metallov (russ.). Annales de l'Institut du Platine et des autres Métaux Précieux Izvestija Ivanovo-Voznesenskogo Politechničeskogo Instituta Izv. Ivanovo-Vozne-(russ.). Bulletin de l'Institut Polytechnique à Ivanovo-Vosniesensk sensk. politech. Inst. Jugoslavenska Akademija Znanosti i Umjetnosti u Zagrebu: Izv. jugosl. Akad. Izvješća o Raspravama Mat.-prirodoslovnoga Razreda. Académie des Sciences et des Arts des Slaves de Sud de Zagreb: Bulletin des Travaux de la Classe Mathématique et Naturelle Izv. ross. Akad. Izvestija Rossijskoj Akademii Nauk (russ.). Bulletin de l'Académie des Sciences de Russie Izv. Sektora fiz.-chim. Akademija Nauk S.S.S.R., Institut Obščej i Neorganičeskoj Chimii: Anal. Izvestija Sektora Fiziko-chimičeskogo Analiza (russ.). Institut de Chimie Générale: Annales du Secteur d'Analyse Physicochimique Izv. teplotech. Inst. Izvestija Teplotechničeskogo Instituta (russ.) Izv. ural. politech. Inst. Izvestija Ural'skogo Politechničeskogo Instituta (russ.). Annales de l'Institut Polytechnique de l'Oural (Liebig-Kopps) Jahresbericht über die Fortschritte der Chemie Journal of the Agricultural Chemical Society of Japan. Abstracts J. agric. chem. Soc. Japan J. agric. Res. Journal of Agricultural Research J. agric. Sci. The Journal of Agricultural Science J. am. Leather Chem. The Journal of the American Leather Chemists' Association Assoc. J. am. med. Assoc. The Journal of the American Medical Association J. am. pharm. Assoc. Journal of the American Pharmaceutical Association Japan. J. Chem. Japanese Journal of Chemistry Japan. J. med. Sci. Japanese Journal of Medical Sciences Japan. J. Phys. Japanese Journal of Physics Japan med. Wd. The Japan Medical World [Nippon No Ikai]. Tokyo J. asiat. Soc. Bengal Journal of the Asiatic Society of Bengal, Science J. Assoc. agric. Chemists Journal of the Association of Official Agricultural Chemists Journal of Bacteriology. Baltimore J. Bacteriol. Jber. chem.-tech. Jahresbericht der Chemisch-technischen Reichsanstalt Reichsanst. $Jber.\ Pharm.$ Jahresbericht der Pharmazie J. Biochem. Tokuo The Journal of Biochemistry. Tokyo J. biol. Chem. The Journal of Biological Chemistry

| Kürzung                                     | Titel                                                                                                                                                 |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| J. Bioph. Tokyo                             | The Journal of Biophysics. Tokyo                                                                                                                      |
| Jb. Radioakt. Elektr.                       | Jahrbuch der Radioaktivität und Elektronik                                                                                                            |
| Jb. wiss. Bot.                              | Jahrbücher für Wissenschaftliche Botanik                                                                                                              |
| J. Cancer Res.                              | The Journal of Cancer Research                                                                                                                        |
| J. chem. Educ.                              | Journal of Chemical Education                                                                                                                         |
| J. chem. Eng. China                         | Journal of Chemical Engineering China                                                                                                                 |
| J. Chemotherapy<br>Therap.                  | Journal of Chemotherapy and Advanced Therapeutics                                                                                                     |
| J. chem. Phys.                              | The Journal of Chemical Physics. Lancaster, Pa.                                                                                                       |
| J. chem. Soc. Japan                         | Journal of the Chemical Society of Japan                                                                                                              |
| J. Chim. phys.                              | Journal de Chimie Physique [et Revue Générale des Colloïdes]                                                                                          |
| J. chin. chem. Soc.                         | Journal of the Chinese Chemical Society                                                                                                               |
| J. Coll. Agric. Univ.<br>Tokyo              | Journal of the College of Agriculture, Imperial University of Tokyo {(12ff.:) Tokyo Imperial University}                                              |
| J. Coll. Eng. Tokyo Univ.                   | Journal of the College of Engineering, Tokyo Imperial University                                                                                      |
| J. Coll. Sci. Univ. Tokyo                   | Journal of the College of Science, Imperial University of Tokyo                                                                                       |
| J. Dairy Sci.                               | Journal of Dairy Science                                                                                                                              |
| J. Departm. Agric.<br>Kyushu Univ.          | Journal of the Department of Agriculture, Kyushu Imperial<br>University                                                                               |
| J. exp. Biol.                               | The Journal of Experimental Biology                                                                                                                   |
| J. exp. Medicine                            | The Journal of Experimental Medicine                                                                                                                  |
| J. Fabr. Sucre                              | Journal des Fabricants de Sucre                                                                                                                       |
| J. Fac. Eng. Tokyo Univ.                    | Journal of the Faculty of Engineering, Tokyo Imperial University                                                                                      |
| J. Fac. Sci. Hokkaido<br>J. Fac. Sci. Univ. | Journal of the Faculty of Science, Hokkaido Imperial University                                                                                       |
| Tokyo                                       | Journal of the Faculty of Science, Imperial University of Tokyo                                                                                       |
| J. Four électr.                             | Journal du Four Electrique [et des Industries Electrochimiques]                                                                                       |
| J. Franklin Inst.                           | Journal of the Franklin Institute                                                                                                                     |
| J. Fuel Soc. Japan<br>J. Gasbel.            | Journal of the Fuel Society of Japan (Nenryo Kyokwai Shi)<br>Journal für Gasbeleuchtung und Verwandte Beleuchtungsarten<br>sowie für Wasserversorgung |
| J. gen. Physiol.                            | The Journal of General Physiology. Baltimore                                                                                                          |
| J. Hyg.<br>J. Immunol.                      | The Journal of Hygiene. London                                                                                                                        |
| J. ind. Eng. Chem.                          | The Journal of Immunology The Journal of Industrial and Engineering Chamistry                                                                         |
| J. ind. Hyg.                                | The Journal of Industrial and Engineering Chemistry The Journal of Industrial Hygiene [and Toxicology]                                                |
| J. indian chem. Soc.                        | [(1-4:) Quarterly] Journal of the Indian Chemical Society                                                                                             |
| J. indian chem. Soc.                        | Industrial and News Edition of the Journal of the Indian Chemical                                                                                     |
| News                                        | Society                                                                                                                                               |
| J. indian Inst. Sci.                        | Journal of the Indian Institute of Science                                                                                                            |
| J. infect. Diseases                         | The Journal of Infectious Diseases                                                                                                                    |
| J. Inst. Brewing                            | Journal of the Institute of Brewing                                                                                                                   |
| J. Inst. Petr. Technol.                     | Journal of the Institution of Petroleum Technologists                                                                                                 |
| J. Labor. clin. Med.                        | The Journal of Laboratory and Clinical Medicine                                                                                                       |
| J. Landw.                                   | Journal für Landwirtschaft                                                                                                                            |
| J. Méd. Bordeaux<br>J. metabol, Res.        | Journal de Médecine de Bordeaux [et du Sud-Ouest]                                                                                                     |
| J. Nutrit.                                  | The Journal of Metabolic Research                                                                                                                     |
| J. Oil Col. Chem. Assoc.                    | The Journal of Nutrition Journal of the Oil and Colour Chemists' Association                                                                          |
| J. Oil Fat Ind.                             | Journal of Oil and Fat Industries                                                                                                                     |
| J. opt. Soc. Am.                            | Journal of the Optical Society of America [and Review of Scientific                                                                                   |
| J. org. Chem.                               | Instruments] The Journal of Organic Chamistry                                                                                                         |
| J. orient. Med.                             | The Journal of Organic Chemistry Journal of Oriental Medicine                                                                                         |
| J. Path. Bact.                              | The Journal of Pathology and Bacteriology                                                                                                             |
| J. Pharmacol. exp.                          | The Journal of Pharmacology and Experimental Therapeutics                                                                                             |
| Therap.                                     |                                                                                                                                                       |
| J. Pharm. Als. Lorr.                        | Journal de Pharmacie d'Alsace et de Lorraine                                                                                                          |
|                                             |                                                                                                                                                       |
| J. Pharm. Belg.                             | Journal de Pharmacie de Belgique                                                                                                                      |

| Kürzung                                              | Titel                                                                                                                                |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
|                                                      |                                                                                                                                      |
| J. pharm. Soc. Japan                                 | Journal of the Pharmaceutical Society of Japan (Yakugakuzasshi)                                                                      |
| J. phys. Chem.                                       | The Journal of Physical Chemistry. Baltimore                                                                                         |
| J. Physiol. J. Physiol. Path.                        | The Journal of Physiology. London<br>Journal de Physiologie et de Pathologie Générale                                                |
| J. Phys. Rad.                                        | Le Journal de Physique et le Radium. Paris                                                                                           |
| J. Phys. théor. appl.                                | Journal de Physique Théorique et Appliquée. Paris                                                                                    |
| J. pr.                                               | Journal für Praktische Chemie                                                                                                        |
| J. Pr. asiat. Soc. Bengal<br>J. Pr. Soc. N. S. Wales | Journal and Proceedings of the Asiatic Society of Bengal                                                                             |
| J. Pr. Soc. west.                                    | Journal and Proceedings of the Royal Society of New South Wales<br>Journal and Proceedings of the Royal Society of Western Australia |
| Australia                                            | o outlier and a roote ingo or the roote of the books ramerale                                                                        |
| J. Res. Bur. Stand.                                  | Journal of Research of the National Bureau of Standards                                                                              |
| J. Rheol.                                            | Journal of Rheology                                                                                                                  |
| J. roy. tech. Coll.<br>J. Sci. Assoc. Viziana-       | The Journal of the Royal Technical College. Glasgow<br>Journal of the Science Association, Maharajah's College.                      |
| garam                                                | Vizianagaram                                                                                                                         |
| J. Sci. Hiroshima                                    | Journal of Science of the Hiroshima University, Series A                                                                             |
| J. Soc. Automot. Eng.                                | Journal of the Society of Automotive Engineers                                                                                       |
| J. Soc. chem. Ind.                                   | bis 44: Journal of the Society of Chemical Industry;                                                                                 |
|                                                      | 45ff: Journal of the Society of Chemical Industry, Transactions [and Communications]                                                 |
| J. Soc. chem. Ind.                                   | The Journal of the Society of Chemical Industry, Japan. Sup-                                                                         |
| Japan Spl.                                           | plemental Binding                                                                                                                    |
| J. Soc. Dyers Col.                                   | The Journal of the Society of Dyers and Colourists                                                                                   |
| J. Soc. west. Australia J. Textile Inst.             | Journal of the Royal Society of Western Australia The Journal of Textile Institute. Manchester                                       |
| J. Th.                                               | Jahresbericht über die Fortschritte der Tierchemie oder der Physio-                                                                  |
|                                                      | logischen und Pathologischen Chemie                                                                                                  |
| J. Tokyo chem. Soc.                                  | Journal of the Tokyo Chemical Society                                                                                                |
| J. Univ. Bombay<br>J. Urol. Baltim.                  | Journal of the University of Bombay                                                                                                  |
| J. Urol. méd.                                        | The Journal of Urology. Baltimore Journal d'Urologie Médicale et Chirurgicale. Paris                                                 |
| J. Washington Acad.                                  | Journal of the Washington Academy of Sciences                                                                                        |
| Kali                                                 | Kali [(25ff:) Verwandte Salze und Erdöl]                                                                                             |
| Kansas Univ. Sci. Bl.                                | The Kansas University Science Bulletin                                                                                               |
| Kaučuk Rez.                                          | Kaučuk i Rezina (russ.). Caoutchouc and Rubber                                                                                       |
| Kautschuk<br>Kimya Ann.                              | Kautschuk. Berlin<br>Kimya Annali (türk.) (Annales de Chimie)                                                                        |
| Kis. Közlem.                                         | Kisérletügyi Közlemények (Mitteilungen der Landwirtschaftlichen                                                                      |
|                                                      | Versuchsstationen Ungarns)                                                                                                           |
| Klepzigs Textil-Z.                                   | Klepzigs Textil-Zeitschrift                                                                                                          |
| Klin. Wschr.<br>Koks i Chim.                         | Klinische Wochenschrift<br>Koks i Chimija (russ.). Koks und Chemie. Coke and Chemistry                                               |
| Kō, Kwa, Za.                                         | Kögyő Kwagaku Zasshi (japan.) (Zeitschrift der Gesellschaft für                                                                      |
|                                                      | Chemische Industrie                                                                                                                  |
| Koll. Beih.                                          | Kolloid[chemische] Beihefte (Ergänzungshefte zur Kolloid-Zeitschrift)                                                                |
| KollZ.                                               | Kolloid-Zeitschrift                                                                                                                  |
| Koll. Žu.                                            | Kolloidnyj Žurnal (russ.). Colloid Journal                                                                                           |
| Kunsted.                                             | Die Kunstseide<br>Kunstseide und Zellwolle                                                                                           |
| Kunstsd. Zellw.<br>Kunstst.                          | Kunststoffe                                                                                                                          |
| Labor. Praktika                                      | Laboratornaja Praktika (russ.). La Pratique du Laboratoire                                                                           |
| La Nature                                            | La Nature. Paris                                                                                                                     |
| Lancet                                               | The Lancet. London                                                                                                                   |
| Landolt-Börnst.                                      | LANDOLT-BÖRNSTEIN-ROTH-SCHEEL: Physikalisch-Chemische<br>Tabellen. 5. Aufl. Berlin: Springer. 1923ff.                                |
| Landw. Jb.                                           | Landwirtschaftliche Jahrbücher                                                                                                       |
| Landw. Jb. Schweiz                                   | Landwirtschaftliches Jahrbuch der Schweiz                                                                                            |
|                                                      |                                                                                                                                      |

#### Titel Kürzung FÜHLINGS Landwirtschaftliche Zeitung Landw. Ztg. Le Cancer. Bruxelles Le Cancer Leipziger Monatschrift für Textil-Industrie Leipz. Monatschr. T'extilind. Listy Cukrovarnické. V Praze Listy cukrovar. Lotos. Naturwissenschaftliche Zeitschrift. Prag LotosL. V. St. Die Landwirtschaftlichen Versuchsstationen Monatshefte für Chemie und Verwandte Teile anderer Wissen-M. schaften Magyar Chemiai Folyóirat Mag. chem. Folyóirat Mag. gyógysz. Társ. Magyar Gyógyszerésztudományi Társaság Értesitője [(8ff.:) Berichte der Ungarischen Pharmazeutischen Gesellschaft] The Manufacturing Chemist and Pharmaceutical, Cosmetic and Photographic Trade Journal (bzw. Nachfolger mit geringen Manufact. Chemist J. Titeländerungen) Maslobojno-žirovoe Delo (russ.) Mathematisk-fysiske Meddelelser udgivne af det Kongelige Danske Maslob. ir. Delo Math.-fys. Medd. danske Vid. Selsk. Videnskabernes Selskab Matematikai és Természettudományi Értesitő. A Magyar Tudo-mányos Akadémia III. Osztályának Folyóirata. Mathe-Mat. természettud. Értesitő matischer u. Naturwissenschaftlicher Anzeiger d. Ungarischen Akademie der Wissenschaften Medizin und Chemie. Abhandlungen aus den Medizinisch-chemi-Med. Ch. I. G. schen Forschungsstätten der I. G. Farbenindustrie A.G. Medd. Carlsberg Meddelelser fra Carlsberg Laboratoriet Ingeniörs Vetenskaps Akademien: Meddelanden Meddelanden från K. Vetenskapsakademiens Nobelinstitut Medd. Ing. Vet. Akad. Medd. Vet.-Akad. Nobelinst. Meded. Rijksinst. phar-Mededeelingen van het Rijks-Instituut voor Pharmacotherapeutisch Onderzoek macoth. Onderzoek Med. Klinik Medizinische Klinik Med. Welt Die Medizinische Welt. Berlin Melliand Textilb. 1-3: Textilberichte über Wissenschaft, Industrie und Handel (Hrsg. v. Melliand) 4ff: MELLIAND[8] Textilberichte Académie Royale de Belgique, Classe des Sciences: Mémoires. Mém. Acad. Belg. 80 Collection in -8°. Mém. Acad. Inst. Mémoires de l'Académie [Royale] des Sciences de l'Institut [Im-France périal] de France Mem. Accad. Ital. Reale Accademia d'Italia: Memorie della Classe di Scienze Fisiche, Matematiche e Naturali Atti della Reale Accademia [Nazionale] dei Lincei: Memorie della Mem. Accad. Lincei Classe di Scienze Fisiche, Matematiche o Naturali Mem. Coll. Agric. Memoirs of the College of Agriculture, Kyoto Imp. University, KyotoChemical Series Mem. Coll. Sci. Eng. Memoirs of the College of Science and Engineering (Kyoto Imperial KyotoUniversity) Mem. Coll. Sci. Kyoto Memoirs of the College of Science, Kyoto Imperial University Mém. Poud. Mémorial des Poudres Mem. Pr. Manchester Memoirs and Proceedings of the Manchester Literary and Philo-Soc. sophical Society (Manchester Memoirs) Mem. Ryojun Coll. Eng. Memoirs of the Ryojun College of Engineering Mercks Jber. E. Mercks Jahresbericht über Neuerungen auf den Gebieten der Pharmakotherapie und Pharmazie The Metal Industry. London Metall und Erz. Halle (S.) Metan. Lwów Metal Ind. London Metall Erz Metan Mikrochemie. Wien Mikrochimica Acta Mikroch. Mikroch. Acta Milchwirtsch. Forsch. Milchwirtschaftliche Forschungen

#### Kürzung Titel Milchwirtschaftliches Zentralblatt. [Wissenschaftliche Beilage zur Milchwirtsch. Zbl. Milch-Zeitung Militärw. tech. Mitt. Militärwissenschaftliche und Technische Mitteilungen. Wien Wien Mining and Metallurgy Mining Met. Min. Mag. The Mineralogical Magazine and Journal of the Mineralogical Society Zeitschrift für Kristallographie, Mineralogie und Petrographie, Abt. B: Mineralogische und Petrographische Mitteilungen Min. petrogr. Mitt. Department of the Interior, Bureau of Mines: Minerals Yearbook. Min. Yearb. Bur. Mines Washington Mitteilungen der Gesellschaft für Braunkohlen- und Mineralölforschung an der Technischen Hochschule Berlin Mitt. Braunk.-Forschg. Berl.Mitteilungen der Deutschen Materialprüfungsanstalten Mitt. dtsch. Materialpr.-Mitt. Kaliforsch.-Anst. Mitteilungen der Kaliforschungsanstalt G.m.b.H. Mitt. Kohlenforschungs-Mitteilungen aus dem Schlesischen Kohlenforschungsinstitut der inst. Breslau Kaiser-Wilhelm-Gesellschaft in Breslau Mitt, Lebensmittel-Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung und unters. Hyg. Hygiene. Travaux de Chimie Alimentaire et d'Hygiène Mitteilungen aus dem Materialprüfungsamt [41 ff.: und Mitt. Materialpr. Berl. dem Kaiser-Wilhelm-Institut für Metallforschung zu Berlin-Dahlem Mitt. med. Ges. Okayama-Igakkai-Zasshi [Mitteilungen der Medizinischen Gesellschaft zu Okayama] Okayama Mod. Plastics Modern Plastics Monatbull, Schw. Gas-Monatsbulletin des Schweizerischen Vereins von Gas- und Wasserfachmännern. Bulletin Mensuel de la Société Suisse de Wasserf. l'Industrie du Gaz et des Eaux Monath, Seide Kunstsd. Monatshefte für Seide und Kunstseide Monatsschrift für Kinderheilkunde Monatschr. Kinderheilk. Monatschr. Textilind. Monatschrift für Textil-Industrie Monit. Prod. chim. Le Moniteur des Produits Chimiques Monit. scient. Moniteur Scientifique du Docteur Quesneville Monthly Bl. agric. Sci. International Institute of Agriculture: Monthly Bulletin of Agricultural Science and Practice. Reprint from the International Review of Agriculture Münch, med, Wschr. Münchener Medizinische Wochenschrift Nachr. Akad. Göttingen Nachrichten von der Akademie der Wissenschaften zu Göttingen (Sozietät der Reichsakademie), Mathematisch-physikalische Klasse Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Nachr. Ges. Wiss. Mathematisch-physikalische Klasse Göttingen National Central University Science Reports Nation. Cent. Univ. Sci. Rep. National Petroleum News Nation. Petr. News Nature. London Nature Naturwiss. Die Naturwissenschaften Natuurw. Tijdsch. Natuurwetenschappelijk Tijdschrift Il Nuovo Cimento N. Cim. Nederl. Tijdsch. Nederlandsch Tijdschrift voor Geneeskunde Geneesk. Nederlandsch Tijdschrift voor Natuurkunde Nederl. Tijdsch. Natuurk. Neftjanoe [i Slancevoe] Chozjajstvo (russ.) Neft. Choziaistvo Nitrocellulose Nitrocell. Norsk Geologisk Tidsskrift Norsk geol. Tidskr. Il Notiziario Chimico-industriale Notiz. chim. ind. Nouvelles de la Chimie Nouv. Chim.

| Kürzung                                               | Titel                                                                                                            |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Öf. Fi.                                               | Öfversigt af Finska Vetenskaps-Societetens Förhandlingar, A: Mate                                                |
|                                                       | matik och Naturvetenskap                                                                                         |
| Öle, Fette, Wachse                                    | Ole, Fette, Wachse [<1936 Nr. 7ff.:> Seife, Kosmetik]                                                            |
| Öl-Fett-Ind.                                          | Die Ol- und Fettindustrie. Wien                                                                                  |
| Ol-Fett-Ztg.                                          | Allgemeine Ol- und Fettzeitung                                                                                   |
| Ol Kohle                                              | Öl und Kohle [<1935ff.:> vereinigt mit Erdöl und Teer] Österreichische Botanische Zeitschrift                    |
| Öst. bot. Z.                                          | Österreichische Chemiker-Zeitung                                                                                 |
| Öst. Chemiker-Ztg.<br>Östung. Z. Zuckerind.<br>Landw. | Österreichisch-Ungarische Zeitschrift für Zuckerindustrie und Land<br>wirtschaft                                 |
| Oil Fat Ind.                                          | Oil and Fat Industries                                                                                           |
| Oil Gas J.                                            | The Oil and Gas Journal                                                                                          |
| Oil Soap                                              | Oil and Soap                                                                                                     |
| Oklahoma agric. Exp.<br>Stat. Bl.                     | Oklahoma Agricultural Experiment Station: Bulletin                                                               |
| $Onderstepoort\ J.$                                   | The Onderstepoort Journal of Veterinary Science and Anima<br>Industry                                            |
| Org. Synth.                                           | Organic Syntheses, New York. Deutsche Ausgabe, Braunschwei                                                       |
| Paper Trade J.                                        | Paper Trade Journal                                                                                              |
| Papiert.                                              | Der Papier-Fabrikant. Wochenausgabe. Technwissensch. Teil                                                        |
| Part. France                                          | Les Parfums de France                                                                                            |
| Parf. mod.                                            | La Parfumerie Moderne                                                                                            |
| Parfümeur Augsb.                                      | Der Parfümeur. Beiblatt zur Seifensieder-Zeitung. Augsburg                                                       |
| ParfZtg. Wien                                         | Parfümerie-Zeitung. Wien                                                                                         |
| P. C. H.                                              | Pharmazeutische Zentralhalle für Deutschland                                                                     |
| Perfum. essent. Oil Rec.                              | Perfumery and Essential Oil Record                                                                               |
| Period. Min.                                          | Periodico di Mineralogia                                                                                         |
| Petr.<br>Petr. Age                                    | Petroleum. Berlin Petroleum Age [and Service Station Merchandising]. Chicago New York                            |
| Petr. Mag.                                            | Petroleum Magazine. Chicago                                                                                      |
| Petr. Technol.                                        | Petroleum Technology. York, Pa.                                                                                  |
| Petr. Times                                           | The Petroleum Times                                                                                              |
| Pflügers Arch. Physiol.                               | PFLÜGERS Archiv für die gesamte Physiologie des Menschen und de<br>Tiere                                         |
| Pharmacia                                             | Pharmacia. Reval                                                                                                 |
| Pharm. Acta Helv.                                     | Pharmaceutica Acta Helvetiae                                                                                     |
| Pharm. Ber.<br>Pharm. J.                              | Pharmazeutische Berichte. Leverkusen, I. G. Farbenind.                                                           |
| Pharm. Monath.                                        | The Pharmaceutical Journal [and Pharmacist]                                                                      |
| Pharm. Post                                           | Pharmazeutische Monatshefte (Beilage zu: Pharmazeutische Post) Pharmazeutische Post                              |
| Pharm. Presse                                         | Pharmazeutische Presse                                                                                           |
| Pharm. Tijdschr.                                      | Pharmaceutisch Tijdschrift voor Nederlandsch-Indië                                                               |
| NederlÍndië                                           |                                                                                                                  |
| Pharm. Weekb.                                         | Pharmaceutisch Weekblad voor Nederland                                                                           |
| $Pharm.\ Ztg.$                                        | [Die Deutsche] Pharmazeutische Zeitung                                                                           |
| Ph. Ch.                                               | Zeitschrift für Physikalische Chemie, Stöchiometrie und Verwandt<br>schaftslehre                                 |
| Philippine J. Sci.<br>Phil. Mag.                      | The Philippine Journal of Science The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science |
| Phil. Trans.                                          | Philosophical Transactions of the Royal Society of London                                                        |
| Phot. Ind.                                            | Die Photographische Industrie                                                                                    |
| Phot. J.                                              | The Photographic Journal                                                                                         |
| Phot. Korresp.                                        | Photographische Korrespondenz                                                                                    |
| Physica                                               | 1—13: Physica. Nederlandsch Tijdschrift voor Natuurkund<br>Fortgesetzt als:                                      |
|                                                       | Physica. Archives Néerlandaises des Sciences Exactes et Naturelles Série IV A $\langle 1=1934 \rangle$           |

| Kürzung                                                   | Titel                                                                                                                                        |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Phys. Rev.                                                | The Physical Review                                                                                                                          |
| Phys. Z.                                                  | Physikalische Zeitschrift. Leipzig                                                                                                           |
| Phys. Z. Sowjet.                                          | Physikalische Zeitschrift der Sowjetunion                                                                                                    |
| Physiol. Rev.                                             | Physiological Reviews. Baltimore                                                                                                             |
| Planta                                                    | Planta. Archív für Wissenschaftliche Botanik = Zeitschrift für Wissenschaftliche Biologie, Abt. E                                            |
| Plant Physiol.                                            | Plant Physiology                                                                                                                             |
| Policl., Sez. prat.                                       | Policlinico, Sezione Pratica. Roma                                                                                                           |
| Pr. Acad. Tokyo                                           | Proceedings of the Imperial Academy. Tokyo                                                                                                   |
| Prace Komisji lekar.<br>Poznaň                            | Poznańskie Towarzystwo Przyjaciół Nauk: Prace Komisji Lekar-<br>skiej                                                                        |
| Pr. Akad. Amsterdam                                       | Koninklijke [Nederlandsche] Akademie van Wetenschappen te<br>Amsterdam: Proceedings [of the Section of Sciences]                             |
| Prakt. Desinf.                                            | Der Praktische Desinfektor                                                                                                                   |
| Praktika Athen                                            | Praktika tes Akademias Athenon                                                                                                               |
| Pr. am. Acad. Arts Sci.                                   | Proceedings of the American Academy of Arts and Sciences                                                                                     |
| Pr. Cambridge phil. Soc.                                  | Proceedings of the Cambridge Philosophical Society                                                                                           |
| Pr. chem. Soc.                                            | Proceedings of the Chemical Society. London                                                                                                  |
| Pr. Durham phil. Soc.<br>Pr. Indiana Acad.                | Proceedings of the University of Durham Philosophical Society                                                                                |
| Pr. indian Acad.                                          | Proceedings of the Indiana Academy of Science<br>Proceedings of the Indian Academy of Sciences                                               |
| Pr. indian Assoc. Cult. Sci.                              | Proceedings of the Indian Association for the Cultivation of Science                                                                         |
| Pr. indian Sci. Congr.                                    | Proceedings of the Indian Science Congress                                                                                                   |
| Pr. irish Acad.                                           | Proceedings of the Royal Irish Academy                                                                                                       |
| Pr. Leeds phil. lit. Soc.                                 | Proceedings of the Leeds Philosophical and Literary Society,<br>Scientific Section                                                           |
| Pr. nation. Acad. India<br>Pr. nation. Acad. USA.         | Proceedings of the National Academy of Sciences, India<br>Proceedings of the National Academy of Sciences of the United<br>States of America |
| Pr. nova scot. Inst.                                      | Proceedings of the Nova Scotian Institute of Science                                                                                         |
| Promyšl. org. Chim.                                       | Promyšlennost' Organičeskoj Chimii (russ.)                                                                                                   |
| Protopl.                                                  | Protoplasma                                                                                                                                  |
| Pr. physmath. Soc.<br>Japan                               | Proceedings of the Physico-mathematical Society of Japan.<br>Nippon Suugaku Buturigakkwai Kizi                                               |
| Pr. phys. Soc. London                                     | Proceedings of the Physical Society [of] London                                                                                              |
| Pr. roy. canad. Inst.                                     | Proceedings of the Royal Canadian Institute                                                                                                  |
| Pr. roy. Inst. Gr. Britain                                | Proceedings of the Royal Institution of Great Britain                                                                                        |
| Pr. roy. Soc.                                             | Proceedings of the Royal Society. London                                                                                                     |
| Pr. roy. Soc. Edinburgh                                   | Proceedings of the Royal Society of Edinburgh                                                                                                |
| Pr. roy. Soc. Med.<br>Pr. roy. Soc. Queens-               | Proceedings of the Royal Society of Medicine<br>Proceedings of the Royal Society of Queensland                                               |
| land<br>Pr. roy. Soc. Victoria                            | Proceedings of the Royal Society of Victoria                                                                                                 |
| Pr. Soc. biol. Chemists<br>India                          | Proceedings of the Society of Biological Chemists (India)                                                                                    |
| Pr. Soc. exp. Biol. Med.                                  | Proceedings of the Society for Experimental Biology and Medicine                                                                             |
| Pr. Trans, nova scot. Inst.                               | The Proceedings and Transactions of the Nova Scotian Institute of Science                                                                    |
| Przeg. chem.                                              | Przegląd Chemiczny                                                                                                                           |
| Przem. chem.                                              | Przemysł Chemiczny                                                                                                                           |
| Publ. Carnegie Inst.                                      | Carnegie Institution of Washington: Publications                                                                                             |
| Publ. Health Rep.                                         | Treasury Dep. U. S. Public Health Service: Public Health Reports                                                                             |
| Quart. J. exp. Physiol.<br>Quart. J. indian chem.<br>Soc. | Quarterly Journal of Experimental Physiology<br>Quarterly Journal of the Indian Chemical Society                                             |

Quarterly Journal of Pharmacy and Pharmacology, incorporating the Year Book of Pharmacy Química e Industria

Soc. Quart. J. Pharm. Pharmacol. Quim. Ind.

| Kürzung                                                    | Titel                                                                                                                                                                                   |
|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R.<br>R. A. L.                                             | Recueil des Travaux Chimiques des Pays-Bas [et de Belgique] Bis [6] 29: Atti della Reale Accademia [Nazionale] dei Lincei Classe di Scienze Fisiche, Matematiche e Naturali: Rendiconti |
| Rasäyanam                                                  | [7] 1ff.: Atti della Reale Accademia d'Italia: Rendiconti della<br>Classe di Scienze Fisiche, Matematiche e Naturali<br>Rasayanam (Journal for the Progress of Chemical Science)        |
| Rass. Clin. Terap.                                         | Rassegna di Clinica, Terapia e Scienze Affini<br>The Rayon Record                                                                                                                       |
| Rayon Rec. Rayon Textile Monthly                           | Rayon Textile Monthly                                                                                                                                                                   |
| Rec. Trav. bot. néerl.<br>Rend. Accad. Sci. fis.<br>Napoli | Recueil des Travaux Botaniques Néerlandais<br>Rendiconto dell'Accademia delle Scienze Fisiche e Matematiche<br>(Classe della Società Reale di Napoli)                                   |
| Rend. Fac. Sci. Cagliari Rend. Ist. lomb.                  | Rendiconti del Seminario della Facoltà di Scienze della R. Uni<br>versità di Cagliari<br>Reale Istituto Lombardo di Scienze e Lettere: Rendiconti                                       |
| Rep. aeron. Res. Inst.<br>Tokyo                            | Tokyo Imperial University: Report of the Aeronautical Research<br>Institute                                                                                                             |
| Rev. brasil. Chim. Rev. Chim. ind.                         | Revista Brasileira de Chimica (Sciencia & Industria) (São Paulo<br>La Revue de Chimie Industrielle                                                                                      |
| Rev. Chim. ind. Monit.<br>scient.<br>Rev. Chim. pura appl. | La Revue de Chimie Industrielle et Le Moniteur Scientifique<br>Quesneville Réunis<br>Revista de Chimica Pura e Applicada. [Revista de Química Pura                                      |
| Rev. Fac. Cienc. quim.                                     | e Aplicada]. Porto<br>Revista de la Facultad de Ciencias Químicas (Univ. Nacional de                                                                                                    |
| Rev. Fac. Sci. Istanbul                                    | La Plata)<br>Istanbul Universitesi Fen Fakültesi Mecmuasi. Revue de la Facult                                                                                                           |
| Rev. gén. Bot.                                             | des Sciences de l'Université d'Istanbul<br>Revue Générale de Botanique                                                                                                                  |
| Rev. gén. Caoutch.<br>Rev. gén. Colloides                  | Revue Générale du Caoutchouc<br>Revue Générale des Colloides et de leurs Applications Industrielle                                                                                      |
| Rev. gén. Mat. col.                                        | Revue Générale des Matières Colorantes, de la Teinture, de l'Im<br>pression [du Blanchiment] et des Apprêts                                                                             |
| Rev. gén. Mat. plast.<br>Rev. gén. Sci. pures<br>appl.     | Revue Générale des Matières Plastiques<br>Revue Générale des Sciences Pures et Appliquées                                                                                               |
| Rev. Marques, Parf.<br>France                              | Revue des Marques. Parfums de France                                                                                                                                                    |
| Rev. méd. Suisse rom.<br>Rev. Parf.                        | Revue Médicale de la Suisse Romande<br>Revue de la Parfumerie et des Industries s'y rattachant                                                                                          |
| Rev. phys. Chem. Japan<br>Rev. Prod. chim.                 | Review of Physical Chemistry of Japan  La Revue des Produits Chimiques [et l'Actualité Scientifique réunies]                                                                            |
| Rev. Quím. Farm.<br>Rev. scient.                           | Revista de Química e Farmacia. Rio de Janeiro<br>Revue Scientifique [Revue Rose Illustrée]                                                                                              |
| Ric. scient. Progr. tecn. Econ. naz.                       | La Ricerca Scientifica ed il Progresso Tecnico nell'Economia<br>Nazionale                                                                                                               |
| Riechstoffind.<br>Rinascenza med.                          | Riechstoffindustrie [und Kosmetik]<br>Rinascenza Medica (Rassegna di Medicina Biologica). Napoli                                                                                        |
| Riv. ital. Essenze Prof.                                   | Rivista Italiana delle Essenze e Profumi {<1932ff.:> delle Essenze dei Profumi e delle Piante Officinali}                                                                               |
| Roczniki Chem.<br>Roczniki Farm.                           | Roczniki Chemji [(Annales Societatis Chimicae Polonorum)]<br>Roczniki Farmacji                                                                                                          |
| Roczniki Nauk roln.                                        | Roczniki Nauk Rolniczych [(Vol. 18 ff.) i Leśnych]. Polish Agricultural and Forest Annual                                                                                               |
| Rubber Chem. Technol.<br>Russa                             | Rubber Chemistry and Technology<br>Revue Universelle des Soies et des Soies Artificielles "Russa"                                                                                       |
| Russ. fiziol. Ž.                                           | Russkij Fiziologičeskij Žurnal (russ.). Russian Physiologica<br>Journal                                                                                                                 |
| Sachar<br>Sammlg. Vergiftungsf.                            | Sachar (russ.). Sugar<br>[FÜHNER-WIELANDS] Sammlung von Vergiftungsfällen                                                                                                               |

#### Kürzung Titel Sitzungsberichte der Akademie der Wissenschaften, Mathematisch-Sber. Akad. Wien naturwissenschaftliche Klasse. Wien Sitzungsberichte der Mathematisch-naturwissenschaftlichen Ab-Sber. bayr. Akad. teilung der Bayrischen Akademie der Wissenschaften Sitzungsberichte der Gesellschaft zur Beförderung der gesamten Sber. Ges. Naturwiss. Marburg Naturwissenschaften zu Marburg Sitzungsberichte der Heidelberger Akademie der Wissenschaften, Sber. Heidelb. Akad. Mathematisch-naturwissenschaftliche Klasse Sber. naturf. Ges. Sitzungsberichte und Abhandlungen der Naturforschenden Gesell-Rostock schaft zu Rostock Sber. phys.-med. Ges. Sitzungsberichte der Physikalisch-medizinischen Gesellschaft zu Würzburg Würzburg Sber. preuß. Akad. Sitzungsberichte der Preußischen Akademie der Wissenschaften [zu Berlin], Physikalisch-mathematische Klasse Sborník čsl. Akad. Sborník Československé Akademie Zemědělské. Annalen der zeměd. Tschechoslowakischen Akademie der Landwirtschaft Sbornik Rabot Chim. Naučno-techničeskoe Upravlenie V.S.N.Ch.: Trudy Naučno-issledovatel'skich Institutov N.T.U.: Sbornik Rabot po Chimii (russ.). Transactions of the Scientific Institute of the S.-T. D.: Papers on Chemistry Naučno-techničeskoe Upravlenie V. S. N. Ch.: Sbornik Rabot Chimičeskogo Instituta N.T.U.V.S.N. Ch.imeni Karpova (russ.) Sbornik Rabot chim. Inst. Karpov Chimiceskogo Instituta N.T.U.V.S.N.Ch., imeni Karpova (russ.) 1: Der Schmerz; 2ff.: Schmerz, Narkose, Anästhesie Gustav Schultz: Farbstofftabellen. 7. Aufl. von Ludwig Lehmann. Leipzig. Bd. I, 1931. Bd. II, 1932. Erg.-Bd. I, 1934. Erg.-Bd. II, 1939. Schweizerische Apotheker-Zeitung. Journal Suisse de Pharmacie. Schmerz Schultz Tab. Schweiz. Apoth.-Ztg. Giornale Svizzero di Farmacia Schweiz. Arch. Neurol. Schweizer Archiv für Neurologie und Psychiatrie. Archives Suisses Psychiat. de Neurologie et de Psychiatrie. Archivio Svizzero di Neurologia e Psychiatria Schweiz. med. Wechr. Schweizerische Medizinische Wochenschrift Schweiz. P. Schweizer Patent Schweiz. Wechr. Ch. Schweizerische Wochenschrift für Chemie und Pharmacie Pharm. Sci. Science. New York Sci. Culture Science and Culture. Calcutta Scient. J. roy. Coll. Sci. The Scientific Journal of the Royal College of Science. London Department of Commerce and Labor: Scientific Papers of the Bureau of Standards. Washington Scient. Pap. Bur. Stand. Scientific Papers of the Institute of Physical and Chemical Research. Tokyo Scient. Pap. Inst. phys. chem. Res. Scient. Pr. roy. Dublin The Scientific Proceedings of the Royal Dublin Society Soc. Sci. pharm. Scientia Pharmaceutica (Beilage zu: Pharmazeutische Presse). Wien Sci. Rep. Inst. infect. Scientific Reports from the Government Institute for Infectious Diseases. Tokyo Diseases Sci. Rep. Tohoku Univ. The Science Reports of the Tôhoku Imperial University Sci. Rep. Tokyo Science Reports of the Tokyo Bunrika Daigaku (Tokyo University Bunrika Daigaku of Literature and Science) Seide Seide. Krefeld Seite Die Seife. Wien Seifens .- Ztg. Seifensieder-Zeitung Semana méd. La Semana Médica. Buenos Aires Silk J. The Silk Journal Silk J. Rayon Wd. Silk Journal and Rayon World Skand. Arch. Physiol. Skandinavisches Archiv für Physiologie Soc. Journal of the Chemical Society. London Soil Sci. Soil Science. Baltimore Soobšč. nau.-tech. Rab. Soobščenija o Naučno-techničeskich Rabotach v Respublike ⟨russ.⟩ Sov. Sachar Sovetskij Sachar (russ.)

Trans. roy. Soc. Edinb.

Trans. roy. Soc. New

Zealand

#### Kürzung Titel Lo Sperimentale. Archivio di Biologia Normale e Patologica Spisy Lékarské Fakulty Masarykovy University, Brno. Publi-Sperim. Spisy lék. Fak. Mas. cations de la Faculté de Médecine Univ. Spisy vydávané Přírodovědeckou Fakultou Karlovy University. Spisy přírodov. Karl. Publications de la Faculté des Sciences de l'Université Charles. Univ.Praha Spisy přírodov. Mas. Spisy vydávané Přírodovědeckou Fakultou Masarykovy University. Publications de la Faculté des Sciences de l'Université Masaryk. Univ. Sprawozdania z Prac Działu Chemji Państwowego Zakładu Higjeny. Sprawozd. Chemji Bulletin des Travaux du Département de Chimie de l'Institut d'Hygiène d'État Higjeny Sprawozdania z Prac Państwowego Instytutu Farmaceutycznego. Sprawozd. Inst. farm. Bulletin des Travaux de l'Institut Pharmaceutique de l'État Sprawozd. Tow. fizycz. Sprawozdania i Prace Polskiego Towarzystwa Fizycznego. Comptes Rendus des Séances de la Société Polonaise de Physique Stahl Eisen Stahl und Eisen Le Stazione Sperimentali Agrarie Italiane Staz. sperim. agrar. ital. Süddeutsche Apotheker-Zeitung Südd. Apoth.-Ztg. Suomen Kemistilehti [Acta Chemica Fennica] Svensk Farmaceutisk Tidskrift Suomen Kem. Svensk farm. Tidskr. Svensk kem. Tidskr. Svensk Kemisk Tidskrift Sv. Vet.-Akad, Handl. Kongliga Svenska Vetenskaps-Akademiens Handlingar Tabač. Promyšl. Tabačnaja Promyšlennost' SSSR (russ.) Tech. Bl. N. Y. State New York State Agricultural Experiment Station: Technical agric. Exp. Station Bulletin Oklahoma Agricultural and Mechanical College; Agricultural Tech. Bl. Oklahoma Experiment Station: Technical Bulletin agric. exp. Station Technol. Ch. Pap.-Zell-Technologie und Chemie der Papier- und Zellstoff-Fabrikation stoff-F. (Beilage zum Wochenblatt für Papierfabrikation) Technol. Rep. Tôhoku The Technology Reports of the Tôhoku Imperial University. Sendai Department of the Interior, Bureau of Mines: Technical Paper. Tech. Pap. Bur. Mines Washington Teintex Teintex. Paris Tekn. Tidskr. Teknisk Tidskrift. Stockholm Terapevtičeskij Archiv (russ.) Terapevt. Arch. Textile Colorist Textile Colorist. New York Textile Forschung Textile World. New York Textile Forschg. Textile Wd. Therap. Gegenw. Therapie der Gegenwart Therap. Halbmonath. Therapeutische Halbmonatshefte Therapeutische Monatshefte Tidsskrift för Kjemi og Bergvesen Therap. Monath. Tidskr. Kjemi Bergv. Tierernähr. Die Tierernährung. Leipzig T $\delta$ hoku J. exp. Med. The Tôhoku Journal of Experimental Medicine Trans.am.electroch.Soc. Transactions of the American Electrochemical Society Trans. electroch. Soc. Transactions of the Electrochemical Society. Washington Trans. Faraday Soc. Transactions of the Faraday Society Transactions of the Institution of the Rubber Industry Transactions of the Kansas Academy of Science Transactions of the Optical Society. London Transactions and Proceedings of the New Zealand Institute Trans. Inst. Rubber Ind. Trans. Kansas Acad. Trans. opt. Soc. Trans. Pr. New Zealand Inst. Trans. roy. Soc. Canada Proceedings and Transactions of the Royal Society of Canada: Transactions of the Royal Society of Canada

Transactions of the Royal Society of Edinburgh

Transactions and Proceedings of the Royal Society of New Zealand

| Kürzung                                                                                                             | Titel                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Trans. roy. Soc.<br>S. Africa                                                                                       | Transactions of the Royal Society of South Africa                                                                                                                                                                                                                   |
| Trudy chimfarm. Inst.                                                                                               | Naučno-techničeskij Otdel V.S.N.Ch.: Trudy Naučnogo Chimiko-<br>farmacevtičeskogo Instituta (russ.) [Transactions of the<br>Scientific Chemical-pharmaceutical Institute]                                                                                           |
| Trudy Inst. č. chim.<br>Reakt.                                                                                      | Naučno-techničeskij Otdel V.S.N.Ch.: Trudy Instituta Čistych<br>Chimičeskich Reaktivov (russ.). Transactions of the Institute<br>for Pure Reagents                                                                                                                  |
| Trudy Inst. prikl. Chim.                                                                                            | Naučno-techničeskoe Upravlenie V.S.N.Ch.: Trudy Gosudarstven-<br>nogo Instituta Prikladnoj Chimii (russ.). Transactions of the<br>State Institute of Applied Chemistry                                                                                              |
| Trudy jubil. Mendeleev. S.                                                                                          | Trudy Jubilejnogo Mendeleevskogo S-ezda 〈russ.〉. Travaux du<br>Congrès Mendeleev                                                                                                                                                                                    |
| Trudy Mendeleev. S.                                                                                                 | Trudy Vsesojuznogo Mendeleevskogo S-ezda po Teoretičeskoj<br>i Prikladnoj Chimii                                                                                                                                                                                    |
| Trudy sibirsk. seľ sko-<br>choz. Akad.                                                                              | Trudy Sibirskoj Sel'skochozjajstvennoj Akademii (russ.). Transactions of the Siberian Akademy of Agriculture and Forestry                                                                                                                                           |
| Trudy vitamin. Inst.                                                                                                | Trudy Vsesojuznogo Naučno-issledovatel'skogo Vitaminnogo Instituta Narkompiščeproma S.S.S.R. (russ.). Proceedings of the Scientific Institute for Vitamin Research of the People's Commissariat for Food Industry of the U.S.S.R.                                   |
| Uč. Zap. Mosk. Univ.                                                                                                | Moskovskij Gosudarstvennyj Universitet: Učenyja Zapiski, Otděl<br>Fiziko-matematičeskij (russ.)                                                                                                                                                                     |
| Uč. Zap. Saratov. Univ.                                                                                             | Učenye Zapiski Saratovskogo Gosudarstvennogo imeni Černy-<br>ševskogo Universiteta, Fiziko-techničeskoe i Estestvennoe<br>Otdelenija (russ.)                                                                                                                        |
| Ukr. biochem. Ž.                                                                                                    | Ukrainákij Biochemičnij Žurnal (ukr.). The Ukrainian Biochemical Journal                                                                                                                                                                                            |
| Ukr. chemič. Ž.                                                                                                     | Ukrainskij Chemičnij Žurnal, Naukova Častina (ukr.). Journal Chimique de l'Ukraine, Partie Scientifique                                                                                                                                                             |
| Umschau<br>Univ. Izv. Kiev                                                                                          | Die Umschau [<31 ff.:> in Wissenschaft und Technik]<br>Kievskija Universitetskija Izvěstija<br>bzw.> Universitetskija Izvěstija<br>(russ.>. Kiev                                                                                                                    |
| Univ. Kansas Sci. Bl.<br>Univ. Philippines<br>Sci. Bl.                                                              | University of Kansas Science Bulletin<br>University of the Philippines Natural and Applied Science Bulletin                                                                                                                                                         |
| Uppsala Läkaref. Förh.<br>Uspechi Chim.<br>Uspechi Fiz.                                                             | Uppsala Läkareförening Förhandlingar [Chimičeskij Žurnal, Serija G:] Uspechi Chimii (russ.) Uspechi Fizičeskich Nauk (russ.)                                                                                                                                        |
| Verh. Akad. Amsterdam                                                                                               | Verhandelingen der Koninklijke Akademie van Wetenschappen,<br>Afdeeling Natuurkunde. Amsterdam                                                                                                                                                                      |
| Verh. disch. phys. Ges.<br>Verh. Ges. disch. Naturf.<br>Verh. naturf. Ges. Basel<br>Verh. physmed. Ges.<br>Würzburg | Verhandlungen der Deutschen Physikalischen Gesellschaft<br>Verhandlungen der Gesellschaft Deutscher Naturforscher und Ärzte<br>Verhandlungen der Naturforschenden Gesellschaft in Basel<br>Verhandlungen der Physikalisch-medizinischen Gesellschaft zu<br>Würzburg |
| Veröff. wiss. Zentral-<br>lab. Agfa                                                                                 | Veröffentlichungen des Wissenschaftlichen Zentral-Laboratoriums der Photographischen Abteilung — Agfa — der I. G. Farbenindustrie A.G.                                                                                                                              |
| Versl. Akad. Amster-<br>dam                                                                                         | Koninklijke Akademie van Wetenschappen te Amsterdam: (1897—1924:) Verslag[en] van den Gewone Vergaderingen der Wis-en natuurkundige Afdeeling,                                                                                                                      |
|                                                                                                                     | (1925ff.:) Verslag van de Gewone Vergadering der Afdeeling<br>Natuurkunde                                                                                                                                                                                           |
| Versl. Meded. Akad.<br>Amsterdam                                                                                    | Verslagen en Mededeelingen der Koninklijke Akademie van Weten-<br>schappen, Afdeeling Letterkunde. Amsterdam                                                                                                                                                        |

| Kürzung                                 | Titel                                                                                                                                        |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Věstník čes. Spol. Nauk                 | Věstník [Královské] České Společnosti Nauk. Sitzungsberichte der<br>[Kgl.] Böhmischen Gesellschaft der Wissenschaften [<1918 ff.:>           |
|                                         | Mémoires de la Société des Sciences de Bohème]:                                                                                              |
|                                         | Třída (II.) Mathematicko-přírodovědecká. Mathematisch-natur-<br>wissenschaftliche Klasse [Classe des Sciences]                               |
| Virch. Arch. path. Anat.                | [VIRCHOWS] Archiv für Pathologische Anatomie und Physiologie<br>und für Klinische Medizin                                                    |
| Vjschr. naturf. Ges.<br>Zür <b>i</b> ch | Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich                                                                              |
| Vrač. Dělo                              | Vračebnoe Dělo (russ.)                                                                                                                       |
| Wasser Gas                              | Wasser und Gas                                                                                                                               |
| Wiadom, farm.                           | Wiadomości Farmaceutyczne                                                                                                                    |
| Wien. klin. Wschr.<br>Wien. med. Wschr. | Wiener Klinische Wochenschrift<br>Wiener Medizinische Wochenschrift                                                                          |
| Wien. pharm. Wschr.                     | Wiener Pharmazeutische Wochenschrift                                                                                                         |
| Wiss. Ind.                              | Wissenschaft und Industrie                                                                                                                   |
| Wiss. Mitt. öst. Heil-<br>mittelst.     | Wissenschaftliche Mitteilungen der Österreichischen Heilmittel-<br>stelle                                                                    |
| Wiss. Veröff. Siemens                   | Wissenschaftliche Veröffentlichungen aus dem Siemens-Konzern {<1935ff.:> aus den Siemens-Werken}                                             |
| Wochbl. Papierf.                        | Wochenblatt für Papierfabrikation                                                                                                            |
| Wschr. Brau.                            | Wochenschrift für Brauerei                                                                                                                   |
| Z.                                      | Zeitschrift für Chemie [(1860—1864:) und Pharmacie]                                                                                          |
| Zahnärztl. Rdsch.                       | Zahnärztliche Rundschau                                                                                                                      |
| Z. ang. Ch.<br>Z. angew. Entomol.       | Zeitschrift für Angewandte Chemie [〈26—34:〉 Aufsatzteil]<br>Zeitschrift für Angewandte Entomologie                                           |
| Z. anorg. Ch.                           | Zeitschrift für Anorganische [(92ff.:) und Allgemeine] Chemie                                                                                |
| Zavod. Labor.                           | Zavodskaja Laboratorija (russ.)                                                                                                              |
| $Z.\ Biol.$                             | Zeitschrift für Biologie. München                                                                                                            |
| Zbl. Agrikulturch.                      | BIEDERMANNS Zentralblatt für Agrikulturchemie und rationellen<br>Landwirtschaftsbetrieb                                                      |
| Zbl. Bakt. Parasitenk.                  | Zentralblatt für Bakteriologie, Parasitenkunde und Infektions-<br>krankheiten                                                                |
| Zbl. Gewerbehyg.                        | Zentralblatt für Gewerbehygiene [<8 ff:> und Unfallverhütung]                                                                                |
| Zbl. Gynäkol.                           | Zentralblatt für Gynäkologie                                                                                                                 |
| Zbl. inn. Med.                          | Zentralblatt für Innere Medizin. Leipzig                                                                                                     |
| Zbl. Min.<br>Zbl. Physiol.              | Zentralblatt für Mineralogie, Geologie und Paläontologie                                                                                     |
| Zbl. Zuckerind.                         | Zentralblatt für Physiologie                                                                                                                 |
| Z. Bot.                                 | Centralblatt für die Zuckerindustrie<br>Zeitschrift für Botanik                                                                              |
| Z. Brauw.                               | Zeitschrift für das gesamte Brauwesen                                                                                                        |
| Ž. chim. Promyšl.                       | Žurnal Chimičeskoj Promyšlennosti (russ.)                                                                                                    |
| Z. dtsch. Öl-Fettind.                   | Zeitschrift der Deutschen Öl- und Fettindustrie                                                                                              |
| Ž. čkep. Biol.                          | Zurnal eksperimental'noj Biologii [i Mediciny] (russ.)                                                                                       |
| Ž. ėksp. teor. Fiz.                     | Žurnal eksperimental'noj Biologii [i Mediciny] (russ.)<br>[Fizičeskij Žurnal, A:] Žurnal Eksperimental'noj i Teoretičeskoj<br>Fiziki (russ.) |
| Z. El. Ch                               | Zeitschrift für Élektrochemie und Angewandte Physikalische<br>Chemie                                                                         |
| Zellst. Pap.                            | Zellstoff und Papier                                                                                                                         |
| Z. exp. Med.                            | Zeitschrift für die gesamte Experimentelle Medizin                                                                                           |
| Z. exp. Path. Therap.<br>Ž. fiz. Chim.  | Zeitschrift für Experimentelle Pathologie und Therapie [Chimičeskij Žurnal, Serija V:] Žurnal Fizičeskoj Chimii (russ.).                     |
| Z. Hyg. InfKr.                          | [Journal of Physical Chemistry]                                                                                                              |
| Z. Immunitätsf. Therap.                 | Zeitschrift für Hygiene und Infektionskrankheiten<br>Zeitschrift für Immunitätsforschung und Experimentelle Therapie.                        |
| Z. Kälteind.                            | Originale<br>Zeitschrift für die gesamte Kälteindustrie                                                                                      |
| Z. Kinderheilk.                         | Zeitschrift für Kinderheilkunde                                                                                                              |
| Z. klin. Med.                           | Zeitschrift für Klinische Medizin                                                                                                            |

| Z. Krebsi.  Z. Krebsi.  Z. Kr. Ref.  Z. Kr. Ref.  Z. Kr. Strukturber.  Z. med. Ch.  Z. Mükkenv.  Z. Naturviss.  Z. Oblé. Chim.  Z. öff. Ch.  Z. Öff.                                                                                                                | Kürzung                                  | Titel                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 78 ff.: desgl. mit Zusstz: Abt. A der Zeitschrift für Kristallographie Mineralogie und Petrographie, Kristallegraphie, K                                                                                                                | Z. Kr.                                   | 56-72: Zeitschrift für Kristallographie, Kristallgeometrie, Kristall                                                           |
| Z. Kr. Rej.  Z. Kr. Rej.  Z. Kr. Rej.  Z. Kr. Strukturber.  Z. Mahlenu.  Z. Mahlenu.  Z. Mahlenu.  Z. Obli. Chim.  Z. Pilanzenernähr.  Z. Pilanzenernährung. Düngung de Dengeral Chemistry Jeitschrift für Planzenernährung. Düngung dengeral Pilanzenernährung. Düngung Pilanzenernährung. Düngung Pilanzenernährung. Düngung Pilanzenernährung. Düngung Pilanzenernährung. Düngung Pilanzenernährung.  Z. Pilanzenernährung.  Z. Pilanzenernährung.  Z. Pilanzenernä                                                                                                                |                                          | 78ff.: desgl. mit Zusatz: Abt. A der Zeitschrift für Kristallographie                                                          |
| Z. Kr. Ref.  Z. Kr. Strukturber. Z. mad. Ch. Z. Mühenw. Z. Naturvies. Z. obšt. Chim. Z. öff. Ch. Z. planzenernähr. Z. Pilanzenernähr. Z. planzenernähr. Z. phys. Z. phys. chem. Materiali. Z. phys. Z. prikl. Chim. Z. prikl. Fiz. Z. prikl. Fiz. Z. prikl. Fiz. Z. schieß-Sprengstoffw. Z. Schieß-Sprengstoffw. Z. Schieß-Sprengstoffw. Z. Schieß-Sprengstoffw. Z. Schieß-Sprengstoffw. Z. Streamind. Z. Unters. Lebenem. Z. Unters. Nahr. Genußm. Z. Unters. Nahr. Genußm. Z. Wietschaftsgr. Z. wies. Phot. Z. wies. Phot. Z. wies. Phot. Z. wies. Phot. Z. zuckerind. Eöh. Z. Zuckerind. Cil. Die ischrift für Wissenschaftliche Mikroskopie und für Mikroskopiea e Chimica dei Colloidi (Vol. 1 und ab Vol. 15)—(ab 2, Nr. 2:) Zymologica, Chimica dei Colloidi e degl. Zuccherii für [die] Zuckerindustrie der Cechoslovakischen Republik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Z. Kechai                                | Zeitschrift, für Krehsforschung                                                                                                |
| Z. Mühlenw. Z. Naturwiss. Z. Naturwiss. Z. Obli. Chim. Z. öjf. Ch. Z. öjf. Ch. Z. öjf. Ch. Z. öjf. Ch. Z. öst. Apoth. Verein Z. Pilanzenernähr. Z. Pilanzenernährung. Düngung B.—45: Zeitschrift für Pflanzenernährung. Düngung und Boden kunde Z. Phys. Z. prikl. Chim. Z. prikl. Chim. Z. prikl. Fiz. Z. rezin. Promyšl. Z. schieß. Sprengstoffu. Z. schieß. Sprengstoffu. Z. schieß. Sprengstoffu. Z. schieß. Sprengstoffu. Z. schieß. Biol. Z. tech. Phys. Z. tech. Phys. Z. Teztiländ. Z. tech. Phys. Z. Teztiländ. Z. Vitaminf. Z. Vitaminf. Z. Vitaminf. Z. Vitaminf. Z. Wistschaftsgr. Zwickerind. Z. wiss. Mikr. Zwiss. Phot. Zymol. Chim. Coll. Z. Zuckerind. Z. Zuckerind. Z. Zuckerind. Z. Zuckerind. Böh. Z. Zuckerind. Böh. Z. Zuckerind. Böh. Z. Zuckerind. Coll. Z. Zucke                                                                                                                |                                          | Zeitschrift für Kristallographie, Kristallgeometrie, Kristallphysik                                                            |
| Z. Naturwiss. Z. Naturwiss. Z. obšč. Chim. Z. obšč. Apoth. Verein Z. pl. Ch. Z. obšč. Apoth. Verein Z. Pllanzenernāhr. Z. Pllanzenernāhr. Z. Pllanzenernāhr. Z. Pllanzenernāhr. Z. prikl. Chim. Z. phys. chem. Materiali. Z. Pilzk. Z. prikl. Chim. Z. prikl. Chim. Z. prikl. Fiz. Z. rezin. Promyšl. Z. schiefl-Sprengstoffu. Z. Schiefl-Sprengstoffu. Z. Schiefl-Sprengstoffu. Z. schiefl-Sprengstoffu. Z. tech. Biol. Z. tech. Fiz. Z. tech. Phys. Z. tech. Phys. Z. Tezzitlind. Z. Tierzichtg. Z. Unters. Lebensm. Z. Unters. Lebensm. Z. Unters. Nahr. Gemußm. Z. Verein disch. Zuckerind. Z. Wirtschaftsgr. Z. Wirtschaftsgr. Z. Wirtschaftsgr. Z. Wirtschaftsgr. Z. Wirtschaftsgr. Z. Wiss. Phot. Z. Wiss. Phot. Z. Wiss. Phot. Z. Wiss. Phot. Z. Zuckerind. Z. Zuckerind. Z. Zuckerind. Z. Zuckerind. Z. Zuckerind. Z. Zuckerind. Ed. Z. Zuckerind.                                                                                                                 |                                          | Zeitschrift für Kristallographie; Strukturbericht                                                                              |
| Z. Naturwiss. Z. obšt. Chim. Z. öjf. Ch. Z. öjf. Ch. Z. öst. Apoth. Verein Z. Pļlanzenernāhr. Z. Pļlanzenernāhr. Z. Pļlanzenernāhr. Z. Pļlanzenernāhr. Z. Pļlanzenernāhr. Z. Pjlanzenernāhr. Z. Pjlanzenernāhr. Z. Pjlanzenernāhr. Z. Pjlanzenernāhr. Z. Pjlak. Z. pilk.                                                                                                                |                                          |                                                                                                                                |
| <ul> <li>Z. obšč. Chim.</li> <li>Z. öff. Ch.</li> <li>Z. öff. Ch.</li> <li>Z. öst. Apoth. Verein</li> <li>Z. Pllanzenernähr.</li> <li>Z. Pllanzenernähr.</li> <li>Z. Pllanzenernähr.</li> <li>Z. Plys.</li> <li>Z. Phys.</li> <li>Z. Pritzl.</li> <li>Z. Pritzl.</li> <li>Z. Pritzl.</li> <li>Z. Pritzl.</li> <li>Z. Pritzl.</li> <li>Z. Pritzl.</li> <li>Z. Promyšl.</li> <li>Z. scach. Promyšl.</li> <li>Z. Schieß-Sprengstoffv.</li> <li>Z. Schieß-Sprengstoffv.</li> <li>Z. Schieß-Sprengstoffv.</li> <li>Z. Schieß-Sprengstoffv.</li> <li>Z. Schieß-Sprengstoffv.</li> <li>Z. Schieß-Sprengstoffv.</li> <li>Z. Pitzl.</li> <li>Z. tech. Biol.</li> <li>Z. tech. Fiz.</li> <li>Z. tech. Phys.</li> <li>Z. tech. Phys.</li> <li>Z. Textilind.</li> <li>Z. Textilind.</li> <li>Z. Textilind.</li> <li>Z. Viters. Lebenem.</li> <li>Z. Unters. Lebenem.</li> <li>Z. Unters. Lebenem.</li> <li>Z. Unters. Lebenem.</li> <li>Z. Vitaminj.</li> <li>Z. Vitaminj.</li> <li>Z. Vitaminj.</li> <li>Z. Wirtschaftsgr.</li> <li>Z. Wirtschaftsgr.</li> <li>Z. Wirtschaftsgr.</li> <li>Z. Wirtschaftsgr.</li> <li>Z. Wirtschaftsgr.</li> <li>Z. Wiss. Phot.</li> <li>Z. Wiss. Phot.</li> <li>Z. Wiss. Phot.</li> <li>Z. Zuckerind.</li> <li>Z. Vitaminj.</li> <li>Z. Vitaminj.</li> <li>Z. Vitaminj.</li> <li>Z. Vitaminj.</li> <li>Z. Wiss. Phot.</li> <li>Z. Wiss. Phot.</li> <li>Z. Zuckerind.</li> &lt;</ul>                                                                                                         |                                          | Zeitschrift für die gesemte Muhlenwesen                                                                                        |
| Z. öff. Ch.   Z. öst. Apoth. Verein   Z. ists. Apoth. Verein   Z. ists. Apoth. Verein   Z. Pflanzenernähr.   Z. Pflanzenernähr.   Z. pflanzenernähr.   Z. pflanzenernähr.   Z. phys.   Z. eitschrift für Pflanzenernährung und Düngung   R. —45: Zeitschrift für Pflanzenernährung und Boden   kunde   Z. phys.   Z. prikl. Chim.   Z. prikl. Chim.   Z. prikl. Fiz.   Z. eitschrift für Physik. Braunschweig-Berlin   Zeitschrift für Physikalisch-chemische Materialforschung. Prag   Zurnal Prikladnoj Chimii ⟨russ.⟩   Zurnal Prikladnoj Chimiii ⟨russ.⟩   Zu                                                                                                                   |                                          | philosophie und Geschichte der Naturwissenschaft und Medizin                                                                   |
| Z. Pilanzenernähr.  Z. Pilanzenernähr.  Z. Phys.  Z. phys. chem. Materiali.  Z. Phisk.  Z. prikl. Chim.  Ž. prikl. Fiz.  Z. rezin. Promyšl.  Z. Schieß-Sprengstoffw.  Z. Schieß-Sprengstoffw.  Z. Schieß-Sprengstoffw.  Z. Schieß-Sprengstoffw.  Z. tech. Piz.  Z. t                                                                                                                 |                                          | [Journal of General Chemistry]                                                                                                 |
| 2. Plys. 2. Phys. 2. Phys Chem. Materiall. 2. Plizk. 2. Pilzk. 3. Prikl. Chim. 3. Prikl. Chim. 4. Promyšl. 5. Promyšl. 5. Promyšl. 6. Schieß-Sprengstoffv. 7. Spiriusind. 7. Letch. Biol. 7. Letch. Piz. 8. Letch. Piz. 9. Letch. Biol. 9. Letch. Piz. 9. Letch. P                                                                                                                   |                                          | Zeitschrift des Allgemeinen Österreichischen Apotheker-Vereines,                                                               |
| <ul> <li>8—45: Zeitschrift für Pflanzenernährung, Düngung und Boden kunde</li> <li>Z. Phys.</li> <li>Z. Physchem. Materialf.</li> <li>Z. Pilzk.</li> <li>Ž. Prikl. Chim.</li> <li>Ž. prikl. Chim.</li> <li>Ž. prikl. Fiz.</li> <li>Ž. rezin. Promyšl.</li> <li>Z. sach. Promyšl.</li> <li>Z. Schieß-Sprengstoffw.</li> <li>Z. Schieß-Sprengstoffw.</li> <li>Z. Schieß-Sprengstoffw.</li> <li>Z. Schieß-Sprengstoffw.</li> <li>Z. Schieß-Sprengstoffw.</li> <li>Z. Lech. Biol.</li> <li>Ž. tech. Phys.</li> <li>Z. tech. Phys.</li> <li>Z. Textilind.</li> <li>Z. Textilind.</li> <li>Z. Tierzüchtg.</li> <li>Z. Unters. Lebensm.</li> <li>Z. Unters. NahrGenußm.</li> <li>Z. Vitaminf.</li> <li>Z. Vitaminf.</li> <li>Z. Wisse. Mikr.</li> <li>Z. Wisse. Mikr.</li> <li>Z. wiss. Phot.</li> <li>Zeitschrift für Wissenschaftliche Mikroskopie und für Mikroskopische Technike</li> <li>Z. wiss. Phot.</li> <li>Z. Zuckerind. Böh.</li> <li>Z. Zuckerind. Böh.</li> <li>Z. Zuckerind. Cisl.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7. Pilananamähr                          |                                                                                                                                |
| <ul> <li>Z. Phys. chem. Materialf.</li> <li>Z. Pilzk.</li> <li>Z. Pilzk.</li> <li>Z. prikl. Chim.</li> <li>Z. prikl. Fiz.</li> <li>Z. rezin. Promyšl.</li> <li>Z. sach. Promyšl.</li> <li>Z. Schieß-Sprengstoffw.</li> <li>Z. Schieß-Sprengstoffw.</li> <li>Z. tech. Biol.</li> <li>Z. tech. Piz.</li> <li>Z. tech. Piz.</li> <li>Z. tech. Pis.</li> <l< td=""><td>2. 1 panzenernam.</td><td>8-45: Zeitschrift für Pflanzenernährung, Düngung und Boden-</td></l<></ul> | 2. 1 panzenernam.                        | 8-45: Zeitschrift für Pflanzenernährung, Düngung und Boden-                                                                    |
| Z. Pilzk. Z. Pilzk. Z. prikl. Chim. Z. prikl. Fiz. Z. rezin. Promyšl. Z. Schieβ. Sprengstoffw. Z. Schieβ. Sprengstoffw. Z. Schieβ. Sprengstoffw. Z. Schieß. Sprengstoffw. Z. Schieß. Sprengstoffw. Z. Schieß. Sprengstoffw. Z. Schieß. Sprengstoffw. Z. Lech. Biol. Z. tech. Biol. Z. tech. Piz. Z. tech. Phys. Z. Teztilind. Z. Tierzüchtg. Z. Unters. Lebensm. Z. Unters. Lebensm. Z. Unters. Nahr Genuβm. Z. Verein disch. Zuckerind. Z. Vitaminf. Z. Witschaftsgr. Zuckerind. Z. wiss. Mikr. Z. wiss. Mikr. Z. wiss. Mikr. Z. wiss. Phot. Zymol. Chim. Coll. Zymol. Chim. Coll. Z. Zuckerind. Böh. Z. Zuckerind. Böh. Z. Zuckerind. Böh. Z. Zuckerind. Özl.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Z. Phys.                                 | Zeitschrift für Physik. Braunschweig-Berlin                                                                                    |
| Z. Pilzk. Z. prikl. Chim. Z. prikl. Fiz. Z. rezin. Promyšl. Z. sach. Promyšl. Z. Schieß-Sprengstoffw. Z. Spiritusind. Z. tech. Biol. Z. tech. Biol. Z. tech. Fiz. Z. tech. Phys. Z. Textilind. Z. Textilind. Z. Terzüchtg. Z. Unters. Lebenem. Z. Unters. Lebenem. Z. Unters. Nahr. Genußm. Z. Verein disch. Zuckerind. Z. Vitaminf. Z. Witschaftsgr. Zuckerind. Z. Wiss. Mikr. Z. wiss. Mikr. Z. wiss. Mikr. Z. wiss. Phot. Zymol. Chim. Coll. Zymol. Chim. Coll. Z. Zuckerind. Böh.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          | Zeitschrift für Physikalisch-chemische Materialforschung. Prag                                                                 |
| <ul> <li>Ž. prikl. Chim.</li> <li>Ž. prikl. Fiz.</li> <li>Ž. prikl. Fiz.</li> <li>Ž. rezin. Promyšl.</li> <li>Ž. sach. Promyšl.</li> <li>Ž. sach. Promyšl.</li> <li>Ž. schieβ-Sprengstoffw.</li> <li>Z. Spiritusind.</li> <li>Z. tech. Biol.</li> <li>Ž. tech. Fiz.</li> <li>Z. tech. Phys.</li> <li>Z. Textilind.</li> <li>Z. Textilind.</li> <li>Z. Unters. Lebenem.</li> <li>Z. Unters. Lebenem.</li> <li>Z. Vitaminf.</li> <li>Z. Vitaminf.</li> <li>Z. Vitaminf.</li> <li>Z. Wirtschaftsgr.</li> <li>Z. wiss. Mikr.</li> <li>Z. wiss. Mikr.</li> <li>Z. wiss. Phot.</li> <li>Zymol. Chim. Coll.</li> <li>Z. Zuckerind. Böh.</li> <li>Z. Zuckerind. Böh.</li> <li>Z. Zuckerind. Böh.</li> <li>Z. Zuckerind. Böh.</li> <li>Z. Zuckerind. Cisl.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          | Zaitashvift für Dilakunda                                                                                                      |
| <ul> <li>Z. prikl. Fiz.</li> <li>Z. rezin. Promyšl.</li> <li>Z. sach. Promyšl.</li> <li>Z. Schieß-Sprengstoffw.</li> <li>Z. Schieß-Sprengstoffw.</li> <li>Z. Spritusind.</li> <li>Z. tech. Fiz.</li> <li>Z. tech. Fiz.</li> <li>Z. tech. Phys.</li> <li>Z. Textilind.</li> <li>Z. Tierzüchtg.</li> <li>Z. Unters. Lebensm.</li> <li>Z. Unters. Lebensm.</li> <li>Z. Verein dtsch. Zuckerind.</li> <li>Z. Vitaminf.</li> <li>Z. Witschaftsgr.</li> <li>Z. wiss. Mikr.</li> <li>Z. wiss. Mikr.</li> <li>Z. wiss. Phot.</li> <li>Zymol. Chim. Coll.</li> <li>Z. Zuckerind. Böh.</li> <li>Z. Zuckerind. Böh.</li> <li>Z. Zuckerind. Čsl.</li> <li>Z. Zuckerind. Čsl.</li> <li>Zuckerind. Čsl.</li> <li>Zuckerind. Zickeriit für Wissenschaftliche Photographie, Photophysik und Photochemie</li> <li>Zymologica e Chimica dei Colloidi (Vol. 1 und ab Vol. 15): (ab 2, Nr. 2:) Zymologica, Chimica dei Colloidi e degli Zuckerindustrie für [die] Zuckerindustrie der Čechoslovakischen Republik</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          | [Chimičeskij Žurnal, Serija B:] Žurnal Prikladnoj Chimii (russ.).                                                              |
| <ul> <li>Z. sach. Promyšl.</li> <li>Z. Schieß-Sprengstoffw.</li> <li>Z. Spiritusind.</li> <li>Z. tech. Biol.</li> <li>Z. tech. Fiz.</li> <li>Z. tech. Phys.</li> <li>Z. Textilind.</li> <li>Z. Unters. Lebensm.</li> <li>Z. Unters. Nahr Genuβm.</li> <li>Z. Vitaminf.</li> <li>Z. Vitaminf.</li> <li>Z. Vitaminf.</li> <li>Z. Wirtschaftsgr. Zuckerind.</li> <li>Z. wiss. Mikr.</li> <li>Z. wiss. Phot.</li> <li>Zymol. Chim. Coll.</li> <li>Z. Zuckerind. Böh.</li> <li>Z. Zuckerind. Böh.</li> <li>Z. Zuckerind. Cisl.</li> <li>Z. Zuckerind. Cisl.</li> <li>Zuckerind. Cisl.&lt;</li></ul>                                                                                                      |                                          | Zurnal Prikladnoj Fiziki (russ.). Journal of Applied Physics<br>Zurnal Rezinovoj Promyšlennosti (russ.). Journal of the Rubber |
| <ul> <li>Z. Schieß-Sprengstoffw.</li> <li>Z. Spiritusind.</li> <li>Z. tech. Biol.</li> <li>Z. tech. Fiz.</li> <li>Z. tech. Phys.</li> <li>Z. Textilind.</li> <li>Z. Tierzüchtg.</li> <li>Z. Unters. Lebensm.</li> <li>Z. Unters. Lebensm.</li> <li>Z. Vitaminf.</li> <li>Z. Vitaminf.</li> <li>Z. Vitaminf.</li> <li>Z. Wirtschaftsgr.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ž. sach. Promyšl.                        | Žurnal Sacharnoi Promyšlennosti (russ.)                                                                                        |
| <ul> <li>Z. tech. Biol.</li> <li>Ž. tech. Fiz.</li> <li>Z. tech. Phys.</li> <li>Z. Textilind.</li> <li>Z. Tierzüchtg.</li> <li>Z. Unters. Lebensm.</li> <li>Z. Unters. Nahr Genußm.</li> <li>Z. Verein dtsch. Zuckerind.</li> <li>Z. Vitaminf.</li> <li>Z. Wirtschaftsgr. Zuckerind.</li> <li>Z. wiss. Phot.</li> <li>Z. wiss. Phot.</li> <li>Z. wiss. Phot.</li> <li>Z. Zuckerind. Böh.</li> <li>Z. Zuckerind. Böh.</li> <li>Z. Zuckerind. Csl.</li> <li>Zeitschrift für Technische Biologie [Fizičeskij Žurnal, B:] Žurnal Techničeskoj Fiziki ⟨russ.⟩</li> <li>Zeitschrift für Technische Physik</li> <li>Zeitschrift für Untersuchung der Lebensmittel</li> <li>Zeitschrift für Untersuchung der Nahrungs- und Genußmittel sowie der Gebrauchsgegenstände</li> <li>Zeitschrift des Vereins der Deutschen Zuckerindustrie, Technischer Teil</li> <li>Zeitschrift für Vitaminforschung. Bern</li> <li>Zeitschrift für Wissenschaftliche Mikroskopie und für Mikroskopische Technik</li> <li>Zeitschrift für Wissenschaftliche Photographie, Photophysik und Photochemie</li> <li>Zymologica e Chimica dei Colloidi ⟨Vol. 1 und ab Vol. 15⟩</li> <li>⟨ab 2, Nr. 2:⟩ Zymologica, Chimica dei Colloidi e degli Zuccheri</li> <li>Zeitschrift für [die] Zuckerindustrie der Čechoslovakischen Republik</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Z. Schieβ-Sprengstoffw.                  | Zeitschrift für das gesamte Schieß- und Sprengstoffwesen                                                                       |
| <ul> <li>Z. tech. Fiz.</li> <li>Z. tech. Phys.</li> <li>Z. eitschrift für Technische Textilindustrie</li> <li>Zeitschrift für Untersuchung der Lebensmittel</li> <li>Zeitschrift für Untersuchung der Nahrungs- und Genußmittel sowie der Gebrauchsgegenstände</li> <li>Zeitschrift des Vereins der Deutschen Zuckerindustrie, Technischer Teil.</li> <li>Zeitschrift für Vitaminforschung.</li> <li>Bern</li> <li>Zeitschrift für Wissenschaftliche Mikroskopie und für Mikroskopische Technik</li> <li>Zeitschrift für Wissenschaftliche Photographie, Photophysik und Photochemie</li> <li>Zymologica e Chimica dei Colloidi (Vol. 1 und ab Vol. 15) (ab 2, Nr. 2:) Zymologica, Chimica dei Colloidi e degli Zuccheri</li> <li>Zeitschrift für Zuckerindustrie in Böhmen</li> <li>Zeitschrift für Zuckerindustrie der Čechoslovakischen Republik</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z. Spiritusind.                          | Zeitschrift für Spiritusindustrie                                                                                              |
| <ul> <li>Z. tech. Phys.</li> <li>Z. Textilind.</li> <li>Z. Tierzüchtg.</li> <li>Z. Unters. Lebensm.</li> <li>Z. Unters. Nahr Genuβm.</li> <li>Z. Verein dtsch. Zuckerind.</li> <li>Z. Vitaminf.</li> <li>Z. Witschaftsgr. Zuckerind.</li> <li>Z. wiss. Mikr.</li> <li>Z. wiss. Phot.</li> <li>Zeitschrift für Wissenschaftliche Mikroskopie und für Mikroskopische Technik</li> <li>Zeitschrift für Wissenschaftliche Photographie, Photophysik und Photochemie</li> <li>Zymol. Chim. Coll.</li> <li>Zuckerind. Böh.</li> <li>Z. Zuckerind. Böh.</li> <li>Z. Zuckerind. Csl.</li> <li>Zuckerind ür [die] Zuckerindustrie der Čechoslovakischen Republik</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Z. tech. Biol.<br>Ž tech. Fiz            | Zeitschrift für Lechnische Biologie                                                                                            |
| <ul> <li>Z. Textilind.</li> <li>Z. Tierzüchtg.</li> <li>Z. Unters. Lebensm.</li> <li>Z. Unters. Nahr Genuβm.</li> <li>Z. Verein disch. Zuckerind.</li> <li>Z. Vitaminf.</li> <li>Z. Wirtschaftsgr. Zuckerind.</li> <li>Z. wiss. Mikr.</li> <li>Z. wiss. Phot.</li> <li>Zeitschrift für Wissenschaftliche Mikroskopie und für Mikroskopie und photochemie</li> <li>Zymol. Chim. Coll.</li> <li>Zuckerind. Böh.</li> <li>Z. Zuckerind. Böh.</li> <li>Z. Zuckerind. Csl.</li> <li>Zeitschrift für Zuckerindustrie in Böhmen</li> <li>Zeitschrift für Zuckerindustrie der Čechoslovakischen Republik</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                                                                                                                                |
| <ul> <li>Z. Unters. Lebensm.</li> <li>Z. Unters. Nahr Genuβm.</li> <li>Z. Verein dtsch. Zuckerind.</li> <li>Z. Vitaminf.</li> <li>Z. Wirtschaftsgr. Zuckerind.</li> <li>Z. wiss. Mikr.</li> <li>Z. wiss. Phot.</li> <li>Z. wiss. Phot.</li> <li>Zymol. Chim. Coll.</li> <li>Z. Zuckerind. Böh.</li> <li>Z. Zuckerind. Csl.</li> <li>Z. Zuckerind. Csl.</li> <li>Zeitschrift für Untersuchung der Lebensmittel Zeitschrift für Untersuchung der Nahrungs- und Genußmittel sowie der Gebrauchsgegenstände Zeitschrift des Vereins der Deutschen Zuckerindustrie, Technischer Teil Zeitschrift für Vitaminforschung. Bern Zeitschrift für Wissenschaftliche Mikroskopie und für Mikroskopische Technik</li> <li>Zeitschrift für Wissenschaftliche Photographie, Photophysik und Photochemie</li> <li>Zymologica e Chimica dei Colloidi (Vol. 1 und ab Vol. 15) (ab 2, Nr. 2:) Zymologica, Chimica dei Colloidi e degli Zuccheri</li> <li>Zeitschrift für Zuckerindustrie in Böhmen</li> <li>Zeitschrift für Zuckerindustrie der Čechoslovakischen Republik</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Z. Textilind.                            | Zeitschrift für die gesamte Textilindustrie                                                                                    |
| <ul> <li>Z. Unters. Nahr Genuβm.</li> <li>Z. Verein dtsch. Zuckerind.</li> <li>Z. Vitaminf.</li> <li>Z. Witschaftsgr. Zuckerind.</li> <li>Z. wiss. Mikr.</li> <li>Z. wiss. Phot.</li> <li>Zeitschrift für Wissenschaftliche Mikroskopie und für Mikroskopische Technik</li> <li>Zeitschrift für Wissenschaftliche Photographie, Photophysik und Photochemie</li> <li>Zymol. Chim. Coll.</li> <li>Zuckerind. Böh.</li> <li>Z. Zuckerind. Böh.</li> <li>Z. Zuckerind. Čsl.</li> <li>Zeitschrift für Zuckerindustrie in Böhmen</li> <li>Zeitschrift für Zuckerindustrie der Čechoslovakischen Republik</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                                |
| <ul> <li>Genuβm.</li> <li>Z. Verein disch. Zuckerind.</li> <li>Z. Vitamini.</li> <li>Z. Vitamini.</li> <li>Z. Wistschaftsgr.     Zuckerind.</li> <li>Z. wiss. Mikr.</li> <li>Z. wiss. Phot.</li> <li>Zeitschrift für Wissenschaftliche Mikroskopie und für Mikroskopische Technik</li> <li>Zeitschrift für Wissenschaftliche Photographie, Photophysik und Photochemie</li> <li>Zymol. Chim. Coll.</li> <li>Zymologica e Chimica dei Colloidi (Vol. 1 und ab Vol. 15) (ab 2, Nr. 2:) Zymologica, Chimica dei Colloidi e degli Zuccheri</li> <li>Zeitschrift für Zuckerindustrie in Böhmen</li> <li>Zeitschrift für Zuckerindustrie der Čechoslovakischen Republik</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Z. Uniers. Lebensm. Z. Uniers. Nahr.     | Zeitschrift für Untersuchung der Lebensmittel                                                                                  |
| <ul> <li>Z. Verein disch. Zuckerind.</li> <li>Z. Vitamini.</li> <li>Z. Vitamini.</li> <li>Z. Vitamini.</li> <li>Z. Wistschaftsgr.</li> <li>Zuckerind.</li> <li>Z. wiss. Mikr.</li> <li>Z. wiss. Phot.</li> <li>Zeitschrift für Wissenschaftliche Mikroskopie und für Mikroskopische Technik</li> <li>Zeitschrift für Wissenschaftliche Photographie, Photophysik und Photochemie</li> <li>Zymol. Chim. Coll.</li> <li>Zymologica e Chimica dei Colloidi (Vol. 1 und ab Vol. 15) (ab 2, Nr. 2:) Zymologica, Chimica dei Colloidi e degli Zuckerind. Böh.</li> <li>Z. Zuckerind. Böh.</li> <li>Z. Zuckerind. Csl.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                                                                                                                                |
| <ul> <li>Z. Wirtschaftsgr. Zuckerind.</li> <li>Z. wiss. Mikr.</li> <li>Z. wiss. Phot.</li> <li>Zeitschrift für Wissenschaftliche Mikroskopie und für Mikroskopische Technik</li> <li>Zeitschrift für Wissenschaftliche Photographie, Photophysik und Photochemie</li> <li>Zymol. Chim. Coll.</li> <li>Zymologica e Chimica dei Colloidi (Vol. 1 und ab Vol. 15) (ab 2, Nr. 2:) Zymologica, Chimica dei Colloidi e degli Zuccheri</li> <li>Z. Zuckerind. Böh.</li> <li>Z. Zuckerind. Csl.</li> <li>Zeitschrift für Zuckerindustrie in Böhmen</li> <li>Zeitschrift für [die] Zuckerindustrie der Čechoslovakischen Republik</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Z. Verein dtech. Zucker-<br>ind.         | Zeitschrift des Vereins der Deutschen Zuckerindustrie, Technischer<br>Teil                                                     |
| <ul> <li>Zuckerind.</li> <li>Z. wiss. Mikr.</li> <li>Z. wiss. Phot.</li> <li>Zeitschrift für Wissenschaftliche Mikroskopie und für Mikroskopie un</li></ul>                                                                                                       | Z. Vitaminf.                             | Zeitschrift für Vitaminforschung. Bern                                                                                         |
| skopische Technik  Zeitschrift für Wissenschaftliche Photographie, Photophysik und Photochemie  Zymol. Chim. Coll.  Zymologica e Chimica dei Colloidi (Vol. 1 und ab Vol. 15):  (ab 2, Nr. 2:) Zymologica, Chimica dei Colloidi e degli Zuccheri  Zuccheri Zeitschrift für Zuckerindustrie in Böhmen  Zeitschrift für [die] Zuckerindustrie der Čechoslovakischen Republik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Zuckerind.                               |                                                                                                                                |
| <ul> <li>Z. wiss. Phot.</li> <li>Zymol. Chim. Coll.</li> <li>Zymol. Chim. Coll.</li> <li>Zymologica e Chimica dei Colloidi (Vol. 1 und ab Vol. 15) (ab 2, Nr. 2:) Zymologica, Chimica dei Colloidi e degli Zuccheri</li> <li>Z. Zuckerind. Böh.</li> <li>Z. Zuckerind. Csl.</li> <li>Zuckerind. Csl.</li> <li>Zuckerindustrie der Čechoslovakischen Republik</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2. W188. M 1KT.                          | Zeuschrift für Wissenschaftliche Mikroskopie und für Mikroskopieche Technik                                                    |
| Zymol. Chim. Coll.  Zymologica e Chimica dei Colloidi (Vol. 1 und ab Vol. 15)  (ab 2, Nr. 2:) Zymologica, Chimica dei Colloidi e degli  Zuccheri  Z. Zuckerind. Böh.  Z. Zuckerind. Čsl.  Zeitschrift für Zuckerindustrie in Böhmen  Zeitschrift für [die] Zuckerindustrie der Čechoslovakischen Republik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Z. wiss. Phol.                           | Zeitschrift für Wissenschaftliche Photographie, Photophysik und                                                                |
| <ul> <li>Z. Zuckerind. Böh.</li> <li>Z. Zuckerind. Čsl.</li> <li>Zeitschrift für Zuckerindustrie in Böhmen</li> <li>Zeitschrift für [die] Zuckerindustrie der Čechoslovakischen Republik</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Zymol. Chim. Coll.                       | Zymologica e Chimica dei Colloidi (Vol. 1 und ab Vol. 15); (ab 2, Nr. 2:) Zymologica, Chimica dei Colloidi e degli             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Z. Zuckerind. Böh.<br>Z. Zuckerind. Čel. | Zeitschrift für Zuckerindustrie in Böhmen<br>Zeitschrift für [die] Zuckerindustrie der Čechoslovakischen Re-                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •z•                                      |                                                                                                                                |

| ten           |
|---------------|
| _             |
| Ξ             |
| Ħ             |
| ত             |
| <b>t</b> s    |
| <b>.</b>      |
| ı Ze          |
| ŭ             |
| ŧ             |
| Š             |
| :=            |
| Ξ             |
|               |
| <u>ි</u>      |
| wich          |
| e wichtigsten |
| die wich      |
| die           |
| die           |
| für die       |
| für die       |
| el für die    |
| el für die    |
| el für die    |
| el für die    |
| el für die    |
| für die       |
| el für die    |

|                         |                       | 7               | Zeittafel für die wichtigsten Zeitschriften | el für           | die wi         | chtigs            | ten Ze           | itschr       | iften.            |              |               |                        |                         |
|-------------------------|-----------------------|-----------------|---------------------------------------------|------------------|----------------|-------------------|------------------|--------------|-------------------|--------------|---------------|------------------------|-------------------------|
|                         | 1901                  | 1902            | 1903                                        | 1904             | 1905           | 1906              | 1907             | 1908         | 1909              | 1910         | 1911          | 1912                   | 1913                    |
| A.                      | 314 319               | i               | 326—329                                     | 330 337          | क्रुंब         | 44 350            | 1—35             | 358—363      | 4-371             | 72-37        | 378—385       | 386 394                | 395 401                 |
| Am. Soc                 | 25. 26                | 27. 28          | 29. 30 31. 32 33.                           | 31.32            | ₽#_            | 35. 36            | 37. 38           | 39. 40       | 1. 42             | 43. 44       | 45. 46        | 1 45. 46 47. 48 4      | 49. 50<br>50. 50        |
| Ann. Phys.              | 4 4 8                 |                 | 10-12                                       | 13—15            | -18            | 19—21             | 2.24<br>4.75     | 25—27        | 8 30<br>6 30      | 31_3         | 34—36         | 34<br>37—39            | 35<br>40 42             |
| Ar.<br>B                | %<br>%<br>%           |                 | %<br>%                                      | 37               | m ~            | <del>4</del> %    | <del>2</del> 2   | 246<br>41    | 247<br>42         | 248<br>43    | 249<br>44     | 25<br>55<br>           | 251<br>46               |
| Biochem. J.             |                       |                 |                                             |                  |                | <del></del>       | 2 2              | 3            | 4                 | 93           | 5 27          | 90 47                  | 7 2                     |
| E E                     | [3] 25.26             |                 | 29.30                                       | 31. 32           | 33.<br>34.     | 35, 36            | 1.               | 3. 4         | 5. 6              |              | 9. 10         | 11. 12                 | 13. 14                  |
| Chem. N.                | 83. 8 <del>4</del>    | 85. 86<br>26    | 87. 88                                      | 8<br>8<br>8<br>8 | 91.<br>29      | 93.<br>30.        | 95.<br>24.98     | 97. 98<br>32 | 33. 100<br>33.    | [일.<br>참     | 103, 104      | 105. 106               | 107, 108                |
| C. r.                   | 132, 133              |                 | 136, 137                                    | 138, 139         | 140.14         | 142, 143          | 14. 14           | 146. 147     | 8. 149            | 150.1        | 152, 153      | 154, 155               | 156, 157                |
| ٠ <u>.</u>              | <del>3</del> %        | <del>4</del> %  | <b>3</b> %                                  | 3 %              | <b>4</b> %     | 36                | 9 <del>4</del> 5 | 74 8         | <del>2</del> 8    | <b>\$</b> \$ | 8 5           | 57                     | 25                      |
| H.                      | 31—33                 | 34—36           | 37—39                                       | 40 42            | 43 46          | 47—49             |                  | 24 25        | <b>3</b>          | 3            | 70-75         | 76—82                  | 83<br>88<br>88          |
| J. ind. Eng.            |                       |                 |                                             |                  |                |                   |                  |              | •                 | G            | 67            | •                      | ¥                       |
| J. biol. Chem.          |                       |                 | -                                           | G                |                | -                 | <br>             | 410          | 5.6               | 11-0         |               | 10-12                  | 13—16                   |
| J. Pharm. Chim.         | [6] 13. 14            | 15. 16          | 17, 18                                      | 19: 20           | 21, 22         | 23. 24            | 25. 26           | 27. 28       | 29.30             | 71 2         | 9. °.         | 10<br>5. 6             | 11<br>7. 8              |
| J. phys. Chem.          |                       | 9               | - 5                                         | 8                | 6              | 10                | 11               | 12           | 13                | 14           | 15            | 16                     | 17                      |
| J. Soc. chem.           | 2<br>2<br>3<br>3<br>4 | 99.             | 20.70                                       | 07.69            | 71. 72         | 73. 74            | 75. 76           | 77. 78       | 79. 80            | 81. 82       | 83.<br>84     | 85. 86                 | 87. 88                  |
| Ind.                    | 83                    | ដូ              | 22                                          | នុះ              | \$             | 33                | 58               | 27           | 8                 | &            | 8             | 31                     | 35                      |
| Ph. Ch.                 | 36 <u>738</u>         | 3 6             | 42.4                                        | 47 49            | 20 26<br>50 53 | 54 Z1<br>54 56    | 27 28<br>28 50   | 83 2         | 8<br>8<br>8       | 31           | 32            | 78<br>80               | 25 24<br>26 24<br>26 24 |
| Phys. Rev.              |                       | 14. 15          | 16. 17                                      | 18. 19           | 20.23          | 22. 23            | 24. 25           | 26. 27       | 88                | 30.31        | 32. 33        | <b>24</b><br><b>35</b> | [2] 1. 2                |
| Pr. roy. Soc.[A]        |                       | 69. 70<br>21    | 28                                          | 72. 73           | 74—76          | 72                | 78. 79           | 80.81        | ~~<br>88<br>8     | <b>8</b> 8   | 84. 85        | 86. 87                 | æ 8                     |
| R. A. L.                |                       | 12              | 121                                         | 13               | 4.             | 12                | 16               | 12           | 3 %               | 19           | 38            | 52                     | 383                     |
| Soc.<br>Z. ang. Ch.     | 79. 80<br>14.         | 81. 82<br>15    | 83. 84<br>16                                | 85. 86           | 87. 88         | 89.<br>19.<br>19. | 91. 92<br>20     | 93.<br>24.   | 95.<br>96.<br>98. | 97. 98       | 99. 100<br>24 | 101. 102<br>25         | 103. 10 <u>4</u><br>26  |
| Z. anorg. Ch.<br>Z. Kr. |                       | 29—32<br>35. 36 | 33_37                                       | 38 42<br>38. 39  | 43 47          | 48_51             | 52—55<br>42. 43  | 56 4<br>5 60 | 61<br>64<br>64    | 65_68        | 69-72         | 73_78                  | 79—83                   |
| ж.                      | æ                     | *               | 32                                          | 36               | 37             | 88                | 39               | \$           | . 41              | <b>3</b>     | 43            | 4                      | 45                      |

| 1923 1924 1925 1926 | 421     422     426     429     430     431     435     440     441     446     450     46     46     46     47     48     47     48     47     48     47     48     47     48     47     48     47     48     47     48     47     48     47     48     47     48     47     48     47     48     47     48     47     48     47     48     47     48     48     48     47     48     48     48     47     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48     48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1922                | 25 426—429 430—<br>6 17. 18 19.<br>44 44<br>6 67—69 70—<br>260 26<br>55 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0 1921              | 421 422 42<br>14 15.16<br>63 64 66<br>63 64 66<br>14 15.16<br>8 559<br>8 54<br>112 113 -12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1920                | 419<br>420.<br>419<br>420.<br>420.<br>411.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>258.<br>25 |
| 1918 1919           | 417 418.<br>0 411.<br>0 411.<br>10 11.<br>10 12.<br>25 25.<br>29 93.<br>24 25.<br>24 25.<br>24 25.<br>24 25.<br>24 25.<br>25 25.<br>26 25.<br>27 26 25.<br>28 26 26 26.<br>28 26.                                                                                                                                                                                                                                                             |
| 1917 19             | . 413414<br>. 8 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1916 18             | 0     411     412. 413414—417     418. 419     420. 421     422       5. 6     7. 8     9. 10     11. 12     13. 14     15       38     39     39     41     42     42       5. 6     7. 8     9. 10     11. 12     13. 14     15       5. 6     7. 8     9. 10     11. 12     13. 14     15       254     256     256     257     258     2       49     50     51     52     53     4       10     11     12     13. 14     14       72—77     78—84     85—92     93—100101—112113       19. 20     21. 28     23. 24     25. 26     27. 28       19. 20     21. 22     23. 24     25. 26     27. 28     29       19. 20     11. 12     14. 40     19. 10     19. 10     19. 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1915                | 407—410<br>3. 4<br>37<br>46—48<br>3. 4<br>253<br>48<br>9<br>9<br>9<br>68—71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1914                | 402—406<br>[9] 1. 2<br>36<br>[4] 43—45<br>[9] 1. 2<br>252<br>47<br>8<br>58—67<br>[4] 15. 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     | A. ch. An. ch. Am. Soc. Ann. Phys. Ann. Physique Ar. B. Biochem. J. Bio. Z. Bin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| <b>G</b> | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 36<br>9. 30<br>9. 30<br>1. 22<br>1. 23<br>1. 24<br>1. 24 |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1939     | 61<br>61<br>61<br>61<br>61<br>61<br>72<br>33<br>300—30<br>6<br>6<br>6<br>6<br>6<br>115—11<br>115—11<br>115—11<br>115—11<br>115—11<br>115—11<br>116—11<br>117—11<br>117—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11<br>118—11 | 29. 30<br>43. 45. 45. 45. 45. 45. 45. 45. 45. 45. 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1938     | 533—536 537—542<br>9. 10  11  60  61  31—33  34—36  9. 10  11  72  32  295—299  300—302  62  63  63  64  68  69  69  69  69  71  72  72  72  72  73  73  74  74  75  75  75  75  75  75  75  75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27. 28 29. 30<br>42 43<br>150—161 152—15<br>67 68<br>77 72<br>181. 182 183—18<br>38—41 42—44<br>53. 54 55—56<br>164—168 169—17<br>57. 28 29. [7]<br>68<br>27. 28 29. [7]<br>68<br>8 99 100—10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1937     | 28—30<br>7. 8<br>59<br>28—30<br>7. 8<br>70<br>31<br>289—294<br>4<br>4<br>61<br>204. 205<br>108—110<br>67<br>245—250<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3. 3.4 3.5 2.6 27. 28 29 4.1 4.2 25. 26 27. 28 29 4.1 4.2 4.1 4.2 4.2 4.2 4.2 4.2 4.2 4.2 5. 26 4.2 5. 50 51. 52 53. 54 55 4.2 5. 50 51. 52 53. 54 55 4.2 5. 50 51. 52 53. 54 55 4.2 5. 50 51. 52 53. 54 5. 50 51. 52 53. 54 5. 50 51. 52 53. 54 5. 50 51. 52 53. 54 5. 50 51. 52 53. 54 5. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 59 6. 50 51. 58 50 6. 50 51. 58 50 6. 50 51. 58 50 6. 50 51. 58 50 6. 50 51. 58 50 6. 50 51. 58 50 6. 50 51. 58 50 6. 50 51. 58 50 6. 50 51. 58 50 6. 50 51. 58 50 6. 50 51. 58 50 6. 50 51. 58 50 6. 50 51. 58 50 6. 50 51. 58 50 6. 50 51. 58 50 6. 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1936     | 521—526<br>5. 6<br>5. 6<br>6. 6<br>83<br>283—288<br>283—288<br>104—107<br>66<br>202. 203<br>104—107<br>66<br>288—244<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32 33<br>1. 22 23. 24<br>2. 143 144—146 11<br>2. 143 144—146 11<br>2. 144 146 11<br>3. 144—146 11<br>3. 144—                                                                                                                                                                                                                                                                                                                         |
| 1935     | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1934     | 508—514<br>[11] 1. 2<br>56<br>19—21<br>[11] 1. 2<br>28<br>268—274<br>[5] 1<br>[5] 1<br>198. 199<br>96—99<br>96—99<br>96—99<br>17<br>17<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19. 20 21<br>19. 20 22<br>23. 44<br>168—141142<br>24—27<br>24—27<br>45. 46<br>47. 46<br>47. 47<br>48. 20<br>23. 47<br>49. 20<br>40. 20<br>41. 20<br>42. 47<br>43. 44<br>44. 44                                                                             |
| 1933     | 488         476477         484485         491492         499         500         508         11. 12         13. 14         15. 16         17. 18         19. 20         [11         10. 20         11. 12         13. 14         15. 16         17. 18         19. 20         [11         11. 12         13. 14         15. 16         17. 18         19. 20         [11         10. 20         11. 12         13. 14         15. 16         17. 18         19. 20         [11         18. 20         11. 18         19. 20         [11         19. 20         [11         23. 26         27         26. 27         26. 27         26. 27         26. 27         26. 27         26. 27         26. 27         26. 27         26. 27         26. 27         26. 27         26. 27         26. 27         26. 27         26. 27         26. 27         26. 27         26. 27         26. 27         26. 27         26. 27         26. 27         26. 27         26. 27         26. 27         26. 27         26. 27         26. 27         26. 27         26. 27         26. 27         26. 27         26. 27         26. 27         26. 27         26. 27         26. 27         26. 27         26. 27         26. 27         26. 27         26. 27         26. 27         26. 27         26. 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9 30 30 30 30 30 30 30 30 30 30 30 30 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1932     | 11. 12 13. 14 15. 16 17. 18 51 52 53 54 11. 12 13. 14 15. 16 17. 18 52 14. 1 12-15 23 24 25 24 25 24 25 25 44 47. 48 49. 50 45. 46 47. 48 49. 50 18. 139 140. 141 142. 143 144. 145 53 54 65 60 61 62 18. 189 180. 191 192. 193 194. 195 59 60 61 62 180. 186-193 194-203 204-213 12 22 23 24 14 15 18 189 180. 191 192. 193 194. 195 18 189 180. 191 192. 193 194. 195 18 189 180. 191 192. 193 194. 195 18 189 180. 191 192. 193 194. 195 18 189 180. 191 192. 193 194. 195 18 188 189 189. 191 192. 193 194. 195 18 188 189 189. 193 194. 195 18 188 188 189 189 189 189 189 189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8 29 29 29 29 29 36 36 36 36 36 36 36 36 36 36 36 36 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1931     | 485—491<br>15. 16<br>53<br>8—11<br>15. 16<br>64<br>25<br>230—243<br>49. 50<br>142. 143<br>192. 193<br>83—86<br>61<br>194—203<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28<br>13. 14<br>35<br>8129—13111<br>57. 58<br>1152—15711<br>11—14<br>37. 38<br>9130—13311<br>50<br>13. 14<br>44<br>4195—2022<br>76—80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1930     | 477—484<br>13. 14<br>52<br>4—7<br>13. 14<br>63<br>24<br>27—229<br>47. 48<br>140. 141<br>79—82<br>60<br>60<br>186—193<br>13<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6 27 27 39 4 49 4 49 4 14 172 13 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1929     | 468—476<br>11. 12<br>51<br>51<br>11. 12<br>62<br>23<br>204—216<br>45. 46<br>138. 139<br>76—78<br>59<br>180—185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26<br>9. 10<br>33<br>120–124<br>48<br>51–64<br>120–145<br>33. 34<br>122–125<br>48<br>9. 10<br>42<br>9. 10<br>42<br>60–71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1928     | 460—467<br>9. 10<br>50<br>85—87<br>9. 10<br>61<br>22<br>192—203<br>43. 44<br>136. 137<br>52<br>136. 137<br>58<br>173—75<br>58<br>173—77<br>58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25<br>32<br>32<br>47<br>47<br>49<br>50<br>131—139<br>117—121<br>47<br>7. 8<br>41<br>168—176<br>66—68<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1927     | 451—459<br>[10] 7. 8<br>49<br>49<br>[10] 7. 8<br>60<br>21<br>180—191<br>[4] 41. 42<br>134. 135<br>70—72<br>67<br>10—72<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [8] 5. 6<br>31<br>31<br>46<br>46<br>46<br>125—130<br>113—116<br>46<br>[6] 5. 6<br>46<br>[6] 5. 6<br>159—167<br>59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | A. A. ch. Am. Soc. Ann. Phys. Ann. Physique B. Biochem. J. Bio. Z. Bl. Chem. N. Ch. Z. C. r. Fr. G. r. H. H. H. Ind. Eng. Chem. Ind. Edit.]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

## Weitere Abkürzungen.

| absol.                    | = absolut                 | Kp <sub>750</sub>  | Siedepunkt unter         |
|---------------------------|---------------------------|--------------------|--------------------------|
| ac.                       | = alicyclisch             | 1                  | 750 mm Druck             |
| äther.                    | = ätherisch               | lin.               | = linear                 |
| AGFA                      | = Aktien-Gesellschaft für | m- (als Stellungs- |                          |
|                           | Anilinfabrikation         | 1                  | = meta-                  |
| akt.                      | = aktiv                   | m- (als Konzen-    |                          |
| alkal.                    | = alkalisch               | trationsangabe)    | = molar                  |
| alkoh.                    | = alkoholisch             | Min.               | = Minute                 |
| ang.                      | = angular                 |                    | = Mitarbeiter            |
| Anm.                      | = Anmerkung               |                    | = Molekulargewicht       |
| ar.                       | = aromatisch              |                    | = Molekularrefraktion    |
|                           | = asymmetrisch            |                    | = meso-                  |
| asymm.<br>AtGew.          | = Atomgewicht             | n (in Verbindung   | - Meso-                  |
| B.                        | = Bildung                 |                    | = Brechungsindex         |
| Bac.                      | = Bacillus                | n- (in Verbindung  | - Diechmigander          |
|                           |                           |                    | 1                        |
| Bact.                     | = Bacterium               |                    | = normal                 |
| BASF                      | = Badische Anilin- und    |                    | = ortho-                 |
| ,                         | Sodafabrik                | 1 -                | = optisch-aktiv          |
| ber.                      | = berechnet               | 1 .                | = para-                  |
| bzw.                      | = beziehungsweise         |                    | = primär                 |
| ca.                       | = circa                   |                    | = Privatmitteilung       |
| D                         | = Dichte                  |                    | = Produkt                |
| $\mathbf{D}_{4}^{\infty}$ | = Dichte bei 20°, bezogen |                    | = racemisch              |
|                           | auf Wasser von 40         |                    | = Reduktionsvermögen     |
| Darst.                    | = Darstellung             |                    | = Seite                  |
| DielektrKonst.            | = Dielektrizitäts-Kon-    | 8.                 | = siehe                  |
|                           | stante                    | S. a.              | = siehe auch             |
| E                         | = Erstarrungspunkt        | 8. O.              | = siehe oben             |
| Einw.                     | = Einwirkung              | s. u.              | = siehe unten            |
| EMK                       | = Elektromotorische Kraft | sek.               | = sekundär               |
| Ergw.                     | = Ergänzungswerk          | spezif.            | = spezifisch             |
| F                         | = Schmelzpunkt            | Spl.               | Supplement               |
| gem                       | = geminal-                | Stde., Stdn.       | = Stunde, Stunden        |
| Hptw.                     | = Hauptwerk               | stdg.              | = stündig                |
| inakt.                    | = inaktiv                 |                    | = symmetrisch            |
| $k (k_a, k_b)$            | = elektrolytische Disso-  |                    | = System-Nummer          |
| ()                        | ziationskonstanten, bei   |                    | = Temperatur             |
|                           | Ampholyten Dissozia-      |                    | = tertiär                |
|                           | tionskonstanten nach      |                    | = Teil, Teile, Teilen    |
|                           | der klassischen Theorie   |                    | = Vorkommen              |
| $K(K_S, K_B)$             | = elektrolytische Disso-  |                    | = verdünnt               |
| I (IIS, IXB)              | ziationskonstanten von    |                    | = vergleiche auch        |
|                           | Ampholyten nach der       |                    | = vicinal                |
|                           | Zwitterionentheorie       |                    | == Volumen               |
| le on m                   | = konzentriert            |                    | == volumen<br>== wäßrig  |
| konz.                     |                           |                    | = wablig<br>= Zersetzung |
| korr.                     | = korrigiert              | 2015.              | - Serseszung             |
| Кp                        | = Siedepunkt              | 1                  |                          |

## Übertragung der griechischen Buchstaben in Zahlen.

## Zusammenstellung der Zeichen für Maßeinheiten.

Meter, Zentimeter, Millimeter m, cm, mm Quadratmeter, Quadratzentimeter, Quadratmillimeter m2, cm2, mm3 Kubikmeter, Kubikzentimeter, Kubikmillimeter m<sup>3</sup>, cm<sup>3</sup>, mm<sup>3</sup> Tonne, Kilogramm, Gramm, Milligramm Gramm-Molekül (Mol.-Gew. in Gramm) t, kg, g, mg Mol Liter Stunde h Minute min sec Sekunde Grad grad CelsiusgradGrad der absoluten Skala absol. Grammcalorie (kleine Calorie)
 Kilogrammcalorie (große Calorie)
 760 mm Hg cal kcal Atm. gcm/sec<sup>2</sup> dyn 10° dyn megadyn  $= dvn/cm^2$ bar megabar  $= 10^6 \, \mathrm{bar}$  $= 10^{-7} \, \text{mm}$ À = 10<sup>-6</sup> mm  $m\mu$ = 10<sup>-8</sup> mm Amp. = Ampère Milliamp. = Milliampère = Ampère-Stunde Amp.-h Watt W  $\mathbf{k}\mathbf{W}$ = Kilowatt Wh = Wattstunde = Kilowattstunde kWh = Coulomb Coul. Ω = Ohm reziproke Ohm rez. Ohm Volt Joule Joule

## Erklärung der Hinweise auf das Hauptwerk und die Ergänzungswerke.

- 1. Es bedeutet H Hauptwerk, E I Ergänzungswerk I, E II Ergänzungswerk II. Die Bandzahlen sind in arabischen Ziffern wiedergegeben und durch Fettdruck kenntlich gemacht.
- 2. In den Seitenüberschriften sind in Fettdruck die Seiten des Hauptwerks angegeben, zu denen die auf der betreffenden Seite des II. Ergänzungswerkes befindlichen Ergänzungen gehören.
- 3. Berichtigungen zum Hauptwerk oder Ergänzungswerk I sind kursiv gedruckt.

# ZWEITE ABTEILUNG ISOCYCLISCHE VERBINDUNGEN

# I. Kohlenwasserstoffe.

## 1. Kohlenwasserstoffe C<sub>n</sub>H<sub>2n</sub>.

- 1. Cyclopropan C<sub>2</sub>H<sub>6</sub> =  $\frac{\text{H}_2\text{C}}{\text{H}_2\text{C}}$ CH<sub>2</sub> (H 15; E I 3). Reindarstellung aus Trimethylenbromid durch Erwärmen mit Zinkwolle und Isoamylalkohol auf 110—115° und fraktionierte Destillation des verflüssigten Gases: Trautz, Winkler, J. pr. [2] 104, 37. E: —127°; Kp<sub>780</sub>: —34,5°; D-7°: 0,720 (Tr., W., J. pr. [2] 104, 43). Dampfdichtebestimmung: Tr., W., J. pr. [2] 104, 41. Innere Reibung des Dampfes: Titani, Bl. phys. chem. Res. Tokyo 2, 50; C. 1929 II, 1255. n<sub>He</sub>: 1,000 977 (Tr., W., J. pr. [2] 104, 43). Absorptionsvermögen für Kathodenstrahlen bei verschiedenen Drucken: Becker, Ann. Phys. [4] 67, 443. Geschwindigkeit der thermischen Umlagerung zu Propylen unter verschiedenen Bedingungen: Tr., W., J. pr. [2] 104, 53.
- 1.1-Dichlor-cyclopropan  $C_3H_4Cl_2 = \frac{H_2C}{H_3C}CCl_2$  (H 17). Geschwindigkeit der Reaktionen mit Kaliumhydroxyd, Silbernitrat und Piperidin in Alkohol bei 90°: Petrenko-Kritschenko, B. 62, 587;  $\mathcal{H}$ . 61, 1785.
- 1.2-Dichlor-cyclopropan  $C_3H_4Cl_2 = \frac{ClHC}{H_2C}$ CHCl. Geschwindigkeit der Reaktionen mit Piperidin, Kaliumhydroxyd und Silbernitrat in Alkohol bei  $90^\circ$ : Petrenko-Kritschenko, B. 62, 587; Ж. 61, 1785.
- 1.2-Dibrom-cyclopropan, Cyclopropendibromid  $C_3H_4Br_2 = \frac{BrHC}{H_2C}$ CHBr. B. Beim Einleiten von Cyclopropen in Brom in einer Kohlendioxyd-Atmosphäre unter Kühlung (Demjanow, Dojarenko, B. 56, 2202). Süßlich riechende Flüssigkeit. Zeigt große Neigung zur Unterkühlung. F:  $-1^{\circ}$  bis  $+1^{\circ}$ . Kp<sub>743</sub>: 135 $-136^{\circ}$ ; Kp<sub>27</sub>: 45 $^{\circ}$ . D $_{\circ}^{\circ}$ : 2,1436; D $_{\circ}^{\circ}$ : 2,1241; D $_{\circ}^{\circ}$ : 2,1040.  $n_{\circ}^{\circ}$ : 1,5369. Liefert mit Zinkstaub und 80% igem Alkohol bei 72 $-73^{\circ}$  Cyclopropen zurück. Reaktion mit Brom: Dem., Do.

## 2. Kohlenwasserstoffe $C_4H_8$ .

- 1. Cyclobutan  $C_4H_8 = H_2C < \stackrel{CH_2}{CH_2} > CH_2$ .
- 1.1.2.2.3.4-Hexabrom-cyclobutan  $C_4H_2Br_6=BrHC CHB_r$   $CBr_2$ . Die H 5, 18 unter dieser Formel beschriebene Verbindung ist von Lespieau, Prévost, C.r. 180, 1347; Bl. [4] 37, 708; STRAUS, KOLLEK, B. 59, 1670; EISSNER, BRILL, Z.Kr. 79 [1931], 435; 81 [1932], 316; vgl. a. MÜLLER, Helv. 8, 831 als höherschmelzendes 1.1.2.3.4.4-Hexabrom-buten-(2) erkannt worden.
- 2. Methylcyclopropan  $C_4H_8 = \frac{H_2C}{H_2C}CH\cdot CH_8$  (H 18). Liefert beim Leiten über Aluminiumoxyd bei 340—360° geringe Mengen Diisobutylen und andere Produkte (DoJABENKO, B. 59, 2943;  $\mathbb{K}$ . 58, 3).

Brommethyl - cyclopropan, Cyclopropyl - methylbromid C<sub>4</sub>H<sub>7</sub>Br = C<sub>8</sub>H<sub>6</sub>·CH<sub>4</sub>Br (H 18; E I 4). B. Beim Behandeln von N-Cyclopropylmethyl-benzamid mit Phosphorpentabromid bei ca. 85° (v. Braun, Fussgänger, Kühn, A. 445, 211; Arvin, Adams, Am. Soc. 50, 1984). — Besitzt einen scharfen Geruch und reizt die Schleimhäute (v. Br., F., K.). Kp: 106° (v. Br., F., K.). D<sup>2</sup>/<sub>2</sub>: 1,392 (v. Br., F., K.). — Wird durch Wasser leicht zersetzt (v. Br., F., K.). Liefert beim Behandeln mit Ammoniumrhodanid in verd. Alkohol in der Kälte Cyclopropylmethyl-rhodanid (v. Br., F., K.).

1.1¹- Dibrom - 1 - methyl - cyclopropan, 1 - Brom - 1 - brommethyl - cyclopropan, Methylencyclopropan-dibromid  $C_4H_6Br_2=\frac{H_2C}{H_2C}CBr\cdot CH_2Br$ . B. Beim Einleiten von Methylencyclopropan in Brom, neben 1.2.2.4-Tetrabrom-butan (?) und Erythrentetrabromid (Demjanow, Dojarenko, B. 56, 2209). — Flüssigkeit, die bei 5 mm und einer Badtemperatur von 140° übergeht.

### 3. Kohlenwasserstoffe $C_5H_{10}$ .

1. Cyclopentan  $C_5H_{10} = \frac{H_2C \cdot CH_2}{H_4C \cdot CH_2} \cdot CH_2$  (H 19; E I 4). V. In den Erdölen von Moreni und Arbanesi (Rumänien) (Moutte, Chim. et Ind. 16, Sondernummer, 331, 332; C. 1927 I, 383). — B. Durch Hydrierung von Cyclopenten in Gegenwart von Platinschwarz (Eisenlohe, Fortsch. Ch., Phys. 18, 540; C. 1926 I, 75) in Eisessig (Chavanne, Bl. Soc. chim. Belg. 31, 334; C. 1923 IV, 68). Neben anderen Verbindungen beim Erhitzen von Cyclohexen auf ca. 425° unter Wasserstoffdruck in einer Chromnickelstahlbombe (Hofmann, Lang, Brennstoffch. 10, 204; C. 1929 II, 165). — E: —93,3° (Timmermans, Bl. Soc. chim. Belg. 31, 390; C. 1923 III, 1137). Kp<sub>760</sub>: 49,5° (Ti., Bl. Soc. chim. Belg. 30, 65; C. 1921 III, 287), 49,35—49,40° (Ch.); Kp<sub>760</sub>: 49,5° (Ti., Bl. Soc. chim. Belg. 30, 65; C. 1921 III, 287), 49,35—49,40° (Ch.); Kp<sub>760</sub>: 49,5° (O.) (Eisenlohe). D<sup>o.</sup> 0,7646 (Ch., van Risseghem, Bl. Soc. chim. Belg. 31, 91; C. 1922 III, 241), 0,7645  $\pm$  0,0001 (Ch.); D<sup>o.</sup> 0,7500 (Eyeman zitiert bei Eisenlohe); D<sup>o.</sup> 0,7503 (Ch., van R.), 0,7505  $\pm$  0,0001 (Ch.); D<sup>o.</sup> 0,7510 (Eisenlohe). Viscosität bei 15° 0,00477 g/cmsec (Ch.). Viscosität zwischen 0° (0,00572 g/cmsec) und 30° (0,00406 g/cmsec): Ch., van R. n<sup>o.</sup> 1,4070; n<sup>o.</sup> 1,40981; n<sup>o.</sup> 1,41481; n<sup>o.</sup> 1,41489 (Ch.); n<sup>o.</sup> 1,40383; n<sup>o.</sup> 1,40609; n<sup>o.</sup> 1,41126; n<sup>o.</sup> 1,41736 (Eisenlohe). Magnetische Susceptibilität: Pascal, C. r. 181, 657. Kritische Lösungstemperatur in Anilin: 18° (Ch., Becker, Bl. Soc. chim. Belg. 36, 602; C. 1928 I, 1169). — Löst sich wenig in 2 Volumteilen rauchender Schwefelsäure (10 % SO<sub>3</sub>-Gehalt) mit rotgelber Färbung (Zelinsky, B. 56, 1721).

Chlorcyclopentan, Cyclopentylchlorid  $C_0H_0Cl$  (H 19; E I 4). Wird bei 50—55° weder durch Wasser hydrolysiert noch durch Chromschwefelsäure oxydiert; bei 90—95° findet weitgehende Hydrolyse und mit Chromschwefelsäure Oxydation zu Glutarsäure statt (Courtot, Pierron, Bl. [4] 45, 289).

Bromcyclopentan, Cyclopentylbromid C<sub>5</sub>H<sub>9</sub>Br (H 19; E I 4). B. Beim Behandeln von Cyclopentanol mit Phosphortribromid bei 0° (Noller, Adams, Am. Soc. 48, 1084). — Kp: 135—136° (korr.) (N., A.). Kp<sub>45</sub>: 56° (Yohe, A., Am. Soc. 50, 1505). D<sup>m</sup>: 1,3900; n<sup>m</sup><sub>5</sub>: 1,4882 (N., A.). — Liefert bei der Einw. von Natrium in Äther in geringer Menge Dicyclopentyl neben viel Cyclopenten (Meiser, B. 32 [1899], 2054; Zelinsky, Titz, Fatelew, B. 59, 2581). Reaktionsfähigkeit mit Alkalien, Sulfiden, Alkoholaten, Natriummercaptid, Phenolaten, Benzophenon, Silberacetat, Silberbenzoat, aromatischen Aminen und Piperidin: Loevenich, Mitarb., B. 62, 3087.

1.2 - Dibrom - cyclopentan, Cyclopentendibromid  $C_8H_8Br_2=\frac{H_2C\cdot CHBr}{H_1C-CH_2}$  CHBr (H 19). Kp<sub>16</sub>: ca. 75—76° (Godchot, Taboury, Bl. [4] 13 [1913], 536). — Gibt beim Kochen mit Kaliumcarbonat-Lösung (Meiser, B. 32 [1899], 2050) oder beim Behandeln mit Silberacetat und Verseifen des entstandenen Essigsäureesters (G., T., C. r. 154 [1912], 1625; Bl. [4] 13, 536) die höherschmelzende Form des Cyclopentandiols-(1.2).

Jodeyelopentan, Cyclopentyljodid  $C_5H_9I$  (H 19; E I 4). B. Zur Bildung aus Cyclobutylcarbinol vgl. Zelinsky, Kasansky, B. 60, 712.

2. Methylcyclobutan C<sub>5</sub>H<sub>10</sub>=H<sub>2</sub>C<\frac{CH\_5}{CH\_2}\ CH\cdot CH\_2 (H 20; E I 5). Kp<sub>760</sub>: 36,3—36,5° (Rosanow, Ж. 61, 2292; C. 1930 II, 234). D<sub>4</sub><sup>4</sup>: 0,6933; n<sub>5</sub><sup>6</sup>: 1,3830 (R.). — Gibt beim Leiten über Aluminiumoxyd auf Asbest bei 350—400° oder Thoriumoxyd bei 350° außer einem Polymerisationsprodukt α-Methyl-β-äthyl-äthylen, Isopropyläthylen (Hauptprodukt) und α-Methyl-α-äthyl-äthylen (R.). Bleibt dagegen beim Erhitzen mit Aluminiumoxyd auf 330° unverändert (Filipow zitiert bei Dojarenko, B. 59, 2942). Liefert bei 10-stdg. Erhitzen mit Salpetersäure (D: 1,075) im Rohr auf 125° Bernsteinsäure (R.). Beim Leiten des Dampfes mit Wasserstoff über Nickel bei 210° bildet sich hauptsächlich 2-Methyl-butan (R.). Beim Behandeln mit Brom im direkten Sonnenlicht entsteht hauptsächlich 1.4-Dibrom-pentan (R.). Gibt bei der Einw. von rauchender Bromwasserstoffsäure bei Zimmertemperatur 2-Brom-pentan; analog entsteht mit Jodwasserstoffsäure 2-Jod-pentan (R.). Bei 50-stdg. Einw. von verd. Schwefelsäure (2:1) erhält man vorwiegend Pentanol-(2) (R.).

1.1¹-Dichlor-1-methyl-cyclobutan, 1-Chlor-1-chlormethyl-cyclobutan, Methylen-cyclobutan - dichlorid  $C_5H_8Cl_2=H_2C<\frac{CH_2}{CH_2}>CCl\cdot CH_2Cl$ . B. Beim Behandeln von 1-Methylen-cyclobutan mit unterchloriger Säure unter Kühlung, neben anderen Produkten (Demjanow, Dojarenko, B. 55, 2733, 2736). — Kp<sub>34</sub>: 67—69°. D°: 1,1928; D¹5: 1,1772. n°5: 1,4756. Unlöslich in Wasser.

Brommethyl-cyclobutan, Cyclobutyl-methylbromid  $C_zH_{\bullet}Br = C_4H_7$   $CH_{\bullet}Br$ . B. Beim Behandeln von N-Cyclobutylmethyl-benzamid mit Phosphorpentabromid auf dem Wasserbad, neben anderen Produkten (v. Braun, Fussgänger, Kühn, A. 445, 215). Aus N-Butyl-N-cyclobutylmethyl-anilin bei der Einw. von Bromcyan auf dem Wasserbad (v. B., F., K.). — Flüssigkeit von intensivem Geruch.  $Kp_{125}$ : 81—83°.  $D_{\bullet}^{12}$ : 1,360. — Wird durch Wasser langsam zersetzt.

1.2 - Dibrom - 1 - methyl - cyclobutan  $C_5H_8Br_2 = H_2C < CH_2 > CBr \cdot CH_3$ . B. Aus 1-Methyl-cyclobuten-(1) und Brom bei 10—20°, neben anderen Produkten (Dojarenko, B. 59, 2937). — Riecht campherartig.  $Kp_{13,5}$ : 72—75°.  $D_i^{i,i}$ : 1,771;  $D_i^{ii}$ : 1,759.  $n_D^{i,i}$ : 1,5254.

1.1¹-Dibrom-1-methyl-cyclobutan, 1-Brom-1-brommethyl-cyclobutan, Methylen-cyclobutan - dibromid  $C_5H_8Br_2=H_2C < CH_2 > CBr \cdot CH_2Br$ . Diese Konstitution besitzt das Dibromid aus "Vinyltrimethylen" von Gustavson ( $J.\ pr.\ [2]$  54, 99) (H 5, 20) (Denjanow, Dojarenko,  $B.\ 55$ , 2732). — Kp<sub>14</sub>: 78° (Filipow, zitiert bei Do.,  $B.\ 59$ , 2938). Di': 1,799; nib: 1,5335 (F.). — Liefert beim Erwärmen mit Bleioxyd und Wasser auf dem Wasserbad oder bei längerem Aufbewahren bei Zimmertemperatur Cyclopentanon, wenig Formylcyclobutan und wenig 1-Methylol-cyclobutanol-(1) (DE., Do.).

Jodmethyl-cyclobutan, Cyclobutyl-methyljodid  $C_bH_pI = C_bH_7 \cdot CH_pI$ . B. Entsteht wahrscheinlich im Gemisch mit Jodcyclopentan beim Behandeln von Cyclobutyl-carbinol mit rotem Phosphor und Jod (Zelinsky, Kasansky, B. 60, 712).

- 3.  $\bar{A}thylcyclopropan$   $C_5H_{10} = \frac{H_2C}{H_2C}CH\cdot CH_2\cdot CH_3$  (E I 20). B. Durch Behandeln von 1.3-Dibrom-pentan mit Zinkstaub in Alkohol; vielleicht nicht ganz rein erhalten (Lespieau, Wiemann, Bl. [4] 45, 630). Kp: 35,8—36°.  $D^{32}$ : 0,666.  $n_{2}^{32}$ : 1,377.
- [\$\beta\$-Brom-\text{\text{\text{\$\text{Brom}}}\$-\text{\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\texit{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\t
- [ $\alpha.\beta$  Dibrom äthyl] cyclopropan  $C_5H_8Br_3=C_3H_5\cdot CHBr\cdot CH_3Br$ . B. Beim Behandeln von Vinylcyclopropan mit Brom unter Kühlung mit Eis-Kochsalz-Gemisch (Demianow, Dojarenko, B. 55, 2722).  $Kp_{21-22}$ : 86—88°.  $D_0^a$ : 1,842;  $D_0^a$ : 1,825;  $D_0^a$ : 1,818.  $n_0^a$ : 1,5445. Liefert bei längerem Aufbewahren mit Brom im Licht ein flüssiges Tetrabrom-derivat, vermutlich 1.2.3.5-Tetrabrom-pentan.

# 4. 1.1-Dimethyl-cyclopropan $C_{\mathbf{i}}H_{10} = \frac{H_{\mathbf{i}}C}{H_{\mathbf{i}}C}C(CH_{\mathbf{i}})_{\mathbf{i}}$ .

1º.1º - Dibrom - 1.1 - dimethyl - cyclopropan, 1.1 - Bis - brommethyl - cyclopropan  $C_8H_8Br_2 = \frac{H_2C}{H_2C}C(CH_2Br)_2$  (E I, 6). Gibt beim Behandeln mit Zinkstaub und Alkohol nicht Spiropentan, sondern hauptsächlich 1-Methyl-cyclobuten-(1) (INGOLD, Soc. 123, 1710).

5. 1.2-Dimethyl-cyclopropan C<sub>5</sub>H<sub>10</sub> = CH<sub>3</sub>·HC CH<sub>2</sub> (E I 6).

a) Höhersiedende Form. B. Durch Einw. von Zink auf 2.4-Dibrom-pentan in verd.

a) Höhersiedende Form. B. Durch Einw. von Zink auf 2.4-Dibrom-pentan in verd. Alkohol, neben der niedrigersiedenden Form (BAUDRENGHIEN, Bl. Acad. Belgique [5] 15, 63, 74; C. 1929 I, 2966, 2967). — Kp<sub>755,5</sub>: 37,2—37,4°. D°: 0,7133; D<sup>30</sup>: 0,6928. n<sub>o</sub>. 1,3802; n<sub>o</sub>. 1,3870; n<sub>o</sub>. 1,3870; n<sub>o</sub>. 1,3911. — Reagiert mit Brom im Dunkeln bei Zimmertemperatur schwerer als die niedrigersiedende Form.

b) Niedrigersiedende Form. B. s. bei der höhersiedenden Form. — Kp<sub>756,0</sub>: 28,8° bis 29° (Baudrenghien, Bl. Acad. Belgique [5] 15, 75; C. 1929 I, 2966, 2967). D°: 0,6985; D<sup>20</sup>: 0,6769. n<sup>20</sup>: 1,3694; n<sup>20</sup>: 1,3713; n<sup>20</sup>: 1,3762; n<sup>20</sup>: 1,3780. — Reagiert leicht mit Brom

im Dunkeln bei Zimmertemperatur.

### 4. Kohlenwasserstoffe C<sub>6</sub>H<sub>12</sub>.

1. Cyclohexan, Hexahydrobenzol  $C_0H_{12} = H_1C < \frac{CH_2 \cdot CH_2}{CH_2 \cdot CH_3} \cdot CH_2$  (H 20; E I 6).

### Vorkommen und Bildung.

In neuseeländischem Mineralöl (EASTERFIELD, McCLELLAND, Chem. and Ind. 1923, 937; C. 1924 I, 2847). In den Erdölen von Moreni und Arbanesi (Rumänien) (Moutte, Chim. et Ind. 16, Sondernummer, 331, 332; C. 1927 I, 383). — B. Beim Erhitzen von Cyclohexen unter hohem Wasserstoffdruck auf 425° (Hofmann, Lang, Brennstoffch. 10, 204; C, 1929 II, 164). Entsteht neben Benzol aus Cyclohexen bei Gegenwart von Palladiumasbest bei Zimmertemperatur allmählich (Zelinsky, B. 58, 187), schneller und vollständiger asbest bei Zimmertemperatur allmanlich (ZELINSKY, B. 58, 187), schneller und vollständiger bei ca. 90° (Z., Pawlow, B. 57, 1067; Z., B. 58, 186). Fast reines Cyclohexan erhält man bei der Hydrierung von Cyclohexadien-(1.3) in Gegenwart eines Osmiumasbest-Katalysators bei 50—70° (Z., Turowa-Pollak, B. 62, 2866). Erhitzt man Cyclohexadien-(1.3) bei Gegenwart von 42% igem Palladiumasbest auf 91° im schwachen Kohlendioxyd-Strom, so bildet sich neben Cyclohexan auch Benzol (Z., Pa.). Bei der Hydrierung von Benzol in Gegenwart eines Osmiumasbest-Katalysators, je nach der Geschwindigkeit des Überleitens bei Temperaturen zwischen 19° und 180° (Z., Tu.-Po.); in Gegenwart von wenig Platinoxyd in Eissesig bei 25—30° und 2—3 Atm Druck (Adams Marshall, Am. Soc. 50, 1972). Tiber die essig bei 25-30° und 2-3 Atm. Druck (Adams, Marshall, Am. Soc. 50, 1972). Über die Bildung von Cyclohexan durch Hydrierung von Benzol in Gegenwart von Platinasbest und die Gleichgewichtskonstante bei  $266-267^{\circ}$  und  $280^{\circ}$  vgl. Burrows, Lucarini, Am. Soc. 49, 1160. Cyclohexan entsteht auch bei der Hydrierung von Benzol in Gegenwart eines Nickel-Aluminiumoxyd-Katalysators bei 180—2000 (Z., Kommarewsky, B. 57, 668; Pfaff, NICKEI-AIUMIMIMIMONYG-KELEJYSELOTS DEI 180-200 (Z., KOMMAREWSKY, B. 57, 508; PFAFF, BRUNCK, B. 56, 2463). In 85 % iger Ausbeute erhält man Cyclohexan bei der Hydrierung von thiophenfreiem Benzol in Gegenwart von Nickel bei 250° und ca. 115 Atm. Druck (OSTERBERG, KENDALL, Am. Soc. 42, 2617). Beim Erhitzen von 1 Mol Benzol mit 3 Mol 96,5 % igem Hydrazin im Rohr auf 280° (E. MÜLLER, KRAEMER-WILLENBERG, B. 57, 578). Durch Hydrierung von Cyclohexanol unter 70—80 Atm. Druck in Gegenwart von Aluminiumoxyd bei 460—470° (Kling, Florentin, Bl. [4] 41, 1348; C. r. 182, 526; 184, 887). Bei der Reduktion von Anisol mit Wasserstoff in Gegenwart von aktiviertem Platinschwarz unter geringem Überdruck, neben anderen Produkten; entsteht analog aus Phenetol, Propylphenylather, Isopropylphenylather und weiteren Phenylathern (WASER, Mitarb., Helv. 12, 429). Bei der Reduktion von Guajacol in Eisessig mit Wasserstoff in Gegenwart von aktiviertem Platin, neben anderen Produkten (W., Mitarb., Helv. 12, 441). Als Hauptprodukt bei längerem Erhitzen von Cyclohexanon unter Wasserstoffdruck auf 420—440° in Gegenwart von Aluminiumoxyd + Eisen(III)-oxyd (Ipatjew, Petreow, B. 62, 403). Durch Einw. von ultraviolettem Licht auf Hexahydrobenzaldehyd unterhalb 40° (Franke, Sigmund, M. 46, 68). Beim Erhitzen von Dodekahydrodesoxybenzoin mit alkoh. Kalilauge im Rohr auf 145—1486, neben Cyclohexylessigsäure (Venus-Danilowa, B. 61, 1964; Ж. 61, 67). Neben anderen Produkten bei der Hydrierung von reinem Anilin unter Druck bei 260—300° in Gegenwart von Iridiumasbest (Ssadikow, Klebanski, B. 61, 136). In geringer Menge bei der Hydrierung von Triphenylamin in absol. Alkohol + konz. Salzsäure unter 3 Atm. Druck in Gegenwart von Platinschwarz bei 50° (Hiers, Adams, Am. Soc. 49, 1102). Bei der Reduktion von Trimethylphenyl-ammoniumchlorid in ca. 75 % igem Alkohol mit Wasserstoff bei 2—3 Atm. Druck in Gegenwart von Platinoxyd-Platinschwarz bei 20—25° (H., A., B. 59, 170). Cyclohexan entsteht auch neben anderen Produkten bei der Zersetzung von Leinöl, Rüböl, Erdnußöl und Haifischöl in Gegenwart von Mischkatalysatoren aus Elektrolytkupfer und Magnesiumoxyd oder Aluminiumoxyd bei 550-650° und anschließenden Hydrierung der entstandenen flüssigen Produkte in Gegenwart von Nickel bei 180-2000 (Mailhe, C. r. 173, 359, 660; Bl. [4] 31, 250; A. ch. [9] 17, 306).

### Physikalische Eigenschaften.

Cyclohexan geht bei —91° in eine andere Modifikation über (TIMMERMANS, Bl. Soc. chim. Belg. 37, 412; C. 1929 II, 522). F: 6,54°, nach dem Vertreiben der gelösten Luft 6,63° (NAGORNOW, ROTINJANZ, Izv. Inst. fiz.-chim. Anal. 2, 371; C. 1925 I, 1182), 6,40° (TI., MARTIN, J. Chim. phys. 23, 760; JONES, BETTS, Soc. 1928, 1179), 6,3° (BUCHNER, KLEYN, R. 43, 154), 6,28° (GIFFORD, LOWRY, Pr. roy. Soc. [A] 104 [1923], 434). Abhängigkeit des Schmelzpunkts vom Druck zwischen 40 mm Hg und ca. 205 Atm.: N., R., Izv. Inst. fiz.-chim. Anal. 2, 379. Der Erstarrungspunkt ändert sich nicht bei 3jährigem Aufbewahren in Gegenwart von Phosphorpentoxyd (TI., Bl. Soc. chim. Belg. 38, 160; C. 1929 II, 2037). Kp760: 80,80° (TI., M.); Kp760: 80,3° (EISENLOHR, Fortsch. Ch., Phys. 18, 542; C. 1926 I, 75); Kp717,8: 78,84° (GRIMM, PH., Ch. [A] 140, 326). Dampfdruck von festem Cyclohexan zwischen —4,51° (20,55 mm) und 6,14° (38,70 mm), von flüssigem Cyclohexan zwischen 6,90° (40,60 mm) und 81,09° (767,9 mm) und von gesättigtem Cyclohexandampf zwischen 120,25° (2155 mm) und der kritischen Temperatur: N., R., Izv. Inst. fiz.-chim. Anal. 2,

382. Kritische Temperatur: 281,02°; kritischer Druck: 30835 mm (N., R., Izv. Inst. fiz.-chim. Anal. 2, 382). Dampfdruck von nicht ganz reinem flüssigem Cyclohexan zwischen 30,41° (123,9 mm) und 80,19° (748,8 mm): N., Izv. Inst. fiz.-chim. Anal. 3, 568; C. 1927 II, 2668. Das Verhalten des gasförmigen Cyclohexans zwischen 2456 und 5000 mm Hg und 140—285° wird durch die VAN DER WAALSSCHE Gleichung ziemlich gut wiedergegeben (N., R., Izv. Inst. fiz.-chim. Anal. 2, 403).

D. von festem Cyclohexan: 0,82 (Timmermans, bei Errera, Bl. Acad. Belgique [5] 12, 339; C. 1926 II, 2667). Dichten von flüssigem Cyclohexan: D.: 0,7875 (Stratford, Ann. Off. Combust. liq. 4, 98; C. 1929 II, 1286); D.: 0,78310 (Ti., Martin, J. Chim. Phys. 23, 760), 0,7830 (Chavanne, van Risseghem, Bl. Soc. chim. Belg. 31, 91; C. 1922 III, 241; Dessart, Bl. Soc. chim. Belg. 35 [1926], 9, Tabelle 7), 0,7834 (Leithe, M. 52, 160); D.: 0,7783 (Eisenloher, Fortsch. Ch., Phys. 18, 542; C. 1926 I, 75), 0,7786 (Pawlow, K. 58, 1303; C. 1927 II, 1426), 0,7788 (Waser, Mitard., Helv. 12, 431); D.: 0,7692 (Ch., Van R.), 0,7696 (Dessart), 0,76928 (Ti., M.); D.: 0,74060 (Ti., M.). Dichten D.: 2wischen 6,50 (0,791) und 370 (0,763): Ti. bei Errera; zwischen 70 (0,79063) und 78,050 (0,72215): Nagornow, Rotinjanz, Izv. Inst. fiz.-chim. Anal. 2, 372; C. 1925 I, 1182. Ausdehnungskoeffizient: 0,00120 (Ti., M.). Über Assoziation in flüssigem Cyclohexan (nachgewiesen durch Dichte differenzen, latente Verdampfungswärme, Oberflächenspannung und Viscosität) vgl. Antonoff, Phil. Mag. [6] 50, 272; C. 1926 I, 295. Viscosität bei 150: 0,01056 (Ti., M.), 0,01060 g/cmsec (Dessart); bei 300: 0,00820 g/cmsec (Ti., M.; Dessart); bei 600: 0,00534 g/cmsec (Ti., M.). Zur Viscosität bei 200 vgl. Vorländer, Walter, Ph. Ch. 118, 16. Einfluß von Drucken bis 12000 kg/cm² auf die Viscosität bei 300 und 750: Bridgman, Pr. nation. Acad. USA. 11, 604; Pr. am. Acad. Arts Sci. 61, 80; C. 1926 I, 1919; II, 1923. Die Oberflächenspannung ändert sich bei 3jährigem Aufbewahren in Gegenwart von Phosphorpentoxyd nicht (Timmermans, Bl. Soc. chim. Belg. 38, 160; C. 1929 II, 2037). Parachor: Hammick, Andrew, Soc. 1929, 756; Mumford, Phillips, Soc. 1929, 2115.

Schmelzwärme: 650 cal/Mol (TIMMERMANS, Bl. Soc. chim. Belg. 37, 412; C. 1929 II, 522). Verdampfungswärme bei 80,00°: 85,62 cal/g (Mathews, Am. Soc. 48, 572). Verbrennungswärme bei konstantem Volumen: 935,9 kcal/Mol (Subow, Ж. 33, 722; C. 1902 I, 161; vgl. Swietoslawski, Am. Soc. 42, 1094), 938,3 kcal/Mol (Richards, Barry, Am. Soc. 37 [1915], 1019; vgl. Swietoslawski, Bobinska, Am. Soc. 49, 2478).

n<sub>0</sub>: 1,4371 (Stratford, Ann. Off. Combust. liq. 4, 98; C. 1929 II, 1286); n<sub>0</sub>: 1,42891 (Grimm, Ph. Ch. [A] 140, 326); n<sub>0</sub>: 1,42454 (Grimm); n<sub>0</sub>: 1,4211 (Hiers, Adams, Am. Soc. 49. 1102). Brechungsindices für verschiedene Wellenlängen bei 15°, 20° und 30° s. in Tabelle 1 (S. 8). Brechungsindices zwischen 420 m $\mu$  (1,4388) und 215 m $\mu$  (1,5232) bei 15,3°: Voellmy, Ph. Ch. 127, 344. Lichtbrechung von Cyclohexan zwischen 589 und 265 m $\mu$ : Hessel, Arch. Phys. biol. 3, 212; C. 1925 II, 1010.

Absorptionsspektrum von flüssigem Cyclohexan im sichtbaren Gebiet: Ellis, *Phys. Rev.* [2] **32**, 909; *C.* 1929 I, 1419; des Dampfes und der alkoh. Lösung im Ultraviolett: Purvis, *Pr. Cambridge phil. Soc.* **23**, 588; *C.* 1927 II, 379. Ultrarot-Absorptionsspektrum: Lecomte, *C. r.* 178, 1531; 183, 29; Marton, *Ph. Ch.* 117, 102, 107; Daure, *C. r.* 188, 1606; *Ann. Physique* [10] **12**, 428; vgl. Gapon, *Z. Physik* 44, 601; *C.* 1927 II, 1789.

Molekulare Lichtzerstreuung an dampfförmigem Cyclohexan und Depolarisationsgrad des Streulichts: Ramanathan, Pr. roy. Soc. [A] 110, 131; C. 1926 I, 1941; Ramanathan, Srinivasan, Pr. indian Assoc. Cult. Sci. 9, 205; C. 1926 II, 1930; Cabannes, Granier, C. r. 182, 886; Rao, Indian J. Phys. 2, 82; C. 1928 I, 1838. Elliptische Polarisation von linearpolarisiertem Licht an der Oberfläche von Cyclohexan: Bouhet, C. r. 185, 201. Beugung von Röntgenstrahlen: Raman, Sogani, Nature 119, 601; C. 1927 II, 215; Sogani, Indian J. Phys. 1, 375; C. 1927 II, 2149; Katz, Z. Phys. 45, 104; C. 1928 I, 154; Krishnamurti, Indian J. Phys. 2, 496; C. 1928 II, 2098; Stewart, Phys. Rev. [2] 33, 889; C. 1929 II, 1258. Einfluß der Temperatur auf die Beugung von Röntgenstrahlen: Ramasubramanyam, Indian J. Phys. 3, 143; C. 1928 II, 2701. Raman-Effekt: Ganesan, Venkateswaran, Indian J. Phys. 4, 229; C. 1929 II, 2646; Petrikaln, Hochberg, Ph. Ch. [B] 3, 226, 405; P., Ph. Ch. [B] 3, 362; C., Salvaire, C. r. 188, 907; Daure, Ann. Physique [10] 12, 428; C. r. 188, 1606.

Dielektr.-Konst. von festem Cyclohexan ( $\lambda=900$  m) bei  $6^\circ$ : 2,14 (Errera, Bl. Acad. Belgique [5] 12, 339; C. 1926 II, 2667). Über die Abhängigkeit der Dielektr.-Konst. von festem Cyclohexan von der Wellenlänge und der Temperatur vgl. E., J. Phys. Rad. [6] 5, 304, 309; C. 1925 I, 1390; C. r. 179, 157. Dielektr.-Konst. von flüssigem Cyclohexan bei 23(1)°: 2,03 (Toussannt, Chim. et Ind. 19, Sondernummer, 273; C. 1928 II, 1862); zwischen 6,5° (2,06) und 37° (1,99) bei  $\lambda=900$  m: E., Bl. Acad. Belgique [5] 12, 339. Abhängigkeit der Dielektr.-Konst. von flüssigem Cyclohexan vom Druck: Cagniard, Ann. Physique [10] 9, 542. Dipolmoment  $\mu \times 10^{18}$ : 0,2 (Benzol) (Sängewald, Weissbergger, Phys. Z. 30, 268; C. 1929 II, 139). Magnetische Susceptibilität: Pascal, C. r. 180, 1596. Magnetische Doppel-

Tabelle 1.

| Wellenlänge<br>mµ    | n15 1)                  | n <b>s</b> 0            | n <sup>80</sup> | dn/dt                                   |
|----------------------|-------------------------|-------------------------|-----------------|-----------------------------------------|
| 325,25               | 1,45823                 |                         |                 |                                         |
| 326,11               | 1,45791                 |                         |                 |                                         |
| 328,23               | 1,45613                 |                         | a success       |                                         |
| 330,26               | 1,45555                 |                         |                 | 0,00061                                 |
| 334,50               | <b>1,4543</b> 8         |                         | , <del></del>   |                                         |
| 340,36               | 1,45322                 |                         |                 |                                         |
| 346,62               | 1,45174                 |                         |                 |                                         |
| 361,05               | 1,44869                 |                         |                 |                                         |
| 404,68               | 1, <del>44</del> 219    |                         |                 | 1                                       |
| 434,05               | 1,43881                 |                         |                 |                                         |
|                      | 1,43 870 <sup>2</sup> ) | 1,43668 <sup>5</sup> )  | Monames         | 0,00057                                 |
| 441,30               | 1,43802                 |                         |                 |                                         |
| 447,15               | 1,43741                 |                         | -               |                                         |
| 467,82               | 1,43576                 |                         |                 | 1                                       |
| 486,13               | 1,43431                 | 1,43 229 <sup>5</sup> ) | 1,42756 ³)      | 0,00054*)                               |
| •                    | 1,43430 <sup>2</sup> )  |                         |                 | 0.00056                                 |
|                      | 1,43434 8)              |                         |                 |                                         |
| 527,04)<br>526,95    | 1,43180                 |                         |                 |                                         |
| 546,07               | 1,43084                 |                         | ******          |                                         |
| 560,88               | 1,43011                 |                         |                 |                                         |
| 587,56               | 1,42890°)               | 1,42680 <sup>5</sup> )  |                 | 0,000522)                               |
| 588,99 )<br>589,59 ( | 1,42900                 | 1,42640 <sup>6</sup> )  | 1,42206 ³)      | (0,00055<br>(0,00052°)                  |
|                      | 1,428862)               | 1,426227)               |                 | ( ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
|                      | 1,428103)               | 1,4266 8)               |                 |                                         |
|                      | 1,429374)               |                         |                 |                                         |
| 656,28               | 1,42673                 | 1,42476 5)              | 1,41 983 ³)     | 0.00054                                 |
|                      | 1,42670°)               |                         |                 | 0,000522)                               |
|                      | 1,42 665 3)             |                         | *****           |                                         |
| 670,81               | 1,42642                 | 11                      |                 | 1                                       |
| 706,52               | 1,42554                 | 1                       |                 | 1                                       |
| 769,90<br>766,49     | 1,42434                 | _                       | _               |                                         |

1) Die Werte dieser Spalte ohne nähere Angaben stammen von GIFFORD, LOWRY, Pr. roy. Soc. [A] 104, 433; C. 1924 I, 1484. — 2) TIMMERMANS, MARTIN, J. Chim. phys. 23, 761. — 3) DESSART, Bl. Soc. chim. Belg. 35 [1926], 9 Tabelle 7. — 4) LEITHE, M. 52, 160. — 5) EISENLOHR, Fortsch. Ch., Phys. 18, 542; C. 1926 I, 75. — 6) BURROWS, LUCARINI, Am. Soc. 49, 1159. — 7) WASER, Mitarb., Helv. 12, 431. — 8) PAWLOW, Ж. 58, 1303; C. 1927 II, 1126.

brechung des Dampfes und der Flüssigkeit: RAMAN, KRISHNAN, Pr. roy. Soc. [A] 118, 514; C. 1927 I, 1127. Magnetische Drehung der Polarisationsebene des Lichtes für die Wellenlänge 546 m $\mu$  bei 20,1°: JAVELLE, Chim. et Ind. 19, Sondernummer, 266; C. 1928 II, 1860.

### Physikalische Eigenschaften von Cyclohexan enthaltenden Gemischen.

Löslichkeit von Cyclohexan in Wasser bei 17°: weniger als 0,005% (Bennett, Philip, Soc. 1928, 1942). Lösungsvermögen für Stickstoffmonoxyd und Acetylen: Garelli, R. A. L. [6] 2, 122. Löslichkeitsdiagramm des binären Systems mit flüssigem Schwefeldioxyd: Seyer, Dunbar, Trans. roy. Soc. Canada [3] 16 III, 309; C. 1923 III, 1269; mit Eisessig: Jones, Soc. 123, 1376, 1387; mit Acetanhydrid: J., Betts, Soc. 1928, 1181; mit Anil in: Bucher, Kleyn, R. 43, 156. Kritische Lösungstemperatur der binären Systeme mit flüssigem Schwefeldioxyd: 13,6° (Timmermans, J. Chim. phys. 20, 505; Seyer, Dunbar, Trans. roy. Soc. Canada [3] 16 III, 310; C. 1923 III, 1269); mit Dijodmethan: 34,5° (Ti.); mit Methanol: 59,5° (Ti.); mit Eisessig: 4,2° (J., Soc. 123, 1383); mit Anilin: 31,0° (Ti.). Abhängigkeit der kritischen Lösungstemperatur der binären Systeme mit flüssigem Schwefeldioxyd, Dijodmethan, Methanol und Anilin vom Druck: Ti. Einfluß von Wasser auf die kritische Lösungstemperatur des Systems mit Eisessig: J. Einfluß von Essigsäure auf die kritische Lösungstemperatur des Systems mit Acetanhydrid: J., Betts. Einfluß von Cyclohexan auf die kritische Lösungstemperatur des ternären Systems Eisessig + Wasser + Benzol: J.

\*Kryoskopisches Verhalten von Helium, Stickstoffmonoxyd und Acetylen in Cyclohexan: Garelli, R. A. L. [6] 2, 122; von Acetanhydrid in Cyclohexan: Jones, Soc. 1928, 1193; von Gemischen aus Cyclohexan mit Aceton und Benzol: Scheiße, B. 60, 1412. Gibt mit Campher keine Erniedrigung des Schmelzpunktes (Ssadikow, Michailow, X. 56, 113; C. 1926 I, 815). — Thermische Analyse der Systeme mit Chloroform, Tetrachlorkohlenstoff, Hexan, Methylcyclohexan und Toluol: Timmermans, Bl. Soc. chim. Belg. 37, 414; C. 1929 II, 522; des Systems mit Nitrobenzol: Linard, Bl. Soc. chim. Belg. 34 [1925], 374, 385; C. 1926 I, 2427; mit 3-Nitro-toluol (Eutektikum bei —6° und 17,3 Mol-% 3-Nitro-toluol): Dessart, Bl. Soc. chim. Belg. 35, 20; C. 1926 II, 157; mit 4-Nitro-toluol (Eutektikum bei —7,5° und 10 Mol-% 4-Nitro-toluol): L.; mit Naphthalin (Eutektikum bei —5,6° und 5,6% Mol-% Naphthalin): L.; mit Anilin: L.; mit m-Toluidin (Eutektikum bei —42,0° und 12 Mol-% m-Toluidin): D.; mit p-Toluidin (Eutektikum bei —6,2° und 10 Mol-% p-Toluidin): L.

Ebullioskopisches Verhalten verschiedener organischer Salze in Cyclohexan: Walden, Izv. Imp. Akad. Petrog. [6] 9, 251; C. 1925 I, 1557; Ph. Ch. 94, 340, 347, 348, 353. Siedepunkte von Gemischen mit Benzol bei 717,8 mm Druck: Grimm, Ph. Ch. [A] 140, 330. Binäre azeotrope Gemische, die Cyclohexan enthalten, s. Tabelle 2. Dampfdrucke von Ge-

| Komponente            | Kp760 | Cyclohexan<br>in Gew% | Komponente                        | Kp760    | Cyclohexan<br>in Gew% |
|-----------------------|-------|-----------------------|-----------------------------------|----------|-----------------------|
| ×.1 1 11 .14          |       |                       |                                   | =4.0     | 00                    |
| Äthylenchlorid 6)     | 74,4  | 54,5                  | tert. Butylalkohol <sup>5</sup> ) | 71,3     | 63                    |
| Methanol 4)           | 54.2  | 62,8                  | Diäthylcarbinol 4).               | 80.0     | ca. 97                |
| Äthylalkohol 4)       | 64,9  | 68,5                  | Dimethylathyl-                    | ,        |                       |
| Athylnitrat 8)        | 74,5  | ca. 62                | carbinol 2)                       | 78,5     | 84                    |
| Propylalkohol 4) .    | 74,3  | 80                    | Allylalkohol 4)                   | 74       | ca. 20                |
| Isopropylalkohol 4).  | 68,6  | 67                    | Propylformiat 1) .                | 75       | <b>52</b>             |
| Butvlalkohol 3)       | 79,8  | 96                    | Isopropylacetat 3).               | 78,9     | 75                    |
| sek. Butylalkohol 5). | 76,0  | 82                    | Methylpropionat 1)                | 75       | 48                    |
| Isobutylalkohol 5)    | 78.1  | 86                    | Methylisobutyrat 1)               | ca. 78.6 | са. 88                |

Tabelle 2. Cyclohexan enthaltende binäre azeotrope Gemische.

mischen aus nicht ganz reinem Cyclohexan mit Benzol zwischen ca. 30° und 78°: Nagornow, Izv. Inst. fiz.-chim. Anal. 3, 569; C. 1927 II, 2668; mit Toluol bei verschiedenen Temperaturen: N., Izv. Inst. fiz.-chim. Anal. 3, 585; C. 1927 II, 2668; aus Cyclohexan mit verschiedenen Mineralölen: Wilson, Wylde, Ind. Eng. Chem. 15, 806; C. 1923 IV, 964. Kritische Temperaturen des Systems Cyclohexan-Anilin: Buchner, Kleyn, R. 43, 155.

Dichten von binären Gemischen mit Benzol bei 20°: Pawlow, Ж. 58, 1305; С. 1927 II, 1126; bei 25°: Hammick, Andrew, Soc. 1929, 756; mit 3-Nitro-toluol und m-Toluidin bei 15° und 30°: Dessart, Bl. Soc. chim. Belg. 35, 21 Tabelle 7 u. 8; C. 1926 II, 157; mit verschiedenen anderen organischen Lösungsmitteln bei 15°: Leithe, M. 52, 160. Viscosität von binären Gemischen mit 3-Nitro-toluol und m-Toluidin bei 15° und 30°: D. Cyclohexan breitet sich nicht auf einer Wasseroberfläche aus (Ramdas, Indian J. Phys. 1 [1926/27], 20; C. 1926 II, 1935). Oberflächenspannung von Lösungen in Benzol bei 25°: Ham., A. Grenzflächenspannung gegen saure und alkalische Phosphat-Puffer-Lösungen (p<sub>H</sub> = 5,6 und 7,4): Harteider, Peters, Pr. roy. Soc. [A] 101, 363; C. 1923 I, 874. Mischungswärme des binären Systems mit Methanol für verschiedene Temperaturen: Mondain-Monval, C. r. 183, 1105. Über die Wärmetönung der Adsorption von Cyclohexan an Platin vgl. Palmer, Pr. roy. Soc. [A] 115, 230; C. 1927 II, 1678. Wärmetönung der Adsorption an Kieselsäure-Gel: Grimm, Raudenbusch, Wolff, Z. ang. Ch. 41, 106. Trennung von Gemischen mit Tetrachlorkohlenstoff, Athylalkohol und Benzol durch Adsorption an Kieselsäure-Gel: G., R., W., Z. ang. Ch. 41, 104, 105.

Brechungsindices von Gemischen mit Äthylenchlorid bei 20°: Pahlavouni, Bl. Soc. chim. Belg. 36 [1927], 543; mit Benzol bei 20°: Gelmin, Ph. Ch. [A] 140, 330; Pawlow, Ж. 58, 1310; C. 1927 II, 1127; bei 25°: Burbows, Lucarini, Am. Soc. 49, 1160; mit 3-Nitrotoluol und m-Toluidin: Dessart, Bl. Soc. chim. Belg. 35, 21 Tabelle 7 u. 8; C. 1926 II, 157; mit verschiedenen organischen Verbindungen bei 15°: Leithe, M. 52, 160. — Lichtzerstreuung in Gemischen mit Hexan: Martin, Lehrman, J. phys. Chem. 26, 81. Beugung

<sup>1)</sup> LECAT, R. 46, 244. — 2) L., Ann. Soc. scient. Bruxelles 48 I [1928], 57. — 2) L., Ann. Soc. scient. Bruxelles 48 I, 115, 116. — 4) L., Ann. Soc. scient. Bruxelles 48 II, 107—112. — 5) L., Ann. Soc. scient. Bruxelles 49 [1929], 19, 20, 22. — 6) Pahlavouni, Bl. Soc. chim. Belg. 36 [1927], 544.

von Röntgenstrahlen in Gemischen mit Tetrachlorkohlenstoff und Methylenjodid: Prins, Z. Phys. 56, 646; C. 1929 II, 1890; mit Tetranitromethan: Krishnamurti, Indian J. Phys. 3, 511; C. 1929 II, 1378; mit Methylsalicylat und Anllin: K., Indian J. Phys. 3, 332, 355; C. 1929 I, 2951. — Dielektr. Konst. von binären Gemischen mit Butylalkohol zwischen + 10° und + 70°: Smyth, Stoops, Am. Soc. 51, 3319. Magnetische Drehung der Polarisationsebene des Lichts für die Wellenlänge 546 mμ bei ca. 20° bei Gemischen aus Cyclohexan mit Benzol und Toluol: Javelle, Chim. et Ind. 19, Sondernummer, 266; C. 1928 II, 1860.

Einfluß auf die Entflammbarkeit von Wasserstoff-Luft-Gemischen: Tanaka, Nagai, Pr. Acad. Tokyo 4, 155; 5, 81; C. 1928 II, 626, 2536; 1929 I, 2625. Cyclohexan kann bei der Hydrierung von Benzol in Gegenwart von Nickel bei Temperaturen bis ca. 180° als Katalysatorgift wirken (Dougherty, Taylor, J. phys. Chem. 27, 539, 557). Antiklopfwert von Cyclohexan: Birch, Stansfield, Nature 123, 491; C. 1929 I, 2605.

### Chemisches Verhalten.

Zum Verhalten beim Erhitzen auf höhere Temperaturen nach Aschan (A. 324 [1902], 10; H 21) vgl. Skraup, Beifuss, B. 60, 1070. Wird bei längerem Erhitzen mit Wasserstoff auf 460° bei 212 Atm. Druck kaum angegriffen, bei 490° bilden sich neben gasförmigen Kohlenwasserstoffen bis zu 20 % Methyleyclopentan; beim Erhitzen ohne hohen Wasserstoffdruck zersetzt sich Cyclohexan schon bei Temperaturen, bei denen es in Gegenwart von Wasserstoff noch recht beständig ist (Hofmann, Lang, Brennstoffch. 10, 204; C. 1929 II, 164). Cyclohexan liefert beim Erhitzen mit Luft auf 350° in Gegenwart von fein verteiltem Silber Wasser und Kohlendioxyd (Senderbns, A. ch. [9] 13, 283). Wird durch Ruthenium sowie einige besonders dargestellte Nickel-Katalysatoren oberhalb 250° bis zu Methan gespalten (Zelinsky, Turowa-Pollak, B. 58, 1302; Z., Pawlow, B. 56, 1249, 1254). Methan entsteht auch beim Erhitzen von Cyclohexan in einer Wasserstoff-Atmosphäre in Gegenwart von Nickelwolframat auf 350° (I. G. Farbenind., D. R. P. 516251; C. 1931 I, 1822; Frdl. 16, 3008). Leitet man jedoch Cyclohexan in einer Wasserstoff-Atmosphäre über Katalysatoren aus Nickelwolframat oder auch Wolframsäure, die 4 bzw. 23 Stunden mit Ammoniak bei 550° behandelt worden sind, so erhält man Benzol (I. G. Farbenind., D. R. P. 516251). Benzol entsteht auch beim Leiten von Cyclohexan über Nickel-Aluminiumoxyd bei 300—310° in einer Wasserstoff-Atmosphäre (Z., Kommarewsky, B. 57, 668; vgl. dagegen Pfaff, Brunck, B. 56, 2463). Über die Dehydrierung von Cyclohexan zu Benzol bei 151—409° bei Gegenwart von Nickel-, Ruthenium-, Palladium-Iridium- und Platin-Katalysatoren und ihre Kinetik vgl. Z., Paw.; Z., Tu.-Pol.; Z., Balandin, Ph. Ch. 126, 275. Cyclohexan wird durch Benzophenon im Sonnenlicht zu Benzol dehydriert (Cohen, R. 39, 257).

Entflammbarkeit der Gemische von reinem Cyclohexan mit Luft sowie unter Zusatz von Toluidin und Diäthylsulfid: Pignot, Chim. et Ind. 17, Sondernummer, 265; C. 1927 II, 2252. Entzündungstemperatur: Tanaka, Nagai, Pr. Acad. Tokyo 2, 219; C. 1927 I, 702; Beel, Heise, Winnacker, Ph. Ch. [A] 139, 457; Egertok, Gates, J. Inst. Petr. Technol. 18, 258; C. 1928 II, 211. Entzündungstemperatur von Cyclohexandampf-Luft-Gemischen unter verschiedenen Drucken: Beel, H., W. Explosionsgrenzen von Gemischen von Cyclohexandampf mit Luft unter verschiedenen Drucken: Beel, Bausch, Ph. Ch. [A] 145, 458. Über die Oxydation von Cyclohexan durch Luft unterhalb der Entzündungstemperatur (nachgewiesen durch vaporimetrische Mol.-Gew.-Bestimmung) vgl. Lewis, Soc. 1927, 1557. Oxydation durch Luftsauerstoff in Gegenwart von Eisen(III)-oxyd zwischen 350° und 500°, auch in Gegenwart von Eisenpentacarbonyl: Beel, H., W. Über den Verbrennungsvorgang von Cyclohexan in An- und Abwesenheit von Tetraäthylblei vgl. Aubert, Pignot, Villey, C.r. 185, 1111; Duchène, C.r. 186, 220. Verhalten bei der Verbrennung im Motor: Brutzkus, C.r. 176, 1810. Cyclohexan wird durch Chromschwefelsäure nur teilweise zu Kohlendioxyd verbrannt (Guyot, Simon, C.r. 170, 736; vgl. a. Si., C.r. 177, 266). Vollständiger verläuft die Verbrennung mit Silberchromat (Si.). Liefert bei längerem Erwärmen mit Dibenzoylperoxyd auf dem Wasserbad am Rückflußkühler Benzoesäure, Phenvlcyclohexan, 4-Phenyl-benzoesäure, Benzol und Kohlendioxyd (Gelissen, Hermans, B. 59, 664).

Wird beim Erhitzen mit Aluminiumchlorid (STRATFORD, Ann. Off. Combust. liq. 4, 94; C. 1929 II, 1286) oder mit Aluminiumbromid auf 180° (ZELINSKY, TUROWA-POLLAK, B. 62, 1658) nicht verändert. Verhalten bei der Chlorierung und nachfolgenden Abspaltung von Chlorwasserstoff durch Leiten über Tonerde oder unglasiertes Porzellan bei 200—450°: FARAGHER, GARNER, Am. Soc. 43, 1716, 1723. Kinetik der Reaktion mit Brom im Licht  $(\lambda = \text{ca. }469 \text{ m}\mu)$  und im Dunkeln: Noddack, Z. El. Ch. 27, 360; im Licht von der Wellenlänge  $\lambda = 546 \text{ m}\mu$  bei 30—40°: Wood, RIDEAL, Soc. 1927, 2469. Die Reaktion wird durch Sauerstoff verzögert (W., R.). Liefert bei der Einw. von rauchender Schwefelsäure (25 % SO<sub>3</sub>) bei 20—25° überwiegend Benzolsulfonsäure (MENSCHUTKIN, WOLF, Neft. Chozjajstvo 13, 340; C. 1928 I, 1406).

Überführung, von Cyclohexan in ein gerbend wirkendes Kondensationsprodukt durch Einw. von Salicylsäure und konz. Schwefelsäure: Elektrochem. Werke, Bosshard, Strauss, D. R. P. 380593; C. 1924 I, 1730; Frdl. 14, 588.

### Physiologisches Verhalten; Verwendung; Analytisches.

Physiologisches Verhalten: E. Pfankuch in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt., Bd. I [Berlin-Leipzig 1930], S. 1290. Giftwirkung: Launoy, Lévy-Bruhl, C. r. Soc. Biol. 83, 215; C. 1920 I, 584; Lazarew, Ar. Pth. 143, 224; C. 1929 II, 1712. Toxizität in Beziehung zur Verwendung als technisches Lösungsmittel: E. Gross in K. B. LEHMANN, F. Flury, Toxikologie und Hygiene der technischen Lösungsmittel [Berlin 1938], S. 220. — Verwendung zur Darstellung von wasserfreiem Alkohol: GUINOT, C. r. 176, 1625; als technisches Lösungsmittel: Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 85; H. GNAMM, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 82.

Bestimmung von Cyclohexan-Dampf in Luft durch Adsorption an Kohle: Posner, Z. anorg. Ch. 174, 292. Zur Analyse von Cyclohexan in Gemischen mit weiteren Kohlen-Wasserstoffen mittels der kritischen Lösungstemperaturen in Anilin und Benzylalkohol vgl. Aubert, Auberte, C. r. 182, 578. Refraktometrische Bestimmung in Kohlenwasserstoff-Gemischen: Moutte, Chim. et Ind. 19, Sondernummer, 262; C. 1929 I, 677.

Chloreyclohexan, Cyclohexylchlorid  $C_6H_{11}Cl$  (H 21; E I 8). B. Bei der Einw. von Chlorwasserstoff auf Cyclohexen bei Gegenwart von Aluminiumchlorid (Bodroux, A.ch. [10] 11, 551). Zur Bildung aus Cyclohexanol und Salzsäure vgl. RHEINBOLDT, ROLEFF, J. pr. [2] 109, 184 Anm. 1; VAN WOERDEN, R. 45, 135; MAYES, TURNER, Soc. 1929, 502. Beim Behandeln von Cyclohexylmagnesiumbromid mit p-Toluolsulfochlorid in Äther unter Beim Behandeln von Cyclohexylmagnesiumbromid mit p-Toluolsulfochlorid in Äther unter Kühlung mit einer Kältemischung (GILMAN, FOTHERGILL, Am. Soc. 51, 3506). — F: —43,9° (NAGORNOW, ROTINJANZ, Izv. Inst. fiz.-chim. Anal. 3, 165; C. 1927 I, 2648). Kp<sub>775</sub>: 143,7°; Kp<sub>765</sub>: 143,1° (van W.); Kp<sub>760</sub>: 142,9° (van W.), 142,7—145° (korr.) (NORRIS, MULLIKEN, Am. Soc. 42, 2097); Kp<sub>765</sub>: 143—144° (Bo.); Kp<sub>750</sub>: 142,5°; Kp<sub>48</sub>: 60,5°; Kp<sub>21</sub>: 42° (van W.); Kp<sub>10</sub>: 23—24° (Conant, Hussey, Am. Soc. 47, 485). Dampfdruck zwischen 73,5° (83,1 mm) und 143,1° (762,8 mm): N., R. Dichte zwischen 0° (1,0180) und 100,1° (0,9193): N., R. D<sub>1</sub><sup>50,3</sup>: 1,0000 (Krause, Pohland, B. 57, 534); D<sup>22</sup>: 0,999 (Bo.). n<sub>2</sub><sup>50</sup>: 1,466 (Bo.); n<sub>2</sub><sup>50,3</sup>: 1,4626; n<sub>3</sub><sup>50,3</sup>: 1,4686; n<sub>2</sub><sup>50,3</sup>: 1,4736 (Kr., Po.). — Wärmetönung bei der Adsorption an Tierkohle: Alexejewski, Ž. prikl. Chim. 1, 183; C. 1929 II, 708. — Chlorcyclohexan spaltet beim Leiten über Tonerde oder unglasiertes Porzellan bei 200—400° Chlorwasserstoff ab (Faragher, Gabrer, Am. Soc. 43, 1723). Gibt bei der Oxydation mit Chromschwefelsäure bei 40—45° Adipinsäure (Courtot, Pierron, Bl. [4] 45, 289). Die Hydrolyse durch Wasser verläuft bei 90—95° noch sehr langsam (Cour., P.). Geschwindigkeit der Umsetzung mit Kaliumjodid in Aceton bei 60°: Conant, H. Liefert mit Anilin bei 125° der Umsetzung mit Kaliumjodid in Aceton bei 60°: Conant, H. Liefert mit Anilin bei 125° Cyclohexylanilin (I. G. Farbenind., D. R. P. 483205; C. 1929 II, 2938; Frdl. 16, 452).

 $\textbf{1.4-Dichlor-cyclohexan} \ \, \text{$C_0H_{10}$Cl}_{\underline{a}} = \text{ClHC} \underbrace{\begin{array}{c} \text{$CH_2$}\\ \text{$CH_2$} \end{array}}_{\underline{c}} \underbrace{\text{$CH_{Cl}$}}_{\underline{a}} \underbrace{\text{$CH_{Cl}$}}_{\underline{c}}$ 

a) Feste Form. B. Neben der flüssigen Form und weiteren Verbindungen bei mehrstündiger Einw. von überschüssiger Salzsäure (D: 1,19) auf technischen trans-Chinit im ge-

schlossenen Gefäß bei 100° (Palfray, Rothstein, C. r. 189, 701). — Angenehm riechende Krystelle. Schmeckt bitter und brennend. F: 102°. Kp<sub>13</sub>: 79—80°.

b) Flüssige Form. B. s. bei der festen Form; wurde nicht ganz frei von der festen Form erhalten (Palfray, Rothstein, C. r. 189, 701). — Flüssigkeit. Riecht schärfer und schmeckt bitterer und brennender als die feste Form. Kp<sub>18</sub>: 79—80°. D<sup>15</sup>: 1,1831. n<sup>15</sup>: 1,4950.

1.2.3.4.5.6 - Hexachlor - cyclohexan, Benzolhexachlorid  $C_eH_eCl_e = ClHC < CHCl \cdot CHCl > CHCl \cdot CHCl$ 

a)  $\alpha$ -Benzolhexachlorid  $C_6H_6Cl_6$  (H 23; E I 8). B. Beim Leiten von trocknem Benzol und trocknem Chlor über Kupfer bei 150—300°, neben  $\beta$ -Benzolhexachlorid und anderen Produkten (Tei, Komatsu, Mem. Coll. Sci. Kyoto [A] 10, 328; C. 1928 I, 2370). Neben Chlorbenzol bei der Elektrolyse eines Gemisches aus Benzol und absolut-methylalkoholischer Salzsäure an Graphitelektroden (JAYLES, C.r. 189, 686). Neben  $\beta$ -Benzolhexachlorid und anderen Produkten bei der Einw. von unterchloriger Säure auf Benzol im zerstreuten Licht (GOLDSCHMIDT, ENDRES, DIRSCH, B. 58, 574; KLINGSTEDT, Acta Acad. Abo. 4, Nr. 2, S. 5, 23; C. 1926 I, 504).

b) β-Benzolhexachlorid C<sub>e</sub>H<sub>e</sub>Cl<sub>e</sub> (H 23; E I 8). B. Beim Leiten von trocknem Benzol und trocknem Chlor über Kupfer bei 150—300°, neben α-Benzolhexachlorid und anderen Produkten (TEI, KOMATSU, Mem. Coll. Sci. Kyoto [A] 10, 328; C. 1928 I, 2370).

Neben α-Benzolhexachlorid und anderen Produkten bei der Einw. von unterchloriger Säure auf Benzol im zerstreuten Licht (Goldschmidt, Endres, Dirsch, B. 58, 574; Klingstedt, Acta Acad, Abo. 4, Nr. 2, S. 5, 26; C. 1928 I, 504). — Krystalle (aus Xylol). Kubisch (Hendricks, Bilicke, Am. Soc. 48, 3010). Röntgenogramm: H., Bi.; Dickinson, Bi., Am. Soc. 50, 765. F: 310° (H., Bi.), 312° (Kl.). Löslich in Benzol, schwer löslich in Alkohol (T., Ko.).

1.1.2.3.4.5.6 - Heptachlor - cyclohexan, Chlorbenzolhexachlorid  $C_{\phi}H_{\phi}Cl_{\gamma} = ClHC < \frac{CHCl \cdot CHCl}{CHCl \cdot CHCl} > CCl_{\phi}$ .

β-Chlorbenzolhexachlorid C<sub>4</sub>H<sub>5</sub>Cl<sub>7</sub> (H 24). B. Beim Leiten von Chlorbenzol und trocknem Chlor über Kupfer bei 200°, neben anderen Produkten (Tei, Komatsu, Mem. Coll. Sci. Kyoto [A] 10, 328; C. 1928 I, 2370). — Krystalle (aus Benzol). F: 260°.

Bromeyclohexan, Cyclohexylbromid C<sub>6</sub>H<sub>11</sub>Br (H 24; E I 9). B. Zur Bildung und Darstellung aus Cyclohexanol und Phosphortribromid nach Freundler, Damond (C. r. 141 [1905], 593) und Kohler, Burnley (Am. 43 [1910], 413) vgl. Ziegler, Scenell, A. 437, 250; Krause, Pohland, B. 57, 534; Wood, Comley, Soc. 125, 2637; Hiers, Adams, Am. Soc. 48, 2389. — Darst. Durch Einleiten von Bromwasserstoff in Cyclohexanol bei 100—120° (Reid, Ruhoff, Burnett, Org. Synth. 15 [1935], 26). — Kp<sub>20</sub>: 67—71° (H., A.); Kp<sub>16</sub>: 59,5—60° (Venus-Danilowa, B. 61, 1956; Ж. 61, 56); Kp<sub>13,5</sub>: 52,5° (unkorr.) (Kr., P.). D<sub>1</sub><sup>16,6</sup>: 1,3348 (Kr., P.); D<sub>2</sub><sup>18</sup>: 1,3128 (H., A.). n<sub>2</sub><sup>8</sup>: 1,4917 (H., A.); n<sub>3</sub><sup>8</sup>: 1,4946; n<sub>3</sub><sup>16,8</sup>: 1,4976; n<sub>3</sub><sup>8</sup>: 1,5052; n<sub>3</sub><sup>8</sup>: 1,514 (Kr., P.). — 100 cm<sup>8</sup> 65% iges Methanol lösen weniger als 1 g (Reid, Ru., B.). — Liefert in Äther bei Einw. von Natrium Dicyclohexyl (Zelinsky, Trzz, Fatelew, B. 59, 2590). Dicyclohexyl entsteht auch neben wenig Cyclohexylmagnesium-bromid bei der Einw. von Magnesium auf Cyclohexylbromid in Äther (Z., T., B. 64 [1931], 184; vgl. Z., B. 58, 2760, 2762). Gibt beim Kochen mit Kaliumcarbonat-Lösung, absolutalkoholischer Kaliumphenolat-Lösung und anderen alkal. Lösungen geringe Mengen von Cyclohexylbromid mit Dicyclohexylamin oder mit Cyclohexylanilin in absol. Alkohol (Hiers, Adams, Am. Soc. 49, 1103) oder mit Phthalimid-Kalium (Ing, Manske, Soc. 1926, 2349). Beim Kochen mit β-Naphthylamin entstehen Cyclohexylhydrazin, Cyclohexen und geringe Mengen einer in Wasser schwer löslichen Base, deren Chlorid in über 240° schmelzenden Nadeln krystallisiert (Busch, Linsenmeier, J. pr. [2] 115, 219). Läßt man auf Cyclohexylbromid Phenylhydrazin bei 120° einwirken und erhitzt dann allmählich im Laufe von 2 Stunden auf 130°, so erhält man N-Cyclohexyl-N-phenyl-hydrazin; analog verläuft die Reaktion mit m- und p-Tolylhydrazin (Busch, Haase, J. pr. [2] 115, 187, 197). o-Tolylhydrazin und andere orthosubstituierte Phenylhydrazine, aber auch 4-Brom-phenylhydrazin geben diese Reaktion nicht, liefern

1.2-Dibrom-cyclohexan, Cyclohexendibromid C<sub>6</sub>H<sub>10</sub>Br<sub>2</sub> = H<sub>2</sub>C<CH<sub>2</sub>-CH<sub>3</sub>-CHBr (H 24; E I 9). B. Aus Cyclohexen und Brom in Tetrachlorkohlenstoff (Coffey, R. 42, 398; Grengard, Org. Synth. 12 [New York 1932], S. 26) oder in Chloroform bei 0° (Hofmann, Damm, Mitt. Kohlenforschungsinst. Breslau 2, 109; C. 1926 I, 2343). Bei Einw. von verd. Schwefelsäure auf Pyridin-brom-[2-brom-cyclohexylat] (Barnett, Cook, Peck, Soc. 125, 1038). — Ölige stark lichtbrechende Flüssigkeit von schwachem, nicht unangenehmem Geruch (H., D.). Färbt sich am Licht allmählich dunkelbraun, ist aber sonst haltbar (H., D.). F: -6,0° (Coffey). Kp: 222—224° (geringe Bromwasserstoff Entwicklung); Kp<sub>36</sub>: 124° bis 125°; Kp<sub>10</sub>: 97—98°; Di<sup>46</sup>: 1,7898; ni<sup>46</sup>: 1,5540 (Coffey). — Gibt bei der Einw. von Magnesium in Äther Cyclohexen (H., D.). Bleibt beim Erhitzen mit verd. Alkalilauge auf 150° oder mit Wasser und Silberoxyd auf 100° unverändert; alkoh. Kaliumcyanid-Lösung ist ebenfalls ohne Einw. (Coffey). Liefert bei 10-stdg. Erhitzen mit 20% igem alkoholischem Ammoniak unter Druck auf 100—120° 3-Amino-cyclohexen-(1) und 3-Athoxy-cyclohexen-(1) (H., D.). Bei allmählicher Einw. von Natriumäthylat-Lösung entstehen 3-Athoxy-cyclohexen-(1) und wenig Cyclohexadien-(1.3) (H., D.). Cyclohexadien-(1.3) entsteht auch beim Erhitzen von 1.2-Dibrom-cyclohexan mit Natriumscetat und Eisessig auf 180° (Coffey). Bei 48 Stunden langem Kochen mit entwässertem Kaliumacetat in Eisessig erhält man 3-Acetoxy-cyclohexen-(1) (H., D.). Gibt bei mehrstündigem Kochen mit Natriummalonsäure-diäthylester Cyclohexen und Äthan-tetracarbonsäure-(1.1.2.2)-tetraäthylester; bei 30-stdg. Erhitzen mit Natriummalonsäure-diäthylester in Amylalkohol auf ca.-140° entsteht vornehmlich 4.5.6.7.8.9-Hexahydro-cumaranon-(2)-carbonsäure-(3)-äthylester (Syst. Nr. 2619) (Coffey).

- 1.8-Dibrom-cyclohexan  $C_0H_{10}Br_2 = H_2C < \begin{array}{c} CHBr \cdot CH_2 \\ CH_2 CH_2 \end{array} > CHBr.$ a) Höherschmelzende Form, cis-Form. B. Neben der niedrigerschmelzenden Form bei der Einw. von konz. Bromwasserstoffsäure auf ein Gemisch von eis- und trans-Resorcit, zuletzt auf dem Wasserbad (LINDEMANN, BAUMANN, A. 477, 83, 87). — Stäbchen (aus Alkohol). F: 112°. Sehr leicht löslich in Benzol, schwerer in Benzin und Alkohol, sehr schwer in Wasser.
- b) Niedrigerschmelzende Form, trans-Form. B. s. bei der höherschmelzenden Form. — F: 10 (LINDEMANN, BAUMANN, A. 477, 88). Kp16: 1160. — Liefert beim Erhitzen mit Eisessig und Silberacetat Cyclohexen-(1)-ol-(4)-acetat und trans-Resorcit-diacetat.
  - $\textbf{1.4-Dibrom-cyclohexan} \quad \textbf{C}_{\textbf{c}}\textbf{H}_{\textbf{10}}\textbf{Br}_{\textbf{2}} = \textbf{BrHC} < \begin{matrix} \textbf{CH}_{\textbf{2}}\textbf{CH}_{\textbf{2}} \\ \textbf{CH}_{\textbf{3}}\textbf{CH}_{\textbf{2}} \end{matrix} > \textbf{CHBr}.$
- a) Feste Form, trans-Form(?) (H 25; E I 9). B. Beim Erhitzen von Athyl-△3-cyclohexenyl-ather mit rauchender Bromwasserstoffsaure im Rohr auf 80°, neben der flüssigen Form (?) (v. Braun; Hahn, B. 55, 3775). Zur Bildung neben flüssigem 1.4-Dibrom-cyclohexan, x.x-Dibrom-cyclohexan vom Schmelzpunkt 48° und weiteren Produkten durch Erhitzen eines Gemisches von trans- und eis-Chinit mit Bromwasserstoffsäure vgl. Zelinsky, Kozeschkow, B. 60, 1103; K. 59, 667; Palfray, Rothstein, C. 7. 189, 702. — F: 1120 (P., R.), 1130 (v. Br., H.), 1140 (Z., K.). — Liefert bei mehrstündigem Erhitzen mit Natrium in absol. Isoamyläther auf 170—1800 Cyclohexadien-(1.3) und Diallyl (Z., K.).
- b) Flüssige Form, cis-Form(?) (H 24; E I 9). B. s. bei der festen Form. Kp<sub>13</sub>: 111° (Zelinsky, Kozeschkow, B. 60, 1104; 3K. 59, 664); Kp<sub>15</sub>: 114—115°; D<sup>26</sup>: 1,7834; n<sup>26</sup>: 1,5531 (Palfray, Rothstein, C. r. 189, 702). Liefert bei 8-stdg. Erhitzen mit Natrium in absol. Isoamyläther Bicyclo-[0.2.2]-hexan 1) und Diallyl (Z., K.).
- x.x-Dibrom-cyclohexan C<sub>6</sub>H<sub>10</sub>Br<sub>8</sub>. Ist nach Palfray, Rothstein (C. r. 190 [1931], 191) vielleicht 3-Brom-1-brommethyl-cyclopentan. B. Entsteht neben der flüssigen und festen Form von 1.4-Dibrom-cyclohexan bei der Einw. von bei 0° gesättigter Bromwasserstoffsäure auf ein Gemisch von cis- und trans-Chinit im geschlossenen Gefäß auf dem Wasserbad (ZELINSKY, KOZESCHKOW, B. 60, 1104; 3K. 59, 665; vgl. a. P., R., C. r. 189, 702). — Nadeln (aus Petrolather). F: 48°.

Niedrigschmelzendes 1.2.3.4 - Tetrabrom - cyclohexan  $C_6H_8Br_4$  = BrHC CHBr CHBr CHBr (E I 10). B. Zur Bildung nach HARRIES (B. 45 [1912], 813) aus Cyclohexadien (1.3) und Brom in Chloroform vgl. Hofmann, Damm, Mitt. Kohlenforschungsinst. Breslau 2, 120; C. 1926 I, 2343. — Krystalle (aus Ather). F: 87—88°. — Gibt beim Kochen mit Natriumathylat-Lösung Brombenzol.

Hochschmelzendes 1.2.3.4.5.6 - Hexabrom - cyclohexan,  $\beta$  - Benzolhexabromid CaHaBra (H 25). Röntgenogramm: Hendricks, Billicke, Am. Soc. 48, 3008; Dickinson, BI., Am. Soc. 50, 765.

Jodeyclohexan, Cyclohexyljodid C<sub>6</sub>H<sub>11</sub>I (H 25; EI 10). Zur Darstellung nach Freund-LER, DAMOND ( $C.\tau$ . 141 [1905], 593) and Cyclohexanol und Phosphortrijodid vgl. Clutter-BUCK, COHEN, Soc. 123, 2511. Beim Erhitzen von Dicyclohexylather mit konz. Jodwasserstoffsaure und rotem Phosphor auf 200º (LACOURT, Bl. Soc. chim. Belg. 36, 353; C. 1927 II, 923). — Kp.: 74,4° (Cl., Co.). — Bei der Einw. auf Cyanessigsäureäthylester in Gegenwart von Kaliumcarbonat unter 60 mm Druck bei 140-170° entsteht Cyclohexylmalonsäuremonoamid (Robinson, Soc. 125, 227).

- 1-Chlor-1-nitroso-cyclohexan  $C_6H_{10}ONCl = H_2C < \frac{CH_2 \cdot CH_2}{CH_2} > CCl \cdot NO.$  B. Aus dem Oxim des Cyclohexanons durch Behandeln mit Nitrosylchlorid in Ather (RHEINBOLDT, DEWALD, A. 455, 313). — Tiefblaues Ol von stechendem Geruch. Kp<sub>12</sub>: 52°. Zersetzt sich bei der Destillation unter gewöhnlichem Druck. — Gibt bei vorsichtigem Erwärmen mit Salpetersaure in Eisessig 1-Chlor-1-nitro-cyclohexan.
- $\textbf{1.4-Dichlor-1.4-dinitroso-cyclohexan} \quad C_{\bullet}H_{\bullet}O_{2}N_{\bullet}Cl_{2} = ON \cdot ClC < \begin{matrix} CH_{\bullet} \cdot CH_{\bullet} \\ CH_{\bullet} \cdot CH_{\bullet} \end{matrix} > CCl \cdot NO$ (H 26). B. Aus dem Dioxim des Cyclohexandions-(1.4) durch Behandeln mit überschüssigem Nitrosylchlorid in Ather, neben der Verbindung C<sub>6</sub>H<sub>2</sub>O<sub>5</sub>N<sub>2</sub>Cl<sub>2</sub> (S. 14) (RHEINBOLDT, DEWALD, A. 455, 313). — Blaue Krystalle (aus Methanol). — F: 108—109°. — Zersetzt sich bei höherer Temperatur. Gibt beim Behandeln mit Salpetersäure in Eisessig 1.4-Dichlor-1.4-dinitrocyclohexan.

<sup>1)</sup> Dieser Kohlenwasserstoff ist nach PRJANISCHNIKOW, SCHUJKINA (B. 67 [1934], 64) wahrscheinlich ein Gemisch von Cyclohexadien, Cyclohexen und Cyclohexan.

chlor-1.4-dinitroso-cyclohexan beim Behandeln des Dioxims des Cyclohexandions-(1.4) mit überschüssigem Nitrosylchlorid in Ather (Rheinboldt, Dewald, A. 455, 313). — Krystalle (aus Alkohol). Zersetzt sich bei 160—165°.

- 1-Chlor-1-nitro-cyclohexan  $C_6H_{10}O_3NCl = H_3C < \begin{array}{c} CH_3 \cdot CH_3 \\ CH_3 \cdot CH_3 \\ \end{array} > CCl \cdot NO_3$ . B. Aus 1-Chlor-1-nitroso-cyclohexan durch vorsichtiges Erwärmen mit Salpetersäure in Eisessig (Rheinboldt, Dewald, A. 455, 313). Öl.  $Kp_{13}$ : 93—94°.
- 1.2 Dibrom 1 nitro cyclohexan  $C_0H_0O_2NBr_2 = H_2C < CH_2 CH_2 CH_2 CBr \cdot NO_2$ . B. Aus 1 Nitro cyclohexen (1) bei der Einw. von Brom in Chloroform unter Eiskühlung (Wisland, Garbsch, Chavan, A. 461, 305). Krystalle (aus Methanol). F: 100—101°. Ziemlich schwer löslich in kaltem Methanol. Bei der Einw. von 5 Mol 4n-methylalkoholischer Kalilauge entsteht das Kaliumsalz des 3-aci-Nitro-2-methoxy-cyclohexens-(1)(?).
- 14-Dichlor-1.4-dinitro-cyclohexan C<sub>6</sub>H<sub>8</sub>O<sub>4</sub>N<sub>2</sub>Cl<sub>2</sub> = O<sub>2</sub>N·ClC CH<sub>2</sub>·CH<sub>2</sub>·CCl·NO<sub>2</sub> (H 27). B. Aus 1.4-Dichlor-1.4-dinitroso-cyclohexan durch Behandeln mit Salpetersäure in Eisessig (RHEINBOLDT, DEWALD, A. 455, 314). Krystalle (aus Methanol). F: 191—192°.
- 2. Methylcyclopentan C<sub>6</sub>H<sub>12</sub> = H<sub>2</sub>C·CH<sub>2</sub> CH·CH<sub>3</sub> (H 27; E I 10). V. In neuseeländischem Mineralöl (Easterfield, McClelland, Chem. and Ind. 1923, 937; C. 1924 I. 2847). In den Erdölen von Moreni und Arbanesi (Rumānien) (Moutte, Chim. et Ind. 16, Sondernummer, 331, 332; C. 1927 I, 383). Im Harzleichtöl, erhalten durch Destillation von Fichtenharz mit japanischer saurer Erde (Imori, Isono, Bl. phys. chem. Res. Tokyo 1, 5; C. 1928 II, 189). B. Durch Erhitzen von Cyclohexen unter hohem Wasserstoffdruck auf 425° (Hofmann, Lang, Brennsbifch. 10, 204; C. 1929 II, 165). Beim Leiten von Cyclohexen oder Cyclohexanol über japanische saure Erde bei 330° (Inoue, Bl. chem. Soc. Japan 1, 221, 222; C. 1927 I, 690). Durch Hydrierung des beim Erhitzen von 1-Methyl-cyclopentanol-(1) mit Phosphorpentoxyd in absol. Ather entstandenen Reaktionsprodukts in Gegenwart von Platinschwarz (Chavanne, Bl. Soc. chim. Belg. 31, 337; C. 1926 I, 75). Bei der Hydrierung von 1-Methyl-cyclopenten-(1) oder 1-Methyl-cyclopentanon-(3) in Eisessig bei Gegenwart von Platinschwarz (Chavanne, Bl. Soc. chim. Belg. 31, 337; C. 1923 IV, 68). E: —140,5° (Timmermans, Bl. Soc. chim. Belg. 31, 390; C. 1923 III, 1137), —141,0 ± 0,3° (Ti., Bl. Soc. chim. Belg. 30, 65; C. 1921 III, 288). Kp<sub>780</sub>: 72 ± 0,2° (Ti., Bl. Soc. chim. Belg. 30, 65; C. 1921 III, 288). Kp<sub>780</sub>: 72 ± 0,2° (Ti., Bl. Soc. chim. Belg. 30, 65; C. 1921 III, 288). Kp<sub>780</sub>: 72 ± 0,0002; Dis. 0,7528 ± 0,0002 (Ch., vAn RISSEGHEM, Bl. Soc. chim. Belg. 31, 91; C. 1922 III, 241; Ch.). Dis. 0,7459 (EI.). Viscosität zwischen 0° (0,00665 g/cmsec) und 30° (0,00456 g/cmsec): Ch., van R. Parachor: Sugden, Soc. 125, 1180; Mumford, Phillips, Soc. 1929, 2115. Verbrennungswärme bei konstantem Volumen: 937,6 kcal/Mol (Swietoslawski, Am. Soc. 42, 1094; vgl. Subow. Ж. 33, 722; C. 1927 I, 702). nig. 1,4104; nig. 1,4126; nig. 1,4176; nig. 1,4214 (Ch.); nig. 1,4075; nig. 1,4095; nig. 1,4147; nig. 1,4104; nig. 1,4126; nig. 1,4176; nig. 1,4214 (Ch.); nig. 1,4075; nig. 1,4095; nig. 1,4147; nig. 1,4147; nig. 1,412

Brommethyl-cyclopentan, Cyclopentyl-methylbromid  $C_6H_{11}Br = C_5H_9 \cdot CH_2Br$ . B. Aus Cyclopentylcarbinol beim Behandeln mit Phosphortribromid unterhalb —  $5^6$  (Noller, Adams, Am. Soc. 48, 1085) oder weniger gut beim Erhitzen mit Bromwasserstoffsäure im Rohr auf 100° (v. Braun, Kühn, Siddiqui, B. 59, 1088). — Angenehm riechendes Öl. Kp<sub>17</sub>: 56—57° (N., A.); Kp<sub>15</sub>: 58—60° (v. Br., K., S.).

2.1¹-Dibrom - 1 - methyl - cyclopentan, 2 - Brom - 1 - brommethyl - cyclopentan  $C_6H_{10}Br_2=\frac{H_2C\cdot CHBr}{H_2C-CH_2}CH\cdot CH_2Br$ . B. Bei 12—14-stdg. Erhitzen von 1-Methylol-cyclopentanol-(2) mit Phosphortribromid im Rohr auf 100°; das entstandene Produkt scheint ein Gemisch der cis- und trans-Verbindung zu sein (Zelinsky, Uschakow, Bl. [4] 35, 484;  $\mathcal{H}$ . 56, 68). — Kp<sub>16</sub>: 109—112°. D<sub>4</sub>°: 1,7556. n<sub>D</sub>°: 1,5364. — Verändert sich bei längerem Aufbewahren. Gibt bei 3-stdg. Kochen mit Zinkstaub in 80% igem Alkohol Bicyclo-[0,1,3]-hexan.

3. Isopropylcyclopropan, 2-Cyclopropyl-propan  $C_0H_{12} = \frac{H_2C}{H_1CH} \cdot CH \cdot CH \cdot CH(CH_2)_2$ .

[ $\alpha$ -Chlor-isopropyl]-cyclopropan, 2-Chlor-2-cyclopropyl-propan  $C_eH_{11}Cl=C_3H_5\cdot CCl(CH_3)_2$ . Die H 5, 28 unter dieser Formel beschriebene Verbindung ist von Bruy-Lants, Dewael (Bl. Acad. Belgique [5] 14, 147; C. 1928 I, 2708) als 5-Chlor-2-methylpenten-(2) (E II 1, 194) erkannt worden.

[ $\alpha$ -Brom-isopropyl]-cyclopropan, 2-Brom-2-cyclopropyl-propan  $C_8H_{11}Br=C_8H_5\cdot CBr(CH_3)_3$  (H 28). Die unter dieser Formel beschriebene Verbindung ist von Bruylants, Dewael (Bl. Acad. Belgique [5] 14, 147; C. 1928 I, 2708) als 5-Brom-2-methylpenten-(2) (E II 1, 194) erkannt worden.

4. 1.1.2-Trimethyl-cyclopropan C<sub>6</sub>H<sub>12</sub> = CH<sub>3</sub>·HC H<sub>1</sub>C (CH<sub>3</sub>)<sub>2</sub> (H 28; E I 11). Bei der Behandlung mit Brom in Eisessig entsteht außer viel 2.4-Dibrom-2-methyl-pentan auch 2-Brom-2-methyl-pentan (KISHNER, Ж. 44, 171; C. 1912 I, 2026). Das zweite Produkt entsteht auch bei der Behandlung von 1.1.2-Trimethyl-cyclopropan mit rauchender Bromwasserstoffsäure unter Kühlung (K.).

# 5. Kohlenwasserstoffe C7H14.

1. Cycloheptan, Suberan  $C_7H_{14} = \frac{H_2C \cdot CH_2 \cdot CH_2}{H_2C \cdot CH_2 \cdot CH_2} \cdot CH_2$  (H 29; E I 11).  $D_4^m$ : 0,8118 (Rosanow, Ж. 61, 2315; C. 1930 II, 229). Verbrennungswärme bei konstantem Volumen: 1086,9 kcal/Mol (Swiftoslawski, Am. Soc. 42, 1094; vgl. Subow, Ж. 33, 722; C. 1902 I, 161).

Bromcycloheptan, Cycloheptylbromid C<sub>7</sub>H<sub>13</sub>Br (H 29). Reaktionsfähigkeit mit Natrium, Kaliumcarbonat-Lösung, Kaliumhydrosulfid, Kaliumsulfid, Natrium- und Silberacetat, Kaliumphenolat, Anilin und weiteren Aminen sowie mit Piperidin: LOEVENICH, Utsch, Moldrickx, Schaefer, B. 62, 3101.

Methylcyclohexan, Hexahydrotoluol C<sub>7</sub>H<sub>14</sub> = H<sub>2</sub>C < CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>3</sub> > CH·CH<sub>3</sub>
9. E. I. (1) V. In passed Endischer Minutelli, C. (2) (H 29; E I 11). V. In neuseeländischem Mineralöl (Easterfield, McClelland, J. Soc. (H. 29; E. I. II). V. In housestandschein interator (EASTEIRELD, Incolerator, V. 30c. chem. Ind. 42, 937 R; C. 1924 I, 2847). In den Erdölen von Moreni und Arbanesi (Rumänien) (Moutte, Chim. et Ind. 16, 331 C, 332 C; C. 1927 I, 383). — B. Neben anderen Produkten aus Amyl- oder Isoamyl-cyclohexan beim Erhitzen mit Aluminiumchlorid (GRIGNARD, STRATFORD, C. r. 178, 2151; St., Ann. Off. Combust. liq. 4, 341; C. 1929 II, 1286). Neben anderen Produkten beim Erhitzen von Cyclohexen mit Wasserstoff oberhalb 425° (Hofmann, Lang, Brennstoffch. 10, 204; C. 1929 II, 165). Beim Leiten von Toluoldämpfen und Wasserstoff über einen aus Manganoxyd, Nickeloxyd und Kupferoxyd bestehenden Katalysator bei 160—200° (Agfa, D. R. P. 383540; C. 1924 I, 2544; Frdl. 14, 493). Durch Hydrierung von Toluol in Gegenwart von wenig Platinoxyd in Eisessig bei 25—30° und 2—3 Atm. Druck (Adams, Marshall, Am. Soc. 50, 1972). Beim Erhitzen von Toluol mit 2 Mol 96,7 % igem Hydrazin im Rohr auf 250° (E. MÜLLER, KRAEMER-WILLENBERG, B. 57, 579). Neben anderen Produkten bei der Hydrierung von  $\omega$ . $\omega$ -Difluor- $\omega$ -chlor-toluol in Gegenwart von Platinschwarz (Swarts, Bl. Acad. Belgique [5] 6, 410; C. 1921 III, 33). Beim Erhitzen von Benzylalkohol mit 4 Mol 97,8% igem Hydrazin im Rohr auf 180° (Mü., Kr.-W., B. 57, 578). Durch Einw. von ultraviolettem Licht auf Cyclohexylacetaldehyd unterhalb 80° (Sigmund, M. 52, 187). Neben anderen Produkten bei der Reduktion von Benzaldehyd mit Wasserstoff in absol. Alkohol in Gegenwart von reinem Platinschwarz (FAILLEBIN, Č. r. 175, 1078; A. ch. [10] 4, 467). Als Hauptprodukt beim Erhitzen von phenylessigsaurem oder mandelsaurem Natrium in wäßr. Lösung mit Wasserstoff in Gegenwart von Nickeloxyd unter 80 Atm. Druck auf 270° (IPATJEW, RASUWAJEW, B. 59, 2030; Ж. 58, 1342). Bei der thermischen Zersetzung von Cholesterin mit Aluminiumchlorid und folgenden Hydrierung (ZELINSKY, B. 60, 1797).

Physikalische Eigenschaften. E: —126,4° (TIMMERMANS, Bl. Soc. chim. Belg. 30, 65; C. 1921 III, 287; Ti., Martin, J. Chim. phys. 23, 762; Ti., van der Horst, Kamerlingh Onnes, C. r. 174, 366), —126,35° (Ti., van d. H., Kam. Onnes, Arch. néerl. Sci. exactes [IIIa] 6, 186; C. 1923 IV, 377), —126,3° (Ti., Bl. Soc. chim. Belg. 37, 412; C. 1929 II, 522). Kp<sub>760</sub>: 100,95° (Lecat, R. 45, 622), 101,1° (L., R. 46, 243), 101,20° (Ti., Mar., J. Chim. phys. 23, 762; vgl. Ti., Bl. Soc. chim. Belg. 30, 65; Ti., van d. H., Kam. Onnes, C. r. 174, 366); Kp<sub>761</sub>: 100—100,2° (Adams, Marshall, Am. Soc. 50, 1972). Dampfdruck zwischen 50,4° (144,4 mm Hg) und 100,8° (758,4 mm Hg): Nagornow, Rotinjanz, Izv. Inst. fiz.-chim. Anal. 3, 164; C. 1927 I, 2648. Kritische Temperatur Tk: 301,5° (Na., Ro.). Diohte Di zwischen —78,4° (0,8540) und +100,6° (0,6971): Na., Ro. Di: 0,7868;

D45: 0,7737; D40: 0,7606 (CHAVANNE, VAN RISSEGHEM, Bl. Soc. chim. Belg. 31, 91); D4: 0,78650; D45: 0,77340; D47: 0,76030 (T1., Mar., J. Chim. phys., 23, 762; DESSART, Bl. Soc. chim. Belg. 35 [1926], 9 [Tabelle 5]). Viscosität bei 0°: 0,00976 g/cmsec; bei 15°: 0,00780 g/cmsec; bei 30°: 0,00627 g/cmsec (CHA., VAN RISS., Bl. Soc. chim. Belg. 31, 91; C. 1922 III, 241); bei 15°: 0,00777 g/cmsec; bei 30°: 0,00639 g/cmsec (TIMMERMANS, MARTIN, J. Chim. phys. 23, 763; vgl. Des., Bl. Soc. chim. Belg. 35, 9 [Tabelle 5]); bei 20°: VORLÄNDER, WALTER, Ph. Ch. 118, 16. Einfluß von Drucken bis 12000 kg/cm² auf die Viscosität bei 30° und 75°: BRIDGMAN, Pr. nation. Acad. USA. 11, 603; Pr. am. Acad. Arts Sci. 61, 80; C. 1926 I, 1919; II, 1923. Parachor: Sugden, Soc. 125, 1180, Verdampfungswärme bei 99,90°: 76,92 cal/g (MATHEWS, Am. Soc. 48, 572). Verbrennungswärme bei konstantem Volumen: 1091,4 kcal/Mol (Swietoslawski, Am. Soc. 42, 1094; vgl. Subow, H. 33, 722; C. 1902 I, 161).

n<sub>1</sub>: 1,4291 (Stratford, Ann. Off. Combust. liq. 4, 98, 330; C. 1929 II, 1286); n<sub>u</sub>. 1,42305; n<sub>u</sub>. 1,42535; n<sub>u</sub>. 1,43072; n<sub>u</sub>. 1,41641; n<sub>u</sub>. 1,41864; n<sub>u</sub>. 1,42394 (Dessart, Bl. Soc. chim. Belg. 35, 9 [Tabelle 5]; Timmermans, Martin, J. Chim. phys. 23, 763); n<sub>u</sub>. 1,4198 (Adams, Marshall, Am. Soc. 50, 1972). Brechungsindices zwischen 420 m $\mu$  (1,4335) und 215 m $\mu$  (1,5250) bei 21,8°: Voellmy, Ph. Ch. 127, 344. Absorptionsspektrum in Ultrarot zwischen 1 $\mu$  und 3,6  $\mu$ : Márton, Ph. Ch. 117, 107; zwischen 3 $\mu$  und 7,4  $\mu$ : Lecomte, C. 7. 183, 29. Zum Ultrarot-Absorptionsspektrum vgl. auch Gapon, Z. Physik 44, 601; C. 1927 II, 1789. Raman-Spektrum von flüssigem Methylcyclohexan: Wood, Phil. Mag. [7] 7, 858 (Tafel XXI); C. 1929 II, 1135. Beugung von Röntgenstrahlen in flüssigem Methylcyclohexan: Stewart, Phys. Rev. [2] 33, 889; C. 1929 II, 1258.

Kritische Lösungstemperatur der Gemische mit Anilin: 41,0° (Dessart, Bl. Soc. chim. Belg. 35 [1926], 18; 41,3° (Timmermans, J. Chim. phys. 20, 505); bei Drucken zwischen 1 kg/cm² und 140 kg/cm²: Ti.; kritische Lösungstemperatur der Gemische mit m-Toluidin: —8,3° (Des.). Gefrierpunkte der Gemische mit Pentan und der Gemische mit Pentan und Propylalkohol: Beck, Dtsch. Z. ger. Med. 12, 3; C. 1928 II, 1918. Thermische Analyse des binären Systems mit Bromwasserstoff: Maass, Boomer, Morrison, Am. Soc. 45, 1435; mit Cyclohexan: Ti., Bl. Soc. chim. Belg. 37, 414; der binären Systeme mit m-Nitro-toluol und m-Toluidin: Des. Binäre azeotrope Gemische, die Methylcyclohexan enthalten, s. in der untenstehenden Tabelle. Dampfdruck binärer Systeme mit 1-Methyl-dekahydronaphthalin,

Methylcyclohexan enthaltende binäre Azeotrope.

| Komponente     | Kp760                                                                                                          | Gehalt an<br>Methyl-<br>cyclohexan<br>in Gew%                                        | Komponen† e                                                                                                                                                                           | Kp <b>760</b><br>0                                                               | Gehalt an<br>Methyl-<br>cyclohexan<br>in Gew%                              |
|----------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Nitromethan 3) | 81,25<br>100,75<br>99,4<br>ca. 98,3<br>59,45<br>71,95<br>83,85<br>86,0<br>77,4<br>96,4<br>93,2<br>78,2<br>97,4 | 60,5<br>71<br>ca. 40<br>ca. 10<br>43<br>48,5<br>28<br>58,5<br>52,5<br>79<br>70<br>35 | Dimethyläthyl- carbinol *) Isobutylcarbinol *) Isoamylnitrit *) Allylalkohol *) Glykol *) Acetal *) Chloral *) Isobutylformiat *) . Essigsäure *) Propylacetat *) Athylpropionat *) . | 93,4<br>100,0<br>95,5<br>85,0<br>100,8<br>99,4<br>94,45<br>92,4<br>96,3<br>95,45 | 59<br>94<br>18<br>58<br>ca. 96<br>60<br>43<br>ca. 43<br>69<br>52<br>ca. 47 |

<sup>1)</sup> LBCAT, R. 45, 622, 623. — 2) L., R. 46, 243, 244. — 3) L., Ann. Soc. scient. Bruxelles 45 [1926], 175. — 4) L., Ann. Soc. scient. Bruxelles 47 [1927], 24. — 5) L., Ann. Soc. scient. Bruxelles 48 [1928], 56, 58, 117. — 6) L., Ann. Soc. scient. Bruxelles 49 [1929], 19.

Chemisches Verhalten. Methylcyclohexan ist beständig gegen Erhitzen mit Aluminiumehlorid auf 140—150° (STRATFORD, Ann. Off. Combust. liq. 4, 330; C. 1929 II, 1286).

<sup>2-</sup>Methyl-dekahydronaphthalin, 1.6-Dimethyl-dekahydronaphthalin und 2.6-Dimethyl-dekahydronaphthalin: Weissenberger, Henke, Katschinka, Z. anorg. Ch. 153, 35. Dichte, Viscosität und Brechungsindices der binären Gemische mit m-Nitro-toluol und m-Toluidin bei 15° und 30°: Dessart. — Einfluß von Methylcyclohexan auf die Entflammbarkeit von Wasserstoff-Luft-Gemischen: Tanaka, Nagai, Pr. Acad. Tokyo 4, 156; 5, 81; C. 1928 II, 626, 2536; 1929 I, 2625.

Wird auch beim Erhitzen mit Aluminiumbromid auf 180° nicht verändert (Zelinsky, Turowa-POLLAK, B. 62, 1658). Bei raschem Leiten von Methylcyclohexan-Dampf und Wasserstoff über Nickel-Tonerde-Katalysator bei 300—310° entsteht Toluol (Zelinsky, Kommarewsky, B. 57, 668). Untere Grenze der Entflammbarkeit in Luft: Tanaka, Nagai, Akiyama, C. 1929 II, 271. Entzündungstemperatur in Luft an Eisenoberflächen: Egerton, Gates, J. Inst. Petr. Technol. 18, 258; C. 1928 II, 211. Entzündungstemperatur in Sauerstoff: Tanaka, Nagai, Pr. Acad. Tokyo 2, 219; C. 1927 I, 702. Einfluß von Diäthylselenid, Bleitetraäthyl, aromatischen Aminen und Pyridin auf die Entzündungstemperatur von Methylcyclohexan in Sauerstoff: T., N., Pr. Acad. Tokyo 2, 221; C. 1927 I, 703. Methylcyclohexan gibt bei der Oxydation mit Luft bei 350° in Gegenwart von fein verteiltem Silber Wasser und Kohlendioxyd (SENDERENS, A. ch. [9] 13, 283). Wird von Chromschwefelsäure-Gemisch (GUYOT, SIMON, C. r. 170, 736) oder Silberdichromat in Schwefelsäure nur unvollständig zu Kohlendioxyd oxydiert (SI., C. r. 177, 266). Gibt beim Erhitzen mit 96 %iger Schwefelsäure auf dem Wasserbad p-Toluolsulfonsäure (H. Meyer, A. 433, 350). — Giftwirkung: Lazarew, Ar. Pth. 143, 226; C. 1929 II, 1712. Verwendung als technisches Lösungsmittel: Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 86.

Difluormethyl-cyclohexan  $C_7H_{19}F_2=C_6H_{11}\cdot CHF_2$ . B. Durch Hydrierung von  $\omega.\omega$ . Difluor-toluol in Gegenwart von Platinschwarz, neben etwas Methylcyclohexan (Swaets, Bl. Acad. Belgique [5] 6, 408; C. 1921 III, 33; J. Chim. phys. 20, 41). — Angenehm riechende Flüssigkeit. Kp<sub>756</sub>: 125,256. D<sup>17,5</sup>: 1,0168; D<sup>17</sup>: 1,0178.  $n_{17}^{c_1}$ : 1,4017;  $n_{17}^{c_2}$ : 1,4034;  $n_{17}^{c_3}$ : 1,4080; n<sub>Y</sub>: 1,4117.

Trifluormethyl-cyclohexan  $C_7H_{11}F_2=C_6H_{11}\cdot CF_3$ . B. Durch Hydrierung von  $\omega.\omega.\omega$ -Trifluor-toluol in Gegenwart von Platinschwarz (Swarts, Bl. Acad. Belgique [5] 6, 3.3. Angenwar's von Fratmschwarz (Swarzs, Bt. Acat. Beggave [5] 6, 407; C. 1921 III, 33). — Angenehm riechende Flüssigkeit E: —103,4° bis —103,5° (Sw., Bl. Acad. Belgique [5] 8, 331; C. 1923 I, 65). Kp<sub>761,5</sub>: 107,05° (Sw., Bl. Acad. Belgique [5] 6, 416); Kp<sub>767</sub>: 106,95° (Sw., J. Chim. phys. 20, 40).  $D^{11,5}$ : 1,0980;  $D^{15}$ : 1,0870 (Sw.).  $n_{\alpha}^{11,5}$ : 1,3766;  $n_{\beta}^{11,5}$ : 1,3838;  $n_{\gamma}^{11,5}$ : 1,3870 (Sw.). — Wird bei tagelangem Kochen mit Permanganat in neutraler Lösung vollständig in Kohlendioxyd, Fluorwasserstoff und Wasser zersetzt (Sw., Bl. Acad. Belgique [5] 8, 335). Liefert beim Erhitzen mit Salpetersoner (D: 445) im Bohr auf 430° z Nitro 4 trilluormethyl oylolokyan. Trifluoressissium saure (D: 1,15) im Rohr auf 130° x-Nitro-1-trifluormethyl-cyclohexan, Trifluoressigsaure und andere Produkte (Sw.). Bei tagelangem Erhitzen mit 1 Mol Brom im Rohr auf 1080 erhält man x-Brom-1-trifluormethyl-cyclohexan, 2.3 (oder 3.4)-Dibrom-1-trifluormethyl-cyclohexan und wenig x.x.x-Tribrom-1-trifluormethyl-cyclohexan (Sw.). Bei mehrtägigem Erhitzen mit einem großen Überschuß von Brom im Rohr auf 170° entstehen 2.5-Dibrombenzoesäure und 3.4-Dibrom-benzoesäure (Sw.). Wird durch Bromwasserstoffsäure (D: 1,78) bei 180° nur wenig angegriffen (Sw.).

- 1-Chlor-1-methyl-cyclohexan  $C_7H_{13}Cl = H_1C < CH_1 \cdot CH_2 > CCl \cdot CH_3$  (H 30).  $Kp_{104}$ : 87º (MEERWEIN, SCHÄFER, J. pr. [2] 104, 306).
- 2-Chlor-1-methyl-oyclohexan  $C_7H_{18}Cl = H_2C < \begin{array}{c} CH_2 \cdot CHCl \\ CH_3 CH_3 \end{array} > CH \cdot CH_3$  (H 31). Die folgenden Präparate schließen sich in ihren Eigenschaften an das von Zelinsky (B. 41, 2679) beschriebene 2-Chlor-1-methyl-cyclohexan an; das von Gurr (B. 40 [1907], 2064) dargestellte Praparat zeigt andere physikalische Eigenschaften (v. Auwers, Dersch, J. pr. [2] **124**, 215).
- a) B. Aus cis- oder trans-1-Methyl-cyclohexanol-(2) 1) beim Erhitzen mit 2 Vol. rauchender Salzsäure im Rohr auf 120—130° (v. Auwers, Sber. Ges. Naturviss. Marburg 62, 129; C. 1927 II, 1562; v. Au., Dersch, J. pr. [2] 124, 231; v. Woerden, R. 45, 137). — Das aus der trans-Form dargestellte Präparat zeigte folgende Daten: Kp<sub>1s</sub>: 43,5—44°; Kp<sub>1s</sub>,<sub>5</sub>: 46,5—47° (v. W.); Kp<sub>17</sub>: 50° (v. Au., D.). D<sup>1s,4</sup>: 0,9700; n<sup>n,4</sup>: 1,456; n<sup>1s,4</sup>: 1,4587;  $n_{\beta}^{16,4}$ : 1,4644;  $n_{\gamma}^{16,4}$ : 1,4695 (v. Au., D.). Viscositāt bei 25°: 0,0146 g/cm sec (v. Au., D.).
- b) B. Beim Erwärmen von trans-1-Methyl-cyclohexanol-(2) mit Phosphorpentachlorid in Äther auf dem Wasserbad (v. Au., D.). Kp<sub>17</sub>:  $50^{\circ}$ ; D<sub>4</sub><sup>0,5</sup>: 0,9734;  $\mathbf{n}_{\alpha}^{16,5}$ : 1.4582;  $\mathbf{n}_{\mathrm{He}}^{16,5}$ : 1,4609;  $n_{\beta}^{16,5}$ : 1,4667;  $n_{\gamma}^{16,5}$ : 1,4715 (v. Au., D.).

3-Chlor-1-methyl-cyclohexan  $C_7H_{13}Cl = H_2C < CH_2 CH_2 > CH \cdot CH_3$  (H 31).

Praparat von van Woerden. B. Neben anderen Verbindungen beim Erhitzen von 1-Methyl-cyclohexanol-(3) (Kp<sub>745</sub>: 171,8—172,3°) mit konz. Salzsaure im Rohr auf 100° (VAN WOERDEN, R. 45, 137). — Kp<sub>16</sub>: 48—48,5°.

<sup>1)</sup> Reines cis- und trans-1-Methyl-cyclohexanol-(2) wurden von SEITA, FAUST (B. 64 [1931], 2878) und HÜCKEL, HAGENGUTH (B. 64 [1931], 2892) dargestellt.

- 4-Chlor-1-methyl-cyclohexan  $C_7H_{13}Cl = ClHC < \frac{CH_3 \cdot CH_3}{CH_2 \cdot CH_3} > CH \cdot CH_3$  (H 31).
- a) Präparat von van Woerden. B. Neben anderen Produkten beim Erhitzen von 1-Methyl-cyclohexanol-(4) (Kp<sub>752</sub>: 172,7—173°) mit konz. Salzsäure im Rohr auf 100° (VAN WOERDEN, R. 45, 136). — Kp<sub>13,5</sub>: 47—47,5°.
  b) Prä parat von Zelinsky. B. Neben 1-Methyl-cyclohexen-(3) bei Einw. von Phosphor
- pentachlorid auf 1-Methyl-cyclohexanol-(4) (Zelinsky, B. 57, 2057).
- $\textbf{3-Brom-1-methyl-cyclohexan} \ \, C_7H_{13}Br = H_2C < \begin{matrix} CHBr \cdot CH_2 \\ CH_2 \end{matrix} \begin{matrix} CH_2 \\ CH_2 \end{matrix} \\ \begin{matrix} CH_2 \end{matrix} + \begin{matrix} CH_3 \end{matrix} \\ \begin{matrix} CH_3 \end{matrix} + \begin{matrix} CH_3 \end{matrix}$ E I 12). Reaktionsfähigkeit von 3-Brom-1-methyl-cyclohexan mit Natrium, Kaliumcarbonat-Lösung, Kaliumhydrosulfid, Kaliumsulfid, Natriummercaptid, Kaliumphenolat, Natriumbenzylat, Natriumacetat, Silberbenzoat, Anilin und weiteren Aminen sowie mit Piperidin: LOEVENICH, UTSCH, MOLDRICKX, SCHAEFER, B. 62, 3097.
- $\textbf{4-Brom-1-methyl-cyclohexan} \ C_7H_{13}Br = BrHC < \begin{matrix} CH_2 \cdot CH_2 \\ CH_2 \cdot CH_2 \end{matrix} > CH \cdot CH_3 \ (H \ 32; \ E \ I \ 12).$ B. Aus 1-Methyl-cyclohexanol-(4) und Phosphortribromid zunächst unterhalb 10°, zuletzt bei 95° (Böeseken, Felix, B. 62, 1314). — Kp<sub>15</sub>: 55°. — Liefert bei Einw. von Magnesium in absol. Ather und Kochen des Reaktionsprodukts mit Orthoameisensäure athylester 4-Methyl-hexahydrobenzaldehyd-diathylacetal.

Brommethyl-cyclohexan, Cyclohexyl-methylbromid, Hexahydrobenzylbromid  $C_7H_{13}Br = C_0H_{11} \cdot CH_2Br$ . B. Aus Cyclohexylcarbinol und Phosphortribromid bei  $0^0$  bis  $-5^\circ$ , zuletzt bei  $100^\circ$  (Hiers, Adams, Am. Soc. 48, 2389; vgl. Freundler, C. r. 142 [1906], 344; Bl. [3] 35 [1906], 548). —  $Kp_{26}$ :  $76-77^\circ$ ;  $D_4^{45}$ : 1,2690;  $n_5^{45}$ : 1,4889 (H., A.).

**x-Brom-1-trifluormethyl-cyclohexan**  $C_7H_{10}F_3Br=C_6H_{10}Br\cdot CF_3$ . *B.* Neben anderen Produkten bei tagelangem Erhitzen von Trifluormethyl-cyclohexan mit 1 Mol Brom im Rohr auf 108° (SWARTS, Bl. Acad. Belgique [5] 8, 332; C. 1923 I, 65). — Flüssigkeit von durchdringendem Geruch. Erstarrt nicht bis —70°. Kp: 177—178°. D¹°: 1,561. — Liefert beim Erhitzen mit Wasser und Quecksilberoxyd im Rohr 1-Trifluormethyl-cyclohexen-(2 oder 3) (Kp:  $104,5-105,5^{\circ}$ ).

1<sup>1</sup>.1<sup>1</sup>.1<sup>1</sup>-Trifluor-2.3 (oder 3.4)-dibrom-1-methyl-cyclohexan, 2.3 (oder 3.4)-Dibrom- $\label{eq:control_control_control_control} \textbf{1-trifluormethyl-cyclohexan} \ \ C_7H_9F_3Br_2 = H_2C < \underbrace{CHBr \cdot CHBr}_{CH_2} > CH \cdot CF_3 \ \ oder$ 

 $BrHC < \stackrel{CHBr \cdot CH_2}{CH_2} > CH \cdot CF_3. \quad B. \quad Neben \ anderen \ Produkten \ bei \ tagelangem \ Erhitzen \ von$ Trifluormethyl-cyclohexan mit 1 Mol Brom im Rohr auf 1080 (SWARTS, Bl. Acad. Belgique [5] 8, 333;  $\dot{C}$ . 1923 I, 65). Aus 1-Trifluormethyl-cyclohexen-(2 oder 3) und Brom (Sw.). Flüssigkeit. Wird bei  $-80^{\circ}$  glasig. Kp:  $218-220^{\circ}$  (Zers.); Kp<sub>30</sub>:  $120-122^{\circ}$ . D<sup>17</sup>: 1,912. Gibt beim Behandeln mit Zink in alkoh. Lösung auf dem Wasserbad 1-Trifluormethylcyclohexen-(2 oder 3).

- x.x.x-Tribrom-1-trifluormethyl-cyclohexan  $C_7H_8F_3Br_3=C_6H_8Br_3\cdot CF_3$ . In geringer Menge bei tagelangem Erhitzen von Trifluormethyl-cyclohexan mit 1 Mol Brom im Rohr auf 108° (SWARTS, Bl. Acad. Belgique [5] 8, 333; C. 1923 I, 65). — Kp: 260—265° (Zers.). Kp<sub>20</sub>: ca. 150°.
- 2-Jod-1-methyl-cyclohexan  $C_7H_{13}I = H_2C < \begin{array}{c} CH_2 \cdot CHI \\ CH_2 \cdot CH_2 \end{array} > CH \cdot CH_3$  (E I 13). folgenden Präparate sind wahrscheinlich sterisch nicht einheitlich; vgl. S. 17 Anm. 1.

a) Praparat von Skita. B. Beim Erwarmen von cis-1-Methyl-cyclohexanol-(2) a) Fraparat von Skita. B. Beim Erwarmen von cis-1-meinyi-cycionexanol-(2) (Kp: 169,5—170,5°) mit Jodwasserstoffsäure (D: 2,0) auf dem Wasserbad (Skita, A. 431. 18). — Kp<sub>30</sub>: 96°. — Gibt beim Erwärmen mit Magnesium in Äther auf dem Wasserbad und folgenden Behandeln mit Kohlendioxyd "cis"-Hexahydro-o-toluylsäure.
b) Präparat von v. Auwers, Dersch. B. Beim Erhitzen von trans-1-Methyl-cyclohexanol-(2) mit rauchender Jodwasserstoffsäure zum Sieden oder auf dem Wasserbad (v. Auwers, Dersch, J. pr. [2] 124, 232). — Kp<sub>30</sub>: 97°; D<sub>1</sub><sup>n,1</sup>: 1,5301; n<sub>x</sub><sup>n,1</sup>: 1,5331; n<sub>He</sub><sup>n,1</sup>: 1,5374;

 $n_{\text{B}}^{\text{21,1}}$ : 1,5477;  $n_{\text{Y}}^{\text{21,1}}$ : 1,5566.

 $\text{3-Jod-1-methyl-cyclohexan } C_7H_{13}I = H_2C < \overset{CHI \cdot CH_2}{CH_3} \cdot \overset{CH \cdot CH_3}{CH_2} > CH \cdot CH_3 \text{ (vgl. H 33; E I 13)}.$ B. Aus cis- und trans-1-Methyl-cyclohexanol-(3) mit Jodwasserstoffsäure (D: 2,0) auf dem Wasserbad (Sкіта, A. 431, 28). — Kp<sub>20</sub>: 90°. — Gibt beim Behandeln mit Magnesium in trocknem Äther und folgenden Einleiten von Kohlendioxyd Hexahydro-m-toluylsäure.

Jodmethyl - cyclohexan, Cyclohexyl - methyljodid, Hexahydrobensyljodid  $C_7H_{18}I = C_6H_{11} \cdot CH_2I$  (H 33; E I 13). Kp<sub>26</sub>: 106—108° (HIERS, ADAMS, Am. Soc. 48, 2389). D<sub>4</sub>. 1,3751. n<sub>15</sub>. 1,4922. Hexahydrobenzyljodid

- **x N**itro -1 trifluormethyl cyclohexan  $C_7H_{10}O_2NF_3=O_2N\cdot C_8H_{10}\cdot CF_3$ . B. Beim Erhitzen von Trifluormethyl-cyclohexan mit Salpetersäure (D: 1,15) im Rohr auf 130°, neben anderen Produkten (Swarts, Bl. Acad. Belgique [5] 8, 338; C. 1923 I, 66). Zähe Flüssigkeit. Kp: 224—225°; Kp<sub>30</sub>: 124,5°. D<sup>18</sup>: 1,3154. Leicht löslich in Alkali; das Natriumderivat ist sehr leicht löslich in Alkohol. Liefert beim Erhitzen mit Salpetersäure (D: 1,15) im Rohr auf 135° Trifluoressigsäure und vielleicht eine Trifluormethyladipinsäure.
- 3. Äthylcyclopentan  $C_7H_{14} = \frac{H_2C \cdot CH_2}{H_2C \cdot CH_2} \cdot CH \cdot CH_2 \cdot CH_3$ . B. Durch Hydrierung von 1-Äthyl-cyclopenten-(1) in Essigsäure in Gegenwart von Platinmohr (Chavanne, Becker, Bl. Soc. chim. Belg. 36, 594; C. 1928 I, 1169; vgl. Eisenlohr, Fortsch. Ch., Phys. 18, Nr. 9, S. 23; C. 1928 I, 75). F: —137,9° (Timmermans, Bl. Soc. chim. Belg. 36, 503; C. 1928 I, 26). Kp<sub>760</sub>: 103—103,2° (Ch., B.); Kp<sub>756</sub>: 100,5—101° (Ei.). D<sub>4</sub><sup>1,9</sup>: 0,7711; D<sub>7</sub><sup>1,9</sup>: 0,7669 (Ch., B.); D<sub>7</sub><sup>20</sup> (im Vakuum): 0,7610 (Ei.).  $n_{\alpha}^{16,9}$ : 1,4179;  $n_{\beta}^{19,1}$ : 1,4201;  $n_{\beta}^{16,9}$ : 1,4253 (Ch., B.);  $n_{\alpha}^{\infty}$ : 1,4161;  $n_{H_0}^{\infty}$ : 1,4184;  $n_{\beta}^{\infty}$ : 1,4233;  $n_{\gamma}^{\infty}$ : 1,428 (Ei.). Kritische Lösungstemperatur in Anilin: 38,7° (Ch., B.).
- [β-Brom-äthyl]-eyelopentan, β-Cyelopentyl-äthylbromid  $C_7H_{13}Br = C_5H_9 \cdot CH_2 \cdot CH_2Br$ . B. Aus β-Cyelopentyl-äthylalkohol beim Kochen mit 40% iger Bromwasserstoffsäure und konz. Schwefelsäure oder beim Behandeln mit Phosphortribromid bei  $0^0$  bis  $-5^0$ , zuletzt bei  $100^0$  (Yohe. Adams, Am. Soc. 50, 1506; vgl. Hiers, A., Am. Soc. 48, 2389). Kp<sub>19</sub>: 75–77°.  $D_4^{\infty}$ : 1,2860.  $n_7^{\infty}$ : 1,4863.
- 4. 1.1-Dimethyl-cyclopentan C<sub>7</sub>H<sub>14</sub> =  $\frac{\text{H}_2\text{C}\cdot\text{CH}_2}{\text{H}_2\text{C}\cdot\text{CH}_2}$ C(CH<sub>3</sub>)<sub>2</sub> (H 33; E I 13). Kritische Lösungstemperatur in Anilin: 46° (CHAVANNE, BECKER, Bl. Soc. chim. Belg. 36, 602; C. 1928 I, 1169).
- 5. 1.2 Dimethyl cyclopentan  $C_7H_{14} = \frac{H_2C \cdot CH(CH_3)}{H_2C CH_2}CH \cdot CH_3$  (H 34). Das folgende Präparat ist wahrscheinlich ein Gemisch von Stereoisomeren mit vorwiegender "cis"-Form, während die von Kishner (Ж. 40, 1014; vgl. H 5, 34) beschriebene Verbindung hauptsächlich die "trans"-Form enthielt (VAN RYSSELBERGE, Bl. Acad. Belgique [5] 12, 187; Bl. Soc. chim. Belg. 35, 324; C. 1926 II, 1846). B. Bei der Hydrierung eines Gemisches aus 1.2-Dimethyl-cyclopenten-(1) und 1.2-Dimethyl-cyclopenten-(2) in Essigsäure in Gegenwart von Platin (VAN R.). Kp<sub>760</sub>: 94—98°.  $D_4^{50}$ : 0,7664.  $n_5^{50}$ : 1,4187. Kritische Lösungstemperatur in Anilin: 42° (VAN R.).
  - 6. 1.3-Dimethyl-cyclopentan  $C_7H_{14} = \frac{CH_3 \cdot HC \cdot CH_2}{H_2C \cdot CH_2}CH \cdot CH_3$  (H 34).
- a) Präparat von Chavanne. B. Durch Hydrierung eines Gemisches von 1.3-Dimethyl-cyclopenten-(1) und 1.3-Dimethyl-cyclopenten-(3) in Eisessig in Gegenwart von Platinschwarz (Chavanne, Bl. Acad. Belgique [5] 12, 118; Bl. Soc. chim. Belg. 35, 294; C. 1926 II, 1846). F: —136,7° (Timmermans, Bl. Soc. chim. Belg. 36, 503; C. 1928 I, 26). Kp<sub>780</sub>: 90,6—90,8° (Ch.). D<sub>4</sub><sup>15</sup>: 0,7498; D<sub>4</sub><sup>15</sup>: 0,7456; n<sub>1</sub><sup>16</sup>: 1,4104; n<sub>1</sub><sup>20,8</sup>: 1,4076 (Ch.). Kritische Lösungstemperatur in Anilin: 48,8° (Ch.). Zersetzt sich teilweise beim Aufbewahren im geschlossenen Gefäß (Ch.). Ist an der Luft oxydabel (Ch.). Bei der Einw. von Sauerstoff bei Zimmertemperatur erhält man ein Peroxyd (vielleicht C<sub>7</sub>H<sub>14</sub>O<sub>2</sub>) und eine nicht näher beschriebene Säure (Ch., Bl. Soc. chim. Belg. 36, 206, 212; C. 1927 I, 2982).

  \* b) Präparat von Zelinsky (insktive Korm). Verbrennungswärme bei konstanton
- b) Präparat von Zelinsky (inaktive Form). Verbrennungswärme bei konstantem Volumen: 1091,1 kcal/Mol (Swietoslawski, Am. Soc. 42, 1094; vgl. Subow, 33, 722; C. 1902 I, 161).
- 1-Chlor-1.3-dimethyl-cyclopentan  $C_7H_{13}Cl = \frac{CH_3 \cdot HC \cdot CH_2}{H_2C \cdot CH_2} \cdot CCl \cdot CH_3$ . B. Durch Behandeln von 1.3-Dimethyl-cyclopentanol-(1) mit Chlorwasserstoff in der Kälte (Zelinsky, Rjachina, B. 57, 1931). Kp: 134—136°. Liefert bei der Einw. von Magnesium in Äther und folgenden Behandlung des Reaktionsprodukts mit Kohlendioxyd 1.3-Dimethyl-cyclopentan-carbonsäure-(1).
- 7. x.x-Dimethyl-cyclopentan  $C_7H_{14}=C_5H_8(CH_3)_2$ . B. Neben anderen Produkten beim Leiten von 1-Methyl-cyclohexanol-(2) über japanische saure Erde bei 350° (INOUE, Bl. chem. Soc. Japan 1, 224; C. 1927 I, 690). Kp: 90—92°.  $D_\infty^{ss}$ : 0,7552.  $n_D^{ss}$ : 1,4152.
- 8. Propylcyclobutan, 1-Cyclobutyl-propan C<sub>7</sub>H<sub>14</sub> = H<sub>2</sub>C < CH<sub>2</sub> CH<sub>2</sub> CH·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>. CH<sub>3</sub>. B. Beim Erwärmen von Äthyl-cyclobutyl-keton mit Hydrazinhydrat in absol. Alkohol auf 110—130° und nachfolgende Destillation des Hydrazons über KOH und platinierte

Tonscherben (Zelinsky, Kasanski, B. 60, 1101;  $\Re$ . 59, 660). — Kp<sub>736</sub>: 99—100°. D<sub>4</sub>: 0,7440. n<sub>9</sub>: 1,4119. — Beständig gegen Brom und alkal. Permanganat-Lösung. Löslich in rauchender Schwefelsäure (mit 10% SO<sub>3</sub>).

# 6. Kohlenwasserstoffe $C_8H_{16}$ .

- 1. Cyclooctan C<sub>8</sub>H<sub>16</sub> = H<sub>2</sub>C<CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub> CH<sub>2</sub> (H 35; E I 13). Verbrennungswärme bei konstantem Volumen: 1254,0 kcal/Mol (Schläpfer, in Landolt-Börnst. E II, 1635).
- 2. Methylcycloheptan  $C_8H_{16} = \frac{H_2C \cdot CH_2 \cdot CH_3}{H_2C \cdot CH_2 \cdot CH_3} CH \cdot CH_3$  (H 35; E I 14). B. Aus Methylencycloheptan durch Hydrierung nach Sabatter (Rosanow,  $\mathcal{H}$ . 61, 2317; C. 1930 II, 229).  $Kp_{749}$ : 133—135°.  $D_*^{\infty}$ : 0,7984.  $n_b^{\infty}$ : 1,4405.

Brommethyl-cycloheptan, Cycloheptyl-methylbromid C<sub>8</sub>H<sub>15</sub>Br = C<sub>7</sub>H<sub>15</sub>·CH<sub>2</sub>Br.

B. Durch Erwärmen von Cycloheptylcarbinol mit rauchender Bromwasserstoffsäure im Rohr auf dem Wasserbad (v. Braun, Kühn, Siddiqui, B. 59, 1088). — Kp<sub>15</sub>: 80—82°.

3. Äthylcyclohexan  $C_8H_{16} = H_2C < \frac{CH_2 \cdot CH_2}{CH_2 \cdot CH_2} > CH \cdot C_2H_5$  (H 35; E I 14). B. Durch Hydrierung von 1-Äthyl-cyclohexen-(1) in Gegenwart von Platinmohr (EISENLOHR, Fortsch. Ch., Phys. 18, Nr. 9, S. 27; C. 1926 I, 75). Durch Hydrierung von Äthylbenzol in Gegenwart von wenig Platinoxyd in Eisessig bei 25-30° und 2-3 Atm. Druck (ADAMS, MARSHALL, Am. Soc. 50, 1972; vgl. Stratford, Ann. Off. Combust. liq. 4, 98, 324; C. 1929 II, 1286). Aus Acetophenon und Wasserstoff in Essigester in Gegenwart von Eisen-haltigem Platin-Aus Acetophenon und Wasserstoff in Essigester in Gegenwart von Eisen-natigem Flatin-schwarz (Faillebin, A. ch. [10] 4, 462) oder in Eisessig in Gegenwart von Platin, neben Methyl-cyclohexyl-carbinol (van Woerden, R. 45, 140). Aus Cyclohexylmagnesiumbromid durch Einw. von Diäthylsulfat (Gilman, Hoyle, Am. Soc. 44, 2623) oder p-Toluolsulfon-säure-äthylester in siedendem Ather (G., Beaber, Am. Soc. 47, 522). — F: —128,9° (Timmermans, Bl. Soc. chim. Belg. 36, 503; C. 1928 I, 26). Kp<sub>767</sub>: 132,3—132,4° (van W.); Kp<sub>768</sub>: 129,5° (El.); K<sub>748</sub>: 129,8—130° (A., M.). D<sup>11</sup>/<sub>4</sub>: 0,7899 (A., M.); D<sup>11</sup>/<sub>4</sub>: 0,7972 (St.). n<sup>10</sup>/<sub>4</sub>: 1,4278 (A., M.); n<sup>10</sup>/<sub>4</sub>: 1,4304; n<sup>10</sup>/<sub>4</sub>: 1,4325; n<sup>10</sup>/<sub>4</sub>: 1,4386; n<sup>10</sup>/<sub>4</sub>: 1, 1,4427 (EI.);  $n_0^{14.5}$ : 1,4335;  $n_0^{14.5}$ : 1,4358;  $n_0^{14.5}$ : 1,4413 (VAN W.);  $n_0^{11}$ : 1,4373 (St.). — Liefert beim Erhitzen mit Aluminiumchlorid auf 115-1200 hauptsächlich 1.3-Dimethyl-cyclohexan und etwas Äthan (St., Ann. Off. Combust. liq. 4, 334, 356). — Giftwirkung: LAZABEW, Ar. Pth. 143, 226; C. 1929 II, 1712.

[ $\alpha$ -Chlor-äthyl]-cyclohexan  $C_8H_{15}Cl=C_6H_{11}\cdot CHCl\cdot CH_3$ . a) Linksdrehende Form. B. Beim Behandeln von rechtsdrehendem Methyl-cyclohexyl-carbinol mit Phosphorpentachlorid in Chloroform (Levene, Mikeska, J. biol. Chem. 75, 601). — Kp<sub>16</sub>: 70–72°. [α]<sup>20</sup><sub>0</sub>: -5,0° (Äther; c = 30).

b) Rechtsdrehende Form. [α]<sup>20</sup><sub>0</sub>: +3,8° (Levene, Mikeska, J. biol. Chem. 75, 602).

Gibt beim Kochen mit alkoh. Kaliumhydrosulfid-Lösung linksdrehendes [α-Mercapto-

äthyl]-cyclohexan.

- [β-Brom-äthyl]-cyclohexan, β-Cyclohexyl-äthylbromid  $C_8H_{18}Br = C_6H_{11} \cdot CH_2 \cdot CH_2Br$ . B. Beim Kochen von β-Cyclohexyl-äthylalkohol mit 40% iger Bromwasserstoffsäure und konz. Schwefelsäure (Hiers, Adams, Am. Soc. 48, 1091, 2388). Kp<sub>6</sub>: 70,5° bis 71°.  $D_4^{85}$ : 1,2096.  $n_D^{85}$ : 1,4862.
- 4. 1.1-Dimethyl-cyclohexan C<sub>8</sub>H<sub>16</sub> = H<sub>2</sub>C < CH<sub>2</sub>·CH<sub>3</sub>·CH<sub>3</sub> > C(CH<sub>3</sub>)<sub>2</sub> (H 35; E I 14). B. Aus flüssigem 3.5-Dibrom-1.1-dimethyl-cyclohexan durch Reduktion mit palladiniertem Zink und Salzsäure in Alkohol (Zelinsky, B. 56, 1717; Ж. 55, 139). Kp: 118,5—120° (Z.). D. 100 : 0,7820 (Z.). Parachor: Sugden, Soc. 125, 1180; Mumford, Phillips, Soc. 1929. 2115. Verbrennungswärme bei konstantem Volumen: 1242,1 kcal/Mol (Swiftoslawski, Am. Soc. 42, 1095; vgl. Subow, Ж. 33, 722; С. 1902 I, 161). n. 161. n. 161. n. 161. n. 161. Erhitzen über platiniertem Asbest auf 300° nicht verändert (Z.). Bei der Einw. von Brom in Gegenwart von Aluminiumbromid nach Zelinsky, Lepeschkin (3K. 45, 615; C. 1918 II, 2126) entsteht vermutlich nicht 2.3.5.6-Tetrabrom-p-xylol, sondern der Hauptsache nach 3.4.5.6-Tetrabrom-o-xylol (Crossley, Renouf, Soc. 119, 274). Liefert beim Erhitzen mit rauchender Salpetersäure und konz. Schwefelsäure auf dem Wasserbad Oxalsäure, α.α-Dimethyl-bernsteinsäure, Dimethylmalonsäure, 3.4.5-Trinitro-o-xylol und 3.4.6-Trinitro-o-xylol (C., R., Soc. 87 [1905], 1498; 119, 274).

3.5-Dibrom-1.1-dimethyl-cyclohexan  $C_8H_{14}Br_2 = C_8H_8Br_2(CH_2)_2$  (E I 14). a) Feste Form. Liefert bei der Behandlung mit Zinkstaub in 80 % igem Alkohol 3.3-Dimethyl-bicyclo-[0.1.3]-hexan (USPENSKI, Trudy Inst. č. chim. Reakt. 2, 5; C. 1924 II, 1582).

- b) Flüssige Form. Kp<sub>18</sub>: 128—130,5° (Zelinsky, B. 56, 1717; **M. 55**, 139). Liefert mit palladiniertem Zink und Salzsäure in Alkohol 1.1-Dimethyl-cyclohexan.
- 5. 1.2 Dimethyl cyclohexan, Hexahydro o xylol C<sub>8</sub>H<sub>16</sub> = H<sub>2</sub>C CH<sub>2</sub>·CH(CH<sub>3</sub>) CH·CH<sub>3</sub> (H 36; E I 14). B. Gemische der beiden Stereoisomeren entstehen durch Hydrierung von o-Xylol bei Gegenwart von Platin (Chavanne, Becker, Bl. Soc. chim. Belg. 31, 96; C. 1922 III, 240; Skita, Schneck, B. 55, 146; Eisenlohe, Fortsch. Ch., Phys. 18, Nr. 9, S. 29; C. 1926 I, 75; Grignard, Stratford, C. r. 178, 2150; Zelinber, B. 56, 1717; 3t. 55, 138) in der Flüssigkeitsphase und in der Gasphase bei 150° bis 160° (Ze., B. 57, 50), Osmiumasbest (Ze., Turowa-Pollak, B. 62, 2866) oder Nickel (Chavanne, van Risseghem, Bl. Soc. chim. Belg. 31, 91; C. 1922 III, 241; Eis.) sowie beim Erhitzen von o-Xylol mit 3 Mol Hydrazin im Rohr auf 200° (E. Müller, Kraemer-Willenberg, B. 57, 579). Eine vollkommene Trennung der Gemische konnte von diesen Autoren nicht erzielt werden. Reines cis- und trans-1.2-Dimethyl-cyclohexan wurden von Miller (Bl. Soc. chim. Belg. 41, 217; 42, 238; C. 1932 II, 1013; 1933 II, 1027) durch fraktionierte Destillation erhalten.
- a) cis-1.2-Dimethyl-cyclohexan. Kp<sub>780</sub>: 130,04  $\pm$  0,02 (MILLER, Bl. Soc. chim. Belg. 42, 242; C. 1933 II, 1027).  $D_{\tau}^{r_0}$ : 0,79625.  $n_{\alpha}^{r_0,r_0}$ : 1,43369;  $n_{\rm He}^{r_0,r_0}$ : 1,43598;  $n_{\beta}^{r_0,r_0}$ : 1,44133;  $n_{\gamma}^{r_0,r_0}$ : 1,4458.
- b) trans-1.2-Dimethyl-cyclohexan. Kp<sub>780</sub>: 123,70  $\pm$  0,05° (MILLER, *Bl. Soc. chim. Belg.* 42, 241; *C.* 1933 II, 1027).  $D_{i}^{\infty}$ : 0,77601.  $n_{\alpha}^{\text{m.s.}}$ : 1,42466;  $n_{\text{He}}^{\text{m.s.s.}}$ : 1,42695;  $n_{\beta}^{\text{m.s.}}$ : 1,43224;  $n_{\gamma}^{\text{m.s.}}$ : 1,4365.

Chemisches Verhalten von sterisch unreinem 1.2-Dimethyl-cyclohexan. Wird durch Silber-chromat nur unvollständig oxydiert (SIMON, C. r. 177, 266). Bei der Dehydrierung in Gegenwart von Platinschwarz bei 300—310° entsteht o-Xylol (ZELINSKY, B. 56, 787). Gibt beim Erhitzen mit Aluminiumchlorid 1.3-Dimethyl-cyclohexan (GRIGNARD, STRATFORD, C. r. 178, 2150; vgl. St., Ann. Off. Combust. liq. 4, 333; C. 1929 II, 1286).

- 1.2-Dibrom-1.2-dimethyl-cyclohexan  $C_8H_{14}Br_2 = H_2C < \frac{CH_2 \cdot CBr(CH_3)}{CH_2} < CBr \cdot CH_3$  (vgl. E I 15). Präparat von Nametkin, Delektorskaja. Ist vermutlich stereoisomer mit der E I 5, 15 beschriebenen Verbindung. B. Aus 1.2-Dimethyl-cyclohexen-(1) und Brom in Chloroform (Nametkin, Delektorskaja, B. 57, 584;  $\mathcal{H}$ . 55, 517). Krystalle (aus Aceton). F: 142—143°.
- 6. 1.3 Dimethyl cyclohexan, Hexahydro m xylol C<sub>8</sub>H<sub>16</sub> = H<sub>2</sub>C < CH<sub>2</sub>CH<sub>3</sub> · CH<sub>2</sub> > CH · CH<sub>3</sub> (H 36; E I 15). B. Gemische der beiden Stereoisomeren entstehen durch Hydrierung von m-Xylol bei Gegenwart von Platin (Chavanne, Becker, Bl. Soc. chim. Belg. 31, 96; C. 1922 III, 240; Ch., van Risseghem, Bl. Soc. chim. Belg. 31, 91; C. 1922 III, 241; Skita, Schneck, B. 55, 146; Eisenloher, Fortsch. Ch., Phys. 18, Nr. 9, S. 31; C. 1926 I, 75; Adams, Marschall, Am. Soc. 50, 1972), Palladium (Zelinsky, B. 56, 787) oder Nickel (Ch., van Riss., Bl. Soc. chim. Belg. 31, 91; Ei., Fortsch. Ch., Phys. 18, Nr. 9, S. 31) sowie beim Erhitzen om -Xylol mit 3 Mol Hydrazin im Rohr auf 230° (E. Müller, Kraemer-Willenberg, B. 57, 579). Gemische der Stereoisomeren entstehen ferner aus 1.2-Dimethyl-cyclohexan, weniger leicht auch aus 1.4-Dimethyl-cyclohexan beim Erhitzen mit Aluminiumchlorid (Grignard, Stratford, C. r. 178, 2150; St., Ann. Off. Combust. liq. 4, 333, 357; C. 1929 II, 1286); aus Athylcyclohexan beim Erhitzen mit Aluminiumchlorid (St.); aus 2.6-Dimethyl-phenol (Skita, B. 56, 2242) und aus 2.4-Dimethyl-phenol durch Hydrieren in Gegenwart von Platin (Sk., Z. ang. Ch. 34, 230; A. 427, 276).

Reines cis- und trans-1.3-Dimethyl-cyclohexan wurden von Miller (Bl. Soc. chim. Belg. 44, 513; C. 1936 I, 2075) und Mousseron, Granger (C. r. 207 [1938], 367) durch fraktionierte Destillation des Isomerengemischs erhalten. Zur Konfiguration vgl. Mou., Gran.

- a) cis-1.3-Dimethyl-cyclohexan. Kp<sub>780</sub>: 120,4° (Miller, Bl. Soc. chim. Belg. 44, 519), 119,5° (Mousseron, Granger, C. r. 207, 367).  $D_{i}^{\infty}$ : 0,76628 (Mi.);  $D_{i}^{\infty}$ : 0,762 (Mou., Gran.).  $n_{i}^{\text{lis-8}}$ : 1,42099;  $n_{i}^{\text{lis-8}}$ : 1,42376;  $n_{i}^{\text{lis-8}}$ : 1,43254 (Mi.);  $n_{i}^{\text{lis}}$ : 1,4167 (Mou., Gran.).
- b) trans-1.3-Dimethyl-cyclohexan. Kp<sub>780</sub>: 124,9° (Miller, *Bt. Soc. chim. Belg.* 44, 519), 123,5° (Mousseron, Granger, *C. r.* 207, 367). D<sup>20</sup>: 0,78348 (Mi.); D<sup>21</sup>: 0,777 (Mou., Gran.).  $n_{1}^{10}$ : 1,42835;  $n_{1}^{10}$ : 1,43099;  $n_{1}^{10}$ : 1,43972 (Mi.);  $n_{D}^{10}$ : 1,4265 (Mou., Gran.).  $[\alpha]_{546}$ : +1,33°;  $[\alpha]_{570}$ : +1,26° (Mou., Gran.).

### Physikalische Eigenschaften und chemisches Verhalten von sterisch unreinem 1.3-Dimethyl-cyclohexan.

Verbrennungswärme bei konstantem Volumen: 1237,5 kcal/Mol (Swietoslawski, Am. Soc. 42, 1095; vgl. Subow, Ж. 33, 722; С. 1902 I, 161). Dampfdruck binärer Systeme mit 1-Methyl-dekahydronaphthalin, 2-Methyl-dekahydronaphthalin, 1.6-Dimethyl-deka hydronaphthalin und 2.6-Dimethyl-dekahydronaphthalin: Weissenberger, Henke, Katschinka, Z. anorg. Ch. 153, 33. Ultrarot-Absorptionsspektrum zwischen 3 μ und 7,4 μ: LECOMTE, C. r. 183, 29. Beugung von Röntgenstrahlen an flüssigem 1.3-Dimethyl-cyclohexan: Stewart, Phys. Rev. [2] 33, 891; C. 1929 II, 1258. Schwer löslich in flüssigem Schwefeldioxyd, unlöslich in flüssigem Ammoniak (DE CARLI, G. 57, 351). — Wird von Chromschwefelsäure-Gemisch nur unvollständig zu Kohlendioxyd oxydiert (Guvot, Simon, C. r. 170, 736). Beständig gegen Erhitzen mit Aluminiumchlorid (STRATFORD, Ann. Off. Combust. liq. 4, 333; C. 1929 II, 1286). Beim Leiten über Platinschwarz bei 310° (ZELINSKY, B. 56, 787) oder über Palladiumschwarz bei 290-300° entsteht m-Xvlol (St.).

7. 1.4 - Dimethyl - cyclohexan, Hexahydro - p - xylol  $C_8H_{16} = CH_3 \cdot HC < \frac{CH_2 \cdot CH_2}{CH_2 \cdot CH_2} \cdot CH_3$  (H 38; E I 15). B. Gemische der Stereoisomeren entstehen durch Hydrierung von p-Xylol bei Gegenwart von Platin (Chavanne, Becker, Bl. Soc. chim. Belg. 31, 96; C. 1922 III, 240; Ch., van Risseghem, Bl. Soc. chim. Belg. 31, 91; C. 1922 III, 241; Skita, Schneck, B. 55, 146; Eisenlohr, Fortsch. Ch., Phys. 18, Nr. 9, S. 32; C. 1926 I, 75; Grignard, Stratford, C. r. 178, 2150), Osmium (Zelinsky, Turowa-Pollak, B. 62, 2867) oder Nickel (Ch., van Riss., Bl. Soc. chim. Belg. 31, 91; Eisenlohr Fortsch. Ch., Phys. 18, Nr. 9, S. 33; Zelinsky, B. 56, 788) sowie beim Erhitzen von p-Xylol mit 3 Mol Hydrazin im Rohr auf 220° (E. Müller, Kraemer-Willenberg, B. 57, 579). Gemische der Stereoisomeren entstehen ferner bei der Hydrierung von p-Xylenol in Gegenwart von Platin (SKITA, B. 56, 2238) und bei der thermischen Zersetzung von Cholesterin mit Aluminiumchlorid und folgenden Hydrierung (Zelinsky, B. 60, 1797).

Die Isomeren des 1.4-Dimethyl-cyclohexans wurden von MILLER (Bl. Soc. chim. Belg. 44, 513; C. 1936 I, 2075) durch fraktionierte Destillation getrennt. Eine sichere Zuordnung der Stereoisomeren läßt sich nicht ermöglichen; vgl. W. HÜCKEL, Theoretische Grundlagen der organischen Chemie 3. Aufl. 2. Bd., S. 189.

a) Höhersiedende Form. Kp<sub>780</sub>: 124,59° (Miller, Bl. Soc. chim. Belg. 44, 519).  $D_{*}^{so}$ : 0,78271.  $n_{000}^{180}$ : 1,42755;  $n_{000}^{1800}$ : 1,43029;  $n_{40}^{1800}$ : 1,43917.

b) Niedrigersiedende Form. Kp<sub>780</sub>: 119,63° (Miller, Bl. Soc. chim. Belg. 44, 519). D. D. 0.76264.  $n_{08}^{v,s}$ : 1,41887;  $n_{188}^{ls,s}$ : 1,42160;  $n_{487}^{ls,s}$ : 1,43033.

Physikalische Eigenschaften und chemisches Verhalten von sterisch nicht einheitlichem 1.4-Dimethyl-cyclohexan.

Verbrennungswärme bei konstantem Volumen: 1228,3 kcal/Mol (Swietoslawski, Am. Soc. 42, 1095; vgl. Subow, 33, 722; C. 1902 I, 161). Ultrarot-Absorptionsspektrum zwischen 3 μ und 7,4 μ: Lecomte, C. r. 183, 29. Beugung von Röntgenstrahlen an flüssigem 1.4-Dimethyl-cyclohexan: Stewart, Phys. Rev. [2] 33, 891; C. 1929 II, 1258. — Liefert beim Erhitzen mit Aluminiumchlorid 1.3-Dimethyl-cyclohexan (Grignard, Stratford, C. r. 178, 2150; vgl. St., Ann. Off. Combust. liq. 4, 333, 357; C. 1929 II, 1286). Wird durch Palladiumschwarz bei 310° zu p-Xylol dehydriert (Zelinsky, B. 56, 788; vgl. St.).

- 8. Propylcyclopentan, 1 Cyclopentyl propan  $C_8H_{16} = \frac{H_2C \cdot CH_2}{H_2C \cdot CH_3} \cdot CH \cdot CH_2$ .  $H_2 \cdot CH_3$ . Be der Hydrierung von 1 Propyl-gyelopenten (4) her  $C_8H_{16} = \frac{H_2C \cdot CH_3}{H_2C \cdot CH_3} \cdot CH \cdot CH_3$ . CH<sub>2</sub>·CH<sub>3</sub>. B. Bei der Hydrierung von 1-Propyl-cyclopenten-(1) bei Gegenwart von Platinmohr in Eisessig (Chavanne, Becker, Bl. Soc. chim. Belg. 36, 599; C. 1928 I, 1169; vgl. EISENLOHR, Fortsch. Ch., Phys. 18, Nr. 9, S. 23; C. 1926 I, 75). — E: —121,7° (TIMMERMANS, Bl. Soc. chim. Belg. 31, 390; C. 1923 III, 1137). F: —120,3° (T., Bl. Soc. chim. Belg. 36, 503; C. 1928 I, 26). Kp<sub>760</sub>: 131,3—131,5° (Ch., B.); Kp<sub>761</sub>: 129,5° (El.). Di<sup>4,6</sup>: 0,7814; D<sup>4,6</sup>: 0,7772 (Ch., B.); D<sup>6,6</sup>: (Vakuum): 0,7718 (El.). n<sup>6,6</sup>: 1,4245; n<sup>6,6</sup>: 1,4266; n<sup>6,6</sup>: 1,4266; n<sup>6,6</sup>: 1,4319 (CH., B.);  $n_{\alpha}^{\infty}$ : 1,4229;  $n_{He}^{\infty}$ : 1,4247;  $n_{\beta}^{\infty}$ : 1,4304;  $n_{\gamma}^{\infty}$ : 1,4347 (EI.). Kritische Lösungstemperatur in Anilin: 45,00 (CH., B.).
- 9. Isopropylcyclopentan, 2 Cyclopentyl propan  $C_8H_{16} = \frac{H_1C \cdot CH_2}{H_1C \cdot CH_3}CH \cdot CH(CH_3)_2$ . B. Bei der Hydrierung von 1-Isopropyl-cyclopenten-(1) in Gegenwart von Platin-mohr (EISENLOHR, Fortsch. Ch., Phys. 18, Nr. 9, S. 24; C. 1926 I, 75). Kp<sub>754</sub>: 128—129°.  $D_{i}^{m}$  (Vakuum): 0,7717.  $n_{\alpha}^{m}$ : 1,4226;  $n_{He}^{m}$ : 1,4247;  $n_{B}^{m}$ : 1,4301;  $n_{V}^{m}$ : 1,4345.

# 10. 1.1.2.4-Tetramethyl-cyclobutan $C_8H_{16} = H_2C < \frac{CH(CH_3)}{CH(CH_2)} > C(CH_3)_2$ .

2¹.4¹-Dibrom-1.1.2.4-tetramethyl-cyclobutan, 1.1-Dimethyl-2.4-bis-brommethyl-cyclobutan  $C_8H_{14}Br_2 = H_2C < \frac{CH(CH_2Br)}{CH(CH_2Br)} > C(CH_3)_2$ . B. Aus 1.1-Dimethyl-2.4-bis-oxymethyl-cyclobutan beim Erhitzen mit Phosphortribromid im Rohr auf 100° (ÖSTLING,  $\ddot{O}/$ . Fi. 57, Nr. 7, S. 9; C. 1921 III, 105). — Flüssigkeit.  $Kp_{10}$ : 128—130°.

### 7. Kohlenwasserstoffe $C_9H_{18}$ .

- 1. Propylcyclohexan, 1-Cyclohexyl-propan  $C_0H_{18} = H_2C < \frac{CH_2 \cdot CH_2}{CH_2 \cdot CH_2} > CH \cdot CH_2 
- [ $\alpha$ -Chlor-propyl]-cyclohexan, 1-Chlor-1-cyclohexyl-propan  $C_9H_{17}Cl=C_8H_{11}$ · CHCl· $C_2H_5$ . Linksdrehende Form. B. Beim Behandeln von rechtsdrehendem Äthyl-cyclohexyl-carbinol mit Phosphorpentachlorid in Chloroform (Levene, Mikeska, J. biol. Chem. 75, 603). Kpca. 16: 88—93°. [ $\alpha$ ] $_{5}^{9}$ : —1,2° (Äther; c=13). Gibt beim Erhitzen mit alkoh. Kaliumhydrosulfid-Lösung im Rohr auf 100° rechtsdrehendes [ $\alpha$ -Mercapto-propyl]-cyclohexan.
- [ $\gamma$ -Chlor-propyl]-cyclohexan, 3-Chlor-1-cyclohexyl-propan  $C_9H_{17}Cl=C_6H_{11}$ ·  $CH_2\cdot CH_2\cdot CH_2Cl$ . B. Aus p-Toluolsulfonsäure-[ $\gamma$ -chlor-propylester] und Cyclohexyl-magnesiumbromid in Äther (Rossander, Marvel, Am. Soc. **50**, 1494, 1495). Kp<sub>5</sub>: 76—79°. D<sub>x</sub>: 0,9977.  $n_p^x$ : 1,4660.
- [ $\gamma$ -Brom-propyl]-cyclohexan, 3-Brom-1-cyclohexyl-propan,  $\gamma$ -Cyclohexyl-propylbromid  $C_9H_{17}Br = C_6H_{11}\cdot CH_2\cdot CH_2\cdot CH_2Br$ . B. Beim Kochen von  $\gamma$ -Cyclohexyl-propylalkohol mit 40% iger Bromwasserstoffsäure und konz. Schwefelsäure (HIERS, Adams, Am.Soc. 48, 2388). Kp<sub>4</sub>: 77—79°. D<sub>4</sub>\*: 1,1521. n<sub>2</sub>\*: 1,4848.
- 2. Isopropylcyclohexan, 2-Cyclohexyl-propan, Hexahydrocumol  $C_9H_{18} = H_2C < \frac{CH_2 \cdot CH_2}{CH_3 \cdot CH_2} > CH \cdot CH(CH_3)_9$  (H 41). B. Durch Hydrieren des aus 1-Isopropyl-cyclohexanol-(1) und Phosphorpentoxyd in absol. Äther entstandenen Reaktionsprodukts in Gegenwart von Platinmohr (Eisenlohr, Fortsch. Ch., Phys. 18, Nr. 9, S. 28; C. 1926 I, 75). Bei der Hydrierung von Isopropylbenzol in Eisessig in Gegenwart von Platinoxyd (Stratford, Ann. Off. Combust. liq. 4, 98, 324; C. 1929 II, 1286). F: —90.6° (Timmermans, Bl. Soc. chim. Belg. 36, 503; C. 1928 I, 26). Kp<sub>760</sub>: 154.7  $\pm$  0,1° (T.); Kp<sub>756</sub>: 152—153° (Ei.).  $D_1^{\alpha}$ : 0,8090 (St.);  $D_1^{\alpha}$  (Vakuum): 0,7902 (Ei.).  $n_1^{\alpha}$ : 1,4444 (St.);  $n_{\infty}^{\alpha}$ : 1,4343;  $n_{\text{He}}^{\alpha}$ : 1,4364;  $n_{\infty}^{\alpha}$ : 1,4469 (Ei.). Liefert beim Erhitzen mit Aluminiumchlorid auf 130—145° 1.3.5-Trimethyl-cyclohexan und Propan (St., Ann. Off. Combust. liq. 4, 337, 357).
  - $3. \quad \textbf{1-Methyl-4-\"{a}thyl-cyclohexan} \quad C_{9}H_{18} = CH_{3} \cdot CH_{2} \cdot HC < \begin{matrix} CH_{2} \cdot CH_{2} \\ CH_{2} \cdot CH_{2} \end{matrix} > CH \cdot CH_{3}.$
- **4-Brom-1-methyl-4-äthyl-cyclohexan**  $C_9H_{17}Br = C_2H_5 \cdot BrC < \begin{array}{c} CH_2 \cdot CH_2 \\ CH_2 \cdot CH_2 \end{array} > CH \cdot CH_3.$ B. Beim Behandeln von 1-Methyl-4-äthyl-cyclohexanol-(4) mit Bromwasserstoff in Eisessig (STAUDINGER, WIDMER, Helv. **9**, 546).
- 4. 1.1.3 Trimethyl cyclohexan  $C_9H_{18} = H_2C < \begin{array}{c} CH(CH_3) \cdot CH_2 \\ CH_3 CH_2 \\ \end{array} > C(CH_3)_2$  (H 42; E I 17). Verbrennungswärme bei konstantem Volumen: 1394,0 kcal/Mol (Swietoslawski, Am. Soc. 42, 1095; vgl. Subow,  $\mathcal{K}$ . 33, 711; C. 1902 I, 161).

- 5. 1.2.3 Trimethyl cyclohexan, Hexahydrohemellitol  $C_0H_{18} =$
- a) Höhersiedende Form. B. Bei der Hydrierung von Hemellitol in Eisessig in Gegenwart von Platinmohr bei gewöhnlicher Temperatur (EISENLOHR, Fortsch. Ch., Phys. 18, Nr. 9, S. 34; C. 1926 I, 75). — Kp<sub>755</sub>: 144—146°. D<sub>4</sub>° (Vakuum): 0,7930. n<sub>α</sub>°:

1,4348;  $n_{\rm He}^{\rm m}$ : 1,4368;  $n_{\rm p}^{\rm m}$ : 1,4426;  $n_{\rm y}^{\rm m}$ : 1,4472. b) Niedrigersiedende Form. B. Bei der Hydrierung von Hemellitol bei 180—190° in Gegenwart von Nickel (EISENLOHR, Fortsch. Ch., Phys. 18, Nr. 9, S. 35; C. 1926 I, 75).  $Kp_{782}: 142-143,5^{\circ}$ .  $D_{4}^{\infty}(Vakuum): 0,7914.$   $n_{3}^{\infty}: 1,4337;$   $n_{He}^{\infty}: 1,4358;$   $n_{8}^{\infty}: 1,4415;$   $n_{2}^{\infty}: 1,4461.$ 

- 6. 1.2.4 Trimethyl cyclohexan, Hexahydropseudocumol  $C_9H_{18} =$ CH<sub>3</sub>·HC<CH<sub>2</sub>·CH(CH<sub>3</sub>)CH·CH<sub>3</sub> (H 42; E I 17). Die folgenden Präparate sind sterisch nicht einheitlich.
- a) Präparat von Iimori, Kikuchi aus Petroleum. V. Im Petroleum von Maki (IIMORI, KIKUCHI, Bl. phys. chem. Res. Tokyo 1, 8; C. 1928 II, 189).
- b) Präparat von Iimori, Isono. B. Bei der Destillation von Harz mit japanischer saurer Erde (Imori, Isono, Bl. phys. chem. Res. Tokyo 1, 5; C. 1928 II, 189). Kp: 140° bis 145°. Di: 0,7844. np: 1,4332.
- c) Präparat von Skita, Schneck vom Siedepunkt 146°. B. Aus Pseudocumol und Wasserstoff in Eisessig in Gegenwart von kolloidem Platin, Platinchlorwasserstoffsäure, Gelatine und konz. Salzsäure bei 70° unter 3 Atm. Überdruck (SKITA, SCHNECK, B. 55, 149). Durch Reduktion von 1.2.4-Trimethyl-cyclohexen-(4) vom Siedepunkt 147° mit Wasserstoff in Gegenwart von kolloidem Platin in saurer Lösung (Sk., Sch.). — Kp: 146°.  $\mathbf{D_4^{so}}$ : 0,790.  $\mathbf{n_D^{so}}$ : 1,4331.
- d) Präparat von Skita, Schneck vom Siedepunkt 142°. B. Aus 1.2.4-Trimethylcyclohexen-(4) vom Siedepunkt 147° und Natrium in siedendem Alkohol (SKITA, SCHNECK,  $\check{B}$ . 55, 150). — Kp: 1420.  $D_4^m$ : 0,786.  $n_D^m$ : 1,4321.
- e) Praparat von Skita vom Siedepunkt 144,8—145,8°. B. Aus 2.4.5-Trimethylphenol und Wasserstoff in Eisessig in Gegenwart von kolloidem Platin, Platinchlorwasserstoffsäure und Gummi arabicum-Lösung unter 1—3 Atm. Überdruck, neben 1.2.4-Trimethyl-cyclohexanol-(5) vom Siedepunkt 191—193° (SKITA, B. 53, 1800). — Kp<sub>760</sub>: 144,8° bis 145,8° (korr.); Kp<sub>11</sub>: 33°.
- f) Präparat von Skita vom Siedepunkt 160—161°. B. Neben dem Präparat vom Siedepunkt 150—152° bei der Hydrierung von Pseudocumol in Eisessig in Gegenwart von kolloidem Platin und Salzsäure bei 60° unter 3 Atm. Überdruck (SKITA, Ann. Acad. Sci. fenn. [A] 29 [Komppa-Festschrift], Nr. 16, S. 13; C. 1927 II, 2274). — Flüssigkeit. Kp: 160-1610.
- g) Praparat von Skita vom Siedepunkt 150-152°. B. s. bei dem Praparat vom Siedepunkt 160-161°. - Krystalle. Kp: 150-152° (Skita, Ann. Acad. Sci. fenn. [A] 29 [Komppa-Festschrift], Nr. 16, S. 14; C. 1927 II, 2274).
- h) Praparat von Eisenlohr vom Siedepunkt 141,5°. B. Durch Hydrierung von Pseudocumol in Eisessig in Gegenwart von Platinmohr (EISENLOHE, Fortech. Ch., Phys. 18, Nr. 9, S. 35; C. 1926 I, 75). —  $Kp_{760}$ : 141,5°.  $D_4^{50}$  (Vakuum): 0,7850.  $n_{\alpha}^{50}$ : 1,4312;  $n_{He}^{50}$ : 1,4334;  $n_{\beta}^{so}$ : 1,4390;  $n_{\gamma}^{so}$ : 1,4436.
- i) Praparat von Eisenlohr vom Siedepunkt 138,5—139,5°. B. Bei der Hydrierung von Pseudocumol in Gegenwart von Nickel bei 180—190° (EISENLOHR, Fortsch. Ch., Phys. 18, Nr. 9, S. 35; C. 1926 I, 75). — Kp<sub>755</sub>: 138,5—139,5°. D<sub>4</sub>° (Vakuum): 0,7813. n<sub>3</sub>°: 1,4291;  $n_{He}^{m}$ : 1,4312;  $n_{\theta}^{m}$ : 1,4368;  $n_{\gamma}^{m}$ : 1,4414.
- 7. 1.3.5 Trimethyl cyclohexan, Hexahydromesitylen  $C_9H_{18}=$  $H_aC < CH(CH_a) \cdot CH_a > CH \cdot CH_a$  (H 45; E I 18).
- a) Praparat von Stratford. B. Neben Propan beim Erhitzen von Propylcyclohexan oder Isopropyloyclohexan mit Aluminiumchlorid auf 130—145° (STRATFORD, Ann. Off. Combust. liq. 4, 336, 357; C. 1929 II, 1286). — Kp: 138—140°. D4: 0,7834; n5: 1,4327. — Liefert beim Leiten über Palladiumschwarz bei ca. 300° 1.3.5-Trimethyl-benzol.
- b) Präparat von Adams, Marshall. B. Durch Hydrierung von Mesitylen in Gegenwart von wenig Platinoxyd in Eisessig bei 25—30° und 2—3 Atm. Druck (Adams, Marshall, Am. Soc. 50, 1972). Kp<sub>748</sub>: 135,5—136°. D<sup>38</sup>: 0,8250. n<sup>5</sup><sub>20</sub>: 1,4257.
  c) Präparat von Eisenlohr vom Siedepunkt 140—140,5°. B. Beim Hydrieren von Mesitylen in Eisessig in Gegenwart von Platinmohr (Eisenlohe, Fortech. Ch., Phys.

### TRIMETHYLCYCLOHEXAN

**18**, Nr. 9, S. 37; C. **1926** I, 75). —  $Kp_{752}$ : 140—140,5°.  $D_4^{\infty}$  (Vakuum): 0,7773.  $n_{\alpha}^{\infty}$ : 1,4281;  $n_{He}^{\infty}$ : 1,4301;  $n_{\beta}^{\infty}$ : 1,4359;  $n_{\gamma}^{\infty}$ : 1,4403.

d) Praparat von Eisenlohr vom Siedepunkt 138—139°. B. Beim Hydrieren von Mesitylen in Gegenwart von Nickel bei 180—185° (EISENLOHR, Fortsch. Ch., Phys. **18**, Nr. 9, S. 37; C. **1926** I, 75). —  $Kp_{761}$ : 138—139°.  $D_4^{so}$  (Vakuum): 0,7720.  $n_{\alpha}^{so}$ : 1,4251;  $n_{He}^{so}$ : 1,4271;  $n_{\beta}^{so}$ : 1,4328;  $n_{\gamma}^{so}$ : 1,4374.

e) Praparat von Zelinsky, Turowa-Pollak. B. Bei der Hydrierung von Mesitylen in Gegenwart von Osmiumasbest (Zelinsky, Turowa-Pollak, B. 62, 2867).

f) Präparat von E. Müller, Kraemer-Willenberg. B. Beim Erhitzen von 1 Mol Mesitylen mit 3 Mol 96,8% igen Hydrazin im Rohr auf 180° (E. MÜLLER, KRAEMER-WILLENвекс, В. 57, 579). — Kp: 137—138°.

- 8. Butyleyclopentan, 1-Cyclopentyl-butan  $C_0H_{18} = \frac{H_2C \cdot CH_2}{H_2C \cdot CH_2}CH \cdot [CH_2]_3 \cdot CH_3$ .
- B. Bei der Hydrierung von 1-Butyl-cyclopenten-(1) in Essigsäure in Gegenwart von Platinmohr (Chavanne, Becker, Bl. Soc. chim. Belg. 36, 601; C. 1928 I, 1169). E: —112,1°
  (Timmermans, Bl. Soc. chim. Belg. 31, 390; C. 1923 III, 1137). F: —108,2° (T., Bl. Soc.
  chim. Belg. 36, 503; C. 1928 I, 26). Kp<sub>760</sub>: 156,8° (Ch., B.). D<sub>1</sub><sup>1,1,8</sup>: 0,7887; D<sub>2</sub><sup>1,0,2</sup>: 0,7848 (Ch.,
  B.). n<sub>m</sub><sup>m,8</sup>: 1,4292; n<sub>m</sub><sup>m,2</sup>: 1,4314; n<sub>m</sub><sup>m,4</sup>: 1,4366 (Ch., B.). Kritische Lösungstemperatur in Anilin: 50,5° (CH., B.).
- [ $\delta$ -Brom-butyl]-cyclopentan, 4-Brom-1-cyclopentyl-butan,  $\delta$ -Cyclopentyl-butylbromid  $C_9H_{17}Br=C_5H_9\cdot [CH_2]_3\cdot CH_2Br$ . B. Beim Kochen von  $\delta$ -Cyclopentyl-butylalkohol mit 40% iger Bromwasserstoffsäure und Konz. Schwefelsäure (Yohe, Adams, Am. Soc. 50, 1506). —  $Kp_{17}$ : 110—111°.  $D_4^{80}$ : 1,1872.  $n_D^{80}$ : 1,4820.
- 9. Isobutylcyclopentan  $C_0H_{18} = \frac{H_2C \cdot CH_2}{H_2C \cdot CH_2} \cdot CH \cdot CH_2 \cdot CH(CH_3)_2$ . B. Aus 1 Isobutylcyclopenten-(1) durch Hydrierung in Gegenwart von Platinmohr (EISENLOHR, Fortsch. Ch., **Phys. 18**, Nr. 9, S. 24; C. 1926 I, 75). —  $Kp_{756}$ : 148—149°.  $D_{*}^{**}$  (Vakuum): 0,7795.  $n_{\alpha}^{**}$ : 1,4274;  $n_{He}^{\infty}$ : 1,4295;  $n_{B}^{\infty}$ : 1,4352;  $n_{V}^{\infty}$ : 1,4398.
- 10. 1-Methyl-3-isopropyl-cyclopentan, Dihydropulegen, Pulegan CoH 18 (CH<sub>3</sub>)<sub>2</sub>CH·HC·CH<sub>2</sub> H<sub>2</sub>C·CH<sub>3</sub> CH·CH<sub>3</sub> (E I 18). B. Durch Destillation des Hydrazons des 1-Methyl-3-isopropyl-cyclopentanons-(2) von Semmler über Kaliumhydroxyd und platiniertem Ton (Kasanski, B. **62**, 2209). —  $\mathrm{Kp_{764,8}}\colon 140-142,5^{\circ}$ .  $D_{+}^{\mathrm{is.5}}\colon 0,7750$ .  $n_{1}^{\mathrm{is.5}}\colon 1,4257$ .
- 11. 1.4 Dimethyl-2-āthyl-cyclopentan  $C_0H_{18} = \frac{H_2C \cdot CH(C_2H_5)}{CH_3 \cdot HC CH_2} \cdot CH \cdot CH_3$ . Kp<sub>750</sub>: 135,5—137°; D<sup>a</sup>: 0,7700; n<sup>a</sup>: 1,4213 (Zelinsky, Pappe, zitiert bei Zelinsky, B. **56**, 1721). Löst sich in rauchender Schwefelsäure (10% SO<sub>3</sub>-Gehalt) ohne Entwicklung von Schwefeldioxyd unter Dunkelfärbung (Z.).
  - 12. 1.1.2-Trimethyl-4-āthyl-cyclobutan  $C_{\bullet}H_{18} = H_{2}C < \frac{CH(CH_{3})}{CH(C_{2}H_{5})} > C(CH_{3})_{2}$ .
- 2¹.4³-Dibrom-1.1.2-trimethyl-4-äthyl-cyclobutan, 1.1-Dimethyl-2-brommethyl-4- $[\beta$ -brom-äthyl]-cyclobutan  $C_9H_{16}Br_2 = H_2C \underbrace{CH(CH_2Br)}_{CH(CH_2 \cdot CH_2Br)} C(CH_3)_2$ . B. Beim Erhitzen von 1.1-Dimethyl-2-oxymethyl-4- $[\beta$ -oxy-āthyl]-cyclobutan mit Phosphortribromid im Rohr auf 120—130° (Östling, Öf. Fi. 57 [A], Nr. 7, S. 10; C. 1921 III, 105). — Flüssigkeit. Kp<sub>10</sub>: 144—145°. — Über die Einw. von Natrium vgl. Ö., Öf. Fi. 57 [A], Nr. 23, S. 5; C. 1921 III, 106.

## 8. Kohlenwasserstoffe $C_{10}H_{20}$ .

1. Butylcyclohexan, 1 - Cyclohexyl - butan  $C_{10}H_{10} =$ 

 $H_2C < CH_3 \cdot CH_2 > CH \cdot [CH_3]_3 \cdot CH_3$  (E I 20). B. Neben anderen Produkten bei der Reduktion von 2-Methoxy-benzylaceton oder 4-Methoxy-benzylaceton in Essigsäure mit Wasserstoff in Gegenwart von reinem Platinschwarz (Faillebin, A. ch. [10], 4, 421, 431). Bei der Hydrierung von Butylbenzol in Eisessig in Gegenwart von Platinoxyd (Stratforn, Ann. Off. Combust. liq. 4, 98, 324; C. 1929 II, 1286). — F: —78,6° (Timmermans, Bl. Soc. chim. Belg. 36, 503; C. 1928 I, 26). Kp761: 176—177° (F.); Kp: 176,5—178,5° (St.); Kp: 177° (unkorr.);

Kp<sub>16</sub>: 68° (Bourguel, Bl. [4] 41, 1476).  $D_4^{\text{H}}$ : 0,8078 (St.);  $D^{17,5}$ : 0,8043 (F.);  $D^{20}$ : 0,797 (B.).  $n_0^{\text{H}}$ : 1,4449 (St.);  $n_0^{17,5}$ : 1,4438 (F.);  $n_0^{\text{m}}$ : 1,4440 (B.). — Bei der pyrogenen Zersetzung in Gegenwart von Aluminiumchlorid erhält man Butan und ein Gemisch von Tetramethyleyclohexanen (Grignard, Stratford, C. r. 178, 2151; St., Ann. Off. Combust. liq. 4, 338, 357).

- [ $\delta$ -Brom-butyl]-cyclohexan, 4-Brom-1-cyclohexyl-butan,  $\delta$ -Cyclohexyl-butyl-bromid  $C_{10}H_{19}Br = C_6H_{11} \cdot [CH_2]_3 \cdot CH_2Br$ . B. Aus  $\delta$ -Cyclohexyl-butylalkohol und Phosphortribromid bei  $0^0$  bis —5°, zuletzt bei  $100^0$  (Hiers, Adams, Am. Soc. 48, 2389). Kp<sub>4</sub>: 91,6° bis 92,2°.  $D_1^{as}$ : 1,1350.  $n_2^{as}$ : 1,4832.
- 2. sek. Butyl cyclohexan, 2 Cyclohexyl butan  $C_{10}H_{20} = H_2C < CH_2 \cdot CH_2 \cdot CH_2 < CH_2 \cdot CH_3 \cdot CH_2 \cdot CH_3 \cdot B$ . Bei der Hydrierung von sek.-Butyl-benzol in Eisessig in Gegenwart von Platinoxyd (Stratford, Ann. Off. Combust. liq. 4, 98, 324: C. 1929 II, 1286). Erstarrt bei tiefer Temperatur glasig (Timmermans, Bl. Soc. chim. Belg. 36, 503; C. 1928 I, 26). Kp<sub>760</sub>: 177,2  $\pm$  0,1° (T.); Kp: 172—174,5° (St.). D¼: 0.8156: n½: 1,4487 (St.). Dampfdruck von Gemischen mit Aceton bei 0,92°, 9,48° und 20,26°: Roland, Bl. Soc. chim. Belg. 37, 125; C. 1928 I, 2900. Bei der pyrogenen Zersetzung in Gegenwart von Aluminiumchlorid erhält man Butan und ein Gemisch von Tetramethylcyclohexanen (Grionard, Stratford, C. r. 178, 2151; St., Ann. Off. Combust. liq. 4, 339, 357).
- 3. Isobutylcyclohexan  $C_{10}H_{20} = H_2C < \frac{CH_2 \cdot CH_2}{CH_2 \cdot CH_2} > CH \cdot CH_2 \cdot CH(CH_3)_2$ . B. Durch Hydrieren des aus 1-Isobutyl-cyclohexanol-(1) und Phosphorpentoxyd in absol. Äther entstandenen Reaktionsprodukts in Gegenwart von Platinmohr (Eisenlohr, Fortsch. Ch.. Phys. 18, Nr. 9, S. 28; C. 1926 I, 75).  $\stackrel{\leftarrow}{-}$  Kp<sub>754</sub>: 169°. D<sub>4</sub>° (Vakuum): 0,7950.  $n_{\alpha}^{50}$ : 1,4369:  $n_{\alpha}^{50}$ : 1,4447;  $n_{\gamma}^{50}$ : 1,44492.
- 4. tert. Butyl cyclohexan, Trimethyl cyclohexyl methan  $C_{10}H_{20}$   $H_2C < CH_2 \cdot CH_2 \cdot CH_2 > CH \cdot C(CH_3)_3$  (E I 20). B. Bei der Hydrierung von tert. Butyl-benzol in Eisessig in Gegenwart von Platinoxyd (Stratford, Ann.Off.Combust.liq. 4, 98, 324; C. 1929 II, 1286). Kp: 167—1690;  $D_i^{tr}$ : 0,8205;  $n_i^{tr}$ : 1,4538 (St.). Bei der pyrogenen Zersetzung in Gegenwart von Aluminiumchlorid erhält man Butan, Isobutan und ein Gemisch von Tetramethylcyclohexanen (Grignard, St., C.r. 178, 2151; St., Ann.Off.Combust.liq. 4, 340, 358).
- 5. 1-Methyl-2-isopropyl-čyclohexan, o-Menthan  $C_{10}H_{20}=H_2C<\frac{CH_2}{CH_2\cdot CH(CH_3)}>CH\cdot CH(CH_3)_2$  (H 46; E I 20). Für die von o-Men-5 CC-C-C chan abgeleiteten Namen wird in diesem Handbuch folgende Stellungsbezeichnung gebraucht:

Rechtsdrehende Form. B. Beim Kochen von rechtsdrehendem Verbanon mit amalgamiertem Zink und 12 %iger Salzsäure (Wienhaus, Schumm, A. 439, 41). — Leichtbewegliche Flüssigkeit.  $\mathrm{Kp}_{752}$ : 169—170°.  $\mathrm{D}_{2}^{\infty}$ : 0,8297.  $\mathrm{n}_{2}^{\infty}$ : 1,4565.  $[\alpha]_{\mathrm{D}}$ : +14,9° (unverdünnt).

- 6. 1 Methyl 3 isopropyl cyclohexan, m Menthan  $C_{10}H_{20} = H_2C < \frac{CH_2 CH_2}{CH(CH_3) \cdot CH_2} > CH \cdot CH(CH_3)_2$  (H 46; E I 20). Für die von m Men  $\frac{5}{10} \cdot \frac{5}{10} \cdot \frac{1}{10} \cdot \frac{3}{10} \cdot \frac{5}{10} \cdot \frac{1}{10} \cdot \frac{3}{10} \cdot \frac{5}{10} \cdot \frac{1}{10} \cdot \frac{3}{10} \cdot \frac{3}{1$
- $\label{eq:continuous_continuous_transform} \begin{array}{ll} \textbf{1.81- Dichlor-1 methyl-3 isopropyl cyclohexan,} & \textbf{1.8- Dichlor-m-menthan} \\ \textbf{C}_{10}\textbf{H}_{18}\textbf{Cl}_2 = \textbf{H}_2\textbf{C} < & \textbf{CH}_2 \\ \textbf{CCl}(\textbf{CH}_3) \cdot \textbf{CH}_2 \\ \textbf{CH} \cdot \textbf{CCl}(\textbf{CH}_3)_2. \end{array}$
- a) d-Silvestren-bis-hydrochlorid (H 46; E I 20). B. Neben hochschmelzendem Dipenten-bis-hydrochlorid beim Behandeln von d- $\Delta^3$ -Caren mit Chlorwasserstoff in Äther unter Kühlung (SIMONSEN, Soc. 117, 575; vgl. ASCHAN, A. 461, 19). Aus d- $\Delta^3$ -Caren-monohydrochlorid (S. 95) bei Einw. von feuchtem Chlorwasserstoff in Eisessig (A., A. 461, 5). Entsteht neben hochschmelzendem Dipenten-bis-hydrochlorid vermutlich auch beim Einleiten von Chlorwasserstoff in die essigsaure Lösung von d- $\Delta^4$ -Caren bei 0° (S., Soc. 121, 2298).—Nadeln (aus Methanol). F: 72° (S.), 72—73° (Maisit, Ar. 261, 215).  $[\alpha]_D$ : +20,31° (Chloroform) (S.);  $[\alpha]_D^{\text{in}}$ : +13,9° (Alkohol; c = 6) (M.).
- b) l-Silvestren-bis-hydrochlorid (E I 21). B. Aus l-Δ³-Caren und Chlorwasser-stoff in Eisessig (Panicker, Rao, Simonsen, J. indian Inst. Sci. [A] 9, 137; C. 1927 I, 653).

   Nadeln (aus Methanol). F: 72°. [α]<sub>D</sub>: —17,1° (Chloroform; c = 4,8).

- 27
- c) dl-Silvestren-bis-hydrochlorid, Carvestren-bis-hydrochlorid, Dipren-bis-hydrochlorid (H 46; E I 21). B. Beim Behandeln von Dipren mit Chlorwasserstoff in Äther und folgenden Stehenlassen des Reaktionsprodukts mit einer gesättigten Lösung von feuchtem Chlorwasserstoff in Eisessig (ASCHAN, A. 439, 230; 461, 24). Nadeln (aus verd. Alkohol). Riecht nach Wacholderöl. F: 51,5—52°. Liefert beim Erhitzen mit Kaliumacetat und Eisessig oder mit Anilin Carvestren.
- 5.6 Dibrom 1 methyl 3 isopropyl cyclohexan, 5.6 Dibrom m menthan  $C_{10}H_{18}Br_2 = BrHC < \frac{CHBr}{CH(CH_3)} \cdot CH_2 > CH \cdot CH(CH_3)_2$  (vgl. H 47). B. Aus 1-Methyl-3-isopropyl-cyclohexen-(5) und Brom in Eisessig (Henderson, Smeaton, Soc. 117, 148). Gibt beim Kochen mit alkoh. Kalilauge 1-Methyl-3-isopropyl-cyclohexadien-(4.6).
- 1.3¹-Dibrom -1 methyl 3 isopropyl cyclohexan, 1.8-Dibrom m menthan  $C_{10}H_{18}Br_2 = H_2C < \frac{CH_2}{CBr(CH_3) \cdot CH_2} > CH \cdot CBr(CH_3)_2$ . Carvestren-bis-hydrobromid, Dipren-bis-hydrobromid (H 47). B. Beim Aufbewahren von Dipren mit Bromwasserstoff in Eisessig (Aschan, A. 461, 25). Beim Behandeln des aus Vestrylamin-hydrochlorid durch Erhitzen im Chlorwasserstoffstrom erhaltenen "Carveprens" vom Siedepunkt 183° bis 186° mit Bromwasserstoff in Eisessig (A.; vgl. Baeyer, B. 27, 3486). Platten und Nadeln (aus Alkohol). F: 48—49° (A.). Besitzt einen angenehmen, dem Wacholderöl ähnlichen Geruch (A.). Wird durch Wasser zersetzt und bräunt sich an feuchter Luft (A.).
  - 7. 1-Methyl-4-isopropyl-cyclohexan, Hexahydro-p-cymol, p-Menthan
- C<sub>10</sub>H<sub>20</sub> = CH<sub>3</sub>·HC<CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>>CH·CH(CH<sub>3</sub>)<sub>2</sub> (H 47; E I 21). Für die von p-Menthan abgeleiteten Namen wird in diesem Handbuch nebenstehende Stellungsbezeichnung gebraucht. Die stereoisomeren p-Menthan eind bisher nicht in reinem Zustand bekannt. Nach ihrer Darstellungsart scheinen bisher die nach dem Literatur-Schlußtermin des Ergänzungswerks II [1. I. 1930] aus Menthan und Isomenthan gewonnenen Präparate von Keats (Soc. 1937, 2003) und Gillespie, Macbeth, Mills (Soc. 1940, 282) am vertrauenswürdigsten, obwohl die Übereinstimmung der Konstanten immer noch zu wünschen übrig läßt. Für einen Teil der unten abgehandelten Präparate wurde mit allem Vorbehalt eine sterische Zuordnung auf Grund der Auwers-Skitaschen Regel und der Konstanten versucht, obwohl den letzteren aus verschiedenen Gründen vielfach kein großes Gewicht beizumessen ist.
- a) cis. Form. B. Aus p-Cymol durch Hydrierung in Eisessig in Gegenwart von kolloidem Platin bei 75° und 3 Atm. Überdruck (Skita, Schneck, B. 55, 148), in Gegenwart von Platinoxyd bei 25—30° und 2—3 Atm. Druck (Adams, Marshall, Am. Soc. 50, 1972), in Gegenwart von Platin (Wienhaus, Schumm, A. 439, 43). Kp: 168,5°;  $D_{*}^{\infty}$ : 0,816;  $n_{D}^{\infty}$ : 1,4515 (!) (Sk., Schn.). Kp<sub>22</sub>: 63°;  $D_{*}^{25}$ : 0,8061;  $n_{D}^{\infty}$ : 1,4370 (A., M.). Kp<sub>747</sub>: 169°;  $D_{*}^{\infty}$ : 0,8039;  $n_{D}^{\infty}$ : 1,4419 (W., Sch.).
- b) trans-Form. B. Bei der elektrolytischen Reduktion von l-Menthon in schwach saurer Lösung an Bleikathoden, in stark saurer Lösung an Cadmiumkathoden und am besten an Quecksilberkathoden, neben anderen Produkten (Schall, Kirst, Z. El. Ch. 29, 540). Bei der Hydrierung von p-Cymol in Gegenwart von Nickel bei ca. 180° (Sabatier, Senderens, C. r. 132, 568, 1255; vgl. Schwing, zitiert bei Skita, Schneck, B. 55, 149; Sk., Priv.-Mitt.).

  -- Kp<sub>757</sub>: 169,3—170°; Kp<sub>19,5</sub>: 61—62°; n<sup>16</sup><sub>0</sub>: 1,4414 (Schall, K.). Kp: 169—170° (Sa., Se.).

  D<sup>16</sup><sub>0</sub>: 0,792; n<sup>16</sup><sub>0</sub>: 1,4393 (Sk., Sch.).

  c) p-Menthan-Präparate, die wahrscheinlich sterisch nicht einheitlich sind. B. Zur Bildung auch Menthon (2) durch Hydrichung bei Communication of the start of the
- c) p-Menthan-Präparate, die wahrscheinlich sterisch nicht einheitlich sind. B. Zur Bildung aus p-Menthen-(3) durch Hydrierung bei Gegenwart von sauerstoffarmen Platin-Katalysatoren in Eisessig vgl. Willstätter, Waldschmidt-Leitz, B. 54, 124.
  Neben anderen Produkten beim Überleiten von p-Menthen-(3), d-Limonen oder d-β-Phellandren
  über Kupfer bei höherer Temperatur (Komatsu, Kurata, Mem. Coll. Sci., Kyoto [A] 11, 165;
  C. 1928 II, 1326). Neben p-Cymol beim Überleiten von Terpinen über Palladiumasbest
  im Kohlendioxyd-Strom bei 190° (Zelinsky, Lewina, B. 62, 341). Entsteht analog aus
  Terpinolen beim Leiten über Palladiumasbest im Kohlendioxyd-Strom unter 40 mm Druck
  bei 160—170° (Z., L., B. 62, 342). Neben p-Cymol beim Überleiten von d-Limonen über
  25%igen Palladiumasbest im schwachen Kohlendioxyd-Strom bei 180—185° oder unter
  120 mm Druck bei 130° (Z., B. 57, 2058). Neben Dihydrolimonen beim Hydrieren von
  d-Limonen in Methanol in Gegenwart von kolloidalem Palladium oder Palladium-Tierkohle
  (v. Braun, Werner, B. 62, 1057). Beim Leiten von d-Limonen oder l-α-Phellandren über
  Nickel bei 280° (Treibs, H. Schmidt, B. 60, 2340). Beim Leiten von Caran und Wasserstoff
  über Platin-Kohle bei 160° (Z., L., A. 476, 62). Durch Hydrierung von p-Cymol in Gegenwart von Palladiumschwarz (Z., B. 56, 788; vgl. 58, 866). Beim Erhitzen von p-Cymol

mit 3 Mol 97% igem Hydrazin im Rohr auf 180° (E. MÜLLER, KRAEMER-WILLENBERG, B. 57, 579). Neben p-Cymol aus dlα-Terpineol oder Terpinhydrat beim Behandeln mit japanischer saurer Erde (Ono, Mem. Coll. Sci. Kyoto [A] 9, 153; C. 1926 I, 1401). Neben Menthol bei der Reduktion von Thymol mit Wasserstoff in Gegenwart von Nickel bei 300° bis 350° (Dominikiewicz, Roczniki Farm. 2, 30; C. 1924 II, 327). Bei der Reduktion von d-Caron mit Wasserstoff in Essigsäure in Gegenwart von Platinchlorid-Lösung, Gummi arabicum und kolloidalem Palladium unter 2 Atm. Druck (Iyer, Simonsen, Soc. 1926, 2051). Bei der Hydrierung von p-Menthen-(3)-oxyd (Syst. Nr. 2363) bei Gegenwart von Platin in Eisessig (Körz, Busch, J. pr. [2] 119, 20). Neben anderen Produkten beim Erhitzen von Benzolsulfonsäure-1-menthylester im Rohr auf 85—90° (Patterson, McAlpine, Soc. 1927, 350). Beim Erhitzen von α- oder β-Naphthalinsulfonsäure-1-menthylester im Rohr auf 120° (P., McAl.). — Kp<sub>754</sub>: 170—171° (Zelinsky, B. 57, 2059); Kp<sub>749</sub>: 168,5—169° (Z. Lewina, A. 476, 62); Kp<sub>745</sub>: 168,5—169° (Z., L., B. 62, 342); Kp<sub>655</sub>: 168—169° (Iyer, Simonsen, Soc. 1926, 2051). Di<sup>1</sup>; 0,7962 (Patterson, McAlpine, Soc. 1927, 350); Di<sup>2</sup>; 0,8005 (Z.); D<sup>3</sup>/<sub>\*</sub>: 0,7985 (Z., L., A. 476, 62); D<sup>3</sup>/<sub>55</sub>: 0,7984 (I., S.). n<sup>6,5</sup>/<sub>5</sub>: 1,4452; n<sup>5</sup>/<sub>55</sub>: 1,4389 (Z., L., B. 62, 341); 1,4441 (Z., B. 56, 788); n<sup>5</sup>/<sub>55</sub>: 0,7984 (I., S.). n<sup>6,5</sup>/<sub>5</sub>: 1,4452; n<sup>5</sup>/<sub>55</sub>: 1,4389 (Z., L., B. 62, 341); 1,4441 (Z., B. 56, 788); n<sup>5</sup>/<sub>55</sub>: 1,4394 (Z., L., A. 476, 62); n<sup>5</sup>/<sub>55</sub>: 1,4389 (Z., L., B. 62, 341); 1,4441 (Z., B. 56, 788); n<sup>5</sup>/<sub>55</sub>: 1,4394 (Z., L., A. 476, 62); n<sup>5</sup>/<sub>55</sub>: 1,4389 (Z., L., B. 62, 341); 1,4441 (Z., B. 56, 788); n<sup>5</sup>/<sub>55</sub>: 1,4394 (Z., L., A. 476, 62); n<sup>5</sup>/<sub>55</sub>: 1,4389 (Z., L., B. 62, 341); 1,4441 (Z., B. 56, 788); n<sup>5</sup>/<sub>55</sub>: 1,4394 (Z., L., A. 476, 62); n<sup>5</sup>/<sub>55</sub>: 1,4389 (Z., L., B. 62, 341); 1,4441 (Z., B. 56, 788); n<sup>5</sup>/<sub>55</sub>: 1,4394 (Z., L., A. 476, 62); n<sup>5</sup>/<sub>55</sub>: 1,4389 (Z., L., B. 62, 341); 1,4441 (Z., B. 56, 788); n<sup>5</sup>/<sub>55</sub>: 1,4394 (Z., L., A. 476, 62); n<sup>5</sup>/<sub></sub>

- 1-Chlor-1-methyl-4-isopropyl-cyclohexan, 1-Chlor-p-menthan  $C_{10}H_{19}Cl = CH_3 \cdot ClC < CH_2 \cdot CH_2 \cdot CH \cdot CH(CH_3)_2$ . Tert. Carvomenthylchlorid (H 48). B. Aus Dihydrofencholenalkohol b (Syst. Nr. 503) und Phosphorpentachlorid unter Kühlung mit Kältegemisch (Maxwell, A. ch. [9] 17, 347, 356). Präparat aus Carvomenthen: Kp<sub>22</sub>:  $100-102^{\circ}$ ;  $D_1^{s_4,5}$ : 0,9313;  $n_{\alpha}^{s_{\alpha},2}$ : 1,4567;  $n_{\alpha}^{s_{\alpha},3}$ : 1,4590;  $n_{\beta}^{s_{\alpha},2}$ : 1,4659. Präparat aus Dihydrofencholenalkohol: Kp<sub>20</sub>: 96°;  $D_1^{s_{\alpha},2}$ : 0,9368;  $n_{\alpha}^{s_{\alpha},3}$ : 1,4597;  $n_{\alpha}^{s_{\alpha},3}$ : 1,4620;  $n_{\beta}^{s_{\alpha},3}$ : 1,4681.
- 3-Chlor-1-methyl-4-isopropyl-cyclohexan, 3-Chlor-p-menthan, sek. Menthyl-chlorid  $C_{10}H_{19}Cl=CH_3\cdot HC < CH_2\cdot CH_2\cdot CH \cdot CH(CH_3)_2$  (vgl. H 49; E I 22). B. Beim Kochen von Menthol mit 9 Mol Salzsäure (D: 1,178) (Norris, Mulliken, Am. Soc. 42, 2097). Beim Oxydieren mit Chromtrioxyd in Eisessig und Umsetzen des Reaktionsprodukts mit Semicarbazid entsteht eine Verbindung  $C_{10}H_{18}ON_3Cl$  [F: 204—205°] (Murayama, Tanaka, J. pharm. Soc. Japan 48, Nr. 5, S. 88; C. 1928 II, 653).
- 4-Chlor-1-methyl-4-isopropyl-cyclohexan, 4-Chlor-p-menthan, tert. Menthyl-chlorid  $C_{10}H_{19}Cl = CH_3 \cdot HC < \frac{CH_2 \cdot CH_2}{CH_3} \cdot CCl \cdot CH(CH_3)_2$  (H 49; E I 22). B. Aus p-Menthanol-(4) beim Aufbewahren mit Chlorwasserstoff in absol. Ather bei 0° (Ruzicka, van Veen, A. 476, 111). Liefert beim Behandeln mit methylalkoholischer Kalilauge einen Kohlenwasserstoff vom Kp<sub>15</sub>: 62—66°, bei dessen Ozonisierung in Tetrachlorkohlenstoff Aceton und 1-Methyl-cyclohexanon-(4) erhalten wurden.
- 4¹-Chlor-1-methyl-4-isopropyl-cyclohexan, 8-Chlor-p-menthan  $C_{10}H_{10}Cl = CH_3 \cdot HC < CH_2 \cdot CH_2 \cdot CH_2 \cdot CH \cdot CCl(CH_3)_2$ . B. Beim Sättigen einer Lösung von p-Menthanol-(8) in absol. Ather mit trocknem Chlorwasserstoff und Aufbewahren bei 0° (Ruzicka, van Veen, A. 476, 109). Liefert beim Erhitzen mit Anilin auf 200° oder beim Erwärmen mit methylalkoholischer Kalilauge ein Gemisch von Kohlenwasserstoffen.
- 1.4-Dichlor-1-methyl-4-isopropyl-cyclohexan, 1.4-Dichlor-p-menthan, Terpinenbis-hydrochlorid  $C_{10}H_{18}Cl_2 = CH_3 \cdot CIC < \frac{CH_2 \cdot CH_2 \cdot CH}{CH_2 \cdot CH_2} \cdot CCl \cdot CH(CH_3)_2$  (H 49; E I 22). B. Beim Behandeln von 1.4-Cineol mit Chlorwasserstoff in Eisessig (Austerweil, Bl. [4] 45, 869). F: 51° (Au.). Ist sehr beständig gegen Kalilauge (Au.). Liefert beim Erwärmen mit Anilin  $\alpha$ -Terpinen als Hauptprodukt sowie  $\gamma$ -Terpinen, Terpinolen und andere Produkte (Wallach, A. 350 [1906], 148; Richter, Wolff, B. 63 [1930], 1720).
- 1.4¹-Dichlor-1-methyl-4-isopropyl-cyclohexan, 1.8-Dichlor-p-menthan, Limonenbis hydrochlorid, Dipenten bis hydrochlorid  $C_{10}H_{18}Cl_2 = CH_3 \cdot ClC < CH_2 \cdot CH_2 \cdot CH \cdot CCl(CH_3)_2$  (H 49; E I 22). Hochschmelzende Form. B. Neben d-Silvestren-bis-hydrochlorid beim Leiten von Chlorwasserstoff in die äther. Lösung von d- $\Delta^3$ -Caren unter Kühlung (Simonsen, Soc. 117, 575; vgl. Aschan, A. 461, 19, 20). Aus d- $\Delta^4$ -Caren beim Einleiten von Chlorwasserstoff unter Kühlung in die essigsaure Lösung, neben wenig d-Silvestren-bis-hydrochlorid (Si., Soc. 121, 2298) oder in absol. Äther, neben Pinonen-monohydrochlorid (A., A. 461, 23). Krystalle (aus Alkohol). F: 49—50° (A., A.

- 461, 20). Liefert bei der Einw. von feinverteiltem Silber oder Kupfer bei Zimmertemperatur ein Diterpen C<sub>20</sub>H<sub>32</sub> (Syst. Nr. 473) (ROBERTS, Soc. 127, 2451). Gibt beim Kochen mit Zinkstaub in Benzol und wenig Eisessig unter Einleiten von Chlorwasserstoff Gemische von Kohlenwasserstoffen C<sub>10</sub>H<sub>16</sub>, C<sub>10</sub>H<sub>18</sub>, C<sub>20</sub>H<sub>32</sub> und harzige Produkte (STAUDINGER, WIDMER, Helv. 9, 547). Verhalten beim Aufbewahren mit verd. Alkohol: A., .A. 439, 230 Anm. 2.
- 3-Brom-1-methyl-4-isopropyl-cyclohexan, 3-Brom-p-menthan, sek. Menthylbromid  $C_{10}H_{19}Br = CH_3 \cdot HC < CH_2 \cdot CH_3 \cdot CH \cdot CH(CH_3)_2$  (H 51; E I 22). Die sterische Einheitlichkeit der folgenden Präparate ist fraglich. B. Beim Stehenlassen von Monothiocarbamidsäure-O-l-menthylester, N-Methyl-thiocarbamidsäure-O-l-menthylester oder N.N-Dimethyl-thiocarbamidsäure-O-l-menthylester mit Bromessigsäure in Benzol (Holmberg, Rosén, B. 58, 1838). 2 Präparate aus Monothiocarbamidsäure-O-l-menthylester zeigten: Kp<sub>15</sub>: 103—105°; Kp<sub>11</sub>: 97—98°. D. 2. 1,160, 1,161. n. 105. 1,4855, 1,4845. [ $\alpha$ ] 105. + 23,3°, + 30,5° (unverdünnt). Die übrigen Präparate gaben ähnliche Werte.
- 1.4¹- Dibrom 1 methyl 4 isopropyl cyclohexan, 1.8- Dibrom p menthan, Limonen bis hydrobromid, Dipenten bis hydrobromid  $C_{10}H_{18}Br_2 = CH_3 \cdot BrC < CH_3 \cdot CH_3 \cdot CH \cdot CBr(CH_3)_2$  (H 52; E I 23). Die hochschmelzende und niedrigschmelzende Form geben bei der Einw. von feinverteiltem Silber oder Kupfer bei Zimmertemperatur ein Diterpen  $C_{30}H_{32}$  (Syst. Nr. 473) (Roberts, Soc. 127, 2451). Beim Kochen mit Zinkstaub in Benzol + wenig Eisessig unter Einleiten von Chlorwasserstoff entstehen Gemische von Kohlenwasserstoffen  $C_{10}H_{16}$ ,  $C_{10}H_{18}$ ,  $C_{20}H_{32}$  und harzige Produkte (Staudinger, Widner, Helv. 9, 547).
- 1.2.3.4 Tetrabrom 1 methyl 4 isopropyl cyclohexan, 1.2.3.4 Tetrabrom-p-menthan  $C_{10}H_{16}Br_4 = CH_3 \cdot CBr < \begin{array}{c} CH_2 & CH_2 \\ CHBr \cdot CHBr \end{array} > CBr \cdot CH(CH_3)_2$ . B. Beim Aufbewahren der Verbindung  $H_3C \cdot C = \begin{array}{c} CH(OH) \cdot CH(OH) \\ CH_2 & CH_3 \end{array} > C \cdot CH(CH_3)_2$  vom Schmelzpunkt 172° (Syst.

Nr. 2398) mit einer gesättigten Lösung von Bromwasserstoff in Eisessig und folgenden Erhitzen auf 50° (Henderson, Robertson, Soc. 1926, 2762). — Nadeln (aus Alkohol). F: 159—160° (Zers.).

- 1.2.4<sup>1</sup>.4<sup>2</sup>-Tetrabrom 1 methyl 4 isopropyl cyclohexan, 1.2.8.9-Tetrabrom-p-menthan  $C_{10}H_{16}Br_4 = CH_3 \cdot BrC < \begin{array}{c} CH_2 CH_2 \\ CH_3 \cdot CH_3 \end{array} > CH \cdot CBr(CH_3) \cdot CH_2Br.$
- a) Rechtsdrehende Form, d-Limonen-tetrabromid (H 53). Gibt bei der Einw. von Magnesium in Äther in Gegenwart einer Spur Jod bei 0°, zuletzt unter Erwärmen d-Limonen (v. Braun, Lemke, B. 56, 1563).
- d-Limonen (v. Braun, Lemke, B. 56, 1563).

  b) Linksdrehende Form, l-Limonen-tetrabromid (H 53). [α]<sub>b</sub>: —74,6° (Chloroform; c = 22) (v. Braun, Lemke, B. 56, 1562). Beim Behandeln mit Magnesium in Ather in Gegenwart einer Spur Jod bei 0°, zuletzt unter Erwärmen entsteht l-Limonen.
- 2.3.4<sup>1</sup>.4<sup>2</sup>-Tetrabrom 1 methyl 4 isopropyl cyclohexan, 2.3.8.9-Tetrabrom-p-menthan  $C_{10}H_{16}Br_4 = CH_3 \cdot HC < CH_3 CH_3 \cdot CH \cdot CBr(CH_3) \cdot CH_2Br$ . B. Aus linksdrehendem p-Menthadien-(2.8(9)) und Brom in Chloroform bei 00 (Henry, Pager, Soc. 119, 1717). Krystalle (aus Essigester). Monoklin (Smith bei H., P., Soc. 119, 1718). F: 1170 (Zers.). Beim Kochen mit Natriummethylat-Lösung entsteht eine Verbindung  $C_{11}H_{17}OBr$  (S. u.) (H., P., Soc. 127, 1658). Bei längerem Behandeln mit Silberacetat in Essigsäure erhält man 4<sup>1</sup>-Brom-4<sup>1</sup>-acetoxy-1-methyl-4-isopropyl-cyclohexadien-(1.3) (Syst. Nr. 510) (H., P., Soc. 127, 1658).

Verbindung C<sub>11</sub>H<sub>17</sub>OBr = C<sub>10</sub>H<sub>14</sub>Br(O·CH<sub>3</sub>). B. Bei 7-stdg. Kochen von 2.3.8.9-Tetrabrom-p-menthan mit Natriummethylat-Lösung (Henry, Pager, Soc. 127, 1658). — Ol. Kp<sub>18</sub>: 115—120°. — Liefert bei weiterer Einw. von Natriummethylat-Lösung p-Cymol.

8. 1.3-Diāthyl-cyclohexan  $C_{10}H_{20} = H_2C < \frac{CH_2}{CH_1(C_2H_3)} \cdot CH_2 > CH \cdot C_2H_5$  (H 55). B. Bei der Hydrierung von 1.3-Diāthyl-benzol in Eisessig in Gegenwart von Platinoxyd (Stratford, Ann. Off. Combust. liq. 4, 98, 324; C. 1929 II, 1286). — Kp: 169—173°; Di: 0,8118; ni: 1,4449 (St.). — Liefert beim Erhitzen mit Aluminiumchlorid Butan, ein Gemisch von Tetramethylovolohexanen und andere Produkte (Grignard, St., C. r. 178, 2151; St., Ann. Off. Combust. liq. 4, 345).

- 9. 1.2.3.5 Tetramethyl cyclohexan, Hexahydroisodurol  $C_{10}H_{10} =$
- a) Höhersiedende Form. B. Durch Hydrierung von Isodurol unter 3 Atm. Wasserstoffdruck in Eisessig in Gegenwart von Platinmohr (EISENLOHR, Fortsch. Ch., Phys. 18, Nr. 9, S. 38; C. 1926 I, 75). —  $Kp_{762}$ : 168—170°.  $D_4^{80}$  (Vakuum): 0,8166.  $n_{\alpha}^{80}$ : 1,4462;  $n_{He}^{80}$ : 1,4485;  $n_{\beta}^{so}$ : 1,4547;  $n_{\gamma}^{so}$ : 1,4596.
- b) Niedrigersiedende Form. B. Durch Hydrieren von Isodurol über Nickel bei 160—170° (EISENLOHR, Fortsch. Ch., Phys. 18, Nr. 9, S. 38; C. 1926 I, 75). Kp<sub>765</sub>: 162° bis 164°. D<sub>4</sub><sup>∞</sup> (Vakuum): 0,8140. n<sub>2</sub><sup>∞</sup>: 1,4444; n<sub>He</sub><sup>∞</sup>: 1,4466; n<sub>B</sub><sup>∞</sup>: 1,4521; n<sub>2</sub><sup>∞</sup>: 1,4567.
- 10. 1.2.4.5 Tetramethyl cyclohexan, Hexahydrodurol  $C_{10}H_{20} =$ CH<sub>3</sub>·HC<CH(CH<sub>3</sub>)·CH<sub>2</sub>>CH·CH<sub>3</sub> (E I 23).
- a) Präparat von Eisenlohr vom Kp<sub>755</sub>: 171°. B. Durch Hydrieren von Durol in Eisessig unter 3 Atm. Wasserstoffdruck in Gegenwart von Platinmohr (Еіѕеньонв, Fortsch. Ch.,  $P\tilde{h}ys$ . 18, Nr. 9, S. 39; C. 1926 I, 75). —  $Kp_{755}$ : 171°.  $D_{\bullet}^{so}$  (Vakuum): 0,8122.  $n_{\alpha}^{so}$ : 1,4442;  $n_{He}^{so}$ : 1,4465;  $n_{\beta}^{so}$ : 1,4525;  $n_{\gamma}^{so}$ : 1,4576.
- b) Präparat von Eisenlohr vom Kp<sub>760</sub>: 166—168°. B. Durch Hydrieren von Durol über Nickel bei 170—180° (Eisenlohr, Fortsch. Ch., Phys. 18, Nr. 9, S. 39; C. 1926 I, 75).—  $K_{P_{780}}$ : 166—168°.  $D_4^{\infty}$  (Vakuum): 0,8100.  $n_{\alpha}^{\infty}$ : 1,4423;  $n_{He}^{\infty}$ : 1,4445;  $n_{\beta}^{\infty}$ : 1,4500;  $n_{\gamma}^{\infty}$ : 1,4547.
- Isoamylcyclopentan, 2 Methyl 4 cyclopentyl butan  $C_{10}H_{20} =$  $\frac{\text{H}_2\text{C}\cdot\text{CH}_2}{\text{H}_2\text{C}\cdot\text{CH}_2}\cdot\text{CH}\cdot\text{CH}_2\cdot\text{CH}_2\cdot\text{CH}_2\cdot\text{CH}_2\cdot\text{CH}_3)_2$ . B. Bei der Hydrierung von 1-Isoamyl-cyclopenten-(1) in Gegenwart von Platinmohr (HARRIS, Am. Soc. 51, 2591). — Kp<sub>760</sub>: 168—170°. D<sub>4</sub>: 0,7837. n<sub>D</sub><sup>25</sup>: 1,4321.

12. 1.2 - Dimethyl - 3 - isopropyl - cyclopentan  $C_{10}H_{20} = H_2C - CH_2 - CH_2 - CH_3 + CH(CH_3)_2$ . Zur Konstitution vgl. Kasansky, B. 62, 2205; Richter. WOLFF, PRESTING, B. 64 [1931], 873. Der von Kishner (3K. 44, 1762; C. 1913 I, 706) beschriebene Kohlenwasserstoff C<sub>10</sub>H<sub>20</sub> vom Siedepunkt 161—163° (vgl. E I 5, 24) ist als 1.2-Dimethyl-3-isopropyl-cyclopentan aufzufassen (KA., B. 62, 2205, 2210).— B. Beim Überleiten von Thujan im Wasserstoffstrom über Palladium-Kohle bei 160—162° (Zelinsky, Kasansky. B. 60, 1098). Aus dem aus Thujylxanthogensäuremethylester erhaltenen Gemisch von  $\alpha$ - und  $\beta$ -Thujen (vgl. H 5, 142) beim Überleiten über Palladium-Asbest und Palladiumα- und β-Thujen (vgl. H 5, 142) beim Überleiten über Palladium-Asbest und Palladium-Kohle im Wasserstoffstrom bei 155° oder beim Überleiten über Palladium-Asbest im Kohlensäurestrom bei 197—200° (Z., Ka.). Aus dem bei der Dehydratisierung von 1.2-Dimethyl-3-isopropyl-cyclopentanol-(2) mit Oxalsäure in siedendem Alkohol erhaltenen Kohlenwasserstoff-Gemisch durch Hydrierung über Nickel bei 160—170° (Kasanski, B. 62, 2208). Durch Destillation von Thujamenthon-hydrazon (Syst. Nr. 613) über Kaliumhydroxyd und platiniertem Ton (Ka.). — Kp<sub>75</sub>: 159—160,5° (Ka.); Kp<sub>77</sub>: 160—162° (Z., Ka.). D<sup>∞</sup><sub>1</sub>: 0,7903 (Z., Ka.); D<sup>∞</sup><sub>1</sub>: 1,433° (Z., Ka.). — Reagiert nicht mit Brom, alkel Permanganat Lösung oder Salnetarschwefelsüus (Z. Ka.). Ka.) Uppläsilish in reausban alkal. Permanganat-Lösung oder Salpeterschwefelsäure (Z., KA.; KA.). Unlöslich in rauchender Schwefelsäure (mit 7% SO<sub>3</sub>) (Z., KA.).

,1.2-Dimethyl-3-isopropyl-cyclopentan vom Siedepunkt 148-1490" (E I 24). Die Einheitlichkeit und Konstitution des zuerst von Godchot, Taboury (C. r. 156, 472; Bl. [4] 13, 601) beschriebenen Kohlenwasserstoffs ist ungewiß (Kasansky, B. 62, 2205; vgl. Richter, Wolff, Presting, B. 64 [1931], 873). — B. Bei der Hydrierung von Thujamenthon (Syst. Nr. 613) in Gegenwart von Nickel bei 280° (Godchot, C. r. 172, 686). — Kp:  $148-149^{\circ}$ . D<sup>18</sup>: 0,793. n<sup>18</sup>: 1,4364.

13. 1.1.2-Trimethyl-5-äthyl-cyclopentan  $C_{10}H_{20} = \frac{H_2C \cdot CH(CH_3)}{H_2C \cdot CH(C_2H_5)} C(CH_3)_2$ .

5°-Chlor-1.1.2-trimethyl-5-äthyl-cyclopentan, 1.1.2-Trimethyl-5- $[\beta$ -chlor-äthyl]-lopentan, Dihydro- $\alpha$ -camphylchlorid  $C_{10}H_{19}Cl = H_2C - CH(CH_3) C(CH_3) C(CH_3)$ cyclopentan, Dihydro- $\alpha$ -camphylchlorid  $C_{10}H_{19}Cl=$ Neben Benzontril beim Erwärmen von N-Benzoyl-dihydro-α-camphylamin (Syst. Nr. 1594) mit 1 Mol Phosphorpentachlorid auf dem Wasserbad und folgende Destillation des entstandenen Imidehlorids unter 100 mm Druck (v. Braun, Kröper, Reinhardt, B. 62, 1306). — Kp<sub>12</sub>: 88°. D<sup>6</sup>.: 0,9983. [α]<sup>6</sup>.: +46,65° (unverdünnt). — Gibt bei der Einw. von Natriumjodid in Aceton Dihydro-α-camphyljodid.

- 5²-Brom-1.1.2-trimethyl-5-äthyl-cyclopentan, 1.1.2-Trimethyl-5- $[\beta$ -brom-äthyl]-cyclopentan, Dihydro- $\alpha$ -camphylbromid  $C_{10}H_{19}Br = \begin{array}{c} H_1C & CH(CH_3) \\ H_2C & CH(CH_3) \\ \end{array}$  C(CH<sub>3</sub>)<sub>2</sub>.

  B. Beim Erhitzen von  $\beta$ -[2.2.3-Trimethyl-cyclopentyl]-äthylalkohol (Syst. Nr. 503) mit 66% iger Bromwasserstoffsäure auf 125° (v. Braun, Heymons, B. 61, 2278). Gelbliche Flüssigkeit von schwachem Geruch. Kp<sub>12</sub>: 102°. Bei der Einw. von Trimethylamin in Benzol bei 100° entsteht Trimethyl-[dihydro- $\alpha$ -camphyl]-ammoniumbromid.
- 5²-Jod-1.1.2-trimethyl-5-äthyl-cyclopentan, 1.1.2-Trimethyl-5- $[\beta$ -jod-äthyl]-cyclopentan, Dihydro- $\alpha$ -camphyljodid  $C_{10}H_{10}I = \frac{H_2C-CH(CH_3)}{H_2C\cdot CH(CH_2\cdot CH_2I)}C(CH_3)_2$ . B. Aus Dihydro- $\alpha$ -camphylchlorid und Natriumjodid in Aceton (v. Braun, Kröper, Reinhardt, B. 62, 1306). Kp<sub>18</sub>: 115—120°. D<sub>1</sub>°: 1,0051. [ $\alpha$ ]<sub>0</sub>°: +44,72° (unverdünnt).
  - 14. 1.1.2.2.3-Pentamethyl-cyclopentan  $C_{10}H_{20} = \frac{CH_3 \cdot HC \cdot C(CH_3)_2}{H_2C CH_2} \cdot C(CH_3)_2$ .
- 1¹-Brom-1.1.2.2.3-pentamethyl-cyclopentan, 1.2.2.3-Tetramethyl-1-brommethyl-cyclopentan ("Campholbrommethan")  $C_{10}H_{19}Br = \frac{CH_3 \cdot HC \cdot C(CH_3)_2}{H_2C CH_2}C(CH_3) \cdot CH_2Br$ .

  B. Beim Erhitzen von [1.2.2.3-Tetramethyl-cyclopentyl-(1)]-carbinol mit einer gesättigten Lösung von Bromwasserstoff in Eisessig im Rohr auf dem Wasserbad (Rupe, Fehlmann, Helv. 9, 81). Öl von etwas unangenehmem, starkem Geruch. Kp<sub>9</sub>: 94—95°. Zersetzt sich leicht an der Luft und am Licht. Spaltet bei der Destillation unter Atmosphärendruck fast vollständig Bromwasserstoffsäure ab. Gibt bei der Einw. von Magnesium in absol. Äther ein Gemisch des Kohlenwasserstoffs  $C_{10}H_{18}$  (Syst. Nr. 453), mit einem nicht näher beschriebenen Kohlenwasserstoff  $C_{10}H_{20}$  sowie α.β-Bis-[1.2.2.3-tetramethyl-cyclopentyl-(1)]-äthan. Bei 20-stdg. Erhitzen mit Anilin im Rohr auf 150° erhält man 1.2.2.3-Tetramethyl-1-anilinomethyl-cyclopentan und den Kohlenwasserstoff  $C_{10}H_{18}$ .
- 15. Kohlenwasserstoff  $C_{10}H_{20}$  vom Kp: 161—163° (E I 24). Der von Kishner ( $\mathfrak{R}$ . 44, 1762; C. 1913 I, 706) aus Thujanhydrobromid erhaltene Kohlenwasserstoff wird als 1.2-Dimethyl-3-isopropyl-cyclopentan erkannt (Kasansky, B. 62, 2205, 2210).
- 16.  $\alpha$ -Dekanaphthen  $C_{10}H_{20}$  (H 55). V. Im galizischen Erdöl (Skowronski, Metan 2, 112; C. 1920 II, 655). In neuseeländischem Erdöl (Easterfield, McClelland, J. Soc. chem. Ind. 42, 937 R; C. 1924 I, 2847). Kp:  $162-164^{\circ}$  (Sk.),  $160-163^{\circ}$  (Ea., McC.). D<sup>15.5</sup>: 0,7884 (Ea., McC.). Lichtabsorption im Ultrarot zwischen 1 und 15  $\mu$ : W. W. Coblentz. Investigations of Infra-red Spectra [Washington], S. 73, 149, 225; vgl. Bonino, G. 53, 582; 54, 477.
- 17.  $\beta$ -Dekanaphthen  $C_{10}H_{20}$  (H 56). V. Im galizischen Erdöl (Skowronski, Metan 2, 79, 115; C. 1920 II, 655). In schwedischem Generatorschieferöl (Hellsing, Troedsson, Ark. Kemi 9, Nr. 22, S. 1; C. 1926 I, 2064). Kp: 166—168 $^{\circ}$  (Sk.).
- 18. Kohlenwasserstoff  $C_{10}H_{20}$  unbekannter Konstitution vom Kp: 162—165°. B. Neben dem Kohlenwasserstoff  $C_{10}H_{20}$  vom Siedepunkt 168—171° beim Behandeln der Verbindung  $C_{10}H_{19}I$  (s. u.) mit Zinkstaub in verd. Alkohol (Zelinsky, Rjachina, B. 57. 1935). Kp: 162—165°.  $D_{10}^{\infty}$ : 0,7872.  $n_{10}^{\infty}$ : 1,4315.
- 19. Kohlenwasserstoff  $C_{10}H_{10}$  unbekannter Konstitution vom Kp: 168—171°. B. Neben dem Kohlenwasserstoff  $C_{10}H_{10}$  vom Siedepunkt 162—165° beim Behandeln der Verbindung  $C_{10}H_{10}I$  (s. u.) mit Zinkstaub in verd. Alkohol (Zelinsky, Rjachina, B. 57, 1935). Kp: 168—171°.  $D_1^{n}$ : 0,7891.  $n_1^{n}$ : 1,4330.
  - 20. Derivat eines Kohlenwasserstoffs C10H20 unbekannter Konstitution.

Jodderivat  $C_{10}H_{19}I$ . B. Beim Behandeln des cyclischen Alkohols  $C_{10}H_{20}O$  vom  $Kp_{20}$ : 111—113° (Syst. Nr. 503) mit Jod und amorphem Phosphor (Zelinsky, Rjachina, B. 57, 1935). —  $Kp_{22}$ : 128—130°. — Liefert beim Behandeln mit Zinkstaub in verd. Alkohol die Kohlenwasserstoffe  $C_{10}H_{20}$  vom Siedepunkt 162—165° und 168—171° (s. oben).

### 9. Kohlenwasserstoffe C11H22.

- 1. Pentylcyclohexan, n-Amylcyclohexan, 1-Cyclohexyl-pentan  $C_{11}H_{22} = H_2C < \frac{CH_2 \cdot CH_2}{CH_3 \cdot CH_2} > CH \cdot [CH_2]_4 \cdot CH_3$ . B. Bei der Hydrierung von n-Amyl-benzol in Eisessig in Gegenwart von Platinoxyd (Stratford, Ann. Off. Combust. liq. 4, 98, 324; C. 1929 II, 1286). Kp: 194,5—198° (St.); Kp: 199° (unkorr.); Kp<sub>16</sub>: 84—85° (Bourguel, Bl. [4] 41, 1476).  $D_4^{u_1}$ : 0,8160 (St.);  $D_2^{u_2}$ : 0,802 (B.).  $n_1^{u_2}$ : 1,4466 (St.);  $n_2^{u_3}$ : 1,444 (B.). Liefert beim Erhitzen in Gegenwart von Aluminiumchlorid Butan, Methylcyclohexan und ein Gemisch von Tetramethyl- und Pentamethyl-cyclohexanen (Grignard, Stratford, C. r. 178, 2151; St., Ann. Off. Combust. liq. 4, 341).
- [ $\varepsilon$ -Brom-pentyl]-cyclohexan, 5-Brom-1-cyclohexyl-pentan,  $\varepsilon$ -Cyclohexyl-pentylbromid  $C_{11}H_{21}Br = C_{\varepsilon}H_{11} \cdot [CH_{2}]_{\varepsilon} \cdot CH_{2}Br$ . B. Aus  $\varepsilon$ -Cyclohexyl-pentylalkohol und Phosphortribromid bei  $0^{\circ}$  bis  $-5^{\circ}$ , zuletzt bei  $100^{\circ}$  (Hiers, Adams, Am. Soc. 48, 2389).  $Kp_{5}$ : 113—114°.  $D_{\varepsilon}^{4}$ : 1,1198.  $n_{\varepsilon}^{5}$ : 1,4814.
- 2. Isoamylcyclohexan, 2 Methyl 4 cyclohexyl butan  $C_{11}H_{12} = H_2C < \frac{CH_2 \cdot CH_2}{CH_2 \cdot CH_2} > CH \cdot CH_2 \cdot CH(CH_3)_2$ . B. Bei der Hydrierung von Isoamylbenzol in Eisessig in Gegenwart von Platinoxyd (Stratford, Ann. Off. Combust. liq. 4, 98, 324; C. 1929 II, 1286). Kp: 190—194°;  $D_4^{u_1}$ : 0,8136;  $n_5^{u_1}$ : 1,4477 (St.). Gibt beim Erhitzen in Gegenwart von Aluminiumchlorid Butan, Methylcyclohexan und ein Gemisch von Tetramethyl- und Pentamethyl-cyclohexanen (Grignard, Stratford, C. r. 178, 2151; St., Ann. Off. Combust. liq. 4, 342).
- 3. 1.2.3 Trimethyl 4 isopropyl cyclopentan  $C_{11}H_{12} = CH_3 \cdot HC \cdot CH(CH_3)$  CH · CH<sub>3</sub>. B. Bei der Einw. von Methylmagnesiumjodid auf (CH<sub>3</sub>)<sub>2</sub>CH · HC CH<sub>3</sub>. Thujamenthon und folgenden Hydrierung des erhaltenen Gemisches der 1.2.3-Trimethyl-4-isopropyl-cyclopentene in Gegenwart von Nickel bei 180° (Godchot, C. r. 172, 687). Flüssigkeit von terpenartigem Geruch. Kp: 157—158°. D<sup>13</sup>: 0,7833. n<sup>3</sup>: 1,4326.
- 4. Undecanaphthen, Hendekanaphthen  $C_{11}H_{22}=C_{10}H_{19}\cdot CH_3$  (vgl. H 57). B. Durch Reduktion von  $\omega$ -Chlor-undecanaphthen mit Natrium und absol. Alkohol unter Erwärmen (Komppa, B. 62, 1569). Leicht bewegliche Flüssigkeit von petroleumartigem Geruch.  $Kp_{764,5}$ : 183,5—184,5°.  $D_{\bullet}^{\infty}$ : 0,8128.  $n_{\infty}^{\infty}$ : 1,446;  $n_{\infty}^{\infty}$ : 1,4483;  $n_{\overline{0}}^{\infty}$ : 1,4543;  $n_{\overline{0}}^{\infty}$ : 1,4594.
- ω-Chlor-undecanaphthen  $C_{11}H_{21}Cl = C_{10}H_{10}$ ·CH<sub>2</sub>Cl. B. Aus dem Undecanaphthenol  $C_{11}H_{22}O$  vom Siedepunkt 236,5—237,5° (Syst. Nr. 504) und Phosphorpentachlorid in Phosphoroxychlorid in der Wärme (ΚΟΜΡΡΑ, B. 62, 1569). Leicht bewegliche Flüssigkeit von petroleumartigem Geruch. Kp<sub>7</sub>: 74—78°. D<sub>4</sub>°: 0,8932.
- 5. Kohlenwasserstoff  $C_{11}H_{22}$  aus neuseeländischem Petroleum. Kp: 179° bis 182°;  $D^{15.5}$ : 0,7987 (Easterfield, McClelland, J. Soc. chem. Ind. 42, 937 R; C. 1924 I, 2847).
- 6. Kohlenwasserstoff  $C_{11}H_{22}$  aus Asphalt. B. Durch Extraktion des Asphalts von Nord-Alberta mit Petroläther (Krieble, Seyer, Am. Soc. 43, 1345).  $Kp_{10}$ : 75—80°.  $D^{20}$ : 0,8186.  $n_D^{80.5}$ : 1,4450.

# 10. Kohlenwasserstoffe $\mathrm{C_{12}H_{24}}$ .

- 1. n Hexylcyclohexan, 1 Cyclohexyl hexan  $C_{12}H_{24} = H_2C < \frac{CH_2 \cdot CH_2}{CH_2 \cdot CH_3} > CH \cdot [CH_2]_5 \cdot CH_3$ . Kp: 221° (unkorr.); Kp<sub>16</sub>: 102° (Bourguel, Bl. [4] 41, 1476). D<sup>20</sup>: 0,806;  $n_0^{20}$ : 1,446 (B.).
- [ $\zeta$ -Brom-n-hexyl]-cyclohexan, 6-Brom-1-cyclohexyl-hexan,  $\zeta$ -Cyclohexyl-n-hexylbromid  $C_{19}H_{23}Br=C_6H_{11}\cdot [CH_2]_5\cdot CH_2Br$ . B. Aus  $\zeta$ -Cyclohexyl-n-hexylalkohol und Phosphortribromid bei  $0^0$  bis  $-5^0$ , zuletzt bei  $100^0$  (HIERS, ADAMS, Am. Soc. 48, 2389). Kp<sub>4</sub>: 124—125°. D<sub>4</sub><sup>2</sup>: 1,1073. n<sub>5</sub><sup>2</sup>: 1,4802.
- 2. Kohlenwasserstoff C<sub>13</sub>H<sub>24</sub> aus neuseeländischem Petroleum. Kp: 196—198°; D<sup>15,5</sup>: 0,8042 (Easterfield, McClelland, J. Soc. chem. Ind. 42, 937 R; C. 1924 I, 2847).
- 3. Kohlenwasserstoff  $C_{12}H_{24}$  aus Ohio-Petroleum. Kp<sub>30</sub>: 111—113°. Lightabsorption im Ultrarot zwischen 1 und 15  $\mu$ : W. W. Coblentz, Investigations of Infra-red Spectra [Washington 1905], S. 73, 151, 226; vgl. Bonino, G. 53, 582; 54, 478.

- 4. Kohlenwasserstoff C<sub>12</sub>H<sub>24</sub> aus Asphalt. B. Durch Extraktion des Asphalts von Nord-Alberta mit Petroläther (Krieble, Sei er, Am. Soc. 43, 1345). Kp<sub>10</sub>: 95—99°.  $D^{20}$ : 0,8395.  $n_D^{20,5}$ : 1,4580.  $\alpha_D$ : +0,140 (unverdunnt; l = 10 cm),
- 11. Kohlenwasserstoff  $C_{13}H_{26}$  aus Lignin. Das Mol.-Gew. wurde kryoskopisch in Cyclohexan bestimmt (Pictet, Gaulis, Helv. 6, 631). B. Bei der Destillation von Lignin aus Fichtenholz unter 5—25 mm Druck bei 350—390° (P., G.). Kp: 235—240°. D: 0,809. n<sub>p</sub>: 1,447.

### 12. Kohlenwasserstoffe $C_{15}H_{30}$ .

- 1. Cyclopentadecan  $C_{15}H_{30} = \frac{H_2C \cdot [CH_2]_6}{H_2C \cdot [CH_2]_6} CH_2$ . B. Bei 30-stdg. Erhitzen von Cyclopentadecanon-semicarbazon mit Natrium und Alkohol im Rohr auf 180—190° (RUZICKA, Mitarb., Helv. 9, 517). Nadeln (aus Methanol). F: 60—61°;  $D_1^{0.5}$ : 0,8364 (R., Mitarb.). Verbrennungswärme bei konstantem Volumen: 2344,7 kcal/Mol (Schläffer in *Landoll-Börnst*. E II, 1636). np. 1,4592 (R., Mitarb.). — Beständig beim Erhitzen mit Jodwasserstoffsäure (D: 1,96) und Phosphor im Rohr auf 2500 (R., Mitarb.).
- 2. 1-Methyl-4-[a.s-dimethyl-hexyl]-cyclohexan, 2-Methyl-6-[4-methyl- $\textit{cyclohexylj-heptan } C_{15}H_{30} = (CH_3)_2CH \cdot [CH_2]_3 \cdot CH(CH_3) \cdot HC < \begin{matrix} CH_2 \cdot CH_2 \\ CH_3 \cdot CH_3 \end{matrix} > CH \cdot CH_3.$
- a) Linksdrehende Form, Hexahydrozingiberen  $C_{15}H_{30}=(CH_3)_2CH\cdot[CH_2]_3\cdot CH(CH_3)\cdot HC < CH_2\cdot CH_2 > CH\cdot CH_3$  (E I 27). Zur Konstitution vgl. Ruzicka, van Veen, A. 468, 143.  $D_1^{\infty}$ : 0,829;  $n_1^{\infty}$ : 1,4567 (R., van V., A. 468, 153). Bei der Dehydrierung in Gegenwart von Palladiumkohle bei 345—3600 entsteht ein Produkt, and the control of the contro das bei der Oxydation mit Chromschwefelsäure Terephthalsäure, Oxalsäure und Essigsäure gibt.
- b) Optisch-inaktive Form. Hexahydrobisabolen  $C_{15}H_{30} = (CH_3)_2CH \cdot [CH_2]_3 \cdot CH(CH_3) \cdot HC < \begin{array}{c} CH_2 \cdot CH_2 \\ CH_2 \cdot CH_2 \end{array} > CH \cdot CH_3 \ (E \ I \ 27). B. Bei der Hydrierung von Tetrahydrobisabolen in Eisessig bei Gegenwart von Platinoxyd (Ruzicka, Van Veen, A. 2003) and Charles of the contraction of the$ 468, 141). Entsteht auch aus natürlichem Bisabolen und Wasserstoff in Eisessig bei Gegenwart von Platinoxyd (R., van V., A. 468, 135). — Kp<sub>15</sub>: etwa 125°. D<sub>4</sub>": 0,828.
- 2.6-Dichlor-2-methyl-6-[4-chlor-4-methyl-cyclohexyl]-heptan, Bisabolen-trishydrochlorid  $C_{15}H_{27}Cl_3 = (CH_3)_2CCl\cdot [CH_2]_3\cdot CCl(CH_3)\cdot HC < \begin{array}{c} CH_2\cdot CH_2 \\ CH_2 \end{array} > CCl\cdot CH_3 & (H_5)_2 \\ CH_3 \cdot C$ EI 27). Zur Konstitution vgl. Ruzicka, Capato, Helv. 8, 259; R., van Veen, A. 468, 133. — B. Beim Behandeln von Bisabolol (Syst. Nr. 510) mit Chlorwasserstoff in Äther bei 0° (RUZICKA, CAPATO, Helv. 8, 268, 271). — Blättchen (aus Methanol), Prismen (aus Alkohol). F: 79—80° (Ru., C.; Rao, Shintre, Simonsen, J. indian Inst. Sci. [A] 9, 147; C. 1927 I, 654), 79,5—80° (Penfold, Simonsen, J. Pr. Soc. N. S. Wales 59, 154).

Bisabolen - hexabromid C<sub>15</sub>H<sub>24</sub>Br<sub>6</sub> (H 60). B. Aus Bisabolen (aus äther. Öl von Daucus carota) und Brom in Äther in Gegenwart von wasserfreiem Natriumacetat unter Eiskühlung, neben zwei Isomeren vom Schmelzpunkt 142° und 130—132° (ASAHINA, TSUKAMOTO, J. pharm. Soc. Japan 1926, 98; C. 1927 I, 1843). — Krystalle (aus Aceton). F: 154°.

- 3. 1.1 Dimethyl 4 isopropyl 2 sek. butyl cyclohexan  $(\mathrm{CH_3})_2\mathrm{CH} \cdot \mathrm{HC} < \!\!\! < \!\!\! \overset{\mathrm{CH_2 \cdot CH[CH(CH_3)(C_2H_5)]}}{\mathrm{CH_2}} \!\!\! > \!\!\!\! < \!\!\! \overset{\mathrm{C}}{\mathrm{CH_3}} \!\!\! > \!\!\! > \!\!\! > \!\!\! \overset{\mathrm{C}}{\mathrm{CH_3}} \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\! > \!\!\!$
- 1.1 Dimethyl 4 [ $\alpha$  chlor isopropyl] 2-sek. butyl-cyclohexan (?), Tetrahydroelemylchlorid  $C_{15}H_{29}Cl = (CH_3)_2CCl \cdot HC < \begin{array}{c} CH_2 \cdot CH[CH(CH_3)(C_2H_5)] \\ CH_2 & CH_2 \end{array} > C(CH_3)_2(?)$ . B. Beim Stehenlassen einer mit Chlorwasserstoff gesättigten Lösung von Tetrahydroelemol (Syst. Nr. 504) in absol. Äther bei 0° (RUZICKA, VAN VEEN, A. 476, 105). — Flüssigkeit. — Beim Erhitzen mit methylalkoholischer Kalilauge oder mit Anilin entsteht Tetrahydroelemen.
- 1.3 Diisoamyl cyclopentan  $C_{15}H_{30} =$

 $(CH_3)_2CH \cdot CH_2 \cdot CH_3 \cdot CH_3 \cdot B. \text{ Aus 3-Isoamyl-1-} [\gamma.\gamma-\text{dimethyl-}]$ H<sub>2</sub>C·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>(CH<sub>3</sub>)<sub>2</sub>. B. Aus observed Wieland, B. allyl]-cyclopentan und Wasserstoff in Eisessig bei Gegenwart von Platinoxyd (Wieland, B. 59, 2354). Aus Dihydrohumulinsäure OC CH[CO·CH<sub>2</sub>·CH(CH<sub>3</sub>)<sub>2</sub>]·CO (Syst. Nr. 797)</sub>

durch Hydrierung in Eisessig bei Gegenwart von Platinoxyd oder, neben 1.3-Diisoamylcyclopentandion (2.4), durch Reduktion mit amalgamiertem Zink und alkoholisch-wäßriger Salzsäure unter Einleiten von Chlorwasserstoff und Erwärmen (W.). — Fast geruchloses Öl. Kp11: 110-1120.

5. Kohlenwasserstoff  $C_{15}H_{30}$  vom  $Kp_{50}$ : 158—160° aus kalifornischem Petroleum. Lichtabsorption im Ultrarot zwischen 1 und 15  $\mu$ : W. W. Coblentz, Investigations of infra-red spectra [Washington 1905], S. 73, 149, 225; vgl. Bonino, G. 53, §82: 54, 479.

# 13. Kohlenwasserstoff $C_{16}H_{32}$ .

- 1. Cyclohexadecan  $C_{16}H_{32} = H_2C < [CH_2]_7 > CH_2$ . B. Neben anderen Produkten beim Kochen von Cyclohexadecandion-(1.9) mit amalgamiertem Zink und Salzsäure (Ruzicka, Mitarb., Helv. 11, 502). Nadeln (aus Methanol). F: 61°.
- 2. Methylcyclopentadecan  $C_{16}H_{32} = \frac{H_2C \cdot [CH_2]_6}{H_2C \cdot [CH_2]_6} CH \cdot CH_3$ . B. Bei der Reduktion von 1-Methyl-cyclopentadecen-(1) mit Wasserstoff in Essigester in Gegenwart von Platinschwarz (Ruzicka, Schinz, Pfeiffer, Helv. 11, 700). Beim Kochen von Muscon (Syst. Nr. 614) mit amalgamiertem Zink und konz. Salzsäure unter Einleiten von Chlorwasserstoff (R., Helv. 9, 1014). — F: —19,5° (R.). Kp<sub>12</sub>: 147—148° (R., Sch., Pf.). D<sup>1</sup><sub>4</sub>: 0,8628 (R.); D<sup>2</sup><sub>4</sub>: 0,8576 (R., Sch., Pf.). n<sup>1</sup><sub>5</sub>: 1,4776 (R.); n<sup>1</sup><sub>5</sub>: 1,4735 (R., Sch., Pf.). Beugung von Röntgenstrahlen: Katz, Selman, Z. Phys. 46, 400; C. 1928 I, 1743.
- 3. Kohlenwasserstoff  $C_{16}H_{32}$  vom  $Kp_{30}$ : 164—168° aus Ohio-Petroleum. Lichtabsorption im Ultrarot zwischen 1 und 15 $\mu$ : W. W. Coblentz, Investigations of Infra-red Spectra [Washington 1905], S. 73, 151, 226; vgl. Bonino, G. 53, 582.
- 4. Kohlenwasserstoff C<sub>16</sub>H<sub>32</sub> aus Steinkohle (EI28). Der von Pictet (A.ch. [9] 10, 266) beschriebene Kohlenwasserstoff C<sub>16</sub>H<sub>32</sub> wird als Kohlenwasserstoff C<sub>16</sub>H<sub>30</sub> (S. 76) erkannt (Pictet, Gaulis, Helv. 6, 632).
- 14. Cycloheptadecan, Dihydrozibetan  $C_{17}H_{34} = \frac{H_2C \cdot [CH_2]_7}{H_2C \cdot [CH_2]_7}CH_2$ . B. Bei 30-stdg. Erhitzen von Dihydrozibeton-semicarbazon (Syst. Nr. 614) mit Natrium und Alkohol im Bohr auf 180—1909 (Brazzer). Miscala Hali C 527) im Rohr auf 180-1900 (Ruzicka, Mitarb., Helv. 9, 517). In geringer Menge neben Zibetan beim Kochen von Zibeton (Syst. Nr. 619) mit amalgamiertem Zink und 20 %iger Salzsäure unter Einleiten von Chlorwasserstoff (Ruzicka, Schinz, Seidel, Helv. 10, 699). — Nadeln (aus Methanol). F: 65° (R., Sch., Sei). D<sub>4</sub><sup>n.5</sup>: 0,8239; n<sub>5</sub><sup>n.5</sup>: 1,4540 (R., Mitarb.). Verbrennungswärme bei konstantem Volumen: 2659,5 kcal/Mol (Schläpfer in Landolt-Börnst. E II, 1636).

 $\begin{aligned} \textbf{Bromeyeloheptadecan, Cycloheptadecylbromid}} & & \textbf{C}_{17}\textbf{H}_{33}\textbf{Br} = \frac{\textbf{H}_{2}\textbf{C}\cdot[\textbf{CH}_{2}]_{7}}{\textbf{H}_{2}\textbf{C}\cdot[\textbf{CH}_{2}]_{7}} \textbf{CHBr.} \end{aligned}$ 

B. Bei der Einw. von Phosphortribromid auf Dihydrozibetol (Syst. Nr. 504) in Benzol, neben Zibetan (Ruzicka, Schinz, Seidel, Helv. 10, 700). — Öl. Wurde nicht ganz rein erhalten. Kp<sub>0,5</sub>: 150—160°. — Gibt beim Kochen mit 25% iger alkoholischer Kalilauge Zibetan.

# 15. Kohlenwasserstoffe $C_{18}H_{36}$ .

- 1. Cyclooctadecan  $C_{18}H_{36} = \frac{H_2C \cdot [CH_2]_7 \cdot CH_2}{H_2C \cdot [CH_2]_7 \cdot CH_2}$ . B. Neben wenig Cyclooctadecanon beim Kochen von Cyclooctadecandion (1.10) mit amalgamiertem Zink und konz. Salzsäure (Ruzicka, Mitarb., *Helv.* 11, 507). Entsteht analog durch Reduktion von Cyclooctadecanon (R., Mitarb.). — Nadeln (aus Methanol). F: 72°. Löslich in Petroläther.
- 2. Kohlenwasserstoff  $C_{18}H_{26}$  vom  $Kp_{50}$ : 166—170° aus pennsylvanischem Petroleum. Lichtabsorption im Ultrarot zwischen 1 und 15 $\mu$ : W. W. Coblentz, Investigation gations of Infra-red Spectra [Washington 1905], S. 73, 151, 159, 163, 227, 228.
- 16.  $1-[\delta-Methyl-pentyl]-4-[\alpha.\varepsilon-dimethyl-hexyl]-cyclohexan, Okta$ hydro- $\alpha$ -camphoren  $C_{20}H_{40}=$   $(CH_3)_2CH\cdot [CH_2]_3\cdot CH(CH_3)\cdot HC < \begin{array}{c} CH_2\cdot CH_2 \\ CH_2\cdot CH_2 \end{array} > CH(CH_2)_3\cdot CH(CH_3)_2 \quad (E \ 1 \ 29). \quad Zur \quad Konstinuo CH_3 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_3 \cdot CH(CH_3)_2 \quad (E \ 1 \ 29). \quad Zur \quad Konstinuo CH_3 \cdot CH(CH_3)_2 \cdot$

und 57% iger Schwefelsäure unter weiterem Zusatz von Braunstein, Eisessig und konz. Schwefelsäure Terephthalsäure, Mellophansäure und Pyromellitsäure.

- 17. Kohlenwasserstoff  $C_{24}H_{48}$  vom Kp<sub>50</sub>: 270—272° aus pennsylvanischem Petroleum. Lichtabsorption im Ultrarot zwischen 1 und 15  $\mu$ : W. W. Coblentz, Investigations of infra-red spectra [Washington 1905], S. 73, 151, 159, 227, 228.
- 18. Cyclotriakontan  $C_{30}H_{60}=\frac{H_2C\cdot[CH_2]_{13}\cdot CH_2}{H_2C\cdot[CH_2]_{13}\cdot CH_2}$ . B. Neben Cyclotriakontanon bei 18-stdg. Kochen von Cyclotriakontandion-(1.16) mit amalgamiertem Zink und Salzsäure unter weiterem Zusatz von konz. Salzsäure (Ruzicka, Mitarb., Helv. 11, 511). Blättchen (aus Essigester). F: 53—54°. Beständig gegen Erhitzen mit Jodwasserstoffsäure (D: 1,96) und rotem Phosphor auf 250°. [Kühn]

### 2. Kohlenwasserstoffe $C_n H_{2n-2}$ .

- 1. Cyclopropen C<sub>3</sub>H<sub>4</sub> =  $\frac{HC}{H^{\parallel}}$  CH<sub>2</sub> (H 61). Über das Cyclopropen von Freundler, C. r. 124, 1158; Bl. [3] 17, 611, 614 vgl. Demjanow, Dojarenko, B. 56, 2200. B. Beim Erhitzen von Trimethyleyclopropylammoniumhydroxyd in Gegenwart von platiniertem Ton auf ca. 300°, neben wenig Allylen (D., D.). Beim Behandeln von 1.2-Dibrom-cyclopropan mit Zinkstaub und 80% igem Alkohol bei 72—73° (D., D.). Gas von charakteristischem Geruch. Kondensiert sich bei Kühlung mit Äther-Kohlendioxyd-Schnee zu einer farblosen Flüssigkeit. Polymerisiert sich bei 270—290° über Aluminiumoxyd in einer Kohlendioxydatmosphäre. An der Luft, besonders im direkten Licht, erfolgt gleichzeitige Polymerisation und Oxydation unter Bildung einer gelblichen, dicken Flüssigkeit der Zusammensetzung C<sub>9</sub>H<sub>12</sub>O. Brennt mit stark leuchtender, rußender Flamme. Reagiert mit Brom explosionsartig unter Ruß-Abscheidung, bei Verdünnung mit Kohlendioxyd und unter Kühlung entstehen 1.2-Dibrom-cyclopropan und wenig 1.1.3.3-Tetrabrom-propan. Gibt beim Einleiten in alkoh. Jod-Lösung eine flüssige Jodverbindung, die beim Aufbewahren dunkel wird.
- 2. Methylencyclopropan  $C_4H_6=\frac{H_2C}{H_2C}C:CH_2$  (vgl. H 61; E I 29). B. In geringer Menge bei raschem Erhitzen von Trimethyl-[cyclopropyl-methyl]-ammoniumhydroxyd in Gegenwart von platiniertem Ton, neben anderen Produkten (Demjanow, Dojarenko, B. 56, 2209). Sehr unbeständig. Liefert beim Einleiten in Brom 1-Brom-1-brommethyl-cyclopropan und 1.2.2.4-Tetrabrom-butan(?).
- 3. Kohlenwasserstoffe  $C_5H_8$ .
- 1. Cyclopenten C<sub>5</sub>H<sub>8</sub> = H<sub>2</sub>C—CH
  H<sub>3</sub>C—CH<sub>3</sub>CH (H 61; E I 29). B. Neben anderen Produkten aus Bromcyclopentan beim Kochen mit Basen oder basisch reagierenden Stoffen, wie Kaliumcarbonat-Lösung, wäßr. Blei(II)-oxyd-Suspension, Natriumacetat-Lösung, Anilin usw. (Loevenich, Mitarb., B. 62, 3087). Entsteht neben wenig Dicyclopentyl beim Behandeln von Bromcyclopentan mit Natrium in Äther (Zelinsky, Titz, Fatejew, B. 59, 2581). Beim Leiten der Dämpfe von Tetrahydrodicyclopentadien oder Dihydrodicyclopentadien über eine glühende Platinspirale bei 75—80° unter 20 mm Druck, neben anderen Produkten (Staudinger, Rheiner, Helv. 7, 28). Aus Cyclopentanol bei der Einw. von p-Toluolsulfonsäure (Chavanne, Bl. Soc. chim. Belg. 31, 334; C. 1923 IV, 69). Beim Erhitzen von Cyclobutylcarbinol mit Aluminiumoxyd suf 415—430° (Dojarenko, Ж. 58, 31; B. 60, 1543). Bei der thermischen Zersetzung von 6.6-Diphenyl-bicyclo-[0.2.3]-heptanon-(7) oberhalb 200°, neben Diphenylketen (St., Rh.). Aus dem Phosphat des Aminomethylcyclobutans durch Destillation (Demjanow, Do., B. 55, 2727). Kp<sub>751</sub>: 43—44,2°; D°: 0,7876; D°: 0,7876;

n<sub>0</sub>: 1,4287 (Do.). Depolarisation von an flüssigem Cyclopenten gestreutem Licht: CABANNES, Granier, C. r. 182, 886. — Zur Oxydation mit Kaliumpermanganat zu niedrigschmelzendem Cyclopentandiol-(1.2) vgl. van Loon, Versl. Akad. Amsterdam 28, 214; C. 1920 I, 331; BÖESEKEN, R. 47, 685. Liefert bei der Oxydation mit Benzopersäure Cyclopentenoxyd (Maan, s. bei BÖESEKEN, R. 47, 689). Lagert bei der Einw. von Chlorharnstoff unterchlorige Säure an unter Bildung von 2-Chlor-cyclopentanol-(1) (GODCHOT, BEDOS, C. r. 182, 394). — Bestimmung durch Titration mit Brom: MENZIES, ROBINSON, Soc. 125, 2166.

Monomeres Cyclopentenozonid C<sub>5</sub>H<sub>8</sub>O<sub>3</sub> (H 62; E I 30). Zur Konstitution vgl. Staudinger, B. 58, 1089. — Die Lösung in Essigsäure liefert beim Schütteln mit Titan(III)-chlorid und Natriumacetat in Wasser bei 40° Glutardialdehyd (Menzies, Robinson, Soc. **125**, **2**166).

- 3-Chlor-cyclopenten-(1),  $\Delta^2$ -Cyclopentenylchlorid  $C_5H_7Cl = \frac{\text{ClHC} \cdot \text{CH}}{H_2C \cdot \text{CH}_2}$  CH (H 62).

  B. Zur Bildung aus Cyclopentadien und Chlorwasserstoff vgl. Noller, Adams, Am. Soc. 48, 2446; Perkins, Cruz, Am. Soc. 49, 519. Flüssigkeit, die bei —15° haltbar ist und sich bei Zimmertemperatur bald zersetzt (N., A.). Kp<sub>30</sub>: 25—31° (N., A.). Liefert mit trocknem Natriumphenolat in Toluol 2-[ $\Delta^2$ -Cyclopentenyl]-phenol, Phenol und Cyclopentadien (v. Braun, Kühf, B. 60, 2555). Gibt mit Ammoniumphedanid in Reproductive Toluol auf (v. Braun, Kühz, B. 60, 2555). Gibt mit Ammonium hodanid in Benzol oder Toluol auf dem Wasserbad  $\Delta^2$ -Cyclopentenylsenföl (v. B., K.). Liefert mit Methylamin in Benzol bei  $60^{\circ}$  Methyl- $\Delta^2$ -cyclopentenyl-amin und Methyl-di- $[\Delta^2$ -cyclopentenyl]-amin, mit Diäthylamin in Benzol Diäthyl-A<sup>2</sup>-cyclopentenyl-amin (v. B., K.). Gibt mit Phenylmagnesiumbromid in Ather  $\Delta^{2}$ -Cyclopentenyl-benzol (v. B., K.).
- 3.4-Dibrom-cyclopenten-(1)  $C_5H_6Br_2 = \frac{BrHC \cdot CH}{BrHC \cdot CH_2}CH$ . B. Entsteht im Gemisch mit trans- und wenig cis-3.5-Dibrom-cyclopenten-(1) durch Einw. von Brom auf Cyclopentadien in Hexan oder Chloroform in einer Kältemischung (Farmer, Scott, Soc. 1929, 177). — Fast farblose Flüssigkeit. D<sup>20</sup>: 1,8867. — Geht bei der Destillation unter teilweiser Zersetzung in trans- und überwiegend in cis-3.5-Dibrom-cyclopenten-(1) über. Liefert bei der Oxydation mit 5%iger neutraler Permanganat-Lösung ein wasserlösliches sirupöses Glykol, das sich bei der Destillation zersetzt und bei der Oxydation mit wäßr. Chromsäure wenig Meso-α.α'-dibrom-glutarsäure und andere saure Produkte gibt.
  - 3.5-Dibrom-cyclopenten-(1)  $C_5H_6Br_2 = \frac{BrHC-CH}{H_2C\cdot CHBr}CH$  (H 62).
- a) Flüssige Form, cis-3.5-Dibrom-cyclopenten-(1). B. In geringer Menge neben der trans-Form und 3.4-Dibrom-cyclopenten-(1) bei der Einw. von Brom auf Cyclopentadien in Hexan oder Chloroform in einer Kältemischung (Farmer, Scott, Soc. 1929, 177). Durch Destillation von 3.4-Dibrom-cyclopenten-(1), neben geringen Mengen der trans-Form (F., Sc.). — Kp<sub>5</sub>: 72°; Kp<sub>15</sub>: 82°. D<sup>20</sup>: 1,9198.
- b) Feste Form, trans-3.5-Dibrom-cyclopenten-(1). B. Siehe bei der cis-Form. F: 45—46° (F., Sc.).
- Methylencyclobutan über Aluminiumoxyd vgl. Dojarenko, B. 59, 2934; Ж. 58, 3. — Kp<sub>758</sub>: 38,5—40° (I.); Kp<sub>740</sub>: 36—38° (D.). — Liefert bei der Oxydation mit Kaliumpermanganat in Wasser + Aceton und dann mit Chromschwefelsäure Kohlendioxyd, Oxalsäure, Bernsteinsäure, Lävulinsäure und ein nicht näher untersuchtes Glykol C<sub>5</sub>H<sub>10</sub>O<sub>2</sub> vom Kp<sub>26</sub>: 110—120° (I.). Liefert mit Brom bei 10—20° 1.2-Dibrom-1-methyl-cyclobutan und ein Tribromid vom Kp<sub>18,5</sub>: 108—112° (D.).
- 3. Methylencyclobutan C<sub>5</sub>H<sub>6</sub> = H<sub>2</sub>C < CH<sub>2</sub> > C:CH<sub>2</sub> (H 62; E I 30). Zur Bildung nach Demjanow, Dojarenko, Ж. 49, 199; C. 1923 III, 746 vgl. noch De., Do., B. 55, 2728. Flüssigkeit von starkem allylartigem Geruch. Kp<sub>740</sub>: 40—41,5° (Do., B. 59, 2934). D<sub>4</sub>°: 0,7487 (De., Do.). Geht beim Leiten über Aluminiumoxyd bei 395—430° in Isopren, 2 Methyl byton (2). 3 Methyl byton (2). 2-Methly-buten-(1), 2-Methyl-buten-(2), 1-Methyl-cyclobuten-(1), p-Cymol und andere Produkte über (Do., B. 59, 2934; JK. 58, 3). Liefert mit unterchloriger Säure unter Kühlung 1-Chlormethyl-cyclobutanol-(1), geringe Mengen 1-Chlor-1-oxymethyl-cyclobutan und 1-Chlor-1-chlormethyl-cyclobutan (DE., Do.).

Verbindung  $C_5H_9$  Br $_3$  (vgl. das H 1, 139 beschriebene x-Tribrom-isopentan von Hell, Wildermann, B. 24, 221). B. Beim Einleiten des durch Erhitzen von Methylencyclobutan mit Aluminiumoxyd auf 395—430° gewonnenen Kohlenwasserstoffgemischs in Brom, neben

anderen Produkten (DOJARENKO, B. 59, 2938). — Dickflüssiges Öl.  $Kp_{12,5}$ : 107—109°.  $D_4^{\circ}$ : 2,0870;  $D_4^{\circ,5}$ : 2,0594;  $n_0^{\circ,5}$ : 1,561.

4. Vinyleyclopropan, Cyclopropyläthylen  $C_5H_8 = \frac{H_2C}{H_4C}CH \cdot CH : CH_2$ . B. Aus

Trimethyl-[ $\alpha$ -cyclopropyl-āthyl]-ammoniumhydroxyd durch Destillation, neben wenig Dimethyl-[ $\alpha$ -cyclopropyl-āthyl]-amin (Demjanow, Dojarenko, B. 55, 2720). — Leicht bewegliche Flüssigkeit von lauchartigem Geruch. Kp<sub>755</sub>: 40—40,2° (korr.). D°: 0,7415; D°: 0,7311; D°: 0,7260; D°: 0,723; n°: 1,4205; n°: 1,4172. — Wird durch 2%ige Permanganat-Lösung bei 0—5° zu Cyclopropylglykol, Ameisensäure und Cyclopropancarbonsäure oxydiert. Liefert mit Brom unter Kühlung [ $\alpha$ . $\beta$ -Dibrom-āthyl]-cyclopropan.

### 4. Kohlenwasserstoffe $C_6H_{10}$ .

1. Cyclohexen, Tetrahydrobenzol C<sub>6</sub>H<sub>10</sub> = H<sub>2</sub>C<CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>>CH (H 63; E I 31). V. Im Urteer aus indischen Steinkohlen (Rassow, Bhattacheryya, Brennstoffch. 7, 264; C. 1926 II, 2648). — B. Neben anderen Produkten aus Bromcyclohexan bei der Einw. bromabspaltender Stoffe, wie Kaliumcarbonat-Lösung, \(\beta\)-Naphthylamin, Natrium in Ather usw. (Loevenich, Mitarb., \(B\). 62, 3096), Phenylcyclohexylamin oder Dicyclohexylamin in Alkohol (Hiers, Adams, \(Am\). Soc. 49, 1103) oder Phthalimidkalium (Ing, Manske, Soc. 1926, 2349). Bei der Einw. von Magnesium auf 1.2-Dibrom-cyclohexan in Ather (Hofmann, Damm, \(Mitt.\) Kohlenforschungsinst. Breslau 2, 110; \(C\). 1926 I, 2343). Aus Cyclohexanol beim Leiten über Kupfer, das durch Reduktion von gefälltem Kupfer(II)hydroxyd mit Wasserstoff dargestellt wurde, bei 330° (HARA, Mem. Coll. Sci. Kyoto [A] 9, 415; C. 1926 II, 2658), beim Leiten über japanische saure Erde bei 200° (INOUE, Bl. chem. Soc. Japan 1, 220; C. 1927 I, 690), beim Kochen mit Frankonit (Chem. Fabr. Schering, Freund, D. R. P. 451535; C. 1928 I, 411; Frdl. 16, 716), beim Kochen mit rauchender Salzsäure, neben überwiegenden Mengen Cyclohexylchlorid (MAYES, TURNER, Soc. 1929, 502), bei der Destillation mit krystallisierter Orthophosphorsäure (BODROUX, A. ch. [10] 11, 515) oder bei der Einw. von Phosphortrichlorid in der Wärme (OSTERBERG, KENDALL, Am. Soc. 42, 2620). Zur Bildung aus Cyclohexanol durch Destillation mit Schwefelsäure und Disulfaten vgl. SENDERENS, C. r. 177, 1183; 187, 1103; O., K.; zur Bildung aus Cyclohexanol durch Erhitzen mit verschiedenen Katalysatoren vgl. LACOURT. Bl. Soc. chim. Belg. 36, 347; C. 1927 II, 923. Aus Hexahydroanisol oder Hexahydrophenetol durch Erhitzen mit wasserfreier Oxalsäure auf 150—160° (WASER, SANDER, Helv. 8, 108). Aus Cyclohexyl-phenyl-äther bei längerem Erhitzen auf 373—377°, neben Phenol, 2-Cyclo-Aus Cyclohexyl-phenyl-āther bei längerem Erhitzen auf 373—377°, neben Phenol, 2-Cyclohexyl-phenol und anderen Produkten (Skraup, Beifuss, B. 60, 1073). In geringer Menge neben anderen Produkten beim Erhitzen von Cyclohexanon auf 250—300° in Gegenwart von unglasierten Tonscherben (Treibs, B. 61, 684). — Darstellung durch Destillation von Cyclohexanol mit konz. Schwefelsäure: Coleman, Johnstone, Org. Synth., Coll. Vol. I, S. 177; Deutsche Ausgabe, S. 176; vgl. Hershberg, Ruhoff, Org. Synth. 17 [1937], 27. E:—103,7° (Timmermans, Bl. Soc. chim. Belg. 30, 65; C. 1921 III, 288), —97° (Lecat, s. bei Tl.). Kp<sub>763</sub>: 84° (Nametrin, Ж. 55, 59; C. 1925 I, 222); Kp<sub>760</sub>: 83,25 ± 0.1° (Tl.), 82,75° (L., Ann. Soc. scient. Bruxelles 49 [1929], 19); Kp<sub>765</sub>: 82,8° (Waterman, van Westen, R. 48, 639). D<sup>®</sup><sub>1</sub>: 0,8112 (N.). Viscosität bei 20°: Vorländer, Walter, Ph. Ch. 118, 16. Verdampfungswärme bei 81,60°: 88,70 cal/g (Mathews, Am. Soc. 48, 572). Verbrennungswärme bei konstantem Druck: 898,8 kcal/Mol (Konowalow, J. Chim. phys. 23, 361; C. r. 183, 41). n<sup>®</sup><sub>1</sub>: 1,4469 (N.); n<sup>®</sup><sub>2</sub>: 1,44360; n<sup>®</sup><sub>2</sub>: 1,44637; n<sup>®</sup><sub>3</sub>: 1,45312; n<sup>®</sup><sub>7</sub>: 1,45874 (W., van W.): n<sup>©</sup><sub>2</sub>: 1,4630 (Voellmy, Ph. Ch. 127, 344). Refraktionsdispersion: Moutte, Chim. VAN W.); ny.: 1,4630 (VOELLMY, Ph. Ch. 127, 344). Refraktionsdispersion: MOUTTE, Chim. VAN W.); n.;": 1,4630 (VOELLMY, Ph. Ch. 127, 344). Refraktionsdispersion: MOUTTE, Chim. et Ind. 19 [Sonder-Nr.], 262 C; C. 1929 I, 677; Dispersion ultravioletter Strahlen bei 16,20: V. Zum ultravioletten Absorptionsspektrum des Dampfes und der alkoh. Lösung vgl. Purvis, Pr. Cambridge phil. Soc. 23, 588; C. 1927 II, 379. Ultrarotes Absorptionsspektrum: Lecomte, C. r. 183, 29. Depolarisation von an gasförmigem und an flüssigem Cyclohexen gestreutem Licht: Cabannes, Granier, C. r. 182, 886. Magnetische Susceptibilität: Pascal, C. r. 180, 1596. Magnetische Drehung der Polarisationsebene des Lichtes bei 20,6°: Javelle, Chim. et Ind. 19 [Sonder-Nr.], 266 C; C. 1928 II, 1860. — Azeotrope Gemische, die Cyclohexen enthalten, s. in der Tabelle S. 38. Dampfdruck binärer Systeme mit 1-Methyl-dekahydronaphthalin und 2.6-Dimethyl-dekahydronaphthalin bei 200. Weissenderen Henke Katschinka. Z. anora. Ch. 153, 34. Adsorption von flüssigem 206: Weissenberger, Henke, Katschinka, Z. anorg. Ch. 153, 34. Adsorption von flüssigem Cyclohexen an Platin: PALMER, Pr. roy. Soc. [A] 115, 231; C. 1927 II, 1678. Magnetische Drehung der Polarisationsebene des Lichtes durch Cyclohexen-Toluol-Gemische bei 20°: J. —

Cyclohexen hemmt die Reduktion von Methylenblau durch Wasserstoffdonatoren in Gegenwart von ruhenden Bact. coli vollständig (QUASTEL, WHETHAM, Biochem. J. 19, 529). Reak-

tionsfähigkeit von Jod in Cyclohexen-Lösung: Feigl, Chargaff, M. 49, 424.

| Komponente                                                                       | Kp760                | Gehalt an<br>Cyclohexen<br>in Gew% | Komponente                                                                              | KP760                | Gehalt an<br>Cyclohexen<br>in Gew% |
|----------------------------------------------------------------------------------|----------------------|------------------------------------|-----------------------------------------------------------------------------------------|----------------------|------------------------------------|
| Methanol <sup>2</sup> ) Äthylalkohol <sup>1</sup> ) Propylalkohol <sup>2</sup> ) | 55,9<br>66,7<br>76,6 | 60<br>66<br>78,4                   | Isobutylalkohol <sup>3</sup> ) .<br>tert. Butylalkohol <sup>1</sup> )<br>Dimethyläthyl- | 80,5<br>73,2         | 85,8<br>60                         |
| Isopropylalkohol 1). Butylalkohol 1). sek. Butylalkohol 1).                      | 70,5<br>82,0<br>78,7 | 63<br>95<br>79                     | carbinol 1) Allylalkohol 2) Essigsäure 3)                                               | 80,8<br>76,3<br>81,8 | 83<br>78,3<br>93,5                 |

1) LECAT, Ann. Soc. scient. Bruxelles 48 I [1928], 57. — 2) L., Ann. Soc. scient. Bruxelles 48 II [1928], 107—111. — 3) L., Ann. Soc. scient. Bruxelles 49 [1929], 19—20.

Zersetzt sich schnell bei der Einw. von Sonnenlicht oder ultraviolettem Licht in Gegenwart von Uransalzen (Aloy, Valdiguié, Bl. [4] 37, 1138). Bei jahrelanger Einw. von α-Strahlung (aus Radiumbromid) erhält man Kohle und teils einfachere, teils kompliziertere Kohlenwasserstoffe (Zelinsky, R. 41, 613). Bleibt bei längerem Erhitzen im Rohr auf 200° unverändert (Z., Pawlow, B. 57, 1067). Bei 400—500° bilden sich Benzol und Naphthalin (Hofmann, Lang, Brennstoffch. 10, 204; C. 1929 II, 165). Verhalten bei längerem Erhitzen auf 350—375°: Skraup, Beifuss, B. 60, 1073. Beim Erhitzen von Cyclohexen auf 400—440° in Gegenwart von Aluminiumoxyd unter Druck erhält man unter anderem Wasserstoff, gasförmige Paraffin-Kohlenwasserstoffe und Benzol (Petrow, Bl. [4] 43, 1276; Ж. 60, 1439). Gibt beim Leiten über japanische saure Erde bei 330° Methylcyclopentan (Inoue, Bl. chem. Soc. Japan 1, 220; C. 1927 I, 690). Geht in Gegenwart von Palladiumasbest schon bei Zimmertemperatur allmählich in Benzol und Cyclohexan über (Z., B. 58, 187); die Disproportionierung ist bei ca. 90° vollständig; mit steigender Temperatur wächst die Menge des entstandenen Benzols unter gleichzeitiger Bildung von Wasserstoff (Z., P., B. 57, 1067; Z., B. 58, 186). Geschwindigkeit dieser Reaktion bei 35°: Z., P., B. 66 [1933] 1420; vgl. a. Balandin, Ж. 61, 930; Ph. Ch. [B] 2, 309. Oxydiert sich in geringem Maße beim Durchleiten von Sauerstoff unter Bildung von Cyclohexenperoxyd (Syst. Nr. 2669) (Stephens, Am. Soc. 50, 569). Oxydation durch Luftsauerstoff in Gegenwart von Eisen(III)oxyd zwischen 3500 und 5000: BERL, HEISE, WINNACKER, Ph. Ch. [A] 139, 468. Im Gegensatz zu den Angaben von Willstätter, Sonnenfeld (B. 46, 2955; 47, 2814) liefert Cyclohexen beim Schütteln mit Sauerstoff in Gegenwart von wenig kolloidaler Osmium-Acetonnexen beim Schuttein mit Sauerstoff in Gegenwart von wenig kolloidaler Osmium-Aceton-Lösung Cyclohexen-(1)-ol-(3), 1-Formyl-cyclopenten-(1), Cyclohexen-(1)-on-(3) und Adipinsäure (Kötz, Richter, J. pr. [2] 111, 383), in Gegenwart von Osmium-Asbest in Benzol Cyclohexen-(1)-ol-(3), wenig Adipinsäure, eine Verbindung C<sub>6</sub>H<sub>10</sub>O<sub>2</sub> [?; Kp<sub>0,2</sub>: 108—110°; gibt mit 4-Nitro-phenylhydrazin himbeerrote Krystalle vom Schmelzpunkt 233—235° (Zers.)] und eine aldehydartige Substanz (Semicarbazon, F: 240—241°) (Medwedew, Alexe-Jewa, Sbornik Rabot chim. Inst. Karpov 1927 [Bach-Festschrift], 115; C. 1927 II, 1012). Entzündungstemperatur in Luft: B., H., W. Über die Vorgänge bei der Explosion von komminierten Cyclohexen-Luft: Gemischen auch in Anwesenbeit von Bleitetrafäthyland Dygrafyng primierten Cyclohexen-Luft-Gemischen auch in Anwesenheit von Bleitetraäthyl vgl. Duchene, C. r. 186, 220. Klopffestigkeit: BIRCH, STANSFIELD, Nature 123, 491; C. 1929 I, 2605; Nash, Howes, Nature 123, 527; C. 1929 I, 2605. Liefert bei der Oxydation mit Natriumchlorat in Gegenwart von Osmiumtetroxyd Cyclohexandiol-(1.2) vom Schmelzpunkt 99° (Böeseken, van Giffen, R. 39, 184). Wird weder durch Silberdichromat und Schwefelsäure, noch durch Chromtrioxyd und Schwefelsäure vollständig zu Kohlendioxyd oxydiert (Simon, C. r. 177, 266). Gibt bei der Oxydation mit einer kalten Lösung von Chromtrioxyd in Acetanhydrid + Tetrachlorkohlenstoff und nachfolgenden Verseifung in geringer Ausbeute Cyclohexen-(1)-ol-(3) (Treibs, Schmidt, B. 61, 462). Liefert bei der Oxydation mit 2—4%iger Permanganat-Lösung unter Kühlung Adipinsäure und wenig Cyclohexandiol-(1.2) vom Schmelzpunkt 99—100° (Markownikow, A. 302 [1898], 21; vgl. Vogt, Mitt. Kohlenforschungsinst. Breslau 2, 80; C. 1926 I, 2341; Böe., R. 47, 687). Bei Einw. von Acetpersäure entstahen Mono. und Diagetat des Cyclohexandiole (4.2) vom Schmelzpunkt 1044 (Röxenbergen) stehen Mono- und Diacetat des Cyclohexandiols-(1.2) vom Schmelzpunkt 104° (Böe., Elsen, R. 48, 369). Wird durch Benzopersäure in Chloroform oder Ather zu Cyclohexenoxyd oxydiert (Derx, R. 41, 332; Godchor, Bédos, C. r. 174, 462; Bl. [4] 37, 1455;

Nametrin, Ж. 55, 59).

Cyclohexen liefert beim Erhitzen unter hohem Wasserstoffdruck auf 400° Cyclohexan, Polymerisations- und Kondensationsprodukte; bei höherer Temperatur tritt Zersetzung ein (Hofmann, Lang, Brennstoffch. 10, 204; C. 1929 II, 164). Verlauf der Hydrierung in Eisessig bei Gegenwart von sauerstoffereichen und sauerstoffarmen Platin-Katalysatoren: Willstätter, Waldschmidt-Letz, B. 54, 125, 137. Geschwindigkeit der Hydrierung in Alkohol in Gegenwart von Platin- oder Palladiumoxyd unter 2—3 Atm. Druck bei 25°: Kern, Shriner, Adams, Am. Soc. 47, 1149. Geschwindigkeit der Hydrierung

Am. Soc. 50, 2741).

von Cyclohexen und Gemischen mit ungesättigten Kohlenwasserstoffen, Alkoholen und Ketonen unter Atmosphärendruck in Alkohol bei Gegenwart von Platinschwarz bei Zimmertemperatur: Lebedew, Platonow, Soc. 1930, 323; 3K. 61, 2153. Bei konkurrierender Hydrierung von Gemischen mit Cyclohexen-(1)-carbonsäure-(1) bei Gegenwart von Platinrydrierung von Gemeenen mit Cyclonexen-(1)-Garbonsaure-(1) bei Gegenwart von Flatinschwarz in Äther wird Cyclohexen zuerst reduziert (Vavon, Jakeš, C. r. 183, 300; Bl. [4]
41, 91). Maleinsäureanhydrid und Citraconsäureanhydrid wirken reaktionshemmend auf
die katalytische Hydrierung in Äther (L., P.). — Gibt bei der Einw. von Chlormonoxyd in
Tetrachlorkohlenstoff bei —20° und nachfolgender Fraktionierung ein untrennbares Gemisch
von 1.2-Dichlor-cyclohexan und 1-Chlor-1.2-oxido-cyclohexan (?), ferner Bis-[2-chlor-cyclohexyl]-äther (wahrscheinlich Stereoisomerengemisch) und geringe Mengen einer Verbindung CaHaOCla vom Schmelzpunkt 26—28° (GOLDSCHMIDT, SCHÜSSLER, B. 58, 568, 571). Bei der Einw. von Athylhypochlorit in Tetrachlorkohlenstoff unter Kühlung (G., Endres, Dirsch, B. 58, 574) oder von Chlorharnstoff in essigsaurer Lösung (Detoeur, Bl. [4] 31, 177) erhält man 2-Chlor-cyclohexanol-(1). Liefert bei der Einw. von Brom in Pyridin unter Kühlung N-[2-Brom-cyclohexyl]-pyridiniumbromid (Вавиетт, Соок, Реск, Soc. 125, 1038). Bei der Einw. von N-Brom-acetamid auf Cyclohexen erhält man in Wasser 2-Brom-cyclohexanol-(1), in Methanol Methyl-[2-brom-cyclohexyl]-äther und in Eisessig 2-Brom-cyclohexylacetat (SCHMIDT, v. KNILLING, ASCHERL, B. 59, 1280). Ebenso erhält man mit Bromtrinitromethan bei längerem Kochen in Methanol Methyl-[2-brom-cyclohexyl]-äther, in Alkohol Athyl-[2-brom-cyclohexyl] cyclohexyl]-äther, bei Einw. in eisgekühlter allylalkoholischer Lösung Allyl-[2-brom-cyclohexyl]-āther (SCHM., BARTHOLOMÉ, LÜBKE, B. 55, 2104), in Ameisensaure unter Zusatz von Harnstoff bei ca. 0º [2-Brom-cyclohexyl]-formiat (Schm., Schumacher, Asmus, B. 56, 1240). Über weitere bromhaltige organische Verbindungen, die mit Cyclohexen in Methanol Methyl-[2-brom-cyclohexyl]-ather liefern, vgl. SCHM., A., v. KN., B. 59, 1885. Beim Einleiten von Stickstoffdioxyd oder Stickstofftrioxyd in eine Lösung von Cyclohexen in Äther + Petroläther unter starker Kühlung entstehen Cyclohexenpseudonitrosit und (nicht isoliertes) 1.2-Dinitro-cyclohexan, aus dem beim Behandeln mit verd. Natronlauge 1-Nitrocyclohexen-(1) isoliert werden kann (Wieland, Blümich, A. 424, 86, 88). Gibt mit Stick-Stofftetroxyd in Petroläther unterhalb 0° Cyclohexenpseudonitrosit und Cyclohexennitrosat (Schaarschmidter), Z. ang. Ch. 36, 565). Einfluß der Versuchsbedingungen auf die Reaktion mit Stickstofftetroxyd: Sch., Hofmeier, B. 58, 1050; Sch., Z. ang. Ch. 38, 538. Einw. von Stickstoffpentoxyd: Haines, Adkins, Am. Soc. 47, 1423. Setzt man Cyclohexen mit verd. Natriumdisulfit-Lösung oder besser mit überschüssiger verdünnter Ammoniumdisulfit-Lösung in Gegenwart von Kieselgur um, so bildet sich unter anderem Cyclohexansulfonsäure (KOLKER, LAPWORTH, Soc. 127, 312). Cyclohexen liefert mit Stickstofftrichlorid in Tetrachlorkohlenstoff bei -1902-Chlor-1-dichloramino-cyclohexan (Coleman, Mullins, Pickering,

Cyclohexylbenzol und 1.4-Diphenyl-cyclohexan (Bodroux, A. ch. [10] 11, 516; Berry, Reid, Am. Soc. 49, 3149; vgl. Nenitzescu, Curcaneanu, B. 70 [1937], 346; Corson, Ipatzew, Am. Soc. 60 [1938], 747). Bei der Kondensation mit Toluol in Gegenwart von Aluminiumchlorid erhält man isomere Cyclohexyltoluole, beim Behandeln mit p-Cymol und Aluminiumchlorid in Schwefelkohlenstoff isomere 1-Methyl-4-isopropyl-cyclohexyl-benzole und andere Produkte (B., C. r. 186, 1005; A. ch. [10] 11, 519, 525). Über weitere ähnlich verlaufende Reaktionen mit anderen Kohlenwasserstoffen bei Gegenwart von Aluminiumchlorid vgl. B. Liefert bei längerem Erhitzen mit Phenol auf 350° 2-Cyclohexyl-phenol, 2.6(?)-Dicyclohexyl-phenol und andere Produkte (Skraup, Beituss, B. 60, 1073). Eine Lösung von Phenol in Cyclohexen liefert bei allmählicher Einw. eines Gemisches gleicher Teile konz. Schwefelsäure und Eisessig kleine Mengen 4-Cyclohexyl-phenol und Cyclohexylacetat, bei Einw. von konz. Salzsäure außerdem Cyclohexyl-phenol ind Cyclohexylacetat, bei Einw. von konz. Salzsäure außerdem Cyclohexyl-phenol ind Cyclohexyl-phenyl-iäther, 2-Cyclohexyl-phenol und 4-Cyclohexyl-phenol (Bodroux, A. ch. [10] 11, 550). Bei Einw. von Cyclohexyl-phenol und 4-Cyclohexyl-phenol (Bodroux, A. ch. [10] 11, 550). Bei Einw. auf Anisol in Gegenwart von Aluminiumchlorid entstehen 2-Cyclohexyl-p-kresol, 2.6-Dicyclohexyl-p-kresol und andere Produkte (Skr., B.). Gibt bei tagelangem Erhitzen mit Diphenylketen im Rohr auf 100° 3.3-Diphenyl-1.2-tetramethylen-cyclohexyl-p-kresol, 2.6-Dicyclohexyl-p-kresol und andere Produkte (Skr., B.). Gibt bei tagelangem Erhitzen mit Diphenylketen im Rohr auf 100° 3.3-Diphenyl-1.2-tetramethylen-cyclobutanon-(4) (Syst. Nr. 655) (Staudinger, Suter, B. 53, 1101). Bei der Einw. von sulfoessigsäurehaltigem Acetanhydrid bei 50—70° entsteht 1-Acetyl-cyclohexen-(1) (Ebel, Goldberg, Helv. 10, 678). Bei der Einw. von Acetylchlorid in Schwefelkohlenstoff Lösung bei steigender temperatur ebenfalls in 1-Acetyl-cyclohexen-(1) übergeht (Wieland, Bettard, B

von Cyclohexen mit Diazoessigester im Rohr auf 125-130° oder bei tropfenweiser Zugabe eines Gemisches von Diazoessigester und Äther zu auf 88° erhitztem überschüssigem Cyclohexen in Gegenwart von Kupferpulver entstehen Bicyclo-[0.1.4]-heptan-carbonsäure-(7)äthylester und wenig Maleinsäurediäthylester (EBEL, BRUNNER, MANGELLI, Helv. 12, 23; vgl. auch Bhide, Sudborough, J. indian Inst. Sci. [A] 8, 101).

Wirkung von Cyclohexen als Atemgift: Lazarew, Ar. Pth. 143, 228; C. 1929 II, 1712. Cyclohexenozonid C<sub>6</sub>H<sub>10</sub>O<sub>3</sub>. Die Lösung in Essigsäure liefert beim Schütteln mit Titan(III)-chlorid und Natriumacetat in Wasser Adipindialdehyd (Menzies, Robinson,

Soc. 125, 2166).

Cyclohexenpseudonitrosit  $C_{12}H_{20}O_{e}N_{4} = Cyclohexenpseudonitrosit <math>C_{12}H_{20}O_{e}N_{4} = H_{2}C < CH_{2} \cdot CH(NO_{2}) > CH - N_{2}O_{2} - HC < CH_{2} -  Neben anderen Produkten beim Einleiten von Stickstoffdioxyd oder Stickstofftrioxyd in Neben anderen Frodukten beim Einfelten von Stickstondoxyd der Stickstontrioxyd in eine Lösung von Cyclohexen in Äther + Petroläther unter starker Kühlung (W., Blümich, A. 424, 86, 88; vgl. Schaarschmidt, Z. ang. Ch. 36, 565; Sch., Veidt, Schlosser, B. 55, 1109). — Krystalle (aus Chloroform, Aceton oder Eisessig). F: 145° (W., B.). — Läßt sich unverändert aufbewahren (Sch.). Wird durch Zinkstaub und siedendes alkoholisches Ammoniak zu einer dunkelbraunen öligen Verbindung C<sub>6</sub>H<sub>11</sub>O<sub>2</sub>N und einem gelben Zinksalz ZnC<sub>12</sub>H<sub>20</sub>O<sub>4</sub>N<sub>2</sub> reduziert (Sch., V., Schl.). Liefert beim Behandeln mit methylalkoholischer Kalilauge 1-Nitro-cyclohexen-(1) (W., B.). Gibt bei Einw. von Ammoniak in siedendem Alkohol neben 1-Nitro-cyclohexen-(1) Bis-[2-nitro-cyclohexyll-amin (W., Garrsch. Chayan. Alkohol neben 1-Nitro-cyclohexen (1) Bis-[2-nitro-cyclohexyl]-amin (W., Garbsch, Chavan, A. 461, 307). Beim Erwärmen mit Hydrazinhydrat in Alkohol auf dem Wasserbad entsteht

N.N'(oder N.N)-Bis-[2-nitro-cyclohexyl]-hydrazin (W., G., CH.).

Cyclohexennitrosat C<sub>6</sub>H<sub>10</sub>O<sub>4</sub>N<sub>2</sub>. B. Neben Cyclohexenpseudonitrosit beim allmählichen Eintragen einer petrolätherischen Lösung von Stickstofftetroxyd in eine ebensolche Lösung von Cyclohexen unterhalb 0° (Schaarschmidt, Z. ang. Ch. 36, 565). — Grünliches Öl. Zersetzt sich beim Erwärmen über 00 oder auch bei längerer Aufbewahrung im Eisschrank explosionsartig (Sch., Z. ang. Ch. 36, 565). Bei der thermischen Zersetzung erhält man Stickstoff und Stickoxyd (Sch., Z. ang. Ch. 37, 937; 38, 538; Sch., Hofmeier, B. 58, 1050).

 $\textbf{3-Chlor-cyclohexen-(1),} \quad \varDelta^2 \textbf{-Cyclohexenylchlorid} \quad C_6H_9Cl = H_2C < \underbrace{CHCl \cdot CH}_{CH_2-CH_2} CH.$ B. Beim Einleiten von Chlorwasserstoff in Cyclohexadien (1.3) bei —5° bis —8° (HOFMANN, Damm, Mitt. Kohlenforschungsinst. Breslau 2, 126; C. 1926 I, 2343; vgl. Courtot, Pierron, Bl. [4] 45, 288). — Dünnflüssiges hygroskopisches Öl von nicht unangenehmem Geruch. Kp<sub>40</sub>: 65—66° (H., D.; C., P.). — Wird durch Wasser hydrolysiert (H., D.; C., P.). Gibt bei der Oxydation mit verd. Chromschwefelsäure bei 60—65° Cyclohexen-(1)-on-(3) (C., P.). Liefert bei Einw. von Natriumäthylat-Lösung 3-Athoxy-cyclohexen-(1) und wenig Cyclohexadien-(1.3) (H., D.). Gibt bei 1-stündigem Kochen mit entwässertem Kaliumacetat in Eisessig △2-Cyclohexenylacetat (H., D.).

3-Brom-cyclohexen-(1),  $\Delta^2$ -Cyclohexenylbromid  $C_8H_9Br = H_2C < CH_2-CH_2-CH_2$  CH (vgl. H 64, E I 33). B. Beim Einleiten von Bromwasserstoff in eine Eisessig-Lösung von Cyclohexadien-(1.3) unter Kühlung (Hofmann, Damm, Mitt. Kohlenforschungsinst. Breslau 2, 127; C. 1926 I, 2342). — Hygroskopische Flüssigkeit, die sich allmählich braun färbt. Kp<sub>40</sub>: 80—82°. Gibt mit Ammoniak in Benzol 3-Amino-cyclohexen-(1), mit Dimethylamin in Benzol 3-Dimethylamino-cyclohexen-(1). Liefert bei der Einw. von Magnesium in Ather Di-⊿°-cyclohexenyl.

3.4-Dibrom-cyclohexen-(1)  $C_6H_8Br_2 = BrHC < CH_2-CH_2$  CH.

a) Feste Form. B. Entsteht in Gemisch mit der flüssigen Form bei der Einw. der berechneten Menge Brom auf Cyclohexadien-(1.3) in Chloroform oder besser in Hexan bei -15° und sofortiger Entfernung des Lösungsmittels in der Kälte (Farmer, Scorr, Soc. 1929, 172, 174). — Prismen. F: 68°. — Lagert sich bei längerem Aufbewahren, insbesondere in Hexan oder Chloroform-Lösung, schneller beim Erhitzen in 3.6-Dibrom-cyclohexen-(1) um. Liefert bei der Oxydation mit Permanganat in wäßr. Aceton bei Gegenwart von Magnesiumsulfat die feste Form des 3.4-Dibrom-cyclohexandiols-(1.2).

b) Flüssige Form. B. Siehe bei der festen Form. — Kp<sub>3</sub>: ca. 75° (F., Sc.). — Wandelt sich bei Zimmertemperatur allmählich, beim Erhitzen rascher in 3.6-Dibrom-cyclohexen-(1) um. Liefert bei der Oxydation mit Permanganat in wäßr. Aceton bei Gegenwart von Magnesiumsulfat vorwiegend die flüssige, in geringem Maße auch die feste Form des 3.4-Dibrom-

cyclohexandiols-(1.2).

8.6-Dibrom-cyclohexen-(1)  $C_6H_8Br_2 = H_2C < \frac{CHBr \cdot CH}{CH_3 \cdot CHBr} > CH$  (H 64, E I 33). B. Aus festem oder flüssigem 3.4-Dibrom-eyclohexen-(1) beim Aufbewahren, insbesondere in Hexan oder Chloroform-Lösung oder beim Erwärmen (FARMER, SCOTT, Soc. 1929, 175). — Prismen (aus Petroläther). F: 108°. — Ist bei Raumtemperatur gegen Permanganat und Chromsäure beständig. Wird durch heiße wäßrige Chromsäure-Lösung zu Bernsteinsäure oxydiert.

- 1-Nitro-cyclohexen-(1)  $C_0H_0O_2N = H_2C < CH_2 \cdot CH_2 \cdot CH_2 > C \cdot NO_2$ . B. Aus Cyclohexenpseudonitrosit beim Behandeln mit methylalkoholischer Kalilauge (Wieland, Blümch, A. 424, 87) oder, neben Bis-[2-nitro-cyclohexyl]-amin, bei Einw. von Ammoniak in siedendem Alkohol (W., Garbsch, Chavan, A. 461, 307). Aus nicht näher beschriebenem 1.2-Dinitro-cyclohexan, das neben Cyclohexenpseudonitrosit aus Cyclohexen beim Behandeln mit Stickstoffdioxyd oder Stickstofftrioxyd entsteht, bei Einw. von verd. Natronlauge (W., B.). Ziemlich schwere, blaßgelbe Flüssigkeit, die ähnlich wie Nitrobenzol riecht und die Schleimhäute reizt. Kp<sub>14</sub>: 100° (W., B.). Liefert bei der Reduktion mit Zinkstaub in Essigsäure unter Eiskühlung Cyclohexanonoxim (W., B.). Mit Brom in Chloroform entsteht ein festes Dibromid (W., B.).
- 2. 1-Methyl-cyclopenten-(1) C<sub>6</sub>H<sub>10</sub> = H<sub>2</sub>C·CH<sub>2</sub> C·CH<sub>3</sub> (H 64). B. Durch Einw. von p-Toluolsulfonsäure auf 1-Methyl-cyclopentanol-(1) (Chavanne, de Vogel. Bl. Soc. chim. Belg. 37, 142; C. 1928 II, 37). Durch allmähliches Erhitzen von 1-Methyl-cyclopentanol-(1) mit wasserfreier Oxalsäure im Wasserstoffstrom auf 90—120° (Skraup, Binder, B. 62, 1135). In geringer Menge bei tagelangem Erhitzen von 1-Methyl-cyclopentan-carbonsäure-(1)-phenylester im mit Stickstoff gefüllten Rohr auf 390° (Sk., B.). Leicht bewegliche Flüssigkeit. F: —127,2° (Timmermans, Bl. Soc. chim. Belg. 36, 503; C. 1928 I, 26). Kp<sub>760</sub>: 75,5° (Tr.: Ch., Becker, Bl. Soc. chim. Belg. 36, 604; C. 1928 I, 1169), 75,5—76° (Ch., de V.). D<sub>1</sub><sup>15</sup>: 0,7851 (Thirry, siehe bei Ch., B.); D<sub>2</sub>°: 0,7979 (Ch., de V.). n<sub>α</sub><sup>15</sup>: 1,4319; n<sub>b</sub><sup>15</sup>: 1,4347; n<sub>b</sub><sup>15</sup>: 1,4416; n<sub>2</sub><sup>15</sup>: 1,4512 (Ch., de V.). Wird durch verd. Chromschwefelsäure zu Essigsäure und Bernsteinsäure oxydiert (Sk., B.). Liefert bei der Oxydation durch Permanganat in verd. Alkohol bei Gegenwart von Magnesiumsulfat bei —40° bis —50° 1-Methyl-cyclopentandiol-(1.2) vom Schmelzpunkt 23° (Maan, R. 48, 333, 335), bei der Oxydation mit wäßriger 2%iger Permanganat-Lösung bei 0° bis 3° γ-Acetyl-buttersäure (Ch., de V.). Gibt bei der Oxydation mit Benzopersäure in Chloroform 1-Methyl-cyclopenten-(1)-oxyd, das durch verd. Säure zu 1-Methyl-cyclopentandiol-(1.2) vom Schmelzpunkt 65° hydrolysiert wird (M.). Bei der Umsetzung mit Chlorharnstoff in essigsaurer Lösung bilden sich 1-Chlor1-methyl-cyclopentanol-(2) und 2-Chlor-1-methyl-cyclopentanol-(1) (Ch., de V.). Bestimmung durch Oxydation mit Quecksilber(II)-acetat: Sk., B.
  - 3. 1-Methyl-cyclopenten-(2 oder 3)  $C_6H_{10} = \frac{HC:CH}{H_2C\cdot CH_2}CH\cdot CH_3$  oder

HC·CH<sub>2</sub> CH·CH<sub>3</sub> (vgl. H 64; E I 33). B. Neben wenig 3.3'-Dimethyl-dicyclopentyl bei allmählicher Einw. von Jod und amorphem Phosphor auf 1-Methyl-cyclopentanol-(3) und folgender Behandlung des Reaktionsprodukts mit Natrium in Äther (Zelinsky, Titz, Fatejew, B. 59, 2588).

- 4. Methylencyclopentan  $C_0H_{10} = \frac{H_2C \cdot CH_2}{H_2C \cdot CH_2}C: CH_2$  (H 64). B. Bei der trocknen Destillation des Calcium- oder Bariumsaless der Cyclopentan-diessigsäure-(1.1) im Stickstoffstrom, neben anderen Produkten (Kon, Soc. 119, 823). Bewegliche, knoblauchartig riechende Flüssigkeit. Siedet zwischen 70° und 82°.  $D^{m,o}: 0,7905.$   $n_D^{m,o}: 1,4407.$  Unlöslich in Wasser. Das Nitrosochlorid schmilzt bei 82°.
- 5. Isopropenylcyclopropan, 2-Cyclopropyl-propen  $C_6H_{10} = H_1C$   $CH \cdot C(CH_3) : CH_2$  (E I 33; vgl. H 65). B. Durch Destillation von Dimethylcyclopropylcarbinol mit einigen Tropfen konz. Schwefelsäure, neben 2.2-Dimethyl-tetrahydrofuran (VAN KERRSBILCK, Bl. Soc. chim. Belg. 38, 208; C. 1929 II, 2037).  $Kp_{751}$ : 69,5—70°.  $D_1^{\infty}$ : 0,7500.  $n_{\infty}^{\infty}$ : 1,4206;  $n_{\infty}^{\infty}$ : 1,4252;  $n_{\rm B}^{\infty}$ : 1,4321.
- 6. Bicyclo [0.1.3] hexan, 1.2 Methylen cyclopentan C<sub>6</sub>H<sub>10</sub> = H<sub>2</sub>C CH<sub>2</sub>·CH CH<sub>2</sub>. B. Bei der Reduktion von 2-Brom-1-brommethyl-cyclopentan mit Zinkstaub und siedendem 80% igem Alkohol (ZELINSKY, USCHAKOW, Bl. [4] 35, 485; Ж.

- 56, 69). Flüssigkeit von charakteristischem süßem Geruch. Kp: 79,6—80,2° (Konowalow, C. r. 183, 41; J. Chim. phys. 23, 361); Kp<sub>745</sub>: 78—79,5°; mit Wasserdampf flüchtig (Z., U.). Dr. 0,8144; nr. 1,4320 (Z., U.). Verbrennungswärme bei konstantem Druck: 912,5 kcal/Mol (K.). Wird durch Permanganat nur zur Hälfte oxydiert und nimmt dabei einen an Petroläther und Campher erinnernden Geruch an (Z., U.).
- 7. Bicyclo-[0.2.2]-hexan  $C_8H_{10} = \frac{H_2C-CH-CH_2}{H_2C-CH-CH_2}$ 1). B. Bei 8-stdg. Einw. von Natrium auf flüssiges 1.4-Dibrom-cyclohexan in Isoamyläther bei 170—180°, neben Diallyl (Zelinsky, Kotscheschkow, B. 60, 1105;  $\Re$ . 59, 666). Überaus leicht flüchtige Flüssigkeit.  $K_{P_{732}}$ : 78,5—79,5°.  $D_2^{10}$ : 0,8245;  $n_3^{10}$ : 1,4475. Verharzt an der Luft. Wird durch Permanganat-Lösung leicht oxydiert. Bildet mit Brom ein flüssiges Dibromid. Gibt in alkoh. Lösung mit konz. Schwefelsäure keine Färbung. [Trewendt]

#### 5. Kohlenwasserstoffe $C_7H_{12}$ .

- 1. Cyclohepten, Suberen C<sub>7</sub>H<sub>12</sub> =  $\frac{\text{H}_2\text{C} \cdot \text{CH}_2 \cdot \text{CH}}{\text{H}_2\text{C} \cdot \text{CH}_2 \cdot \text{CH}_2}$  CH (H 65; E I 33). B. In theoretischer Ausbeute bei tropfenweiser Zugabe von Cycloheptanol zu siedendem Phthalsäureanhydrid (Böeseken, Derx, R. 40, 530; D., R. 41, 338). Entsteht ferner aus Cycloheptanol durch Erhitzen mit wasserfreier Oxalsäure oder, neben Methylencyclohexan, durch Destillation über Thoriumoxyd bei 250° (Rosanow, Ж. 61, 2313, 2315; C. 1930 II, 229). In geringer Menge beim Kochen von Bromcycloheptan mit alkoh. Silberacetat-Lösung, alkoh. Kaliumphenolat-Lösung oder anderen alkalischen Lösungen sowie mit Piperidin oder β-Naphthylamin (Loevenich, Mitarb., B. 62, 3102). Neben anderen Verbindungen beim Erwärmen von Hexahydrobenzylamin mit Natriumnitrit in essigsaurer Lösung (Ruzicka, Brugger, Helv. 9, 403). Kp<sub>752</sub>: 113—115°; D<sup>30</sup>: 0,8239; n<sup>30</sup>: 1,4545 (Ro.). Verbrennungswärme bei konstantem Volumen: 1049,5 kcal/Mol (Swietoslawski, Am. Soc. 42, 1094; vgl. Subow, Ж. 33, 722; C. 1902 I, 162). Liefert bei der Oxydation mit Permanganat in Gegenwart von Magnesiumsulfat Cycloheptandiol-(1.2) vom Schmelzpunkt 46° (Syst. Nr. 549) und reichlich Pimelinsäure (Böe., D.; D.; vgl. a. Ru., Br.). Bei der Oxydation mit Benzopersäure in Chloroform bildet sich 1.2-Oxido-cycloheptan (Syst. Nr. 2363) (Böe., D.; D.)
- 2. 1 Methyl cyclohexen (1),  $\Delta^1$  Tetrahydrotoluol  $C_7H_{12} = H_2C < CH_2 \cdot CH_3 \cdot$ mit Salpetersäure (D: 1,075) im Rohr auf 100—110° oder Behandeln mit 50% iger Schwefelsäure (Nametkin, Jarzewa, B. 56, 1803; N., Ж. 55, 60). Aus der dl-trans-Form des 1-Methylcyclohexanols-(2) beim Erhitzen mit Kaliumdisulfat oder verd. Schwefelsäure (Kötz, Hoff-MANN, J. pr. [2] 110, 108). Entsteht ferner aus 1-Methyl-cyclohexanol-(2) beim Behandeln mit konz. Schwefelsäure oder entwässerter Oxalsäure (Skrauf, Binder, B. 62, 1133 Anm. 34). In geringer Menge bei längerem Erhitzen von 1-Methyl-cyelohexan-carbonsäure-(1)-phenylester in einer Kohlendioxyd-Atmosphäre auf 390° (Sk., Bin., B. 62, 1134). Neben anderen Verbindungen bei der pyrogenen Zersetzung von Rohkautschuk in Gegenwart von Magnesium unter Atmosphärendruck bei ca. 7000 (MIDGLEY, HENNE, Am. Soc. 51, 1216, 1220; vgl. a. Sum unter Atmospharendruck bei ca. 700° (MIDGLEY, HENNE, Am. Soc. 51, 1216, 1220; vgl. a. Geiger, Dissertation [Zürich 1926], S. 37). — Kp<sub>753</sub>: 109—110° (N., Jar.; N.); Kp: 110,5° bis 111° (korr.) (Zelinsky, B. 57, 2056). D<sub>1</sub>°: 0,8099 (Z.), 0,8122 (N., Jar.; N., Ж. 55, 61). Verbrennungswärme bei konstantem Volumen: 1040,7 kcal/Mol (Swietoslawski, Am. Soc. 42, 1094; Subow, Ж. 33, 722; C. 1902 I, 161). n<sub>1</sub>°: 1,4499 (Z.); n<sub>2</sub>°: 1,4503 (N., J.; N., Ж. 55, 61). Absorptionsspektrum im Ultrarot: Lecomte, C. r. 183, 29. Magnetische Drehung der Polarisationsebene des Lichtes: Javelle, Chim. et Ind. 19, Sondernummer, 266; C. 1928 II, 1860. — Liefert beim Leiten über Palladium-Asbest im Kohlendioxyd-Strom bei 146—148° Toluol und Methylovolobayan (Z.). There die Oxyndation mit Kellumpermannen. 116-118° Toluol und Methylcyclohexan (Z.). Über die Oxydation mit Kaliumpermanganat zur niedrigerschmelzenden Form des 1-Methyl-cyclohexandiols-(1.2) (Syst. Nr. 549) vgl. Böeseken, B. 56, 2410; R. 47, 687; N., 36. 57, 75; C. 1926 I, 2686; Verkade, Mitarb., A. 467, 231; Maan, R. 48, 333, 336. Liefert bei der Oxydation mit Benzopersäure in Ather oder Chloroform 1.2-Oxido-1-methyl-cyclohexan (Syst. Nr. 2363) (N., J.; N., H. 55, 61; Kötz, Ho.; Bör.; Maan). Beim Erwärmen mit Phenol in Eisessig + konz. Schwefelsäure auf dem Wasserbad bildet sich hauptsächlich 1-Methyl-1-[4-oxy-phenyl]-cyclohexan (Syst. Nr. 534); bewirkt man die Kondensation mit Phenol in Gegenwart von konz. Salzsäure, so bildet sich außerdem viel [x-Methyl-cyclohexyl]-phenyl-äther (Syst. Nr. 514) (SCHRAUTH, QUASE-BARTH, B. 57, 856; vgl. Sk., Bin., B. 62, 1129).

<sup>1)</sup> Nach einer nach dem Literatur-Schlußtermin des Ergänzungswerks II [1. I. 1930] erschienenen Arbeit von PRJANISCHNIKOW, SCHUJKINA (B. 67 [1934], 64) ist der obige Kohlenwasserstoff wahrscheinlich ein Gemisch von Cyclohexadien, Cyclohexen und Cyclohexan.

Nitrosat C<sub>7</sub>H<sub>12</sub>O<sub>4</sub>N<sub>2</sub> (H 67; E I 34). F: 105—106° (SKRAUP, BINDER, B. 62, 1134). 106—108° (Kötz, Hoffmann, J. pr. [2] 110, 108). Schwer löslich (K., H.). Nitrolpiperidid C<sub>12</sub>H<sub>22</sub>ON<sub>2</sub>. F: 152° (SKRAUP, BINDER, B. 62, 1134).

3. 1 - Methyl - cyclohexen - (2),  $\Delta^2$  - Tetrahydrotoluol  $C_7H_{12}$  =

H<sub>2</sub>CCH=CH CH CH<sub>3</sub> (vgl. H 67; E I 34). — Inaktive Form. B. Aus 3-Chlor-1-methylcyclohexan beim Behandeln mit Diäthylanilin (Zelinsky, B. 57, 2056). Beim Erhitzen von 1-Methyl-cyclohexanol-(3) (Kp: 171—173°) mit Phosphorpentoxyd auf ca. 100° (Kötz, Hoffmann, J. pr. [2] 110, 109). — Kp: 104° (korr.) (Z.), 105—106° (K., H.). Dp°: 0,8009 (Z.). np°: 1,4451 (Z.). Absorptionsspektrum im Ultrarot: Lecomte, C. r. 183, 29. Magnetische Drehung der Polarisationsebene des Lichtes: Javelle, Chim. et Ind. 19, Sondernummer, 266; C. 1928 II, 1860. — Liefert beim Leiten über Palladium-Asbest im Kohlendioxyd-Strom bei 116—118° Toluol und Methylcyclohexan (Z.). Beim Erwärmen mit Phenol in Eisessig + konz. Schwefelsäure auf dem Wasserbad bildet sich hauptsächlich 1-Methyl-1-[4-oxy-phenyl]-cyclohexan (Syst. Nr. 534) (Schrauth, Quasebarth, B. 57, 857; vgl. Skraup, Binder, B. 62, 1129).

4. 1 - Methyl - cyclohexen - (3),  $\Delta^3$  - Tetrahydrotoluol  $C_7H_{12} =$ 

## 5. Methylcyclohexene mit ungewisser Lage der Doppelbindung und Gemische von Methylcyclohexenen $C_7H_{12}$ (vgl. H 68; E I 34).

- a) Methylcyclohexen von Gough, Hunter, Kenyon aus 1-Methyl-cyclohexanol-(2). B. Beim Erhitzen des p-Toluolsulfonsäureesters des dl-trans-1-Methylcyclohexanols-(2) mit Kaliumacetat in Alkohol oder Eisessig, mit Ammoniumacetat in Alkohol oder mit Ameisensäure in Benzol oder Formamid (Gough, Hunter, Kenyon, Soc. 1926, 2067, 2068; vgl. Hückel, Насендитн, B. 64 [1931], 2894). Кр<sub>760</sub>: 104—105°. D<sub>4</sub><sup>18</sup>: 0,8077; D<sub>4</sub><sup>18</sup>: 0,8023. n<sub>5</sub><sup>18</sup>: 1,4409.
- b) Methylcyclohexen von Gough, Hunter, Kenyon aus 1-Methyl-cyclohexanol-(3). B. Neben anderen Verbindungen beim Erhitzen des p-Toluolsulfonsaureesters des 1-trans-1-Methyl-cyclohexanols-(3) mit Kaliumacetat in Alkohol (Gough, Hunter, Kenyon, Soc. 1926, 2069). Kp: 104—105°. D. 105°: 0,7950. n. 105°: 1,4408. α. 105°: +42,67° (l=0,5 cm).
- c) Methylcyclohexen von Zelinsky, Zelikow aus 1-Methyl-cyclohexanol-(3) (H 68 i). Verbrennungswärme bei konstantem Volumen: 1043,3 kcal/Mol (Swietoslawski, Am. Soc. 42, 1094; vgl. Subow, 38, 722; C. 1902 I, 161).
- d) Methylcyclohexen von Loevenich, Mitarbeiter aus 3-Brom-1-methylcyclohexan. B. In geringer Menge beim Kochen von 3-Brom-1-methylcyclohexan mit Silberbenzoat in Glykol, mit Natrium in Ather oder anderen alkalisch reagierenden Lösungen sowie mit  $\beta$ -Naphthylamin oder Piperidin (Loevenich; Mitarb., B. 62, 3097, 3099). Kp: 103—105°.

- [Syst. Nr. 453
- e) Methylcyclohexen von Bodroux aus 1-Methyl-cyclohexanol-(4). B. Bei der Destillation von 1-Methyl-cyclohexanol-(4) mit krystallisierter Phosphorsäure (BODROUX, A, ch. [10] 11, 568). Kp<sub>763</sub>: 104—105°. D<sup>17</sup>: 0,804. nj. 1442. Liefert beim Eintragen in Benzol + Aluminiumchlorid x.x-Bis-[x-methyl-cyclohexyl]-benzol (Syst. Nr. 474) und ein wahrscheinlich aus 1-Methyl-3-phenyl-cyclohexan und 1-Methyl-4-phenyl-cyclohexan bestehendes Kohlenwasserstoffgemisch.
- 1-Trifluormethyl-cyclohexen-(2 oder 3)  $C_7H_9F_3=C_9H_9\cdot CF_3$ . B. Beim Erhitzen von x-Brom-1-trifluormethyl-cyclohexan mit Quecksilberoxyd und Wasser im Rohr (SWARTS, Bl. Acad. Belgique [5] 8, 336; C. 1923 I, 66). Bei der Reduktion von 2.3(oder 3.4)-Dibrom-1-trifluormethyl-cyclohexan mit Zink in alkoh. Lösung (S., Bl. Acad. Belgique [5] 8, 336; C. 1923 I, 66). Beim Behandeln von 1-Trifluormethyl-cyclohexanol-(3) mit Phosphorpentoxyd (S., Bl. Acad. Belgique [5] 9, 356; C. 1924 I, 419). Bewegliche Flüssigkeit. Kp<sub>762</sub>:  $104.7-104.9^\circ$ ; D°: 1,1368; D¹6: 1,1194 (S., Bl. Acad. Belgique [5] 8, 337; C. 1923 I, 66). Liefert bei der Einw. von Brom 2.3 (oder 3.4)-Dibrom-1-trifluormethyl-cyclohexan (Kp: 219—220°) (S. 18) (S., Bl. Acad. Belgique [5] 8, 336; C. 1923 I, 66).
- 6. Methylencyclohexan C<sub>7</sub>H<sub>12</sub> = H<sub>2</sub>C < CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub> C: CH<sub>2</sub> (H 69; E I 35). B. Neben Cyclohepten bei der Destillation von Cycloheptanol über auf 250° erhitztes Thoriumoxyd (Rosanow, Ж. 61, 2313, 2315; C. 1930 II, 229). Entsteht wahrscheinlich in geringer Menge bei der Einw. von Hexahydrobenzylmagnesiumjodid auf Hexahydrobenzaldehyd in Ather (Venus-Danilowa, B. 61, 1962 Anm. 17; Ж. 61, 64 Anm.). Neben anderen Produkten bei der trocknen Destillation des Calciumsalzes der Cyclohexan-diessigsäure-(1.1) (Kon, Soc. 119, 825). Kp<sub>736</sub>: 101—102°; D<sup>30</sup>: 0,8015; n<sup>18</sup>: 1,4506 (Zelinsky, B. 57, 2057). Verbrennungswärme bei konstantem Volumen: 1051,0 kcal/Mol; bei konstantem Druck: 1052,8 kcal/Mol (Roth, Landolt-Börnst. H 1591), 1054,9 kcal/Mol (Konowalow, C. r. 183, 41; J. Chim. phys. 23, 361). Liefert beim Leiten über Palladium-Asbest im Kohlendioxyd-Strom bei 116—118° Methylcyclohexan und Toluol (Z.). Geschwindigkeit der Hydrierung in absol. Alkohol in Gegenwart von Platinschwarz bei 18°: Lebedew, Kobljanski, Jakubtschik, Soc. 127, 423; Ж. 56, 265.

Nitrolpiperidid  $C_{12}H_{22}ON_2$ . Krystalle (aus 50% igem Alkohol). F: 126,5—127° (Kon, Soc. 119, 825).

7. 1- Äthyl-cyclopenten - (1)  $C_7H_{12} = \frac{H_2C \cdot CH}{H_2C \cdot CH_2} \cdot CH_2 \cdot CH_3$  (H 69). B. Aus 1-Äthyl-cyclopentanol-(1) durch Erhitzen mit Phosphorpentoxyd in absol. Äther (EISENLOHR, Fortsch. Ch., Phys. 18, 541; C. 1926 I, 75), durch Leiten über Aluminiumoxyd bei 300°, durch Erhitzen mit bei 100° getrocknetem Aluminiumsulfat auf 120—130° oder durch Erhitzen in Gegenwart von p-Toluolsulfonsäure auf 130—140° (CHAVANNE, BECKER, Bl. Soc. chim. Belg. 36, 593; C. 1928 I, 1169). — F: —127,5° (TIMMERMANS, Bl. Soc. chim. Belg. 36, 504; C. 1928 I, 26). Kp<sub>760</sub>: 106,5—107°; D<sub>1</sub>5: 0,8041; D<sub>1</sub>5: 0,8000;  $n_{\alpha}^{n,5}$ : 1,4402;  $n_{\beta}^{n,5}$ : 1,4497 (CH., B.). — Liefert bei der Oxydation mit Chromtrioxyd in Eisessig  $\gamma$ -Propionyl-buttersäure (CH., B.). Bei der Hydrierung in Gegenwart von Platinschwarz in essigsaurer Lösung bildet sich Äthylcyclopentan (CH., B.; vgl. a. EI.).

# 8. 1- $\mathring{A}thyl$ -cyclopenten-(2) $C_7H_{12} = \frac{HC = CH}{H_2C \cdot CH_2} \cdot CH \cdot CH_2 \cdot CH_3$ .

1- $[\beta$ -Brom-äthyl]-cyclopenten-(2)  $C_7H_{11}Br = C_5H_7\cdot CH_2\cdot CH_2\cdot Br$ . B. Beim Behandeln von 1- $[\beta$ -Oxy-äthyl]-cyclopenten-(2) mit Phosphortribromid in Toluol zunächst unterhalb 0°, dann bei Zimmertemperatur und schließlich in der Wärme (Arvin, Adams, Am. Soc. 50, 1792). —  $Kp_{16}$ : 71—72°.  $D_4^{\infty}$ : 1,2869.  $n_2^{\infty}$ : 1,4995.

9. 1.2-Dimethyl-cyclopenten-(1)  $C_7H_{13} = \frac{H_3C \cdot C(CH_3)}{H_3C - CH_3} \cdot C \cdot CH_3$  (vgl. H 70; E I 35).

B. Entsteht im Gemisch mit 1.2-Dimethyl-cyclopenten-(2) beim Erhitzen von 1.2-Dimethyl-cyclopenten-(3) der Erhitzen von 1.2-Dimethyl-cyclopenten-(4) (Chaptering) (A) (Chaptering) (B) (Chaptering) (B) (Chaptering) (Chapte

B. Entsteht im Gemisch mit 1.2-Dimethyl-cyclopenten-(2) beim Erhitzen von 1.2-Dimethyl-cyclopentanol-(1) (Stereoisomerengemisch) mit p-Toluolsulfonsäure (VAN RYSSELBERGHE, Bl. Acad. Belgique [5] 12, 181; Bl. Soc. chim. Belg. 35, 319; C. 1926 II, 1847) oder bei der Einw. der berechneten Menge Methylmagnesiumjodid auf 1.2-Oxido-1-methyl-cyclopentan (CHAVANNE, DE VOGEL, Bl. Soc. chim. Belg. 37, 149; C. 1928 II, 37). — Bei der Oxydation des Gemischs mit Permanganat erhielt van R. Heptandion-(2.6) und Benzoesäure. Bei der

<sup>1)</sup> Reines 1.2-Dimethyl-cyclopenten-(1) zeigt nach CHIURDOGLU (Bl. Soc. chim. Belg. 47 [1938], 366) folgende Konstanten: F: —91,3° (bestimmt von TIMMERMANS); Kp760: 105,03°; D20: 0,7950; n30: 1,4444 (vgl. a. die Angaben von CHAVANNE, Bl. Soc. chim. Belg. 39 [1930], 405).

Hydrierung in Gegenwart von Platinmohr in essigsaurer Lösung bildet sich 1.2-Dimethylcyclopentan (Stereoisomerengemisch) (VAN R.; CH., DE V.).

- 10. 1.2 Dimethyl cyclopenten (2)  $C_7H_{12} = \frac{HC:C(CH_2)}{H_2C}CH_2CH_3$ . Uber ein Gemisch mit 1.2-Dimethyl-cyclopenten-(1) s. bei diesem, S. 44 1).
- 11. 1.3 Dimethyl-cyclopenten (3) C<sub>7</sub>H<sub>12</sub> = CH<sub>3</sub>·C·CH<sub>2</sub> CH·CH<sub>3</sub>. B. Ein Gemisch mit 1.3-Dimethyl-cyclopenten-(1) entsteht beim Erhitzen von 1.3-Dimethyl-cyclopentanol-(1) mit p-Toluolsulfonsäure (CHAVANNE, Bl. Acad. Belgique [5] 12, 110; Bl. Soc. chim. Belg. 35, 287; C. 1926 II, 1845). Liefert bei der Oxydation mit 2% iger Permanganat-Lösung bei 0° β-Acetonyl-buttersäure, eine weitere Oxycarbonsäure C<sub>7</sub>H<sub>12</sub>O<sub>3</sub> (vielleicht β-Acetonyl-isobuttersäure), deren Semicarbazon bei 134° schmilzt, und andere Produkte. Bei der Hydrierung in essigsaurer Lösung in Gegenwart von Platinschwarz bildet sich 1.3-Dimethyl-cyclopentan (S. 19).
- 12. [Buten (2) yl (2)] cyclopropan, 2 Cyclopropyl buten (2) oder [Buten (1) yl (2)] cyclopropan, 2 Cyclopropyl buten (1)  $C_7H_{12} = H_2C$  CH·C(CH<sub>2</sub>):CH·C(H<sub>3</sub>):CH·CH<sub>3</sub> oder  $H_2C$  CH·C(:CH<sub>2</sub>)·CH<sub>2</sub>·CH<sub>3</sub> (vgl. H 70; vgl. a. Nr. 13). B. Bei der Destillation von Methyl-äthyl-cyclopropyl-carbinol mit einigen Tropfen konz. Schwefelsäure (van Keersbilck, Bl. Soc. chim. Belg. 38, 210; C. 1929 II, 2036). Nicht rein erhalten. Kp: 105,5—106°.  $D_1^\infty$ : 0,7804.  $D_2^\infty$ : 1,4386,  $D_2^\infty$ : 1,4425,  $D_3^\infty$ : 1,4493,  $D_3^\infty$ : 1,4552.
- 13. [Buten (1) yl (2)] cyclopropan, 2 Cyclopropyl buten (1) oder [Buten (2) yl (2)] cyclopropan, 2 Cyclopropyl buten (2)  $C_7H_{12} = H_2C$  CH·C(:CH<sub>2</sub>)·CH<sub>2</sub>·CH<sub>3</sub> oder  $H_2C$  CH·C(CH<sub>3</sub>):CH·CH<sub>3</sub> (vgl. H 70; vgl. a. Nr. 12). B. Bei der Destillation von Methyl-āthyl-cyclopropyl-carbinol mit einigen Tropfen konz. Schwefelsäure (van Keersbilck, Bl. Soc. chim. Belg. 38, 210; C. 1929 II, 2036). Nicht rein erhalten. Kp: 103,5—103,8°. D. 0,7772.  $n_{\alpha}^{\infty}$ : 1,4357;  $n_{\beta}^{\infty}$ : 1,4390;  $n_{\beta}^{\infty}$ : 1,4473;  $n_{\gamma}^{\infty}$ : 1,4542.
- 14. Bicyclo-[0.1.4]-heptan, 1.2-Methylen-cyclohexan, Norcaran C<sub>7</sub>H<sub>13</sub>, s. nebenstehende Formel (vgl. H 70). Für die von Norcaran abgeleiteten Namen wird in diesem Handbuch diese Stellungsbezeichnung gebraucht. B. Neben einem ungesättigten Isomeren bei der Destillation des Bariumsalzes der Norcaran-carbonsäure-(7) mit einem Gemisch von Bariumoxyd und Zinkoxyd (EBEL, BRUNNER, MANGELLI, Helv. 12, 21, 25). Flüssigkeit. Kp: 110°. Entfärbt weder Brom noch Kaliumpermanganat. Ist in Gegenwart von Platin nicht hydrierbar.
- 15. Bicyclo-[1.2.2]-heptan, 1.4-Methylen-cyclohexan, Norbornylan C<sub>7</sub>H<sub>12</sub>, s. nebenstehende Formel. Zur Bezeichnung als Norbamphan vgl. Aschan, Chemie der alicyclischen Verbindungen [Braunschweig 1905], S. 887; Komppa, B. 42 [1909], 898 Anm.; 75 A [1942], H<sub>2</sub>C-CH-CH<sub>2</sub> 11 Anm. 55.

### 6. Kohlenwasserstoffe $C_8H_{14}$ .

- 1. Cycloocten  $C_8H_{14} = H_2C < CH_2 \cdot CH_2 \cdot CH_3 \cdot CH$  (E I 35). B. Aus Cyclooctanol bei der Einw. von Phthalsäureanhydrid in der Siedehitze (Godohot, Cauquil, C. r. 185, 1203). Beim Leiten von Cycloheptylcarbinol-Dampf über auf 250° erhitztes Thoriumoxyd (Rosanow, Ж. 61, 2317; C. 1930 II, 229). Kp: 143—144° (G., C.), 145—146° (R.).  $D_1^{n_1}$ : 0,8487 (G., C.);  $D_2^{n_2}$ : 0,8487 (G., C.);  $D_2^{n_3}$ : 0,8415 (R.).  $D_2^{n_1}$ : 1,4683 (G., C.);  $D_2^{n_2}$ : 1,4678 (R.). Bei der Oxydation mit verd. Salpetersäure entsteht Korksäure (R.). Bildet ein flüssiges Nitrosochlorid (G., C.).
- 2. 1-Methyl-cyclohepten-(1)  $C_8H_{14} = \frac{H_2C \cdot CH_2 \cdot CH_3}{H_2C \cdot CH_3 \cdot CH_3} \cdot C \cdot CH_3$  (H 71). D<sup>15</sup>: 0,8294;  $n_B^{15}$ : 1,4581 (Godonot, Bedos, C. r. 184, 210).

Reines 1.2-Dimethyl-cyclopenten-(2) zeigt nach CHIURDOGLU (Bl. Soc. chim. Belg. 47 [1938], 366) folgende Konstanten: F: —118,1° (bestimmt von TIMMERMANS); Kp<sub>760</sub>: 95,48—95,50°; D<sub>2</sub><sup>45</sup>: 0,7806; n<sub>He</sub><sup>20</sup>: 1,4331 (vgl. a. die Angaben von CHAVANNE, Bl. Soc. chim. Belg. 39 [1930], 406).

- Methylencycloheptan  $C_8H_{14} = \frac{H_1C \cdot CH_2 \cdot CH_2}{H_1C \cdot CH_2 \cdot CH_2}C \cdot CH_2 \cdot (H 71)$ . B. Beim Erhitzen von Cycloheptylcarbinol (Kp49: 204—206°) mit wasserfreier Oxalsäure oder in geringer Menge beim Leiten von Cycloheptylcarbinol-Dampf über Thoriumoxyd bei 250° (Rosanow, Ж. 61, 2317; C. 1930 II, 229). Entsteht wahrscheinlich neben anderen Produkten bei der trocknen Destillation des Calciumsalzes der Cycloheptan-diessigsäure-(1.1) im Stickstoffstrom (Кон, Soc. 119, 827). — Кр<sub>749</sub>: 139—143°; D<sub>4</sub>°: 0,8185; n<sub>5</sub>°: 1,4599 (R.).
- 4. 1-Äthyl-cyclohexen-(1) C<sub>8</sub>H<sub>14</sub> = H<sub>2</sub>C CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>3</sub>·CH<sub>3</sub> (H 71; E I 35).

  B. Beim Erhitzen von 1-Äthyl-cyclohexanol-(1) mit Phosphorpentoxyd in Äther und nachfolgendem Erwärmen mit alkoh. Schwefelsäure (Eisenlohr, Fortsch. Ch., Phys. 18, 541, 545;  $C. 1926 I, 75). - Kp_{755}: 135,5-136,0^{\circ}. D_{4}^{\infty}(Vakuum): 0,8225. n_{He}^{\infty}: 1,4568. - Liefert bei$ der Hydrierung in Gegenwart von Platinmohr Äthylcyclohexan.
- 5. Äthylidencyclohexan  $C_8H_{14} = H_2C < \frac{CH_2 \cdot CH_3}{CH_2 \cdot CH_3} > C: CH \cdot CH_3$  (H 71; E I 35). B. Neben Methyl-cyclohexyl-carbinol beim Behandeln von 2-Chlor-cycloheptanol-(1) mit 2 Mol Methylmagnesiumjodid in Ather, Erhitzen des ätherfreien Reaktionsgemischs auf 1000 und nachfolgenden Zersetzen mit angesäuertem Wasser (Godchor, Cauquil, C. r. 186, 376). — Kp: 135—136° (G., C.). D<sup>19</sup>: 0,8286 (G., C.). Verbrennungswärme bei konstantem Volumen: 1207,1 kcal/Mol (Roth, Landolt-Börnst. H 1591). n<sup>19</sup>: 1,4577 (G., C.). — Liefert bei der Oxydation mit verd. Permanganat-Lösung Adipinsäure (G., C.).

  Nitrosat C<sub>8</sub>H<sub>14</sub>O<sub>4</sub>N<sub>2</sub>. F: ca. 140° (Godchot, Cauquil, C. r. 186, 377).

  Nitrosochlorid C<sub>8</sub>H<sub>14</sub>ONCl (H 71; E I 35). Schmilzt gegen 130° (Godchot, Cauquil,

C. r. 186, 377).

Nitrolpiperidid  $C_{13}H_{24}ON_2$ . Schmilzt gegen 108—109° (Godchot, Cauquil,  $C.\tau$ . 86, 377; vgl. dagegen Wallach, A. 360 [1908], 45).

Vinylcyclohexan, Cyclohexyldthylen, Bz-Hexahydrostyrol  $C_8H_{14} =$ H<sub>2</sub>C<CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>3</sub>·CH<sub>4</sub>·CH<sub>2</sub>·CH<sub>3</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>· (STAUDINGER, GEIGER, HUBER, B. 62, 267). — B. In geringer Menge beim Erhitzen von Hexahydropolystyrol (Syst. Nr. 473) auf 350-400° (Sr., G., H., B. 62, 265, 266). — Liefert bei der Oxydation mit Permanganat Hexahydrobenzoesäure.

Hexahydropolystyrol  $[C_8H_{14}]_x$  s. Syst. Nr. 473.

[α,β-Dibrom-β-jod-vinyl]-cyclohexan, α,β-Dibrom-β-jod-α-cyclohexyl-äthylen  $C_8H_{11}Br_4I=C_6H_{11}\cdot CBr:CBrI.$  B. Aus Cyclohexyljodacetylen bei der Einw. von Brom in Chloroform unter Eiskühlung (GRIGNARD, PERRICHON, A. ch. [10] 5, 25). — Kp<sub>4</sub>: 140—145° (unter Jodabspaltung).

7. 1.1-Dimethyl-cyclohexen-(2)  $C_8H_{14} = H_2C < CH_{2\cdot CH_3\cdot CH_2} > C(CH_3)_2$ .

3.4.5.5.6 - Pentachlor - 1.1 - dimethyl - cyclohexen - (2)  $C_0H_0Cl_5 =$  $CIHC < CCl = CH > C(CH_3)_2$ . B. Neben anderen Verbindungen beim Einleiten von Chlor in eine Lösung von 3.5-Dichlor-1.1-dimethyl-cyclohexadien-(2.4) in Chloroform unter Eiskühlung (HINKEL, Soc. 117, 1296, 1298). — Nadeln (aus Alkohol). F: 103,5°. Leicht löslich in Chloroform, Methanol, Alkohol, Ather, Aceton, Benzol und warmem Petroläther. Liefert beim Erhitzen auf 120-130° 3.4.5 Trichlor-o-xylol. Beim Erhitzen mit rauchender Salpetersäure auf dem Wasserbad bildet sich 3.4.5.6-Tetrachlor-o-xylol.

1.2 - Dimethyl - cyclohexen - (1),  $\Delta^1$  - Tetrahydro - o - xylol  $C_8H_{14} =$  $H_2C < CH_2 \cdot C(CH_3) > C \cdot CH_3$  (H 72; E I 36). B. Beim Erwärmen von 1.2-Dimethyl-cyclohexanol-(1) mit dem gleichen Volumen 50 % iger Schwefelsäure auf dem Wasserbad (NAMETKIN, DELEKTORSKAJA, Ж. 55, 517; B. 57, 584; vgl. a. LEBEDEW, PLATONOW, Ж. 61, 2153; Soc. 1930, 325). — Kp<sub>758</sub>: 134—136° (N., D., Ж. 55, 517; B. 57, 584). D<sub>4</sub><sup>20</sup>: 0,8215; n<sub>D</sub><sup>20</sup>: 1,4590 (N., Ж. 55, 64; C. 1925 I, 222; N., D., B. 57, 584). — Liefert bei der Oxydation mit Kalium-permanganat niedrigerschmelzendes 1.2-Dimethyl-cyclohexandiol-(1.2) (E I 6, 371) (Wallach, A. 396 [1913], 280; vgl. hierzu N., Ж. 55, 65; B. 57, 585). Geschwindigkeit der Hydrierung in Alkohol in Gegenwart von Platinschwarz bei 20°: L., P. Bei der Einw. von Brom in Chloroform unter Kühlung bildet sich 1.2-Dibrom-1.2-dimethyl-cyclohexan vom Schmelzpunkt 142—143° (S. 21) (wahrscheinlich stereoisomer mit der E I 5, 15 aufgeführten Verbindung) (N., D., Ж. 55, 517; B. 57, 584).

Nitrolpiperidid C13H24ON2. Krystalle (aus Alkohol). F: 120-1210 (MEERWEIN,

A. 417 [1918], 269).

- 9. 1.3 Dimethyl cyclohexen (4),  $\Delta^4$  Tetrahydro m xylol  $C_bH_{14} =$ HC CH(CH<sub>3</sub>)·CH<sub>4</sub>·CH<sub>5</sub>·CH·CH<sub>3</sub> (vgl. H 73; E I 36).

  a) Praparat von Skita. Zur Konfiguration vgl. Skita, A. 427, 279. — B. Beim
- Kochen des Hydrochlorids des 4-Amino-1.3-dimethyl-cyclohexans (Kp: 163—164°; Schmelzpunkt des N-Benzoyl-Derivats: 86°) mit Natriumnitrit-Lösung (Sk., A. 427, 279). In geringer
- punkt des N-Benzoyi-Derivsts: 80°) mit Natriumnitrit-Losung (SK., A. 427, 279). In geringer Menge beim Erhitzen von 4-Benzamino-1.3-dimethyl-cyclohexan vom Schmelzpunkt 86° mit Salzssure (D: 1,16) im Rohr auf 150° (SK., A. 427, 271). Kp: 123—124°. Liefert bei der Einw. von Brom in Chloroform ein bei 120° sich zersetzendes Dibromid.

  b) Präparat von Schrauth, Quasebarth (sterische Einheitlichkeit fraglich). B. Beim Erhitzen von 1.3-Dimethyl-cyclohexanol-(5) (Kp: 184—186°; erhalten durch katalytische Reduktion von symm. m-Xylenol) mit Zinkchlorid (Schrauth, Quasebarth, B. 57, 857). Kp: 124—126°. Liefert beim Erwärmen mit Phenol in Gegenwart von konz. Salzsäure auf dem Wasserbad 1.3-Dimethyl-x/[4-0xy.phenyll-cyclohexan (Syst. Nr. 534) Salzsäure auf dem Wasserbad 1.3-Dimethyl-x-[4-oxy-phenyl]-cyclohexan (Syst. Nr. 534).
- 1.4 Dimethyl cyclohexen (1),  $\Delta^1$  Tetrahydro p xylol  $C_8H_{14}$  = CH<sub>3</sub>·CH<sub>2</sub>·CH<sub>3</sub>·CH<sub>2</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>4</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>4</sub>·CH<sub>3</sub>·CH<sub>4</sub>·CH<sub>3</sub>·CH<sub>4</sub>·CH<sub>3</sub>·CH<sub>4</sub>·CH<sub>3</sub>·CH<sub>4</sub>·CH<sub>3</sub>·CH<sub>4</sub>·CH<sub>3</sub>·CH<sub>4</sub>·CH<sub>3</sub>·CH<sub>4</sub>·CH<sub>3</sub>·CH<sub>4</sub>·CH<sub>3</sub>·CH<sub>4</sub>·CH<sub>3</sub>·CH<sub>4</sub>·CH<sub>3</sub>·CH<sub>4</sub>·CH<sub>3</sub>·CH<sub>4</sub>·CH<sub>3</sub>·CH<sub>4</sub>·CH<sub>3</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub>·CH<sub>4</sub> cyclohexan (Zelinsky, Pawlow, B. 57, 1069). Liefert bei längerer Einw. von Benzopersäure in Äther 1.2-Oxido-1.4-dimethyl-cyclohexan (Syst. Nr. 2363) (N., B.).
- 11. 1-Propyl-cyclopenten-(1)  $C_8H_{14} = \frac{H_2C \cdot CH}{H_2C \cdot CH_2 \cdot C_2H_5}$ . B. Aus 1-Propyl-cyclopentanol-(1) beim Erhitzen mit Phosphorpentoxyd in absol. Ather (EISENLOHR, Fortsch. Ch., Phys. 18, 541; C. 1926 I, 75), beim Leiten über Aluminiumoxyd bei 300°, beim Erhitzen mit bei 100° getrocknetem Aluminiumsulfat auf 120—130° oder beim Erhitzen in Gegenwart von p-Toluolsulfonsäure unter vermindertem Druck auf 130-1400 (CHAVANNE, Becker, Bl. Soc. chim. Belg. 36, 592, 597; C. 1928 I, 1169). — F: —100,3°; Kp<sub>760</sub>: 131,5° bis 132,5°; D<sup>n</sup>: 0,8056; D<sup>n</sup>: 0,8015 (Ch., B.); D<sup>n</sup> (Vakuum): 0,8062 (El.). n<sup>n</sup><sub>2</sub>: 1,4423; n<sup>n</sup><sub>2</sub>: 1,4450 (Ch., B.); n<sup>n</sup><sub>He</sub>: 1,4505 (El.); n<sup>n</sup><sub>2</sub>: 1,4516; n<sup>n</sup><sub>2</sub>: 1,4574 (Ch., B.). — Liefert bei der Oxydation mit Permanganat-Lösung bei 0° y-Butyryl-buttersäure, daneben entstehen Glutarsäure, Bernsteinsäure, Buttersäure und Propionsäure (Ch., B.). Bei der Hydrierung in essigsaurer Lösung in Gegenwart von Platinschwarz bildet sich Propylcyclopentan (Ch., B.; vgl. a. EI.).
- 12. 1-Isopropyl-cyclopenten-(1)  $C_8H_{14} = \frac{H_2C \cdot CH}{H_2C \cdot CH_2}C \cdot CH(CH_3)_2$  (E I 37). B. Aus 1-Isopropyl-cyclopentanol-(1) beim Erhitzen mit Phosphorpentoxyd in absol. Ather (EISEN-CONDENS) LOHR, Fortsch. Ch., Phys. 18, 541, 542; C. 1926 I, 75). — Kp755: 133—135°. — Gibt bei der Hydrierung in Gegenwart von Platinmohr Isopropyleyelopentan.
- 13. 1.1.2-Trimethyl-cyclopenten-(2), Isolaurolen  $C_8H_{14} = H_1C CH_2$ (H 74; E I 37). Verbrennungswärme bei konstantem Volumen: 1192,9 kcal/Mol (Swieto-slawski, Am. Soc. 42, 1095; vgl. Subow, Ж. 33, 722; С. 1902 I, 161).
- 14. 1.2.3-Trimethyl-cyclopenten-(1), Laurolen C<sub>8</sub>H<sub>14</sub> = CH<sub>3</sub>·HC·C(CH<sub>3</sub>) C·CH<sub>3</sub> (H 75; E I 37). Verbrennungswärme bei konstantem Volumen: 1192,3 kcal/Mol (Swieto-SLAWSKI, Am. Soc. 42, 1095; vgl. Subow, 3K. 33, 722; C. 1902 I, 161).
- 15. [Penten-(2)-yl-(3)]-cyclopropan, 3-Cyclopropyl-penten-(2)  $C_8H_{14} =$  $\frac{\mathbf{H_2C}}{\mathbf{H_2C}}$  CH · C( $\mathbf{C_3H_5}$ ): CH · CH<sub>3</sub> (H 76). B. Bei der Destillation von Diäthyl-cyclopropyl-carbinol mit einigen Tropfen konz. Schwefelsäure (VAN KEERSBILCK, Bl. Soc. chim. Belg. 38, 209; C. 1929 II, 2036). —  $Kp_{763.6}$ : 127,5—128°.  $D_4^{20}$ : 0,7915.  $n_{\alpha}^{20}$ : 1,4416;  $n_{\beta}^{20}$ : 1,4445;  $n_{\beta}^{20}$ : 1,4516.
  - 16. 1.1-Dimethyl-2-isopropyl-cyclopropen-(2)  $C_8H_{14} = \frac{(CH_3)_2CH \cdot C}{HC}C(CH_3)_2$ .
- 8.2¹-Dibrom-1.1-dimethyl-2-isopropyl-cyclopropen-(2), 3-Brom-1.1-dimethyl-2-[ $\alpha$ -brom-isopropyl]-cyclopropen-(2)  $C_8H_{12}Br_2=\frac{(CH_3)_2CBr\cdot C}{BrC}C(CH_3)_2$ . Eine Verbindung C<sub>s</sub>H<sub>1s</sub>Br<sub>s</sub>, die vielleicht diese Konstitution besitzt, s. E II 1, 572.

- 48
- 17. Bicyclo-[0.3.3]-octan, Pentalan  $C_8H_{14} = H_2C \stackrel{CH_2 \cdot CH \cdot CH_2}{CH_2 \cdot CH_2 \cdot CH_2} CH_2$ . Uber eine als Bicyclo-[0.3.3]-octan aufgefaßte Verbindung vgl. Schroeter, A. 426, 2; vgl. hierzu Ruzicka, Borges de Almeida, Brace, Helv. 17 [1934], 183 Anm. 4; Linstead, Meade, Soc. 1934, 936, 939; Cook, L., Soc. 1934, 946; Barrett, L., Soc. 1935, 436, 1069; 1936, 611; Bardhan, Banerji, Soc. 1935, 474.
- 18. 3.3-Dimethyl-bicyclo-[0.1.3]-hexan, 4.4-Dimethyl-1.2-methylen-cyclopentan C<sub>8</sub>H<sub>14</sub> = (CH<sub>3</sub>)<sub>2</sub>CCH<sub>2</sub>·CH<sub>2</sub>·CH<sub>3</sub> (E I 38). B. Zur Bildung aus festem und flüssigem 3.5-Dibrom-1.1-dimethyl-cyclohexan durch Einw. von Zinkstaub in 80%igem Alkohol auf dem Wasserbad vgl. USPENSKI, *Trudy Inst. č. chim. Reakt.* 2, 5; C. 1924 II, 1582. — Kp<sub>740</sub>: 114—114,1°. D<sup>20</sup>: 0,8131. n<sup>20</sup>: 1,4350. — Wird durch 1%ige Kaliumpermanganat-Lösung nicht angegriffen.
- 19. 2-Methyl-bicyclo-[1.2.2]-heptan, 2.5-Methylen-hexa-hydrotoluol C<sub>8</sub>H<sub>14</sub>, s. nebenstehende Formel. ĊH<sub>2</sub>
- 2-Jodmethyl-bicyclo-[1.2.2]-heptan, 2.5-Methylen-hexahydrobensyljodid C<sub>8</sub>H<sub>18</sub>I=C<sub>7</sub>H<sub>11</sub>·CH<sub>2</sub>I. B. Beim Erhitzen von 2.5-Methylenhexahydrobenzylalkohol mit Jodwasserstoffsäure (D: 1,96) auf 110—120° (Diels, Alder, A. 470, 78). — Bewegliche Flüssigkeit von dumpfem Geruch. Kp<sub>14</sub>: 107—109°.

### 7. Kohlenwasserstoffe $C_9H_{16}$ .

1. 1-Methyl-cycloocten-(1)  $C_9H_{16} = H_2C < CH_2 \cdot CH_2 \cdot CH_3 \cdot CH_3 \cdot CH_3 \cdot CH_3 \cdot B$ . Bei der Umsetzung von Cyclooctanon mit Methylmagnesiumjodid und Destillation des entstandenen 1-Methyl-cyclooctanols-(1) (Godchot, Cauque, C. r. 185, 1203). Neben anderen Verbindungen beim Erwärmen von [Cyclooctylmethyl]-amin mit Natriumnitrit in essigsaurer Lösung (Ruzicka, Brugger, Helv. 9, 400, 405). — Flüssigkeit. Kp<sub>730</sub>: 165—169° (R., B.). D<sup>15</sup>: 0,8515 (G., C.); D<sup>10</sup>: 0,8487 (R., B.). n<sup>15</sup>: 1,4673 (G., C.); n<sup>16</sup>: 1,4691 (R., B.). — Liefert bei der Oxydation mit wäßr. Kaliumpermanganat-Lösung Korksäure und eine Verbindung, die beim Behandeln mit Brom und Natronlauge in Korksäure übergeht (R., B.). Bei der Ozonisierung in Tetrachlorkohlenstoff und Zersetzung des Ozonids mit Wasser bilden sich neben anderen Produkten Korksäure und eine bei 120—140° unter 13 mm Druck siedende Fraktion, die ein Disemicarbazon C<sub>11</sub>H<sub>22</sub>O<sub>2</sub>N<sub>6</sub> vom Schmelzpunkt 182—183° liefert (R., B.).

Nitrosochlorid CoH16ONCl. Krystalle. F: 107-1080 (GODCHOT, CAUQUIL, C. r. **185**, 1203).

2. 1.2-Dimethyl-cyclohepten-(1) C<sub>9</sub>H<sub>16</sub> = H<sub>2</sub>C·CH<sub>3</sub>·C(CH<sub>3</sub>) C·CH<sub>3</sub>. B. Neben 1-Isopropyl-cyclohexen-(1) beim Erhitzen von 1.1-Dimethyl-cycloheptanol-(2) oder von 1-Methyl-1-[a-oxy-āthyl]-cyclohexan mit Zinkchlorid auf 1800 (Meerwein, Schäfer, J. pr. [2] 104, 291, 301, 309). — Liefert durch Ozonisierung in Eisessig unter Eiskühlung und nachfolgendes Erwärmen Nonandion-(2.8).

Nitrosochlorid  $C_0H_{16}ONCl.$  Nicht rein erhaltene Krystalle. F: ca. 118° (Meerwein, Schäfer,  $J.\ pr.\ [2]$  104, 292, 301).

3. 1-Propyl-cyclohexen-(1) C<sub>2</sub>H<sub>16</sub> = H<sub>2</sub>C<CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CCH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub> (H 76). B. Beim Erhitzen von 1-Propyl-cyclohexanol-(1) mit Phosphorpentoxyd in absol. Ather und nach-Erhitzen von 1-Fropyi-cyclonexenol-(1) mit Frospiorpentoxyu in absol. Ather und rechfolgenden Behandeln mit alkoh. Schwefelsäure (EISENLOHE, Fortsch. Ch., Phys. 18, 541, 546; C. 1926 I, 75). Aus niedrigersiedendem 1-Propyl-cyclohexanol-(2) beim Erhitzen mit Kaliumdisulfat (Fujise, Scient. Pap. Inst. phys. chem. Res. 10, 89; Bl. phys. chem. Res. Tokyo 2, 3; C. 1929 I, 2991). — Kp<sub>768</sub>: 157,5—158,5° (EI.); Kp: 155—156° (F., Scient. Pap. Inst. phys. chem. Res. 8, 188; 10, 89; C. 1928 II, 993; 29 I, 2991). D<sup>10</sup>; 0,8216; n<sup>10</sup>; 1,4555 (F., Scient. Pap. Inst. phys. chem. Res. 10, 89; C. 1929 I, 2991); D<sup>20</sup> (Vakuum): 0,8276; D<sup>20</sup> (A400) (Fr.) — Liefart hei der Hudrigmund: Gozganget von Platingen Parallel. nme: 1,4602 (El.). — Liefert bei der Hydrierung in Gegenwart von Platinmohr Propyleyclohexan (E1.).

Nitrosochlorid C, H<sub>16</sub>ONCl (H 76). Krystalle (aus Essigester). F: 104° (FUJISE, Scient. Pap. Inst. phys. chem. Res. 8, 188, 192; C. 1928 II, 994).

Nitrolpiperidid C<sub>14</sub>H<sub>26</sub>ON<sub>2</sub>. Krystalle (aus Methanol). F: 128° (FUJISE, Scient. Pap. Inst. phys. chem. Res. 8, 188, 192; C. 1928 II, 994).

1-Propyl-cyclohexen-(2)(?)  $C_0H_{16} = H_2C < CH_2 \cdot CH_3 \cdot CH_4 \cdot CH_2 \cdot C_2H_6(?)$ . B. Beim Behandeln des Jodmethylats des niedrigersiedenden 2-Dimethylamino-1-propyl-cyclohexans mit Silberoxyd in verd. Alkohol und Destillieren des Reaktionsprodukts unter vermindertem Druck bei 200° (Fujise, Scient. Pap. Inst. phys. chem. Res. 8, 188, 192; C. 1928 II, 993). — Kp: 154,5—155,5° (F., Scient. Pap. Inst. phys. chem. Res. 8, 188, 192). D. 19: 0,8181 (F., Scient. Pap. Inst. phys. chem. Res. 10, 89; C. 1929 I, 2991). n. 19: 1,4541 (F., Scient. Pap. Inst. phys. chem. Res. 8, 188). — Liefert beim Behandeln mit Athylnitrit und Salzsäure kein krystallinisches Nitrosochlorid (F., Scient. Pap. Inst. phys. chem. Res. 8, 188, 192).

Allylcyclohexan, 3-Cyclohexyl-propen-(1)  $C_0H_{16} =$ H<sub>2</sub>C< CH<sub>2</sub>·CH<sub>2</sub>·CH·CH<sub>2</sub>·CH·CH<sub>2</sub> (E I 38). B. Durch Hydrierung von 3-Cyclohexyl-CH<sub>2</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>· propin-(1) in Gegenwart von kolloidalem Palladium (Bourguel, Bl. [4] 41, 1475, 1476). — Kp:  $152^{\circ}$  (unkorr.). D<sup>13</sup>: 0,813; D<sup>21</sup>: 0,808.  $n_D^{12}$ : 1,452;  $n_D^{21}$ : 1,449.

[β-Brom-allyl]-cyclohexan, 2-Brom-3-cyclohexyl-propen-(1)  $C_9H_{15}Br = C_8H_{11}$ . CH<sub>2</sub>·CBr:CH<sub>2</sub>. B. Bei der Einw. von Cyclohexylmagnesiumbromid auf 2.3-Dibrom-propen-(1) in Ather (Lespieau, Bl. [4] 29, 531; Bourguel, C.r. 177, 689; A. ch. [10] 3, 378, 384; L., B., Org. Synth. Coll. Vol. I [1932], S. 180; deutsche Ausgabe, S. 179). — Kp<sub>10-11</sub>: 84°; Kp<sub>14</sub>: 88—89°; D<sup>17</sup>: 1,215; n<sub>5</sub>°: 1,495 (B., A. ch. [10] 3, 379). — Liefert beim Behandeln mit Natriumamid in einer hochsiedenden Petroleumfraktion bei 155° und Zersetzen des Postkingenschaften mit Fig. 2 Chelohovell preprint (4) (S. 24) (R. ch. 16) 3, 224, 284. Reaktionsprodukts mit Eis 3-Cyclohexyl-propin-(1) (S. 81) (B., A. ch. [10] 3, 231, 384; C. r. 177, 689). Diese Verbindung bildet sich auch in geringer Menge beim Behandeln mit alkoh. Kalilauge (L.).

1-Isopropyl-cyclohexen-(1),  $\Delta^1$ -Tetrahydrocumol  $C_9H_{16} =$  $H_2C < CH_2 \cdot CH_2 \cdot CH_3 \cdot$ Erhitzen von 1.1-Dimethyl-cycloheptanol-(2) oder von 1-Methyl-1-[α-oxy-äthyl]-cyclohexan init Zinkchlorid auf 180° (Meerwein, Schäfer, J. pr. [2] 104, 291, 301, 309). — Verbrennungswärme bei konstantem Volumen: 1338,5 kcal/Mol (ROTH, ELLINGER, Landolt-Börnst. E I, 868). Liefert durch Ozonisierung in Eisessig unter Eiskühlung und nachfolgendes Erwärmen δ-Isobutyryl-n-valeriansäure (E II 3, 446) (M., Sch.).

Nitrosochlorid C<sub>9</sub>H<sub>16</sub>ONCl (H 77). Prismen (aus Benzol). F: 128,5° (MEERWEIN, Schäfer, J. pr. [2] 104, 302).

7. Isopropylidencyclohexan  $C_9H_{16} = H_2C < \stackrel{CH_3 \cdot CH_2}{CH_2 \cdot CH_3} > C:C(CH_3)_2$  (H 77; E I 38). Verbrennungswärme bei konstantem Volumen: 1348,1 kcal/Mol (Roth, Ellinger, Landolt-Börnst. E I, 868).

8. 1-Methy.-4-āthyl-cyclohexen-(1?)  $C_9H_{16} = C_2H_5 \cdot HC < CH_2 \cdot CH_2 \cdot CH_3 \cdot (?)$ . B. Neben anderen Verbindungen bei der pyrogenen Zersetzung von Rohkautschuk in Gegenwart von Magnesium unter Atmosphärendruck bei ca. 700° (Midgley, Henne, Am. Soc. 51, 1216, 1220). — Kp: 144— $145^{\circ}$ . D<sub>20</sub>: 0,813.  $n_{D}^{20}$ : 1,4529.

9. 1-Methyl-4- $\ddot{a}$ thyl-cyclohexen-(3)  $C_0H_{16} = C_2H_5 \cdot C < CH_2 \cdot CH_2 > CH \cdot CH_3 > CH_3 > CH_3 \cdot CH_3 > CH_3 > CH_3 \cdot CH_3 > CH_3 > CH_3 \cdot CH_3 >$ (H 78; E I 39). Kp<sub>760</sub>: 151—152°; D<sub>4</sub><sup>20</sup>: 0,8133; n<sub>D</sub><sup>20</sup>: 1,4522 (Nametkin, Brjussowa, **Ж. 55**, 82; C. 1925 I, 222). — Liefert beim Behandeln mit Benzopersäure in Äther 3.4-Oxido-1-methyl-4-äthyl-cyclohexan (Syst. Nr. 2363). Nitrosochlorid C9H16ONCl.

E I 39, Z. 19 v. o. statt ,,ein bei  $59-60^\circ$  schmelzendes Oxim  $C_9H_{15}ON$  lies ,,das Oxim des I-Methyl-4-äthyl-cyclohexen-(3)-ons-(5) (W., A. 397, 204).

10. 1-Methyl-4-āthyliden-cyclohexan  $C_9H_{16} = CH_3 \cdot CH \cdot C \cdot \frac{CH_2 \cdot CH_3}{CH_2 \cdot CH_3} \cdot CH \cdot CH_3$ Nitrosochlorid CoH16ONCL.

H 78, Z. 1 v. u. (Anmerkung) statt "373" lies "374".

11. 1.1.2-Trimethyl-cyclohexen-(2)  $C_9H_{16} = H_2C < CH: C(CH_3) > C(CH_3) < C(CH_3$ B. Aus 1-Chlor-1-methyl-cyclohexanon-(2) bei der Einw. von Methylmagnesiumjodid (God-снот, Вероз, С. r. 181, 920). — Kp: 144—146°. D<sup>14</sup>: 0,862. n<sup>6</sup>;: 1,4590.

12. 1.1.3 - Trimethyl - cyclohexen - (3),  $\alpha$  - Cyclogeraniolen  $C_0H_{16}$  = HC<C(CH<sub>3</sub>)·CH<sub>2</sub>>C(CH<sub>3</sub>)<sub>2</sub> (H 79; E I 39). Das H 79 beschriebene Präparat von Harries, Weil. (B. 87, 848) ist nach Escourrou (Bl. [4] 39, 1465; 43, 1277) mit  $\gamma$ -Cyclogeraniolen (S. 50) zu identifizieren.

Ein Gemisch mit  $\beta$ -Cyclogeraniolen [1.1.3-Trimethyl-cyclohexen-(2)] (Kp<sub>725</sub>: 137—140°; Kp<sub>15</sub>: 33—35°; D<sub>4</sub>°: 0,7948; n<sub>1</sub>°: 1,4415) entsteht aus 2.6-Dichlor-2.6-dimethyl-heptan oder 2.6-Dibrom-2.6-dimethyl-heptan bei der Einw. von Zinkstaub in siedendem Benzol unter Durchleiten von Chlorwasserstoff und Zusatz von wenig Eisessig (STAUDINGER, WIDMER, Helv. 9, 531, 546).

Nitrosat des α-Cyclogeraniolens C<sub>9</sub>H<sub>16</sub>O<sub>4</sub>N<sub>2</sub> (H 79; E I 39). F: 102-103° (STAU-

DINGER, WIDMER, Helv. 9, 547).

- 13. 1.1 Dimethyl 3 methylen cyclohexan,  $\gamma$  Cyclogeraniolen  $C_9H_{16} = H_2C < C(:CH_2) \cdot CH_2 > C(CH_3)_2$ . B. Beim Erhitzen von 2.6-Dimethyl-hepten-(2)-ol-(6) mit wasserfreier Oxalsäure auf ca. 140—150° (Escourrou, Bl. [4] 39, 1464). Als  $\gamma$ -Cyclogeraniolen ist nach Escourrou (Bl. [4] 39, 1465; 43, 1277) auch das von Harries, Weil (B. 37, 848) als  $\alpha$ -Cyclogeraniolen beschriebene, aus demselben Ausgangsmaterial erhaltene Cyclogeraniolen aufzufassen 1). Kp<sub>739</sub>: 138—141°; D¹0: 0,8013; D¹¹6·5: 0,7970; n⁵0: 1,4484 (E., Bl. [4] 39, 1464, 1465). Entwickelt bei der Ozonisierung in Chloroform-Lösung Formaldehyd; bei der Zersetzung des Ozonids mit siedendem Wasser bilden sich Formaldehyd und eine Verbindung von stark mentholartigem Geruch (E., Bl. [4] 43, 1277). Besitzt einen cymolartigen Geruch (E., Bl. [4] 39, 1464).
- 14. 1.2.4-Trimethyl-cyclohexen-(4), Δ<sup>4</sup>-Tetrahydropseudocumol C<sub>2</sub>H<sub>16</sub> = CH<sub>3</sub>·C·C·CH<sub>2</sub>·CH(CH<sub>3</sub>) CH·CH<sub>2</sub>. Ist nach Skita, Schneck (B. 55, 150, 151) stereoisomer mit der E I 40 beschriebenen Verbindung. B. Aus 1.2.4-Trimethyl-cyclohexanol-(5) vom Siedepunkt 191—193° beim Behandeln mit Phosphorpentoxyd (Sk., Sch., B. 55, 150). In geringer Menge beim Kochen des Hydrochlorids des bei 21° schmelzenden 5-Amino-1.2.4-tri: methyl-cyclohexans mit Natriumnitrit in Wasser (Sk., B. 53, 1805). Kp: 147°; D<sub>4</sub><sup>20</sup>: 0,814; n<sub>D</sub><sup>20</sup>: 1,4491 (Sk., Sch.). Über Produkte, die bei der Reduktion mit Wasserstoff bei Gegenwart von kolloidem Platin in saurer Lösung bzw. mit Natrium in siedendem absolutem Alkohol entstehen, vgl. Sk., Sch.
- 15. 1-Butyl-cyclopenten-(1)  $C_9H_{16} = \frac{H_2C \cdot CH}{H_2C \cdot CH_2}C \cdot [CH_2]_3 \cdot CH_3$ . B. Aus 1-Butyl-cyclopentanol-(1) durch Erhitzen mit bei 100° getrocknetem Aluminiumsulfat auf 125—130° oder durch Leiten seines Dampfes über auf 300° erhitztes Aluminiumoxyd (Chavanne, Becker, Bl. Soc. chim. Belg. 36, 601; C. 1928 I, 1169). F: —95,7° (Timmermans, Bl. Soc. chim. Belg. 36, 504; C. 1928 I, 26). Kp<sub>760</sub>: 157,5—158°; D<sub>4</sub><sup>1,3</sup>: 0,8101;  $n_{\alpha}^{\text{ni},2}$ : 1,4461;  $n_{\beta}^{\text{ni},3}$ : 1,4488;  $n_{\beta}^{\text{ni},2}$ : 1,4554;  $n_{\gamma}^{\text{ni},2}$ : 1,4610 (CH., B.).
  - 16. 1-Butyl-cyclopenten-(2)  $C_0H_{16} = \frac{HC : CH}{H_2C \cdot CH_2}CH \cdot [CH_2]_3 \cdot CH_3.$

1-[ $\delta$ -Brom-butyl]-cyclopenten-(2),  $\delta$ -[ $\Delta^2$ -Cyclopentenyl]-butylbromid  $C_9H_{15}Br = C_5H_7$ ·[ $CH_2$ ]<sub>3</sub>· $CH_2$ Br. B. Beim Behandeln von 1-[ $\delta$ -Oxy-butyl]-cyclopenten-(2) mit Phosphortribromid in Toluol unterhalb 0° (Arvin, Adams, Am. Soc. 50, 1792). — Kp<sub>5</sub>: 82—86°. D<sub>4</sub>°: 1,2229.  $n_p^{\infty}$ : 1,4942.

- D<sub>2</sub><sup>20</sup>: 1,2229.  $n_{\rm D}^{\rm m}$ : 1,4942.

  17. 1-Isobutyl-cyclopenten-(1)  $C_9H_{16} = \frac{H_2C \cdot CH_2}{H_2C \cdot CH_2}C \cdot CH_2 \cdot CH(CH_3)_2$ . B. Aus 1-Isobutyl-cyclopentanol-(1) beim Erhitzen mit Phosphorpentoxyd in absol. Äther (Eisenlohr, Fortsch. Ch., Phys. 18, 541, 542; C. 1926 I, 75). Kp<sub>758</sub>: 152—154°. D<sub>4</sub><sup>20</sup> (Vakuum): 0,8203.  $n_{\rm He}^{\rm m}$ : 1,4605. Liefert bei der Hydrierung in Gegenwart von Platinmohr Isobutyl-cyclopentan.
- 18. 1.2-Diäthyl-cyclopenten-(1)  $C_9H_{16} = \frac{H_2C \cdot C(C_2H_5)}{H_2C} \cdot C_2H_5$  (H 81 als Diäthyl-cyclobutyliden-methan aufgeführt; E I 41). B. Beim Sättigen von 1.2-Diäthyl-cyclopentanol-(1) mit Jodwasserstoff und Erhitzen des Reaktionsgemischs mit Zinkstaub in wäßrig-alkoholischer Salzsäure (Case, Reid, Am. Soc. 50, 3065). Kp<sub>761</sub>: 148—149° (korr.).  $D_4^a$ : 0,9331;  $D_4^a$ : 0,8136.
- 19. Bicyclo-[0.3.4]-nonan, Oktahydroinden, Perhydroinden, Hydrindan  $C_9H_{16} = \frac{H_2C \cdot CH_2 \cdot CH \cdot CH_2}{H_2C \cdot CH_2 \cdot CH \cdot CH_2} \cdot CH_1$ . Zur Stereoisomerie des Hydrindans und seiner Derivate vgl. Hückel, Friedrich, A. 451, 132; H., A. 455, 123; H., Goth, B. 67 [1934], 2104;

 $<sup>^{1}</sup>$ ) Zur Konstitution des  $\gamma$ -Cyclogeraniolens vgl. a. die Angaben bei Methyl- $\gamma$ -cyclogeraniolen, S. 54.

H., Mitarb., A. 518 [1935], 155; 580 [1937], 166; H., A. 583 [1938], 27; KANDIAH, Soc. 1981, 959; THAKUR, Soc. 1983, 1485; COOK, LINSTEAD, Soc. 1984, 947; BARRETT, L., Soc. 1985, 1069.

a) cis-Form (H 82; E I 42). B. Aus Inden bei der katalytischen Hydrierung über Palladium-Asbest bei 150—160° (Zelinsky, Borissow, B. 57, 2060; Z., Titz, B. 62, 2871), über Osmium-Asbest unterhalb 100° (Z., Turowa-Pollak, B. 62, 2867), über Platin-Kohle (Z., T.-P., B. 62, 1662) oder Platinoxyd (Staudinger, Mitarb., Helv. 12, 966). Bei der Hydrierung von Indanon-(2) in Eisessig bei Gegenwart von Platinmohr oder von kolloidem Platin bei 40—50° (Hückel, Friedrich, A. 451, 154, 156). — Erstarrt im Äther-Kohlendioxyd-Gemisch glasig (H., F.). Kp: 166—167° (H., F.; Z., Titz); Kp<sub>21</sub>: 62° (H., F.). Di<sup>1,3</sup>: 0,8872; Di<sup>1,3</sup>: 0,8849; Di<sup>2,3</sup>: 0,880 (H., F.). ni<sup>3,4</sup>: 1,4693; ni<sup>3,6</sup>: 1,4750; ni<sup>3,6</sup>: 1,4727; ni<sup>3,6</sup>: 1,4714; ni<sup>3,6</sup>: 1,4777; ni<sup>3,6</sup>: 1,4826 (H., F.). Beugung von Röntgenstrahlen an flüssigem cis-Hydrindan: Katz, Z. ang. Ch. 41, 333. — Lagert sich beim Erwärmen mit Aluminiumbromid auf dem Wasserbad in trans-Hydrindan um; daneben bilden sich ein bei 192—193° schmelzender, krystallinischer Kohlen wasserstoff C<sub>27</sub>H<sub>42</sub>(?) und andere Produkte (Z., T.-P., B. 62, 1662). Liefert bei mehrmaligem Leiten über Platin-Kohle im Kohlendioxyd-Strom bei 300—310° Hydrinden (Z., Titz; vgl. Z., Bo.). Beim Durchleiten durch ein auf 750° erhitztes, verzinntes Eisenrohr bilden sich Inden, Cyclopentadien, Naphthalin und Chrysen (Orlow, Bellopolski, B. 62, 1228, 1231). Beim Leiten über einen Nickel-Tonerdehydrat-Katalysator bei 320° bis 325° entstehen Benzol, Toluol und andere Produkte (Z., Bo.; vgl. Z., Titz).

325° entstehen Benzol, Toluol und andere Produkte (Z., Bo.; vgl. Z., Titz).
b) dl-trans-Form 1). B. Beim Erwärmen von cis-Hydrindan mit Aluminiumbromid auf dem Wasserbad (Zelinsky, Turowa-Pollak, B. 62, 1662). — Flüssigkeit. Ist bei —80° noch flüssig; Kp<sub>760</sub>: 159°; D<sub>4</sub>°: 0,8632; n<sub>2</sub>°: 1,4638 (Hückel, Mitarb., A. 518 [1935], 167;

vgl. Z., T.-P.).

20. Bicyclo-[1.3.3]-nonan, 1.5-Methylen-cyclooctan C<sub>9</sub>H<sub>16</sub>, s. H<sub>2</sub>C-CH-CH<sub>2</sub> nebenstehende Formel. B. Bei der Hydrierung von Bicyclo-[1.3.3]-nonadien-(2.6)-diol-(2.6)-diacetat in Gegenwart von Platinschwarz (MEERWEIN, J. pr. [2] 104, 182). Beim Erhitzen von Bicyclo-[1.3.3]-nonandion-(2.6)-disemicarbazon mit Natriumäthylat-Lösung im Rohr auf 220° (M., J. pr. [2] 104, 163, 184). — Krystalle (aus Methanol oder Eisessig) von camphanähnlichem Geruch. F: 145—146°. Sublimiert leicht. Kp: 168,5—170°. Ziemlich schwer löslich in Methanol und Eisessig, löslich in Äther. Flüchtig mit Wasser- und Alkohol-Dampf.

#### 21. 2.2-Dimethyl-bicyclo-[1.2.2]-heptan, Camphenilan CoH<sub>16</sub>, Formel I.

3.3-Dichlor-2.2-dimethyl-bicyclo-[1.2.2]-heptan, Gamphenilondichlorid  $C_9H_{14}Cl_2$ , Formel II (H 82; E I 42). B. In geringer Menge aus 2.2-Dimethyl-3.6-methylen-bicyclo-[0.1.3]-hexanol-(1) und Phosphorpentachlorid in absol. Ather oder Petroläther (Lipp, Padberg, B. 54, 1321, 1328). — Krystalle (aus verd. Alkohol). F:  $168-169^{\circ}$ .

22. 2.3 - Dimethyl - bicyclo - [1.2.2] - heptan, Dihydrosanten  $C_0H_{16}$ , s. nebenstehende Formel. B. Bei der Hydrierung von Santen in Gegenwart von Palladium-Calciumcarbonat in 96 % igem Alkohol oder absol. Äther (Deussen, J. pr. [2] 114, 113). — Flüssigkeit. Kp: 150—152°.  $H_2C$ —CH—CH·CH<sub>3</sub>  $D^{18,5}$ : 0,8712.  $n_0^{18,6}$ : 1,4636.

23. Kohlenwasserstoff C<sub>9</sub>H<sub>16</sub> unbekannter Konstitution aus Fenchon. B. In geringer Menge beim Erhitzen von Fenchon im Hochdruckautoklaven in Gegenwart von Tonscherben auf 450° (TREIBS, B. 61, 683, 686). — D<sup>20</sup>: 0,7857. — Ist gesättigt.

24. Kohlenwasserstoff C<sub>0</sub>H<sub>16</sub> unbekannter Konstitution aus Campher. B. In geringer Menge beim Erhitzen von Campher im Hochdruckautoklaven in Gegenwart von Tonscherben auf 420° (TREIBS, B. 61, 683, 687). — Kp: 136—142°. D<sup>20</sup>: 0,8104. — Ist gesättigt. — Besitzt pinenartigen Geruch. [MATERNE]

#### 8. Kohlenwasserstoffe $C_{10}H_{18}$ .

1.  $\beta$  - Butenyl - cyclohexan, 1 - Cyclohexyl - buten - (2)  $C_{10}H_{18} = H_2C < CH_2 \cdot CH_2 \cdot CH_3 \cdot CH$ 

<sup>1)</sup> Über eine optisch-aktive Modifikation vgl. BARRETT, LINSTRAD, Soc. 1935, 1071.

- 2.  $\gamma$  Butenyl cyclohexan, 4 Cyclohexyl buten (1)  $C_{10}H_{18} = H_2C < CH_2 \cdot CH$
- 3. 1 Methyl 3 isopropyl cyclohexen (5), m Menthen (5) C<sub>10</sub>H<sub>18</sub> = HC CH CH<sub>2</sub> CH CH(CH<sub>3</sub>). (vgl. H 84, Nr. 11). Zur Konstitution vgl. Henderson, Smeaton, Soc. 117, 145. B. Bei mehrtägigem Erhitzen von 1-Methyl-3-isopropyl-cyclohexanol-(6) mit wasserfreier Oxalsäure (H., Sm., Soc. 117, 148). Flüssigkeit von angenehmem Geruch. Kp<sub>780</sub>: 167—168°. D<sub>20</sub>: 0,8222. n<sub>D</sub>: 1,4568.
- 4. 1 Methyl 4 isopropyl cyclohexen (1),  $\Delta^1$  Tetrahydro p cymol, p Menthen (1), Carvomenthen, Dihydrolimonen  $C_{10}H_{18} = CH_3 \cdot C < CH_2 \cdot CH_2 > CH \cdot CH(CH_3)_2$ . (H 84; E I 44).
- a) Stark rechtsdrehendes Präparat. Liefert beim Behandeln mit ca. 3%igem Ozon in Eisessig und nachfolgender Einw. von Wasser und Zinkstaub linksdrehenden  $\beta$ -Isopropyl- $\delta$ -acetyl-n-valeraldehyd (v. Braun, Werner, B. 62, 1057).
- 4¹-Chlor-1-methyl-4-isopropyl-cyclohexen-(1), 8-Chlor-p-menthen-(1), Limonenmonohydrochlorid, Dipentenmonohydrochlorid  $C_{10}H_{17}Cl=CH_3\cdot CC_{CH^2\cdot CH_2^2}>CH\cdot CCl(CH_3)_2$  (H 85; E I 44). B. Beim Einleiten von trocknem Chlorwasserstoff in eine Lösung von rechtsdrehendem Limonen in Schwefelkohlenstoff erhält man je nach der Dauer des Einleitens infolge teilweiser Racemisierung rechtsdrehende Präparate von verschiedenem Drehungsvermögen (v. Braun, Werner, B. 62, 1056; vgl. Wallach, Kremers, A. 270 [1892], 189). Rechtsdrehendes Limonenmonohydrochlorid liefert beim Erhitzen mit 1-Pinen auf 160° Dipenten, geringe Mengen Camphen, 1-Bornylchlorid und eine Verbindung der annähernden Zusammensetzung  $C_{30}H_{33}Cl$ , die beim Behandeln mit alkoh. Kalilauge oder beim Erhitzen mit Natrium in ein opt.-inakt. Diterpen vom Kp<sub>11</sub>: 174—178° und zwei Polyterpene zerlegt werden konnte; reagiert analog mit d-Pinen (Kondakow, Saprikin, Bl. [4] 37, 1047).
- 5. 1 Methyl 4 isopropyl cyclohexen (3),  $\Delta^3$  Tetrahydro p cymol, p-Menthen (3), Menthen  $C_{10}H_{18} = CH_3 \cdot HC < \begin{array}{c} CH_2 \cdot CH_3 \\ CH_2 \cdot CH_3 \end{array} \cdot CH(CH_3)_2$ .
  - a) Rechtsdrehendes p-Menthen-(3) (H 87; E I 44).
- α) Stark rechtsdrehendes Menthenpräparat. B. Zur Bildung nach Tschugajew (B. 32, 3333; 35, 2481;  $\Re$ . 35, 1116; C. 1904 I, 1347) vgl. Read, Robertson, Soc. 1926, 2217. Kp<sub>9</sub>: 59—60°. n<sub>b</sub>: 1,4570. [α]<sub>b</sub>: +106,6° (Ather; c = 2,6), +118,6° (Alkohol; c = 1,65).

Nitrosochlorid aus stark rechtsdrehendem p-Menthen-(3)  $C_{10}H_{18}ONCl$  (H 88; E I 44). B. Zur Bildung nach Richtmann, Kremers (Am. 18, 762) vgl. Read, Robertson, Soc. 1926, 2217. —  $[\alpha]_0^{15}$ : +221,0° (Benzol; c=4,6).

β) Teilweise inaktivierte rechtsdrehende Menthenpräparate und Präparate, über deren optisches Verhalten nichts bekannt ist. B. Beim Leiten von l-Menthol-Dampf über Kupfer bei 250—330° (ΚΟΜΑΤSU, ΚURATA, Mem. Coll. Sci. Kyoto [A] 8 [1925], 35, 147; HARA, Mem. Coll. Sci. Kyoto [A] 9, 416; C. 1926 II, 2658; HIRAIDZUMI, Mem. Coll. Sci. Kyoto [A] 10, 256; C. 1927 II, 1691) oder über Thoriumoxyd bei 400° (Ko., KU.,

Mem. Coll. Sci. Kyoto [A] 11, 165; C. 1928 II, 1326). Beim Erhitzen von l-Menthol mit japanischer saurer Erde auf 180—195° (Ono, Bl. chem. Soc. Japan 1, 250; C. 1927 I, 1004). Bei der Einw. von Phosphortrichlorid auf l-Menthol bei 80° (Robertson bei Read, Reid, Soc. 1928, 1493 Anm.). Neben wechselnden Mengen anderer Produkte bei der Einw. von Phosphorpentachlorid auf l-Menthol oder d-Neomenthol in Petroläther bei 0° sowie bei der Einw. von Thionylchlorid auf d-Neomenthol in Dimethylanilin unter Kühlung (Zeitschel, Schmidt, B. 59, 2305, 2306). Beim Erhitzen von Tri-l-menthyl-phosphit oder Tri-l-menthyl-phosphat auf 230° unter vermindertem Druck (Milobedzki, Kolitowska, Roczniki Chem. 6, 79, 84; C. 1926 II, 2898). Bei der Destillation von Menthol mit der 10-fachen Menge krystallisierter Phosphorsäure (Bodroux, A. ch. [10] 11, 575). Neben anderen Produkten bei der Destillation von Benzolsulfonsäure-menthylester sowie von α oder β-Naphthalin-sulfonsäure-menthylester unter 4 mm Drucl (Patterson, McAlpine, Soc. 1927, 351); entsteht aus diesen Estern auch beim Erwärmen mit Kalilauge oder Barytwasser auf 80—85° (P., McA., Soc. 1928, 2468, 2469). Aus dl-p-Toluolsulfonsäure-l-menthylester beim 12-stdg. Erwärmen mit Eisessig auf dem Wasserbad oder beim mehrtägigen Erhitzen mit Ammoniumacetat auf 110° (Phillips, Soc. 127, 2584, 2585; vgl. Wuyts, Bl. Soc. chim. Belg. 26 [1912], 306). Neben überwiegenden Mengen Thymol und p-Cymol beim Leiten des Dampfes von l-Menthon über Kupfer (Komatsu, Kurata, Mem. Coll. Sci. Kyoto [A] 9, 25; C. 1926 I, 1403). Bei der Elektrolyse von l-Menthon in stark saurer Lösung an einer Quecksilberkathode, neben anderen Produkten (Schall, Kirst, Z. El. Ch. 29, 541). Neben anderen Produkten bei der Einw. von Natriumnitrit auf eine wäßr. Lösung der Hydrochloride von d-Neomenthylamin, d-Isomenthylamin oder d-Neoisomenthylamin (Read, Robertson, Soc. 1926, 2220; 1927, 2171, 2173; Read, Ro., Cook, Soc. 1927, 1280).

Dampfdichte: Bodroux, A. ch. [10] 11, 575. Ramanspektrum: Bonino, Brüll, G. 59, 730. — Beim Leiten von Menthen über Kupfer bei 290—300° entstehen p-Cymol und Menthan (Komatsu, Kurata, Mem. Coll. Sci. Kyoto [A] 11, 165; C. 1928 II, 1326). Verhalten beim Leiten über Palladium-Asbest im Kohlendioxyd-Strom bei 175—180°: Zelinsky, Pawlow, B. 57, 1070. Liefert bei 18-stdg. Kochen mit Braunstein und verd. Schwefelsäure neben Terephthalsäure auch Benzolpentacarbonsäure (Ruzicka, Rudolph, Helv. 10, 919). Gibt mit Benzol bei Gegenwart von Aluminiumchlorid ein Gemisch isomerer Menthylbenzole (Bodroux, A. ch. [10] 11, 575). — Bestimmung durch Oxydation mit Benzopersäure: Nametkin, Brjussow, J. pr. [2] 112, 172; Ж. 57, 374.

Nitrosochlorid des schwach rechtsdrehenden p-Menthens-(3)  $C_{10}H_{18}ONCl$  (H 89). F: 113° (Schall, Kirst, Z. El. Ch. 29, 541), 117° (Patterson, McAlfine, Soc. 1927, 351, 352), 127° (Zeitschel, Schmidt, B. 59, 2306; Komatsu, Kurata, Mem. Coll. Sci. Kyoto [A] 9, 25; C. 1926 I, 1403).

b) Inaktives p-Menthen-(3) (H 89; E I 45). B. Bei der Einw. von Phosphortrichlorid auf dl-Menthol bei 80° (Read, Reid, Soc. 1928, 1492). Beim Erhitzen von p-Menthanol-(8) mit Phosphorpentoxyd oder mit wasserfreier Oxalsäure (J. D. Riedel, D. R. P. 455590; C. 1928 I, 2664; Frdl. 16, 2880) oder mit geschmolzenem Kaliumdisulfat im Kupferautoklaven auf 200° (Kötz, Busch, J. pr. [2] 119, 17). Beim Erhitzen des aus Carvenon und Hydrazinhydrat in siedendem Alkohol entstandenen Pyrazolinderivats mit Kaliumhydroxyd in Gegenwart von Platinschwarz auf 210—220° (Mereshkowski, Bl. [4] 37, 1182; vgl. Kishner, Ж. 43, 954; C. 1911 II, 1925). Neben dl-Menthol bei der Einw. von Natriumnitrit auf eine wäßr. Lösung von dl-Menthylamin-hydrochlorid bei 70° (Read, Cook, Shannon, Soc. 1926, 2227). — Kp: 167—169° (K., B.); Kp<sub>754,4</sub>: 168,5° (M.); Kp<sub>15</sub>: 60—62° (Read, Reid). D<sup>22</sup>: 0,8170; n<sup>∞</sup><sub>0</sub>: 1,4532 (K., B.); D<sup>0</sup><sub>1</sub>: 0,8276; D<sup>∞</sup><sub>1</sub>: 0,8129; n<sup>∞</sup><sub>1</sub>: 1,4507; n<sup>∞</sup><sub>0</sub>: 1,4540; n<sup>∞</sup><sub>0</sub>: 1,4549 (M.). — Liefert bei der Oxydation mit Benzopersäure in Chloroform p-Menthen-(3)-oxyd (Syst. Nr. 2363) (K., B.; J. D. Riedel). Unterchlorige Säure wird unter Bildung von 4-Chlor-p-menthanol-(3), 3-Chlor-p-menthanol-(4) und anderen Produkten angelagert (K., B.; vgl. J. D. Riedel). Liefert bei der Einw. von Brom-Kaliumbromid-Lösung in Eiswasser ein bernsteinfarbenes Ol (n<sup>∞</sup><sub>1</sub>: 1,5111), das sich bei der Vakuumdestillation zersetzt (Read, Reid, Soc. 1928, 1492). Chlorierung durch Phosphorpentachlorid: Kötz, Busch, J. pr. [2] 119, 39. Liefert mit Isoamylnitrit und 33 %iger Salzsäure in stark gekühltem Eisessig p-Menthen-(3)-nitrosochlorid (s. u.) (K., B.). Gibt beim Erhitzen mit Trichloressigsure und folgenden Zersetzen mit alkoh. Kalilauge p-Menthanol-(4) (K., B.).

Niedrigerschmelzendes Nitrosochlorid des inaktiven p-Menthens-(3) C<sub>10</sub>H<sub>18</sub>ONCl (H 89; E I 45). B. Beim Aufbewahren des höherschmelzenden Nitrosochlorids (s. u.) in salzsäurehaltigem Äther (Körz, Busch, J. pr. [2] 119, 18). — Krystalle (aus Benzol + Petrolather). F: 113° (K., B.), 118,5° (Mereshkowski, Bl. [4] 37, 1183). — Liefert beim Behandeln mit Natriummethylat-Lösung p-Menthen-(3)-on-(5)-oxim (K., B.; vgl. Urban, Kremers, Am. 16, 396; Richtmann, Kr., Am. 18, 769; Kishner, Ж. 27, 488; Bl [3] 16, 1281).

Höherschmelzendes Nitrosochlorid des inaktiven p-Menthens-(3) C<sub>10</sub>H<sub>18</sub>ONCl (vgl. H 89). B. Aus p-Menthen-(3), Isoamylnitrit und 33%iger Salzsäure in stark gekühltem Eisessig (Kötz, Busch, J. pr. [2] 119, 18). — Krystalle (aus Alkohol). F: 143,5°. — Wandelt sich beim Aufbewahren in salzsäurehaltigem Äther in die niedrigerschmelzende Form um.

- 6. 1-Methyl-4-isopropyliden-cyclohexan, p-Menthen-(4(8)), Dihydroterpinolen C<sub>10</sub>H<sub>18</sub> = CH<sub>3</sub>·HC < CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub> > C:C(CH<sub>3</sub>)<sub>2</sub> (H 89; E I 45). B. Neben anderen Produkten beim Erhitzen von nicht näher beschriebenem p-Menthanol-(4)-allophanat auf 195° (Grandlere, Bl. [4] 35, 195). Kp: 173—175°; D<sub>1</sub><sup>15</sup>: 0,8298; n<sub>1</sub><sup>15</sup>: 1,4640 (G.). Liefert beim Behandeln mit Chlorharnstoff in essigsaurer Lösung 8 (oder 4)-Chlor-p-menthanol-(4 oder 8) oder ein Gemisch beider (Detoeuf, Bl. [4] 31, 178).
  - E I 45, Z. 18 v. o. statt "wohl als linksdrehendes" lies "vielleicht als rechtsdrehendes".
- 7. p-Menthen  $C_{10}H_{18}$  mit unbekannter Lage der Doppelbindung. V. Im äther. Öl der Früchte von Pittosporum resiniferum Hemsl. (Bacon, Philippine J. Sci. 4, 116; C. 1909 II, 1449; Blanco, J. am. pharm. Assoc. 18, 476; C. 1929 II, 3156) und von P. pentandrum Merr. (Ba.). Kp: 158—160° (Ba.), 152—153° (Bl.).  $D_{i}^{m}$ : 0,8252;  $n_{i}^{m}$ : 1,4587;  $[\alpha]_{i}^{m}$ : +29,6° (Ba.). Liefert ein Hydrochlorid (Kp<sub>34</sub>: 114—116°;  $D_{i}^{m}$ : 0,9343;  $n_{i}^{m}$ : 1,4655;  $[\alpha]_{i}^{m}$ : +9°), das bei der Einw. von Magnesium und nachfolgenden Behandlung mit Wasser oder verd. Säuren in p-Menthan übergeht (Ba.). Gibt ein Nitrolbenzylamid  $C_{17}H_{26}ON_{2}$  (F: 147—148°) und ein nur in sehr geringer Menge erhaltenes Nitrolpiperidid (F: 159°) (Bl.).
- 8. 1.1-Dimethyl-3-āthyl-cyclohexen-(3)  $C_{10}H_{18} = HC < \begin{array}{c} C(C_2H_5) \cdot CH_3 \\ CH_2 \\ CH_2 \end{array} > C(CH_3)_2$ . Verbrennungswärme bei konstantem Volumen: 1504,1 kcal/Mol (Roth, Moosbrugger in Landolt-Börnst. H 1591).
- 9. 1.1.2.3 Tetramethyl cyclohexen (3), Cyclodihydromyrcen  $C_{10}H_{18} = HC < \frac{C(CH_3) \cdot CH(CH_3)}{CH_2} > C(CH_3)_2$  (H 91; E I 45). B. Entsteht neben anderen Produkten anscheinend bei der trocknen Destillation von Squalen (E II 1, 250) (MAJIMA, KUBOTA, Japan. J. Chem. 1, 29, 31; C. 1923 III, 734). Flüssigkeit von angenehmem Geruch. Kp<sub>17</sub>: 62,5° bis 65°.  $D_{\infty}^{\text{m}}$ : 0,8208.  $n_{\text{p}}$ : 1,4621.
- 10. 1.1.2-Trimethyl-3-methylen-cyclohexan, Methyl- $\gamma$ -cyclogeraniolen  $C_{10}H_{18} = H_2C < \frac{C(:CH_2)\cdot CH(CH_3)}{CH_2} < C(:CH_3)_2^{-1}$ ). B. Aus Dihydrolinalool (E II 1, 494) beim Behandeln mit Schwefelsäure oder beim Erhitzen mit wasserfreier Oxalsäure auf 140—145° (ESCOURROU, Bl. [4] 39, 1465; 43, 1277). Bewegliche Flüssigkeit von pfefferminzartigem Geruch.  $Kp_{738}$ : 164°.  $D^{11}$ : 0,8320.  $n_1^{h}$ : 1,4641;  $n_1^{h}$ : 1,4627. Löslich in Ather, schwer löslich in Methanol oder Alkohol. Verhalten bei der Ozonisierung in Chloroform: E.
- 11. 1.2.4.5 Tetramethyl cyclohexen (1),  $\triangle^1$  Tetrahydrodurol  $C_{10}H_{18} = CH_3 \cdot HC < \frac{CH_2 C(CH_3)}{CH(CH_3) \cdot CH_2} \cdot C \cdot CH_3$ . Stereoisomer mit dem E I 5, 45 beschriebenen Präparat. B. Bei der Einw. von Phosphorpentoxyd auf 1.2.4.5-Tetramethyl-cyclohexanol-(1) (Skita, Schneck, B. 55, 152). Kp: 169°.  $D_*^{\mathfrak{p}}$ : 0,828.  $n_{\mathfrak{p}}^{\mathfrak{p}}$ : 1,4605.
- 12. 1-Isoamyl-cyclopenten-(1)  $C_{10}H_{18} = \frac{H_2C \cdot CH_2H_2C \cdot CH_2 
- 13. 3 Isopropyl 1 äthyliden cyclopentan (?)  $C_{10}H_{18} = (CH_{\bullet}) \cdot CH \cdot HC \cdot CH_{\bullet}$ .

(CH<sub>3</sub>)<sub>2</sub>CH·HC·CH<sub>2</sub> C:CH·CH<sub>3</sub>(?) (E I 46). B. Neben tert. Carvomenthol bei der Einw. H<sub>2</sub>C·CH<sub>2</sub> C:CH·CH<sub>3</sub>(?) (E I 46). B. Neben tert. Carvomenthol bei der Einw. von überschüssiger Natriumnitrit-Lösung auf eine Lösung von Dihydrofencholenaminhydrochlorid in verd. Salzsäure unter Kühlung und nachfolgendem gelinden Erwärmen auf dem Wasserbad (Maxwell, A. ch. [9] 17, 366). Beim Leiten der Dämpfe von Dihydrofencholenalkohol b (Syst. Nr. 503) über Infusorienerde bei 400—450° (M., A. ch. [9] 17, 371).—

<sup>1)</sup> DUPONT, DULOU, DESREUX (Bl. [5] 6 [1939], 87) schließen aus dem Ramanspektrum und den Ergebnissen der Ozonspaltung, daß das Präparat von ESCOURROU aus einem Gemisch von 50% 1.1 2.3-Tetramethyl-cyclohexen-(5), 30% 1.1.2.3-Tetramethyl-cyclohexen-(3) und nur 20% 1.1.2-Trimethyl-3-methylen-cyclohexan bestand.

Bewegliche Flüssigkeit von menthenartigem Geruch.  $Kp_{18}$ : 71—73°;  $Kp_{16}$ : 60—61°.  $D_{\alpha}^{\text{M.6}}$ : 0,8321.  $n_{\alpha}^{\text{M.6}}$ : 1,4526;  $n_{\alpha}^{\text{M.6}}$ : 1,4551;  $n_{\alpha}^{\text{M.6}}$ : 1,4615. — Liefert bei der Oxydation mit Permanganat 

2363) und andere Produkte (Maxwell, A. ch. [9] 17, 374). Beim Einleiten von trocknem

Chlorwasserstoff in eine Lösung von 3-Isopropyl-1-āthyliden-cyclopentan in absol. Alkohol bildet sich in überwiegender Menge ein isomerer Kohlenwasserstoff vom Kp<sub>18</sub>: 67—70° (s. S. 68, Nr. 34) neben einem Hydrochlorid vom Kp<sub>21</sub>: 96—99° ( $\mathbb{D}_{+}^{n.0}$ : 0,9123;  $\mathbb{n}_{+}^{n.0}$ : 1,4559;  $n_0^{n,o}$ : 1,4585;  $n_{\beta}^{n,o}$ : 1,4644); der Kohlenwasserstoff vom Kp<sub>16</sub>: 67—70° entsteht auch beim Kochen von 3-Isopropyl-1-äthyliden-cyclopentan mit 30 %iger Schwefelsäure.

- 14. 1.1.2-Trimethyl-5-vinyl-cyclopentan  $C_{10}H_{18} = \frac{H_2C CH(CH_3)}{H_2C \cdot CH(CH:CH_2)} C(CH_3)_2$ .
- B. Neben überwiegenden Mengen Dimethyl- $[\beta-(2.2.3-\text{trimethyl}-\text{cyclopentyl})-\text{āthyl}]-\text{amin}$  beim Eindampfen einer wäßr. Lösung von Trimethyl- $[\beta-(2.2.3-\text{trimethyl}-\text{cyclopentyl})-\text{āthyl}]-\text{ammoniumhydroxyd}$  auf dem Wasserbad, Versetzen des Rückstandes mit 3—4 Mol konz. Kalilauge und nachfolgenden Destillieren (v. Braun, Heymons, B. 61, 2279). — Flüssigkeit von ziemlich starkem Geruch. Kp: 155—156°. D. 0,8024. n. 1: 1,4439. — Liefert beim Ozonisieren in Eiseseig und nachfolgenden Zersetzen mit Wasser und Zinkstaub 2.2.3-Trimethyl-1-formyl-cyclopentan und geringe Mengen 2.2.3-Trimethyl-cyclopentan-carbonsäure-(1).
- 15. Kohlenwasserstoff C<sub>10</sub>H<sub>18</sub> aus Thujan (vgl. E I 54). Struktur des Kohlenstoffskeletts 1): C > C - C - C C C C B. Aus Thujan (S. 60) beim Leiten über Platin-Kohle im Kohlendioxyd-Strom bei 300° (Zelinsky, Lewina, A. 478, 65). - Kp: 163,5° bis 164,5°. n<sup>21</sup>: 1,4452.
- 16.  $Dicyclopentyl C_{10}H_{18} = \frac{H_2C \cdot CH_2}{H_2C \cdot CH_2}CH \cdot HC \cdot \frac{CH_2 \cdot CH_2}{CH_2 \cdot CH_2}$  (H 91). Schwach terpentinartig riechendes Ol. Kp<sub>753</sub>: 188—1890 (Zelinsky, Titz, Fatejew, B. 59, 2583). D<sup>n</sup>: 0,8604, n<sup>n</sup>: 1,4652. — Ist gegen Brom indifferent. Wird von Permanganat langsam oxydiert. Beim Überleiten über Platin-Kohle bei 300° wird Dicyclopentyl nicht dehydriert.
- 17. Cyclopentan cyclohexan spiran, 1.1 Tetramethylen cyclohexan, Spirocyclodecan, Cyclohexanspirocyclopentan  $C_{10}H_{18} = H_2C \xrightarrow{CH_2 \cdot CH_2} C \xrightarrow{CH_2 \cdot CH_2} B$ . Bei der thermischen Zersetzung von 1.1-Tetramethylencyclohexanon-(2)-hydrazon in Gegenwart von Platin und Kaliumhydroxyd (Zelinsky, Schuikin, B. 62, 2184;  $\Re C$ , 61, 2250). — Bewegliche Flüssigkeit von petroleumartigem Geruch. Kp<sub>745</sub>: 185—1860. D<sup>®</sup><sub>10</sub>: 0,8877. n<sup>®</sup><sub>10</sub>: 1,4748. — Entfärbt verd. Permanganat-Lösung langsam. Resciert lebbeft mit Brom unter Bildung eines Tetrahromderivats (a. u.) Gebt beim Leiten. Reagiert lebhaft mit Brom unter Bildung eines Tetrabromderivats (s. u.). Geht beim Leiten über Platin-Kohle im Wasserstoffstrom bei 190° in 2-Methyl-1.1 tetramethylen-cyclopentan(?) (s. u.) über.
- x-Tetrabrom-1.1-tetramethylen-cyclohexan  $C_{10}H_{14}Br_4$ . B. Bei der Einw. von Brom auf 1.1-Tetramethylen-cyclohexan (Zelinsky, Schuikin, B. 62, 2185;  $\Re$ . 61, 2251). Gelbliche Krystalle. F: 130—132° (Zers.). Leicht löslich in Benzol und Toluol, schwer in Alkohol, unlöslich in Petroläther.
- 18. 2-Methyl-[di-cyclopentan-spiran-(1.1')](?), Cyclopentan-[2'-methylcyclopentan]-spiran-(1.1')(?), 2-Methyl-1.1-tetramethylen-cyclopentan(?), Methylspirocyclononan(?)  $C_{10}H_{18} = \frac{H_2C \cdot CH_2}{H_2C \cdot CH_2} \cdot \frac{CH(CH_3) \cdot CH_2}{CH_2} \cdot CH_2$  von 1.1-Tetramethylen-cyclohean über Platinschwarz im Wasserstoffstrom bei 1900 (Zeptylen-cyclopental) and the Platinschwarz im Wasserstoffstrom bei 1900 (Zeptylen-cyclopentan) and the Platinschwarz im Wasserstoffstrom bei 1900 (Zeptylen-c
- LINSKY, SCHUIKIN, B. 62, 2185; Ж. 61, 2251). Kp750: 185,5—186°. D. 3. 0,8730. n. 1,4683. Bleibt beim Leiten über Palladium-Asbest oder Platin-Kohle bei 300° unverändert. Reagiert langsam mit Permanganat.

<sup>1)</sup> Zur Struktur vgl. a. das Verhalten von Thujan bei der Hydrierung in Gegenwart von Palladium-Kohle.

19. Bicyclo - [0.4.4] - decan. Dekahydronaphthalin, Dekalin  $C_{10}H_{18}$ , s. nebenstehende Formel (H 92; E I 46). Für die von Dekalin abgeleiteten Namen wird in diesem Handbuch diese  $H_2C_1$   $G_1$   $G_2$   $G_3$   $G_4$   $G_4$   $G_5$   $G_6$   $G_7$   $G_8$   $G_$ 

a) cis-Dekalin. Zur Stereoisomerie vgl. Mohr, J. pr. [2] 98, 321; B. 55, 230; Hückel. Nachr. Ges. Wiss. Göttingen 1923, 43, 54; C. 1923 III, 766; A. 441, 1; 451, 109; B. 58, 1449; Willstätter, Seitz, B. 56, 1396; 57, 683; Eisenlohr, Polenske, B. 57, 1639; Zelinsky, Turowa-Pollak, B. 58, 1292. — B. Bei der Hydrierung von cis-Δ²-Oktalin bei Gegenwart von Platinmohr in Äther (Eisenlohr, Polenske, B. 57, 1642) oder in Eisessig (Hückel, A. 441, 47). Neben gleichen oder überwiegenden Mengen trans-Dekalin bei der Hydrierung von Δ²-Oktalin bei Gegenwart von Platinmohr in Äther oder Eisessig bei 15—16° (H., Mitarb., A. 474, 142). Neben geringen Mengen trans-Dekalin beim Leiten von Tetralin im Wasserstoffstrom über Platin-Asbest bei 150—160° oder besser über Palladiumschwarz bei 120° (Z., B. 56, 1723; Z., Turowa-Pollak, B. 62, 2867). Zur Bildung durch Hydrierung von Naphthalin in Gegenwart von Platinschwarz (E I 46) vgl. Willstätter, Seitz, B. 56, 1396; vgl. B. 57, 683. Beim Leiten von Naphthalin im Wasserstoffstrom über Osmium-Asbest bei 100—120° (Z., T.-P., B. 62, 2867). Neben wenig trans-Dekalin und überwiegenden Mengen cis-α-Dekalol (F: 93°) bei der Hydrierung von ac. α-Tetralol in Gegenwart von Platinmohr in Eisessig (Hückel, A. 441, 28). Neben wenig trans-Dekalin und wechselnden Mengen anderer Produkte bei der Hydrierung von β-Naphthol oder ac. β-Tetralol in Eisessig oder von ar. β-Tetralol in fast neutraler Lösung bei Gegenwart von kolloidem Platin bei 40—50° unter 2—3 Atm. Druck (H., A. 451, 112, 117). Neben anderen Produkten bei der Hydrierung von Äthyl-β-naphthyl-äther bei Gegenwart von Platinmohr in Eisessig (Waser. Mitarb., Helv. 12, 441). Beim Kochen von cis-β-Dekalon mit amalgamiertem Zink und verd. Salzsäure (H., A. 441, 47). Neben einem Gemisch stereoisomerer β-Dekalob beim Erhitzen von cis-β-Dekalon-semicarbazon mit Natriumäthylat-Lösung im Rohr auf 200° (Eisenlohr, Pollenske, B. 57, 1641). — Reinigung durch wiederholte Destillation über Natrium und 2-stdg. Erhitzen über Natrium unter Rückfluß (Ei., P.)

Erstarrt beim Abkühlen zu Krystallen vom Schmelzpunkt —51° (Hückel, A. 441, 44). Kp<sub>760</sub>: 193° (H.; Eisenlohr, Polenske, B. 57, 1642); Kp<sub>715,4</sub>: 188,0—189,0° (Willstätter, Seitz, B. 56, 1393). D<sup>∞</sup>: 0,8942 (W., S.). D<sup>∞</sup>: 0,8957 (im Vakuum) (El., Po.). Verbrennungswärme bei konstantem Volumen: 1499,9 kcal/Mol (Roth, Lassé, A. 441, 52; R. bei H., A. 451, 117).  $n_D^{n_1}$ : 1,4775 (Zelinsky, Turowa-Pollak, B. 62, 2867);  $n_D^{\infty}$ : 1,4805 (H., B. 58, 1452; A. 441, 45), 1,4795 (W., S.);  $n_D^{\infty}$ : 1,4787;  $n_{He}^{\infty}$ : 1,4811;  $n_D^{\infty}$ : 1,4892;  $n_A^{\infty}$ : 1,4924 (El., Po.). Beugung von Röntgenstrahlen in cis-Dekalin: Katz, Z. ang. Ch. 41, 335. Brechungsindices von ternären Gemischen mit Tetralin und Naphthalin: W., S., B. 56, 1392.

Liefert beim Leiten über Palladiumschwarz bei 300° Naphthalin (Zelinsky, B. 56, 1723; Z., Turowa-Pollak, B. 58, 1298). Gibt mit Brom ein Hexabromnaphthalin vom Schmelzpunkt 312° (Z., T.-P., B. 62, 1659). Beim Erwärmen von cis-Dekalin mit Aluminiumbromid auf dem Wasserbad entstehen trans-Dekalin und Isomerisationsprodukte des Dekalins (Z., T.-P., B. 58, 1296). Beim Einleiten von Bromwasserstoffsäure in eine Lösung von Aluminiumbromid in cis-Dekalin erhält man (im Gegensatz zu trans-Dekalin) eine Additionsverbindung C<sub>10</sub>H<sub>18</sub> + 2AlBr<sub>3</sub> (s. u.) und trans-Dekalin (Z., T.-P., B. 62, 1660). Ein wenig trans-Dekalin enthaltendes cis-Dekalin lieferte beim Kochen mit Salpetersäure (D: 1,2) 1-Nitro-dekalin, ein Gemisch stereoisomerer 9-Nitro-dekaline und 9.10-Dinitro-dekalin(?) (Nametkin, Madajewa-Ssytschewa, B. 59, 372; Ж. 57, 385; Hückel, Blohm, A. 502 [1933], 116).

Verbindung  $C_{10}H_{18}+2AlBr_3$ . B. Beim Einleiten von Bromwasserstoff in eine Lösung von Aluminiumbromid in eis-Dekalin (Zelinsky, Turowa-Pollak, B. 62, 1660). — Rötlicher Sirup. — Wird durch Wasser zersetzt. Liefert mit Acetylchlorid geringe Mengen Methyl-dekalyl-keton (?).

b) trans-Dekalin. Zur Stereochemie vgl. die bei cis-Dekalin angegebene Literatur. — B. Neben anderen Produkten bei der Einw. von Aluminiumbromid auf cis-Dekalin (Zelinsky, Turowa-Pollak, B. 58, 1296; 62, 1661). Reines trans-Dekalin entsteht beim Erhitzen von technischem Chlordekalin mit rauchender Jodwasserstoffsäure im Rohr auf 250° (Hückel, B. 58, 1450; vgl. Z., B. 57, 2663; Z., T.-P., B. 58, 1292). — Bei der Hydrierung von trans-Δ²-Oktalin (Eisenlohr, Polenske, B. 57, 1644; Hückel, A. 441, 47; H., Mitarb., A. 474, 126, 141) oder, neben cis-Dekalin, von Δ²-Oktalin (H., Mitarb.) in Gegenwart von Platinmohr in Eisessig oder Äther bei 15°. Das bei der Reduktion von Naphthalin mit Wasserstoff in Gegenwart von Nickel entstehende Dekalin (Leroux, C. r. 139, 674; A. ch. [8] 21, 466) ist nach Willstätter, Seitz (B. 57, 684) überwiegend trans-Dekalin. Neben überwiegenden Mengen cis-Dekalin und cis-α-Dekalol (F: 93°) bei der Hydrierung von ac. α-Tetralol bei Gegenwart von Platinmohr in Eisessig (H., A. 441, 28). Neben überwiegenden Mengen cis-

Dekalin und wechselnden Mengen anderer Produkte bei der Hydrierung von  $\beta$ -Naphthol oder ac.  $\beta$ -Tetralol in Eisessig oder von ar.  $\beta$ -Tetralol in fast neutraler Lösung bei Gegenwart von kolloidem Platin bei 40—50° unter 2—3 Atm. Druck (H., A. 451, 112, 117). Neben trans- $\beta$ -Dekalol (F: 75°) und geringen Mengen anderer Produkte beim Kochen von trans- $\beta$ -Dekalon mit amalgamiertem Zink und Salzsäure (H., A. 441, 46). Neben einem Gemisch stereoisomerer  $\beta$ -Dekalole beim Erhitzen von trans- $\beta$ -Dekalon-semicarbazon mit Natriumäthylat-Lösung im Rohr auf 210° (Eisenlohe, Polenske, B. 57, 1643; H., B. 58, 1452). — Reinigung durch Destillation über Natrium, 10-stdg. Erwärmen mit konz. Schwefelsäure auf dem Wasserbad und nachfolgendes längeres Kochen mit Natrium: Hückel, B. 58, 1452.

T:  $-32,5^{\circ}$  bis  $-31,5^{\circ}$  (Hückel, A. 451, 132). Kp:  $185^{\circ}$  (H., B. 58, 1452; A. 441. 45),  $187-188^{\circ}$  (kort.) (Willstätter, Seitz, B. 57, 684); Kp<sub>756</sub>:  $185^{\circ}$  (Eisenlohr, Polenske, B. 57, 1643). D': 0,8756 (W., S.); D': 0,8763 (H., A. 451, 132); D': 0,8703 (H., B. 58, 1452); D": 0,8820 (im Vakuum) (Ei., Po.). Verbrennungswärme bei konstantem Volumen: 1495,2 kcal/Mol (Roth bei Hückel, A. 451, 117, 132; vgl. B. 58, 1450; R., Lassé, A. 441, 52).  $n_{1}^{\text{tot}}$ : 1,4673;  $n_{1}^{\text{tot}}$ : 1,4757;  $n_{1}^{\text{tot}}$ : 1,4806 (H., B. 58, 1452);  $n_{2}^{\infty}$ : 1,4718;  $n_{1}^{\infty}$ : 1,4744;  $n_{2}^{\infty}$ : 1,4853 (Ei., Po.).  $n_{1}^{\text{tot}}$ : 1,4731 (H., A. 451, 132);  $n_{2}^{\infty}$ : 1,4695 (H., B. 58, 1452; vgl. A. 441, 45), 1,4706 (W., S.). Beugung von Röntgenstrahlen an trans-Dekalin: Katz, Z. ang. Ch. 41, 333, 335.

Liefert beim Leiten über Platin-Kohle bei 300° Naphthalin (Zelinsky, Turowa-Pollak, B. 58, 1296). Gibt mit Brom ein Hexabromnaphthalin vom Schmelzpunkt 269° (Z., T.-P., B. 62, 1659).

c) Dekalin-Gemische, technisches Dekalin. V. In geringer Menge im Steinkohlenteer (Weissgerber, Brennstoffch. 5, 209, 211; C. 1925 I, 2271; Kaffer, B. 57, 1264).

— B. Bei der Hydrierung von Tetralin in Gegenwart von Nickel unter ca. 10 Atm. Druck bei 150—200° (Schroeter, A. 426. 12; Tetralin-Ges., D. R. P. 324861; C. 1921 II, 448; Frdl. 13, 303). Einfluß von Temperatur und Druck auf die Ausbeuten bei dieser Reaktion: Lush, J. Soc. chem. Ind. 46, 455 T; C. 1928 I, 1358. Aus Naphthalin bei der Hydrierung in Gegenwart von fein verteiltem Nickel bei 180° und 15 Atm. Druck (Wimmer, D. R. P. 300052; C. 1920 IV, 473; Frdl. 13, 301) oder in Gegenwart von Nickel-Kobalt-Kupfer-Katalysatoren (Kutschenkeuter, D. R. P. 369374; C. 1923 II, 912; Frdl. 14, 45) oder in Gegenwart von Nickeloxyd und Aluminiumoxyd unter Druck bei 450—480° und weiterer Hydrierung der bei 196—201° siedenden Fraktion des Reaktionsprodukts in Gegenwart von Nickeloxyd bei 300° unter Druck (IPATJEW, KLJUKWIN, B. 58, 2; Ж. 56, 248). Beim Behandeln von 1-Cyclopentyl-cyclopentanol-(2)(?) mit Jodwasserstoff und Eisessig in der Kälte, kurzen Erwärmen des Reaktionsgemischs mit Zinkstaub und nachfolgenden Hydrieren in Gegenwart von Platin-Kohle bei 180—190° (ZELINSKY, TITZ, FATEJEW, B. 59, 2581). — Zur Zusammensetzung von technischem Dekalin vgl. Hückel, A. 441, 46; Coleman, Bilham, Chem. Age London 7, 554; C. 1923 II, 402; A. Hausamann, A. Krebser in F. Ullmann, Enzyklopädie der technischen Chemie, 2. Aufl., Bd. VII [Berlin-Wien 1931], S. 788. Zur Reinigung behandelt man Dekalin mit flüssigem Schwefeldioxyd, das praktisch nur Naphthalin und die Produkte der teilweisen Hydrierung auflöst (Tetralin-Ges., D. R. P. 310781; C. 1920 II, 601; Frdl. 13, 308). Läßt sich durch fraktionierte Destillation in reines cis- und trans-Dekalin zerlegen (Hü., A. 441, 43; Willstätter, Seitz, B. 57, 683; vgl. Herz, Schuftan, Ph. Ch. 101, 269).

#### Physikalische Eigenschaften.

F: —124° (Herz, Schuftan, Ph. Ch. 101, 274); erstatt bei —125° glasig (Schroeter, A. 426, 13). Kp<sub>770</sub>: 189—191° (Schr.); Kp<sub>760</sub>: 191,7° (Herz, Schu., Ph. Ch. 101, 269). Dampfdruck bei 20°: 0,6 mm (Weissenberger, Henke, Sperling, M. 46, 483), zwischen 102,4° (54,5 mm) und 172,1° (471 mm): Herz, Schu. D'; zwischen —0,2° (0,8976) und +147,2° (0,7897) (Herz, Schu.); D'; 0,8842 (Schr., A. 426, 13); D; 0,8865; D; 0,8772 (W., He., Sp., M. 46, 483); D, 0,8857 (Zerner, Weiss, Opalski, Z. ang. Ch. 35, 255). Viscosität bei 20°: Vorländer, Walter, Ph. Ch. 118, 16; bei 25°: 0,02415, bei 50°: 0,01583, bei 75°: 0,01085 g/cmsec (Herz, Schu., Ph. Ch. 101, 276). Oberflächenspannung zwischen 11,8° (31,5 dyn/cm) und 183,6° (16,3 dyn/cm): Herz, Schu. Zur Oberflächenspannung vgl. a. Grunmach, Schweikert, Ph. Ch. 113, 437. Mittlere spezifische Wärme bei 15—18° 0,395 cal/g (Herz, Schu.), bei 20—50°: 0,3879 cal/g (W., He., Sp., M. 46, 484). Ebullioskopische Konstante (für 1 Mol in 1 kg Lösungsmittel): ca. 5,75 (Herz, Schu.). Verbrennungswärme von flüssigem Dekalin: 1503 kcal/Mol (Tetralin-Ges., D. R. P. 329833; C. 1921 II, 425; Frdl. 13, 316). n; 1,4753 (Z., Weiss, O.). Depolarisationsgrad des an Dekalin zerstreuten Lichts: Lautsch, Ph. Ch. [B] 1, 125. Dielektr.-Konst. zwischen 20° (2,11) und 175° (1,91): L.

Sehr schwer löslich in Methanol und Alkohol, mischbar mit Butylalkohol (Herz, Schuftan. Ph. Ch. 101, 284). Unlöslich in flüssigem Ammoniak (DE CARLI, G. 57, 351). Lösungsvermögen für gasförmiges Schwefeldioxyd: Weissenberger, Hadwiger, Z. ang. Ch. 40, 736; gegen-

[Syst. Nr. 453

seitige Löslichkeit von Dekalin und flüssigem Schwefeldioxyd bei verschiedenen Temperaturen: Zerner, Weiss, Opalski, Z. ang. Ch. 35, 255. Lösungsvermögen für Naphthalin zwischen 10° und 48°: Weissenbergeb, Z. ang. Ch. 40, 776. Verteilung von Jod und Essigsäure zwischen Dekalin und Wasser bei 25°: Herz, Schuftan, Ph. Ch. 101, 283. Erstarrungspunkte von Gemischen mit Benzol: Tetralin-Ges., D. R. P. 329833; von Gemischen mit Pentan, Äther und Propylalkohol: Beck, Dtsch. Z. ger. Med. 12, 2; C. 1928 II, 1918. Dampfdruck bei 20° von binären Gemischen mit Hexan, Benzol, Toluol, Chloroform, Tetrachlorkohlenstoff, Trichloräthylen, Methanol, Äthylalkohol, Äthyläther, Isopropylalkohol, Isobutylalkohol, Aceton, Essigsäuremethylester, Essigsäureisopropylester, Essigsäureisopropylester, Essigsäureisobutylester und Schwefelkohlenstoff bei 20°: Weissenb., He., Sp.; von ternären Gemischen mit Methanol und Phenol, Athylalkohol und Phenol, Isopropylalkohol und Phenol, Isobutylalkohol und Phenol und mit Aceton und Phenol bei 20°: Weissenb., He., Sp., M. 46, 491. Dichte und Viscosität von binären Gemischen mit Butylalkohol bei 25°: Herz, Schu., Ph. Ch. 101, 285. Viscosität von Kolophonium-Lösungen in Dekalin: Keyssner, Z. ang. Ch. 39, 104. Einfluß einer dünnen Wandschicht von Dekalin auf die Ausflußzeit von Wasser aus Capillaren: Traube, Whang, Ph. Ch. 138, 111. Absorption der Dämpfe von Benzol, Alkohol, Aceton und Äthylacetat durch Dekalin: Weissenberger, Henke. Sperling, Z. ang. Ch. 38, 1161. Wärmetönung beim Mischen mit Chloroform, Äthylalkohol, Äthyläther, Aceton, Essigsäuremethylester und Essigsäureäthylester, Schwefelkohlenstoff, Benzol und Toluol: Weissenb., He., Sp., M. 46, 484. Rotationsdispersion von Bornylacetat in Dekalin und in binären Gemischen von Dekalin mit Heptan, Benzol, Alkohol, Benzylalkohol und Eisessig: Moesveld, Versl. Akad. Amsterdam 37, 832; Pr. Akad. Amsterdam 32, 353; C. 1929 I, 1193; II, 386.

#### Chemisches Verhalten.

Brennt mit leuchtender, nicht rußender Flamme (SCHROETER, A. 426, 13). Flammpunkt: 57° (E. Gross in K. B. Lehmann, F. Flury, Toxikologie und Hygiene der technischen Lösungsmittel [Berlin 1938], S. 223), 57,3° (Vollmann, Farben-Zig. 24 [1919], 1689), 58,5° (Tetralin-Ges., D. R. P. 324861; C. 1921 II, 448; Frdl. 13, 303). Die Autoxydation von Dekalin bei 160° wird durch geringe Mengen α.α- oder β.β-Dinaphthylamin verlangsamt (Μουπευ, Dufraise, Chaux, C. r. 184, 414). Bei der Einw. von Ozon auf gereinigtes technisches Dekalin entseht ein zähflüssiges, peroxydartiges Produkt, das bei der Zersetzung mit siedendem Wasser ein Dekalo (E. 82°) und andere Produkte liefert (KONTSCHAU, ETERMING siedendem Wasser ein Dekalol (F: 620) und andere Produkte liefert (KOETSCHAU, FLEMMING. Z. ang. Ch. 37, 43). Beim Erhitzen von Dekalin mit Wasserstoff unter Druck in Gegenwart von Tonerde und Eisenoxyd auf Temperaturen bis 440° bildet sich ein Gemisch nicht näher untersuchter Kohlenwasserstoffe (IPATJEW, ORLOW, LICHATSCHEW, Ж. 61, 1342; B. 63, 159). Dekalin wird beim Erhitzen mit Kupferoxyd, 1.3-Dinitro-benzol und Chinolin im Rohr auf 240—245° unter Bildung geringer Mengen Naphthalin dehydriert (Zetzsche, Zala, Helv. 9, 289). Kinetik der Dehydrierung in Gegenwart von Platin-Kohle sowie Platin- und Nickelasbest zwischen 2000 und 3500: Zelinsky, Balandin, Ph.Ch. 126, 268. Einw. der stillen elektrischen Entladung auf Dekalin in Wasserstoff-, Stickstoff- und Sauerstoff-Atmosphäre und auf Lösungen von Kautschuk in Dekalin in Wasserstoff-Atmosphäre: FROMANDI, Koll. Beih. 27, 198; C. 1929 I, 701. Liefert beim Erhitzen mit Schwefel auf 210—230° geringe Mengen Naphthalin (I., Dolgow, Bl. [4] 45, 955). Erhitzt man Dekalin mit Aluminiumchlorid auf 189—191°, so bildet sich ein Gemisch isomerer Kohlenwasserstoffe (Boedtker, Rambech, Bl. [4] 35. 636). Beim Einleiten von 1 Mol Chlor in technisches Dekalin bei Gegenwart von wenig Jod unter Kühlung entstehen Chlordekalin, Dichlordekalin und höhere Chlorierungsprodukte (Borsche, Lange, A. 434, 224; vgl. Gysin, Helv. 9, 60; Ferrero, Fehlmann, Helv. 11, 766). Beim Erwärmen von Dekalin mit Phosphortrichlorid und Aluminiumchlorid auf dem Wasserbad und nachfolgenden Behandeln mit heißer Sodalösung entsteht eine in Wasser fast unlösliche, in Alkalien und Ammoniak leicht lösliche, in Methanol, Alkohol und Chlorofast unlösliche, in Alkalien und Ammoniak leicht lösliche, in Methanol, Alkohol und Unioroform sehr leicht lösliche phosphorhaltige Verbindung (Cassella & Co., D. R. P. 452064; C. 1928 I, 2308; Frdl. 15, 1667). Liefert bei der Umsetzung mit Chlorbenzol oder Brombenzol in Gegenwart von Aluminiumchlorid geringe Mengen eines Gemischs von eis- und trans-2-Phenyl-dekalin (Ferrero, Fehlmann, Helv. 11, 771). Beim Erhitzen von Dekalin mit Benzylchlorid in Gegenwart von Phosphorpentoxyd auf 170—190° und nachfolgender fraktionierter Destillation erhält man ein dickflüssiges, dunkelgrünes Öl (Tetralin-Ges., D. R. P. 319799; C. 1920 IV, 133; Frdl. 13, 670). Liefert beim Erhitzen mit Pyromellitsäuredianhydrid (Syst. Nr. 2797) und Aluminiumchlorid auf ca. 80° wenig 3-[Dekalyliden-(2)]-phthalid-dicarbonsäure-(5.6) und sehr geringe Mengen einer Verbindung C<sub>30</sub>H<sub>30</sub>O<sub>6</sub> (Syst. Nr. 2797) (Philippi Seka M. 45, 263). 2797) (Philippi, Seka, M. 45, 263).

#### Biochemisches Verhalten; Verwendung; Analytisches.

Insecticide Wirkung: TATTERSFIELD, GIMINGHAM, J. Soc. chem. Ind. 46, 369 T; C. 1927 II, 1884. — Dekalin eignet sich als Lösungsmittel bei der Darstellung von Aldehyden

durch katalytische Reduktion von Säurechloriden (ZETZSCHE, Mitarb., Helv. 9, 179). Verwendung als technisches Lösungsmittel: RASQUIN, Farbe Lack 1925, 420; C. 1926 I, 265; A. HAUSAMANN, A. KREESER in F. ULLMANN, Enzyklopädie der technischen Chemie, 2. Aufl., Bd. VII [Berlin-Wien 1931], S. 788; Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 90, 228; H. Gnamm, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 80. Toxizität in Beziehung zur Verwendung als technisches Lösungsmittel: E. Gross in K. B. LEHMANN, F. FLURY, Toxikologie und Hygiene der technischen Lösungsmittel [Berlin 1938], S. 223. — Refraktometrische Bestimmung von Dekalin in Gemischen mit Naphthalin und Tetralin: Willstätter, Sertz, B. 56, 1391, 1392.

- H<sub>2</sub>C CH<sub>2</sub> CH<sub>2</sub> CHCl H<sub>2</sub>C CH<sub>2</sub> CH CH<sub>2</sub> d) Substitutionsprodukte der Dekaline. 2-Chlor-dekahydronaphthalin, 2-Chlor-dekalin, Chlornaphthan C<sub>10</sub>H<sub>17</sub>Cl, s. nebenstehende Formel (vgl. H 92).
- a) cis-Form. B. Beim Erhitzen von cis-β-Dekalol (F: 105°) mit rauchender Salzsäure im Rohr auf 125° (Borsche, Lange, A. 484, 225). Kp<sub>15</sub>: 110—112°. Liefert beim Kochen mit Anilin cis-Δ²-Oktalin. Gibt bei der Umsetzung mit Magnesium in Ather bei Gegenwart von etwas Methyljodid und nachfolgendem Sättigen des Reaktionsgemischs mit Kohlendioxyd unter Eiskühlung cis-Dekalin-carbonsäure-(2).
- b) trans-Form. B. Beim Erhitzen von trans-β-Dekalol (F: 75°) mit rauchender Salzsäure im Rohr auf 125° (Borsche, Lange, A. 434, 225). Nicht rein erhalten. Gibt bei der Umsetzung mit Magnesium in Ather in Gegenwart von etwas Methyljodid und Sättigen des Reaktionsgemischs mit Kohlendioxyd unter Kühlung trans-Dekalin-carbonsāure-(2).
- c) Technisches Chlordekalin (Gemisch aus cis- und trans-2-Chlor-dekalin und anderen Produkten). Zur Zusammensetzung vgl. Borsche, Lange, A. 434, 220; Gysin, Helv. 9, 61; Ferrero, Ferlmann, Helv. 11, 764. B. Beim Einleiten von 1 Grammatom Chlor in technisches Dekalin bei Gegenwart von wenig Jod unter Kühlung, neben anderen Produkten (Borsche, Lange, A. 434, 224; Zelinsky, B. 57, 2062), in besserer Ausbeute durch Chlorierung von Dekalin-Dampf bei Gegenwart von 1% Jod unter Bestrahlung mit elektrischem Licht (G.; Ferr., Fehl.). — Leicht bewegliche Flüssigkeit von charakteristischem Geruch. Kp<sub>20</sub>: 114—116° (Z.); Kp<sub>18</sub>: 121—122° (B., L.). D<sup>n.5</sup>: 1,0588; n<sup>n.5</sup>: 1,5121 (Z.). — Zersetzt sich beim Erhitzen unter lebhafter Chlorwasserstoff-Entwicklung (B., L.). Liefert beim Erhitzen mit rauchender Jodwasserstoffsäure im Rohr auf 250° trans-Dekalin (Hückel, B. 58, 1450; vgl. Z., B. 57, 2062; Z., Turowa-Pollak, B. 58, 1292). Liefert beim Erhitzen mit flüssigem Ammoniak oder mit 33% igem wäßrigem Ammoniak unter Druck technisches β-Dekalol und geringe Mengen 2-Amino-dekalin (Ferr., Fehl.). Beim Verschmelzen von technischem Chlordekalin mit Kaliumhydroxyd bei 150—160° erhält man technisches β-Dekalol (Ferr., Ferl.). Liefert beim Erwärmen mit alkoh. Kalilauge auf dem Wasserbad geringe Mengen eines Gemischs von cis-\(\Delta\text{-}\)Oktalin und cis-\(\Delta\text{-}\)Oktalin (Z., B. 57, 2062; vgl. H., B. 58, 1451). Bei der Umsetzung von technischem Chlordekalin mit Magnesium in Ather bei Gegenwart von etwas Methyljodid und Sättigen des Reaktionsgemischs mit Kohlendioxyd unter Kühlung entsteht ein Gemisch von cis- und trans-Dekalin-carbonsäure-(2) (BORSCHE, LANGE, A. 434, 232). Liefert beim Erwärmen mit Benzol und Aluminiumchlorid auf dem Wasserbad ein Gemisch von cis- und trans-2-Phenyl-dekalin; reagiert analog mit Toluol, m-Xylol, p-Cymol, Naphthalin, Anisol, Resorcindimethyläther und Hydrochinondimethyläther (Gysin, Helv. 9, 63; Ferrero, Fehlmann, Helv. 11, 770). Liefert beim Kochen mit Anilin technisches Oktalin (B., L., A. 434, 220, 225; vgl. FERRERO, FEHL-MANN, Helv. 11, 770). — Der Dampf reizt die Schleimhäute der Augen und Atmungsorgane
- 2.3-Dichlor-dekahydronaphthalin, 2.3-Dichlor-dekalin,  $\Delta^{2}$ -Oktalindichlorid C<sub>10</sub>H<sub>16</sub>Cl<sub>2</sub>, s. nebenstehende Formel (vgl. H 92). Technisches Dichlordekalin. Zur Zusammensetzung vgl. Gysin, Helv. 9, 61. — B. Neben anderen Produkten beim Einleiten von Chlor in technisches Dekalin im zerstreuten Tageslicht bei Gegenwart von wenig Jod unter Kühlung (Borsche, Lange, A. 434, 224; vgl. Gysin, Helv. 9, 61). — Kp<sub>18</sub>: 148—150°. — Liefert beim Kochen mit Anilin Hexalin und geringe Mengen Oktalin (B., L., A. 434, 235).

2.3-Dibrom-dekahydronaphthalin, 2.3-Dibrom-dekalin, △2-Oktalindibromid C<sub>10</sub>H<sub>16</sub>Br<sub>2</sub>, s. nebenstehende Formel (H 92; H<sub>2</sub>C CH<sub>2</sub> CH CH Br E I 47).

a) Praparat vom Sohmelzpunkt 85°. Das von LEBOUX (A. A. [8] 21, 473) beschriebene 2.3-Dibrom-dekalin vom Schmelzpunkt 85° wird von Borsche, Lange (A. 484, 221) als 2.3-Dibrom-trans-dekalin erkannt

(vgl. a. HÜCKEL, NAAB, A. 502 [1933], 152).

- b) Präparat vom Schmelzpunkt 170° [vielleicht identisch mit 2.3-Dibrom-dekalin von IPATJEW (B. 43, 3387); die Stellung der Bromatome ist nicht bewiesen]. B. Bei der Einw. von Brom auf cis-\(\delta^2\)-Oktalin oder, neben x-Tetrabrom-oktalin, auf technisches Oktalin in Chloroform bei 0° (Borsche, Lange, A. 434, 226). Schwach campherartig riechende Nadeln (aus Alkohol). F: 170° 1). Sublimiert bei ca. 100°.
- 9.10-Dibrom-dekahydronaphthalin, 9.10-Dibrom-dekalin,  $^{9}$ -Oktalindibromid  $^{10}$ -Oktalindibromid  $^{10}$ -Oktalindibromid  $^{10}$ -Oktalin (Hückel, Mitarb., A. 474, 134). H<sub>2</sub>C CH<sub>2</sub> - x-Tetrabrom-dekahydronaphthalin, x-Tetrabrom-dekalin C<sub>10</sub>H<sub>14</sub>Br<sub>4</sub>. B. Bei der Einw. von Brom auf technisches Hexahydronaphthalin in Chloroform bei 0° (Borsohe, Lange, A. 434, 226, 236). Krystalle (aus Alkohol). F: 184°.
- 10 Chlor 9 nitroso dekahydronaphthalin, 10 Chlor 9 nitroso dekalin,  $\Delta^9$ -Oktalinnitrosochlorid  $C_{10}H_{16}ONCl=C_4H_8$  C(NO)  $C_4H_8$  8. S. 93.
- 1-Nitro-dekalin  $C_{10}H_{17}O_2N$ , s. nebenstehende Formel. Ist vermutlich ein Gemisch von 1-Nitro-cis-dekalin und 1-Nitro-transdekalin (Hückel, Blohm, A. 502 [1933], 114). B. Neben anderen Produkten beim Kochen von Dekalin mit Salpetersäure (D: 1,2) (NAMETKIN, MADAJEWA-SSYTSCHEWA, B. 59, 372; Ж. 57, 385; HÜCKEL, BLOHM, A. 502 [1933], 114). Kp<sub>1,4</sub>: 108—109°; D\_1°: 1,0825; n²0°: 1,4978 (N., M.-S.). Löslich in Alkalilauge (N., M.-S.). Liefert bei der Oxydation mit Permanganat in kalter alkalischer Lösung ein Gemisch stereoisomerer  $\alpha$ -Dekalone (N., M.-S.). Gibt ein flüssiges Pseudonitrol (N., M.-S.).
- 9-Nitro-dekalin C<sub>10</sub>H<sub>17</sub>O<sub>2</sub>N, s. nebenstehende Formel. Ist ein Gemisch von 9-Nitro-cis-dekalin und 9-Nitro-trans-dekalin (Hückel, Blohm, A. 502 [1933], 116). B. Neben anderen Produkten beim Kochen von Dekalin mit Salpetersäure (D: 1,2) (Nametkin, Mada-Jewa-Ssytschewa, B. 59, 372; Ж. 57, 385). Öl. Besitzt einen an Dekalin erinnernden Geruch (N., M.-S.). Kp<sub>1,2</sub>: 95—96°; D<sup>w</sup>: 1,0839; n<sup>w</sup>: 1,4948², (Nametkin, Glagolewa, B. 62, 1572; Ж. 61, 537). Liefert bei der Reduktion mit Zinkstaub in Eisessig ein Gemisch stereoisomerer 9-Amino-dekaline (N., M.-S.; vgl. H., Bl., A. 502 [1933], 116).
- 9.10-Dinitro-dekalin (?)  $C_{10}H_{16}O_4N_2$ , s. nebenstehende Formel. B. Neben anderen Produkten beim Kochen von Dekalin mit Salpetersäure (D: 1,2) (Nametrin, Madajewa-Ssytschewa, B. 59, 372; %. 57, 385). Krystalle (aus Äther). F: 164° (Zers.).
- 20. 3.7.7-Trimethyl-bicyclo-[0.1.4]-heptan. Caran C<sub>10</sub>H<sub>18</sub>, s. nebenstehende Formel (vgl. E I 47). Für die von Caran abgeleiteten Namen wird in diesem Handbuch nebenstehende Stellungsbezeichnung gebraucht. B. Ein Präparat von unbekanntem optischem Verhalten entsteht bei der Hydrierung von d-Δ³-Caren in Gegenwart von Platinschwarz in Äther (Krestinski, Ssolodki, Z. prikl. Chim. 2, 348; C. 1929 II, 2384). D<sub>1</sub><sup>∞</sup>: 0,8533; n<sub>α</sub><sup>∞</sup>: 1,4636; n<sub>0</sub><sup>∞</sup>: 1,4663; n<sub>0</sub><sup>∞</sup>: 1,4732; n<sub>0</sub><sup>∞</sup>: 1,479 (Kr., Ss.). Liefert beim Leiten über Platin-Kohle im Wasserstoffstrom bei 160° p-Menthan, im Kohlendioxyd-Strom bei 300° p-Cymol (Zelinsky, Lewina, A. 476, 62).
- 21. 4 Methyl 1 isopropyl bicyclo [0.1.3] hexan, Thujan C<sub>10</sub>H<sub>18</sub> = H<sub>2</sub>C·CH<sub>2</sub>·C·CH(CH<sub>3</sub>)<sub>2</sub> (H 93; E I 47). B. Aus Thujen durch Hydrierung in Gegenwart von Osmium (Zelinsky, Lewina, A. 476, 65; Z., Turowa-Pollak, B. 62, 2868). Neben anderen Produkten bei der Hydrierung von Sabinol in Gegenwart von aktivem Nickel bei 470—175° oder, weniger gut, in Gegenwart von kolloidem Palladium oder Platin

<sup>&</sup>lt;sup>1</sup>) Nach DANNEEL (Dissert. [Göttingen 1927], S. 30) ist dieser Schmelzpunkt in 159° zu berichtigen.

<sup>&</sup>lt;sup>3</sup>) Für reines 9-Nitro-trans-dekalin fanden Hückel, Blohm (A. 502 [1933], 122) folgende Werte: F: 24°; D<sub>2</sub><sup>25,2</sup>: 1,0803; n<sub>25,4</sub><sup>26</sup>: 1,4922.

- unter 2 Atm. Druck (Henderson, Robertson, Soc. 123, 1715). Kp<sub>766</sub>: 156—158° (Z., Kasanski, B. 60, 1098); Kp<sub>765</sub>: 158—159° (Z., L.). Di<sup>185</sup>: 0,8178; ni<sup>195</sup>: 1,4408 (Z., K.); ni<sup>195</sup>: 1,4399 (Z., L.). Entfärbt Permanganat in der Kälte sehr langsam, rascher in der Wärme (Z., K.). Beim Leiten über Platin-Kohle im Kohlendioxyd-Strom bei 300° entsteht ein Kohlenwasserstoff C<sub>10</sub>H<sub>18</sub> (S. 55) (Z., L.). Liefert bei der Hydrierung in Gegenwart von Palladium-Kohle bei 160—162° 1.2-Dimethyl-3-isopropyl-cyclopentan (Z., K.; vgl. K., B. 62, 2205; Richter, Wolff, Presting, B. 64 [1931], 873). Die Lösung in Essigsäureanhydrid gibt mit 1—2 Tropfen konz. Schwefelsäure eine rote Färbung (Z., K.). Reagiert lebhaft mit Brom unter Bildung von Bromwasserstoff (Z., K.). Löst sich teilweise in konz. Schwefelsäure unter starker Verharzung; rauchende Schwefelsäure zersetzt Thujan unter Wärmeentwicklung (Z., K.). Salpeter-Schwefelsäure wirkt auf Thujan erst nach einiger Zeit, dann aber sehr stürmisch ein (Z., K.).
- 22. 6.6 Dimethyl bicyclo [1.2.3] octan, Dihydroendo-camphen C<sub>10</sub>H<sub>18</sub>, s. nebenstehende Formel. B. Bei der Hydrierung von Endocamphen in Äther bei Gegenwart von Platinmohr unter Kühlung (Lipp, Götzen, Reinabtz, A. 453, 15). Kp: 171,5—173°. D<sub>4</sub><sup>17,4</sup>: 0,8771. H<sub>2</sub>C—CH—CH<sub>2</sub>CH<sub>2</sub>CH—CH<sub>2</sub>CH<sub>2</sub>CH—CH<sub>2</sub>CH<sub>2</sub>CH—CH<sub>2</sub>CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH<sub>2</sub>CH—CH
- 23. 2.6.6-Trimethyl-bicyclo-[1.1.3]-heptan, Dihydro- $_{12}C-CH(CH_3)\cdot CH$  pinen, Pinan  $C_{10}H_{18}$ , s. nebenstehende Formel (H 93; E I 47). Uber diastereoisomere Formen vgl. Nametkin, K. 54, 177; C.  $H_{2}C$ — $CH-C(CH_3)$ 2 111, 1155.
- a) Rechtsdrehendes Pinan. B. Bei der Hydrierung von d-α-Pinen in Gegenwart von Palladium in absol. Äther unter Atmosphärendruck (Richter, Wolff, B. 59, 1735; vgl. Lipp, B. 63 [1930], 414; Waterman, van't Spijker, van Westen, R. 48, 1197). Beim Leiten von d-α-Pinen über Palladium-Asbest im Wasserstoffstrom bei 157—158° (Zelinsky, B. 58, 868). Beim Erhitzen von d-Verbanon-hydrazon mit Natriumäthylat-Lösung im Rohr auf 140—160° (Wienhaus, Schumm, A. 439, 37). Kp<sub>765</sub>: 167—169,2° (kort.) (R., Wo.); Kp<sub>760</sub>: 168—170° (Wie., Sch.). D<sup>18</sup>: 0,8541 (R., Wo.); D<sup>∞</sup><sub>1</sub>: 0,8565 (Wie., Sch.). n<sup>11</sup><sub>1</sub>: 1,4616 (R., Wo.); n<sup>∞</sup><sub>1</sub>: 1,4606 (Wie., Sch.). [α]<sub>11</sub>: +20,2° (Ather; c = 16) (Wie., Sch.). Liefert bei 50-stdg. Erhitzen auf 285° ein Gemisch ungesättigter Kohlenwasserstoffe und geringe Mengen anderer Produkte (Conant, Carlson, Am. Soc. 51, 3469).
- b) Linksdrehendes Pinan. B. Neben p-Cymol beim Leiten von l- $\alpha$ -Pinen in schwachem Kohlendioxyd-Strom über Palladium-Asbest bei 190—200° (Zelinsky, B. 58, 864). Beim Leiten von l- $\alpha$ -Pinen über Palladium-Asbest im Wasserstoff-Strom bei 195—200° (Z., B. 58, 867). Bei der Hydrierung von l- $\alpha$ -Pinen bei Gegenwart von Palladium in absol. Ather (Richter, Wolff, B. 59, 1736). Kp<sub>768</sub>: 169—170° (Z.); Kp<sub>766</sub>: 167,0—170,0° (korr.) (R., W.). D<sub>4</sub><sup>15,5</sup>: 0,8453 (Z.). n<sub>5</sub><sup>15,5</sup>: 1,4577 (Z.); n<sub>5</sub><sup>16</sup>: 1,4594 (R., W.). [ $\alpha$ ]<sub>D</sub>: —10,41° (unverdünnt) (Z.).
- c) Inaktives Pinan. B. Beim Leiten von d-α-Pinen über Kupfer oder Nickel bei 280°, neben anderen Produkten (Treibs, H. Schmidt, B. 60, 2341). Kp: 167—169°. D<sup>20</sup>: 0,840.
- d) Präparat von unbekanntem optischem Verhalten. B. Aus 1-β-Pinen beim Hydrieren in Gegenwart von Palladium-Kohle bei 170—175° (Zelinsky, Lewina, B. 62, 339; vgl. dagegen Lipp, B. 63 [1930], 415) oder beim Leiten über Palladium-Asbest bei 190°, neben p-Cymol (Z., Le.). Kp<sub>737</sub>: 167—167,5°. D<sub>4</sub>°: 0,8470; D<sub>4</sub>°: 0,8447; n<sub>7</sub>°: 1,4554 bzw. D<sub>4</sub>°: 0,8563; D<sub>4</sub>°: 0,8521; n<sub>7</sub>°: 1,4628. Beim Leiten über Platin-Kohle im schwachen Kohlendioxyd-Strom bei 300° entsteht als Hauptprodukt p-Cymol (Z., Le., A. 476, 67). Beim Erhitzen von Pinan mit Zimtsäuremethylester in Kohlendioxyd-Atmosphäre in Gegenwart von Nickel auf 230° entsteht eine geringe Menge Hydrozimtsäuremethylester (Armstrong, Hilditch, Pr. roy. Soc. [A] 96, 328; C. 1920 I, 735).
- 2.3-Dichlor-2.6.6-trimethyl-bicyclo-[1.1.3]-heptan, 2.3-Di-CHC-CCl(CH<sub>3</sub>)-CH chlor-pinan  $C_{10}H_{16}Cl_2$ , s. nebenstehende Formel. Linksdrehende Form. B. Bei der Einw. von Sulfurylohlorid auf l- $\alpha$ -Pinen unter Kühlung mit Wasser (Garino, d'Ambrosio, G. 54, 346). Hellgelbe Flüssigkeit von durchdringendem Geruch. D<sup>15</sup>: 1,1625. n<sup>∞</sup><sub>10</sub>: 1,5008. [ $\alpha$ ]<sup>15</sup>: -20,18°. Bräunt sich beim Aufbewahren auch im Dunkeln. Zersetzt sich bei der Destillation unter vermindertem Druck. Liefert bei der Destillation mit Wasserdampf Bornylchlorid, 2.3.2¹-Trichlor-pinan und eine Verbindung  $C_{10}H_{15}Cl$  (s. u.). Gibt beim Erwärmen mit alkoh. Ammoniak auf ca. 80° Chlorcamphen  $C_{10}H_{15}Cl$  (gelbliches Öl, Kp: 199—201°; D<sup>15</sup>: 1,0763; n<sup>∞</sup><sub>10</sub>: 1,5004; [ $\alpha$ ]<sup>16</sup>: -33,15°); vgl. H 5, 165.

Verbindung  $C_{10}H_{15}Cl.$  B. Neben anderen Produkten bei der Destillation von 2.3-Dichlor-pinan mit Wasserdampf (Garino, d'Ambrosio, G. 54, 348). — Hellgelbe Flüssigkeit.

Kp: 169—170° (Zers.).  $D^{15}$ : 1,053.  $n_{\nu}^{m}$ : 1,4980.  $[\alpha]_{\nu}^{m}$ : —11,52°. Addiert sehr leicht Brom. Löslich in fast allen organischen Lösungsmitteln. — Liefert beim Erhitzen mit Alkalilaugen p-Cymol.

- 24. 1.2.2-Trimethyl-bicyclo-[1.2.2]-heptan,  $\beta$ -Methyl-[1.2.2]-heptan,  $\beta$ -Methyl-[1.2.2]-heptanlan  $C_{10}H_{18}$ , s. nebenstehende Formel.  $\beta$ . Beim Erhitzen von 1.2.2-Trimethyl-bicyclo-[1.2.2]-heptanlan-[3]-hydrazon mit Natrium-athylat auf 180—200° (Nametkin,  $\beta$ -Methyl- icyclo- $\beta$ -Methyl- $\beta$ -Methyl-bicyclo- $\beta$ -Methyl- $\beta$ -Methyl-bicyclo- $\beta$ -Methyl-bicyclo- $\beta$ -Methyl- $\beta$ -Met
- 6-Nitro-1.2.2-trimethyl-bicyclo-[1.2.2]-heptan, Nitro- $O_2N\cdot HC-C(CH_3)-C(CH_3)_2$  β-methyl-camphenilan  $C_{10}H_{17}O_2N$ , s. nebenstebende Formel. B. Aus β-Methyl-camphenilan durch 26-stdg. Erhitzen mit Salpetersäure (D: 1,075) im Rohr auf 130—144° und folgendes 42-stdg. Erhitzen mit Salpetersäure (D: 1,1) auf 128—130° (NAMETKIN, BBJUSSOWA, A. 459, 165; Ж. 60, 269, 284). Krystalle (aus Alkohol). Sintert bei 102—104° und schmilzt bei 110° bis 114°. Löslich in Alkalilaugen. Liefert bei der Oxydation mit alkal. Permanganat-Lösung bei 0° 1.2.2-Trimethylbicyclo-[1.2.2]-heptanon-(6).
- 25. 1.3.3 Trimethyl bicyclo [1.2.2] heptan, Fenchan  $C_{10}H_{18}$ , s. nebenstehende Formel (E I 48). Linksdrehende Form. Bleibt beim Leiten über Platin-Kohle im Kohlendioxyd-Strom bei 300° unverändert (Zelinsky, Lewina, A. 476, 68). [Hillger]  $H_2C-CH_2-C(CH_3)$ 2
- 26. 1.7.7-Trimethyl-bicyclo-[1.2.2]-heptan, Camphan

  C<sub>10</sub>H<sub>18</sub>, s. nebenstehende Formel (H 93; E I 49). Für die von Camphan
  abgeleiteten Namen wird in diesem Handbuch die in der Formel angegebene Stellungsbezeichnung gebraucht. B. Bei der Reduktion
  von 2.6-Dichlor-camphan mit Natrium und Alkohol (Henderson,
  Marsh, Soc. 119, 1499; Meerwein, Wortmann, A. 435, 205). Beim
  Kochen von Bornylenhydrobromid (S. 65) mit Zinkstaub in verd. Alkohol (Achmatowicz,
  Rozzniki Chem. 8 [1928], 61). Entsteht ferner aus Bornylenhydrobromid und aus Bornylenhydrojdid bei der Einw. von Äthylmagnesiumjodid (A.). Aus dem Disemicarbazon des
  d-2.5-Dioxo-camphans beim Erhitzen mit Natriumäthylat-Lösung im Rohr auf 200° (Bredt,
  Goeb, J. pr. [2] 101, 289). Beim Überleiten von Tricyclen und Wasserstoff über PlatinKohle bei 155—160° (Zelinsky, Lewina, A. 476, 64). F: 156° (B., G.), 154—155° (H.,
  M.), 153—154° (M., W.; A.). Kp: 160—162° (H., M.), 160° (B., G.); Kp<sub>74</sub>: 158—158,5° (A.).

2-Chlor-1.7.7-trimethyl-bicyclo-[1.2.2]-heptan, 2-Chlor-camphan H<sub>2</sub>C-C(CH<sub>3</sub>)-CHCl C<sub>10</sub>H<sub>17</sub>Cl, s. nebenstehende Formel.

a) Bornylchlorid 1) (H 94; E I 49). B. Rechtsdrehendes und links-H<sub>1</sub>C—CH——CH<sub>2</sub> drehendes Bornylchlorid entstehen aus den entsprechenden aktiven Formen des α-Pinens durch Einw. von Chlorwasserstoff (Pariselle, A. ch. [9] 19, 132; vgl. H 5, 94) und beim Erhitzen mit äquimolekularen Mengen tert. Amylchlorid, Isobornylchlorid (aus Camphen) oder Anilinhydrochlorid auf 160° (Kondakow, Saprikin, Bl. [4] 37, 730, 734, 738). Linksdrehendes Bornylchlorid entsteht aus 1-β-Pinen durch Einw. von Chlorwasserstoff (Wallach, A. 363 [1909], 15; C. 1908 II, 1593; Pa., A. ch. [9] 19, 132) sowie bei der Einw. von Chlor bei —15° bis —20°, neben anderen Produkten (Brus, C. r. 186, 241). Inakt. Bornylchlorid bildet sich bei der Einw. von Chlorwasserstoff auf dl-α-Pinen (Pa., A. ch. [9] 19, 132). Bornylchlorid von unbekanntem optischem Verhalten entsteht beim Chlorieren

<sup>1)</sup> Die in der Literatur noch vielfach verwendeten Bezeichnungen Pinenhydrochlorid, Pinenchlorhydrat sind für das aus Pinen und Chlorwasserstoff primär entstehende 2-Chlor-2.6.6-trimethyl-bicyclo-[1.1.3]-heptan (E I 5, 48) zu reservieren.

von Pinen unterhalb 0°, neben anderen Produkten (Aschan, B. 61, 41). Aus Pinen oder Terpentinölen durch Einw. von Thionylchlorid und Ameisensäure oder Eisessig oder von Sulfurylchlorid und Ameisensäure in der Kälte oder durch Erwärmen mit Sulfurylchlorid und wasserfreier Oxalsäure in Tetrachlorkohlenstoff (L. Schmidt, D. R. P. 397 314; C. 1924 II, 1134; Frdl. 14, 500). Neben anderen Produkten bei der Destillation von linksdrehendem Dichlorpinan mit Wasserdampf (Garino, d'Ambrosio, G. 54, 347). Beim Einleiten von Chlorwasserstoff in eine Lösung von rechtsdrehendem Dihydroverbenen (S. 102) in Schwefelkohlenstoff unter Kühlung (Blumann, Zeitschel, B. 54, 894).

Uber Rekrystallisations-Erscheinungen vgl. Tammann, Dreyer, Z. anorg. Ch. 182, 289. Bei der Einw. von Sauerstoff auf die Magnesiumverbindung aus Bornvlehlorid in Äther erhält man in der Kälte etwa gleiche Teile Borneol und Isoborneol; bei zunehmender Reaktionstemperatur oder beim Erwärmen des Reaktionsgemischs, namentlich nach der Behandlung mit Sauerstoff, nimmt die Ausbeute an Isoborneol ab (Vavon, Berton, C. r. 175, 369; Bl. [4] 33, 218, 227; vgl. V., Peignier, C. r. 181, 183; Bl. [4] 39, 925). Liefert bei der Oxydation mit Chromsäure in Eisessig unter verschiedenen Bedingungen CIHC—C(CH<sub>3</sub>)—CH<sub>2</sub> 6-Chlor-epicampher (s. nebenstehende Formel; Syst. Nr. 618) (MURAYAMA, CCH<sub>3</sub>) C(CH<sub>3</sub>)<sub>2</sub> ARIHARA, J. pharm. Soc. Japan 1926, 15; C. 1926 I, 3601; BREDT, PINTEN, J. pr. [2] 115, 48). Gibt beim Kochen mit Zinkstaub und wenig ĊH-Eisessig in Benzol unter Einleiten von Chlorwasserstoff ein nicht näher untersuchtes Gemisch von Mono- und Diterpenen (STAUDINGER, WIDMER, Helv. 9, 549). Beim Chlorieren von Bornylchlorid in Chloroform oder Tetrachlorkohlenstoff erhielt Aschan (B. 61, 44; vgl. C. 1918 II, 952) je nach den Bedingungen ein Trichlorcamphan (F: 130°) oder ein Tetrachlorcamphan (F: 150-152°) als Hauptprodukt; die von Parasogli (G. 6 [1876], 541; B. 10 [1877], 84) beschriebene Verbindung C<sub>10</sub>H<sub>16</sub>Cl<sub>2</sub> konnte nicht wieder erhalten werden. Bornylchlorid gibt beim Erhitzen mit Kalium- oder Natriumalkylat-Lösungen Camphen und Bornylen; der Bornylen-Gehalt des erhaltenen Kohlenwasserstoffs nimmt mit steigender Alkalikonzentration, sinkendem Wassergehalt und wachsendem Molekulargewicht des verwendeten Alkohols zu; beim Erhitzen mit 10%iger Kaliumisoamylat-Lösung auf 230° im Rohr erhält man fast reines Bornylen (MEERWEIN, JOUSSEN, B. 55, 2531, 2533; vgl. Kon-DAKOW, 3K. 42, 350; C. 1910 I, 2089). Bornylchlorid geht ferner in Camphen über: beim Erhitzen mit Kupfer(I)-oxyd auf 150° oder mit Kupfer(II)-oxyd und Kupfer auf 130° (AL-LINGER, D. R. P. 495449; Frdl. 16, 568), beim Erhitzen mit technischem Kaliumkresolat und Kresol auf 180—190° (Pariselle, C. r. 176, 1901; 180, 1832), beim Kochen mit Kaliumacetat in Phenol (E. MEYER, CLAASEN, D. R. P. 418057; C. 1926 I, 234; Frdl. 15, 414), beim Erhitzen mit Zinkacetat, Zinkoxyd, Natriumacetat und Wasser auf 190—200° (I. G. Farbenind., D. P. P. 420695; C. 1967 I, 4567; Frdl. 15, 444), beim Erhitzen mit Zinkacetat, Zinkoxyd, Natriumacetat und Wasser auf 190—200° (I. G. Farbenind., P. P. 140695; C. 1967 I, 4567; Frdl. 15, 444), beim Erhitzen mit Zinkacetat, Zinkoxyd, Natriumacetat und Wasser auf 190—200° (I. G. Farbenind., P. P. P. 140695; C. 1967 I, 4567; Frdl. 15, 444), beim Erhitzen mit technischem Kaliumkresolat und Kresolatum Kaliumkresolat und Kresolatum Kaliumkresolatum K D. R. P. 439695; C. 1927 I, 1527; Frdl. 15, 413) oder (neben Isobornylacetat) beim Erhitzen mit Zinkacetat und Natriumacetat in Eisessig auf 120—125° (I. G. Farbenind., D. R. P. 431 309; C. 1926 II, 1194; Frdl. 15, 411). Beim Überleiten von Bornylchlorid über Kupfer(II) oxyd bei 220° erhält man je nach der Darstellungsart des angewandten Kupferoxyds Camphen oder flüssige Kohlenwasserstoff-Gemische (Masumoto, Mem. Coll. Sci. Kyoto [A] 10, 175; C. 1927 II, 1263). Beim Erhitzen von inakt. Bornylchlorid mit Nickelcarbonat auf 125° bis 135° erhält man Camphen und geringere Mengen flüssiger Kohlenwasserstoffe; bei 165° bis 175° bildet sich ein Gemisch von flüssigen Kohlenwasserstoffen, das beim Behandeln mit Eisessig in Gegenwart von etwas Schwefelsäure und nachfolgenden Verseifen Isoborneol liefert (Wanin, Тэснеплојавома, Ж. 61, 2281; С. 1930 I, 3780). Einw. von Benzaldehyd auf die Magnesiumverbindung aus Bornylchlorid: RUPE, HIRSCHMANN, Helv. 11, 1199.

Verbindung  $C_{10}H_{16}Cl_2$  (H 96). Konnte nicht wieder erhalten werden (Aschan, B. 61, 44).

b) Isobornylchlorid¹)  $C_{10}H_{17}Cl$  (H 97; E I 50). B. Neben anderen Produkten bei der Einw. von überschüssigem Acetylchlorid auf Camphen bei Gegenwart von Aluminiumchlorid in trocknem Ather (Lipp, Küppers, Holl, B. 60, 1578). Bei der Einw. von Chlorwasserstoff auf Methylisobornyläther (Meerwein, Gérard, A. 435, 184). — An einem aus d-Camphen ( $[\alpha]_0$ :  $+77,1^{\circ}$ ) und Chlorwasserstoff in Alkohol erhaltenen Präparat fand Pariselle (C. r. 180, 1832) den Schmelzpunkt 138—140°;  $[\alpha]_0$ :  $-41,2^{\circ}$  (in Ather); ein aus l-Camphen ( $[\alpha]_0$ :  $-79,9^{\circ}$ ) hergestelltes rechtsdrehendes Präparat zeigte analoge Eigenschaften. Rotationsdispersion: Pa. — Geschwindigkeit der Racemisierung in Chlorbenzol (bei Gegenwart von Antimonpentachlorid), in Kresol und in Gemischen von Kresol mit verschiedenen organischen Lösungsmitteln bei 20°: Meerwein, Montfort, A. 435, 210, 211, 216. Geschwindigkeit der Umlagerung in Camphenhydrochlorid (S. 67) bei der Behandlung mit Alkalialkoholaten unter verschiedenen Bedingungen: Meerwein, Joussen, B. 55, 2530.

<sup>1)</sup> Die in der Literatur benutzten Bezeichnungen Camphenhydrochlorid, Camphenchlorhydrat sind für das aus Camphen und Chlorwasserstoff primär entstehende 3-Chlor-isocamphan (S. 67) zu reservieren.

Bei der Chlorwasserstoff-Abspaltung durch Erhitzen mit Pinen (Aschan, C. 1918 II, 953) geht Isobornylchlorid in Camphen über, während Pinen in das entsprechende aktive Bornylchlorid übergeführt wird (Kondakow, Saprikin, Bl. [4] 37, 728).

- 3 Chlor 1.7.7 trimethyl bicyclo [1.2.2] heptan, 8 Chlor  $H_2C$ — $C(CH_3)$ — $CH_2$  camphan, Bornylenhydrochlorid  $C_{10}H_{12}Cl$ , s. nebenstehende Formel  $^1$ )  $C(CH_3)_2$  (vgl. H 98). Rechtsdrehende Form. B. Aus rechtsdrehendem Bornylen und Chlorwasserstoff in Chloroform bei  $0^0$  (ACHMATOWICZ, Roczniki  $H_2C$ —CH—CHCl Chem. 8 [1928], 57). Krystalle (aus Ligroin). F: 149—149,5°. Sublimiert leicht unter vermindertem Druck.  $[\alpha]_0$ : +15,4°. Zersetzt sich bei ca. 190° unter Entwicklung von Chlorwasserstoff. Geht beim Erhitzen mit viel Wasser im Rohr auf 100° größtenteils in Tricyclen über; dieses entsteht auch neben anderen Produkten beim Erhitzen mit 1 Tl. Anilin auf 166°. Liefert bei längerem Aufbewahren mit Silberacetat und Eisessig und Verseifen des entstandenen Acetats Epiborneol.
- x-Chlor-camphan C<sub>10</sub>H<sub>17</sub>Cl.  $\hat{B}$ . In geringer Menge neben anderen Produkten beim Behandeln von in Petroläther gelöstem Bornylen mit wäßriger unterchloriger Säure (Henderson, Mair, Soc. 123, 1156, 1160). Wahrscheinlich nicht rein erhalten. Schwach campherähnlich riechende Krystalle (aus Methanol). F: 71—73°. Leicht flüchtig mit Wasserdampf. Sehr leicht löslich in den gewöhnlichen organischen Lösungsmitteln. Geht beim Kochen mit Zinkstaub und Alkohol in Camphan über.
- 2.2-Dichlor-1.7.7-trimethyl-bicyclo-[1.2.2]-heptan, 2.2-Dichlor-camphan, α-Campherdichlorid C<sub>10</sub>H<sub>16</sub>Cl<sub>2</sub>, s. nebenstehende Formel.

  B. Bei 1monatigem Aufbewahren eines Gemisches aus 200 g Campher, 294 g frisch sublimiertem oder aus Phosphortrichlorid dargestelltem Phosphorpentachlorid und 170 g Phosphortrichlorid unterhalb 0° (Meerwein, Wortmann, A. 435, 192, 201). Krystalle (aus Petroläther). F: 146—148° (Zers.). Zersetzt sich beim Aufbewahren im geschlossenen Gefäß rasch unter Chlorwasserstoff-Abspaltung; ist über Kaliumhydroxyd länger haltbar. Lagert sich in Gegenwart von Zinn(IV)-chlorid in Benzol oder Toluol in 2.6-Dichlor-camphan um. Wird durch 90%ige Schwefelsäure rasch unter Bildung von Carvenon zersetzt. Liefert beim Erhitzen mit Kaliumacetat und Phenol auf 150—170° α-Chlor-camphen (S. 107). Geschwindigkeit der Zersetzung durch Methanol bei 50° und durch siedende 0,2 n-Natriumäthylat-Lösung: M., W., A. 435, 193.
- 2.6 Dichlor 1.7.7 trimethyl bicyclo [1.2.2] heptan, 2.6 Dichlor-c(CH<sub>3</sub>) CHCl chlor-camphan, Pinendichlorid, Tricyclendichlorid, β-Campherdichlorid C<sub>10</sub>H<sub>16</sub>Cl<sub>2</sub>, s. nebenstehende Formel (H 98; E I 50). B. Zur Bildung bei der Chlorierung von Pinen (ASCHAN, C. 1918 II, 952) vgl. H<sub>2</sub>C CH CH<sub>2</sub> ASCHAN, B. 61, 41; BRUS, C. r. 160, 1507; zur Bildung durch Einw. von unterchloriger Säure auf Pinen (GINSBERG, WAGNER, Ж. 30, 679; C. 1899 I, 50) vgl. HENDERSON, MARSH, Soc. 119, 1495, 1499. Neben anderen Verbindungen bei der Einw. von Phosphorpentachlorid auf Pinen (BERT, Bl. [4] 33, 788, 790). Beim Aufbewahren von 2.2-Dichlor-camphan in Gegenwart von Zinn(IV)-chlorid in Benzol oder Toluol (MEERWEIN, WOETMANN, A. 435, 203). Entsteht in meist nicht einheitlicher Form bei der Einw. von Phosphorpentachlorid auf Campher oberhalb 0° oder in Gegenwart von Eisenchlorid oder Phosphorsäure (M., W., A. 435, 195, 203).

Rhombisch bipyramidale Tafeln (aus Ather) (Brofeldt, B. 61, 41); F: 173—1749 (Aschan, B. 61, 41). Monokline Krystalle (aus Alkohol oder Petroläther) (Duffour, C.r. 180, 1508); F: 170—1719 (Brus, C.r. 180, 1508). Farnkrautartig verzweigte Krystalle (aus methylalkoholischer Salzsäure); F: 178—1799 (Meerwein, Wortmann, A. 435, 204). Nadeln (aus Alkohol); F: 1839 (Maquennescher Block); leicht löslich in heißem, schwer in kaltem Alkohol (Bert, Bl. [4] 33, 790). Tafeln (aus Ather), F: 1769; Blättchen (aus Methanol), F: 169—1729; leicht löslich in Ather, fast unlöslich in kaltem Wasser (Henderson, Marsh, Soc. 119, 1499). — Gibt bei der Reduktion mit Natrium und Alkohol Camphan (Henderson, Marsh, Soc. 119, 1499; Meerwein, Wortmann, A. 435, 205). Liefert bei wiederholter Einw. von Natrium in absol. Ather Tricyclen (Aschan, B. 61, 42). Wird durch Anilin und durch Zinkstaub, Magnesium oder Kupfer in siedendem Alkohol nicht verändert (Brus, C.r. 180, 1508). Wird durch 90 %ige Schwefelsäure langsam unter Bildung von Carvenon zersetzt (M., W., A. 435, 204). Liefert beim Erhitzen mit Phenol und Kaliumacetat auf 170—1909 CIHC—CH—C:CH2

mit Phenol und Kaliumacetat auf 170—190° ein Gemisch von β-Chlorcamphen und Chlortricyclen (Formel I und II) (M., W., A. 435, 205). Wird durch Methanol und durch Natrium-

I. 
$$CIHC-CH-C:CH_3$$
 II.  $HC$ 
 $CIH_3$ 
 $CIH_4$ 
 $CIH_5$ 
 <sup>1)</sup> Die vom Original abweichende Formulierung ergibt sich aus der Bildungsweise und aus der Umwandlung in Epiborneol; die Beziehungen zu dem H 98 unter derselben Formel aufgeführten Präparat von WAGNER, BEYENER (2K. 35, 535; Ch. Z. 27, 721) and nicht völlig klar.

-ĊH2

åthylat langsamer angegriffen als 2.2-Dichlor-camphan; Geschwindigkeit der Zersetzung durch Methanol bei 50° und durch siedende 0,2 n-Natriumathylat-Lösung: M., W., A. 485, 196.

2 - Chlor - 7.7 - dimethyl - 1 - chlormethyl - bicyclo - [1.2.2]-H2C--C(CH2Cl)--CHCl heptan, 2.10-Dichlor-camphan  $C_{10}H_{16}Cl_2$ , Formel III. Die III. C(CH2)2

Beziehungen zu der E I 50 unter der gleichen Formel beschriebenen Verbindung vom Schmelzpunkt 139—140° sind nicht bekannt. — B. Durch Einw. von Chlorwasserstoff auf Tricyclenol (Syst. Nr. 510) in Athere CH2

B 20 Schwelzpunkt B 55° Schwelzpunkt Belich in Alkohol Ather hei 0° (Komppa, B. 62, 1370). — Krystalle. F: 53—55°. Sehr leicht löslich in Alkohol, Ather, Aceton, Benzol und Petroläther. Läßt sich nicht umkrystallisieren. — Liefert bei der Reduktion mit Natrium und absol. Alkohol auf dem Wasserbad Tricyclen. Beim Kochen der wäßrig-alkoholischen Lösung mit Silberoxyd erhält man neben geringen Mengen 2.10-Dioxy-camphan eine IV. Verbindung C<sub>10</sub>H<sub>16</sub>O (vielleicht 2.10-Oxido-camphan, Formel IV) (Kp<sub>5</sub>: 80-83°; mit Wasserdampf flüchtig; reagiert nicht C(CH<sub>3</sub>)<sub>2</sub> ĊН---mit Phenylisocyanat und mit Semicarbazid).

2 - Brom - 1.7.7 - trimethyl - bicyclo - [1.2.2] - heptan, 2 - Brom-H<sub>2</sub>C---C(CH<sub>3</sub>)---CHBr camphan C10H17Br, s. nebenstehende Formel. C(CH2)2

a) Bornylbromid C<sub>10</sub>H<sub>17</sub>Br (in der Literatur als "Pinenhydrobromid", "Pinenbromhydrat" bezeichnet) (H 98; E I 51). B. Rechts-ĊH--drehendes und linksdrehendes Bornylbromid entstehen aus den entsprechenden akt. Formen des a-Pinens durch Einw. von Bromwasserstoffsäure (Pariselle, C. r. 172, 1497; Kondakow, Ges a-rinens durch Linw. von Bromwasserstoftsäure (Pariselle, C. r. 172, 1497; Kondakow, Saprikin, Bl. [4] 37, 735), bei der Einw. von Brom, neben Pinendibromid (Pa., C. r. 172, 1498), und beim Erhitzen mit tert.-Amylbromid auf 130° oder mit Isobornylbromid auf 160° (K., S., Bl. [4] 37, 731, 734). Linksdrehendes Bornylbromid entsteht aus 1-β-Pinen bei der Einw. von Brom in Tetrachlorkohlenstoff, neben anderen Produkten (Brus, C. r. 186, 241). — F: 94—95° (Pariselle, C. r. 172, 1497; Murayama, Tanaka, J. pharm. Soc. Japan 1927, 132; C. 1928 I, 907), 93° (Brus, C. r. 186, 241), 85—86° (Kondakow, Saprikin, Bl. [4] 37, 735). Kp<sub>12</sub>: 94° (Pa.). Höchste beobachtete Drehwerte: [α]<sub>5</sub><sup>12</sup>: +30,8° (K., S., Bl. [4] 37, 735); [α]<sub>0</sub>: —31,5° (Pa.) bzw. —30.4° (Brus). — Liefert bei der Oxydation mit Chrom-37, 735); [\alpha],: -31,5° (\textit{Pa.}) bzw. -30,4° (\textit{Brus}). - Liefert bei der Oxydation mit Chromtrioxyd in Eisessig 6-Brom-epicampher (Mu., Ta.). Gibt beim Kochen mit Kaliumisoamylat-Lösung Bornylen (Meerwein, Joussen, B. 55, 2532).

19, 20). Durch Einw. von Bromwasserstoff auf Methylisobornyläther (M., Geraed, A. 435, 184). — Linksdrehendes Isobornylbromid aus d-Camphen ([α]<sub>p</sub>: +77,1°) zeigt [α]<sub>p</sub>: -62,3° (PA.). — Lagert sich in Lösung zu einem geringen Teil in Camphenhydrobromid um (M., A. 453, 20). dl-Isobornylbromid gibt beim Erhitzen mit d- oder i-Pinen auf 160° dl-Camphen auf 160° dlund die entsprechenden aktiven Bornylbromide (Kondakow, Saprikin, Bl. [4] 37, 731).

8 - Brom - 1.7.7 - trimethyl - bicyclo - [1.2.2] - heptan, 3 - Brom-H<sub>2</sub>C---C(CH<sub>3</sub>)---CH<sub>2</sub> camphan, Bornylenhydrobromid  $C_{10}H_{10}Br$ , s. nebenstehende Formel  $^3$ ). Rechtsdrehende Form. B. Beim Sättigen einer Lösung von C(CH<sub>3</sub>)<sub>2</sub> rechtsdrehendem Bornylen in Chloroform mit Bromwasserstoff bei 00 ĊH. (ACHMATOWICZ, Roczniki Chem. 8 [1928], 58). — Krystalle (aus Ligroin). F: 124—125°. [\alpha]<sub>n</sub>: +6,5°. — Zersetzt sich beim Destillieren auch bei vermindertem Druck. Liefert beim Kochen mit Zinkstaub in verd. Alkohol Camphan, Epiborneoläthyläther(?) und einen ungesättigten Kohlenwasserstoff. Gibt beim Behandeln mit Silbernitrat das Brom quantitativ ab. Liefert bei der Einw. von Silberacetat und Eisessig und nachfolgenden Verseifung Epiborneol. Bei der Einw. von Athylmagnesiumjodid entstehen Camphan, Borneol(?), Dicamphanyl-(3.3') und ungesättigte Kohlenwasserstoffe.

2.6 - Dibrom - 1.7.7 - trimethyl-bicyclo-[1.2.2]-heptan, 2.6-Di--C(CH<sub>8</sub>)---CHBr brom-camphan, Pinendibromid C<sub>10</sub>H<sub>16</sub>Br<sub>2</sub>, s. nebenstehende Formel (H 99). B. Zur Bildung durch Einw. von Brom auf Pinen vgl. Aschan, C(CH<sub>3</sub>)2 -CH----ĊH₂ B. 61, 42; Brus, C.r. 186, 87; vgl. a. Pariselle, C.r. 172, 1498;

7) Zur Formulierung vgl. S. 64 Anm. - Die Einheitlichkeit erscheint fraglich.

<sup>1)</sup> Die in der Literatur angewandten Bezeichnungen Camphenhydrobromid, Camphenbrombydrat sind für das aus Camphen und Bromwasserstoffsäure primär entstehende 3-Bromisocamphan (S. 67) su reservieren.

A. ch. [9] 19, 129. — Hexagonal (DUFFOUR, C. r. 186, 88). Löslich in Benzol, Athylacetat und Chloroform, schwer löslich in kaltem Alkohol (BRUS). — Liefert beim Kochen mit Silberacetat und Eisessig das Acetat eines ungesättigten Alkohols C<sub>10</sub>H<sub>16</sub>O (s. u.) und einen unter 15 mm Druck nicht destillierbaren Rückstand, der bei der Verseifung eine Dioxy-Verbindung  $C_{10}H_{18}O_2$  (s. u.) gibt (Aschan, B. 61, 40, 43).

Ungesättigter Alkohol  $C_{10}H_{16}O$ . B. Beim Kochen von 2.6-Dibrom-camphan mit Silberacetat in Eisessig und Verseifen des entstandenen Acetats  $C_{12}H_{18}O_2$  (Kp<sub>18</sub>: 120—122°;  $D_2^m$ : 0,9894;  $n_2^m$ : 1,4774) mit alkoh. Kalilauge (Aschan, B. 61, 41, 44). — Wohlriechendes dickes Ol. Kp: 2120. Löslich in Ather. — Entfärbt sodaalkalische Permanganat-Lösung.

Verbindung C<sub>10</sub>H<sub>18</sub>O<sub>2</sub>. B. Durch Kochen von 2.6-Dibrom-camphan mit Silberacetat in Eisessig, Destillieren bei 15 mm Druck und Verseifen des Rückstandes mit alkon. Kalilauge (Aschan, B. 61, 41, 44). — Angenehm riechende prismatische Krystalle (aus Essigester). F: 132—133°. — Entfärbt sodaalkalische Permanganat-Lösung.

2-Brom-7.7-dimethyl-1-brommethyl-bicyclo-[1.2.2]-heptan, H<sub>2</sub>C--C(CH<sub>2</sub>Br)--CHBr 2.10-Dibrom-camphan, Camphendibromid, Bromcamphenhydro-C(CH3)2 bromid C<sub>10</sub>H<sub>16</sub>Br<sub>2</sub>, s. nebenstehende Formel (H 99; E I 51). B. Bei Ċн --der Einw. von Brom auf Camphen in Tetrachlorkohlenstoff bei 00 erhält man aus rechtsdrehendem Camphen linksdrehendes, aus linksdrehendem Camphen rechtsdrehendes Camphendibromid (PARISELLE, C. r. 180, 1832, 1833); auch das aus einem teilweise racemisierten d-Camphen über Isobornylbromid nach Marsh (Pr. chem. Soc. 15 [1899], 55) hergestellte Präparat von LIPP (J. pr. [2] 105, 56) ist linksdrehend. — F: 91—91,5° (korr.); Kp<sub>11</sub>: 146—149° (Lipp). Linksdrehendes Camphendibromid aus d-Camphen zeigt  $[\alpha]_p$ : —71°; Rotationsdispersion: PARISELLE. — Zersetzt sich bei der Destillation unter vermindertem Druck oder mit Wasserdampf teilweise, bei der Destillation unter gewöhnlichem Druck vollständig unter Bildung von  $\omega$ -Brom-camphen (Lipp). Reine Präparate werden bei kurzem Kochen mit Pyridin oder Dimethylanilin nicht verändert (LIPP). Liefert bei 48-stdg. Kochen mit Salpetersäure (D: 1,4) w-Brom-camphersäure und andere Produkte (LIPP, LAUSBERG, A. 436, 283, 285).

-C(CH<sub>3</sub>)--CHI 2-Jod-1.7.7-trimethyl-bicyclo-[1.2.2]-heptan, 2-Jod-camphan C<sub>10</sub>H<sub>17</sub>I, s. nebenstehende Formel. C(CH<sub>3</sub>)<sub>2</sub>

C<sub>10</sub>H<sub>17</sub>1, s. nebenstehende Formel.

a) Bornyljodid (in der Literatur als "Pinenhydrojodid", "Pinendurgen der entsprechende und linksdrehendes Bornyljodid entstehen beim Erhitzen der entsprechenden aktiven α-Pinene mit dl-Isobornyljodid auf 160° (ΚΟΝΡΑΚΟΝ, SAPRIKIN, Bl. [4] 37, 731, 732). Inakt. Bornyljodid entsteht aus gleichen Teilen d- und l-Bornyljodid (K., S., Bl. [4] 37, 733). — d-Bornyljodid erstarrt beim Abkühlen krystallinisch; F: —4°; Kp<sub>11</sub>: 109—112°; D<sup>18</sup>: 1,4635—1,4636; [α]<sub>p</sub>: —33,5° (unverdünnt); l-Bornyljodid zeigt F: —4°; Kp<sub>10</sub>: 108—109°; D<sup>18</sup>: 1,4630 (K., S.). — Wird am Licht gelb (K., S.). Gib bei längerem Kochen mit Wasser Jodwasserstoffsäure ab (K., S.). Aktives Bornyljodid liefert mit Silberpikrat in siedendem Alkohol akt. Camphen. Pikrinsäure und Silberiodid (DELÉPINE. GRANDPERRIN. siedendem Alkohol akt. Camphen, Pikrinsäure und Silberjodid (Delépine, Grandperrin, Bl. [4] 39, 790).

b) Isobornyljodid ("Camphenhydrojodid", "Camphenjodhydrat") (H 100). dl-Isobornyljodid gibt beim Erhitzen mit 1 Mol d- oder l-a-Pinen d- oder l-Bornyljodid und Camphen (Kondakow, Saprikin, Bl. [4] 37, 731, 732).

8-Jod-1.7.7-trimethyl-bicyclo-[1.2.2]-heptan, 8-Jod-camphan,  $H_2C$ — $C(OH_3)$ — $CH_2$  Bornylenhydrojodid  $C_{10}H_{12}I$ , s. nebenstehende Formel 1). Rechtsdrehende Form. B. Beim Sättigen einer auf  $0^0$  abgekühlten Lösung von rechtsdrehendem Bornylen in Chlosoform mit Lodwagsamtoff bei  $0^0$ von rechtsdrehendem Bornylen in Chloroform mit Jodwasserstoff bei 00 (ACHMATOWICZ, Roczniki Chem. 8 [1928], 58). — Krystalle. F:  $22-25^{\circ}$ . Kp<sub>22</sub>:  $128-130^{\circ}$ . [ $\alpha$ ]<sub>p</sub>:  $+55,2^{\circ}$ . — Gibt das Jod beim Behandeln mit alkoh. Silbernitrat-Lösung quantitativab. Gibt bei der Einw. von Äthylmagnesiumjodid-Lösung Camphan, Borneol (?), Dicamphanyl-(3.3') und einen ungesättigten Kohlenwasserstoff, der durch Permanganat zu Camphersaure oxydiert wird.

2 - Brom - 2-nitro - 1.7.7 - trimethyl - bicyclo - [1.2.2] - heptan, -C(CH3)--CBr·NO2 2-Brom-2-nitro-camphan C<sub>10</sub>H<sub>16</sub>O<sub>2</sub>NBr, s. nebenstehende Formel C(CH3)2 (H 101; E I 51). Zur Bildung aus Campheroxim nach Forster, Soc. 75, 1144 vgl. Ginnings, Noves, Am. Soc. 44, 2568, 2571. ĊН---Wird bei längerem Kochen mit starker Salpetersäure erst zu Campher, dann zu Camphersäure, zuletzt zu Camphoronsäure oxydiert.

<sup>1)</sup> Zur Formulierung vgl. S. 64 Anm. — Die Einheitlichkeit erscheint fraglich.

Verbindung  $C_{10}H_{14}ONBr$  (Zersetzungstemperatur ca. 210° bis 220°), Bromnitrocamphan-anhydrid (H 102). Besitzt wahrscheinlich die nebenstehende Konstitution; vgl. dazu GINNINGS, NOYES, Am. Soc. 44, 2569. — B. Durch Behandlung von 2-Brom-2-nitro-camphan mit konz. Schwefelsäure in Petroläther unterhalb —5° (G., N., Am. Soc. 44, 2571). — Liefert mit Methylmagnesiumjodid in Äther Methyl-bromnitrocamphan-anhydrid (s. u.).

Methyl-bromnitrocamphan-anhydrid  $C_{11}H_{16}ONBr$ , s.  $H_{2C}$ — $C(CH_3)$ —CBr nebenstehende Formel. B. Aus Bromnitrocamphan-anhydrid und Methylmagnesiumjodid in Äther (GINNINGS, NOVES, Am. Soc. |  $C(CH_3)$ 2 N (?) 44, 2574). — Tafeln (aus Äther). F: 117—118°. Löslich in Alkohol  $H_{2C}$ — $CH_{2C}$ — $C(CH_3)$ 0 OH und Äther, unlöslich in Wasser sowie in Säuren und Alkalilaugen. — Liefert beim Kochen mit alkoh. Natronlauge 1.2.2-Trimethyl-3-acetyl-cyclopentan-carbonsäure-(1). Gibt beim Benzoylieren nach Schotten-Baumann ein Benzoylderivat  $C_{18}H_{22}O_2NBr$  (Nadeln aus Äther, Krystalle aus verd. Alkohol; F: 113—114°).

27. 2.2.3 - Trimethyl - bicyclo - [1,2.2] - heptan, Dihydro-  $_{12}^{\text{C-CH-C(CH_3)}}$  camphen, Isocamphan  $_{10}^{\text{C}}_{\text{H}_{18}}$ , s. nebenstehende Formel (H 103;  $_{12}^{\text{C}}_{\text{CH-CH-CH}}$  E I 52).

a) Rechtsdrehende Präparate. Rotationsdispersion eines optisch nicht einheitlichen rechtsdrehenden Isocamphans in äther. Lösung: Pariselle, C. r. 180, 1833.

b) Linksdrehende Präparate. B. Neben l-Isoborneol und wenig d-Borneol bei der Hydrierung von d-Campher in Gegenwart von sehr aktivem Platinschwarz in Eisessig (Vavon, Peionier, C. r. 181, 184; Bl. [4] 39, 930). Durch Hydrierung von rechtsdrehendem Camphen ( $[\alpha]_p$ : +77,1°) bei Gegenwart von Platinschwarz in Äther; wurde nicht optisch rein erhalten (Pariselle, C. r. 180, 1832). — Krystalle (aus Alkohol). F: 64—65° (V., Pei.), 59—61° (Pa.). Kp<sub>17</sub>: 62—63° (Pa.). [ $\alpha$ ]<sub>578</sub>: —9° (Benzol; p = 20) (V., Pei.). Rotationsdispersion in Benzol: V., Pei.; in Äther: Pa.

Ein als Dihydrocamphen angesehener Kohlenwasserstoff  $C_{10}H_{18}$  (F: 85°; Kp: 157° bis 160°), den Patterson, McAlpine (Soc. 1928, 2466) durch Erhitzen der l-Bornylester der Benzolsulfonsäure und der  $\alpha$ - oder  $\beta$ -Naphthalinsulfonsäure im Rohr auf 80—90° neben anderen Produkten erhielten, ist wahrscheinlich ein Gemisch aus Camphan und Isocamphan

(vgl. Lipp, A. 382 [1911], 272).

- 3-Chlor-2.2.3-trimethyl-bicyclo-[1.2.2]-heptan, 3-Chlor-isocamphan, Camphenhydrochlorid, Camphenchlorhydrat  $C_{10}H_{17}Cl$ ,
  s. nebenstehende Formel (E I 52). B. Zur Bildung aus Camphen und
  Chlorwasserstoff in Äther (Meerwein, van Emster, B. 53, 1821; 55,
  2525) vgl. Chem. Fabr. Schering, D. R. P. 348484; C. 1922 II, 699; Frdl. 14, 507.
  Geschwindigkeit der Umlagerung in Isobornylchlorid in verschiedenen Lösungsmitteln bei
  20° und 40°: Meerwein, Montfort, A. 435, 211. Aus rechtsdrehendem Camphen dargestelltes Camphenhydrochlorid liefert bei längerem Aufbewahren mit Methanol bei 30° linksdrehenden Methylisobornyläther, beim Eintragen der äther. Lösung in eine methylalkoholische
  Suspension von Kaliumcarbonat Camphenhydrat-methyläther (Meerwein, Gérard, A. 435, 184, 187).
- 3-Brom-2.2.3-trimethyl-bicyclo-[1.2.2]-heptan, 3-Brom-iso-camphan, Camphenhydrobromid, Camphenbromhydrat  $C_{10}H_{17}Br$ , s. nebenstehende Formel. B. Neben Isobornylbromid bei langsamen Einleiten von etwas weniger als 1 Mol Bromwasserstoff in eine Lösung von Camphen in Petroläther unter Kühlung mit Kältemischung (MEERWEIN, A. 453, 18, 36). Läßt sich nicht von Isobornylbromid und Camphen befreien. Schneeweiße, zusammenbackende Masse von mentholartigem Geruch. Lagert sich beim Aufbewahren über Kaliumhydroxyd vollständig, beim Aufbewahren in Lösung zum größten Teil in Isobornylbromid um; Geschwindigkeit dieser Umlagerung in festem Zustand und in Nitrobenzol. Anisol, Toluol, Äther und Petroläther bei 20°: MEERWEIN, A. 453, 19, 20, 37. Raucht an der Luft. Wird durch Alkohol sofort zersetzt und läßt sich in alkoh. Lösung wie freie Bromwasserstoffsäure titrieren.

#### 28. Derivate des Camphans oder des Isocamphans.

Verbindung  $C_{10}H_{16}Cl_2$  vom Schmelzpunkt 160—163°, " $\alpha$ -Chlorcamphenhydrochlorid" und Verbindung  $C_{10}H_{16}Cl_2$  vom Schmelzpunkt 157—158°, " $\beta$ -Chlorcamphenhydrochlorid" (H 103). Bei der Einw. von Phosphorpentachlorid auf Campher erhielten Meerwein, Wortmann (A. 435, 192, 195, 201, 203) je nach den Reaktionsbedingungen 2.2-Dichlor-camphan (S. 64) oder 2.6-Dichlor-camphan (S. 64). Die Beziehungen zwischen diesen Verbindungen und den Chlorcamphenhydrochloriden des Hauptwerks sind unbekannt (vgl. a. M., W., A. 435, 192).

Verbindung  $C_{10}H_{16}Cl_2$  vom Schmelzpunkt 187—188° (H 104). Ist vielleicht mit 2.6-Dichlor-camphan (S. 64) zu identifizieren (Meerwein, Wortmann, A. 485, 204).

- 29. 2.2.5-Trimethyl-bicyclo-[1.2.2]-heptan(?),  $\beta$ -Fenchan(?)  $C_{10}H_{18}$ , s. nebenstehende Formel. B. Bei der Hydrierung des beim Kochen von salzsaurem 2-Amino-2.7.7-trimethyl-bicyclo-[1.2.2]-heptan (Syst. Nr. 1595) mit Kaliumnitrit-Lösung als Hauptprodukt entstehenden Kohlenwasserstoffs  $C_{10}H_{18}$  (Gemisch von  $\beta$  und  $\gamma$ -Fenchen?) in Gegenwart von Nickel bei 160—165° (Nametkin, A. 440, 69; N., Ssellwanowa, Ж. 57, 72). Kp<sub>752</sub>: 160° bis 161°.  $D_r^{p}$ : 0,8541.  $n_{20}^{p}$ : 1,4567.  $[\alpha]_{p}$ : +1,99° (unverdünnt).
- 30. 2,7.7-Trimethyl-bicyclo-[1.2.2]-heptan, Isobornylan, H<sub>2</sub>C-CH-CH<sub>3</sub> α-Fenchan C<sub>10</sub>H<sub>18</sub>, s. nebenstehende Formel (E I 53). B. Beim Überleiten von Cyclofenchen (S. 110) und Wasserstoff über Platin-kohle bei 155—160° (Zelinsky, Lewina, A. 476, 63). Kp<sub>753</sub>: 162° bis 163°; D<sup>∞</sup><sub>1</sub>: 0,8566; n<sup>∞</sup><sub>2</sub>: 1,4577 (Z., L.). Bleibt beim Überleiten über Platinkohle im Kohlendioxydstrom bei 300° unverändert (Z., L., A. 476, 68). Bei der Einw. von Salpetersäure (D: 1,075) bei 130—135° erhält man außer den E I 53 aufgeführten Produkten auch 3-Nitro-2.77-trimethyl-bicyclo-[1.2.2]-heptan und Isobornylon (Syst. Nr. 618) (Nametkin, A. 440, 67, 71; N., SSELIWANOWA, Ж. 57, 73).
- 3-Nitro-2.7.7-trimethyl-bicyclo-[1.2.2]-heptan, sek.-Nitro-isobornylan¹) C<sub>10</sub>H<sub>17</sub>O<sub>2</sub>N, s. nebenstehende Formel. B. Neben anderen Verbindungen beim Erhitzen von Isobornylan mit Salpetersäure (D: 1,075) im Rohr auf 130—135° (Nametrin, A. 440, 71; N., Seeliwanowa, H. 57, 73). Schweres, gelbliches Öl. Kp<sub>1,2</sub>: 89—90°. D<sup>m</sup>: 1,0466. n<sup>m</sup>: 1,4805. Löslich in Alkalien (N.; N., Ss.). Färbt sich beim Aufbewahren tiefer. Gibt bei der Oxydation mit alkal. Permanganat-Lösung ein vermutlich nicht einheitliches Keton (Kp: 205—206°; D<sup>m</sup>: 0,9640; n<sup>m</sup>: 1,4674), das ein bei 177—183° unscharf schmelzendes Semicarbazon bildet (N., Ss., H. 57, 74; C. 1926 I, 2689).
- 31. Salven C<sub>10</sub>H<sub>18</sub>. V. In sehr geringer Menge in den niedrigersiedenden Anteilen des deutschen Salbeiöls (aus dem Kraut von Salvia officinalis L.) (Seyler, B. 35, 551; vgl. E. Gildemeister, F. Hoffmann, Die ätherischen Öle, 3. Aufl., Bd. III [Leipzig 1931], S. 693). Kp: 142—145°. D<sup>20</sup>: 0,80. n<sub>p</sub>: 1,4438. Rechtsdrehend. Geht beim Behandeln mit 25% iger Schwefelsäure in einen bei ca. 160° siedenden Kohlenwasserstoff über. Gibt bei der Oxydation mit Permanganat eine Säure C<sub>10</sub>H<sub>16</sub>Q<sub>3</sub> (vielleicht β-Thujaketonsäure), deren Semicarbazon C<sub>11</sub>H<sub>19</sub>O<sub>3</sub>N<sub>3</sub> bei 204° schmilzt.
- 32. Kohlenwasserstoff C<sub>10</sub>H<sub>18</sub> aus Spinacen (E I 54). Zur Konstitution vgl. Charman, Soc. 123, 777.
- 33. Kohlenwasserstoff C<sub>10</sub>H<sub>18</sub>. B. Aus 1.2.2.3-Tetramethyl-1-brommethyl-cyclopentan bei der Einw. von Silberacetat und Eisessig oder (neben anderen Produkten) beim Behandeln mit Magnesium in Ather oder beim Erhitzen mit Anilin auf 150° (Rufe, Fehlmann, Helv. 9, 81, 82, 83). Bei der Einw. von Zinkchlorid oder sirupöser Phosphorsäure auf Campholcarbinol (Syst. Nr. 503) (R., F., Helv. 9, 84). Leicht bewegliches, terpenartig riechendes Ol. Kp<sub>748</sub>: 164°; Kp<sub>9</sub>: 46—50°. Liefert mit Bromwasserstoffsäure in Eisessig unter Eiskühlung 1.2.2.3-Tetramethyl-1-brommethyl-cyclopentan zurück.
- 34. Kohlenwasserstoff  $C_{10}H_{18}$ . B. Aus 3-Isopropyl-1-āthyliden-cyclopentan beim Behandeln mit alkoh. Salzsāure oder beim Kochen mit 30% iger Schwefelsāure (Maxwell, A. ch. [9] 17, 376).  $Kp_{16}$ : 67—70°.  $D_{\bullet}^{m,t}$ : 0,8236;  $n_{\alpha}^{m,t}$ : 1,4512;  $n_{\bullet}^{m,t}$ : 1,4539;  $n_{\bullet}^{m,t}$ : 1,4602 (mit alkoh. Salzsāure erhaltenes Prāparat) bzw.  $D_{\bullet}^{m,s}$ : 0,8122;  $n_{\alpha}^{m,s}$ : 1,4552;  $n_{\bullet}^{m,s}$ : 1,4580;  $n_{\bullet}^{m,s}$ : 1,4650 (mit 30% iger Schwefelsāure erhaltenes Prāparat). Liefert mit alkoh. Salzsāure ein Hydrochlorid ( $Kp_{22}$ : 100—101°;  $D_{\bullet}^{m,s}$ : 0,9281;  $n_{\alpha}^{m,s}$ : 1,4572;  $n_{\alpha}^{m,s}$ : 1,4596;  $n_{\alpha}^{m,s}$ : 1,4658). [OSTERTAG]

#### 9. Kohlenwasserstoffe $C_{11}H_{20}$ .

1.  $\gamma$  - Pentenyl - cyclohexan, 5 - Cyclohexyl - penten - (2)  $C_{11}H_{20} = H_2C < CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_3 \cdot$ 

<sup>1)</sup> Das isomere 2-Nitro-2.7.7-trimethyl-bicyclo-[1.2.2]-heptan (E I 53) wird von Nametkin (A. 440, 67) als tert.-Nitroisobornylan bezeichnet.

- 2.  $\delta$  Pentenyl cyclohexan,  $\delta$  Cyclohexyl penten (1)  $C_{11}H_{20} = H_2C < CH_2 \cdot CH_3 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_3 
- 3. 1.5-Dimethyl-2-isopropyl-cyclohexen-(1 oder 6) oder 5-Methyl-2-isopropyl-1-methylen-cyclohexan  $C_{11}H_{20} = CH_3 \cdot HC < \begin{array}{c} CH_2 \cdot C(CH_3) \\ CH_2 \cdot CH_2 \end{array} > C \cdot CH(CH_3)_2 \quad \text{oder } CH_3 \cdot HC < \begin{array}{c} CH_2 \cdot C(CH_3) \\ CH_2 \cdot CH_2 \end{array} > CH \cdot CH(CH_3)_2 \quad \text{oder } CH_2 \cdot HC < \begin{array}{c} CH_2 \cdot C(CH_3) \\ CH_2 \cdot CH_2 \end{array} > CH \cdot CH(CH_3)_2 \quad \text{oder } CH_2 \cdot HC < \begin{array}{c} CH_2 \cdot C(CH_3) \\ CH_2 \cdot CH_2 \end{array} > CH \cdot CH(CH_3)_2 \quad \text{oder } CH_2 \cdot CH_2 \end{array} > CH \cdot CH(CH_3)_2 \quad \text{oder } CH_2 \cdot CH_2 \cdot CH_2 \end{array}$
- a) Präparate aus l-Menthon. Bei 5-stdg. Erhitzen von l-1.5-Dimethyl-2-isopropyl-cyclohexanol-(1) ([a]<sub>D</sub>: -6,5°; dargestellt aus l-Menthon) mit wasserfreier Oxalsäure auf 140° erhielten Read, Watters (Soc. 1929, 2170) ein Präparat vom Drehungsvermögen [a]<sub>S</sub>: +62,8° (Kp<sub>783</sub>: 180-182°; n<sub>5</sub>\*: 1,4585); ein ebenfalls von Read und Watters aus demselben 1.5-Dimethyl-2-isopropyl-cyclohexanol-(1) durch 3-stdg. Erhitzen mit Kalium-disulfat auf 130° dargestelltes Präparat wies folgende Konstanten auf: [a]<sub>S</sub>\*: 41,1°; Kp<sub>787</sub>: 184-186°; n<sub>5</sub>\*: 1,4600.
- b) Präparat aus invertiertem l-Menthon. Aus d-1.5-Dimethyl-2-isopropyl-cyclohexanol-(1) ([α]<sub>0</sub>: +9,74°; dargestellt aus invertiertem l-Menthon) gewannen Ogata, Miyashita (J. pharm. Soc. Japan 1922, Nr. 484, S. 4, 474, 477; C. 1922 III, 826) beim Destillieren unter gewöhnlichem Druck sowie beim Erwärmen mit Zinkchlorid ein Präparat vom Drehungsvermögen [α]<sub>0</sub>: +87,25° (Kp: 181—182°; D<sub>1</sub><sup>18</sup>: 0,8273).
  c) Präparat aus d-Isomenthon. B. Aus d-1.5-Dimethyl-2-isopropyl-cyclohexanol-(1)

c) Präparat aus d-1 somenthon. B. Aus d-1.5-Dimethyl-2-isopropyl-cyclohexanol-(1)  $([\alpha]_n: +27,0^\circ;$  dargestellt aus d-Isomenthon) beim Erhitzen mit wasserfreier Oxalsäure auf 140° (Read), Watters, Soc. 1929, 2171). Kp<sub>10</sub>: 68—74°. D<sub>1</sub>. 0,8550 l). n<sub>0</sub>. 1,4578. [ $\alpha$ ]<sub>0</sub>. +17,86°.

- 4. 1.1-Dimethyl-2-āthyl-3-methylen-cyclohexan. Āthyl- $\gamma$ -cyclogeraniolen  $C_{11}H_{20} = H_2C < \frac{CH_2 \cdot C(:CH_3)}{CH_2 \cdot C(CH_3)_2} > CH \cdot C_2H_5$ . B. Aus 2.6-Dimethyl-nonen-(2)-ol-(6) beim Erhitzen mit wasserfreier Öxalsäure auf ca. 140—150° (Escourrou, Bl. [4] 39, 1466).  $Kp_{748}$ : 182—184°.  $D^{10}$ : 0,8160.  $n_0^{10}$ : 1,4624.
- 5. 1.1.2.2 Tetramethyl-3-methylen-cyclohexan, Dimethyl- $\gamma$ -cyclogeraniolen  $C_{11}H_{20} = H_1C < \frac{CH_1 \cdot C(:CH_2)}{CH_2 \cdot C(CH_3)_2} > C(CH_3)_2$ . B. Beim Erhitzen von 2.3.7-Trimethylocten-(6)-ol-(3) mit wasserfreier Oxalsäure zuerst auf 130°, dann auf 160° (ESCOURROU, Bl. [4] 39, 1466). Bewegliche Flüssigkeit. Kp<sub>756</sub>: 181—183°. D<sup>11</sup>: 0,8246.  $n_D^{12}$ : 1,4628.
- 6. Cyclohexan-cyclohexan-spiran, Di-cyclohexan-spiran, 1.1-Pentamethylen-cyclohexan C<sub>11</sub>H<sub>20</sub> = H<sub>2</sub>CCCH<sub>3</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CCH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>. B. Durch Erhitzen von Cyclohexan-cyclohexanol-(3)-spiran-(1.1') mit rauchender Bromwasserstoffsäure in geschlossenem Gefäß und aufeinanderfolgende Reduktion des Reaktionsprodukts mit Zinkstaub in siedendem 90 % igem Alkohol und mit Wasserstoff in Alkohol bei Gegenwart von kolloidalem Palladium (Norris, Soc. 1926, 252). Bewegliche, schwach nach Geranien riechende Flüssigkeit. Kp<sub>777</sub>: 208°. D<sup>20,8</sup>: 0,8783. n<sub>C</sub>: 1,4706; n<sub>D</sub>: 1,4731; n<sub>E</sub>: 1,4790; n<sub>Y</sub>: 1,4840.
- 7. 1-Methyl-dekahydronaphthalin, 1-Methyl-dekalin,  $\alpha$ -Methyl-dekalin  $C_{11}H_{10} = H_1C \cdot CH_1 \cdot CH \cdot CH(CH_3) \cdot CH_2$ . V. Im Steinkohlenurteer (Kaffer, B. 57, 1265; Weissgerber, Brennstoffch. 5, 211; C. 1925 I, 2271). Kp: 205° (Weissenberger, Henke, Katschinka, Z. anory. Ch. 153, 33). Dp: 0,885 (Weissenb., H., Katschinka). Beugung von Röntgenstrahlen an flüssigem  $\alpha$ -Methyl-dekalin: Katz, Z. ang. Ch. 41, 333. Dampfdrucke binärer Systeme mit Methyloyclohexan, 1.3-Dimethyl-cyclohexan, Cyclohexen und Methyloyclohexen-Gemischen: Weissenb., H., Katschinka.
- 8. 2-Methyl-dekahydronaphthalin, 2-Methyl-dekalin, β-Methyl-dekalin

  C<sub>11</sub>H<sub>20</sub>: CH<sub>2</sub>·CH·CH<sub>3</sub>·CH·CH<sub>3</sub>. Kp: 201° (Weissenberger, Henke, Katschinka, H<sub>2</sub>C·CH<sub>2</sub>·CH·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH

<sup>1)</sup> Vielleicht durch Druckfehler entstellt.

H<sub>2</sub>C--C(CH<sub>3</sub>)--CH<sub>2</sub>

#### KOHLENWASSERSTOFFE Cn H2n-2

- 9. 1.3.7.7-Tetramethyl-bicyclo-[1.2.2]-heptan, 3-Methyl-camphan  $C_{11}H_{20}$ , s. nebenstehende Formel.
  - 3-Brommethyl-camphan  $C_{11}H_{19}Br = C_8H_{14} CH_2 CH_2Br$ . B.  $H_2C CH_2 CH_3$ CH  $CH_3$
- Beim Behandeln von 3-Oxymethyl-camphan mit Bromwasserstoff in Eisessig auf dem Wasserbad (Rupe, Brin, Helv. 7, 554). Aus 3-Methylen-camphan bei Einw. von Bromwasserstoff in Eisessig unter Kühlung (R., Br.). Flüssigkeit. Kp<sub>12</sub>: 105—108°. D<sup>∞</sup>: 1,1948. [α]<sup>∞</sup>: +11,91° (unverdünnt). Gibt beim Kochen mit Anilin 3-Methylen-camphan und 3-Anilinomethyl-camphan; beim Kochen mit Chinolin entstehen 3-Methylen-camphan und andere Produkte.
- 10. 1.4.7.7-Tetramethyl-bicyclo-[1.2.2]-heptan. 4-Methyl-camphan  $C_{11}H_{20}$ , s. nebenstehende Formel. B. Aus dem Hydrazon des 4-Methyl-camphers durch Erhitzen mit Natriumäthylat im Rohr auf 195—200° (Nametkin, Brjussowa, A. 459,162;  $\mathbb{R}$ . 60, 285). Krystalline Masse (aus Alkohol). F: 138—139°. Kp<sub>752</sub>: 170—170,5°. Liefert beim Erhitzen mit Salpetersäure (D: 1,1) im Rohr auf 135—138° 2-Nitro-4-methyl-camphan neben sehr wenig 4-Methyl-campher.
- 2-Nitro-4-methyl-camphan C<sub>11</sub>H<sub>19</sub>NO<sub>2</sub>, s. nebenstehende Formel. H<sub>2</sub>C—C(CH<sub>3</sub>)—CH·NO<sub>2</sub>

  B. Aus 4-Methyl-camphan durch Erhitzen mit Salpetersäure (D: 1,1) | C(CH<sub>3</sub>)<sub>2</sub> |
  im Rohr auf 135—138<sup>6</sup> (Nametkin, Brjussowa, A. 459, 162; Ж. 60, 286). Krystalle (aus Alkohol). F: 144—146<sup>6</sup>. Löslich in Alkalilaugen. Liefert beim Behandeln mit Permanganat in alkal. Lösung 4-Methyl-campher.

#### 10. Kohlenwasserstoffe $C_{12}H_{22}$ .

- 1.  $\delta$  Hexenyl cyclohexan, 6 Cyclohexyl hexen (2)  $C_{12}H_{22} = H_2C < \frac{CH_2 \cdot CH_2}{CH_2 \cdot CH_2} > CH \cdot [CH_2]_3 \cdot CH \cdot CH_3$ . B. Durch Hydrierung von 6-Cyclohexylhexin-(2) in Gegenwart von kolloidalem Palladium (Bourguel, Bl. [4] 41, 1476). Kp: 221° (unkorr.); Kp<sub>17</sub>: 102°. D<sup>21</sup>: 0,823. n<sup>5</sup><sub>p</sub>: 1,459.
- 2.  $\varepsilon$  Hexenyl cyclohexan, 6 Cyclohexyl hexen (1)  $C_{12}H_{22} = H_2C < \frac{CH_2 \cdot CH_2}{CH_2 \cdot CH_2} > CH \cdot [CH_2]_4 \cdot CH \cdot CH_2$ . B. Durch Hydrierung von 6-Cyclohexyl-hexin-(1) in Gegenwart von kolloidalem Palladium (Bourguel, Bl. [4] 41, 1476). Kp: 219° (unkorr.); Kp<sub>16</sub>: 99°. D<sup>21</sup>: 0,820. n<sup>n</sup><sub>D</sub>: 1,457.
- 3. 1-Methyl-3-āthyl-4-isopropyl-cyclohexen-(2 oder 3) oder 1-Methyl-4-isopropyl-3-āthyliden-cyclohexan  $C_{12}H_{23}=CH_3\cdot HC < \begin{array}{c} CH:C(C_2H_5)\\ CH_2 CH_2 \end{array} > CH\cdot CH(CH_3)_2$  oder  $CH_3\cdot HC < \begin{array}{c} CH_2\cdot C(:CH\cdot CH_2)\\ CH_2 CH_2 \end{array} > CH\cdot CH(CH_3)_2$  oder  $CH_3\cdot HC < \begin{array}{c} CH_2\cdot C(:CH\cdot CH_3)\\ CH_2 CH_2 \end{array} > CH\cdot CH(CH_3)_2$  oder  $CH_3\cdot HC < \begin{array}{c} CH_2\cdot C(:CH\cdot CH_3)\\ CH_2 CH_2 \end{array} > CH\cdot CH(CH_3)_2$  oder  $CH_3\cdot HC < \begin{array}{c} CH_2\cdot C(:CH\cdot CH_3)\\ CH_2 CH_2 \end{array} > CH\cdot CH(CH_3)_2$  oder  $CH_3\cdot HC < CH_2 CH_2 CH_2 \end{array} > CH\cdot CH(CH_3)_2$  oder  $CH_3\cdot HC < CH_2 -$
- a) Präparat aus l-Menthon. B. Durch Erhitzen von d-1-Methyl-3-äthyl-4-isopropyl-cyclohexanol-(3) ( $[\alpha]_{5}^{ns}$ : +1,54°; aus l-Menthon) mit wasserfreier Oxalsäure auf 160° (Read, Watters, Soc. 1929, 2171). Kp<sub>11</sub>: 90—92°. D<sub>4</sub>\*: 0,8302. n<sub>5</sub>\*: 1,4614.  $[\alpha]_{5}^{ns}$ : +39,18°.
- b) Präparat aus invertiertem 1-Menthon. B. Aus d-1-Methyl-3-āthyl-4-iso-propyl-cyclohexanol-(3) ([α]<sub>o</sub> + 10°; dargestellt aus invertiertem 1-Menthon) beim Erwärmen mit Zinkehlorid und folgenden Destillieren im Kohlendioxyd-Strom (Ogata, Miyashtta, J. pharm. Soc. Japan 1922, Nr. 484, S. 5, 474; C. 1922 III, 826). Kp<sub>4</sub>: 58—59°. D<sub>4</sub>°: 0,8304. [α]<sub>5</sub><sup>4</sup>: +34,79°.
- c) Präparat aus d-Isomenthon. B. Aus d-1-Methyl-3-äthyl-4-isopropyl-cyclohexanol-(3) ( $[\alpha]_{5}^{ij}$ :  $+22,04^{\circ}$ ) (dargestellt aus d-Isomenthon) beim Erhitzen mit wasserfreier Oxalsäure auf 160° (Read, Watters, Soc. 1929, 2171). Kp<sub>10</sub>: 73—75°; n<sub>5</sub><sup>12</sup>: 1,4610;  $[\alpha]_{5}^{16}$ :  $+6,79^{\circ}$ .
- 4. 1.1-Dimethyl-2-propyl-3-methylen-cyclohexan, Propyl- $\gamma$ -cyclogeraniolen  $C_{12}H_{22} = H_2C < \frac{CH_2 \cdot C(:CH_2)}{CH_2 \cdot C(CH_3)_2} > CH \cdot CH_2 \cdot C_2H_5$ . B. Aus 2.6-Dimethyl-decen-(2)-ol-(6) beim Erhitzen mit wasserfreier Oxalsäure oder mit Phosphorsäure (D: 1,7) auf 150° (Escourrou, Bl. [4] 39, 1467). Bewegliche Flüssigkeit. Kp<sub>741</sub>: 200—202°. D<sup>10</sup>: 0,8126.  $n_1^{9,5}$ : 1,4618.

Dicyclohexyl, Dodekahydrodiphenyl  $C_{12}H_{22} =$ H<sub>2</sub>C<CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>· A. 477 [1930], 106. — B. Aus Bromcyclohexan beim Behandeln mit Natrium in Äther (ZELINSKY, TITZ, FATEJEW, B. 59, 2590). Entsteht als Hauptprodukt bei der Einw. von Magnesium auf Bromcyclohexan in Ather (Z., B. 58, 2760; Z., T., B. 64 [1931], 184). Beim Behandeln von Cyclohexylmagnesiumbromid in siedendem Äther mit Silberbromid (GARDNER, Borgstrom, Am. Soc. 51, 3376) oder mit Azobenzol (GILMAN, PICKENS, Am. Soc. 47, 2408). Aus Diphenyl durch Hydrierung in Eisessig bei Gegenwart von Platin (RANEDO, LÉON, An. Soc. españ. 21, 272; C. 1924 I, 768) oder Platinoxyd (HÜCKEL, Mitarb., A. 477 [1930], 118). Durch Hydrierung von 1-Cyclohexyl-cyclohexen-(1) mit Palladium-Kohle ohne Lösungsmittel (H., Mitarb., A. 477, 124). Neben 1-Cyclohexyl-cyclohexanol-(2) bei der Einw. von Wasserstoff unter etwa 25 Atm. Druck bei 210—220° auf 2-Oxy-diphenyl (v. Braun, Gruber, KIRSCHBAUM, B. 55, 3668). Entsteht auch neben anderen Produkten bei der Hydrierung von 1-Cyclohexyl-cyclohexanol-(2) bei 2900 im Autoklaven in Gegenwart von Aluminiumoxyd und Kupferoxyd (IPATJEW, ORLOW, C. r. 181, 793), bei der Hydrierung von Triphenyl-carbinol in Cyclohexan bei 275° unter 80—100 Atm. Druck bei Gegenwart von Nickel (III)-oxydkatalysator (I., Dolgow, C. r. 183, 304; Bl. [4] 39, 1457; Ж. 58, 1025) sowie bei der Hydrierung von Diphenylenoxyd in Cyclohexan bei 290° unter 140 Atm. Druck bei Gegenwart von Nickel (III)-oxydkatalysator (I., O.). — F: 2,25° (Hückel, Mitarb., A. 477 [1930], 118). Kp: 239,5—240° (korr.) (Z., T., Fa.); Kp<sub>757</sub>: 237—238,5° (I., O.); Kp<sub>788</sub>: 233° (H., Mitarb.). D<sub>4</sub>°: 0,8835 (I., O.), 0,8847 (Z., T., Fa.); D<sub>4</sub>°°. 0,8862 (H., Mitarb.). n<sub>5</sub>°: 1,4800 (Z., T., Fa.); n<sub>He</sub>°: 1,4798 (H., Mitarb.). Viscosität bei 20°: H., Mitarb. — Liefert beim Leiten über Platin-Kohle bei 300° Diphenyl (Z., T., Fa.). Bei der Dehydrierung über Platin-Asbest bei 320—330° wurden Diphenyl und Phenylcyclohexan erhalten (H., Mitarb., A. 477 [1930], 126). Erhitzt man auf 440° unter 70—75 Atm. Wasserstoff-Druck in Gegenwart von Tonerde und Eisenoxyd, so erhält man zwischen 75° und 105° siedende Kohlenwasserstoffe (I., O., LICHATSCHEW, B. 63 [1930], 159; 3K. 61, 1341).

 $\begin{array}{lll} \textbf{2.3.2'.3'-Tetrabrom-dicyclohexyl} & C_{12}H_{18}Br_{4} = \\ \textbf{H}_{2}C < & \textbf{CH}_{2} - \textbf{CH}_{2} > \textbf{CH} \cdot \textbf{HC} < & \textbf{CH}_{2} - \textbf{CH}_{2} \\ \textbf{CHBr} \cdot \textbf{CHBr} > \textbf{CH}_{2} + \textbf{CHBr} \cdot \textbf{CHBr} > \textbf{CH}_{2}. & B. & \text{Bei der Einw. von Brom auf Discrete States of the experimental energy  cyclohexenyl-(2.2') in Eisessig unter Kühlung (Hofmann, Damm, Mitt. Kohlenforschungsinst. Breslau 2, 132; C. 1926 I, 2344). — Prismen (aus Eisessig). F: 154—155°. — Zersetzt sich beim Erhitzen.

6. 3.3'-Dimethyl-dicyclopentyl C<sub>12</sub>H<sub>22</sub> = CH<sub>3</sub>·HC·CH<sub>2</sub> CH·CH<sub>3</sub> (vgl. E I 55). Scheint mit 3.3'-Dimethyl-dicyclo-CH<sub>2</sub> CCH<sub>2</sub> CH<sub>2</sub> CH pentyl (?) von Schmidt, Sigwart (B. 45, 1785) nicht identisch zu sein. — B. Aus 1-Methylcyclopentanol-(3) beim Behandeln mit amorphem Phosphor und Jod und Umsetzen des Reaktionsprodukts mit Natrium in Ather, neben viel 1-Methyl-cyclopenten-(2 oder 3) (Zelinsky, Titz, Fatejew, B. 59, 2599). Ein Kohlenwasserstoff, der vielleicht ebenfalls 3.3'-Dimethyl-dicyclopentyl ist, entsteht aus der Oxyverbindung C<sub>12</sub>H<sub>22</sub>O [s. bei 1-Methyl-cyclopentanon-(3), Syst.Nr. 612] durch Erhitzen mit Kaliumdisulfat auf 230—250° und Hydrieren des entstandenen Kohlenwasserstoffs  $C_{12}H_{20}$  in Gegenwart von Palladium-Kohle (Z., T., F., B. 59, 2587). — Kp: 213—215°.  $D_4^{\infty}$ : 0,8483.  $n_5^{\infty}$ : 1,4582. — Läßt sich durch Überleiten über Platin-Kohle bei 300° nicht dehydrieren.

- 7. x.x-Dimethyl-dicyclopentyl(?)  $C_{12}H_{22}=CH_3\cdot C_5H_8\cdot C_5H_8\cdot CH_3(?)$ . V. Im Erdgas von Terrebonne (Louisiana) (Coates, Tims, J. ind. Eng. Chem. 14, 219; C. 1922 I, 1065).  $Kp_{760}$ : 215—217°.  $D_{11}^{18}$ : 0,8482.  $n_{12}^{19}$ : 1,4546.
- 1.6-Dimethyl-dekahydronaphthalin, 1.6-Dimethyl-dekalin C,,H,,= H<sub>2</sub>C·CH<sub>2</sub>·CH·CH(CH<sub>3</sub>)·CH<sub>2</sub>. V. Im Steinkohlenurteer (KAFFER, B. 57, 1265; Weiss-CH<sub>3</sub>·HC·CH<sub>2</sub>·CH CH<sub>2</sub> CH<sub>3</sub> CH<sub>4</sub> CH<sub>4</sub> CH<sub>5</sub> binarer Systeme mit Methylcyclohexan, 1.3-Dimethyl-cyclohexan, Cyclohexen und Methylcyclohexen-Gemischen: Weissenb., H., Katschinka.
- 9. 2.6-Dimethyl-dekahydronaphthalin, 2.6-Dimethyl-dekalin  $C_{12}H_{22} =$  $H_2C \cdot CH_2 \cdot CH \cdot CH_3 \cdot CH \cdot CH_3$ Kp: 2080 (Weissenberger, Henke, Katschinka, CH3 · HC · CH4 · CH · CH4 · CH4

- Z. anorg. Ch. 153, 33).  $D_n^{\infty}$ : 0,872. Dampfdrucke binärer Systeme mit Methylcyclohexan, 1.3-Dimethyl-cyclohexan, Cyclohexen und Methylcyclohexen-Gemischen: W., H., K.
- 10. Kohlenwasserstoffe  $C_{12}H_{12}$  aus 1-Methyl-cyclopentanon-(3) (vielleicht Dimethyldekaline) s. bei 1-Methyl-cyclopentanon-(3), Syst. Nr. 612.

#### 11. Kohlenwasserstoffe C<sub>13</sub>H<sub>24</sub>.

- 1. 1-Methyl-3-propyl-4-isopropyl-cyclohexen-(2 oder 3) oder 1-Methyl-4-isopropyl-3-propyliden-cyclohexan  $C_{13}H_{24} = CH_3 \cdot HC < \frac{CH \cdot C(CH_2 \cdot C_2H_3)}{CH_3} > CH \cdot CH(CH_3)_2$  oder  $CH_3 \cdot HC < \frac{CH_2 \cdot C(CH_2 \cdot C_2H_3)}{CH_3} > CH \cdot CH(CH_3)_2$  oder  $CH_3 \cdot HC < \frac{CH_3 \cdot C(CH_2 \cdot C_2H_3)}{CH_3} > CH \cdot CH(CH_3)_3$  oder  $CH_3 \cdot HC < \frac{CH_3 \cdot C(CH_3 \cdot C_2H_3)}{CH_3} > CH \cdot CH(CH_3)_3$  oder  $CH_3 \cdot HC < \frac{CH_3 \cdot C(CH_3 \cdot C_3H_3)}{CH_3} > CH \cdot CH(CH_3)_3$  oder  $CH_3 \cdot HC < \frac{CH_3 \cdot C(CH_3 \cdot C_3H_3)}{CH_3} > CH \cdot CH(CH_3)_3$  oder  $CH_3 \cdot HC < \frac{CH_3 \cdot C(CH_3 \cdot C_3H_3)}{CH_3} > CH \cdot CH(CH_3)_3$  oder  $CH_3 \cdot HC < \frac{CH_3 \cdot C(CH_3 \cdot C_3H_3)}{CH_3} > CH \cdot CH(CH_3)_3$  oder  $CH_3 \cdot HC < \frac{CH_3 \cdot C(CH_3 \cdot C_3H_3)}{CH_3} > CH \cdot CH(CH_3)_3$  oder  $CH_3 \cdot HC < \frac{CH_3 \cdot C(CH_3 \cdot C_3H_3)}{CH_3} > CH \cdot CH(CH_3)_3$  oder  $CH_3 \cdot HC < \frac{CH_3 \cdot C(CH_3 \cdot C_3H_3)}{CH_3} > CH \cdot CH(CH_3)_3$  oder  $CH_3 \cdot HC < \frac{CH_3 \cdot C(CH_3 \cdot C_3H_3)}{CH_3} > CH \cdot CH(CH_3)_3$  oder  $CH_3 \cdot HC < \frac{CH_3 \cdot C(CH_3 \cdot C_3H_3)}{CH_3} > CH \cdot CH(CH_3)_3$  oder  $CH_3 \cdot HC < \frac{CH_3 \cdot C(CH_3 \cdot C_3H_3)}{CH_3} > CH \cdot CH(CH_3)_3$  oder  $CH_3 \cdot HC < \frac{CH_3 \cdot C(CH_3 \cdot C_3H_3)}{CH_3} > CH \cdot CH(CH_3)_3$  oder  $CH_3 \cdot HC < \frac{CH_3 \cdot C(CH_3 \cdot C_3H_3)}{CH_3} > CH \cdot CH(CH_3)_3$  oder  $CH_3 \cdot HC < \frac{CH_3 \cdot C(CH_3 \cdot C_3H_3)}{CH_3} > CH \cdot CH(CH_3)_3$  oder  $CH_3 \cdot CH_3 \cdot CH_3 \cdot CH_3 \cdot CH_3$
- a) Praparat aus l-Menthon. B. Durch Erhitzen von l-1-Methyl-3-propyl-4-iso-propyl-cyclohexanol-(3) ( $[\alpha]_D$ :  $-0.7^\circ$ ; dargestellt aus l-Menthon) mit wasserfreier Oxalsaure auf 150° (Read, Watters, Soc. 1929, 2171). Kp<sub>18</sub>: 100—103°. D<sub>4</sub><sup>2</sup>: 0,8348. n<sub>D</sub><sup>2</sup>: 1,4605.  $[\alpha]_D^{16}$ :  $+35.9^\circ$ .
- b) Pråparate aus invertiertem 1-Menthon. B. Aus d-1-Methyl-3-propyl-4-isopropyl-cyclohexanol-(3) ( $[\alpha]_0$ :  $+34,79^\circ$ ; dargestellt aus invertiertem 1-Menthon) erhielten Ogata, Miyashita (J. pharm. Soc. Japan 1922, Nr. 484, S. 5, 480; C. 1922 III, 826) durch Wasserabspaltung zwei rechtsdrehende Kohlenwasserstoffe (Kp<sub>4</sub>: 46—50°; D<sub>4</sub><sup>4,5</sup>: 0,8129;  $[\alpha]_0^{11}$ :  $+3,09^\circ$  und Kp<sub>11</sub>:  $91-92,5^\circ$ ; D<sub>4</sub><sup>6,5</sup>: 0,8318;  $[\alpha]_0^{11}$ :  $+32,43^\circ$ ).
- 2. 1.1-Dimethyl-2-isobutyl-3-methylen-cyclohexan, Isobutyl- $\gamma$ -cyclogeraniolen  $C_{13}H_{24}=H_2C\langle CH_2\cdot C(:CH_3)\rangle CH\cdot CH_2\cdot CH(CH_3)_2$ . B. Aus 2.5.9-Trimethyldecen-(8)-ol-(5) beim Erhitzen mit wasserfreier Oxalsäure auf ca. 150° (Escourrou, Bl. [4] 39, 1467). Bewegliche Flüssigkeit.  $Kp_{748}$ : 212—213°.  $D^{11}$ : 0,8112.  $n_0^{11}$ : 1,4609.
- 3. Dicyclohexylmethan, Dodekahydrodiphenylmethan C<sub>13</sub>H<sub>34</sub> = C<sub>4</sub>H<sub>11</sub>·CH<sub>3</sub>·C<sub>4</sub>H<sub>31</sub> (H 108; E I 56). B. Durch Hydrierung von Diphenylmethan in Eisessig bei 25—30° und 2—3 Atm. Druck in Gegenwart von wenig Platinoxyd (Adams, Marshall, Am. Soc. 50, 1972). Aus Tetraphenylmethan durch Behandeln mit Wasserstoff in Cyclohexan oder Benzol bei 275—285° unter 80—100° Atm. Druck bei Gegenwart von Nickel (III)-oxyd-Katalysator, neben anderen Produkten (Iratjew, Dolgow, C. r. 185, 211; Bl. [4] 41, 1622; Ж. 59, 1088). Aus Cyclohexyl-[2-oxy-cyclohexyl]-methan unter 100 Atm. Druck bei 310° bis 320° in Gegenwart von Aluminiumoxyd und Nickel(III)-oxyd-Katalysator (I., Orlow, Bl. [4] 41, 211; Ж. 58, 1038). Entsteht auch, meist neben anderen Produkten, in Gegenwart von Nickel(III)-oxyd-Katalysator bei der Hydrierung folgender Verbindungen: aus 4-Oxydiphenylmethan unter 100 Atm. Druck bei 250—260° (I., D., C. r. 185, 1485; Bl. [4] 43, 247; Ж. 60, 512); aus Triphenylcarbinol in Cyclohexan unter 80—100 Atm. Druck bei 275° (I., D., C. r. 183, 304; Bl. [4] 39, 1457; Ж. 58, 1025); aus Diphenyl-α-naphthylcarbinol in Cyclohexan unter 80—100 Atm. Druck bei 280—290° (I., D., Bl. [4] 45, 960); aus 4-Oxy-tetraphenylmethan in Benzol oder Cyclohexan unter 80—100 Atm. Druck bei 275—285° (I., D., C. r. 185, 211; Bl. [4] 41, 1624; Ж. 59, 1090); aus 4-Oxy-triphenylcarbinol in Cyclohexan unter 80—100 Atm. Druck bei 280° (I., D., C. r. 185, 1484; Bl. [4] 43, 246; Ж. 60, 511). Bildet sich auch bei der Einw. von Wasserstoff auf Xanthen in Cyclohexan bei 320—340° in Gegenwart von Nickel(III)-oxyd-Katalysator (I., O., Bl. [4] 41, 201; Ж. 58, 1038). Aus Xanthon durch Hydrierung in Gegenwart von Nickelsalzen (v. Braun, Bayer, B. 59, 2322) oder von Nickel(III)-oxyd-Katalysator (I., O., Bl. [4] 41, 211; Ж. 58, 1038). Kp: 251—253°; D<sub>5</sub>°: 0,8743; n<sub>5</sub>°: 1,4752 (I., D., C. r. 185, 211; Bl. [4] 41, 121; Ж. 58, 1038). Liefert beim Überleiten über platinierte Kohle bei 300° Fluoren (Z., T., G.). Beim Erhitzen mit Schwefel auf 280° erhält man Diphenylmetha
- 4. 2-Methyl-dodeknhydrodiphenyl, 1-Methyl-2-cyclohexyl-cyclohexan  $C_{13}H_{24}=H_2C < CH_3 CH_2 CH_1 CH_{11}$ . B. Aus 1-Methyl-2-cyclohexyliden-cyclohexen-(6) beim Behandeln mit Wasserstoff in Alkohol bei Gegenwart von Platinoxyd-Katalysator (Garland, Reid, Am. Soc. 47, 2339).  $Kp_{20}$ : 131—133,5°.  $D_4^{\circ}$ : 0,9203.  $D_4^{\circ}$ : 0,9058.  $n_{\rm p}$ : 1,497.

#### DICYCLOHEXYLMETHAN

5. Kohlenwasserstoff  $C_{13}H_{24}$  aus Asphalt. V. Findet sich im Petroläther-Extrakt des Asphalts von Nord-Alberta (Krieble, Sever, Am. Soc. 43, 1345). —  $Kp_{2,5}$ : 81—84°.  $D^{30}$ : 0,8558.  $n_3^{9,5}$ : 1,4640.  $\alpha$ :  $+0,15^{\circ}$  (unverdünnt; l=1).

#### 12. Kohlenwasserstoffe C<sub>14</sub>H<sub>26</sub>.

- 1. 1.2-Dicyclohexyl-athan  $C_{14}H_{26} = C_{6}H_{11} \cdot CH_{2} \cdot CH_{3} \cdot CH_{4} \cdot CH_{11}$  (H 109; E I 56). B. Aus Dibenzyl durch Hydrierung in Gegenwart von Platin-Kohle bei 150—160° (ZELINSKY, Ans Dibenzyl durch Hydrierung in Gegenwart von Platin-Kohle bei 150—160° (LELINSKY, Trzz, B. 62, 2871) oder von Platinschwarz (aus Platinoxyd) in Eisessig bei 25—30° unter 2—3 Atm. Druck (Adams, Maeshall, Am. Soc. 50, 1972). — Kp: 272—273° (Z., T.); Kp<sub>15</sub>: 136° (Venus-Danilowa, B. 61, 1962; Ж. 61, 65); Kp<sub>12</sub>: 147—148,5° (A., M.). D<sup>\*\*</sup>: 0,8728 (Z., T.). D<sup>18</sup>: 0,8774 (A., M.). n<sup>\*\*</sup>: 1,4745 (Z., T.); n<sup>\*\*</sup>: 1,4760 (A., M.). — Liefert beim Überleiten über Platin-Kohle bei 275° Dibenzyl; bei 300—310° erhält man daneben auch Phenanthen (Z., T.). Beim Erhitzen auf 440° unter 70—75 Atm. Wasserstoff-Druck in Gegenwart von Tonerde und Eisenoxyd bilden sich leichte, zwischen 84° und 115° siedende Kohlenwasserstoff-Granium Oriow, Licharsunew, B. 63, 19301–159; ж. 61, 1341). stoffe (IPATJEW, ORLOW, LICHATSCHEW, B. 63 [1930], 159; Ж. 61, 1341).
- 2. 1.1-Dicyclohexyl-athan  $C_{14}H_{24}=(C_0H_{11})_2CH\cdot CH_3$  (E I 56). B. Durch Hydrierung von 1.1-Diphenyl-athan in Eisessig bei 25–30° unter 2–3 Atm. Druck in Gegenwart von Platinschwarz (aus Platinoxyd) (Adams, Marshall, Am. Soc. 50, 1972). — Kp.: 112°. Das: 0,9070. nm: 1,4887.
- 3. 2 Åthyl dodekahydrodiphenyl, 1-Åthyl-2-cyclohexyl-cyclohexan  $C_{14}H_{16} = H_2C < \frac{CH_3}{CH_4} \cdot CH(C_4H_5) > CH \cdot C_6H_{11}$ . B. Beim Hydrieren von 1-Athyl-2-cyclohexyliden-cyclohexen-(6) in Alkohol bei Gegenwart von Platinoxyd-Katalysator (Garland, Reid, Am. Soc. 47, 2339). — Kp<sub>20</sub>: 141—142,5°. D<sub>2</sub>°: 0,9240; D<sub>2</sub>°: 0,9126. n<sub>D</sub>: 1,496.
- 4. 3.3'-Dimethyl-dicyclohexyl  $C_{14}H_{36} = H_2C < \frac{CH_1(CH_3) \cdot CH_2}{CH_2} > CH \cdot HC < \frac{CH_3 \cdot CH(CH_3)}{CH_2} > CH_3 \cdot HC < \frac{CH_3 \cdot CH(CH_3)}{CH_3} > CH_3 \cdot HC < \frac{CH_3 \cdot CH(CH_3)}{CH_3 \cdot CH(CH_3)} > CH_3 \cdot HC < \frac{CH_3 \cdot CH(CH_3)}{CH_3} > CH_3 \cdot HC < \frac{CH_3 \cdot CH(CH_3)}{CH_3} > CH_3 \cdot HC < \frac{CH_3 \cdot CH(CH_3)}{CH_3 \cdot CH(CH_3)} > CH_3 \cdot HC < \frac{CH_3 \cdot CH(CH_3)}{CH_3 \cdot CH(CH_3)} > CH_3 \cdot HC < \frac{CH_3 \cdot CH(CH_3)}{CH_3 \cdot CH(CH_3)} > CH_3 \cdot HC$ auf 3-Brom-1-methyl-cyclohexan in siedendem Ather (LOEVENICH, UTSCH, MOLDRICKX, SCHAEFER, B. 62, 3098). — Kp: 264—265°. Verbrennungswärme bei konstantem Volumen: 2105,1 kcal/Mol (Subow, C. 1902 I, 161; vgl. Swiftoslawski, Am. Soc. 42, 1095).
- 5. Kohlenwasserstoff  $C_{14}H_{36}$  aus Lignin. B. Bei der Vakuumdestillation von Lignin aus Fichtenholz (Picter, Gaulis, Helv. 6, 631). Kp: 260—270°. D: 0,814.  $n_p$ : 1,453. Kryoskopische Mol.-Gew.-Bestimmung in Cyclohexan: P., G.
- 6. Kohlenwasserstoff C<sub>14</sub>H<sub>26</sub> aus Asphalt. V. Findet sich im Petrolätherextrakt des Asphalts von Nord-Alberta (Krieble, Seyer, Am. Soc. 43, 1345). Kp<sub>2,5</sub>: 90—93°.  $D^{ao}$ : 0,8632.  $n_D^{ao}$ : 1,4681.  $\alpha$ :  $+0,17^o$  (unverdünnt; l=1).

#### 13. Kohlenwasserstoffe $C_{15}H_{28}$ .

- 1. 1-Methyl-4-fa.s-dimethyl-hexyliden]-cyclohexan, Tetrahydrobisabolen  $C_{18}H_{38} = CH_3 \cdot HC < CH_2 \cdot CH_3 > C \cdot C(CH_3) \cdot [CH_2]_3 \cdot CH(CH_3)_3$ . B. Aus natürlichem Bisabolen (Syst. Nr. 471) beim Behandeln mit Wasserstoff in Cyclohexan bei Gegenwart von Platinschwarz oder Platinoxyd (Ruzicka, Van Veen, A. 468, 141). — Kp<sub>15</sub>: etwa 125°. D<sup>a</sup>: 0,857. — Beim Behandeln mit Wasserstoff in Eisessig bei Gegenwart von Platinoxyd entsteht Hexahydrobisabolen. Gibt mit Tetranitromethan in Alkohol eine gelbe Färbung.
- 2. Tetrahydroelemen C<sub>15</sub>H<sub>18</sub> (vgl. E I 58). Mit dem Namen Tetrahydroelemen bezeichnet man aus Tetrahydroelemol dargestellte Mit dem Namen Kohlenwasserstoffe oder Kohlenwasserstoff-Gemische, denen möglicher-

weise nebenstehendes Kohlenstoffskelett zugrunde liegt.

a) Präparat aus Tetrahydroelemol durch Einw. von L

Ameisensäure (E I 58). B. Aus Tetrahydroelemol beim Behandeln
mit Ameisensäure in der Kälte (Ruzioka, Pfeiffer, Helv. 9, 853) oder in der Siedehitze
(R., van Vern, A. 478, 403). — Kp1: 109—118° (R., Pf.). — Liefert beim Ozonisieren in

Eisessig unter Kühlung und Zersetzen des Ozonis bei 110° ein Keton C1H 900(?) (Syst. Nr.

844). ein Keton C. H. O. (Syst. Nr. 644). v. v. Dimethyl. disekt. hutyl. disekt. hutyl. disekt. hutyl. disekt. hutyl. disekt. hutyl. disekt. 614), ein Keton  $C_{12}H_{22}O$  (Syst. Nr. 614),  $\gamma.\gamma$ -Dimethyl- $\beta$ -sek.-butyl- $\delta$ -isobutyryl-n-valerian-saure (?) (E II 3, 456), Aceton und andere neutrale und saure Produkte (R., Pr.). Beim Ozonisieren in Tetrachlorkohlenstoff erhält man neben dem Keton C<sub>12</sub>H<sub>22</sub>O den (schon im Ergänzungswerk I erwähnten) Ketonaldehyd C<sub>15</sub>H<sub>22</sub>O<sub>2</sub> (R., van V.).

b) Präparat aus Tetrahydroelemol durch Einwirkung von Athylmagnesium-

bromid. B. Aus Tetrahydroelemol durch Behandeln mit Athylmagnesiumbromid in Ather

CH<sub>3</sub>

in der Kälte und Zersetzen des Reaktionsprodukts bei 160° (RUZICKA, VAN VEEN, A. 476, 104). — Liefert beim Behandeln mit Ozon in Tetrachlorkohlenstoff und Zersetzung des entstandenen Ozonids neben anderen Produkten ein Keton C12H23O (Syst. Nr. 614) (RUZICKA, VAN VEEN, A. 476, 105).

c) Präparat aus Tetrahydroelemylchlorid. B. Aus Tetrahydroelemylchlorid (S. 33) beim Erwärmen mit Anilin auf dem Wasserbad oder beim Behandeln mit methylalkoholischer Kalilauge anfangs in der Kälte, dann in der Siedehitze (RUZICKA, VAN VEEN, A. 476, 105). — Liefert beim Behandeln mit Ozon in Tetrachlorkohlenstoff und Zersetzen des entstandenen Ozonids Aceton und ein Keton C<sub>12</sub>H<sub>22</sub>O (Syst. Nr. 614), neben anderen Produkten.

3 - Isoamyl - 1 -  $[\gamma \cdot \gamma$  - dimethyl - allyl] - cyclopentan  $C_{15}H_{28} = H_2C - CH_2$ 

H<sub>2</sub>C—— CH<sub>2</sub>
(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>2</sub>·CH<sub>2</sub>·HC·CH<sub>2</sub>·CH·CH<sub>2</sub>·CH·CH<sub>2</sub>·CH·C(CH<sub>3</sub>)<sub>2</sub>
2014; W., Martz, B. 59, 2352. — B. Aus Humulinsäure (Syst. Nr. 798) beim Kochen mit amalgamiertem Zink und Salzsäure in Alkohol (W., B. 58, 109) oder Eisessig (W., M., B. 59, 2354). — Öl. Kp<sub>11</sub>: 410° (W., M.). Unlöslich in Wasser, ziemlich leicht löslich in organischen Lösungsmitteln (W., B. 58, 110). — Die Suspension in Wasser liefert bei wiederholtem Einleiten von Ozon unter Kühlung und folgender Wasserdampfdestillation Aceton und 1-[β-Oxo-āthyl]-3-isoamyl-oyclopentan (W., M.). Beim Hydrieren in Eisessig bei Gegenwart von Platinoxyd erhält man 1.3-Diisoamyl-cyclopentan (W., M.).

[BAUMANN]

4. 1.6 - Dimethyl - 4 - isopropyl - dekahydronaph-thalin, 1.6 - Dimethyl - 4 - isopropyl - dekalin, Dekahydrocadalin, Tetrahydrocadinen C15H28, s. neben-

stehende Formel. a) Präparat aus "d-Cadinen" von Deussen. B. Durch Hydrierung von d-Cadinen in Gegenwart von Platinschwarz in Alkohol (Deussen, J. pr. [2] 120, 122). — Kp<sub>14</sub>: 135—137°.  $D^{16}$ : 0,8874.  $n_0^{16}$ : 1,4816.  $\alpha_p$ : —10,07°. CH(CH<sub>3</sub>)<sub>2</sub>

b) Prāparat aus 1-Cadinen. Kp<sub>14</sub>: 127—128° (Ruzicka, Meyer, Mingazzini, *Helv.* 5, 357). D<sup>15</sup>: 0,8883 (R., Mey., Mi.). n<sup>18</sup>: 1,4802 (R., Mey., Mi.). — Läßt sich durch Erhitzen mit Schwefel auf 200—260° nicht dehydrieren (R., Mey., Mi.).

Cadinen-bis-hydrochlorid C<sub>15</sub>H<sub>26</sub>Cl<sub>2</sub>, s. nebenstehende Formel (H 109; E I 57). Zur Konstitution vgl. Ruzicka, Stoll, Helv. 7, 89; J. L. Simonsen, The terpenes, Bd. II [Cambridge 1932], S. 506. — B. Beim Erhitzen der Sesquiterpenalkoholfraktion vom Kp<sub>7</sub>: 158—165° des westindischen Sandelholzöles (Gemisch der isomeren Cadinole, Syst. Nr. 510) mit Phthalageneschwählig auf 460° und Finleiten von Chlorocepartoff in CH(C säureanhydrid auf 160° und Einleiten von Chlorwasserstoff in

die äther. Lösung des hierbei entstandenen Sesquiterpens (Ruzicka, Capato, Huyser, R. 47, 379; vgl. Deussen, J. pr. [2] 120, 125, 128). — Krystalle (aus Alkohol). F: 117° (Ru., C., H.), 117,5° (Pigulewski, Ryskin, Ж. 60, 1072), 118° (Gibson, Robertson, Sword, Soc. 1926, 166). [a]<sub>0</sub>: —33° (Chloroform; p = 3,5) (Ru., C., H.). — Liefert beim Erwärmen mit Eisessig + Natriumacetat auf 90° oder mit Silberacetat in Alkohol oder Ather oder beim Behandeln mit feuchtem Silberoxyd in Ather Cadinen (Henderson, Robertson, Soc. 198, 4004, 4005). Raim Erwärmen mit Figagsig ± Silber.

Soc. 125, 1994, 1995). Beim Erwärmen mit Eisessig + Silberacetat auf 70° und Erhitzen des erhaltenen gelben Öls mit methylalkoholischer Kalilauge erhält man Cadinenglykol, Cadinol und Cadinen (H., R.). Zur Grignardierung vgl. Deu., J. pr. [2] 117, 303.

CHa-BrC. CH(CH<sub>3</sub>)<sub>2</sub>

Cadinen-bis-hydrobromid C<sub>15</sub>H<sub>26</sub>Br<sub>2</sub>, s. nebenstehende Formel (H 109; E I 57).

H 109, Z. 4 v. u. statt ,,[ $\alpha$ ]<sub>D</sub>,5" lies ,,[ $\alpha$ ]<sup>8,5</sup>".

5. 1.10 - Dimethyl-7-isopropyl-dekahydronaphthalin, 1.10 - Dimethyl-7-isopropyl-dekalin, Tetrahydroeudesmen, Tetrahydroselinen C<sub>15</sub>H<sub>28</sub>, Formel I (E I 57). Die von Takagi (J. pharm. Soc. Japan 1921, Nr. 473, S. 3, 6) beschriebenen Kohlenwasserstoffe Tetrahydromachilen und Tetrahydrosetylen sind mit Tetrahydroeudesmen identisch; vgl. Ruzicka, Koolhaas, Wind, Helv. 14 [1931], 1178.

- 1.7 Dichlor 1.10 dimethyl 7 isopropyl dekalin, Selinen-bis-hydrochlorid, Eudesmen bis hydrochlorid C<sub>15</sub>H<sub>26</sub>Cl<sub>2</sub>, Formel II (E I 57). Zur Konstitution vgl. RUZICKA, CAPATO, A. 453, 70; R., WIND, KOOLHAAS, Helv. 14 [1931], 1133. F: 74—75° (R., W., K.; vgl. R., C.; PENFOLD, J. Pr. Soc. N. S. Wales 59, 127; C. 1927 II, 752; SHORT, II, 100 M. M. (1932), AS J. Soc. chem. Ind. 45, 98 T; C. 1926 II, 2123). [α]<sub>p</sub>: ca. +18-20<sup>o</sup> (R., W., K.).
- 6. Tetrahydroisogurjunen C<sub>15</sub>H<sub>28</sub>. B. Bei der Hydrierung von Isogurjunen in Essigester in Gegenwart von Platinschwarz (Ruzicka, Pontalti, Balas, Helv. 6, 864). — Kp<sub>12</sub>: 125—130°. D<sub>4</sub><sup>15</sup>: 0,9021. n<sub>0</sub><sup>15</sup>: 1,4910.

## 7. Tetrahydrocaryophyllen C<sub>15</sub>H<sub>28</sub>.

- β-Caryophyllen-bis-hydrochlorid C<sub>15</sub>H<sub>26</sub>Cl<sub>2</sub> (H 110; E I 58). Zur Konstitution vgl. die im Artikel Caryophyllen zitierte Literatur. F: 69° (ROBERTSON, KERR, HENDERSON, Soc. 127, 1945). [α]<sup>β</sup>: +67,2° (Alkohol; c = 2,5) (R., K., H.). Liefert beim Erhitzen mit verdünnter alkoholischer Alkalilauge, Natriumacetat + Eisessig, Pyridin oder Chinolin ein Sesquiterpen C<sub>15</sub>H<sub>24</sub> (Syst. Nr. 471) (H., McCrone, R., Soc. 1929, 1368). Gibt bei der Einw. von (mit Äthylbromid angeätzten) Magnesiumspänen in Äther nach Grignard und Zersetzung mit kalter verdünnter Essigsäure einen Kohlenwasserstoff C<sub>15</sub>H<sub>26</sub> (s. bei Dihydrocaryophyllen, S. 117) (Deussen, J. pr. [2] 117, 281). Bei der Einw. von Silberacetat in Eisessig und nachfolgenden Verseifung erhält man "regeneriertes Caryophyllen" (Syst. Nr. 471). Caryophyllol C<sub>15</sub>H<sub>26</sub> OH (Syst. Nr. 510) und ein Glykol C<sub>15</sub>H<sub>26</sub>(OH)<sub>2</sub> (Syst. Nr. 550) (H.. R., K., Soc. 1926, 67). K., Soc. 1926, 67).
- 8. Kohlenwasserstoff  $C_{15}H_{28}$  aus Lignit. V. Wurde aus einem Lignit von Fognano (Italien) durch Extraktion mit Ather oder durch Destillation mit Wasserdampf erhalten (Ciusa, Galizzi, Ann. Chim. applic. 15, 212; C. 1926 I, 278; vgl. C., G., G. 51 I, 57). Flüssigkeit. Kp<sub>20</sub>: 147°. [ $\alpha$ ] $_{5}^{5}$ : +20,5° (Chloroform; c=6). Entfärbt nicht Kaliumpermanganat und nimmt kein Brom auf. [Ammerlahn]

# 14. Kohlenwasserstoffe $C_{16}H_{30}$ .

- 1. 1-Methyl-cyclopentadecen-(1)  $C_{16}H_{30} = \frac{CH_3 \cdot C \cdot [CH_2]_6}{H^0 \cdot [CH_2]_6} CH_2$ . B. Beim Erhitzen von 1-Methyl-cyclopentadecanol-(1) mit 90% iger Ameisensäure auf dem Wasserbad (Ruzicka, Schinz, Pfeiffer, Helv. 11, 700). — Öl. Kp<sub>12</sub>: 152—153° (R., Sch., Pf.). D<sup>n</sup>.: 0,8697 (R., Sch., Pf.). n<sup>n</sup>.: 1.4853 (R., Sch., Pf.). Beugung von Röntgenstrahlen an flüssigem 1-Methyl-cyclopentadecen-(1): Katz, Selman, Z. Phys. 46, 400; C. 1928 I, 1744. - Liefert bei der Hydrierung in Essigester bei Gegenwart von Platinschwarz Methylcyclopentadecan (R., Sch., Pr.).
- 2. 1-Methyl-cyclopentadecen-(2oder 3), Muscen  $C_{16}H_{30}$ . Formel I oder II. B. Beim Kochen von Muscol II.  $H_{2C}$  CH $_{2[6\cdot CH\cdot CH_3]}$  II.  $H_{2C}$  CH $_{2[6\cdot CH\cdot CH_3]}$ (Syst. Nr. 504) mit Phosphortribromid in Benzol, neben anderen Produkten (RUZICKA, *Helv.* 9, 722). — Öl.  $Kp_1$ : ca. 120°.  $\alpha_D$ : —8,8° (l = 10 cm).
- 3. 1-Undecyl-cyclopenten-(2), 1-[ $\Delta^2$ -Cyclopentenyl]-undecan  $C_{16}H_{30}=$  $\begin{array}{c} HC: CH \\ H_2C \cdot CH_2 \end{array} CH \cdot [CH_2]_{10} \cdot CH_3.$
- 1-[ $\omega$ -Brom-undecyl]-cyclopenten-(2), 11-Brom-1-[ $\Delta^2$ -cyclopentenyl]-undecan, Hydnocarpylalkohol (Syst. Nr. 509) mit Phosphotribronid anfangs in der Kälte, dann in der Weiter (State 1998). in der Wärme (Sacks, Adams, Am. Soc. 48, 2398; Stanley, A., Am. Soc. 51, 1517). — F: 1° (Sa., A.). Kp<sub>14</sub>: 206—210° (Sa., A.); Kp<sub>2</sub>: 156—157° (St., A.). D<sup>5</sup><sub>4</sub>: 1,0763 (St., A.).  $\pi_{5}^{5}$ : 1,4871 (Sa., A.), 1,4857 (St., A.). [ $\alpha$ ]<sub>5</sub>: +40.0° (Chloroform; c = 4) (Sa., A.), +27.4° (Chloroform; c = 5) (Sr., A.).
- 4. 1.4-Dicyclohexyl-butan  $C_{16}H_{30} = C_{6}H_{11} \cdot CH_{2} \cdot CH_{2} \cdot CH_{2} \cdot C_{6}H_{11}$  (E I 59). B. Aus trans-trans-1.4-Diphenyl-butadien-(1.3) beim Hydrieren in Eisessig bei Gegenwart von Platinoxyd (Kuhn, Winterstein, Helv. 11, 137). Krystallmasse. F: 12°. Kp<sub>725</sub>: 294°. Sehr leicht löslich in Benzol, Äther, Petroläther und Chloroform, sehr schwer in Alkohol und Eisessig.
- 5. Kohlenwasserstoff C<sub>16</sub>H<sub>30</sub> aus Lignin. B. Bei der Vakuumdestillation von Lignin aus Fichtenholz (Picter, Gaulis, Helv. 6, 632). Kp: 270—280°. D: 0,822. n<sub>D</sub>: 1,454. Kryoskopische Mol.-Gew.-Bestimmung in Cyclohexan: P., G.

Mit obiger Verbindung wahrscheinlich identisch ist ein Kohlenwasserstoff C<sub>18</sub>H<sub>30</sub> aus Steinkohle (E I 5, 28 als Kohlenwasserstoff C<sub>18</sub>H<sub>32</sub> aus Steinkohle bezeichnet) (PIOTET, GAULIS, Helv. 6, 632).

6. Kohlenwasserstoff  $C_{18}H_{20}$  aus Asphalt. V. Findet sich im Petroläther-Extrakt des Asphalts von Nord-Alberts (Krieble, Sever, Am. Soc. 43, 1345). — Kp<sub>2</sub>: 107—110°. D<sup>20</sup>: 0,8751.  $n_0^{20.5}$ : 1,4778.  $\alpha$ : +0,17° (l=1).

## 15. Kohlenwasserstoffe $C_{17}H_{32}$ .

- 1. Cycloheptadecen, Zibetan C<sub>17</sub>H<sub>32</sub> = HC·[CH<sub>2</sub>]<sub>7</sub> CH<sub>2</sub>. B. Aus Bromcycloheptadecan beim Kochen mit 25%iger alkoholischer Kalilauge (Ruzicka, Schinz, Seidel, Helv. 10, 700). Durch Erhitzen von Cycloheptadecanol mit Kaliumdisulfat auf 180—200° (R., Sch., Sei., Helv. 10, 700). Entsteht neben Cycloheptadecan aus Zibeton beim Kochen mit amalgamiertem Zink und Salzsäure unter Durchleiten von Chlorwasserstoff (R., Sch., Sei., Helv. 10, 699). Beim Erhitzen von Zibetonsemicarbazon mit Natrium und Alkohol im Rohr auf 170—190° (R., Sch., Sei., Helv. 10, 698). Nadeln (aus Methanol). F: 47°. Liefert beim Ozonisieren in Tetrachlorkohlenstoff und Zersetzen des Ozonids Pentadecan-dicarbonsäure-(1.15). Bei der Oxydation der Lösung in Benzol mit wäßr. Permanganat-Lösung entstehen Tetradecan-dicarbonsäure-(1.14), Korksäure, Sebacinsäure und andere Produkte.
- 2. 1.5-Dicyclohexyl-pentan  $C_{17}H_{38}=C_6H_{11}\cdot CH_2\cdot [CH_8]_3\cdot CH_2\cdot C_6H_{11}$  (E I 59). B. Durch Hydrierung von Dibenzylaceton in Cyclohexan unter Druck bei 240° in Gegenwart von Nickel(III)-oxyd-Katalysator (IPATJEW, ORLOW, C.r. 184, 753; Bl. [4] 41, 864; #. 59, 539). Kp: 315°. D°: 0,8836. n<sub>p</sub>: 1,478. Liefert beim Erhitzen auf 440° unter 70—75 Atm. Wasserstoff-Druck in Gegenwart von Tonerde und Eisenoxyd leichte, bei 88—150° siedende Kohlenwasserstoffe (I., O., Lichatschew, B. 63 [1930], 159; #. 61, 1341).
- 3. Kohlenwasserstoff  $C_{17}H_{33}$  aus Asphalt. V. Findet sich im Petroläther-Extrakt des Asphalts von Nord-Alberta (KRIEBLE, SEYER, Am. Soc. 43, 1345). Kp<sub>2</sub>: 122—125°.  $D^{20}: 0.8833$ .  $n_{0.5}^{0.5}: 1,4820$ .  $\alpha: +0.22^{\circ}$  (l=1).

# 16. Kohlenwasserstoffe $C_{18}H_{34}$ .

- 1. 1-Tridecyl-cyclopenten-(2), 1- $[\Delta^2$ -Cyclopentenyl]-tridecan  $C_{19}H_{34} = HC: CH$   $H_1\dot{C}\cdot CH_2$   $CH\cdot [CH_2]_{13}\cdot CH_2$ .
- 1-[ $\omega$ -Brom-tridecyl]-cyclopenten-(2), 13-Brom-1-[ $\Delta^2$ -cyclopentenyl]-tridecan, Chaulmoogrylbromid  $C_{18}H_{33}Br = \frac{HC: CH}{H_2C\cdot CH_2}CH\cdot [CH_2]_{12}\cdot CH_2Br$ . B. Aus Chaulmoogrylakholo (Syst. Nr. 509) beim Behandeln mit Phosphortribromid in Toluol (Van Dyke, Adams, Am. Soc. 48, 2394). Öl. F: 18,6°. Kp<sub>16</sub>: 230°. D<sub>8</sub>: 1,0461. n<sub>D</sub>: 1,4846. [ $\alpha$ ]<sub>D</sub>: +42,1° (l = 10 cm); [ $\alpha$ ]<sub>D</sub>: +52,9° (Chloroform; c = 13).
- 2. 1.6-Dicyclohexyl-hexan  $C_{18}H_{24} = C_0H_{11} \cdot [CH_2]_0 \cdot C_0H_{11}$ . B. Aus 1.6-Diphenyl-hexatrien-(1.3.5) beim Behandeln mit Wasserstoff in Eisessig bei Gegenwart von Platinoxyd (Kuhn, Winterstein, Helv. 11, 138). Öl. Kp<sub>14</sub>: 212°. Leicht löslich in Ather, Chloroform und Benzol, unlöslich in Eisessig und Methanol.
- 3. Kohlenwasserstoff  $C_{18}H_{14}$  aus Asphalt. V. Findet sich im Petroläther-Extrakt des Asphalts von Nord-Alberta (Krieble, Sever, Am. Soc. 43, 1345).  $Kp_{1,5}$ : 133—135°.  $D^{30}$ : 0,8889.  $n_0^{30.5}$ : 1,4768.  $\alpha$ :  $+0,25^{\circ}$  (l=1).
- 17. Kohlenwasserstoff  $C_{19}H_{36}$  aus Asphalt. V. Findet sich im Petroläther-Extrakt des Asphalts von Nord-Alberta (Krieble, Sever, Am. Soc. 48, 1345). Kp<sub>1</sub>: 143° bis 147°.  $D^{30}$ : 0,8926.  $n_{1}^{30.5}$ : 1,4859.  $\alpha$ : +0,30° (l = 1).

# 18. Kohlenwasserstoffe $C_{20}H_{38}$ .

1. 1.8 - Dicyclohexyl-octan C<sub>20</sub>H<sub>33</sub> = C<sub>6</sub>H<sub>11</sub>·[CH<sub>2</sub>]<sub>e</sub>·C<sub>6</sub>H<sub>11</sub>. B. Aus 1.8 - Diphenyl-oktatetraen-(1.3.5.7) beim Hydrieren in Eisessig bei Gegenwart von Platinoxyd (Kuhn, Winterstein, Helv. 11, 139). — Krystalle. F: 26°. Leicht löslich in Äther, Benzol und Chloroform, unlöslich in Alkohol.

- 2.  $\alpha.\beta$  Bis [1.2.2.3 tetramethyl cyclopentyl (1)]  $\ddot{\alpha}$ than  $C_{20}H_{38} = \begin{bmatrix} CH_3 \cdot HC & -C(CH_3)_2 \\ H_2\dot{C} \cdot CH_2 \cdot \dot{C}(CH_3) \cdot CH_2 \end{bmatrix}_2$ . B. Neben anderen Produkten beim Behandeln von 1.2.2.3-Tetramethyl-1-brommethyl-cyclopentan mit Magnesium in absol. Äther (RUPE, FEHLMANN, Helv. 9, 82). Dickes Öl. Kp<sub>10</sub>: 177—178°. Riecht angenehm terpenartig.
- 3. Kohlenwasserstoff  $C_{20}H_{38}$  aus Asphalt. V. Findet sich im Petroläther-Extrakt des Asphalts von Nord-Alberta (Krieble, Seyer, Am. Soc. 43, 1345). Kp<sub>1</sub>: 153—156°. D<sup>80</sup>: 0.8977.  $n_1^{80.5}$ : 1,4911.  $\alpha$ : +0.36° (l=1). [Baumann]

# 3. Kohlenwasserstoffe C<sub>n</sub>H<sub>2n-4</sub>.

## 1. Kohlenwasserstoffe C5H6.

1. Cyclopentadien C<sub>5</sub>H<sub>6</sub> = HC:CH
HC:CH
CH<sub>2</sub> (H 112; E I 60). V. Im Steinkohlenschwelgas (Keollpfeiffer, Seebaum, J. pr. [2] 119, 153). Im Steinkohlen-Urteer (Schütz. Buschmann, Wissebach, B. 56, 873). — B. Bildet sich anscheinend bei der Einw. von trocknem Natriumphenolat auf 3-Chlor-cyclopenten-(1) in Toluol (v. Braun, Kühn, B. 60, 2555). Durch Destillation von Dicyclopentadien mit Eisenspänen (Perkins, Cruz, Am. Soc. 49, 518; Farmer, Scott, Soc. 1929, 177). Beim Leiten der Dämpfe von Dihydrodicyclopentadien über eine glühende Platinspirale bei 75—80° und 20 mm Druck (Staudinger, Rheiner, Helv. 7, 28). Beim Erhitzen von Tetracyclopentadien auf 180—200° (St., Rh., Helv. 7, 30; St., Bruson, A. 447, 108). — F: —97,2° (Schuftan, Z. ang. Ch. 41, 628), —85° (St., B. 59, 3026; St., B., A. 447, 101). Kp<sub>760</sub>: 40° (St., B.). Ultraviolett-Absorptionsspektrum in Hexan: Scheibe, B. 59, 1333.

Cyclopentadien geht, bei kurzer Einw, von Zinn(IV)-chlorid in Chloroform, bei —59

Cyclopentadien geht bei kurzer Einw. von Zinn(IV)-chlorid in Chloroform bei —5° bis —10° in lösliches Polycyclopentadien (S. 78) über; nicht näher beschriebene Polycyclopentadiene bilden sich ferner in heftiger Reaktion bei der Einw. von Borchlorid, Aluminiumbromid, Aluminiumjodid, Titan(IV)-chlorid, Arsen(III)-fluorid, Arsen(III)-chlorid, Antimon(III)-chlorid, Antimon(III)-bromid, Antimon(III)-bromid, Antimon(III)-bromid, Eisen(III)-bromid, Inlangsamer Reaktion bei der Einw. von Zinkchlorid, Zinkbromid, Zinn(IV)-bromid, Phosphoroxychlorid, Phosphorpentoxyd, Antimon(III)-fluorid, Thionylchlorid, Sulfurylchlorid und Eisen(II)-chlorid (Staudinger, Bruson, A. 447, 115, 118; vgl. Br., St., Ind. Eng. Chem. 18, 381; C. 1926 I, 3433). Einw. weiterer anorganischer Chloride und Polymerisation unter dem Einfluß von Schwefelsäure, Chlorsulfonsäure und Benzolsulfonsäure: St., Br. Bei der Oxydation mit Benzopersäure in Chloroform entsteht ein dunkelbraunes Ol (Bauer, Bähr, J. pr. [2] 122, 209). Cyclopentadien liefert bei der Einw. von Brom in Hexan unter Kühlung mit Kältemischung je nach der Konzentration wechselnde Mengen cis- und trans-3.5-Dibrom-cyclopenten-(1) und 3.4-Dibrom-cyclopenten-(1) (Farmer, Scott, 1929, 177). Bei der Bromierung in Chloroform-Lösung bildet sich ein Gemisch von 3.4-Dibrom-cyclopenten-(1) und cis-3.5-Dibrom-cyclopenten-(1); bei der unter weitgehender Zersetzung verlaufenden Destillation des Reaktionsgemisches erhält man cis-3.5-Dibrom-cyclopenten-(1) und geringe Mengen trans-3.5-Dibrom-cyclopenten-(1) (f., Sc.; vgl. Thiele, A. 314 [1901], 300). Verharzt bei der Einw. von Natrium in trocknem Ather (Schlenk, Bergmann, A. 463, 60).

Cyclopentadien lagert in äther. Lösung
Acrolein an unter Bildung von 2.5-Methylen-4<sup>3</sup>tetrahydrobenzaldehyd (Formel I; Syst. Nr.
620) (Dirls, Alder, A. 460, 119). Gibt mit
Crotonaldehyd im Rohr bei 100° überwiegend

 Cyclopentadien liefert mit Acrylsäure in Äther 2.5-Methylen-\(^3\)\*-tetrahydro-benzoesäure (Formel VII; Syst. Nr. 895) (Diels, Alder, A. 460, 117). Lagert in Benzol-Lösung unter Wärmeentwicklung Maleinsäureanhydrid an unter Bildung von [3.6-Methylen-\(^4\)\*-tetra-

hydrophthalsäure]-anhydrid (Formel VIII; Syst. Nr. 2478) (D., A., A. 460, 111; vgl. FARMER, WARREN, Soc. 1929, 900); reagiert analog mit Citraconsäureanhydrid in Benzol (D., A., 4. 460, 116) und mit Dimethylmaleinsäureanhydrid in Benzol bei 100° (D., A., B. 62, 557).

Bei der Einw. von Itaconsäureanhydrid in Benzol entsteht das Anhydrid der Formel IX (Syst. Nr. 2478) (D., A., A. 460, 117). Liefert mit Azodicarbonsäure-diäthylester in Ather 3.6-Methylen-1.2.3.6-tetrahydro-pyridazin-dicarbonsäure-(1.2)-diäthylester (Formel X; Syst. Nr. 3467) (DIELS, BLOM, KOLL, A. 443, 248).

Physiologisches Verhalten: Elfstrand, Ar. Pth. 43 [1900], 435; vgl. E. Pfankuch in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt., Bd. I [Berlin-Leipzig 1930], S. 1292.

— Cyclopentadien gibt mit Pikrinsäure in alkal. Lösung eine rote Färbung (Weise, Tropp, H. 178, 134). Verhalten bei der Bestimmung des aktiven Wasserstoffs nach Zerewitinow: H. Fischer, Walter, B. 60, 1988; vgl. Fi., Rothemund, B. 61, 1269 Anm. 12.

Lösliches Polycyclopentadien, "Cyclopentadienkautschuk"  $(C_5H_6)_X$ . Mit verschiedenen Präparaten ausgeführte kryoskopische Bestimmungen in Benzol ergaben Molekulargewichte zwischen 1266 und 6670 (Staudinger, Bruson, A. 447, 119). — B. Bei kurzer Einw. von Zinn(IV)-chlorid auf Cyclopentadien in Chloroform bei —5° bis —10° (Staudinger, Bruson, A. 447, 118; vgl. B., St., Ind. Eng. Chem. 18, 382; C. 1926 I, 3433). — Die aus Benzol durch Alkohol gefällte und im Vakuum bei 50° getrocknete Substanz bildet ein amorphes Pulver. Löslich in Benzol, Chloroform, Tetrachlorkohlenstoff und Schwefelkohlenstoff, schwer löslich in Alkohol, Äther und Aceton; die dünn viskosen Lösungen hinterlassen beim Abdunsten amorphe Massen oder Filme. — Erweicht oberhalb 150° und zersetzt sich oberhalb 250° unter Bildung von Cyclopentadien und schwer flüchtigen Produkten. Gibt bei längerem Aufbewahren an der Luft oder in Sauerstoffatmosphäre oder beim Behandeln einer Lösung in Tetrachlorkohlenstoff mit schwefelsaurer Permanganat-Lösung Polycyclopentadienoxyd (s. u.). Liefert beim Ozonisieren in Chloroform ein gelbliches Ozonid, das beim Kochen mit Wasser teilweise unter Bildung eines braunen, sirupösen, Aldehydreaktionen zeigenden Produkts zersetzt wird. Nimmt in sehr verd. Chloroform-Lösung auf  $1C_5H_6$ -Gruppe ca. 2 Atome Brom auf. Färbt sich bei der Einw. von Halogenwasserstoffen blau. Beim Einleiten von Stickoxyden in die Lösung in Benzol bildet sich ein gelbliches Nitrosit, das sich oberhalb 280° zersetzt. "Vulkanisation" durch Dischwefeldichlorid in Chloroform: St., B., A. 447, 122.

Polycyclopentadienoxyd ( $C_5H_6O)_x$ . B. Aus löslichem Polycyclopentadien beim Aufbewahren an der Luft oder in Sauerstoffatmosphäre oder durch Behandlung der Lösung in Tetrachlorkohlenstoff mit Permanganat und verd. Schwefelsäure (Staudinger, Bruson, A. 447, 120). — Gelbes bis orangegelbes amorphes Pulver. Färbt sich oberhalb 160° dunkel, zersetzt sich oberhalb 300°. Unlöslich in den gebräuchlichen organischen Lösungsmitteln.

Unlösliches Polycyclopentadien ( $C_5H_6$ )<sub>x</sub>. B. Neben anderen Verbindungen bei 90-stdg. Erhitzen von Dicyclopentadien (Syst. Nr. 473) auf 200° (Staudinger, Bruson, A. 447, 106; vgl. St., B. 59, 3026; St., Rheiner, Helv. 7, 31). — Farbloses oder schwach graues Pulver. Röntgendiagramm: Hengstenberg, A. 467, 92. F: ca. 373° (Zers.) (St., B.). Unlöslich in allen organischen Lösungsmitteln (St., B.). — Beim Erhitzen auf 500° entsteht Cyclopentadien (St., B.). Wird beim Kochen mit konz. Salpetersäure langsam angegriffen (St., B.). Nimnt Brom in Schwefelkohlenstöfn nicht auf (St., B.).

Polycyclopentadienozonid (C<sub>5</sub>H<sub>6</sub>O<sub>3</sub>)<sub>x</sub>. B. Durch Sättigen einer Lösung von Dicyclopentadien in Tetrachlorkohlenstoff mit 5% igem Ozon (Staudinger, B. 58, 1095). — Amorphes Pulver. Sintert bei 114° und schmilzt unter Zersetzung bei 120—125°. Sehr explosiv. Ist in den gebräuchlichen Lösungsmitteln in der Kälte unlöslich, löst sich in siedendem Eisessig unter Zersetzung. — Zersetzt sich bei längerem Kochen mit Wasser unter teilweiser Verharzung. Das durch längeres Aufbewahren veränderte Produkt wird von Aceton aufgenommen und löst sich in heißem Wasser ohne Harzbildung.

#### CYCLOHEXADIEN

2. Methylencyclobuten oder Methyl - methylen - cyclopropen HCCCH<sub>2</sub>C:CH<sub>2</sub> oder CH<sub>3</sub>:C CH, Pirylen (H 1, 263). Zur Konstitution vgl. v. Braun, Teuffert, B. 61, 1092. — Di<sup>10</sup>: 0,7443; ni<sup>10</sup>: 1,4505 (v. B., T., B. 61, 1097). — Liefert bei der Oxydation mit Permanganat in sodaalkalischer Lösung Essigsäure und Oxalsäure. Nimmt bei der Hydrierung in Gegenwart von Palladium in Methanol 4 Atome Wasserstoff auf. Gibt mit Brom in Schwefelkohlenstoff ein öliges, nicht destillierbares Tetrabromid.

#### 2. Kohlenwasserstoffe $C_6H_8$ .

1. Cyclohexadien - (1.3), 1.2 - Dihydrobenzol,  $\Delta^{1.8}$  - Dihydrobenzol  $C_6H_8$  = HC CH<sub>3</sub>·CH<sub>3</sub>CH (E I 60). B. Neben überwiegenden Mengen 3-Äthoxy-cyclohexen-(1) bei tropfenweiser Zugabe von 1.2-Dibrom-cyclohexan oder von 3-Chlor-cyclohexen-(1) zu siedender Natriumathylat-Lösung (Hofmann, Damm, Mitt. Kohlenforschungsinst. Breslau 2, 113, 127; C. 1926 I, 2343). In geringer Menge bei der Einw. von alkoh. Kalilauge auf 1.2-Dibrom-cyclohexan (H., D., Mitt. Kohlenforschungsinst. Breslau 2, 100; vgl. Crossley. Soc. 85 [1904], 1416). Aus 3.Athoxy-cyclohexen-(1) beim Erhitzen mit Kaliumdisulfat auf 160° (BAYER & Co., D. R. P. 339563; C. 1921 IV, 1225; Frdl. 13, 206) oder auf 170—175° (H., D., Mitt. Kohlenforschungsinst. Breslau 2, 119; C. 1926 I, 2343) oder beim Leiten über Fasertonerde bei 300° (B. & Co.). Bei der trocknen Destillation von phosphorsaurem 3-Aminocyclohexen-(1) im Kohlendioxydstrom (H., D., Mitt. Kohlenjorschungsinst. Breslau 2, 112; C. 1926 I, 2343).

Durchdringend lauchartig riechende Flüssigkeit. An einem durch Einw. von Chinolin auf 1.2-Dibrom-cyclohexan (vgl. Crossley, Soc. 85 [1904], 1416) erhaltenen, sorgfältig gereinigten Präparat wurde festgestellt E: —98°; Kp<sub>760</sub>: 80,5°; D<sub>4</sub>°: 0,8598; D<sub>4</sub>°: 0,8452; D<sub>7</sub>°: 0,8405; n<sub>7</sub>°: 1,4753 (M. Lecat, La tension de vapeur des mélanges de liquides. — L'azeotropisme [Gent-Brüssel 1918], S. 307); ein durch Einw. von Natriumäthylat-Lösung auf 1.2-Dibrom-cyclohexan erhaltenes Präparat zeigte Kp: 80,5°; D<sub>4</sub>°: 0,8406; n<sub>α</sub>°: 1,4696; n<sub>o</sub>°: 1,4736; ng: 1,4847; ng: 1,4961 (Hofmann, Damm, Mitt. Kohlenforschungsinst. Breslau 2 [1925], 114); an Praparaten aus 3-Athoxy-cyclohexen-(1) wurde beobachtet Kp: 80,5-81°; D. 1,4750; n. 1,4700; n. 1,4700; n. 1,4755; n. 1,4852; n. 1,4951 (H., D., Mitt. Kohlenforschungsinst. Breslau 2, 14,700;  $n_5$ : 1,4765;  $n_6$ : 1,4852;  $n_7$ : 1,4851 (H., D., Mill. Kohlenjorschungsinst. Breslau 2, 119); Kp: 80°;  $D_4^{sc}$ : 0,8421;  $n_9^{bc}$ : 1,4760 (Farmer Scott, Scott, Scot. 1929, 175). Bildet azeotrope Gemische mit Methanol (Kp<sub>760</sub>: 56,45°; 61,5 Gew.-% Cyclohexadien), Athylalkohol (Kp<sub>760</sub>: 66,7°; 65,5 Gew.-% Cyclohexadien), Propylalkohol (Kp<sub>760</sub>: 75,8°; 80 Gew.-% Cyclohexadien), Isopropylalkohol (Kp<sub>760</sub>: 70,3°; 64 Gew.-% Cyclohexadien), Isobutylalkohol (Kp<sub>760</sub>: 79,35°; 88,5 Gew.-% Cyclohexadien), tert.-Butylalkohol (Kp<sub>760</sub>: 73,4°; 61,5 Gew.-% Cyclohexadien), Dimethyläthylcarbinol (Kp<sub>760</sub>: 79,7°; ca. 85 Gew.-% Cyclohexadien) und Allylalkohol (Kp<sub>760</sub>: 75,9°; ca. 79 Gew.-% Cyclohexadien) (Lecat, La tension de vapeur, S. 101; Ann. Soc. scient. Bruxelles 48 I [1927], 54; 48 II [1927], 105; 49 [1929], 21). Polymerisiert sich bei 10-stdg. Erhitzen im Rohr auf 200—220°, bei 30-tägigem Erhitzen im Rohr auf 120° oder bei der Einw. von wasserfreiem Eisenchlorid oder von äther.

hitzen im Rohr auf 120° oder bei der Einw. von wasserfreiem Eisenchlorid oder von äther. Eisenchlorid-Lösung, in geringem Umfang auch bei jahrelangem Aufbewahren und geht dabei in 1.4-Athylen-1.4.5.6.9.10-hexahydro-naphthalin (Formel I,

Syst. Nr. 473) und zwei kautschukartige Polymere (S. 80) über (HOFMANN, DAMM, Mitt. Kohlenforschungsinst. Breslau 2, 135, 139; C. 1926 I, 2344). Liefert beim Behandeln mit 2 Atomen Brom in Chloroform oder besser in Hexan bei -15° und Abdampfen des Lösungsmittels im Vakuum festes und flüssiges 3.4-Dibrom-



cyclohexen-(1); wird das Reaktionsgemisch 3 Tage aufbewahrt oder bei der Entfernung der Lösungsmittel Wärme angewandt, so erhält man 3.6-Dibrom-cyclohexen-(1) als einziges Reaktionsprodukt (FARMER, Scott, Soc. 1929, 172, 175). Gibt mit Chlorwasserstoff in Eisessig unter Kühlung (H., D., Mitt. Kohlenforschungsinst. Breslau 2, 126; C. 1926 I, 2343) oder besser ohne Verdünnungsmittel bei —5° bis —8° (Courtot, Pierron, Bl. [4] 45, 288) 3-Chlor-cyclohexen-(1); reagiert analog mit Bromwasserstoff (H., D.). Addiert Schwefeldioxyd unter Bildung einer Verbindung C<sub>4</sub>H<sub>8</sub>O<sub>2</sub>S (S. 80) (H., D., Mitt. Kohlenforschungsinst. Breslau 2, 124; C. 1926 I, 2343). Verharzt bei der Einw. von konz. Schwefelsäure (H., D., Mitt. Kohlenforschungsinst. Breslau 2, 120). Gibt mit konz. Salpetersäure erst eine mit him Trithende mit him between die binnen Fährung und wird hei weiteren Finn milchige Trübung, dann eine blaue und eine braune Färbung und wird bei weiterer Einw. oxydiert (H., D.). Gibt mit p-Chinon in Benzol bei gewöhnlicher Temperatur 1.4-Äthylen-9.10-dihydro-naphthochinon-(5.8) (Formel II auf S. 80; Syst. Nr. 673); ein großer Überschuß an Cyclohexadien wirkt auf p-Chinon in Alkohol im Rohr bei 1000 unter Bildung von 1.4;5.8-Diäthylen-1.4.5.8.11.12.13.14-oktahydro-anthrachinon (Formel III auf S. 80; Syst. Nr. 675) ein (DIELS, ALDER, B. 62, 2359, 2364). Liefert bei der Einw. von Maleinsäureanhydrid in Benzol [3.6-Xthylen-4-tetrahydrophthalsäure]-anhydrid (Formel IV; Syst. Nr. 2478) (D., A., A. 480, 115; vgl. Farmer, Warren, Soc. 1929, 907). — Gibt mit Alkohol und konz. Schwefel-

säure je nach den Mengenverhältnissen eine himbeerrote bis violettrote Färbung (Hofmann, Damm, Mitt. Kohlenforschungsinst. Breslau 2, 120).

"Atherlöslicher Dihydrobenzolkautschuk" (C<sub>8</sub>H<sub>8</sub>)<sub>x</sub>. B. Entsteht aus Cyclohexadien-(1.3) neben dem ätherunlöslichen Dihydrobenzolkautschuk und 1.4-Äthylen-1.4.5.6.9.10-hexahydro-naphthalin(?) bei 10-stdg. Erhitzen auf 200—220° im Rohr oder im Kupferautoklaven, bei 30-tägigem Erhitzen auf 120° im Rohr oder bei der Einw. von wasserfreiem Eisenchlorid oder von äther. Eisenchlorid-Lösung (Hofmann, Damm, Mitt. Kohlenforschungsinst. Breslau 2, 133, 135, 139; C. 1926 I, 2344). — Weiße Flocken (aus Äther + Alkohol). Sintert von 75° ab, wird bei 90° glasig und bildet bei etwa 100° durchsichtige Tröpfehen. Löslich in Äther. — Gibt mit Brom in kaltem Chloroform ein "Dibromid" (C<sub>12</sub>H<sub>18</sub>Br<sub>2</sub>)<sub>x</sub>, das beim Erhitzen Bromwasserstoff abspaltet und sich bei etwa 210—215° unter Aufschäumen zersetzt.

"Atherunlöslicher Dihydrobenzolkautschuk" (C<sub>6</sub>H<sub>8</sub>)<sub>x</sub>. B. s. im vorangehenden Abschnitt. — Weißes lockeres Pulver (aus Chloroform + Alkohol), das an der Luft glasig wird. Sintert von 100° ab und wird allmählich glasig; bildet von etwa 150° an Bläschen (Hoffmann, Damm, Mitt. Kohlenforschungsinst. Breslau 2, 137; C. 1926 I, 2344). Wird beim Reiben außerordentlich stark elektrisch. — Oxydiert sich schnell an der Luft. Gibt mit Brom in kaltem Chloroform ein "Tetrabromid" (C<sub>12</sub>H<sub>18</sub>Br<sub>4</sub>)<sub>x</sub>, das beim Erhitzen lebhaft Bromwasserstoff abspaltet und sich bei 350° schwach braun färbt.

Verbindung (C<sub>6</sub>H<sub>8</sub>O<sub>2</sub>S)<sub>x</sub>. B. Beim Einleiten von Schwefeldioxyd in unverdünntes oder in Ather gelöstes Cyclohexadien-(1.3) (Hofmann, Damm, Mitt. Kohlenforschungsinst. Breslau 2, 124; C. 1926 I, 2343). — Farbloses Pulver. Unlöslich in den gebräuchlichen Lösungsmitteln. Färbt sich an der Luft allmählich dunkelbraun. — Liefert bei der Destillation Cyclohexadien, 1.4-Athylen-1.4.5.6.9.10-hexahydro-naphthalin, Schwefeldioxyd und schwefelhaltige Produkte.

Als Cyclohexadien-(1.3) angesehene Dihydrobenzole von fraglicher Einheitlichkeit (vgl. H 113; E I 61) entstehen: Beim Erhitzen von 1.2-Dibrom-cyclohexan mit Natriumacetat und Eisessig auf 180° (Coffex, R. 42, 398). Beim Erhitzen von trans-1.4-Dibrom-cyclohexan mit Natrium in Diisoamyläther auf 170—180°, neben anderen Produkten (Zelinsky, Kotscheschkow, B. 60, 1105; Ж. 59, 667). In geringer Menge beim Erhitzen von Cyclohexandiol-(1.2) mit wenig konz. Schwefelsäure auf Temperaturen oberhalb 110° (Semderens, C. r. 177, 1184). Beim Erhitzen von Cyclohexandiol-(1.2) mit Phthalsäureanhydrid (Bedos, Ruyer, C. r. 188, 964). Aus Cyclohexenoxyd beim Leiten des Dampfee über Thoriumoxyd bei 330° oder bei tropfenweisem Eintragen in siedendes Phthalsäureanhydrid (B., R., C. r. 188, 963). Neben geringeren Mengen Cyclohexadien-(1.4) beim Destillieren von Cyclohexandiol-(1.3) mit wenig 64,5% iger Schwefelsäure (Senderens, C. r. 177, 1184). — Kp755: 79—80°; Di<sup>18,1</sup>; 0,8340; ni<sup>18,2</sup>; 1,4628 (Z., K.). Kp755: 81° (B., R.). Kp756: 83—84°; Di<sup>19</sup>; 0,8454 bzw. 0,8457 (S.). Magnetische Susceptibilität eines Präparats unbekannter Herkunft: PASCAL, C. r. 180, 1596. — Das Präparat von Zelinsky, Gorski (B. 41 [1908], 2482) wandelt sich beim Leiten über Palladiumasbest bei 91° im Kohlendioxydstrom in ein Gemisch aus Benzol und Cyclohexan um (Zelinsky, Pawlow, B. 57, 1068) und gibt bei der Hydrierung in Gegenwart von Osmiumasbest bei 50—70° Cyclohexan (Z., Turowa-Pollak, B. 62, 2866). Das Präparat von Zelinsky, Kotscheschkow (s. c.) liefert mit Brom in Chloroform ein bei 99—100° schwefelsäure eine dunkelblau-violette, mit Salpetersäure (D: 1,4) eine blaue Färbung. Antiklopfwirkung im Verbrennungsmotor: Biech, Stansfield, Nature 123, 491; C. 1929 I, 2605.

2. Cyclohexadien - (1.4), 1.4 - Dihydro-benzol,  $\triangle^{1.4}$ - Dihydrobenzol  $C_0H_0 = H_0C < CH: CH > CH_1^2$ ). Ein vermutlich aus 1.4-Dibrom-cyclohexan und Chinolin hergestelltes, sorgfältig gereinigtes Präparat zeigte E: ca.  $-90^\circ$ ;  $Kp_{700}$ : 85,6°;  $D_0^*$ : 0,8655;  $D_0^*$ : 1,4736

<sup>&</sup>lt;sup>1)</sup> Für die Konstitution liegen abgesehen vom Siedepunkt keine Anhaltspunkte vor. , Es ist auffällig, daß die Molekularrefraktionen von Cyclohexadien-(1.3) (M<sub>D</sub>: 26,8) und Cyclohexadien-(1.4) (M<sub>D</sub>: 26,6) sich kaum nennenswert unterscheiden. Die berechnete Molekularrefraktion ist M<sub>D</sub>: 26,77. Vgl. hierzu noch nach dem Literatur-Schlußtermin des Ergänzungswerks II [1. I. 1930] ZELINBEY, DENISSENKO, EWENTOWA, Doklady Akad. S.S.S.R. 1935 I, 313: C. 1935 II, 3765 und KOHL-RAUSCH, SEKA, B. 68, 533.

#### CYCLOHEXADIEN

(M. Lecat, La tension de vapeur des mélanges de liquides. — L'azéotropisme [Gent-Brüssel 1918], S. 307). Bildet azeotrope Gemische mit Methanol (Kp<sub>760</sub>: 58,0°; 57,5 Gew.-% Cyclohexadien), Alkohol (Kp<sub>760</sub>: ca. 68,5°) und Isopropylalkohol (Kp<sub>760</sub>: ca. 72,5°) (LECAT, La tension de vapeur usw., S. 267; Ann. Soc. scient. Bruxelles 48 II [1928], 107).

Ein Cyclohexadien (1.4) von fraglicher Einheitlichkeit entsteht neben geringeren

Mengen Cyclohexadien-(1.3) und anderen Produkten beim Destillieren von Cyclohexandiol-(1.4) mit wenig 64,5% iger Schwefelsäure (SENDERENS, C. r. 177, 1185; vgl. auch S., C. r. 180, 790). — Kp<sub>750</sub>: 86—87°. D<sub>1</sub>°: 0,8605.

Magnetische Susceptibilität eines Praparats unbekannter Herkunft: Pascal, C. r. 180, 1596.

3. 1-Methyl-cyclohexadien-(2.4),  $\Delta^{2.4}$ -Dihydrotoluol  $C_7H_{10}$  = HC CH: CH CH; CH CH; (E I 62; vgl. a. H 115). B. Beim Leiten von nicht näher beschriebenem 5-Athoxy-1-methyl-cyclohexen-(3) über bei 350° entwässertes Magnesiumsulfat bei 180-200 (BAYER & Co., D. R. P. 339563; C. 1921 IV, 1225; Frdl. 13, 206).

#### 4. Kohlenwasserstoffe $C_8H_{12}$ .

1. Acetylenylcyclohexan, Cyclohexylacetylen  $C_8H_{12}=H_1C<\frac{CH_1\cdot CH_2}{CH_2\cdot CH_3}>CH\cdot C:CH_1$ (H 117; E I 62). Das durch Einw. von Methylmagnesiumbromid in Ather erhältliche Cyclohexylacetylen-magnesium bromid liefert mit Jod Cyclohexyljodacetylen, mit Chlorcyan Cyclohexyl-propiolsaurenitril, mit Bromeyan Cyclohexylbromacetylen (GRIGNARD, Perrichon, A. ch. [10] 5, 7, 10, 31).

Bromacetylenyl-cyclohexan, Cyclohexylbromacetylen  $C_8H_{11}Br = C_6H_{11} \cdot C \cdot CBr$ . B. Durch Einw. von Bromcyan auf Cyclohexylacetylen-magnesiumbromid in Ather unter Eiskühlung (Grignard, Perrichon, A. ch. [10] 5, 9). — Kpg.: 83—84°. Di:: 1,2989. nii: 1,5124. — Liefert beim Kochen mit Quecksilber(II)-sulfat und verd. Schwefelsäure Brommethylcyclohexyl-keton (G., P., A. ch. [10] 5, 23).

Jodacetylenyl-cyclohexan, Cyclohexyljodacetylen  $C_8H_{11}I=C_8H_{11}\cdot C:CI.$  B. Durch Einw. von 2 Atomen Jod auf Cyclohexylacetylen-magnesiumbromid in Äther unter Eiskühlung (Grignard, Perrichon, A. ch. [10] 5, 13). — Kp<sub>5</sub>: 85—86°; Kp<sub>26</sub>: 125—126°. D!: 1,5779. nl: 1,559. — Liefert mit Brom in kaltem Chloroform [ $\alpha.\beta$ -Dibrom- $\beta$ -jod-vinyl]cyclohexan.

2. 1-Vinyl-cyclohexen-(3), [13-Cyclohexenyl]-äthylen, "Dibutadien" C<sub>8</sub>H<sub>12</sub> = HC < CH<sub>2</sub>·CH<sub>2</sub> > CH·CH: CH<sub>2</sub> (E I 63). Kp<sub>745</sub>: 125,8—126,5°; Kp<sub>74</sub>: 60—60,5° (O. Aschan, B. 57, 1959; Naphthenverbindungen, Terpene und Campherarten [Berlin und Leipzig 1929], S. 136).  $D_n^{\infty}$ : 0,8308.  $n_p^{\infty}$ : 1,4623.

# 3. 1.1-Dimethyl-cyclohexadien-(2.4) $C_8H_{12} = HC < CH \cdot CH \cdot CH_2 > C(CH_3)_2$ .

 $\textbf{3.5-Dichlor-1.1-dimethyl-cyclohexadien-(2.4)} \quad \textbf{C_8H_{10}Cl_2} = \textbf{HC} < \begin{matrix} \textbf{CCl:CH} \\ \textbf{CCl:CH_2} \end{matrix} > \textbf{C(CH_3)_2} \\ \textbf{CCl:CH_3} > \textbf{C(CH_3)_3} \\ \textbf{CCl:CH_3} > \textbf{C(CH_3)_4} \\ \textbf{CCl:CH$ (H 117; E I 63). Liefert beim Behandeln mit 4 Atomen Chlor in kaltem Chloroform und Erhitzen des Reaktionsprodukts auf 150—180° 3.5-Dichlor-o-xylol und 3.4.6-Trichloro-xylol; bei der Einw. von überschüssigem Chlor in kaltem Chloroform erhält man 3.4.5.5.6-Pentachlor-1.1-dimethyl-cyclohexen-(2) und ein Gemisch von Chlorierungsprodukten, das bei der Destillation 3.4.5-Trichlor-o-xylol, 3.4.6-Trichlor-o-xylol und 3.4.5.6-Tetrachloro-xylol liefert (HINKEL, Soc. 117, 1298, 1301).

1.3 - Dimethyl - cyclohexadien - (1.3),  $\Delta^{1.3}$  - Dihydro - m-xylol  $C_8H_{19}$  = HC C(CH<sub>3</sub>)·CH C·CH<sub>3</sub> (vgl. H 118). B. Eine als △1.5-Dihydro-m-xylol angesehene Ver-CH<sub>3</sub> CH<sub>2</sub> CH<sub>3</sub> volume Produkten hei der thermischen Zersetzung von Crêpebindung entsteht neben anderen Produkten bei der thermischen Zersetzung von Crêpe-Kautschuk (MIDGLEY, HENNE, Am. Soc. 51, 1220). — Nicht rein erhalten. Kp: 129-130°.  $D_{m}^{so}$ : 0,795.  $n_{D}^{so}$ : 1,4451.

5. 2-Methylen-bicyclo-[1.2.2]-heptan, Norcamphen C<sub>8</sub>H<sub>12</sub>, s. nebenstehende Formel. B. Bei der Destillation von [2.5-Methylen-hexahydrobenzyl]-xanthogensäuremethylester (Syst. Nr. 506) unter gewöhnlichem Druck (Diris, Alder, A. 470, 79). — Leicht flüchtige Flüssigkeit. H<sub>2</sub>C--CH--C:CH<sub>2</sub> Kp785: 1230. Dis: 0,8789. Mol.-Refr.: D., A.

Nitrosochlorid C<sub>e</sub>H<sub>12</sub>ONCl. B. Beim Behandeln von Norcamphen mit Isoamylnitrit und rauchender Salzsäure (Diels, Alder, A. 470, 80). — Krystalle (aus Essigester). F: 125°.

6. Tricyclooctan  $C_8H_{12}$  (H 120). Ist als Athylbenzol erkannt worden (Kuhn, Deutson, B. 65 [1932], 44).

## 5. Kohlenwasserstoffe C9H14.

- 1. Propargylcyclohexan. 3-Cyclohexyl-propin-(1). Hexahydrobenzylacetylen C<sub>9</sub>H<sub>14</sub> = H<sub>2</sub>C<CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH·CH<sub>3</sub>·C:CH (E I 64). Zur Einheitlichkeit des E I 64 beschriebenen Präparats von de Resséquier vgl. Lespieau, Bl. [4] 29, 534. B. Entsteht aus [β-Brom-allyl]-cyclohexan in geringer Menge bei der Einw. von alkoh. Kalilauge (L., Bl. [4] 29, 534), in guter Ausbeute durch Erhitzen mit Natriumamid in hochsiedendem Petroleum auf 150—155° und Zersetzen des Reaktionsprodukts mit Eis (Bourguel, C. r. 177, 689; A. ch. [10] 3, 231, 384; L., B., Org. Synth. Coll. Vol. I [1932], S. 185; deutsche Ausgabe, S. 184). In geringer Menge bei der Einw. von 1.2.3-Tribrom-propen auf Cyclohexylmagnesiumbromid (L., Bl. [4] 29, 534). Angenehm riechende Flüssigkeit. Kp: 157—158° (korr.); Kp<sub>17</sub>: 55°; Kp<sub>11</sub>: 48° (B., C. r. 177, 690; A. ch. [10] 3, 232); Kp<sub>15</sub>: 55—58° (Johnson, McEwen, Am. Soc. 48, 476). D<sup>18</sup>: 0,844; n<sup>16</sup>: 1,4603 (B., A. ch. [10] 3, 232). Ultrarot-Absorptionsspektrum: Lecomte, C. r. 183, 29. Gibt mit 2 Atomen Wasserstoff in Gegenwart von kolloidalem Palladium Allylcyclohexan (Bourguel, Bl. [4] 41, 1475); Geschwindigkeit dieser Reaktion: B., Bl. [4] 41, 1447; 43, 231. Die Natriumverbindung liefert mit Dimethylsulfat β-Butinyl-cyclohexan (B., C. r. 179, 688; A. ch. [10] 3, 360). C<sub>8</sub>H<sub>11</sub>·CH<sub>2</sub>·C:CAg+AgNO<sub>3</sub>. Krystalle (aus Alkohol) (B., A. ch. [10] 3, 232; vgl. Lespieau, Bl. [4] 29, 534). (C<sub>6</sub>H<sub>11</sub>·CH<sub>2</sub>·C:C)<sub>2</sub>Hg. Nadeln (aus Alkohol). F: 104° (Johnson, McEwen. Am. Soc. 48, 476).
- 2. 1-Propenyl-cyclohexen-(1), 1-[ $\Delta^1$ -Cyclohexenyl]-propen-(1)  $C_9H_{14} = H_2C < CH_2 \cdot CH_2 > C \cdot CH \cdot CH \cdot CH_3$ . B. Aus 2-Dimethylamino-1-propenyl-cyclohexan oder 1-[ $\beta$ -Dimethylamino-propyl]-cyclohexen-(1) (Syst. Nr. 1595) durch Umsetzung des Jod methylats mit Silberoxyd und Destillation (v. Braun, Bayer, Blessing, B. 57, 400). Kp: 161°.  $D_4^{t_1}$ : 0,8285.  $n_5^{t_1,t_2}$ : 1,4837.
  - 3. 1.1.4-Trimethyl-cyclohexadien-(2.5)  $C_9H_{14} = CH_3 \cdot HC < \frac{CH : CH}{CH : CH} > C(CH_3)_2$ .

1¹.1¹.1¹ - Trichlor - 4.4¹.4¹.4¹ - tetrabrom - 1.1.4 - trimethyl - cyclohexadien - (2.5), 4 - Brom - 1 - methyl - 1 - trichlormethyl - 4 - tribrommethyl - cyclohexadien - (2.5)  $C_9H_7Cl_3Br_4 = CBr_3 \cdot BrC < CH : CH > C < CCl_3^*.$  Diese Konstitution wird der H 122 als 1¹.1¹.1⁻ Trichlor - 3.4 · 5.4¹ - tetra brom - 1.1 · 4 - trimethyl - cyclohexadien - (2.5)(?) aufgeführten Verbindung zuerteilt (v. Auwers, Jülicher, B. 55, 2177). — F: 140—141° (v. Au., J., B. 55, 2191). — Die bei der Umlagerung durch Schmelzen usw. entstehende Substanz ist nicht 1¹.1¹.1¹-Trichlor - 3.5-dibrom - 1.1 - dimethyl - 4-methylen - cyclohexadien - (2.5), sondern 1-Methyl - 4-[ $\beta$ . $\beta$ . $\beta$ -trichlor -  $\alpha$ . $\alpha$ -dibrom -  $\beta$ . $\beta$ -trichlor -  $\beta$ . $\beta$ -trichlor -  $\beta$ . $\beta$ -trichlor -  $\beta$ -dibrom -  $\beta$ -dibrom -  $\beta$ -dibrom - 1.1 - dimethyl - 4-methylen - cyclohexadien - (2.5), sondern 1-Methyl - 4-[ $\beta$ . $\beta$ . $\beta$ -trichlor -  $\alpha$ . $\alpha$ -dibrom -  $\beta$ -dibrom -  $\beta$ -dibrom -  $\beta$ -dibrom - 3.5 - dibrom - 3.1 - dimethyl - 4-methylen - cyclohexadien - (2.5), sondern 1-Methyl - 4-methyl - 4-methylen - cyclohexadien - (2.5), sondern 1-Methyl n 
- 4. Kohlenwasserstoff  $C_0H_{14}$  (E I 65, Nr. 8). E I 65, Z. 30 v. u. statt "1-Isopropyl-cyclopentanon-(3)"lies "1-Isopropyl-cyclopenten-(1)-on-(3)".
- 5. 2.2-Dimethyl-bicyclo-[1.2.2]-hepten-(5), Camphenilen 1) HC-CH-C(CH<sub>3</sub>)<sub>2</sub> C<sub>2</sub>H<sub>14</sub>, s. nebenstehende Formel. B. Aus sterisch nicht einheitlichem CH<sub>2</sub> C<sub>2</sub> α-Isocamphenilol (β-Fenchocamphorol; Syst. Nr. 506) durch Behandlung der CH-CH<sub>2</sub> Kaliumverbindung mit Schwefelkohlenstoff und Methyljodid in Toluol und Erhitzen des erhaltenen Xanthogensäuremethylesters auf 150—160° (NAMETKIN, ALEXANDROWA, A. 467, 199; Ж. 60, 1543). Krystalle (aus Alkohol). F: 27—28°. Kp<sub>760</sub>: 131° bis 132°. Riecht ähnlich wie Apocyclen. Liefert bei der Oxydation mit alkal. Permanganat-Lösung cis-Apofenchocamphersäure.
- 6. 2.3-Dimethyl-bicyclo-[1.2.2]-hepten-(2), Santen C<sub>2</sub>H<sub>14</sub>, H<sub>2</sub>C—CH—C·CH<sub>3</sub> s. nebenstehende Formel (H 122; E I 65). V. Im äther. Öl aus dem Holz von Santalum percysianum (Labd, Riv. ital. Essenze Prof. 7, 19; C. 1925 II, 1489). B. Beim Erhitzen von α-Fenchocamphorol oder einem Gemisch von H<sub>2</sub>C—CH—C·CH<sub>3</sub>

<sup>1)</sup> Es bestehen keine Beziehungen zu dem H 123 als Camphenilen beschriebenen Kohlenwasserstoff; über die Zusammensetzung dieses "Camphenilens" vgl. nach dem Literatur-Schlußtermin des Erganzungswerks II [1. I. 1930] GRATTON, SIMONSEN, Soc. 1935, 1621; KOMPPA, NYMAN, B. 69 [1936], 334; LIPP, DANIELS, B. 69, 586.

α- und β-Fenchocamphorol mit Kaliumdisulfat im Kohlendioxyd-Strom auf ca. 190° (RUZICKA, LIEBL, Helv. 6, 273). Entsteht auf gleiche Weise aus Santenol (Syst. Nr. 506) (R., L., Helv. 6, 269, 274). — Kp: 140—142° (R., L.); Kp<sub>15</sub>: 36—37° (DEUSSEN, J. pr. [2] 114, 111). Di': 0,8680; Di': 0,8720. ni;: 1,4710; ni;: 1,4657 (R., L.). — Gibt bei der Hydrierung in Gegenwart von Palladium-Calciumcarbonat in Alkohol, langsamer in absol. Ather, Dihydrosanten (DEUSSEN, J. pr. [2] 114, 111). Liefert beim Behandeln mit konz. Schwefelsäure in Äther in der Kälte Santenol (D., J. pr. [2] 114, 115). Wird durch alkoh. Kalilauge auf dem Wasserbad oder bei 180° im Rohr kaum verändert (D., J. pr. [2] 114, 113).

Blaues Santennitrosit C<sub>9</sub>H<sub>14</sub>O<sub>3</sub>N<sub>2</sub>. Ist der Hauptbestandteil der früher als Santennitrosit bezeichneten Präparate (H 123; E I 65) (Deussen, J. pr. [2] 114, 115). — Blaue Prismen (aus Alkohol). Der Schmelzpunkt schwankt zwischen 123° und 126°. Löslich in Petroläther. — Geht beim Belichten in alkoh. Lösung in Santennitrosat(?) (s. u.) über. Gibt bei der Hydrierung in Gegenwart von Palladium-Calciumcarbonat in Alkohol Dihydrosantennitrosit" (s. u.). Liefert keine additionellen Verbindungen mit Brom oder Jod. Beim Einleiten von Chlorwasserstoff in eine Lösung in 96 %iger Alkohol entsteht Santennitrosithydrochlorid (s. u.). Geht beim Aufbewahren mit 20 %iger alkoholischer oder 15 %iger methylalkoholischer Kalilauge in farbloses Santennitrosit (s. u.) über.

Grünes Santennitrosit  $C_0H_{14}O_3N_2$ . Das Mol.-Gew. ist in Benzol kryoskopisch bestimmt. — B. Neben blauem Santennitrosit bei der Einw. von Natriumnitrit und Salzsäure auf Santen in Äther (Deussen, J. pr. [2] 114, 115, 119). — Grüne Nadeln (aus Alkohol). F: ca. 127—128° (Zers.). Unlöslich in Petroläther. — Geht bei der Einw. von alkoh. Kalilauge in das farblose Nitrosit (s. u.) über.

Farbloses Santennitrosit  $C_0H_{14}O_3N_2$ . B. Aus blauem oder grünem Santennitrosit durch Aufbewahren mit 20% iger alkoholischer oder mit 15% iger methylalkoholischer Kalilauge (Deussen, J. pr. [2] 114, 116, 117, 119). — Krystalle (aus Alkohol). F: 104—105° (Zers.).

"Dihydrosantennitrosit" C<sub>9</sub>H<sub>16</sub>O<sub>3</sub>N<sub>2</sub>. B. Durch Hydrierung von blauem Santennitrosit in Gegenwart von Palladium-Calciumcarbonat in Alkohol (Deussen, J. pr. [2] 114, 118). — Prismen (aus Alkohol). F: 87—88°. Leicht löslich in den üblichen organischen Lösungsmitteln.

"Santennitrosit-hydrochlorid" C<sub>9</sub>H<sub>15</sub>O<sub>3</sub>N<sub>2</sub>Cl. B. Durch Einleiten von Chlorwasserstoff in eine Lösung von blauem Santennitrosit in 96% igem Alkohol (Deussen, J. pr. [2] 114, 117). — Unbeständige Krystalle. F: 98° (Zers.). — Gibt mit alkoh. Silbernitrat-Lösung einen Niederschlag von Silberchlorid.

"Santennitrosat"  $C_9H_{14}O_4N_2$ . B. Bei der Einw. von gedämpftem Sonnenlicht auf eine Lösung von blauem Santennitrosit in Alkohol (Deussen, J. pr. [2] 114, 118). — Nadeln (aus Alkohol). F: 216° (Zers.).

7. 2.2 - Dimethyl - 3.6 - methylen - bicyclo - [0.1.3] - hexan, H<sub>2</sub>C-CH-C(CH<sub>3</sub>) Apocyclen C<sub>2</sub>H<sub>14</sub>, s. nebenstehende Formel (E I 66). B. Durch Einw. von gelbem Quecksilberoxyd auf Camphenilonhydrazon in Alkohol, zuletzt bei Siedetemperatur (Chem. Fabr. Schering, D. R. P. 353933; C. 1922 IV, 499; Frdl. 14, 508; NAMETKIN, ALEXANDROWA, Ж. 57, 397; 60, 1540; C. 1926 II, 1026; A. 467, 196). — F: 39—40° (N., A.); E: 40,1° (Ch. F. Sch.). D<sub>1</sub><sup>4</sup>: 0,8694; n<sub>1</sub><sup>4</sup>: 1,4491 (Ch. F. Sch.). — Bei der Einw. von Eisessig und Schwefelsäure bilden sich neben β-Fenchocamphorolacetat (= α-Isocamphenilolacetat) (ΚΟΜΡΡΑ, ROSCHIER, A. 429, 187) auch geringere Mengen der Acetate des Camphenilols und des Apoisoborneols (nachgewiesen durch Hydrolyse und nachfolgende Oxydation zu Camphenilon und Apocampher) (N., A.).

# 6. Kohlenwasserstoffe $C_{10}H_{16}$ .

Literatur über Terpene: E. GILDEMEISTER, F. HOFFMANN, Die ätherischen Öle, 3. Aufl. Bd. I [Miltitz 1928], S. 312. — O. ASCHAN, Naphthenverbindungen, Terpene und Campherarten [Berlin-Leipzig 1929]. — J. L. SIMONSEN, The terpenes, Bd. I [Cambridge 1931]; Bd. II [1932]. — G. DUPONT in V. GRIGNARD, Traité de chimie organique, Bd. III [Paris 1935], S. 687. — Über konfigurative Beziehungen in der Terpenreihe vgl. v. Braun, Werner, B. 62, 1053; HÜCKEL, J. pr. [2] 157 [1941], 225.

1.  $\beta$  - Butinyl - cyclohexan, 1 - Cyclohexyl - butin - (2)  $C_{10}H_{16} = H_2C < \frac{CH_3 \cdot CH_3}{CH_1 \cdot CH_3} > CH \cdot CH_3 \cdot C: C \cdot CH_3$ . B. Durch Einw. von Dimethylsulfat auf die Natriumverbindung des 3-Cyclohexyl-propins-(1) (Bourguel, C. r. 179, 688; A. ch. [10] 3, 333, 360). —  $K_{P_1y}$ : 79°:  $K_{P_1z}$ : 77°.  $D^{30}$ : 0,855.  $n_0^{30}$ : 1,471. — Wandelt sich beim Erhitzen mit Natriumamid in hochsiedendem Petroleum auf 160° in  $\gamma$ -Butinyl-cyclohexan um.

- 2.  $\gamma$  Butinyl cyclohexan, 4 Cyclohexyl butin (1)  $C_{10}H_{16}=H_2C<\frac{CH_2\cdot CH_2}{CH_2\cdot CH_2}$  CH·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH. B. Die Natriumverbindung entsteht beim Erhitzen von  $\beta$ -Butinyl-cyclohexan mit Natriumamid in hochsiedendem Petroleum auf 160° (Bourguel, C. r. 179, 688; A. ch. [10] 3, 362). Kp<sub>17</sub>: 70°. D<sup>20</sup>: 0,845.  $n_1^{\infty}$ : 1,4615. Die Natriumverbindung liefert mit Dimethylsulfat  $\gamma$ -Pentinyl-cyclohexan, mit Kohlendioxyd 4-Cyclohexyl-butin-(1)-carbonsäure-(1).  $C_6H_{11}\cdot CH_2\cdot CH_2\cdot C:CAg+AgNO_3$ . Schwer löslich in siedendem Alkohol.
- 3. 1-Methyl-3-isopropyl-cyclohexadien-(2.6), m-Menthadien-(2.6)  $C_{10}H_{16} = HC < CH_3 CH_2 > C \cdot CH(CH_3)_2$ . Diese Konstitution kommt wahrscheinlich dem Isocarvestren (H 5, 126) zu (J. L. SIMONSEN, The terpenes, Bd. I [Cambridge 1931], S. 191).
- 4. 1-Methyl-3-isopropyl-cyclohexadien-(4.6), m-Menthadien-(4.6)  $C_{10}H_{16} = HC < CH = CH > CH \cdot CH(CH_3)_2$ . B. Aus 5.6-Dibrom-m-menthan beim Erhitzen mit alkoh. Kalilauge (Henderson, Smeaton, Soc. 117, 149). Angenehm riechende Flüssigkeit.  $Kp_{760}$ : 169—171°.  $D_{50}^{\infty}$ : 0,8515.  $n_{50}^{\infty}$ : 1,4696;  $n_{50}^{\infty}$ : 1,4727;  $n_{7}^{\infty}$ : 1,4880. Beim Aufbewahren nehmen Dichte und Brechungsindex zu. Reagiert nur mit 2 Atomen Brom. Gibt mit Schwefelsäure eine rote, mit Schwefelsäure und Alkohol eine rotbraune, mit Schwefelsäure und Acetanhydrid eine violette Färbung.
- 5. 1-Methyl-3-isopropenyl-cyclohexen-(1 oder 6), m-Menthadien-(1.8(9) oder 6.8(9)), Silvestren und Carvestren  $C_{10}H_{16} = H_2C < CH_2 CH_3 > CH \cdot C < CH_3 > CH \ CH \ CH_3 > CH$
- a) Rechtsdrehendes Silvestren, d-Silvestren (H 125; E I 67). B. d-Silvestren kann mit besonders guter Ausbeute aus finnischem Kienöl isoliert werden, das im Lauf der Herstellung überhitzt worden ist; Sulfatterpentinöl, bei dessen Herstellung keine hohen Temperaturen angewandt wurden, gibt erst nach wochenlanger Einw. von feuchtem Chlorwasserstoff Silvestrenbishydrochlorid (Aschan, A. 461, 2). Beim Erhitzen von d-Δ-Caren auf 280°, neben α-Terpinen (Semmler, v. Schiller, B. 60, 1596). Aus den Monohydrochloriden des d-Δ-Carens (Pinonens) und des d-Δ-Carens (Isodiprens) bei ½-stdg. Kochen mit Anilin (Aschan, A. 461, 18, 23; Naphthenverbindungen, Terpene und Campherarten [Berlin-Leipzig 1929], S. 131, 133). Beugung von Röntgenstrahlen in Silvestren: Val-Dyanathan, Indian J. Phys. 3, 378; C. 1929 I, 2952. Liefert bei der Dehydrierung mit Nickel-Aluminiumoxyd bei 300—310° in schwachem Wasserstoffstrom m-Cymol (Herzenberg, Ruhemann, B. 58, 2262).
- b) Inaktives Silvestren, Carvestren (H 125). B. Aus Dipren-bis-hydrochlorid (= Carvestren-bis-hydrochlorid) durch Erhitzen mit Kaliumacetat und Eisessig oder mit Anilin (ASCHAN, A. 461, 24). Zur Bildung nach BAEYER (B. 27, 3488) vgl. A., A. 461, 25.
- 6. 1-Methyl-3-isopropenyl-cyclohexen-(6), m-Menthadien-(6.8(9)), Dipren C<sub>10</sub>H<sub>16</sub> = HC C(CH<sub>3</sub>)·CH<sub>2</sub> CH·C CH<sub>3</sub>. Zur Konstitution des Diprens vgl. Aschan, A. 461, 9; Wagner-Jauregg, A. 488 [1931], 178. Mit Dipren sind auch die aus Isopren erhaltenen Kohlenwasserstoffe C<sub>10</sub>H<sub>16</sub> von Harries (E I 1, 114) und von Ostromysslenski (,,β-Myrcen"; E I 1, 114) zu identifizieren (W.-J.). Das H 125 als m-Menthadien-(6.8(0)) beschriebene Isocarvestren ist nach J. L. Simonsen, The terpenes, Bd. I [Cambridge 1931], S. 191 als m-Menthadien-(2.6) aufzufassen. B. Dipren entsteht aus Isopren bei 10jährigem Aufbewahren in Kohlendioxyd-Atmosphäre im Dunkeln (Aschan, A. 439, 229), bei 4—5tägigem Erhitzen auf 85—90° (Ostromysslenski, ℋ. 47, 1910; C. 1916 I, 973; O., Koschelew, ℋ. 47, 1929; C. 1916 I, 1068; vgl. Wagner-Jauregg, A. 488, 185) und bei 6-tägigem Erhitzen mit wenig Eisessig auf 100° (Harries, A. 383 [1911], 206; vgl. W.-J., A. 488, 183); tritt daher auch als Nebenprodukt bei der Herstellung von synthetischem Kautschuk aus Isopren auf (A., B. 57, 1959). Riecht unangenehm anhaftend nach ranzigem rohem Olivenöl (A., A. 439, 225). An verschiedenen Präparaten wurde festgestellt Kp: 171—171,5°; D<sup>∞</sup><sub>1</sub>: 0,8535 (A., A. 439, 229); Kp<sub>752</sub>: 171,5° bis 173°; D<sup>∞</sup><sub>1</sub>: 0,8481; n<sup>∞</sup><sub>10</sub>: 1,4966 und Kp<sub>16</sub>: 68,5—69°; D<sup>∞</sup><sub>10</sub>: 0,8476; n<sup>∞</sup><sub>10</sub>: 1,4695 (A., B. 57, 1961); Kp<sub>752</sub>: 173—174°; D<sup>∞</sup><sub>1</sub>: 0,8454; n<sup>∞</sup><sub>10</sub>: 1,4754 und Kp<sub>12</sub>: 57—60°; D<sup>∞</sup><sub>10</sub>: 0,8399; n<sup>∞</sup><sub>10</sub>: 1,4738 (W.-J., A. 488, 184, 184). Verdickt sich leicht zu einem in Alkohol Iöslichem Produkt (Aschan, A. 439, 232). Geht bei wiederholter Destillation unter gewöhnlichem Druck teilweise in höhersiedende Produkte über, die flüssige Dihydrochloride liefern (A.,

A. 489, 228, 231). Liefert bei der Hydrierung in Gegenwart von Platinoxyd in Hexan m-Menthan (W.-J., A. 488, 184). Beim Behandeln mit Brom in Alkohol + Ather bei -10° entsteht ein schweres, zähflüssiges, gegen Permanganat beständiges Ol (A., A. 439, 231). Gibt mit Chlorwasserstoff-Eisessig Dipren-bis-hydrochlorid (S. 27) (A., A. 439, 224; 461, 10, 24).

7. 1 - Methyl - 4 - isopropyl - cyclohexadien - (1.3), p-Menthadien - (1.3),  $\alpha$ -Terpinen  $C_{10}H_{16}=CH_3\cdot C < CH_3\cdot CH_2 > C\cdot CH(CH_3)_2$  (H 126; E I 68). V. Im norwegischen Wacholderöl (Jermstad, Riechstoffind. 4, 45; C. 1929 I, 3044). In den äther. Ölen von Chenopodium ambrosoides var. anthelminticum (amerikanisches Wurmsamenöl) (Henry, Paget, Soc. 119, 1716; 127, 1652; vgl. Nelson, Am. Soc. 42, 1207), von Melaleuca linariifolia Smith und Melaleuca alternifolia Cheel (Penfold, J. Pr. Soc. N. S. Wales 59, 310, 320; C. 1927 II, 753) und von Ocimum viride Willd. (Glichitch, Bl. [4] 33, 1538). — B. Terpinene unbekannten Reinheitsgrades entstehen: Beim Schütteln von l-α-Phellandren (aus dem Ol von Eucalyptus dives) mit Phosphorsäure (D: 1,75), neben  $\gamma$ -Terpinen und anderen Produkten (Carter, Smith, Read, J. Soc. chem. Ind. 44, 545 T; C. 1926 I, 2466). Aus d- $\Delta$ -Caren beim Kochen mit Essigsäure sowie (neben d-Silvestren) bei 4-stdg. Erhitzen auf 280° (Semmler, v. Schiller, B. 60, 1596). Neben anderen Produkten bei der Einw. von Fullererde auf  $\alpha$ -Pinen bei Temperaturen zwischen —20° und +158° (Venable, Am. Soc. 45, 729) und bei zweimonatiger Einw. von wasserfreier Ameisensäure auf d-α-Pinen bei gewöhnlicher Temperatur (Reisman, Bl. [4] 41, 97). Neben Diterpenen bei der Einw. von Phosphorsäure (D: 1,75) auf d-α-Pinen und auf Cineol (C., Sm., Read, J. Soc. chem. Ind. Phosphorsäure (D: 1,75) auf d-α-Pinen und auf Cineol (C., Sm., Read, J. Soc. chem. Ind. 44, 546 T). Zur Bildung beim Erhitzen von Terpinhydrat mit verd. Schwefelsäure (H 127) vgl. Robert, Bl. Inst. Pin 1927, 155, 178; C. 1927 II, 2295. — Kp<sub>760</sub>: 181,5° (Lecat, Ann. Soc. scient. Bruxelles 48 I [1928], 115; 49 [1929], 112). Beugung von Röntgenstrahlen in Terpinen: Vaidyanathan, Indian J. Phys. 3, 378; C. 1929 I, 2952. Bildet azeotrope Gemische mit Benzylchlorid (Kp<sub>760</sub>: 176,9°; ca. 30 Gew.-% Terpinen), 2-Brom-toluol (Kp<sub>760</sub>: 181°), α-Dichlorhydrin (Kp<sub>760</sub>: 166,8°; 38 Gew.-% Terpinen), Phenol (Kp<sub>760</sub>: 171,5°; 55 Gew.-% Terpinen), Phenylacetat (Kp<sub>760</sub>: 180,3°; 85 Gew.-% Terpinen), o-Kresol (Kp<sub>760</sub>: 177,8°; 72 Gew.-% Terpinen), Diäthyloxalat (Kp<sub>760</sub>: 173,5°; 55 Gew.-% Terpinen), Dimethylsuccinat (Kp<sub>760</sub>: 178,0°; 68 Gew.-% Terpinen) und mit Anilin (Kp<sub>760</sub>: 174°; 58 Gew.-% Terpinen) (Lecat). Polymerisation beim Kochen mit Fullererde: Venable, Am. Soc. 45, 733. Beim Leiten von gewöhnlichem Terpinen aus Terpentinöl über Palladiumasbest im Kohlendioxydstrom von gewöhnlichem Terpinen aus Terpentinöl über Palladiumasbest im Kohlendioxydstrom bei 190° bilden sich aus 3 Mol Terpinen 2 Mol p-Menthan und 1 Mol p-Cymol (Zelinsky, Lewina, B. 62, 341). Ein ca. 30% p-Cymol enthaltendes α-Terpinen-Präparat liefert bei der Oxydation mit Benzopersäure in Chloroform bei 0° neben geringen Mengen anderer

Produkte 1.4-Oxido-p-menthen-(2) CH<sub>3</sub>·C CH<sub>2</sub>·CH<sub>2</sub> C·CH(CH<sub>3</sub>)<sub>2</sub> (Elson, Gibson, Si-CH\_CH/

MONSEN, Soc. 1929, 2734). α-Terpinen aus Chenopodiumöl liefert bei der Oxydation mit Permanganat in Aceton dl-anti- und dl-para-α.α'-Dioxy-α-methyl-α'-isopropyl-adipinsäure (E II 8, 345) (HENRY, PAGET, Soc. 119, 1721; 123, 1881; vgl. Wallach, A. 362, 298); bei der Oxydation mit Dichromat und Schwefelsäure erhält man  $\omega.\omega$ -Dimethyl-acetonylaceton und etwas Methyl-p-tolyl-keton (H., P., Soc. 127, 1657). Durch Kochen von Limonen mit alkoh. Schwefelsäure hergestelltes Terpinen liefert beim Kochen mit Schwefel p-Cymol

und geringere Mengen höhersiedender Produkte (Ruzioka, Meyer, Mingazzini, Helv. 5, 356). a. Terpinennitrosit, Terpinennitrosit C<sub>10</sub>H<sub>16</sub>O<sub>3</sub>N<sub>2</sub> (H 127). Wird CH<sub>3</sub>·C·NO<sub>2</sub> von Wieland, Reindel (A. 424, 94) als Verbindung nebenstehender Kon-H<sub>2</sub>C C- NH stitution aufgefaßt. Das Mol.-Gew. ist in Eisessig kryoskopisch (W. Biltz, Dissert. [Greifswald 1898], S. 14; W., R., A. 424, 96) und in Alkohol ebullio-С. СН (СН3)2 skopisch bestimmt (Biltz). — Gibt bei der Hydrierung in Gegenwart von Palladiumschwarz 1.2-Diamino-p-menthan (isoliert als Mono- und Dibenzoylderivat) und wenig nicht isoliertes 2-Amino-p-menthan (W., R.).

Verbindung C<sub>10</sub>H<sub>15</sub>O<sub>6</sub>N<sub>3</sub> (H 128). Auffassung als 1.2.2-Trinitro-p-menthen-(3) CH<sub>2</sub>>C<C(NO<sub>2</sub>)<sub>2</sub>·CH<sub>2</sub>C+CC(CH<sub>3</sub>)<sub>2</sub>: Wieland, Reindel, A. 424, 95.

Verbindung C<sub>18</sub>H<sub>21</sub>O<sub>4</sub>N<sub>2</sub> (H 128). Auffassung als 2.2-Dinitro-1-anilino-p-menthen-(3) C<sub>8</sub>H<sub>5</sub>·NH>C<C(NO<sub>2</sub>)<sub>2</sub>·CH>C·CH(CH<sub>2</sub>)<sub>2</sub>: Wieland, Reindel, A. 424, 95. Verbindung C<sub>20</sub>H<sub>31</sub>O<sub>4</sub>N<sub>3</sub> (H 128). Zur Konstitution vgl. Wieland, Reindel, A. 424, 95.

9. 1-Methyl-4-isopropyl-cyclohexadien-(1.4).  $\gamma$ -Terpinen (Crithmen, Moslen)  $C_{10}H_{16} = CH_3 \cdot C < CH_2 \cdot CH_3 \cdot C + CH(CH_3)_1$  (H 128; E I 69, 73). Zur Identität von Crithmen und Moslen mit  $\gamma$ -Terpinen vgl. Richter, Wolff, B. 60, 477; 63 [1930], 1714. —

V. In den äther. Ölen von Melaleuca linariifolia Smith und von Melaleuca alternifolia Cheel (PENFOLD, J. Pr. Soc. N. S. Wales 59, 310, 320; C. 1927 II, 753). Ein Seefenchelöl aus wildwachsendem Crithmum maritimum enthielt ca. 34% p. Terpinen (Richter, Wolff, B. 60, 478). In einem spanischen Thymianöl (Schimmel & Co., Ber. Schimmel 1922, 73; C. 1922 IV, 764). Im äther. Öl von Ocimum viride Willd. (Glichitch, Bl. [4] 33, 1538). In den äther. Ölen von Mosla japonica Maxim. und Mosla grosseserrata (Hoshino, Chem. Abstr. 1919, 3278; Murayama, J. pharm. Soc. Japan 1921, Nr. 475, S. 1, 5; C. 1922 I, 199, 200). B. Neben α-Terpinen und anderen Produkten beim Schütteln von 1-α-Phellandren (aus dem Öl von Eucalyptus dives) mit Phosphorsäure (D: 1,75) (Carter, Smith, Read, J. Soc. chem. Ind. 44, 545 T; C. 1926 I, 2466). — Physiologisches Verhalten: v. Graevenitz, Ar. Pth. 104, 310; C. 1925 I, 1101.

γ-Terpinen-nitrosochlorid C<sub>10</sub>H<sub>16</sub>ONCl (E I 5, 73). F: 111° (Murayama, J. pharm. Soc. Japan 1921, Nr. 475; S. 2, C. 1922 I, 200; Richter, Wolff, B. 60, 478). — Gibt beim Erwärmen mit Natriumäthylat-Lösung auf dem Wasserbad 2.2'-Azoxy-p-cymól, bei manchen

Versuchen auch 2.2'-Azo-p-cymol (M.; R., W.).

γ-Terpinen-nitrolanilid C<sub>16</sub>H<sub>22</sub>ON<sub>2</sub>. F: 126—128° (Murayama, J. pharm. Soc. Japan 1921, Nr. 475, S. 2; C. 1922 I, 200).

γ-Terpinen-nitrolpiperidid C<sub>15</sub>H<sub>26</sub>ON<sub>2</sub> (E I 5, 73). Tafeln. F: 149° (Richter, Wolff, B. 63 [1930], 1719), 142—143° (Murayama, J. pharm. Soc. Japan 1921, Nr. 475, S. 2; C. 1922 I, 200).

 $\gamma$ -Terpinen-nitrosat C<sub>10</sub>H<sub>16</sub>O<sub>4</sub>N<sub>2</sub> (E I 5, 73). Krystalle (aus Essigester + Methanol + Wasser). F: 116° (Zers.) (RICHTER, WOLFF, B. 63 [1930], 1719), 114° (MURAYAMA, J. pharm. Soc. Japan 1921, Nr. 475, S. 2; C. 1922 I, 200).

- 10. 1-Methyl-4-isopropyl-cyclohexadien-(1.5), p-Menthadien-(1.5).  $\alpha\text{-Phellandren } C_{10}H_{16} = CH_3 \cdot C \leqslant \overset{CH}{CH} \cdot \overset{CH}{CH_2} > CH \cdot CH(CH_3)_2.$
- a) Rechtsdrehendes p-Menthadien-(1.5),  $d-\alpha$ -Phellandren (H 129; vgl. E I 69). Beugung von Röntgenstrahlen in d- $\alpha$ -Phellandren: Vaidyanathan, Indian J. Phys. 3, 378; C. 1929 I, 2952.
- b) Linksdrehendes p Menthadien (1.5), l-α-Phellandren (H 130; vgl. E I 69). V. Im ätherischen Öl von Melaleuca acuminata (SMITH, CARTER, READ, Soc. 125, 933). Isolierung aus den Ölen von Eucalyptus dives und Eucalyptus phellandra durch wiederholte Vakuumdestillation, Schütteln mit wäßr. Resorcin-Lösung und nachfolgende Wasserdampfdestillation: Smith, Hurst, Read, Soc. 123, 1660. — Physikalische Eigenschaften von Präparaten aus Eucalyptus dives:  $Kp_{16}$ :  $58-59^{\circ}$ ;  $D_{1}^{\infty}$ : 0.8410;  $n_{1}^{\infty}$ : 1.4732;  $[\alpha]_{1}^{\infty}$ :  $-112.0^{\circ}$  (unverdünnt);  $Kp_{768,2}$ :  $171-172^{\circ}$ ;  $Kp_{22}$ :  $67-68^{\circ}$ ;  $D_{1}^{\infty}$ : 0.8425;  $n_{2}^{\infty}$ : 1.4725;  $[\alpha]_{1}^{\infty}$ :  $-112.76^{\circ}$  (unverdünnt); eines Präparats aus E. phellandra:  $Kp_{16,5}$ :  $62.5-63.5^{\circ}$ ;  $D_{2}^{\infty}$ : 0.8421;  $n_{2}^{\infty}$ : 1.4744;

[a] : -36,75° (unverdünnt) (Sm., H., R.).

Wandelt sich beim Leiten über einen Nickelkatalysator bei 280° in p-Cymol und p-Menthan um (Treibs, Schmidt, B. 60, 2341). Bei der Oxydation von l-α-Phellandren (aus Eucalyptusölen) mit verd. Chromschwefelsäure bilden sich Thymochinon, Thymohydrochinon, 1-Isopropylbernsteinsäure, β-Isopropyl-γ-acetonyl-butyrolacton und α-Isopropyl-γ-acetyl-butyrolacton (Henry, Paget, Soc. 1928, 76, 80). Oxydation mit einer Lösung von Chromtrioxyd in Acetanhydrid: Treibs, Schmidt, B. 61, 465. Liefert bei längerem Schütteln mit Phosphorsäure (D: 1,75) einen Kohlenwasserstoff C<sub>20</sub>H<sub>32</sub> (Syst. Nr. 473), α-Terpinen und γ-Terpinen (Carter, Smith, Read, J. Soc. chem. Ind. 44, 545 T; C. 1926 I, 2466). Gibt beim Erhitzen mit Acrolein im Rohr auf 100° 5-Methyl-7-isopropyl-bicyclo-[2.2.2]-octen-(5)-aldehyd-(2) oder 2-Methyl-5-isopropyl-bicyclo-[2.2.2]-octen-(2) aldehyd-(7) (Formel I oder II); reagiert analog mit Crotonaldehyd (DIELS, ALDER, A. 470, 66, 88). Liefert mit Maleinsäure-anhydrid in



Benzol unter Wärmeentwicklung 5-Methyl-7-isopropyl-bicyclo-[2.2.2]-octen-(5)-dicarbonsäure-(2.3)-anhydrid (Formel III) (D., A., A. 460, 116). — Physiologisches Verhalten: v. Graeventz, Ar. Pth. 104, 310; C. 1925 I, 1101. — Gibt mit Guajakharz in Gegenwart von Peroxydase eine starke Blaufärbung (Gallagher, Biochem. J. 17, 522).

l-α-Phellandren-α-nitrosit C<sub>10</sub>H<sub>16</sub>O<sub>2</sub>N<sub>2</sub> (H 131). Zeigt in Benzol-Lösung das doppelte Mol.-Gew. (SMITH, CARTER, READ, Soc. 125, 936). — Darstellung aus reinem l-α-Phellandren: SMITH, HURST, READ, Soc. 123, 1663; aus dem äther. Öl von Melaleuca acuminata: Sm., C., R., Soc. 125, 933. — Nadeln (aus Aceton). Läßt sich nicht mit Hilfe der Krystallform vom β-Nitrosit unterscheiden (Sm., C., R., Soc. 125, 931). F: 121—122° (Zers.) (Sm., H., R., Soc. 123, 1664). Zeigt in Lösung Mutarotation; [α]β in Chloroform: +142,6° → -80,1° (194 Stdn.); in Benzol: +234,4° → -103,3° (333 Stdn.); in Aceton: +165,9° → -49,3° (338 Stdn.) (Anfangswerte nach 5 Min. abgelesen; c = 1,2) (Sm., H., R., Soc. 123, 1665); Smith, Carter, Read (Soc. 125, 934) fanden in Chloroform-Lösung raschere Drehungsänderung und Einstellung eines höheren Endwertes (—163,9° nach 116 Stdn.; c = 1). Einfluß der Temperatur und der Konzentration auf die Mutarotation und Änderung des Verlaufs der Mutarotation durch Zusatz von Piperidin: Sm., H., R., Soc. 123, 1665, 1667. — Läßt sich in reinem Zustande einige Wochen unzersetzt an der Luft aufbewahren, zeigt aber nach einigen Monaten einen niedrigeren, etwas unscharfen Schmelzpunkt; unreine Präparate zersetzen sich rasch unter Bildung eines gelben Öls (Sm., H., R., Soc. 123, 1664). Die ursprünglich farblosen Lösungen in Chloroform, Benzol und Aceton werden allmählich gelblich; konzentriertere Lösungen in Chloroform und Aceton werden zuletzt dunkelorangerot (Sm., H., R., Soc. 123, 1666).

1-α-Phellandren-β-nitrosit  $C_{10}H_{16}O_3N_2$  (H 131). Zeigt in Benzol-Lösung das doppelte Mol.-Gew. (SMITH, CARTER, READ, Soc. 125, 936). — Darstellung aus den äther. Olen von Melaleuca acuminata, Eucalyptus dives und Eucalyptus phellandra: SM., C., R., Soc. 125, 934. — Nadeln (aus Chloroform + Methanol). Läßt sich nicht mit Hilfe der Krystallform vom α-Nitrosit unterscheiden (SM., C., R., Soc. 125, 931). F: 105—1060 (SM., C., R., Soc. 125, 935), 105° (PAOLINI, R. A. L. [5] 30 II, 314). Sehr leicht löslich in kaltem Chloroform, schwerer in Aceton und Benzol, schwer in Schwefelkohlenstoff und Methanol (SM., C., R.). Zeigt Mutarotation;  $[\alpha]_0^{\infty}$  in Chloroform: —156,3°  $\rightarrow$  —66,5° (19 Stdn.),  $\rightarrow$ —100,2° (71 Stdn.); in Benzol: —118,0°  $\rightarrow$  ±0° (21 Stdn.); in Aceton: —111,1°  $\rightarrow$  +13,7° (139 Stdn.) (Anfangswerte nach 5 Min.; c = 1) (Sm., C., R., Soc. 125, 936). Einfluß von Piperidin auf die Mutarotation von Lösungen in Aceton und Chloroform: SM., C., R. — Die Lösungen, besonders in Aceton und Chloroform, färben sich allmählich tief orangerot (SM., C., R.).

Linksdrehendes 6-Nitro-1-methyl-4-isopropyl-cyclohexadien-(1.5), 6-Nitro-1- $\alpha$ -phellandren  $C_{10}H_{15}O_2N=CH_3\cdot C<\frac{C(NO_2):CH}{CH}$ CH- $CH_2$ CH- $CH(CH_3)_2$  (H 131). B. Zur Bildung durch Einw. von alkoh. Kalilauge auf die Nitrosite des 1- $\alpha$ -Phellandrens vgl. Paolini, R.A. L. [5] 30 II, 314; Smith, Carter, Read, Soc. 125, 938. — Riecht nach Chinon und greift die Augen an (P.). Kp<sub>12</sub>: 134—138° (P.); Kp<sub>12</sub>: 131—135°; Kp<sub>16</sub>: 135—139° (Sm., C., R.). D<sub>20</sub>: 1,046—1,057;  $n_1^{20}$ : 1,525—1,528;  $[\alpha]_1^{20}$ : —119,4° bis —120,4° (Chloroform) (Sm., C., R.). —Liefert bei der Reduktion mit Natrium und Alkohol 1- $\alpha$ -Carvomenthol und 1- $\beta$ -Carvomenthol (P., R. A. L. [5] 30 II, 266, 314). Lagert in Eisessig-Lösung 2 Atome Brom an unter Bildung eines rötlichbraunen, öligen Dibromids (Sm., C., R.).

- c) Inaktives p-Menthadien-(1.5), dl-α-Phellandren (H 131). B. Neben anderen Produkten bei der Reduktion von dl-Piperiton mit Natrium und absol. Alkohol (Read, Cook, Soc. 127, 2784). Kp<sub>10</sub>: 87°. n<sub>1</sub>°: 1,4798.
- 11. 1-Methyl-4-isopropyl-cyclohexadien-(2.4 oder 2.5), p-Menthadien-(2.4 oder 2.5)  $C_{10}H_{16} = CH_3 \cdot HC < CH_2 \cdot CH > C \cdot CH(CH_3)_2$  oder

CH<sub>3</sub>·HC<CH:CH>CH·CH(CH<sub>8</sub>)<sub>2</sub>. Moslen, dem diese Konstitution zugeschrieben wurde, s. im Artikel γ-Terpinen, S. 85.

- 12. 4-Isopropyl-1-methylen-cyclohexen-(2), p-Menthadien-(2.1(7)), β-Phellandren C<sub>10</sub>H<sub>16</sub> = CH<sub>2</sub>: CC<sub>CH</sub> CH<sub>2</sub> CH<sub>2</sub> CH · CH(CH<sub>3</sub>)<sub>2</sub> (H 131; E I 69, 70). V. Rechtsdrehendes β-Phellandren findet sich im äther. Öl von Rubieva multifida (Nelson, Am. Soc. 42, 1286), linksdrehendes β-Phellandren im Öl von Monodora myristica Dunal (Schimmel & Co., Ber. Schimmel 1924, 60; C. 1924 II, 892). d-β-Phellandren wird beim Leiten durch ein auf 300° erhitztes Glasrohr nicht verändert; beim Überleiten über Kupfer bei 300° erhält man p-Cymol und p-Menthan (Komatsu, Kurata, Mem. Coll. Sci. Kyoto Univ. [A] 11, 168; O. 1928 II, 1326). Physiologisches Verhalten von β-Phellandren: v. Graevenitz, Ar. Pth. 104, 310; C. 1925 I, 1101.
- 13. I-Methyl-4-isopropyliden-cyclohexen-(1), p-Menthadien-(1.4(8))· Terpinolen  $C_{10}H_{16}=CH_3\cdot C<\frac{CH_2\cdot CH_3}{CH_1\cdot CH_3}>C:C(CH_3)_3$  (H 133; E I 70). V. Im Terpentinöl aus dem Harz von Pinus silvestris (Krestinski, Ssolodki,  $\tilde{Z}$ . prikl. Chim. 2, 343, 350; C. 1929 II, 2383). Findet sich anscheinend im äther. Öl von Cachrys alpina Mb. (Rutowski, Winogradowa, Riechstoffind. 2, 194; C. 1928 I, 268). B. Neben anderen Produkten

durch mehrmonatige Einw. von wasserfreier Ameisensäure auf d-α-Pinen (REISMAN, Bl. [4] 41, 97). — Kp<sub>760</sub>: 186—187°; Kp<sub>13</sub>: 64,8—65° (Kr., Ss.); Kp<sub>14</sub>: 75° (Zelinsky, Lewina, B. 62, 341). Dampfdruck zwischen 40,5° (1,2 mm) und 178,9° (623,9 mm): Pickett, Peterson, Ind. Eng. Chem. 21 [1929], 325. D<sub>1</sub><sup>15,5</sup>: 0,8744 (P., P.); D<sub>2</sub><sup>20</sup>: 0,8623 (Kr., Ss.), 0,8628 (Z., L.).  $n_{\infty}^{\infty}$ : 1,4828;  $n_{\infty}^{\infty}$ : 1,4861;  $n_{\infty}^{\infty}$ : 1,4946;  $n_{\infty}^{\infty}$ : 1,5021 1) (Kr., Ss.);  $n_{\infty}^{\infty}$ : 1,4809 (P., P.);  $n_{\infty}^{\infty}$ : 1,4802 (Z., L.). — Liefert beim Überleiten über Palladiumasbest im schwachen Kohlendioxyd-Strom bei 160—170° unter 40 mm Druck p-Cymol und p-Menthan (Z., L., B. 62, 342). Gibt bei 2-tägigem Erhitzen mit Diazoessigester und Verseifen der bei 140—150° (13 mm) siedenden Anteile des Reaktionsprodukts die Säure CH<sub>3</sub>·C (CH<sub>2</sub>·CH<sub>2</sub>·C) (CH<sub>3</sub>)<sub>2</sub> (?) (Syst. Nr. 895) (STAUDINGER, Mitarb., Helv. 7, 403). — Physiologisches Verhalten: v. Graevenitz, Ar. Pth. 104, 310; C. 1925 I, 1101.

- 14. 1-Methyl-4-isopropenyl-cyclohexen-(1), p-Menthadien-(1.8(9)). Limonen  $C_{10}H_{16}=CH_3\cdot C < \stackrel{CH_3}{CH}\cdot CH_2 > CH\cdot C < \stackrel{CH_3}{CH_2}$ .
- a) Rechtsdrehendes p-Menthadien-(1.8(9)), d-Limonen (Carven) (H 133; E I 70). Zur Konfiguration vgl. v. Braun, Werner, B. 62, 1053. V. Das in äther. Ölen weit verbreitete d-Limonen findet sich in erheblichen Mengen in den äther. Ölen von Chamaecyparis obtusa Endl. (UCHIDA, J. Soc. chem. Ind. Japan Spl. 31, 160 B; C. 1928 II, 1577), aus den Blättern von Juniperus chinensis L. (U., J. Soc. chem. Ind. Japan Spl. 31, 190 B; C. 1928 II, 2198), aus Siler trilobum Scop. (Rutowski, Gussewa, Riechstoffind. 2, 230; C. 1928 I, 267) und aus den Blättern und Zweigenden von Zieria macrophylla Bonpland (Penfold, J. Pr. Soc. N. S. Wales 60, 108; C. 1928 I, 2509), als Hauptbestandteil im Schalenöl der Pampelmuse (Willimott, Wokes, Biochem. J. 20, 1300) und im äther. Öl der Samen von Sium latifolium L. (Proulewski, K. 54, 296, 299; C. 1923 III, 1028).
- B. Entsteht aus d-α-Pinen neben anderen Verbindungen bei 50-stdg. Erhitzen mit 1 Tl. Benzoesäure auf 145—150° (Delépine, C. r. 178, 2088; 179, 175; Bl. [4] 35, 1467, 1481), beim Erhitzen mit Pikrinsäure in Benzol auf 120° (D., Adida, Bl. [4] 39, 787) und bei mehrmonatiger Einw. von wasserfreier Ameisensäure (Reisman, Bl. [4] 41, 96). Neben anderen Produkten bei der fraktionierten Destillation des aus Aleppoterpentinöl und Chlorwasserstoff erhaltenen "flüssigen Pinenchlorhydrats" (D., Cachat, Bl. [4] 39, 1751). Aus dem sauren Phthalsäureester des d-α-Terpineols beim Einleiten von Wasserdampf in eine wäßrig-alkalische Lösung (Fuller, Kenyon, Soc. 125, 2308). Schwach rechtsdrehendes Limonen entsteht neben anderen Produkten beim Erhitzen von 1-Linalool mit japanischer saurer Erde auf 159° (Ono, Takeda, Bl. chem. Soc. Japan 2, 17; C. 1927 I, 2071). Zur Darstellung von reinem d-Limonen läßt man Magnesium in Gegenwart einer Spur Jod in Ather anfangs bei 0°, danach bei Zimmertemperatur und zuletzt unter Erwärmen auf d-Limonentetrabromie einwirken (v. Braun, Lemke, B. 56, 1563). Ein Handelspräparat von d-Limonen [[α]]. ± +116,1°) enthielt nach den Resultaten der Ozonspaltung ca. 80% Limonen, 12% Terpinolen und 8% α-Terpinen (Escoureou, Bl. [4] 43, 1099, 1212; C. 1926 I, 823).

Kp<sub>760</sub>: 177,8° (Lecat, R. 45, 623); Kp: 176—176,4° (v. Braux, Lemke, B. 56, 1563). D<sub>1</sub>°: 0,8411 (v. B., L.); D<sub>1</sub>°: 0,8526 (Pigulewski, Ж. 54, 299; C. 1923 III, 1028). n<sub>20</sub>°: 1,4749; n<sub>20</sub>°: 1,4771; n<sub>20</sub>°: 1,4797; n<sub>20</sub>°: 1,4902 (Hulburt, Astrophys. J. 54 [1921], 125). [α]: +126,1° (unverdiunt), +117,5° (Chloroform; c = 0,1) (v. B., L., B. 56, 1563), +107,8° (Alkohol; c = 5) (Fuller, Kenyon, Soc. 125, 2308); [α]<sub>1</sub>°: +116,68° (unverd.) (Pi.). Rotationsdispersion: Pi.; Hulburt, Astrophys. J. 54, 124. Absorption von Röntgenstrahlen (λ = 0,715 Å): Taylor, Phys. Rev. [2] 20, 711; C. 1924 I, 8; von ultrarotem Licht zwischen 1 und 15 μ: W. W. Coblentz, Investigations of infra-red spectra [Washington 1905], S. 265. Beugung von Röntgenstrahlen in d-Limonen: Vaidyanathan, Indian J. Phys. 3, 378; C. 1929 I, 2952. Elektrische Doppelbrechung: De Mallemann, C. r. 180, 1483. Magnetische Rotationsdispersion: Hulburt. Sehr leicht Isslich in flüssigem Schwefeldioxyd mit gelber Farbe, unlöslich in flüssigem Ammoniak (DE Carli, G. 57, 352). d-Limonen enthaltende binäre Azeotrope s. in der Tabelle S. 89. Brechungsindices und Rotation von Lösungen in Aceton, Cyclohexan, Benzol, Toluol, Xylol und Bromnaphthalin: Wolf, Volemann, Ph. Ch. [B] 3, 144. Einfluß auf die Lichtabsorption von Chlortrinitromethan, Bromtrinitromethan und Dibromdinitromethan in Alkohol: Graham, Macbeth, Soc. 119, 1365, 1366. — Chemisches und physiologisches Verhalten von d-Limonen s. S. 90.

d-Limonen- $\alpha$ -nitrosochlorid  $C_{10}H_{10}ONCl$  (H 135). Darstellung durch Behandlung von Limonen mit Äthylnitrit und konz. Salzsäure in Eisessig + Alkohol: Graybeal, Kremers, J. am. pharm. Assoc. 11, 254; C. 1923 I, 1618; durch Einleiten von Stickoxyden

<sup>1)</sup> Nicht ganz reines, schwach rechtsdrehendes Präparat.

#### d-Limonen enthaltende binäre Azeotrope.

| Komponente                        | Kp760<br>0          | Gew%<br>d-Limonen | Komponente                                 | Кр <sub>780</sub><br>0 | Gew%<br>d-Limonen |
|-----------------------------------|---------------------|-------------------|--------------------------------------------|------------------------|-------------------|
| 1.4-Dichlor-benzol 5) Methanol 1) | 174,2<br>64,63      | 14<br>0,8         | Methyl-n-hexyl-<br>keton 2)                | 170                    | ca. 43            |
| n-Hexylalkohol 6) .               | 155,5               | ca. 21            | Methylheptenon 4).                         | 170,9                  | 47,5              |
| Octanol-(1) 4)                    | 177, <del>4</del> 5 | ca. 92            | Acetamid 4)                                | 169,2                  | 84                |
| Octanol-(2) 6)                    | 174,5               | ca. 55            | Propionamid 2)                             | 172                    | 80                |
| Cyclobexanol 8)                   | 159,25<br>177,5     | 26,5<br>93        | Isoamylbutyrat 3) .<br>Isobuttersäure 9) . | 176,5                  | ca. 55<br>22      |
| Phenylacetat 7) p-Kresol 9)       | 177,6               | 96                | n-Capronsäure 8)                           | 152,5<br>177,0         | ca. 95            |
| Benzylalkohol 8)                  | 176,4               | 89                | Dimethylmalonat 4)                         | 167.3                  | 52                |
| Athylenglykol •)                  | 163,5               | 74                | Diathylmalonat 6).                         | 177.5                  | 90                |
| Pinakon ()                        | 171                 | ca. 55            | Dimethylsuccinat 4)                        | 175,5                  | 74                |
| Glycerin 6)                       | 177,7               | ca. 99            | Furfurol 4)                                | 155,95                 | 65                |

1) LECAT, R. 45, 623. — 2) L., R. 46, 243, 245. — 2) L., Ann. Soc. scient. Bruxelles 45 I [1926], 175. — 4) L., Ann. Soc. scient. Bruxelles 45 I, 287, 289. — 5) L., Ann. Soc. scient. Bruxelles 47 I [1927], 24. — 6) L., Ann. Soc. scient. Bruxelles 48 I [1928], 56, 59. — 7) L., Ann. Soc. scient. Bruxelles 48 I, 117. — 6) L., Ann. Soc. scient. Bruxelles 49 [1929], 18, 20. — 6) L., Ann. Soc. scient. Bruxelles 49, 110, 112.

und Chlorwasserstoff in eine Lösung von Limonen in Äther + Eisessig unter Kühlung mit Eis-Kochsalz-Gemisch: Rupe, Helv. 4, 149.

- b) Linksdrehendes p-Menthadien-(1.8(9)), l-Limonen (H 136; E I 71). V. l-Limonen findet sich in erheblichen Mengen im spanischen Terpentinöl (aus Pinus pinea) (Dupont, Barraud, Bl. [4] 35, 629; Lacrué, Bl. Inst. Pin 1929, 100; C. 1929 II. 2269), im åther. Öl von Cymbopogon nervatus Chiov. (= Andropogon schoenanthus var. nervatus) (Naalöl) (Joseph, Whitfeild, J. Soc. chem. Ind. 41, 145 T; C. 1922 IV, 673), im amerikanischen Wurmsamenöl (von Chenopodium ambrosoides var. anthelmintica) (Nelson, Am. Soc. 42, 1207; Henry, Paget, Soc. 127, 1654), im kaukasischen Verbena-Öl (Rutowski, Winogradowa, Riechstoffind. 3, 192; C. 1929 I, 156) und im åther. Öl aus den Blättern von Calamintha umbrosa Benth. (ca. 65%) (Moudgill, J. Soc. chem. Ind. 43, 164 T; C. 1924 II, 2091). B. l-Limonen entsteht neben anderen Produkten aus l-β-Pinen beim Erhitzen mit Benzoesäure unter verschiedenen Bedingungen (Delépine, C. r. 178, 2088; Bl. [4] 35, 1474, 1481; Austerweil, Petrovici, Bl. [4] 39, 1738; Au., Bl. [4] 41, 1088), bei der Einw. von Trichloressigsäure bei höchstens 60° (Delépine, C. r. 178, 2088; Bl. [4] 35, 1479) und beim Erhitzen mit Pikrinsäure in Benzol auf 120° (Delépine, Adida, Bl. [4] 39, 788). Zur Darstellung von reinem l-Limonen aus l-Limonen-tetrabromid verfährt man wie bei der Darstellung von reinem d-Limonen (S. 88) (v. Braun, Lemke, B. 56, 1663). Kp: 176—176,4°; D. 0,8422 (v. B., L.). [a]<sub>0</sub>: —122,1° (unverdünnt) (v. B., L.); [a]<sub>n</sub>: —123,7° (unverdünnt) (Dupont, Barraud, Bl. [4] 35, 630). Chemisches und physiologisches Verhalten von l-Limonen s. S. 90 bei Dipenten.
- c) Inaktives p-Menthadien (1.8(9)). dl Limonen, Dipenten (H 137; E I 72). V. Dipenten findet sich in erheblichen Mengen: Im äther. Öl aus fossilem Kauri-Harz (Sumpfharz) von Agathis australis (Hosking, R. 48, 632). Im Fichtenterpentinöl aus der Bukowina (Czerny, Bulet. Soc. chim. România 6, 40; C. 1924 II, 674). Im äther. Öl aus den Früchten von Kanthoxylum piperitum Don. (Uchida, J. Soc. chem. Ind. Japan Spl. 31, 216 B; C. 1828 II, 2296). Im alkoh. Extrakt der Baumwollpflanze (Power, Chesnut, Am. Soc. 48, 2731). Im äther. Öl von Satureja montana (Leone, Angelescu, G. 51 II, 390). In sizilianischem Origanumöl (L., A., G. 52 I, 165). Im äther. Öl von Aster indicus L. (Uchida, J. Soc. chem. Ind. Japan Spl. 31, 215 B; C. 1928 II, 2296). Rao, Sudborough, Watson (J. indian Inst. Sci. [A] 8, 160; C. 1926 I, 1482) konnten im Cubebenöl entgegen der Angabe von Wallace (A. 238, 80 Anm.) kein Dipenten nachweisen.
- H 137, Z. 28—29 v. o. statt "Im Muskatnußöl (WALL., A. 227, 228;" lies "Im Macis-bzw. Muskatnußöl (WALL., A. 252, 105;"
  - Z. 31 v. o. statt "Ar. 288" lies "Ar. 280".
- B. Neben anderen Produkten beim Überleiten von d-Limonen über Kupfer bei 200° (Κοματευ, Κυβατα, Mem. Coll. Sci. Kyoto Univ. [A] 11, 166; C. 1928 II, 1326). Bei der Destillation von Terpinhydrat oder flüssigem α-Terpineol (s. H 6, 62) mit japanischer saurer Erde bei 200° (Ono, Bl. chem. Soc. Japan 1, 249, 250; C. 1927 I, 1004). Beim Überleiten

von d-Linalool über auf Ton aufgetragenes Aluminiumoxyd bei 310° (Rosanow, Ж. 61, 2311; C. 1930 II, 229). Bei der Einw. von Fullererde auf α-Pinen bei Temperaturen 2311; C. 1930 II, 229). Bei der Einw. von Fullererde auf α-Finen bei Temperaturen zwischen —20° bis +158° (Venable, Am. Soc. 45, 729). Beim Erwärmen von Pinenhydrat (Syst. Nr. 508) mit konz. Schwefelsäure (Austerweil, Bl. [4] 39, 694). Entsteht aus d-Carvon durch Umsetzung mit Hydrazinhydrat in absol. Alkohol und Erhitzen des schwer angreifbaren Anteils des Reaktionsprodukts mit Kaliumhydroxyd auf 300—350° in einem Kupfergefäß (ΜΕΚΕSΗΚΟΨΚΙ, Bl. [4] 37, 1185). Neben anderen Produkten beim Erhitzen von Cineol mit japanischer saurer Erde auf 180° (Ono, ΜΥΧΑΖΑΚΙ, Bl. chem. Soc. Japan 2, 208; C. 1927 II, 1827). Während Dipenten bei der Destillation von Naturautschuk unter gewöhnlichem Druck in erheblicher Wenge erhalten wird (vol. H. 5, 138 kautschuk unter gewöhnlichem Druck in erheblicher Menge erhalten wird (vgl. H 5, 138 sowie Staudinger, Geiger, Helv. 9, 555, 556; Midgley, Henne, Am. Soc. 51, 1221), tritt es bei der Destillation im Hochvakuum nur in geringer Menge auf (E. Fischer, Harries, es bei der Destitation im Hochvaktum nur in geringer Menge auf (E. Fischer, Harries, B. 35 [1902], 2163; St., Fritschi, Helv. 5, 797). — Kp<sub>10</sub>: 54,5—55,5° (St., G., Helv. 9, 556). Dampfdruck zwischen 21,1° (1,5 mm) und 170,3° (695,5 mm): Pickett, Peterson, Ind. Eng. Chem. 21, 325; C. 1929 II, 36. Diss: 0,8481; ng: 1,4743 (Pi., Pe.). Beugung von Röntgenstrahlen in Dipenten: Vaidyanathan, Indian J. Phys. 3, 378; C. 1929 I, 2952. Thermische Analyse des Systems mit Camphen: Austerweil, C. r. 178, 1174.

Chemisches und physiologisches Verhalten von d-Limonen, l-Limonen und

Dipenten. d-Limonen wandelt sich beim Überleiten über Palladiumasbest im schwachen Kohlendioxyd-Strom bei 180-185° oder bei 130° unter 120 mm Druck (Zelinsky, B. 57,

2058) oder über einen Nickelkatalysator bei 280° (TREIBS, SCHMIDT, B. 60, 2340) in p-Cymol und p-Menthan um. Beim Überleiten von d-Limonen über Kupfer bei 200° erhält man p-Cymol, p-Menthan, Dipenten und Carvomenthen; bei 280—300° erfolgt vollständige Dehydrierung zu p-Cymol (Komatsu, Kurata, Mem. Coll. Sci. Kyoto Univ. [A] 11, 166; C. 1928 II, 1326). d-Limonen liefert bei längerem Schütteln mit Phosphorsäure (D: 1,75) C. 1928 II. 1326). d-Limonen liefert bei langerem Schutteln mit Phosphorsaure (D: 1,76) ein Diterpen C<sub>20</sub>H<sub>32</sub> (Syst. Nr. 473) und geringe Mengen α-Terpinen (Carter, Smith, Read), J. Soc. chem. Ind. 44, 545 T; C. 1926 I, 2466). Polymerisation von Limonen beim Kochen mit Fullererde: Venable, Am. Soc. 45, 733. d-Limonen liefert bei 14—18-tägiger Einw. von 30%igem Wasserstoffperoxyd in Eisessig bei gewöhnlicher Temperatur hauptsächlich p-Menthen-(8(9))-diol-(1.2) (vgl. dazu Meerwein, J. pr. [2] 113, 9, 14); daneben erhält man geringe Mengen cis-Terpinhydrat, eine Verbindung, die mit Bromwasserstoff in Äther ein Dihydrobromid C<sub>10</sub>H<sub>18</sub>Br<sub>2</sub> (F: 44—45°) liefert, eine Säure C<sub>2</sub>H<sub>14</sub>O<sub>4</sub> (isoliert als Ag<sub>2</sub>C<sub>8</sub>H<sub>14</sub>O<sub>4</sub>) und andere Produkte (Sword, Soc. 127, 1632). Das bei der Oxydation von d-Limonen mit Benzonersäure (Priesphalew, B. 42, 4814) entstehende Limonenoxyd ist d-Limonen mit Benzopersäure (PRILESHAJEW, B. 42, 4814) entstehende Limonenoxyd ist 1.2-Oxido-p-menthen-(8(9)) (MEERWEIN, J. pr. [2] 113, 15); Geschwindigkeit der Oxydation mit Benzopersäure in Chloroform und Tetrachlorkohlenstoff bei 0°: M., J. pr. [2] 113, 14, 28. Bei der Einw. von überschüssiger Benzopersäure auf Limonen werden 2 Atome Sauerstoff aufgenommen (Nametrin, Briussowa, J. pr. [2] 112, 172, 175;  $\Re. 57$ , 375). Ein teilweise racemisiertes d-Limonen ( $[\alpha]_1^{6}$ :  $+90,1^{0}$ ) lieferte bei der Oxydation mit verd. Chromschwefelracemisiertes d-Limonen ( $[a]_5$ :  $+\infty$ 0,1°) helefte bei der Oxydaton int verd. Einomenensäure schwach linksdrehendes  $\gamma$ . $\gamma$ -Dimethyl- $\beta$ -[ $\gamma$ -oxo-butyl]-butyrolacton (Homoterpenylsäuremethylketon; Syst. Nr. 2475) und geringe Mengen inakt. (?) p-Menthantriol-(1.2.8) vom Schmelzpunkt 121° (Henry, Paget, Soc. 1928, 75). Dipenten liefert bei der Oxydation mit einer kalten Lösung von Chromtrioxyd in Acetanhydrid + Tetrachlorkohlenstoff geringe Mengen dl-Carvon und dl-Carveolacetat (Treibs, Schmidt, B. 61, 462). Bei der Oxydation eines p-Cymol enthaltenden l-Limonen-Präparats aus amerikanischem Wurmsamenbl mit wäßr. Permanganat-Lösung erhielten HENRY, PAGET (Soc. 127, 1654) Oxyterpenylsäure und Lävulinsäure sowie Cuminaldehyd und Isopropenylbenzoesäure. Dipenten läßt sich in Gegenwart von Nickel zu p-Menthen-(1) und geringeren Mengen p-Menthan hydrieren (Armstrong, Hildfrich, Pr. roy. Soc. [A] 108, 128; C. 1925 II, 1505). Limonen wird durch Wasserstoff bei Gegenwart von Platinmohr oder Palladiummohr in Eisessig bei Sauerstoff-Ausschluß nicht hydriert; die Hydrierung setzt erst nach Behandlung der Katalysatoren mit Luft ein (Willstätter, Waldschmidt-Leitz, B. 54, 125, 129). Geschwindigkeit der Hydrierung von Limonen in Gegenwart von Platinschwarz oder Palladiumschwarz (aus den Oxyden) in Alkohol unter 2—3 Atm. Druck bei 25°: Kern, Shriner, Adams, Am. Soc. 47, 1149; der Hydrierung von l-Limonen bei Gegenwart von Platinschwarz in Alkohol bei 20°, auch im Gemisch mit anderen Verbindungen: Lebedew, Platonow, Soc. 1930, 324, 327, 331, 334; 3. 61, 2154, 2170; von Dipenten im Gemisch mit Camphen bei Gegenwart von Platinschwarz in Alkohol: LE., KOBLJANSKI, JAKUBTSCHIK, Soc. 127, 427. Zur katalytischen Hydrierung von d-Limonen (E I 73) vgl. ferner v. Braun, Werner, B. 62, 1057; Escourrou, Bl. [4] 43, 1212; C. 1926 I, 823. Das beim Einleiten von Chlorwasserstoff in eine Lösung von d-Limonen in Schwefelkohlenstoff (Wallach, Kremers, A. 270, 189) entstehende d-Limonen-monohydrochlorid wird bei länger dauernder Einw. von Chlorwasserstoff größtenteils racemisiert (v. B., W., B. 62, 1056). Limonen liefert beim Kochen mit Schwefel neben geringen Mengen p-Cymol in der Hauptsache höhersiedende Produkte (Ruzicka, Meyer, Mingazzini, Helv. 5, 356); beim Erhitzen mit Schwefel in Gegenwart von Thiocarbanilid entsteht p-Cymol in größerer Ausbeute (Austerweil, Peufaillit, D.R.P. 414912; C. 1925 II, 767; Frdl. 15, 238). Dipenten gibt beim Behandeln mit verd. Ammoniumdisulfit-Lösung in Gegenwart von Kieselgur p-Menthan-disulfonsäure-(1.8)(?) und andere Produkte (Kolker, Lapworth, Soc. 127, 314). I-Limonen gibt mit 2 Mol Bromtrinitromethan in eisgekühlter methylakoholischer Lösung ein Dibrom-dimethoxyp-menthan C<sub>12</sub>H<sub>22</sub>O<sub>2</sub>Br<sub>2</sub> (Kp<sub>0,8</sub>: 136°) (E. Schmidt, Bartholomé, Lübke, B. 55, 2106). Bei der Einw. von d-Limonen auf Phenol und β-Naphthol in Gegenwart von p-Toluolsulfonsäure entstehen ölige und harzige Produkte (Wuyts, D.R.P. 396106; Frdl. 14, 666; vgl. a. Schrauth, Quasebarth, B. 57, 858).

Physiologisches Verhalten von Limonen: E. Pfankuch in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt., Bd. I [Berlin-Leipzig 1930], S. 1294; von Dipenten: E. Gross in K. B. Lehmann, F. Flury, Toxikologie und Hygiene der technischen Lösungsmittel [Berlin 1938], S. 226. Einfluß von d- und l-Limonen auf die Keimung von Samen: Sigmund, Bio. Z. 146, 395; von Limonen auf das Wachstum junger Bohnenpflanzen: Ciamician, Ravenna, G. 51 I, 204.

Verwendung von Dipenten als technisches Lösungs- und Verdünnungsmittel: Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 83, 228. — Limonen gibt mit Antimonpentachlorid in Chloroform bei starker Verdünnung eine rosa, bei höherer Konzentration eine rotviolette bis violette, am Licht in Blau übergehende Färbung (STEINLE, KAHLENBERG, J. biol. Chem. 67, 453). Farbreaktionen von Limonen mit Aldehyden und Saccharose in alkoh. Schwefelsäure: Ekkert, P. C. H. 68, 578; C. 1927 II, 2522; 1928 I, 1587. Bestimmung von Dipenten neben Pinen durch Hydrierung in Eisessig in Gegenwart von Platin aus Oxyd: Conant, Carlson, Am. Soc. 51, 3465. Verhalten von Limonen bei der Jodzahl-Bestimmung nach Wijs: Pummerer, Rebmann, Reindel, B. 62, 1418.

- 15. 1-Methyl-4-isopropenyl-cyclohexen-(2)(?), p-Menthadien-(2.8(9))(?). Isolimonen  $C_{10}H_{16} = CH_3 \cdot HC < \begin{array}{c} CH_2 \cdot CH_2 \\ CH = CH \end{array} > CH \cdot C < \begin{array}{c} CH_2 \cdot (?) \\ CH_3 \cdot (?) \end{array}$  Linksdrehende Form, l-Isolimonen (H 139). V. Im amerikanischen Wurmsamenöl (von Chenopodium ambrodum territoria et al. 1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (
- Wurde nicht rein isoliert. Die Kohlenwasserstoff-Fraktionen des Chenopodium ambrosoides var. anthelminticum) (Henry, Paget, Soc. 127, 1649; vgl. H., P., Soc. 119, 1723). Wurde nicht rein isoliert. Die Kohlenwasserstoff-Fraktionen des Chenopodiumöls geben neben den auf andere Komponenten zurückzuführenden Reaktionsprodukten bei der Oxydation mit Permanganat in Aceton Essigsäure und geringe Mengen 1-Methyl-4-acetyl-cyclohexen-(2), bei der Oxydation mit Chromsäure p-Menthen-(8(9))-ol-(3)-on-(2) und liefern mit Brom in kaltem Chloroform inakt. 2.3.8.9-Tetrabrom-p-menthan (H., P., Soc. 119, 1717, 1721; 127, 1649, 1655, 1657).

Ein schwach linksdrehendes Isolimonen entsteht aus d-Carvon durch Umsetzung mit Hydrazinhydrat in absol. Alkohol, zuletzt bei Siedetemperatur und Erhitzen des Reaktionsprodukts mit Kaliumhydroxyd und etwas Platinschwarz auf 240° (ΜΕΒΕΒΗΚΟWSKI, Bl. [4] 37, 1184). — Κρ<sub>758,6</sub>: 171—173°. D<sup>0</sup>.: 0,8579; D<sup>∞</sup>.: 0,8230. n<sup>∞</sup>.: 1,4552; n<sup>∞</sup>.: 1,4606; n<sup>∞</sup>.: 1,4659; n<sup>∞</sup>.: 1,4733. — Verändert sich im Gegensatz zu dem l-Isolimonen von Tschugajew (H 139) beim Kochen mit Kalium nicht. Gibt bei der Hydrierung in Gegenwart von Palladium(II)-chlorid im Autoklaven unter 35 Atm. Druck p-Menthan.]

- 16. 1-Methylen-4-isopropyliden-cyclohexan, p-Menthadien-(1(7).4(8)). Crithmen  $C_{10}H_{16}=CH_2:C<\frac{CH_2\cdot CH_2}{CH_2\cdot CH_2}>C:C(CH_3)_2$  (?) (E I 73) s. bei  $\gamma$ -Terpinen, S. 85.
- 17. 4 Isopropenyl 1 methylen cyclohexan (?), p Menthadien (1(7).8(9)) (?)  $C_{10}H_{16} = CH_2 : C < \frac{CH_2 \cdot CH_2}{CH_2 \cdot CH_2} > CH \cdot C < \frac{CH_3}{CH_3}$  (?). B. Neben anderen Produkten durch Behandlung von salzsaurem Dihydroperillamin (Syst. Nr. 1595) mit Silbernitrit in Wasser und Erhitzen der vom Silberchlorid abfiltrierten Lösung bis zur Beendigung der Gasentwicklung (WIIJAMS, Ж. 61, 1580; С. 1930 I, 2086, 3039). Aus p-Menthen-(8(0))-ol-(1)(?) bei der Destillation unter vermindertem Druck und beim Kochen des sauren Phthalsäureesters mit 15% iger Kalilauge (W., Ж. 61, 1583, 1584). Flüssigkeit. Wird beim Aufbewahren gelb. Kp<sub>770</sub>: 172—175°; Kp<sub>18</sub>: 72—75°. An zwei Präparaten wurde festgestellt  $D_c^\infty$ : 0,8579 und 0,8598;  $n_D^\infty$ : 1,4769 und 1,4764. Gibt mit Isoamylnitrit und 33% iger Salzsäure in Eisessig bei —15° ein bei 68,5° schmelzendes Nitrosochlorid.

19. Bicyclo - [0.4.4] - decen - (2), Δ¹- Oktahydro-naphthalin, Δ¹-Oktalin, Δ¹-Dekalen C<sub>10</sub>H<sub>16</sub>, Formel I.
a) cis-Form. B. Im Gemisch mit cis-Δ²-Oktalin beim Erhitzen von cis-β-Dekalel vom Schmelzpunkt 105° mit Kalium-disulfat auf 200°, mit wasserfreier Oxalsäure oder mit wasserfreiem Zinkchlorid auf 180° bis 190° (Hückel, Friedrich, A. 451, 147).

b) trans-Form. Bildung neben trans-12-Oktalin s. u. bei diesem.

20. Bicyclo - [0.4.4] - decen - (3), Δ² - Oktahydro-naphthalin, Δ²-Oktalin, Δ²-Dekalen C<sub>10</sub>H<sub>16</sub>, Formel II.

a) cis-Form. B. Aus cis-2-Chlor-dekalin beim Behandeln mit siedendem Anilin, neben anderen Produkten (Borsche, Lange, A. 434, 225). Entsteht im Gemisch mit cis-Δ¹-Oktalin aus cis-β-Dekalol vom Schmelzpunkt 105° beim Erhitzen mit Kaliumdisulfat auf 200° oder weniger gut beim Erhitzen mit wasserfreier Oxalsäure oder mit wasserfreiem Zinkchlorid auf 180—190° (HÜCKEL. FRIEDRICH, A. 451, 147; vgl. H., A. 441, 47; EISENLOHR, POLENSKE, B. 57, 1642). — Ein reines Präparat zeigte: D<sup>(4,3)</sup><sub>1</sub>: 0,9191; n<sup>(3)</sup><sub>1</sub>: 1,4994 (FRIEDRICH, Dissert. [Göttingen 1927]. S. 34). Präparate, die vermutlich Δ¹-Oktalin enthielten (vgl. hierzu F., Dissert., S. 35) zeigten: Kp<sub>771</sub>: 194°; D<sup>(3)</sup><sub>1</sub>: 1,4912; n<sup>(3)</sup><sub>Mc</sub>: 1,4942; n<sup>(3)</sup><sub>D</sub>: 1,5014; n<sup>(3)</sup><sub>D</sub>: 1,5075 (EL, P.). — Ein Präparat, das nach Danneel (Dissert. [Göttingen 1927], S. 16) außerdem Δ³-Oktalin enthielt, zeigte: Kp<sub>15</sub>: 72—73°; D<sup>(2)</sup><sub>2</sub>: 0,915; n<sub>D</sub>: 1,4959 (B., L., A. 434, 225). — Gibt bei der Oxydation mit Permanganat in Sodalösung bei 0° cis-Cyclohexan-diessigsäure-(1.2) vom Schmelzpunkt 159—161° (H., F., A. 451, 147; B., L., A. 434, 229). Liefert beim Behandeln mit Wasserstoff in Gegenwart von Platinmohr in Äther oder Eisessig cis-Dekalin (H., A. 441, 47; H., Mitarb., A. 474, 141; El., P., B. 57, 1642). Gibt mit Brom in Chloroform 2.3(?)-Dibrom-dekalin vom Schmelzpunkt 170° 1), neben anderen Produkten (B., L., A. 434, 227).
b) trans-Form (H 142 als Oktahydronaphthalin B, E I 75 als ,β-Oktalin bezeichnet). B. Aus trans-β-Dekalol vom Schmelzpunkt 75° beim Erwärmen mit Zinkchlorid

b) trans-Form (H 142 als Oktahydronaphthalin B, E I 75 als "β-Oktalin" bezeichnet). B. Aus trans-β-Dekalol vom Schmelzpunkt 75° beim Erwärmen mit Zinkchlorid auf dem Wasserbad (Schrauth, Quasebarth, B. 57, 858). Bei der Bildung aus trans-β-Dekalol vom Schmelzpunkt 75° durch Wasserabspaltung mit Kaliumdisulfat entsteht trans-Δ²-Oktalin im Gemisch mit ca. 10% trans-Δ¹-Oktalin (Hückel, Friedrich, A. 451, 148; H., Naab, A. 502 [1933], 151). — F: —24°; D!°: 0,8936; n!º.¹: 1,4843 (H., B. 58, 1451, 1452; vgl. H., A. 451, 148). Verbrennungswärme: 1451 kcal/Mol (H., Mitarb., A. 474, 126). Beugung von Röntgenstrahlen durch flüssiges Δ²-Oktalin: Katz, Z. ang. Ch. 41, 335. — Ein nicht ganz einheitliches Präparat gibt bei der Oxydation mit Permanganat und etwas Soda in Wasser bei 0° trans-Cyclohexan-diessigsäure-(1.2), wenig trans-Cyclohexan-propionsäure-(1)-carbonsäure-(2) und ölige Säuren (H., F., A. 451, 148). Liefert beim Behandeln mit Wasserstoff in Gegenwart von Platinmohr in Äther (Eisenlohe, Polenske, B. 57. 1643) oder in Eisessig (H., A. 441, 47) trans-Dekalin. Gibt bei längerem Erwärmen mit Phenol und konz. Salzsäure auf dem Wasserbad 1(oder 2)-[4-Oxy-phenyl]-dekalin (Sch., Qu.).

21. Bicyclo-[0.4.4]-decen-(1(6)). Δ°-Oktahydro-naphthalin, Δ°-Oktalin C<sub>10</sub>H<sub>16</sub>, Formel III. Der von III. H<sub>2</sub>C CH<sub>2</sub> CH<sub>2</sub> CH<sub>2</sub> und Nametkin, Madajewa-Ssytschewa (B. 59, 373; Ж. 57, 387) und Nametkin, Glagolewa (B. 62, 1570; Ж. 61, 538) als Δ°-Oktalin beschriebene Kohlenwasserstoff C<sub>10</sub>H<sub>16</sub> ist nach Hückel, Naab (A. 502 [1933], 140; vgl. a. H., Blohm, A. 502, 114) ein Gemisch von Δ°-Oktalin mit etwa 10 % Δ¹(°)-Oktalin. — B. Beim Erhitzen von trans-1-Cyclopentyl-cyclopentanol-(2) mit Zinkchlorid auf 150° (Hückel, Mitarb., A. 474, 125; H., Z. anorg. Ch. 42, 482; vgl. a. H., Mitarb., A. 477 [1930]. 137). Aus 10-Chlor-9-nitroso-dekalin (S. 93) beim Kochen mit Natriummethylat in Methanol, neben anderen Produkten (H., Mitarb., A. 474, 132). — F: —34°; Kp<sub>750</sub>: 194°; Kp<sub>14</sub>: 79° (H., Mitarb., A. 474, 134). D<sup>50</sup>: 0,9170; n<sup>60</sup><sub>Hc</sub>: 1,4996 (H., Mitarb., A. 474, 134). Verbrennungswärme: 1450 kcal/Mol (H., Mitarb., A. 474, 126). Über Beugung von Röntgenstrahlen durch flüssiges Δ°-Oktalin vgl. Katz, Z. ang. Ch. 41, 336; Hückel, Mitarb., A. 474, 126. Bei der Einw von Ozon in Petrolöther hei 0° entsteht ein Ozonid C. H. O. (a. v.) peber

Bei der Einw. von Ozon in Petroläther bei  $0^{\circ}$  entsteht ein Ozonid  $C_{10}H_{16}O_3$  (s. u.) neben geringen Mengen eines ungesättigten Ketons  $C_{10}H_{14}O = H_2C \xrightarrow{CH_2 \cdot C \cdot CH_2 \cdot CH_2} CH_2 \cdot CH_2$ 

CH: C—CO—CH<sub>2</sub>
CH<sub>2</sub> CH<sub>2</sub> CH<sub>2</sub> CH<sub>2</sub> (Syst. Nr. 620); in essignaurer Lösung erhält man Cyclodecandion-(1.6) (Syst. Nr. 667), δ-Oxo-sebacinsäure und aus den Rückständen nach Erwärmen mit 20 % iger Natronlauge und Wasserdampfdestillation ebenfalls das Keton C<sub>20</sub>H<sub>14</sub>O (Hückel,

<sup>&</sup>lt;sup>1</sup>) Nach Dannerl (Dissert. [Göttingen 1927], S. 30) ist dieser Schmelzpunkt in 159° an berichtigen.

Mitarb., A. 474, 134; vgl. a. H., Gercke, Gross, B. 66 [1933], 563; H., Schnitzspahn, A. 505 [1933], 274). Beim Behandeln mit Benzopersäure in Chloroform erhält man cis-9.10-Oxido-oktalin (Nametrin, Glagolewa, B. 62, 1572; H., Mitarb., A. 474, 143). Liefert bei der Einw. von Wasserstoff in Gegenwart von Platinmohr in Eisessig bei 15° 65% cis-Dekalin und 35% trans-Dekalin; bei Verwendung von Äther als Lösungsmittel entstehen cis- und trans-Dekalin in gleichen Mengen (H., Mitarb., A. 474, 142). Δ°-Oktalin gibt beim Vermischen mit Äthylnitrit bei —10° und tropfenweisem Hinzufügen von konz. Salzsäure 10-Chlor-9-nitroso-dekalin (s. u.) (H., Mitarb., A. 474, 132). Bei der Einw. von Chlor in Chloroform bei —20° erhält man ein flüssiges Dichlorid und eine Verbindung C<sub>10</sub>H<sub>14</sub>Cl<sub>4</sub> vom Schmelzpunkt 167° (H., Mitarb., A. 474, 134).

△°-Oktalinozonid C<sub>10</sub>H<sub>16</sub>O<sub>3</sub>. B. Aus △°-Oktalin bei der Einw. von Ozon in Petroläther bei 0° (Hückel, Mitarb., A. 474, 134). — Krystalle (aus Alkohol). F: 168°. Verpufft beim Erhitzen auf dem Spatel. Ist im Vakuum unzersetzt destillierbar. Ist gegen siedendes

Wasser, Zink in Äther oder Aluminiumamalgam beständig.

0-Oktalin-nitrosochlorid, 10-Chlor-9-nitroso-dekalin  $C_{10}H_{16}ONCl = C_4H_8 < C(NO)$   $C_4H_8$ . B. Man vermischt 0-Oktalin bei  $-10^0$  mit frisch dargestelltem Athylnitrit und versetzt das Reaktionsgemisch tropfenweise mit konz. Salzsäure (Hückel, Mitarb., A. 474, 132; H., NAAB, A. 502 [1933], 143). — Blaue Krystalle von unangenehmem Geruch (aus Aceton). F: 91° (Zers.). — Zersetzt sich beim Aufbewahren, besonders am Sonnenlicht. Liefert beim Kochen mit Natriummethylat-Lösung 0-Oktalin, das bei 150° schmelzende Oxim eines Ketons 0-Oktalin (Syst. Nr. 620) und ein halogenhaltiges Produkt vom Schmelzpunkt 144°; dieses entsteht auch bei der Einw. von Piperidin oder Dekahydrochinolin auf 0-Oktalin-nitrosochlorid.

22. Bicyclo - [0.4.4] - decen - (1),  $\Delta^{1(0)}$  - Oktahydronaphthalin,  $\Delta^{1(0)}$  - Oktalin 1)  $C_{10}H_{16}$ . Formel IV. B. Entsteht neben anderen Produkten beim Erhitzen eines Gemisches von isomeren  $\beta$ -Dekalolen mit Zinkchlorid; wurde nach Behandlung mit Äthylnitrit und konz. Salzsäure als Nitrosochlorid (s. u.) isoliert (HÜCKEL, Mitarb., 4. 474, 124, 139).

Nitrosochlorid (C<sub>10</sub>H<sub>16</sub>ONCl)<sub>3</sub>. Krystalle (aus Aceton). F: 135° (HÜCKEL, Mitarb., A. 474, 139; vgl. H., NAAB, A. 502 [1933], 138 Anm. 1). — Liefert bei Einw. von Piperidin in Aceton ein Nitrolpiperidid C<sub>15</sub>H<sub>36</sub>ON<sub>2</sub>, dessen Schmelzpunkt je nach der Art des Erhitzens zwischen 173° und 181° liegt (H., Mitarb.; H., N.).

## 23. Oktaline C<sub>10</sub>H<sub>14</sub> von fraglicher Konstitution und Einheitlichkeit.

a) Prāparat von Borsche und Lange; technisches Oktalin. B. Beim Kochen von technischem Chlor-dekalin mit der gleichen Gewichtsmenge Anilin (Borsche, Lange, A. 434, 225). — Flüssigkeit von eigenartigem Geruch. Wurde durch Oxydation mit Permanganat gereinigt. Kp<sub>15</sub>: 76—78°. D<sup>20</sup>: 0,909. n<sub>D</sub>: 1,4902. — Färbt sich an der Luft gelblich. Liefert mit Brom in Chloroform bei 0° 2.3(?)-Dibrom-oktalin vom Schmelzpunkt 170° 2° und Tetrabrom-dekalin vom Schmelzpunkt 184°, neben anderen Produkten. Gibt beim Behandeln mit sodaalkalischer Permanganat-Lösung Cyclohexan-carbonsäure-(1)-[β-propion-säure]-(2), cis- und trans-Cyclohexan-diessigsäure-(1.2), Oxalsäure und eine Säure C<sub>10</sub>H<sub>16</sub>O<sub>5</sub> oder C<sub>10</sub>H<sub>16</sub>O<sub>5</sub> (F: 116—118°).

b) Präparat von Zelinsky. B. Aus x-Chlor-dekalin beim Erwärmen mit alkoh. Kalilauge auf dem Wasserbad (Zelinsky, B. 57, 2062; vgl. Hückel, B. 58, 1451). — Kp:

195—196°;  $D_{\bullet}^{m}$ : 0,9134;  $n_{\nu}^{m}$ : 1,4965 (Z.).

24. 3.7.7-Trimethyl-bicyclo-[0.1.4]-hepten-(2),  $\Delta^2$ -Caren,  $A^4$ -Caren,  $C_{10}H_{16} = \begin{array}{c} CH_3 \cdot C : CH \cdot CH \\ H_1C \cdot CH_3 \cdot CH \end{array}$   $C(CH_3)_2$ .

a) Rechtsdrehende Form, d-∆²-Caren, Pinonen. V. Im finnischen Kienöl und Sulfat-terpentinöl (Aschan, A. 461, 21). Im Kiefernwurzelöl, neben anderen Produkten (Semmler, v. Schiller, B. 60, 1593). Im öl von Andropogon Iwarancusa Jones (aus Sind), neben d-Piperiton (Simonsen, Soc. 121, 2295; 119, 1649). Im äther. Öl aus den Früchten von Piper cubeba Linn. (Rao, Shinter, Si., J. Soc. chem. Ind. 47, 93 T; C. 1928 I, 2414).

— Besitzt einen angenehmen, an Cymol erinnernden Geruch. Verschiedene Präparate zeigten Kp₁00: 101°; Kp₂03: 163—164°; Kp₂07: 165,5—167°; D₂08: 0,8565; 0,8552; n₂08: 1,474;

<sup>3</sup>) Nach Dannert (Dissert. [Göttingen 1927], S. 30) ist dieser Schmelzpunkt in 159° zu berichtigen.

<sup>&</sup>lt;sup>1</sup>) Wurde nach dem Literatur-Schlußtermin des Ergänzungswerks II [1. I. 1930] von HÜCKEL, NAAB (A 502 [1933], 138, 148) rein erhalten.

[α]<sub>0</sub>: +54,8°; +62,2° (SI., Soc. 119, 1649; 121, 2295). Kp: 164—166°; D<sub>4</sub>°: 0,857 (A., A. 461, 22). — Liefert beim Erhitzen auf 280° d-Silvestren und α-Terpinen (SE., v. SCH., B. 60, 1596). Nach Aschan (A. 461, 22) liefert d-A⁴-Caren bei der Oxydation mit Permanganat in warmer wäßriger Lösung Pinonsäure¹) und andere Produkte. Bei der Oxydation mit Permanganat in Aceton unter Kühlung erhält man d-1.1-Dimethyl-3-[γ-oxo-butyl]-cyclo-propan-carbonsäure-(2) und in geringer Menge ein viscoses Öl vom Kp<sub>67</sub>: 185°, das ein flüssiges Urethan liefert (SI., Soc. 121, 2295). Gibt bei der Oxydation mit Chromschwefelsäure optisch unreine l-trans-Caronsäure, Terebinsäure, Dimethylmalonsäure und ein Öl, das ein Semicarbazon vom Schmelzpunkt 205—207° liefert (Gibson, Si., Soc. 1929, 910). Bei der Einw. von Brom auf d-A⁴-Caren in Chloroform wird zunächst 1 Mol Brom aufgenommen, danach entwickelt sich Bromwasserstoff (Si., Soc. 119, 1649). Liefert beim Behandeln mit Chlorwasserstoff in absol. Äther unter Kühlung Pinonenmonohydrochlorid (s. u.) und Dipenten-bis-hydrochlorid (A., A. 461, 22), in essigsaurer Lösung bei 0° Dipenten-bis-hydrochlorid und wenig Silvestren-bis-hydrochlorid (Si., Soc. 121, 2298). Wird beim Erwärmen mit verd. Salzsäure zersetzt, beim Kochen mit verd. Schwefelsäure nicht verändert, beim Kochen mit Essigsäure in α-Terpinen umgewandelt (SEMMLER, v. SCHILLER, B. 60, 1596). — Keimtötende Wirkung: Penfold, Grant, Perfum. essent. Oil Rec. 17, 252; J. Pr. Soc. N. S. Wales 59, 349; C. 1926 II, 245′; 1927 II, 754. — Gibt in Essigsäureanhydrid gelöst mit konz. Schwefelsäure eine rote, rasch in tiefbraun übergehende Färbung (Si., Soc. 119, 1649).

- $\Delta^2$ -Caren-monohydrochlorid, Pinonenmonohydrochlorid C<sub>10</sub>H<sub>17</sub>Cl. B. Aus Pinonen in absol. Äther beim Einleiten von Chlorwasserstoff unter Kühlung (Aschan, A. 461, 22). Kp<sub>10</sub>: 75—80°. Gibt beim Erhitzen mit Anilin d-Silvestren.
- b) Linksdrehende Form,  $l-\Delta^2$ -Caren,  $,l-\Delta^4$ -Caren". B. Eine Verbindung, der vielleicht diese Konstitution zukommt, entsteht bei der Destillation von l-Caryl-xanthogensäuremethylester unter gewöhnlichem Druck (Menon, Simonsen, J. indian Inst. Sci. [A] 10, 2, 4; C. 1927 II, 1473). Kp<sub>685</sub>: 165—170°. D<sub>20</sub>°: 0,8551.  $n_2^{00}$ : 1,473.  $[\alpha]_D$ : —6,0° (Eisessig). Verhalten gegen Chlorwasserstoff in Eisessig: M., S.
- 25. 3.7.7 Trimethyl bicyclo [0.1.4] hepten (3),  $\Delta^8$  Caren  $C_{10}H_{16} = CH_3 \cdot C \cdot CH_2 \cdot CH$   $H_C^{\dagger} \cdot CH_2 \cdot CH_3 \cdot C(CH_3)_2.$
- a) Rechtsdrehende Form,  $d \Delta^3$ -Caren, Isodipren. V. In Harzen bzw. Terpentinölen von Pinus silvestris (Semmler, v. Schiller, B. 60, 1604; Rao, Simonsen, Soc. 127, 2497; Aschan, A. 461, 17; Dupont, Barraud, Chim. et Ind. 19, Sonder-Nr., S. 560; C. 1928 II, 2516; Arbusow, Ж. 61, 262; C. 1929 I, 2998; Krestinski, Ssolodki, Ž. prikl. Chim. 2, 348; C. 1929 II, 2383; Wienhaus, III. Nordiska Kemistmötet 1926, 211; C. 1929 I, 1440; vgl. A., A. 461, 6 Anm. 1). Im Kiefernwurzelöl (Se., v. Sch., B. 60, 1593). Im Kiefernstubbenöl (Aschan; Schimmel & Co., Ber. Schimmel 1928, 100; C. 1928 II, 2077; Kr., Ss.). Im Sulfatterpentinöl (Aschan). Im indischen Terpentinöl von Pinus longifolia Roxb. (Simonsen, Soc. 117, 573; Dupont, A. ch. [10] 1, 250; Mulany, Watson, Quart. J. indian chem. Soc. 3, 259; C. 1927 I, 1488; Lagache, Bl. Inst. Pin 1927, 234; C. 1928 I, 339; vgl. Robinson, Pr. chem. Soc. 27 [1911], 247). Im äther. Öl des Harzes von Pinus Merkusii (Si., Indian Forest Records 10 Tl. IV, S. 2; C. 1924 I, 2212).

S1., Indian Forest Records 10 11. IV, S. 2; C. 1924 1, 2212).

Farbloses, süß riechendes Öl. Kp: etwa 167—170°; Dp°: 0,8561; n<sub>D</sub>: 1,4754; [α]<sub>0</sub>°: +5,4° (Aschan, A. 461, 17). Kp: 170°; Kp<sub>10</sub>: 70°; D¹s: 0,8668; n<sub>587</sub>: 1,4675; [α]<sub>587</sub>: +16,9° (Dupont, A. ch. [10] 1, 268). Rotationsdisperson: D. Zwei Fraktionen zeigten Kp: 171—172°, 172—173°; D¹s: 0,8672, 0,8677; n<sub>0</sub>°: 1,4745, 1,4750; α<sub>D</sub>: +15,1°, +13,5° (Schimmel & Co., Ber. Schimmel 1928, 100). Kp<sub>10</sub>: 70°; D²s: 0,8635; n<sub>28</sub>\*: 1,4678; n<sub>28</sub>\*: 1,4682; n<sub>28</sub>\*: 1,4700; [α]<sub>578</sub>: +17,1°; [α]<sub>546</sub>: +19,9° (Lagache, Bl. Inst. Pin 1927, 235; C. 1928 I, 339). Kp<sub>760</sub>: 172—172,5°; Kp<sub>12</sub>: 52,6°; D<sub>1</sub>°: 0,8616; n<sub>0</sub>°: 1,4700; n<sub>1</sub>°: 1,4729; n<sub>1</sub>°: 1,4804; n<sub>2</sub>°: 1,4867; α<sub>D</sub>: +14,1° (l = 1 dm) (Krestinski, Ssolodki, Ž. prikl. Chim. 2, 348; C. 1929 II, 2383). D<sub>10</sub>°: 0,8573; n<sub>10</sub>°: 1,471 (Rao, Simonsen, Soc. 127, 2498). Kp<sub>705</sub>: 168—169°; Kp<sub>200</sub>: 123—124°; D<sub>20</sub>°: 0,8586; n<sub>10</sub>°: 1,469; α<sub>D</sub>: +7,7° (Si., Soc. 117, 573).

Wird beim Erhitzen mit 5%iger Schwefelsäure auf 100° in Kohlendioxyd-Atmosphäre nicht verändert (Simonsen, Soc. 117, 574). Liefert bei der Einw. von 50%iger Schwefelsäure in Essigsäure bei 60° ein Diterpen C<sub>20</sub>H<sub>32</sub> vom Kp<sub>10</sub>: 175°, etwas 1-Borneol und andere Produkte (Gibson, Si., Soc. 1929, 310). Wird durch Luftsauerstoff schnell oxydiert (Si., Soc. 117, 574). Die Lösung in Eisessig liefert beim Ozonisieren und nachfolgenden Behandeln mit Zinkstaub rechtsdrehendes 1.1-Dimethyl-2-[β-oxo-āthyl]-3-acetonyl-cyclopropan und ein stark riechendes Öl, das ein Disemicarbazon vom Schmelzpunkt 210° gibt (Semmler, v. Schiller, B. 60, 1597). d-Δ³-Caren gibt bei mehrtägiger Einw. von Wasserstoffperoxyd

<sup>1)</sup> Vermutlich aus beigemischtem Pinen (BEILSTEIN-Redaktion).

in essigsaurer Lösung bei 40°, zuletzt bei 60° und nachfolgendem Behandeln mit wäßrig-alkoholischer Kalilauge 3.7.7-Trimethyl-bicyclo-[0.1.4]-heptan-diol-(3.4) (d Caren-\$\beta\$-glykol) (F: 90-91°; Syst. Nr. 550) neben anderen Produkten (Pillay, Si., Soc. 1928, 361). Mit Permanganat erhält man in wäßr. Lösung auf dem Wasserbad trans-Caronsäure, in alkal. Lösung bei 0° d-Caren-glykol, Dimethylmalonsäure, eine Säure  $C_{10}H_{14}O_{3}$  [Nadeln aus verd. Alkohol; F: 136—137°] und ein viscoses Öl (Simonsen, Soc. 117, 576), in Aceton bei 0° die  $\alpha$ - und  $\beta$ -Form der 1-2.2-Dimethyl-3- $[\beta$ -oxy- $\beta$ -carboxy-propyl]-cyclopropan-carbonsäure-(1), cis- und trans-Caronsäure, cis-Homocaronsäure, asymm. Dimethylbernsteinsäure, Dimethylmalonsäure (SI., RAU, Soc. 123, 553) und daneben 3.7.7-Trimethyl-bicyclo-[0.1.4]-hepten-(3)on-(5)(Syst. Nr. 620) (SE., v. Sch., B. 60, 1603). Liefert bei der Oxydation mit Chromschwefelsäure hauptsächlich optisch unreine 1-trans-Caronsäure, Terpenylsäure und geringe Mengen Dimethylmalonsäure, cis-Caronsäure, Terebinsäure, d-Homoterpenylsäuremethylketon und andere Produkte (Gibson, Si., Soc. 1929, 307). Gibt bei der Oxydation mit 2 Mol Natriumhypochlorit-Lösung und einem Überschuß von Borsäure 3 (oder 4) - Chlor - 3.7.7 - trimethylbicyclo-[0.1.4]-heptanol-(4 oder 3) (Chloroxycaran; Syst. Nr. 508) und wahrscheinlich ein Gemisch isomerer Dichlor-dioxy-methyl-isopropyl-cyclohexane (Pillay, Si., Soc. 1928, 364). Liefert bei der Hydrierung in Gegenwart von Platinschwarz in Ather Caran (Krestinski, SSOLODKI, Ž. prikl. Chim. 2, 348; Č. 1929 II, 2384). Bei der Einw. von Brom in Chloroform wird 1 Mol Brom aufgenommen, bei weiterer Einw. entwickelt sich Bromwasserstoff (SIMONSEN, Soc. 117, 574). △8-Caren gibt beim Einleiten von Chlorwasserstoff in absol. Äther △8-Carenmonohydrochlorid sowie hochschmelzendes Dipenten-bis-hydrochlorid; wird das Einleiten von Chlorwasserstoff nach Entfernung des Athers in salzsaurer Lösung fortgesetzt, so entstehen auch geringe Mengen Silvestren-bis-hydrochlorid (Aschan, A. 461, 18). Simonsen (Soc. 117, 575) erhielt beim Sättigen der Lösung von  $\Delta^3$ -Caren in absol. Äther mit Chlorwasserstoff unter Kühlung bis zur Sättigung nach 2-tägigem Aufbewahren d-Silvestren-bis-hydrochlorid und Dipenten-bis-hydrochlorid. — Keimtötende Wirkung: Penfold, Grant, Perfum. essent. Oil Rec. 17, 252; J. Pr. Soc. N. S. Wales 59, 349; C. 1926 II, 2458; 1927 II, 754. — Gibt mit Essigsäureanhydrid und konz. Schwefelsäure vorübergehend eine grüne Färbung (SI., Soc. 117, 574).

d-∆8-Caren-monohydrochlorid, Isodiprenmonohydrochlorid C<sub>10</sub>H<sub>17</sub>Cl. Aus d-Δ³-Caren in absol. Ather beim Einleiten von Chlorwasserstoff (Aschan, A. 461, 18).

— Siedet bei gewöhnlichem Druck unter geringer Zersetzung. Kp<sub>7</sub>: 77—83°. [α]<sub>D</sub>: +0,8°.

— Beim Erhitzen mit Anilin im Olbad entsteht d-Silvestren (S. 84). Bei der Einw. von

feuchtem Chlorwasserstoff in Eisessig erhält man Silvestren-bis-hydrochlorid.
d-4°-Caren-nitrosochlorid C<sub>10</sub>H<sub>16</sub>ONCl. B. Bei der Einw. von Salzsäure auf ein Gemisch von d-4°-Caren und Athylnitrit in Eisessig und Alkohol unter Kühlung (LAGACHE, Bl. Inst. Pin 1927, 237; C. 1928 I, 339; DUPONT, BARRAUD, Chim. et Ind. 19 Sonder-Nr., S. 561; C. 1928 II, 2516). — Sehr zersetzliche Krystalle (aus Ather). F: 101—102° (L.), 102° bis 103° (D., B.). Löslich in Chloroform, Ather, Aceton, Petroläther und Benzol (L.). [a] 578:  $+254.8^{\circ}$ ; [ $\alpha$ ]<sub>546</sub>:  $+288.6^{\circ}$  (Benzol; c = 1,3) (L.). Nitrosocaren C<sub>10</sub>H<sub>15</sub>ON. B. Durch Behandeln von d- $\Delta$ <sup>8</sup>-Caren-nitrosochlorid mit

alkoh. Natronlauge (LAGACHE, Bl. Inst. Pin 1927, 238; C. 1928 I, 339; DUFONT, BARRAUD, Chim. et Ind. 19, Sonder-Nr., S. 561; C. 1928 II, 2516). — Krystalle (aus Alkohol). F: 89°

bis 90° (L.; D., B.).  $[\alpha]_{578}$ : +160°;  $[\alpha]_{546}$ : +185° (Alkohol; c = 0.6) (L.).

d-Δ<sup>8</sup>-Caren-nitrolmethylamin C<sub>11</sub>H<sub>20</sub>ON<sub>2</sub>. B. Aus d-Δ<sup>8</sup>-Caren-nitrosochlorid beim Erwärmen mit Methylamin in Alkohol auf dem Wasserbad (LAGACHE, Bl. Inst. Pin 1927, 238). — Krystalle. F: 180°. Löslich in fast allen organischen Lösungsmitteln.  $[\alpha]_{578}$ : +153,9°;  $[\alpha]_{546}$ : +188,9° (Alkohol; c = 1,2).

d-Δ<sup>2</sup>-Caren-nitrolathylamin C<sub>12</sub>H<sub>22</sub>ON<sub>2</sub>. B. Analog der vorangehenden Verbindung. Krystalle (aus Alkohol). F: 155° (LAGACHE, Bl. Inst. Pin 1927, 239). Löslich in fast

allen organischen Lösungsmitteln. [ $\alpha$ ]<sub>578</sub>: +135,6°; [ $\alpha$ ]<sub>546</sub>: +176° (Alkohol; c = 3). d- $\Delta$ <sup>2</sup>-Caren-nitrolpropylamin C<sub>13</sub>H<sub>24</sub>ON<sub>2</sub>. B. Analog den vorangehenden Verbindungen. — Krystalle (aus Alkohol). F: 95° (Lagache, Bl. Inst. Pin 1927, 239). [ $\alpha$ ]<sub>578</sub>:

 $+123,4^{\circ}$ ;  $[\alpha]_{546}$ :  $+181,4^{\circ}$  (Alkohol; c=2).

- d- $\Delta^{3}$ -Caren-nitrosat  $C_{10}H_{16}O_{4}N_{2}$ . B. Aus d- $\Delta^{3}$ -Caren und Isoamylnitrit in Eisessig bei langsamem Zusatz von Salpetersäure (D: 1,4) unter Kühlung (Simonsen, Soc. 117, 574; 121, 2293 Anm.; Aschan, A. 461, 20). — Prismen (aus Chloroform + Petroläther oder aus Chloroform + Methanol). Schmilzt, langsam erhitzt, bei 142°, rasch erhitzt bei 146° (A.); zersetzt sich bei 147,5° (Si., Soc. 121, 2293 Anm.). Sehr schwer löslich in Methanol, Alkohol und Petroläther, löslich in Aceton und Chloroform (Si., Soc. 117, 574).
- Linksdrehende Form,  $l-\Delta^3$ -Caren. V. Im ätherischen Öl aus den Wurzeln von Kämpferia galanga (Paniokee, Rao, Simonsen, J. indian Inst. Sci. [A] 9, 137; C. 1927 I, 653). — Kp<sub>885</sub>: 166—167°. D<sup>m</sup><sub>0</sub>: 0,8606. n<sup>m</sup><sub>0</sub>: 1,4684. [α]<sup>m</sup><sub>0</sub>: -5,72°. — Gibt mit Chlorwasserstoff in Eisessig l-Silvestren-bis-hydrochlorid.

26. 4-Methyl-1-isopropyl-bicyclo-[0.1.3]-hexen-(3). α-Thujen C<sub>10</sub>H<sub>16</sub> = HC—CH<sub>2</sub>-C·CH(CH<sub>3</sub>)<sub>2</sub> (H 142; E I 76). α-Thujen liefert beim Überleiten über 25 %igen CH<sub>3</sub>·C—HC—CH<sub>2</sub> (September 25 %igen CH<sub>3</sub>·C—HC—CH<sub>3</sub> (H 142; E I 76). α-Thujen liefert beim Überleiten über 25 %igen CH<sub>3</sub>·C—HC—CH<sub>3</sub> (H 142; E I 76). α-Thujen liefert beim Überleiten über 25 %igen CH<sub>3</sub>·C—HC—CH<sub>3</sub> (September 25 %igen CH<sub>3</sub>·C—HC—CH<sub>3</sub> (S

27. β-Thujen C<sub>10</sub>H<sub>16</sub> (H 143; E I 76). Liefert beim Überleiten über Palladium-Asbest und Palladium-Kohle im Gemisch mit α-Thujen im Wasserstoffstrom bei 155° 1.2-Dimethyl-3-isopropyl-cyclopentan (S. 30) (Zelinsky, Kasansky, B. 60, 1098; vgl. dazu Ka., B. 62, 2208, 2210).

28. I-Isopropyl-4-methylen-bicyclo-[0.1.3]-hexan, Sabinen C<sub>10</sub>H<sub>16</sub> = H<sub>2</sub>C-CH<sub>3</sub>-C·CH(CH<sub>3</sub>)<sub>2</sub> (H 143; E I 76). V. Linksdrehendes Sabinen findet sich im CH<sub>3</sub>-C-HC-CH<sub>2</sub> (H 143; E I 76). V. Linksdrehendes Sabinen findet sich im CH<sub>3</sub>-C-HC-CH<sub>2</sub> (H 143; E I 76). V. Linksdrehendes Sabinen findet sich im Inst. Sci. 8, 177; C. 1926 I, 1482) und von Xanthoxylum Budrunga Wall. (Simonsen, Rau, Indian Forest Rec. 9 [1922], 142, 144). — Rechtsdrehendes Sabinen ist gefunden worden: Im äther. Öl der Blätter von Thujopsis dolabrata Sieb. et Zucc. (UCHIDA, J. Soc. chem. Ind. Japan Spl. 31, 121 B; C. 1929 I, 948). Im Öl der Blätter und Zweigspitzen von Thuja Wareana (Rutowski, Gussewa, Riechstoffind. 2, 185; Trudy chim.-farm. Inst. 1926, Nr. 12, S. 142; C. 1927 II, 2723; 1928 II, 2413); von Thuja gigantea var. semper aurea (Rutowski, Busse, Trudy chim.-farm. Inst. 1924, Nr. 10, S. 19; C. 1927 II, 1760). In orrwegischem Wacholderöl (Jeenstad, Riechstoffind. 4, 45; C. 1929 I, 3044). Im äther. Öl aus den Früchten von Piper cubeba L. (Rao, Shinte, Simonsen, J. Soc. chem. Ind. 47, 92 T; C. 1928 I, 2414). Zum Vorkommen im äther. Öl von Melaleuca linariifolia Smith und Mel. alternifolia Cheel vgl. Penfold, Perfum. essent. Oil Rec. 17, 213; J. Pr. Soc. N. S. Wales 59, 309; C. 1926 II, 2124; 1927 II, 753. — Insktives Sabinen findet sich im äther. Öl der Blätter von Murraya Koenigii Spreng. (Penfold, Simonsen, J. Pr. Soc. N. S. Wales 59, 149, 150; C. 1927 II, 752). — Zur Darstellung aus Sadebaumöl vgl. Henberson, Robertson, Brown, Soc. 121, 2719. — Polymerisiert sich beim Kochen mit Fullererde zu Dipinen und Polyterpenen (Venable, Am. Soc. 45, 733). Liefert bei mozonisieren in kalter alkoholischer Lösung und Behandeln des Ozonids mit Wasserdampf linksdrehendes Sabinaketon (Syst. Nr. 616) (H. Schmidt, 2 ang. Ch. 42, 127). Liefert bei 100-stdg. Erhitzen mit 2 Mol Wasserstoff peroxyd in Eisessig auf 50—55°, Neutralisieren mit Natriumcarbonat und Hydrolysieren mit alkoh. Kalilauge bei gewöhnlicher Temperatur und zuletzt auf dem Wasserb

H<sub>2</sub>C\_CH<sub>2</sub>-C·CH(CH<sub>3</sub>)<sub>2</sub>, Methyl-p-tolyl-keton und in geringer Menge wahrscheinlich OHC-HC—CH<sub>2</sub>, Methyl-p-tolyl-keton und in geringer Menge wahrscheinlich 1-Isopropyl-cyclohexen-(1)-on-(4) liefert (Henderson, Robertson, Brown, Soc. 121, 2719; He., Ro., Soc. 125, 765).

Sabinen-bishydrochlorid(?). Blättchen (aus Alkohol). F: 51,5—52° (ASCHAN, A. 439, 231). Ziemlich schwer löslich in Alkohol.

29. 2.2-Dimethyl-bicyclo-[1.2.3]-octen-(3), Endocamphen (CH<sub>3</sub>)<sub>2</sub>C-CH-CH<sub>2</sub>C<sub>10</sub>H<sub>18</sub>, s. nebenstehende Formel. B. Aus Homocamphenilol vom Schmelzpunkt 73—76° (Syst. Nr. 508) beim Erwärmen mit Zinkchloridin Benzol HC CH<sub>2</sub> uuf 100°, neben anderen Produkten (LIPP, GÖTZEN, REINARTZ, A. 453, 14).

KP<sub>744,5</sub>: 170,6—171,6° (korr.). D<sup>u.4</sup>: 0,8957. n;<sup>u.4</sup>: 1,4844. — Reduziert 1% ige wäßrige Permanganat-Lösung augenblicklich unter Bildung saurer, nach Fettsäuren riechender Produkte. Beim Erwärmen mit Salpetersäure (D: 1,26) entsteht unter Kohlendioxyd-Entwicklung ein schweres gelbes Öl. Entfärbt Brom in Chloroform fast augenblicklich unter Bromwasserstoff-Entwicklung und Abscheidung eines öligen Produkts. Bei der Einw. von Wasserstoff bei Gegenwart von Platinmohr in absol. Äther unter Kühlung entsteht Dihydroendocamphen. Wird beim Erhitzen mit Eisessig-Schwefelsäure im Rohr auf 100° sehr schwer angegriffen.

30. 2.6.6-Trimethyl-bicyclo-[1.1.3]-hepten-(2), a-Pinen, HC=C(CH3) CH "Pinen" C<sub>10</sub>H<sub>18</sub>, s. nebenstehende Formel (H 144; E I 76). CH<sub>2</sub>

Vorkommen und Bildung.

CH—C(CH<sub>3</sub>)2

Linksdrehende Pinenfraktionen sind gefunden worden: Im Harzterpentinöl der Rottanne Abies excelsa Lk. (Maisit, Ar. 261, 99). In den Blättern von Pinus excelsa (Simonsen, Indian Forest Records 9, 342; C. 1924 I, 1282). Zum Vorkommen im Terpentinöl von Pinus longifolia Roxb. vgl. St., Soc. 117, 573; DUPONT, A. ch. [10] 1, 248; GIBSON, St., Soc. 1929, 308 Anm.; Mulany, Watson, Quart. J. indian chem. Soc. 3, 258; C. 1927 I, 1488. In geringer Menge im Terpentinol von Pinus pinea (Pinie) (Du., Barraud, Bl. [4] 35, 629). Im Terpentinol aus Pinus nigra (Schwarzkiefer) (Du., Ba., Bl. [4] 35, 784, 788), aus Pinus pinaster (= maritima) (Du., Desalbres, Bl. [4] 33, 1256; Du., A. ch. [10] 1, 220), aus Fichten der Bukowina (Czerny, Bulet. Soc. chim. România 6, 41; C. 1924 II, 674). Im äther. Öl von Amphilophis odorata A. Camus (Andropogon odoratus Lisb.) (VAN EERDE, Pharm. Weekb. 61, 1188; C. 1924 II, 2796), von Seseli dychotonum (NILOW, Ж. 60, 1575; C. 1929 I, 2710). Im Ol von Thymus vulgaris und Thymus serpyllum (ADIDA, DEMIGNEUX, Bl. Sci. pharmacol. 33, 69; C. 1926 II, 1698. Gehalt an 1-α-Pinen in spanischen Terpenting (ADIDA). ölen verschiedenen Ursprungs: Madimaveitia, An. Soc. españ. 20, 531; C. 1923 III, 1462; in amerikanischen Terpentinölen: Du., Ba., Bl. Inst. Pin 1929, 155; C. 1929 II, 1598.

Rechtsdrehende Pinenfraktionen sind gefunden worden: Im äther. Öl der Blätter,

Zweigspitzen und Harze des Kauribaums (Agathis australis) (Hosking, R. 47, 579; 48, 623, 628, 631; vgl. a. Gill, Nishida, *Ind. Eng. Chem.* 15, 1276; C. 1924 I, 1272). Im ather. Ol der Blätter von Abies Pindrow Spach. (SIMONSEN, Indian Forest Records 8, 370; C. 1924 II, 1640). Im Harz von Pinus Gerardiana Wall. (SI., Indian Forest Records 9, 345; C. 1924 I, 1282). Im Harz von Pinus silvestris (SEMMLER, v. SCHILLER, B. 60, 1604). Im russischen Terpentinöl aus Pinus silvestris (Arbusow, Ж. 61, 259; C. 1929 I, 2998). In geringer Menge im Kiefernwurzelöl neben anderen Produkten (SE., v. Sch., B. 60, 1593). Im geringer acenge im Kiefernwurzelöl neben anderen Produkten (SE., v. Sch., B. 60, 1593). Im Terpentinöl aus Pinus palustris (Dupont, A. ch. [10] 1, 237; Du., Barraud, Bl. Inst. Pin 1929, 156; C. 1929 II, 1598). Im Terpentinöl aus Pinus halepensis (Madinavettia, An. Soc. españ. 20, 531; C. 1923 III, 1462; Du., Desalbres, Bl. [4] 33, 1256; Du., A. ch. [10] 1, 211). Im Bambaöl (Spoelstra, R. 48, 372). Im Harz von Canarium strictum Roxb. (schwarzes Dammarharz) (Moudgill, J. Soc. chem. Ind. 44, 171 T; C. 1925 II, 1490). Im Öl der Blätter und Zweige von Leptensparmum sconstrium (Sugar I. Soc. chem. Ind. 45, 97 T; C. 1926 II. Dammarnarz) (MOUDGILL, J. Soc. chem. Ind. 44, 171 T; C. 1925 II, 1490). Im OI der Biatter und Zweige von Leptospermum scoparium (Shorr, J. Soc. chem. Ind. 45, 97 T; C. 1926 II, 2123). Im OI von Melaleuca alternifolia Cheel (Anonymus, Perfum. essent. Oil Rec. 17, 214; C. 1926 II, 2124). Über Vorkommen im OI aus Crithmum maritimum L. Omb. (Seefenchelöl) von Nizza vgl. Delépine, Longuet, Bl. [4] 37, 724 Anm. 1. In den Blütenköpfen von Perovskia atriplicifolia Benth. (Rao, Quart. J. indian chem. Soc. 3, 144; C. 1926 II, 1698). Im Öl von Thymus capitatus Hoff und Link (ADIDA, DEMIGNEUX, Bl. Sci. pharmacol. 33, 68; C. 1926 II, 1698). Wahrscheinlich rechtsdrehendes Pinen findet sich im äther. Öl aus der ganzen Pflanze des Johanniskrauts (Hypericum perforatum) (Zellner, Ar. 1925, 178). aus der ganzen Pflanze des Johanniskrauts (Hypericum perforatum) (Zellner, Ar. 1925, 178).

Schwach rechtsdrehendes Pinen findet sich in dem Öl aus reifen Früchten von Ferula Badra-Kema (F. galbaniflua) (Rutowski, Winogradowa, J. pr. [2] 120, 44). — Pinenfraktionen von ungewissem optischen Verhalten finden sich im Flavedo der Grapefruit-

Schale (Citrus decumana) (Willimott, Wokes, Biochem. J. 20, 1300).

l-α-Pinen entsteht aus l-β-Pinen bei kurzem Schütteln in Äther mit wasserstoffbeladenem Palladium sowohl in Wasserstoff- als auch in Stickstoffatmosphäre (RICHTER, WOLFF, B. 59, 1736; Lipp, B. 63 [1930], 413). 1-α-Pinen erhält man ferner neben anderen Produkten aus 1-β-Pinen bei der Einw. von Benzoesäure bei 150° (Dellépine, Bl. [4] 35, 1473, 1475; Austerweil, D. R. P. 468299; Frdl. 16, 571), besser bei 128—130° (Austerweil, Bl. [4] 39, 695, 1644; vgl. a. Au., D. R. P. 492509; C. 1930 I, 2798; Frdl. 16, 569), von Benzoesäure in Toluol bei 123° (Au., Petrovici, Bl. [4] 39, 1742), in Xylol bei 140—150° (Au., D. R. P. 468299; Frdl. 16, 571), von Pikrinsäure in Benzol bei 120° (Dellépine, Adida, Bl. [4] 39, 787), von Saliculeäure bei 160° (Δπ. Rl. [4] 30 (604) von Phenolen (z. B. Trichlorphenol) 787), von Salicylsäure bei 160° (Au., Bl. [4] 39, 694), von Phenolen (z. B. Trichlorphenol) unter Ausschluß von Wasser bei 145—150° (Au., Bl. [4] 39, 695), von Handelsstearin bei 145° (Au., Bl. [4] 39, 1646), von Abietinsäure bei 160—180° (Au., Bl. [4] 39, 694, 1644). Uber angebliche Bildung eines nicht charakterisierten Pinens durch Einw. von Ozon auf Uber angebliche Bildung eines nicht charakterisierten Pinens durch Einw. von Ozon aur Camphen-Dampf vgl. Briner, Egger, Paillard, Helv. 7, 1022. Optisch-aktives bzw. optisch-inaktives α-Pinen entsteht neben optisch-aktivem bzw. inaktivem δ-Pinen und Pinocamphyl-dimethylamin beim Erhitzen des entsprechenden Pinocamphyl-trimethylammoniumhydroxyds im Hochvakuum auf 150—200° (Ruzicka, Trebler, Helv. 3, 761; Ru., Pontalti, Helv. 7, 493, 495). — Zur Trennung des inaktiven vom optisch-aktiven α-Pinen vgl. Dupont, A. ch. [10] 1, 227; Du., Desalbres, Bl. [4] 33, 1252. Trennung von β-Pinen durch Ausschütteln mit wäßr. Alkohol: Au., D. R. P. 427418; C. 1926 II, 1100; Frdl. 15, 416. Trennung von Camphen durch Ausfrieren unter Druck: Au., Peufalllit, D. R. P. 402995: C. 1925 I. 299: Frdl. 14, 504; durch Ausschütteln mit wäßr. Alkohol und nach. 402995; C. 1925 I, 299; Frdl. 14, 504; durch Ausschütteln mit wäßr. Alkohol und nach-

folgendes Ausfrieren: Au., Peu., D. R. P. 400253; C. 1925 I, 299; Frdl. 14, 506; durch Diffusion durch eine vulkanisierte Kautschukmembran: Au., Peu., D. R. P. 428860; C. 1926 II, 1100; Frdl. 15, 415.

Physikalische Eigenschaften.

I-α-Pinen aus französischem Terpentinöl: Kp<sub>780</sub>: 1560; D<sup>15</sup>: 0,8620; n<sup>19</sup><sub>10</sub>: 1,4649; n<sup>18</sup><sub>278</sub>: 1,4650; n<sup>18</sup><sub>26</sub>: 1,4655; n<sup>18</sup><sub>28</sub>: 1,4680; [α]<sub>D</sub>:  $-46,65^{\circ}$  (DUPONT, Bl. Inst. Pin 1932, 56; A. ch. [10] 1, 257; vgl. Pariselle, C. r. 172, 1496; A. ch. [9] 19, 124). l-Pinen aus dem äther. Ol der Nadeln von Abies sibirica: Kp: 155–1560; D<sup>∞</sup><sub>10</sub>: 0,8606; n<sup>∞</sup><sub>10</sub>: 1,4687; [α]<sup>∞</sup><sub>10</sub>:  $-61,0^{\circ}$  (Salkind, Sabojew,  $\mathcal{H}$ . 60, 556; C. 1928 II, 1448). l-Pinen aus den Nadeln von Pinus strobus: Kp: 158,5–159,5°; α<sub>D</sub>:  $-39,7^{\circ}$  (unverdünnt) (Pigulewski, Wladimirowa,  $\mathcal{H}$ . 56, 364; C. 1926 I, 1217). - d-Pinen aus Pinus silvestris russischer Herkunft: Kp<sub>757</sub>: 155,7°; Kp<sub>17</sub>: 54,2°; D<sup>10</sup><sub>1</sub>: 0.8625; D<sup>20</sup><sub>4</sub>: 0,8580; [α]<sup>15</sup><sub>5</sub>:  $+40,8^{\circ}$  (unverdünnt) (Arbusow,  $\mathcal{H}$ . 59, 259, 260; C. 1927 II, 1759). d-Pinen aus dem Terpentinöl von Pinus halepensis (Aleppokiefer): D<sup>15</sup><sub>10</sub>: 0.8620; n<sup>10</sup><sub>10</sub>: 1.4650: n<sup>10</sup><sub>10</sub>: 1.4650: n<sup>10</sup><sub>10</sub>: 1.4652: n<sup>10</sup><sub>10</sub>: 1.4652: n<sup>10</sup><sub>10</sub>: 1.4652: n<sup>10</sup><sub>10</sub>: 1.4650: 1.4650: n<sup>10</sup><sub>10</sub>: 1.4650: 1.4650: 1.4650: 1.4650: 1.4650: 1.4650: 1.4650: 1.4650: 1.4650: 1.4650: 1.4650: 1.4650: 1.4650: 1.4650 0.8620;  $n_{15}^{12}$ : 1.4650;  $n_{178}^{12}$ : 1.4652;  $n_{186}^{12}$ : 1.4656;  $n_{186}^{18}$ : 1.4658;  $n_{186}^{12}$ : 1.4650;  $n_{186}^{12}$ : 1.4656;  $n_{186}^{18}$ : 1.4658;  $n_{186}^{12}$ : 1.4658 155,8° (LECAT, R. 45, 622; Ann. Soc. scient. Bruxelles 45 [1926], 173). — dl-α-Pinen aus dl- $\alpha$ -Pinennitrosochlorid:  $Kp_{767}$ : 156,2°;  $D_4^{\infty}$ : 0,8582;  $n_{\alpha}^{\infty}$ : 1,4630;  $n_{D}^{\infty}$ : 1,4658;  $n_{B}^{\infty}$ : 1,4728;  $n_{Y}^{\infty}$ : 1,4786 (WATERMAN, VAN'T SPIJKER, VAN WESTEN, R. 48, 1195);  $Kp_{754}$ : 154— $164,5^{\circ}$ ;  $D_{n}^{\infty}$ : 0,8593;  $n_{0}^{\infty}$ : 1,4662 (NAMETKIN,  $\mathcal{H}$ . 54, 179; C. 1923 III, 1155);  $Kp_{725}$ : 155—156° (korr.) (RUZICKA, TREBLER, Helv. 3, 761);  $Kp_{19}$ : 51—52°;  $D_{n}^{\infty}$ : 0,8593 (Na., Jarzewa,  $\mathcal{H}$ . 55, 523); Di: 0,8619 (Prileshajew, Werschuk, 3K. 61, 465).

Dampfdruckkurve eines rechtsdrehenden Pinens: PICKETT, PETERSON, Ind. Eng. Chem. Dampiaruckkurve eines rechtsdrenenden Finens: Pickett, Fetterson, Ind. Eng. Chem., 21, 325; C. 1929 II, 36. Viscosität von l-α-Pinen: 0,0141 g/cm sec (Pariselle, C. r. 172 1497; A. ch. [9] 19, 126). Oberflächenspannung von l-α-Pinen: Pa. — Brechungsexponenten von Pinen in Abhängigkeit vom Druck für die Wellenlängen 653 mμ, 589 mμ und 543 mμ bei ca. 10,8°: Himstedt, Wertheimer, Ann. Phys. [4] 67, 401. Lichtabsorption von l- und d-Pinen im Ultrarot bis 15 μ: W. W. Coblentz, Investigations of infra-red spectra [Washington 1905], S. 140, 161, 266. Absorption von Röntgenstrahlen: Taylor, Phys. Rev. [2] 20, 711; C. 1924 I, 8. Rotationsdispersion von l-α-Pinen: Pariselle, C. r. 172, 1497; A. ch. [9] 19, 125; von l- und d-α-Pinen: Dupont Rl. Last Pin 1939 56: A. ch. [401] 1497; A. ch. [9] 19, 125; von l- und d-α-Pinen: DUPONT, Bl. Inst. Pin 1932, 56; A. ch. [10] 1. 257; von d-α-Pinen: Pigulewski, 38. 54, 267, 270; C. 1923 III, 1028; DE MALLEMANN, Ann. Physique [10] 2, 81. Beugung von Röntgenstrahlen in l- und d-Pinen: VAIDYANATHAN, Indian J. Phys. 3, 375; C. 1929 I, 2952. Ramanspektrum von l-Pinen: BONINO. BRÜLL. G. 59, 729. Elektrische Doppelbrechung von d- und l-Pinen-Gemischen: DE M., Ann. Physique [10] 2, 79; ILBERG, Phys. Z. 26, 908.

Über Löslichkeit in Methanol, Äthylalkohol, Propylalkohol und Pyridin von verschiedenem Wassergehalt vgl. Austerweil, Peufaillit, D. R. P. 400253; Č. 1925 I, 299; Frdl. 14, 505; Au., D. R. P. 427418; C. 1928 II, 1100; Frdl. 15, 416. Schwer löslich in Schwefeldioxyd mit gelber Farbe, schwer löslich in Ammoniak (DE CARLI, G. 57, 352). Aufnahme von Kohlendioxyd, Ammoniak und Schwefeldioxyd durch Pinen: Sudro, J. am. pharm. Assoc. 11, 923; C. 1923 III, 1359. Wärmetönung und Volumänderung beim Vermischen von Pinen

α-Pinen enthaltende hinäre Azeotrope

| Komponente                                                                                                                                                                            | Kp <sub>760</sub><br>0                                                                  | α-Pinen<br>in Gew%                   | Komponente     | Кр <sub>760</sub><br>0                                                                         | α-Pinen<br>in Gew%                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------|----------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Bromoform 3). Glycerintrichlorhydrin 1) Methanol 3) Cyclohexanol Glycerin - a. a'- dichlorhydrin 3) Butylalkohol 6) Isobutylalkohol 3) Isoamylalkohol 3) n-Hexylalkohol 6) Pinakon 6) | 146,5<br>150,0<br>64,55<br>149,9<br>150,4<br>117,4<br>107,95<br>129,1<br>150,8<br>152,5 | 25 ca. 15 9,3 64,5 63,5 12 < 1 22 60 | Chloracetal 1) | 153,0<br>117,2<br>142,05<br>152,5<br>136,4<br>150,3<br>154,8<br>151,5<br>138<br>143,1<br>143,4 | 57<br>17<br>2,5<br>87<br>41,5<br>70<br>80<br>78<br>23<br>50,2<br>62 |

<sup>1)</sup> LECAT, R. 45, 622. - 2) L., R. 46, 243. - 3) L., Ann. Soc. scient. Bruxelles 45 I [1926], 173, 175. — 4) L., Ann. Soc. scient. Bruxelles 45 I, 288. — 5) L., Ann. Soc. scient. Bruxelles 48 I [1928], 19. — 6) L., Ann. Soc. scient. Bruxelles 48 I, 55. — 7) L., Ann. Soc. scient. Bruxelles 48 II, 114. — 8) L., Ann. Soc. scient. Bruxelles 49 [1929], 21. — 9) L., Ann. Soc. scient. Bruxelles 49, 110.

mit Schwefelkohlenstoff oder mit Benzol: Hirobe, J. Fac. Sci. Univ. Tokyo 1, 214—220; C. 1926 II, 1383. Erstarrungspunkte der Gemische von 1- und d-Pinen: Ross, Somerville, Soc. 1926, 2775; von Gemischen von α-Pinen (aus französischem Terpentinöl) mit Camphen (vermutlich l-) sowie von  $\alpha$ -Pinen mit  $\beta$ -Pinen + Camphen: Austerwell, C.r. 178, 1174; Au., Peufallit, D. R. P. 402995; C. 1925 I, 299; Frdl. 14, 504. Azeotrope Gemische, die  $\alpha$ -Pinen enthalten, s. in der Tabelle auf S. 98. Über ein azeotropes Gemisch mit Glycerinα.β-dichlorhydrin vgl. Lecar, Ann. Soc. scient. Bruxelles 47 I [1927], 110. — Adsorption der Dämpfe durch Tierkohle: ALEXEJEWSKI, Ж. 55, 417; Wärmetönung bei der Adsorption an Tierkohle: Al., Z. prikl. Chim. 1, 153; C. 1929 II, 708.

#### Chemisches Verhalten.

Über die Umwandlung von Pinen in Dipenten durch Erhitzen auf 250—270° vgl. noch CONANT, CARLSON, Am. Soc. 51, 3464. Geschwindigkeit dieser Umwandlung (,,Racemisierung") in der Dampfphase und in Petroläther-Lösung zwischen 184,5° und 237°: SMITH, Am. Soc. 49, 46; vgl. a. Ure, Tolman, Am. Soc. 51, 979. Uber Umwandlung von Pinen in Camphen beim Erhitzen auf 160° vgl. Kondakow, Saprikin, Bl. [4] 37, 741. Pinen wird unter der Einw. von Fullererde bei Temperaturen von —20° bis + 158° unter Bildung von Dipenten und Terpinen umgelagert und (insbesondere bei erhöhten Temperaturen) zu Dipinen und Polyterpenen polymerisiert; bei Siedetemperatur erfolgt außerdem Zersetzung unter Bildung von niedrigsiedenden Paraffinen und p-Cymol (VENABLE, Am. Soc. 45, 729). Wärmetönung bei der Polymerisation von Pinen durch japanische saure Erde oder durch Silicagel: Kobayashi, Yamamoto, J. Soc. chem. Ind. Japan Spl. 31, 102 B; C. 1928 II, 178. Polymerisation durch Aluminiumchlorid, BF<sub>3</sub> und SbCl<sub>3</sub>: Kondakow, Saprikin, Bl. [4] 37, 1065. — Autoxydation von Pinen aus Kiefern-Terpentin: Henrich, Z. ang. Ch. 34, 364. Oxydation von Pinen durch Luft im Sonnenlicht in Gegenwart von wenig Wasser: Wienhaus, Schumm, A. 439, 30; im Sonnenlicht oder ultravioletten Licht in Gegenwart von Uransalzen: Aloy, Valdiguié, Bl. [4] 37, 1138; durch Sauerstoff im Licht in Gegenwart von Oxalsäure in wäßr. Lösung: Scagliarini, Saladini, G. 53, 137; durch Luftsauerstoff in Gegenwart verschiedener Katalysatoren: Dupont, Crouzet, Bl. Inst. Pin 1929, 102; C. 1929 II, 1792. l-a-Pinen aus französischem Terpentinöl liefert bei Einw. von Sauerstoff in Gegenwart von kolloidalem Osmium l-Verbenon und harzartige Produkte (W., Sch., A. 439, 31). Pinen gibt erst nach mehrstündigem Durchleiten von Sauerstoff infolge Peroxydbildung mit Guajakharz + Peroxydase eine blaue Färbung (Gallagher, Biochem. J. 17, 522). Bei der Oxydation von Pinen aus französischem Terpentinöl mit kalter Permanganat-Lösung entsteht keine Pinononsäure, sondern Pinonsäure neben anderen Produkten (Fromm, Klein, A. 425, 211). Rechtsdrehendes a Pinen liefert bei der Oxydation mit einer kalten Lösung von Chromtrioxyd in Acetanhydrid + Tetrachlorkohlenstoff in geringer Ausbeute d-Verbenon und d-Verbenolacetat (TREIBS, SCHMIDT, B. 61, 462). Geschwindigkeit der Oxydation von Pinen mit Benzopersäure in

Chloroform und Tetrachlorkohlenstoff bei 0°: Meerwein, J. pr. [2] 113, 13, 27.

l-α-Pinen liefert beim langsamen Überleiten über mit Wasserstoff vorbehandelten palladinierten Asbest bei 190—200° l-Pinan und p-Cymol (Zelinsky, B. 58, 864). Analog reagiert d-α-Pinen beim Leiten über Kupfer- oder Nickelkatalysatoren bei 280° (Treibs, Schmidt, B. 60, 2337, 2341). Bei der Hydrierung von d-α-Pinen in Äther in Gegenwart von Palladiumschwarz entsteht d-Pinan (RICHTER, WOLFF, B. 59, 1734). dl-α-Pinen gibt bei der Hydrierung mit Palladium bei Zimmertemperatur dl-Pinan, bei erhöhter Temperatur p-Cymol und p-Menthan (Waterman, van't Spijker, van Westen, R. 48, 1192, 1196; vgl. a. Lipp, B. 63 [1930], 413). Weitere Angaben über Reduktion von α-Pinen zu Pinan s. S. 61. Geschwindigkeit der Hydrierung von l-Pinen in Alkohol in Gegenwart von Platinschwarz bei 15°: LEBEDEW, PLATONOW, Soc. 1930, 324; Ж. 61, 2155; von Pinen in Alkohol in Gegenwart von Platin- oder Palladiumschwarz (aus den Oxyden) unter 2—3 Atm. Druck bei 25°: KERN, SHRINER, ADAMS, Am. Soc. 47, 1149; in Gegenwart von Nickelkatalysator in Abhängigkeit vom Druck bei 160°: Armstrong, Hilditch, Pr. roy. Soc. [A] 100, 244; C. 1922 I, 1267. Hydrierung von d-Pinen unter Druck nach BERGIUS: ORMANDY, Mitarb., J. Inst. Petr. Technol. 13, 8; C. 1927 II, 1219. Geschwindigkeit der Hydrierung von Pinen bei Gegenwart von Platinschwarz im Gemisch mit Zimtsäure in Athylacetat, mit Maleinsäure in Alkohol und mit Fumarsäure in Alkohol + Äthylacetat: Vavon, C. r. 173, 361; im Gemisch mit Styrol, Allylaceton, Mesityloxyd, Benzalaceton, Propylidenessigsäure, Dimethylacrylsäure, Allylessigsäure und Zimtsäure in Alkohol: V., Jakes, C. r. 183, 300; Bl. [4] 41, 91; im Gemisch mit Zimtsäure in verschiedenen Lösungsmitteln und unter Zusatz von Salzen und im Gemisch mit Diisobutylen und Allylalkohol: ADKINS, DIWOKY, BRODERICK, Am. Soc. 51, 3419. Hydrierungsgeschwindigkeit bei Gegenwart von Nickel-Kieselgur in Gemischen

mit Zimtsäure und Dissobutylen: A., D., B., Am. Soc. 51, 3419.
α-Pinen gibt bei der Einw. von 2 Atomen Chlor zwischen —15° und —20° Bornylchlorid, 2.6-Ďichlor-camphan und weitere, nicht näher untersuchte Chlorierungsprodukte (Brus, C. r. 180, 1507; Aschan, B. 61, 41; vgl. auch Kondakow, B. 61, 479). Bei der Einw von Brom erhält man Bornylbromid, 2.6-Dibrom-camphan und weitere Bromierungsprodukte (Brus, C. r. 186, 87; vgl. a. Pariselle, C. r. 172, 1498; A. ch. [9] 19, 128). Zur Reaktion von α-Pinen mit unterchloriger Säure (H 5, 149) vgl. noch Henderson, Marsh, Soc. 119, 1493. Pinen gibt beim Einleiten von feuchtem Chlorwasserstoff in eine Mischung mit Petroläther und Zufügen von wasserfreiem Eisen(III)-chlorid Dipinen (Syst. Nr. 473) (Briggs, Short, Soc. 1928, 3119). Zur Einw. von alkoh. Salzsäure auf α-Pinen vgl. noch Delépine, Cachat, Bl. [4] 39, 1754. Geschwindigkeit der Aufnahme von Chlorwasserstoff in Benzol: Vorländer, Eichwald, B. 56, 1156. Das sog. "flüssige Pinenhydrochlorid" (vgl. H 149; E I 78) ist ein Gemisch aus α-Pinen, Dipenten, Terpinolen, Bornylchlorid, Isobornylchlorid, Fenchylchlorid, Dipentendihydrochlorid und einem Limonenmonohydrochlorid (Brus, Bl. Inst. Pin 1930, 95, 109; Brus, Vébbra, Bl. Inst. Pin 1938, 9; Delépine, Cachat, Bl. [4] 39, 1745; De., Bl. [4] 35, 1479). Bei der Einw. von äquimolekularen Mengen Phosphorpentachlorid auf Pinen entstehen p-Cymol, Dipinen ("Colophen"; Syst. Nr. 473), 2.6-Dichlor-camphan (S. 64), ein flüssiges Pinendichlorid(?) vom Siedepunkt 210—220° und geringe Mengen undestillierbares Harz (Bert, Bl. [4] 33, 787). I-α-Pinen liefert beim Behandeln mit Sulfurylchlorid linksdrehendes 2.3-Dichlor-pinan (Garino, D'Ambrosio, G. 54, 346). Über das Verhalten von Pinen beim Erhitzen mit Schwefel vgl. noch Budnikow, Schilow, B. 55, 3848; Ж. 54, 685; Bu., C. 1922 IV, 235. Reaktion mit verd. Ammonium-disulfit-Lösung in Gegenwart von Kieselgur: Kolker, Lapworth, Soc. 127, 314. Geschwindigkeit der Umwandlung von α-Pinen in Terpin durch Schütteln mit 33% iger, 2% Kaliumsulfat enthaltender Schwefelsäure: Austerweil, Perfum. essent. Oil Rec. 16, 187; C. 1925 II. 1815; s. a. Dupont, Chim. et Ind. 8 [1922], 235 T. Pinene aus amerikanischem Terpentinöl liefern bei längerem Schütteln mit Phosphorsäure

DAKOW, Parf. mod. 19, 214; C. 1927 I, 193).

Pinen wird durch Umsetzung mit Halogenwasserstoff abspaltenden Verbindungen wie tert.-Amylchlorid, Isobornylchlorid (aus Camphen) oder den Hydrochloriden von Anilin, Pyridin oder Hydrocylamin bei 130–160° in Bornylchlorid übergeführt (Kondakow, Saprikin, Bl. [4] 37, 730, 733, 736, 738, 740). Über die Reaktion von Pinen mit d-Limonenhydrochlorid s. dort, S. 52. Verhalten von Pinen beim Erhitzen mit α-Terpineol auf 250°: Kon., Sa., Bl. [4] 37, 1049. Pinen gibt beim Erwärmen mit Phenol und konz. Salzsäure auf dem Wasserbad harzartige Kondensationsprodukte (Schrauth, Quasebarth, B. 57, 858). Stark rechtsdrehendes Pinen aus Terpentinöl von Pinus halepensis gibt beim Erwärmen mit Pikrinsäure in Benzol auf 120° d-Camphen, d-Limonen und etwas Dipenten, ferner d-Bornyl-pikryläther (wenig dl-Bornyl-pikryläther und Isobornyl-pikryläther enthaltend) und l-Fenchyl-pikryläther (Delépine, Adida, Bl. [4] 39, 784; vgl. a. Kondakow, Parf. mod. 19, 212; C. 1927 I, 193). Über die Einw. von Pikrinsäure und Styphninsäure auf Pinen vgl. Murayama, Otsuka, J. pharm. Soc. Japan 1924, Nr. 513, S. 1; C. 1925 I, 841. Isomerisierung von Pinen durch Erhitzen mit verschiedenen Phenolen für sich oder in Toluol-Lösung: Kon., Parf. mod. 19, 212; C. 1927 I, 193. α-Pinen liefert beim Kochen mit Formaldehyd und Eisessig, Kochen mit alkoh. Kalilauge und Destillieren im Vakuum Homopinenol (Syst. Nr. 509) (Prins,

Chem. Weekb. 16, 1524; C. 1920 I, 425). Nach Austerweil (Bl. [4] 39, 1646) ist reines l-α-Pinen gegen organische Säuren ziemlich beständig. Bei mehrmonatiger Einw. von wasserfreier Ameisensäure auf d-α-Pinen entstehen d-Limonen, Dipenten, Terpinen, Terpinolen, d-Camphen (?), Dipinen (,,Diterpilen"; Syst. Nr. 473) sowie die Formiate des d-a-Terpineols, des Terpinenols-(4) und des Borneols (ŘEISMAN, Bl. [4] 41, 94). Pinen gibt beim Erhitzen mit Carbonsäuren oder Carbonsäureanhydriden und Borsäureanhydrid oder mit Boressigsäureanhydrid und Eisessig und nachfolgenden Verseifen Borneol und Isoborneol (L. Schmidt, D.R.P. 401870, 406768; C. 1925 I, 299, 1809; Frdl. 14, 501, 502). Durch Ameisensäure wird Pinen in Gegenwart von Borsäure-Essigsäureanhydrid polymerisiert (Dupont, Lascaud, Bl. Inst. Pin 1926, 437; zit. bei Reisman, Bl. [4] 41, 95). Reaktion mit Blausäure unter dem Einfluß dunkler elektrischer Entladungen: Francesconi, Ciurlo, R. A. L. [5] 32 I, 566; G. 53, 470. Umsetzung von Pinen mit Acetanhydrid und konz. Schwefelsäure auf dem Wasserbad: Ebel, Goldberg, Helv. 10, 679, 680. Bei der Einw. von Eisessig, Acetanhydrid und Benzolsulfonsäure auf l-α-Pinen entstehen l-α-Terpineol, wenig Borneol und andere Produkte; Fenchylalkohol wurde nicht nachgewiesen (DUPONT, Chim. et Ind. 8 [1922], 237 T). Die Reaktion zwischen d-α-Pinen aus Aleppokiefernharz mit 1 Gew.-Teil Benzoesäure bei 50-stdg. Erhitzen auf 150° verläuft analog der H 152 für linksdrehendes Terpentinöl beschriebenen Umsetzung; dieselben Produkte entstehen auch bei 2-stdg. Einw. von Trichloressigsäure auf d-α-Pinen (DELÉPINE, C. τ. 178, 2087; Bl. [4] 35, 1467; vgl. dazu D., Bl. [4] 35, 1481; C. r. 179, 175). Über die Ausbeuten an Borneol und Limonen beim Erhitzen von l-Pinen mit Benzoesäure vgl. noch Austerweil, Bl. [4] 41, 1088, 1509. Pinen liefert bei der Einw. von Rhodanwasserstoff in äther. Lösung eine stickstoffα-PINEN: δ-PINEN

und schwefelhaltige Verbindung vom Schmelzpunkt 92° (Challenger, Smith, Paton, Soc. 123, 1055). Pinen lagert in Eisessig-Tetrachlorkohlenstoff-Lösung Rhodan im Dunkeln an (Kaufmann, B. 59, 1391). Liefert beim Behandeln mit ½ Mol wasserfreier 6-Chlorp-cymol-sulfonsäure-(3) unter guter Kühlung 6-Chlorp-cymol-sulfonsäure-(3)-bornylester (Meerwein, A. 453, 39).

#### Physiologisches Verhalten; Analytisches.

Einfluß von l- und d-α-Pinen in Lösung oder Dampfform auf die Keimung von Samen und das Wachstum von Pflanzen: Sigmund, Bio. Z. 146, 396; Němec, Strauák, Bio. Z. 104, 202. Physiologisches Verhalten: E. Pfankuch in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt., Bd. 1 [Berlin-Leipzig 1930], S. 1295. — Beim Versetzen von Pinen in Benzol mit Zinntetrabromid erhält man eine orangefarbene Lösung, die bald rot wird (Skraup, Freundlich, A. 431, 248). Pinen gibt mit Antimonpentachlorid in Chloroform eine violette Färbung, die am Licht in Blau übergeht (Steinle, Kahlenberg, J. biol. Chem. 67, 452). Farbreaktionen von l- und d-Pinen mit Aldehyden und Saccharose in alkoh. Schwefelsäure: Ekkert, P. C. H. 68, 578; C. 1927 II, 2522; 1928 I, 1587. Annähernde Bestimmung von Pinen im Rohpinen mittels konz. Salzsäure: Gawalowski, Fr. 63, 121; 64, 471. Verhalten von d- und l-Pinen bei der Jodzahlbestimmung nach Hübl und nach Margosches-Hinner-Friedemann: Margosches, Fuchs, Ruziczka, Ch. Umschau Fette 34, 216; C. 1928 I, 2884. Bestimmung von Pinen neben Dipenten durch Hydrierung in Gegenwart von Platin aus Oxyd in Eisessig: Conant, Carlson, Am. Soc. 51, 3465. Polarimetrische Bestimmung des Mengenverhältnisses von α- und β-Pinen im französischen Terpentinöl: Vèzes, C. r. 172, 977.

#### Umwandlungsprodukte ungewisser Struktur aus Pinen.

Verbindung  $C_{10}H_{16} + SbCl_5$ . B. Man fällt Pinen in Chloroform mit Antimonpentachlorid und wäscht den Niederschlag mit Tetrachlorkohlenstoff (Steinle, Kahlenberg, J. biol. Chem. 67, 463).

d-Pinen-nitrosochlorid  $C_{10}H_{16}$ ONCI (E I 79). Nadeln (aus Chloroform und Methanol). F: 109° (Zers.) (RAO, Quart. J. indian chem. Soc. 3, 144; C. 1926 II, 1638), 114° (HOSKING,

R. 47, 579).

dl-Pinen-nitrosochlorid C<sub>10</sub>H<sub>16</sub>ONCl (H 153; E I 79). B. Aus Pinen und Äthylnitrit in Eisessig bei allmählichem Hinzufügen von 20% iger alkoholischer Salzsäure unter Kühlung (RUZICKA, TREBLER, Helv. 3, 758). Beim Leiten eines Gemisches von Stickoxyden und Chlorwasserstoff in eine Lösung von Pinen in Äther + Eisessig unter Kühlung mit Eis-Kochsalz (RUPE, Helv. 4, 149). — F: 103—105° (DUPONT, A. ch. [10] 1, 262), 107—108° (R., T.). — Gibt beim Kochen in Tetrachlorkohlenstoff dl-Nitrosopinen (Carvopinonoxim, Syst. Nr. 620) (EARL, KENNER, Soc. 1927, 1275). Beim Kochen mit Anilin und krystallisiertem Natriumacetat in Alkohol oder beim Behandeln mit einem Gemisch von Anilin und Pyridin in Chloroform erhält man Pinennitrolanilid (Syst. Nr. 1873), bei der Einw. von Anilin in Chloroform bei Gegenwart von Bleiacetat oder wasserfreiem Natriumacetat bei Zimmertemperatur Diazoaminobenzol (E., K.).

Verbindungen C<sub>16</sub>H<sub>19</sub>O<sub>7</sub>N<sub>3</sub> aus Pinen und Pikrinsäure. Die Präparate von Lextreit, C. r. 102, 555 und von Tilden, Forster, Soc. 63, 1388 (H 5, 154) sind als fast reiner d-Bornyl-pikryläther erkannt worden (Delépine, Adida, Bl. [4] 39, 782; Kondakow, Parf. mod. 19, 213; C. 1927 I, 193). Über eine Verbindung C<sub>16</sub>H<sub>19</sub>O<sub>7</sub>N<sub>3</sub>, die neben Bornyl-pikryläther beim Erhitzen von Pinen aus amerikanischem Terpentinöl mit Pikrinsäure entsteht (gelbliche Platten, F: 97—99°) vgl. Murayama, Otsuka, J. pharm. Soc. Japan 1924, Nr. 513, S. 1; C. 1925 I, 841.

2¹-Brom-2.6.6-trimethyl-bicyclo-[1.1.3]-hepten-(2), Brom-hore  $C_{10}H_{18}Br$ , s. nebenstehende Formel. Rechtsdrehende Form, Myrtenylbromid. B. Aus Myrtenol in absol. Ather bei allmählichem Zufügen von Phosphortribromid und folgendem Erwärmen auf dem Wasserbad (Rupe, A. 459, 179). — Stark lichtbrechende Flüssigkeit von unangenehmem Geruch. Kp<sub>0</sub>: 93°. [ $\alpha$ ]<sub>D</sub>: +32,3°. — Färbt sich rasch gelb. Liefert beim Erwärmen mit Magnesium in absol. Ather Dimyrtenyl, beim Erwärmen mit Methylmagnesiumjodid in absol. Ather Methylmyrtenyl (S. 111). Reagiert analog mit anderen Alkyl- und Aryl-magnesiumhalogeniden.

31. 2.6.6-Trimethyl-bicyclo-[1.1.3]-hepten-(3), δ-Pinen HC-CH(CH<sub>3</sub>)-CH C<sub>10</sub>H<sub>18</sub>, s. nebenstehende Formel.

a) Linksdrehende Form. B. Entsteht neben d-α-Pinen beim HC CH-C(CH<sub>3</sub>)<sub>2</sub> Erhitzen von l-Pinocamphyl-xanthogensäuremethylester (Syst. Nr. 508) (RUZICKA, PONTALTI, Helv. 7, 491; vgl. GILDEMEISTER, KÖHLER, Wallach-Festschrift [Göttingen 1909], S. 436; C. 1909 II, 2159) sowie beim Erhitzen von optisch-aktivem

Pinocamphyltrimethylammoniumhydroxyd im Hochvakuum auf 150—200° (R., P., Helv. 7, 495). Entsteht analog aus d-Verbanyl-xanthogensäuremethylester (aus d-Verbanol) im Vakuum (Wienhaus, Schumm, A. 439, 47). — Leicht bewegliche Flüssigkeit. Kp<sub>758</sub>:  $156-157^{\circ}$ ;  $D_{i}^{\infty}$ : 0.8604;  $n_{i}^{\infty}$ : 1.4667;  $[\alpha]_{D}$ :  $-6.2^{\circ}$  (Ather; c=17) (W., Sch.). — Liefert mit Permanganat in Wasser optisch-aktive Pinocamphersäure (Syst. Nr. 966) (R., P.). Bei der Einw. von Chlorwasserstoff entsteht ein rötliches diekes Öl (W., Sch.).

b) Inaktive Form. B. Beim Erhitzen von dl-Pinocamphyl-trimethylammoniumhydroxyd im Hochvakuum auf 150—200°, neben dl-α-Pinen (Ruzicka, Pontalti, Helv. 7,

493). - Liefert mit Permanganat in Wasser dl-Pinocamphersäure (Syst. Nr. 966).

32. 2.6.6-Trimethyl-bicyclo[1.1.3] - hepten - (2 oder 3), Dihydroverbenen C<sub>10</sub>H<sub>16</sub>, Formel I
oder II. Dihydroverbenen ist nach
RUZICKA, TREBLER (Helv. 4, 569 Anm. 1) und nach RUZICKA, PONTALTI (Helv. 7, 492) mit
α-Pinen, nach BLUMANN, ZEITSCHEL (B. 54, 889) mit δ-Pinen identisch (vgl. dazu J. L.

SIMONSEN, The terpenes, Bd. II [Cambridge 1932], S. 185, 186).

Rechtsdrehende Form. B. Durch Reduktion von l-Verbenen mit Natrium in Alkohol (Blumann, Zeitschel, B. 54, 893). — Riecht pinenartig. Kp702: 158—159°. D<sup>15</sup>: 0,865; D<sup>20</sup>: 0,8625. n<sup>20</sup>: 1,4662. [\alpha]<sub>D</sub>: +36,5°. — Bei der Oxydation mit Permanganat entstand ein Säuregemisch, das nach jahrelanger Aufbewahrung uneinheitliche, unscharf schmelzende Krystalle abschied. Das beim allmählichen Eintropfen von 2 Atomen Brom in Chloroform erhaltene Bromid erstarrt nicht. Beim Sättigen mit Chlorwasserstoff in gekühltem Schwefelkohlenstoff erhält man Bornylchlorid. Liefert bei 24-stdg. Schütteln mit verd. Schwefelsäure cis-Terpin (Syst. Nr. 549). Gibt mit Athylnitrit und Chlorwasserstoff in Essigsäure 2-Chlor-3-oximino-2.6.6-trimethyl-bicyclo-[1.1.3]-heptan.

4.2¹ (oder 2.5) - Dibrom - 2.6.6-  $HC = C(CH_2Br) \cdot CH$   $HC = CBr(CH_3) \cdot CH$  trimethyl-bicyclo-[1.1.3] - hepten - III.  $CH_2$  IV.  $CH_2$   $CH_3$   $CH_4Br_2$ , Formel III oder IV.  $CH_4Br_2$ , Formel III oder IV.  $CH_4Br_3$   $CH_4Br_4$   $CH_4B$ 

a) Linksdrehende Form. B. Aus d-Verbenen und Brom in eisgekühltem Chloroform (Blumann, Zeitschel, B. 54, 891). — F: 70—72°. [a]; —298,5° (Benzol; p = 5). — Reagiert mit verd. Kalilauge oder mit Zinkstaub und Eisessig wie die rechtsdrehende Form.

b) Rechtsdrehende Form. B. Aus I-Verbenen und Brom in eisgekühltem Chloroform (Blumann, Zeitschel, B. 54, 890). — Prismen (aus Petroläther). F: 70—72° (Bl., Z.), 71—72° (Bl., Schmidt, A. 453, 50). Schwer löslich in Petroläther (Bl., Z.). [α]<sub>0</sub><sup>1</sup>: +297,7° (Benzol; p = 5) (Bl., Z.). — Färbt sich beim Schmelzen oft braun, zersetzt sich beim Aufbewahren unter Dunkelfärbung, Verflüssigung und Abgabe von Bromwasserstoff (Bl., Z.). Wird durch Permanganat in Wasser oder Aceton nicht angegriffen (Bl., Z.). Wird durch Zinkstaub und Eisessig zu l-Verbenen reduziert (Bl., Z.). Gibt mit 2 %iger Kalilauge 2.6.6-Trimethyl-bicyclo-[1.1.3]-hepten-(2 oder 3)-diol-(2.5 oder 2¹.4), sowie eine vielleicht als entsprechendes Oxyd zu formulierende Verbindung C<sub>10</sub>H<sub>14</sub>O (D<sup>15</sup>: 0,997; [α]<sub>D</sub>: ca. —100° in Alkohol) (Bl., Z.).

c) Inaktive Form. B. Durch Vermischen gleicher Teile der opt.-akt. Komponenten (Blumann, Zeitschel. B. 54, 891). — Nadeln (aus Ligroin). F: 50—52°. Leicht löslich

in kaltem Ligroin.

33. 6.6 - Dimethyl - 2 - methylen - bicyclo - [1.1.3] - heptan, H<sub>2</sub>C·C(:CH<sub>2</sub>)-CH β-Pinen, Nopinen C<sub>10</sub>H<sub>16</sub>, s. nebenstehende Formel (H 154; E I 79).

a) Rechtsdrehende Form. V. Im Harz von Pinus Gerardiana H<sub>2</sub>C·CH-C(CH<sub>3</sub>)<sub>2</sub> Wall. (Simonsen, Indian Forest Records 9, 345; C. 1924 I, 1282). Im äther. Öl aus den reifen Früchten von Ferula Badra-Kema (F. galbaniflua) (Rutowski, Winogradowa, J. pr. [2] 120, 41). — Kp: 162—163°; D<sub>2</sub>°: 0,8662; n<sub>1</sub>°: 1,4745; [α]<sub>p</sub>: +20,8° (R., W.); Kp<sub>705</sub>: 163—165°; D<sub>2</sub>°: 0,8606; n<sub>2</sub>°: 1,469; [α]<sub>p</sub>°: +12,6° (S.). — Liefert bei der Oxydation mit alkal. Permanganat-Lösung rechtsdrehende Nopinsäure (R., W., S.).

b) Linksdrehende Form. V. Im äther. Öl der Nadeln von Pseudotsuga Douglasii Carr. (ALINARI, Ann. Chim. applic. 16, 187; C. 1926 II, 1698) und der Blätter von Abies Pindrow Spack (Strongen, Indian Ecrept Records 8, 270; C. 1924 II, 1640). Im Terpentinöl der

b) Linksdrehende Form. V. Im äther. Ol der Nadeln von Pseudotsuga Douglasii Carr. (ALINARI, Ann. Chim. applic. 16, 187; C. 1926 II, 1698) und der Blätter von Abies Pindrow Spach. (Simonsen, Indian Forest Records 8, 370; C. 1924 II, 1640). Im Terpentinöl der Rottanne Abies excelsa Lk. (Maisit, Ar. 261, 99). In den Blättern von Pinus excelsa (Si., Indian Forest Records 9, 343; C. 1924 I, 1282). Im Terpentinöl von Pinus longifolia Roxb. (Si., Soc. 117, 573; DUPONT, A. ch. [10] 1, 248; Gibson, Si., Soc. 1929, 308 Anm.; Mulany, Watson, Quart. J. indian chem. Soc. 3, 258; C. 1927 I, 1488). Im Harz und in geringer Menge im Kiefernwurzelöl von Pinus silvestris (Semmler, v. Schiller, B, 60, 1593, 1604). Im

Terpentinöl von Pinus silvestris aus Mittelfrankreich (Du., Barraud, Chim. et Ind. 19, Sonder-Nr., S. 560; C. 1928 II, 2516). Ist im russischen Terpentinöl aus Pinus silvestris nicht gefunden worden (Ārbusow, Ж. 61, 266; C. 1929 I, 2998). Im Terpentinöl von Pinus pinaster (= maritima) (Du., A. ch. [10] 1, 218, 221). In amerikanischen Terpentinölen (Du., Ba., Bl. Inst. Pin 1929, 155; C. 1929 II, 1598). Im äther. Öl von Seseli dychotomum (Nilow, Ж. 60, 1575; C. 1929 I, 2710). In den Blütenköpfen von Perovskia atriplicifolia Benth. (Rao, Quart. J. indian chem. Soc. 3, 144; C. 1926 II, 1698). — Trennung von α-Pinen durch Ausschütteln mit wäßr. Alkohol: Austerweil, D. R. P. 427418; C. 1926 II, 1100; Frdl. 15. 416.

1.β.Pinen aus französischem Terpentinöl zeigte F: —50°; Kp<sub>760</sub>: 164°; D¹¹⁵: 0,8740; n¹¹⁵: 1,4872; n¹π²: 1,4874; n¹¹⁵: 1,4880; [α]<sub>578</sub>: —22,4° (DUPONT, Bl. Inst. Pin 1932, 110; A. ch. [10] 1, 256; DU., DESALBRES, Bl. [4] 33, 1260; vgl. PARISELLE, C. r. 172, 1497; A. ch. [9] 19, 125; BRUS, C. r. 179, 501). Dampfdruckkurve: PICKETT, PETERSON, Ind. Eng. Chem. 21, 325; C. 1929 II, 36. Viscosität: 0,0173 g/cm sec (PA., C. r. 172, 1497; A. ch. [9] 19, 126). Oberflächenspannung: PA. Krystallisationsgeschwindigkeit: DU., A. ch. [10] 1, 256; DU., DES., Bl. [4] 33, 1260. Rotationsdispersion verschiedener Präparate: PA., C. r. 172, 1497; A. ch. [9] 19, 126; BRUS, C. r. 179, 501; DU., A. ch. [10] 1, 256; DU., DES., Bl. [4] 33, 1260. — Über die Löslichkeit von β-Pinen in Methanol, Alkohol oder Propylalkohol von verschiedenem Wassergehalt vgl. AUSTERWEIL, D. R. P. 427418; C. 1926 II, 1100; Frdl. 15, 416. Thermische Analyse des Systems mit dl-Camphen: Au., C. r. 178, 1174.

Polymerisiert sich beim Kochen mit Fullererde (Venable, Am. Soc. 45, 733). — Gibt bei der Einw. von Ozon in Chloroform bei 0° das Ozonid (S. 104) (Brus, Peyresblanques, C. r. 187, 984; vgl. a. H. Schmidt, Z. ang. Ch. 42, 126). Oxydation durch Luftsauerstoff in Gegenwart verschiedener Katalysatoren: Dupont, Crouzet, Bl. Inst. Pin 1929, 103; C. 1929 II, 1792. Bei 8-tägiger Einw. von 30% igem Wasserstoffperoxyd auf β-Pinen in Eisessig bei 50—55° entstehen Borneol, Fenchylalkohol und ein hochviscoses, nicht unzersetzt destillierbares Öl (Henderson, Chisholm, Soc. 125, 111). Trägt man eine wäßt. Emulsion von β-Pinen in verd. Permanganat-Lösung unterhalb 40° ein und leitet unter starkem Rühren Kohlendioxyd ein, so entstehen β-Pinenglykol, Nopinon und l-Nopinsäure (Brus, C. r. 179, 501). Über die Ausbeute an Nopinsäure bei der Oxydation von β-Pinen mit Permanganat vgl. noch Du., Brus, A. ch. [9] 19, 191. Verhalten von l-β-Pinen bei der Oxydation mit einer kalten Lösung von Chromtrioxyd in Acetanhydrid + Tetrachlor-kohlenstoff: Treibs, Schmidt, B. 61, 464. Beim Behandeln mit Chromylchlorid in Schwefelkohlenstoff erhält man die Verbindung C<sub>10</sub>H<sub>16</sub>O<sub>4</sub>Cl<sub>4</sub>Cr<sub>2</sub>(S. 104) (He., Ch., Soc. 125, 109). β-Pinen gibt bei der Einw. von Benzopersäure in Äther oder Chloroform in der Kälte β-Pinenoxyd (Syst. Nr. 2363) (Faidutti, C. r. 189, 855). — l-β-Pinen wird bei kurzem Schütteln mit Palladium und Wasserstoff erhält man l-Pinen übergeführt, bei längerem Schütteln mit Palladium und Wasserstoff erhält man l-Pinen übergeführt, bei längerem Schütteln mit Palladium und Wasserstoff erhält man l-Pinen übergeführt, bei längerem Schütteln bei 170° bis 175° oder bei 190° vgl. a. Zelinsky, Lewina, B. 62, 339, 340.

Liefert bei der Einw. von Chlor bei -15° bis -20° Bornylchlorid und nicht näher untersuchte Gemische mehrfach chlorierter Kohlenwasserstoffe; reagiert analog mit Brom in Tetrachlorkohlenstoff (Brus, C. r. 186, 241). Beim Schütteln mit 1 %iger unterchloriger Säure entstehen drei Dichlorhydrine  $C_{10}H_{18}O_2Cl_2$  mit den Schmelzpunkten 130—131°, 135° und 166° (S. 104) (Henderson, Kerr, Soc. 125, 104, 105). Bei der Einw. von Säuren wird β-Pinen je nach der Säurestärke und den sonstigen Reaktionsbedingungen teils hydratisiert, teils umgelagert; bei mehrstündiger Einw. von 45 % iger Schwefelsäure bei 15-200 entsteht neben Terpinhydrat in geringer Menge das Sulfat des niedrigerschmelzenden Pinenhydrats (Austerweil, Bl. [4] 39, 693). Geschwindigkeit der Umsetzung von  $\beta$ -Pinen zu Terpinhydrat durch Schütteln mit 33% iger, 2% Kaliumsulfat enthaltender Schwefelsäure: Au., Perfum. essent. Oil Rec. 16, 187; C. 1925 II, 1815; s. a. Dupont, Chim. et Ind. 8 [1922], 235 T. Beim Erhitzen von l- $\beta$ -Pinen mit Trichlorphenol auf 145 - 150° erhält man neben Spuren von Bornylund Fenchyläthern fast ausschließlich l- $\alpha$ -Pinen (Au., Bl. [4] 39, 695). l- $\beta$ -Pinen gibt beim Erwärmen mit Pikrinsäure in Benzol auf 120° l-Bornyl-pikryläther (Spuren von dl-Bornylpikryläther und Isobornyl-pikryläther enthaltend), daneben d(?)-Fenchyl-pikryläther, I- $\alpha$ -Pinen, I-Limonen und Camphen (Delépine, Adida, Bl. [4] 39, 787). Unter dem katalytischen Einfluß von Borsäureessigsäureanhydrid wird  $\beta$ -Pinen beim Erwärmen mit 2 Mol Eisessig unter Feuchtigkeitsausschluß auf dem Wasserbad in ca. 45 % iger Ausbeute in Bornylacetat umgewandelt; bei  $115-125^{\circ}$  oder in Gegenwart von Wasser bildet sich in zunehmendem Maß  $\alpha$ -Terpinylacetat (Au., Bl. [4] 39, 697). Bei ca. 20-stdg. Erhitzen von  $1-\beta$ -Pinen mit Benzoesäure auf 150° entstehen neben l-Limonen und l-α-Pinen die Benzoate des l-Borneols, d-Isoborneols und d-Fenchylalkohols; Trichloressigsäure reagiert analog (Delépine, C. r. 178, 2088; Bl. [4] 35, 1471; vgl. dazu D., C. r. 179, 175; Bl. [4] 35, 1481). Wird  $\beta$ -Pinen mit Benzoesäure auf 125—130° erhitzt, so findet vorwiegend Umwandlung in  $\alpha$ -Pinen statt (Au., Bl. [4] 39, 695, 1644; D. R. P. 492509; C. 1930 I, 2798; Frdl. 16, 569). Die

Ausbeute an Estern des Borneols und Isoborneols und an Limonen steigt mit der Menge der Benzoesäure (Austerweil, Petrovici, Bl. [4] 39, 1735; Au., Bl. [4] 41, 1509; vgl. ferner Au., D. R. P. 468299; Frdl. 16, 571). Beim Erhitzen von l-β-Pinen mit 2 Mol Salicylsäure auf 160° entstehen nach Austerweil (Bl. [4] 39, 694) Bornylester, α-Pinen, Limonen und Terpinen; wird auf 140° erhitzt, so enthält die Terpenalkoholfraktion nach dem Verseifen 87% l-Borneol und 13% l-Isoborneol (Au., Bl. [4] 41, 1509). Bei 20-stdg. Erhitzen von 1-β-Pinen mit der 3—4-fachen Menge Abietinsäure entstehen unterhalb 150° ca. 50%, bei 175—180° über 70% 1-α-Pinen (Au., Bl. [4] 39, 696, 1644). Eine alkoh. Lösung von β-Pinen liefert bei längerer Einw. einer mit einigen Tropfen Essigsäure versetzten Lösung von 2 Mol Queck-CIHg-HC -CH2 silberacetat in 95% igem Alkohol bei Zimmertemperatur und folgendem Zusatz einer 30% igen Natriumchlorid Lösung eine Verbindung C<sub>10</sub>H<sub>16</sub>OCl<sub>2</sub>Hg<sub>2</sub> nebenstehender Konstitution (Syst. Nr. 2363) (Gasopoulos, B. 59, 2185). H<sub>2</sub>C

Quantitative Bestimmung von  $\beta$ -Pinen durch Überführung in das Ozonid und Spaltung desselben in Formaldehyd und Nopinon: BRUS, PEYRESBLANQUES, C. r. 187, 986. Polarimetrische Bestimmung des Mengenverhältnisses von  $\alpha$ -Pinen und  $\beta$ -Pinen im französischen Terpentinöl: Vèzes, C.r. 172, 477. — Über die Eignung von  $\beta$ -Pinen als technisches Rohmaterial an Stelle von Terpentinöl vgl. Austerweil, Ch. Z. 50, 5, 33; C. 1926 I, 2050.

 $\beta$ -Pinen-ozonid  $C_{10}H_{16}O_3$ . B. Aus  $\beta$ -Pinen durch Einw. von Ozon bei  $0^{\circ}$  in Chloroform (Brus, Peyresblanques, C. r. 187, 985) oder in Alkohol (H. Schmidt, Z. ang. Ch. 42, 126). — Ol, das bei  $0^{\circ}$  teilweise erstarrt. — Zerfällt beim Kochen mit verd. Kalilauge oder Essigsäure sowie bei der Wasserdampfdestillation in Wasserstoffperoxyd, Formaldehyd, Nopinon und geringe Mengen einer bei 125—126° schmelzenden, krystallisierten Verbindung

(B., R.; vgl. a. Sch.).

β-Pinen-dichlorhydrin vom Schmelzpunkt 130—131°, C<sub>10</sub>H<sub>18</sub>O<sub>2</sub>Cl<sub>2</sub>. B. s. im folgenden Abschnitt. — Prismen (aus Äther + Petroläther). F: 130—131° (Henderson, Kerr, Soc. 125, 105). Ist mit Wasserdampf flüchtig. — Reagiert im Gegensatz zu den Isomeren nicht mit 0,5% iger Kalilauge in der Kälte.

 $\beta\text{-Pinen-dichlorhydrin}$  vom Schmelzpunkt 135°,  $C_{10}H_{18}O_{2}Cl_{2}$ . Ist vielleicht als 2.7-Dichlor-p-menthandiol-(1.8)  $CH_{2}Cl\cdot(HO)C<\underset{CH_{2}}{CH_{2}}-CH_{2}>CH\cdot C(OH)(CH_{3})_{2}$  zu formulieren (HENDERSON, KERR, Soc. 125, 103). — B. Neben den Isomeren vom Schmelzpunkt 130—131° und vom Schmelzpunkt 166° beim Schütteln von  $\beta$ -Pinen mit 1% iger Unter-Table 130 and voin Schnetzbrick 100 bein Schuttern von  $\rho$ -Finen int Fager Chlorigsäure (H., K., Soc. 125, 104). — Nadeln (aus Äther + Petroläther). Leicht löslich in Äther, Methanol, Alkohol, Aceton und Chloroform, schwer in Petroläther. [ $\alpha$ ] $^{\text{th}}$ : —75° (Methanol). — Reagiert nicht mit p-Nitro-benzoylchlorid in Pyridin. Gibt bei der Einw. von 1 Mol kalter verdünnter Kalilauge und nachfolgenden Behandlung der Reaktionsprodukte mit verdünnter schwefliger Säure " $\beta$ -Pinen-monochlorhydrin"  $C_{10}H_{17}O_{2}Cl$  vom Schmelzpunkt 128—129° (s. u.) und eine chlorhaltige Verbindung vom Schmelzpunkt 185° (Methanol). (Krystalle aus Äther).

β-Pinen-dichlorhydrin vom Schmelzpunkt 166°, C<sub>10</sub>H<sub>18</sub>O<sub>2</sub>Cl<sub>2</sub>. B. s. im vorangehenden Abschnitt. — Nadeln (aus Äther + Petroläther). F: 166° (HENDERSON, KERR, Soc. 125, 105). Etwas schwerer löslich in Äther, Alkohol und Aceton als die isomere Verbindung vom Schmelzpunkt 135°, sehr schwer löslich in Petroläther. — Wird durch verd.

Alkalilaugen in der Kälte leicht angegriffen.

 $\beta$ -Pinen-monochlorhydrin  $C_{10}H_{17}O_2Cl.$  B. Neben anderen Produkten bei der Einw. von 1 Mol kalter verdünnter Kalilauge auf  $\beta$ -Pinendichlorhydrin vom Schmelzpunkt 1350

(s. o.) und nachfolgenden Behandlung des Reaktionsprodukts mit verdünnter schwefliger Säure (Henderson, Kerr, Soc. 125, 105). — Prismen (aus Äther). F: 128—129°. Verbindung C<sub>10</sub>H<sub>16</sub>O<sub>4</sub>Cl<sub>4</sub>Cr<sub>2</sub> = C<sub>10</sub>H<sub>16</sub>+2CrO<sub>2</sub>Cl<sub>2</sub>. B. Aus β-Pinen und Chromylchlorid in Schwefelkohlenstoff unter Kühlung (Henderson, Chisholm, Soc. 125, 109). — Graubraune Masse. — Beim Erwärmen mit Wasser entstehen neben anderen Produkten ein Keton C<sub>9</sub>H<sub>14</sub>O (H 7, 73; Syst. Nr. 616), inaktives "trans"-Pinolglykol (Syst. Nr. 2398) und ein Gemisch von Aldehyden.

34. 1.3.3-Trimethyl-bicyclo-[1.2.2]-hepten-(5), \(\delta\text{-Fen-}\) HC-C(CH<sub>3</sub>) CH<sub>2</sub> chen, Fenchylen, Isofenchen C<sub>10</sub>H<sub>18</sub>, s. nebenstehende Formel (E I 80). Liefert beim Behandeln mit Ozon in Eisessig und Zersetzen des entstandenen Ozonids ein Keton C<sub>0</sub>H<sub>14</sub>O (S. 105), das auch von einer Verunreinigung des Ausgangsmaterials herrühren kann, und eine Ketosäure-Aldehydfraktion, C(CH<sub>3</sub>)2 die bei der Oxydation mit Permanganat dl-cis-Fenchocamphersäure liefert (Komppa, Roschier, A. 470, 152).

Keton  $C_9H_{14}O$ . B. s. S. 104 bei  $\delta$ -Fenchen. — Leichtflüssiges Öl von angenehmem Geruch (Komppa, Roschier, A. 470, 152). — Liefert beim Erwärmen mit Permanganat in verd. Kalilauge eine Säure  $C_9H_{14}O_4$  (s. u.). — Das Semicarbazon  $C_{10}H_{17}ON_3$  bildet Schuppen (aus Methanol), F: 209°, leicht löslich in heißem Methanol.

Saure  $C_9H_{14}O_4$ . B. Aus dem Keton  $C_9H_{14}O$  (s. o.) beim Erwarmen mit Permanganat in verd. Kalilauge (Komppa, Roschier, A. 470, 152). — Krystalle (aus Wasser). F: 117° bis 118°. Leicht löslich in Wasser.

35. 1.7.7-Trimethyl-bicyclo-[1.2.2]-hepten-(2), Bornylen  $H_2$ C-C(CH<sub>3</sub>)-CH  $C_{10}H_{16}$ , s. nebenstehende Formel (H 155; E I 80). Für die von Bornylen 7C(CH<sub>3</sub>)<sub>2</sub> abgeleiteten Namen wird in diesem Handbuch nebenstehende Stellungsbezeichnung gebraucht. — B. Beim Erhitzen von Trimethyl-bornyl-ammo. H20 niumhydroxyd im Vakuum (0,8 mm) auf ca. 200°, neben anderen Produkten (Ruzicka, Helv. 3, 750). Aus Bornylchlorid durch Erhitzen mit 10% iger Kaliumisoamylat-Lösung im Autoklaven auf 230—240° oder aus Bornylbromid beim Kochen mit Kaliumisoamylat-Lösung (Meerwein, Joussen, B. 55, 2533; Chem. Fabr. Schering, D.R.P. 382327; C. 1923 IV, 1004; Frdl. 14, 499). Camphenhaltiges Bornylen kann durch partielle Oxydation mit Benzopersäure in Eisessig bei 0° gereinigt werden (M., J. pr. [2] 113, 18). — E: 112,5° (M., J. pr. [2] 113, 19). F: ca. 111—112° (R.). Kp: 146—147° (M.). — Geschwindigkeit der Oxydation mit Benzopersäure in Chloroform bei 0°: M., J. pr. [2] 113, 13, 28. Gibt beim Sättigen der Lösung in Chloroform mit Chlorwasserstoff bei 0° selbst in Gegenwart von Wasser Bornylenhydrochlorid (S. 64), mit Bromwasserstoff Bornylenhydrobromid und mit Jodwasserstoff Bornylenhydrojodid (Achmatowicz, Roczniki Chem. 8 [1928], 57). Liefert beim Erwärmen mit Eisessig in Gegenwart von 50% iger Schwefelsäure im Rohr auf 55-60° oder beim Kochen mit Eisessig in Gegenwart von geschmolzenem Zinkchlorid Epibornylacetat (ACH., Roczniki Chem. 6, 807, 809; C. 1927 I, 3188; vgl. dazu Wagner, Brykner, B. 33 [1900], 2122; BREDT, HILBING, J. pr. [2] 84 [1911], 783). Liefert beim Behandeln mit wäßriger unterchloriger Säure in Petroläther "Bornylenchlorhydrin" (Syst. Nr. 508), x-Chlor-camphan und wahrscheinlich ein Dichlorcamphan (Henderson, Mair, Soc. 123, 1157). — Titrimetrische Bestimmung von Bornylen mit Benzopersäure in Chloroform: Nametrein, Brjussowa, J. pr. [2] 112, 174; ж. 57, 377; vgl. hierzu auch Меекwein, J. pr. [2] 113, 9.

36. 2.2 - Dimethyl - 3 - methylen - bicyclo - [1.2.2] - heptan, Camphen C<sub>10</sub>H<sub>16</sub>, s. nebenstehende Formel (H 156; E I 82). Für die von Camphen abgeleiteten Namen wird in diesem Handbuch nebenstehende Stellungsbezeichnung gebraucht. Zur Konstitution vgl. Lipp, Götzen, H<sub>2</sub>C-CH-C:CH<sub>2</sub> Reinartz, A. 453, 1.

Vorkommen, Bildung. d-Camphen findet sich: Im äther. Öl der Blätter und Zweigspitzen von Agathis australis von Neuseeland (Kauri-pine) (Hosking, R. 47, 579). In geringer Menge im äther. Öl der Wurzeln von Curcuma aromatica Salisb. (RAO, SHINTRE, SIMONSEN, J. indian Inst. Sci. [A] 9, 141; C. 1927 I, 654). In den Wurzeln von Zingiber officinale (Ingwer) (MOUDGILL, J. indian chem. Soc. 5, 254; C. 1928 II, 1448). Camphen von unbekanntem optischen Verhalten findet sich: Im äther. Öl von Amphilophis odorata A. Camus (Andropogon.odoratus Lisb.) (VAN EERDE, Pharm. Weekb. 61, 1187; C. 1924 II, 2796). In den Blütenköpfen von Perovskia atriplicifolia Benth. (RAO, Quart. J. indian chem. Soc. 3, 144; C. 1926 II, 1698).

Uber die Bildung von Camphen aus Bornylchlorid s. dort, S. 63. Über Bildung von Camphen aus α-Pinen beim Erhitzen für sich oder mit sauren Agenzien vgl. Kondakow, Saprikin, Bl. [4] 37, 741; Ko., Parf. mod. 19, 213; C. 1927 I, 193; Delépine, Adida, Bl. [4] 39, 788; Reisman, Bl. [4] 41, 96. Beim Erhitzen von Tricyclen mit wasserfreiem Natriumdisulfat in Kohlendioxyd-Atmosphäre auf 168°, neben anderen Produkten (Lipp. B. 53, 780). Inaktives Camphen erhält man neben den entsprechenden aktiven Bornylhalogeniden aus inaktivem Isobornylchlorid, -bromid oder -jodid beim Erhitzen mit d- oder l-Pinen auf 160° (Ko., Sa., Bl. [4] 37, 730). d-Camphen entsteht neben anderen Produkten bei der Destillation von d-Borneol mit japanischer saurer Erde bei 210—220° (Ono, Bl. chem. Soc. Japan 1, 252; C. 1927 I, 1004), beim Kochen von Borneol mit Frankonit (Chem. Fabr. Schering, Freund, D. R. P. 451535; C. 1928 I, 411; Frdl. 16, 716) sowie beim Überleiten von d-Borneol über wenig basisches Kupfersulfat enthaltendes Kupfer bei 330° (Hara, Mem. Coll. Sci. Kyoto [A] 9, 417; C. 1928 II, 2658). Beim Erhitzen von d-Bornylpikryläther auf 175° (Delépine, Addid, Bl. [4] 39, 786; vgl. a. Kondakow, Parf. mod. 19 [1926], 214). Inaktives Camphen wird in geringer Menge bei der Destillation der l-Bornylester der Benzolsulfonsäure, Naphthalin-sulfonsäure-(1) oder Naphthalin-sulfonsäure-(2) unter 18 mm Druck

erhalten (Patterson, McAlpine, Soc. 1928, 2465). Camphen entsteht neben anderen Produkten aus 6-Chlor-p-cymol-sulfonsäure-(3)-bornylester beim Erhitzen für sich sowie aus 6-Chlor-p-cymol-sulfonsäure-(3)-bornylester oder -isobornylester beim Erwärmen mit verd. Natronlauge auf 50° (Meerwein, A. 453, 40, 42). Beim Leiten der Dämpfe von Isoborneol bei Atmosphärendruck im Kohlendioxydstrom über Kupfer, am besten bei 210—220° (Ikeda, Scient. Pap. Inst. phys. chem. Res. 7, 4; C. 1928 I, 50). Aus Trichloressigsäure-isobornylester durch Erhitzen mit Phenol und Magnesiumoxyd in Wasser H2C—CH—C(CH3)2 auf 130°, neben viel Camphenhydrat und wenig Isoborneol (Meerwein, A. 453, 45). Beim Erhitzen des Lactons der nebenstehenden Konstitution (Syst. Nr. 2461) auf 270° (Langlois, Bl. [4] 41, 389). — H2C—CH—CCH2CO CUsammenfassende Angaben über Darstellungsverfahren und Patentübersicht: Ullrich, Metallbörse 18, 1014, 1069; C. 1928 II, 240; vgl. a. S. P. Schotz, Synthetic organic compounds [London 1925], S. 107. — Trennung von \( \alpha \)-Pien durch Ausfrieren unter Druck: Austerweil, Peufalllit, D. R. P. 402995; C. 1925 I, 299; Frdl. 14, 504; durch Ausschütteln mit w\( \alpha \)Br. Alkohol und nachfolgendes Ausfrieren: Au., Peu., D. R. P. 400253; C. 1925 I, 299; Frdl. 14, 506; durch Diffusion durch eine vulkanisierte Kautschukmembran: Au., Peu., D. R. P. 428860; C. 1926 II, 1100; Frdl. 15, 415.

Physikalische Eigenschaften. Kp<sub>760</sub>: 159,6° (Lecat, R. 46, 243). — Eigenschaften von l-Camphen: F: 45—46°; Kp<sub>760</sub>: 158°; Kp<sub>17</sub>: 52°; [ $\alpha$ ]<sub>D</sub>: —79,9° (Pariselle, C. r. 180, 1832). F: 44°; Kp: 160,5°; [ $\alpha$ ]]<sup>6</sup>: —77,2° (Alkohol; c = 10) (Ross, Somerville, Soc. 1926, 2775). — Eigenschaften von d-Camphen: F: 45—46°; Kp<sub>760</sub>: 158°; Kp<sub>17</sub>: 52°; [ $\alpha$ ]<sub>D</sub>: +77,1° (Pa.). F: 46°; Kp: 160°; [ $\alpha$ ]]<sup>6</sup>: +72,8° (Alkohol; c = 11,7) (R., S.). — Über Löslichkeit von l-Camphen in Methanol, Äthylalkohol, Propylalkohol und Pyridin von verschiedenem Wassergehalt vgl. Austerwell, Peufalllit, D. R. P. 400253; C. 1925 I, 299; Frall. 14, 505.

Camphen enthaltende binäre Azeotrope.

| Komponente              | Кр <sub>760</sub><br>0 | Camphen<br>in Gew% | Komponente                  | Кр <sub>760</sub><br>0 | Camphen<br>in Gew% |
|-------------------------|------------------------|--------------------|-----------------------------|------------------------|--------------------|
| Bromoform 9)            | ca.148,5               | ca. 5              | Cyclohexanon 4)             | 150,7                  | 42,5               |
| Glycerintrichlor-       |                        | _                  | Benzaldehyd <sup>10</sup> ) | 158,45                 | 84,5               |
| hydrin 5)               | ca.152,9               | ca.35              | Essigsäure 12)              | 118,2                  | 3                  |
| Diisoamyl®)             | 158                    | ca.75              | Acetamid 6)                 |                        | 85                 |
| Brombenzol 4)           |                        | ca.44              | Propionsäure 12)            | 137,7                  | 36                 |
| 2-Chlortoluol 11)       | ca.158                 |                    | Propionamid 7)              | 156,35                 | 90                 |
| 4-Chlortoluol 9)        | ca.158                 |                    | Buttersäure 9)              | 152,3                  | 63                 |
| Methanol <sup>3</sup> ) | 64,67(?)               | 1,2(?)             | Isobuttersäure 12) .        | 148.1                  | 55                 |
| Glycerin-a.a'-dichlor-  | , ,                    | , ,                | Isovaleriansäure 12)        | 156.5                  | 83                 |
| hydrin 1)               | 152,8                  | 62                 | Dimethyloxalat 4).          | 146,65                 | 58                 |
| Butylalkohol 3)         |                        | 2                  | Diäthyloxalat 8) .          |                        | 84                 |
| Isoamylalkohol 5) .     |                        | 23                 | Dimethylmalonat 5)          | 154,6                  | 74                 |
| n-Hexylalkohol 2) .     |                        | ca. 52             | Dimethylsuccinat 10)        |                        |                    |
| Glykol 4)               |                        | 80                 | Methyllactat 2)             | 140                    | 15                 |
| Pinakon 10)             | 155,5                  | 72                 | Äthyllactat 4)              | 144,95                 | 45                 |
| Cyclohexanol 4)         |                        | 59                 | Propyllactat 11)            |                        | 83                 |
| Phenol 6)               |                        | 78                 | Acetessigester 5) .         | 156.15                 | 70                 |
| Anisol 1)               | 151,85                 | 37                 | Anilin b)                   | 157.5                  | 87                 |
| Chloracetal 1)          | 155,2                  | 44                 | Furfurol 4)                 | 146.75                 | 60                 |

<sup>1)</sup> LECAT. R. 45, 622. — 2) L., R. 46, 243, 244. — 3) L., R. 47, 17. — 4) L., Ann. Soc. scient. Bruxelles 45 I [1926], 172, 174, 175. — 5) L., Ann. Soc. scient. Bruxelles 45 I, 288. — 6) L., Ann. Soc. scient. Bruxelles 47 I [1927], 24. — 7) L., Ann. Soc. scient. Bruxelles 47 I, 67. — 8) L., Ann. Soc. scient. Bruxelles 47 I, 110. — 9) L., Ann. Soc. scient. Bruxelles 47 I, 153, 155. — 10) L., Ann. Soc. scient. Bruxelles 48 I [1928], 57. — 11) L., Ann. Soc. scient. Bruxelles [B] 48, 120. — 12) L., Ann. Soc. scient. Bruxelles 49 [1929], 21.

Thermische Analyse des Systems von dl-Camphen mit  $\alpha$ -Pinen (Eutektikum bei  $-115^{\circ}$  und 30% Camphen),  $\beta$ -Pinen (Eutektikum bei  $-110^{\circ}$  und 30% Camphen), einem Gemisch von  $\alpha$ - und  $\beta$ -Pinen (Eutektikum bei  $101^{\circ}$  und 30%  $\alpha$ -  $+\beta$ -Pinen) und Dipenten (Eutektikum bei  $-111^{\circ}$  und 30% Camphen): Au., C. r. 178, 1174; vgl. a. Au., Peu., D. R. P. 402995; C. 1925 I, 299; Frdl. 14, 504. Thermische Analyse des Systems aus l- und d-Camphen: R., S. Azeotrope Gemische, die Camphen enthalten, s. in der obenstehenden Tabelle. Über ein azeotropes Gemisch mit Glycerin- $\alpha$ - $\beta$ -dichlorhydrin vgl. Lecat, Ann. Soc. scient. Bruxelles 47 I

[1927], 110. — Rotationsdispersion der Lösungen von l- und d-Camphen in Äther: Pariselle, C. r. 180, 1832. Beugung von Röntgenstrahlen in Camphen: Vaidyanathan, Indian J. Phys. 3, 375, 394; C. 1929 I, 2950, 2952.

Chemisches Verhalten. Polymerisiert sich beim Kochen mit Fullererde (VENABLE, Am. Soc. 45, 733). — Nach Briner, Egger, Paillard (Helv. 7, 1022) soll bei der Einw. von Ozon auf Camphen-Dämpfe (nicht näher charakterisiertes) Pinen entstehen. dl-Camphen liefert bei der Oxydation mit einer kalten Lösung von Chromtrioxyd in Acetanhydrid + Tetrachlorkohlenstoff dl-Camphenilon, dl-Camphenilanaldehyd und dl-Camphenilansäure (Treibs, Schmidt, B. 61, 463). Camphen gibt bei der Einw. von Benzopersäure in Äther oder Chloroform in der Kälte Camphenoxyd (Syst. Nr. 2363) (FAIDUTTI, C. r. 189, 855). Geschwindigkeit der Oxydation mit Benzopersäure in Chloroform und Tetrachlorkohlenstoff bei 0°: MEERWEIN, J. pr. [2] 113, 13, 27. — Geschwindigkeit der Hydrierung von Camphen für sich oder im Gemisch mit anderen ungesättigten Verbindungen in alkoh. Lösung in Gegenwart von Platinschwarz: Lebedew, Kobljanski, Jakubtschik, Soc. 127, 423; H. 56, 279, 290, 300, 314; L., J., H. 60, 793, 821; C. 1928 II, 1315; L., Platonow, Soc. 1930, 330, 333, 334; H. 61, 2163, 2167. Bei langsamem Einleiten von etwas weniger als 1 Mol Bromwasserstoff in eine Lösung von Camphen in Petroläther unter Kühlung mit Kältemischung entstehen Camphenhydrobromid (S. 67) und wenig Isobornylbromid; beim Einleiten von überschüssigem Bromwasserstoff in eine Lösung von Camphen in Äthylbromid bildet sich hauptsächlich Isobornylbromid (MEERWEIN, A. 453, 36). PARISELLE (C. r. 180, 1833) erhielt mit Bromwasserstoff in alkoh. Lösung bei Anwendung der aktiven Camphene 1833) ernieit mit Bromwasserstoff makon. Lösung bei Anwendung der aktiven Campnehe Isobornylbromide von entgegengesetzter Drehung. Bei längerem Behandeln von d-Camphen mit einer unter Kühlung hergestellten Lösung von Schwefeltrioxyd in Eisessig bei 100° unter Ausschluß von Feuchtigkeit H2C-C-CH entsteht 2-Oxy-camphansulfonsäure-(10)-lacton (s. nebenstehende Formel; Syst. Nr. 2670) neben viel Isobornylacetat (Lipp, Holl, B. 62, 501). H2C-CH-CH2 d-Camphen liefert beim Kochen mit methylalkoholischer Schwefelsäure linksdrehenden Methyl-isobornyl-äther (MEERWEIN, GÉRARD, A. 435, 183). Camphen gibt beim Kochen mit Formaldehyd und Eisessig Homocamphenolacetat (?) (Syst. Nr. 510) (Prins, Them. Weekb. 16, 1525; C. 1920 I, 425). Liefert mit Bromtrinitromethan und Ameisenin r Zusatz von Harnstoff zuerst bei 0°, dann bei Zimmertemperatur O-Formyl-camphen bromhydrin C<sub>11</sub>H<sub>17</sub>O<sub>2</sub>Br (Kp<sub>0.6</sub>: 109—111°) (E. Schmidt, Schumacher, Asmus, B. 56, 1241). Wird bei mehrstündigem Erwärmen mit Eisessig auf 80° nicht angegriffen, beim Erwärmen mit Essigsäure dagegen in Isoborneol und Isobornylacetat umgewandelt (M., Gέ., A. 435, 189 Anm. 2). Bei der Einw. von überschüssigem Acetylchlorid in Gegenwart von Aluminiumchlorid oder Magnesiumbromid in absol. Äther unter Eiskühlung erhält man wenig 21-Acetyl-camphen neben Isobornylchlorid und anderen Produkten (LIPP, KÜPPERS, HOLL, B. 60, 1578; L., QUAEDVLIEG, B. 62, 2316); 21-Acetyl-camphen wird auch bei Anwendung von Acetylbromid und Magnesiumbromid oder Acetylchlorid und Zinntetrachlorid in Äther erhalten (L., Qv.); bei Verwendung von etwas weniger als 1 Mol Benzoylchlorid und Aluminiumchlorid in Schwefelkohlenstoff bei -100 bildet sich 11-Benzoylborneol (L., K., H.). Bei der Einw. von Trichloressigsäure in Benzol erhält man bei 15-20° Camphenhydrat-trichloracetat und wenig Trichloressigsäure-isobornylester, bei 80° in der Hauptsache Trichloressigsäure-isobornylester (M., A. 453, 43). Camphen liefert mit Chlor-harnstoff in essigsaurer Lösung 2.2-Dimethyl-3-chlormethyl-bicyclo-[1.2.2]-heptanol-(3) (Detoeuf, Bl. [4] 31, 179). Camphen gibt bei der Einw. von 6-Chlor-p-cymol-sulfonsäure-(3) in Ather unter Feuchtigkeitsausschluß bei 0° 6-Chlor-p-cymol-sulfonsäure-(3)-isobornylester und wenig 6-Chlor-p-cymol-sulfonsäure-(3)-bornylester; bei erhöhter Temperatur verschiebt sich die Ausbeute zugunsten des 6-Chlor-p-cymol-sulfonsäure-(3)-bornylesters (Mefrwein, A. 453, 41).

Physiologisches Verhalten: E. Pfankuch in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt., Bd. I [Berlin-Leipzig 1930], S. 1298. — Camphen läßt sich neben Camphenhydrat und Isoborneol durch Titration mit Benzopersäure bestimmen (Meerwein, A. 453, 46).

E I 83, Z. 8 v. o. statt "Camphenilanaldehyd" lies "Isocamphenilanaldehyd". E I 84, Z. 16 v. u. nach "34 II, 44" füge zu "; 38, 719; C. 1907 I, 42".

4 - Chlor - 2.2 - dimethyl - 3 - methylen - bicyclo - [1.2.2] - heptan, H<sub>2</sub>C-CH-C(CH<sub>3</sub>)<sub>2</sub> 1-Chlor-camphen,  $\alpha$ -Chlor-camphen C<sub>10</sub>H<sub>15</sub>Cl, s. nebenstehende Formel. B. Aus 2.2-Dichlor-camphan beim Erhitzen mit Phenol und wasserfreiem Kaliumacetat auf 150 – 170° (MEERWEIN, WORTMANN, A. 435, 202). — Camphenāhnlich riechende krystalline Masse. Ist wahrscheinlich nicht ganz einheitlich. Schmilzt bei etwa 20°. Kp: 193 – 197°. — Beim Behandeln mit Ozon in Eisessig und Erwärmen des Reaktionsgemisches entsteht  $\alpha$ -Chlor-camphenilon. Liefert bei der Einw. von Natrium und Alkohol Camphen.

5 - Chlor - 2.2 - dimethyl - 3 - methylen - bicyclo - [1.2.2] - heptan,  $H_2C - CH - C(CH_3)_2$  6-Chlor-camphen,  $\beta$ -Chlor-camphen  $C_{10}H_{15}Cl$ , s. nebenstehende Formel.  $CH_2$   $CH_2$   $CH_3$   $CH_4$   $CH_5$   $CH_5$   $CH_5$   $CH_5$   $CH_6$   

Chlorcamphen C<sub>10</sub>H<sub>15</sub>Cl von Garino, D'Ambrosio s. S. 61.

- 2.2-Dimethyl-3-brommethylen-bicyclo-[1.2.2]-heptan,  $2^1$ -Brom- $H_1C$ -CH- $C(CH_3)$ 2 camphen,  $\omega$ -Brom-camphen  $C_{10}H_{15}$ Br, s. nebenstehende Formel (H 162;  $C_{H_2}$  | E I 85).
- a) Rechtsdrehende Form, ω-Brom-d-camphen. B. Zur Bildung aus d-Camphen durch Behandeln mit Brom in Ather nach Langlois (A. ch. [9] 12, 265; E I 85) vgl. noch Lipp, J. pr. [2] 105, 58. Kp<sub>740</sub>: 226—228° (korr.; Zers.); Kp<sub>9</sub>: 89,5—91° (korr.) (L., J. pr. [2] 105, 58). D<sub>1</sub><sup>3</sup>: 1,285; n<sub>1</sub><sup>3</sup>: 1,5287 (L., J. pr. [2] 105, 59). Beim Erhitzen mit Silberoxyd im Druckrohr auf 220° bei Gegenwart von H<sub>2</sub>C—CH—C(CH<sub>3</sub>)<sub>2</sub> Wasser findet Verharzung statt (L., J. pr. [2] 105, 59). Liefert beim Kochen mit festem Kaliumhydroxyd Dicamphenyläther und Homocamphenilon der nebenstehenden Konstitution (Lipp, J. pr. [2] 105, 59, 63; H<sub>2</sub>C—CH—C0 L., Götzen, Reinarz, A. 453, 4). Gibt beim Behandeln mit Trichloressigsäure bei 40° ω-Brom-isobornyl-trichloracetat und geringe Mengen eines isomeren Esters vom Schmelzpunkt 101—102° (Lipp, Lausberg, A. 436, 280).
- b) Linksdrehende Form. B. Die Bildung aus linksdrehendem Camphen entspricht der Darstellung von  $\omega$ -Brom-d-camphen (Lipp, Götzen, Reinartz, A. 453, 8).  $[\alpha]_0^{\text{in}}$ : —14,36°. Die Magnesiumverbindung liefert mit Acetonitril bei nachfolgender Zersetzung mit Eis  $2^1$ -Acetyl-camphen-imid, bei nachfolgender Zersetzung mit Ammoniumchlorid-Lösung  $2^1$ -Acetyl-camphen; mit Benzonitril erhält man stets  $2^1$ -Benzoyl-camphen-imid (Lipp, Quaeduleg, B. 62, 2315).
- 5-Nitro-2.2-dimethyl-3-methylen-bicyclo-[1.2.2]-heptan, 6-Nitro-camphen, sek.- $\alpha$ -Nitro-camphen  $C_{10}H_{15}O_2N$ , s. nebenstehende Formel. B. Aus Tricyclen beim Erhitzen mit Salpetersäure (D:1,075) im Rohr auf 125–130°, neben Isocamphoronsäure und anderen Produkten (Namethin, Zabrodin, A. 441, 185;  $\pm$ . 57, 93). Charakteristisch riechendes Öl. Kp<sub>14</sub>:119—119,5°. D°: 1,0689. n°: 1,4942. Ist mit Wasserdampf flüchtig. Löslich in Alkalien mit intensiv gelber Farbe. Entfärbt wäßr. Permanganat-Lösung sowie Brom in Chloroform unter Bromwasserstoffentwicklung (Namethin, Zabrodin, A. 441, 185;  $\pm$ . 57, 94). Beim Erwärmen mit Zinkstaub in Essigsäure erhält man sek.- $\alpha$ -Amino-camphen, neben harzigen Produkten (N., Z., A. 441, 186;  $\pm$ . 57, 95), bei der Reduktion mit überschüssigem Zinn(II)-chlorid und rauchender Salzsäure in wäßrig-alkoholischer Lösung sek.- $\alpha$ -Amino-camphen und wenig  $\alpha$ -Camphenon (s. nebenstehende Formel; Syst. Nr. 620) (N., Z., B. 59, 368). Die alkal. Lösung addiert Brom unter Bildung eines schweren Öls (N., Z., A. 441, 186;  $\pm$ . 57, 94). Reagiert nicht mit Essigsäure bei Gegenwart von Schwefelsäure (N., Z., A. 441, 186;  $\pm$ . 57, 94).
- 5-Nitroso-5-nitro-2.2-dimethyl-3-methylen-bicyclo-[1.2.2]-heptan, Camphenpseudonitrol  $C_{10}H_{14}O_3N_2$ , s. nebenstehende Formel. B. Aus sek.- $\alpha$ -Nitro-camphen in verd. Natronlauge beim Behandeln mit Natriumnitrit und folgenden Zufügen von verd. Schwefelsäure (NAMET-KIN, ZABRODIN, A. 441, 186; %. 57, 95). Blättchen (aus Chloroform). F: 99° (Zers.).
- 37. 2.2.5-Trimethyl-bicyclo-[1.2.2]-hepten-(5),  $\gamma$ -Fenchen (5) HC-CH-(5) HC-CH-(5) Roschier, a. ebenstehende Formel (E I 85). Zur Konstitution vgl. Komppa, (5) CH<sub>2</sub> Roschier, A. 470, 136; K., Beckmann, A. 503 [1933], 130; K., B. 75 CH<sub>3</sub> C-CH-CH<sub>2</sub> [1942] A, 2. Zur Bildung im Gemisch mit  $\alpha$  und  $\beta$ -Fenchen durch Erhitzen von linksdrehendem Fenchylalkohol (s. die Fußnote, S. 109) mit Kaliumdisulfat auf 180° vgl. Kondakow, Chem. Listy 23, 50; C. 1929 II, 877; Chem. Abstr. 23, 2707.
- 38. 2.2 Dimethyl 5 methylen bicyclo [1.2.2] heptan, β-Fenchen C<sub>10</sub>H<sub>16</sub>, s. nebenstehende Formel. Zur Konstitution vgl. KOMPPA, BECKMANN, A. 503 [1933], 135.

  Optisch-inaktive Form, dl-β-Fenchen (E I 86). Zur Ozonisierung vgl. noch KOMPPA, Roschier, A. 470, 144.

39. 7.7 - Dimethyl - 2 - methylen - bicyclo - [1.2.2] - heptan, H<sub>2</sub>C-CH-C:CH<sub>2</sub> α-Fenchen C<sub>10</sub>H<sub>18</sub>, s. nebenstehende Formel. Linksdrehende Form, | C(CH<sub>3</sub>)<sub>2</sub> | l-α-Fenchen (H 162; EI 86). B. Zur Bildung aus linksdrehendem H<sub>2</sub>C-CH-CH<sub>2</sub> Fenchylalkohol<sup>1</sup>) durch Erhitzen mit Kaliumdisulfat oder Phthalsäure vgl. Nametkin, A. 440, 66; N., Sseliwanowa, Ж. 57, 70. Entsteht als Hauptprodukt bei der Einw. von Phosphorpentachlorid auf linksdrehenden Fenchylalkohol<sup>1</sup>) in Petroläther unter Kühlung mit Eis-Kochsalz (Ruzicka, Liebl, Helv. 6, 270; vgl. Kondakow, Chem. Listy 23, 53; C. 1929 II, 877; Chem. Abstr. 23, 2708). — Kp<sub>780</sub>: 153—154°; Di<sup>3</sup>: 0,870; n<sup>5</sup><sub>2</sub>: 1,4750; [α]<sub>5</sub>: —38° (R., L.). — l-α-Fenchen liefert bei der Öxydation mit einer kalten Lösung von Chromtrioxyd in Acetanhydrid + Tetrachlorkohlenstoff in geringer Ausbeute α-Fenchocamphoron, α-Fenchenilansäure und α-Fenchen mit Benzopersäure in Chloroform und Tetrachlorkohlenstoff bei 0°: Meerwein, J. pr. [2] 113, 13, 27.

40. 4.7 - Methylen - oktahydroinden, 2.5 - Methylen-bicyclo - [0.3.4] - nonan, Tetrahydrodicyclopentadien

C<sub>10</sub>H<sub>16</sub>, s. nebenstehende Formel (H 164; E I 87). Zur Konstitution
vgl. die Angaben bei Dicyclopentadien (Syst. Nr. 473). — B.

Aus Dicyclopentadien oder aus Dihydro-dicyclopentadien bei der

Reduktion mit Wasserstoff in Ather in Gegenwart von Platinmohr (STAUDINGER, RHEINER, Helv. 7, 24, 28). — Krystalle (aus Methanol). F: 77°. Ist unter Atmosphärendruck unzersetzt destillierbar. — Beim Überleiten der Dämpfe über eine glühende Platinspirale erfolgt Spaltung in Cyclopenten und ein dickflüssiges Öl vom Siedepunkt 182°.

1.2-Dibrom-4.7-methylen-oktahydroinden, 7.8-Dibrom-2.5-methylen-bicyclogo.3.4]-nonan, Dihydro-dicyclopentadien-dibromid  $C_{10}H_{14}Br_2$ , Formel I. B. Aus

Dihydrodicyclopentadien beim Behandeln mit Brom in Chloroform (Wieland, Bergel, A. 446, 25) oder in Eisessig (Staudinger, Bruson, A. 447, 104). — Krystalle (aus Methanol). F: 62,5° (W., Br.), 65° (St., Br.). — Bei 2—3-stdg. Kochen mit wenig Silberacetat in Eisessig

erhält man die Acetylverbindung eines Brom-oxy-tetrahydrodicyclopentadiens (Syst. Nr. 510; Formel II oder III), bei 30-stdg. Kochen mit viel Silberacetat Diacetoxy-tetrahydrodicyclopentadien (Syst. Nr. 551; Formel IV) (W., Be., A. 446, 26).

- 41. Kohlenwasserstoff  $C_{10}H_{16}$  von Doebner (H 5, 164) ist als 1-Methyl-2-propylbenzol (Syst. Nr. 469) erkannt worden (Kuhn, Deutsch, B. 65 [1932], 44).
- 42. 1.2.2 Trimethyl 3.6 methylen bicyclo [0.1.3] hexan,
  Tricyclen. Cyclen C<sub>10</sub>H<sub>16</sub>, s. nebenstehende Formel (H 164; E I 87).

  B. Bei wiederholter Behandlung von 2.6-Dichlor-camphan mit Natrium in siedendem absoluten Ather (Aschan, B. 61, 42). Durch Reduktion von H<sub>2</sub>C-CH-C(CH<sub>3</sub>)<sub>2</sub>
  2.10-Dichlor-camphan mit Natrium und absol. Alkohol auf dem Wasserbad
  (Komppa, B. 62, 1370). Aus Bornylenhydrochlorid (S. 64) beim Erhitzen mit 25 Tln. Wasser im Rohr auf 100° oder mit 1 Tl. Anilin auf ca. 166° (Achmatowicz, Roczniki Chem. 8 [1928], 59, 68).

  Bei der Reduktion von Tricyclenylchlorid mit Natrium und absol. Alkohol auf dem Wasserbad, neben anderen Produkten (Ko., B. 62, 1369). Zur Bildung aus Campherhydrazon durch Einw. von gelbem Quecksilberoxyd vgl. noch Chem. Fabr. Schering, D. R. P. 353933;
  C. 1922 IV, 499; Frdl. 14, 508. Aus Tricyclal-azin (Syst. Nr. 620) durch Erhitzen mit der doppelten Menge Hydrazinhydrat im Rohr auf 160—170° und nachfolgendes Erhitzen mit Natriumäthylat auf 180—195° (Lipp, B. 53, 779). Beim Erhitzen von Teresantalalsemicarbazon (Syst. Nr. 620) mit Natriumäthylat-Lösung im Rohr auf 180° (Ruzicka, Liebl, Helv. 9, 143). Krystalle. F: 66—67° (ACH.), 64—65° (korr.) (Lipp). Kp<sub>758</sub>: 154—156° (ACH.); Kp<sub>758</sub>: 151,6—152° (korr.) (Lipp). Verflüchtigt sich unter 6 mm Druck schon bei 40° (Ko.). —

<sup>&</sup>lt;sup>1</sup>) Der bei diesen Reaktionen zur Verwendung kommende "linksdrehende" Fenchylalkohol ist als Gemisch von ca. 9 Tln. l-α-Fenchylalkohol und 1 Tl. l-β-Fenchylalkohol anzusehen (vgl. dazu KENYON, PRISTON, Soc. 127, 1476).

Ist gegen Brom in Chloroform nur kurze Zeit beständig (Lipp). Liefert beim Erwärmen mit Permanganat in Eisessig in geringen Mengen Tricyclensäure und ein Keton, dessen Semicarbazon bei langsamem Erhitzen bei 233—234° unter Zersetzung schmilzt (Lipp). Gibt beim Erhitzen mit Salpetersäure (D: 1,075) im Rohr auf 125—130° sek.-α-Nitro-camphen, Isocamphoronsäure und Oxalsäure (Nametkin, Zabrodin, A. 441, 185; Ж. 57, 93). Beim Überleiten von Tricyclen im Wasserstoffstrom über Platin-Kohle bei 155—160° bildet sich Camphan (Zelinsky, Lewina, A. 476, 64). Gibt beim Erhitzen mit wasserfreiem Natriumdisulfat in Kohlendioxyd-Atmosphäre auf 168° Camphen und andere Produkte (Lipp). Ist gegen 1-stdg. Kochen mit Zinkchlorid in Benzol beständig (Lipp).

- 5-Chlor-1.2.2-trimethyl-3.6-methylen-bicyclo-[0.1.3]-hexan, Chlortricyclen  $C_{10}H_{15}Cl$ , s. nebenstehende Formel. B. Entsteht neben  $Cl \cdot C \cdot CH_3$  Chlor-camphen beim Erhitzen von 2.6-Dichlor-camphan mit Phenol und wasserfreiem Kaliumacetat auf 170—190° (ΜΕΕΚWΕΙΝ, WORTMANN, A. 435, H<sub>2</sub>C-CH-C(CH<sub>3</sub>)<sub>2</sub> 205). Krystalle (aus Methanol oder Eisessig). F: 134—135°. Kp: 194° bis 196°. Sublimiert leicht. Ist mit Wasserdampf flüchtig. Liefert bei der Reduktion mit Natrium und Alkohol Tricyclen.
- 2.2 Dimethyl 1 chlormethyl 3.6 methylen bicyclo [0.1.3] hexan, Tricyclenylchlorid, "Tricyclylchlorid"  $C_{10}H_{15}Cl$ , s. nebenstehende Formel. B. Aus Tricyclenol bei der Einw. von 1 Mol Phosphorpentachlorid in Petroläther (Lipp, B. 53, 777) oder beim Erwärmen mit H<sub>2</sub>O-CH-C(CH<sub>3</sub>)<sub>2</sub> Phosphortrichlorid in absol. Chloroform (Komppa, B. 62, 1369). Ölige, angenehm riechende Flüssigkeit. Erstarrt in einer Kältemischung. Kp<sub>14.5</sub>: 85—88°; Kp<sub>11</sub>: 81—82,5° (L.). Kp<sub>6</sub>: 75—76°; D<sub>4</sub><sup>\*\*</sup>: 1,0348; n<sub>1</sub><sup>\*\*</sup>: 1,49336 (K.). Liefert beim Erwärmen mit Natrium und absol. Alkohol auf dem Wasserbad Tricyclen und wahrscheinlich Tricyclenyläthyläther  $C_{10}H_{15} \cdot O \cdot C_2H_5$  (Syst. Nr. 510) (K.). Entfärbt Brom in Chloroform erst nach längerem Stehen (L.).
- 43. 2.2.3 Trimethyl 3.6 methylen bicyclo [0.1.3] hexan,  $\beta$ -Bornylen Isocyclen, " $\beta$ -Pericyclocamphan" HC CH  $C_{10}H_{10}$ , s. nebenstehende Formel (H 165; E I 87). B. Aus Camphenonhydrazon beim Erhitzen mit Quecksilberoxyd in Alkohol (NALETKIN, BRJUSSOWA, A. 459, 153, 168;  $\Re$ . 60, 270, 291; 62 [1930], 334). Krystalle (aus Alkohol). F: 119°. Kp: 150—151°. Ist mit Alkoholdampf flüchtig.
- 44. 2.2.6-Trimethyl-3.6-methylen-bicyclo-[0.1.3]-hexan,  $\beta$ -Pinolen. Cyclofenchen  $C_{10}H_{16}$ , s. nebenstehende Formel. B. Aus d-Fenchon-hydrazon durch Einw. von gelbem Quecksilberoxyd in Alkohol anfangs unter Kühlung, zuletzt bei Siedetemperatur (Chem. Fabr. SCHE-H2C-CH-C(CH3)2 RING, D. R. P. 353933; C. 1922 IV, 499; Frdl. 14, 508; NAMETKIN, BRJUSSOWA, A. 459, 166; Ж. 60, 290). Kp: 142,5—143,5°; D^m: 0,8588; n^m: 1,4513; [\alpha]^m: +0,45° (Chem. Fabr. SCHERING). Kp\_{734}: 143—143,5°; D^m: 0,8603; n^m: 1,4515 (N., Br.). Cyclofenchen gibt beim Überleiten über Platin-Kohle im Wasserstoff-Strom bei 155—160° Isobornylan (S. 68), im Kohlendioxyd-Strom bei 300° vermutlich ein Gemisch von \alpha- und \beta-Fenchen (Zelinsky, Lewina, A. 476, 63, 69).

E I 5, 88, Z. 7 v. o. statt "Syst. Nr. 508" lies "E I 6, 54".

- 45. Kohlenwasserstoff C<sub>10</sub>H<sub>16</sub> aus Citronellal. B. Aus Citronellal beim Behandeln mit 50% iger Schwefelsäure bei 25—30° sowie aus Menthoglykol beim Behandeln mit 50% iger Schwefelsäure bei 12° oder beim Erhitzen mit Kaliumdisulfat (Horiuchi, Mem. Coll. Sci. Kyoto [A] 11, 184, 194; C. 1928 II, 1326). Kp: 175—181°. Verschiedene Präparate zeigten: D<sub>4</sub>°: 0,8535, 0,8583. n<sub>9</sub>°: 1,4900; n<sub>5</sub>°: 1,4875.
- 46. Kohlenwasserstoff  $C_{10}H_{16}$  aus Zingiber nigrum. V. Im äther. Öl der Früchte von Zingiber nigrum Gaertner (Kariyone, Matsushima, J. pharm. Soc. Japan 1927, 96; C. 1927 II, 2405). Kp: 173—176°.  $D_{\bullet}^{a}$ : 0,8564.  $n_{D}^{a}$ : 1,4861.  $[\alpha]_{\bullet}^{m}$ : +1,3°.
- 47. Kohlenwasserstoff  $C_{10}H_{16}$  aus Smyrnium perfoliatum. V. In den reifen Samen von Smyrnium perfoliatum (Nilow,  $\mathcal{H}$ . 60, 1580; C. 1929 I, 2709). Flüssigkeit. Kp<sub>760</sub>: 160—165°.  $D_{11}^{n}$ : 0,8767.  $n_{1}^{n}$ : 1,4810.
- 48. Kohlenwasserstoff  $C_{10}H_{16}$  aus Thymianöl. V. In einem spanischen Thymianöl (Schimmel & Co., Ber. Schimmel 1922, 72; C. 1922 IV, 764). Flüssigkeit von karottenartigem Geruch. Kp: 155—156°. D<sup>15</sup>: 0,8533—0,8537.  $n_0^{\circ}$ : 1,4620—1,4623.  $\alpha_{\rm D}$ :  $+4,6^{\circ}$  bis  $+4,8^{\circ}$ . Veränderungen bei der Oxydation mit Kaliumpermanganat: Schimmel & Co. Bildet ein Nitrosochlorid, das sich bei ca. 85° zersetzt, ein zwischen 105° und 108° schmelzendes Nitrolbenzylamid und ein bei 194—195° schmelzendes Nitrolpeperidid.

111

- 49. Kohlenwasserstoff C<sub>10</sub>H<sub>16</sub> aus Cascarillöl. V. Wurde in geringer Menge bei der Destillation von Cascarillöl, dem äther. Öl der Rinde von Croton eluteria Benn. erhalten (Thoms, Verh. Ges. dtsch. Naturf. 71 II [1900], 2. Hälfte, S. 648; C. 1900 II, 574; Th., Fendler, Ar. 238, 682). Flüssigkeit von angenehmem, etwas an Pinen erinnerndem Geruch. Kp<sub>760</sub>: 155—157°; Kp<sub>100</sub>: 90—95°. D<sup>20</sup>: 0,845. [α]<sup>n</sup><sub>0</sub>: +2,5°. Addiert 1 Mol Chlorwasserstoff und 2 Atome Brom unter Bildung öliger Produkte. Gibt ein Nitrosochlorid vom Schmelzpunkt 91—92° und ein Nitrolpiperidid vom Schmelzpunkt 112°.
- 7. Kohlenwasserstoffe  $C_{11}H_{18}$ .
- 1.  $\gamma$  Pentinyl cyclohexan, 5 Cyclohexyl pentin (2)  $C_{11}H_{18} = H_2C < \frac{CH_2 \cdot CH_2}{CH_2 \cdot CH_2} > CH \cdot CH_2 \cdot CH_2 \cdot C:C \cdot CH_3$ . B. Aus der Natriumverbindung des 4-Cyclohexyl butins-(1) und Dimethylsulfat in wasserfreiem Äther (Bourguel, C. r. 179, 688; A. ch. [10] 3, 363). Flüssigkeit von anisartigem Geruch. Kp<sub>17</sub>: 93—93,5°; D<sup>20</sup>: 0,857; n<sup>20</sup>: 1,4710 (B., A. ch. [10] 3, 363). Bei der katalytischen Hydrierung in Gegenwart von kolloidalem Palladium erhält man 5-Cyclohexyl-penten-(2) (B., Bl. [4] 41, 1475). Liefert beim Erhitzen mit Natriumamid in Petroleum auf 160° 5-Cyclohexyl-pentin-(1)-natrium (B., C. r. 179, 688; A. ch. [10] 3, 363).
- 2.  $\delta$  Pentinyl cyclohexan, 5 Cyclohexyl pentin (1)  $C_{11}H_{18} = H_2C < \frac{CH_2 \cdot CH_2}{CH_2} \cdot CH \cdot [CH_2]_3 \cdot C \cdot CH$ . B. Beim Erhitzen von 5-Cyclohexyl-pentin-(2) mit Natriumamid in Petroleum auf 160°; man zersetzt die erhaltene Natriumverbindung mit Eis und Salzsäure (Bourguel, C. r. 179, 688; A. ch. [10] 3, 363). Anisartig riechendes Ol. Kp<sub>16</sub>: 84—84,5°; D<sup>20</sup>: 0,846; n<sup>0</sup><sub>0</sub>: 1,4625 (B., A. ch. [10] 3, 364). Liefert bei der katalytischen Hydrierung in Gegenwart von kolloidalem Palladium 5-Cyclohexyl-penten-(1) (B., Bl. [4] 41, 1475). Die Natriumverbindung gibt beim Behandeln mit Kohlendioxyd in Toluol unter Kühlung 5-Cyclohexyl-pentin-(1)-carbonsäure-(1) (B., C. r. 179, 688; A. ch. [10] 3, 387). Beim Behandeln der Natriumverbindung mit Dimethylsulfat in wasserfreiem Ather erhält man 6-Cyclohexyl-hexin-(2) (B., C. r. 179, 688; A. ch. [10] 3, 356, 364).  $C_{11}H_{17}Ag + AgNO_3$ . Sehr schwer löslich in Alkohol (B., A. ch. [10] 3, 364).
- 3. 1.5-Dimethyl-2-isopropyl-cyclohexadien-(1.5). 3-Methyl-p-menthadien-(1.3)  $C_{11}H_{18}=CH_3\cdot C\cdot CH_2\cdot C(CH_3) > C\cdot CH(CH_3)_2$ . B. Aus 1 Mol dl- oder l-Piperiton und 2 Mol Methylmagnesiumjodid in Ather (Read, Watters, Soc. 1929, 2168). Kp<sub>737</sub>: 184—186°; Kp<sub>18</sub>: 81—82°; Kp<sub>9</sub>: 73,5—74,5°. D<sub>4</sub><sup>28</sup>: 0,8585. n<sub>5</sub><sup>28</sup>: 1,4845; n<sub>5</sub><sup>28</sup>: 1,4865. Liefert bei der Oxydation mit alkal. Permanganat-Lösung  $\omega.\omega$ -Dimethyl-acetonylaceton.
- 4. 1.5 Dimethyl 2 isopropyliden cyclohexen (6) und 1.5 Dimethyl-2-isopropenyl-cyclohexen-(1) C<sub>11</sub>H<sub>18</sub>, Gemisch aus CH<sub>3</sub>·HC < CH<sub>2</sub> CH<sub>2</sub> CH<sub>2</sub> C:C(CH<sub>3</sub>) c:C(CH<sub>3</sub>) und CH<sub>3</sub>·HC < CH<sub>2</sub> CH<sub>2</sub>·C(CH<sub>3</sub>) c:C(CH<sub>3</sub>) c:C(CH<sub>3</sub>) Methylpulegen (H 168; EI 89). Zur Konstitution vgl. Grignard, Savard, C. r. 181, 591; Hugh, Kon, Linstead, Soc. 1927, 2586, 2593; vgl. dagegen J. L. Simonsen, The terpenes, Bd. I [Cambridge 1931], S. 335. B. Neben anderen Produkten bei der Einw. von Methylmagnesiumbromid auf Pulegon und Dehydratation des erhaltenen, nicht näher beschriebenen Methylpulegols mit Phosphortrichlorid oder mit Acetanhydrid und Kaliumacetat (Gr., S., C. r. 179, 1574; 181, 590). Kp<sub>10</sub>: 64° (Gr., S.). Einw. von Ozon: Gr., S., C. r. 181, 590.
- 5. 6.6-Dimethyl-2-āthyl-bicyclo-[1.1.3]-hepten-(2), HC=C(C<sub>2</sub>H<sub>5</sub>)-CH Methylmyrtenyl C<sub>11</sub>H<sub>18</sub>, s. nebenstehende Formel. B. Aus Myrtenyl-bromid beim Erwärmen mit Methylmagnesiumjodid in absol. Äther (Rupe, A. 459, 180). Leicht bewegliche Flüssigkeit von scharfem pinenartigem Geruch. Kp<sub>62</sub>: 95,5—96°. D<sub>4</sub>°: 0,8697. [α]<sub>b</sub>°: +33,96° (unverdünnt). Rotationsdispersion bei 20°: Rupe.
- 6. 2.4.6.6-Tetramethyl-bicyclo-[1.1.3]-hepten-(2) oder 4.6.6-Trimethyl-2-methylen-bicyclo-[1.1.3]-heptan, Homoverbanen  $C_{11}H_{18}$ , Formel I oder II.

B. Aus Methylverbanol (Syst. Nr. 509) bei der Destillation unter gewöhnlichem Druck, am besten in Gegenwart von Oxalsäure (Wienhaus, Sohumm, A. 439, 45). — Wasserhelle, leicht bewegliche Flüssigkeit.  $Kp_{748}$ : 184—188°.  $D_4^{\infty}$ : 0,8538.  $n_D^{\infty}$ : 1,4714.

[Syst. Nr. 461

- 7. 1.2.2 Trimethyl 3-methylen-bicyclo-[1.2.2]-heptan, H<sub>2</sub>C-C(CH<sub>3</sub>)-C(CH<sub>3</sub>)<sub>2</sub> β-Methyl-camphen C<sub>11</sub>H<sub>18</sub>, s. nebenstehende Formel. Zur Konstitution vgl. Nametrein, Brjussowa, A. 459, 153; Ж. 60, 275, 276. H<sub>2</sub>C-CH-C:CH<sub>2</sub>
  B. Neben α-Methyl-camphen beim Erhitzen von 4-Methyl-isoborneol mit Kaliumdisulfat auf 150° (N., Ж. 51, 142; C. 1923 III, 1013; A. 432, 225; N., Br., Ж. 55, 528; C. 1925 II, 650). Krystalle (aus Methanol). F: 100—101° (N.; N., Br.). Kryco: 170—170,5° (N.; N., Br.). Liefert beim Erwärmen mit Eisessig und etwas 50 %iger Schwefelsäure 4-Methyl-isoborneol-acetat (N.). Beim Einleiten von Stickoxyden und Kochen des Reaktionsprodukts mit Kalilauge erhält man β-Methyl-camphenilon (N.).
- 8. 1.3.3 Trimethyl 2-methylen-bicyclo-[1.2.2]-heptan, H<sub>2</sub>C-C(CH<sub>3</sub>)-C:CH<sub>2</sub> α-Methyl-camphen C<sub>11</sub>H<sub>18</sub>, s. nebenstehende Formel (E I 90). B. CH<sub>2</sub> Beim Erhitzen von α-Methyl-fenchol (Nametrin, Chuchrikowa, H<sub>2</sub>C-OH-C(CH<sub>3</sub>)<sub>2</sub> % 50, 257; C. 1923 III, 1013; A. 432, 216), von 2-Methyl-borneol (N., Schlesinger, Ж. 51, 146; C. 1923 III, 1014; A. 432, 224) oder von 4-Methyl-isoborneol (N., Brjussowa, Ж. 55, 528; C. 1925 II, 650) mit Kaliumdisulfat auf 150°. Krystalle (aus Methanol). F: 41-43° (N., Ch.). Kp: 170-171° (N., Ch.; N., Schl.). [α]<sub>D</sub>: +15,8° (Äther; p = 11) (N., Schl.). Bei der Oxydation mit Permanganat wurde Fenchon isoliert (N., Ch.). Liefert beim Kochen mit Eisessig und etwas Schwefelsäure 4-Methyl-isoborneolacetat (N., Schl.). Titrimetrische Bestimmung mit Benzopersäure: N., Br., J. pr. [2] 112, 173; Ж. 57, 376.
- 9. 1.2.5.5-Tetramethyl-bicyclo-[1.2.2]-hepten-(2), Methylisofenchen, 1-Methyl- $\gamma$ -fenchen  $C_{11}H_{18}$ , Formel I. B. Neben 1-Methyl- $\beta$ -fenchen beim Erhitzen von 2-Methyl-isofenchylakohol (Formel II) mit wasserfreiem Kaliumdisulfat auf 155—160°

(Komppa, A.472,180,183) oder auf 170—230° (K., Nyman, A.523 [1936], 88, 94). — Kp:  $154^{\circ}$  bis  $156^{\circ}$ ; D<sub>1</sub><sup>\infty</sup>: 0,8439; n<sub>1</sub><sup>\infty</sup>: 1,45284 (K., N.). — Bei der Ozonspaltung in Eisessig erhält man 1.1.4-Trimethyl-2-formyl-4-acetyl-cyclopentan (Formel III; Syst. Nr. 667) und die ölige

- 1.1.4-Trimethyl-4-acetyl-cyclopentan-carbonsäure (2), die bei weiterer Oxydation mit Natriumhypobromit dl-cis-Fenchocamphersäure (Formel IV) liefert (K.; K., N.).
- 10. 1.5.5-Trimethyl-2-methylen-bicyclo-[1.2.2]-heptan, 1-Methyl- $\beta$ -fenchen  $C_{11}H_{18}$ , s. nebenstehende Formel. B. s. im Artikel 1-Methyl- $\gamma$ -fenchen. Kp: 163—164°;  $D_{\nu}^{m}$ : 0,8497;  $n_{\nu}^{m}$ : 1,4621 (Komppa, Nyman, A. 523 [1936], 88, 96; vgl. K., A. 472, (CH<sub>3</sub>)<sub>2</sub>C—CH——CH<sub>2</sub> 180, 183).
- 11. 1.2.7.7 Tetramethyl bicyclo [1.2.2] hepten (5),  $HC = C(CH_3) CH \cdot CH_3$  6 Methyl bornylen  $C_{11}H_{18}$ , s. nebenstehende Formel. B. Bei der Destillation von 6-Methyl-bornyl-(2)-xanthogensäuremethylester (Brjussowa,  $\mathcal{H}$ . 59, 654, 656; C. 1928 I, 1030). Krystalle (aus Alkohol). F: 118,5—1199. Sehr flüchtig. Liefert bei der Oxydation mit 1 % iger Permanganat-Lösung in Benzol 5-Methyl-camphersäure. Oxydation mit Benzopersäure: B.
- 12. 1.7.7-Trimethyl-3-methylen-bicyclo-[1.2.2]-heptan,  $H_1^{2}C-C(CH_2)-CH_2$ 3-Methylen-camphan  $C_{11}H_{18}$ , s. nebenstehende Formel. B. Beim Kochen von 3-Oxymethyl-camphan mit sirupöser Phosphorsäure (RUPE,  $H_2C-CH-C:CH_2$ BRIN, Helv. 7, 553). Dünnflüssiges Öl von unangenehmen, starkem Geruch. Kp<sub>11</sub>: 58—62° (R., B.).  $\alpha_D^{\infty}$ : —0,11° (l = 5 cm); Rotationsdispersion: R., A. 440, 241. Gibt beim Sättigen mit Bromwasserstoff in Eisessig unter Eiskühlung 3-Brommethyl-camphan (R., B.).
- 13. 1.4 Methylen dekalin, 7.9 Äthylen bicyclo-[0.3.4]-nonan  $C_{11}H_{18}$ , s. nebenstehende Formel. B. Beim Kochen von 5.8-Dioxo-1.4-methylen-dekalin in Eisessig mit amalgamiertem Zinkstaub und rauchender Salzsäure (Diels, Alder, A. 460, 108). Terpenartig riechende Flüssigkeit.  $Kp_{18}$ : 84—85°;  $Kp_{22}$ : 91°.

- 14. 3.6-Dimethyl-3.6-isopropyliden-bicyclo-[0.1.3]-hexan, Methyl-cyclen C<sub>11</sub>H<sub>18</sub>, s. nebenstehende Formel. Zur Konstitution HC C(CH<sub>3</sub>) vgl. Nametkin, Brjussowa, J. pr. [2] 185 [1932], 156 Anm.; Ж. 62 C(CH<sub>3</sub>) [1930], 343 Anm; N., Bogatschewa, Bl. [4] 49 [1931], 1035; Ж. 62, 1340; H<sub>2</sub>C C(CH<sub>3</sub>) CH<sub>2</sub> C. 1931 I, 1277. B. Aus 4-Methyl-campher-hydrazon durch Einw. von Quecksilberoxyd in Alkohol anfangs unter Kühlung, zuletzt auf dem Wasserbad (N., Br., B. 57, 1260; Ж. 57, 80). Aus dem Hydrazon des Methyl-isocyclenons (Syst. Nr. 620) bei 12-stdg. Erhitzen mit Natriumäthylat-Lösung im Rohr auf 180—195° (N., Br., J. pr. [2] 135, 163; Ж. 62, 348). Sehr leicht flüchtige, camphenähnlich riechende Krystalle (aus Alkohol). F: 113—114° (N., Br., J. pr. [2] 135, 165). Kp<sub>785</sub>: 168—168,5° (N., Br., B. 57, 1260). Entfärbt Brom in Chloroform (N., Br., B. 57, 1260).
- 15. 1.2.2.6 Tetramethyl 3.6 methylen bicyclo [0.1.3] hexan, ,,α-Pericyclohomocamphan" C<sub>11</sub>H<sub>18</sub>, s. nebenstehende Formel (E I 90). Radmacher (Dissert. [Aachen 1920], S. 16, 25, 27) erhielt bei der Umsetzung von Campher oder Fenchon mit Methylmagnesiumjodid und Abspaltung von Wasser aus dem entstandenen Methylborneol bzw. Methylfenchol durch Einw. von überschüssiger Grignardverbindung stets Gemische von α-Methylcamphen und 2-Methylen-camphan (,,Methylfenchen") (vgl. E I 90, Nr. 8 und 9); ein dem α-Pericyclohomocamphan entsprechender Kohlenwasserstoff konnte nicht isoliert werden. Vgl. a. Meerwein, Montfort, A. 435, 208 Anm. 4.

# 8. Kohlenwasserstoffe $C_{12}H_{20}$ .

- 1.  $\delta$  Hexinyl cyclohexan. 6 Cyclohexyl hexin (2)  $C_{12}H_{20}=H_2C<\frac{CH_2\cdot CH_2}{CH_2\cdot CH_2}>CH\cdot [CH_2]_3\cdot C:C\cdot CH_3$ . B. Beim Behandeln der Natriumverbindung des 5-Cyclohexyl-pentins-(1) mit Dimethylsulfat in wasserfreiem Äther (Bourguel, C. r. 179, 688; A. ch. [10] 3, 356, 364). Flüssigkeit von obstartigem Geruch.  $K_{P_17}$ : 109—110°;  $D^{so}$ : 0,853;  $n_0^{so}$ : 1,4710 (B., A. ch. [10] 3, 364). Gibt bei der katalytischen Hydrierung in Gegenwart von kolloidalem Palladium 6-Cyclohexyl-hexen-(2) (B., Bl. [4] 41, 1476). Liefert beim Erhitzen mit Natriumamid in Petroleum auf 160° 6-Cyclohexyl-hexin-(1)-natrium (B., A. ch. [10] 3, 365).
- 2.  $\varepsilon$  Hexinyl cyclohexan, 6 Cyclohexyl hexin (1)  $C_{12}H_{20} = H_2C < \frac{CH_2 \cdot CH_2}{CH_2 \cdot CH_2} > CH \cdot [CH_2]_4 \cdot C \cdot CH$ . B. Die Natriumverbindung entsteht beim Erhitzen von 6-Cyclohexyl-hexin-(2) mit Natriumamid in Petroleum auf 160° (Bourguel, C. r. 179, 688; A. ch. [10] 3, 365). Kp<sub>17</sub>: 101°; D<sup>20</sup>: 0,846; n<sup>20</sup>: 1,463 (B., A. ch. [10] 3, 365). Gibt bei der katalytischen Hydrierung in Gegenwart von kolloidalem Palladium 6-Cyclohexyl-hexen-(1) (B., Bl. [4] 41, 1476). Die Natriumverbindung liefert beim Behandeln mit Kohlendioxyd in Toluol unter Kühlung 6-Cyclohexyl-hexin-(1)-carbonsäure-(1) (B., C. r. 179, 688; A. ch. [10] 3, 388).  $C_{12}H_{12}Ag+AgNO_3$ . Krystalle (B., A. ch. [10] 3, 365).
- 3. 1-Methyl-3-äthyl-4-isopropyl-cyclohexadien-(1.3), 3-Äthyl-p-menthadien-(1.3)  $C_{12}H_{20}=CH_3\cdot C < CH^2\cdot C(C_2H_3)>C\cdot CH(CH_3)_2$ . B. Aus dl-oder l-Piperiton und Äthylmagnesiumjodid in Äther (Read, Watters, Soc. 1929, 2169). Wurde nicht ganz rein erhalten. Kp<sub>737</sub>: 199—202°; Kp<sub>15</sub>: 83—85°. D<sub>4</sub><sup>8</sup>: 0,8631. n<sub>5</sub><sup>8</sup>: 1,4854.
- 4. 1.3.4 Trimethyt 1 isopropenyt cyclohexen (3), Dimethyldipren  $C_{12}H_{20} = CH_3 \cdot C < C(CH_3) \cdot CH_2 > C(CH_3) \cdot C < CH_3 \cdot CC_{H_3} \cdot CC_$
- 5. 1-Cyclohexyl-cyclohexen-(1),  $\Delta^1$ -Dekahydrodiphenyl  $C_{12}H_{20}=H_2C<\frac{CH_2\cdot CH_2}{CH_2\cdot CH_2}$ CH· $C<\frac{CH\cdot CH_2}{CH_2\cdot CH_2}$ CH<sub>2</sub> (E I 91). B. Neben geringen Mengen 1-Cyclohexylmethyl-cyclopenten-(1) durch Erhitzen von trans-1-Cyclohexyl-cyclohexanol-(2) (F: 52°) mit Zinkchlorid auf 180—190° oder besser (ohne Nebenprodukte) durch Erhitzen von cis-1-Cyclohexyl-cyclohexanol-(2) (F: 63°) mit Zinkchlorid oder Kaliumdisulfat auf 180—190° (HÜCKEL, Mitarb., A. 477 [1930], 112, 124; vgl. H., Z. ang. Ch. 42, 482; vgl. a. SCHRAUTH, GÖRIG, B. 56, 1902). F: —41°; Kp<sub>748</sub>: 234°; Kp<sub>13</sub>: 110°; D<sub>1</sub>°°: 0,9071; D<sub>1</sub>°°: 0,9060;  $n_{He}^{11.6}$ : 1,4956 (H., Mitarb.). Bei der Oxydation mit 4% iger Permanganat-Lösung bei —40°

erhält man cis-1-Cyclohexyl-cyclohexandiol-(1.2) (F: 122—123°) und wenig trans-1-Cyclohexyl-cyclohexandiol-(1.2) (F: 142°) (BÖESEKEN, B. 56, 2411). Liefert mit eisgekühlter, schwach alkalischer Permanganat-Lösung Adipinsäure und andere Produkte (H., Mitarb.). Gibt bei der Ozonisierung in Eisessig und nachfolgenden Oxydation mit warmer alkalischer Permanganat-Lösung  $\varepsilon$ -Oxo- $\varepsilon$ -cyclohexyl-n-capronsäure (H., Mitarb.). Liefert bei der Hydrierung mit Palladium-Kohle ohne Lösungsmittel Dicyclohexyl (H., Mitarb.). Gibt ein in Aceton schwer lösliches Nitrosochlorid vom Schmelzpunkt 115° und ein in Aceton leichter lösliches Nitrosochlorid vom Schmelzpunkt 140° (H., Mitarb.).

- 6. 1 Cyclohexyl cyclohexen (3),  $\triangle^8$  Dekahydrodiphenyl  $C_{12}H_{20}=H_2C<\frac{CH_2\cdot CH_2}{CH_2\cdot CH_2}$  CH CH CH CH . B. Durch Erhitzen von cis- oder trans-1-Cyclohexyl-cyclohexanol-(4) (F:  $105^{\circ}$  bzw. F:  $83-84^{\circ}$ ) mit Zinkchlorid auf  $180-190^{\circ}$  (Schrauth, Görig, B. 56, 1902, 1905). Kp<sub>755</sub>:  $236-237,5^{\circ}$ . Liefert bei der Hydrierung in Gegenwart von Nickelkatalysator bei  $140-180^{\circ}$  nicht ganz reines Dicyclohexyl.
- 7. Cyclohexylidencyclohexan, "Dicyclohexen"  $C_{12}H_{20}=H_2C<\frac{CH_2\cdot CH_2}{CH_2\cdot CH_2}>C:C<\frac{CH_2\cdot CH_2}{CH_2\cdot CH_2}>CH_2$  (vgl. H 169; E I 91). B. Neben Cyclohexen beim Erhitzen von Cyclohexanol mit etwas konz. Schwefelsäure auf 130° (Senderens, Aboulenc, C. r. 183, 831) oder mit Kaliumdisulfat (S., C. r. 187, 1104). Kp: 240° (S., A.).
- 8. 1 Cyclohexylmethyl cyclopenten (1), 1 Hexahydrobenzyl cyclopenten (1), Cyclohexyl  $\Delta^1$  cyclopentenyl methan  $C_{12}H_{20} = CH_2 \cdot CH$
- 9. 6.6 Dimethyl 2 propyl bicyclo [1.1.3] HC=C(CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub>)—CH hepten-(2), Äthylmyrtenyl C<sub>12</sub>H<sub>20</sub>, s. nebenstehende Formel. B. Aus Myrtenylbromid durch Erwärmen mit Äthylmagnesium. bromid in absol. Äther (Rupe, A. 459, 181). Leicht bewegliche, stark lichtbrechende Flüssigkeit. Kp<sub>10</sub>: 73—73,5°. D<sub>1</sub>°: 0,8663. [ $\alpha$ ]<sub>0</sub>°: +21,97°. Rotationsdispersion bei 20°: Rupe.

10. Dekahydroacenaphthen  $C_{12}H_{20} = \frac{H_2C}{H_2C}CH_2CH_2CH_2CH_2$  (H 170; E I  $H_2C$   $CH_2$   $CH_2$   $CH_2$   $CH_2$   $CH_2$   $CH_3$   $CH_4$   $CH_4$   $CH_5$   $CH_5$ 

91). B. Durch katalytische Hydrierung von Acenaphthen mit Nickelkatalysator (Goswami, C. r. 179, 1269) oder mit Nickeloxyd und Hopcalite (Orlow, Belopolsky, B. 62, 1232; Ж. 61, 1274). — D<sup>55</sup><sub>1</sub>: 0,9329; n<sup>55</sup><sub>1</sub>: 1,5200 (O., B.). — Wird durch Wasserstoff unter 70 bis 75 Atm. Druck in Gegenwart eines Tonerde-Hopcalite-Gemisches bei 450° teilweise unter Bildung von Gasen und flüssigen Kohlenwasserstoffen zersetzt (O. B). Beim Cracken bei 650° wurden neben anderen Produkten auch Toluol und Inden isoliert (O., B.). — Überführung in einen künstlichen Gerbstoff durch Behandlung mit Thionylchlorid und Schwefelsäure: MOELLER, D. R. P. 387890; C. 1924 I, 2634; Frdl. 14, 679.

# 9. Kohlenwasserstoffe $\mathrm{C_{13}H_{22}}$ .

- 1. 1-Methyl-3-propyl-4-isopropyl-hexadien-(1.3), 3-Propyl-p-menthadien-(1.3)  $C_{13}H_{22}=CH_3\cdot C\cdot CH^2\cdot C(CH_2\cdot C_2H_5)$   $C\cdot CH(CH_3)_2$ . B. Aus dl-Piperiton und Propylmagnesiumjodid in Äther (Read, Watters, Soc. 1929, 2170). Wurde nicht rein erhalten. Kp<sub>14</sub>: 104—106°. D<sub>4</sub><sup>25</sup>: 0,8872.  $n_{2}^{25}$ : 1,4865.
- 2. 6.6 Dimethyl 2 butyl bicyclo [1.1.3]  $HC = C(CH_2 \cdot CH_2 \cdot CH_3 \cdot CH_4 \cdot CH_5 
- 3. Dodekahydrofluoren, Perhydrofluoren
  C<sub>18</sub>H<sub>28</sub>, s. nebenstehende Formel (H 140). V. In sehr
  geringer Menge im Steinkohlen-Urteer (Weissgerber,
  Moehrle, Brennstoffch. 4, 83; C. 1923 II, 1264). B.

Entsteht bei der Druckhydrierung von Fluoren in Gegenwart von Katalysatoren wie Osmium, Osmium-Cerdioxyd, Osmium-Thoriumdioxyd und Nickeloxyd-Cerdioxyd (Ssadikow, Michallow, B. 61, 1792; Ж. 60, 1567; vgl. Orlow, Belopolsky, B. 62, 1227) sowie in Gegenwart von Nickeloxyd-Hopcalite (O., B.).

# 10. Kohlenwasserstoffe C14H24.

- 1. 1-Methyl-4-isopropyl-3- $\beta$ -butenyliden-cyclohexan, 3- $\beta$ -Butenyliden-p-menthan  $C_{14}H_{24}=H_2C<\underset{CH}{CH_2}\cdot CH_{(CH_3)}$   $CH_2$ :  $CH\cdot CH\cdot CH\cdot CH\cdot CH_3$ . B. Aus 5-Methyl-2-isopropyl-cyclohexylidenacetaldehyd und Äthylmagnesiumbromid in Äther, neben 1-Methyl-4-isopropyl-3- $[\beta$ -oxy-butyliden]-cyclohexan (RUPE, GASSMANN, Helv. 12, 201). Leicht bewegliches Öl von schwachem Geruch.  $Kp_{12}$ : 99°.
- 2.  $\alpha.\alpha$ -Dicyclohexyl-āthylen  $C_{14}H_{24}=H_2C<\frac{CH_2\cdot CH_2}{CH_2\cdot CH_2}$ CH· $C(:CH_2)\cdot HC<\frac{CH_2\cdot CH_2}{CH_2\cdot CH_2}$ CH<sub>2</sub>. Das Mol.-Gew. wurde kryoskopisch in Benzol bestimmt (Venus-Danlowa,  $\mathcal{H}$ . 61, 1482; C. 1930 II, 566). B. Aus Methyldicyclohexyl-carbinol beim Kochen mit konzentrierter, wäßriger Oxalsäure-Lösung (V.-D.).  $Kp_{18}$ : 140°.  $D_0^{\circ}$ : 0,9175;  $D_1^{\infty}$ : 0,9054.  $n_{\rm D}$ : 1,4947. Ist mit Wasserdampf flüchtig. Liefert bei längerer Einw. von Benzopersäure in Chloroform  $\alpha.\alpha$ -Dicyclohexyl-āthylenoxyd (Syst. Nr. 2364).
- 3. 1 Äthyl 2 cyclohexyl cyclohexen (6)  $C_{14}H_{24} = H_2C < \frac{CH_2 \cdot CH_2}{CH_2} > CH \cdot HC < \frac{C(C_2H_6) \cdot CH_2}{CH_2} > CH_2$  B. Beim Erhitzen von 1-Äthyl 2 cyclohexyl-cyclohexanol (1) mit Phthalsäureanhydrid auf 165—170° (Garland, Reid, Am. Soc. 47, 2339).  $Kp_{20}$ : 141—143°. Ist mit Wasserdampf flüchtig.  $D_1^o$ : 0,9406;  $D_1^o$ : 0,9274.  $n_0$ : 1,5108.
- 4. Tetradekahydroanthracen, Perhydro-anthracen C<sub>14</sub>H<sub>24</sub>, s. nebenstehende Formel (H 171). B. H<sub>2</sub>C CH<sub>2</sub> CH<sub>2</sub> CH<sub>2</sub> CH<sub>2</sub> In geringer Menge beim Erwärmen von Tetralin mit 2% Aluminiumchlorid auf 50—70° (Schroeter, B. 57, 1998). Blätter (aus Alkohol). F: 93°. Kp<sub>11</sub>: 128°. Wird von Brom, Salpetersäure, Schwefelsäure und Permanganat nicht angegriffen.

# 11. Kohlenwasserstoffe $C_{15}H_{26}$ .

- 1. 1-Methyl-4-[4¹.4⁵-dimethyl-hexen-(4¹)-yl]-cyclohexen-(1), 2-Methyl-6-[4-methyl-4⁵-cyclohexenyl]-hepten-(2), Dihydrozingiberen C<sub>15</sub>H<sub>26</sub> = (CH<sub>3</sub>)<sub>2</sub>C:CH·CH<sub>2</sub>·CH<sub>2</sub>·CH(CH<sub>3</sub>)·HC-CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>3</sub>·CC+G<sub>3</sub> (E I 92). Zur Konstitution vgl. Ruzicka, van Veen, A. 468, 147. B. Zur Bildung durch Reduktion von Zingiberen mit Natrium in Alkohol vgl. R., van V., A. 468, 159. Kp<sub>15</sub>: 135—136°. D<sup>15</sup>: 0,865. n<sup>26</sup>: 1,4881. Beim Ozonisieren in Eisessig und Oxydieren des Ozonids mit Chromsäure konnten Bernsteinsäure und Lävulinsäure erhalten werden. Liefert beim Behandeln mit Ozon in Tetrachlorkohlenstoff und Oxydieren des Ozonids mit Permanganat in wäßr. Aceton 7-Oxo-3-methyl-4-carboxymethyl-octan-carbonsäure-(1) (E II 3, 496). Beim Erhitzen mit 3 Atomen Schwefel auf 180—250° bildet sich Cadalin.
- 2. Dihydrocadinen  $C_{15}H_{26}$ , wahrscheinlich Gemisch von I, II und III. Zur Konstitution vgl. die im Artikel Cadinen (Syst. Nr. 471) zitierte Literatur. B. Beim Kochen von

Dihydrocadinol C<sub>18</sub>H<sub>28</sub>O (Syst. Nr. 509) mit 90% iger Ameisensäure (Ruzicka, Stoll, Helv. 7, 101). — Öl. Kp<sub>12</sub>: 129—131°. D': 0,8999. n': 1,4952.  $\alpha_D$ : +19,8°. — Bei der Ozonspaltung wurde eine Verbindung C<sub>15</sub>H<sub>26</sub>O<sub>2</sub> (Öl; Kp<sub>0,2</sub>: ca. 110°) und deren Peroxyd C<sub>18</sub>H<sub>26</sub>O<sub>3</sub> (Öl; Kp<sub>0,2</sub>: ca. 145°) isoliert.

3. Dihydroselinen, Dihydroeudesmen C<sub>15</sub>H<sub>26</sub> (E I 92). Gemisch von I und II und sehr geringen Mengen III oder IV; zur Konstitution vgl. RUZICKA, CAPATO, A. 453,

70; R., Wind, Koolhaas, Helv. 14 [1931], 1136; R., Plattner, Fürst, Helv. 25 [1942], 1364. — Zur Bildung aus Dihydroeudesmol durch Kochen mit Ameisensäure nach Semmler,

$$III. \begin{picture}(100,10) \put(0.0,0){\line(1,0){10}} \put(0.0,0){\li$$

Tobias, B. 46, 2028 vgl. R., C., A. 453, 81. — Öl. Kp<sub>12</sub>: 127° (R., C.). — Liefert beim Behandeln mit Ozon in Eisessig und Verkochen des Ozonids mit Wasser neben anderen Produkten 7-Oxo-1.10-dimethyl-dekahydronaphthalin (R., C., A. 453, 81).

4. 1.4-Dimethyl-7-isopropyl-1.2.3.4.5.6.7.8-oktahydro-azulen, Oktahydro-S-guajazulen 1), Oktahydrokessazulen  $C_{15}H_{26}=$ 

hydro-S-quajazulen 1), Oktahydrokessazulen C<sub>15</sub>H<sub>26</sub> =

H<sub>2</sub>C CH[CH(CH<sub>3</sub>)<sub>2</sub>]—CH<sub>2</sub>—C—CH(CH<sub>3</sub>)
CH<sub>2</sub> (vgl. E I 93). Zur Konstitution und zur Identität von Kessazulen und S-Guajazulen vgl. die im Artikel S-Guajazulen (Syst. Nr. 478a) zitierte Literatur. — B. Bei der katalytischen Hydrierung von S-Guajazulen in Gegenwart von Platinschwarz in Essigester bei 60° (RUZICKA, RUDOLPH, Helv. 9, 139; ASAHINA, NAKANISHI, J. pharm. Soc. Japan 48, 2, 7; C. 1928 I, 1861. — Öl. Kp<sub>11</sub>: 123—125°; D<sup>∞</sup><sub>1</sub>: 0,8872; n<sup>∞</sup><sub>1</sub>: 1,4834 (RUZ., RUD.). Kp<sub>7,5</sub>: 112—115°; D<sup>∞</sup><sub>1</sub>: 0,8930; n<sup>∞</sup><sub>1</sub>: 1,4714 (A., N.). — Liefert bei der Dehydrierung mit Schwefel S-Guajazulen zurück (RUZ., RUD.). Entfärbt Brom in Schwefelkohlenstoff unter Bromwasserstoff-Entwicklung (RUZ., RUD.).

- 5. Dihydroguajen  $C_{15}H_{26} = H_2C$   $C[:C(CH_3)_3]$   $CH_2$   $CH_2$   $CH_2$   $CH_3$   $CH_4$   $CH_5$   $CH_5$   $CH_6$   $CH_7$   $CH_8$   $CH_8$   $CH_8$   $CH_8$   $CH_9$   H
- 6. Oktahydrochamazulen C<sub>15</sub>H<sub>26</sub>. B. Bei der katalytischen Hydrierung von Chamazulen in Gegenwart von Platinschwarz in Essigester (Ruzicka, Rudolph, Helv. 9, 138) oder in Gegenwart von Palladium in Alkohol (Ruhemann, Lewy, B. 60, 2467). Dünnflüssiges Ol. Kp<sub>11</sub>: 119°; D<sup>∞</sup><sub>1</sub>: 0,8932; n<sup>∞</sup><sub>2</sub>: 1,4856 (Ruz., Rud.). Kp<sub>10</sub>: 123—124,5°; D<sup>15</sup>: 0,8967; n<sup>∞</sup><sub>1</sub>: 1,4921 (Ruh., L.). Liefert bei der Dehydrierung mit Schwefel Chamazulen zurück (Ruz., Rud.).
- 7. Dihydrocaryophyllene C<sub>15</sub>H<sub>26</sub> (E I 93). Vgl. hierzu Ruzicka, Mitarb., Helv. 22 [1939], 717. Zur Konstitution vgl. die im Artikel Caryophyllen (Syst. Nr. 471) zitierte Literatur.
- a) Dihydrocaryophyllen aus Rohcaryophyllen  $C_{15}H_{26}$  (E I 93). Zur Bildung durch katalytische Hydrierung von Rohcaryophyllen mit Palladium-Calciumcarbonat oder mit Nickel-Bimsstein vgl. Deussen, J. pr. [2] 114, 66, 83. Kp<sub>15</sub>: 126°. D<sup>18</sup>: 0,8893. n<sup>18</sup>: 1,4885. [ $\alpha$ ]<sub>D</sub>: —25° (D., J. pr. [2] 114, 69). Entfärbt Brom in Eisessig sofort. Wird durch kalte verdünnte Permanganat-Lösung kaum angegriffen.

<sup>1)</sup> Das von KREMERS (Am. Soc. 45, 720) beschriebene, nicht analysierte "Dekahydroazulen" ist seinen Konstanten zufolge ein Oktahydroderivat (RUZICKA, RUDOLPH, Helv. 9, 122; RU., HAAGEN-SMIT, Helv. 14 [1931], 1110 Anm. 2); nach MELVILLE (Am. Soc. 55 [1933], 3288) dürften die in der Literatur als Oktahydroazulene beschriebenen Verbindungen Gemische mit Hexahydroazulen und Dekahydroazulen gewesen sein.

- b) γ-Dihydrocaryophyllen, Dihydroisocaryophyllen C<sub>15</sub>H<sub>26</sub> (E I 93; vgl. H 171). Zur Bildung durch katalytische Hydrierung von γ-Caryophyllen in Gegenwart von Palladium-Calciumcarbonat in Alkohol vgl. Deussen, J. pr. [2] 117, 283. Kp<sub>14</sub>: 129—130°. [α]<sup>10</sup>: —32,7°. — Nimmt Brom unter Entwicklung von Bromwasserstoff auf.
- c) Kohlen wasserstoff C<sub>15</sub>H<sub>26</sub> aus Caryophyllen-bis-hydrochlorid. B. Bei der Einw. von mit Athylbromid angeätzten Magnesiumspänen auf Caryophyllen-bis-hydrochlorid in Ather nach Grignard und Zersetzung mit kalter verdünnter Essigsäure (Deussen, J. pr. [2] 117, 275, 281). Öl. Kp<sub>10</sub>: 131°. Di<sup>1</sup>: 0,8965. ni<sup>1</sup>/<sub>2</sub>: 1,496. [α]<sub>D</sub>: -4,97°. Nimmt leicht Sauerstoff aus der Luft auf und entfärbt Brom-Lösung und unter Bromwasserstoff-Bildung. Bildet mit wäßen Onselseilber/III) engetet Lösung eine ginn ginn ginn ginn der Brom-Lösung und der Br Bildet mit wäßr. Quecksilber(II)-acetat-Lösung eine ziemlich beständige Quecksilberverbindung. — C<sub>15</sub>H<sub>26</sub>+Hg(OH)I. B. Aus der Quecksilber(II)-acetat-Doppelverbindung und Kaliumjodid-Lösung (D., J. pr. [2] 117, 282). F: 131—133°.

Chlordihydrocaryophyllen C<sub>15</sub>H<sub>25</sub>Cl (H 172). Beständig gegen siedende Natrium-äthylat-Lösung und gegen Chinolin bei 210° (HENDERSON, ROBERTSON, KERE, Soc. 1926, 68). Gibt beim Kochen mit Eisessig und wasserfreiem Natriumacetat Caryophyllenacetat.

## 8. Dihydrojunipen C<sub>15</sub>H<sub>26</sub>.

Junipenhydrochlorid  $C_{15}H_{25}Cl.$  B. Durch Sättigen der in Äther gelösten Sesquiterpen-Fraktion von Wacholderrindenöl mit Salzsäure (Mattsson, Bidrag till kännedom af Finlands natur och folk 72 [1913], Nr. 1, S. 8; Ber. Schimmel 1924, 89). — Prismen (aus Essigester). F: 58,5°.

# Dihydroisocloven C<sub>15</sub>H<sub>26</sub>.

Isoclovenhydrochlorid C<sub>18</sub>H<sub>25</sub>Cl. B. Durch Sättigen von Isocloven mit Chlorwasserstoff in absol. Ather (Henderson, McCrone, Robertson, Soc. 1929, 1371). — Nadeln (aus Essigester). F: 87°. — Liefert bei Einw. von Silberacetat in Eisessig das Acetat des Isoclovenalkohols, beim Kochen mit Natriumacetat und Eisessig Isocloven.

Isoclovenhydrobromid C<sub>18</sub>H<sub>25</sub>Br. B. Durch Sättigen von Isocloven mit Bromwasserstoff in absol. Ather (Henderson, McCrone, Robertson, Soc. 1929, 1371). — Prismen (aus Essigester). F: 75°.

- 10. Tetrahydrodesoxykessylen, Tetrahydrokessylen C<sub>15</sub>H<sub>26</sub>. B. Durch katalytische Hydrierung von Desoxykessylen (Syst. Nr. 473) (ASAHINA, NAKANISHI, J. pharm. Soc. Japan 48, 8; C. 1928 I, 1861). Kp<sub>5</sub>: 105—108°. D<sup>16</sup>: 0,8931. n<sup>16</sup>: 1,4729. Schwer löslich in Eisessig, leicht löslich in den übrigen organischen Lösungsmitteln.
- 11. Dihydrocedren C<sub>15</sub>H<sub>26</sub> (H 171; E I 92). B. Durch Reduktion von Cedren mit Natrium und Isoamylalkohol bei 180° (Deussen, J. pr. [2] 117, 295). Kp<sub>12</sub>: 118—124°.  $D^{20}$ : 0,9041.  $n_{\nu}^{20}$ : 1,4872.  $[\alpha]$ : +33,10°.
- 12. Dihydrocyperen  $C_{15}H_{36}$ . B. Durch katalytische Hydrierung von Cyperen in Gegenwart von Palladium auf Bariumsulfat (Kimura, Ohtani, J. pharm. Soc. Japan 48, 129; C. 1929 I, 250).  $Kp_{12}$ : 113—116°.  $D_{15}^{in}$ : 0,9332.  $[\alpha]_{15}^{in}$ :  $+7,6^{\circ}$ .
- 13. Dihydroaromadendren C<sub>18</sub>H<sub>26</sub>. Zur Konstitution vgl. Radcliffe, Short, Soc. 1928, 1201; Naves, Perrottet, Helv. 23 [1940], 912. B. Durch Hydrierung von Aromadendren in essigsaurer Lösung bei Gegenwart von kolloidalem Platin und einem Überdruck von 0,25 Atm. oder in Methanol bei Gegenwart von kolloidalem Palladium (Briggs, Short, Soc. 1928, 2527). — Kp<sub>8-9</sub>: 115—116°; D<sub>4</sub>": 0,9014; D<sub>4</sub>": 0,8972; n<sub>D</sub>": 1,4871; n<sub>D</sub>: 1,4847 (В., Sн.).
- 14. Eleman, Dihydroelemen  $C_{15}H_{26}$ . B. Durch Erhitzen von Elemol mit Zinkstaub im Rohr auf ca. 200° (Jansch, Fantl, B. 56, 1368). Terpenartig riechende Flüssigkeit. Kp<sub>10</sub>: 115—119°. Di<sup>11</sup>: 0,8830.  $n_{15}^{11.6}$ : 1,4950.
- 15. Dihydroinen  $C_{15}H_{26}$ . B. Durch katalytische Hydrierung von Inen mit Platin (MITTER, Palit, Proceedings of the fourteenth Indian Science Congress [1927], 161). Öl.  $Kp_5$ : 123—125°.  $D_{27}$ : 0,8886. n: 1,477.  $\alpha_p$ : —10°.
- 16. Kohlenwasserstoff C<sub>15</sub>H<sub>26</sub> aus Lignit. V. Wurde aus einem Lignit von Fognano (Italien) durch Extraktion mit Äther oder durch Destillation mit Wasserdampf erhalten (CIUSA, GALIZZI, G. 51 I, 58; Ann. Chim. applic. 15, 209, 213; C. 1926 I, 278). Flüssigkeit. Kp: 253°; Kp<sub>13</sub>: 137—139°. Ist in Chloroform rechtsdrehend. Liefert beim Behandeln mit Brom in Chloroform ein Monobromderivat C<sub>18</sub>H<sub>25</sub>Br (Kp<sub>18</sub>: 185°).

Über einen Kohlenwasserstoff C15H26 aus steirischer Braunkohle (Kp. 265°)

vgl. Soltys, M. 53/54, 186.

# 12. Kohlenwasserstoffe $\mathrm{C_{16}H_{28}}.$

1. 1 - Cyclohexyl - dekalin. Perhydro - [1 - phenyl-naphthalin] C<sub>16</sub>H<sub>28</sub>, s. nebenstehende Formel. B. Durch katalytische Hydrierung von 4-Cyclohexyl-naphthol-(1) oder 1-Cyclohexyl-naphthol-(2) in Gegenwart von Nickel in Hexahydrotoluol unter 27 Atm. Druck bei 210°, Erhitzen des Reaktionsprodukts mit wasserfreiem Zinkchlorid in Dekalin und nochmalige Druckhydrierung (Alberti, A. 450, 312, 313, 315).—Öl. Kp<sub>12</sub>: 161—162,5°. D.°: 0,9438. n.°: 1,5057.

2. 2-Cyclohexyl-dekalin, Perhydro-[2-phenyl-naphthalin] C<sub>16</sub>H<sub>26</sub>, s. nebenstehende Formel. B. Durch H<sub>2</sub>C katalytische Hydrierung von 2-Cyclohexyl-naphthol-(1) oder H<sub>2</sub>C 6-Cyclohexyl-naphthol-(2) in Gegenwart von Nickel in Hexa-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub> hydrotoluol unter 25 Atm. Druck bei 180°, Erhitzen des Reak-

tionsprodukts mit wasserfreiem Zinkchlorid in Dekalin und nochmalige Druckhydrierung (Alberti, A. 450, 314, 316). — Kp<sub>12</sub>: 160,5—162°. D<sub>4</sub>°: 0,9315. n<sub>D</sub>°: 1,4995.

13. 1.3-Dicyclohexyl-cyclohexan  $C_{18}H_{32} = H_2C < \frac{CH_2 \cdot CH(C_6H_{11})}{CH_2 \cdot CH(C_6H_{11})} > CH_2$ . B. Entsteht in 2 isomeren Formen durch Hydrierung von 1.3-Dicyclohexyl-cyclohexen-(1) (Schrauth, Wege, Danner, B. 56, 267) oder von 1.3-Diphenyl-cyclohexen-(3)-on-(5) (Petrow, B. 62, 643; Ж. 60, 1443; С. 1929 I, 2047) in Gegenwart von Nickel in Hexahydrotoluol.

a) Feste Form. Nadeln (aus Alkohol). F: 66—67° (Schrauth, Wege, Danner), 66° (Petrow). Leicht löslich in Ather, Benzol, Essigester, Tetrachlorkohlenstoff, Benzin und

(Sch., W., D.). Löslich in den gleichen Lösungsmitteln wie die krystalline Form (Sch., W., D.). D.). — Beständig gegen Permanganat (Sch., W., D.).

# 14. Kohlenwasserstoffe $C_{19}H_{34}$ .

1. Fichtelit C<sub>19</sub>H<sub>34</sub> (H 172; E I 94). Zur Zusammensetzung und Konstitution vgl. Ruzicka, Balas, Schinz, Helv. 6, 692; Ru., Waldmann, Helv. 18 [1935], 611; Fieser, Jacobsen, Am. Soc. 58 [1936], 946; Bogert, Sterling, Sci. 87 [1938] 196, 234; J. org. Chem. 4 [1939], 20; C. 1939 II, 868; Crowfoot, Soc. 1938, 1271; vgl. ferner Adelson, Bogert, Chem. Reviews 24 [1939], 49. — D<sup>m</sup>: 0,9380; D<sup>a</sup>: 0,9185; n<sup>m</sup>: 1,5052; n<sup>m</sup>: 1,4942 (Ru., Ba., Sch.). — Liefert bei der Dehydrierung mit Schwefel bei 180—250° Reten (Syst. Nr. 485a) (Ru., Ba., Sch.).

Tricyclohexylmethan, Perhydrotritan  $C_{10}H_{34} = CH(C_6H_{11})_3$  (vgl. H 172). a) Präparat von Ipatiew 1). B. Bei der katalytischen Hydrierung von Triphenyla) Präparat von Ipatjew 1). B. Bei der katalytischen Hydrierung von Triphenylcarbinol (Ipatjew, Dolgow, C. r. 183, 304, 1068; Bl. [4] 39, 1457; Ж. 58, 1025), von Tetraphenylmethan oder Dicyclohexyl-phenyl-methan (I., D., C. r. 185, 211; Bl. [4] 41, 1623; Ж. 59, 1088) oder von 4-Oxy-triphenylmethan (I., D., C. r. 185, 1484; Bl. [4] 43, 245; Ж. 60, 510) in Gegenwart von Nickel(III)-oxyd in Cyclohexan unter 80—100 Atm. Druck bei 270—285°. — Krystalle (aus Methanol). F: 47,5—48,5° (I., D.). Kp: 322—329°; D. 0.9265; 0,9274; 0,9282; n. 14986; n. 14986; 1,4987; 1,4986; 1,4985 (I., D.). Unlöslich in Wasser, sehr schwer löslich in Eisessig, kaltem Alkohol und Methanol, leicht in Äther, Benzol und Cyclohexan (I. D.). Register nicht mit Pormengenet Brow. Chemeisessig kann

und Cyclohexan (I., D.). — Reagiert nicht mit Permanganat, Brom, Chromeisessig, konz. Salpetersäure und rauchender Schwefelsäure (I., D.). Liefert mit Brom in Schwefelkohlenstoff oder in Tetrachlorkohlenstoff bei Belichtung Tricyclohexylbrommethan (Zelinsky,

GAWERDOWSKAJA, B. 60, 715; Ж. 59, 422).
b) Präparat von Adams. B. Durch Hydrierung von Triphenylmethan in Gegenwart von Platinoxyd in Eisessig bei 60° und 2—3 Atm. Druck (Adams, Marshall, Am. Soc. 50, 1972). — Kp4: 163,2°. D<sup>20</sup>: 0,9644. n<sub>D</sub><sup>20</sup>: 1,5264.

Tricyclohexylbrommethan, Tricyclohexylmethylbromid  $C_{19}H_{33}Br = CBr(C_6H_{11})_3$ .

B. Beim Erwärmen von Tricyclohexylcarbinol mit bei 0° gesättigter wäßriger Bromwasserstoffsäure auf dem Wasserbad (Zelinsky, Gawerdowskaja, B. 60, 715;  $\Re$ . 59, 422). Aus Tricyclohexylmethan (F: 47,5°) beim Aufbewahren mit Brom in Schwefelkohlenstoff oder Tetrachlorkohlenstoff unter Belichtung (Z., G.). — Krystalle (aus Alkohol). F: 6102).

1) Das von IPATJEW erhaltene Präparat vom Schmelzpunkt 47,5—48,5° war nach NEUN-HOEFFER, A. 509 [1934], 115, unrein; reines Tricyclohexylmethan schmilzt bei 61°.

<sup>2</sup>) Für Trieyelohexylbrommethan wurde von NEUNHOBFFER (A. 509 [1934], 115, 127) der Schmelzpunkt 1360 gefunden.

15. "Dimenthen" (E I 94; vgl. a. H 173)  $C_{20}H_{36}$ , s. nebenstehende Formel. B. Durch 6-stdg. Erhitzen von Benzolsulfonsäure-I-menthylester im Rohr auf 85—90° bei gewöhnlichem Druck, neben anderen Produkten (Patterson, McAlpine, Soc. 1927, 351). Durch Erhitzen von  $\alpha$ - oder  $\beta$ -Naphthalinsulfonsäure-I-menthylester im Rohr auf 120° bei gewöhnlichem Druck, neben anderen Produkten (P., McA., Soc. 1927, 352). — Viscoses Ol. Kp<sub>4</sub>: 174°. D<sup>17</sup><sub>4</sub>: 0,8845. n<sub>D</sub>: 1,4870. [ $\alpha$ ]<sup>13</sup><sub>46</sub>: +2,3° (Benzol; c = 5). — Entfärbt Permanganat-Lösung nicht beim Aufbewahren. Gibt bei Behandlung mit Brom Bromwasserstoff ab.

16. Kohlenwasserstoff  $C_{25}H_{46}$  aus Asphalt. V. Findet sich im Petroläther-Extrakt des Asphalts von Nord-Alberta (Krieble, Seyer, Am. Soc. 43, 1345). — Kp<sub>0,7</sub>: 220—225°.  $D^{20}$ : 0,9432.  $n_{3}^{p,5}$ : 1,5180.  $\alpha$ : +1,24° (l = 1). [Ammerlahn]

# 4. Kohlenwasserstoffe C<sub>n</sub>H<sub>2n-6</sub>.

(Aromatische Kohlenwasserstoffe.)

### 1. Benzol $C_6H_6$ (H 179; E I 95).

#### Konstitution.

Die elektronentheoretische und wellenmechanische Behandlung des Benzolproblems hat ergeben, daß sich die Konstitution des Benzols nicht durch eine einzige Strukturformel ausdrücken läßt. Die als aromatischer Charakter bezeichnete Summe von physikalischen und chemischen Eigenschaften ist das Ergebnis einer Überlagerung von Zuständen, die mehreren verschiedenartigen Elektronengruppierungen entsprechen (Mesomerie). Dasselbe gilt auch mit entsprechenden Modifikationen für die kondensierten mehrkernigen aromatischen Kohlenwasserstoffe, wie Naphthalin, Anthracen und Phenanthren. Vgl. dazu z. B. Pauling, Wheland, J. chem. Phys. 1 [1933], 362; Wh., J. chem. Phys. 2 [1934], 474; E. Hückel, Z. El. Ch. 43 [1937], 758; W. Hückel, Theoretische Grundlagen der organischen Chemie, 3. Aufl., Bd. I [Leipzig 1940], S. 460, 479, 495; E. Müller, Neuere Anschauungen der organischen Chemie [Berlin 1940], S. 460, 479, 495; E. Müller, Neuere Anschauungen der organischen Chemie [Berlin 1941]. — Elektronenformeln für Benzol s. bei Kermack, Robinson, Soc. 121, 437; Pauling, Am. Soc. 48, 1139; Francis, Chem. Reviews 3, 257, 285; C. 1927 I, 591; Ulmann, Z. ang. Ch. 41, 674; Z. El. Ch. 35, 268; vgl. a. Crocker, Am. Soc. 44, 1618; Schröer, Z. El. Ch. 31, 53; Loewen, Z. El. Ch. 34, 760. Über Formulierung nach der Theorie der alternierenden Polaritäten vgl. Lowry, Soc. 123, 825; Bl. [4] 35, 835; van Duin, Am. Soc. 47, 585; Chem. Weekb. 22, 146; Prins, Chem. Weekb. 22, 365; C. 1925 II, 2259; Giua, Petronio, J. pr. [2] 110, 290; Burgaarth, Z. El. Ch. 32, 161. Entwicklung von Modellen für das Benzolmolekül aus der Krystallstruktur: Beckenkamp, Z. anorg. Ch. 137, 270; 139, 220; aus föntgenographischen Untersuchungen: Huggins, Am. Soc. 45, 268; Morbe, 27, 139, 230; aus föntgenographischen Untersuchungen: Huggins, Am. Soc. 48, 163; aus theoretischen Annahmen über Lagerung der Atome und Stellung der Elektronen im Kohlenstoffgitter: Reinicke, Z. El. Ch. 35, 780, 877. Ableitung der Konstitution aus Parachor-Bestimmungen an Benzolderivaten: Suyth, Morgan

Benzol findet sich in geringer Menge in pennsylvanischem Erdgas (Erskine, Ind. Eng. Chem. 18, 722; C. 1926 II, 1356). In den Erdölen von Moreni und Arbanesi (Rumänien) (Moutte, Chim. et Ind. 16, 330 C, 331 C; C. 1927 I, 383), in Erdöl aus Burma (Mulany, Watson, J. Soc. chem. Ind. 43, 310 T; C. 1925 I, 186) und in neuseeländischen Erdölen (Easterfield, McClelland, Chem. and Ind. 1923, 937; C. 1924 I, 2847). In sehr geringer Menge im Teeröl aus Bitumenschiefern von Syzran an der Wolga (Dodonow, Soschestwenskaja, B. 59, 2204). — Geringe Mengen Benzol finden sich im Steinkohlenurteer (F. Fischer, B. 56, 601, 1792; Broche, B. 56, 1787; vgl. Schütz, B. 56, 165; Sch., Buschmann, Wissebach, B. 56, 870, 1094; 57, 619) und im Gasbenzin aus Steinkohlenschwelgas (Krollfferer, Seebaum, J. pr. [2] 119, 151). Veränderungen des Benzol-Gehalts von Koksofengas im Lauf der Verkokung: Bronn, Z. ang. Ch. 42, 760.

#### Bildung.

Benzol entsteht neben anderen Produkten in mit den Versuchsbedingungen wechselnden Mengen beim Leiten von Methan durch Quarz- oder Porzellanröhren bei 875—1100° (F. Fischer, Mitarb., Brennstoffch. 9, 314; C. 1928 II, 2208; Hagur, Wheeler, Soc. 1929, 383; Wheeler, Wood, Fuel 7, 537; C. 1929 I, 1559; vgl. a. Vysoký, C. 1929 II, 2992); in gleicher Weise bildet sich Benzol aus Athan bei 700—950° (Williams-Gardner, Fuel 4, 438; C. 1926 I, 2065; HAGUE, WHEELER, Soc. 1929, 383) sowie bei der thermischen Zersetzung von Propan, Butan, Pentan, Hexan und Athylen (H., WH.). Bildet sich neben anderen Produkten beim Erhitzen von Acetylen auf 650-700° in Quarzgefäßen (H., WH., Soc. 1929, 391), beim Leiten von Acetylen über aktivierte Holzkohle bei ca. 650° (Zelinsky, B. 57, 269, 271; C. r. 177, 885; K. 55, 153; KOVACHE, TRICOT, Chim. et Ind. 18, 77 T, 82 T, 105 T; C. 1925 I, 2552; II, 1953; IKI, OGAWA, J. Soc. chem. Ind. Japan Spl. 30, 127 B; C. 1927 II, 1470), beim Leiten von Acetylen und Wasserstoff über Elektrodenkohle bei 580° (GROS, D. R. P. 475883; Frdl. 16, 87), beim Leiten von Acetylen über Pyrit bei 300—310° (STEINKOPF, A. 428, 131) oder über Selen bei ca. 400° (BRISCOE, PEEL, Soc. 1928, 1742) und bei der Einw. von überhitztem Wasserdampf auf Calciumcarbid bei 600—700° (Plauson, v. Tischenko, D. R. P. 346065; C. 1922 II, 442; Frdl. 14, 63).

Benzol entsteht beim Leiten von Cyclohexan über Platinasbest bei 151—409°, über Palladiumasbest bei 189—356°, langsamer beim Leiten über Nickelasbest bei 160—360° CZELINSKY, PAWLOW, B. 56, 1252; vgl. Z., TUROWA-POLLAK, B. 58, 1299) und beim Leiten von Cyclohexan und Wasserstoff über einen Nickel-Tonerde-Katalysator bei 300° bis 310° (Z., Kommarewsky, B. 57, 668; vgl. dagegen Pfaff, Brunck, B. 56, 2463) oder über Katalysatoren aus Nickelwolframat oder poröser Wolframsäure, die zuvor 4 Stdn. bzw. 23 Stdn. bei 550° mit Ammoniak behandelt wurden (I. G. Farbenind., D. R. P. 516251; C. 1931 I., 1822; Frdl. 16, 3008). Bei der Einw. von Benzophenon auf Cyclohexan im Soppenlicht (Caura R. 39, 257). Bildet sich peben Cyclohexan aus Gralek-war deutschaften. im Sonnenlicht (Сонем, R. 39, 257). Bildet sich neben Cyclohexan aus Cyclohexen durch Einw. von Palladiumasbest auf den Dampf bei 160—320° (Zelinsky, Pawlow, B. 57, 1066) oder bei 90° (Z., B. 58, 186) oder auf die Flüssigkeit bei gewöhnlicher Temperatur oder rascher bei 115—120° (Z.), ferner aus Cyclohexadien (1.3) beim Leiten des Dampfes über rascher bei 115—120° (Z.), ferner aus Cyclohexadien-(1.3) beim Leiten des Dampfes über Palladiumasbest im Kohlendioxydstrom bei 91° (Z., P., B. 57, 1090). Beim Eintragen von Chlorbenzol in Suspensionen von Natrium in Toluol oder Dimethylanilin (Bachmann, Clarke, Am. Soc. 49, 2095, 2096). Aus Brombenzol oder Jodbenzol durch Einw. von Magnesium in Methanol in der Kälte (Zechmeister, Rom, A. 468, 127). Neben Anilin bei der Einw. von Magnesium auf Jodbenzol in flüssigem Ammoniak (Kraus, White, Am. Soc. 45, 776). Neben Diphenyl bei der Reduktion von Brombenzol mit Wasserstoff oder Hydrazinhydrat bei Gegenwart von Palladium-Calciumcarbonat in siedender alkoholischer oder methylalkoholischer Kalilauge; entsteht analog aus 1.2-Dibrom-benzol als einziges Reaktionsprodukt (Busch, Schmidt, Bell 2613, 2615, 2618). Neben Diprombenzolen und Reaktionsprodukt (Busch, Schmidt, B. 62, 2613, 2615, 2618). Neben Dibrombenzolen und anderen Produkten beim Erhitzen von Brombenzol mit Aluminiumchlorid am absteigenden Kühler unter gleichzeitigem Durchleiten von Stickstoff, Wasserstoff oder Chlorwasserstoff Kuhler unter gielchzeitigem Durchielten von Slicksbul, wasserstoll oder Chiofwasserstoll (Copisarow, Soc. 119, 444, 446; vgl. v. Dumreicher, B. 15 [1882], 1867). Neben anderen Produkten beim Behandeln von 1.3-Dibrom-benzol (Salkind, Rogowina, Ж. 59, 1016; C. 1928 I, 2939), 1.4-Dibrom-benzol (S., R., Ж. 59, 1017; Quellet, Bl. [4] 41, 934; vgl. dagegen Bodroux, C. r. 136 [1903], 1138; Pink, Soc. 123, 3419) oder 1.4-Dijod-benzol (Thomas, C. r. 181, 219) mit 2 Atomen Magnesium in Ather und Zersetzen der Reaktionsprodukte mit Wasser.

Beim Leiten von Toluoldampf über aktive Kohle oberhalb 350° (Gurwitsch, Ph. Ch. 107. 247). Beim Erhitzen von Toluol mit Wasserstoff unter Druck (Hofmann, Lang, Brennstoffch. 10, 204; C. 1929 II, 164). Über Bildung beim Erhitzen von Toluol und Xylol mit Aluminiumchlorid im Stickstoff-, Wasserstoff- oder Chlorwasserstoff-Strom vgl. Copi-SAROW, Soc. 119, 1808. Beim Erhitzen von p-Cymol im Hochdruckautoklaven in Gegenwart von Tonscherben auf ca. 600° (TREIBS, B. 61, 685). Beim Leiten von p-Cymol, Solventnaphtha oder Inden im Wasserstoffstrom durch verzinnte Eisenröhren bei 750—770° (F. Fischer, Schrader, Brennstoffch. 1, 5, 23; C. 1921 I, 12; F., Sch., Mever, Abh. Kenntnis Kohle 5, 432, 435; C. 1922 IV, 1039). In geringer Menge beim Erhitzen von bei 146—200° siedenden Anteilen der Solventnaphtha mit Wasserstoff bei Gegenwart von Kupferoxyd und Aluminiumoxyd auf 480—500° unter 60 Atm. Anfangsdruck (IPATJEW, ORLOW, B. 60, 1969). Beim Leiten von cis-Oktahydroinden (S. 51) über einen Nickel-Tonerde-Katalysator bei 320-325° (Zelinsky, Borissow, B. 57, 2061) oder durch ein verzinntes Eisenrohr bei 750° (Orlow, Belopolski, B. 62, 1228, 1231). Bildung aus Tetralin s. bei diesem (Syst. Nr. 473). Neben anderen Produkten bei 25—30-stdg. Erhitzen von Naphthalin mit Wasserstoff in Gegenwart von Nickeloxyd und Aluminiumoxyd auf 450—480° unter 100 Atm. Anfangsdruck (IPATJEW, KLJUKWIN, B. 58, 2; Ж. 56, 246). Beim Leiten von Diphenyl-Dampf durch ein auf 500—600° erhitztes Porzellan- oder Eisenrohr (FICHTER, ERLENMEYER, Helv. 9, 151) oder durch ein verzinntes Eisenrohr im Wasserstoffstrom bei 760-7700

(F. FISCHER, SCHRADER, Brennstoffch. 1, 23; C. 1921 I, 12; FISCHER, SCHRADER, MEYER, Abh. Kenntnis Kohle 5, 426; C. 1922 IV, 1039). Beim 4-stdg. Erhitzen von Diphenyl mit Wasserstoff auf 500° unter 80 Atm. Anfangsdruck (Hofmann, Lang, Brennstoffch. 10, 204; C. 1929 II, 164) oder in Gegenwart von Kupferoxyd und Aluminiumoxyd auf 450—480° unter 55 Atm. Anfangsdruck (Orlow, B. 60, 1955; Ж. 59, 901). Bei der Einw. von Aluminiumchlorid auf Diphenylmethan bei gewöhnlicher Temperatur, in geringerer Menge bei 85° (Scholl, Seer, B. 55, 338). Beim Leiten von Diphenylmethan oder Fluoren durch verzinnte Eisenröhren im Wasserstoffstrom bei 750—770° (F. FISCHER, SCHRADER, MEYER, Abh. Kenntnis Kohle 5, 427, 433; C. 1922 IV, 1039).

Benzol entsteht aus Phenol: beim Auftropfen auf Quarz oder Koks bei 700—900°, neben anderen Produkten (Kosaka, J. Soc. chem. Ind. Japan Spl. 31, 127 B; C. 1928 II, 2422; 1929 I, 1069), bei wiederholtem Leiten über aktive oder platinierte Kohle bei 300° (Zelinsky, Gawerdowskaja, B. 61, 1053), beim Leiten über aktive Holzkohle bei 650° oder über Bimsstein bei 650—850° (Hagemann, Z. ang. Ch. 42, 358), beim Erhitzen mit Wasserstoff in Gegenwart von Aluminiumoxyd auf 460—480° bei 70—80 Atm. Anfangsdruck (Kling, Florentin, C.r. 184, 886; Bl. [4] 41, 1344, 1346) oder in Gegenwart von Kupfer (II)-oxyd und Aluminiumoxyd auf 500° bei ca. 70 Atm. Anfangsdruck (IPatjew, Orlow, B. 60, 1966), beim Leiten des Dampfes im Stickstoffstrom über eisenhaltigen Koks bei 650° bis 700° (F. Fischer, Schrader, Meyer, Abh. Kenntnis Kohle 5 [1923], 440), beim Leiten des mit Kohlenoxyd gemischten Dampfes über Holzkohle bei 400—450° (Campardou, C. r. 184, 829, 830) und beim Erhitzen mit Aluminiumpulver auf 470° (Ray, Dutt, J. indian chem. Soc. 5, 105; C. 1928 I, 2370). Bei der Einw. von Wasserstoff auf Phenylacetat in Gegenwart von Nickel-Bimsstein bei 150—160° und 18—50 mm Druck (Grignard, Mingasson, C.r. 185, 1555 Anm. 2); entsteht in analoger Weise aus Phenetol (Gr., Mi., Bl. [4] 41, 761). Bei der Einw. von Natrium in flüssigem Ammoniak auf Diphenylsulfid (Kraus, White, Am. Soc. 45, 775). Neben Thianthren beim Erhitzen von Diphenylsulfid mit Aluminiumchlorid (Turner, Sheppard, Soc. 127, 547). Beim Leiten des Dampfes von m-Kresol oder technischem Kresol im Wasserstoffstrom durch ein verzinntes Eisenrohr bei 750—770° (F. Fischer, Schrader, Brennstoffch. 1, 5; C. 1921 I, 12; F., Sch., Zerbe, Abh. Kenntnis Kohle 6, 134; C. 1924 I, 838) oder durch ein mit Hilfe von Schwefelwasserstoff sulfidiertes Eisenrohr bei 750° (Fischer, D. R. P. 431479; C. 1926 II, 1461; Frdl. 15, 393). Beim Erhitzen von Brenzcatechin, Resorcin, Hydrochinon, Pyrogallol und Phloroglucin mit Aluminiumpulver auf 500—540° (Ray, Dutt, J. indian. chem. Soc. 5, 105; C. 1928 I,

stoff unter Druck auf 430° (IPATJEW, PETROW, B. 62, 403).

Benzol entsteht aus Benzaldehyd bei der photochemischen Zersetzung des Dampfes im ultravioletten Licht (DE HEMPTINNE, C. r. 186, 1296; J. Phys. Rad. [6] 9 [1928], 360, 362), bei der thermischen Zersetzung (PEYTRAL, Bl. [4] 29, 45; HURD, BENNETT, Am. Soc. 51, 1200) und bei der Hydrierung in Gegenwart von Kupfer oberhalb 350° neben geringeren Mengen Toluol (SABATIER, KUBOTA, C. r. 172, 734), in Gegenwart von Platinschwarz bei 200° (GRIONARD, Bl. Soc. chim. Belg. 37, 59; C. 1928 I, 2714) oder in Gegenwart von Kohle und fein verteiltem Eisen bei 420° (Handelsonderneming Feynald, D. R. P. 434211; C. 1926 II, 2494; Frdl. 15, 398). Beim Erhitzen von Chinon mit Aluminiumpulver auf 500—540° (Ray, Dutt, J. indian chem. Soc. 5, 106; C. 1928 I, 2370).

Benzol entsteht neben anderen Produkten, wenn man Pelargonsäure, Ölsäure, Leinölfettsäuren oder Leinöl, Rüböl, Erdnußöl oder Haifischleberöl bei 600—650° mit Kupfer und Aluminiumoxyd behandelt (Mailhe, C.r. 173, 358, 659; 174, 874; Bl. [4] 31, 251, 680, 686; A.ch. [9] 17, 308, 310, 313, 316, 325, 327, 330; C. 1923 III, 38); bei der analogen Bildung aus Ricinusöl läßt sich die Ausbeute durch Behandlung der bei 200—250° siedenden Anteile des Reaktionsprodukts mit Aluminiumchlorid erhöhen (Mailhe, C.r. 176, 38). Benzol entsteht in 94 % iger Ausbeute beim Erhitzen von Natriumbenzoat und 1 Mol Natriumcarbonat mit Wasser unter Druck auf 400° (Schrader, Wolter, Abh. Kenntnis Kohle 6, 89; C. 1924 I, 2423); über Bildung aus Benzoesäure und Benzoaten und aus Phthalsaure und Phthalaten beim trocknen Erhitzen und beim Erhitzen mit überhitztem Wasserdampf oder mit Wasser unter Druck vgl. Sch., W., Abh. Kenntnis Kohle 6, 82, 92. Benzol entsteht neben anderen Produkten bei der Zersetzung von Acetylbenzoylperoxyd oder Dibenzoylperoxyd bei 200° (Fichter, Erlenmeyer, Helv. 9, 147, 149; vgl. a. Gelissen, Hermans, B. 58, 764) und bei der Einw. von Dibenzoylperoxyd auf siedenden absoluten Alkohol (Gelissen, Hermans, B. 58, 768). Beim Erhitzen von Benzoesäure oder Salicylsäure mit Aluminiumpulver im Wasserstoff- oder Kohlendioxydstrom auf 500—540° (Ray, Dutt, J. indian chem. Soc. 5, 106; C. 1928 I, 2370).

Bei der Einw. von Natrium in flüssigem Ammoniak auf benzolsulfonsaures Natrium (Kraus, White, Am. Soc. 45, 775). Durch Erhitzen von benzolsulfonsaurem Natrium mit Aluminiumoxyd und Wasser auf 440° unter 250 Atm. Druck (Iratjew, Petrow, B. 59, 1738). Bildet sich aus Anilin beim Erhitzen mit Wasserstoff in Gegenwart von Aluminium-

oxyd auf 440—470° unter Druck (IPATJEW, ORLOW, B. 60, 1967) oder in Gegenwart von Iridiumasbest auf ca. 300° unter Druck, neben anderen Produkten (SSADIKOW, KLEBANSKI, B. 61, 136) und beim Leiten von Anilin und Wasserstoff durch ein verzinntes Eisenrohr bei 750—770° (F. FISCHER, SCHRADER, Brennstoffch. 1, 23; C. 1921 I, 12; F., SCH., MEYER, Abh. Kenntnis Kohle 5, 424; C. 1922 IV, 1039). Aus Diphenylamin beim Durchleiten durch ein verzinntes Eisenrohr im Wasserstoffstrom bei 760—770° (F., SCH., M., Abh. Kenntnis Kohle 5, 428; C. 1922 IV, 1039). Beim Erhitzen eines Gemisches aus Phenylhydrazin und Phenylhydrazinhydrochlorid auf 160—175°, neben Anilin (Busch, J. pr. [2] 116, 39). Bildung aus Phenylhydrazin s. a. H 15, 69; E I 15, 24. Bei der Zersetzung von α-Benzolazo-triphenylmethan in Ligroin bei 70—80° (Wieland, Popper, Seeffried, B. 55, 1826). Beim Kochen von Phenylzinntrichlorid oder Phenylzinntribromid mit konz. Salzsäure (Kotscheschkow, B. 62, 997; Ж. 61, 1389). Neben anderen Verbindungen bei der Einw. von Sauerstoff auf Phenylmagnesiumbromid in Äther (Wuyts, C. r. 148 [1909], 930; vgl. a. Gilman, Wood. Am. Soc. 48, 807) und bei der Einw. von Monochloramin auf Phenylmagnesiumjodid in Äther unterhalb 0° (Coleman, Hauser, Am. Soc. 50, 1196). Aus Kupfer(I)-phenyl (Syst. Nr. 2357) durch Einw. von Wasser (Reich, C. r. 177, 323). Bei der Hydrierung von Thionaphthen bei 420° unter Druck im Autoklaven, neben anderen Produkten (Fricke, Spilker, B. 58, 1598). Neben anderen Produkten bei der Destillation von Crepe-Kautschuk bei ca. 700°, besonders in Gegenwart von Magnesium (Midgley, Henne, Am. Soc. 51, 1216, 1219).

#### Darstellung.

Gewinnung von Benzol aus Kokereigas bzw. Leuchtgas und Teer: W. Borrmann, Der Teer, seine Gewinnung und Verarbeitung [Leipzig 1940], S. 15, 37; L. Schumann, Kokereiteer und Rohbenzol [Stuttgart 1940]; aus Kokereigas: W. Bertelsmann, F. Schuster in F. Ullmann, Enzyklopädie der technischen Chemie, 2. Aufl. Bd. VI [Berlin-Wien 1930], S. 702; F. Rosendahl, Motoren-Benzol, Gewinnung, Reinigung, Verwendung [Stuttgart 1936], S. 21—108; W. H. Hoffert, G. Clanton, Motor benzole, its production and use, 2. Aufl. [London 1938], S. 10, 177, 260, 351. Zur Extraktion aus Gasen mit Hilfe von Waschölvgl. a. z. B. Bunte, Frei, Gas-Wasserfach 65, 277; C. 1922 IV, 389; Plenz, Bode, Werner, Gas-Wasserfach 65, 433, 447; C. 1922 IV, 1204; Plenz, Gas-Wasserfach 65, 523; C. 1922 IV, 854; Hall, Chem. met. Eng. 33 [1926], 289; Weindel, Glückauf 61, 1561; C. 1926 I, 1336; Schmalenbach, Glückauf 62, 45; C. 1926 I, 1908; Illert, Ch. Z. 50, 153; C. 1926 I, 2860; Gareis, Gas-Wasserfach 69, 269; C. 1926 I, 3372; Raschig, Z. ang. Ch. 40, 1089; Karawajew, C. 1929 I, 709. Gewinnung aus Kokereigas durch Auswaschung mit Tetralin: Weissenberger, Gas-Wasserfach 69, 493, 528, 549; C. 1926 II, 848, 958; durch Adsorption an Kieselsäure-Gel: Thau, Glückauf 62, 1050; C. 1926 II, 1914.

Darstellung von thiophenfreiem Benzol in technischem Maßstab durch Behandlung von Rohbenzol mit Kalium oder Natrium bei 150—200°: Tetralin-Ges., D. R. P. 305104; C. 1921 IV, 654; Frdl. 13, 307; im Laboratorium durch Destillation mit Quecksilber(II)-oxyd und Stearinsäure: Ardagh, Furber, J. Soc. chem. Ind. 48, 74 T; C. 1929 II, 2177. Weitere Reinigung von thiophenfreiem Benzol durch fraktionierte Destillation und Krystallisation und nachfolgendes Trocknen mit Phosphorpentoxyd: Timmermans, Martin, J. Chim. phys. 23, 750; durch fraktionierte Krystallisation: Gifford, Lowry, Pr. roy. Soc. [A] 104 [1923], 433. Über Reinigung von Rohbenzol durch Erhitzen unter Druck vgl. Dunkel., Brennstoffch. 5, 145; C. 1924 II, 2721. Reinigung von Rohbenzol durch Behandlung mit Kieselsäure-Gel: Thau, Glückauf 62, 1052.

#### Physikalische Eigenschaften.

Mechanische, thermische und akustische Eigenschaften.

Röntgenogramm von festem Benzol: Broomé, *Phys. Z.* **24**, 126; *C.* **1923** I, 1391; *Z. Kr.* **62**, 325; Mark, *B.* **57**, 1826; Eastman, *Am. Soc.* **46**, 919, 921; Bruni, Natta, *R.* **48**, 861; Cox, *Nature* **122**, 401; *C.* **1929** I, 348; vgl. a. Bragg, *Soc.* **121**, 2783. Zur Krystallstruktur vgl. Beckenkamp, *Z. anorg. Ch.* **137**, 269.

F: 5,49° (Maass, Waldbauer, Am. Soc. 47, 7), 5,47—5,48° (Knight, Hinshelwood, Soc. 1927, 467), 5,43° (Nagornow, Izv. Inst. fiz.-chim. Anal. 3, 562; C. 1927 II, 2668), E: 5,50° (Timmermans, Martin, J. Chim. phys. 23, 751), 5,45° (Puschin, Grebenschtschikow, Ph. Ch. 113, 71), 5,58° (Gifford, Lowry, Pr. roy. Soc. [A] 104 [1923], 434). Schmelzpunkt unter Drucken zwischen 650 kg/cm² (21,5°) und 3750 kg/cm² (88,3°): Pu., Gr. Der Erstarrungspunkt ändert sich nicht bei 3jährigem Aufbewahren in Gegenwart von Phosphorpentoxyd (Timmermans, Bl. Soc. chim. Belg. 38, 160; C. 1929 II, 2037). Einfluß von gelöster Luft auf den Schmelzpunkt: Foote, Leopold, Am. J. Sci. [5] 11, 45; C. 1926 I, 1773.

Syst. Nr. 463]

Kp<sub>788</sub>: 80,2° (Gifford, Lowry, Pr. roy. Soc. [A] 104 [1923], 434); Kp<sub>780</sub>: 90,20° (Timmermans, Martin, J. Chim. phys. 23, 751), 80,15—80,22° (Williams, Allgeier, Am. Soc. 49, 2417), 80,15° (F. V. Grimm, Patrick, Am. Soc. 45, 2799); Kp<sub>780</sub>: 80,13°; Kp<sub>720</sub>: 78,36°; Kp<sub>718.6</sub>: 78,30° (H. G. Grimm, Ph. Ch. [A] 140, 326); Kp<sub>748.6</sub>: 79,6° (Arbusow, Ph. Ch. 131, 59; Ж. 59, 370). Dampfdruck zwischen 0° (26,9 mm) und 120° (2243 mm): G. C. Schmidt, Ph. Ch. 99, 78; 121, 240; zwischen 23,6° (88,5 mm) und 54,8° (325,6 mm): Jolly, Vincent, Soc. 1926, 2157; zwischen 30,1° (119,8 mm) und 80,0° (760 mm): Nagornow, Izv. Inst. fiz.-chim. Anal. 3 [1926], 565, 567; zwischen 50,15° (271,0 mm) und 80,2° (760,0 mm): Mathews. Am. Soc. 48, 575; bei 19,8°: 74,5 mm (F. Fischer, Pfleiderer, Z. anorg. Ch. 124, 69); bei 20°: 74,66 mm (Weissenberger, Schuster, Pamer, M. 46, 281); bei 25°: 96,5 mm (Calingaert, Hitchcock, Am. Soc. 49, 755). Angaben von Baker (Soc. 121, 569; 123, 1223: 1927, 953, 2902; Am. Soc. 53 [1931], 1810) und Mali (Z. anorg. Ch. 149, 155) über Erhöhung des Siedepunkts von Benzol bei jahrelangem Trocknen mit Phosphorpentoxyd sind wahrscheinlich auf Versuchsfehler zurückzuführen (vgl. Smits, Soc. 1928, 2407; Lenher, Daniels, Pr. nation. Acad. USA. 14, 606; C. 1928 II, 1967; L., Nature 123, 907; C. 1929 II, 2542; J. phys. Chem. 33, 1579; Greer, Am. Soc. 52 [1930], 4191; vgl. a. Balarew, J. pp. [2] 116, 57). Der Siedepunkt wird durch ein elektrisches Feld nicht verändert (Smits, Soc. 1928, 2407; Smith, Soc. 1929, 788; Lenher, Nature 123, 907). Maximaler Siedeverzug bei Atmosphärendruck: Kenrick, Gilbert, Wismer, J. phys. Chem. 28, 1302.

Dichte von festem Benzol bei 0°: 0,9545, bei —80°: 0,9900, bei —186°: 1,050 (Isnardi, Z. Phys. 9 [1922], 158); bei 0°: ca. 1,003 (Broomé, Phys. Z. 24 [1923], 127), 1,015 (bezogen auf Wasser von 4°) (Ziegler, Ditzel, A. 473, 200); bei 5°: ca. 1,012 (Errera, Bl. Acad. Belgique [5] 12 [1926], 337). D? (unterkühlt): 0,9004; D?: 0,8788; D?: 0,8569; D4: 0,8353 (auf Vakuum reduziert) (Richards, Speyers, Carver, Am. Soc. 46, 1203; vgl. dazu Timmermans, Martin, J. Chim. phys. 23, 751); D?: 0,88420; D?: 0,86544; D?: 0,83605 (Timmermans, Martin, J. Chim. phys. 23, 751); D?: 0,8781; D?: 0,8575; D?: 0,8365 (Grunert, Z. anorg. Ch. 164, 257). Dichte D; zwischen 0,15° (0,9000 [unterkühlt]) und 72,7° (0,8220): J. Meyer, Mylius, Ph.Ch. 95, 355; zwischen 5° (0,8939) und 75° (0,8083): Bingham, Sarver. Am. Soc. 42, 2015; zwischen 10° und 70°: Parker, Thompson, Soc. 121, 1342; zwischen 10° und 60°: Estermann, Ph. Ch. [B] 1, 140; Stranathan, Phys. Rev. [2] 31 [1928], 660. D!: 0,8845 (McCombie, Roberts, Scarborough, Soc. 127, 758); D?: 0,87843 (auf Vakuum reduziert) (Richards, Chadwell, Am. Soc. 47, 2287); D?: 0,8731 (Williams, Krchma, Am. Soc. 49, 1678); D.: 0,8748 (W., Allgeier, Am. Soc. 49, 2417). Dichte beim Siedepunkt: 0,8136—0,8137 (Arbusow, Ph. Ch. 131, 59; Ж. 59, 371). Spezifisches Volumen bei 5,5°: 1,1185 (Errera, Bl. Acad. Belgique [5] 12 [1926], 337). Ausdehnungskoeffizienten: Götz, Ph. Ch. 94, 199; Timmermans, Martin, J. Chim. phys. 23, 751. Die Dichte von Benzol wird bei 16 Monate langem Trocknen mit Phosphorpentoxyd nicht wesentlich verändert (Briscoe, Peel, Robinson, Soc. 1929, 373). — Dampfdichte bzw. spezifisches Volumen des Dampfes bei gewöhnlicher Temperatur: Eyring, Am. Soc. 50, 2401; in der Nähe des Siedepunkts: Magnus, Schmid, Z. anorg. Ch. 120, 239; Mathews, Am. Soc. 48, 575; bei böheren Temperaturen: Lewis, Soc. 1927, 1557; Eucken, Meyer, Ph. Ch. [B] 5, 459; vgl. a. Baker, Soc. 1928, 1051.

Isotherme Kompressibilität von festem Benzol bei 0° zwischen 100 und 500 megabar: 30,49×10<sup>-6</sup> Atm.<sup>-1</sup> (Richards, Bartlett, Hodges, Am. Soc. 43, 1541); von flüssigem Benzol bei 20° zwischen 1 und 2 megabar: 95,8×10<sup>-6</sup> Atm.<sup>-1</sup> (Hildebrand, Phys. Rev. [2] 34 [1929], 650; vgl. Tyrer, Soc. 103, 1682), 95,4×10<sup>-6</sup> Atm.<sup>-1</sup> (Hi.; vgl. Freyer, Hubbard, Andrews, Am. Soc. 51, 764); zwischen 1 und 20 megabar: 96,6×10<sup>-6</sup> Atm.<sup>-1</sup> (Hi.; vgl. Vestwater, Frantz, Hildebrand, Phys. Rev. [2] 31 [1928], 144); bei 20° zwischen 100 und 500 megabar: 72,07×10<sup>-6</sup> Atm.<sup>-1</sup> (R., B., Ho.); zur isothermen Kompressibilität vgl. a. Götz, Ph. Ch. 99, 201. Innerer Druck zwischen 20° und 35°: Westwater, Frantz, Hildebrand, Phys. Rev. [2] 31, 140; C. 1928 I, 1635. Adiabatische Kompressibilität bei 20°: Westwater, Frantz, Hildebrand; zwischen 0° und 50°: Freyer, Hubbard, Andrews. Abkühlung bei der adiabatischen Expansion von flüssigem Benzol unter Drucken 0° und 30°. 125, 2045. Kondensation des Dampfes bei der adiabatischen Ausdehnung im Gemisch mit Luft: Tanzow, Ж. 61, 1845; C. 1930 II, 207.

Viscositāt bei 5°: 0,00834, bei 20°: 0,00645, bei 50°: 0,00455 g/cmsec (Faust, Z. anorg. Ch. 154, 64); bei 8,86°: 0,00758, bei 19,91°: 0,00642 g/cmsec (Miller, Pr. roy. Soc. [A] 106 [1924], 740); bei 15°: 0,00700, bei 30°: 0,00570 g/cmsec (Dessart, Bl. Soc. chim. Belg. 35 [1926], 9, 28, Tabelle 11); bei 15°: 0,00696, bei 30°: 0,00566, bei 60°: 0,00395 g/cmsec (Timmermans, Martin, J. Chim. phys. 23, 753); zwischen 5° (0,008293 g/cmsec) und 75° (0,00314 g/cmsec): Bingham, Sarver, Am. Soc. 42, 2015; zwischen 12,2° (0,00737) und 40,02° (0,00482 g/cmsec): de Kolossowsky, Bl. Soc. chim. Belg. 34, 226; C. 1926 I, 1097; zwischen 15,8° (0,00690) und 72,7° (0,00350 g/cmsec): J. Meyer, Mylius, Ph. Ch. 95, 365; vgl. dazu Timmermans, Martin, J. Chim. phys. 23, 753; zwischen 18,2° und 50°: Yajnik,

Mitarb., Ph. Ch. 118, 311. Viscosität bei 20°: 0,0064 g/cm sec (Weissenberger, Schuster, M. 45, 421); bei 25°: 0,00605 g/cm sec (Chadwell, Am. Soc. 48, 1923); bei 30°: 0,00569 g/cm sec (Puschin, Pinter, Ph. Ch. [A] 142, 216), 0,00562 g/cm sec (Bhide, Watson, Soc. 1927. 2103); bei 30°: 0,00566. bei 75°: 0,00330 g/cm sec (Bridgman, Pr. am. Acad. Arts Sci. 61 [1925/26], 70, 80). Einfluß von Drucken bis 4000 kg/cm² auf die Viscosität bei 30° und 75°: Br., Pr. am. Acad. Arts Sci. 61, 80; C. 1926 I, 1919; II, 1923. Art der Strömung von Benzoldampf durch kleine Öffnungen unter verschiedenen Druckverhältnissen: Voss, Ann. Physique [9] 20, 93, 95.

Oberflächenspannung bei 0°: 31,87 dyn/cm (unterkühlt); bei 34,95°: 26,99 dyn/cm (Richards, Speyers, Carver, Am. Soc. 46, 1204); zwischen 10° (30,26 dyn/cm) und 60° (23,54 dyn/cm): Harkins, Cheng, Am. Soc. 48, 48; bei 13,5°: 29,72, bei 34,5°: 26,98, bei 72°: 22,15 dyn/cm (Sudden, Soc. 125, 30); bei 14,7°: 29,5 dyn/cm (Molodyi, Pawlow, Izv. imp. Akad. Petrog. [6] 14 [1920], 255; C. 1925 II, 750); bei 18,2°: 28,94, bei 20°: 28,05, bei 55°: 22,62 dyn/cm (Stachorsky, Z. El. Ch. 34, 112); bei 20° in Gegenwart von Luft: 28,88 dyn/cm; in Abwesenheit von Luft: 28,93 dyn/cm (Richards, Carver, Am. Soc. 43, 845); in Gegenwart von Luft: 28,86 dyn/cm (Sudden, Soc. 121, 865); bei 25°: 28,26 dyn/cm (Palitzsch, Ph. Ch. [A] 138, 407), bei 29,5°: 28,10 dyn/cm (Ali, Pr. indian Assoc. Cult. Sci. 9, 176; C. 1926 II, 2281). Benzol steigt in Capillaren aus Glas, Zink, Kupfer und Silber auf die gleiche Höhe (Carver, Hovorka, Am. Soc. 47, 1328). Die Oberflächenspannung ändert sich bei langem Trocknen mit Phosphorpentoxyd nicht wesentlich (Timmermans, Bl. Soc. chim. Belg. 38, 160; C. 1929 II, 2037; Briscoe, Peel, Robinson, Soc. 1929, 373). Parachor: Sugden, Soc. 125, 1178, 1180; 1927, 1783; Mumford, Phillips, Soc. 1929, 2115.

Leidenfrostsches Phänomen an einem elektrisch geheizten Platindraht in Benzol: Moscicki, Broder, Roczniki Chem. 6, 349; C. 1927 I, 2810. — Spezifische Wärme bzw. Molarwärme von festem Benzol zwischen 0° (0,362 cal/g) und —180° (0,133 cal/g): Maass, Waldbauer, Am. Soc. 47, 7; zwischen —18° und dem Schmelzpunkt: 26,6 cal/Mol (Andrews, Lynn, Johnston, Am. Soc. 48, 1284, 1286); zwischen 0° und 4°: 0,30 cal/g (Padoa, G. 52 II, 206); von flüssigem Benzol beim Schmelzpunkt: 30,1 cal/Mol; zwischen 20° und 110°: 29,64 + 0,08 tcal/Mol (A., L., J.); zwischen 16,2° (0,402 cal/g) und 58,2° (0,449 cal/g): Tréhin, Ann. Physique [9] 15, 255; vgl. Williams, Daniels, Am. Soc. 46, 912, 1571. — Schmelzwärme: 29,9 cal/g (Stratton, Partington, Phil. Mag. [6] 48, 1088; C. 1925 I, 1166), 2360 cal/Mol (Andrews, Lynn, Johnston, Am. Soc. 48, 1284), 2370 cal/Mol (Timmermans, Bl. Soc. chim. Belg. 37, 412; C. 1929 II, 522). Kryoskopische Konstante: 5,14 (für 1000 g Lösungsmittel) (St., Pa.). — Verdampfungswärme bei 20°: 8,17 kcal/Mol (Faust, Ph. Ch. 113, 487); beim Siedepunkt: 94,35 ± 0,03 cal/g (Mathews, Am. Soc. 48, 572); zwischen 86,9° (92,72 cal/g) und 151,8° (79,86 cal/g): Sutcliffe, Lay, Prichard, Pr. roy. Soc. [A] 115, 100; C. 1927 II, 1676. Hersbsetzung der Verdampfungswärme durch langes Trocknen mit Phosphorpentoxyd: Baker, Soc. 1928, 1053 (vgl. indessen die Angaben über den Einfluß langen Trocknens auf den Siedepunkt, S. 123). Ebullioskopische Konstante für 1 kg Lösungsmittel: 2,355 (Cueto, Quim. Ind. 3 [1926], 114), 2,57 (Carroll, Rollefson, Mathews, Am. Soc. 47, 1798). — Verbrennungswärme bei konstantem Volumen: 779,5 kcal/Mol (Richards, Barry, Am. Soc. 37 [1915], 1019; vgl. Swietoslawski, Bobinska, Am. Soc. 49, 2478), 780,9 kcal/Mol (R., Jesse, Am. Soc. 32 [1910], 286; vgl. Sw., Bo.), 781,4 kcal/Mol (R., Davis, Am. Soc. 42, 1615; vgl. Sw., Bo.), 780,4 kcal/Mol (Garner, Abernethy, Pr. roy. Soc. [A] 99, 230; C. 1921 III, 866). Über Verbrennungswärme bei konstantem Druck vgl. Moss, Stern, Eng. 114, 731; C. 1924 I, 1886.

Schallgeschwindigkeit in Benzol bei 23°: Jonesco, Ann. scient. Univ. Jassy 13, 302; C. 1926 I, 3012; bei 17—23°: CISMAN, J. Phys. Rad. [6] 7, 350; Ann. scient. Univ. Jassy 15, 116; C. 1927 I, 571; 1928 I, 2490; zwischen 10° und 50°: Freyer, Hubbard, Andrews, Am. Soc. 51, 764.

## Optische Eigenschaften.

Brechungsindices für verschiedene Wellenlängen bei 15° s. in der Tabelle auf S. 125.  $n_{\infty}^{m,3}$ : 1,4961;  $n_{\infty}^{p,3}$ : 1,5007;  $n_{\infty}^{p,3}$ : 1,5128 (Brand, Kranz, J. pr. [2] 115, 156);  $n_{\infty}^{m}$ : 1,49051;  $n_{\infty}^{p,3}$ : 1,50721 (Dessart, Bl. Soc. chim. Belg. 35 [1926], 9, 28, Tabelle 11);  $n_{\infty}^{p,3}$ : 1,5200; Brechungsindices  $n_{\infty}^{12,3}$  im sichtbaren Gebiet und im Ultraviolett zwischen 580,0 m $\mu$  (1,5075) und 270,0 m $\mu$  (1,6550): Voellmy, Ph. Ch. 127, 347. Zur Refraktions-dispersion vgl. a. Moutte, Chim. et Ind. 19, Sonder-Nr., S. 262; C. 1929 I, 677.  $n_{\infty}^{p,4}$ : 1,5101;  $n_{\infty}^{p,5}$ : 1,5014 (v. Auwers, Kolligs, B. 55, 26);  $n_{\infty}^{15}$ : 1,5040 (McCombeir, Roberts, Scarborough, Soc. 127, 758);  $n_{\infty}^{p,5}$ : 1,5014 (Smyth, Stoops, Am. Soc. 51, 3314), 1,5015 (Mitsukuri, Nakatsuchi, Sci. Rep. Töhoku Univ. [I] 15, 45; C. 1926 II, 545); Brechungsindices  $n_{D}$  zwischen 10° (1,5068) und 70° (1,4674—1,4676; an zwei Präparaten ermittelt): Parker, Thompson,

Brechungsindices für verschiedene Wellenlängen bei 1501).

| Wellenlänge<br>mμ                                                                                                                     | n <sup>15</sup>                                                                                                          | dn/dt                                              | Wellenlänge<br>jnµ                                                                                                                               | n <sup>15</sup>                                                                                                                                                                          | dn/dt                                |
|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 769,9<br>766,5<br>766,5<br>706,52<br>670,78<br>656,28 (Hα)<br>589,59<br>587,56<br>560,88<br>546,07<br>527,04<br>526,95<br>486,13 (Hβ) | 1,494534 1,497005 1,498913 { 1,499659 1,49952* 1,604551 1,50439* 1,50446* 1,506982 1,508506 1,510714 { 1,516392 1,51633* | 0,000 535  0,000 540 0,000 63* 0,000 63* 0,000 63* | 467,82<br>447,15<br>441,30<br>434,05 (H <sub>γ</sub> )<br>404,68<br>361,05<br>346,62<br>340,36<br>334,50<br>330,28<br>328,23<br>325,25<br>298,06 | 1,519 640<br>1,523 856<br>1,524 983<br>{ 1,526 963<br>} { 1,526 81 *<br>1,535 042<br>1,552157<br>1,560 503<br>1,564 470<br>1,568 701<br>1,571 391<br>1,572 863<br>1,579 968<br>1,589 904 | 0,000 568<br>0,000 65 4<br>0,000 608 |

<sup>1)</sup> Die nicht näher bezeichneten Angaben stammen von GIFFORD, LOWRY, Pr. roy. Soc. [A] 104 [1923], 436, die mit \* bezeichneten von TIMMERMANS, MARTIN, J. Chim. phys. 23, 752.

Soc. 121, 1342. Änderung des Brechungsindex von Benzol bei langem Trocknen mit Phosphorpentoxyd: Mali, Z. anorg. Ch. 149, 155; Manley, Nature 123, 907; C. 1929 II, 986.

Absorptionsspektrum von flüssigem Benzol im sichtbaren Gebiet: Ellis, Phys. Rev. [2] 32 [1928], 907, 911. Ultraviolett-Absorptionsspektrum von festem Benzol bei —180° und von flüssigem Benzol und von Benzoldampf bei Zimmertemperatur: Kronenberger, Pringsheim, Z. Phys. 40, 78, 80, 83; C. 1927 I, 854; Pr., Phys. Z. 27, 857; C. 1927 II, 786; von flüssigem Benzol: Kwiecinski, Marchlewski, Bl. Acad. polon. [A] 1929, 257; C. 1929 II, 2153; von flüssigem Benzol und von Benzoldampf bei 0,01—65 mm Druck: Henri, C.r. 174, 810; J. Phys. Rad. [6] 3 [1922], 186, 193, 203, 205; C. 1923 III, 201; von Benzoldampf bei 2 mm Druck und bei 20—100 Atm. Stickstoffdruck: Teves, Z. Phys. 48, 249, 250; C. 1928 II, 12. Zum Ultraviolett-Absorptionsspektrum des Dampfes vgl. a. Henri, C.r. 177, 1039; Savard, C.r. 188, 782. Ultraviolett-Absorptionsspektrum in absolutalkoholischer Lösung: V. Henri, Etudes de photochimie [Paris 1919], S. 115, 116; Marchlewski, Moroz, Bl. [4] 33, 1406; Kwiecinski, Ma., Bl. Acad. polon. [A] 1929, 257; Purvis, Pr. Cambridge phil. Soc. 21, 787; C. 1924 I, 1484; López, An. Soc. scient. arg. 101, 143; C. 1927 I, 1580; Orndorff, Mitarb., Am. Soc. 50, 835; in Alkohol, Methanol, Pentan, Hexan, Tetrachlorkohlenstoff, Ather und Wasser: Henri, J. Phys. Rad. [6] 3 [1923], 202, 205; in wäßr. Lösung: Riegel, Buchwald, Am. Soc. 51, 491; in Salzsäure und Natronlauge bei verschiedenem ph: Vlès, Gex, C.r. 181, 507. Absorption von Röntgenstrahlen durch Benzol: Aurén, Medd. Vet. Akad. Nobelinst. 4 [1920/22], Nr. 3, S. 11; Taxlor, Phys. Rev. [2] 20, 711; C. 1924 I, 8; Olson, Dershem, Storch, Phys. Rev. [2] 21, 33; C. 1923 III, 350.

Ultrarot-Absorptionsspektrum von flüssigem Benzol zwischen 1 und 15  $\mu$ : W. W. Coblentz, Investigations of infra-red spectra [Washington 1905], S. 140, 164, 231; V. Henri, Études de photochimie [Paris 1919], S. 114; H., J. Phys. Rad. [6] 3 [1922], 198; bis 12  $\mu$ : Bell, Am. Soc. 47, 2814; im nahen Ultrarot: Ellis, Phys. Rev. [2] 23, 52, 54; 31, 310; 32, 909, 911; 33, 625; C. 1924 I, 1635; 1929 I, 1419; II, 259; Márton, Ph. Ch. 117, 107, 110; Dreisch, Z. Phys. 30, 212; Z. wiss. Phot. 23, 106; C. 1925 I, 1164, 1563; Barnes, Fulweiler, Am. Soc. 49, 2035; 50, 1035; 51, 1751; J. opt. Soc. Am. 15, 333, 334; Phys. Rev. [2] 32, 621; C. 1928 I, 1502; 1929 I, 19; Barnes, Phys. Rev. [2] 33, 627; Nature 124, 300; C. 1929 II, 259, 2016; Brackett, Pr. nation. Acad. USA. 14, 863; C. 1929 I, 847. Ultrarot-Absorptionsspektrum von Benzoldampf: Purvis, Pr. Cambridge phil. Soc. 21, 563; C. 1928 III, 979; Dreisch, Z. Phys. 30, 212; Z. wiss. Phot. 23, 106; C. 1925 I, 1164, 1563; C. F. Meyer, Bronk, Levin, J. opt. Soc. Am. 15, 259; C. 1928 I, 1747. Zum Ultrarot-Absorptionsspektrum vgl. a. Henri, C. r. 174, 811; Gapon, Z. Phys. 44, 601; C. 1927 II, 1789.

Intensität und Polarisationszustand des Streulichts bei der Streuung von weißem oder monochromatischem Licht in flüssigem Benzol: Martin, J. phys. Chem. 24, 487; Ma., Lehrman, J. phys. Chem. 26, 78; Cabannes, J. Phys. Rad. [6] 3, 430, 439; C. 1923 III, 343; Ca., Granier, C. r. 182, 886; Ca., Daure, C. r. 184, 521; Raman, K. S. Rao, Phil. Mag. [6] 45, 632; C. 1923 III, 589; Ganesan, Phys. Rev. [2] 23, 67; C. 1924 I, 1635; Ganesan, Phys. Rev. [2] 24, 67; C. 1924 I, 1635; Ganesan, Phys. Rev. [2] 25, 67; C. 1924 I, 1635; Ganesan, Phys. Rev. [2] 24, 67; C. 1924 I, 1635; Ganesan, Phys. Rev. [2] 28, 67; C. 1924 I, 1635; Ganesan, Phys. Rev. [2] 28, 67; C. 1924 I, 1635; Ganesan, Phys. Rev. [2] 28, 67; C. 1924 I, 1635; Ganesan, Phys. Rev. [2] 28, 67; C. 1924 I, 1635; Ganesan, Phys. Rev. [2] 28, 67; C. 1924 I, 1635; Ganesan, Phys. Rev. [2] 28, 67; C. 1924 I, 1635; Ganesan, Phys. Rev. [2] 28, 67; C. 1924 I, 1635; Ganesan, Phys. Rev. [2] 28, 67; C. 1924 I, 1635; Ganesan, Phys. Rev. [2] 28, 67; C. 1924 I, 1635; Ganesan, Phys. Rev. [2] 28, 67; C. 1924 I, 1635; Ganesan, Phys. Rev. [2] 28, 67; C. 1924 I, 1635; Ganesan, Phys. Rev. [2] 28, 67; C. 1924 I, 1635; Ganesan, Phys. Rev. [2] 28, 67; C. 1924 I, 1635; Ganesan, Phys. Rev. [2] 28, 67; C. 1924 I, 1635; Ganesan, Phys. Rev. [2] 28, 67; C. 1924 I, 1635; Ganesan, Phys. Rev. [2] 28, 67; C. 1924 I, 1635; Ganesan, Phys. Rev. [2] 28, 67; C. 1924 I, 1635; Ganesan, Phys. Rev. [2] 28, 67; C. 1924 I, 1635; Ganesan, Phys. Rev. [2] 28, 67; C. 1924 I, 1635; Ganesan, Phys. Rev. [2] 28, 67; C. 1924 I, 1635; Ganesan, Phys. Rev. [2] 28, 67; C. 1924 I, 1635; Ganesan, Phys. Rev. [2] 28, 67; C. 1924 I, 1635; Ganesan, Phys. Rev. [2] 28, 67; C. 1924 I, 1635; Ganesan, Phys. Rev. [2] 28, 67; C. 1924 I, 1635; Ganesan, Phys. Rev. [2] 28, 67; C. 1924 I, 1635; Ganesan, Phys. Rev. [2] 28, 67; C. 1924 I, 1635; Ganesan, Phys. Rev. [2] 28, 67; C. 1924 II, 1635; Ganesan, Phys. Rev. [2] 28, 67; C. 1924 II, 1635; Ganesan, Phys. Rev. [2] 28, 67; C. 1924 II, 1635; Ganesan, Phys. Rev. [2] 28, 67; C. 1924 II, 1635;

Z. Phys. 30, 234; C. 1925 I, 1565; II, 1509; ROCARD, C. r. 182, 690; KRISHNAN, Phil. Mag. [6] 50, 703; C. 1926 I, 838; BANERJEE, Indian J. Phys. 2, 57; C. 1928 I, 1838; in flüssigem Benzol in der Nähe des Erstarrungspunktes und bei Temperaturen zwischen 100° und 280°: MARTIN, LEHRMAN, J. phys. Chem. 27, 560; zwischen 30° und der kritischen Temperatur: S. R. RAO, Indian J. Phys. 2, 184; 3, 24; C. 1928 I, 2235; 1929 I, 20; RAMANTHAN, Phys. Rev. [2] 21, 567; C. 1924 I, 2231. Intensität und Polarisationsgrad des Streulichts bei der Lichtstreuung an Benzol-Oberflächen: RAMAN, RAMDAS, Phil. Mag. [7] 3, 222; C. 1927 I, 2799; BOUHET, C. r. 185, 201; BHATNAGAR, SHRIVASTAVA, MITRA, J. indian chem. Soc. 5, 338; C. 1928 II, 1745; in Benzoldampf: RAMAN, K. S. RAO, Phil. Mag. [6] 45, 635; C. 1923 III, 589; NARAYAN, Pr. phys. Soc. London 36, 36; C. 1925 I, 1682; GANESAN, Phil. Mag. [6] 49, 1220; C. 1925 II, 1011; CABANNES, GRANIER, C. r. 182, 886; EWING, J. opt. Soc. Am. 12 [1926], 26; RAMANATHAN, SRINIVASAN, Pr. indian Assoc. Cult. Sci. 9, 206; C. 1926 II, 1930; I. R. RAO, Indian J. Phys. 2, 84; C. 1928 I, 1838; zwischen 35° und der kritischen Temperatur: RAMANATHAN, Phys. Rev. [2] 21, 566; C. 1924 I, 2231; zur Lichtstreuung in Benzoldampf vgl. a. RAMANATHAN, Pr. roy. Soc. [A] 110, 124; C. 1926 I, 1941.

49, 1220; C. 1925 II, 1011; CABANNES, GRANIER, C. r. 182, 886; EWING, J. opt. Soc. Am. 12 [1926], 26; RAMANATHAN, SRINIVASAN, Pr. indian Assoc. Cult. Sci. 9, 206; C. 1928 II, 1930; I. R. RAO, Indian J. Phys. 2, 84; C. 1928 I, 1838; zwischen 35° und der kritischen Temperatur: RAMANATHAN, Phys. Rev. [2] 21, 566; C. 1924 I, 2231; zur Lichtstreuung in Benzoldampf vgl. 8. RAMANATHAN, Pr. roy. Soc. [A] 110, 124; C. 1926 I, 1941.

Über den Tyndall-Effekt in Benzol vgl. GANS, Contrib. Estudio Cienc. fis. La Plata 3, 302; C. 1925 I, 2287. Beugungserscheinungen in Nebel aus Benzoltröpfehen: Mecke, Ann. Phys. [4] 61, 496. Beugung von Röntgenstrahlen in flüssigem Benzol: Keesom, De Smedt, Versl. Akad. Amsterdam 31, 89; C. 1923 I, 8; Hewlett, Phys. Rev. [2] 20, 702; C. 1924 I, 8; Eastman, Am. Soc. 46, 921; Sogani, Indian J. Phys. 1, 366, Tafel XV, 375, 383; C. 1927 II, 2149; Katz, Z. Phys. 45, 104; Z. ang. Ch. 41, 333; C. 1927 II, 1206; 1928 I, 154; Krishnamurti, Indian J. Phys. 2, 496; C. 1928 II, 2098; Stewart, Phys. Rev. [2] 33, 892; C. 1929 II, 1258; Thibaud, Trillat, C. r. 189, 752; Z. Phys. 61 [1930], 824.

Röntgenogramm von festem Benzol s. S. 122.

Ramanspektrum von flüssigem Benzol: Raman, Indian J. Phys. 2, 394, 396, 408, Tafel XIII; C. 1928 I, 3038; Ra., Krishnan, Nature 122, 12, 278; Pr. roy. Soc. [A] 122, 25; C. 1928 II, 1745, 1860, 2531; 1929 II, 137; Pringsheim, Rosen, Z. Phys. 50, 742; C. 1928 II, 2103; Gerlach, Ann. Phys. [5] 1, 301; Cabannes, Daure, C. r. 186, 1534; Ca., Salvaire, C. r. 188, 907; Daure, C. r. 186, 1834; 188, 1493; Ann. Physique [10] 12, 435; Dadieu, Kohlrausch, M. 52, 224, 380; 53/54, 285; Sber. Akad. Wien [IIa] 138, 47; Phys. Z. 30, 384 Tafel VII; C. 1929 II, 385, 697, 970; B. 63 [1930], 259; Wood, Phil. Mag. [7] 6, 741, 1282; 7, 864; C. 1929 I, 355, 1538; II, 1135; Ganesan, Venkateswaran, Indian J. Phys. 4, 270; C. 1929 II, 2646; Petrikaln, Ph. Ch. [B] 3, 362. Einfluß der Temperatur auf die Linien des Ramanspektrums: Fujioka, Nature 124, 11; C. 1929 II, 1775. Zum Ramanspektrum vgl. a. Shapiro, Nature 124, 372; C. 1929 II, 2308; Langer, Meggers, Phys. Rev. [2] 33, 115, 116; C. 1929 II, 2414.

Tesla-Luminescenzspektrum bei verschiedenen Drucken: McVicker, Marsh, Stewart, Soc. 123, 646; Phil. Mag. [6] 48, 630; C. 1924 II, 2348; McV., M., Soc. 123, 818. Reines flüssiges Benzol fluoresciert bei Bestrahlung mit ultraviolettem Licht äußerst schwach, festes Benzol und alkoh. Lösungen zeigen stärkere Fluorescenz, ebenso Benzoldampf unter Drucken bis 360 mm sowie festes Benzol beim Erstarrungspunkt und bei der Temperatur der flüssigen Luft; Spektrum dieser Fluorescenzen und Fluorescenzspektrum einer festen Lösung von Benzol in Alkohol bei —190°: Reimann, Ann. Phys. [4] 80, 51, 52, 54, 57, 58, 64, 68. Fluorescenzspektrum von Benzol-Dampf bei Drucken bis 60 mm: McVicker, Marsh, Soc. 123, 822; Marsh, Soc. 123, 3319, 3322; von Lösungen in Alkohol und Hexan: Henri, J. Phys. Rad. [6] 3, 207; C. 1923 III, 201. Zum Fluorescenzspektrum des Dampfes vgl. a. Posejpal, C. r. 187, 1046. Fluorescenz von flüssigem Benzol bei Bestrahlung mit Röntgenstrahlen: Newcomer, Am. Soc. 42, 2002. Phosphorescenz von festem Benzol nach Ultraviolett-Bestrahlung bei 0°: Reimann, Ann. Phys. [4] 80, 66.

## Elektrische und magnetische Eigenschaften.

Dielektrizitäts-Konstante von festem und flüssigem Benzol zwischen —186° (2,290) und +55° (2,210): Isnardi, Z. Phys. 9 [1922], 172, 174; von festem Benzol bei 5°: 2,58—2,6; von flüssigem Benzol bei 5,5°: 2,311 (Errera, Bl. Acad. Belgique [5] 12 [1926], 337); von flüssigem Benzol zwischen 0° (2,331 [unterkühlt]) und 80,1° (2,153): Matsuike, Pr. Acad. Tokyo 5, 30; C. 1929 I, 2390; zwischen 5° (2,302) und 80° (2,161): Graffunder, Ann. Phys. [4] 70, 232; zwischen 9° (2,260) und 51,5° (2,195): E. H. L. Meyer, Ann. Phys. [4] 75, 809; zwischen 10° (2,296) und 60° (2,202): Estermann, Ph. Ch. [B] 1, 140; zwischen 10° (2,300) und 60° (2,192): Stranathan, Phys. Rev. [2] 31 [1928], 660; zwischen 14° (2,293) und 72,7° (2,214): Grützmacher, Z. Phys. 28 [1924], 347; vgl. Lattey, Gatty, Phil. Mag. [7] 7, 996; C. 1929 II, 1628; zwischen 20° (2,277) und 72,9° (2,170): Velasco-Durantez, An. Soc. españ. 25, 287; C. 1927 II, 2649; bei 20°: 2,262 (λ = 4,5 m) (Walden, Werner, Ph. Ch. [B] 2, 13); bei 25°: 2,282 ± 0,002 (Williams, Krchma, Am. Soc. 48, 1891; vgl. Wi., Allgeier, Am. Soc. 49, 2418; W., Schwingel, Am. Soc. 50, 363), 2,248 (λ = 300 m)

(Harris, Soc. 127, 1065), 2,23 (λ = 300 m) (Sayce, Briscoe, Soc. 1926, 2626); bei 25,5°: 2,239 (λ = 4,6 m) (S., B., Soc. 127, 322); beim Siedepunkt: 2,17 (Grimm, Patrick, Am. Soc. 45, 2799). Dielektr.-Konst. dünner Schichten: Kallmann, Dorsch, Ph. Ch. 126, 315, 320. Dielektr.-Konst. bei Drucken bis 20 Atm.: Cagniard, Ann. Physique [10] 9, 505, 508; bis. 50 Atm.: Grenacher, Ann. Phys. [4] 77, 146; bis 120 Atm.: Waibel, Ann. Phys. [4] 72, 186; bis 400 Atm.: Kyropoulos, Z. Phys. 40, 514; C. 1927 I, 1554; bis 800 Atm.: Francke, Ann. Phys. [4] 77, 177. Die Feldstärke hat keinen wesentlichen Einfluß auf die Dielektr.-Konst. (Jezewski, J. Phys. Rad. [6] 5 [1924], 63). Abhängigkeit der Dielektr.-Konst. von der Wellenlänge bei festem Benzol: Errera, C. r. 179, 157; J. Phys. Rad. [6] 5, 309; C. 1925 I, 1390; bei flüssigem Benzol: McDowell, C. 1924 II, 159. — Benzol besitzt in verd. Lösung kein Dipolmoment (Briegleb, Ph. Ch. [B] 16 [1932], 276, 280; vgl. Krohma, Williams, Am. Soc. 49, 2414; Wi., Ogg, Am. Soc. 50, 96). Dipolmoment μ×10<sup>16</sup> von dampfförmigem Benzol bei 100°: 0,34 (Höjendahl, Phys. Z. 30 [1929], 392). Über das Dipolmoment von flüssigem Benzol vgl. Smyth, Am. Soc. 46, 2153; vgl. dagegen Sänger, Phys. Z. 27, 165; C. 1926 I, 3034.

Elektrische Leitfähigkeit zwischen 15° und 78°: Graffunder, Ann. Phys. [4] 70, 232; bei Temperaturen bis 25°: Rabinowitsch, Ph. Ch. 119, 71; H. 58, 233; vgl. a. Burton, Prtt, Phil. Mag. [7] 5, 942; C. 1928 II, 918. — Anregungs- und Ionisierungsspannung von Benzoldampf: Boucher, Phys. Rev. [2] 19, 203; C. 1923 III, 1196. Elektrostriktion: Pauthenier, C. r. 178, 1901; J. Phys. Rad. [6] 5, 318; C. 1925 I, 1164. Elektroendosmose in Benzol: Strickler, Mathews, Am. Soc. 44, 1652.

Magnetische Susceptibilität von festem und flüssigem Benzol zwischen +16,8° und -156,0°: Ishiwara, Sci. Rep. Töhoku Univ. [1] 3, 307; C. 1921 I, 270; von flüssigem Benzol: Athanasiadis, Ann. Phys. [4] 66, 425; Pascal, C. r. 180, 1596, 1800; von Benzol-Dampf: Vaidyanathan, Phys. Rev. [2] 30, 514; Indian J. Phys. 2, 147; C. 1928 I, 165, 1940. Magnetische Doppelbrechung des Dampfes und der Flüssigkeit: Raman, Krishnan, Pr. roy. Soc. [A] 113, 514, 518; C. 1927 I, 1127; vgl. R., K., C. r. 184, 449. Verzögerung des Faraday-Effekts nach Anlegen bzw. Abstellen des magnetischen Feldes in Licht von ca. 491 mµ: Brams, Allison, Phys. Rev. [2] 29, 164; C. 1927 I, 2887; in Licht verschiedener Wellenlänge: Allison, Phys. Rev. [2] 30, 69; C. 1927 II, 1545. Magnetische Drehung der Polarisationsebene in Benzol: Javelle, Chim. et Ind. 19, Sonder-Nr., S. 266; C. 1928 II, 1860. [OSTERTAG]

## Physikalische Eigenschaften von Benzol enthaltenden Gemischen.

#### Mechanische und thermische Eigenschaften.

Löslichkeit und Mischbarkeit. 100 g Wasser lösen bei 0° 0,153 g Benzol (Hill, Am. Soc. 44, 1167), bei 20° 0,181 g (Horiba, Trans. Faraday Soc. 15 [1920], 184). Löslichkeit in Wasser bei +5° und +21°: Desvergnes, Ann. Chim. anal. appl. [2] 10, 6; C. 1928 I, 2190. Ist nach Traube, Klein (Bio. Z. 120, 115; Koll.-Z. 29, 236; C. 1922 I, 233; vgl. aber auch Bose, Bio. Z. 141, 269) in Wasser kolloidal gelöst. Gegenseitige Löslichkeit von Benzol und Wasser bei Gegenwart aliphatischer Säuren: Schillow, Lepin, Ph. Ch. 101, 386. — Ist mit Alkohol in allen Verhältnissen mischbar (Boutaric, Corbett, C. r. 184, 1447; Chaleur Ind. 8 [1927], 567). Löslichkeit in 50% igem wäßrigem Alkohol zwischen 11,2° und 22,6°: Wright, Soc. 1926, 1206; in wäßr. Alkohol verschiedener Konzentration bei verschiedenen Temperaturen: Desvergnes; in 50% igem wäßrigem Alkohol in Gegenwart von Natriumchlorid zwischen 11,1° und 21,3° und in Gegenwart anderer anorganischer Salze bei 20°: We., Soc. 1926, 1205. — Schwer löslich in Ammoniak, sehr leicht in Schwefeldioxyd (De Carli, G. 57, 351). Löslich in flüssigem Schwefelwasserstoff (Quam, Am. Soc. 47, 105). Löslich in Selenoxybromid (Lenher, Am. Soc. 44, 1671). Löslichkeit in Dimethylsulfat: Gault, Hessel, A. ch. [10] 2, 338. 3,5 g Benzol lösen sich bei Zimmertemperatur (?) in 100 cm² 50% iger wäßriger N.N.Diäthyl-formamid-Lösung (C. H. Boehringer & Sohn, D. R. P. 403508; C. 1925 I, 1345; Frdl. 14, 1473). Löslichkeit in Olivenöl bei 37°: K. H. Meyer, Hopef, H. 126, 292. — Gegenseitige Löslichkeit von Benzol und geschmolzenem Schwefel: Bruni, Pelizzola, R. A. L. [5] 30 II, 161. In allen Verhältnissen mischbar mit Vanadiumoxytrichlorid unter Bildung roter Lösungen (Brown, Snyder, Am. Soc. 47, 2673). Mischbarkeit mit Resorcin bei verschiedenen Drucken: Timmermans, J. Chim. phys. 20, 506; mit Ameisensäure bei 25°: Gordon, Reid, J. phys. Chem. 26, 782; bei verschiedenen Drucken: Timmermans.

Kritische Lösungstemperatur der Gemische mit Methanol: 29° (BOUTARIC, CORBET, C. r. 184, 1446; Chaleur Ind. 8, 566; C. 1927 II, 2651), mit Resorcin: 109,3° (ROTHMUND, Ph. Ch. 26 [1898], 480). Kritische Lösungstemperatur des Systems Benzol-Eisessig-Wasser und Beeinflussung derselben durch Gasolin, Cyclohexan, Toluol, Thiophen und Butylalkohol: Jones, Soc. 123, 1385, 1391. Einfluß von Benzol auf die kritische Lösungs-

temperatur eines Gemisches aus Eisessig + Wasser + Schwefelkohlenstoff: J. Entmischungstemperaturen von Benzol-Wasser-Gemischen verschiedener Zusammensetzung: BARBAUDY, J. Chim. phys. 23, 290; von Benzol-Äthylalkohol-Wasser-Petroleum-Gemischen: Peters, Z. ang. Ch. 40, 1012.

Zustandsdiagramm des binären Systems mit Silberperchlorat zwischen 0° und 400°: Hill, Am. Soc. 44, 1165; mit Urethan unter Drucken bis zu 4050 kg/cm²: Puschin, Ph. Ch. 118, 449. Zustandsdiagramm des ternären Systems mit Methanol und Wasser bei 20°: Perbakis, C. r. 177, 880; J. Chim. phys. 22, 307; mit Alkohol und Wasser bei 21°: Pe.; bei 25° und 60°: Barbaudy, R. 45, 207; zwischen —5° und +25°: Sidewick, Spurrell, Soc. 117, 1399; zwischen —10° und +30°: Wehrmann, Z. El. Ch. 27, 387, 388; mit Isopropylalkohol und Wasser sowie mit Butylalkohol und Wasser bei 19°: Pe.; mit Pyridin und Wasser bei 25°: Woodman, Corbet, Soc. 127, 2461. Zustandsdiagramm des ternären Systems Silberperchlorat-Benzol-Wasser zwischen —58,4° und +145°: Hill, Am. Soc. 44, 1167. Einfluß von Wasserspuren auf das Lösungsgleichgewicht der binären Systeme mit 2-Nitro-benzoesäure und Salicylsäure bei 30,5°: Cohen, van Dobbendurch, Versl. Akad. Amsterdam 34, 523; C. 1926 I, 5; C., Miyake, Versl. Akad. Amsterdam 34, 933; C. 1926 I, 1757.

Verteilung von Jod zwischen Benzol und Kaliumjodid-Lösung: Lottermoser, Z. ang. Ch. 37, 85; von Schwefeldioxyd zwischen Benzol und Natronlauge- und Kalilauge-Lösungen: Ephraim, Aellig, Helv. 6, 52. — Für die im folgenden genannten Substanzen wurde die Verteilung zwischen Benzol und Wasser untersucht: Chlorwasserstoff (Knight, Hinshelwood), Soc. 1927, 471), auch in Gegenwart von Alkali- und Erdalkali-Chloriden und Glycerin (Taylor, J. phys. Chem. 29, 1000), Silberperchlorat (Hill, Am. Soc. 43, 264); Dimethyläthylcarbinol und Isoamylalkohol (Traube, Verh. dtsch. phys. Ges. 10 [1908], 901, 903), Phenol (Herz, Stanner, Ph. Ch. 128, 401), Aceton (Traube; Herz, St., Ph. Ch. 128, 409), Methyläthylketon und Methylpropylketon (Traube), Ameisensäure (Gordon, Reid, J. phys. Chem. 26, 787), Essigsäure (Schilow, Lepin, Ph. Ch. 101, 381; Harrins, McLaughlin, Am. Soc. 47, 1612), Methylacetat und Äthylacetat (Traube), Trichloressigsäure (Andreassow, Ukr. chemič. Z. 3, 464; C. 1929 II, 550), Propionsäure (Traube; Sch., L.; Smith, White, J. phys. Chem. 33, 1964), Isobuttersäure (Sch., L.; Sm., J. phys. Chem. 26, 268; Sm., Wh., J. phys. Chem. 33, 1963), n-Valeriansäure, Isovaleriansäure, n-Capronsäure, Isocapronsäure, \(\alpha\)-Crotonsäure sowie verschiedene halogenierte aliphatische Säuren (Sm., Wh.), Benzoesäure (Schilow, Lepin, Ph. Ch. 101, 365; Smith, J. phys. Chem. 26, 268; Herz, Stanner, Ph. Ch. 128, 408), 2-Nitro-benzoesäure und 3-Nitro-benzoesäure (v. Szyszkowski, Ph. Ch. 131, 179; v. Sz., v. Skapski, Ph. Ch. [A] 137, 245), Mandelsäure (Schilow, Lepin, Ph. Ch. 101, 365), Methylamin, Dimethylamin, Trimethylamin, Diäthylamin und Dipropylamin (Herz, Stanner, Ph. Ch. 128, 400), Diäthylamin (Traube, Verh. dtsch. phys. Ges. 10, 901; Smith, J. phys. Chem. 26, 268), Anilin und Piperidin (Traube). — Verteilung von Aceton, Phenol, Benzoesäure und Trimethylamin zwischen Benzol und wäßr. Salz-Lösungen: H., St., Ph. Ch. [A] 137, 247—255.

Lösungsvermögen von Benzol für Radiumemanation bei 18°: Schulze, Ph. Ch. 95, 273; zwischen 6,2° und 73,1°: Szeparowicz, Sber. Akad. Wien [IIa] 129, 449; C. 1921 I, 608; für Wasserstoff bei 20°: Willstätter, Waldschmidt-Leitz, B. 54, 138; für Sauerstoff bei 19,8°: F. Fischer, Pfleiderer, Z. anorg. Ch. 124, 69; Abh. Kenninis Kohle 5 [1920], 575; für Stickstoff bei 27—29° unter verschiedenen Drucken: Metschl., J. phys. Chem. 28, 432; für Stickstoffmonoxyd bei 5,5°: Garelli, R. A. L. [6] 2, 123; zwischen 8,8° und 34,6°: Klemenc, Spitzer-Neumann, M. 53/54, 417; für Stickstoffoxydul bei 10°, 25° und 40° und für Kohlendioxyd bei 25°: Horiuchi, Bl. phys. chem. Res. Tokyo 1, 12, 16; C. 1928 I, 2770; für Methan bei 23° unter Druck: F. Fischer, Zerbe, Brennstoffch. 4 [1923], 18; für Acetylen bei ca. 4°: Garelli, R. A. L. [6] 2, 121; für Chlorwasserstoff bei 20°: Knight, Hinshelwood, Soc. 1927, 470. — Lösungsvermögen von Benzol für Wasser bei 25°: Hill, Am. Soc. 44, 1167; zwischen 5,4° und 69,5°: Hill, Am. Soc. 45, 1151; für Jod zwischen 25° und 54,64°: Hilderand, Jenks, Am. Soc. 42, 2185; für Silberperchlorat: Hill, Am. Soc. 43, 263; für Quecksilber(II)-chlorid: Hellenbrand, Joachimoglu, Bio. Z. 153, 132; für Quecksilber(II)-bromid: Jo., Klissiunis, Bio. Z. 153, 140; für Zinn(IV)-jodid bei 10°, 25° und 40°: Dorfman, Hild., Am. Soc. 49, 733; für rhombischen Schwefel bei 25° und 54°: Hild., Jenks, Am. Soc. 43, 2173; für Schwefelstickstoff N<sub>1</sub>S<sub>4</sub> von 0° bis 60°: Wosnessenski, Ж. 59, 225; C. 1927 II, 1680. Extraktionsvermögen für Steinkohle bei gewöhnlicher Temperatur und beim Siedepunkt: Vignon, A. ch. [9] 13, 285.

Lösungsvermögen für 1.4-Dibrom-benzol zwischen 0° und 80°: Mortimer, Am. Soc. 45, 634; für 2- und 4-Nitro-benzylchlorid bei 30°: McCombie, Scarborough, Smith, Soc. 1927, 809; für 2.4.6-Trinitro-toluol zwischen 16,8° und 75,1°: Taylor, Rinkenbach, Am. Soc.

129

45, 51; für 2.4.6-Trinitro-m-xylol: Desvergnes, Ann. Chim. anal. appl. 25 [1920], 281; für Naphthalin: Ward, J. phys. Chem. 30, 1322; für Anthracen: Coher, Miyake, Ph. Ch. 119, 252; für Phenanthren zwischen 5° und 30°: Henstock, Soc. 121, 2125; für Fluoren zwischen 0° und 80°: Mortimer, Am. Soc. 45, 634; für 2-, 3- und 4-Nitro-phenol bei verschiedenen Temperaturen: Carrick, J. phys. Chem. 25, 636; für Pikrinsäure bei 12°: Angelescu, Dumitrescu, Ph. Ch. 132, 221; bei 70°: Kondakow, Parl. mod. 19 [1926], 216; C. 1927 I, 194; für Resorcin bei 73°, 82° und 95,3°: Carroll, Rollefson, Mathews, Am. Soc. 47, 1790; vgl. a. Rothmund, Ph. Ch. 26 [1898], 457, 475; für Campher bei 4°, 25° und 56°: C., R., M.; für Benzophenon bei verschiedenen Temperaturen: Loskit, Ph. Ch. 134, 158; für Benzi bei 4,5°, 25° und 64,2°: C., R., M.; für Triglyceride: Loskit, Ph. Ch. 134, 141; für Benzoesäure bei 25°: v. Szyszkowski, Ph. Ch. 131, 180; zwischen 4,3° und 110,0°: Chipman, Am. Soc. 46, 2446; für 2-Nitro-benzoesäure bei 30,5°: Cohen, Miyake, Ph. Ch. 119, 251; v. Sz.; für 3-Nitro-benzoesäure und 3.5-Dinitro-benzoesäure: v. Sz.; für Salicylsäure bei 25°: v. Sz.; bei 30,0°: Cohen, Mitarb., Ph. Ch. 126, 294; bei 30,5°: Co., van Dobben-Turgeh, Ph. Ch. 118, 37, 42; Co., Miyake, Ph. Ch. 119, 248; für Salol bei verschiedenen Temperaturen: Loskit, Ph. Ch. 134, 158; für Mandelsäure: Schilow, Lepin, Ph. Ch. 101, 364; für Gemische organischer Säuren: v. Sz.; für Acetanilid bei 7°, 25° und 55,2°: Carroll, Rollefson, Mathews, Am. Soc. 45, 1219. Absorption von Benzol-Dampf durch Dekalin und Tetralin: Weissenberger, Henke, Sperling, Z. ang. Ch. 38, 360, 1161. — Über feste Lösungen von Thiophen in Benzol vgl. Bruni, Natta, R. 48, 862.

Lösungsvermögen von wasserhaltigem Benzol für Chlorwasserstoff: Knight, Hinshelwood, Soc. 1927, 470; Anthracen: Cohen, Miyake, Ph. Ch. 119, 252; Benzoesäure: v. Szyszkowski, Ph. Ch. 131, 180; 2-Nitro-benzoesäure: Cohen, Miyake, Ph. Ch. 119, 251; v. Sz.; 3-Nitro-benzoesäure: v. Sz.; 3.5-Dinitro-benzoesäure, auch in Gegenwart von Kaliumchlorid: v. Sz.; Salicylsäure: C., M.; auch in Gegenwart von Kaliumchlorid: v. Sz. — Lösungsvermögen von Gemischen mit Alkohol für Pikrinsäure: Angelescu, Dumitrescu, Ph. Ch. 132, 221; mit Alkohol, Toluol, Chloroform bzw. Schwefelkohlenstoff für Anthracen: Disselkamp, Ph. Ch. 123, 103. — Über die Bildung von Benzol-Wasser-Emulsionen unter der Einw. hochfrequenter Schallwellen vgl. Richards, Am. Soc. 51, 1724; in Gegenwart von Natriumoleat vgl. Briggs, J. phys. Chem. 24, 120. Teilchengröße in Benzol-Wasser-Emulsionen mit Kaliumpalmitat und Kaliumoleat als Emulgierungsmittel: Kraemer, Stamm, Am. Soc. 46, 2712; mit Palmitinsäure, Natrium-, Kalium- und Cäsiumpalmitat: Stamm, Svedberg, Am. Soc. 47, 1591. Stabilität von Benzol-Wasser-Emulsionen mit verschiedenen Stearaten und Oleaten als Emulgierungsmittel: Finkle, Draper, Hilderrand, Am. Soc. 46, 2785. Einfluß von Säuren, Basen und Salzen auf die Beständigkeit von durch Natriumoleat stabilisierten Benzol-Wasser-Emulsionen: Tartar, Mitarb., J. phys. Chem. 33, 439. Herstellung und Eigenschaften von Schwefel-Solen in Benzol: Garard, Colt, Am. Soc. 49, 631. Gleichgewicht zwischen Benzol und Eisenoxydgel bzw. Kieselsäuregel bei verschiedenen Temperaturen: Lambert, Clark, Pr. roy. Soc. [A] 117, 184; C. 1928 I, 630. Sedimentvolumen verschiedener pulverförmiger Stoffe in Benzol: Haller, Koll.-Z. 46, 366; C. 1929 II, 274.

Erstarrungspunkte von Gemischen mit Dekalin und Toluol: Tetralin-Ges., D. R. P. 329833; C. 1921 II, 425; Frdl. 13, 316. — Kryoskopisches Verhalten von Kohlenoxyd in Benzol: Garelli, R. A. L. [6] 2, 124; von Silberperchlorat in Benzol: Hill, Am. Soc. 43, 258; von Aluminiumbromid + Kaliumbromid in Benzol: Plotnikow, Jakubson, Ph. Ch. 136, 252; H. 60, 1588; C. 1929 I, 1661; von Zinn(IV)-chlorid in Benzol: Hieber, A. 439, 129. Gefrierpunktserniedrigung von Benzol durch fein verteiltes Aluminiumoxyd und Siliciumdioxyd: Parker, Am. Soc. 43, 1015; durch Wasser: Peterson, Rodebush, J. phys. Chem. 32, 715; auch bei Zusatz verschiedener Entwässerungsmittel: Sidgwick, Soc. 117, 1340. Kryoskopisches Verhalten verschiedener organischer Säuren und anderer Verbindungen in Benzol: Walden, Izv. imp. Akad. Petrog. [6] 8 [1914], 1162, 1163, 1164, 1166, 1181; C. 1925 I, 1557; auch unter Zusatz von Phosphorpentoxyd, Aluminiumoxyd oder Natriumsulfat: Jones, Bury, Soc. 127, 1947. Kryoskopisches Verhalten von organischen Lösungsmitteln für sich und im Gemisch mit Aceton in Benzol: Scheibe, B. 60, 1412. Für folgende Verbindungen finden sich Angaben über das kryoskopische Verhalten in Benzol: Toluol (Bell, Wright, J. phys. Chem. 31, 1884; Peterson, Rodebush, J. phys. Chem. 32, 715), Athylbenzol (Bell, Wright), Mesitylen (Stratton, Partington, Phil. Mag. [6] 48 [1924], 1088), Methanol und Alkohol (Pe., Ro., J. phys. Chem. 32, 715), Essigsäure (Kendall, Booge, Soc. 127, 1776; Pe., Ro., J. phys. Chem. 32, 715), Athylacetat und Gemische aus Athylacetat und Trichloressigsäure (Ke., Boo., Soc. 127, 1773), Acetanhydrid (Jones, Soc. 1936, 1193), Benzoesäure (Peterson, Rodebush), Benzylbenzoat (Ke., Monroe, Am. Soc. 43, 120), N-Allyl-N'-phenyl-thioharnstoff (Kurnakow, Plaksina, zit. bei Schischen Schokin, Izv. Inst. fiz.-chim. Anal. 4, 206; C. 1929 I, 2957), Dimethylpyron-pikrat (Walden,

Izv. imp. Akad. Petrog. [6] 8, 1181; C. 1925 I, 1557), Dioxan (Herz, Lorentz, Ph. Ch. [A] 140, 416). — Kryoskopisches Verhalten von Cadmiumjodid, Tetrachlorkohlenstoff, Nitrobenzol, Toluol, Athylbenzol, Naphthalin, Phenanthren, aliphatischen und aromatischen Alkoholen, verschiedenen Säuren, Anilin und Acetanilid in Gemischen aus Alkohol und Benzol: WRIGHT, Soc. 127, 2335, 2337; von Quecksilberchlorid und Cadmiumjodid in einem Aceton-Benzol-Gemisch: W., Soc. 127, 2335. Kryoskopisches Verhalten von Benzol in  $\beta.\beta'$ -Dichlordiäthylsulfid: Delépine, Fleury, VILLE, C. r. 172, 1240; Bl. [4] 29, 544; in Nicotin + Wasser: WRIGHT, Soc. 127, 2335.

Thermische Analyse binärer Systeme, die Benzol enthalten, s. in der untenstehenden Tabelle. Thermische Analyse der Systeme mit flüssigem Schwefeldioxyd und mit Tetrachlor-kohlenstoff s. S. 146 bei den entsprechenden additionellen Verbindungen. Thermische Analyse

Thermische Analyse binärer Systeme.

| •                                                                                                                   | Eutektika                                     |                                                        |                        | Eutektika                                |                                               |
|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------|------------------------|------------------------------------------|-----------------------------------------------|
| Komponente                                                                                                          | Temperatur<br>0                               | Mol-%<br>Benzol                                        | Komponente             | Temperatur<br>0                          | Mol-%<br>Benzol                               |
| Dischwefeldichlorid 1) Chloroform 2) 3) Athylbromid 4) Nitrobenzol 5) Toluol 6) 3-Nitro-toluol 7) 4-Nitro-toluol 5) | 92<br>79<br>120,5<br>24<br>103,0<br>22<br>8,5 | ca. 5<br>27<br>4,5<br>ca. 51<br>ca. 85<br>59,2<br>76,6 | m-Xylol <sup>8</sup> ) | 60,2<br>126,5<br>96<br>28,2<br>54<br>5,2 | 27,42<br>5,1<br>3,4<br>ca. 35<br>21,2<br>23,4 |

1) DE CABLI, G 59, 497. — 2) WYATT, Trans. Faraday Soc. 24, 433; C. 1928 II, 2536. — 3) TIMMERMANS, Bl. Soc. chim. Belg. 37 [1928], 413. — 4) WYATT, Trans. Faraday Soc. 25, 45; C. 1929 I, 1542. — 5) LINARD, Bl. Soc. chim. Belg. 34 [1925], 374, 375, 378, 387, 388, 397, 398; C. 1926 I, 2427. — 6) MITSUKURI, NAKATSUCHI, Sci. Rep. Tôhoku Univ. [1] 15, 47; C. 1926 II, 545. — 7) DESSART, Bl. Soc. chim. Belg. 35, 10, 20, 28 Tabelle 11 und 12; C. 1926 II, 157 — 6) NAKATSUCHI, Sci. Rep. Tôhoku Univ. [1] 15, 54; C. 1926 II, 546. — 6) YAMAMURA, Bl. chem. Soc. Japan 1 [1926], 183.

der Systeme mit Hexan: Timmermans, Bl. Soc. chim. Belg. 37 [1928], 413; mit Allylbromid und Pyridin: Hawkins, Soc. 121, 1172. Die binären Systeme von Benzol mit Methanol, Alkohol, Isopropylalkohol und Butylalkohol (Perrakis, C. r. 176, 1138; J. Chim. phys. 22, 289), mit Alkohol (Wyatt, Trans. Faraday Soc. 24, 434; C. 1928 II, 2536) und mit 1.4-Dibrom-benzol (Schischokin, Z. anorg. Ch. 181, 150) zeigten bei der thermischen Analyse keine Eutektika.

Ebullioskopisches Verhalten von Zinn(IV)-jodid, verschiedenen organischen Verbindungen und organischen Salzen in Benzol: Walden, Izv. imp. Akad. Petrog. [6] 8 [1914], 1164—1166, 1170—1172, 1178—1180; C. 1925 I, 1557; von Naphthalin in Benzol: Cueto, Quim. Ind. 3 [1926], 114; von Azobenzol in Benzol: Berl, Rau, B. 57, 1829. Ebullioskopisches Verhalten von Campher in Benzol und in Gemischen von Benzol und Alkohol: Carroll, Rollefson, Mathews, Am. Soc. 47, 1795. — Siedepunkte und Zusammensetzung des Dampfes des binären Gemisches Wasser-Benzol: Barraudy, J. Chim. phys. 23, 297. Siedepunkte von Gemischen mit Tetrachlorkohlenstoff bei 720 mm Druck: Grimm, Ph. Ch. [A] 140, 327; mit Cyclohexan bei 717,8 mm Druck: Grim Alkohol: Carroll, Mathews, Am. Soc. 46, 35. Siedepunkte und Zusammensetzung des Dampfes bei der Destillation des ternären Gemisches mit Toluol und Wasser: Bar., J. Chim. phys. 23, 304, 308, 311. Siedepunkte und Zusammensetzung des Dampfes der ternären Gemische mit Alkohol und Wasser bei 760 mm Druck: Bar., C. r. 180, 1925; J. Chim. phys. 24, 4; vgl. a. Bar., C. r. 181, 911. Siedepunktskurven von Gemischen mit Toluol: Denslow, J. chem. Educ. 5, 731; C. 1928 II, 626. Azeotrope Gemische, die Benzol enthalten, s. in der Tabelle auf S. 131; vgl. a. Lecat, Ann. Soc. scient. Bruxelles 48 II, 105; C. 1928 II, 854. Einfluß des Druckes auf die Zusammensetzung des konstant siedenden Gemisches mit Methanol: Briggs, J. phys. Chem. 28, 648. Das ternäre Azeotrope mit Wasser und Alkohol siedet bei 760 mm bei 64,85° (Young, Soc. 81 [1902], 710), bei 64,8—64,9° (Barbaudy, C. r. 180, 1925). Bildet ein ternäres Azeotropes mit Wasser und Essigsäure (Kp: 68°) (Distillerie des Deux-Sèvres, D. R. P. 469 823; Frdl. 16, 209). — Fraktionierte Destillation eines Gemisches aus Benzol, Chlorbenzol und Brombenzol: Tsukamoto, Japan. J. Chem. 2, 137; C. 1928 II, 2108. Destillation von Gemischen mit Toluol: Dufton, Phil. Mag. [6] 41, 634;

## Benzol enthaltende binäre Azeotrope.

| Komponente                                                               | Kp760 Benzol in Gew%           |                              | Komponente                                                                                                                                       | Kp760<br>0                       | Benzol<br>in Gew%                    |
|--------------------------------------------------------------------------|--------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------|
| Nitromethan 1)<br>Äthylalkohol 4)<br>Äthylnitrat 1) sek. Butylalkohol 2) | 79,2<br>68,09<br>80,08<br>78,8 | 85,7<br>67,5<br>ca. 85<br>84 | Dimethyläthyl-<br>carbinol <sup>2</sup> )<br>Propylformiat <sup>2</sup> ) .<br>Methylpropionat <sup>2</sup> )<br>Dimethylcarbonat <sup>3</sup> ) | ca. 80<br>78,5<br>79,45<br>80,17 | ca. 85<br>ca. 53<br>ca. 48<br>ca. 99 |

<sup>1)</sup> LECAT, Ann. Soc. scient. Bruxelles 47 [1927] I, 153. — 2) L., Ann. Soc. scient. Bruxelles 48 [1928], 57. — 3) L., R. 45, 624. — 4) BARBAUDY, J. Chim. phys. 24, 8.

C. 1922 I, 83; Piron, Chem. met. Eng. 26, 317; C. 1922 IV, 1077; Öman, Tekn. Tidskr.
57 K, 35, 38; C. 1927 II, 153; mit m-Xylol: Gay, Chim. et Ind. 10, 191 T, 250 T; C.
1924 I, 2821.

Dampfdruck von Gemischen mit Chloroform bei 20° und 90°: SCHULZE, Ph. Ch. 97, 401; bei verschiedenen Temperaturen: G. C. SCHMIDT, Ph. Ch. 99, 77, 78; 121, 242; mit Tetrachlorkohlenstoff bei verschiedenen Temperaturen: G. C. Schmidt, Ph. Ch. 121, 240; mit Pentachlorathan bei 20°: Weissenberger, Schuster, Pamer, M. 46, 285, 292; mit Athyljodid bei 20°: Prentiss, Am. Soc. 51, 282°; mit Cyclohexan zwischen ca. 55° und 78°: Nagornow, Izv. Inst. fiz.-chim. Anal. 3 [1926], 569; mit Dekahydronaphthalin bei 20°: Wei., Henke, Sperling, M. 46, 484; mit Tetrahydronaphthalin bei 18°: Wei., Schuster, Mayer, M. 45, 452; bei 20°: Wei., Schuster, Z. ang. Ch. 38, 629; mit 5-Chlorage and the state of the sta 1.2.3.4-tetrahydro-naphthalin bei 20°: Wei., Henke, Katschinka, Z. anorg. Ch. 153, 34; mit Nitrobenzol bei 20°: Wei., Henke, Kawenoki, J. pr. [2] 113, 171; mit Toluol bei verschiedenen Temperaturen: Schm., Ph. Ch. 99, 80; 121, 240; Schulze, Ph. Ch. 97, 418; mit Methanol bei verschiedenen Temperaturen: Schm., Ph. Ch. 99, 81; 121, 244; mit Ather bei 20° und 30°: SCHULZE, Ph. Ch. 97, 389; bei verschiedenen Temperaturen: SCHM., Ph. Ch. 99, 78; 121, 239; mit Propylalkohol bei verschiedenen Temperaturen: SCHM., Ph. Ch. 121, 244; mit Cyclohexanol, 1-Methyl-cyclohexanol-(2), 1-Methyl-cyclohexanol-(3) und 1-Methyl-cyclohexanol-(4) bei 20°: Wei., Schuster, M. 45, 417, 440, 441, 442; mit Phenol bei 15°: Wei., Schuster, Schuler, M. 45, 428; mit p-Chlor-phenol bei 20°: Wei., Schuster, Lielacher, M. 46, 295; mit 2-Nitro-phenol bei 20°: Wei., Henke, Kawenoki, J. pr. [2] 113, 173; mit Anisol bei 20°: Berl, Schwebel, Z. ang. Ch. 35, 191; mit o-, m- und p-Kresol bei 18°: Wei., Piatti, M. 45, 282; Wei., Schuster, M. 45, 441; mit m-Kresol bei 20°: Wei., Schuster, M. 45, 441; mit m-Kresol bei 20°: Wei., Schuster, M. 45, 441; mit m-Kresol bei 20°: Wei., Schuster, M. 45, 441; mit m-Kresol bei 20°: Wei., Schuster, M. 45, 441; mit m-Kresol bei 20°: Wei., Schuster, M. 45, 441; mit m-Kresol bei 20°: Wei., Schuster, M. 45, 441; mit m-Kresol bei 20°: Wei., Schuster, M. 45, 441; mit m-Kresol bei 20°: Wei., Schuster, M. 45, 441; mit m-Kresol bei 20°: Wei., Schuster, M. 45, 441; mit m-Kresol bei 20°: Wei., Schuster, M. 45, 441; mit m-Kresol bei 20°: Wei., Schuster, M. 45, 441; mit m-Kresol bei 20°: Wei., Schuster, M. 45, 441; mit m-Kresol bei 20°: Wei., Schuster, M. 45, 441; mit m-Kresol bei 20°: Wei., Schuster, M. 45, 441; mit m-Kresol bei 20°: Wei., Schuster, M. 45, 441; mit m-Kresol bei 20°: Wei., Schuster, M. 45, 441; mit m-Kresol bei 20°: Wei., Schuster, M. 45, 441; mit m-Kresol bei 20°: Wei., Schuster, M. 45, 441; mit m-Kresol bei 20°: Wei., Schuster, M. 45, 441; mit m-Kresol bei 20°: Wei., Schuster, M. 45, 441; mit m-Kresol bei 20°: Wei., Schuster, M. 45, 441; mit m-Kresol bei 20°: Wei., Schuster, M. 45, 441; mit m-Kresol bei 20°: Wei., Schuster, M. 45, 441; mit m-Kresol bei 20°: Wei., Schuster, M. 45, 441; mit m-Kresol bei 20°: Wei., Schuster, M. 45, 441; mit m-Kresol bei 20°: Wei., Schuster, M. 45, 441; mit m-Kresol bei 20°: Wei., Schuster, M. 45, 441; mit m-Kresol bei 20°: Wei., Schuster, M. 45, 441; mit m-Kresol bei 20°: Wei., M. 45, 441; mit m-Kresol bei 20°: Wei., Schuster, M. 45, 441; mit m-Kresol bei 20°: Wei., M. 45, 441; mit m-Kresol bei 20°: Wei., SCHUSTER, Z. ang. Ch. 38, 629; mit technischem Kresol bei 200: BERL, SCHWEBEL, Z. ang. Ch. 35, 190; mit Guajacol bei 17°: Wei., Henke, Bregmann, M. 46, 473; mit Veratrol bei 17°: Wei., Henke, Bregmann, M. 46, 474; mit Cyclohexanon bei 18°: Wei., Schuster, MAYER, M. 45, 453; mit Essigsäure bei verschiedenen Temperaturen: SCHM., Ph. Ch. 121, 243; mit Methylacetat und Äthylacetat bei verschiedenen Temperaturen: SCHM., Ph. Ch. 99, 79; 121, 241, 243; mit Dichloressigsäure bei 20°: Wei., Schuster, Pamer, M. 46, 285, 292; mit Buttersäure bei 20°: Weissenberger, Henke, Katschinka, Z. anorg. Ch. 153, 42; mit Schwefelkohlenstoff bei verschiedenen Temperaturen: SCHM., Ph. Ch. 99, 79; 121, 244; mit Salicylaldehyd bei 170: Wei., Henke, Bregmann, M. 46, 475; mit Anilin und Dimethylanilin bei 200: Wei., Schuster, Lielacher, M. 46, 304, 306; mit Pyridin bei 200: Prentiss, Am. Soc. 51, 2829; mit Paraffinöl bei 00 und 200: Berl, Andress, Z. ang. Ch. 34, 278; mit Waschöl bei verschiedenen Temperaturen: Bunte, Frei, Gas-Wasserjach 65 [1922], 275; bei 20°: Weissenberger, Schuster, Z. ang. Ch. 38, 629; mit mineralischen, pflanzlichen und tierischen Ölen: Wilson, Wylde, Ind. Eng. Chem. 15, 803; C. 1923 IV, 964.

Druck und Zusammensetzung des Dampfes über Gemischen mit Butan bei 25°: Calingaert, Hitchcock, Am. Soc. 49, 759; mit Ameisensäure bei 25° und 59,96°: Wrewsky, Held, Ščukarew, Ph. Ch. 133, 381; Ж. 59, 620. Zusammensetzung des Dampfes über Gemischen mit Toluol und Athylbenzol bei 20°: Bell, Wright, J. phys. Chem. 31, 1885; mit Alkohol für sich sowie bei Zusatz von Resorcin, Campher, Benzil oder Acetanilid: Carroll, Rollefson, Mathews, Am. Soc. 47, 1787; mit Alkohol oder Aceton bei 20°: Tryhorn, Wyatt, Trans. Faraday Soc. 21, 400; C. 1926 I, 3310. Zusammensetzung des Dampfes beim Destillieren eines Gemisches mit Athylenchlorid oder sek. Butylalkohol: Pahlavouni, Bl. Soc. chim. Belg. 36, 542, 545; C. 1928 I, 477; mit Eisessig: Othmer, Ind. Eng. Chem. 20, 745; C. 1928 II, 1128. — Verhalten von Benzol im Gemisch mit Wasser oberhalb

der kritischen Temperatur: DES COUDRES, Ann. Phys. [4] 73, 289.

Dichte der binären Systeme mit Jod, Silberperchlorat, Zinn(IV)-jodid und Antimon(III)-jodid bei 25°: Williams, Allgeier, Am. Soc. 49, 2418; mit Jod bei verschiedenen Temperaturen: Grunert, Z. anorg. Ch. 164, 260; mit Schwefel bei verschiedenen Temperaturen:

ROSENTAL, Bl. Acad. polon. [A] 1928, 389, 391, 392; C. 1929 I, 975; mit Schwefeldioxyd bei 25°: Lewis, Am. Soc. 47, 632; mit Schwefelchlorür bei 20°: De Carl, G. 59, 498. — Dichte von Gemischen mit Chloroform bei 25°: HAMMICK, ANDREW, Soc. 1929, 756; mit Tetrachlorkohlenstoff bei 18°: ROLINSKI, Phys. Z. 29 [1928], 660; bei 25°: HA., A., Soc. 1929, 756; zwischen 0° und 50°: Faust, Z. anorg. Ch. 154, 64; mit Nitromethan bei 25°: HA., A., Soc. 1929, 756; mit Athyljodid bei 25°: Prentiss, Am. Soc. 51, 2831; mit Hexan bei 25°: Williams, Ogg. Am. Soc. 50, 97; mit Cyclohexan bei 20°: Pawlow, Ж. 58, 1305; C. 1927 II, 1126; bei 25°: HA., A., Soc. 1929, 756; mit Fluorbenzol bei 20°: Walden, Werner, Ph. Ch. [B] 20, 13; bei verschiedenen Temperaturen: JMEYER, MYL, Ch. 95, 357; mit Chlorbenzol bei 18°: Rolinski, Phys. Z. 29, 662; bei 25°: Williams, Krchma, Am. Soc. 49, 1679; bei 30°: Burrows, James, J. Pr. Soc. N. S. Wales 59, 226; C. 1927 II, 894; bei verschiedenen Temperaturen: MEYER, MYL, Ph. Ch. 95, 358; Smyth, Morgan, Boyce, Am. Soc. 50, 1542; mit Brombenzol bei 30°: Bu., J., J. Pr. Soc. N. S. Wales 59, 226; bei verschiedenen Temperaturen: MEYER, MYL, Ph. Ch. 95, 358; Mit 1.2-, 1.3- und 1.4-Dibrom-benzol bei 20°: Wa., We., Ph. Ch. [B] 2, 13; bei verschiedenen Temperaturen: MEYER, MYL, Ph. Ch. 96, 359; mit 2-Brom-1-jod-benzol, 3-Brom-1-jod-benzol benzol dei 20°: Wa., We., Ph. Ch. [B] 2, 13; bei verschiedenen Temperaturen: MEYER, MYL, Ph. Ch. 96, 359; mit 2-Brom-1-jod-benzol, 3-Brom-1-jod-benzol dei 20°: Wa., Noc. 50, 363; bei 55°: Hammick, Andersche Soc. 1929, 757; Williams, Schwingel, Am. Soc. 50, 363; bei 55°: Hammick, Andersche Soc. 1929, 757; Williams, Schwingel, Am. Soc. 50, 363; bei 55°: Hammick, Andersche Soc. 1929, 757; Williams, Schwingel, Am. Soc. 50, 363; bei 55°: Hammick, Andrew, Soc. 1929, 757; Williams, Schwingel, Am. Soc. 50, 363; bei 55°: Hammick, Andrew, Soc. 1929, 756; Williams, Schwingel, Am. Soc. 50, 363; bei 55°: Hammick, Andrew, Soc. 1929, 757; Williams, Schwingel, Andrew, Ph. Ch. [B] 2, 15; mit To

Dichte der binären Gemische mit Methanol, Alkohol, Propylalkohol, n-Butylalkohol bei 20°: Perrakis, J. Chim. phys. 22, 303; mit Methanol bei 30°: Burrows, James, J. Pr. Soc. N. S. Wales 59, 228; C. 1927 II, 894; zwischen 10° und 60°: Stranathan, Phys. Rev. [2] 31 [1928], 660; mit Alkohol bei 25°: Hammick, Andrew, Soc. 1929, 756; mit Isoamylalkohol bei 30°: Bhide, Watson, Soc. 1927, 2103; mit Ather bei 18°: Rollinski, Phys. Z. 29, 662; bei 25°: Schulze, Ph. Ch. 97, 395; Ha., A., Soc. 1929, 758; zwischen 0° und 40°: Götz, Ph. Ch. 94, 199; mit Phenol bei 25°: Williams, Krchma, Am. Soc. 49, 1678; Wi., Allgeier, Am. Soc. 49, 2418; Wooddan, Chem. N. 134 [1927], 36; Swearingen, J. phys. Chem. 32, 1348; mit Guajacol bei 30°: Puschin, Pinter, Ph. Ch. [A] 142, 216. Dichte von Gemischen mit Aceton bei 15°: McCombie, Roberts, Scarborough, Soc. 127, 758; bei 25°: Ha., A., Soc. 1929, 756; bei 30°: Bu., J., J. Pr. Soc. N. S. Wales 59, 228; mit Campher bei 25°: Peacock, Soc. 107 [1915], 1554; mit Acetophenon bei 25°: Ha., A., Soc. 1929, 758. Dichte von Gemischen mit Essigsäure bei 25°: Woodman, Chem. N. 134 [1927], 36; Hammick, Andrew, Soc. 1929, 756; mit Athylacetat bei 20°: Herzen, Arch. Sci. phys. nat. [4] 14 [1902], 243; mit Benzoesäure bei 25°: Williams, Allgeier, Am. Soc. 49, 2418; mit Benzoesäure bei 25°: Williams, Allgeier, Am. Soc. 49, 2418; mit Benzoesäure bei 25°: Williams, Allgeier, Am. Soc. 49, 2418; mit Benzoesäure bei 25°: Williams, Allgeier, Am. Soc. 49, 2418; mit Benzoesäure bei 25°: Williams, Allgeier, Am. Soc. 49, 2418; mit Benzoesäure bei 25°: Williams, Allgeier, Am. Soc. 49, 2418; mit Benzoesäure bei 25°: Williams, Allgeier, Am. Soc. 40, 2418; mit Benzoesäure bei 25°: Williams, Allgeier, Am. Soc. 40, 2418; mit Benzoesäure bei 25°: Williams, Allgeier, Am. Soc. 40, 2418;

Dichte von Gemischen mit Essigsäure bei 25°: Woodman, Chem. N. 134 [1927], 36; Hammick, Andrew, Soc. 1929, 756; mit Athylacetat bei 20°: Herzen, Arch. Sci. phys. nat. [4] 14 [1902], 243; mit Benzoesäure bei 25°: Williams, Allgeier, Am. Soc. 49, 2418; mit Benzylbenzoat zwischen 5° und 75°: Bingham, Sarver, Am. Soc. 42, 2015; mit Urethan bei 20°: Richards, Chadwell, Am. Soc. 47, 2287; mit Schwefelkohlenstoff bei 18°: Rolinski, Phys. Z. 29 [1928], 659; bei 25°: Williams, Ogg, Am. Soc. 50, 96; bei 20° und 40°: Herz, Scheliga, Z. anorg. Ch. 169, 166. Dichte von Gemischen mit Anilin bei 20°: Herzen, Arch. Sci. phys. nat. [4] 14 [1902], 244; bei 30°: Burrows, James, J. Pr. Soc. N. S. Wales 59, 227; C. 1927 II, 894; mit Dimethylanilin bei 25°: Mathews, Stamm, Am. Soc. 46, 1074; mit m-Toluidin bei verschiedenen Temperaturen: Dessart, Bl. Soc. chim. Belg. 35, 21, 28 Tabelle 11; C. 1926 II, 158; mit p-Toluidin bei 30°: Bu., J., J. Pr. Soc. N. S. Wales 59, 228; mit Pyridin bei 25°: Prentiss, Am. Soc. 51, 2831; mit Chinolin bei 18°: Rollinski, Phys. Z. 29, 662. — Dichten des ternären Systems mit Wasser und Methanol bei 25°: Barbaudy, C. r. 182, 1279; mit Wasser und Alkohol bei 25°: Barbaudy, Bl. [4] 39, 371; mit Wasser und Pyridin bei 25°: Woodman, Corbet, Soc. 127, 2463; mit Naphthalin und Phenanthen bei 20°, 40° und 60°: Herz, Scheliga, Z. anorg. Ch. 169, 165.

Spezifische Volumina von binären Gemischen mit Naphthalin bei 30°: COHEN, DE MEESTER, MOESVELD, Ph. Ch. 108, 107. — Volumenänderung beim Mischen mit Tetrachlorkohlenstoff: Dolezalek, Speidel, Ph. Ch. 94, 102; mit Toluol: Schulze, Ph. Ch. 97, 421; mit Methanol: Washburn, J. chem. Educ. 6, 1144; C. 1929 II, 1125; mit Äther: Schulze, Ph. Ch.

97, 395; mit Urethan: RICHARDS, CHADWELL, Am. Soc. 47, 2289; mit Benzylbenzoat: BINGHAM, SARVER, Am. Soc. 42, 2019; vgl. KENDALL, MONROE, Am. Soc. 48, 118. Volumen- Anderung beim Mischen mit Chloroform, Nitrobenzol, Toluol, Methanol, Alkohol, Ather, Isopropylalkohol, Aceton, Essigsäure, Athylacetat, Essigsäureanhydrid, Schwefelkohlenstoff oder Narkotin: RAKSHIT, Z. El. Ch. 31, 321, 322; mit Chloroform, Tetrachlorkohlenstoff, Toluol, Methanol, Ather, Propylalkohol, Essigsäure, Methylacetat, Athylacetat oder Schwefelkohlenstoff: G. C. SCHMIDT, Ph. Ch. 121, 235, 252; mit Chloroform, Tetrachlorkohlenstoff, Pinen, Athylacetat oder Schwefelkohlenstoff: HIROBE, J. Fac. Sci. Univ. Tokyo 1, 207; C. 1926 II, 1383. — Kompressibilitäten der Gemische mit Tetrachlorkohlenstoff und Athylenchlorid bei 24,6° und Drucken zwischen 30 und 600 kg/cm²: Dolezalek, Speidel, Ph. Ch. 94, 84, 97.

Viscositāt der bināren Systeme mit Jod bei 20°, 40° und 60°: Herz, Scheliga, Z. anorg. Ch. 169, 161; mit Schwefeldioxyd bei 25°: Lewis, Am. Soc. 47, 632; mit Dischwefeldiohorid bei 15,5° und 20°: De Carli, G. 59, 498; mit Tetrachlorkohlenstoff zwischen 0° und 50°: Faust, Z. anorg. Ch. 154, 64; vgl. Macleod, Trans. Faraday Soc. 20, 348; C. 1925 I, 2526; mit Athylenchlorid bei 17° und 50°: Yannik, Mitarb., Ph. Ch. 118, 311; mit Tetrahydronaphthalin bei 18°: Weil, Schuster, Mayer, M. 45, 454; mit Fluorbenzol und Chlorbenzol bei verschiedenen Temperaturen: J. Meyer, Mylius, Ph. Ch. 95, 370; mit Brombenzol bei verschiedenen Temperaturen: Meyer, My., Ph. Ch. 95, 370; mit Brombenzol bei verschiedenen Temperaturen: Meyer, My., Ph. Ch. 95, 371; mit Toluol bei 20°, 40° und 60°: Herz, Scheliga, Z. anorg. Ch. 169, 166; mit 3-Nitrotoluol bei 15° und 30°: Dessart, Bl. Soc. chim. Belg. 35, 26, 28 Tabelle 12; C. 1926 II, 158; mit Naphthalin bei verschiedenen Temperaturen: de Kolossowsky, Bl. Soc. chim. Belg. 34 [1925], 228; Herz, Scheliga, Z. anorg. Ch. 169, 161; mit Phenanthren bei verschiedenen Temperaturen: H., Sch., Z. anorg. Ch. 169, 161; mit Alkohol bei 15,5°: Muchin, Faermann, Ph. Ch. 121, 187; mit Isoamylalkohol bei 30°: Bhide, Watson, Soc. 1927, 2103; mit Cyclohexanol, 1-Methyl-cyclohexanol-(2), 1-Methyl-cyclohexanol-(3) und 1-Methyl-cyclohexanol-(4) bei 20°: Weissenberger, Schuster, M. 45, 420; mit Phenol bei 15°: Weil, Schuster, Schuler, M. 45, 434; bei 25°: Swearingen, J. phys. Chem. 32, 1348; mit o., m. und p-Kresol bei 18°: Weil, Platti, M. 45, 283; mit Gusjacol bei 17°: Weil, Henke, Breemann, M. 46, 476; mit Gusjacol bei 30°: Puschin, Pinter, Ph. Ch. [A] 142, 216; mit Veratrol bei 17°: Weil, He., Br., M. 46, 476. Viscosität der binären Systeme mit Cyclohexanon bei 18°: Weil, Schuster, Mayer, M. 45, 455; mit Salicylaldehyd bei 17°: Weil, He., Br., M. 46, 477; mit Acetonitril bei 47,5°: Muchin, Faermann, Ph. Ch. 121, 187; mit Benzylbenzoat wisschen 6° und 75°: Birgham, Sarver, Am. Soc. 42, 2015; vgl. Kendall, Monr

Diffusion von Jod in Benzol bei 9,14° und 19,91°: MILLER, Pr. roy. Soc. [A] 106 [1924], 738; bei 6,1—6,8° und bei 19,25°: Gróh, Kelp, Z. anorg. Ch. 147, 323; von Essigsäure in Benzol und in Alkohol-Benzol- und Acetonitril-Benzol- Gemische bei ca. 15°: MUCHIN, FAERMANN, Ph. Ch. 121, 184.

Oberflächenspannung von mit Luft, Kohlendioxyd oder Schwefelwasserstoff gesättigtem Benzol: Tamamushi, Bl. chem. Soc. Japan 1, 174; C. 1926 II, 2885; von gesättigten Lösungen von Wasser in Benzol und von Benzol in Wasser bei 19°: Reynolds, Soc. 119, 468; von Lösungen von Jod in Benzol bei 20°, 40° und 60°: Herz, Knaebel, Ph. Ch. 131, 402; von binären Gemischen mit Chloroform bei 25°: Hammick, Andrew, Soc. 1929, 756; mit Tetrachlorkohlenstoff bei 22°: Faust, Z. anorg. Ch. 154, 63; bei 25°: Ha., A., Soc. 1929, 756; mit Nitromethan bei 25°: Ha., A., Soc. 1929, 758; mit Athylenchlorid bei 20°: Faust, bei 17° und 50°: Yajnik, Sharma, Bharadwaj, Quart. J. indian chem. Soc. 3, 65; C. 1926 II, 2147; mit Cyclohexan bei 25°: Ha., A., Soc. 1929, 756; mit Nitrobenzol bei 25°: Ha., A., Soc. 1929, 756; bei 55°: Herzen, Arch. Sci. phys. nat. [4] 14 [1902], 245; vgl. Stachorsky, Z. El. Ch. 34, 112. Zur Oberflächenspannung der Gemische mit Toluol vgl. Stachorsky. Oberflächenspannung von binären Gemischen mit m-Xylol bei 25°: Hammick, Andrew, Soc. 1929, 756; mit Tetrahydronaphthalin bei 18°: Weisenberger, Schuster, Mayer, M. 45, 454; mit Naphthalin und Phenanthren bei verschiedenen Temperaturen: Herz, Knaebel, Ph. Ch. 131, 402; mit Alkohol bei 25°: Ha., A., Soc. 1929, 756; mit Ather bei 25°: Ha., A., Soc. 1929, 758; vgl. Stachorsky; mit Cyclohexanol, Methyl-cyclohexanol-(2), 1-Methyl-cyclohexanol-(3) und 1-Methyl-cyclohexanol-(4) bei 20°: Weissenberger, Schuster, M. 45, 422; mit Phenol bei 15°: Weil, Schuster, Schuller, M. 45, 432; bei 25°: Swearingen, J. phys. Chem. 32, 1348; mit o-, m- und p-Kresol bei 18°: Weil, Platti, M. 45, 283; mit Brenzcatechin, Resorcin, Hydrochinon, Pyrogallol

bew. Phloroglucin bei 25°: Sw., J. phys. Chem. 32, 1349; mit Guajacol und Veratrol bei 17°: Wei., Henke, Bregmann, M. 46, 476. Oberflächenspannung von binären Gemischen mit Aceton bei 25°: Hammick, Andrew, Scc. 1929, 756; mit Cyclohexanon bei 18°: Wei., Schuster, Mayer, M. 45, 455; mit Acetophenon bei 25°: Ha., A., Soc. 1929, 758; mit Salicylaldehyd bei 17°: Wei., Henke, Bregmann, M. 46, 477; mit Essigsäure bei 25°: Ha., A., Soc. 1929, 756; mit Athylacetat bei 20°: Herzen, Arch. Sci. phys. nat. [4] 14 [1902], 243; vgl. Stachorsky, Z. El. Ch. 34, 112; mit Anilin bei 20°: Herzen, Arch. Sci. phys. nat. [4] 14 [1902], 244. Oberflächenspannung von ternären Gemischen mit Naphthalin und Phenanthren bei 20°, 40° und 60°: Herz, Knaebeil, Ph. Ch. 131, 402.

Grenzflächenspannung zwischen Benzol und Quecksilber bei 20°: Harkins, Grafton, Am. Soc. 42, 2537; Ha., Pr. nation. Acad. USA. 5, 571; C. 1920 III, 222. — Einfluß von Benzol-Dampf auf die Oberflächenspannung von Quecksilber gegen Luft bei 26°: Micherli, Phil. Mag. [7] 8 [1927], 907. — Grenzflächenspannung von Benzol gegen Wasser bei 19°: Reynolds, Soc. 119, 465, 468; bei 20°: Rehbinder, Bio. Z. 187, 23; bei 25°: Mathews, Stamm, Am. Soc. 46, 1074; zwischen 10° und 30°: Pouth, Soc. 123, 583, 587, 596; J. phys. Chem. 30, 793; zwischen 10° und 40°: Harkins, Cheng. Am. Soc. 43, 49. Anderung der Grenzflächenspannung zwischen Benzol und Wasser durch Butanol oder Phenol: K. H. Meyer, Bio. Z. 208, 25; durch Essigsäure: Harkins, McLatohlin, Am. Soc. 47, 1612; durch Buttersäure: Harkin, King, Am. Soc. 41 [1919], 984; durch verschiedene Fettsäuren und deren Natriumsalze: Dubrisay, Picard, C. r. 178, 205; D., C. r. 178, 1976; Bl. [4] 37, 999. Grenzflächenspannung von Benzol gegen saure und alkalische Phosphat-Uffer-Lösungen (p<sub>H</sub> = 5,6 und 7,4): Hartfider, Petters, Pr. roy. Soc. [A] 101, 363; C. 1923 I, 874; gegen wäßr. Lösungen von Natriumchlorid, Natriumhydroxyd, Schwefelsäure, Natriumhiosulfat, Glycerin und Rohrzücker bei 17—20°: Reynolds, Soc. 119, 470; gegen wäßr. Lösungen von Buttersäure, Formylviolett, Eosin und Adrenalinpräparaten bei 20°: Rehbinder, Bio. Z. 187, 26; gegen wäßr. Lösungen von Natriumhydroxyd und Natriumchlorid bei 20°: Hark., Zollman, Am. Soc. 48, 70; gegen verschiedene kolloidale Lösungen: Rey., Soc. 119, 471; gegen Suspensionen von Lecithin und Cholesterin in Wasser: Okuneff, Bio. Z. 188, 302, 305. Grenzflächenspannung binärer Gemische mit Dimethylanilin gegen Wasser bei 25°: Mathews, Stamm, Am. Soc. 46, 1074; mit Cholesterin in Benzol und Wasser oder wäßr. Lösungen von Natronaluge + Natriumchlorid bei 20°: Harkins, Zollman, Am. Soc. 48, 70; gegen verschiedene kolloidale Lösungen von P. Kresol in Benzol einerseits und Wasser, Glykol und Glycerin andererseits bei 20°: Rehbinder, Ph. Ch. 129, 165; Bi

von Benzol auf die Ausflußzeit von Wasser aus Capillaren: Traube, Whang, Ph. Ch. 138, 111. Kontaktwinkel von festem Benzol gegen Wasser: Nietz, J. phys. Chem. 32, 261. Schaumbildung wäßr. Lösungen bei 18°: Bartsch, Koll. Beih. 20, 5; C. 1925 I, 2362. Adsorption von Benzoldampf an Tierkohle bei gewöhnlicher Temperatur: Alexe-Jewski, Ж. 55, 412, 416, 422; an verschiedene Holzkohlen bei 25°: Okazawa, Bl. phys. chem. Res. Tokyo 1, 75; C. 1928 II, 2444; zwischen 0° und 300°: Coolidge, Am. Soc. 46, 611. Zeitlicher Verlauf der Adsorption von Benzol-Dampf an Kokosnußkohle: Tryhorn, Wyatt, Trans. Faraday Soc. 22, 135; C. 1926 II, 1518. Scheinbare Dichte und Porenvolumen einer Holzkohle in Benzol bei 25°: Harkins, Ewing, Am. Soc. 43, 1790; vgl. a. Cude, Hulett, Am. Soc. 42, 395. Adsorption an verschiedene aktive Kohlen: Berl. Andress, Z. ang. Ch. 34, 381; Carstens, Z. ang. Ch. 34, 390; F. Fischer, Zerbe, Brennstoffch. 4, 351; C. 1924 I, 2939; Urbain, C. r. 180, 64; Hoffert, Chem. Trade J. 77, 184; C. 1926 I, 277; Traube, Birutowitsch, Koll.-Z. 44, 235; C. 1928 I, 2366; Berl, Wachenderf, Z. ang. Ch. 37, 748; bei 100°: Bake, King, Soc. 119, 457. Einfluß des Glühens mit anorganischen Stoffen auf die Adsorptionsfähigkeit von Kohle für Benzol-Dampf: Alexe-Jewski, Awgustinik, Ж. 61, 137; C. 1929 II, 706. Verdrängung von an aktiver Kohle adsorbiertem Benzol durch Wasserdampf bei 135°: Berl, Schwebel, Z. ang. Ch. 36, 543, 553. Adsorption aus Gemischen der gesättigten Dämpfe von Benzol mit Alkohol oder Aceton an Kokosnußkohle: Teyhorn, Wyatt, Trans. Faraday Soc. 21, 402; 22, 139; C. 1926 II, 1518; mit Methanol, Alkohol, Propylalkohol und Butylalkohol durch Kokosnußkohle:

TRYHORN, WYATT, Trans. Faraday Soc. 24, 37; C. 1928 I, 1512.

Adsorption von flüssigem Benzol durch verschiedene Kohlen: Driver, Firth, Soc. 121, 2412; aus reinem Benzol und aus jodhaltigem Benzol: Bakr, King, Soc. 119, 458; aus Alkohol und Diäthylcarbonat: Bartell, Sloan, Am. Soc. 51, 1641, 1644, 1649. Benetzung

von Cocosnußkohle durch flüssige Benzol-Alkohol- und Benzol-Aceton-Gemische: TRYHORN, WYATT, Trans. Faraday Soc. 21, 403; C. 1926 I, 3310.

Zur Adsorption von Benzol-Dampf an Glas vgl. D'Huart, C. r. 180, 1596; Lenher, Soc. 1927, 274. Benetzungsvermögen von flüssigem Benzol für Glasplatten: Vollmann, Farben-Ztg. 31, 2932; C. 1926 II, 2635. Adsorption von Benzoldampf an Quarzglas: Lenher, Soc. 1927, 274, 275; an Silicagel: Berl., Wachendorff, Z. ang. Ch. 37, 748; Patrick, Opdycke, J. phys. Chem. 29, 606; Hoffert, Chem. Trade J. 77, 184; C. 1926 I, 277; Holmes, Bl. [4] 43, 285; Traube, Birutowitsch, Koll.-Z. 44, 236; C. 1928 I, 2366; Lambert, Clark, Pr. roy. Soc. [A] 122, 509; C. 1929 II, 401; Okatow, Z. prikl. Chim. 2, 45—65; C. 1929 II, 707; an eisenoxydhaltiges Kieselsäuregel: Hol., Bl. [4] 43, 285. Adsorption von Benzol aus Kerosin-Lösungen durch Silicagel bei 270: Patrick, Jones, J. phys. Chem. 29, 5. Adsorption von Benzoldampf an Holzkohle, Silicagel oder an Gemischen von beiden: Schilow, Dubinin, Toropow, Koll.-Z. 49 [1929], 121; %. 61, 1768; an ein Gemisch von Zuckerkohle und Kieselsäure-Gel: Fells, Firth, J. Soc. chem. Ind. 46, 40 T; C. 1927 I, 1804. Trennung von binären Gemischen mit Tetrachlorkohlenstoff, Hexan und Toluol durch Adsorption an Kieselsäure-Gel: Grimm, Raudenbusch, Wolff, Z. ang. Ch. 41, 105. Einfluß von Ultraviolett-Bestrahlung auf die Adsorptionsfähigkeit von Kohle und Silicagel für Benzol-Dampf: Alexelewski, %. 60, 1175; C. 1929 I, 975. Adhäsionsspannung zwischen Benzol und Kohle und zwischen Benzol und Kieselsäure: Bartell, Osterhof, Ph. Ch. 130, 723.

Zur Adsorption von Benzol-Dampf durch Aluminiumoxyd vgl. Munro, Johnson, Ind. Eng. Chem. 17, 90; C. 1925 I, 2028; Alexedenki, Ж. 55, 422. Aufnahme von Benzol-Dampf durch Chabasit: Weigel, Steinhoff, Z. Kr. 61, 148. Adsorption von Benzol-Dampf an Cer(IV)-oxyd-, Titandioxyd-, Zinn(IV)-oxyd- und Thoriumoxyd-Gele bei Zimmertemperatur: Nikitin, Jurjew, Ж. 61, 1033; C. 1930 I, 347; an Titandioxyd- und Zinn(IV)-oxyd-Gele: Ni., J., Z. anorg. Ch. 171, 284; an Eisenoxyd-Gel: Hoffert, Chem. Trade J. 77, 184; C. 1926 I, 277; Perry, Ind. Eng. Chem. 19, 748; C. 1927 II, 1549; Lambert, Clark, Pr. roy. Soc. [A] 122, 505; C. 1929 II, 401; an Nickeloxyd: Alexedenki, Ж. 55, 422. — Adsorption von Benzol-Dampf an Kupfer bei 150°: Pease, Purdum, Am. Soc. 47, 1438; an Quecksilber: Iredale, Phil. Mag. [6] 49, 611; C. 1925 I, 1960; an Platin: Lenher, Soc. 1927, 277; Palmer, Pr. roy. Soc. [A] 115, 230; C. 1927 II, 1678; an amalgamiertes Platin: Smith, Soc. 1928, 2049. Adhäsion von flüssigem Benzol an Platin: Orbán, Reiner, Bio. Z. 211, 489. Benetzungsvermögen von flüssigem Benzol für Messingplatten: Vollmann, Farben-Ztg. 31, 2932; C. 1926 II, 2635.

Adsorption von Jod aus Benzol durch akt. Kohle: Syrkin, Bernstein, Z. anorg. Ch. 152, 109; Page, Soc. 1927, 1482; Trividic, Rev. gén. Colloides 7, 23, 72; C. 1929 I, 2027, 2863. Adsorption von Fettsäuren aus Benzol an Kohle: Nekrassow, Ph. Ch. 136, 26. — Ausbreitung auf Wasser: Harkins, Feldman, Am. Soc. 44, 2671; Ha., Ph. Ch. [A] 139, 676; Ramdas, Pr. indian Assoc. Cult. Sci. 10, 14; C. 1926 II, 1935. Zur Ausbreitung innerhalb von Luftblasen in Wasser vgl. McTaggart, Trans. roy. Soc. Canada [3] 21 III, 251; C. 1928 I, 1942. Breitet sich auf einer Quecksilber-Oberfläche aus (Ha., Feldman, Am. Soc. 44, 2680).

Spezifische Wärme von feuchtem Benzol zwischen 15° und 55°: Williams, Daniels, Am. Soc. 46, 1571. Spezifische Wärme der Gemische mit Chloroform bei 6°, 20° und 55°: Schulze, Verh. disch. phys. Ges. 14 [1912], 205; Ph. Ch. 97, 406; mit Tetrachlorkohlenstoff und Toluol zwischen 20° und 60°: Williams, Daniels, Am. Soc. 47, 1492; mit Alkohol und Butylalkohol: Perrakis, C. r. 178, 84; mit Äther bei 6° und 20°: Schulze, Verh. disch. phys. Ges. 14, 208; Ph. Ch. 97, 396; mit Aceton bei 10°, 30° und 50°: Schulze, Verh. disch. phys. Ges. 14, 348. — Verdampfungswärme von Gemischen mit Äthylenchlorid: Faust, Ph. Ch. 113, 487; mit Äthylbromid: Wyatt, Trans. Faraday Soc. 25, 45; C. 1929 I, 1542.

Wärmetönung beim Mischen mit Chloroform: G. C. Schmidt, Ph. Ch. 121, 236; Hirobe, J. Fac. Sci. Univ. Tokyo 1, 211; C. 1926 II, 1383; mit Tetrachlorkohlenstoff: Schm., Ph. Ch. 121, 235; Hi., J. Fac. Sci. Univ. Tokyo 1, 213; mit Pentachloräthan: Weissenberger, Schuster, Pamer, M. 46, 288; mit Dekahydronaphthalin: Weil., Henke, Sperling, M. 46, 484; mit Pinen: Hi., J. Fac. Sci. Univ. Tokyo 1, 114; mit Nitrobenzol: Weil., Henke, Kawenoki, J. pr. [2] 113, 171; mit Toluol: Schm., Ph. Ch. 121, 235, 252; mit Methanol und Propylalkohol: Schm., Ph. Ch. 121, 237, 252; mit Alkohol: Perrakis, J. Chim. phys. 22, 297; C. r. 178, 85; Carroll, Mathews, Am. Soc. 46, 34; mit Ather: Schulze, Ph. Ch. 97, 395; vgl. G. C. Schmidt, Ph. Ch. 121, 235; mit Butylalkohol: Perrakis; mit Essigsäure, Methylacetat und Athylacetat: Schm., Ph. Ch. 121, 235, 252; mit Athylacetat: Hi., J. Fac. Sci. Univ. Tokyo 1, 214; mit Acetonitril: Porow, Ukr. chemič. Ž. 2, 388; C. 1928 I, 167; mit Dichloressigsäure: Weissenberger, Schuster, Pamer, M. 46, 288; mit Schwefelkohlenstoff: Schm., Ph. Ch. 121, 237, 252; Hi., J. Fac. Sci. Univ. Tokyo 1, 207; mit Anilin und Dimethylanilin: Weil., Schuster, Lielacher, M. 46, 304, 306. — Abkühlung bei der adiabatischen Expansion eines Gemisches von Benzol und Urethan bei hohen Drucken: Puschin, Grebensches Chrischen, Greb

Wärmetönung bei der Adsorption von Benzol-Dampf an Tierkohle: Alexejewski, Ž. prikl. Chim. 1, 183; C. 1929 II, 708; an Cocosnußkohle: Lamb, Coolidge, Am. Soc. 42, 1154; Pearce, McKinley, J. phys. Chem. 32, 369; an Holzkohle: Okatow, Ž. prikl. Chim. 2, 78; C. 1929 II, 707; an Kieselsäure-Gel: Grimm, Raudenbusch, Wolff, Z. ang. Ch. 41, 106; Okatow, Ž. prikl. Chim. 2, 79; C. 1929 II, 707. Wärmetönung der Benetzung von akt. Kohle durch flüssiges Benzol: Andress, Berl, Ph. Ch. 122, 86; Z. ang. Ch. 35, 722; Honig, Koll. Beih. 22, 406; C. 1926 II, 2675; durch Benzol-Aceton-Gemische: Bartell, Fu, J. phys. Chem. 33, 1763; von Silica-Gel durch Benzol: Patrick, Grimm, Am. Soc. 43, 2146. Wärmetönung der Benetzung von Kohle oder Silicagel nach Vorbehandlung mit ultraviolettem Licht durch flüssiges Benzol: Alexelewski, Ж. 60, 1175, 1178; C. 1929 I, 975.

## Optische Eigenschaften.

Brechungsindices der Gemische von Benzol mit Zinn(IV)-chlorid bei 20°: Anossow, Soobšč. nau.-tech. Rab. 13, 11; Izv. Inst. fiz.-chim. Anal. 3 [1926], 388; C. 1925 II, 384. Brechungsindices der Gemische mit Chloroform bei 5°, 20° und 26°: SCHULZE, Ph. Ch. 97, 408; mit Tetrachlorkohlenstoff bei 20°: GRIMM, Ph. Ch. [A] 140, 329; bei 25°: WILLIAMS, KRCHMA, Am. Soc. 48, 1892; mit Tetranitromethan: Krishnamurti, Indian J. Phys. 3, 510; C. 1929 II, 1378; mit Äthylenchlorid bei 20°: Pahlavouni, Bl. Soc. chim. Belg. 36 [1927], 542; mit Athyljodid bei 25°: Prentiss, Am. Soc. 51, 2831. Brechungsindices der Gemische mit Cyclohexan bei 20°: GRIMM, Ph. Ch. [A] 140, 330; Pawlow, H. 58, 1310; C. 1927 II, 1127; bei 25°: Burrows, Lucarini, Am. Soc. 49, 1159; mit Chlorbenzol bei 25°: Williams, Krichma, Am. Soc. 49, 1679; mit Nitrobenzol: Anossow, Soobšč. nau.-tech. Rab. 13, 11; C. 1925 II, 384; bei 15°: McCombie, Roberts, Scarborough, Soc. 127, 758; mit Toluol bei 20°: Mitsukuri, Nakatsuchi, Sci. Rep. Töhoku Univ. [1] 15, 49; C. 1926 II, 546; bei 25°: Williams, Krichma, Am. Soc. 48, 1892; mit 3-Nitro-toluol bei 15° und 30°: Dessart, Bl. Soc. chim. Belg. 35, 21, 28 Tabelle 12; C. 1926 II, 158; mit o-Xylol und p-Xylol bei 25°: Williams, Krichma, Am. Soc. 49, 1678; mit m-Xylol bei 20°: Anossow, Soobšč. nau.-tech. Rab. 13, 11; Izv. Inst. fiz.-chim. Anal. 3 [1926], 388; C. 1925 II, 384; mit sek. Butylalkohol bei 20°: Pa., Bl. Soc. chim. Belg. 36, 545; mit Nitroglycerin bei 12,5°: An., Izv. Inst. fiz.-chim. Anal. 3 [1926], 389; mit m-Toluidin bei 15° und 30°: D., Bl. Soc. chim. Belg. 35, 21, 28 Tabelle 11; C. 1928 II, 158; mit Pyridin: Prentiss, Am. Soc. 51, 2831. Brechungsindices der ternären Systeme mit Wasser und Methanol bei 25°: Barbaudy, C. r. 182, 1279; mit Wasser und Alkohol bei 25°: Ba., Bl. [4] 39, 371.

Absorptionsspektrum einer Lösung von Jod in Benzol im sichtbaren Gebiet: GRÓH. Z. anorg. Ch. 162, 288. Ultraviolett-Absorptionsspektrum von Benzol in Lösungen s. S. 125. — Schlierenbildung in Gemischen mit Toluol, p-Xylol oder Thiophen: EMICH, M. 53/54, 326: vgl. auch E., M. 53/54, 358. — Einfluß auf die Rotationsdispersion von [d-Bornyl]-acetat: Moesveld, Pr. Acad. Amsterdam 32, 353; C. 1929 I, 1193; II, 386. — Lichtstreuung in Benzol-Hexan-Gemischen: Martin, Lehrman, J. phys. Chem. 26, 80. — Beugung von Röntgenstrahlen in Lösungen von Tetrachlorkohlenstoff und Methylenjodid in Benzol: Prins, Z. Phys. 56, 646; C. 1929 II, 1890. — Raman-Effekt in Gemischen aus Benzol und Tetrachlorkohlenstoff: Dadieu, Kohlrausch, Phys. Z. 30, 388; C. 1929 II, 970. — Fluorescenzspektrum von Gemischen mit Hexan und Alkohol s. S. 126.

## Elektrische und magnetische Eigenschaften.

Dielektrizitäts-Konstante der binären Systeme mit Jod, Silberperchlorat, Zinn(IV)-jodid und Antimon(III)-jodid bei 25°: Williams, Allgeier, Am. Soc. 49, 2419; mit Schwefel bei verschiedenen Temperaturen: Rosental, Bl. Acad. polon. [A] 1928, 391; C. 1929 I, 975; mit Tetrachlorkohlenstoff bei 18°: Rolinski, Phys. Z. 29 [1928], 660; bei 25°: Williams, Krchma, Am. Soc. 48, 1892; mit Hexan bei 25°: Wi., Ogg., Am. Soc. 50, 97; mit Hexan und Heptan bei 23°: Toussaint, Chim. et Ind. 19, Sonder-Nr., S. 273; C. 1928 II, 1862; mit Fluorbenzol bei 20°: Walden, Werner, Ph. Ch. [B] 2, 13; mit Chlorbenzol bei 15°: Kerr, Soc. 1926, 2798; bei 18°: Rolinski, Phys. Z. 29, 662; bei 25°: Williams, Krchma, Am. Soc. 49, 1679; mit Chlorbenzol, 1.2-, 1.3- und 1.4-Dichlor-benzol bei 16°: Kerr; mit 1.2-, 1.3- und 1.4-Dibrom-benzol, Jodbenzol, 2-Brom-1-jod-benzol bei 16°: Kerr; mit 1.2-, 1.3- und 1.4-Dibrom-benzol, Jodbenzol, 2-Brom-1-jod-benzol, 3-Brom-1-jod-benzol und 4-Brom-1-jod-benzol bei 20°: Wa., We., Ph. Ch. [B] 2, 13. Dielektr.-Konst. der binären Gemische mit Nitrobenzol bei 25°: Williams, Schwingel, Am. Soc. 50, 363; mit 2-Chlor-1-nitro-benzol und 4-Schior-1-nitro-benzol bei 25°: Williams, Schwingel, Am. Soc. 50, 363; mit 2-Chlor-1-nitro-benzol, 3-Chlor-1-nitro-benzol und 4-Chlor-1-nitro-benzol bei 25°: Williams, Schwingel, Am. Soc. 50, 363; mit 2-Chlor-1-nitro-benzol bei 25°: Williams, Schwingel, Am. Soc. 50, 363; mit 2-Chlor-1-nitro-benzol bei 25°: Williams, Schwingel, Am. Soc. 50, 363; mit 2-Chlor-1-nitro-benzol bei 25°: Williams, Schwingel, Am. Soc. 50, 363; mit 2-Chlor-1-nitro-benzol bei 25°: Williams, Schwingel, Am. Soc. 50, 363; mit 2-Chlor-1-nitro-benzol bei 25°: Williams, Schwingel, Am. Soc. 50, 363; mit 2-Chlor-1-nitro-benzol bei 25°: Williams, Schwingel, Am. Soc. 50, 363; mit 2-Chlor-1-nitro-benzol bei 25°: Williams, Schwingel, Am. Soc. 50, 363; mit 2-Chlor-1-nitro-benzol bei 25°: Williams, Schwingel, Am. Soc. 50, 363; mit 2-Chlor-1-nitro-benzol bei 25°: Williams, Schwingel, Am. Soc. 50, 363; mit 2-Chlor-1-nitro-benzo

C. 1928 I, 2913; bei verschiedenen Temperaturen: Grützmacher, Z. Phys. 28 [1924], 348; mit 2-, 3- und 4-Chlor-toluol bei 20°: Wa., We., Ph. Ch. [B] 2, 15; mit 2-, 3- und 4-Nitrotoluol bei 25°: WI., Schw., Am. Soc. 50, 364; mit 0- und p-Xylol bei 25°: WI., Kr., Am. Soc. 49, 1678; mit Methanol zwischen 10° und 60°: Stranathan, Phys. Rev. [2] 31 [1928], 660; mit Alkohol: King, Patrick, Am. Soc. 48, 1843; mit Ather bei 18°: Rolinski, Phys. Z. 29, 662; mit Phenol bei 25°: WI., Kr., Am. Soc. 49, 1678; WI., Allgeier, Am. Soc. 49, 2418; mit Pikrinsäure bei 15°: Nayder, Bl. Acad. polon. [A] 1925, 251; C. 1926 I, 2884; mit Phenetol bei 15°, m-Kresol bei 16°, Benzylalkohol bei 14° und Benzaldehyd bei 15°: Kerr, Soc. 1926, 2798; mit Benzoesäure bei 15°: Nayder, bei 25°: WI., All., Am. Soc. 49, 2418; mit Benzoesäuremethylester bei 12°, mit Benzoesäureäthylester bei 15°, mit Zimtsäureäthylester bei 16°: Kerr, Soc. 1926, 2798; mit Schwefelkohlenstoff bei 18°: Ro., Phys. Z. 29 [1928], 659; mit Schwefelkohlenstoff bei 25°: WI., Ogg, Am. Soc. 50, 96; bei verschiedenen Temperaturen: Grützmacher, Z. Phys. 28 [1924], 347; mit Salicylsäure bei 15°: Nayder; mit Anilin und Dimethylanilin bei 14°: Kerr, Soc. 1926, 2798; mit Chinolin bei 18°: Ro., Phys. Z. 29, 662. Beispiele für die Molarpolarisation verschiedener anorganischer und organischer Verbindungen in Benzol: Williams, Phys. Z. 29 [1928], 178, 204, 684; Rolinski, Phys. Z. 29 [1928], 659.

Elektrische Leitfähigkeit von Lösungen von Albr<sub>3</sub>+H<sub>2</sub>S in Benzol: Jakubson, Ph. Ch. 118, 33; Ж. 57, 276. Elektrische Leitfähigkeit, Elektrolyse und Zersetzungsspannung des Systems Albr<sub>3</sub>-KBr in Benzol: Plotnikow, J., Ph. Ch. [A] 138, 251; Ж. 60, 1586, 1589; C. 1929 I, 1661. Leitfähigkeit von Chlorwasserstoff in Isoamylalkohol-Benzol-Gemischen: Bhide, Watson, Soc. 1927, 2103; von Ölsäure und Salzen höherer Fettsäuren in Benzol + Chlorwasserstoff und in Benzol + Zinn(IV)-chlorid: Cady, Baldwin, Am. Soc. 43, 648. — Einw. auf die Ionisierung explodierender Wasserstoff-Sauerstoff-Gemische: Garner, Saunders, Trans. Faraday Soc. 22, 334; C. 1927 I, 247.

Elektrische und magnetische Doppelbrechung von Krystallpulver- und Metallpulver- suspensionen in Benzol: Procopiu, C. r. 172, 1173; 174, 1171; Ann. Physique [10] 1, 236, 257. Magnetische Doppelbrechung von Lösungen in Tetrachlorkohlenstoff: Ramanadham, Indian J. Phys. 4, 112; C. 1929 II, 3216. — Magnetische Susceptibilität der binären Gemische von Benzol mit Zinntetrachlorid, Nitrobenzol, m-Xylol und Schwefelkohlenstoff: Trifonow, Soobšč. nau.-tech. Rab. 13, 10, 11; Izv. Inst. fiz.-chim. Anal. 3, 434; C. 1925 II, 386; 1927 I, 2635. Magnetische Drehung der Polarisationsebene in Gemischen mit Cyclohexan: Javelle, Chim. et Ind. 19, Sonder-Nr., S. 266; C. 1928 II, 1860.

### Katalytische Wirkungen.

Einfluß von Benzol-Dampf auf die Entflammbarkeit von Wasserstoff-Luft-Gemischen: Tanaka, Nagai, Pr. Acad. Tokyo 4, 155; 5, 81; C. 1928 II, 626, 2536; 1929 I, 2625; auf die Entzündungstemperatur von Petroleum: Egerton, Gates, J. Inst. Petr. Technol. 13, 276; C. 1928 II, 211; auf die phosphorescierende Flamme von Schwefel im Sauerstoff-Stickstoff-Gemisch: Emeléus, Soc. 1928, 1948; auf das Leuchten von Phosphor in Luft: Emeléus, Soc. 1926, 1339; auf die phosphorescierende Flamme von Arsen im Sauerstoffstrom: Emeléus, Soc. 1929, 1847. Einfluß auf die Veresterung von Buttersäure und Korksäure mit Isoamylakohol: Bhide, Watson, Soc. 1927, 2105; auf die Umsetzung von Silbersaccharin mit Jod: Feigl, Chargaff, M. 49, 418, 424. Geschwindigkeit der Reaktion von Allylbromid mit Pyridin in Benzol: Kerr, Soc. 1929, 241; der Reaktion von Phenacylbromid mit Pyridin in Benzol und in Gemischen mit Nitrobenzol und Aceton: McCombie, Roberts, Scarborough, Soc. 127, 757; der Racemisierung von Isobornylchlorid und der Umwandlung von Camphenhydrochlorid in Isobornylchlorid: Meerwein, van Emster, B. 55, 2507, 2528; Me., Montfort, A. 435, 211. Benzol verzögert die Bildung von Grignardschen Verbindungen (Gilman, Vanderwal, R. 48, 162).

#### Chemisches Verhalten.

Veränderungen durch mechanische Einflüsse, Licht und Elektrizität. Festes Benzol ist unempfindlich gegen Stoß (Robertson, Soc. 119, 21). Zersetzung von Benzol unter der Einw. angeregter Quecksilberatome: Bates, Taylor, Am. Soc. 49, 2454. Benzol liefert bei der Zersetzung im elektrischen Flammenbogen Kohlenstoff, Wasserstoff, Diacetylen, Phenylacetylen, Diphenyl, Anthracen, wenig Methan, Athylen, Acetylen, Spuren Kohlenoxyd und andere Produkte (F. G. Müller, Bänninger, Helv. 10, 764; Fowler, Mardles, Trans. Faraday Soc. 23, 305; C. 1927 II, 1250; Contardi, C. 1925 I, 2346; Poma, Bassi, G. 51 II, 77). Bei der Zersetzung von Benzol-Dampf in der Hochfrequenz-Glimmentladung bilden sich Diphenyl und andere Produkte (Hiedemann, Ann. Phys. [5] 2, 230). Benzol-Dampf polymerisiert sich im hochfrequenten elektromagnetischen Wechselfeld unter geringem Druck

zu einem weißen Pulver (Moens, Juliard, Bl. Acad. Belgique [5] 13, 205; C. 1927 II, 665). Bei der Einw. dunkler elektrischer Entladungen auf Benzol in Stickstoff-Atmosphäre entstehen flüssige und feste Kondensationsprodukte (Yovitchitch, Bl. Acad. Belgique [5] 13, 369; C. 1927 II, 1932). Über die Zersetzung von Benzol durch Kanalstrahlen vgl. Kohlschützer, Frumein, B. 54, 592. Bei der Einw. von  $\alpha$ -Teilchen aus Radon auf Benzol-Dampf bei 100° entsteht neben gasförmigen Produkten ein grünlichgelbes Kondensationsprodukt von durchdringendem Geruch (Mund, Bogaert, Bl. Soc. chim. Belg. 34, 413; C. 1926 I. 2431). Einw. von  $\beta$ - und  $\gamma$ -Strahlen des Radiums auf ein Gemisch von Benzol-Dampf und Wasserstoff in Gegenwart von Platin: Errera, Henri, J. Phys. Rad. [6] 7, 228; C.

Veränderungen durch Wärme. Benzol zersetzt sich bei 2-stdg. Erhitzen in der Bombe auf 500° nur wenig; bei 48-stdg. Erhitzen auf 525° entstehen Wasserstoff, Diphenyl, 1.3- und 1.4-Diphenyl-benzol sowie höhersiedende Produkte (Herndon, Reid, Am. Soc. 50, 3069, 3072). Läßt man Benzol bei 700—900° auf Quarz- oder Koksstückehen tropfen, so entstehen Wasserstoff, Diphenyl, Terphenyl und geringere Mengen Methan, Äthylen und Kohlenstoff (Kosaka, J. Soc. chem. Ind. Japan Spl. 31, 125 B; C. 1928 II, 2422; C. 1929 I, 1069). Benzol zersetzt sich beim Erhitzen im Platinrohr auf hohe Temperatur unter Bildung von Wasserstoff, Methan, Kohlenstoff und Diphenyl (Peytral, Bl. [4] 29, 44). Über den Mechanismus der Bildung von Diphenyl beim Erhitzen von Benzol im Rohr auf 300° vgl. Pyl. B. 60. 1133: vgl. dagegen Fuchs, B. 60. 1663.

auf 300° vgl. Pyl., B. 60, 1133; vgl. dagegen Fuchs, B. 60, 1663.

Oxyd. tion. Explosionsgrenzen und Entflammbarkeitegrenzen von Gemischen aus Benzol und Sauerstoff: Terres, J. Gasbel. 63, 838; C. 1921 I, 479; von Gemischen aus Benzol und Stickstoff: T.; von Gemischen aus Benzol und Luft: T.; Berl., Fischer, Z. El. Ch. 80, 32. Beeinflussung der Entflammungsgrenzen der Gemische mit Luft durch Drucke bis 600 Atm.: Berl., Werner, Z. anorg. Ch. 40, 249. Entflammbarkeitsgrenzen von Benzol-Benzin-Luft-Gemischen bei Überdrucken bis 500 Atm.: Berl., Bausch. Ph. Ch. [A] 145, 459. Entzündungstemperatur von Benzol in Luft bzw. Sauerstoff bei Gegenwart und Abwesenheit von Katalysatoren: Masson, Hamilton, Ind. Eng. Chem. 19, 1337; 20, 814; C. 1928 I, 943; 1928 II, 1986; Egerton, Gates, J. Inst. Petr. Technol. 13, 258; C. 1928 II, 211; Berl., Heise, Winnacker, Ph. Ch. [A] 139, 457; Tanara, Nagal. Pr. Acad. Tokyo 2, 219; C. 1927 I, 702. Entzündung von Gemischen mit Luft durch adiabatische Kompression: Pignot, Chim. et Ind. 16, 348; 17, Sondernummer, S. 261; C. 1927 I. 864; 1927 II, 2252. Abhängigkeit des Zündpunkts vom Druck: Tauss, Schulte, C. 1924 II, 905. Flammpunkte von Benzol-Dekalin-Gemischen: Tetralin-Ges., D. R. P. 329833; C. 1921 II, 425; Frdl. 13, 316. Obere Flammpunkte von Gemischen aus Benzol und Alkohol: Formaner, S. 261; C. 1924 II, 252; C. 1925 I, 2200. Benzol bildet erst über 15° ein nicht-explosibles Dampf-Luft-Gemisch (F., Zd., Ch. Z. 49, 231; C. 1925 I, 2200; Maxwell, Wheeler, Petr. Times 21, 948; C. 1929 II, 819). Geschwindigkeit der Entzündung in Luft zwischen 3,5° und 28,5°. Mache, Sher. Akad. Wien [II a] 137, 460; C. 1928 II, 2629. Verlauf der Druckentwicklung bei der Explosion von Gemischen mit Sauerstoff und Stickstoff: Brown, Watkins, Ind. Eng. Chem. 19, 280; C. 1927 II, 1445; Anonymus, Jher. chem. techn. Reichsanst. 7 [1928] 144, 252. Fortpflanzung der Flammenwelle im Gemisch mit Luft bei 18°. White, Soc. 121, 2563; durch Stickstoff: Campbell, Ellis, Soc. 125, 1959. Ionen-Bildung bei der Oxydation m

Bei der unvollständigen Verbrennung von Benzoldampf in der umgekehrten Flamme entsteht Acetylen (Hofmann, Will, B. 55, 3228). Benzol wird beim Erhitzen mit Luft unter Druck bei 210° in Gegenwart von 2,5 n-Sodalösung nicht merklich verändert, bei 260° teilweise unter Bildung von Oxalsäure und geringen Mengen Kohlendioxyd oxydiert (Schrader, Abh. Kenntnis Kohle 4, 322; C. 1921 I, 537). Erhitzt man Benzol mit Luft in Gegenwart von fein verteiltem Silber auf 350°, so erfolgt Oxydation zu Kohlendioxyd und Wasser (Senderens, A. ch. [9] 13, 283). Beim Leiten von Benzoldampf und Luft über Vanadiumoxyd auf Bimsstein bei 300—550° entstehen Maleinsäure und deren Anhydrid, Kohlendioxyd sowie geringe Mengen Formaldehyd (Barrett Co., D. R. P. 365894; C. 1928 II, 405; Frdl. 14, 294; Weiss, Downs, J. ind. Eng. Chem. 12 [1920], 229; Yabuta, Simose, Bl. phys. chem. Res. Tokyo 2, 26; C. 1929 II, 159). Zur Oxydation von Benzol mit Luftsauerstoff in Gegenwart von Katalysatoren vgl. a. Berl, Heise, Winnacker, Ph. Ch. [A] 139, 469. Beim Leiten eines Gemisches aus Benzol-Dampf, Hexan und Luft durch ein erhitztes Rohr (Temperatur nicht über 500°) entsteht Phenol (Mardless, Soc. 1928, 876). Auch beim Leiten

von Benzol- und Wasser-Dampf durch ein Rohr bei Temperaturen von 650—860° erhält man geringe Mengen Phenol (F. FISCHEE, SCHRADER, MEYER, Abh. Kenntnis Kohle 5, 417; C. 1929 IV, 1039). Liefert beim Erhitzen mit 30% igem Wasserstoffperoxyd in Eisessig auf dem Wasserbad ein harziges, gelbbraunes Produkt, Kohlendioxyd und Wasser (Charrier, Moggi, G. 57, 739). Gibt bei der Einw. von verd. Wasserstoffperoxyd-Lösung in Gegenwart von Eisenchlorid anfangs unter Kühlung Benzolmelaninsäure (schwarzes Pulver), die beim Erhitzen auf 270° in Benzolmelanin übergeht und daraus durch Kochen mit starker alkoholischer Natronlauge wieder zurück erhalten werden kann (Adler, Bio. Z. 137, 203). Bei der Oxydation von Benzol mit Wasserstoffperoxyd + salpetriger Säure (Persalpetersäure) entsteht hauptsächlich 2-Nitro-phenol (Trifonow, Z. anorg. Ch. 124, 135). Benzol wird von Chromschwefelsäure nur unvollständig zu Kohlendioxyd oxydiert (Guyor, Simon, C. r. 170, 736; vgl. Si., C. r. 177, 266; Lieben, Molnar, M. 53/54, 3); vollständiger verläuft die Oxydation mit Silberdichromat (Si.). Die Ausbeute an Chinon bei der elektrolytischen Oxydation von Benzol in verd. Schwefelsäure (Kempf, D. R. P. 117251; C. 1901, 348) läßt sich durch geeignete Reaktionsbedingungen auf 65% steigern (Seyewetz, Miodon, Bl. [4] 33, 455). Bei der Einw. von β- und γ-Strahlen des Radiums auf ein Gemisch von Benzol und Luft oder Sauerstoff bildet sich Phenol (Errera, Henri, J. Phys. Rad. [6] 7, 228; C. 1926 II, 2770).

Reduktion. Bei der Einw. von atomarem Wasserstoff auf Benzol entstehen Methan. Athylen und geringe Mengen Athan (Bonhoeffer, Harteck, Ph. Ch. [A] 139, 72). Thiophenhaltiges Benzol läßt sich mit den gebräuchlichen Katalysatoren nur äußerst schwer hydrieren; es wird dagegen leicht zu Cyclohexan hydriert, wenn man es zuvor in einem geschlossenen Gefäß mit Kalium, Natrium oder anderen Metallen oder deren Amiden, Carbiden oder Hydriden auf 180—200° erhitzt (Tetralin-Ges., D. R. P. 305104; C. 1921 IV, 654; Frdl. 13. 307). Thiophenfreies Benzol liefert bei der Hydrierung in Gegenwart von Nickel bei 250° und 115—120 Atm. Druck in 85 %iger Ausbeute Cyclohexan (OSTERBERG, KENDALL, Am. Soc. 42, 2617). Thiophenfreies, durch Kochen mit Natrium und Destillation gereinigtes Benzol läßt sich bei Gegenwart von Platinoxyd in Eisessig bei 25—30° und 2—3 Atm. Druck leicht zu Cyclohexan hydrieren (Adams, Marshall, Am. Soc. 50, 1972). Über die Hydrierung von Benzol zu Cyclohexan in Gegenwart besonders hergestellter Nickel-Aluminiumoxyd-Katalysatoren bei 180—200° vgl. Pfaff, Brunk, B. 56, 2463; Zelinsky, Kommarewsky, B. 57, 667. Über die Hydrierung von Benzol in Gegenwart von Osmiumasbest unter verschiedenen Bedingungen vgl. SSADIKOW, MICHAILOW, Soc. 1928, 444; ZELINSKY, TUROWA-POLLAK, B. 62, 2866. Eignung verschiedener Nickel-, Ruthenium-, Rhodium-, Palladium-, Iridium- und Platin-Katalysatoren für die Hydrierung von Benzol zu Cyclohexan bei Temperaturen zwischen 100—310°: ZELINSKY, TUROWA-POLLAK, B. 58, 1301. Gleichgewicht zwischen Benzol, Wasserstoff und Cyclohexan bei der Hydrierung von Benzol in Gegenwart von Platinasbest bei 266—267° und 280°: Burrows, Lucarini, Am. Soc. 49, 1160. Geschwindigkeit der Hydrierung in Gegenwart von Kupfer bei 140—280°: Pease, Purdum, Am. Soc. 47, 1438; in Gegenwart von Nickel-Katalysatoren bei verschiedenen Temperaturen; Thoren, Z. anorg. Ch. 163, 373; Dougherty, Taylor, J. phys. Chem. 27, 533; bei Gegenwart von sauerstoffreichen und sauerstoffarmen Platin-Katalysatoren in Eisessig: Will-STÄTTER, WALDSCHMIDT-LEITZ, B. 54, 124, 136; bei Gegenwart von Platinschwarz in Essigester: VAVON, DETRIE, C. 7. 172, 1232. Liefert beim Erhitzen mit 3 Mol 96,5 % igem Hydrazin im Rohr auf 280° Cyclohexan und wenig Adipinsäure (E. MÜLLER, KRAEMER-WILLENBERG, B. 57, 578).

Halogenierung. Beim Leiten von trocknem Benzol und trocknem Chlor über Kupfer bei 150—300° entstehen α- und β-Benzolhexachlorid, Chlorbenzol, 1.2.4-Trichlor-benzol und 1.2.4.5-Tetrachlor-benzol (Tei, Komatsu, Mem. Coll. Sci. Kyoto [A] 10, 326, 328; C. 1928 I, 2370). Bei der Chlorierung von 1000 Th. Benzol in Gegenwart von 1 Tl. Aluminium bilden sich Chlorbenzol und geringe Mengen Dichlorbenzol (Meunier, C. r. 170, 1451; Bl. [4] 27, 696). Geschwindigkeit der Bildung von Chlorbenzol und 1.4-Dichlor-benzol bei der Chlorierung von Benzol in Gegenwart von Eisen und Einfluß der Einströmungsgeschwindigkeit des Chlors, der Konzentration des Benzols und der Temperatur auf den Verlauf der Reaktion: Bourion, C. r. 170, 1319; A. ch. [9] 14, 297. Über die Chlorierung von Benzol in Gegenwart von Eisen und Eisenchlorid vgl. ferner Karlasch, C. 1929 II, 1913. Bei der Einw. von 4 Mol Chlor auf Benzol in Gegenwart von Eisenpulver anfangs unter Kühlung, später auf dem Wasserbad und zuletzt bei 170° entstehen 1.2.4.5-Tetrachlor-benzol und geringe Mengen Pentachlorbenzol und Hexachlorbenzol (Holleman, R. 39, 736, 745). Bei der erschöpfenden Chlorierung von Benzol in Gegenwart von Eisenpulver bei 170° erhält man Hexachlorbenzol (H., R. 39, 748). Beim Leiten eines Gemisches aus Benzol-Dampf, Luft und Chlorwasserstoff über mit Kupferchlorid getränkten Bimsstein bei ca. 400° entstehen Chlorbenzol und geringe Mengen höher chlorierten Produkte (I. G. Farbenind., D. R. P. 487596; C. 1930 I, 3830; Frdl. 16, 334). Chlorierung durch Leiten eines Benzoldampf-Luft-Gemisches über Kupferchlorid-Chamotte bei Temperaturen oberhalb 400°: Holzverkohlungs-

Ind. A. G., D. R. P. 478083; C. 1930 I, 3829; Frdl. 16, 121. Beim Schütteln von Benzol mit unterchloriger Säure im Dunkeln entsteht Chlorbenzol, während im zerstreuten Licht daneben  $\alpha$ - und  $\beta$ -Benzolhexachlorid und andere Produkte gebildet werden (KLINGSTEDT. Acta Acad. Abo. 4, Nr. 2, S. 22; C. 1928 I, 503, 504; vgl. Goldschmidt, Endres, Dirsch. B. 58, 574). Über die Bildung von Chlorbenzol und 1.4-Dichlor-benzol bei der Einw. von Sulfurylchlorid auf Benzol in Gegenwart verschiedener Katalysatoren vgl. Silberrad. Soc. 119, 2031. Bei der Einw. von Chlorsteitstoff auf Benzol bildet sich als Hauptprodukt Hexachlorcyclohexan (vgl. Hentschel, B. 30, 1436) neben geringen Mengen nicht isolierter N-Chlor-aniline (Colleman, Noyes, Am. Soc. 43, 2216). Zur elektrolytischen Chlorierung von Benzol vgl. Jayles, C. r. 189, 686; Lowy, Frank, Trans. am. elektroch. Soc. 43, 111; C. 1924 II, 1177; CROCO, L., Trans. am. elektroch. Soc. 50, 318; C. 1927 I, 421.

Geschwindigkeit der photochemischen Bromierung von Benzol unter verschiedenen Bedingungen: Meidungen, Ph. Ch. [B] 5, 29; Z. El. Ch. 35, 738. Bei der Einw. von überschüssigem Brom auf Benzol in Gegenwart von Wolframpulver oder Wolfram(VI)-chlorid anfangs bei Zimmertemperatur, später auf dem Wasserbad entsteht 1.4-Dibrom-benzol (Korczynski, Bl. [4] 29, 289). Über die Bromierung von Benzol unter verschiedenen Bedingungen, wie z. B. in Gegenwart von rauchender Salpetersäure + Nitrosylschwefelsäure, konzentrierter oder rauchender Schwefelsäure, konzentrierter oder rauchender Salpetersäure oder in Gegenwart von Mischungen derselben vgl. VARMA, NARAYAN, Quart. J. indian chem. Soc. 4, 283; C. 1928 I, 489. Zur elektrolytischen Bromierung vgl. Croco, Lowy. Trans. am. electroch. Soc. 50, 318; C. 1927 I, 421. — Beim Erhitzen von Benzol mit Jod im Rohr auf 600° entsteht eine schwarze, in den gebräuchlichen Lösungsmitteln unlösliche

Substanz (Costeanu, Bulet. Soc. chim. România 6, 95; C. 1925 I, 1489).

Nitrierung. Bei längerem Aufbewahren von Benzol und Stickstoffdioxyd (bzw. Stickstofftetroxyd) im geschlossenen Rohr im Dunkeln entstehen nur geringe Mengen Nitrobenzol und andere Produkte, im Sonnenlicht bilden sich größere Mengen Nitrobenzol, wenig 1.3-Dinitro-benzol und andere Produkte (Bass, Johnson, Am. Soc. 46, 459; vgl. Schaarschmidt, Smolla, B. 57, 34, 39; Sch., Z. ang. Ch. 36, 534). Beim Erhitzen äquimolekularer Mengen Benzol und Stickstoffdioxyd im Rohr auf 80° entstehen geringe Mengen Nitrobenzol. 1.3.5-Trinitro-benzol, Pikrinsäure, Oxalsäure und andere Produkte (Wieland, B. 54, 1778). Beim Eintragen einer Lösung von Stickstoffdioxyd in Benzol in eine Mischung aus Benzol und Aluminiumchlorid bei 10—15°, Erwärmen des Reaktionsgemisches auf 30—35° und Zersetzen der entstandenen Additionsverbindung mit Eiswasser erhält man Nitrobenzol und braune harzige Produkte (Sch., B. 57, 2070). Bei der Nitrierung von Benzol mit Stickstoffdioxyd und konz. Schwefelsäure anfangs bei 5—15°, danach bei 40—60° (Pinck. Am. Soc. 49, 2537) sowie bei der Einw. von Stickstoffpentoxyd bei Gegenwart oder Abwesenheit von Tetrachlorkohlenstoff bei 0° erhält man in guter Ausbeute Nitrobenzol (Haines, Adkins, Am. Soc. 47, 1419). Einw. von salpetriger Säure + Wasserstoffperoxyd auf Benzol s. bei Oxydation (S. 139). Geschwindigkeit der Nitrierung von Benzol mit Salpetersäure in Acetanhydrid: Cohen, Versl. Akad. Amsterdam 37, 594; C. 1928 II, 1663. Bei der Nitrierung von Benzol mit Salpeterschwefelsäure entsteht Dinitrobenzol unabhängig von der Zusammensetzung des Nitriergemisches (16—39% Salpetersäure, 49—66% Schwefelsäure, 7—25% Wasser) und der Temperatur (40—80°) nur in geringen Mengen (Maljarewski, C. 1927 II, 2107). Bei der Nitrierung von Benzol mit Salpetersäure in Gegenwart von Quecksilber, Quecksilberoxyd oder Quecksilbernitrat bilden sich je nach den Reaktionsbedingungen wechselnde Mengen Nitrobenzol, 1.2-, 1.3- und 1.4-Dinitro-benzol, 2.4-Dinitro-benzol, 2.4-Dini phenol und Pikrinsäure; 2-Nitro-phenol tritt entgegen den Angaben von Wolffenstein, Böters (D. R. P. 194883, 214045; C. 1908 I, 1005; 1909 II, 1286) nicht auf (Davis, Mitarb., Am. Soc. 43, 598). Zur Nitrierung von Benzol in Gegenwart von Quecksilber vgl. ferner Vignon, Bl. [4] 27, 548; Blechta, Pater, Z. Schieß-Sprengstoffw. 22, 316; C. 1928 I, 780. Beim Schütteln von Benzol mit einer 46 %igen Lösung von Nitrosylschwefelsäure in rauchender Salpetersäure und nachfolgenden <sup>1</sup>/<sub>2</sub> stdg. Erhitzen des Reaktionsgemisches auf dem Wasserbad entsteht in guter Ausbeute Nitrobenzol; bei längerem Erhitzen bzw. bei Anwendung größerer Mengen des Nitriergemisches erhält man Dinitrobenzol als Nebenprodukt (VARMA, KULKARNI, Am. Soc. 47, 144). Beim Einleiten von Nitrosylchlorid in eine Aufschlämmung von Aluminiumchlorid in Benzol bei 5—15°, Erwärmen des Reaktionsgemisches bis auf ca. 80° und nachfolgenden Zersetzen mit Eis erhält man 4-Amino-diphenyl-hydrochlorid, geringe Mengen Nitrobenzol und andere Produkte (SCHAARSCHMIDT, RAECK, B. 58, 350).

Sulfurierung. In Chloroform gelöstes Benzol liefert bei der Einw. von Schwefeltrioxyd bei 0-10° Benzolsulfonsäure (Courtot, Bonnett, C. r. 182, 856). Beim Leiten von Benzol-Dampf in auf 160-170° erhitzte Schwefelsäure erhält man Benzolsulfonsäure und geringe Mengen Diphenylsulfon (Guyot, Chim. et Ind. 2, 881; C. 1920 I, 565; HARVEY, STEGEMAN, Ind. Eng. Chem. 16, 842; C. 1924 II, 1787). Leitet man Benzol-Dampf bei 235-245° in quecksilberhaltige rauchende Schwefelsäure (20% SO<sub>2</sub>), so entsteht neben Benzol-disulfonsäure-(1.3) und Benzol-disulfonsäure-(1.4) (Behrend, Mertelsmann, A. 378 [1911], 354) gelegentlich auch Benzol-trisulfonsäure-(1.3.5) (Fichter, Stocker, Helv. 7, 1077 Anm.). Sulfurierung mit Schwefelsäure in Gegenwart verschiedener Katalysatoren: Ambler, Cotton, J. ind. Eng. Chem. 12, 968; C. 1921 I, 610. Benzol liefert mit Fluorsulfonsäure bei 16—20° Benzolsulfoluorid (Steinkoff, J. pr. [2] 117, 15). Liefert beim Erhitzen mit Chlorsulfonsäuremethylester auf ca. 130° Benzolsulfonsäuremethylester und geringe Mengen Diphenylsulfon (Frerracque. A. ch. [10] 14. 156: C. r. 183. 607).

Sulfon (Fréreziacque, A.ch. [10] 14, 156; C.r. 183, 607).

Einwirkung weiterer anorganischer Stoffe. Benzol liefert beim Erhitzen mit Schwefel im Rohr auf 350° Thiophenol, Diphenylsulfid, Diphenyldisulfid, Thianthren (Syst. Nr. 2676) und Schwefelwasserstoff (Glass, Reid, Am. Soc. 51, 3429). Thianthren entsteht als Hauptprodukt beim Erhitzen von Benzol mit Schwefel in Gegenwart von Quecksilber(II)-chlorid und Aluminium auf dem Wasserbad (Râx, Soc. 117, 1337). Bei der Umsetzung von Benzol mit Selendioxyd und Aluminiumchlorid erhält man als Hauptprodukt Diphenylselendichlorid neben je nach den Reaktionsbedingungen wechselnden Mengen Diphenylselenid, Diphenylselenid und Selen (Lyons, Bradt, B. 60, 62). Die Umsetzung von Benzol mit Diselendibromid in Schwefelkohlenstoff-Lösung bei Gegenwart von Aluminiumbromid ergibt Diphenylselenid, wenig Brombenzol und sehr geringe Mengen Diphenylselenid (Loevenich, Sipmann, J. pr. [2] 124, 130). Einw. von Kohlenoxyd und Chlorwasserstoff auf Benzol s. S. 143. Beim Eintragen von überschüßigem technischem Aluminiumchlorid in eine siedende Lösung von Arsentrichlorid in Benzol erhält man hauptsächlich Triphenylarsin, geringere Mengen Phenyldichlorarsin und wenig Diphenylchlorarsin (Wieland, A. 431, 32). Benzol liefert beim Kochen mit Tantal(V)-chlorid Phenyltantaltetrachlorid (Funk, Niederländer, B. 61, 1385). Beim Kochen von Benzol mit Niob(V)-chlorid entsteht neben anderen Produkten die Verbindung CsH<sub>+</sub>+3NbCl<sub>5</sub> (S. 146) (F., N.). Benzol bleibt beim Erhitzen mit Stickstoffwasserstoffsäure im Rohr auf 150—230° unverändert (Schmidt, Acta Acad. Abo. 2, Nr. 7, S. 21; C. 1925 I, 1573; Bertho, B. 59, 592); beim Erhitzen mit Ammoniumazid im Rohr auf 250—280° bilden sich geringe Mengen Anilin und andere Produkte (Bertho). Bei der Zersetzung von Stickstoff und je nach der angewandten Temperatur wechselnde Mengen Anilin, Hydrazinsulfat, Hydroxylamin, Schwefeldioxyd und Spuren von Ammoniak gebildet (Schmidt, B. 57, 704; Acta Acad. Abo. 2, Nr. 7, S. 7, 23, 63; C. 1925 I, 1573; vgl. Knoll & Co.

Einwirkung von Kohlenwasserstoffen und ihren Halogenderivaten. Beim Leiten von Äthylen in eine siedende Mischung von Benzol und Aluminiumchlorid (vgl. H. 189) entstehen je nach den Reaktionsbedingungen wechselnde Mengen Äthylbenzol, Diäthylbenzol, Triäthylbenzol, Tetraäthylbenzol, Pentaäthylbenzol und Hexaäthylbenzol (Milligan, Reid, Am. Soc. 44, 206; Berry, Reid, Am. Soc. 49, 3145; vgl. auch Cline, Reid, Am. Soc. 49, 3153; Copenhaver, Reid, Am. Soc. 49, 3157; Huber, Reid, Ind. Eng. Chem. 18, 536; C. 1926 II, 971; Schleicher, J. pr. [2] 105, 358). Analog verläuft die Reaktion mit Propylen unter Bildung von Isopropylderivaten des Benzols; daneben bilden sich geringe Mengen eines Kohlenwasserstoffs vom Siedepunkt 56—59° (Diisopropyl?) und eines Kohlenwasserstoffs vom Siedepunkt 28° (Berry, Reid). Das Optimum der Bildung von Anthracen beim Leiten von Benzol-Äthylen-Gemischen durch erhitzte Quarzröhren liegt bei 925° (Zanetti, Kandell, J. ind. Eng. Chem. 13, 208; C. 1921 III, 474). Beim Leiten von Acetylen in Benzol bei Gegenwart von Aluminiumchlorid erhielten Cook, Chambers (Am. Soc. 43, 336) je nach den Reaktionsbedingungen wechselnde Mengen 1.1-Diphenyl-äthan und 9.10-Dimethylanthracen (vgl. Barnett, Matthews, B. 59, 1433), aber im Gegensatz zu der Angabe von Varet, Vienne (Bl. [2] 47 [1887], 918) kein 1.2-Diphenyl-äthan und nur Spuren von Styrol; vgl. a. Schroeter, B. 57, 1996; Böeseken, Adler, R. 48, 476; C. Ellis, The chemistry of synthetic resins, Bd. I [New York 1935], S. 256. 1.1-Diphenyl-äthan entsteht ebenfalls, neben wenig 9.10-Dimethyl-anthracen, beim Leiten von Acetylen in Benzol bei Gegenwart von konz. Schwefelsäure und wenig Quecksilber(II)-sulfat bei 10—20° (Reichert, Nieuwland, Am. Soc. 45, 3090). Benzol kondensiert sich mit Cyclohexen in Gegenwart von Aluminiumchlorid zu Cyclohexylbenzol und höhersiedenden Produkten (Bodroux, Cr. 186, 1005; Berry, Reid, Am. Soc. 49, 3149). Gibt mit Allylbenzol bei Gegenwart won Aluminiumchlorid unterhalb 25° wahrscheinlich 1.2-Diphenyl-propan (Huston, Sager, Am.

Aluminium chlorid unter Einleiten von Sauerstoff oder Chlorwasserstoff: Schaarschmidt, Mayer-Bugström, Sevon, B. 58, 156.

Bei der Kondensation von Benzol mit Chloroform in Gegenwart von Zirkon(IV)-chlorid erhält man geringe Mengen Triphenylmethan (Krishnamurti, C. 1929 I, 2156). Liefert beim Kochen mit Chloroform in Gegenwart von durch Erhitzen im Wasserstoff-Strom aktiviertem Aluminium hauptsächlich Triphenylmethan, geringere Mengen Diphenylmethan und andere Produkte (RAY, DUTT, J. indian chem. Soc. 5, 108; C. 1928 I, 2371); dieselben Produkte entstehen auch beim Erhitzen von Benzol mit Tetrachlorkohlenstoff in Gegenwart von Aluminiumpulver, während beim Erhitzen mit Benzylchlorid unter denselben Bedingungen nur Diphenylmethan gebildet wird (RAY, DUTT). Ahnlich wie Aluminium wirkt Chrom; so entsteht beim Kochen von Benzol mit Chloroform oder Benzylidenchlorid in Gegenwart von Chrompulver Triphenylmethan, mit Benzylchlorid Diphenylmethan und mit Benzotrichlorid Triphenylchlormethan (CHAKRABARTY, DUTT, J. indian chem. Soc. 5, 514, 516; C. 1929 I, 501). Benzol kondensiert sich in Gegenwart von Quecksilber(II)-chlorid und wenig Aluminium mit Chloroform oder Benzylidenchlorid zu 9.10-Diphenyl-dihydroanthracen, mit Tetrachlorkohlenstoff oder Benzotrichlorid zu 9.9.10.10-Tetraphenyl-dihydroanthracen, mit Chlorpikrin zu Triphenylnitromethan (RAY, Soc. 117, 1337, 1339). Reagiert mit Bromnitromethan bei Gegenwart von Aluminiumchlorid unter Bildung von Brombenzol, Phenylnitromethan bzw. seiner Zersetzungsprodukte (Benzaldehyd und Benzoesäure) und Nitromethan bzw. seinen Zersetzungsprodukten (Hydroxylamin, salpetrige Säure, Ammoniak und Isonitrilen) (Sherill, Am. Soc. 46, 2756). Beim Leiten von Vinylchlorid in eine Mischung aus Benzol und Aluminiumchlorid bei 0—5° entstehen 1.1-Diphenyläthan, Äthylbenzol, geringe Mengen 9.10-Dimethyl-anthracen (Syst. Nr. 485a) und harzige Produkte; beim nachfolgenden Erwärmen des Reaktionsgemischs auf 60-70° bzw. in Gegenwart von wenig Jod läßt sich die Ausbeute an 9.10-Dimethyl-anthracen vermehren (Davidson, Lowy, Am. Soc. 51, 2979). Gibt bei der Umsetzung mit Benzylchlorid in Gegenwart von Zirkon(IV)-chlorid Diphenylmethan (Krishnamurt, C. 1929 I, 2156). Bei tropfenweiser Zugabe von Benzylchlorid zu einer Lösung von Titan(IV)-chlorid in Benzol unter Kühlung und nachfolgendem Erwärmen des Reaktionsgemischs auf dem Wasserbad bilden sich Diphenylmethan, geringere Mengen 1.3- und 1.4-Dibenzyl-benzol und andere Produkte (STADNIKOW, KASCHTANOW, B. 61, 1390; Ж. 60, 1119). Benzol liefert beim Kochen mit Benzylchlorid in Gegenwart von Eisenpyriten Diphenylmethan, 1.2- und 1.4-Dibenzyl-benzol, geringe Mengen 1.2.x.x-Tetrabenzyl-benzol und andere Kohlenwasserstoffe (SMYTHE, Soc. 121, 1276). Gibt bei der Umsetzung mit Benzylchlorid in Gegenwart der Aluminiumchloridverbindung des Nitrobenzols (C<sub>6</sub>H<sub>5</sub>·NO<sub>3</sub>+AlCl<sub>3</sub>) bei 30° hauptsächlich Diphenylmethan und andere Produkte (OLIVIER, R. 45, 818). Geschwindigkeit der Umsetzung von Benzol mit 3-Chlor-benzylchlorid in Gegenwart von Aluminiumbromid oder der Aluminiumchloridverbindung des Nitrobenzols bei 30°: OLIVIER, BERGER, R. 45, 717, 718; mit 2-, 3- und 4-Nitro-benzylchlorid in Gegenwart von Aluminiumchlorid: OLIVIER, BERGER, R. 45, 719, 720, 721. Liefert mit ω.ω'-Dibrom-m-xylol in Gegenwart von Aluminiumchlorid bei 30° bis 35° als Hauptprodukt Diphenylmethan, geringe Mengen Anthracen, 1.4-Dibenzyl-benzol

und andere Produkte (REINDEL, SIEGEL, B. 56, 1553).

Einwirkung von Oxy- und Oxo- Verbindungen. Benzol liefert beim Erwärmen mit Propyl- oder Isopropylalkohol und 80%iger Schwefelsäure auf 65° 1.4-Diisopropyl-benzol und geringere Mengen Cumol und 1.2.4-Triisopropyl-benzol; in analoger Reaktion entstehen mit Butyl- oder sek.-Butylalkohol sek.-Butyl-benzol, 1.4-Di-sek.-butyl-benzol und wenig 1.2-Di-sek.-butyl-benzol (H. MEYER, BERNHAUER, M. 53/54, 722, 725). Darstellung von butylierten Benzolsulfonsäuren durch Behandlung mit Butylalkohol und Schwefelsäure (D: 1,84): I. G. Farbenind., D. R. P. 493875; C. 1930 I, 3723; Frdl. 16, 502. Benzol gibt beim Erwärmen mit Isobutylalkohol oder tert.-Butylalkohol und 80%iger Schwefelsäure tert.-Butylbenzol und 1.4-Di-tert.-butyl-benzol, mit Cyclohexanol und Schwefelsäure Phenyloyclohexan und wenig 1.4(?)-Dicyclohexyl-benzol, während beim Eintropfen von Benzol und Benzylalkohol in auf 40° erwärmte 70%ige Schwefelsäure Diphenylmethan und 1.4-Dibenzylbenzol gebildet werden (M., B.). Benzol liefert mit Allylalkohol bei Gegenwart von Aluminium-chlorid bei 20—25° Allylbenzol, wenig [β-Chlor-propyl]-benzol und wahrscheinlich 1.2-Di-phenyl-propan (Huston, Sager, Am. Soc. 48, 1957). Reaktion mit gesättigten aliphatischen und aliphatisch-aromatischen Alkoholen in Gegenwart von Aluminiumchlorid: H., S. Versetzt man eine Lösung von Athylbenzyläther in Benzol tropfenweise mit Titan(IV)-chlorid unter Kühlung und erhitzt das Reaktionsgemisch zum Sieden, so erhält man hauptsächlich Diphenylmethan neben geringen Mengen 1.3- und 1.4-Dibenzyl-benzol und anderen Produkten (Stadnikow, Kaschtanow, B. 61, 1389; Ж. 60, 1118). Beim Einleiten von Chlorwasserstoff in eine Mischung von Benzol, Paraformaldehyd und Zinkchlorid bei ca. 60° erhält man Benzylchlorid und geringe Mengen 0.00°-Diohlor-p-xylol und Diphenylmethan (Blanc, Bl. [4] 33, 314; Bert, C. r. 186, 373); Diphenylmethan bildet sich als Hauptprodukt bei Anwendung größerer Mengen Zinkchlorid, einer 40%igen Formaldehyd-

Lösung und längerem Erhitzen des Reaktionsgemisches (BL.). Bei der Umsetzung von Benzol mit α.α'-Dichlor-dimethyläther allein oder besser in Gegenwart von Zinkchlorid erhält man je nach Temperatur und Mengenverhältnissen Benzylchlorid und ω.ω'-Dichlorp-xylol; analog verläuft die Reaktion mit α.α'-Dibrom-dimethyläther (Stephen, Short, Gladding, Soc. 117, 516, 519). Zur Umsetzung mit Chloralhydrat in Gegenwart von Aluminiumehlorid nach Frankforter, Kritschewsky (Am. Soc. 36 [1914], 1516) vgl. van Larr, Bl. Soc. chim. Belg. 28, 348; C. 1922 III, 350. Bei der Kondensation von Benzol mit Isovaleraldehyd in Gegenwart von Aluminiumehlorid unter Kühlung und nachfolgendem Erwärmen auf 60° entsteht ein Gemisch von 3-Methyl-1.1-diphenyl-buten-(1) und 2-Methyl-4.4-diphenyl-butan (Schaarschmidt, Hermann, Szemzö, B. 58, 1916). Beim Leiten von Keten in eine Mischung von Benzol und Aluminiumehlorid in Schwefelkohlenstoff entstehen Acetophenon und höher siedende Produkte (Hurd, Am. Soc. 47, 2778). Benzol gibt bei der Kondensation mit Benzaldehyd in Gegenwart von Aluminiumehlorid anfangs unter Kühlung, zuletzt unter Erwärmen auf 60° 30% Anthracen und 21% Triphenylmethan, in Gegenwart von Eisenchlorid 6% Anthracen, 30% Triphenylmethan und andere Produkte (Schaarschmidt, Hermann, Szemzö, B. 58, 1915). Beim Leiten eines trocknen Gasstroms von Kohlenoxyd und Chlorwasserstoff in eine Mischung von 1000 Tln. Benzol, 200 Tln. Nitrobenzol und 250 Tln. Aluminiumehlorid bei 50—60° entsteht in guter Ausbeute Benzaldehyd (Gelsenkirchener Bergwerks-A.G., Schütz, D. R. P. 403489; C. 1925 I, 1369; Frdl. 14, 435).

Einwirkung von Carbonsäuren und Sulfonsäuren sowie deren Derivaten. Liefert bei der Umsetzung mit Dibenzoylperoxyd in Gegenwart von Aluminiumchlorid im Stickstoffstrom je nach der Temperatur wechselnde Mengen Diphenyl, Benzoesäure, Benzoesäurephenylester und Kohlendioxyd; wechselnde Mengen derselben Reaktionsprodukte entstehen in Gegenwart von Eisen (III) - chlorid neben eisenhaltigen Komplexverbindungen (REYNHART, R. 46, 58). Liefert bei der Umsetzung mit Trichloracetonitril in Gegenwart von Alummiumchlorid und Chlorwasserstoff bei allmählich auf ca. 70° steigender Temperatur ω.ω.ω-Trichlor-acetophenon-imid-hydrochlorid, das bei der Zersetzung mit Eis in ω.ω.ω-Trichlor-acetophenon übergeht (Houben, Fischer, J.pr. [2] 123, 318). Theoretisches über die Umsetzung mit Säurechloriden und Aluminiumchlorid: Schaarschmidt, Z.ang.Ch. 37, 286. Beim Kochen von Benzol mit Acetylchlorid in Gegenwart von Zirkon(IV)-chlorid unter Kühlung erhält man Acetophenon (Krishnamurti, Č. 1929 I, 2156). Acetophenon entsteht ferner beim Kochen von Benzol mit Acetylchlorid in Gegenwart von durch Erhitzen im Wasserstoffstrom aktiviertem Aluminium (RAY, DUTT, J. indian chem. Soc. 5, 108; C. 1928 I, 2371) oder in Gegenwart von Chrompulver (Chakrabarty, Dutt, J. indian chem. Soc. 5, 517; C. 1929 I, 501) oder bei der Einw. von Acetylchlorid auf Benzol in Gegenwart von Quecksilber(II)-chlorid und wenig Aluminiumpulver bei 40° (RAY, Soc. 117, 1337). Bei der Umsetzung mit Benzoylchlorid und Zirkon(IV)-chlorid oder aktiviertem Aluminiumpulver entsteht in analoger Reaktion Benzophenon (Krishnamurti, C. 1929 I, 2156; Ray, Dutt, J. indian chem. Soc. 5, 109; C. 1928 I, 2371), während in Gegenwart von Chrompulver je nach der angewandten Menge Benzol Triphenylcarbinol oder Benzophenon gebildet wird (CHARRABARTY, DUTT, J. indian chem. Soc. 5, 516; C. 1929 I, 501).

E I 105, Z. 15 v. u. nach "Benzoylchlorid" füge ein "und Benzoylbromid".

Bei der Umsetzung von Benzol mit  $\beta$ . $\beta$ -Dimethyl-acrylsäurechlorid in Gegenwart von Aluminiumchlorid bei  $0^{\circ}$  und nachfolgendem Erwärmen des Reaktionsgemisches im Vakuum auf  $40^{\circ}$  bildet sich  $\omega$ -Isopropyliden-acetophenon (Darzens, C. r. 189, 767); in Schwefelkohlenstoff-Lösung im Sonnenlicht bei nachfolgendem Erwärmen auf dem Wasserbad erhält man 1.1-Dimethyl-hydrindon-(3); dieses entsteht in geringer Menge auch aus Benzol,  $\beta$ -Bromisovalerylchlorid und Aluminiumchlorid in Schwefelkohlenstoff (v. Auwers, B. 54, 994). Benzol liefert mit Zimtsäurechlorid im Gegenwart von Aluminiumchlorid  $\beta$ . $\beta$ -Diphenyl-propiophenon und  $\beta$ . $\beta$ -Diphenyl-propionsäure (McKenzie, Barrow, Soc. 119, 72; vgl. Kohler, Heritage, Burnley, Am. 44 [1910], 64).  $\beta$ - $\beta$ -Diphenyl-propiophenon bildet sich auch beim Erwärmen von  $\beta$ -Formamino- $\beta$ -phenyl-propionylchlorid mit Benzol in Gegenwart von Aluminiumchlorid auf dem Wasserbad (McK., Ba.).  $\beta$ -Benzamino- $\beta$ -phenyl-propiophenon (McK., Ba.). Benzol gibt mit Phosgen in Gegenwart von Aluminiumchlorid Benzophenon, in Schwefelkohlenstoff-Lösung außerdem beträchtliche Mengen Benzoylchlorid; Abhängigkeit der Ausbeuten von den Reaktionsbedingungen: Wilson, Fuller, J. ind. Eng. Chem. 14, 407; C. 1922 III, 497. Bei der Einw. von frisch bereitetem Bromcyan auf siedendes Benzol in Gegenwart von Aluminiumchlorid entsteht Benzonitril, während gealtertes (polymeres?) Bromcyan Kyaphenin (Syst. Nr. 3818) liefert (Karrer, Rebmann, Zeller, Helv. 3, 262; vgl. K., Zeiler, Helv. 2, 484; Scholl, Nörr, B, B (1900), 1053). Beim Aufbewahren von Benzol mit Azodicarbonsäure-dimethylester in Gegenwart von konz. Schwefelsäure bildet sich 1.4-Bis-[N.N'-dicarbomethoxy-hydrazino]-benzol (Stollé, Leffiler, B. 57, 1062). Liefert beim Erhitzen mit Carbamidsäureazid im Rohr auf 100— $115^{\circ}$  N.N'-Di-

Einwirkung von Phenylisocyanat, Diazoverbindungen und heterocyclischen Verbindungen. Bei der Umsetzung von Benzol mit Phenylisocyanat in Gegenwart von Zirkon(IV)-chlorid auf dem Wasserbad bildet sich Benzanilid (Krishnamurt, C. 1929 I, 2156). Beim Eintragen einer Lösung von p-Toluoldiazoniumchlorid in eine Mischung von Benzol und Natronlauge bei 5° erhält man 4-Methyl-diphenyl, geringe Mengen 1.4-Dip-tolyl-benzol(?) und 4.4'-Dimethyl-azobenzol; bei der analogen Umsetzung mit o-Toluoldiazoniumchlorid entstehen geringe Mengen 2-Methyl-diphenyl und Indazol; mit m-Toluoldiazoniumchlorid entstehen geringe Mengen 2-Methyl-diphenyl und Indazol; mit m-Toluoldiazoniumchlorid erhält man 3-Methyl-diphenyl (Gomberg, Pernert, Am. Soc. 48, 1375). Beim Einleiten von Äthylenoxyd und trocknem Chlorwasserstoff in ein Gemisch von Benzol, Petroläther und Aluminiumchlorid unter Kühlung entstehen Dibenzyl und geringe Mengen β-Phenäthylalkohol (Schaarschmott, Hermann, Szemzö, B. 58, 1916). Liefert mit Phthalid bei Gegenwart von Aluminiumchlorid 2-Benzyl-benzoesäure (King, Am. Soc. 49, 563). Benzol gibt mit Cumarin in Gegenwart von Aluminiumchlorid 3-Phenyl-3.4-dihydro-cumarin (K.). Bei der Kondensation von Benzol mit Brenzschleimsäure in Gegenwart von Aluminiumchlorid erhält man β-Phenyl-α.β-dihydro-brenzschleimsäure (K.). Benzol gibt bei der Umsetzung mit Cumarilsäure in Gegenwart von Aluminiumchlorid 3-Phenyl-2.3-dihydro-cumarilsäure (K.). Bei der Einw. von Benzol auf Phthalsäureanhydrid bei Gegenwart von Aluminiumchlorid bildet sich zunächst eine klare Lösung, aus der bei Ätherzusatz oder beim Erhitzen die Aluminiumchlorid-Verbindung der 2-Benzoyl-benzoesäure Cl<sub>2</sub>Al-C<sub>14</sub>H<sub>2</sub>O<sub>3</sub> + AlCl<sub>3</sub> ausgefällt wird (McMullen, Am. Soc. 44, 2055). Liefert mit 3-Phenyl-7-aza-phthalid (s. nebenstehende Formel) bei Gegenwart von Aluminiumchlorid 3-Benzhydryl-pyridin-carbonsäure-(2) (JEPH-Cott, Am. Soc. 50, 1190).

## Physiologisches Verhalten.

Ausführliche Übersichten über das physiologische Verhalten von Benzol, besonders über Verhalten im Organismus, Giftwirkungen und gewerbliche Benzolvergiftungen, s. bei H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt., Bd. II [Berlin-Leipzig 1932], S. 2—31. — F. Flury, F. Zernik, Schädliche Gase [Berlin 1931], S. 277—289. — W. Estler in K. B. Lehmann, F. Fluby, Toxikologie und Hygiene der technischen Lösungsmittel [Berlin 1938], S. 77, 84—96. — Zum Übergang in Muconsäure im Organismus des Kaninchens vgl. Thierfelder, Klenk, H. 141, 30; zur Bildung von Phenol im Blut von mit Benzol vergifteten Kaninchen vgl. Gadaskin, Bio. Z. 198, 152. Einfluß auf den Schwefelstoffwechsel des Hundes: Callow, Hele, Biochem. J. 20, 600; Coombs, Biochem. J. 21, 624. Zur Stärke des Geruchs in Luft vgl. Zwaardemaker, Perfum. essent. Oil Rec. 13, 8: C. 1922 IV, 100.

Beschleunigende Wirkung auf die Sporenbildung bei aeroben Bakterien: MICHAILOWSKY, Zbl. Bakt. Parasitenk. [I] 97, 19; C. 1926 I, 1588. Einfluß von Benzol auf die alkoh. Gärung s. bei H. Staub, S. 2; vgl. a. Mameli, Giorn. Chim. ind. appl. 8, 559; C. 1927 I, 1032. — Insecticide Wirkung s. bei H. Staub, S. 3; vgl. a. Tattersfield, Gimingham, J. Soc. chem. Ind. 46, 369 T; C. 1927 II, 1884; Parman, J. agric. Res. 31, 885; C. 1926 I, 2736.

### Verwendung.

Verwendung als technisches Lösungs- und Verdünnungsmittel: Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 78, 228; H. GNAMM, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 63. — Verwendung als Motortreibstoff oder als Bestandteil von Motortreibstoffen: E. Sedlaczek, Die Automobiltreibmittel des In- und Auslandes [Berlin 1927]. — F. Rosendahl, Motoren-Benzol: Gewinnung, Reinigung, Verwendung [Stuttgart 1936],

S. 124, 131. — W. H. HOFFERT, G. CLAXTON, Motor benzole, its production and use, 2. Aufl. [London 1938], S. 131, 426—781. Über das Verhalten im Verbrennungsmotor und den Einfluß auf das Verhalten anderer Motortreibstoffe vgl. a. z. B. MIDGLEY, BOYD, J. ind. Eng. Chem. 14, 896; C. 1923 II, 935; BRUTZKUS, C. r. 176, 1810; DUCHÈNE, C. r. 186, 220; EGERTON, GATES, J. Inst. Petr. Technol. 13, 277; C. 1928 II, 211; BIRCH, STANSFIELD, Nature 123, 490; C. 1929 I, 2605; GREBEL, C. r. 189, 90. — Überführung in Harze durch Kondensation mit Formaldehyd: BAYER & Co., D. R. P. 349741; C. 1922 IV, 50; Frdl. 14, 629; Chem. Fabr. Albert, D. R. P. 387836; C. 1924 II, 549; Frdl. 14, 634; durch Einw. von Dischwefeldichlorid in Gegenwart von Zink, Eisen oder Aluminiumchlorid: DUBOIS & KAUFMANN, D. R. P. 372664; C. 1923 IV, 600; Frdl. 14, 644. Überführung in gerbend wirkende Kondensationsprodukte durch Umsetzung mit rauchender Schwefelsäure und Glykolsäure: Elektrochem. Werke, BOSSHABD, STRAUSS, D. R. P. 386930; C. 1924 I, 1730; Frdl. 14, 594; durch Umsetzung mit rauchender Schwefelsäure und Cellulose: BASF, D. R. P. 391315; C. 1924 I, 2053; Frdl. 14, 607.

#### Analytisches.

Literatur über Nachweis und Bestimmung von Benzol und über Anforderungen an Handelsbenzole und deren Untersuchung: Berl-Lunge, Chemisch-technische Untersuchungsmethoden, 8. Aufl. Bd. II [Berlin 1932], S. 61, 436; Bd. IV [1933], S. 34, 55, 75, 273, 284, 296, 314; Ergänzungswerk zur 8. Aufl. von J. D'Ans, Bd. I [Berlin 1939], S. 160; Bd. II [1939], S. 92, 98, 108. — A. Jenkmer, Analytische Methoden und Tabellen für die Überwachung und den Betrieb der Benzolfabrik von Kokereien und Gaswerken [Halle 1937]. — F. Rosendahl, Motoren-Benzol [Stuttgart 1936], S. 115. — W. H. HOFFERT, G. CLAXTON, Motor benzole, its production and use, 2. Aufl. [London 1938], S. 764, 782. — L. Schumann, Kokereiteer und Rohbenzol [Stuttgart 1940], S. 175, 186.

Reinheitsprüfung. Ergänzungsbuch zum Deutschen Arzneibuch, 5. Ausgabe [Berlin 1930], S. 52; E. Merck, Prüfung der chemischen Reagenzien, 5. Aufl. [Darmstadt 1939], S. 79. Zum Nachweis von Thiophen in Benzol mit Hilfe der Indophenin-Reaktion (H 196) fügt man 1 cm³ des zu untersuchenden Benzols und 2 cm³ konz. Schwefelsäure zu einer Spur Isatin und mischt gründlich; bei Gegenwart von Thiophen tritt eine intensive Blaufärbung auf; wenig Thiophen erzeugt eine hellgrüne Färbung oder bei der Grenze der Nachweisbarkeit (1: 125000) eine grünlichgelbe Färbung (Ardagh, Farber, J. Soc. chem. Ind. 48 [1929], 73 T). Bestimmung von Thiophen in Rohbenzol durch Überführung des Thiophens in 2-Benzoyl-thiophen mit Hilfe von Benzoylchlorid und Titan(IV)-chlorid und Wägung: Stadnikow, Kaschtanow, K. 60, 1121; C. 1929 I, 1089. Bestimmung von Schwefel in Benzol durch Verbrennung, Oxydation zu Schwefeltrioxyd und alkalimetrische Titration: Davidson, Gas Journal 185, 95; C. 1929 I, 1071. Bestimmung von Alkohol in Benzol durch Vermischen mit Mineralöl, Waschen mit Natriumchlorid-Lösung, Destillieren und Bestimmung der Dichte: Schwarz, Ch. Z. 47, 462; C. 1924 I, 2848.

Nachweis. Nachweis von Benzol mit Hilfe des Ultraviolett-Absorptionsspektrums: Orndorff, Mitarb., Am. Soc. 50, 835; Ley, Vanheiden, B. 60, 2341. Refraktometrischer Nachweis von Benzol in Benzin: Pritzker, Jungkunz, Ch. Z. 47, 314; C. 1924 I, 271. Beim Nachweis in Benzin nach Formánek, Knop, Korber (Ch. Z. 41, 713; vgl. a. Kettle, C. 1928 II, 1735) kann man an Stelle der dort angegebenen Farbstoffe auch Algolrot BTK, Algolrot 2 G oder Lackrot Ciba B verwenden (Formánek, Ch. Z. 52, 325; C. 1928 II, 513). Benzol färbt sich beim Schütteln mit Natziumnitrit-Lösung und 3 % igem Wasserstoffperoxyd gelb; die Farbe geht auf Zusatz von Alkalien in Dunkelrot über; Toluol und Xylol färben sich schwächer gelb und ändern ihre Farbe auf Zusatz von Alkalien nicht; die Reaktion eignet sich zum Nachweis von Benzol in Petroleum oder Benzin sowie (bei Abwesenheit von Pyridin) in Alkohol (Trifonow, Z. anorg. Ch. 124, 137). Zum Nachweis in Benzin vgl. a Ostwald, Ch. Z. 46, 494; C. 1922 IV, 463. Nachweis in Lacken und Firnissen durch Destillation, Nitrierung, Reduktion zu Anilin und Ausführung der Chlorkalkreaktion: Jackson, Chem.-Analyst 18, Nr. 3, S. 15; C. 1929 II, 2266.

Zum Nachweis im Blut bei Benzolvergiftung kocht man das mit Ammoniumoxalat versetzte Blut mit Salpeterschwefelsäure, extrahiert mit Äther, reduziert das erhaltene 1.3-Dinitro-benzol zu m-Phenylendiamin und setzt mit N.N-Dimethyl-p-phenylendiamin und Wasserstoffperoxyd um; bei Gegenwart von Benzol erhält man eine violette Lösung, die Watte violett färbt; die Lösung wird rasch, die Wattefärbung allmählich rosa (Gadaskin, Bio. Z. 198, 150). Zum Nachweis in Organen bei Vergiftungen destilliert man und leitet die Dämpfe durch ein mit fein verteiltem Sudanfarbstoff beschicktes, mit Kältemischung gekühltes U-Rohr; bei Anwesenheit von Benzol bildet sich ein krystallinisches Kondensat, das beim Anwärmen den Farbstoff mit kirschroter Farbe löst; Benzol läßt sich auch ohne Anwendung von Farbstoff durch Nitrierung nachweisen (Raestrup, Dtsch. Z. ger. Med. 4, 341; C. 1925 I, 1112).

Bestimmung. Übersicht über Verfahren zur Bestimmung von Benzol und aromatischen Kohlenwasserstoffen in Kokereigas: Thau, Glückauf 57 [1921], 505, 529, 559. Bestimmung von Benzol und aromatischen Kohlenwasserstoffen im Leuchtgas und Kokereigas durch Adsorption an akt. Kohle: Beel, Andress, Müller, Z. ang. Ch. 34, 126; Beel, Z. ang. Ch. 35, 332; Beel, Wachendorff, Z. ang. Ch. 37, 205; Bähr, Ch. Z. 46, 804; C. 1922 IV. 1149; Krieger, Ch. Z. 46, 468; 47, 357; C. 1922 IV, 463; 1923 IV, 128; Johannsen, Stahl Eisen 42, 897; C. 1922 IV, 563; F. Fischer, Zerbe, Brennstoffch. 4 [1923], 353; Z. ang. Ch. 37, 483; Gollmer, Z. ang. Ch. 37, 773; Schmolke, Gas-Wasserfach 67, 77; C. 1924 I, 2322; Kattwinkel, Glückauf 62, 205; C. 1926 I, 311; Weindel, Brennstoffch. 8 [1927], 136. Bestimmung in Luft durch Adsorption an Kohle: Posner, Z. anorg. Ch. 174, 292. Benzol wird aus Kohlengas bei 5 Minuten langem Schütteln mit 87% iger Schwefelsäure vollständig aufgenommen (Bourgognion, C. 1924 I, 2802). Zur Bestimmung in gasförmigen Brennstoffen durch Absorption mit konz. Bromwasser oder rauchender Schwefelsäure vgl. Ott, Helv. 7, 894. Bestimmung in Gasen, auch neben Äthylen und Toluol, durch Bromierung zu Hexabrombenzol in Gegenwart von Aluminiumchlorid: Schulz, Collect. Trav. chim. Tchécosl. 1, 229; C. 1929 II, 772. Bestimmung von Benzol und aromatischen Kohlenwasserstoffen in Petroleumdestillaten oder Motortreibstoffen auf Grund der kritischen Lösungstemperatur von Gemischen mit Nitrobenzol: Erskins, Ind. Eng. Chem. 18, 694: C. 1926 II, 1357; durch Nitrierung und Bestimmung der erhaltenen Nitroverbindungen nach geeigneten Verfahren: Hess, Z. ang. Ch. 33, 147, 176; Florentin, Vandenberghe, Bl. [4] 27, 204; Egloff, Morrell, Ind. Eng. Chem. 18 [1926], 354; Manning, Soc. 1929, 1017; durch Sulfurierung mit rauchender Schwefelsäure (D: 1,86): Pritzker, Jungkunz. Ch. Z. 47 [1923], 314; durch Sulfurierung in Gegenwart von Silbersulfat: Manning, Soc. 1929, 1016. Bestimmung neben Toluol durch Versetzen mit verd. Alkohol und Feststellen des Trübu

Absorptionsphotometrische Bestimmung sehr kleiner Mengen Benzol in Alkohol: Ley, Vanheiden, B. 60, 2341. Nephelometrische Bestimmung von Benzol in Alkohol: Desvergnes. Ann. Chim. anal. appl. 33, 10; C. 1928 I, 2190. Bestimmung kleiner Mengen Benzol in Alkohol durch Verdünnen mit Wasser, Destillation, Behandlung mit Kaliumdichromat und Salzsäure, Schütteln mit Petroläther und Messung der Volumenzunahme: Babington, Tingle, J. ind. Eng. Chem. 11, 556; C. 1920 II, 160. Analyse von Alkohol-Benzol-Benzin-Gemischen: Stastny, Keme, Brodina, C. 1929 I, 1406.

Bestimmung in technischem Chlorbenzol durch fraktionierte Destillation: BOURION, C. r. 170, 933; A. ch. [9] 14, 215.

### Additionelle Verbindungen und Umwandlungsprodukte von unbekannter Konstitution aus Benzol.

Verbindungen mit Schwefeldioxyd. Durch thermische Analyse wiesen Mazzetti, de Carli (G. 56, 36) folgende Verbindungen nach:  $C_6H_6+SO_2$ . F:  $-15^\circ$ ; bildet ein Eutektikum mit Benzol (F:  $-30^\circ$ ).  $-C_6H_6+2SO_2$ . F:  $-40^\circ$ ; bildet ein Eutektikum mit der vorangehenden Verbindung (F:  $-52^\circ$ ).  $-C_6H_6+3SO_2$ . F:  $-52^\circ$ ; bildet Eutektika mit der vorangehenden Verbindung (F:  $-62^\circ$ ) und mit Schwefeldioxyd (F:  $-78^\circ$ ).

Verbindung mit Silberperchlorat  $C_6H_6+AgClO_4$ . Krystalle. Schmilzt teilweise zwischen 140° und 146° (Hill, Am. Soc. 44, 1165, 1166). — Verbindung mit Beryllium-chlorid und Aceton  $4C_6H_6+BeCl_2+2(CH_3)_2CO(?)$ . Nadeln. Schmilzt etwas oberhalb Körpertemperatur (Fricke, Ruschhaupt, Z. anorg. Ch. 146, 114, 117). Schwer 'öslich in Benzol, leicht in absol. Alkohol. Zersetzt sich bei längerem Überleiten von trockner Luft, wobei Benzol rascher abgegeben wird als Aceton, und beim Auflösen in Wasser oder Petroläther. Im zugeschmolzenen Röhrchen haltbar. — Verbindung mit Niob(V)-chlorid  $C_6H_6+3$  NbCl $_5$ . Gelbbraune Blättchen (Funk, Niederländer, B. 61, 1386). Sehr empfindlich gegen Feuchtigkeit. Wird durch Wasser oder wäßr. Ammoniak unter Hinterlassung eines weißen Rückstandes zersetzt.

Verbindungen mit Tetrachlorkohlenstoff. Durch thermische Analyse wurden die bei den Schmelzpunkten zerfallenden Additionsverbindungen  $C_6H_6+CCl_4$  (F:  $-34,7^{\circ}$ ) und  $C_6H_6+2CCl_4$  (F:  $-40,7^{\circ}$ ) und ein Eutektikum aus Tetrachlorkohlenstoff und der letztgenannten Verbindung (F:  $-43,0^{\circ}$ ; 78 Mol-% Tetrachlorkohlenstoff) nachgewiesen (WYATT, Trans. Faraday Soc. 25, 50; C. 1929 I, 1542; vgl. BAUD, A. ch. [8] 29 [1913], 135; LINARD, Bl. Soc. chim. Belg. 34 [1925], 373, 382).

"Phenosetrichlorhydrin"  $C_6H_9O_3Cl_8$  (H 198). Konnte nicht krystallisiert erhalten werden (Goldschmidt, Endres, Diesch, B. 58, 573 Anm. 6).

Verbindung C<sub>19</sub>H<sub>20</sub>O<sub>2</sub> (E I 107). Die Auffassung dieser Verbindung als Diäthyldibenzoylmethan wird bestätigt (vgl. v. Auwers, Bergmann, A. 472, 306). [OSTERTAG]

## Substitutionsprodukte des Benzols.

## a) Fluor-Derivate.

Fluorbenzol C<sub>6</sub>H<sub>5</sub>F (H 198; E I 108). B. Beim Erhitzen von Benzoldiazoniumbortetrafluorid (Balz, Schiemann, B. 60, 1188). Zur Bildung aus Benzoldiazoniperidid und Flußsäure vgl. Monypeny, Russell, Soc. 1929, 2437. — Darstellung aus Benzoldiazoniumbortetrafluorid: Floop, Org. Synth. 13 [1933], 46.

Kp<sub>759</sub>: 85,05° (Swarts, J. Chim. phys. 17, 25). D<sup>15,3</sup>: 1,0291 (Swarts, J. Chim. phys. 17, 25; 20, 60); D<sup>∞</sup>: 1,0244 (Schiemann, Pillarsky, B. 62, 3038); D; zwischen 0,2° (1,0466) und 80,9° (0,9485): Meyer, Mylius, Ph. Ch. 95, 355. Viscosität zwischen 0,2° (0,00752 g/cm sec) und 80,9° (0,00325 g/cm sec): Meyer, My., Ph. Ch. 95, 364; zwischen 25,7° (0,00561 g/cm sec) und 182° (0,00141 g/cm sec): Titani, Bl. chem. Soc. Japan 2, 103; C. 1927 II, 401. Parachor: Sugden, Soc. 125, 1182. Verbrennungswärme bei konstantem Volumen: 745,2 kcal/Mol (Verbrennungsprodukte: Kohlendioxyd und wäßr. Fluorwasserstoffsäure) (Swietoslawski, Bobińska, J. Chim. phys. 24, 546; vgl. Swarts, C. 1908 I, 1046; R. 27, 120; J. Chim. phys. 17, 25). n<sup>0.5</sup><sub>co</sub>: 1,4648; n<sup>0.5</sup><sub>p</sub>: 1,4794; n<sup>0.5</sup><sub>y</sub>: 1,4883 (Swarts, J. Chim. phys. 20, 60); n<sup>∞</sup><sub>co</sub>: 1,4616; n<sup>∞</sup><sub>p</sub>: 1,4667; n<sup>∞</sup><sub>p</sub>: 1,4642; n<sup>∞</sup><sub>p</sub>: 1,4849 (Schie., Pill.); Brechungsindices zwischen 420 mμ (1,4917) und 275 mμ (1,5955) bei 17,8°: Voellmy, Ph. Ch. 127, 348. Absorptionsspektrum im Ultrarot zwischen 1 und 3 μ: Marton, Ph. Ch. 117, 108. Zum Ultrarot-Absorptionsspektrum vgl. a. Gapon, Z. Phys. 44, 601; C. 1927 II, 1789. Absorption von Röntgenstrahlen: Aurén, Medd. Vet. Akad. Nobelinst. 4 [1920], Nr. 3, S. 14. Beugung von Röntgenstrahlen: hilliussigem Fluorbenzol: Katz, Z. Phys. 45, 110; C. 1928 I, 154. Fluorescenzspektrum bei Bestrahlung des Dampfes mit ultraviolettem Licht: Monypeny, Russell, Soc. 1929, 2437. Teslalminescenzspektrum: Russell, Stewart, Soc. 1929, 2434. Dipolmoment μ×10<sup>18</sup>: 1,39 (Walden, Weiner, Ph. Ch. [B] 2, 18). — Dichte und Viscosität von Gemischen mit Benzol zwischen 0° und 80°: Meyer, Mylius, Ph. Ch. 95, 357, 370. Dichte und Dielektr.-Konst. von Gemischen mit Benzol bei 20°: Wa., We., Ph. Ch. [B] 2, 13.

Fluorbenzol liefert bei der Hydrierung in Gegenwart von Platinschwarz Cyclohexan (Swarts, Bl. Acad. Belgique [5] 6, 404; C. 1921 III, 32). Über die Ausbeuten an 2-Fluort-nitro-benzol und 4-Fluor-1-nitro-benzol bei der Nitrierung von Fluorbenzol mit Salpetersäure (D: 1,52) unter Zusatz von Phosphorpentoxyd nach Swarts (R. 33 [1913], 265) vgl. Schiemann, Pillarsky, B. 62, 3036, 3040. Reagiert nicht mit Distickstofftetroxyd in Tetrachlorkohlenstoff (Schaarschmidt, Balzerkiewicz, Gante, B. 58, 501). Bei der Einw. von Distickstofftetroxyd in Petroläther in Gegenwart von wasserfreiem Aluminiumchlorid (Sch., B., G.) oder beim Behandeln mit Acetylnitrat (Schie, Pill., B. 62, 3040) entstehen viel 4-Fluor-1-nitro-benzol und wenig 2-Fluor-1-nitro-benzol. Über die Geschwindigkeit der Nitrierung in Acetanhydrid + Salpetersäure bei 45° vgl. Ingold, Shaw, Soc. 1927, 2922, 2926. Geschwindigkeit der Umsetzung mit 0,1 n-Natriummethylat-Lösung bei 165° und mit Piperidin bei 215—217°: Tronow, Krüger, Ж. 58, 1273, 1276; C. 1927 II, 1145.

Physiologisches Verhalten: H. STAUB in J. HOUBEN, Fortschritte der Heilstoffchemie, 2. Abt., Bd. II [Berlin-Leipzig 1932], S. 67.

- 1.2 Diffuor benzol, o Diffuor benzol  $C_8H_4F_2$ . B. Beim Erhitzen von 2-Fluorbenzoldiazoniumbortetrafluorid (Schiemann, Pillarsky, B. 62, 3042). Aromatisch, etwas stechend riechende, hygroskopische Flüssigkeit. F: —34°.  $Kp_{751}$ : 91—92° (Sch., P., B. 62, 3037, 3042).  $D_4^{18}$ : 1,1599;  $D_5^{18}$ : 1,1496.  $n_{\alpha}^{18}$ : 1,4411;  $n_{D}^{18}$ : 1,4451;  $n_{\beta}^{18}$ : 1,4661 (Sch., P., B. 62, 3038). Zersetzt sich bei Luftzutritt.
- 1.3 Diffuor benzol , m Diffuor benzol  $C_6H_4F_2$  (E I 108). B. Beim Erhitzen von Benzol-bis-diazoniumbortetrafluorid-(1.3) (Schlemann, Pillarsky, B. 62, 3039).  $F: -59^\circ$ ;  $Kp_{758}: 82-83^\circ$  (Sch., P.).  $D^{18,9}: 1,1722$ ;  $n_{18}^{18,9}: 1,4385$ ;  $n_{18}^{18,9}: 1,4422$ ;  $n_{18}^{18,9}: 1,4516$ ;  $n_{1}^{18,9}: 1,4596$  (Swarts, J. Chim. phys. 20, 60).  $D_4^{18}: 1,1552$ ;  $D_4^{18}: 1,1473$ ;  $n_{18}^{19}: 1,4363$ ;  $n_{18}^{18}: 1,4404$ ;  $n_{18}^{18}: 1,4489$ ;  $n_{18}^{19}: 1,4523$  (Sch., P.).
- 1.4-Difluor-benzol, p-Difluor-benzol  $C_6H_4F_2$  (H 199; E I 108). B. Beim Erhitzen von 4-Fluor-benzoldiazoniumbortetrafluorid (Schiemann, Pillarsky, B. 62, 3039). Beim Erhitzen von Benzol-bis-diazoniumbortetrafluorid-(1.4) (Sch., P.). F: —13°; Kp<sub>767</sub>: 88,4—88,6° (korr.) (Sch., P.).  $D^{16,2}$ : 1,1640;  $n_{\alpha}^{16,3}$ : 1,4351;  $n_{\beta}^{16,2}$ : 1,4392;  $n_{\beta}^{16,2}$ : 1,4477;  $n_{\beta}^{16,2}$ : 1,4556 (Swarts, J. Chim. phys. 20, 60).  $D_4^{16}$ : 1,1684;  $D_4^{16}$ : 1,1632;  $n_{\alpha}^{16}$ : 1,4384;  $n_{\beta}^{16}$ : 1,4423;  $n_{\beta}^{16}$ : 1,4513;  $n_{\beta}^{16}$ : 1,4561 (Sch., P.).

E I 108, Z. 23/22 v. u. streiche,,— Bei Einw. von Natronlauge entsteht p-Fluor-phenol (Sw., C. 1918 II, 760)".

1.2.4-Trifluor-benzol  $C_0H_0F_3$ , s. nebenstehende Formel. B. Aus 1.4-Difluor-benzol durch Nitrierung, Reduktion, Diazotierung und Zersetzung des entsprechenden Diazoniumbortetrafluorids durch Erhitzen (Schiemann, Z. ang. Ch. 41, 31). —  $Kp_{766}$ : 87°.



b) Chlor-Derivate.

Chlorbenzol C<sub>6</sub>H<sub>5</sub>Cl (H 199; E I 108).

#### Bildung und Darstellung.

B. Neben anderen Produkten beim Überleiten von dampfförmigem Benzol mit Chlor über Kupfer bei Temperaturen zwischen Zimmertemperatur und 300° (Tei, Komatsu, Mem. Coll. Sci. Kyoto [A] 10, 327, 328; C. 1928 I, 2370). Zur Bildung aus Benzol und Chlor in Gegenwart von Aluminium vgl. Meunier, C. r. 170, 1451; Bl. [4] 27, 696. Beim Behandeln von Benzol mit Chlor bei gleichzeitiger Gegenwart von Jod und Eisen bei 20—70° (Gindraux, Helv. 12, 923). Bei der Elektrolyse einer Suspension von Benzol in konz. Salzsäure bei 45° (Croco, Lowy, Trans. am. elektroch. Soc. 50, 318; C. 1927 I, 421) oder einer Lösung von Benzol in mit Chlorwasserstoff gesättigtem Methanol (Jayles, C. r. 189, 686). Bei Einw. von unterchloriger Säure auf Benzol im Dunkeln unter Kühlung (Klingstedt, Acta Acad. Abo. 4, Nr. 2, S. 26; C. 1928 I, 504). Aus Benzol und Sulfurylchlorid in Gegenwart von verschiedenen Katalysatoren (Sulberrad). Soc. 119, 2031).

denen Katalysatoren (SILBERRAD, Soc. 119, 2031).

Aus 1.3-Dichlor-benzol, 1.4-Dichlor-benzol oder Hexachlorbenzol beim Überleiten des Dampfes mit Wasserstoff über Nickel bei 270° (Mailhe, Caoutch. Guttap. 18, 10909; C. 1921 III, 467). Neben Benzoylchlorid beim Erwärmen kleiner Mengen von Dibenzoylperoxyd und Phosphorpentachlorid im Stickstoffstrom auf 96—98° (Reynhart, R. 46, 63). Neben anderen Produkten beim Kochen von Dibenzoylperoxyd mit Tetrachlorkohlenstoff (Gelissen, zitiert bei R., R. 46, 64) oder mit Tetrachloräthylen (R., R. 46, 75). Als Hauptprodukt beim Leiten von Benzoylchlorid-Dampf über Nickel bei 420° (Mailhe, C. r. 180, 1112). Bei der Zersetzung von α-[4-Chlor-benzolazo]-triphenylmethan in Ligroin bei 80° (Wieland, Popper, Seefried, B. 55, 1828). Bei Einw. von Kupferhydrid auf diazotiertes Anilin in Salzsäure unter Kühlung (Neogi, Mitra, Soc. 1928, 1332). Über die Halogenide von Nickel und Cobalt als Katalysatoren bei der Bildung von Chlorbenzol aus Benzoldiazoniumchlorid vgl. Koeczynski, Mrozinski, Vielau, C. r. 171, 184. Neben anderen Produkten beim Erwärmen von Diphenylchlorarsin oder Diphenylarsinsäure mit Thionylchlorid auf dem Wasserbad und Erhitzen des Reaktionsprodukts unter 25—30 mm Druck auf 200—215° (Gibson, Johnson, Soc. 1928, 98). Neben Phenyldichlorarsin aus Phenylarsonsäure und Thionylchlorid (Steinkoff, Schmidt, B. 61, 676). Beim Behandeln von Zinntetraphenyl mit Chlor in Tetrachlorkohlenstoff unter Kühlung (Bost, Borgstrom, Am. Soc. 51, 1923). Aus Phenylmagnesiumbromid bei der Einw. von Athylhypochlorit in Ather bei 0° (Durand, Naves, Bl. [4] 37, 720) oder in kleiner Menge beim Behandeln mit Benzolsulfochlorid, p-Toluolsulfochlorid oder α-Naphthalinsulfochlorid in Ather unter Kühlung mit einer Kältemischung (Gilman, Fotherhalb 0° (Coleman, Hauser, Am. Soc. 50, 1196).

Zur technischen Darstellung von Chlorbenzol durch Chlorieren von Benzol vgl. H. E. Fierz-David, L. Blangey, Grundlegende Operationen der Farbenchemie, 4. Aufl. [Wien 1938], S. 25.

#### Physikalische Eigenschaften.

E: —45,0° (TIMMERMANS, Bl. Soc. chim. Belg. 30, 67; C. 1921 III, 288), —45,2° (TI., VAN DER HORST, KAMERLINGH ONNES, C. r. 174, 366; Arch. néerl. Sci. exactes [III A] 6, 185; C. 1923 IV, 377), —45,1° (TI., MARTIN, J. Chim. phys. 23, 780). Kp<sub>760</sub>: 132,0° (TI., v. d. H., K. O.; GRIMM, PATRICK, Am. Soc. 45, 2799; TI., Ma., J. Chim. phys. 23, 742; Lecat, R. 46, 242). Kondensation des Dampfes bei adiabatischer Ausdehnung: Tanzow, K. 61, 1844; C. 1930 II, 207. Maximaler Siedeverzug bei Atmosphärendruck: Kenrick, Gilbert, Wismer, J. phys. Chem. 28, 1302. D;: 1,12795 (TI., v. d. H., K. O.); D;: 1,12792; D;:: 1,11172; D;: 1,09550 (Timmermans, Martin, J. Chim. phys. 23, 780); D;: 1,064 (Kerr, Phil. Mag. [7] 3 [1927], 332). D; zwischen 0,3° (1,1280) und 123,6° (0,9915): Meyer, Myllus, Ph. Ch. 95, 356; zwischen —42,7° (1,1742) und +126° (0,9906): Smyth, Morgan, Am. Soc. 50, 1554. Temperaturkoeffizient der Dichte zwischen 5° und 55°: Szivessy, Ann. Phys. [4] 68, 150. Isotherme Kompressibilität zwischen 20° (74,8 × 10<sup>-6</sup> Atm. -¹) und 50° (89,5 × 10<sup>-6</sup> Atm. -¹): Freyer, Hubbard, Andrews, Am. Soc. 51, 765; unter 0—8 Atm. Überdruck bei 7,98°: 67,76×10-6 Atm. -¹; bei 17,69°: 71,41×10-6 Atm. -¹ (Schmidt, Ann. Phys. [4] 76, 587). Adiabatische Kompressibilität zwischen 0° und 50°: F., H., A. Ausströmungsgeschwindigkeit von dampfförmigem Chlorbenzol durch kleine Öffnungen in das Hochvakuum: Voss, Ann. Physique [9] 20, 97.

Viscosität bei 15°: 0,00844 g/cm sec (TIMMERMANS, MARTIN, J. Chim. phys. 28, 782); bei 30°: 0,00711 g/cm sec (TI., Ma.; Bridgman, Pr. am. Acad. Arts Sci. 61 [1925/1926], 80);

bei 20°: 0,00800; bei 40°: 0,00636; bei 60°: 0,00517 g/cmsec (Unkowskaja, Wolowa, M. 57, 109; C. 1926 I, 2646); zwischen 0,3° (0,01050 g/cm sec und 123,6° (0,00320 g/cm sec): MEYER, MYLIUS, Ph. Ch. 95, 366; zwischen 12,5° (0,00876 g/cm sec) und 240° (0,00144 g/cm sec): Titani, Bl. chem. Soc. Japan 2, 103; C. 1927 II, 401. Einfluß von Drucken bis 10000 kg/cm<sup>3</sup>

Titani, Bl. chem. Soc. Japan 2, 103; C. 1927 II, 401. Einfluß von Drucken bis 10000 kg/cm² auf die Viscosität: Bridgman, Pr. am. Acad. Arts Sci. 61, 80; C. 1926 I, 1919; II, 1923. Oberflächenspannung bei 20°: 33,08 dyn/cm (Harkins, Clark, Roberts, Am. Soc. 42, 705); bei 20°: 30,39 dyn/cm; bei 35°: 30,16 dyn/cm; bei 50°: 29,85 dyn/cm (Yajnik, Sharma, Bharadwaj, Quart, J. indian chem. Soc. 3 [1926], 67); zwischen 12° (34,36 dyn/cm) und 123° (21,63 dyn/cm): Sügden, Soc. 125, 37. Parachor: Su., Soc. 125, 1182; 1927, 1783.

Molekularwärme zwischen —172° (13,3 cal/Mol) und —56,4° (25,4 cal/Mol): Andrews, Haworth, Am. Soc. 50, 3000, 3001¹); zwischen 20° (34,80 cal/Mol) und 80° (38,31 cal/Mol): Williams, Daniels, Am. Soc. 47, 1498. Verhältnis der spezifischen Wärmen cp/cv von flüßigem Chlorbenzol (aus der Schallgeschwindigkeit berechnet): Busse, Ann. Phys. [4] 75, 662; Freyer, Hubbard, Andrews, Am. Soc. 51, 765. Verdampfungswärme bei 130,56°: 77.61 cal/g (Mathews, Am. Soc. 48, 572). Ebullioskopische Konstante: 4.68 (für 1 Mol in 77,61 cal/g (MATHEWS, Am. Soc. 48, 572). Ebullioskopische Konstante: 4,68 (für 1 Mol in 1 kg Lösungsmittel) (Weitz, Roth, Nelken, A. 425, 176 Anm.). Verdampfungsgeschwindigkeit von Chlorbenzol im Luftstrom bei 19—23°: Hine, Phys. Rev. [2] 24, 89; C. 1924 II, 1446. Schallgeschwindigkeit in flüssigem Chlorbenzol bei 176: Busse, Ann. Phys. [4] 75, 662; zwischen 0° und 50°: F., H., A.

 $n_{B}^{15.0}$ : 1,5407;  $n_{Y}^{15.0}$ : 1,5511 (Voellmy, Ph. Ch. 127, 348);  $n_{\alpha}^{15}$ : 1,52242;  $n_{D}^{15}$ : 1,52748;  $n_{He}^{15}$ : 1,52755;  $n_p^6$ : 1,53965;  $n_\gamma^6$ : 1,55034 (l'immermans, Martin, J. Chim. phys. 23, 781). Brechungs-indices zwischen 420 m $\mu$  (1,5549) und 280 m $\mu$  (1,6610) bei 15,9°: V. Temperaturkoeffizient der Brechung zwischen 5° und 55°: Szivessy, Ann. Phys. [4] 68, 150. Einfluß des Druckes auf die Brechungsindices für  $\lambda=653~\text{m}\mu$ , 589 m $\mu$  und 543 m $\mu$ : Himstedt, Wertheimer, Ann. Phys. [4] 67, 399. Absorptionsspektrum von flüssigem Chlorbenzol im sichtbaren Gebiet: Ellis, Phys. Rev. [2] 32, 911; C. 1929 I, 1419; im Ultrarot zwischen 1 und 3  $\mu$ : MARTON, Ph. Ch. 117, 108; zwischen 1 und 15  $\mu$ : W. W. Coblentz, Investigations of infra-red spectra [Washington 1905], S. 155, 164, 239. Zum Ultrarot-Absorptionsspektrum von flüssigem Chlorbenzol vgl. a. Gapon, Z. Physik 44, 601; C. 1927 II, 1789; Barnes, Nature 124, 300;  $\overline{C}$ . 1929 II, 2016. Absorptionsspektrum des Dampfes im Ultraviolett: Henri, C. r. 176, 1298; im Ultrarot zwischen 1 und 3 μ: Purvis, Pr. Cambridge phil. Soc. 21, 563; C. 1923 III, 979. Zum Absorptionsspektrum des Dampfes vgl. H., C. r. 177, 1039. Absorptionsspektrum in Alkohol bei 15° und 60°: P., Pr. Cambridge phil. Soc. 21, 787; C. 1924 I, 1484.

Intensität und Polarisationszustand des Streulichts bei der molekularen Streuung des

Intensität und Polarisationszustand des Streulichts bei der molekularen Streuung des Lichts in flüssigem Chlorbenzol: Martin, J. phys. Chem. 24, 487, 489; Ma., Lehrman, J. phys. Chem. 26, 78; Gans, Z. Phys. 30, 233; Contrib. Estudio Cienc. fis. La Plata 3, 369; C. 1925 I, 1565; II, 1509; Krishnan, Phil. Mag. [6] 50, 703, 707; C. 1926 I, 838; Banerjee, Indian J. Phys. 2, 59; C. 1928 I, 1838; S. R. Rao, Indian J. Phys. 2, 185; C. 1928 I, 2235; in Chlorbenzol-Dampf: Ganesan, Phil. Mag. [6] 49, 1220; C. 1925 II, 1011; I. R. Rao, Indian J. Phys. 2, 84; C. 1928 I, 1838. Ramanspektrum: Pringsheim, Rosen, Z. Phys. 50, 742; C. 1928 II, 2103; Wood, Phil. Mag. [7] 6, 742; 7, 858; C. 1929 I, 355; II, 1135; Petrikaln, Ph. Ch. [B] 3, 362; Dadieu, Kohlrausch, M. 52, 380; Phys. Z. 30, 384; C. 1929 II, 970; vgl. a. D., K., B. 63 [1930], 259. Kathodenluminescenz: Marsh, Soc. 1927, 128. Teslaluminescenzspektrum: Russell, Stewart, Soc. 1929, 2434. Dielektr.-Konst. bei 12—14°: 5,65 (λ = 4,5 m) (Walder, Ulich, Werner, Ph. Ch. 116, 264); bei 18°: 5,86 (Kautzsch, Phys. Z. 29 [1928], 112), 5,72 (Rolinski, Phys. Z. 29, 662); bei 25°: 5,44 (Sayce, Briscoe, Soc. 1926, 2626), 5,61 (Williams, Krchma, Am. Soc. 48, 1891; 49, 1679); bei 58°: 5,23 (λ = 95 m) (Kerr, Phil. Mag. [7] 3, 332; C. 1927 II, 388);

**48**, 1891; **49**, 1679); bei 58°: 5,23 ( $\lambda$  = 95 m) (Kerr, *Phil. Mag.* [7] **3**, 332; *C.* 1927 II, 388); bei  $-20^{\circ}$ : 6,93; bei  $0^{\circ}$ : 6,42; bei  $20^{\circ}$ : 5,94; bei  $100^{\circ}$ : 4,70 (Bergholm, Ann. Phys. [4] 65, 136); zwischen  $20^{\circ}$  (6,18) und  $108,6^{\circ}$  (4,75) ( $\lambda = 49$  m): Velasco-Durantez, An. Soc. españ. 25, 298; C. 1927 II, 2649; zwischen —49° (7,24) und +126° (4,17): SMYTH, MORGAN, Am. Soc. 50, 1554; vgl. Sm., M., Boyce, Am. Soc. 50, 1541; beim Siedepunkt: 4,20 (Grimm, Physics Am. Soc. 50, 1541; beim Siedepunkt: 4,20 (Grimm, Physics Am. Soc. 50, 1541; beim Siedepunkt: 4,20 (Grimm, Physics Am. Soc. 50, 1541; beim Siedepunkt: 4,20 (Grimm, Physics Am. Soc. 50, 1541; beim Siedepunkt: 4,20 (Grimm, Physics Am. Soc. 50, 1541; beim Siedepunkt: 4,20 (Grimm, Physics Am. Soc. 50, 1541; beim Siedepunkt: 4,20 (Grimm, Physics Am. Soc. 50, 1541; beim Siedepunkt: 4,20 (Grimm, Physics Am. Soc. 50, 1541; beim Siedepunkt: 4,20 (Grimm, Physics Am. Soc. 50, 1541; beim Siedepunkt: 4,20 (Grimm, Physics Am. Soc. 50, 1541; beim Siedepunkt: 4,20 (Grimm, Physics Am. Soc. 50, 1541; beim Siedepunkt: 4,20 (Grimm, Physics Am. Soc. 50, 1541; beim Siedepunkt: 4,20 (Grimm, Physics Am. Soc. 50, 1541; beim Siedepunkt: 4,20 (Grimm, Physics Am. Soc. 50, 1541; beim Siedepunkt: 4,20 (Grimm, Physics Am. Soc. 50, 1541; beim Siedepunkt: 4,20 (Grimm, Physics Am. Soc. 50, 1541; beim Siedepunkt: 4,20 (Grimm, Physics Am. Soc. 50, 1541; beim Siedepunkt: 4,20 (Grimm, Physics Am. Soc. 50, 1541; beim Siedepunkt: 4,20 (Grimm, Physics Am. Soc. 50, 1541; beim Siedepunkt: 4,20 (Grimm, Physics Am. Soc. 50, 1541; beim Siedepunkt: 4,20 (Grimm, Physics Am. Soc. 50, 1541; beim Siedepunkt: 4,20 (Grimm, Physics Am. Soc. 50, 1541; beim Siedepunkt: 4,20 (Grimm, Physics Am. Soc. 50, 1541; beim Siedepunkt: 4,20 (Grimm, Physics Am. Soc. 50, 1541; beim Siedepunkt: 4,20 (Grimm, Physics Am. Soc. 50, 1541; beim Siedepunkt: 4,20 (Grimm, Physics Am. Soc. 50, 1541; beim Siedepunkt: 4,20 (Grimm, Physics Am. Soc. 50, 1541; beim Siedepunkt: 4,20 (Grimm, Physics Am. Soc. 50, 1541; beim Siedepunkt: 4,20 (Grimm, Physics Am. Soc. 50, 1541; beim Siedepunkt: 4,20 (Grimm, Physics Am. Soc. 50, 1541; beim Siedepunkt: 4,20 (Grimm, Physics Am. Soc. 50, 1541; beim Siedepunkt: 4,20 (Grimm, Physics Am. Soc. 50, 1541; beim Siedepunkt: 4,20 (Grimm, Physics Am. 50, 1541; beim Siedepunkt: 4,20 (Grimm, Am. Soc. 50, 1554; vgl. SM., M., BOYCE, Am. Soc. 50, 1541; beim Siedepunkt: 4,20 (Grimm, Patrick, Am. Soc. 45, 2799). Einfluß elektrostatischer Felder auf die Dielektr.-Konst.: Kautzsch, Phys. Z. 29, 112; C. 1928 I, 2237. Dipolmoment μ×10<sup>18</sup>: 1,58 (verd. Lösung; Benzol) (Höjendahl, Nature 117, 892; C. 1926 II, 1114); 1,55 (verd. Lösung; Benzol) (Williams, Krchma, Am. Soc. 49, 1684; Rolinski, Phys. Z. 29, 664; vgl. Wi., Phys. Z. 29, 174); 1,55 bzw. 1,52 (verd. Lösung; Hexan bzw. Schwefelkohlenstoff) (Wi., Ogg, Am. Soc. 50, 99); 1,52 (verd. Lösung; Hexan) (Smyth, Morgan, Am. Soc. 50, 1559; vgl. Sm., M., Am. Soc. 49, 1034; Sm., M., Boyce, Am. Soc. 50, 1544); 1,64 (verd. Lösung; Benzol) (Hö., Phys. Z. 30, 394; C. 1929 II, 1898). Elektrische Doppelbrechung im sichtbaren Gebiet: Bergholm, Ann. Phys. [4] 65, 136; im sichtbaren und ultravioletten Gebiet: Szivessy, Durbkersmann, Ann. Phys. [4] 85, 523. Magnetische Doppelbrechung: Szi., Ann. Phys. [4] DIERKESMANN, Ann. Phys. [5] 3, 523. Magnetische Doppelbrechung: Szi., Ann. Phys. [4]

<sup>1)</sup> Siehe die dritte, irrtumlicherweise die Überschrift CeH4Cl2 tragende Spalte der Tabelle 8. 3000.

**68**, 150; Z. Phys. 18, 102; C. 1924 I, 2567. Zur magnetischen Doppelbrechung vgl. RAMAN, KRISHNAN, Pr. roy. Soc. [A] 113, 518; C. 1927 I, 1127.

Mischbarkeit von Chlorbenzol mit geschmolzenem Schwefel: Bruni, Pelizzola, R. A. L. [5] 30 II, 161. Kritische Lösungstemperatur des Systems mit geschmolzenem Schwefel: 117,0° (Timmermans, J. Chim. phys. 20, 506); bei Drucken von 5—85 kg/cm²: Tl.; mit geschmolzenem weißem Phosphor: 264° (Hildeberand, Buffher, Am. Soc. 42, 2217); mit Ameisensäure: 106,6° (Tl.); bei Drucken von 5—65 kg/cm²: Tl. Lösungsvermögen von Chlorbenzol für Stickoxydul und Kohlendioxyd: Horiuch, Bl. phys. chem. Res. Tokyo [Abstr.] 1, 12, 17; C. 1928I, 2770; für 2.4.6-Trinitro-m-xylol bei verschiedenen Temperaturen: Desvergnes, Ann. Chim. anal. appl. 25 [1920], 282; für Naphthalin zwischen 4,2° und 62,6°: Ward, J. phys. Chem. 30, 1323; für Fluoren zwischen 0° und 100°: Mortimer, Am. Soc. 45, 634; für Phosgen zwischen 12,3° und 29,7°: Atkinson, Hercelorischen Verbalten, von Chlorbenzel in 6,6° Dickler Historial Dr. Americans.

Kryoskopisches Verhalten von Chlorbenzol in β.β'-Dichlor-diāthylsulfid: Delépine, Fleury, Ville, C.τ. 172, 1240; Bl. [4] 29, 544. Thermische Analyse des Systems mit Athylenbromid (Eutektikum bei —55°; 83 Mol-% Chlorbenzol): Linard, Bl. Soc. chim. Belg. 34, 377, 392; C. 1926 I, 2427; mit 2-Chlor-toluol: L., Bl. Soc. chim. Belg. 34, 377, 393. Azeotrope Gemische, die Chlorbenzol enthalten, s. in der untenstehenden Tabelle. Destillation von Gemischen aus Benzol, Chlorbenzol und Brombenzol: Tsuramoto, Japan. J. Chem. 2, 137; C. 1928 II, 2108.

Chlorbenzol enthaltende binäre Azeotrope.

| Komponente                                                  | KP760<br>0    | Chlorbenzol<br>in Gew% | Komponente                                  | Kp760<br>0 | Chlorbengol<br>in Gew% |
|-------------------------------------------------------------|---------------|------------------------|---------------------------------------------|------------|------------------------|
| Propylalkohol <sup>2</sup> )<br>Butvlalkohol <sup>1</sup> ) | 96,9<br>115,3 | 17<br>44               | Acetamid <sup>1</sup> )<br>Chloressigsäure- | ca. 131,9  | 97                     |
| Isobutylalkohol <sup>2</sup> ) .                            | 107,1         | 37                     | methylester 2).                             | 126,0      | 40                     |
| Isobutylcarbinol 2)                                         | 124,3         | 65                     | Propionsäure 3)                             | 128,9      | 82                     |
| Allylalkohol <sup>2</sup> )                                 | 96,2          | 15                     | Buttersäure <sup>2</sup> )                  | 131,75     | 97,2                   |
| Ameisensäure 3)                                             | 95,0          | 45                     | Isobuttersäure 3) .                         | 131,2      | 92                     |

<sup>1)</sup> LEOAT, R. 47, 15, 17. — 2) L., Ann. Soc. scient. Bruxelles 47 I [1927], 111, 112, 152, 153. — 3) L., Ann. Soc. scient. Bruxelles 49 [1929], 19, 21, 110.

Dichte der Gemische mit Hexan zwischen —80° und +80°: SMYTH, MORGAN, Am. Soc. 50, 1556; vgl. Sm., M., BOYCE, Am. Soc. 50, 1542; mit Methanol bzw. Aceton: Burrows. James, J. Pr. Soc. N. S. Wales 59, 226; C. 1927 II, 894; mit Ather bei 18°: ROLINSKI, Phys. Z. 29 [1928], 666; mit Schwefelkohlenstoff bei 25°: WILLIAMS, OGG, Am. Soc. 50, 96; mit Benzol bei verschiedenen Temperaturen: Meyer, Myllus, Ph. Ch. 95, 358; WI., Krchma, Am. Soc. 49, 1679; Bu., J.; Ro., Phys. Z. 29, 662; SMYTH, Morgan, Boyce, Am. Soc. 50, 1541; mit Toluol: Bu., J.; mit Campher bei 25°: Peacock, Soc. 107 [1915], 1555; mit Chinolin bei 18°: Ro., Phys. Z. 29, 665. Viscosität der Gemische mit Benzol zwischen 0° und 80°: Meyer, My., Ph. Ch. 95, 370; mit Brombenzol bei 20°, 40° und 60°: Unkowskaja, Wolowa, Ж. 57, 109; C. 1926 I, 2646; mit Toluol bei 20°, 35° und 50°: Yajnik, Mitarb., Ph. Ch. 118, 310. Einfluß einer dünnen Wandschicht von Chlorbenzol auf die Ausflußzeit von Wasser aus Capillaren: Traube, Whang, Ph. Ch. [A] 138, 111. Oberflächenspannung der Gemische mit Toluol bei 20°, 35° und 50°: Yajnik, Sharma, Bharadwaj, Quart. J. indian chem. Soc. 3, 67; C. 1926 II, 2147. Grenzflächenspannung gegen Wasser: Harkins, Clark, Roberts, Am. Soc. 44, 2671; Ramdas, Pr. indian Assoc. Cult. Sci. 10, 20; C. 1926 II, 1935. Adsorption des Dampfes im Gemisch mit Luft durch Tierkohle bei 21° und 766 mm Druck: Alexfjewski, Ж. 55, 416; C. 1925 II, 642. Spezifische Wärme der Gemische mit Brombenzol zwischen 20° und 80°: Williams, Daniels, Am. Soc. 47, 1494, 1498.

Brechungsindices der Gemische mit Benzol bei 25°: WILLIAMS, KRCHMA, Am. Soc. 49, 1679; mit Brombenzol bei 25°: WI., KR., Am. Soc. 48, 1892; mit Campher bei 25°: PEACOCK, Soc. 107, 1555. Dielektr.-Konst. der Gemische mit Hexan bei 25°: WI., OGG, Am. Soc. 50, 98; zwischen —80° und +80°: SMYTH, MORGAN, Am. Soc. 50, 1556; vgl. SM., M., BOYCE, Am. Soc. 50, 1542; der Gemische mit Äther bei 15° und 18°: KERR, Soc. 1926, 2801; ROLINSKI, Phys. Z. 29 [1928], 666; mit Schwefelkohlenstoff bei 25°: WI.. OGG, Am. Soc. 50, 96; mit Benzol bei verschiedenen Temperaturen: KERR, Soc. 1926, 2798; WI., KECHMA, Am. Soc. 49, 1679; Ro., Phys. Z. 29, 662; SM., M., B., Am. Soc. 50, 1541; mit Brombenzol bei 25°: WI., KR., Am. Soc. 48, 1892; mit Chinolin bei 18°: Ro., Phys. Z. 29, 665.

Einfluß von Chlorbenzol-Dampf auf die phosphoreszierende Flamme von Schwefel im Sauerstoff-Stickstoff-Gemisch bzw. Arsen in Sauerstoff: Emeléus, Soc. 1928, 1948; 1929, 1847. Einfluß von Chlorbenzol auf die Geschwindigkeit der Reaktion von Allylbromid mit Pyridin: Kerr, Soc. 1929, 241; auf die Geschwindigkeit der Racemisierung von opt. akt. Isobornylchlorid und der Umlagerung von Camphenhydrochlorid in Isobornylchlorid: MEERwein, Montfort, A. 435, 210, 211.

#### Chemisches Verhalten.

Einw. von  $\beta$ - und  $\gamma$ -Strahlen des Radiums auf Chlorbenzol-Dampf allein oder im Gemisch mit Wasserstoff, auch in Gegenwart von Platin: Errera, Henri, J. Phys. Rad. [6] 7, 227; C. 1926 II, 2770. Chlorbenzol liefert beim Erhitzen mit Luft unter 40 Atm. Anfangsdruck auf 260° Kohlendioxyd und wenig Oxalsäure (SCHRADER, Abh. Kenntnis Kohle 4, 322; C. 1921 I, 537). Bei der elektrolytischen Oxydation in verd. Schwefelsäure an einer gekühlten Bleidioxyd-Anode entstehen kleinere Mengen Benzochinon-(1.4) und Bernsteinsäure (FICHTER, ADLER, Helv. 9, 279). Liefert beim Behandeln mit Wasserstoff oder Hydrazin in Methanol oder Alkohol in Gegenwart von auf Calciumcarbonat niedergeschlagenem Palladium Benzol und wechselnde Mengen Diphenyl (Busch, Schmidt, B. 62, 2617).

Beim Überleiten von dampfförmigem Chlorbenzol mit Chlor über Kupfer bei 2000 entstehen β-Chlorbenzolhexachlorid, 1.4-Dichlor-benzol 1.2.4-Trichlor-benzol, 1.2.4.5-Tetra-chlor-benzol und Pentachlorbenzol (Tei, Komatsu, Mem. Coll. Sci. Kyoto [A] 10, 328; C. 1928 I, 2370). Beim Behandeln mit einer Lösung von 1 Mol Sulfurylchlorid in Dischwefeldichlorid in Gegenwart von Aluminiumchlorid entsteht hauptsächlich 1.4-Dichlor-benzol und weniger 1.2-Dichlor-benzol (SILBERRAD, Soc. 121, 1019). Liefert bei Einw. von Distickstofftetroxyd bei Zimmertemperatur (SCHAARSCHMIDT, BALZERKIEWICZ, GANTE, B. 58, 501) oder schneller in Gegenwart von Aluminiumchlorid bei  $-30^{\circ}$  bis  $+23^{\circ}$  (SCH., B. 57, 2070) überwiegend 4-Chlor-1-nitro-benzol und wenig 2-Chlor-1-nitro-benzol. Ausbeuten an 2-Chlor-1-nitro-benzol und 4-Chlor-1-nitro-benzol bei der Nitrierung von Chlorbenzol mit Salpetersäure oder Salpeterschwefelsäure bei verschiedenen Temperaturen: Magidson, Trudy chim.-farm. Inst. Heft 6 [1923], S. 17; C. 1927 II, 2542. Zur Nitrierung mit Salpeterschwefelsäure vgl. a. Bashioum, Powers, Ind. Eng. Chem. 15, 407; C. 1923 III, 614. Über die Geschwindigkeit der Nitrierung mit Salpetersäure bei —30° und 0° vgl. Scheffer, Brandsma, R. 45, 531; mit Salpetersäure in Acetanhydrid bei 45° vgl. Ingold, Shaw, Soc. 1927, 2926. Chlorbenzol liefert mit einem Gemisch aus Nitrosylschwefelsäure und rauchender Salpetersäure (D: 1,5) 4-Chlor-1-nitro-benzol (Varma, Kulkarni, Am. Soc. 47, 145). Beim Kochen mit Salpetersäure (D: 1,40) in Gegenwart von Quecksilber(II)-nitrat entstehen 2-Chlor 1 nitro-benzol(2) 4-Chlor 1 nitro-benzol(2) 4-Chlor 1 nitro-benzol(2) 3-Chlor 2 nitro-benzol(3) 3-Chlor 3entstehen 2-Chlor-1-nitro-benzol(?), 4-Chlor-1-nitro-benzol und 3-Chlor-2.4.6-trinitro-phenol(?) (DAVIS, Mitarb., Am. Soc. 43, 600). Beim Behandeln mit Kaliumnitrat in einem Gemisch von Schwefelsäuremonohydrat und wenig rauchender Schwefelsäure auf dem Wasserbad bildet sich 4-Chlor-3.5-dinitro-benzol-sulfonsäure-(1) (LINDEMANN, WESSEL, B. 58, 1223). Liefert beim Behandeln mit Dischwefeldichlorid in Gegenwart von amalgamiertem Aluminium in Schwefelkohlenstoff-Lösung x.x-Dichlor-thianthren-9.10-disulfid; bei anschließendem Erwärmen des Reaktionsprodukts auf 40° dagegen x.x-Dichlor-thianthren (Syst. Nr. 2676) (Râx, Soc. 119, 1962). Zur Überführung in 4-Chlor-benzol-sulfonsäure-(1) durch Erhitzen mit konz. Schwefelsäure auf 110° in Gegenwart von wenig Jod vgl. Rax, Dey, Soc. 117, 1407. Chlorbenzol gibt mit Schwefeltrioxyd in Chloroform bei 0–10° 4-Chlor-benzol-sulfonsäure-(1) (Courtot, Bonnet, C. r. 182, 856). Mit Chlorsulfonsäure in rauchender Schwefelsäure (62% SO<sub>2</sub>) unterhalb 10° entsteht 4-Chlor-benzol-sulfochlorid-(1) (Chem. Fabr. Weiler-ter Meer, D. Ř. P. 385049; C. 1924 I, 2631; Frdl. 14, 386). Einw. von Chlorsulfonsäuremethylester: Frèrejaque, C. r. 183, 607.

Bei der Einw. von Natrium auf siedendes Chlorbenzol erhält man außer Benzol und Diphenyl (H 5, 200) noch 1.2-Diphenyl-benzol, wenig 1.4-Diphenyl-benzol, Triphenylen, 2.2 Diphenyl-diphenyl und andere, hochsiedende Kohlenwasserstoffe; beim Erhitzen von Chlorbenzol mit Natrium in Toluol entstehen hauptsächlich Benzol, weniger 4-Methyldiphenyl, Diphenylmethan und andere Produkte (Bachmann, Clarke, Am. Soc. 49, 2093). Beim Eintragen von Chlorbenzol oder besser einer Lösung von Chlorbenzol in Toluol in eine Lösung von Natrium in flüssigem Ammoniak entstehen hauptsächlich Benzol und Triphenylamin, weniger Diphenylamin und andere Produkte; Chlorbenzol in Petroläther liefert bei dieser Behandlung nur Benzol und Triphenylamin (White, Am. Soc. 45, 781). Reaktion mit Natrium in Dimethylanilin: Bachmann, Clarke, Am. Soc. 49, 2096. Zur Umwandlung in Anilin durch Erhitzen mit konzentriertem wäßrigem Ammoniak in Gegenwart von Kupfersalzen im Autoklaven auf cs. 200° vgl. Quick, Am. Soc. 42, 1041. Über die Bildung von Anilin aus Chlorbenzol beim Überleiten des Dampfes mit Ammoniak über verschiedene erhitzte Katalysatoren vgl. Smialowski, Przem. chem. 13, 397; C. 1929 II, 2554; über Bildung von Anilin aus Chlorbenzol und Ammoniak bei gleichzeitiger Gegenwart von feuchtem Kohlenoxyd vgl. Dieterle, Eschenbach, Ar. 1927, 194. Eine Lösung von Chlorbenzol in flüssigem Ammoniak gibt beim Behandeln mit Natrium die berechnete Menge Natriumchlorid (Dains, Brewster, Am. Soc. 42, 1578). Beim Eintregen von Natrium in ein Gemisch aus Chlorbenzol, Arsen(III)-chlorid und Ather entsteht Triphenylarsin (Philips, B. 19 [1886], 1031); bei der analogen Umsetzung mit Antimon(III)-chlorid in Benzol erhält man Triphenylstibin, Diphenylantimontrichlorid und Triphenylstibindichlorid (Michablis, Reeer, A. 238 [1886], 43; vgl. Morgan, Vining, Soc. 117, 778). Beim Überleiten von Chlorbenzol im Gemisch mi. Wasserdampf über auf 500—550° erhitztes Siliciumdioxyd, Titan(IV)-oxyd, Aluminiumoxyd, Thoriumoxyd, Zirkonoxyd oder blaues Wolframoxyd entstehen Phenol und Diphenyläther als Hauptprodukte (Chalkley, Am. Soc. 51, 2490). Die Überführung in Phenol (vgl. E I 110) läßt sich auch mit 90—92%iger Ausbeute durch Erhitzen mit 8—10%iger Natronlauge im eisernen oder kupfernen Autoklaven auf 300—370°, quantitativ durch Erhitzen mit ca. 10%iger Natriumoarbonat-Lösung im eisernen Autoklaven auf 370° oder im kupfernen Autoklaven auf 320—340°, weniger gut durch Erhitzen mit wäßr. Lösungen von Borax, Dinatriumphosphat, Trinatriumphosphat oder Natriumacetat und wenig Natriumhydroxyd durchführen (Hale, Beiten von Chlorbenzol und Wasserdampf über Kieselsäuregel bei 400° (I. G. Farbenind., D.R. P. 485 310; Frdl. 16, 385). Chlorbenzol reagiert nicht mit Kaliumhydroxyd in 95%igem Alkohol bei 320° (Petrenko-Kritschenko, B. 62, 587; Ж. 61, 1785). Bleibt beim Erhitzen mit Magnesium in Ather im Rohr auf 85° oder unter 100 Atm. Wasserstoffdruck bei Zimmertemperatur unverändert (Gilman, Vanderwal, Brown, Bl. [4] 45, 351). Über die Reaktion mit durch Jod aktivierter Kupfer-Magnesium-Legierung in Ather vgl. G., Peterson, Schulze, R. 47, 24 Ann. 15. Gibt beim Erhitzen mit Magnesium im eisernen Autoklaven auf 160° bis 170° Phenylmagnesiumchlorid und wenig Diphenyl (Schorigin, Mitarb., B. 64 [1931], 2586, 2588).

Bei Einw. von Bromnitromethan auf Chlorbenzol in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff und Zersetzen des Reaktionsprodukts mit verd. Mineralsäure entstehen vorwiegend 4-Chlor-1-brom-benzol, weniger 4-Chlor-benzaldehyd und 4-Chlor-benzoesäure Volvegelin 4-Chiot-Pitcheller, weiniger 4-Chiot-Pitcheller, weiniger 4-Chiot-Pitcheller, Chior-Pitcheller, Am. Soc. 48, 2757). Chlorbenzol liefert beim Einleiten von Acetylen in Gegenwart von Aluminiumchlorid bei 90—95° 1.1-Bis-[4-chlor-phenyl]-äthan und andere Produkte (Cook, Chambers, Am. Soc. 43, 338); über die Reaktion von Chlorbenzol mit Acetylen in Gegenwart von Aluminiumchlorid vgl. a. BÖESEKEN, ADLER, R. 48, 482. Beim Behandeln mit 4-Chlor-benzylchlorid in Gegenwart von konz. Schwefelsäure entsteht 4.4'-Dichlor-diphenylmethan (Stephen, Short, Gladding, Soc. 117, 522). Geschwindigkeit der Reaktion mit 4-Nitro-benzylchlorid in Gegenwart von Aluminiumchlorid bei 30°: OLIVIER, BERGER, R. 45, 720. Geschwindigkeit der Umsetzung mit 0,1 n-Natriummethylat-Lösung bei 165°: Tronow, Krüger, Ж. 58, 1273; С. 1927 II, 1145. Beim Einleiten von Chlorwasserstoff in eine Suspension von Paraformaldehyd in Chlorbenzol in Gegenwart von Zinkchlorid entsteht wenig 4-Chlor-benzylchlorid (Blanc, Bl. [4] 33, 317; vgl. a. C. 1923 I, 1571). Liefert mit Chlordimethyläther in Gegenwart von wasserhaltigem Zinkchlorid 4-Chlor-benzylchlorid (Stephen, Short, Gladding, Soc. 117, 522). Beim Behandeln mit Bis-chlormethyl-ather bzw. Bis-brommethyl-åther in Gegenwart von wasserfreiem Zinkchlorid entstehen 4-Chlorbenzylchlorid bzw. 4-Chlor-benzylchlorid; mit Bis-chlormethyl-åther in Gegenwart von konz. Schwefelsäure bei 40° wird 4.4′-Dichlor-diphenylmethan erhalten (St., Sh., Gl., Soc. 117, 522, 524). Beim Überleiten von dampfförmigem Chlorbenzol im Gemisch mit feuchtem Kohlenoxyd über erhitzte Metallkatalysatoren entsteht Benzoesäure (DIETERLE, ESCHEN-BACH, Ar. 1927, 192). Liefert beim Erhitzen mit Quecksilber(II)-acetat auf 140° 4-Chlorphenylquecksilberacetat und andere Produkte (HANKE, Am. Soc. 45, 1322). Chlorbenzol liefert beim Erwärmen mit Phenylisocyanat in Gegenwart von Zirkoniumchlorid auf dem Wasserbad sehr wenig [4-Chlor-benzoesäure]-anilid (Кrishnamuett, С. 1929 I, 2156). Geschwindigkeit der Umsetzung mit Piperidin bei 16—18°: Твомож, Ж. 58, 1289; С. 1927 II, 1145; bei 215°: Tr., Krüger, Ж. 58, 1276. Reagiert nach Petrenko-Kritschenko (B. 62, 587; 3K. 61, 1785) nicht mit Piperidin in 95%igem Alkohol bei 320°.

## Physiologisches Verhalten; Verwendung; Analytisches.

Physiologisches Verhalten: H. STAUB in J. HOUBEN, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 68, 78; K. B. LEHMANN, F. FLURY, Toxikologie und Hygiene der technischen Lösungsmittel [Berlin 1938], S. 142. — Verwendung als technisches Lösungsmittel: Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 181, 231; H. GNAMM, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 97.

Bestimmung des Gehalts an Benzol, Chlorbenzol und höher chloriertem Benzol im technischen Chlorbenzol durch fraktionierte Destillation und Vergleich der Dichten der erhaltenen Fraktionen mit den Dichten von Mischungen bekannten Gehalts: Bourson,

C. r. 170, 933, 990, 1181; A. ch. [9] 14, 215, 273; B., COURTOIS, C. r. 170, 1115.

2-Fluor-1-chlor-benzol  $C_eH_4ClF$  (E I 110). B. Zur Bildung nach RINKES (Chem. Weekb. 11 [1914], 954) vgl. Ingold, Vass, Soc. 1928, 423. — Kp<sub>758</sub>: 138—140°. — Gibt beim Eintragen in Salpetersäure (D: 1,49) bei 0° 4-Fluor-3-chlor-1-nitro-benzol und 3-Fluor-4-chlor-1-nitro-benzol als Hauptprodukte.

4-Fluor-1-chlor-benzol C<sub>5</sub>H<sub>4</sub>ClF (H 201; E I 111). Zur Bildung aus 4-Fluor-anilin nach Swarts (R. 35 [1916], 132) vgl. Ingold, Vass, Soc. 1928, 2265. — Zur Einw. von absol. Salpetersäure vgl. I., V.

1.2-Dichlor-benzol, o-Dichlor-benzol C<sub>6</sub>H<sub>4</sub>Cl<sub>2</sub> (H 201; E I 111). B. Neben 1.4-Dichlor-benzol beim Chlorieren von Chlorbenzol mit einer Lösung von Sulfurylchlorid in Dischwefeldichlorid in Gegenwart von Aluminiumchlorid (Silberrad, Soc. 121, 1019). Zur Bildung aus diazotiertem 2-Chlor-anilin nach der Sandmeyerschen Reaktion vgl. Fry, Grote, Am. Soc. 48, 713. — E: —16,7° (Carswell, Ind. Eng. Chem. 20, 728; C. 1928 II, 1079), —17° (Errera, Phys. Z. 27 [1926], 766). Kp<sub>787.4</sub>: 180,2°; Kp<sub>786.5</sub>: 179,5° (Ca.); Kp<sub>780</sub>: 179,2° (Lecat, Ann. Soc. scient. Bruxelles 47 I [1927], 151). D<sup>-40</sup>: 1,475 (Errera, Phys. Z. 27 [1926], 766); D<sup>10</sup>: 1,2973; D<sup>10</sup>: 1,2699 (Smyth, Morgan, Boyce, Am. Soc. 50, 1542); D<sup>10</sup>: 1,3112; D<sup>10</sup>: 1,3088 (Ca.); D<sup>10</sup>: 1,2699 (Smyth, Morgan, Boyce, Am. Soc. 50, 1542); D<sup>10</sup>: 1,3112; D<sup>10</sup>: 1,3088 (Ca.); D<sup>10</sup>: 1,5438; n<sup>10</sup>: 1,5438; n<sup>10</sup>: 1,54485; n<sup>10</sup>: 1,5614; n<sup>10</sup>: 1,5729 (v. Au.); n<sup>10</sup>: 1,5518 (Ca.). Ultraviolett-Absorptionsspektrum des Dampfes: Errera, Henri, J. Phys. Rad. [6] 9, 205, 249; C. 1928 II, 2704; 1929 I, 1308. Ultraviolett-Absorptionsspektrum des Dampfes im Gemisch mit Stickstoff bis zu 150 Atm. Druck: Teves, Z. Phys. 48, 247; C. 1928 II, 12. Ramanspektrum: Dadieu, Kohlrausch, M. 52, 386; vgl. D., K., B. 63 [1930], 260. Teslaluminescenzspektrum: Russell, Stewart, Soc. 1929, 2434. Dielektr.-Konst. bei —40°: 3,03; bei +20°: 9,82 (Errera, Phys. Z. 27, 766; C. 1927 II, 1928); bei 20°: 7,50 (λ = 4,5 m) (Waldden, Ulich, Werner, Ph. Ch. 116, 264; U., Z. El. Ch. 31, 413); bei 0°: 11,13; bei 25°: 9,93; bei 50°: 8,90 (Smyth. Morgan, Boyce, Am. Soc. 50, 1542); bei 58°: 7,00 (λ = 95 m) (Kerr, Phil. Mag. [7] 3, 332; C. 1927 II, 388). Einfluß von Tetraāthylammoniumpikrat auf die Dielektr.-Konst. von 1.2-Dichlor-benzol: Wa., U., W., Ph. Ch. 116, 272. Dipolmoment μ×1018: 2,0 (verd. Lösung: Benzol) (E., Phys. Z. 27, 767; C. 1927 I, 1928; C. r. 182, 1624), 2,24 (I. Errera, Polarisation diélectrique [Paris 1928], S. 115), 2,30 (verd. Lösung; Hexan oder Benzol) (Smyth, M., Boyce, Am. Soc. 5

Verteilung von Diäthylamin zwischen 1.2-Dichlor-benzol und Wasser bei 25°: Smith, J. phys. Chem. 26, 270. Bildet mit Acetamid ein bei 173,5° siedendes, 89 Gew. % 1.2-Dichlorbenzol enthaltendes, azeotropes Gemisch (Lecat, Ann. Soc. scient. Bruxelles 47 I [1927], 151). Wärmetönung beim Mischen mit Anilin: Peel, Madein, Briscoe, J. phys. Chem. 32, 288. Dichte und Dielektr.-Konst. der Gemische mit Hexan und Benzol bei verschiedenen Temperaturen: Errera, Phys. Z. 27, 766; Smyth, Morgan, Boyce, Am. Soc. 50, 1542. — Einfluß von 1.2-Dichlor-benzol auf die Geschwindigkeit der Reaktion von Allylbromid mit Pyridin:

KERR, Soc. 1929, 241.

Zur Geschwindigkeit der Nitrierung mit Salpetersäure bei —30° und 0° vgl. Scheffer, Brandsma, R. 45, 531. Beim Erhitzen mit wäßrig-alkoholischer Natronlauge und Bariumhydroxyd in einem Kupferkessel bei Gegenwart von Kaliumjodid auf 230—240° erhält man 2-Chlor-phenol und Brenzcatechin (C. F. Boehringer & Söhne, D. R. P. 286266; C. 1915 II, 566; Frdl. 12, 158). Geschwindigkeit der Reaktion mit alkoh. Kalilauge im Rohr bei 151°: Clark, Crozier, Trans. roy. Soc. Canada [3] 19 III, 155; C. 1926 II, 20. 1.2-Dichlor-benzol liefert mit einer Lösung von Natrium in flüssigem Ammoniak Benzol und o-Phenylendiamin (Kraus, Whitte, Am. Soc. 45, 774). Beim Überleiten von dampfförmigem 1.2-Dichlor-benzol im Gemisch mit feuchtem Kohlenoxyd über erhitzte Metallkatalysatoren entsteht Benzoesäure (Dieterle, Eschenbach, Ar. 1927, 193). Gibt beim Erhitzen mit Phthalsäureanhydrid in Gegenwart von Aluminiumchlorid auf 100—120° 2-[3.4-Dichlor-benzoyl]-benzoesäure (Philips, Am. Soc. 49, 475; M. Tanaka, N. Tanaka, Bl. chem. Soc. Japan 3, 286; C. 1929 I, 752); bei 150° oder unter Druck bei 130° wird 2.3-Dichlor-anthrachinon erhalten (T., T.). Reaktion mit Lithiumbutyl in Petroläther: Marvel, Hager, Coffman, Am. Soc. 49, 2328. Geschwindigkeit der Umsetzung mit Pyridin und Piperidin bei 16—18°: Tronow, Ж. 58, 1288, 1289; C. 1927 II, 1145.

Physiologisches Verhalten (Giftigkeit für Insekten usw.): H. Staub in J. Houben, Fort-beite der Umsetzung in 1932 II. (1932) II. (19

Physiologisches Verhalten (Giftigkeit für Insekten usw.): H. STAUB in J. HOUBEN, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 70, 78; TATTERSFIELD, ROBERTS, Ber. Physiol. 4, 319; C. 1921 I, 232; TA., GIMINGHAM, J. Soc. chem. Ind. 46, 369 T; C. 1927 II, 1884. Toxicität in Beziehung zur Verwendung als technisches Lösungsmittel: K. B. Lehmann, F. Flurk, Toxikologie und Hygiene der technischen Lösungsmittel [Berlin 1938], S. 143. — Verwendung als Reinigungsmittel für Metalle: Groggins, Scholl,

Ind. Eng. Chem. 19, 1029; C. 1928 I, 1251.

154

1.3-Dichlor-benzol, m-Dichlor-benzol C<sub>6</sub>H<sub>4</sub>Cl<sub>2</sub> (H 202; E I 111). B. Beim Erhitzen von 3-Chlor-1-nitro-benzol mit Thionylchlorid im Rohr auf 190-2000 (DAVIES, HICKOX, Soc. 121, 2648). Zur Bildung aus diazotiertem 3-Chlor-anilin nach der Sandmeyerschen Reaktion 121, 2648). Zur Bildung aus diazotiertem 3-Chlor-anilin nach der Sandmeyerschen Reaktion vgl. Fry, Grote, Am. Soc. 48, 713; Brydówna, Roczniki Chem. 7, 439; C. 1928 I, 2820.

E: —26,25° (Τιμμερμανίς, Bl. Soc. chim. Belg. 30, 67; C. 1921 III, 288), —24,4° (Εργεριά, Phys. Z. 27 [1926], 766). D<sup>-35</sup>: 1,47 (E.); D<sup>∞</sup><sub>1</sub>°: 1,2879 (v. Auwers, A. 422, 164); D<sup>∞</sup><sub>1</sub>°: 1,3085; D<sup>∞</sup><sub>1</sub>: 1,2799; D<sup>∞</sup><sub>1</sub>°: 1,2523 (Smyth, Morgan, Boyce, Am. Soc. 50, 1542); D<sup>∞</sup><sub>1</sub>°: 1,244 (Kerr, Phil. Mag. [7] 3 [1927], 332). Parachor: Mumford, Phillips, Soc. 1929, 2118. n<sup>∞</sup><sub>1</sub>°: 1,5451; n<sup>∞</sup><sub>1</sub>°: 1,5457; n<sup>∞</sup><sub>1</sub>°: 1,5589; n<sup>∞</sup><sub>1</sub>°: 1,5699 (v. Au.). Ultraviolett-Absorptions-spektrum des Dampfes: Errera, Henri, J. Phys. Rad. [6] 9, 205, 249; C. 1928 II, 2704; 1929 I, 1308. Dielektr. Konst. bei —35°: 2,92; bei 20°: 4,90 (E., Phys. Z. 27, 766; C. 1927 I, 1928); bei 0°: 5,403; bei 25°: 5,039; bei 50°: 4,703 (Sm., M., B.); bei 58°: 4,63 (λ = 95 m) (Kerr, Phil. Mag. [7] 3, 332; C. 1927 II, 388). Dipolmoment μ×10<sup>18</sup>: 1,37 (J. Errera, Polarisation diélectrique [Paris 1928], S. 115), 1,48 (verd. Lösung; Hexan oder Benzol) (Smyth, Morgan, Boyce, Am. Soc. 50, 1544). — Einfluß von 1.3-Dichlor-benzol auf die Geschwindigkeit der Reaktion von Allylbromid mit Pyridin: Kerr, Soc. 1929, 241. Geschwindigkeit der Reaktion von Allylbromid mit Pyridin: KERR, Soc. 1929, 241.

Beim Überleiten von dampfförmigem 1.3-Dichlor-benzol mit Wasserstoff über Nickel bei 270° entstehen Benzol und Chlorbenzol (MAILHE, Caoutch. Guttap. 18, 10909; C. 1921 III, 467).1.3-Dichlor-benzol liefert beim Behandeln mit 1 Mol Chlor in Gegenwart von Aluminiumchlorid bei 60° 1.2.4-Trichlor-benzol und wenig 1.2.4.5-Tetrachlor-benzol (OLIVIER, R. 39, 412). Gibt beim Nitrieren mit Salpeterschwefelsäure außer 4.6-Dichlor-1.3-dinitrobenzol (vgl. H 202) geringere Mengen 2.4-Dichlor-1.3-dinitro-benzol (DANN, Soc. 1929, 2460). Über die Geschwindigkeit der Nitrierung bei -30° und 0° vgl. Scheffer, Brandsma, R. 45, 531. Beim Erhitzen mit rauchender Schwefelsäure (45% SO<sub>2</sub>) auf 140—150° entsteht 4.6-Dichlor-benzol-disulfonsäure-(1.3) (Davies, Poole, Soc. 1927, 1122). Geschwindigkeit der Umsetzung mit 0,5 n-Natriummethylat-Lösung im Rohr bei 176°: Holleman, R. 39, 749; mit 1n-alkoholischer Kalilauge bei 151° und mit 1n-Natriumäthylat-Lösung bei 175°: Clark, Crozier, Trans. 70y. Soc. Canada [3] 19 III, 155; C. 1926 II, 20.

Physiologisches Verhalten: H. STAUB in J. HOUBEN, Fortschritte der Heilstoffchemie,

2. Abt. Bd. II [Berlin-Leipzig 1932], S. 70.

1.4-Dichlor-benzol, p-Dichlor-benzol C<sub>6</sub>H<sub>4</sub>Cl<sub>2</sub> (H 203; E I 111). B. Neben anderen Produkten beim Überleiten von Chlorbenzoldampf und Chlor über Kupfer bei 2000 (Tei, Komatsu, Mem. Coll. Sci. Kyoto [A] 10, 329; C. 1928 I, 2370). Als Hauptprodukt beim Chlorieren von Chlorbenzol mit 1 Mol Sulfurylchlorid in Dischwefeldichlorid in Gegenwart von Aluminiumchlorid (SILBERRAD, Soc. 121, 1019). Aus diazotiertem 4-Chlor-anilin in essigsaurer Lösung und Kupfer(I)-chlorid in salzsaurer Lösung, am besten bei 0-5° (Fry, GROTE, Am. Soc. 48, 711).

Physikalische Eigenschaften. F: 54° (korr.) (Sugden, Soc. 125, 1173); E: 53° (Errera, Phys. Z. 27 [1926], 766). Kp<sub>760</sub>: 174,35°, 174,5°, 174,6° (Lecat, R. 47, 16; Ann. Soc. scient. Bruxelles 49 [1929], 25). D<sub>i</sub>: 1,533 (fest) (Ziegler, Ditzel, A. 473, 200); D<sub>i</sub>: 1,248 (Kerr, Phil. Mag. [7] 3 [1927], 332); D<sub>i</sub><sup>60,8</sup>: 1,2310; D<sub>i</sub><sup>60,3</sup>: 1,2189 (v. Auwers, A. 422, 164). Oberflächenspannung zwischen 68° (30,69 dyn/cm) und 170° (19,82 dyn/cm): Su. Parachor: Su., Soc. 125, 1182. Molekularwärme zwischen — 172,0° (15,6 cal/Mol) und  $+50.7^{\circ}$  (51.0 cal/Mol): Andrews, Haworth, Am. Soc. 50, 3000 1).  $n_{\alpha}^{\circ,\circ}$ : 1,5225;  $n_{\alpha}^{\circ,\circ}$ : 1,5267;  $n_{\beta}^{\infty,0}$ : 1,5391;  $n_{\alpha}^{\infty,3}$ : 1,5167;  $n_{\Gamma}^{\infty,3}$ : 1,5210;  $n_{\beta}^{5,3}$ : 1,5339;  $n_{\gamma}^{\infty,3}$ : 1,5446 (v. Au.). Ultraviolett-Absorptionsspektrum des Dampfes: Errera, Henri, J. Phys. Rad. [6] 9, 205, 249; C. 1928 ÎI, 2704; 1929 I, 1308; des Dampfes im Gemisch mit Stickstoff bis zu 150 Atm. Druck: Teves, Z. Phys. 48, 247; C. 1928 II, 12. Extinktion wäßr. Lösungen im Ultraviolett: Dahm, J. opt. Soc. Am. 15, 272; С. 1928 I, 1682. Kathodenluminescenz: Marsh, Soc. 1927, 128. Teslaluminescenzspektrum: Russell, Stewart, Soc. 1929, 2434. Ramanspektrum: Dadieu, Kohlrausch, M. 52, 386; B. 63 [1930], 260. Dielektr.-Konst. bei 20°: 2,67; bei  $55^{\circ}$ : 2,42 (Errera, *Phys. Z.* 27, 766; *C.* 1927 I, 1928); bei  $58^{\circ}$ : 2,62 ( $\lambda=95\,\mathrm{m}$ ) (Kerr, *Phil. Mag.* [7] 3, 332; *C.* 1927 II, 388). Besitzt kein Dipolmoment (E., *C. r.* 182, 1624; Smyth, Morgan, Boyce, *Am. Soc.* 50, 1544).

Zusammensetzung der festen und flüssigen Phasen im ternären System aus 1.4-Dichlorbenzol, 1.4-Dibrom-benzol und 89 %igem Alkohol: G. MEYER, R. 42, 306. Thermische Analyse des Systems mit Schwefel: Bruni, Pelizzola, R.A.L. [5] 30 II, 158. Azeotrope Gemische, die 1.4-Dichlor-benzol enthalten, s. in der Tabelle auf S. 155. Dichte und Dielektr.-Konst. der Gemische mit Benzol bei 0°, 25° und 50°: Smyth, Morgan, Boyce, Am. Soc. 50, 1542; vgl. Errera, C. r. 182, 1624. Einfluß von 1.4-Dichlor-benzol auf die Geschwindigkeit der Reaktion von Allylbromid mit Pyridin: KERR, Soc. 1929, 241.

<sup>1)</sup> In der Tabeile des Originals iritumlich als p-CaHaCla bezeichnet.

### 1.4-DICHLOR-BENZOL

## 1.4-Dichlor-benzol enthaltende binäre Azeotrope.

| Komponente                                                                                                                                                                        | Kp <sub>760</sub><br>0                                                                    | 1.4-Dichlor-<br>benzol<br>in Gew% | Komponente                                                                                                                                                                         | Kp760                                                                                                     | 1.4-Dichlor-<br>benzol<br>in Gew%                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| d-Limonen 3) Glycerin-a.a'-dichlor- hydrin 3) Diisoamyläther 4) Hexylalkohol 5) Cyclohexanol 2) Phenol 3) p-Kresol-methyl- äther 5) Benzaldehyd 4) Acetamid 1) Chloressigsäure 2) | 174,2<br>168,2<br>172,4<br>157,75<br>160,1<br>171,0<br>177,07<br>174,1<br>169,9<br>167,55 | 86<br>55<br>36,5<br>81,3<br>      | Trichloressigsäure 3) Propionamid 1) Buttersäure 4). Isobuttersäure 5) Isovaleriansäure 4). Dimethyloxalat 3) Diäthyloxalat 3) Dimethylmalonat 4) Anilin 1) Cineol 2) Furfurol 3). | 174,0<br>172,9<br>160,0<br>153,0<br>168,95<br>162,05<br>174,25(?)<br>171,0<br>173,9<br>ea. 173,5<br>160,3 | ca. 88<br>97<br>45<br>28<br>72<br>35<br>ca. 5<br>72<br>87<br>ca. 80<br>36,5 |

<sup>1)</sup> Lecat. R. 47, 16, 17. — 2) L., Ann. Soc. scient. Bruxelles 45 I [1926], 172, 290. — 2) L., Ann. Soc. scient. Bruxelles 47 I [1927], 24, 155. — 4) L., Ann. Soc. scient. Bruxelles 48 I [1928], 19, 118, 119, 120, 121. — 5) L., Ann. Soc. scient. Bruxelles 49 [1929], 25, 111.

## Chemisches Verhalten.

Beim Überleiten von dampfförmigem 1.4-Dichlor-benzol mit Wasserstoff über Nickel bei 270° entstehen Benzol und Chlorbenzol (Mailhe, Caoutch, Guttap, 18, 10909; C. 1921 III, 467). 1.4-Dichlor-benzol liefert beim Behandeln mit 2 Mol Chlor auf dem Wasserbade in Gegenwart von Eisenpulver 1.2.4.5-Tetrachlor-benzol als Hauptprodukt (Holleman, R. 39, 737). Gibt bei weiterem Chlorieren mit entsprechenden Mengen Sulfurylchlorid in Dischwefeldichlorid in Gegenwart von Aluminiumchlorid 1.2.4-Trichlor-benzol und 1.2.4.5-Tetrachlor-benzol neben wenig 1.2.3.5-Tetrachlor-benzol (SILBERRAD, Soc. 121, 1019). Zur Nitrierung von 1.4-Dichlor-benzol vgl. Ho., R. 39, 440; den Hollander, van Haeften, Versl. Akad. Amsterdam 28, 488; C. 1920 III, 338; Ho., den H., van H., R. 40, 323; Macleod, Pfund, Kilpatrick, Am. Soc. 44, 2260; Page, Heasman, Soc. 123, 3247; Turski, Piotrowski, Winawer, Przem. chem. 11, 368, 369; C. 1927 II, 809. 1.4-Dichlor-benzol liefert beim Erhitzen mit rauchender Schwefelsäure (10—12% SO<sub>3</sub>) auf 140—150° 2.5-Dichlor-benzol-sulfonsäure-(1) und wenig 2.5.2'.5'-Tetrachlor-diphenylsulfon (Crowell, Raiford, Am. Soc. 42, 147). Gibt bei 1-stdg. Erhitzen mit 5 Mol Chlorsulfonsäure auf 120—150° 2.5-Dichlor-benzol-sulfochlorid-(1) (Stewart, Soc. 121, 2557; Gebauer-Fülnegg, Figdor, M. 48, 630); bei 48-stdg. Erhitzen mit einem großen Überschuß an Chlorsulfonsäure auf 140° entstehen 2.5-Dichlor-benzol-disulfochlorid-(1.3), geringe Mengen 2.5-Dichlor-benzol-disulfochlorid-(1.4) und Hexachlorbenzol (Ge.-Fü., Fl., M. 48, 632). Beim Erhitzen mit viel Chlorsulfonsäure und Natriumchlorid auf 210—220° erhält man Hexachlorbenzol als Hauptprodukt (Ge.-Fü., Fl., M. 48, 637). Liefert beim Behandeln mit Butylchlorid und Natrium in Xylol bei 110—150° 1.4-Dibutyl-benzol, Diphenyl und andere Produkte (Morgan, Hickinbottom, Soc. 119, 1891). Gibt mit Natriumtrimethylzinn in flüssigem Ammoniak + Ather p-Phenylen-bis-trimethylstannan (CH<sub>3</sub>)<sub>3</sub>Sn·C<sub>6</sub>H<sub>4</sub>·Sn(CH<sub>3</sub>)<sub>3</sub> (Kraus, Sessions, Am. Soc. 47, 2365).

Physiologisches Verhalten (Giftigkeit für Insekten und Würmer usw.): H. STAUB in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 70. 78; SOLLMANN, C. 1920 I, 513; TATTERSFIELD, GIMINGHAM, J. Soc. chem. Ind. 46, 369 T: C. 1927 II, 1884. — Verwendung zur Bekämpfung von Pflanzenschädlingen: Chem. Fabr. Dr. Reis, D. R. P. 454899; C. 1928 I, 2446; Frdl. 15, 1801; zur Bekämpfung der Kleidermotte und anderer Insekten (unter der Bezeichnung Globol): Agfa, D. R. P. 258405; Frdl. 15, 1764; Küster, Günzler, C. 1915 II, 284; Curschmann, C. 1915 II, 481; Cifferri, C. 1929 II, 2478. — Bestimmung in technischem Chlorbenzol durch fraktionierte Destillation: Bourion, C. r. 170, 933; A. ch. [9] 14, 218.

<sup>4-</sup>Fluor-1.2-dichlor-benzol C<sub>6</sub>H<sub>3</sub>Cl<sub>2</sub>F, Formel I auf S. 156. B. Aus diazotierten 5-Fluor-2-chlor-anilin mittels der Sandmeyerschen Reaktion (DE CRAUW, R. 48, 1063). In kleiner Menge durch Diazotieren von 3.4-Dichlor-anilin in stark schwefelsaurer Lösung und Behandlung mit heißer Flußsäure (KRAAY, R. 48, 1055). — Flüssigkeit. Ein nicht völlig reines Produkt hatte KP<sub>783-6</sub>: 170,9—171,4° (KR.). — Liefert beim Erhitzen mit Natriummethylat-Lösung 3.4-Dichlor-phenol (DE CR.).

**2-Fluor-1.4-dichlor-benzol**  $C_0H_3Cl_0F$ , Formel II. B. Aus 3-Fluor-4-chlor-anilin nach Sandmeyer (de Crauw, R. 48, 1063). — F:  $+2^{\circ}$ .  $Kp_{760}$ :  $168^{\circ}$ . — Liefert beim Erhitzen mit Natriummethylat-Lösung 2.5-Dichlor-phenol.



1.2.3-Trichlor-benzol C<sub>6</sub>H<sub>2</sub>Cl<sub>8</sub>, Formel III (H 203; E I 112). Liefert beim Erwärmen mit Salpetersäure (D: 1,5) auf 50—60° 2.3.4-Trichlor-1-nitro-benzol (BELISTEIN, KURBATOW, A. 192 [1878], 235; HOLLEMAN, R. 39, 448). Beim Kochen mit Salpeterschwefelsäure entsteht 4.5.6-Trichlor-1.3-dinitro-benzol (Hüffer, R. 40, 452). Liefert beim Erwärmen mit Chlorsulfonsäure auf ca. 70° 2.3.4-Trichlor-benzol-sulfochlorid-(1) (I. G. Farbenind., E. P. 287178; C. 1929 II, 352).

1.2.4-Trichlor-benzol C<sub>6</sub>H<sub>3</sub>Cl<sub>3</sub>, Formel IV (H 204; E I 112). B. Neben anderen Produkten beim Leiten von Benzol-Dampf oder Chlorbenzol-Dampf und Chlor über Kupfer bei 200° (Tei, Komatsu, Mem. Coll. Sci. Kyoto [A] 10, 327, 329; C. 1928 I, 2370). Beim Chlorieren von 1.3-Dichlor-benzol mit 2 Atomen Chlor in Gegenwart von Aluminiumchlorid bei 60° (OLIVIER, R. 39, 412) oder von 1.4-Dichlor-benzol mit 1 Mol Sulfurylchlorid in bei 60° (OLIVIER, R. 39, 412) oder von 1.4-Dichlor-benzol mit 1 Mol Sulfurylchlorid in Dischwefeldichlorid in Gegenwart von Aluminiumchlorid unter Kühlung (SILBERRAD, Soc. 121, 1019). Durch Erhitzen von 2-Chlor-benzol-disulfochlorid-(1.4) mit Phosphorpentachlorid im Rohr bei 210° (OL., R. 39, 502). Beim Eintragen der Blei(IV)-chlorid-Verbindung des 2.4-Dichlor-benzol-diazoniumchlorids-(1) in eine warme Lösung von Kupfer(I)-chlorid in konz. Salzsäure (Chattaway, Garton, Parkes, Soc. 125, 1985). — F: 17—18° (OL., R. 39, 502). Kp: 212—213° (SI.), 213° (Ch., G., P.). — Verteilung von Diäthylamin zwischen 1.2.4-Trichlor-benzol und Wasser bei 25°: SMITH, J. phys. Chem. 26, 271. Kontaktwinkel mit Wasser: NIETZ, J. phys. Chem. 32, 261.

Liefert beim Kochen mit Salpeterschwefelsäure quantitativ 2.4.5-Trichlor-1.3-dinitro-Liefert beim Kochen mit Salpeterschwetelsäure quantitativ 2.4.5-Trichlor-1.3-dinitrobenzol (JUNGFLEISCH, A. ch. [4] 15 [1868], 275; HÜFFER, R. 40, 452). Gibt beim Erhitzen mit methylalkoholischer Natronlauge auf 180—190° 2.5-Dichlor-phenol (AGFA, D. R. P. 349794; C. 1922 IV, 45; Frdl. 14, 428). Geschwindigkeit der Umsetzung mit 1 n-alkoh. Kalilauge und mit 1 n-Natriumäthylat-Lösung im Rohr bei 151° bzw. 175°: CLARK, CROZIER, Trans. roy. Soc. Canada [3] 19 III, 155; C. 1926 II, 20.

Insecticide Wirkung: TATTERSFIELD, GIMINGHAM, J. Soc. chem. Ind. 46, 369 T; C. 1927 II, 1884; H. STAUB in J. HOUBEN, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II

[Berlin-Leipzig 1932], S. 78 im Artikel Jodbenzol.

1.3.5-Trichlor-benzol C<sub>6</sub>H<sub>3</sub>Cl<sub>3</sub>, s. nebenstehende Formel (H 204; E I 113). B. Entsteht, wenn Chloracetylen im Gemisch mit Stickstoff der Licht- und Wärmestrahlung einer 100 Watt-Lampe ausgesetzt wird (INGOLD, Soc. 125, 1536). Zur Bildung von 1.3.5-Trichlor-benzol beim Chlorieren eines Gemisches von 1.3-Dichlorbenzol und 1.4-Dichlor-benzol in Gegenwart von Aluminiumchlorid (MOUNEYRAT, POURET, Der Lieban, van Haeften, R. 40, 74; Davies, Poole, Soc. 1927, 1123. — Kp<sub>760</sub>: 208,4° (Lecat, Ann. Soc. scient. Bruxelles 49 [1929], 111). Bildet azeotrope Gemische mit m-Kresol (Kp<sub>760</sub>: 200,5°; 40 Gew.-% 1.3.5-Trichlor-benzol) und p-Kresol (Kp<sub>760</sub>: 200,2°; 40 Gew.-% 1.8.5-Trichlor-benzol) und p-Kresol (Kp<sub>760</sub>: 20 angegriffen; bei längerem Erwärmen mit rauchender Schwefelsäure (72% SO<sub>3</sub>) auf dem Wasserbad entsteht 2.4.6-Trichlor-benzol-disulfonsäure-(1.3) (DAVIES, POOLE, Soc. 1927, 1123, 1124). Geschwindigkeit der Reaktion mit 0,5 n-Natriummethylat-Lösung bei 176°: Holleman, R. 39, 749.

5-Fluor-1.2.4-trichlor-benzol C<sub>6</sub>H<sub>2</sub>Cl<sub>2</sub>F, Formel V. B. Aus diazotiertem 5-Fluor-2.4-dichlor-anilin nach Sandmeyer (de Crauw, R. 48, 1065). — F: 62°. Mit Wasserdampf flüchtig. - Liefert beim Erhitzen mit Natriummethylat-Lösung 2.4.5-Trichlor-phenol.

1.2.3.4-Tetrachlor-benzol C<sub>6</sub>H<sub>2</sub>Cl<sub>4</sub>, Formel VI (H 204). B. Aus 3.6-Dichlor-2-nitroanilin durch Diazotieren in verd. Salzsäure und Behandeln mit Kupfer(I)-chlorid-Lösung

oder Kupferpulver (Holleman, R. 39, 741; Ho., Van Haeften, R. 40, 70). — F: 47,5° (Ho.). — Liefert beim Erhitzen mit Natriummethylat-Lösung auf 180° 2.3.6-Trichlor-phenol und 2.3.4-Trichlor-anisol (Ho.). Geschwindigkeit der Reaktion mit 0,5n-Natriummethylat-Lösung im Rohr bei 176°: Ho., R. 39, 749.

1.2.3.5 - Tetrachlor - beneol C<sub>6</sub>H<sub>2</sub>Cl<sub>4</sub>, Formel VII (H 204; E I 113). B. In geringer Menge beim Behandeln von 1.4-Dichlor-benzol mit 2 Mol Sulfurylchlorid in Dischwefeldichlorid in Gegenwart von Aluminiumchlorid bei 40—80° (SILBERRAD, Soc. 121, 1020). Durch Erhitzen von 2.5 - Dichlor - benzol - disulfochlorid - (1.3) (Gebauer-Fülnegg, Figdor, M. 48, 633) oder von 2-Chlor-benzol-trisulfochlorid - (1.3.5) (Olivier, R. 39, 197) mit Phosphorpentachlorid im Rohr auf 160—180° bzw. 200—210°. Zur Bildung aus 2.4.6-Trichloranilin nach Sandmeyer vgl. Holleman, R. 39, 739. Entsteht auch aus 3.4.5-Trichlor-anilin beim Diazotieren und Behandeln mit Kupfer(I)-chlorid-Lösung bei 0°: Bebckmans, Ho., R. 44, 856. — Liefert beim Erhitzen mit 0,5 n-Natriummethylat-Lösung im Rohr auf 180° 2.3.5-Trichlor-phenol und 2.3.5-Trichlor-anisol; Geschwindigkeit dieser Reaktion bei 176°: Ho., R. 39, 749.

1.2.4.5-Tetrachlor-benzol C.H.Cl., Formel VIII (H 205; E I 113). B. Neben anderen Produkten beim Überleiten von dampfförmigem Benzol oder Chlorbenzol und Chlor über Kupfer bei 200° (Tei, Komatsu, Mem. Coll. Sci. Kyoto [A] 10, 327, 329; C. 1928 I, 2370). Zur Bildung durch Chlorierung von Benzol oder 1.4-Dichlor-benzol in Gegenwart von Eisen vgl. Holleman, R. 39, 736. Bei der Chlorierung von 1.4-Dichlor-benzol mit 2 Mol Sulfurylchlorid in Dischwefeldichlorid in Gegenwart von Aluminiumchlorid bei 40—80° (Silberadd, Soc. 121, 1020). Aus 2.5-Dichlor-benzol-disulfochlorid-(1.4) und Phosphorpentachlorid im Rohr bei 180° (Gebauer-Fülnegg, Figdor, M. 48, 634). In kleiner Menge neben 2.4.5-Trichlor-1-nitro-benzol beim Behandeln von in salzsaurer Lösung diazotiertem 5-Chlor-2.4-dinitro-anilin mit Kupfer(I)-chlorid-Lösung (Hodgson, J. Soc. Dyers Col. 42, 368; C. 1927 I, 1431). — Molekularwärme zwischen —172° (20,8 cal/Mol) und +62,6° (55,4 cal/Mol): Andrews, Haworth, Am. Soc. 50, 3000. Röntgenluminescenzspektrum: De Beaujeu, J. Phys. Rod. [6] 4, 261; C. 1924 I, 134. Ist entgegen älteren Angaben löslich in kaltem Alkohol (G.-F., FI.).

1.2.4.5-Tetrachlor-benzol liefert bei weiterem Chlorieren mit Sulfurylchlorid in Gegenwart von Dischwefeldichlorid und Aluminiumchlorid in Thionylchlorid oder Tetrachlor-kohlenstoff wenig Pentachlorbenzol und viel Hexachlorbenzol (Silberrad, Soc. 121, 1021). Beim Kochen mit einem Gemisch von Salpetersäure (D: 1,52) und rauchender Schwefelsäure (25 % SO<sub>3</sub>) entstehen 2.3.5.6-Tetrachlor-1.4-dinitro-benzol und Zersetzungsprodukte (Berokmans, Holleman, R. 44, 851). Gibt beim Erhitzen mit Alkalihydroxyden und Alkoholen auf höhere Temperatur 2.4.5-Trichlor-phenol (Agfa, D. R. P. 349794; C. 1922 IV, 45; Frdl. 14, 428). Beim Erhitzen mit 0,5 n-Natriummethylat-Lösung im Rohr auf 180° entstehen 2.4.5-Trichlor-phenol und 2.4.5-Trichlor-anisol (Ho., R. 39, 737); Geschwindigkeit der Reaktion mit 0,5 n-Natriummethylat-Lösung bei 176°: Ho., R. 39, 749; mit 1 n-alkoholischer Kalilauge bei 151° und 175° und mit 1 n-Natriumäthylat-Lösung bei 175°: Clark, Croxier, Trans. roy. Soc. Canada [3] 19 III, 155; C. 1926 II, 20. — Insecticide Wirkung: Tattersfield, Gimingham, J. Soc. chem. Ind. 48, 369 T; C. 1927 II, 1884.

Pentachlorbenzol C<sub>6</sub>HCl<sub>5</sub> (H 205; E I 113). B. Neben anderen Produkten beim Uberleiten von Chlorbenzol-Dampf und Chlor über Kupfer bei 200° (Tei, Komarsu, Mem. Coll. Sci. Kyoto [A] 10, 329; C. 1928 I, 2370). Zur Bildung nach Thomas (C. r. 126 [1898], 1212) vgl. Holleman, R. 39, 745. Neben viel Hexachlorbenzol beim Behandeln von 1.2.4.5-Tetrachlor-benzol mit 1 Mol Sulfurylchlorid in Gegenwart von Dischwefeldichlorid und Aluminiumchlorid in Thionylchlorid oder Tetrachlorkohlenstoff bei 40—80° (Silberrad, Soc. 121, 1021). Aus 2.3.5.6-Tetrachlor-anilin durch Diazotieren in konz. Schwefelsäure und Behandeln mit salzsaurer Kupfer(I)-chlorid-Lösung (Ho., R. 39, 746). — Liefert beim Erhitzen mit 0,5 n-Natriummethylst-Lösung im Rohr auf 180° 2.3.4.5-Tetrachlor-phenol und 2.3.5.6-Tetrachlor-phenol; Geschwindigkeit dieser Reaktion bei 176°: Ho., R. 39, 749.

Hexachlorbenzol C<sub>6</sub>Cl<sub>4</sub> (H 205; E I 113). B. Als Hauptprodukt beim Erhitzen von 1.4-Dichlor-benzol mit sehr viel Chlorsulforsäure und Natriumchlorid auf 210—220° (Gebauer-Fülnegg, Figdor, M. 48, 637). Beim Erwärmen von 1.2.4.5-Tetrachlor-benzol mit Sulfurylchlorid in Gegenwart von Aluminiumchlorid in Dischwefeldichlorid (Silberrad, Soc. 121, 1021). Durch Chlorieren von 4.6-Dichlor-1.3-dinitro-benzol in Gegenwart von Eisenpulver bei 140—150° oder von 2.5-Dichlor-1.4-dinitro-benzol in Gegenwart von Eisen(III)-chlorid bei 180° (Hüffer, R. 40, 452, 456). Bei mehrtägigem Erhitzen von Resorcin mit 100 Tin. Chlorsulfonsäure auf 160—170° (Pollak, Gebauer-Fülnegg, Blumenstock, M. 46, 514). Aus Phloroglucin bei 70-stdg. Erhitzen mit 50 Tin. Chlorsulfonsäure auf 150° bis 160° oder durch 2-stdg. Erhitzen mit 50 Tin. Chlorsulfonsäure und Natriumchlorid auf 180—200° (P., G.-F., M. 47, 553). Aus Hydrochinon-disulfochlorid-(2.5) und Phosphorpentschlorid im Rohr bei 140° (Littvay, Riesz, Landau, B. 62, 1867). Durch Erhitzen

von Pyrogallol-disulfonsäure-(4.6) oder von Pyrogallol-disulfochlorid-(4.6) mit Thionylchlorid im Rohr auf 250° (P., G.-F., M. 47, 556, 557).

IM Kohr auf 250° (P., G.-F., M. 47, 556, 557).

Röntgenogramm: Mark, B. 57, 1826; Plummer, Phil. Mag. [6] 50, 1215; C. 1926 I, 1930. Härte: Reis, Zimmermann, Ph. Ch. 102, 329. F: 228° (Pollak, Gebauer-Fülnegg, Blumenstock, M. 46, 514), 229,5° (kort.) (Clark, Crozier, Trans. roy. Soc. Canada [3] 19 III [1925], 154). Molekularwärme zwischen —172,0° (20,5 cal/Mol) und +62,6° (71,8 cal/Mol): Andrews, Hawoeth, Am. Soc. 50, 3000. Kathodenluminescenz: Marsh, Soc. 1927, 128. Röntgenluminescenzspektrum: De Beaujeu, J. Phys. Rad. [6] 4, 261; C. 1924 I, 134. — Schwer löslich in kaltem Tetrachlorkohlenstoff (Gebauer-Fülnegg, Figdor, M. 48, 637). Löslichkeit in p-Cymol bei verschiedenen Temperaturen: Wheeler, Am. Soc. 42, 1844. Unlöslich in flüssigem Schwefeldioxyd und in flüssigem Ammoniak (De Carli, G. 57, 351). Verhalten polymolekularer Filme auf Calciumchlorid-Lösung: Harkins, Morgan, P.: nation. Acad. USA. 11, 641; C. 1926 I, 1949; Ha., Colloid Symp. Mon. 5, 24; C. 1928 II, 229.

Beim Überleiten von dampfförmigem Hexachlorbenzol mit Wasserstoff über Nickel bei 270° entstehen Trichlorbenzol, Dichlorbenzole, Chlorbenzol und Benzol (MAILHE, Caoutch. Guttap. 18, 10909; C. 1921 III, 467). Liefert beim Erhitzen mit 0,5 n-Natriummethylat-Lösung im Rohr auf 180° Pentachlorphenol und Pentachloranisol (Holleman, R. 39, 749); Geschwindigkeit der Reaktion mit Natriummethylat-Lösung bei 151°: Clark, Crozier, Trans. roy. Soc. Canada [3] 19 III, 155; C. 1926 II, 20; bei 176°: Ho.; mit alkoh. Kalilauge bei 151° und mit Natriumäthylat-Lösung bei 175°: Cl., Cr. [Knobloch]

# c) Brom-Derivate.

Brombenzol C<sub>6</sub>H<sub>5</sub>Br (H\_206; E I 113). B. Beim Kochen von niedrigschmelzendem 1.2.3.4-Tetrabrom-cyclohexan mit Natriumäthylat-Lösung (F. Hofmann, Damm, Mitt. Kohlenforschungsinst. Breslau 2, 121; C. 1926 I, 2343). Durch Erhitzen von Benzol mit ¹/2 Mol Brom bei allmählicher Zugabe von Salpetersäure (D: 1,52) oder eines Gemisches von rauchender Salpetersäure und Nitrosulfonsäure oder von Salpetersäure (D: 1,52) und rauchender Schwefelsäure (10% SO<sub>3</sub>) auf dem Wasserbad (Varma, Narayan, Quart. J. indian chem. Soc. 4, 285; C. 1928 I, 489). Bei der Elektrolyse einer Suspension von Benzol in konz. Bromwasserstoffsäure (an Graphit-Anoden und Platin-Kathoden) bei 45° (Croco, Lowy, Trans. am. electroch. Soc. 50, 318; C. 1927 I, 421). Durch vorsichtiges Erwärmen von Benzol und Selen(II)-bromid in Gegenwart von Aluminiumbromid in Schwefelkohlenstoff-Lösung, neben Diphenylmono- und -diselenid (Loevenich, Sipmann, J. pr. [2] 124, 130). Neben anderen Produkten aus Benzol und Bromnitromethan bei Gegenwart von Aluminiumchlorid (Sherrill, Am. Soc. 46, 2756). Aus Dibenzoylperoxyd beim Behandeln mit Phosphoroxybromid bei 192° im Stickstoffstrom, neben Benzoesäure (Reynhart, R. 46, 67). Bei der Einw. von Kupferhydrid auf diazotiertes Anilin in Bromwasserstoffsäure bei 0° (Neogi, Mitra, Soc. 1928, 1332). In geringer Menge beim Erhitzen von 1.4-Dibrombenzol mit Aluminiumchlorid, neben anderen Produkten (Copisarow, Soc. 119, 447). Aus Phenylmagnesiumbromid und p-Toluolsulfobromid in Äther unter Kühlung (Gilman, Fothergill, Am. Soc. 51, 3506). Entsteht auch bei Einw. von Magnesium auf 1.3- und 1.4-Dibrom-benzol in Alkohol in Gegenwart von Jod und Zersetzen des Reaktionsprodukts mit Wasser (Salkind, Rogowina, Ж. 59, 1015, 1017; C. 1928 I, 2939). Bei der Einw. von Brom auf Zinntetraphenyl (Bost, Borgstrom, Am. Soc. 51, 1922) und auf Phenylzinntribromid (Kotscheschkow, B. 62, 998).

### Physikalische Eigenschaften.

Kp<sub>760</sub>: 156,15° (Timmermans, Martin, J. Chim. phys. 23, 782). Kp<sub>762</sub>: 156,2—156,3° (Tsukamoto, Japan. J. Chem. 2, 137; C. 1928 II, 2108); Kp<sub>762</sub>: 155° (kort.) (Sugden, Soc. 125, 1172); Kp<sub>467</sub>: 140°; Kp<sub>16</sub>: 40° (Herbst, Koll. Beih. 23, 332; C. 1926 II, 2544); Kp: 156,2—156,3° (Williams, Krchma, Am. Soc. 48, 1891). Maximaler Siedeverzug bei Atmosphärendruck: Kenrick, Gilbert, Wismer, J. phys. Chem. 28, 1302. Kritische Dichte: 0,4853 (Herz, Ar. 1927, 213). D; zwischen —0,1° (1,5220) und 142,5° (1,3250): J. Meyer, Mylius, Ph. Ch. 95, 356; D; 1,52200; D; 1,50170; D; 1,48150 (Timmermans, Martin, J. Chim. phys. 23, 782); D; 1,5038; D; 1,4986 (v. Auwers, A. 422, 164); D; 1,4875 (Tsukamoto, Japan. J. Chem. 2, 137; C. 1928 II, 2108); D; 1,444 (Kerr, Phil. Mag. [7] 3 [1927], 332); D; 1,507; D; 1,507; D; 1,508; 1,4944 (Miller, Pr. roy. Soc. [A] 106 [1924], 740). Isotherme Kompressibilität bei 0 und 8 Atm. Überdruck bei 8,37°: 57,02×10-4 Atm<sup>-1</sup>, bei 17,75°: 62,28×10-6 Atm<sup>-1</sup> (K. Schmidt, Ann. Phys. [4] 76, 571). Viscosität zwischen —0,1° (0,01566) und 142,5° (0,00385 g/cmsec): J. Meyer, Mylius, Ph. Ch. 95, 356. Viscosität bei 8,81°: 0,01306; bei 19,91°: 0,01133 (Miller, Pr. roy. Soc. [A] 106 [1924], 740); bei 15°: 0,01196; bei 30°: 0,00985 g/cmsec (Timmermans, Martin, J. Chim. phys. 23,784). Viscosität bei 30° und 75° bei Drucken bis zu 8000 kg/cm³: Brigdman, Pr. nation.

Acad. USA. 11, 605; Pr. am. Acad. Arts Sci. 61, 80; C. 1926 I, 1919; II, 1923. Oberflächenspannung zwischen 15° (37,92) und 150° (22,50 dyn/cm): Sugden, Soc. 125, 1182; bei 20° und 60°: Postowski, Ж. 61, 721; С. 1931 II, 427. Parachor: Su.; Post. Molekularwarme cp zwischen —172° (14,3) und —41,5° (30,5 cal/Mol): Andrews, Haworth, Am. Soc. 50, 3000; zwischen 20° (36,18) und 80° (38,45 cal/Mol): WILLIAMS, DANIELS, Am. Soc. 47, 1491. Verdampfungswärme bei 154,79°: 57,63 cal/g (Mathews, Am. Soc. 48, 572). Flüchtigkeit: Herbst, Koll. Beih. 23, 332; C. 1926 II, 2544).

 $n_D^{i_5}$ : 1,56252;  $n_B^{i_5}$ : 1,57636;  $n_Y^{i_5}$ : 1,58837 (Timmermans, Martin, J. Chim. phys. 23, 784);  $n_0^m$ : 1,5572 (J. Meyer, Mylius, *Ph. Ch.* 95, 356);  $n_0^m$ : 1,55711 (Williams, Krchma, *Am. Soc.* 48, 1891). Brechungsindices zwischen 420 (1,5937) und 285 m $\mu$  (1,7042) bei 15,9°: Vorllmy, Ph. Ch. 127, 348. Einfluß des Druckes auf die Brechungsexponenten für  $\lambda = 653$ , 589 und 543 mµ: HIMSTEDT, WERTHEIMER, Ann. Phys. [4] 67, 399. Lichtabsorption von flüssigem Brombenzol im Ultrarot zwischen 1 und 15 µ: W. W. COBLENTZ, Investigations of infra-red spectra [Washington] 1905, S. 240; vgl. a. BARNES, Nature 124, 300; C. 1929 II, 2016; von Brombenzol-Dampf: PURVIS, Pr. Cambridge phil. Soc. 21, 563; C. 1923 III, 979; vgl. a. HENRI, C. r. 177, 1039. Lichtzerstreuung und Depolarisationsgrad des zerstreuten Lichts an flüssigem Brombenzol: Gans, Z. Phys. 30, 233; C. 1925 I, 1565; II, 1509; KRISHNAN, Phil. Mag. [6] 50, 706; C. 1926 I, 838; BANERJEE, Indian J. Phys. 2, 59; C. 1928 I, 1838; S. R. RAO, Indian J. Phys. 3, 25; C. 1929 I, 20; in dampfförmigem Brombenzol: Ganesan, Phil. Mag. [6] 49, 1220; C. 1925 II, 1011; I. R. Rao, Indian J. Phys. 2, 84; C. 1928 I, 1838. Ramaneffekt: Dadieu, Kohlrausch, Phys. Z. 30, 384; C. 1929 II,

2, 84; C. 1928 I, 1838. Ramaneffekt: Dadieu, Kohlrausch, Phys. Z. 30, 384; C. 1929 II, 970; M. 52, 381; B. 63 [1930], 259; Wood, Phil. Mag. [7] 7, 862; C. 1929 II, 1135; Petrikaln, Hochberg, Ph. Ch. [B] 3, 221; Pe., Ph. Ch. [B] 3, 362, 405. Fluorescenz bei Bestrahlung mit Röntgenstrahlen: Newcomer, Am. Soc. 42, 2002.

Dielektr. Konst. bei — 20°: 6,40; bei 0°: 5,90; bei 20°: 5,53; bei 100°: 4,56 (Bergholm, Ann. Phys. [4] 65, 136); bei 12—14°: 5,47 (Walden, Ulich, Werner, Ph. Ch. 116, 264); bei 25°: 5,397 ± 0,005 (Williams, Krchma, Am. Soc. 48, 1891).; bei 58°: 4,92 (Kerr, Phil. Mag. [7] 3, 332; C. 1927 II, 388); bei 26,6° und Drucken zwischen 10 und 60 Atm.: Grenacher, Ann. Phys. [4] 77, 154. Dipolmoment "μ × 10<sup>18</sup>: 1,56 (in Benzol-Lösung bei unendlicher Verdünnung) (Höjendahl, Phys. Z. 30, 394; C. 1929 II, 1898; Nature 117, 892; C. 1926 II, 114). Zum Dipolmoment vgl. ferner Williams, Phys. Z. 29, 683; Am. Soc. 50, 2351; Smyth, Am. Soc. 46, 2163. Elektrische Leitfähigkeit bei 25°: Rabinowitsch. Ph. Ch. SMYTH, Am. Soc. 48, 2163. Elektrische Leitshigkeit bei 25°: Rabinowitsch, Ph. Ch. 119, 72; Ж. 58, 233. Elektrische Doppelbrechung zwischen —20° und 100°: Bergholm. Magnetische Doppelbrechung: Szivessy, Z. Phys. 18, 102; C. 1924 I, 2567; Raman, Krishnan, Pr. roy. Soc. [A] 113, 518; C. 1927 I, 1127; zwischen 4,7° und 54,7°: Sz., Ann. Phys. [4]

**68**, 151.

Verteilung von Diäthylamin zwischen Brombenzol und Wasser bei 25°: Sмітн, J. phys. Chem. 26, 269. Thermische Analyse der Gemische mit  $N_2O_4$ : Pascal, Bl. [4] 33, 543. Brombenzol enthaltende binäre Azeotrope s. in der untenstehenden Tabelle. Über Destillation von Gemischen aus Benzol, Chlorbenzol und Brombenzol vgl. TSUKAMOTO, Japan. J. Chem. 2, 137; C. 1928 II, 2108. Dichte binärer Gemische mit Methanol, Aceton, Benzol und Toluol: Burrows, James, J. Pr. Soc. N. S. Wales 59, 226; C. 1927 II, 894; mit Benzol:

Brombenzol enthaltende binäre Azeotrope.

| Komponente                  | Kp760<br>0 | Gehalt an<br>Brombenzol<br>in Gew% | Komponente           | Kp <sub>760</sub><br>0 | Gehalt an<br>Brombenzol<br>in Gew% |  |  |
|-----------------------------|------------|------------------------------------|----------------------|------------------------|------------------------------------|--|--|
| Trichlorhydrin 4)           | 155,65     | 70                                 | Acetamid 8)          | 154,85                 | 95,8                               |  |  |
| Camphen <sup>3</sup> )      | 155,0      | 56                                 | Chloressigsäure 2).  | 154,3                  | 89                                 |  |  |
| Glycerin-a-dichlor-         | •          |                                    | Bromessigsäure-      | •                      |                                    |  |  |
| hydrin¹)                    | 155,5      | 91                                 | äthylester 7)        | 152,5                  | 40                                 |  |  |
| Isobutylalkohol 4) .        | 131,05     | 15                                 | Isovaleriansäure 8). | <b>154,</b> 8          | 92                                 |  |  |
| Hexylalkohol 7)             | 151,6      | 66                                 | Propyliso-           |                        |                                    |  |  |
| Äthylenglykol $^{\delta}$ ) | 150,2      | .87,5                              | valerianat 2)        | 154,5                  | 57                                 |  |  |
| Pinakon 6)                  | 153,2      | 85                                 | Äthyllactat 1)       | 149,7                  | 47                                 |  |  |
| Ameisensäure 8)             | 99,9       | 22                                 | Furfurol 1)          | 153,3                  | 77                                 |  |  |

Lecat, R. 45, 622. — <sup>2</sup>) L., R. 46, 243. — <sup>3</sup>) L., Ann. Soc. scient. Bruxelles 45 I [1926], 174. — <sup>4</sup>) L., Ann. Soc. scient. Bruxelles 45 I 288. — <sup>5</sup>) L., Ann. Soc. scient. Bruxelles 47 I [1927], 26. — <sup>6</sup>) L., Ann. Soc. scient. Bruxelles 47 I, 112. — <sup>7</sup>) L., Ann. Soc. scient. Bruxelles 48 I [1928], 118. — <sup>8</sup>) L., Ann. Soc. scient. Bruxelles 49 [1929], 19, 23, 33.

J. MEYER, MYLIUS, Ph. Ch. 95, 358; WILLIAMS, Phys. Z. 29 [1928], 684; Am. Soc. 50, 2351. Viscosität der binären Gemische mit Benzol bei 18°: MEYER, MYLIUS, Ph. Ch. 95, 370; mit Benzol und Toluol bei verschiedenen Temperaturen: Yajnik, Mitarb., Ph. Ch. 118, 310; mit Chlorbenzol bei verschiedenen Temperaturen: Unkowskaja, Wolowa, Ж. 57, 109, 120; C. 1926 I, 2646. Diffusion von Jod in Brombenzol: MILLER, Pr. roy. Soc. [A] 106 [1924], 737. Grenzflächenspannung gegen Wasser: Harkins, Feldman, Am. Soc. 44, 2671. Oberflächenspannung von Gemischen mit Toluol bei 20°, 35° und 50°: Yajnik, Sharma, Bharadwaj, Quart. J. indian chem. Soc. 3, 66; C. 1926 II, 2147. Absorption von Brombenzol-Dampf durch Tierkohle: Alexedewski, Ж. 55, 417; C. 1925 II, 642. Breitet sich nicht auf Wasser aus (Ha., F.; Ramdas, Indian J. Phys. 1, 20; C. 1926 II, 1935). Spezifische Wärme cp von Gemischen mit Chlorbenzol zwischen 20° und 80°: Williams, Daniels, Am. Soc. 47, 1491.

Brechungsindex von Gemischen mit Chlorbenzol: WILLIAMS, KRCHMA, Am. Soc. 48, 1891. Dielektr.-Konst. der binären Systeme mit Benzol bei 16°: Kerr, Soc. 1926, 2798; bei 25°: WI., Phys. Z. 29 [1928], 684; Am. Soc. 50, 2351; mit Chlorbenzol: WI., Kr.

#### Chemisches Verhalten.

Entzündungstemperatur an der Luft: Masson, Hamilton, Ind. Eng. Chem. 20 [1928], Liefert bei der Reduktion mit Wasserstoff oder Hydrazinhydrat in Gegenwart von Palladium-Calciumcarbonat in alkoh. Kalilauge wechselnde Mengen Benzol und Diphenyl (Busch, Schmidt, B. 62, 2614). In Anwesenheit von N.N-Dimethyl-4-brom-anilin entstehen Diphenyl, N.N.N'. Tetramethyl-benzidin und 4-Dimethylamino-diphenyl (B., Sch.). Beim Erhitzen mit der berechneten Menge Brom und allmählichen Zufügen eines Gemisches von rauchender Salpetersäure und Nitrosulfonsäure erhält man 1.4-Dibrom-benzol (VARMA, von rauchender Salpetersäure und Nitrosulfonsäure erhält man 1.4-Dibrom-benzol (Varma, Narayan, Quart. J. indian chem. Soc. 4, 284; C. 1928 I, 489). Gibt mit Natrium und flüssigem Ammoniak die berechnete Menge Natriumbromid (Dains, Brewster, Am. Soc. 42, 1578). Beim Schütteln von Brombenzol mit Natrium in Benzol in Kohlenoxyd-Atmosphäre entstehen Benzophenon, Triphenylcarbinol, Benzoesäure und Diphenyl; bei gleichzeitiger Gegenwart von Äthylbromid kann auch Äthylphenylketon nachgewiesen werden (Schlubach, Goes, B. 55, 2898). Beim Leiten von Brombenzol und Wasserdampf über auf 500—550° erhitztes Silicium-, Titan-, Aluminium-, Thorium-, Zirkonium- oder blaues Wolframoxyd entstehen Phenol und Diphenyläther (Chalkley, Am. Soc. 51, 2490). Liefert bei der Einw. von Magnesium in Methanol unter Kühlung Benzol (Zechmeister, Rom, A. 468. 127). Geschwindigkeit der Beaktion mit Magnesium in Ather: Guman. Zoellner 468, 127). Geschwindigkeit der Reaktion mit Magnesium in Ather: Gilman, Zoellner, Am. Soc. 50, 2521. Einw. von Magnesium bei Gegenwart von Jodbenzol in Äther: Rudd, TURNER, Soc. 1928, 688. Liefert bei Einw. von Stickstofftetroxyd in Gegenwart von Aluminiumchlorid bei 0-10° ein Gemisch aus viel 4-Brom-1-nitro-benzol und wenig 2-Brom-1-nitro-benzol (SCHAARSCHMIDT, B. 57, 2071). Gibt mit Stickstoffpentoxyd in Tetrachlorkohlenstoff bei 0° 4-Brom-1-nitro-benzol (Haines, Adkins, Am. Soc. 47, 1419). Mit einem Gemisch aus Nitrosylschwefelsäure + rauchender Salpetersäure (D: 1,502) erhält man 4-Brom-1-nitro-benzol (Varma, Kulkarni, Am. Soc. 47, 145). Zum Verlauf der Nitrierung vgl. a. Ingold, Shaw, Soc. 1927, 2922, 2926. Über die Geschwindigkeit der Nitrierung bei — 30° und 0° vgl. Scheffer, Brandsma, R. 45, 531. Bei der Einw. von Dischwefeldichlorid in Gegenwart von amalgamiertem Aluminium in Xylol entsteht ein bromhaltiges Thianthrenderivat (Sen, Rây, Soc. 1926, 1141). Liefert beim Erhitzen mit Natriumsulfit-Lösung und wenig Kupfersulfat auf 180—200° Benzolsulfonsäure (Rosenmund, B. 54, 439). Zur Sulfurierung vgl. Rây, Dey, Soc. 117, 1407. Liefert bei 8-stdg. Kochen mit 10 Tln. konz. Schwefelsäure nach Herzig (M. 2 [1881], 192) 3.5-Dibrom-benzol-sulfonsäure-(1) und andere Produkte, nach Olivier, De Kleermaeker (R. 39, 641) 5-Brom-benzol-disulfonsäure-(1.3) und andere Produkte. Die Lösung in rauchender Schwefelsäure liefert mit Schwefelsäure-monohydrat und Kaliumnitrat auf dem Wasserbad 4-Brom-3.5-dinitro-benzol-sulfonsäure-(1) (LINDEMANN, WESSEL, B. 58, 1223). Spaltet bei 2—4-stdg. Erhitzen mit methylalkoholisch-wäßriger Natronlauge im Rohr auf 170° Brom ab (K. H. MEYER, B. 54, 2273; Priv.-Mitt.). Liefert beim Erhitzen mit festem Natriumhydroxyd und Methanol bei ca. 25 Atm. auf 180—200° Anisol und Phenol (AGFA, D. R. P. 411052; C. 1925 I, 2411; Frdl. 15, 193). Gibt beim Erhitzen mit Trikaliumarsenit-Lösung und wenig Kupfersulfat im Rohr auf 180—200° geringe Menen Phenylarsonsäure (Rosenmund, B. 54, 438). Beim Erhitzen von Brombenzol mit Aluminiumchlorid entstehen neben den von v. Dumreicher (B. 15, 1867; vgl. Nef, A. 298, 273) angegebenen Produkten kleine Mengen 1.2-Dibrom-benzol, 1.3-Dibrom-benzol, 1.3.5-Tribrom-benzol, 1.2.4-Tribrom-benzol und Bromderivate von Diphenyl, Naphthalin und Anthracen (Copisarow, Soc. 119, 442).

Reagiert mit Bromnitromethan bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff einerseits unter Bildung von [4-Brom-phenyl]-nitromethan bzw. seinen Zersetzungsprodukten, andererseits unter Bildung von 1.4-Dibrom-benzol und Nitromethan bzw. seinen Zersetzungsprodukten (Sherrill, Am. Soc. 46, 2756). Reaktion mit Athylen bei Gegenwart

von Aluminiumchlorid: BERRY, REID, Am. Soc. 49, 3146. Geschwindigkeit der Umsetzung mit 0,1 n-Natriummethylat-Lösung bei 165°: Tronow, Krüger, Ж. 58, 1273; С. 1927 II, 1145. Durch Ultraviolett-Bestrahlung einer mit Kupferacetat versetzten Lösung von Brombenzol und Natriumpropylat in siedendem Propylalkohol entsteht Propylphenyläther; analog verläuft die Reaktion mit Natriumisoamylat (Rosenmund, Luxat, Tiedemann, B. 56, 1954). Über die Bedingungen der Reaktion mit Kaliumphenolat in Gegenwart von Kupfer vgl. Weston, Adkins, Am. Soc. 50, 865. Gibt mit α.α'-Dichlor-dimethyläther in Gegenwart von Zinkehlorid 4-Brom-benzylchlorid und 4.4'-Dibrom-diphenylmethan; reagiert analog mit a.a. Dibrom-dimethyläther unter Bildung von 4-Brom-benzylbromid (Stephen, Short, Gladding, Soc. 117, 523, 524). Durch Sättigen eines Gemisches von Brombenzol, Paraformaldehyd und Zinn(IV)-chlorid mit Chlorwasserstoff und nachfolgende Vakuum-destillation entsteht ein Gemisch von ca. 70% 4-Brom-benzylchlorid und ca. 30% 2-Brombenzylchlorid (QUELET, Bl. [4] 41, 331). Fügt man zu den Reaktionsprodukten aus Benzaldehyd und Natrium Brombenzol, so erhält man Triphenylcarbinol, Benzylalkohol und Benzoin (BLICKE, Am. Soc. 46, 2569). Liefert beim Erhitzen mit Natriumacetat, Calciumcarbonat und Kupferacetat oder mit Borax und Kupferacetat in verd. Alkohol im Rohr auf ca. 250° Phenol und andere Produkte (ROSENMUND, HARMS, B. 53, 2232). Liefert beim Erhitzen mit Mercuriacetat auf 140° 4-Brom-phenylquecksilberacetat, 3-Brom-phenylquecksilberacetat, 2-Brom-phenylquecksilberacetat und andere Produkte (Hanke, Am. Soc. 45, 1322). Kalinowski (Roczniki Chem. 9, 133; C. 1929 I, 2301) erhielt analog bei 120° im Rohr 4-Brom-benzol-bis-quecksilberacetat-(1.3). Liefert mit Acetamid in Gegenwart von Kaliumcarbonat und Kupfer geringe Mengen Diphenylamin (Weston, Adkins, Am. Soc. 50, 864). Liefert bei Erhitzen mit Kupfer(I)-rhodanid und trocknem Pyridin auf 180° und nachfolgender Vakuumdestillation Benzonitril, Diphenyldisulfid und andere Produkte (Rosen-MUND. HARMS, B. 53, 2233). Liefert beim Kochen mit Diacetonglucose-3-p-toluolsulfonat und Magnesium in Toluol p-Toluolsulfonsäure-phenylester (Allison, Hixon, Am. Soc. 48, 409). Beim Kochen mit Anilin in Gegenwart von Kupfer(I) jodid und Calciumcarbonat konnte Quick (Am. Soc. 42, 1042) entgegen den Angaben von Goldberg (D. R. P. 187870; C. 1907 II, 1465) kein Diphenylamin erhalten. Liefert beim Kochen mit 6-Chlor-4-nitro-3-amino-toluol und Kaliumcarbonat in Gegenwart von Kupfer(I)-jodid 4-Chlor-6-nitro-3-methyl-diphenylamin, beim Kochen mit 6-Chlor-3-nitro-2-amino-toluol und Nitrobenzol in Gegenwart von Kaliumcarbonat und wenig Kupfer(I)-jodid 3-Chlor-6-nitro-2-methyldiphenylamin (Morgan, Jones, Soc. 119, 190). Die mit konz. Schwefelsäure unterschichtete Lösung von Azodicarbonsäurediäthylester in Brombenzol liefert beim Aufbewahren und folgendem Zersetzen mit Eis harzige Produkte, die bei der Wasserdampfdestillation in Gegenwart von 2 n-Natronlauge 4-Brom phenylhydrazin ergeben (Stolle, Leffler, B. 57, 1063). Liefert mit Toluol-diazoniumchlorid-(4) in Natronlauge bei 0° 2'-Brom-4-methyl-diphenyl und 4'-Brom-4-methyl-diphenyl (GOMBERG, PERNERT, Am. Soc. 48, 1378). Zur Geschwindigkeit der Reaktion mit Piperidin bei 16—18° und bei 200° vgl. Tronow, Krüger, Ж. 58, 1276; Tr., Ж. 58, 1289; C. 1927 II, 1145.

Physiologisches Verhalten: H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 74. Wachstumshemmende Wirkung auf Bac. tuberculosis: Schöbl, Philippine J. Sci. 25, 132; C. 1925 I, 2699. Giftwirkung auf Insektenlarven (Agriotes): Tattersfield, Roberts, J. agric. Sci. 10, 199; Ber. Physiol. 4, 320; C. 1921 I, 232. Wird bei Verfütterung an Hunde im Urin als S-[4-Brom-phenyl]-N-acetylcystein ausgeschieden (Shiple, Sherwin, J. biol. Chem. 55, 685). Einw. auf den Schwefel-Stoffwechsel bei Hunden: Hele, Biochem. J. 18, 591, 595, 605; bei Kaninchen: Abderhalden, Wertheimfr, Piliigers Arch. Physiol. 207, 215; C. 1925 I, 2086; bei Schweinen: Coombs, Hele, Biochem. J. 21, 617.

4-Fluor-1-brom-benzol C<sub>6</sub>H<sub>4</sub>BrF (H 209; E I 115). B. Zur Bildung aus 4-Fluoranilin vgl. van Hove, Bl. Acad. Belg. [5] 12, 802; C. 1927 I, 884. — E: —16,4°. Kp<sub>764</sub>: 152,5°. D<sup>16</sup>: 1,6113. — Liefert beim Nitrieren mit Salpetersäure (D: 1,52) in der Kälte 6-Fluor-3-brom-1-nitro-benzol und etwas geringere Mengen 5-Fluor-2-brom-1-nitro-benzol; als Nebenprodukte der Einw. von Salpetersäure wurden 4-Brom-1-nitro-benzol, 4-Brom-2.6-dinitro-phenol und ein Fluordibrombenzol beobachtet.

2-Chlor-1-brom-bensol C<sub>6</sub>H<sub>4</sub>ClBr (H 209; E I 115). B. Zur Bildung durch Einw. von Kupfer(I)-chlorid auf diazotiertes 2-Brom-anilin vgl. Brydówna, Roczniki Chem. 7, 440; C. 1928 I, 2820; zur Bildung durch Einw. von Kupfer(I)-bromid auf diazotiertes 2-Chlor-anilin vgl. Fry, Grote, Am. Soc. 48, 711. Beim Schütteln von 2-Chlor-phenyl-quecksilberacetat mit Brom in Essigsäure (Hanke, Am. Soc. 45, 1327). — Kp: 204° (H.).

3-Chlor-1-brom-benzol C<sub>e</sub>H<sub>4</sub>ClBr (H 209; E I 115). B. Zur Bildung aus diazotiertem 3-Chlor-anilin vgl. Fry, Grote, Am. Soc. 48, 711. Beim Schütteln von 3-Chlor-phenyl-

quecksilberacetat mit Brom in Essigsäure (Hanke, Am. Soc. 45, 1327). — Kp: 197° (Ha.). — Liefert bei der Nitrierung mit Salpetersäure (D: 1,5) bei —5° 2-Chlor-4-brom-1-nitrobenzol und 4-Chlor-2-brom-1-nitro-benzol (Mayes, Turner, Soc. 1928, 694). Liefert bei der Dinitrierung 6-Chlor-4-brom-1.3-dinitro-benzol (Hodgson, J. Soc. Dyers Col. 42, 366).

- 4-Chlor-1-brom-benzol C<sub>6</sub>H<sub>4</sub>ClBr (H 209; E I 116). B. Neben anderen Produkten aus Chlorbenzol und Bromnitromethan bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff (Sherrill, Am. Soc. 46, 2756). Beim Leiten von Chlor in eine Lösung von 4-Brom-benzol-sulfonsäure-(1) in warmem Wasser (Datta, Bhoumik, Am. Soc. 43, 314). Zur Bildung aus diazotiertem 4-Brom-anilin und Kupfer(I)-chlorid und aus diazotiertem 4-Chlor-anilin und Kupfer(I)-bromid vgl. Fry, Grotte, Am. Soc. 48, 711; Brydówna, Roczniki Chem. 7, 439; C. 1928 I, 2820. Neben anderen Produkten bei der Einw. von Kupfer(II)-chlorid auf Benzoyl-[4-brom-phenyl]-diimid in Alkohol (Goldschmidt, Bader, A. 473, 151). Beim Schütteln von 4-Chlor-phenylquecksilberacetat mit Brom und wäßr. Kaliumbromid-Lösung oder beim Chlorieren von 4-Brom-phenylquecksilberacetat in wäßr. Lösung (Hanke, Am. Soc. 45, 1326). F: 65° (kort.) (Sußden, Soc. 125, 1173). D<sup>n</sup>: 1,576; D<sup>n</sup>: 1,540; D<sup>n</sup>: 1,540; D<sup>n</sup>: 1,476; D<sup>n</sup>: 1,476; D<sup>n</sup>: 1,454 (Su.). Oberflächenspannung zwischen 70° (33,12) und 194° (20,58 dyn/cm): Su. Parachor: Su. Dipolmoment μ×10<sup>18</sup>: 0,1 (in verd. Benzol-Lösung) (Williams, Phys. Z. 29 [1928], 684; Am. Soc. 50, 2351). Durch Einw. von Zinntetrachlorid auf die Magnesiumverbindung in Ather erhält man Tetrakis-[4-chlorphenyl]-zinn; bei der Einw. von Triphenylzinnchlorid entsteht analog Triphenyl-[4-chlorphenyl]-zinn (Krause, Weinberg, B. 62, 2236, 2241).
- 3.5-Dichlor-1-brom-benzol C<sub>6</sub>H<sub>3</sub>Cl<sub>2</sub>Br, Formel I (H 210). Zur Bildung nach Hurtley (Soc. 79, 1300) vgl. Evans, Mabbott, Turner, Soc. 1927, 1165. Krystalle (aus Alkohol). F: 74°.
- 2.4.5 Trichlor 1 brom benzol C<sub>8</sub>H<sub>2</sub>Cl<sub>3</sub>Br, Formel II. B. Bei der Umsetzung von in stark salzsaurer Lösung diazotiertem 5-Brom-2.4-dinitro-anilin mit heißer Kupfer(I)-chlorid-Lösung (Hodgson, J. Soc. Dyers Col. 42, 367; C. 1927 I, 1431). Krystalle. F: 138°. Mit Wasserdampf flüchtig.
- 1.2 Dibrom benzol, o-Dibrom benzol  $C_8H_4Br_2$  (H 210; E I 116). B. In geringer Menge beim Erhitzen von 1.4 Dibrom benzol mit Aluminiumchlorid, neben anderen Produkten (Copisarow, Soc. 119, 447). Beim Schütteln von 2 Brom phenylquecksilberacetat mit Brom in Eisessig (Hanke, Am. Soc. 45, 1328). Kp: 225° (Ha.). D<sup>-35</sup> (fest): 2,25; D<sup>20</sup>: 1,965 (Errera, Phys. Z. 27, 766; C. 1927 I, 1928).  $n_5^{\text{in}}$ : 1,6129 (v. Auwers, A. 422, 164).  $n_{\alpha}^{\text{in}}$ : 1,6023;  $n_{\alpha}^{\text{in}}$ : 1,6081;  $n_{\alpha}^{\text{in}}$ : 1,6239;  $n_{\alpha}^{\text{in}}$ : 1,6371 (E.). Ultraviolett Absorptionsspektrum des Dampfes: E., Henri, J. Phys. Rad. [6] 9, 208; C. 1928 II, 2704. Dielektr.-Konst. bei  $-35^{\circ}$ : 3,14, bei  $20^{\circ}$ : 7,50 (E., Phys. Z. 27, 766). Dipolmoment  $\mu \times 10^{18}$ : 1,67 (J. Errera, Polarisation diélectrique [Paris 1928], S. 115; vgl. a. E., C. r. 182, 1624; Phys. Z. 27, 767); 1,87 (Walden, Werner, Ph.Ch. [B] 2, 14). Dichte einiger Lösungen in Benzol bei  $20^{\circ}$ : Wa., We.; E., Phys. Z. 27, 766. Dielektr.-Konst. verd. Lösungen in Benzol bei  $20^{\circ}$ : Wa., We.; E., Phys. Z. 27, 766.

Liefert bei der Reduktion mit Wasserstoff oder Hydrazinhydrat in Gegenwart von palladiniertem Calciumcarbonat in alkoh. Kalilauge Benzol (Busch, Schmidt, B. 62, 2618). Das von Hosaus (M. 14, 323) beim Kochen mit Natrium in Ather erhaltene, als Verbindung C<sub>78</sub>H<sub>52</sub>Br<sub>2</sub> angesehene Produkt ist nicht einheitlich (Fuchs, Metzl., B. 55, 739). Liefert beim Erhitzen mit Kupfer(I)-cyanid und Pyridin im Rohr auf 200° Kupferphthalocyanin (s. 4. Hauptabteilung, Porphyrine) (de Diesbach, von der Weid, Helv. 10, 886; vgl. Linstead, Lowe, Soc. 1934, 1022) und wenig Phthalimid (de D., v. d. W.).

1.3 - Dibrom - benzol, m-Dibrom - benzol  $C_8H_4Br_2$  (H 211; E I 116). B. In geringer Menge beim Erhitzen von 1.4 - Dibrom - benzol mit Aluminiumchlorid, neben anderen Produkten (Copisarow, Soc. 119, 447). Beim Schütteln von 3-Brom - phenylquecksilberacetat mit Brom in Eisessig (Hanke, Am. Soc. 45, 1328). — E: —7,2° (Errera, Phys. Z. 27 [1926], 766). Kp. 220° (Ha.).  $D_1^{t,7}$ : 1,9561 (v. Auwers, A. 422, 164);  $D_1^{-40}$  (fest): 2,23;  $D_1^{23}$ : 1,957 (E.).  $n_2^{t,7}$ : 1,6030;  $n_2^{t,7}$ : 1,6088;  $n_2^{t,7}$ : 1,6247;  $n_2^{t,7}$ : 1,6383 (v. Au.);  $n_2^{\infty}$ : 1,6027;  $n_2^{\infty}$ : 1,6087 (E.). Ultraviolett-Absorptionsspektrum des Dampfes: Errera, Henri, J. Phys. Rad. [6] 9, 208; C. 1928 II, 2704. Dielektr.-Konst. bei —40°: 2,98, bei 23°: 4,74 (E., Phys. Z. 27, 767). Dipolmoment  $\mu \times 10^{18}$ : 1,22 (J. Errera, Polarisation diélectrique [Paris 1928], S. 115; vgl. a. E., Phys. Z. 27, 767); 1,55 (Walden, Werner, Ph. Ch. [B] 2, 18). Diohte einiger Lösungen in Benzol bei 20°: Wa., We.; E., Phys. Z. 27, 766. Dielektr.-Konst. verd. Lösungen in Benzol bei 20°: Wa., We.; E., Phys. Z. 27, 766. — Die von Goldschmidt (M. 7, 45) beim Kochen mit Natrium in Ather erhaltenen, als Verbindungen  $C_{48}H_{52}Br_2$  und  $C_{78}H_{52}Br_2$ 

angesehenen Produkte sind nicht einheitlich (Fuchs, Metzl., B. 55, 739). Bei langsamer Zugabe einer Lösung von 1.3-Dibrom-benzol in Äther zu Magnesium und wenig Jod unter Kühlung und Zersetzen des Reaktionsprodukts mit Wasser werden Benzol, Brombenzol, wenig Diphenyl und ein halogenhaltiges Harz erhalten (Salkind, Rogowina, Ж. 59, 1015; C. 1928 I, 2939). Die Magnesiumverbindung aus 1.3-Dibrom-benzol liefert bei der Umsetzung mit 3-Brom-benzonitril in siedendem Äther und Zersetzung des Reaktionsprodukts mit Wasser 3.3'-Dibrom-benzophenon und geringe Mengen 3'-Brom-3-[3-brom-benzoyl]-benzophenon (Gomberg, Bailar, Am. Soc. 51, 2232).

1.4 - Dibrom - benzol, p-Dibrom - benzol C<sub>6</sub>H<sub>4</sub>Br<sub>2</sub> (H 211; E I 116). B. Durch Bromierung von Benzol in Gegenwart von Wolfram(VI)-chlorid oder Wolframpulver erst bei gewöhnlicher Temperatur, dann auf dem Wasserbad (Korczynski, Bl. [4] 29, 289). Durch Erhitzen von Benzol oder Brombenzol mit <sup>1</sup>/<sub>2</sub> Mol Brom bei allmählicher Zugabe eines Gemisches von rauchender Salpetersäure und Nitrosulfonsäure auf dem Wasserbad (Varma, Narayan, Quart. J. indian chem. Soc. 4, 285; C. 1928 I, 489). Durch Erhitzen von Benzol mit 1 Mol Brom bei allmählicher Zugabe von rauchender Schwefelsäure (10% SO<sub>3</sub>) (V., N.). Neben anderen Produkten aus Brombenzol und Bromnitromethan bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff (Sherrill, Am. Soc. 46, 2756). Zur Bildung aus diazotiertem 4-Brom-anilin vgl. Fry, Grote, Am. Soc. 48, 711. Beim Schütteln von 4-Bromphenylquecksilberacetat mit Brom und wäßr. Kaliumbromid-Lösung (Hanke, Am. Soc. 45, 1327).

Härte: Reis, Zimmermann, Ph. Ch. 102, 329. E: 87° (Errera, Phys. Z. 27, 766; C. 1927 I, 1928); F: 87,2° (Schischokin, Z. anorg. Ch. 181, 150). D°: 2,268 (Ziegler, Ditzel, A. 473, 200); D°: 2,10; D°s: 1,86 (E.); D°s: 1,8201 (v. Auwers, A. 422, 164). Molekularwärme cp zwischen —172,0° (17,5) und 62,3° (48,7 cal/Mol): Andrews, Haworth, Am. Soc. 50, 3000. n°a: 1,5690; n°s: 1,5743; n°s: 1,5894 (v. Au.). Ultraviolett-Absorptionsspektrum des Dampfes: Errera, Henri, J. Phys. Rad. [6] 9, 208; C. 1928 II, 2704. Dielektr.-Konst. bei 20°: 2,93; bei 95°: 2,57 (E., Phys. Z. 27, 766). Besitzt kein Dipolmoment (Walden, Werner, Ph. Ch. [B] 2, 18; E., Phys. Z. 27, 766). — Löslichkeit in verschiedenen organischen Lösungsmitteln bei D—80°: Mortimer, Am. Soc. 45, 634. Schwer löslich in Schwefeldioxyd, unlöslich in Ammoniak (de Carli, G. 57, 351). Zusammensetzung der festen und flüssigen Phasen im ternären System aus 1.4-Dichlor-benzol, 1.4-Dibrom-benzol und 89 %igem Alkohol: G. Meyer, R. 42, 306, 313. Kritische Mischungstemperatur mit geschmolzenem weißem Phosphor: 163° (Hildebrand, Buehrer, Am. Soc. 42, 2217). Kryoskopisches Verhalten in Benzol in Gegenwart von Natriumsulfat verschiedenen Wassergehaltes und von trockenem Aluminiumoxyd: Jones, Bury, Soc. 127, 1949. Thermische Analyse der binären Systeme mit Benzol, Nitrobenzol, Allylsenföl und Anilin: Schischokin, Z. anorg. Ch. 181, 150; mit N.Allyl-N'-phenyl-thioharnstoff: Sch., Z. anorg. Ch. 181, 142; C. 1929 I, 2957; Jefremow, Izv. imp. Akad. Petrog. [6] 1915, 1323; Izv. ross. Akad. [6] 13, 768; C. 1925 I, 1932; 1925 II, 54. Dichte und Dielektr.-Konst. einiger Lösungen in Benzol bei 20°: Walden, Werner, Ph. Ch. [B] 2, 14.

1.4-Dibrom-benzol enthaltende binäre Azeotrope.

| Komponente     | <b>K</b> p <b>760</b>                                                                                      | Gehalt an<br>p-Dibrom-<br>benzol<br>in Gew%                    | Komponente                                                                                                                                                                       | Kp <sub>780</sub>                                                                    | Gehalt an<br>p-Dibrom-<br>benzol<br>in Gew%                 |
|----------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Nitrobenzol 1) | 210,45<br>219,6<br>219,6<br>220,2<br>220,2<br>215,4<br>213,3<br>215,05<br>204,2<br>215,0<br>183,9<br>201,9 | 32,5<br>72<br>73<br>98<br>97<br>43<br>18<br>65<br>34,5<br>67,5 | Brenzcatechin 4) . Guajacol 1) Glycerin 1) 4-Methyl-acetophenon 1) Chloressigsäure 3) . Acetamid 1) Propionamid 1) Caprylsäure 5) . Benzoesäure 4) . Salicylsäure-methylester 1) | 218,15<br>205,02(?)<br>217,1<br>220,15<br>186,3<br>199,35<br>205,0<br>218,8<br>219,5 | 90<br>1,5 (?)<br>90<br>95<br>25<br>82<br>91,5<br>90<br>96,2 |

<sup>1)</sup> LECAT, R. 47, 17. — 2) L., Ann. Soc. scient. Bruxelles 47 I [1927], 155. — 3) L., Ann. Soc. scient. Bruxelles 48 I [1928], 15. — 4) L., Ann. Soc. scient. Bruxelles 48 I, 118. — 5) L., Ann. Soc. scient. Bruxelles 49 [1929], 21.

B. 55, 742).

# KOHLENWASSERSTOFFE Cn H2n-6

Liefert bei der Reduktion mit Wasserstoff in Gegenwart von Palladium-Calciumcarbonat in methylalkoholischer Kalilauge Diphenyl, wenig Terphenyl und bromhaltiges Quaterphenyl (BUSCH, SCHMIDT, B. 62, 2618). Die von Goldschmidt (M. 7, 42) und Riese (A. 164, 164) durch Kochen mit Natrium in Ather erhaltenen, als Verbindungen C48H28P2 und C78H28P2 angesehenen Produkte sind nicht einheitlich (Fuchs, Metzl., B. 55, 739). Liefert bei Einw. von Magnesium in Ather in An- oder Abwesenheit geringerer Mengen Brom oder Jod und nachfolgender Zersetzung des Reaktionsprodukts mit Wasser Brombenzol und 4.4'-Dibrom-diphenyl neben anderen Produkten (Pink, Soc. 123, 3418; SALKIND, Rogowina, K. 59, 1016; C. 1928 I, 2939; Quellet, Bl. [4] 41, 934; vgl. a. Bodroux, C. r. 136 [1903], 1138); die Lösung der Magnesiumverbindung in Äther gibt beim Behandeln mit Kohlendioxyd und Zersetzen mit eiskalter Salzsäure Terephthalsäure (Gilman, Beaber, Jones, R. 48, 600); mit Paraformaldehyd 4-Brom-benzylalkohol und wenig p-Xylylenglykol (Ziegler, Tiemann, B. 55, 3414). Gibt bei 8-stdg. Erhitzen mit Aluminiumchlorid im Dampfbad wenig Benzol, Brombenzol, 1.2- und 1.3-Dibrom-benzol, 1.3.5- und 1.2.4-Tribrom-benzol, Tetrabrombenzol(?) und ein Bromderivat des Anthracens (Copisarow, Soc. 119, 447). Liefert beim Erhitzen mit Quecksilberacetat im Rohr auf 140° das Acetat des 2.5-Dibrom-1.4-bis-hydroxymercuri-benzols(?) (Kalnowski, Roczniki Chem. 9, 135; C. 1929 I, 2301). Kondensiert sich mit Kaliumphenolat in Gegenwart von Kupferbronze bei 220° zu 4-Brom-diphenyläther (Krause, Weinberg, B. 62, 2235; Kr., Schlöttig, B. 58, 430, Anm. 17). Bei der Einw. von Triphenylzinnbromid auf die Magnesiumverbindung in Ather entsteht Triphenyl-[4-brom-phenyl]-zinn (Kr., W.). Liefert mit 2-Amino-phenylarsonsäure in Isoamylalkohol in Gegenwart von Kaliumcarbonat, wenig Kupferpulver und Kupfer(I)-jodid bei 130—140° 4'-Brom-diphenylamin-arsonsäure-(2), bei 150—160° 4'-4''-Dibrom-triphenylamin-arsonssäure-(2) (Wintersteiner, Lieb, B. 61, 1131). Zur Geschwindigkeit der Reakti

Physiologisches Verhalten: H. STAUB in J. HOUBEN, Fortschritte der Heilstoffchemie,

2. Abt. Bd. II [Berlin-Leipzig 1932], S. 76.

1.2.4-Tribrom-benzol C<sub>6</sub>H<sub>3</sub>Br<sub>3</sub>, s. nebenstehende Formel (H 213). B. Neben anderen Produkten beim Erhitzen von 1.4-Dibrom-benzol mit Aluminiumchlorid (COPISAROW, Soc. 119, 447). — Reagiert kaum beim Erhitzen mit Natrium in äther. Lösung (Fuchs, Metzl., B. 55, 744); über Einw. von Kalium-Natrium-Legierung unter Luftzutritt vgl. F., M., B. 55, 739, 742.

1.3.5 - Tribrom -benzol  $C_6H_3Br_3$ , s. nebenstehende Formel (H 213). B. Neben anderen Produkten beim Erhitzen von 1.4-Dibrom-benzol mit Aluminiumchloud (Copisarow, Soc. 119, 447). — Zur Darstellung aus 1.3.5-Tribromanilin vgl. Coleman, Talbot, Org. Synth. 13 [1933], 96. — Härte der Krystalle: Br. Ber Verdünnung in Benzol-Lösung) (Höjendahl, Nature 117, 892; Phys. Z. 30, 394; C. 1926 II, 1114; 1929 II, 1898). Gibt beim Erwärmen mit Kalium-Natrium-Legierung in Äther unter Luftzutritt neben in Alkalien und in Natriumdicarbonat löslichen Produkten (Salzen von Phenolen und Phenolearbonsäuren?) ein unlösliches, bis 365° nicht schmelzendes Produkt, das beim Kochen mit Jodwasserstoffsäure (Kp: 127°) Resorcin liefert (Fuchs, Metzl.

2-Chlor-1.3.5-tribrom-benzol C<sub>6</sub>H<sub>2</sub>ClBr<sub>3</sub>, s. nebenstehende Formel (H 214).

B. Aus 2.4.6-Tribrom-phenol durch Einw. von Phosphorpentachlorid in Benzol (Anschütz, A. 454, 107). Beim Kochen der Blei(IV)-chlorid-Verbindung des 2.4.6-Tribrom-benzol-diazoniumchlorids-(1) mit Alkohol (Chattaway, Garton, Parkes, Soc. 125, 1985). — Nadeln (aus Alkohol). F: 87° (Ch., G., P.), 91—92° (A.).

1.2.4.5 - Tetrabrom - benzol C<sub>6</sub>H<sub>2</sub>Br<sub>4</sub>, s. nebenstehende Formel (H 214; E I 117). B. Bei der Einw. von überschüssigem Brom auf 4-Brom-benzolsulfonsäure-(1) in Wasser (Datta, Bhoumik, Am. Soc. 43, 312). — Krystalle (aus Eisessig). F: 173—174°.

Hexabrombenzol C<sub>6</sub>Br<sub>6</sub> (H 215; E I 117). B. Beim Behandeln von Br Hexylbenzol oder eines Isomerengemisches von Methylcyclohexyl-benzol mit Brom bei Gegenwart von Aluminiumbromid (Bodroux, A.ch. [10] 11, 547, 571). Bei 6-stdg. Erhitzen von Pikrinsäure mit 3 Mol Brom in Gegenwart von Jod im Rohr bei 220° bis 250°, neben Pentabromphenol und Tetrabromphenol; bei 300° wird mehr Hexabrombenzol gehildet (Dhab Soc 117, 2006) — Böntgenogramm und Krystellstruktur. Many

benzol gebildet (DHAR, Soc. 117, 996). — Röntgenogramm und Krystallstruktur: MARE, B. 57, 1827; Plummer, Phil. Mag. [6] 50, 1219; C. 1926 I, 1930. F: 315° (DH., B.), 315° bis 316° (B.), 326° (korr.) (Schulz, Collect. Trav. chim. Tchécosl. 1, 229; C. 1929 II, 772). Unlöslich in heißem Wasser und in verd. Salzsäure; bei 20° lösen 25 cm³ Methanol 1,9 mg, 25 cm³ Alkohol 1,7 mg Hexabrombenzol (Sch.). Röntgen-Luminescenzspektrum: DE BEAUJEU,

JODBENZOL

J. Phys. Rad. [6] 4 [1923], 261; C. 1924 I, 134. — Gibt mit Lithiumbutyl oder Lithiumphenyl in Petroläther ein dunkles unlösliches Pulver (MARVEL, HAGER, COFFMAN, Am. Soc. 49, 2328).

## d) Jod-Derivate.

Jodbenzol C<sub>6</sub>H<sub>5</sub>I (H 215; E I 118). B. Durch Jodierung von Benzol bei Gegenwart von Nitroschwefelsäure, zweckmäßig in Eisessig (Varma, Kulkarni, Quart. J. indian chem. Soc. 3, 294; C. 1927 I, 1432) oder bei Gegenwart von Natriumnitrit und rauchender Schwefelsäure in Eisessig (V., Panikar, Quart. J. indian Soc. 3, 343; C. 1927 I, 1432). Bei der Umsetzung von Benzoldiazoniumtetrachlorojodid mit Kaliumjodid in essigsaurer Lösung (Chattaway, Garton, Parkes, Soc. 125, 1983). Entsteht neben anderen Produkten bei der Einw. von Sauerstoff (Meisenheimer, Schlichenmayer, B. 61, 2034, 2041) und von Monochloramin (Coleman, Hauser, Am. Soc. 50, 1196) auf Phenylmagnesiumjodid in Äther. Aus Phenylmagnesiumbromid und Toluol-sulfojodid-(4) in Äther unter Kühlung (Gilman, Fothergill, Am. Soc. 51, 3506). Bei vorsichtigem Erwärmen von Dibenzoylperoxyd mit Jod, neben anderen Produkten (Erlemmeyer, Helv. 9, 820; 10, 625). In geringer Menge bei der Einw. von Jod, in guter Ausbeute bei der Einw. von Jodmonochlorid auf Zinntetraphenyl in Tetrachlorkohlenstoff unter Kühlung (Bost, Borgstrom, Am. Soc. 51, 1922).

Physikalische Eigenschaften. Kp<sub>752</sub>: 186° (korr.) (Sugden, Soc. 125, 1172); Kp: 189° (Chattaway, Garton, Parkes, Soc. 125, 1983). D¹ zwischen 4,6° (1,8540) und 148,8° (1,6310): J. Meyer, Mylius, Ph. Ch. 95, 356; D¹ zwischen 4,6° (1,8540) und 148,8° (1,6310): J. Meyer, Mylius, Ph. Ch. 95, 356; D¹ zwischen 4,6° (0,02194) und 148,8° (0,00488 g/cmsec): Mey., My. Oberflächenspannung zwischen 14° (41,21) und 180° (22,64 dyn/cm): Su. Parachor: Su. n¹ zwischenspannung zwischen 14° (41,21) und 180° (22,64 dyn/cm): Su. Parachor: Su. n² zwischenspannung zwischen 14° (41,21) und 180° (22,64 dyn/cm): Su. Parachor: Su. n² zwischenspannung zwischen 14° (41,21) und 180° (22,64 dyn/cm): Su. Parachor: Su. n² zwischenspannung zwischen 14° (41,21) und 180° (22,64 dyn/cm): Su. Parachor: Su. n² zwischenspannung zwischen 14° (41,21) und 180° (22,64 dyn/cm): Su. Parachor: Su. n² zwischenspannung zwischen 14° (41,21) und 180° (22,64 dyn/cm): Su. Parachor: Su. n² zwischenspannung zwischen 14° (41,21) und 180° (22,64 dyn/cm): Su. Parachor: Su. n² zwischenspannung zwischen 14° (41,21) und 180° (22,64 dyn/cm): Su. Parachor: Su. n² zwischenspannung zwischen 14° (41,21) und 180° (22,64 dyn/cm): Su. Parachor: Su. n² zwischenspannung zwischen 14° (41,21) und 180° (22,64 dyn/cm): Su. Parachor: Su. n² zwischenspannung zwischen 14° (41,21) und 180° (22,64 dyn/cm): Su. Parachor: Su. n² zwischen 16° (41,21) und 180° (22,64 dyn/cm): Su. Parachor: Su. n² zwischen 16° (41,21) und 180° (22,64 dyn/cm): Su. Parachor: Su. n² zwischen 16° (41,21) und 180° (42,64 dyn/cm): Su. Parachor: Su. n² zwischen 16° (41,21) und 180° (42,64 dyn/cm): Su. Parachor: Su. n² zwischen 16° (41,21) und 180° (42,64 dyn/cm): Su. Parachor: Su. n² zwischen 16° (41,21) und 180° (42,64 dyn/cm): Su. Parachor: Su. n² zwischen 16° (41,21) und 180° (42,64 dyn/cm): Su. p² zwischen 16° (41,21) und 180° (42,64 dyn/cm): Su. p² zwischen 16° (41,21) und 180° (42,64 dyn/cm): Su. p² zwischen 16° (41,21) und 180° (42,64 dyn/cm): Su. p² zwischen 16° (41,21) und 180° (42,64 dyn/cm): Su. p² zwis

### Jodbenzol enthaltende binäre Azeotrope.

| Komponente                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Kp <sub>760</sub><br>0           | Gehalt an<br>Jodbenzol<br>in Gew% | Komponentę                                                                                                                               | Kp <sub>760</sub><br>0           | Gehalt an<br>Jodbenzol<br>in Gew% |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------|
| Glycerin-\alpha.\alpha'-dichlor-<br>hydrin \begin{align*} 1\) \cdots | 173<br>187,5<br>178,4            | 30                                | Isobuttersäure <sup>6</sup> ) .<br>Isovaleriansäure <sup>5</sup> ) .<br>Diäthyloxalat <sup>5</sup> ) .<br>Dimethylmalonat <sup>5</sup> ) | 154,2<br>174,0<br>181,0<br>178.0 | 45<br>48                          |
| Athylenglykol 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 171,5<br>188,1<br>180,3<br>161,6 | 90<br>87,2                        | Anilin 2)                                                                                                                                | 182,0<br>186,7<br>188,4          | 38<br>75                          |

1) LECAT, R. 46, 243. — 2) L., R. 47, 15. — 3) L., Ann. Soc. scient. Bruxelles 47 I [1927], 68. — 4) L., Ann. scient. Bruxelles 47 I, 151, 154. — 5) L., Ann. Soc. scient. Bruxelles 48 I [1928], 119. — 6) L., Ann. Soc. scient. Bruxelles 49 [1929], 111.

Jodbenzol enthaltende binäre Azeotrope siehe in obenstehender Tabelle. Dichte und Viscosität von Gemischen mit Benzol: J. Meyer, Mylius, Ph. Ch. 95, 359, 371. Dichte und Dielektr.-Konst. einiger Lösungen in Benzol bei 20°: Walden, Werner, Ph. Ch. [B] 2, 13. Grenzflächenspannung zwischen Jodbenzol und Wasser: Harkins, Feldman, Am. Soc. 44, 2673. Spreitet nicht auf einer Wasseroberfläche (H., F.).

Chemisches Verhalten. Über photochemische Zersetzung im ultravioletten Licht vgl. Stobbe, Schmitt, Z. wiss. Phot. 20, 74; C. 1921 III, 289; Job, Emschwiller, C. r. 179, 54. Jodbenzol scheidet bei der Einw. von Röntgenstrahlen sehr geringe Mengen Jod ab (Günther, von der Horst, Cronheim, Z. El. Ch. 34, 620). Liefert bei der elektrolytischen Oxydation in wäßr. Schwefelsäure an einer Blei(IV)-oxyd-Anode ohne Diaphragma Hydrochinon und Jod, mit Diaphragma Benzochinon-(1.4), Fumarsäure und Jodsäure; in Eisessig + konz. Schwefelsäure oder in Eisessig + Überchlorsäure an Platin-Anoden ohne Diaphragma erhält man Jodosobenzol; in Eisessig + Überchlorsäure bei längerer Versuchsdauer, höherer Stromdichte oder höherer Temperatur entsteht daneben mehr und mehr 1.4-Dijod-benzol;

in 70% iger Essigsäure an einer Platin-Anode mit Diaphragma unter Kühlung bilden sich Jodosobenzol-acetat, Jodobenzol und andere Produkte (Fichter, Lotter, Helv. 8, 438, 440). Gibt bei der Reduktion mit Wasserstoff oder Hydrazinhydrat in Gegenwart von Palladium-Calciumcarbonat in alkoh. Kalilauge wechselnde Mengen Diphenyl und Benzol; in Anwesenheit von 4-Jod-anisol erhält man außer Diphenyl und 4.4'-Dimethoxy-diphenyl noch 4-Methoxy-diphenyl (Busch, Schmidt, B. 62, 2617).

Beim Erhitzen von Jodbenzol mit der berechneten Menge Brom unter allmählichem Zufügen eines Gemisches von rauchender Salpetersäure und Nitrosulfonsäure entsteht 4-Brom-1-jod-benzol (Varma, Narayan, Quart. J. indian chem. Soc. 4, 286; C. 1928 I, 489). Bei der Einw. von Magnesium in Methanol unter Kühlung entsteht Benzol (Zechmeister, Rom, A. 468, 127). Jodbenzol gibt mit Magnesium in flüssigem Ammoniak bei Gegenwart von wenig Ammoniumchlorid oder Äthyljodid Benzol und Anilin (Kraus, White, Am. Soc. 45, 776). Einw. von Magnesium bei Gegenwart von Brombenzol in Äther: Rudd, Turner, Soc. 1928, 688. Gibt bei der Einw. von elektrolytisch hergestelltem Barium in Äther bei Gegenwart von wenig Jod im Rohr Phenylbariumjodid (Gilman, Schulze, Bl. [4] 41, 1335); bei der analog ausgeführten Reaktion mit Calcium bilden sich in unregelmäßig verlaufender Reaktion geringe Mengen Phenylcalciumjodid (Gil., Sch., Am. Soc. 48, 2464). Liefert beim Erhitzen mit Aluminium in wenig Ather eine Aluminiumverbindung, aus der beim Zersetzen mit Wasser Benzol entsteht (Leone, G. 55, 300; R. A. L. [5] 33 II, 502). Beim Erhitzen von Jodbenzol mit zuvor im Wasserstoffstrom erhitztem Aluminium auf 250° bilden sich geringe Mengen Diphenyl (Ray, Dutt, J. indian chem. Soc. 5, 106; C. 1928 I, 2370). Jodbenzol liefert bei längerer Einw. von Stickstofftetroxyd bei Zimmertemperatur, in besserer Ausbeute in Gegenwart von Aluminiumchlorid bei O—5°, ein Gemisch von viel 4-Jod-1-nitro-benzol und wenig 2-Jod-1-nitro-benzol (Schaarschmidt, Am. Soc. 47, 145). Über die Geschwindigkeit der Nitrierung bei —28° und —2° vgl. Scheffer, Brandsma, R. 45, 531; zum Verlauf der Nitrierung vgl. Ingold, Shaw, Soc. 1927, 2922, 2926. Jodbenzol gibt mit Dischwefeldichlorid in Schwefelkohlenstoff in Gegenwart von amalgamiertem Aluminium wenig Thianthren und viel Harz (Rây, Soc. 119, 1966). Gibt beim Erhitzen mit Kupferarsenid Diphenyl (Pope, Turner, Soc. 117, 1450).

Geschwindigkeit der Umsetzung mit 0,1 n-Natriummethylat-Lösung bei 100° und 165° vgl. Tronow, Krüger, K. 58, 1273; C. 1927 II, 1145. Jodbenzol liefert beim Kochen mit Formaldehyd und starker Schwefelsäure 4.4'-Dijod-diphenylmethan (Nastukow, Scheljagin, J. pr. [2] 119, 304). Gibt beim Erhitzen mit Mercuriacetat auf 140° geringe Mengen 4-Jod-phenylquecksilberacetat und andere Produkte (Hanke, Am. Soc. 45, 1322). Beim Erhitzen von Jodbenzol mit 2-Jod-diphenyl und Kupferbronze im Rohr auf 240° erhält man neben Diphenyl und 2.2'-Diphenyl-diphenyl 1.2-Diphenyl-benzol (Bachmann, Clarke, Am. Soc. 49, 2095). Gibt in Gegenwart von Kaliumcarbonat und wenig Kupfer in Nitrobenzol bei 230—250° mit 4-Amino-diphenyl 4-Diphenylamino-diphenyl, mit Bis-diphenylylamin Phenyl-bis-diphenylylamin, mit 4-Acetamino-diphenyl Acetyl-phenyl-diphenylylamin (Piccard, Helv. 7, 795; Am. Soc. 48, 2880, 2881). Geschwindigkeit der Umsetzung mit Piperidin bei 200°: Tronow, Krüger, K. 58, 1276; C. 1927 II, 1145.

Physiologisches Verhalten: H. STAUB in J. HOUBEN, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 78. Einfluß auf den Schwefelstoffwechsel von Hunden und Schweinen: Coombs, Hele, Biochem. J. 20, 610, 611; 21, 617.

Verbindung mit Triäthylphosphin C<sub>8</sub>H<sub>5</sub>I + C<sub>6</sub>H<sub>15</sub>P. Vgl. Triäthylphenylphosphoniumjodid, Syst. Nr. 2256.

Jodosobenzol  $C_eH_5$ OI =  $C_eH_5$ ·IO und Salze vom Typus  $C_eH_5$ ·IAc<sub>2</sub> (H 217; E I 118). B. Jodosobenzol entsteht bei der elektrolytischen Oxydation von Jodbenzol in Eisessig + konz. Schwefelsäure oder in Eisessig + Überchlorsäure an Platin-Anoden ohne Diaphragma, neben anderen Produkten; das Acetat bildet sich bei der elektrolytischen Oxydation von Jodbenzol in 70% iger Essigsäure an einer Platin-Anode mit Diaphragma unter Kühlung neben anderen Produkten (Fichter, Lotter, Helv. 8, 440). — Über eine Jodosobenzol-bzw. Jodobenzol-Elektrode und deren Verwendung zur pg. Bestimmung vgl. Grossmann, Bl. [4] 43, 1063; C. 1928 II, 472. — Das Acetat  $C_eH_5$ ·I(O·COCH<sub>3</sub>)<sub>3</sub> liefert bei der elektrolytischen Oxydation in 70% iger Essigsäure an einer Platin-Anode unter Kühlung Jodobenzol (F., L.). Jodosobenzol liefert bei der Einw. von konz. Salpetersäure 2-Jod-1-nitrobenzol, 4-Jod-1-nitro-benzol und Jodbenzol (Vorlländer, B. 58, 1894). Jodosobenzol und Phenyljodidchlorid  $C_eH_5$ ·ICl<sub>3</sub> (H 218; E I 118) werden durch alkal. Natriumarsenit-Lösung zu Jodbenzol reduziert (Gutmann, Fr. 65, 249, 250). Phenyljodidchlorid wird durch Magnesium in siedendem Äther bei Abwesenheit von Jod nur wenig verändert; bei Gegenwart von wenig Jod setzt schon in der Kälte eine Reaktion ein, die zur Bildung von Jodbenzol und Spuren von Benzol und Diphenyl führt (Hefwoeffe, Soc. 119, 1246). Jodosobenzol

gibt in siedendem Toluol mit Äthylmagnesiumbromid Jodbenzol, mit Phenylmagnesiumbromid Jodbenzol, Diphenyl und wenig Diphenyljodoniumjodid; Phenyljodidehlorid gibt mit überschüssigem Äthylmagnesiumbromid in Äther Äthylbenzol, bei Anwendung eines geringeren Überschüsses auch Jodbenzol, mit Phenylmagnesiumbromid Diphenyl, Jodbenzol und wenig Diphenyljodoniumjodid (H., Soc. 119, 1246, 1248). Phenyljodidehlorid gibt mit  $^{1}$ <sub>3</sub> Mol Anilin in Pyridin eine Verbindung C<sub>6</sub>H<sub>5</sub>·NCl(ICl·C<sub>6</sub>H<sub>5</sub>)<sub>3</sub>(?) (Syst. Nr. 1598) und eine schwarzviolette, Chlor und Jod enthaltende Substanz, die sich bei 171° zersetzt (PIERONI, G. 51 I, 47). — Wirkung von Jodosobenzol, Phenyljodidehlorid und Jodosobenzol-acetat auf die Autoxydation von Acrolein: Moureu, Duffraisse, C. r. 176, 801.

Jodobenzol (Jodylbenzol, Jodoxybenzol)  $C_8H_5O_2I = C_8H_5 \cdot IO_3$  (H 218; E I 118). B. Neben anderen Produkten bei der elektrolytischen Oxydation von Jodbenzol oder Jodosobenzol-acetat in essigsaurer Lösung an Platin-Anoden (Fichter, Lotter, Helv. 8, 439, 440). — Über eine Jodosobenzol- bzw. Jodobenzol-Elektrode und deren Verwendung zur  $P_{H}$ -Bestimmung vgl. Grossmann, Bl. [4] 43, 1063; C. 1928 II, 472. — Oxydiert Natriumarsenit in alkal. Lösung zu Natriumarseniat (Gutmann, Fr. 65, 250). Gibt bei der Einw. von konz. Salpetersäure 2-Jod-1-nitro-benzol, 4-Jod-1-nitro-benzol und Jodbenzol; von salpetriger Säure befreite Salpetersäure wirkt nur langsam ein (Vorländer, B. 58, 1894). Wird durch Äthylmagnesiumbromid, langsamer durch Phenylmagnesiumbromid in Äther unter Bildung von Jodbenzol reduziert (Hefworth, Soc. 119, 1249).

Diphenyljodoniumhydroxyd C<sub>12</sub>H<sub>11</sub>OI = (C<sub>4</sub>H<sub>5</sub>)<sub>4</sub>I·OH (H 219; E I 119). Das Nitrat liefert mit Salpetersäure (D: 1,52) und konz. Schwefelsäure unter Kühlung mit Wasser Bis-[3-nitro-phenyl]-jodoniumnitrat (Vorländer, B. 58, 1898). — Trijodid C<sub>12</sub>H<sub>16</sub>I·I<sub>3</sub>. Thermische Analyse des Systems mit monoklinem Schwefel (Eutektikum bei 117° und 94 Gew.-% Schwefel): Rheinboldt, Schwefler, J. pr. [2] 120, 247. — C<sub>12</sub>H<sub>16</sub>I·HgI<sub>3</sub>. B. Aus äquimolekularen Mengen Diphenyljodoniumjodid und Quecksilber(II)-jodid in Aceton bei 100° (Nesmejanow, Z. anorg. Ch. 178, 306). Durch Zersetzung der Quecksilber(II)-jodid-Salze des Benzoldiazoniumjodids (N.). Hellgelbe Krystalle (aus verd. Aceton). F: 172° (korr.). Die Lösung in Aceton ist farblos. Zersetzt sich beim Erhitzen auf 180—200° quantitativ in Jodbenzol und Quecksilber(II)-jodid. Gibt bei der Einw. von heißer konzentrierter Kaliumjodid-Lösung das nachfolgende Salz. — [C<sub>12</sub>H<sub>16</sub>I]<sub>2</sub>HgI<sub>4</sub>. Hellgelbe Täfelchen (N.). F: 171,5—172° (korr.). Schwer löslich in Aceton, unlöslich in den anderen üblichen Lösungsmitteln. — Verbindung des Jodids mit Jodoform C<sub>12</sub>H<sub>16</sub>I·I+CHI<sub>3</sub>. B. Aus den Komponenten in Methanol bei 50—60° (Steinkopf, Roch, Schultz, J. pr. [2] 113, 164). Orangegelbe Krystalle (aus Methanol). F: 156°. Sehr schwer löslich in heißem Alkohol, Aceton und Benzol, etwas leichter in heißem Methanol und Eisessig; löst sich etwas in kaltem Chloroform unter Violettfärbung (Zers.?).

- 4-Fluor-1-jod-benzol C<sub>6</sub>H<sub>4</sub>IF (H 220; E I 119). B. Zur Bildung aus diazotiertem 4-Fluor-anilin vgl. van Hove, Bl. Acad. Belg. [5] 12, 824; C. 1927 I, 885; II, 1146. E: —20,3°. Kp: 182°; Kp<sub>40</sub>: 96°. D<sup>15</sup>: 1,9253. Bei der Nitrierung mit Salpeterschwefelsäure entsteht nur wenig 6-Fluor-3-jod-1-nitro-benzol; daneben erhält man 4-Fluor-1-nitro-benzol, ein Fluortrijodbenzol und andere Produkte.
- 3-Chlor-1-jod-benzol C<sub>6</sub>H<sub>4</sub>ClI (H 220). Liefert bei der Nitrierung mit Salpetersäure (D: 1,5) bei —5° 2-Chlor-4-jod-1-nitro-benzol und 4-Chlor-2-jod-1-nitro-benzol (MAYES, TURNER, Soc. 1928, 694, 696).
- 4-Chlor-1-jod-benzol C<sub>6</sub>H<sub>4</sub>ClI (H 221; E I 119). B. Zur Bildung aus diazotiertem 4-Chlor-anilin und Kupfer(I)-jodid und aus diazotiertem 4-Jod-anilin und Kupfer(I)-chlorid vgl. Fry, Grotte, Am. Soc. 48, 711. Bei der Umsetzung von 4-Chlor-benzoldiazoniumtetrachlorjodid mit Kaliumjodid in essigsaurer Lösung (Chattaway, Garton, Parkes, Soc. 125, 1983). F: 54° (kort.) (Sugden, Soc. 125, 1173), 56° (Cha., G., P.). D<sup>11</sup>, 1,886; D<sup>11</sup>, 1,849; D<sup>11</sup>, 1,731; D<sup>11</sup>, 1,756; D<sup>11</sup>, 1,756; D<sup>11</sup>, 1,736 (Su.). Oberflächenspannung zwischen 61° (37,53) und 167° (26,76 dyn/cm): Su. Parachor: Su.; Mumford, Phillips, Soc. 1929, 2118. Thermische Analyse der Gemische mit 1.4-Dijod-benzol: Rheinboldt, Kircheisen, J. pr. [2] 113, 208. Liefert beim Behandeln mit Salpeterschwefelsäure nur wenig 6-Chlor-3-jod-1-nitro-benzol; daneben erhält man 4-Chlor-1-nitro-benzol, 4-Chlor-1.3-dijod-x-nitro-benzol, ein Chlortrijodbenzol und andere Produkte (van Hove, Bl. Acad. Belg. [5] 12, 831; C. 1927 I, 885; II, 1146).
- 2.4 Dichlor 1 jod benzol C<sub>8</sub>H<sub>3</sub>Cl<sub>2</sub>I, s. nebenstehende Formel (H 221; E I 119). Kp: 255—257° (EVANS, MABBOTT, TURNER, Soc. 1927, 1164). Liefert bei aufeinanderfolgender Behandlung der äther. Lösung mit Magnesium in Gegenwart von Jod und Acetaldehyd Methyl-[2.4-dichlor-phenyl]-carbinol.
- **2-Brom-1-jod-benzol**  $C_6H_4BrI$  (H 223; E I 121). Dipolmoment  $\mu \times 10^{18}$ : 1,73 (in verd. Benzol-Lösung) (Walden, Werner, *Ph. Ch.* [B] **2**, 18).

- **3-Brom-1-jod-bensol** C<sub>6</sub>H<sub>4</sub>BrI (H 223; E I 121). Dipolmoment  $\mu \times 10^{18}$ : 1,14 (in verd. Benzol-Lösung) (Walden, Werner, Ph. Ch. [B] 2, 18). Liefert bei der Nitrierung mit Salpetersäure (D: 1,5) bei —5° 2-Brom-4-jod-1-nitro-benzol und 4-Brom-2-jod-1-nitro-benzol (Mayes, Turner, Soc. 1928, 694, 696).
- 4-Brom-1-jod-benzol C<sub>6</sub>H<sub>4</sub>BrI (H 223; E I 121). B. Man erwärmt Jodbenzol mit 2 Atomen Brom auf dem Wasserbad und fügt allmählich eine Lösung von Nitrosulfonsäure in rauchender Salpetersäure zu (Varma, Narayan, Quart. J. indian chem. Soc. 4, 286; C. 1928 I, 489). Zur Bildung aus diazotiertem 4-Brom-anilin und Kupfer(I)-jodid und aus diazotiertem 4-Jod-anilin und Kupfer(I)-bromid vgl. Fry, Grote, Am. Soc. 48, 711. Bei der Einw. von Kaliumjodid auf die Blei(IV)-chlorid-Verbindung des 4-Brom-benzol-diazoniumchlorids-(1) in essigsaurer Lösung (Chattaway, Garton, Parkes, Soc. 125, 1985). Beim Schütteln von 4-Brom-phenylquecksilberacetat mit Jod und wäßr. Kaliumjodid-Lösung oder von 4-Jod-phenylquecksilberacetat mit Brom und wäßr. Kaliumbromid-Lösung (Hanke, Am. Soc. 45, 1327). F: 91° (Ha.), 92° (Cha., G., P.). Dipolmoment µ×10<sup>18</sup>: 0,49 (in verd. Benzol-Lösung) (Walden, Werner, Ph. Ch. [B] 2, 18). Thermische Analyse der Gemische mit 1.4-Dijod-benzol: Rheinboldt, Kircheisen, J. pr. [2] 113, 206.
- 5-Chlor-3-brom-1-jod-benzol C<sub>6</sub>H<sub>3</sub>ClBrI, s. nebenstehende Formel (E I 121). B. Durch Verkochen von diazotiertem 4-Chlor-6-brom-2-jod-anilin, 6-Chlor-4-brom-2-jod-anilin oder 6-Chlor-2-brom-4-jod-anilin mit Alkohol (Heisig, Am. Soc. 50, 145).

C1. Br

2.4.6-Tribrom-1-jod-benzol C<sub>6</sub>H<sub>2</sub>Br<sub>3</sub>I, s. nebenstehende Formel (H 225).

B. Neben 2.4.6-Tribrom-benzonitril beim Eintragen von 2.4.6-Tribrom-benzoldiazonium-tetrachlorjodid -(1) in heißer Kaliumkupfer (I)-cyanid-Lösung (Chattaway, Garton, Parkes, Soc. 125, 1983). — Krystalle (aus Alkohol). F: 105,5°.



- 1.2-Dijod-benzol, o-Dijod-benzol  $C_6H_4I_2$  (H 225; E I 121). E: 26,7° (ERRERA, Phys. Z. 27, 766; C. 1927 I, 1928). D° (fest): 2,76; D° (fest): 2,54 (E.).  $n_\infty^\infty$ : 1,7088;  $n_0^\infty$ : 1,7179 (E.). Ultraviolett-Absorptionsspektrum des Dampfes: E., Henri, J. Phys. Rad. [6] 9, 208; C. 1928 II, 2704. Dielektr.-Konst. bei 0°: 3,15; bei 20°: 5,7 (E., Phys. Z. 27, 766). Dichte und Dielektr.-Konst. der Lösungen in Benzol: E., Phys. Z. 27, 766). Dipolmoment  $\mu \times 10^{18}$ : 1,32 (in verd. Benzol-Lösung) (E., C. r. 182, 1624); 1,63 (J. Errera, Polarisation diélectrique [Paris 1928], S. 115); 1,82 (E., Phys. Z. 27, 767). Liefert bei der Einw. von 2 Atomen Magnesium in Äther oder Äther + Benzol o-Phenylen-bis-magnesiumjodid, das sich mit Wasser zu Benzol, mit Kohlendioxyd zu Benzoesäure, mit Benzophenon zu  $\omega.\omega.\omega'.\omega'$ -Tetraphenyl-o-xylylenglykol, mit Benzonitril zu 1.2-Dibenzoyl-benzol umsetzt (Bruhat, Thomas, C. r. 183, 297; vgl. Thomas, C. r. 181, 220).
- 1.3-Dijod-bensol, m-Dijod-bensol  $C_6H_4I_2$  (H 225; E I 121). E: 35,4° (Errera, Phys. Z. 27, 766; C. 1927 I, 1928). D° (fest): 2,76; D³ (fest): 2,47 (E.). Ultraviolett-Absorptionsspektrum des Dampfes: E., Henri, J. Phys. Rad. [6] 9, 208; C. 1928 II, 2704. Dielektr.-Konst. bei 0°: 3,0; bei 25°: 4,25 (E., Phys. Z. 27, 766). Dipolmoment  $\mu \times 10^{18}$ : 1,01 (in verd. Benzol-Lösung) (E., C. r. 182, 1624; Phys. Z. 27, 767; J. Errera, Polarisation diélectrique [Paris 1928], S. 115). Liefert bei der Einw. von 2 Atomen Magnesium in Ather oder Ather + Benzol m-Phenylen-bis-magnesiumjodid, das sich mit Wasser zu Benzol, mit Kohlendioxyd zu Isophthalsäure, mit Benzophenon zu  $\omega.\omega.\omega'.\omega'$ . Tetraphenyl-m-xylylenglykol, mit Benzonitril zu 1.3-Dibenzoyl-benzol umsetzt (Bruhat, Thomas, C. r. 183, 297; vgl. Thomas, C. r. 181, 220). Physiologisches Verhalten: Ibuki, Ar. Pth. 124, 377; C. 1927 II, 2080.
- 1.4-Dijod-benzol, p-Dijod-benzol C<sub>8</sub>H<sub>4</sub>I<sub>2</sub> (H 227; E I 122). B. Bei der elektrolytischen Oxydation von Jodbenzol in Eisessig + Uberchlorsäure an Platin-Anoden bei langer Versuchsdauer, hoher Stromdichte oder hoher Temperatur, neben anderen Produkten (Fichter, Lotter, Helv. 8, 439). Durch Einw. von Kupfer(I)-jodid auf diazotiertes 4-Jodanilin (Fry, Grote, Am. Soc. 48, 711).

H 227, Z. 18 v. o. statt "B. 42, 3827" lies "B. 42, 3832".

E: 129,2° (Errera, Phys. Z. 27, 766; C. 1927 I, 1928). Ultraviolett-Absorptionsspektrum des Dampfes: E., Henri, J. Phys. Rad. [6] 9, 208; C. 1928 II, 2704. Dielektr.-Konst. bei 120°: 2,88 (E., Phys. Z. 27, 766). Thermische Analyse der binären Systeme mit 4-Brom-1-jodbenzol, 4-Chlor-1-jod-benzol: Rheinboldt, Kircheisen, J. pr. [2] 118, 206, 208; mit Schwefel (Eutektikum bei 91° und 58,5 Gew.-% Schwefel): Rh., Schneider, J. pr. [2] 120, 247.

Liefert bei der Hydrierung in Gegenwart von Palladium-Calciumcarbonat in methylalkoholischer Kalilauge 4-Jod-diphenyl und ein schwer lösliches hochschmelzendes Produkt (Busch, Schmidt, B. 62, 2619). Beim Erhitzen mit Kupferpulver wurden bei einem Versuch geringe Mengen 4.4'-Dijod-diphenyl erhalten (Sircar, De, Quart. J. indian chem. Soc. 3, 250;

169

C. 1927 I, 285). Liefert bei der Einw. von 1 Atom Magnesium in Äther und Zersetzung des Reaktionsprodukts mit Wasser Benzol, Jodbenzol und harzige Produkte (ΤΗΟΜΑS, C. r. 181. 219); bei der Einw. von 2 Atomen Magnesium in Äther oder Äther + Benzol erhält man p-Phenylen-bis-magnesiumjodid, das sich mit Wasser zu Benzol, mit Kohlendioxyd zu Terephthalsäure, mit Benzophenon zu ω.ω.ω'.ω'.-Tetraphenyl-p-xylylenglykol, mit Benzonitril zu 1.4-Dibenzoyl-benzol umsetzt (BRUHAT, THOMAS, C. r. 183, 297).

1-Jod-2.4-dijodoso-benzol  $C_6H_3O_2I_3=C_6H_3I(IO)_2$  s. nebenstehende Formel. — Salzsaures Salz  $C_6H_3I(ICl_2)_2$ . Diese Konstitution kommt der H 228 als salzsaures Salz des 1.2.4-Trijodoso-benzols beschriebenen Verbindung zu (Willgerodt, J. pr. [2] 111, 355).

i.

**x-Fluor-x-trijod-benzol**  $C_6H_2I_3F$ . B. Neben anderen Verbindungen bei  $\dot{I}^{O}$  der Einw. von Salpeterschwefelsäure auf 4-Fluor-1-jod-benzol (van Hove, Bl. Acad.~Belg.~[5] 12, 826; C. 1927 I, 885; II, 1146). — Fast farblose Krystalle (aus Alkohol). F: 74—75°. Kp<sub>40</sub>: ca. 175°.

x-Chlor-x-trijod-benzol C<sub>6</sub>H<sub>2</sub>ClI<sub>3</sub>. B. Neben anderen Verbindungen bei der Einw. von Salpeterschwefelsäure auf 4-Chlor-1-jod-benzol (VAN HOVE, Bl. Acad. Belg. [5] 12, 832, 834; C. 1927 I, 885; II, 1146). — Nadeln (aus Alkohol und Eisessig). F: 155°. Leicht löslich in Eisessig, ziemlich leicht in Alkohol, fast unlöslich in Äther.

Hexajodbenzol C<sub>6</sub>I<sub>6</sub> (H 230). Monoklin prismatisch (Mark, B. 57, 1827). Röntgenographische Untersuchung: M. Thermische Analyse des Systems mit Schwefel: Rheinboldt, Schneider, J. pr. [2] 120, 247. — Überführung in ein graphitartiges Produkt durch Erhitzen: Ciusa, G. 55, 389; 58, 222. [Beger]

# e) Nitroso-Derivate.

Nitrosobenzol  $C_6H_5$  ON =  $C_6H_5$  NO (H 230; E I 123). B. Bei kurzem Kochen einer Lösung von Nitrobenzol in Ligroin mit Calciumhydrid (Durand, Houghton, C.r. 180, 1035). Durch Oxydation von Anillin mit Peressigsäure in wäßr. Lösung bei Gegenwart der zur Neutralisation notwendigen Menge Dicarbonat unter Kühlung (D'Ans, Kneip, B. 48 [1915], 1144). Durch Oxydation von Benzylidenanilin mit äther. Benzopersäure (Bergmann, Ulpts, Witte, B. 56, 682). Neben anderen Produkten bei der thermischen Zersetzung von N-Oxy-N-phenyl-N'-p-tolyl-formamidin (Syst. Nr. 1932) oder anderen N-Oxy-N-phenyl-N'-aryl-formamidinen (Ingold, Soc. 125, 97, 99). Aus Benzol-normaldiazohydroxyd und dem Natriumsalz des Nitrohydroxylamins in alkal. Lösung (Bigiavi, B. 62, 2101). — F: 68,00 (Hassel, Naehagen, Ph. Ch. [B] 6, 445). Verbrennungswärme bei konstantem Volumen: 742,1 kcal/Mol (Drucker in Landolt-Börnst. E II, 1650). Unlöslich in-flüssigem Ammoniak (White, Knight, Am. Soc. 45, 1786). Dielektr.-Konst. von Lösungen in Benzol: Ha., N. Dipolmoment  $\mu$ ×10<sup>18</sup>: 3,22 (verd. Lösungen in Benzol) (Ha., N.). Öxydations-Reduktionspotential in 0,2 n-Salzsäure-Aceton-Gemisch bei 25°: Conant, Lutz, Am. Soc. 45, 1059. Einfluß auf die Klopffestigkeit von Treibstoffen: Egerton, Gates, J. Inst. Petr. Technol. 13, 280; C. 1928 II, 211.

Oxydation mit Salpetersäure s. u. Liefert bei der Reduktion mit Natrium oder Kalium in flüssigem Ammoniak Phenylhydroxylamin (White, Knight, Am. Soc. 45, 1786). Gibt bei längerem Kochen mit Calciumhydrid in Gegenwart von Ligroin Azoxybenzol (Durand, Houghton, C. r. 180, 1035). Wird durch Hydrazin in Gegenwart von palladiniertem Calciumcarbonat in siedender alkoholischer oder methylalkoholischer Kalilauge zu Azobenzol reduziert (Busch, Schulz, B. 62, 1466). Bei der Reaktion mit dem Natriumsalz der Hydroxylamin-N-sulfonsäure in alkal. Lösung entsteht Phenylnitrosohydroxylamin (Angeli, Bigiavi, Jolles, R. A. L. [6] 8, 119). Beim Erhitzen mit alkal. Natriumarsenit-Lösung auf dem Wasserbad erhält man Azoxybenzol und geringe Mengen Anilin (Gutmann, Fr. 66, 228; B. 55, 3009). Liefert bei der Einw. von Brom in Schwefelkohlenstoff bei —5° 4-Brom-1-nitroso-benzol; reagiert analog mit Chlor unter Bildung von 4-Chlor-1-nitroso-benzol (Ingold, Soc. 127, 515, 517). Gibt bei Einw. von 100%iger Salpetersäure bei 0° Nitrobenzol (I.). Bei der Einw. von Stickstoffpentoxyd auf eine Lösung in Tetrachlorkohlenstoff in Gegenwart von Phosphorpentoxyd unter Kühlung entstehen Nitrobenzol und 4-Nitroso-1-nitro-benzol (I.). Gibt in Tetrachlorkohlenstoff-Lösung mit wenig Titan(IV)-chlorid einen gelben, mit mehr Titan(IV)-chlorid einen roten Niederschlag (Reihlen, Hake, A. 452, 62). Bei der Einw. von Nitrosobenzol auf Kaliumferrocyanid in verd. Alkohol am Tageslicht entsteht das Komplexsalz Ka[Fe(CN)<sub>5</sub>(C<sub>6</sub>H<sub>5</sub>·NO)]; analog erhält man mit Natriumeisen(II)-aquopentacyanid Na<sub>3</sub>[Fe(CN)<sub>5</sub>(C<sub>6</sub>H<sub>5</sub>·NO)] (Baudisch, B. 54, 414; 62, 2707; J. biol. Chem. 48, 498; Bau., Bass, B. 55, 2702).

Liefert bei Behandlung mit der äquimolekularen Menge 4-Nitro-benzylchlorid in Gegenwart von 1½ Mol Kaliumhydroxyd in Alkohol + Methanol bei Zimmertemperatur 4-Nitrobenzaldoxim-N-phenyläther (Syst. Nr. 1604) (Barrow, Griffiths, Soc. 119, 213); reagiert analog mit 2.4-Dinitro-benzylchlorid und 2.6-Dinitro-benzylchlorid (B., G., Bloom, Soc. 121, 1714, 1716). Bei der Einw. von Malonsäurediäthylester entsteht Phenylimino-malonsäure-diäthylester (Walker, Soc. 125, 1623 Anm.).—Reagiert mit Styrol in der Kälte unter Bildung von N-Phenyl-isobenzaldoxim (Syst. Nr. 1604); daneben entstehen Ameisensäure, Benzaldehyd, Benzoesäure und Azoxybenzol (Alessandri, G. 54, 434; Ingold, Weaver, Soc. 125, 1462); aus der Mutterlauge kann nach Kochen mit verd. Schwefelsäure 4-Amino-phenol isoliert werden (I., W.). Liefert beim Aufbewahren mit α.α-Diphenyläthylen in wenig Chloroform N-Phenyl-benzophenonisoxim und N.N'-Diphenyl-harnstoff (I. W., Soc. 125, 1461; BURKHARDT, LAPWORTH, WALKDEN, Soc. 127, 2458). Analog wie mit Safrol (vgl. E I 123) reagiert Nitrosobenzol mit Esdragol (Syst. Nr. 534), Methyleugenol (Syst. Nr. 560) und Myristicin (Syst. Nr. 2696) (A., G. 51 II, 129, 135). Umsetzung mit Isosafrol und Apiol: A., G. 51 II, 129, 136, 138. Bei der Einw. von Methylenmalonsäurediäthylester in wenig Chloroform entsteht N-Phenyl-[formylmalonsäure-diäthylester-isoxim] (I., W.,

Soc. 125, 1459; Burkhardt, Lapworth, Soc. 127, 1747).

Bei der Einw. von Nitrosobenzol auf 2-Nitro-phenylacetylen in Eisessig entstehen
Diisatogen, N.Oxy-isatin und Azoxybenzol (Alessandri, G. 57, 217). Verwendet man Benzol oder Äther als Lösungsmittel, so erhält man außer Disatogen und Azoxybenzol Isatin-α-oxim-N-phenyläther, eine bei 150—151° schmelzende Verbindung C<sub>14</sub>H<sub>10</sub>O<sub>3</sub>N<sub>2</sub> (Nadeln aus Benzol; löslich in Alkohol und in konz. Schwefelsäure), die sich beim Kochen mit Natronlauge zersetzt, und meist noch dunkelviolette Krystalle, die sich bei 189° zersetzen (A., G. 57, 209). Bei längerer Einw. von Nitrosobenzol auf Tolan in Benzol, Eisessig oder Chloroform entsteht neben anderen Produkten Benzildioxim-N.N'-diphenyläther (Syst. Nr. 1604) (A., G. 52 I, 194; 54, 438, 440). Beim Aufbewahren mit Phenylpropiolsäure in Ather im Dunkeln während mehrerer Monate erhält man geringe Mengen einer bei 1700 unter Zersetzung schmelzenden Verbindung (Nadeln aus Benzol) und Azoxybenzol (A., G. 55, 736). Liefert beim Behandeln mit Phenylpropiolsäure-äthylester in Chloroform im Dunkeln Benzoylglyoxylsäure-äthylester-bis-oxim-N-phenyläther (A., G. 55, 737). Bei der Einw. von Nitrosobenzol auf 2-Nitro-phenylpropiolsäure entstehen Isatin, N-Oxy-isatin und wenig Isatin-\alpha-oxim-N-phenyläther (A., G. 58, 553). Eine Lösung von Triphenylmethyl in Benzol liefert bei der Einw. auf Nitrosobenzol im Kohlendioxydstrom 4.4-Bis-triphenylmethyl-

azoxybenzol und Triphenylcarbinol (Goldschmidt, Christmann, A. 442, 250). Liefert beim Behandeln mit 2-Nitro-anilin in alkoholisch-essigsaurer Lösung unter Abschluß von Licht unterhalb 50° 4′-Nitroso-2-nitro-diphenylamin (CHARRIER, BERETTA, G. 54, 979). Beim Behandeln mit 3-Nitro-anilin in Eisessig erhält man 3-Nitro-azobenzol (Сн., Ве., G. 54, 980). Reagiert analog mit 4-Nitro-anilin (Сн., Ве.), 4-Chlor-3-nitro-anilin (Вокясне, Ехяя, В. 56, 2354) und 2-Nitro-4-amino-toluol (Во., Е.; Меняемнегмек, В. 58, 368). Die alkoh. Lösung 'liefert mit kalten, konzentrierten alkoholisch-ammoniakalischen Lösungen von 5-Acetamino-naphthol-(1) 5-Acetamino-naphthochinon-(1.4)-anil-(4); reagiert analog mit 6-Acetamino-naphthol-(1) (SANDER, B. 58, 825). Bei längerer Einw. von Nitrosoanalog mit 6-Acetamino-naphrhol-(1) (SANBAR, B. 56, 825). Bei langerer Eliw. Von Mitosobenzol auf N-Phenyl-piperonalisoxim in Benzol entstehen Piperonal und Azoxybenzol (ALESSANDRI, G. 54, 437). Bei der Einw. auf Isatin-a-oxim-N-phenyläther in Chloroform entstehen Azoxybenzol und Isatin (A., G. 57, 222). Liefert mit trimerem Methylen-p-toluidin (Syst. Nr. 3796) bei 40-stdg. Aufbewahren in wenig kaltem Chloroform N-Oxy-N-phenyl-N'-p-tolyl-formamidin und Azoxybenzol (Ingold, Soc. 125, 94; vgl. a. Farrow, I., Soc. 125, 2543, 2549; Burkhardt, Lapworth, Robinson, Soc. 127, 2234); mit Methylen-4-chlor-phenyl-mitischen Vorbindungen entstehen in analoger Benktion die orternebenden anilin und ähnlichen Verbindungen entstehen in analoger Reaktion die entsprechenden Formamidine (I.). Bei allmählichem Eintragen einer alkoh. Lösung von Nitrosobenzol in eine äther. Phenylarsin-Lösung im Kohlendioxyd-Strom unter Eiskühlung erhält man eine gelbe Lösung, die nach Aufbewahren Arsenobenzol und Azobenzol liefert (entstanden durch Zerfall von Arsenoazobenzol?); außerdem wurden Anilin und Phenylarsinoxyd isoliert (Steinkopf, Dudek, B. 62, 2496). Über die Einw. von Athylmagnesiumbromid-Lösung und die hierbei entwickelte Gasmenge vgl. Gilman, Fothergill, Am. Soc. 49, 2817. Zur Reaktion mit Phenylmagnesiumbromid (H 232; E I 123) vgl. auch Gi., McCracken, Am. Soc. 49, 2817. Zur Reaktion mit Phenylmagnesiumbromid (H 232; E I 193) vgl. auch Gi., McCracken, Am. Soc.

49, 1058. Über die Einw. auf Kautschuk vgl. die Angaben in H 30, 45, 61.
Wirkung auf Kaninchenblut: Lipschitz, H. 109, 224.

2C<sub>4</sub>H<sub>5</sub>ON + SnCl<sub>4</sub>. Gelber Niederschlag (Reihlen, Hake, A. 452, 61). — Na<sub>2</sub>[Fe(CN)<sub>5</sub> (C<sub>4</sub>H<sub>5</sub>·NO)] + 3H<sub>2</sub>O (Baudisch, B. 54, 414; vgl. Cambi, R. A. L. [6] 3, 12). Purpurviolett (C.). Reaktion mit Natriumnitrit und Natriumcyanid am Tageslicht: B. Bei der Einw. von Silbersalz entsteht ein violettes Komplexsalz, das beim Kochen mit Wasser Nitrosobenzol zurückliefert (C.). —  $K_3$ [Fe(CN)<sub>5</sub>(C<sub>6</sub>H<sub>5</sub>·NO)]. B. Aus belichteter Kaliumferrocyanid-Lösung und Nitrosobenzol (BAUDISCH, B. 62, 2707; vgl. BAU., BASS, B. 55, 2702). Die wäßr. Lösung ist intensiv violett. Sehr beständig gegen Säuren und Alkalien.

- 171
- 2-Chlor-1-nitroso-benzol C<sub>6</sub>H<sub>4</sub>ONCl = C<sub>6</sub>H<sub>4</sub>Cl·NO. B. Aus N-[2-Chlor-phenyl]hydroxylamin durch Oxydation mit Kaliumdichromat-Schwefelsäure (Наwовтн, Lapworth, Soc. 119, 772). — Nadeln (aus Alkohol). F: 56—57°. Leicht löslich in Alkohol, Äther, Chloroform, Benzol und heißem Petroläther. Leicht flüchtig mit Wasserdampf.
- 3-Chlor-1-nitroso-benzol C<sub>e</sub>H<sub>4</sub>ONCl = C<sub>e</sub>H<sub>4</sub>Cl·NO. B. Aus N-[3-Chlor-phenyl]-hydroxylamin durch Oxydation mit Kaliumdichromat-Schwefelsäure unter Kühlung (Намоктн, Lарworth, Soc. 119, 773). Nadeln (aus Benzol). F: 72°. Leicht löslich mit grüner Farbe in Alkohol, Äther, Chloroform, Aceton und Benzol. Liefert bei der Reduktion mit Jodwasserstoffsäure (D: 1,7) und rotem Phosphor in Eisessig 3.3′-Dichlor-azoxybenzol (Earl, Kenner, Soc. 1927, 2144).
- 4-Chlor-1-nitroso-benzol C<sub>6</sub>H<sub>4</sub>ONCl = C<sub>6</sub>H<sub>4</sub>Cl·NO (E I 123). B. Aus 4-Chloranilin bei der Einw. von Caroscher Säure in neutraler Lösung bei 0—5° (Ingold, Soc. 125, 93). Durch Oxydation von N-[4-Chlor-phenyl]-hydroxylamin mit Kaliumdichromat-Schwefelsäure (Haworfh, Lapworth, Soc. 119, 770). Neben anderen Produkten bei der thermischen Zersetzung von N-Oxy-N.N'-bis-[4-chlor-phenyl]-formamidin (I., Soc. 125, 100). Krystalle (aus Alkohol). F: 92—93° (I., Soc. 127, 517). Liefert bei der Einw. von Jodwasserstoffsäure (D: 1,7) in Gegenwart von rotem Phosphor oder Quecksilber in Eisessig 4.4'-Dichlorazoxy-benzol (Earl, Kenner, Soc. 1927, 2144). Bei 20-stdg. Aufbewahren mit Styrol in wenig Chloroform bei 5° entsteht N-[4-Chlor-phenyl]-isobenzaldoxim (Syst. Nr. 1670) (I., Weaver, Soc. 125, 1462). Bei der Einw. von Methylenmalonsäurediäthylester auf eine heiße konzentrierte Lösung von 4-Chlor-1-nitroso-benzol in Chloroform entsteht N-[4-Chlor-phenyl]-formylmalonsäure-diäthylester-isoxim] (Ingold, Weaver, Soc. 125, 1460; Burkhardt, Lapworth, Soc. 127, 1747). Liefert mit trimerem Methylen-p-toluidin beim längeren Aufbewahren in wenig kaltem Chloroform N-Oxy-N-[4-chlor-phenyl]-N'-p-tolyl-formamidin (Ingold, Soc. 125, 95; Farrow, I., Soc. 125, 2543; Bu., L., Robinson, Soc. 127, 2234).
- 3-Brom-1-nitroso-benzol  $C_6H_4ONBr = C_6H_4Br\cdot NO$ . B. Aus N-[3-Brom-phenyl]-hydroxylamin durch Oxydation mit Kaliumdichromat-Schwefelsäure (HAWORTH, LAPWORTH, Soc. 119, 773). F: 78°.
- 4-Brom-1-nitroso-benzol C<sub>6</sub>H<sub>4</sub>ONBr = C<sub>6</sub>H<sub>4</sub>Br·NO (H 232; E I 124). B. Durch Einw. von Brom auf Nitrosobenzol in Schwefelkohlenstoff bei —5° (Ingold, Soc. 127, 516). Aus 4-Brom-anilin bei der Einw. von Caroscher Säure bei 0—5° in neutraler Lösung (I., Soc. 125, 94). Durch Oxydation von N-[4-Brom-phenyl]-hydroxylamin mit Kaliumdichromat-Schwefelsäure unter Kühlung (Haworth, Lapworth, Soc. 119, 770). Neben anderen Produkten bei der thermischen Zersetzung von N-Oxy-N-phenyl-N'-[4-brom-phenyl]-formamidin oder anderer N-Oxy-N-aryl-N'-[4-brom-phenyl]-formamidine (I., Soc. 125, 99, 101). In geringer Menge beim Einleiten von Chlorwasserstoff in eine Lösung von 4-Brom-phenyl-nitrosohydroxylamin in trocknem Ather unter Eiskühlung, neben anderen Produkten (Bamberger, B. 53, 2311). Krystalle (aus Alkohol). F: 95° (Ingold, Soc. 127, 516). Gibt beim Erwärmen mit Anilin 4-Brom-azobenzol (I., Soc. 127, 516).
  - 2.4.6-Tribrom-1-nitroso-benzol C<sub>6</sub>H<sub>2</sub>ONBr<sub>3</sub> = C<sub>6</sub>H<sub>2</sub>Br<sub>3</sub>·NO (H 232). H 232, Z. 18 v. u. statt: ,,80 g" lies: ,,1 g". Z. 15—14 v. u. streiche: ,, ; Ausbeute: ca. 20 g".
- 1.4-Dinitroso-benzol  $C_6H_4O_2N_2=C_6H_4(NO)_2$ . Vielleicht identisch mit dem H 7, 628 beschriebenen "p-Dinitroso-benzol" (Bigiavi, Franceschi, G. 57, 367). B. Aus 1.4-Bis-[nitroso-hydroxylamino]-benzol beim Behandeln mit verd. Schwefelsäure (Bigiavi, Franceschi, G. 57, 381; B., R. A. L. [6] 4, 458). Dunkelgelb. Beginnt bei 184° sich zu bräunen und ist bei 245° ganz schwarz. Sehr schwer löslich in organischen Lösungsmitteln. Flüchtig mit Wasserdampf. Liefert beim Erwärmen mit Salpetersäure (D: 1,48) 1.4-Dinitro-benzol.

f) Nitro-Derivate.

Nitrobenzol  $C_6H_5O_2N = C_6H_5 \cdot NO_2$  (H 233; E I 124).

# Bildung und Darstellung.

Durch Nitrierung von Benzol mit einem Gemisch von konz. Salpetersäure, Nitrosylschwefelsäure und konz. Schwefelsäure (Wolf, D.R.P. 310772; C. 1922 II, 946; Frdl. 13, 1104) oder mit ca. 4 Tln. eines Gemisches aus Nitrosylschwefelsäure und rauchender Salpetersäure (D: 1,502) auf dem Wasserbad (Varma, Kulkarni, Am. Soc. 47, 144). Beim Kochen von Benzol mit Salpetersäure (63—78%) in Gegenwart von Quecksilberoxyd oder Quecksilbernitrat, neben anderen Produkten (Davis, Mitarb., Am. Soc. 43, 598). Zur Darstellung aus Benzol durch Nitrierung mit Salpeterschwefelsäure verschiedener Zusammensetzung bei 40°

bis 80° vgl. Maljarewski, Z. chim. Promyšl. 4, 399; C. 1927 II, 2107. Bei der Einw. von Stickstoffpentoxyd auf Benzol bzw. auf eine Mischung von Benzol und Tetrachlorkohlenstoff bei 0° (Haines, Adkins, Am. Soc. 47, 1419). Durch Einw. von Eisen(III)-nitrat auf Benzol in Acetanhydrid bei 80° (Menke, R. 44, 146). In geringer Menge durch Erhitzen von āquimolekularen Mengen Benzol und Stickstoffdioxyd im Rohr auf 80°, neben anderen Produkten (Wieland, B. 54, 1778). Bei der Nitrierung von Benzol mit Stickstoffdioxyd und 90 bis 95%iger Schwefelsäure zuletzt bei 40—60° (Pinck, Am. Soc. 49, 2537). In geringer Menge bei längerem Aufbewahren von Benzol mit Stickstoffdioxyd (Schaarschmidt, Smolla, B. 57, 39) im Sonnenlicht (Bass, Johnson, Am. Soc. 46, 459) oder durch allmähliche Einw. von Stickstoffdioxyd auf Benzol bei Gegenwart von Aluminiumchlorid, anfangs bei 10° bis 15°, später bei 30—35° und nachfolgende Zersetzung mit Wasser (Sch., B. 57, 2070). Neben anderen Produkten beim Leiten von Nitrosylchlorid in eine Suspension von Aluminiumchlorid in Benzol bei Temperaturen zwischen 5° und 15° und folgenden Erwärmen des Reaktionsgemisches auf 80° unter Ausschluß von Feuchtigkeit (Sch., Raeck, B. 58, 350). Entsteht ferner durch Einw. von 100%iger Salpetersäure auf Nitrosobenzol bei 0° (Ingold, Soc. 127, 517). Aus 4-Jodoso-1-nitro-benzol durch längeres Schütteln mit Silberoxyd in wäßr. Suspension oder, neben 4-Jod-1-nitro-benzol, beim Behandeln mit verd. Kalilauge (Vorländer, Büchner, B. 58, 1291). Bei der Einw. von Peressigsäure auf Acetanilid (Biglavi, R. A. L. [6] 5, 587). Durch Leiten von Ozon in eine Lösung von Phenylhydroxylamin in Chloroform (Strecker, Baltes, B. 54, 2707). Beim Eintragen von diazotiertem Anilin in Natriumnitrit-Lösung in Gegenwart von Kupfersalz oder Kupferpulver (Veselý, Dvořák, Bl. [4] 31, 423). Bei der Zersetzung von α-[4-Nitro-benzol-azo]-triphenylmethan in Xylol bei 90° (Wieland, Popper, Seeffried, R. 55, 1829). Durch Einw. von verd. Salpetersäure auf Kupfer(I)-phenyl (Reich, C. r. 177, 323). —

## Physikalische Eigenschaften.

Mechanische und thermische Eigenschaften. E: 5,668 ± 0,010° (Roberts, Bury, Soc. 123, 2041), 5,689° (Sidgwick, Ewbank, Soc. 125, 2269). Beeinflussung des Erstarrungspunktes durch Wasser: S., E.; durch Wasser und Salzhydrate: R., B.; durch Luft: Foote, Leopold, Am. J. Sci. [5] 11, 45; C. 1926 I, 1773. Einleitung der Krystallisation unterkühlter Schmelzen durch Anlegen einer Spannung von 50—80 kV: Schaum, Scheidt, Z. wiss. Phot. 25, 363; C. 1928 II, 1187. — Kp<sub>760</sub>: 210,85° (Grimm, Patrick, Am. Soc. 45, 2799; Timmermans, Martin, J. Chim. phys. 23, 742; Lecat, R. 46, 245); Kp<sub>747</sub>: 209° (kott.) (Sugden, Soc. 125, 1172); Kp<sub>14</sub>: 81° (Brand, Kranz, J. pr. [2] 115, 153). Flüchtigkeit: Hine, Phys. Rev. [2] 24, 89; C. 1924 II, 1446; Herbst, Koll. Beih. 23, 334; C. 1926 II, 2544. Kritische Temperatur: 482,8° (Stachorski, Z. El. Ch. 34, 112). — D<sub>1</sub><sup>10</sup>: 1,2138; D<sub>1</sub><sup>10</sup>: 1,2037; D<sub>2</sub><sup>10</sup>: 1,1734; D<sub>1</sub><sup>10</sup>: 1,1537; D<sub>2</sub><sup>10</sup>: 1,1232 (Bingham, van Klooster, Kleinspehn, J. phys. Chem. 24, 5); D<sub>2</sub><sup>10</sup>: 1,2208; D<sub>2</sub><sup>10</sup>: 1,2132; D<sub>2</sub><sup>10</sup>: 1,1987; D<sub>2</sub><sup>10</sup>: 1,11603; D<sub>2</sub><sup>10</sup>: 1,1397; D<sub>2</sub><sup>10</sup>: 1,1208 (Jefremow, Izv. Inst. fiz.-chim. Anal. 4, 140; C. 1929 I, 729); D<sub>2</sub><sup>10</sup>: 1,2033 (Brand, Kranz, J. pr. [2] 115, 153); D<sub>2</sub><sup>10</sup>: 1,137; D<sub>2</sub><sup>10</sup>: 1,110; D<sub>2</sub><sup>10</sup>: 1,091; D<sub>2</sub><sup>10</sup>: 1,047 (Sugden, Soc. 125, 1172). Dichten zwischen 17,5° (1,205) und 206,0° (1,010): Jezewski, J. Phys. Rad. [6] 3. 306; C. 1923 III, 205. Isotherme Kompressibilität zwischen 0 und 8 Atm. bei 8,29°: 44,75×10<sup>-6</sup> Atm.<sup>-1</sup>; bei 17,92°: 46,96×10<sup>-6</sup> Atm.<sup>-1</sup> (Schmidt, Ann. Phys. [4] 76, 587). Adiabatische Kompressibilität bei 17,5°: Busse, Ann. Phys. [4] 75, 662.

Viscosität bei 10°: 0,0242, bei 15°: 0,0218, bei 20°: 0,0198 g/cm sec (Dummer, Z. anorg. Ch. 109 [1919], 49); Viscosität zwischen 0° (0,03041 g/cm sec) und 105° (0,00655 g/cm sec): Jefremow, Izv. Inst. fiz.-chim. Anal. 4, 141; C. 1929 I, 729; zwischen 0,3° (0,03086 g/cm sec) und 100,5° (0,007025 g/cm sec): Bingham, van Klooster, Kleinspehn, J. phys. Chem. 24, 13. Einfluß von Drucken bis 2000 kg/cm² auf die Viscosität bei 30°: Bridgman, Pr. am. Acad. Arts Sci. 61, 81, 87; C. 1926 I, 1919; II, 1923. Oberflächenspannung bei 20°: 43,38 dyn/cm (Harkins, Clark, Roberts, Am. Soc. 42, 705), 42,4 dyn/cm (Damerell, Am. Soc. 49, 2990), 41,75 dyn/cm (Stachorsky, Z. El. Ch. 34, 112). Oberflächenspannung zwischen 12° (45,29 dyn/cm) und 197° (23,89 dyn/cm): Sugden, Soc. 125, 1173. Parachor: S., Soc. 125, 1186; Mumford, Phillips, Soc. 1929, 2121. Spezifische Wärme zwischen 20° und 50°: Williams, Daniels, Am. Soc. 46, 1570; zwischen 30° (0,3442 cal/g) und 80°: W., D., Am. Soc. 46, 910, 912. Schmelzwärme: 2,76 kcal/Mol (Timmermans, Bl. Soc. chim. Belg. 37 [1928], 412). Verbrennungswärme bei konstantem Volumen: 739,9 kcal/Mol (Ganner, Abernethy, Pr. roy. Soc. [A] 99, 230; C. 1921 III, 866). Krystallisationswärme: G., A. Schallgeschwindigkeit in flüssigem Nitrobenzol bei 17,5°: Busse, Ann. Phys. [4] 75, 662.

Optische und elektrische Eigenschaften. Brechungsindices im sichtbaren Gebiet und im Ultraviolett (FEUSSNER, Z. Phys. 45 [1927], 711) s. in Tabelle 1. ng. 1,54913;

Tabelle 1. Brechungsindices für verschiedene Wellenlängen.

| Wellenlänge<br>mµ | n <sup>20</sup> | dn/dt·106 | Wellenlänge<br>mµ | n20     | dn/dt·10 |
|-------------------|-----------------|-----------|-------------------|---------|----------|
| 312,57            | 1,717           |           | 447,15            | 1,58289 | 488      |
| 325,25            | 1,6974          |           | 467.82            | 1.57586 | 477      |
| 326,11            | 1,6947          |           | 471,31            | 1.57478 | 476      |
| 328,23            | 1,6900          |           | 479,99            | 1.57230 | 471      |
| 330,28            | 1,6853          |           | 492.19            | 1.56915 | 466      |
| 334,50            | 1,6761          |           | 501,57            | 1.56692 | 463      |
| 340,36            | 1,6651          |           | 508,58            | 1,56539 | 461      |
| 346,62            | 1,6562          |           | 533,85            | 1.56045 | 455      |
| 361.05            | 1.6388          |           | 537.89            | 1,55973 | 454      |
| 365.48            | 1,6342          |           | 546.07            | 1,55836 | 453      |
| 366,33            | 1.6338          |           | 576.96            | 1,55384 | 448      |
| 394,40            | 1,6103          |           | 579,07            | 1,55357 | 447      |
| 396,15            | 1,6088          |           | 587,56            | 1,55246 | 446      |
| 404,68            | 1,6031          |           | 643,85            | 1.54663 | 441      |
| 407,78            | 1,6017          |           | 667,82            | 1.54458 | 440      |
| 435,83            | 1,58748         | 495       | 706,52            | 1,54181 | 438      |
| 441,30            | 1.58510         | 492       |                   | ,       |          |

n<sub>1</sub>n.5: 1,55595; n<sub>p</sub><sup>n.5</sup>: 1,57464 (Krollpfeiffer, A. 480, 202); n<sub>o</sub><sup>n.</sup>: 1,54582; n<sub>o</sub><sup>n.5</sup>: 1,55261; n<sub>o</sub><sup>n.5</sup>; 1,57097 (Brand, Kranz, J. pr. [2] 115, 153); n<sub>o</sub><sup>n.6</sup>: 1,5456; n<sub>o</sub><sup>n.5</sup>: 1,5526; n<sub>o</sub><sup>n.6</sup>: 1,5708 (Szivessy, Ann. Phys. [4] 69, 234); n<sub>o</sub><sup>n.5</sup>: 1,55415 (McCombie, Roberts, Scarborough, Soc. 127, 758); n<sub>o</sub><sup>n.6</sup>: 1,55215 (Tromp, R. 41, 299); n<sub>o</sub><sup>n.6</sup>: 1,55006 (Harris, Soc. 127, 1064). Einfluß des Druckes auf die Brechungsexponenten für 653, 589 und 543 mμ: Himstedt, Wertheimer, Ann. Phys. [4] 67, 400. Interferrometrische Untersuchungen an Nitrobenzol im elektrischen Feld: Schaum, Scheidt, Z. wiss. Phot. 25, 363; C. 1928 II, 1187; Schaum, Walter, Z. wiss. Phot. 27, 109; C. 1929 II, 2020. Absorption von Röntgenstrahlen: Aurén, Medd. Vet.-Akad. Nobelinst. 4 [1920—1922], Nr. 3, S. 13. Lichtarbsorption im Ultraviolett: Moir, Soc. 125, 1551; im Ultravot zwischen 1 und 15 μ: W. W. Coblentz, Investigations of infrared spectra [Washington 1905], S. 157, 251. Über Lichtabsorption bei Zimmertemperatur und beim Siedepunkt vgl. Lecher, B. 53, 588. Lichtabsorption in Lösung s. S. 176. Luminescenzspektrum bei Bestrahlung mit langwelligem Ultraviolett: Wawillow, Tummermann, Z. Phys. 54, 271; C. 1929 I, 3070. — Elliptische Polarisation von polarisiertem Licht bei der Reflexion an der Oberfläche von Nitrobenzol: Raman, Ramdas, Phil. Mag. [7] 3, 222; C. 1927 I, 2799; Bouhett, C. r. 185, 201. Intensität und Depolarisationsgrad des Streulichts bei der Lichtzerstreuung in Nitrobenzol-Dampf: Ramanathan, Srinivasan, Pr. indian Assoc. Cult. Sci. 9, 206; C. 1926 II, 1930; I. R. Rao, Indian J. Phys. 2, 84; C. 1928 I, 1838; in flüssigem Nitrobenzol: Martin, J. phys. Chem. 28, 1288; Gans, Z. Phys. 30, 233; C. 1925 I, 1565; II, 1509; Rocard, C. r. 180, 53; Krishnan, Phil. Mag. [6] 50, 703, 707, 713; C. 1926 I, 838; Banerjee, Indian J. Phys. 2, 57, 59; C. 1928 I, 1838; S. R. Rao, Indian J. Phys. 3, 24; C. 1929 I, 20. Beugung von Röntgenstrahlen in flüssigem Nitrobenzol: Sogani, Indian J. Phys. 1, 373; C. 1927 II, 2149; Ra

Indian J. Phys. 4, 221; C. 1929 II, 2646.

Dielektr.-Konst. von flüssigem Nitrobenzol bei 0°: 39,338 (aus Messungen zwischen 15° und 70° extrapoliert) (Latter, Gattr, Phil. Mag. [7] 7, 1000; C. 1929 II, 1628); bei ca. 18°: 35,6 (Jezewski, J. Phys. Rad. [6] 5, 64; C. 1924 II, 439); bei 25,00°: 34,093  $\pm$  0,007 (Harris, Soc. 127, 1067); bei 26°: 35,9 (Bredig Z. ang. Ch. 36, 457); bei 58°: 28,00 (Kerr, Phil. Mag. [7] 3, 332; C. 1927 II, 388); beim Siedepunkt: 15,61 (Grimm, Patrick, Am. Soc. 45, 2799); zwischen 11,6° (34,94) und 85,2° (24,44): E. H. L. Meyer, Ann. Phys. [4] 75, 817; zwischen 17,0° (36,05) und 44,5° (30,74): Nayder, Bl. Acad. polon. [A] 1925, 254; C. 1928 II, 2884; zwischen 18,6° (35,67) und 203,9° (15,37): Jezewski, J. phys. Rad. [6] 3, 305; C. 1928 III, 205; bei 24,8° bei Drucken zwischen 8 und 56 Atm.: Grenacher, Ann. Phys. [4] 77, 152; bei hohen elektrischen Feldstärken: Malsch, Phys. Z. 29, 770, 774; C. 1929 I, 612. Dielektr.-Konst. der festen Substanz bei 0°, —14,5° und —38° für die Wellenlängen  $\lambda = 8$  km bis  $\lambda = 1000$  km: Errera, J. Phys. Rad. [6] 5, 308; C. 1925 II, 1390; C.r. 179, 157. Dipolmoment  $\mu \times 10^{18}$ : 3,75 (in Benzol) (P. Deeve in E. Mark, Handbuch der Radiologie, Bd. VI [Leipzig 1925], S. 627), 3,84 (Benzol) (Lange, Z. Phys. 33, 182; C. 1925 II, 1660), 3,90 (Benzol), 3,89 (Hexan oder Schwefelkohlenstoff) (Williams, Phys. Z. 29 [1928], 178; vgl. Dæye, Z. El. Ch. 34, 452). Dielektrische Verluste bei Erregung mit Radio-

frequenzen: BRYAN, Phys. Rev. [2] 22, 399; C. 1924 I, 2075. Elektrische Leitfähigkeit von flüssigem Nitrobenzol: LERTES, Z. Phys. 6 [1921], 61; SCHWARTZ, Beitr. Physiol. 2 [1924], 132; von festem und flüssigem Nitrobenzol zwischen 0° und 23,6°: RABINOWITSCH, Ph. Ch. 119, 71; Ж. 58, 233. Elektrische Doppelbrechung: ILBERG, Phys. Z. 29, 675; C. 1928 II, 2532; MÖLLER, Phys. Z. 30, 22; C. 1929 I, 1309; IWATAKE, Technol. Rep. Töhoku Univ. 8, 123; C. 1929 II, 1509; vgl. Lohaus, Phys. Z. 27, 217; C. 1926 I, 3588. Verhalten im elektrostatischen Drehfeld: LERTES, Z. Phys. 4, 321; 6, 62; Phys. Z. 22, 621; C. 1922 I, 488, 1126; III, 1030. Magnetische Doppelbrechung für 486, 540, 589, 620 und 656 mµ zwischen 5° und 56°: Szivessy, Ann. Phys. [4] 68, 149; [4] 69, 235.

## Physikalische Eigenschaften von Nitrobenzol-Gemischen.

Mechanische und thermische Eigenschaften. Löst sich in dem gleichen Volumen Petroläther vom Siedepunkt 42—62° bei 20,5°, in dem gleichen Volumen Petroläther vom Siedepunkt 80—100° bei 5° (Prins, R. 42, 26). Leicht löslich in flüssigem Ammoniak (Schlubach, Miedel, B. 57, 1686; Whitte, Knight, Am. Soc. 45, 1783) und in flüssigem Schwefeldioxyd (de Carli, G. 57, 351). Löslichkeit in wäßt. Lösungen der Alkalisalze verschiedener organischer Säuren: Tamba, Bio. Z. 145, 417; Traude, Schöning, Weber, B. 60, 1810. Einfluß von Kochsalz auf durch Natriumoleat stabilisierte Nitrobenzol-Wasser-Emulsionen in An. und Abwesenheit von Natronlauge: Tartar, Mitarb., J. phys. Chem. 33, 444. Bei 5,2° mit Wasser gesättigtes Nitrobenzol enthält 1,50 g Wasser in 11 (Sidgwick, Ewbank, Soc. 125, 2271). Lösungsvermögen für Sauerstoff: F. Fischer, Priderer, Abh. Kenntnis Kohle 5 [1920], 575; Z. anorg. Ch. 124, 69; für Stickstoff bei 29—30° unter verschiedenen Drucken: Metischi, J. phys. Chem. 28, 433; für Stickoxyd bei 20°, 25°, 40°, 60° und 90°: Kiemenc, Spitzer. Neumann, M. 53/54, 418; Garelli, R. A. L. [6] 2, 123; für Quecksilber(II)-chlorid: Hellenbrand, Joachimoglu, Bio. Z. 153, 132; für Quecksilber(II)-bromid: J., Klissiunis, Bio. Z. 153, 140; für Methan: F. Fischer, Zerbe, Brennstoffch. 4 [1923], 18; für Butan und Isobutan bei verschiedenen Drucken: Timm.; vgl. Timofejew, Stachorski, Ukr. chemić. Z. 2, 401; C. 1928 I, 185; für Diisoamyl und amerikanisches Petroleum bei verschiedenen Drucken: Timm.; vgl. Timofejew, Stachorski, Ukr. chemić. Z. 2, 401; C. 1928 I, 185; für Diisoamyl und amerikanisches Petroleum bei verschiedenen Drucken: Timm.; vgl. Timofejew, Stachorski, Ukr. chemić. Z. 2, 401; C. 1928 I, 185; für Diisoamyl und amerikanisches Petroleum bei verschiedenen Drucken: Timm.; vgl. Timofejew, Stachorski, Ukr. chemić. Z. 2, 401; C. 1928 I, 185; für Diisoamyl und amerikanisches Petroleum bei verschiedenen Drucken: Timm.; phys. 20, 505; für Naphthalin: Ward, J. phys. Chem. 30, 1325; für Fluoren, 14-Diibrom-benzol, Resorcin und B

Dury, Soc. 123, 2037. Kryoskopisches Verhalten verschiedener organischer Verbindungen in Gegenwart und in Abwesenheit von Feuchtigkeit, Phosphorpentoxyd oder Hydraten des Natriumsulfats: Brown, Bury, Soc. 125, 2220, 2224; J. phys. Chem. 30, 696; von Halogenwasserstoff in trocknem und feuchtem Nitrobenzol: Hlasko, Michalski, Roczniki Chem. 6, 552; C. 1927 I, 2803; vgl. auch Beckmann, Lockemann, Ph. Ch. 60 [1907], 390; von Kohlenoxyd in Nitrobenzol: Garelli, R. A. L. [6] 2, 124. Der Erstartungspunkt von Nitrobenzol wird durch Sättigen mit Wasser um 0,511° (Roberts, Bury, Soc. 123, 2041) bzw. um 0,510° (Sidewick, Ewbank, Soc. 125, 2269) erniedrigt. Einfluß auf den Erstartungspunkt eines Gemisches aus gleichen Gew. Alkohol und Benzol: Wright, Soc. 127, 2337. Bestimmung des Dampfdrucks von Hydraten sowie von wäßr. Rohrzucker- und Salzlösungen mit Hilfe der Gefrierpunktserniedrigung von Nitrobenzol bei Anwesenheit dieser Systeme: Roberts, Bury, Soc. 123, 2041; Sidewick, Ewbank, Soc. 125, 2269. Thermische Analyse des binären Gemisches mit Dischwefeldichlorid: De Carli, G. 59, 502; mit Zinn(IV)-bromid: De C., R. A. L. [6] 10, 372; mit Tetrachlorkohlenstoff (es bilden sich 2 additionelle Verbindungen mit 80 Mol. Wund 40 Mol. Witrobenzol): Linard, Bl. Soc. chim. Belg. 34, 373, 383; C. 1936 I, 2427; mit Cyclohexan: Li., Bl. Soc. chim. Belg. 34, 374, 385; mit Benzol (Eutektikum bei —24° und cs. 51 Mol. Witrobenzol): Li., Bl. Soc. chim. Belg. 34, 374, 387; mit 1.4-Dibrom-benzol: Schischokin, Z. anorg. Ch. 181, 161; mit Athylacetat: Timmermans, Bl. Soc. chim. Belg. 37, 417; C. 1929 II, 522; mit Schwefelkohlenstoff: Ti., Bl. Soc. chim. Belg. 37, 416; mit Anilin (es bildet sich eine äquimolekulare additionelle Verbindung): Li., Bl. Soc. chim. Belg. 37, 416; mit Anilin (es bildet sich eine äquimolekulare additionelle Verbindung): Li., Bl. Soc. chim. Belg. 37, 416; mit Anilin (es bildet sich eine äquimolekulare additionelle Verbindung): Li., Bl. Soc. chim. Belg. 37, 416; mit Anilin (es bildet sich eine äquimolekulare additionell

Ch. 181, 142; Izv. Inst. fiz.-chim. Anal. 4, 210; C. 1929 I, 2957. Thermische Analyse von tevnären Systemen aus Nitrobenzol und Chinon mit Anthracen, verschiedenen aromatischen Oxy-Verbindungen und Aminen: Kremann, Mitarb., M. 48, 282.

Nitrobenzol enthaltende binäre Azeotrope s. in Tabelle 2. Dampfdruck binärer Gemische mit Chloroform, Benzol, Methanol, Äther, Aceton, Essigester und Schwefelkohlenstoff bei 20°: W., H., K., J. pr. [2] 113, 171; mit 2-Chlorbutan und sek. Butylalkohol: Roland, Bl. Soc. chim. Belg. 37, 126; C. 1928 I, 2900; mit Pyridin und Äthyljodid bei 20°: PRENTISS, Am. Soc. 51, 2829.

| Tabelle 2. | Nitrobenzol | enthaltende | binäre | Azeotro | рe. |
|------------|-------------|-------------|--------|---------|-----|
|------------|-------------|-------------|--------|---------|-----|

| Komponente                                                      | Kp760<br>0       | Gehalt an<br>Nitrobenzol<br>in Gew% | Komponente                                | · Kp760 | Gehalt an<br>Nitrobenzol<br>in Gew% |
|-----------------------------------------------------------------|------------------|-------------------------------------|-------------------------------------------|---------|-------------------------------------|
| 1.4-Dibrom-benzol <sup>7</sup> ) Benzotrichlorid <sup>7</sup> ) | 210,45<br>210,72 | 77,5<br>ca. 98,5                    | Veratrol <sup>5</sup> ) Resorcindimethyl- | 203,5   | _                                   |
| 4-Jod-toluol 8)                                                 | 207              | 60                                  | äther 5)                                  | 207,5   | 70(?)                               |
| Menthol <sup>2</sup> )                                          | 208,35           | 67,3                                | Citronellal <sup>2</sup> )                | 206,8   | 22                                  |
| $\alpha$ -Terpineol <sup>2</sup> )                              | 209,5            | 72                                  | Acetamid 2)                               | 201,65  | 23                                  |
| 4-Chlor-phenol <sup>2</sup> )                                   | 219,9            | 8                                   | Propionamid 2)                            | 205,4   | 76                                  |
| eta-Phenyl-ä $t$ hyl-                                           |                  |                                     | Capronsäure 6)                            | 202     | 30                                  |
| alkohol <sup>2</sup> )                                          | 210,6            | . 8                                 | Athylbenzoat 1)                           | 210,6   | 81                                  |
| Glvkol 1)                                                       | 185.9            | 41                                  | Diäthvlanilin 7)                          | 210.72  | 97                                  |

LBCAT, Ann. Soc. scient. Bruxelles 45 I [1926], 172. — <sup>2</sup>) L., Ann. Soc. scient. Bruxelles 45 I, 287, 288, 289, 290, 292. — <sup>3</sup>) L., Ann. Soc. scient. Bruxelles 47 I [1927], 154. — <sup>4</sup>) L., Ann. Soc. scient. Bruxelles 48 I [1928], 15, 19. — <sup>5</sup>) L., Ann. Soc. scient. Bruxelles 48 I, 58. — <sup>6</sup>) L., Ann. Soc. scient. Bruxelles 49 [1929], 19. — <sup>7</sup>) L., R. 47, 14, 17.

Dichte von binären Gemischen mit Dischwefeldichlorid bei 20°: DE Carli, G. 59, 505; mit Zinn(IV)-chlorid bei 15°: DE C., R. A. L. [6] 10, 187; mit Zinn(IV)-bromid bei 32°: DE C., R. A. L. [6] 10, 374; mit Aluminiumbromid bei 18°: Plotnikow, Bendetzky, Ph. Ch. 127, 230; Ж. 59, 504; Dichte von binären Gemischen mit Tetrachlorkohlenstoff: Hammick, Andrew, Soc. 1929, 758; mit Hexan bei 25°: Williams, Ogg, Am. Soc. 50, 98; mit Benzol bei 15°: Dexter, McCombie, Scarborough, Soc. 123, 1237, 1238; bei 20°: Rakshit, Z. El. Ch. 31, 322; bei 25°: Williams, Schwingel, Am. Soc. 50, 363; H., A., Soc. 1929, 757; mit Toluol, Methanol oder Aceton: Burrows, James, J. Pr. Soc. N. S. Wales 59, 227; C. 1927 II, 894; mit Naphthalin bei 14,6°: Krollffeiffer, A. 430, 202; mit Isobutylakohol bei 9,4° bis 105°: Jefremow, Izv. Inst. fiz.-chim. Anal. 4, 146; C. 1929 I, 729; mit Schwefelkohlenstoff bei 25°: W., O., Am. Soc. 50, 96; mit Pyridin oder Athyljodid bei 25°: Pr., Am. Soc. 51, 2831; mit α-Naphthylamin bei 20,8°: Kr., A. 430, 212.

Viscosität von binären Gemischen mit Dischwefeldichlorid bei 3° und 20°: DE CARLI, G. 59, 504; mit Zinn(IV)-chlorid bei 15° und 25°: DE C., R. A. L. [6] 10, 187; mit Zinn(IV)-bromid bei 32° und 40°: DE C., R. A. L. [6] 10, 374; mit Isobutylalkohol bei 9,4—105°: Jefremow, Izv. Inst. fiz.-chim. Anal. 4, 146; C. 1929 I, 729. Über innere Reibung der Gemische mit Anilin bei 0° vgl. Kremann, Springer, Roth, Ph. Ch. 130, 419. Diffusion von in Methanol, Aceton, Äthylacetat und Äthylbenzoat gelöstem Nitrobenzol in diese Lösungsmittel bei ca. 19° und Diffusion von in Nitrobenzol gelösten Verbindungen wie Nitromethan, Aceton, Äthylacetat und Äthylbenzoat in Nitrobenzol bei ca. 19°: Dummer, Z. anorg. Ch. 109 [1919], 39, 41.

Oberflächenspannung binärer Gemische mit Tetrachlorkohlenstoff und Benzol: Hammick, Andrew, Soc. 1929, 757; mit Benzol, Toluol und Äthylacetat: Herzen, Arch. Sci. phys. nat. 14 [1902], 243; vgl. Stachorsky, Z. El. Ch. 34, 112; von mit Wasser gesättigtem Nitrobenzol und von mit Nitrobenzol gesättigtem Wasser: Reynolds, Soc. 119, 468. Grenzflächenspannung gegen Wasser: Harkins, Clark, Roberts, Am. Soc. 42, 705; Reynolds, Soc. 119, 465, 468; Pound, Soc. 123, 583; J. phys. Chem. 30, 793; gegen Quecksilber: Harkins, Grafton, Am. Soc. 42, 2537; Har., Pr. nation. Acad. USA. 5, 571; C. 1920 III, 222. — Adsorption von Nitrobenzol-Dampf durch Tierkohle: Alexejewski, K. 55, 417; C. 1925 II, 642; von Nitrobenzol aus Kerosin-Lösung durch Silicagel: Jones, J. phys. Chem. 29, 5, 372; von Essigsäure und Propionsäure aus Nitrobenzol-Lösung durch Calciumchlorid bei 25°: Brown, Bury, J. phys. Chem. 29, 1314. Einfluß einer dünnen Wandschicht auf die Ausflußzeit von Wasser aus Capillaren: Traube, Whang, Ph. Ch. 138, 111. Breitet sich auf einer Quecksilber-Oberfläche aus (Harkins, Feldman, Am. Soc. 44, 2680). Art und Geschwindigkeit der Ausbreitung auf Wasser: H., F., Am. Soc. 44, 2671; Ramdas, Indian

J. Phys. 1, 20; C. 1926 II, 1935. Schaumbildung wäßr. Lösungen: Bartsch, Koll. Beik. 20, 5; C. 1925 I, 2362. Über Wärmetönung beim Mischen mit Chloroform, Benzol, Methanol, 20, 5; C. 1925 1, 2502. Ober Warmetohting beim instell into the Motor in Bellack, Medialot, Ather, Aceton, Essigester und Schwefelkohlenstoff vgl. Weissenberger, Henke, Kawenoki, J. pr. [2] 113, 177. Wärmetönung der Benetzung von Kohle durch binäre Gemische von Nitrobenzol mit Alkohol und α-Brom-naphthalin: Bartell, Fu, J. phys. Chem. 33, 1763. Optische und elektrische Eigenschaften. Brechungsindices von binären Gemischen mit Methanol, Aceton, Athylacetat und Athylbenzoat bei 20°: Dummer, Z. anorg. Ch. 109, 37;

mit Benzol: Anossow, Soobšč. nau.-tech. Rab. 13, 11; C. 1925 II, 384; mit Naphthalin bei 14,6°: Krollpfeiffer, A. 430, 202; mit α-Naphthylamin bei 20,8°: Kr., A. 430, 212; mit Pyridin und Athyljodid bei 25°: PRENTISS, Am. Soc. 51, 2831. Ultraviolett-Absorptionsspektrum in Methanol, Ather und Hexan: Scheibe, B. 59, 2622; in absolut-alkoholischer Lösung: Marchlewski, Moroz, Bl. [4] 35, 38; in Ather: Scheibe, May, Fischer, B. 57, 1335; in Mischungen mit Anilin in Ather: Sch., M., F.

Dielektr.-Konst. von binären Gemischen mit Hexan bei 250: WILLIAMS, OGG, Am. Soc. 50, 98; mit Benzol bei 15°: Kerr, Soc. 1926, 2798; bei 24°, 45° und 65°: Lange, Z. Phys. 33, 173; C. 1925 II, 1660; bei 25°: Williams, Schwingel, Am. Soc. 50, 363; mit Toluol bei 24° und 100°: Lange; mit Äther bei 20°: Kerr, Soc. 1926, 2801; mit Pikrinsäure und Benzoesäure bei verschiedenen Temperaturen: NAYDER, Bl. Acad. polon. 1925 A, 254; C. 1926 I, 2884; mit Schwefelkohlenstoff bei 24°: LANGE; bei 25°: W., O., Am. Soc. 50, 96. Elektrische Leitfähigkeit der Lösungen von Chlorwasserstoff bzw. Bromwasserstoff in trocknem und feuchtem Nitrobenzol: Hłasko, Michalski, Roczniki Chem. 6, 540; C. 1927 I, 2803; von Aluminiumbromid in Nitrobenzol zwischen —10° und +90°: Plotnikow, Bendetzky, Ph. Ch. 127, 226; 3K. 59, 493; einer Lösung aus Nitrobenzol und Schwefelsäuremonohydrat bei 12º: Cherbuliez, Helv. 6, 285; von Trimethyl-p-tolyl-ammoniumjodid in Nitrobenzol bei 18º und bei 25º: Creighton, Way, J. Franklin Inst. 186 [1918], 695; C. 1920 III, 43. Elektrische Leitfähigkeit und Zersetzungsspannung einer Lösung von Phosphorpentabromid in Nitrobenzol bei 26º: Finkelstein, Ph. Ch. 115, 307. Zersetzungsspannung einer Lösung von ICl<sub>3</sub> und IBr in Nitrobenzol: Fi. Über die Beweglichkeit verschiedener Ionen in Nitrobenzol vol. Ulyon, Foetbach Ch. Phys. 18 [1902/1981] 200. I manyar Ph. Mag. [21] 2 202. benzol vgl. Ulich, Fortsch. Ch., Phys. 18 [1924/26], 600; Lattey, Phil. Mag. [7] 6, 263; C. 1928 II, 2430. EMK von Ketten mit Nitrobenzol: Schwartz, Beitr. Physiol. 2, 131; C. 1923 III, 1055; Rosenberg, Westphal, Beitr. Physiol. 3, 225; C. 1926 II, 1932. Scheinbares Reduktionspotential in 0,2 n-Salzsaure-Aceton-Gemisch bei 24°: Conant, Lutz, Am. Soc. 45, 1052. Reduktionspotential bei der Elektrolyse mit der Quecksilber-Tropfkathode in Säuren, Alkalien und Salz-Lösungen: SHIKATA, Trans. Faraday Soc. 21, 42; C. 1926 I, 841. Potentialdifferenz an der Trennungsfläche wäßr. Lösung/Luft: FRUMKIN, DONDE, KUL-VARSKAYA, Ph. Ch. 123, 334. Elektrokinetisches Potential an der Grenze zwischen festem und flüssigem Nitrobenzol: FAIRBROTHER, WORMWELL, Soc. 1928, 1995. Beständigkeit und elektrokinetisches Verhalten von Arsentrisulfid-Sol in Nitrobenzol: Bikerman; Ph. Ch. 115, 261. Magnetische Susceptibilität von Gemischen mit Benzol: Trifonow, Soobšć. nau.-tech. Rab. 13, 11; Izv. Inst. fiz.-chim. Anal. 3, 434; C. 1925 II, 386; 1927 I, 2635. Magnetische Doppelbrechung binärer Gemische mit Tetrachlorkohlenstoff: Ramanadham, Indian J. Phys. 4, 113; C. 1929 II, 3216; mit Bromoform, Benzoesäureäthylester, Benzoe-

säurebenzylester, Cumol oder Safrol: Szivessy, Richartz, Ann. Phys. [4] 86, 411. Einfluß auf die Lösungsgeschwindigkeit von Metallen in Säuren: Prins, R. 44, 877; Versl. Akad. Amsterdam 29, 1225; C. 1921 III, 1261. Einfluß auf das Leuchten von Phosphor: RAYLEIGH, Pr. roy. Soc. [A] 99, 377; C. 1922 I, 400. Verzögert die Autoxydation von Benzaldehyd (Moureu, Dufraisse, Badoche, C.r. 183, 824). Einfluß auf die Entzündungstemperatur von Motortreibstoffen: Grebel, C.r. 189, 90. Geschwindigkeit der Reaktion von Allylbromid mit Pyridin in Nitrobenzol: Kere, Soc. 1929, 241; der Racemisierung von Isobornylchlorid und der Umwandlung von Camphenhydrochlorid in Isobornylchlorid in Nitrobenzol-Lösung: MEERWEIN, MONTFORT, A. 485, 211. Verhalten als Sauerstoffüberträger bei der katalytischen Dehydrierung von Alkoholen: Rosenmund, Zetzsche, B. 54,

1095, 2036.

## Chemisches Verhalten.

Einwirkung von Licht und Radiumstrahlen; Oxydation. Wird bei Einw. von Sonnenlicht oder ultraviolettem Licht gebräunt (SEYEWETZ, MOUNIER, Bl. [4] 43, 649) Bei der Einw. von Radiumstrahlen auf trocknes oder feuchtes Nitrobenzol entstehen vermutlich 2-Nitro-phenol, weniger 4-Nitro-phenol und andere Produkte (Kailan, Sber. Akad. Wien [IIa], 135, 618; C. 1927 II, 2147; M. 47, 651). — Entzündungstemperatur: Masson, Hamilton, Ind. Eng. Chem. 19 [1927], 1337; 20 [1928], 814. Explosionskraft von festem Nitrobenzol: Robertson, Soc. 119, 21. Elektrische Leitfähigkeit des Dampfes und der Flüssigkeitstropfen während der beginnenden Verbrennung mit Luft: BENNETT, Trans. Faraday Soc. 28, 299; C. 1927 II, 1336.

Reduktion. Der Verlauf der katalytischen Hydrierung von Nitrobenzol ist von der Natur des verwendeten Katalysators weitgehend abhängig. Hydrierung von Nitrobenzol zu Anilin in der Gasphase in Gegenwart von Nickel: Brown, Henke, J. phys. Chem. 26, 167; in Gegenwart von Kupfer oder Silber: B., H., J. phys. Chem. 26, 174, 272, 715; Semeria, Milone, Atti Accad. Torino 63, 7; Ann. Chim. applic. 18, 68; C. 1928 I, 2380, 3053. Bei der Reduktion mit Wasserstoff in Gegenwart von Gold bei 3550 entsteht fast quantitativ Anilin (H., B., J. phys. Chem. 26, 636). Die Hydrierung über Zinkoxyd oder Manganoxyd bei 450—600° führt zu Anilin, Diphenylamin und Triphenylamin (Sabatteb. FERNANDEZ, C. r. 185, 243). Über Hydrierung zu Anilin in Gegenwart von Aluminiumoxyd vgl. B., H., J. phys. Chem. 26, 285. Liefert mit 13% Überschuß an Wasserstoff in Gegenwart von Thallium bei 260° hauptsächlich Azobenzol und sehr wenig Anilin (Henke, Brown, J. phys. Von Hahnum bei 200° hauptsachnen Azobenzol und sehr wenig Annin (Hene, Brown, J. phys. Chem. 26, 631; Brown, Mitarb., J. phys. Chem. 32, 457). Zur Hydrierung zu Anilin in Gegenwart der niederen Oxyde des Ceriums, Vanadins, Molybdäns, Wolframs und Urans vgl. B., H., J. phys. Chem. 26, 280. Bei der Hydrierung von Nitrobenzol mit Titandioxyd als Katalysator erhält man Anilin und je nach den Reaktionsbedingungen noch Azobenzol, Hydrazobenzol, Cyclohexylamin und Diphenylamin (ETZEL, J. phys. Chem. 32, 852). Zinn ist ein ausgezeichneter Katalysator zur Reduktion von Nitrobenzol zu Anilin (B., H., J. phys. Chem. 37, 720). Reduktion von Nitrobenzol zu Anilin (B., H., J. phys. Chem. 27, 739). Reduktion von Nitrobenzol zu Anilin mit Wasserstoff in Gegenwart von Zinn(II)oxyd oder Zinn(IV)-oxyd: Williams, Trans. Faraday Soc. 25, 448; C. 1929 II, 1887. Beim Leiten von Nitrobenzol und Wasserstoff über einen Bleikatalysator bei 308° entstehen ca. 97% Anilin (Madenwald, Henke, Brown, J. phys. Chem. 31, 864). Unter geeigneten Bedingungen werden bei der katalytischen Hydrierung in Gegenwart von Blei neben Azoxybenzol, Hydrazobenzol und Anilin größere Mengen Azobenzol erhalten (Henke, Brown, J. phys. Chem. 26, 324). Zur Hydrierung zu Anilin in Gegenwart von Antimon vgl. B., H., J. phys. Chem. 26, 278. Bei der Reduktion mit Wasserstoff in Gegenwart von Wismut, am besten bei 280-300° entstehen größere Mengen Azobenzol, ferner Azoxybenzol, Hydrazobenzol und Anilin (H., B., J. phys. Chem. 26, 344). Hydrierung zu Anilin in Gegenwart von Chrom, Wolfram, Mangan, Eisen und Kobalt: B., H., J. phys. Chem. 26, 272. Bei der Hydrierung von flüssigem Nitrobenzol bei Gegenwart von Nickel und einem Druck von 10-15 Atm. erhält man Anilin; die Reaktion beginnt unterhalb 1000 (Brochet, Bl. Soc. ind. Mulh. 88, 705; C. 1923 II, 959). Bei Gegenwart von Natronlauge erhält man unter sonst ähnlichen Bedingungen Azoxybenzol und wenig Anilin (Brochet). Beim Hydrieren der Lösung in Benzol bei 215° unter ca. 35 Atm. Druck in Gegenwart von Nickel entsteht quantitativ Anilin (Brown, Etzel, Henke, J. phys. Chem. 32, 633). Anilin entsteht ferner in 94% iger Ausbeute bei der Hydrierung von Nitrobenzol in einem Gemisch aus Alkohol + Essigester + Wasser bei Gegenwart eines Nickelkatalysators (Rupe, Vogler, Helv. 8, 833 Anm. 1). Bei der Reduktion von Nitrobenzol mit der jeweils berechneten Menge Wasserstoff von Atmosphärendruck in Gegenwart von 2%iger Palladium-Tierkohle erhält man in neutraler wäßrig-alkoholischer Lösung Phenylhydroxylamin oder Anilin, Braschwach alkalischer Lösung Azoxybenzol, Hydrazobenzol oder Anilin (Brand, Steiner, B. 55, 880, 885). Über die Hydrierung in Alkohol verschiedener Konzentration und in anderen Lösungsmitteln bei Gegenwart von Platinschwarz und in An- oder Abwesenheit von Säuren, Alkalien oder Salzen bei 2,5-3 Atm. Druck und 25-30° vgl. Adams, Cohen, Rees, Am. Soc. 49, 1094. -Patentliteratur über die Herstellung von Anilin durch Reduktion von Nitrobenzol s. bei Anilin, Syst. Nr. 1598. Weitere Angaben über die technische Darstellung von Anilin durch Reduktion von Nitrobenzol s. bei F. Ullmann, G. Cohn in F. Ullmann, Enzyklopädie der technischen Chemie, 2. Aufl., Bd. I [Berlin-Wien 1928], S. 465. — Nitrobenzol gibt bei der Hydrierung in Gegenwart von Platinschwarz in alkoholischer oder essigsaurer Lösung bei Gegenwart von Benzaldehyd je nach den Reaktionsbedingungen N-Phenyl-isobenzaldoxim oder N-Phenyl-N-benzyl-hydroxylamin und andere Produkte (Vavon, Crajcinovic, C. r. 187, 422). Bei der katalytischen Hydrierung einer Lösung von Nitrobenzol und Benzoylchlorid für sich oder unter Zusatz von Cumol in Gegenwart von Palladium-Katalysator bei 160° entstehen Benzaldehyd, Benzoesäurebenzylester, Benzoyldiphenylamin und wenig Benzanilid (ZETZSCHE, Mitarb., Helv. 9, 180). Zur Reduktion zu Hydrazobenzol mit Natriumamalgam vgl. Pellegrini, Giorn. Chim.

Zur Reduktion zu Hydrazobenzol mit Natriumamalgam vgl. Pellegrini, Giorn. Chim. ind. appl. 8, 177; C. 1926 II, 1018. Nitrobenzol gibt in flüssigem Ammoniak mit 4 Atomen Natrium die Dinatriumverbindung des Phenylhydroxylamins, mit 6 Atomen Natrium die Dinatriumverbindung des Anilins; mit sehr viel Natrium verläuft die Umsetzung explosionsartig (White, Knight, Am. Soc. 45, 1783). Bei der Einw. einer zur völligen Reduktion nicht ausreichenden Menge Natrium und nachfolgendem Versetzen mit Wasser entstehen Azoxybenzol bzw. Azobenzol (Wh. K.). Bei allmählichem Zutropfen einer Lösung von Natrium in flüssigem Ammoniak zu einer Lösung von Nitrobenzol und überschüssigem Ammoniumchlorid in flüssigem Ammoniak zwischen —80° und —50° entsteht Anilin (Schlubach, Miedel, B. 57, 1886). Die Reduktion von Nitrobenzol zu Azoxybenzol durch siedende Natriummethylat-Lösung wird durch Wasser zurückgedrängt, durch Pyridin begünstigt; im letzten Fall entstehen außerdem geringe Mengen Azobenzol (Fry, Cameron, Am. Soc. 49, 864). Bei der Reduktion mit Natrium in absol. Alkohol entstehen Anilin und wenig Hydrazo-

benzol (DE POMMEREAU, C. r. 174, 687; Bl. [4] 31, 695). Reduktion mit Natriumisopropylat, butylat und benzylat bei Zusatz von Benzol: Suter, Dains, Am. Soc. 50, 2735. Liefert beim Behandeln mit Magnesium in Methanol je nach den Mengenverhältnissen Azoxybenzol oder Azobenzol und andere Produkte (Zechmeister, Rom, A. 468, 128). Bei der Reduktion mit Calciumhydrid bei Gegenwart von Palladium(II)-chlorid in wäßr. Alkohol entsteht Anilin (Nivière, Bl. [4] 29, 219). Die Lösung in Ligroin liefert bei kurzem Kochen mit Calciumhydrid Nitrosobenzol, bei längerem Kochen Azoxybenzol (Durand, Houghton, C. r. 180, 1034). Zur Reduktion mit Zink und Essigsäure vgl. Prins, R. 42, 942. Beim Schütteln von Nitrobenzol mit Ammoniumchlorid-Lösung und zuvor im Wasserstoffstrom erhitztem Aluminium entsteht in Kältemischung Phenylhydroxylamin, bei Zimmertemperatur Anilin (Ray, Dutt, J. indian chem. Soc. 5, 109; C. 1928 I, 2371). Bei der Darstellung von Anilin durch Reduktion von Nitrobenzol mit Eisen und Salzsäure kann an Stelle von Salzsäure auch Eisen(III)-chlorid oder Natriumchlorid verwendet werden (Lyons, Smith, B. 60, 174; Bretnütz, Pensa, Notiziario chim.-ind. 2, 184; C. 1927 II, 243). Reduktion von Nitrobenzol durch graues Eisen in Gegenwart von Natriumchlorid oder Natriumsulfat: Knowlton, J. phys. Chem. 32, 1587. Beeinflussung der Reduktion mit Eisen und Salzsäure zu Anilin durch Rühren: Huber, Reid, Ind. Eng. Chem. 18, 537; C. 1926 II, 971.

Bei der Reduktion mit Hydrazin in Gegenwart von palladiniertem Calciumcarbonat in siedender alkoholischer oder methylalkoholischer Kalilauge entstehen je nach den Bedingungen Azoxybenzol, Azobenzol, Hydrazobenzol und Anilin; bei Verwendung von geringeren Mengen Hydrazin und Katalysator in alkoh. Kalilauge erhält man fast reines Azoxybenzol, bei Erhöhung der Menge des Hydrazins und des Katalysators hauptsächlich Hydrazobenzol und etwas Anilin; bei Verwendung von methylalkoholischer Kalilauge oder wäßriger alkoholischer Kalilauge entsteht hauptsächlich Azobenzol (Busch, Schulz, B. 62, 1460). Beim Behandeln mit gewöhnlichem Ammoniumsulfid unter Schütteln mit Kieselgur in wäßr. Suspension oder besser mit Natriumhydrosulfid unter Schütteln mit Calciumchlorid in wäßr. Emulsion entsteht Phenylhydroxylamin (Lapworth, Pearson, Soc. 119, 765). Bei 2-stdg. Kochen mit 2 Mol Natriumsulfit in Wasser erhält man 4-Amino-phenol-sulfonsäure-(3) (Sevewetz, Vignat, C. r. 174, 297). Liefert beim Kochen mit Natriumdisulfit-Lösung phenylsulfamidsaures Natrium und ein Salz (vielleicht das Dinatriumsalz der Sulfanilsäure-N-sulfonsäure), das beim Kochen mit Säuren Sulfanilsäure gibt (Weil, Moser, B. 55, 734). Zur Reduktion mit Titantrichlorid (s. S. 179) in heißer stark saurer Lösung vgl. auch English, J. ind. Eng. Chem. 12, 996; C. 1921 II, 623. Bei der Reduktion mit alkal. Natriumarsenit-Lösung in siedendem Alkohol entstehen Natriumarseniat, Azoxybenzol und geringe Mengen Anilin (Gutmann, Fr. 66, 232).

Reduktion durch Natriumalkylate s. o. Wird durch Isopropylalkohol in alkal. Lösung zu Anilin, teilweise auch zu Azoxy- und Azobenzol reduziert (Lyons, Pleasant, B. 62, 1724). Einfluß verschiedener Reaktionsbedingungen auf die Ausbeute: L., P. Bei der Einw. auf Benzylalkohol in alkal. Lösung bei 138—140° entstehen Benzoesäure und Azobenzol (Smith, Lyons, Am. Soc. 48, 3166). Beim Reduzieren mit Benzoin in alkal. Lösung erhält man Azoxybenzol und sehr wenig Azobenzol (L., Pl., B. 62, 1726). Liefert mit Phenylarsin in Äther im mit Kohlendioxyd gefüllten Rohr Hydrazobenzol und Arsenobenzol (Palmer,

Adams, Am. Soc. 44, 1380).

Chlorierung und Nitrierung. Liefert beim Chlorieren in Gegenwart von Antimontrichlorid bei 75—85° 3-Chlor-1-nitro-benzol (Davies, Hickox, Soc. 121, 2648). Chlorierung in Gegenwart von Jod-Eisen bei 40—50°: Fierz-David, Naturwiss. 17, 13; C. 1929 I, 863. Wird beim Kochen mit überschüssigem Sulfurylchlorid nicht verändert (Durrans, Soc. 121, 45). Beim Kochen mit Salpetersäure (D: 1,40)\*und Quecksilber(II)-oxyd entsteht ein Gemisch von Dinitrobenzolen, aus dem 1.3-Dinitro-benzol isoliert werden konnte (Davis, Mitarb., Am. Soc. 43, 599). Nitrierung mit Salpetersäure in Gegenwart von Quecksilber: Blechta, Pátek, Z. Schieß-Sprengstoffw. 22, 317; C. 1928 I, 780. Bei der Einw. von 1 Mol Stickstoffpentoxyd bei 0° (Haines, Adkins, Am. Soc. 47, 1419) oder beim Behandeln mit Stickstofftetroxyd und rauchender Schwefelsäure von 4,3% SO<sub>3</sub>-Gehalt bei 60—75° (Pink, Am. Soc. 49, 2539) entsteht 1.3-Dinitro-benzol.

Einwirkung weiterer anorganischer Verbindungen. Liefert beim Behandeln mit überschüssigem nitrohydroxylaminsaurem Natrium in Wasser unter Erwärmen Phenylnitrosohydroxylamin (BIGIAVI, FRANCESCHI, G. 57, 377; B., R. A. L. [6] 4, 458; 5, 447). Beim Behandeln mit Magnesiumamidjodid Mg(NH<sub>2</sub>)I in siedendem Äther und Zufügen von Pyridin entsteht eine gelbe Additionsverbindung (vielleicht C<sub>8</sub>H<sub>5</sub>·N(:O)(O·MgI)·NH<sub>2</sub> + C<sub>5</sub>H<sub>5</sub>N) (ODDO, CALDERARO, G. 53, 72). Beim Erhitzen von Nitrobenzol mit Quecksilber(II)-acetat auf 150° und Umsetzen des Reaktionsprodukts mit Natriumchlorid erhält man ein Gemisch aus ca. 50% [2-Nitro-phenyl]-quecksilberchlorid, 40% [3-Nitro-phenyl]-quecksilberchlorid und 10% [4-Nitro-phenyl]-quecksilberchlorid, 40% [3-Nitro-phenyl]-quecksilberchlorid (DIMBOTH, B. 35 [1902], 2036; A. 446, 152; WIBAUT, JÜRGENS, Versl. Akad. Amsterdam 29, 1075; C. 1921 III, 867; JÜ., R. 45, 61; vgl. auch Holleman, Chem. Reviews 1, 199; C. 1924 II, 1909).

Einwirkung organischer Verbindungen. Nitrobenzol liefert beim Erhitzen mit Toluol unter allmählichem Zufügen von Aluminiumchlorid auf dem Wasserbad 4'-Amino-4-methyl-diphenyl, wenig Phenyl-p-toluidin und Harz (KLIEGL, HUBER, B. 53, 1650). Gibt bei längerer Behandlung mit Dichlordimethyläther und schwach rauchender Schwefelsäure bei 50° wenig 3-Nitro-benzylchlorid (Stephen, Short, Gladding, Soc. 117, 524). Bei Einw. von Nitrobenzol auf Methyl-chlormethyl-äther bei Gegenwart von Aluminiumchlorid entstehen 3.3′-Dinitro-diphenylmethan und geringe Mengen 3-Nitro-benzylchlorid (St., Sh., GL.). Über Bildung von Küpenfarbstoffen beim Erhitzen von Nitrobenzol mit Anthrachinon, 1-Amino-anthrachinon oder 2-Amino-anthrachinon und konz. bzw. 84% iger Schwefelsäure vgl. Bucherer, Maki, B. 60, 2073, 2078. Bei 35-stdg. Kochen mit p-Phenylendiamin und wasserfreiem Natriumcarbonat entstehen 4-Amino-azobenzol und 4.4'-Diamino-azobenzol und wasserfreiem Natriumcarponat entstehen 4-Ammio-azonenzoi und 4.4-Diamino-azonenzoi (Crippa, G. 57, 18). Gibt bei der Umsetzung mit p-Toluoldiazoniumchlorid in Natronlauge bei 0º 4'-Nitro-4-methyl-diphenyl (Gomberg, Pernerr, Am. Soc. 48, 1379). Bei Einw. von Methylmagnesiumjodid in Ather und nachfolgender Zersetzung des Reaktionsprodukts mit Wasser entstehen Methylanilin und Azobenzol (Hepworth, Soc. 117, 1010). Über die Einw. von Methylmagnesiumjodid und weiteren Alkylmagnesiumhalogeniden auf Nitrobenzol in Ather oder Dibutyläther bei 60—70° und die hierbei entwickelte Gasmenge vgl. Gilman, Fothergill, Am. Soc. 49, 2817; Bl. [4] 45, 1135. Liefert bei Einw. von ca. 1,5 Mol Athylmagnesiumbromid in Ather die Verbindung C<sub>6</sub>H<sub>5</sub>·N(:O)(O·MgBr)·C<sub>2</sub>H<sub>5</sub>, die mit Wasser Athylaniin und Azobenzol bildet (Hepworth, Soc. 117, 1009; vgl. Oddo, 1271, 1271, 1009; vgl. Oddo, 1271, 1009; vgl. Oddo, 1271, 1009; vgl die mit Wasser Athylaniin und Azoenzoi bildet (Hefworth, Soc. 117, 1009; vgl. Oddo, R. A. L. [5] 13 II, 221; G. 34 II, 437; Gilman, McCracken, Am. Soc. 51, 828); bei der Einw. von 4 Mol Äthylmagnesiumbromid entsteht N.N'. Diäthyl-N.N'-diphenyl-hydrazin (G., McC.). Einw. von Butylmagnesiumbromid: G., McC. Gibt mit 4 Mol Phenylmagnesiumbromid in Äther unter Kühlung und nachfolgendem Zersetzen Diphenylamin, Phenol, Diphenyl und geringe Mengen Terphenyl (G., McC., Am. Soc. 51, 825). Bei Einw. von 4 Mol Benzylmagnesiumchlorid unter Kühlung und nachfolgendem Zersetzen erhält man viel Dibenzyl, wenig Anilin und p.p-Ditolyl sowie eine basische Fraktion, die ein bei 213° schmelzendes Hydrochlorid liefert und bei der Hydrolyse mit siedender verdünnter Salzsäure Benzaldehyd, Anilin und Benzylanilin ergibt (G., McC.). Phenylacetylenmagnesiumjodid in Ather wird durch Nitrobenzol in Diphenyldiacetylen übergeführt (G., McC.). Reduktion durch organische Verbindungen s. S. 178.

H 238, Z. 4 v. o. statt "D. R. P. 43239" lies "D. R. P. 43230".

## Biochemisches Verhalten; Analytisches.

Ausführliche Angaben über das biochemische und physiologische Verhalten finden sich bei H. STAUB in J. HOUBEN, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 80-95. Giftwirkung bei Verfütterung an Hühner und dabei stattfindende Um-

wandlung in 4-Amino-phenol: Crowdle, Sherwin, J. biol. Chem. 55, 20, 25.

wandlung in 4-Amino-phenol: CROWDLE, SHERWIN, J. 5100l. Chem. 55, 20, 25. Colorimetrischer Nachweis durch Nitrierung und Behandlung des entstandenen Nitrierungsprodukts mit Alkalialkoholaten: van Urk, Chem. Weekb. 21, 169; C. 1924 I, 2895; durch Reduktion mit Eisen und Salzsäure und nachfolgendes Versetzen mit Chlorkalk: van Eck, Pharm. Weekb. 63, 915; C. 1926 II, 1307. Nachweis und Bestimmung von Nitrotoluol in Nitrobenzol auf colorimetrischem Wege: Muraour, Bl. [4] 43, 71. Mikrochemischer Nachweis durch Reduktion zu Anilin: Behrens-Kley, Organische mikrochemische Analyse [Leipzig 1922], S. 64. — Titrimetrische Bestimmung von Nitrobenzol durch Versetzen mit Titan(III).chlorid in wäßrig-alkoholischer Natroplauge angeblisßende durch Versetzen mit Titan(III)-chlorid in wäßrig-alkoholischer Natronlauge, anschließende Luftoxydation des entstandenen Titan(III)-hydroxyds zu Titan(IV)-hydroxyd, Versetzen Lintoxydation des entstandenen Intan(III)-hydroxyds zu Intan(IV)-hydroxyd, Versetzen mit Kaliumbromid, verd. Salzsäure, 0,1 n-Kaliumbromat-Lösung und Kaliumjodid und Rücktitration des überschüssigen Jods mit Thiosulfat-Lösung: Kolthoff, Chem. Weekb. 22, 558; C. 1926 I, 1461. Potentiometrische Titration mit Titan(III)-chlorid in Gegenwart von Natriumcitrat: K., Robinson, R. 45, 175; in Gegenwart von Seignettesalz in verd. Alkohol bei 50—80°: Dachselt, Fr. 68, 410. — Reinheitsprüfung: Ergänzungsbuch zum Deutschen Arzneibuch, 5. Ausgabe [Berlin 1930], S. 314.

### Additionelle Verbindungen und Umwandlungsprodukte des Nitrobenzols.

 $C_6H_5O_2N+H_2SO_4$ . B. Aus einem Gemisch berechneter Mengen Nitrobenzol und Schwefelsäuremonohydrat in Gegenwart von wenig krystallisierter Schwefelsäure bei  $-10^\circ$  bis  $-20^\circ$  (Cherbuliez, Helv. 6, 284). Schwach grünliche Nadeln. F: 11°. Löslich in Nitromethan. Wird durch Äther in die Komponenten gespalten. — 2C<sub>6</sub>H<sub>5</sub>O<sub>2</sub>N + BeCl<sub>2</sub>. B. Beim Erhitzen von Berylliumchlorid mit Nitrobenzol auf 150° (FRICKE, HAVESTADT, Z. anorg. Ch. 146, 121). Blaßgelbe Krystalle. Zerfließt an feuchter Luft. Wird durch Wasser zersetzt. Sehr leicht löslich in Alkohol, löslich in Aceton, schwer löslich in Chloroform, Ather, Essigester, Schwefelkohlenstoff und Benzol. — C<sub>6</sub>H<sub>5</sub>O<sub>2</sub>N + TiCl<sub>4</sub>. Gelbe Krystallmasse. F: 77,5° (REIHLEN, HAKE, A. 452, 59). Raucht stark an der Luft. Wird durch Wasser zersetzt. — C<sub>6</sub>H<sub>5</sub>O<sub>2</sub>N  $+ \operatorname{SnCl_4}$ . Nadeln. F: 11° (R., H., A. 452, 59; vgl. de Carli, R. A. L. [6] 10, 186). Raucht stark an der Luft. Wird durch Wasser zersetzt. —  $2C_6H_5O_2N + \operatorname{SnCl_4}$ . Über die Existenz einer solchen Verbindung vgl. de C., R. A. L. [6] 10, 189. —  $2C_6H_5O_2N + \operatorname{SnBr_4}$ . Über die Existenz einer solchen Verbindung vgl. de C., R. A. L. [6] 10, 375. —  $C_6H_6O_2N + \operatorname{S_2Cl_2}$ . Nachgewiesen durch thermische Analyse (de C., G. 59, 502). F: —18°. — Über additionelle Verbindungen mit Tetrachlorkohlenstoff (nachgewiesen durch thermische Analyse) vgl. Linard, Bl. Soc. chim. Belg. 34, 373, 383; C. 1926 I, 2427.

Verbindung C<sub>6</sub>H<sub>7</sub>O<sub>2</sub>N (H 241). B. Entsteht vielleicht auch bei der Reduktion von 3-[4-Nitro-phenyl]-phthalid mit Natriumamalgam (Kondo, Miyashita, J. pharm. Soc. Japan 48, 161; C. 1929 I, 749). — F: 70—71°. — Pikrat. F: 185°. [Gerisch]

2-Fluor-1-nitro-benzol  $C_6H_4O_2NF=C_6H_4F\cdot NO_2$  (H 241; E I 128). B. In geringer Menge neben 4-Fluor-1-nitro-benzol bei Einw. von Distickstofftetroxyd in Petroläther auf Fluorbenzol in Gegenwart von Aluminiumchlorid (Schaarschmidt, Balzerkiewicz, Gante, B. 58, 501) oder bei tropfenweiser Zugabe von Acetylnitrat zu Fluorbenzol unter Eis-Kochsalz-Kühlung und nachfolgendem Aufbewahren (Schiemann, Pillarsex, B. 62, 3040). Beim Erhitzen von 1 Tl. 2-Nitro-benzoldiazonium-bortetrafluorid mit 5 Tln. Seesand (Schie., P.). — Kp<sub>11</sub>: 86—87° (Schie., P.). D<sup>17,8</sup>: 1,3375 (Swarts, J. Chim. phys. 20, 60).  $n_\alpha^{v_1s}$ : 1,5260;  $n_0^{v_1s}$ : 1,5323;  $n_0^{v_1s}$ : 1,5492;  $n_0^{v_1s}$ : 1,5660 (Swa.). — Geschwindigkeit der Umsetzung mit Natriummethylat bei 25°: Rouche, Bl. Acad. Belgique [5] 7, 545; C. 1922 I, 22.

3-Fluor-1-nitro-benzol  $C_6H_4O_2NF=C_6H_4F\cdot NO_2$  (H 241; E I 128). B. Zur Bildung aus 3-Nitro-benzoldiazoniumsulfat-Lösung und konz. Fluorwasserstoffsäure nach Holleman, Beekman (R. 23, 235; H 241) vgl. Ingold, Vass, Soc. 1928, 421; ferner auch Hodgson, Nixon, Soc. 1928, 1880; de Crauw, R. 48, 1061. Beim Erhitzen von 1 Tl. 3-Nitro-benzoldiazonium-bortetrafluorid mit 3 Tln. Seesand (Schlemann, Pillarsky, B. 62, 3041). — Wie Nitro-benzol riechendes Ol (de C.). Kpig: 860 (Sch., P.).  $D^{17,2}$ : 1,3273 (Swarts, J. Chim. phys. 20, 60);  $D^{a_1}$ : 1,3254 (Sch., P.).  $n^{a_2}$ : 1,5217;  $n^{a_3}$ : 1,5280;  $n^{a_4}$ : 1,5449;  $n^{a_5}$ : 1,5607 (Swa.);  $n^{a_6}$ : 1,5201;  $n^{a_6}$ : 1,5428;  $n^{a_5}$ : 1,5589 (Sch., P.).

4-Fluor-1-nitro-benzol C<sub>6</sub>H<sub>4</sub>O<sub>2</sub>NF = C<sub>6</sub>H<sub>4</sub>F·NO<sub>2</sub> (H 241; E I 128). B. Neben wenig 2-Fluor-1-nitro-benzol bei Einw. von Distickstofftetroxyd in Petroläther auf Fluorbenzol in Gegenwart von Aluminiumchlorid (Scharschmidt, Balzerkiewicz, Gante, B. 58, 501) oder bei tropfenweiser Zugabe von Acetylnitrat zu Fluorbenzol unter Eis-Kochsalz-Kühlung und nachfolgendem Aufbewahren (Schiemann, Pillarsky, B. 62, 3040). Als Nebenprodukt beim Erhitzen von 4-Fluor-benzoesäure mit rauchender Salpetersäure (D: 1,495) auf dem Wasserbad (Rouche, Bl. Acad. Belgique [5] 7, 534, 535; C. 1922 I, 22). Beim Erhitzen von 1 Tl. 4-Nitro-benzoldiazonium-bortetrafluorid mit 3 Tln. Seesand (Schie, P.; vgl. a. Balz, Schie, B. 60, 1189). — Krystalle (aus Alkohol). Erstarrungspunkt der stabilen Form: 26° (Van Hove, Bl. Acad. Belg. [5] 12, 826; Bl. Soc. chim. Belg. 36, 374; C. 1927 I, 885). Kp: 206—207° (Van H.); Kp<sub>787</sub>: 204°; Kp<sub>14</sub>: 86,6° (korr.) (Schie., P.). Ist mit Wasserdampf flüchtig (Schie., P.). D<sup>∞</sup><sub>4</sub>: 1,3300; D<sup>∞</sup><sub>4</sub>: 1,3297 (Schie., P.). n<sup>∞</sup><sub>5</sub>: 1,5247; n<sup>∞</sup><sub>5</sub>: 1,5316; n<sup>∞</sup><sub>6</sub>: 1,5488; n<sup>∞</sup><sub>7</sub>: 1,5657 (Schie., P.). p<sup>∞</sup><sub>4</sub>: 1,5100; n<sup>∞</sup><sub>5</sub>: 1,5150; n<sup>∞</sup><sub>5</sub>: 1,5325; n<sup>∞</sup><sub>7</sub>: 1,5488 (Swarts, J. Chim. phys. 20, 60).

**2.4-Difluor-1-nitro-benzol**  $C_6H_3O_2NF_2$ , s. nebenstehende Formel (EI129).  $D^{13.9}$ : 1,4571 (SWARTS, *J. Chim. phys.* **20**, 60).  $n_{\alpha}^{13.9}$ : 1,5089;  $n_{\beta}^{13.9}$ : 1,5149;  $n_{\beta}^{13.9}$ : 1,5310;  $n_{\alpha}^{13.9}$ : 1,5470.

**2.5-Difluor-1-nitro-benzol**  $C_6H_3O_2NF_2$ , s. nebenstehende Formel (E I 129).  $D^{20}$ : 1,4534 (SWARTS, *J. Chim. phys.* 20, 60).  $n_{\alpha}^{\infty}$ : 1,5043;  $n_{\nu}^{\infty}$ : 1,5102;  $n_{\beta}^{\infty}$ : 1,5261;  $r_{\gamma}^{\infty}$ : 1,5419.

2-Chlor-1-nitro-benzol C<sub>6</sub>H<sub>4</sub>O<sub>2</sub>NCl = C<sub>6</sub>H<sub>4</sub>Cl·NO<sub>2</sub> (H 241; E I 129). B. Neben vorwiegend 4-Chlor-1-nitro-benzol bei Einw. von Distickstofftetroxyd auf Chlorbenzol in Gegenwart von 0,6 Mol Aluminiumchlorid bei —10° bis +23° und nachfolgender Zersetzung mit Wasser (Schaarschmidt, B. 57, 2070). Entsteht vielleicht in geringer Menge beim Kochen von Chlorbenzol mit Salpetersäure (D: 1,40) in Gegenwart von Quecksilber(II)-oxyd, neben 4-Chlor-1-nitro-benzol und anderen Produkten (Davis, Mitarb., Am. Soc. 43, 600). Aus 2-Nitro-benzoldiazoniumacetat-Lösung und Kupfer(I)-chlorid in salzsaurer Lösung bei 0—5° oder 100—105° (Fry, Grote, Am. Soc. 48, 711). Bei kurzem Erwärmen von [2-Chlorphenyl]-quecksilberacetat mit 68% iger Salpetersäure auf 65° (Hanke, Am. Soc. 45, 1329). — Technische Darstellung: J. Schwyzer, Die Fabrikation pharmazeutischer und chemisch-

technischer Produkte, Berlin [1930], S. 211; H. E. FIERZ-DAVID, L. BLANGEY, Grundlegende Operationen der Farbenchemie, 4. Aufl. [Wien 1938], S. 49. — Trennung von 4-Chlort-nitro-benzol durch Rektifikation im Vakuum: Molinari, Atti Congr. naz. Chim. ind. 1924, 406; C. 1925 I, 2408; durch Zusatz von 1.4-Dichlor-benzol zu dem eutektischen Gemisch der Isomeren; beim Abkühlen der Schmelze scheidet sich mit dem 1.4-Dichlorbenzol hauptsächlich 4-Chlor-1-nitro-benzol ab (Verein f. chem. u. metallurg. Prod., D. R. P. 420129; C. 1926 I, 2245; Frdl. 15, 194).

Röntgenographische Untersuchung von festem 2-Chlor-1-nitro-benzol: Herzog, Jancke, Z. Phys. 45, 198; C. 1928 I, 639. F: 32,45° (Swarts, J. Chim. phys. 20, 75), 33° (korr.) (Hanke, Am. Soc. 45, 1329; Sugden, Wilkins, Soc. 127, 2520). Kp: 244,5° (Ha.). D4.5: 1,348; D7.5: 1,320; D7.5: 1,297; D7.5: 1,276 (S., W.); D7.5: 1,2945 (Swa.). Oberflächenspannung zwischen 50,5° (42,29 dyn/cm) und 121° (34,04 dyn/cm): S., W. Parachor: S., W.; Mumfordd, Phillips, Soc. 1929, 2118. Krystallisation der unterkühlten Schmelze: Schaum, Z. anorg. Ch. 148, 221. ng.5: 1,5220; ng.5: 1,5452 (Swa.). Beugung von Röntgenstrahlen an flüssigem 2-Chlor-1-nitro-benzol: He., J. Dielektr.-Konst. von Lösungen in Benzol bei 20°: Walden, Werner, Ph. Ch. [B] 2, 15. Dipolmoment \(\mu \times 10^{18}\): 3,78 (Wa., We.), 4,25 (verd. Lösung; Benzol) (Höjendahl, Nature 117, 892; Phys. Z. 30, 394; C. 1926 II, 1114; 1929 II, 1898). Elektrokinetische Erscheinungen an der Grenze zwischen festem und flüssigem 2-Chlor-1-nitro-benzol: Fairbrother, Wormwell, Soc. 1928, 1995. — Kritische Lösungstemperatur des Systems 2-Chlor-1-nitro-benzol +83,2% ige Essigsäure: 56,8° (Jones, Soc. 123, 1390). Thermische Analyse der binären Systeme mit 3- und 4-Chlor-1-nitro-benzol und des ternären Systems mit 3- und 4-Chlor-1-nitro-benzol: Kohman, J. phys. Chem. 29, 1053, 1054. Bildet mit 2-Brom-1-nitro-benzol eine ununterbrochene Reihe von Mischkrystallen (Johnston, Jones, J. phys. Chem. 32, 602). Thermische Analyse des binären Systems mit Campher (Eutektikum bei 2,6° und 41,5 Mol-% 2-Chlor-1-nitro-benzol): Jefremow, Izv. imp. Akad. Petrog. [6] 10 [1916], 44; Izv. ross. Akad. [6] 13 [1919], 768; C. 1925 I, 2144; II, 524. Thermische Analyse des binären Systems mit Cinnamylidenacetophenon (Eutektikum bei 25,8° und ca. 76 Mol-% 2-Chlor-1-nitro-benzol): Grua, G. 55, 571, 572, 575. Dichten von Lösungen in Benzol bei 20°: Wa., We.

Liefert bei der Hydrierung mit 3 Mol Wasserstoff in Alkohol oder anderen Lösungsmitteln in Gegenwart von Platinschwarz unter 2,5—3 Atm. Druck bei 25—30° 2-Chloranilin; mit 4 Mol Wasserstoff entsteht daneben Cyclohexylamin-hydrochlorid (Adams, Cohen, Rees, Am. Soc. 49, 1095). Wird durch Hydrazin in Gegenwart von palladiniertem Calciumcarbonat in siedender alkoholischer Kalilauge zu 2.2'-Dichlor-azobenzol und 2-Chloranilin, in siedender methylalkoholischer Kalilauge zum Teil weiter zu Anilin reduziert (Busch, Schulz, B. 62, 1464). Liefert beim Kochen mit Hydrazinhydrat allein (Müller, Zimmer-MANN, J. pr. [2] 111, 284) oder beim Erhitzen mit Hydrazinhydrat in Alkohol oder Hexalin auf 140—150° (Borsche, B. 56, 1492) 1-Oxy-benztriazol. Bei der Einw. von Magnesium. in wäßrig-methylalkoholischer Ammoniumchlorid-Lösung bei gewöhnlicher Temperatur (ZECHMEISTER, ROM, B. 59, 871) oder bei der Einw. von Magnesium in siedendem Methanol (Z., R., A. 468, 121, 129) entsteht 2.2'-Dichlor-azoxybenzol. Liefert beim Kochen mit Natriummethylat in Methanol + Benzol hauptsächlich 2.2'-Dichlor-azoxybenzol, beim Kochen mit Natriumäthylat in Alkohol + Benzol 2-Chlor-anilin, beim Kochen mit Natriumpropylat neben 2-Chlor-anilin hauptsächlich  $\alpha$ -[2-Chlor-anilino]-propionsäure; analog wie Natrium-propylat reagieren die Natriumverbindungen einiger höherer Alkohole (SUTER, DAINS,  $Am.\ Soc.\ 50,\ 2738$ ). Mit Natriumisobutylat erhält man nur 2-Chlor-anilin und 2.2'-Dichlorazoxybenzol (S., D.). Kinetik der Reaktion mit siedender wäßrig-methylalkoholischer Kalilauge: Blom, Helv. 4, 1030; mit wäßrig-alkoholischer Kalilauge bei 706: Bl., Helv. 4, 310; bei 82°: Davies, Wood, Soc. 1928, 1129. Beim Kochen mit Natriumhydrosulfid-Lösung unter gleichzeitigem Durchleiten von mit Schwefelkohlenstoff beladenem Schwefelwasserunter gleichzeitigem Durchleiten von mit Schweielkohlenstoff beladenem Schweielwasserstoff entsteht neben wenig 2-Chlor-anilin 2-Mercapto-benzthiazol (TEPPEMA, SEBRELL, Am. Soc. 49, 1753). Liefert beim Kochen mit Kaliumhydrosulfid in Alkohol 2-Amino-thiophenol und 2-Chlor-anilin, in wäßr. Lösung entsteht außerdem 2.2'-Dinitro-diphenylsulfid (Hodgson, Wilson, Soc. 127, 442; Ho., J. Soc. Dyers Col. 41, 242; C. 1925 II, 2098). Beim Kochen mit Natriumsulfid in Wasser treten je nach den Reaktionsbedingungen 2-Chlor-anilin, 2.2'-Dinitro-diphenylsulfid, 2-Nitro-thiophenol und 2-Amino-thiophenol teils allein, teils nebeneinander auf; beim Kochen in Natronlauge bildet sich außerdem noch 2'-Nitro-2-amino-diphenylsulfid (Ho., W.; Ho.). Bei der Einw. von Natriumdisulfid in Wasser unter den cleichen Bedingungen entstehen 2-Chlor-anilin, und 2-Amino-thiophenol. Wasser unter den gleichen Bedingungen entstehen 2-Chlor-anilin und 2-Amino-thiophenol; in Natronlauge bildet sich nahezu quantitativ 2'-Nitro-2-amino-diphenylsulfid (Ho., W.; Ho.). Mit Natriumtrisulfid in Wasser entsteht als Endprodukt 2.2'-Diamino-diphenyl-disulfid (Ho., W.; Ho.). Beim Kochen in alkoh. Lösung entstehen bei Einw. von Natriumsulfid 2-Chlor-anilin und 2.2'-Dinitro-diphenylsulfid, bei Einw. von Natriumdisulfid je nach den Mengenverhältnissen 2.2'-Dinitro-diphenyldisulfid oder 2-Nitro-thiophenol, bei Einw.

von Natriumtrisulfid ein Genisch von 2.2'-Dinitro-diphenyldisulfid und Schwefel (Ho., W.; Ho.). Liefert beim Kochen mit Natriumdiselenid in Alkohol 2.2'-Dinitro-diphenyldiselenid (Boger, Stull, Am. Soc. 49, 2012). Wird durch Titan(III)-chlorid nicht vollständig reduziert (English, J. ind. Eng. Chem. 12, 997; C. 1921 II, 623). Liefert beim Einleiten von Methylmercaptan in die alkoholisch-alkalische Lösung bei 60° und anschließenden Erhitzen auf dem Wasserbad 2-Nitro-thioanisol (Ho., Handley, J. Soc. chem. Ind. 46, 435 T; C. 1928 I, 330). Beim Erhitzen mit Natriumphenolat in überschüssigem Phenol auf 150—180° in Gegenwart von Kupfer entsteht 2-Nitro-diphenyläther (Borsche, B. 56, 1492 Anm. 9). Liefert beim Erhitzen mit Anthranilsäure, Kaliumcarbonat und Kupferpulver auf 200—220° 2'-Nitro-diphenylamin-carbonsäure-(2) (Clemo, Perkin, Robinson, Soc. 125, 1752, 1770). Geschwindigkeit der Reaktion mit Piperidin in Benzol bei 15° und in siedendem Benzol: Brewin, Turner, Soc. 1928, 332, 334.

Giftwirkung auf Menschen: Renshaw, Ashcroft, J. ind. Hyg. 8, 67, 68; C. 1926 II, 66. — Bestimmung neben 3-Chlor-1-nitro-benzol und 4-Chlor-1-nitro-benzol durch Kochen mit überschüssiger Natriumtrisulfid-Lösung, Entfernen des neben 2- und 4-Amino-thiophenol entstandenen 3-Chlor-anilins durch Wasserdampf-Destillation und Titration der beiden Amino-thiophenole mit Nitrit: Hodgson, Wilson, Soc. 127, 444; Ho., J. Soc. Dyers Col. 41, 244; C. 1925 II, 2098. Titrimetrische Bestimmung für sich und im Gemisch mit 3- und 4-Chlor-1-nitro-benzol nach vorheriger Reduktion zu den entsprechenden Anilinen mit Brom-Lösung: Francis, Hill, Am. Soc. 46, 2504. Bestimmung des Chlor-Gehaltes durch gleichzeitige Einw. von flüssigem Ammoniak und Natrium und Wägung des entstandenen Natrium-chlorids: Dains, Brewster, Am. Soc. 42, 1578.

3-Chlor-1-nitro-benzol C<sub>6</sub>H<sub>4</sub>O<sub>3</sub>NCl = C<sub>6</sub>H<sub>4</sub>Cl·NO<sub>2</sub> (H 243; E I 129). B. Aus 3-Nitrobenzoldiazoniumacetat-Lösung und Kupfer(I)-chlorid in salzsaurer Lösung bei 0—5° oder 100—105° (FRY, GROTE, Am. Soc. 48, 711). In geringerer Menge beim Kochen des Doppelsalzes von 3-Nitro-benzoldiazoniumchlorid und Blei(IV)-chlorid mit Acetanhydrid oder mit Salzsäure (Sakellarios, B. 56, 2540). Beim Erhitzen von x-Tetranitro-triphenylbismutin-dichlorid auf 170° (Wilkinson, Challenger, Soc. 125, 863). — Technische Darstellung: H. E. Fierz-David, L. Blangey, Grundlegende Operationen der Farbenchemie, 4. Aufl. [Wien 1938], S. 73. — Röntgenographische Untersuchung von festem 3-Chlor-1-nitro-benzol: Herzog, Jancke, Z. Phys. 45, 198; C. 1928 I, 639. F: 44,4° (Swarts, J. Chim. phys. 20, 75), 44,5° (Puschin, Ph. Ch. 119, 400), 45° (Wilkinson, Challenger, Soc. 125, 863), 46° (korr.) (Sugden, Wilkins. Soc. 127, 2521). Erstarrungstemperatur unter hohen Drucken bis zu 2450 kg/cm²: P. Dp²: 1,343; Dp²: 1,336; Dp²: 1,314; Dp²: 1,304; Dp²: 1,296; Dp²: 1,257 (S., W.); Dp³: 1,2951 (Swa.). Oberflächenspannung zwischen 60,5° (41,79 dyn/cm) und 129° (31,77 dyn/cm): Su. W. np²: 1,5271; np³: 1,5510 (Swa.). Beugung von Röntgenstrahlen an flüssigem 3-Chlor-1-nitro-benzol: He., J. Dielektr.-Konst. von Lösungen in Benzol bei 20°: Walden, Werner, Ph. Ch. [B] 2, 15. Dipolmoment μ×1018: 3,18 (Wa., We.), 3,38 (verd. Lösung; Benzol) (Höjendahl, Nature 117, 892; Phys. Z. 30, 394; C. 1926 II, 1114; 1929 II, 1898). — Thermische Analyse der binären Systeme mit 2- und 4-Chlor-1-nitro-benzol: Kohman, J. phys. Chem. 29, 1053; des Systems mit 3-Brom-1-nitro-benzol: Puschin, Ph. Ch. 119, 402. Zustandsdiagramm des binären Systems mit 2- und 4-Chlor-1-nitro-benzol: Kohman, J. phys. Chem. 29, 1053; des Systems mit 3-Brom-1-nitro-benzol unter Drucken bis zu 2560 kg/cm²: P. Thermische Analyse des binären Systems mit Campher (Eutektikum bei 11,5° und 43 Mol-% 3-Chlor-1-nitro-benzol): Jeffemow, Izv. imp. Akad. Petrog. [6] 10 [1916], 42; Izv. ross. Akad. [6] 13 [1919],

Wird durch Hydrazinhydrat auf dem Wasserbad zu 3-Chlor-anilin reduziert (MÜLLER, ZIMMERMANN, J. pr. [2] 111, 284). Bei der Reduktion mit Magnesium in wäßrig-methylakoholischer Ammoniumchlorid-Lösung bei gewöhnlicher Temperatur und nachfolgendem Erhitzen (ZECHMEISTER, ROM, B. 59, 871) oder beim Kochen mit Magnesium in Methanol (Z., R., A. 468, 130) entsteht 3.3'-Dichlor-azoxybenzol. Liefert beim Kochen mit 4—6 Mol Natriumsulfid in Wasser oder beim Kochen mit wäßrig-alkoholischer Natriumtrisulfid-Lösung in quantitativer Ausbeute 3-Chlor-anilin (Hodgson, Wilson, Soc. 127, 442, 444). Liefert beim Erwärmen mit 1,5 n-Natriummethylat-Lösung auf 85° 3.3'-Dichlor-azoxybenzol (Holleman, de Mooy, R. 35 [1916], 17). Mit Natriumbutylat in Benzol erhält man 3-Chlor-anilin und 3.3'-Dichlor-azoxybenzol, mit Natriumbenzylat in Benzol 3.3'-Dichlor-azoxybenzol (Suter, Dains, Am. Soc. 50, 2735). Beim Erhitzen mit Thionylchlorid im Rohr auf 190° bis 200° entsteht 1.3-Dichlor-benzol (Davies, Hickox, Soc. 121, 2648). Geschwindigkeit der Nitrierung mit Salpeterschwefelsäure in Gegenwart und in Abwesenheit von Stickstoffdioxyd: Klemen, Schöller, Z. anorg. Ch. 141, 275. Bei der Einw. von Ammoniak auf 3-Chlor-1-nitro-benzol bei 700—800° wird das Chlor nur teilweise, in Gegenwart von Wasserstoff quantitativ als Ammoniumchlorid abgespalten (Heslinga, R. 43, 180, 184). — Bestimmung neben 2-Chlor-1-nitro-benzol und 4-Chlor-1-nitro-benzol durch Kochen mit über-

schüssiger Natriumtrisulfid-Lösung, Entfernen des neben 2- und 4-Amino-thiophenols entstandenen 3-Chlor-anilins durch Wasserdampf-Destillation und Titration der beiden Aminothiophenole mit Nitrit: Hodson, Wilson, Soc. 127, 444; Ho., J. Soc. Dyers Col. 41, 244; C. 1925 II, 2098. Titrimetrische Bestimmung für sich und im Gemisch mit 4- bzw. 2- und 4-Chlor-1-nitro-benzol nach vorheriger Reduktion zu den entsprechenden Anilinen mit Brom-Lösung: Francis, Hill, Am. Soc. 46, 2504.

4-Chlor-1-nitro-benzol C<sub>6</sub>H<sub>4</sub>O<sub>2</sub>NCl = C<sub>3</sub>H<sub>4</sub>Cl·NO<sub>2</sub> (H 243, E I 130). B. Neben wenig 2-Chlor-1-nitro-benzol bei Einw. von Distickstofftetroxyd auf Chlorbenzol in Gegenwart von 0,6 Mol Aluminiumchlorid bei —100 bis +230 und nachfolgender Zersetzung mit Wasser SCHARRSCHMIDT, B. 57, 2070). Bei der Einw. eines Gemisches aus Nitrosylschwefelsäure und rauchender Salpetersäure (D: 1,502) auf Chlorbenzol (VARMA, KULKARNI, Am. Soc. 47, 145). In geringer Menge beim Kochen von Chlorbenzol mit Salpetersäure (D: 1,40) in Gegenwart von Quecksilber(II)-oxyd (Davis, Mitarb., Am. Soc. 43, 600). Bei der Einw. von Eisen(III)-nitrat auf Chlorbenzol in Acetanhydrid bei 40—500 (MENKE, R. 44, 146). Aus 4-Nitro-benzoldiazoniumacetat-Lösung und Kupfer(I)-chlorid in salzsaurer Lösung bei 0—50 oder 100—1050 (Fry, Grotte, Am. Soc. 48, 711) oder bei der Einw. von Kupfer(I)-hydrid auf 4-Nitro-benzoldiazoniumchlorid in Salzsäure bei 00 (Neogi, Mitra, Soc. 1928, 1332). Beim allmählichen Eintragen von 4-Nitro-benzoldiazonium-tetrachlorjodid in eine warme Lösung von Kupfer(I)-chlorid in konz. Salzsäure (Chattaway, Garton, Parkes, Soc. 125, 1984). Durch Kochen des Doppelsalzes aus 4-Nitro-benzoldiazoniumchlorid und Blei(IV)-chlorid in Benzol oder Tetrachlorkohlenstoff oder durch Aufbewahren des Doppelsalzes im Tageslicht im Exsicator (Sakellarios, B. 56, 2540). Aus [4-Chlor-phenyl]-queck-silberacetat bei kurzem Erwärmen mit 68%iger Salpetersäure auf 650 (Hanke, Am. Soc. 45, 1329). — Technische Darstellung: J. Schwyzer, Die Fabrikation pharmazeutischer und chemisch-technischer Produkte [Berlin 1931], S. 211; H. E. Fierz-David, L. Blangey, Grundlegende Operationen der Farbenchemie, 4. Aufl. [Wien 1938], S. 49. — Reinigung des technischen Produkts durch Krystallisation aus 65%iger Salpetersäure: Desvergnes, Monit. scient. [5] 15, 73; C. 1925 II, 18. Zur Trennung von 2-Chlor-1-nitro-benzol s. bei Darstellung von 2-Chlor-1-nitro-benzol S. 181.

Harte der Krystalle: Reis, Zimmermann, Z. Kr. 57, 484; Ph. Ch. 102, 329. F: 82° (Μένκε, R. 44, 146), 82,95° (Śwarts, J. Chim. phys. 20, 75), 83° (kort.) (Śugden, Soc. 125, 1174; Chattaway, Garton, Parkes, Soc. 125, 1984; Ingold, Soc. 127, 517; Sakellarios, B. 56, 2540), 85° (Hanke, Am. Soc. 45, 1329). E: 83,15, 83,19° (Desvergnes, Monit. scient. [5] 15, 73; C 1925 II, 18). Kp<sub>760</sub>: 239,1° (Lecat, Ann. Soc. scient. Bruxelles 49 [1929], 21, 111). Dampfdruck bei 10°, 20° und 30°: Swan, Mack, Am. Soc. 47, 2115.  $D^{60,5}$ : 1,2979 (Śwarts). Oberflächenspannung zwischen 97° (35,57 dyn/cm) und 186° (26,31 dyn/cm): Sug. Parachor: Sug., Soc. 125, 1186.  $n_{\alpha}^{60,5}$ : 1,5382;  $n_{\beta}^{60,5}$ : 1,5655 (Śwarts). Dielektr.-Konst. von Lösungen in Benzol bei 20°: Walden, Werner, Ph. Ch. [B] 2, 16. Dipolmoment  $\mu$  × 10<sup>18</sup>: 2,36 (Wa., We.). 2,52 (verd. Lösung; Benzol) (Höjendahl, Nature 117, 892; C. 1926 II, 1114), 2,55 (verd. Lösung; Benzol) (Hö, Phys. Z. 30, 394; C. 1929 II, 1898). — Über die Löslichkeit in verschiedenen Lösungsmitteln (g Substanz in 100 g Lösungsmitteln) nach Desvergnes (Monit. scient. [5] 15, 74; C. 1925 II, 18) s. die untenstehende Tabelle. Bei 100° lösen 100 g Wasser 0,0153 g, bei 30° 100 g Äther 73,19 g und bei 33,5°

| Temp.    | Wasser             | Benzol           | Toluol           | Chloroform        | Tetrachlor-<br>kohlenstoff | Methanol                 |
|----------|--------------------|------------------|------------------|-------------------|----------------------------|--------------------------|
| 17<br>50 | 0,0028<br>0,0125   | 83,589<br>247,37 | 77,585<br>224,59 | 73,624<br>165,75  | 17,416<br>99,11            | 8,718<br>28,18           |
| Temp.    | 96%iger<br>Alkohol | Alkohol          | Äther            | Aceton            | Essigsäure-<br>äthylester  | Schwefel-<br>kohlenstoff |
| 17<br>50 | 6,991<br>30,19     | 10,482<br>33,66  | 52,215           | 127,516<br>315,78 | 75,675<br>224,59           | 28,850                   |

100 g Schwefelkohlenstoff 69,84 g (DES.). Löslich in flüssigem Schwefeldioxyd mit gelber Farbe, schwer löslich in flüssigem Ammoniak mit violetter Farbe (DE CARLI, G. 57, 351). Thermische Analyse der binären Systeme mit 2- und 3-Chlor-1-nitro-benzol und des ternären Systems mit 2- und 3-Chlor-1-nitro-benzol: KOHMAN, J. phys. Chem. 29, 1053. Bildet mit 4-Brom-1-nitro-benzol eine ununterbrochene Reihe von Mischkrystallen (Johnston, Jones, J. phys. Chem. 32, 602). Thermische Analyse des binären Systems mit Cinnamylidenaceto-phenon (Eutektikum bei 54,8° und 57 Mol-% 4-Chlor-1-nitro-benzol): Grua, G. 55, 572; mit

4-Amino-azobenzol (Eutektikum bei 53,5° und 58,8 Mol-% 4-Chlor-1-nitro-benzol): GIUA, REGGIANI, G. 55, 658. Dichte von Lösungen in Benzol bei 20°: WALDEN, WERNER, Ph. Ch. [B] 2, 16.

Azeotrope, 4-Chlor-1-nitro-benzol enthaltende Gemische.

| Komponente                                   | Kp760                             | 4-Chlor-<br>1-nitro-<br>benzol<br>in Gew% | Komponente                                              | Kp780                     | 4-Chlor-<br>1-nitro-<br>benzol<br>in Gew% |
|----------------------------------------------|-----------------------------------|-------------------------------------------|---------------------------------------------------------|---------------------------|-------------------------------------------|
| 4-Nitro-toluol 1) Glykol 1) Brenzcatechin 2) | 238,9<br>192,85<br>238,6<br>213,6 | ca. 33<br>42,2<br>82,5<br>45              | Propionamid 1)<br>Benzoesäure 1)<br>Isobutylbenzoat 1). | 217,5<br>237,75<br>239,08 | 50,2<br>84<br>97(?)                       |

1) LECAT, Ann. Soc. scient. Bruxelles 49 [1929], 21, 23, 24. — 2) L., Ann. Soc. scient. Bruxelles 49 [1929], 111.

Liefert bei der Hydrierung mit 3 Mol Wasserstoff in Alkohol oder anderen Lösungsmitteln in Gegenwart von Platinschwarz unter 2,5-3 Atm. Druck bei 25-300 4-Chlor-anilin; mit 4 Mol Wasserstoff entsteht daneben Cyclohexylamin-hydrochlorid (Adams, Cohen, Rees, Am. Soc. 49, 1095). Wird durch Hydrazinhydrat auf dem Wasserbad zu 4-Chlor-anilin reduziert (MÜLLER, ZIMMERMANN, J. pr. [2] 111, 278). Bei der Einw. von Magnesium in wäßrig-methylalkoholischer Ammoniumchlorid-Lösung (ZECHMEISTER, ROM, B. 59, 871) oder beim Kochen mit Magnesium in Methanol (Z., R., A. 468, 130) entsteht 4.4'-Dichlorazoxybenzol. Beim Erhitzen mit Natriummethylat-Lösung unter Zusatz von Benzol auf dem Wasserbad entsteht neben Kondensationsprodukten in geringer Menge 4-Chlor-anilin; 4.4'-Dichlor-azoxybenzol und 4-Chlor-anilin bilden sich unter den gleichen Bedingungen bei der Einw. von Natriumäthylat-, -isopropylat, -butylat, -isobutylat und -sek.-butylat; Natriumisoamylat reduziert zu 4-Chlor-anilin und 4.4'-Dichlor-azobenzol, Natriumbenzylat und Furfurol zu 4.4'-Dichlor-azoxybenzol (SUTER, DAINS, Am. Soc. 50, 2735). Bei längerem und Furnirol zu 4.4 - Dichlor-azoxybenzol (SUTER, DAINS, Am. 80c. 50, 2735). Bei langerem Kochen mit überschüssiger methylalkoholischer Natriummethylat-Lösung, zuletzt nach Entfernung des Methanols, entsteht 4.4'-Dimethoxy-azoxybenzol (Davies, Down, Soc. 1929, 586). Kinetik der Bildung von 4-Nitro-anisol beim Kochen mit wäßrig-methylalkoholischer Kalilauge: Blom, Helv. 4, 1030; vgl. a. Raiford, Colbert, Am. Soc. 48, 2654. Gibt beim Erhitzen mit wäßr. Methanol und Natriumcarbonat auf 175—185° 4-Nitro-anisol (Matter, D. R. P. 386618; C. 1924 I, 2632; Frdl. 14, 425). 4-Nitro-phenetol entsteht neben vernig A. Nitro-phenetol entsteht neben (Matter, D. R. P. 386618; C. 1924 I, 2632; Frdl. 14, 425). 4-Nitro-phenetol entsteht neben wenig 4-Nitro-phenol bei 140-stdg. Erhitzen von 4-Chlor-1-nitro-benzol mit einer 0,5 n-Kalilauge-Lösung in 95% igem Alkohol auf 60°; bei Anwesenheit von Acetaldehyd sowie bei Erhöhung der Erhitzungstemperatur und der Alkalikonzentration bilden sich steigende Mengen 4-4'-Dichlor-azoxybenzol (Richardson, Soc. 1926, 524, 528). Kinetik der Bildung von 4-Nitro-phenetol beim Erhitzen mit wäßrig-alkoholischer Kalilauge auf 60°: Rich.; auf 60°, 70° und auf Siedetemperatur: Bl., Helv. 4, 303; vgl. a. Rai., C.; auf 82°: Davies, Wood, Soc. 1928, 1128. In wäßr. Lösung bilden sich beim Kochen mit Natriumsulfid je nach den Versuchsbedingungen 4-Chlor-anilin, 4-4'-Dinitro-diphenylsulfid, 4'-Nitro-4-amino-diphenylsulfid, aud 4-4'-Diamino-diphenyldisulfid; mit Natriumdisulfid 4-Chlor-anilin, 4'-Nitro-4-amino-diphenylsulfid, 4-4'-Dinitro-diphenyldisulfid, 4-4'-Dinitro-diphenylsulfid, 4-4 nitro-diphenyldisulfid, 4-Amino-thiophenol und 4.4'-Diamino-diphenyltrisulfid (Hodsson, Wilson, Soc. 127, 441; Ho., J. Soc. Dyers Col. 41, 242; C. 1925 II, 2098). In alkoh. Lösung bilden sich beim Kochen mit Natriumsulfid je nach den Versuchsbedingungen 4-Chlor-anilin und 4.4'-Dinitro-diphenylsulfid; mit Natriumdisulfid 4.4'-Dinitro-diphenyldisulfid vom Schmelzpunkt 170° und vom Schmelzpunkt 180° und 4-Chlor-anilin; mit Natriumtrisulfid 4.4'-Dinitro-diphenyldisulfid vom Schmelzpunkt 170° und vom Schmelzpunkt 180° (Ho., W.; Ho.). Liefert bei der Einw. von Methylmercaptan in wäßrig-alkoholischer Natronlauge w.; 110.). Leters bet der Einw. von Accus im Walls and eine Mengen 4-Nitro-thioanisol (Hodgsuf dem Wasserbad 4.4'-Dichlor-azoxybenzol und geringe Mengen 4-Nitro-thioanisol (Hodgson, Handley, J. Soc. chem. Ind. 46, 436 T; C. 1928 I, 330). Wird durch Titan(III)-chlorid nicht vollständig reduziert (English, J. ind. Eng. Chem. 12, 997; C. 1921 II, 623). Chlorierung in Gegenwart von Jod-Eisen bei 40—50°: FIERZ-DAVID, Naturwiss. 17, 13; C. 1929 I, 863. Geschwindigkeit der Nitrierung mit Salpeterschwefelsäure in Gegenwart und Abwesenheit von Stickstoffdioxyd bei 15° und 25°: KLEMENC, SCHÖLLER, Z. anorg. Ch. 141, 275. Liefert beim Erhitzen mit 4-Brom-phenol in konzentrierter wäßriger Kalilauge auf 100° [4-Brom-phenyl]-[4-nitro-phenyl]-sther (LE FEVRE, SAUNDERS, TURNER, Soc. 1927, 1171). Reagiert analog mit 4-Chlor-phenol (LE F., S., T.). Geschwindigkeit der Reaktion mit Anilin und substituierten Anilinen in Alkohol bei 81,8°: LINKE, B. 56, 851; mit Piperidin in Benzol bei 15° und in siedendem Benzol: BREWIN, TURNER, Soc. 1928, 332, 334.

Physiologisches Verhalten: H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 95. Giftwirkung auf Menschen: RENSHAW, ASHCROFT. J. ind. Hyg. 8 [1926], 68; C. 1926 II, 66. Schädigende Wirkung beim Aufstäuben auf Bohnenblätter: Moore, Campbell, J. agric. Res. 28 [1924], 402. — Bestimmung für sich und im Gemisch mit 3- bzw. 2- und 3-Chlor-1-nitro-benzol s. bei 2-Chlor-1-nitro-benzol S. 181.

5-Fluor-2-chlor-1-nitro-benzol C<sub>6</sub>H<sub>3</sub>O<sub>2</sub>NClF, s. nebenstehende Formel (E I 130). B. Zur Bildung aus 4-Fluor-1-chlor-benzol und absol. Salpetersäure nach SWARTS (R. 35, 145; E I 130) vgl. INGOLD, VASS, Soc. 1928, 2265. Thermische Analyse des binaren Systems mit 6-Fluor-3-chlor-1-nitro-benzol: I., V. - Zersetzung durch methylalkoholische Natriummethylat-Lösung: I., V.



4-Fluor - 3 - chlor - 1 - nitro - benzol C<sub>6</sub>H<sub>3</sub>O<sub>2</sub>NClF, s. nebenstehende Formel (E I 130). B. Neben 3-Fluor 4-chlor 1-nitro-benzol beim allmählichen Eintragen  $NO_2$ von 2-Fluor-1-chlor-benzol in Salpetersäure (D: 1,49) bei 0° (Ingold, Vass, Soc. 1928, 423). — Krystalle (aus Methanol). F: 41,5°. Thermische Analyse des binären Systems mit 3-Fluor-4-chlor-1-nitro-benzol (Eutektikum bei 22,1° und 59,5% 4-Fluor-3-chlor-1-nitro-benzol): I., V.

6-Fluor-3-chlor-1-nitro-benzol C<sub>6</sub>H<sub>3</sub>O<sub>2</sub>NClF, s. nebenstehende Formel (E I 130). B. Zur Bildung aus 4-Fluor-1-chlor-benzol und absol. Salpetersäure nach Swarts (R. 35, 145; E I 130) vgl. INGOLD, VASS, Soc. 1928, 2265. — Thermische Analyse des binären Systems mit 5-Fluor-2-chlor-1-nitro-benzol: I., V. - Zersetzung durch methylalkoholische Natriummethylat-Lösung: I., V.



8-Fluor-4-chlor-1-nitro-benzol C<sub>6</sub>H<sub>3</sub>O<sub>2</sub>NClF, s. nebenstehende Formel. B. Aus 3-Fluor-4-chlor-anilin beim Diazotieren in verd. Schwefelsäure bei -5° und Behandeln der Diazoniumsalz-Lösung mit Natriumnitrit und Kupfer(I)-kupfer(II)sulfit (Chevreuls-Salz) in Wasser (INGOLD, VASS, Soc. 1928, 422). Neben 4-Fluor-3-chlor-1-nitro-benzol beim allmählichen Eintragen von 2-Fluor-1-chlor-benzol in Salpetersäure (D: 1,49) bei 0° (I., V.). — Blaßgelbe Blättchen (aus Ligroin). F: 63—64°. Kp<sub>24</sub>: 114—116°. Thermische Analyse des binären Systems mit 4-Fluor-3-chlor-1-nitro-benzol (Eutektikum bei 22,1° und 40,5% 3-Fluor-4-chlor-1-nitro-benzol): I. V. — Gibt bei 60-stdg. Erwärmen mit methylalkoholischer Natriummethylat-Lösung auf 80° 4-Nitro-veratrol.

2.3 - Dichlor - 1 - nitro - benzol  $C_6H_3O_2NCl_2$ , s. nebenstehende Formel (H 245; E I 130). B. Zur Bildung nach Holleman, De Mooy (R. 35, 9; E I 130) aus 2.3 - Di-NO<sub>2</sub> 10. nitro-anilin durch Diazotieren und Behandeln mit Kupfer(I)-chlorid vgl. Holle-MAN, R. 39, 447. — Hellgelbe Krystalle (aus Alkohol). F: 61°. — Liefert beim Behandeln mit Salpeterschwefelsäure 3.4-Dichlor-1.2-dinitro-benzol, neben 4.5-Dichlor-1.3-dinitro-benzol.

 $NO_2$ 2.4 - Dichlor - 1 - nitro - benzol C<sub>6</sub>H<sub>3</sub>O<sub>2</sub>NCl<sub>2</sub>, s. nebenstehende Formel (H 245; E I 131). B. Zur Bildung nach Beilstein, Kurbatow (A. 182, 97; H 245) durch ·Cl Nitrieren von 1.3-Dichlor-benzol vgl. ROBERTS, TURNER, Soc. 127, 2011. — Liefert beim Kochen mit Hydrazinhydrat in Alkohol das Hydrazinsalz des 1-Oxy-5-chlor-benztriazols (MÜLLER, ZIMMERMANN, J. pr. [2] 111, 285). Bei langsamem Zusatz ci einer wäßr. Natriumdisulfid-Lösung zu der alkoh. Lösung und folgendem Erwärmen auf dem Wasserbad entsteht 4.4'-Dinitro-diphenylen-(1.3.1',3')-tetrasulfid (HODGSON, HANDLEY, J. Soc. chem. Ind. 46, 436 T; C. 1928 I, 330). Liefert bei der Einw. von Methylmercaptan in alkoh. Natronlauge 5-Chlor-2-nitro-thioanisol (Ho., HA., J. Soc. chem. Ind. 46, 436 T; C. 1928 I, 330). Beim Kochen mit Piperidin entsteht 4-Nitro-1.3-dipiperidino-benzol (LE Fèvre, Turner, Soc. 1927, 1117).

2.5-Dichlor-1-nitro-benzol C<sub>6</sub>H<sub>8</sub>O<sub>2</sub>NCl<sub>2</sub>, s. nebenstehende Formel (H 245; E I 131). B. Bei der Nitrierung von 1.4-Dichlor-benzol (H 245) mit Salpeter- $NO_2$ schwefelsäure (Morgan, Soc. 81 [1902], 1382; Crowell, Raiford, Am. Soc. 42, 147; Page, Heasman, Soc. 123, 3252; Turski, Pitrowski, Winawer, Przem. chem. 11, 368, 369; C. 1927 II, 809). — Technische Datstellung: H. E. Fierz-David, F: 56° (HOLLEMAN, DEN HOLLANDER, VAN HAEFTEN, R. 40, 325). Parachor: Mumford, Phillips, Soc. 1929, 2118. — Liefert beim Erhitzen mit Hydrazin und verd. Alkohol im Rohr auf 100° 6-Chlor-1-oxy-benztriazol (Booy, DIENSKE, R. 45, 449). Beim Kochen mit Natriumpropylat in Propylalkohol und Benzol erhält man α-[2.5-Dichlor-anilino]-propion-säure neben 2.5-Dichlor-anilin (Suter, Dains, Am. Soc. 50, 2738). Bei der Reduktion mit Natriumhydrosulfid-Lösung bei Gegenwart von Schwefelkohlenstoff entsteht 5-Chlor-2-mercapto-benzthiazol (TEPPEMA, SEBRELL, Am. Soc. 49, 1754). Liefert beim Kochen mit

Natriumsulfid in Wasser oder besser in Alkohol 4.4'-Dichlor-2.2'-dinitro-diphenylsulfid; beim Kochen mit Natriumdisulfid in Wasser 5-Chior-2-mercapto-anilin; beim Kochen mit Natriumtrisulfid in Wasser 4.4'-Dichlor-2.2'-diamino-diphenyldisulfid und in Alkohol 4.4'-Dichlor-2.2'-dinitro-diphenyldisulfid sowie geringe Mengen Schwefel (Hodgson, Wilson, Soc. 127, 441, 443, 444). Mit überschüssiger Chlorsulfonsäure entsteht bei höherer Temperatur Chloranil (Gebauer, Fülnegg, Figdor, M. 48, 637). Liefert beim Erwärmen mit wäßrigmethyl- oder äthylalkoholischer Kalilauge 4-Chlor-2-nitro-anisol bzw. 4-Chlor-2-nitro-phenetol, beim Erwärmen mit wäßrig-allylalkoholischer Kalilauge auf 70-85° 2.5.2'.5'-Tetrachlor-azoxy-benzol (Raiford, Colbert, Am. Soc. 48, 2654, 2658). 4-Chlor-2-nitro-anisol entsteht auch beim Erhitzen von 2.5-Dichlor-1-nitro-benzol mit Methanol in Gegenwart von Kalilauge unter einem Druck von 7 Atm. auf 140° (T., P., W.). Liefert bei der Einw. von Methylmercaptan in alkoh. Natronlauge 4-Chlor-2-nitro-thioanisol (Ho., Handley, J. Soc. chem. Ind. 46, 435 T; C. 1928 I, 330). Beim Erhitzen mit 4-Chlor-phenol und konz. Kalilauge auf 100° entsteht [4-Chlor-phenyl]-[4-chlor-2-nitro-phenyl]-äther (Le Fèvre, Saunders, Turner, Soc. 1927, 1173). Geschwindigkeit der Reaktion mit Piperidin in Benzol bei 15° und in siedendem Benzol: Brewin, Tu., Soc. 1928, 332, 334.

- 2.6-Dichlor-1-nitro-benzol C<sub>6</sub>H<sub>3</sub>O<sub>2</sub>NCl<sub>2</sub>, s. nebenstehende Formel (H 246; E I 131). Liefert beim Erhitzen mit Salpetersäure (D: 1,5) 2.4-Dichlor-1.3-dinitro-benzol (Daun, Soc. 1929, 2461).
- 3.4-Dichlor-1-nitro-benzol C<sub>6</sub>H<sub>3</sub>O<sub>2</sub>NCl<sub>2</sub>, s. nebenstehende Formel (H 246; NO<sub>2</sub> E I 131). B. Bei der Nitrierung (H 246) von 1.2-Dichlor-benzol mit Salpeterschwefelsäure bei 60° (McMaster, Magill, Am. Soc. 50, 3039); bei 0° (Hodgson, Kershaw, Soc. 1929, 2922). Darst. Zur Darstellung nach Öhler (D. R. P. 167297; H 246) durch Chlorieren von 4-Chlor-1-nitro-benzol bei Gegenwart eines Chlorüberträgers vgl. Davies, Down, Soc. 1929, 587. Liefert beim Kochen mit überschüssiger methylalkoholischer Natriummethylat-Lösung 3.3'-Dichlor-4.4'-dimethoxy-azoxybenzol (Da., Do.). Beim Kochen mit alkoh. Kalilauge entsteht 3.4.3'.4'-Tetrachlor-azoxybenzol, neben wenig 3.4-Dichlor-anilin und 2-Chlor-4-nitro-phenol (McM., Ma.). Gibt beim Kochen mit Natriumalkoholaten und den entsprechenden Alkoholen die Äther des 2-Chlor-4-nitro-phenols (McM., Ma.). Beim Behandeln mit Salpeterschwefelsäure bei 100° entsteht 4.5-Dichlor-1.2-dinitro-benzol (Le Fèvre, Turner, Soc. 1927, 1119). Gibt mit Piperidin in der Wärme 2-Chlor-4-nitro-1-piperidino-benzol (Le F., T.). Geschwindigkeit der Reaktion mit Piperidin in Benzol bei 15° und in siedendem Benzol: Brewin, T., Soc. 1928, 334.
- 3.5-Dichlor-1-nitro-benzol C<sub>0</sub>H<sub>3</sub>O<sub>2</sub>NCl<sub>2</sub>, s. nebenstehende Formel (H 246; NO<sub>2</sub> E I 131). B. Aus 5-Chlor-3-nitro-anilin nach Sandmeyer (Dyson, George, Hunter, Soc. 1926, 3043). Zur Bildung aus 2.6-Dichlor-4-nitro-anilin durch Entaminierung vgl. Roberts, Turner, Soc. 1927, 1843; Holleman, R. 39, 437; Elion, R. 42, 178. Neben überwiegenden Mengen 3.5-Dichlor-benzoesäure aus 3.5-Dichlor-4-amino-benzoesäure beim Diazotieren mit Salpetersäure (D: 1,48) und Kaliumpyrosulfit unter Eiskühlung und Erwärmen der erhaltenen, mit Eiswasser verdünnten Diazoniumsalz-Lösung mit Alkohol in Gegenwart von Kupfersulfat auf dem Wasserbad (E.). Blättchen (aus Alkohol). F: 65° (E.). Wird beim Erhitzen mit Eisenpulver und Salzsäure auf 60° bis 70° zu 3.5-Dichlor-anilin reduziert (Ho., R. 39, 439). Reaktion mit Natriummethylat: Ho., DE Moov, R. 35 [1916], 16.
- 2.3.4-Trichlor-1-nitro-benzol C<sub>6</sub>H<sub>2</sub>O<sub>2</sub>NCl<sub>3</sub>, s. nebenstehende Formel (H 246).

  B. Aus 3.4.5-Trichlor-2-nitro-anilin beim Diazotieren und nachfolgenden Verkochen mit Alkohol (HOLLEMAN, VAN HAEFTEN, R. 40, 68). Liefert beim Erhitzen mit Natriummethylat-Lösung unter Druck auf 110° 5.6-Dichlor-2-nitro-anisol (Ho., Cl. 83, 462; Ho., VAN HAE.). Geschwindigkeit dieser Reaktion bei 25° und 35°: Ho., VAN HAE.
- 2.3.5-Trichlor-1-nitro-benzol C<sub>6</sub>H<sub>2</sub>O<sub>2</sub>NCl<sub>3</sub>, s. nebenstehende Formel. B. NO<sub>2</sub> Aus 4.6-Dichlor-2-nitro-anilin (Holleman, van Haeften, R. 40, 72; Hodgson, Kershaw, Soc. 1929, 2920) oder aus 2.5-Dichlor-3-nitro-anilin (Ho., van Hae.) clbeim Diazotieren und Behandeln der Diazoniumsalz-Lösung mit salzsaurer Kupfer(I)-chlorid-Lösung. Aus 3.4.6-Trichlor-2-nitro-anilin (Ho., van Hae.) oder aus 2.3.6-Trichlor-4-nitro-anilin (Hod., K.) beim Diazotieren und Verkochen mit Alkohol. Nadeln (aus Methanol). F: 44,5—45,5° (Hod., van Hae.), 45° (Hod., K.). Wird durch Eisenspäne in Essigsäure zu 2.3.5-Trichlor-anilin reduziert (Hod., K.). Liefert beim Erwärmen mit Salpeterschwefelsäure auf dem Wasserbad 3.4.6-Trichlor-1.2-dinitro-benzol (Hüfffer, R. 40, 45°). Beim Erhitzen mit Natriummethylat-Lösung auf dem Wasserbad entsteht 4.6-Dichlor-2-nitro-anisol (Hod., R. 39, 458; Hod., van Hae.). Geschwindigkeit dieser Reaktion bei 25° und 35°: Hod., van Hae.

2.3.6 - Trichlor - 1 - nitro - benzol C<sub>6</sub>H<sub>2</sub>O<sub>2</sub>NCl<sub>3</sub>, s. nebenstehende Formel  $NO_2$ (H 246). B. Man trägt 3.6-Dichlor-2-nitro-anilin in eine auf 80° erwärmte Lösung · · C1 von Natriumnitrit in konz. Schwefelsäure ein, gießt die abgekühlte Diazonium--Cl salz-Lösung in kalte Kupfer(I)-chlorid-Lösung und unterwirft das Reaktionsprodukt der Dampf-Destillation (Holleman, van Haeffen, R. 40, 70; vgl. a. Ho., R. 85 [1916], 46). — Krystalle (aus Alkohol). F: 89° (Ho., van Hae.). — Beim Kochen mit Salpeterschwefelsäure entsteht 2.4.5-Trichlor-1.3-dinitro-benzol (Hüffen, R. 40, 452). Liefert beim Erhitzen mit Natriummethylat-Lösung auf dem Wasserbad 3.4-Dichlor-2-nitro-anisol und 2.3.6-Trichlor-anisol (Ho., van Hae.). Geschwindigkeit dieser Reaktion bei 25° und 35°: Ho., van Hae.

2.4.5 - Trichlor - 1 - nitro - benzol C<sub>6</sub>H<sub>2</sub>O<sub>2</sub>NCi<sub>3</sub>, s. nebenstehende Formel  $NO_2$ (H 246). B. Zur Bildung nach Lesimple (A. 137, 123; H 246) durch Nitrierung von 1.2.4-Trichlor-benzol vgl. Holleman, van Haeften, R. 40, 71. Beim Behandeln von in salzsaurer Lösung diazotiertem 2.5-Dichlor-4-nitro-anilin (Ho., Nandein von in saizsaurer Losung diazotiertem 2.5-Dichlor-4-nitro-aniin (Ho., van Hae.) oder 5-Chlor-2.4-dinitro-aniin (Hodgson, J. Soc. Dyers Col. 42, 368; Cl. C. 1927 I, 1431) mit Kupfer(I)-chlorid-Lösung. — Nadeln (aus Alkohol). F: 57° (Ho., van Hae.), 58° (Hod.). — Liefert mit 4 Mol Hydrazinhydrat in siedendem Alkohol das Hydrazinsalz des 1-Oxy-5.6-dichlor-benztriazols; bei Anwendung geringerer Mengen Hydrazinhydrat entsteht daneben wenig 4.5-Dichlor-2-nitro-phenylhydrazin (Müller, Hoffmann, J. pr. [2] 111, 294, 296, 299). Beim Kochen mit Salpeterschwefelsäure bildet sich 2.4.5-Trichlor-1.3-dinitro-benzol (Hüfffer, R. 40, 452). Reaktion mit Natriumhydro-ulfid-Lösung bei Gegenwart von Schwefelkohlenstoff: Tepperma Serbert Am. Soc. 49 sulfid-Lösung bei Gegenwart von Schwefelkohlenstoff: Teppema, Sebrell, Am. Soc. 49, 1758. Liefert beim Erhitzen mit Natriummethylat Lösung auf dem Wasserbad 2.5-Dichlor-4-nitro-anisol (Ho., VAN HAE.). Geschwindigkeit dieser Reaktion bei 25° und 35°: Ho., VAN HAE. Beim Erhitzen mit Piperidin entsteht 4.5-Dichlor-2-nitro-1-piperidino-benzol (LE Fèvre, Turner, Soc. 1927, 1117).

2.4.6-Trichlor-1-nitro-benzol C<sub>6</sub>H<sub>2</sub>O<sub>2</sub>NCl<sub>3</sub>, s. nebenstehende Formel (H 247). Triklin (Reis, Zimmermann, Ph. Ch. 102, 329). Härte der Krystalle: R., Z. F: 69° (HOLLEMAN, VAN HAEFTEN, R. 40, 74). — Bleibt beim Erhitzen mit alkoh. Ammoniak im geschlossenen Gefäß auf 1200 fast unverändert (Ho., VAN HAE.). Liefert beim Kochen mit Natriummethylat-Lösung 3.5-Dichlor-2-nitro-anisol (Ho., VAN HAE.). Geschwindigkeit dieser Reaktion bei 25° und 35°: Ho., VAN HAE.

 $NO_2$ ·Cl

3.4.5 - Trichlor - 1 - nitro - benzol C<sub>6</sub>H<sub>2</sub>O<sub>2</sub>NCl<sub>3</sub>, s. nebenstehende Formel (H 247; E I 131). B. Beim Behandeln von in Eisessig + konz. Schwefelsäure mit Methylnitrit diazotiertem 2.6-Dichlor-4-nitro-anilin mit Kupfer(I)-chlorid in konz. Salzsäure (Dyson, George, Hunter, Soc. 1926, 3044). — F: 70—71° Cl (Holleman, van Haeften, R. 40, 69). — Liefert beim Erhitzen mit 10 Tln. Salpeterschwefelsäure auf dem Wasserbad 3.4.5-Trichlor-1.2-dinitro-benzol (Hüffer, R. 40, 451). Beim Erhitzen mit Natriummethylat-Lösung auf dem Wasserbad entsteht 2.6-Dichlor-4-nitro-anisol (Ho., R. 39, 458; Ho., van Hae., R. 40, 75). Geschwindigkeit dieser Reaktion bei 25° und 35°: Ho., van Hae., R. 40, 81.

$$\begin{array}{c}
NO_2 \\
Cl \cdot \bigcap_{Cl} \cdot Cl
\end{array}$$

2.3.4.5 - Tetrachlor-1-nitro-benzol C<sub>6</sub>HO<sub>2</sub>NCl<sub>4</sub>, s. nebenstehende Formel (H 247). B. Beim Diazotieren von 4.5.6-Trichlor-2-nitro-anilin (HÜFFER, R. 40, 461) oder von 2.3.6-Trichlor-4-nitro-anilin (HÜ.; BERCKMANS, HOLLEMAN, R. 44, 857) und Zersetzen der Diazoniumsalz-Lösungen mit Kupfer(I)-chlorid. — Blättchen oder Nadeln (aus Alkohol). F: 64—65° (Hü.), 66—67° (B., Ho.). --Einw. von 0,1 n-Natriummethylat-Lösung: B., Ho.

 $NO_2$ CI

2.3.4.6 - Tetrachlor-1-nitro-benzol C<sub>6</sub>HO<sub>2</sub>NCl<sub>4</sub>, s. nebenstehende Formel (H 247). B. Bei gelindem Kochen von 1.2.3.5 Tetrachlor-benzol mit Salpetersäure (D: 1,52) (Berckmans, Holleman, R. 44, 852). Beim Diazotieren von 3.4.5 Trichlor-2-nitro-anilin (B., Ho.) oder von 3.5.6 Trichlor-2-nitro-anilin (HÜFFER, R. 40, 465) oder von 2.4.6 Trichlor-3-nitro-anilin (B., Ho.) in schwefelsaurer Lösung und Zersetzen der Diazoniumsulfat-Lösungen mit salzsaurer

NO<sub>2</sub>

Kupfer(I)-chlorid-Lösung. — Nadeln (aus Alkohol). F: 41—42°, 42° (B., Ho.). Sehr leicht löslich in Äther, Petroläther, Ligroin und heißem Alkohol (B., Ho.). — Liefert beim Erhitzen mit ca. 0,2 n-Natriummethylat-Lösung auf dem Wasserbad ein Gemisch von Chlornitroanisolen (B., Ho.).

2.3.5.6-Tetrachlor-1-nitro-benzol C'<sub>6</sub>HO<sub>2</sub>NCl<sub>4</sub>, s. nebenstehende Formel (H 247). B. Zur Bildung durch Nitrierung von 1.2.4.5-Tetrachlor-benzol vgl. Cl.  $NO_2$ HOLLEMANN, R. 39, 745; BERCKMANS, Ho., R. 44, 851; Dyson, George, Cl. HUNTER, Soc. 1926, 3044. Neben wenig 3.4.6-Trichlor-1.2-dinitro-benzol beim Diazotieren von 2.5-Dichlor-3.4-dinitro-anilin und Zersetzen der Diazoniumsalz-Lösung mit salzsaurer Kupfer(I)-chlorid-Lösung (HÜFFER, R. 40, 454). — Nadeln (aus Alkohol oder Wasser). F: 98° (HÜ.), 99° (D., G., H.), 99—100° (B., Ho.). — Wird bei längerer Einw. von Eisenpulver und Salzsäure bei 70° zu 2.3.5.6-Tetrachlor-anilin reduziert (Ho.). Liefert beim Erhitzen mit 0,1 n-Natriummethylat-Lösung auf dem Wasserbad 2.3.5.6-Tetrachloranisol (B., Ho.).

Pentachlornitrobenzol  $C_6O_2NCl_5=C_6Cl_5\cdot NO_2$  (H 247). F: 146° (Berchmans, Holleman, R. 44, 857). Schwer löslich in konz. Salpetersäure. — Liefert beim Kochen mit 0,1 n-Natriummethylat-Lösung Pentachloranisol und andere nicht näher beschriebene Verbindungen.

- 2-Brom-1-nitro-benzol C<sub>4</sub>H<sub>4</sub>O<sub>8</sub>NBr = C<sub>5</sub>H<sub>4</sub>Br·NO<sub>2</sub> (H 247; E I 131). B. Neben überwiegenden Mengen 4-Brom-1-nitro-benzol beim Einwirken von Distickstofftetroxyd auf Brombenzol bei 0° bis 10° in Gegenwart von 0,6 Mol Aluminiumchlorid und nachfolgender Zersetzung mit Wasser (Schaarschmidt), B. 57, 2071; Sch., Balzerkiewicz, Gante, B. 58, 501). Aus 2-Nitro-benzoldiazoniumacetat-Lösung und Kupfer(I)-bromid in bromwasserstoff-saurer Lösung bei 0—5° oder 100—105° (Fey, Grote, Am. Soc. 48, 711). Durch Einw. von nitrosen Gasen (aus Arsentrioxyd und Salpetersäure) auf 3-Brom-4-nitro-anilin in Alkohol (Lukeš, Fragner, Chem. Listy 22, 324; C. 1929 I, 1684). Bei kurzem Erwärmen von [2-Brom-phenyl]-quecksilberacetat mit 68% iger Salpetersäure auf 65° (Hanke, Am. Soc. 45, 1329). Darst. Zur Darstellung nach Ullmann (B. 29, 1886; H 247) aus 2-Nitro-anilin vgl. Gibson, Johnson, Soc. 1927, 2507. F: 43° (H.), 43—44° (G., I.), 44—45° (L., F.). Disticution (Johnson, Soc. 1927, 2507. F: 43° (H.), 43—44° (G., I.), 44—45° (L., F.). Disticution (Johnson, Soc. 1927, 2507. E: 43° (H.), 43—44° (G., I.), 44—45° (L., F.). Disticution (Johnson, Johnson, Soc. 1929, 2118. Fluorescenz bei Bestrahlung mit Röntgenstrahlen: Newcomer, Am. Soc. 42, 2002. Bildet mit 2-Chlor-1-nitro-benzol eine ununterbrochene Reihe von Mischkrystallen (Johnston, Jonns, J. phys. Chem. 32, 602). Liefert bei der Einw. von Hydrazin in Gegenwart von palladiniertem Calciumcarbonat in siedender alkoholischer Kalilauge 2-Brom-anilin, in siedender methylalkoholischer Kalilauge Anilin neben wenig, vermutlich unreinem 2.2'-Dibrom-azobenzol (Busch, Schulz, B. 62, 1464). Gibt mit 50 %iger Hydrazinhydrat-Lösung in Alkohol beim Kochen 1-Oxy-benztriazol, beim Erhitzen im Rohr auf 160° Benztriazol (Brady, Reynolds, Schulz, B. 62, 1464). Gibt mit 50 %iger Hydrazinhydrat-Lösung in Alkohol und 90,7 %igem Alkohol bei 50°: Rheinländer Temperatur (Zechmeister, Rom. B. 59, 872) oder bei der Einw. von Magnesium in siedendem Methanol (Z., R., A. 468, 130) entsteht 2.2'-Dibr
- 3-Brom-1-nitro-benzol C<sub>5</sub>H<sub>4</sub>O<sub>2</sub>NBr = C<sub>5</sub>H<sub>4</sub>Br·NO<sub>2</sub> (H 248; E I 131). B. Aus 3-Nitro-benzoldiazoniumacetat-Lösung und Kupfer(I)-bromid in bromwasserstoffsaurer Lösung bei 0—5° oder 100—105° (Fry, Grote, Am. Soc. 48, 711). Neben 3.5-Dibrom-1-nitro-benzol beim Eintragen von 2.6-Dibrom-4-nitro-anilin in mit salpetriger Säure fast gesättigten Alkohol und Erwärmen der Lösung nach Zufügen von etwas Äthylnitrit (R. Meyer, W. Meyer, Taeger, B. 53, 2041; vgl. Körner, J. 1875, 307). Aus Bis-[3-nitro-phenyl]-bleidinitrat und Brom oder aus Tris-[3-nitro-phenyl]-wismut-dinitrat mit überschüssigem Bromwasser im Rohr bei 100° (Vorländer, B. 58, 1895, 1900). Beim Schütteln von [3-Nitro-phenyl]-quecksilberchlorid mit der berechneten Menge Brom (Kharasch, Chalkley, Am. Soc. 43, 612). F: 53,6° (Puschin, Ph. Ch. 119, 400), 55,5° (korr.) (Sugden, Wilkins, Soc. 127, 2521). Erstarrungstemperatur unter hohen Drucken bis zu 2050 kg/cm²: P. D<sup>18,1</sup>: 1,651; D<sup>18,2</sup>: 1,636; D<sup>18</sup>: 1,621; D<sup>18</sup>: 1,612 (S., W.). Oberflächenspannung zwischen 63° (42,45 dyn/cm) und 91° (38,94 dyn/cm): S., W. Abhängigkeit der Krystallisationsgeschwindigkeit von der Unterkühlung: Tammann, Laass, Z. anorg. Ch. 172, 68. Krystallisation gleichmäßig gefärbter 3-Brom-1-nitro-benzol-Krystalle aus der mit Farbstoffen versetzten unterkühlten Schmelze: T., L. Thermische Analyse des binären Systems mit 3-Chlor-1-nitro-benzol: P. Zustandsdiagramm des binären Systems mit 3-Chlor-1-nitro-benzol: P. Zustandsdiagramm des binären Systems mit 3-Chlor-1-nitro-benzol unter Drucken bis zu 2550 kg/cm²: P. Wird durch Hydrazin in Gegenwart von palladiniertem Calciumcarbonat in siedender alkoholischer Kalilauge zu 3.3'-Dibrom-azobenzol und Anilin reduziert (Busch,

Schulz, B. 62, 1464). Beim Erhitzen von Magnesium in wäßrig-methylalkoholischer Ammoniumchlorid-Lösung (Zechmeister, Rom, B. 59, 872) oder beim Behandeln mit überschüssigem Magnesium in Methanol anfangs unter Kühlung, dann unter Erhitzen (Z., R., A. 468, 131) entsteht 3.3'-Dibrom-azoxybenzol.

4-Brom-1-nitro-benzol  $C_6H_4O_2NBr=C_8H_4Br\cdot NO_2$  (H 248; E I 132). B. Neben wenig 2-Brom-1-nitro-benzol bei Einw. von Distickstofftetroxyd in Brombenzol auf überschüssiges Brombenzol bei  $0^0$  bis  $10^0$  in Gegenwart von 0,6 Mol Aluminiumchlorid und nachfolgender Zersetzung mit Wasser (Schaarschmidt, B. 57, 2071; Sch., Balzerkiewicz, Gante, B. 58, 501). Aus Brombenzol bei der Einw. von Distickstoffpentoxyd in Tetrachlorschlenstoff bei  $0^0$  (Haines, Adkins, Am. Soc. 47, 1419) oder bei der Einw. eines Gemisches aus Nitrosylschwefelsäure + rauchender Salpetersäure (D: 1,502) (Varma, Kulkarni, Am. Soc. 47, 145). Als Nebenprodukt bei der Behandlung von Nitrosobenzol mit Brom in Schwefelkohlenstoff bei  $-5^0$  (Ingold, Soc. 127, 516).

H 248, Z. 8 v. u. statt "Sodalösung" lies "Soda".

Durch Eintragen von 4-Brom-benzoldiazoniumsulfat-Lösung in eine wäßr. Natriumnitrit-Lösung bei Gegenwart von molekularem Kupfer oder von Kupferbronze (Naturkupfer C) (Vesel', Dvořák, Bl. [4] 31, 422). Bei der Einw. von Peressigsäure auf 4-Brom-acetanilid (Bigiavi, R. A. L. [6] 5, 587). Aus 4-Nitro-benzoldiazoniumaetat-Lösung und Kupfer (I)-bromid in bromwasserstoffsaurer Lösung bei 0—5° oder 100—105° (Fry, Grote, Am. Soc. 48, 711). Beim Erhitzen von Tetrakis-[4-nitro-phenyl]-silan oder Tetrakis-[4-nitro-phenyl]-stannan mit Bromwasser und Brom im Rohr auf 100° (Vorländer, B. 58, 1900). Aus [4-Nitro-phenyl]-quecksilberchlorid beim Schütteln mit Bromwasser (Kharasch, Chalkley, Am. Soc. 43, 612). Bei kurzem Erwärmen von [4-Brom-phenyl]-quecksilberacetat mit 68 %iger Salvetersäure auf 65° (Hanke, Am. Soc. 45, 1329).

Am. Soc. 43, 612). Bei kurzem Erwarmen von [4-Brom-pnenyl]-quecksilberacetat mit 68 %iger Salpetersäure auf 65° (Hanke, Am. Soc. 45, 1329).

F: 125° (Hanke, Am. Soc. 45, 1329; Ingold, Soc. 127, 517), 127° (korr.) (Sugden, Wilkins, Soc. 127, 2521). Dampfdruck bei 10°, 20° und 30°: Swan, Mack, Am. Soc. 47, 2115. D2°: 1,938 (Ziegler, Ditzel, A. 473, 200); D1°: 1,563; D1°: 1,552; D1°: 1,536; D1°: 1,523 (S., W.). Oberflächenspannung zwischen 132° (34,58 dyn/cm) und 170° (30,63 dyn/cm): S., W. Dipolmoment \(\mu \times 10^{18} : 2,69\) (verd. Lösung; Benzol) (Höjendahl, Nature 117, 892; C. 1926 II, 1144), 2,53 (verd. Lösung; Benzol) (Hö., Phys. Z. 30, 394; C. 1929 II, 1898).

— Bildet mit 4-Chlor-1-nitro-benzol eine ununterbrochene Reihe vom Mischkrystallen (Johnston, Jones, J. phys. Chem. 32, 602). Thermische Analyse des binären Systems mit Cinnamylidenacetophenon (Eutektikum bei 74° und ca. 40 Mol. % 4-Brom-1-nitro-benzol): Giua, G. 55, 573, 575. — Wird durch Hydrazin in Gegenwart von palladiniertem Calciumcarbonat in siedender alkoholischer Kalilauge zu 4.4'-Dibrom-azoxybenzol und wenig 4-Brom-anilin, in siedender methylalkoholischer Kalilauge zu 4.4'-Dibrom-azoxybenzol und Anilin reduziert (Busch, Schulz, B. 62, 1464). Liefert beim Erhitzen mit Magnesium in wäßrig-methylalkoholischer Ammoniumchlorid-Lösung (Zechmeister, Rom, B. 59, 872) oder bei gelindem Kochen mit Magnesium in Methanol (Z., R., A. 468, 131) 4.4'-Dibrom-azoxybenzol. Diese Verbindung entsteht auch beim Erwärmen mit wäßrig-propylalkoholischer oder allylalkoholischer Kalilauge (Raiford, Colbert, Am. Soc. 48, 2654). Bei der Reduktion mit Natriumbutylat und -sek.-butylat bei Zusatz von Benzol entstehen 4.4'-Dibrom-azoxybenzol und 4-Brom-anilin (Suter, Dains, Am. Soc. 50, 2735). Liefert mit Kaliumpentasulfid in Ather nach Extraktion des erhaltenen Niederschlags mit Alkohol die additionelle Verbindung von 4.4'-Dinitro-diphenyldisulfid mit 2 Mol Kaliumäthylat (Thomas, Riding, Soc. 125, 2217). Verhalten beim Erwärmen mit wäßrig-methyl- und äthylalkoholisch

5-Fluor-2-brom-1-nitro-benzol C<sub>6</sub>H<sub>3</sub>O<sub>2</sub>NBrF, s. nebenstehende Formel.

B. Neben 6-Fluor-3-brom-1-nitro-benzol beim Behandeln von 4-Fluor-1-brombenzol mit Salpetersäure (D: 1,52) in der Kälte (van Hove, Bl. Acad. Belg. [5]

12, 804, 815; C. 1927 I,884). Aus 4-Fluor-2-nitro-anilin durch Diazotieren in bromwasserstoffsaurer Lösung und Behandeln der Diazoniumsalz-Lösung mit fein verteiltem Kupfer und 70 % iger Bromwasserstoffsäure (van H.).

E: 40,3°. Kp<sub>30</sub>: 140°. Sehr leicht löslich in heißer 80 % iger Essigsäure, löslich in den meisten organischen Lösungsmitteln. Thermische Analyse des Systems mit 6-Fluor-3-brom-1-nitrobenzol: van H.

Wird durch wäßr. Natronlauge langsam, durch Natriummethylat etwas

rascher unter Austausch des Broms angegriffen; wäßriges und alkoholisches Ammoniak wirken nicht ein.

6-Fluor-3-brom-1-nitro-benzol C<sub>6</sub>H<sub>3</sub>O<sub>2</sub>NBrF, s. nebenstehende Formel. NO<sub>2</sub> B. Neben 5-Fluor-2-brom-1-nitro-benzol beim Behandeln von 4-Fluor-1-brombenzol mit Salpetersäure (D: 1,52) in der Kälte (VAN HOVE, Bl. Acad. Belg. [5] 12, 804, 815; C. 1927 I, 884). Aus 4-Fluor-3-nitro-anilin durch Diazotieren in bromwasserstoffsaurer Lösung und Behandeln der Diazoniumsalz-Lösung mit fein verteiltem Kupfer und 70% iger Bromwasserstoffsäure (van H.). — Gelbliche Nadeln. F: 19°. Kp<sub>35</sub>: 145—147°. Thermische Analyse des Systems mit 5-Fluor-2-brom-1-nitro-benzol (Eutektikum mit ca. 60% 5-Fluor-2-brom-1-nitro-benzol; F: ca. —2°): van H. — Gibt bei Einw. von verd. Natronlauge oder Sodalösung 4-Brom-2-nitro-pend, bei Einw. von Natrummethylat-Lösung 4-Brom-2-nitro-anisol, bei Einw. von wäßr. Ammoniak 4-Brom-2-nitro-anilin.

4-Chlor-2-brom-1-nitro-benzol C<sub>6</sub>H<sub>3</sub>O<sub>2</sub>NClBr, Formel I (H 249). E: 48,4° (MAYES, TURNER, Soc. 1928, 693). Thermische Analyse des binären Systems mit 2-Chlor-4-brom-1-nitro benzol: M., T.  $NO_2$  $NO_2$ 

2-Chlor-4-brom-1-nitro-benzol C<sub>6</sub>H<sub>3</sub>O<sub>2</sub>NClBr, Formel II (H 249). F: 44,5° (MAYES, TURNER, Soc. 1928, 693). E: 43,4°. I. Thermische Analyse des binären Systems mit 4-Chlor-2-brom-Вr 1-nitro-benzol: M., T.

4.5-Dichlor-2-brom-1-nitro-benzol (?) C<sub>6</sub>H<sub>2</sub>O<sub>2</sub>NCl<sub>2</sub>Br, s. nebenstehende Formel. B. Beim Behandeln von in salzsaurer Lösung diazotiertem 5-Brom-2.4-dinitro-anilin mit Kupfer(I)- alorid oder Kupfer(II)-sulfat (Hodgson, J. Soc. Dyers Col. 42, 367; C. 1927 I, 1431). — Krystalle (aus Alkohol). F: 70°.

2.3-Dibrom-1-nitro-benzol C<sub>6</sub>H<sub>3</sub>O<sub>2</sub>NBr<sub>2</sub>, Formel I (H 249).

H 250, Z. 4 v. o. statt "Kupferchlorürlösung" lies "Kupferbromürlösung".

2.4-Dibrom-1-nitro-benzol C<sub>5</sub>H<sub>3</sub>O<sub>2</sub>NBr<sub>2</sub>, Formel II (H 250).

B. Aus 3-Brom-4-nitro-anilin durch Diazotieren, Behandeln mit Kupfer(I)-bromid und Wasserdampf-Destillation (LUKEŠ, FRAGNER, NO2 II. Che.n. Listy 22, 324; C. 1929 I, 1684). — Krystalle (aus Alkohol). Вr F: 61°.

2.5-Dibrom-1-nitro-benzol C<sub>6</sub>H<sub>3</sub>O<sub>2</sub>NBr<sub>2</sub>, s. nebenstehende Formel (H 250).

F: 84° (Boov, Dienske, R. 45, 449). — Liefert beim Behandeln mit Magnesium in Methanol 2.5.2′.5′-Tetrabrom-azoxybenzol und andere Produkte (Zechmeister, Rom, A. 468, 132). Bei der Reduktion in alkal. Lösung entstehen geringe Mengen 2.5.2′.5′-Tetrabrom-azoxybenzol und 2.5.2′.5′-Tetrabrom-azoxybenzol (Raisense Mengen 2.5.2′.5′-Tetrabrom-azoxybenzol und 2.5.2′.5′-Tetrabrom-azoxybenzol (Raisense Mengen 2.5.2′.5′-Tetrabrom-azoxybenzol und 2.5.2′-Tetrabrom-azoxybenzol und 2.5.2′-Tetrabrom-azoxy FORD, BREN, Am. Soc. 51, 2539). Liefert beim Erhitzen mit wäßrig-alkoholischer Hydrazinhydrat-Lösung auf 100° im Rohr 1-Oxy-6-brom-benztriazol (B., D.). Reagiert mit Natrium-disulfid unter Bildung von 4.4'-Dibrom-2.2'-dinitro-diphenyldisulfid (Elgersma, R. 48, 764). Liefert beim Erhitzen mit wäßrig-methylalkoholischer Kalilauge 4-Brom-2-nitroanisol (Rafford, Colbert, Am. Soc. 48, 2654; R., Bren, Am. Soc. 51, 2540), mit wäßrigäthylalkoholischer Kalilauge 4-Brom-2-nitro-phenetol (R., C.). Beim Kochen mit Piperidin entsteht 4-Brom-2-nitro-1-piperidino-benzol (Le Fèvre, Turner, Soc. 1927, 1117). Geschwindigkeit der Reaktion mit Piperidin in Benzol bei 15° und in siedendem Benzol: Brewin, Turner, Soc. 1928, 332.

3.5-Dibrom-1-nitro-benzol  $C_6H_3O_2NBr_2$ , s. nebenstehende Formel (H 250). B. Entsteht neben viel 3.5-Dibrom-benzaldehyd beim allmählichen Eintragen  $NO_2$ eines Gemisches aus 3.5-Dibrom-4-amino-benzaldehyd und Kaliumpyrosulfit unter Eiskühlung in Salpetersäure (D: 1,48) und Erwarmen der erhaltenen, mit Eiswasser verd. Diazoniumsalz-Lösung mit Alkohol in Gegenwart von Kupfersulfat auf dem Wasserbad; entsteht analog aus 3.5-Dibrom-4-amino-acetophenon, 3.5-Dibrom-2-amino-benzoesäure, 3.5-Dibrom-4-amino-benzoesäure und 2.6-Dibrom-4-nitro-phenylnitramin (Elion, R. 42, 149, 154, 158, 163, 165). — Nadeln (aus Alkohol). F: 106° (R. Meyer, W. Meyer, Tabeer, B. 53, 2042). Unlöslich in Kalilauge (E.). — Liefert beim Kochen mit alkoholischwäßriger Natrophene 3.5 3'5' Totaphene ersetten alkoholischwäßriger Natrophene 3.5 3'5' Totaphene ersetten alkoholischwäßriger Natrophene wäßriger Natronlauge 3.5.3'.5'-Tetrabrom-azoxybenzol, beim Kochen mit Zinkstaub in alkoholisch-wäßriger Natronlauge 3.5.3'.5'-Tetrabrom-azobenzol (M., M., T.).

2.4.6-Tribrom-1-nitro-benzol C<sub>6</sub>H<sub>2</sub>O<sub>2</sub>NBr<sub>3</sub>, s. nebenstehende Formel (H 251).

H 251, Z. 22 v. u. statt ,,2.4.6-Tribrom-benzoldiazoniumacetat" lies "2.4.6-Tribrom-benzoldiazoniumsulfat".

NO<sub>2</sub>

2-Jod-1-nitro-benzol  $C_eH_4O_9NI=C_eH_4I\cdot NO_9$  (H 252; E I 133). B. Neben überwiegenden Mengen 4-Jod-1-nitro-benzol bei längerer Einw. von Distickstofftetroxyd auf

Jodbenzol in Tetrachlorkohlenstoff bei Zimmertemperatur oder besser in Gegenwart von Aluminiumchlorid bei 0° bis 5° (SCHAARSCHMIDT, BALZERRIEWICZ, GANTE, B. 58, 501). — Bei der Reduktion mit Eisen- und Essigsäure auf dem Wasserbade entsteht 2-Jod-anilin (Hodgson, Moore, Soc. 127, 2263). Liefert mit Zinn und Salzsäure ein Gemisch von 2-Jodmit 2 Chlor-anilin (H., M.). Beim Eintragen der alkoh. Lösung in Zinn(II)-chlorid + Salzsäure bei 86,5° erfolgt teilweise Abspaltung von Jod (Burton, Kenner, Soc. 121, 677, 681). Liefert beim Kochen mit Natriumpropylat in Propylalkohol + Benzol 2-Jod-anilin, geringe Mengen einer Aminosäure vom Schmelzpunkt 157° und teerige Produktion (Suter, Dains, Am. Soc. 50, 2738). Geschwindigkeit der Reaktion mit Piperidin in Benzol bei 15° und in siedendem Benzol: Brewin, Turner, Soc. 1928, 332.

3-Jod-1-nitro-benzol  $C_6H_4O_2NI=C_6H_4I\cdot NO_2$  (H 253; E I 133). B. Neben 3-Nitro-phenol aus Bis-[3-nitro-phenyl]-jodoniumnitrat und siedender 10% iger Kalilauge (VORLÄNDER, B. 58, 1899). Zur Bildung aus 3-Nitro-anilin nach Jacobson, Fertsch, Heubach (A. 303, 338; H 253) vgl. Dennett, Turner, Soc. 1926, 480. — F: 38° (D., T.). Kp<sub>15</sub>: 145° bis 155° (D., T.). Krystallisationsgeschwindigkeit unter hohem Druck: Hasselblatt, Z. anorg. Ch. 119, 347, 349. — Beim Eintragen der alkoh. Lösung in Zinn(II)-chlorid + Salzsäure bei 86,5° erfolgt keine Abspaltung von Jod (Burton, Kenner, Soc. 121, 677).

Bis - [3-nitro-phenyl]-jodoniumhydroxyd, 3.3'-Dinitro-diphenyljodoniumhydroxyd C<sub>12</sub>H<sub>2</sub>O<sub>5</sub>N<sub>2</sub>I = (O<sub>2</sub>N·C<sub>6</sub>H<sub>4</sub>)<sub>2</sub>I·OH (H 253). B. Das Nitrat entsteht aus Diphenyljodoniumnitrat und Salpeterschwefelsäure unter Kühlung mit Wasser (VORLÄNDER, B. 58, 1898). — C<sub>12</sub>H<sub>8</sub>O<sub>4</sub>N<sub>2</sub>I·Cl. Nadeln. F: 209°. Ziemlich schwer löslich in Wasser. — C<sub>12</sub>H<sub>8</sub>O<sub>4</sub>N<sub>2</sub>I·I. Gelbliches, krystallinisches Pulver. Schmilzt bei 142—144° unter Zersetzung in 3-Jod-1-nitro-benzol. Färbt sich im Licht dunkler gelb und zersetzt sich dann bei ca. 130°. — C<sub>12</sub>H<sub>8</sub>O<sub>4</sub>N<sub>2</sub>I·ClO<sub>4</sub>. Krystalle. F: ca. 188°. Explodiert beim Erhitzen über der Flamme. — C<sub>12</sub>H<sub>8</sub>O<sub>4</sub>N<sub>2</sub>I·NO<sub>3</sub>. Liefert mit siedender 10%iger Kalilauge 3-Jod-1-nitro-benzol und 3-Nitro-phenol. — Pikrat C<sub>12</sub>H<sub>8</sub>O<sub>4</sub>N<sub>2</sub>I·O·C<sub>6</sub>H<sub>2</sub>O<sub>5</sub>N<sub>3</sub>. F: ca. 194°.

4-Jod-1-nitro-benzol C<sub>e</sub>H<sub>4</sub>O<sub>2</sub>NI = C<sub>e</sub>H<sub>4</sub>I·NO<sub>2</sub> (H 253; E I 133). B. Neben wenig 2-Jod-1-nitro-benzol bei längerer Einw. von Distickstofftetroxyd auf Jodbenzol in Tetrachlorkohlenstoff bei Zimmertemperatur oder besser in Gegenwart von Aluminiumchlorid bei 0° bis 5° (SCHAARSCHMIDT, BALZERKIEWICZ, GANTE, B. 58, 501). Bei der Einw. eines Gemisches aus Nitrosylschwefelsäure + rauchender Salpetersäure (D: 1,502) auf Jodbenzol (VARMA, KULKARNI, Am. Soc. 47, 145). Durch Behandeln von 4-Jodoso-1-nitro-benzol mit Silberoxyd in Wasser (VORLÄNDER, BÜCHNER, B. 58, 1291) oder von 4-Jodo-1-nitro-benzol mit wäßr. Kalilauge, neben Nitrobenzol (V., B.). Durch Einw. von Salpetersäure (D: 1,48) auf [4-Jod-phenyl]-cyclohexan bei 0° (MAYES, TURNER, Soc. 1929, 507). — F: 172° (M., T.). — Liefert bei der Hydrierung in 5%iger methylalkoholischer Kalilauge in Gegenwart von palladiniertem Calciumcarbonat Benzidin und Anilin (Busch, Schmidt, B. 62, 2618). Bei der Reduktion mit Natriumbutylat bei Zusatz von Benzol entstehen 4.4′-Dijod-azoxybenzol und 4-Jod-anilin (Suter, Dains, Am. Soc. 50, 2735). Geschwindigkeit der Reaktion mit Piperidin in Benzol bei 15° und in siedendem Benzol: Brewin, Turner, Soc. 1928, 332.

**4-Jodoso-1-nitro-benzol**  $C_6H_4O_3NI = OI \cdot C_6H_4 \cdot NO_2$  (H 254). Das salzsaure Salz (4-Nitro-phenyljodidchlorid) liefert bei längerem Schütteln mit überschüssiger Natriumhypochlorit- oder Chlorkalk-Lösung unter Zusatz einiger Tropfen Eisessig 4-Jodo-1-nitro-benzol (VORLÄNDER, BÜCHNER, B. 58, 1291). Liefert beim Behandeln mit Silberoxyd in Wasser 4-Jod-1-nitro-benzol.

4-Jodo-1-nitro-benzol  $C_4H_4O_4NI=O_2I\cdot C_4H_4\cdot NO_3$  (H 254). B. Durch längeres Schütteln von 4-Nitro-phenyljodidehlorid mit überschüssiger Natriumhypochlorit- oder Chlorkalk-Lösung unter Zusatz einiger Tropfen Eisessig (Vorländer, Büchner, B. 58, 1291). — Liefert beim Behandeln mit wäßr. Kalilauge Nitrobenzol und 4-Jod-1-nitro-benzol (V., B.). Bei längerem Schütteln mit Silberoxyd in Wasser bei Zimmertemperatur entsteht Nitrobenzol (V., B.). Beim Kochen mit Natriumnitrit-Lösung entsteht hauptsächlich 1.4-Dinitro-benzol, neben 2.6-Dijod-4-nitro-phenol (V., R. 48, 914). Liefert mit siedender Natriumazid-Lösung 4-Nitro-1-azido-benzol (V.).

5-Fluor-2-jod-1-nitro-benzol  $C_6H_3O_2NIF$ , s. nebenstehende Formel. B. Aus 4-Fluor-2-nitro-anilin durch Diazotieren in schwefelsaurer Lösung und Umsetzen der Diazoniumsalz-Lösung mit kalter Kaliumjodid-Lösung (Van Hove, Bl. Acad. Belg. [5] 12, 827; Bl. Soc. chim. Belg. 36, 375; C. 1927 I, 885). — Gelbliche Krystalle F (aus Alkohol in der Kälte). F: 22,5°. Kp<sub>35</sub>: 162—163°.

6-Fluor-3-jod-1-nitro-benzol C<sub>0</sub>H<sub>3</sub>O<sub>2</sub>NIF, s. nebenstehende Formel. B. Neben anderen Produkten bei der Einw. von Salpeterschwefelsäure auf 4-Fluor-1-jod-benzol bei —10° (VAN HOVE, Bl. Acad. Belg. [5] 12, 824, 829; Bl. Soc. chim. Belg. 36, 375, 376; C. 1927 I, 885). Neben 4-Jod-2-mitro-phenol beim Diazotieren



NO2

NO<sub>2</sub>

von 4-Fluor-3-nitro-anilin in schwefelsaurer Lösung und Umsetzen der Diazoniumsalz-Lösung mit Kaliumjodid-Lösung (van H.). — Gelbe Nadeln (aus Alkohol). F: 35,5°. Kp<sub>45</sub>: 174—176°. — Gibt mit Natriummethylat-Lösung 4-Jod-2-nitro-anisol. Liefert mit alkoh. Ammoniak 4-Jod-2-nitro-anilin.

4-Chlor-2-jod-1-nitro-benzol  $C_6H_3O_2$ NCII, Formel I (H 254). F: 61,5° (MAYES, TURNER, Soc. 1928, 693). E: 60,3°. Thermische Analyse des binären Systems mit 2-Chlor-4-jod-1-nitro-benzol: M., T.

- 5-Chlor-3-jod-1-nitro-benzol C<sub>6</sub>H<sub>3</sub>O<sub>2</sub>NClI, Formel II (E I 133). B. Beim Diazotieren von 4-Chlor-6-jod-2-nitro-anilin mit Amylnitrit in Alkohol Bradfield, Orton, Roberts, Soc. 11.
- 6-Chlor-3-jod-1-nitro-benzol C<sub>6</sub>H<sub>3</sub>O<sub>2</sub>NCII, s. nebenstehende Formel. B. No<sub>2</sub> Neben anderen Verbindungen bei der allmählichen Einw. von Kaliumnitrat auf Cl 4-Chlor-1-jod-benzol in konz. Schwefelsäure (van Hove, Bl. Acad. Belgique [5] 12, 831, 832; Bl. Soc. chim. Belg. 36, 379; C. 1927 I, 885; II, 1146). Krystalle (aus Alkohol). F: 70—71°.
- 2-Chlor-4-jod-1-nitro-benzol C<sub>6</sub>H<sub>3</sub>O<sub>2</sub>NCII, s. nebenstehende Formel. B. Aus 3-Chlor-4-nitro-anilin nach Sandmeyer (Mayes, Turner, Soc. 1928, 693). F: 63°. E: 61,8°. Thermische Analyse des binären Systems mit 4-Chlor-2-jod-1-nitro-benzol: M., T.
- 4-Brom-2-jod-1-nitro-benzol C<sub>6</sub>H<sub>3</sub>O<sub>2</sub>NBrI, Formel I (H 254). E: 81,1° (MAYES, TURNER, Soc. 1928, 693). Thermische Analyse des binären Systems mit 2-Brom-4-jod-1-nitro-benzol: M., T.

  NO2

  NO2
- 5-Brom-3-jod-1-nitro-benzol C<sub>6</sub>H<sub>3</sub>O<sub>2</sub>NBrI, Formel II
  (E I 134). B. Beim Diazotieren von 4-Brom-6-jod-2-nitro-anilin
  mit Amylnitrit in Alkohol (BRADFIELD, ORTON, ROBERTS, Soc.
  1928, 784). F: 97°.

  II.
  Br. 11.
  Br. 11.
- 2-Brom-4-jod-1-nitro-benzol C<sub>6</sub>H<sub>3</sub>O<sub>2</sub>NBrI, s. nebenstehende Formel (H254).
  Die Verbindung von Körner (G. 4, 384; J. 1875, 329; H 254) ist 6-Brom-4-jod-1.3-dinitro-benzol (Mayes, Turner, Soc. 1928, 693).

  B. Aus 3-Brom-4-nitro-anilin nach Sandmeyer (M., T.).

  F: 76—76,5°. E: 74,4°. Thermische Analyse des binären Systems mit 4-Brom-2-jod-1-nitro-benzol: M., T.
- 3.5-Dibrom-4-jod-1-nitro-benzol C<sub>6</sub>H<sub>2</sub>O<sub>2</sub>NBr<sub>2</sub>I, s. nebenstehende Formel (E I 134). F: 152° (unkorr.) (Schuegraf, Helv. 12, 408; vgl. dagegen Körner, Contardi, R. A. L. [5] 22 I, 830; E I 134), 153,5° (Schoutissen, Am. So. 55 [1933], 4532). Liefert mit Hydrochinonmonomethyläther und wasserfreiem Kaliumcarbonat in Methyläthylketon auf dem Wasserbad 2'.6'-Dibrom-4'-nitro-4-methoxy-diphenyläther.
- 4-Chlor-1.3-dijod-x-nitro-benzol C<sub>6</sub>H<sub>2</sub>O<sub>2</sub>NClI<sub>2</sub>, s. nebenstehende Formel (H 256). B. Neben anderen Verbindungen bei der allmählichen Einw. von Kaliumnitrat auf 4-Chlor-1-jod-benzol in konz. Schwefelsäure (van Hove, Bl. Acad. Belg. [5] 12, 833; Bl. Soc. ohim. Belg. 36, 379; C. 1927 I, 885). Krystalle (aus Alkohol). F: 92—93°.
- 3.4.5-Trijod-1-nitro-benzol C<sub>6</sub>H<sub>2</sub>O<sub>2</sub>NI<sub>3</sub>, s. nebenstehende Formel (H 256).
  F: 165° (Harington, Barger, Biochem. J. 21, 175; vgl. dagegen Willgerodt, Arnold, B. 34 [1901], 3348), 167° (Repossi, Z. Kr. 55 [1915], 286; Kalb, Mitarb., B. 59, 1862). Die siedende Lösung in Aceton liefert bei allmählichem Zusatz von Zinn(II)-chlorid in heißer konzentrierter Salzsäure 3.4.5-Trijod-anilin (K., Mitarb.; vgl. W., A.). Liefert mit Hydrochinonmonomethyläther und wasserfreiem Kalium-carbonat in siedendem Methyläthylketon 2'.6'-Dijod-4'-nitro-4-methoxy-diphenyläther (H., B.).
- 3-Nitroso-1-nitro-benzol  $C_6H_4O_3N_2=ON\cdot C_6H_4\cdot NO_2$  (H 257). B. Bei der Oxydation von 3-Nitro-anilin mit Peressigsäure in wäßr. Lösung (D'Ans, Kneip, B. 48 [1915], 1145). Liefert mit 2.4-Dinitro-benzylchlorid in alkoh. Kalilauge 2.4-Dinitro-benzaldoxim-N-[3-nitro-phenyläther] (Syst. Nr. 1671) (Barrow, Griffiths, Bloom, Soc. 121, 1716). Wirkung auf Kaninchenblut: Lipschitz, H. 109, 224. Physiologisches Verhalten: H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 96.
- 4-Nitroso-1-nitro-benzol  $C_6H_4O_3N_2=ON\cdot C_6H_4\cdot NO_9$  (H 257). B. Durch Einw. von Stickstoffpentoxyd auf eine Lösung von Nitrosobenzol in Tetrachlorkohlenstoff in Gegenwart von Phosphorpentoxyd unter Kühlung, neben Nitrobenzol (Ingold, Soc. 127, 517). Zur Bildung aus 4-Nitro-anilin durch Oxydation mit Sulfomonopersäure vgl. Bigiavi,

Franceschi, G. 57, 373. Bei der Oxydation von 4-Nitro-anilin mit Peressigsäure (D'Ans, Kneip, B. 48, 1145). — Beim Behandeln mit 1 Mol des Natriumsalzes der Nitrohydroxylaminsäure in verd. Alkohol bei 80° entsteht 4-Nitro-phenylnitrosohydroxylamin, neben 4.4'-Dinitro-azoxybenzol; bei Anwendung von überschüssigem nitrohydroxylaminsaurem Natrium bildet sich außerdem noch 4.4'-Dinitro-azobenzol (B., F.). Liefert mit 4-Nitrobenzylchlorid in Methanol + Alkohol in Gegenwart von Kaliumhydroxyd 4.4'-Dinitrostilben und 4-Nitro-benzaldoxim-N-[4-nitro-phenyläther] (B., G., Bloom, Soc. 121, 1716). [Gottfreed]

1.2-Dinitro-benzol, o-Dinitro-benzol  $C_6H_4O_4N_2=C_6H_4(NO_2)_2$  (H 257; E I 135). Konnte bei der Einw. von Salpeterschwefelsäure auf Wismuttriphenyl (vgl. GILMEISTER, B. 30, 2844) nicht erhalten werden (WILKINSON, CHALLENGER, Soc. 125, 856). — Krystallographische Untersuchung: Bragg, Soc. 121, 2773. F: 116,0—116,5° (WILLIAMS, SCHWINGEL, Am. Soc. 50, 363), 116,93° (Andrews, Lynn, Johnston, Am. Soc. 48, 1286). Molekularwärme zwischen 110,3° absol. (20,6 cal) und 343,7° absol. (51,4 cal): An., Am. Soc. 48, 1294. Molekularwärme festen 1.2-Dinitro-benzols zwischen 250 (46,6 cal) und dem Schmelzpunkt (60,2 cal) und flüssigen 1.2-Dinitro-benzols zwischen dem Schmelzpunkt (65,2 cal) und höheren Temperaturen: An., L., Joh., Am. Soc. 48, 1280, 1286. Schmelzwärme: 5,460 kcal/Mol: A., L., Joн. Verbrennungswärme bei konstantem Volumen: 703,8 kcal/Mol 5,400 Kcal/Mol: A., L., Joh. Veroreinlungswarme bei Rohstahten Volumen: 703,8 Kcal/Mol (Garner, Abernethy. Pr. roy. Soc. [A] 99, 230; C. 1921 III, 866). Dipolmoment  $\mu \times 10^{18}$ : 5,95 (Höjendahl, Nature 117, 892; C. 1926 II, 1114), 6,00 (Hö., Phys. Z. 30 [1929], 394), 6,05 (Williams, Schw., Am. Soc. 50, 367; Williams, Phys. Z. 29 [1928], 178) (sämtliche Messungen an verd. Lösungen in Benzol ausgeführt). Thermische Analyse der binären Gemische mit 1.3-Dinitro-benzol und 1.4-Dinitro-benzol: An., J. phys. Chem. 29, 1042; mit Anthracen: Kremann, R. Müller, M. 42, 185, 186; mit Triphenylearbinol: Kr., Hohl, M. 42, 240, 244, mit 3 Ory, benzoldsbyd. Kr. R. Mü., M. 42, 210, 211; mit 3-Oxy-benzaldehyd: Kr., Pogantsch, M. 44, 165, 171; mit 2-Nitro-anilin, 3-Nitro-anilin und 4-Nitro-anilin: Joh., Jones, J. phys. Chem. 32, 594; mit 3-Amino-phenol: Kr., Lupfer, Zawodsky, M. 41, 532; mit Carbazol: Kr., Strzelba, M. 42, 170, 175. Dichten und Dielektr.-Konst. von verd. Lösungen in Benzol bei 25°: WILLIAMS, SCHW., Am. Soc. 50, 363. Elektrische Leitfähigkeit in flüssigem Ammoniak: Field, Garner, Smith, Soc. 127, 1236. — 1.2-Dinitro-benzol wird durch atmende oder gärende Zellen zu 2-Nitro-phenylhydroxylamin reduziert und kann daher als Indikator zur Messung der Atmungs- und Gärungsgeschwindigkeit dienen (W. Lipschitz in C. Oppen-HEIMER, Die Fermente und ihre Wirkungen, Bd. HI [Leipzig 1929], S. 1135). Kartoffelsaft wirkt hemmend auf die Reduktion von 1.2-Dinitro-benzol durch höhere Pflanzen und tierische Gewebe, fördernd auf die Reduktion durch Gärungsorganismen (Рієтвен, *Bio. Z.* 181, 183). Reduktion durch verschiedene Agenzien in Gegenwart von Fermenten: Bernheim,  $Biochem.\ J.$ 22, 346, 1181, 1189; Dixon, Biochem. J. 20, 711. — Gibt mit d-Fructose in wäßrig-alkoholischer Alkalilauge im Gegensatz zu 1.3-Dinitro-benzol eine violette Färbung (Szécsényt-NAGY, Bio. Z. 281, 175).

1.3-Dinitro-benzol, m-Dinitro-benzol  $C_6H_4O_4N_2=C_6H_4(NO_2)_2$  (H 258; E I 135). B. 1.3-Dinitro-benzol entsteht, mitunter in geringer Menge und meist neben anderen Produkten. bei der Nitrierung von Benzol oder Nitrobenzol mit verschiedenen Nitrierungsmitteln; z. B. bei längerer Einw. von technischem Stickstofftetroxyd auf Benzol (Schaarschmidt, Smolla, B. 57, 34): bei längerer Belichtung eines Gemisches von Benzol und Stickstofftetroxyd mit Sonnenlicht (BASS, JOHNSON, Am. Soc. 46, 459); beim Kochen von Nitrobenzol mit Salpetersäure (D: 1.40) in Gegenwart von Quecksilberoxyd (Davis, Mitarb., Am. Soc. 43, 599); aus Nitrobenzol beim Behandeln mit Stickstofftetroxyd und rauchender Schwefelsäure bei 60-75° (Pinck, Am. Soc. 49, 2539) oder mit Stickstoffpentoxyd bei 0° (Haines, Adkins. Am. Soc. 47, 1419). Bei der Nitrierung von Wismuttriphenyl mit Salpetersäure (D: 1,4) und Schwefelsäure bei —15° oder mit rauchender Salpetersäure und Schwefelsäure bei 100° oder mit rauchender Salpetersäure unter starker Kühlung (Wilkinson, Challenger, Soc. 125, 860, 861). — Technische Darstellung durch Nitrieren von Nitrobenzol mit Salpeterschwefelsäure: H. E. Fierz-David, L. Blangey, Farbenchemie, 4. Aufl. [Wien 1938], S. 68. — Sowohl käufliche als auch im Laboratorium dargestellte Präparate von 1.3-Dinitrobenzol enthalten fast stets 1.2- und 1.4-Dinitro-benzol (Brand, Modersohn, J. pr. [2] 120. 163 Anm. 1; Lipschitz, Osterroth, Pflügers Arch. Physiol. 205, 354; vgl. auch Szécsényi-NAGY, Bio. Z. 281 [1935], 175).

Krystallographische Untersuchung: Bragg, Soc. 121, 2773. Härte der Krystalle: Reis. Zimmermann, Z. Kr. 57, 484; Ph. Ch. 102, 333. F: 89,0—89,5° (Williams, Schwingel, Am. Soc. 50, 363), 89,85° (McCamish, Salathe, Am. Soc. 50, 1785), 90,0° (Field, Garner, Smith, Soc. 127, 1231), 90,08° (Andrews. Lynn, Johnston, Am. Soc. 48, 1286), 90,0—90,1° (Garner,

ABERNETHY, Pr. roy. Soc. [A] 99, 219). E: 89,570 (McC., Sa.), 89,97-90,000 (DESVERGNES. Monit. scient. [5] 15, 149; C. 1925 II, 2051). Erstarrungstemperatur zwischen 1 kg/cm² (89,8°) und 2099 kg/cm<sup>2</sup> (140,0°): Puschin, Soc. 125, 2629. Molekularwärme zwischen 110,3° absol. (21,0 cal) und 343,7° absol. (49,7 cal): Andrews, Am. Soc. 48, 1294. Molekularwärme festen 1.3. Dinitro-benzols zwischen 25° (44,7 cal) und dem Schmelzpunkt (51,9 cal) und flüssigen 1.3-Dinitro benzols zwischen dem Schmelzpunkt (68,2 cal) und höheren Temperaturen: An., LYNN, JOHN., Am. Soc. 48, 1280, 1286. Krystallisationswarme: G., AB., Pr. roy. Soc. [A] 99, 230; C. 1921 III, 866. Schmelzwarme: 4,150 kcal/Mol (An., L., J.). Verbrennungswarme bei konstantem Volumen: 695,7 kcal/Mol (Томіока, Таканавні in Landolt-Börnst. E III, 2914), 697.03 kcal/Mol (Pu., Ph. Ch. 124, 19), 700,6 kcal/Mol (G., Ab.). Dol. 1,571 (Ziegler, Ditzel, A. 473, 200). Krystallisationsgeschwindigkeit: Tammann, Laass, Z. anorg. Ch. 172, 68. Krystallisation gleichmäßig gefärbter 1.3-Dinitro-benzol-Krystalle aus der mit Farbstoffen versetzten unterkühlten Schmelze: Ta., Laass, Z. anorg. Ch. 172, 70. Absorptionsspektrum versetzten unterkühlten Schmeize: TA., LAASS, Z. anorg. Ch. 172, 70. Adsorptionsspektrum in flüssigem Ammoniak: Garner, Gillbe, Soc. 1928, 2890, 2896. Dipolmoment  $\mu \times 10^{18}$ : 4,02 (HÖJENDAHL, Nature 117, 892; C. 1926 II, 1114), 3,70 (HÖ., Phys. Z. 30 [1929], 394), 3,81 (W., Schw., Am. Soc. 50, 363; W., Phys. Z. 29 [1928], 178) (sämtliche Messungen an verd. Lösungen in Benzol ausgeführt). — In 100 g Wasser lösen sich bei 13° 0,0068 g, bei 50° 0,0469 g, bei 100° 0,1910 g (Desvergnes, Monit. scient. [5] 15, 149; C. 1925 II, 2051). Löslichkeiten in organischen Lösungsmitteln bei verschiedenen Temperaturen: D., Monit. scient. [5] 15, 149. Löslich in flüssigem Ammoniak mit rotvioletter Farbe (DE CARLI, G. 57, 351; FIELD, GARNER, SMITH, Soc. 127, 1231), in flüssigem Schwefeldioxyd mit gelber Farbe (DEC.). Thermische Analyse der binären Systeme mit Urethan (Eutektikum bei ca. 42,3° und ca. 91 Mol-% Urethan): Pu., Fioletova, Soc. 121, 2822; mit 1.2-Dinitro-benzol und und ca. 91 Mol-% Urethan): Pu., Fioletova, Soc. 121, 2822; mit 1.2-Dinitro-benzol und 1.4-Dinitro-benzol: An., J. phys. Chem. 29, 1042; mit Naphthalin: Pu., Ph. Ch. 124, 18; mit Anthracen: Kremann, R. Müller, M. 42, 185, 187; mit 2.4.6-Trinitro-m-kresol: Jefremow, Tichomirowa, Ж. 59, 379, 383, 388; C. 1928 I, 188; mit β-Naphthol und mit Methyl-β-naphthyl-āther: Giua, Marcellino, G. 50 I, 346, 347, 355; mit Triphenylcarbinol: Kremann, Hohl, R. Müller, M. 42, 210, 212; mit Hydrochinondimethylāther: Giua, M., G. 50 I, 346, 351; mit Campher: Je., Izv. imp. Akad. Petrog. [6] 1916, 30; C. 1925 I, 2144; Izv. ross. Akad. [6] 13, 768; C. 1925 II, 524; mit Cinnamylidenacetophenon: Giua, G. 55, 573; mit 3-Oxy-benzaldehyd: Kre., Pogantsch, M. 44, 165, 171; mit 2-Nitro-anilin, 3-Nitro-anilin und 4-Nitro-anilin: Jehn, Jones, J. phys. Chem. 32, 594; mit N-Nitro-methyl-2.4.6-trinitro-anilin: Je., Ti., Izv. Inst. fiz.-chim. Anal. 3, 285; C. 1927 I, 2628; mit 3-Amino-phenol: Kre., Lupfer, Zawodsky, M. 41, 532, 533; mit Azobenzal und mit mit 3-Amino-phenol: Kre., Lupfer, Zawodsky, M. 41, 532, 533; mit Azobenzol und mit 4-Amino-azobenzol: Giua, Reggiani, G. 55, 656; mit Carbazol: Kre., Strzelba, M. 42, 171, 175. Abkühlungskurven von äquimolekularen Gemischen aus 1.3-Dinitro-benzol und Naphthalin unter verschiedenen Drucken: Puschin, Ph. Ch. 124, 21. Dichten von Gemischen Naphthalin unter verschiedenen Drucken: Fuschin, Fr. Ch. 124, 21. Dichen von Gemischen mit Benzol bei 25°: W., Schw., Am. Soc. 45, 363. Wärmetönung beim Lösen in Benzol, Alkohol und Äther: Gehlehoff, Ph. Ch. 98, 254. Dielektr.-Konst. von Lösungen in Benzol bei 20°: Partington, Rule, Phil. Mag. [7] 1, 1036; C. 1926 II, 2145. Elektrische Leitfähigkeit einer Lösung von 1.3-Dinitro-benzol in Schwefelsäuremonohydrat bei 12°: Cherbulez, Helv. 6, 285. Elektrische Leitfähigkeit in flüssigem Ammoniak: Field, Garner. Smith, Soc. 127, 1236. Scheinbares Reduktionspotential in 0,2 Mol Chlorwasserstoff ent-beltondem Albehol oder Aceter bei 24°. Contamp. I 1977. haltendem Alkohol oder Aceton bei 24°: Conant, Lutz, Am. Soc. 45, 1052, 1056. Über die explosiven Eigenschaften vgl. Robertson, Soc. 119, 8. Bei der Belichtung

von auf Baumwolle feinverteiltem 1.3-Dinitro-benzol mit Sonnenlicht oder ultraviolettem Licht entsteht anscheinend 3.3'-Dinitro-azoxybenzol (Seyewetz, Mounier, Bl. [4] 43, 651). Beim Erwärmen mit Kaliumpersulfat-Lösung auf dem Wasserbad bilden sich Ammoniak, Salpetersäure. Cyanwasserstoffsäure und sehr geringe Mengen salpetrige Säure (Ricca, G. 57, 269). Beim Kochen mit Salpetersäure (D: 1,4) und Quecksilboroxyd erhält man geringe Mengen Mercurioxalat (Davis, Mitarb., Am. Soc. 43, 599). 1.3-Dinitro-benzol liefert bei der Hydrierung in Alkohol bei Gegenwart von Palladium-Tierkohle je nach den Mengenverhältnissen N-[3-Nitro-phenyl]-hydroxylamin, 3-Nitro-anilin oder m-Phenylendiamin; wird die Reduktion bei Gegenwart von Kalilauge durchgeführt, dann erhält man 3.3'-Dinitro-azoxybenzol (Brand, Steiner, B. 55, 881). Bei der Reduktion mit Zinkstaub in siedender schwach essigsaurer wäßrig-alkoholischer Calciumchlorid-Lösung oder neutraler oder saurer Ammoniumchlorid-Lösung entsteht N-[3-Nitro-phenyl]-hydroxylamin (Brand, Modersohn, J. pr. [2] 120, 171). 1.3-Dinitro-benzol liefert beim Erwärmen mit Eisenspänen und Eisen(III)-chlorid oder Natriumchlorid in Wasser auf 100° 3-Nitro-anilin (Bretnütz, Pensa, Notiziario chim.-ind. 2, 185; C. 1927 II, 243). Wird beim Kochen mit Eisenpulver und Magnesiumchlorid in wäßr. Aceton zu m-Phenylendiamin reduziert (Micewicz, Roczniki Chem. 8, 53; C. 1928 II, 441). Titan(III)-chlorid reduziert in heißer stark saurer Lösung quantitativ zu m-Phenylendiamin (English, J. ind. Eng. Chem. 12, 997; C. 1921 II, 623). Beim Einleiten von Schwefelwasserstoff in eine Lösung von 1.3-Dinitro-benzol in wäßr. Pyridin auf dem Wasserbad erhält man 3-Nitro-anilin (Brady, Day, Reynolds, Soc. 1929,

2266). Bei Behandlung mit Natriumdisulfid in Benzol + Wasser bei Gegenwart von Calciumchlorid bildet sich 3.3′-Dinitro-azoxybenzol (Haworth, Lapworth, Soc. 119, 775). Reduktion durch Natriumbenzylat in Benzol: Suter, Dains, Am. Soc. 50, 2735. 1.3-Dinitrobenzol liefert bei 12-stdg. Erhitzen mit Salpetersäure und 33%iger rauchender Schwefelsäure (Verhältnis HNO<sub>3</sub>: SO<sub>3</sub> = 120: 59) auf 115° Tetranitromethan neben 1.3.5-Trinitrobenzol (McKie, J. Soc. chem. Ind. 44, 431 T; C. 1926 I, 84). Bei 8—9-stdg. Erhitzen auf 150—160° mit rauchender Schwefelsäure (18% SO<sub>3</sub>-Gehalt) bei Gegenwart von Quecksilber erhält man 3.5-Dinitro-benzol-sulfonsäure-(1) (Griffith, Soc. 125, 1401). 1.3-Dinitro-benzol liefert beim Kochen mit NaHSO<sub>3</sub>-Lösung das Natriumsalz der [3-Nitro-phenyl]-sulfamidsäure und das Dinatriumsalz der m-Phenylen-disulfamidsäure (Weill, Wassermann, B. 55, 2542). Liefert beim Erwärmen mit überschüssigem nitrohydroxylaminsaurem Natrium in verd. Alkohol auf 80° 3-Nitro-phenylnitrosohydroxylamin (Syst. Nr. 2219) (Bigiavi, Franceschi, G. 57, 378; B., R. A. L. [6] 4, 458). 1.3-Dinitro-benzol wird in Stickstoffatmosphäre durch Alanin in Gegenwart von Palladiumschwarz zu 3-Nitro-phenylhydroxylamin reduziert, wobei Alanin in Acetaldehyd übergeht (Wieland, Bergel, A. 439, 205). Verhalten als Sauerstoffüberträger bei der katalytischen Dehydrierung von Alkoholen: Rosenmund, Zetzsche, B. 54, 1096, 2036; Ze., Zala, Helv. 9, 288. Setzt man 1.3-Dinitrobenzol mit Phenylhydroxylamin in methylalkoholischer Kalilauge unterhalb 40—45° um, so erhält man α- und β-3-Nitro-azoxybenzol neben Azoxybenzol und geringen Mengen eines rötlichgelben Produkts (F: 140°) (Meisenheimer, B. 53, 364). Gibt mit Natriumjodid und einigen organischen Verbindungen Färbungen, die vermutlich auf Bildung von Komplexverbindungen zurückzuführen sind; so erhält man orangefarbene Lösungen mit Natriumjodid und Aceton oder Pyridin, gelbe mit Natriumjodid und Acetonitril oder Acetoncarbonsäureäthylester (Tronow, Djakonowa-Schulz, Sonowa, Ж. 59, 338; C. 1927 II, 1

Reines 1.3-Dinitro-benzol wird durch atmende Zellen nur sehr langsam reduziert (LIP-SCHITZ, OSTERROTH, *Pflügers Arch. Physiol.* **205**, 361). Zur biologischen Reduzierbarkeit von 1.3-Dinitro-benzol vgl. a. Neuberg, Reinfurth, *Bio. Z.* **138**, 566. Insecticide Wirkung: Tattersfield, Gimingham, *J. Soc. chem. Ind.* **46**, 370 T; *C.* **1927** II, 1884. Toxische Wirkung: H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-

Leipzig 1932], S. 96-106.

Die Lösung in Aceton wird durch Natronlauge intensiv rotviolett, durch Ammoniak rosenrot bis purpurrot gefärbt (Rudolph, Fr. 60, 240). Mit alkoh. Kalilauge erhält man in Gegenwart von 2.4-Dinitro-toluol eine intensive blaue, in Gegenwart von 2.6-Dinitro-toluol eine rote Färbung (Muraour, Bl. [4] 43, 72). Die für 1.3-Dinitro-benzol in der Literatur angegebene Farbreaktion mit d-Fructose wird nicht durch 1.3-Dinitro-benzol, sondern durch 1.2-Dinitro-benzol verursacht und tritt bei reinem 1.3-Dinitro-benzol nicht auf (Szécsényi-Nagy, Bio. Z. 281 [1935], 175).

 $C_4H_4O_4N_2+2TiCl_4$ . Gelbe, an der Luft rauchende Krystalle. F: 64° (Reihlen, Hake, A. 452, 59). Wird durch Wasser zersetzt.

1.4-Dinitro-benzol, p-Dinitro-benzol C<sub>6</sub>H<sub>4</sub>O<sub>4</sub>N<sub>2</sub> = C<sub>6</sub>H<sub>4</sub>(NO<sub>2</sub>)<sub>2</sub> (H 261; E I 136). B. Neben anderen Produkten beim Kochen von 4-Jodo-1-nitro-benzol mit Natriumnitrit-Lösung (Vorländer, R. 48, 914). Zur Bildung aus 4-Nitro-benzol-diazoniumnitrat-(1) durch Behandeln mit Natriumnitrit und Kupfersulfat nach Körner, Contardi (R. A. L. [5] 23 I, 282) vgl. Andrews, J. phys. Chem. 29, 1041. Entsteht in ca. 60% iger Ausbeute beim Behandeln von 4-Nitro-benzol-diazoniumsulfat-(1) mit Natriumnitrit und Kupferpulver (Chapas, Bl. [4] 41, 194). — Krystallographische Untersuchung: Bragg, Soc. 121, 2773. F: 171,5—172,0° (Williams, Schwingel, Am. Soc. 50, 363), 173,5° (Andrews, Lynn, Johnston, Am. Soc. 48, 1286). Molekularwärme festen 1.4-Dinitro-benzols zwischen 25° (45,9 cal) und dem Schmelzpunkt (60,1 cal) und flüssigen 1.4-Dinitro-benzols zwischen dem Schmelzpunkt (66,2 cal) und höheren Temperaturen: An., L., J., Am. Soc. 48, 1286. Schmelzwärme: 6,720 kcal/Mol (An., L., J.). Verbrennungswärme bei konstantem Volumen: 693,7 kcal/Mol (Garner, Abennethy, Pr. roy. Soc. [A] 99, 230; C. 1921 III, 866). Dipolmoment μ×10<sup>18</sup>: 0,8 (Höjendahl, Nature 117, 892; C. 1926 II, 1114; Phys. Z. 30 [1929], 394), 0,32 (W., Schw., Am. Soc. 50, 367; W., Phys. Z. 29 [1928], 178) (sämtliche Messungen an verd. Lösungen in Benzol ausgeführt). Thermische Analyse der binären Gemische mit 1.2-Dinitro-benzol und 1.3-Dinitro-benzol: An., J. phys. Chem. 29, 1042; mit Anthracen: Kremann, R. Müller, M. 42, 188, 192; mit Triphenylcarbinol: Kr., Hohl., R. Müller, M. 42, 213; mit 3-Oxy-benzaldehyd: Kr., Pogantsch, M. 44, 165, 172; mit 2-Nitro-anilin, 3-Nitro-anilin und 4-Nitro-anilin: Johnston, Jones, J. phys. Chem. 32, 594; mit α-Naphthylamin und mit β-Naphthylamin: Rheinboldt, J. pr. [2] 111, 267, 269; mit Carbazol: Kr., Strzelba, M. 42, 172, 175. Dichten und Dielektr. Konst. von verd. Lösungen in Benzol bei 25°: W., Schw., Am. Soc. 50, 363. Elektrische Leitfähigkeit einer Lösung von 1.4-Dinitro-benzol in Schwefelsäuremonohydrat bei 12°: Cherbullez,

methylalkoholischer Natriummethylat-Lösung: Parijs, R. 48, 561. 1.4-Dinitro-benzol liefert beim Behandeln mit nitrohydroxylaminsaurem Natrium in verd. Alkohol bei 50—60° das Natriumsalz des 4-Nitro-phenylnitrosohydroxylamins (Syst. Nr. 2219) neben 4-Nitro-phenetol (Bigiavi, Franceschi, G. 57, 379; B., R. A. L. [VI] 4, 458). — Die Lösung in Aceton wird auf Zusatz von Natronlauge intensiv gelb, auf Zusatz von Ammoniak blaßgelb (Rudolph, Fr. 60, 240). — C<sub>6</sub>H<sub>4</sub>O<sub>4</sub>N<sub>2</sub>+TiCl<sub>4</sub>. Dunkelgelbe, an der Luft rauchende Krystalle (Reihlen, Hake, A. 452, 60). Zersetzt sich beim Schmelzen sowie bei Einw. von Wasser.

3-Chlor-1.2-dinitro-benzol C<sub>6</sub>H<sub>3</sub>O<sub>4</sub>N<sub>2</sub>Cl, s. nebenstehende Formel (E I 137). NO<sub>2</sub>
B. Man diazotiert 2.3-Dinitro-anilin mit Nitrosylschwefelsäure und trägt die entstandene Diazoniumsalz-Lösung in Kupfer(I)-chlorid-Lösung ein (VAN DE VLIET, R. 43, 612). — Krystalle (aus Alkohol). F: 78°. — Liefert beim Erhitzen mit Salpetersäure (D: 1,52) und rauchender Schwefelsäure auf 160—170° 6-Chlor-1.2.4-trinitro-benzol und 4-Chlor-1.2.3-trinitro-benzol.

4-Chlor-1.2-dinitro-benzol C<sub>6</sub>H<sub>3</sub>O<sub>4</sub>N<sub>2</sub>Cl, s. nebenstehende Formel (H 262; E I 137). Liefert beim Behandeln mit Natriumäthylat-Lösung 5-Chlor-2-nitro-phenetol (Lorang, R. 47, 187). Bei Einw. von Methylmercaptan in alkoh. Kalium-carbonat-Lösung erhält man 5-Chlor-2-nitro-thioanisol (Hodgson, Handley). Soc. chem. Ind. 46, 436 T; C. 1928 I, 330). — Toxische Wirkung: H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 106.

 $\begin{array}{c}
NO_2 \\
\hline
OI
\end{array}$ 

4-Chlor-1.3-dinitro-benzol C<sub>6</sub>H<sub>3</sub>O<sub>4</sub>N<sub>2</sub>Cl, s. nebenstehende Formel (H 263; E I 137). Technische Darstellung durch Nitrieren von Chlorbenzol mit Salpeterschwefelsäure: H. E. Fierz-David, L. Blangey, Grundlegende Operationen der Farbenchemie, 4. Aufl. [Wien 1938], S. 59. Reinigung des technischen Produkts durch Krystallisation aus 62 %iger Salpetersäure: Desvergnes, Monit. scient. [5] 15, 74; C. 1925 II, 18. — E: 50,08° (D.). D<sub>4</sub><sup>26,4</sup>: 1,4717 (Lindemann, Pabst,



A. 462, 46). Parachor: Mumford, Phillips, Soc. 1929, 2118. n<sub>α</sub><sup>∞,4</sup>: 1,5582; n<sub>β</sub><sup>∞,4</sup>: 1,5859 (L., P.). In 100 cm³ Wasser lösen sich bei 15° 0,0008 g, bei 100° 0,159 g (D.). Quantitative Löslichkeiten in organischen Lösungsmitteln bei verschiedenen Temperaturen: D. Thermische Analyse der binären Systeme mit Pikrylchlorid: Frankland, Garner, J. Soc. chem. Ind. 39 [1920], 258 T; mit Benz-anti-aldoxim, mit 2-Oxy-benz-anti-aldoxim, mit 2-Methoxy-benz-anti-aldoxim, mit 4-Methoxy-benz-syn-aldoxim und mit 4-Methoxy-benz-anti-aldoxim: Brady, Truszkowski, Soc. 125, 1089, 1090, 1094, 1095, 1096; mit Zimt-syn-aldoxim und mit Zimt-anti-aldoxim: Br., Klein, Soc. 127, 852; mit 2-Nitro-anilin, 3-Nitro-anilin, α-Naphthylamin und 4-Amino-acetophenon: Giua, Marcellino, Curti, G. 50 II, 306, 307, 308, 309, 311.

## Chemisches Verhalten.

Wird durch Salpeterschwefelsäure in Pikrylchlorid übergeführt (Chem. Fabr. Griesheim, D. R. P. 78309; Frdl. 4, 35; vgl. dazu Frankland, Garner, J. Soc. chem. Ind. 39, 257 T: C. 1920 III, 792; Giua, de Franciscis, Ann. Chim. applic. 15, 141; C. 1926 I, 225). Über ein Produkt vom Schmelzpunkt 80—81°, das beim Kochen mit Dicarbonat-Lösung entsteht, vgl. Abderhalden, Stix, H. 129, 152. Beim Erhitzen mit einer Schmelze aus Natriumsulfid und Schwefel in Alkohol erhält man Bis-[2.4-dinitro-phenyl]-disulfid (Teppema. Sebrell, Am. Soc. 49, 1755). Über zwei Verbindungen vom Schmelzpunkt 64° und Schmelzpunkt 36°, die beim Kochen mit wenig Ammoniak in Alkohol erhälten wurden, vgl. Abderhalden, Stix, H. 129, 152. Die Umsetzung mit alkoh. Ammoniak unter Bildung von 2.4-Dinitro-anilin erfolgt sehr langsam bei Zimmertemperatur (Franzen, Bockhacker, B. 53, 1178; vgl. auch Valton, Soc. 127, 41), ziemlich schnell dagegen bei 100° (Fr., Bo.). 4-Chlor-1,3-dinitro-benzol läßt sich auch in 2.4-Dinitro-anilin überführen durch Einw. von Ammoniak in siedendem Nitrobenzol (Le Fèvre, Moir, Turner, Soc. 1927, 2337), durch Kochen mit geschmolzenem Ammoniumacetat oder durch Erhitzen mit Ammoniumacetat-Lösung auf 125—130° (Soc. Chim. de la Grande Paroisse, D. R. P. 376796; C. 1923 IV, 537; Frdl. 14. 402). Liefert beim Erwärmen mit Natriumarsenit 2.4-Dinitro-phenol (Nijk, R. 41, 498).

Zur Umsetzung mit alkoh. Laugen vgl. Davies. Wood. Soc. 1928, 1129; Raiford. Colbert, Am. Soc. 48, 2654; Marqueyrol. Scohy, Bl. [4] 27, 105; mit Natriumäthylat-Lösung vgl. Franzen, Bockhacker. B. 53, 1178. Geschwindigkeit der Reaktion mit Natriummethylat-Lösung bei 0°, 15° und 25°: Lorang, R. 46, 898, 902; Talen, R. 47, 331; bei 25°: Mattaar, R. 41, 104; Baudet, R. 43, 724; mit Natriumäthylat bei 0°, 10°, 15°, 20° und 25°: Lorang, R. 46, 894, 902; bei 0°, 15° und 25°: Talen, R. 47, 332; bei 25°: Mattaar, R. 41. 105; mit Natriumphenolat in methylalkoholischer Lösung und in alkoh. Lösung bei 25°: Ma., R. 41, 109, 110. 4-Chlor-1.3-dinitro-benzol liefert beim Behandeln mit Methylmercaptan

in alkoh. Kaliumearbonat-Lösung 2.4-Dinitro-thioanisol (Hodgson, Handley, J. Soc. chem. Ind. 46, 435 T; C. 1928 I, 330). Beim Eintragen der Dinatriumverbindung des Athylenglykols in überschüssiges, geschmolzenes 4 Chlor-1.3-dinitro-benzol erhält man Athylenglykolbis-[2.4-dinitro-phenyläther] (Dosios, Tsatsas, C. r. 180, 1275). Mit dem Natriumsalz des Monothioäthylenglykols in Alkohol entsteht bei sehr allmählicher Temperatursteigerung Monothoathylenglykols in Akonoi entstehn bei sein annannener leinperatursteigerung [β-Oxy-āthyl]-[2.4-dinitro-phenyl]-sulfid, bei schneller Temperatursteigerung eine krystalline schwefelfreie braune Verbindung vom Schmelzpunkt 143° (Bennettt, Whincop, Soc. 119. 1863). Behandelt man 4-Chlor-1.3-dinitro-benzol mit 4-Methoxy-benz-anti-aldoxim und Natriumäthylat in Alkohol, so bildet sich 4-Methoxy-benz-syn-aldoxim-O-[2.4-dinitro-phenyläther]; mit 4-Methoxy-benz-syn-aldoxim-ontstehen unter gleichen Bedingungen 4-Methoxy-benzaldehyd und das Natriumsalz des 2.4-Dinitro-phenols; die Reaktion ist bei den meisten Aldoximen analog und kann daher in gewissen Fällen zur Konfigurationsbestim-

mung der Oxime dienen (Brady, Truszkowski, Soc. 125, 1088, 1091).

Beim Kochen mit Cyanessigester und Natrium-äthylat in Alkohol erhält man [2.4-Dinitro-phenyl]-cyanessigsäureäthylester (FAIRBOURNE, FAWSON, Soc. 1927, 47). Mit Cyanamid in verd. Alkohol entsteht [2.4-Dinitro-phenyl]-cyanamid (GIUA, PETRONIO, J. pr. [2] 110, 300). Bei der Umsetzung mit Semicarbazid bei Gegenwart von Natriumacetat in siedendem verdünntem Alkohol erhält man 1-[2.4-Dinitro-phenyl]-semicarbazid (GIUA, G. 53, 848). 4-Chlor-1.3-dinitro-benzol liefert beim Behandeln mit Kaliumrhodanid [2.4-Dinitro-phenyl]-rhodanid, 2.4.2'.4'-Tetranitro-diphenylsulfid und 2.4.2'.4'-Tetranitro-diphenyldisulfid (CHAL-LENGER, COLLINS, Soc. 125, 1380). Bei der Einw. von 1 Mol Thioharnstoff in siedendem Alkohol erhält man 2.4-Dinitro-thiophenol, 2.4.2'.4'-Tetranitro-diphenyldisulfid, wenig 2.4.2'.4'-Tetranitro-diphenylsulfid sowie O-Äthyl-isoharnstoff; erwärmt man 1 Mol 4-Chlor-1.3-dinitro-benzol mit ½ Mol Thioharnstoff in Alkohol bei Gegenwart von Natriumacetat auf dem Wasserbad, so erhält man als Hauptprodukt 2.4.2'.4'-Tetranitro-diphenylsulfid (GIVA. RUGGERI, G. 53, 343; vgl. auch TAYLOR, DIXON, Soc. 125, 246); bei der Umsetzung mit Thioharnstoff in kaltem Aceton entseht das Hydrochlorid des S-[2.4-Dinitro-phenyl]-isothioharnstoffs (TAYLOR, DIXON). Beim Erwärmen mit Thiosemicarbazid in Alkohol auf dem Wasserbad entsteht 1-[2.4-Dinitro-phenyl]-thiosemicarbazid; bei Gegenwart von Natriumacetat erhält man 2.4.2'.4'-Tetranitro-diphenylsulfid (GIUA, PETRONIO, G. 55. 668). Bei der Reduktion mit Natriumhydrosulfid-Lösung in Gegenwart von Schwefelkohlenstoff entstehen geringe Mengen 5-Amino-2-mercapto-benzthiazol (Syst. Nr. 4383) und 2.2'-Dimercapto-[bis-thiazolo-4'.5':1.2;5".4":4.5-benzol] (s. nebenstehende Formel; Syst. Nr. 4641) (TEPPEMA, SEBRELL, Am. Soc. 49, 1755). Kocht man Cyanselenoglykolsäure anfangs mit Natronlauge

und dann, nachdem man mit Essigsäure schwach angesäuert hat, mit 4-Chlor-1.3-dinitrobenzol und Natriumacetat in Alkohol, so bilden sich 2.4.2'.4'-Tetranitro-diphenylselenid

und 2.4-Dinitro-phenylselenoglykolsäure (Behaghel, Rollmann, B. 62, 2699).
4-Chlor-1.3-dinitro-benzol gibt mit Methylamin in verd. Alkohol schon bei Zimmertemperatur 2.4-Dinitro-methylanilin (Valton, Soc. 127, 41). Geschwindigkeit der Reaktion mit Anilin in siedendem Alkohol: LINDEMANN, PABST, A. 462, 31, 44; mit Anilin und mit Methylanilin in Alkohol bei 50°: Rheinlander, Soc. 123, 3107, 3109; zur Geschwindigkeit der Reaktion mit Anilin und anderen aromatischen Aminen in Alkohol vgl. auch Linke. B. 56, 851; Franzen, Bockhacker, B. 53, 1178. 4-Chlor-1.3-dinitro-benzol liefert beim Behandeln mit N-Phenyl-thioharnstoff in kaltem Aceton das Hydrochlorid des N-Phenyl-S-[2.4-dinitro-phenyl]-isothioharnstoffs; mit N.N'-Diphenyl-thioharnstoff in siedendem Alkohol erhält man neben wenig 2.4.2'.4'-Tetranitro-diphenyldisulfid 2.4-Dinitro-diphenylamin; in kaltem Aceton entsteht nur 2.4.2'.4'-Tetranitro-diphenyldisulfid (TAYLOR, DIXON, Soc. 125, 247, 248). Beim Kochen mit 2.2'-Diamino-diphenyl bildet sich neben 2.2'-Bis-[2.4-dinitro-anilino]-diphenyl etwas N-[2.4-Dinitro-phenyl]-carbazol (LE Fèvre, Soc. 1929, 737). Geschwindigkeit der Reaktion mit Piperidin in Benzol: Brewin, Turner, Soc. 1928. 332; in Alkohol: Fra., Bo., B. 53, 1178. Zur Geschwindigkeit der Reaktion mit Pyridin bei 16-18° vgl. Tronow, Ж. 58, 1286; С. 1927 II, 1145.

Reizwirkung auf menschliche und tierische Haut: Hanzlik, Tarr, J. Pharmacol. exp. Therap. 14, 226; C. 1920 I, 510; Bogert, Evans, Ind. Eng. Chem. 18 [1926], 299. — Reinheitsprüfung: E. Merck, Prüfung der chemischen Reagenzien, 5. Aufl. [Darmstadt 1939], S. 139.

**2-Chlor-1.4-dinitro-benzol**  $C_6H_3O_4N_2Cl$ , Formel I (H 264; E I 138). Liefert beim Erhitzen mit Salpetersäure (D: 1,52) und rauchender Schwefelsäure auf 160-170° 5-Chlor-1.2.4-trinitro-benzol (VAN DE VLIET, R. 43, 616).

8.4-Dichlor-1.2-dinitro-benzol C<sub>6</sub>H<sub>2</sub>O<sub>4</sub>N<sub>2</sub>Cl<sub>2</sub>, Formel II. Das H 264 unter dieser Formel beschriebene Präparat ist

vermutlich ein Gemisch aus viel 4.5-Dichlor-1.3-dinitro-benzol und sehr wenig 3.4-Dichlor-1.2-dinitro-benzol gewesen (HOLLEMAN, R. 39, 451, 452). — B. 3.4-Dichlor-1.2-dinitro-benzol

entsteht beim Behandeln von 2.3-Dichlor-1-nitro-benzol mit Salpetersäure (D: 1,54) und Schwefelsäure (D: 1,84) auf dem Wasserbad, neben 4.5-Dichlor-1.3-dinitro-benzol (H., R. 39, 447, 450). Aus 5.6-Dichlor-2-nitro-anilin durch Diazotieren und Behandeln mit Natriumnitrit (H., R. 39, 449). — Nadeln (aus Ligroin). F: 97°. — Liefert bei der Einw. von Natriummethylat 5.6-Dichlor-2-nitro-anisol (H., R. 39, 461); Geschwindigkeit dieser Reaktion bei 0°: H., R. 39, 468.

- **3.5-Dichlor-1.2-dinitro-benzol**  $C_4H_2O_4N_2Cl_2$ , s. nebenstehende Formel (H 264). Liefert beim Erhitzen mit Natriummethylat auf dem Wasserbad 4.6-Dichlor-2-nitro-anisol (Holleman, R. 39, 457). Geschwindigkeit der Reaktion mit Natriummethylat bei  $0^\circ$ : H., R. 39, 466.
  - $\begin{array}{ccc} el & NO_2 \\ i \cdot & \cdot & \cdot \\ n & Cl \cdot & \cdot & \cdot \\ \end{array}$
- 3.6-Dichlor-1.2-dinitro-benzol C<sub>6</sub>H<sub>2</sub>O<sub>4</sub>N<sub>2</sub>Cl<sub>2</sub>, s. nebenstehende Formel (H 265). B. Zur Bildung durch Einw. von Salpeterschwefelsäure auf 2.5-Dichlor-1-nitro-benzol vgl. Page, Heasman, Soc. 123, 3254; Holleman, R. 39, 441; DEN HOLLANDER, VAN HAEFTEN, R. 40, 323; MACLEOD, PFUND, KILPATRICK, Am. Soc. 44, 2262. Aus 3.6-Dichlor-2-nitro-anilin durch Diazotieren und Behandeln mit Natriumnitrit (Ho.). Nadeln (aus Alkohol). F: 103° (Ho.). Thermische Analyse des Systems mit 2.5-Dichlor-1.3-dinitro-benzol: P., Hea. Liefert bei der Einw. von alkoh. Ammoniak 3.6-Dichlor-2-nitro-anilin und geringe Mengen 2.3-Dinitro-1.4-diamino-benzol (M., Pf., K.). Beim Behandeln mit Natriummethylat erhält man 3.6-Dichlor-2-nitro-anisol (Ho., R. 39, 460); Geschwindigkeit dieser Reaktion bei 0°: Ho., R. 39, 467.
- 4.5-Dichlor-1.2-dinitro-benzol C<sub>6</sub>H<sub>2</sub>O<sub>4</sub>N<sub>2</sub>Cl<sub>2</sub>, s. nebenstehende Formel (H 265). B. Beim Erhitzen von 3.4-Dichlor-1-nitro-benzol mit Salpetersäure (D: 1,5) und rauchender Schwefelsäure (20 % SO<sub>3</sub>) auf 100° (LE Fèvre, Turner, Soc. 1927, 1119). Krystalle (aus verd. Essigsäure), Blättchen (aus Alkohol). F: 109—110° (LE F., T.), 110° (Holleman, R. 39, 446). Geschwindigkeit Cl der Reaktion mit Natriummethylat bei 0°: H., R. 39, 468. Bei Einw. von Piperidin entsteht N-[4.5-Dichlor-2-nitro-phenyl]-piperidin (LE F., T.).
- 2.4 Dichlor 1.3 dinitro benzol  $C_6H_2O_4N_2Cl_8$ , s. nebenstehende Formel (H 265). B. Zur Bildung durch Nitrierung von 2.6-Dichlor-1-nitro-benzol vgl. Holleman, R. 39, 439; Dann, Soc. 1929, 2461. Entsteht auch in geringerer Menge neben 4.6-Dichlor-1.3-dinitro-benzol beim Erwärmen von 1.3-Dichlorbenzol mit Salpeterschwefelsäure auf 99° (D., Soc. 1929, 2462). F: 70—71° Cl (H.). Thermische Analyse des Systems mit 4.6-Dichlor-1.3-dinitro-benzol: D. Liefert beim Erhitzen mit alkoh. Ammoniak ein Gemisch aus 3-Chlor-2.4-dinitro-anilin und 3-Chlor-2.6-dinitro-anisol (H., R. 39, 459; van de Vliet, R. 43, 625); Geschwindigkeit dieser Reaktion bei 0°: H., R. 39, 467.
- 2.5-Dichlor-1.3-dinitro-benzol C<sub>6</sub>H<sub>2</sub>O<sub>4</sub>N<sub>3</sub>Cl<sub>2</sub>, s. nebenstehende Formel (H 265; E I 138). B. Zur Bildung durch Einw. von Salpeterschwefelsäure auf 2.5-Dichlor-1-nitro-benzol vgl. Page, Heasman, Soc. 123, 3252; auf 1.4-Dichlor-benzol vgl. Holleman, R. 39, 440; Ho., Den Hollander, van Haeffen, R. 40, 323; Macleod, Pfund, Kilpatrick, Am. Soc. 44, 2262. Aus 4-Chlor-2.6-dinitro-anilin beim Diazotieren und folgenden Behandeln mit Kupfer(I)-chlorid in verd. Salzsäure (Misslin, Helv. 3, 631; Ho.). Schwach grüngelbe Blättehen (aus Alkohol), Krystalle (aus Tetrachlorkohlenstoff). F: 105—106° (Ho.; P., Hea.), 104,9° (M., Pf., K., Am. Soc. 44, 2264). Kp: 302—303° (geringe Zersetzung) (M., Pf., K., Am. Soc. 44, 2263). Thermische Analyse der Systeme mit 3.6-Dichlor-1.2-dinitro-benzol: P., Hea.; mit 2.5-Dichlor-1.4-dinitro-benzol: M., Pf., K. Liefert bei der Reduktion mit Titan(III)-chlorid in Alkohol 2.5-Dichlor-3-nitro-anilin (Ho., van Haeffen, R. 40, 73). Gibt mit alkoh. Ammoniak 4-Chlor-2.6-dinitro-anilin (M., Pf., K.). Beim Behandeln mit Natriummethylat erhält man 4-Chlor-2.6-dinitro-anisol (Ho., R. 39, 459); Geschwindigkeit dieser Reaktion bei 0°: Ho., R. 39, 467.
- 4.5 Dichlor 1.3 dinitro-benzol C<sub>6</sub>H<sub>2</sub>O<sub>4</sub>N<sub>2</sub>Cl<sub>2</sub>, s. nebenstehende Formel (E I 138). B. Aus 2.3 Dichlor 1 nitro-benzol durch Behandeln mit Salpetersäure (D: 1,54) und Schwefelsäure (D: 1,84), neben 3.4 Dichlor 1.2 dinitro-benzol durch Nitrierung von 1.2 Dichlor benzol mit Salpeterschwefelsäure (H., R. 39, 450).

  Zur Bildung aus 6-Chlor-2.4 dinitro-phenol durch Behandeln mit p-Toluolsulfochlorid (Ullmann, Sané, B. 44, 3734) vgl. Holleman, R. 39, 451. Grünlichgelbe Tafeln (aus Alkohol). F: 56°. Liefert beim Erhitzen mit alkoh. Ammoniak im Rohr auf 105° 6-Chlor-2.4 dinitro-anisol (H., R. 39, 451). Beim Behandeln mit Natriummethylat erhält man 6-Chlor-2.4 dinitro-anisol (H., R. 39, 462). Geschwindigkeit dieser Reaktion bei 0°: H., R. 39, 468.

·Cl

- 4.6 Dichlor 1.3 dinitro-bensol C<sub>6</sub>H<sub>2</sub>O<sub>4</sub>N<sub>2</sub>Cl<sub>2</sub>, s. nebenstehende Formel (H 265; E I 138). B. Zur Bildung durch Nitrierung von 1.3 Dichlor-benzol Cl mit Salpeterschwefelsäure vgl. Davies, Hickox, Soc. 121, 2649; Dann, Soc. 1929, 2461. Aus 5 Chlor 2.4 dinitro-phenol (Sané, Joshi, Soc. 125, 2483) NO<sub>2</sub> sowie (neben 5.5'-Dichlor-2.4.2'.4'-tetranitro-diphenyläther) aus 4.6-Dinitroresorcin (Borsche, Feske, B. 61, 701) beim Erhitzen mit p-Toluolsulfochlorid und Diäthylanilin auf dem Wasserbad. — F: 101,0° (Dann, Soc. 1929, 2460), 103° (Davies, VAN DE VLIET, R. 43, 609). Löslich in siedendem Methanol (B., F.). Thermische Analyse des binären Systems mit 2.4-Dichlor-1.3-dinitro-benzol (Eutektikum bei ca. 48,1° und ca. 38 Gew.- % 4.6-Dichlor-1.3-dinitro-benzol): Dann. — Liefert beim Chlorieren in Gegenwart von Eisenpulver bei 140—150° Hexachlorbenzol (Hüffer, R. 40, 452). Beim Kochen mit Sodalösung erhält man 5-Chlor-2.4-dinitro-phenol (Hodgson, Moore, Soc. 127, 1601). Bei Einw. von 1 Mol Hydrazinhydrat in siedendem Alkohol entsteht 5-Chlor-2.4-dinitrophenylhydrazin; mit überschüssigem Hydrazinhydrat in siedendem Alkohol erhält man 4.6-Dinitro-1.3-dihydrazino-benzol (Borsche, B. 54, 672, 679). 4.6-Dichlor-1.3-dinitrobenzol liefert beim Erhitzen mit 1 Mol Natriummethylat 5-Chlor-2.4-dinitro-anisol, mit 2 Mol Natriummethylat 4.6-Dinitro-resorcin-dimethyläther (Holleman, R. 39, 457). Geschwindigkeit der Reaktion mit Natriummethylat bei 0°: Holl., R. 39, 465. Kocht man 4.6-Dichlor-1.3-dinitro-benzol mit Natriumacetessigester in Benzol, so erhält man 4.6-Dinitrom-phenylendiessigsäure-diäthylester und 4.6-Dinitro-benzol-bis-[α-acetessigsäure]-(1.3)-diäthylester neben wenig 5-Oxy-4.7-dimethyl-3-acetyl-cumarin-carbonsäure-(6)-äthylester (DAVIES, HICKOX, Soc. 121, 2649). Mit wenig Piperidin in siedendem Alkohol entsteht N-[5-Chlor-2.4-dinitro-phenyl]-piperidin; mit überschüssigem Piperidin in Pyridin unter Kühlung erhält man 4.6-Dinitro-1.3-dipiperidino-benzol (LE Fèvre, Turner, Soc. 1927, - Reizt die Haut (VAN DE VLIET, R. 43, 609).
- 2.3 Dichlor 1.4 dinitro benzol C<sub>6</sub>H<sub>2</sub>O<sub>4</sub>N<sub>2</sub>Cl<sub>2</sub>, s. nebenstehende Formel.  $NO_2$ Eine von Holleman (R. 39, 456) aus 2.5-Dinitro-anilin durch Chlorierung, Diazotierung und Behandlung mit Kupfer(I)-chlorid erhaltene und als 2.3-Dichlor-1.4-dinitro-benzol aufgefaßte Verbindung ist nach van de Vliet (R. 43, 619) wahrscheinlich  $NO_2$ 2.3.6-Trichlor-1.4-dinitro-benzol.
- 2.5 Dichlor 1.4 dinitro benzol C<sub>6</sub>H<sub>2</sub>O<sub>4</sub>N<sub>2</sub>Cl<sub>2</sub>, s. nebenstehende Formel  $NO_2$ (H 265). B. Neben 2.5-Dichlor-1.3-dinitro-benzol und 3.6-Dichlor-1.2-dinitro-CI benzol bei der Nitrierung von 1.4-Dichlor-benzol mit Salpeterschwefelsäure (HOLLEMAN, R. 39, 444; Ho., DEN HOLLANDER, VAN HAEFTEN, R. 40, 323; MACLEOD, PFUND, KILPATRICK, Am. Soc. 44, 2262). Zur Bildung durch Nitrierung NO<sub>2</sub> von 2.5-Dichlor-1-nitro-benzol mit Salpeterschwefelsäure vgl. Ho., DEN H., VAN H., R. 40, 325. Aus 2.5-Dichlor-4-nitro-anilin durch Diazotieren und Behandeln mit Natriumnitrit (Ho., R. 39, 443). Entsteht auch aus 4-Chlor-2.5-dinitro-anilin durch Diazotieren und Behandeln mit Kupfer(I)-chlorid in salzsaurer Lösung (Ho., R. 39, 444). — Citronengelbe Krystalle (aus Chloroform), hellgelbe Nadeln (aus Alkohol). F: 119° (Ho.), 117,5° (MACLEOD, Pf., K., Am. Soc. 44, 2264). Kp: 304° (MACLEOD, Pf., K.). Thermische Analyse des binären Gemisches mit 2.5-Dichlor-1.3-dinitro-benzol: Macleon, Pr., K. — Liefert beim Chlorieren in Gegenwart von Eisen(III)-chlorid bei 180º Hexachlorbenzol (HÜFFER, R. 40, 456). Beim Erhitzen mit alkoh. Ammoniak erhält man 2.5-Dichlor-4-nitro-anilin (MACLEOD, Pr., K., Am. Soc. 44, 2268; HOLLEMAN, DEN HOLLANDER, VAN HAEFTEN, R. 40, 325) neben 2.5-Dinitro-1.4-diamino-benzol (MACLEOD, Pr., K.). Erhitzt man mit einem 1 Mol Natriummethylat, so entsteht 2.5-Dichlor-4-nitro-anisol; beim Erhitzen mit 2 Mol Natriummethylat erhält man 6-Chlor-4-nitro-resorcin-dimethyläther (Ho., R. 39, 460). Geschwindigkeit der Reaktion mit Natriummethylat bei 0°: Ho., R. 39, 467. Verbindung mit 2.5-Dichlor-1.3-dinitro-benzol (wahrscheinliche Zusammen-

setzung 2 Mol 2.5-Dichlor-1.4-dinitro-benzol und 3 Mol 2.5-Dichlor-1.3-dinitro-benzol). Krystalle (aus Alkohol). F: 81-81,50 (Macleod, Pfund, Kilpatrick, Am. Soc. 44, 2263). Sublimiert ohne Veränderung bei Wasserbadtemperatur. Kp: 302,5-303°; Kp61: 198°. Thermische Analyse der Systeme mit den beiden Komponenten: M., Pr., K.

- **2.6**-Diohlor-1.4-dinitro-benzol  $C_6H_2O_4N_2Cl_2$ , s. nebenstehende Formel (E I 138). Zur Darstellung durch Diazotieren von 2.6-Dichlor-4-nitro-anilin und Behandeln mit Natriumnitrit vgl. Holleman, R. 89, 438. — F: 114º (H.). Liefert beim Erhitzen mit Natriummethylat 2.6-Dichlor-4-nitro-anisol (H., R. 39, 458). Geschwindigkeit der Reaktion mit Natriummethylat bei 0°: H., R. 39, 466.
- 8.4.5-Trichlor-1.2-dinitro-bensol C<sub>6</sub>HO<sub>4</sub>N<sub>2</sub>Cl<sub>2</sub>, s. nebenstehende Formel. B. Aus 3.4.5-Trichlor-1-nitro-benzol beim Behandeln mit Salpeterschwefelsäure auf dem Wasserbad (HÜFFER, R. 40, 451). — Gelbe Krystalle aus Alkohol). F: 105-106°. - Liefert beim Erwärmen mit alkoh. Ammoniak auf 50° unter

$$\begin{array}{c} NO_2 \\ \text{Cl} \cdot \\ \\ Cl \end{array}$$

NO<sub>2</sub> Cl

NO<sub>2</sub>

 $NO_2$ 

NO2

C)

Druck 4.5.6-Trichlor-2-nitro-anilin (H., R. 40, 461). Beim Behandeln mit Natriummethylat-Lösung erhält man 4.5.6-Trichlor-2-nitro-anisol (H., R. 40, 462); Geschwindigkeit dieser Reaktion bei  $0^{\circ}$ : H., R. 40, 469.

3.4.6-Trichlor-1.2-dinitro-benzol C<sub>6</sub>HO<sub>4</sub>N<sub>2</sub>Cl<sub>3</sub>, s. nebenstehende Formel.

B. Beim Erwärmen von 2.3.5-Trichlor-1-nitro-benzol mit Salpeterschwefelsäure auf dem Wasserbad (HÜFFER, R. 40, 456). Entsteht in geringer Menge aus 3.4.6-Trichlor-2-nitro-anilin beim Diazotieren in salpetersaurer Lösung und Behandeln mit Natriumnitrit sowie aus 2.5-Dichlor-3.4-dinitro-anilin beim Diazotieren und Behandeln mit Kupferpulver, Kupfer(I)-chlorid und Salzsäure (H., R. 40, 454, 455). — Hellgelbe Prismen (aus Alkohol). F: 70—71°. — Liefert beim Erwärmen mit 1 Mol alkoh. Ammoniak im geschlossenen Gefäß auf 50° 3.5.6-Trichlor-2-nitro-anilin (H.). Bei der Einw. von 1 Mol Natriummethylat erhält man 3.5.6-Trichlor-2-nitro-anisol und 4.5 (oder 4.6)-Dichlor-2.3-dinitro-anisol oder 2.5-Dichlor-3.4-dinitro-anisol (F: 138° bis 140°) (H., R. 40, 466). Geschwindigkeit der Reaktion mit Natriummethylat bei 0°: H., R. 40, 470.

2.4.5-Trichlor-1.3-dinitro-benzol C<sub>6</sub>HO<sub>4</sub>N<sub>2</sub>Cl<sub>3</sub>, s. nebenstehende Formel (H 266; dort als 1.2.4-Trichlor-x.x-dinitro-benzol bezeichnet). Zur Konstitution vgl. Hüffer, R. 40, 452.—B. Bei der Einw. von siedender Salpeterschwefelsäure auf 1.2.4-Trichlor-benzol, auf 2.3.6-Trichlor-1-nitro-benzol sowie auf 2.4.5-Trichlor-1-nitro-benzol (Hüffer, R. 40, 452). Aus 2.5.6-Trichlor-3-nitro-anilin beim Diazotieren und Behandeln mit Natriumnitrit (H., R. 40, 457).— Hellgelbe Nadeln (aus Alkohol). F: 102,5—103,5°.— Liefert beim Behandeln mit alkoh. Ammoniak in der Kälte 6-Chlor-2.4-dinitro-1.3-diamino-benzol (H.). Bei der Einw. von 1 Mol Natriumnethylat in Methanol erhält man 3.6-Dichlor-2.4-dinitro-anisol und wahrscheinlich 3.4-Dichlor-2.6-dinitro-anisol (H., R. 40, 464). Beim Erhitzen mit 2 Mol Natriummethylat-Lösung auf dem Wasserbad entsteht 6-Chlor-2.4-dinitro-resorcin-dimethyläther (H., R. 40, 464). Geschwindigkeit der Reaktion mit Natriummethylat bei 0°: H., R. 40, 470.

2.4.6-Trichlor-1.3-dinitro-benzol C<sub>6</sub>HO<sub>4</sub>N<sub>2</sub>Cl<sub>3</sub>, s. nebenstehende Formel (H 265). B. Entsteht bei der Nitrierung von 1.3.5-Trichlor-benzol mit Salpetersäure in der Siedehitze (nicht in der Kälte, wie Jackson, Wing, Am. 9, 353 angeben) (Hüffer, R. 40, 451; vgl. dagegen Schlubach, Mergenthaler, B. 58, 2735). — F: 129—130° (H.), 131—131,5° (Schl., M.), 131,5° (Borsche, Trautner, A. 447, 6). — Einw. von alkoh. Ammoniak bei 100°: H., R. 40, 460; B., Tr. Liefert beim Behandeln mit etwa 3 Mol Hydrazinhydrat in heißem Alkohol 1-Oxy-5.7-dichlor-6-nitro-benztriazol; beim Kochen mit 6 Mol Hydrazinhydrat in Alkohol erhält man daneben bräunliche Nadeln, die oberhalb 200° explodieren (B., Tr., A. 447, 6). Bei der Einw. von 1 Mol Natriummethylat in Methanol entsteht 3.5-Dichlor-2.4-dinitro-anisol (H., R. 40, 460): mit überschüssigem Natriummethylat in Benzol + Methanol erhielten Schlubach, Mergenthaler 5-Chlor-4.6-dinitro-resorein-dimethyläther und Dinitrophloroglucin-dimethyläther. Van Rijn (R. 45, 258) 5-Chlor-2.4-dinitro-resorein-dimethyläther, 5-Chlor-4.6-dinitro-resorein-dimethyläther und 2.4.6-Trichlor-3-nitro-anisol. Geschwindigkeit der Reaktion mit Natriummethylat bei 0°: Hüffer, R. 40, 468. Bei der Reaktion mit Natriumphenolat bilden sich je nach den Reaktionsbedingungen 3.5-Dichlor-2.4-dinitro-diphenyläther. 5-Chlor-2.4-dinitro-resorein-diphenyläther oder Dinitrophloroglucintriphenyläther (Borsche, Trautner, A. 447, 10). Beim Erhitzen mit Natriumacetat und Acetamid auf 160° erhält man 3.5-Dichlor-2.4-dinitro-phenol (B., Tr., A. 447, 9). Umsetzung mit Natriummalonsäuredimethylester und mit Natriumacetat, so entsteht N-[3.5-Dichlor-2.4-dinitro-phenyl]-piperidin; bei Verwendung von überschüssigem Piperidin unter denselben Bedingungen erhält man 2.4-Dinitro-1.3.5-tripiperidino-benzol (B., Tr., A. 447, 8).

4.5.6-Trichlor-1.3-dinitro-benzol C<sub>6</sub>HO<sub>4</sub>N<sub>2</sub>Cl<sub>3</sub>, s. nebenstehende Formel.

B. Beim Kochen von 1.2.3-Trichlor-benzol mit Salpeterschwefelsäure (HÜFFER, Cl. VA, 452). Aus 3.4.5-Trichlor-2.6-dinitro-benzoesäure beim Kochen der alkoh.

Lösung (van de Bunt, R. 48, 133, 134). — Gelbgrüne Nadeln (aus Alkohol).

F: 92—93° (H.), 93—94° (van de B.). — Liefert beim Erhitzen mit alkoh.

Ammoniak im Rohr auf 100° 5.6-Dichlor-2.4-dinitro-anilin (H., R. 40, 462). Beim Behandeln mit Natriummethylat-Lösung erhält man 5.6-Dichlor-2.4-dinitro-anisol (H., R. 40, 462).

Geschwindigkeit der Reaktion mit Natriummethylat bei 0°: H., R. 40, 469.

2.3.5 - Trichlor - 1.4-dinitro-benzol C<sub>6</sub>HO<sub>4</sub>N<sub>2</sub>Cl<sub>3</sub>, s. nebenstehende Formel. B. Aus 2.3.6-Trichlor-4-nitro-anilin beim Diazotieren und folgenden Behandeln mit Natriumnitrit (Hüffer, R. 40, 458). Entsteht neben 2.5-Dichlor-1.4-dinitro-benzol beim Chlorieren von 2.5-Dinitro-anilin und folgenden Diazotieren und Behandeln mit Kupfer(I)-chlorid (van de Vliet, R. 43, 619; vgl. a. Holleman,

 $NO_2$ 

·Cl

·NO2

- R. 39. 455). Ist dimorph; durch Krystallisation aus Alkohol erhielt VAN DE VLIET hellgelbe Prismen und rosa Nadeln; Schmelzpunkt beider Formen 87-88°; Hüffer (R. 40. 458) erhielt gelbe Nadeln, die sich beim Abkühlen der Mutterlauge in eine farblose. scheinbar amorphe Masse verwandelten; F: 95-960. - Liefert beim Erhitzen mit alkoh. Ammoniak im geschlossenen Gefäß auf 50° 2.3.6-Trichlor-4-nitro-anilin (Hü., R. 40, 467). Beim Behandeln mit Natriummethylat-Lösung erhält man 2.3.6-Trichlor-4-nitro-anisol (Hü., R. 40, 467). Geschwindigkeit der Reaktion mit Natriummethylat bei 0°: Hü., R. 40, 471.
- $\textbf{1.2.4-Trichlor-x-dinitro-benzol} \quad C_6HO_4N_2Cl_3 \ = \ C_6HCl_3(NO_2)_2 \quad (H \quad 266).$ Ist als 2.4.5-Trichlor-1.3-dinitro-benzol erkannt worden (Hüffer, R. 40, 452).
- **3.4.5.6** Tetrachlor 1.2 dinitro benzol  $C_8O_4N_2Cl_4$ , s. nebenstehende  $NO_2$ Formel. B. Aus 2.3.4.5-Tetrachlor-1-nitro-benzol beim Kochen mit Salpeter- Cl.  $\cdot NO_2$ schwefelsäure (Berckmans, Holleman, R. 44, 857). — Nadeln (aus Alkohol). ·CI F: 1510. — Bei der Einw. von Natriummethylat-Lösung entstehen keine ein-Cl heitlichen Produkte.
- 2.4.5.6 Tetrachlor 1.8 dinitro benzol  $C_8O_4N_2Cl_4$ , s. nebenstehende Formel (H 266). B. Zur Bildung durch Nitrierung von 1.2.3.5-Tetrachlor-benzol mit Salpeterschwefelsäure vgl. Berckmans, Holleman, R. 44, 855. — F: 161° bis 162° (B., H.). — Bei der Einw. von Natriummethylat-Lösung wird ein Teil des Chlors ausgetauscht (B., H., R. 44, 859). Gasentwicklung bei der Einw. von Methylmagnesiumjodid in Butyläther bei 70°: GILMAN, FOTHERGILL, Bl. [4] 45, 1135.
- 2.3.5.6-Tetrachlor-1.4-dinitro-benzol  $C_6O_4N_2Cl_4$ , s. nebenstehende Formel. B. Beim Kochen von 1.2.4.5-Tetrachlor-benzol mit Salpetersäure (D: 1,52) und  $NO_2$ rauchender Schwefelsäure (25% SO<sub>3</sub>) (Berckmans, Holleman, R. 44, 851). — Blättchen (aus Alkohol + Benzol). F: 227—228°. Sehr leicht löslich in Benzol, ·CI sehr schwer in Alkohol. - Liefert beim Erhitzen mit 0,1 n-Natriummethylat-NO<sub>2</sub> Lösung auf dem Wasserbad 2.3.5.6-Tetrachlor-4-nitro-anisol.
- 4-Brom-1.2-dinitro-benzol C<sub>6</sub>H<sub>2</sub>O<sub>4</sub>N<sub>2</sub>Br, Formel I (H 266; E I 138). Liefert bei der Nitrierung mit Salpeterschwefelsäure bei 100-130° als Hauptprodukt 5-Brom-1.2.4-trinitrobenzol (Giua, G. 51 I, 309).
- 4 Brom 1.3 dinitro benzol C<sub>6</sub>H<sub>3</sub>O<sub>4</sub>N<sub>2</sub>Br, Formel II (H 266; E I 138). Thermische Analyse der binären Systeme mit Cinnamylidenacetophenon: GIUA, G. 55, 574; mit Azoxybenzol: GIUA, GUASTALLA, G. 55, 651. — Zur Umsetzung mit alkoh. Ammoniak vgl. Franzen, Bockhacker, B. 53, 1178. Liefert beim Erhitzen mit Kaliumarsenit in Alkohol 2.4-Dinitro-phenol (Balaban. Soc. 1926, 572). Geschwindigkeit der Reaktion mit Natriummethylat und Natriumäthylat bei 25°: MATTAAR, R. 41, 106, 107; mit alkoh. Ammoniak bei 10° und 100°: Franzen. BOCKHACKER, B. 53, 1178; mit Anilin in Alkohol bei Siedetemperatur: LINDEMANN, PABST. A. 462, 31, 44; bei Zimmertemperatur: Fr., B.; mit Anilin und mit Methylanilin in Alkohol bei 50°: Rheinlander, Soc. 123, 3107, 3109; mit Piperidin in Benzol: Brewin, Turner, Soc. 1928, 332; in Alkohol: Fr., B.; mit Pyridin bei 16—18°: Tronow, Ж. 58, 1286; C. 1927 II, 1145.
- **5-Brom-1.3-dinitro-benzol**  $C_8H_3O_4N_2Br$ , s. nebenstehende Formel. B.  $NO_2$ Aus 6-Brom-2.4-dinitro-anilin beim Behandeln mit Kaliumpyrosulfit K<sub>2</sub>S<sub>2</sub>O<sub>5</sub> und Salpetersäure (D: 1,48) und Erwärmen der so erhaltenen Diazoniumsalz-·NO2 Lösung mit Kupfersulfat in Alkohol auf dem Wasserbad (ELION, R. 42, Br. NO2 172). — Hellgelbe Nadeln (aus Alkohol). F: 77°. Leicht löslich in Alkohol, Äther, Chloroform, Benzol, Aceton und Essigester, ziemlich leicht in Petroläther.
- 6-Chlor-4-brom-1.3-dinitro-benzol C<sub>6</sub>H<sub>2</sub>O<sub>4</sub>N<sub>2</sub>ClBr, s. nebenstehende Formel. Die Angaben von Hodgson (J. Soc. Dyers Col. 42, 366; C. 1927 I, NO2 1431) über die Existenz zweier isomerer oder tautomerer Formen, die sich durch die Lage der Doppelbindungen unterscheiden, wurden von CONTARDI, Dansi (Rend. Ist. lomb. [2] 66, 203; C. 1933 II, 1512) widerlegt. — B. Beim Br Eintragen von 3-Chlor-1-brom-benzol in Salpeterschwefelsäure und Erhitzen auf dem Wasserbad (H.). Durch Umsetzung von 5-Brom-2.4-dinitro-benzol-diazoniumsulfat-(1) mit Natriumchlorid und Kupfersulfat oder von 5-Chlor-2.4-dinitro-benzol-diazoniumsulfat-(1) mit Natriumbromid und Kupfersulfat in Eiswasser (H.). Wurde einmal beim Diazotieren von 5-Brom-2.4-dinitro-anilin in salzsaurer Lösung erhalten (H.). — Tafeln (aus Alkohol). F: 101°. Leicht löslich in heißem Äther, Aceton und Benzol, schwer in Petroläther und kaltem Alkohol.

- 4-Chlor-5-brom -1.3-dinitro-benzol C<sub>6</sub>H<sub>2</sub>O<sub>4</sub>N<sub>2</sub>ClBr, s. nebenstehende Formel. B. Beim Erhitzen von 6-Brom-2.4-dinitro-phenol mit p-Toluol-sulfo-chlorid und Diäthylanilin auf dem Wasserbad (Sané, Joshi, Soc. 125, 2482).— Krystalle (aus Alkohol). F: 63°.— Beim Leiten von Ammoniak in die siedende alkoholische Lösung erhält man 6-Brom-2.4-dinitro-anilin, beim Erhitzen mit 2-Amino-phenol und Natriumacetat in Alkohol bildet sich 2.4-Dinitro-phenoxazin (Syst. Nr. 4198).
- 4.6-Dibrom-1.3-dinitro-benzol C<sub>6</sub>H<sub>2</sub>O<sub>4</sub>N<sub>2</sub>Br<sub>2</sub>, Formel I (H 268). Krystalle (aus Alkohol). F: 117° (Hodgson, J. Soc. Dyers Col. 42, 367; C. 1927 I, 1431).
- 2.4.6 Tribrom -1.3 dinitro-benzol C<sub>6</sub>HO<sub>4</sub>N<sub>2</sub>Br<sub>3</sub>, Formel II (H 269). Liefert beim Behandeln mit 2,25 Mol Piperidin in siedendem Chloroform N [3.5 Dibrom-2.4 dinitro-phenyl]-piperidin; mit überschüssigem Piperidin unter Kühlung entsteht 2.4 Dinitro-1.3.5 tripiperidino-benzol (LE FEVRE, TURNER, Soc. 1927, 1119).

I. 
$$\stackrel{\text{NO}_2}{\underset{\text{Br}}{}}$$
 II.  $\stackrel{\text{NO}_2}{\underset{\text{Br}}{}}$   $\stackrel{\text{NO}_2}{\underset{\text{Br}}{}}$ 

- 4.5.6-Tribrom-1.3-dinitro-benzol  $C_6HO_4N_2Br_3$ , Formel I (H 269). B. Beim Kochen von 3.4.5-Tribrom-2.6-dinitro-benzoesäure mit Ålkohol (van de Bunt, R. 48, 128). F: 150—151°.
- 4-Jod-1.2-dinitro-benzol C<sub>6</sub>H<sub>3</sub>O<sub>4</sub>N<sub>2</sub>I, Formel II (H 270). Beim Behandeln mit wäßrig-alkoholischer Kalilauge erhält man 5-Jod-2-nitro-phenetol (Αροστοίο, G. 51 II, 397).

$$I. \begin{tabular}{ll} \hline $NO_2$ & $NO_2$ & $NO_2$ \\ \hline $I.$ & $Br. \\ \hline $Br.$ & $II.$ & $O_2$ & $III.$ & $O_2$ \\ \hline $I.$ & $II.$ & $O_2$ & $O_3$ \\ \hline $I.$ & $O_4$ & $O_2$ & $O_4$ & $O_2$ \\ \hline $I.$ & $O_4$ & $O_4$ & $O_4$ & $O_4$ & $O_4$ \\ \hline $I.$ & $O_4$ \\ \hline $I.$ & $O_4$ \\ \hline $I.$ & $O_4$ &$$

- 4-Jod-1.3-dinitro-benzol C<sub>8</sub>H<sub>3</sub>O<sub>4</sub>N<sub>2</sub>I, Formel III (H 270). Die Oxydation mit unterchloriger Säure in Eisessig führt zu 4-Jodo-1.3-dinitro-benzol (Vorländer, R. 48, 915). Geschwindigkeit der Reaktion mit alkoh. Ammoniak bei 10° und 100°: vgl. Franzen, Bockhacker, B. 53, 1179; mit Anilin und Methylanilin in Alkohol bei 50°: Rheinlander, Soc. 123, 3109; mit Piperidin in Benzol bei 15°: Brewin, Turner, Soc. 1928, 332.
- 4-Jodo-1.3-dinitro-benzol C<sub>6</sub>H<sub>3</sub>O<sub>6</sub>N<sub>2</sub>I, s. nebenstehende Formel. B. Durch Oxydation von 4-Jod-1.3-dinitro-benzol mit unterchloriger Säure in Eisessig-Lösung (Vorländer, R. 48, 915). Tafeln (aus Salpetersäure). Explodiert zwischen 140° und 160°. Liefert beim Behandeln mit Salzsäure 4-Jod-1.3-dinitro-benzol. Mit 10%iger Essigsäure erhält man 6-Jod-2.4-dinitro-phenol. Bei der Einw. von kalter verdünnter Natronlauge entstehen 1.3-Dinitro-benzol und Natriumjodat; bei der Einw. von wäßr. Silbernitrat-Lösung 1.3-Dinitro-benzol und Silberjodat. Mit Natriumnitrit-Lösung bilden sich 1.2.4-Trinitro-benzol und 2.4-Dinitro-phenol. 4-Jodo-1.3-dinitro-benzol gibt mit überschüssiger wäßriger Natriumazid-Lösung 2.4-Dinitro-1-azido-benzol.
- 5-Jod-1.3-dinitro-benzol  $C_6H_3O_4N_2I$ , Formel IV. B. Aus diazotiertem 3.5-Dinitro-anilin beim Behandeln mit Kaliumjodid-Lösung (Nicolet, Am. Soc. 49, 1813). Goldgelbe Blättchen (aus 60 %igem Alkohol). F: 99°. Gibt bei der Reduktion mit Zinn und Salzsäure und nachfolgenden Acetylierung mit Acetanhydrid in essigsaurer Lösung N.N'-Diacetyl-5-jod-phenylendiamin-(1.3).
- 6-Brom-4-jod-1.3-dinitro-benzol  $C_8H_2O_4N_2$ BrI, Formel V. Diese Konstitution kommt der von Körner (G.4,384;J.1875,329) als 2-Brom-4-jod-1-nitro-benzol beschriebenen Verbindung (H 5, 254) zu (Mayes, Turner, Soc. 1928, 693). B. Beim Erwärmen von 3-Brom-1-jod-benzol mit Salpeterschwefelsäure (M., T.). Krystalle (aus Alkohol). F: 125° bis 127°. Gibt beim Erwärmen mit Piperidin 4.6-Dinitro-1.3-dipiperidino-benzol.

$$IV. \underbrace{I. \bigcirc_{\cdot NO_2}}_{I} V. \underbrace{V.}_{\cdot NO_2} \underbrace{VI.}_{\cdot NO_2} \underbrace{VII. \bigcirc_{\cdot NO_2}}_{\cdot NO_2} \underbrace{VII.}_{\cdot NO_2} \underbrace{VIII.}_{\cdot NO_2} \underbrace{VIII.}_{\cdot NO_2}$$

- 4.6-Dijod-1.3-dinitro-benzol C<sub>6</sub>H<sub>2</sub>O<sub>4</sub>N<sub>2</sub>I<sub>2</sub>, Formel VI (H 270; E I 139). Liefert beim Kochen mit Alkalilaugen oder Alkalicarbonat-Lösungen 4.6-Dinitro-resorcin (Hodgson, Moore, Soc. 1927, 631).
- **4-Nitroso-1.3-dinitro-benzol**  $C_6H_3O_5N_3$ , Formel VII. B. Aus  $\beta$ -[2.4-Dinitro-phenyl]-hydroxylamin beim Behandeln mit Chromessigsäure unter Kühlung (Borsche, B. 56, 1498).

— Dunkelgelbe Nadeln (aus Eisessig). F: 133°; die Schmelze ist tiefgrün. Löslich in warmem Alkohol, Eisessig und Benzol mit grüner Farbe; beim Erkalten werden die Lösungen gelb bis braungelb. — Wird durch warme Natronlauge zersetzt.

5-Brom-4-nitroso-1.3-dinitro-benzol  $C_0H_2O_5N_3Br$ , Formel VIII. B. Aus  $\beta$ -[6-Brom-2.4-dinitro-phenyl]-hydroxylamin beim Behandeln mit Chromessigsäure (Borsche, Feske, B. 59, 685). — Dunkelgelbe Krystalle (aus Essigsäure). Schmilzt bei 99° zu einer grünen Flüssigkeit. Löslich in Eisessig mit tiefgrüner Farbe.

"4.5-Dinitroso-1.3-dinitro-benzol"  $C_6H_2O_6N_4$  s. Syst. Nr. 4624 (vgl. E I 27, 623). [BAUMANN]

1.2.3 - Trinitro - benzol C<sub>6</sub>H<sub>3</sub>O<sub>6</sub>N<sub>3</sub>, s. nebenstehende Formel (E I 140). B. NO<sub>2</sub>
Beim Erwärmen von 2.6-Dinitro-phenylhydroxylamin mit Salpetersäure (D: 1,54)
auf dem Wasserbad (Borsche, B. 56, 1501). Entsteht aus 2.6-Dinitro-benzoldiazonium-nitrat und Nitrit-Lösung (E I 140) auch bei Abwesenheit von Kupfersalz in guter Ausbeute (Koerner, Contardi, R. A. L. [5] 23 II [1914], 466; Holleman,
van Haeften, R. 40, 94). — Farblose Blättchen mit grünlichem Reflex (aus absol. Alkohol).
F: 127° (Ho., v. Hae.). — Liefert beim Erwärmen mit Natriummethylat-Lösung auf dem
Wasserbad 2.6-Dinitro-anisol (Ho., v. Hae.). Beim Erwärmen mit Anilin erhält man 2.6-Dinitro-diphenylamin (B.).

1.2.4-Trinitro-benzol C<sub>6</sub>H<sub>3</sub>O<sub>6</sub>N<sub>3</sub>, s. nebenstehende Formel (H 271; E I 140). NO<sub>2</sub>
B. Aus 4-Jodo-1.3-dinitro-benzol und Natriumnitrit-Lösung in der Kälte (Vor-LÄNDER, R. 48, 916). Aus 2.3.6-Trinitro-benzoesäure (E I 9, 168) durch Erhitzen der wasserfreien Säure über den Schmelzpunkt oder durch Erhitzen des Dihydrats im Luftstrom auf 100° (Koerner, Contardi, R. A. L. [5] 25 II, 348; G. 47 I [1917], NO<sub>2</sub>
238). Durch Oxydation von 2.4-Dinitro-phenylhydroxylamin mit Salpetersäure (D: 1,54) auf dem Wasserbad (Borsche, B. 56, 1498). Beim Schütteln von 2.4-Dinitro-benzoldiazoniumnitrat-(1) mit kalter Natriumnitrit-Lösung (Holleman, van Haeften, R. 40, 96). — Hellgelbe Prismen (aus verd. Methanol). F: 60° (B.). Verbrennungswärme bei konstantem Volumen: 675,9 kcal/Mol (Garner, Abernethy, Pr. roy. Soc. [A] 99, 230; C. 1921 III, 866). Krystallisationswärme: G., A. Sehr leicht löslich in heißer Salpetersäure (D: 1,4); schwer löslich in siedendem Wasser (B.). — Geschwindigkeit der Zersetzung bei 140°: Robertson, Soc. 119, 13. Liefert beim Erhitzen mit Natriummethylat-Lösung auf dem Wasserbad 2.4-Dinitro-anisol (Ho., van Hae.). Gibt beim Kochen mit alkoh. Kaliumrhodanid-Lösung 2.4-Dinitro-phenylrhodanid; reagiert analog mit Kaliumselenocyanat (Challenger, Collins, Soc. 125, 1380). Reagiert mit Anilin in Methanol oder Ather rasch unter Bildung von 2.4-Dinitro-diphenylamin (B.).

1.3.5 - Trinitro - benzol C<sub>6</sub>H<sub>3</sub>O<sub>6</sub>N<sub>3</sub>, s. nebenstehende Formel (H 271; NO<sub>2</sub> E I 140). B. Zur Bildung durch Nitrieren von 1.3-Dinitro-benzol vgl. Rad-cliffe, Pollitt, J. Soc. chem. Ind. 40, 46 T; C. 1921 IV, 39; Drummond, J. Soc. chem. Ind. 41, 338 T; C. 1923 II, 402. Neben Prikinsäure und anderen Produkten bei 6-stdg. Erhitzen von äquimolekularen Mengen Benzol und Stickstoffdioxyd im Rohr auf 80° (Wieland, B. 54, 1778). Beim Verdampfen einer Lösung von 2.4.6-Trinitro-benzoesäure in Pyridin im Vakuum (Desvergnes, Monit. scient. [5] 16, 202; C. 1926 II, 3043). Beim Kochen von 2.4.6-Trinitro-isophthalsäure mit Wasser (Giua, G. 52 I, 186).

Physikalische Eigenschaften. Bei ihren systematischen Untersuchungen über die Bildung von 1.3.5-Trinitro-benzol aus 1.3-Dinitro-benzol erhielten Radcliffe, Pollitt (J. Soc. chem. Ind. 40, 46 T; C. 1921 IV, 39) bei einigen Versuchen auch eine wenig stäbile Modifikation vom Schmelzpunkt 61°, die sich weder durch Impfen der gesättigten alkoholischen Lösung noch durch Erhitzen für sich oder mit konz. Schwefelsäure in die gewöhnliche Modifikation überführen ließ. Aus einem Gemisch gleicher Volumina der gesättigten Lösungen der beiden Modifikationen in Alkohol wurde jedoch durch fraktionierte Krystallisation nur die höherschmelzende Modifikation erhalten; leicht gelingt die Umwandlung durch Überführung in eine additionelle Verbindung, z. B. mit Anilin und nachfolgende Zerlegung mit verd. Salzsäure. Die Umstände, von denen die Bildung der Modifikation vom Schmelzpunkt 61° abhängt, konnten von Radcliffer, Pollitt nicht ermittelt werden. — F: 121,1—122,3° (Williams, Schwingel, Am. Soc. 50, 363), 122,1—122,4° (Garner, Abernethy, Pr. roy. Soc. [A] 99, 230; C. 1921 III, 866), 122,45—122,50° (Desvergnes, Monit. scient. [5] 15, 150; C. 1925 II, 2051). D: 1,76 (Skraup, Eisemann, A. 449, 9). Verbrennungswärme bei konstantem Volumen: 659,6 kcal/Mol (Tomioka, Takahashi in Landolt-Börnst. E III, 2914), 665,6 kcal/Mol (Garner, Abernethy, Pr. roy. Soc. [A] 99, 230; C. 1921 III, 866). Krystallisationswärme: G., A. Dipolmoment μ×10¹8 (gemessen an verd. Lösungen in Benzol)

0.8 (Williams, Am. Soc. **50**, 2351; Phys. Z. **29** [1928], 684; Parts, Ph. Ch. [B] **4**, 233), 0.7 (Höjendahl, Phys. Z. **30**, 394; C. **1929** II, 1898). Zur Temperaturabhängigkeit des Dipolmoments vgl. Parts.

Löslichkeit (g in 100 g Lösungsmittel) in Wasser bei 15°: 0,0278, bei 50°: 0,102, bei 100°: 0,498; in Äther bei 17°: 1,70, bei 32,5°: 2,72; in Schwefelkohlenstoff bei 17°: 0,239, bei 33°: 0.44; Löslichkeit in weiteren Lösungsmitteln bei 17° und 50° s. die untenstehende Tabelle

| Lösungsmittel                                    | Bei 170                        | Bei 500                         | Lösungsmittel | Bei 170                                  | Bei 500                                   |
|--------------------------------------------------|--------------------------------|---------------------------------|---------------|------------------------------------------|-------------------------------------------|
| Chloroform Tetrachlorkohlen- stoff Benzol Toluol | 6,24<br>0,237<br>6,18<br>11,82 | 18,42<br>0,69<br>25,70<br>76,31 | Methanol      | 3,76<br>2,09<br>59,11<br>29,83<br>112,61 | 7,62<br>4,57<br>160,67<br>52,40<br>194,23 |

(Desvergnes, Monit. scient. [5] 15, 150; C. 1925 II, 2050). 100 cm³ Alkohol lösen bei 18° 1,48 g, 100 cm³ Ligroin 0,048 g 1.3.5-Trinitro-benzol; 1 g 1.3.5-Trinitro-benzol löst sich in ca. 15 cm³ Chloroform, in ca. 270 cm³ Tetrachlorkohlenstoff und in ca. 80 cm³ Äther (Dim-roth, Bamberger, A. 438, 104). Leicht löslich in verd. Na<sub>2</sub>SO<sub>3</sub>-Lösung (Muraour, Bl. [4] 35, 374). Thermische Analyse der binären Systeme mit 4-Jod-diphenyl: Pfeiffer, Schmitz, Inoue, J. pr. [2] 121, 81; mit Acenaphthen: Kremann, Strzelba, M. 42, 178; mit Anthracen: Kr., Müller, M. 42, 190; mit Triphenylearbinol: Kr., Hohl, Müller, M. 42, 217; mit Campher: Jefremow, Izr. ross. Akad. [6] 13, 768; C. 1925 II, 524; mit β-Naphthylamin: Rheinboldt, J. pr. [2] 111, 252; Rh., Kircheisen, J. pr. [2] 113, 353; mit ο-, m- und p-Phenylendiamin: Kr., Mauermann, M. 43, 317, 318, 319; mit Carbazol: Kr., Strzelba, M. 42, 174, 178. Lichtabsorption von Gemischen mit Stilben, α-Methylstilben und α.α'-Dimethyl-stilben in Chloroform: Ley, Rinke, B. 56, 775. Dichten und Dielektr.-Konst. von Lösungen in Benzol zwischen 10° und 50°: Parts, Ph. Ch. [B] 4, 233. Scheinbares Reduktionspotential bei 24°: Conant, Lutz, Am. Soc. 45, 1052, 1056.

Chemisches Verhalten. Geschwindigkeit der Zersetzung im Vakuum bei 183° und der Zersetzung des Gemisches mit Pikrinsäure im Vakuum bei 150°: Farmer, Soc. 117. 1444, 1445. Zusammensetzung der bei der Detonation von 1.3.5-Trinitro-benzol entstehenden Gase: Poppenberg, Z. ang. Ch. 36, 84. Empfindlichkeit gegen Stoß oder Schlag: van Duin, R. 39, 687. — Sprengtechnische Eigenschaften: Robertson, Soc. 119, 8—18. Beim Erwärmen mit 10%iger Kaliumpersulfat-Lösung auf dem Wasserbad entstehen Salpetersäure, Ammoniak, geringe Mengen Blausäure und Spuren von salpetriger Säure (Ricca, G. 57, 270, 272). Bei der Einw. von Titan(III)-chlorid auf 1.3.5-Trinitro-benzol in siedendem Alkohol entsteht 3.5-Dinitro-anilin (van Duin, R. 39, 581). 1.3.5-Trinitro-benzol liefert beim Kochen mit siedender Chlorkalk-Lösung Chlorpikrin (Orton, McKie, Soc. 119, 33).

Über additionelle Verbindungen mit organischen Verbindungen vgl. Ley, Rinke. B. 56, 775: Ley, Manecke, B. 56, 778, 783. Bildet mit Aldehyden, Ketonen, Estern, Nitrilen, mit Pyridin, Chinolin und anderen Verbindungen in Gegenwart von Natriumjodid und anderen anorganischen Salzen gelbe bis dunkelrote Lösungen; über das Vorliegen komplexer Verbindungen in solchen Lösungen vgl. Tronow, Djakonowa-Schulz, Sonowa. K. 59, 333; C. 1927 II, 1687. 1.3.5-Trinitro-benzol liefert bei der Einw. von Natriummethylat-Lösung auf dem Wasserbad 3.5-Dinitro-anisol (Lobry de Bruyn, R. 9 [1890], 208; Holleman, Wilhelmy, R. 21 [1902], 438; Ho., van Haeften, R. 40, 97); Geschwindigkeit dieser Reaktion bei 0°: Ho., van Hae. Gasentwicklung bei der Einw. von Athylmagnesiumbromid-Lösung auf 1 3.5-Trinitro-benzol: Gilman, Fothergill, Am. Soc. 49, 2817. Bei der Einw. von überschüssigem N-Phenylhydroxylamin in methylalkoholischer Kalilauge bei Temperaturen unterhalb 50° entsteht ein Gemisch der stereoisomeren 3.5-Dinitro-azoxybenzole und viel Azoxybenzol (Meisenheimer, B. 53, 363).

Physiologisches Verhalten: H. Staub in J. Houben, Fortschritte der Heilstoffchemic. 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 107. — Trennung von 2.4.6-Trinitro-toluol und 2.4.6-Trinitro-m-xylol mit Hilfe von Na<sub>2</sub>SO<sub>3</sub>-Lösung: Muraour, Bl. [4] **35**, 374. Die alkoh. Lösung gibt mit Natronlauge oder Ammoniak eine gelbrote Färbung; die Lösung in Aceton wird auf Zusatz von Natronlauge oder Ammoniak blutrot (Rudoleh, Fr. 60, 240). Versetzt man die Lösung in Alkohol mit Natriummethylat, so entsteht eine blutrote Färbung (Holleman, van Haeften, R. 40, 97). Die farblose Lösung in Alkohol + Eisessig wird bei Zusatz von Natriumäthylat-Lösung orangegelb (Bishop, Kittredge, Hildebrand, Am. Soc. 44, 138).

- 4-Chlor-1.2.8-trinitro-benzol  $C_6H_2O_6N_3Cl$ , s. nebenstehende Formel. R.

  Beim Erhitzen von 3-Chlor-1.2-dinitro-benzol mit rauchender Salpetersäure und Oleum  $(50\% \text{ SO}_3)$  auf  $160-170^\circ$  (Holleman, Versl. Akud. Amsterdam 31, 295; C. 1923 III, 746; van de Vliet, R. 43, 613). Nadeln (aus Alkohol). F: 68° (v. d. V.), 69° (H.). Beim Behandeln mit alkoh. Ammoniak erhält man 3-Chlor-2.6-dinitro-anilin (H.; v. d. V.). Liefert mit Natriummethylat-Lösung je nach den Mengenverhältnissen 3-Chlor-2.6-dinitro-anisol oder 2.4-Dinitro-resorcin-dimethyläther (v. d. V.). R. 43, 624); Geschwindigkeit der Reaktion mit Natriummethylat: v. d. V., R. 43, 627.
- 5-Chlor-1.2.3-trinitro-benzol C<sub>6</sub>H<sub>2</sub>O<sub>6</sub>N<sub>3</sub>Cl. s. nebenstehende Formel.

  B. Aus 4-Chlor-2.6-dinitro-benzol-diazoniumnitrat-(1) durch Einw. von Kupfersulfat und Natriumnitrit in Wasser (Holleman, Versl. Akad. Amsterdam 31. 294; C. 1923 III, 746; vgl. van de Vliet, R. 43, 608). Gelbe Krystalle (aus Benzol). F: 168° (H.; v. d. V.). Gibt mit 1 Mol 0,5 n-Natriummethylat-Lösung auf dem Wasserbad 4-Chlor-2.6-dinitro-anisol (v. d. V., R. 43, 622). Geschwindigkeit der Reaktion mit Natriummethylat: v. d. V., R. 43, 627.
- 5-Chlor-1.2.4-trinitro-benzol C<sub>6</sub>H<sub>2</sub>O<sub>6</sub>N<sub>3</sub>Cl, s. nebenstehende Formel (H 273). B. Beim Erhitzen von 2-Chlor-1.4-dinitro-benzol mit Salpetersäure (D: 1,52) und rauchender Schwefelsäure auf 160—170° (VAN DE VLIET, R. 43. 616). Durch Einw. von Natriummitrit-Lösung auf 5-Chlor-2.4-dinitro-benzoldiazoniummitrat-(1) (v. d. V., R. 43, 609). Gelbe Krystalle (aus Alkohol). NO2 F: 116° (v. d. V.). Liefert bei kurzem Erwärmen mit 1 Mol Natriummethylat-Lösung 5-Chlor-2.4-dinitro-anisol und 4.6-Dinitro-resorcin-dimethyläther (v. d. V., R. 43, 623); mit 2 Mol Natriummethylat-Lösung erhält man quantitativ die letztgenannte Verbindung (v. d. V., R. 43, 623; Giua. G. 51 I, 310). Geschwindigkeit der Reaktion mit Natriummethylat: v. d. V., R. 43, 627. Beim Erwärmen mit 2 Mol Benzaldehyd-methylimid in Alkohol auf dem Wasserbad erhält man N-Methyl-5-chlor-2.4-dinitro-anilin, beim Erwärmen mit ca. 4 Mol Benzaldehyd-methylimid in Gegenwart von Methanol tritt daneben auch N.N'-Dimethyl-4.6-dinitro-phenylendiamin-(1.3) auf (G., G. 53, 55). Bei der Einw. von Semicarbazid in Alkohol entsteht 1-[5-Chlor-2.4-dinitro-phenyl]-semicarbazid (G., G. 53, 847). Liefert mit 2 Mol Phenylhydrazin in Alkohol 5-Chlor-2.4-dinitro-hydrazobenzol (Giua. G. 53, 174 Anm. 16), mit 4 Mol Phenylhydrazin in siedendem Alkohol entsteht außerdem auch 4.6-Dinitro-1.3-bis-[β-phenyl-hydrazino]-benzol (G., G. 51 I, 312). Liefert mit N-Methyl-N-phenyl-hydrazin in heißem Alkohol N-Methyl-N-phenyl-N'-[5-chlor-2.4-dinitro-phenyl-hydrazin (G., G. 53, 848).
- **6-Chlor-1.2.4-trinitro-benzol** C<sub>6</sub>H<sub>2</sub>O<sub>6</sub>N<sub>3</sub>Cl, s. nebenstehende Formel.

  B. Beim Erhitzen von 3-Chlor-1.2-dinitro-benzol mit rauchender Salpetersäure und Oleum (50% SO<sub>3</sub>) auf 160—170% (HOLLEMAN, Versl. Akad. Amsterdam 31, 294; C. 1923 III, 746; van de Vliet, R. 43, 613). Tafeln (aus Alkohol). F: 105—106% (v. d. v.), 106% (H.). Beim Behandeln mit alkoh. Ammoniak NO<sub>2</sub> entsteht 6-Chlor-2.4-dinitro-aniin (H.: v. d. v.). Liefert mit 1 Mol Natriummethylat-Lösung 6-Chlor-2.4-dinitro-anisol (v. d. v.), R. 43, 623). Geschwindigkeit der Reaktion mit Natriummethylat: v. d. v., R. 43, 627.
- 2-Chlor-1.3.5-trinitro-benzol, Pikrylchlorid C<sub>6</sub>H<sub>2</sub>O<sub>6</sub>N<sub>3</sub>Cl, s. nebenstehende Formel (H 273; E I 140). B. Neben viel Chlorpikrin bei der Einw. von Natriumhypochlorit auf eine Suspension von Pikrinsäure in verd. Salzsäure bei 15—20° (Seyewetz, Chaix, Bl. [4] 41, 197, 200). Zur Bildung aus Pikrinsäure und Phosphorpentachlorid vgl. Brady, Horton, Soc. 127, 2233. Zur Darstellung durch Nitrierung von 4-Chlor-1.3-dinitro-benzol vgl. GIUA, DE FRANCISCIS, Ann. Chim. applic. 15 [1925], 140; Frankland, Garner, J. Soc. chem. Ind. 39, 259 T; C. 1920 III, 792.

applic. 15 [1925], 140; Frankland, Garner, J. Soc. chem. Ind. 39, 259 T; C. 1920 III, 792. F: 85° (Seventz, Chaix, Bl. [4] 41, 200). Löslichkeit (g in 100 g Lösungsmittel) in wasserfreiem Äther bei 17°: 7,128, bei 31°: 10,64; in Schwefelkohlenstoff bei 17°: 0,499 g. bei 30.5°: 0,95 g; Löslichkeit in weiteren organischen Lösungsmitteln s. die folgende Tabelle

Löslichkeit von Pikrylchlorid (g in 100 g Lösungsmittel).

| Lösungsmittel | Bet 170                            | Bei 500                           | Lösungsmittel                                                | Bei 170                                       | Bei 500                                      |
|---------------|------------------------------------|-----------------------------------|--------------------------------------------------------------|-----------------------------------------------|----------------------------------------------|
| Chloroform    | 12,36<br>0,557<br>36,690<br>89,435 | 233,4<br>2,45<br>428,08<br>321,05 | Methanol 1) Absol. Alkohol 3) . Aceton Essigester Pyridin 2) | 10,241<br>4,848<br>212,00<br>91,515<br>120,79 | 34,80<br>15,06<br>546,43<br>238,35<br>173,38 |

<sup>1)</sup> Unter Verseifung. — 3) Unter Schwarzfärbung. — 3) Unter geringer Verseifung.

(Desvergnes, Monit. scient. [5] 15, 77, 78; C. 1925 II, 18). 100 g Wasser lösen bei 15° 0,0178, bei 50° 0,053, bei 100° 0,346 g unter Hydrolyse (D.). Thermische Analyse des Gemisches mit 4-Chlor-1.3-dinitro-benzol (Eutektikum bei 25° und 44% Pikrylchlorid): Frankland, Garner, J. Soc. chem. Ind. 39 [1920], 258 T. Elektrische Leitfähigkeit in Methanol bei 24,3°: Schlubach, Mergenthaler, B. 58, 2736.

Verbraucht bei der Reduktion mit Titan(III)-chlorid in siedender wäßrig-alkoholischer Salzsäure die 20 Atomen Wasserstoff entsprechende Menge (HENDERSON, MACBETH, Soc. 121, 902). Liefert bei der Reduktion mit Eisenspänen und verd. Salzsäure bei 60° 1.3.5-Triamino-benzol (Macbeth, Soc. 121, 1121). Geschwindigkeit der Chlorwasserstoff-Abspaltung bei der Einw. von wäßrig-alkoholischer Kalilauge bei 82°: Davies, Wood, Soc. 1928, 1130; beim Erwärmen mit alkoh. Salzsäure: Rheinlander, Soc. 123, 3108. Geschwindigkeit der Reaktion mit Natriummethylat (vgl. H 274; van de Vliet, R. 43, 621) bei —10° und —50°: Talen, R. 47, 340; bei 0°: v. d. V., R. 43, 626. Liefert beim Erhitzen mit Silberpikrat in absol. Alkohol 2.4.6-Trinitro-phenetol (VAN DUIN, VAN LENNEP, R. 39, 157). Bei der Einw. auf die Natriumverbindung von Benz-anti-aldoxim in warmem Alkohol erhält man O-Pikryl-benzaldoxim vom Schmelzpunkt 181-1820 (Zers.); reagiert analog mit zahlreichen anderen aromatischen Aldoximen (Brady, Klein, Soc. 127, 846); die verwendeten Oxime werden von Brady, Klein als anti-Formen, die Reaktionsprodukte als syn-Formen angesehen. Gibt mit Natrium yanessigester in Alkohol Pikryleyanessigester (Fairbourne, Fawson, Soc. 1927, 48). Beim Erwärmen mit Cyanamid in wäßrig-alkoholischer Lösung entsteht neben anderen Produkten eine Verbindung  $C_{14}H_8O_{13}N_{10}$  (s. u.); beim Kochen des Reaktionsgemischs mit Alkohol und konz. Salzsäure erhält man Pikrylharnstoff (GIUA, G. 55, 664). Geht bei Behandlung mit Semicarbazid in verd. Alkohol in 1-Pikryl-semicarbazid über; reagiert analog mit Semioxamazid (GIUA, PETRONIO, J. pr. [2] 110, 304). Läßt man Pikrylchlorid auf eine Suspension von 1 Mol Thioharnstoff in kaltem Aceton einwirken und gießt die Mischung in Wasser, so entsteht das Hydrochlorid des S-Pikryl-isothioharnstoffs (isoliert als Pikrat und Salicylat); dampft man aus der ursprünglichen Reaktionsmischung das Aceton ab, so erhält man außerdem ein festes, kastanienbraunes, in Wasser unlösliches Produkt, das bei der Behandlung mit Alkohol neben anderen Produkten Dipikrylsulfid liefert; benützt man statt Aceton Alkohol als Lösungsmittel, so entsteht nur das braune Produkt (TAYLOR, man statt Aceton Aikonol als Losungsmittel, so entsteht nur das braune Produkt (TAYLOR, DIXON, Soc. 125, 248, 249; vgl. Giua, de Franciscis, Ann. Chim. applic. 15, 144). Bei der Einw. von Pikrylchlorid auf eine Suspension von N-Phenyl-thioharnstoff in kaltem Aceton und nachfolgender Zugabe von Wasser erhält man S-Pikryl-N-phenyl-isothioharnstoff (isoliert als Pikrat), Dipikrylsulfid und eine schwefelhaltige, chlorfreie Verbindung, die sich bei 120—122° zersetzt (T., D.). Geschwindigkeit der Reaktion mit Anilin und anderen aromatischen Aminen in Alkohol bei 7° bzw. 81,8°: Linke, B. 56, 851; mit Anilin, Anilinhydrochlorid und Methylanilin in alkohol val Hodgers, Soc. 123, 3108. 3109. Zur Reaktion mit Pyridin in Alkohol vgl. Hodges, Soc. 1926, 2420; mit Pyridin ohne Lösungsmittel vgl. Desvergnes, Monit. scient. [5] 15, 78; C. 1925 II, 18; Geschwindigkeit der Reaktion mit Pyridin bei 16—18°: Tronow, Ж. 58, 1287; С. 1927 II, 1145; mit Pyridin in Alkohol bei 23,2°, bei 33,3° und bei 49,1°: Hodges.

Verbindung C<sub>14</sub>H<sub>8</sub>O<sub>15</sub>N<sub>10</sub>. B. Neben anderen Produkten beim Erwärmen von Pikrylchlorid mit Cyanamid in wäßrig-alkoholischer Lösung (Giua, G. 55, 664). — Gelbe Krystalle (aus Essigester + Ligroin). F: 254—255° (Zers.). Leicht löslich in Essigester und Aceton, löslich in Eisessig, sehr schwer löslich in den übrigen organischen Lösungsmitteln. Löslich in rauchender Salpetersäure. Gibt mit Alkalilaugen eine dunkelrote Färbung.

**2.4.6-Trichlor-1.3.5-trinitro-benzol**  $C_6O_6N_3Cl_3$ , Formel I (H 275). B. Van Ryn (R. 45, 258) konnte nach der Arbeitsweise von Jackson, Mitarb. (H 275) nur geringfügige Mengen 2.4.6-Trichlor-1.3.5-trinitro-benzol erhalten.

5 - Brom - 1.2.4 - trinitro - benzol C<sub>6</sub>H<sub>2</sub>O<sub>6</sub>N<sub>3</sub>Br, Formel II. B. Als Hauptprodukt der Nitrierung von 4-Brom-1.2-dinitro-benzol mit einem Gemisch von rauchender Salpetersäure und rauchender Schwefelsäure bei 100—130° (GIVA, G. 51 I, 309).

$$I. \begin{array}{c} NO_2 \\ O_2N \\ O_2N \\ O_2 \end{array} \quad II. \quad NO_2 \\ NO_2 \\ II. \quad NO_2 \\ NO_2 \\ NO_3 \\ NO_4 \\ NO_5 \\$$

von rauchender Salpetersäure und rauchender Schwefelsäure bei 100—130° (Grua, G. 51 I, 309). — Cl No2
Nadeln (aus Alkohol). F: 120—121°. Leicht löslich in Alkohol, Äther, Benzol, Aceton, Chloroform, schwer in Petroläther. Die alkoh. Lösung färbt sich mit Alkali erst dunkelrot, dann gelb (G., G. 51 I, 309). — Liefert bei Behandlung mit methylalkoholischer Natronlauge 4.6-Dinitro-resorcin-dimethyläther (G., G. 51 I, 310). Bei der Einw. von alkoh. Ammoniak auf dem Wasserbad entstehen 5-Brom-2.4-dinitro-anilin und 4.6-Dinitro-phenylendiamin-(1.3) (G., G. 51 I, 310). Reagiert mit 1 Mol Benzaldehyd-methylimid in siedendem Alkohol unter Bildung von N-Methyl-5-brom-2.4-dinitro-anilin (G., G. 53, 55). Liefert mit 2—3 Mol wasserfreiem Athylamin in alkoh. Lösung bei 0° N-Athyl-5-brom-2.4-dinitro-anilin; reagiert analog mit anderen primären Aminen; mit 4 Mol Allylamin entsteht jedoch N.N'-Diallyl-4.6-dinitro-phenylendiamin-(1.3) (G., Angeletti, G. 52 I, 317). Bei Einw. von etwas mehr als 2 Mol

Hydrazinhydrat in Alkohol erhält man 5-Brom-2.4-dinitro-phenylhydrazin und wenig 4.6-Dinitro-1.3-dihydrazino-benzol; mit überschüssigem Hydrazinhydrat in Alkohol oder Benzol bildet sich die letztgenannte Verbindung in größerer Menge (G., G. 52 I, 347). Liefert mit 2 Mol Phenylhydrazin in Alkohol auf dem Wasserbad 5-Brom-2.4-dinitro-hydrazobenzol (G., G. 52 I, 348). Beim Behandeln mit überschüssigem Pyridin auf dem Wasserbad entsteht N-[2.4.5-Trinitro-phenyl]-pyridiniumbromid (G., G. 52 I, 348).

6-Brom-1.2.4-trinitro-bensol C<sub>6</sub>H<sub>5</sub>O<sub>6</sub>N<sub>5</sub>Br, s. nebenstehehende Formel.

B. Man erwärmt 6-Brom-2.4-dinitro-phenylhydroxylamin mit Salpetersäure (D: 1,52) 2 Stdn. auf dem Wasserbad (Borsche, Feske, B. 59, 685). — Gelbliche Krystalle (aus Alkohol oder Essigsäure). F: 101°. — Bleibt bei 3-stdg. Erwärmen mit Salpeterschwefelsäure auf 100° unverändert.  $NO_2$ 

2-Brom-1.3.5-trinitro-benzol, Pikrylbromid C<sub>6</sub>H<sub>2</sub>O<sub>6</sub>N<sub>3</sub>Br, Formel I (H 275). Durch Nitrieren von 4-Brom-1.3-dinitro-benzol (RHEINLANDER, Soc. 123, 3101). — Zur Abspaltung von Bromwasserstoffsäure in alkoh. Lösung bei 50° vgl. RH. Geschwindigkeit der Reaktion mit Anilin, Anilinhydrobromid und Methylanilin in alkoh. Lösung: RH.

2.4.6-Tribrom -1.3.5-trinitro-benzol C<sub>4</sub>O<sub>5</sub>N<sub>3</sub>Br<sub>5</sub>, Formel II (H 275). Beim Kochen mit einer Suspension von Natriumphenolat in Benzol entsteht 2.4.6-Trinitro-1.3.5-triphenoxy-benzol (van Rijn, R. 45, 264).

**2-Jod-1.3.5-trinitro-bensol, Pikryljodid**  $C_6H_2O_6N_3I$ , Formel III (H 275). B. Beim Schütteln von Pikrylquecksilberchlorid mit Kaliumperjodid und Kaliumjodid in Wasser (Кнавазен, Am. Soc. 43, 2243). Beim Kochen von Pikrylquecksilberchlorid mit Jod und Natriumjodid in Wasser oder von Quecksilberdipikryl mit Jod in verd. Alkohol (Whitmore, THURMAN, Am. Soc. 51, 1502). — Gelblich. F: 164—165° (KH.). 165° (unkorr.) (RHEIN-LANDER, Soc. 123, 3101). — Geschwindigkeit der Reaktion mit Anilin, Anilinhydrojodid und Methylanilin in alkoh. Lösung bei 50°: RH., Soc. 123, 3109. Zur Abspaltung von Jodwasserstoff in alkoh. Lösung bei 50° vgl. RH.

1.2.3.5-Tetranitro-benzol  $C_6H_2O_8N_4$ , Formel IV. B. Durch 4-stdg. Erwärmen von Pikrylhydroxylamin mit Salpetersäure (D < 1,54) auf dem Wasserbade (Borsche, B. 56, 1942). — Gelbliche Nadeln (aus Chloroform). F: 125—126°. Sehr leicht löslich in Aceton und Eisessig, leicht in Alkohol, schwer in Benzol und Ather. Die Lösung in verd. Natronlauge ist rot und wird beim Erwärmen gelb. — Beim Erwärmen mit verd. Natronlauge oder mit Salpetersäure (D: 1,395) entsteht Pikrinsäure. Durch Behandeln mit konz. Ammoniak erhält man Pikramid; reagiert analog mit Anilin.

1.2.4.5 - Tetranitro - benzol C<sub>4</sub>H<sub>2</sub>O<sub>5</sub>N<sub>4</sub>, Formel V. B. Beim Erwärmen von 4.6-Dinitro-1.3-dihydroxylamino-benzol mit Salpetersäure (D: 1,52) auf dem Wasserbad (Borsche, FESKE, B. 59, 820). — Hellgelbe Krystalle (aus verd. Alkohol). F: 188°.

## g) Azido-Derivate.

Azidobenzol, Phenylazid, Diazobenzolimid  $C_6H_5N_3 = C_6H_5 \cdot N_3$  (H 276; E I 141). Zur Konstitution vgl. Angeli, R. A. L. [6] 5, 733; Lindemann, Thiele, B. 61, 1530; Carothers, Am. Soc. 45, 1734. — B. Neben anderen Produkten bei der Einw. von N-Methyl-N-phenyl-hydrazin auf Azodicarbonsäurediäthylester in Ather unterhalb  $0^{\circ}$  (Diels, B. 56, 1937). Entsteht neben den entsprechenden Sulfinsäuren bei der Einw. von Benzoldiazoniumchlorid auf Sulfonsäureamide bzw. bei der Zersetzung der als Zwischenprodukte auftretenden Alkyl- oder Arylsulfonyl-phenyltriazene durch Alkalien (DUTT, WHITEHEAD, WORMALL, Soc. 119, 2090; DUTT, Soc. 125, 1464; KEY, DUTT, Soc. 1928, 2037). Azidobenzol bildet sich in guter Ausbeute bei der Einw. von Benzoldiazoniumchlorid auf p-Toluolsulfonsäure-chloramidnatrium-Lösung, Ammoniak und Natronlauge (Rheinische Kampfer-Fabr., D. R. P. 456857; C. 1928 I, 3111; Frdl. 16, 452). Aus Benzoldiazoniumtetrachlorjodid durch Einw. von konz. Ammoniak (Chattaway, Parkes, Soc. 127, 309; vgl. Ch., Garton,

P., Soc. 125, 1986).

Kp<sub>11</sub>: 70° (Diels); Kp<sub>20</sub>: 80° (Lindemann, Thiele, B. 61, 1533). Dampfdruck zwischen 75,0° (33,8 mm) und 95,0° (79,1 mm); Carothers, Am. Soc. 45, 1736. D. 1. 1,0959 (Li., Th.): D; zwischen 0° (1,1175) und 50,0° (1,0657): Ca. Viscosität zwischen 0° (0,01479) und 40,0° (0,00775 g/cm sec): Ca. Oberflächenspannung bei 21,5°: 36,66 dyn/cm (Li., Th.). Parachor:

LI., TH.; MUMFORD, PHILLIPS, Soc. 1929, 2115.

Azidobenzol wird durch Natriumarsenit-Lösung in der Kälte zu Anilin reduziert (Gut-MANN, B. 57, 1958; Fr. 66, 242). Bei längerem Kochen mit konz. Salzsäure entstehen außer 2- und 4-Chlor-anilin (GRIESS, B. 19, 313) auch geringe Mengen Anilin und 2.4-Dichlor-anilin (BAMBERGER, A. 448, 203). Verhalten beim Kochen mit starker Schwefelsäure (vgl. GRIESS, B. 19, 314), alkoholischer und methylalkoholischer Schwefelsäure und mit wäßr. Schwefelsäure in Gegenwart von Phenol: Ba., A. 448, 195, 196, 198, 199. Beim Erhitzen mit Benzol auf 150—160° unter Druck bildet sich ein braunrotes Öl, das bei der Wasserdampfdestillation nach Zusatz von verd. Salzsäure Azobenzol und Anilin liefert (Вектно, В. 57, 1141). Durch Behandlung mit p-Xylol unter denselben Bedingungen, auch beim längeren Kochen der beiden Komponenten unter Luftabschluß erhält man ein orangegelbes Öl, aus dem bei analoger Aufarbeitung 1.2-Di-p-tolyl-äthan, Anilin und wenig Azobenzol gewonnen werden können Beim Kochen mit Natriumalkylat-Lösungen erhält man 1-Phenyl-1.2.3-triazol, Anilin, Stickstoff, wenig Phenol und geringe Mengen einer Verbindung der ungefähren Zusammensetzung  $C_{11}H_{10}O_2N_4(?)$  (Prismen oder Nadeln aus Eisessig oder Nitrobenzol; F: 282° [Zers.]) (Bertho, B. 58, 861, 862; Be., Hölder, J. pr. [2] 119, 186). Azidobenzol gibt mit Toluchinon in Benzol bei 50° 1-Phenyl-4.7-dioxy-5-methyl-benztriazol (Syst. Nr. 3855) (Chattaway, Parkes, Soc. 127, 1309). Gibt beim Erhitzen mit Benzaldehyd-[2.4-dibromphenylhydrazon] in Natriumäthylat-Lösung im Rohr auf 100° 5-Phenyl-2-[2.4-dibromphenyl]-tetrazol (Cha., Pa., Soc. 1926, 114). Bei der Einw. von Diäthyl-phenyl-phosphin in absol. Ather bei —80° entsteht Diäthyl-phenyl-phenyl-phosphinzid  $C_6H_5$ ·P( $C_2H_5$ )<sub>2</sub>:N·N: N·C<sub>6</sub>H<sub>5</sub> (Syst. Nr. 2272), bei Zimmertemperatur Diäthyl-phenyl-phosphin-phenylimid  $C_6H_5$ ·P( $C_2H_5$ )<sub>2</sub>:N·C<sub>6</sub>H<sub>5</sub> (Syst. Nr. 2272); analog verläuft die Einw. von Triisoamylphosphin in Ather auch bei der Reaktion mit Triäthylphosphin in Ather auch bei Anilin, Stickstoff, wenig Phenol und geringe Mengen einer Verbindung der ungefähren in Ather + Petroläther, während bei der Reaktion mit Triäthylphosphin in Ather auch bei Kühlung auf  $-80^{\circ}$  nur Triäthylphosphin-phenylimid erhalten wird (STAUDINGER, HAUSER, Helv. 4, 877, 882, 885). Liefert mit Acetylen-bis-magnesiumbromid in Ather Bis- $[\omega$ -phenyltriazeno]-acetylen, die Verbindung  $C_6H_5\cdot N:N\cdot N:CH\cdot CH:N\cdot N:N\cdot C_6H_5$  (Syst. Nr. 2228), 2-Phenyl-2.5-dihydro-1.2.3.4-tetrazin, ferner Anilin, Phenol und Diphenyl (Kleinfeller,  $J.\ pr.\ [2]\ 119,\ 67;\ vgl.\ Kl.,\ Bönig,\ J.\ pr.\ [2]\ 132\ [1932],\ 177,\ 185).$ 

- E I 142, Z. 8 v. o. statt "des Triäthylphosphins" lies "des Triphenylphosphins".
- 4-Chlor-1-azido-benzol, 4-Chlor-phenylazid  $C_6H_4N_3Cl=C_6H_4Cl\cdot N_3$  (H 277). B. Neben anderen Verbindungen bei der Einw. von 4-Chlor-benzol-diazoniumchlorid-(1) auf Benzolsulfamid oder p-Toluolsulfamid in alkal. Lösung (Dutt, Whitehead, Wormall, Soc. 119, 2092, 2094). Kp<sub>15</sub>: 90—91°; löslich in Äther; mit Wasserdampf flüchtig (D., Wh., Wo.). Liefert beim längeren Kochen mit verd. Salzsäure 4-Chlor-anilin und 2.4-Dichlor-anilin, beim Kochen mit verd. Schwefelsäure auch Spuren von Anilin (Bamberger, 4. 443, 210). Beim Kochen mit Toluchinon in trocknem Benzol entsteht "p-Chlorphenylcyclo-iminotoluchinon"  $C_{13}H_{10}O_2NCl$  (s. bei Toluchinon, Syst. Nr. 671a) (Chattaway, Parkes, Soc. 127, 1311).
- 2.4-Dichlor-1-azido-benzol, 2.4-Dichlor-phenylazid  $C_6H_3N_3Cl_2$ , s. nebenstehende Formel (E I 142). B. Aus salzsaurem 2.4-Dichlor-phenylhydrazin, Natriumnitrit und verd. Salzsäure (Masriera, An. Soc. espuñ. 22, 40; C. 1924 I, 1769). Bei der Einw. von Ammoniak (D: 0,88) auf eine Mischung von 2.4-Dichlor-benzol-diazoniumtetrachloridjodid-(1) und Eis (Chattaway, Garton, Parkes, Soc. 125, 1987). Cl Gelbliche Nadeln (aus Alkohol) oder Prismen (aus Accton oder Benzol). F: 54° (Ch., G., P.), F: 51° (M.). Löslich in Alkohol, Benzol, Äther, Chloroform und Petroläther, unlöslich in Wasser (M.). Zersetzt sich bei ca. 160° bei langsamem Erhitzen; explodiert bei raschem Erhitzen und hartem Schlag unter Rauchentwicklung (Ch., G., P.). Explodiert in völlig trocknem Zustande schon beim Erhitzen über den Schmelzpunkt (M.). Ist mit Wasserdampf flüchtig (Ch., G., P.). Liefert beim Erhitzen mit einer bei 0° gesättigten Lösung von Acetylen in Aceton im Rohr auf 100° 1-[2.4-Dichlor-phenyl]-1.2.3-triazol (Ch., G., P.). Beim Kochen mit Toluchinon in trocknem Benzol entsteht ,2.4-Dichlor-phenyl-cyclo-iminotoluchinon (C<sub>13</sub>H<sub>9</sub>O<sub>2</sub>NCl<sub>2</sub> (s. bei Toluchinon; Syst. Nr. 671 a) (Ch., P., Soc. 127, 1311).
- 2.5-Dichlor-1-azido-benzol, 2.5-Dichlor-phenylazid C<sub>8</sub>H<sub>3</sub>N<sub>3</sub>Cl<sub>2</sub>, s. nebenstehende Formel. B. Bei der Einw. von Ammoniak (D: 0,88) auf eine Mischung von 2.5-Dichlor-benzol-diazoniumtetrachlorjodid-(1) mit Eis (Chattaway, Garton, Parkes, Soc. 125, 1988). Gelbliche Krystalle. F: 30°. Sehr leicht löslich in organischen Lösungsmitteln (Ch., G., P.). Beim Kochen mit Toluchinon in trocknem Benzol entsteht ,,2.5-Dichlor-phenyl-cyclo-iminotoluchinon" C<sub>13</sub>H<sub>9</sub>O<sub>2</sub>NCl<sub>2</sub> (s. bei Toluchinon, Syst. Nr. 671a) (Ch., P., Soc. 127, 1311).
- 4-Brom 1 azido benzol, 4-Brom phenylazid  $C_6H_4N_3Br=C_6H_4Br\cdot N_3$  (H 277; E I 142). Liefert mit Acetylen-bis-magnesiumbromid in Ather viel 1-[4-Brom-phenyl]-4-[ $\omega$ -(4-brom-phenyl)-triazeno]-1.2.3-triazol (Syst. Nr. 3872) und wenig Bis-[ $\omega$ -(4-brom-phenyl)-triazeno]-acetylen (Syst. Nr. 2228) sowie eine Verbindung  $C_{14}H_{11}N_7Br_2$  (Formel I

oder II; Syst. Nr. 4187) (Kleinfeller, J. pr. [2] 119, 70; vgl. Kl., Bönig, J. pr. [2] 132 [1932], 183, 184, 190). Beim Kochen mit Toluchinon in trocknem Benzol entsteht ,,p-Bromphenyl-cyclo-iminotoluchinon"  $C_{13}H_{10}O_2NBr$  (s. bei Toluchinon, Syst. Nr. 671a) (Chattaway, Parkes, Soc. 127, 1311).

- 2.4-Dibrom-1-azido-benzol, 2.4-Dibrom-phenylazid C<sub>6</sub>H<sub>3</sub>N<sub>3</sub>Br<sub>2</sub>, Formel III (H 278). B. Bei der Einw. von Ammoniak (D: 0,88) auf ein Gemisch von 2.4-Dibrombenzol-diazoniumtetrachlorjodid-(1) und Eis (Chattaway, Garton, Parkes, Soc. 125, 1988). Gelbliche Nadeln (aus Aceton oder Benzol), F: 62° (Ch., G., P.). Beim Kochen mit Toluchinon in trocknem Benzol entsteht ,,2.4-Dibrom-phenyl-cyclo-iminotoluchinon" C<sub>13</sub>H<sub>9</sub>O<sub>2</sub>NBr<sub>2</sub> (s. bei Toluchinon, Syst. Nr. 671a) (Ch., P., Soc. 127, 1311).
- 2.4.6-Tribrom -1-azido benzol, 2.4.6-Tribrom-phenylazid C<sub>6</sub>H<sub>2</sub>N<sub>3</sub>Br<sub>3</sub>, s. nebenstehende Formel (H 278; E I 142). Beim Kochen mit Toluchinon in trocknem Benzol entsteht ,,2.4.6-Tribrom-phenyl-cyclo-iminotoluchinon" C<sub>13</sub>H<sub>8</sub>O<sub>2</sub>NBr<sub>3</sub> (s. bei Toluchinon, Syst. Nr. 671a) (Chattaway, Parkes, Soc. 127, 1311).
- 4-Nitro-1-azido-benzol, 4-Nitro-phenylazid C<sub>5</sub>H<sub>4</sub>O<sub>2</sub>N<sub>4</sub> = O<sub>2</sub>N·C<sub>5</sub>H<sub>4</sub>·N<sub>3</sub> (H 278; (E I 143). B. Aus 4-Jodo-1-nitro-benzol beim Kochen mit Natriumazid-Lösung (Vorländer, R. 48, 915). Bei der Behandlung von 4-Nitro-benzol-diazoniumchlorid-(1) mit Na<sub>2</sub>S<sub>2</sub>O<sub>4</sub> in sodaalkalischer Lösung (Thompson, J. Soc. Dyers Col. 37 [1921], 9). Zur Bildung aus 4-Nitro-benzol-diazoniumchlorid-(1) und Chloramin vgl. Rheinische Kampfer-Fabr., D. R. P. 456857; C. 1928 I, 3112; Frdl. 16, 452. Liefert beim Erhitzen mit Benzylcyanid in Natrium-nethylat-Lösung 1-[4-Nitro-phenyl] 5-amino-4-phenyl-1.2.3-triazol (Syst. Nr. 3876) (Dimeroth, Michaells, A. 459, 44).
- 4.5-Dichlor-2-nitro-1-azido-benzol, 4.5-Dichlor-2-nitro-phenylazid  $C_6H_2O_2N_4Cl_2$ , s. nebenstehende Formel. B. Bei der Behandlung von 4.5-Dichlor-2-nitro-phenylhydrazin mit Natriumnitrit und Salzsäure bei 0° (E. MÜLLER, HOFFMANN, J. pr. [2] 111, 299). Gelbbraune Nadeln (aus Alkohol). F: 56°. Unlöslich in Wasser und Ligroin, löslich in Benzol, Alkohol, Eisessig und Chloroform. Beim Kochen mit konz. Kalilauge wird die Azidogruppe unter teilweiser Verharzung und Bildung einer bei 34° schmelzenden, phenolartig riechenden, in Alkalien löslichen Substanz abgespalten.
- 2.4-Dinitro-1-azido-benzol, 2.4-Dinitro-phenylazid  $C_6H_3O_4N_5$ , s. nebenstehende Formel (H 279). B. Aus 4-Chlor-1.3-dinitro-benzol und Kaliumazid in wäßr. Aceton unterhalb 20° (Powell, Am. Soc. 51, 2438). Beim Schütteln von 4-Jodo-1.3-dinitro-benzol mit überschüssiger wäßriger Natriumazid-Lösung (Vorländer, R. 48, 916). Krystalle (aus wäßr. Aceton). F: 67—68° (P.).
- 2.4.6-Trinitro-1-azido-benzol, Pikrylazid C<sub>6</sub>H<sub>2</sub>O<sub>6</sub>N<sub>6</sub>, s. nebenstehende Formel (H 279; E I 144). F: 89—90° (Zers.) (Korczynski, Bl. [4] 35, 1193).— Bei der Reduktion mit Titan(III)-chlorid in siedender salzsaurer Lösung im Kohlendioxyd-Strom entsteht [2.4.6-Triamino-phenyl]-triazen (RATHSBURG, B. 54, 3183). Gibt mit Anilin in siedendem Äther 2.4.6-Trinitro-diphenylamin (K.).
- 1.3-Diazido-benzol, m-Diazido-benzol  $C_eH_4N_6=N_3\cdot C_eH_4\cdot N_3$  (H 279). Liefert mit Äthylmagnesiumbromid in mit Kältemischung gekühlter ätherischer Lösung 1.3-Bis-[3-āthyltriazeno]-benzol (Kleinfeller,  $J.\ pr.\ [2]\ 119$ , 65). Reagiert analog mit Phenylmagnesiumbromid. Reaktion mit Acetylen-bis-magnesiumbromid: K. [Hackenthal]

# 2. Methylbenzol, Toluol $C_7H_8=C_6H_5\cdot CH_8$ (H 280; E I 144).

## Vorkommen.

Im persischen Erdöl (Birch, Norris, Soc. 1926, 2549). In den Erdölen von Moreni und Arbanesi (Rumänien) (Moutte, Chim. et Ind. 16, 330, 331; C. 1927 I, 383). In neuseeländischen Erdölen (Easterfield, McClelland, Chem. and Ind. 1923, 937; C. 1924 I, 2847). Im Burma-Erdöl (Mulany, Watson, J. Soc. chem. Ind. 43, 310 T; C. 1925 I, 186). In geringer Menge in pennsylvanischem Naturgas-Gasolin (Erskine, Ind. Eng. Chem. 18 [1926], 722; C. 1926 II, 1356). — Vorkommen im Steinkohlen-Urteer usw. s. im folgenden Abschnitt.

## Bildung, Darstellung, Reinigung.

Toluol entsteht bei der Verschwelung von Steinkohle bei 500—600° und findet sich im Steinkohlen-Urteer (Schütz, B. 56, 165; Sch., Buschmann, Wissebach, B. 56, 870, 1094). Frank, Arnold (Z. ang. Ch. 36, 217) konnten bei der Verschwelung von Steinkohle bei 400° bis 500° keine Toluol-Bildung feststellen. Bei der Verschwelung von Braunkohle; findet sich daher im Braunkohlenteer-Benzin (Pfaff, Kreutzer, Z. ang. Ch. 36, 437). Bei der trocknen Destillation von bituminösen Schiefern von Syzran an der Wolga (Dodonow, Soschestwenskaja, B. 59, 2205). Beim Hydrieren von Steinkohlenteer nach Bergius (Rheinfelder, Mitt. Kohlenforschungsinst. Breslau 2 [1925], 49, 57; C. 1926 II, 519). Beim Erhitzen einer bei 146—200° siedenden Solventnaphtha-Fraktion mit Wasserstoff bei einem Anfangsdruck von 60 Atm. in Gegenwart von Tonerde und Kupferoxyd auf 480—500° oder einer aus schwerem Steinkohlenteeröl gewonnenen Fraktion vom Siedepunkt 260—300° mit Wasserstoff bei einem Anfangsdruck von 70 Atm. in Gegenwart von Tonerde-Eisenoxyd auf 415° bis 435° (Ipatjew, Orlow, B. 60, 1969, 1970). Bei der Destillation von Kautschuk bei ca. 700°, besonders bei Gegenwart von Magnesium (Midgley, Henne, Am. Soc. 51, 1216, 1220).

Über die Bildung aus Methan bei hohen Temperaturen unter verschiedenen Bedingungen vgl. F. Fischer, Mitarb., Brennstoffch. 9, 310, 314; C. 1928 II, 2208. In geringer Menge beim Leiten von Acetylen über aktivierte Holzkohle bei 600-660° (ZELINSKY, B. 57, 267, 272; C. r. 177, 885; 3K. 55, 153; GROS, D.R.P. 475883; Frdl. 16, 87), wahrscheinlich auch bei der Einw. von Acetylen auf Pyrit bei 300-310° (STEINKOPF, A. 428, 125, 133). Beim raschen Leiten von Methylcyclohexan-Dampf mit Wasserstoff über einen Nickel-Tonerde-Katalysator bei 300—310° (Z., Kommarewski, B. 57, 668). Neben anderen Produkten beim Dehydrieren von cis-Oktahydroinden über einem Nickel-Tonerde-Katalysator bei 320—325° (Z., Borissow, B. 57, 2061; Z., Turowa-Pollak, B. 62, 1662), beim Cracken von Dekahydroacenaphthen bei 650° (Orlow, Belopolsky, B. 62, 1232; 38. 61, 1275). Über die Bildung von Toluol beim Durchleiten von Benzol und Methan durch ein auf etwa 750—770° erhitztes Rohr vgl. Cobb. Gas Journal 148 [1918], 483; F. FISCHER, SCHRADER, MEYER, Abh. Kenntnis Kohle 5, 415; C. 1922 IV, 1039. Bei der Einw. von Natrium auf 2- oder 4-Chlor-toluol in flüssigem Ammoniak. neben anderen Produkten (KRAUS, WHITE, Am. Soc. 45, 774). Beim Kochen von Benzylchlorid mit Zinkstaub und Alkohol, neben Athylbenzyläther (C. K. INGOLD, E. H. INGOLD, Soc. 1928, 2259). Aus 3-Chlor-toluol und 2-oder 4-Brom-toluol durch Reduktion mit Hydrazinhydrat in alkoh. Kalilauge bei Gegenwart von Palladium (Визси, Schmidt, B. 62, 2617). Bei 4-tägiger Einw. von Lithiumbutyl auf 2- oder 3-Brom-toluol in Petroläther (MARVEL, HAGER, 4-tägiger Einw. von Lithiumbutyl auf 2- oder 3-Brom-toluol in Petroläther (Marvel, Hager, Coffman, Am. Soc. 49, 2327). Neben Benzol und anderen Produkten beim Erhitzen von Xylol mit Aluminiumchlorid unter Durchleiten von Chlorwasserstoff (Copisarow, Soc. 119, 1809). Neben anderen Produkten bei längerem Erhitzen von Naphthalin mit Wasserstoff unter 100 Atm. Anfangsdruck auf 450—480° in Gegenwart von Nickeloxyd und Aluminiumoxyd (Ipatjew, Kljukwin, B. 58, 2; Ж. 56, 246). Als Hauptprodukt bei längerem Erhitzen von Dibenzyl mit Wasserstoff unter 70 Atm. Anfangsdruck auf 440—465° in Gegenwart eines Gemisches aus gleichen Teilen Tonerde und Eisenoxyd (I., Oblow, B. 62, 597; Ж. 61, 1300). Bei der Hydriowing von Thioparabthen bei 420, 4300 und 444 Atm. Anfangsdruck 61, 1300). Bei der Hydrierung von Thionaphthen bei 420—438° und 111 Atm. Anfangsdruck, neben anderen Produkten (FRICKE, SPILKER, B. 58, 1598).

Als Hauptprodukt beim Leiten von o., m. oder am besten p-Kresol im Wasserstoff. Stickstoff- oder Kohlendioxydstrom bei 430° über auf fein verteiltem Eisen abgeschiedene Kohle (Stadnikow, Gawrilow, Winogradow, B. 58, 2428) oder bei 480—500° über auf Asbest niedergeschlagenes Eisen (St., G., W., Brennstoffch. 7, 8; C. 1926 II, 23) oder beim Leiten von m-Kresoldampf im Gemisch mit viel überschüssigem Wasserstoff bei 400° über bei 550° mit Ammoniak behandelte Wolframsäure (I. G. Farbenind., D. R. P. 516251; C. 1931 I, 1822; Frdl. 16, 3009). Neben Benzol und aliphatischen Kohlenwasserstoffen beim Leiten von o., m. oder am besten p-Kresol mit Wasserstoff über Aluminiumoxyd bei 75—80 Atm. Anfangsdruck und 470—480° (Kling, Florentin, C. r. 184, 886; Bl. [4] 41, 1346). Neben Benzol beim Erhitzen von o-Kresol mit Wasserstoff unter Druck in Gegenwart von Tonerde und Kupferoxyd (Ipatijew, Orlow, B. 60, 1966). Aus o- und p-Kresol beim Erhitzen mit Wasserstoff auf 460° unter 90 Atm. Anfangsdruck, neben anderen Produkten (F. Fischer, Tropsch, Brennstoffch. 7, 3; C. 1926 II, 23). Beim Erhitzen von technischem Kresol mit Natriumhydrosulfid-Lösung im Eisenautoklaven auf 450°, neben Benzol und anderen Produkten (Schrader, Abh. Kenntnis Kohle 6, 155; C. 1924 I, 984). Aus Benzylalkohol erhält man Toluol bei der Einw. von 1 Mol Wasserstoff in Gegenwart von Palladium(II)-chlorid in Aceton bei 16,5° (Straus, Grindel, A. 439, 312), beim Kochen mit Natrium und Alkohol (Klages, B. 39 [1906], 2589; de Pommerrau, C. r. 174, 686; Bl. [4] 31, 693), beim Erhitzen mit 2 Mol Hydrazin im Rohr auf 140—180° (E. MÜLLER, Krammer-Willenberg, B. 57, 578), beim Überleiten über Kupfer bei 230° und 330°, je nach den Bedingungen in wechselnden Mengen (Hara, Mem. Coll. Sct. Kyoto [A] 9, 408; C. 1926 II, 2658) sowie beim Erhitzen mit Natriumbenzylat auf 150° (Lachman, Am. Soc. 45, 2359). Neben anderen Produkten beim

Erhitzen von Äthylbenzyläther mit Natrium im Wasserstoffstrom auf 130-2100 (Schorigin, B. 57, 1635). Entsteht in analoger Reaktion auch aus Phenyl-o-tolyl-äther (Scho., B. 58, 2035), sus Phenylbenzyläther (Scho., B. 57, 1633), sus o-Tolyl-benzyläther (Scho., B. 58, 2033) und sus Benzyl- $\beta$ -naphthyl-äther (Scho., B. 57, 1632). In geringerer Menge wird Toluol ferner gebildet bei längerem Erhitzen von Benzyläthern und von Phenylbenzylsulfid mit Natrium im Rohr auf 100° (Scho., B. 57, 1635; 58, 2030, 2031, 2032, 2034, 2036). Entsteht auch beim Erhitzen von Dibenzyläther im Rohr auf 210-2150 (LACHMAN, Am. Soc. 45, 2358).

In geringer Menge neben anderen Produkten beim Leiten von Butylidenaceton über In geringer menge neben anderen Frodukten beim Leiten von Butylicensceton über Kupfer bei 600° (Weizmann, Garrard, Soc. 117, 336). Aus Benzaldehyd erhält man Toluol neben anderen Produkten beim Erhitzen im Rohr auf 300—305° (Lachman, Am. Soc. 46, 720), beim Behandeln mit 2 Mol Wasserstoff in Aceton bei 14,5° in Gegenwart von Palladium(II)-chlorid (Straus, Grindell, A. 439, 310), bei der Hydrierung bei Gegenwart von reinem Platinschwarz in Alkohol (Faillebin, C. r. 175, 1078; A. ch. [10] 4, 467), beim Schütteln bei Gegenwart von Palladium-Bariumsulfat in Eisessig bis zur Aufnahme von 1 Mol Wasserstoff (ROSENMUND, JORDAN, B. 58, 161), beim Erhitzen mit Wasserstoff in Gegenwart von Nickelpulver unter gewöhnlichem Druck auf 200° (GRIGNARD, Bl. Soc. chim. Belg. 37, 59), in Gegenwart von Kupfer über 350° (SABATIER, KUBOTA, C. r. 172, 734), bei der trocknen Destillation in Gegenwart von Aluminiumpulver im Wasserstoff-oder Kohlendioxyd-Strom bei 500—540° (RAY, DUTT, J. indian chem. Soc. 5, 104; C. 1928 I, 1927). 2370), beim Kochen mit Natrium und Alkohol (DE POMMEREAU, C. r. 174, 687; Bl. [4] 31, 694) sowie beim Erhitzen mit amalgamiertem Zink und Salzsäure (STEINKOPF, WOLFRAM, A. 430, 159). Beim Hydrieren von Benzaldehyddiäthylacetal in Gegenwart von Platin-Bariumsulfat (KARIYONE, C. 1925 I, 2377) sowie in Gegenwart von frisch bereitetem Nickel-Katalysator bei 180° (Sigmund, Marchart, M. 48, 272, 276). Beim Leiten von Acetophenon-Dampf über Kohle, die fein verteiltes Eisen enthält, bei ca. 420° (N. V. Handelsonderneming Feynald, D.R. P. 434211; C. 1926 II, 2494; Frdl. 15, 400). Aus Zimtaldehyd in Gegenwart von Nickel bei 380° (Mallhe, Bl. [4] 39, 924). Beim Leiten von Zimtaldehyddiathylacetal im Wasserstoffstrom über frisch bereiteten Nickel-Katalysator bei 1800 (SI., MAR., M. 48, 286).

Entsteht neben anderen Verbindungen aus Pelargonsäure durch Erhitzen auf 600-620° in Gegenwart eines Kupfer-Aluminium xyd-Katalysators (Mailhe, Bl. [4] 31, 685; A.ch. [9] 17, 325; C. 1923 III, 38). Wird auf analoge Weise auch aus Olsäure (M., C. r. 174, 873; Bl. [4] 31, 679; A. ch. [9] 17, 326; C. 1923 III, 38) und aus Leinöl, Rüböl, Erdnußöl und Haifischöl erhalten (M., C. r. 173, 358, 659; Bl. [4] 31, 250, 567; A. ch. [9] 17, 306, 309, 312, 316); bei der Bildung aus Ricinusöl läßt sich die Ausbeute durch Behandeln der bei 250° siedenden Anteile des Reaktionsprodukts mit Aluminiumchlorid erhöhen (M., C. r. 176, 38). In geringer Menge beim Erhitzen von Benzoesäure-benzylester im evakuierten Rohr auf 340—350° (HURD, BENNETT, Am. Soc. 51, 1200). Bei der Explosion von Acetylbenzoyl-peroxyd in einer verzinnten Stahlbombe bei 200°, neben anderen Produkten (FICHTER, ERLENMEYER, Helv. 9, 147). Beim Erhitzen von Benzylidenanilin in Gegenwart von Anilin-hydrobromid auf 230—290°, neben anderen Produkten (REDDELIEN, B. 53, 357). Bei der Einw. von Athansulfonsäure-methylester (GILMAN, ROBINSON, Bl. [4] 45, 639) oder p-Toluol-sulfonsäure-methylester (GILMAN, BEABER, Am. Soc. 47, 522) auf Phenylmagnesiumbromid in siedendem Ather. Über die Bildung von Toluol bei der Einw. von Sauerstoff auf p-Tolylmagnesiumbromid vgl. G., Wood, Am. Soc. 48, 807, 810. Aus Benzylmagnesiumchlorid entsteht Toluol bei der Zersetzung mit Wasser (Bert, C. r. 186, 373), bei der Zersetzung mit kalter Salzsäure (G., Kirby, Am. Soc. 51, 1574) sowie bei der Einw. von 1 Mol p-Toluolsulfonsäure-butylester oder  $\gamma$ -Chlorpropylester in Äther (Rossander, Marvel, Am. Soc. 50, 1494, 1495). Bei längerem Kochen von Quecksilber-di-p-tolyl mit  $\frac{1}{2}$  Mol tert. Butylbromid in Tetrachlorkohlenstoff, neben anderen Produkten (Whitmore, Thurman, Am. Soc. 51, 1500).

Zur Reindarstellung aus p-Toluolsulfonamid vgl. Coffey, Soc. 127, 1030. Technische Darstellung: S. P. Schotz, Synthetic organic compounds [London 1925], S. 41. Trennung von Benzol durch diskontinuierliche und kontinuierliche Destillation: Durron, Phil. Mag. 16] 41, 633; C. 1922 I, 83. Technische Trennung von Benzol durch Kolonnendestillation: Oman, Tekn. Tidskr. 57 K, 38; C. 1927 II, 153. Trennung des ternären Gemischs mit Benzol und m-Xylol durch Rektifikation: GAY, Chim. et Ind. 10, 192 T, 251 T; C. 1924 I, 1270, 2821.— Reinigung von Toluol durch Kochen mit Natriumamalgam: BEAL, SOUTHER, Am. Soc. 49, 1994. Über die Verunreinigungen von lediglich durch Fraktionierung gereinigtem Toluol vgl. Timmermans, Martin, J. Chim. phys. 23, 754.

Mechanische und thermische Eigenschaften. E: —95,0° (Timmermans, Martin, J. Chim. phys. 23, 755; vgl. a. Ti., van der Horst, Kamerlingh Onnes, Arch. néerl. Sci. exactes 8, 186; C. 1923 IV, 377; C. r. 174, 366). F: —95,25° (Kelley, Am. Soc. 51, 2739). Kp760: 110,8° (Ti., Ma., J. Chim. phys. 23, 754; vgl. Ti., v. d. H., K. O., C. r. 174, 366), 110,75°

Physikalische Eigenschaften.

(Lecat, R. 46, 244).  $dK_p/d_p$ : 0,042° (T1., Ma.). Dampfdruck zwischen 0° (9,7 mm) und 120° (973 mm): Schmidt, Ph. Ch. 121, 240; zwischen 20° (24,5 mm) und 120° (973 mm): Schmidt, (973 mm); SCHMIDT, Ph. Ch. 121, 240; zwischen 20° (24,5 mm) und 120° (973 mm); SCHMIDT, Ph. Ch. 99, 80; zwischen 29,79° (36,6 mm) und 110,42° (760 mm); Nagornow, Izv. Inst. fiz.-chim. Anal. 3, 585; C. 1927 II, 2668. Dampfdruck bei 18,5°: 21 mm (F. Fischer, Peleiderer, Z. anorg. Ch. 124, 69), bei 25°: 27 mm (Trimble, J. phys. Chem. 32, 1217). Dampfdruck von auf verschiedene Weise getrocknetem Toluol bei 27°: Mali, Z. anorg. Ch. 149, 155. Verdampfung von Toluol im Luftstrom: Hine, Phys. Rev. [2] 24, 83, 89; C. 1924 II, 1446. Kritische Temperatur: 320,5° (Stachorsky, Z. El. Ch. 34, 112). Verdampfungsgeschwindigkeit bei 25°: MACK, Am. Soc. 47, 2473. Flüchtigkeit von Toluol: HERBST. Koll.

Beih. 23, 330; C. 1926 II, 2544.  $D_4^{180}$ : 1,053 (ISNARDI, Z. Phys. 9, 158).  $D_4^{0}$ : 0,88545;  $D_4^{18}$ : 0,87160;  $D_4^{10}$ : 0,85770;  $D_4^{10}$ : 0,8295 (Ti., Ma.). Toluolpräparate, die nicht aus einheitlichen Toluol-Derivaten gewonnen sind, zeigen nach Timmermans, Martin (J. Chim. phys. 23, 754) ausnahmslos zu niedrige Dichten; über Dichtemessungen an solchen Präparaten vgl. Tl., van der Hort, Kamerlingh Onnes, C. r. 174, 366; Kelley, Am. Soc. 51, 2738; Dessart, Bl. Soc. chim. Belg. 35 [1926], 9 Tabelle 9; Tromp, R. 41, 299; Schmidt, Ann. Phys. [4] 76, 571; Geunert, Z. anorg. Ch. 164, 257; Ingold, Ingold, Soc. 1928, 2250; Trimble, J. phys. Chem. 32, 1217; Williams, Krchma, Am. Soc. 49, 1679; Woodman, Chem. N. 134 [1927], 36; Barbaudy, J. Chim. phys. 23, 296; Pound, J. phys. Chem. 30, 793; Miller, Pr. roy. Soc. [A] 106 [1924], 740; Driver, Firth, Soc. 121, 2410. Dampfdichte bei Temperaturen zwischen 1870 und 4000: Lewis, Soc. 1927, 1557. — Isotherme Kompressibilität zwischen 100 und 500 megabar bei  $0^{\circ}$ :  $61,78 \times 10^{-6}$  cm<sup>2</sup> megadyn<sup>-1</sup>; bei  $20^{\circ}$ :  $69,00 \times 10^{-6}$  cm<sup>2</sup> megadyn<sup>-1</sup> (RICHARDS, BARTLETT, HODGES, Am. Soc. 43, 1541); zwischen 0° und 50° (aus der Schallgeschwindigkeit): Freyer. Hubbard, Andrews, Am. Soc. 51, 765; bei Drucken bis 8 Atm. bei 17,88°: 86,26×10<sup>-6</sup> Atm.<sup>-1</sup>; bei 8,14°: 80,18×10<sup>-6</sup> Atm.<sup>-1</sup> (Schmidt, Ann. Phys. [4] 76, 587). Adiabatische Kompressibilität zwischen 0° und 50°: F., Hu., A. Kondensation von Toluol-Dampf bei der adiabatischen Ausdehnung im Gemisch mit Luft: Tanzow, 3K. 61, 1844; C. 1930 II, 207.

schen Ausdehnung im Gemisch mit Luft: Tanzow, 3K. 61, 1844; C. 1930 II, 207. Viscosität bei 8,66°: 0,00667 g/cmsec, bei 19,91°: 0,00582 g/cmsec (Miller, Pr. roy. Soc. [A] 106 [1924], 740); bei 15°: 0,00620 g/cmsec, bei 30°: 0,00520 g/cmsec (Dessart, Bl. Soc. chim. Belg. 35 [1926], 9 Tabelle 9); bei 15°: 0,00623 g/cmsec, bei 30°: 0,00523 g/cmsec, bei 60°: 0,00387 g/cmsec (Timmermans, Martin, J. Chim. phys. 23, 756); bei 30°: 0,00523 g/cmsec (Bridgman, Pr. am. Acad. Arts Sci. 61 [1925/26], 70), 0,00526 g/cmsec (Puschin, Pinter, Ph. Ch. [A] 142, 215). Viscosität zwischen 13,90° (0,00636 g/cmsec) und 32,65° (0,00510 g/cmsec): de Kollossowski, Bl. Soc. chim. Belg. 34, 227; C. 1926 I, 1097. Einfluß des Druckes auf die Viscosität: Br., Pr. am. Acad. Arts Sci. 61, 81; Pr. nation. Acad. LSA 11, 604. C. 1926 I. 1949. II 1923 — Oberflächenspannung hei 18, 20°: 28, 59 drugord USA. 11, 604; C. 1926 I, 1919; II, 1923. — Oberflächenspannung bei 18,2°: 28,59 dyn/cm, bei 55°: 22,63 dyn/cm (Stachorsky, Z. El. Ch. 34, 112); bei 20°: 28,13 dyn/cm, bei 40°: 25,16 dyn/cm, bei 60°: 22,62 dyn/cm (Herz, Knaebel, Ph. Ch. 131, 402); bei 23°: 28,4 dyn/cm (Damerell, Am. Soc. 49, 2990); bei 25°: 28,4 dyn/cm (Pound, Soc. 123, 596), 28,0 dyn/cm

(TRIMBLE, J. phys. Chem. 32, 1217). Paracher: Sugden, Soc. 125, 130, 23,0 dynfelii (TRIMBLE, J. phys. Chem. 32, 1217). Paracher: Sugden, Soc. 125, 1180.

Wärmeleitfähigkeit von flüssigem Toluol und ihre Temperaturabhängigkeit: Davis, Phil. Mag. [6] 47, 974; C. 1924 II, 1320. Einfluß hoher Drucke auf die Wärmeleitfähigkeit bei 30° und 75°: BRIDGMAN, Pr. nation. Acad. USA. 9, 342; C. 1924 I, 539. Leidenfrostsches Phänomen an einem elektrisch geheizten Platin-Draht in Toluol: Moscicki, Broder, Roczniki Chem. 6, 349; C. 1927 I, 2810. Spezifische Wärme c<sub>p</sub> zwischen 18,26° (0,414 cal/g) und 60,45° (0,456 cal/g): Tréhin, Ann. Physique [9] 15, 257; zwischen 30° (0,3980 cal/g) und 80°: Williams, Daniels, Am. Soc. 46, 912. Molekularwärme Cp von festem Toluol zwischen 16,72° absol. (2,202 cal) und 166,60° absol. (19,24 cal) und von flüssigem Toluol zwischen 163,83° absol. (32,02 cal) und 284,44° absol. (36,59 cal): Kelley, Am. Soc. 51, 2739. Verhältnis der spezifischen Wärmen c<sub>p</sub>/c<sub>v</sub> von flüssigem Toluol (aus der Schallgeschwindigkeit bestimmt): Busse, Ann. Phys. [4] 75, 662. Schmelzwärme: 1,582 kcal/Mol (Kelley). Verdampfungswärme bei 109,66°: 86,50 cal/g (Mathews, Am. Soc. 48, 572). Verdampfungswärme bei Drucken von 0,99—41,6 Atm.: Adams, Morrell, Ind. Eng. Chem. 16, 378; C. 1924 II, 1666. Ebullioskopische Konstante: 3,24 (für 1 kg Lösungsmittel) (Löwenbein, B. 58, 602). Verbrennungswärme bei konstantem Volumen: 934,3 kcal/Mol (im Vakuum gewogen) (Richards, Davis, Am. Soc. 42, 1614; vgl. Swiftoslawski, Bobinska, Am. Soc. 49, 2478), 935,3 kcal/Mol (im Vakuum gewogen) (R., BARRY, Am. Soc. 37 [1915], 1019; vgl. Sw., Bo.).

Schallgeschwindigkeit in flüssigem Toluol bei 18,5° und 19°: CISMAN, J. Phys. Rad. [6] 7, 650; C. 1927 I, 571; 1928 I, 2490; bei 20,5°: Busse, Ann. Phys. [4] 75, 662; bei 23,5°: JONESCU, J. Phys. Rad. [6] 5, 382; C. 1925 I, 1391; bei Temperaturen zwischen 0°

und 50°: FREYER, HUBBARD, ANDREWS, Am. Soc. 51, 765.

Optische Eigenschaften. Brechungsindices für verschiedene Wellenlängen bei 150, 20°, 25° und 30° s. in Tabelle 1. Brechungsindices für verschiedene Wellenlängen und

Tabelle 1.

| Wellenlänge<br>mµ | n <sup>15</sup>          | n <sup>20</sup>          | n <sup>25</sup> | n <sup>80</sup>        | dn/dt       |
|-------------------|--------------------------|--------------------------|-----------------|------------------------|-------------|
| 434,05            | 1,521 39 ¹)              |                          |                 |                        | 0,000 62 1) |
| 486,13            | 1,511 34 1)              |                          | 1               |                        | 0.00061 1)  |
|                   | 1,511 30 °)              |                          |                 | 1,50348 <sup>2</sup> ) | ,           |
| 587.56            | 1,49995 1)               |                          |                 | ,                      | 0,00060 1)  |
| 589               | 1,499 85 1) 2)           | 1,49712 4)<br>1,49647 8) | 1,49392 5)      | 1,49178 <sup>2</sup> ) | 0,000601)   |
| 656,28            | 1,49516 2)<br>1,49510 1) | 1,1001.                  |                 | 1,48725 <sup>2</sup> ) | 0,00058 1)  |

1) TIMMERMANS, MARTIN, J. Chim. phys. 23, 755. - 2) DESSART, Bl. Soc. chim. Belg. 35 [1926], 9 (Tabelle 9). — 3) v. Auwers, Kolligs, B. 55, 26. — 4) MITSUKURI, NAKATSUCHI, Sci. Rep. Tôhoku Univ. [1] 15, 46; C. 1926 II, 545. - 5) WILLIAMS, KRCHMA, Am. Soc. 48, 1892.

Temperaturen: BECKER, Ann. Phys. [4] 76, 850; INGOLD, INGOLD, Soc. 1928, 2250. Brechungsindices von Toluol für  $\lambda = 589$  m $\mu$ , 546,1 m $\mu$  und 656,3 m $\mu$  bei ca. 15° und ver-

Brechungsindices von Toluol für λ = 589 mμ, 546,1 mμ und 656,3 mμ bei ca. 15° und verschiedenen Drucken: Eisele, Ann. Phys. [4] 76, 398, 400. Brechungsindices zwischen 580 mμ (1,4978) und 275 mμ (1,6305) bei 16,6°: Voellmy, Ph. Ch. 127, 347.

Absorption von Röntgenstrahlen: Auren, Medd. Vet. Akad. Nobelinst. 4 [1920], Nr. 3, S. 10; Taylor, Phys. Rev. [2] 20, 711; C. 1924 I, 8; Olson, Dershem, Storch, Phys. Rev. [2] 21, 32; C. 1923 III, 350; Stumpen, Z. Phys. 50, 223; C. 1928 II, 1859. Ultraviolett-Absorptionsspektrum von Toluol-Dampf: Henri, Walter, C. r. 176, 746; Savard, C. r. 188, 782; A. ch. [10] 11, 316; von flüssigem Toluol: Brode, J. phys. Chem. 30, 61; der Lösung in Hexan: Klingstedt, C. r. 175, 1066; 176, 675; Acta Acad. Abo. 3, Nr. 5, S. 19 u. Tabelle 1; C. 1925 I, 2286; in Alkohol: Tasaki, Acta phytoch. 3, 264; C. 1927 II, 1949; Orndorff, Mitarb., Am. Soc. 50, 835; in Alkohol bei 15°, 30°, 45° und 60°; Purvis. Pr. Cambridge Mitarb., Am. Soc. 50, 835; in Alkohol bei 159, 300, 450 und 600: Purvis, Pr. Cambridge phil. Soc. 21, 787; C. 1924 I, 1484. Ultrarot-Absorptionsspektrum von Toluol-Dampf: MEYER, BRONK, LEVIN, J. opt. Soc. Am. 15, 259; C. 1928 I, 1747; von flüssigem Toluol: MEYER, BRONK, LEVIN, J. opt. Soc. Am. 15, 259; C. 1928 I, 1747; von flüssigem Toluol: W. W. Coblentz, Investigations of infra-red spectra [Washington 1905], S. 153, 459, 163, 164, 233, 234, 237; BONINO, G. 54, 480; Ellis, Phys. Rev. [2] 23, 54; 32, 940; C. 1924 I, 1635; 1929 I, 1449; Márton, Ph. Ch. 117, 106; Gapon, Z. Phys. 44, 601; C. 1927 II, 1789; J. Barnes, Fulweller, Am. Soc. 49, 2035; 50, 1035; 51, 1751; J. opt. Soc. Am. 15, 334; C. 1928 I, 1502; R. B. Barnes, Nature 124, 300; C. 1929 II, 2016. Zum Absorptionsspektrum des Dampfes vgl. a. Henri, C. r. 177, 1039. Toluol ist im Wellenlängenbereich von 26—182 m gänzlich durchlässig (Theodortschick, Phys. Z. 23, 345; C. 1923 I, 6). Luminescenz von Toluol-Dampf bei Anregung mit Tesla-Schwingungen: McVicker, Marsh, Stewart, Soc. 123, 2151; 125, 1744; bei Anregung mit ultraviolettem Licht: Marsh, Soc. 123, 3320, 3322; Phil. Mag. [6] 49, 974; C. 1925 II, 890. Luminescenz von flüssigem Toluol bei Bestrahlung mit langwelligem Ultraviolett: Wawillow, Tummermann, Z. Phys. 54, 270; C. 1929 I, 3070; bei Bestrahlung mit Röntgenstrahlen: Newcomer. Am. Soc.

54, 270; C. 1929 I, 3070; bei Bestrahlung mit Röntgenstrahlen: Newcomer, Am. Soc. 42, 2005. Luminescenz von festem Toluol bei Anregung mit Kathodenstrahlen: Marsh, Soc. 1927, 127.

Intensität und Depolarisationsgrad des Streulichts bei der Lichtzerstreuung in Toluol-Dampf: Gamesan, Phil. Mag. [6] 49, 1220; C. 1925 II, 1011; Cabannes, Granier, C. r. 182, 886; I. R. Rao, Indian J. Phys. 2, 84; C. 1928 I, 1838; in flüssigem Toluol: Martin, J. phys. Chem. 24, 487; Ma., Lehrman, J. phys. Chem. 26, 78; Raman, K. S. Rao, Phil. Mag. [6] 45, 632; C. 1923 III, 589; Ganesan, Phys. Rev. 23, 66; C. 1924 I, 1635; Gans, Z. Phys. 30, 233; Contrib. Estudio Cienc. fts. La Plata 3, 369; C. 1925 I, 1565; II, 1509; Krishnan, Phil. Mag. [6] 50, 703; C. 1926 I, 838; Cabannes, Granier, C. r. 182, 886; Banerjee, Indian J. Phys. 2, 57; C. 1928 I, 1838; S. R. Rao, Indian J. Phys. 2, 185; 3, 26; C. 1928 I, 2235; 1929 I, 20; bei der Streuung an Toluol-Oberflächen: Raman, Ramdas, Phil. Mag. [7] 3, 222; C. 1927 I, 2799; Bhatnagar, Shrivastava, Mitra, J. indian Chem. Soc. 5, 338; C. 1928 II, 1745. Beugungserscheinungen in Toluol-Nebeln: Mecke, Ann. Phys. [4] 61, 496. Beugung von Röntgenstrahlen in flüssigem Toluol: Sogani, Indian J. Phys. 1, 373; C. 1927 II. 2149; Katz, Z. Phys. 45, 106; C. 1928 I, 154; Stewart. Phys. Intensität und Depolarisationsgrad des Streulichts bei der Lichtzerstreuung in Toluol-Phys. 1, 373; C. 1927 II, 2149; KATZ, Z. Phys. 45, 106; C. 1928 I, 154; STEWART, Phys. Rev. [2] 33, 891; C. 1929 II, 1258.

Ramanspektrum: Raman, Indian J. Phys. 2, 392; C. 1928 I, 3038; R., Krishnan, Nature 121, 711; Indian J. Phys. 2, 400, Tafel XIII; Pr. roy. Soc. [A] 122, 25; C. 1928 I, 3037; II, 2531; 1929 II, 137; PRINGSHEIM, ROSEN, Z. Phys. 50, 742; C. 1928 II, 2103; DAURE, C. r. 186, 1834; 188, 1493; Ann. Physique [10] 12, 435; WOOD, Phil. May. [7] 6, 742; 7, 862, Tafel XXI; C. 1929 I, 355; II, 1135; DADIEU, KOHLRAUSCH, M. 52, 227; Naturwiss. 17, 367; Sber. Akad. Wien [2a] 188, 48; Phys. Z. 30, 384, Tafel VII; C. 1929 II, 385, 697, 970; Petrikaln, Ph. Ch. [B] 3, 362; P., Hochberg, Ph. Ch. [B] 4, 302; Fujioka, Nature 124, 11; C. 1929 II, 1775; Ganesan, Venkateswaran, Indian J. Phys. 4, 225; C. 1929 II, 2646.

Elektrische und magnetische Eigenschaften. Dielektr.-Konst. bei —20°: 2,49, bei 0°: 2,436 (Bergholm, Ann. Phys. [4] 65, 133); bei 24°: 2,3 (Grimm, Patrick, Am. Soc. 45, 2799); bei 25°: 2,33 (Sayce, Briscoe, Soc. 1926, 2626), 2,378 ± 0,003 (Williams, Krchma, Am. Soc. 48, 1891); beim Siedepunkt: 2,17 (Grimm, Patrick, Am. Soc. 45, 2799). Dielektr.-Konst. zwischen —186° (2,520) und +90° (2,230): Isnardi, Z. Phys. 9, 168; zwischen —95,5° (2,669) und 110° (2,140): Matsuike, Pr. Acad. Tokyo 5, 30; C. 1929 I, 2390; zwischen —77,9° (2,557) und +34° (2,281): Meyer, Ann. Phys. [4] 75, 811; zwischen 13,5° (2,3791) und 93,7° (2,2556): Grützmacher, Z. Phys. 28, 348; C. 1925 I, 19. Über die Abhängigkeit der Dielektr.-Konst. vom Druck vgl. Grenacher, Ann. Phys. [4] 77, 148; von der Temperatur vgl. Vellasco-Durantez, An. Soc. españ. 25, 265, 291; C. 1927 II, 2649. Dielektr.-Konst. dünner Schichten: Kallmann, Dorsch, Ph. Ch. 126, 321. Dielektr. Verluste: McDowell, Phys. Rev. [2] 23, 513; C. 1924 II, 159. Dipolmoment μ×10<sup>18</sup>: 0,52 (verd. Lösung; Benzol) (Debye, Z. El. Ch. 34, 452), 0,40 (verd. Lösung; Tetrachlorkohlenstoff) (Krchma, Williams, Am. Soc. 49, 2414). Zum Dipolmoment von flüssigem Toluol vgl. Smyth, Am. Soc. 46, 2153.

Elektrische Leitfähigkeit: Burton, Pitt, Phil. Mag. [7] 5, 942; C. 1928 II, 918; Keyes, Swann, Hoerr, Trans. am. electroch. Soc. 54, 133; C. 1928 II, 2106; vgl. a. Kusnezow, Soobšč. nau.-tech. Rab. 13, 5, 6; C. 1925 II, 385, 386; Kus., Kudriawzewa, Soobšč. nau.-tech. Rab. 13, 7; C. 1925 II, 386. Elektrische Doppelbrechung zwischen —78,5° und +18°: Lyon, Wolfram, Ann. Phys. [4] 63, 750. Dispersion der elektrischen Doppelbrechung zwischen 488 und 645 m $\mu$  bei 20°: Becker, Ann. Phys. [4] 76, 850, 853; zwischen 480 und 618 m $\mu$  bei Temperaturen zwischen —20° und +100°: Bergholm, Ann. Phys. [4] 65, 133; zwischen 313 und 578 m $\mu$  bei 20,6°: Szivessy, Dierkesmann, Ann. Phys. [5] 3, 531. Rotation in elektrostatischen Drehfeld: Lertes, Z. Phys. 4, 322, 326; 6, 62; C. 1922 I, 488, 1126; III, 1030. Elektroendosmose in Toluol: Strickler, Mathews, Am. Soc. 44, 1652.

Magnetische Susceptibilität bei 29°: Athanasiadis, Ann. Phys. [4] 66, 425; zwischen --1,1° und --145,9°: Ishiwara, Sci. Rep. Töhoku Univ. [1] 3, 307; C. 1921 I, 270. Magnetische Doppelbrechung: Raman, Krishnan, Pr. roy. Soc. [A] 113, 518; C. 1927 I, 1127. Dispersion der magnetischen Doppelbrechung: Szivessy, Z. Phys. 18, 101; C. 1924 I, 2567. Magnetische Drehung der Polarisationsebene des Lichts: Pfleiderer, Z. Phys. 39, 685; C. 1927 I, 239; Javeelle, Chim. et Ind. 19, Sonder-Nr., S. 266. Verzögerung des Faraday-Effekts nach Anlegen bzw. Abstellen des magnetischen Feldes: Beams, Allison, Phys. Rev. [2] 29, 164; C. 1927 I, 2887; vgl. a. All., Phys. Rev. [2] 30, 69; C. 1927 II, 1545. Resonanz- und Ionisations-Potentiale von gasförmigem Toluol: Boucher, Phys. Rev. 19, 205; C. 1923 III, 1196. Bleikügelchen werden beim Fallen durch Toluol negativ aufgeladen (Burton, Curre, Phil. Mag. [6] 49, 202; C. 1925 I, 1388).

## Physikalische Eigenschaften von Toluol enthaltenden Gemischen.

Mechanische und thermische Eigenschaften. In 100 cm³ Wasser lösen sich bei 16° 0,047 g (Fühner, B. 57, 514), bei 20° 0,062 g (Horiba, Trans. Faraday Soc. 15 [1920], 184), bei Zimmertemperatur 0,08 cm³ (Kuroda, Bio. Z. 144, 288). Löslich in flüssigem Schwefelwasserstoff (Quam, Am. Soc. 47, 105) und in Selenoxybromid (Lenher, Am. Soc. 44, 1671), schwer löslich in flüssigem Ammoniak (de Carli, G. 57, 351). Toluol ist mit reinem flüssigem Schwefeldioxyd unbegrenzt, mit wasserhaltigem Schwefeldioxyd nur teilweise mischbar (Fontein, Z. ang. Ch. 36, 5; vgl. de C.; Zerner, Weiss, Opalski, Z. ang. Ch. 35, 254; 36, 6). Ist in allen Verhältnissen mischbar mit Vanadiumoxytrichlorid (Brown, Snyder, Am. Soc. 47, 2673). Gegenseitige Löslichkeit von Toluol und Ameisensäure bei 25°: Gordon, Reid, J. phys. Chem. 26, 782. Löslichkeitsdiagramm des Systems Toluol-Aceton-Wasser bei 0°, 20° und 30°: Walton, Jenkins, Am. Soc. 45, 2557; des Systems Toluol-Essigsäure-Wasser bei 25°: Woodman, J. phys. Chem. 30, 1283; des Systems Toluol-Silberperchlorat-Wasser bei 25°: Hill, Miller, Am. Soc. 47, 2704. Kritische Lösungstemperatur von Systemen aus Toluol und wäßr. Essigsäure vgl. Jones, Soc. 123, 1385. Einfuß auf die kritische Lösungstemperatur von Systemen aus Benzol und wäßr. Essigsäure: J., Soc. 123, 1391.

Die Verteilung zwischen Toluol und Wasser bei 25° wurde bestimmt für Jod (Schilow, Lepin, Ph. Ch. 101, 364), für Phenol (Fulmer, J. phys. Chem. 25, 13), für Ameisensäure (Gordon, Reid, J. phys. Chem. 26, 787), für Isobuttersäure (Smith, J. phys. Chem. 26, 271), für verschiedene organische Säuren (Smith, White, J. phys. Chem. 38, 1955), für Methylamin, Dimethylamin, Trimethylamin, Diäthylamin und Dipropylamin (Herz, Stanmer, Ph. Ch. 128, 400), für Benzoesäure, Pikrinsäure und Pyridin (Sch., Le., Ph. Ch. 101, 369).

Einfluß von Alkohol auf die Verteilung von Phenol zwischen Wasser und Toluol bei 25°: Fulmer, J. phys. Chem. 25, 13. Einfluß von Natriumchlorid auf durch Natriumcleat stabilisierte Toluol-Wasser-Emulsionen: Tartar, Mitarb., J. phys. Chem. 33, 442. Über Emulsionen von Gemischen von Henol und Toluol in wäßr. Natriumcleat-Lösung vgl. RIEMAN, VAN DER MEULEN, Am. Soc. 47, 2507; in wäßr. Lösung von ricinolsaurem Natrium vgl. v. d. M., Rie., Am. Soc. 46, 876.

Lösungsvermögen von Toluol für Sauerstoff bei 17° und 19°: F. Fischer, Pfleiderer, Abh. Kenntnis Kohle 5 [1920], 575; Z. anorg. Ch. 124, 69; für Radiumemanation zwischen —18° und +60°: Schulze, Ph. Ch. 95, 263; für Jod bei 25°: Schilow, Lepin, Ph. Ch. 101, 364; für rhombischen Schwefel zwischen 0° und 54°: Hilleberand, Jenks, Am. Soc. 43, 2173; für Silberperchlorat zwischen —73,5° und +75°: Hill, Miller, Am. Soc. 47, 2702; für Zinn(IV)-jodid bei 10°, 25° und 40°: Dorfman, Hildebrand, Am. Soc. 49, 733; für 1.4-Dibrom-benzol zwischen 0° und 80°: Mortimer, Am. Soc. 45, 634; für 2.4.6-Trinitro-toluol zwischen 1,5° und 75,4°: Taylor, Rinkenbach, Am. Soc. 45, 634; für 2.4.6-Trinitro-m-xylol bei 15°, 90° und 110°: Desvergnes, Ann. Chim. anal. appl. 25 [1920], 283; für Naphthalin zwischen 8,2° und 67,4°: Ward, J. phys. Chem. 30, 1323; für Fluoren zwischen 0° und 100°: Mortimer; für Pikrinsäure bei 70°: Kondakow, Parl. Mod. 19, 216; C. 1927 I, 194; für Anthrachinon zwischen 15° und 100°: Sudborough, Watson, Narayanan, J. indian Inst. Sci. 8 [1925], 6; für Benzoesäure zwischen 0° und 121,7°: Mortimer, Am. Soc. 45, 634; Chipman, Am. Soc. 46, 2446; für Phosgen zwischen 17° und 31,5°: Atkinson, Heycock, Pope, Soc. 117, 1422; für 2.3.4.6-Tetranitro-anilin bei 0°: Taylor, Rinkenbach, Am. Soc. 45, 1219. Lösungsvermögen der binären Gemische von Toluol mit Chloroform, Tetrachlorkohlenstoff, Benzol und Schwefelkohlenstoff für Anthracen: Disselkamp, Ph. Ch. 123, 103.

Kryoskopisches Verhalten von Toluol in Chloroform, Aceton und Schwefelkohlenstoff: Mitsukuri, Bl. chem. Soc. Japan 1, 33; C. 1926 I, 3453; Mit., Aoki, Sci. Rep. Töhoku Univ. [1] 15, 65; C. 1926 II, 546; in Benzol: Bell, Wright, J. phys. Chem. 31, 1884; Petterson, Rodebush, J. phys. Chem. 32, 715; in einem Gemisch aus gleichen Gew.-% Alkohol und Benzol: Wright, Soc. 127, 2337. Erstarrungspunkte einiger Gemische mit Benzol: Tetralin-Ges., D.R.P. 329833; C. 1921 II, 425; Frdl. 13, 316. Thermische Analyse der binären Systeme mit Schwefeldioxyd: de Carli, R. A. L. [6] 4, 460; mit Chloroform, Cyclohexan und Anilin: Timmermans, Bl. Soc. chim. Belg. 37, 414, 417, 419; C. 1929 II, 522; mit Benzol (Eutektikum bei —103° und 84,38—85,96 Mol-% Toluol): Mitsukuri, Nakatsuchi, Sci. Rep. Töhoku Univ. [1] 15, 47; C. 1926 II, 545; mit 3-Nitro-toluol und m-Toluidin: Dessart, Bl. Soc. chim. Belg. 35, 10, Tabelle 9 und 10; C. 1926 II, 157; mit m-Xylol (Eutektikum bei —105,5° und 79,93 Mol-% Toluol): Na., Sci. Rep. Töhoku Univ. [1] 15, 55; C. 1926 II, 546; mit N-Allyl-N'-phenyl-thioharnstoff: Kurnakow, Ssolowjew, zit. bei Schischokin, Izv. Inst. fiz.-chim. Anal. 4, 207; Z. anorg. Ch. 181, 144.

Siedepunkte und Zusammensetzung des Dampfes von Gemischen mit Wasser: Barbudy, J. Chim. phys. 23, 297; C. r. 176, 1616. Siedediagramm des Systems mit Chloroform bei Atmosphärendruck: Rosanoff, Bacon, White, Am. Soc. 36 [1914], 1814, 1822; vgl. a. Leslie, Geniesse, Ind. Eng. Chem. 18, 590; C. 1926 II, 1772; mit Benzol bei Atmosphärendruck: Dufton, Phil. Mag. [6] 41 [1921], 637; Oman, Tekn. Tidskr. 57 K, 35, 38; C. 1927 II, 153. Siedepunkte von Gemischen mit Benzol: Denslow, J. chem. Educ. 5, 731; C. 1928 II, 626. Zur Destillation von Gemischen mit Benzol vgl. a. Piron, Chem. met. Eng. 26, 319; C. 1922 IV, 1077. Siedediagramm des ternären Systems mit Benzol und Wasser: Bar., J. Chim. phys. 23, 303. Binäre azeotrope Gemische, die Tolüol enthalten, s. in Tabelle 2. Toluol gibt ein ternäres azeotropes Gemisch mit Alkohol und Wasser (Kp: 75—78°) (Locquin, Elghozy, Bl. [4] 41, 446).

Tabelle 2. Toluol enthaltende binäre azeotrope Gemische.

| Komponente              | Кр <sub>760</sub><br>0                            | Toluol<br>in Gew%                                      | Komponente                                                                                                                                                                                             | Kp780<br>0                                           | Toluol<br>in Gew%                 |
|-------------------------|---------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------|
| Methanol <sup>3</sup> ) | 63,82<br>92,35<br>81,25<br>105,7<br>95,3<br>100,9 | 31<br>47,5<br>ca. 21<br>ca. 73<br>45<br>55,5<br>ca. 65 | Dimethyläthyl- carbinol <sup>8</sup> ) Isobutylcarbinol <sup>1</sup> ) <sup>5</sup> ) Chloraceton <sup>2</sup> ) Essigsäure <sup>4</sup> ) Äthylisobutyrat <sup>1</sup> ). Methyllactat <sup>1</sup> ) | 100,0<br>109,95<br>109,2<br>104,95<br>109,8<br>110,4 | 44<br>86<br>71,5<br>66<br>—<br>82 |

<sup>&</sup>lt;sup>1</sup>) LECAT, R. 46, 244, 245. — <sup>2</sup>) L., Ann. Soc. scient. Bruxelles 47 I [1927], 24. — <sup>3</sup>) L., Ann. Soc. scient. Bruxelles 48 I [1928], 55. — <sup>4</sup>) L., Ann. Soc. scient. Bruxelles 48 I, 116, 117. — <sup>5</sup>) L., Ann. Soc. scient. Bruxelles 49 [1929], 20.

Dampfdruck von binären Gemischen mit Tetrachlorkohlenstoff zwischen 0° und 75°: G. C. Schmidt, Ph. Ch. 121, 239; mit Cyclohexan zwischen 29,80 und 110,40: Nagornow, Izv. Inst. fiz.-chim. Anal. 3, 586; C. 1927 II, 2668; mit Benzol zwischen 0° und 120°: SCHULZE, Ph. Ch. 97, 418; SCHMIDT, Ph. Ch. 99, 80; 121, 240; BELL, WRIGHT, J. phys. Chem. 31, 1885; mit Dekahydronaphthalin bei 20°: Weissenberger, Henre, Sperling, M. 48, 484; mit Phenol bei 15°: Wei., Schuster, Schuler, M. 45, 428; mit o-, m- und p-Kresol bei 15°: Wei., Schuster, Wojnoff, M. 46, 1; mit Schwefelkohlenstoff zwischen 0° und 90°: Schmidt, Ph. Ch. 99, 80; 121, 242.

Dichte von binären Gemischen mit Kobaltsalzen und deren Ammoniakverbindungen bei 25°: Clark, Quick, Harkins, Am. Soc. 42, 2493; mit Jod bei 20°, 40° und 60°: Grunert, Z. anorg. Ch. 164, 260; mit Schwefeldioxyd bei 25°: Lewis, Am. Soc. 47, 632; mit Chloroform zwischen 15° und 25°: Leslie, Geniesse, Ind. Eng. Chem. 18 [1926], 591; mit Tetrachlorkohlenstoff bei 25°: KRCHMA, WILLIAMS, Am. Soc. 49, 2412; mit Benzol bei verschiedenen Temperaturen: MITSUKURI, NAKATSUCHI, Sci. Rep. Téhoku Univ. [1] 15, 48; C. 1926 II, 545; WILLIAMS, KRCHMA, Am. Soc. 49, 1679; BURROWS, JAMES, J. Pr. Soc. N. S. Wales 59, 226; C. 1927 II, 894; Herz, Scheliga, Z. anorg. Ch. 169, 166; mit Chlor-N. S. Wales DB, ZZO; C. 1927 II, 894; HERZ, SCHELIGA, Z. anorg. Ch. 169, 166; mit Chlorbenzol, Brombenzol und Nitrobenzol: Bu., Ja.; mit 3-Nitro-toluol bei 15° und 30°: Dessart, Bl. Soc. chim. Belg. 35, 21, Tafel 10; C. 1926 II, 157; mit Naphthalin bei verschiedenen Temperaturen: DE KOLOSSOWSKY, Bl. Soc. chim. Belg. 34, 229; C. 1926 I, 1097; GRUNERT, Z. anorg. Ch. 164, 257; mit Phenanthren bei 20°, 40° und 60°: GRUNERT, Z. anorg. Ch. 164, 259; mit Methanol und Aceton: Burrows, James, J. Pr. Soc. N. S. Wales 59, 227; C. 1927 II, 894; mit Guajacol bei 30°: Puschin, Pinter, Ph. Ch. [A] 142, 217; mit Essigsäure bei 25°: Woodman, Chem. N. 134 [1927], 36; mit Schwefelkohlenstoff bei 20° und 40°: Herz, Scheliga; mit Anilin und p-Toluidin: Bu., Ja., J. Pr. Soc. N. S. Wales 59, 227; mit m-Toluidin bei 0°, 15° und 30°: Dessart. Bl. Soc. chim. Belg. 35, 24 Tafel 9· C 1928 II mit m-Toluidin bei 0°, 15° und 30°: DESSART, Bl. Soc. chim. Belg. 35, 21, Tafel 9; C. 1926 II, 157. Dichte eines ternären Gemisches mit Naphthalin und Phenanthren bei 20°, 40° und 60°: Herz, Sche., Z. anorg. Ch. 169, 165. Dichte der einzelnen Schichten im System Wasser-Essigsäure-Toluol bei 25°: Woodman, J. phys. Chem. 30, 1285. — Volumenänderung beim Mischen mit Tetrachlorkohlenstoff, Schwefelkohlenstoff und Benzol: Schmidt, Ph. Ch. 121, 252; mit Benzol: Schulze, Ph. Ch. 97, 423; Rakshit, Z. El. Ch. 31, 321. Über Volumen änderungen beim Mischen mit verschiedenen organischen Verbindungen vgl. RICHARDSON, ROBERTSON, Soc. 1928, 1779.

Viscosität von binären Gemischen mit Jod bei 20°, 40° und 60°: Herz, Scheliga. Z. anorg. Ch. 169, 162; mit Schwefeldioxyd bei 25°: Lewis, Am. Soc. 47, 632; mit Benzol bei 20°, 40° und 60°: Herz, Sche., Z. anorg. Ch. 169, 166; mit Chlorbenzol und Brombenzol bei 20°, 35° und 50°: YAJNIK, Mitarb., Ph. Ch. 118, 310; mit 3-Nitro-toluol bei 15° und 30°: DESSART, Bl. Soc. chim. Belg. 35, 25; C. 1926 II, 157; mit Naphthalin und Phenanthren bei 20°, 40° und 60°: Herz, Sche., Z. anorg. Ch. 169, 162; mit Phenol bei 15°: Weissen-BERGER, SCHUSTER, SCHULER, M. 45, 434; mit o., m- und p-Kresol bei 15°: Wei., Schuster, Wojnoff, M. 46, 5; mit Guajacol bei 30°: Puschin, Pinter, Ph. Ch. [A] 142, 217; mit Schwefelkohlenstoff bei 20° und 40°: Herz, Sche., Z. anorg. Ch. 169, 166; mit m-Toluidin bei 15° und 30°: Dessart; mit Kolophonium: Keyssner, Z. ang. Ch. 39, 103. Viscosität eines ternären Gemisches mit Naphthalin und Phenanthren bei 20°, 40° und 60°: Herz, Sche., Z. anorg. Ch. 169, 165. Viscosität der einzelnen Schichten im System Wasser-Essigsäure-Toluol bei 25°: Woodman, J. phys. Chem. 30, 1285. Diffusionsgeschwindigkeit von Jod in Toluol: Miller, Pr. roy. Soc. [A] 106 [1924], 738.

Oberflächenspannung von binären Gemischen mit Jod, Naphthalin und Phenanthren

bei 20°, 40° und 60°: HERZ, KNAEBEL, Ph. Ch. 131, 402; mit Benzol bei 18,2° und mit Nitrobenzol bei 55°: STACHORSKY, Z. El. Ch. 34, 112; mit Chlorbenzol und Brombenzol bei 20°, 35° und 50°: Yajnik, Sharma, Bharadwaj, Quart. J. indian chem. Soc. 3, 66; C. 1926 II. 2147; mit Phenol bei 15°: Weissenberger, Schuster, Schuler, M. 45, 432; mit o-, m- und p-Kresol bei 15°: Wei., Schuster, Wojnoff, M. 46, 7. Veränderung der Oberflächenspannung von binären Gemischen mit Schwefelkohlenstoff, Äther und Aceton bei 25° mit der Zeit: Trimble, J. phys. Chem. 32, 1217. Einfluß von Toluol-Dampf auf die Oberflächenspannung des Wassers bei verschiedenen Temperaturen: Koran, R. 44, 470. Oberflächenspannung des Wassers bei verschiedenen Temperaturen: Koran, R. 44, 470. Oberflächenspannung und Grenzflächenspannung der Schichten im System Wasser-Essigsäure-Toluol bei 25°: Woodman, J. phys. Chem. 31, 1743. Grenzflächenspannung gegen Wasser bei 20°: Effmow, Rehbinder, Bio. Z. 211, 157; bei 30°: Pound, Soc. 123, 583, 588; J. phys. Chem. 30, 793; gegen Phosphat-Pufferlösungen von p<sub>H</sub> 5,6 und 7,4: Hartridge, Petters. Pr. roy. Soc. [A] 101, 363; C. 1923 I, 874; gegen Wasser, Salzsäure, Natronlauge und Pufferlösungen zwischen p<sub>H</sub> 1 und p<sub>H</sub> 14 sowie gegen wäßr. Gelatine-Lösungen zwischen p<sub>H</sub> 1 und p<sub>H</sub> 14 sowie gegen wäßr. Gelatine-Lösungen zwischen p<sub>H</sub> 1 und p<sub>H</sub> 14 bei 30°, 35°, 40° und 50°: Sheffard, Sweet, Am. Soc. 44, 2801; gegen Quecksilber bei 20°: Harkins, Ewing, Am. Soc. 42, 2543; Harkins, Pr. nation. Acad. USA. 5, 571; C. 1920 III, 222. Einfluß einer dünnen Wandschicht von Toluol auf die Ausflußzeit won Wasser sus Capillaren: Trauber Whang, Ph. Ch. 188, 444 von Wasser aus Capillaren: TRAUBE, WHANG, Ph. Ch. 138, 111.

Adsorption von Toluol-Dampf an Zuckerkohle bei verschiedenen Temperaturen und Drucken: Bakr. McBain, Am. Soc. 48, 2719; an Tierkohle bei 18°: Alexejewski, 3.55, 416; C. 1925 II, 642; bei 25°: Driver, Fieth, Soc. 121, 2411; an Tonerde-Gel bei 25°: Perry, J. phys. Chem. 29, 1466; an Kieselsäure-Gel bei 30°: Holmes, Bl. [4] 43, 285; an mit Kohle imprägniertes Kieselsäure-Gel bei 17—19°: Fells, Firth, J. Soc. chem. Ind. 46, 40 T; C. 1927 I, 1804; an Titan(IV)-oxyd und Cer(IV)-oxyd bei 20°: Nikitin, Jurjew, 3.61, 1033; C. 1930 I, 347; an planen Glasoberflächen bei 0°: Carver, Am. Soc. 45, 63; zwischen 20° und 50°: Frazer, Patrick, Smith, J. phys. Chem. 31, 901; vgl. auch D'Huart. C. r. 180, 1596. Adhäsionsspannung und Adhäsionsarbeit zwischen flüssigem Toluol und Kohle oder Kieselsäure: Bartell, Osterhof, Ph. Ch. 130, 723. Adsorption aus flüssigen und dampfförmigen Gemischen mit Essigsäure an Zuckerkohle und Tierkohle: Bakr, McBain, Am. Soc. 46, 2721, 2722. Über die Trennung von binären Gemischen mit Benzol und Pyridin durch auswählende Adsorption an Kieselsäure-Gel vgl. Grimm, Raudenbusch, Wolff, Z. ang. Ch. 41, 105. Adsorption von Jod aus Toluol an akt. Kohle bei 30°: Trividic, Rev. gén. Colloïdes 7, 20, 72; C. 1929 I, 2027, 2863; von Jod aus Benzin-Toluol-Gemischen an aktivierte Holzkohle: Schilow, Lepin, Ph. Ch. 94, 62; von Jod und Benzoesäure aus Toluol-Alkohol- und Toluol-Äther-Gemischen an aktive Kohle: Schilow, Pewsner, Ph. Ch. 118, 367; von Fettsäuren aus Toluol an Tierkohle: Nekrassow, Ph. Ch. 136, 26. Benetzungsvermögen von Toluol für Glas- und Messingplatten: Vollmann, Farben-Zig. 31, 2933; C. 1926 II, 2635. Ausbreitung von Toluol auf Wasser: Harkins, Feldman, Am. Soc. 44, 2671; Ramdas, Indian J. Phys. 1, 20; C. 1926 II, 1935; auf Quecksilber: Ha., Fe., Am. Soc. 44, 2680.

Spezifische Wärme cp von binären Gemischen mit Benzol zwischen 20° und 60°: WILLIAMS, DANIELS, Am. Soc. 47, 1492. Wärmetönung beim Vermischen mit dem gleichen Volumen Chloroform bzw. Äther bei Temperaturen zwischen —2° und 37°: MADGIN, PEEL, BRISCOE, Soc. 1927, 2875; mit Tetrachlorkohlenstoff, Benzol bzw. Schwefelkohlenstoff: Schmidt, Ph. Ch. 121, 252; mit Dekahydronaphthalin: Weissenberger, Henke, Sperling, M. 46, 484. Wärmetönung der Adsorption an Kieselsäure-Gel: Grimm, Raudenbusch, Wolff, Z. ang. Ch. 41, 106.

Optische und elektrische Eigenschaften. Brechungsindices von binären Gemischen mit Tetrachlorkohlenstoff bei 25°: KRCHMA, WILLIAMS, Am. Soc. 49, 2412; mit Benzo; bei 20°: Mitsukuri, Nakatsuchi, Sci. Rep. Töhoku Univ. [1] 15, 49; C. 1928 II, 545: bei 25°: W., K., Am. Soc. 48, 1892; mit 3-Nitro-toluol und m-Toluidin bei 15° und 30°, Dessart, Bl. Soc. chim. Belg. 35, 21, Tafel 9, 10; C. 1928 II, 157. Lichtzerstreuung in Gemischen mit Essigsäure: Rao, Pr. indian Assoc. Cult. Sci. 9, 23, 24; C. 1928 II, 2270. Über Schlierenbildung in Gemischen mit Chloroform + Aceton, Chloroform + Essigester, Benzol und Benzol + Essigester vgl. Emich, M. 53/54, 326, 358. — Dielektr. Konst. von binären Gemischen mit Tetrachlorkohlenstoff bei 25°: K., W., Am. Soc. 49, 2412; mit Benzol bei 25°: W., K., Am. Soc. 48, 1891; zwischen 12,8° und 76°: Grützmacher, Z. Phys. 28l 348; C. 1925 I, 19. Über die Einw. kurzer elektrischer Wellen auf die Dielektr. Konst. eines Gemisches von Benzol und Toluol vgl. Schulwas-Sorokina, Z. Phys. 48, 426; C. 1928 I, 2913. Beeinflussung des Potentials einer Platin-Anode in verd. Schwefelsäure durch Toluol: Fichter, Uhl., Helv. 3, 35. Über die Anwendbarkeit von Toluol in Konzentrationsketten vgl. Michaelis, Fujita, Ph. Ch. 110, 281. Elektrische Doppelbrechung von Suspensionen verschiedener Pulver in Toluol: Procopiu, C. r. 172, 1173; Ann. Physique [10] 1, 235, 254, 257. — Magnetische Doppelbrechung von Lösungen in Tetrachlorkohlenstoff: Ramanadham, Indian J. Phys. 4, 112; C. 1929 II, 3216. Magnetische Drehung der Polarisationsebene des Lichtes von binären Gemischen mit Cyclohexan und Cyclohexen: Javeelle, Chim. et Ind. 19, Sonder-Nr., 266; C. 1928 II, 1860.

Sonder-Nr., 266; C. 1928 II, 1860.

Katalytische Wirkungen. Einfluß von Toluol-Dampf auf die luminescierende Flamme des Schwefels in Sauerstoff-Stickstoff-Atmosphäre: EMELÉUS, Soc. 1928, 1948. Einfluß auf die langsame Verbrennung von Hexan in Luft: Mardless, Soc. 1928, 876. Einfluß von Dibenzylsulfid auf die Reaktionsfähigkeit von Jod in Toluol-Lösung: Feigl, Bondi, M. 53/54, 525.

### Chemisches Verhalten.

Einwirkung von Strahlung und Wärme. Einw. von durchdringenden Radiumstrahlen und von ultraviolettem Licht auf Toluol und auf Toluol-Wasser-Gemische: Kailan, Sber. Akad. Wien [II a] 128, 832; C. 1921 III, 720; Ph. Ch. 95, 239. Bei der Zersetzung von Toluol im elektrischen Lichtbogen entstehen Methan, Acetylen, wenig Kohlenwasserstoffe  $C_nH_{2n}$  und viel Wasserstoff (Contard, Atti Congr. naz. Chim. ind. 1924, 369; C. 1925 I, 2346). Toluol zersetzt sich fast vollständig beim Erhitzen in der Bombe auf 525° unter Bildung von Xylolen und Kohlenwasserstoffen der Formel  $C_{14}H_{14}$  (Herndon, Reid, Am. Soc. 50, 3069, 3072). Beim Leiten von Toluol-Dampf über akt. Kohle beginnt bei ca. 350° die Bildung von Benzol und Xylol (Gurwitsch, Ph. Ch. 107, 247).

Oxydation. Entzündungstemperatur von Toluol in Luft bei Gegenwart und Abwesenheit von Katalysatoren: Masson, Hamilton, Ind. Eng. Chem. 19, 1337; 20, 814; C. 1928 I, 943; II, 1986; EGERTON, GATES, J. Inst. Petr. Technol. 13, 258; C. 1928 II, 211; Berl, Heise, Winnacker, Ph. Ch. [A] 139, 457. Entzündung von Gemischen mit Luft durch adiabatische Kompression: Pignot, Chim. et Ind. 16, 348; 17, Sonder-Nr., S. 261; C. 1927 I, 861; II, 2252. Geschwindigkeit der Entzündung von Toluol in Luft: Mache, Sher. Akad. Wien [IIa], 137, 458; C. 1928 II, 2629. Druckanstieg bei der Explosion eines Toluol-Sauerstoff-Stickstoff-Gemischs: Brown, Watkins, Ind. Eng. Chem. 19, 284; C. 1927 II, 1445. Fortpflanzung der Flammenwelle im Gemisch mit Luft: White, Soc. 121, 1257; im Gemisch mit Benzol und Luft: Wh., Soc. 121, 2563. Ionen-Emission bei der Oxydation von Toluol mit Luft bei verschiedenen Temperaturen: Brewer, Pr. nation. Acad. USA. 12, 561; C. 1926 II, 2659.

In Gegenwart von fein verteiltem Silber wird Toluol durch Luft bei 350° zu Wasser und Kohlendioxyd oxydiert (Senderens, A. ch. [9] 13, 283). Benzaldehyd und Benzoesäure entstehen beim Überleiten eines Gemisches aus Toluol-Dampf und Luft bei 450—500° über einen Katalysator aus Zinkoxyd und Chromsäure (BASF, D. R. P. 415686; C. 1925 II, 1802; Frdl. 15, 355), bei etwa 375° über einen Katalysator aus Oxyden des Zinks, Vanadiums und Mangans (I. G. Farbenind., D. R. P. 444433; C. 1927 I, 2137; Frdl. 15, 354), bei 400° bis 500° über einen Bimsstein-Kupfermolybdat-Uranmolybdat-Katalysator (I. G. Farbenind., D. R. P. 446912; C. 1927 II, 1306; Frdl. 15, 390) oder bei 400° über Kieselsäuregel (I. G. Farbenind., D. R. P. 520828; C. 1931 I, 3287; Frdl. 16, 3011). Bei der Oxydation von Toluol mit Luft in Gegenwart von Vanadiumpentoxyd bei 410° werden Benzaldehyd, Benzoesäure und Maleinsäure gebildet (Barrett Co., D. R. P. 475808; Frdl. 16, 674). Beim Leiten von Toluol-Dampf mit Luft über mit Vanadiumpentoxyd überzogenes Aluminium bei 400° erhält man Benzaldehyd, Benzoesäure, Anthrachinon und andere Produkte (Bowen, Nash. Nature 120, 621; J. Inst. Petr. Technol. 14, 112; C. 1928 I, 345, 2220; vgl. a. Downs, J. Soc. chem. Ind. 46 [1927], 385 T). Dieselben Produkte entstehen auch unter sonst gleichen Bedingungen bei Verwendung eines Vanadiumpentoxyd-Bimsstein-Katalysators (Schorigin, Kisber, Smoljanikowa, Z. prikl. Chim. 2, 152; C. 1929 II, 730). In Gegenwart von granuliertem Zinnvanadat wird Toluol-Dampf durch Luft bei 290° zu Benzoesäure oxydiert (Maxted, J. Soc. chem. Ind. 47, 102 T; C. 1928 I, 3029). Toluol gibt beim Erhitzen mit Luft im Eisenautoklaven in Gegenwart von Sodalösung auf 210—260° Benzoesäure und geringere Mengen Benzaldehyd, Ameisensäure, Essigsäure, Oxalsäure und Kohlendioxyd (Schrader, Abh. Kenntnis Kohle 4, 323; C. 1921 I, 537). Verhalten bei der Oxydation mit Luft in Gegenwart und Abwesenheit von Braunstein bei 99,4°: Kailan, Olberch, M. 48, 541.

In Gegenwart von Anthrachinon oder 2-Methyl-anthrachinon wird Toluol durch Luft bei mehrmonatiger Sonnenbestrahlung hauptsächlich zu Benzoesäure und Hydrobenzoin oxydiert; daneben entstehen in geringer Menge Dibenzyl, Benzaldehyd, Isohydrobenzoin und andere Produkte; bei gleichzeitiger Gegenwart von Acetanhydrid erhält man neben Benzoesäure Benzylacetat (ECKERT, B. 58, 314; D. R. P. 383030; Frdl. 14, 442; vgl. John, B. 58, 1564). Bei der photochemischen Oxydation von Toluol in Gegenwart von Benzochinon, Xanthon, Acridon oder Benzophenon werden nur geringe Mengen Benzoesäure gebildet (E., B. 58, 317). Über die Benzoesäure-Bildung bei der Oxydation von Toluol durch Sauerstoff in Gegenwart von Anthrachinon und Wasser im Sonnenlicht und im ultravioletten Licht vgl. Sudborough, Watson, Narayanan, J. indian Inst. Sci. 8, 3, 7; C. 1926 I, 19. Verhalten von Toluol bei sehr langem Durchleiten von Sauerstoff bei 100° in diffusem Licht: Stephens, Am. Soc. 48, 1826. Bei längerer Belichtung eines Gemisches von Toluol und Fenchon in Wasser in einer Sauerstoffatmosphäre entstanden Kohlendioxyd, Essigsäure

und Benzoesäure (Scagliarini, Saladini, G. 53, 136).

Bei 100-stdg. Kochen von Toluol mit Salpetersäure entstehen Benzoesäure, 4-Nitrobenzoesäure, 2-Nitro-toluol und geringe Mengen anderer Produkte (Askenasy, Elöd, A. 461, 116). Einfluß der Konzentration der Salpetersäure auf den Reaktionsverlauf: A., E., A. 461, 116. Oxydiert man Toluol mit 22,5% iger Salpetersäure unter 15 Atm. Sauerstoffdruck bei 180—185°, so findet in Gegenwart wie in Abwesenheit von Vanadiumpentoxyd innerhalb von 15—20 Min. fast quantitativer Umsatz des Toluols statt; als Hauptprodukt entsteht Benzoesäure, daneben werden 4-Nitro-benzoesäure, wenig 2-Nitro-toluol, Kohlendioxyd, geringe Mengen Pikrinsäure und Spuren 2-Nitro-benzoesäure gebildet (A., E., A. 461, 117). Bei der Einw. von Sauerstoff und Stickoxyden auf Toluol-Dampf bei Temperaturen zwischen 150° und 300° unter gewöhnlichem Druck entstehen Kohlendioxyd und 2-Nitro-toluol (A., E., A. 461, 127). Läßt man Stickstofftetroxyd im Dunkeln bei 12—16° unter Ausschluß von Feuchtigkeit längere Zeit auf Toluol einwirken, so erhält man Benzoesäure, Benzaldehyd, Nitrotoluole, Nitrophenole, Dinitrokresolnitrite oder -nitrate, Oxalsäure, eine Verbindung C, H<sub>0</sub>O<sub>4</sub> (Krystalle aus Methanol; F: 78—78,5°; unlöslich in heißem Wasser) und andere Produkte; bei sehr langer Einw. tritt Benzaldehyd nicht mehr auf (SCHAARSCHMIDT, Z. ang. Ch., 36, 535; SCH., SMOLLA, B. 57, 34). Über den Einfluß des Reinheitsgrades des

Stickstofftetroxyds auf die Reaktion mit Toluol vgl. Sch., Z. ang. Ch. 36, 535; Sch., Sm. Bass, Johnson (Am. 80c. 46, 459) fanden bei 3-monatiger Einw. von Stickstofftetroxyd auf Toluol im Dunkeln in einer zugeschmolzenen Ampulle als einziges Reaktionsprodukt Benzoesäure. Bei 6-stdg. Bestrahlung von Toluol und Stickstofftetroxyd mit ultraviolettem Licht in einem gekühlten Quarzgefäß entstand neben Benzoesäure eine unstabile zwischen 40° und 60° siedende Flüssigkeit, die sich allmählich unter Bildung von Toluol und Stickstofftetroxyd zersetzt (B., J.). Über die Einw. von Stickstofftetroxyd auf Toluol in Gegenwart von Aluminiumchlorid vgl. Schaarschmidt, B. 57, 2068. Über Explosionen von Toluol-Stickstofftetroxyd-Gemischen vgl. Sch., Z. ang. Ch. 36, 533; Sch., Smolla, B. 57, 32. Weitere Angaben über die Einw. von Salpetersäure und von Sticksoxyden s. S. 220.

Toluol wird durch Kaliumdichromat-Schwefelsäure nur unvollständig zu Kohlendioxyd verbrannt (Guyor, Simon, C. r. 170, 736), durch Silberdichromat-Schwefelsäure dagegen quantitativ in Kohlendioxyd übergeführt (S., C. r. 177, 266). Beim Erhitzen von Toluol mit Natriumdichromat-Schwefelsäure in Gegenwart von Kieselgur entsteht in guter Ausbeute Benzoesäure (Eichwald, Hardt, D. R. P. 360528; C. 1923 II, 407; Frdl. 14, 439). Über Oxydation zu Benzoesäure durch Chromschwefelsäure bei 20—70°, auch in Gegenwart von Natriumchlorid, Eisen(II)-sulfat, Mangan(II)-sulfat oder Nickelsulfat sowie bei Bestrahlung mit einer Bogenlampe vgl. Magidson, Maximow, Z. chim. Promyšl, 5, 1102; C. 1929 II. 1659. Durch Natriumhypochlorit + Kaliumpermanganat wird Toluol in alkal. Lösung fast quantitativ zu Benzoesäure oxydiert (Chem. Werke Grenzach, D. R. P. 377990; C. 1924 I, 1101; Frdl. 14, 441). Oxydation von Toluol durch Uransalze im Sonnenlicht oder ultravioletten Licht: Aloy, Valdiguié, Bl. [4] 37, 1138. Über Bildung von Hydrochinoncarbonsäure und anderen Produkten bei der elektrolytischen Oxydation von Toluol in 0,5 n-Schwefelsäure an einer Platin-Anode vgl. Fichter, Uhl., Helv. 3, 33. Bei der elektrolytischen Oxydation in Essigsäure + Schwefelsäure an einer Platin-Anode unter Kühlung entstehen Benzaldehyd, Oxalsäure und Harz (F., Bonhôte, Helv. 3, 405). Über die Bildung von Benzaldehyd bei der elektrolytischen Oxydation an Platinelektroden in Essigsäure + Salpetersäure vgl. Mann, Paulson, Trans. am. electroch. Soc. 47, 110; C. 1925 II, 21. Über die elektrolytische Oxydation von Toluol zu Benzaldehyd und Benzoesäure in Gegenwart von Katalysatoren vgl. a. Mitchell, Trans. am. electroch. Soc. 56, 506; C. 1929 II, 3112. Hydrierung. Toluol läßt sich bei Gegenwart von Platinoxyd-Katalysator in Eisessig bei 25—30° und 2—3 Atm. Druck leicht zu Methylcyclohexan hydrieren (Adams, Marshall.

bei 25—30° und 2—3 Atm. Druck leicht zu Methylcyclohexan hydrieren (Adams, Marshall. Am. Soc. 50, 1972). Geschwindigkeit der Hydrierung bei Gegenwart von Platinschwarz in Essigester: Vavon, Detree, C. r. 172, 1232. Beim Erhitzen von Toluol unter hohem Wasserstoffdruck erhält man Benzol, Methan, Athan sowie geringe Mengen Diphenyl, Methyldiphenyl und Ditolyl (Hofmann, Lang, Brennstoffch. 10, 204; C. 1929 II, 164). Beim Leiten von Toluol-Dämpfen mit Wasserstoff über einen aus Manganoxyd, Nickeloxyd und Kupferoxyd bestehenden Katalysator bei 160—200° wird Methylcyclohexan gebildet (Agfa, D. R. P. 383540; C. 1924 I, 2544; Frdl. 14, 493). Methylcyclohexan entsteht auch beim Erhitzen von Toluol mit 2 Mol Hydrazin im Rohr auf 250° (Müller, Kraemer-Willenberg,

B. 57, 579).

Halogenisierung. Toluol reagiert bei —80° im Dunkeln mit Chlor nur bei Gegenwart von Jod (Book, Eggert, Z. El. Ch. 29, 524). Kinetik der Lichtreaktion mit Chlor bei —80° in Abwesenheit und Gegenwart von Jod: B., E., Z. El. Ch. 29, 524; vgl. auch B., E., B. 59, 1192. Leitet man in auf 105—110° erhitztes Toluol Chlor, so entsteht sowohl im Dunkeln als auch bei Ultraviolett-Belichtung fast ausschließlich Benzylchlorid, in Gegenwart von Eisenchlorid wird dagegen ein Gemisch von 2- und 4-Chlor-toluol gebildet (B., E., Z. El. Ch. 29, 521). Auch beim Chlorieren von Toluol-Dampf im Licht unterhalb des Siedepunktes des Benzylchlorids entsteht praktisch nur Benzylchlorid (Zelinsky, Schering-Kahlbaum A.G., D. R. P. 478084; C. 1929 II, 1216; Frdl. 16, 336). Geschwindigkeit der Chlorierung von Toluol zu Benzylchlorid im Dunkeln und im Licht sowie bei Gegenwart und bei Abwesenheit von Phosphorpentachlorid bei Siedetemperatur: Bergel, B. 59, 153. Mengenverhältnis von Kernsubstitutionsprodukten zu Benzylchlorid bei der Chlorierung von Toluol in der Siedehitze mit und ohne Selentetrachlorid als Chlorüberträger im Dunkeln und im Licht und Einfluß des Selentetrachlorids auf die Menge des in Reaktion getretenen Chlors in einer gegebenen Zeit: O. Silberrad, Ch. A. Silberrad, Soc. 127, 2449). Über die Bildung von 2- und 4-Chlor-toluol bei der Chlorierung von Toluol in Gegenwart von Eisenspänen bei Temperaturen zwischen 0° und 60° in diffusem Licht vgl. Wahl, Normand, Vermeylen, C. r. 174, 948; Bl. [4] 31, 576. Bei der Einw. von Chlor auf Toluol in Gegenwart von Blei(II)-chlorid bei 100° entstehen 2- und 4-Chlor-toluol sowie wenig Benzylchlorid (W., N., V., C. r. 174, 948; Bl. [4] 31, 580). Chlorstickstoff reagiert mit Toluol unter Bildung von Benzylchlorid, Chlortoluolen und höher chlorierten stickstoffhaltigen Produkten (Coleman, Noyes, Am. Soc. 43, 2215). Einfluß von Goldchlorid, Aluminiumchlorid, Holzkohle, Zinn(IV)-chlorid, Phosphorpentachlorid, Arsen, Antimon, Wismut, Dischwefeldichlorid, Selen, Tellur, Mangan(II)-chlorid, Brom

verhältnis der Chlorierungsprodukte und die Reaktionsgeschwindigkeit bei der Einw. von überschüssigem Sulfurylchlorid auf Toluol in der Siedehitze im Dunkeln: O. Silberrad, Ch. A. Silberrad, Parke, Soc. 127, 1726. Über den Reaktionsverlauf beim Chlorieren mit wechselnden Mengen Sulfurylchlorid, das 1% Dischwefeldichlorid enthält, in Gegenwart von Aluminiumchlorid vgl. O. Silberrad, Soc. 127, 2680. Bei der Einw. von unterchloriger Von Aluminiumeniorid vgl. U. Silberkab, Soc. 121, 2080. Bei der Einw. Von unterenioriger Säure auf Toluol entsteht als Hauptprodukt Monochlortoluol (Klingstedt, Acta Acad. Abo. 4, Nr. 2, S. 29; C. 1928 I, 505). Über die Bildung von Chlortoluolen bei der Einw. von Pyrosulfurylchlorid auf Toluol s. S. 221. Über das Verhalten von Toluol beim Chlorieren unter verschiedenen Bedingungen vgl. a. Qvist, C. 1928 II, 1876.

Zur Bildung von Benzylbromid bei der Einw. von Brom auf Toluol-Dampf im Licht unterhalb des Siedepunktes von Benzylbromid vgl. Zelinsky, Scherking-Kahlbaum A.G.

D. R. P. 478084; C. 1929 II, 1216; Frdl. 16, 336. Die Bromierung von Toluol zu Benzylbromid erfolgt nur bei klarem Sonnenschein oder bei künstlicher Ultraviolett-Belichtung (v. Konek, Loczka, B. 57, 679). Die Photobromierung von Toluol wird durch Bromwasserstoff beschleunigt und durch Alkohol dadurch gehemmt, daß dieser die Teilnahme von Bromwasserstoff an der Reaktion verhindert (Swensson, Z. wiss. Phot. 20, 212; C. 1921 III. 160). Über die Reaktionsgeschwindigkeit von Toluol mit Brom bei 25°, 50° und 75° vgl. Scheffer, Brandsma, R. 45, 531. Benzylbromid entsteht auch beim Einleiten von Chlor in eine Mischung von 6 Tln. Toluol, 5 Tln. Alkalibromid und 1 Tl. Alkalibromat (Zmaczyński. B. 59, 710). Beim Erhitzen von Toluol mit der gleichen Menge Brom unter allmählicher Zugabe eines Gemisches von rauchender Salpetersäure und Nitrosulfonsäure erhält man 2-Brom-toluol, 4-Brom-toluol und geringe Mengen Pentabrombenzoesäure (Varma, Narayan, Quart. J. indian chem. Soc. 4, 286; C. 1928 I, 489). Toluol liefert mit Diselendibromid in Gegenwart von Aluminiumbromid in Schwefelkohlenstoff viel Bromtoluol und wenig

Gegenwart von Auminiumformit in Schweibkonfessoh von Bromvold und weing 0.0-Ditolylselenid (Loevenich, Sipmann, J. pr. [2] 124, 131).

Nitrierung. Über die Geschwindigkeit der Reaktion mit Salpetersäure bei —30°, 0° +30° und +60° vgl. Scheffer, Brandsma, R. 45, 531. Im Gegensatz zu den Angaben von Wolffenstein, Böters (D. R. P. 194883; C. 1908 I, 1005) fanden Blechta, Pátek (Z. Schieß-Sprengstoffw. 22, 314; C. 1928 I, 780) beim Erhitzen von Toluol mit 50 % iger Salpetersäure in Gegenwart von Quecksilber auf dem Wasserbade 2.4.6-Trinitro-kresol und 4-Nitro-kannen Brim Erhitzen von Toluol mit Salpetassium (D. 140) und Quecksilber(II). benzoesäure. Beim Erhitzen von Toluol mit Salpetersäure (D: 1,40) und Quecksilber(II)-oxyd anfangs auf 65—95°, später zum Sieden entstehen 2-Nitro-toluol, 4-Nitro-toluol, 4-Nitrobenzoesäure, 2.4.6-Trinitro-m-kresol und andere Produkte (Davis, Mitarb., Am. Soc. 43, 600). Läßt man Eisen(III)-nitrat auf Toluol in Acetanhydrid unterhalb 400 einwirken, so erhält man 2-Nitro-toluol (Menke, R. 44, 146). Über die Einw. von Quecksilbernitrat auf Toluol vgl. Blechta, Patek, Z. Schieβ-Sprenstoffw. 22, 316; C. 1928 I, 780. Nitrierung von Toluol mit Salpetersäure und Salpetersäure + Schwefelsäure wechselnder Konzentration bei verschiedenen Temperaturen: Gibson, Duckham, Fairbairn, Soc. 121, 274. Zusammenstellung der bei der Nitrierung von Toluol mit Salpeterschwefelsäure entstehenden MononitroDinitro- und Trinitro-toluole: G., D., F., Soc. 121, 274, 283. Bei der Einw. eines Gemisches
aus Nitrosylschwefelsäure und rauchender Salpetersäure (D: 1,502) werden 2-, 3- und 4-Nitrotoluol gebildet (Varma, Kulkarni, Am. Soc. 47, 145). Toluol wird durch Kaliumnitrat +
konz. Schwefelsäure in der Kälte in Dinitroderivate, bei 1000 in Trinitrotoluol übergeführt (Manning, Soc. 1929, 1020). Über die Nitrierung von Gemischen von Toluol und Benzol mit Salpetersäure + Essigsäureanhydrid vgl. Ingold, Shaw, Soc. 1927, 2925. Toluol liefert mit Stickstoffpentoxyd in Tetrachlorkohlenstoff bei 0° ein Gemisch von Nitrotoluolen (HAINES, ADKINS, Am. Soc. 47, 1419). Nitrierung mit Stickstofftetroxyd und konz. Schwefelsäure: Pinck, Am. Soc. 49, 2539. Über die Einw. von Salpetersäure und von Stickoxyden auf Toluol s. a. S. 218. Beim Belichten einer Lösung von Chlorpikrin in Toluol entstehen 2-Nitro-toluol und Benzoesäure neben sehr geringen Mengen Oxalsäure (PIUTTI, BADOLATO,

R. A. L. [5] 38 I, 477).

Sulfurierung und Einwirkung weiterer anorganischer Agenzien. Toluol reagiert mit konz. Schwefelsäure in Gegenwart von Jod bei 100° unter Bildung von Toluol-sulfonsäure-(4) (Rây, Dry, Soc. 117, 1407). Zur Monosulfonierung bei der Einw. von 1 Mol Schwefeltrioxyd auf eine Lösung von Toluol in Chloroform bei 0—10° vgl. Courtot, Bonnet, C. r. 182, 856. Zur Bildung von 0- und p-Toluol-sulfonsäure bei der Sulfonierung von Toluol mit Chlorosaure vgl. Harding, Soc. 119, 1262. Toluol gibt mit der vierfachen Menge Fluorsulfonsäure bei Zimmentensparatus und production und production seine Sulfonierung von Toluol sulfonsäure vgl. Harding, Soc. 119, 1262. Toluol gibt mit der vierfachen Menge Fluorsulfonierung von Toluol sulfonierung vo saure bei Zimmertemperatur o. und p.Toluolsulfofluorid; bei niederer Temperatur und geringerem Überschuß an Fluorsulfonsäure erhält man als Nebenprodukt Ditolylsulfone (Steinkoff, J. pr. [2] 117, 21). Reagiert mit Alkohol und Chlorsulfonsäure bei 110—130° unter Bildung einer wasserlöslichen Sulfonsäure (I. G. Farbenind., D. R. P. 476906; C. 1930 I, 3610; Frdl. 16, 2118). Bei der Einw. von Chlorsulfonsäuremethylester erhält man ein Gemisch aus wenig o- und viel p-Toluol-sulfonsäuremethylester und geringe Mengen eines Gemisches aus Ditolylsulfonen (FRERJACQUE, C. r. 183, 607; A. ch. [10] 14, 157). Toluol liefert mit Pyrosulfurylchlorid auf dem Wasserbad p-Toluolsulfonsäure, p-Toluolsulfochlorid,

4-Chlor-3.4'-dimethyl-diphenylsulfon und ein Gemisch verschiedener Dichlortoluole; mit Pyrosulfurylchlorid in Gegenwart von Aluminiumchlorid bei — 5° bis 0° entstehen p.p-Ditolylsulfon, 2- und 4-Chlor-toluol, p-Toluolsulfonsäure und eine geringe Menge einer aus verd. Alkohol in Nadeln krystallisierenden Verbindung vom Schmelzpunkt 215—217° (STEINKOPF, BUCHHEIM, B. 54, 2965).

Zur Überführung von Toluol in Benzol und Xylole beim Erhitzen mit Aluminium-chlorid (H 5, 288) vgl. Copisabow, Soc. 119, 1808. Läßt man Nitrosylchlorid im Sonnenlicht unterhalb 10° auf Toluol einwirken und behandelt das entstandene Hydrochlorid-Gemisch mit Sodalösung, so erhält man β-Benzaldoxim (Lynn, Arkley, Am. Soc. 45, 1046). Bei längerem Erhitzen von Toluol mit Phosphortribromid und Aluminiumchlorid wird neben p-Tolyl-dibromphosphin anscheinend auch o-Tolyl-dibromphosphin gebildet (Lindner, Mitarb., M. 58/54, 271, 273). Bei der Einw. von Eisenpentacarbonyl und Aluminiumchlorid im Chlorwasserstoff-Strom bei 40—45° entsteht p-Toluylaldehyd (Wolf, B. 61, 1766). Überführung in schwefelhaltige ölige Produkte durch Erhitzen mit Schwefel und Aluminiumchlorid: Bayer & Co., D. R. P. 365169, 376718; C. 1923 II, 600; IV, 661; Frdl. 14, 643.

Beispiele für die Einwirkung von organischen Verbindungen. Beim Erwärmen von Toluol mit ½, Mol Chloroform in Gegenwart von Quecksilber(II)-chlorid und Aluminium-pulver auf 70° entsteht ein Kohlenwasserstoff C<sub>30</sub>H<sub>28</sub> (Syst. Nr. 492); ein analoger Kohlenwasserstoff C<sub>28</sub>H<sub>24</sub> (F: 185°) entsteht bei der entsprechenden Umsetzung mit Benzyliden-chlorid (Rây, Soc. 117, 1338). Überschüssiges Toluol reagiert mit tert.-Amylchlorid in Gegenwart von Aluminiumchlorid in siedendem Wasserbad unter Bildung von 3-tert.-Amyl-toluol (Charrier, G. 52 II, 318). Toluol gibt mit Athylen bei Gegenwart von Aluminiumchlorid bei 70° neben anderen Kohlenwasserstoffen Athyltoluole, mit Propylen unter gleichen Bedingungen Cymole (Berry, Reid, Am. Soc. 49, 3146). Liefert beim Einleiten von Acetylen in Gegenwart von Aluminiumchlorid Xylol, Mesitylen, Pseudocumol, 2.7-Dimethyl-anthracen, 1.1-Di-p-tolyläthan sowie geringe Mengen 2-Methyl-anthracen (Coox, Chambers, Am. Soc. 43, 337). Bei der Kondensation mit Cyclohexen in Gegenwart von Aluminiumchlorid entsteht ein Gemisch isomerer Cyclohexyltoluole (Bodroux, C. r. 186, 1006; A. ch. [10] 11, 519). Toluol gibt mit Nitrobenzol in Gegenwart von Aluminiumchlorid auf dem Wasserbad 4'-Amino-4-methyl-diphenyl, wenig Phenyl-p-toluidin und Harz, mit 2-Nitro-toluol in analoger Reaktion 4-Amino-3.4'-dimethyl-diphenyl(?) (Kliegl, Huber, B. 53, 1650, 1655). Beim Erhitzen von Toluol mit Benzylchlorid in Gegenwart von Methylmagnesiumjodid auf dem Wasserbad entsteht 4-Methyl-diphenylmethan (Montagne, A. ch. [10] 13, 109). Aus Toluol und 4-Isopropyl-benzylchlorid erhält man beim Erhitzen mit Athyl- oder Butyl-magnesium-bromid auf dem Wasserbad 4-Methyl-4'-isopropyl-diphenylmethan (Bert, Bl. [4] 37, 1586). Geschwindigkeit der Reaktion von Toluol mit 4-Nitro-benzylchlorid in Gegenwart von Aluminiumchlorid bei 30°: Olivier, Berger, R. 45, 720. Liefert mit Isopropylalkohol in 80 %iger Schwefelsäure entstehen 4-Methyl-diphenylmethan und Anthracen (Meyer, Bernhauer, M. 53/54, 728).

Beim Erhitzen von Toluol mit For

Beim Erhitzen von Toluol mit Formaldehyd und Schwefelsäure entstehen flüssige Kondensationsprodukte (BAYER & Co., D. R. P. 349741; C. 1922 IV, 50; Frdl. 14, 630). Toluol gibt bei der Einw. von Paraformaldehyd und Chlorwasserstoff in Gegenwart von Zinkchlorid 4-Methyl-benzylchlorid und andere Produkte (wahrscheinlich 4-Methyl-1.3-bischlormethyl-benzol und 4-Methyl-1.2-bischlormethyl-benzol) (BLANC, Bl. [4] 33, 315; BERT, C. r. 186, 373). Bei der Einw. von Chlordimethyläther auf Toluol in Gegenwart von Zinn(IV)-chlorid nach SOMMELET (C. r. 157, 1444) entstehen außer 4-Methyl-benzylchlorid noch 4-Methyl-1.2 (oder 1.3)-bis-chlormethyl-benzol, 4.4'-Dimethyl-diphenylmethan und 4.4'-Dimethyl-2 (oder 3)-chlormethyl-diphenylmethan (Sommellet, C. r. 180, 1349). Aus Toluol und Chlordimethyläther bzw. Bis-chlormethyl-äther erhält man in Gegenwart von Zinkchlorid 4-Methyl-benzylchlorid und 4.4'-Dimethyl-diphenylmethan; aus Toluol und Bisbrommethyl-äther entsteht in Gegenwart von Zinkchlorid 4-Methyl-benzylbromid (Stephen, Short, Gladding, Soc. 117, 520). Toluol kondensiert sich mit Bromalhydrat in konz. Schwefelsäure + wenig Eisessig zu 2.2.2-Tribrom-1.1-di-p-tolyl-äthan (Brand, Wendel, J. pr. [2] 115, 347).

Liefert beim Kochen mit Bleitetraacetat und Eisessig Benzylacetat (DIMROTH, SCHWEIZER, B. 56, 1384). Zur Reaktion mit Quecksilber(II)-acetat (DIMROTH, B. 32, 761) vgl. Coffey. Soc. 127, 1030. Toluol gibt beim Erhitzen mit Acetanhydrid und der Aluminiumchlorid-Verbindung der 2-Benzoyl-benzoesäure auf 100° 3-Phenyl-3-p-tolyl-phthalid (McMullen. Am. Soc. 44, 2057). Reagiert mit 1 Mol Acetylchlorid in Gegenwart von Quecksilber(II)-chlorid und Aluminiumpulver (1/20 der angewandten Menge Quecksilberchlorid) bei 40° unter Bildung von Methyl-p-tolyl-keton (Räx, Soc. 117, 1337). Bei der Einw. von Acetylchlorid auf die Verbindung 3C, H<sub>8</sub> + AlBr<sub>3</sub> (H 5, 290) entsteht ein Gemisch von isomeren Methyltolylketonen (Zelinsky, Turowa-Pollak, B. 62, 1661). Durch Kondensation von Toluol

mit Trichloracetonitril in Gegenwart von Aluminiumchlorid und Chlorwasserstoff und Zersetzen des Reaktionsprodukts mit Eis entsteht  $\omega.\omega.\omega$ -Trichlormethyl-p-tolyl-keton (Houben, Fischer, J. pr. [2] 123, 319; B. 66 [1933], 341). Toluol liefert beim Erhitzen mit Diäthyl-malonylchlorid bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff 5-Methyl-2.2-diäthyl-indandion-(1.3), 4-Methyl-2.2-diäthyl-indandion-(1.3) und Diäthyl-di-p-toluyl-methan (Fleischer, A. 422, 242). Gibt bei längerem Erwärmen mit Benzoylperoxyd auf dem Wasserbad entgegen den Angaben von Lippmann (M. 7, 524; vgl. H 5, 643) 4-Methyl-diphenyl, 2-Methyl-diphenyl und Benzoesäure (Dietrich, Helv. 8, 153; Gelissen, Hermans, B. 58, 478). Reagiert mit Phthalsäureanhydrid bei Gegenwart von Aluminiumchlorid unter Bildung von 2-p-Toluyl-benzoesäure (McMullen). Liefert beim Erhitzen mit Tetrabromphthalsäureanhydrid bei Gegenwart von Aluminiumchlorid auf 96—98° und nachfolgenden Behandeln mit Acetanhydrid bei der gleichen Temperatur 4.5.6.7-Tetrabrom-3.3-di-p-tolyl-phthalid; reagiert analog mit Tetrajodphthalsäureanhydrid (Lawrance, Oddy, Am. Soc. 44, 329).

Aus Toluol und Chlorcyan entsteht in Gegenwart von Aluminiumchlorid p-Tolunitril (Karrer, Rebmann, Zeller, Helv. 3, 266). Durch Einw. von Azodicarbonsäure-diäthylester auf Toluol in Gegenwart von konz. Schwefelsäure und Versetzen der Schwefelsäureschicht nit Eis entstehen harzige Produkte, die bei der Spaltung mit 2n-Natronlauge und Destillation mit Wasserdampf p-Tolylhydrazin liefern (Stollé, Leffler, B. 57, 1063). Beim Kochen von Toluol mit Carbamidsäureazid erhält man N.N'-Di-p-tolyl-harnstoff, Cyanursäure, Stickstoffwasserstoffsäure, geringe Mengen Ammoniumazid und Stickstoff (Curtius, Schmidt, J. pr. [2] 105, 188). Beim Erhitzen mit Carbazid unter Druck auf 150° entstehen γ-Picolin, o-Toluidin und wenig p-Toluidin (C., Bertho, B. 59, 584). Reaktion mit Benzylsulfonsäureazid: C., Haas, J. pr. [2] 102, 99. Toluol gibt mit 1 Mol 5-Nitro-benzol-disulfonsäure-(1.3)-dichlorid eine additionelle Verbindung (s. Syst. Nr. 1537) (Bennett, Willis, Soc. 1929, 266). Liefert beim Erhitzen mit Phenylisocyanat in Gegenwart von Zirkon(IV)-chlorid auf dem Wasserbad p-Toluylsäure-anilid (Krishnamurti, J. Madras Univ. 1928, 4; C. 1929 I, 2156). Beim Erhitzen mit Phenylsenföl in Gegenwart von Aluminiumchlorid auf 100° wird Thio-p-toluylsäure-anilid gebildet (Bogert, Meyer, Am. Soc. 44, 1569). Bei längerer Einw. von Aluminiumchlorid auf die Toluol-Lösung von β-Phenylhydroxylamin erst unter Kühlung, dann bei Zimmertemperatur entstehen 4'-Amino-4-methyl-diphenyl und wenig Phenyl-p-toluidin (Kliegl, Huber, B. 53, 1651). Bei der Umsetzung mit Benzoldiazoniumchlorid in Natronlauge bei 0° erhält man 2-Methyl-diphenyl, 4-Methyl-diphenyl und andere Produkte; mit 4-Brom-benzoldiazoniumchlorid entstehen unter gleichen Bedingungen 4'-Brom-2-methyl-diphenyl und 4'-Brom-4-methyl-diphenyl, mit p-Toluoldiazoniumchlorid 2.4'-Dimethyl-diphenyl und Wenig 4-4'-Dimethyl-diphenyl (Gomberg, Pernert, Am. Soc. 48, 1377). Aus Toluol und Cumarilsäure wird bei Gegenwart von Aluminiumchlorid 2-p-Tolyl-2.3-dihydro-cumarilsäure gebildet (King, Am. Soc. 49,

#### Biochemisches Verhalten und physiologische Wirkung.

Zersetzung von Toluol durch Bodenbakterien: Gray, Thornton, Zbl. Bakt. Parasitenk. [II] 73, 78; C. 1928 I, 1052. — Ausführliche Angaben über das physiologische Verhalten von Toluol s. bei H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 31—38. Einfluß auf die Geschwindigkeit der alkoh. Gärung: Mameli, Giorn. Chim. ind. appl. 8, 559; C. 1927 I, 1023. Einfluß auf Bact. coli: Quastel, Wooldridge, Biochem. J. 22, 698. Melanin-Bildung in Kartoffelschnitzeln bei Gegenwart von Toluol: Boas, Merkenschlager, Bio. Z. 155, 207. Zur Stärke des Geruchs an der Luft vgl. Zwaardemaker, Perfum. essent. Oil Rec. 13, 7; C. 1922 IV, 100. Insecticide Wirkung: Tattersfield, Gimingham, J. Soc. chem. Ind. 46, 369 T; C. 1927 II, 1884. Zur Giftwirkung von Toluol vgl. a. Batchelor, Am. J. Hyg. 7, 285, 293; C. 1927 II, 124. Toxizität in Beziehung zur Verwendung als technisches Lösungsmittel: W. Estler in K. B. Lehmann, F. Flury, Toxikologie und Hygiene der technischen Lösungsmittel [Berlin 1938], S. 82, 96; Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 62.

### Verwendung; Analytisches.

Verwendung als technisches Lösungs- und Verdünnungsmittel: Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 79, 228; H. GNAMM, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 74. Antiklopf-Wirkung im Verbrennungsmotor: EGERTON, GATES, J. Inst. Petr. Technol. 18, 274, 278; C. 1928 II, 211.

Reinheitsprüfung von Toluol: Ergänzungsbuch zum Deutschen Arzneibuch, 5. Ausgabe, [Berlin 1930], S. 448; E. Merck, Prüfung der chemischen Reagenzien, 5. Aufl. [Darmstadt 1939], S. 569. Nachweis von Toluol durch die Farbreaktion der Nitrierungsprodukte mit Alkalialkoholaten: VAN URK, Chem. Weekb. 21, 170; C. 1924 I, 2895. Nachweis in Organen durch Abdestillieren mit Wasserdampf in Tetrachlorkohlenstoff, Nitrieren mit Salpeter-

schwefelsäure und Ausführung von Farbreaktionen der Nitrierungsprodukte: Kuroda, Bio. Z. 144, 288. Nachweis und Bestimmung von Paraffinen in Toluol durch Sulfurierung mit rauchender Schwefelsäure und Refraktometrie: Pritzker, Jungkunz, Ch. Z. 47, 315; C. 1924 I, 272; durch Sulfurierung mit 98%iger Schwefelsäure in Gegenwart von Silbersulfat: Manning, Soc. 1929, 1017. Zur Bestimmung von Paraffinen im Handelstoluol durch Sulfurierung vgl. a. Lewis, J. Soc. chem. Ind. 39, 50 T; C. 1920 IV, 65; Colman, J. Soc. chem. Ind. 39, 50 T; C. 1920 IV, 66; Colman, J. Soc. chem. Ind. 39, 50 T; C. 1920 IV, 66. Bestimmung von Toluol in Gasen durch Überführung in Pentabromtoluol: Schulz, Collect. Trav. chim. Tchécosl. 1, 229; C. 1929 II, 772. Bestimmung neben Benzol durch Versetzen mit verd. Alkohol, Abkühlung und Messung der Trübungstemperatur: Öman, Tekn. Tidskr. 57 K, 35; C. 1927 II, 153. Bestimmung von Toluol in Benzin durch Ermitlung des spezifischen Gewichtes einer Benzinprobe vor und nach dem Schütteln mit rauchender Schwefelsäure: Winogradow, Neft. Chozjajstvo 4, 451, 454; C. 1924 I, 2555; mit Hilfe von Bestimmungen der kritischen Lösungstemperatur: Aubert, Aubere, C. r. 182, 578; Erskine, Ind. Eng. Chem. 18, 694; C. 1926 II, 1357.

#### Additionelle Verbindungen.

Verbindungen mit Schwefeldioxyd. Durch thermische Analyse wurden die Verbindungen  $C_7H_8+2SO_2$  (F:  $-85,5^0$ ) und  $C_7H_8+3SO_2$  (F: ca.  $-80^0$ ) nachgewiesen (DE CARLI, R. A. L. [6] 4, 462). — Verbindung mit Silberperchlorat  $C_7H_8+AgClO_4$ . Zersetzt sich bei 22,6° (Hill, Miller, Am. Soc. 47, 2703).

Verbindung mit Chloroform C<sub>7</sub>H<sub>8</sub>+CH<sub>3</sub>Cl. Durch thermische Analyse nachgewiesen. F: -107° (TIMMERMANS, Bl. Soc. chim. Belg. 37, 420; C. 1929 II, 522).

[KOBEL]

# Substitutionsprodukte des Toluols.

# a) Fluor-Derivate.

- 2-Fluor-toluol, o-Fluor-toluol  $C_7H_7F = C_6H_4F \cdot CH_3$  (H 290; E I 149). B. Beim Erhitzen von o-Toluoldiazonium-borfluorid (Schiemann, B. 62, 1798).  $Kp_{26}$ :  $30^{\circ}$ ;  $Kp_{17}$ :  $19^{\circ}$  (Sch.).  $D^{17.3}$ : 1,00142 (Swarts, J. Chim. phys. 20, 60). Verbrennungswärme bei konstantem Volumen: 900,6 kcal/Mol (Swarts, C. 1908 I, 1046; R. 27 [1908], 120; vgl. Swieto-Slawski, Bobinska, J. Chim. phys. 24, 546).  $n_{\alpha}^{17.3}$ : 1,4671;  $n_{\nu}^{17.3}$ : 1,4716;  $n_{\nu}^{17.3}$ : 1,4824;  $n_{\gamma}^{17.3}$ : 1,4900 (Sw.). Zersetzt sich beim Aufbewahren und bei der Destillation unter Atmosphärendruck unter Abspaltung von Fluorwasserstoff (Sch.). Läßt man auf siedendes 2-Fluor-toluol Bromdampf einwirken und kocht das Reaktionsprodukt mit Ameisensäure (D: 1,2), so entstehen 2-Fluor-benzylbromid, 2-Fluor-benzylalkohol, 2-Fluor-benzaldehyd und 2-Fluor-benzoesäure (Shoesmith, Slater, Soc. 1926, 220). Behandelt man 2-Fluortoluol mit Salpetersäure (D: 1,51) anfangs unter Kühlung, danach auf dem Wasserbad bei 55°, so bilden sich 6-Fluor-3-nitro-toluol und geringe Mengen 6-Fluor-2-nitro-toluol (?) (Sch.). Liefert mit Phthalsäureanhydrid in Gegenwart von Aluminiumchlorid 2-[3-Fluor-4-methyl-benzoyl]-benzoesäure (Hahn, Reid, Am. Soc. 46, 1646).
- 3-Fluor-toluol, m-Fluor-toluol  $C_7H_7F=C_8H_4F\cdot CH_3$  (H 290; E I 149). B. Beim Erhitzen von m-Toluoldiazoniumborfluorid (Schlemann, B. 62, 1799). E: —110,8° (Timmermann, Bl. Soc. chim. Belg. 30, 67; C. 1921 III, 288). Kp<sub>758</sub>: 114—115° (Sch.). D<sup>20</sup>: 0,9986;  $n_{\alpha}^{\infty}$ : 1,46483;  $n_{\beta}^{\infty}$ : 1,46912;  $n_{\beta}^{\infty}$ : 1,47921;  $n_{\gamma}^{\infty}$ : 1,48791 (Swarts, J. Chim. phys. 20, 60). Behandelt man 3-Fluor-toluol mit rauchender Salpetersäure (D: 1,51) anfangs unter Kühlung, danach auf dem Wasserbad bei 55°, so bilden sich 5-Fluor-2-nitro-toluol und geringe Mengen 3-Fluor-4-nitro-toluol und 3-Fluor-2-nitro-toluol(?) (Sch.).
- 4-Fluor-toluol, p-Fluor-toluol C<sub>7</sub>H<sub>7</sub>F = C<sub>6</sub>H<sub>4</sub>F · CH<sub>3</sub> (H 290; E I 149). B. Beim Erhitzen von p-Toluoldiazoniumborfluorid (Balz, Schiemann, B. 60, 1188). Kp<sub>756</sub>: 116° (B., Sch.). D<sup>15,8</sup>: 1,00068 (Swarts, J. Chim. phys. 20, 60). Verbrennungswärme bei konstantem Volumen: 900,4 kcal/Mol (Swarts, C. 1908 I, 1046; R. 27 [1908], 120; vgl. Swiętosławski, Bobińska, J. Chim. phys. 24, 546). n<sup>15,8</sup>: 1,46608; n<sup>15,8</sup>: 1,48026; n<sup>15,8</sup>: 1,48914 (Swarts, J. Chim. phys. 20, 60). Fluorescenzspektrum des Dampfes im ultravioletten Gebiet: Monypeny, Russell, Soc. 1929, 2437; Tesla-Luminescenzspektrum im sichtbaren und ultravioletten Gebiet: R., Stewart, Soc. 1929, 2435. Gibt mit rauchender Salpetersäure (D: 1,51) unter Kühlung je nach den Reaktionsbedingungen 2.6-Dinitro-p-kresol und wechselnde Mengen 4-Fluor-3-nitro-toluol(?) (Sch., B. 62, 1795, 1799). Liefert mit Phthalsäureanhydrid in Gegenwart von Aluminiumchlorid 2-[5-Fluor-2-methyl-benzoyl]-benzoesäure und (nicht näher beschriebene) 2-[6-Fluor-3-methyl-benzoes]-benzoesäure (Hahn, Reid, Am. Soc. 46, 1645).

Physiologisches Verhalten: H. STAUB in J. HOUBEN, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 67.

ω-Fluor-toluol, Benzylfluorid  $C_7H_7F=C_6H_5\cdot CH_2F$ . B. Neben anderen Verbindungen beim Destillieren von Trimethylbenzylammoniumfluorid, Dimethyldibenzylammoniumfluorid oder Methyltribenzylammoniumfluorid (C. K. INGOLD, E. H. INGOLD, Soc. 1928, 2257). — Bewegliche Flüssigkeit von benzolähnlichem Geruch, die an der Luft nicht raucht und nicht tränenerregend wirkt. Erstarrt bei starker Kühlung zu Nadeln vom Schmelzpunkt —35° (korr.).  $Kp_{788}$ : 139,8° (korr.);  $Kp_{244-246}$ : 100—100,5° (unkorr.);  $Kp_{118-119}$ : 85—86° (unkorr.);  $Kp_{66}$ : 70—71° (unkorr.);  $Kp_{30-30.5}$ : 55—56° (unkorr.);  $Kp_{14}$ : 40—40,5° (unkorr.).  $D_7^{p.s.}$ : 1,02278;  $n_8^{p.s.}$ : 1,48481;  $n_8^{p.s.}$ : 1,48919;  $n_9^{p.s.}$ : 1,50014;  $n_7^{p.s.}$ : 1,50967. Brechungsindices für weitere Wellenlängen bei 25,3°: I., I. Ultraviolett-Absorptionsspektrum der alkoh. Lösung: I., I. — Zersetzt sich explosionsartig in Gefäßen aus gewöhnlichem Glas, jedoch nicht aus Jenaer oder anderen Spezialgläsern, beim Berühren mit einem mit konz. Schwefelsäure befeuchteten Glasstab oder auch bei Gegenwart von Fluorwasserstoff in Platingefäßen; dabei entsteht unter Fluorwasserstoff-Entwicklung ein Kohlenwasserstoff oder ein Gemisch von Kohlenwasserstoffen ( $C_7H_6$ )x (glasartig; weder krystallisierbar noch destillierbar; schwer löslich in Alkohol, leicht in Benzol). Wird beim Kochen mit Zinkstaub und Alkohol nicht verändert. Gibt beim Nitrieren mit absol. Salpetersäure in Acetanhydrid bei 25—30° ein nur teilweise trennbares Gemisch von 2-, 3- und hauptsächlich 4-Nitrobenzylfluorid. Geht bei 6-stdg. Kochen mit 10 %iger Kaliumcarbonat-Lösung zum Teil in Benzylalkohol über. Bei 1-stdg. Kochen mit Natriumäthylat-Lösung entsteht in geringer Menge Athylbenzyläther, bei 20-stdg. Erwärmen mit Trimethylamin in Alkohol auf ca. 45° in sehr geringer Menge Trimethylbenzylammoniumfluorid.

2.5-Difluor-toluol  $C_7H_6F_2$ , s. nebenstehende Formel. B. Beim Erhitzen von 4-Fluor-2-methyl-benzoldiazoniumborfluorid (Schiemann, B. 62, 1804). — Schwach toluolähnlich, etwas stechend riechende Flüssigkeit. F: ca. —35°. Kp<sub>775</sub>: 117°.

ω.ω-Difluor-toluol, Benzylidenfluorid  $C_7H_6F_2=C_6H_5\cdot CHF_2$  (H 290; E I 149). B. Bei der Hydrierung von ω.ω-Difluor-ω-chlor-toluol in Gegenwart von Platinschwarz, neben anderen Produkten (Swarts, Bl. Acad. Belgique 1920, 410; C. 1921 III, 333). —  $D^{20}: 1,13572;$   $n_α^\infty: 1,45775;$   $n_p^\infty: 1,45775;$   $n_p^\infty: 1,46723;$   $n_γ^\infty: 1,47543$  (Sw., J. Chim. phys. 20, 65). — Liefert bei der Hydrierung in Gegenwart von Platinschwarz Difluormethyl-cyclohexan und etwas Methylcyclohexan (Sw., Bl. Acad. Belgique 1920, 408; C. 1921 III, 33).

ω.ω.ω.Trifluor-toluol, Benzotrifluorid  $C_7H_5F_3 = C_6H_5 \cdot CF_3$  (H 290; E I 149). B. Zur Bildung aus Benzotrichlorid und Antimontrifluorid vgl. Swarts, Bl. Acad. Belgique 1920, 389; C. 1921 III, 32. — E: —29,05° ± 0,05°; Kp<sub>789,6</sub>: 102,5—103,2° (Swarts, Bl. Acad. Belgique 1920, 390; C. 1921 III, 32). D<sup>13,3</sup>: 1,19040 (Swarts, J. Chim. phys. 20, 65). Verbrennungswärme bei konstantem Volumen: 808,6 kcal/Mol (Swarts, C. 1906 II, 1567; R. 25 [1906], 422; s. bei Swiętosławski, Bolińska, J. Chim. phys. 24, 546).  $n_3^{13,3}$ : 1,42287;  $n_7^{13,3}$ : 1,42918 (Swarts, J. Chim. phys. 20, 65). — Liefert bei der Hydrierung in Gegenwart von Platinschwarz Trifluormethyl-cyclohexan (Swarts, Bl. Acad. Belgique 1920, 407; C. 1921 III, 33). Wird durch längeres Erhitzen mit Eisen oder Kupfer auf 350° nicht angegriffen, ebenso führt 15-tägiges Erhitzen mit 2n-Salzsäure im Rohr auf 150° nur zu unbedeutenden Veränderungen; bei 48-stdg. Erhitzen mit der 4-fachen Menge Bromwasserstoffsäure (D: 1,79) auf 160° in Gegenwart von amorpher Kieselsäure entsteht in quantitativer Ausbeute Benzoesäure (Swarts, Bl. Acad. Belgique 1920, 391; C. 1921 III, 32). Liefert bei der Nitrierung mit Salpetersäure (D: 1,495) bei 0° fast ausschließlich ω.ω.ω.Trifluor-3-nitro-toluol (Swarts, Bl. Acad. Belgique 1920, 395; C. 1921 III, 32).

3. $\omega$ . $\omega$ . $\omega$ -Tetrafluor-toluol, 3-Fluor-benzotrifluorid  $C_7H_4F_4=C_6H_4F\cdot CF_3$ . B. Durch Diazotieren von 3-Trifluormethyl-anilin in flußsaurer Lösung (Swarts, J. Chim. phys. 20, 74). — Kp: 101,2°. D<sup>16,9</sup>: 1,3021.  $n_{\alpha}^{c,9}$ : 1,39863;  $n_{\beta}^{b,9}$ : 1,40947;  $n_{\gamma}^{v,9}$ : 1,41620.

# b) Chlor-Derivate.

2-Chlor-toluol, o-Chlor-toluol  $C_7H_7Cl = C_6H_4Cl \cdot CH_3$  (H 290; E I 149). B. Zur Bildung aus Toluol und Chlor in Gegenwart von Jod und Eisen vgl. Gindraux, Helv. 12, 925; in Gegenwart von Eisen im diffusen Licht vgl. Wahl, Normand, Vermeylen, C. r. 174, 946; Bl. [4] 31, 576. Bei der Einw. von Chlor auf Toluol in Gegenwart von Blei(II)-chlorid bei 100° unter Rühren, neben 4-Chlor-toluol und wenig Benzylchlorid (W., N., V.). Konnte aus Toluol und (NH<sub>4</sub>)<sub>2</sub>PbCl<sub>6</sub> nach Seyewetz, Biot, C. r. 135 [1902], 1121 nicht erhalten werden (W., N., V.). Neben 4-Chlor-toluol aus Toluol bei der Einw. der berechneten Menge Sulfurylchlorid und wenig Dischwefeldichlorid in Gegenwart von Aluminiumchlorid bei ca. 70° (Silberrad, Soc. 127, 2680). Bei tropfenweiser Zugabe von Toluol zu Pyrosulfurylchlorid in Gegenwart von Aluminiumchlorid bei —5° bis 0°, neben anderen Produkten

(STEINKOPF, BUCHHEIM, B. 54, 2967). Zur Bildung aus o-Toluoldiazoniumchlorid und Kupfer(I)-chlorid vgl. W., N., V.; BRYDÓWNA, Roczniki Chem. 7, 440; C. 1928 I, 2820. Bei allmählicher Einw. von Kupferhydrid auf o-Toluoldiazoniumchlorid in Salzsäure bei 0° (Neogi, Mitra, Soc. 1928, 1332). Trennung von 4-Chlor-toluol durch unvollständige Sulfurierung und nachfolgende Spaltung der als Hauptprodukt entstandenen 6-Chlor-toluolsulfonsäure-(3): W., N., V.; Soc. St. Denis, W., D. R. P. 376634; C. 1923 IV, 577; Frdl. 14, 377.

F: —36,5° (Timmermans, Bl. Soc. chim. Belg. 36, 505; C. 1928 I, 27), —35,1° (Wahl, Normand, Vermeylen, C. r. 174, 948; Bl. [4] 31, 572). E: —36,5° (Ti., Hennaut-Roland, J. Chim. phys. 27, 410). Kp<sub>760,4</sub>: 158,4—158,7° (korr.) (W., N., V.); Kp<sub>760</sub>: 157,2° (Ti.), 159,15° (Ti., H.-R.), 159,3° (Lecat, R. 46, 243). Abhängigkeit des Siedepunkts vom Druck: Ti., H.-R. D.; 1,10180; D.; 1,08729; D.; 1,07279 (Ti., H.-R.); D.; 1,0807 (Walden, Werner, Ph. Ch. [B] 2, 16); D.; 1,0843 (W., N., V.); P.; 1,0770 (v. Auwers, A. 422, 164); D.; 1,044 (Kerr, Phil. Mag. [7] 3 [1927], 332). Viscosität bei 15°: 0,01037, bei 30°: 0,00887 g/cm sec (Ti., H.-R.). Oberflächenspannung bei 15°: 33,99, bei 20°: 33,44, bei 30°: 32,33 dyn/cm (Ti., H.-R.). Zur Schmelzwärme vgl. Linard, Bl. Soc. chim. Belg. 34, 372; C. 1926 I, 2427. Verdampfungswärme bei 158,07°: 72,61 cal/g (Mathews, Am. Soc. 48, 572). n.; 1,52322; n.; 1,52827; n.; 1,53997; n.; 1,55051 (Ti., H.-R.). Brechungsindices für verschiedene Helium-Linien bei 15°: Ti., H.-R. n.; 1,5244 (W., W.), 1,5275 (Gindraux, Helv. 12, 925); n.; 1,5459 (v. Au.). Tesla-Luminescenzspektrum im sichtbaren und ultravioletten Gebiet: Russell, Stewart, Soc. 1929, 2435. Beugung von Röntgenstrahlen an flüssigem 2-Chlor-toluol: Katz, Z. ang. Ch. 41, 332. Dielektr.-Konst. bei 20° (λ = 4,5 m): 4,45 (W., W.); bei 58° (λ = 95 m): 4,16 (Kerr). Dipolmoment μ × 10<sup>18</sup>: 1,39 (verd. Lösung in Benzol) (W., W.). Thermische Analyse des binären Systems mit Chlorbenzol (Eutektikum bei — 70,7° und 40,6 Mol. % 2-Chlor-toluol): L. Thermische Analyse des binären Systems mit 4-Chlor-toluol: Wahl, Normand, Vermeylen, C. r. 174, 948; Bl. [4] 31, 575. Azeotrope Gemische, die 2-Chlor-toluol enthalten, s. in untenstehender Tabelle. Dichte einiger Lösungen in Benzol bei 19° und 20°: W., W. Dichte D.; von Gemischen mit 4-Chlor-toluol: W., N. V. Brechungsindices einiger Lösungen in Benzol bei 20°: W., W. einiger Lösungen in Benzol bei 20°: W., W.

| Komponente            | Kp <sub>760</sub> | Gehalt an<br>2-Chlor-toluol<br>in Gew% | Komponente              | Kp760   | Gehalt an<br>2-Chlor-toluol<br>in Gew% |
|-----------------------|-------------------|----------------------------------------|-------------------------|---------|----------------------------------------|
| α-Dichlorhydrin 3) .  | 158.0             | 85                                     | Buttersäure 3)          | 154.0   | ca. 73                                 |
| Ameisensäure 4)       | 100.2             | 17                                     | Isobuttersäure 3) .     | ca. 150 | 58                                     |
| Acetamid 2)           | 157,8             | 92                                     | Isovaleriansäure 4).    | 157.7   | 88                                     |
| Bromessigsäureäthyl-  | ,                 |                                        | Oxalsäuredimethyl-      | ,       |                                        |
| ester <sup>2</sup> )  | 154               | 45                                     | ester <sup>3</sup> )    | 155,0   | 68                                     |
| Propionsäure 3)       | 139,4             | 33                                     | Camphen 3)              | ca. 158 | _                                      |
| Propionsäure isoamyl- |                   |                                        | Cyclohexanol 1)         | 155,5   | 62                                     |
| ester 3)              | 158,0             | 60                                     | Furfurol <sup>2</sup> ) | 155,2   | ca. 68                                 |

<sup>1)</sup> LECAT, R. 46, 243. — 2) L., Ann. Soc. scient. Bruxelles 47 I [1927], 110, 112, 153. — 3) L., Ann. Soc. scient. Bruxelles 48 I [1928], 116, 117, 118, 120, 121. — 4) L., Ann. Soc. scient. Bruxelles 49 [1929], 20.

Gibt beim Erhitzen mit Luft unter Druck auf 260° in Gegenwart von Sodalösung 2-Chlor-benzoesäure, (nicht isolierten) 2-Chlor-benzaldehyd und geringe Mengen Ameisensäure, Essigsäure und Oxalsäure (SCERADER, Abh. Kenninis Kohle 4, 325; C. 1921 I, 537). Gibt beim Leiten im Gemisch mit Luft über Zinnvanadat bei 285—290° 2-Chlor-benzoesäure (Maxted, Dunsby, Soc. 1928, 1441). Wird beim Erhitzen mit Brom bei allmählicher Zugabe eines Gemisches von rauchender Salpetersäure und Nitrosulfonsäure zu 2-Chlor-benzoesäure oxydiert (Varma, Narayan, Quart. J. indian chem. Soc. 4, 285; C. 1928 I, 489). Liefert bei der Reduktion mit Natrium in flüssigem Ammoniak Toluol und o-Toluidin (Kraus, White, Am. Soc. 45, 773). Liefert bei der Einw. von Salpeterschwefelsäure bei 8—10° und nachfolgendem Erhitzen auf dem Wasserbad als Hauptprodukt 2-Chlor-3.5-dinitro-toluol, ferner 6-Chlor-2.3-dinitro-toluol, 6-Chlor-3.4-dinitro-toluol und sehr geringe Mengen 6-Chlor-2.4-dinitro-toluol (Morgan, Drew, Soc. 117, 784). Gibt mit Dischwefeldichlorid in Schwefelkohlenstoff in Gegenwart von amalgamiertem Aluminium x-Dichlorx-dimethyl-thianthren (Syst. Nr. 2676) (Rây, Soc. 119, 1963). Liefert bei längerer Einw.

auf α.α'-Dichlor-dimethyläther in Gegenwart von Zinkchlorid-monohydrat 3-Chlor-4-methyl-1-chlormethyl-benzol (Stephen, Short, Gladding, Soc. 117, 524). Liefert mit Phthalsäure-anhydrid in Gegenwart von Aluminiumchlorid hauptsächlich 2-[4-Chlor-3-methyl-benzoyl]-benzoesäure und weniger 2-[2-Chlor-3-methyl-benzoyl]-benzoesäure (Keimatsu, Hirano, J. pharm. Soc. Japan 49, 18; C. 1929 I, 2532). Reagiert mit p-Toluolsulfonsäure-chlorid in Petroläther bei Gegenwart von Aluminiumchlorid bei ca. 50° unter Bildung von 4-Chlor-3.4'-dimethyl-diphenyl-sulfon (Steinkoff, Buchheim, B. 54, 2966). Gibt bei 16-stdg. Erhitzen mit 4.4'-Bis-dimethylamino-benzophenon und Natrium in Toluol auf 100—105° Bis-[4-dimethylamino-phenyl]-o-tolyl-carbinol, Bis-[4-dimethylamino-phenyl]-benzyl-carbinol und wenig 4-Dimethylamino-benzoesäure (Rodd, Linch, Soc. 1927, 2176).

Physiologisches Verhalten: H. STAUB in J. HOUBEN, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 72.

3-Chlor-toluol, m-Chlor-toluol  $C_7H_7Cl = C_8H_4Cl \cdot CH_8$  (H 291; E I 150). B. Bei all-mählicher Einw. von Kupferhydrid auf m-Toluoldiazoniumchlorid in Salzsäure bei 0° (Neogi, Mitra, Soc. 1928, 1332). —  $D_1^{p_3}$ : 1,0797;  $D_2^{p_3}$ : 1,0760 (v. Auwers, A. 422, 164);  $D_2^{p_2}$ : 1,035 (Kerr, Phil. Mag. [7] 3 [1927], 332).  $n_{\alpha}^{r_3}$ : 1,5210;  $n_{\beta}^{r_3}$ : 1,5254;  $n_{\beta}^{r_3}$ : 1,5375;  $n_{\gamma}^{r_3}$ : 1,5480;  $n_{\alpha}^{r_3}$ : 1,5182;  $n_{\beta}^{r_3}$ : 1,5225;  $n_{\beta}^{r_3}$ : 1,5347;  $n_{\gamma}^{r_3}$ : 1,5451 (v. Au.). Tesla-Luminescenz-Spektrum im sichtbaren und ultravioletten Gebiet: Russell., Stewart, Soc. 1929, 2435. Dielektr.-Konst. bei 20° ( $\lambda$  = 4,5 m): 5,55 (Walden, Werner, Ph. Ch. [B] 2, 18); bei 58° ( $\lambda$  = 95 m): 5,04 (Kerr). Dipolmoment  $\mu$ ×10<sup>18</sup>: 1,60 (verd. Lösung in Benzol): W., W. Dichte einiger Lösungen in Benzol bei 20°: W., W.

Gibt beim Erhitzen mit Luft unter Druck auf 260° in Gegenwart von Sodalösung 3-Chlor-benzoesäure, (nicht isolierten) 3-Chlor-benzaldehyd und geringe Mengen Ameisensäure, Essigsäure und Oxalsäure (SCHRADER, Abh. Kenninis Kohle 4, 325; C. 1921 I, 537). Wird durch Hydrazinhydrat bei Gegenwart von Palladium in alkoh. Kalilauge zu Toluol reduziert (Busch, Schmidt, B. 62, 2617). Liefert beim Kochen mit der berechneten Menge Brom 3-Chlor-benzylbromid (Oxford, Robinson, Soc. 1927, 2241). Gibt bei der Einw. von Chlorsulfonsäure und nachfolgendem Behandeln mit Phosphorpentachlorid 5-Chlor-toluol-sulfochlorid (2) (Gerver, Versl. Akad. Amsterdam 30, 236; C. 1922 I, 1229). Liefert mit Phthalsäureanhydrid in Gegenwart von Aluminiumchlorid hauptsächlich 2-[4-Chlor-2-methylbenzoyl]- benzoesäure und geringere Mengen 2-[2-Chlor-4-methyl-benzoyl]- benzoesäure (Keimatsu, Hirano, Tanabe, J. pharm. Soc. Japan 49, 87; C. 1929 II, 1536).

Physiologisches Verhalten: H. STAUB in J. HOUBEN, Fortschritte der Heilstoffchemie, 2. Abt. Bd. 11 [Berlin-Leipzig 1932], S. 72.

4-Chlor-toluol, p-Chlor-toluol C<sub>7</sub>H<sub>7</sub>Cl = C<sub>6</sub>H<sub>4</sub>Cl·CH<sub>3</sub> (H 292; E I 150). B. Bei der Chlorierung von kaltem Toluol in Gegenwart von Eisen im diffusen Licht, neben 2-Chlortoluol (Wahl, Normann, Vermeylen, C. r. 174, 946; Bl. [4] 31, 576). Zur Bildung aus Toluol und Chlor in Gegenwart von Jod und Eisen vgl. Gindraux, Helv. 12, 925. Bei der Einw. von Chlor auf Toluol in Gegenwart von Blei(II)-chlorid bei 100° unter Rühren, neben überwiegenden Mengen 2-Chlor-toluol und wenig Benzylchlorid (W., N., V.). Neben 2-Chlortoluol bei der Einw. der berechneten Menge Sulfurylchlorid und wenig Dischwefeldichlorid auf Toluol in Gegenwart von Aluminiumchlorid bei ca. 70° (Silberrad, Soc. 127, 2680). Bei tropfenweiser Zugabe von Toluol zu Pyrosulfurylchlorid in Gegenwart von Aluminiumchlorid bei —5° bis 0°, neben anderen Produkten (Steinkoff, Buchheim, B 54, 2967). Bei der elektrolytischen Reduktion von 4-Chlor-benzaldehyd in saurer Lösung an einer Kupferkathode (Law, Soc. 99, 1114). Bei der Einw. von Kupferhydrid auf p-Toluoldiazoniumchlorid in Salzsäure bei 0° (Neogi, Mitra, Soc. 1928, 1332). In geringer Menge beim Eintragen des Doppelsalzes aus p-Toluoldiazoniumchlorid und Blei(IV)-chlorid in Naphthalin bei 150° (Sakellarios, B. 56, 2539). Aus dem p-Toluoldiazoniumsalz der trichlorohydroxoarsenigen Säure CH<sub>3</sub>·C<sub>6</sub>H<sub>4</sub>·N<sub>3</sub>·[AsCl<sub>3</sub>·OH] beim Erhitzen über 100°, neben p-Tolylarsenoxyd (Földi, B. 56, 2497). Bei der Einw. von Benzolsulfochlorid auf p-Tolylmagnesiumbromid in Äther unter Kühlung mit Kältemischung (Gilman, Fothergill, Am. Soc. 51, 3506). Trennung von 2-Chlor-toluol durch unvollständige Sulfurierung, wobei hauptsächlich 2-Chlor-toluol angegriffen wird: W., N., V.; Soc. St. Denis, W., D. R. P. 376634; C. 1923 IV, 577; Frdl. 14, 377.

577; Fral. 14, 577.

F: 7,8° (Wahl, Normand, Vermeylen, C. r. 174, 948; Bl. [4] 31, 574).  $Kp_{764}$ : 163,5° (korr.) (Sugden, Soc. 125, 1175);  $Kp_{760}$ : 162,4° (Lecat, R. 46, 245);  $Kp_{750,6}$ : 161,7—162,2° (W., N., V.).  $D_{\infty}^{\text{m.s.}}$ : 1,0714 (W., N., V.);  $D_{\infty}^{\text{n.s.}}$ : 1,0651 (v. Auwers, A. 422, 164);  $D_{\infty}^{\text{n.s.}}$ : 1,031 (Kerr, Phil. Mag. [7] 3 [1927], 332). Oberflächenspannung zwischen 25° (32,24 dyn/cm) und 151° (19,11 dyn/cm): S., Soc. 125, 1175. Parachor: S., Soc. 125, 1182; Mumford, Phillips, Soc. 1929, 2118. Verdampfungswärme bei 160,38°: 73,14 cal/g (Mathews, Am. Soc. 48, 572).  $n_{D}^{\text{n.s.}}$ : 1,5223 (Gindraux, Helv. 12, 925);  $n_{\Omega}^{\text{n.s.}}$ : 1,5150:  $n_{D}^{\text{n.s.}}$ : 1,5193;  $n_{D}^{\text{n.s.}}$ : 1,5315;

 $n_2^{3,35}$ : 1,5416 (v. Au.). Tesla-Luminescenz-Spektrum im sichtbaren und ultravioletten Gebiet: Russell, Stewart, Soc. 1929, 2435. Dielektr.-Konst. bei 20° ( $\lambda=4,5$  m): 6,08 (Walden, Werner, Ph. Ch. [B] 2, 18); bei 58° ( $\lambda=95$  m): 5,55 (Kerr). Dipolmoment  $\mu \times 10^{18}$ : 1,74 (verd. Lösung in Benzol) (W., W.). Thermische Analyse des binären Systems mit 2-Chlor-toluol (Eutektikum bei  $-49,8^{\circ}$  und 27 Gew.-% 4-Chlor-toluol): W., N., V. Azeotrope Gemische, die 4-Chlor-toluol enthalten, siehe in der untenstehenden Tabelle.

| Komponente                                                                                                           | Кр <sub>760</sub><br>0                                      | Gehalt an<br>4-Chlor-toluol<br>in Gew% | Komponente                                                                                                                                                       | Kp760                                                | Gehalt an<br>4-Chlor-toluol<br>in Gew% |
|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------|
| α-Dichlorhydrin 2). Ameisensäure 3) Acetamid 1) Propionsäure 2) Isoamylpropionat 2) Buttersäure 2) Isobuttersäure 2) | 160,0<br>100,5<br>159,5<br>139,8<br>159,0<br>155,7<br>151,5 | 78<br>12<br>91,5<br>ca. 25<br>68<br>53 | Isovaleriansäure <sup>3</sup> ). Dimethyloxalat <sup>2</sup> ). Camphen <sup>1</sup> ) Cyclohexanol <sup>1</sup> ) Phenol <sup>2</sup> ) Furfurol <sup>1</sup> ) | 160,5<br>156,6<br>ca. 158<br>156,5<br>161,5<br>157,8 | 85<br>- 70<br>                         |

Lecat, Ann. Soc. scient. Bruxelles 47 I [1927], 110, 111, 153, 155.
 L., Ann. Soc. scient. Bruxelles 48 I [1928], 117, 119, 120.
 L., Ann. Soc. scient. Bruxelles 49 [1929], 22.

Dichte einiger Lösungen in Benzol bei  $20^{\circ}$ : W., W. Dichte  $D_{50}^{\infty}$  von Gemischen mit 2-Chlortoluol: W., N., V. Brechungsindices von Gemischen mit 2-Chlortoluol: G. Dielektr.-Konst. einiger Lösungen in Benzol bei  $20^{\circ}$ : W., W.

Bei 2jährigem Aufbewahren von 4-Chlor-toluol mit Wasser und einer Spur Jod im Sonnenlicht entstehen geringe Mengen Toluol, 4-Chlor-benzoesäure und sehr wenig 1.2-Bis-[4-chlor-phenyl]-äthan (SILBERRAD, Soc. 125, 2197). Gibt beim Erhitzen mit Luft unter Druck auf 260° in Gegenwart von Sodalösung 4-Chlor-benzoesäure (nicht isolierten) 4-Chlor-benzaldehyd und geringe Mengen Ameisensäure, Essigsäure und Oxalsäure (SCHRADER, Abh. Kenntnis Kohle 4, 325; C. 1921 I, 537). Liefert bei der elektrolytischen Oxydation an einer Bleianode in verd. Schwefelsäure oder Aceton + verd. Schwefelsäure bei ca. 12° im von der Stromdichte abhängigen Verhältnis 4-Chlor-benzaldehyd und 4-Chlor-benzoesäure, neben anderen Produkten, in verd. Sodalösung bei 60° nur 4-Chlor-benzoesäure (Fichter, Adler, Helv. 9, 281). Wird durch Natrium in flüssigem Ammoniak zu Toluol und p-Toluidin(?) reduziert (Kraus, White, Am. Soc. 45, 774). Die Nitrierung liefert in Gegenwart von konz. Schwefelsäure 64—65% 4-Chlor-2-nitro-toluol und 35—36% 4-Chlor-3-nitro-toluol, in Gegenwart von Phosphorpentoxyd und Acetanhydrid gleiche Teile der Reaktionsprodukte (Hodoson, Anderson, Soc. 125, 2196; H., J. Soc. Dyers Col. 41, 329; C. 1926 II, 1526). Überführung in p-Toluylsäure durch Leiten mit feuchtem Kohlenoxyd und in p-Toluidin durch Leiten mit Kohlenoxyd und Ammöniak über Bimstein-Metall-Katalysatoren im elektrischen Ofen: Dieterle, Eschenbach, Ar. 1927, 193, 195. Liefert bei 40-tägiger Einw. von technischem Stickstofftetroxyd 4-Chlor-benzoesäure und andere Produkte (Schaarschmidt, Smolla, B. 57, 39; vgl. Sch., Z. ang. Ch. 36, 535). Gibt mit Dischwefeldichlorid in Schwefelkohlenstoff in Gegenwart von amalgamiertem Aluminium 4.5-Dichlor-1.8-dimethyl-thianthren (Syst. Nr. 2676) (Râx, Soc. 119, 1963).

Physiologisches Verhalten: H. STAUB in J. HOUBEN, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 72.

 $\omega$ -Chlor-toluol, Benzylchlorid  $C_2H_2Cl = C_6H_5 \cdot CH_2Cl$  (H 292; E I 151).

### Bildung und Darstellung.

Neben anderen Produkten beim Einleiten von Chlorwasserstoff in Gegenwart von wasserfreiem Zinkchlorid in eine Benzol-Suspension von wäßt. Formaldehyd, Paraformaldehyd oder Hexamethylentetramin unter Kühlung oder bei 60° (Stephen, Short, Gladding, Soc. 117, 518; Bert, C. r. 186, 373; Blanc, Bl. [4] 33, 314; C. 1923 I, 1571). Aus Benzol und Bis-chlormethyläther oder Chlordimethyläther in Gegenwart von wasserfreiem Zinkchlorid oder Zinkchlorid-monohydrat (St., Sh., Gl.). Durch Chlorierung von Toluoldampf bei Tageslicht oder Kunstlicht unterhalb des Siedepunktes des Benzylchlorids (Zelinsky, Schering-Kahlbaum A. G., D. R. P. 478084; C. 1929 II, 1216; Frdl. 16, 335). Einfluß verschiedener Katalysatoren auf die Bildung durch Chlorierung von Toluol: O. Silberrad, C. A. Silberrad, Parke, Soc. 127, 1724; S., S., Soc. 127, 2449. Bei der Einw. von

Chlorstickstoff auf Toluol, neben anderen Produkten (Coleman, Noyes, Am. Soc. 43, 2215). Bei der Einw. von Aluminiumchlorid auf Benzylalkohol in Petroläther oberhalb 40°, neben anderen Produkten (Huston, Am. Soc. 46, 2778). Neben Benzoesäure beim Behandeln von Benzylbenzoat mit 5 Mol Sulfurylchlorid (Durrans, Soc. 123, 1424). — Zur technischen Darstellung vgl. Lorges, Rev. Chim. ind. 34, 10, 50; C. 1925 I, 2655.

## Physikalische Eigenschaften.

Kp<sub>780</sub>: 179,3° (Lecat, R. 46, 243); Kp<sub>261</sub>: 141°; Kp<sub>163</sub>: 128°; Kp<sub>111</sub>: 118°; Kp<sub>59</sub>: 100°; Kp<sub>11</sub>: 66° (Lorges, Rev. Chim. ind. 34 [1925], 50); Kp<sub>11</sub>: 61—62° (Conant, Hussey, Am. Soc. 47, 485); Kp<sub>8</sub>: 57—58° (С. Kirner, Am. Soc. 46, 241). D‡: 1,1050; D♣°: 1,0870 (Pound, J. phys. Chem. 30, 793). Oberflächenspannung bei 13°: 38,3 dyn/cm (P.). Intensität und Depolarisation des zerstreuten Lichts bei der Streuung an flüssigem Benzylchlorid: Krishnan, Phil. Mag. [6] 50, 703; C. 1926 I, 838; Banerjee, Indian J. Phys. 2, 57; C. 1928 I, 1838; an Benzylchlorid-Dampf: Rao, Indian J. Phys. 2, 84; C. 1928 I, 1838. Ramanspektrum: Dadieu, Kohlrausch, M. 53/54, 289; Petrikaln, Ph. Ch. [B] 3, 362; P. Hochberg, Ph. Ch. [B] 4, 302. Fluorescenz bei Bestrahlung mit Röntgenstrahlen: Newcomer, Am. Soc. 42, 2002. Zum Dipolmoment vgl. Smyth, Am. Soc. 46, 2163. Magnetische Doppelbrechung: Raman, Krishnan, Pr. roy. Soc. [A] 113, 518; C. 1927 I, 1127.

Benzylchlorid löst sich unterhalb —20° im gleichen Volumen Petroläther (PRINS, R. 42, 26). Benzylchlorid bildet azeotrope Gemische mit α-Dichlorhydrin (Kp<sub>760</sub>: 168,9°; 43 Gew.-% Benzylchlorid) (Lœat, R. 46, 243), mit Octanol-(2) (Kp<sub>760</sub>: 176,5°) und α-Bromisobuttersäure-äthylester (Kp<sub>760</sub>: ca. 47,5°; ca. 40 Gew.-% Benzylchlorid) (L., Ann. Soc. scient. Bruxelles 47 I [1927], 68, 112), mit Terpinen (Kp<sub>760</sub>: 176,9°; ca. 70 Gew.-% Benzylchlorid) (L., Ann. Soc. scient. Bruxelles 48 I [1928], 115), mit Buttersäure (Kp<sub>760</sub>: 160,8°; 35 Gew.-% Benzylchlorid). Isobuttersäure (Kp<sub>760</sub>: 153,5°; 20 Gew.-% Benzylchlorid) und n-Capronsäure (Kp<sub>760</sub>: 179,0°; ca. 97 Gew.-% Benzylchlorid) (L., Ann. Soc. scient. Bruxelles 49 [1929], 18, 20, 110). Grenzflächenspannung gegen Wasser bei 30°: Pound, J. phys. Chem. 30, 793, 811. Adsorption des Dampfes ah Kohle: Herrst. Bio. Z. 115, 216; Alexe-Jewski, Ж. 55. 417; C. 1925 II, 642; an Faserstoffen: A., Z. prikl. Chim. 1, 187; C. 1929 II, 708. Art und Geschwindigkeit der Ausbreitung auf Wasser: Ramdas, Indian J. Phys. 1, 20; C. 1926 II, 1935.

#### Chemisches Verhalten.

Entzündungstemperatur in Luft: Masson, Hamilton, Ind. Eng. Chem. 20, 814; C. 1928 II, 1986. Benzylchlorid liefert beim Überleiten mit Wasserdampf und Luft über mit Vanadium(V)-oxyd imprägnierten Bimsstein bei 360-380° hauptsächlich Benzaldehyd und wenig Benzoesäure (Schorigin, Kisber, Smoljankowa, Z. prikl. Chim. 2, 150; C. 1929 II, 730). Gibt beim Kochen mit Natriumdichromat und Natriumcarbonat in wäßr. Lösung Benzaldehyd (Blanc, D. R. P. 347583; C. 1922 II, 1138; Frdl. 13, 1107). Reagiert mit Natrium unter intermediärer Bildung von Natriumbenzyl (Schlubach, Goes, B. 55, 2890, 2900). Gibt bei der Reduktion mit Natrium in flüssigem Ammoniak einen weißen Niederschlag (Kraus, White, Am. Soc. 45, 773; vgl. a. Dains, Brewster, Am. Soc. 42, 1578). Liefert bei der Behandlung mit Magnesium in Äther, besonders gut bei Gegenwart von Katalysatoren wie Kupfer(II)-chlorid, Quecksilber(II)-bromid, Eisenchlorid oder Eisenbromid Dibenzyl (MICHAILENKO, PROTASSOWA, Ж. 53, 347; C. 1923 III, 1014). Gibt beim Kochen mit Zinkstaub und Alkohol Toluol und Äthylbenzyläther (Сн. К. Ingold, E. H. Ingold, Soc. 1928, 2259). Liefert beim Erhitzen mit zuvor im Wasserstoff-Strom auf 500° erhitztem Aluminium auf 2000 Dibenzyl (RAY, DUTT, J. indian chem. Soc. 5, 107; C. 1928 I, 2371). Beim Chlorieren von Benzylchlorid in Gegenwart von Jod bei 30-40° entsteht außer 4-Chlorbenzylchlorid auch 2-Chlor-benzylchlorid (OLIVIER, R. 41, 419). Reaktion mit Stickstoff-trichlorid: Coleman, Noyes, Am. Soc. 43, 2216. Zum Verhalten bei der Nitrierung mit Salpetersäure (D: 1,52) in Gegenwart und Abwesenheit von Acetanhydrid vgl. Flürscheim, Holmes, Soc. 1928, 1611. Über die Reaktion mit Wasser und ihre Deutung als Grenzflächenreaktion sowie die Rolle, die die Dampfphase dabei spielt, vgl. HARKER, Soc. 125, 500. Zur Geschwindigkeit der Reaktion mit Wasser bei ca. 100° vgl. v. Braun, Moldaenke, B. 56, 2169. Geschwindigkeit der Hydrolyse von Benzylchlorid bei verschiedenen Temperaturen und Konzentrationen durch 50% igen Alkohol und wäßrig-alkoholische Schwefelsäure: Olivier, R. 41, 304; O., Berger, R. 41, 639; durch wäßr. Aceton: O., R. 48, 234. Wird durch 80% ige Schwefelsäure unter Entwicklung von Chlorwasserstoff und Bildung eines unlöslichen Rückstandes zersetzt (Stephen, Short, Gladding, Soc. 117, 519). Zur Überführung in Benzylalkohol durch Kochen mit Alkalien vgl. Gomberg, Buchler, Am. Soc. 42, 2071. Geschwindigkeit der Umsetzung bei verschiedenen Temperaturen und Konzentrationen mit Wasser, Kaliumhydroxyd, Silbernitrat und Piperidin in Alkohol: Petrenko-Kritschenko, Оротzki, B. 59, 2136; Ж. 59, 316; mit Pyridin und Piperidin in Alkohol und Benzol sowie mit kolloidalem Silber in 80% igem Alkohol: P.-K., B. 61, 846; Ж. 61, 29;

229

mit Natriummethylat-Lösung und mit Pyridin, auch bei Gegenwart anderer Verbindungen: Tronow, Gerschewitsch, M. 60, 173; C. 1928 II, 771; vgl. a. Tr., M. 58, 1286; C. 1927 II, 1145; mit Natriumäthylat-Lösung: v. Braun, Engel, A. 436, 320; Kindler, A. 452, 119; mit Trimethylamin in verschiedenen organischen Lösungsmitteln: McCombie, Scarborough, Smith, Soc. 1927, 808, 809. Bei der Einw. von 1 Mol Benzylchlorid auf 5 Mol Ammonium-carbonat in wäßr. Lösung bei 85—90° entstehen ca. 16 % Benzylamin, 20 % Dibenzylamin, 44 % Tribenzylamin (Gomberg, Buchler, Am. Soc. 42, 2069). Liefert beim Kochen mit der äquimolekularen Menge Hydrazinhydrat in Alkohol überwiegend Tribenzylhydrazin, ferner N.N-Dibenzyl-hydrazin und wenig Tetrabenzylhydrazin (Kenner, Wilson, Soc. 1927, 1110). Geschwindigkeit der Umsetzung mit Kaliumjodid in Aceton bei 25°: Conant, Kirner, Am. Soc. 46, 248; C., K., Hussey, Am. Soc. 47, 588; vgl. dagegen van Duin, Am. Soc. 47, 586; mit Kaliumjodid bei 25°, 30° und 50° und mit Natrium- und Lithiumjodid in Aceton bei 25° und 30°: C., H., Am. Soc. 47, 485. Optimale Konzentration von Benzylchlorid für die Darstellung von Benzylmagnesiumchlorid: Gilman, Vanderwal, Bl. [4] 45, 642. Konkurrierende Einw. von Benzylchlorid und Butylbromid auf Magnesium in Ather: Rudd, Tunner, Soc. 1928, 688. Liefert bei der Einw. von Zirkon(IV)-chlorid in Schwefelkohlenstoff ein gelbes Kohlenwasserstoff-Gemisch von der wahrscheinlichen Zusammensetzung (C<sub>7</sub>H<sub>0</sub>)<sub>x</sub> (Krishnamurti, C. 1929 I, 2156). Die Einw. von fein gepulvertem Eisenpyrit, Markasit oder Molybdänit oder von geringen Mengen Eisenchlorid auf Benzylchlorid bei ca. 50° führt unter starker Chlorwasserstoff-Entwicklung zu einem dicken Ol (Smythe, Soc. 121, 1272). Verhalten gegen verschiedene Metalle: Lorges, Rev. Chim. ind. 34 [1925], 13.

Benzylchlorid liefert mit sek. Butylbromid und Natrium bei Zusatz einiger Tropfen Essigester in siedendem Äther geringe Mengen 2-Benzyl-butan (GLATTFELD, CAMERON, Am. Soc. 49, 1045). Kondensiert sich mit Benzol zu Diphenylmethan: beim Kochen mit zuvor im Wasserstoff-Strom auf 500° erhitztem Aluminium (RAY, DUTT, J. indian chem. Soc. 5, 108; C. 1928 I, 2371) oder mit Chrompulver (CHAKRABARTY, DUTT, J. indian chem. Soc. 5, 516; C. 1929 I, 501), ferner bei der Einw. der Aluminiumchloridverbindung des Nitrobenzols bei 30° (OLIVIER, R. 45, 818) oder von Zirkon(IV)-chlorid (KRISHNAMURTI, C. 1929 I, 2156). Liefert beim Kochen mit Benzol in Gegenwart von Titan(IV)-chlorid Diphenylmethan, 1.4-Dibenzyl-benzol, 1.3-Dibenzyl-benzol und andere Produkte (Stadnikow, Kaschtanow, B. 61, 1390; ж. 60, 1119), in Gegenwart von Eisenpyriten Diphenylmethan, 1.2-Dibenzyl-benzol, 1.4-Dibenzyl-benzol, geringe Mengen eines Tetrabenzylbenzols und andere Kohlenwasserstoffe (Smythe, Soc. 121, 1276). Kondensiert sich mit Naphthalin und anderen mehrkernigen aromatischen Kohlenwasserstoffen in der Hitze, am besten bei Gegenwart von Chlorwasserstoff, unter Bildung von öl- und harzartigen Produkten (Höchster Farbw., D. R. P. 400312, 416904, 417442; C. 1925 I, 307; II, 2101; 1926 I, 508; Frdl. 14, 674; 15, 1149, 1150). Gibt bei der Einw. auf Naphthalin in Gegenwart von Zinkchlorid 1- und 2-Benzyl-naphthalin, 1.8-Dibenzyl-naphthalin, zwei isomere Benzylnaphthaline vom Schmelzpunkt 132° und 88° und β.β-Dinaphthyl in je nach den Bedingungen wechselnden Mengen (Dziewoński, Moszew, Bl. Acad. polon. [A] 1928, 283; C. 1929 I, 1104; vgl. Dz., Dziecielewski, Bl. Acad. polon. [A] 1927, 277; C. 1928 I, 57). Liefert mit Dibenzyl bei ca. 150°, am besten in Gegenwart von etwas Zinkstaub, 4-Benzyl-dibenzyl (Fuson, Am. Soc. 48, 2941).

Geschwindigkeit der Reaktionen mit Natriummethylat und Natriumäthylat s. o. Benzylchlorid gibt beim Erhitzen mit Phenol auf ca. 150—180° oder besser in Gegenwart von Kupferbronze auf 115—120° (Gomberg, Buchler, Am. Soc. 42, 2067) oder bei der Umsetzung in Gegenwart von Aluminiumchlorid in Petroläther (Huston, Am. Soc. 46, 2778) 4-Benzyl-phenol, beim Erhitzen in 38%iger Salzsäure im Rohr auf 100° 4-Benzyl-phenol, 2.4(?)-Dibenzyl-phenol und andere Produkte (v. Braun, Reich, A. 445, 232), beim Erhitzen in Gegenwart von Zinkchlorid auf 100° 2-Benzyl-phenol, 4-Benzyl-phenol und 2.4-Dibenzyl-phenol (Short, Stewart, Soc. 1929, 555). Reagiert mit Phenolaten in Wasser, Alkohol oder Methanol unter Bildung der entsprechenden Benzyläther (Claisen, A. 442, 237; G., B.; Short, Stewart, Soc. 1929, 554). Beim Erhitzen mit Natriumphenolat oder Natriumdraht und Phenol in Toluol erhält man 2-Benzyl-phenol (Cl.) sowie Phenylbenzyläther und 2.6-Dibenzyl-phenol (Sh., St.). Reagiert analog mit p-Kresol (Cl.). Beim Erhitzen mit der Natriumverbindung des α- oder β-Naphthols in Toluol erhält man 2-Benzyl-naphthol-(1) bzw. 1-Benzyl-α-naphthol-(2) (Cl.), beim Kochen in wäßrig-alkalischer Lösung entsteht daneben noch Benzyl-α-naphthyl-äther bzw. Benzyl-β-naphthyl-äther (G., B.; vgl. Cl.). Läßt man die Natriumverbindung des Guajacols auf Benzylchlorid in Toluol einwirken, so entsteht als Hauptprodukt Guajacolbenzyläther und nur wenig 3(?)-Benzylguajacol (Cl.). Liefert beim Erwärmen mit Resorcin bei Gegenwart von Aluminiumchlorid in Nitrobenzol 2.4-Dioxy-diphenylmethan (Klarmann, Am. Soc. 48, 792). Gibt beim Erwärmen mit Hydrochinonmonomethyläther in Gegenwart von Zinkchlorid auf 100° 2-Oxy-5-methoxy-diphenylmethan (Short, Stewart, Soc. 1929, 559). Gibt mit Bis-chlormethyl-

äther in Gegenwart von Zinkchlorid bei 30—35° 1.4-Bis-chlormethyl-benzol (Stephen, Short, Gladding, Soc. 117, 519). Bei 8-stdg. Erhitzen mit Natriumacetylaceton auf 160—200° entstehen ms-Benzyl-acetylaceton und wenig ms.ms-Dibenzyl-acetylaceton (Morgan, Taylor, Soc. 127, 801). Bei längerem Erhitzen mit Natrium-ms-benzyl-acetylaceton auf 200—210° entsteht ms.ms-Dibenzyl-acetylaceton (M., T.). Zur Reaktion von Benzylchlorid mit 4-Nitro-benzaldehyd in siedender methylalkoholischer Kalilauge vgl. Bergmann, Hervey, B. 62, 907; Kleucker, B. 62, 2587.

Die Umsetzung von Benzylchlorid mit Kaliumcyanid zu Benzylcyanid in siedendem Alkohol wird durch Kupfer(I)-cyanid und ultraviolettes Licht gefördert (ROSENMUND, LUXAT, TIEDEMANN, B. 56, 1956). Benzylcyanid bildet sich auch aus Benzylchlorid und einem geringen Überschuß an Kaliumcyanid bei 1-stdg. Kochen in wäßr. Lösung (GOMBERG, BUCHLER, Am. Soc. 42, 2069). Liefert mit Natriumacetessigester in Alkohol Benzyl- und Dibenzylacetessigester (EHRLICH, A. 187 [1877], 12; CONRAD, BISCHOFF, A. 204 [1880], 180; Fittig, Christ, A. 268 [1892], 124), bei wiederholter Einw. in überschüssiger Natriumäthylat-Lösung jedoch hauptsächlich Dibenzylessigsäure-äthylester (Mills, Akers, Soc. 127, 2476). Die Umsetzung von Benzylchlorid mit Anilin und o-Toluidin in Benzol-Lösung wird durch ultraviolettes Licht gefördert (Plissow, G. 59, 204); ferner wird die Bildung von Benzylanilin durch Zusatz von wenig Jod, die Bildung von Dibenzylanilin durch Zusatz von wasserfreiem Natriumacetat und wenig Jod begünstigt (Desai, J. indian Inst. Sci. 7, 237; C. 1925 I, 1297). Geschwindigkeit der Reaktionen mit Anilin und p-Toluidin in Alkohol bei 35°, 40° und 45° und mit o-Toluidin, 2-Chlor-anilin, 4-Chlor-anilin, 2-5-Dichloranilin, Methyl-, Äthyl- und Benzylanilin in Alkohol bei 40°: Peacock, Soc. 125, 1977. Geschwindigkeit der Reaktionen mit Anilin, o- und p-Toluidin, Methylanilin und Dimethyl-anilin in Methanol bei 35° und 45°, mit m-Toluidin in Methanol bei 35° und mit 3- und 4-Nitro-anilin, Benzylanilin und 4-Brom-dimethylanilin in Methanol bei 45°: P., Soc. 127, 2179; vgl. Soc. 1935, 16. Geschwindigkeit der Reaktionen mit Dimethyl-m-toluidin und Dimethyl-p-toluidin in Methanol bei 35°: P., J. phys. Chem. 31, 535. Über Einw. weiterer Basen s. S. 228. Gibt bei 5—6-stdg. Erwärmen mit der Kaliumverbindung des Phosphonoessigsäure-triäthylesters in Äther α-Phosphono-benzylessigsäure-triäthylester (Syst. Nr. 2296) (Arbusow, Rasumow, Ж. 61, 627; C. 1930 I, 362).

Liefert bei der Einw. auf überschüssiges Methylmagnesiumjodid in Äther Äthylbenzol, Dibenzyl und Äthan (Fuson, Am. Soc. 48, 2686, 2938); in wenig Toluol als Lösungsmittel entsteht außerdem 4-Benzyl-toluol (Montagne, A. ch. [10] 13, 110). Zur Umsetzung mit Methylmagnesiumjodid und Äthylmagnesiumjodid nach Späth (M. 34 [1913], 1992) vgl. Fuson, Am. Soc. 48, 2938, 2940; Sp., B. 60, 703. Zur Reaktion mit Äthylmagnesiumbromid vgl. a. Bert, C. r. 186, 588. Bei gleichzeitiger Einw. von Benzylchlorid und Methylmagnesiumjodid auf N.N-Diäthyl-butyramid in Toluol entsteht 3-Diäthylamino-3-methyl-1-phenyl-hexan, neben 2-Diäthylamino-2-methyl-pentan (M., C. r. 187, 130; A. ch. [10] 13, 107). Geschwindigkeit der Reaktionen mit Piperidin und Pyridin s. S. 228.

### Physiologisches Verhalten; Verwendung.

Physiologisches Verhalten: H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 72. Giftwirkung auf Insektenlarven: Tattersfield, Roberts, C. 1921 I, 232. — Verwendung zur Herstellung von Kunstharzen, technischen Ölen usw.: I. G. Farbenind., D. R. P. 444109, 446999; C. 1927 II, 750, 1403; Frdl. 15, 1177, 1178; Chem. Fabr. Schering, Freund, Jordan, D. R. P. 417667, 417668; C. 1925 II, 2102, 2103; Frdl. 15, 1150, 1173. Zur Verwendung von Benzylchlorid als Kampfstoff vgl. die bei  $\beta.\beta'$ -Dichlor-diäthylsulfid (E II 1, 348, 352) zitierte Literatur. Benzylchlorid wird im Gemisch mit Luft durch Zerstäuben einer Lösung von Soda-Schwefelleber und Seifenlauge unschädlich gemacht (Desgrez, Guillemard, Savès, C. r. 171, 1179).

 $\omega.\omega$ -Difluor- $\omega$ -chlor-toluol, Benzodifluoridchlorid  $C_7H_5ClF_2 = C_6H_5 \cdot CClF_2$  (H 295; E I 152). Liefert bei der Hydrierung in Gegenwart von Platinschwarz  $\omega.\omega$ -Difluor-toluol, Toluol, Methylcyclohexan und geringe Mengen Difluormethylcyclohexan (Swarts, Bl. Acad. Belgique 1920, 410; C. 1921 III, 33).

2.4-Dichlor-toluol C<sub>7</sub>H<sub>6</sub>Cl<sub>2</sub>, s. nebenstehende Formel (H 295; E I 152). B. Aus Toluol bei der Einw. von reichlich 2 Mol Sulfurylchlorid und wenig Dischwefeldichlorid bei Gegenwart von Aluminiumchlorid erst bei 70°, dann kurze Zeit bei 100° (Silberrad, Soc. 127, 2680). Zur Bildung aus 2.4-Diamino-toluol nach Erdmann, B. 24, 2769 vgl. Stouder, Adams, Am. Soc. 49, 2044. — Kp: 195° (St., A.). — Gibt bei der elektrolytischen Oxydation in 1 n-Schwefelsäure an einer Blei(IV)-oxyd-Anode geringe Mengen 2.4-Dichlor-benzoesäure (Fichter, Adler, Helv. 9, 286).

CH<sub>3</sub> Cl

2.5 - Dichlor - toluol C<sub>7</sub>H<sub>e</sub>Cl<sub>2</sub>, s. nebenstehende Formel (H 296). F: 5°; Kp<sub>761</sub>: 199° (DE CRAUW, R. 50, 773). — Gibt bei 75-stdg. Erhitzen mit Natriummethylat-Lösung auf 180° 6-Chlor-3-oxy-toluol und 5-Chlor-2-oxy-toluol (?). Liefert bei längerem Erhitzen mit 35% iger Salpetersäure auf 140° 2.5-Dichlorbenzoesäure. Läßt sich durch Einleiten von Chlor in der Siedehitze in 2.5-Dichlor-benzylidenchlorid überführen. 2.6-Dichlor-toluol C<sub>7</sub>H<sub>6</sub>Cl<sub>2</sub>, s. nebenstehende Formel (H 296). B. Bei der CH<sub>3</sub> CI

Destillation von 2.6-Dichlor-toluol-sulfonsäure-(4) in starker Schwefelsäure mit C1 überhitztem Wasserdampf bei 250° (Davies, Soc. 119, 873). — Technische Darstellung: H. E. Fierz-David, L. Blangey, Grundlegende Operationen der Farbenchemie, 4. Aufl. [Wien 1938], S. 113. — Öl. Kp<sub>757</sub>: 197—199<sup>o</sup> (korr.) (D.). Löslich in Chloroform (D.). — Wird bei längerem Kochen mit Permanganat in Wasser oder Aceton nur wenig verändert (D.). Liefert bei wochenlangem Erhitzen mit Salpetersäure (D: 1,2) im Rohr 2.6-Dichlor-benzoesäure und andere Produkte (D.).

2. $\omega$ -Dichlor-toluol, 2-Chlor-benzylchlorid  $C_7H_6Cl_2=C_6H_4Cl\cdot CH_2Cl$  (H 297; E I 152). B. Beim Chlorieren von 2-Chlor-toluol in Gegenwart von Phosphorpentachlorid im Licht (MEISENHEIMER, ZIMMERMANN, v. KUMMER, A. 446, 225). Neben 4-Chlor-benzylchlorid beim Chlorieren von Benzylchlorid bei 30—40° in Gegenwart von Jod (OLIVIER, R. 41, 420). Beim Erhitzen von 2-Chlor-benzylalkohol mit der berechneten Menge Phosphorpentachlorid auf ca. 100° (O., R. 41, 308). Aus N.N-Bis-[2-chlor-benzyl]-benzamid durch Schmelzen mit Phosphorpentachlorid (v. Braun, Kühn, Weismantel, A. 449, 275). — Kp<sub>10</sub>: 94—95° (Conant, Hussey, Am. Soc. 47, 486). — Liefert beim Nitrieren mit rauchender Salpetersäure bei 30—40° 6-Chlor-3-nitro-benzylchlorid (M., Z., v.K.). Geschwindigkeit der Hydrolyse zu 2-Chlor-benzylalkohol durch Wasser bei 82,5°: O., R. 41, 309. Geschwindigkeit der Reaktion mit 0,1 n-Natriumäthylat-Lösung: Franzen, Rosenberg, J. pr. [2] 101, 333. Geschwindigkeit der Umsetzung mit Kalium-, Natrium- und Lithiumjodid in Aceton bei 25° und 30°: C., H.; vgl. a. C., KIRNER, H., Am. Soc. 47, 495.

3. $\omega$ -Dichlor-toluol, 3-Chlor-benzylchlorid  $C_7H_6Cl_2=C_6H_4Cl\cdot CH_2Cl.$  B. Beim Einleiten von 1 Grammatom Chlor in siedendes 3-Chlor-toluol (Kenner, Witham, Soc. 119, 1460). Aus 3-Chlor-benzylalkohol durch Einw. von Thionylchlorid (Franzen, Rosenberg, J. pr. [2] 101, 334) oder durch Erwärmen mit der berechneten Menge Phosphorpentachlorid auf ca. 100° (OLIVIER, R. 41, 309). Durch Erhitzen von N.N-Bis-[3-chlor-benzyl]-benzamid mit Phosphorpentachlorid auf 110° (v. Braun, Kühn, Weismantel, A. 449, 273). — Flüssigkeit. Kp: 209—211° (v. B., K., W.); Kp<sub>753</sub>: 215—216° (O., R. 41, 309); Kp<sub>740</sub>: 213—214° (K., W.); Kp<sub>25</sub>: 110—111° (Fr., R.). D<sub>4</sub><sup>15</sup>: 1,2695 (O., R. 41, 309). Leich löslich in Alkohol, schwer in verd. Alkohol (O., R. 41, 309). — Geschwindigkeit der Hydrolyse zu 3-Chlor-benzylalkohol durch verd. Alkohol bei 83°: O., R. 41, 309; bei 30°: O., R. 41, 650. Geschwindigkeit der Reaktion mit 0,1 n-Natriumäthylat-Lösung: Fr., R. Geschwindigkeit der Reaktion mit Benzol in Gegenwart von Aluminiumbromid oder der Aluminiumchloridverbindung des Nitrobenzols bei 30°: O., BERGER, R. 45, 717, 718.

4. $\omega$ -Dichlor-toluol, 4-Chlor-benzylchlorid  $C_7H_6Cl_2 = C_6H_4Cl \cdot CH_2Cl (H 297; E I 152)$ . B. Beim Einleiten von Chlorwasserstoff in eine Suspension von Paraformaldehyd in Chlorbenzol in Gegenwart von wasserfreiem Zinkchlorid (Blanc, Bl. [4] 33, 317; C. 1923 I, 1571). Aus Chlorbenzol und Bis-chlormethyläther oder Chlordimethyläther in Gegenwart von Zinkchlorid-monohydrat bei 65° oder in Gegenwart von konz. Schwefelsäure bei 25° (Stephen, SHORT, GLADDING, Soc. 117, 522). Zur Bildung durch Chlorierung von 4-Chlor-toluol vgl. OLIVIER, R. 41, 308. Zur Bildung durch Chlorieren von Benzylchlorid in Gegenwart von Jod nach Beilstein, Kuhlberg, A. 146, 320; vgl. O., R. 41, 420. Beim Erhitzen von N.N-Bis-[4-chlor-benzyl]-benzamid mit Phosphorpentachlorid auf 110° (v. Braun, Kühn, Weismantel, A. 449, 267). — F: 31° (v. B., K., W.), 30° (Bl.), 29° (St., Sh., Gl.; O., R. 41, 308). Kp<sub>758</sub>: 214°; Kp<sub>20</sub>: 117° (St., Sh., Gl.); Kp<sub>23</sub>: 106,5—107,5° (Conant, Kirner, Hussey, Am. Soc. 47, 499); Kp<sub>15</sub>: 96° (v. B., K., W.). Ist mit Wasserdampf flüchtig (St., SH., GL.).

Geschwindigkeit der Hydrolyse zu 4-Chlor-benzylalkohol durch Wasser bei 30° und 82°: OLIVIER, R. 41, 308. Geschwindigkeit der Reaktion mit 0,05 n-Natriumäthylat-Lösung bei 31,6°: KINDLER, A. 452, 120; mit 0,1 n-Natriumäthylat-Lösung bei 30°: Franzen, Rosenberg, J. pr. [2] 101, 335. Geschwindigkeit der Umsetzung mit Kaliumjodid in Aceton bei 25° und 30°: Conant, Kirner, Hussey, Am. Soc. 47, 499. Gibt mit Chlorbenzol bei Gegenwart von konz. Schwefelsäure in der Kälte 4.4'-Dichlor-diphenylmethan (Stephen, SHORT, GLADDING, Soc. 117, 522). Liefert bei allmählicher Einw. auf Resorcin in Nitrobenzol bei Gegenwart von wasserfreiem Aluminiumchlorid 4'-Chlor-2.4-dioxy-diphenylmethan (Klarmann, v. Wowern, Am. Soc. 51, 608). — Verwendung zur Herstellung von Kunstharzen: I. G. Farbenind., D. R. P. 444109; C. 1927 II, 750; Frdl. 15, 1177.

232

 $\omega$ . $\omega$ -Dichlor-toluol, Benzylidenchlorid, Benzalchlorid  $C_7H_6Cl_2=C_6H_5\cdot CHCl_2$  (H 297; E I 152). Zur Darstellung durch Chlorierung von Toluol vgl. H. E. FIERZ-DAVID, L. BLANGEY, Grundlegende Operationen der Farbenchemie, 4. Aufl. [Wien 1938], S. 110; LORGES, Rev. Chim. ind. 34, 50; C. 1925 I, 2655. — Kp<sub>760</sub>: 205,15° (Legat, Ann. Soc. scient. Bruxelles 47 I [1927], 68). Parachor: Mumford, Phillips, Soc. 1929, 2118. Intensität und Bruxelles 47 I [1927], 68). Parachor: Mumford, Phillips, Soc. 1929, 2118. Intensität und Depolarisation des zerstreuten Lichts bei der Streuung an flüssigem Benzylidenchlorid: Krishnan, Phil. Mag. [6] 50, 7.03; C. 1926 I, 838; Banerjee, Indian J. Phys. 2, 57; C. 1928 I, 1838; an Benzylidenchlorid-Dampf: Rao, Indian J. Phys. 2, 84; C. 1928 I, 1838. Magnetische Doppelbrechung: Raman, Kr., Pr. roy. Soc. [A] 113, 518; C. 1927 I, 1127. Löst sich unterhalb —20° im gleichen Volumen Petroläther (Prins, R. 42, 26). Benzylidenchlorid bildet azeotrope Gemische mit Octanol-(1) (Kp<sub>780</sub>: 194,5°; ca. 10 Gew.-% Benzylidenchlorid) (Lecat, Ann. Soc. scient. Bruxelles 47 I [1927], 68), mit Borneol (Kp<sub>780</sub>: 205,0°; ca. 85 Gew.-% Benzylidenchlorid), mit Chloressigsäure (Kp<sub>780</sub>: 189,1°; 3 Gew.-% Benzylidenchlorid) (L., Ann. Soc. scient. Bruxelles 48 I [1928], 120, 121) und mit n-Capronsäure (Kp<sub>780</sub>: 199,0°: 64 Gew.-% Benzylidenchlorid) (L.. Ann. Soc. scient. Bruxelles 48 I [1928], 120, 121) und mit n-Capronsäure (Kp<sub>780</sub>: 199,0°: 64 Gew.-% Benzylidenchlorid) (L.. Ann. Soc. scient. Bruxelles 49 [1929], 112).

chiorid) (L., Ann. Soc. scient. Bruxelles 45 i [1925], 120, 121) und the h-captonisative (Rp<sub>760</sub>: 199,0°; 64 Gew.-% Benzylidenchlorid) (L., Ann. Soc. scient. Bruxelles 49 [1929], 112).

Zum Verhalten bei der Nitrierung mit Salpetersäure (D: 1,52) für sich und in Gegenwart von Acetanhydrid vgl. Flürschem, Holmes, Soc. 1928, 1611, 1613. Geschwindigkeit der Umsetzung mit Wasser, Kaliumhydroxyd, Silbernitrat und Piperidin in Alkohol: Petrenko-Kritschenko, Opotzki, B. 59, 2136; Ж. 59, 316; mit Pyridin und Piperidin in Alkohol und Benzol sowie mit kolloidalem Silber in 80%igem Alkohol: P.-K., B. 61, 846; Ж. 61, 29; mit unverdünntem Pyridin: Tronow, Ж. 58, 1288; С. 1927 II, 1145. Liefert beim Kochen mit Kupfer und wenig Sodalösung Benzaldehydkupfer CuC<sub>14</sub>H<sub>12</sub>O<sub>2</sub> (Syst. Nr. 622) (Bernoulli, Schaaf, *Helv.* 5, 726). Reaktion mit Kupferpulver in Gegenwart von Pyridin: Karrer, Mitarb., *Helv.* 11, 233. Beim Erwärmen mit bei 105—110° getrocknetem Eisencarbonat auf ca. 60° erfolgt in stürmischer Reaktion völlige Verharzung; bei gleicher Temperatur getrocknetes Nickelcarbonat oder Kobaltcarbonat liefert bei ca. 120° bzw. ca. 60° hauptsächlich Benzaldehyd und etwas Benzoesäure (Wanin, Tschernojarowa, Ж. 59, 891; Sachten Benzeldenyd und etwas Benzelsatre (WANIA, Ischardova, M. 189, 891; C. 1928 I, 2941). Gibt mit dem Reaktionsprodukt aus Benzol, Quecksilber(II)-chlorid und wenig Aluminium 9.10-Diphenyl-9.10-dihydro-anthracen, mit dem Reaktionsprodukt aus Toluol, Quecksilber(II)-chlorid und wenig Aluminium x-Dimethyl-9.10-diphenyl-9.10-dihydro-anthracen (Râx, Soc. 117, 1337). Beim Kochen mit Dithioäthylenglykol bei Luftzutritt bilden sich Benzylidendiäthylentetrasulfid C<sub>6</sub>H<sub>5</sub>·CH<sub>2</sub>·CH<sub>2</sub>·S
S·CH<sub>2</sub>·CH<sub>2</sub>·S
S·CH<sub>2</sub>·CH<sub>2</sub>·S
S·CH<sub>2</sub>·CH<sub>2</sub>·S

und Benzylidendiäthylentrisulfid  $C_6H_6 \cdot CH < \frac{S \cdot CH_2 \cdot CH_2}{S \cdot CH_2 \cdot CH_2} > S$  (Syst. Nr. 2952), Diäthylentrisulfid  $C_6H_6 \cdot CH < \frac{S \cdot CH_2 \cdot CH_2}{S \cdot CH_2 \cdot CH_2} > S$ disulfid und Diäthylentrisulfid (Rây, Soc. 125, 1142). Setzt sich mit 2 Mol Kaliumthiobenzoat in Alkohol zu Benzyliden-bis-thiobenzoat um (BERGMANN, B. 53, 983). Liefert bei der Einw. auf die Dinatriumverbindung des 2-Phenyl-propan-tetracarbonsäure-(1.1.3.3)-tetraäthylesters Benzylidenmalonsäure-diäthylester (BACHÉR, J. pr. [2] 120, 307). Technisches Benzyliden-chlorid liefert beim Erhitzen mit 2 Mol Phenylhydrazin in Alkohol überwiegend die gewöhnliche  $\alpha$ -Form, daneben die  $\gamma$ -Form des Benzaldehydphenylhydrazons und wenig 1.3.4.6-Tetra-

phenyl-1.4-dihydro-1.2.4.5-tetrazin (Bodforss, B. 59, 668).
Physiologisches Verhalten: H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 73. Giftwirkung auf Insektenlarven: Tattersfield,

Roberts, C. 1921 I, 232.

2.3.4-Trichlor-toluol  $C_7H_5Cl_3$ , s. nebenstehende Formel (H 298). B. Neben 2.4.5-Trichlor-toluol bei allmählicher Einw. der berechneten Menge Sulfurylchlorid auf Toluol in Gegenwart von Aluminiumchlorid und wenig Dischwefeldichlorid bei 70° (Silberrad, Soc. 127, 2681). — F: 41°. — Liefert bei weiterer Einw. von Sulfurylchlorid in Gegenwart von Aluminiumchlorid und wenig Dischwefeldichlorid eso-Pentachlor-toluol und ein Gemenge isomerer Tetrachlortoluole.

CH<sub>3</sub>

2.4.5-Trichlor-toluol C<sub>7</sub>H<sub>5</sub>Cl<sub>3</sub>, s. nebenstehende Formel (H 299; E I 152). B. Neben 2.3.4-Trichlor-toluol bei allmählicher Einw. der berechneten Menge Sulfurylchlorid auf Toluol in Gegenwart von Aluminiumchlorid und wenig Dischwefeldichlorid bei 70° (Silberrad, Soc. 127, 2681). — Nadeln oder Blättchen Cl (aus Alkohol). F: 82,4° (korr.). — Liefert bei weiterer Einw. von ca. 1 Mol Sulfurylchlorid in Gegenwart von Aluminiumchlorid und wenig Dischwefeldichlorid 2.3.4.5-Tetrachlor-toluol, eso-Pentachlor-toluol und geringe Mengen 2.3.4.6-Tetrachlor-toluol(?).

2.4.6-Trichlor-toluol C<sub>7</sub>H<sub>5</sub>Cl<sub>3</sub>, s. nebenstehende Formel (H 299). B. Aus 6-Chlor-2.4-diamino-toluol nach Sandmeyer (Morgan, Drew, Soc. 117, 786).

4. $\omega$ . $\omega$ -Trichlor-toluol, 4-Chlor-benzylidenchlorid  $C_7H_5Cl_3=C_6H_4Cl$ -CHCl<sub>2</sub> (H 300). B. Beim Chlorieren von 4-Chlor-toluol in Gegenwart von

Phosphorpentachlorid bei 160° (Shoesmith, Slater, Soc. 1926, 218). Beim Erhitzen von p-Toluolsulfochlorid mit Thionylchlorid im Rohr auf 200°, neben anderen Produkten (Pollak, Rudich, M. 43, 216). — Kp22: 127—132° (P., R.). — Liefert beim Erhitzen mit Wasser im Rohr auf 200° 4-Chlor-benzoesäure (P., R.).

Rohr auf 200° 4-Chlor-benzoesäure (P., R.).

κα.ω.ω-Trichlor-toluol, Benzotrichlorid C<sub>7</sub>H<sub>5</sub>Cl<sub>3</sub> = C<sub>6</sub>H<sub>5</sub>·CCl<sub>3</sub> (H 300; E I 152). B. Bei Einw. eines raschen Chlorstroms auf siedendes Toluol in Gegenwart von 2% Phosphortrichlorid (Swarts, Bl. Soc. chim. Belg. 31, 376; C. 1923 III, 299). — E: —4,75° (Sw.). Der Erstarrungspunkt wird durch Luftfeuchtigkeit stark erniedrigt (Sw.). Kp<sub>761</sub>: 220,7°; Kp<sub>23</sub>: 110,7° (Sw.); Kp<sub>760</sub>: 220,9° (Lecat, R. 47, 14). D<sup>15</sup>: 1,3775 (Sw.). Viscosität bei 10°: 0,0307 g/cm sec, bei 17°: 0,0255 g/cm sec (Dummer, Z. anorg. Ch. 109 [1919], 49); Viscosität bei 20°: Vorländer, Walter, Ph. Ch. 118, 16. Ramanspektrum: Petrikaln, Ph. Ch. [B] 3, 362; P., Hochberg, Ph. Ch. [B] 4, 303. Benzotrichlorid bildet azeotrope Gemische mit 1.4-Dibrom-benzol (Kp<sub>760</sub>: 219,6°; 28 Gew.-% Benzotrichlorid), mit Nitrobenzol (Kp<sub>760</sub>: 210,72°; ca. 1,5 Gew.-% Benzotrichlorid) (L., R. 47, 14, 17), mit 2-Nitro-toluol (Kp<sub>760</sub>: 219,55°; 75,5 Gew.-% Benzotrichlorid) und mit Methylsalicylat (Kp<sub>760</sub>: 220,75°; ca. 97 Gew.-% Benzotrichlorid) (L., Ann. Soc. scient. Bruxelles 48 I [1928], 16, 116). Diffusion und Viscosität 10% iger Lösungen in Äthylacetat und Äthylbenzoat gegen die reinen Lösungsmittel bei ca. 18°: D. Brechungsindices 10% iger Lösungen in Athylacetat und Äthylbenzoat bei 20°: D.

Zum Verhalten bei der Nitrierung mit Salpetersäure (D: 1,52) und Acetanhydrid vgl. Flürscheim, Holmes, Soc. 1928, 1613. Gibt beim Erwärmen mit 1 Mol Wasser in Gegenwart geringer Mengen Eisenchlorid Benzoylchlorid (BASF, D. R. P. 331696; C. 1921 II. 558; Frdl. 13, 272). Geschwindigkeit der Umsetzung mit Wasser, Kaliumhydroxyd, Silbernitrat und Piperidin in Alkohol: Реткенко-Квітесненко, Оротгкі, В. 59, 2136; Ж. 59, 316; mit Pyridin und Piperidin in Alkohol und Benzol sowie mit kolloidalem Silber in 80 %igem Alkohol: P.K., B. 61, 846; 3K. 61, 29. Liefert beim Erhitzen mit Benzol in Gegenwart von Chrompulver Triphenylchlormethan (Chakrabarty, Dutt, J. indian chem. Soc. 5, 516; C. 1929 I, 501). Gibt mit dem Reaktionsprodukt aus Benzol, Quecksilber(II)-chlorid und wenig Alu-501). Gibt mit dem Keaktionsprodukt aus Benzol, Quecksilber(II)-chlorid und wenig Aluminium 9.9.10.10-Tetraphenyl-dihydroanthracen (Râx, Soc. 117, 1339). Durch Erwärmen von Benzotrichlorid mit 2 Mol Phenol nach Doebner, A. 217, 227 und folgende Wasserdampfbehandlung erhält man außer Benzaurin noch 4-Oxy-benzophenon (R. Meyer, Gerloff, B. 56, 102). Gibt beim Erwärmen mit 1 Mol Methylphenylsulfid in Gegenwart von wasserfreiem Zinkchlorid auf dem Wasserbad und nachfolgenden Kochen mit Sodalösung 4-Methylmercapto-benzophenon und wenig 4.4'-Bis-methylmercapto-triphenylcarbinol, mit 2 Mol Methylphenylsulfid nur 4.4'-Bis-methylmercapto-triphenylcarbinol, mit 2 Mol Methylphenylsulfid nur 4.4'-Bis-methylmercapto-triphenylcarbinol (Brand, Vogt, J. pr. [2] 107, 388, 389). Liefert bei der Kondensation mit 2 Mol o-Kresol (Brand, Vogt, J. pr. [2] 107, 388, 389). Liefert bei der Kondensation mit 2 Mol o-Kresol (Brand, Kochen mit Wasser chinoides o-Kresolbenzein (Syst. Nr. 588) und wenig und folgenden Kochen mit Wasser chinoides o-Kresolbenzein (Syst. Nr. 588) und wenig 4-Oxy-3-methyl-benzophenon (Doebner, Schroeter, A. 257 [1890], 68; Orndorff, McNulty, Am. Soc. 49, 992); bei der Kondensation mit 2 Mol Thymol in Gegenwart von Zinn(IV)-chlorid erhält man in analoger Weise chinoides Thymolbenzein (Syst. Nr. 588) und wenig 4-Oxy-2-methyl-5-isopropyl-benzophenon (O., Lacey, Am. Soc. 49, 820). Gibt mit 8-Chlor-naphthol-(1) in konz. Schwefelsäure bei gewöhnlicher Temperatur 8-Chlor-4-benzoyl-naphthol-(1); reagiert mit  $\beta$ -Naphthol analog unter Bildung von 1-Benzoyl-naphthol-(2) (Ges. f. chem. Ind. Basel, D. R. P. 378908; C. 1923 IV, 594; Frdl. 14, 470). Liefert bei der Kondensation mit 2 Mol Pyrogallol auf dem Wasserbad und folgenden Kochen mit Wasser chinoides Pyrogallolbenzein (Syst. Nr. 2560) und wenig 2.3.4-Trioxy-benzophenon (Doebner, Förster, A. 257 [1890], 61; Orndorff, Wang, Am. Soc. 47, 290; 49, 1284). Liefert beim Erhitzen mit Chloressigsäure ohne Katalysator auf 100-1200 oder in Gegenwart von Zinkchlorid auf 80-90° Chloracetylchlorid und Benzoylchlorid (RABCEWICZ-ZUBKOWSKI, Roczniki Chem. 9, 526; C. 1929 II, 2766). Gibt mit 1-Oxy-naphthoesäure-(2) bei 100—120° 1-Oxy-4-benzoyl-naphthoesäure-(2), mit 3-Oxy-naphthoesäure-(2) in konz. Schwefelsäure bei Zimmertemperatur 3-Oxy-4-benzoyl-naphthoesäure-(2), mit Naphthol-(1)sulfonsäure-(2) unter gleichen Bedingungen 4-Benzoyl-naphthol-(1)-sulfonsäure-(2) (Ges. f. chem. Ind. Basel). Liefert bei der Einw. auf Phenylhydrazin in siedendem Alkohol Formazylbenzol (Syst. Nr. 2092) und geringe Mengen gelbroter Nadeln vom Schmelzpunkt 179—180°, in kaltem Alkohol bei Gegenwart von wenig Kupferpulver Benzaldehydphenylhydrazon (Bodforss, B. 59, 670). Verbindet sich mit Benzaldehydphenylhydrazon zu einer violetten krystallinen Additionsverbindung vom Schmelzpunkt 65—67°, die an der Luft oder im Vakuum Chlorwasserstoff abspaltet und in ein grünes, in Alkohol lösliches Harz übergeht (RASTELLI, G. 54, 965).

Physiologisches Verhalten: H. STAUB in J. HOUBEN, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 73.

2.3.4.5-Tetrachlor-toluol C<sub>7</sub>H<sub>4</sub>Cl<sub>4</sub>, Formel I auf S. 234 (H 302). B. Neben geringen Mengen 2.3.4.6-Tetrachlor-toluol und eso-Pentachlor-toluol beim Erwärmen von 2.4.5-Tri-

chlor-toluol mit 1 Mol Sulfurylchlorid bei Gegenwart von Aluminiumchlorid und wenig Dischwefeldichlorid (SILBERRAD, Soc. 127, 2682). — Nadeln (aus verd. Alkohol). F: 98,1° (korr.).

- 2.3.4.6-Tetrachlor-toluol C,H<sub>4</sub>Cl<sub>4</sub>, Formel II (H 302; E I 153). B. In geringer Menge neben 2.3.4.5-Tetrachlor-toluol und eso-Pentachlor-toluol beim Erwärmen von 2.4.5-Trichlor-toluol mit 1 Mol Sulfurylchlorid bei Gegenwart von Aluminiumchlorid und wenig Dischwefeldichlorid (SILBERRAD, Soc. 127, 2682). Zur Nitrierung nach Cohen, Dakin (Soc. 85, 1280) vgl. S., Soc. 127, 2683.
- 2.5. $\omega$ . $\omega$ -Tetrachlor-toluol, 2.5-Dichlor-benzylidenchlorid  $C_7H_4Cl_4$ , Formel III (H 302). B. Beim Einleiten von Chlor in siedendes 2.5-Dichlor-toluol bis zur theoretischen Gewichtszunahme (DE CRAUW, R. 50, 773). Krystalle (aus Chloroform). F: 42°. Liefert bei längerem Erhitzen mit Calciumcarbonat und Wasser 2.5-Dichlor-benzaldehyd.

2. $\omega$ . $\omega$ -Tetrachlor-toluol, 2-Chlor-benzotrichlorid  $C_7H_4Cl_4=C_6H_4Cl\cdot CCl_3$  (H 302; E I 153). B. Neben anderen Produkten durch Erwärmen von Salicylsäurechlorid mit Phosphorpentachlorid in Benzol auf 80° unter Ausschluß von Feuchtigkeit (Anschütz, A. 454, 99). Durch mehrtägiges Erhitzen von 2-Chlor-benzoesäure oder 2-Chlor-benzoylchlorid mit Phosphorpentachlorid im Rohr auf 200° (A.). — F: 30°. Kp: 260°; Kp<sub>13</sub>: 129,5°.

- 2.3.4.5.6-Pentachlor-toluol, eso-Pentachlor-toluol  $C_7H_3Cl_5 = C_6Cl_5 \cdot CH_3$  (H 303; E I 153). B. Beim Chlorieren von Toluol, 2.3.4-Trichlor-toluol oder 2.4.5-Trichlor-toluol mit Sulfurylchlorid in Gegenwart von Aluminiumchlorid und wenig Dischwefeldichlorid, zuletzt auf dem Wasserbad (Silberrad, Soc. 127, 2682. 2683). Beim Aufbewahren von 3.4.5-Trichlor-benzylidenchlorid(?) (Riess, Berndt, Hitschmann, M. 50, 334). Entsteht wahrscheinlich neben 2.5- und 2.6-Dichlor-toluol-sulfochlorid-(4) beim Einleiten von Chlor in geschmolzenes 2-Chlor-toluol-sulfochlorid-(4) bei Gegenwart von Antimontrichlorid bei 65—70° (Davies, Soc. 119, 871). Nadeln (aus Benzol oder Petroläther). F: 218° (kort.) (D.; R., B., H.), 217,5° (unkort.) (S.). Löst sich bei 17° in 22 Raumteilen, bei 87° in 3,4 Raumteilen Toluol (S.). Liefert bei 8-stdg. Erhitzen mit Sulfurylchlorid und wenig Dischwefeldichlorid bei Gegenwart von Aluminiumchlorid Krystalle vom Schmelzpunkt 272—274° (Silberrad, Soc. 127, 2683).
- 3.4.5. $\omega$ . $\omega$ -Pentachlor-toluol(?), 3.4.5-Trichlor-benzylidenchlorid(?)  $C_7H_3Cl_5$ , Formel IV. B. Durch Erhitzen von p-Kresol-disulfodichlorid-(2.6) (OH = 1) mit überschüssigem Phosphorpentachlorid auf ca. 130° (Riess, Berndt, Hitschmann, M. 50, 333). Nadeln (aus Petroläther). F: 196°. Lagert sich beim Aufbewahren in eso-Pentachlortoluol um. Wird beim Kochen mit 2n-Kalilauge oder beim Erhitzen mit 3%iger Permanganat-Lösung nicht verändert.
- 2.4.ω.ω.ω Pentachlor toluol, 2.4 Dichlor benzotrichlorid C<sub>7</sub>H<sub>3</sub>Cl<sub>5</sub>, Formel V (E I 153). Liefert beim Verseifen mit 95% iger Schwefelsäure und nachfolgenden Behandeln mit 50% iger Nitriersäure bei 10° 4.6-Dichlor-3-nitro-benzoesäure (VILLIGER, B. 61, 2598).
- 2.3.4.5.6. $\omega$ -Hexachlor-toluol, Pentachlorbenzylchlorid  $C_7H_2Cl_6=C_6Cl_5\cdot CH_2Cl$  (H 303; E I 153). B. Neben anderen Produkten bei längerem Erhitzen von 2.4.6-Trinitrotoluol mit Phosphorpentachlorid im Rohr auf 150—160° in Gegenwart von etwas Jod (Ganguly, B. 58, 710). [Trewendt]

# c) Brom-Derivate.

2-Brom-toluol, o-Brom-toluol C<sub>7</sub>H<sub>7</sub>Br = C<sub>6</sub>H<sub>4</sub>Br· CH<sub>3</sub> (H 304, E I 153). B. 2-Brom-toluol entsteht neben 4-Brom-toluol und Pentabrombenzoesäure beim Bromieren von Toluol in Gegenwart von rauchender Schwefelsäure oder von rauchender Salpetersäure und Nitrosylschwefelsäure bei 100° (Varma, Narayan, Quart. J. indian chem. Soc. 4, 284, 286, 287; C. 1928 I, 489). — Zur Darstellung aus o-Toluoldiazoniumbromid nach Org. Synth. 9, S. 22 (E I 153) vgl. Bigelow, Am. Soc. 44, 2012; Org. Synth. Coll. Vol. I [1932], S. 130; Kenner, Wilson, Soc. 1927, 1110; Weiss, Korczyn, M. 45, 209; Neogi, Mitra, Soc. 1928, 1332.

H 304, Z. 18 v. u. statt "G. 4, 334" lies "G. 4, 345".

E:  $-28,1^{\circ} \pm 0,05^{\circ}$  (Timmermans, Bl. Soc. chim. Belg. 30, 67; C. 1921 III, 288). Kp<sub>780</sub>: 181,75°  $\pm 0,1^{\circ}$  (korr.) (Ti.; Lecat, Ann. Soc. scient. Bruxelles 45 I [1926], 172), 181,4° (L., Ann. Soc. scient. Bruxelles 45 I [1926], 288; R. 45, 622). D<sup>a.</sup>: 1,344 (Kerr. Phil. Mag. [7] 3, 332; C. 1927 II, 388). Parachor: Mumford, Phillips, Soc. 1929, 2118. Dielektr.-Konst. bei 58°: 4,28 ( $\lambda = 95$  m) (Kerr). — Siedepunkte und Zusammensetzung binärer azeotroper Gemische mit 2-Brom-toluol s. Tabelle S. 235. Adsorption von 2-Brom-toluol

# Azeotrope, 2-Brom-toluol enthaltende Gemische.

| Komponente                   | Kp760  | Gehalt an<br>2-Brom-toluol<br>in Gew% | Komponente                      | Kp <sub>760</sub> | Gehalt an<br>2-Brom-toluol<br>in Gew% |
|------------------------------|--------|---------------------------------------|---------------------------------|-------------------|---------------------------------------|
| α-Dichlorhydrin 1) .         | 170,5  | 29                                    | Buttersäure 5)                  | 161.2             | 29                                    |
| Terpinen 6)                  | 181,0  |                                       | Isobuttersäure 5) .             | 153,9             | 15                                    |
| inakt. Octanol-(2) 2).       | 177,0  | 48                                    | Isovaleriansäure 5).            | 172,1             | 60,5                                  |
| Phenol <sup>8</sup> )        | 174,35 | 60                                    | n-Capronsäure <sup>5</sup> )    | 180,8             | 94                                    |
| o-Kresol 8)                  | 180,3  | 81                                    | Oxalsäuredimethyl-              |                   |                                       |
| Benzylalkohol ?)             | 181,25 | 93(?)                                 | ester 6)                        | 164,1             | 2                                     |
| Äthylenglykol <sup>3</sup> ) | 166,8  | 75                                    | Malonsäuredime-                 |                   | 1                                     |
| Acetamid 4)                  | 175    | 88,5                                  | thylester 7)                    | 174,45            | 55,5                                  |
| Trichloressigsäure 4)        | 180,0  | ca. 82                                | Acetessigester <sup>2</sup> ) . | 174,7             | 49                                    |

1) LECAT, R. 46, 243. — 2) L., R. 45, 622. — 2) L., Ann. Soc. scient. Bruxelles 45 I [1926], 172. — 4) L., Ann. Soc. scient. Bruxelles 47 I [1927], 154. — 5) L., Ann. Soc. scient. Bruxelles 49 [1929], 34, 35, 36. — 6) L., Ann. Soc. scient. Bruxelles 48 I [1928], 115, 120. — 7) L., Ann. Soc. scient. Bruxelles 45 I [1926], 288, 289. — 6) L., Ann. Soc. scient. Bruxelles 49, 134, 135.

Dampf an Tierkohle: Alexejewski, 3K. 55, 417; C. 1925 II, 642. 2-Brom-toluol breitet sich bei 20° nicht auf einer Wasser-Oberfläche aus (Harkins, Feldman, Am. Soc. 44, 2671, 2673). Grenzflächenspannung gegen Wasser: Ha., Fe.

Bei der Einw. von Chromtrioxyd in Eisessig auf ein Gemisch von 2-Brom-toluol, Acetanhydrid, Eisessig und konz. Schwefelsäure in der Kälte bildet sich 2-Brom-benzylidendiacetat (Brady, Cosson, Roper, Soc. 127, 2429). Bei der Oxydation von 2-Brom-toluol mit Luft in Gegenwart von Zinnvanadat bei 290° entsteht 2-Brom-benzoesäure (Maxted, Bischop). Dunsby, Soc. 1928, 1441). Einfluß von Alkali, der Menge des Oxydationsmittels und der Verdünnung auf die Oxydation von 2-Brom-toluol zu 2-Brom-benzoesaure mit Permanganat-Lösung: Bigelow, Am. Soc. 44, 2015, 2016, 2018. 2-Brom-toluol gibt bei der Reduktion mit Hydrazinhydrat in Gegenwart von Palladium in alkoh. Kalilauge Toluol (Busch, Schmidt, B. 62, 2617). 2-Brom-toluol liefert mit Brom bei 135° (Kenner, Wilson, Soc. 1927, 1110) oder bei Siedetemperatur (Jackson, B. 9 [1876], 933; Shoesmith, Slater, Soc. 1926, 219) oder im ultravioletten Licht (Supniewski, Adams, Am. Soc. 48, 516) 2-Brom-benzylbromid. Bei 42-stdg. Erhitzen von 2-Brom-toluol mit 1n-alkoh. Kalilauge auf 151° wurden 2,4% des Broms abgespalten (Clark, Crozier, Trans. roy. Soc. Canada [3] 19 III, 155; C. 1926 II, 20). Geschwindigkeit der Halogenabspaltung durch Piperidin bei 16-18°: Tronow, Ж. 58, 1289; C. 1927 II, 1145. Konkurrierende Einw. von Magnesium auf 2-Brom-toluol und 2-Jod-toluol in Ather: Rudd, Turner, Soc. 1928, 688. Bei der Einw. von Acetylchlorid auf 2-Brom-toluol in Schwefelkohlenstoff in Gegenwart von Aluminiumchlorid entsteht ein Gemisch von Bromacetyltoluolen (MAYER, Mitarb., B. 55, 2052; vgl. a. BORSCHE, HERBERT, A. 546 [1941], 282). Die Reaktion mit Benzoylchlorid in Schwefelkohlenstoff bei Gegenwart von Aluminiumchlorid führt zu einem Gemisch von 2-Brom-4-methyl-benzophenon, 3-Brom-4-methyl-benzophenon und anderen Ketonen (MAYER, Mitarb., B. 55, 2053; DE DIESBACH, BULLIARD, Helv. 7, 624). Reaktion mit 2-Brom-benzoylchlorid: DE DI., Bu. 2-Brom-toluol liefert beim Erhitzen mit Kupfer(I)-rhodanid in Pyridin im Rohr auf 195—210° o-Tolunitril, Di-o-tolyl-sulfid und andere Produkte (Rosenmund, Harms, B. 53, 2235). Beim Erhitzen von 2-Brom-toluol mit 2-Amino-benzaldehyd, Kupferpulver und wasserfreier Soda in Nitrobenzol auf 220° und Behandeln des Reaktionsprodukts mit konz. Schwefelsäure im Wasserbad erhält man 4-Methyl-acridin (Jensen, Friedrich, Am. Soc. 49, 1051). Bei 4-tägiger Einw. von 2-Brom-toluol auf Lithiumbutyl in Petroläther entsteht Toluol (MARVEL, HAGER, COFFMAN, Am. Soc. 49, 2327).

Physiologisches Verhalten von 2-Brom-toluol: H. STAUB in J. HOUBEN, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 76.

3-Brom-toluol, m-Brom-toluol C<sub>7</sub>H<sub>7</sub>Br = C<sub>6</sub>H<sub>4</sub>Br·CH<sub>3</sub> (H 305; E I 154). B. Entsteht als Nebenprodukt bei der Umsetzung von diazotiertem 3-Brom-4-amino-toluol oder 5-Brom-2-amino-toluol mit Benzol in Gegenwart von Natronlauge (Gomberg, Pernert, Am. Soc. 48, 1380). — Zur Darstellung aus diazotiertem 3-Brom-4-amino-toluol vgl. Bigelow, Am. Soc. 44, 2013; Bi., Johnson, Sandborn, Org. Synth. Coll. Vol. I [1932], S. 128. — Kp: 183—184° (korr.) (Bi.). D<sup>56</sup>/<sub>1</sub>: 1,309 (Kerr, Phil. Mag. [7] 3, 332; C. 1927 II, 388). Dielektr.-Konst. bei 58°: 5,36 (λ = 95 m) (K.). — Beim Durchleiten von Luft durch ein Gemisch berechneter Mengen von siedendem 3-Brom-toluol und Brom entsteht 3-Brom-benzylbromid (Shoesmith, Slater, Soc. 1926, 219). Einfluß von Alkali, der Menge des

Oxydationsmittels und der Verdünnung auf die Oxydation von 3-Brom-toluol zu 3-Brom-benzoesäure mit Permanganat-Lösung: BI., Am. Soc. 44, 2015, 2017, 2018. Bei 42-stdg. Erhitzen von 3-Brom-toluol mit 1n-alkoh. Kalilauge auf 1519 werden 2,1% des Broms abgespalten (CLARK, CROZIER, Trans. roy. Soc. Canada [3] 19 III, 155; C. 1926 II, 20). Beim Behandeln von 3-Brom-toluol mit einem Gemisch von roter rauchender Salpetersäure und konz. Schwefelsäure erhält man 5-Brom-2.4-dinitro-toluol (LINDEMANN, PABST, A. 462, 39). Konkurrierende Einw. von Magnesium auf 3-Brom-toluol und 3-Jod-toluol in Äther: RUDD, TURNER, Soc. 1928, 688. Bei 4-tägiger Einw. von 3-Brom-toluol auf Lithiumbutyl in Petroläther entsteht Toluol (MARVEL, HAGER, COFFMAN, Am. Soc. 49, 2327). — Physiologisches Verhalten von 3-Brom-toluol: H. STAUB in J. HOUBEN, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 76.

4-Brom-toluol, p-Brom-toluol C<sub>7</sub>H<sub>7</sub>Br = C<sub>6</sub>H<sub>4</sub>Br·CH<sub>3</sub> (H 305; E I 154). B. Neben 2-Brom-toluol und Pentabrombenzoesäure beim Erhitzen von 1 Mol Toluol mit <sup>1</sup>/<sub>2</sub> Mol Brom in Gegenwart von rauchender Salpetersäure und Nitrosylschwefelsäure (Varma, Narayan, Quart. J. indian chem. Soc. 4, 284, 286, 287; C. 1928 I, 489). 4-Brom-toluol entsteht neben wenig Toluol bei der Einw. von Kupferhydrid auf diazotiertes p-Toluidin in Bromwasserstoffsäure unter Eiskühlung (Neogi, Mitra, Soc. 1928, 1332). Neben Brombenzol bei der Reaktion zwischen 4-Brom-phenylmagnesiumbromid und Dimethylsulfat in Äther (Bert, C. r. 176, 840; Bl. [4] 37, 1259). Neben anderen Produkten bei der Einw. von Magnesium auf 4-Brom-benzylchlorid in Äther und Zersetzung der Magnesiumverbindung mit Wasser (Quelet, C. r. 184, 889; Bl. [4] 45, 81). Neben anderen Produkten bei der Umsetzung von Quecksilber-di-p-tolyl mit Brommalonsäure-diäthylester in siedendem Toluol (Whitmore, Thurman, Am. Soc. 51, 1499). — Zur Darstellung aus diazotiertem p-Toluidin vgl. Bert, C. r. 176, 842; Bl. [4] 37, 1259, 1260; Bigelow, Am. Soc. 44, 2013; Org. Synth. Coll. Vol. I [1932], S. 131. — 4-Brom-toluol läßt sich durch Krystallisation aus absol. Alkohol unter Kühlung mit Äther-Kohlendioxyd oder flüssiger Luft und nachfolgende Destillation von 2-Brom-toluol befreien (Krause, Pohland, B. 57, 543 Anm.). — F: 28° (Bert; Danilow, Ж. 58, 150; C. 1926 II, 2300), 27° (korr.) (Sugden, Soc. 125, 1175), 26° (Bl.). Kp<sub>70</sub>: 185,0° (Lecat, R. 46, 243; 47, 17); Kp: 184—185° (korr.) (Bl.); Kp<sub>70</sub>: 183—184° (korr.) (Bert); Kp<sub>71</sub>: 103—104°; Kp<sub>35</sub>: 82° (Da.). D<sup>38</sup>: 1,314 (Kerr, Phil. Mag. [7] 3, 332; C. 1927 II, 388). Oberflächenspannung zwischen 43° (32,20 dyn/cm) und 164° (20,31 dyn/cm): Su., Soc. 125, 1175. Parachor: Su., Soc. 125, 1182. Fluorescenz bei Bestrahlung mit Röntgenstrahlen: Newcomer, Am. Soc. 42, 2005. Dielektr.-Konst. bei 58°: 5,49 (λ = 95 m) (Kerr). Siedepunkte und Zusammensetzung binärer azeotroper Gemische mit 4-Brom-toluol s. in der untenstehenden Tabelle. 4-Brom-t

#### 4-Brom-toluol enthaltende binäre Azeotrope.

| Komponente                                                                                                               | Kp <sub>760</sub>                                                                     | Gehalt an<br>4-Broin-toluol<br>in Gew%                           | Komponente                                                                                                                                 | Kp760                                                           | Gehalt an<br>4-Brom-toluol<br>in Gew%  |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------|
| Hexachloräthan 1) . α-Dichlorhydrin 2) . Phenol 7) o-Kresol 7) m-Kresol 7) p-Kresol 7) Benzylalkohol 2) Athylenglykol 3) | ca. 183,5<br>172,8<br>176,2<br>182,8<br>184,8<br>184,8<br>ca. 184,5<br>169,2<br>178,0 | ca. 30<br>ca. 32<br>56<br>75<br>ca. 95<br>ca. 93<br>ca. 92<br>70 | Chloressigsäure 4). Buttersäure 5). Isovaleriansäure 6). Capronsäure 5). Malonsäuredimethylester 6). Acetessigester 3). Dimethylanilin 2). | 174,1<br>161,5<br>173,2<br>184,0<br>176,5<br>ca. 176,5<br>184,2 | 66<br>25<br>53<br>92<br>45<br>40<br>85 |

<sup>1)</sup> LECAT, Ann. Soc. scient. Bruxelles 47 I [1927], 25. — 2) L., Ann. Soc. scient. Bruxelles 47 I, 151, 154. — 3) L., R. 46, 243, 245. — 4) L., R. 47, 17. — 5) L., Ann. Soc. scient. Bruxelles 49 [1929], 22. — 6) L., Ann. Soc. scient. Bruxelles 48 I [1928], 116, 120. — 7) L., Ann. Soc. scient. Bruxelles 49 134, 135.

4-Brom-toluol gibt bei der Oxydation mit Luft in Gegenwart von Zinnvanadat bei ca. 300° etwas 4-Brom-benzoesäure (Maxted, Dunsby, Soc. 1928, 1441). Einfluß von Alkali, der Menge des Oxydationsmittels und der Verdünnung auf die Oxydation von 4-Brom-toluol zu 4-Brom-benzoesäure mit Permanganat-Lösung: Bigelow, Am. Soc. 44, 2015, 2017, 2018. Bei der elektrolytischen Oxydation von 4-Brom-toluol in 20%iger Salpetersäure bei 100° zwischen Platinelektroden wurden 4-Brom-benzoesäure, eine bei 216° schmelzende Verbindung (4.4'-Dibrom-2.2'-dimethyl-diphenyl?) und andere Produkte erhalten

(CONN, Lowy, Trans. am. electroch. Soc. 50 [1926], 335). 4-Brom-toluol liefert bei der Re-(CONN, LOWY, Trans. am. electroch. Soc. BO [1920], 353). 4-Brom-toluol heiert bei der Keduktion mit Hydrazinhydrat in Gegenwart von Palladium in alkoh. Kalilauge Toluol und 4.4'-Dimethyl-diphenyl (Busch, Schmidt, B. 62, 2617). Über die Ausbeute an 4-Brombenzylchlorid bei der Einw. von Chlor auf siedendes 4-Brom-toluol nach Böeseken (R. 23 [1904], 99) vgl. Quelet, Bl. [4] 41, 329. 4-Brom-toluol gibt mit Brom im Sonnenlicht (Schramm, B. 17 [1884], 2922; 18 [1885], 350) oder im Quecksilberdampflicht (Supniewski, Adams, Am. Soc. 48, 516) oder bei Siedetemperatur (Jackson, B. 9 [1876], 331; Shoesmith, States and Schramm, Soc. 1922 (19) 4-Brom-henzullpromid. 4-Brom-toluol verliert bei 2-4-stdg. Frans. SLATER, Soc. 1926, 219) 4-Brom-benzylbromid. 4-Brom-toluol verliert bei 2-4-stdg. Erhitzen mit methylalkoholisch-wäßriger Natronlauge im Rohr auf 170° 4,35% Brom (K. H. MEYER, B. 54, 2273; Priv.-Mitt.). Geschwindigkeit der Halogenabspaltung beim Behandeln von 4-Brom-toluol mit Piperidin bei 16—18°: Tronow, Ж. 58, 1289; С. 1927 II, 1145. Konkurrierende Einw, von Magnesium auf 4-Brom-toluol und 4-Jod-toluol in Äther: Rudd, TURNER, Soc. 1928, 688. Fügt man zu dem Reaktionsprodukt aus Benzaldehyd und Natrium in absol. Ather 4-Brom-toluol, so erhält man Diphenyl-p-tolyl-carbinol und Benzylalkohol In absol. Ather 4-Brom-toluol, so ernait man Dipinenyl-p-tolyl-carbinol und Benzylaikonol (BLICKE, Am. Soc. 46, 2570). 4-Brom-toluol liefert mit Acetylchlorid in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff ein Gemisch von Bromacetyltoluolen (MAYER, Mitarb., B. 55, 2052; vgl. Borsche, Herbert, A. 546 [1941], 280, 285). Analog verläuft die Reaktion mit Benzoylchlorid in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff (MAYER, Mitarb.). 4-Brom-toluol liefert beim Erhitzen mit Kupfer(I)-rhodanid in Pyridin und wenig Wasser im Rohr auf 220—250° und anschließenden Destillieren im Vakuum p-Tolunitril, Di-p-tolyl-sulfid und andere Produkte (Rosenmund, Harms, B. 53, 2834). Erhitzt man 4-Brom-toluol mit 2-Amino-benzaldehyd Kupfernulver und wasser. 2234). Erhitzt man 4-Brom-toluol mit 2-Amino-benzaldehyd, Kupferpulver und wasserfreier Soda in Nitrobenzol auf 220° und behandelt das Reaktionsprodukt mit konz. Schwefelsäure auf dem Wasserbad, so erhält man 2-Methyl-acridin (JENSEN, FRIEDRICH, Am. Soc. 49, 1051). Bei 30-tägiger Einw. von 4-Brom-toluol auf Lithiumbutyl in Petroläther wurde 4-Butyl-toluol erhalten (Marvel, Hager, Coffman, Am. Soc. 49, 2327).
Physiologisches Verhalten: H. Staub in J. Houben, Fortschritte der Heilstoffchemie,

2. Abt. Bd. II [Berlin-Leipzig 1932], S. 76.

ω-Brom-toluol, Benzylbromid C<sub>7</sub>H<sub>7</sub>Br = C<sub>6</sub>H<sub>5</sub>·CH<sub>2</sub>Br (H 306; E I 155). B. Bei der Einw. von Brom auf Dibenzyläther (Lachman, Am. Soc. 45, 2359). Bei der Einw. von Brom auf Trimethylbenzylstannan in Äther bei Kühlung mit flüssigem Ammoniak (Kraus, BULLARD, Am. Soc. 48, 2135). Neben 1.4-Bis-brommethyl-benzol bei der Einw. von Bisbrommethyl-äther auf Benzol in Gegenwart von wasserfreiem Zinkchlorid bei gewöhnlicher Temperatur (Stephen, Short, Gladding, Soc. 117, 520). Bei längerem Kochen von Phenylmagnesiumbromid mit Paraformaldehyd in Ather (Marshall, Soc. 127, 2188). — Darst. durch Bromierung von Toluol im Licht: Zelinsky, Schering-Kahlbaum A. G., D. R. P. 478084; C. 1929 II, 1216; Frdl. 16, 335; vgl. v. Konek, Loczka, B. 57, 679. Kp<sub>760</sub>: 201° (Herbst. Koll. Beih. 23, 334; С. 1926 II, 2544), 197—198° (Flürscheim, Holmes, Soc. 1928, 1613);

Kp<sub>15</sub>: 114° (St., Sh., Gl.). Dampfdrucke bei verschiedenen Temperaturen: H.

Benzylbromid wird von Wasser bei gewöhnlicher Temperatur allmählich zersetzt (Rona, Z. exp. Med. 13, 28; C. 1921 III, 374); bei 1¹/₂-stdg. Erhitzen mit Wasser auf 100° werden 38% des Broms abgespalten (v. Braun, Moldaenke, B. 56, 2169). Geschwindigkeit der Hydrolyse durch wäßr. Alkohol bei 25°: Shoesmith, Rubli, Soc. 1927, 3099, 3105; bei 60°: SH., Sc., Soc. 125, 2281; 1926, 221. Geschwindigkeit der Halogenabspaltung durch Natriummethylat in Methanol, Pyridin und Pyridin in Gegenwart anderer Verbindungen bei 18°: Tronow, Gerschewitsch, ж. 60, 171, 175; С. 1928 II, 771. Verhalten bei der Nitrierung mit Salpetersäure (D: 1,52) für sich und in Gegenwart von Acetanhydrid: Flürschem. HOLMES, Soc. 1928, 1611, 1613, 1614. Benzylbromid wird durch Jodwasserstoff in Eisessig-HOLMES, Soc. 1928, 1611, 1613, 1614. Benzylbromid wird durch Jodwasserstoff in Eisessig-Lösung bei 25° in Benzyljodid übergeführt (Sh., Sc., Soc. 125, 2281). Geschwindigkeit der Reaktion mit Jodwasserstoffsäure (D: 1,68) in Eisessig bei 101°: Sh., Sc., Soc. 1926, 221. Benzylbromid liefert mit Benzol beim Kochen mit Zinn(IV)-chlorid Diphenylmethan (Pfeiffer, Eister, J. pr. [2] 124, 182). Korrosion von Metallen durch Benzylbromid-Dämpfe bei Zimmertemperatur an trockener sowie an feuchter Luft: E. Alexejewski. N. Alexejew, Z. prikl. Chim. 1, 195; C. 1929 II, 793. Geschwindigkeit der Anlagerung an Triäthylamin bzw. Pyridin in verschiedenen Lösungsmitteln bei 29° und 45°: Muchin. Ginsburg, Moissejewa, Ukr. chemič. Z. 2, 136, 151; C. 1926 II, 2376. Benzylbromid gibt bei der Einw. auf Methylmagnesiumjodid in Ather Athylbenzol, außerdem entstehen Dibenzyl und Athan (Fuson. Am. Soc. 48, 2686, 2688). und Äthan (Fuson, Am. Soc. 48, 2686, 2688).

Über physiologisches Verhalten von Benzylbromid vgl. H. STAUB in J. HOUBEN, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 77; Dufraisse, Bon-GRAND, C. r. 171, 819; Flury, Z. exp. Med. 13, 567; C. 1921 III, 565. Absorption von Benzylbromid durch verschiedene Bodenproben: Du Bellay, Houdard, C. r. 170, 236. Verwendung als Gaskampfstoff: J. MEYER, Der Gaskampf und die chemischen Kampfstoffe, 3. Aufl. [Leipzig 1938], S. 48, 294; M. Sartori, Die Chemie der Kampfstoffe, 2. Aufl.

[Braunschweig 1940], S. 139; A. M. PRENTISS, Chemicals in war [New York-London 1937], S. 135. Benzylbromid kann durch Soda und Schwefelleber enthaltende Seifenlösung unschädlich gemacht werden (Desgrez, Guillemard, Savès, C. r. 171, 1179; Des., G., Labat, C. r. 172, 342). Über Verwendung von Benzylbromid zur Herstellung von Kunstharz vgl. I. G. Farbenind., D. R. P. 444109; C. 1927 II, 750; Frdl. 15, 1177.

- 2-Fluor-ω-brom-toluol, 2-Fluor-benzylbromid C<sub>7</sub>H<sub>6</sub>BrF = C<sub>6</sub>H<sub>4</sub>F·CH<sub>2</sub>Br. B. Entsteht neben anderen Produkten bei der Einw. von Bromdampf auf siedendes 2-Fluor-toluol im Luftstrom (Shoesmith, Slater, Soc. 1926, 220). Kp<sub>15</sub>: 84—85°. Geschwindigkeit der Reaktion mit Jodwasserstoffsäure (D: 1,68) in Eisessig bei 101°: Sh., Sl. Geschwindigkeit der Hydrolyse in wäßr. Alkohol bei 60,5° und 76°: Sh., Sl.
- 3-Fluor- $\omega$ -brom-toluol, 3-Fluor-benzylbromid  $C_7H_6$ BrF =  $C_6H_4$ F· $CH_2$ Br. B. Analog der vorangehenden Verbindung (Shoesmith, Slater, Soc. 1926, 220).  $Kp_{12}$ : 77°. Geschwindigkeit der Reaktion mit Jodwasserstoffsäure (D: 1,680) in Eisessig bei 101°: Sh., Sl. Geschwindigkeit der Hydrolyse in wäßr. Alkohol bei 60,5° und 76°: Sh., Sl.
- 4-Fluor-ω-brom-toluol, 4-Fluor-benzylbromid C<sub>7</sub>H<sub>6</sub>BrF = C<sub>6</sub>H<sub>4</sub>F·CH<sub>2</sub>Br. B. Analog der vorangehenden Verbindung (Shoesmith, Slater, Soc. 1926, 220). Kp<sub>15</sub>: 85°. Geschwindigkeit der Reaktion mit Jodwasserstoffsäure (D: 1,680) in Eisessig bei 101°: Sh., Sl. Geschwindigkeit der Hydrolyse in wäßr. Alkohol bei 60,5° und 76°: Sh., Sl.
- ω-Chlor-2-brom-toluol, 2-Brom-benzylchlorid C<sub>7</sub>H<sub>6</sub>ClBr = C<sub>6</sub>H<sub>4</sub>Br·CH<sub>2</sub>Cl (E I 155). B. Durch Umsetzung von 2-Brom-benzylalkohol mit Thionylchlorid anfangs bei gewöhnlicher Temperatur, zum Schluß im Wasserbad (Franzen, Rosenberg, J. pr. [2] 101, 335). Neben 4-Brom-benzylchlorid durch Sättigen eines Gemisches von Brombenzol, Paraformaldehyd und Zinn(IV)-chlorid mit Chlorwasserstoff; die Trennung der Isomeren erfolgt durch Abkühlen auf —15° (Quelet, Bl. [4] 41, 331). Kp<sub>18</sub>: 110—111° (Conant, Kirner, Hussey, Am. Soc. 47, 499); Kp<sub>17</sub>: 112—117° (F., R.). Geschwindigkeit der Hydrolyse in wäßr. Alkohol bei 30° und 83,4°: Olivier, R. 41, 649, 650; 42, 775; in wäßr. Aceton bei 60°: O., R. 48, 234. Geschwindigkeit der Umsetzung mit Kaliumjodid in Aceton bei —10° und 0°: C., K., H. Geschwindigkeit der Reaktion mit Natriumäthylat: F., R.
- ω-Chlor-3-brom-toluol, 3-Brom-benzylchlorid  $C_7H_6ClBr = C_6H_4Br \cdot CH_2Cl$ . B. Aus 3-Brom-benzylalkohol und Thionylchlorid anfangs bei gewöhnlicher Temperatur, zum Schluß im Wasserbad (Franzen, Rosenberg, J. pr. [2] 101, 335). Nach Thymian riechende Krystalle. F: 22—23° (OLIVIER, R. 41, 649). Kp<sub>1s</sub>: 119° (F., R.). Geschwindigkeit der Hydrolyse in wäßr. Alkohol bei 30° und 83,4°: O., R. 41, 649, 650; vgl. a. O., R. 42, 775; in wäßr. Aceton bei 60°: O., R. 48, 235. Geschwindigkeit der Reaktion mit Natriumäthylat: F., R.
- ω-Chlor-4-brom-toluol, 4-Brom-benzylchlorid C<sub>7</sub>H<sub>6</sub>ClBr = C<sub>6</sub>H<sub>4</sub>Br·CH<sub>2</sub>Cl (H 307). B. Zur Bildung durch Chlorierung von 4-Brom-toluol nach Böeseken (R. 23 [1904], 99) vgl. Quelet, Bl. [4] 41, 329. 4-Brom-benzylchlorid entsteht neben 4-4'-Dibrom-diphenylmethan bei der Einw. von Bis-chlormethyl-äther auf Brombenzol in Gegenwart von Zinkchlorid-monohydrat (Stephen, Short, Gladding, Soc. 117, 523). Neben 2-Brom-benzylchlorid bei der Sättigung eines Gemischs von Brombenzol, Paraformaldehyd und Zinn(IV)-chlorid mit Chlorwasserstoff; die Trennung der Isomeren erfolgt durch Abkühlen auf —15° (Qu., Bl. [4] 41, 331). Neben Benzonitril beim Schmelzen von N.N-Bis-[4-brom-benzyl]-benzamid mit Phosphorpentachlorid und nachfolgenden Destillieren (v. Braun, Kühn, Weismantel, A. 449, 268, 271). F: 40° (St., Sh., Gl.; v. B., K., W.; Qu., Bl. [4] 41, 331), 38° (Olivier, R. 41, 649). Kp<sub>9</sub>: 110—111° (Conant, Kirner, Hussey, Am. Soc. 47, 499). Gibt bei der Oxydation mit Permanganat 4-Brom-benzoesäure (St., Sh., Gl.). Geschwindigkeit der Hydrolyse in wäßr. Alkohol bei 30° und 83,4°: O., R. 41, 649, 650; 42, 775; in wäßr. Aceton bei 60°: O., R. 48, 235. Geschwindigkeit der Umsetzung mit Kaliumjodid in Aceton bei —10° und 0°: C., Ki., H. Bei der Einw. von Magnesium in wasserfreiem Äther in Gegenwart von etwas Jod und Zersetzung des entstandenen 4-Brom-benzylmagnesiumchlorids mit Wasser erhält man neben Spuren von Toluol 4-Brom-toluol und 4.4'-Dibrom-dibenzyl (Quelet, C. r. C. r. 184, 888; Bl. [4] 45, 81).
- 2-Chlor-ω-brom-toluol, 2-Chlor-benzylbromid C<sub>7</sub>H<sub>6</sub>ClBr = C<sub>6</sub>H<sub>4</sub>Cl·CH<sub>2</sub>Br (E I 155). B. Durch Einw. von Bromwasserstoff auf 2-Chlor-benzylalkohol in Benzol (Shoesmith, Slater, Soc. 1926, 219). Neben anderen Produkten bei der Einw. von Bromcyan auf Dimethyl-[2-chlor-benzyl]-amin (v. Braun, Kühn, Weismantel, A. 449, 276). Kp<sub>18</sub>: 103° bis 104° (v. B., K., W.); Kp<sub>5</sub>: 102° (Sh., Sl.). Geschwindigkeit der Reaktion mit Jodwasserstoffsäure (D: 1,680) in Eisessig bei 101° und 110°: Sh., Sl. Geschwindigkeit der Hydrolyse in wäßr. Alkohol bei 76°: Sh., Sl. Reizt die Schleimhäute (v. B., K., W.).
- 3-Chlor- $\omega$ -brom-toluol, 3-Chlor-benzylbromid  $C_7H_6ClBr=C_6H_4Cl\cdot CH_2Br$ . B. Durch Erhitzen von 3-Chlor-toluol mit der berechneten Menge Brom (Oxford, Robinson, Soc. 1927, 2241). Entsteht aus 3-Chlor-benzylalkohol durch Einw. von Bromwasserstoff

·Br

·Br

·Br

·Br

CH<sub>3</sub>

Вr

CH<sub>3</sub>

 $CH_3$ 

CH<sub>2</sub>Cl Br

Вr

in Benzol (SHOESMITH, SLATER, Soc. 1926, 219) oder durch Einw. von Brom und rotem Phosphor (O., R.). — Öl. Kp<sub>24-25</sub>: 120—123°(O., R.); Kp<sub>10</sub>: 109°(Sh., Sl.). — Geschwindigkeit der Reaktion mit Jodwasserstoffsäure (D: 1,68) in Eisessig bei 101° und 110°: Sh., Sl. Geschwindigkeit der Hydrolyse in wäßr. Alkohol bei 76°: Sh., Sl.

**4-Chlor-\omega-brom-toluol, 4-Chlor-benzylbromid**  $C_7H_6ClBr = C_6H_4Cl \cdot CH_2Br$  (H 307). B. Durch Einw. von Bromwasserstoff auf 4-Chlor-benzylalkohol (Shoesmith, Slater, Soc. 1926, 219). Bei der Einw. von Bis-brommethyl-äther auf Chlorbenzol in Gegenwart von wasserfreiem Zinkchlorid (Stephen, Short, Gladding, Soc. 117, 524). — Nadeln (aus Alkohol). F: 51° (SHOE., SL.), 50° (Oxford, Robinson, Soc. 1927, 2241), 48° (St., Short, GL.). Gibt bei der Oxydation mit Permanganat 4-Chlor-benzoesäure (St., Short, GL.). Geschwindigkeit der Reduktion mit Jodwasserstoffsäure (D: 1,68) in Eisessig bei 1010 und 110°: SHOE., SL. Bei der Einw. von Jodwasserstoff in Eisessig auf 4-Chlor-benzylbromid bei 25° entsteht 4-Chlor-benzyljodid (Shoel, Sl.). Geschwindigkeit der Hydrolyse in wäßr. Alkohol bei 76°: Shor., Sl. CH<sub>3</sub>

2.3-Dibrom-toluol C<sub>7</sub>H<sub>6</sub>Br<sub>2</sub>, s. nebenstehende Formel (H 307; E I 155). B. Durch Reduktion von diazotiertem 5.6-Dibrom-2-amino-toluol mit Zinn(II)-chlorid in alkal. Lösung (Vecchiotti, Copertini, G. 59, 539). Prismen. F: 28°.

2.4-Dibrom-toluol C<sub>7</sub>H<sub>6</sub>Br<sub>2</sub>, s. nebenstehende Formel (H 307; E I 156). B. Durch Einw. von Stickoxyden auf 2.4-Dibrom-3-amino-toluol in Alkohol und nachfolgendes Kochen (OLIVIER, R. 45, 300). — Flüssigkeit. Kp761: 243,5—244,5°. Liefert beim Bromieren in der Siedehitze 2.4-Dibrom-benzylbromid.

2.6-Dibrom-toluol C<sub>7</sub>H<sub>6</sub>Br<sub>2</sub>, s. nebenstehende Formel (H 308; E I 156). B. Durch Einw. von Stickoxyden auf 2.6-Dibrom-3-amino-toluol in Alkohol und nachfolgendes Kochen (ÖLIVIER, R. 45, 303). — Kp<sub>753</sub>: 242,5—243°. – Liefert beim Bromieren in der Siedehitze 2.6-Dibrom-benzylbromid.

3.5-Dibrom-toluol C<sub>7</sub>H<sub>6</sub>Br<sub>2</sub>, s. nebenstehende Formel (H 308; E I 156). F: 39,5—40,5° (OLIVIER, R. 45, 304). — Liefert beim Kochen mit Chromtrioxyd in Eisessig 3.5-Dibrom-benzoesäure (O., R. 48, 232). Beim Kochen mit Natrium in äther. Lösung erhält man 3.3'-Ditolyl und andere Produkte (Fuchs, METZL, B. 55, 746). Gibt beim Bromieren in der Siedehitze, schneller im ultravioletten Licht, 3.5-Dibrom-benzylbromid (O., R. 45, 305).

2. $\omega$ -Dibrom-toluol, 2-Brom-benzylbromid  $C_7H_6Br_2=C_6H_4Br\cdot CH_2Br$  (H 308). B. Durch Einw. von Brom auf 2-Brom-toluol im Quecksilberlicht (SUPNIEWSKI, ADAMS, Am. Soc. 46, 516), bei 135° (Kenner, Wilson, Soc. 1927, 1111) oder bei Siedetemperatur (Shoesmith, Slater, Soc. 1926, 219). — F: 31° (Sh., Sl.). Kp<sub>19</sub>: 129° (Ke., Wi.). — Geschwindigkeit der Reaktion mit Jodwasserstoffsäure (D: 1,68) in Eisessig bei 101° und 110°: Sh., Sl., Soc. 1926, 221, 222. Geschwindigkeit der Hydrolyse in wäßr. Alkohol bei 25°: Sh., Rubli, Soc. 1927, 3099, 3105; bei 76°: Sh., Sl., Soc. 1926, 221. Liefert mit Hydrazinhydrat in alkoh. Lösung bei gewöhnlicher Temperatur oder bei 1000 N.N-Bis-[2-brom-benzyl]-hydrazin, Tris-[2-brom-benzyl]-hydrazin und 2-Brom-benzyliden-bis-[2-brom-benzylhydrazin] (KE., WI., Soc. 1927, 1110, 1111). Reagiert leicht mit Magnesium unter vorwiegender Bildung von 2-Brom-benzylmagnesiumbromid (Meisenheimer, B. 61, 720).

3. $\omega$ -Dibrom-toluol, 3-Brom-benzylbromid  $C_7H_6Br_2 = C_6H_4Br \cdot CH_2Br \cdot (H 308)$ . B. Beim Durchleiten von Luft durch ein Gemisch berechneter Mengen Brom und 3-Bromtoluol bei Siedetemperatur (Shoesmith, Slater, Soc. 1926, 219). — F: 40°. — Geschwindigkeit der Reaktion mit Jodwasserstoffsaure (D: 1,68) in Eisessig bei 101° und 110°: Sh., SL. Geschwindigkeit der Hydrolyse in wäßr. Alkohol bei 760: Sh., Sl.

4. w-Dibrom-toluol, 4-Brom-benzylbromid C<sub>7</sub>H<sub>4</sub>Br<sub>2</sub> = C<sub>6</sub>H<sub>4</sub>Br·CH<sub>2</sub>Br (H 308; E I 156). B. Beim Durchleiten von Luft durch ein Gemisch berechneter Mengen Brom und 4-Brom-toluol bei Siedetemperatur (Shoesmith, Slater, Soc. 1926, 219). Bei der Einw. von Bis-brommethyl-äther auf Brombenzol in Gegenwart von wasserfreiem Zinkchlorid (Stephen, Short, Gladding, Soc. 117, 524). — Nadeln (aus Methanol). F: 63° (Shoel, Sl.), 60—61° (St., Short, Gl.). — Geschwindigkeit der Reaktion mit Jodwasserstoffsäure (D: 1,68) in Eisessig bei 101° und 110°: Shoel, Sl. Geschwindigkeit der Hydrolyse in wäßr. Alkohol bei 25°: Shoe., Rubli, Soc. 1927, 3099, 3105; bei 76°: Shoe., Šl.. Šoc. **1926**, 221.

 $\omega$ -Chlor-2.4-dibrom-toluol, 2.4-Dibrom-benzylchlorid  $C_7H_5ClBr_2$ , s. nebenstehende Formel. B. Durch Erhitzen von 2.4-Dibrom-benzylalkohol mit Phosphorpentachlorid auf etwa 120° (OLIVIER, R. 45, 302). — Krystalle. F: 33,5° bis 34°; sehr leicht löslich in Ather und Chloroform, ziemlich leicht in Alkohol (O., R. 45, 302). — Geschwindigkeit der Hydrolyse durch wäßr. Alkohol bei 30° und 83,3°: O., R. 45, 302; durch wäßr. Aceton bei 60°: O., R. 48, 235.

240

ω-Chlor-2.6-dibrom-toluol, 2.6-Dibrom-benzylchlorid C<sub>7</sub>H<sub>5</sub>ClBr<sub>2</sub>, s. nebenstehende Formel. B. Durch Erhitzen von 2.6-Dibrom-benzylalkohol mit Phosphorpentachlorid auf etwa 120° (OLIVIER, R. 45, 304). — Nadeln (aus verd. Alkohol). F: 65—66°; sehr leicht löslich in Äther, Schwefelkohlenstoff, Chloroform, Benzol und Aceton, ziemlich leicht in Alkohol (O., R. 45, 304). — Wird beim Kochen mit 15% iger Kalilauge in 2.6-Dibrom-benzylalkohol zurückverwandelt (O., R. 45, 303). Geschwindigkeit der Hydrolyse in wäßr. Alkohol bei 30° und 83°: O., R. 45, 304; in wäßr. Aceton bei 60°: O., R. 48, 236. — Reizt die Schleimhäute stark (O., R. 45, 304).

ω-Chlor-3.5-dibrom-toluol, 3.5-Dibrom-benzylchlorid  $C_7H_5ClBr_2$ , s. nebenstehende Formel. B. Analog der vorangehenden Verbindung (OLIVIER, R. 45, 305). — Nadeln. F: 50—50,5°; sehr leicht löslich in Ather, Aceton, Benzol und Schwefelkohlenstoff, schwer in Alkohol (O., R. 45, 305). — Geschwindigkeit der Hydrolyse in wäßr. Alkohol bei 30° und 83,3°: O., R. 45, 306; in wäßr. Aceton bei 60°: O., R. 48, 236.

2.4.5-Tribrom-toluol C<sub>7</sub>H<sub>5</sub>Br<sub>3</sub>, Formel I (H 309; E I 156). B. Bei der Einw. von überschüssigem Brom auf das Reaktionsprodukt aus Toluol und rauchender Schwefelsäure in wäßr. Lösung (Dатта, Вноимік, Am. Soc. 43, 312). — F: 112°.

2.4. $\omega$  - Tribrom - toluol, 2.4 - Dibrom - benzylbromid  $C_7H_5Br_3$ , Formel II. B. Durch Bromieren von 2.4-Dibromtoluol in der Siedehitze (OLIVIER, R. 45, 300). — Krystalle. F: 40—41°. Leicht löslich in Äther, Chloroform, Benzol, Schwefelkohlenstoff und Petroläther, unlöslich in Wasser. — Liefert beim Kochen mit 15% iger Kalilauge 2.4-Dibrom-benzylalkohol.

 $I. \underbrace{\overset{\overset{\overset{\bullet}{\overset{\bullet}}}{\overset{\bullet}}}{\underset{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}}}{\overset{\bullet}}}}_{Br} \overset{\overset{\overset{\bullet}{\overset{\bullet}}}{\overset{\bullet}}{\overset{\bullet}}}{\underset{Br}{\overset{\bullet}}}}_{Br}$ 

2.6. $\omega$ -Tribrom-toluol, 2.6-Dibrom-benzylbromid  $C_7H_5Br_3$ , s. nebenstehende Formel. B. Durch Bromieren von 2.6-Dibrom-toluol in der Siedehitze (OLIVIER, R. 45, 303). — F: 80°. — Liefert beim Kochen mit 15% iger Kalilauge 2.6-Dibrom-benzylalkohol. — Reizt sehr stark die Schleimhäute.

Br Br

3.5. $\omega$ -Tribrom-toluol, 3.5-Dibrom-benzylbromid  $C_7H_5Br_3$ , s. nebenstehende Formel (H 309). B. Durch Bromierung von 3.5-Dibrom-toluol bei Siedetemperatur, am besten unter gleichzeitiger Ultraviolett-Belichtung (OLIVIER, R. 45, 305). — F: 95,5—96°. — Liefert beim Kochen mit 15% iger Kalilauge 3.5-Dibrom-benzylalkohol.

CH<sub>2</sub>Br Br Br

ω-Chlor-2.4.6-tribrom-toluol, 2.4.6-Tribrom-benzylehlorid C<sub>7</sub>H<sub>4</sub>ClBr<sub>3</sub>, s. nebenstehende Formel. B. Bei der Einw. von Brom auf Benzylehlorid in Gegenwart von Aluminiumbromid in der Kälte (Henraut, Bl. Soc. chim. Belg. 33, 132; C. 1924 II, 1342). — Gelbe Krystalle (aus Benzol + Eisessig). F: 153° bis 154°. Bei 20° enthalten 100 cm³ der Lösung in Benzol 9,78 g, in Toluol 10,14 g. Liefert beim Erhitzen mit Salpetersäure (D: 1,39) 2.4.6-Tribrom-benzoesäure.

Pentabromtoluol  $C_7H_3Br_5 = C_6Br_5 \cdot CH_3$  (H 310; E I 156). B. Beim Behandeln von Cyclohexyltoluol (Gemisch von Isomeren; aus Cyclohexen, Toluol und Aluminiumchlorid), von Cyclohexyl-p-cymol (aus Cyclohexen, p-Cymol und Aluminiumchlorid) sowie von Methylphenyl-cyclohexan (aus 1-Methyl-cyclohexen-(3), Benzol und Aluminiumchlorid) mit Brom in Gegenwart von Aluminiumbromid (Bodroux, A. ch. [10] 11, 546, 547, 571). — F: 288° (korr.) (Schulz, Collet. Trav. chim. Tchécosl. 1, 229; C. 1929 II, 772). Bei 20° lösen sich in 25 cm³ Methanol 2,7 mg, in 25 cm³ 96 %igem Alkohol 2,6 mg (Sch.).

2.3.4.5.6. $\omega$ -Hexabrom-toluol, Pentabrombenzylbromid  $C_7H_2Br_6=C_6Br_5\cdot CH_2Br$ . B. Beim Erhitzen von 2.4.6-Trinitro-toluol mit 3 Mol Brom in Gegenwart einer Spur Jod im Rohr auf 200° (Dhar, Soc. 117, 996). — Nadeln (aus Benzol). F: 320°. Schwer löslich in Alkohol. — Beständig gegen Brom, Permanganat und Salpetersäure. Liefert bei 8-stdg. Erhitzen mit absol. Alkohol und Kaliumacetat im Rohr auf 200° Pentabrom-benzylalkohol.

# d) Jod-Derivate.

2-Jod-toluol, o-Jod-toluol  $C_7H_7I = C_6H_4I \cdot CH_2$  (H 310; E I 156). B. Bei der Umsetzung von o-Toluoldiazoniumtetrachlorjodid mit Kaliumjodid in essigsaurer Lösung (Chattaway, Garton, Parkes, Soc. 125, 1983). —  $D_1^{15,9}$ : 1,7192;  $n_2^{15,9}$ : 1,6040;  $n_2^{15,9}$ : 1,6107;  $n_3^{15,9}$ : 1,6274 (v. Auwers, A. 422, 164). — Bei der elektrolytischen Oxydation von 2-Jod-toluol in wäßrig-schwefelsaurer Suspension an Bleidioxyd-Anoden wurden in schlechter Ausbeute 2-Jod-benzaldehyd und 2-Jod-benzoesäure erhalten; bei der Oxydation an Platinanoden in 70% iger Essigsäure entstand 2-Jodoso-benzoesäure (Fichter, Lotter, Helv. 8, 440). 2-Jod-toluol wird durch Jodwasserstoff in Eisessig bei 25° in Toluol übergeführt; Geschwindigkeit dieser Reaktion: Shoesmith, Slater, Soc. 125, 2282. Die bei der Einw. von Stickoxyden

auf das Reaktionsprodukt aus 2-Jod-toluol und rauchender Schwefelsäure von DATTA, VARMA (Am. Soc. 41 [1919], 2047) erhaltene Verbindung ist 6-Jod-3-nitro-toluol (ELSON, GIBSON, JOHNSON, Soc. 1929, 2737). Konkurrierende Einw. von Magnesium auf 2-Jod-toluol und 2-Brom-toluol in Ather: RUDD, TURNER, Soc. 1928, 688.

Di-o-tolyl-jodoniumhydroxyd  $C_{14}H_{15}OI = (CH_3 \cdot C_6H_4)_2^*I \cdot OH$  (H 311). — Trijodid  $C_{14}H_{14}I \cdot I_3(?)$ . B. Ein als Di-o-tolyl-jodoniumtrijodid angesehenes Salz entsteht bei mehrtägiger Einw. von Jodoform auf Di-o-tolyl-jodoniumjodid in Methanol (Steinkoff, Roch, K. Schultz, J. pr. [2] 113, 165). Blauschwarze Nadeln. F: 146°.

3-Jod-toluol, m-Jod-toluol C,H,I = C,H,I·CH, (H 311; E I 157). Kp: 213° (Shoesmith, Slater, Soc. 125, 2282). — Liefert bei der Reduktion mit Jodwasserstoff in Eisessig bei 25° Toluol; Geschwindigkeit dieser Reaktion: Sh., Sl. Einw. von Magnesium auf 3-Jodtoluol bei Gegenwart von 3-Brom-toluol in Äther: Rudd, Turner, Soc. 1928, 688.

4-Jod-toluol, p-Jod-toluol  $C_7H_7I=C_8H_4I\cdot CH_3$  (H 312; E I 157). B. Neben etwas Toluol bei der Einw. von Kupferhydrid auf diazotiertes p-Toluidin in schwefelsaurer Kaliumjodid-Lösung unter Eiskühlung (Neogi, Mitta, Soc. 1928, 1332). — F: 34° (korr.) (Sugden, Soc. 125, 1175), 35° (Shoesmith, Slater, Soc. 125, 2282). Kp: 211° (Sh., Sl.); Kp<sub>780</sub>: ca. 213° (Lecat, Ann. Soc. scient. Bruxelles 45 [1926], 289). D $_9^{\text{to}}$ : 1,678; D $_1^{\text{in}}$ : 1,635; D $_2^{\text{to}}$ : 1,591; D $_2^{\text{in}}$ : 1,547; D $_2^{\text{in}}$ : 1,507 (Su., Soc. 125, 1175). Oberflächenspannung zwischen 39° (35,69 dyn/cm) und 166° (23,00 dyn/cm): Su., Soc. 125, 1175. Parachor: Su., Soc. 125, 1182. Thermische Analyse des binären Systems mit Tri-p-tolyl-arsin: Peat, Pr. Durham phil. Soc. 7, 75; C. 1926 I, 2906. 4-Jod-toluol bildet azeotrope Gemische mit Nitrobenzol (Kp: 207°; ca. 40 Gew.-% 4-Jod-toluol) (Lecat, Ann. Soc. scient. Bruxelles 47 I [1927], 154), mit m-Kresol (Kp: 201,6°; 25 Gew.-% 4-Jod-toluol) und mit p-Kresol (Kp: 201,0°; 23 Gew.-% 4-Jod-toluol) (L., Ann. Soc. scient. Bruxelles 45 I [1926], 289), mit Brenzcatechin (Kp: 214,0°; 93 Gew.-% 4-Jod-toluol) (L., Ann. Soc. scient. Bruxelles 49 [1929], 135), und mit Acetamid (Kp: 195°; 83 Gew.-% 4-Jod-toluol) (L., Ann. Soc. scient. Bruxelles 47 I, 151).

4-Jod-toluol wird beim Erhitzen mit Brom in Gegenwart von rauchender Salpetersäure und Nitrosylschwefelsäure zu 4-Jod-benzoesäure oxydiert (Varma, Narayan, J. indian chem. Soc. 4, 284; C. 1928 I, 489). Liefert bei der elektrolytischen Oxydation in wäßr. Schwefelsäure an einer Bleidioxyd-Anode bei 60° wenig 4-Jod-benzaldehyd und wenig 4-Jod-benzoesäure, die zum Teil zu Fumarsäure und Kohlendioxyd weiter oxydiert wird; in essigsaurer Lösung an Platinanoden entstehen 4-Jod-benzaldehyd, 4-Jod-benzoesäure und 4-Jodo-benzoesäure (Fichter, Lotter, Helv. 8, 441, 442). Liefert bei der Reduktion mit Jodwasserstoffsäure in Eisessig bei 25° Toluol; Geschwindigkeit dieser Reaktion: Shoesmith, Slater, Soc. 125, 2282. Bei der Einw. von Dischwefeldichlorid in Gegenwart von amalgamiertem Aluminium entsteht ein harziges, jodfreies Produkt (Rây, Soc. 119, 1967). Konkurrierende Einw. von Magnesium auf 4-Jod-toluol und 4-Brom-toluol in Äther: Rudd. Turner, Soc. 1928, 688.

4-Jodoso-toluol C<sub>7</sub>H<sub>7</sub>OI = CH<sub>3</sub>·C<sub>6</sub>H<sub>4</sub>·IO und Salze vom Typus CH<sub>3</sub>·C<sub>6</sub>H<sub>4</sub>·IAc<sub>2</sub> (H 313). p-Tolyljodidchlorid reagiert mit Magnesium in Äther auf dem Wasserbad erst nach Zusatz von Jod unter Bildung von 4-Jod-toluol, Toluol und Spuren von p.p-Ditolyl (Нег-wовтн, Soc. 119, 1246). Freies 4-Jodoso-toluol gibt mit Äthylmagnesiumbromid in Äther auf dem Wasserbad 4-Jod-toluol, mit Phenylmagnesiumbromid außerdem etwas Phenylp-tolyl-jodoniumjodid (H., Soc. 119, 1248). p-Tolyljodidchlorid gibt bei analoger Behandlung mit Äthylmagnesiumbromid 4-Jod-toluol, 4-Äthyl-toluol und Butan(?), mit Phenylmagnesiumbromid 4-Jod-toluol, p.p-Ditolyl und etwas Phenyl-p-tolyl-jodoniumjodid (H., Soc. 119, 1247). — Salzsaures Salz, p-Tolyljodidchlorid (,,p-Jodtoluol-dichlorid") CH<sub>3</sub>·C<sub>6</sub>H<sub>4</sub>·ICl<sub>2</sub>. F: 104—105° (H., Soc. 119, 1246).

4-Jodo-toluol  $C_7H_7O_2I = CH_3 \cdot C_6H_4 \cdot IO_2$  (H 313; E I 157). Wird beim Behandeln mit Äthylmagnesiumbromid oder Phenylmagnesiumbromid in Äther zu 4-Jod-toluol reduziert (Hepworth, Soc. 119, 1249).

Di-p-tolyl-jodoniumhydroxyd  $C_{14}H_{15}OI = (CH_3 \cdot C_5H_4)_2I \cdot OH$  (H 314). — Trijodid  $C_{14}H_{14}I \cdot I_3$ . B. Ein als Di-p-tolyl-jodoniumtrijodid angegebenes Salz entsteht bei mehrtägiger Einw. von Jodoform auf Di-p-tolyl-jodoniumjodid in Methanol (Steinkoff, Roch, Schultz, J. pr. [2] 113, 165). Blauschwarze Nadeln. F: 140°.

ω-Jod-toluol, Benzyljodid  $C_7H_7I = C_8H_5 \cdot CH_2I$  (H 314; E I 157). B. Aus Benzylchlorid und Natriumjodid in absol. Methanol (Whitmore, Thurman, Am. Soc. 51, 1497) oder in Aceton (Steinkopf, Bessaritsch, J. pr. [2] 109, 243 Anm. 1; Coleman, Hauser, Am. Soc. 50, 1196). Aus Benzylbromid und Jodwasserstoff in Eisessig-Lösung bei 25° (Shoesmith, Slater, Soc. 125, 2281). — Nadeln. F: 24° (Sh., Sl., Soc. 125, 2281; St., Bess.). Flüchtigkeit: Herbst, Koll. Beih. 23, 336; C. 1926 II, 2544. Einfluß von Benzyl-

jodid auf die Autoxydation von Acrolein: Moureu, Dufraisse, C. r. 176, 801. — Benzyljodid wird von Wasser bei gewöhnlicher Temperatur nicht oder nur sehr langsam zersetzt (Rona, Z. exp. Med. 13, 28; C. 1921 III, 374). Benzyljodid liefert bei der Einw. auf Methylmagnesiumjodid in Äther Äthylbenzol, Dibenzyl und Äthan (Fuson, Am. Soc. 48, 2686, 2688).

Uber physiologisches Verhalten von Benzyljodid vgl. H. STAUB in J. HOUBEN, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 79; DUFRAISSE, BONGRAND, C. r. 171, 819; Flury, Z. exp. Med. 13, 567; C. 1921 III, 565. — Verwendung als Kampfstoff: J. MEYER, Der Gaskampf und die chemischen Kampfstoffe, 3. Aufl. [Leipzig 1938], S. 48, 296; M. Sartori, Die Chemie der Kampfstoffe, 2. Aufl. [Braunschweig 1940], S. 141; A. M. Prentiss, Chemicals in war [New York-London 1937], S. 139. Benzyljodid kann durch Soda und Schwefelleber enthaltende Seifenlösung unschädlich gemächt werden (Desgrez, Guillemard, Savès, C. r. 171, 1179; Des., G., Labat, C. r. 172, 342).

 $\omega$ -Chlor-2-jod-toluol, 2-Jod-benzylchlorid  $C_7H_6CII = C_6H_4I \cdot CH_2CI$ . B. Aus 2-Jod-benzylalkohol durch Einw. von Phosphorpentachlorid bei etwa 120° (OLIVIER, R. 42, 522). — F: 28,5—29,5°. Leicht löslich in Chloroform, Äther und Petroläther, ziemlich leicht in Alkohol, unlöslich in Wasser. — Geschwindigkeit der Hydrolyse in wäßr. Alkohol bei 30° und 83,1°: O., R. 42, 522, 523, 776.

5 - Chlor - 3 - jod - toluol C<sub>7</sub>H<sub>6</sub>CII, s. nebenstehende Formel. B. Durch Behandlung von diazotiertem 5-Chlor-3-amino-toluol mit Kaliumjodid-Lösung (McALISTER, KENNER, Soc. 1928, 1915). — Schmilzt bei 0°. Kp<sub>26</sub>: 138—140°. — Liefert beim Erhitzen mit Kupferpulver auf 250—290° 5.5′-Dichlor-3.3′-dimethyldiphenyl.

ω-Chlor-3-jod-toluol, 3-Jod-benzylchlorid  $C_7H_6CII = C_6H_4I \cdot CH_2CI$ . B. Aus 3-Jod-benzylalkohol durch Einw. von Phosphorpentachlorid bei etwa 120° (OLIVIER, R. 42, 521). — Krystallînisch. F: 26,5—27,5°. Leicht löslich in Alkohol, Äther, Chloroform und Petroläther, schwer in verd. Alkohol, unlöslich in Wasser. — Geschwindigkeit der Hydrolyse in wäßr. Alkohol bei 30° und 82,6°: O., R. 42, 521, 522, 776.

ω-Chlor-4-jod-toluol, 4-Jod-benzylchlorid C<sub>7</sub>H<sub>6</sub>CII = C<sub>6</sub>H<sub>4</sub>I·CH<sub>2</sub>Cl (H 315). B. Beim Erhitzen von 4-Jod-benzylalkohol mit Phosphorpentachlorid auf ca. 120° (OLIVIER, R. 42, 520). — Nadeln (aus Alkohol). F: 53—53,5°. Leicht löslich in Äther, schwer in Alkohol. — Geschwindigkeit der Hydrolyse in wäßr. Alkohol bei 30° und 82,7°: O., R. 42, 520, 776.

4-Chlor-w-jod-toluol, 4-Chlor-benzyljodid C<sub>7</sub>H<sub>6</sub>ClI=C<sub>6</sub>H<sub>4</sub>Cl·CH<sub>2</sub>I (H 315). B. Durch Einw. von Jodwasserstoffsäure (D: 1,68) auf 4-Chlor-benzylbromid in Eisessig bei 25° (Shoesmith, Slater, Soc. 1926, 222). — F: 65°.

ω-Brom-2-jod-toluol, 2-Jod-benzylbromid  $C_7H_6$ Br $I=C_6H_4I\cdot CH_2$ Br (H 315). Krystalle (aus Petroläther). F: 55—55,5° (OLIVIER, R. 42, 522).

5-Brom-3-jod-toluol C<sub>7</sub>H<sub>6</sub>BrI, s. nebenstehende Formel. B. Durch Behandlung von diazotiertem 5-Brom-3-amino-toluol mit Kaliumjodid-Lösung (McALISTER, KENNER, Soc. 1928, 1914). — F: 23°. Kp<sub>29</sub>: 150°.

 $\omega$ -Brom-3-jod-toluol, 3-Jod-benzylbromid  $C_7H_6BrI=C_6H_4I\cdot CH_2Br$ . B. Bei der Einw. von Brom auf 3-Jod-toluol bei ca. 200° (OLIVIER, R. 42, 521). — Spieße (aus Petroläther). F: 50—50,5°. Leicht löslich in Äther, Chloroform und Schwefelkohlenstoff, schwer in Alkohol und Petroläther, unlöslich in Wasser.

ω-Brom-4-jod-toluol, 4-Jod-benzylbromid  $C_7H_6$ Br $I=C_6H_4$ I·C $H_2$ Br (H 316). Zur Darstellung durch Bromierung von 4-Jod-toluol vgl. a. OLIVIER, R. 42, 519. — Krystalle (aus Alkohol). F: 79,5—80° (O.). Kp<sub>15</sub>: 140° (v. Braun, Kühn, Weismantel, A. 449, 270). — Liefert beim Kochen mit Wasser 4-Jod-benzylalkohol (O.).

2-Brom-ω-jod-toluol, 2-Brom-benzyljodid C<sub>7</sub>H<sub>6</sub>BrI = C<sub>6</sub>H<sub>4</sub>Br·CH<sub>2</sub>I. B. Durch Kochen von 2-Brom-benzylbromid mit Kaliumjodid in wäßr. Aceton (Shoesmith, Slater, Soc. 1926, 219). — Nadeln (aus Petroläther). F: 47°. — Geschwindigkeit der Reaktion mit Jodwasserstoffsäure (D: 1,68) in Eisessig bei 101°: Sh., Sl.

3-Brom-ω-jod-toluol, 3-Brom-benzyljodid  $C_7H_6BrI = C_9H_4Br\cdot CH_2I$ . B. Analog der vorangehenden Verbindung (Shoesmith, Slater, Soc. 1926, 219). — Prismen (aus Petroläther). F: 42°. — Geschwindigkeit der Reaktion mit Jodwasserstoffsäure (D: 1,68) in Eisessig bei 101°: Sh., Sl.

4-Brom- $\omega$ -jod-toluol, 4-Brom-benzyljodid  $C_7H_4BrI = C_0H_4Br\cdot CH_4I$  (H 316). B. Analog der vorangehenden Verbindung (Shoesmith, Slater, Soc. 1926, 219). — Nadeln (aus Petroläther). F: 73°. — Geschwindigkeit der Reaktion mit Jodwasserstoffsäure (D: 1,68) in Eisessig bei 101°: Sh., Sl. [M. Ilberg]

### e) Nitroso-Derivate.

2-Nitroso-toluol, o-Nitroso-toluol C<sub>7</sub>H<sub>7</sub>ON = ON·C<sub>6</sub>H<sub>4</sub>·CH<sub>3</sub> (H 317). Gibt bei der Einw. von 2.4-Dinitro-benzylchlorid in alkoh. Kalilauge 2.4-Dinitro-benzaldoxim-N-o-tolyl- äther (Syst. Nr. 1674) (Barrow, Griffiths, Bloom, Soc. 121, 1715).

4-Nitroso-toluol, p-Nitroso-toluol C<sub>7</sub>H<sub>7</sub>ON = ON·C<sub>6</sub>H<sub>4</sub>·CH<sub>8</sub> (H 318; E I 158). B. Neben anderen Produkten bei der Einw. von Peressigsäure auf p-Toluidin in wäßr. Lösung unter Kühlung (D'Ans, Kneip, B. 48 [1915], 1145). Neben anderen Produkten bei der thermischen Zersetzung von N-Oxy-N-phenyl-N'-p-tolyl-formamidin (Syst. Nr. 1932) (INGOLD, Soc. 125, 97; BURKHARDT, LAPWORTH, ROBINSON, Soc. 127, 2234). — Liefert beim Behandeln mit 2.4-Dinitro-benzylchlorid in alkoh. Kalilauge 2.4-Dinitro-benzaldoxim-N-p-tolyläther (Syst. Nr. 1685) (BARROW, GRIFFITHS, BLOOM, Soc. 121, 1715). Beim Behandeln mit Phenylmagnesiumbromid in Ather bei —10° entsteht N-Phenyl-N-p-tolyl-hydroxylamin (Wieland, Kögl, B. 55, 1802).

# f) Nitro-Derivate.

2-Nitro-toluol, o-Nitro-toluol C<sub>2</sub>H<sub>2</sub>O<sub>2</sub>N = O<sub>2</sub>N·C<sub>6</sub>H<sub>4</sub>·CH<sub>3</sub> (H 318; E I 158). B. 2-Nitro-toluol entsteht aus Toluol bei der Einw. von Nitrosylschwefelsäure und Salpetersäure (D: 1,502) als Hauptprodukt (Varma, Kulkarni, Am. Soc. 47, 145), beim Erhitzen mit Salpetersäure (D: 1,40) und Quecksilberoxyd anfangs auf 65—85°, zuletzt zum Sieden, neben 4-Nitro-toluol und anderen Produkten (Davis, Mitarb., Am. Soc. 43, 600), bei der Einw. von Eisen(III)-nitrat in Acetanhydrid unterhalb 40° (Menke, R. 44, 146) und bei der Einw. von Chlorpikrin am Licht, neben anderen Produkten (Piutti, Badolato, R. A. L. [5] 33 I, 477). Zur Bildung bei der Einw. von Salpetersäure auf Toluol vgl. a. Askenasy, Elöd, A. 461, 116, 118. Beim Schmelzen von 3.3′-Dinitro-4.4′-dimethyl-benzophenon mit Kaliumhydroxyd, neben 3-Nitro-4-methyl-benzoesäure (Stephen, Short, Gladding, Soc. 117, 526). Beim Erwärmen von 2-Nitro-a-oxy-hydrozimtsäure mit Natronlauge (Jaenisch, B. 56, 2450). — Trennung von 4-Nitro-toluol durch Rektifikation im Vakuum: Molinari, Atti Congr. naz. Chim. ind. 1924, 402; C. 1925 I, 2408.

#### Physikalische Eigenschaften.

α-Modifikation, metastabile Form. F: —10,5° (Bell, Mitarb., J. ind. Eng. Chem. 13, 59; C. 1921 III, 528), —10,3° (korr.) (B., McEwen, J. ind. Eng. Chem. 14, 536; C. 1922 III, 718), —10,6° bis —10,9° (Williams, Schwingel, Am. Soc. 50, 363). Thermische Analyse des Gemisches der α-Form mit 3-Nitro-toluol: B., McEwen; mit 2.4.6-Trinitro-toluol: B., Mitarb. — β-Modifikation, stabile Form. F: —4,45° (korr.) (B., Mitarb., J. ind. Eng. Chem. 13, 59), —4,31° (korr.) (B., McEwen, J. ind. Eng. Chem. 14, 536). Thermische Analyse der binären Systeme der β-Form mit 3-Nitro-toluol: B., McEwen; mit 4-Nitro-toluol: B., Mitarb.; vgl. Gibson, Duckham, Fairbairn, Soc. 121, 270; mit 2.4-Dinitro-toluol und 2.4.6-Trinitro-toluol: B., Mitarb.; der ternären Systeme mit 3-Nitro-toluol und 4-Nitro-toluol: GI., D., F.; mit 4-Nitro-toluol und 2.4-Dinitro-toluol bzw. mit 4-Nitro-toluol und 2.4-6-Trinitro-toluol: B., Cordon, J. ind. Eng. Chem. 13, 307; C. 1921 III, 622; B., Sprx, J. ind. Eng. Chem. 13, 308; C. 1921 III, 622. Veränderungen der beiden Formen bei Einw. von Lösungen von Ammoniak in Wasser, Methanol, Alkohol, Isoamylalkohol, Ather und Benzol sowie von Natriumhydroxyd in Wasser, Methanol, Alkohol und Isoamylalkohol: Clark, Crozier, Trans. roy. Soc. Canada [3] 19 III, 158; C. 1926 II, 20. — Kp<sub>766</sub>: 221,0° (Lecat, R. 46, 245), 221,85° (L., Ann. Soc. scient. Bruxelles 48 I [1928], 15), 222,3° (Grimm, Patrick, Am. Soc. 45, 2799), 220,38° (Berliner, May, Am. Soc. 48, 2631); Kp<sub>768</sub>: 219—219,5° (korr.) (Sugden, Wilkins, Soc. 127, 2520); Kp<sub>772</sub>: 222,3—222,7° (Garner, Abernethy, Pr. roy. Soc. [A] 99, 219; C. 1921 III, 866). Dampfdruck zwischen 50° und dem Siedepunkt: Berliner, May. D<sup>16</sup>: 1,1657 (Scemidt, Ann. Phys. [4] 76, 571); D<sup>26</sup>: 1,168 (Harkins, Clark, Roberts, Am. Soc. 42, 705); D<sup>26</sup>: 1,126 (Kerr, Phil. Mag. [7] 3, 332; C. 1927 II, 388); D<sup>16</sup>: 1,168; D<sup>26</sup>: 1,146; D<sup>26</sup>: 1,126 (D<sup>26</sup>: 1,103 (Su., W.). Isotherme Kompressibilität unter 0—8 Atm. Überdruck bei 18,52°: 50,00 × 10—6 Atm<sup>-1</sup>; bei 9,04°; zwischen 19,5° (41,76 dyn/cm)

 $n_0^{n_1}$ : 1,5539, 1,5541 (Clark, Crozier, Trans.roy. Soc. Canada [3] 19 III, 157; C. 1926 II, 20).  $n_0^{n_1}$ : 1,5454;  $n_1^{n_2}$ : 1,5517;  $n_{\text{tot},1}^{n_1}$ : 1,5573;  $n_0^{n_2}$ : 1,5417;  $n_{\text{tot},1}^{n_2}$ : 1,5480;  $n_{\text{tot},1}^{n_2}$ : 1,5538 (Eisele, Ann. Phys. [4] 76, 400). Brechungsindex für  $\lambda = 589 \text{ m}\mu$ , 546,1 m $\mu$  und 656,3 m $\mu$  bei verschiedenen Drucken: Ei.  $n_0^{n_2}$ : 1,544 (Harris, Soc. 127, 1064). Ultraviolett-Absorptionsspektrum in alkoh. Lösung (quantitative Extinktionsmessung): Marchlewski, Mayer,

244

Bl. Acad. polon. [A] 1929, 186; C. 1929 II, 2152. Lichtabsorption im Ultrarot zwischen 1 und 15  $\mu$ : W. W. Coblentz, Investigations of infra-red spectra [Washington 1905], S. 252. Intensität und Polarisationszustand des Streulichts bei der Streuung von Licht in flüssigem 2-Nitro-toluol: Krishnan, Phil. Mag. [6] 50, 703; C. 1926 I, 838; Baneriee, Indian J. Phys. 2, 57; C. 1928 I, 1838; in dampfförmigem 2-Nitro-toluol: Rao, Indian J. Phys. 2, 84; C. 1928 I, 1838. Beugung von Röntgenstrahlen in flüssigem 2-Nitro-toluol: Katt, Z. ang. Ch. 41, 332, 334; Sogani, Indian J. Phys. 1, 390; C. 1927 II, 2149. Ramanspektrum: Ganesan, Venkateswaran, Indian J. Phys. 4, 222, 268; C. 1929 II, 2646. Lichtelektrischer Effekt in flüssigem 2-Nitro-toluol: Schaum, Walter, Z. wiss. Phot. 27, 111; C. 1929 II, 2020. Dielektr.-Konst. bei 25°: 26,07 (Harris, Soc. 127, 1067); bei 58° ( $\lambda$  = 95 m): 21,61 (Kerr, Phil. Mag. [7] 3, 332; C. 1927 II, 388); beim Siedepunkt: 11,82 (Grimm, Patrick, Am. Soc. 45, 2799); bei 26° und Drucken bis 60 Atm.: Grenacher, Ann. Phys. [4] 77, 153. Dipolmoment  $\mu \times 10^{18}$ : 3,75 (verd. Lösung; Benzol) (Williams, Phys. Z. 29, 178; W., Schwingel, Am. Soc. 50, 366; vgl. Debye, Z. El. Ch. 34, 452), 3,64 (verd. Lösung; Benzol) (Höjendahl., Phys. Z. 30, 394; C. 1929 II, 1898). Elektrische Doppelbrechung in 2-Nitro-toluol: Iwatake, Technol. Rep. Téhoku Univ. 8, 127; C. 1929 II, 1509.

Löslich in flüssigem Schwefeldionyd mit. orangegelber Farbe, schwer löslich in flüssigem

Löslich in flüssigem Schwefeldioxyd mit orangegelber Farbe, schwer löslich in flüssigem Ammoniak mit carminroter Farbe (DE CARLI, G. 57, 351). Mischbarkeit mit Isopentan bei verschiedenen Drucken: TIMMERMANS, J. Chim. phys. 20, 505. Kritische Lösungstemperatur von Gemischen aus 2-Nitro-toluol und 83,2%iger Essigsäure: Jones, Soc. 123, 1390. Azeotrope Gemische, die 2-Nitro-toluol enthalten, s. in der untenstehenden Tabelle. Dichte von

| Komponente                                                                                                  | Kp <sub>760</sub> | Gew%<br>2-Nitro-toluol                                          | Komponente                          | Kp <sub>760</sub>                                               | Gew%<br>2-Nitro-toluol                        |
|-------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------|-----------------------------------------------|
| 1.4-Dibrom-benzol 1) Benzotrichlorid 1) n-Decylalkohol 1) Citronellol 1) Geraniol 1) Linalool 1) Menthol 3) | 212,4             | 27<br>24,5<br>ca. 85<br>72<br>ca. 83<br>ca. 3<br>34<br>35<br>24 |                                     | 217,6<br>235,0<br>188,55<br>220,8<br>206,45<br>210,2<br>ca. 205 | 43<br>88<br>51,5<br>92<br>67,5<br>70<br>ca. 4 |
| Bornylacetat 2) 4-Chlor-phenol 3)                                                                           | $221,25 \\ 223,2$ | 73<br>57                                                        | Caprylsäure 4) Methylsalicylat 2) . | 221,5<br>221,65                                                 | ca. 95                                        |
| Benzylalkohol 1)                                                                                            | 204,75            | 9                                                               | Diäthylanilin 1)                    | 216,85                                                          | 12                                            |

<sup>&</sup>lt;sup>1</sup>) Lecat, Ann. Soc. scient. Bruxelles 48 I [1928] 15, 16. — <sup>2</sup>) L., Ann. Soc. scient. Bruxelles 48 I, 17, 18, 19. — <sup>3</sup>) L., Ann. Soc. scient. Bruxelles 48 I, 119, 122. — <sup>4</sup>) L., Ann. Soc. scient. Bruxelles 49 [1929], 19, 23, 31, 112.

Gemischen mit Benzol bei 25°: WILLIAMS, SCHWINGEL, Am. Soc. 50, 364. Grenzflächenspannung zwischen 2-Nitro-toluol und Wasser: Harkins, Clark, Roberts, Am. Soc. 42, 705. Adsorption des Dampfes an Tierkohle: Alexejewski, Ж. 55, 417; C. 1925 II. 642. Einfluß einer dünnen Wandschicht auf die Ausflußzeit von Wasser aus Capillaren: Traube, Whang, Ph. Ch. 138, 111. Ausbreitung von 2-Nitro-toluol auf Wasser bei 20°: Harkins, Feldman, Am. Soc. 44, 2671. Dielektr.-Konst. von Gemischen mit Benzol bei 25°: Williams, Phys. Z. 29, 178; W., Schwingel, Am. Soc. 50, 364; von Lösungen organischer Ammoniumsalze in 2-Nitro-toluol bei 20°: Walden, Werner, Ph. Ch. 124, 421. Elektrische Leitfähigkeit einer Lösung von 2-Nitro-toluol in Schwefelsäuremonohydrat bei 12°: Cherbuliez, Helv. 6, 285. Magnetische Doppelbrechung von Lösungen in Tetrachlorkohlenstoff: Ramanadham, Indian J. Phys. 4, 113; C. 1929 II, 3216. Geschwindigkeit der Reaktion von Allylbromid mit Pyridin in 2-Nitro-toluol: Kerr, Soc. 1929, 241.

#### Chemisches Verhalten.

Einw. der durchdringenden Radiumstrahlung auf 2-Nitro-toluol: Kailan, M. 47, 656; Sher. Akad. Wien [IIa] 135, 611; C. 1927 II, 2147. Bei der Sonnenbestrahlung in Gegenwart von Anthrachinon bilden sich anscheinend geringe Mengen 2-Nitro-benzoesäure (ECKERT, B. 58, 317). Liefert bei der elektrolytischen Oxydation in Eisessig und Schwefelsäure auf dem Wasserbad an einer Platinanode je nach den Bedingungen außer 2-Nitro-benzylalkohol (PIERRON, Bl. [3] 25, 853) auch 2-Nitro-benzaldehyd, wenig 2-Nitro-benzoesäure und

andere Produkte; in wäßrig-schwefelsaurer Suspension tritt völlige Zersetzung ein (Fichter, Bonhôre, Helv. 3, 404). Bei der elektrolytischen Oxydation in 20 %iger Salpetersäure bei 75—100° an einer Platinanode erhält man geringe Mengen 2-Nitro-benzoesäure sowie Oxalsäure, Kohlendioxyd und andere Produkte (Conn, Lown, Trans. am. electroch. Soc. 50, 341; säure, Kohlendioxyd und andere Produkte (CONN, Lowy, Trans. am. electroch. Soc. 50, 341; C. 1926 II, 2789). 2-Nitro-toluol gibt beim Erhitzen mit 22,5% iger Salpetersäure unter 15 Atm. Sauerstoff-Druck auf 180—185° Pikrinsäure, 2-Nitro-benzoesäure und Kohlendioxyd (Askenasy, Elöd, A. 461, 124). Gibt bei der Einw. von Stickstofftetroxyd in Benzol geringe Mengen 2-Nitro-benzoesäure (Bass, Johnson, Am. Soc. 46, 459). 2-Nitro-toluol gibt bei der Hydrierung bei Temperaturen zwischen 190° und 300° in Gegenwart von Nickel 86,6%, in Gegenwart von Blei ca. 94,6%, in Gegenwart von Silber 99%, in Gegenwart von Kupfer 97% o-Toluidin (Henke, Brown, J. phys. Chem. 27, 52), in Gegenwart von Zinn 98—99% o-Toluidin (Brown, He., J. phys. Chem. 27, 759). Über Hydrierung in Gegenwart von Platin aus Oxyd vgl. Adams, Cohen, Rees, Am. Soc. 49, 1095. 2-Nitro-toluol liefert bei der Reduktion mit Magnesium in wäßrig-methylalkoholischer Ammoniumchlorid-Lösung bei der Reduktion mit Magnesium in wäßrig-methylalkoholischer Ammoniumchlorid-Lösung 2.2'-Dimethyl-azoxybenzol (Zechmeister, Rom, B. 59, 870). Beim Behandeln mit Magnesium in Methanol allein entsteht gewöhnliches 2.2'-Dimethyl-azoxybenzol und mitunter auch o-Tolyl-hydroxylamin (Z., R., A. 468, 128). Gibt bei der Reduktion mit Zinkstaub in siedender alkoholisch-wäßriger Kalilauge 2.2'-Dimethyl-azoxybenzol und Spuren 2.2'-Dimethyl-azobenzol (?) und o-Toluidin (Bamberger, B. 59, 423). Bei der Reduktion mit Natriumamalgam oder Zinkstaub und Natronlauge bei Gegenwart verschiedener Lösungsmittel (wie Benzol, Chlorbenzol usw.) erhält man o-Toluidin und o.o'-Hydrazotoluol in je nach den Bedingungen wechselnden Mengen (Pellegrini, Giorn. Chim. ind. appl. 8, 175; C. 1926 II, 1018). Beim Erhitzen mit Hydrazinhydrat im Rohr auf 130° entsteht o-Toluidin (MÜLLER, J. pr. [2] 111, 281). 2-Nitro-toluol wird von Hydrazin in Gegenwart von palladiniertem Calciumcarbonat in siedender alkoholischer Kalilauge zu 2.2'-Dimethyl-azoxybenzol, in siedender methylalkoholischer Kalilauge zu o-Toluidin reduziert (Busch, Schulz, B. 62, 1462). Beim Einleiten von Chlor in 2-Nitro-toluol in Gegenwart von Eisen und Jod unter Kühlung mit Wasser von 50-60° entstehen 6-Chlor-2-nitro-toluol als Hauptprodukt und 4-Chlor-2-nitro-toluol von 50—60° entstehen 6-Chlor-2-nitro-toluol als Hauptprodukt und 4-Chlor-2-nitro-toluol (Gindraux, Helv. 12, 927; vgl. Fierz-David, Naturwiss. 17, 13; C. 1929 I, 863). Liefert bei der Nitrierung mit einem Gemisch von 77% Schwefelsäure, 11,3% Salpetersäure und 11,7% Wasser bei 40—70° 66,6% 2.4-Dinitro-toluol und 33,3% 2.6-Dinitro-toluol, mit einem Gemisch von 78% Schwefelsäure, 17,5% Salpetersäure und 4,5% Wasser bei 50—120° 2.4.6-Trinitro-toluol (Gibson, Duckham, Fairbairn, Soc. 121, 278). Gibt beim Erhitzen mit Schwefelsäure (D: 1,84) in Gegenwart von Jod auf 150° 2-Nitro-toluol-sulfonsäure-(4) (Râx, Dex, Soc. 117, 1407). Verhalten der α-Form des 2-Nitro-toluols bei 70-stdg. Erhitzen mit 0,5 n-Natrippinäthyldt Lösung auf 100°. Chark Charlet Treas rou Soc. Canada [3] 19 III 158. triumäthylat-Lösung auf 100°: CLARK, CROZIER, Trans. roy. Soc. Canada [3] 19 III, 158; C. 1926 II, 20. Liefert beim Erhitzen mit Quecksilber(II) acetat auf 140-1500 und folgenden Behandeln des Reaktionsprodukts mit Natriumchlorid-Lösung 2-Nitro-4-chlormercuri-toluol (Syst. Nr. 2347) sowie vermutlich 6-Nitro-2-chlormercuri-toluol(?) und 2-Nitro-3(oder 5)chlormercuri-toluol(?) (Coffey, Soc. 1926, 638). Beim Erhitzen mit Quecksilber(II)-acetat auf 150° und nachfolgenden Behandeln des Reaktionsprodukts mit Brom in kalter Kaliumbromid-Lösung erhält man viel 3-Brom-2-nitro-toluol und etwas 4-Brom-2-nitro-toluol

(Burton, Hammond, Kenner, Soc. 1926, 1802).

2-Nitro-toluol liefert beim Erwärmen mit Toluol in Gegenwart von Aluminiumchlorid auf dem Wasserbad 4-Amino-3.4'-dimethyl-diphenyl (Kliegl, Huber, B. 53, 1655). Bei der Einw. von Benzylalkohol in alkal. Lösung im Autoklaven bei 138—140° entstehen 2.2'-Dimethyl-azobenzol und Benzoesäure (Smith, Lyons, Am. Soc. 48, 3167). Gibt mit Chlor-dimethyläther oder α.α'-Dichlor-dimethyläther bei Gegenwart von Aluminiumchlorid 2-Nitro-1-methyl-4-chlormethyl-benzol und 3.3'-Dinitro-4.4'-dimethyl-diphenylmethan (Stephen, Short, Gladding, Soc. 117, 525); bei der Einw. von α.α'-Dichlor-dimethyläther in Gegenwart von rauchender Schwefelsäure (10% SO<sub>3</sub>) entsteht wenig 2-Nitro-1-methyl-4-chlormethyl-benzol (St., Sh., Gl.). Beim Behandeln mit Oxalester in absol. Alkohol und Äther bei Gegenwart von Kaliumäthylat entsteht 2-Nitro-phenylbrenztraubensäure-äthylester (Wislicenus, Thoma, A. 436, 45). Liefert beim Erhitzen mit 2-Amino-anthrachinon und konz. Schwefelsäure auf 200° einen Küpenfarbstoff (Bucherer, Maki, B. 60, 2077). 2-Nitro-toluol gibt beim Behandeln mit Methylmagnesiumjodid in Äther und Zersetzen des Reaktionsprodukts mit Wasser Methyl-o-toluidin und o.o'-Azo-toluol; reagiert analog mit Äthylmagnesiumbromid (Hepworth, Soc. 117, 1011). Gasentwicklung bei der Einw. von Methylmagnesiumbromid (Hepworth, Soc. 117, 1011). Gasentwicklung bei der Einw. von Methylmagnesiumbromid ün Dibutyläther bei 70° und bei der Einw. von Äthylmagnesiumbromid in Äther oder Dibutyläthers Gilman, Fothergill, Bl. [4] 45, 1135; Am. Soc. 49, 2817. Beim Behandeln mit überschüssigem Phenylmagnesiumbromid in Äther unter Kühlung erhält man Phenylo-toluidin, Phenol, Diphenyl und geringe Mengen Terphenyl (Gil., McCracken, Am. Soc. 51, 826).

Physiologisches Verhalten: H. STAUB in J. HOUBEN, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 107.

3-Nitro-toluol, m-Nitro-toluol C<sub>7</sub>H<sub>7</sub>O<sub>2</sub>N = O<sub>2</sub>N·C<sub>6</sub>H<sub>4</sub>·CH<sub>3</sub> (H 321; E I 159). B. Neben 2- und 4-Nitro-toluol bei der Einw. von Nitrosylschwefelsäure und Salpetersäure (D: 1,502) auf Toluol (Varma, Kulkarni, Am. Soc. 47, 145). — Zur Darstellung aus 3-Nitro-4-amino-toluol bzw. dessen Acetylverbindung vgl. Steinkopf, J. pr. [2] 110, 355 Anm. 2; Clarke, Taylor, Org. Synth. Coll. Vol. I [1932], S. 407; deutsche Ausgabe, S. 415. — F: 15,53° (korr.) (Bell, McEwen, J. ind. Eng. Chem. 14, 536; C. 1922 III, 718), 15,5—16° (Williams, Schwingel, Am. Soc. 50, 363), 16° (Dessart, Bl. Soc. chim. Belg. 35, 12; C. 1926 II, 157), 16° (korr.) (Sugden, Wilkins, Soc. 127, 2520). Kp<sub>760</sub>: 231,87° (Berliner, May, Am. Soc. 48, 2631). Dampfdruck zwischen 50° und dem Siedepunkt: B., May. D<sub>1</sub><sup>4</sup>: 1,1645 (Swarts, J. Chim. phys. 20, 76); D<sub>1</sub><sup>4,4</sup>: 1,1635 (Tromp, R. 41, 299); D<sub>1</sub><sup>4,5</sup>: 1,1630; D<sub>2</sub><sup>5,6</sup>: 1,1581; D<sub>2</sub><sup>5,6</sup>: 1,1443 (Dessart); D<sub>2</sub><sup>5,6</sup>: 1,161; D<sub>2</sub><sup>5,7</sup>: 1,145; D<sub>2</sub><sup>5,6</sup>: 1,124; D<sub>2</sub><sup>5,6</sup>: 1,101; D<sub>2</sub><sup>5,6</sup>: 1,063 (Sug., Wilk.); D<sub>2</sub><sup>5,6</sup>: 1,121 (Kerr, Phil. Mag. [7] 3, 332; C. 1927 II, 388). Viscosität bei 15°: 0,0256, bei 20°: 0,0224, bei 30°: 0,0189 g/cmsec (Dessart). Oberflächenspannung bei 20°: 40,99 dyn/cm (Harkins, Clark, Roberts, Am. Soc. 42, 705); zwischen 20° (41,36 dyn/cm) und 116° (30,53 dyn/cm): Sugden, Wilkins. Parachor: Sugden, Soc. 125, 1186; Mumford, Phillips, Soc. 1929, 2118. Schmelzwärme: Garner, Abernethy, Pr. roy. Soc. [A] 99, 226; C. 1921 III, 866; vgl. Dessart, Bl. Soc. chim. Belg. 35, 17. Verbrennungswärme bei konstantem Volumen: 892,9 kcal/Mol: Ga., A., Pr. roy. Soc. [A] 99, 224.

 $n_{\alpha}^{\text{id}}$ : 1,5432;  $n_{\beta}^{\text{id}}$ : 1,5669 (Swarts, J. Chim. phys. 20, 76);  $n_{\alpha}^{\text{id}}$ : 1,54266;  $n_{\alpha}^{\text{id}}$ : 1,54919;  $n_{\beta}^{\text{id}}$ : 1,56685;  $n_{\alpha}^{\text{id}}$ : 1,53627;  $n_{\alpha}^{\text{id}}$ : 1,54262;  $n_{\beta}^{\text{id}}$ : 1,56024 (Dessart, Bl. Soc. chim. Belg. 35, 13; C. 1926 II, 157);  $n_{\alpha}^{\text{id}}$ : 1,5466 (Tromp, R. 41, 299). Ultraviolett-Absorptionsspektrum in Alkohol: Marchlewski, Mayer, Bl. Acad. polon. [A] 1929, 188; C. 1929 II, 2152. Intensität und Polarisationszustand des Streulichts bei der Streuung von Licht in flüssigem 3-Nitro-toluol: Krishnan, Phil. Mag. [6] 50, 703; C. 1926 I, 838; Banerjee, Indian J. Phys. 2, 57; C. 1928 I, 1838; in dampfförmigem 3-Nitro-toluol: Rao, Indian J. Phys. 2, 84; C. 1928 I, 1838. Beugung von Röntgenstrahlen in flüssigem 2-Nitro-toluol: Katz, Z. ang. Ch. 41, 332; Sogani, Indian J. Phys. 1, 390; C. 1927 II, 2149. Ramaneffekt: Ganesan, Venkateswaran, Indian J. Phys. 4, 222, 269; C. 1929 II, 2646. Dielektr.-Konst. bei 20°: 23,80 (Walden, Ulich, Werner, Ph. Ch. 116, 278; Ulich, Z. El. Ch. 31, 415); bei 58° ( $\lambda$  = 95 m): 21,86 (Kerr, Phil. Mag. [7] 3, 332; C. 1927 II, 388). Dipolmoment  $\mu$  × 10<sup>18</sup> bei 25°: 4,20 (verd. Lösung; Benzol) (Williams, Phys. Z. 29, 178; Wil, Schwingel, Am. Soc. 50, 366; vgl. Debye, Z. El. Ch. 34, 452). Elektrische Leitfähigkeit: Wa., U., We., Ph. Ch. 116, 278.

Kritische Lösungstemperatur des Systems aus 3-Nitro-toluol und 83,2% iger Essigsäure: Jones, Soc. 123, 1390. Thermische Analyse der binären Systeme mit Hexan, mit Cyclohexan (Eutektikum bei —6° und 17,3 Mol-% 3-Nitro-toluol), mit Methylcyclohexan, mit Benzol (Eutektikum bei —22° und 40,8 Mol-% 3-Nitro-toluol) und mit Toluol: Dessart, Bl. Soc. chim. Belg. 35, 10, 20; C. 1926 II, 157. Thermische Analyse der binären Systeme mit 2-Nitro-toluol (Eutektikum bei —31,65° und ca. 48 Gew.-% 3-Nitro-toluol): Bell, McEwen, J. ind. Eng. Chem. 14, 537; C. 1922 III, 718; mit 4-Nitro-toluol: B., McE.; Gibson, Duckham, Fairbairn, Soc. 121, 271; des ternären Systems mit 2-Nitro-toluol und 4-Nitro-toluol: G., D., F. Dichte von Gemischen mit Benzol bei 25°: Williams, Schwingel, Am. Soc. 50, 364. Dichte und Viscosität von binären Gemischen mit Hexan, Cyclohexan, Methylcyclohexan, Benzol und Toluol: Dessart. Grenzflächenspannung zwischen 3-Nitro-toluol und Wasser: Harkins, Clark, Roberts, Am. Soc. 42, 705. Adsorption des Dampfes an Tierkohle: Alexedewski, Ж. 55, 417; C. 1925 II, 642. Einfluß einer dünnen Wandschicht auf die Ausflußzeit von Wasser aus Capillaren: Traube, Whang, Ph. Ch. 138, 111. Ausbreitung von 3-Nitro-toluol auf Wasser bei 20°: Har., Feldman, Am. Soc. 44, 2671. Brechungsindices von binären Gemischen mit Hexan, Cyclohexan, Methylcyclohexan, Benzol und Toluol: Dessart. Dielektr.-Konst. von Gemischen mit Benzol bei 25°: Williams, Phys. Z. 29, 178; W. Schwingel, Am. Soc. 50, 364. Elektrische Leitfähigkeit einer Lösung von 3-Nitro-toluol in Schwefelsäuremonohydrat bei 12°: Cherbuliez, Helv. 6, 285. Dielektr.-Konst. der Lösungen von Tetrapropylammoniumjodid in 3-Nitro-toluol: Walden, Ulich, Werner, Ph. Ch. 116, 278; Ulich, Z. El. Ch. 31, 415. Magnetische Doppelbrechung von Lösungen in Tetrachlorkohlenstoff: Ramanadham, Indian J. Phys. 4, 113; C. 1929 II, 3216. Geschwindigkeit der Reaktion von Allylbromid mit Pyridin in 3-Nitro-toluol: Kerr, Soc. 1929. 241.

3-Nitro-toluol liefert bei der elektrolytischen Oxydation in Eisessig und Schwefelsäure an einer Platinanode unter geeigneten Bedingungen außer 3-Nitro-benzaldehyd (Pierron, Bl. [3] 25, 853) auch 3-Nitro-benzoesäure und andere Produkte; wird bei der elektrolytischen Oxydation in wäßrig-schwefelsaurer Suspension völlig zersetzt (Fichter, Bonhôte, Helv. 3, 404). Gibt bei der Einw. von Stickstofftetroxyd in Benzol geringe Mengen 3-Nitro-benzoesäure (Bass, Johnson, Am. Soc. 46, 459). Über die Hydrierung in Gegenwart von Platinoxyd in Alkohol und anderen Lösungsmitteln unter Druck vgl. Adams, Cohen, Rees, Am. Soc. 49, 1095. Bei der Reduktion mit Magnesium in wäßrig-methylalkoholischer Ammonium-

chlorid-Lösung entsteht 3.3'-Dimethyl-azoxybenzol (Zechmeister, Rom, B. 59, 870); beim Behandeln mit Magnesium in Methanol allein erhält man außer dieser Verbindung gelegentlich auch m-Tolylhydroxylamin (Z., R., A. 468, 129). 3-Nitro-toluol gibt bei der Reduktion mit Zinkstaub und siedender alkoholischer Kalilauge je nach den Bedingungen wechselnde Mengen 3.3'-Dimethyl-azoxybenzol und 3.3'-Dimethyl-azobenzol und wenig m-Toluidin (Bamberger, B. 59, 423). Beim Erhitzen mit Hydrazinhydrat im Rohr auf 130° entsteht m-Toluidin (Müller, J. pr. [2] 111, 281). Wird von Hydrazin in Gegenwart von palladiniertem Calciumcarbonat in siedender alkoholischer Kalilauge zu 3.3'-Dimethyl-azobenzol, in siedender methylalkoholischer Kalilauge zu m-Toluidin und wahrscheinlich m.m'-Hydrazotoluol reduziert (Busch, Schulz, B. 62, 1463). Liefert bei der Nitrierung mit einem Gemisch von 77% Schwefelsäure, 11,3% Salpetersäure und 11,7% Wasser bei 40—70° 55% 3.4-Dinitrotoluol, 25% 2.3-Dinitro-toluol und 20% 2.5-Dinitro-toluol; mit einem Gemisch von 78% Schwefelsäure, 17,5% Salpetersäure und 4,5% Wasser bei 50—120° erhält man 63,1% 2.4.5-Trinitro-toluol, 30,3% 2.3.4-Trinitro-toluol und 6,6% 2.3.6-Trinitro-toluol (Gibson, Duckham, Farrbairn, Soc. 121, 278, 283; vgl. Brady, Gi., Soc. 119, 99; Br., Soc. 121, 330; Marqueyrol, Koehler, Jovinet, Bl. [4] 27, 421; Drew, Soc. 117, 1615). Liefert beim Erhitzen mit Quecksilber(II)-acetat auf 120—140° und Umsetzen des Reaktionsprodukts mit Natriumchlorid-Lösung 5-Nitro-3-chlormercuri-toluol, 3-Nitro-4-chlormercuri-toluol und etwas 5-Nitro-2-chlormercuri-toluol (Syst. Nr. 2347) (Coffey, Soc. 1926, 3223).

Bestimmung von 3-Nitro-toluol neben 2-Nitro-toluol durch Reduktion mit Titan(III)-

chlorid und Titration mit Brom: Francis, Hill, Am. Soc. 46, 2503, 2505.

H 322, Z. 3 v. u. statt ,,2.7-Dimethyl-chinolin" lies ,,m-Toluidin".

4-Nitro-toluol, p-Nitro-toluol  $C_7H_7O_2N=O_4N\cdot C_6H_4\cdot CH_3$  (H 323; E I 160). B. In geringer Menge bei der Einw. von Nitrosylschwefelsäure und Salpetersäure (D: 1,502) auf Toluol (Varma, Kulkarni, Am. Soc. 47, 145). Neben 2-Nitro-toluol und anderen Produkten beim Erhitzen von Toluol mit Salpetersäure (D: 1,40) und Quecksilberoxyd anfangs auf 65° bis 85°, zuletzt zum Sieden (Davis, Mitarb., Am. Soc. 43, 600). Bei der Einw. von Peressigsäure auf N-Acetyl-p-toluidin (Bigiavi, R. A. L. [6] 5, 587). — Trennung von 2-Nitro-toluol durch Fraktionierung im Vakuum: Molinari, Atti Congr. naz. Chim. ind. 1924, 402; C. 1925 I, 2408.

#### Physikalische Eigenschaften.

Röntgenogramm: Sreenivasaiah, Indian J. Phys. 2, 151; C. 1928 II, 1970. F: 51,25° (Bell, Herty, J. ind. Eng. Chem. 11, 1125), 51,3° (korr.) (Bell, Mitarb., J. ind. Eng. Chem. 13, 59; C. 1921 III, 528; Bell, McEwen, J. ind. Eng. Chem. 14, 536; C. 1922 III, 718), 51,6° (Berliner, Max, Am. Soc. 48, 2631), 51,8° (korr.) (Sugden, Soc. 125, 1175), 52,4° (Jefremow, Tichomirowa, Izv. Inst. fiz.-chim. Anal. 3, 278; C. 1927 I, 2628), 52,2—52,9° (Williams, Schwingel, Am. Soc. 50, 363). E: 52,06° (Desvergnes, Monit. scient. [5] 15, 157; C. 1925 II, 2051). Erstarrungstemperaturen unter Drucken bis 3110 kg/cm² (125,0°): Pushin, Soc. 125, 2628. Kp. 238,34° (Be., M.), 238,8—239,0° (Lecat. R. 46, 245; Ann. Soc. scient. Bruxelles 48 I [1928], 15; 49 [1929], 22). Dampfdruck zwischen 50° und dem Siedepunkt: Be., M. D.: 1,299 (Ziegler, Ditzel, A. 473, 201): D.\*: 1,117 (Kerr, Phil. Mag. [7] 3, 332; C. 1927 II, 388). Oberflächenspannung bei 54°: 37,15 dyn/cm (Bhatnagar, Singh, J. Chim. phys. 25, 25); zwischen 56° (37,41 dyn/cm) und 220° (20,91 dyn/cm): Sugden, Soc. 125, 1176. Parachor: Su., Soc. 125, 1186; Bh., Singh. Verbrennungswärme bei konstantem Volumen: 888,6 kcal/Mol (Garner, Abernethy, Pr. roy. Soc. [A] 99, 225; C. 1921 III, 866).

Ultraviolett-Absorptionsspektrum in Alkohol: Marchlewski, Mayer, Bl. Acad. polon. [A] 1929, 189; C. 1929 II, 2152. Lichtabsorption im Ultrarot zwischen 1 und 15 μ: W. W. Coblentz, Investigations of infra-red spectra [Washington 1905], S. 252. Beugung von Röntgenstrahlen in geschmolzenem 4-Nitro-toluol bei 65°: Sogani, Indian J. Phys. 1, 372, 391; C. 1927 II, 2149. Ramanspektrum: Ganesan, Venkateswaran, Indian J. Phys. 4, 222, 269; C. 1929 II, 2646. Dielektr.-Konst. bei 58°: 22,22 (λ = 95 m) (Kerr, Phil. Mag. [7] 3, 332; C. 1927 II, 388). Dipolmoment μ×10<sup>18</sup> bei 25°: 4,50 (Williams, Phys. Z. 29, 178; W., Schwingel, Am. Soc. 50, 366; Höjendahl, Phys. Z. 30, 394; C. 1929 II, 1898; vgl. Debye, Z. El. Ch. 34, 452; H., Nature 117, 892; C. 1926 II, 1114). Magnetische Susceptibilität: Bhagavantam, Indian J. Phys. 4, 6; C. 1929 II, 2314.

Löslichkeit (g in 100 g Lösungsmittel) in Wasser bei 14,5°: 0,0040, bei 50°: 0,0078, bei 100°: 0,0116; bei 15° in Methanol: 13,70; in 96%igem Albehol: 8,58; in absol. Alkohol:

Löslichkeit (g in 100 g Lösungsmittel) in Wasser bei 14,5°: 0,0040, bei 50°: 0,0078, bei 100°: 0,0116; bei 15° in Methanol: 13,70; in 96%igem Alkohol: 8,58; in absol. Alkohol: 16,64; in Ather: 80,83; in Schwefelkohlenstoff: 72,57; in Tetrachlorkohlenstoff: 42,62; in Essigester: 91,13; in Aceton: 168,51; in Benzol: 127,64; in Toluol: 104,95; in Pyridin: 90,27 (DESVERGNES, Monit. scient. [5] 15, 157; C. 1925 II, 2051). Kritische Lösungstemperatur von Gemischen aus 4-Nitro-toluol und 83,2%iger Essigsäure und Einfluß auf die kritische Lösungstemperatur des Systems aus Nitrobenzol und 83,2%iger Essigsäure: Jones, Soc. 123, 1387, 1390. Thermische Analyse der binären Systeme mit Cyclohexan und mit Benzol:

248

Linard, Bl. Soc. chim. Belg. 34, 378, 395, 398; C. 1926 I, 2427; mit der β-Form des 2-Nitrotoluols (Eutektikum bei —15,73° und 26 Gew.-% p-Nitro-toluol): Bell, Mitarb., J. ind. Eng. Chem. 13, 60; C. 1921 III, 528; vgl. Gibson, Duckham, Fairbairn, Soc. 121, 270; mit 3-Nitrotoluol (Eutektikum bei —2,8° und ca. 37 Gew.-% 4-Nitro-toluol): B., McEwen, J. ind. Eng. Chem. 14, 536; C. 1922 III, 718; vgl. G., D., F.; mit 2.4.6-Trinitro-m-xylol: B., Sawyer, J. ind. Eng. Chem. 11, 1026; C. 1921 I, 174; mit Methylpikrylnitramin: Jefremow, Tichomirowa, Izv. Inst. fiz.-chim. Anal. 3, 278; C. 1927 I, 2628; mit Azobenzol und mit 4-Amino-azobenzol: Giua, Reggiani, G. 55, 655, 656. Thermische Analyse der ternären Systeme mit 2-Nitro-toluol und 3-Nitro-toluol: Gibson, Duckham, Fairbairn, Soc. 121, 271; mit 2-Nitro-toluol und 2.4-Dinitro-toluol bzw. mit 2-Nitro-toluol und 2.4.6-Trinitro-toluol: Bell, Cordon, J. ind. Eng. Chem. 13, 307; C. 1921 III, 622; B., Spry, J. ind. Eng. Chem. 13, 308; C. 1921 III, 622; mit 2.4-Dinitro-toluol und 2.4.6-Trinitro-toluol: B., Herty, J. ind. Eng. Chem. 11 [1919], 1129. Azeotrope Gemische, die 4-Nitro-toluol enthalten, s. in der untenstehenden Tabelle.

4-Nitro-toluol enthaltende binäre Azeotrope.

| Komponente              | Kp <sub>760</sub>                                           | Gew%<br>4-Nitro-toluol             | Komponente                                                                                                                                   | Kp <sub>760</sub>                                                                | Gew%<br>4-Nitro-toluol     |
|-------------------------|-------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------|
| Geraniol <sup>1</sup> ) | 238,9<br>ca. 231,8<br>228,8<br>216,3<br>ca. 217,6<br>227,45 | ca. 67<br>30<br>25<br>3<br>5<br>10 | Äthylenglykol 4). Brenzcatechin 1). Glycerin 1). Acetamid 2). Propionamid 1). Caprylsäure 4). Benzoesäure 2). Isobutylbenzoat 1). Safrol 1). | 192,4<br>238,8<br>235,7<br>213,3<br>219,5<br>ca. 233<br>237,45<br>238,7<br>234,5 | 36,5<br>89<br>83<br>52<br> |
| alkohol <sup>1</sup> )  | 234,0                                                       | 38                                 |                                                                                                                                              |                                                                                  |                            |

<sup>1)</sup> LECAT, Ann. Soc. scient. Bruxelles 48 I [1928], 15, 18. — 2) L., Ann. Soc. scient. Bruxelles 48 I, 118, 119. — 3) L., Ann. Soc. scient. Bruxelles 49 [1929], 22. — 4) L., Ann. Soc. scient. Bruxelles 49, 110, 112.

Dichte bzw. spezifisches Volumen von Gemischen mit Alkohol bei 30°: COHEN, DE MEESTER, MOESVELD, Ph. Ch. 108, 109; mit Benzol bei 25°: WILLIAMS, SCHWINGEL, Am. Soc. 50, 364. Einfluß einer dünnen Wandschicht auf die Ausflußzeit von Wasser aus Capillaren: Traube, Whang, Ph. Ch. 138, 111. Brechungsindices ternärer Gemische aus 4-Nitro-toluol, 2.4-Dinitro-toluol und 2.4.6-Trinitro-toluol bei 38—39°: Bell, Cummings, J. ind. Eng. Chem. 11, 1028; C. 1921 I, 175. Dielektr.-Konst. von Gemischen mit Benzol bei 25°: Williams, Phys. Z. 29, 178; W., Schwingel, Am. Soc. 50, 364. Elektrische Leitfähigkeit einer Lösung von 4-Nitro-toluol in Schwefelsäuremonohydrat bei 12°: Cherbuliez, Helv. 6, 285. Einfluß auf das Potential von Platin in verd. Schwefelsäure und in Eisessig-Schwefelsäure: Fichter, Bonhöte, Helv. 3, 408. Magnetische Doppelbrechung von Lösungen in Tetrachlorkohlenstoff: Ramanadham, Indian J. Phys. 4, 113; C. 1929 II, 3216. Geschwindigkeit der Reaktion von Allylbromid mit Pyridin in 4-Nitro-toluol: Kerr, Soc. 1929, 241.

### Chemisches Verhalten.

4-Nitro-toluol wird in festem Zustand und in Benzol-Lösung im Sonnenlicht nicht verändert (Schultz, Ganguly, B. 58, 708). Gibt bei der trocknen Destillation in Gegenwart von Aluminiumpulver im Wasserstoff- oder Kohlendioxyd-Strom bei 500—540° Toluol und geringe Mengen p-Toluidin (Ray, Dutt, J. indian chem. Soc. 5, 104; C. 1928 I, 2370). Liefert bei der elektrolytischen Oxydation an einer Platinanode in Eisessig und verd. Schwefelsäure oder in 2 n-Schwefelsäure auf dem Wasserbad sowie in Aceton und verd. Schwefelsäure bei Zimmertemperatur je nach den Bedingungen wechselnde Mengen 4-Nitro-benzylalkohol bzw. auch 4-Nitro-benzylacetat, 4-Nitro-benzaldehyd, wenig 4-Nitro-benzoesäure und andere Produkte (Fichter, Bonhôte, Helv. 3, 397, 403). Bei der elektrolytischen Oxydation in 20% iger Salpetersäure an einer Platinanode bei 100° entstehen größere Mengen 4-Nitro-benzoesäure (Dunbrook, Lowy, Trans. am. electroch. Soc. 45, 81; C. 1924 II, 2838). Gibt bei der Oxydation mit Luft bei Gegenwart von Zinnvanadat bei 270—300° 4-Nitro-benzoesäure und etwas 4-Nitro-benzaldehyd (Maxter, Dunsby, Soc. 1928, 1440). Beim Erhitzen mit 22,5 % iger Salpetersäure auf 180—185° unter 15 Atm. Sauerstoff-Druck entsteht 4-Nitro-benzoesäure (Abranasy, Elön, A. 461, 123). Bei der Einw. von Stickstofftetroxyd in Benzol entstehen geringe Mengen 4-Nitro-benzoesäure (Bass, Johnson, Am. Soc. 46, 459). 4-Nitro-

249

toluol liefert bei der Hydrierung in Gegenwart eines Nickel-Katalysators in Benzol bei 215° und ca. 35 Atm. Druck quantitativ p-Toluidin (Brown, Etzel, Henke, J. phys. Chem. 32, 635). Über die Hydrierung in Gegenwart von Platinoxyd in Alkohol und anderen Lösungsmitteln unter Druck vgl. Adams, Cohen, Rees, Am. Soc. 49, 1095. Bei der Einw. von Natriumdisulfid in siedendem Alkohol und nachfolgenden Behandlung mit Eisessig und Essigsäureanhydrid erhält man außer 4-Acetamino-benzaldehyd (Blanksma, R. 28 [1909], 109) 4-Acetaminotoluol und wenig [4-Acetamino-benzyliden]-p-toluidin (Syst. Nr. 1873) (Hodgson, Beard, Soc. 1927, 22). Liefert bei der Reduktion mit Magnesium in wäßrig-methylalkoholischer Ammoniumchlorid-Lösung oder in Methanol allein 4.4'-Dimethyl-azoxybenzol (Zechmeister, Rom, B. 59, 870; A. 468, 129; D. R. P. 446867; C. 1927 II, 1077; Frdl. 15, 227). Bei der Reduktion mit Zinkstaub und siedender alkoholischer Kalilauge entstehen je nach den Bedingungen wechselnde Mengen 4.4'-Dimethyl-azoxybenzol und 4.4'-Dimethyl-azobenzol sowie Spuren von p-Toluidin (Bamberger, B. 59, 423). 4-Nitro-toluol wird beim Erhitzen mit Eisenspänen und Eisen(III)-chlorid oder Natriumchlorid und Wasser auf 1000 (Bretnütz, Pensa, Notiz. chim.-ind. 2, 185; C. 1927 II, 243), beim Kochen mit Eisenpulver, Magnesiumchlorid und Wasser oder Aceton (MICEWICZ, Roczniki Chem. 8, 53; C. 1928 II, 441) und beim Erhitzen mit Hydrazinhydrat im Rohr auf 130° (MÜLLER, J. pr. [2] 111. 281) zu p-Toluidin reduziert; bei der Reduktion mit Hydrazin in Gegenwart von palladiniertem Calciumcarbonat in siedender alkoholischer Kalilauge erhält man 4.4′-Dimethyl-hydrazobenzol, in siedender methylalkoholischer Kalilauge außerdem auch 4.4′-Dimethyl-azobenzol und p-Toluidin (Busch, Schulz, B. 62, 1463). Reduktion mit Natriummethylat, -athylat und benzylat-Lösungen in Benzol: SUTER, DAINS, Am. Soc. 50, 2735.

4-Nitro-toluol liefert bei der Chlorierung in Gegenwart von wasserfreiem Eisen(III)chlorid bei 57-59° unter Ausschluß von Sonnenlicht und Feuchtigkeit 2-Chlor-4-nitro-toluol (Schofield, Soc. 1927, 2903), in Gegenwart von Antimon(III)-chlorid bei 65—75° je nach den Mengenverhältnissen 2. Chlor-4-nitro-toluol oder 2.6-Dichlor-4-nitro-toluol und andere Produkte (DAVIES, Soc. 121, 809; DAVIES, LEEPER, Soc. 1926, 1418). Chlorierung in Gegenwart von Jod und Eisen bei 40-50°: FIERZ-DAVID, Naturwiss. 17, 13; C. 1929 I, 863. Gibt bei der Einw. von Brom in Gegenwart von Eisenspänen 2-Brom-4-nitro-toluol (Lucas, Scudder, Am. Soc. 50, 245). Bei der Nitrierung mit einem Gemisch von 77% Schwefelsäure, 11,3% Salpetersäure und 11,7% Wasser bei 40—70° erhält man 2.4-Dinitro-toluol (GIBSON, DUCK-HAM, FAIRBAIRN, Soc. 121, 278). 4-Nitro-toluol gibt beim Erhitzen mit Schwefelsäure (D: 1,84) in Gegenwart von Jod auf 140° 4-Nitro-toluol-sulfonsäure-(2) (Rây, Dey, Soc. 117, 1407). Liefert beim Erwärmen mit nitrohydroxylaminsaurem Natrium  $Na_pN_2O_3$  in Wasser das Natriumsalz des 4-Nitrosohydroxylamino-toluols (Syst. Nr. 2219) (Bigiavi, Franceschi, G. 57, 378; BI., R. A. L. [6] 4, 458). Beim Erhitzen mit Quecksilber(II) acetat auf 140° und Behandeln des Reaktionsprodukts mit Natriumchlorid erhält man 4-Nitro-3-chlormercuri-toluol und 4-Nitro-2-chlormercuri-toluol (Syst. Nr. 2347) (Coffey, Soc. 1926, 3217). Beim Behandeln von 4-Nitro-toluol mit 4-Azido-toluol in konz. Schwefelsäure unterhalb  $0^{\circ}$ erhält man 5-Nitro-4'-amino-2-methyl-diphenylmethan und ein amorphes braungelbes Produkt (Bamberger, A. 443, 195). 4-Nitro-toluol liefert bei der Einw. von Chlordimethyläther in Gegenwart von Aluminiumchlorid 4-Nitro-1-methyl-2-chlormethyl-benzol; bei der Einw. von α.α'-Dichlor-dimethyläther bei Gegenwart von rauchender Schwefelsäure (20 % SO<sub>2</sub>) entsteht außerdem 5.5'-Dinitro-2.2'-dimethyl-diphenylmethan (Stephen, Short, Gladding, Soc. 117, 526). Bei längerem Erhitzen mit Benzaldehyd in Gegenwart von Piperidin entsteht eine gelbbraune, krystallinische Substanz vom Schmelzpunkt 137,5° (Skraup, Böнм, В. 59, 1013). 4-Nitro-toluol gibt bei der Kondensation mit 2 Mol Oxalester in Äther bei Gegenwart von 2 Mol Kaliumäthylat 4-Nitro-phenylbrenztraubensäure-äthylester, 4.4'-Dinitrostilben und 4.4'-Dinitro-dibenzyl (WISLICENUS, SCHULTZ, A. 436, 58). Liefert bei der Einw. von Methylmagnesiumjodid in Ather und Zersetzung des Reaktionsprodukts mit Wasser Methyl-p-toluidin und 4.4'-Dimethyl-azobenzol (НЕРWORTH, Soc. 117, 1010); reagiert analog mit Äthylmagnesiumbromid (HE.; vgl. dazu Pickard, Kenyon, Pr. chem. Soc. 23 [1908], 153). Gasentwicklung bei der Einw. von Äthylmagnesium bromid auf 4-Nitro-toluol: Gilman, FOTHERGILL, Am. Soc. 49, 2817. Bei der Umsetzung mit überschüssigem Phenylmagnesiumbromid in Ather unter Kühlung erhält man Phenyl-p-toluidin, Phenol, Diphenyl und geringe Mengen 1.4-Diphenyl-benzol (GIL., McCracken, Am. Soc. 51, 826).
Physiologisches Verhalten: H. Staub in J. Houben, Fortschritte der Heilstoffchemie,

2. Abt. Bd. II [Berlin-Leipzig 1932], S. 108.

 $\omega$ -Nitro-toluol, Phenylnitromethan  $C_7H_7O_2N = C_6H_5 \cdot CH_2 \cdot NO_2$  (H 325; E I 161). B. Neben anderen Produkten aus Benzol und Bromnitromethan bei Gegenwart von Aluminiumchlorid (SHERRILL, Am. Soc. 46, 2756). Zur Bildung aus der Natriumverbindung des Phenyl-isonitro-acetonitrils nach Wislicenus, Endres (B. 35, 1759) vgl. Wieland, Blümich, A. 424, 84. — Kp<sub>25</sub>: 135° (Sh.); Kp<sub>8</sub>: 110° (Baker, Ingold, Soc. 1926, 2467).  $D_{\alpha}^{\text{M-7}}$ : 1,5236;  $n_{\text{He}}^{\text{M-7}}$ : 1,5285;  $n_{\text{He}}^{\text{M-7}}$ : 1,5407 (v. Auwers, Ottens, B. 57, 458).

Phenylnitromethan liefert beim Nitrieren mit konz. Salpetersäure in der Kälte [3-Nitrophenyl]-nitromethan und geringere Mengen eines Gemisches von [2-Nitro-phenyl]-nitromethan und [4-Nitro-phenyl]-nitromethan (Baker, Soc. 1929, 2260; vgl. Bak., Ingold, Soc. 1926, 2468). Geschwindigkeit dieser Reaktion: BAKER. Gibt beim Erhitzen mit a-Nitrostilben und 50 %iger Natronlauge 3.4.5-Triphenyl-isoxazol (Meisenheimer, Weibezahn, B. 54, 3200). Bei kurzem Kochen mit α-Nitro-stilben in Natriummethylat-Lösung entstehen 3.4.5-Triphenyl- $\Delta^2$ -isoxazolinoxyd (Syst. Nr. 4203) und 3.4.5-Triphenyl-isoxazol (Kohler, Barrett, Am. Soc. 46, 2109). Beim Behandeln mit Dimethylsulfat in alkal. Lösung erhält man aci-Phenylnitromethan-methyläther (Syst. Nr. 631) (v. Auwers, B. 57, 456; Arndt, Rose, Soc. 1935, 6). Liefert beim Aufbewahren mit o-Toluylaldehyd bei Gegenwart von Methylamin in Alkohol  $\alpha'$ -Nitro-2-methyl-stilben und eine Verbindung  $C_{13}H_{19}O_{2}N$  (s. bei o-Toluylaldehyd, Syst. Nr. 640) (Meisenheimer, Mitarb., A. 468, 222). Gibt bei der Kondensation mit der aquimolekularen Menge m Toluylaldehyd in Gegenwart von aliphatischen Aminen und Behandeln des rohen α-Nitro-3-methyl-stilbens mit Natriummethylat-Lösung wenig 3.5-Diphenyl-4-m-tolyl-isoxazol sowie höherschmelzendes und niedrigerschmelzendes α'-Nitro-α-methoxy-3-methyl-dibenzyl (MEI., Mitarb., A. 468, 242). Bei der Kondensation mit überschüssigem m-Toluylaldehyd bei Gegenwart von aliphatischen Aminen entsteht reines  $\alpha'$ -Nitro-3-methyl-stilben (MEI., Mitarb., A. 468, 244). Reagiert mit p-Toluylaldehyd in Gegenwart von Methylamin unter Bildung von  $\alpha'$ -Nitro-4-methyl-stilben, 1-Nitro-2-methoxy-1-phenyl-2-p-tolyl-athan und einer Verbindung  $C_{21}H_{19}O_2N$  (s. bei p-Toluylaldehyd) (Mel., Mitarb., A. 468, 254). Phenylnitromethan gibt beim Kochen mit  $\beta$ -Chlor-propiophenon und wasserfreiem Kaliumacetat in schwach alkalischer Natriummethylat-Lösung y-Nitroγ-phenyl-butyrophenon; diese Verbindung entsteht auch beim Erwärmen mit Vinyl-phenylketon in Natriummethylat-Lösung auf dem Wasserbad (ALLEN, BRIDGESS, Am. Soc. 51, 2153). Liefert mit Benzylidenacetophenon in Natriummethylat-Lösung zwei stereoisomere  $\gamma$ -Nitro- $\beta$ ,  $\gamma$ -diphenyl-butyrophenone (Kohler, Am. Soc. 46, 1738). Beim Kochen mit 1 Mol Benzylidenmalonester und Natriumäthylat-Lösung in 95% igen Alkohol entstehen [ $\beta$ -Nitro- $\alpha.\beta$ -diphenyl-äthyl]-malonsäurediäthylester und geringe Mengen 3.4.5-Triphenyl-isoxazol; bei längerem Kochen mit 0,5 Mol Benzylidenmalonester erhält man hauptsächlich 3.4.5-Triphenyl- $\Lambda^2$ -isoxazolinoxyd, ferner 3.4.5-Triphenyl-isoxazol, [ $\beta$ -Nitro- $\alpha$ . $\beta$ -diphenyl-äthyl]-malonsäure-diäthylester und geringe Mengen Stilben (Ko., Barrett, Am. Soc. 48, 1772). — Phenylnitromethan gibt mit Pikrinsäure in alkal. Lösung eine rote Färbung (WEISE, TROPP, H. 178, 135).

aci- $\omega$ -Nitro-toluol, aci-Phenylnitromethan, Phenylisonitromethan  $C_7H_7O_2N=C_6H_5\cdot CH:NO\cdot OH$  (H 326; E I 161). Mechanismus und Geschwindigkeit der Umwandlung von aci-Phenyl-nitromethan in Phenylnitromethan bei Einw. von Salzsäure auf das Natriumsalz des aci-Phenyl-nitromethans bei  $0^0$  und  $+5,2^0$  in verd. Methanol: Branch, Jaxon-Deelman, Am. Soc. 49, 1769. Das Natriumsalz wird durch Jod in verd. Alkohol bei  $0^0$  zu niedrigschmelzendem 1.2-Dinitro-1.2-diphenyl-äthan oxydiert; bei Einw. von Jod bei Zimmertemperatur oder bei elektrolytischer Oxydation der wäßr. Lösung an einer Platinanode entsteht ein dunkelgefärbtes, vermutlich 1.2-Dinitro-1.2-diphenyl-äthan enthaltendes Öl, das beim Behandeln mit heißer 50 %iger Kalilauge in 3.4.5-Triphenyl-isoxazol übergeht (Nentizescu, B. 62, 2671). Beim Kochen des Natriumsalzes mit Jod in überschüssiger Alkalilauge erhält man Stilben (N.). Beim Behandeln des Natriumsalzes mit der berechneten Menge Bromwasser oder Brom in Chloroform entstehen Phenylbromnitromethan und 3.4.5-Triphenyl-isoxazol (Wieland, Blümich, A. 424, 85). Das Natrium- und Kaliumsalz geben beim Behandeln mit Salpetersäure je nach den Bedingungen wechselnde Mengen [3-Nitro-phenyl]-nitromethan. [2-Nitro-phenyl]-nitromethan und [4-Nitro-phenyl]-nitromethan (Baker, Soc. 1929, 2260). Geschwindigkeit dieser Reaktion: Ba. aci-Phenylnitromethan (Baker, Soc. 1929, 2260). Geschwindigkeit dieser Reaktion: Ba. aci-Phenylnitromethan liefert bei langsamer Einw. von Benzoylchlorid in auf —15° abgekühltem Pyridin Benzoyl-benzhydroximsäure-chlorid  $C_6H_5\cdot CCl: N\cdot O\cdot CO\cdot C_6H_5$  (Wieland, Kitasato, B. 62, 1252). — Na $C_7H_6O_2N$ . Niederschlag (aus Alkohol + Äther) (Ba.). —  $KC_7H_6O_2N$ . Krystalle (aus absol. Alkohol) (Ba.).

3-Fluor-2(P)-nitro-toluol C,H<sub>6</sub>O<sub>2</sub>NF, s. nebenstehende Formel. B. In geringer Menge bei der Einw. von Salpetersäure (D: 1,51) auf 3-Fluor-toluol anfangs unter Kühlung, später bei 55° (SCHIEMANN, B. 62, 1799, 1802).

F: 17,5—18°. Kp<sub>11-12</sub>: 92,2—92,8° (korr.).

CH<sub>3</sub>

CH<sub>3</sub>

5-Fluor-2-nitro-toluol C<sub>7</sub>H<sub>6</sub>O<sub>2</sub>NF, s. nebenstehende Formel. B. Entsteht als Hauptprodukt bei der Einw. von Salpetersäure (D: 1,51) auf 3-Fluortoluol anfangs unter Kühlung, dann bei 55° (Schiemann, B. 62, 1802). — Krystalle. F: 27—28°. Kp<sub>10</sub>: 97—98°. — Liefert beim Kochen mit methylalkoholischer Kalilauge 6-Nitro-3-methoxy-toluol.

CH3 F. NO2

6-Fluor-2-nitro-toluol C<sub>7</sub>H<sub>6</sub>O<sub>2</sub>NF, s. nebenstehende Formel (H 326). B. Bei der Einw. von rauchender Salpetersäure (D: 1,51) auf 2-Fluor-toluol, anfangs unter Kühlung, danach bei 55°, neben viel 6-Fluor-3-nitro-toluol (Schiemann, B. 62, 1799, 1805). — F: —2°. Kp<sub>11</sub>: 97—97,2° (korr.).

4-Fluor-3-nitro-toluol C<sub>7</sub>H<sub>6</sub>O<sub>2</sub>NF, s. nebenstehende Formel (E I 161). B. In geringer Menge bei tropfenweiser Zugabe von Salpetersäure (D: 1,51) zu 4-Fluor-toluol unter Kühlung, neben 2.6-Dinitro-p-kresol (Schiemann, B. 62, 1795, 1799). — Gelbe, viscose Flüssigkeit von süßem Geschmack und nitrobenzolähnlichem Geruch. F: 1—2°. Kp<sub>786</sub>: 231°; Kp<sub>8</sub>: 104,2° (korr.).

CH<sub>3</sub>

6-Fluor-3-nitro-toluol C<sub>7</sub>H<sub>6</sub>O<sub>2</sub>NF, s. nebenstehende Formel B. Bei der Einw. von Salpetersaure (D: 1,51) auf 2-Fluor-toluol, anfangs unter Kühlung, danach bei 55<sup>5</sup>, neben wenig 6-Fluor-2-nitro-toluol (SCHIEMANN, B. 62, 1799, 1804). — Gelbliche Krystalle. F: 41,5<sup>o</sup> (korr.). Kp<sub>13</sub>: 99,4—99,6<sup>o</sup> (korr.). — Liefert beim Kochen mit methylalkoholischer Kalilauge 5-Nitro-2-methoxy-toluol.

F. CH3

3-Fluor-4-nitro-toluol C<sub>7</sub>H<sub>e</sub>O<sub>2</sub>NF, s. nebenstehende Formel. B. In geringer Menge bei der Einw. von Salpetersäure (D: 1,51) auf 3-Fluor-toluol. anfangs unter Kühlung, später auf dem Wasserbad bei 55°, neben anderen Produkten (Schiemann, B. 62, 1799, 1801). — Monokline, wahrscheinlich holoedrische Nadeln (Faber) (aus Alkohol). F: 53,2° (korr.). — Liefert beim Kochen mit methylalkoholischer Kalilauge 4-Nitro-3-methoxy-toluol.

 $\begin{array}{ccc}
 & \text{CH}_3 \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & &$ 

ω-Fluor-4-nitro-toluol, 4-Nitro-benzylfluorid  $C_7H_6O_2NF = O_2N \cdot C_6H_4 \cdot CH_2F$ . B. Beim Nitrieren von Benzylfluorid mit absol. Salpetersäure in Acetanhydrid bei 25—30°. neben anderen Produkten (Ch. K. INGOLD, E. H. INGOLD, Soc. 1928, 2259). — Nadeln (aus Ather-Ligroin). F: 38,5°. — Gibt beim Kochen mit 10% iger Kaliumcarbonat-Lösung und anschließender Oxydation mit 3% iger Permanganat-Lösung 4-Nitro-benzoesäure.

ω.ω.ω-Trifluor-2-nitro-toluol, 2-Nitro-benzotrifluorid  $C_7H_4O_2NF_3=O_2N\cdot C_6H_4\cdot CF_3$ . B. Beim Behandeln von ω.ω.ω-Trifluor-6-nitro-3-amino-toluol mit Åthylnitrit und alkoh. Schwefelsäure (ROUCHE, Bl. Acad. Belgique [5] 13, 349; C. 1927 II, 1817). Entsteht analog aus ω.ω.ω-Trifluor-2-nitro-3-amino-toluol (R.). — Krystalle (aus Alkohol). F: 32,5°. Kp<sub>765</sub>: 216,3°. Flüchtig mit Wasserdampf. — Liefert bei der Reduktion mit Zinn und Salzsäure ω.ω.ω-Trifluor-2-amino-toluol.

ω.ω.ω-Trifluor-3-nitro-toluol, 3-Nitro-benzotrifluorid  $C_7H_4O_2NF_3 = O_2N \cdot C_8H_4 \cdot CF_3$  (H 327; E I 162). B. Zur Bildung durch Nitrierung von ω.ω.ω-Trifluor-toluol vgl. Swarts, Bl. Acad. Belgique [5] 6, 395; C. 1921 III, 32. — Kp<sub>40</sub>: 102—103° (Sw., Bl. Acad. Belgique [5] 6, 395).  $D_4^{i6}$ : 1,4671;  $n_5^{i6}$ : 1,4841;  $n_7^{i6}$ : 1,4957 (Sw., J. Chim. phys. 20, 65).

ω.ω.ω-Trifluor-4-nitro-toluol C<sub>2</sub>H<sub>4</sub>O<sub>2</sub>NF<sub>3</sub> = O<sub>2</sub>N·C<sub>5</sub>H<sub>4</sub>·CF<sub>3</sub>. B. Beim Behandeln von ω.ω.ω-Trifluor-4-nitro-3-amino-toluol mit Athylnitrit und alkoh. Schwefelsäure (ROUCHE, Bl. Acad. Belgique [5] 13, 350; C. 1927 II, 1817). — F: 41,5°.

3 - Chlor - 2 - nitro - toluol C<sub>7</sub>H<sub>6</sub>O<sub>2</sub>NCl, s. nebenstehende Formel (H 327; EI 162). B. Man fügt Natriumnitrit-Lösung unterhalb 0° zu einer Lösung von 2.3-Dinitro-4-amino-toluol in Alkohol und konz. Salzsäure und erwärmt das Reaktionsgemisch auf dem Wasserbad auf 70° (Elson, Gibson, Johnson, Soc. 1929, 2740). — Liefert beim Erhitzen mit Ammoniak (D: 0,880) auf 200° 2-Nitro-3-amino-toluol (Burton, Kenner, Soc. 119, 1052).

4 - Chlor - 2 - nitro - toluol C<sub>7</sub>H<sub>6</sub>O<sub>2</sub>NCl, s. nebenstehende Formel (H 327; E I 162). B. Zur Bildung aus 4-Chlor-toluol und Salpeterschwefelsäure vgl. GINDRAUX, Helv. 12, 932; HODGSON, ANDERSON, Soc. 125, 2196; Ho., J. Soc. Dyers Col. 41, 329; C. 1926 II, 1526. Neben 4-Chlor-3-nitro-toluol beim Behandeln von 4-Chlor-toluol mit Salpetersäure (D: 1,5), Phosphorpentoxyd und Acetanhydrid (Ho., An.; Ho.). Neben viel 6-Chlor-2-nitro-toluol beim Chlorieren von 2-Nitro-toluol in Gegenwart von Eisen und Jod bei 50—60° (G., Helv. 12, 927). Durch Diazotierung von 4-Chlor-2-nitro-3-amino-toluol mit Nitrosylschwefelsäure und nachfolgendes Kochen mit absol. Alkohol (Kenner, Tod., Witham, Soc. 127, 2348). Durch Diazotieren von 2-Nitro-4-amino-toluol und nachfolgendes Erwärmen mit Kupfer (I)-chlorid und verd. Salzsäure auf dem Wasserbad (Hodgson, J. Soc. Dyers Col. 41, 328; C. 1926 II, 1526).—Trennung von 6-Chlor-2-nitro-toluol durch fraktionierte Destillation: GINDRAUX, Helv. 12, 927. — Monokline Nadeln (Niggli, Helv. 12, 930). F: 37°; Kp<sub>11</sub>: 115,5° (G., Helv. 12, 930, 932). Thermische Analyse des Systems mit 6-Chlor-2-nitro-toluol: G. — Liefert beim Kochen mit wäßrig-alkoholischer Natriumdisulfid- oder Natriumtrisulfid-Lösung quantitativ 4-Chlor-2-amino-toluol (Hodgson, Anderson, Soc. 125, 2195). Liefert beim Umsetzen mit Isoamylnitrit und Natriumäthylat unter Eiskühlung 4-Chlor-2-nitro-benzaldoxim und 4.4'-Dichlor-2.2'-dinitro-dibenzyl (VAN der Lee, R. 45, 682).

6-Chlor-2-nitro-toluol C,H<sub>6</sub>O<sub>4</sub>NCl, s. nebenstehende Formel (H 327; E I 162). Darstellung durch Chlorierung von 2-Nitro-toluol in Gegenwart von Eisenspänen: MORGAN, GLOVER, Soc. 125, 1598; in Gegenwart von Eisen und Jod: GINDRAUX, Helv. 12, 927; H. E. FIERZ-DAVID, L. BLANGEY, Grundlegende

Cl· NO<sub>2</sub>

# KOHLENWASSERSTOFFE Cn H2n-6

Operationen der Farbenchemie 4. Aufl. [Wien 1938], S. 112. — Trennung von 4-Chlor-2-nitro-toluol durch fraktionierte Destillation: Gr. — Krystallographisches: Niggli, Helv. 12, 929. F: 37° (Gr.). Kp: 237—241° (M., Gl.). Thermische Analyse des Gemisches mit 4-Chlor-2-nitro-toluol (Eutektikum bei 3,5°): Gr. Über die Einw. von Chlor im Sonnenlicht vgl. Gindraux, Helv. 12, 930. Gibt bei der Nitrierung mit Salpeterschwefelsäure, anfangs bei 20°, dann bei 70—80° 6-Chlor-2.3-dinitro-toluol und wenig 6-Chlor-2.4-dinitro-toluol (Morgan, Drew, Soc. 117, 787; M., Jones, Soc. 119, 187).

ω-Chlor-2-nitro-toluol, 2-Nitro-benzylchlorid C<sub>7</sub>H<sub>6</sub>O<sub>2</sub>NCl = O<sub>2</sub>N·C<sub>6</sub>H<sub>4</sub>·CH<sub>2</sub>Cl (H 327; E I 162). F: 48—48,5° (OLIVIER, R. 41, 309), 49—50° (CONANT, KIRNER, HUSSEY, Am. Soc. 47, 498). Löslichkeit (g in 100 g Lösungsmittel) bei 30° in Alkohol: 26,3, in Aceton: 433, in Athylacetat: 257, in Benzol: 304, in Nitrobenzol: 217, in Athylbenzoat: 171,3 (McCombie, Scarborough, Smith, Soc. 1927, 809). — Geschwindigkeit der Hydrolyse in verd. Alkohol bei 83°: OLIVIER, R. 41, 310; bei 30° und 40,4°: O., R. 41, 650. Geschwindigkeit der Umsetzung mit Kaliumjodid in Aceton bei 25°: Co., Ki., Hu. Geschwindigkeit der Reaktion mit Benzol in Gegenwart von Aluminiumchlorid bei 30°: OLIVIER, BERGER, R. 45, 720, 721. Die bei der Reaktion mit Benzol und Aluminiumchlorid neben anderen Verbindungen entstehende Base C<sub>13</sub>H<sub>9</sub>ON (vgl. H 5, 328; E I 5, 162; 21, 312) ist als Acridin-N-oxyd erkannt worden (Tanasescu, Ramontianu, Bl. [5] I [1934], 548, 553; 3 [1936], 2009; KLIEGL, BRÖSAMLE, B. 69 [1936], 198). Geschwindigkeit der Reaktion mit Trimethylamin in verschiedenen organischen Lösungsmitteln bei 30°: McCombie, Scarborough, Smith, Soc. 1927, 809. Gibt bei monatelangem Aufbewahren mit der äquimolekularen Menge Dimethylanilin Dimethyl-phenyl-[2-nitro-benzyl]-ammoniumchlorid (Baw, Soc. 1927, 1398). — Verwendung als Kampfstoff: M. Sartori, Die Chemie der Kampfstoffe, 2. Aufl. [Braunschweig 1940], S. 142; J. Meyer, Der Gaskampf und die chemischen Kampfstoffe, 3. Aufl. [Leipzig 1938], S. 293; vgl. ferner van Nieuwenburg, Chem. Weekb. 19, 330; C. 1922 IV, 984. — Verhalter, bei der Stickstoff-Bestimmung nach Kjeldahl: Margosches, Kristen, B. 56, 1946.

2 - Chlor - 3 - nitro - toluol C<sub>7</sub>H<sub>6</sub>O<sub>2</sub>NCl, s. nebenstehende Formel (H 328; E I 163). Gibt bei mehrtägigem Kochen mit Salpetersäure (D: 1,37) 2-Chlor-3-nitro-benzoesäure (Kenner, Stubbings, Soc. 119, 598). Liefert bei der Einw. von Natriumhydrosulfid-Lösung und Schwefelkohlenstoff 2-Mercapto-7-methylbenzthiazol und wenig 2-Chlor-3-amino-toluol (Teppema, Sebrell, Am. Soc. 49, 1757).

4-Chlor-3-nitro-toluol C<sub>7</sub>H<sub>6</sub>O<sub>2</sub>NCl, s. nebenstehende Formel (H 329). B. Zur Bildung aus 4-Chlor-toluol und Salpeterschwefelsäure vgl. GINDRAUX, Helv. 12, 932; HODGSON, ANDERSON, Soc. 125, 2196; Ho., J. Soc. Dyers Col. 41, 329; C. 1926 II, 1526. Neben 4-Chlor-2-nitro-toluol beim Behandeln von 4-Chlor-toluol mit Salpetersäure (D: 1,5), Phosphorpentoxyd und Essigsäureanhydrid (Ho., An.; Ho.). Durch Diazotieren von 3-Nitro-4-amino-toluol und Erwärmen des Diazoniumsalzes mit Kupfer(I)-chlorid und verd. Salzsäure auf dem Wasserbad (Ho.).

des Diazoniumsalzes mit Kupfer(I)-chlorid und verd. Salzsäure auf dem Wasserbad (Ho.). — Kp<sub>11</sub>: 118° (G.). — 4-Chlor-3-nitro-toluol liefert bei der elektrolytischen Reduktion in konz. Schwefelsäure 4-Chlor-5-amino-2-oxy-toluol (E I 13, 218) (Rafford, Am. 46 [1911], 440, 445). Gibt beim Kochen mit wäßrig-alkoholischer Natriumdisulfid- oder -trisulfid-Lösung quantitativ 3-Amino-4-mercapto-toluol (Ho., An., Soc. 125, 2195). Beim Kochen mit Natriumhydrosulfid-Lösung und Schwefelkohlenstoff entsteht 2-Mercapto-5-methylbenzthiazol (Террема, Sebrell, Am. Soc. 49, 1757).

6-Chlor-3-nitro-toluol C<sub>7</sub>H<sub>8</sub>O<sub>2</sub>NCl, s. nebenstehende Formel (H 329; E I 163). B. Beim Erhitzen von 6-Chlor-3-nitro-toluol-sulfinsäure-(4) mit Pyridin auf dem Wasserbad (Dann, Davies, Soc. 1929, 1053). Beim Erhitzen von diazotiertem 6-Chlor-3-nitro-2-amino-toluol mit Alkohol, neben 4-Chlor-7-nitro-indazol (Morgan, Drew, Soc. 117, 787). — Mit Wasserdampf flüchtig (M., D.).

ω-Chlor-3-nitro-toluol, 3-Nitro-benzylchlorid C<sub>7</sub>H<sub>6</sub>O<sub>2</sub>NCl = O<sub>2</sub>N·C<sub>6</sub>H<sub>4</sub>·CH<sub>2</sub>Cl (H 329; E I 163). B. In geringer Menge bei der Einw. von Aluminiumchlorid auf Nitrobenzol und Monochlordimethyläther, neben 3.3′-Dinitro-diphenylmethan (Stephen, Short, Gladding, Soc. 117, 525). In geringer Menge bei längerem Erwärmen von Nitrobenzol mit α.α′-Dichlor-dimethyläther (dargestellt durch Einleiten von Chlorwasserstoff in 40%ige Formaldehyd-Lösung) in schwach rauchender Schwefelsäure bei 50° (St., Sh., Gl.). Beim Kochen von 3-Nitro-benzylalkohol mit je 2 Tln. konz. Salzsäure und wasserfreiem Zinkchlorid (Norris, Taylor, Am. Soc. 46, 756). — Tafeln (aus Alkohol). F: 45,5° (Olivier, R. 41, 309; Norrish, Smith, Soc. 1928, 130), 45—46° (Conant, Kirner, Hussey, Am. Soc. 47, 498). Kp<sub>3</sub>: 155—160° (Baker, Cooper, Ingold, Soc. 1928, 431). Löslichkeit (g in 100 g Lösungsmittel) bei 30° in Alkohol: 30,4, in Aceton: 644, in Athylacetat: 394, in Nitrobenzol: 326, in Athylbenzoat: 266 (McCombie, Scarborough, Smith, Soc. 1927, 809). — Geschwindigkeit der Hydrolyse durch wäßr. Alkohol bei 83°: Olivier, R. 41, 310; bei 30°

und 40,4°: O., R. 41, 650. Geschwindigkeit der Umsetzung mit Kaliumjodid in Aceton be. 25°: Co., KI., Hu. Geschwindigkeit der Reaktion mit Benzol in Gegenwart von Aluminium-chlorid bei 30°: Olivier, Berger, R. 45, 721. Geschwindigkeit der Reaktion mit Trimethylamin in verschiedenen organischen Lösungsmitteln bei 30°: McCombie, Scarborough, Smith, Soc. 1927, 809; in Benzol bei 25°, 30° und 35°: Norbish, Smith, Soc. 1928, 132; mit Anilin, o- und p-Toluidin und Dimethylanilin in Methanol bei 35° und 45°: Peacock, Soc. 127, 2179; mit Methyläthylanilin in Methanol bei 35° und 45°: P., J. phys. Chem. 31, 535. Gibt beim Behandeln mit Hexamethylentetramin in siedendem Alkohol und Erhitzen des Reaktionsprodukts mit Ameisensäure auf dem Dampfbad Dimethyl-[3-nitro-benzyl]amin (Goss, Ingold, Wilson, Soc. 1926, 2458). — Verhalten bei der Stickstoff-Bestimmung nach Kjeldahl: Margosches, Kristen, B. 56, 1946.

2-Chlor-4-nitro-toluol C<sub>7</sub>H<sub>6</sub>O<sub>2</sub>NCl, s. nebenstehende Formel (H 329). B. Durch Chlorierung von 4-Nitro-toluol in Gegenwart von wasserfreiem Eisen(III)-chlorid bei 57—59° unter Ausschluß von Sonnenlicht und Feuchtigkeit (SCHOFIELD, Soc. 1927, 2903) oder in Gegenwart von Antimon(III)-chlorid bei 65—75° (DAVIES, Soc. 119, 868; 121, 809). — F: 63—65° (korr.) (DA.), 65° (MORGAN, DREW, Soc. 117, 789), 66° (DYSON, Pertum, essent. Oil Rec. 19 [1928], 173). KD<sub>260</sub>: 260° (korr.) (DA.)



Soc. 1927, 2503) oder in Gegenwart von International (III)-chlorid Soc. 119, 868; 121, 809). — F: 63—65° (korr.) (Da.), 65° (Morgan, Drew, Soc. 117, 789), 66° (Dyson, Perfum. essent. Oil Rec. 19 [1928], 173). Kp<sub>780</sub>: 260° (korr.) (Da.).

Liefert bei weiterer Behandlung mit 1 Mol Chlor bei 60—70° im zerstreuten Tageslicht in Gegenwart von Antimon(III)-chlorid, Eisen(III)-chlorid oder (weniger gut) von amalgamiertem Aluminium 2.6-Dichlor-4-nitro-toluol und andere Produkte (Davies, Soc. 121, 810). Chlorierung bei Gegenwart von Jod: Da. Liefert bei Einw. von Salpeterschwefelsäure bei 40—90° 6-Chlor-3.4-dinitro-toluol und wenig 6-Chlor-2.4-dinitro-toluol (Morgan, Drew, Soc. 117, 786; M., Challenor, Soc. 119, 1539). Gibt beim Erhitzen mit Schwefel und wäßrigalkoholischer Natronlauge auf dem Wasserbad, Diazotieren des Reaktionsprodukts in verd. Schwefelsäure und nachfolgenden Kochen mit 40 % iger Schwefelsäure 2-Chlor-4-oxy-benzaldehyd (Hodgson, Jenkinson, Soc. 1927, 1742). Mit heißer alkoholischer Natronlauge entsteht eine intensive Rotfärbung (Mor., Dr.).

3 - Chlor - 4 - nitro - toluol C<sub>7</sub>H<sub>6</sub>O<sub>2</sub>NCl, s. nebenstehende Formel (H. 329; E. I. 163). B. Beim Diazotieren von 4-Nitro-3-amino-toluol in verd. Salzsäure unterhalb 0° und Behandeln des Diazoniumsalzes mit Kupfer (I)-chlorid in Salzsäure (Elson, Gibson, Johnson, Soc. 1929, 2739). — Gelbliche Nadeln. F: 22°. Kp<sub>19</sub>: 146°.

 $\bigodot_{NO_2} \cdot \operatorname{Cl}$ 

ω-Chlor-4-nitro-toluol, 4-Nitro-benzylchlorid C<sub>7</sub>H<sub>6</sub>O<sub>2</sub>NCl = O<sub>2</sub>N·C<sub>6</sub>H<sub>4</sub>·CH<sub>2</sub>Cl (H 329; E I 163). B. Beim Kochen von 4-Nitro-benzylalkohol mit je 2 Tln. konz. Salzsäure und wasserfreiem Zinkchlorid (Norris, Taylor, Am. Soc. 46, 756). Zur Darstellung aus Benzylchlorid und Salpeterschwefelsäure nach Alway (Am. Soc. 24 [1902], 1062) vgl. Desai, J. indian Inst. Sci. 7, 243; C. 1925 I, 1298. — F: 71—72° (Conant, Kirner, Hussey, Am. Soc. 47, 499), 72,5° (Olivier, R. 41, 309; Norrish, Smith, Soc. 1928, 130). Löslichkeit (g in 100 g Lösungsmittel) bei 30° in Alkohol: 8,2, in Aceton: 126,8, in Athylacetat: 69,7, in Benzol: 74,2, in Athylbenzoat: 51,2 (McCombie, Scarborough, Smith, Soc. 1927, 809). Wird durch Titro(III) obleid in stark source heißer Lösung in siper Kohlendiovyd.

Wird durch Titan(III)-chlorid in stark saurer heißer Lösung in einer Kohlendioxyd-Atmosphäre vollständig reduziert (ENGLISH, J. ind. Eng. Chem. 12, 997; C. 1921 II, 623). Geschwindigkeit der Hydrolyse durch wäßr. Alkohol bei 83°: OLIVIER, R. 41, 310, 311; bei 30° und 40,4°: O., R. 41, 650. Geschwindigkeit der Umsetzung mit Kaliumjodid in Aceton bei 25°: CONANT, KIRNER, HUSSEY, Am. Soc. 47, 499. Beim Behandeln mit Natriumhydrosulfid in Alkohol erhält man 4.4'-Dinitro-dibenzylsulfid und 4.4'-Dinitro-dibenzyldisulfid (HORN, Am. Soc. 43, 2610). Geschwindigkeit der Reaktion mit Benzol, mit Chlorbenzol und mit Toluol in Gegenwart von Aluminiumchlorid bei 30°: Olivier, Berger, R. 45, 718, 720. 4-Nitro-benzylchlorid liefert bei Einw. von Nitrosobenzol in Methanol + Alkohol in Gegenwart von Kaliumhydroxyd bei gewöhnlicher Temperatur 4-Nitro-benzaldoxim-N-phenyläther (Syst. Nr. 1604), reagiert analog mit 4-Nitroso-dimethyl-anilin (Barrow, Griffiths, Soc. 119, 213). Mit 4-Nitroso-1-nitro-benzol entstehen unter diesen Bedingungen 4.4'-Dinitrostilben und 4-Nitro-benzaldoxim-N-[4-nitro-phenyl-äther] (Syst. Nr. 1671) (Ba., Gr.). Liefert beim Kochen mit Benzaldehyd und Kaliumcarbonat in Methanol 4-Nitro-stilbenoxyd C<sub>6</sub>H<sub>4</sub>·CH O CH·C<sub>6</sub>H<sub>4</sub>·NO<sub>2</sub> vom Schmelzpunkt 125—126° und eine Spur 4.4′-Dinitrostilben (Bergmann, Hervey, B. 62, 905); reagiert analog unter Bildung von höher- und niedrigerschmelzenden Äthylenoxyden mit 2-, 3- und 4-Nitro-benzaldehyd, Anisaldehyd und Diphenylacetaldehyd (Be., He.; vgl. Ba., Gr., Soc. 119, 212) sowie mit Zimtaldehyd (Kleucker, B. 55, 1643, 1645). Liefert mit Benzil bei Gegenwart von Kaliumcarbonat in siedendem Methanol α-Phenyl-α'-[4-nitro-phenyl]-α-benzoyl-āthylen-oxyd; reagiert analog mit Phenanthrenchinon (BERGMANN, HERVEY, B. 62, 908; HAHN, B. 62, 2487). Geschwindigkeit der Reaktion mit Trimethylamin in verschiedenen organischen Lösungsmitteln und Lösungsmittel-Gemischen bei 30°: Dexter, McCombie, Scarborough, Soc. 123, 1231, 1237;

McC., ROBERTS, Sc., Soc. 127, 759; McC., Sc., SMITH, Soc. 1927, 809; in Benzol bei 25°, 30°

und 35°: Norrish, Smith, Soc. 1928, 131; mit Anilin und p-Toluidin in Alkohol bei 35° und 45°: Peacock, Soc. 125, 1978; mit Anilin, Dimethylanilin, o-Toluidin und p-Toluidin in Methanol bei 35° und 45°: P., Soc. 127, 2179; mit Methylathylanilin in Methanol bei 35° und 45°: P., J. phys. Chem. 31, 535. Verhalten bei der Stickstoff-Bestimmung nach KJeldahl: Margosches, Kristen, B. 56, 1946.

 $\omega$ -Chlor- $\omega$ -nitro-toluol, Phenylchlornitromethan  $C_7H_6O_5NCl=C_6H_5\cdot CHCl\cdot NO_5$ . B. Aus Phenylchlornitroacetamid beim Behandeln mit Kalilauge bei gewöhnlicher Temperatur (VAN PESKI, R. 41, 698). — Farblose Flüssigkeit.

3.5-Dichlor-2-nitro-toluol  $C_2H_5O_2NCl_2$ , Formel I (H 331). Liefert mit Salpetersäure (D: 1,52) bei 65° ein Gemisch von 3.5-Dichlor-2.4-dinitro-toluol und 3.5-Dichlor-2.6-dinitro-toluol (Borsche, Trautner, A. 447, 13 Anm. 2).

4.5-Dichlor-2-nitro-toluol  $C_7H_8O_8NCl_2$ , Formel II (H 331). B. Durch Diazotierung von 4-Chlor-6-nitro-3-amino-toluol mit Nitrosylschwefelsäure und nachfolgende Behandlung mit Kupfer(I)-chlorid in Salzsäure bei 0º (Kenner, Tod, Witham, Soc. 127, 2348). — Gelbe Nadeln (aus Methanol). F: 63°. — Gibt beim Erhitzen mit Natriummethylat-Lösung auf 100° 4-Chlor-6-nitro-3-methoxy-toluol.

4.5-Dichlor-8-nitro-toluol C<sub>7</sub>H<sub>5</sub>O<sub>2</sub>NCl<sub>2</sub>, Formel III (H 332). Liefert beim Erhitzen mit Kupferpulver auf 230-2500 6.6'-Dichlor-2.2'-dinitro-4.4'-dimethyl-diphenyl (Burton, Kenner, Soc. 121, 495).

4.6-Dichlor-3-nitro-toluol C<sub>7</sub>H<sub>5</sub>O<sub>2</sub>NCl<sub>2</sub>, Formel IV (H 332; E I 163). B. Aus 4-Chlor-5-nitro-2-amino-toluol durch Diazotieren und Behandeln mit Kupfer(I)-chlorid in Salzsäure (Dadswell, Kenner, Soc. 1927, 585). — Liefert beim Erhitzen mit Natriummethylat-Lösung auf 115—120° 5-Nitro-2.4-dimethoxy-toluol.

6. $\omega$ -Dichlor-3-nitro-toluol, 6-Chlor-3-nitro-benzylchlorid  $C_7H_5O_3NCl_2$ , Formel V. B. Bei tropfenweiser Zugabe von rauchender Salpetersäure zu 2-Chlor-benzylchlorid bei 30-40° (Meisenheimer, Zimmermann, v. Kummer, A. 446, 225). — Prismen (aus Alkohol). F: 66°. — Zeigt unangenehme Reizwirkung auf Augen und Haut.

 $\omega.\omega$ -Dichlor-3-nitro-toluol, 3-Nitro-benzylidenchlorid  $C_7H_5O_3NCl_2=O_2N\cdot C_6H_4\cdot CHCl_2$  (H 332; E I 163). Liefert bei längerer Einw. von Natriummethylat-Lösung und folgendem Erhitzen des Reaktionsprodukts mit verd. Schwefelsäure Methyl-[3-nitro-4-methoxy-benzyl]-äther und Methyl-[5-nitro-2-methoxy-benzyl]-äther(?); bei Einw. von Natriumäthylat-Lösung unterhalb 30° und folgendem Erhitzen mit verd. Schwefelsäure erhält man Äthyl-[5-nitro-2-äthoxy-benzyl]-äther, Äthyl-[3-nitro-4-äthoxy-benzyl]-äther und 3-Nitro-benzaldehyd (Kliegl, Hölle, B. 59, 904, 908).

2.5-Dichlor-4-nitro-toluol C<sub>7</sub>H<sub>5</sub>O<sub>2</sub>NCl<sub>2</sub>, s. nebenstehende Formel (H 332). B. Beim Nitrieren von 5-Chlor-2-amino-toluol bei -5° bis 0° mit Salpeterschwefelsäure, Diazotieren und nachfolgenden Behandeln mit Kupfer(I)-chlorid in Salzsäure bei 70° (I. G. Farbenind., D. R. P. 510306; C. 1931 I, 1011; Frdl. 16, 369). Beim Diazotieren von 6-Chlor-4-nitro-3-amino-toluol und folgenden Behandeln mit Kupfer(I)-chlorid in Salzsäure (Morgan, Drew, Soc. 117, 789).

CH<sub>3</sub> NO2

2.6-Dichlor-4-nitro-toluol C<sub>2</sub>H<sub>5</sub>O<sub>2</sub>NCl<sub>2</sub>, s. nebenstehende Formel. B. Bei der Chlorierung von 4-Nitro-toluol in Gegenwart von Antimon(III)-chlorid bei 65-75° (DAVIES, LEEPER, Soc. 1926, 1417). Neben anderen Produkten bei der Einw. von 1 Mol Chlor auf 2-Chlor-4-nitro-toluol in Gegenwart von Antimon(III)chlorid, Eisen(III)-chlorid oder (weniger gut) von amalgamiertem Aluminium bei 60—70° im zerstreuten Tageslicht (Davies, Soc. 121, 810). Durch Diazotierung von 2.6-Dichlor-4-nitro-3-amino-toluol in Schwefelsäure und Zersetzung des Diazonium-

CH<sub>3</sub>

sulfats mit Alkohol (Da., Lee., Soc. 1926, 1446). — Nadeln (aus Alkohol oder Petroläther). F: 65°; Kp<sub>760</sub>: 278—279° (Da., Soc. 121, 812). — Wird beim Kochen mit Permanganat-Lösung in Gegenwart von Kohlendioxyd kaum verändert (Da.). Über die Chlorierung in Gegenwart von Eisen(III)-chlorid vgl. Da., Lee., Soc. 1926, 1418. Liefert beim Erwärmen mit Salpeterschwefelsäure auf dem Wasserbad 2.6-Dichlor-3.4-dinitro-toluol (Da.; Da. LEE., Soc. 1926, 1416).

3.5 - Dichlor - 4 - nitro - toluol C7H5O2NCl2, Formel VI. B. Beim Diazotieren von 3.5-Dibrom-4-nitro-2-amino-toluol in stark salzsaurer Lösung und Verkochen mit Alkohol

- (Borsche, Trautner, A. 447, 13 Anm. 2). Mit Wasserdampf ziemlich leicht flüchtig. Liefert bei kurzem Erwärmen mit 10 Tln. Salpetersäure (D: 1,52) 3.5-Dichlor-2.4-dinitrotoluol.
- ω.ω-Dichlor-4-nitro-toluol, 4-Nitro-benzylidenchlorid  $C_7H_5O_2NCl_2 = O_4N \cdot C_6H_4 \cdot CHCl_2$  (H 332; E I 163). Liefert beim Behandeln mit 4-Nitro-benzaldehyd in Gegenwart von alkoh. Kalilauge nicht näher beschriebenes α-Chlor-4.4'-dinitro-stilbenoxyd (BARROW, GRIFFITHS, Soc. 119, 212).
- 3.4.5.6-Tetrachlor-2-nitro-toluol  $C_7H_3O_2NCl_4$ , Formel VII. B. Durch Nitrierung von 2.3.4.5-Tetrachlor-toluol mit Salpeterschwefelsäure anfangs bei 60°, zuletzt bei 105° (SILBERRAD, Soc. 127, 2683). F: 159,6° (korr.).
- 4.5.6. $\omega$  Tetrachlor 2 nitro toluol, 4.5.6 Trichlor 2 nitro benzylchlorid  $C_7H_3O_2NCl_4$ , Formel VIII. B. In sehr geringer Menge bei längerem Erhitzen von 2.4.6-Trinitro-toluol mit Phosphorpentachlorid in Gegenwart von wenig Jod im Rohr auf 150—160° (GANGULY, B. 58, 710). Nadeln (aus Alkohol). F: 122°.

- 2.4.5.6-Tetrachlor-3-nitro-toluol C<sub>7</sub>H<sub>3</sub>O<sub>2</sub>NCl<sub>4</sub>, Formel IX (H 333). Die von Cohen, Dakin (Soc. 85 [1904], 1280) bei der Nitrierung von 2.3.4.6-Tetrachlor-toluol erhaltene Verbindung vom Schmelzpunkt 131—134° war vermutlich ein verunreinigtes Präparat; die bei weiterer Nitrierung erhaltene Verbindung vom Schmelzpunkt 153° ist wahres 2.4.5.6-Tetrachlor-3-nitro-toluol (Silberrad, Soc. 127, 2683). Krystalle (aus Alkohol). F: 154° (S.).
- 3-Brom-2-nitro-toluol C<sub>7</sub>H<sub>6</sub>O<sub>2</sub>NBr, s. nebenstehende Formel. B. Neben wenig 4-Brom-2-nitro-toluol beim Erhitzen von 2-Nitro-toluol mit Quecksilber(II)-acetat auf 150° und Behandeln des Reaktionsprodukts mit Brom in kalter wäßriger Kaliumbromid-Lösung (BURTON, HAMMOND, KENNER, Soc. 1926, 1802). Durch Einw. von Natriumnitrit-Lösung auf ein Gemisch von 2.3-Dinitro-4-aminotoluol, Alkohol und Bromwasserstoff (D: 1,324) und Erhitzen der Diazoniumsalz-Lösung auf dem Wasserbad (ELSON, GIBSON, JOHNSON, Soc. 1929, 2741). Gelbliche Nadeln. F: 27°; Kp<sub>10</sub>: 129—130° (EL., GI., Jo.). Etwas löslich in Alkohol und Äther, unlöslich in Wasser (EL., GI., Jo.). Gibt bei der Oxydation mit Permanganat in neutraler Lösung 3-Brom-2-nitro-benzoesäure (EL., GI., Jo.).
- 4-Brom 2-nitro toluol C<sub>7</sub>H<sub>8</sub>O<sub>2</sub>NBr, s. nebenstehende Formel (H 333; E I 163). B. Durch Diazotieren von 2-Nitro-4-amino-toluol in bromwasserstoff-saurer Lösung und nachfolgendes Behandeln mit Kupfer(I)-bromid und Kaliumbromid (GIBSON, JOHNSON, Soc. 1929, 1246) oder mit Kupferpulver (VAN DER LEE, R. 45, 684). Bildung aus 2-Nitro-toluol s. im vorangehenden Artikel. Beim Behandeln von 2-Nitro-4-chlormercuri-toluol (Syst. Nr. 2347) mit der berechneten Menge Brom in Chloroform (Coffey, Soc. 1926, 639). F: 45,5—47° (VAN DER LEE), 46—47° (Burton, Hammond, Kenner, Soc. 1926, 1803). Kp<sub>13,5</sub>: 131° (VAN DER L.). Liefert beim Umsetzen mit Isoamylnitrit und Natriumäthylat in Ather unterhalb 0° 4-Brom-2-nitro-benzaldoxim und 4.4'-Dibrom-2.2'-dinitro-dibenzyl (VAN DER L.).
- 5-Brom-2-nitro-toluol C<sub>7</sub>H<sub>6</sub>O<sub>2</sub>NBr, Formel X (H 333). B. Beim Diazotieren von 6-Nitro-3-amino-toluol in bromwasserstoffsaurer Lösung und nachfolgenden Behandeln mit Kupfer(I)-bromid und Kaliumbromid in Bromwasserstoffsäure (Gibson, Johnson, Soc. 1929, 1245). F: 56°.
- 6-Brom -2-nitro-toluol C<sub>7</sub>H<sub>6</sub>O<sub>2</sub>NBr, Formel XI auf S. 256 (H 333). B. Analog der vorangehenden Verbindung (Gibson, Johnson, Soc. 1929, 1245). F: 42°. Kp<sub>22</sub>: 143°.
- ω-Brom-2-nitro-toluol, 2-Nitro-benzylbromid C<sub>7</sub>H<sub>6</sub>O<sub>2</sub>NBr = O<sub>2</sub>N·C<sub>6</sub>H<sub>4</sub>·CH<sub>2</sub>Br (E I 164). B. Aus 2-Nitro-benzylalkohol durch wiederholte Einw. von Bromwasserstoff in Chloroform in Gegenwart von wasserfreiem Natriumsulfat oder durch Einw. von Phosphorpentabromid in Chloroform unter Kühlung (Mouret, Brown, Bl. [4] 29, 1007; Shoesmith, Hetherington, Slater, Soc. 125, 1316). Hellgelbe Tafeln (aus Petroläther). F: 46° (M., Br.), 45,5° (Sh., H., Sl.). Geschwindigkeit der Hydrolyse durch wäßr. Alkohol bei 76°: Sh., H., Sl.
- 2-Brom-3-nitro-toluol C<sub>7</sub>H<sub>6</sub>O<sub>2</sub>NBr, Formel XII auf S. 256. B. Beim Diazotieren von 3-Nitro-2-amino-toluol in verd. Bromwasserstoffsäure unterhalb 0° und folgenden Behandeln der Diazoniumsalz-Lösung mit Kupfer(I)-bromid und Kaliumbromid in Bromwasserstoffsäure (Gibson, Johnson, Soc. 1929, 1243). Gelbe Prismen. F: 41—42°. Kp<sub>23</sub>: 157°; Kp<sub>8</sub>: 135—136°. Leicht löslich in Alkohol, fast unlöslich in Wasser.

256

4-Brom-3-nitro-toluol C<sub>7</sub>H<sub>6</sub>O<sub>2</sub>NBr, Formel XIII (H 333; E I 164). B. Aus 3-Nitro-4-amino-toluol analog der vorangehenden Verbindung (GIBSON, JOHNSON, Soc. 1929, 1246). Beim Behandeln von 3-Nitro-4-chlormercuri-toluol mit Brom in Kaliumbromid-Lösung (COFFEY, Soc. 1926, 3223). — Krystalle (aus Methanol). F: 35° (C.). — Gibt beim Erhitzen mit 33 %iger wäßriger Methylamin-Lösung im Rohr auf 150° 3-Nitro-4-methylamino-toluol (BRADY, REYNOLDS, Soc. 1928, 202).

$$XI. \xrightarrow{Br} \overset{CH_3}{\bigodot} XII. \overset{CH_3}{\bigodot} XIII. \overset{CH_3}{\bigodot} XIII. \overset{CH_3}{\bigodot} XIV. \xrightarrow{Br} \overset{CH_3}{\bigodot} XV. \xrightarrow{Br} \overset{CH_3}{\bigodot} XV.$$

- 5-Brom-8-nitro-toluol C<sub>7</sub>H<sub>6</sub>O<sub>2</sub>NBr, Formel XIV (H 334). B. Durch Einw. von Brom auf 5-Nitro-3-chlormercuri-toluol in Tetrachlorkohlenstoff oder Kaliumbromid-Lösung (Coffey, Soc. 1926, 3223). Gelbliche Nadeln (aus Methanol). F: 83,5—84,5° (korr.) (C.), 83° (Gibson, Johnson, Soc. 1929, 1246).
- 6-Brom-3-nitro-toluol C<sub>7</sub>H<sub>6</sub>O<sub>2</sub>NBr, Formel XV (H 334; E I 164). B. Zur Bildung aus 5-Nitro-2-amino-toluol nach Neville, Winther (B. 13 [1880], 969) vgl. Gibson, Johnson, Soc. 1929, 1244.
- ω-Brom-3-nitro-toluol, 3-Nitro-benzylbromid  $C_7H_6O_2NBr = O_2N \cdot C_6H_4 \cdot CH_2Br$  (H 334; E I 164). B. Aus 3-Nitro-benzylalkohol durch Einw. von Bromwasserstoff in Benzol (Shoesmith, Hetherington, Slater, Soc. 125, 1316) oder von Brom und rotem Phosphor (Oxford, Robinson, Soc. 1926, 386). Krystalle (aus Petroläther). F: 59—60° (O., R.). Geschwindigkeit der Hydrolyse durch wäßr. Alkohol bei 76°: Sh., H., Sl.
- 2-Brom 4 nitro toluol C<sub>7</sub>H<sub>8</sub>O<sub>2</sub>NBr, s. nebenstehende Formel (H 334; E I 164). B. Aus 4-Nitro-toluol bei der Einw. von Brom in Gegenwart von Eisenspänen erst unter Kühlung, zuletzt bei 150° (Lucas, Scudder, Am. Soc. 50, 245) oder in Gegenwart von Eisenbromid bei 70° (Frejka, Vitha, Spisy přírodov. Mas. Univ. 1925, Nr. 48, S. 11; C. 1925 II, 1153). Beim Diazotieren von 4-Nitro-2-amino-toluol in bromwasserstoffsaurer Lösung und nachfolgenden Behandel mit Kupfer(I)-bromid (Coffey, Soc. 1926, 3218; Gibson, Johnson, Soc. 1929, 1244). Durch Einw. von 1 Mol Brom auf 4-Nitro-2-chlormercuri-toluol in Kaliumbromid-Lösung oder in Tetrachlorkohlenstoff im Dunkeln (C.). Thermische Analyse des binären Systems mit 3-Brom-4-nitro-toluol: Coffey.
- 3-Brom-4-nitro-toluol C,H<sub>6</sub>O<sub>2</sub>NBr, s. nebenstehende Formel. B. Durch Diazotierung von 4-Nitro-3-amino-toluol in verd. Bromwasserstoffsäure und nachfolgendes Behandeln mit Kupfer(I)-bromid (Coffey, Soc. 1926, 3219; Elson, Gibson, Johnson, Soc. 1929, 2739). Durch Einw. von 1 Mol Brom auf 4-Nitro-3-chlormercuri-toluol in Kaliumbromid-Lösung (C., Soc. 1926, 3218). Gelbliche Prismen oder Nadeln (aus Methanol). F: 36,2° (C.), 37° (E., G., J.). Kp<sub>10</sub>: 156° bis 158° (E., G., J.). Leicht löslich in Alkohol und Ather, unlöslich in Wasser (E., G., J.). Thermische Analyse des binären Systems mit 2-Brom-4-nitro-toluol (Eutektikum bei 22,2° und 37 Gew.-% 2-Brom-4-nitro-toluol): C. Liefert beim Kochen mit 2-Amino-phenylarsonsäure und Kaliumcarbonat in Isoamylalkohol in Gegenwart von Kupferpulver 6-Nitro-3-methyl-diphenylamin-arsonsäure-(2') (E., G., J.).
- ω-Brom-4-nitro-toluol, 4-Nitro-benzylbromid  $C_7H_6O_2NBr = O_2N \cdot C_6H_4 \cdot CH_2Br$  (H 334; E I 164). B. Aus Benzylbromid und Salpeterschwefelsäure bei 0° bis +5° (Μουβευ, Brown, Bl. [4] 29, 1008). Zur Darstellung durch Bromierung von 4-Nitro-toluol vgl. Waldron, Reid, Am. Soc. 45, 2400; Davies, Leeper, Soc. 1926, 1415; Coleman, Honeywell, Org. Synth. 16 [1936], S. 54. F: 100° (Brady, Klein, Soc. 1927, 892). E: 97,9° (B., K.). Thermische Analyse des binären Systems mit α-Benzaldoxim: B., K. Geschwindigkeit der Hydrolyse durch wäßr. Alkohol bei 76°: Shoesmith, Hetherington, Slater, Soc. 125, 1316. 4-Nitro-benzylbromid gibt beim Behandeln mit Natriummethylmercaptid oder Natriumäthylmercaptid in Alkohol bei 60° 4.4′-Dinitro-dibenzylsulfid; bei der Einw. von Natriumbutylmercaptid in Alkohol bei 60° entsteht Butyl-[4-nitro-benzyl]-sulfid; analog verläutt die Reaktion mit Natriumisoamylmercaptid und Natriumphenylmercaptid (W., R., Am. Soc. 45, 2406). 4-Nitro-benzylbromid gibt beim Erwärmen mit dem Natriumsalz des α-Benzaldoxims in Alkohol auf dem Wasserbad α-Benzaldoxim-[4-nitro-benzyläther] und geringe Mengen N-[4-Nitro-benzyl]-isobenzaldoxim; bei der Einw. auf das Natriumsalz des β-Benzaldoxims in Alkohol entsteht N-[4-Nitro-benzyl]-isobenzaldoxims in Alkohol erhält man N-[4-Nitro-benzyl]-2-nitro-isobenzaldoxim (Syst. Nr. 1702) und wenig β-O-[4-Nitro-benzyl]-2-nitro-benzaldoxim (B., K., Soc. 1927, 879, 888; 889).

4-Brom- $\omega$ -nitro-toluol, [4-Brom-phenyl]-nitromethan  $C_7H_6O_2NBr=C_6H_4Br\cdot CH_2\cdot NO_2$  (H 334). Liefert beim Kochen mit  $\alpha$ -Nitro-stilben und überschüssiger Natriummethylat-Lösung 3.4-Diphenyl-5-[4-brom-phenyl]-isoxazol sowie 4.5-Diphenyl-3-[4-brom-phenyl]-isoxazol und 3.4.5-Triphenyl-isoxazol (Kohler, Richtmyer, Am. Soc. 50, 3092, 3104).

ω-Brom-ω-nitro-toluol, Phenylbromnitromethan  $C_7H_6O_2NBr = C_8H_6$ ·CHBr·NO<sub>2</sub>. B. Neben 3.4.5-Triphenyl-isoxazol durch Einw. von Bromwasser oder besser von Brom in Chloroform auf das Natriumsalz des aci-Phenylnitromethans (WIELAND, BLÜMICH, A. 424, 84). — Gelbliches Öl von etwas stechendem Geruch. Kp<sub>16</sub>: 131°; Kp<sub>10</sub>: 122°. Wird beim Stehenlassen dunkler. — Bei der Einw. von fein verteiltem Silber in Äther entsteht in geringer Menge höherschmelzendes 1.2-Dinitro-1.2-diphenyl-äthan.

6-Chlor- $\omega$ -brom-2-nitro-toluol, 6-Chlor-2-nitro-benzylbromid  $C_7H_5O_7N\overline{ClB}r$ , Formel I (H 335). B. Beim Behandeln von 6-Chlor-2-nitro-toluol mit Brom in o-Dichlorbenzol bei 165—170° (Gindraux, Helv. 12, 931). — F: 50,5°. Kp<sub>15</sub>: 134°.

3.6-Dibrom-2-nitro-toluol  $C_7H_5O_2NBr_3$ , Formel II. B. Aus 6-Brom-2-nitro-3-amino-toluol durch Austausch der  $NH_2$ -Gruppe gegen Brom (Сонем, Dutt, Soc. 105 [1914], 513). — Gelbe Krystalle. F: 78—80 $^{\circ}$ .

ω.ω-Dibrom-3-nitro-toluol, 3-Nitro-benzylidenbromid  $C_7H_5O_2NBr_2=O_2N\cdot C_8H_4\cdot CHBr_2$  (H 336). B. Durch Einw. von Phosphorpentabromid auf 3-Nitro-benzaldehyd in Benzol, zuletzt auf dem Wasserbad (Kliegt, Hölle, B. 59, 909). — Krystalle (aus Ligroin). F: 102—102,5°. — Liefert bei längerer Einw. von Natriumäthylat-Lösung bei 35—40° und folgendem Erhitzen des Reaktionsprodukts mit verd. Schwefelsäure Äthyl-[5-nitro-2-äthoxybenzyl]-äther und Äthyl-[3-nitro-4-äthoxy-benzyl]-äther.

3.5-Dibrom-4-nitro-toluol  $C_7H_5O_2NBr_2$ , Formel III (H 336). B. Zur Bildung aus 3.5-Dibrom-4-nitro-2-amino-toluol nach Blanksma (C. 1909 II, 1219) vgl. Borsche, Trautner, A. 447, 13.

 $\omega.\omega$ -Dibrom- $\omega$ -nitro-toluol, Phenyldibromnitromethan  $C_7H_5O_2NBr_2=C_6H_5\cdot CBr_2\cdot NO_2$  (H 336). Gibt bei der Nitrierung mit Salpetersäure (D: 1,49) bei —15° und nachfolgenden Oxydation mit verd. Salpetersäure hauptsächlich 3-Nitro-benzoesäure und wenig 4-Nitro-benzoesäure (Baker, Ingold, Soc. 1926, 2474).

3-Jod-2-nitro-toluol C<sub>7</sub>H<sub>6</sub>O<sub>2</sub>NI, Formel IV (E I 166). B. Durch Einw. von Kalium-jodid-Lösung auf diazotiertes 2-Nitro-3-amino-toluol, zuletzt auf dem Wasserbad (BOGERT, ALLEN, Am. Soc. 49, 1318). — Hellgelbe Prismen (aus Alkohol). F: 65° (korr.). — Gibt bei der Reduktion mit Eisen(II)-hydroxyd nur geringe Mengen 3-Jod-2-amino-toluol.

4-Jod-2-nitro-toluol C<sub>7</sub>H<sub>6</sub>O<sub>2</sub>NI, Formel V (H 337). B. Zur Bildung aus 2-Nitro-4-amino-toluol nach Beilstein, Kuhlberg, Heynemann (A. 158, 337) vgl. Dennett, Turner, Soc. 1926, 480. Bei längerem Behandeln von 2-Nitro-4-chlormercuri-toluol mit der berechneten Menge Jod in Chloroform (Coffey, Soc. 1926, 639). — Prismen (aus Methanol). F: 60,5—61° (C.). Kp<sub>12</sub>: 147—149° (Kalb, Vogel, B. 57, 2122). — Gibt bei der Oxydation mit Chromsäure in Acetanhydrid, Eisessig und konz. Schwefelsäure bei 5—15° 4-Jod-2-nitrobenzoesäure (K., V.). Beim Erhitzen bei Gegenwart von Kupfer auf 240—260° entsteht 3.3'-Dinitro-4.4'-dimethyl-diphenyl (D., T.).

5-Jod-2-nitro-toluol C<sub>7</sub>H<sub>e</sub>O<sub>2</sub>NI, Formel VI (H 337). Beim Eintragen der alkoh. Lösung in heiße salzsaure Zinn(II)-chlorid-Lösung erfolgt teilweise Abspaltung von Jod (Burton, Kenner, Soc. 121, 677).

2-Jod-3-nitro-toluol C,H<sub>6</sub>O<sub>2</sub>NI, Formel VII (H 337). F: 68° (korr.) (Bogert, Allen, Am. Soc. 49, 1318). — Liefert bei der Reduktion mit Zinn(II)-chlorid und konz. Salzsäure in Eisessig unterhalb 25° 2-Jod-3-amino-toluol (Christie, James, Kenner, Soc. 123, 1949). Beim Eintragen der alkoh. Lösung in heiße salzsaure Zinn(II)-chlorid-Lösung erfolgt teilweise Abspaltung von Jod (Burton, Kenner, Soc. 121, 677).

#### KOHLENWASSERSTOFFE Cn H2n-6

- 4-Jod-3-nitro-toluol C<sub>7</sub>H<sub>8</sub>O<sub>2</sub>NI, Formel VIII auf S. 257 (H 337). Beim Eintragen der alkoh. Lösung in heiße salzsaure Zinn(II)-chlorid-Lösung erfolgt teilweise Abspaltung von Jod (Burton, Kenner, Soc. 121, 677).
- 6-Jod-3-nitro-toluol C<sub>7</sub>H<sub>6</sub>O<sub>2</sub>NI, Formel IX auf S. 257 (H 337). B. Zur Bildung aus 2-Jod-toluol vgl. Datta, Varma, Am. Soc. 41 [1919], 2047; Elson, Gibson, Johnson, Soc. 1929, 2737. Beim Eintragen der alkoh. Lösung in heiße salzsaure Zinn(II)-chlorid-Lösung erfolgt teilweise Abspaltung von Jod (Burton, Kenner, Soc. 121, 677).
- $\omega$ -Jod-3-nitro-toluol, 3-Nitro-benzyljodid  $C_7H_6O_2NI=O_2N\cdot C_6H_4\cdot CH_2I$ . B. Beim Kochen von 3-Nitro-benzylchlorid mit Kaliumjodid in Alkohol (Poggi, R. A. L. [6] 2, 423). Gelbliche Tafeln (aus Alkohol). F: 84,5—86°. Unlöslich in Wasser, schwer löslich in Alkohol, ziemlich leicht in Ather und Benzol.
- 3-Jod-4-nitro-toluol  $C_7H_6O_2NI$ , Formel X auf S. 257. B. Beim Diazotieren von 4-Nitro-3-amino-toluol und nachfolgenden Behandeln mit wäßr. Kaliumjodid-Lösung (Elson, Gibson, Johnson, Soc. 1929, 2740). Orangegelbe Nadeln (aus Alkohol). Schmilzt bei 95—97° zu einer milchigen Flüssigkeit, die bei  $104^\circ$  klar wird; zeigt nach dem Wiedererstarren den Schmelzpunkt  $103-105^\circ$ .
- 5-Chlor-4-jod-3-nitro-toluol C<sub>2</sub>H<sub>5</sub>O<sub>2</sub>NCII, Formel XI. B. Durch Einw. von Jod-Kaliumjodid-Lösung auf das mit Kaliumpyrosulfit K<sub>2</sub>S<sub>2</sub>O<sub>5</sub> und rauchender Salpetersäure diazotierte 5-Chlor-3-nitro-4-amino-toluol (James, Kenner, Stubbings, Soc. 117, 776). Tafeln (aus Petroläther). F: 92° (J., K., St.). Liefert beim Erhitzen mit Kupferpulver auf 230—250° 6.6′-Dichlor-2.2′-dinitro-4.4′-dimethyl-diphenyl (Burton, Kenner, Soc. 121, 495).

- 4.5.6-Trijod-2-nitro-toluol C<sub>7</sub>H<sub>4</sub>O<sub>2</sub>NI<sub>3</sub>, Formel XII. B. Durch Diazotieren von 2.4-Dijod-6-nitro-3-amino-toluol und folgendes Behandeln mit wäßr. Kaliumjodid-Lösung (Kalb, Mitarb., B. 59, 1868). Gelbliche Nadeln (aus Alkohol). F: 139,5°. Leicht löslich in den üblichen Lösungsmitteln. Die Lösung in heißem Eisessig liefert bei langsamem Zusatz zu Zinn(II)-chlorid in siedender konzentrierter Salzsäure 4.5.6-Trijod-2-amino-toluol.
- 5-Nitroso-2-nitro-toluol C<sub>7</sub>H<sub>6</sub>O<sub>3</sub>N<sub>2</sub>, Formel XIII. B. Beim Behandeln von 6-Nitro-3-amino-toluol mit Caroscher Säure (Kenner, Parkin, Soc. 117, 859). Krystalle (aus Alkohol). F: 113°. Durch Oxydation mit rauchender Salpetersäure entsteht 2.5-Dinitro-toluol.
- 2-Chlor-6-nitroso-3-nitro-toluol C<sub>7</sub>H<sub>5</sub>O<sub>3</sub>N<sub>2</sub>Cl, Formel XIV. B. Durch längere Einw. von Caroscher Säure auf eine Lösung von 6-Chlor-5-nitro-2-amino-toluol in konz. Schwefelsäure (Morgan, Glover, Soc. 125, 1599). Beim Erhitzen mit Salpetersäure (D: 1,5) auf dem Wasserbade entsteht 6-Chlor-2.5-dinitro-toluol.
- 4.5-Dinitroso-2-nitro-toluol  $C_7H_5O_4N_3$ , Formel XV. Vgl. 6-Nitro-5-methyl-benz-furoxan, Syst. Nr. 4624. [Kühn]
- 2.3-Dinitro-toluol C<sub>2</sub>H<sub>6</sub>O<sub>4</sub>N<sub>2</sub>, s. nebenstehende Formel (H 339; E I 167). CH<sub>3</sub>
  B. Zur Bildung bei der Nitrierung von 3-Nitro-toluol vgl. Gibson, Duckham,
  Fairbairn, Soc. 121, 278. Beim Diazotieren von 3-Nitro-2-amino-toluol in
  schwefelsaurer Lösung, Überführung des Diazoniumsulfats in das Nitrit und Behandeln mit Kupfer(I)-oxyd (Bogert, Allen, Am. Soc. 49, 1317). Aus 5.6-Dinitro-2-amino-toluol (Brady, Taylor, Soc. 117, 879), 5.6-Dinitro-3-amino-toluol (Br., Day, Rolt, Soc. 121, 531, 532) und 2.3-Dinitro-4-amino-toluol (Page, Heasman, Soc. 123, 3240) beim Diazotieren und Verkochen der Diazoniumverbindung mit Alkohol. Nadeln oder Schuppen (aus Alkohol). Rhombisch-bipyramidal (Jaeger, Verel. Akad. Amsterdam 34, 848; C. 1926 I, 1528). F: 63° (korr.) (Bogert, Allen). F: 59,5—60° (unkorr.) (Page, Heasman), 59,6° (Field, Garner, Smith, Soc. 127, 1231; Garner, Abernethy, Pr. roy. Soc. [A] 99 [1921], 219). Verbrennungswärme bei konstantem Volumen: 860,5 kcal/Mol (Ga., Ab.). Thermische Analyse der binären Systeme mit 2.5-Dinitro-toluol und 3.4-Dinitro-toluol und des ternären Systems mit 3.4- und 2.5-Dinitro-toluol: Gibson, Duckham, Fairbairn, Soc. 121, 277. Elektrische Leitfähigkeit in flüssigem Ammoniak: Field, Garner, Smith, Soc. 127, 1231, 1236.

259

Wird durch Zinn(II)-chlorid in alkoh. Salzsäure zu 2-Nitro-3-amino-toluol reduziert (Burton, Kenner, Soc. 119, 1051; Bogert, Allen, Am. Soc. 49, 1318; vgl. dagegen Kenner, Parkin, Soc. 117, 857). Liefert beim Einleiten von Schwefelwasserstoff in siedendem alkoholischem Ammoniak 6.6'-Dinitro-2.2'-dimethyl-diphenylsulfid und eine krystallinische Verbindung vom Schmelzpunkt 54° (Kenner, Parkin). Bei der Nitrierung mit Salpeterschwefelsäure entsteht 2.3.4-Trinitro-toluol als Hauptprodukt neben 15—16% 2.3.6-Trinitro-toluol (Marqueyrol, Koehler, Jovinet, Bl. [4] 27, 423; Drew, Soc. 117, 1617; Gibson, Duckham, Fairbairn, Soc. 121, 282; Brady, Soc. 121, 330). Gibt beim Erwärmen mit Natriummethylat-Lösung auf dem Wasserbad 3-Nitro-2-methoxy-toluol und wenig 2.2'-Dimethoxy-3.3'-dimethyl-azoxybenzol (Kenner, Parkin, Soc. 117, 856). Bei 15-stdg. Erhitzen mit 2,5 n-methylalkoholischem Ammoniak auf 150—160° unter Druck erhält man 3-Nitro-2-amino-toluol (Kenner, Parkin).

2.4-Dinitro-toluol C<sub>7</sub>H<sub>6</sub>O<sub>4</sub>N<sub>2</sub>, s. nebenstehende Formel (H 339; E I 167).

B. Zur Bildung durch Nitrierung von 2- und 4-Nitro-toluol vgl. Gibson, Duckham,
Fairbairn, Soc. 121, 278. Beim Behandeln von 1 Tl. p-Cymol mit 2 Tln. Salpeteräure (D: 1,5) und 4 Tln. Schwefelsäure (D: 1,84) bei 0°, neben anderen Produkten
(Aschan bei Alfthan, B. 53, 80, 84; vgl. Wheeler, Harris, Am. Soc. 49, 495).
Aus 2.4-Dinitro-3-hydrazino-toluol beim Erwärmen mit Kupfer(II)-acetat in Eisessig auf dem Wasserbad (Brady, Bowman, Soc. 119, 897). Zur technischen Darstellung
s. die bei 2.4.6-Trinitro-toluol angeführte Handbuch-Literatur.

Physikalische Eigenschaften. Krystalle (aus Alkohol) (Bell, Herty, J. ind. Eng. Chem. 11, 1125). Krystallographisches: Jaeger, Versl. Akad. Amsterdam 34, 849; C. 1926 I, 1528. Zur Kernbildung in der unterkühlten Schmelze vgl. Schaum, Z. anorg. Ch. 120, 247, 255. F: 69,55° (korr.) (Bell, Mitarb., J. ind. Eng. Chem. 13, 59; C. 1921 III, 528). 70,5° (Garner, Abernethy, Pr. roy. Soc. [A] 99 [1921], 219). E: 70,13—70,15° (Desvergnes, Monit. scient. [5] 15, 158; C. 1925 II. 2052), 69,7° (Gibson, Duckham, Fairbairn, Soc. 121, 278). — Krystallisationswärme: G., A. Verbrennungswärme bei konstantem Volumen: 854,1 kcal/Mol (Tomioka, Takahashi in Landolt-Börnst. E III, 2914), 853,7 kcal/Mol (G., A.).

100 g Wasser lösen bei 22° 0,027, bei 50° 0,037, bei 100° 0,254 g 2.4-Dinitro-toluol (Desvergnes, Monit. scient. [5] 15, 158; C. 1925 II, 2052). Löslichkeit in organischen Lösungsmitteln bei 15° (Desvergnes) s. in der untenstehenden Tabelle. Löslich in flüssigem Schwefeldioxyd mit gelber Farbe, schwer löslich in flüssigem Ammoniak mit blauer Farbe (De Carli, G. 57, 351). Löslichkeit in 84,5—95 %iger Schwefelsäure bei 20° und 70°: Burr, Pr. Leeds phil. lit. Soc. 1, 74; C. 1926 II, 3017.

| Lösungsmittel | g Dinitrotoluol in<br>100 g Lösungsmittel             | <b>L</b> ösungsmittel                                                              | g Dinitrotoluol in<br>100 g Lösungsmittel             |  |
|---------------|-------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------|--|
| Chloroform    | 65,076<br>2,431<br>60,644<br>45,470<br>5,014<br>1.916 | Äthylalkohol (absol.) Äther (absol.) Aceton Essigester Schwefelkohlenstoff Pvridin | 3,039<br>9,422<br>81,901<br>57,929<br>2,306<br>76.810 |  |

Thermische Analyse der binären Systeme mit der β-Modifikation des 2-Nitro-toluols (Eutektikum bei —11,45° und 21% 2.4-Dinitro-toluol): Bell, Mitarb., J. ind. Eng. Chem. 13 [1921], 60; mit 4-Nitro-toluol (Eutektikum bei ca. 26,5°): B., Herty, J. ind. Eng. Chem. 11, 1127; C. 1921 I, 284; mit 2.6-Dinitro-toluol: Gibson, Duckham, Fairbairn, Soc. 121, 276; mit 2.4-6-Trinitro-toluol und mit Pikrinsäure: Wogrinz, Vari, Z. Schieß-Sprengstoffv. 14 [1919], 267; B., Herty; mit 2.4-6-Trinitro-m-xylol: B., Sawyer, J. ind. Eng. Chem. 11, 1026; C. 1921 I, 174; mit Anthracen: Kremann, Müller, M. 42, 189, 192; mit β-Naphthol, β-Naphtholmethyläther und mit Hydrochinon-dimethyläther: Giua, Marcellino, G. 50 I. 346, 348, 352, 356; mit Triphenylcarbinol: Kremann, Hohl, R. Müller, M. 42, 214, 216; mit 3-Oxy-benzaldehyd: Kr., Pogantsch, M. 44, 165, 172; mit Harnstoff (Eutektikum bei 68,5°): Rheinboldt, Kircheisen, J. pr. [2] 112, 192; mit Methylpikrylnitramin (Tetryl): Jefremow, Tichomirowa, Izv. Inst. fiz.-chim. Anal. 3, 285; C. 1927 I, 2628; mit p-Toluidin: Kr., Hönigsberg, Mauermann, M. 44, 79, 81; mit 3-Amino-phenol: Kr., Lupfer, Zawodsky, M. 41, 536; mit Azobenzol und mit 4-Dimethylamino-azobenzol: Giua, Reggiani, G. 55, 655, 659; mit Azoxybenzol: Giua, Guastalla, G. 55, 649, 640; mit Carbazol: Kremann, Strzelba, M. 42, 173, 175. Thermische Analyse des ternären Systems mit 2-Nitro-toluol und 4-Nitro-toluol (eutektisches Gemisch mit 62% 2-Nitro-toluol, 19% 4-Nitro-toluol und

19 % 2.4-Dinitro-toluol; F: -20,1°): Bell, Cordon, J. ind. Eng. Chem. 13, 307; C. 1921 III, 622; mit 4-Nitro-toluol und 2.4.6-Trinitro-toluol: B., HERTY, J. ind. Eng. Chem. 11, 1130; C. 1921 I, 284.

Brechungsindices ternärer Gemische aus 4-Nitro-toluol, 2.4-Dinitro-toluol und 2.4.6-Trinitro-toluol bei 38—39°: Bell, Cummings, J. ind. Eng. Chem. 11, 1028; C. 1921 I, 175. Absorptionsspektrum in flüssigem Ammoniak: Garner, Gillbe, Soc. 1928, 2890, 2896. Elektrische Leitfähigkeit in flüssigem Ammoniak: FIELD, GARNER, SMITH, Soc. 127, 1229, 1236.

Chemisches und biochemisches Verhalten. 2.4-Dinitro-toluol zeigt nach 11/2 Monate langem Aufbewahren im Sonnenlicht nur eine oberflächliche, ganz schwache Gelbfärbung (Schultz, Ganguly, B. 58, 705, 708). Explosionsdruck: Robertson, Soc. 119, 21. Gibt mit wäßr. Kaliumpersulfat-Lösung auf dem Wasserbad Ammoniak, Salpetersäure, salpetrige Säure und Blausäure (RICCA, G. 57, 270). Liefert bei der Hydrierung mit den jeweils berechneten Wasserstoffmengen in Gegenwart von Platinschwarz in Alkohol 2-Nitro-4-amino-toluol (Vesel', Rein, Collect. Trav. chim. Tchécosl. 1, 365; C. 1929 II, 1669), in Gegenwart von Palladium-Tierkohle in neutraler wäßrig-alkoholischer Lösung 4-Nitro-2-hydroxylamino-toluol oder 2.4-Diamino-toluol, in alkal. Lösung 3.3'-Dinitro-4.4'-dimethyl-azoxybenzol (Brand, Steiner, B. 55, 883). Die letztgenannte Verbindung entsteht auch beim Behandeln von 2.4-Dinitro-toluol mit Natriumhydrosulfid in Benzol + Wasser bei Gegenwart von Calciumchlorid (HAWORTH, LAPWORTH, Soc. 119, 775) oder bei längerem Kochen mit Benzoin in Benzol bei Gegenwart von Piperidin (Nisber, Soc. 1928, 3124). 2.4-Dinitro-toluol wird beim Kochen mit Eisenpulver, Magnesiumchlorid und Wasser oder Aceton nicht reduziert (Mice-WICz, Roczniki Chem. 8, 54; C. 1928 II, 441). Wird durch Hydrazinhydrat in siedendem Alkohol je nach den Bedingungen zu 2-Nitro-4-amino-toluol oder zu 2.4-Diamino-toluol Arkonor je nach den Benngangen 2u 2-1-10-1-2-anna-cottol oder 2u 2-1-Diamint-cottol reduziert (Müller, Zimmermann, J. pr. [2] 111, 283, 284). 2.4-Dinitro-toluol liefert mit N-Phenyl-hydroxylamin in methylalkoholischer Kalilauge unterhalb 45° α- und β-3-Nitro-4-methyl-azoxybenzol und geringe Mengen 3.3'-Dinitro-4.4'-dimethyl-azoxybenzol (Meisen-Heimer, B. 53, 361, 366).

Wird durch Froschmuskulatur (Lipschitz, H. 109, 252), Froschspermatozoen oder Bac.

proteus vulgaris (Hertwig, L., Pflügers Arch. Physiol. 183, 279; C. 1920 III, 895) zu einer

Nitrohydroxylaminoverbindung reduziert.

Physiologisches Verhalten: H. STAUB in J. HOUBEN, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 109. Schädigende Wirkung beim Aufstäuben auf Bohnenpflanzen: Moore, Campbell, J. agric. Res. 28 [1924], 402; C. 1925 I, 2253.

Nachweis und Bestimmung. Die Lösungen in Alkohol und Aceton werden auf Zusatz von Natronlauge tiefblau (Rudolph, Fr. 60, 240). Nach Muraour (Bl. [4] 43, 72) gibt 2.4-Dinitro-toluol mit alkoh. Kalilauge nur eine schwache Färbung, in Gegenwart von 1.3-Dinitro-benzol aber intensive Blaufärbung. — Bestimmung von 2.4-Dinitro-toluol durch Reduktion mit Titan(III)-chlorid in stark schwefelsaurer Lösung und Rücktitration mit Eisenalaun-Lösung und Ammoniumrhodanid als Indikator: English, J. ind. Eng. Chem. 12, 997; C. 1921 II, 623.

2.5-Dinitro-toluol C,H,O,N, s. nebenstehende Formel (H 341; E I 167). B. Zur Bildung bei der Nitrierung von 3-Nitro-toluol vgl. Gibson, Duckham, Fairbairn, Soc. 121, 278; Brady, Soc. 121, 330. Bei der Oxydation von 5-Nitroso-2-nitro-toluol mit rauchender Salpetersäure (Kenner, CH<sub>3</sub> NO2 PARKIN, Soc. 117, 859). Zur Bildung aus Toluchinondioxim nach OLIVERI-TORTORICI (G. 30 I [1900], 534) und zur Bildung aus 5-Nitro-2-amino-toluol nach GRELL (B. 28 [1895], 2565) vgl. Page, Heasman, Soc. 123, 3237. Aus 5-Nitro-2-amino-toluol oder 5-Nitroso-2-amino-toluol durch aufeinanderfolgende Oxydation mit Caroscher Säure und mit rauchender Salpetersäure (P., H.). Beim Erwärmen von 3.6-Dinitro-2-amino-toluol mit rauchender Schwefelsäure (20% SO<sub>3</sub>-Gehalt) und absol. Alkohol unter Zusatz von Natriumnitrit auf dem Schwefelsäure (20% SO<sub>3</sub>-Gehalt) und absol. Alkohol unter Zusatz von Natriumnitrit auf dem Dampfbad (Br., Taylor, Soc. 117, 879). Beim Diazotieren von 2.5-Dinitro-4-amino-toluol in Gegenwart von absol. Alkohol und Schwefelsäure und Erhitzen des Reaktionsgemischs mit wenig Salpetersäure (D: 1,42) (P., H.). — F: 50,2—50,5° (P., H.), 51,2° (Field, Garner, Smith, Soc. 127, 1231; Garner, Abernethy, Pr. roy. Soc. [A] 99 [1921], 219). Verbrennungswärne bei konstantem Volumen: 856,1 kcal/Mol (Garner, A.). Thermische Analyse der binären Systeme mit 2.3-Dinitro-toluol (Eutektikum bei ca. 19,75° und ca. 50% 2.5-Dinitro-toluol) und 3.4-Dinitro-toluol und des ternären Systems mit 2.3- und 3.4-Dinitro-toluol. Cypsov. Diozylay. Falletzische Leitfshickeit in flütsrigen. toluol: Gibson, Duckham, Fairbairn, Soc. 121, 277. Elektrische Leitfähigkeit in flüssigem Ammoniak: Field, Garner, Smith.

Liefert bei der Reduktion mit Zinn(II)-chlorid und alkoh. Salzsäure bei 7º ein Gemisch aus 62% 5-Nitro-2-amino-toluol und 38% 6-Nitro-3-amino-toluol (Burton, Kenner, Soc. 119, 1050, 1053). Beim Behandeln mit alkoh. Ammoniak erhält man ein Gemisch aus 88% 5-Nitro-2-amino-toluol und 12% 6-Nitro-3-amino-toluol (Kenner, Parkin, Soc. 117, 859; B., KE.). Gibt bei der Nitrierung mit Salpeterschwefelsäure bei 80-120° als Hauptprodukt 2.4.5-Trinitro-toluol und 13% 2.3.6-Trinitro-toluol (Drew, Soc. 117, 1616; Gibson, Duckham, Fairbairn, Soc. 121, 282; Marqueyrol, Koehler, Jovinet, Bl. [4] 27, 423). Beim Erhitzen mit Natriummethylat-Lösung auf dem Wasserbad erhält man 6-Nitro-3-methoxy-toluol (Ke., P.).

2.6-Dinitro-toluol C<sub>7</sub>H<sub>6</sub>O<sub>4</sub>N<sub>2</sub>, s. nebenstehende Formel (H 341; E I 167). B. Neben 2.4-Dinitro-toluol bei der Nitrierung von 2-Nitro-toluol opinitro-toluol bei der Nitrierung von 2-Nitro-toluol opinitro-toluol opinitro-toluol bei der Nitrierung von 2-Nitro-toluol opinitro-toluol opinitro-toluol bei der Nitrierung von 2-Nitro-toluol opinitro-toluol o

A. 379 [1911], 181). — Krystallographisches: Jaeger, Verel. Akad. Amsterdam 34, 849; C. 1926 I, 1528. F: 64,3° (Field, Garner, Smith, Soc. 127, 1231; Garner, Abernethy, Pr. roy. Soc. [A] 99 [1921], 219). Ist trimorph (Schaum, A. 462, 206). Die β-Modifikation schmilzt bei 65,5°, die γ-Modifikation bei 48°; Umwandlungspunkt α≠β: 40,5° (Schaum). Verbrennungswärme bei konstantem Volumen: 855,2 kcal/Mol (Garn., A., Pr. roy. Soc. [A] 99, 225; C. 1921 III, 866). Thermische Analyse der binären Systeme mit 2.4-Dinitrotoluol (Eutektikum bei 32,05° und 55,75% 2.6-Dinitro-toluol): Gibson, Duckham, Fairbairn, Soc. 121, 277; mit Acenaphthen, Anthracen, Fluoren, p-Toluidin, α- und β-Naphthylamin: Kremann, Hönigsberg, Mauermann, M. 44, 72, 73. Absorptionsspektrum in flüssigem Ammoniak: Garner, Gillbe, Soc. 1928, 2896. Elektrische Leitfähigkeit in flüssigem Ammoniak: Field, Garner, Smith, Soc. 127, 1231, 1235.

sigem Ammoniak: Field, Garner, Smith, Soc. 127, 1231, 1235.

Pulverisiertes 2.6-Dinitro-toluol liefert bei 6-wöchiger Einw. von Sonnenlicht eine Verbindung C,H<sub>4</sub>O<sub>4</sub>N<sub>4</sub> (vielleicht 2.6-Dinitroso-4-oxy-benzylalkohol; löslich in kaltem Aceton, unlöslich in Benzol, Chloroform und Äther) und andere Produkte (Schultz, Ganguly, B. 58, 707). Explosionsdruck: Marqueyrol, Koehler, Jovinet, Bl. [4] 27, 423. Gibt mit wäßr. Kaliumpersulfat-Lösung auf dem Wasserbad Ammoniak, Salpetersäure, salpetrige Säure und Blausäure (Ricca, G. 57, 270). Liefert bei der Hydrierung mit der jeweils berechneten Menge Wasserstoff in Gegenwart von Palladium-Tierkohle in neutraler wäßrig-alkoholischer Lösung 6-Nitro-2-hydroxylamino-toluol, 6-Nitro-2-amino-toluol oder 2.6-Diamino-toluol, in alkal. Lösung 3.3'-Dinitro-2.2'-dimethyl-azoxybenzol (Brand, Steiner, B. 55, 884); 6-Nitro-2-amino-toluol entsteht auch aus 2.6-Dinitro-toluol bei der partiellen Hydrierung in Gegenwart von Platinschwarz in Alkohol (Veselý, Rein, Collect. Trav. chim. Tchécosl. 1, 365; C. 1929 II, 1669) oder bei der Reduktion mit 15% igem Ammoniumsulfid in siedendem Alkohol (Brady, Taylor, Soc. 117, 877). 3.3'-Dinitro-2.2'-dimethyl-azoxybenzol erhält man auch bei der Umsetzung von 2.6-Dinitro-toluol mit N-Phenyl-hydroxylamin in methylalkoholischer Kalilauge unterhalb 45° (Meisenheimer, B. 53, 368). Liefert beim Erhitzen mit Brom, Magnesiumcarbonat und Pyridin im Rohr auf 150° 2.6-Dinitro-benzylbromid (Barrow, Griffiths, Bloom, Soc. 121, 1716; vgl. a. Reich, Oganessian, Bl. [4] 21 [1917], 118). — Die Lösung in Aceton wird auf Zusatz von Natronlauge allmählich schwach rosenrot (Rudolph, Fr. 60, 240). Nach Muraour (Bl. [4] 43, 72) gibt 2.6-Dinitro-toluol mit alkoh. Kalilauge nur in Gegenwart von 1.3-Dinitro-benzol eine Rotfärbung.

3.4-Dinitro-toluol C,H<sub>6</sub>O<sub>4</sub>N<sub>2</sub>, s. nebenstehende Formel (H 341; EI 168). B.

Zur Bildung bei der Nitrierung von 3-Nitro-toluol vgl. Gibson, Duckham, Fairbairn, Soc. 121, 278; Brady, Soc. 121, 330. Beim Erwärmen von 3.4- oder 4.5-Dinitro-2-amino-toluol (Br., Williams, Soc. 117, 1139) oder von 4.5-Dinitro-3-amino-toluol (Br., Day, Rolt, Soc. 121, 531) mit absol. Alkohol und rauchender Schwefelsäure (20% SO<sub>3</sub>) und Natriumnitrit auf dem Wasserbad. Bei aufeinanderfolgender Oxydation von 3-Nitro-4-amino-toluol mit Caroscher Säure und mit rauchender Salpetersäure auf dem Wasserbad (Page, Heasman, Soc. 123, 3238). Zur Bildung aus 3-Nitro-4-amino-toluol durch Austausch von NH<sub>2</sub> gegen NO<sub>2</sub> nach Sandmeyer vgl. P., H., Soc. 123, 3239. — Monoklin-prismatisch (Jaeger, Versl. Akad. Amsterdam 34, 850; C. 1926 I, 1528). F: 59,3—59,8° (P., H.), 58,9° (Field, Garner, Smith, Soc. 127, 1231; Garner, Abernethy, Pr. roy. Soc. [A] 99, 219); C. 1921 III, 866). Verbrennungswärme bei konstantem Volumen: 860,8 kcal/Mol (Ga., A.). Thermische Analyse der binären Systeme mit 2.3-Dinitrotoluol (Eutektikum bei 22,5° und ca. 50% 3.4-Dinitro-toluol) und 2.5-Dinitro-toluol (Eutektikum bei 20,75° und ca. 42% 3.4-Dinitro-toluol): Gibson, Duckham, Fairbairn, Soc. 121, 278; mit Acenaphthen, Fluoren, Anthracen, Anilin, p-Toluidin, α- und β-Naphthylamin: Kremann, Hönigsberg, Mauermann, M. 44, 68, 70; des ternären Systems mit 2.3-und 2.5-Dinitro-toluol (Eutektikum bei —1,6°; 28% 2.3-Dinitro-toluol und 35,5% 2.5-Dinitro-toluol): Gilbson, Duckham, Fairbairn, Sch. 121, 278; mit Acenaphthen, Fluoren, Anthracen, Anilin, p-Toluidin, α- und β-Naphthylamin: Kremann, Hönigsberg, Mauermann, M. 44, 68, 70; des ternären Systems mit 2.3-und 2.5-Dinitro-toluol (Eutektikum bei —1,6°; 28% 2.3-Dinitro-toluol und 35,5% 2.5-Dinitro-toluol): Gilbson, Duckham, Fairbairn, Smith, Sch. 1228, Soc. 1928, 2890, 2896. Elektrische Leitfähigkeit in flüssigem Ammoniak: Field, Garner, Smith.

Liefert bei der Reduktion mit Zinn(II)-chlorid und alkoh. Salzsäure bei 7° 3-Nitro-4-amino-toluol und 4-Nitro-3-amino-toluol in nahezu gleichen Mengen und wenig 3.4-Diamino-toluol (Burton, Kenner, Soc. 119, 1050, 1052). Bei 6-stdg. Erhitzen mit 2.5 n-methyl-alkoholischem Ammoniak unter Druck auf 150° entstehen 4-Nitro-3-amino-toluol und wenig 3-Nitro-4-amino-toluol (Kenner, Parkin, Soc. 117, 858; B., K.). Gibt bei der Nitrierung

mit Salpeterschwefelsäure 83% 2.4.5-Trinitro-toluol und 17% 2.3.4-Trinitro-toluol (Brady bei Gibson, Duckham, Fairbairn, Soc. 121, 282; vgl. a. Marqueyrol, Koehler, Jovinet, Bl. [4] 27, 423). Beim Erwärmen mit Natriummethylat-Lösung auf dem Wasserbad erhält man 4-Nitro-3-methoxy-toluol und andere Produkte (Kenner, Parkin, Soc. 117, 857).

3.5-Dinitro-toluol C<sub>7</sub>H<sub>8</sub>O<sub>4</sub>N<sub>2</sub>, s. nebenstehende Formel (H 341). B. CH<sub>3</sub>
Beim Erwärmen von 3.5-Dinitro-2-hydrazino-toluol mit Kupfer(II)-acetat in
Eisessig auf dem Wasserbad (Brady, Bowman, Soc. 119, 897, 899). Zur Darstellung nach Cohen, McCandlish (Soc. 87 [1905], 1271) vgl. Brady, Day,
Rolt, Soc. 121, 528. Zur Reinigung erwärmt man das Rohprodukt mit 70%iger Salpetersäure auf dem Wasserbad (Br., D., R.). — Monoklin prismatische (pseudorhombische) Krystalle (aus Benzol + Schwefelkohlenstoff); monoklin prismatische Krystalle mit 1 C<sub>4</sub>H<sub>8</sub>O<sub>2</sub> (aus Äthylacetat) (Jaeger, Versl. Akad. Amsterdam 34, 851; C. 1926 I, 1528). F: 93° (Jaeger).
92,8° (Field, Garner, Smith, Soc. 127, 1231; Garner, Abernethy, Pr. roy. Soc. [A]
99 [1921], 219). Verbrennungswärme bei konstantem Volumen: 853,9 kcal/Mol (Garn. A.).
Thermische Analyse der binären Systeme mit Acenaphthen, Fluoren, Anthracen, Anilin, p-Toluidin, α- und β-Naphthylamin: Kremann, Hönigsberg, Mauermann, M. 44, 76, 79.
Absorptionsspektrum in flüssigem Ammoniak: Garn., Gillbe, Soc. 1928, 2890, 2896.
Elektrische Leitfähigkeit in flüssigem Ammoniak: Field, Garn., Sm.

2. $\omega$ -Dinitro-toluol, [2-Nitro-phenyl]-nitromethan bzw. aci-[2-Nitro-phenyl]-nitromethan, [2-Nitro-phenyl]-isonitromethan  $C_7H_6O_4N_2=O_2N\cdot C_6H_4\cdot CH_2\cdot NO_2$  bzw.  $O_2N\cdot C_6H_4\cdot CH:NO_2H$  (H 342; E I 168). Dichte und Brechungsindices von Lösungen des freien 2. $\omega$ -Dinitro-toluols und des Kaliumsalzes in Methanol bei 25°: Lifschitz, Beck, Koll.-Z. 26, 60; C. 1920 III, 82.

3. $\omega$ -Dinitro-toluol, [3-Nitro-phenyl]-nitromethan bzw. aci-[3-Nitro-phenyl]-nitromethan, [3-Nitro-phenyl]-isonitromethan  $C_7H_6O_4N_2=O_2N\cdot C_6H_4\cdot CH_2\cdot NO_2$  bzw.  $O_2N\cdot C_6H_4\cdot CH:NO_2H$  (H 342). Zur Bildung nach Holleman (R. 14 [1895], 123) vgl. Baker, Ingold, Soc. 1926, 2471; B., Soc. 1929, 2262. — Krystalle (aus Åther). F: 95° bis 96° (B.).

H 342, zwischen Zeile 29 und 19 v. u. ersetze "Lobry de Bruyn" bzw. "L. de B." durch "Holleman".

4. $\omega$ -Dinitro-toluol, [4-Nitro-phenyl]-nitromethan bzw. aci-[4-Nitro-phenyl]-nitromethan, [4-Nitro-phenyl]-isonitromethan  $C_7H_6O_4N_2=O_2N\cdot C_6H_4\cdot CH_2\cdot NO_2$  bzw.  $O_2N\cdot C_6H_4\cdot CH:NO_2H$  (H 342, E I 168). B. Über eine Bildung durch Einw. von Salpetersäure (D: 1,49) auf Phenylnitromethan bei 0° vgl. Baker, Ingold, Soc. 1926, 2471; B., Soc. 1929, 2262. — Dichte und Brechungsindices von Lösungen des freien 4. $\omega$ -Dinitrotoluols und des Natriumsalzes in Methanol bei 25°: Lifschitz, Beck, Koll.-Z. 26, 60; C. 1920 III, 82.

 $\omega$ . $\omega$ -Dinitro-toluol, Phenyldinitromethan bzw.aci-Phenyldinitromethan, Phenylnitroisonitromethan  $C_7H_6O_4N_2=C_6H_5\cdot CH(NO_2)_2$  bzw.  $C_6H_5\cdot C(NO_2):NO_2H$  (H 343; E I 168). B. Das Kaliumsalz entsteht beim Behandeln von Phenylbromdinitromethan mit alkoh. Kalilauge (Macbeth, Pratt, Soc. 119, 1360). — Ultraviolett-Absorptionsspektrum des Phenyldinitromethans und seines Kaliumsalzes in Alkohol: Graham, Macbeth, Soc. 121, 1114.

4-Chlor-2.3-dinitro-toluol C<sub>7</sub>H<sub>5</sub>O<sub>4</sub>N<sub>2</sub>Cl, s. nebenstehende Formel. B. Durch Diazotierung von 2.3-Dinitro-4-amino-toluol und nachfolgende Behandlung mit Kupfer(I)-chlorid in Salzsäure bei 0° (Kenner, Tod, Witham, Soc. 127, 2348). — Gelbe Prismen (aus Benzol + Petroläther). F: 106,5°

6-Chlor-2.3-dinitro-toluol C<sub>7</sub>H<sub>8</sub>O<sub>4</sub>N<sub>2</sub>Cl, s. nebenstehende Formel (H 344).

B. Neben 2-Chlor-3.5-dinitro-toluol (Hauptprodukt), 6-Chlor-3.4-dinitro-toluol cl. No<sub>2</sub> und sehr wenig 6-Chlor-2.4-dinitro-toluol beim Nitrieren von 2-Chlor-toluol mit Salpeterschwefelsäure, zuletzt auf dem Wasserbad; man trennt die Isomeren durch fraktionierte Krystallisation aus konz. Schwefelsäure und Alkohol (Morgan, Drew, Soc. 117, 784). 6-Chlor-2.3-dinitro-toluol entsteht in über 85% Ausbeute bei der Nitrierung von 6-Chlor-2-nitro-toluol mit Salpeterschwefelsäure, anfangs bei 20°, dann bei 70—80°, neben 6-Chlor-2-4-dinitro-toluol (M., D.; M., Jones, Soc. 119, 187). — Nadeln oder Prismen (aus Methanol oder Alkohol). F: 106,5° (M., D.). — Liefert bei der Einw. von flüssigem oder alkoholischem Ammoniak 6-Chlor-3-nitro-2-amino-toluol (M., D.); reagiert analog mit Methylamin und Anilin in siedendem Alkohol (M., J.). Gibt mit flüssigem Ammoniak eine gelbe bis orangerote, mit alkoh. Ammoniak eine gelbe, mit alkoh. Natronlauge eine gelbliche, beim Erwärmen in Hellorange übergehende Färbung (M., D.).

3-Chlor-2.4-dinitro-toluol C<sub>7</sub>H<sub>2</sub>O<sub>4</sub>N<sub>2</sub>Cl, Formel I auf S. 263. B. Beim Zugeben von Kupfer(II)-chlorid zu einer siedenden alkoholischen Lösung von 2.4-Dinitro-3-hydrazinotoluol (Brady, Bowman, Soc. 119, 897). — Gelbliche Nadeln (aus Alkohol). F: 92°.

5-Chlor-2.4-dinitro-toluol  $C_7H_5O_4N_2Cl$ , Formel II (H 344; E I 168).  $D_4^{\infty,z}$ : 1,4054;  $n_6^{\infty,z}$ : 1,5534;  $n_6^{\infty,z}$ : 1,5580 (Lindemann, Pabst, A. 462, 46). — Geschwindigkeit der Reaktion mit Anilin in Alkohol: L., P., A. 462, 31, 45.

6-Chlor-2.4-dinitro-toluol C<sub>7</sub>H<sub>5</sub>O<sub>4</sub>N<sub>2</sub>Cl, Formel III. B. In sehr geringer Menge beim Nitrieren von 2-Chlor-toluol mit Salpeterschwefelsäure, zuletzt auf dem Wasserbad, neben 2-Chlor-3.5-dinitro-toluol (Hauptprodukt), 6-Chlor-2.3-dinitro-toluol und 6-Chlor-3.4-dinitro-toluol (Morgan, Drew, Soc. 117, 785). Neben überwiegenden Mengen 6-Chlor-2.3-dinitro-toluol bei der Nitrierung von 6-Chlor-2-nitro-toluol mit Salpeterschwefelsäure anfangs bei 20°, dann bei 70—80° (M., D.; M., Jones, Soc. 119, 187). Beim Behandeln von 2-Chlor-4-nitro-toluol mit Salpeterschwefelsäure anfangs bei 40—45°, dann bei 90°, neben überwiegenden Mengen 6-Chlor-3.4-dinitro-toluol; man trennt die isomeren Verbindungen durch fraktionierte Krystallisation aus konz. Schwefelsäure (M., D.; M., Challenor, Soc. 119, 1539). — Prismen (aus Alkohol). F: 49° (M., D.). Leicht löslich in Alkohol (M., D.). — Liefert bei der Reduktion mit Zinkstaub, Ammoniumchlorid und verd. Alkohol (M., D.) oder mit Zinn(II)-chlorid und Chlorwasserstoff (M., D.; M., J.) 6-Chlor-2-4-diamino-toluol. — Gibt mit flüssigem Ammoniak erst eine intensiv violette, dann eine karminrote, mit alkoh. Ammoniak erst eine hellrote, dann eine tief karminrote Färbung, mit alkoh. Natronlauge eine intensiv blaue, beim Erwärmen in tief Orangerot übergehende Färbung (M., D.).

ω-Chlor-2.4-dinitro-toluol, 2.4-Dinitro-benzylchlorid C<sub>7</sub>H<sub>5</sub>O<sub>4</sub>N<sub>2</sub>Cl, s. nebenstehende Formel (H 344). Zur Bildung von 2.4.2'.4'-Tetranitro-stilben durch Behandeln von 2.4-Dinitro-benzylchlorid mit alkoh. Kalilauge vgl. PLISSOW, Ukr. chemič. Ž. 1 [1925], 422; C. 1926 I, 646; KRASSUSKI, PL., Ukr. chemič. Ž. 1 [1925], 638; C. 1926 II, 193. Geschwindigkeit der Umsetzung mit Kalium-jodid in Aceton bei 0°: CONANT, KIRNER, HUSSEY, Am. Soc. 47, 500. Liefert mit Nitrosobenzol und methylalkoholischer Kalilauge 2.4-Dinitro-benzaldoxim-N-phenyläther; reagiert analog mit anderen Nitrosoverbindungen (BARROW, GRIFFITHS, BLOOM, Soc. 121, 1714). Setzt sich mit Kalium-4-nitro-phenolat zu [4-Nitro-phenyl]-[2.4-dinitro-benzyl]-äther, mit Kaliumsalicylat zu Salicylsäure-[2.4-dinitro-benzylester] um (Kr., Pl.).

4-Chlor-2.5-dinitro-toluol C<sub>7</sub>H<sub>8</sub>O<sub>4</sub>N<sub>2</sub>Cl, s. nebenstehende Formel (H 344; E I 168). Liefert beim Erhitzen mit methylalkoholischem Ammoniak auf 160° 4-Chlor-6-nitro-3-amino-toluol, 4-Chlor-6-nitro-3-methoxy-toluol und 4-Chlor-6-nitro-3-oxy-toluol (Kenner, Tod, Witham, Soc. 127, 2348). 4-Chlor-6-nitro-3-methoxy-toluol entsteht auch bei 2-stdg. Erhitzen von 4-Chlor-2.5-dinitro-toluol mit Natriummethylat-Lösung auf 100°.

 $\begin{array}{c} \operatorname{CH_3} \\ \operatorname{NO_2} \\ \operatorname{Cl} \end{array}$ 

6-Chlor-2.5-dinitro-toluol C<sub>7</sub>H<sub>5</sub>O<sub>4</sub>N<sub>2</sub>Cl, s. nebenstehende Formel.

B. Durch Erwärmen von 6-Chlor-2-nitroso-5-nitro-toluol mit Salpetersäure (D: 1,5) auf dem Wasserbad (Morgan, Glover, Soc. 125, 1600). — Nadeln (aus Petroläther). F: 61,5—63°. Leicht löslich in den üblichen organischen Lösungsmitteln, besonders beim Erwärmen. — Liefert bei 3-tägiger Einw. von flüssigem Ammoniak im Rohr bei gewöhnlicher Temperatur ein braunes, amorphes Produkt, das nicht unter 260° schmilzt. Beim Erhitzen mit alkoh. Ammoniak im Rohr auf 130° entsteht eine basische Substanz (gelbe Nadeln, F: 116—118°). — Gibt mit alkoh. Natronlauge eine gelbe, beim Erwärmen in Orangerot übergehende Färbung. Löst sich in flüssigem Ammoniak mit blauer, in alkoh. Ammoniak mit gelber, in Rot übergehender Farbe.

3-Chlor-2.6-dinitro-toluol C<sub>7</sub>H<sub>2</sub>O<sub>4</sub>N<sub>2</sub>Cl, s. nebenstehende Formel (E I 168). B. Beim Behandeln von 3-Chlor-2.6-dinitro-4-amino-toluol mit 25% iger alkoholischer Äthylnitrit-Lösung bei Zimmertemperatur (LINDE-MANN, PABST, A. 462, 43, 46). — Blaßgelbe Nadeln (aus Alkohol). F: 77°. D<sup>80</sup><sub>1</sub>: 1,3896. n<sup>80</sup><sub>α</sub>: 1,5340; n<sup>80</sup><sub>β</sub>: 1,5566. Leicht löslich in Benzol. — Reagiert nicht mit siedendem Anilin.

2 - Chlor - 3.4 - dinitro - toluol C<sub>7</sub>H<sub>5</sub>O<sub>4</sub>N<sub>2</sub>Cl, s. nebenstehende Formel. B: CH<sub>3</sub>
Beim Diazotieren von 3.4-Dinitro-2-amino-toluol bei Gegenwart von Kupfer(I)chlorid in wäßrig-alkoholischer Salzsäure bei 70° (MORGAN, GLOVER, Soc. 119, 1703).

— Nadeln (aus Essigsäure). F: 89°. Leicht löslich in Aceton, Benzol, Chloroform und Eisessig, schwerer in Benzin. — Durch längere Einw. von alkoh. Ammoniak No<sub>2</sub>
entsteht 2-Chlor-4-nitro-3-amino-toluol; reagiert analog bei längerem Kochen mit Anilin in absol. Alkohol. Liefert beim Behandeln mit Hydrazinhydrat in siedendem Alkohol unter kurzer heftiger Reaktion das Hydrazinsslz des 4-Chlor-1-oxy-5-methyl-benztriazols

(Syst.Nr. 3804). — Gibt mit warmer wäßriger Natronlauge eine gelbe, über Gelbbraun in Braunrot übergehende Färbung, mit alkoh. Natronlauge eine blaßgrüne, über Dunkelgrün in ein trübes Braunschwarz übergehende Färbung, mit alkoh. Ammoniak entsteht eine schwach gelbe Färbung.

6-Chlor-3.4-dinitro-toluol C<sub>7</sub>H<sub>5</sub>O<sub>4</sub>N<sub>2</sub>Cl, s. nebenstehende Formel. B. Beim Behandeln von 2-Chlor-toluol mit Salpeterschwefelsäure bei 8—10° und nachfolgenden Erwärmen auf dem Wasserbad, neben 2-Chlor-3.5-dinitro-toluol (Hauptprodukt), 6-Chlor-2.3-dinitro-toluol und 6-Chlor-2.4-dinitro-toluol; man trennt die Isomeren durch aufeinanderfolgende fraktionierte Krystallisation aus konz. Schwefelsäure und Alkohol (Morgan, Drew, Soc. 117, 784). Entsteht als Hauptprodukt beim Nitrieren von 2-Chlor-4-nitro-toluol mit Salpeterschwefelsäure anfangs bei 40—45°, dann bei 90°, neben 6-Chlor-2.4-dinitro-toluol (M., D.; M., CHALLENOR, Soc. 119, 1539). Beim Diazotieren von 4.5-Dinitro-2-amino-toluol bei Gegenwart von Kupfer(I)-chlorid in wäßrig-alkoholischer Salzsäure bei 70° (M., GLOVER, Soc. 119, 1703). — Blättchen (aus kaltem Alkohol), Nadeln (aus warmem Alkohol oder aus verd. Essigsäure). F: 87° (M., GL.), 88,5° (M., D.). — Liefert bei der Einw. von alkoh. Ammoniak 6-Chlor4-nitro-3-amino-toluol (M., D.; M., CE.); reagiert analog mit Methylamin in absol. Alkohol bei 15° und mit Anilin in siedendem Alkohol (M., Jones, Soc. 119, 189). — Gibt mit flüssigem Ammoniak eine orangerote bis braunschwarze, mit alkoh. Ammoniak eine orangerote Färbung (M., D.). Mit alkoh. Natronlauge entsteht eine blaßgelbe Färbung, die über Grün und Blau

in Braunrot übergeht und beim Erwärmen orangerot wird (M., D.).

2 - Chlor - 3.5 - dinitro - toluol C<sub>7</sub>H<sub>5</sub>O<sub>4</sub>N<sub>2</sub>Cl, s. nebenstehende Formel (H 345; E I 169). B. Als Hauptprodukt beim Behandeln von 2-Chlor-toluol mit Salpeterschwefelsäure bei 8—10°, zuletzt auf dem Wasserbad, neben O<sub>2</sub>N. NO<sub>2</sub> 6-Chlor-2.3-dinitro-toluol, 6-Chlor-3.4-dinitro-toluol und 6-Chlor-2.4-dinitro-toluol; man trennt die Isomeren durch aufeinanderfolgende fraktionierte Krystallisation aus konz. Schwefelsäure und Alkohol (Morgan, Drew, Soc. 117, 784). In sehr geringer Menge bei der Einw. von Benzoylchlorid oder p-Toluolsulfochlorid auf das wasserfreie Natriumsalz des 3.5-Dinitro-2-oxy-toluols, neben anderen Produkten (Gibson, Soc. 127, 47). Bei 8-stdg. Erhitzen von p-Toluolsulfonsäure-[4.6-dinitro-2-methyl-phenylester] mit Diäthylanilinhydrochlorid in Nitrobenzol auf 120° (Ausbeute: 53%) (Borsche, Ferke, B. 60, 158). Aus N-[4.6-Dinitro-2-methyl-phenyl]-pyridinium-p-toluolsulfonat und 5n-Salzsäure im Rohr bei 170° (Ausbeute: 80%) (B., F.). — D<sub>1</sub><sup>(00.8)</sup>: 1,3999; n<sub>2</sub><sup>(00.8)</sup>: 1,5476; n<sub>β</sub><sup>(00.8)</sup>: 1,5734 (Lindemann, Pabst, A. 462, 46). — Liefert beim Erwärmen mit Natriumphenolat auf dem Wasserbad 4.6-Dinitro-2-methyl-diphenyläther (B., F., B. 59, 685). Gibt mit flüssigem oder alkoholischem Ammoniak 3.5-Dinitro-2-amino-toluol (M., D.). Geschwindigkeit der Reaktion mit Anilin in Alkohol: L., P. — Gibt mit flüssigem Ammoniak eine violette, in Grünschwarz übergehende, mit alkoh. Ammoniak eine grünblaue, in Rot übergehende, mit alkoh. Natronlauge eine gelbliche, über Grünblau in Rot bzw. beim Erwärmen in Orangerot übergehende Färbung (M., D.).

4-Chlor-3.5-dinitro-toluol C<sub>7</sub>H<sub>5</sub>O<sub>4</sub>N<sub>2</sub>Cl, s. nebenstehende Formel (H 345; E I 169). B. In geringer Menge beim Erhitzen von p-Toluolsulfonsäure-[2.6-dinitro-4-methyl-phenylester] mit Diäthylanilin-hydrochlorid in Nitrobenzol auf 110° (Borsche, Feske, B. 60, 159). Entsteht in 70 %iger O<sub>2</sub>N-Ausbeute beim Erhitzen von N-[2.6-Dinitro-4-methyl-phenyl]-pyridinium-p-toluolsulfonat mit 5n-Salzsäure anfangs auf 160—170°, dann auf 190—200° (B., F.). — F: 116°.

$$\begin{matrix} \overset{\overset{\textstyle CH_3}{\circ}}{\circ} \\ {\scriptstyle O_2N} \cdot \overset{\overset{\textstyle CH_3}{\circ}}{\circ} \\ \overset{\textstyle Cl}{\circ} \end{matrix}$$

2-Chlor-x.x-dinitro-toluol  $C_7H_5O_4N_2Cl=(O_2N)_2C_6H_2Cl\cdot CH_3$ . B. Neben 6-Chlor-2.3-dinitro-p-cymol beim Behandeln von 2-Chlor-p-cymol mit Salpeterschwefelsäure bei  $0^\circ$  (Lubs, Young, J. ind. Eng. Chem. 11, 1131, 1132; C. 1921 I, 175). — Gelbliche Nadeln (aus Alkohol). Optische Eigenschaften der Krystalle: L., Y. F: 88—89°. — Gibt bei der Reduktion eine bei 115—116° schmelzende Base. — Beim Erwärmen mit Alkohol und etwas Natrium-carbonat tritt eine intensiv blaue Färbung auf.

4-Chlor- $\omega.\omega$ -dinitro-toluol, [4-Chlor-phenyl]-dinitromethan bzw. aci-[4-Chlor-phenyl]-dinitromethan, [4-Chlor-phenyl]-nitroisenitromethan  $C_2H_5O_4N_2Cl=C_6H_4Cl$ ·  $CH(NO_3)_2$  bzw.  $C_4H_4Cl$ ·  $CI(NO_3)_2$ : NO<sub>2</sub>H. B. Beim Behandeln von 4-Chlor-benzaldoxim mit 2 Mol Stickstofftetroxyd in Ather unter Kühlung (Rugger, G. 53, 695). — Nadeln (aus Petroläther). F: 55° (Zers.). Löslich in kaltem Alkohol, Ather, Aceton, Chloroform und Benzol, leicht löslich in warmem, sehr schwer in kaltem Ligroin. — KC<sub>2</sub>H<sub>4</sub>O<sub>4</sub>N<sub>4</sub>Cl. Orangegelbe Prismen (aus Wasser). Explodiert beim Erhitzen. Leicht löslich in heßem Wasser mit roter Farbe, sehr schwer in Alkohol, unlöslich in anderen Lösungsmitteln.

3.5-Dichlor-2.4-dinitro-toluol C<sub>7</sub>H<sub>4</sub>O<sub>4</sub>N<sub>2</sub>Cl<sub>2</sub>, s. nebenstehende Formel. B. Beim Erwärmen von 3.5-Dichlor-2-nitro-toluol oder von 3.5-Dichlor-4-nitro-toluol mit Salpetersäure (D: 1,52) (Borsche, Trautner, A. 447, 13 Anm. 2). Beim Erhitzen von 3.5-Dichlor-2-4-dinitro-phenylessigsäure mit Wasser auf 140° (B., Tr., A. 447, 12). — Nadeln (aus Alkohol). F: 127°. — Liefert beim Erhitzen mit alkoh. Ammoniak auf 125° 2.4-Dinitro-3.5-diaminotoluol; reagiert analog mit Anilin.

CH<sub>3</sub> NO<sub>2</sub> Cl  $\dot{N}O_2$ 

CHCl<sub>2</sub>

 $\omega.\omega$  - Dichlor - 2.4 - dinitro - toluol, 2.4 - Dinitro - benzylidenchlorid  $C_7H_4O_4N_3Cl_2$ , s. nebenstehende Formel. B. Aus 2.4-Dinitro-benzaldehyd und Phosphorpentachlorid in Benzol; wurde nicht rein erhalten (TANASESCU, Bl. [4] 39, 1722).

NO<sub>2</sub>  $NO_2$ 

3.5-Dichlor-2.6-dinitro-toluol C<sub>2</sub>H<sub>4</sub>O<sub>4</sub>N<sub>2</sub>Cl<sub>2</sub>, s. nebenstehende Formel (vgl. H 345). B. Entsteht im Gemisch mit 3.5-Dichlor-2.4-dinitro-toluol beim Erwärmen von 3.5-Dichlor-2-nitro-toluol mit Salpetersäure auf ca. 65°; wurde nicht isoliert (Borsche, Trautner, A. 447, 13 Anm. 2).

CH<sub>3</sub> ·NO2  $O_2N$ ·Cl

2.6-Dichlor-3.4-dinitro-toluol  $C_7H_4O_4N_2Cl_2$ , s. nebenstehende Formel. B. Beim Erwärmen von 2.6-Dichlor-4-nitro-toluol mit Salpetersäure (D: 1.5) und konz. Schwefelsäure auf dem Wasserbad (Davies, Soc. 121, 812; D., LEEPER, Soc. 1926, 1416). — Nadeln (aus Alkohol). F: 130—131° (D.). Schwer löslich in kaltem Alkohól (D.). — Gibt beim Erhitzen mit alkoh. Ammoniak unter Druck bis auf 1270 2.6-Dichlor-4-nitro-3-amino-toluol (D., L.).

CH<sub>3</sub> ·CI ·NO2 NO<sub>2</sub>

2.4-Dichlor-3.5-dinitro-toluol C<sub>7</sub>H<sub>4</sub>O<sub>4</sub>N<sub>2</sub>Cl<sub>2</sub>, s. nebenstehende Formel (H 345; E I 169). B. Zur Bildung durch Nitrierung von 2.4-Dichlor-toluol vgl. a. Silberrad, Soc. 127, 2680. — F: 104,3° (korr.). — Liefert bei der O2N Oxydation mit siedender Salpetersäure (D: 1,42) in Gegenwart von Quecksilber(II)-nitrat 2.4-Dichlor-3.5-dinitro-benzoesäure.

 $CH_3$ CI · NO2 Ċl

2.6-Dichlor-3.5-dinitro-toluol C<sub>7</sub>H<sub>4</sub>O<sub>4</sub>N<sub>2</sub>Cl<sub>2</sub>, s. nebenstehende Formel (H 345). B. Beim Diazotieren von 2.6-Dichlor-3-nitro-4-amino-toluol in wäßrig-alkoholischer Schwefelsäure, Verkochen der Diazonium-Lösung und Erwärmen des entstandenen 2.6-Dichlor-3-nitro-toluols mit Salpeterschwefelsäure auf dem Wasserbad (Davies, Soc. 121, 814). — Nadeln (aus Alkohol und Petroläther). F: 121° (korr.) (D.). — Liefert beim Erhitzen mit Salpeterschwefelsäure auf 140—150° und

·CI ·NO2  $O_2N$  ·

CH<sub>3</sub>

nitro-2-methyl-phenyl]-acetessigsäure-äthylester (D., HICKOX, Soc. 121, 2647). **4.5.6-Trichlor-2.3-dinitro-toluol**  $C_7H_3O_4N_2Cl_3$ , s. nebenstehende Formel (H 345). B. Zur Bildung durch Nitrierung von 2.3.4-Trichlor-toluol vgl. a. SILBERRAD, Soc. 127, 2681.

acetessigester in Alkohol und folgenden Eingießen in Wasser α-[3-Chlor-4.6-di-

danach auf 155-1650 2.6-Dichlor-3.4.5-trinitro-toluol (D.). Gibt beim Kochen mit Natrium-

 $\cdot NO_2$ ·NO2 Ċl

5-Brom-2.4-dinitro-toluol C<sub>7</sub>H<sub>5</sub>O<sub>4</sub>N<sub>2</sub>Br, s. nebenstehende Formel (H 346; E I 169). B. Beim Behandeln von 3-Brom-toluol mit Salpeterschwefelsäure unter Kühlung (Lindemann, Pabst, A. 462, 39). — Nadeln (aus Alkohol). F: 114°. Löslich in Benzin, sehr leicht löslich in Benzol. — Geschwindigkeit der Reaktion mit Anilin in Alkohol: L., P., A. 462, 31, 45.

CH<sub>3</sub>  $NO_2$ NO<sub>2</sub>

3 - Brom - 2.6 - dinitro - toluol  $C_7H_5O_4N_2Br$ , s. nebenstehende Formel (E I 169). B. Zur Bildung aus 3-Brom-2.6-dinitro-4-amino-toluol und Xthylnitrit vgl. LINDEMANN, PABST, A. 462, 42. — F: 86°. Ist mit Wasserdampf flüchtig. — Bleibt beim Erhitzen mit Anilin in Benzol oder Alkohol mit oder ohne Zusatz von Natriumacetat unverändert.

СНз ·NO2 ·Br

4-Brom-2.6-dinitro-toluol C<sub>7</sub>H<sub>5</sub>O<sub>4</sub>N<sub>2</sub>Br, s. nebenstehende Formel. B. Beim Erwärmen von diazotiertem 2.6-Dinitro-4-amino-toluol mit Kupfer(I)bromid und Bromwasserstoffsäure (D: 1,49) auf dem Wasserbad (Elson, Gibson, Johnson, Soc. 1929, 2741). — Orangegelbe Nadeln (aus Alkohol). F: 89-90°.

 $CH_3$ ·NO2 Br

ω-Brom-2.6-dinitro-toluol, 2.6-Dinitro-benzylbromid C<sub>7</sub>H<sub>5</sub>O<sub>4</sub>N<sub>2</sub>Br, s. nebenstehende Formel (E I 169). B. Beim Erhitzen von 2.6-Dinitro-toluol mit Brom, Magnesium carbonat und Pyridin im Rohr auf 1500 (BARROW, GRIFFITHS, BLOOM, Soc. 121, 1716; vgl. a. v. AUWERS, FRESE, B. 58, 1371). — Liefert mit Nitrosobenzol in alkoh. Natriumäthylat-Lösung 2.6-Dinitro-benzaldoxim-N-phenyläther; reagiert analog mit 4-Nitroso-dimethylanilin (B., GR.).

CH<sub>2</sub>Br ·NO2

2-Brom-3.5-dinitro-toluol  $C_7H_5O_4N_1Br$ , s. nebenstehende Formel (H 346; E I 169). Geschwindigkeit der Reaktion mit Anilin in Alkohol: LINDEMANN, PABST, A. 462, 31, 45.

Br O2N· ·NO<sub>2</sub>

 $NO_2$ 

 $\cdot NO_2$ 

ω-Brom - ω. ω-dinitro - toluol, Phenylbromdinitromethan  $C_7H_5O_4N_2Br = C_6H_5$ ·  $CBr(NO_2)_2$  (H 346; E I 170). B. Aus Phenyldinitromethan-Natrium und Brom in Schwefelkohlenstoff bei 0° (Macbeth, Pratt, Soc. 119, 1359). —  $n_0$ : 1,5650 (Macb., P.). Ultraviolett-Absorptionsspektrum der Lösung in Alkohol: Graham, Macb., Soc. 121, 1114. — Unlöslich in Wasser (Macb., P.). Mit Wasserdampf destillerbar (Macb., P.). — Zersetzt sich bei 100° unter 15 mm Druck, ohne zu sieden (Macb., P.). Gibt beim Behandeln mit alkoh. Kalilauge oder mit Hydrazin in wäßrig-alkoholischer Kalilauge Phenyldinitromethan-Kalium (Macb., P.).

5-Chlor-6-brom -2.4-dinitro-toluol C<sub>7</sub>H<sub>4</sub>O<sub>4</sub>N<sub>2</sub>ClBr, s. nebenstehende Formel. Diese Konstitution kommt dem E I 170 beschriebenen 3-Chlor-2-brom-x.x-dinitro-toluol von Cohen, Smithels (Soc. 105, 1909) zu (Sane, Joshi, J. indian chem. Soc. 5, 301; C. 1928 II, 1432). — B. Beim Erwärmen von 2-Brom-4.6-dinitro-3-oxy-toluol mit p-Toluolsulfochlorid und Diäthylanilin auf dem Wasserbad (S., J.). — Krystalle (aus Alkohol). F: 81—82°. Leicht löslich in den meisten organischen Lösungsmitteln.

3.5-Dibrom-2.4-dinitro-toluol C<sub>7</sub>H<sub>4</sub>O<sub>4</sub>N<sub>2</sub>Br<sub>2</sub>, Formel I (H 346). F: 159—160<sup>o</sup> (Borsche, Trautner, A. 447, 14). — Liefert beim Behandeln mit Natriumäthylat in Benzol + Alkohol und nachfolgenden Ansäuern

Benzol + Alkohol und nachfolgenden Ansäuern mit Salzsäure ein rotes, amorphes Produkt. Bei der Einw. von Natriumphenolat entstehen Harze. Gibt bei 3-stdg. Erhitzen mit alkoh. Ammoniak auf 125° 2.4-Dinitro-3.5-diamino-toluol; reagiert analog mit Anilin. Gibt mit Hydrazinhydrat in

I.  $_{\text{Br}}$   $\overset{\text{CH}_3}{\underset{\text{NO}_2}{\text{NO}_2}}$  II.  $_{\text{H}_2\text{N}\cdot\text{NH}}$   $\overset{\text{CH}_3}{\underset{\text{N}}{\text{N}}}$ 

Alkohol je nach den Bedingungen 2.4-Dinitro-3.5-dihydrazino-toluol oder das Hydrazinsalz des 1-Oxy-7-nitro-6-hydrazino-4-methyl-benztriazols (?), Formel II (Syst. Nr. 3998).

3.5-Dibrom-2.6-dinitro-toluol C<sub>7</sub>H<sub>4</sub>O<sub>4</sub>N<sub>2</sub>Br<sub>2</sub>, s. nebenstehende Formel (H 347; E I 170). B. Zur Bildung nach Blanksma (C. 1909 II, 1220) vgl.
Borsche, Trautner, A. 447, 16. — Nädelchen (aus verd. Alkohol). F: 119<sup>9</sup> Br bis 120<sup>9</sup>. — Liefert mit Natriumäthylat in Benzol + Alkohol 5-Brom-2.6-dinitro-3-āthoxy-toluol. Verhalten beim Erhitzen mit alkoh. Ammoniak: B., Tr. Gibt bei 8-stdg. Erhitzen mit p-Toluidin auf 130<sup>9</sup> 2.6-Dinitro-3.5-di-p-toluidino-toluol. Beim Kochen mit Hydrazinhydrat in Alkohol erhält man 1-Oxy-5-brom-6-nitro-7-methyl-benztriazol.

**3-Jod-2.4-**dinitro-toluol  $C_7H_5O_4N_2I$ , s. nebenstehende Formel. B. Beim Kochen von 2.4-Dinitro-3-hydrazino-toluol mit überschüssigem Jod in Alkohol (Brady, Bowman, Soc. 119, 897). — Gelbe Blättchen (aus Alkohol). F: 117°.

ω-Jod-2.4-dinitro-toluol, 2.4-Dinitro-benzyljodid C<sub>7</sub>H<sub>5</sub>O<sub>4</sub>N<sub>2</sub>I, s. nebenstehende Formel. B. Bei der Einw. von Kaliumjodid auf 2.4-Dinitro-benzylchlorid in Aceton (Glennie bei Conant, Kirner, Hussey, Am. Soc. 47, 496) oder in siedendem Alkohol (Poggi, R. A. L. [6] 2, 423). — Gelbe Nadeln. F: 75,5—76° (P.), 69,5—70° (C., K., H.). Unlöslich in Wasser; schwer löslich in Alkohol (P.).

**2-Nitroso-3.5-dinitro-toluol**  $C_7H_5O_5N_3$ , s. nebenstehende Formel. B. Beim Behandeln von 3.5-Dinitro-2-hydroxylamino-toluol mit Chromtrioxyd in Eisessig und wenig Wasser (Borsche, Fener, B. 59, 687). — Gelbe Blättchen (aus Essigsäure). F: 133 $^{\circ}$  (unter Grünfärbung und Zersetzung).

2.3.4-Trinitro-toluol, β-Trinitrotoluol C<sub>7</sub>H<sub>5</sub>O<sub>6</sub>N<sub>3</sub>, s. nebenstehende Formel (H 349; E I 172). B. Neben 2.4.5-Trinitro-toluol und geringeren Mengen 2.3.6-Trinitro-toluol bei der Nitrierung von 3-Nitro-toluol mit Salpeterschwefelsäure (Marqueyrrol, Koehler, Jovinet, Bl. [4] 27, 422; Brady, Gibson, Soc. 119, 99; Gibson, Duckham, Fairbairn, Soc. 121, 283; Br., Soc. 121, 330). Aus 2.3-Dinitro-toluol bei der Einw. von Salpeterschwefelsäure bei 80—120°, neben 15% 2.3.6-Trinitro-toluol (Drew, Soc. 117, 1617; M., K., J.). Neben viel 2.4.5-Trinitro-toluol bei der Nitrierung von 3.4-Dinitro-toluol mit Salpeterschwefelsäure (Br. bei Gi., D., F.). Über Abscheidung aus den Nitrierungsprodukten des Toluols vgl. Gornall, Robinson, Soc. 1926, 1981. Durch Einw. von Caroscher Säure auf 3.4-Dinitro-2-amino-toluol (Br., Williams, Soc. 117, 140) oder 2.3-Dinitro-4-amino-toluol (Scott, Robinson, Soc. 121, 846) in 80% iger Schwefelsäure und Erwärmen des Reaktionsprodukts mit Salpetersäure (D: 1,5) auf dem Wasserbad.

Krystallisationswärme: Garner, Abernethy, Pr. roy. Soc. [A] 99, 224; C. 1921 III, 866. Verbrennungswärme bei konstantem Volumen: 834,7 kcal/Mol (Garn., A.). — Sehr schwer löslich in Schwefelsäure (Gornall, Robinson, Soc. 1926, 1982). Thermische Analyse der binären Systeme mit 2.4.5- und 2.4.6-Trinitro-toluol: Gibson, Duckham, Fairbairn, Soc. 121, 282; mit Azoxybenzol: Giua, Guastalla, G. 55, 649; des ternären Systems mit

2.4.5- und 2.4.6-Trinitro-toluol: GIB., DUCK., FAIR.

Empfindlichkeit gegen Schlag: ROBERTSON, Soc. 119, 18. Geschwindigkeit der Zersetzung bei 140°: FARMER, Soc. 117, 1442; R., Soc. 119, 13. Verpufft bei 301-303°, in Gegenwart von Natriumcarbonat bei 208-2150 (Brunswic, Z. ang. Ch. 36, 76). — Liefert bei der Einw. von Natriumsulfit-Lösung das Natriumsalz der 2.4-Dinitro-toluol-sulfonsäure-(3) (Brady. HEWETSON, KLEIN, Soc. 125, 2402; GORNALL, ROBINSON. Soc. 1926, 1982). Gibt beim Kochen mit Natriumazid in Alkohol 2.4-Dinitro-3-azido-toluol (Br., Bowman, Soc. 119, 898). Einw. von Cyanamid: GIUA, PETRONIO, J. pr. [2] 110, 303. Gibt mit methylalkoholischer Kalilauge 2.4-Dinitro-3-methoxy-toluol (Gornall, Robinson, Soc. 1926, 1984). Liefert mit Methylamin in siedendem Alkohol 2.4-Dinitro-3-methylamino-toluol (Brady, Gibson, Soc. 119, 101); reagiert analog mit m-Toluidin (Brady, H., Kl.), p-Toluidin, Benzylamin (Gornall, Rojinson), β-Naphthylamin (Brady, H., Kl.), 2-Amino-phenol (Giua, Giua, G. 51 II, 171) und 4-Amino-acetophenon (Giua, G. 51 II, 115; Giua, Giua, G. 51 II, 171). 2.4-Dinitro-3-methylamino-toluol entsteht auch durch Einw. von 2.3.4-Trinitro-toluol auf Benzyliden-methylamin (Giua, G. 53, 54); über analoge Reaktionen mit anderen Benzyliden-alkylaminen vgl. Giua. Petronio, J. pr. [2] 110, 306. Gibt mit 2 Mol o-Phenylendiamin in Alkohol auf dem Wasserbad 2.6-Dinitro-2'-amino-3-methyl-diphenylamin; reagiert analog mit p-Phenylendiamin (GIUA, GIUA, G. 53, 52). Die siedende alkoholische Lösung gibt mit alkoh. Hydrazinhydrat-Lösung nach sofortigem Abkühlen 2.4-Dinitro-3-hydrazino-toluol (Brady, Bowman, Soc. 119, 896; vgl. Drew, Soc. 117, 1616); analog verlaufen die Reaktionen mit Semicarbazid (Giua, G. 53, 847), mit 2 Mol Thiosemicarbazid (Giua, Petronio, G. 55, 670) und mit α-Methylphenylhydrazin (GIUA, G. 50 II, 328; Atti Accad. Torino 63, 262; C. 1928 II, 2347), während man bei der Reaktion mit 1 Mol Thiosemicarbazid hauptsächlich 2.6.2'.6'-Tetranitro-3.3'-dimethyl-diphenylsulfid erhält (GIUA, PETRONIO, G. 55, 670). Beim Behandeln mit o-Tolyl-hydrazin in Alkohol entsteht 2-o-Tolyl-4(oder 7)-nitro-5(oder 4)-methyl-benztriazol-1-oxyd (Angeletti, G. 53, 673).

Gibt mit einem Tropfen alkoh. Natronlauge in Aceton eine intensiv violette, in einem Gemisch aus 1 Vol. 95% igem Alkohol und 4 Vol. Aceton eine tiefgrüne Färbung (Marqueyrol, Koehler, Jovinet, Bl. [4] 27, 423).

2.3.5-Trinitro-toluol C<sub>7</sub>H<sub>5</sub>O<sub>6</sub>N<sub>3</sub>, s. nebenstehende Formel (E I 172).

B. Durch Erwärmen von 3.5-Dinitro-2-hydroxylamino-toluol mit Salpetersäure (D: 1,5) auf dem Wasserbad (Borsche, Feske, B. 59, 687). — Krystalle (aus Alkohol + Wasser). F: 97° (B., F.), 95,8° (Garner, Abernethy, Pr. roy. Soc. [A] 99 [1921], 219). Verbrennungswärme bei konstantem Volumen: 825,6 kcal/Mol (G., A.). — Empfindlichkeit gegen Schlag und Geschwindigkeit der Zersetzung bei 140°: Robertson, Soc. 119, 13, 18. Verpufft bei 333—337°, in Gegenwart von Natriumcarbonat bei 268—271° (Brunswig, Z. ang. Ch. 36, 76). Gibt in siedendem Alkohol mit Natriumcarbonat das Natriumsalz, mit Bleioxyd das Bleisalz des 3.5-Dinitro-2-oxy-toluols (Brunswig). 3.5-Dinitro-2-oxy-toluol entsteht auch beim Erhitzen mit Natriumacetat (Brady, Hewetson, Klein, Soc. 125, 2402). Beim Behandeln mit Natriumsulfit-Lösung erhält man das Natriumsalz der 3.5-Dinitro-toluol-sulfonsäure-(2) (Bra., H., Kl.). Setzt sich mit o-Toluidin in siedendem Alkohol zu 4.6-Dinitro-2.2'-dimethyl-diphenylamin um (Bra., H., Kl.). Gibt beim Kochen mit Hydrazinhydrat in Alkohol nach sofortigem Abkühlen 3.5-Dinitro-2-hydrazino-toluol (Bra., Bowman, Soc. 119, 899).

2.3.6-Trinitro-toluol  $C_7H_5O_6N_3$ , s. nebenstehende Formel (E I 172). B. In geringer Menge neben 2.4.5- und 2.3.4-Trinitro-toluol bei der Nitrierung  $O_2N$ . CH<sub>3</sub> NO2 von 3-Nitro-toluol mit Salpeterschwefelsäure (Marqueyrol, Koehler, Jovinet, Bl. [4] 27, 422; Gibson, Duckham, Fairbairn, Soc. 121, 279, 283;  $1 \cdot NO_2$ Brady, Soc. 121, 330). Entsteht ebenfalls in geringer Menge beim Behandeln von 2.3-Dinitrotoluol mit Salpeterschwefelsäure bei 80-1200, neben 2.3.4-Trinitro-toluol; wird auf gleiche Weise neben 2.4.5-Trinitro-toluol aus 2.5-Dinitro-toluol erhalten (DREW, Soc. 117, 1616; Brady; M., K., J.; vgl. dagegen Giua, G. 51 II, 114). Bei der Einw. von Caroscher Säure auf 5.6-Dinitro-2-amino-toluol oder 3.6-Dinitro-2-amino-toluol in konz. Schwefelsäure und Behandlung der Reaktionsprodukte mit Salpetersäure (D: 1,5) auf dem Wasserbad (Brady, Taylor, Soc. 117, 879). — Trennung von 2.3.4- und 2.4.5-Trinitro-toluol mit Hilfe von Hydrazinhydrat: Drew; Brady; mit wäßr. Natriumsulfit-Lösung: Brady. — Verbrennungswärme bei konstantem Volumen; 82,1 kcal/Mol (Ganer, Abernethy, Pr. roy. Soc. [A] 99, 226; C. 1921 III, 866). Schwer löslich in kaltem Alkohol, löslich in heißem Alkohol, leicht löslich in Aceton (M., K., J.). — Verpufft bei 327—335°, in Gegenwart von Natrium-carbonat bei 249—250° (Brunswig, Z. ang. Ch. 38, 76). Explosionsdruck: M., K., J. Setzt sich mit Natriumcarbonat in siedendem Alkohol langsam zu Natrium-dinitrokresolat um (Brunswig). — Gibt mit einem Tropfen alkoh. Natronlauge in Aceton eine schwach rötliche, in einem Gemisch aus 1 Vol. 95% igem Alkohol und 4 Vol. Aceton eine johannisbeerrote Färbung (M., K., J.).

2.4.5-Trinitro-toluol, (y-Trinitrotoluol) C7H5O6N3, s. nebenstehende Formel (H 347; E I 172). B. Entsteht als Hauptprodukt bei der Nitrierung von 3-Nitro-toluol mit Salpeterschwefelsäure neben 2.3.4- und 2.3.6-Trinitro-toluol (Marqueyrol, Koehler, Jovinet, Bl. [4] 27, 421; Brady, Gibson, Soc. 119, 99; Br., Soc. 121, 330; Gibson, Duckham, Fairbairn, Soc. 121, 278, 283; vgl. Hepp. A. 215, 366), bei der Nitrierung von 2.5-Dinitro-toluol mit Salpeterschwefelsäure bei 80—120°, neben 2.3.6-Trinitro-toluol (Drew, Soc. 117, 1616;

M., K., J.; G., D., F.) und bei der Nitrierung von 3.4-Dinitro-toluol mit Salpeterschwefelsäure, neben 2.3.4-Trinitro-toluol (Br., zitiert bei G., D., F.). Bei der Oxydation von 4.5-Dinitro-2-amino-toluol (Br., Williams, Soc. 117, 1139) oder von 2.5-Dinitro-4-amino-toluol (Scott, Robinson, Soc. 121, 845) mit Caroscher Säure in 80% iger Schwefelsäure und nach-

folgendem Erhitzen mit Salpetersäure (D: 1,5).

Blaßgelbe Prismen (aus Alkohol). F: 104° (Scott, Robinson, Soc. 121, 845), 102,7° bis 103,3° (Garner, Abernethy, Pr. roy. Soc. [A] 99, 219; C. 1921 III, 866). Verbrennungswärme bei konstantem Volumen: 827,4 kcal/Mol (Garner, A.). Ziemlich leicht löslich in Schwefelsäure (GORNALL, ROBINSON, Soc. 1926, 1982). Thermische Analyse der binären Systeme mit 2.3.4-Trinitro-toluol und mit 2.4.6-Trinitro-toluol: Gibson, Duckham, Fair-BAIRN, Soc. 121, 282; mit 4-Amino-acetophenon: GIUA, ANGELETTI, G. 51 I, 322; mit Azoxybenzol: GIUA, GUASTALLA, G. 55, 650; des ternären Systems mit 2.3.4-Trinitro-toluol und 2.4.6-Trinitro-toluol: G., D., F.

Empfindlichkeit gegen Schlag: Robertson, Soc. 119, 18. Geschwindigkeit der Zersetzung im Vakuum bei 120° und 140°: Farmer, Soc. 117, 1442. Temperaturkoeffizient der Zersetzung zwischen 140° und 180°: R., Soc. 119, 12. Verpufft bei 288—293°, in Gegenwart von Natriumcarbonat bei 191—198° (Brunswig, Z. ang. Ch. 36, 76). Explosionsdruck: Marqueyrol, Koehler, Joviner, Bl. [4] 27, 423.

2.4.5-Trinitro-toluol gibt beim Kochen mit Natriumcarbonat in Alkohol (Brunswig, Z. ang. Ch. 36, 76) oder beim Erhitzen mit krystallisiertem Natriumacetat (Brady, Hewetson, KLEIN, Soc. 125, 2403) das Natriumsalz des 4.6-Dinitro-m-kresols, mit Bleioxyd in siedendem Alkohol das entsprechende Bleisalz (Brunswig). Behandeln mit Natriumsulfit-Lösung bei Zimmertemperatur gibt das Natriumsalz der 4.6-Dinitro-toluol-sulfonsäure-(3) (Brady, bei Zimmertemperatur gibt das Natriumsaiz der 4.6-Dinitro-toutoi-suironsaure-(3) (BRADY, H., Kl., Soc. 125, 2402; Muraour, Bl. [4] 35, 370). Bei der Umsetzung mit Cyanamid in wäßrig-alkoholischer Lösung bei 50—55° entsteht [4.6-Dinitro-3-methyl-phenyl]-cyanamid (Giua, Petronio, J. pr. [2] 110, 301). Liefert mit Thioharnstoff in siedendem Alkohol 4.6.4'.6'-Tetranitro-3.3'-dimethyl-diphenylsulfid und das entsprechende Disulfid, mit Thiophenol in Alkohol 4.6-Dinitro-3-methyl-diphenylsulfid und Diphenyldisulfid (Giua, Ruggeri, G. 53, 293, 295). Beim Kochen von 2.4.5-Trinitro-toluol mit Benzyliden-methylamin (Giua, G. 53, 294). In Alkohol entstit man 4.6 Dinitro 3-methylming toluol. Possiort entellemin G. 53, 54) in Alkohol erhält man 4.6-Dinitro-3-methylamino-toluol. Reagiert analog mit anderen Benzyliden-alkylaminen (GIUA, PETRONIO, J. pr. [2] 110, 306). Beim Behandeln mit 2 Mol o-Phenylendiamin in Alkohol bei 50° entsteht 4.6-Dinitro-2'-amino-3-methyl-diphenylamin; reagiert analog mit m- und p-Phenylendiamin (GIUA, GIUA, G. 53, 49). Gibt mit der āquimolekularen Menge 4-Amino-acetophenon in heißer ätherisch-alkoholischer Lösung die additionelle Verbindung  $C_8H_9ON+C_7H_5O_8N_8$ , die bei längerem Erwärmen in Alkohol in 4.6-Dinitro-3-methyl-4'-acetyl-diphenylamin übergeht (Giua, Angeletti, G. 51 I, 320). Beim Erwärmen mit der äquimolekularen Menge 4-Amino-azobenzol in Alkohol auf dem Wessenbedgebilden. Wasserbad erhält man die additionelle Verbindung  $C_{18}H_{11}N_3 + C_7H_5O_5N_3$  und  $4\cdot[4.6\text{-Dinitro-3-methyl-anilino}]$ -azobenzol (Giua, Ang.). Liefert mit wasserfreiem Hydroxylamin in absol. Alkohol bei 45—50° 4.6-Dinitro-3-methyl-phenylhydroxylamin (Giua, G. 53, 659). Setzt sich mit Hydrazinhydrat in verd. Alkohol zu 4.6-Dinitro-3-hydrazino-toluol um (Brady, Soc. 121, 330; vgl. Drew, Soc. 117, 1616); reagiert analog mit α-Methyl-phenylhydrazin in Methanol (Giua, G. 50 II, 329), mit Semicarbazid in Alkohol (Giua, G. 53, 845, 846) und mit überschüssigem Thiosemicarbazid in siedendem Alkohol, während bei der Umsetzung mit 1 Mol Thiosemicarbazid in Alkohol 4.6.4'.6'-Tetranitro-3.3'-dimethyl-diphenyldisulfid erhalten wird (GIUA, PETR., G. 55, 672).

2.4.5-Trinitro-toluol gibt mit einem Tropfen alkoh. Natronlauge in Aceton eine violette, in Schmutziggrau umschlagende Färbung, in einem Gemisch aus 4 Vol. Aceton + 1 Vol. Alkohol eine blauviolette Färbung (MARQUEYROL, KOEHLER, JOVINET, Bl. [4] 27, 423).

2.4.6-Trinitro-toluol, α-Trinitrotoluol, T. N. T., Trotyl (Tolit, Tritol, Tutol, Trinol, Trilit, Tri) C<sub>7</sub>H<sub>5</sub>O<sub>5</sub>N<sub>5</sub>, s. nebenstehende Formel (H 347; E I 172). *Literatur*: A. STETTBACHER, Schieß- und Sprengstoffe, 2. Aufl. [Leipzig 1933], S. 261. — Th. MENTE, Die Herstellung der Sprengstoffe unter dem Gesichtspunkte der Arbeiter, der Nachbarschaft und der Sicherheit des Betriebes [Berlin 1928], S. 53—57, 60, 61, 63, 64. — Ph. Naoúm, Schieß-und Sprengstoffe [Dresden-Leipzig 1927], S. 51. — H. Kast-L. Metz, Chemische Unter-

suchung der Spreng- und Zündstoffe [Braunschweig 1931], S. 426. — E. PLANTANIDA,

Chimica degli esplosivi e dei gas di guerra, 2. Aufl. [Livorno 1940], S. 215. — L. Vennin, E. Burlot, H. Lecorché, Les poudres et explosifs [Paris und Lüttich 1932], S. 413. — P. Pascal, Explosifs, poudres, gaz de combat, 2. Aufl. [Paris 1930], S. 145. — Manufacture of trinitrotoluene (TNT) and its intermediate products [London 1920] (Technical records of explosives supply 1915—1918, Nr. 2).

## Bildung, Darstellung, Reinigung.

B. Zur Bildung durch Nitrierung von 2-Nitro-toluol oder 4-Nitro-toluol mit Salpeterschwefelsäure vgl. Gibson, Duckham, Fairbairn, Soc. 121, 278. Beim Erwärmen von p-Cymol mit Salpetersäure (D: 1,5) und rauchender Schwefelsäure (20 % SO<sub>3</sub>) auf 60—70°, neben anderen Verbindungen (Halse, Dedichen bei Alfthan, B. 53, 83). — Zur technischen Darstellung vgl. die oben angegebene Literatur; vgl. ferner Stettbacher, Ch. Z. 49, 682, 808; Gärtner, Ch. Z. 49, 808; C. 1926 I, 3199; Dynamit A. G. Nobel, Reuter, D. R. P. 452907; C. 1928 I, 2559; Frdl. 15, 196; Akt.-Ges. Lignose, D. R. P. 482633; C. 1930 I, 1084; Frdl. 16, 333. Darstellung unter Mitverwendung der Abfall-Säure von der Di- und Trinitrierung des Toluols: Pollitzer, Jelonik, D. R. P. 299661; C. 1920 IV, 309; Frdl. 13, 222; s. a. M. Kostevitch, T. N. B. & T. N. T. (Trinitrobenzene and Trinitrotoluene) [London 1919], S. 20, 38; The theory and practice of acid mixing [London 1921] (Technical records of explosives suppley 1915—1918, Nr. 4). Darstellung von 2.4.6-Trinitro-toluol durch Nitrierung von toluolhaltigen Fraktionen aus rumänischen Erdölen: Danalla, Popa, Anal. Min. România 8, Nr. 3/4, S. 17; C. 1925 II, 252.

Reinigung von Roh-Trinitrotoluol: A. STETTBACHER, Schieß- und Sprengstoffe, 2. Aufl. [Leipzig 1933], S. 267; St., Ch. Z. 49, 683. Reinigung durch Behandeln mit verdünnter Natriumsulfit-Lösung: MURAOUR, Bl. [4] 35, 367; vgl. dazu Gärtner, Ch. Z. 49, 808; durch Umkrystallisieren aus Trichloräthylen oder Tetrachloräthan: Sprengstoff A. G. Carbonit, D. R. P. 299015; C. 1920 IV, 309; Frdl. 13, 224. Entfernen von Tetranitromethan aus technischem Trinitrotoluol: Gärtner, D. R. P. 416905; 417378; C. 1925 II, 2093; Frdl. 15, 197, 198; Ch. Z. 49, 808.

# Physikalische Eigenschaften.

Ist nicht hygroskopisch (Huff, Chem. met. Eng. 21, 570; C. 1920 I, 669). F: 80,35° (korr.) (Bell, Mitarb., J. ind. Eng. Chem. 13, 59; C. 1921 III, 528), 81,1° (Garner, Abernethy, Pr. roy. Soc. [A] 99, 219; C. 1921 III, 866). Erniedrigung des Erstarrungspunktes von Trinitrotoluol durch Wasser: Anonymus, Jber. chem.-tech. Reichsanst. 4 [1924/25], 102. Dampfdruck zwischen 82° (0,046 mm) und 102° (0,116 mm): Menzies, Am. Soc. 42, 2220. Wärmeleitfähigkeit: Prentiss, Z. Schieß-Sprengstoffw. 20, 72; C. 1925 II, 1117. Spezifische Wärme bei 24,3°: 0,2141 cal/g (P.); zwischen 0° (0,309 cal/g) und 80° (0,374 cal/g): Taylor, Rinkenbach, Am. Soc. 46, 1509. Spezifische Wärme der Verbindung mit ½ Mol Tetryl zwischen 0° und 60°: T., R. Krystallisationswärme: Garner, Abernethy, Pr. roy. Soc. [A] 99, 225. Schmelowerme: Rinkenbach, Hall, Am. Soc. 46, 2639. Verbrennungswärme bei konstantem Volumen: 815,6 kcal/Mol (Tomioka, Takahashi in Landolt-Börnst. È III, 2914), 822,5 kcal/Mol (G., A.).

Sehr leicht löslich in Chloroform, Benzol, Toluol, Aceton, Anilin und Pyridin (TAYLOR, RINKENBACH, Am. Soc. 45, 49). 0,1 g Substanz löst sich bei 18° in 0,4 cm³ Chloroform, 7 cm³ Tetrachlorkohlenstoff, 8 cm³ Alkohol und 4 cm³ Ather; sehr schwer löslich in Ligroin (Kp: 50—70°) (DIMROTH, BAMBERGER, A. 438, 104, 113). 44,4 g lösen sich bei 25° in 100 g Glykoldiacetat (T., R., Am. Soc. 48, 1308). Löslichkeit (g in 100 g Lösungsmittel): in Wasser zwischen 0,3° (0,0110) und 99,5° (0,1467); in Chloroform zwischen 0,3° (6,33) und 65,0° (442); in Tetrachlorkohlenstoff 0,3° (0,22) und 78,2° (29,76); in Alkohol zwischen 0,3° (0,70) und 74,0° (18,58); in Ather zwischen 0,3° (1,75) und 33,0° (5,15); in Schwefelkohlenstoff zwischen 0,3° (0,15) und 46,3° (2,20): T., R., Am. Soc. 45, 47. Löslichkeit in Gew.-% bei verschiedenen Temperaturen in Benzol, Toluol, Aceton, Anilin und Pyridin: T., R., Am. Soc. 45, 52. Kritische Lösungstemperatur in wasserfreiem Alkohol: 96,5° (Crismer, Bl. Soc. chim. Belg. 29, 33; C. 1920 IV, 695).

Thermische Analyse der binären Systeme mit Stickstofftetroxyd (Eutektikum bei —17° und 29 Gew.-% 2.4.6-Trinitro-toluol): Pascal, Bl. [4] 33, 545; mit der β-Form des 2-Nitro-toluols (Eutektikum bei —9,7° und 19,5 Gew.-% 2.4.6-Trinitro-toluol) und der α-Form des 2-Nitro-toluols (Eutektikum bei —15,6° und 16% 2.4.6-Trinitro-toluol): Bell, Mitarb., J. ind. Eng. Chem. 13, 61; C. 1921 III, 528; mit 2.4-Dinitro-toluol: Wogrinz, Vari, Z. Schieß-Sprengstoffw.14,268; mit 2.3.4-Trinitro-toluol (Eutektikum bei 67,3° und 59% 2.4.6-Trinitro-toluol) und mit 2.4.5-Trinitro-toluol: Gibson, Duckham, Fairbairn, Soc. 121, 282; mit 2.4.6-Trinitro-m-xylol: B., Sawyer, J. ind. Eng. Chem. 11, 1026; C. 1921 I, 174; mit 1-Nitro-naphthalin: W., V., Z. Schieß-Sprengstoffw. 14, 269; mit Acenaphthen: Kremann, Strzelba, M. 42, 179; mit Anthracen: Kr., Müller, M. 42, 191; mit Pikrinsäure: Rinkenbach, Hall, Am. Soc. 46, 2638; mit Dipikrylsulfid: Roche, Thomas, C. r. 176, 587; Chaumell, Th.,

C. τ. 176, 1325; mit 2.4.6-Trinitro-m-kresol: Jefremow, Tichomirowa, Ж. 59, 379, 383, 388; C. 1928 I, 188; mit  $\beta$ -Naphthol und mit  $\beta$ -Naphthol-methyläther: Giua, Marcellino, G. 50 I, 346, 349, 357; mit Triphenylcarbinol: Kremann, Hobil, Müller, M. 42, 215; mit Hydrochinondimethyläther: Giua, Marcellino; mit Glycerintrinitrat (Eutektikum bei ca. 7° und ca. 18% 2.4.6-Trinitro-toluol): Tamburrini, Ann. Chim. applic. 17, 276; C. 1927 II, 1559; mit 3-Oxy-benzaldehyd: Kr., Pogantsch, M. 44, 165, 172; mit Tetryl (Methylpikrylnitramin; vgl. E I 12, 371): Rinkenbach, Hall, Am. Soc. 46, 2638; Taylor, Ri., Ind. Eng. Chem. 15, 73; C. 1923 II, 780; Jefremow, Tichomirowa, Izv. Inst. fiz.-chim. Anal. 3, 292; C. 1927 I, 2628; mit ο., m- und p-Phenylendiamin: Kremann, Mauermann, M. 43, 319; mit Azokpozol und mit 4-Dimethylamino-azobenzol: Giua, Reggiani, G. 55, 654, 658; mit Azokybenzol: Giua, Guastalla, G. 55, 648; mit Carbazol: Kr., Strzelba, M. 42, 176; Rheinboldt, J. pr. [2] 111, 270. Thermische Analyse der ternären Systeme mit 2-Nitrotoluol und 4-Nitro-toluol (Eutektikum bei —19,5°): Bell, Spry, J. ind. Eng. Chem. 13, 308; C. 1921 III, 622; mit 4-Nitro-toluol und 2.4-Dinitro-toluol (Eutektikum bei 44,4°): Gibson, Duckham, Fairbairn, Soc. 121, 281.

Brechungsindices ternärer Gemische aus 4-Nitro-toluol, 2.4-Dinitro-toluol und 2.4.6-Trinitro-toluol

Brechungsindices ternärer Gemische aus 4-Nitro-toluol, 2.4-Dinitro-toluol und 2.4.6-Trinitro-toluol bei 38—39°: Bell, Cummings, J. ind. Eng. Chem. 11, 1028; C. 1921 I, 175. — Erniedrigt die Explosionstemperatur von Dipikrylsulfid (Roche, Thomas, C. r. 176, 587).

#### Chemisches Verhalten.

Sprengtechnische Eigenschaften. Vgl. auch die S. 268 angeführte Literatur. Schlag- und Stoßempfindlichkeit (Sensibilität): van Duin, van Lennep, R. 39, 174; Robert-Son, Soc. 119, 18; Tammann, Kröger, Z. anorg. Ch. 169, 30. Die Sensibilität wird durch Belichtung oder Zusätze von Pikrinsäure, 2.4.6-Trinitro-benzoesäure oder Metallsalzen beider beträchtlich erhöht (Krauz, Turek, Z. Schieβ-Sprengstoffw. 20, 54, 57; Chem. N. 131 [1925], 226; Chim. et Ind. 16, 532; C. 1925 II, 375; 1926 II, 2970). Nach Schultz, Ganguly (B. 58, 707) verliert 2.4.6-Trinitro-toluol durch Belichtung einen Teil seiner Schlagempfind. (B. 58, 707) verliert 2.4.6-Trinitro-toliol durch Belichtung einen Teil seiner Schlagempfindlichkeit. Zur Zusammendrückbarkeit von Trinitrotoluolpulver und eines Gemenges aus Trinitrotoluol und Ammoniumnitrat vgl. Walker, Trans. Faraday Soc. 19, 73, 83; C. 1924 I, 277, 278. Beginnt bei etwa 150°, sich zu zersetzen (Tammann, Kröger, Z. anorg. Ch. 169, 23). Stabilität (gemessen durch die Geschwindigkeit der Zersetzung bei 140° im Vakuum): Farmer, Soc. 117, 1441; Robertson, Soc. 119, 13. Durch Pikrinsäure wird die Stabilität erhöht, durch Ricinusöl erniedrigt (F.). Temperaturkoeffizient der Zersetzung zwischen 140° und 180°: R., Soc. 119, 12. Verhalten beim Erhitzen über 200°: Micewicz, Majkowski, Percem cham 12, 207. Z. Schieß. Sovengestoften, 23, 424. C. 1928 II. 2241. 1929 I. 1400 Przem. chem. 12, 207; Z. Schieß Sprengstoffw. 23, 424; C. 1928 II, 2211; 1929 I, 1409. Verpufft unter Entflammung (Ta., Krö., Z. anorg. Ch. 169, 20), nach Van Durin, Van Lenner bei 304—321°, nach Brunswig (Z. ang. Ch. 36, 76) bei 281—300°; bei langsamem Erhitzen bei 248—284°, bei schnellem Erhitzen bei 312—318° (Mi., Maj.). Abhängigkeit der Verbei 248—284°, bei schnellem Ernitzen bei 312—318° (MI., MAJ.). Abhangigkeit der Verpuffungstemperatur von der Erhitzungsgeschwindigkeit und der Menge des angewandten Sprengstoffs: Kast, Z. ang. Ch. 36, 403; Ta., Krö., Z. anorg. Ch. 169, 21. Zur Verpuffungstemperatur vgl. a. Koettinitz, Z. El. Ch. 34, 771. — Photographische Untersuchungen über den Verlauf der Detonation: Urbański, Z. Schieβ-Sprengstoffw. 22, 270; C. 1928 I, 142. Detonations- und Schwaden-Geschwindigkeit: Becker, Z. tech. Phys. 3 [1922], 155, 255. Detonationsgeschwindigkeit von Trinitrotoluol-Zündschnur: Haid, Selle, Jber. chem. tech. Reichsanst. 7 [1928], 193; 8 [1929], 124; Selle, Z. Schieβ-Sprengstoffw. 24 [1929], 420. Zeit-Druck-Kurve und Ausbreitungsgeschwindigkeit der Explosion unter Wasser: KEYS, Phil. Mag. [6] 42, 482; C. 1922 II, 167. Explosionsdruck: MARQUEYROL, KOEHLER, JOVINET, Bl. [4] 27, 423. Abhängigkeit des Explosionsdrucks von der Ladedichte: ROBERTSON, Soc. 119, 21. Explosionswärme bei D: 1,3 und Knallquecksilber- oder Azidzündung: 925 bis 927 cal/g (bezogen auf Wasserdampf) (R., GARNER, Pr. roy. Soc. [A] 103, 546, 547; C. 1923 IV, 479; R., Soc. 119, 3, 8). Einfluß des Initialimpulses auf die Explosionswärme und Explosionstemperatur: Haid, Schmidt, Jber. chem.-tech. Reichsanst. 8 [1929], 127; Z. Schieß. Sprengstoffw. 26, 294; C. 1931 II, 3704. Bei der Detonation entwickelte Gasmenge: R., Soc. 119, 8. Einfluß des Initialimpulses auf die Zusammensetzung der bei der Detonation entstehenden Gase: Poppenberg, Z. ang. Ch. 36, 84; Robertson, Garner; Haid, Schmidt. Detonationsfähigkeit von phlegmatisierten Trinitrotoluol-Körpern mit verschiedenem Preßdruck: Anonymus, Jber. chem.-tech. Reichsanst. 8 [1929], 144. Flammendauer und Flammenlänge: Kast, Selle, Jber. chem.-tech. Reichsanst. 5 [1926], 140; Z. Schieß-Sprengstoffw. 23, 153; C. 1928 II, 413.

Sprengtechnische Eigenschaften von Gemischen mit Ammoniumnitrat (Amatol): Robertson, Soc. 119, 3, 24; Tammann, Kröger, Z. anorg. Ch. 169, 21; Muraour, Bl. [4] 39, 389; von Gemischen mit Schießbaumwolle und Schießbaumwolle + Diphenylamin: Jorissen, Starink, R. 47, 744.

Weitere chemische Umsetzungen. 2.4.6-Trinitro-toluol bräunt sich langsam am Tageslicht (MOLINARI, GIUA, zit. in R. ESCALES, Die Explosivstoffe, Bd. VI Nitrosprengstoffe [Leipzig 1915], S. 296). Nach Krauz, Turek (Z. Schieβ-Sprengstoffw. 20, 50; C. 1925 II, 376) entstehen bei der Belichtung Pikrinsäure und 2.4.6-Trinitro-benzoesäure; dies wird aber von Wichert, Donat (Z. Schieβ-Sprengstoffw. 20, 69; C. 1925 II, 702), Anonymus, (Jber. chem.-tech. Reichsanst. 4 [1924/1925], 89) und Lodati (Giorn. Chim. ind. appl. 7, 572; C. 1926 I, 4493) bestritten. Nach Schultz, Ganguly (B. 58, 705) entstehen bei langdauerndem Palishten von 24.6 Trinitro telled (Nitrogo 6 pitro 3 evymethyl benzen binga (2.2) exim (2.2) exim (2.2) Belichten von 2.4.6-Trinitro-toluol 4-Nitroso-6-nitro-3-oxymethyl-benzochinon-(1.2)-oxim-(2) und 3-Nitroso-5-nitro-2-oxymethyl-benzochinon-(1.4)-oxim-(1).

2.4.6-Trinitro-toluol liefert beim Erwärmen mit Chlorkalk-Lösung Chlorpikrin (Orton, McKie, Soc. 119, 33). Gibt mit Kaliumpersulfat-Lösung auf dem Wasserbad Ammoniak, Salpetersäure, salpetrige Säure und Blausäure (Ricca, G. 57, 270). Bei der Reduktion mit Schwefelwasserstoff in heißer Pyridin-Piperidin-Lösung entsteht 6-Nitro-2.4-diamino-toluol, bei 0° erhält man ca. 20% 2.6-Dinitro-4-amino-toluol (Brady, Day, Reynolds, Soc. 1929,

2266).

E I 173, Z. 30 v. u. vor ,,(Brand, Eisenmenger" füge ein "; in wäßrig-alkoholischer Essigsäure in Gegenwart von Natriumacetat an einer Silberkathode bei 40-50° erhält man 2.6-Dinitro-4-hydroxylamino-toluol und wenig 4.6-Dinitro-2-hydroxylamino-toluol (?)".

2.4.6-Trinitro-toluol liefert bei längerem Erhitzen mit Phosphorpentachlorid im Rohr auf 150—160° in Gegenwart von wenig Jod hauptsächlich 2.4.6-Trinitro-benzotrichlorid und Pentachlor-benzylchlorid, außerdem geringe Mengen 2.4.6-Trinitro-benzylchlorid, 4.5.6-Tri-chlor-2-nitro-benzylchlorid und ein Öl vom Kp<sub>2</sub>: 133—138° (Ganguly, B. 58, 710). Beim Erhitzen mit Brom und Magnesiumcarbonat im Rohr auf 150—160° entsteht 2.4.6-Trinitrobenzylbromid (GANGULY). Bei 8-stdg. Erhitzen mit 3 Mol Brom in Gegenwart einer Spur Jod im Rohr auf 2000 erhält man Pentabrom-benzylbromid (DHAR, Soc. 117, 996). Gibt mit Natriumsulfit ein nur in konz. Lösung beständiges Additionsprodukt (MURAOUR, Bl. [4] 35, 374). Einw. von Ammoniak in Aceton bewirkt Dunkelrotfärbung, aus der Lösung wird das 2.4.6-Trinitro-toluol unverändert zurück erhalten; erwärmt man mit 2 Mol Ammoniak in Aceton auf dem Wasserbad und säuert dann mit 10 %iger Salzsäure an, so entsteht eine Verbindung  $C_7H_5O_8N_3+NH_4OH(?)$  (S. 272) (GIUA, REGGIANI, Atti Accad. Torino 62, 338; C. 1928 I, 326). Wird durch längeres Kochen mit Natriumcarbonat in Alkohol in dunkelgefärbte Produkte übergeführt (Brunswig, Z. ang. Ch. 36, 76). Gibt mit Natriumäthylat in Aceton je nach der angewandten Menge additionelle Verbindungen mit 1.2 oder 3 Mol Natriumäthylat (S. 272), die beim Behandeln mit verd. Mineralsäuren in gelatinöse Niederschläge übergehen (GI., RE.). Einw. von Dimethylsulfat auf die Verbindung mit 3 Mol Natriumäthylat: GI., RE. Über die Bildung komplexer Verbindungen mit Aldehyden, Ketonen, Säureestern, Pyridin und Chinolin bei Gegenwart von Natriumjodid und einigen anderen anorganischen Salzen vgl. Tronow, Djakonowa-Schulz, Sonowa, 36; C. 1927 II, 1687. Gibt mit Benzaldehyd in Pyridin in Gegenwart einiger Tropfen Piperidin bei Zimmertemperatur 2-Phenyl-1.3-bis-[2.4.6-trinitro-phenyl]-propan und sehr wenig 2.4.6-Trinitro-stilben (Pastak, Bl. [4] 39, 80). Liefert beim Kochen mit Anisaldehyd in Benzol bei Gegenwart von Piperidin 2.4.6-Trinitro-4'-methoxy-stilben (NISBET, Soc. 1927, 2083). Bildet mit Pyridin unterhalb 40° eine additionelle Verbindung (TAYLOR, RINKENBACH, Am. Soc. 45, 57). Gibt mit Hydrastinin in Methanol 2-Methyl-6.7-methylendioxy-1-[2.4.6-trinitro-benzyl]-1.2.3.4-tetrahydroisochinolin (Robinson, West, Soc. 1926, 1987). Einw. auf Gelatine in wäßr. Lösung: Copisarow, Koll.-Z. 44, 320; C. 1928 II, 134.

Physiologisches Verhalten: H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 109. — Chemotaktische Wirkung gegenüber den Larven des Schiffbohrwurms (Teredo norvegica): Harington, Biochem. J. 15, 737. Über Verwendung als Sprengstoff vgl. die S. 268 zitierte Buchliteratur.

## Analytisches.

Die Lösungen von 2.4.6-Trinitro-toluol in Alkohol und Aceton werden auf Zusatz von Ammoniak hellrot; mit Natronlauge gibt die alkoh. Lösung eine tief gelbrote, die Lösung in Aceton eine weinrote bis purpurrote Färbung (Rudolph, Fr. 60, 240). Wird durch Natrium-

Reinheitsprüfung von 2.4.6-Trinitro-toluol für militärische und gewerbliche Zwecke:
H. Kast, L. Metz, Chemische Untersuchung der Spreng- und Zündstoffe [Braunschweig 1931], S. 426; Ph. Naoúm in Berl-Lunge, Chemisch-technische Untersuchungsmethoden, 8. Aufl., Bd. III [Leipzig 1932], S. 1238. Über den Nachweis und die Bestimmung von 2.3.4- und 2.4.5-Trinitro-toluol in 2.4.6-Trinitro-toluol vgl. Robertson, Soc. 119, 27; Muraour, R. [4] 141 25 276. Ph. Naoúm & Bernetannin I. D. Ave Chemisch-technische Untersuchungsmethoden, Bl. [4] 35, 376; Ph. Naoúm, A. Bergmann in J. D'Ans, Chemisch-technische Untersuchungsmethoden, Ergänzungswerk zur 8. Aufl., Bd. III [Berlin 1940], S. 84.

Nachweis und Bestimmung kleiner Mengen in Luft und im Harn durch die Farbreaktion mit Alkali sowie mit Hilfe des Grießschen Nitritreagens (α-Naphthylamin + Sulfanilsäure

in Essigsäure): Elvove, J. ind. Eng. Chem. 11, 861; C. 1920 II, 682. Bestimmung von 2.4.6 Trinitro-toluol durch Reduktion mit überschüssigem Titan(III) chlorid in stark schwefelsaurer, heißer Lösung in einer Kohlendioxyd-Atmosphäre und Rücktitration mit Ammoniumeisen(III)-sulfat und Ammoniumrhodanid als Indikator: English, J. ind. Eng. Chem. 12, 997; C. 1921 II, 623. Der Gehalt einer 0,001 %igen Lösung von 2.4.6-Trinitrotoluol kann polarographisch genau bestimmt werden (Ph. Naoúm, A. Berthmann in J. D'Ans, Chemisch-technische Untersuchungsmethoden, Ergänzungswerk zur 8. Aufl., Bd. III [Berlin 1940], S. 81). Bestimmung in Gemischen mit Tetryl auf Grund der Löslichkeit in Tetrachlorkohlenstoff: Taylor, Rinkenbach, Ind. Eng. Chem. 15, 280; C. 1924 I, 1610.

# Additionelle Verbindungen.

C7H5O8N3+NH4OH(?). Hellrote Krystalle, die teilweise bei 180° schmelzen und sich bei 200° zersetzen (GIUA, REGGIANI, Atti Accad. Torino 62, 338; C. 1928 I, 326). — C7H6O6N3 +C<sub>2</sub>H<sub>5</sub>·ONa. Rotviolette Krystalle. Leicht löslich in Wasser, unlöslich in Ather, Aceton, Benzol und Petroläther (G., R.). Gibt mit konz. Schwefelsäure eine gelbbraune Färbung, mit verd. Mineralsäuren einen gelatinösen Niederschlag. —  $C_7H_5O_6N_3+2C_2H_5\cdot ONa$ . Rotbraune Krystalle. Löslich in Wasser und Essigsäureanhydrid, unlöslich in Alkohol, Äther, Aceton und Benzol (G., R.). Reagiert mit Säuren wie die verangehende Verbindung. — C<sub>2</sub>H<sub>5</sub>O<sub>5</sub>N<sub>5</sub> + 3C<sub>2</sub>H<sub>5</sub>·ONa. Orangerote Krystalle. Leicht löslich in Wasser, unlöslich in Alkohol, Äther, Aceton und Benzol (G., R.). Reagiert mit Säuren wie die vorangehenden Verbindungen.

3.4.5 - Trinitro - toluol C<sub>7</sub>H<sub>5</sub>O<sub>6</sub>N<sub>3</sub>, s. nebenstehende Formel (E I 173). CH<sub>3</sub> F: 132,0—132,3° (GARNER, ABERNETHY, Pr. roy. Soc. [A] 99 [1921], 219).

Verbrennungswärme bei konstantem Volumen: 829,9 kcal/Mol (G., A.).—

Verpufft bei 305—318°, in Gegenwart von Natriumcarbonat bei 252° (BRUNS-WIG, Z. ang. Ch. 36, 76). Stabilität und Sensibilität: Robertson, Soc. 119, 13, 18. Liefert mit Natriumsulfit-Lösung das Natriumsalz der 3.5-Dinitrotoluol-sulfonsäure-(4) (BRADY, HEWETSON, KLEIN, Soc. 125, 2402). Gibt beim Kochen mit Natriumcarbonat (Brunswig) oder in geringer Menge beim Erhitzen mit Natriumacetat (Brady, H., Kl.) das Natriumsalz des 3.5-Dinitro-4-oxy-toluols. Mit Bleioxyd in siedendem Alkohol entsteht das entsprechende Blei-dinitrokresolat (Brunswig). Die siedende alkoholische Lösung gibt mit Hydrazinhydrat-Lösung nach sofortigem Abkühlen 3.5-Dinitro-4-hydrazino-toluol (Brady, Bowman, Soc. 119, 900).

 $\omega$  - Chlor - 2.4.6 - trinitro - toluol, 2.4.6 - Trinitro - benzylchlorid  $C_7H_4O_6N_3Cl$ , s. nebenstehende Formel. B. In geringer Menge bei längerem Erhitzen von 2.4.6-Trinitro-toluol mit Phosphorpentachlorid im Rohr auf  $O_{2N}$ . 150—160° in Gegenwart von etwas Jod (GANGULY, B. 58, 710). Durch kurzes Kochen von 2.4.6-Trinitro-benzylalkohol mit Phosphorpentachlorid in absol. Chloroform (G.). — Krystalle (aus Alkohol). F: 85°. Sehr leicht löslich in Benzol und Ather, löslich in heißem Alkohol, unlöslich in Wasser und kaltem Alkohol.

NO<sub>2</sub> NO2

CH<sub>2</sub>Cl

2.6-Dichlor-3.4.5-trinitro-toluol  $C_7H_3O_6N_3Cl_2$ , s. nebenstehende Formel. B. Beim Erhitzen von 2.6-Dichlor-3.5-dinitro-toluol mit Salpetersäure (D: 1,5) und rauchender Schwefelsäure (20 % SO<sub>3</sub>) auf 155—165° (Davies, Soc. Cl. 121, 815). — Nadeln (aus Alkohol). F: 160—163°. Schwer löslich in kaltem O<sub>2</sub>N. NO<sub>2</sub> Alkohol und Petroläther (Kp: 80—100°), leicht in heißem Alkohol, sehr leicht in Benzol und Aceton. — Über den Ersatz von Nitrogruppen durch Aminogruppen beim Erhitzen mit alkoh. Ammoniak auf dem Wasserbad vgl. Davies.

CH<sub>3</sub>

 $\omega.\omega.\omega$ -Trichlor-2.4.6-trinitro-toluol, 2.4.6-Trinitro-benzotrichlorid  $C_7H_2O_6N_3Cl_3$ , s. nebenstehende Formel. B. Als Hauptprodukt bei längerem Erhitzen von 2.4.6-Trinitro-toluol mit Phosphorpentachlorid im Rohr auf 150—160° in Gegenwart von wenig Jod (Ganguly, B. 58, 711). — Hellgelbes

CC13 NO2

Ol. Kp<sub>2</sub>: 156—157°. Zersetzt sich unter gewöhnlichem Druck bei 280°, ohne zu sieden. Leicht löslich in heißem Alkohol, Benzol, Äther, Aceton, Eisessig, Chloroform, Nitrobenzol, Acetanhydrid und Schwefelkohlenstoff, unlöslich in Wasser. Wird durch Pyridin rot gefärbt.

CH<sub>2</sub>Br NO2

NO2

 $\omega$  - Brom - 2.4.6 - trinitro - toluol, 2.4.6 - Trinitro - bensylbromid  $C_7H_4O_6N_3Br$ , s. nebenstehende Formel (E I 174). B. Durch Erhitzen von 2.4.6-Trinitro-toluol mit Brom und Magnesiumcarbonat im Rohr auf 150° bis 160° (GANGULY, B. 58, 711). — Krystalle (aus Alkohol). F: 65° (G.). — Zersetzt sich am Sonnenlicht. Die Lösung in Benzol färbt sich am Sonnenlicht tiefrot (Schultz, G., B. 58, 708). Liefert beim Kochen mit Wasser 2.4.6-Trinitro-benzylalkohol (G.).

PARKES, Soc. 127, 1310).

## AZIDOTOLUOL

2.3.4.6 - Tetranitro - toluol  $C_7H_4O_8N_4$ , s. nebenstehende Formel. B. Beim Behandeln von 2.4.6 Trinitro-3-hydroxylamino-toluol mit Salpetersäure (D: 1,52) (Borsche, Feske, B. 59, 690). — Blättchen (aus Eisessig CH<sub>3</sub> NO<sub>2</sub>  $\cdot NO_2$ - Wasser). F: 135°. NO<sub>2</sub>

g) Azido-Derivate.

2-Azido-toluol, o-Tolylazid  $C_7H_7N_3=N_3\cdot C_6H_4\cdot CH_3$ . Zur Konstitution vgl. Lindemann, Thiele, B. 61, 1530. — B. Beim Behandeln von o-Toluoldiazoniumchlorid mit Benzolsulfamid Kalium oder p Toluolsulfamid Kalium in Kalilauge (DUTT, WHITEHEAD, WOR-MALL, Soc. 119, 2091, 2093) oder mit p-Toluolsulfonsäure-chloramid-Natrium in Ammoniak und Natronlauge (Rheinische Kampfer-Fabr., D. R. P. 456857; C. 1928 I, 3112; Frdl. 16, 452). Bei der Einw. von starkem Ammoniak auf o-Toluoldiazonium-tetrachlorjodid (CHATTA-WAY, GARTON, PARKES, Soc. 125, 1988). — Blaßgelbes Öl. Erstarrt nicht bei —10° (Ch., G., P.). Kp<sub>31</sub>: 90,5° (D., Wh., Wor.); Kp<sub>23</sub>: 88° (L., Th.); Kp<sub>20</sub>: 70° (Ch., G., P.); Kp<sub>18</sub>: 70° bis 71° (Rheinische Kampferfabr.).  $D_{2}^{2*2}$ : 1,0709; Oberflächenspannung bei 22,2°: 35,73 dyn/cm (L., Th.). Parachor: L., Th. Löslich in Ather; mit Wasserdampf flüchtig (D., Wh., Wor.). - Explodiert beim Erhitzen unter Atmosphärendruck (CH., G., P.). Liefert beim Behandeln mit bei 0° gesättigter Salzsäure unter Kühlung und folgendem Aufbewahren an einem kühlen dunklen Ort 5-Chlor-2-amino-toluol und 3-Chlor-2-amino-toluol (Bamberger, A. 443, 205). Beim Erwärmen mit alkoh. Schwefelsäure auf dem Wasserbad entsteht 6-Amino-3-oxy-toluol und dessen Athyläther (B., A. 443, 199). Gibt bei der Kondensation mit Toluchinon in heißem Chloroform 1-o-Tolyl-4.7-dioxy-5-methyl-benztriazol (s. nebenstehende Formel; Syst. Nr. 3855), in siedendem Benzol eine Verbindung

C<sub>14</sub>H<sub>13</sub>O<sub>2</sub>N (s. bei Toluchinon, Syst. Nr. 671a) (Chattaway,

N(C6H4·CH3)

3-Azido-toluol, m-Tolylazid C<sub>7</sub>H<sub>7</sub>N<sub>3</sub> = N<sub>3</sub>·C<sub>6</sub>H<sub>4</sub>·CH<sub>3</sub>. B. Aus m-Toluoldiazonium-chlorid und Benzolsulfonamid-Kalium oder p-Toluolsulfonamid-Kalium in Wasser (DUTT, WHITEHEAD, WORMALL, Soc. 119, 2092). — Kp<sub>31</sub>: 92,5°; Kp<sub>14</sub>: 78° (D., Wh., Wor.). Mit Wasserdampf flüchtig; löslich in Äther (D., Wh., Wor.). — Liefert beim Erwärmen mit Alkohol und konz. Schwefelsäure auf dem Wasserbad 5-Amino-2-oxy-toluol und dessen athyläther (BAMBERGER 4 43, 200). Beim Erwärmen mit Method und konz. Athyläther (Bamberger, A. 443, 200). Beim Erwärmen mit Methanol und konz. Schwefelsäure entsteht neben 5-Amino-2-oxy-toluol und dessen Methyläther eine phenolähnliche Substanz (B.).

4-Azido-toluol, p-Tolylazid  $C_7H_7N_3=N_3\cdot C_6H_4\cdot CH_3$  (H 349; E I 174). Zur Konstitution vgl. Lindemann, Thiele, B. 61, 1530. — B. Beim Behandeln von p-Toluoldiazostitutoli vgi. Lindemann, i Hiele, B. 61, 1530. — B. Beim Benandeni von P-Ioluolidazoniumchlorid mit Methansulfonsäureamid in Natronlauge (Dutt, Soc. 125, 1464), mit Benzolsulfonamid oder p-Toluolsulfonamid in Alkalilauge (D., Whitehead, Wormall, Soc. 119,
2092; D., Soc. 123, 269) oder mit p-Toluolsulfonsäure-chloramid-Natrium in Ammoniak
(Rheinische Kampferfabr., D. R. P. 456857; C. 1928 I, 3112; Frdl. 16, 452). — Kp3:
93° (D., Wh., Wor.); Kp2: 85° (L., Th.); Kp1: 72° (Rhein. Kampferfabr.). Dinst.
Oberflächenspannung bei 22,5°: 34,78 dyn/cm (L., Th.). Parachor: L., Th. Löslich in Ather (D., Wh., Wor.). — Liefert beim Schütteln mit der 5-fachen Menge verd. Schwefelsäure (1 Vol. konz. Schwefelsäure + 1,75 Vol. Wasser) im Gemisch mit Quarzsand bei 50—70° und nachfolgender Destillation mit Wasserdampf p-Toluidin, Toluhydrochinon, Toluchinol (Syst. Nr. 741) (bei der Aufarbeitung aus Toluchinolimid entstanden), wenig p-Kresol, Spuren von Aminokresol(?) und von Di-p-tolylamin(?) und sehr viel amorphe und harzige Produkte (Bamberger, Brun, Helv. 6, 942). Kocht man p-Tolylazid mit einem Gemisch aus 1 Vol. konz. Schwefelsäure und 3 Vol. Wasser und destilliert dann mit Wasserdampf, so werden die Zwischenstufen des Toluchinolimids und Toluchinols übersprungen (BAM., BR., Helv. 6, 936). Beim Behandeln mit konz. Schwefelsäure bei  $-20^{\circ}$  und Aufbewahren des Reaktionsgemisches bei  $0^{\circ}$  bildet sich neben einer Verbindung  $(C_7H_7N)_x$  eine Verbindung  $(C_7H_7N)_4 + H_2O_7$ ; daneben scheinen Spuren von p-Toluidin zu entstehen (BAMBERGER, A. 443, 192). Bei 50-stdg. Schütteln mit alkoh. Schwefelsäure und nachfolgendem Destillieren des Reaktionsprodukts (Toluchinoläthylätherimid) mit Wasserdampf entstehen Toluchinoläther, p-Toluidin, Ammoniak und amorphe und harzige Produkte, analog verläuft die Reaktion mit methylalkoholischer Schwefelsäure (Bam., Br., Helv. 7, 120). Gibt mit 4-Nitro-toluol in konz. Schwefelsäure unterhalb 0° 5-Nitro-4'-amino-2-methyl-diphenylmethan und ein amorphes braungelbes Produkt (Bam., A. 443, 194). Liefert beim Kochen mit Phenol und verd. Schwefelsäure (3 Tle. Wasser + 1 Tl. konz. Schwefelsäure) 4'-Oxy-4-methyl-diphenylamin, wenig Toluhydrochinon, p-Toluidin und Harze (Bamberger, Brun, Helv. 6, 939). Erhitzt man 4-Azido-toluol mit Phenol auf 160—185°, so entstehen wenig 4'-Oxy-4-methyl-diphenylamin und sehr viel Harze (Bam., Br., Helv. 6, 941).

Verbindung (C<sub>7</sub>H<sub>7</sub>N)<sub>4</sub>+H<sub>2</sub>O. Ist vielleicht identisch mit der Verbindung C<sub>28</sub>H<sub>30</sub>ON<sub>4</sub> (H 13, 621) oder mit der Verbindung C<sub>28</sub>H<sub>28</sub>N<sub>4</sub>+H<sub>2</sub>O (E I 15, 8, im Artikel p-Tolylhydroxyl-

amin) (Bamberger, A. 443, 193). — B. Neben der Verbindung ( $C_7H_7N)_x$  (s. u.) beim Behandeln von p-Tolylazid mit konz. Schwefelsäure bei —20° und folgenden Aufbewahren des Reaktionsgemisches bei 0°; Reinigung durch Lösen in Säure und Fällen mit Ammoniak (Bamberger, A. 443, 193). — Amorphes braunes Pulver. Sintert bei 140° und ist bei 240° noch nicht geschmolzen. Löslich in Säuren, fast unlöslich in Chloroform. — Mit Nitrit entsteht in salzsaurer Lösung ein grünlichgrauer Niederschlag, dessen Filtrat mit  $\alpha$ -Naphtholat ein rotes Kupplungsprodukt liefert. Gibt beim Erwärmen mit Schwefelwasserstoff in verd. Salzsäure auf dem Wasserbad 4.4′-Diamino-dibenzylsulfid.

Verbindung  $(C_7H_7N)_x$ . Ist vielleicht identisch mit dem tetrameren(?) p-Benzylenimid (H 13, 620) oder mit der Verbindung  $(C_7H_7N)_x$  (E I 15, 8 im Artikel p-Tolylhydroxylamin) (Bamberger, A. 443, 193). — B. s. bei der Verbindung  $(C_7H_7N)_4 + H_2O$ . Reinigung durch Lösen in Chloroform und Fällen mit Äther (B.). — Hellgraues, schwach rötliches Pulver. Sintert bei etwa 135° und schmilzt bis gegen 180° zu einer schaumigen Masse. Die durch Eintropfen der Chloroform-Lösung in Äther gereinigte Base sintert bei 170—180° und bildet bei 270° eine durchsichtige Schmelze. Löslich in Chloroform; leicht löslich in Mineralsäuren. — Gibt beim Behandeln mit Nitrit in saurer Lösung braune Flocken; das Filtrat liefert mit  $\alpha$ -Naphtholat ein rotes Kupplungsprodukt.

ω-Azido-toluol, Benzylazid C<sub>7</sub>H<sub>7</sub>N<sub>3</sub> = C<sub>6</sub>H<sub>5</sub>·CH<sub>2</sub>·N<sub>3</sub> (H 350; E I 174). B. Beim Kochen von Natriumazid mit Benzylchlorid in Alkohol (Curtius, Ehrhart, B. 55, 1565). — Kp<sub>16,5</sub>: 82,5° (C., E.). — Liefert beim Kochen mit überschüssigem Trinatriumarsenit in Alkohol Benzylamin, Natriumarsenat und Stickstoff (Gutmann, B. 57, 1957; Fr. 68, 241). Liefert beim Erhitzen in p-Xylol im Glas-Autoklaven auf 170—180° N.N'-Dibenzyl-benzamidin, Tribenzylamin, Tetraphenylpyrazin (Amaron), 4-Benzyl-3.5-diphenyl-1.2.4-triazol, polymeres Benzyliden-benzylamin(?), Benzyliden-benzylamin und Ammoniumazid (C., E.). Beim Kochen in p-Cymol entstehen dieselben Produkte außer Benzyliden-benzylamin; beim Erhitzen mit Dimethylanilin auf 160—170° erhält man 4-Benzyl-3.5-diphenyl-1.2.4-triazol als Hauptprodukt und Tribenzylamin (C., E.). Liefert beim Erhitzen mit Malonsäurediäthylester auf 160—170° Benzylamino-malonsäure-diäthylester und geringe Mengen Benzylamin; mit Methyl-malonsäure-diäthylester entsteht in analoger Reaktion α-Benzylamino-methyl-malonsäure-diäthylester (C., E.).

2.4-Dinitro-3-azido-toluol C<sub>7</sub>H<sub>5</sub>O<sub>4</sub>N<sub>5</sub>, s. nebenstehende Formel. B. Beim Kochen von 2.3.4-Trinitro-toluol mit Natriumazid in Alkohol (Brady, Bowman, Soc. 119, 898). — Blättchen (aus Alkohol). F: 89°. — Färbt sich am Licht blaßgrün. Zersetzt sich bei stärkerem Erhitzen, ohne zu explodieren. [Homann]

# 3. Kohlenwasserstoffe $C_8H_{10}$ .

1. Äthylbenzol  $C_8H_{10}=C_6H_5\cdot C_9H_5$  (H 351; E I 175). Als Äthylbenzol ist die H 5, 120 als Tricyclooctan beschriebene Verbindung erkannt worden (Kuhn, Deutsch, B. 65 [1932], 44).

## Bildung und Darstellung.

Über Bildung aus Brombenzol und Äthylbromid in Äther unter Verwendung von Lithium an Stelle von Natrium vgl. Rojahn, Schulten, B. 59, 500. Untersuchungen über die Ausbeuten bei der Darstellung aus Benzol und Äthylen in Gegenwart von Aluminiumchlorid bei verschiedenen Mengenverhältnissen: MILLIGAN, REID, Am. Soc. 44, 206; Ind. Eng. Chem. 15, 1049; Berry, Reid, Am. Soc. 49, 3145; Cline, Reid, Am. Soc. 49, 3153; Brückner, Z. ang. Ch. 41, 956. Zur Bildung aus Vinylhalogenid und Benzol in Gegenwart von Aluminiumchlorid vgl. Davidson, Lowy, Am. Soc. 51, 2979, 2980. Bei 2-stdg. Kochen von p-Toluolsulfonsäure-äthylester mit Benzol in Gegenwart von Aluminiumchlorid (Clemo, Walton, Soc. 1928, 728). Zur Bildung aus Benzylhalogenid und Methylmagnesiumjodid nach Houben (B. 36 [1903], 3085) und Späth (M. 34 [1913], 1991) vgl. Fuson, Am. Soc. 48, 2688. Aus Phenylmagnesiumhalogenid beim Behandeln mit Diäthylsulfat (Gliman, Hoyle, Am. Soc. 44, 2623, 2625), Äthylalkylsulfat (Alkyl = C<sub>3</sub>H<sub>7</sub>, C<sub>4</sub>H<sub>9</sub> oder C<sub>4</sub>H<sub>11</sub>) (Bert, C. r. 176, 1183) oder mit p-Toluolsulfonsäure-äthylester in siedendem Äther (Gi., Beaber, Am. Soc. 47, 523; Gi., Heck, Am. Soc. 50, 2228). Aus Benzylmagnesiumchlorid und p-Toluolsulfonsäure-methylester in siedendem Äther (Gi., Beaber, Am. Soc. 47, 523; Gi., Heck, Am. Soc. 50, 2228). Aus Benzylmagnesiumchlorid und p-Toluolsulfonsäure-methylester in siedendem Äther (Gi., Bea). Durch Grignardierung von β-Phenäthylchlorid und Zersetzen mit Wasser (Bert, C. r. 186, 374). Beim Überleiten von Methylphenylcarbinol-Dampf über Kupfer bei 330°, neben anderen Produkten (Hara, Mem. Coll. Sci. Kyolo [A] 9, 413; C. 1926 II, 2658). Bei der Hydrierung von Phenylacetylen in Gegenwart eines Nickel-Katalysators in 50% igem Alkohol + Essigester (Rupe, A. 436, 190). Bei der Reduktion von Acetophenon mit Wasserstoff in Gegenwart von Kupfer bei 350° (Sabatier, Kubota, C. r. 172, 735) oder bei 160° und 66 Atm. Anfangsdruck (Ku., Hayashi, Bl. chem. Soc. Japan 1, 15, 68; C. 1926 I, 2911; II, 200), in Gegenwart von Tonerde im

eisernen Rohr bei 380—420° und 50 Atm. Anfangsdruck (IPATJEW, PETEOW, B. 60, 1958, 1961; Ж. 59, 905, 910). Zur Bildung durch Reduktion von Acetophenon nach CLEMMENSEN (B. 46 [1913], 1838) vgl. Steinkoff, Wolfram, A. 430, 124, 151; zur Bildung durch Erhitzen von Acetophenonsemicarbazon mit Natriumäthylat (Wolff, A. 394 [1912], 91) vgl. Eisenlohr, Schulz, B. 57, 1814. Aus Phenacylmercaptan beim Erwärmen mit amalgamiertem Zink und konz. Salzsäure auf dem Wasserbad (Groth, Ark. Kemi 9, Nr. 1, 46; C. 1924 I, 1038). Entsteht ferner bei analoger Behandlung von Dimethylphenacylamin (v. Braun, Weissbach, B. 62, 2425). Neben anderen Produkten bei der Druckhydrierung von Thionaphthen (Fricke, Spilker, B. 58, 1598).

H 352, Z. 12 v. o. nach "Schwefelammonium" füge ein "und etwas Wasser".

#### Physikalische Eigenschaften.

E: —94,4° (TIMMERMANS, MARTIN, J. Chim. phys. 23, 758). Kp<sub>780</sub>: 136,1° (MATHEWS, Am. Soc. 48, 569), 136,15° (Lecat, R. 46, 243). Zusammenstellung und Kritik von Dichteangaben bis 1926: TIMMERMANS, MARTIN. Dis: 0,87130; Dis: 0,85810 (T., Mar.); Dis: 0,8672 (Math.). Ausdehnungskoeffizient: 0,000955 (T., Mar.). Isotherme Kompressibilität zwischen 0 und 8 Atm. Überdruck bei 17,89°: 82,364×10-6 Atm.-1; bei 25,28°: 85,634×10-6 Atm.-1 (Hebeisen, Ann. Phys. [4] 77, 224). Adiabatische Kompressibilität bei 20°: Busse, Ann. Phys. [4] 75, 662. Viscosität bei 15°: 0,00697, bei 30°: 0,00581 g/cmsec (T., Mar.). Oberflächenspannung bei 0°: 31,50, bei 34,27°: 27,68, bei 60,5°: 24,89 dyn/cm (Richards, Speyers, Carver, Am. Soc. 46, 1204). Parachor: Sugden, Soc. 125, 1180. Zur spezifischen Wärme zwischen 18° und 70° vgl. Williams, Daniels, Am. Soc. 48, 910, 1570. Verhältnis der spezifischen Wärmen cp/cv (aus der Schallgeschwindigkeit bestimmt): Busse. Verdampfungswärme bei 135,17°: 81,08 cal/g (Mathews, Am. Soc. 48, 572). Verbrennungswärme bei konstantem Volumen: 1089,1 kcal/Mol (im Vakuum gewogen) (Richards, Barry, Am. Soc. 37 [1915], 1019; vgl. Swietoslawski, Bobinska, Am. Soc. 49, 2478). Verbrennungswärmen zweier auf verschiedenen Wegen dargestellter Präparate: v. Auwers, Kolligs, B. 55, 3878. Schallgeschwindigkeit in flüssigem Äthylbenzol bei 20°: Busse.

Zusammenstellung und Kritik von Refraktionsmessungen bis 1926: Timmermans, Martin, J. Chim. phys. 23, 759. n<sub>α</sub><sup>(6.0)</sup>: 1,4942; n<sub>D</sub><sup>(6.0)</sup>: 1,4985; n<sub>se</sub><sup>(6.0)</sup>: 1,5022 (Eisele, Ann. Phys. [4] 76, 400); n<sub>c</sub><sup>(6.0)</sup>: 1,4959 (Mathews, Am. Soc. 48, 569). Brechungsindices einiger auf verschiedenen Wegen dargestellter Präparate: v. Auwers, Kolligs, B. 55, 26, 3877. Brechungsindices von Åthylbenzol für Wellenlängen zwischen 645 mμ (1,4955) und 488 mμ (1,5099) bei 20°: Becker, Ann. Phys. [4] 76, 850; für λ = 656,3 mμ, 589 mμ und 546,1 mμ bei ca. 14° und verschiedenen Drucken: Ei. Refraktionsdispersion: Moutte, Chim. et Ind. 19, Sonder-Nr., 262; C. 1929 I, 677. Ultrarot-Absorptionsspektrum von flüssigem Äthylbenzol: J. Barnes, Fulweiler, Am. Soc. 49, 2035; bei ca. 3,5 μ: R. B. Barnes, Nature 124, 300; C. 1929 II, 2016. Tesla-Luminescenzspektrum: McVicker, Marsh, Stewart, Soc. 123, 2152; 125, 1744; Marsh, Phil. Mag. [6] 49, 975; C. 1925 II, 890. Fluorescenzspektrum von dampfförmigem Äthylbenzol bei 12—15 mm Druck und ca. 65°: Marsh, Soc. 123, 3320; 3322. Intensität und Polarisationszustand des Streulichts bei der Streuung von Licht in flüssigem Äthylbenzol: Krishnan, Phil. Mag. [6] 50, 703; C. 1926 I, 838; Banerjee, Indian J. Phys. 2, 57; C. 1928 I, 1838; S. R. Rao, Indian J. Phys. 3, 26; C. 1929 I, 20; in Athylbenzol-Dampf: I. R. Rao, Indian J. Phys. 2, 84; C. 1928 I, 1838. Beugung von Röntgenstrahlen an flüssigem Äthylbenzol: Sogani, Indian J. Phys. 1, 373; C. 1927 II, 2149; Katz, Z. Phys. 45, 106; C. 1928 I, 154; Stewart, Phys. Rev. [2] 33, 891, 892; C. 1929 II, 1258. Ramanspektrum: Dadieu, Kohlrausch, M. 52, 402; 53/54, 287; Ganesan, Venkateswaran, Indian J. Phys. 4, 225; C. 1929 II, 2646. Über das Dipolmoment von flüssigem Athylbenzol vgl. Smyth, Am. Soc. 48, 2153. Elektrische Doppelbrechung für Wellenlängen zwischen 645 mμ und 488 mμ bei 20°: Becker, Ann. Phys. [4] 76, 852. Magnetische Doppelbrechung: Raman, Krishnan, Pr. roy. Soc. [A] 113, 518; C. 1927 I, 1127. Elektromagnetische Drehung der Polarisationsebene

Löslichkeit in Wasser bei 15°: Fühner, B. 57, 514. Sehr leicht löslich in flüssigem Schwefeldioxyd, unlöslich in flüssigem Ammoniak (de Carli, G. 57, 351). Mischbarkeit von Äthylbenzol mit Resorcin bei Drucken zwischen 5 und 65 kg/cm³: Timmermans, J. Chim. phys. 20, 506. Kritische Lösungstemperatur des Systems mit Resorcin: 151,5° (T.). Verteilung von Trimethylamin und Diäthylamin zwischen Athylbenzol und Wasser bei 25°: Herz, Stanner, Ph. Ch. 128, 400, 401. Kryoskopisches Verhalten von Äthylbenzol in Benzol: Bell, Wright, J. phys. Chem. 31, 1884; in einem Gemisch aus gleichen Gewichtsteilen Alkohol und Benzol: Wr., Soc. 127, 2337. Erstarrungspunkte von Gemischen mit p-Xylol: Kishner, Wendelstein, K. 57, 5; C. 1926 I, 2681. Thermische Analyse des Systems mit Schwefeldioxyd s. S. 276. Äthylbenzol bildet azeotrope Gemische mit Butylalkohol (Kp<sub>780</sub>: 114,8°; ca. 33 Gew.-% Äthylbenzol) (Lecat, Ann. Soc. scient. Bruxelles 48 I [1928], 54).

Isobutylalkohol (Kp<sub>780</sub>: 107,2°; ca. 20 Gew.-% Äthylbenzol) (Le., Ann. Soc. scient. Bruxelles 49 [1929], 19), Acetamid (Kp<sub>780</sub>: 135,6°; ca. 92 Gew.-% Äthylbenzol) (Le., Ann. Soc. scient. Bruxelles 47 I [1927], 153), Chloressigsäure-methylester (Kp<sub>780</sub>: 127,2°; 37,5 Gew.-% Äthylbenzol) (Le., R. 45, 622), Isobutylpropionat (Kp<sub>780</sub>: 135,8°; ca. 70 Gew.-% Äthylbenzol) (Le., R. 46, 244), Isobuttersäure (Kp<sub>780</sub>: 134,3°; 88 Gew.-% Athylbenzol) (Le., Ann. Soc. scient. Bruxelles 49, 20) und Methyllactat (Kp<sub>780</sub>: 129,4°; 65 Gew.-% Äthylbenzol) (Le., R. 46, 243). Dampfdruck von Gemischen mit Benzol bei 20°: Bell, Wright, J. phys. Chem. 31, 1885. Dichten und Brechungsindices von binären Gemischen mit verschiedenen Lösungsmitteln bei 15°: Leithe, M. 52, 161. Über die spezifische Wärme von bei 6° mit Wasser gesättigtem Äthylbenzol zwischen 18° und 52° vgl. Williams, Daniels, Am. Soc. 46, 1571. Schlierenbildung in Gemischen mit m-Xylol und mit p-Xylol: Emich, M. 53/54, 326.

#### Chemisches und biochemisches Verhalten.

Äthylbenzol liefert beim Durchleiten durch ein auf 650° erhitztes Rohr, zweckmäßig in Gegenwart von Kohlendioxyd oder einem anderen indifferenten Gas, Styrol (NAUGATUCK Chemical Co., D. R. P. 476270; Frdl. 16, 329). Zersetzung beim Erhitzen unter Druck auf 500°: Herndon, Reid, Am. Soc. 50, 3072. Bei der elektrolytischen Oxydation an Bleidioxyd-Anoden in 1n-Schwefelsäure erhält man bei Abwesenheit eines organischen Lösungsmittels bei 70° vorwiegend Kohlendioxyd und Wasser neben sehr wenig Benzaldehyd, Acetophenon, Acetophenon-pinakon und 2-Athyl-benzochinon-(1.4), während in Gegenwart von Aceton unter Kühlung mit Wasser hauptsächlich unlösliche harzartige Produkte und geringe Mengen der vorgenannten organischen Verbindungen außer Acetophenon-pinakon sowie wenig 4-Athyl-phenol, Methylphenylcarbinol, p-Chinon und 6.6′(oder 5.5′)-Dioxy-3.3′(oder 2.2′)-diäthyl-diphenyl entstehen (Ono, Helv. 10, 45, 47). Entzündungstemperatur in Luft: Masson, Hamilton, Ind. Eng. Chem. 19, 1337; 20, 814, 816; C. 1928 I, 943; II, 1986. Athylbenzol wird durch Sauerstoff bei ca. 100° zu Acetophenon oxydiert (Stephens, Am. Soc. 48, 2921); die Oxydation wird durch Anwesenheit von Acetanhydrid sehr beschleunigt (St., Am. Soc. 50, 2529). Äthylbenzol gibt beim Erhitzen mit Luft unter Druck auf 210° in Gegenwart von verd. Soda-Lösung Ameisensäure, Essigsäure und sehr geringe Mengen Benzoesäure und Oxalsäure (Schrader, Abh. Kenntnis Kohle 4, 326; C. 1921 I, 537). Beim Leiten mit Luft über Zinnvanadat, am besten bei 280°, erhält man Benzoesäure (Maxted, J. Soc. chem. Ind. 47, 102 T; C. 1928 I, 3029). Läßt sich bei Gegenwart von Platinschwarz aus Platinoxyd in Eisessig bei 25—30° und 2—3 Atm. Druck leicht zu Äthyleyclohexan hydrieren (Adams, Marshall, Am. Soc. 50, 1972; vgl. Stratfford, Ann. Off. Combust. liq. 4 [1929], 98, 324). Beim Einleiten von Chlor in siedendes Athylbenzol im diffusen Tageslicht (vgl. H 353) entstehen viel [β-Chlor-āthyl]-benzol, wenig [α-Chlor-āthyl]-benzol (Evans, Mabbott, Turner, Soc. 1927, 1159, 1163). Liefert beim Erh

Bei der Umsetzung mit Paraformaldehyd in Gegenwart von Zinkchlorid unter Durchleiten von Chlorwasserstoff erhält man 1-Chlormethyl-4-äthyl-benzol (Blanc, Bl. [4] 33, 317; C. 1923 I, 1571; Bert, C. r. 186, 373); dieses entsteht auch bei der Einw. von Chlordimethyläther in Gegenwart von Zinn(IV)-chlorid (Sommelet, C. r. 180, 1350). Äthylbenzol gibt beim Behandeln mit Oxalylchlorid in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff unter Kühlung und Zersetzen des Reaktionsprodukts mit Eis 4-Athyl-benzoesäure (Schönberg, Kraemer, B. 55, 1189).

Athylbenzol wird nach Verfütterung an Kaninchen zu Methylphenylcarbinol oxydiert und als gepaarte Glucuronsäure ausgeschieden (Neubauer, Ar. Pth. 48 [1901], 152); nach subcutaner Injektion finden sich im Harn außerdem geringe Mengen Mandelsäure (Thierfelder, Daiber, H. 130, 386, 388). Zum physiologischen Verhalten vgl. ferner H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 38.

#### Additionelle Verbindungen.

Die folgenden Verbindungen mit Schwefeldioxyd wurden durch thermische Analyse nachgewiesen.  $C_8H_{10}+SO_2$ . F:  $-91^{\circ}$  (DE Carli, R. A. L. [6] 4, 524, 525). Bildet Eutektika mit Athylbenzol (F:  $-109,5^{\circ}$ ) und mit der nachfolgenden Verbindung.  $-C_8H_{10}+2SO_2$ . F:  $-78,5^{\circ}$  (DE C.). Bildet Eutektika mit der vorangehenden Verbindung (F:  $-93^{\circ}$ ) und mit Schwefeldioxyd (F:  $-82,5^{\circ}$ ).

# Substitutionsprodukte des Äthylbenzols.

2-Fluor-1-äthyl-benzol  $C_8H_9F=C_6H_4F\cdot C_2H_5$ . B. Beim Eintragen einer Lösung von 1-Äthyl-benzol-diazoniumsulfat-(2) in auf  $30^\circ$  erwärmte 50%ige Flußsäure (Quayle, Reid, Am. Soc. 47, 2359). — Kp:  $136-137^\circ$ . Mit Wasserdampf flüchtig.  $D_0^\circ$ : 1,002;  $D_0^\infty$ : 0,983.

**4-Fluor-1-äthyl-benzol**  $C_8H_9F=C_6H_4F\cdot C_2H_5$ . B. Analog der vorangehenden Verbindung (QUAYLE, REID, Am. Soc. 47, 2359). — Kp: 141°. Mit Wasserdampf flüchtig.  $D_0^\circ$ : 0,994; D. 0,967.

[ $\alpha$ -Chlor-äthyl]-benzol, Methylphenylchlormethan,  $\alpha$ -Phenäthylchlorid  $C_8H_9Cl$  $= C_6H_5 \cdot CHCl \cdot CH_3.$ 

a) Rechtsdrehende Form (E I 176). B. Zur Bildung aus d-Methylphenylcarbinol und Thionylchlorid vgl. Levene, Mikeska, J. biol. Chem. 70, 361. — Kp<sub>18</sub>: 80° (Ott, B. 61, 2140), 82—83° (Ward, Soc. 1927, 453). [\alpha]\_{578}^{578}: +49,07° (unverdünnt) (W.); [\alpha]\_{50}^{50}: +11,9° (Ather; c = 8) (L., M.). — Gibt beim Kochen mit alkoh. Kaliumhydrosulfid-Lösung linksdrehendes α-Phenäthylmercaptan (L., M., J. biol. Chem. 70, 377). Geschwindigkeit der Hydrolyse in verd. Alkohol oder wäßrig-alkoholischer Natronlauge bei 28,6°: W., Soc. 1927, 457. Bei längerem Behandeln mit Natrium in Äther bei 20° erhält man inakt. [α-Chlor-āthyl]benzol, linksdrehendes 2.3-Diphenyl-butan, meso-2.3-Diphenyl-butan und andere Produkte (Отт, B. 61, 2129, 2142).

b) Linksdrehende Form (E I 176). Kp<sub>18</sub>: 80° (Отт, B. 61, 2140). [α]<sub>1</sub><sup>19</sup>: —50,3°. — Liefert bei längerer Einw. von Natrium in Äther bei 20° teilweise racemisiertes [α-Chlor-āthyl]-benzol general 2.3 Diphenyl butan und andere Produkte (Δουτ, B. 61, 2140).

äthyl]-benzol, meso-2.3-Diphenyl-butan und rechtsdrehendes 2.3-Diphenyl-butan (OTT,

B. 61, 2129, 2142).

c) Inaktive Form (H 354; E I 177). B. Zur Bildung durch Chlorierung von siedendem Athylbenzol im direkten Sonnenlicht vgl. Evans, Mabbott, Turner, Soc. 1927, 1159, 1163. Aus dl-Methylphenylcarbinol und Thionylchlorid bei Zimmertemperatur (WARD, Soc. 1927 452; vgl. McKenzie, Clough, Soc. 103 [1913], 694). Durch Einw. von Magnesium auf [α-Bromäthyl]-benzol in Äther und Behandlung der entstandenen Magnesiumverbindung mit Chlorcyan, neben anderen Produkten (Grignard, Ono, Bl. [4] 39, 1593). Neben anderen Produkten beim Einleiten von Chlorwasserstoff in eine Lösung von Acetophenon in absol. Alkohol in Gegenwart von amalgamiertem Zink bei 15—20° (Steinkoff, Wolfram, A. 430, 157). — Kp<sub>17</sub>: 81—82° (Ward). — Gibt beim Kochen mit gesättigter Na<sub>2</sub>SO<sub>3</sub>-Lösung das Natriumsalz der 1-Phenyl-äthan-sulfonsäure-(1) und Styrol (Evans, Mabbott, Turner, Soc. 1927, 1159, 1162). Beim Erwärmen mit Wasser auf 50° erhält man Methylphenyl-garbinel, beim Kochen mit Wasser auf 50° erhält man Methylphenyl-garbinel, beim Kochen mit Wasser auf 50° erhält man Methylphenyl-garbinel, beim Kochen mit Wasser auf 50° erhält man Methylphenyl-garbinel, beim Kochen mit Wasser auf 50° erhält man Methylphenyl-garbinel, beim Kochen mit Wasser auf 50° erhält man Methylphenyl-garbinel, beim Kochen mit Wasser auf 50° erhält man Methylphenyl-garbinel, beim Kochen mit Wasser auf 50° erhält man Methylphenyl-garbinel, beim Kochen mit Wasser auf 50° erhält man Methylphenyl-garbinel, beim Kochen mit Wasser auf 50° erhält man Methylphenyl-garbinel, beim Kochen mit Wasser auf 50° erhält man Methylphenyl-garbinel, beim Kochen mit Wasser auf 50° erhält man Methylphenyl-garbinel, beim Kochen mit Wasser auf 50° erhält man Methylphenyl-garbinel garbinel carbinol; beim Kochen mit Wasser entstehen außerdem Di-α-phenäthyl-äther und Styrol (WARD). Liefert bei der Einw. von verd. Alkohol allein und bei Gegenwart von Natronlauge je nach den Reaktionsbedingungen wechselnde Mengen Methylphenylcarbinol und Äthylα-phenäthyl-äther; Geschwindigkeit dieser Reaktion bei 28,70 und 500: WARD. Gibt beim Behandeln mit Magnesium in wasserfreiem Äther fast ausschließlich α-Phenäthyl-magnesiumchlorid, während beim Kochen in feuchtem Äther neben anderen Produkten racem.- und meso-2.3-Diphenyl-butan entstehen; die letztgenannten Verbindungen erhält man auch bei der Einw. von Natrium auf [α-Chlor-äthyl]-benzol in Ather bei 20<sup>6</sup> (Отт, B. 61, 2141). Bei längerem Aufbewahren mit Dimethylanilin entsteht Dimethyl-phenyl-α-phenäthyl-ammoniumchlorid (E., M., T.).

[ $\beta$ -Chlor-äthyl]-benzol,  $\beta$ -Phenäthylchlorid  $C_8H_9Cl = C_8H_5\cdot CH_2\cdot CH_2Cl$  (H 354; E I 177). B. Zur Bildung durch Chlorierung von siedendem Äthylbenzol im diffusen Tageslicht vgl. Evans, Mabbott, Turner, Soc. 1927, 1159, 1163. Aus  $\beta$ -Phenyl-äthylalkohol beim Sättigen mit trocknem Chlorwasserstoff bei  $0^{\circ}$  und Erhitzen des Reaktionsgemisches im Rohr auf 140—160° (Ferber, B. 62, 186) oder beim Erwärmen mit je 2 Tln. konz. Salzsäure und wasserfreiem Zinkchlorid auf 65° (Norris, Taylor, Am. Soc. 46, 756). Zur Bildung aus  $\beta$ -Phenyl-äthylalkohol und Thionylchlorid vgl. Ward, Soc. 1927, 453. Beim Behandeln von  $\beta$ -Phenäthylamin mit Natriumnitrit in salzsaurer Lösung (Shoesmath, Connor, Soc. 1927, 2232). Beim Erhitzen von Benzoyl-di-β-phenäthylamin mit Phosphorpentachlorid auf 160° und nachfolgenden Destillieren im Vakuum (v. Braun, Cahn, A. 436, 266). Aus Phenylmagnesiumbromid beim Behandeln mit p-Toluolsulfonsäure- $[\beta$ -chlor-äthylester] in Ather (GILMAN, BEABER, Am. Soc. 45, 842; ASHWORTH, BURKHARDT, Soc. 1928, 1798; BERT, C. r. 186, 374). — Kp<sub>23</sub>: 96° (FERBER, B. 62, 187); Kp<sub>14</sub>: 83—84° (WARD, Soc. 1927, 453); Kp<sub>4</sub>: 68,5—69° (CONANT, KIRNER, Am. Soc. 46, 241).

405); R.P<sub>4</sub>: 68,5—69° (CONANT, KIRNER, Am. Soc. 46, 241).

Liefert bei der Einw. von Salpetersäure (D: 1,5) bei —15° 30—40% 4-Nitro-1-[β-chlor-äthyl]-benzol, ca. 24% 2-Nitro-1-[β-chlor-āthyl]-benzol und geringe Mengen 2.4-Dinitro-1-[β-chlor-āthyl]-benzol (Ferber, B. 62, 187; vgl. Holleman, Hoeflake, R. 34 [1915], 263; Shoesmith, Connor, Soc. 1927, 2232). Sobotka (B. 62, 2192) erhielt beim Behandeln mit Salpetersäure (D: 1,52) bei —70° 4-Nitro-1-[β-chlor-āthyl]-benzol als Hauptprodukt. Gibt bei längerem Kochen mit gesättigter Na<sub>2</sub>SO<sub>3</sub>-Lösung das Natriumsalz der 1-Phenyl-āthan-sulfonsäure-(2) und β-Phenyl-āthylalkohol (Evans, Mabbott, Turner, Soc. 1927, 1159, 1161). Geschwindigkeit der Hydrolyse in verd. Alkohol und wäßrig-alkoholischer Natronlauge bei 28.9°: Ward, Soc. 1927, 457; der Reaktion mit Natriumāthylat-Lösung Natronlauge bei 28,9°: Ward, Soc. 1927, 457; der Reaktion mit Natriumäthylat-Lösung bei 31,6°: KINDLER, A. 452, 120; der Umsetzung mit Kaliumjodid in Aceton bei 50° und 60°: Conant, Kirner, Am. Soc. 46, 249. Liefert beim Erwärmen mit einer 33 % igen alkoholischen

Lösung von Dimethylamin im Rohr auf 90° Dimethyl-di- $\beta$ -phenäthyl-ammoniumchlorid; dieses entsteht auch neben 4-Nitro-styrol und Dimethyl- $\beta$ -phenäthylamin beim Erhitzen von  $\beta$ -Phenäthylchlorid mit Dimethyl-[4-nitro- $\beta$ -phenäthyl]-amin auf dem Wasserbad (Hanhart, Ingold, Soc. 1927, 1008, 1009).

[α.α-Dichlor-āthyl]-benzol, Methylphenyldichlormethan C<sub>8</sub>H<sub>9</sub>Cl<sub>2</sub> = C<sub>6</sub>H<sub>5</sub>·CCl<sub>2</sub>·CH<sub>3</sub> (H 354). Geschwindigkeit der Reaktionen von [α.α-Dichlor-āthyl]-benzol mit Wasser, Kaliumhydroxyd, Silbernitrat und Piperidin in 95 %igem Alkohol bei verschiedenen Konzentrationen und Temperaturen: РЕТВЕНКО-КВІТІЗСНЕНКО, ОРОТІЖІ, В. 59, 2138; Ж. 59, 307.

[α.β-Dichlor-āthyl]-benzol, Styroldichlorid  $C_8H_8Cl_2 = C_6H_5$ ·CHCl·CH<sub>2</sub>Cl (H 354). B. Entsteht neben anderen Produkten beim Behandeln von Styrol mit Stickstofftrichlorid in Tetrachlorkohlenstoff bei  $-10^{\circ}$  (Coleman, Campbell, Am. Soc. 50, 2754). Beim Einleiten von Chlor in siedendes Äthylbenzol bei Tageslicht, neben anderen Produkten (Evans, Mabbott, Turner, Soc. 1927, 1159, 1163).

[α-Brom-äthyl]-benzol. Methylphenylbrommethan, α-Phenäthylbromid  $C_8H_9Br = C_6H_5 \cdot CHBr \cdot CH_3$  (H 355; E I 177). B. Zur Bildung aus Methylphenylcarbinol und Bromwasserstoff vgl. Conant, Blatt, Am. Soc. 50, 554. Aus Styrol beim Aufbewahren mit einer gesättigten Lösung von Bromwasserstoff in Eisessig (Ashworh, Burkhardt, Soc. 1928, 1798). — Kp<sub>16</sub>: 95—96° (Grignard, Ono, Bl. [4] 39, 1592); Kp<sub>8</sub>: 92—94° (C., Bl.). — Liefert beim Kochen mit gesättigter Na<sub>2</sub>SO<sub>3</sub>-Lösung neben wenig Styrol das Natriumsalz der 1-Phenyl-äthan-sulfonsäure-(1) (Evans, Mabboth, Turner, Soc. 1927, 1159, 1162); das Ammoniumsalz dieser Säure entsteht beim Erhitzen von α-Phenäthylbromid mit (NH<sub>4</sub>)<sub>2</sub>SO<sub>3</sub>-Lösung (A., Bu.). Läßt sich durch Kochen mit einer ca. 0,4 n-wäßrig-alkoholischen Kalilauge quantitativ in Methylphenylcarbinol überführen (A., Bu.). Gibt beim Behandeln mit Magnesium in Äther meso-2.3-Diphenyl-butan (Ley, Rinke, B. 56, 776; Gr., O.), racem.-2.3-Diphenyl-butan (L., R.) und α-Phenäthylmagnesiumbromid (Gr., O.; C., Bl.), das bei der Einw. von Chlorcyan vorwiegend [α-Chlor-äthyl]-benzol neben wenig Hydratropasäurenitril liefert (Gr., O.) und bei der Umsetzung mit wasserfreiem Kupfer(II)-chlorid unter Kühlung in meso- und racem.-2.3-Diphenyl-butan übergeht (C., Bl.).

[β-Brom-äthyl]-benzol, β-Phenäthylbromid C<sub>8</sub>H<sub>9</sub>Br = C<sub>6</sub>H<sub>5</sub>· CH<sub>2</sub>· CH<sub>2</sub>Br (H 356; E I 177). B. Zur Bildung aus β-Phenäthylalkohol und Bromwasserstoffsäure vgl. Dox, Am. Soc. 46, 2844; Linstead, Williams, Soc. 1926, 2745. Bei der Einw. von Phosphorpentabromid auf β-Phenäthylalkohol, zuletzt auf dem Wasserbad (Baker, Wilson, Soc. 1927, 844; Shoesmith, Connor, Soc. 1927, 1771). — Kp<sub>22</sub>: 109° (L., Williams); Kp<sub>14</sub>: 98° (Turner, Bury, Soc. 123, 2490); Kp<sub>12</sub>: 97° (Ashworth, Burkhardt, Soc. 1928, 1798); Kp<sub>4</sub>: 79—81° (Dox, Am. Soc. 46, 2844). — Liefert beim Eintropfen in Salpetersäure (D: 1,52) bei —70° vorwiegend 4-Nitro-1-[β-brom-äthyl]-benzol neben geringen Mengen 2- und 3-Nitro-1-[β-brom-äthyl]-benzol (Sobotka, B. 62, 2192). Gibt beim Kochen mit (NH<sub>4</sub>)<sub>2</sub>SO<sub>3</sub>, Na<sub>2</sub>SO<sub>3</sub> oder K<sub>2</sub>SO<sub>3</sub>-Lösung die entsprechenden Salze der 1-Phenyl-äthan-sulfonsäure-(2) (Evans, Mabbott, Turner, Soc. 1927, 1161; A., Bu.). Beim Kochen mit ca. 0,4 n-wäßrig-alkoholischer Kalilauge erhält man Styrol (A., Bu.). Geschwindigkeit der Hydrolyse in wäßrig-alkoholischer Natronlauge bei 76°: Shoesmith, Connor, Soc. 1927, 1772.

2.4 - Dichlor - 1 - [\alpha - brom - \text{athyl}] - benzol, 2.4 - Dichlor - \alpha - phen\text{athyl}-bromid \$C\_8H\_7Cl\_8Br\$, s. nebenstehende Formel. \$B\$. Beim Einleiten von Bromwasserstoff in Methyl-[2.4-dichlor-phenyl]-carbinol (Evans, Mabbort, Turner, Soc. 1927, 1165). — Bewegliche Fl\(\text{ussigkeit}\). Kp\_37: 154\(\text{0}\). — Geht beim Erhitzen mit Na\_2SO\_3-L\(\text{0}\)sung wieder in Methyl-[2.4-dichlor-phenyl]-carbinol \(\text{uber}\).

[α.β-Dibrom-āthyl]-benzol, Styroldibromid C<sub>8</sub>H<sub>8</sub>Br<sub>2</sub> = C<sub>6</sub>H<sub>5</sub>·CHBr·CH<sub>2</sub>Br (H 356; E I 177). B. Neben überwiegenden Mengen Brommethyl-phenyl-carbinol bei der Einw. von Brom-Kaliumbromid-Lösung auf Styrol bei Zimmertemperatur (Read, Reid, Soc. 1928, 1488). — F: 72° (v. Braun, Moldänke, B. 54, 619), 74° (korr.) (van Duin, R. 45, 354), 74—75° (Read, Reid). Kp<sub>19</sub>: 133° (v. B., M.). — Liefert beim Kochen mit alkoh. Kalilauge entgegen älteren Angaben nur α-Brom-styrol (Bourguel, A. ch. [10] 3, 228; Ashworth, Burkhardt, Soc. 1928, 1795, 1801). Gibt beim Erhitzen mit überschüssigem Natriumamid in Toluol auf 100—110° hauptsächlich Phenylacetylen neben wenig α-Brom-styrol; beim Erhitzen auf 150—160° in hochsiedendem Petroleum erhält man außer Phenylacetylen viel feste Kondensationsprodukte und geringe Mengen Styrol (Bou., C. r. 176, 752; A. ch. [10] 3, 225, 383). Geschwindigkeit der Reaktion mit Kaliumjodid in verd. Alkohol bei 25°: van D. Liefert beim Behandeln mit Magnesium in Äther Styrol und andere Produkte; bei der Entbromung mit Zink in Äther oder Äceton entstehen hauptsächlich hochsiedende Polymerisationsprodukte des Styrols (v. B., M.).

4.1.12-Tribrom -1-äthyl-benzol, 4-Brom -1- $[\alpha.\beta$ -dibrom-äthyl]-benzol, 4-Brom-styrol-dibromid  $C_8H_7Br_3 = C_6H_4Br \cdot CHBr \cdot CH_2Br \cdot (H 357)$ . B. Beim Behandeln von 4-Brom-styrol mit Brom in Chloroform (Ziegler, Tiemann, B. 55, 3415; Quelet, Bl. [4] 45, 89). — F: 61° (Qu.).

- [ $\alpha$ . $\alpha$ . $\beta$ -Tribrom-äthyl]-benzol,  $\alpha$ -Brom-styrol-dibromid  $C_8H_7Br_3=C_6H_5\cdot CBr_2\cdot CH_2Br$ . B. Bei der Einw. von Brom auf  $\alpha$ -Brom-styrol in kaltem Schwefelkohlenstoff (Dufraisse, C. r. 171, 962; A. ch. [9] 17, 174). Schwach riechendes Ol; wird aus Methanol bei —80° in bei 5—6° schwelzenden Krystallen erhalten. Auch im Vakuum nicht unzersetzt destillierbar.  $D^{16.2}$ : 2,0984;  $D^{21.5}$ : 2,0906.  $n_5^{6.7}$ : 1,6421.
- [ $\alpha.\beta.\beta$ -Tribrom-äthyl]-benzol,  $\omega$ -Brom-styrol-dibromid  $C_8H_7Br_3=C_6H_5\cdot CHBr\cdot CHBr_2$  (H 357). B. Entsteht aus den beiden stereoisomeren Formen des  $\omega$ -Brom-styrols beim Behandeln mit Brom in einem geeigneten Lösungsmittel (DUFRAISSE, C. r. 171, 962; A. ch. [9] 17, 173). Angenehm aromatisch riechende Nadeln. F: 36,5—37,5° (Du.). Leicht löslich in organischen Lösungsmitteln (Du.). Geschwindigkeit der Reaktion mit Kaliumjodid in verd. Alkohol bei 25°: VAN DUIN, R. 45, 358.
- [ $\beta$ -Jod-äthyl]-benzol,  $\beta$ -Phenäthyljodid  $C_8H_9I=C_6H_5\cdot CH_2\cdot CH_2I$  (EI 178). B. Zur Bildung aus  $\beta$ -Phenäthylchlorid und Natriumjodid in siedendem Aceton vgl. Coleman, Hauser, Am. Soc. 50, 1196.  $Kp_{18-20}$ : 125—128°.
- 2-Nitro-1-äthyl-benzol  $C_8H_9O_2N=O_2N\cdot C_6H_4\cdot C_2H_5$  (H 358; E I 178). B. Zur Bildung durch Nitrierung von Äthylbenzol mit Salpeterschwefelsäure vgl. CLINE, REID, Am. Soc. 49, 3153. Neben 4-Nitro-1-äthyl-benzol beim Behandeln von Äthylbenzol mit Äthyl-nitrat in konz. Schwefelsäure bei —5° bis 0° (VAVON, MITCHOVITCH, Bl. [4] 45, 962) oder mit Acetylnitrat (WISLICENUS, THOMA, A. 436, 44 Anm. 2). Kp37: 135° (C., R.); Kp6: 102° (V., M.). Geschwindigkeit der Hydrierung in Eisessig bei Gegenwart von Platinschwarz: V., M.
- 4-Nitro-1-äthyl-benzol  $C_8H_9O_2N=O_2N\cdot C_6H_4\cdot C_2H_5$  (H 358; E I 178). B. s. bei 2-Nitro-1-äthyl-benzol.  $Kp_{37}$ : 1546 (Cline, Reid, Am. Soc. 49, 3153);  $Kp_9$ : 114—1150 (Vavon, Mitchovitch, Bl. [4] 45, 962). Geschwindigkeit der Hydrierung bei Gegenwart von Platinschwarz in Eisessig: V., M.
- [ $\alpha$ -Nitro-äthyl]-benzol, 1-Nitro-1-phenyl-äthan  $C_8H_9O_2N=C_6H_5\cdot CH(NO_2)\cdot CH_3$  (H 358). B. Zur Bildung aus Äthylbenzol und Salpetersäure (D: 1,075) nach Konowalow ( $\Re$ . 25, 514; B. 27 Ref., 194; C. 1894 I, 464) vgl. Baker, Ingold, Soc. 1926, 2467. Kp<sub>25</sub>: 135° (B., I., Soc. 1926, 2467). Gibt bei allmählichem Eintragen in Salpetersäure (D: 1,49) bei —15° bis —10° ein Gemisch aus 3- und 4-Nitro-1-[ $\alpha$ -nitro-äthyl]-benzol (nachgewiesen durch Oxydation zu 3- und 4-Nitro-benzoesäure) (B., I., Soc. 1927, 262).
- [β-Nitro-äthyl]-benzol, 2-Nitro-1-phenyl-äthan  $C_8H_9O_2N=C_6H_5\cdot CH_2\cdot CH_2\cdot NO_2$ . B. In geringer Menge bei längerer Einw. von Silbernitrit auf β-Phenäthylbromid, zuletzt bei 50—60° (Baker, Wilson, Soc. 1927, 844). Kp<sub>1</sub>: 125—135°. Gibt bei allmählichem Eintragen in Salretersäure (D: 1,49) bei —15° bis —5° ein Gemisch aus 2(?)-, 3- und 4-Nitro-1-[β-nitro-äthyl]-benzol (die beiden letztgenannten Verbindungen wurden durch Oxydation zu 3- und 4-Nitro-benzoesäure nachgewiesen).
- **2-Nitro-1-**[ $\beta$ -chlor-āthyl]-benzol, **2-Nitro-\beta-phenāthylchlorid**  $C_8H_8O_2NCl = O_2N \cdot C_6H_4 \cdot CH_2 \cdot CH_2Cl$  (E I 178). *B.* Zur Bildung durch Nitrierung von  $\beta$ -Phenāthylchlorid vgl. Ferber, *B.* 62, 187.
- 4-Nitro-1-[ $\beta$ -chlor-äthyl]-benzol, 4-Nitro- $\beta$ -phenäthylchlorid  $C_8H_8O_2NCl = O_2N-C_6H_4\cdot CH_2\cdot CH_2Cl$  (H 359; E I 178). B. Zur Bildung durch Nitrierung von  $\beta$ -Phenäthylchlorid vgl. Ferber, B. 62, 187; Shoesmith, Connor, Soc. 1927, 2232; Sobotka, B. 62, 2192. Beim Erhitzen von 4-Nitro- $\beta$ -phenäthylalkohol mit konz. Salzsäure auf 100° (v. Braun, Bartsch, B. 46 [1913], 3054). Beim Destillieren von N.N-Bis-[4-nitro- $\beta$ -phenäthyl]-benzamid mit Phosphorpentachlorid im Vakuum (v. Br., Blessing, B. 56, 2156). F: 48° bis 49° (F.), 49° (v. Br., Bl.). Liefert bei der Oxydation mit 5%iger alkalischer Permanganat-Lösung 4-Nitro-benzoesäure (F.). Gibt bei der Hydrierung in Gegenwart von Platinoxyd in Alkohol bei Zimmertemperatur 4-Amino-1-[ $\beta$ -chlor-äthyl]-benzol (So., B. 62, 2193), in Gegenwart eines Platin-Katalysators in Essigsäure + Salzsäure bei 50° und 2,5 Atm. Überdruck vorwiegend 4-Amino-1-[ $\beta$ -chlor-äthyl]-cyclohexan, wenig 1.4-Bis-[4-amino-cyclohexyl]-butan und andere Produkte (F.). Beim Erhitzen mit überschüssigem Kaliumacetat in Alkohol in Gegenwart von Kupferpulver im Autoklaven auf 130° entsteht 4-Nitro- $\beta$ -phenäthylacetat (F.).
- 4-Nitro-1-[β-brom-āthyl]-benzol, 4-Nitro-β-phenāthylbromid C<sub>8</sub>H<sub>8</sub>O<sub>2</sub>NBr = O<sub>2</sub>N·C<sub>6</sub>H<sub>4</sub>·CH<sub>2</sub>·CH<sub>2</sub>Br. B. Beim Eintropfen von β-Phenāthylbromid in Salpetersäure (D: 1,52) bei 70° (Sobotka, B. 62, 2192). Hellgelbe Nadeln (aus Alkohol). F: 68°. Liefert bei der Reduktion mit Wasserstoff in Gegenwart von Platinoxyd in Alkohol oder mit Zinn(II)-bromid und konz. Bromwasserstoffsäure 4-Amino-1-[β-brom-āthyl]-benzol.
- [ $\alpha$ -Brom- $\alpha$ -nitro-äthyl]-benzol, 1-Brom-1-nitro-1-phenyl-äthan  $C_8H_8O_2NBr = C_6H_5\cdot CBr(NO_3)\cdot CH_3$  (H 359). Gibt beim Behandeln mit feuchtem Silberoxyd, anfangs in

der Kälte, Acetophenon (Baker, Ingold, Soc. 1929, 446). Liefert bei allmählichem Eintragen in Salpetersäure (D: 1,49) bei 15° ein Gemisch aus 3- und 4-Nitro-1-[α-brom-α-nitro-äthyl]-benzol (nachgewiesen durch Oxydation zu 3- und 4-Nitro-benzoesäure) (B., I., Soc. 1926, 2474).

- 2-Nitro-1- $[\alpha.\beta.\beta$ -tribrom-äthyl]-benzol,  $\beta$ -Brom-2-nitro-styrol-dibromid  $C_8H_6O_2NBr_3=O_2N\cdot C_8H_4\cdot CHBr\cdot CHBr_2$ . B. Entsteht aus den beiden stereoisomeren Formen des  $\beta$ -Brom-2-nitro-styrols durch Einw. von Brom in Chloroform (Reich, Chang, Helv. 3, 240). F:  $80^\circ$ .
- 4-Nitro-1-[ $\alpha.\beta.\beta$ -tribrom-äthyl] benzol,  $\beta$ -Brom-4-nitro-styrol-dibromid  $C_8H_6O_2NBr_3=O_2N\cdot C_6H_4\cdot CHBr\cdot CHBr_2$ . B. Aus den beiden stereoisomeren Formen des  $\beta$ -Brom-4-nitro-styrols beim Behandeln mit Brom in Schwefelkohlenstoff (Reich, Chang, Helv. 3, 239). F: 83°.
- 2.3-Dinitro-1-āthyl-benzol C<sub>8</sub>H<sub>8</sub>O<sub>4</sub>N<sub>2</sub>, s. nebenstehende Formel. B. Durch Eintragen von Natriumnitrit in eine Lösung von 2.3-Dinitro-4-amino-1-āthyl-benzol in einem Gemisch aus Alkohol und rauchender Schwefelsäure (20 % SO<sub>3</sub>-Gehalt) suf dem Wasserbad (Brady, Day, Allam, Soc. 1928, 981). Nadeln (aus verd. Alkohol). F: 58,5°. Mit Wasserdampf flüchtig. Liefert beim Kochen mit Chromschwefelsäure 2.3-Dinitro-benzoesäure.
- 2.4 Dinitro 1 äthyl benzol  $C_8H_8O_4N_2$ , s. nebenstehende Formel (H 360; E I 178). Liefert bei der Reduktion mit wäßr. Ammoniumsulfid-Lösung ein Gemisch aus viel 2-Nitro-4-amino-1-äthyl-benzol und wenig 4-Nitro-2-amino-1-äthyl-benzol (CLINE, REID, Am. Soc. 49, 3152, 3154; vgl. Schultz, B. 42 [1909], 2634).
- 2.5-Dinitro-1-äthyl-benzol  $C_8H_8O_4N_2$ , s. nebenstehende Formel. B. Aus 2.5-Dinitro-4-amino-1-äthyl-benzol analog dem 2.3-Dinitro-1-äthyl-benzol (s. o.) (Brady, Day, Allam, Soc. 1928, 981). Gelbliche Krystalle (aus verd. Alkohol oder Petroläther). F: 59,5°. Liefert bei der Oxydation  $O_2N$  2.5-Dinitro-benzoesäure.
- 2.6-Dinitro-1-äthyl-benzol  $C_8H_8O_4N_2$ , s. nebenstehende Formel. B. Aus 2.6-Dinitro-4-amino-1-äthyl-benzol analog dem 2.3-Dinitro-1-äthyl-benzol (s. o.) (Brady, Day, Allam, Soc. 1928, 980). Tafeln (aus Alkohol). F: 57,5°. Mit Wasserdampf flüchtig. Liefert beim Kochen mit rauchender Salpetersäure 2.6-Dinitro-benzoesäure.
- 3.5-Dinitro-1-äthyl-benzol  $C_8H_8O_4N_2$ , s. nebenstehende Formel. B. Beim Diazotieren von 3.5-Dinitro-4-amino-1-äthyl-benzol und nachfolgenden Kochen mit Alkohol (Brady, Day, Allam, Soc. 1928, 982). Gelbe Tafeln (aus Petroläther). F: 41°. Mit Wasserdampf flüchtig. Liefert beim Kochen mit Chromschwefelsäure 3.5-Dinitro-benzoesäure.
- 2.4-Dinitro-1-[ $\beta$ -chlor-äthyl]-benzol, 2.4-Dinitro- $\beta$ -phenäthylchlorid  $C_8H_7O_4N_2Cl$ , s. nebenstehende Formel. B. In geringer Menge neben anderen Produkten beim Eintropfen von  $\beta$ -Phenäthylchlorid in Salpetersäure (D: 1,5) bei —15° (Ferber, B. 62, 187). Gelbliche Nadeln (aus Alkohol). F: 136°.

CH<sub>2</sub>·CH<sub>2</sub>Cl
NO<sub>2</sub>
NO<sub>2</sub>

C<sub>2</sub>H<sub>5</sub>

 $\dot{N}O_2$ 

C<sub>2</sub>H<sub>5</sub>

C2H5

C<sub>2</sub>H<sub>5</sub>

NO<sub>2</sub>

NO<sub>2</sub>

·NO2

[PALLUTZ]

2. Rohxylol (Gemisch der drei isomeren Dimethylbenzole), häufig als "Xylol" bezeichnet  $C_8H_{10}=C_8H_4(CH_3)_2$  (H 360; E I 178). Zur Trennung in die Bestandteile mit Hilfe der Sulfonsäuren vgl. Patterson, McMillan, Somerville, Soc. 125, 2488; Clarke, Taylor, Am. Soc. 45, 831; Kishner, Wendelstein, Ж. 57, 11; C. 1926 I, 2681; Orlow, Ukr. chemič. Ž. 2, 365; C. 1928 I, 187.

H 361, Z. 14 v. u. statt ,,A. 146, 10" lies ,,A. 148, 10".

Leidenfrostsches Phänomen an einem elektrisch geheizten Platin-Draht in Xylol: Moscicki, Broder, Roczniki Chem. 6, 349; C. 1927 I, 2810. Schallgeschwindigkeit in Xylol: Jonesco, Ann. scient. Univ. Jassy 13, 302; C. 1926 I, 3012. — Refraktionsdispersion: Moutte, Chim. et Ind. 19, Sonder-Nr., 262; C. 1929 I, 677. Fluorescenz bei Bestrahlung mit Röntgenstrahlen: Newcomer, Am. Soc. 42, 2005. Ramaneffekt: Blecker, Z. Phys. 50 [1928], 783; Dadieu, Kohlrausch, M. 52, 389; Kimura, Uchida, Japan. J. Phys. 5, 98; C. 1929 I, 2511. Dielektrische Verluste bei Radiofrequenzen: Bryan, Phys. Rev. [2] 22, 403; C. 1924 I, 2075. Einfluß von Röntgenstrahlen auf die Verzögerung des Faraday-Effektes: Allison, Nature 120, 729; C. 1928 I, 1004. — 100 g Wasser von 20° lösen 0,018 g (Horiba, Trans. Faraday Soc. 15 [1920], 184). Mischbarkeit mit Ameisensäure bei 25°: Gordon, Reid, J. phys.

Chem. 26, 782. Verteilung von organischen Säuren oder organischen Basen zwischen Wasser und Xylol: Smith, J. phys. Chem. 25, 220, 224; Gordon, Reid, J. phys. Chem. 26, 788; Schilow, Lepin, Ph. Ch. 101, 369. Lösungsvermögen für Sauerstoff: F. Fischer, Pfleiderer, SCHILOW, LEPIN, Ph. Ch. 101, 369. Losungsvermogen für Sauerstoff: F. Fischer, Pfleiderer, Z. anorg. Ch. 124, 69; für Phosgen: Atkinson, Heycock, Pope, Soc. 117, 1422. Zur kritischen Lösungstemperatur des Systems Xylol + wäßr. Essigsäure vgl. Jones, Soc. 123, 1385. Einfluß von Kochsalz auf Emulsionen aus Xylol, Wasser, Natriumoleat und Natriumhydroxyd: Tartar, Mitarb., J. phys. Chem. 33, 442. Dichte und Viscosität von Lösungen von Schwefeldioxyd in Xylol bei 25°: Lewis, Am. Soc. 47, 632. Adsorption aus mit Xylol gesättigter Luft durch Titan(IV)- und Cerium(IV)-oxyd bei Zimmertemperatur: Nikitin, Jurjew, Ж. 61, 1033; C. 1930 I, 347. Benetzungsvermögen für Glas- und Messingplatten: Vollmann, Farben-Ztg. 31, 2933; C. 1926 II, 2635.

Photochemische Bromierung in Alkohol oder Benzol: Swensson, Z. wiss. Phot. 20, 206; C. 1921 III, 160. Liefert beim Erhitzen mit Aluminiumchlorid unter Durchleiten von Chlorwasserstoff auf 100-120° Benzol, Toluol, höhersiedende Kohlenwasserstoffe und teerige Produkte (Copisarow, Soc. 119, 1809). Rohxylol gibt in Gegenwart eines aus Manganoxyd,

Produkte (Copisarow, Soc. 119, 1809). Rohxylol gibt in Gegenwart eines aus Manganoxyd, Kupferoxyd und Nickeloxyd bestehenden Katalysators bei 180—200° unter 15—30 Atm. Wasserstoffdruck Hexahydroxylol (Agfa, D. R. P. 383540; C. 1924 I, 2544; Frdl. 14, 493). Physiologisches Verhalten: H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 39. Toxizität in Beziehung zur Verwendung als technisches Lösungsmittel: W. Estler in K. B. Lehmann, F. Flury, Toxikologie und Hygiene der technischen Lösungsmittel [Berlin 1938], S. 83, 97.

Verwendung als technisches Lösungsmittel: Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 81, 228; H. Gnamm, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 75. Überführung in ölige oder harzartige Produkte durch Einw von Schwefel und Aluminiumchlorid: Bayer & Co., D. R. P. 365169; C. 1923 II, 600; Frdl. 14, 643; durch Einw von Athylenchlorid und Aluminiumchlorid: BASE D. R. P. 326729. Frdl.14, 643; durch Einw. von Athylenchlorid und Aluminiumchlorid: BASF, D.R.P. 326729; C. 1921 II, 51; Frdl. 13, 675; durch Kondensation mit Aldehyden in Gegenwart von Säuren: BAYER & Co., D. R. P. 349741; C. 1922 IV, 50; Frdl. 14, 629; Höchster Farbw., D. R. P. 365541, 403264; C. 1923 II, 922; 1925 I. 307; Frdl. 14, 626, 636; in gerbend wirkende Kondensationsprodukte durch Erhitzen mit Glykolsäure und rauchender Schwefelsäure auf 130°: Elektrochem. Werke, Bosshard, Strauss, D. R. P. 386930; C. 1924 I, 1730; Frdl. 14, 594.

Reinheitsprüfung: Ergänzungsbuch zum Deutschen Arzneibuch, 5. Ausgabe [Berlin 1930], S. 468. Nachweis von Benzin in Xylol: Pritzker, Jungkunz, Ch. Z. 47, 315; C. 1924 I, 272. Bestimmung von Xylol in Gasolin: Erskine, Ind. Eng. Chem. 18, 694; C. 1926 II, 1357.

1.2-Dimethyl-benzol, o-Xylol C<sub>8</sub>H<sub>10</sub> s. nebenstehende Formel (H 362; EI 179). V. Zum Vorkommen im Burma-Petroleum (H 360) vgl. a. Mulany, Watson, J. Soc. chem. Ind. 43, 310 T; C. 1925 I. 186. Findet sich ferner in neuseeländischen Mineralölen (EASTERFIELD, McCLELLAND, Chem. and Ind. 1923, 937; C. 1924 I, 2847). — B. Entsteht bei der Verschwelung der Steinkohle; findet sich daher im Urteer-Benzin (Frank, Arnold, Z. ang. Ch. 36, 217). Wird neben anderen Produkten beim Erhitzen der aus schwerem Steinkohlenteeröl gewonnenen Fraktion vom Siedepunkt 260-300° mit Wasserstoff unter 70 Atm. Anfangsdruck in Gegenwart von Tonerde-Eisen-OXyd auf 415—435° erhalten (IPATJEW, ORLOW, B. 60, 1970). Entsteht wahrscheinlich auch bei der Einw. von Acetylen auf Pyrit bei 300—310° (STEINKOPF, A. 428, 144). Durch Dehydrierung von 1.2-Dimethyl-cyclohexan in Gegenwart von Platinschwarz bei 300-3100 (Zelinsky, B. 56, 787). Neben anderen Produkten bei längerem Erhitzen von Naphthalin unter 100 Atm. Wasserstoffanfangsdruck auf 450—480° in Gegenwart von Nickeloxyd + Aluminiumoxyd (IPATJEW, KLJUKWIN, B. 58, 2; Ж. 56, 246). Aus diazotiertem 4-Aminoo-xylol durch Behandeln mit Zinn(II)-chlorid in alkal. Lösung (Eisenlohr, Fortsch. Ch., Phys. 18, Nr. 9, S. 29). In sehr geringer Menge beim Erhitzen von Inden mit Kalium-hydroxyd im Autoklaven auf 300—310°, neben anderen Produkten (Weissgerber, Seidler, B. 60, 2089). — Isolierung und Reindarstellung aus technischem Xylol s. S. 280 bei Rohxylol.

Physikalische Eigenschaften. E: —27,95° (TIMMERMANS, Bl. Soc. chim. Belg. 30, 64; C. 1921 III, 287). Kp<sub>763</sub>: 143,9—144,2° (RICHARDS, SPEYERS, CARVER, Am. Soc. 46, 1203); Kp<sub>760</sub>: 142° (EISENLOHR, Fortsch. Ch., Phys. 18, Nr. 9, S. 29), 142,6—142,8° (MATHEWS, Am. Soc. 48, 569), 143,6° (LECAT, Ann. Soc. scient. Bruxelles 48 I [1928], 57, 59). D<sup>6</sup>; 0,8968; D<sup>6</sup>; 0,8811; D<sup>4,4</sup>; 0,8692; D<sup>60,8</sup>; 0,8468 (R., Sp., C., Am. Soc. 46, 1203, 1204). — Viscosität bei 30°; 0,00709 g/cmsec (BRIDGMAN, Pr. am. Acad. Arts Soc. 61 [1925/26], 70). Einfluß von Drucken bis 6000 kg/cm2 auf die Viscosität bei 30° und 75°: BR., Pr. nation. Acad. USA. 11, 604; Pr. am. Acad. Arts Sci. 61, 81; C. 1926 I, 1919; II, 1923. Oberflächenspannung bei 0°: 32,51, bei 34,47°: 28,67, bei 60,8°: 25,85 dyn/cm (R., Sr., C., Am. Soc. 46, 1204); bei 20°: 29,89 dyn/cm (HARKINS, CLARK, ROBERTS, Am. Soc. 42, 705). Parachor: SUGDEN, Soc. 125, 1180. — Spezifische Wärme zwischen 30° (0,4112 cal/g) und 80°: WILLIAMS,

Daniels, Am. Soc. 46, 912. Verdampfungswärme bei 141,41°: 82,89 cal/g (Mathews, Am. Soc. 48, 572). Verbrennungswärme bei konstantem Volumen: 1089,4 kcal/Mol (Richards, Jesse, Am. Soc. 32 [1910], 295; Ri., Barry, Am. Soc. 37 [1915], 1017; vgl. Swietoslawski, Bobinska, Am. Soc. 49, 2478).

Brechungsindices zwischen 580 m $\mu$  (1,5081) und 285 m $\mu$  (1,6223) bei 15,2°: Voellmy,  $Ph.~Ch.~127,~347;~n_0^{\text{D}}$ : 1,5041 (Eisenlohr, Fortsch.~Ch.,~Phys.~18,~Nr.~9,~S.~29). Ultraviolett-Absorptionsspektrum der Lösung in Hexan: Klingstedt, C.r.~175,~1067;~Acta~Acad.~Abo.~3,~Nr.~5,~S.~26 und Tabelle 6; C.~1925 I, 2286. Ultravot-Absorptionsspektrum: W. W. Coblentz, Investigations of Infra-red Spectra [Washington 1905], S. 157, 159, 235. 236; Marton, Ph.~Ch.~117,~107;~Gapon,~Z.~Phys.~44,~601;~C.~1927 II, 1789; Barnes, Fulweiler, Am.~Soc.~49,~2035;~Ba.,~Nature~124,~300;~C.~1929 II, 2016. Fluorescenzbektrum von festem und flüssigem o-Xylol und einer 4% igen alkoholischen Lösung: Reimann, Ann.~Phys.~[4] 80, 61. Zur Fluorescenz bei Bestrahlung mit Röntgenstrahlen vgl. Newcomer. Am.~Soc.~42,~2005. Tesla-Luminescenzspektrum: McVicker, Marsh, Stewart, Soc.~125,~1744; Marsh, Phil.~Mag.~[6] 49, 976; C.~1925 II, 890; Soc.~123,~3320,~3322. Intensität und Depolarisation bei der Streuung von Licht an flüssigem o-Xylol: Krishnan, Phil.~Mag.~[6] 50, 703; C.~1926 I, 838; Banerjee, Indian~J.~Phys.~2,~57;~C.~1928 I, 1838. Elliptische Polarisation von linearpolarisiertem Licht an Oberflächen von flüssigem o-Xylol: Bouhett, C.r.~185,~201. Beugung von Röntgenstrahlen an flüssigem o-Xylol: Sogani, Indian~J.~Phys.~1,~373,~389;~C.~1927 II, 2149; Stewart, Phys.~Rev.~[2]~33,~891;~C.~1929 II, 2158. Ramaneffekt: Dadieu, Kohlrausch, M.~52,~387;~Phys.~Z.~30,~384 und Tafel VII; C.~1929 II, 970; B.~63~[1930],~260;~Daure,~C.~r.~188,~1493;~Ann.~Physique~[10]~12,~435;~Czapska,~C.~r.~189,~33;~Wood,~Phil.~Mag.~[7]~7,~862;~C.~1929 II, 1135; Ganesan, Venkateswaran, Indian~J.~Phys.~4,~226;~C.~1929 II, 2646. Dielektr.-Konst. von Gemischen mit Benzol bei 25° Williams, Krchma, Am.~Soc.~49,~1678. Dipolmoment  $u \times 10^{18}:~0.52$  (verd. Lösung in Benzol) (Wi., Kr.; Wi., Phys.~Z.~29 [1928], 178; Deeye, Z.~El.~Ch.~34,~452). Zum Dipolmoment vor. flüssigem o-Xylol vgl. Smyth, Am.~Soc.~46,~2153.

Thermische Analyse des Systems mit Bromwasserstoff: Maass, Boomer, Morrison, Am. Soc. 45, 1435. Binäre, o-Xylol enthaltende azeotrope Gemische siehe in der folgenden Tabelle. Dichte von Gemischen mit Benzol bei 25°: Williams, Krchma, Am. Soc. 49,

# o-Xylol enthaltende binäre Azeotrope.

| Komponente                                                                                                          | Кр <sub>760</sub><br>0           | o·Xylol<br>in Gew%   | Komponente                                                                                                            | Kp <sub>760</sub>               | o-Xylol<br>in Gew%   |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| Butylalkohol <sup>2</sup> ) Isobutylcarbinol <sup>1</sup> ) Hexylalkohol <sup>1</sup> ) Cyclohexanol <sup>1</sup> ) | 116,8<br>127,6<br>142,3<br>143,0 | 25<br>42<br>82<br>86 | Ameisensäure <sup>2</sup> )<br>Essigsäure <sup>2</sup> )<br>Propionsäure <sup>3</sup> )<br>Buttersäure <sup>2</sup> ) | 95,5<br>116,0<br>135,0<br>142,0 | 26<br>24<br>58<br>90 |

1) LECAT, Ann. Soc. scient. Bruxelles 48 I [1928], 57, 59. — 2) L., Ann. Soc. scient. Bruxelles 49 [1929], 21, 25. — 3) L., Ann. Soc. scient. Bruxelles 49, 111.

1678. Grenzflächenspannung zwischen o-Xylol und Wasser: Harkins, Clark, Roberts, Am. Soc. 42, 705; zwischen Quecksilber und o-Xylol bei 20°: H., Ewing, Am. Soc. 42, 2543; H., Pr. nation. Acad. USA. 5, 571; C. 1920 III, 222. Adsorption des Dampfes an Kieselsäure-Gel: Holmes, Bl. [4] 43, 285; an Tierkohle: Alexejewski, Ж. 55, 416; C. 1925 II, 642. Adsorption von Jod aus o-Xylol durch akt. Kohle: Trividic, Rev. gén. Colloides 7, 23, 72; C. 1929 I, 2863. Breitet sich auf einer Quecksilber-Oberfläche aus (Harkins, Feldman, Am. Soc. 44, 2680). Ausbreitung auf Wasser bei 20°: H., F., Am. Soc. 44, 2671. Brechungsindices von Gemischen mit Benzol bei 25°: Wr. Kr.

Am. Soc. 44, 2680). Ausbreitung auf Wasser bei 20°: H., F., Am. Soc. 44, 2671. Brechungsindices von Gemischen mit Benzol bei 25°: WI., KR.

Chemisches Verhalten. Photochemische Zersetzung durch Sonnenlicht bei Gegenwart von Uranylsalzen: ALOY. VALDIGUIÉ, Bl. [4] 37, 1138. Eine Emulsion von o-Xylol in 2n-Schwefelsäure liefert bei der elektrolytischen Oxydation an einer Bleidioxyd-Anode bei 90° o-Toluylaldehyd, o-Toluylsäure, geringe Mengen 3.4-Dimethyl-phenol, 2-Methyl-benzochinon-(1.4) und sehr wenig m-Xylochinon sowie größere Mengen eines alkalilöslichen Harzes (Fichter, Rinderspacher, Helv. 10, 40). Beim Belichten in Gegenwart von Anthrachinon an der Luft entsteht o-Toluylsäure (Eckert, D. R. P. 383030; Frdl. 14, 442). Erhitzt man o-Xylol mit Luft unter Druck auf 210°, so entstehen o-Toluylsäure, Phthalsäure und geringe Mengen Ameisensäure, Essigsäure und Oxalsäure (Schrader, Abb. Kenntnis Koble 4, 328; C. 1921 I, 537). Beim Leiten mit Luft über Zinnvanadat am besten bei 290° erhält man Phthalsäureanhydrid (Maxyed, J. Soc. chem. Ind. 47, 103 T; C. 1928 I, 3029). Zur Oxydation mit Chromschwefelsäure vgl. Simon, C. r. 177, 266. Bei der Oxydation durch Chlorpikrin am Licht entstehen allmählich o-Toluylsäure und sehr geringe Mengen Oxalsäure (Piutti,

BADOLATO, R. A. L. [5] 33 I, 478). Über die katalytische Hydrierung von o-Xylol zu den stereoisomeren 1.2-Dimethyl-cyclohexanen s. S. 21. Leitet man Chlor bei —10° in Gegenwart von Eisenfeile in o-Xylol ein, bis die Gewichtszunahme 2 Atomen Chlor entspricht, so erhält man 3.4-Dichlor-o-xylol, 4.5-Dichlor-o-xylol und etwas 3.6-Dichlor-o-xylol (Hinkel. Ayling, Bevan, Soc. 1928, 1875). Zur Bildung von o-Xylylchlorid bei der Chlorierung von o-Xylol im ultravioletten Licht vgl. Meisenheimer, Mitarb., A. 468, 216. Geschwindigkeit der Einw. von unterchloriger Säure: Klingstedt, Acta Acad. Abo. 4, Nr. 2, S. 32; C. 1928 I, 505. Über stufenweise Nitrierung mit Salpeterschwefelsäure vgl. Marqueyrol. Loriette, Bl. [4] 27, 424. Kondensiert sich mit Trichloracetonitril in Gegenwart von Aluminiumchlorid und Chlorwasserstoff zu w.o.o-Trichlor-3.4-dimethyl-acetophenon-imid (Houben, Fischer, J. pr. [2] 123, 319; B. 66 [1933], 341). Beim Behandeln mit Phthalsäureanhydrid und Aluminiumchlorid entsteht 3.4-Dimethyl-benzophenon-carbonsäure-(2') (F. Meyer, B. 15 [1882], 637; vgl. I. G. Farbenind., D. R. P. 495447; C. 1931 I, 1675; Frdl. 16, 375). Reagiert analog mit [4-Methyl-phthalsäure]-anhydrid (Morgan, Coulson, Soc. 1929, 2557).

Physiologisches Verhalten: H. STAUB in J. HOUBEN, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 39.

Mikrochemischer Nachweis neben m-Xylol und p-Xylol durch Überführung in das Natriumsalz der o-Xylol-sulfonsäure-(4): MIGITA, Bl. chem. Soc. Japan 3, 194; C. 1928 II, 1915.

ω-Chlor-o-xylol, o-Xylylchlorid, 2-Methyl-benzylchlorid  $C_8H_9Cl = CH_3 \cdot C_6H_4 \cdot CH_2Cl$  (H 364; E I 180). B. Zur Bildung beim Einleiten von Chlor in siedendes o-Xylol (H 364) im Licht einer Quecksilberlampe vgl. Meisenheimer, Mitarb., A.468, 216. — Beginnt bei ca. 170° sich zu zersetzen (Olivier, R. 41, 306). Geschwindigkeit der Hydrolyse zu 2-Methyl-benzylalkohol durch Wasser bei 30° und 83,3°: O.

3.4-Dichlor-o-xylol C<sub>8</sub>H<sub>8</sub>Cl<sub>2</sub>, s. nebenstehende Formel. B. Durch Einleiten von 4 Atomen Chlor in o-Xylol bei —10° in Gegenwart von Eisenfeile, neben 3.6-Dichlor-o-xylol und 4.5-Dichlor-o-xylol (Hinkel, Ayling, Bevan, Soc. 1928, 1876). — F: 9°. Kp: 234° (korr.). — Liefert beim Einleiten von Chlor in Chloroform bei Gegenwart von Eisenfeile 3.4.5.6-Tetrachlor-o-xylol. Bei kurzem Erhitzen mit 3 Tln. rauchender Salpetersäure und 1 Tl. Eisessig auf dem Wasserbad erhält man 5.6-Dichlor-4-nitro-o-xylol und etwas 5.6-Dichlor-3-nitro-o-xylol. Beim Erhitzen mit Salpeterschwefelsäure entsteht 5.6-Dichlor-3.4-dinitro-o-xylol.

3.5-Dichlor-o-xylol C<sub>8</sub>H<sub>8</sub>Cl<sub>2</sub>, s. nebenstehende Formel (H 364). B. Beim Einleiten von 2 Atomen Chlor in die Lösung von 1 Mol 3.5-Dichlor-1.1-dimethylcyclohexadien-(2.4) in Chloroform unter Eiskühlung und nachfolgenden Erhitzen des Reaktionsprodukts auf 180°, neben anderen Produkten (HINKEL. Soc. 117, 1302). Neben anderen Produkten beim Diazotieren von 3.5-Dichlor-4-amino-oxylol in konz. Schwefelsäure bei 0° und nachfolgenden Verkochen (H., AYLING, BEVAN, Soc. 1928, 2532). — Liefert beim Erhitzen mit 3 Tln. rauchender Salpetersäure und 1 Tl. Eisessig auf dem Wasserbad 3.5-Dichlor-4-nitro-o-xylol und etwas 4.6-Dichlor-3-nitro-o-xylol (H., Ay., B., Soc. 1928, 1878).

3.6-Dichlor-o-xylol C<sub>8</sub>H<sub>8</sub>Cl<sub>2</sub>, s. nebenstehende Formel (vgl. H 364). B. CH<sub>3</sub>
In geringer Menge beim Einleiten von 4 Atomen Chlor in o-Xylol bei —10° in Gegenwart von Eisenfeile, neben 3.4-Dichlor-o-xylol und 4.5-Dichlor-o-xylol (HINKEL, AYLING, BEVAN, Soc. 1928, 1876). — Irisierende Schuppen (aus Methanol). F: 68°. Kp: 227° (korr.). — Liefert beim Einleiten von Chlor in Chloroform bei Gegenwart von Eisenfeile 3.4.5.6-Tetrachlor-o-xylol. Beim Erhitzen mit rauchender Salpetersäure und Eisessig auf dem Wasserbad entsteht 3.6-Dichlor-4-nitro-o-xylol, beim Erhitzen mit Salpeterschwefelsäure 3.6-Dichlor-4.5-dinitro-o-xylol.

4.5-Dichlor-o-xylol C<sub>8</sub>H<sub>8</sub>Cl<sub>2</sub>, s. nebenstehende Formel (vgl. H 364). B. Durch Einleiten von 4 Atomen Chlor in o-Xylol bei —10° in Gegenwart von Eisenfeile, neben 3.4-Dichlor-o-xylol und 3.6-Dichlor-o-xylol (Hinkel, Ayling, Bevan, Soc. 1928, 1876). — Nadeln (aus Methanol). F: 76°. Kp: 240° (korr.). — Cl. Liefert beim Einleiten von Chlor in Chloroform bei Gegenwart von Eisenfeile 3.4.5.6-Tetrachlor-o-xylol. Beim Erhitzen mit 3 Tln. rauchender Salpetersäure und 1 Tl. Eisessig auf dem Wasserbad entsteht 4.5-Dichlor-3-nitro-o-xylol, beim Erhitzen mit Salpeterschwefelsäure 4.5-Dichlor-3.6-dinitro-o-xylol. Bei der Oxydation durch Erhitzen mit Salpetersäure (D: 1,15) im Rohr auf 180° erhält man 4.5-Dichlor-phthalsäure.

 $\omega$ . $\omega'$ -Dichlor-o-xylol, o-Xylylenchlorid  $C_8H_8Cl_2 = C_8H_4(CH_2Cl)_2$  (H 364). B. Neben 2-Chlormethyl-benzylamin beim Leiten von Chlorwasserstoff in eine siedende alkoholische Lösung, von 2.2'-Bis-āthoxymethyl-dibenzylamin (v. Braun, Reich, A. 445, 242).

3.4.5-Trichlor-o-xylol  $C_8H_7Cl_3$ , s. nebenstehende Formel. Ist H 5, 364 als 3.4.5- oder 3.4.6-Trichlor-1.2-dimethyl-benzol beschrieben; zur Konstitution vgl. Hinkel, Soc. 117, 1298. — B. Beim Erhitzen von 3.4.5.5.6-Pentachlor-1.1-dimethyl-cyclohexen-(2) (H.). Neben 3.4.6-Trichlor-o-xylol und anderen Cl Produkten beim Einleiten von überschüssigem Chlor in eine kalte Lösung von

$$\begin{array}{c} CH_3 \\ Cl \cdot \bigodot CH_3 \\ Cl \end{array}$$

3.5-Dichlor-1.1-dimethyl-cyclohexadien-(2.4) in Chloroform und Destillieren der nach Abtrennung von 3.4.5.5.6-Pentachlor-1.1-dimethyl-cylohexen-(2) erhaltenen sirupösen Flüssigkeit unter gewöhnlichem Druck (H.). Neben anderen Produkten durch Einw. eines Gemischs aus Phosphortrichlorid und viel Phosphorpentachlorid auf 4-Chlor-1.1-dimethyl-cyclohexandion-(3.5) in siedendem Chloroform, Extraktion des in Wasser gelösten Destillations-rückstands mit Ather, Waschen des Extrakts mit verd. Natronlauge und Erhitzen des lösungsmittelfreien Extrakts, nach Entfernung von 3.4-Dichlor-1.1-dimethyl-cyclohexen-(3)-on-(5), mit konz. Schwefelsäure auf 120° (H., Williams, Soc. 121, 2500). Durch Zusatz von konz. Natriumnitrit-Lösung zu einer Lösung von 3.5-Dichlor-4-amino-o-xylol und Kupfer(I)-chlorid in konz. Salzsäure bei 60—70° (H., Soc. 117, 1301). Durch Diazotieren von 4.5-Dichlor-3-amino-o-xylol in salzsaurer Lösung und Behandeln des Reaktionsprodukts mit Kupfer(I)-chlorid, neben 3.4.5.6-Tetrachlor-o-xylol (Hinkel, Ayling, Bevan, Soc. 1928, 1877).

— Nadeln (aus Alkohol). F: 96° (H.; H., Ay., B.). Mit Wasserdampf flüchtig (H.). Sehr leicht löslich in Petroläther, Chloroform, Benzol, Äther und heißem Alkohol (H.).

— Die Lösung in Chloroform liefert beim Einleiten von Chlor bei Gegenwart von Eisenfeile in der Wärme 3.4.5.6-Tetrachlor-o-xylol; reagiert analog mit Brom (H.). Beim Erwärmen mit rauchender Salpetersäure auf dem Wasserbad entsteht 4.5.6-Trichlor-3-nitro-o-xylol (H.).

3.4.6-Trichlor-o-xylol C<sub>8</sub>H<sub>7</sub>Cl<sub>3</sub>, s. nebenstehende Formel. Die H 5, 364 als 3.4.5- oder 3.4.6-Trichlor-1.2-dimethyl-benzol beschriebene Verbindung ist 3.4.5-Trichlor-o-xylol (Hinkel, Soc. 117, 1299). — B. Beim Einleiten von Cl. Mol Chlor in die Lösung von 1 Mol 3.5-Dichlor-1.1-dimethyl-cyclohexadien-(2.4) in Chloroform unter Eiskühlung und nachfolgendem Erhitzen des Reaktionsprodukts auf 1800 neben anderen Produkten (H. Soc. 117, 1302). — Kritstalle

CH<sub>3</sub>
Cl
Cl

produkts auf 180°, neben anderen Produkten (H., Soc. 117, 1302). — Krystalle (aus Methanol oder Alkohol). F: 47,5°. Kp: ca. 230—233°. Leicht löslich in Äther, Benzol, Chloroform, Petroläther und Athylacetat in der Kälte. — Die Lösung in Chloroform liefert beim Einleiten von Chlor bei Gegenwart von Eisenfeile 3.4.5.6-Tetrachlor-o-xylol; reagiert analog mit Brom. Beim Erhitzen mit rauchender Salpetersäure auf dem Wasserbad entsteht 4.6-Dichlor-3.5-dinitro-o-xylol.

3.4.5.6-Tetrachlor-o-xylol C<sub>8</sub>H<sub>6</sub>Cl<sub>4</sub> = C<sub>6</sub>Cl<sub>4</sub>(CH<sub>3</sub>)<sub>2</sub> (H 364; E I 180). B. Beim Erhitzen von 3.4.5.6-Pentachlor-1.1-dimethyl-cyclohexen-(2) mit rauchender Salpetersäure auf dem Wasserbad (Hinkel, Soc. 117, 1299). Neben anderen Produkten beim Einleiten von überschüssigem Chlor in eine gekühlte Lösung von 3.5-Dichlor-1.1-dimethyl-cyclohexadien-(2.4) in Chloroform und nachfolgenden Fraktionieren der nach Abtrennung von 3.4.5.5.6-Pentachlor-1.1-dimethyl-cyclohexen-(2) erhaltenen sirupösen Flüssigkeit unter Atmosphärendruck (H.). Durch Einleiten von Chlor in 3.4-Dichlor-o-xylol, 3.6-Dichlor-o-xylol, 4.5-Dichlor-o-xylol, 3.4.5-Trichlor-o-xylol oder 3.4.6-Trichlor-o-xylol (H., Soc. 117, 1300) in Chloroform bei Gegenwart von Eisenfeile (H., Ayling, Bevan, Soc. 1928, 1876). Neben anderen Produkten durch Einw. eines Gemischs aus Phosphortrichlorid und viel Phosphorpentachlorid auf 4-Chlor-1.1-dimethyl-cyclohexandion-(3.5) in siedendem Chloroform, Extraktion des in Wasser gelösten Destillationsrückstandes mit Äther, Waschen des Ätherextrakts mit verd. Natronlauge und Erhitzen des lösungsmittelfreien Extrakts, nach Entfernung von 3.4-Dichlor-1.1-dimethyl-cyclohexen-(3)-on-(5), mit konz. Schwefelsäure auf 120° (H., Williams, Soc. 121, 2501). Durch Diazotieren von 4.5-Dichlor-3-amino-o-xylol in konz. Salzsäure und nachfolgendes Behandeln mit Kupfer(1)-chlorid, neben 3.4.5-Trichlor-o-xylol (H., Ay., B., Soc. 1928, 1877). — Krystalle (aus Tetrachlorkohlenstoff + Chloroform). F: 227° (H., Ay., B.). Sehr leicht löslich in Äther, leicht in Chloroform, heißem Alkohol und Äthylacetat (H.).

3.4.5.6 - Tetrachlor - 1.2 - bis - chlormethyl - benzol, 3.4.5.6. $\omega$ . $\omega$ '-Hexachlor-o-xylol oder 3.5-Dichlor-1.2-bisdichlormethyl - benzol, 3.5. $\omega$ . $\omega$ '. $\omega$ '-Hexachlor-o-xylol Cl  $C_8H_4Cl_6$ , s. nebenstehende Formel I oder II. B. Beim Erritzen von 1.2-Dimethyl-benzol-disulfonsäure-(3?.5)-dichlorid mit Thionylchlorid im Rohr auf 250° (POLLAK, RUDICH, M. 43, 218). — Nadeln (aus Eisessig) oder Krystalle (aus Alkohol). F: 78°. Leicht löslich in Ather, Benzol und Xylol.

$$\begin{array}{cccc} CH_2CI & CHCl_2 \\ CI & CH_2CI & CHCl_2 \\ CI & CI & CI & CI \\ \hline & CI & CI & II. \end{array}$$

3.4.5-Trichlor-1.2-bis-dichlormethyl-benzol, 3.4.5. $\omega$ . $\omega$ . $\omega$ . $\omega$ . $\omega$ . $\omega$ . $\omega$ -Heptachlor-o-xylol C<sub>8</sub>H<sub>3</sub>Cl<sub>7</sub>, s. nebenstehende Formel. B. Beim Chlorieren von 3.4.5-Trichlor-o-xylol im Licht bei 120° bis zur Aufnahme von 4 Atomen Chlor (Cassella & Co., D. R. P. 360414; C. 1923 II, 406; Frdl. 14, 378). — Kp<sub>780</sub>: 322—324° (C. & Co., D. R. P. 360414). — Gibt beim Erwärmen mit

konz. Schwefelsäure 3.4.5-Trichlor-phthalaldehyd (C. & Co., D. R. P. 360414). Bei der Kondensation mit o-Kresotinsäure in Gegenwart von konz. Schwefelsäure und nachfolgenden Oxydation mit Natriumnitrit entsteht ein Farbstoff, der sich in Natronlauge mit violettblauer Farbe löst und Wolle rotbraun färbt; die Färbung wird beim Nachchromieren blau (C. & Co., D. R. P. 344900; C. 1922 II, 327; Frdl. 13, 342).

4-Brom-o-xylol  $C_8H_9Br$ , s. nebenstehende Formel (H 365). B. Aus diazodiertem 4-Amino-o-xylol nach Sandmeyer (Brand, Ludwig, Berlin, J. pr. [2] 110, 34 Anm. 1). — Kp: 214,5° (Br., L., Be.).  $D_i^{18}$ : 1,3708 (v. Auwers, A. 422, 164).  $n_\alpha^{18,4}$ : 1,5524;  $n_\beta^{18,4}$ : 1,5571;  $n_\beta^{18,4}$ : 1,5706;  $n_\beta^{18,4}$ : 1,5819 (v. Au.).

H 365, Z. 26 v. o. statt "Natrium" lies "Natriumamalgam".

H 365, Z. 27 v. o. vor ,,(J.)" schalte ein ,,und Bis-[3.4-dimethyl-phenyl]-quecksilber (H 16, 948)".

ω-Brom-o-xylol, o-Xylylbromid, 2-Methyl-benzylbromid  $C_8H_9Br = CH_3 \cdot C_6H_4 \cdot CH_2Br$  (H 365; E I 180). B. Aus 2-Methyl-benzylalkohol beim Erwärmen mit rauchender Bromwasserstoffsäure auf 100° (v. Braun, Cahn, A. 436, 271) oder beim Sättigen einer Benzol-Lösung mit Bromwasserstoff (Shoesmith, Slater, Soc. 125, 2281). — F: 20°; Kp<sub>11</sub>: 102° (Sh., Sl.). — Geschwindigkeit der Hydrolyse mit verd. Alkohol bei 60°: Sh., Sl. Gibt bei Einw. von Jodwasserstoff in Eisessig bei 25° ω-Jod-o-xylol; Geschwindigkeit dieser Reaktion: Sh., Sl. Bei Einw. von etwas über 1 Mol Brom bei 130—135° und folgender Destillation entsteht o-Xylylenbromid (v. B., C.). — Über die Verwendung eines Xylylbromid-Gemischs als Kampfstoff (T-Stoff) vgl. die im Artikel Phosgen (E II 3, 12) zitierte Buchliteratur, ferner E. Piantanida, Chimica degli esplosivi e dei Gas di Guerra, 2. Aufl. [Livorno 1940], S. 358.

- 4.5.6-Trichlor-3-brom-o-xylol C<sub>8</sub>H<sub>6</sub>Cl<sub>3</sub>Br, Formel I. B. Beim Erwärmen einer Lösung von 3.4.5-Trichlor-o-xylol mit Brom in Chloroform bei Gegenwart von Eisenfeile (Hinkel, Soc. 117, 1300). Nadeln (aus Äthylacetat). F: 226°. Leicht löslich in Äther, Benzol, schwer in Chloroform und Alkohol.
- 3.4-Dibrom-o-xylol  $C_8H_8Br_2$ , Formel II (H 366). B. Beim Erhitzen des Natriumsalzes der 3.4-Dimethyl-benzoesäure-sulfonsäure-(2) mit Brom-Kaliumbromid-Lösung auf dem Wasserbad (Coffey, R. 42, 433).
- 4.5-Dibrom-o-xylol C<sub>8</sub>H<sub>8</sub>Br<sub>2</sub>, Formel III (H 366). B. Beim Erhitzen des Natriumsalzes der 3.4-Dimethyl-benzoesäure-sulfonsäure-(6) mit Brom-Kaliumbromid-Lösung auf dem Wasserbad (Coffey, R. 42, 432). Reagiert beim Erhitzen mit Kupfer(I)-cyanid und Pyridin (de Diesbach, von der Weid, Helv. 10, 887) analog 1.2-Dibrom-benzol, s. S. 162.

ω.ω'-Dibrom-o-xylol, o-Xylylenbromid  $C_8H_8Br_2 = C_6H_4(CH_2Br)_2$  (H 366; E I 180). B. Aus o-Xylylbromid beim Behandeln mit etwas über 1 Mol Brom bei 130—135° und folgender Destillation (v. Braun, Cahn, A. 436, 271). Aus o-Xylylenglykol-monophenyl- äther durch Behandeln mit konz. Bromwasserstoffsäure bei Zimmertemperatur (v. Br., Zobel, B. 56, 2146). — Krystalle (aus Chloroform + Alkohol). F: 95° (v. Br., C.). — Die Lösung in Alkohol liefert beim Kochen mit einer wäßr. Alkalisulfid-Lösung o-Xylylensulfid (Leser, B. 17 [1884], 1824; Hjelt, B. 22 [1889], 2904; Autenrieth, Brüning, B. 36 [1903], 188; v. Br., B. 58, 2166) und geringe Mengen Di-o-xylylen-disulfid (Au., Brü.). Eine Lösung in Chloroform liefert bei der Einw. einer heißen, konzentrierten, alkoholischen Piperazin-Lösung die Verbindung  $C_8H_4 \stackrel{CH_2}{\leftarrow} \stackrel{CH_2$ 

- 4.6-Dichlor-3.5-dibrom-o-xylol C<sub>8</sub>H<sub>6</sub>Cl<sub>2</sub>Br<sub>2</sub>, Formel IV (H 366). B. Beim Erwärmen einer Lösung von 3.4.6-Trichlor-o-xylol in Chloroform mit überschüssigem Brom in Gegenwart von Eisenfeile (Hinkel, Soc. 117, 1302). Nadeln (aus Äthylacetat). F: 233°.
- 3.4.5.6-Tetrabrom-o-xylol  $C_8H_8Br_4=C_6Br_4(CH_3)_8$  (H 367; E I 180). Die E I 5, 187 als 2.3.5.6-Tetrabrom-p-xylol beschriebene Verbindung ist vielleicht hauptsächlich 3.4.5.6-Tetrabrom-o-xylol (Crossley, Renouf, Soc. 119, 274). B. Durch Bromieren von 1.2-Dimethyl-4-isopropyl-benzol in Gegenwart von Aluminium unter Kühlung (Kruber, B. 57, 1014).

Syst. Nr. 467

**3-Jod-o-xylol**  $C_8H_9I$ , Formel V auf S. 285 (H 367; EI 180).  $Kp_{18}$ : 110—111° (v. Auwers, A. 422, 161).  $D_4^{10.78}$ : 1,6395.  $n_1^{10.78}$ : 1,6013;  $n_2^{10.78}$ : 1,6074;  $n_3^{10.78}$ : 1,6237.

4-Jod-o-xylol C<sub>8</sub>H<sub>2</sub>I, Formel VI auf S. 285 (H 367; E I 180). Kp<sub>11</sub>: 111<sup>o</sup> (v. Auwers, A. 422, 161). D<sub>4</sub><sup>18.58</sup>: 1,6334. n<sub>2</sub><sup>18.58</sup>: 1,5988; n<sub>2</sub><sup>18.58</sup>: 1,6049; n<sub>3</sub><sup>18.58</sup>: 1,6216.

ω-Jod-o-xylol, o-Xylyljodid, 2-Methyl-benzyljodid  $C_8H_9I = CH_3 \cdot C_9H_4 \cdot CH_9I$  (Ε I 181). B. Bei der Einw. von Jodwasserstoff auf ω-Brom-o-xylol in Eisessig bei 25° (Shoesmith, Slater, Soc. 125, 2281). — Krystalle (aus Petroläther). F: 33—34°.

3-Nitro-o-xylol C<sub>8</sub>H<sub>9</sub>O<sub>2</sub>N, s. nebenstehende Formel (H 367; E I 181). B. CH<sub>3</sub> Neben anderen Produkten in sehr geringer Menge bei längerer Einw. von 10 % iger alkoholischer Kalilauge auf 3-Hydroxylamino-o-xylol bei 18° (Bamberger, B. 59, 429). — Liefert bei der Reduktion mit Zinkstaub in siedender alkoholischer Kalilauge 2.3.2′.3′-Tetramethyl-azoxybenzol (B., B. 59, 423).

4-Nitro-o-xylol C<sub>8</sub>H<sub>9</sub>O<sub>2</sub>N, s. nebenstehende Formel (H 368; E I 181). B. Neben anderen Produkten in sehr geringer Menge bei längerer Einw. von 10 % iger alkoholischer Kalilauge auf 4-Hydroxylamino-o-xylol bei 18° (BAMBERGER, B. 59, 430). — F: 29—30°. — Liefert bei der Reduktion mit Zinkstaub in siedender alkoholischer Kalilauge 3.4.3′.4′-Tetramethyl-azoxybenzol sowie sehr geringe Mengen 4-Amino-o-xylol (B., B. 59, 424).

ω-Nitro-o-xylol, o-Tolyl-nitromethan oder aci-ω-Nitro-o-xylol, o-Tolyl-isonitromethan  $C_8H_9O_2N=CH_3\cdot C_6H_4\cdot CH_2\cdot NO_2$  oder  $CH_3\cdot C_6H_4\cdot CH:NO\cdot OH$  (H 368). B. Beim Behandeln eines Gemischs aus o-Tolyl-acetonitril und Athylnitrat mit alkoholischätherischer Kaliumäthylat-Lösung, Kochen des entstandenen Kaliumsalzes  $CH_3\cdot C_6H_4\cdot C(:NO\cdot OK)\cdot CN$  mit 5 %iger Natronlauge und Zersetzen des so erhaltenen Natriumsalzes durch Einleiten von Kohlendioxyd (Meisenheimer, Mitarb., A. 468, 217). — Liefert beim Aufbewahren mit Benzaldehyd bei Gegenwart von Methylamin in etwas Alkohol α-Nitro-2-methyl-stilben und eine Verbindung  $C_{21}H_{17}O_2N$  [Blättchen (aus Alkohol); F: 195° (Zers.)].

6-Chlor-3-nitro-o-xylol C<sub>8</sub>H<sub>8</sub>O<sub>2</sub>NCl, Formel I.

B. Beim Diazotieren von 6-Amino-3-nitro-o-xylol und nachfolgenden Behandeln mit Kupfer(I)-chlorid in konz.
Salzsäure (Hinkel, Collins, Ayling, Soc. 123, 2972).

Gelbliche Nadeln (aus Alkohol). F: 62°.

6-Chlor-4-nitro-o-xylol C<sub>8</sub>H<sub>8</sub>O<sub>2</sub>NCl, Formel II. B. Analog der vorangehenden Verbindung (Hinkel, Soc. 125, 1852). — Gelbliche Nadeln (aus Alkohol). F: 101°.

4-Nitro-1-methyl-2-chlormethyl-benzol,  $\omega'$ -Chlor-4-nitro-o-xylol, 5-Nitro-2-methyl-benzylchlorid  $C_8H_8O_2$ NCl, s. nebenstehende Formel. B. Durch Einw. von Aluminiumchlorid auf ein Gemisch aus 4-Nitro-toluol und Chlordimethyläther (Stephen, Short, Gladding, Soc. 117, 526). Bei Einw. von  $\alpha.\alpha'$ -Dichlor-dimethyläther auf 4-Nitro-toluol in rauchender Schwefelsäure No2 (20% SO<sub>3</sub>-Gehalt) (St., Sh., G.). — Nadeln (aus Methanol). F: 50°. Leicht löslich in Alkohol, Benzol, Äther, schwer in Aceton und Petroläther. — Der Dampf ätzt die Haut und greift die Schleimhäute an.

4.5-Dichlor-3-nitro-o-xylol C<sub>8</sub>H<sub>7</sub>O<sub>2</sub>NCl<sub>2</sub>, s. nebenstehende Formel. B. Durch Erhitzen von 4.5-Dichlor-o-xylol mit 3 Tln. rauchender Salpetersäure und 1 Tl. Eisessig auf dem Wasserbad (Hinkel, Ayling, Bevan, Soc. 1928, 1876). — Nadeln (aus Alkohol). F: 117°.

4.6-Dichlor-3-nitro-o-xylol C<sub>8</sub>H<sub>7</sub>O<sub>2</sub>NCl<sub>2</sub>, s. nebenstehende Formel. B. Entsteht in geringer Menge neben 3.5-Dichlor-4-nitro-o-xylol durch Erhitzen con 3.5-Dichlor-o-xylol mit 3 Tln. rauchender Salpetersäure und 1 Tl. Eisessig auf dem Wasserbad (Hinkel, Ayling, Bevan, Soc. 1928, 1878). — Liefert bei der Reduktion mit Eisenfeile in Essigsäure 4.6-Dichlor-3-amino-o-xylol.

5.6-Dichlor-3-nitro-o-xylol C<sub>8</sub>H<sub>7</sub>O<sub>3</sub>NCl<sub>2</sub>, s. nebenstehende Formel. B. Entsteht in geringer Menge neben 5.6-Dichlor-4-nitro-o-xylol durch Erhitzen von 3.4-Dichlor-o-xylol mit 3 Tln. rauchender Salpetersäure und 1 Tl. Eisessig auf dem Wasserbad (Hinkel, Ayling, Bevan, Soc. 1928, 1877).

3.5-Dichlor-4-nitro-o-xylol C<sub>8</sub>H<sub>7</sub>O<sub>2</sub>NCl<sub>2</sub>, s. nebenstehende Formel.

B. Durch Erhitzen von 3.5-Dichlor-o-xylol mit 3 Tln. rauchender Salpetersäure und 1 Tl. Eisessig auf dem Wasserbad, neben wenig 4.6-Dichlor-3-nitro-o-xylol; wurde nicht frei von Isomeren erhalten (HINKEL, AYLING, BEVAN, Soc. 1928, 1878). — Krystalle (aus Alkohol). F: 92°.

CI. CH<sub>3</sub>
CI

СНз 3.6 - Dichlor - 4 - nitro - o - xylol C<sub>8</sub>H<sub>7</sub>O<sub>2</sub>NCl<sub>2</sub>, s. nebenstehende Formel. B. Durch Erhitzen von 3.6-Dichlor-o-xylol mit rauchender Salpetersäure und Cl CHa -Cl Eisessig auf dem Wasserbad (HINKEL, AYLING, BEVAN, Soc. 1928, 1878). ---Nadeln (aus Methanol). F: 95°. NO<sub>2</sub> 5.6-Dichlor-4-nitro-o-xylol C<sub>2</sub>H<sub>7</sub>O<sub>2</sub>NCl<sub>2</sub>, s. nebenstehende Formel.

B. Durch Erhitzen von 3.4-Dichlor-o-xylol mit 3 Tln. rauchender Salpeter-CH3 CH<sub>3</sub> säure und 1 Tl. Eisessig auf dem Wasserbad, neben etwas 5.6-Dichlor-3-nitroo-xylol (Hinkel, Ayling, Bevan, Soc. 1928, 1877). — Nadeln (aus Petrol-Cl. äther). F: 78°. NO<sub>2</sub> **4.5.6-Trichlor-3-nitro-o-xylol**  $C_8H_6O_2NCl_3$ , s. nebenstehende Formel. B. Beim Erwärmen von 3.4.5-Trichlor-o-xylol mit rauchender Salpetersäure  $_{\rm Cl}$ CH<sub>3</sub> · CH<sub>3</sub> auf dem Wasserbad (Hinkel, Soc. 117, 1301). — Gelbliche Krystalle (aus Alkohol). F: 169° (H., Ayling, Walters, Soc. 1934, 287). Leicht löslich in Chloroform, Petroläther, Benzol, Äther und Aceton, ziemlich schwer in Alkohol ·NO2 Ċī und Eisessig in der Wärme (H.). CHa 3.4-Dinitro-o-xylol  $C_8H_8O_4N_2$ , s. nebenstehende Formel (H 369; E I 181). Liefert beim Erhitzen mit Ammoniak (D: 0,880) und Methanol auf 160° 4-Nitro-CH<sub>3</sub> · NO2 3-amino-o-xylol und in geringer Menge ein öliges, nur langsam erstarrendes Produkt  $\dot{N}O_2$ (Burton, Kenner, Soc. 119, 1051). CH<sub>3</sub> 5.6-Dichlor-3.4-dinitro-o-xylol  $C_8H_6O_4N_2Cl_2$ , s. nebenstehende Formel. Cl B. Durch Erhitzen von 3.4-Dichlor-o-xylol mit Salpeterschwefelsäure (Hinkel, Cl · CH3 ·NO2 AYLING, BEVAN, Soc. 1928, 1877). — Nadeln (aus Essigester). F: 172°.  $\dot{N}O_2$ CH<sub>3</sub> **4.6-Dichlor-3.5-dinitro-o-xylol**  $C_8H_6O_4N_2Cl_2$ , s. nebenstehende Formel. ·CHa (H 369). B. Beim Erhitzen von 3.4.6-Trichlor-o-xylol mit rauchender Salpetersäure auf dem Wasserbad (HINKEL, Soc. 117, 1303). — Tafeln O2N  $\cdot NO_2$ (aus Alkohol). F: 174°. Ċl CH<sub>3</sub> 4.5-Dichlor-3.6-dinitro-o-xylol  $C_8H_6O_4N_2Cl_2$ , s. nebenstehende Formel. Durch Erhitzen von 4.5-Dichlor-o-xylol mit Salpeterschwefelsäure  $O_2N$ · CH<sub>3</sub> (HINKEL, AYLING, BEVAN, Soc. 1928, 1876). — Prismen (aus Alkohol). ·NO2 F: 210°. CI CH<sub>3</sub> **3.6-Dichlor-4.5-dinitro-o-xylol**  $C_8H_6O_4N_2Cl_2$ , s. nebenstehende Formel. B. Durch Erhitzen von 3.6-Dichlor-o-xylol mit Salpeterschwefelsäure (Hinkel, Ayling, Bevan, Soc. 1928, 1878). — Prismen (aus Alkohol). CH<sub>3</sub> CI F: 220°. NO2 3.4.5 - Trinitro - o - xylol  $C_8H_7O_8N_3$ , s. nebenstehende Formel (H 370; E I 181). B. Zur Bildung aus o - Xylol (H 370) vgl. Marqueyrol, Loriette, CH<sub>3</sub> Bl. [4] 27, 424. Entsteht ferner neben 3.4.6-Trinitro-o-xylol und anderen CH3 Verbindungen aus 1.1-Dimethyl-cyclohexan bei 29-stdg. Erhitzen mit einem ·NO2 Gemisch von 1 Vol. rauchender Salpetersäure und 2 Vol. konz. Schwefelsäure NO<sub>2</sub> auf dem Wasserbad (CROSSLEY, RENOUF, Soc. 119, 274; vgl. a. C., R., Soc. 87 [1905], 1498. — Explosionsdruck unter verschiedenen Bedingungen: M., L. 3.4.6 - Trinitro - o - xylol C<sub>8</sub>H<sub>7</sub>O<sub>8</sub>N<sub>3</sub>, s. nebenstehende Formel (H 370; E I 181). B. Zur Bildung aus o - Xylol (H 370) vgl. Marqueyrol, Loriette, CH<sub>3</sub> · CH<sub>3</sub>  $O_2N$ Bl. [4] 27, 424. Entsteht ferner neben 3.4.5-Trinitro-o-xylol und anderen Verbindungen bei 29-stdg. Erhitzen von 1.1-Dimethyl-cyclohexan mit einem ·NO2 Gemisch von 1 Vol. rauchender Salpetersäure und 2 Vol. konz. Schwefel-NO2 säure auf dem Wasserbad (Crossley, Renouf, Soc. 119, 274; vgl. a. C., R., Soc. 87 [1905], 1498). — Liefert bei der Oxydation mit Chromschwefelsäure bei 40—50° 3.4.6(oder 3.5.6)-Trinitro-2-methyl-benzoesäure (GIUA, G. 52 I, 185).

4. 1.3-Dimethyl-benzol, m-Xylol C<sub>8</sub>H<sub>10</sub>, s. nebenstehende Formel (H 370; EI 182).

Vorkommen und Bildung.

In geringer Menge in pennsylvanischem Naturgas-Gasolin (Erskine, Ind. Eng. Chem. 18, 722; C. 1926 II, 1356). In neuseeländischen Erdölen (Easterfield, McClelland, Chem. and Ind. 1923, 937; C. 1924 I, 2847). Im persischen Erdöl (Birch, Norris,

Soc. 1926, 2549). Zum Vorkommen im Burma-Erdöl vgl. Mulany, Watson, J. Soc. chem. Ind. 43, 310 T; C. 1925 I, 186. Entsteht bei der Verschwelung der Steinkohle; findet sich daher im Urteer-Benzin (Frank, Arnold, Z. ang. Ch. 36, 217) und im Steinkohlep-Urteer (Schütz, B. 56, 166; Sch., Buschmann, Wissebach, B. 56, 870, 1094). Auch bei der Verschwelung der Braunkohle entstehen geringe Mengen m-Xylol; findet sich daher im Braunkohlenteer-Benzin (Pfaff, Kreutzer, Z. ang. Ch. 36, 437). — m-Xylol entsteht bei der Dehydrierung von 1.3-Dimethyl-cyclohexan über Platinschwarz bei 310° (Zelinsky, B. 56, 787) öder über Palladiumschwarz bei ca. 300° (Stratford, Ann. Off. Combust. liq. 4, 335, 356; C. 1929 II, 1287). In geringer Menge bei längerem Erhitzen von [2.4-Dimethylphenyl]-benzyläther mit Natrium im Rohr auf 100° (Schorigin, B. 58, 2034). Durch raschen Zusatz einer siedenden, absolut-alkoholischen Lösung von m-Xylylencyanid oder von 3-Methylbenzylcyanid zu Natrium, neben anderen Produkten (Titley, Soc. 1926, 515). Neben anderen Produkten beim Erhitzen von Ölsäure, Linolsäure, Linolensäure, Ricinusöl, Leinöl, Rüböl, Erdnußöl oder Haifischöl mit Aluminiumoxyd-Kupfer-Katalysator auf ca. 600° und nachfolgenden Hydrieren der flüssigen Spaltprodukte in Gegenwart von Nickel bei ca. 180° (Mailhe, C. r. 173, 359; 174, 874; 176, 38; Bl. [4] 31, 251, 680; A. ch. [9] 17, 308, 317; Caoutch. Guttap. 19, 11474; C. 1923 III, 38). Bei der Destillation von Kautschuk bei ca. 700°, besonders in Gegenwart von Magnesium, neben anderen Produkten (Midgley, Henne, Am. Soc. 51, 1220). — Isolierung und Reindarstellung von m-Xylol s. S. 280 bei Rohxylol.

## Physikalische Eigenschaften.

Mechanische und thermische Eigenschaften. E: —49,3° (TIMMERMANS, Bl. Soc. chim. Belg. 30, 65; C. 1921 III, 287; CHAVANNE, BECKER, Bl. Soc. chim. Belg. 31 [1922], 96), —47,4° (TI., HENNAUT-ROLAND, J. Chim. phys. 27 [1930], 402). Kp<sub>761,9</sub>: 138,8—139,2° (RICHARDS, SPEYERS, CARVER, Am. Soc. 46, 1203); Kp<sub>760</sub>: 139,0° (TI., Bl. Soc. chim. Belg. 30, 65; LECAT, R. 45, 625), 139,30° (TI., H.-R.; GRIMM, PATRICK, Am. Soc. 45, 2799), 139,3° bis 139,4° (MATHEWS, Am. Soc. 48, 569); Kp<sub>740</sub>: 138,6° (Kishner, Wendelstein, ౫. 57 [1925], 8). Abhängigkeit des Siedepunkts vom Druck: TI., H.-R. Maximaler Siedeverzug bei Atmosphärendruck: Kenrick, Gilbert, Wismer, J. phys. Chem. 28, 1302. D°: 0,8796; D−8°: 0,9535; D−186°: 1,005 (Isnardi, Z. Phys. 9, 158); D°: 0,88113; D¹\*: 0,86835; D³\*: 0,85551 (TI., H.-R.); D²\*: 0,8823; D³\*: 0,8656; D²\*\*\* 0,8534; D²\*\*\*\*\* 0,8304 (RI., Sp., C., Am. Soc. 46, 1203, 1204).

Viscosität von m-Xylol bei 8,90°: 0,00734, bei 19,91°: 0,00643 g/cmsec (Miller, Pr. roy. Soc. [A] 106 [1924], 740), bei 15°: 0,00650 g/cmsec (Timmermans, Hennaut-Roland, J. Chim. phys. 27 [1930], 403); bei 30°: 0,0054 g/cmsec (Ti., H.-R.), 0,00552 g/cmsec (Bridgman, Pr. am. Acad. Arts Sci. 61 [1925/26], 70). Einfluß von Drucken bis 8000 kg/cm² auf die Viscosität bei 30° und 75°: Br., Pr. nation. Acad. USA. 11, 604; Pr. am. Acad. Arts Sci. 61, 81; C. 1926 I, 1919; II, 1923. — Oberflächenspannung bei 0°: 31,23, bei 34,47°: 27,40, bei 60,80°: 24,55 dyn/cm (Richards, Speyers, Carver, Am. Soc. 46, 1204), bei 15°: 30,11, bei 20°: 29,55, bei 30°: 28,44 dyn/cm (Ti., H.-R.). Parachor: Sugden, Soc. 125, 1180. — Spezifische Wärme zwischen 30° (0,4010 cal/g) und 80°: Williams, Daniels, Am. Soc. 46, 910, 912. Verdampfungswärme bei 138,30°: 81,85 cal/g (Mathews, Am. Soc. 48, 572). Verbrennungswärme bei konstantem Volumen: 1089,4 kcal/Mol (Richards, Jesse, Am. Soc. 32, 295; vgl. Swietoslawski, Bobinska, Am. Soc. 49, 2478).

Optische Eigenschaften. n<sub>α</sub><sup>12</sup>: 1,49527; n<sub>He</sub><sup>13</sup>: 1,49989; n<sub>β</sub><sup>13</sup>: 1,51108 (Timmebmans, Hennaut-Roland, J. Chim. phys. 27 [1930], 403); n<sub>β</sub><sup>14</sup>: 1,5110; n<sub>β</sub><sup>14</sup>: 1,5205 (Voellmy, Ph. Ch. 127, 347); n<sub>β</sub><sup>15</sup>: 1,50477; n<sub>β</sub><sup>16</sup>: 1,4978 (v. Auwers, Kolligs, B. 55, 26), 1,4979 (Mathews, Am. Soc. 48, 569); n<sub>β</sub><sup>15</sup>: 1,4957 (Williams, Daniels, Am. Soc. 46, 906). Brechungs-indices für Wellenlängen zwischen 645 mμ (1,4959) und 488 mμ (1,5109) bei 20°: Becker, Anh. Phys. [4] 76, 850; zwischen 580 mμ (1,4990) und 285 mμ (1,6117): V.; für verschiedene Heliumlinien bei 15°: Ti., H.-R. — Ultraviolett-Absorptionsspektrum der Lösung in Hexan: Klingstedt, C. r. 175, 1067; Acta Acad. Abo. 3, Nr. 5, S. 19 und Tabelle 7; C. 1925 I, 2286. Ultrarot-Absorption: W. W. Coblentz, Investigations of infra-red spectra [Washington 1905], S. 157, 235; Márton, Ph. Ch. 117, 107; Barnes, Fulweiler, Am. Soc. 49, 2035; Ba., Nature 124, 300; C. 1929 II, 2016; Ellis, Phys. Rev. [2] 32, 910; C. 1929 I, 1419; zum Absorptionsspektrum im Ultrarot vgl. a. Gapon, Z. Phys. 44, 601; C. 1927 II, 1789. Luminescenz bei Bestrahlung mit Röntgenstrahlen: Newcomer, Am. Soc. 42, 2005. Kathodenstrahlen-Luminescenz: Marsh, Soc. 1927, 127. Tesla-Luminescenzspektrum: MoVicker, Marsh, Stewart, Soc. 125, 1745; Marsh, Phil. Mag. [6] 49, 976; C. 1925 II, 890. Intensität und Depolarisation des Streulichts bei der Streuung von Licht an dampfförmigem m-Xylol: Ganesan, Phil. Mag. [6] 49, 1926; I, 1838; an flüssigem m-Xylol: Ganes, Z. Phys. 30, 233; C. 1925 I, 1565; II, 1509; Krishnan, Phil. Mag. [6] 50, 703; C. 1928 I, 388; Banerjee, Indian J. Phys. 2, 57; C. 1928 I, 1838; an Oberflächen von flüssigem m-Xylol: Bouhet, C. r. 185, 201; Raman,

RAMDAS, Phil. Mag. [7] 8, 222; C. 1927 I, 2799; BHATNAGAR, SHRIVASTAVA, MITRA, J. indian chem. Soc. 5, 338; C. 1928 II, 1745. Beugung von Röntgenstrahlen an flüssigem m-Xylol: SOGANI, Indian J. Phys. 1, 373, 389; C. 1927 II, 2149; STEWART, Phys. Rev. [2] 33, 891; C. 1929 II, 1258. Ramaneffekt: DADIEU, KOHLRAUSCH, M. 52, 388; Phys. Z. 30, 384, Tafel VII; C. 1929 II, 970; B. 63 [1930], 260; DAURE, C. r. 188, 1493; Ann. Physique [10] 12, 435; CZAPSKA, C. r. 189, 33; WOOD, Phil. Mag. [7] 7, 862; C. 1929 II, 1135; GANESAN, VENKATESWARAN, Indian J. Phys. 4, 226; C. 1929 II, 2646.

VENEATESWARAN, Indian J. Phys. 4, 226; C. 1929 II, 2646.

Elektrische und magnetische Eigenschaften. Dielektr.-Konst. zwischen —1860 (2,400) und +1060 (2,254): ISNARDI, Z. Phys. 9, 176; bei —20°: 2,47; bei 0°: 2,420 (BERGHOLM, Ann. Phys. [4] 65, 134); beim Siedepunkt: 2,15 (GRIMM, PATRICK, Am. Soc. 45, 2799). Zum Dipolmoment von flüssigem m-Xylol vgl. SMYTH, Am. Soc. 46, 2153. Elektrische Doppelbrechung zwischen —20° und +100°: BERG., Ann. Phys. [4] 65, 134; bei 20°: BECKER, Ann. Phys. [4] 76, 850, 853; C. 1925 II, 892; bei 19,4°: SZIVESSY, DIERKESMANN, Ann. Phys. [5] 3, 533. Magnetische Susceptibilität: TRIFONOW, Izv. Inst. fiz.-chim. Anal. 3, 434; C. 1927 I, 2635. Magnetische Doppelbrechung: SZIVESSY, Z. Phys. 18, 102. C. 1924 I, 2567; RAMAN KRISHNAN, Pr. 1992 Soc. [A] 113, 518. C. 1927 I, 1427

18, 102; C. 1924 I, 2567; RAMAN, KRISHNAN, Pr. roy. Soc. [A] 113, 518; C. 1927 I, 1127. Physikalische Eigenschaften von m. Xylol-Gemischen. m. Xylol ist leicht löslich in flüssigem Schwefeldioxyd, schwer in flüssigem Ammoniak (de Carli, G. 57, 351). Lösungsvermögen für rhombischen Schwefel: HILDEBRAND, JENES, Am. Soc. 43, 2173; für Zinn(IV)-jodid bei 10°, 25° und 40°: Dorfman, HILDEBRAND, Am. Soc. 49, 734; für 2.4.6-Trinitrom-xylol bei 15°, 90° und 139°: Desvergnes, Ann. Chim. anal. appl. 25 [1920], 283. Verteilung von Trimethylamin zwischen Wasser und m-Xylol bei 25°: Herz, Stanner, Ph. Ch. 128, 400. Thermische Analyse des binären Systems mit Bromwasserstoff: Maass, Boomer, Morrison, Am. Soc. 45, 1435; mit Benzol (Eutektikum bei —60,2° und 27,42 Mol.-% Benzol): Nakatsuchi, Sci. Rep. Töhoku Univ. [I] 15, 54; C. 1926 II, 546; mit Toluol (Eutektikum bei —105,5° und 79,93 Mol.-% Toluol): Na.; mit p-Xylol (Eutektikum bei —57° und 85,95 Mol.-% m-Xylol): Na; vgl. a. Kishner, Wendelstein, 3c. 57, 5; C. 1926 I, 2681. Binäre, m-Xylol enthaltende azeotrope Gemische s. in der untenstehenden Tabelle. Trennung des ternären Gemischs mit Benzol und Toluol durch Rektifikation:

| m-Xvlo | l enth | altende | binäre | Azeotrope. |
|--------|--------|---------|--------|------------|
|        |        |         |        |            |

| Komponente                                                                               | Kp760<br>0             | m-Xylol<br>in Gew% | Komponente                                                                         | Кр <sub>760</sub><br>0 | m-Xylol<br>in Gew% |
|------------------------------------------------------------------------------------------|------------------------|--------------------|------------------------------------------------------------------------------------|------------------------|--------------------|
| Dipropylsulfid <sup>5</sup> ) Butylalkohol <sup>7</sup> ) Isobutylalkohol <sup>7</sup> ) | 137,5<br>116<br>107,65 | 20<br>13           | Buttersäure <sup>6</sup> )<br>Isobuttersäure <sup>9</sup> ) .<br>Milchsäuremethyl- | 138,3<br>136,75        | 94<br>86           |
| n-Hexylalkohol 7) . Ameisensäure 8)                                                      | 138,3<br>94,2          | 85<br>29,8         | ester 1)                                                                           | 131,2                  | 57,5               |
| Acetamid 4) Propionamid 5)                                                               | 138,2<br>138,5         | 86                 | $ester^2$ ) Furfurol $^5$ )                                                        | 137<br>138,4           | 90<br>88           |

<sup>1)</sup> LECAT, R. 45, 622. — 2) L., R. 46, 243. — 3) L., Ann. Soc. scient. Bruxelles 45 I [1926], 289. — 4) L., Ann. Soc. scient. Bruxelles 47 I [1927], 67, 68. — 5) L., Ann. Soc. scient. Bruxelles 47 I, 153. — 6) L., Ann. Soc. scient. Bruxelles 48 I [1928], 57. — 7) L., Ann. Soc. scient. Bruxelles 48 I, 122. — 8) L., Ann. Soc. scient. Bruxelles 49 [1929], 20.

GAY, Chim. et Ind. 10, 192 T, 251 T; C. 1924 I, 1270, 2821. Verdampfung von m-Xylol im Luftstrom: Hine, Phys. Rev. [2] 24, 89; C. 1924 II, 1446. Dampfdruck von Gemischen mit Ammoniak zwischen 8° und 20°: Kraus, Zeitfuchs, Am. Soc. 44, 1249, 1253. Zusammensetzung der flüssigen Phasen des Systems mit Ammoniak bei verschiedenen Temperaturen: Kr., Z., Am. Soc. 44, 1255. Über Volumenänderungen beim Mischen mit verschiedenen organischen Verbindungen vgl. Richardson, Robertson, Soc. 1928, 1779; Hammick, Andrew, Soc. 1929, 756. Diffusion von Jod in m-Xylol: Miller, Pr. roy. Soc. [A] 106 [1924], 738. Oberflächenspannung von Lösungen in Benzol: Hamm., An. Grenzflächenspannung zwischen m-Xylol und Wasser: Harrins, Clark, Roberts, Am. Soc. 42, 705; zwischen Quecksilber und m-Xylol bei 20°: Har., Ewing, Am. Soc. 42, 2543; Har., Pr. nation. Acad. USA. 5, 571; C. 1920 III, 222. Breitet sich auf einer Quecksilber-Oberfläche aus (Har., Fridman, Am. Soc. 44, 2680). Ausbreitung auf Wasser bei 20°: Har., F., Am. Soc. 44, 2671.

n<sup>m</sup> für Gemische mit Benzol: Anossow, Izv. Inst. fiz.-chim. Anal. 3, 388; C. 1927 I, 2632. Schlierenbildung in Gemischen mit p-Xylol und mit Athylbenzol: Emch. M. 53/54, 326. Über die magnetische Susceptibilität von Gemischen mit Benzol vgl. Trifonow, Izv. Inst. fiz.-chim. Anal. 3, 435; Soobec. nau.-tech. Rab. 13, 11; C. 1925 II, 386.

#### Chemisches Verhalten.

Photochemische Zersetzung durch Sonnenlicht bei Gegenwart von Uranylsalzen: ALOY, Valdiguié, Bl. [4] 37, 1138. Bei der elektrolytischen Oxydation von m-Xylol in 1 n-Schwefelsäure, Aceton + 2n-Schwefelsäure oder Eisessig + konz. Schwefelsäure an Bleidioxydoder Platin-Anoden bei verschiedenen Temperaturen in An- oder Abwesenheit eines Diaoder Flacht-Anoden bei Verschiedenen Temperaturen in An- oder Abwesennen eines Diaphragmas entstehen je nach den Reaktionsbedingungen m-Toluylaldehyd, m-Toluylsäure,
2.4- Dimethyl-phenol, geringere Mengen Toluchinon, p-Xylochinon(?), Essigsäure und
Isophthalsäure, sehr wenig 2.2'-Dioxy-3.5.3'.5'-tetramethyl-diphenyl und viel harzige Produkte (Fichter, Meyer, Helv. 8, 75). Oxydiert sich in Gegenwart von Sauerstoff am Licht
(Nash, Howes, Nature 123, 527; C. 1929 I, 2606). Beim Belichten in Gegenwart von
Anthrachinon an der Luft entsteht m-Toluylsäure (Ecker, D. R. P. 383030; Frdl. 14, 442). Bei 30-tägigem Durchleiten von Sauerstoff bei 100° in trübem, diffusem Licht entstehen geringe Mengen m-Toluylaldehyd und m-Toluylsäure; in Gegenwart von Wasser findet weder Oxydation zum Aldehyd noch zur Säure statt (STEPHENS, Am. Soc. 48, 1826). Die Oxydation zu m-Toluylaldehyd durch Sauerstoff bei 1000 ist bei Anwesenheit von Acetanhydrid sehr beschleunigt (Št., Am. Soc. 50, 2528). Erhitzt man m-Xylol mit Luft unter Druck auf 210° in Gegenwart von verd. Sodalösung, so entstehen m-Toluylsäure, wenig Isophthalsäure sowie geringe Mengen Ameisensäure, Essigsäure und Oxalsäure (Schrader, Abh. Kenntnis Kohle 4, 328; C. 1921 I, 537). Entzündungstemperatur eines m-Xylol-Luft-Gemischs: Bennett, Mardles, Soc. 1927, 3155; in Gegenwart von Bleitetraäthyl oder Eisencarbonyl: B., M., Soc. 1927, 3158. Herabsetzung der Entzündungstemperatur durch Stickstoffdioxyd, Benzoylperoxyd und Isoamylnitrit: M., Soc. 1928, 879. Entzündung von Gemischen mit Luft durch adiabatische Kompression: PIGNOT, Chim. et Ind. 16, 348 C; C. 1927 I, 861. Durch Oxydation mit Kupfernitrat-Lösung oder alkalischer Natriumchromat-Lösung entsteht m-Toluylaldehyd (Posner, Schreiber, B. 57, 1131). Bei längerem Erhitzen mit Wismutnitrat im Röhr erhålt man m-Toluylsäure (Spiegel, Haymann, B. 59, 203). Durch Oxydation mit Chlorpikrin am Licht entstehen wenig m-Toluylsäure (0,8%) und sehr geringe Mengen Oxalsäure (Piutti, Badolato, R. A. L. [5] 33 I, 478). Über die katalytische Hydrierung von m-Xylol s. S. 21 bei 1.3-Dimethyl-cyclohexan.

Durch Einleiten von Chlor bis zur Aufnahme von einem Grammatom im ultraviolettem Licht bei Siedetemperatur entstehen m-Xylylchlorid, m-Xylylenchlorid und andere Produkte (POSNER, SCHREIBER, B. 57, 1137). Einw. von unterchloriger Säure: KLINGSTEDT, Acta Acad. Abo. 4, Nr. 2, S. 32; C. 1928 I, 505. Beim Bromieren im Sonnenlicht bei Zimmertemperatur erhält man m-Xylylbromid (MEISENHEIMER, Mitarb., A. 468, 216). Reaktion mit Stickstofftetroxyd: Schaarschmidt, Smolla, B. 57, 38; Sch., Z. ang. Ch. 36, 534. m-Xylol liefert beim Behandeln mit einem Gemisch aus Nitrosylschwefelsäure und rauchender Salpetersäure (D: 1,502) 4-Nitro-m-xylol (VARMA, KULKARNI, Am. Soc. 47, 145). Nitrierung von m-Xylol mit 45-50% iger Salpetersäure in Gegenwart von Quecksilber: Orloff, B. 59, 2114. Bei der Einw. von ca. 30% iger rauchender Schwefelsäure unter Kühlung entsteht m-Xylol-sulfonsäure-(4), die beim Bromieren je nach den Reaktionsbedingungen 4.6-Dibromm-xylol oder 2.4.5.6-Tetrabrom-m-xylol liefert (DATTA, Вноимік, Am. Soc. 43, 312). Die von Wischin (B. 23 [1890], 3113) beim Behandeln von m-Xylol mit rauchender Schwefelist m-Xylol-disulfonsäure-(4.6), deren Dichlorid auch beim Erhitzen von m-Xylol mit überschüßiger Chlorsulfonsäure-(4.6), deren Dichlorid auch beim Erhitzen von m-Xylol mit überschüßiger Chlorsulfonsäure auf 150—160° erhalten wird (Pollak, Lustig, A. 433, 199; P., v. Meissner, M. 50, 237; Holleman, Choufoer, R. 48, 1075; An. Soc. españ. 27, 473; C. 1930 I, 1617; Versl. Akad. Amsterdam 33 [1924], 307). Bei Einw. von reiner Schwefelsäure bei Zimmertemperatur entstehen m-Xylol-sulfonsäure-(4) und geringe Mengen m-Xylolsulfonsäure-(2) (P., L., A. 433, 199; P., v. M., M. 50, 241, 246). Beim Behandeln mit Fluorsulfonsäure bei 5° entsteht m-Xylol-sulfonsäure-(4)-fluorid (STEINKOPF, J. pr. [2] 117, 40). Eine Lösung von 2 Tln. m-Xylol in 1,6 Tln. Acetanhydrid liefert bei allmählicher Einw. von 1 Tl. 96% iger Selensäure unter Kühlung m-Xylol-selenonsäure-(4) (Anschütz, Teuten-BERG, B. 57, 1019).

Bei der Einw. von Cyclohexylbromid auf m-Xylol in Gegenwart von Ferrichlorid oder Aluminiumchlorid zuletzt bei 50° entstehen 1.3-Dimethyl-5-cyclohexyl-benzol und 1.3-Dimethyl-5-x-dicyclohexyl-benzol (BATTEGAY, KAP-H-)

methyl-5.x-dicyclohexyl-benzol (BATTEGAY, KAP-PELER, Bl. [4] 35, 990 Anm. 2, 992). 1.3-Dimethyl-5-cyclohexyl-benzol entsteht auch bei der Kondensation von m-Xylol mit Cyclohexen in Gegenwart von Aluminiumchlorid (BODROUX, C. r. 186, 1006; A. ch. [10] 11, 522). Bei längerem Schütteln mit Phenanthren und Aluminiumchlorid bei 50° und nachfolgendem Destillieren mit Wasserdampf entsteht

eine Verbindung  $C_{22}H_{16}O$ , der vielleicht Formel I oder II zukommt (Syst. Nr. 546) (Schaarschmidt, Mayer-Bugström, Sevon, B. 58, 159). Durch Kondensation mit Benzylalkohol

in Gegenwart von 70—80% iger Schwefelsäure erhält man Phenyl-[2.4-dimethyl-phenyl]-methan und 2-Methyl-anthracen (H. Meyer, Bernhauer, M. 53/54, 731). Beim Einleiten von Chlorwasserstoff in ein Gemisch aus m-Xylol mit Formaldehyd-Lösung oder Paraformaldehyd bei Gegenwart von Zinkchlorid in der Wärme entstehen 2.4-Dimethyl-1-chlormethyl-benzol und 1.5-Dimethyl-2.4-bis-chlormethyl-benzol (Blanc, Bl. [4] 33, 316; C. 1923 I, 1571; BERT, C. r. 186, 373). 2.4-Dimethyl-1-chlormethyl-benzol entsteht auch bei Einw. von Bis-chlormethyl-äther auf m-Xylol in Gegenwart von Zinkchlorid (STEPHEN, Short, Gladding, Soc. 117, 522). Bei der Kondensation mit Trichloracetonitril in Gegenwart von Aluminiumchlorid und Chlorwasserstoff unter Kühlung entsteht w.o.w.-Trichlor-2.4-di-mcthyl-acetophenon bzw. dessen Imid (Houben, W. Fischer, J. pr. [2] 123, 320; B. 66 [1933], 341). m-Xylol gibt beim Behandeln mit Isophthalsäure-dichlorid und Aluminium-chlorid anfangs unter Kühlung, später auf dem Wasserbad 1.3-Bis-[2.4-dimethyl-benzoyl]benzol; reagiert analog mit Terephthalsäure-dichlorid unter Bildung von 1.4-Bis-[2.4-dimethyl-benzoyl]-benzol (Clar, John, Hawran, B. 62, 945). Bei der Einw. von Phosgen und Aluminiumchlorid erhält man je nach den Reaktionsbedingungen wechselnde Mengen von 2.4-Dimethyl-benzoylchlorid und 2.4.2'.4'-Tetramethyl-benzophenon (Ador, Rillet, B. 11 [1878], 399; Ad., Meier, B. 12 [1879], 1968; Elbs, J. pr. [2] 41 [1890], 142 Anm. 1; Wilson, Fuller, J. ind. Eng. Chem. 14, 409; C. 1922 III, 497; vgl. a. Böeseken, R. 24 [1905], 4) sowie ein Produkt, das beim Schmelzen mit Natriumhydroxyd 2.6-Dimethylbenzoesäure liefert (WI., Fu.). Liefert beim Kochen mit p-Toluolsulfonsäure-[β-cyan-āthylester] in Gegenwart von Aluminiumchlorid und Zersetzen mit verd. Salzsäure β-[2.4-Ďimethyl-phenyl]-propionitril (CLEMO, HAWORTH, WALTON, Soc. 1929, 2375).

E I 183, Z. 9 v. o. statt ,,713" lies ,,237".

Physiologisches Verhalten: H. STAUB in J. HOUBEN, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 39. — Mikrochemischer Nachweis von m-Xylol, auch neben o- und p-Xylol, durch Nitrierung zu 2.4.6-Trinitro-m-xylol, das durch Farbreaktion oder durch die optischen Eigenschaften seiner Krystalle identifiziert wird: MIGITA, Bl. chem. Soc. Japan 3, 192; C. 1928 II, 1915.

# Substitutionsprodukte des m-Xylols.

4-Fluor-m-xylol C<sub>8</sub>H<sub>8</sub>F, s. nebenstehende Formel (H 372). B. In quantitativer Ausbeute beim Erhitzen von m-Xylol-diazonium-borfluorid-(4) (BALZ, Schiemann, B. 60, 1189). Entsteht ferner aus diazotiertem 4-Amino-m-xylol und Fluorwasserstoffsäure (Hahn, Reid, Am. Soc. 46, 1647). — Kp<sub>749</sub>: 143—144° (B., Sch.). — Liefert bei der Kondensation mit 1 Mol Phthalsäureanhydrid in Gegenwart von 2 Mol Aluminiumchlorid ein Gemisch aus 2-[5-Fluor-2.4-dimethylbenzoyl]-benzoesäure und 2-[3-Fluor-2.6-dimethyl-benzoyl]-benzoesäure (H., R.).

CH<sub>3</sub> CH<sub>3</sub>

Cl

CH<sub>3</sub> 2-Chlor-m-xylol  $C_8H_9Cl$ , s. nebenstehende Formel. B. Durch Hydrolyse von 2-Chlor-m-xylol-sulfonsäure-(4) (I. G. Farbenind., D. R. P. 491220; Frdl. CH<sub>3</sub> 16, 336). — Kp: 185—187°.

CH<sub>3</sub> 4-Chlor-m-xylol  $C_8H_9Cl$ , s. nebenstehende Formel (H 373; E I 183). B. Durch mehrstündiges Erhitzen von m-Xylol-sulfonsäure-(4) mit Thionylchlorid unter Druck auf 160°, neben anderen Chlorierungsprodukten (H. MEYER, A.  $\cdot CH_3$ 433, 336).

 $\omega$ -Chlor-m-xylol, m-Xylylchlorid, 3-Methyl-benzylchlorid  $C_8H_9Cl=CH_3\cdot C_6H_4\cdot CH_2Cl$  (H 373; E I 183). B. Zur Bildung durch Chlorierung von m-Xylol (H 5, 373) vgl. a. Posner, Schreiber, B. 57, 1137. Entsteht ferner bei der Einw. von Chlorwasserstoff auf m-Tolyl-carbinol bei 60-70° (OLIVIER, R. 41, 307). - Wird durch Kupfernitrat-Lösung oder alkal. Natriumchromat-Lösung zu m-Toluylaldehyd oxydiert (P., Sch., B. 57, 1131). Geschwindigkeit der Hydrolyse zu o-Tolyl-carbinol und Chlorwasserstoff durch Wasser bei 30° und 83,3°: O.

2.4-Dichlor-m-xylol C<sub>8</sub>H<sub>8</sub>Cl<sub>2</sub>, s. nebenstehende Formel (H 373). B. Bei der Hydrolyse von 2.6-Dichlor-m-xylol-sulfonsäure-(4) (I. G. Farbenind., D. R. P. 491 220; Frdl. 16, 336). — Kp: 222—223°. · CH3 Ċl

СН3 4.6-Dichlor-m-xylol C<sub>8</sub>H<sub>8</sub>Cl<sub>2</sub>, s. nebenstehende Formel (H 373). B. Neben anderen Chlorierungsprodukten bei mehrstündigem Erhitzen von m-Xylol-sulfonsäure-(4) mit Thionylchlorid unter Druck auf 160° (H. MEYER, CH<sub>3</sub> A. 433, 336). — Krystalle (aus Chloroform). F: 68°.

 $\omega.\omega'$ -Dichlor-m-xylol, m-Xylylenchlorid  $C_8H_8Cl_2=C_9H_4(CH_2Cl)_8$  (H 373). B. Neben anderen Produkten beim Einleiten von Chlor in siedendes m-Xylol im ultraviolettem Licht unter Ausschluß von Feuchtigkeit, bis zur Aufnahme von 1 Grammatom Chlor (Posner, Schreiber, B. 57, 1137). — Krystalle (aus Alkohol). Kp<sub>16</sub>: 131—132°.

- 2.4.5-Trichlor-m-xylol C<sub>3</sub>H<sub>7</sub>Cl<sub>3</sub>, s. nebenstehende Formel. B. Bei der Hydrolyse von 2.5.6-Trichlor-m-xylol-sulfonsäure-(4) (I. G. Farbenind., D. R. P. 491 220; Frdl. .16, 336). Beim Verkochen von diazotiertem 2.5.6-Trichlor-Cl. -CH<sub>3</sub> 4-amino-m-xylol (Bureš, Borgmann, Č. čsl. Lékárn. 7, 278; C. 1928 I, 1171). Nadeln (aus Alkohol oder Eisessig). F: 95—96°; Kp: 255—260° (I. G. Farbenind., D. R. P. 491 220). Löslich in Chloroform, Äther, Benzol und Essigsäure (Bu., Bo.).
- 2.4.6 (oder 4.5.6)-Trichlor-m-xylol  $C_8H_7Cl_3 = C_6HCl_3(CH_3)_2$  (H 373; E I 183). B. In geringer Menge beim Erhitzen von m-Xylol-sulfonsäure-(4) mit Thionylchlorid unter Druck auf 160°, neben weiteren Chlorierungsprodukten; konnte nicht vollkommen rein erhalten werden (H. Meyer, A. 433, 336).
- 2.4.5.6-Tetrachlor-m-xylol C<sub>8</sub>H<sub>8</sub>Cl<sub>4</sub> = C<sub>6</sub>Cl<sub>4</sub>(CH<sub>3</sub>)<sub>2</sub> (H 373; E I 183). B. Beim Erwärmen eines Gemisches aus m-Xylol-sulfonsäure-(4), Salzsäure (D: 1,18) und Salpetersäure (D: 1,38) unter Rühren auf 80—85° (I. G. Farbenind., D. R. P. 491220; Frdl. 16, 336) oder bei langsamem Versetzen einer Lösung von m-Xylol-sulfonsäure-(4) in verd. Salzsäure mit einer Lösung der entsprechenden Menge Natriumchlorat in Wasser bei ca. 85° (I. G. Farbenind., D. R. P. 491220). Durch Diazotieren von 2.5.6-Trichlor-4-amino-m-xylol in salzsaurer Lösung und Behandeln des Reaktionsprodukts mit Kupferbronze (Bureš, Borgmann, Č. čsl. Lékárn. 7, 279; C. 1928 I, 1171). Nadeln (aus verd. Alkohol) oder Krystalle (aus Chlorbenzol). F: 219° (Bu., Bo.), 218—220° (I. G. Farbenind., D. R. P. 491220).
- 4-Chlor-1.3-bis-dichlormethyl-benzol,  $4.\omega.\omega.\omega'.\omega'$ -Pentachlor-m-xylol  $C_8H_5Cl_5$ , s. nebenstehende Formel. B. Durch Chlorieren von 4-Chlor-m-xylol bei 120° im Licht bis zur Aufnahme von 4 Atomen Chlor (Cassella & Co., D. R. P. 360 414; C. 1923 II, 406; Frdl. 14, 378).  $Kp_{780}$ : 291—292° (C. & Co., D. R. P. 360 414). Gibt beim Erwärmen mit konz. Schwefelsäure 4-Chlor-isophthal-aldehyd (C. & Co., D. R. P. 360 414). Bei der Kondensation mit o-Kresotinsäure in Gegenwart von konz. Schwefelsäure und nachfolgenden Oxydation mit Natriumnitrit entsteht ein Farbstoff, der sich in Natronlauge mit violettblauer Farbe löst und Wolle rotbraun färbt; die Färbung wird beim Nachchromieren blau (C. & Co., D. R. P. 344900; C. 1922 II. 327; Frdl. 13, 342).
- 2.4-Dichlor-1.3-bis-dichlormethyl-benzol C<sub>8</sub>H<sub>4</sub>Cl<sub>6</sub>, s. nebenstehende Formel. B. Man behandelt 2.4-Dichlor-m-xylol bei 120° im Licht mit Chlor bis zur Aufnahme von 4 Atomen Chlor oder man chloriert m-Xylol bei 0—15° im Dunkeln bis zur Aufnahme von 2 Atomen Chlor und chloriert bei 120° im Licht bis zur Aufnahme von weiteren 4 Atomen (Cassella & Co., D. R. P. 360414; C. 1923 II, 406; Frdl. 14, 378). Kp<sub>760</sub>: 312—313° (C. & Co., D. R. P. 360414). Gibt beim Erwärmen mit konz. Schwefelsäure 2.4-Dichlor-isophthalaldehyd (C. & Co., D. R. P. 360414). Bei der Kondensation mit o-Kresotinsäure in Gegenwart von konz. Schwefelsäure und nachfolgenden Oxydation mit Natriumnitrit entsteht ein Farbstoff, der sich in Natronlauge mit violettblauer Farbe löst und Wolle rotbraun färbt; die Färbung wird beim Nachchromieren blau (C. & Co., D. R. P. 344900; C. 1922 II, 327; Frdl. 13, 342).
- 2.4.6 (oder 4.5.6) -Trichlor-1.3 bis dichlormethyl-CHCl<sub>2</sub> CHCl2 benzol  $C_8H_3Cl_7$ , s. Formel I oder II. B. Man behandelt 2.4.6(oder 4.5.6)-Trichlor-m-xylol (H 5, 373) bei 120° mit Cl ·C1 CL. Chlor bis zur Aufnahme von 4 Atomen Chlor oder man chloriert m-Xylol bei 0—15° im Dunkeln bis zur Aufnahme CHCl2 ·CHCl2 CI von 3 Atomen und anschließend im Licht bis zur Aufnahme von weiteren 4 Atomen Chlor (Cassella & Co., D. R. P. 360414; C. 1923 II, 406; Frdl. 14, 378). — Kp<sub>780</sub>: 330—331° (C. & Co., D. R. P. 360414). — Gibt beim Erwärmen mit konz. Schwefelsäure 2.4.6(oder 4.5.6)-Trichlor-isophthalaldehyd (C. & Co., D. R. P. 360414). Bei der Kondensation mit o-Kresotinsäure in Gegenwart von konz. Schwefelsäure und nachfolgenden Oxydation mit Natriumnitrit entsteht ein Farbstoff, der sich in Natronlauge mit violettblauer Farbe löst und Wolle rotbraun färbt; die Färbung wird beim Nachchromieren blau (C. & Co., D. R. P. 344900; C. 1922 II, 327; Frdl. 13, 342).
- 2.4-Dichlor-1-dichlormethyl-3-trichlormethyl-benzol C<sub>8</sub>H<sub>3</sub>Cl<sub>7</sub>, s. nebenstehende Formel. B. Eine Verbindung, der vielleicht diese Konstitution zukommt, entsteht beim Behandeln von 2.4-Dichlor-m-xylol(?) bei 120° im Licht mit Chlor bis zur Aufnahme von 5 Atomen oder beim Chlorieren von m-Xylol bei 0—15° in Dunkeln bis zur Aufnahme von 2 und danach im Licht bei 120° bis zur Aufnahme von weiteren 5 Atomen (Cassella & Co., D. R. P. 360414; C. 1923 II, 406; Frdl. 14, 378).— Kp<sub>760</sub>: 321—322°. Gibt beim Erwärmen mit konz. Schwefelsäure 2.6-Dichlor-3-formyl-benzoesäure.

CCl<sub>3</sub>

CH<sub>3</sub>

- 2.4.5.6-Tetrachlor-1.3-bis-dichlormethyl-benzol, 2.4.5.8. \(\omega. \omega. \omega' \cdot \omega' \omega' \cdot \omega' \omega
- 2.4.6 (oder 4.5.6) -Trichlor-1-dichlormethyl-3-trichlor-CHCl<sub>2</sub> CHC1. methyl-benzol C<sub>8</sub>H<sub>2</sub>Cl<sub>8</sub>, s. Formel I oder II. B. Man chloriert 2.4.6(oder 4.5.6) Trichlor-m-xylol bei 120° im Licht bis zur Auf-Cl Cl nahme von 5 Atomen Chlor oder man chloriert m-Xylol erst im CC1<sub>3</sub> CC1<sub>3</sub> Dunkeln bei 0-15° bis zur Aufnahme von 3 und anschließend Ċl Cl im Licht bei 120° bis zur Aufnahme von weiteren 5 Atomen II. Ι. Chlor (Cassella & Co., D. R. P. 360414; C. 1923 II, 406; I. II. Frdl. 14, 378). — Kp: 339—340°. — Gibt beim Erwärmen mit konz. Schwefelsäure auf 90° bis 100° 2.4.6 (oder 4.5.6)-Trichlor-3-formyl-benzoesäure.
- 4.6 Dichlor 1.3 bis-trichlormethyl-benzol C<sub>8</sub>H<sub>2</sub>Cl<sub>8</sub>, s. nebenstehende Formel. B. Eine Verbindung, der vermutlich diese Konstitution zukommt, entsteht beim Erhitzen von m-Xylol-disulfonsäure-(4.6)-dichlorid (vgl. S. 290 und H 11, S. 209 Anm. 1) mit Thionylchlorid im Rohr auf 260° (POLLAK, RUDICH, M. 43, 222; vgl. a. P., SCHADLER, M. 39 [1918], 131). Krystalle (aus Eisessig). F: 113—114°. Leicht löslich in Ligroin und Benzol, unlöslich in Alkohol. Zersetzt sich bei der Destillation im Vakuum.
- 4-Brom-m-xylol C<sub>8</sub>H<sub>9</sub>Br, s. nebenstehende Formel (H 374; E I 183). B. Neben anderen Verbindungen bei der Einw. von Brom auf m-Xylol in Gegenwart von Eisenpulver bei 0° und Aufbewahren des Gemisches bei Zimmertemperatur (GODDARD, Soc. 123, 2317, 2319). Zur Bildung nach COHEN, DAKIN (Soc. 75 [1899], 894) vgl. Morgan, Coulson, Soc. 1929, 2208. Entsteht ferner beim Erhitzen des Natriumsalzes der 6-Brom-m-xylol-disulfonsäure-(2.4) mit konz. Salzsäure im Rohr auf 150—160° (POLLAK, v. Meissner, M. 50, 249). Beim Kochen von diazotiertem 4-Amino-m-xylol mit Kupfer(I)-bromid in rauchender Bromwasserstoffsäure (Mo., C.). Kp: 203,5° (G.), 203—208° (Mo., C.). Beim Kochen einer Grignard-Lösung aus 4-Brom-m-xylol und Magnesium in Äther mit Antimontrichlorid oder bei der Einw. von Natrium auf 4-Brom-m-xylol und Antimontrichlorid in warmem Benzol entsteht Tris-[2.4-dimethyl-phenyl]-stibin(G.).
- 5-Brom-m-xylol C<sub>8</sub>H<sub>9</sub>Br, s. nebenstehende Formel (H 374). B. Aus diazotiertem 5-Brom-4-amino-m-xylol durch Verkochen oder Behandeln mit Zinn(II)-chlorid in verd. Natronlauge (BUREŠ, MANDEL-BORGMANNOVÁ, Č. ¿sl. Lékárn. 7, 262; C. 1928 I, 1170). Zur Bildung aus diazotiertem 5-Brom-4-amino-m-xylol vgl. ferner Wheeler, Thomas, Am. Soc. 50, 2287. Aromatisch riechendes Öl. Kp: 206° (B., M.-B.), 205° (Wh., Th.). Liefert beim Erhitzen mit verd. Salpetersäure 5-Brom-3-methyl-benzoesäure (B., M.-B.).
- ω-Brom-m-xylol, m-Xylylbromid, 3-Methyl-benzylbromid  $C_8H_9Br = CH_3 \cdot C_6H_4 \cdot CH_2Br$  (H 374; 183). B. Beim Sättigen einer Lösung von m-Tolyl-carbinol in Benzol mit Bromwasserstoff (Shoesmith, Slater, Soc. 125, 2281). Kp<sub>8</sub>: 97—99° (Sh., Sl.). Geschwindigkeit der Hydrolyse mit verd. Alkohol bei  $60^\circ$ : Sh., Sl. Gibt mit Jodwasserstoff in Eisessig bei  $25^\circ$  m-Xylol; Geschwindigkeit dieser Reaktion: Sh., Sl. Geschwindigkeit der Reduktion mit Jodwasserstoff in verd. Essigsäure bei  $110^\circ$ : Sh., Sl. bei Sh., Connor, Soc. 1927, 1771.
- 4-Chlor-5-brom-m-xylol C<sub>3</sub>H<sub>6</sub>ClBr, s. nebenstehende Formel. B. Beim Verkochen von diazotiertem 5-Brom-4-amino-m-xylol in salzsaurer Lösung in Gegenwart von Kupferpulver (Wheeler, Thomas, Am. Soc. 50, 2286).

  Kp: ca. 250°.
- 2.4-Dibrom-m-xylol C<sub>8</sub>H<sub>8</sub>Br<sub>2</sub>, s. nebenstehende Formel (H 374). B. In geringer Menge durch Einw. von Brom auf m-Xylol-disulfonsäure-(2.4) in verd. Salzsäure anfangs bei 40°, zuletzt bei 70—80° (POLLAR, v. MEISSNEE, M. 50, 248).

4.5-Dibrom-m-xylol  $C_8H_8Br_2$ , s. nebenstehende Formel (H 374). B. Aus diazotiertem 5-Brom-4-amino-m-xylol durch Austausch der Aminogruppe gegen Brom unter Anwendung von Kupferpulver (BUREŠ, MANDEL-BORGMANNOVÁ, Č. čsl. Lékárn. 7, 265; C. 1928 I, 1171). — Gelbe, ölige, aromatisch riechende Flüssigkeit. Kp: 257°. Unlöslich in Wasser, löslich in den üblichen organischen Mitteln.



4.6-Dibrom-m-xylol  $C_8H_8Br_2$ , s. nebenstehende Formel (H 374; E I 184). B. In geringer Menge bei der Einw. von ca. 30% iger rauchender Schwefelsäure auf m-Xylol unter Kühlung und Schütteln der wäßr. Lösung des Reaktions- Br produkts [m-Xylol-sulfonsäure-(4)] mit überschüssigem Brom (Datta, Bhoumik, Am. Soc. 43, 312; vgl. Kelbe, Stein, B. 19 [1886], 2138). In geringer Menge durch tropfenweise Zugabe von Brom zu m-Xylol-disulfonsäure-(4.6) in verd.

Salzsäure bei 60° (Pollak, v. Meissner, M. 50, 245). — Krystalle (aus Alkohol oder Eisessig).

CH<sub>3</sub>

F: 72° (D., Bh.). — Liefert beim Kochen mit verd. Salpetersäure 4.6-Dibrom-m-toluylsäure (Eckert, Seidel, J. pr. [2] 102, 341). Beim Erhitzen mit überschüssiger Chlorsulfonsäure auf 70-80° entsteht 4.6-Dibrom-m-xylol-sulfonsäure-(2)-chlorid (P., v. M.), beim Erhitzen mit rauchender, 50 %iger Schwefelsäure auf 70—80° 4.6-Dibrom-m-xylol-sulfonsäure-(2) (JACOBSEN, WEINBERG, B. 11 [1878], 1534; P., v. M.).

 $\omega.\omega'$ -Dibrom-m-xylol, m-Xylylenbromid  $C_8H_8Br_2=C_6H_4(CH_2Br)_2$  (H 374; E I 184). Kp<sub>12</sub>: 158—160° (v. Braun, Karpf, v. Garn, B. 53, 102). — Liefert bei der Kondensation mit Benzol in Gegenwart von Aluminiumchlorid bei 30—35° als Hauptprodukt Diphenylmethan, ferner geringe Mengen Anthracen, 1.4-Dibenzyl-benzol und ein flüssiges Reaktionsprodukt, das bei der Oxydation mit Chromschwefelsäure eine Verbindung  $C_{20}H_{14}O_{2}$  vom Schmelzpunkt 105—107° liefert (Reindel, Siegel, B. 56, 1553). Beim Behandeln mit Phenol in Natriumäthylat-Lösung entsteht m-Xylylenglykol-diphenyläther; reagiert analog mit Thiophenol (R., Sie., B. 56, 1555) sowie mit Guajacol und mit Hydrochinon-monomethyläther; dagegen entsteht mit Resorcin-monomethyläther ein Öl vom Kp<sub>10</sub>: 121° (R., Schuberth, B. 57, 370). Bei der Einw. von Dithioresorcin und Natrium in Alkohol + thiophenfreiem Benzol entsteht eine Verbindung C<sub>28</sub>H<sub>24</sub>S<sub>4</sub> (s. bei Dithioresorcin, Syst. Nr. 554). Beim Kochen mit 2-Nitro-anilin in Chloroform erhält man N.N'-Bis-[2-nitro-phenyl]-m-xylylendiamin; reagiert analog mit 3-Nitro-anilin unter Bildung geringer Mengen N.N'-Bis-[3-nitro-phenyl]-m-xylylendiamin (R., Sie.).

2.4.5.6-Tetrabrom-m-xylol  $C_8H_6Br_4=C_6Br_4(CH_3)_2$  (H 375; E I 184). B. Zur Bildung aus m-Xylol und Brom (H 5, 375) vgl. a. Birch, Norris, Soc. 1926, 2549. Entsteht ferner bei der Einw. von ca. 30 %iger rauchender Schwefelsäure auf m-Xylol unter Kühlung und längerem Aufbewahren der wäßr. Lösung des Reaktionsprodukts [m-Xylol-sulfonsäure-(4)] mit überschüssigem Brom (Datta, Вноимік, Am. Soc. 43, 312). — Nadeln (aus Xylol). F: 248° (CROSSLEY, RENOUF, Soc. 119, 274), 251° (B., N.).

4-Jod-m-xylol C<sub>8</sub>H<sub>9</sub>I, s. nebenstehende Formel (H 376; E I 184). Zur Bildung nach Willgerodt, Howells (B. 33 [1900], 842) vgl. Morgan, Coulson, · CH3 Soc. 1929, 2208. —  $Kp_{14}$ : 1110 (v. Auwers, A. 422, 161).  $D_{4}^{16,3}$ : 1,6282;  $n_{\alpha}^{16,3}$ : 1,5944;  $n_D^{16,8}$ : 1,6008;  $n_D^{16,8}$ : 1,6169 (v. Au.). CH<sub>3</sub>

5-Jod-m-xylol  $C_8H_9I$ , s. nebenstehende Formel (H 376).  $Kp_{12}$ : 106—108° (v. Auwers, A. 422, 161).  $D_4^{18,5}$ : 1,6085.  $n_{\alpha}^{18,5}$ : 1,5908;  $n_{\rm p}^{18,5}$ : 1,5967;  $n_{\rm p}^{18,5}$ : 1,6131. I. CH<sub>3</sub>

CH<sub>3</sub> 2-Nitroso-m-xylol C<sub>8</sub>H<sub>2</sub>ON, s. nebenstehende Formel (H 377). B. Bei der NO Reduktion von 2-Nitro-m-xylol mit Zinkstaub und siedender alkoholischer Kalilauge, neben anderen Produkten (BAMBERGER, B. 59, 425). CH<sub>3</sub>

2-Nitro-m-xylol C<sub>8</sub>H<sub>9</sub>O<sub>2</sub>N, s. nebenstehende Formel (H 378; E I 184). Beugung von Röntgenstrahlen in flüssigem 2-Nitro-m-xylol: KATZ, Z. ang. Ch. NOg 41, 332. — Liefert bei der Reduktion mit Zinkstaub und siedender alkoholischer CH<sub>3</sub> Kalilauge 2-Nitroso-m-xylol, 2-Hydroxylamino-m-xylol, 2-Amino-m-xylol, 2.6.2'.6'-Tetramethyl-azoxybenzol und andere, nicht näher untersuchte Produkte (Bambeboer, B. 59, 425). Wird durch Natriumhydrosulfid in warmem verdünntem Alkohol, im Gegensatz zu 4-Nitro-m-xylol, nicht reduziert (Veselý, Chudažilov, R. 44, 356, 358). — Zur Trennung von 2- und 4-Nitro-m-xylol mit Hilfe von Natriumhydrosulfid vgl. V., Ch.

4-Nitro-m-xylol C<sub>8</sub>H<sub>9</sub>O<sub>2</sub>N, s. nebenstehende Formel (H 378; E I 184). B. Bei der Einw. eines Gemisches aus Nitrosylschwefelsäure + rauchender Salpetersäure (D: 1,502) auf m-Xylol (VARMA, KULKARNI, Am. Soc. 47, 145). Zur Trennung des bei der Nitrierung von m-Xylol erhaltenen Gemisches von 2-Nitro- und 4-Nitro-CHa m-xylol durch Reduktion mit überschüssigem Natriumhydrosulfid in warmer

CH<sub>3</sub>

СН3

 $\dot{N}O_2$ 

СН3

 $NO_2$ 

 $CH_3$ 

 $\dot{N}O_2$ 

CH<sub>3</sub>

·NO2

СНз

 $NO_2$ 

⋰∙CH₃ CH₃

СНз

· CH<sub>3</sub>

wäßrig-alkoholischer Lösung vgl. Veselý, Chudažilov, R. 44, 356, 358. — Liefert beim Kochen mit Calciumpermanganat in wäßr. Lösung 4-Nitro-isophthalsäure, 4-Nitro-3-methyl-benzoesäure und sehr wenig 6-Nitro-3-methyl-benzoesäure (Axer, M. 41, 155). Bei der Reduktion mit Zinkstaub in siedender alkoholischer Kalilauge erhält man je nach Bedingungen wechselnde Mengen 2.4.2'.4'-Tetramethyl-azoxybenzol und 2.4.2'.4'-Tetramethyl-azoxybenzol sowie Spuren von 4-Amino-m-xylol (Bamberger, B. 59, 424). Beim Behandeln mit rauchender Schwefelsäure bei Zimmertemperatur entsteht 6-Nitro-m-xylol-sulfonsäure-(4) (Holleman, Choufoer, Versl. Akad. Amsterdam 33, 308; C. 1924 II, 632).

- 5-Nitro-m-xylol C<sub>8</sub>H<sub>9</sub>O<sub>2</sub>N, s. nebenstehende Formel (H 378). B. Zur Bildung aus 5-Nitro-4-amino-m-xylol durch Entamidierung (H 5, 378) vgl. a. HALLER, ADAMS, WHERRY, Am. Soc. 42, 1842; JACOBSON, A. 427, 208; BRÜCKNER, Z. ang. Ch. 41, 956). F: 74—75° (BAMBERGER, B. 53, O<sub>2</sub>N. CH<sub>3</sub> 2326 Anm. 1).
- ω-Nitro-m-xylol, m-Tolyl-nitromethan oder aci-ω-Nitro-m-xylol, m-Tolyl-isonitromethan  $C_8H_9O_2N=CH_3\cdot C_6H_4\cdot CH_2\cdot NO_2$  oder  $CH_3\cdot C_6H_4\cdot CH:NO\cdot OH$  (H 378). B. Analog o-Tolyl-nitromethan (S. 286) (Meisenheimer, Mitarb., A. 468, 217). Beim Aufbewahren mit 1 Mol Benzaldehyd bei Gegenwart von Methylamin unter Ausschluß von Licht erhält man ω-Nitro-3-methyl-stilben, bei bestimmten Reaktionsbedingungen außerdem 4-Phenyl-3.5-di-m-tolyl-isoxazol (M., Mitarb., A. 468, 233).
- 4 Chlor 2 nitro m xylol C<sub>8</sub>H<sub>8</sub>O<sub>2</sub>NCl, s. nebenstehende Formel. B. Aus diazotiertem 2-Nitro-4-amino-m-xylol durch Umsetzung mit Kupfer(I)-chlorid (Dadswell, Kenner, Soc. 1927, 1106). Gelbe Nadeln (aus Alkohol). F: 72—73°.
- 5-Chlor-2-nitro-m-xylol C<sub>n</sub>H<sub>8</sub>O<sub>2</sub>NCl, s. nebenstehende Formel (vgl. H 378). B. Aus diazotiertem 2-Nitro-5-amino-m-xylol durch Umsetzung mit Kupfer(I)-chlorid (Dadswell, Kenner, Soc. 1927, 1106). Plättchen. F: 44—45°.
- 5-Chlor-4-nitro-m-xylol C<sub>8</sub>H<sub>8</sub>O<sub>5</sub>NCl, s. nebenstehende Formel (vgl. H 378). B. Aus diazotiertem 4-Nitro-5-amino-m-xylol durch Einw. von Kupfer(I)-chlorid (Bamberger, A. 443, 207). Nadeln (aus verd. Alkohol Cl. NO<sub>2</sub> CH<sub>3</sub> und Petroläther). F: 46,5—47°.
- 2.4-Dinitro-m-xylol  $C_8H_8O_4N_2$ , s. nebenstehende Formel (H 379). B. Aus 4-Nitro-2-amino-m-xylol durch aufeinanderfolgende Einw. von Kaliumpersulfat + Schwefelsäure in der Kälte und von Salpetersäure (D: 1,48) bei 40—45° (Dadswell, Kenner, Soc. 1927, 1105). Geschwindigkeit der Nitrierung mit Salpeterschwefelsäure bei 25°: Klemenc, Schöller, Z. anorg. Ch. 141, 274.
- 2.5-Dinitro-m-xylol C<sub>8</sub>H<sub>8</sub>O<sub>4</sub>N<sub>2</sub>, s. nebenstehende Formel (H 380). Geht bei längerem Erhitzen mit wäßrig-methylalkoholischem Ammoniak auf 200° teilweise in 5-Nitro-2-amino-m-xylol über (Ibbotson, Kenner, Soc. 123, 1268).
- 4.5 Dinitro m xylol C<sub>8</sub>H<sub>8</sub>O<sub>4</sub>N<sub>2</sub>, s. nebenstehende Formel (H 380). Liefert beim Erhitzen mit wäßrig-methylalkoholischem Ammoniak auf 160° 5-Nitro-4-amino-m-xylol und wenig 4-Nitro-5-amino-m-xylol (Ibbotson, O<sub>2</sub>N Kenner, Soc. 123, 1268).
- 4.6 Dinitro m xylol  $C_8H_8O_4N_2$ , s. nebenstehende Formel (H 380; E I 184). B. Beim Erhitzen von 4.6-Dinitro-m-phenylendiessigsäure über 170° (Davies, Hickox, Soc. 121, 2650). F: 93° (D., H.). Explosionsdruck: Marqueyrol, Loriette, Bl. [4] 27, 426. Die Lösung in Alkohol liefert mit Quecksilber(II)-chlorid und Natrium die Verbindung  $C_8H_2(NO_2)_2$   $\left(CH < \frac{Hg}{Hg} > O\right)_2$
- (Syst. Nr. 672) (Borsche, B. 56, 2359). Bei allmählicher Einw. von Natriumäthylat-Lösung auf eine alkoh. Lösung von 4.6-Dinitro-m-xylol und Oxalsäurediäthylester und Zersetzen des Reaktionsprodukts mit konz. Salzsäure entsteht [4.6-Dinitro-3-methyl-phenyl]-brenztraubensäure (Davies, Hickox, Soc. 121, 2647).
- 2.4.6 -Trinitro m xylol C<sub>8</sub>H<sub>7</sub>O<sub>6</sub>N<sub>3</sub>, s. nebenstehende Formel (H 381; E I 185). B. Aus m-Xylol-sulfonsäure-(4), weniger gut aus deren Bariumsalz, beim Behandeln mit Salpeterschwefelsäure in je nach der Temperatur wechselnden Mengen (DE LANGE, R. 45, 56). Nadeln (aus Eisessig). F: 182,5—183,5° (Maquennescher Block) (DESVERGNES, Ann. Chim. anal. appl. [2] 2, 280; C. 1920 III, 881). D: 1,69 (SKRAUP, EISEMANN, A. 449, 9). Verbrennungswärme bei konstantem Volumen: 970,95 kcal/Mol (BADOCHE in Landolt-Börnst.

CH<sub>3</sub>

E III, 2914). — 0,8 g Trinitro-m-xylol lösen sich bei 25° in 100 g Glykoldiacetat (Taylob, Rinkenbach, Am. Soc. 48, 1308). Löslichkeit in Tetrachlorkohlenstoff, 96% igem Alkohol, Isoamylalkohol, Aceton, Eisessig, Essigester, Benzol, Chlorbenzol, Nitrobenzol, Toluol, m-Xylol, Anilin und konz. Salpetersäure bei verschiedenen Temperaturen: D. Thermische Analyse der binären Systeme mit 1.3-Dinitro-benzol (Eutektikum bei 76,4°; 17,8 Gew.-% 2.4.6-Trinitro-m-xylol), 1.3.5-Trinitro-benzol (Eutektikum bei 104,6°; 16,4 Gew.-% 2.4.6-Trinitro-m-xylol) und Pikrylehlorid (Eutektikum bei 73,2°; 13 Gew.-% 2.4.6-Trinitro-m-xylol); Jeffremow, Tichomirowa, Izv. Inst. fiz.-chim. Anal. 4 I, 65, 77; C. 1929 I, 745, mit 4-Nitrotoluol (Eutektikum bei 50,5° und 2 Gew.-% 2.4.6-Trinitro-m-xylol) und 2.4-Dinitro-toluol (Eutektikum bei 67,7° und 6 Gew.-% 2.4.6-Trinitro-m-xylol): Bell, Sawyer, J. ind. Eng. Chem. 11, 1026; C. 1921 I, 174, mit 2.4.6-Trinitro-toluol (Eutektikum bei 74,8—75,2° und 8 Gew.-% 2.4.6-Trinitro-m-xylol): J., T.; B., S., mit Naphthalin, Acenaphthen, Fluoren, Anthracen, Phenanthren, Pikrinsäure, 2.4.6-Trinitro-kresol, Styphninsäure und Tetryl: J., T., Izv. Inst. fiz.-chim. Anal. 4 I, 73, 86, 103, 114. Thermische Analyse ternärer Systeme aus 2.4.6-Trinitro-m-xylol und den obengenannten Nitrotoluolen: B., S.

Liefert bei der Oxydation mit Chromschwefelsäure bei 80—90° 2.4.6-Trinitro-isophthalsäure (Giua, G. 52 I, 186). Reagiert nicht mit Na<sub>2</sub>SO<sub>3</sub>-Lösung (Muraour, Bl. [4] 35, 374). Reaktion mit alkoh. Natronlauge: Mu. Einw. von Anilin bei 20-stdg. Erhitzen auf dem Dampfbad oder 2-stdg. Kochen: Desvergnes, Ann. Chim. anal. appl. [2] 2, 283; C. 1920 III, 881. — Sprengtechnische Eigenschaften: Robertson, Soc. 119, 13; Marqueyrol, Loriette, Bl. [4] 27, 426. — Trennung und annähernde Bestimmung der bei der Nitrierung von Rohxylol erhaltenen Gemische von Di- und Trinitro-xylolen mit Hilfe von Na<sub>2</sub>SO<sub>3</sub>-Lösung: Muraour, Bl. [4] 35, 376. — 2.4.6-Trinitro-m-xylol gibt mit α-Naphthylamin sowie mit Indol Molekülverbindungen (Skraup, Eisemann, A. 449, 11).

4-Azido-m-xylol, 2.4-Dimethyl-phenylazid C<sub>8</sub>H<sub>9</sub>N<sub>3</sub>, s. nebenstehende Formel. B. Aus 4-Amino-m-xylol durch Diazotierung in salzsaurer Lösung, Überführung des Diazoniumchlorids in das Diazoniumperbromid und nachfolgende Umsetzung mit konzentriertem wäßrigem Ammoniak (J. Brun, Dissert. [Zürich 1902], S. 41). — Gelbrotes, anisartig riechendes Ol. Kp: 87—88° (unkorr.). — Liefert bei 12-stdg. Einw. von alkoh. Schwefelsäure unter Kühlung neben undefinierten Produkten m-Xylochinol-āthylāther-imid, m-Xylochinol-āthylāther, m-Xylochinol, 4-Amino-m-xylol, 4-Oxy-m-xylol, p-Xylochinon sowie 2.2'-Dioxy-3.5.3'.5'-tetramethyl-diphenyl (Br., Dissert., S. 78; Bamberger, Br., Helv. 7, 112; Ba., Br., Hartmann, Helv. 7, 128). Über den Mechanismus dieser Reaktion vgl. Br., Dissert., S. 15; Ba., A. 424, 246, 269. Über die analoge Einw. von methylalkoholischer Schwefelsäure vgl. Ba., Br., H. Einw. von verd. Schwefelsäure: Ba., Br., Helv. 6, 946. Beim Behandeln mit bei 0° gesättigter Salzsäure unter Eiskühlung: Ba., A. 443, 205). Reaktion mit bei 0° gesättigter Bromwasserstoffsäure unter Eiskühlung: Ba., A. 443, 208.

5. 1.4-Dimethyl-benzol, p-Xylol  $C_8H_{10}$ , s. nebenstehende Formel (H 382; E I 185).

V. In neusceländischen Erdölen (Easterfield, McClelland, Chem. and Ind. 1923, 937; C. 1924 I, 2847), im Burma-Erdöl (Mulany, Watson, J. Soc. chem. Ind. 43, 310 T; C. 1925 I, 186) und im persischen Erdöl (Birch, Norris, Soc. 1926, 2549). Entsteht bei der Verschwelung der Steinkohle, findet sich daher im Urteer-Benzin (Frank, Arnold, Z. ang. Ch. 36, 217) und im Steinkohlen-Urteer (Schütz, B. 56, 167; Sch., Buschmann, Wissebach, B. 56, 870, 1094). B. p-Xylol erhält man in geringer Menge beim Leiten von Acetylen über aktivierte Holzkohle bei 650° (Zelinsky, B. 57, 272; C. r. 177, 885; K. 55, 153). Durch Dehydrierung von 1.4-Dimethyl-cyclohexan über Palladiumschwarz bei 310° (Z., B. 56, 788). Durch Reduktion von p-Xylylchlorid mit Wasserstoff bei Gegenwart von Palladiumkohle in alkoh. Lösung oder durch Kochen mit Zinkstaub und Wasser (Merck, D. R. P. 434988; C. 1926 II, 2849; Frdl. 15, 193). Durch raschen Zusatz einer siedenden, absolut-alkoholischen Lösung von p-Xylylendioyanid oder von 4-Methyl-benzylcyanid zu überschüssigem Natrium, neben anderen Produkten (Titley, Soc. 1926, 518). Beim Diazotieren von p-Xylidin in salzsaurer Lösung bei —5° und Behandeln der mit Natronlauge alkalisch gemachten Lösung mit Zinn(II)-chlorid bei 0° (Clemo, Hawoeth, Walton, Soc. 1929, 2375). Durch Zersetzen der Grignard-Verbindung aus p-Xylylchlorid und Magnesium (Beet, C. r. 196, 373). Aus p-Tolyl-magnesiumbromid und p-Toluol-sulfonsäuremethylester in siedendem Ather (Gilman, Beaber, Am. Soc. 47, 522).

Zur Isolierung und Reindarstellung aus technischem Xylol vgl. die Literaturangaben S. 280 bei Rohxylol.

#### Physikalische Eigenschaften.

F: 13,35° (Timmermans, Martin, J. Chim. phys. 23, 756), ca. 13,2° (Richards, Speyers, Carver, Am. Soc. 46, 1203). Der Erstarrungspunkt und die Oberflächenspannung ändern sich bei 3jährigem Aufbewahren in Gegenwart von Phosphorpentoxyd nicht (Ti., Bl. Soc. chim. Belg. 38, 160; C. 1929 II, 2037). Kp<sub>760</sub>: 138,40° (Ti., M., J. Chim. phys. 23, 756; Mathews, Am. Soc. 48, 569; Lecat, Ann. Soc. scient. Bruxelles 49 [1929], 110); Kp<sub>736,7</sub>: 136,2—136,4° (Ri., Sp., C.). D°: 0,878; D°: 0,861; D°: 0,844; D°: 0,827 (Ri., Sp., C.); D°: 0,86535; D°: 0,85230 (Ti., M., J. Chim. phys. 23, 757); D°: 0,8567 (Williams, Krchma, Am. Soc. 49, 1678). Übersicht und Kritik über Dichtebestimmungen verschiedener Autoren: Ti., M., J. Chim. phys. 23, 757. Viscosität bei 15°: 0,00682 g/cmsec (Ti., M.), bei 30°: 0,00568 g/cmsec (Ti., M.; Bridgman, Pr. am. Acad. Arts Sci. 61 [1925/26], 70). Einfluß von Drucken bis 2000 kg/cm² auf die Viscosität bei 30° und 75°: Br., Pr. nation. Acad. USA. 11, 604; Pr. am. Acad. Arts Sci. 61, 81; C. 1926 I, 1919; II, 1923. Oberflächenspannung bei 20°: 28,33 dyn/cm (Harkins, Clark, Roberts, Am. Soc. 42, 705), bei 22,90°: 28,27, Soc. 125, 1180. — Spezifische Wärme von festem p-Xylol zwischen —183,6° und —78,2°: 0,201 cal/g (Maass, Waldbauer, Am. Soc. 47, 8); von flüssigem p-Xylol zwischen 30° (0,3973 cal/g) und 80°: Williams, Daniels, Am. Soc. 46, 910, 912. Verdampfungswärme bei 137,12°: 81,03 cal/g (Mathews, Am. Soc. 48, 572). Verbrennungswärme bei konstantem Volumen: 1085,6 kcal/Mol (Richards, Jesse, Am. Soc. 32, 295; vgl. Swietoslawski, Bobinska, Am. Soc. 49, 2478).

n<sub>0</sub>.\*: 1,5031; n<sub>0</sub>.\*: 1,4968 (v. Auwers, Kolligs, B. 55, 26); n<sub>0</sub>.\*: 1,49420; n<sub>0</sub>.\*: 1,49860; n<sub>0</sub>.\*: 1,51000; n<sub>0</sub>.\*: 1,51285 (Timmermans, Martin, J. Chim. phys. 23, 757); n<sub>0</sub>.\*: 1,4929 (Williams, Krchma, Am. Soc. 49, 1678); Breehungsindices zwischen 486 mμ (1,4980) und 285 mμ bei 15,4°: Voellmy, Ph. Ch. 127, 347. Ultraviolett-Absorptionsspektrum der Lösung in Hexan: Klingstedt, C. r. 175, 1066; Acta Acad. Abo. 3. Nr. 5. S. 27 und Tabelle 8; C. 1925 I, 2286; in Alkohol: V. Henri, Études de Photochimie [Paris 1919], S. 132. Lichtabsorption im Ultrarot: W. W. Coblentz, Investigations of infra-red spectra [Washington 1905], S. 157, 159, 235, 237; Bonino, G. 54, 476, 480; Ellis, Phys. Rev. 23, 54; C. 1924 I, 1635; Marton, Ph. Ch. 117, 107; Barnes, Fullweller, Am. Soc. 49, 2035; 51, 1751; vgl. ferner Gapon, Z. Phys. 44, 601; C. 1927 II, 1789. Fluorescenzspektrum von flüssigem unterkühltem p-Xylol bei 0° und von festem p-Xylol bei 0° und -190°: Reimann, Ann. Phys. [4] 80, 60, 67; C. 1926 II, 539. Teslaluminescenzspektrum: McVicker, Marsh. Stewart, Soc. 125, 1745; Marsh, Phil. Mag. [6] 49, 973; C. 1925 II, 873. Intensität und Depolarisation bei der molekularen Lichtzerstreuung an flüssigem p-Xylol: Gans, Z. Phys. 30, 233; C. 1925 I, 1565; Contrib. Estudio Cienc. fis. La Plata 3 [1925], 369; C. 1925 II, 57; C. 1928 I, 1838; an Oberflächen von flüssigem p-Xylol: Bouhet, C. r. 185, 201. Beugung von Röntgenstrahlen an flüssigem p-Xylol: Stewart, Phys. Rev. [2] 33, 891; C. 1929 II, 1258; Sogani, Indian J. Phys. 1, 373, 389; C. 1927 II, 2149. Ramaneffekt: Dadieu, Kohlrausch, M. 52, 387; Phys. Z. 30, 384, Tafel VII; C. 1929 II, 970; B. 63 (1930), 260; Ko., Phot. Korresp. 65, 162; C. 1929 II, 1508; Daure, C. r. 188, 1493; Ann. Physique [10], 12, 435; Caapska, C. r. 189, 33; Wood, Phil. Mag. [7] 7, 862; C. 1929 II, 135; Ganesan, Venkateswaran, Indian J. Phys. 4, 226; C. 1929 II, 2646. — Dipolmoment μ×10³° 0,06 (verd. Lösung; Benzol) (Williams, Krchma, Am. Soc. 46, 2153. Magnetische Doppelbrechung: Szivessy, Z. Phys. C.

Zustandsdiagramm des Systems mit Schwefel: Hammick, Holt, Soc. 1926, 2001. Lösungsvermögen für Fluoren bei verschiedenen Temperaturen: Mortimer, Am. Soc. 45, 634. Erstarrungstemperaturen von Gemischen aus m- und p-Xylol: Kishner, Wendelstein, M. 57, 5; C. 1926 I, 2681. Erstarrungstemperatur eines Gemisches aus 75% p-Xylol und 25% Äthylbenzol: K. Thermische Analyse des binären Systems mit Bromwasserstoff: Maass, Boomer, Morrison, Am. Soc. 45, 1435; mit m-Xylol (Eutektikum bei —57° und 85,95 Mol.-% m-Xylol): Nakatsuchi, Sci. Rep. Töhoku Univ. [I] 15, 56; C. 1926 II, 546. Binäre azeotrope Gemische, die p-Xylol enthalten, siehe in der Tabelle S. 298. Dichten von Gemischen mit Benzol bei 25°: Williams, Krchma, Am. Soc. 49, 1678. Scheinbare Dichte und Porenvolumen einer Holzkohle in p-Xylol: Harkins, Ewing, Am. Soc. 43, 1790. Grenzflächenspannung zwischen p-Xylol und Wasser: H., Clark, Roberts, Am. Soc. 42, 705; zwischen p-Xylol und Quecksilber bei 20°: H., Ewing, Am. Soc. 42, 2543; H., Pr. nation. Acad. USA. 5, 571; C. 1920 III, 222. Breitet sich auf einer Quecksilber-Oberfläche aus (H., Feldman, Am. Soc. 44, 2680). Ausbreitung auf Wasser bei 20°: H., F., Am. Soc. 44, 2671. — Brechungsindices von Gemischen mit Benzol bei 25°: Williams, Krchma,

Am. Soc. 49, 1678. Schlierenbildung in Gemischen mit Benzol, m-Xylol und Äthylbenzol: Емісн, M. 53/54, 326. — Dielektr.-Konst. von Gemischen mit Benzol bei 25°: W., Kr.

| p-Xvlol    | enthaltende | binăre | Azeotrope |
|------------|-------------|--------|-----------|
| p. A. yıuı | enthaltenue | Dinare | Azeoutop  |

| Komponente                                      | Kp760                    | Gehalt an<br>p-Xylol<br>in Gew% | Komponente                 | Кр760<br>9      | Gehalt an p-Xylol in Gew% |
|-------------------------------------------------|--------------------------|---------------------------------|----------------------------|-----------------|---------------------------|
| Butanol <sup>2</sup> )                          | 115,7<br>107,5           | 32<br>17                        | Essigsäure <sup>5</sup> )  | 115,25<br>137,5 | 28<br>91                  |
| Isobutylcarbinol 4) . Hexylalkohol 4) Glykol 3) | 126,6<br>137,7<br>136,95 | 49<br>· 87<br>85,5              | Buttersäure <sup>5</sup> ) | 137,8<br>136,4  | 95<br>87                  |
| Ameisensäure 4)                                 | 95                       | 30                              | ester 1)                   | 130,8           | 60                        |

<sup>1)</sup> LECAT, R. 46, 243. — 2) L., Ann. Soc. scient. Bruxelles 47 I [1927], 153. — 3) L., Ann. Soc. scient. Bruxelles 48 I [1928], 54, 59. — 4) L., Ann. Soc. scient. Bruxelles 49 [1929], 20, 21, 25. — 5) L., Ann. Soc. scient. Bruxelles 49, 110.

### Chemisches Verhalten.

Photochemische Zersetzung durch Sonnenlicht bei Gegenwart von Uransalzen: Aloy, Valdiquié, Bl. [4] 37, 1138. Bei der elektrolytischen Oxydation in 2n-Schwefelsäure + Aceton an einer Platin-Anode mit Tondiaphragma bei ca. 18° entstehen p-Toluylaldehyd, ω-Acetyl-styrol-carbonsäure-(4) und andere Produkte (Fichter, Rinderspacher, Helv. 9, 1100). Gibt beim Belichten in Gegenwart von Anthrachinon an der Luft p-Toluylsäure (Eckert, D. R. P. 383030; Frdl. 14, 442). Beim Erhitzen mit Luft unter Druck auf 210° entstehen p-Toluylsäure, p-Toluylaldehyd, Terephthalsäure sowie geringe Mengen Ameisensäure, Essigsäure und Öxalsäure (Schrader, Abh. Kenntnis Kohle 4, 329; C. 1921 I, 537). Durch Erhitzen mit Luft in Gegenwart von Sodalösung bei 250° und 60 Atm. Druck erhält man p-Toluylsäure, Terephthalsäure und Aldehyde (F. Fischer, D. R. P. 364442; C. 1923 II, 941; Frdl. 14, 439). Entzündungstemperatur: Masson, Hamilton, Ind. Eng. Chem. 19, 1337; 20, 814; C. 1928 I, 943; II, 1986. Bei längerem Erhitzen mit Wismutnitrat im Rohr entsteht p-Toluylsäure (Spiegel, Haymann, B. 59, 203). Beim Belichten eines Gemischs aus p-Xylol und Chlorpikrin erhält man p-Toluylsäure und sehr geringe Mengen Oxalsäure (Piutti, Badolato, R. A. L. [5] 33 I, 479). Über die katalytische Hydrierung von p-Xylol s. S. 22 bei 1.4-Dimethyl-cyclohexan. Liefert beim Erwärmen mit schwach rauchender Schwefelsäure auf dem Wasserbad und Behandeln der wäßr. Lösung des Reaktionsprodukts [p-Xylol-sulfonsäure-(2)] mit überschüssigem Brom 2.5-Dibromp-xylol (Datta, Bhoumik, Am. Soc. 43, 312). Bei der Einw. von Fluorsulfonsäure bei 25° entsteht p-Xylol-sulfonsäure (2)-fluorid (Steinkopf, J. pr. [2] 117, 39). Beim Behandeln mit überschüssiger Chlorsulfonsäure bei 150—160° erhält man viel p-Xylol-disulfonsäure-(2.6)-dichlorid und wenig p-Xylol-disulfonsäure-(2.5)-dichlorid politak, Lustio, A. 433, 200; Holleman, Choupoer, Versl. Akad. Amsterdam 33 [1924], 311, 1001; R. 48, 1078; An. Soc. españ. 27, 478; C. 1930 I, 1618). Geschwindigkeit der Einw. von Dischwefeldichlorid i

Bei längerem Erhitzen mit Stickstoffwasserstoffsäure im Rohr auf 200° oder mit Ammoniumazid auf 250—270° entstehen p-Xylidin und andere Produkte (Вектно, В. 59. 592, 594). Bei langsamem Erwärmen mit Sulfurylazid bis zum Aufhören der Entwicklung von Stickstoff und Schwefeldioxyd erhält man in geringer Menge eine flüssige Verbindung C<sub>8</sub>H<sub>1</sub>N (S. 299), eine flüssige Verbindung C<sub>8</sub>H<sub>2</sub>N vom Schmelzpunkt 112° (S. 299), eine Verbindung C<sub>8</sub>H<sub>2</sub>N vom Schmelzpunkt 85° (S. 299) und andere Produkte (Curtius, Schmidt, B. 55, 1577; vgl. a. Schm., B. 58, 2410; Cu., Bertho, B. 59, 572). Beim Kochen mit Carbamidsäureazid entstehen N.N'-Bis-[2.5-dimethyl-phenyl]-harnstoff und andere Produkte (Cu., Schm., J. pr. [2] 105, 190). Liefert beim Erhitzen mit Carbazid im Autoklaven auf 150° p-Xylidin, 2.5-Dimethyl-pyridin und andere Produkte (Curtius, Bertho, B. 59, 577). Bei längerem Erhitzen mit Phenylazid unter Ausschluß von Feuchtigkeit entsteht ein orangegelbes Öl, das bei der Wasserdampfdestillation nach Zusatz von verd. Salzsäure Anilin, 1.2-Di-p-tolyl-äthan und wenig Azobenzol liefert (Bertho, B. 57, 1141). Benzylazid wirkt auf p-Xylol nicht ein (Cu., Ehrhart, B. 55, 1566). Bei längerem Erhitzen mit Benzylsulfonsäure-azid bis fast zum Sieden entstehen unter Entwicklung von Stickstoff Benzylsulfonsäure-p-xylidid und sehr geringe Mengen Benzylsulfonsäure-amid (Curtius, Haas, J. pr. [2] 102, 100).

Durch Kondensation mit Cyclohexen in Gegenwart von Aluminiumchlorid entstehen 1.4-Dimethyl-2-cyclohexyl-benzol und geringe Mengen 1.4-Dimethyl-2.x-dicyclohexyl-benzol (Bodroux, C. r. 186, 1006; A. ch. [10] 11, 520). Gibt mit 1-Methyl-cyclohexen-(3) bei Gegenwart von Aluminiumchlorid eine farblose Flüssigkeit, die wahrscheinlich aus 1.4-Dimethyl-2-[3-methyl-cyclohexyl] - benzol und 1.4-Dimethyl-2-[4-methyl-cyclohexyl] - benzol besteht (Bo., A.ch. [10] 11, 573). Beim Behandeln mit Benzylalkohol in Gegenwart von verd. Schwefelsäure entstehen 2.5-Dimethyl-diphenylmethan und 2-Methyl-anthracen (H. Meyer. BERNHAUER, M. 53/54, 732). Gibt bei der Einw. von Paraformaldehyd und Chlorwasserstoff in Gegenwart von Zinkchlorid 1.4-Dimethyl-2-chlormethyl-benzol (Bert, C. r. 186, 373). Kondensiert sich mit Trichloracetonitril in Gegenwart von Aluminiumchlorid und Chlorwasserstoff bei ca.  $70^{\circ}$  zu  $\omega.\omega.\omega$ -Trichlor-2.5-dimethyl-acetophenon; bei Verdünnung mit Chlorbenzol erhält man als Zwischenprodukt das entsprechende Imid (HOUBEN, FISCHER.  $J.\ pr.\ [2]$  123, 322; B. 66 [1933], 341). Beim Kochen mit p-Toluolsulfonsäure- $\beta$ -cyan-äthylester in Gegenwart von Aluminiumchlorid und Zersetzen mit verd. Salzsäure entsteht β-[2.4-Dimethyl-phenyl]-propionitril (CLEMO, HAWORTH, WALTON, Soc. 1929, 2370, 2375). Liefert beim Erhitzen mit Phenylisocyanat in Gegenwart von Zirkonium(IV)-chlorid auf dem Wasserbad 2.5-Dimethyl-benzoesäure-anilid (Krishnamurti, C. 1929 I, 2156). Beim Schütteln mit 4.4'-Bis-dimethylamino-diphenyldisulfid in Schwefelsäure bei gewöhnlicher Temperatur entsteht 2.x-Bis-[4-dimethylamino-phenylmercapto]-p-xylol (Smiles, Graham. Soc. 121, 2510). Liefert beim Behandeln mit Phthalsäureanhydrid und Aluminiumchlorid anfangs unter Kühlung, später auf dem Wasserbad 2-[2.5-Dimethyl-benzoyl]-benzoesäure (F. Meyer, B. 15 [1882], 638; Clar, John, Hawran, B. 62, 945).

Physiologisches Verhalten: H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 39. — Nachweis neben o- und m-Xylol:

MIGITA, Bl. chem. Soc. Japan 3, 195; C. 1928 II, 1915.

### Umwandlungsprodukte von ungewisser Konstitution aus p-Xylol.

 $\begin{array}{l} \text{Verbindung $C_8H_{11}N$ (Pseudoxylidin)} = \underbrace{ \begin{array}{l} HC = C(CH_3) - CH \\ HC = C(CH_3) - CH \\ \end{array} }_{\text{NH} \ (?)} \quad \text{$B$. In geringer} \\ \text{Menge beim Erwärmen von $p$-Xylol mit Sulfurylazid bis zum Aufhören der Gasentwicklung.} \\ \end{array}$ 

neben einer flüssigen Verbindung C<sub>8</sub>H<sub>9</sub>N (s. u.), einer festen Verbindung C<sub>8</sub>H<sub>9</sub>N vom Schmelzpunkt 112° (s. u.), einer festen Verbindung C<sub>8</sub>H<sub>9</sub>N vom Schmelzpunkt 85° (s. u.) und anderen Produkten (Curtius, Schmidt, B. 55, 1579). — Pyridinartig riechende, leicht flüchtige Flüssigkeit. — Hydrochlorid. Sehr hygroskopische Krystalle, die sich beim Eindampfen mit Salzsaure unter Abspaltung von Ammoniumchlorid zersetzen. — Hellgelbes Platinsalz  $2C_8H_{11}N + H_2PtCl_6$ . Plättchen. F: 148°. Leicht löslich in Wasser. — Dunkelgelbes Platinsalz. Krystalle. F: 181° (Zers.). — Pikrat  $C_8H_{11}N + C_6H_3O_7N_3$ . Plättchen. F: 152°. Ziemlich leicht löslich in Alkohol und Wasser.

Flüssige Verbindung  $C_8H_9N = HC = C(CH_3) - C$   $HC = C(CH_3) - C$  NH(?). B. s. o. - Schwach  $R = (CCH_3) - C$    =pyridinartig riechende Flüssigkeit (Curtius, Schmidt, B. 55, 1579). — C<sub>8</sub>H<sub>8</sub>N + HCl. Krystalle. F: 212—213°. Zersetzt sich beim Eindampfen mit Salzsäure unter Abspaltung von Ammoniumchlorid. — 2C<sub>8</sub>H<sub>9</sub>N + H<sub>2</sub>PtCl<sub>6</sub>. Tafeln. F: 260°. — Pikrat C<sub>8</sub>H<sub>9</sub>N + C<sub>6</sub>H<sub>3</sub>O<sub>7</sub>N<sub>3</sub>. Stark doppelbrechende Prismen. F: 239°. Schwer löslich in Alkohol und Wasser. Verbindung C<sub>8</sub>H<sub>9</sub>N vom Schmelzpunkt 112°. B. s. o. — Krystalle. F: 112° (Curtius, Schwer löslich in Alkohol und Wasser. Schwer löslich in Belten kichter in heißen Wasser achterier.

SCHMIDT, B. 55, 1580). Schwer löslich in kaltem, leichter in heißem Wasser, sehr schwer in Ather. — Reagiert gegen Lackmus stark alkalisch. —  $C_8H_9N+HCl$ . Plättchen. F: 218°. — Hellgelbes Platinsalz. Plättchen. F: 242°. — Dunkelgelbes Platinsalz. F: 181° (Zers.). — Pikrat  $C_8H_9N+C_6H_3O_7N_3$ . Gelbe Nädelchen. F: 218°. Leicht löslich in Alkohol und Wasser.

Verbindung C<sub>8</sub>H<sub>9</sub>N vom Schmelzpunkt 85°. B. s. o. — Nädelchen oder Tafeln. F: 85° (CURTIUS, SCHMIDT, B. 55, 1580). Unlöslich in Salzsäure; sehr leicht löslich in Äther.

# Substitutionsprodukte des p-Xylols.

ω-Chlor-p-xylol, p-Xylylchlorid, 4-Methyl-benzylchlorid  $C_8H_9Cl=CH_3\cdot C_8H_4$  CH<sub>2</sub>Cl (H 384; E I 186). B. Aus 4-Methyl-benzylalkohol beim Einleiten von Chlorwasserstoff bei  $40^{\circ}$  (Οιινιές, R. 41, 305) oder beim Behandeln mit überschüssigem Phosphortrichlorid (INGOLD, ROTHSTEIN, Soc. 1928, 1279). Bei der Einw. von Chlorwasserstoff auf ein Gemisch aus Toluol und Paraformaldehyd in Gegenwart von gepulvertem Zinkchlorid, neben anderen Produkten (Blanc, Bl. [4] 33, 315; C. 1923 I, 1571; BERT, C. r. 186, 373). Zur Darstellung aus Toluol und Chlordimethyläther (E I 186) vgl. a. Stephen, Short, Gladding, Soc. 117, 520. Entsteht auch bei der Einw. von  $\alpha_i\alpha'$ -Dichlor-dimethyläther auf Toluol in Gegenwart von Zinkchlorid (St., Sh., G.). — Flüssigkeit, die sich beim Aufbewahren all300

mählich färbt (O.). Kp<sub>2</sub>: 80° (BL.); Kp<sub>20</sub>: 92—94° (St., Sh., Gl.). Ist mit Wasserdampf flüchtig (St., Sh., GL.). — Beginnt sich bei ca. 170° zu zersetzen (O.). Beim Durchleiten durch ein auf 650° erhitztes Rohr in Anwesenheit von Kohlendioxyd erhält man Styrol (Nangatuck Chemical Co., D. R. P. 476270; Frdl. 16, 329; vgl. Berthelot, C. r. 67 [1868], 395; Bl. [2] 10 [1868], 344). Eine alkoh. Lösung gibt beim Behandeln mit Wasserstoff und Palladiumkohle p-Xylol (E. Merck, D. R. P. 434988; C. 1926 II, 2849; Frdl. 15, 193). Beim Behandeln mit rauchender Salpetersäure in Acetanhydrid bei 10—12° erhält man 3-Nitro-4-methyl-benzylchlorid (I., R.). Geschwindigkeit der Hydrolyse zu p-Tolyl-carbinol und Chlorwasserstoff durch Wasser bei 30° und 82,9°: O., R. 41, 306. Geschwindigkeit der Reaktion mit Natriumäthylat: v. Braun, Engel, A. 436, 320. Liefert bei der Einw. von Chlormethyläther in Gegenwart von Zinn(IV)-chlorid 2.4(oder 3.4)-Bis-chlormethyl-toluol (Sommellet, C. r. 180, 1350).

- 2.5-Dichlor-p-xylol C<sub>8</sub>H<sub>8</sub>Cl<sub>2</sub>, s. nebenstehende Formel (H 384). B. Beim Sättigen einer wäßr. Lösung von p-Xylol-sulfonsäure-(2) mit Chlor (DATTA, BHOUMIK, Am. Soc. 43, 314). Plättehen (aus Alkohol). F: 71° (WHEELER, MORSE, Am. Soc. 46, 2574).
- 2-Chlor-1-methyl-4-chlormethyl-benzol, 3-Chlor-4-methyl-benzyl-chlorid,  $2.\omega'$ -Dichlor p-xylol  $C_8H_3Cl_8$ , s. nebenstehende Formel. B. Aus 2-Chlor-toluol durch Einw. von  $\alpha.\alpha'$ -Dichlor-dimethyläther in Gegenwart von Zink-chlorid-monohydrat (Stephen, Short, Gladding, Soc. 117, 524). Öl. Kp<sub>30</sub>: 124°. Gibt bei der Oxydation mit Permanganat 3-Chlor-4-methyl-benzoesäure.
- 1-Methyl-4-dichlormethyl-benzol,  $\omega.\omega$ -Dichlor-p-xylol, 4-Methyl-benzylidenchlorid, p-Xylylidenchlorid  $C_8H_8Cl_2=CH_3\cdot C_6H_4\cdot CHCl_2$  (H 384). Kp<sub>10</sub>: 98—99° (Pfau, Helv. 9, 665). Liefert beim Behandeln mit Salpeterschwefelsäure unter Eiskühlung nicht näher beschriebenes 3-Nitro-4-methyl-benzylidenchlorid; beim Nitrieren in der Wärme erhält man 3.5-Dinitro-4-methyl-benzylidenchlorid.
- ω.ω'-Dichlor-p-xylol, p-Xylylenchlorid  $C_8H_8Cl_2 = C_6H_4(CH_2Cl)_2$  (H 384; E I 186). B. Neben anderen Produkten beim Einleiten von Chlorwasserstoff in eine Gemisch aus Benzol und Paraformaldehyd in Gegenwart von gepulvertem Zinkchlorid (Blanc, Bl. [4] 33, 315; C. 1923 I, 1571). Bei der Einw. von α.α'-Dichlor-dimethyläther auf Benzol oder Benzylchlorid in Gegenwart von Zinkchlorid bei 35° (Stephen, Short, Gladding, Soc. 117, 519). Blättchen (aus Alkohol). F: 100,5° (St., Sh., Gl.). Kp<sub>20</sub>: 120° (St., Sh., Gl.). Leicht löslich in kaltem Chloroform, Aceton und heißem Alkohol, schwer in Athylacetat, Benzylchlorid, Ather und Eisessig (St., Sh., Gl.). Wird durch Wasser von 80° leicht hydrolysiert (St., Sh., Gl.).
- 2.3.5-Trichlor-p-xylol C<sub>8</sub>H<sub>7</sub>Cl<sub>3</sub>, s. nebenstehende Formel. B. Durch Erwärmen eines Gemisches von 3.5.6-Trichlor-2-amino-p-xylol mit Schwefelsäure, Alkohol und Natriumnitrit-Lösung auf dem Wasserbad (BURES, RUBES, Č. čsl. Lékárn. 8, 262; C. 1929 I, 507). Nadeln. F: 96°. Leicht löslich in Benzol, Alkohol, Äther und Petroläther, unlöslich in Wasser. Sehr leicht mit Wasserdampf flüchtig.
- 2.3.5.6-Tetrachlor-p-xylol  $C_8H_6Cl_4=C_6Cl_4(CH_3)_2$  (H 385; E I 186). B. Durch Einw. von Natriumnitrit auf 3.5.6-Trichlor-2-amino-p-xylol in Salzsäure bei Gegenwart von Kupferbronze bei  $0^0$  (Bureš, Rubeš, Č. čsl. Lékárn. 8, 262; C. 1929 I, 507). Nadeln (aus Alkohol + Äther). F: 223°. Leicht löslich in Benzol, Äther und Petroläther, unlöslich in Wasser. Mit Wasserdampf flüchtig.
- 2.5 Dichlor -1.4 bis-dichlormethyl-benzol, 2.5 .ω.ω.ω'.ω'. Hexachlor-p-xylol C<sub>8</sub>H<sub>4</sub>Cl<sub>8</sub>, s. nebenstehende Formel. B. Durch Chlorieren von 2.5-Dichlor-p-xylol bei 120° im Licht bis zur Aufnahme von 4 Atomen Chlor (Cassella & Co., D. R. P. 360414; C. 1923 II, 406; Frdl. 14, 378). Kp<sub>780</sub>: 313—316° cl. (C. & Co., D. R. P. 360414). Gibt beim Erwärmen mit konz. Schwefelsäure 2.5-Dichlor-terephthalaldehyd (C. & Co., D. R. P. 360414). Bei der Kondensation mit o-Kresotinsäure in Gegenwart von konz. Schwefelsäure und nachfolgenden Oxydation mit Natriumnitrit entsteht ein Farbstoff, der sich in Natronlauge mit violettblauer Farbe löst und Wolle rotbraun färbt; die Färbung wird beim Nachehromieren blau (C. & Co., D. R. P. 344900; C. 1922 II, 327; Frdl. 13, 342).
- 2.3.5-Trichlor-1.4-bis-dichlormethyl-benzol, 2.3.5. $\omega$ . $\omega$ . $\omega'$ . $\omega'$ -Heptachlor-p-xylol  $C_8H_3Cl_7$ , s. nebenstehende Formel. B. Beim Chlorieren von 2.3.5-Trichlor-p-xylol bei 120° im Licht bis zur Aufnahme von 4 Atomen Chlor (CASSELLA & Co., D. R. P. 360414; C. 1923 II, 406; Frdl. 14, 378). Kp<sub>760</sub>: 331° cl. & Co., D. R. P. 360414). Gibt beim Erwärmen mit konz. Schwefelsäure 2.3.5-Trichlor-terephthalaldehyd (C. & Co., D. R. P. 360414). Bei der Kondensation mit o-Kresotinsäure in Gegenwart von konz. Schwefelsäure und nachfolgenden

Oxydation mit Natriumnitrit entsteht ein Farbstoff, der sich in Natriumnitrit entsteht ein Farbstoff, der sich in Natriumnitrit violettblauer Farbe löst und Wolle rotbraun färbt; die Färbung wird beim Nachchromieren blau (C. & Co., D. R. P. 344900; C. 1922 II, 327; Frdl. 13, 342).

- 2.5-Dichlor-1-dichlormethyl-4-trichlormethyl-benzol, 2.5. $\omega$ . $\omega$ . $\omega$ '. $\omega$ '. $\omega$ '. Heptachlor-p-xylol C<sub>8</sub>H<sub>3</sub>Cl<sub>7</sub>, s. nebenstehende Formel. B. Durch Chlorieren von 2.5-Dichlor-p-xylol bei 120° im Licht bis zur Aufnahme von 5 Atomen Chlor (Cassella & Co., D. R. P. 360414; C. 1923 II, 406; Frdl. 14, 378). Kp<sub>760</sub>: 322—324°. Gibt beim Erwärmen mit konz. Schwefelsäure 2.5-Dichlor-4-formylbenzoesäure.
- 2.3.5-Trichlor -1 (oder 4) dichlormethyl -4 (oder 1)-trichlormethyl-benzol  $C_8H_2Cl_8$ , Formel I oder II. B. Durch Chlorieren von 2.3.5-Trichlor-p-xylol im Licht bei 120° bis zur Aufnahme von 5 Atomen Chlor (Cassella & Co., D. R. P. 360414; C. 1923 II, 406; Frdl. 14, 378). F: 120°. Zersetzt sich bei der Destillation unter gewöhnlichem Druck. Gibt beim Erwärmen mit konz. Schwefelsäure die entsprechende Trichlor-terephthalaldehydsäure.
- 2-Brom-p-xylol  $C_8H_9Br$ , s. nebenstehende Formel (H 385; E I 187). B. Durch Behandlung von diazotiertem 2-Amino-p-xylol mit Kupfer(I)-bromid in rauchender Bromwasserstoffsäure (Morgan, Coulson, Soc. 1929, 2211). Kp<sub>770</sub>: 205—2100 (M., C.).  $D_1^{6.5}$ : 1,3582 (v. Auwers, A. 422, 164).  $n_1^{6.5}$ : 1,5468;  $n_1^{19.5}$ : 1,5514;  $n_1^{19.5}$ : 1,5759 (v. Au.). Dichte und Brechungsindices einer Lösung in Chinolin bei 15,20: Krollpfeiffer, A. 430, 216.
- ω-Brom-p-xylol, p-Xylylbromid, 4-Methyl-benzylbromid C<sub>6</sub>H<sub>6</sub>Br = CH<sub>3</sub>· C<sub>6</sub>H<sub>4</sub>· CH<sub>4</sub>Br (H 385; E I 187). B. Bei der Einw. von α.α'-Dibrom-dimethyläther auf Toluol in Gegenwart von Zinkchlorid-monohydrat (Stephen, Short, Gladding, Soc. 117, 520). Beim Sättigen einer Lösung von p-Tolylcarbinol in Benzol mit Bromwasserstoff (Shoesmith, Slater, Soc. 125, 2281). Kp<sub>6</sub>: 100° (Shoe., Sl.); Kp<sub>16</sub>: 109° (St., Short, Gl.). F: 38° (St., Short, Gl.). Geschwindigkeit der Reduktion mit Jodwasserstoff in wäßr. Essigsäure bei 110°: Shoe., Connor, Soc. 1927, 1771. Gibt beim Behandeln mit rauchender Salpetersäure in Acetanhydrid bei 10—12° 2-Nitro-4-methyl-benzylbromid (Ingold, Rothstein, Soc. 1928, 1279). Geschwindigkeit der Hydrolyse mit verd. Alkohol bei 60°: Shoe., Sl. Liefert beim Kochen mit überschüssigem wasserfreiem Kaliumacetat in Eisessig [4-Methyl-benzyl]-acetat (Szperl, Roczniki Chem. 6 [1926], 736).
- 2.5-Dibrom-p-xylol C<sub>8</sub>H<sub>8</sub>Br<sub>2</sub>, s. nebenstehende Formel (H 385; E I 187).

  B. Durch Behandeln von p-Xylol-sulfonsäure-(2) mit überschüssigem Brom in Wasser (Datta, Bhoumir, Am. Soc. 43, 312). Beim Diazotieren von 5-Brom-2-amino-p-xylol in verd. Bromwasserstoffsäure und Verkochen der Diazonium-Lösung mit Kupferpulver und Kaliumbromid (Wheeler, Constable, Am. Soc. 45, 2000). Plättchen (aus verd. Alkohol oder Eisessig). F: 75,5° (Wh., C.).

   Wird durch siedende verdünnte Salpetersäure (1:3) zu 2.5-Dibrom-p-toluylsäure oxydier (Ecker, Seiden, J. pr. [2] 102, 358). Liefert beim Erhitzen mit Anthranilsäure in Nitrobenzol in Gegenwart von Kaliumcarbonat, Kupferstaub und Kupfer(I)-chlorid im Rohr auf 165—180° 2.5-Bis-[2-carboxy-anilino]-p-xylol, N-[4-Brom-2.5-dimethyl-phenyl]-anthranilsäure und andere Produkte (Leśniański, Czerski, Roczniki Chem. 6, 893; C. 1927 I, 3006).
- ω.ω'-Dibrom-p-xylol, p-Xylylenbromid  $C_8H_8Br_2 = C_6H_4(CH_2Br)_2$  (H 385; E I 187). B. Neben anderen Produkten bei der Einw. von α.α'-Dibrom-dimethyläther auf Benzol in Gegenwart von Zinkchlorid (Stephen, Short, Gladding, Soc. 117, 520). — Blättchen (aus Alkohol). F: 144°. — Gibt bei der Oxydation mit Permanganat Terephthalsäure.

302

2.3.5.6 - Tetrabrom - p - xylol  $C_8H_6Br_4 = C_6Br_4(CH_3)_2$  (H 386; vgl. E I 187). Die E I 5, 187 unter dieser Formel beschriebene Verbindung ist vielleicht hauptsächlich 3.4.5.6-Tetrabrom-o-xylol (Crossley, Renouf, Soc. 119, 274). — F: 252° (Birch, Norris, Soc. 1926, 2549).

**2-Jod-p-xy**lol  $C_8H_9I$ , s. nebenstehende Formel (H 386; E I 187). B. Durch Einw. von Kaliumjodid auf diazotiertes 2-Amino-p-xylol (Morgan, Coulson, Soc. 1929, 2211). — Kp<sub>13</sub>: 106—108° (v. Auwers, A. 422, 161); Kp<sub>770</sub>: 230—235° (M., C.).  $D_i^{7/4}$ : 1,6168 (v. Au., A. 422, 164).  $n_{\alpha}^{7/4}$ : 1,5927;  $n_{\beta}^{17/4}$ : 1,5992;  $n_{\beta}^{17/4}$ : 1,6151 (v. Au.).

CH<sub>3</sub>

ω-Jod-p-xylol, p-Xylyljodid, 4-Methyl-benzyljodid  $C_8H_9I=CH_3\cdot C_8H_4\cdot CH_2I$  (Ε I 187). B. Durch Einw. von Jodwasserstoff auf ω-Brom-p-xylol in Eisessig bei 25° (Shoesmith, Slater, Soc. 125, 2281). — Krystalle (aus Petroläther). F: 46—47°. — Geschwindigkeit der Hydrolyse mit verd. Alkohol bei 60°: Sh., Sl.

2-Nitro-p-xylol C<sub>8</sub>H<sub>2</sub>O<sub>2</sub>N, s. nebenstehende Formel (H 387; E I 187). Beugung von Röntgenstrahlen durch flüssiges 2-Nitro-p-xylol: Katz, Z. ang. Ch.
41, 332. — Liefert bei der Reduktion mit Zinkstaub in siedender alkoholischer Kali- oder Natronlauge vorwiegend 2.5.2′.5′. Tetramethyl-azoxybenzol (Bamberger, B. 59, 424). Gibt beim Kochen mit Brom in Eisessig ω′-Brom-2-nitro-p-xylol (Ingold, Rothstein, Soc. 1928, 1220). Bei längerem Erhitzen mit rauchender Schwefelsäure auf 110° entstehen 6-Nitro-p-xylol-sulfonsäure-(2) und 5-Nitro-p-xylol-sulfonsäure-(2) (Choufoer, Versl. Akad. Amsterdam 33, 1006; C. 1925 I, 2486).

ω-Nitro-p-xylol, p-Tolyl-nitromethan oder aci-ω-Nitro-p-xylol, p-Tolyl-iso-nitromethan  $C_8H_9O_2N=CH_3\cdot C_6H_4\cdot CH_2\cdot NO_2$  oder  $CH_3\cdot C_6H_4\cdot CH:NO\cdot OH$  (H 387). B. Analog o-Tolyl-nitromethan (S. 286) (Meisenheimer, Mitarb., A. 468, 217). — Beim Aufbewahren mit 1 Mol Benzaldehyd in wenig Alkohol bei Gegenwart von Methylamin entsteht α-Nitro-4-methyl-stilben (M., Mitarb., A. 468, 249).

2-Nitro-1-methyl-4-chlormethyl-benzol, ω'-Chlor-2-nitro-p-xylol, 3-Nitro-4-methyl-benzylchlorid C<sub>8</sub>H<sub>8</sub>O<sub>2</sub>NCl, s. nebenstehende Formel. B. Neben 3.3'-Dinitro-4.4'-dimethyl-diphenylmethan bei der Einw. von Chlordimethyläther oder von α.α'-Dichlor-dimethyläther auf 2-Nitro-toluol bei Gegenwart von Aluminiumchlorid (Stephen, Short, Gladding, Soc. 117, 525). Entsteht ferner in geringer Menge aus 2-Nitro-toluol und α.α'-Dichlor-dimethyläther in rauchender Schwefelsäure (10% SO<sub>3</sub>-Gehalt) bei 50° (St., Sh., G.). Beim Behandeln von ω-Chlorp-xylol mit rauchender Salpetersäure in Acetanhydrid bei 10—12° (Ingold, Rothstein, Soc. 1928, 1279). — Krystalle (aus Methanol). F: 48° (I., R., Soc. 1928, 1221). Kp<sub>4</sub>: ca. 140° (I., R., Soc. 1928, 1279). Mit Wasserdampf flüchtig (St., Sh., G.). Leicht löslich in Benzol, Chloroform, Alkohol und Aceton (St., Sh., G.). — Gibt bei der Oxydation mit Permanganat Nitroterephthalsäure (St., Sh., G.). Bei der Reduktion mit Zinn und Salzsäure entsteht p-Xylidin (St., Sh., G.). — Der Dampf ätzt die Haut und greift die Schleimhäute an (St., Sh., G.).

2-Nitro-1-methyl-4-brommethyl-benzol,  $\omega'$ -Brom-2-nitro-p-xylol, 3-Nitro-4-methyl-benzylbromid  $C_8H_8O_2NBr$ , s. nebenstehende Formel. B. Beim Behandeln von  $\omega$ -Brom-p-xylol mit rauchender Salpetersäure in Acetanhydrid bei 10—12° (Ingold, Rothstein, Soc. 1928, 1279). Durch Kochen von 2-Nitro-p-xylol mit Brom in Eisessig (I., R., Soc. 1928, 1220). — Nadeln (aus Methanol). F: 76° (I., R., Soc. 1928, 1220).

CH<sub>3</sub>
·NO<sub>2</sub>
·CH<sub>2</sub>Br

2.3-Dinitro-p-xylol  $C_8H_8O_4N_2$ , s. nebenstehende Formel (H 387; E I 188). Liefert bei der Reduktion mit Ammoniumsulfid-Lösung 3-Nitro-2-amino-p-xylol (Holleman, Choufoer, Versl. Akad. Amsterdam 33, 313; C. 1924 II, 632).

CH<sub>3</sub>
.NO<sub>2</sub>
.NO<sub>2</sub>

2.6-Dinitro-p-xylol C<sub>8</sub>H<sub>8</sub>O<sub>4</sub>N<sub>2</sub>, s. nebenstehende Formel (H 388; E I 188). Beim Kochen mit Ammoniumsulfid-Lösung entsteht 6-Nitro-2-amino-p-xylol (Chouforr, Versl. Akad. Amsterdam 33, 1002; C. 1925 I, 2486).

CH<sub>3</sub>
CH<sub>3</sub>
CH<sub>3</sub>

2.6 - Dinitro - 1 - methyl - 4 - dichlormethyl - benzol,  $\omega'$ .  $\omega'$ - Dichlor-2.6 - dinitro - p - xylol, 3.5 - Dinitro - 4 - methyl - benzylidenchlorid  $C_8H_6O_4N_2Cl_2$ , s. nebenstehende Formel. B. Aus 4-Methyl-benzylidenchlorid und einem Gemisch aus rauchender Salpetersäure und konz. Schwefelsäure auf dem Wasserbad (Pfau, Helv. 9, 665). — Krystalle (aus Alkohol). F: 88—89°.

CH3 CHCl2

- **3-Brom-2.6-dinitro-p-xylol**  $C_8H_7O_4N_5Br$ , s. nebenstehende Formel (E I 188). Liefert beim Kochen mit der gleichen Menge Anilin 3.5-Dinitro-2-anilino-p-xylol (Fries, A. 454, 159). Bei 16-stdg. Erhitzen mit alkoh. Ammoniak auf 100° im Rohr entstand 2.6-Dinitro-p-xylol (F.).
- 2.3.5 Trinitro p xylol C<sub>8</sub>H<sub>7</sub>O<sub>6</sub>N<sub>3</sub>, s. nebenstehende Formel (H 389; E I 188). Explosionsdruck: Marqueyrol, Loriette, Bl. [4] 27, 426. Liefert bei der Öxydation mit Chromschwefelsäure bei 50—60° 2.3.6-Trinitrop-toluylsäure (Giua, G. 52 I, 186). Beim Erwärmen mit Benzyliden-äthylamin in Alkohol entsteht 3.5-Dinitro-2-äthylamino-p-xylol (G., Petronio, J. pr. [2] 110, 306).

CH<sub>8</sub>

- 2-Azido-p-xylol, 2.5-Dimethyl-phenylazid C<sub>8</sub>H<sub>2</sub>N<sub>3</sub>, s. nebenstehende Formel. B. Analog wie 4-Azido-m-xylol (S. 296) (Brun, Dissert. [Zürich 1902], S. 43). Entsteht ferner beim Behandeln von 2.5-Dimethyl-phenylhydrazin mit Natriumnitrit und verd. Salzsäure unter Kühlung (Bertho, Hölder, J. pr. [2] 119, 183). Gelbes Öl. Kp<sub>15</sub>: 90° (Be., H.). Mit Wasserdampf flüchtig (Be., H.). Löslich in Ather (Be., H.). Liefert bei tagelangem Kochen mit einer Lösung von Natrium in Propylalkohol 1-p-Xylyl-4-methyl-1.2.3-triazol, p-Xylidin und wenig p-Xylenol; reagiert ähnlich mit Isoamylalkohol und β-Phenyl-āthylalkohol, aber nicht oder nur äußerst langsam mit Athyl- und Butylalkohol (Be., H.). Beim Behandeln mit Acetylendicarbonsäure-dimethylester bei 75° entsteht 1-p-Xylyl-1.2.3-triazol-dicarbonsäure-(4.5)-dimethylester (Be., H., J. pr. [2] 119, 194). Liefert beim Erwärmen mit Alkohol und konz. Schwefelsäure auf dem Wasserbad neben anderen Produkten 4-Amino-p-xylenol sowie dessen Äthyläther und p-Xylohydrochinon sowie dessen Monoāthyläther (Br., Dissert., S. 52; Bamberger, A. 443, 201). Ähnlich verläuft die Reaktion mit Methanol und Schwefelsäure (Br.; Ba.).
- Isopropyliden cyclopentadien,  $\omega.\omega$  Dimethyl fulven  $C_8H_{10} =$  $C: C(CH_3)_3$  (H 389; EI 188). Beim Behandeln von  $\omega.\omega$ -Dimethyl-fulven mit Antimontrichlorid in kaltem Chloroform entsteht eine braune, über Rot in Violett übergehende Färbung, mit Eisenchlorid eine tief dunkelrote Färbung (v. EULER, WILLSTAEDT, Ark. Kemi [B] 10, Nr. 9, S. 4; C. 1929 II, 2052,) Bei der Einw. von Antimontrichlorid in wenig Chloroform ohne Kühlung erfolgt in heftiger Reaktion Verharzung (v. Eu., W.). Liefert mit Natrium in Äther ein rotes, flockiges Produkt, das beim Behandeln mit Kohlendioxyd und Verestern mit Methanol und Salzsäure 2.3-Dimethyl-2.3-bis-[1-carbomethoxy-BERGMANN, A. 463, 60). Beim Behandeln mit Maleinsäureanhydrid in Benzol entsteht ----CH--CO HC--ČH---[3.6-Dimethylvinyliden-4-tetrahydrophthalsäure]-anhydrid  $C:C(CH_3)_2$ O (?) (Syst. Nr. 2479) (DIELS, ALDER, B. 62, 2087). [GERISCH]

# 4. Kohlenwasserstoffe $C_9H_{12}$ .

1. Propylbenzol, 1-Phenyl-propan C<sub>9</sub>H<sub>12</sub> = C<sub>5</sub>H<sub>5</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub> (H 390; E I 189). B. Durch Einw. von Propylbromid und Natrium auf Chlorbenzol oder Brombenzol in Benzol (Stratford), Ann. Off. Combust. Liq. 4, 319; C. 1929 II, 1286). Beim Erhitzen von Benzylchlorid mit Äthylmagnesiumbromid in Petroläther oder Cyclohexan (Bert, C. r. 186, 588). Aus Benzylmagnesiumchlorid beim Behandeln mit p-Toluolsulfonsäure-äthylester in Äther (Gilman, Beaber, Am. Soc. 47, 522, 523). Zur Bildung aus Benzylmagnesiumchlorid und Diäthylsulfat in Äther vgl. a. Gr., Hoyle, Am. Soc. 44, 2623, 2625. Entsteht ferner beim Behandeln von [γ-Chlor-propyl]-benzol mit Natrium in Äther oder Benzol (v. Braun, Deutsch, B. 45 [1912], 2179) oder mit Magnesium in Äther (Bert, C. r. 186, 374) oder von [γ-Brom-propyl]-benzol mit Magnesium in Ather (Rufe, Bürgin, B. 43 [1910], 178; vgl. a. v. Br., B. 44 [1911], 2872; v. Br., D., B. 45 [1912], 2176). Bei der Hydrierung von Zimtalkohol oder Zimtaldehyd in Gegenwart von Palladium(II)-chlorid in Aceton bei gewöhnlicher Temperatur (Straus, Grindel, A. 439, 307, 308). Aus Butyl-cinnamyläther bei der Einw. von Natrium in Toluol und absol. Alkohol, zuletzt in der Wärme (Bert,

ANGLADE, C. r. 189, 645). Bei der Reduktion von Propiophenon mit Wasserstoff in Gegenwart von Nickel bei ca. 300° (Sabatier, Mailhe, C. r. 158 [1914], 833) oder in Gegenwart von Kupfer bei 350° (Sa., Kubota, C. r. 172, 735). Zur Bildung bei der Reduktion von Chinolin mit Jodwasserstoffsäure vgl. a. Lindner, M. 42, 432.

E: —101,55° (TIMMERMANS, Bl. Soc. chim. Belg. 30, 64; C. 1921 III, 287), —99,2° (TI., HENNAUT-ROLAND, J. Chim. phys. 27 [1930], 404. Kp<sub>760</sub>: 158,9° (Lecat, Ann. Soc. scient. Bruxelles 48 I [1928], 117, 119; 49 [1929], 21, 112), 159,55° (korr.) (TI.), 159,45° (TI., He.-Ro.). Abhāngigkeit des Siedepunkts vom Druck: TI., He.-Ro. D°: 0,87864; D¹: 0,86629; D¹°: 0,86214; D²°: 0,85380 (TI., He.-Ro.). Viscositāt bei 15°: 0,00917, bei 30°: 0,00746 g/cmsec (TI., He.-Ro.). Oberflächenspannung bei 15°: 29,52, bei 20°: 29,01, bei 30°: 28,02 dyn/cm (TI., He.-Ro.). Parachor: Sugden, Soc. 125, 1181. Verbrennungswärme bei konstantem Volumen: 1244,0 kcal/Mol (Swietoslawski, Bobinska, Am. Soc. 49, 2478; vgl. Richards, Barry, Am. Soc. 37, 1019). n⁵: 1,4993; n⁵: 1,4924 (v. Auwers, Kolligs, B. 55, 26); n˚a: 1,49016; n¹he: 1,49436; n¹h: 1,50478 (TI.; He.-Ro.). Brechungsindices für verschiedene Helium-Linien bei 15°: TI., He.-Ro. Absorptionsspektrum im Ultrarot: Lecomte, C. r. 178, 1530, 1531. Beugung von Röntgenstrahlen an flüssigem Propylbenzol vgl. Smyth, Am. Soc. 46, 2153.

Löslichkeit in Wasser bei 15°: FÜHNER, B. 57, 514. Leicht löslich in flüssigem Schwefeldioxyd mit gelber Farbe, unlöslich in flüssigem Ammoniak (DE CARLI, G. 57, 351). Thermische Analyse des binären Systems mit Bromwasserstoff: Maass, Boomer, Morrison, Am. Soc. 45, 1435. Bildet azeotrope Gemische mit Isobutylcarbinol (Kp<sub>760</sub>: 130,6°; ca. 17 Gew.- % Propylbenzol), n-Hexylalkohol (Kp<sub>760</sub>: 152,5°; 55 Gew.- % Propylbenzol), Cyclohexanol (Kp<sub>760</sub>: 153,8°; 60 Gew.- % Propylbenzol), Phenol (Kp<sub>760</sub>: 158,0°; ca. 96 Gew.- % Propylbenzol), Buttersäure (Kp<sub>760</sub>: 154,5°; ca. 70 Gew.- % Propylbenzol), Isobuttersäure (Kp<sub>760</sub>: 149,3°; 51 Gew.- % Propylbenzol), Methyllactat (Kp<sub>760</sub>: 140°; ca. 12 Gew.- % Propylbenzol) und Furfurol (Kp<sub>760</sub>: 152,0°; 60 Gew.- % Propylbenzol) (Lecat, Ann. Soc. scient. Bruxelles 48 I [1928], 54, 58, 117, 119; 48 II [1928], 114; 49 [1929], 21, 112).

Zersetzung durch Sonnenlicht bei Gegenwart von Uransalzen: Alov, Valdiguir, Bl. [4] 37, 1138. Wird durch Sauerstoff bei ca. 78° zu Propiophenon oxydiert; bei ca. 100° tritt Verharzung ein (Stephens, Am. Soc. 48, 2921). Liefert bei der Hydrierung bei Gegen

Zersetzung durch Sonnenlicht bei Gegenwart von Uransalzen: ALOY, VALDIGUIÉ, Bl. [4] 37, 1138. Wird durch Sauerstoff bei ca. 78° zu Propiophenon oxydiert; bei ca. 100° tritt Verharzung ein (Stephens, Am. Soc. 48, 2921). Liefert bei der Hydrierung bei Gegenwart von Platinoxyd in Eisessig Propylcyclohexan (Stratford, Ann. Off. Combust. liq. 4, 98, 324, 328; C. 1929 II, 1286). Beim Einleiten von Acetylen in Propylbenzol bei Gegenwart von konz. Schwefelsäure und Quecksilber(II)-oxyd unterhalb 10° bildet sich wenig 1.1-Bis-[4(?)-propyl-phenyl]-äthan (Syst. Nr. 479) (Reilly, Nieuwland, Am. Soc. 50, 2565). Gibt beim Behandeln mit Paraformaldehyd und Chlorwasserstoff in Gegenwart von geschmolzenem Zinkchlorid 1-Chlormethyl-4-propyl-benzol (Bert, C. r. 186, 373); dieses bildet sich auch bei der Einw. von Chlordimethyläther in Gegenwart von Zinn(IV)-chlorid (Sommellet, C. r. 180, 1350). Liefert beim Erhitzen mit Benzylchlorid in Gegenwart von etwas Zinkstaub auf ca. 150° 4-Propyl-diphenylmethan (Fuson, Am. Soc. 48, 2942).

Propylbenzol geht im Organismus des Kaninchens nach subcutaner Injektion in Hippursäure über (Thierfelder, Klenk, H. 141, 21). Zum physiologischen Verhalten vgl. H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 43.

 $[\alpha\text{-Chlor-propyl}]$ -benzol, 1-Chlor-1-phenyl-propan, Äthylphenylchlormethan  $C_0H_{11}Cl=C_0H_K$ ·CHCl· $C_0H_K$ .

a) Linksdrehende Form (E I 189). B. Bei der Einw. von Thionylchlorid auf linksdrehendes Äthyl-phenyl-carbinol (Levene, Mikeska, J. biol. Chem. 70, 361). — Kpca.15: 86—90°; [α]<sup>10</sup>: —50,3° (Äther; c = 13) (L., M., J. biol. Chem. 70, 361). — Liefert beim Kochen mit alkoh. Kaliumhydrosulfid-Lösung rechtsdrehendes [α-Phenyl-propyl]-mercaptan (L., M., J. biol. Chem. 70, 378).

b) Inaktive Form (H 391; E I 190). B. Aus inakt. Athyl-phenyl-carbinol beim Behandeln mit Chlorwasserstoff bei Zimmertemperatur (Courtot, Priv.-Mitt.), beim Zusammenschmelzen mit 4-Nitro-benzoylchlorid auf dem Wasserbad oder beim Kochen mit 4-Nitro-benzoylchlorid in absol. Ather (Meisenheimer, A. 442, 193). Neben anderen Verbindungen beim Behandeln von [α-Brom-propyl]-benzol mit Magnesium in Ather und tropfenweisen Zugeben der äther. Lösung der Magnesiumverbindung zu einer Lösung von Chlorcyan in absol. Ather (Grignard, Ono, Bl. [4] 39, 1593). — Kp<sub>18</sub>: 86—87° (C., Priv.-Mitt.); Kp<sub>Ca.1</sub>: 50—52° (M.). — Gibt beim Behandeln mit verd. Chromschwefelsäure bei 68° Athylphenyl-keton (C., Pierron, C. r. 188, 1502). Geschwindigkeit der Hydrolyse in wäßr. Lösung bei Zimmertemperatur und bei 68°: C., P.

[ $\beta$ -Chlor-propyl]-benzol, 2-Chlor-1-phenyl-propan,  $\beta$ -Phenyl-isopropylchlorid  $C_0H_{11}Cl = C_0H_{\delta}\cdot CH_2\cdot CHCl\cdot CH_3$  (H 391). B. In geringer Menge bei der Einw. von Allyl-

alkohol auf Benzol in Gegenwart von Aluminiumchlorid bei 20-25° (Huston, Sager, Am. Soc. 48, 1957). — Kp: 205—207°; Kp<sub>18</sub>: 90,5—92,5°. — Liefert bei der Oxydation mit Kaliumpermanganat Benzoesäure.

[γ-Chlor-propyl]-benzol, 3-Chlor-1-phenyl-propan, γ-Phenyl-propylchlorid  $C_0H_{11}Cl = C_0H_5 \cdot CH_2 \cdot CH_2 \cdot CH_2Cl$  (H 391; E I 190). B. Beim Behandeln von Phenylmagnesiumbromid mit p-Toluolsulfonsäure-[γ-chlor-propylester] in Äther (GILMAN, BEABER, Am. Soc. 45, 842; Rossander, Marvel, Am. Soc. 50, 1495) oder von Benzylmagnesiumchlorid mit p-Toluolsulfonsäure-[β-chlor-āthylester] in Äther (GI., Bea.; Bert, C. r. 186, 374). Aus γ-Phenyl-propylalkohol beim Erhitzen mit rauchender Salzsäure auf 100° (CONANT, Kirner, Am. Soc. 46, 242; vgl. a. Berr), beim Kochen mit je 2 Tln. konz. Salzsäure und wasserfreiem Zinkchlorid (Norris, Taylor, Am. Soc. 46, 756) oder beim Behandeln mit Thionylchlorid in Gegenwart von Diäthylanilin zunächst bei Zimmertemperatur, dann bei 110—120° (Gray, Soc. 127, 1156; vgl. Kindler, A. 452, 119 Anm. 3). — Kp<sub>0</sub>: 85—87° (C., K.); Kp<sub>0</sub>: 89—93°;  $\mathbb{D}_{2}^{2}$ : 1,0801;  $\mathbb{n}_{1}^{2}$ : 1,5160 (R., Ma.). — Geschwindigkeit der Umsetzung mit Kaliumjodid in Aceton bei 50° und 60°: C., K. Geschwindigkeit der Reaktion mit Natriumäthylat in absol. Alkohol bei 31,6°: Kindler.

2.1°-Dichlor-1-propyl-benzol, 2-Chlor-1-[ $\gamma$ -chlor-propyl]-benzol  $C_9H_{10}Cl_2=C_9H_4Cl\cdot CH_2\cdot CH_2\cdot CH_2Cl$ . B. Durch Behandeln von diazotiertem 2-Amino-1-[ $\gamma$ -chlor-propyl]-benzol mit auf 60—70° erwärmter Kupfer(I)-chlorid-Lösung (Meisenheimer, B. 61, 718). — Fast farbloses, mit Wasserdampf flüchtiges Ol. Kp20: 1120. — Reagiert mit Magnesium nach Grignard bei Anwendung von siedendem Diisoamyläther als Lösungs-

[ $\alpha$ -Brom - propyl] - benzol, 1-Brom - 1-phenyl - propan, Äthylphenylbrommethan  $C_9H_{11}Br=C_9H_5\cdot CHBr\cdot C_2H_5$ .

a) Linksdrehende Form. B. Beim Sättigen von rechtsdrehendem Äthyl-phenyl-

carbinol mit Bromwasserstoff bei 0° (LEVENE, MIKESKA, J. biol. Chem. 70, 362). — Kp<sub>0,04</sub>:

carbinol mit Bromwasserstoff bei 0° (LEVENE, MIKESKA, J. viol. Chem. 70, 362). — Kp<sub>0.04</sub>: 59—63°. [α]<sub>p</sub><sup>1</sup>: —5,7° (Äther; c = 10). — Wird beim Destillieren teilweise racemisiert. b) Inaktive Form (E I 190). B. Aus inakt. Athyl-phenyl-carbinol und rauchender Bromwasserstoffsäure (Grionard, Ono, Bl. [4] 39, 1593). — Kp<sub>15</sub>: 112—114°; D!°: 1,3098; n<sup>1</sup>/<sub>10</sub>: 1,5517 (G., O.). — Liefert beim Schütteln mit kalter Natriumsulfit-Lösung Propenylbenzol und das Natriumsalz der 1-Phenyl-propan-sulfonsäure-(1); in der Hitze entsteht hauptsächlich Propenylbenzol (Evans, Mabott, Turner, Soc. 1927, 1165). Die äther. Lösung der Magnesiumverbindung liefert bei tropfenweisem Zugeben zu einer Lösung von Chlorcyan in absol. Ather [ $\alpha$ -Chlor-propyl]-benzol, wenig Athyl-phenyl-acetonitril und etwas 3.4-Diphenyl-hexan (F: 89,5—90,5) (G., O.).

[γ-Brom-propyl]-benzol, 3-Brom-1-phenyl-propan, γ-Phenyl-propylbromid C<sub>9</sub>H<sub>11</sub>Br = C<sub>4</sub>H<sub>5</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>Br (H 391; E I 190). B. Beim Behandeln von γ-Phenyl-propylalkohol mit Phosphorpentabromid in der Kälte (Clutterbuck, Cohen, Soc. 123, 2509). Zur Bildung aus Phenyl-[γ-phenyl-propyl]-äther und Bromwasserstoffsäure in Eisessig vgl. a. Leuchs, Sander, B. 58, 2201 Ann. 5. — Kp<sub>15</sub>: 111° (Cl., Co.); Kp<sub>14</sub>: 115° (L., Sa.). Liefert beim Kochen mit Na SO Lösung das Natriumsalz der 1-Phenyl-propan-sulfonsäure-(3) (CL., Co.). Beim Behandeln mit Magnesium in Äther unter Zusatz von Benzaldehyd entsteht je nach den Bedingungen Phenyl-[y-phenyl-propyl]-carbinol oder Phenyl-[y-phenyl-propyl]-keton (Stoermer, Schenck, B. 61, 2320, 2321; vgl. Kuhn, Winterstein, Helv. 11, 130).

 $[\alpha, \beta$  - Dibrom - propyl] - benzel, 1.2 - Dibrom - 1 - phenyl - propan  $C_0H_{10}Br_2 = C_0H_5$ . CHBr·CHBr·CH<sub>3</sub> (H 392; E I 190). B. Aus Propenylbenzol und Brom in Chloroform (Ramat, Amagat, A. ch. [10] 8, 303; Huston, Sager, Am. Soc. 48, 1957) oder Ather (Späth, Koller, B. 58, 1269). — F: 66° (R., A.; Sp., K.), 66—66,5° (H., S.). — Liefert beim Erhitzen mit absol. Methanol im Rohr auf 100° 2-Brom-1-methoxy-1-phenyl-propan (Sp., K.).

[β.γ-Dibrom-propyl]-bensol, 2.3-Dibrom-1-phenyl-propan  $C_0H_{10}Br_2 = C_0H_0 \cdot CH_2 \cdot CH_3 \cdot CH_3 \cdot CH_3 \cdot CH_4 \cdot CH_$ 

[ $\alpha$ -Chlor- $\beta$ . $\gamma$ -dibrom-propyl]-benzol, 1-Chlor-2.3-dibrom-1-phenyl-propan  $C_9H_9ClBr_9=C_6H_5\cdot CHCl\cdot CHBr\cdot CH_9Br$ . Die H 392 unter dieser Formel beschriebene Verbindung ist mit [ $\gamma$ -Chlor- $\alpha$ . $\beta$ -dibrom-propyl]-benzol (H 392) zu identifizieren, da das Ausgangsmaterial sich als Cinnamylchlorid erwies (vgl. Meisenheimer, Schmidt, A. **475**, 178).

- [ $\gamma$ -Chlor- $\beta$ . $\gamma$ -dibrom-propyl]-benzol, 3-Chlor-2.3-dibrom-1-phenyl-propan  $C_9H_9ClBr_2=C_6H_5\cdot CH_3\cdot CHBr\cdot CHClBr$ . B. Aus [ $\gamma$ -Chlor-allyl]-benzol und Brom (Beer, C. r. 180, 1504). Hellgelbes Ol von jodoformähnlichem Geruch. Kp<sub>12</sub>: 160°. D<sub>4</sub>°: 1,727. n<sub>10</sub>°: 1,611.
- 4.1¹.1²-Tribrom-1-propyl-benzol, 4-Brom-1- $[\alpha.\beta$ -dibrom-propyl]-benzol  $C_9H_9Br_8=C_9H_4Br\cdot CHBr\cdot CH_3$  (H 392). F: 61—63° (Ziegler, Tiemann, B. 55, 3415).
- 4.1<sup>2</sup>.1<sup>3</sup>-Tribrom-1-propyl-bensol, 4-Brom-1-[β.γ-dibrom-propyl]-bensol C<sub>3</sub>H<sub>3</sub>Br<sub>3</sub> = C<sub>4</sub>H<sub>4</sub>Br·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>3</sub>·CH<sub>3</sub>Br. B. Aus 4-Brom-1-allyl-benzol und Brom (Queller, Bl. [4] 45, 78; C. r. 182, 1284). Kp<sub>11</sub>: 178—180°. D<sub>4</sub><sup>11</sup>: 1,950. n<sub>2</sub><sup>12</sup>: 1,622. Zersetzt sich bei der Destillation unter teilweiser Bromwasserstoff-Abspaltung. Liefert bei der Einw. von Zinkstaub in siedendem Eisessig 4-Brom-1-allyl-benzol.
- [ $\alpha$ . $\beta$ - $\gamma$ -Tribrom-propyl]-benzol, 1.2.3-Tribrom-1-phenyl-propan  $C_9H_9Br_3=C_6H_8$ ·CHBr·CH<sub>2</sub>Br (H 392). B. Beim Behandeln von Cinnamylbromid mit Brom in Chloroform im Eis-Kochsalz-Gemisch (MOUREU, GALLAGHER, Bl. [4] 29, 1014). Aus  $\alpha$ -Phenylallylalkohol und Brom in Schwefelkohlenstoff unter Eiskühlung (M., G.). F: 127° (BOUIS, A. ch. [10] 9, 447), 128° (M., G.).
- [ $\beta$ . $\beta$ . $\gamma$ -Tribrom-propyl]-benzol, 2.2.3-Tribrom-1-phenyl-propan  $C_9H_9Br_3=C_9H_8$ ·  $CH_3$ ·  $CBr_2$ ·  $CH_2Br$ . B. In geringer Menge aus [ $\beta$ -Brom-allyl]-benzol und Brom in Chloroform (Lespieau, Garreau, C.r. 171, 112; L., Bl. [4] 29, 532).  $Kp_{18}$ : 175—1760 (L., G.; L.).
- 13-Chlor-4.12.13-tribrom-1-propyl-benzol, 4-Brom-1-[ $\gamma$ -chlor- $\beta$ . $\gamma$ -dibrom-propyl-benzol  $C_9H_8ClBr_3=C_6H_4Br\cdot CH_2\cdot CHBr\cdot CHClBr.$  B. Aus 4-Brom-1-[ $\gamma$ -chlor-allyl]-benzol und Brom (Bert, C. r. 180, 1506). Kp<sub>12</sub>: 204°. D<sub>1</sub><sup>9,5</sup>: 1,975. n<sub>2</sub><sup>9,5</sup>: 1,626.
- [ $\alpha.\alpha.\beta.\beta$ -Tetrabrom-propyl]-benzol, 1.1.2.2-Tetrabrom-1-phenyl-propan C<sub>0</sub>H<sub>0</sub>Br<sub>4</sub> = C<sub>6</sub>H<sub>5</sub>·CBr<sub>2</sub>·CH<sub>3</sub>·CH<sub>3</sub> (H 392). F: 78—79° (Johnson, McEwen, Am. Soc. 48, 474).
- 2 Jod 1 propyl benzol  $C_9H_{11}I=C_8H_4I\cdot CH_2\cdot C_2H_5$ . B. Durch Umsetzung von diazotiertem 2-Amino-1-propyl-benzol mit Kaliumjodid (Meisenheimer, B. 61, 719). Hellbraunes Öl. Kp<sub>20</sub>: 121°. Umsetzung mit Magnesium in Äther: M.
- [ $\gamma$ -Jod-propyl]-benzol, 3-Jod-1-phenyl-propan,  $\gamma$ -Phenyl-propyljodid  $C_9H_{11}I=C_6H_5\cdot CH_2\cdot CH_2\cdot CH_2\cdot CH_2I$  (H 393; E I 191). Reagiert leicht mit Magnesium in Äther (Meisenheimer, B. 61, 719).
- 2-Jod-1-[ $\gamma$ -chlor-propyl]-benzol  $C_9H_{10}CII=C_8H_4I\cdot CH_2\cdot CH$
- 2-Chlor-1-[ $\gamma$ -jod-propyl]-benzol  $C_9H_{10}CII = C_8H_4Cl\cdot CH_2\cdot CH_2\cdot CH_2I$ . B. Beim Kochen von 2-Chlor-1-[ $\gamma$ -chlor-propyl]-benzol mit 2 Mol Natriumjodid in absol. Alkohol (Meisenheimer, B. 61, 719). Kp<sub>20</sub>: 142°. Reagiert mit Magnesium in siedendem Diisoamyläther.
- 2.13-Dijod-1-propyl-benzol, 2-Jod- $[\gamma\text{-jod-propyl}]$ -benzol  $C_0H_{10}I_2 = C_0H_4I \cdot CH_2 \cdot CH_2 \cdot CH_2I$ . B. Beim Kochen von 2-Jod-1- $[\gamma\text{-chlor-propyl}]$ -benzol mit 2 Mol Natriumjodid in absol. Alkohol (Meisenheimer, B. 61, 719). Goldgelbes Öl. Siedet im Hochvakuum bei 132—134°. Reagiert mit Magnesium in siedendem Benzol oder siedendem Diisoamyläther.
- [β-Chlor-β-nitroso-propyl]-benzol, 2-Chlor-2-nitroso-1-phenyl-propan, Methylbenzylchlornitrosomethan  $C_0H_{10}$ ONCl =  $C_0H_5$ ·CCl(NO)·CH<sub>3</sub>. B. Beim Behandeln von Methyl-benzyl-ketoxim mit Nitrosylchlorid in Äther (RHEINBOLDT, DEWALD, A. 455, 307). Tiefblaues Öl von stechendem Geruch. Kp<sub>4</sub>: 65°.
- [β-Chlor-β-nitro-propyl]-benzol, 2-Chlor-2-nitro-1-phenyl-propan, Methyl-benzylchlornitromethan  $C_9H_{10}O_9NCl=C_9H_5\cdot CH_2\cdot CCl(NO_8)\cdot \tilde{C}H_3$ . B. Beim Behandeln von [β-Chlor-β-nitroso-propyl]-benzol mit Salpetersäure in Eisessig (Rheinboldt, Dewald, A. 455, 307). Öl. Kp<sub>2</sub>: 88°.
- 2. Isopropylbenzol, 2-Phenyl-propan, Cumol C<sub>2</sub>H<sub>12</sub> = C<sub>6</sub>H<sub>5</sub>·CH(CH<sub>2</sub>)<sub>2</sub> (H 393; E I 191). V. Im Erdöl von Burma (Mulany, Watson, J. Soc. chem. Ind. 43, 311 T; C. 1925 I, 186). B. Zur Bildung aus Benzol und Isopropylbromid in Gegenwart von Aluminiumchlorid vgl. a. Bert, Bl. [4] 37, 1264; Stratford, Ann. Off. Combust. liq. 4, 320; C. 1929 II, 1286. Entsteht ferner aus Benzol bei der Einw. von Propylen in Gegenwart von Aluminiumchlorid bei 70° (Berry, Reid, Am. Soc. 49, 3148), beim Behandeln mit Isopropylalkohol oder Propylalkohol in 80%iger Schwefelsäure bei 65° (H. Meyer, Bernhauer, M. 53/54, 725) oder bei der Einw. von Thymol oder Carvacrol in Gegenwart von Aluminiumchlorid und Chlorwasserstoff bei ca. 50° (Bell, Henry, Soc. 1928, 2216, 2220, 2221). Bei

der Umsetzung von Phenylmagnesiumbromid mit Diisopropylsulfat in Äther (Bert, C. r.

bis 152,55° (T.). Verbrennungswärme bei konstantem Volumen: 1244,8 kcal/Mol (Swisto-SLAWSKI, BOBINSKA, Am. Soc. 49, 2478; vgl. Richards, Barry, Am. Soc. 37, 1019). n. 1. 1,4989; not 1,4920 (v. Auwers, Kolligs, B. 55, 26). Absorptionsspektrum im Ultrarot: W. W. COBLENTZ, Investigations of infra-red spectra [Washington 1905], S. 153, 161, 238; C. F. MEYER, BRONK, LEVIN, J. opt. Soc. Am. 15, 259, 264; C. 1928 I, 1747. Beugung von Röntgenstrahlen in flüssigem Isopropylbenzol: Stewart, Phys. Rev. [2] 33, 892; C. 1929 II, 1258. Dielektr.-Konst. zwischen 14,4° (3,023) und 114,2° (2,581): Velasco-Durantez, An. Soc. españ. 25, 295; C. 1927 II, 2649. Über das Dipolmoment von flüssigem Cumol vgl. Smyth, Am. Soc. 46, 2153. Leicht löslich in flüssigem Schwefeldioxyd, schwer in flüssigem Ammoniak mit gelber Farbe (De Carll, G. 57, 351). Magnetische Doppelbrechung der binären Gemische mit Nitrobenzol, Nitrotoluol und Chlornaphthalin: Szivessy, Richartz, Ann. Phys. [4] 86, 413, 416, 418.

Thermische Zersetzung in einer Stahlbombe bei 450°: HERNDON, REID, Am. Soc. 50, 3072. Wird durch Sauerstoff, am besten bei Gegenwart von Wasser, bei 80-100° zu Acetophenon und Ameisensäure oxydiert (STEPHENS, Am. Soc. 48, 2921). Acetophenon entsteht auch beim Behandeln mit Chromtrioxyd in Eisessig und Schwefelsäure (H. MEYER, BERN-HAUER, M. 53/54, 724, 726). Bei der Hydrierung bei Gegenwart von Platinoxyd in Eisessig bildet sich Isopropylcyclohexan (Stratford, Ann. Off. Combust. liq. 4, 98, 324; C. 1929 II, 1286). Liefert bei der Einw. von Salpetersäure (D. 1,5) in Gegenwart von Acetanhydrid und Eisessig zuerst bei Zimmertemperatur, dann bei 45° in ca. 90% Ausbeute ein Gemisch von 14 Tln. 2-Nitro-cumol und 86 Tln. 4-Nitro-cumol, während bei der Nitrierung mit Acetylnitrat unterhalb 30° in 83% Ausbeute ein Gemisch von 22 Tln. 2-Nitro-cumol und 78 Tln. 4-Nitro-cumol entsteht (VAVON, CALLIER, Bl. [4] 41, 357, 358). Über Nitrierung mit Salpeterschwefelsäure vgl. a. Bert, Dorier, B. [4] 41, 1171. Beim Einleiten des Dampfes in auf 240° erhitzte konz. Schwefelsäure entsteht 1-Isopropyl-benzol-disulfonsäure-(x.x) (H. Mey., Bern.). Beim Einleiten von Acetylen in Isopropylbenzol bei Gegenwart von konz. Schwefelsäure und Quecksilber(II)-oxyd unterhalb 10° bildet sich wenig 1.1-Bis-[4-isopropylphenyl]-äthan (S. 528) (Reilly, Nieuwland, Am. Soc. 50, 2565). Bei der Umsetzung mit Formaldehyd oder Paraformaldehyd in Gegenwart von Zinkchlorid unter Durchleiten von Chlorwasserstoff bildet sich 1-Chlormethyl-4-isopropyl-benzol (Blanc, Bl. [4] 33, 317; C. 1923 I, 1571; BERT, C. r. 186, 373); dieses entsteht auch beim Behandeln mit Chlordimethyläther in Gegenwart von Zinn(IV)-chlorid (SOMMELET, C. r. 180, 1350). Liefert bei der Einw. von Athoxalylchlorid in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff bei 40—50° 4-Isopropyl-phenylglyoxylsäure-äthylester (Syst. Nr. 1292) (Bert, Bl. [4] 37, 1403). Physiologisches Verhalten: H. Staub in J. Houben, Fortschritte der Heilstoffchemie,

2. Abt. Bd. II [Berlin-Leipzig 1932], S. 43.  $\alpha$ -Phenyl-isopropyl-kalium  $C_6H_5$ -CK(CH<sub>3</sub>)<sub>2</sub> s. Syst. Nr. 2357.

**4-Chlor-1-isopropyl-benzol**, **4-Chlor-cumol**  $C_9H_{11}Cl = C_6H_4Cl \cdot CH(CH_8)_2$  (H 395). B. Beim Behandeln von Chlorbenzol mit Isopropylalkohol in 80% iger Schwefelsäure bei 700 (H. MEYER, BERNHAUER, M. 53/54, 741). — Liefert bei der Oxydation mit Salpetersäure (D: 1,2) 4-Chlor-benzoesäure.

[ $\alpha$ -Chlor-isopropyl]-benzol, 2-Chlor-2-phenyl-propan,  $\alpha$ -Phenyl-isopropyl-chlorid  $C_0H_{11}Cl=C_0H_5$ -CCl(CH<sub>3</sub>)<sub>3</sub> (H 395). B. Zur Bildung aus Dimethylphenylcarbinol und Chlorwasserstoff vgl. a. Ziegler, Mitarb., A. 473, 18; Hoffman, Am. Soc. 51, 2546. -Gibt beim Behandeln mit Natriummalonester in absol. Alkohol + Äther hauptsächlich Isopropenylbenzol (S. 374) neben geringen Mengen einer Verbindung, die beim Kochen mit Kalilauge und nachfolgenden Erhitzen auf 200° β-Phenyl-isovaleriansäure (Syst. Nr. 944) liefert (H.).

4-Brom-1-isopropyl-benzol, 4-Brom-cumol  $C_0H_{11}Br = C_0H_4Br \cdot CH(CH_3)_2$  (H 395). Kp729: 216-2170; Kp28: 1110; D4: 1,289; n2: 1,539 (BERT, Bl. [4] 37, 1265).

[ $\alpha.\beta$ -Dibrom-isopropyl]-benzol, 1.2-Dibrom-2-phenyl-propan  $C_9H_{10}Br_2=C_6H_5$ CBr(CH<sub>3</sub>)·CH<sub>2</sub>Br (H 395). B. Aus Isopropenylbenzol und Brom in Chloroform (RAMART, Amagar, A. ch. [10] 8, 304).

(eta.eta'-Dibrom-isopropyl]-benzol, 1.3-Dibrom-2-phenyl-propan  $C_9H_{10}Br_2=C_6H_5$ CH(CH<sub>2</sub>Br)<sub>3</sub>. B. Beim Sättigen von 1.3-Diacetoxy-2-phenyl-propan mit Bromwasserstoff zuerst bei 0°, dann bei 90° (MILLS, BAINS, Soc. 127, 2503, 2505). — Flüssigkeit von geraniumähnlichem Geruch. Kp<sub>14</sub>: 152°.

**2-Nitro-1-isopropyl-benzol, 2-Nitro-cumol**  $C_0H_{11}O_2N=O_2N\cdot C_0H_4\cdot CH(CH_3)_2$ . B. Neben viel 4-Nitro-cumol beim Behandeln von Cumol mit Salpetersäure (D: 1,5) in Gegenwart von Acetanhydrid und Eisessig zuerst bei Zimmertemperatur, dann bei 456 oder mit Acetylnitrat unterhalb 30° (VAVON, CALLIER, Bl. [4] 41, 357, 358). — Nicht rein erhaltenes blaßgelbes Ol. Kp,: 106—107°. D<sup>12</sup>: 1,101. n;;: 1,5286. — Liefert bei der Hydrierung bei Gegenwart von Platinschwarz in Eisessig 2-Amino-cumol.

4-Nitro-1-isopropyl-benzol, 4-Nitro-cumol  $C_9H_{11}O_2N=O_2N\cdot C_9H_4\cdot CH(CH_9)_9$ . B. Bei der Nitrierung von Cumol mit Salpeterschwefelsäure bei ca.  $0^0$  (Bert, Dorier, Bl. [4] 41, 1170). S. ferner im Artikel 2-Nitro-cumol. — Nicht rein erhalten. Blaßgelbes Öl.  $Kp_{11}$ : 124—125°;  $D^{12}$ : 1,096;  $n_1^{11}$ : 1,5400 (Vavon, Callier, Bl. [4] 41, 358).

[ $\alpha$ -Nitro-isopropyl]-benzol, 2-Nitro-2-phenyl-propan  $C_0H_{11}O_2N=C_0H_5 \cdot C(CH_3)_2 \cdot NO_2$  (H 396). B. Zur Bildung aus Isopropylbenzol und Salpetersäure (D: 1,075) vgl. a. Baker, Ingold, Soc. 1926, 2467. — Liefert bei der Einw. von Salpetersäure (D: 1,49) bei —15° und nachfolgenden Oxydation mit heißer verdünnter Salpetersäure 3-Nitro-benzoesäure und 4-Nitro-benzoesäure.

- 3. 1-Methyl-2-āthyl-benzol, 2-Āthyl-toluol C<sub>0</sub>H<sub>13</sub>, s. nebenstehende Formel (H 396; E I 192). B. Aus 2-[\$\beta\$-Chlor-āthyl]-toluol bei der Umsetzung mit Magnesium in Ather (Bert, C. r. 186, 374). Beim Schütteln einer wäßr. Suspension von 2-Methyl-styrol mit Wasserstoff in Gegenwart von kolloidem Palladium (EISENLOHR, SCHULZ, B. 57, 1816). Aus 1-Methyl-2-āthyl-cyclohexen-(1)-on-(6) beim Erhitzen mit konz. Bromwasserstoffsäure im Rohr auf 100° (Blaise, Montagne, C. r. 181, 123). Beim Erhitzen von Methyl-0-tolyl-keton-semicarbazon mit Natriumāthylat-Lösung im Rohr auf 200—210° (EI., Sch.). Kp<sub>753</sub>: 163,7—163,9° (EI., Sch.); Kp<sub>30-31</sub>: 62—63° (Bl., M.). D<sup>30</sup> (Vakuum): 0,8747 (EI., Sch.); D<sup>30,7</sup>: 0,8786 (Bl., M.). n<sup>30</sup>: 1,5105; n<sup>30</sup>: 1,5038 (v. Auwers, Kolligs, B. 55, 26); n<sup>30,7</sup>: 1,5020 (Bl., M.); n<sup>30</sup>: 1,4981; n<sup>30</sup>He: 1,5022; n<sup>30</sup>: 1,5132; n<sup>30</sup>: 1,5256 (EI., Sch.). Liefert beim Leiten durch ein auf 580—620° erhitztes Rohr in Gegenwart von Kohlendioxyd oder einem anderen indifferenten Gas 2-Methyl-styrol (Naugatuck Chemical Co., D. R. P. 476270; Frdl. 16, 330). Beim Kochen mit wäßr. Kaliumpermanganat-Lösung entsteht Phthalsäure (Bl., M.).
- 2-[ $\beta$ -Chlor-äthyl]-toluol,  $\beta$ -o-Tolyl-äthylchlorid  $C_9H_{11}Cl = CH_3 \cdot C_6H_4 \cdot CH_2 \cdot CH_2Cl$ . B. Bei der Einw. von p-Toluolsulfonsäure-[ $\beta$ -chlor-äthylester] auf o-Tolylmagnesiumbromid (Bert, C. r. 186, 374). Aus  $\beta$ -o-Tolyl-äthylalkohol und Salzsäure (B.). Gibt bei der Umsetzung mit Magnesium in Äther 2-Äthyl-toluol.
- 2-[ $\beta$ -Brom-äthyl]-toluol,  $\beta$ -o-Tolyl-äthylbromid  $C_9H_{11}Br = CH_3 \cdot C_8H_4 \cdot CH_2 \cdot CH_2Br$ . B. Aus  $\beta$ -o-Tolyl-äthylalkohol bei längerem Erwärmen mit rauchender Bromwasserstoffsäure auf 120° (v. Braun, Zobel, B. 56, 2152) oder beim Behandeln mit Phosphorpentabromid in Benzol anfangs unter Kühlung, dann unter Erwärmen bis auf 50° (Shoesmith, Connor, Soc. 1927, 1770). Süßlich riechendes Öl. Kp<sub>10</sub>: 99—100° (Sh., C.). Liefert bei der Einw. von 1 Mol Brom bei 125—130° in geringer Menge Homo-o-xylylenbromid (s. u.), neben anderen Produkten (v. B., Z.). Geschwindigkeit der Hydrolyse mit wäßrig-alkoholischer Natronlauge bei 76°: Sh., C.
- 1¹.2¹-Dibrom-1-methyl-2-äthyl-benzol, 1-Brommethyl-2-[ $\alpha$ -brom-äthyl]-benzol,  $\alpha$ -Methyl-o-xylylenbromid  $C_9H_{10}Br_2=CH_2Br\cdot C_8H_4\cdot CHBr\cdot CH_3$  (E I 192). Liefert beim Behandeln mit Kaliumsulfid in verd. Alkohol 1-Methyl-thiophthalan  $C_6H_4\cdot CH(CH_3)$  S (Syst. Nr. 2366) (v. Braun, Weissbach, B. 62, 2420). Bei der Einw. von Dikaliumdisulfid in verd. Alkohol entsteht in geringer Menge die Verbindung  $C_6H_4\cdot CH_2 S$  (Syst. Nr. 2672) (v. B., W.).
- 1¹.2²-Dibrom-1-methyl-2-äthyl-benzol, 1-Brommethyl-2- $[\beta$ -brom-äthyl]-benzol, Homo-o-xylylenbromid  $C_9H_{10}Br_2=CH_2Br\cdot C_6H_4\cdot CH_2\cdot CH_2Br$ . B. Bei 32-stdg. Erwärmen von  $\beta$ -[2-Äthoxymethyl-phenyl]-äthylalkohol mit 4 Tln. rauchender Bromwasserstoffsäure im Rohr im Wasserbad (v. Braun, Zobel, B. 56, 2143, 2149). Beim Erwärmen von Iso-brown CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>

chroman C<sub>6</sub>H<sub>4</sub>·CH<sub>2</sub>·O mit rauchender Bromwasserstoffsäure (v. B., Z., B. 56, 2150).

In geringer Menge bei der Einw. von 1 Mol Brom auf  $\beta$ -o-Tolyl-āthylbromid bei 125—130° (v. B., Z., B. 56, 2152). — Nadeln (aus Alkohol). F: 53°. Kp<sub>10</sub>: 168°. Leicht löslich in Äther, Aceton und Benzol, schwer in kaltem Alkohol. — Ist bei Lichtabschluß beständig. Liefert beim Erwärmen mit Wasser oder verd. Kaliumcarbonat-Lösung Isochroman. Beim Kochen mit Kaliumsulfat in wäßrig-alkoholischer Lösung bildet sich Thioisochroman C<sub>6</sub>H<sub>4</sub> CH<sub>2</sub> CH<sub>2</sub> CH<sub>3</sub> CH<sub>4</sub> CH<sub>4</sub> CH<sub>4</sub> CH<sub>5</sub> CH<sub>5</sub> CH<sub>5</sub> CH<sub>6</sub> 
(Syst. Nr. 2366). Liefert beim Behandeln mit einer alkoh. Lösung von Dinatriummalonester 1.2.3.4-Tetrahydro-naphthalin-dicarbonsäure-(2.2)-diäthylester (Syst. Nr. 989). Beim

Erwärmen mit Dimethylamin in Benzol auf 100° und Ausschütteln des Reaktionsprodukts mit verd. Bromwasserstoffsäure bildet sich N.N-Dimethyl-tetrahydroisochinoliniumbromid. Gibt beim Behandeln mit Anilin N-Phenyl-tetrahydroisochinolin. — Reizt die Schleimhäute weniger als o-Xylylenbromid.

4. 1-Methyl-3-āthyl-benzol, 3-Āthyl-toluol C<sub>2</sub>H<sub>12</sub>, s. nebenstehende Formel (H 396; E I 192). B. Aus 3-[α-Brom-āthyl]-toluol bei der Reduktion mit Natrium in feuchtem Äther (v. Auwers, Kolligs, B. 55, 41). Bei der Hydrierung von 3-Methyl-styrol bei Gegenwart von kolloidem Palladium in Methanol (v. Braun, Karpf, v. Garn, B. 53, 109; vgl. Titley, Soc. 1928, 509, 512). Beim Erhitzen von Methyl-m-tolyl-keton-semicarbazon mit Natriumāthylat-Lösung im Rohr auf 200—210° (Eisenlohr, Schulz, B. 57, 1816). Beim Leiten von Terpentinöl über feinverteiltes Kupfer bei 600° (Mailhe, Bl. [4] 29, 290). — Kp: 159° (korr.) (v. Au., Ko.), 159,2° bis 159,8° (Ei., Schulz), 159—160° (M., Bl. [4] 29, 290); Kp<sub>14</sub>: 50,5—51,5° (v. B., Ka., v. G.). D<sub>1</sub><sup>10,6</sup> (Vakuum): 0,8622 (v. Au., Ko.); D<sub>2</sub><sup>∞</sup> (Vakuum): 0,8615 (Ei., Schulz). n<sub>D</sub><sup>1,6</sup>: 1,5022; n<sub>1</sub><sup>10,8</sup>: 1,4928; n<sub>1</sub><sup>10,8</sup>: 1,4965; n<sub>1</sub><sup>8</sup>: 1,5073; n<sub>2</sub><sup>∞</sup>: 1,5165 (Ei., Schulz).

Liefert beim Einleiten von Chlor bei Gegenwart von Jod 6-Chlor-3-äthyl-toluol, 4.6-Dichlor-3-äthyl-toluol und 2.4.6-Trichlor-3-äthyl-toluol (Mailhe, Bl. [4] 29, 290). Bei der Einw. der berechneten Menge Brom in Gegenwart von etwas Schwefel oder Jod bildet sich 6-Brom-3-äthyl-toluol, beim Behandeln mit überschüssigem Brom in Gegenwart von Jod entsteht 4.6-Dibrom-3-äthyl-toluol (M., Bl. [4] 29, 293). Gibt beim Behandeln mit einem Gemisch aus 5 Vol. Salpetersäure (D: 1,48) und 1 Vol. Eisessig in der Kälte 6-Nitro-3-äthyl-toluol (M., C. r. 173, 161; Bl. [4] 29, 713). Beim Kochen mit verd. Salpetersäure erhält man Isophthalsäure (M., Bl. [4] 29, 290; v. Braun, Karpf, v. Garn, B. 53, 109). Bei langsamer Nitrierung mit Salpeterschwefelsäure und weiterer Nitrierung des Reaktionsprodukts mit einem Gemisch aus Salpetersäure und rauchender Schwefelsäure auf dem Wasserbad erhält man 2.4.6-Trinitro-3-äthyl-toluol; bei rascherer Einw. von Salpeterschwefelsäure bildet sich neben anderen Produkten x.x-Dinitro-isophthalsäure (F: 215°) (M., C. r. 173, 161; Bl. [4] 29, 290, 714; vgl. Ruggli, Schmid, Helv. 18 [1935], 249). Liefert beim Erhitzen mit Acetyl-chlorid bei Gegenwart von wasserfreiem Aluminiumchlorid in Schwefelkohlenstoff 2-Methyl-äthyl-acetophenon; reagiert analog mit anderen aliphatischen Säurechloriden sowie mit Benzoylchlorid (M., Bl. [4] 35, 365).

6-Chlor-3-äthyl-toluol C<sub>9</sub>H<sub>11</sub>Cl, Formel I. B. Neben 4.6-Dichlor-3-äthyl-toluol und 2.4.6-Trichlor-3-äthyl-toluol beim Einleiten von Chlor in 3-Äthyl-toluol in Gegenwart von Jod (Mailhe, Bl. [4] 29, 290, 291, 292). — Kp: 200—202°. — Liefert beim Erhitzen mit verd. Salpetersäure 4-Chlor-3-methyl-benzoesäure.

4.6-Dichlor-8-äthyl-toluol  $C_9H_{10}Cl_2$ , Formel II. B. s. im vorhergehenden Artikel. — Nadeln (aus Alkohol). F: 126° (Mailhe, Bl. [4] 29, 291).

**2.4.6-Trichlor-3-** äthyl-toluol  $C_9H_9Cl_3$ , Formel III. B. s. im Artikel 6-Chlor-3- äthyltoluol. — Nadeln (aus Alkohol). F: 205 (Mailhe, Bl. [4] 29, 292).

**2.4.5.6-Tetrachlor-3**-äthyl-toluol  $C_9H_8Cl_4=CH_3\cdot C_9Cl_4\cdot C_2H_5$ . B. Beim Einleiten von Chlor in eine Suspension von 2.4.6-Trichlor-3-äthyl-toluol in Tetrachlorkohlenstoff bei Gegenwart von Jod (Mailhe, Bl. [4] 29, 292). — Nadeln (aus Alkohol). F: 158°.

6-Brom-8-äthyl-toluol C<sub>9</sub>H<sub>11</sub>Br, Formel IV. B. Bei der Einw. der berechneten Menge Brom auf 3-Athyl-toluol in Gegenwart von etwas Schwefel oder Jod (Mailher, Bl. [4] 29, 293). — Kp: 220—221°. — Liefert beim Erhitzen mit verd. Salpetersäure 4-Brom-3-methyl-benzoesäure.

3-[ $\alpha$ -Brom-äthyl]-toluol,  $\alpha$ -m-Tolyl-äthylbromid  $C_9H_{11}Br=CH_3 \cdot C_9H_4 \cdot CHBr \cdot CH_3$ . Beim Erhitzen von Methyl-m-tolyl-carbinol mit bei  $0^0$  gesättigter Bromwasserstoffsäure im Rohr auf  $100^0$  (v. Auwers, Kolligs, B. 55, 41). — Ol. Kp<sub>12</sub>:  $101^0$  (korr.). — Liefert bei der Reduktion mit Natrium in feuchtem Äther 3-Athyl-toluol und 2.3-Di-m-tolyl-butan(?).

8-[ $\beta$ -Brom-äthyl]-toluol,  $\beta$ -m-Tolyl-äthylbromid  $C_9H_{11}Br=CH_3\cdot C_9H_4\cdot CH_2\cdot CH_2Br$ . B. Beim Behandeln von  $\beta$ -m-Tolyl-äthylalkohol mit Phosphorpentabromid in Benzol anfangs unter Kühlung, dann unter Erwärmen bis auf 50° (Shoesmith, Connor,

Soc. 1927, 1770). — Süßlich riechendes Öl. Kp<sub>11</sub>: 101—103°. — Geschwindigkeit der Hydrolyse mit wäßrig-alkoholischer Natronlauge bei 76°: Sh., C. CH<sub>3</sub>

- 4.6-Dibrom-3-äthyl-toluol C<sub>9</sub>H<sub>10</sub>Br<sub>2</sub>, s. nebenstehende Formel. B. Beim Br. Behandeln von 3-Äthyl-toluol mit überschüssigem Brom in Gegenwart von Jod (Mailhe, Bl. [4] 29, 293). Nadeln (aus Alkohol). F: 210°.
- 8-[ $\alpha.\beta$ -Dibrom-äthyl]-toluol, 8-Methyl-styroldibromid  $C_9H_{10}Br_3=CH_2\cdot C_9H_4\cdot CH_3r\cdot CH_2Br$  (H 396). B. Bei der Einw. von Brom auf 3-Methyl-styrol in Chloroform oder Schwefelkohlenstoff unter Kühlung (v. Braun, Karpf, v. Garn, B. 58, 108; Titley, Soc. 1926, 509, 512, 518). Prismen (aus Alkohol). F: 47° (T.), 48° (v. B., K., v. G.).
- 6-Nitro-3-äthyl-toluol C<sub>2</sub>H<sub>11</sub>O<sub>2</sub>N, s. nebenstehende Formel. B. Beim Behandeln von 3-Äthyl-toluol mit einem Gemisch aus 5 Vol. Salpetersäure (D: 1,48) und 1 Vol. Eisessig in der Kälte (Manlhe, C. r. 173, 161; Bl. [4] 29, 713). Kp: 245° (Zers.). Liefert bei der Oxydation mit Kaliumpermanganat 4-Nitro-isophthalsäure, mit heißer verdünnter Salpetersäure 4-Nitro-3-methyl-benzoesaure.
- 2.4.6-Trinitro-3-äthyl-toluol C<sub>2</sub>H<sub>2</sub>O<sub>2</sub>N<sub>3</sub>, s. nebenstehende Formel.

  B. Aus 3-Äthyl-toluol durch langsame Nitrierung mit Salpeterschwefelsäure und Erwärmen des Reaktionsprodukts mit einem Gemisch aus Salpetersäure und rauchender Schwefelsäure (Mailhe, Bl. [4] 29, 714; C. r. 173, 161).

   Blättchen (aus Alkohol). F: 90°.
- 5. 1-Methyl-4-äthyl-benzol, 4-Äthyl-toluol C<sub>9</sub>H<sub>12</sub>, s. nebenstehende Formel (H 397; E I 193). V. Im persischen Erdöl (Birch, Norris, Soc. 1926, 2547, 2550). B. Neben anderen Verbindungen bei der pyrogenen Zersetzung von Rohkautschuk in Gegenwart von Magnesium unter Atmosphärendruck bei ca. 700° (Midgley, Henne, Am. Soc. 51, 1216, 1221). Aus p-Tolylmagnesium-bromid beim Behandeln mit Diäthylsulfat in Ather (Gilman, Hoyle, Am. Soc. 44, 2623, 2625) oder mit p-Toluolsulfonsäure-äthylester in Äther (G., Beaber, Am. Soc. 47, 522). Aus 1-Chlormethyl-4-äthyl-benzol oder aus 4-[β-Chlor-äthyl]-toluol bei der Umsetzung mit Magnesium in Äther (Bert, C. r. 186, 374). Durch Reduktion von 4-[α-Brom-sthyl]-toluol mit Natrium in feuchtem Äther (v. Auwers, Kolligs, B. 55, 42). Zur Bildung aus 4-Methyl-styrol und Natrium in absol. Alkohol vgl. a. Eisenlohe, Schulz, B. 57, 1817. Entsteht ferner beim Erhitzen von Methyl-p-tolyl-keton-semicarbazon mit Natriumäthylat-Lösung im Rohr auf 200—210° (Ei., Sch., B. 57, 1816). Kp: 161° (v. Au., Ko.; Kroll-pfeiffer, A. 430, 214); Kp<sub>750</sub>: 159—160° (Ei., Sch.). Di<sup>4,4</sup>: 0,8667 (Kr.); Di<sup>6,5</sup> (Vakuum): 0,8680 (v. Au., Ko.); Di<sup>6,6</sup> (Vakuum): 0,8588 (Ei., Sch.). Parachor: Sugden, Soc. 125, 1181. n<sup>5,5</sup>: 1,5009; n<sup>5,5</sup>: 1,5195; n<sup>5,6</sup>: 1,4927; n<sup>5,6</sup>: 1,4927; n<sup>5,6</sup>: 1,5090; n<sup>5,6</sup>: 1,5195 (Kr.); n<sup>6,6</sup>: 1,4929 (v. Au., Ko.); n<sup>6,6</sup>: 1,4951; n<sup>6,6</sup>: 1,4990; n<sup>6,6</sup>: 1,5102; n<sup>6,6</sup>: 1,5105 (Kr.); n<sup>6,6</sup>: 1,4895; n<sup>6,6</sup>: 1,4939; n<sup>6,6</sup>: 1,5043; n<sup>6,6</sup>: 1,5137 (Ei., Sch.). Dichten und Brechungsindices von Lösungen in Chinolin: Kr. Liefert beim Durchleiten durch ein auf 640—650° erhitztes Rohr in Gegenwart von Kohlendioxyd oder einem anderen indifferenten Gas 4-Methyl-styrol (Naugatuck Chemical Co., D. R. P. 476270; Frdl. 16, 330).]
- 1-Chlormethyl-4-äthyl-benzol, ω-Chlor-4-äthyl-toluol, 4-Äthyl-benzylchlorid C<sub>9</sub>H<sub>11</sub>Cl = CH<sub>2</sub>Cl·C<sub>6</sub>H<sub>4</sub>·C<sub>2</sub>H<sub>5</sub>. B. Aus Äthylbenzol bei der Einw. von Paraformaldehyd und Chlorwasserstoff in Gegenwart von Zinkchlorid (Blanc, Bl. [4] 33, 317; C. 1923 I, 1571; Bert, C. r. 186, 373) oder beim Behandeln mit Chlordimethyläther in Gegenwart von Zinn(IV)-chlorid (Sommelet, C. r. 180, 1350). Beim Erhitzen von 4-Äthyl-benzylalkohol mit konz. Salzsäure (v. Braun, Engel, A. 436, 305). Kp<sub>11</sub>: 81—82° (v. Br., E.); Kp<sub>15</sub>: 95—96° (Bl.). Liefert beim Kochen mit Bleinitrat und nachfolgenden Behandeln mit alkal. Silbernitrat-Lösung 4-Äthyl-benzoesäure (Bl.). Bei der Umsetzung mit Magnesium in Äther bildet sich 4-Äthyl-toluol (Bert). Geschwindigkeit der Reaktion mit Natriumäthylat: v. Br., A. 436, 320.
- 4-[β-Chlor-äthyl]-toluol, β-p-Tolyl-äthylchlorid  $C_9H_{11}Cl = CH_3 \cdot C_8H_4 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_3 
- 1-Methyl-4- $[\beta,\beta,\beta$ -trichlor-äthyl]-benzol, 4- $[\beta,\beta,\beta$ -Trichlor-äthyl]-toluol  $C_bH_bCl_a=CH_a\cdot C_bH_a\cdot CH_a\cdot CCl_s$  (H 398). B. Aus 1-Methyl-1-trichlormethyl-4-methylen-cyclohexadien-(2.5) bei der spontanen Zersetzung oder beim Erwärmen in Eisessig (v. Auwers, Jülicher, B. 55, 2170). Beim Erwärmen einer Lösung von 1.4-Dimethyl-1-trichlormethyl-cyclohexadien-(2.5)-ol-(4) in Eisessig (v. Au., J., B. 55, 2170, 2181). Kpg: 137—138°.

- 1-Methyl-4-[ $\alpha$ -brom-äthyl]-benzol, 4-[ $\alpha$ -Brom-äthyl]-toluol  $C_0H_{11}Br=CH_3\cdot C_0H_4\cdot CHBr\cdot CH_3$  (H 398). B. Beim Behandeln von Methyl-p-tolyl-carbinol mit Phosphortribromid unter Kühlung mit Kältemischung (v. Auwers, Kolligs, B. 55, 42). Öl. Kp<sub>18</sub>: 105—106° (korr.). Liefert bei der Reduktion mit Natrium in feuchtem Äther 4-Äthyl-toluol.
- 4-[β-Brom-āthyl]-toluol, β-p-Tolyl-āthylbromid  $C_0H_{11}Br=CH_0\cdot C_0H_4\cdot CH_2\cdot CH_3Br$ . B. Aus β-p-Tolyl-āthylalkohol beim Erhitzen mit rauchender Bromwasserstoffsäure auf 120° (v. Braun, Wirz, B. 60, 106) oder mit 33 %igem Bromwasserstoff-Eisessig auf 100° (Ruzicka, Ehmann, Helv. 15, 148) oder beim Behandeln mit Phosphorpentabromid in Benzol anfangs unter Kühlung, dann unter Erwärmen bis auf 50° (Shoesmith, Connor, Soc. 1927, 1770). Süßlich riechendes Öl. Kp<sub>16</sub>: 116° (R., E.); Kp<sub>11</sub>: 103,5—105° (Sh., C.). Geschwindigkeit der Hydrolyse mit wäßrig-alkoholischer Natronlauge bei 76°: Sh., C.
- 4-[ $\alpha$ . $\beta$ -Dibrom-äthyl]-toluol, 4-Methyl-styroldibromid  $C_9H_{10}Br_9=CH_3\cdot C_9H_4\cdot CH_8r\cdot CH_8Br$  (H 398). B. Bei der Einw. von Brom auf 4-Methyl-styrol in Schwefelkohlenstoff (Titley, Soc. 1926, 519). F: 46°.
- 1-Methyl-4- $[\beta,\beta,\beta$ -trichlor- $\alpha,\alpha$ -dibrom-äthyl]-benzol, 4- $[\beta,\beta,\beta$ -Trichlor- $\alpha,\alpha$ -dibrom-äthyl-toluol  $C_0H_*Cl_2Br_2=CH_2\cdot C_0H_4\cdot CBr_2\cdot CCl_3$ . Diese Konstitution wird der H 399 als 3.5-Dibrom-1-methyl-1-trichlormethyl-4-methylen-cyclohexadien-(2.5)(1) beschriebenen Verbindung zuerteilt (vgl. v. Auwers, Jülicher, B. 55, 2178).—B. Aus 4-Brom-1-methyl-1-trichlormethyl-1-tribrommethyl-cyclohexadien-(2.5) (S. 82) beim Erhitzen über den Schmelzpunkt (v. Au., J., B. 55, 2178, 2191).— Nadeln (aus Methanol). F: 90—91°.— Ist gegen Permanganat beständig. Verhalten gegen siedende alkoholische Kalilauge: v. Au., J., J., J., J.
- 2.3.5.6-Tetrabrom-1-methyl-4-äthyl-benzol, 2.3.5.6-Tetrabrom-4-äthyl-toluol  $C_9H_8Br_4=CH_3\cdot C_9Br_4\cdot C_2H_5$  (H 399). B. Bei der Einw. von Brom auf 4-Äthyl-tôluol im Dunkeln bei Gegenwart von Jod (BIRCH, NORRIS, Soc. 1926, 2549 Anm., 2550). Nadeln (aus Alkohol). F: 111°. [MATERNE]
- 6. 1.1-Dimethyl-4-methylen-cyclohexadien-(2.5)  $C_9H_{12} = CH_2: C<\frac{CH:CH}{CH:CH} > C(CH_3)_2$  (E I 194).  $Kp_{15}: 38-40^{\circ}$  (v. Auwers, Ziegler, A. 425, 249).  $D_2^{4,0}: 0.8360; n_3^{6,0}: 1,4980; n_5^{15,0}: 1,5030; n_5^{6,0}: 1,5174; n_7^{15,0}: 1,5301. Lagert sich beim Behandeln mit wenig konz. Salzsäure in Eisessig in Pseudocumol um.$
- 1 Methyl 1 trichlormethyl 4 methylen cyclohexadien (2.5)  $C_9H_9Cl_3 = CH_2:C < \frac{CH:CH}{CH:CH} > C(CH_3) \cdot CCl_3$ . B. Beim Erwärmen von mit Petroläther verriebenem 1.4 Dimethyl 1 trichlormethyl cyclohexadien (2.5) ol (4) auf 35° im Wasserstoffstrom (v. Auwers, Jülicher, B. 55, 2180). Unbeständiges, hellgelbes Öl.  $D_4^{19.5}: 1,2022.$   $n_{\alpha}^{19.5}: 1,5571;$   $n_{\beta}^{19.5}: 1,5571;$   $n_{\beta}^{19.5}: 1,5699;$   $n_{\alpha}^{10}: 1,5569$ . Wandelt sich an der Luft bei wenig erhöhter Temperatur spontan unter Aufsieden in 1-Methyl-4-[ $\beta.\beta.\beta$ -trichlor-äthyl]-benzol um. Wird durch Permanganat schon in der Kälte sofort zerstört.
- 3.5 Dibrom 1 methyl 1 trichlormethyl 4 methylen cyclohexadien (2.5)  $C_9H_7Cl_2Br_2 = CH_2:C < \frac{CBr:CH}{CBr:CH} > C(CH_3)\cdot CCl_3$ . Die H 399 unter dieser Formel beschriebene Verbindung ist als 1-Methyl-4- $[\beta,\beta,\beta$ -trichlor- $\alpha$ . $\alpha$ -dibrom- $\alpha$ -thyl]-benzol (s. o.) zu formulieren (v. Auwers, Jülicher, B. 55, 2178). B. 3.5-Dibrom-1-methyl-1-trichlormethyl-4-methylen-cyclohexadien-(2.5) entsteht beim Erwärmen von 3.5-Dibrom-1.4-dimethyl-1-trichlormethyl-cyclohexadien-(2.5)-ol-(4) mit konz. Ameisensäure auf 80° (v. Au., J., B. 55, 2190). Krystalle (aus Tetrachlorkohlenstoff + Petroläther). Erweicht bei 83°, schmilzt bei 90° zu einer trüben Flüssigkeit und lagert sich bei 100° under Aufschäumen in 1-Methyl-4- $[\beta,\beta,\beta$ -trichlor- $\alpha$ . $\alpha$ -dibrom-äthyl]-benzol um. Leicht löslich in den meisten organischen Lösungsmitteln, etwas schwerer in Petroläther und Tetrachlorkohlenstoff.
- 7. 1.2.3-Trimethyl-benzol, Hemellitol C<sub>1</sub>H<sub>12</sub>, s. nebenstehende Formel (H 399; E I 194). V. Im persischen Erdöl (Birch, Norris, Soc. 1926, 2551). Im Steinkohlen-Urteer (Weissgerger, Brennstoffch. 5, 210; C. 1925 I, 2271; Kruber, B. 57, 1012). Kp<sub>780</sub>: 175—176° (Eisenlohe, Fortsch. Ch., Phys. 18 [1925], 552); Kp: 174,7—475,5° (v. Auwers, Wieners, B. 58, 2816). D<sup>20</sup>: 0,8844 (Kr.); D<sup>20</sup>: 0,8913 (v. Au., W.). n<sup>20</sup>: 1,5121 (El.); n<sup>20</sup>: 1,5072; n<sup>21</sup>He: 1,5117; n<sup>20</sup>: 1,5229; n<sup>20</sup>; 1,5327 (v. Au., W.). Begging von Röntgenstrahlen an flüssigem 1.2.3-Trimethyl-benzol: Katz, Z. ang. Ch. 41, 332, 334; K., Selman, Z. Phys. 46, 398; C. 1928 I, 1743. Liefert bei der Hydrierung in Gegenwart von Platinmohr höhersiedendes, in Gegenwart von Nickel bei 180—190° niedrigersiedendes 1.2.3-Trimethyl-cyclohexan (El.).

4.5.6-Tribrom -1.2.3-trimethyl-benzol, 4.5.6-Tribrom - hemellitol  $C_0H_0Br_3 = C_0Br_3(CH_0)_3$  (H 400; E I 195). Nadeln (aus Benzol). F: 245° (Birch, Norris, Soc. 1926, 2551; vgl. Kruber, B. 57, 1013). Löslich in heißem Benzol, fast unlöslich in Petroläther und kaltem Alkohol (B., N.).

8. 1.2.4-Trimethyl-benzol. Pseudocumol C<sub>5</sub>H<sub>18</sub>, s. nebenstehende Formel (H 400; E I 195). V. Im persischen Erdöl (Brch, Norris, Soc. 1926, 2550). In neuseeländischen Erdölen (Easterfield, McClelland, Chem. and Ind. 1923, 938; C. 1924 I, 2847). Im Holzgeistöl (Pringsheim, Schreiber, Cellulosech. 8, 46; C. 1927 II, 1224). Im Steinkohlen-Urteer (Weissgerber, Brennstoffch. 5, 210; C. 1925 I, 2271; Kruber, B. 57, 1012). In schwedischem Generatorschieferöl (Hellsing, Troedden, Ark. Kemi 9, Nr. 22, 6; C. 1926 I, 2064). — B. Beim Einleiten von Acetylen in Toluol bei Gegenwart von Aluminiumchlorid, neben anderen Produkten (Cook, Chambers, Am. Soc. 43, 337). Bei der Einw. von wenig konz. Salzsäure auf 1.4-Dimethyl-4-methylen-cyclohexadien-(2.5) in Eisessig (v. Auwers, Ziegler, A. 425, 249). Bei der Reduktion von 2.4-Dimethyl-1-chlormethyl-benzol mit rotem Phosphor und Jodwasserstoffsäure (Stephen, Short, Gladding, Soc. 117, 522). Beim Behandeln von 2.4-Dimethyl-1-chlormethyl-benzol oder von 1.4-Dimethyl-2-chlormethyl-benzol mit Magnesium in Gegenwart von Äther und Zersetzen der Reaktionsprodukte mit Wasser (Bert, C. r. 186, 373). Durch Diazotieren von Pseudocumidin und Reduktion mit Zinn in alkal. Lösung (Skita, Schneck, B. 55, 149). Beim Behandeln von 2.4-5-Trimethyl-phenylhydrazin mit Kupfersulfat in siedendem Wasser (Haller, B. 18 [1885], 92; Morgan, Coulson, Soc. 1929, 2553).

E: —61,0°¹) (TIMMERMANS, Bl. Soc. chim. Belg. 30, 65; C. 1921 III, 287). Kp<sub>780</sub>: 168,2° (Lecat; Ann. Soc. scient. Bruxelles 49 [1929], 18), 170,2° (T.); Kp<sub>780</sub>: 169,0—169,5° (EISENLOHR, Fortsch. Ch., Phys. 18 [1925], 553). Dp. 0,8762 (EI.; vgl. a. Kruber, B. 57, 1012). Verbrennungswärme bei konstantem Volumen: 1238,2 kcal/Mol (Swietoslawski, Bobinska, Am. Soc. 49, 2478; vgl. Richards, Barry, Am. Soc. 37 [1915], 1019). np. 1,5111; np. 1,5053 (v. Auwers, Kolligs, B. 55, 26); np. 1,5048 (EI.). Beugung von Röntgenstrahlen an flüssigem Pseudocumol: Katt, Kautschuk 1927, 218; C. 1927 II, 1206; K., Selman, Z. Phys. 46, 398; 1928 I, 1743. Über das Dipolmoment von flüssigem Pseudocumol vgl. Smyth, Am. Soc. 46, 2153. Magnetische Doppelbrechung zwischen 5° und 54,5°: Szivessy. Ann. Phys. [4] 68, 151. — Löslich in flüssigem Schwefeldioxyd mit orangegelber Farbe, schwer löslich in flüssigem Ammoniak mit gelber Farbe (de Carli, G. 57, 351). Thermische Analyse des Systems mit Schwefeldioxyd s. S. 313.

### Pseudocumol enthaltende binare Azeotrope.

| Komponente                                                                               | Kp760                                       | Pseudocumol in Gew%            | Komponente                                                     | Кр <sub>760</sub><br>0   | Pseudocumol<br>in Gew% |
|------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------|----------------------------------------------------------------|--------------------------|------------------------|
| α-Dichlorhydrin 1) .  n-Hexylalkohol 1) .  Cyclohexanol 8)  Phenol 8)  Isobuttersäure 1) | ca. 164,4<br>156,3<br>158<br>166,0<br>152,3 | 63<br>32<br>ca. 40<br>75<br>37 | Isovaleriansäure 1). Diäthyloxalat 1). Milchsäureäthylester 1) | 165,7<br>167,95<br>152,4 | 77<br>ca. 94<br>ca. 27 |

1) LECAT, Ann. Soc. scient. Bruxelles 49 [1929], 18. — 2) L., Ann. Soc. scient. Bruxelles 49, 112. — 3) L., Ann. Soc. scient. Bruxelles 48 II [1928], 114.

Bei der Zersetzung im elektrischen Lichtbogen entstehen Acetylen, wenig Methan, geringe Mengen Kohlenwasserstoffe  $C_nH_{2n}$  und viel Wasserstoff (Contardi, Atti Congr. naz. Chim. ind. 1924, 359, 369; C. 1925 I, 2346). Bei der Belichtung einer Lösung von Chlorpikrin in Pseudocumol entsteht neben anderen Produkten Phthalsäure (Piutti, Badolato, R. A. L. [5] 33 I, 478). Einw. von Sauerstoff im Licht: Nash, Howes, Nature 123, 527; C. 1929 I, 2606. Über Produkte, die bei der Hydrierung von Pseudocumol entstehen, s. S. 24. Liefert mit überschüssiger Fluorsulfonsäure bei 22—25° Pseudocumol-sulfonsäure-(5)-fluorid (Steinkoff, J. pr. [2] 117, 44). Gibt bei der Einw. von Paraformaldehyd und Chlorwasserstoff in Gegenwart von geschmolzenem Zinkchlorid 1.2.4-Trimethyl-5-chlormethyl-benzol (Beet, C. r. 186, 373, 374).

Nach dem Literatur-Schlußtermin des Ergänzungswerks II [1. I. 1930] fanden MAIR, SCHICETANZ (Bur. Stand. Res. 11 [1933], 672) E: —44,05° (vgl. a. SMITH, LUND, Am. Soc. 52 [1930], 4149).

Physiologisches Verhalten: H. STAUB in J. HOUBEN, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 44. Giftwirkung auf Insektenlarven (Agriotes): Tattersfield, Roberts, Ber. Physiol. 4, 320; C. 1921 I, 232.

 $C_9H_{13} + SO_2$ . Durch thermische Analyse nachgewiesen. F:  $-60^\circ$  (DE CARLI, R. A. L. [6] 4, 465). Bildet Eutektika mit Pseudocumol (F: -71°) und mit Schwefeldioxyd (F: -82°).

5-Fluor - 1.2.4 - trimethyl - benzol, 5-Fluor - pseudocumol C.H.,F, CH<sub>3</sub> nebenstehende Formel (H 402). Verbrennungswärme bei konstantem Volumen: 1204,6 kcal/Mol (Swietoslawski, Bobinska, J. Chim. phys. 24, 547; vgl. SWARTS, R. 27 [1908], 122; Bl. Acad. Belgique 1907, 946; C. 1908 I, 1046). CH<sub>3</sub>

CH<sub>3</sub>

2.4 - Dimethyl - 1-chlormethyl - benzol, 11-Chlor - pseudocumol, 2.4-Di-CH<sub>2</sub>Cl methyl-benzylchlorid C<sub>2</sub>H<sub>11</sub>Cl, s. nebenstehende Formel (E I 195). B. Aus m-Xylol bei der Behandlung mit 33%iger Formaldehyd-Lösung in Gegenwart von ·CH<sub>3</sub> Zinkchlorid unter gleichzeitigem Durchleiten von Chlorwasserstoff, neben wenig 1.5-Dimethyl-2.4-bis-chlormethyl-benzol (Blanc, Bl. [4] 33, 316; C. 1923 I, 1571) oder bei der Einw. von Paraformaldehyd und Chlorwasserstoff in Gegenwart von geschmolzenem Zinkchlorid (Bert, C. r. 186, 373). Durch Behandlung von Rohxylol mit Chlordimethyläther oder Dichlordimethyläther in Gegenwart von Zinkchlorid (Stephen, Short, Gladding, Soc. 117, 522). — Riecht ähnlich wie Benzylchlorid. Kp: 215° bis 216°; Kp<sub>15</sub>: 105° (St., Sh., G.); Kp<sub>15</sub>: 115° (Bl.). — Gibt bei der Reduktion mit Jodwasserstoffsäure und rotem Phosphor Pseudocumol (St., Sh., G.).

1.4-Dimethyl-2-chlormethyl-benzol,  $2^1$ -Chlor-pseudocumol, 2.5-Dimethylbenzylchlorid  $C_0H_{11}Cl$ , Formel I (E I 195). B. Aus p-Xylol bei der Einw. von Paraformaldehyd und Chlorwasserstoff in Gegenwart von geschmolzenem Zinkchlorid (Bert, C.r.186, 373).

4-Methyl-1.2-bis-chlormethyl-benzol oder 1-Methyl-2.4-bis-chlormethyl-benzol  $C_9H_{10}Cl_2$ , Formel II oder III. B. Bei Einw. von Chlordimethyläther auf Toluol in Gegenwart von Zinn(IV)-chlorid (SOMMELET, C. r. 180, 1349). — F: 43,5°.

$$I. \begin{picture}(200,0) \put(0,0){\line(1,0){$C$}} \put(0,0){\line(1,0)$$

3.5.6 - Tribrom - 1.2.4 - trimethyl - benzol, 3.5.6 - Tribrom - pseudocumol CoHoBrs. Formel IV (H 403; E I 196). B. Entsteht bei der Bromierung von 1.2.4-Trimethyl-cyclohexan in Gegenwart von Aluminiumbromid (Skowbonski, Metan 2, 90, 110; C. 1919 IV, 585; 1920 II, 655). Zur Bildung aus Pseudocumol und Brom vgl. Birch, Norris, Soc. 1926, 2551. - F: 231—232° (korr.) (Sk.), 232° (B., N.).

5-Jod-1.2.4-trimethyl-benzol, 5-Jod-pseudocumol C<sub>2</sub>H<sub>11</sub>I, Formel V (H 404; E I 196). Zur Bildung aus diazotiertem 5-Amino-pseudocumol nach Kürzel (B. 22, 1586) vgl. Morgan, Coulson, Soc. 1929, 2553. —  $Kp_{13}$ : 125—127°;  $D_{4}^{65,3}$ : 1,5113;  $n_{\alpha}^{65,3}$ : 1,5757;  $n_{\rm D}^{\rm ss,s}$ : 1,5813;  $n_{\rm B}^{\rm ss,s}$ : 1,5967 (v. Auwers, A. 422, 164).

3-Nitro-1.2.4-trimethyl-benzol, 3-Nitro-pseudocumol C<sub>2</sub>H<sub>11</sub>O<sub>2</sub>N, Formel VI (H 404; E I 197). B. Durch Diazotieren von 3-Nitro-5-amino-pseudocumol oder von 3-Nitro-6-aminopseudocumol und Kochen der Diazoverbindungen mit Alkohol (HUENDER, R. 34 [1915], 10, 19).

5-Nitro-1.2.4-trimethyl-benzol, 5-Nitro-pseudocumol C<sub>2</sub>H<sub>11</sub>O<sub>2</sub>N, Formel VII (H 404; E I 197). B. Bei der Einw. von Peressigsäure auf Acetpseudocumidid (BIGIAVI, R. A. L. [6] 5, 587).

**3.5.6**-Trinitro - 1.2.4 - trimethyl - benzol, 3.5.6 - Trinitro - pseudocumol  $C_9H_9O_6N_3$ , Formel VIII (H 405; E I 198). B. Entsteht in geringer Menge bei der Einw. von Salpetersäure (D: 1,4) auf Pseudocumol-sulfonsäure-(5) in Schwefelsäure (D: 1,84) bei 10-40°, neben 3.6-Dinitro-pseudocumolsulfonsäure-(5) (Gibson, Soc. 117, 954).

9. 1.3.5-Trimethyl-benzol, Mesitylen C<sub>2</sub>H<sub>12</sub>, s. nebenstehende CH<sub>3</sub> Formel (H 406; E I 199). V. Im persischen Erdöl (Birch, Norris, Soc. 1926, 2550). In neuseeländischem Erdöl (Easterfield, McClelland, Chem. and Ind. 1923, 938; C. 1924 I, 2847). — B. Beim Einleiten von CH3. CH<sub>3</sub> Acetylen in Toluol bei Gegenwart von Aluminiumchlorid, neben anderen Produkten (COOK, CHAMBERS, Am. Soc. 48, 337). In geringer Menge beim Überleiten von Aceton-Dampf über Aluminiumoxyd bei höherer Temperatur (Böeseken, R. 40, 569). Beim Erhitzen von Aceton in Gegenwart von Aluminiumoxyd auf 350—530° unter Druck, neben anderen Produkten (IPATJEW, PETROW, B. 60, 1960, 1962; Ж. 59, 913; vgl. a. IP., PE., B. 59, 2035; 2036; 60, 755; Ж. 58, 1030; 59, 431). Durch Überleiten der Dämpfe von 1.3.5-Trimethyl-cyclohexan (Kp: 138—140°) über Palladiumschwarz bei ca. 300° (Stratford, Ann. Off. Combust. liq. 4, 357; C. 1929 II, 1287).

E. —52,70 (Trimethyles) Bl. Soc. chim. Belg. 20, 65. C. 1921 III. 2070. V—404 E0.

E: -52,7° (Timmermans, Bl. Soc. chim. Belg. 30, 65; C. 1921 III, 287). Kp: 164,5° bis 166° (Adams, Marshall, Am. Soc. 50, 1972); Kp. 165° (Eisenlohr, Fortsch. Ch. Phys. 18, 555), 164,6—165,5° (McVicker, Marsh, Stewart, Soc. 125, 1745); Kp. 164,6° (Tl.; Lecat, Ann. Soc. scient. Bruxelles 45 I [1926], 292). D. 20, 0.8642 (El.). Parachor: Sugden, Soc. 125, 1781; Mumford, Phillips, Soc. 1929, 2117. Verbrennungswärme bei konstantem Volumen: 1241,1 kcal/Mol (Swietoslawski, Bobinska, Am. Soc. 49, 2478; vgl. Richards, Barry, Am. Soc. 37 [1915], 1019). n. 161; 1,5060; n. 162; 1,4998 (v. Auwers, Kolligs, B. 55, 26); n. 162; 1,4996 (El.); n. 163; 1,5116 (Voellamy, Ph. Ch. 127, 347). Brechungs-indices zwischen 450 mμ (1,5178) und 310 mμ (1,5792) bei 14,6°: V. Absorptionsspektrum im Ultrarot zwischen 3,1 und 3,9 μ: Bonino, G. 54, 481; zwischen 0,9 und 2,0 μ: Ellis, Phys. Rev. 23, 54, 55, 57; C. 1924 I, 1635; zwischen 1,19 und 3,33 μ: Marton, Ph. Ch. 117, 107; zwischen 1,1 und 1,2 μ: Barnes, Fulweiler, Am. Soc. 51, 1751; zwischen 1 und 5,μ: W. Coblentz, Investigations of infra-red spectra [Washington 1905], S. 153, 159, 163, 164, 233, 234, 237. Zur Lichtabsorption im Ultrarot vgl. a. B., F., Am. Soc. 49, 2035; Gapon, Z. Physik 44, 601; C. 1927 II, 1789. Absorption von Röntgenstrahlen zwischen 0,2 Å und 0,98 Å: Olson, Dershem, Storch, Phys. Rev. [2] 21, 32, 33; C. 1923 III, 350. Tesla-Luminescenzspektrum: McVicker, Marsh, Stewart, Soc. 125, 1745; Marsh, Phil. Mag. [6] 49, 975; C. 1925 II, 890. Kathoden-Luminescenzspektrum: Marsh, Phil. Mag. [6] 49, 975; C. 1925 II, 890. Kathoden-Luminescenzspektrum: Marsh, Phil. Mag. [7] 1, 1749; Mewlett, Phys. Rev. [2] 20, 703; C. 1924 I, 8. Einfluß der Temperatur auf die Beugung von Röntgenstrahlen an flüssigem Mesitylen: Katz, Z. ang. Ch. 41, 332; K., Selman, Z. Phys. 46, 398; C. 1928 I, 1743; Sogani, Indian J. Phys. 1, 373, 374, 391; C. 1927 II, 2149; Hewlett, Phys. Rev. [2] 20, 703; C. 1924 I, 8. Einfluß der Temperatur auf die Beugung von Röntgenstrahlen an flüssigem Mesitylen: Valdyana

Mesitylen enthaltende binare Azeotrope.

| Komponente            | Kp760<br>0 | Mesitylen<br>in Gew% | Komponente           | Kp760     | Mesitylen<br>in Gew% |
|-----------------------|------------|----------------------|----------------------|-----------|----------------------|
| Pentachloräthan 1).   | 166        | 60                   | Buttersäure 7)       | 157,6     | 57                   |
| n-Hexylalkohol 3) 3). | 153.5      | 45                   | Isobuttersäure 4) .  | 151.8     | ca. 43               |
| Cyclohexanol 3)       | 156,3      | 50                   | Isovaleriansaure 8). | ca. 162.8 | 80                   |
| Pinakon 8) 4)         | 160.2      | 65                   | Milchsäureäthyl-     |           |                      |
| β-Dichlorhydrin 5) .  | ca. 160    | ca. 68               | ester 9)             | 150.05    | 27                   |
| α-Dichlorhydrin 5) .  | ca. 156    | 50                   | Milchsäurepropyl-    |           |                      |
| Acetamid 6)           | ca. 160    | ca. 85               | ester 8)             | 160.5     | 72                   |
| Chloressigsäure 7) .  | 162        | 83                   | Furfurol 4)          | 155.2     | 40                   |

1) LECAT, Ann. Soc. scient. Bruzelles 45 I [1926], 292. — 2) L., Ann. Soc. scient. Bruzelles 48 I [1928], 55. — 3) L., Ann. Soc. scient. Bruzelles 48 II [1928], 114. — 4) L., Ann. Soc. scient. Bruzelles 49 [1929], 20, 24; L., R. 45, 622. — 5) L., Ann. Soc. scient. Bruzelles 47 I [1927], 110. — 5) L., R. 46, 243. — 7) L., Ann. Soc. scient. Bruzelles 49 [1929], 110. — 5) L., Ann. Soc. scient. Bruzelles 48 I, 116, 119. — 5) L., Ann. Soc. scient. Bruzelles 47 I, 25.

Entzündungstemperatur in Luft: Masson, Hamilton, Ind. Eng. Chem. 20, 814, 816; C. 1928 II, 1986. Entzündung von Gemischen mit Luft durch adiabatische Kompression: Pienor, Chim. et Ind. 16, 348; 17, Sonder-Nr., 261; C. 1927 I, 861; II, 2252. Bei mehrtägigem

Einleiten von Sauerstoff in Mesitylen bei 1000 in diffusem Licht entstehen 3.5-Dimethylbenzaldehyd und 3.5-Dimethyl-benzoesäure; in Gegenwart von Wasser tritt unter denselben Bedingungen weder Aldehyd noch Säure auf (Stephens, Am. Soc. 48, 1826). Über Produkte, die bei der Hydrierung von Mesitylen entstehen, s. S. 24, 25. Über Bildung von Bromnitromethanen durch Einw. von Brom und konz. Salpetersäure auf Mesitylen vgl. Datta, Chatterjee, Am. Soc. 45, 480. Einw. von Stickstofftetroxyd: Schaarschmidt, Z. ang. Ch. 36, 534; Sch., Smolla, B. 57, 38. Liefert mit einem Gemisch aus Nitrosylschwefelsäure und rauchender Salpetersäure (D: 1,502) bei ca. 30° 2-Nitro-mesitylen (VARMA, KULKARNI, Am. Soc. 47, 145). Gibt mit überschüssiger Fluorsulfonsäure Mesitylensulfonsäure-(2)-fluorid (STEINKOPF, J. pr. [2] 117, 43). Beim allmählichen Eintragen von Mesitylen in eine Mischung von Chlorsulfonsäure und Sulfurylchlorid und Erwärmen auf dem Wasserbad entsteht Mesitylen-disulfonsäure (2.4)-dichlorid (HOLLEMAN, ALOZERY, R. 48, 1082). Liefert mit Diselendibromid in Schwefelkohlenstoff-Lösung bei Gegenwart von Aluminiumbromid Dimesityl, neben geringen Mengen 2-Brom-mesitylen (LOEVENICH, SIPMANN, J. pr. [2] 124, 132). Gibt bei der Kondensation mit Cyclohexen in Gegenwart von Aluminiumchlorid 1.3.5-Trimethyl-2-cyclohexyl-benzol (Bodroux, C. r. 186, 1006; A. ch. [10] 11, 523). Beim Behandeln mit Trichloracetonitril in Gegenwart von Aluminiumchlorid und Chlorwasserstoff entsteht  $\omega.\omega.\omega$ -Trichlor-2.4.6-trimethyl-acetophenon-imid (Houben, Fischer, J. pr. [2] 123, 324; B. 66 [1933], 341). Liefert mit Diazoessigester beim Erhitzen auf 135—140°, in geringerer Ausbeute in Gegenwart von Naturkupfer C bei 110—115°, 2.4.6-Trimethyl-cycloheptatrien-(x.x.x)-carbonsäure-(1)-äthylester, Fumarsäurediathylester, 2.4.6-Trimethyl-phenylessigsäure-athylester und geringe Mengen 3.5-Dimethylhydrozimtsäure (Buchner, Schottenhammer, B. 53, 868). Beim Erhitzen mit Phenylisocyanat in Gegenwart von Zirkonium(IV)-chlorid auf dem Wasserbad entsteht Mesitylencarbonsäure-(2)-anilid (Krishnamurt, C. 1929 I, 2156). Liefert beim Kuppeln mit diazotiertem Pikramid in Eisessig + Schwefelsäure 2'.4'.6'-Trinitro-2.4.6-trimethyl-azobenzol (K. H. MEYER, TOCHTERMANN, B. 54, 2284).

Physiologisches Verhalten: H. STAUB in J. HOUBEN, Fortschritte der Heilstoffchemie,

2. Abt. Bd. II [Berlin-Leipzig 1932], S. 44.

C<sub>9</sub>H<sub>12</sub> + SO<sub>2</sub>. Durch thermische Analyse nachgewiesen (DE CARLI, R. A. L. [6] 4, 464). Krystalle, F: —49,4°. Bildet Eutektika mit Mesitylen (F: —72,5°) und mit Schwefeldioxyd (F: -76,5°).

- 2-Chlor-1.3.5-trimethyl-benzol, 2-Chlor-mesitylen  $C_9H_{11}Cl$ , CH<sub>3</sub> s. nebenstehende Formel (H 408). B. Bei der Chlorierung von Mesitylen in Gegenwart von Antimontrichlorid bei 10—30° (Davies, Wood, Soc. 1928, Cl 1126). Durch Erwärmen von Mesitol mit Phosphorpentachlorid in Benzol (Anschütz, A. 454, 108). — Gibt bei der Oxydation mit Permanganat 2-Chlor-benzoltricarbonsäure-(1.3.5) (D., W.).
- CH<sub>3</sub> 2.4.6-Trichlor-1.3.5-trimethyl-benzol, 2.4.6-Trichlor-mesitylen  $C_0H_0Cl_3$ , s. nebenstehende Formel (H 408). B. Beim Leiten von Chlor in ·Cl eine wäßr. Lösung von Mesitylen-sulfonsäure-(2) (DATTA, BHOUMIK, Am. Soc. CH3 CH<sub>3</sub> 43, 315). — Krystalle (aus Alkohol). F: 203—204°. ĊI
- CH<sub>3</sub> 2-Brom - 1.3.5 - trimethyl - benzol, 2 - Brom - mesitylen C<sub>9</sub>H<sub>11</sub>Br, s. nebenstehende Formel (H 408; E I 200). B. In geringer Menge bei der Einw. von Diselendibromid auf Mesitylen in Gegenwart von Aluminium-Br ·CH<sub>3</sub> bromid in Schwefelkohlenstoff (LOEVENICH, SIPMANN, J. pr. [2] 124, 132) — Darst. Durch Bromierung von Mesitylen in Tetrachlorkohlenstoff-Lösung (Smith, MacDougall, Am. Soc. 51, 3002; Sm., Org. Synth. 11 [1931], S. 24). — F: —1 bis +1° (Sm., MacD.). Kp: 225° (L., S.); Kp<sub>18-17</sub>: 105—107°; Kp<sub>14</sub>: 102,5—103,5° (Sm., MacD.). — Liefert mit Benzoylchlorid bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff 3-Brom-2.4.6-trimethyl-benzophenon (Hyde, Adams, Am. Soc. 50, 2503).
- 1<sup>1</sup>.  $\mathbf{3}^{1}$  Dibrom 1. 3. 5 trimethyl benzol,  $\omega$ .  $\omega'$  Dibrom mesitylen C<sub>2</sub>H<sub>10</sub>Br<sub>2</sub>, s. nebenstehende Formel (H 409). Darstellung durch zweimalige Behandlung von siedendem Mesitylen mit 1 Mol Bromdampf: v. Braun, CH3. ENGEL, B. 58, 283. — Liefert mit etwas mehr als 2 Mol Kaliumcyanid in verd. Alkohol  $\omega.\omega'$ -Dicyan-mesitylen.
- **2.4.6**-Tribrom 1.3.5-trimethyl-benzol, 2.4.6-Tribrom-mesitylen  $C_0H_0Br_3$ , s. nebenstehende Formel (H 409; E I 200). B. Durch Einw. von überschüssigem Brom auf Mesitylen im Dunkeln in Gegenwart von Jod (Birch, Norris, Soc. 1926, 2550). Beim Erwärmen einer wäßr. Lösung von Mesitylen-sulfonsäure-(2) mit überschüssigem Brom (Datta, Bhoumik, Am. Soc. 43, 306, 313). — Nadeln (aus Benzol). F: 226° (BI., N.).

CH<sub>2</sub>Br

·CH<sub>2</sub>Br

СН3

NO<sub>2</sub>

CH<sub>3</sub>

316

2-Jod-1.3.5-trimethyl-benzol, 2-Jod-mesitylen C<sub>2</sub>H<sub>11</sub>I, s. nebenstehende Formel (H 409; E I 200). B. Durch aufeinanderfolgende Zugabe von Kaliumjodat-Lösung und Kaliumjodid-Lösung zu einer wäßr. Lösung von Mesitylen-sulfonsäure-(2) (Datta, Bhoumik, Am. Soc. 43, 315). — Krystalle. F: 31° (D., B.). — Spaltet beim Erhitzen mit Chlorwasserstoff in Eisessig im Rohr freies Jod ab; Geschwindigkeit dieser Reaktion bei 135° und 150°: Nicolet, Ray, Am. Soc. 49, 1802.

2-Nitroso-1.3.5-trimethyl-benzol, 2-Nitroso-mesitylen C<sub>8</sub>H<sub>11</sub>ON, s. nebenstehende Formel (H 410). Zur Konstitution vgl. Ingold, Pigott, Soc. 125, 169. — B. Durch Einw. von Ammoniumpersulfat-Lösung in der Kälte auf Mesidin bei schwach alkalischer Reaktion (I., P., Soc. 125, 173). — Tafeln (aus Alkohol). F: 122—123°. Ist im flüssigen Zustand leuchtend blaugrün. Farbstärke einer 3%igen Lösung in Benzol bei verschiedenen Temperaturen: I., P., Soc. 125, 174.

2-Nitro-1.3.5-trimethyl-benzol, 2-Nitro-mesitylen C<sub>9</sub>H<sub>11</sub>O<sub>2</sub>N, s. nebenstehende Formel (H 410; E I 200). B. Bei der Einw. eines Gemisches aus Nitrosylschwefelsäure und rauchender Salpetersäure (D: 1,502) auf Mesitylen (Varma, Kulkarni, Am. Soc. 47, 145). — Darstellung durch Nitrierung von Mesitylen mit Salpetersäure (D: 1,51): Powell, Johnson, Org. Synth. 14 [1934], 68; durch Verkochen von diazotiertem Nitromesidin mit Alkohol: Dyson, Hunter, J. Soc. chem. Ind. 45, 85 T; C. 1926 I, 3139. — Liefert bei der Reduktion mit Zinkstaub in siedender alkoholischer Kalilauge 2-Hydroxylamino-mesitylen, Mesidin und Spuren von 2-Nitroso-mesitylen (Bamberger, B. 59, 426).

4-Jod-2-nitro-1.3.5-trimethyl-benzol, 4-Jod-2-nitro-mesitylen  $C_9H_{10}O_2NI$ , s. nebenstehende Formel. B. Durch Einw. von Kaliumjodid auf diazotiertes Nitromesidin anfangs in der Kälte, zuletzt bei 45° (MOYER, Adams, Am. Soc. 51, 637). — Braungelbe Krystalle (aus Alkohol). F: 96° bis 97°.

phenylbrenztraubensäure (Davies, Hickox, Soc. 121, 2646).

bis 97°.

2.4 - Dinitro - 1.3.5 - trimethyl - benzol, 2.4 - Dinitro - mesitylen C<sub>9</sub>H<sub>10</sub>O<sub>4</sub>N<sub>2</sub>, s. nebenstehende Formel (H 411, E I 200). Darst. Durch Nitrierung von Mesitylen mit rauchender Salpetersäure: Dyson, Hunter, J. Soc. chem. Ind. 45, 84 T; C. 1926 I, 3139. — Liefert beim Erwärmen mit CH<sub>3</sub>.

Oxalsäurediäthylester und Natrium in Alkohol auf 40—45° und Zersetzen des Reaktionsprodukts mit konz. Salzsäure 2.4(oder 2.6)-Dinitro-3.5-dimethyl-

2.4.6-Trinitro - 1.3.5-trimethyl - benzol, 2.4.6-Trinitro - mesitylen C<sub>2</sub>H<sub>2</sub>O<sub>6</sub>N<sub>3</sub>, s. nebenstehende Formel (H 412; E I 200). B. Entsteht aus Mesitylen-sulfonsäure-(2) als Hauptprodukt beim Erhitzen des Barium-salzes mit Salpeterschwefelsäure auf 130° (DE LANGE, R. 45, 57), neben CH<sub>3</sub>. NO<sub>2</sub> cH<sub>3</sub> überwiegenden Mengen 4.6-Dinitro-mesitylen-sulfonsäure-(2) beim Behandeln der freien Säure mit Salpeterschwefelsäure bei 10—40° (GIBSON, Soc. 117, 950) oder beim Behandeln des Bariumsalzes mit absol. Salpetersäure bei 15—30° (DE L.). — Krystalle (aus Alkohol und Aceton). F: 232—233° (C.), 234° (DE L.). D: 1,48 (SKRAUP, EISEMANN, A. 449, 9). — Gasentwicklung bei 140° und 180° (Stabilität): ROBERTSON, Soc. 119, 13.

4-Nitro-2-azido-1.3.5-trimethyl-benzol, 4-Nitro-2-azido-mesitylen  $C_9H_{10}O_2N_4$ , s. nebenstehende Formel. B. Beim Eintragen von Natriumazid in eine Lösung von 4-Nitro-mesitylen-diazoniumchlorid-(2) (Morgan, Davies, Soc. 123, 231). — Nadeln mit 1  $H_2O$  (aus wasserhaltigem Äther), wasserfreie CH<sub>3</sub> ... N3 CH<sub>3</sub> krystalle (aus absol. Äther). F: 23° Bläht sich beim schnellen Erhitzen auf. Löslich in allen organischen Lösungsmitteln. — Verliert in konz. Schwefelsäure  $^2/_3$  des Stickstoff-Gehalts.

2.4-Diazido-1.3.5-trimethyl-benzol, 2.4-Diazido-mesitylen  $C_9H_{10}N_8$ , s. nebenstehende Formel. B. Bei der Einw. von Natriumazid auf tetrazotiertes 2.4-Diamino-mesitylen in alkoholisch-salzsaurer Lösung (Morgan, Davies, Soc. 123, 233). — Angenehm fruchtartig riechendes, gelbes Öl. Wird an der Luft braun. — Zersetzt sich beim Erhitzen. Entwickelt mit konz. Schwefelsäure weiße Dämpfe.

6-Nitro-2.4-diazido-1.3.5-trimethyl-benzol, 6-Nitro-2.4-diazido-mesitylen C<sub>2</sub>H<sub>2</sub>O<sub>2</sub>N<sub>7</sub>, s. nebenstehende Formel. B. Beim Behandeln von 6-Nitro-2.4-diamino-mesitylen mit Natriumnitrit und 25 iger Schwefelsäure in Gegenwart von Natriumazid unter Kühlung (Morgan, Davies, Soc. 123, 235). — Hellgelbe Nadeln (aus Petroläther). F: 50°. — Zersetzt sich beim Erhitzen. Entwickelt in konz. Schwefelsäure Stickstoff.

CH<sub>8</sub>
O<sub>2</sub>N · · · · N<sub>8</sub>
CH<sub>8</sub> · · · · · CH<sub>8</sub>

#### BUTYLBENZOL

**2.4.6-Triazido-1.3.5-trimethyl-benzol, 2.4.6-Triazido-mesitylen** C<sub>9</sub>H<sub>9</sub>N<sub>9</sub>, s. nebenstehende Formel. B. Beim Behandeln von salzsaurem 2.4.6-Triamino-mesitylen mit 6 Mol Natriumnitrit und verd. Salzsäure in Gegenwart von Natriumazid bei —5° (Morgan, Davies, Soc. 123, 237). CH<sub>3</sub> Nadeln (aus Petroläther). F: 50°. Mit Wasserdampf destillierbar. — Bräunt sich am Licht. Zersetzt sich in konz. Schwefelsäure unter starker Stickstoffentwicklung. [Gottfried]

# 5. Kohlenwasserstoffe $C_{10}H_{14}$ .

1. Butylbenzol, 1-Phenyl-butan C<sub>10</sub>H<sub>14</sub> = C<sub>5</sub>H<sub>5</sub>·[CH<sub>2</sub>]<sub>3</sub>·CH<sub>3</sub> (H 413; EI 201). B. Neben anderen Produkten beim Erwärmen von Benzylchlorid mit Propylmagnesiumbromid in Benzin oder Cyclohexan (Bert, C. r. 186, 588). Beim Behandeln von 1-Phenylbuten-(1) mit einer Lösung von Natrium in flüssigem Ammoniak + Äther in Gegenwart von Ammoniumchlorid bei —80° bis —50° (Schlubach, Miedel, B. 57, 1684). Aus Äthylbenzylketon durch Reduktion mit amalgamiertem Zink und Salzsäure (Thierfelder, Kleen, H. 141, 14). Durch Hydrierung von ω-Äthyliden-acetophenon in Gegenwart von Palladium(II)-chlorid in Aceton bei 15,7° (Straus, Grindel, A. 439, 304). Neben anderen Produkten aus Phenylmagnesiumbromid und p-Toluolsulfonsäure-butylester (Gilman, Heck, Am. Soc. 50, 2228) oder aus Benzylmagnesiumchlorid und p-Toluolsulfonsäure-propylester (Gil, Beaber, Am. Soc. 47, 523) in siedendem Äther. — Darstellung aus Brombenzol, Butylbromid und Natrium: Read, Foster, Am. Soc. 48, 1606; Boedtker, Bl. [4] 45, 647; Stratford, Ann. Off. Combust. liq. 4, 319; C. 1929 II, 1286.

E:  $-81,2^{\circ}$  (TIMMERMANS, MARTIN, J. Chim. phys. 25, 415). Kp<sub>760</sub>: 183,10° (TI., Ma.). D<sub>4</sub>°: 0,87695; D<sub>4</sub>°: 0,86475; D<sub>4</sub>°: 0,85245 (TI., Ma.). Viscosität bei 15°: 0,01090 g/cmsec; bei 30°: 0,00895 g/cmsec (TI., Ma.).  $n_{3}^{15}$ : 1,48815;  $n_{3}^{15}$ : 1,49210;  $n_{4}^{15}$ : 1,49254;  $n_{4}^{15}$ : 1,50190;  $n_{5}^{15}$ : 1,51030 (TI., Ma.). Über das Absorptionsspektrum von flüssigem Butylbenzol im Ultrarot vgl. Barnes, Nature 124, 300; C. 1929 II, 2016. Beugung von Röntgenstrahlen durch

flüssiges Butylbenzol: KATZ, Z. Phys. 45, 107; C. 1928 I, 154.

Liefert bei Einw. von Jod und Jodsäure in siedendem Eisessig 4-Jod-1-butyl-benzol (Boedtker, Bl. [4] 45, 647). Gibt bei der Nitrierung mit Salpeterschwefelsäure bei 5—12° 2-Nitro-1-butyl-benzol und 4-Nitro-1-butyl-benzol, mit rauchender Salpetersäure in Eisessig bei 10° fast nur 4-Nitro-1-butyl-benzol (Read, Mullin, Am. Soc. 50, 1763). Beim Behandeln mit Paraformaldehyd und Chlorwasserstoff in Gegenwart von Zinkchlorid entsteht 1-Chlormethyl-4-butyl-benzol (Bert, C. r. 186, 373). — Geht im Organismus des Kaninchens in Phenacetursäure über (Thierfelder, Klenk, H. 141, 23).

**4-Chlor-1-butyl-benzol**  $C_{10}H_{13}Cl = C_0H_4Cl \cdot [CH_2]_3 \cdot CH_3$ . B. Neben anderen Produkten durch Reduktion von 4-Chlor-butyrophenon mit amalgamiertem Zink und Salzsäure bei 80—100° (Morgan, Hickinbottom, Soc. 119, 1886). — Anisartig riechende Flüssigkeit. Kp<sub>761</sub>: 225—228°. Beständig gegen Permanganat-Lösung bei Zimmertemperatur.

[ $\alpha$ -Chlor - butyl] - benzol, 1-Chlor - 1-phenyl - butan, Propylphenylchlormethan  $C_{10}H_{13}Cl=C_0H_0$  · ChCl · CH $_2$  ·  $C_1H_0$ .

a) Rechtsdrehende Form. B. Ein teilweise racemisiertes Präparat wurde aus optisch

a) Rechtsdrehende Form. B. Ein teilweise racemisiertes Praparat wurde aus optisch unreinem rechtsdrehendem Propylphenylcarbinol bei Einw. von Thionylchlorid unter Kühlung

erhalten (Levene, Mikeska, J. biol. Chem. 70, 362). — Kpcs. 15: 107—110°.

b) Linksdrehende Form. B. Aus linksdrehendem Propylphenylcarbinol und Thionylchlorid (Levene, Mikeska, J. biol. Chem. 70, 355). — Gibt beim Kochen mit alkoh. Kaliumhydrosulfid-Lösung rechtsdrehendes α-Phenyl-butylmercaptan (L., M., J. biol. Chem. 70, 379).

[ $\delta$ -Chlor-butyl]-benzol, 4-Chlor-1-phenyl-butan,  $\delta$ -Phenyl-butylchlorid  $C_{10}H_{19}Cl$  =  $C_6H_5 \cdot [CH_2]_3 \cdot CH_2Cl$  (E I 201). B. Beim Erhitzen von  $\delta$ -Phenyl-butylalkohol mit bei  $0^o$  gesättigter Salzsäure im Rohr auf  $100^o$  (Conant, Kirner, Am. Soc. 46, 242). Als Hauptprodukt bei der Einw. von 2 Mol p-Toluolsulfonsäure-[ $\gamma$ -chlor-propylester] auf Benzylmagnesiumchlorid in siedendem Ather (Rossander, Marvel, Am. Soc. 50, 1495). — Kp<sub>6</sub>:  $100-101^o$  (C., K.),  $98-102^o$  (R., M.). D $_2^{\infty}$ : 1,0295;  $n_5^{\infty}$ : 1,5183 (R., M.). — Geschwindigkeit der Umsetzung mit Kaliumjodid in Aceton bei  $50^o$  und  $60^o$ : C., K., Am. Soc. 46, 248, 249.

[ $\alpha.\beta.y.\delta$ -Tetrachlor-butyl]-benzol, 1.2.3.4-Tetrachlor-1-phenyl-butan  $C_{10}H_{10}Cl_4 = C_8H_5\cdot CHCl\cdot CHCl\cdot CHcl\cdot CH_2cl$ . Ist wahrscheinlich ein Gemisch von Stereoisomeren (MUSKAT, HUGGINS, Am. Soc. 51, 2500). — B. Beim Sättigen einer Lösung von [ $y.\delta$ -Dichlor- $\alpha$ -butenyl]-benzol in Chloroform mit Chlor (M., H.). — Öl. Kp<sub>7</sub>: 155—166°. Erstarrt nicht in Kohlendioxydschnee + Ather. — Liefert beim Behandeln mit 1 Mol Zinkstaub auf dem Wasserbad [ $y.\delta$ -Dichlor- $\alpha$ -butenyl]-benzol zurück; mit 2 Mol Zinkstaub entsteht 1-Phenyl-butadien-(1.3).

- [ $\alpha, \beta, \gamma, \delta, \delta$ -Pentachlor butyl] bensol, 1.2.3.4.4-Pentachlor 1-phenyl butan  $C_{10}H_{\bullet}Cl_{\bullet}=C_{\bullet}H_{\delta}\cdot CHCl\cdot CHCl\cdot CHCl_{\bullet}$ . B. Beim Sättigen von [ $\gamma, \delta, \delta$ -Trichlor- $\alpha$ -butenyl]-benzol mit Chlor (Muskat, Huggins, Am. Soc. 51, 2502). Ol. Kp<sub> $\delta$ </sub>: 162°.
- 4 Brom 1 butyl benzol C<sub>10</sub>H<sub>18</sub>Br = C<sub>6</sub>H<sub>4</sub>Br·CH<sub>2</sub>·CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub> (H 413). B. Aus 4-Amino-1-butyl-benzol beim Diazotieren in verd. Bromwasserstoffsäure und Behandeln der Diazoniumbromid-Lösung mit Kupfer(I)-bromid (Reilly, Hickinbottom, Soc. 117, 112). Hellgelbes Öl von angenehmem Geruch. Kp<sub>755</sub>: 242—243°.

 $[\alpha\text{-Brom-butyl}]\text{-bensol, 1-Brom-1-phenyl-butan, Propylphenylbrommethan } C_{10}H_{13}Br = C_6H_6\cdot CHBr\cdot CH_2\cdot C_2H_5.$ 

- a) Rechtsdrehende Form. B. Ein teilweise racemisiertes Präparat wurde beim Sättigen von optisch unreinem rechtsdrehendem Propylphenylcarbinol mit Bromwasserstoff bei 0° erhalten (Levene, Mikeska, J. biol. Chem. 70, 362). Siedet im Hochvakuum bei 65—68°.
- b) Inaktive Form. B. Aus Propylphenylcarbinol und Bromwasserstoff (Evans, Mabbott, Turner, Soc. 1927, 1166; La Forge, Am. Soc. 50, 2474). Zu Tränen reizende Flüssigkeit. Kp<sub>47</sub>: 126°; Kp<sub>28</sub>: 116° (E., M., T.). D: ca. 1,24 (E., M., T.). Gibt bei langem Schütteln mit Na<sub>2</sub>SO<sub>3</sub>-Lösung hauptsächlich 1-Phenyl-buten-(1) und wenig 1-Phenyl-butansulfonsäure-(1) (E., M., T.). Durch Überführen in die Grignard-Verbindung und nachfolgende Einw. von Schwefeldioxyd entsteht α.α'-Diphenyl-dibutylsulfid (E., M., T., Soc. 1927, 1167).
- [ $\delta$ -Brom butyl] benzol, 4-Brom 1-phenyl butan,  $\delta$ -Phenyl butylbromid  $C_{10}H_{13}Br=C_4H_5\cdot [CH_2]_3\cdot CH_2Br$  (E I 201). B. Bei der Einw. von Phosphorpentabromid auf  $\delta$ -Phenyl-butylalkohol (Clutterbuck, Cohen, Soc. 123, 2510). Kp<sub>12</sub>: 132°.
- [ $\alpha$ . $\delta$ -Dibrom-butyl]-benzol, 1.4-Dibrom-1-phenyl-butan  $C_{10}H_{12}Br_2 = C_6H_5 \cdot CHBr \cdot CH_2 \cdot CH_2 \cdot CH_2Br$  (H 413). B. Aus Allyl-phenyl-carbinol und Bromwasserstoff im Quarzgefäß bei Bestrahlung durch Sonnenlicht (La Forge, Am. Soc. 50, 2474). Nicht destillierbar. Liefert mit Methylamin in Methanol bei Zimmertemperatur eine Verbindung  $C_{11}H_{15}N$  (Kp<sub>770</sub>: 209—216°).
- 4-Chlor-1-[ $\alpha.\beta$ -dibrom-butyl]-benzol  $C_{10}H_{11}ClBr_3=C_0H_4Cl\cdot CHBr\cdot CHBr\cdot C_3H_5$ . B. Aus 4-Chlor-1- $\alpha$ -butenyl-benzol und Brom in Wasser (Morgan, Hickinbottom, Soc. 119, 1887). Prismen (aus Alkohol). F: 72°.
- 4.1¹.1³-Tribrom-1-butyl-benzol, 4-Brom-1- $[\alpha,\beta$ -dibrom-butyl]-benzol  $C_{10}H_{11}Br_3=C_0H_4Br\cdot CHBr\cdot C_2H_5$  (H 413). B. Aus 4-Brom-1- $\alpha$ -butenyl-benzol und Brom in Chloroform (QUELET, C.r. 186, 237; Bl. [4] 45, 95). F: 78°.
- 4.1°.1°-Tribrom-1-butyl-benzol, 4-Brom-1- $[\gamma.\delta$ -dibrom-butyl]-benzol  $C_{10}H_{11}Br_8=C_6H_4Br\cdot CH_2\cdot CH_3\cdot CH_Br\cdot CH_2Br.$  B. Aus 4-Brom-1- $\gamma$ -butenyl-benzol und Brom (QUELET, C. r. 184, 889; Bl. [4] 45, 84). Viscose Flüssigkeit. Kp<sub>1s</sub>: 190—191°. D\*: 1,859. n\*<sub>D</sub>: 1,610. Zersetzt sich bei gewöhnlicher Temperatur unter Schwärzung. Liefert beim Behandeln mit Zinkstaub in Eisessig 4-Brom-1- $\gamma$ -butenyl-benzol zurück.
- 4-Jod-1-butyl-benzol  $C_{10}H_{13}I=C_6H_4I\cdot[CH_2]_3\cdot CH_3$ . B. Durch Einw. von Jod und Jodsäure auf Butylbenzol in siedendem Eisessig (Boedtker, Bl. [4] 45, 648). Kp<sub>20</sub>: 144°. D<sub>1</sub>°: 1,4616. n<sub>2</sub>°: 1,5693. Gibt bei der Oxydation mit Chromtrioxyd in Eisessig 4-Jodbenzoesäure.
- 2-Nitro-1-butyl-benzol  $C_{10}H_{13}O_3N=O_3N\cdot C_6H_4\cdot [CH_3]_3\cdot CH_3$ . B. Neben 4-Nitro-1-butyl-benzol bei der Nitrierung von Butylbenzol mit Salpeterschwefelsäure bei 5—12° (Read), Mullin, Am. Soc. 50, 1763). Beim Diazotieren von 2-Nitro-4-amino-1-butyl-benzol und Verkochen mit Alkohol (Reilly, Hickinbottom, Soc. 117, 116). Hellgelbes, angenehm riechendes Öl. Siedet unter teilweiser Zersetzung bei ca. 260° (Reil, H.); Kp<sub>15</sub>: 131—133° (Read), M.). D<sub>1</sub>°: 1,071 (Read), M.). Mit Wasserdampf und Alkoholdampf flüchtig (Reil, H.).
- 3-Nitro-1-butyl-bensol C<sub>10</sub>H<sub>18</sub>O<sub>2</sub>N = O<sub>2</sub>N·C<sub>6</sub>H<sub>4</sub>·[CH<sub>2</sub>]<sub>3</sub>·CH<sub>3</sub>. B. Beim Diazotieren von 3-Nitro-4-amino-1-butyl-benzol und Verkochen mit Alkohol (Reilly, Hickinsottom, Soc. 117, 118), zweckmäßig bei Gegenwart von Kupferpulver (Read, Mullin, Am. Soc. 50, 1765). Gelbe, angenehm riechende Flüssigkeit. Kp<sub>754</sub>: 275° (Rei., H.). Mischbar mit Chloroform, Nitrobenzol, Pyridin und Petroläther (Rei., H.).
- 4-Nitro-1-butyl-bensol C<sub>10</sub>H<sub>13</sub>O<sub>2</sub>N = O<sub>2</sub>N·C<sub>6</sub>H<sub>4</sub>·[CH<sub>2</sub>]<sub>3</sub>·CH<sub>3</sub>. B. Entsteht bei der Nitrierung von Butylbenzol mit Salpeterschwefelsäure bei 5—12° neben erheblichen Mengen 2-Nitro-1-butyl-benzol; wird bei der Nitrierung mit rauchender Salpetersäure in Eisessig bei 10° als Hauptprodukt erhalten (Read, Mullin, Am. Soc. 50, 1763). Kp<sub>15</sub>: 143—145°. D<sub>3</sub>°: 1,065.

- 2.  $sek.-Butyl-benzol, 2-Phenyl-butan <math>C_{10}H_{14} = C_6H_5 \cdot CH(CH_8) \cdot C_2H_5$ .
- a) Rechtsdrehende Form  $C_{10}H_{14} = C_6H_5 \cdot CH(CH_3) \cdot C_2H_5$ . B. Durch Diazotieren von rechtsdrehendem 4-Amino-1-sek.-butyl-benzol und nachfolgende Wasserdampfdestillation mit alkal. Natriumstannit-Lösung (Harrison, Kenyon, Shepherd, Soc. 1926,661). Flüssigkeit. Kp: 172°.  $D_4^{t5}$ : 0,8681;  $D_4^{t0}$ : 0,8639;  $D_4^{t0}$ : 0,8590.  $n_{70,6}^{t0}$ : 1,488;  $n_{70,6}^{t0}$ : 1,4890;  $n_{70,6}^{t0}$ : 1,4915;  $n_{70,6}^{t0}$ : 1,5061.  $[\alpha]_{D}^{t0}$ : +27,31° (unverd.). Rotationsdispersion der unverdünnten Substanz: H., K., Sh.
- b) Inaktive Form  $C_{10}H_{14}=C_6H_5\cdot CH(CH_3)\cdot C_2H_5$  (H 414; E I 202). B. Zur Bildung aus Benzol und Butylhalogenid oder sek. Butylhalogenid in Gegenwart von Aluminiumchlorid vgl. Boedtker, Bl. [4] 45, 648; Stratford, Ann. Off. Combust. liq. 4, 320; C. 1929 II, 1286. Neben anderen Produkten beim Erwärmen von Benzol mit Butylalkohol oder sek.-1286. Neben anderen Frodukten beim Erwarmen von Benzol mit Butylaikonol oder sek.Butylaikohol in Gegenwart von 70—80%iger Schwefelsäure (MEYER, BERNHAUER, M.
  53/54, 727). Zur Bildung durch Reduktion von 2-Phenyl-buten-(2) nach Klages (B. 35
  [1902], 2642, 3509) vgl. Glattfeld, Wertheim, Am. Soc. 43, 2683. Bei der Reduktion
  von α-Methyl-α-äthyl-benzyleyanid mit Natrium in absol. Alkohol (Blondeau, A. ch. [10]
  2, 40). — F: —82,7° (Timmermans, Bl. Soc. chim. Belg. 36, 503; C. 1928 I, 26). Kp<sub>760</sub>:
  172,5° (Tl.). Di\*: 0,8612; ni\*: 1,4914 (Boe., Bl. [4] 45, 649). — Liefert bei der Einw. von
  Lod-and Lodeston in giedendem Finessie 4. Lod-gek butyl benzel (Boe.). Beim Nittioren Jod und Jodsäure in siedendem Eisessig 4-Jod-1-sek.-butyl-benzol (BoE.). Beim Nitrieren mit Salpeterschwefelsäure unter Kühlung entsteht 4-Nitro-1-sek.-butyl-benzol als Hauptprodukt (Gl., W., Am. Soc. 43, 2684; Harrison, Kenyon, Shepherd, Soc. 1926, 660). Gibt beim Erhitzen mit Aluminiumchlorid auf 140-155° Butan und andere Produkte (STR., Ann. Off. Combust. liq. 4, 352).
- [4-Brom-butyl-(2)]-benzol, 4-Brom-2-phenyl-butan,  $\gamma$ -Phenyl-butylbromid  $C_{10}H_{13}Br=C_6H_5\cdot CH(CH_3)\cdot CH_2\cdot CH_2Br$  (E I 202).
- E I 202, Z. 26-28 v. o. Nach einer Privatmitteilung von Cohen sind die Angaben über die linksdrehende Form zu streichen.
- 4-Jod-1-sek.-butyl-benzol  $C_{10}H_{13}I=C_6H_4I\cdot CH(CH_3)\cdot C_2H_5$ . B. Durch Einw. von Jod und Jodsäure auf sek.-Butyl-benzol in siedendem Eisessig (BOEDTKER, Bl. [4] 45, 649). — Kp<sub>16</sub>: 129—130°. D<sub>4</sub>": 1,4701. n<sub>b</sub>": 1,5731. — Gibt bei der Oxydation mit Chromtrioxyd in Eisessig 4-Jod-benzoesäure.
- 4 Nitro -1 sek. butyl benzol  $C_{10}H_{13}O_2N = O_2N \cdot C_6H_4 \cdot CH(CH_3) \cdot C_2H_5$ . B. Beim Nitrieren von sek.-Butyl-benzol mit Salpeterschwefelsäure unter Kühlung (GLATTFELD, Wertheim, Am. Soc. 43, 2684; Harrison, Kenyon, Shepherd, Soc. 1926, 660). — Kp<sub>9</sub>: 130° (Gl., W.). Ist mit Wasserdampf flüchtig (Gl., W.). Bei einem nicht völlig einheitlichen Präparat wurde gefunden:  $D_{*}^{x_0}$ : 1,063;  $n_{***,0}^{s_5}$ : 1,532;  $n_{***,0}^{s_5}$ : 1,536;  $n_{***,0}^{s_5}$ : 1,562 (H., K., Sh., Soc. 1926, 662).
- 3. Isobutylbenzol, 2-Methyl-1-phenyl-propan  $C_{10}H_{14} = C_6H_5 \cdot CH_2 \cdot CH(CH_3)_2$ (H 414; E I 202). B. Beim Leiten von dampfförmigem Dimethylbenzylcarbinol im Gemisch mit Wasserstoff über aktive oder platinierte Kohle bei 300° (ZELINSKY, GAWERDOWSKAJA, B. 61, 1052). — Über das Dipolmoment vgl. SMYTH, Am. Soc. 46, 2153.

E I 202, Z. 16—15 v. u. statt "400° bis 450° lies "300°.

[\alpha-Chlor-isobutyl]-benzol, 1-Chlor-2-methyl-1-phenyl-propan, Isopropylphenylchlormethan  $C_{10}H_{13}Cl = C_6H_5 \cdot CHCl \cdot CH(CH_3)_2$ . Linksdrehende Form. B. Ein teilweise racemisiertes Präparat wurde bei der Einw. von Thionylchlorid auf optisch unreines linksdrehendes Isopropylphenylcarbinol, zuletzt auf dem Wasserbad, erhalten (Levene, Mikeska, J. biol. Chem. 70, 363). — Kp<sub>Ca. 15</sub>: 88—89°. Gibt beim Kochen mit alkoh. Kaliumhydrosulfid Lösung rechtsdrehendes  $\alpha$ -Phenyl-isobutylmercaptan (L., M., J. biol. Chem. 70, 380).

[a-Brom-isobutyl]-benzol, 1-Brom-2-methyl-1-phenyl-propan, Isopropylphenyl-

brommethan  $C_{10}H_{13}Br = C_0H_5 \cdot CHBr \cdot CH(CH_3)_2$ .

a) Rechtsdrehende Form. B. Beim Sättigen von rechtsdrehendem Isopropylphenylcarbinol mit Bromwasserstoff bei 0° (Levene, Mikeska, J. biol. Chem. 70, 363). — Siedet im Hochvakuum bei 65-67°.

b) Inaktive Form (EI 202). B. Aus Isopropylphenylcarbinol und Bromwasserstoff unter Eiskühlung (Conant, Blatt, Am. Soc. 50, 555). — Kp<sub>17</sub>: 116—119°. — Liefert beim Behandeln mit Magnesium in siedendem Ather und folgender Einw. von wasserfreiem Kupfer(II)-chlorid 2.5-Dimethyl-3.4-diphenyl-hexan.

 $[\beta ext{-Brom-isobutyl}] ext{-benzol}$ , 2-Brom-2-methyl-1-phenyl-propan  $C_{10}H_{13}Br=C_6H_5$ ·  $CH_2\cdot CBr(CH_3)_2$ . B. Beim Sättigen von Dimethylbenzylcarbinol mit Bromwasserstoff (Твотман, Soc. 127, 94). — Angenehm riechende Flüssigkeit. — Beim Erwärmen wird Bromwasserstoff entwickelt. Liefert mit Benzylmagnesiumchlorid in Ather 2.2-Dibenzylpropan und  $[\beta$ -Methyl- $\alpha$ -propenyl]-benzol.

4. tert.-Butyl-benzol, Trimethylphenylmethan, 2-Methyl-2-phenyl-propan (Pseudobutylbenzol)  $C_{10}H_{14} = C_0H_5 \cdot C(CH_3)_2$  (H 415; E I 203). B. Zur Bildung aus Benzol und Isobutylhalogenid oder tert. Butylhalogenid in Gegenwart von Aluminium-chlorid vgl. Shoesmith, Mackie, Soc. 1928, 2336; Stratford, Ann. Off. Combust. liq. 4, 321; C. 1929 II, 1286. Beim Erwärmen von Benzol mit Isobutylakholo oder tert. Butylakholo in Gegenwart von 70% iger Schwefelsäure (Meyer, Bernhauer, M. 53/54, 727).

— E: —60.9° (Timmermans, Bl. Soc. chim. Belg. 30, 64; C. 1921 III, 287). Kp<sub>760</sub>: 169,3° (Tl.). Verbrennungswärme bei konstantem Volumen: 1397,6 kcal/Mol (Swietoslawski, Bobinska, Am. Soc. 49, 2478; vgl. Richards, Barry, Am. Soc. 37 [1915], 1019), 1398,5 kcal/Mol (im Vakuum gewogen) (RI., Davis, Am. Soc. 42, 1614; vgl. Swie, B.). Beugung von Röntgenstrahlen durch flüssiges tert.-Butyl-benzol: Katz, Z. Phys. 45, 108; C. 1928 I, 154. Ist mit flüssigem Schwefeldioxyd unter Bildung gelber Lösungen mischbar; unlöslich in flüssigem Ammoniak (De Carli, G. 57, 351).

tert.-Butyl-benzol zersetzt sich beim Erhitzen in der Bombe auf 450° unter Bildung von Toluol (Herndon, Reid, Am. Soc. 50, 3072). Gibt bei der Einw. von Paraformaldehyd und Chlorwasserstoff in Gegenwart von Zinkchlorid (Bert, C. r. 186, 373) oder bei der Einw. von Chlordimethyläther in Gegenwart von Zinn(IV)-chlorid (Sommelet, C. r. 180, 1350) 1-Chlormethyl-4-tert.-butyl-benzol.

[Chlor-tert-butyl]-benzol, 1-Chlor-2-methyl-2-phenyl-propan,  $\beta$ -Phenyl-isobutylehlorid  $C_{10}H_{13}Cl = C_6H_5 \cdot C(CH_3)_2 \cdot CH_2Cl$ . Diese Konstitution kommt der E I 6, 259 beschriebenen Verbindung  $C_{10}H_{13}Cl$  aus  $\beta$ -Phenyl-isobutylalkohol zu (Haller, Ramart, C. r. 174, 1212). — Kp<sub>18</sub>: 104—105° (H., R.). — Gibt beim Erhitzen mit Pyridin im Rohr auf 120° viel 2-Phenyl-buten-(2) und wenig [ $\beta$ -Methyl- $\alpha$ -propenyl]-benzol.

- 2-Brom-1-tert.-butyl-benzol C<sub>10</sub>H<sub>18</sub>Br = C<sub>6</sub>H<sub>4</sub>Br·C(CH<sub>5</sub>)<sub>3</sub> (H 416). B. Entsteht beim Bromieren von tert.-Butyl-benzol (vgl. H 416) in Gegenwart von Katalysatoren nur in sehr geringer Menge (Tschitschibabin, Elgasin, Lengold, Bl. [4] 43, 238; Ж. 60, 347). Aus 2-Brom-4-amino-1-tert.-butyl-benzol durch Diazotieren in alkoh. Schwefelsäure und nachfolgendes Erwärmen auf dem Dampfbad (Shoesmith, Mackie, Soc. 1928, 2339). Flüssigkeit. Kp<sub>12</sub>: 96—98° (Sh., M.). Gibt mit Magnesium in Gegenwart von Jod in Ather die entsprechende Grignard-Verbindung (Sh., M.).
- 4-Brom-1-tert.-butyl-benzol C<sub>10</sub>H<sub>13</sub>Br = C<sub>6</sub>H<sub>4</sub>Br·C(CH<sub>3</sub>)<sub>3</sub> (H 416). Als 4-Brom-1-tert.-butyl-benzol ist auch die H 416 als 2-oder 4-Brom-1-tert.-butyl-benzol beschriebene Verbindung erkannt worden (Tschitschibabin, Elgasin, Lengold, Bl. [4] 43, 238; Ж. 60, 347). Zur Bildung durch Bromierung von tert.-Butyl-benzol in Gegenwart von Jod oder Eisen vgl. Tsch., E., L., Bl. [4] 43, 239; Ж. 60, 348. Kp<sub>14</sub>: 104—106°. Liefert beim Behandeln mit Magnesium in Ather außer der entsprechenden Grignard-Verbindung 4.4'-Di-tert.-butyl-diphenyl.

[Brom-tert.-butyl]-benzol, 1-Brom-2-methyl-2-phenyl-propan,  $\beta$ -Phenyl-isobutylbromid  $C_{10}H_{13}Br=C_6H_5\cdot C(CH_3)_2\cdot CH_2Br.$  B. Aus  $\beta$ -Phenyl-isobutylalkohol beim Behandeln mit Bromwasserstoff in der Wärme (Darzens, Lévy, C. r. 189, 1289). — Kp<sub>12</sub>: 103°.

- [β.β'- Dibrom tert.-butyl] benzol, 1.3 Dibrom 2 methyl 2 phenyl propan, β-Methyl β phenyl trimethylenbromid  $C_{10}H_{12}Br_2 = C_6H_5 \cdot C(CH_3)(CH_2Br)_2$  (E I 203). B. Bei längerem Erwärmen von β-Methyl-β-phenyl-trimethylenglykol-diacetat mit bei 0° gesättigtem Bromwasserstoff-Eisessig auf 100° (Mills, Bains, Soc. 127, 2504). Riecht geraniumähnlich. Kp<sub>12</sub>: 143—146°.
- 2-Jod-1-tert.-butyl-benzol  $C_{10}H_{13}I=C_0H_4I\cdot C(CH_3)_8$ . B. In geringer Menge durch Diazotieren von 2-Amino-1-tert.-butyl-benzol in verd. Schwefelsäure und Behandeln der Lösung mit Kaliumjodid (Shoesmith, Mackie, Soc. 1928, 2338). Öl. Kp<sub>10</sub>: 116—118°. Geschwindigkeit der Überführung in tert.-Butyl-benzol durch Jodwasserstoff in Eisessig bei 25°: Sh., M., Soc. 1928, 2340. Gibt mit Magnesium in Gegenwart von Jod in Äther die entsprechende Grignard-Verbindung (Sh., M., Soc. 1928, 2339).
- 3-Jod-1-tert.-butyl-benzol  $C_{10}H_{13}I=C_8H_4I\cdot C(CH_3)_3$ . B. Durch Diazotieren von 3-Amino-1-tert.-butyl-benzol in verd. Schwefelsäure und Behandeln der Lösung mit Kaliumjodid (Shoesmith, Mackie, Soc. 1928, 2338). Öl. Kp<sub>8</sub>: 106—108°. Läßt sich durch Jodwasserstoff in Eisessig bei 25° nicht in tert.-Butyl-benzol überführen (Sh., M., Soc. 1928, 2340).
- 4-Jod-1-tert.-butyl-benzol  $C_{10}H_{13}I=C_0H_4I\cdot C(CH_3)_3$  (H 416). Kp<sub>9</sub>: 116—118° (Shoesmith, Mackie, Soc. 1928, 2338). Geschwindigkeit der Überführung in tert.-Butylbenzol durch Jodwasserstoff in Eisessig bei 25°: Sh., M., Soc. 1928, 2340.
- **2-Nitro-1-tert.**-butyl-benzol  $C_{10}H_{13}O_2N=O_2N\cdot C_5H_4\cdot C(CH_2)_3$  (H 417; E I 203). B. Durch Diazotieren von 2-Nitro-4-amino-1-tert.-butyl-benzol in absolut-alkoholischer

 $\mathbf{Br}$ 

Schwefelsäure und folgendes Erwärmen auf dem Dampfbad (Shoesmith, Mackie, Soc. 1928, 2337). — Kp<sub>765</sub>: 250,5°; Kp<sub>10</sub>: 114—115°. Ist mit Wasserdampf flüchtig.

4-Nitro-1-tert.-butyl-benzol  $C_{10}H_{13}O_{2}N = O_{2}N \cdot C_{6}H_{4} \cdot C(CH_{3})_{3}$  (H 418; E I 203).  $Kp_{10}$ : 125—130° (Shoesmith, Mackie, Soc. 1928, 2336).

2-Brom-4-nitro-1-tert.-butyl-benzol C<sub>10</sub>H<sub>12</sub>O<sub>2</sub>NBr, s. nebenstehende Formel.

B. Beim Erwärmen von 4-Nitro-1-tert.-butyl-benzol mit Brom in Gegenwart von Eisenpulver auf ca. 90° (Shoesmith, Mackie, Soc. 1928, 2339). — Farblose Nadeln (aus Alkohol). F: 94,5°.

2.4-Dinitro-1-tert.-butyl-benzol  $C_{10}H_{12}O_4N_2$ , s. nebenstehende Formel (H 418; E I 203). B. Beim Behandeln von 4-Nitro-1-tert.-butyl-benzol mit Salpetersäure (D: 1,51) bei 60° (Shoesmith, Mackie, Soc. 1928, 2337). — Farblose Prismen (aus verd. Alkohol), die am Licht gelb werden. — Liefert beim Einleiten von Schwefelwasserstoff in die Lösung in alkoh. Ammoniak 2-Nitro-4-amino-1-tert.-butyl-benzol.

5. 1-Methyl-2-propyl-benzol. 2-Propyl-toluol, 1-o-Tolyl-propan  $C_{10}H_{14}=CH_3\cdot C_6H_4\cdot CH_2\cdot C_2H_5$  (H 418; E I 203). Als 1-Methyl-2-propyl-benzol ist der H 5, 164 beschriebene Kohlenwasserstoff  $C_{10}H_{16}$  von Doebner (B. 35, 2136) erkannt worden (Kuhn, Deutsch, B. 65 [1932], 44). — B. Durch Reduktion von 1-Methyl-2-propenylbenzol mit Natrium in siedendem absolutem Alkohol (Eisenlohe, Schulz, B. 57, 1817). Bei längerem Erhitzen von Athyl-0-tolyl-keton-semicarbazon mit Natriumäthylat-Lösung auf 200—210° (Ei., Sch.). — Kp: 180,5—181,5° (Ei., Sch.). Bei zwei Präparaten verschiedener Herstellung wurde gefunden:  $D_i^{\infty}$ : 0,8740;  $n_0^{\infty}$ : 1,4948;  $n_{He}^{\infty}$ : 1,4991;  $n_{P}^{\infty}$ : 1,5092;  $n_{P}^{\infty}$ : 1,5179 und  $D_i^{\infty}$ : 0,8752;  $n_{\alpha}^{\infty}$ : 1,4953;  $n_{He}^{\infty}$ : 1,4998;  $n_{P}^{\infty}$ : 1,5098;  $n_{Y}^{\infty}$ : 1,5186 (Ei., Sch.).  $n_{P}^{\text{tot}}$ : 1,5059;  $n_{P}^{\infty}$ : 1,4993 (v. Auwers, Kolligs, B. 55, 26).

1¹.2³-Dibrom-1-methyl-2-propyl-benzol, 1-Brommethyl-2- $[\gamma$ -brom-propyl]-benzol, 2- $[\gamma$ -Brom-propyl]-benzylbromid  $C_{10}H_{12}Br_2 = CH_2Br\cdot C_6H_4\cdot CH_2\cdot CH_2\cdot CH_2Br$ . B. Bei längerem Erwärmen von 2- $[\gamma$ -Äthoxy-propyl]-benzylalkohol mit 60 % iger Bromwasserstoffsäure im Rohr auf ca. 100° (v. Braun, Kaiser, B. 58, 2164). — Nicht rein erhalten. Schwach gelbes, die Schleimhäute reizendes Öl. Kp: ca. 175° (v. Br., K.). — Liefert beim Behandeln mit Natriumsulfid in wäßr. Alkohol die Verbindung  $C_6H_4 < CH_2\cdot CH_$ 

2-[ $\gamma$ -Chlor- $\beta$ . $\gamma$ -dibrom-propyl]-toluol, 3-Chlor-2.3-dibrom-1-o-tolyl-propan  $C_{10}H_{11}ClBr_3=CH_3\cdot C_6H_4\cdot CH_2\cdot CHBr\cdot CHClBr$ . B. Aus 2-[ $\gamma$ -Chlor-allyl]-toluol und Brom (Bert, C. r. 180, 1506). — Kp<sub>16</sub>: 176,5°. D<sub>4</sub><sup>7,5</sup>: 1,705.  $n_7^{7,5}$ : 1,599.

6. 1-Methyl-3-propyl-benzol. 3-Propyl-toluol, 1-m-Tolyl-propan  $C_{10}H_{14}=CH_3\cdot C_0H_4\cdot CH_2\cdot C_2H_5$  (H 418; E I 203). B. Zur Bildung aus 3-Brom-toluol, Propylbromid und Natrium vgl. v. Auwers, Kolligs, B. 55, 43. Durch Reduktion von 3-[\alpha-Brom-propyl]-toluol mit Natrium in feuchtem Ather (v. Au., K.). Bei längerem Erhitzen von Athyl-m-tolyl-keton-semicarbazon mit Natriumäthylat-Lösung auf 200—210° (EISENLOHR, SCHULZ, B. 57, 1817). — Kp: 177—178°,5 (korr.) (v. Au., K.), 176,5—177,5° (EI., SCH.). D\(^{\alpha}\): 1,4898; \( n\_{\mathbf{H}}^{\mathbf{m}}: 1,4940; \( n\_{\mathbf{p}}^{\mathbf{m}}: 1,5043; \( n\_{\mathbf{Y}}^{\mathbf{m}}: 1,5132 \) (EI., SCH.). Dichten und Brechungsindices einiger auf verschiedenem Wege hergestellter Präparate bei verschiedenen Temperaturen: v. Au., K., B. 55, 26, 33, 43.

3-[ $\alpha$ -Brom-propyl]-toluol, 1-Brom-1-m-tolyl-propan  $C_{10}H_{13}Br=CH_2\cdot C_6H_4\cdot CHB_r\cdot C_8H_5$ . B. Aus Äthyl-m-tolyl-carbinol und Phosphortribromid (v. Auwers, Kolligs, B. 55, 43). — Öl. Kp<sub>14</sub>: 114° (korr.).

7. 1-Methyl-4-propyl-benzol, 4-Propyl-toluol. 1-p-Tolyl-propan C<sub>10</sub>H<sub>14</sub> = CH<sub>3</sub>·C<sub>6</sub>H<sub>4</sub>·C<sub>4</sub>H<sub>5</sub>·C<sub>4</sub>H<sub>5</sub>·C<sub>4</sub>H<sub>6</sub> (H 419; E I 204). B. Beim Behandeln von 1-Chlormethyl-4-propylbenzol mit Magnesium in Ather und nachfolgenden Zersetzen mit Wasser (Bert, C. r. 186, 374). Entsteht in analoger Weise aus 4-[γ-Chlor-propyl]-toluol (B.). Durch Reduktion von 4-[α-Brom-propyl]-toluol mit Natrium in feuchtem Ather (v. Auwers, Kollius, B. 55, 44). Beim Erhitzen von Athyl-p-tolyl-keton-semicarbazon mit Natriumäthylat-Lösung auf 200—210° (Eisenlohr, Schulz, B. 57, 1817). — Kp: 179,5—180° (Et., Sch.). An auf verschiedenen Wegen hergestellten Präparaten wurde gefunden: Kp: 181—181,5°, 182°, 182,5°, 183° (korr.) (v. Au., K.). D<sub>1</sub>°: 0,8570; n<sub>α</sub>°: 1,4878; n<sub>He</sub>°: 1,4920; n<sub>P</sub>°: 1,5021; n<sub>γ</sub>°: 1,5111 (El., Sch.); Diohten und Brechungsindices verschiedener Präparate s. a. bei v. Au., K., B. 55, 26, 33, 44.

1-Chlormethyl-4-propyl-benzol, 4-Propyl-benzylchlorid  $C_{10}H_{15}Cl = CH_3Cl \cdot C_6H_4 \cdot C_2H_5$ . B. Aus Propylbenzol bei der Einw. von Paraformaldehyd und Chlorwasserstoff in Gegenwart von Zinkchlorid (Bert, C. r. 186, 373). — Liefert mit Magnesium in Äther die entsprechende Grignard-Verbindung.

4-[y-Chlor-propyl]-toluol, 3-Chlor-1-p-tolyl-propan  $C_{10}H_{18}Cl = CH_3 \cdot C_8H_4 \cdot CH_8 \cdot CH_2 \cdot CH_2Cl$ . B. Aus 4-Methyl-benzylmagnesiumchlorid durch Einw. von p-Toluolsulfonsäure-[ $\beta$ -chlor-äthylester] (Bert, C. r. 186, 374). — Gibt mit Magnesium in Äther die entsprechende Grignard-Verbindung.

4-[ $\alpha$ -Brom-propyl]-toluol, 1-Brom-1-p-tolyl-propan  $C_{10}H_{13}Br = CH_3 \cdot C_6H_4 \cdot CHBr \cdot C_9H_5$ . B. Aus Athyl-p-tolyl-carbinol beim Behandeln mit Phosphortribromid (v. Auwers, Kolligs, B. 55, 44). — Öl. Kp<sub>13</sub>: 108° (korr.).

4-[ $\gamma$ -Chlor- $\beta$ . $\gamma$ -dibrom-propyl]-toluol, 3-Chlor-2.3-dibrom-1-p-tolyl-propan  $C_{10}H_{11}ClBr_2=CH_3\cdot C_6H_4\cdot CH_2\cdot CHBr\cdot CHClBr.$  B. Aus 4-[ $\gamma$ -Chlor-allyl]-toluol und Brom (BERT, C. r. 180, 1506). — Kp<sub>13</sub>: 174°. D<sub>4</sub>°: 1,685. n<sub>1</sub>°: 1,598.

- 8. 1-Methyl-2-isopropyl-benzol, 2-Isopropyl-toluol, o-Cymol  $C_{10}H_{14}=CH_3\cdot C_0H_4\cdot CH(CH_3)_2(H$  419; E I 204). B. Aus 1-Methyl-2-isopropenyl-benzol durch Hydrieren in Gegenwart von kolloidem Palladium (Eisenlohr, Schulz, B. 57, 1818).  $D_1^{\infty}$ : 0,8741.  $n_{\alpha}^{\infty}$ : 1,4951;  $n_{He}^{\infty}$ : 1,5094;  $n_{\beta}^{\infty}$ : 1,5184.
- 9. 1-Methyl-3-isopropyl-benzol, 3-Isopropyl-toluol, m-Cymol  $C_{10}H_{14}=CH_3\cdot C_6H_4\cdot CH(CH_3)_2$  (H 419; E I 204). B. Über die Einheitlichkeit des aus Toluol, Isopropylhalogenid und Aluminiumchlorid gewonnenen Präparates vgl. v. Auwers, Kolligs, B. 55, 3873. Neben anderen Produkten bei der Einw. von Propylen auf Toluol in Gegenwart von Aluminiumchlorid bei ca. 70° (Berry, Reid, Am. Soc. 49, 3149). Bei der Dehydrierung von d-Silvestren in schwachem Wasserstoffstrom in Gegenwart von Nickel-Aluminiumoxyd bei 300—310° (Herzenberg, Ruhemann, B. 58, 2262). Aus 1-Methyl-3-isopropenyl-benzol durch Hydrieren in Gegenwart von kolloidem Palladium (Eisenlohr, Schulz, B. 57, 1818). Neben anderen Produkten beim Erhitzen von Fenchon oder Campher im Hochdruckautoklaven in Gegenwart von Tonscherben auf 450° bzw. 420° (Treibs, B. 61, 685, 686). Kp: 174,5—175,5° (Ei., Sch.). Zwei auf verschiedene Weise hergestellte Präparate zeigten D, 180,6819;  $n_{\alpha}^{\infty}$ : 1,4892;  $n_{B}^{\infty}$ : 1,4937;  $n_{\beta}^{\infty}$ : 1,5036;  $n_{\gamma}^{\infty}$ : 1,5126 und D, 0,8631;  $n_{\alpha}^{\infty}$ : 1,4893;  $n_{He}^{\infty}$ : 1,4934;  $n_{\beta}^{\infty}$ : 1,5037;  $n_{\gamma}^{\infty}$ : 1,5126 (Ei., Sch.).
- 10. 1-Methyl-4-isopropyl-benzol, 4-Isopropyl-toluol, p-Cymol, "Cymol"  $C_{10}H_{14}=CH_3\cdot C_4H_4\cdot CH(CH_3)_2$  (H 420; E I 204).

## Vorkommen und Bildung.

V. Zum Vorkommen im Chenopodiumöl (Wurmsamenöl) vgl. Nelson, Am. Soc. 42, 1207. Im äther. Öl von Melaleuca linariifolia Smith und Melaleuca alternifolia Cheel (Penfold, J. Pr. Soc. N. S. Wales 59, 311, 320; Perfum. essent. Oil Rec. 17, 213, 214; C. 1926 II, 2124; 1927 II, 753). Findet sich anscheinend im äther. Öl von Cachrys alpina MB (Rutowski, Winogradowa, Riechstoffind. 2, 194; C. 1928 I, 268). Zum Vorkommen in Satureja-ölen und Thymianölen vgl. Leone, Angelesou, G. 51 II, 389, 395; 52 I, 155; im Origanumöl vgl. Ang., G. 52 I, 165. Im Burma-Petroleum (Mulany, Watson, J. Soc. chem. Ind. 43, 311 T; C. 1925 I, 186).

H 420, Z. 2 v. u. statt "S. 13" lies "S. 113".

Bei den im folgenden aufgeführten Bildungsweisen wird Cymol in den meisten Fällen neben anderen Verbindungen erhalten. Beim Überleiten von dampfförmigem Methylencylobutan (Dojarenko, B. 59, 2934, 2941; Ж. 58, 3) oder 1-Methyl-cyclobutanol-(1) (D., B. 60, 1542; Ж. 58, 30) über Aluminiumoxyd bei 395—430° bzw. 370—420°. Aus Toluol und Propylen in Gegenwart von Aluminiumchlorid bei ca. 70° (Berry, Reid, Am. Soc. 49, 3149) oder aus Toluol und Isopropylalkohol beim Erwärmen mit 80%iger Schwefelsäure (Meyer, Bernhauer, M. 53/54, 729). Beim Durchleiten von Chlorwasserstoff durch ein Gemisch von Toluol und Thymol in Gegenwart von Aluminiumchlorid bei ca. 50° (Bell, Henry, Soc. 1928, 2220). Aus Caran oder Pinan beim Überleiten des Dampfes in schwachem Kohlendioxydstrom über platinierte Kohle bei 300° (Zelinsky, Lewina, A. 476, 65, 67). Beim Überleiten von dampfförmigem Menthen, α-Limonen oder d-β-Phellandren über Kupfer bei höherer Temperatur (Komatsu; Kurata, Mem. Coll. Sci. Kyoto [A] 11, 165; C. 1928 II, 1326). Beim Überleiten von dampfförmigem d-Limonen oder α-Phellandren über Nickel bei 280° (Tereis, Schmidt, B. 60, 2340). Beim Überleiten von dampfförmigem Terpinen oder

β-Pinen in schwachem Kohlendioxydstrom über Palladiumasbest bei 190° (Z., L., B. 62, 340, 341); entsteht in analoger Weise aus d-Limonen bei 180—185° (Z., B. 57, 2058), aus l-α-Pinen bei 190—200° (Z., B. 58, 864) und aus Terpinolen bei 160—470° unter 40 mm Druck (Z., L., B. 62, 342). Bei der Oxydation von rechtsdrehendem Sabinen mit Wasserstoffperoxyd in Essigsäure bei 50—55° (Henderson, Robertson, Soc. 123, 1854). Bei der Oxydation von rechtsdrehendem Sabinen oder linksdrehendem α-Phellandren mit Chromtrioxyd in Acetanhydrid + Tetrachlorkohlenstoff unter Kühlung (Treibs, Schmidt, B. 61, 463, 465). In geringer Menge beim Kochen von α-Terpinen oder Limonen mit Schwefel (Ruzicka, Meyer, Mingazzini, Helv. 5, 356) und beim Erhitzen von Dipenten mit Schwefel (Ruzicka, Meyer, Mingazzini, Helv. 5, 356) und beim Erhitzen von Dipenten mit Schwefel in Gegenwart von Thiocarbanilid auf ca. 160° (Austerwell, Peufaillit, D. R. P. 414912; C. 1925 II, 767; Frdl. 15, 238). Bei der Einw. von Fullererde auf siedendes α-Pinen (Venable, Am. Soc. 45, 729). Bei der Reaktion von α-Pinen mit Phosphorpentachlorid (Beet, Bl. [4] 33, 789). Cymol entsteht beim Überleiten von Terpentinöl-Dampf über auf Bimstein aufgetragenes Zinksulfid bei 540° oder über Zinkphosphid bei 600° (I. G. Farbenind., D. R. P. 459606, 461705; Frdl. 16, 651, 652) sowie aus Abfallterpenen der Campher-Fabrikation (Kp. ca. 175°) und aus Kienöl-Fraktionen (Kp. ca. 160° oder ca. 175°) durch Chlorieren (Rheinische Kampferfabr., D. R. P. 319162, 319163; C. 1921 IV, 654; Frdl. 13, 207, 208). Bei der Chlorierung von Terpentinöl in Gegenwart von Phosphortrichlorid nach Naudin (Bl. [2] 37 [1882], 111) wird ein stark verunreinigtes Produkt erhalten (Bert, Bl. [4] 37, 1268). Bei kurzem Kochen von linksdrehendem Verbenen mit Zinkchlorid (Blumann, Zeitschel, B. 54, 893). Durch Hydrieren von 1-Methyl-4-isopropenyl-benzol in Gegenwart von kolloidem Palladium (Eisenlohr, Schulz, B. 57, 1819).

Aus α-Terpineol oder Terpinhydrat beim Behandeln mit japanischer Fullererde (Ono, Mem. Coll. Sci. Kyoto [A] θ, 153; C. 1926 I, 1404). Beim Erwärmen von 3.7.7-Trimethylbicyclo-[0.1.4]-heptandiol-(3.4) vom Schmelzpunkt 90—91° ("d-Caren-β-glykol"; Syst. Nr. 550) mit 5 %iger Schwefelsäure auf dem Wasserbad (Pillax, Simonsen, Soc. 1928, 363). Zur Bildung bei der Einw. von Schwefelsäure oder Kaliumdisulfat auf Citral vgl. Horiuchi, Mem. Coll. Sci. Kyoto [A] 11, 190; C. 1928 II, 1326. Beim Erhitzen von Citral mit Eisessig auf 150° (Ho.). Beim Überleiten von dampfförmigem l-Menthon über Kupfer bei 300° (Komatsu, Kurata, Mem. Coll. Sci. Kyoto [A] 9, 26; C. 1926 I, 1403). Beim Erhitzen von Pulegon in Gegenwart von Eisen(III)-oxyd auf 380—400° im Hochdruckautoklaven (Ipatjew, Petrow, B. 60, 2548; Ж. 60, 495) oder von Piperiton oder Campher in Gegenwart von unglasierten Tonscherben auf ca. 400° (Treibs, B. 61, 685, 686). Beim Erhitzen von Cuminaldehydsemicarbazon mit Natriumäthylat-Lösung auf 200—210° (Eisenlohe, Schulz, B. 57, 1819). Beim Erhitzen von Cineol mit japanischer Fullererde auf 180° (Ono, Miyazaki, Bl. chem. Soc. Japan 2, 208; C. 1927 II, 1827) oder mit Kohle (Asahina, Nakanishi, J. pharm. Soc. Japan 48, 1; C. 1928 I, 1861). In geringer Menge aus p-Tolylmagnesiumbromid und Diisopropylsulfat ohne Lösungsmittel oder aus 4-Isopropyl-phenylmagnesiumbromid und Dimethylsulfat in Ather (Bert, C. r. 176, 841; Bl. [4] 37, 1260, 1265). In guter Ausbeute durch Zerlegung von 4-Isopropyl-benzylmagnesiumchlorid mit Wasser (Bert, C. r. 177, 196; 186, 373; Bl. [4] 37, 1267, 1578; Bert, Dorier, C. r. 182, 64). Aus 3-Methyl-6-isopropyl-phenylmagnesiumbromid beim Zersetzen mit Wasser (Bert, Bl. [4] 37, 1269). Cymol entsteht bei der Verzuckerung von Kiefernholz mit verd. Mineralsäuren im Autoklaven bei 165—170° (Heuser, Zeh, Aschan, Z. ang. Ch. 36, 37).

Isolierung aus dem beim Sulfitkochprozeß anfallenden Rohcymol: Wheeler, Am. Soc. 42, 1843; Wh., Smithey, Am. Soc. 43, 2611; Karvonen, B. 56, 1827; Boedtker, J. Pharm. Chim. [8] 9, 417; C. 1929 II, 508. — Zur Reinheit der nach verschiedenen Verfahren hergestellten Cymolprāparate vgl. v. Auwers, Kolligs, B. 55, 3872; Bert, Bl. [4] 37, 1268. Das beim Sulfitkochprozeß entstehende Cymol enthält nach Aschan (C. 1928 I, 2175) möglicherweise m-Cymol. Von Bert (Bl. [4] 37, 1270) wird das aus 3-Methyl-6-isopropyl-phenylmagnesiumbromid durch Zersetzen mit Wasser gewonnene Präparat als eines der reinsten angesehen.

Physikalische Eigenschaften.

E: —73,25° (TIMMERMANS, Bl. Soc. chim. Belg. 30, 65; C. 1921 III, 287). Kp<sub>780</sub>: 177,1° (TI.), 176,7° (Lecat, Ann. Soc. scient. Bruxelles 47 [1927] I, 68); Kp<sub>785</sub>: 175—176° (Präparat aus 3-Methyl-6-isopropyl-phenyl-magnesiumbromid) (Berr, Bl. [4] 37, 1269). Dichte von Präparaten verschiedener Herstellungsweise: Karvonen, B. 56, 1826. Einfluß von Drucken bis 10000 kg/cm² auf die Viscosität bei 30° und 75°: Bridgman, Pr. am. Acad. Arts Sci. 61, 81; Pr. nation. Acad. USA. 11, 604; C. 1926 I, 1919; II, 1923. Oberflächenspannung bei 20°: 28,09 dyn/cm (Harkins, Clark, Roberts, Am. Soc. 42, 705). Parachor: Sugden, Soc. 125, 1181. Brechungsindices von Präparaten verschiedener Herstellungsweise: Eisen-Lohr, B. 54, 2866; El., Schulz, B. 57, 1819; v. Auwers, Kollies, B. 55, 26, 33; Karvonen, B. 56, 1826. Zur Temperaturabhängigkeit des Brechungsindex vgl. v. Au., K., B. 55, 26. Lichtabsorption im Ultrarot zwischen 1 und 15 μ: W. W. Coblentz, Investigations of

infra-red spectra [Washington 1905], S. 157, 164, 242. Beugung von Röntgenstrahlen an flüssigem Cymol: Krishnamurti, Indian J. Phys. 3 [1928/29], 237. Teslaluminescenzspektrum: McVicker, Marsh, Stewart, Soc. 125, 1745; Marsh, Phil. Mag. [6] 49, 975; C. 1925 II, 890. Kathodenluminescenz: Marsh, Soc. 1927, 127. Dielektr.-Konst. beim Siedepunkt: 2,27 (Grimm, Patrick, Am. Soc. 45, 2799). Über das Dipolmoment von flüssigem Cymol vgl. Smyth, Am. Soc. 46, 2153.

Cymol ist mischbar mit flüssigem Schwefeldioxyd, schwer löslich in flüssigem Ammoniak; die Lösungen in beiden Lösungsmitteln sind gelb (DE CARLI, G. 57, 351). Lösungsvermögen für einige aliphatische, aromatische und heterocyclische Verbindungen: Wheeler, Am. Soc. 42, 1844. Thermische Analyse des Systems mit flüssigem Schwefeldioxyd s. S. 325. Cymol enthaltende binäre Azeotrope s. in der untenstehenden Tabelle. Grenzflächenspannung

| Komponente                                                                            | Kp760<br>0                         | Cymol<br>in Gew%     | Komponente                                                                   | Kp760<br>0                                  | Cymol<br>in Gew%           |
|---------------------------------------------------------------------------------------|------------------------------------|----------------------|------------------------------------------------------------------------------|---------------------------------------------|----------------------------|
| Glycerin-α.α'-dichlor-<br>hydrin 1)<br>Octanol-(2) 2)<br>Cyclohexanol 2)<br>Phenol 3) | 165,5<br>174<br>159,5<br>ca. 170,5 | 45<br>56<br>28<br>63 | Furfurol 1) Acetamid 1) Buttersäure 3) Isovaleriansäure 3) . Propyllactat 2) | 157,8<br>170,5<br>160,0<br>170,8<br>ca. 167 | 32<br>81<br>35<br>63<br>40 |

<sup>1)</sup> LECAT, Ann. Soc. scient. Bruxelles 47 I [1927], 68, 110, 153. — 2) L., Ann. Soc. scient. Bruxelles 48 I [1928], 57, 58, 116. — 3) L., Ann. Soc. scient. Bruxelles 49 [1929], 22, 112.

zwischen Cymol und Wasser: Harkins, Clark, Roberts, Am. Soc. 42, 705. Adsorption des Dampfes durch Tierkohle: Alexejewski, Ж. 55, 416; C. 1925 II, 642. Ausbreitung auf Wasser bei 20°: Ha., Feldman, Am. Soc. 44, 2671. Dichte und Brechungsindex einiger Lösungen in Chinolin: Krollpfeiffer, A. 430, 216. Gemische von Borsäureanhydrid und sehr geringen Mengen Cymol zeigen nach Ultraviolett-Belichtung blaues Nachleuchten (Tiede, Ragoss, B. 56, 658). — Hemmende Wirkung auf die Oxydation von Seifen durch feuchte Luft: Smith, Wood, Ind. Eng. Chem. 18 [1926], 692.

#### Chemisches Verhalten.

Dampfförmiges Cymol liefert beim Überleiten über Tonscherben bei ca. 600° Benzol und Propylen (Treibs, B. 61, 685), beim Überleiten über aktivierte Bleicherden bei 420° Toluol, Propylen und andere Produkte (Rheinische Kampferfabr., D. R. P. 483640; C. 1930 I. 130; Frdl. 16, 325), beim Durchleiten im Wasserstoffstrom durch ein verzinntes Eisenrohr bei 650—760° Benzol, wenig Toluol, Methan und andere Produkte (FISCHER, SCHRADER, MEYER, Abh. Kenntnis Kohle 5, 435; C. 1922 IV, 1039), beim Durchleiten im Kohlendioxydstrom durch ein auf 650° erhitztes Quarzrohr 4-Methyl-styrol (Naugatuck Chemical Co., D. R. P. 476270; Frdl. 16, 331). Ein technisches Cymol lieferte beim Erhitzen im Hochdruckautoklaven auf 425° Toluol, Xylol, gasförmige Kohlenwasserstoffe und Wasserstoff (SSACHANEN, Tilitschejew, B. 62, 665).

Entzündungstemperatur in Luft: Masson, Hamilton, Ind. Eng. Chem. 20, 814; C. 1928 II, 1986; Bennett, Mardles, Soc. 1927, 3155. Verändert sich an der Luft bereits unterhalb der Entzündungstemperatur (B., M.). Gibt beim Erhitzen mit Luft unter Druck auf 210° in Gegenwart von Sodalösung Cuminsäure, p-Toluylsäure, Terephthalsäure und geringe Mengen Ameisensäure, Essigsäure und Oxalsäure (Schrader, Abh. Kenntnis Kohle 4, 329; C. 1921 I. 537). Liefert bei elektrolytischer Oxydation in verd. Schwefelsäure an einer Blei(IV)-oxyd-Anode bei 90° Cuminaldehyd, 4-Acetyl-benzoesäure, Terephthalsäure und wenig Cuminsäure; in Aceton + verd. Schwefelsäure entstehen Cuminalkohol, Dicuminyläther(?), Cuminaldehyd, Cuminsäure, 4-Isopropenyl-benzoesäure und viel Harz (Fichter, Meyer, Helv. 8, 285). Bei 14-tägigem Einleiten von Sauerstoff in Cymol bei 80° entsteht Ameisensäure (nachgewiesen durch Reduktion von Quecksilber(II)-oxyd); zwischen 80° und 104° erhält man außerdem Methyl-p-tolyl-keton, Cuminaldehyd und Cuminsäure, in Gegenwart von Wasser bei ca. 100° nur Methyl-p-tolyl-keton (Stephens, Am. Soc. 48, 1826, 2921). Bei der Oxydation mit Chromschwefelsäure erhält man bei 60° Methyl-p-tolyl-keton und 4-Acetyl-benzaldehyd, bei 100° Terephthalsäure und p-Toluylsäure (Meyer, Bernhauer, M. 58/54, 729). Cymol wird durch Uranylsalze in wäßr. Lösung bei Bestrahlung mit Sonnenlicht oxydiert (Alox, Valdiguif, Bl. [4] 37, 1138). Katalytische Hydrierung von Cymol s. im Artikel p-Menthan, S. 27.

Cymol gibt beim Chlorieren in Gegenwart von Eisenfeile unterhalb 35° 2-Chlor-p-cymol (Lubs, Young, J. ind. Eng. Chem. 11, 1131; C. 1921 I, 175). Bei der Chlorierung in Gegenwart von Jod unter Erwärmen (vgl. H 422) entsteht außer 2-Chlor-p-cymol und 2.5-Di-

chlor-p-cymol auch 3-Chlor-p-cymol (Gysin, Helv. 9, 66). — Über Nitrierung zu 2-Nitrop-cymol (vgl. H 5, 424; E I 5, 206) vgl. noch Wheeler, Smithey, Am. Soc. 48, 2613; Phil-LIPS, Am. Soc. 44, 1777; DEMONBREUN, KREMERS, J. am. pharm. Assoc. 12, 298; C. 1923 III, 1356. Liefert beim Behandeln mit höchstkonzentrierter Salpetersäure 3-Nitro-4-methylbenzoesäure (Noad, A. 63 [1847], 297; Fittica, A. 172 [1874], 309); diese Verbindung entsteht als Hauptprodukt auch beim Behandeln von Cymol mit einem Gemisch von Salpetersäure (D: 1,44) und konz. Schwefelsäure bei 50—70° (Halse, Dedichen, zit. bei Alfthan, B. 53, 83). Liefert mit einem Gemisch von Salpetersäure (D: 1,5) und konz. Schwefelsäure bei 0° 2.6-Dinitro-p-cymol, geringere Mengen 2.4-Dinitro-toluol und andere Produkte (Al., B. 53, 84; vgl. Wheeler, Harris, Am. Soc. 49, 495) sowie wenig 4-Nitro-toluol (Wh., H.); 2.4-Dinitro-toluol hat auch in der von Aschan (C. 1919I, 227) bei der Einw. von Salpetersäure (D: 1,52) auf Cymol erhaltenen Verbindung C<sub>18</sub>H<sub>17</sub>O<sub>10</sub>N<sub>5</sub> (E I 205) vorgelegen (Al., B. 53, 79, 85; O. Aschan, Naphthenverbindungen, Terpene und Campherarten [Berlin-Leipzig 1929], S. 241). Bei der Einw. von Salpetersäure (D: 1,5) und rauchender Schwefelsaure (20% SO<sub>3</sub>) erhalt man bei 20—30° 2.3.6-Trinitro-p-cymol, bei 60—70° 2.4.6-Trinitrotoluol und wenig 3.5-Dinitro-4-methyl-benzoesäure (H., D.). Bei gleichzeitiger Einw. von Brom und Salpetersäure entstehen Bromnitromethane (DATTA, CHATTERJEE, Am. Soc. 45, 480). Gibt beim Erwärmen mit konz. Schwefelsäure auf dem Wasserbad und Behandeln des Reaktionsprodukts mit Salpetersäure (D: 1,48) bei 40-60° 6-Nitro-p-cymol-sulfonsäure-(2) und 4-Nitro-toluol-sulfonsäure-(2) (HINTIKRA, Ann. Acad. Sci. jenn. [A] 10 [1917], Nr. 12, S. 1; C. 1921 I, 357). Liefert beim Erhitzen mit Sulfurylazid SO<sub>2</sub>(N<sub>3</sub>)<sub>2</sub> im Autoklaven auf 180° wenig 2(oder 5)-Methyl-5(oder 2)-isopropyl-pyridin(?) und andere Produkte (BERTHO, CURTIUS, SCHMIDT, B. 60, 1719). Bei der Kondensation von Cymol mit Cyclohexen in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff entsteht neben anderen Produkten ein nicht getrenntes Gemisch von 1-Methyl-4-isopropyl-cyclohexyl-benzolen, das beim Behandeln mit Brom in Gegenwart von Aluminiumbromid Pentabromtoluol liefert (Bodroux, C. r. 186, 1006; A. ch. [10] 11, 525, 547).

Gibt bei der Einw. von Paraformaldehyd und Chlorwasserstoff in Gegenwart von Zinkchlorid 1-Methyl-2-chlormethyl-4-isopropyl-benzol (Blanc, Bl. [4] 33, 318; C. 1923 I, 1571; Bert, C. r. 186, 373). Kondensiert sich mit Azodicarbonsäure-dimethylester in Gegenwart von wenig konz. Schwefelsäure unter Kühlung, in Gegenwart von Jod und Chlorwasserstoff auf dem Wasserbad zu 2.5-Bis-[N.N'-dicarbomethoxy-hydrazino]-p-cymol (Stollé, Reichert, J. pr. [2] 123, 77). Liefert beim Erhitzen mit Carbazid im Autoklaven auf 150° Carvacrylamin, 2(oder 5)-Methyl-5(oder 2)-isopropyl-pyridin und andere Produkte (Curtius, Bertho, B. 59, 586; vgl. Oparina, K. 61, 2011). Reagiert nicht mit Benzylazid (C., Ehrhart, B. 55, 1560, 1562, 1569).

#### Physiologisches Verhalten, Verwendung, Analytisches.

Physiologisches Verhalten: H. STAUB in J. HOUBEN, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 45. Über die keimtötende Wirkung vgl. Penfold, Grant, Perfum. essent. Oil Rec. 17, 251; J. Pr. Soc. N. S. Wales 59, 347; C. 1926 II, 2458; 1927 II, 754.

Verwendung als technisches Lösungsmittel: Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 83; H. Gnamm, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 76. Überführung in technisch verwendbare Harze durch Chlorieren in Gegenwart metallischer Katalysatoren: Groggins, Ind. Eng. Chem. 20, 597; C. 1928 II, 604. Herstellung eines fettspaltenden Mittels durch Sulfurieren von Cymol in Gegenwart von Ölsäure: McKee, Lewis, Chem. met. Eng. 24, 969; C. 1922 II, 451.

Prüfung auf Reinheit: E. MERCK, Prüfung der chemischen Reagenzien, 5. Aufl. [Darm-

stadt 1939], S. 150.

#### Additionelle Verbindungen.

 $C_{10}H_{14}+SO_2$ . Durch thermische Analyse nachgewiesen. F:  $-89^{\circ}$  (de Carli, R. A. L. [6] 4, 526, 527).  $-C_{10}H_{14}+2SO_2$ . Durch thermische Analyse nachgewiesen. F:  $-83^{\circ}$  (de C.). Bildet Eutektika mit der vorangehenden Verbindung und mit Schwefeldioxyd.

2-Chlor-1-methyl-4-isopropyl-benzol, 2-Chlor-p-cymol  $C_{10}H_{13}Cl=CH_3\cdot C_6H_3Cl\cdot CH(CH_3)_2$  s. nebenstehende Formel (H 423). B. Zur Bildung durch Chlorierung von Cymol in Gegenwart von Jod vgl. Gysin, Helv. 9, 66. Beim Chlorieren von Cymol in Gegenwart von Eisen unterhalb 35° (Lubs, Young, J. ind. Eng. Chem. 11, 1131; C. 1921 I, 175). — Hat angenehmen Anisgeruch. Kps: 85—90° (L., Y.). — Liefert beim Nitrieren mit einem Gemisch von rauchender Salpetersäure und schwach rauchender Schwefelsäure bei 0° hauptsächlich 6-Chlor-2.3-dinitro-p-cymol, weniger 2-Chlor-x.x-dinitro-toluol vom Schmelzpunkt 88—89° (S. 264) und vielleicht noch andere Verbindungen (L., Y.).

326

8-Chlor-1-methyl-4-isopropyl-benzol, 3-Chlor-p-cymol C10H13Cl, s. CH<sub>3</sub> nebenstehende Formel (H 423). B. Beim Chlorieren von Cymol in Gegenwart von Jod (Gysin, Helv. 9, 66). — Hat angenehmen Anisgeruch.

1-Chlormethyl-4-isopropyl-benzol, 11-Chlor-p-cymol, 4-Isopropyl-CH(CH<sub>3</sub>)<sub>2</sub> benzylchlorid, Cuminylchlorid  $C_{10}H_{19}Gl = CH_2Cl \cdot \hat{C}_6H_4 \cdot CH(CH_3)_2$  (H 423).  $CH(CH_3)_2$  B. In guter Ausbeute aus Cumol und Paraformaldehyd in Gegenwart von Zinkchlorid und Chlorwasserstoff (Blanc, Bl. [4] 33, 317; C. 1923 I, 1571; Bert, Bl. [4] 37, 1266, 1578; C. r. 186, 373). In fast theoretischer Menge beim Kochen von 4-Isopropyl-benzylalkohol mit konstant siedender Salzsäure (Norris, MILLIKEN, Am. Soc. 42, 2098). — Riecht angenehmer und stant siedender Salzsaure (NORRIS, MILLIEEN, Am. 1802. 422, 2008). — Riecht Engenehmer und ist weniger tränenreizend als Benzylchlorid; verursacht Augenlidentzündung (Bert). Kp: 227° bis 228° (N., M.); Kp: ca. 228° (teilweise Zersetzung); Kp<sub>24</sub>: 121°; Kp<sub>15</sub>: 110° (Bert, Bl. [4] 37, 1266); Kp<sub>14</sub>: 100° (Blanc, Bl. [4] 33, 317). D<sub>1</sub><sup>11,5</sup>: 1,020; n<sub>1</sub><sup>11,5</sup>: 1,523 (Bert). — Gibt beim Behandeln mit Magnesium in Äther vorwiegend 4-Isopropyl-benzylmagnesiumchlorid (Bert, C. r. 177, 195; 186, 373; Bl. [4] 37, 1267, 1578; Bert, Dorier, C. r. 182, 64); außerdem entsteht 4.4′-Diisopropyl-dibenzyl (Bert, C. r. 177, 195; Bl. [4] 37, 1267, 1578). Liefert beim Erwärmen mit Toluol in Gegenwart von Äthylmagnesiumbromid oder Butylmagnesiumbromid 2(oder 4)-Methyl-4'-isopropyl-diphenylmethan (Bert, Bl. [4] 37, 1586).

2.5-Dichlor-1-methyl-4-isopropyl-benzol, 2.5-Dichlor-p-cymol  $C_{10}H_{12}Cl_2$ , s. nebenstehende Formel (H 423). B. Zur Bildung durch Chlorieren von Cymol vgl. Gysin, Helv. 9, 66. Aus diazotiertem 5-Chlor-2-aminop-cymol und Kupfer(I)-chlorid in salzsaurer Lösung (Wheeler, Giles, Am. Soc. 44, 2611). — Mit Wasserdampf flüchtig (WH., G.).

CH<sub>3</sub> CI CH(CH<sub>3</sub>)<sub>2</sub>

3-Brom-1-methyl-4-isopropyl-benzol, 3-Brom-p-cymol  $C_{10}H_{12}Br$ , s. nebenstehende Formel (H 424; E I 205). B. Durch Behandlung von salzsaurem 5-Brom-2-amino-p-cymol mit Isoamylnitrit in Eisessig unterhalb 10° und nachfolgendes Verkochen mit Alkohol (Bert, Dorier, C. r. 182, 64). — Gibt bei der Einw. von Magnesium in Ather, Behandlung mit Sauerstoff und nachfolgenden Zersetzung mit Wasser Thymol.

CH<sub>3</sub> ·Br CH(CH<sub>3</sub>)<sub>2</sub> CH<sub>3</sub>

2.5-Dibrom-1-methyl-4-isopropyl-benzol, 2.5-Dibrom-p-cymol  $C_{10}H_{12}Br_2$ , s. nebenstehende Formel (H 424). B. Beim Diazotieren von 5-Brom-2-amino-p-cymol in Gegenwart von Kupfer(I)-bromid (Wheeler, TAYLOR, Am. Soc. 47, 182).

 $\cdot$ Br CH(CH<sub>3</sub>)<sub>2</sub>

2-Nitro-1-methyl-4-isopropyl-benzol, 2-Nitro-p-cymol  $C_{10}H_{18}O_2N$ , 2-Nitro-1-methyl-4-Isopropyl-benzol, 2-Nitro-p-cymol C<sub>10</sub>H<sub>18</sub>O<sub>2</sub>N, s. nebenstehende Formel (H 424; E I 206). B. Zur Bildung durch Nitrieren von Cymol mit Salpeterschwefelsäure vgl. WHEELER, SMITHEY, Am. Soc. 43, 2613; PHILLIPS, Am. Soc. 44, 1777; DEMONEREUN, KREMERS, J. am. pharm.

Assoc. 12, 298; C. 1923 III, 1356. — Kp<sub>14</sub>: 130—135°; D<sup>23</sup>: 1,036; n<sup>2</sup>/<sub>1</sub>: 1,529 (D., K.). — Liefert bei der elektrolytischen Reduktion in 92—97%iger Schwefelsäure bei 30—60° 6-Ämino-carvacrol (Äusterweil, D. R. P. 416016; C. 1925 II, 2094; Frdl. 15, 1742), bei der Reduktion mit Natriumamalgam (Werligo, Z. 1864, 723; Schumow, Mr. 19, 440. B. 20 (4887) Ref. 248) oder Zinkstank in Natriumählgat (Werligo, Z. 1864, 723; Schumow, Mr. 19, 440. B. 20 (4887) Ref. 248) oder Zinkstank in Natriumählgat (Werligo, Z. 1864, 723; Schumow, Mr. 19, 440. B. 20 (4887) Ref. 248) oder Zinkstank in Natriumählgat (Merligo, Z. 1864, 723; Schumow, Mr. 19, 440. B. 20 (4887) Ref. 248) oder Zinkstank in Natriumählgat (Merligo, Z. 1864, 723; Schumow, Mr. 19, 440. B. 20 (4887) Ref. 248) oder Zinkstank in Natriumählgat (Merligo, Z. 1864, 723; Schumow, Mr. 19, 440. B. 20 (4887) Ref. 248) oder Zinkstank in Natriumählgat (Merligo, Z. 1864, 723; Schumow, Mr. 19, 440. B. 20 (4887) Ref. 248) oder Zinkstank in Natriumählgat (Merligo, Z. 1864, 723; Schumow, Mr. 19, 440. B. 20 (4887) Ref. 248) oder Zinkstank in Natriumählgat (Merligo, Z. 1864, 723; Schumow, Mr. 19, 440. B. 20 (4887) Ref. 248) oder Zinkstank in Natriumählgat (Merligo, Z. 1864, 723; Schumow, Mr. 19, 440. B. 20 (4887) Ref. 248) oder Zinkstank in Natriumählgat (Merligo, Z. 1864, 723; Schumow, Mr. 19, 440. B. 20 (4887) Ref. 248) oder Zinkstank in Natriumählgat (Merligo, Z. 1864, 723; Schumow, Mr. 19, 440. B. 20 (4887) Ref. 248) oder Zinkstank in Natriumählgat (Merligo, Z. 1864, 7248) oder Zinkstank in Natriumählgat (Merligo, Z. 1864, 72 CH<sub>3</sub> Ж. 19, 119; B. 20 [1887] Ref., 218) oder Zinkstaub in Natriumäthylat-Lösung (Микачама, J. pharm. Soc. Japan 1921, Nr. 475, 3; C. 1922 I, 200) 2.2'-Azo-p-cymol, bei der Reduktion mit Aluminiumamalgam und Wasser in Petroläther, Benzol oder besser Vaselinöl unter Kühlung 2-Hydroxylamino-p-cymol (Au., Lemay, Bl. [4] 41, 456). Bei der Reduktion mit Zinn und Salzsäure (Söderbaum, Widman, B. 21 [1888], 2127) oder Eisen und Salzsäure

bei 90-100° (D., K.) erhält man 2-Amino-p-cymol.

2.6 - Dinitro - 1 - methyl - 4 - isopropyl - benzol, 2.6 - Dinitro - p - eymol  $C_{10}H_{12}O_4N_2$ , s. nebenstehende Formel (H 425; E I 206). Zur Bildung durch Nitrieren von Cymol mit Salpeterschwefelsäure vgl. Alfthan, B. 58, 84; WHEELER, HARRIS, Am. Soc. 49, 495. — Kp5-6: 161-1630 (AL.). Liefert beim Kochen mit rauchender Salpetersäure (D: 1,6) 3.5-Dinitro-4-methyl-benzoesäure, beim Erhitzen mit rauchender Salpetersäure (D: 1,52) im Rohr auf 130° 2.6-Dinitro-terephthalsäure (Wheeler, Harris, Am. Soc. 49, 497).

CH<sub>3</sub> O2N · NO<sub>2</sub> CH(CH<sub>3</sub>)<sub>2</sub>

6-Chlor-2.3-dinitro-1-methyl-4-isopropyl-benzol, 6-Chlor-2.3-dinitro-p-cymol  $C_{10}H_{11}O_4N_2Cl$ , s. nebenstehende Formel. Ist H 425 als festes 2-Chlor-eso-dinitro-1-methyl-4-isopropyl-benzol beschrieben (Lubs, Young, J. ind. Eng. Chem. 11, 1131; C. 1921 I, 175). — Zur Bildung beim Nitrieren von 2-Chlor-p-cymol mit Salpeterschwefelsäure vgl. L., Y. — Optische Eigenschaften der Krystalle: L., Y. F: 108—109°. Gibt bei der Reduktion mit Zinkstaub und verd. Salzsäure 6-Chlor-2.3-diamino-p-cymol.

CH<sub>3</sub> ·NO<sub>2</sub> ·NO2 CH(CH<sub>3</sub>)<sub>2</sub>

Flüssiges 2-Chlor-eso-dinitro-1-methyl-4-isopropyl-benzol  $C_{10}H_{11}O_4N_2Cl=CH_3$ :  $C_3HCl(NO_2)_2$ :  $CH(CH_3)_2$  (H 425). Ist vermutlich ein Gemisch (Lubs, Young, *J. ind. Eng.* Chem. 11, 1131; C. 1921 I, 175).

2.3.6 -Trinitro -1 - methyl -4 - isopropyl - benzel, 2.3.6 - Trinitro p-cymol  $C_{10}H_{11}O_{0}N_{3}=CH_{3}\cdot C_{8}H(NO_{3})_{3}\cdot CH(CH_{9})_{2}$ , s. nebenstehende Formel. Als solches ist die H 426 als 2.3.5 - oder 2.3.6 - Trinitro -1 - methyl 4 - isopropyl - benzel beschriebene Verbindung erkannt worden (Ehrneoth, Finska Kemistsamf. Medd. 40 [1931], 142; C. 1932 I, 3418; vgl. HALSE, DEDICHEN, zit. bei ALFTHAN, B. 53, 83). — Zur Bildung durch Nitrierung von Cymol mit Salpeterschwefelsäure vgl. HALSE, DEDICHEN.

[Knobloch]

- 11. 1.2-Didthyl-benzol C<sub>10</sub>H<sub>14</sub> = C<sub>2</sub>H<sub>5</sub>·C<sub>5</sub>H<sub>4</sub>·C<sub>2</sub>H<sub>5</sub> (H 426). V. Über Vorkommen im persischen Erdöl vgl. Birch, Norris, Soc. 1926, 2552. B. In geringer Menge neben anderen Produkten bei der Einw. von Äthylen auf Benzol bei Gegenwart von Aluminium-chlorid bei 70° (Berry, Reid, Am. Soc. 49, 3145; Copenhaver, R., Am. Soc. 49, 3157; vgl. Milligan, R., Am. Soc. 44, 206).
- 12. 1.3 Diāthyl benzol C<sub>10</sub>H<sub>14</sub> = C<sub>2</sub>H<sub>5</sub>·C<sub>5</sub>H<sub>4</sub>·C<sub>2</sub>H<sub>5</sub> (H 426). B. Neben anderen Produkten bei der Einw. von Athylen auf Benzol bei Gegenwart von Aluminiumchlorid bei 70° (Berry, Reid, Am. Soc. 49, 3145; Copenhaver, R., Am. Soc. 49, 3157; vgl. Milligan, R., Am. Soc. 44, 206). Durch Erhitzen von Athylbenzol mit Aluminiumchlorid (Stratford, Ann. Off. Combust. liq. 4, 93, 321; C. 1929 II, 1286). Trennung von 1.2- und 1.4-Diāthylbenzol durch partielle Sulfonierung, fraktionierte Krystallisation der Bariumsalze und Hydrolyse der Sulfonsäure mit überhitztem Wasserdampf: Co., R. Leicht bewegliche Flüssigkeit von angenehmem, süßlichem Geruch. Kp: 180,55° (korr.) (Co., R.). D°: 0,8798; D°: 0,8597 (Co., R.). n°: 1,4998; n°: 1,4778; n°: 1,4955; n°: 1,4926 (Co., R.). Liefert bei der Hydrierung in Gegenwart von Platinoxyd in Eisessig 1.3-Diāthyl-cyclohexan (St.). Gibt bei der Nitrierung mit Salpeterschwefelsäure unterhalb 30° hauptsächlich 4-Nitro-1,3-diāthyl-benzol (Co., R.).

4-Chlor-1.3-diäthyl-benzol C<sub>10</sub>H<sub>18</sub>Cl, s. nebenstehende Formel. B. Beim Erhitzen der aus diazotiertem 4-Amino-1.3-diäthyl-benzol und Kupfer(I)-chlorid bei 0° entstehenden braunen Additionsverbindung (COPENHAVER, REID, Am. Soc. 49, 3162). — Angenehm riechende Flüssigkeit. Kp<sub>12</sub>: 94,5° (korr.). D°: 1,0335; D°: 1,0119. n°: 1,5149.

26). C<sub>2</sub>H<sub>5</sub>
ind
ER, C<sub>2</sub>H<sub>5</sub>

 $C_2H_5$ 

4-Brom-1.3-diäthyl-benzol  $C_{10}H_{13}Br$ , s. nebenstehende Formel (vgl. H 426). B. In mäßiger Ausbeute aus diazotiertem 4-Amino-1.3-diäthyl-benzol und Kupfer(I)-bromid in bromwasserstoffsaurer Lösung bei  $0-5^{\circ}$  (Copenhaver, Reid, Am. Soc. 49, 3162). — Flüssigkeit. Kp<sub>12</sub>: 106,5° (korr.).  $D_0^{\circ}$ : 1,2709;  $D_{5}^{\circ}$ : 1,2462.  $n_{5}^{\circ}$ : 1,5359.

C<sub>2</sub>H<sub>5</sub>

Вr

**4-Jod-1.3-diäthyl-benzol**  $C_{10}H_{13}I$ , s. nebenstehende Formel. B. Aus diazotiertem 4-Amino-1.3-diäthyl-benzol und Kaliumjodid (Copenhaver, Reid, Am. Soc. **49**, 3162). — Flüssigkeit.  $Kp_{12}$ : 131,5° (korr.).  $D_0^{\circ}$ : 1,5026;  $D_{22}^{\circ}$ : 1,4740.  $n_{2}^{\bullet}$ : 1,5729.

 $\overbrace{\overset{C_2H_5}{\overset{}{\circ}}}_{iCl_2}$ 

2.4 - Diäthyl - phenyljodidchlorid C<sub>10</sub>H<sub>13</sub>Cl<sub>2</sub>I, s. nebenstehende Formel. B. Aus 4-Jod-1.3-diäthyl-benzol und Chlor in Tetrachlorkohlenstoff bei 0° (COPENHAVER, REID, Am. Soc. 49, 3162). — Gelbe Krystalle, die sich unter Chlorabgabe zersetzen. F: 51—53° (Zers.). Sehr leicht löslich in Tetrachlorkohlenstoff.

C<sub>2</sub>H<sub>5</sub>
.C<sub>2</sub>H<sub>5</sub>

4-Nitro-1.3-diäthyl-benzol C<sub>10</sub>H<sub>13</sub>O<sub>2</sub>N,s. nebenstehende Formel (vgl. H 426).

B. Neben geringen Mengen 2-Nitro- und 5-Nitro-1.3-diäthyl-benzol(?) bei der Nitrierung von 1.3-Diäthyl-benzol mit Salpeterschwefelsäure unterhalb 30° (Copenhaver, Reid, Am. Soc. 49, 3160). — Gelbe, angenehm riechende Flüssigkeit, die beim Aufbewahren allmählich rot wird. Kp<sub>4</sub>: 133°. D°: 1,0860; D°: 1,0844. n°: 1,5300.

13. 1.4-Diāthyl-benzol  $C_{10}H_{14}=C_2H_5\cdot C_6H_4\cdot C_2H_5$  (H 426; E I 206). B. Neben anderen Produkten bei der Einw. von Athylen auf Benzol bei Gegenwart von Aluminium-chlorid bei 70° (Berry, Reid, Am. Soc. 49, 3145; Copenhaver, R., Am. Soc. 49, 3157; vgl. Milligan, R., Am. Soc. 44, 206). Durch Reduktion von 4-Athyl-acetophenon mit amalgamiertem Zink und Salzsäure (v. Auwers, Lechner, Bundesmann, B. 58, 48). —  $n_5^*$ : 1,5034;  $n_5^*$ : 1,4967 (v. Au., Kolligs, B. 55, 26).

14. 1.1-Dimethyl-4-äthyliden-cyclohexadien-(2.5)  $C_{10}H_{14} = CH_3 \cdot CH : C < CH : CH_3 \cdot CH_3 \cdot CH_3 \cdot B$ . Beim Behandeln von 1.1-Dimethyl-4-äthyl-cyclohexadien-(2.5)-ol-(4) mit kalter 10% iger Schwefelsäure (v. Auwers, Ziegler, A. 425, 251).

— Kp<sub>35</sub>:  $81.5-84^{\circ}$ ; Kp<sub>16</sub>:  $71-73^{\circ}$ .  $D_{4}^{i_{3}.6}$ : 0.8613;  $D_{5}^{i_{5}.15}$ : 0.8614.  $n_{\alpha}^{i_{4}.7}$ : 1.5098;  $n_{5}^{i_{5}.7}$ : 1.5422;  $n_{\alpha}^{e_{3}.15}$ : 1.5107;  $n_{5}^{i_{5}.16}$ : 1.5157;  $n_{6}^{i_{5}.15}$ : 1.5302;  $n_{\gamma}^{i_{\gamma}.15}$ : 1.5430. — Beim Sättigen der Lösung in Eisessig mit Chlorwasserstoff bei  $0^{\circ}$  tritt Umlagerung in 1.2-Dimethyl-4-āthyl-benzol ein. Beim Behandeln mit Permanganat entstehen Essigsäure, Dimethyl-malonsäure und 1.2-Dimethyl-4-āthyl-benzol. Reduktion mit Natrium in siedendem Alkohol; v. Au., Z. Addiert Brom nur in geringem Maße.

15. 1.2-Dimethyl-4-āthyl-benzol, 4-Āthyl-o-xylol C<sub>10</sub>H<sub>14</sub>, s. nebenstehende Formel (H 427). V. Im Steinkohlenurteer (Kruber, B. 57, 1009; vgl. Weissgerber, Brennstoffch. 5, 210; C. 1925 I, 2270). — B. Beim Sättigen einer Lösung von 1.1-Dimethyl-4-āthyliden-cyclohexadien-(2.5) in Eisessig mit Chlorwasserstoff bei 0° (v. Auwers, Ziegler, A. 425, 256). Durch Reduktion von 3.4-Dimethyl-acetophenon mit amalgamiertem Zink und Salzsäure (v. Au., Z., A. 425, 257). — Kp: 186—187° (v. Au., Z.), 189° (Kr.). Disc. 0,8777 (v. Au., Z.); Disc. 0,8704 (Kr.). na. 1,5010: n. 1,5010: n. 1,5049; n. 1,5041; n. 1,5010: n. 1,5010

3.5.6-Trinitro-1.2-dimethyl-4-äthyl-benzol, 3.5.6-Trinitro-4-äthyl-o-xylol  $C_{10}H_{11}O_6N_3$ , s. nebenstehende Formel (H 428). B. Durch Nitrierung von 1.2-Dimethyl-4-äthyl-benzol mit Salpeterschwefelsäure (v. Auwers,  $O_2N$  No2 No2 No2 C2H5 CH3

16. 1.4-Dimethyl-2-āthyl-benzol, 2-Āthyl-p-xylol C<sub>10</sub>H<sub>14</sub>, s. nebenstehende Formel (H 428; E I 206). B. Aus der Grignard-Verbindung des 2-[β-Chlorāthyl]-p-xylols durch Zersetzen mit Wasser (Bert, C. r. 186, 374).

1.4-Dimethyl-2-[ $\beta$ -chlor-äthyl]-benzol, 2-[ $\beta$ -Chlor-äthyl]-p-xylol  $C_{10}H_{13}Cl$ , s. nebenstehende Formel. B. Bei der Einw. von p-Toluolsulfonsäure-[ $\beta$ -chlor-äthylester] auf die Grignard-Verbindung des 2-Brom-p-xylols (Berr, C.  $\tau$ . 186, 374). Aus 2.5-Dimethyl- $\beta$ -phenäthylalkohol und Chlorwasserstoff (B.).

17. 1.5 - Dimethyl - 2 - āthyl - benzol. 4 - Āthyl - m - xylol C<sub>10</sub>H<sub>14</sub>, s. nebenstehende Formel (H 428). B. Aus der Grignard - Verbindung des 1.5-Dimethyl-2-[β-chlor-āthyl] - benzols beim Zersetzen mit Wasser (Berr, CH<sub>3</sub>). C<sub>2</sub>H<sub>5</sub> (C. r. 186, 374). Durch Reduktion von 2.4-Dimethyl-acetophenon mit amalgamiertem Zink in salzsaurer Lösung (Philippi, A. 428, 302). — Liefert mit Acetylchlorid und Aluminiumchlorid in Schwefelkohlenstoff 2.4-Dimethyl-5-āthyl-acetophenon (Ph.).

1.5-Dimethyl-2-[ $\beta$ -chlor-äthyl]-benzol, 4-[ $\beta$ -Chlor-äthyl]-m-xylol  $C_{10}H_{13}Cl$ , s. nebenstehende Formel. B. Bei der Einw. von p-Toluolsulfonsäure-[ $\beta$ -chlor-äthylester] auf die Grignard-Verbindung des 4-Brom-m-xylols (Bert, C. r. 186, 374). Aus 2.4-Dimethyl- $\beta$ -phenäthylalkohol und Chlorwasserstoff (B.).

18. 1.3 - Dimethyl - 5 - äthyl - benzol, 5 - Äthyl - m - xylol C<sub>10</sub>H<sub>14</sub>, CH<sub>3</sub> s. nebenstehende Formel (H 429; E I 206). Liefert beim Durchleiten durch ein auf 640—650° erhitztes Rohr im Kohlendioxydstrom 3.5-Dimethyl-styrol (Naugatuck Chemical Co., D. R. P. 476270; Frdl. 16, 331).

1.3-Dimethyl-5-[ $\alpha.\beta$ -dibrom-āthyl]-benzol, 5-[ $\alpha.\beta$ -Dibrom-āthyl]-m-xylol  $C_{10}H_{12}Br_2$ , s. nebenstehende Formel. Zur Zusammensetzung und Konstitution vgl. Titley, Soc. 1926, 509.

— B. Aus 3.5-Dimethyl-styrol und Brom in Schwefelkohlenstoff (v. Braun, Engel, B. 58, 285). — Nadeln (aus Alkohol + Petroläther). F: 90° (v. B., E.).

19. Dimethyläthylbenzole unbekannter Konstitution  $C_{10}H_{14}$ . V. Im persischen Erdöl finden sich zwei Dimethyläthylbenzole mit unbekannter Stellung der Seitenketten; sie liefern bei der Einw. von Brom zwei Tribromderivate mit den Schmelzpunkten 93° und ca. 106° (Biech, Norris, Soc. 1926, 2552).

20. 1.1.2-Trimethyl-4-methylen-cyclohexadien-(2.5)  $C_{10}H_{14} = CH_1: C(CH_3) > C(CH_3)_2$ . B. Beim Behandeln von 1.1.2.4-Tetramethyl-cyclohexadien-(2.5)-ol-(4) mit kalter 10% iger Schwefelsäure (v. Auwers, Ziegler, A. 425, 268). —  $Kp_{15}: 60-65^{\circ}$ .  $D_4^{10.7}: 0.8735$ .  $n_{\alpha}^{10.7}: 1.5133; n_{\beta}^{10.7}: 1.5181; n_{\beta}^{10.7}: 1.5321; n_{\gamma}^{10.7}: 1.5444$ . — Polymerisiert sich sehr leicht beim Aufbewahren.

- 21. 1.2.3.4 Tetramethyl-benzol. Prehnitol  $C_{10}H_{14}$ , s. nebenstehende Formel (H 430; E I 206). Darst. Zur Reindarstellung trägt man das Natriumsalz der 1.2.3.4 Tetramethyl-benzol-sulfonsäure-(5) bei 140—150° unter gleichzeitigem Durchleiten von überhitztem Wasserdampf in verd. Schwefelsäure ein (SMITH, LUX, Am. Soc. 51, 2998). E: —6,4° (korr.) (Sm., L.; Sm., MacDougall, Am. Soc. 51, 3005). Kp<sub>24-25</sub>: 97—98° (Sm., L.); Kp<sub>6,5</sub>: 75,0—75,5° (korr.) (Sm., MacD.).  $h_{7}^{h_{1}}$ : 1,5245;  $h_{7}^{h_{1}}$ : 1,5187 (v. Auwers, Kolligs, B. 55, 26). Pikrat. F: 89,5—90,5° (Sm., MacD.).
- 5-Brom -1.2.3.4-tetramethyl-benzol C<sub>10</sub>H<sub>13</sub>Br, s. nebenstehende Formel (H 430). B. Durch Einw. von Brom auf 1.2.3.4-Tetramethyl-benzol in Chloroform (SMITH, MACDOUGALL, Am. Soc. 51, 3004). Krystalle (aus Petroläther). Br. CH<sub>3</sub> CH<sub>3</sub>
- 22. 1.2.3.5-Tetramethyl-benzol, Isodurol C<sub>10</sub>H<sub>14</sub>, s. nebenstehende Formel (H 430). B. Durch Einw. von Dimethylsulfat auf 2.4.6-Trimethylphenylmagnesiumbromid in Äther unter Kühlung (SMITH, MACDOUGALL, Am. Soc. 51, 3002; SM., Org. Synth. 11 [New York 1931], S. 66). E: —24,0° (SM., MACD.). Kp<sub>760</sub>: 195—197° (EISENLOHE, Fortsch. Ch., Phys. 18 [1925], 556); Kp<sub>17</sub>: 84,6—84,7° (SM., MACD.). D<sub>1</sub>°: 0,8906; n<sub>He</sub>°: 1,5113 (EI.). Thermische Analyse des Systems mit Durol (Eutektikum bei —28,1° und 92% Isodurol): SM., MACD. Liefert bei der Hydrierung unter 3 Atm. Druck in Gegenwart von Platinmohr in Eisessig höhersiedendes, bei der Hydrierung über Nickel bei 160—170° niedrigersiedendes 1.2.3.5-Tetramethylcyclohexan (EI.).
- 23. 1.2.4.5-Tetramethyl-benzol. Durol C<sub>10</sub>H<sub>14</sub>, s. nebenstehende Formel (H 431; E I 207). V. Im rohen Holzessig (SEIB, B. 60, 1398). Im Braunkohlengeneratorteer (RUHEMANN, Z. anorg. Ch. 36, 156). Im Steinkohlen-Urteer (KRUBER, B. 57, 1015; Weissgerber, Brennstoffch. 5, 210; CH<sub>3</sub>. CH<sub>3</sub>. CH<sub>3</sub>. O. 1925 I, 2270). B. Neben anderen Methylierungsprodukten aus einem ca. 70% m-Xylol enthaltenden Handelsxylol und Methylchlorid bei Gegenwart von Aluminiumchlorid bei ca. 95° (SMITH, Dobrovolny, Am. Soc. 48, 1415; Sm., Org. Synth. 10 [1930], 32). Man läßt auf 1.2.4-Trimethyl-5-chlormethyl-benzol in Ather Magnesium einwirken und zersetzt die entstandene Grignard-Verbindung mit Wasser (Bert, C. r. 186, 374). Beim Behandeln von 1.1.3.4-Tetramethyl-hexadien-(2.5)-ol-(4) mit Schwefelsäure anfangs in der Kälte, dann unter Erwärmen (v. Auwers, Ziecler, A. 425, 263). Bei der Destillation des Natriumsalzes der 2.4.5-Trimethyl-phenylessigsäure mit Natriumacetat bei 400° (Holmberg, Svensk kem. Tidskr. 40, 314; C. 1929 I, 872). Beim Erhitzen von Durolsulfonsäure mit 50%iger Schwefelsäure (Sm., Lux, Am. Soc. 51, 2998). Krystalle (aus Benzol). F: 79,3—79,7° (unkorr.) (Sm., MacDougall, Am. Soc. 51, 2001), 81—82° (Ho.). E: 79,28° (Sm., MacD.). Kp: 190—191° (Eisenlohr, Fortsch. Ch., Phys. 18 [1925], 557). Ziemlich leicht flüchtig mit Alkohol-Dampf (Sm., D.). Parachor: Mumford, Phillips, Soc. 1929, 2117. Thermische Analyse des Systems mit Isodurol (Eutektikum bei —28,1° und 8 Mol-% Durol) (Sm., MacD.). Liefert bei tagelangem Einleiten von Sauerstoff bei 100° in trübem, diffusem Licht geringe Mengen Duryladehyd und Durylsäure (Stephens, Am. Soc. 48, 1826). Produkte, die bei der Hydrierung von Durol entstehen, s. S. 30.
- 1.2.4-Trimethyl-5-chlormethyl-benzol,  $\omega$ -Chlor-durol, 2.4.5-Trimethyl-benzylchlorid  $C_{10}H_{13}Cl$ , s. nebenstehende Formel. B. Aus Pseudocumol bei der Einw. von Paraformaldehyd und Chlorwasserstoff in Gegenwart von geschmolzenem Zinkchlorid (Bert, C. r. 186, 373, 374).
- 1.5-Dimethyl-2.4-bis-chlormethyl-benzol  $C_{10}H_{12}Cl_2$ , s. nebenstehende Formel. B. Neben 2.4-Dimethyl-1-chlormethyl-benzol bei der Behandlung von m-Xylol mit 33% iger Formaldehyd-Lösung in Gegenwart von Zinkchlorid unter Durchleiten von Chlorwasserstoff (BLANC, Bl. [4] 33, 316; C. 1923 I, 1571). Nadeln (aus Alkohol). F: 93°. Kp<sub>15</sub>: 155°. Gibt bei der Oxydation mit 4% iger Permanganat-Lösung 4.6-Dimethyl-isophthalsäure.
- 1.5-Dimethyl-2.4-bis-brommethyl-benzol  $C_{10}H_{12}Br_2$ , s. nebenstehende Formel. Diese Konstitution kommt der früher als 1.2-Dimethyl-4.5-bis-brommethyl-benzol (Durylendibromid) (H 432) formulierten Verbindung zu (Coffey, R. 42, 423). B. Beim Bromieren von  $CH_2Br$ -Durol im Sonnenlicht bei 130° (C., R. 42, 420). Nadeln (aus Benzol oder Essigester). F: 155—157°. Leicht löslich in Alkohol.

CH<sub>2</sub>Cl CH<sub>3</sub>·CH<sub>3</sub>

CH<sub>2</sub>Cl CH<sub>2</sub>Cl CH<sub>3</sub>

CH<sub>2</sub>Br · CH<sub>3</sub> CH<sub>3</sub> 3.6 - Dinitro - 1.2.4.5 - tetramethyl - benzol, 3.6 - Dinitro - durol C<sub>10</sub>H<sub>12</sub>O<sub>4</sub>N<sub>2</sub>, s. nebenstehende Formel (H 433; E I 207). B. Bei der Nitrierung von Durol in Chloroform mit Salpeterschwefelsäure unter Eiskühlung (SMITH, DOBROVOLNY, Am. Soc. 48, 1421). — Krystalle (aus Alkohol). F: 207—208°.

— Verharzt bei längerer Berührung mit Säure zu einem roten Produkt.

24. Bicyclo-[0.4.4]-decadien-(1.6), 1.2.3.5.6.7-Hexahydro-naphthalin oder Bicyclo-[0.4.4]-decadien-(1.5), 1.2.3.4.6.7-Hexahydro-naphthalin, Hexalin C<sub>10</sub>H<sub>14</sub>, Formel I oder II.

B. Beim Erhitzen von 9.10-Dioxydekalin mit sehr verd. Schwefelsäure im Rohr auf 150° (NAMETKIN, GLAGOLEWA, B. 62, 1573; Ж. 61, 539).— Dekalinähnlich riechendes Öl. Kp<sub>8</sub>: 75—76°. Die O,9725. n<sup>30</sup>: 1,5322. — Wirdbeim Aufbewahren zähflüssig. — Ein Tropfen Hexalin färbt Salpetersäure (D: 1,4) erst rosa, dann dunkelviolett, eine Mischung von Alkohol + Schwefelsäure (1:1) erst rosa, dann

rot, endlich violettrot.

25. 2.6.6-Trimethyl-bicyclo-[1.1.3]-heptadien-(2.4) oder 6.6-Dimethyl-2-methylen-bicyclo-[1.1.3]-hepten-(2), Verbenen C<sub>10</sub>H<sub>14</sub>, Formel I oder II

(E I 207). Zur Konstitution vgl. noch J. L. Simonsen, The terpenes, Bd. II [Cambridge 1932], S. 184, 186.

Linksdrehende Form, l-Verbenen. B. Durch Reduktion von rechtsdrehendem Verbenendibromid (S. 102) mit Zinkstaub und Eisessig (Blumann, Zeitschel, B. 54, 892). — Kp<sub>749</sub>: 158—159° (Bl., Schmidt, A. 453, 51); Kp<sub>745</sub>: 158—159°; Kp<sub>11</sub>: 45° (Bl., Z.). D<sup>15</sup>: 0,8866;  $n_D^{\infty}$ : 1,498;  $[\alpha]_D$ : —100,6° (Bl., Z.). — Polymerisiert sich beim Aufbewahren zu einer hochschmelzenden, unlöslichen Krystallmasse (Bl., Z.). Wird durch alkal. Permanganat-Lösung zu eis-Norpinsäure oxydiert. Durch Reduktion mit Natrium in Alkohol erhält man rechtsdrehendes Dihydroverbenen (S. 102). Gibt beim Kochen mit Zinkchlorid p-Cymol. Gibt mit Brom in eisgekühltem Chloroform rechtsdrehendes Verbenendibromid (Bl., Z., B. 54, 890).

Rechtsdrehende Form, d-Verbenen. B. Durch Reduktion von linksdrehendem Verbenendibromid (S. 102) mit Zinkstaub und Eisessig (Blumann, Zeitschel, B. 54, 892).

— Kp<sub>748</sub>: 158—159°; Kp<sub>1</sub>4: 45°. D<sup>15</sup>: 0,8867. n<sup>20</sup>: 1,498. [α]<sub>D</sub>: +100,7°. — Gibt mit Brom in eisgekühltem Chloroform linksdrehendes Verbenendibromid.

26. 2.2-Dimethyl-3-methylen-bicyclo-[1.2.2]-hepten-(5), HC—CH—C(CH<sub>8</sub>)2 Camphenen, Isocamphodien C<sub>10</sub>H<sub>14</sub>, s. nebenstehende Formel.

B. Durch erschöpfende Methylierung von 5-Amino-2.2-dimethyl-HC—CH—C:CH<sub>2</sub>
3-methylen-bicyclo-[1.2.2]-heptan bei 45—50°, Behandeln des erhaltenen
5-Dimethylamino-2.2-dimethyl-3-methylen-bicyclo-[1.2.2]-heptan-jodmethylats mit Silberoxyd und Destillation der wäßr. Lösung des Hydroxyds, neben anderen Produkten (NAMET-KIN, ZABRODIN, B. 61, 1493; Ж. 60, 1548). — Krystalle von camphenähnlichem Geruch (aus Alkohol). F: 41,5—42°; siedet im Schmelzröhrchen bei 149—150°. — Entfärbt Permanganat-Lösung und Brom in Chloroform rasch. Verbraucht bei der Titration mit Benzopersäure in Chloroform 2 Atome Sauerstoff. Reagiert energisch mit Salpetersäure. Liefert beim Erhitzen mit Eisessig und wenig 50 %iger Schwefelsäure auf 55° das Acetat des Bornylenols (Syst. Nr. 510). — Alkoholische Schwefelsäure färbt sich nach Zugabe einiger Krystalle erst gelb, dann rot und schließlich dunkelrot.

331

(Wie., Be.); Kp<sub>13</sub>: 78—80°; Kp<sub>13</sub>: 74—75° (Sr., Be.). — Beim Leiten der Dämpfe über eine glühende Platinspirale bei 75—80° unter 20 mm erfolgt Spaltung in Cyclopentadien, Cyclopenten und geringe Mengen anderer Produkte (Sr., Rh., Helv. 7, 28). Liefert beim Behandeln mit Permanganat in Aceton 3.6-Methylen-hexahydrohomophthalsäure (Be., Widerstelle, Nr., Sr., A. 485, 232, 242). Beim Aufbewahren mit Benzopersäure entsteht Dihydrodicyclopentadienoxyd (Syst. Nr. 2365) (W., B.). Liefert in Tetrachlorkohlenstoff bei 6-stdg. Einleiten von Ozon Polydihydrodicyclopentadienozonid (s. u.) (Sr., B. 58, 1095). Gibt bei der Hydrierung in Gegenwart von Platinmohr in Äther Tetrahydrodicyclopentadien (S. 109) (Sr., Rh.).

Polydihydrodicyclopentadienozonid (C<sub>10</sub>H<sub>14</sub>O<sub>3</sub>)<sub>x</sub>. Zur Bezeichnung vgl. Staudinger, B. 58, 1091. — Kryoskopische Mol.-Gew.-Bestimmung in Benzol: St., B. 58, 1096. — B. Durch Einleiten von Ozon in eine Lösung von Dihydrodicyclopentadien in Tetrachlorkohlenstoff (St.). — Farbloses, explosives Pulver (aus Benzol + Petroläther). F: 125—130°. Leicht löslich in Benzol, Tetrachlorkohlenstoff und Schwefelkohlenstoff unter Bildung kolloider Lösungen; unlöslich in Äther und Petroläther. — Wird durch Wasser sehr schwer unter Bildung harziger Produkte gespalten. Zersetzt sich in siedendem Eisessig.

28. "Citralterpen"  $C_{10}H_{14}$ . B. Beim Behandeln von Citral mit 20% iger Schwefelsäure (Horiuchi, Mem. Coll. Sci. Kyoto [A] 11, 190; C. 1928 II, 1326). — Kp: 183—186°.  $D_0^{\infty}$ : 0,8886.  $n_D^{\infty}$ : 1,5092. [Gottfried]

## 6. Kohlenwasserstoffe $C_{11}H_{16}$ .

1. Pentylbenzol. n-Amylbenzol. 1-Phenyl-pentan C<sub>11</sub>H<sub>16</sub>, s. nebenstehende Formel (H 434; E I 207). B. Bei der Einw. von Natrium auf n-Amyljodid und Brombenzol in Ä<sup>+</sup>her (Simon, Bl. Soc. chim. Belg. 38, 49; C. 1929 I, 2520). Neben anderen Produkten aus Benzylbromid und Butylmagnesiumbromid beim Erhitzen in Petroläther oder Cyclohexan (Bert, C. r. 186, 588). Bei der Reduktion von Äthyl-β-phenäthyl-keton mit amalgamiertem Zink und Salzsäure (Thierfelder. Klenk, H. 141, 14). Bei Einw. von p-Toluolsulfonsäure-butylester auf Benzylmagnesiumchlorid in Äther (Rossander, Marvel, Am. Soc. 50, 1495; Gilman, Beaber, Ann. Soc. 47, 522; G., Heck, Am. Soc. 50, 2228). Aus γ-Phenyl-propylmagnesiumchlorid und p-Toluolsulfonsäure-butylester in siedendem Äther (G., B.). — Darst. Man setzt eine Lösung von p-Toluolsulfonsäure-butylester in absol. Äther langsam unter Rühren zu Benzylmagnesiumbromid in Äther und erhitzt zum Sieden (Gilman, Robinson, Org. Synth. 10 [1930], 4). — E: —78,25° (Si.). Kp<sub>720</sub>: 199—201° (Th., Kl.); Kp<sub>760</sub>: 205,3° ± 0,1° (korr.) (Si.). D<sup>c</sup>; 0,8741; D<sup>c</sup>; 0,8626; D<sup>c</sup>; 0,8510 (Si.). Viscosität bei 15°: 0,01487, bei 30°: 0,01126 g/cmsec (Si.). n<sup>c</sup>; 1,4867; n<sup>c</sup>; 1,4906; n<sup>c</sup>; 1,5001; n<sup>c</sup>; 1,5083; n<sup>c</sup>; 1,4824; n<sup>c</sup>; 1,4863; n<sup>c</sup>; 1,4957; n<sup>c</sup>; 1,5039 (Si.). Brechungsindices für Helium-Linien bei 15° und 25°: Si. — Liefert bei der Hydrierung in Gegenwart von Platinschwarz in Eisessig n-Amyl-cyclohexan und wenig Methylcyclohexan (Stratfford, Ann. Off. Combust. liq. 4, 328; C. 1929 II, 1286). — Verhalten im Organismus: Thierfelder, Klenk, H. 141, 24.

[\$\alpha\$-Chlor-pentyl]-benzol, 1-Chlor-1-phenyl-pentan, Butylphenylchlormethan \$C\_{11}H\_{15}Cl=C\_6H\_5\cdot CHCl\cdot [CH\_2]\_3\cdot CH\_3. Linksdrehende Form. \$\bar{E}\$. Ein wahrscheinlich optisch unreines Präparat entsteht bei Einw. von Phosphorpentachlorid in Chloroform oder von Thionylchlorid auf linksdrehendes Butyl-phenyl-carbinol, zum Schluß auf dem Wasserbad (Levene, Mikeska, \$J\$. biol. Chem. 70, 364, 380). — \$Kp\_{Ca.15}\$: 121—1220. [\$\alpha\$]\_5^8\$: \$-17,40 (c=17). — Gibt beim Kochen mit alkoh. Kaliumhydrosulfid-Lösung rechtsdrehendes 1-Mercapto-1-phenyl-pentan.

[ $\varepsilon$ -Chlor-pentyl]-benzol, 5-Chlor-1-phenyl-pentan,  $\varepsilon$ -Phenyl-n-amylchlorid  $C_{11}H_{15}Cl=C_{6}H_{5}\cdot[CH_{2}]_{4}\cdot CH_{2}Cl$  (E I 208). B. Beim Erhitzen von  $\varepsilon$ -Phenyl-n-amylalkohol mit rauchender Salzsäure im Rohr (Conant, Kirner, Am. Soc. 46, 243). — Kp<sub>5-6</sub>: 111° bis 112°. — Geschwindigkeit der Umsetzung mit Kaliumjodid in Aceton bei 60°: C., K.

[ $\alpha$ -Brom-pentyl]-benzol, 1-Brom-1-phenyl-pentan, Butylphenyl-brommethan  $C_{11}H_{15}Br=C_6H_5\cdot CHBr\cdot [CH_2]_5\cdot CH_3$ . B. Aus Butyl-phenyl-carbinol und Bromwasserstoff unter Eiskühlung (Conant, Blatt, Am. Soc. 50, 555). — Kp<sub>10</sub>: 120—123°. — Die Magnesiumverbindung liefert bei Einw. von wasserfreiem Kupfer(II)-chlorid 5.6-Diphenyl-decan und wenig 1-Phenyl-penten-(1).

[ $\alpha.\beta.\gamma.\delta$ -Tetrabrom-pentyl]-benzol, 1.2.3.4-Tetrabrom-1-phenyl-pentan  $C_{11}H_{12}Br_4 = C_6H_5 \cdot [CHBr]_4 \cdot CH_3$  (H 434). F: 156° (Prévost, C. r. 180, 1852). — Liefert beim Eintragen in auf 100° gehaltene alkoholische Kalilauge Methyl-phenyl-diacetylen (Pr., C. r. 180, 1852; A. ch. [10] 10, 372).

[ $\beta$ -Brom- $\beta$ -methyl-butyl]-benzol, 2-Brom-2-methyl-1-phenyl-butan, 2-Brom-2-benzyl-butan  $C_{11}H_{15}Br = C_0H_5 \cdot CH_2 \cdot CBr(CH_3) \cdot C_2H_5$ . B. Durch Sättigen von Methyläthyl-benzyl-carbinol mit Bromwasserstoff bei Zimmertemperatur (Trotman, Soc. 127, 91). — Angenehm minzeartig riechendes Öl. Reizt die Augen. — Zersetzt sich bei der Destillation. Liefert bei der Einw. von Äthylmagnesiumbromid in Äther oder von Magnesium in Gegenwart von Jod Äthan, Äthylen, 2-Methyl-1-phenyl-buten-(1)(?) und 2-Benzyl-butan(?).

bei der Nitrierung mit Salpeterschwefelsäure 2-[4-Nitro-benzyl]-butan (GL., C.).

2-Brommethyl-1-phenyl-butan, 1-Brom-2-benzyl-butan,  $\beta$ -Äthyl- $\gamma$ -phenyl-propylbromid  $C_{11}H_{15}Br=C_6H_5\cdot CH_2\cdot CH(CH_2Br)\cdot C_2H_5$ . B. Aus  $\beta$ -Äthyl- $\gamma$ -phenyl-propylalkohol beim Erwärmen mit rauchender Bromwasserstoffsäure im Rohr auf dem Wasserbad (v. Braun, A. 451, 50). — Kp<sub>1s</sub>: 125—126°. — Liefert nach mehrmaligem Kochen mit Kaliumcyanid  $\beta$ -Äthyl- $\gamma$ -phenyl-butyronitril.

[α.β-Dibrom-β-methyl-butyl]-benzol, 1.2-Dibrom-2-methyl-1-phenyl-butan  $C_{11}H_{14}Br_2 = C_6H_6 \cdot CHBr \cdot CBr(CH_3) \cdot C_2H_5$ . B. Durch Einw. von Brom auf α-Methyl-α-äthyl-β-phenyl-äthylen in Chloroform (Franke, Stern, M. 49, 25). — Nadeln (aus Alkohol). F: 57°.

4-Nitro-1-[ $\beta$ -methyl-butyl]-benzol, 2-Methyl-1-[4-nitro-phenyl]-butan, 2-[4-Nitro-benzyl]-butan  $C_{11}H_{16}O_2N=O_2N\cdot C_6H_4\cdot CH_2\cdot CH(CH_3)\cdot C_2H_5\cdot B$ . Durch Nitrierung von 2-Benzyl-butan mit Salpeterschwefelsäure bei 0° bis —5°, später bei 35—40° (Glattfeld, Cameron, Am. Soc. 49, 1045). — Riecht durchdringend und anhaftend, aber nicht unangenehm. Wird am Licht rasch gelb. Kp<sub>14</sub>: 141°; Kp<sub>717</sub>: 257° (unter Zersetzung). Löslich in Äther, Chloroform, Aceton, Methanol, Alkohol und Ligroin. — Gibt bei der Oxydation mit siedender Chromessigsäure 4-Nitro-benzoesäure. Wird durch Zinn und konz. Salzsäure zu 2-[4-Amino-benzyl]-butan reduziert.

3. Isoamylbenzol. 2 - Methyl - 4 - phenyl - butan C<sub>11</sub>H<sub>16</sub>, CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>(CH<sub>3</sub>)<sub>2</sub> s. nebenstehende Formel (H 434; E I 208). B. Durch Hydrieren von [γ.γ-Dimethyl-allyl]-benzol in Gegenwart von Palladium(II)-chlorid in Alkohol (CLAISEN, J. pr. [2] 105, 83). Aus Benzylmagnesiumchlorid und p-Toluolsulfonsäure-isobutylester in siedendem Äther (GLIMAN, BEABER, Am. Soc. 47, 522). — Kρ<sub>757</sub>: 198—199° (CL.); Kp: 189—191° (unkorr.) (G., B.), 190—194° (STRATFORD, Ann. Off. Combust. liq. 4, 319, 324; C. 1929 II, 1286). D<sub>0</sub><sup>20</sup>: 0,856 (G., B.); D<sub>10</sub><sup>20</sup>: 0,8620 (CL.). — Liefert bei der Hydrierung in Eisessig in Gegenwart von Platinschwarz Isoamylcyclohexan (STR.).</sub>

[ $\alpha$ -Chlor-isoamyl]-benzol, 4-Chlor-2-methyl-4-phenyl-butan  $C_{11}H_{15}Cl = C_6H_5$ ·CHCl·CH $_2$ ·CH(CH $_3$ ) $_2$ . B. Aus Isobutyl-phenyl-carbinol beim Kochen mit 4-Nitro-benzoyl-chlorid in absol. Ather (Meisenheimer, A. 442, 193). — Öl.

[ $\gamma$ -Brom-isoamyl]-benzol, 2-Brom-2-methyl-4-phenyl-butan  $C_{11}H_{18}Br=C_6H_5$ ·  $CH_2\cdot CB_7(CH_3)_2$ . B. Entsteht wahrscheinlich durch längeres Erhitzen von [ $\nu$ . $\gamma$ -Dimethylallyl]-benzol mit Bromwasserstoff in Eisessig im Rohr auf 100° (CLAISEN, J. pr. [2] 105, 82). — Dickliches Öl. Riecht angenehm nach Citronen.  $Kp_{14}$ : 126—128°. — Liefert beim Erhitzen mit Chinolin oder beim Schütteln mit Wasser [ $\nu$ . $\gamma$ -Dimethyl-allyl]-benzol.

[ $\beta.\gamma$ -Dibrom-isoamyl]-benzol  $C_{11}H_{14}Br_2=C_6H_5\cdot CH_2\cdot CHBr\cdot CBr(CH_3)_2$ . B. Durch Einw. von Brom auf [ $\gamma.\gamma$ -Dimethyl-allyl]-benzol (Claisen,  $J.\ pr$ . [2] 105, 81). — Tafeln (aus Alkohol). F: 65—66°.

4. Pentyl-(3) - benzol, [α-Āthyl-propyl] - benzol, 3-Phenylpentan, Diāthylphenylmethan C<sub>11</sub>H<sub>16</sub>, s. nebenstehende Formel (H 436;
E I 208). B. Bei der Spaltung von α-Methyl-β-āthyl-β-phenyl-propiophenon
mit Natriumamid in Toluol (Albesco, A. ch. [9] 18, 234). Bei der Reduktion
von α-Āthyl-α-phenyl-butyronitril mit Natrium und Alkohol, neben anderen Produkten
(Blondeau, A. ch. [10] 2, 39). — Kp: 187,5° (Bl.).

- 5. tert.-Amyl-benzol (Pseudoamylbenzol), 2-Methyl-2-phe-nyl-butan, Dimethyl-āthyl-phenyl-methan C<sub>11</sub>H<sub>16</sub>, s. nebenstehende Formel (H 436; E I 209). Gibt bei der Einw. von Paraformaldehyd und Chlorwasserstoff in Gegenwart von geschmolzenem Zinkchlorid 1-Chlormethyl-4-tert.-amyl-benzol (Bert, C. r. 186, 373).
- 4-Jod-1-tert.-amyl-benzol  $C_{11}H_{15}I=C_6H_4I\cdot C(CH_5)_2\cdot C_2H_5$ . B. Durch Einw. von Jod und Jodsäure auf tert.-Amyl-benzol (Boedtker, Bl. [4] 45, 650). Kp<sub>15</sub>: 139°. D<sub>1</sub>°: 1,4226. n<sub>1</sub>°: 1,5669. Gibt bei der Oxydation mit Chromsäure in Essigsäure 4-Jod-benzoesäure.
- 6. [α.β-Dimethyl-propyl]-benzol, [α.β.β-Trimethyl-äthyl]-benzol, 2-Methyl-3-phenyl-butan, Methylisopropylphenyl-methan C<sub>11</sub>H<sub>16</sub>, s. nebenstehende Formel (H 437). B. Beim Kochen von Trimethyl-phenyl-äthylen mit rotem Phosphor und gesättigter Jodwasserstoffsäure unter Zugabe von Jod oder mit Natrium und feuchtem Äther (Glattfeld), Milliaan, Am. Soc. 42, 2324; Gl., Hopkins, Thurber, Am. Soc. 49, 1040). Kp: 186—188° (Gl., M.), 188—190° (Gl., H., Th.). Liefert mit einem Gemisch von Eisessig und rauchender Salpetersäure bei 35—50° 4-Nitro-1-[α.β.β-trimethyl-äthyl]-benzol (Gl., M.).
- 1-Brom-2-methyl-3-phenyl-butan,  $\beta$ -Methyl- $\gamma$ -phenyl-butylbromid  $C_{11}H_{15}Br=C_6H_5\cdot CH(CH_3)\cdot CH_2Br$ . B. Aus  $\beta$ -Methyl- $\gamma$ -phenyl-butylalkohol beim Behandeln mit rauchender Bromwasserstoffsäure im Rohr im Wasserbad (v. Braun, A. 451, 48). Kp<sub>13</sub>: 132—133°. Liefert nach zweimaligem je 5-stdg. Kochen mit Kaliumcyanid das Nitril der  $\beta$ -Methyl- $\gamma$ -phenyl-n-valeriansäure.
- 4-Nitro-1- $[\alpha.\beta.\beta$ -trimethyl-äthyl]-benzol  $C_{11}H_{15}O_2N=O_2N\cdot C_6H_4\cdot CH(CH_3)\cdot CH(CH_3)_8$ . Aus  $[\alpha.\beta.\beta$ -Trimethyl-äthyl]-benzol und rauchender Salpetersäure in Eisessig bei 35—50° (Glattfeld, Milligan, Am. Soc. 42, 2325). Kp<sub>20</sub>: 152—154°. Liefert mit Chromtrioxyd in 5 n-Essigsäure auf dem Wasserbad 4-Nitro-benzoesäure. Bei der Reduktion mit Zinn und konz. Salzsäure bei 100° erhält man 4-Amino-1- $[\alpha.\beta.\beta$ -trimethyl-äthyl]-benzol.
- 7.  $[\beta.\beta-Dimethyl-propyl]-benzol$ , 2.2 Dimethyl-1-phenyl-propan, tert.-Butyl-phenyl-methan  $C_{11}H_{16}$ , s. nebenstehende Formel (E I 209). Liefert mit rauchender Schwefelsäure in der Kälte 1- $[\beta.\beta$ -Dimethyl-propyl]-benzol-sulfonsäure-(4) (Bygdén, J. pr. [2] 100, 2).
- 1-Brom-2.2-dimethyl-1-phenyl-propan, tert.-Butyl-phenyl-brommethan  $C_{11}H_{15}Br = C_6H_5 \cdot CHBr \cdot C(CH_8)_3$  (E I 209). B. Aus tert.-Butyl-phenyl-carbinol und Bromwasserstoff unter Eiskühlung (Conant, Blatt, Am. Soc. 50, 555).
- 8. 1-Methyl-3-butyl-benzol, 3-Butyl-toluol, 1-m-Tolyl-butan C<sub>11</sub>H<sub>16</sub>, s. nebenstehende Formel (H 437). Kp<sub>19</sub>: ca. 84° (DE CAPELLER, Helv. 11, 168). Liefert beim Behandeln mit Salpeterschwefelsäure bei 10—20° und nachfolgenden Erwärmen auf 70° 2.4.6-Trinitro-3-butyl-toluol.
- 2.4.6-Trinitro 3-butyl toluol  $C_{11}H_{13}O_8N_3$ , s. nebenstehende Formel. B. Beim Behandeln von 3-Butyl-toluol mit Salpeterschwefelsäure bei 10—20° und nachfolgenden Erwärmen auf 70° (DE CAPELLER, Helv. 11, 168). Grünliche Nadeln (aus Alkohol). F: 78,5°. Färbt sich am Licht erst rosa, dann gelbbraun.
  - $\begin{array}{c} \text{CH}_3\\ \text{O}_2\text{N} \cdot \\ & \cdot \text{NO}_2\\ \\ & \cdot \text{NO}_2 \end{array}$
- 9. 1-Methyl-4-butyl-benzol, 4-Butyl-toluol, 1-p-Tolyl-butan C<sub>11</sub>H<sub>16</sub>, s. nebenstehende Formel (H 437). B. Bei 30-tägiger Einw. von Lithiumbutyl auf 4-Brom-toluol in Petroläther (Marvel, Hager, Coffman, Am. Soc. 49, 2327). Beim Behandeln von 1-Chlormethyl-4-butyl-benzol mit Magnesium in Gegenwart von Ather und Zersetzen des Reaktionsprodukts mit Wasser (Bert, C. r. 186, 373).
- CH<sub>3</sub>
  CH<sub>3</sub>
  CH<sub>2</sub>
  CH<sub>2</sub>
  CH<sub>2</sub>

CH<sub>3</sub>

CH3 · CH · C2H5

- 1-Chlormethyl-4-butyl-benzol,  $\omega$ -Chlor-4-butyl-toluol, 4-Butyl-benzylchlorid  $C_{11}H_{18}Cl=CH_2Cl\cdot C_6H_4\cdot [CH_2]_3\cdot CH_3$ . B. Aus Butylbenzol bei der Einw. von Paraformaldehyd und Chlorwasserstoff in Gegenwart von geschmolzenem Zinkchlorid (Bert, C.r. 186, 373).
- 10. 1 Methyl 4 sek. butyl benzol, 4 sek. Butyl toluol. 2-p-Tolyl-butan C<sub>11</sub>H<sub>16</sub>, s. nebenstehende Formel (E I 209). B. Aus Toluol und sek. Butylalkohol in Gegenwart von 80% iger Schwefelsäure (H. Meyer, Bernhauer, M. 53/54, 730). Kp: 200—205°. Liefert bei der Oxydation Terephthalsäure.

- 11. 1-Methyl-3-tert.-butyl-benzol, 3-tert.-Butyl-toluol, β-Me-CH<sub>3</sub>
  thyt-β-m-tolyl-propan C<sub>11</sub>H<sub>18</sub>, s. nebenstehende Formel (H 437). B. Bei
  der Einw. von Diisobutylen (E II 1, 180) oder Diisobutylenhydrochlorid (H 1,
  164) auf Toluol in Gegenwart von Aluminiumchlorid (Noelting, Chim. et Ind.
  6, 723; C. 1922 II, 750). Reaktion mit Bromeyan und Aluminiumchlorid: KARBER,
  REBMANN, ZELLER, Helv. 3, 262.
- 12. 1-Methyl-4-tert.-butyl-benzol, 4-tert.-Butyl-toluol, β-Methyl-β-p-tolyl-propan C<sub>11</sub>H<sub>16</sub>, s. nebenstehende Formel (H 439; E I 209). B. Bei der Einw. von Diisobutylen (E II 1, 180) oder Diisobutylenhydrochlorid (H 1, 164) auf Toluol in Gegenwart von Eisenchlorid (Noelling, Chim. et Ind. 6, 723; C. 1922 II, 750). Zur Bildung aus Toluol und Isobutylalkohol in Gegenwart von Schwefelsäure vgl. H. Meyer, Bernhauer, M. 53/54, 730. Aus 1-Chlormethyl-4-tert.-butyl-benzol bei der Einw. von Magnesium in Gegenwart von Äther und Zersetzung der entstandenen Grignard-Verbindung mit Wasser (Bert, C. r. 186, 373). Liefert bei der Einw. eines Gemisches aus 65 %iger Salpetersäure und 92 %iger Schwefelsäure bei 5—10° 2-Nitro-4-tert.-butyl-toluol (Battegay, Haefffely, Bl. [4] 35, 985, 988). Durch Einw. eines Gemisches von rauchender Salpetersäure und 20 %iger rauchender Schwefelsäure bei 30° entsteht 2.6-Dinitro-4-tert.-butyl-toluol (Ba., H.).
- 1-Chlormethyl-4-tert.-butyl-benzol,  $\omega$ -Chlor-4-tert.-butyl-toluol, 4-tert.-Butyl-benzylchlorid  $C_{11}H_{15}Cl = CH_2Cl \cdot C_3H_4 \cdot C(CH_3)_3$ . B. Aus tert.-Butyl-benzol durch Einw. von Chlormethyläther in Gegenwart von Zinn(IV)-chlorid (Sommelet, C. r. 180, 1350) oder von Paraformaldehyd und Chlorwasserstoff in Gegenwart von geschmolzenem Zink-chlorid (Bert, C. r. 186, 373).
- 2-Nitro-4-tert.-butyl-toluol  $C_{11}H_{18}O_2N$ , s. nebenstehende Formel. B. Aus 4-tert.-Butyl-toluol beim Behandeln mit Salpeterschwefelsäure bei 5—10° (BATTEGAY, HAEFFELY, Bl. [4] 35, 985). Gelbliches Öl. Kp<sub>13</sub>: 138—139°. Gibt mit Permanganat in wäßr. Pyridin-Lösung 2-Nitro-4-tert.-butyl-benzoesäure.
- 2.6 Dinitro 1 methyl 4 tert. butyl benzol, 2.6 Dinitro 4 tert. butyl toluol C<sub>11</sub>H<sub>14</sub>O<sub>4</sub>N<sub>2</sub>, s. nebenstehende Formel (H 439; E I 210). Diese Konstitution kommt der in H 439; E I 210 als eso Dinitro 1 methyl 4 tert. butyl benzol beschriebenen Verbindung zu (Battegay, Haeffely, Bl. [4] 35, 985). Grünlichgelbe Blättchen (aus Alkohol). F: 94—95°.
  - C(CH<sub>3</sub>)<sub>3</sub>
    C<sub>2</sub>H<sub>5</sub>

NO<sub>2</sub>

C(CH<sub>3</sub>)<sub>3</sub>

CH3

- 13. 1-Äthyl-4-isopropyl-benzol  $C_{11}H_{16}$ , s. nebenstehende Formel (H 440; E I 210). B. Aus der Grignard-Verbindung des 1-[ $\beta$ -Chlor-āthyl]-4-isopropylbenzols beim Zersetzen mit Wasser (Bert, C, r. 186, 374).
- $CH(CH_3)_2$ 1 - [ $\beta$  - Chlor - äthyl] - 4 - isopropyl - benzol, 4 - Isopropyl -  $\beta$  - phenäthylchlorid  $C_{11}H_{15}Cl = CH_2Cl \cdot CH_2 \cdot C_8H_4 \cdot CH(CH_3)_2$ . B. Aus der Grignard-Verbindung des 4-Brom-1-isopropyl-benzols durch Einw. von p-Toluolsulfonsäure - [ $\beta$  - chlor - äthylester] (Bert, C.r.186, 374).
- 1  $[\beta$  Brom äthyl] 4 isopropyl benzol, 4 Isopropyl  $\beta$  phenäthylbromid  $C_{11}H_{15}Br = CH_{2}Br \cdot CH_{2} \cdot C_{6}H_{4} \cdot CH(CH_{3})_{2}$ . B. Aus 4-Isopropyl- $\beta$ -phenäthylalkohol und rauchender Bromwasserstoffsäure im Rohr (v. Braun, Wirz, B. 60, 108). Kp<sub>80</sub>: 134—136°.
- 14. 1.1-Dimethyl-4-propyliden-cyclohexadien-(2.5)  $C_{11}H_{16} = CH_s \cdot CH_s \cdot CH: CC_{CH:CH} \cdot C(CH_s)_s$ . B. Aus 1-Methyl-1-dichlormethyl-cyclohexadien-(2.5)-on-(4) beim Behandeln mit Propylmagnesiumbromid in Ather, Reduzieren des erhaltenen 1-Methyl-1-dichlormethyl-4-propyl-cyclohexadien-(2.5)-ols-(4) mit Natrium in Ather und Behandeln des Reaktionsprodukts mit kalter Schwefelsäure (v. Auwers, Ziegler, A. 425, 259).  $Kp_{18}: 83-85^{\circ}$ .  $D_s^{15.5}: 0.8618$ .  $n_{\alpha}^{15.5}: 1.5019; n_{\beta}^{15.5}: 1.5063; n_{\beta}^{15.5}: 1.5192; n_{\beta}^{15.5}: 1.5304$ .
- 15. 1.2-Ilimethyl-4-propyl-benzol, 4-Propyl-o-xylol C<sub>11</sub>H<sub>16</sub>, s. nebenstehende Formel (H 440). B. Aus 1.1-Dimethyl-4-propyl-cyclohexadien-(2.5)-ol-(4) bei Einw. von konz. Salzsäure in Eisessig (v. Auwers, Ziegler, A. 425, 259). Aus 1.2-Dimethyl-4-propionyl-benzol beim Erwärmen mit amalgamiertem Zink und Salzsäure (v. Au., Z.). Kp: 202—204°. Konstanten von drei Präparaten: 1. D<sub>1</sub><sup>1,3</sup>: 0,8677; n<sub>2</sub><sup>1,2</sup>: 1,4975. 2. D<sub>4</sub><sup>1,3</sup>: 0,8718; n<sub>2</sub><sup>1,7</sup>: 1,4988. 3. D<sub>4</sub><sup>1,5</sup>: 0,8750; n<sub>3</sub><sup>1,5</sup>: 1,5029.

- 16. 1.4-Dimethyl-2-propyl-benzol, 2-Propyl-p-xylol C<sub>11</sub>H<sub>16</sub>, s. nebenstehende Formel (H 440). B. Aus der Grignard-Verbindung des 1.4-Dimethyl-2-[γ-chlor-propyl]-benzols beim Zersetzen mit Wasser (Bert, C. r. 186, 374).
- 1.4-Dimethyl-2-[ $\gamma$ -chlor-propyl]-benzol, 2-[ $\gamma$ -Chlor-propyl]-  $CH_3$  p-xylol  $C_{11}H_{15}Cl = (CH_3)_2C_6H_3 \cdot CH_2 \cdot CH_2Cl$ . B. Bei der Einw. von p-Toluolsulfonsäure-[ $\beta$ -chlor-åthylester] auf die Grignard-Verbindung des 1.4-Dimethyl-2-chlormethylbenzols (Beet, C.r. 186, 374).
- 17. 1.5-Dimethyl-2-propyl-benzol, 4-Propyl-m-xylol

  C<sub>11</sub>H<sub>16</sub>, s. nebenstehende Formel (H 440). B. Aus der GrignardVerbindung des 1.5-Dimethyl-2-[7-chlor-propyl]-benzols beim Zersetzen mit Wasser (Bert, C.r. 186, 374). Bei der Einw. von in

  Toluol feinverteiltem Natrium und absol. Alkohol auf Butyl-[2.4-dimethyl-cinnamyl]-äther, zuletzt in der Wärme (Bert, Anglane, C.r. 189, 646). Flüssigkeit. Kp<sub>18</sub>: 92°; Kp<sub>735</sub>: 206—207° (korr.) (B., A.). D<sub>1</sub>°: 0,8786; n<sub>9</sub>°: 1,501 (B., A.).
- 1.5-Dimethyl-2-[ $\gamma$ -chlor-propyl] benzol, 4-[ $\gamma$ -Chlor-propyl]-m-xylol  $C_{11}H_{18}Cl = (CH_3)_9C_9H_3\cdot CH_2\cdot CH_2\cdot CH_2Cl$ . B. Bei der Einw. von p-Toluolsulfonsäure-[ $\beta$ -chlor-äthylester] auf die Grignard-Verbindung des 1-Chlormethyl-2.4-dimethyl-benzols (Bert, C. r. 186, 375).
- 1.5-Dimethyl-2- $[\alpha(?)$ -brom-propyl]-benzol, 4- $[\alpha(?)$ -Brom-propyl]-m-xylol  $C_{11}H_{16}Br=(CH_3)_2C_6H_3\cdot CH_3\cdot CH_3\cdot CH_3\cdot (?)$ . B. Aus 1.5-Dimethyl-2-propenyl-benzol bei der Einw. einer gesättigten Lösung von Bromwasserstoff in Eisessig (Bert, Anglade, C.r. 189, 646). Flüssigkeit von schwachem Geruch.  $Kp_{19}$ : 1380.  $D_i^{19.5}$ : 1,233.  $n_D^{19.5}$ : 1,545. Bei der Einw. von Pyridin erhält man die Ausgangsverbindung zurück.
- 1.5-Dimethyl-2-[ $\alpha.\beta$ -dibrom-propyl]-benzol, 4-[ $\alpha.\beta$ -Dibrom-propyl]-m-xylol  $C_{11}H_{14}Br_2 = (CH_3)_2C_6H_3 \cdot CHBr \cdot CHBr \cdot CH_3$ . B. Aus 1.5-Dimethyl-2-propenyl-benzol bei der Einw. von Brom in Chloroform in diffusem Licht bei 0° (Bert, Anglade, C. r. 189, 646). Ol. Kp<sub>22</sub>: 178°. D<sub>1</sub><sup>7,5</sup>: 1,5435.  $n_1^{1,5}$ : 1,586. Gibt bei der Einw. von Zinkstaub und Alkohol die Ausgangsverbindung zurück.
- 18. 1.2-Dimethyl-4-isopropyl-benzol, 4-Isopropyl-o-xylol, 2-Methyl-p-cymot  $C_{11}H_{16}$ , s. nebenstehende Formel. V. Im Steinkohlen-Urteer (Weissgarber, Brennstoffch. 5, 210; C. 1925 I, 2271; Kruber, B. 57, 1013). B. Man läßt auf 1-Methyl-2-chlormethyl-4-isopropyl-benzol Magnesium in Gegenwart von Äther einwirken und zersetzt die entstandene Grignard-Verbindung mit Wasser (Bert, C. r. 186, 373). Durch Behandeln des Natriumsalzes der  $\alpha$ -[1.2-Dimethyl-4-isopropyl-benzol-sulfonsäure] mit überhitztem Wasserdampf (Kruber, B. 57, 1014). Öl von pfefferminzartigem Geruch. Kp: 199°. D\*\*: 0,8710. Liefert beim Bromieren in Gegenwart von Aluminium unter Kühlung 3.4.5.6-Tetrabrom-o-xylol. Beim Behandeln mit überschüssiger Salpeterschwefelsäure unter mäßiger Kühlung erhält man 3.5.6-Trinitro-1.2-dimethyl-4-isopropyl-benzol. Bei längerem Kochen mit 10%iger Salpetersäure entsteht 3.4-Dimethyl-benzoesäure.
- 1-Methyl-2-chlormethyl-4-isopropyl-benzol, 2-Chlormethyl-p-cymol, 2-Methyl-5-isopropyl-benzylchlorid  $C_{11}H_{15}Cl$ , s. nebenstehende Formel. B. Aus p-Cymol bei der Einw. von Paraformaldehyd und Chlorwasserstoff in Gegenwart von geschmolzenem Zinkchlorid (Blanc, Bl. [4] 33, 318; C. 1923 I, 1571; Beet, C. r. 186, 373). Kp<sub>13</sub>: 120° (Bl., Bl. [4] 33, 318). Gibt nach Überführung in 2-Methyl-5-isopropyl-benzaldehyd und nachfolgender Einw. von alkal. Silbernitrat-Lösung 2-Methyl-5-isopropyl-benzoesäure (Bl., Bl. [4] 33, 318).
- 3.5.6-Trinitro-1.2-dimethyl-4-isopropyl-benzol C<sub>11</sub>H<sub>13</sub>O<sub>6</sub>N<sub>3</sub>, s. nebenstehende Formel. B. Durch Behandeln von 1.2-Dimethyl-4-isopropylbenzol mit überschüssiger Salpeterschwefelsäure unter mäßiger Kühlung (KRUBER, B. 57, 1014). Prismen (aus Alkohol). F: 119°.

  19. 1-Methyl-2.5-diäthyl-benzol. 2.5-Diäthyl-tolyol. C.H...
- 19. 1-Methyl-2.5-diāthyl-benzol, 2.5-Diāthyl-toluol C<sub>11</sub>H<sub>16</sub>, s. nebenstehende Formel. B. Bei der Hydrierung von 2-Methyl-4-āthyl-acetophenon in Gegenwart von Nickel bei 200° (Malle, Bl. [4] 35, 366).— C<sub>2</sub>H<sub>5</sub> Flüssigkeit von angenehmem Geruch. Kp: 205—207°.
- 20. 1.1.3-Trimethyl-4-äthyliden-cyclohexadien-(2.5)  $C_{11}H_{16} = CH_3 \cdot CH : C < \frac{C(CH_3) : CH}{CH} > C(CH_8)_2$ . B. Aus 1.1.3-Trimethyl-4-äthyl-cyclohexadien-(2.5)-ol-(4) bei längerer Einw. von kalter verdünnter Schwefelsäure (v. Auwers, Ziegler, A. 425, 265). Kp<sub>15</sub>: 85—86°.  $D_4^{15,7}$ : 0,8844.  $n_{\alpha}^{15,7}$ : 1,5147;  $n_{15}^{15,7}$ : 1,5193;  $n_{15}^{15,7}$ : 1,5323;  $n_{15}^{15,7}$ : 1,5437. Liefert beim Erwärmen mit verd. Schwefelsäure in Eisessig 1.2.4-Trimethyl-5-äthyl-benzol.

- 21. 1.2.3-Trimethyl-5-äthyl-benzol CH<sub>3</sub> CH<sub>3</sub>
  C<sub>11</sub>H<sub>16</sub>, Formel I. I. CH<sub>3</sub> II.

  1.2.3-Trimethyl-5-[β.β-dichlor-äthyl]- C<sub>2</sub>H<sub>5</sub>. CH<sub>3</sub> CHCl<sub>2</sub>·CH<sub>2</sub>. CH<sub>3</sub>
  benzol C<sub>11</sub>H<sub>14</sub>Cl<sub>2</sub>, Formel II. B. Aus 1.2.6-Tribenzol C<sub>11</sub>H<sub>14</sub>Cl<sub>2</sub>, Formel II. B. Aus 1.2.6-Tribenzol C<sub>11</sub>H<sub>14</sub>Cl<sub>2</sub> CH<sub>3</sub> CHCl<sub>2</sub>·CH<sub>3</sub> CHCl<sub>2</sub>·CH<sub>3</sub>
- benzol  $C_{11}H_{14}Cl_2$ , Formel II. B. Aus 1.2.6-Trimethyl-1-dichlormethyl-cyclohexadien-(2.5)-on-(4) durch Einw. von Methylmagnesiumjodid in der Kälte und Erhitzen des entstandenen 1.2.4.6-Tetramethyl-1-dichlormethyl-cyclohexadien-(2.5)-ols-(4) (v. Auwers, Ziegler, A. 425, 277). Gelbliches Öl. Kp<sub>19</sub>: 155—159°.  $D_1^{n,s}$ : 1,1424.  $n_{\rm G}$ : 1,5390;  $n_{\rm D}$ : 1,5431;  $n_{\rm B}$ : 1,5549.
- 22. 1.3.5-Trimethyl-2-āthyl-benzol. 2-Āthyl-mesitylen C<sub>11</sub>H<sub>16</sub>, Formel III (H 442; E I 210). n<sub>0</sub><sup>6</sup>: 1,5176; n<sub>0</sub><sup>8</sup>: 5117 (v. Auwers, Kolligs, B. 55, 26).
- 23. 1.2.4 Trimethyl 5 äthyl benzol, III. C<sub>2</sub>H<sub>5</sub> IV. C<sub>2</sub>H<sub>5</sub>  $C_{2}$ H<sub>5</sub>  $C_{2}$ H<sub>6</sub>  $C_{2}$ H<sub>7</sub>  $C_{2}$ H<sub>8</sub>  $C_{2}$ H<sub>9</sub>  $C_{2}$
- **3.6-Dibrom-1.2.4-trimethyl-5-äthyl-benzol**  $C_{11}H_{14}Br_2 = (CH_3)_3C_6Br_2 \cdot C_2H_5$  (H 443). F: 55° 1) (v. Auwers, Ziegler, A. 425, 266).
- 24. 1.1.2.5 Tetramethyl 4 methylen cyclohexadien (2.5)  $C_{11}H_{16} = CH_2:C<\frac{CH:C(CH_3)}{C(CH_3):CH}>C(CH_3)_2$ . B. Aus 1.1.2.4.5-Pentamethyl-cyclohexadien-(2.5)-ol-(4) beim Behandeln mit kalter verdünnter Schwefelsäure (v. Auwers, Ziegler, A. 425, 271).  $Kp_{12}:77^{\circ}$ .  $D_{4}^{15,2}:0,8809$ .  $n_{5}^{10,2}:1,5123$ ;  $n_{5}^{15,2}:1,5169$ ;  $n_{5}^{15,2}:1,5301$ ;  $n_{7}^{15,2}:1,5417$ . Bei der Einw. von Chlorwasserstoff in Eisessig entsteht Pentamethylbenzol.
- 25. 1.1.2.6 Tetramethyl 4 methylen cyclohexadien (2.5)  $C_{11}H_{16} = H_2C:C<\frac{CH:C(CH_3)}{CH:C(CH_3)} > C(CH_3)_2$ . B. Aus 1.2.6-Trimethyl-1-dichlormethyl-cyclohexadien-(2.5)-on-(4) durch Einw. von Methylmagnesiumjodid, Reduktion des Reaktionsprodukts mit.Natrium in Äther und folgender Einw. von kalter Schwefelsäure (v. Auwers, Ziegler, A. 425, 278).  $Kp_{15}$ : 89—90°.  $D_4^{n,s}$ : 0,8798.  $n_3^{n,s}$ : 1,5112;  $n_3^{n,s}$ : 1,5159;  $n_3^{n,s}$ : 1,5290;  $n_3^{n,s}$ : 1,5406. Liefert beim Erwärmen mit Schwefelsäure und Eisessig Pentamethylbenzol.
- 26. Pentamethylbenzol C<sub>11</sub>H<sub>16</sub> = C<sub>6</sub>H(CH<sub>3</sub>)<sub>5</sub> (H 443). B. Neben anderen Methyleirungsprodukten aus Rohxylol und Methylchlorid bei Gegenwart von reinem Aluminium-chlorid bei ca. 95° (SMTTH, DOBROVOLNY, Am. Soc. 48, 1415). Aus 1.1.2.5-Tetramethyl-4-methylen-cyclohexadien-(2.5) bei der Einw. von Chlorwasserstoff in Eisessig (v. AUWERS, ZIEGLER, A. 425, 272). Aus 1.1.2.6-Tetramethyl-4-methylen-cyclohexadien-(2.5) beim Erwärmen mit Schwefelsäure und Eisessig (v. AU., Z., A. 425, 279). Krystalle (aus Alkohol oder Benzol). E: 54,0° (korr.); F: 52,2—53,1° (SMITH, MacDougall, Am. Soc. 51, 3002). Kp: 230°; Kp<sub>26</sub>: 127—129° (SM., Dob.). D<sup>6</sup>: 1,018 (ZIEGLER, DITZEL, A. 473, 206); D<sup>6</sup>: 0,8780 (v. Au., Z.). Parachor: Mumford, Phillips, Soc. 1929, 2117. n<sup>7a.5</sup>: 1,5010; n<sup>7b.5</sup>: 1,5049; n<sup>7b.5</sup>; 1,5161 (v. Au., Z.). Sehr leicht löslich in Benzol (SM., MacD.). Zur Reaktion mit konz. Schwefelsäure vgl. SM., Lux, Am. Soc. 51, 2997. Gibt mit Methylchlorid bei Gegenwart von reinem Aluminiumchlorid bei 95° Hexamethylbenzol (SM., Dob.).
- 27. 1.1-Pentamethylen cyclohexadien (2.4), Cyclohexan [cyclohexan-dien-(2'.4')]-spiran-(1.1')  $C_{11}H_{16}=H_2C<\frac{CH_2\cdot CH_2}{CH_2\cdot CH_2}>C<\frac{CH:CH}{CH_2\cdot CH}>CH$ .
- 3.5-Dichlor-1.1-pentamethylen-cyclohexadien-(2.4), Cyclohexan-[3'.5'-dichlor-cyclohexadien (2'.4')] spiran (1.1')  $C_{11}H_{14}Cl_2 = H_2C < \frac{CH_2 \cdot CH_2}{CH_2 \cdot CH_2} > C < \frac{CH = CCl}{CH_2 \cdot CCl} > CH$ . B. Durch allmählichen Zusatz von Phosphorpentachlorid zu einer Suspension von Cyclohexan-[cyclohexandion-(3.5)]-spiran-(1.1') in Chloroform und nachfolgendes Erhitzen (Norris, Soc. 1926, 253). Blaßgelbes Öl. Kp<sub>27</sub>: 152°.

<sup>&</sup>lt;sup>1</sup>) Der von Töhl, v. Karchowski (B. 25 [1892], 1531; H 443) angegebene Schmelzpunkt 218° beruht nach v. Auwers, Ziegler auf einem Irrtum.

28. Kohlenwasserstoff C<sub>11</sub>H<sub>16</sub> aus Lignin. Ist vermutlich identisch mit dem Kohlenwasserstoff C<sub>11</sub>H<sub>16</sub> aus Fettkohle von Pictet, Combes (E I 211). — Das Mol.-Gew. wurde kryoskopisch in Cyclohexan bestimmt (Pictet, Gaulis, Helv. 6, 633). — B. Bei der Destillation von Lignin (aus Fichtenholz) unter 5—25 mm Druck bei 350—390° (Pictet, Gaulis, Helv. 6, 633). — Kp: 200—210°. D: 0,8964. n: 1,5119.

#### 7. Kohlenwasserstoffe $C_{12}H_{18}$ .

1. n-Hexylbenzol. 1-Phenyl-hexan C<sub>12</sub>H<sub>18</sub>, s. nebenstehende Formel (E I 211). B. Durch Reduktion von n-Caprophenon (Simon, Bl. Soc. chim. Belg. 38, 53; C. 1929 I, 2520) oder von Propyl-β-phenäthyl-keton (Thier-Felder, Klenk, H. 141, 15) mit Zinkamalgam und Salzsäure. Aus Benzyl-magnesiumchlorid und p-Toluolsulfonsäure-n-amylester in siedendem Äther (Gilman, Beaber, Am. Soc. 47, 522). — E: —66,8° (Si.). Kp<sub>700</sub>: 216—218° (Th., Kl.); Kp<sub>760</sub>: 227,35° ± 0,1° (korr.) (Si.). D<sup>0</sup><sub>1</sub>: 0,8753; D<sup>1</sup><sub>1</sub>: 0,8639; D<sup>∞</sup><sub>1</sub>: 0,8526 (Si.). Viscosität bei 15°: 0,01833, bei 30°: 0,01409 g/cm sec (Si.). n<sup>15</sup><sub>1</sub>: 1,4874; n<sup>15</sup><sub>1</sub>: 1,4913; n<sup>15</sup><sub>1</sub>: 1,5009; n<sup>15</sup><sub>2</sub>: 1,5098; n<sup>25</sup><sub>2</sub>: 1,4834; n<sup>25</sup><sub>2</sub>: 1,4872; n<sup>25</sup><sub>1</sub>: 1,4966; n<sup>25</sup><sub>2</sub>: 1,5055 (Si.). Brechungsindices für Helium-Linien bei 15° und 25°: Si. — Verhalten im Organismus: Thierfelder, Klenk, H. 141, 26.

[ $\zeta$ -Chlor-n-hexyl]-benzol, 5-Chlor-1-phenyl-hexan,  $\zeta$ -Phenyl-n-hexylchlorid  $C_{12}H_{17}Cl=C_6H_6\cdot [CH_2]_5\cdot CH_2Cl$  (E I 211). B. Beim Erhitzen von  $\zeta$ -Phenyl-n-hexylalkohol mit rauchender Salzsäure im Rohr (Conant, Kirner, Am. Soc. 46, 243). — Kp<sub>4</sub>: 115—116°. — Geschwindigkeit der Umsetzung mit Kaliumjodid in Aceton bei 60°: C., K.

- 2. Isohexylbenzol, 2-Methyl-5-phenyl-pentan  $C_{12}H_{18}=C_6H_5\cdot[CH_2]_3\cdot CH(CH_3)_2$ .  $[\varepsilon\text{-Chlor-isohexyl}]\text{-benzol}$ , 1-Chlor-2-methyl-5-phenyl-pentan,  $\beta$ -Methyl- $\varepsilon$ -phenyl-pentylchlorid  $C_{12}H_{17}Cl=C_6H_5\cdot[CH_2]_3\cdot CH(CH_3)\cdot CH_2Cl$ . B. Bei 12-stdg. Erwärmen von  $\beta$ -Methyl- $\varepsilon$ -phenyl-n-amylalkohol mit rauchender Salzsäure auf 125° und folgender Einw. von Phosphorpentachlorid bei Wasserbadtemperatur (v. Braun, Kühn, B. 60, 2562). — Bewegliche Flüssigkeit von süßlichem Geruch. Kp<sub>12</sub>: 128—130°. — Liefert bei der Behandlung mit Aluminiumchlorid in Petroläther-Lösung 1-Methyl-3-phenyl-cyclopentan.
- 3.  $[\beta.\gamma-Dimethyl-butyl]-benzol, 2.3-Dimethyl-1-phe-nyl-butan C<sub>12</sub>H<sub>18</sub>, s. nebenstehende Formel. B. Durch Hydrieren von <math>[\beta.\gamma.\gamma$ -Trimethyl-allyl]-benzol in Gegenwart von Palladium(II)-chlorid in Alkohol (Claisen, J. pr. [2] 105, 90). Aromatisch riechendes Öl. Kp<sub>755</sub>: 216,5—217,5°. D<sub>15</sub>: 0,8765.

[β (oder γ) - Brom -  $\beta$ .γ - dimethyl - butyl] - benzol  $C_{12}H_{17}Br = C_6H_5 \cdot CH_2 \cdot CBr(CH_3) \cdot CH(CH_3)_2$  oder  $C_6H_5 \cdot CH_2 \cdot CH(CH_3) \cdot CBr(CH_3)_2$ . B. Durch längeres Erhitzen von [β.γ.γ-Trimethyl-allyl]-benzol mit Bromwasserstoff in Eisessig im Rohr auf 100° (CLAISEN, J. pr. [2] 105, 90). — Angenehm nach Apfelsinenschalen riechendes Öl. Kp<sub>15</sub>: 134—136°. — Gibt beim Erhitzen mit Chinolin oder bei längerer Einw. von Wasser [β.γ.γ-Trimethyl-allyl]-benzol.

- 4.  $[\alpha-\ddot{A}thyl-isobutyl]$ -benzol, 2-Methyl-3-phenyl-pentan C<sub>12</sub>H<sub>5</sub>·CH·CH(CH<sub>3</sub>)<sub>2</sub> C<sub>12</sub>H<sub>18</sub>, s. nebenstehende Formel. B. Aus  $\alpha.\alpha$ -Dimethyl- $\beta$ -āthyl- $\beta$ -phenyl-propiophenon beim Behandeln mit Natriumamid in siedendem Xylol, neben anderen Produkten (Albesco, A. ch. [9] 18 [1922], 252). Bewegliche, stark riechende Flüssigkeit. Kp: 200°.
- 5. 1-Methyl-3-pentyl-benzol, 3-Pentyl-toluol. 1-m-Tolyl-pentan C<sub>12</sub>H<sub>18</sub>, s. nebenstehende Formel. B. Aus m-Xylylbromid, Butyl-bromid und Natrium in Gegenwart von Benzol erst unter Kühlung mit Eis-Kochsalz, dann auf dem Wasserbad (DE CAPELLER, Helv. 11, 171). Fruchtartig riechende Flüssigkeit. Kp<sub>738</sub>: 220,5—222,5° (korr.). Liefert beim Behandeln mit Salpetersäure (D: 1,49) und Schwefelsäure (D: 1,93) unterhalb 20° und folgendem Erwärmen auf ca. 55° 2.4 (oder 2.6)-Dinitro-3-pentyl-toluol.

2.4 (oder 2.6)-Dinitro - 3 - pentyl - toluol  $C_{12}H_{16}O_4N_2=CH_3\cdot C_6H_2(NO_2)_2\cdot [CH_2]_4\cdot CH_3$ . B. Aus 3-Pentyl-toluol durch Behandeln mit Salpetersäure (D: 1,49) und Schwefelsäure (D: 1,93) unterhalb 20° und folgendes Erwärmen auf ca. 55° (DE CAPELLER, Helv. 11, 171). — Kp<sub>1,4</sub>: 162—170°. — Liefert mit Salpetersäure (D: 1,49) und Schwefelsäure (D: 1,93) auf dem Wasserbal 2.4.6-Trinitro-3-pentyl-toluol.

2.4.6 - Trinitro - 3 - pentyl - toluol  $C_{12}H_{15}O_8N_3$ , s. nebenstehende Formel. B. Aus 2.4 (oder 2.6) - Dinitro - 3 - pentyl - toluol, Salpetersäure (D: 1,49) und Schwefelsäure (D: 1,93) auf dem Wasserbad (DE ĈAPELLER, Helv. 11, 172). — Nadeln (aus 95 %igem Alkohol). F: 65,2—65,6°. — Färbt sich am Licht erst rosa, dann gelb.

BEILSTEINs Handbuch, 4. Aufl. 2. Erg.-Werk, Bd. V.

- 6. 1-Methyl-4-pentyl-benzol, 4-Pentyl-toluol, 1-p-Tolyl-pentan  $C_{12}H_{18}=CH_2\cdot C_4H_4\cdot [CH_2]_4\cdot CH_3$ .
- 4-[ε-Chlor-pentyl]-toluol, ε-p-Tolyl-pentylchlorid  $C_{12}H_{17}Cl = CH_3 \cdot C_4H_4 \cdot [CH_2]_4 \cdot CH_2Cl$ . B. Bei schwachem Erwärmen von N-[ε-p-Tolyl-pentyl]-benzamid mit Phosphorpentachlorid und darauffolgender Vakuumdestillation, neben Benzonitril und geringen Mengen anderer Produkte (v. Braun, Kühn, B. 60, 2563). Flüssigkeit von schwachem Geruch. Kp<sub>11</sub>: 136—138°. Bei der Einw. von Aluminumchlorid in Petroläther erhält man ein nicht trennbares Gemisch von Kohlenwasserstoffen, das wahrscheinlich 4-Cyclopentyl-toluol und Methylbenzocycloheptan enthält und bei der Oxydation mit Permanganat Terephthalsäure und Trimellitsäure liefert.
- 7. 1-Methyl-3-tert.-amyl-benzol, 3-tert.-Amyl-toluol, 2-Methyl-2-m-tolyl-butan C<sub>12</sub>H<sub>18</sub>, s. nebenstehende Formel. Ist identisch mit der H 445 Nr. 9 als 1-Methyl-3-amyl-benzol mit ungewisser Struktur der Amylgruppe beschriebenen Verbindung. B. Aus Toluol und tert.-Amylchlorid oder Isoamylchlorid in Gegenwart von Aluminiumchlorid (Noelting, Chim. et Ind. 6, 727; C. 1922 II, 750; Charrier, G. 52 II, 319). Bewegliche Flüssigkeit. Kp: 208,2—208,8° (N.), 208—209° (Ch.). D; zwischen —20° (0,8930) und +100° (0,8082): Ch. Fast unlöslich in Wasser, löslich in Alkohol, Äther, Benzol, Toluol und Schwefelkohlenstoff (Ch.). Liefert beim Erwärmen mit Kaliumpermanganat in Wasser auf dem Wasserbad sowie beim Kochen mit verd. Salpetersäure Isophthalsäure (Ch.). Bei der Einw. von rauchender Salpetersäure (D: 1,52) entstehen zwei Mononitroderivate (s. u.) (Ch.). Liefert mit Chlor bei Gegenwart von Jod zwei Monochlorderivate (s. u.), mit Brom im Dunkeln ein Monobromderivat (s. u.) (Ch.).
- Höhersiedendes x-Chlor-3-tert.-amyl-toluol  $C_{12}H_{17}Cl = CH_3 \cdot C_8H_3Cl \cdot C(CH_3)_2 \cdot C_3H_5$ . B. Neben dem niedriger siedenden Isomeren beim Behandeln von 3-tert.-Amyl-toluol mit Chlor in Gegenwart von Jod in der Kälte (Charrier, G. 52 II, 321). Flüssigkeit von angenehmem Geruch. Kp<sub>750</sub>: 247—248°. D.: 1,0111. Unlöslich in Wasser, löslich in den meisten organischen Lösungsmitteln.

Niedrigersiedendes x-Chlor-3-tert.-amyl-toluol  $C_{12}H_{17}Cl=CH_3\cdot C_6H_3Cl\cdot C(CH_3)_2$   $C_2H_5$ . B. s. o. beim höhersiedenden Isomeren. — Bewegliche, angenehm riechende Flüssigkeit. Kp<sub>750</sub>: 242—243° (Charrier, G. 52 II, 321). D: 0,9769. Unlöslich in Wasser, löslich in den meisten organischen Lösungsmitteln.

x-Brom-3-tert.-amyl-toluol C<sub>12</sub>H<sub>17</sub>Br=CH<sub>3</sub>·C<sub>6</sub>H<sub>3</sub>Br·C(CH<sub>3</sub>)<sub>2</sub>·C<sub>2</sub>H<sub>5</sub>. B. Aus 3-tert.-Amyl-toluol beim Behandeln mit Brom im Dunkeln unter Kühlung (CHARRIER, G. 52 II, 323). — Kp<sub>752</sub>: 262—264°. D'<sub>4</sub>: 1,2143. Löslich in organischen Lösungsmitteln.

Höhersiedendes x-Nitro-3-tert.-amyl-toluol  $C_{12}H_{17}O_3N=CH_3\cdot C_6H_3(NO_3)\cdot C(CH_3)_2\cdot C_2H_5$ . B. Neben dem niedrigersiedenden Isomeren beim Behandeln von 3-tert.-Amyltoluol mit rauchender Salpetersäure (D: 1,52) (Charrier, G. 52 II, 321). — Gelbe Flüssigkeit. Kp<sub>23</sub>: 165—169°; D4: 1,0825.

Niedrigersiedendes x-Nitro-3-tert.-amyl-toluol  $C_{12}H_{17}O_2N=CH_3\cdot C_eH_3(NO_2)\cdot C_{(CH_3)_2}\cdot C_2H_5$ . B. s. o. beim höhersiedenden Isomeren. — Gelbe Flüssigkeit. Kp<sub>25</sub>: 160° bis 161° (Charrier, G. 52 II, 320). D<sub>4</sub>: 1,0675.

8. 1 - Methyl - 4 - tert. - amyl - benzol, 4 - tert. - Amyl - toluol, 2-Methyl-2-p-tolyl-butan C<sub>12</sub>H<sub>18</sub>, s. nebenstehende Formel. B. Man läßt auf 1-Chlormethyl-4-tert. - amyl-benzol Magnesium in Gegenwart von Ather einwirken und zersetzt die entstandene Grignard - Verbindung mit Wasser (Bert, C. r. 186, 373).

C(CH<sub>3</sub>)<sub>2</sub>·C<sub>2</sub>H<sub>5</sub>

- 1-Chlormethyl-4-tert.-amyl-benzol,  $\omega$ -Chlor-4-tert.-amyl-toluol, 4-tert.-Amyl-benzylchlorid  $C_{12}H_{17}Cl = CH_2Cl \cdot C_4H_4 \cdot C(CH_3)_2 \cdot C_2H_5$ . B. Aus tert.-Amyl-benzol bei der Einw. von Paraformaldehyd und Chlorwasserstoff in Gegenwart von geschmolzenem Zink-chlorid (Bert, C. r. 186, 373).
- 9. 1.4-Dipropyl-benzol  $C_{12}H_{18}=C_2H_5\cdot CH_2\cdot C_6H_4\cdot CH_2\cdot C_2H_5$  (H 446). B. Durch Reduktion von 4-Propyl-propiophenon mit amalgamiertem Zink und Salzsäure (v. Auwers, Lechner, Bundesmann, B. 58, 48).  $Kp_{22}:109^\circ$ .  $D_4^{18,4}:0,8563$ .  $n_{22}^{19,4}:1,4877$ ;  $n_{16}^{19,4}:1,4917$ ;  $n_{16}^{19,4}:1,5014$ . Liefert bei längerer Einw. von 1,5 Mol Acetylchlorid und 1 Mol Aluminium-chlorid in Schwefelkohlenstoff, zuletzt auf dem Wasserbad, 2.5-Dipropyl-acetophenon.
- 11.12.41.42 Tetrabrom 1.4 dipropyl benzol, 1.4-Bis-[ $\alpha.\beta$ -dibrom-propyl]-benzol  $C_{12}H_{14}Br_4=C_6H_4(CHBr\cdot CHBr\cdot CH_3)_2$ . B. Aus 1.4-Dipropenyl-benzol und Brom in Chloroform (QUELET, Bl. [4] 45, 273). Nadeln (aus Alkohol). F: 168—169°.

- 1¹.1².4².4³-Tetrabrom-1.4-dipropyl-benzol, 1- $[\alpha.\beta$ -Dibrom-propyl]-4- $[\beta.\gamma$ -dibrom-propyl]-benzol  $C_{12}H_{14}Br_4=CH_2Br\cdot CHBr\cdot CH_2\cdot C_6H_4\cdot CHBr\cdot CHBr\cdot CH_3$ . B. Aus 1-Propenyl-4-allyl-benzol und Brom in Chloroform (Quelet, Bl. [4] 45, 270). Blättchen (aus Alkohol). F: 73°.
- 12.13.42.43-Tetrabrom-1.4-dipropyl-benzol, 1.4-Bis- $[\beta,\gamma$ -dibrom-propyl]-benzol  $C_{12}H_{14}Br_4=C_6H_4(CH_2\cdot CHBr\cdot CH_2Br)_2$ . B. Aus 1.4-Diallyl-benzol und Brom in Chloroform (Quelet, Bl. [4] 45, 267). Krystalle (aus Alkohol). F: 109°.
- 10. 1 Propyl 4 isopropyl benzol  $C_{12}H_{18} = CH_3 \cdot CH_2 \cdot CH_2 \cdot C_6H_4 \cdot CH(CH_3)_2$  (H 446). B. Aus 4-Isopropyl-benzylchlorid und Äthylmagnesiumbromid beim Erhitzen in Petroläther oder Cyclohexan (Bert, C. r. 186, 587). Aus 4-Isopropyl-benzyl-magnesiumchlorid und Diäthylsulfat in Äther (B., Bl. [4] 37, 1585). Aus der Grignard-Verbindung des 1-[y-Chlor-propyl]-4-isopropyl-benzols durch Zersetzen mit Wasser (B., C. r. 186, 374). Bewegliche Flüssigkeit von cymolartigem Geruch.  $Kp_{731}$ : 210°;  $D_{*}^{1}$ : 0,871;  $n_{b}^{6}$ : 1,502 (B., Bl. [4] 37, 1585).
- 1-[ $\gamma$ -Chlor-propyl]-4-isopropyl-benzol  $C_{12}H_{17}Cl = CH_2Cl \cdot CH_2 \cdot CH_2 \cdot CH_4 \cdot CH(CH_3)_2$ . B. Aus 4-Isopropyl-benzylmagnesiumchlorid durch Einw. von p-Toluolsulfonsäure-[ $\beta$ -chlor-äthylester] (Bert, C. r. 186, 374).
- 1-[ $\gamma$ -Brom-propyl]-4-isopropyl-benzol  $C_{12}H_{17}Br=CH_2Br\cdot CH_2\cdot CH_2\cdot C_6H_4\cdot CH(CH_3)_2\cdot B$ . Bei längerem Erhitzen von  $\gamma$ -[4-Isopropyl-phenyl]-propylalkohol mit 30% igem Bromwasserstoff-Eisessig im Rohr auf 100° (Ruzicka, Stoll, Helv. 5, 934). Öl. Kp<sub>12</sub>: 142°.
- 1-[ $\gamma$ -Chlor- $\beta$ , $\gamma$ -dibrom-propyl]-4-isopropyl-benzol  $C_{12}H_{15}ClBr_2 = CHClBr\cdot CHBr\cdot CH_2\cdot C_6H_4\cdot CH(CH_3)_2$ . B. Aus 1-Isopropyl-4-[ $\omega$ -chlor-allyl]-benzol und Brom (Bert, C. r. 180, 1506). Kp<sub>12</sub>: 186—187°. D<sup>6</sup><sub>4</sub>: 1,580. n<sup>6</sup><sub>7</sub>: 1,587.
- 11. 1.3-Diisopropyl-benzol  $C_{12}H_{18} = (CH_3)_2CH \cdot C_6H_4 \cdot CH(CH_3)_2$  (H 447). B. Neben anderen Produkten bei der Einw. von Propylen auf Benzol bei Gegenwart von Aluminium-chlorid bei 70° (Berry, Reid, Am. Soc. 49, 3147).
- 12. 1.4-Diisopropyl-benzol C<sub>12</sub>H<sub>18</sub> = (CH<sub>3</sub>)<sub>2</sub>CH·C<sub>6</sub>H<sub>4</sub>·CH(CH<sub>3</sub>)<sub>2</sub>. B. Neben anderen Produkten aus Benzol und Propylalkohol oder Isopropylalkohol in 80%iger Schwefelsäure bei 65° (H. Meyer, Bernhauer, M. 53/54, 726). Kp: 205—210°. Liefert bei der Oxydation mit Chromschwefelsäure und Eisessig Terephthalsäure.
- 13. 1.2-Dimethyl-4-tert.-butyl-benzol, 4-tert.-Butyl-o-xylol C<sub>12</sub>H<sub>18</sub>, s. nebenstehende Formel. B. Bei der Einw. von tert.-Butylchlorid auf o-Xylol in Gegenwart von Eisenchlorid (Noelting, Chim. et Ind. 6, 726; C. 1922 II, 750). Kp: ca. 210°.
- 14. 1.4-Dimethyl-2-tert.-butyl-benzol. 2-tert.-Butyl-p-xylol C<sub>12</sub>H<sub>18</sub>, s. nebenstehende Formel. B. Bei der Einw. von tert.-Butylchlorid auf p-Xylol in Gegenwart von Eisenchlorid (Norlting, Chim. et Ind. 6, 726; C. 1922 II, 750). Kp: ca. 210°. Liefert ein bei 149—150° schmelzendes, geruchloses Nitroderivat.
- CH<sub>3</sub>
  C(CH<sub>3</sub>)<sub>3</sub>
- 15. 1.3-Dimethyl-5-tert.-butyl-benzol. 5-tert.-Butyl-m-xylol C<sub>12</sub>H<sub>18</sub>, s. nebenstehende Formel (H 447). B. Bei der Einw. von Diisobutylen (E II 1, 180) oder Diisobutylenhydrochlorid (H 1, 164) auf m-Xylol in Gegenwart von Aluminiumchlorid (Noelting, Chim. et Ind. 6, 726; C. 1922 II, 750). Liefert mit überschüssiger Fluorsulfonsäure bei 18—22° 1.3-Dimethyl-5-tert.-butyl-benzol-sulfonsäure-(x)-fluorid vom Schmelzpunkt 115—116° (STEINKOFF, J. pr. [2] 117, 45).
- 4-Nitro-1.8-dimethyl-5-tert.-butyl-benzol, 4-Nitro-5-tert.-butyl-m-xylol  $C_{12}H_{17}O_2N$ , s. nebenstehende Formel (H 447). B. Neben 2-Nitro-1.3-dimethyl-5-tert.-butyl-benzol beim Nitrieren von 1.3-Dimethyl-5-tert.-butyl-benzol mit Salpeterschwefelsäure (Noellting, Chim. et Ind. 6, 726; C. 1922 II, 750).
- 2.4-Dinitro-1.3-dimethyl-5-tert.-butyl-benzol, 2.4-Dinitro-5-tert.-butyl-m-xylol  $C_{12}H_{16}O_4N_2$ , s. nebenstehende Formel (H 447). B. In geringer Menge aus 5-tert.-Butyl-4-acetyl-m-xylol und 100% iger Salpetersäure bei 0° (BARBIER, Helv. 11, 159). — Krystalle (aus Alkohol). (CH<sub>3</sub>)<sub>3</sub>C-F: 68°. Leicht löslich in organischen Lösungsmitteln.

NO<sub>2</sub>
CH<sub>3</sub>
. NO<sub>2</sub>
(CH<sub>3</sub>)<sub>3</sub>C. CH<sub>3</sub>

 $NO_2$ 

CH<sub>3</sub>

СН3

340

2.4.6-Trinitro-1.3-dimethyl-5-tert.-butyl-benzol, 2.4.6-Trinitro-CH<sub>3</sub> 5-tert-butyl-m-xylol, Xylolmoschus  $C_{12}H_{15}O_6N_8$ , s. nebenstehende Formel (H 448). Existiert in einer stabilen Form vom Schmelzpunkt 112° ·NO<sub>2</sub>  $O_2N$ (CH<sub>3</sub>)<sub>3</sub>C CH<sub>3</sub> bis 113° und einer labilen Form vom Schmelzpunkt 105-106°; der Schmelzfluß erstarrt in der Regel unter Bildung der stabilen Form, in NO<sub>2</sub> manchen Fällen auch unter Bildung der labilen; unter bestimmten, nicht näher definierbaren Bedingungen kann die labile Form auch beim Umkrystallisieren aus Alkohol auftreten (TREFF, Z. ang. Ch. 39, 1307).

4.6 - Dinitro - 2 - azido - 1.3 - dimethyl - 5 - tert. - butyl - benzol  $C_{12}H_{15}O_4N_5$ , s. nebenstehende Formel (H 448). B. Durch Einw. von  $CH_3$ O2N. . N3 Ammoniak auf das aus 4.6-Dinitro-2-amino-1.3-dimethyl-5-tert.-butyl-CH<sub>3</sub> (CH<sub>3</sub>)<sub>3</sub>C· benzol durch Diazotieren und Umsetzen mit Brom-Kaliumbromid-Lösung erhaltene Perbromid (FISCH, Parf. mod. 12, 132; C. 1922 II, 271). — NO<sub>2</sub>
Moschusartig riechende Blättchen (aus Alkohol). F: 146° (vgl. dagegen die abweichende Angabe im Hauptwerk).

16. 1-Methyl-5-äthyl-2-propyl-benzol, 5-Äthyl-2-propyl-toluol  $C_{12}H_{18}$ , s. nebenstehende Formel. B. Bei der Hydrierung von 2-Methyl-4-äthyl-propiophenon in Gegenwart von Nickel bei 220°, neben wenig 1-Methyl-2.5-diäthyl-benzol (Маілне, Bl. [4] 35, 366). — Kp: 213—215°. Di: 0,8831.

CH<sub>3</sub>  $CH_2 \cdot C_2H_5$ CH<sub>3</sub>

17. 1-Methyl-2-äthyl-4-isopropyl-benzol, 2-Äthyl-p-cymol C<sub>12</sub>H<sub>18</sub>, s. nebenstehende Formel (H 448). B. Aus der Grignard Verbindung des 1-Methyl-2-[β-chlor-athyl]-4-isopropyl-benzols beim Zersetzen mit Wasser (Bert, C. r. 186, 374). CH (CH<sub>3</sub>)2

1-Methyl-2-[ $\beta$ -chlor-äthyl]-4-isopropyl-benzol. 2-[ $\beta$ -Chlor-äthyl]p-cymol C<sub>12</sub>H<sub>17</sub>Cl, s. nebenstehende Formel. B. Aus der Grignard-Verbindung des 2-Brom-1-methyl-4-isopropyl-benzols bei der Einw. von p-Toluolsulfonsäure- $[\beta$ -chlor-äthylester] (Bert, C. r. 186, 374).

CH2 CH2Cl СH(СН3)2

·C2H5

1-Methyl-2-[eta-brom-äthyl]-4-isopropyl-benzol, 2-[eta-Brom-äthyl]p-cymol  $C_{12}H_{17}Br$ , s. nebenstehende Formel. B. Bei längerem Erwärmen von  $\beta$ -[2-Methyl-5-isopropyl-phenyl]-äthylalkohol mit 30% igem Bromwasserstoffsäure-Eisessig im Rohr auf 1000 (Ruzicka, Seidel, Helv. 5, 372). -Ol. Kp<sub>12</sub>: 145—148°.

 $CH_3$ CH2-CH2Br CH(CH<sub>3</sub>)<sub>2</sub>

C<sub>12</sub>H<sub>18</sub>, s. nebenstehende Formel. B. Aus p-Menthen-(1)-on-(3) bei der Einw. von The last standard of the last

18. 1-Methyl-3-äthyl-4-isopropyl-benzol, 3-Äthyl-p-cymol  $CH_3$ ·C2H5 CH(CH<sub>3</sub>)<sub>2</sub>

19. 1.2.4-Triäthyl-benzol C<sub>12</sub>H<sub>18</sub>, s. nebenstehende Formel (H 448). B. Bei der Zersetzung der Verbindung aus Hexaäthylbenzol und Aluminiumchlorid  $C_{18}H_{30} + 2 \text{ AlCl}_3$  bei ca. 180° (Schleicher, J. pr. [2] 105, 360).

 $C_2H_5$ ·C2H5 C2H5

20. 1.3.5-Triäthyl-benzol  $C_{12}H_{18}$ , s. nebenstehende Formel (H 449). Zur Bildung aus Benzol und Athylen bei Gegenwart von Aluminiumchlorid vgl. MILLIGAN, Reid, Am.~Soc. 44, 206. Bei der Zersetzung der Verbindung aus Hexaäthylbenzol und Aluminiumchlorid  $C_{18}H_{30}+2$  AlCl $_3$  bei ca. 180°

C2H5

1.3.5-Triäthyl-benzol enthaltende binäre Azeotrope.

| Komponente                                                                           | Кр <sub>760</sub><br>0                    | Gehalt an<br>1.3.5-Tri-<br>äthyl-benzol<br>in Gew% | Komponente                   | Kp760                            | Gehalt an<br>1.3.5-Tri-<br>äthyl-benzol<br>in Gew% |
|--------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------|------------------------------|----------------------------------|----------------------------------------------------|
| Naphthalin 2)  Menthol 3)  Benzylalkohol 3)  β-Phenäthylalkohol 3)  Athylenglykol 5) | 215,0<br>214,0<br>203,2<br>212,5<br>183,0 | 85<br>45<br>43<br>—<br>54                          | Brenzcatechin <sup>6</sup> ) | 214,7<br>212,9<br>198,0<br>214,3 | 92<br>73<br>96                                     |

1) LECAT, R. 47, 17. - 2) L., Ann. Soc. scient. Bruxelles 47 [ [1927], 110. - 3) L., Ann. Soc. scient. Bruxelles 48 1 [1928], 57. — 4) L., Ann. Soc. scient. Bruxelles 49 [1929], 19. — 5) L., Ann. Soc. scient. Bruxelles 49, 24; vgl. a. L., R. 46, 245. - 6) L., Ann. Soc. scient. Bruxelles 49, 112. (SCHLEICHER, J. pr. [2] 105, 360). In sehr geringer Menge beim Erhitzen von Methyläthylketon in Gegenwart von Aluminiumoxyd auf  $350-400^{\circ}$  unter 80-100 Atm. (Petrow, B. 60, 2550; Ж. 60, 487). — Dipolmoment  $\mu \times 10^{18}$ : 0,1 (verd. Lösung; Benzol) (Williams, Am. Soc. 50, 2351; Phys. Z. 29 [1928], 684). Dichte und Dielektr.-Konst. von Lösungen in Benzol bei 25°: Williams, Am. Soc. 50, 2351; Phys. Z. 29 [1928], 684.

- 21. 1.2.4-Trimethyl-5-propyl-benzol, 5-Propyl-pseudo-cumol C<sub>12</sub>H<sub>18</sub>, s. nebenstehende Formel. B. Durch Erwärmen von 2.4.5-Trimethyl-phenylaceton mit amalgamiertem Zink und alkoholischwäßriger Salzsäure (Holmberg, Svensk kem. Tidskr. 40, 308; C. 1929 I, 872). Kp: 226—228°. D<sub>4</sub>°: 0,887. n<sub>D</sub>°: 1,509.
- 22. 1.3-Dimethyl-4.6-diäthyl-benzol, 4.6-Diäthyl-m-xylol C<sub>12</sub>H<sub>18</sub>, s. nebenstehende Formel. B. Aus 2.4-Dimethyl-5-äthyl-acetophenon durch Behandeln mit amalgamiertem Zink in salzsaurer Lösung (Philippi, 4. 428, 304). Erstarrt nicht bei —20°. Kp<sub>15</sub>: 105° (Ph.). Bei der Einw. von Brom erst bei Zimmertemperatur, dann bei 110° und nachfolgender Oxydation mit Salpetersäure bei 220° entstehen geringe Mengen Dibrompyromellitsäure; mit Brom in Eisessig erhält man bei 0° 2-Brom-1.3-dimethyl-4.6-diäthyl-benzol (Ph., Seka, M. 45, 269). Die mit Salpetersäure (D: 1,4) unterschichtete Lösung in Ligroin liefert beim Eintropfen von Dischwefeldibromid 2-Brom-1.3-dimethyl-4.6-diäthyl-benzol (Ph., S.).
- 2-Brom-1.3-dimethyl-4.6-diäthyl-benzol, 2-Brom-4.6-diäthyl-m-xylol  $C_{12}H_{17}Br$ , s. nebenstehende Formel. B. Aus 1.3-Dimethyl-4.6-diäthyl-benzol beim Eintropfen von Dischwefeldibromid in eine Lösung in Ligroin, die mit Salpetersäure (D: 1,4) unterschichtet ist, oder beim Behandeln mit Brom in Eisessig bei 0° (Philippi, Seka, M. 45, 269). Öl. Kp<sub>9</sub>: 141°; Kp<sub>11</sub>: 158—160° (nicht ganz reines Präparat). Färbt sich bei längerem Stehen dunkel. Liefert beim Erhitzen mit Salpetersäure (D: 1,3) im Rohr auf 170—190° Monobrompyromellitsäure.
- 23. 1.4-Dimethyl-2.5-diäthyl-benzol, 2.5-Diäthyl-p-xylol C<sub>12</sub>H<sub>18</sub>, s. nebenstehende Formel. Liefert beim Behandeln mit Salpetersäure (D: 1,49) unter Kühlung und nachfolgenden Erwärmen in geringer Ausbeute 3.6-Dinitro-1.4-dimethyl-2.5-diäthyl-benzol (Philippi, A. 428, C<sub>2</sub>H<sub>5</sub>. C<sub>2</sub>H<sub>5</sub>. C<sub>2</sub>H<sub>5</sub>. C<sub>1</sub>H<sub>3</sub> diefert beim Eintropfen von Dischwefeldibromid 3.6-Dibrom-1.4-dimethyl-2.5-diäthyl-benzol.
- 3.6-Dibrom-1.4-dimethyl-2.5-diäthyl-benzol, 3.6-Dibrom-2.5-diäthyl-p-xylol  $C_{19}H_{16}Br_2$ , s. nebenstehende Formel. B. Beim Eintropfen von Dischwefeldibromid in eine Lösung von 1.4-Dimethyl-2.5-diäthylbenzol, die mit Salpetersäure (D: 1,4) unterschichtet ist (Philippi, A. 428, 311). Nadeln (aus Eisessig). F: 81—82° (unkorr.). Sehr schwer löslich in Wasser, leicht löslich in Alkohol, Äther und Ligroin. Liefert beim Erhitzen mit Salpetersäure (D: 1,35) auf 140—170° 3.6-Dibrom-2.5-dimethyl-phenylendiessigsäure-(1.4), 3.6-Dibrom-2.5-dimethyl-phenylendiglyoxylsäure-(1.4) und Dibrompyromellitsäure.
- 3.6-Dinitro 1.4-dimethyl 2.5-diäthyl benzol, 3.6-Dinitro 2.5-diäthyl p xylol  $C_{12}H_{16}O_4N_2$ , s. nebenstehende Formel. B. In geringer Menge aus 1.4-Dimethyl 2.5-diäthyl benzol beim Behandeln mit Salpetersäure (D: 1,49) unter Kühlung und nachfolgenden Erwärmen (Philippi,  $C_{2H_5}$ ). NO2  $C_{13}$   $C_{2H_5}$   $C_{2H_5}$
- 24. 1.1.2.5 Tetramethyl 4 äthyliden cyclohexadien (2.5)  $C_{12}H_{18} = CH_3 \cdot CH : C < \frac{CH : C(CH_3)}{C(CH_3) : CH} > C(CH_3)_2$ . B. Entsteht aus 1.1.2.5 Tetramethyl 4 äthyl cyclohexadien (2.5) ol (4) bei der Destillation sowie bei der Einw. von Schwefelsäure (v. Auwers, Ziegler, A. 425, 273). Bewegliche Flüssigkeit.  $Kp_{18}$ : 100—103°.  $D_4^{15,4}$ : 0,8837.  $n_{\alpha}^{15,4}$ : 1,5103;  $n_{15}^{15,4}$ : 1,5145;  $n_{15}^{15,4}$ : 1,5270;  $n_{15}^{15,4}$ : 1,5380.
- 25. Hexamethylbenzol  $C_{19}H_{18}=C_6(CH_3)_6$  (H 450; E I 213). B. Neben anderen Methylierungsprodukten aus Rohxylol oder Pentamethylbenzol und Methylchlorid bei Gegenwart von verhältnismäßig großen Mengen von reinem Aluminiumchlorid bei ca. 95° (SMITH, DOBROVOLNY, Am. Soc. 48, 1417). Zur Bildung nach Jacobsen (B. 20 [1887],

901) vgl. Smith, Lux, Am. Soc. 51, 2997. Aus Phenol, o-Kresol, m-Kresol, p-Kresol, symm. m-Xylenol, Resorein und in sehr geringer Menge aus Pyrogallol durch Erhitzen mit überschüssigem Methanol in Gegenwart von Aluminiumoxyd auf 410—440° (Briner, Plüss, Paillard, Helv. 7, 2042; vgl. Br., Ferrero, de Luserna, Helv. 7, 292). — Pseudohexagonale oder hexagonale Krystalle (röntgenographisch bestimmt) (Lonsdale, Nature 122 [1929], 810). F: 162° (Sm., Lux), 163,5—164° (Br., Pl., Pa.), 164,3—164,8° (Smith, Mac Dougall, Am. Soc. 51, 3002), 165° (Sm., Dobr.). Kps.: 170°; Kps.: 162° (Sm., Lux). D.: 1,072 (Ziegler, Ditzel, A. 473, 206). — 25 g lösen sich in 600 cm³ siedendem Alkohol, leichter löslich in Äther und Benzol (Sm., Dobr.); löslich in Toluol (Br., Pl., Pa.). Ultraviolett-Absorptionsspektrum in Chloroform, Tetrachlorkohlenstoff, Methanol, Alkohol und Hexan: Scheibe, B. 59, 2618. — Verbindung von Hexamethylbenzol mit 1.3.5-Trinitro-benzol C<sub>12</sub>H<sub>18</sub>+C<sub>6</sub>H<sub>3</sub>O<sub>6</sub>N<sub>3</sub>. Gelb. F: 174—175° (Hertel, A. 451, 191). — Pikrat C<sub>12</sub>H<sub>18</sub>+C<sub>6</sub>H<sub>3</sub>O<sub>7</sub>N<sub>3</sub>. F: 170° (HE.).

- 26. Δ²-²-Dicyclohexenyl C<sub>12</sub>H<sub>18</sub> = H<sub>2</sub>C < CH<sub>2</sub>—CH<sub>2</sub> CH—CH—CH—CH—CH. B. Bei der Einw. von Magnesium auf 3-Brom-cyclohexen-(1) in Äther (Hofmann, Damm, Mitt. Kohlenforschungsinst. Breslau 2, 131; C. 1926 I, 2343). Dickflüssiges, nach Diphenyl riechendes Ol. Kp<sub>8</sub>: 103°; Kp: 230—232°. Addiert in Eisessig 4 Atome Brom. Gibt mit Alkohol und konz. Schwefelsäure nach kurzer Zeit eine tiefrote blaustichige Färbung.
- 27. Kohlenwasserstoffe  $C_{12}H_{18}$  aus Steinkohle. Aus dem Pyridinextrakt aus oberschlesischer Steinkohle isolierten F. Hofmann, Damm (Brennstoffch. 3, 90; C. 1922 IV, 79) zwei Kohlenwasserstoff-Fraktionen der Zusammensetzung  $C_{12}H_{18}$  (Kp: 220—225°;  $D_4^{\text{m.i.}}$ : 0,8812 und Kp: 236—240°;  $D_4^{\text{m.i.}}$ : 0,9000).

### 8. Kohlenwasserstoffe $C_{13}H_{20}$ .

1. n-Heptyl - benzol, 1-Phenyl - heptan  $C_{13}H_{20}$ , s. nebenstehende Formel (H 451; E I 214). B. Durch längeres Erhitzen von n-Hexyl-phenyl-keton-semicarbazon mit Natriumäthylat-Lösung auf  $200-210^{\circ}$  (EISENLOHR, Schulz, B. 57, 1815). —  $D_{\bullet}^{\infty}$   $V_{ak}$ : 0,8604;  $n_{\alpha}^{\infty}$ : 1,4826;  $n_{He}^{\infty}$ : 1,4864;  $n_{\beta}^{\infty}$ : 1,4951;  $n_{\gamma}^{\infty}$ : 1,5029.

[η-Chlor-heptyl]-benzol, 7-Chlor-1-phenyl-heptan, η-Phenyl-n-heptylchlorid  $C_{13}H_{19}Cl = C_0H_5 \cdot [CH_2]_6 \cdot CH_2Cl$  (E I 214). B. Bei Einw. von p-Toluolsulfonsäure-[γ-chlor-propylester] auf δ-Phenyl-butylmagnesiumchlorid in Äther (Rossander, Marvel, Am. Soc. 50, 1494, 1495). — Kp<sub>6</sub>: 131—136°;  $D_{25}^{ss}$ : 0,9899;  $n_{25}^{ss}$ : 1,5152 (R., M.). — Geschwindigkeit der Umsetzung mit Kaliumjodid in Aceton bei 60°: Conant, Kirner, Am. Soc. 46, 243.

2. Heptyl-(2)-benzol, [a-Methyl-n-hexyl]-benzol. 2-Phe-CH<sub>3</sub>·CH·[CH<sub>2</sub>]··CH<sub>3</sub> nyl-heptan C<sub>13</sub>H<sub>20</sub>, s. nebenstehende Formel. B. Aus Benzol und Hepten-(1) in kalter konzentrierter Schwefelsäure (Dobrjanski, Aliew, Neft. Chozjajstvo 9, 231; C. 1926 II, 676). — F: ca. —32°. Kp: 228° bis 231°. D<sup>20</sup>: 0,8865. n<sup>n</sup>/<sub>n</sub>: 1,4875. Löst sich allmählich in Schwefelsäure. — Entfärbt Kaliumpermanganat in Alkohol oder Aceton. Reagiert mit Brom in Chloroform unter Entwicklung von Bromwasserstoff. Gibt bei der Oxydation mit Chromsäure Benzoesäure, sehr wenig Acetophenon und andere Verbindungen.

3. Heptyl-(3)-benzol, [α-Äthyl-n-amyl]-benzol. 3-Phenyl-heptan C<sub>13</sub>H<sub>20</sub>, s. nebenstehende Formel. B. Bei der Reduktion von Äthyl-butyl-phenyl-carbinol mit Jodwasserstoff in Essigsäure im Rohr bei 175° (Dobrjanski, Aliew, Neft. Chozjajstvo 9, 232; C. 1926 II, 676).

— Kp: 226,5—227,5°. D<sup>20</sup>: 0,8627. n<sub>D</sub>°: 1,4846.

4. Heptyl-(4) - benzol, [α - Propyl - n - butyl] - benzol, 4 - Phenyt - heptan C<sub>13</sub>H<sub>20</sub>, s. nebenstehende Formel. B. Beim Erhitzen von Dipropyl-phenyl-carbinol mit Jodwasserstoff in Essigsäure im Rohr auf 175° (Dobrjanski, Aliew, Neft. Chozjajstvo θ, 232; C. 1926 II, 676). — Kp: 225—226°. D<sup>20</sup>: 0,8665. n<sup>10</sup>: 1,4872.

5. 1.4 - Dimethyl - 2 - pentyl - benzol, CH3
2-Pentyl-p-xylol C<sub>13</sub>H<sub>20</sub>, Formel I.
1.4-Dimethyl - 2-[\varepsilon - pentyl] - benzol, I.
2-[\varepsilon - cH3] - cH3
2-[\v

B. Bei schwachem Erwärmen von N-[ε-(2.5-Dimethyl-phenyl)-n-amyl]-benzamid mit Phosphorpentachlorid und darauf folgender Vakuumdestillation, neben Benzonitril (v. Braun,

- KÜHN, B. 60, 2565). Schwach riechende Flüssigkeit. Kp<sub>12</sub>: 143—145°. Liefert bei der Behandlung mit Aluminiumchlorid in Petroläther-Lösung 3'.6'-Dimethyl-[benzo-1'.2':1.2-suberen].
- 6. 1-Methyl-5-äthyl-2-butyl-benzol, 5-Äthyl-2-butyl-toluol C<sub>13</sub>H<sub>20</sub>, s. nebenstehende Formel. B. Bei der Hydrierung von 2-Methyl-4-äthyl-butyrophenon in Gegenwart von Nickel oberhalb 200° (Mailhe, Bl. [4] 35, 367). Flüssigkeit von angenehmem Geruch. Kp: 236—237°. D<sup>11</sup>: 0,6882.
- 7. 1-Methyl-5-äthyl-2-isobutyl-benzol, 5-Äthyl-2-isobutyl-toluol C<sub>13</sub>H<sub>20</sub>, s. nebenstehende Formel. B. Bei der Hydrierung von 2-Methyl-4-äthyl-isobutyrophenon in Gegenwart von Nickel bei 250°, neben anderen Produkten (Mailhe, Bl. [4] 35, 366). Kp: 228—229°. D<sub>4</sub>:: 0,8863.
- 8. 1-Methyl-2-propyl-4-isopropyl-benzol, 2-Propyl-p-cymol C<sub>13</sub>H<sub>20</sub>, s. nebenstehende Formel (H 452; E I 215). B. Aus der Grignard-Verbindung des 1-Methyl-2-[\(\gamma\)-chlor-propyl]-4-isopropyl-benzols beim Zersetzen mit Wasser (Bert, C. r. 186, 374).
- 1-Methyl-2-[ $\gamma$ -chlor-propyl]-4-isopropyl-benzol, 2-[ $\gamma$ -Chlor-propyl]-p-cymol  $C_{13}H_{19}Cl$ , s. nebenstehende Formel. B. Aus der Grignard-Verbindung des 1-Methyl-2-chlormethyl-4-isopropyl-benzols bei der Einw. von p-Toluolsulfonsäure-[ $\beta$ -chlor-āthylester] (Bert, C. r.  $CH_{2}$ -CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>
- 1-Methyl-2- $[\gamma$ -chlor- $\beta$ . $\gamma$ -dibrom-propyl]-4-isopropyl-benzol, 2- $[\gamma$ -Chlor- $\beta$ . $\gamma$ -dibrom-propyl]-p-cymol  $C_{13}H_{17}ClBr_s$ , s. nebenstehende Formel. B. Aus 1-Methyl-4-isopropyl-2- $[\gamma$ -chlor-propenyl]-benzol und Brom (Bert, C.  $\tau$ . 180, 1506). Kp<sub>14</sub>: 196°.  $CH_2 \cdot CHBr \cdot CHClBr$   $CH(CH_3)_2$
- 9. 1.3.5-Trimethyl-2.4-diäthyl-benzol, 2.4-Diäthyl-mesitylen  $C_{13}H_{20}$ , s. nebenstehende Formel. B. Beim Kochen von 2.4-Diacetyl-mesitylen mit amalgamiertem Zink und Salzsäure (D: 1,19) (Phillippi, Ris, M. 42, 6). Kp: 229—236°. Ist mit Wasserdampf flüchtig. Liefert mit Acetylchlorid und Aluminiumchlorid in Schwefelkohlenstoff 6-Acetyl-2.4-diäthyl-mesitylen.
- 10. 1-Methyl-2-cyclohexyliden-cyclohexen-(6)  $C_{13}H_{20}$ , s. nebenstehende Formel. B. Beim Erhitzen von 1-Methyl-2-cyclohexyliden-cyclohexanol-(1) mit Phthalsäureanhydrid auf 165—170° (Garland, Reid, Am. Soc. 47, 2339). Kp<sub>20</sub>: 130—132°. Ist mit Wasserdampf flüchtig.  $C_{CH_2-CH_2}$   $C_{CH_2-CH_$
- 11. 1.2.3.4.5.6.7.8.10.13-Dekahydro-fluoren,

  \[
  \lambda^{\text{I1(12)}}\)-Dekahydrofluoren. 1.2; 3.4-Bis-tetra\[
  \text{methylen-cyclopenten-(2)}\) \( \text{C}\_{13}\)H\_{20}, s. nebenstehende
  \[
  \text{Formel}\] (H 453). B. Bei der Druck-Hydrierung von
  \[
  \text{Fluoren bei ca. } 300\)
  \[
  \text{in Gegenwart von Osmiumasbest oder Nickel(II)-oxyd (SSADIKOW, MICHAILOW, B. 61, 1792; \( \text{K} \). 60, 1568; vgl. indessen Orlow, Belopolsky, B. 62, 1227).

# 9. Kohlenwasserstoffe $\mathrm{C}_{14}\mathrm{H}_{22}.$

- 1. n-Octyl-benzol, 1-Phenyl-octan  $C_{14}H_{22}$ , s. nebenstehende Formel (H 453; E I 215). B. Durch längeres Erhitzen von n-Hexyl-benzyl-ketonsemicarbazon mit Natriumäthylat-Lösung auf  $200-210^{\circ}$  (EISENLOHR, Schulz, B. 57, 1815). Kp:  $264-265^{\circ}$ .  $D_{i}^{\infty}V_{ak}$ : 0,8583.  $n_{\alpha}^{\infty}$ : 1,4819;  $n_{He}^{\infty}$ : 1,4853;  $n_{\beta}^{\infty}$ : 1,4944;  $n_{\gamma}^{\infty}$ : 1,5019.
- 2. [α.β-Diāthyl-butyl]-benzol. 3-Āthyl-4-phenyl-hexan · C<sub>2</sub>H<sub>5</sub>·CH·CH(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub> C<sub>14</sub>H<sub>22</sub>, s. nebenstehende Formel. B. Aus α.α.β-Triāthyl-β-phenyl-propiophenon beim Behandeln mit Natriumamid in siedendem Xylol, neben anderen Produkten (RAMART, Albesco, C. r. 174, 1291; A., A. ch.
  [9] 18, 255). Bewegliche Flüssigkeit von angenehmem Geruch. Kp<sub>740</sub>: 205°.

3. 1 - Methyl - 2 - n - heptyl - benzol, 2 - n - Heptyl - toluol,CH3 1-o-Tolyl-heptan C<sub>14</sub>H<sub>23</sub>, s. nebenstehende Formel. B. Durch längeres [CH2]6 · CH3 Erhitzen von n-Hexyl-o-tolyl-keton-semicarbazon mit Natriumäthylat-Lösung auf 200-210° (EISENLOHR, SCHULZ, B. 57, 1819). — Kp: 263,0° bis 263,2°.  $D_{\bullet}^{\infty}_{Vak}$ : 0,8717.  $n_{\alpha}^{\infty}$ : 1,4912;  $n_{He}^{\infty}$ : 1,4952;  $n_{\beta}^{\infty}$ : 1,5045;  $n_{\gamma}^{\infty}$ : 1,5126. 4. 1-Methyl-3-n-heptyl-benzol. 3-n-Heptyl-toluol, I-m-Tolyl-heptun  $C_{14}H_{22}$ , s. nebenstehende Formel. B. Durch längeres Erhitzen von n-Hexyl-m-tolyl-keton-semicarbazon mit Natriumäthylat-Lösung auf 200—210 $^{6}$  (EISENLOHR, SCHULZ, B. 57, 1820). — Kp: 260,0 $^{6}$  bis 260,8 $^{6}$ .  $D_{\nu}^{n}V_{ak}$ : 0,8615.  $n_{\alpha}^{n}$ : 1,4877;  $n_{He}^{n}$ : 1,4914;  $n_{\beta}^{n}$ : 1,5009;  $n_{\gamma}^{n}$ : 1,5088. CH3  $[CH_2]_6 \cdot CH_3$ 5. 1-Methyl-4-n-heptyl-benzol, 4-n-Heptyl-toluol, 1-p-Tolyl-heptan  $C_{14}H_{23}$ , s. nebenstehende Formel. B. Durch längeres Erhitzen von n-Hexyl-p-tolyl-keton-semicarbazon mit Natriumäthylat-Lösung auf 230—240° CH<sub>8</sub> (EISENLOHR, SCHULZ, B. 57, 1820). — Kp: 265,0—265,2°. D<sub>4</sub> Vak.: 0,8560. n<sub>2</sub>. [CH2]6 · CH3 1,4860;  $n_{\text{He}}^{\text{20}}$ : 1,4897;  $n_{\beta}^{\text{20}}$ : 1,4991;  $n_{\gamma}^{\text{20}}$ : 1,5071. 6. 1.4-Dibutyl-benzol C<sub>14</sub>H<sub>22</sub>, s. nebenstehende Formel. B. Neben zahlreichen anderen Produkten beim Erhitzen von 1.4-Dichlor-benzol mit Butylchlorid und Natrium in Xylol auf 1100—1500 (МОВДАН, НІСКІВВОТТОМ, [CH2]3 · CH3 Soc. 119, 1891). — Flüssigkeit von schwach orangeartigem Geruch. Kp<sub>759</sub>: 224—225,5°. [CH2]3 · CH3 [CH<sub>2</sub>]<sub>3</sub>· CH<sub>3</sub> 2-Nitro-1.4-dibutyl-benzol C<sub>14</sub>H<sub>21</sub>O<sub>2</sub>N, s. nebenstehende Formel. B.  $\cdot NO_2$ Durch Behandlung von 1.4-Dibutyl-benzol mit rauchender Salpetersäure bei 00 (Morgan, Hickinbottom, Soc. 119, 1892). — Hellgelbe Flüssigkeit von citronenähnlichem Geruch. Mit Wasserdampf flüchtig. [CH2]3 · CH3 7. 1.4-Di-sek.-butyl-benzol  $C_{14}H_{22}$ , s. nebenstehende Formel. B. Neben anderen Produkten aus Benzol und Butylalkohol oder sek.-Butyl-CH(CH<sub>3</sub>)·C<sub>2</sub>H<sub>5</sub> alkohol in Gegenwart von 80%iger Schwefelsäure (H. MEYER, BERNHAUER, M. 53/54, 728). — Kp: 230—240°. — Liefert bei der Oxydation haupt-CH(CH<sub>3</sub>)· C<sub>2</sub>H<sub>5</sub> sächlich Terephthalsäure. 8. 1.4-Di-tert.-butyl-benzol C<sub>14</sub>H<sub>22</sub>, s. nebenstehende Formel (H 454; E I 216). Zur Bildung aus Benzol und Isobutylalkohol in Gegenwart von Schwefelsäure vgl. H. MEYER, BERNHAUER, M. 53/54, 727. Aus Benzol und tert.-Butylalkohol in Gegenwart von 80%iger Schwefelsäure bei 80° (M., B.). — Nadeln C(CH<sub>3</sub>)<sub>3</sub> C(CH<sub>3</sub>)<sub>3</sub> (aus Alkohol). F: 76°. 9. 1-Methyl-5-äthyl-2-isoamyl-benzol, 5-Äthyl-CHa 2-isoamyl-toluol C<sub>14</sub>H<sub>22</sub>, s. nebenstehende Formel. B. Bei CH2·CH2·CH(CH3)2 C<sub>2</sub>H<sub>5</sub> C<sub>2</sub>H<sub>5</sub> (?) 10. 1.2.3.4-Tetraäthyl-benzol (?)  $C_{14}H_{22}$ , s. nebenstehende Formel (H 455). F: 11,6° (Timmermans, Bl. Soc. chim. Belg. 36, 503; C. 1928 I, 26). —  $Kp_{14}$ : 121,7°. ·C2H5 Kohlenwasserstoff C<sub>14</sub>H<sub>22</sub>, Formel I—IV (eine Auswahl zwischen den Formeln I-IV kann nicht getroffen werden). B. Aus 4-Methyl-2.2-diäthyl-indandion-(1.3) durch CH<sub>3</sub> CH<sub>3</sub> CH<sub>3</sub> CH<sub>3</sub>  $CH_2 \cdot C(C_2H_5)_2 \cdot CH_3$ CH<sub>3</sub> CH2·CH(C2H5)2  $CH_2 \cdot C(C_2H_5)_2 \cdot CH_3$  $CH_2 \cdot CH(C_2H_5)_2$ CHa

Einw. von amalgamiertem Zink und überschüssiger rauchender Salzsäure (D: 1,19) (Fleischer,

A. 422, 248). — Ol.  $Kp_{12}$ : 110—116°.  $D_{\bullet}^{m_{10}}$ : 0,9007;  $n_{0}^{m_{10}}$ : 1,5074.

345

13. 1-Äthyl-2-cyclohexyliden-cyclohexen-(6)  $C_{14}H_{22}$ , s. nebenstehende Formel. B. Beim Erhitzen von 1-Äthyl-2-cyclohexyliden-cyclohexanol-(1) mit Phthalsäure-anhydrid auf 165—170° (Garland, Reid, Am. Soc. 47, 2339). —  $Kp_{20}$ : 139—141°. Ist mit Wasserdampf flüchtig.  $D_{i}^{o}$ : 0,9461;  $D_{i}^{o}$ : 0,9308.  $n_{d}$ : 1,5172.

$$\begin{array}{c} C_2H_5 \\ HC & C \\ C=C < \begin{array}{c} CH_2 \cdot CH_2 \\ CH_2 \cdot CH_2 \end{array} \\ CH_2 \end{array}$$

- 14. 10-Methyl-2-isopropyliden-1.2.3.4.5.6.9.10-oktahydro-naphthalin. 10-Methyl-2-isopropyliden-1.2.3.4.5.6.9.10-oktahydro-naphthalin. 10-Methyl-2-isopropyliden-2.5 nebenstehende Formel.

  B. Aus 10-Methyl-2-isopropyliden-dekalol-(8), das vielleicht Isomere mit anderer Lage der Doppelbindungen enthält, durch Erhitzen mit wasserfreiem Kaliumdisulfat auf 120—130° (RUZICKA, CAPATO, A. 453, 79). Ol. Kp<sub>12</sub>: 125—126°. D<sup>18</sup>: 0,9124; n<sup>18</sup>: 1,5065. Liefert bei der Dehydrierung mit Schwefel 2-Isopropyl-naphthalin.
- 15. **Dodekahydroanthracen** C<sub>14</sub>H<sub>22</sub> (H 456). B. Neben anderen Verbindungen beim Erhitzen von Hexahydrophthalsäureanhydrid auf 375—385° im Rohr (Windaus, Ehrenstein, Nachr. Ges. Wiss. Göttingen 1922, 7; C. 1923 I, 831). Nicht rein erhalten. Kp<sub>20</sub>: 245—255°.
- 16. Kohlenwasserstoff  $C_{14}H_{22}$  aus Manilakopal. B. Beim Erhitzen der gesamten oder der in Aceton löslichen Säuren des Manilakopals im Kohlendioxyd-Strom auf 300°, anschließend im Hochvakuum auf 330—400°, neben anderen Produkten (Ruzicka, Steiger, Schinz, Helv. 9, 974). Kp<sub>12</sub>: ca. 115°.  $D_i^{i_7}$ : 0,9371.  $n_i^{i_7}$ : 1,5201. Liefert bei der Hydrierung in Gegenwart von Platinmohr in Essigester einen Kohlenwasserstoff  $C_{14}H_{26}$  (Kp<sub>12</sub>: 115°.  $D_i^{a_1}$ : 0,9010.  $n_i^{a_2}$ : 1,4860).

## 10. Kohlenwasserstoffe $C_{15}H_{24}$ (Sesquiterpene).

- 1. 2-Methyl-6-p-tolyl-heptan  $C_{15}H_{24} = CH_3 \cdot C_6H_4 \cdot CH(CH_3) \cdot [CH_2]_3 \cdot CH(CH_3)_2$ .

  B. Aus Methylheptenon beim Behandeln mit p-Tolyl-magnesiumbromid in Ather, Erhitzen mit wasserfreiem Kaliumdisulfat und Hydrieren des Reaktionsprodukts bei Gegenwart von Platinschwarz in Cyclohexan (Ruzicka, van Veen, A. 468, 155). Kp<sub>15</sub>: 135—136°. D<sup>a</sup>: 0,8524. n<sup>a</sup>: 1,4832. Bei der Oxydation mit Chromschwefelsäure entsteht Terephthalsäure.
- 2. Bisabolen  $C_{15}H_{24}$ , Gemisch von I, II und hauptsächlich III ( $I=\alpha$ -Bisabolen, III =  $\beta$ -Bisabolen, III =  $\gamma$ -Bisabolen) (H 468; E I 217). Zur Konstitution vgl. Ruzicka, van Veen, A. 468, 133; R., Capato, Helv. 8, 259;
- II.  $CH_3 \cdot C < \frac{CH \cdot CH_2}{CH_2 \cdot CH_2} > CH \cdot C(:CH_2) \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_3)_2$
- Konstitution vgl. Ruzicka, van Veen, III. Ch<sub>3</sub>·C < Ch; Ch<sub>2</sub>·Ch<sub>2</sub>·Ch<sub>3</sub>·Ch<sub>2</sub>·Ch<sub>2</sub>·Ch<sub>2</sub>·Ch<sub>2</sub>·Ch<sub>2</sub>·Ch<sub>3</sub>·Ch<sub>2</sub>·Ch<sub>2</sub>·Ch<sub>3</sub>·Ch<sub>4</sub>·Ch<sub>2</sub>·Ch; C(Ch<sub>3</sub>)<sub>2</sub>
  A. 468, 133; R., Capato, Helv. 8, 259;
  R., Liguori, Helv. 15 [1932], 3. V. Im Ingweröl (Ruzicka, van Veen, A. 468, 151). Im äther. Öl aus dem Holz von Erythroxylon monogynum Roxb. (Rao, Shintre, Simonsen, J. indian Inst. Sci. [A] 9, 147; C. 1927 I, 654). Im äther. Öl von Murraya exotica var. ovatifoliolata Engl. (Penfold, Simonsen, J. Pr. Soc. N. S. Wales 59, 153; C. 1927 II, 752). Im äther. Öl der Samen von Daucus carota L. (Asahina, Tsukamoto, J. pharm. Soc. Japan 1926, 98; C. 1927 I, 1843). B. Bei der trocknen Destillation von Squalen (E II 1, 250), neben anderen Produkten (Heilbron, Kamm, Owens, Soc. 1926, 1643).

Kp<sub>12</sub>: 133—134° (Ruzicka, Capato, Helv. 8, 274). D<sup>n</sup>: 0,8717 (R., C.), 0,8716 (Heilbron, Kamm, Owens, Soc. 1926, 1643); D<sup>n</sup>: 0,8734 (H., K., O.). n<sup>n</sup>: 1,4923 (R., C.), 1,4915 (H., K., O.). — Beim Erhitzen von regeneriertem Bisabolen mit Schwefel oder Selen und Kochen des Reaktionsprodukts mit Natriumdichromat und Schwefelsäure entsteht Terephthalsäure (R., van Veen, A. 468, 136, 137; vgl. H., K., O., Soc. 1926, 1644). Beim Behandeln von natürlichem wie von regeneriertem Bisabolen mit Ozon in Eisessig oder Tetrachlorkohlenstoff und Zersetzen des entstandenen Ozonids erhält man Aceton, Lävulinsäure und Bernsteinsäure (R., v. V., A. 468, 139). Natürliches Bisabolen liefert beim Hydrieren bei Gegenwart von Platinschwarz oder Platinoxyd in Cyclohexan Tetrahydrobisabolen (S. 73), bei Gegenwart von Platinoxyd in Eisessig Hexahydrobisabolen (S. 33) (R., v. V., A. 468, 135, 141). Gibt mit Brom bei Gegenwart von Natriumacetat und Eisessig Bisabolenhexabromid (F: 154°) und zwei isomere Verbindungen C<sub>15</sub>H<sub>24</sub>Br<sub>6</sub> (Krystalle; F: 142° und F: 130—132°) (Asamit 98% iger Ameisensäure eine isomere Verbindung C<sub>15</sub>H<sub>24</sub> [Kp<sub>21</sub>: 140—145°; D<sup>n</sup><sub>20</sub>: 0,8994; n<sup>n</sup><sub>20</sub>: 1,4965] (H., K., O., Soc. 1926, 1643).

Ein Sesquiterpen C<sub>15</sub>H<sub>24</sub>, das vielleicht mit α-Bisabolen identisch ist (RUZICKA, Helv. 6, 487, 498; R., CAPATO, Helv. 8, 260, 262) entsteht beim Erhitzen von Farnesen-

Prāparaten mit 90 biger Ameisensäure auf 120—140° (R., Helv. 6, 490, 498). — Prāparat aus d-Nerolidol:  $Kp_{12}$ : 130—132°;  $D_{\bullet}^{m}$ : 0,8724;  $n_{\rm D}^{m}$ : 1,4944;  $\alpha_{\rm D}$ : —1,6° (R., Helv. 6, 490); Prāparat aus Farnesol:  $Kp_{12}$ : 126—128°;  $D_{\bullet}^{4}$ : 0,8776;  $n_{\rm D}^{6}$ : 1,4961 (R., Helv. 6, 498).

- 3. 2-Methyl-6-[4-methyl-cyclohexen-(3)-yl]-heptadien-(2.4), Zingiberen  $C_{15}H_{24}=CH_3\cdot C\cdot CH_2\cdot CH\cdot CH\cdot CH(CH_3)\cdot CH\cdot CH\cdot CH\cdot CH\cdot C(CH_3)_2$  (H 461; E I 216). Zur Konstitution vgl. Ruzicka, van Veen, A. 468, 147. V. In äther. Öl der Rhizome von Curcuma Zedoaria Rosc. (Rao, Shintre, Simongen, J. Soc. chem. Ind. 47, 171 T.; C. 1928 II, 499). Kp<sub>17</sub>: 137—139° (Ru., Meyer, Mingazzini, Helv. 5, 359). Di°: 0,8733; ni°: 1,4984;  $\alpha_{\rm D}: -60^{\circ}$  (Ru., Mey., Min.); D³°: 0,8690; ni°: 1,4916;  $[\alpha]_{\rm D}^{\rm m}: -73,7^{\circ}$  (Moudgill, J. indian chem. Soc. 5, 255; C. 1928 II, 1448). Verhalten beim Erhitzen und beim Aufbewahren an der Luft: Mou. Nimmt bei der katalytischen Hydrierung in Essigester in Gegenwart von Platinschwarz bei Zimmertemperatur glatt 2 Mol Wasserstoff auf unter Bildung von Tetrahydrozingiberen  $C_{15}H_{28}$  (Kp<sub>18</sub>: 130—135°; Di°: 0,842; ni°: 1,463) (Ru., v. V., A. 468, 156). Liefert beim Erhitzen mit Schwefel auf 180—250° Cadalin (Ru., Mey., Min.). Beim Kochen mit Diazoessigester in einer Kohlendioxyd-Atmosphäre und Verseifen des Reaktionsprodukts mit alkoh. Kalilauge entsteht die Verbindung
- $CH_3 \cdot C < CH_2 \cdot CH_2 > CH \cdot CH(CH_3) \cdot CH CH \cdot CH : C(CH_3)_2 \quad (Syst. Nr. 946) \quad (Ru., v. V., A. 468, 157).$

Zingiberen-nitrosit. Nadeln. F: 92—94°; nach 6 Monaten ist der Schmelzpunkt auf 113° gestiegen (Moudgill, J. indian chem. Soc. 5, 255; C. 1928 II, 1448).

4. 1-Methyl-4-isopropyl-2-isoamyl-benzol, 2-Isoamyl-p-cymol C<sub>18</sub>H<sub>24</sub>. s. nebenstehende Formel (H 458). B. Beim Kochen von 1-Methyl-2-isoamyl-4-isopropenyl-cyclohexen-(6)-ol-(2) (Syst. Nr. 510; vgl. E I 8, 66) mit Ameisensäure (Ruzicka, Pfeiffer, Helv. 8, 852). — Kp<sub>12</sub>: 111—115°. — Dehydrierung mit Schwefel: R., Pf.

CH<sub>3</sub>
CH<sub>2</sub>·CH<sub>2</sub>·CH(CH<sub>3</sub>)<sub>2</sub>
CH(CH<sub>3</sub>)<sub>2</sub>

- 5. 1.3-Dimethyl-2-triäthylmethyl-benzol, 2-Triäthylmethyl-m-xylol  $C_{15}H_{24}$ , s. nebenstehende Formel. B. Beim Sättigen eines Gemisches von  $\alpha$ -Methyl- $\beta$ - $\beta$ -diäthyl-äthylen und m-Xylol mit Chlorwasserstoff und Hinzufügen von Aluminiumchlorid (Battegary, Kappeller, Bl. [4] 35, 993). Flüssigkeit von aromatischem Geruch. Kp<sub>745</sub>: 257—259°. Liefert bei der Nitrierung mit 100%iger Salpetersäure in Acetanhydrid ein nichtkrystallisierendes Öl von moschusartigem unangenehmen Geruch.
- 6. 1-Methyl-3.4-di-tert.-butyl-benzol, 3.4-Di-tert.-butyl-toluol C<sub>15</sub>H<sub>24</sub>, s. nebenstehende Formel (H 458). Diese Konstitution wird von de Capeller (Helv. 11, 168) dem H 458 beschriebenen x.x-Di-tert.-butyl-toluol zuerteilt. B. Aus Toluol und tert.-Butylchlorid in Gegenwart von Aluminiumchlorid oder Eisenchlorid (de C., Helv. 11, 170). C(CH<sub>3</sub>)<sub>3</sub> Blätter. F: 31,5—32°. Kp<sub>735</sub>: 227,5—228°; Kp<sub>15,5</sub>: 117—118°; Kp<sub>12</sub>: 111—112°.
- 7. 1.2.4-Triisopropyl benzol C<sub>15</sub>H<sub>24</sub>, s. nebenstehende Formel.

  B. Neben anderen Produkten bei der Einw. von Propylen auf Benzol bei Gegenwart von Aluminiumchlorid bei 70° (Berry, Reid), Am. Soc.
  49, 3148) und bei der Einw. von Propylalkohol oder Isopropylalkohol auf Benzol in 80% iger Schwefelsäure bei 65° (H. Meyer, Bernhauer, M. 53/54, 726). Kp: 225—230° (M., Bern.). Kp<sub>752</sub>: 237—237,5°; Kp<sub>4</sub>: 97—97,5° (Berry, R.). D; 0,8764; D; 0,8593; n; 1,4855 (Berry, R.). Liefert beim Behandeln mit Salpetersäure (D: 1,16) eine Isopropylbenzoldicarbonsäure (M., Bern.).
- 8. 1.3.5-Triisopropyl-benzol C<sub>15</sub>H<sub>24</sub>, s. nebenstehende Formel (H 458). B. Neben anderen Produkten bei der Einw. von Propylen auf Benzol bei Gegenwart von Aluminiumchlorid bei 70° (CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)<sub>2</sub>CH·CH<sub>(CH<sub>3</sub>)</sub>CH·CH<sub>(CH<sub>3</sub>)</sub>CH·CH<sub>(CH<sub>3</sub>)</sub>CH·CH<sub>(CH<sub>3</sub>)</sub>CH·CH<sub>(CH<sub>3</sub>)</sub>CH·CH<sub>(CH<sub>3</sub>)</sub>CH·CH<sub>(CH<sub>3</sub>)</sub>CH·CH<sub>(CH<sub>3</sub>)</sub>CH·CH<sub>(CH<sub>3</sub>)</sub>CH·CH<sub>(CH<sub>3</sub>)</sub>CH·CH<sub>(CH<sub>3</sub>)</sub>CH·CH<sub>(CH<sub>3</sub>)</sub>CH·CH<sub>(CH<sub>3</sub>)</sub>CH·CH<sub>(CH<sub>3</sub>)</sub>CH·CH<sub>(CH<sub>3</sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub>
- 9. 1.3.5-Trimethyl-2.4.6-triäthyl-benzol, Triäthylmesitylen C<sub>16</sub>H<sub>24</sub>, s. nebenstehende Formel. B. Beim Kochen von Acetyldiäthylmesitylen mit amalgamiertem Zink und Salzsäure (D: 1,19) (Philippi, Rie, M. 42, 7). Öl mit an Terpentinöl erinnerndem Geruch. Kp: 238—247°. Liefert beim Erhitzen mit verd. Salpetersäure auf 130°, dann unter Zugabe von rauchender Salpetersäure auf 160—170° Mellitsäure.

C<sub>2</sub>H<sub>5</sub>. C<sub>2</sub>H<sub>5</sub> CH<sub>3</sub>. C<sub>2</sub>H<sub>5</sub>

10. 1.6 - Dimethyl - 4 - isopropyl - 1.4.7.8.9.10 - hexa-10. 1.6-Dimethyl-4-isopropyl-1.4.7.8.9.10-hexahydro-naphthalin, Isozingiberen  $C_{15}H_{24}$ , s.nebenstehende Formel (E I 217). Zur Konstitution vgl. Ruzicka, van Veen, A. 468, 150; Ru., Meyer, Mingazzini, Helv. 5, 359; J. L. Simonsen, The terpenes, Bd. II [Cambridge 1932], S. 498. — Kp<sub>20</sub>: ca. 138°; D<sub>1</sub><sup>20</sup>: 0,9070; n<sub>1</sub><sup>20</sup>: 1,5030 (Ru., Mey., Mi.); Kp<sub>14</sub>: 130—135°; D<sub>1</sub><sup>45</sup>: 0,910; n<sub>1</sub><sup>20</sup>: 1,506 (Ru., v. V.). — Liefert beim Erhitzen mit Schwefel Cadalin (Ru., Mey., Mi.).

11. Cadinen  $C_{15}H_{24}$ , wahrscheinlich ein Gemisch von 1.6-Dimethyl-4-isopropyl-1.2.7.8.9.10-hexahydro-naphthalin (Formel I,  $\alpha$ -Cadinen) und 1.6-Dimethyl-4-isopropyl-1.2.5.8.9.10-hexahydro-naphthalin (Formel II,  $\beta$ -Cadinen)

I. 
$$\begin{array}{c} \text{CH}_3 \\ \text{H}_2\text{C} \\ \text{CH}_3 \\ \text{C} \\ \text{CH} \end{array} \begin{array}{c} \text{CH}_3 \\ \text{CH}_2 \\ \text{CH} \end{array}$$

$$\text{II.} \begin{array}{c} \text{H}_2\text{C} \\ \text{CH}_2 \\ \text{CH}_3 \\ \text{CH}_2 \end{array} \begin{array}{c} \text{CH}_3 \\ \text{CH}_2 \\ \text{CH}_2 \end{array} \begin{array}{c} \text{CH}_2 \\ \text{CH}_2 \\ \text{CH}_2 \end{array} \begin{array}{c} \text{CH}_2 \\ \text{CH}_2 \end{array} \begin{array}{c} \text{CH}_3 \\ \text{CH}_2 \\ \text{CH}_3 \end{array} \begin{array}{c} \text{CH}_3 \\ \text{CH}_2 \\ \text{CH}_3 \end{array} \begin{array}{c} \text{CH}_3 \\ \text{CH}_2 \\ \text{CH}_3 \end{array} \begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \end{array} \begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \end{array} \begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \end{array} \begin{array}{c} \text{CH}_3 \\ \text{CH}_$$

(H 459; E I 217). Zur Konstitution vgl. Ruzicka, Stoll, Helv. 7, 84; Ru., Fortsch. Ch., Phys. 19 [1928], Heft 5, S. 38; J. L. Simonsen, The terpenes, Bd. II [Cambridge 1932], S. 505.

- a) Linksdrehendes Cadinen, l-Cadinen (H 459, E I 217). V. Im Ol der Blätter von Dacrydium biforme Pilg. (GOUDIE, J. Soc. chem. Ind. 42, 358 T; C. 1923 III, 1371; AITKEN, J. Soc. chem. Ind. 47, 223 T; C. 1928 II, 2197). Im äther. Ol der Blätter und Zweigspitzen der Kaurifichte (Agathis australis Salisb.) (Hosking, R. 47, 580). Im Terpentinol aus dem Harz von Pinus silvestris (Krestinski, Ssolodki, Z. prikl. Chim. 2, 353; C. 1929 II, 2384). In den Nadeln der Arve (Pinus Cembra L.) (PIGULEWSKI, Ж. 55, 173; C. 1925 I, 239). Gehalt des Öles von Juniperus Oxycedrus L. an l-Cadinen: Huerre, J. Pharm. Chim. [7] 23, 89; C. 1921 III, 43. Im Öl der falschen Cubeben (Piper spec.) (Henderson, ROBERTSON, Soc. 1926, 2814). In der Otobabutter aus Myristica Otoba (BAUGHMAN, JAMIESON, BRAUNS, Am. Soc. 43, 200).— B. Beim Erhitzen von Cadinol (Syst. Nr. 510) mit Zinkstaub im Rohr auf 300° (RUZICKA, STOLL, Helv. 7, 100). Zur Darstellung über das Bis-hydrochlorid
- vgl. He., Ro., Soc. 125, 1994.

  Aus Cadinen-bis-hydrochlorid regeneriertes Cadinen zeigte folgende Eigenschaften: Kp<sub>13</sub>: 134—136° (Ruzicka, Meyer, Helv. 4, 508); Kp<sub>11</sub>: 134—136° (Henderson, Robertson, Soc. 125, 1994; Ro., Kerr, He., Soc. 127, 1946). D<sub>1</sub>°°: 0,9189; n<sub>2</sub>°°: 1,5079; [α]<sub>D</sub>: —130°; [α]<sub>Bell</sub>: —125° (He., Ro.; Ro., K., He.). Beugung von Röntgenstrahlen in Cadinen: Vaidyanathan, Indian J. Phys. 3, 375, 378; C. 1929 I., 2952. Liefert beim Leiten über Platinschwarz auf Asbest bei 300—310° unter 0,5 mm Druck (Ru., Stoll, Helv. 7, 90) oder bei der Dehydrierung mit Selen bei ca. 280° (Diels, Karstens, B. 60, 2325) oder mit Schwefel bei 200. 265° (Phy. May. Helv. 4, 508; Ru. May. Mayotagyay, Helv. 5, 356) (Cadelin) bei 200—265° (Ru., Mey., Helv. 4, 508; Ru., Mey., Mingazzini, Helv. 5, 356) Cadalin (S. 473). Gibt beim Ozonisieren in Eisessig, nachfolgenden Oxydieren mit Chromeisessig und Verestern der erhaltenen Säure mit alkoh. Salzsäure eine Verbindung C<sub>19</sub>H<sub>30</sub>O<sub>5</sub> (s. u.) (Ruzicka, Stoll, Helv. 7, 93). Zur Oxydation mit Chromeisessig und mit Dichromat-Schwefelsäure vgl. ferner Gibson, Robertson, Sword, Soc. 1926, 166. Beim Kochen mit Braunstein und 57%iger Schwefelsäure erhält man Trimellitsäure, Mellophansäure und Benzolpentacarbonsäure (Ru., St.). Wird beim Erhitzen mit Natrium und Isoamylalkohol nicht verändert (Ru., St.). Einw. von siedender 57%iger Schwefelsäure: Ru., St. Zur Einw. von siedender 90% iger Ameisensäure vgl. Robertson, Kerr, Henderson, Soc. 127, 1946. Liefert beim Erhitzen mit Eisessig + Schwefelsäure auf dem Wasserbad oder mit Eisessig im Rohr auf 230—235° Isocadinen (S. 348) (He. Ro., Soc. 125, 1995; 1926, 2814). Zur Einw. von Chromylchlorid in Tetrachlorkohlenstoff vgl. Gibson, Robertson, Sword, Soc. 1926, 166. — Die Lösung in Acetanhydrid gibt beim Zufügen eines Tropfens konz. Schwefelsäure eine smaragdgrüne Färbung, die in Dunkelindigoblau übergeht (RAO, SIMONSEN, Soc. 127, 2498).

Verbindung C<sub>19</sub> H<sub>30</sub> O<sub>5</sub>, vielleicht

 $\begin{array}{lll} & \text{OC} & \text{CH}_2 & \text{Ha}_3 & \text{Cg}, & \text{Volctent} \\ & \text{CH}_2 & \text{CH} \cdot \text{CH}(\text{CH}_2 \cdot \text{CO}_2 \cdot \text{C}_2\text{H}_5) \cdot \text{CH}(\text{CH}_3) \cdot \text{CH}_2 \cdot \text{CO}_2 \cdot \text{C}_2\text{H}_5} & \text{oder} \\ & \text{H}^{\dot{\text{C}}} : \text{C}[\text{CH}(\text{CH}_3)_2 \text{CH} \cdot \text{C} \cdot \text{CH}(\text{CO}_2 \cdot \text{C}_2\text{H}_5)} & \text{CH} \cdot \text{CH}(\text{CH}_3) \cdot \text{CH}_2 \cdot \text{CO}_2 \cdot \text{C}_2\text{H}_5. & \text{Das Mol.-Gew. ist kryoskopisch} \\ & \text{CH}_3 \cdot \text{CO} \cdot \overset{\wedge}{\text{C}} & \text{CH}_2 & \text{CH}_3 &$ in Campher nach Rast bestimmt worden (RUZICKA, STOLL, Helv. 7, 94). — B. Beim Ozonisieren von l-Cadinen in Eisessig, nachfolgendem Oxydieren mit Chromeisessig und Verestern der entstandenen Säure mit alkoh. Salzsäure (R., St., Helv. 7, 93). — Dickflüssiges Öl. Kp<sub>0,2</sub>: 190-200°. - Ist gegen Brom in Schwefelkohlenstoff ungesättigt. Gibt mit Eisenchlorid in Alkohol eine grünbraune Färbung.

b) Dem Cadinen strukturell nahestehende Kohlenwasserstoffe C<sub>15</sub>H<sub>24</sub>. α) Koh enwasserstoff C<sub>16</sub>H<sub>24</sub> aus westindischem und afrikanischem Sandelholzöl, "d. Cadinen" von Deussen (H 460; E I 218). Liefert beim Erhitzen mit Schwefel Cadalin (S. 473) (DEUSSEN, J. pr. [2] 120, 121). Wird in Gegenwart von Platinschwarz in Alkohol zu Tetrahydrocadinen hydriert.

In Alkohol zu Tetrahydrocadinen hydriert.
β) Kohlenwasserstoff C<sub>15</sub>H<sub>24</sub> aus Melaleuca linariifolia. V. Im Öl von Melaleuca linariifolia Smith (Penfold), J. Pr. Soc. N. S. Wales 59 [1925], 316; Perfum. essent. Oil Rec. 17, 213; C. 1926 II, 2124). — F: 118,5—119°. [α]<sub>1</sub><sup>1</sup>: —36,9° (Chloroform; c = 2).
γ) Kohlenwasserstoff C<sub>15</sub>H<sub>24</sub> aus Kadeöl (vielleicht identisch mit Isocadinen: vgl. Henderson, Robertson, Soc. 1926, 2811). — V. Im Kadeöl (Oleum Cadinum; aus dem Holz von Juniperus-Arten gewonnen) (H., R., Soc. 125, 1996). — Kp<sub>12</sub>: 124—128°. D<sub>1</sub><sup>15</sup>: 0,9182. n<sub>1</sub><sup>20</sup>: 1,5166. [α]<sub>Hg</sub>: —21,9°. — Wird durch Permanganat schnell entfärbt. Gibt mit Chlorwasserstoff kein Hydrochlorid.
δ) Kohlenwasserstoff C<sub>15</sub>H<sub>16</sub>, aus dl. Nerolidol Havabydrocadalin (vielleicht

δ) Kohlenwasserstoff C<sub>15</sub>H<sub>24</sub> aus dl-Nerolidol, Hexahydrocadalin (vielleicht identisch mit Isocadinen; vgl. Henderson, Robertson, Soc. 1926, 2811). B. Neben anderen sesquiterpenartigen Verbindungen beim Kochen von dl-Nerolidol (E II 1, 513) mit 90% iger Ameisensäure (Ruzicka, Capato, Helv. 8, 265, 272). — Kp<sub>12</sub>: 125—126°. D<sub>15</sub>: 0,9160. n<sub>15</sub>:

- ε) Isocadinen C<sub>15</sub>H<sub>24</sub>. Zur Konstitution vgl. Henderson, Robertson, Soc. 1926, 2811. — B. Beim Erhitzen von Cadinen mit Eisessig im Rohr auf 230—235° oder mit Eisessig + Schwefelsäure auf dem Wasserbad (Henderson, Robertson, Soc. 125, 1995; 1926, 2814). — Kp<sub>12</sub>: 124—126°. D<sup>∞</sup>: 0,9154; n<sup>∞</sup>: 1,5158. — Bildet kein beständiges Hydrochlorid. Verharzt an der Luft schnell. Entfärbt verd. Kaliumpermanganat-Lösung. Gibt mit Brom eine unbeständige Verbindung C<sub>16</sub>H<sub>23</sub>Br<sub>3</sub>. Liefert bei der Dehydrierung mit Schwefel bei 200—250° Cadalin (H., R., Soc. 1926, 2814).
- Eudesmen und Selinen C<sub>15</sub>H<sub>24</sub> (E I 218; Nr. 12 und 13). Eudesmen und Selinen sind Gemische nachstehender Kohlenwasserstoffe ( $\alpha$ -,  $\beta$ -,  $\gamma$ -,  $\delta$ - und  $\varepsilon$ - Selinen; Formel I—V), in denen je nach Herkunft des Präparates der eine oder andere Kohlenwasserstoff überwiegt.

Zur Konstitution vgl. Ruzicka, Meyer, Mingazzini, Helv. 5, 363; Ru., Stoll, Helv. 5, 926; Ru., Capato, A. 453, 64; Ru., Wind, Koolhaas, Helv. 14 [1931], 1132, 1138. Die Konstitution der natürlichen Eudesmene ist noch nicht eingehender untersucht (Ru., W., Ko., Helv. 14, 1138 Anm. 2). — Die von Taragi (J. pharm. Soc. Japan 1921, Nr. 473, S. 2, 6) dargestellten Kohlenwasserstoffe Machilen und Atractylen (vgl. a. H 5, 470) sind mit Eudesmen identisch (Ruzicka, Koolhaas, Wind, Helv. 14 [1931], 1180, 1182, 1183). Eudesmen bildet ferner nach Short (J. Soc. chem. Ind. 45, 98 T; C. 1928 II, 2123) den Hauptbestandteil des Manukens von GARDNER (J. Soc. chem. Ind. 43, 35 T; 44, 529 T; C. 1926 I, 1483).

- a) Eudesmen (E I 218). V. Findet sich im Manukaöl, dem Öl der Blätter und Zweige von Leptospermum scoparium Forst. (Short, J. Soc. chem. Ind. 45, 98 T; C. 1926 II, 2123; vol. Gardner, J. Soc. chem. Ind. 43, 35 T; 44, 529 T; C. 1926 I, 1483). Im äther. Öl von Leptospermum grandiflorum Lodd., L. odoratum Cheel. (Penfold, J. Pr. Soc. N. S. Wales 54 [1920], 199, 205) und von L. flavescens Sm. (P., J. Pr. Soc. N. S. Wales 55 [1921], 178; Perfum. essent. Oil Rec. 13, 84; C. 1922 III, 627). Im äther. Öl von Baeckea gunniana var. latifolia F. v. M. (P., J. Pr. Soc. N. S. Wales 59, 353; C. 1927 II, 754). — B. Aus Eudesmol durch Kochen mit alkoh. Schwefelsäure (RUZICKA, CAPATO, A. 453, 73). — Kr. 1428—1429. Dec. 0.0244. Pr. 4.5695. [1927]. Kp<sub>19</sub>: 128—132°; D<sup>n</sup>: 0,9214; n<sup>n</sup>: 1,5125; [ $\alpha$ ]<sup>n</sup>: +106,5° (Präparat aus Eudesmol von unbekanntem optischem Verhalten) (Ru., C.). Kp<sub>19</sub>: 126,5—127°; D<sup>20</sup>: 0,9092; n<sup>n</sup>: 1,5073 (aus nahezu inaktivem Eudesmol) (Briggs, Short, J. Soc. chem. Ind. 47, 323 T; C. 1929 I, 1215). Kp<sub>19</sub>: 130,5—132°; D<sup>n</sup>: 0,9180; n<sup>n</sup>: 1,5100; [ $\alpha$ ]<sup>n</sup>: —32° (Präparat aus Manukaöl) (Sh., ISC) (Sh., I J. Soc. chem. Ind. 45, 98 T). — Gibt mit Chlorwasserstoff in äther. Lösung bei 0° Eudesmenbis-hydrochlorid (S. 75) (Sh.). Liefert beim Erhitzen mit Schwefel auf 180—250° Eudalin (Ru., Meyer, Mingazzini, Helv. 5, 362).
- b) Selinen (E I 218).  $K\rho_{16}$ : 135° (Ruzicka, Meyer, Mingazzini, Helv. 5, 364).  $D_{i}^{m}$ : 0,9140.  $n_{i}^{m}$ : 1,5042.  $\alpha_{D}$ : +34°. Liefert beim Erhitzen mit Schwefel wenig Eudalin (Ru., MEY., MI.). Zur Isomerisierung durch siedende alkoholische Schwefelsäure vgl. Ru., Stoll, Helv. 6, 850.

- 13. Calamen  $C_{15}H_{24}$  (E I 218). Struktur des Kohlenstoffskeletts s. Formel VI.  $Kp_{14}$ : 127—130° (Ruzicka, Meyer, Mingazzini, Helv. 5, 358).  $D_{15}^{16}$ : 0,9231.  $n_{17}^{19}$ : 1,5023. Liefert beim Erhitzen mit Schwefel auf 200—260° Cadalin.
- 14. Guajen C<sub>15</sub>H<sub>24</sub> = H<sub>2</sub>C C[:C(CH<sub>3</sub>)<sub>2</sub>]—CH<sub>2</sub>—C-CH(CH<sub>3</sub>) CH<sub>2</sub> (?) (H 468). Zur Konstitution vgl. Plattner, Lemay, Helv. 23 [1940], 897; Pl., Magyar, Helv. 24 [1941], 191, 1163; 25 [1942], 581. B. Beim Kochen von Guajol (Syst. Nr. 510) mit 85% iger Ameisensäure (Ruzzcka, Pontalti, Balas, Helv. 6, 862). Öl. Kp<sub>12</sub>: 128—130°; D<sup>10</sup>: 0,9115; n<sup>10</sup>: 1,5022; α<sub>D</sub>: —16,8° (Ruz., P., B.). Bei der Dehydrierung mit Schwefel bei 180—240° erhält man S-Guajazulen (S. 473) (Ruz., P., B.; Ruz., Rudolph, Helv. 9, 134). Gibt bei der Hydrierung in Gegenwart von Platin in Essigester Dihydroguajen (S. 116) (Ruz., Rud., Rud., 9, 140). Helv. 9, 140).
- 15. α-Santalen C<sub>15</sub>H<sub>24</sub>, Formel VII (H 462). Zur Konstitution vgl. Ruzicka, Stoll., Helv. 5, 928. Zur Dehydrierung mit Schwefel bei 180—250° vgl. R., St., Helv. 6, 854.

- 16. Copaen C<sub>15</sub>H<sub>24</sub>, Formel VIII (?) (E I 224). Zur Konstitution vgl. Henderson, M'Nab, Robertson, Soc. 1926, 3078. V. Im Supabalsamöl aus Sindora Wallichii Benth. (H., M'Nab, R., Soc. 1926, 3078). Findet sich vielleicht auch im äther. Öl des Holzes von Dysoxylon Fraseranum Benth. (,,Rose wood") (Penfold, J. Pr. Soc. N. S. Wales 61 [1927]. 337). Kp<sub>10</sub>: 115—117°; D<sub>1</sub><sup>15—20</sup>: 0,9077; n<sub>15</sub><sup>15</sup>—20: 1,4944; [α]<sub>1860</sub>: —15,98° (H., M'Nab, R.). Liefert beim Einleiten von Chlorwasserstoff in eine Lösung in Eisessig bei 0° Cadinen-bishydrochlorid (S. 74) (H., M'Nab, R.). Bei der Dehydrierung mit Schwefel bei 200—250° entsteht Cadalin (H., M'Nab, R.).
- 17. Sesquiterpen C<sub>15</sub>H<sub>24</sub> aus Pinus Pinea. V. Im Terpentinol der Pinie (Pinus Pinea L.) (Dupont, Barraud, Bl. [4] 35, 630). — Angenehm riechende Flüssigkeit. D15: 0,9157.  $n_{D}^{\infty}$ : 1,4983.
- 18. Sesquiterpen  $C_{15}H_{24}$  aus Pinus maritima. V. Im Bordeaux-Terpentin, dem Öl der Seestrandskiefer (Pinus maritima Poir) (Dupont, A. ch. [10] 1, 234; Chim. et Ind. 8 [1922], 234 T; Balas, Ö. &sl. Lékárn. 7, 327; C. 1929 I, 2531). Öl. Kp<sub>17</sub>: oberhalb 122° (D.); Kp<sub>12</sub>: 120—123° (Ba.).  $D^{15}$ : 0,918 (Blumann, Hesse, B. 65 [1932], 91), 0,9195 (D.);  $D_1^{i7}$ : 0,9124 (Ba.).  $n_1^{i5}$ : 1,4993 (D.);  $n_1^{i7}$ : 1,5011 (Ba.).  $\alpha_D$ : +9,8° (Bl., H.), +8,8° (Ba.);  $\alpha_{578}$ : +9,92° (D.). Liefert bei der Dehydrierung mit Selen Cadalin (Ba.).

Nitrosochlorid C<sub>15</sub>H<sub>24</sub>ONCl. F: 166-1670 (Zers.) (Balas, Č. čsl. Lékárn. 7, 327; C. 1929 I, 2531).

Nitrosat C<sub>15</sub>H<sub>24</sub>O<sub>4</sub>N<sub>2</sub>. Nadeln. F: 165° (Balaś, Č. čsl. Lékárn. 7, 327; C. 1929 I, 2531). Nitrosit. Blaue Nadeln (aus Methanol). F: 109—110° (DUPONT, A. ch. [10] 1, 234; Chim. et Ind. 8 [1922], 234 T).

19. d-Longifolen C<sub>15</sub>H<sub>24</sub>. Zur Konstitution vgl. Bradfield, Francis, Simonsen, Soc. 1934, 188. — V. Im indischen Terpentinöl (aus Pinus longifolia Roxb.) (Si., Soc. 117, 573; Dupont, A. ch. [10] 1, 249). Im Burma-Terpentinöl aus Pinus Khasya Royle (Si., Rau, Indian Forest Records 9 [1922], Teil IV, 115) und aus Pinus Merkusii Jungh. (Si., Indian Forest Records 10, Teil IV, 52; C. 1924 I, 2213). Schwach, aber nicht unangenehm riechendes, etwas viscoses Öl. Kp<sub>706</sub>: 254—256°; Kp<sub>36</sub>: 150—151°; D<sub>30</sub><sup>∞</sup>: 0,9284; n<sub>30</sub><sup>∞</sup>: 1,495; α<sub>D</sub>: +42,73° (Si., Soc. 117, 578). — Beständig gegen Kaliumpermanganat (Si., Soc. 123, 2643, 2651). Zersetzt sich stürmisch bei der Einw. von Salpetersäure (Si., Soc. 123, 2651). Liefert bei der Oxydation mit Chromsäure in Eisessig Longifolsäure (Syst. Nr. 895); bei der Oxydation mit Chromschwefelsäure in Eisessig Longifolsäure (Syst. Nr. 895); mit Chromschwefelsaure in Eisessig entsteht hauptsächlich Isolongifolsaure (Syst. Nr. 895); in beiden Fällen erhält man als Nebenprodukt Longifolchinon (Syst. Nr. 671a) (SI., Soc. 123, 2643, 2647, 2652, 2654, 2659).

Longifolenhydrochlorid  $C_{15}H_{25}Cl$ . Prismen oder Nadeln (aus Methanol). F: 59° bis 60° (Simonsen, Soc. 117, 578).  $[\alpha]_D$ : +7,1° (Chloroform). Longifolenhydrobromid  $C_{15}H_{25}Br$ . Prismen (aus Alkohol). F: 69—70° (Si., Soc.

117, 578).

Longifolenhydrojodid C<sub>18</sub>H<sub>es</sub>I. Nadeln (aus Alkohol). F: 71° (Si., Soc. 117, 578).

20. Sesquiterpen  $C_{16}H_{14}$  aus Pinus halepensis. V. Im Terpentinöl der Aleppokiefer (Pinus halepensis Mill.) (DUPONT, C. r. 174, 397; A. ch. [10] 1, 214). — Öl. Kp: 253° bis 254°.  $D_1^{a}$ : 0,9096;  $D_2^{a}$ : 0,90966 n $_1^{a}$ : 1,4997. [ $\alpha$ ] $_{578}$ : —6,71°. — Gibt in Eisessig mit 1 Tropfen Schwefelsäure eine rosenrote, violettstichige Färbung.

Nitrosat. F: 148—149° (DUPONT, C. r. 174, 397; A. ch. [10] 1, 214).

- 21. Junipen C<sub>15</sub>H<sub>24</sub>. V. Wurde in Form seines Hydrochlorids (S. 117) aus dem äther. Ol der Rinde des Wacholders (Juniperus communis L.) erhalten (MATTSSON, Bidrag till kännedom af Finlands natur och folk 72 [1913], Nr. 1, S. 8; Ber. Schimmel 1924, 89). Kp<sub>767</sub>: 256,5—257°. D<sub>20</sub>: 0,9401. n<sub>20</sub>: 1,5029. [\alpha]<sub>20</sub>: +41,05°.
- 22. Bicyclisches Sesyuiterpen  $C_{16}H_{24}$  aus Juniperus virginiana. V. Im amerikanischen Cedernholzöl (von Juniperus virginiana) (GLICHITCH, NAVES, Chim. et Ind. 19, Sonder-Nr., S. 483; C. 1928 II, 1447).  $Kp_{10}$ : 120—121°.  $D_{20}^{20}$ : 0,9292.  $n_{2}^{20}$ : 1,5127.
- 23. Mitsubaen  $C_{15}H_{24}$ . V. Im äther. Ol von Cryptotaenia japonica Hassk. (japanisch: "Mitsubazeri") (Hirao, Bl. chem. Soc. Japan 1, 79; Sci. Rep. Töhoku Univ. 15, 668; C. 1926 II, 234; 1927 I, 1073). Ol von eigentümlichem Geruch.  $Kp_{15}$ : 142—143°.  $D_{\bullet}^{\bullet}$ : 0,9175.  $n_{\bullet}^{\bullet}$ : 1,50381. [ $\alpha_{\bullet}^{|a|,b}$ :  $+8,31^{\circ}$ . Bei der Einw. von Brom in Chloroform werden 4 Atome Brom addiert. Gibt beim Erhitzen mit Schwefel auf 180—220° Eudalin. Bei der Ozonspaltung wurden Kohlendioxyd und Ameisensäure isoliert.
- 24. Cedren C<sub>18</sub>H<sub>24</sub> (H 460, 461; E I 220). Zur Konstitution vgl. Ruzicka, van Melsen, A. 471, 45; Blumann, Schulz, B. 64 [1931], 1540; Treibs, B. 68 [1935], 1041; 70 [1937], A. 471, 45; Blumann, Schulz, B. 64 [1931], 1540; Treibs, B. 68 [1935], 1041; 70 [1937], 2060; 76 [1943], 160, 168; Ruz., Jutassy, Helv. 19 [1936], 322; Ruz., Plattner, Kusserow, Helv. 25 [1942], 85; Pl., Ku., Kiäui, Helv. 25 [1942], 1345. — V. Im äther. Öl von Juniperus excelsa M. B. (Rutowski, Winogradowa, Trudy chim.-jarm. Inst. Lieferung 17, S. 145, 149; C. 1927 II, 1311). Im äther. Öl des Holzes von Juniperus chinensis L. (japanisch: "Byakushin") (Uchida, J. Soc. chem. Ind. Japan Spl. 31, 191 B; C. 1928 II, 2198; vgl. Anonymus, Parf. mod. 13, 133; C. 1920 III, 597). Im Lavendelextraktöl (Volmar, Thurkauf, J. Pharm. Chim. [8] 10, 202; C. 1929 II, 3191). Zur Frage des Vorkommens im Öl von Salvia sclarea L. vgl. Jermstad, Riechstoffind. 2, 183; C. 1927 II, 2722; Volmar, Je., C. r. 186, 518; Chiris, Parf. France 7 [1929], 153. — Kp<sub>12</sub>: 121°; D;": 0,9361; n;": 1,5030;  $\alpha_{\rm D}$ : —52,8° (Ruzicka, Van Melsen, A. 471, 53). Kp<sub>9</sub>: 116—117°; D;": 0,9331; n;": 1,5001;  $\alpha_{\rm D}$ : —66,4° (Glichitch, Naves, Chim. et Ind. 19, Sonder-Nr., S. 482; C. 1928 II, 1447). Kp<sub>9</sub>: 122—124°; D;°: 0,9361; n;": 1,5017; [ $\alpha_{\rm D}$ : —55,4° (Robertson, Kerr, Henderson, Soc. 127, 1946; Gibson, Robertson, Sword, Soc. 1926, 166). Beugung von Röntgenstrahlen: Soc. 127, 1946; GIBSON, ROBERTSON, SWORD, Soc. 1926, 166). Beugung von Röntgenstrahlen: VAIDYANATHAN, Indian J. Phys. 3, 375, 378; C. 1929 I, 2952.

Wird von feuchtem Sauerstoff in Gegenwart von Kobaltsikkativ bei 30—35° allmählich zu Cedrenol (Syst. Nr. 533) oxydiert (Blumann, Hellriegel, Schulz, B. 62, 1698). Zur Oxydation von Cedren mit Chromsäure vgl. Ruzicka, van Melsen, A. 471, 43. Oxydation mit Salpetersäure: Deussen, J. pr. [2] 117, 298. Bei der Oxydation mit Braunstein und 50% iger Schwefelsäure erhält man Essigsäure, Cedrenketosäure C<sub>15</sub>H<sub>24</sub>O<sub>3</sub> (Syst. Nr. 1285) und Phthalsäure (Deu.). Liefert bei der Reduktion mit Natrium und Isoamylalkohol bei 180° Nichelstein (Deu.) Dihydrocedren (S. 117) (DEU.). Einw. von Brom: DEU.; R., v. M. Wird durch alkoh. Jod-Lösung nicht angegriffen (DEU.). Beim Erhitzen mit starker wäßriger oder 10 % iger alkoholischer Schwefelsäure tritt nur geringfügige Veränderung ein (DEU.). Beim Erhitzen mit Schwefel auf 260° entsteht eine asphaltartige dunkelbraune Masse (DEU.). Gibt beim Behandeln mit Chromylchlorid in Tetrachlorkohlenstoff und Zersetzen des Reaktionsprodukts mit deln mit Chromylchlorid in Tetrachiotronienstoff und Zersetzen des Keaktionsprodukts mit Wasser eine Verbindung  $C_{15}H_{24}O$  ( $Kp_{0,15}$ : 93°;  $n_5^{ts}$ : 1,5462), die ein amorphes Semicarbazon  $C_{16}H_{27}ON_3$  bildet (Gibson, Robertson, Sword, Soc. 1926, 166). Bei 3-tägigem Schütteln mit Formaldehyd in Eisessig und 10% iger Schwefelsäure entsteht Homocedrenol  $C_{12}H_{26}O$  (Flüssigkeit;  $Kp_{13}$ : 168—171°;  $D_5^{to}$ : 1,0270;  $n_5^{to}$ : 1,5183), (Prins, Chem. Weekb. 16, 1525; C. 1920 I, 425). Liefert bei mehrstündigem Erhitzen mit Ameisensäure auf 100° einen mit Cedren isomeren Kohlenwasserstoff  $C_{15}H_{24}$  ( $Kp_{2}$ : 114—118°;  $D_5^{to}$ : 0,9333;  $n_5^{to}$ : 1,4988) und höhersiedende Produkte (Robertson, Kerr, Henderson, Soc. 127, 1946). — Gibt mit Guajakhar + Peroxydase starke Blaufärbung (Gallagher, Biochem. J. 17, 522).

Chlorcedren  $C_{15}H_{23}Cl$  (E I 220).

E I 220, Z. 28 v. o. statt "Syst. Nr. 510" lies "E I 6, 274".

- 25. Bicyclisches Sesquiterpen C<sub>15</sub>H<sub>24</sub> aus Thujopsis dolabrata. V. Im äther. Ol der Blätter des "Hiba" (Thujopsis dolabrata Sieb. et Zucc.) (Uchida, J. Soc. chem. Ind. Japan Spl. 31, 121 B; C. 1929 I, 948). — Kp: 270—280°. Di: 0,9232. n. 1,4949.
- 26. Tricyclisches Sesquiterpen  $C_{15}H_{14}$  aus Thujopsis dolabrata. V. Im ather. Ol des Holzes des "Hiba" (Thujopsis dolabrata Sieb. et Zucc.). (UCHIDA, J. Soc. chem. Ind.

- 27. Tricyclisches Sesquiterpen  $C_{15}H_{24}$  aus Chamaecyparis obtusa. V. Im äther. Öl der Blätter des Hinokibaums (Chamaecyparis obtusa Endl.) (UCHIDA, J. Soc. chem. Ind. Japan Spl. 31, 160 B; C. 1928 II, 1577). Kp: 265—268°.  $D_{2}^{\infty}$ : 0,9367.  $n_{2}^{\infty}$ : 1,5009.  $[\alpha]_{\rm D}$ : —15,7° (Alkohol; p = 4). Monohydrochlorid und Bromid sind flüssig.
- 28. Sesquiterpen  $C_{15}H_{24}$  aus Cymbopogon caesius. V. Im äther. Öl der Blüten und Blätter von Cymbopogon caesius Stpf. (Moudelle, Quart. J. indian chem. Soc. 2, 30; C. 1926 I, 515).  $Kp_{16}$ : 112—115°. D. 15°. 0,9064.  $n_0^{\infty}$ : 1,5005.  $a_0^{\infty}$ : —12°. Liefert mit Brom in Eisessig ein flüssiges Dibromid  $C_{15}H_{24}Br_2$ , mit Bromwaserstoff ein flüssiges Hydrobromid  $C_{15}H_{25}Br$ . Gibt in Aceton oder Acetanhydrid gelöst mit einer Spur konz. Schwefelsäure eine grüne Färbung, die beim Aufbewahren in Blau übergeht.
- 29. Cyperen  $C_{15}H_{24}$ . Konnte von Heyde, Rao (J. Soc. chem. Ind. 54 [1935], 387 T) nicht wiedererhalten werden. V. Im äther. Öl von Cyperus rotundus L. (Kimura, Otani, J. pharm. Soc. Japan 48, 129; C. 1929 I, 250). Kp<sub>7</sub>: 110—115°. Di3: 0,9372.  $n_1^{13}$ : 1,5013. [ $\alpha$ ] $_{15}^{15}$ : +1,5°. Liefert bei der Hydrierung in Gegenwart von Palladium Dihydrocyperen (S. 117).
- 30. l-β-Curcumen C<sub>15</sub>H<sub>24</sub>. Zur Einheitlichkeit und Konstitution vgl. Carter, Copp, Rao, Simonsen, Subramaniam, Soc. 1939, 1505. V. Im äther. Öl aus der Wurzel von Curcuma aromatica Salisb. (Rao, Si., Soc. 1928, 2496; vgl. R., Shintre, Si., J. indian Inst. Sci. 9 [A] 140; C. 1927 I, 654). Wird über das Trihydrochlorid durch Erhitzen mit Eisessig und Natriumacetat auf 140° gewonnen (R., Si., Soc. 1928, 2504). Öl. Kp<sub>19</sub>: 142° (Ca., Mitarb.); Kp<sub>6</sub>: 128—130° (R., Si.). D<sup>∞</sup><sub>20</sub>: 0,8625; D<sup>∞</sup><sub>20</sub>: 0,8670; n<sup>∞</sup><sub>10</sub>: 1,4888; n<sup>∞</sup><sub>10</sub>: 1,491; [α]<sub>10</sub>: —37,5°; [α]<sub>5461</sub>: —48,2° (Ca., Mitarb.). Entfärbt alkal. Permanganat-Lösung sofort (R., Si.). Wird durch Benzopersäure in Chloroform bei 10—15° oxydiert (R., Si.). Bei der katalytischen Hydrierung werden 2 Mol Wasserstoff sehr schnell absorbiert; weitere Wasserstoffaufnahme erfolgt nur langsam (Ca., Mitarb., Soc. 1939, 1508; vgl. R., Si.). Isomerisiert sich beim Erhitzen in indifferenter Atmosphäre unter Druck auf 380° oder beim Behandeln mit Natrium und Isoamylalkohol (R., Si.). Addiert in Chloroform 3 Mol Brom (R., Si.). Gibt mit Chlorwasserstoff ein Trihydrochlorid (F: 84—85°), mit Bromwasserstoff ein Trihydrobromid (F: 73—74°) (R., Sh., Si.). Bildet kein Nitrosat (R., Si.). Liefert beim Erhitzen mit 10 %iger Schwefelsäure einen bicyclischen Kohlenwasserstoff C<sub>10</sub>H<sub>16</sub>(?) (Kp<sub>7</sub>: 115—117°; D<sup>∞</sup><sub>20</sub>: 0,8932; n<sup>∞</sup><sub>10</sub>: 1,4936; [α]<sup>∞</sup><sub>10</sub>: —11,9°) (R., Si.). Die essigsaure Lösung gibt mit einem Trofen Schwefelsäure eine tiefbraune Färbung (R., Si.).
- 31. Sesquiterpen  $C_{15}H_{24}$  aus Zingiber nigrum. V. Im äther. Öl der Früchte von Zingiber nigrum Gaertner (Kariyone, Matsushima, J. pharm. Soc. Japan 1927, 96; C. 1927 II, 2405).  $Kp_{13}$ : 139—142°.  $D_{1}^{a}$ : 0,9233.  $n_{1}^{a}$ : 1,5059.  $[\alpha]_{1}^{a}$ : +16,35°. Bei der katalytischen Reduktion entsteht ein Kohlenwasserstoff  $C_{15}H_{28}$  ( $Kp_{15}$ : 139°).
- 32. Sesquiterpene  $C_{15}H_{24}$  aus Galgantöl. Vgl. hierzu Schindelmeiser, Ch. Z. 26, [1902], 308; Fromm, Fluck, A. 405 [1914], 184, 186; Ruzicka, Capato, Huyser, R. 47, 380.
- 33. **Populen**  $C_{16}H_{24}$ . V. Im mandschurischen Pappelknospenöl (Nakao, J. pharm. Soc. Japan 1924, Nr. 513; C. 1925 I, 974). Kp<sub>8</sub>: 121—122°. D<sup>15</sup>: 0,9135. n<sub>D</sub>: 1,504.  $\alpha_D$ : + 21,22°. Gibt beim Dehydrieren mit Schwefel einen Naphthalin-Kohlenwasserstoff, dessen Pikrat bei 115° schmilzt. Hydrochlorid. F: 87°. Hydrobromid. F: 117°.
- 34. Sesquiterpen  $C_{16}H_{24}$  aus Birkenrindenöl. V. Im äther. Öl aus der Birkenrinde (von Betula alba L.) (HAENSEL, C. 1907 II, 1620; 1908 II, 1436). Farblos, schwachriechend.  $Kp_{744}$ : 255—256°.  $D^{20}$ : 0,8844.  $\alpha_{\rm D}$ : —0,5°. Gibt in Eisessig-Lösung mit Brom eine kirschrote Färbung; addiert in äther. Lösung 1 Mol Chlorwasserstoff (H., C. 1908 II, 1436).
- 35. Sesquiterpene  $C_{15}H_{24}$  aus Cannabis sativa. Die im folgenden beschriebenen Präparate sind nach Wood, Spivey, Easterfield (Soc. 69 [1896], 542) wahrscheinlich identisch.
- a) Präparat von Valente. V. Im äther. Öl der Blätter des gewöhnlichen Hanfs (Cannabis sativa L.) (VALENTE, G. 10 [1880], 479). Im äther. Öl der Blätter und jungen Zweige von männlichen Pflanzen von Cannabis gigantea (V., G. 11 [1881], 197). Kp: 256° bis 258° (geringe Zersetzung); Kp<sub>5</sub>: 120—121°. D<sub>0</sub>°: 0,9299. [a]<sub>5</sub><sup>15,5</sup>: —10,8° (Chloroform; c = 16). Löslich in Alkohol, Äther und Chloroform. Verharzt schnell an der Luft. Liefert mit Brom und mit Chlorwasserstoff krystallisierte Verbindungen.
- b) Präparat von Vignolo. V. Im äther. Öl aus weiblichem, blühendem indischem Hanf (Cannabis sativa var. indica) (Vignolo, G. 25 I [1895], 111). Kp: 256°. D<sup>15,3</sup>: 0,897.

- $\alpha_{\rm p}$ :  $-0.25^{\rm o}$  (Chloroform; c=10). Schwer löslich in Wasser, sehr leicht in Chloroform, Äther, Benzol, Eisessig und Alkohol. Verharzt an der Luft. Mit Brom wurde eine feste Verbindung erhalten, nicht jedoch mit Chlorwasserstoff in äther. Lösung.
- c) Praparat von Wood, Spivey, Easterfield. V. In der indischen Droge "Charas", die im wesentlichen aus der Harzabsonderung der Zweige, Blätter und Blütenköpfe des indischen Hanfs (Cannabis sativa var. indica) besteht (Wood, Spivey, Easterfield, Soc. 69 [4896], 539). — Kp: 258—259°. D<sup>18</sup>: 0,898. [α]<sup>18</sup>: —8,6°.
- 36. Sesquiterpen C<sub>15</sub>H<sub>24</sub> aus afrikanischem Sandelholzöl. Zur Stammpflanze (vielleicht eine Osyris-Art) vgl. Gildemeister-Hoffmann, Die ätherischen Öle, 3. Aufl., 2. Bd. [Leipzig 1929], S. 526. V. Bildete den Hauptbestandteil eines Sandelholzöls aus afrikanischem Sandelholz (Haensel, C. 1906 II, 1496, 1909 I, 1477). Kp<sub>747</sub>: 263,5° bis 265°; Kp<sub>27</sub>: 160—161°. D<sup>20</sup>: 0,9238—0,9243; α<sup>15</sup>: —39,6°. Gibt kein festes Hydrochlorid.
- 37. Sesquiterpen C<sub>15</sub>H<sub>24</sub> aus Xanthoxylum piperitum. V. Im äther. Öl der Früchte des japanischen Pfeffers ("Sansho") (Xanthoxylum piperitum DC.) (UCHIDA, J. Soc. chem. Ind. Japan Spl. 31, 216 B; C. 1928 II, 2296). — Kp12: 165—175°. Dis: 0,9003. nis: 1,4975. — Gibt ein flüssiges Hydrochlorid.
- 38. Galipen C<sub>16</sub>H<sub>24</sub>. Zum Vorkommen eines unter diesem Namen beschriebenen Sesquiterpens C<sub>16</sub>H<sub>23</sub> im Angosturarindenöl vgl. Beckurts, Troeger, Ar. 235 [1897], 528, 634; 236 [1898], 394.
- 39. Conimen C<sub>15</sub>H<sub>24</sub>. Wurde nicht rein erhalten. V. Im äther. Öl aus Conimaharz (Stenhouse, Groves, A. 180 [1876], 253), das wahrscheinlich von Protium heptaphyllum (L.) March. stammt (C. Wehmer, Die Pflanzenstoffe, 2. Aufl., 2. Bd. [Jena 1931], S. 651; vgl. A. Tschirch, Handbuch der Pharmakognosie, 1. Aufl., 3. Bd., 2. Abt. [Leipzig 1925], S. 1135). Farblose, bewegliche, angenehm aromatisch riechende Flüssigkeit (St., Gr.). Kp. 264° (St., Gr.). Nahezu unlöslich in Wasser, mischbar mit Alkohol, Äther und Benzol; wird durch kong. Sahvefalsäung relumensisient (St., Gr.). wird durch konz. Schwefelsäure polymerisiert (St., Gr.).
- 40. Elemen C<sub>15</sub>H<sub>24</sub> (E I 225). Zur Einheitlichkeit vgl. Ruzicka, Pfeiffer, Helv. 9, 843; R., van Veen, A. 476, 82. Zwei Präparate zeigten Kp<sub>12</sub>: 105—115°; Di. 0,8824; nh: 1,5023 und Kp<sub>12</sub>: 117—120°; Di. 0,8914; nh: 1,5133 (R., Pf., Helv. 9, 850). Liefert beim Ozonisieren in Tetrachlorkohlenstoff und Erhitzen des Ozonids mit Wasser Aceton und höhermolekulare saure und neutrale Produkte (R., Pf., Helv. 9, 851). Verhalten bei der Oxydation mit Permanganat: R., van Veen. Beim Erhitzen mit Schwefel oder mit Antimonpentasulfid entsteht eine Verbindung  $C_{14}H_{18}S$  (s. bei Elemol, Syst. Nr. 510), neben sehr geringen Mengen Eudalin; bei der Dehydrierung mit Selen erhält man viel Eudalin und in geringer Menge Elemazulen (S. 474) (R., Pf.; R., van Veen; vgl. R., Haagen-Smit, Helv. 14 [1931], 1107, 1116). Reaktion mit Diazoessigester: R., VAN VEEN.
- 41. Sesquiterpen C<sub>15</sub>H<sub>24</sub> aus Canarium strictum. V. Im Harz (,,black dammar") von Canarium strictum Roxb. (Moudgill, J. Soc. chem. Ind. 44, 171 T; C. 1925 II, 1490). Kp<sub>760</sub>: 262—263°; Kp<sub>18</sub>: 125—127°. Gibt ein flüssiges Hydrochlorid (Kp<sub>18</sub>: 135—137°).
- 42. Dysoxylonen C<sub>16</sub>H<sub>24</sub>. V. Im äther. Öl des Holzes von Dysoxylon Fraseranum Benth. ("Rose wood") (Penfold, J. Pr. Soc. N. S. Wales 61, 338, 345; C. 1929 I, 949). Kp<sub>10</sub>: 136—137°. D<sup>15</sup>: 0,9236. n<sub>20</sub>°: 1,5063. Bei der Dehydrierung mit Schwefel bei 180° bis 215° entsteht Cadalin. Liefert beim Einleiten von Chlorwasserstoff in die trockene ätherische Lösung bei -20° ein Hydrochlorid (Krystalle; F: 108-109°).
- 43. Sesquiterpen C<sub>15</sub>H<sub>24</sub> aus Gossypium. Ist vielleicht identisch mit dem Sesquiterpen C<sub>15</sub>H<sub>24</sub> aus dem äther. Öl von Pittosporum undulatum (H 5, 468). V. Im äther. Öl der Baumwollpflanze (Power, Chesnut, Am. Soc. 47, 1763). Gelbliche Flüssigkeit von angenehmem Geruch. Kp: 250—260°. Dis. 0,9109. ng. 1,4987. Gibt beim Sättigen mit Chlorwasserstoff allmählich eine tief purpurrote Färbung. Die Lösung in Alkohol + Essigester gibt mit Athylnitrit und Chlorwasserstoff eine grüne Färbung.

  Über eventuelles Vorkommen weiterer Sesquiterpene C<sub>15</sub>H<sub>24</sub> in der Baumwollpflanze

vgl. Power, Chesnut, Am. Soc. 47, 1765; 48, 2731.

- 44. α-Gurjunen C<sub>15</sub>H<sub>24</sub> (E I 225). Zur Konstitution vgl. Treibs, B. 68 [1935], 1751; Pfau, Plattner, Helv. 19 [1936], 860, 862. Liefert bei der Dehydrierung mit Schwefel oder mit Nickel bei 350—360° S-Guajazulen (S. 473) (Pf., Pl., Helv. 19, 862, 872; vgl. HERZENBERG, RUHEMANN, B. 58, 2256, 2261).
- 45. Isogurjunen C<sub>15</sub>H<sub>24</sub> (Ε I 225). B. Aus α- oder β-Gurjunen durch Behandlung mit Chlorwasserstoff in Ather und nachfolgendes Kochen mit alkoh. Kalilauge (Ruzicka,

Pontalti, Balas, Helv. 6, 864). — Kp<sub>12</sub>: 123—129°. D<sub>4</sub><sup>1</sup>: 0,9246. n<sub>5</sub><sup>1</sup>: 1,5101.  $\alpha_{\rm D}$ : —38,1°. — Liefert bei der katalytischen Hydrierung in Essigester in Gegenwart von Platinschwarz Tetrahydroisogurjunen (S. 75).

- 46. Inen C<sub>15</sub>H<sub>24</sub>. Ist vielleicht identisch mit α- oder β-Gurjunen (J. L. SIMONSEN, The terpenes, Bd. II [Cambridge 1932], S. 539). — V. Im Harzbalsam von Dipterocarpus tuberculatus (Mitter, Palit, Proc. of the fourteenth Indian Science Congress [1927], 161). — Kp<sub>5</sub>: 125—126°; D<sup>27</sup>: 0,8961; n: 1,4870;  $\alpha_p$ : +44° (M., P.). Beugung von Röntgenstrahlen: Vaidyanathan, *Indian J. Phys.* 3, 375, 378, 388; C. 1929 I, 2952. — Liefert bei der katalytischen Hydrierung mit Platin Dihydroinen (S. 117) (M., P.). — Gibt mit Natriumnitrit und Eisessig eine dunkelviolette Färbung (M., P.).
- 47. Caryophyllen C<sub>15</sub>H<sub>24</sub> (H 463; E I 221). Zur Konstitution der Caryophyllene vgl. Ruzicka, Mitarb., Helv. 14 [1931], 410, 423; 18 [1935], 219; 19 [1936], 343; 22 [1939], 716; 24 [1941], 1219; EVANS, RAMAGE, SIMONSEN, Soc. 1934, 1806; RA., SI., Soc. 1935, 532, 1581; 1986, 741; 1937, 73; 1938, 1208; Chem. and Ind. 1939, 447; RYDON, Chem. and Ind. 1935, 315, 557; 1938, 123; Soc. 1936, 593; 1937, 1340; 1939, 537; Blair, Soc. 1935, 1297; Deussen, J. pr. [2] 145 [1936], 42, 46; Treibs, B. 71 [1938], 1794; Goodway, West, Soc. 1939, 1853; West, Soc. 1940, 1163; Naves, Perrottet, Helv. 24 [1941], 789.
- a) Rohearyophyllen (H 464; E I 221). V. Findet sich im Öl der Pimentblätter (Pimenta officinalis) (KEMP, Ar. 1925, 15). Im Supabalsamöl (Gibson, Soc. 1928, 751). Im ather. Ol von Mosla japonica (Murayama, J. pharm. Soc. Japan 1921, Nr. 475, S. 5; C. 1922 I, 199). — Beugung von Röntgenstrahlen in Caryophyllen: VAIDYANATHAN, Indian C. 1822 1, 189). — Beiguing von Kontegenstränfen in Caryophylien: VAIDYARTHAN, Imatan J. Phys. 3, 375, 378; C. 1929 I, 2952. — Dehydrierung mit Schwefel bei 180—250°: Ruzicka, Stoll, Helv. 6, 854; Deussen, J. pr. [2] 114, 81. Liefert beim Behandeln mit Äther und konz. Schwefelsäure α-Caryophyllenalkohol und β-Caryophyllenalkohol (Syst. Nr. 510) (Asahina, Tsukamoto, J. pharm. Soc. Japan 1922, Nr. 484, S. 2; C. 1922 III, 826; Deussen, J. pr. [2] 114, 120; Henderson, McCrone, Robertson, Soc. 1929, 1370). Gibt beim Erhitzen mit Diazoessigester in Gegenwart von fein verteiltem Kupfer auf 180—200° und Verseißen des entstandeurs Erkers eit 40% jene allechelische Keilingen Germankulpnande. Verseifen des entstandenen Esters mit 10% iger alkoholischer Kalilauge "Caryophyllencyclopropancarbonsäure"  $C_{17}H_{24}O_2$  (Syst. Nr. 946) (GI.). Verbindung  $C_{14}H_{22}O_4$  bzw.  $C_{15}H_{22}O_4$  oder  $C_{15}H_{24}O_4$  (H 464; E I 221). Zur Zusammensetzung vgl. Deussen, *J. pr.* [2] 114, 84.

- b) α-Caryophyllen 1). Humulen (H 462, 465; E I 222). Zur Identität von α-Caryophyllen und Humulen vgl. Deussen, Z. ang. Ch. 36, 348; J. pr. [2] 120, 133; 145 [1936], 47; Chapman, Soc. 1928, 785; 1929, 359. Zur Nomenklatur dieses Kohlenwasserstoffs vgl. Simonsen, The terpenes, Bd. II [Cambridge 1932], S. 528; Ruzicka, Wind, Helv. 14 [1931], 411 Anm. 2. H 465, Z. 30 v. o. statt "A. 359" lies "A. 369".
- V. Findet sich im äther. Öl aus den Blütenköpfen von Perovskia atriplicifolia Benth. (Rao, Quart. J. indian chem. Soc. 3, 146; C. 1926 II, 1698). — Kp<sub>3</sub>: 99—100° (Chapman, Soc. 1928, 788). D<sub>m</sub>. 0,8923; n<sub>m</sub>.: 1,5001; [ $\alpha$ ]<sub>0</sub>: +1,7° (Ch.). — Physiologische Wirkung auf Frösche: Stavén-Grönberg, Ar. Pth. 123, 275; C. 1927 II, 1170.
- c)  $\beta$ -Caryophyllen 1) (H 466; E I 222). Kp<sub>9,7</sub>: 118—119° (Robertson, Kerb, Henderson, Soc. 127, 1945). Div: 0,9052 (R., K., H.). nii: 1,5009 (R., K., H.). nii: 1,5030 (Gibson, Robertson, Sword, Soc. 1928, 165). [ $\alpha$ ]ii: —5,2° (G., R., S.). Liefert bei der Hydrierung in Gegenwart von Palladium-Calciumcarbonat in Methanol oder in Gegenwart von viel Nickel-Bimsstein bei 110—120° Dihydrocaryophyllen (S. 116) (DEUSSEN, J. pr. [2] 114, 83). Wird durch Natrium und Isoamylalkohol bei 120—170° nicht reduziert (D., J. pr. [2] 114, 110). Nimmt in Petroläther oder Tetrachlorkohlenstoff bei —15° oder bei Einw. von Pyridindibromid-hydrobromid in Eisessig 2 Atome Brom auf unter Bildung einer Verbindung C<sub>18</sub>H<sub>24</sub>Br<sub>2</sub> (O1; zersetzt sich bei der Vakuumdestillation); weitere Einw. von Brom in Petroläther oder Tetrachlorkohlenstoff erfolgt nur langsam und unter Bromwasserstoff-Entwicklung (D., J. pr. [2] 114, 85). Dehydrierung mit Schwefel: D., Z. ang. Ch. 36, 349; J. pr. [2] 114, 81. Gibt bei der Einw. von Essigsäure und verd. Schwefelsäure bei  $80-100^{\circ}$   $\beta$ -Caryophyllenalkohol (Syst. Nr. 510) und ein isomeres Sesquiterpen C<sub>18</sub>H<sub>24</sub> (vermutlich Cloven) (H., R., K., Soc. 1926, 66). Bei der Einw. von Chromylchlorid in Tetrachlorkohlenstoff und Zersetzung der entstandenen Additionsverbindung  $C_{15}H_{24}+2.5$   $CrO_2Cl_2$  mit Wasser wurden  $\beta$ -Caryophyllenalkohol, eine Verbindung  $C_{15}H_{24}O$  (Schmelzpunkt des Semicarbazons 234°) und eine Verbindung  $C_{15}H_{20}O_2$  (Kp<sub>1</sub>: 118°) isoliert (G., R., S.). Liefert bei mehrtägigem

Da das β-Caryophyllen aus Nelkenöl durch fraktionierte Destillation von α-Caryophyllen nur unvollkommen zu trennen ist, hat DEUSSEN (J. pr. [2] 120, 143) es auch β.α-Caryophyllen genannt. Zur Einheitlichkeit von α-, β- und γ-Caryophyllen vgl. a. RUZICKA, WIND. Helv. 14 [1931], 410.

[Syst. Nr. 471

Kochen mit Ameisensäure den Ameisensäureester des β-Caryophyllenalkohols und ein Kohlenwasserstoffgemisch (in der Hauptsache vermutlich Cloven) (R., K., H.).

Verbindung mit Quecksilber(II)-acetat. B. Beim Schütteln von β-Caryophyllen

mit frisch bereiteter Quecksilber(II)-acetat-Lösung unterhalb 0° (Deussen, Z. ang. Ch. 36, 349). — Leicht zersetzlicher Niederschlag. Setzt sich in verdünnter alkoholischer Lösung mit Alkalihalogeniden zu den nachstehend angeführten Verbindungen um. Umsetzung mit Zimtsäure und zweibasischen Säuren (Kohlensäure, Schwefelsäure, Phosphorsäure und Oxalsäure): D., J. pr. [2] 114, 92—95. — C<sub>15</sub>H<sub>24</sub>+Hg(OH)F. Amorphe Masse (aus Benzol oder Essigester). Erweicht bei 60°, schmilzt bei 78° zu einer zunächst zähen Flüssigkeit, die sich bei höherer Temperatur zersetzt (D., J. pr. [2] 114, 91).  $[\alpha]_{D}^{10}$ : +15,30 (Benzol; p = 1). Entfärbt, in Benzol gelöst, 4 Atome Brom unter Abscheidung von Quecksilber(II)p = 1). Entfärbt, in Benzol gelöst, 4 Atome Brom unter Abscheidung von Quecksilber(II)-bromid (und Quecksilber(II)-fluorid?). —  $C_{15}H_{24}+Hg(OH)Cl$ . Das Mol.-Gew. ist kryoskopisch in Benzol bestimmt (Deussen, J. pr. [2] 114, 87). Amorphes Produkt (aus Essigester oder Benzol), das bei starker Kälte in Nadeln krystallisiert. Erweicht bei 75°, schmilzt unvollständig bei 99—100°, klar bei 127° und zersetzt sich bei 157° (D.). [ $\alpha$ ] $_{0}^{m}$ : +16,5° (Benzol; p = 3). Zersetzt sich bei Belichtung in Benzol unter Ausscheidung von Quecksilber(II)-chlorid. Beim Einleiten von Chlorwasserstoff in eine kalte ätherische Aufschlämmung bilden sich Quecksilber(II)-chlorid und  $\beta$ -Caryophyllen-bis-hydrochlorid. —  $C_{15}H_{24}+Hg(OH)Br$ . Amorphe Masse (aus Äther), die bei 0° langsam in Nadeln krystallisiert. Erweicht bei 43°, schmilzt bei 73° und zersetzt sich bei 82° (D., J. pr. [2] 114, 88). [ $\alpha$ ] $_{0}^{m}$ : +18,9° (Benzol; p = 1), +19,1° (Essigester; p = 1). Scheidet auf Zusatz von Brom in Tetrachlorkohlenstoff oder von Brom-Kaliumbromid-Lösung Quecksilber(II)-bromid aus. —  $C_{15}H_{24}+Hg(OH)I$ . Das Mol.-Gew. ist kryoskopisch in Benzol bestimmt (D., J. pr. [2] 114, 90). Nadeln (aus Ather, Benzol, Essigester oder Chloroform). F: 146,5°. Zersetzt sich bei höherer Temperatur unter Abscheidung von rotem Quecksilber(II)-jodid. [ $\alpha$ ] $_{0}^{m}$ : +22,4° (Benzol; p = 4). Scheidet unter Abscheidung von rotem Quecksilber(II)-jodid. [ $\alpha$ ]<sup>1</sup>:  $+22,4^{\circ}$  (Benzol; p=4). Scheidet auf Bromzusatz in Chloroform- oder Benzol-Lösung Jod aus. Beim Einleiten von Chlorwasser-

auf Bromzusatz in Chloroform- oder Benzof-Losung Jod aus. Beim Einliehe von Chlorwasserstoff in die äther. Lösung entsteht ein Niederschlag von Quecksilber(II)-chlorid und -jodid. Farbloses β-Caryophyllen-nitrosit C<sub>15</sub>H<sub>24</sub>O<sub>3</sub>N<sub>2</sub> (H 467). Das bei kurzer Einw. von alkoh. Kalilauge auf blaues β-Caryophyllen-nitrosit entstehende Produkt enthält stets bestimmte Mengen der Verbindung C<sub>17</sub>H<sub>29</sub>O<sub>2</sub>N vom Schmelzpunkt 165° (E I 5, 223) (DEUSSEN, J. pr. [2] 114, 148). Eigenschaften der reinen Substanz: F: 134° (Zers.); [α]<sup>16</sup><sub>b</sub>: +112° (Benzol; p = 1,8). — Geht in Eisessig bei 30° in das blaue β-Caryophyllen-nitrosit über.

Blaues β-Caryophyllen-nitrosit C<sub>15</sub>H<sub>24</sub>O<sub>3</sub>N<sub>2</sub> (H 466; E I 222). B. Aus farblosem β-Caryophyllen-nitrosit beim Auflösen in Eisessig bei 30° (DEUSSEN, J. pr. [2] 114, 109). — Absorntion: D. J. pr. [2] 114, 107. Rotationsdispersion in Alkohol bei 20°: MITCHELL.

Absorption: D., J. pr. [2] 114, 107. Rotations dispersion in Alkohol bei 200: MITCHELL, Soc. 1928, 3258. Zirkulardichroismus: M. — Geschwindigkeit der thermischen Zersetzung in Nitrobenzol, Paraffin und Limonen bei 76°, 100° bzw. 110°: Valenzuela, Daniels, Philippine J. Sci. 34, 193, 194, 195; C. 1928 I, 1284. Verwandelt sich bei kurzer Einw. Philippine J. Sci. 34, 193, 194, 195; C. 1928 I, 1284. Verwandelt sich bei kurzer Einw. von alkoh. Kalilauge in farbloses β-Caryophyllen-nitrosit, dem stets bestimmte Mengen der Verbindung C<sub>17</sub>H<sub>29</sub>O<sub>2</sub>N vom Schmelzpunkt 165° beigemischt sind (D., J. pr. [2] 114, 108). Beim Behandeln mit Phenylmagnesiumbromid in kaltem Äther oder mit Schwefelwasserstoff in Alkohol bei 0° entsteht die Verbindung C<sub>15</sub>H<sub>26</sub>O<sub>2</sub>N<sub>2</sub> (s. u.) (D., J. pr. [2] 117, 289). Verbindung C<sub>15</sub>H<sub>25</sub>O<sub>3</sub>N<sub>2</sub>Cl (E I 223). Einw. von methylalkoholischer Kalilauge: DEUSSEN, J. pr. [2] 114, 104. Bei der Einw. von āthylalkoholischer Kalilauge entsteht die Verbindung C<sub>17</sub>H<sub>29</sub>O<sub>2</sub>N vom Schmelzpunkt 125,5° (s. u.). Beständig gegen Jod in Chloroform

Chloroform.

Verbindung C<sub>15</sub>H<sub>25</sub>O<sub>3</sub>N<sub>2</sub>I(?) (E I 223). Kryoskopische Mol.-Gew.-Bestimmungen in Benzol und Eisessig: Deussen, J. pr. [2] 114, 105. Lichtabsorption: D. — Das Jod läßt sich mit alkoh. Silbernitrat-Lösung nachweisen, nicht dagegen mit Stärke-Lösung, Thiosulfat oder Natrium in Äther. Lagert in Äther bei -15° bis -20° Chlorwasserstoff an: das Hydrochlorid bildet Prismen, F: 143° (Zers.).

Verbindung  $C_{15}H_{28}O_2N_2$ . B. Beim Behandeln von blauem  $\beta$ -Caryophyllen-nitrosit mit Phenylmagnesiumbromid in Ather unter Kühlung oder mit Schwefelwasserstoff in Alkohol

Phenyimagnesiumbromid in Ather unter Kuhlung oder mit Schwefelwasserstoff in Alkohol bei 0<sup>0</sup> (Deussen, J. pr. [2] 117, 289). — Schweres dunkelgelbes Öl. Löslich in Petroläther. —  $2C_{15}H_{28}O_2N_2 + H_2SO_4$ . Krystalle (aus Essigester). F: 117°; verkohlt bei etwa 135°. Verschmiert an der Luft ziemlich schnell. — Oxalat. Sehr leicht zersetzlich. Verbindung  $C_{16}H_{27}O_2N$  vom Schmelzpunkt 152° (E I 223). Zur Bildung nach Deussen (J. pr. [2] 90, 330) vgl. Deussen, J. pr. [2] 114, 99. —  $[\alpha]_0$ : +204,5° (D., J. pr. [2] 114, 104). Unlöslich in warmer verdünnter Salzsäure, löst sich unverändert in konz. Salzsäure. Entfärbt sofort Brom in Tetrachlorkohlenstoff.

Verbindung  $C_{16}H_{27}O_2N$  vom Schmelzpunkt 138° (vgl. E I 223). [ $\alpha$ ]<sub>D</sub>: +42.5° (DEUSSEN, J. pr. [2] 114, 99, 104). Verbindung  $C_{17}H_{29}O_2N$  vom Schmelzpunkt 125,5° (H 467; E I 223). B. Aus der Verbindung  $C_{15}H_{25}O_3N_2$ Cl (s. o.) bei der Einw. von alkoh. Kalilauge bei 0° (DEUSSEN, J. pr. [2] 114, 75,5° (A) J. pr. [2] 114, 75, 104). —  $\hat{\mathbf{F}}$ : 125,5°.

Verbindung  $C_{17}H_{29}O_2N$  vom Schmelzpunkt 165° (H 467; E I 223). F: 165° (Deussen,  $J.\ pr.\ [2]$  114, 99).  $[\alpha]_n$ : +217,1° (D.,  $J.\ pr.\ [2]$  114, 104). Unlöslich in konz. Salzsäure. Liefert mit Brom in Tetrachlorkohlenstoff bei -5° eine Verbindung  $C_{17}H_{29}O_2NBr_2$  (s. u.). Gibt mit Chlorwasserstoff in Ather eine Verbindung  $C_{17}H_{30}O_2NCl$  (s. u.).

Ver bind ung C<sub>17</sub>H<sub>29</sub>O<sub>2</sub>NBr<sub>2</sub>. B. Aus der Verbindung C<sub>17</sub>H<sub>29</sub>O<sub>2</sub>N vom Schmelzpunkt 165° und Brom in Tetrachlorkohlenstoff bei —5° (Deussen, J. pr. [2] 114, 100). — Nadeln (aus Alkohol). F: 134,5° (Zers.). [α]<sub>D</sub><sup>∞</sup>: +85,6° (Benzol). Leicht löslich in Alkohol und Äther, löslich in Tetrachlorkohlenstoff und Ligroin. Zersetzt sich bei wiederholter Krystallisation aus Alkohol. Beständig gegen Natrium in kaltem Äther.

Verbindung C<sub>17</sub>H<sub>30</sub>O<sub>2</sub>NCl. B. Beim Sättigen einer Lösung der Verbindung C<sub>17</sub>H<sub>29</sub>O<sub>2</sub>N vom Schmelzpunkt 165° in kaltem Äther mit Chlorwasserstoff (Deussen, J. pr. [2] 114, 100). — Nadeln (aus Alkohol). F: 137° (Zers.). Optisch inaktiv.

Verbindung C<sub>17</sub>H<sub>29</sub>O<sub>3</sub>N (E I 223). Zur Bildung nach Deussen (J. pr. [2] 90, 331) vgl. Deussen, J. pr. [2] 114, 101. — Besteht aus zwei durch Essigester trennbaren Isomeren: a-Modifikation. Nadeln (aus Essigester). F: 156—157° (Deussen, J. pr. [2] 114, 101). [a]<sub>1</sub><sup>n</sup>: +151,3° (Benzol; p = 3). Leicht löslich in Essigester, fast unlöslich in konz. Salzsäure. — b-Modifikation. Das Mol.-Gew. wurde in Benzol bestimmt (Deussen, J. pr. [2] 114, 101). Würfel oder Plättchen (aus Essigester). F: 132°. [a]<sub>1</sub>.: +97,5°. Schwer löslich in Essigester, fast unlöslich in konz. Salzsäure. — Addiert in Chloroform oder Tetrachlorkohlenstoff 2 Atome Brom. Verbindet sich mit Phenylisocyanat zu einer amorphen, in organischen Lösungsmitteln leicht löslichen Verbindung. Mit Kalium in Xylol entsteht ein zersetzliches pulvriges Kaliumsalz, das mit Methyljodid in Äther einen öligen Methyläther

Verbindung  $C_{18}H_{31}O_3N$ . B. In geringer Ausbeute durch Einw. von Kaliumhydroxyd auf  $\beta$ -Caryophyllen-nitrosit in Propylenglykol (Deussen, J. pr. [2] 114, 102). — Existiert in 2 durch Benzol trennbaren Isomeren: a-Modifikation. Nadeln (aus Benzol). F: 132°. [ $\alpha$ ] $^{\circ}_{1}$ : +139,8° (Benzol). — b-Modifikation. Prismen (aus Benzol). F: 146°. [ $\alpha$ ] $^{\circ}_{1}$ : +126,9° (Benzol).

Verbindung  $C_{18}H_{29}O_2N$ . B. Aus  $\beta$ -Caryophyllen-nitrosit und Kaliumhydroxyd in wasserfreiem Allylalkohol (Deussen, J. pr. [2] 114, 102). — Krystalle (aus Alkohol). F: 136°. [ $\alpha$ ]<sub>0</sub>: +220,9° (Benzol; p=3). Unlöslich in verd. Salzsäure, schwer löslich in heißer konzentrierter Salzsäure. — Nimmt in Tetrachlorkohlenstoff oder Petroläther 4 Atome Brom ohne Bromwasserstoffentwicklung auf unter Bildung eines farblosen oder gelblichen Tetrabromids  $C_{18}H_{29}O_2NBr_4$ , das 2 durch Silbernitrat in Alkohol fällbare Bromatome enthält.

d) γ-Caryophyllen 1), Isocaryophyllen (H 467; E I 223). Kp<sub>19</sub>: 130° (Deussen, J. pr. [2] 114, 111). D<sub>19</sub>: 0,8974 (D.). α<sub>0</sub>: 21,85° (D.), —21,90° bis —22,10° (D., Hacker, J. pr. [2] 122, 269). — Lagert bei der Hydrierung in Gegenwart von Palladium-Calciumcarbonat in Alkohol 2 Atome Wasserstoff an (D., J. pr. [2] 117, 283). Wird durch Natrium und Isoamylalkohol bei 120—170° nicht reduziert (D., J. pr. [2] 114, 111). Beim Einleiten von Ozon in eine Chloroform-Lösung von γ-Caryophyllen bei —10° bis —15° entsteht ein Ozonid C<sub>15</sub>H<sub>24</sub>O<sub>6</sub> (s. u.) (D., J. pr. [2] 117, 285; D., Hacker, J. pr. [2] 122, 269). Nimmt in Petroläther oder Tetrachlorkohlenstoff bei —15° 2 Atome Brom auf (D., J. pr. [2] 114, 85). Liefert mit Diazoessigester in Gegenwart von Kupferpulver bei 165° ,γ-Caryophyllencyclopropancarbonsäure-äthylester" C<sub>14</sub>H<sub>24</sub>: CH·CO<sub>2</sub>·C<sub>2</sub>H<sub>5</sub> (Syst. Nr. 946) (D., J. pr. [2] 117, 282).

äther oder Tetrachlorkohlenstoff bei  $-15^{\circ}$  2 Atome Brom auf (D., J. pr. [2] 114, 85). Liefert mit Diazoessigester in Gegenwart von Kupferpulver bei  $165^{\circ}$ ,  $\gamma$ -Caryophyllencyclopropancarbonsäure-äthylester"  $C_{15}H_{24}$ : CH·CO<sub>2</sub>·C<sub>2</sub>H<sub>5</sub> (Syst. Nr. 946) (D., J. pr. [2] 117, 282). Verbindung mit Quecksilber(II)-acetat. Lockeres Pulver, das beim Aufbewahren klebrig wird (Deussen, J. pr. [2] 114, 96). Liefert bei der Umsetzung mit Kaliumhalogenid und -cyanid in verd. Alkohol unterhalb  $0^{\circ}$  die nachfolgend beschriebenen Verbindungen. —  $C_{15}H_{24}+Hg(OH)Cl.$  Nadeln. F: 94° (D.). Löslich in Benzol, Essigester und Chloroform, schwer löslicn in Äther. —  $C_{15}H_{24}+Hg(OH)Br.$  Nadeln. F: 99° (Zers.). —  $C_{15}H_{24}+Hg(OH)I$ . Liefert auf Zusatz von Jod-Kaliumjodid-Lösung eine Verbindung  $C_{15}H_{25}OI$  (Tafeln; F:  $58^{\circ}$ ). —  $C_{15}H_{24}+Hg(OH)CN.$  Krystalle (aus Essigester). F:  $134^{\circ}$  (Zers.) (D.). [ $\alpha$ ]<sub>0</sub>: +9,7° (Essigester; p = 3). Löst sich nur teilweise in kaltem Essigester; beständig gegen kaltes Ammoniak und Natronlauge. Nimmt in Äther 4 Atome Jod auf unter Bildung von rotem Quecksilber(II)-jodid und einer öligen Masse. Zerfällt beim Behandeln mit Schwefelwasserstoff und Ammoniak in Essigester in  $\gamma$ -Caryophyllen und Quecksilbersulfid.

γ-Caryophyllen-ozonid C<sub>18</sub>H<sub>24</sub>O<sub>6</sub> (vgl. H 221). B. Beim Einleiten von Ozon in eine Chloroform-Lösung von γ-Caryophyllen bei —10° bis —15° (Deussen, J. pr. [2] 117, 285; D., HACKER, J. pr. [2] 122, 269). — Gelbliche voluminöse Masse, die sich leicht zu einem amorphen Pulver verreiben läßt. [α], +23,4° (Chloroform). Löslich in Methanol, Alkohol, Ather und Chloroforn. Läßt sich bei Vorsicht ohne Verpuffung verbrennen. — Liefert bei

<sup>1)</sup> Zur Einheitlichkeit von γ-Caryophyllen vgl. RUZICKA, WIND, Helv. 14 [1931], 412, 415; DEUSSEN, J. pr. [2] 145 [1936], 43.

der Wasserdampfdestillation Ketone  $C_{10}H_{18}O$ ,  $C_{12}H_{20}O_2$  und  $C_{10}H_{16}O_3$ , ferner Formaldehyd, Ameisensäure, Bernsteinsäure und andere Säuren (D.; D., H.). Bei der Oxydation der Ameisensaure, Bernsteinsaure und andere Saurer (D.; D., 11.). Bet der Oxydation der mit Wasserdampf nicht flüchtigen Anteile der Ozonspaltung mit 27%iger I. (CH<sub>3</sub>)<sub>2</sub>C—CH·CH<sub>2</sub>·CO<sub>2</sub>H II. (CH<sub>3</sub>)<sub>2</sub>C—CH·CO<sub>2</sub>H Salpetersäure entsteht Caryophyllensäure (Formel I oder II) (D., H.).

Keton C<sub>10</sub>H<sub>18</sub>O (vgl. E I 7, 40) ¹). B. Bei der Wasserdampfdestillation des γ-Caryophyllen-ozonids C<sub>15</sub>H<sub>24</sub>O<sub>6</sub> (DEUSSEN, HACKER, J. pr. [2] 122, 270). — Nach Pfefferminzund Rautenöl riechende Flüssigkeit. Kp<sub>11</sub>: 85—90°. Mit Wasserdampf flüchtig. — Das

Semicarbazon  $C_{11}H_{21}ON_3$  schmilzt bei 170°.

Diketon  $C_{12}H_{20}O_2$  (vgl. E I 7, 321) <sup>2</sup>). B. Bei der Wasserdampfdestillation des  $\gamma$ -Caryophyllen-ozonids  $C_{15}H_{24}O_6$  (Deussen, Hacker, J. pr. [2] 122, 271). — Fast geruchlose Flüssigkeit.  $Kp_{11}$ : 140—145°. Mit Wasserdampf flüchtig. — Das Disemicarbazon  $C_{14}H_{26}O_2N_6$ zersetzt sich bei 210°.

Keton C<sub>10</sub>H<sub>16</sub>O<sub>3</sub>. B. Bei der Spaltung des γ-Caryophyllen-ozonids C<sub>15</sub>H<sub>24</sub>O<sub>6</sub> mit Wasserdampf (Deussen, J. pr. [2] 117, 288; D., Hacker, J. pr. [2] 122, 271). — Hellgelbes Öl, das an der Luft leicht saure Reaktion annimmt. Krystallisiert bei starker Kühlung. Zersetzt sich bei der Vakuumdestillation. — Gibt mit Semicarbazid ein Semicarbazon C. H. O. N. des sich gegen 4200 georgetzt. C<sub>11</sub>H<sub>19</sub>O<sub>3</sub>N<sub>3</sub>, das sich gegen 120° zersetzt.

e) Den Caryophyllenen strukturell nahestehende Kohlenwasserstoffe C<sub>15</sub>H<sub>24</sub>. Ein Sesquiterpen C<sub>15</sub>H<sub>24</sub>, in dem vielleicht ein Caryophyllen vorliegt, wurde von Moudgil, Vridhachalam (Perfum. essent. Oil Rec. 18, 174; C. 1922 III, 503) im äther. (i) von Lantana Camara L. gefunden. — Kp:  $253-255^{\circ}$ ; Kp<sub>14</sub>:  $127^{\circ}$ . D<sub>4</sub>: 0,8961.  $n_{D}^{\infty}$ : 1,4990.  $\alpha_{\nu}^{30}$ : +16,1°.

Als unreines Caryophyllen faßt O. SCHREINER (The sesquiterpenes [Madison 1904], S. 27, 32) das von Alpers (Am.J.Pharm. 71, 377; C. 1899 II, 623) aus dem äther. Öl von Aralia nudicaulis L. isoliere Aralien  $C_{15}H_{24}$  auf. Dieses zeigt Kp: 270° (korr.);  $D^{18}$ : 0.9107;  $D^{20}$ : 0.9086;  $n_0^{18}$ : 1.4994;  $[\alpha]_D$ : —7.4° (Benzol; p=37) und bildet mit Chlorwasser-toff cip öliges Hudrochlorid (A) stoff ein öliges Hydrochlorid (A.).

- 48. Cloven C<sub>15</sub>H<sub>24</sub> (H 468). Zur Konstitution vgl. Henderson, Robertson, Kerr, Soc. 1926, 64; He., McCrone, Ro., Soc. 1929, 1370; Ruzicka, Gibson, Helv. 14 [1931], 572; Blair, Soc. 1935, 1297; Ru., Zimmermann, Huber, Helv. 19 [1936], 348; Rydon, Chem. and Ind. 1938, 124. B. Neben Isocloven beim Erhitzen von Caryophyllenhydrat (Syst. Nr. 510) mit Phosphorpentoxyd bis zum Schmelzen (HE., McCr., Ro., Soc. 1929, 1370). Kohlenwasserstoff-Gemische, die vermutlich Cloven als Hauptbestandteil enthalten. entstehen neben α-Caryophyllenalkohol-formiat beim Erhitzen von β-Caryophyllen mit Ameisensäure (Ro., Kerr, He., Soc. 127, 1945); neben α-Caryophyllenalkohol beim Erwärmen von β-Caryophyllen mit Eisessig und verd. Schwefelsäure auf 80—100° (Hr., Ro., KERR, Soc. 1926, 64, 66); beim Erhitzen von  $\beta$ -Caryophyllen-bis-hydrochlorid (S. 75) mit verdünnter alkoholischer Alkalilauge, Natriumacetat + Eisessig, Pyridin oder Chinolin (HE., McC., Ro., Soc. 1929, 1368; vgl. a. Ru., Gibson, Helv. 14 [1931], 570). — Kp: 259° bis 260°;  $D_{18}^{18}$ : 0,9241;  $n_{19}^{18}$ : 1,4999;  $\alpha_{D}$ : +2,84° (Asahina, Tsukamoto, *J. pharm. Soc. Japan* 1922, Nr. 484, S. 4; *C.* 1922 III, 826). Kp<sub>10</sub>: 111—113°;  $D_{19}^{40}$ : 0,924;  $n_{19}^{50}$ : 1,4980 (He..
- 49. Isocloven C<sub>15</sub>H<sub>24</sub>. B. Durch Erhitzen von Caryophyllenhydrat (Syst. Nr. 510) mit Phosphorpentoxyd auf 96°, neben Cloven (Henderson, McCrone, Robertson, Soc. 1929, 1371). Durch Kochen von Isoclovenhydrochlorid (S. 117) mit Natriumacetat in Eisessig (He., McC., Ro., Soc. 1929, 1372). — Viscose Flüssigkeit.  $Kp_{12}$ : 130—131°.  $D_1^{o}$ : 0,943.  $n_1^{o}$ : 1.5039.  $[\alpha]_1^{o}$ : —56,6°. — Wird beim Erhitzen mit Phosphorpentoxyd auf ca. 130° völlig
- 50. Aromadendren C<sub>15</sub>H<sub>24</sub>. Zur Konstitution vgl. Radcliffe, Short, Soc. 1938, 1201; Naves. Perrottet, Helv. 23 [1940], 912. V. In zahlreichen Eucalyptusölen, in hetrischtlichen Mange in der State 1940. in beträchtlicher Menge in den Ölen von Eucalyptus Dawsoni Bak., Eu. eximia Schauer, Eu. nova-anglica D. et Maid, Eu. trachyphloia F.v.M., Eu. affinis, D. et Maid., Eu. maculata Hook., Eu. acmenioides Schau., Eu. crebra F. v. M., Eu. viminalis Wab. und Eu. haemastoma Sm. (Smith, J. Pr. Soc. N. S. Wales 35 [1901], 124; Chem. N. 85 [1902], 3; Ber. Schimmel 1902, 31; R. T. Baker, H. G. Smith, A research on the eucalypts especially in regard to their essential oils, 2. Aufl. [Sydney 1920], S. 416). Im Nachlauf des Ols von

<sup>1)</sup> Ist vielleicht identisch mit dem von Ruzicka, Zimmermann, Huber (Helv. 19 [1936],

<sup>346, 351)</sup> erhaltenen Keton C<sub>10</sub>H<sub>18</sub>O (Kp<sub>12</sub>: 84—85°; Schmelzpunkt des Semicarbazons 181°).

3) Ist vielleicht identisch mit dem von RUZICKA, ZIMMERMANN, HUBER (Helv. 19 [1936], 347, 352) beschriebenen Diketon C<sub>13</sub>H<sub>22</sub>O<sub>2</sub> (Kp<sub>12</sub>: 136°; Schmelzpunkt des Disemicarbazons 219°).

Eucalyptus globulus Lab. (Ruzicka, Pontalti, Balas, Helv. 6, 860, 861; Ruz., Rudolph, Helv. 9, 133; Pfau, Plattner, Helv. 19 [1936], 861, 871). Im äther. Öl der Blütenköpfe von Perovskia atriplicifolia Benth. (Rao, J. indian chem. Soc. 3, 146; C. 1926 II, 1698). — Eigenschaften eines Aromadendrens aus dem Öl von Eucalyptus baileyana: Kp<sub>10</sub>: 123—125°; D<sup>15</sup>: 0,9240;  $n_D^{\infty}$ : 1,4964;  $\alpha_D$ : —3,7° (Baker, Smith, Research on eucalypts, S. 330, 418); von Präparaten aus dem Öl von Eucalyptus nova-anglica: Kp: 260—265°; Kp<sub>10</sub>: 124—125°; D<sup>15</sup>: 0,9222;  $n_D^{\infty}$ : 1,4964;  $\alpha_D$ : +4,7° (Baker, Smith, Research on eucalypts, S. 46, 417); Kp<sub>10</sub>: 121—121,4°; D<sup>11</sup>: 0,9157;  $n_D^{\rm fl}$ : 1,4993; [ $\alpha_{D_D^{\rm inj}}$ : ± 0°, —6,1° (Briggs, Short, Soc. 1928, 2526). — Liefert beim Einleiten von Ozon in eine Lösung in Eisessig unter Wasserkühlung Aromadendron C<sub>14</sub>H<sub>22</sub>O (Syst. Nr. 620) (Br., Sh., Soc. 1928, 2528). Gibt bei der Hydrierung in Gegenwart von kolloidalem Palladium in Methanol Dihydroaromadendren (S. 117) (Br., Sh.). Bei der Dehydrierung mit Schwefel erhält man S-Guajazulen (S. 473) (Pfau, Plattner, Helv. 19 [1936], 871; Radcliffe, Sh., Soc. 1938, 1201; vgl. Br., Sh.). — Bromdampf färbt das in Eisessig gelöste Öl zunächst karmoisinrot, dann violett und schließlich indigoblau (Sm.; Baker, Sm., Research on eucalypts, S. 417). Dieselbe Farbreaktion wird durch 1—2 Tropfen konz. Salzsäure oder Bromwasserstoffsäure hervorgerufen (Baker, Sm., Research on eucalypts, S. 417). Phosphorsäure (D: 1,7) färbt die essigsaure Lösung erst hellrot, dann karmoisinrot und schließlich violett (Baker, Sm., Research on eucalypts, S. 417).

- 51. Echinopanacen  $C_{15}H_{24}$ . V. Im äther. Öl der Wurzel von Echinopanax horridus D. et Pl. (Kariyone, Morotomi, J. pharm. Soc. Japan 1927, 95; C. 1927 II, 2405).  $Kp_{15}$ : 135—138°.  $D_{5}^{4}$ : 0,9051.  $n_{15}^{16}$ : 1,5013.  $[\alpha]_{5}^{8}$ : + 33,50°.
- 52. Sesquiterpen  $C_{15}H_{24}$  aus Smyrnium perfoliatum. V. Im ätherischen Ölder Früchte von Smyrnium perfoliatum L. (Nilow,  $\Re$ . 60, 1581; C. 1929 I, 2709). Flüssigkeit.  $Kp_{20}$ : 135—140°.  $D_{15}^{15}$ : 0,9167.  $n_{1}^{15}$ : 1,5061.
- 53. **Rhodien**  $C_{15}H_{24}$ . Zur Bezeichnung vgl. Gladstone, Soc. 25 [1872], 3. V. Im äther. Rosenholzöl (GL., Soc. 17 [1864], 13), das vielleicht vom Holz der Wurzeln von Convolvulus scoparius L. und C. floridus L. stammt (Glidemeister, Hoffmann, Die ätherischen Öle, 3. Aufl., 3. Bd. [Leipzig 1931], S. 609; C. Wehmer, Die Pflanzenstoffe, 2. Aufl., 2. Bd. [Jena 1931], S. 1008). Nach Rosen und Sandelholz riechende Flüssigkeit; Kp: 249° (Gl., Soc. 17, 13). D<sup>20</sup>: 0.9042;  $n_{\alpha}^{\infty}$ : 1,4878; linksdrehend (Gl., Soc. 17, 18). Addiert Chlorwasserstoff (Gl., Soc. 25, 4; Pharm. J. [3] 2 [1871/72], 688).
- 54. Bicyclisches Sesquiterpen C<sub>15</sub>H<sub>24</sub> aus Ysopöl. V. In geringer Menge im Ysopöl (Ruzicka, Pontalti, Balas, Helv. 6, 856). B. Beim Kochen der tertiären Sesquiterpenalkohol-Fraktion (Kp<sub>12</sub>: 150—152°) des Ysopöls mit 85%iger Ameisensäure (R., P., B., Helv. 6, 858). Öl. Kp<sub>12</sub>: 123—125°. D<sup>16</sup>: 0,9115; D<sup>17</sup>: 0,9116. n<sup>16</sup>: 1,5045; n<sup>17</sup>: 1,5012. Liefert beim Erhitzen mit Schwefel Cadalin.
- 55. Sesquiterpen C<sub>16</sub>H<sub>24</sub> aus Patschuliöl. V. Im Patschuliöl (v. Soden, Rojahn, B. 37 [1904], 3354), dem äther. Öl der Blätter des Patschulistrauchs (Pogostemon Patchouly Pell. var. suavis Hk.) und einiger anderer Labiaten (C. Wehmer, Die Pflanzenstoffe, 2. Aufl., 2. Bd. [Jena 1931], S. 1071, 1072; vgl. Gildemeister, Hoffmann, Die ätherischen Öle, 3. Aufl., 3. Bd. [Leipzig 1931], S. 893). Farbloses, dünnflüssiges Öl von schwachem, cedernholzartigem Geruch. Kp<sub>760</sub>: 264—265°; Kp<sub>8-4</sub>: 95—96°; D<sup>15</sup>: 0,9335; α<sup>∞</sup><sub>0</sub>: —58,75° (v. S., R.). Addiert in Eisessig- oder Chloroform-Lösung Brom und Bromwasserstoff; bildet ein öliges Hydrochlorid (v. S., R.).

Über die mögliche Identität mit einer aus einem mit konz. Schwefelsäure behandelten Patschuliöl erhaltenen, als Dilemen bezeichneten Fraktion der Zusammensetzung C<sub>15</sub>H<sub>24</sub> vgl. der Jong, R. 24, 311.

- 56. Bicyclisches Sesquiterpen  $C_{15}H_{24}$  aus Aster indicus. V. Im ätherischen Ol von Aster indicus L. (,,Yomena") (UCHIDA, J. Soc. chem. Ind. Japan Spl. 31, 215 B; C. 1928 II, 2296).  $Kp_{760}$ : 258—260°.  $D_4^{15}$ : 0,9053.  $n_D^{15}$ : 1,4995.  $\alpha_D$ : —7,25°. Gibt ein flüssiges Dihydrochlorid.
- 57. Sesquiterpen  $C_{15}H_{24}$  aus Kamillenöl. Vgl. hierüber Ruhemann, Lewy, B. 60, 2468; Ruzicka, Rudolph, Helv. 11, 256.
- 58. Sesquiterpen  $C_{15}H_{24}$  aus Schafgarbenöl. Vgl. darüber Ruzicka, Rudolph, Helv. 11, 259.
- 59. Hexahydrochamazulen C<sub>15</sub>H<sub>24</sub>. B. Beim Erwärmen von Chamazulen (S. 474) mit Natrium und Isoamylalkohol (Ruzicka, Rudolfh, Helv. 9, 137). Wurde nicht ganz rein erhalten. Öl. Kp<sub>0.1</sub>: ca. 94—95°. Kp<sub>11</sub>: 118—124°. D<sup>∞</sup><sub>1</sub>: 0,9177. n<sup>∞</sup><sub>1</sub>: 1,5200. Gibt beim Erhitzen mit Schwefel auf 180° wieder Chamazulen. Liefert bei der Oxydation mit Permanganat in wäßr. Natronlauge Essigsäure, Isobuttersäure und höhermolekulare Säuren.

60. Sesquiterpen C<sub>15</sub>H<sub>24</sub> aus subfossilem Harz aus Borneo. B. Beim Erhitzen eines subfossilen Harzes aus Borneo, das vielleicht von einer Dipterocarpaceen-Art stammt, auf  $400^{\circ}$  in Gegenwart von Nickel-Bimsstein (Vesterberg, Svensk kem. Tidskr. 37, 225; C. 1926 I, 132). — Kp<sub>1</sub>:  $90-92^{\circ}$ . D<sup>\*</sup><sub>1</sub>: 0,9153. n<sup>\*</sup><sub>1</sub>: 1,5120.  $\alpha_{\pi}^{\pi}$ :  $+1,5^{\circ}$ . — Gibt bei der Destillation mit Schwefel oder beim Leiten der Dämpfe über Nickel bei ca. 300° Cadalin.

### 11. Kohlenwasserstoffe $C_{16}H_{26}$ .

- 1. Pentaäthylbenzol  $C_{16}H_{26}=C_6H(C_2H_5)_5$  (H 471; E I 227). B. In geringer Menge neben anderen Produkten beim Behandeln von Benzol mit Athylen bei Gegenwart von Aluminiumchlorid (MILLIGAN, REID, Am. Soc. 44, 208; BERRY, R., Am. Soc. 49, 3145).
- 2. 1 Cyclohexyl 1.2.5.6.7.8.9.10 (oder 1.2.3.5.6.7.8.9) oktahydronaphthalin, 1-Cyclohexyl- $\Delta^{3}$  (oder  $\Delta^{4}$ )-oktalin  $C_{16}H_{26}$ , Formel I oder II. B. Aus

4-Cyclohexyl-dekahydronaphthol-(1) beim Erhitzen mit wasserfreiem Zinkchlorid in Dekalin (Alberti, A. 450, 313). — Kp<sub>12</sub>: 162—163°. D<sub>4</sub>°: 0,9546.  $n_{0}^{\infty}$ : 1,5175.

3. 2-Cyclohexyl-1.4.5.6.7.8.9.10 (oder 1.2.5.6.7.8.9.10)-oktahydro-naphthalin, 2-Cyclohexyl -  $\Delta^2$  (oder  $\Delta^3$ ) - oktalin  $C_{16}H_{26}$ , Formel III oder IV. B. Aus

3-Cyclohexyl-dekahydronaphthol-(2) beim Erhitzen mit Zinkchlorid (Alberti, A. 450, 318). — Kp<sub>13</sub>: 163—164°.  $D_4^{\infty}$ : 0,9422.  $n_7^{\infty}$ : 1,5103.

# 12. Kohlenwasserstoffe $C_{18}H_{30}$ .

1. 1.2.4.5-Tetraisopropyl-benzol C<sub>18</sub>H<sub>30</sub>, s. nebenstehende Formel. B. Neben anderen Produkten bei der Einw. von Propylen auf Benzol bei Gegenwart von Aluminiumchlorid bei 70° (BERRY, REID, Am. Soc. 49, 3148). — Krystalle (aus Alkohol). F: 117°. CH(CH<sub>3</sub>)<sub>2</sub> · CH(CH<sub>3</sub>)<sub>2</sub> Kp<sub>775</sub>: 260°. CH(CH<sub>3</sub>)<sub>2</sub>

- 2. Hexaäthylbenzol C<sub>18</sub>H<sub>30</sub> = C<sub>6</sub>(C<sub>2</sub>H<sub>5</sub>)<sub>6</sub> (H 471; E I 227). B. Bei der Einw. von Athylen auf Benzol bei Gegenwart von Aluminiumchlorid, neben niedrigeren Athylierungsprodukten (Milligan, Reid, Am. Soc. 44, 208; Berry, R., Am. Soc. 49, 3145; Schleicher, J. pr. [2] 105, 358). Entsteht als Hauptprodukt bei der Behandlung von Benzol mit Tetraäthylorthosilicat bei Gegenwart von Aluminiumchlorid (Dearing, R., Am. Soc. 50, 3060).

   F: 126,5° (McVicker, Marsh, Stewart, Soc. 125, 1746), 128—129° (Schl.). D;: 0,997 (Ziegler, Ditzel, A 473, 206). Tesla-Luminescenzspektrum von Hexathylbenzol-Dmpf: McV. Marsh, St. Soc. 195, 4746. Kethodenlyminescenzy, Marsh, Soc. 1997, 428. Leicht McV., Marsh, St., Soc. 125, 1746. Kathodenluminescenz: Marsh, Soc. 1927, 128. Leicht löslich in Äther und Eisessig; unzersetzt löslich in rauchender Schwefelsäure (Schl.). —  $C_{18}H_{30}+2$  AlCl<sub>3</sub>. B. Aus den Komponenten bei  $90^{\circ}$  (Schl.). Ziemlich beständig gegen Wasser. Zersetzt sich oberhalb 90° unter Bildung von Äthylchlorid; bei ca. 180° entstehen Äthylbenzol, Diäthylbenzol, 1.2.4-Triäthyl-benzol und 1.3.5-Triäthyl-benzol.
- 3. 1.3 Dicyclohexyl cyclohexen (1) C<sub>18</sub>H<sub>30</sub> = H<sub>2</sub>C < CH(C<sub>6</sub>H<sub>11</sub>)·CH C·C<sub>6</sub>H<sub>11</sub>.

  B. Aus beiden Formen des 1.3-Dicyclohexyl-cyclohexanols-(2) beim Erhitzen mit frisch geschmolzenem Zinkchlorid auf 200—210° (Schrauth, Wege, Danner, B. 56, 267). Öl. Kp<sub>15</sub>: 204—207° (Schr., We., D.). D: 0,9525 (Schr., We., D.); D<sup>20</sup>: 0,934 (Vorländer, Walter, Ph. Ch. 118, 12). Viscosität bei 20°: V., Wa. Doppelbrechung der rotierenden Flüssigkeit: V., Wa. Leicht löslich in Ather, Benzin und Benzol, schwer in Alkohol (Schr., We., D.). Entfärbt Permanganat-Lösung sofort (Schr., We., D.). Liefert bei der Hydrierung bei Gegenwart von Nickel in Hexahydrotoluol 1.3-Dicyclohexyl-cyclohexan (Schr., We., D.). (SCHR., WE., D.).
- 4. Dodekahydroreten  $C_{18}H_{30}$ , Struktur des Kohlenstoffskeletts s. nebenstehende Formel (H 471). B. Zur Bildung aus Reten (Syst. Nr. 485a) durch Erhitzen mit Jodwasserstoffsäure und rotem Phosphor vgl. Virtanen, B. 53, 1889.  $Kp_{10}$ :



- 148—150°. D. : 0,8985. n. : 1,4851. Löslich in Äther, Chloroform, Ligroin, Benzol und Eisessig. Beständig gegen Permanganat und gegen heiße konzentrierte Salpetersäure. Löst sich in konz. Schwefelsäure mit gelber, beim Erwärmen in Braungrün übergehender Farbe.
  - 5. H 472, Z. 7 v. o. statt "Oktahydrochrysen" lies "Oktadekahydrochrysen".
- 6. Oktadekahydro [9.10-benzo phenanthren]. Perhydrotriphenylen C<sub>18</sub>H<sub>30</sub>, s. nebenstehende Formel. B. Beim Erhitzen von Lignin aus Fichtenholz oder Rotbuchenholz mit Jodwasserstoffsäure (D: 1,96) und rotem Phosphor auf ca. 250° im Rohr (WILLSTÄTTER, KALB, B. 55, 2642, 2645; vgl. Schrauth, Z. ang. Ch. 36, 149, 571). Aus △°(¹¹¹). Hexadekahydro-9.10-benzo-phenanthren beim Hydrieren bei Gegenwart von Nickelkatalysator in Hexahydrotoluol (Schr., Görig, B. 56, 2027). Kp<sub>20</sub>: 200—201,5°; D<sub>1</sub><sup>1,8,2</sup>(vac.): 0,9468

GÖRIG, B. 56, 2027). — Kp<sub>20</sub>: 200—201,5 $^{\circ}$ ;  $D_{4}^{\text{in.2}}$ (vac.): 0,9468;  $n_{\alpha}^{\infty}$ : 1,5043;  $n_{\text{Hc}}^{\infty}$ : 1,5069;  $n_{\alpha}^{\infty}$ : 1,5138;  $n_{\gamma}^{\infty}$ : 1,5196 (Präparat von Schrauth, Görig);  $Kp_{17}$ : 200—208 $^{\circ}$ ;  $D_{4}^{\text{in.2}}$ (vac.): 0,9512;  $n_{\alpha}^{\infty}$ : 1,5051;  $n_{\text{He}}^{\infty}$ : 1,5078;  $n_{\gamma}^{\infty}$ : 1,5149;  $n_{\gamma}^{\infty}$ : 1,5208 (Präparat von Willstätter, Kalb) (Schr., Z. ang. Ch. 36, 571). Viscosität bei 20 $^{\circ}$  und Doppelbrechung der rotierenden Flüssigkeit: Vorländer, Walter, Ph. Ch. 118, 11. Leicht löslich in Äther, Benzin, Benzol, Chloroform und Hexahydrotoluol, schwer in Alkohol, sehr schwer in Aceton, sehr leicht in mit wenig Cyclohexanol oder Cyclohexanon versetztem Aceton.

### 13. Kohlenwasserstoffe $C_{19}H_{32}$ .

- 1. 9 Cyclohexyl dodekahydrofluoren, Perhydro [9 phenyl fluoren]  $C_{19}H_{32}$ , s. nebenstehende Formel. B. Bei der Hydrierung von ms-Phenyl-fluorenol in Cyclohexan bei Gegenwart von Nickel(III)-oxyd-Kataly-sator unter 80—100 Atm. Druck bei 300°, neben anderen Produkten (IPATJEW, Dolgow, C. r. 183, 306; Bl. [4] 39, 1459;  $\mathcal{H}$ . 58, 1026). Nadeln (aus Alkohol). F: 53°. Kp: 326—336°.  $D_0^{\infty}$ : 0,9413.  $D_0^{\infty}$ : 1,4919.
- 2. Dihydroabieten C<sub>19</sub>H<sub>32</sub> (H 472). Sowohl bei dem im Hptw. als auch bei den unten beschriebenen Produkten handelt es sich wohl um Gemische von Stereoisomeren. B. Aus Abieten (S. 404) bei der Hydrierung bei Gegenwart von Platinmohr in Essigester (RUZICKA, SCHINZ, Helv. 6, 843). Beim Erhitzen von Lävopimarsäure (Syst. Nr. 949) auf 300° und nachfolgenden Hydrieren des neben anderen Produkten entstandenen Kohlenwasserstoffgemisches bei Gegenwart von kolloidalem Platin in Essigester unter 3 Atm. Überdruck (R., Balas, Vilim, Helv. 7, 470). Dickflüssiges Öl. Kp<sub>0,1</sub>: 145—146°; D<sup>1</sup>;: 0,9470; n<sup>1</sup>;: 1,5135 (Präparat von RUZICKA, SCHINZ); Kp<sub>12</sub>: 186—187°; D<sup>1</sup>;: 0,9449; n<sup>1</sup>;: 1,5141 (Präparat von RUZICKA, BALAS, VILIM). Liefert beim Kochen mit Braunstein und 57% iger Schwefelsäure Benzol-tetracarbonsäure- (1.2.3.4) (R., SCH., Meyer, Helv. 6, 1092).

# 14. Kohlenwasserstoffe $\mathrm{C}_{20}\mathrm{H}_{34}$ .

- 1. Bis-{1.7.7-trimethyl-bicyclo-[1.2.2]-hep-tyl-(2)}, Dicamphanyl-(2.2'), "Hydrodi-c(CH<sub>3</sub>) CH—HC C(CH<sub>3</sub>) CH<sub>2</sub> tyl-(2)}, Dicamphanyl-(2.2'), "Hydrodi-c(CH<sub>3</sub>)<sub>2</sub>| C(CH<sub>3</sub>)<sub>2</sub>| C(CH<sub>3</sub>)<sub>2</sub>| C(CH<sub>3</sub>)<sub>2</sub>| C(CH<sub>3</sub>)<sub>2</sub>| C(CH<sub>3</sub>)<sub>2</sub>| B. Zur Bildung nach Letts (B. 13, 793) und Étard, Meker (C. r. 126, 526) durch Behandlung von geschmolzenem Bornylchlorid mit Natrium vgl. Ciusa, Croce, G. 52 I, 127. Beim Behandeln einer äther. Bornylmagnesiumchlorid-Lösung mit einer Suspension von Kupfer(II)-chlorid in Ather unter Kühlung (Sakellarios, Kyrimis, B. 57, 326). Krystalle (aus Alkohol oder aus Benzol und Eisessig). F: 85—86° (Ciusa, Cr.); 86° (S., K.).
- 2. Bis {1.7.7 trimethyl bicyclo [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] [1.2.2] -
- 3. Hartit, Josen, a-Dihydrophyllocladen, Dihydrodacren, Hofmannit, Branchit, Bombiccit C<sub>20</sub>H<sub>24</sub>. Das Mol.-Gew. wurde kryoskopisch nach Rast in Campher

bestimmt (Soltys, M. 53/54, 175). Zur Zusammensetzung und Konstitution vgl. S., M. 53/54, 177, 180; Briggs, Soc. 1937, 1036; Brandt, New Zealand J. Sci. Technol. 20 [B], 9; C. 1939 II, 856; vgl. a. Ciusa, Galizzi, G. 51 I, 58; Ciusa, Croce, G. 52 I, 125; Machatschki, Z. Kr. 60, 130. — V. In den Braunkohlen von Oberhart bei Gloggnitz (Niederösterreich) (Haidinger, Ann. Phys. 54 [1841], 261; Berzelius' Jahresber. 22 [1843], 214), von Rosenthal bei Köflach (Steiermark) (Kenngott, Jahrb. der k. k. geolog. Reichsanst. 1856, 92; J. 1856, 889), von Oberdorf bei Voitsberg (Steiermark) (Rumpf, Sber. Akad. Wien 60 II, 91; J. 1869, 1248) und von Terni, Montevaso und Castelnuovo di Valdarno (Italien) (Ciusa, G.). — Krystalle (aus Aceton oder Alkohol). Triklin (R.; M.). F: 740 (Haidinger, Ullik, Sber. Akad. Wien 60 II, 98; Soltys), 74—750 (Ciusa, Gallizi; Ciusa, Croce). Beginnt bei 360° zu sieden und wird dabei infolge geringer Zersetzung gelblich (S.). D: 1,046 (H.), 1,051 (R.). [a];: +23,8° (Alkohol; p = 3) (S.). Unlöslich in Wasser; schwer löslich in allen gebräuchlichen organischen Lösungsmitteln in der Kälte, ziemlich leicht löslich in der Hitze (S.). — Löst sich in konz. Salpetersäure in der Hitze mit heftiger Reaktion (S.). Einw. von Brom in der Wärme: S. Liefert beim Erhitzen mit Schwefel auf 280° eine Verbindung C<sub>30</sub>H<sub>28</sub>S<sub>3</sub> (s. u.) (S.). Beim Erhitzen mit Selen auf 360—380° erhält man Reten (S.).

Verbindung  $C_{20}H_{28}S_3$ . B. Aus Josen durch Erhitzen mit Schwefel auf 280° (Soltys, M. 53/54, 181). — Goldgelbe Nadeln (aus Benzol + Alkohol). F: 198° (unkorr.). Sublimiert unter 14 mm Druck bei 210° in Nadeln. [ $\alpha$ ]; —436,6° (Benzol; p = 3). Löslich in Benzol, Chloroform und Petroläther, sehr schwer löslich in Alkohol und Aceton. — Liefert mit Quecksilber(II)-chlorid eine gelbe additionelle Verbindung.

Phyllocladen-hydrochlorid, Dacren-hydrochlorid, Miren-hydrochlorid C<sub>20</sub>H<sub>33</sub>Cl. Zur Identität von Phyllocladen-hydrochlorid und Miren-hydrochlorid vgl. Brandt, New Zealand J. Sci. Technol. 20 [B], 9; C. 1939 II, 856. — B. Beim Behandeln von Dacren (S. 405) oder Isodacren (S. 405) mit Chlorwasserstoff in Äther (AITKEN, J. Soc. chem. Ind. 47, 224 T; C. 1928 II, 2197) oder von Miren (S. 406) mit Chlorwasserstoff in Äther + Eisessig (Hosking, Short, R. 47, 836). — Krystalle (aus Äther + Alkohol). F: 108,5° (Ai.), 107° bis 108° (Br.), 97—98° (H., Sr.). — Beim Erwärmen mit Alkohol sowie beim Behandeln mit Silberacetat in Eisessig entsteht Isodacren (Ai.).

Dacren-dibromid  $C_{20}H_{32}Br_{9}$ . B. Aus Dacren und Brom in Äther unter Kühlung (Gondie, J. Soc. chem. Ind. 42, 358 T; C. 1923 III, 1371; Aitken, J. Soc. chem. Ind. 47, 224 T; C. 1928 II, 2197). — Krystalle (aus Chloroform + Alkohol). F: 139° (Ai.), 110° (G.). Löslich in Äther, Chloroform und Kohlenstofftetrachlorid, schwer löslich in absol. Alkohol (G.).

4. Kohlenwasserstoff  $C_{20}H_{34}$  (?) aus finnischem Fichtenharzbalsam. V. Im finnischen Fichtenharzbalsam (Nordström, J. pr. [2] 121, 210, 212). — Kp<sub>0</sub>: 178°.  $D_{\bullet}^{m}$ : 0,9177.  $n_{\bullet}^{m}$ : 1,5231. [ $\alpha$ ]]; +77,24°. — Oxydiert sich außerordentlich schnell an der Luft und gibt bei der Destillation anscheinend den Sauerstoff wieder ab.

#### 5. Dihydrokauren C20H34.

Kauren-hydrochlorid  $C_{20}H_{33}Cl.$  B. Aus Kauren (S. 405) beim Behandeln mit Chlorwasserstoff in Eisessig + Äther (Hosking, R. 47, 581). — Krystalle (aus Methanol + Chloroform). F: 110—111°. Unlöslich in kaltem Methanol, Alkohol und Eisessig, leicht löslich in Ather, Chloroform, Ligroin und Essigester.

# 15. Kohlenwasserstoffe $C_{22}H_{38}$ .

1. n-Hexadecylbenzol, Cetylbenzol, 1-Phenyl-hexadecan  $C_{22}H_{38}=C_6H_5\cdot CH_3|_{15}\cdot CH_3$  (H 472). B. Beim Kochen von n-Pentadecyl-phenyl-keton mit amalgamiertem Zink und Salzsäure (Adam, Pr. roy. Soc. [A] 103, 685; C. 1923 III, 1294). — Krystalle (aus Alkohol). F: 22° (A.).  $Kp_{16}$ : 235—237° (EISENLOHR, SCHULZ, B. 57, 1815).  $n_{\alpha}^{n.s}$ : 1,4768;  $n_{\beta}^{n.s}$ : 1,4875;  $n_{\gamma}^{n.s}$ : 1,4941 (EI., SCH.).

2. 1.2 - Di - [camphanyl - (3)] - äthan, Dicamphanäthan  $C_{22}H_{38} = CH \cdot CH_2 \cdot CH_2 \cdot HC$   $C_8H_{14} \cdot CH_2 \cdot H_2 \cdot C_8H_{14}$ . B. Aus 3-Brommethyl-camphan beim Erwärmen mit Magnesiumspänen und wenig Methyljodid in Äther auf dem Wasserbad (Rupe, Brin, Helv. 7, 556). — Dickflüssiges Öl. Kp<sub>11</sub>: ca. 205—208°.

361

16. Norcholan C<sub>23</sub>H<sub>40</sub>, Formel I, s. 4. Hauptabteilung, Sterine.

### 17. Kohlenwasserstoffe C24H42.

- 1. n-Octadecylbenzol, 1-Phenyl-octadecan  $C_{24}H_{42}=C_6H_5\cdot[CH_2]_{17}\cdot CH_3$  (H 473). B. Aus n-Heptadecyl-phenyl-keton durch Behandeln mit amalgamiertem Zink und Salzsäure (Adam, Pr. roy. Soc. [Å] 103, 685; C. 1923 III, 1294). Krystalle (aus Alkohol). Röntgenogramm: Shearer, Soc. 123, 3153. F: 29° (A.).
  - 2. Cholan C24H42, Formel II, s. 4. Hauptabteilung, Sterine.
- 18. Homocholan C<sub>25</sub>H<sub>44</sub>, Formel III, s. 4. Hauptabteilung, Sterine.

- 19. Cholestan und Pseudocholestan (Allocholestan, Koprostan)  $C_{27}H_{4R}$ , Formel IV, s. 4. Hauptabteilung, Sterine.
- 20. Ergostan C<sub>28</sub>H<sub>50</sub>, Formel V, s. 4. Hauptabteilung, Sterine.

$$V. \begin{array}{c|c} & H_{3C} & CH(CH_{3}) \cdot CH_{2} \cdot CH_{2} \cdot CH(CH_{3}) \cdot CH(CH_{3})_{2} \\ & H_{2C} & CH_{2} \cdot CH_{2} \cdot CH_{2} \cdot CH_{2} \cdot CH_{2} \cdot CH_{2} \\ & H_{2C} \cdot CH_{2} \cdot CH_{2$$

- 21. Kohlenwasserstoffe  $C_{29}H_{52}$ .
  - 1. Sitostane C<sub>20</sub>H<sub>52</sub>, Formel VI, s. 4. Hauptabteilung, Sterine.

2. Stigmastan C<sub>29</sub>H<sub>52</sub>, Formel VII, s. 4. Hauptabteilung, Sterine.

## 5. Kohlenwasserstoffe $C_nH_{2n-8}$ .

# 1. Vinylbenzol, Phenyläthylen, Styrol $C_8H_8=C_6H_5\cdot CH:CH_2$ (H 474; E I 228).

Bildung und Darstellung.

Ubersichten über Bildung und Darstellung s. bei C. Ellis, The chemistry of synthetic resins, Bd. I [New York 1935], S. 252; C. Duval in V. Grignard, Traité de chimie organique. Bd. IV [Paris 1936], S. 123; E. Trommsdorff in R. Houwink, Chemie und Technologie der Kunststoffe [Leipzig 1939], S. 304. — Styrol entsteht in geringer Menge beim Leiten von Acetylen über aktivierte Holzkohle bei 600—660° (Zelinsky, B. 57, 272; C. r. 177, 885; 36, 55, 154). Zur Bildung aus Benzol und Acetylen in Gegenwart von Aluminiumchlorid vgl. Cook, Chambers, Am. Soc. 43, 336; vgl. dagegen Böeseken, Adler, R. 48, 475: C. ELLIS, The chemistry of synthetic resins, Bd. I, S. 256. Aus Äthylbenzol, in geringer Menge auch aus Xylol, beim Leiten durch auf 650° erhitzte Röhren aus Eisen, Quarz oder Kupfer im Kohlendioxyd-Strom (Naugatuck Chemical Co., D. R. P. 476270; Frdl. 16, 329). Neben anderen Produkten beim Erhitzen von [α-Chlor-āthyl]-benzol mit Wasser auf 100° (WARD. Soc. 1927, 454). Entsteht nach Clutterbuck, Cohen (Soc. 123, 2507, 2509) beim Kochen von [β-Chlor-āthyl]-benzol mit Natrium-, Ammonium- oder Silbersulfit-Lösung; vgl. indessen Evans, Mabbott, Turner, Soc. 1927, 1159, 1161. Durch Erhitzen von [α-Brom-āthyl]-benzol mit Natriumsulfit-Lösung (Ev., Ma., Tu., Soc. 1927, 1162) und von [β-Brom-āthyl]-benzol mit Natriumsulfit-Lösung (Ev., Ma., Tu., Soc. 1927, 1162) und von [β-Brom-āthyl]-benzol mit mäßig alkobilenben Kalikung (Asymptomy Research 2004, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, 2704, benzol mit wäßrig-alkoholischer Kalilauge (Ashworth, Burkhardt, Soc. 1928, 1794). Durch Entbromung von [α.β-Dibrom-äthyl]-benzol mit Magnesium in Äther (v. Braun. MOLDANKE, B. 54, 619) oder mit Natriumamid in hochsiedendem Petroleum bei 150-160° (Rourguel, A. ch. [10] 3, 226). Beim Destillieren von 1-β-Phenäthyl-tetralin im Kohlendioxyd-Strom über Bleioxyd bei 620—650° (v. Braun, Κοσημανόν Ε. β. 56, 2176). Styrol entsteht neben anderen Produkten aus Methylphenylcarbinol beim Leiten über Kupfer bei 330° (Hara, Mem. Coll. Sci. Kyoto [A] 9, 413; C. 1926 II, 2658) sowie beim Erhitzen mit ca. ½ n-Salzsäure auf 100° (Ward, Soc. 1927, 455), mit 64% iger Schwefelsäure auf 110° (Ward). (Senderens, C. r. 182, 613) und mit p-Toluolsulfonsäure oder [d-Campher]-\(\beta\)-sulfonsäure auf Temperaturen bis 82,60 unter 20 mm Druck ohne Lösungsmittel oder in Benzol oder Schwefelkohlenstoff (Descamps, Bl. Soc. chim. Belg. 33, 140; C. 1924 II, 1342; vgl. Wuyts, Bl. Soc. chim. Belg. 30, 32; C. 1921 I, 618). In geringer Menge beim Erhitzen von Diaphenäthyl-äther mit ca.  $^{1}/_{2}$ n-Salzsäure auf 100° (Ward, Soc. 1927, 455). Beim Erhitzen von Phenylessigsäure-β-phenäthylester auf 315—320° (Hibbert, Burt, Am. Soc. 47, 2243). von Dimethyl-β-phenäthyl-sulfoniumhydroxyd mit Wasser (v. Braun, Teuffert, Weissbach. A. 472, 128, 141) und von Phenyl-β-phenäthyl-sulfon mit Kalilauge (Fenton, Ingold).
 Soc. 1929, 2341). Bei raschem Erhitzen von 2-Methyl-1.1.4-triphenyl-cyclobutanol-(2) (STAUDINGER, RHEINER, Helv. 7, 13). Zur Bildung durch Erwärmen von 1 Mol Acetophenon mit amalgamiertem Zink und der für die Entwicklung von 2 Wasserstoffatomen berechneten Menge verd. Salzsäure nach (Lemmensen (B. 46 [1913], 1839) vgl. Steinkoff, Wolfram. A. 430, 157. Entsteht in größerer Menge bei der Reduktion von Acetophenon mit amalgamiertem Zink und trocknem Chlorwasserstoff in absol. Alkohol (Stel., Wo.). Beim amatgamertem Zink und trocknem Chlorwasserstoff in absol. Aikonof (STEL, WO.). Defin Durchleiten von Zimtaldehyd durch ein Platinrohr bei etwa 1150° (Peytral, Bl. [4] 39, 215; vgl. a. P., C. r. 165 [1917], 704). Beim Überleiten von Zimtaldehyd über fein verteiltes Nickel bei 380° (Mailhe, Bl. [4] 39, 923). Neben Diphenylketen beim Erhitzen von 1.1.2-Triphenyl-cyclobutanon-(4) auf etwa 200° im Vakuum; entsteht analog neben Diphenylessigsäure beim Erhitzen von α.α.β-Triphenyl-buttersäure auf 260° (STAUDINGER. SUTER, B. 53, 1097; vgl. STAU., RHEINER, Helv. 7, 9). In sehr geringer Menge beim Rehandeln von β-Brom. hydrozimtağure mit. Netrium thio n kresellet Lögung (Armure) Behandeln von  $\beta$ -Brom-hydrozimtsäure mit Natrium-thio-p-kresolat-Lösung (Arndt. B. 56, 1273). Bei der Destillation von Fichten-Kolophonium (Czerny, Bulet. Soc. chim. B. 56, 1273). Det der Destillation von Figneen-Kolophonium (CZEKNX, Duiel. Soc. Chem. România 7, 92; C. 1926 I, 2803). — Styrol findet sich in geringer Menge im carburierten Wassergas (Brown, Howard, Ind. Eng. Chem. 15, 1147; C. 1924 I, 985; Br., Berger. Ind. Eng. Chem. 17, 168; C. 1925 I, 2129; Br., Ind. Eng. Chem. 20, 1178; C. 1929 I, 709) sowie im Rohxylol (Muller, Langedijk, Chem. Weekb. 20, 627; C. 1924 I, 1884).

Darst. Durch Destillation von 1 Mol β-Phenäthylalkohol mit 1—1,5 Mol gepulvertem

Kaliumhydroxyd im Kupferkolben; Ausbeute fast quantitativ (SABETAY, Bl. [4] 45, 72; S., MINTSOU, Bl. [4] 45, 844).

#### Physikalische Eigenschaften.

Kp<sub>760</sub>: 145,8° (Lecat, R. 46, 246); Kp<sub>28</sub>: 52—53° (Sabetax, Bl. [4] 45, 72). D<sup>23</sup>: 0,9038 (S.). Verbrennungswärme bei konstantem Volumen: 1052,0 kcal/Mol (Landrieu, Baylocq, Johnson, Bl. [4] 45, 41). n<sub>0</sub><sup>25</sup>: 1,5440 (S.). Refraktionsdispersion: Moutte, Chim. et Ind. 19, Sondernummer, S. 262; C. 1929 I, 677. Elliptische Polarisation von linear polarisiertem Licht bei der Streuung an Styrol-Oberflächen: Bouhet, C. r. 185, 201. Beugung von Röntgenstrahlen an flüssigem Styrol: Katz, Ph. Ch. 125, 328; Kautschuk 1927, 217; Z. Phys. 45, 106; C. 1927 II, 1206; 1928 I, 154; K., Selman, Z. Phys. 46, 401; C. 1928 I, 1743; Hünemörder, Kautschuk 1927, 107; C. 1927 I, 2390. Luminescenzspektrum unter dem Einfluß von Kathodenstrahlen: Marsh, Soc. 1927, 128; von Styrol-Dampf unter dem Einfluß von Teslastrahlen: McVicker, Marsh, Stewart, Soc. 125, 1746; Marsh, Phil. Mag. [6] 49, 977; C. 1925 II, 890. Fluorescenzspektrum von Styrol-Dampf bei 12—15 mm Druck und 60°: Marsh, Soc. 123, 3321. Styrol bildet azeotrope Gemische mit Glycerinac. Adichlorhydrin (Kp<sub>760</sub>: ca. 143,5°; ca. 85 Gew.-% Styrol) (Lecat, Ann. Soc. scient. Bruxelles 47 [1927], 110), mit Butylalkohol (Kp<sub>760</sub>: ca. 116,5°; 21 Gew.-% Styrol), Isobutylcarbinol (Kp<sub>760</sub>: 128,5°; 37 Gew.-% Styrol) und Cyclohexanol (Kp<sub>760</sub>: 144°; 77 Gew.-% Styrol) (L., Ann. Soc. scient. Bruxelles 48 I [1928], 54, 58), mit n-Hexylalkohol (Kp<sub>760</sub>: 144°; 77 Gew.-% Styrol) (L., Ann. Soc. scient. Bruxelles 49 [1929], 22), mit Acetamid (Kp<sub>760</sub>: 144°; 88 Gew.-% Styrol) (L., Ann. Soc. scient. Bruxelles 47, 68).

Chemisches und biochemisches Verhalten.

Styrol läßt sich am besten in gelben Flaschen im Dunkeln unter Zusatz eines oxydationshemmenden Stoffes wie z. B. Hydrochinon aufbewahren (Sabetax, Bl. [4] 45, 72). — Die Polymerisation von Styrol verläuft als Kettenreaktion (Staudinger, B. 53, 1082; 59, 3037; St., Mitarb., B. 62, 254). Zur Kinetik der Umwandlung in Polystyrol vgl. z. B. Schulz, Husemann, Ang. Ch. 50 [1937], 767; Ph. Ch. [B] 50 [1941], 116; Breitenbach, M. 71 [1938], 275; G. V. Schulz in W. Röhrs, H. Staudinger, R. Vieweg, Fortschritte der Chemie, Physik und Technik der makromolekularen Stoffe [München-Berlin 1939], S. 29. Styrol polymerisiert sich in der Hitze, bei Luft-Ausschluß zu höhermolekularen Polystyrolen als bei Anwesenheit von Luft (Staudinger, Machemer, B. 62, 2921). Polymerisation zu Polystyrol unter einem Druck von 9000 Atm.: Bridgman, Conant, Pr. nation. Acad. USA. 15, 681; C. 1929 II, 2765; in Tetralin bei 200°: St., Mitarb., B. 62, 2920; in Gegenwart von Floridaerde: St., Breusch, B. 62, 455; in Gegenwart von Zinn(IV)-chlorid: St.. B. 59, 3031; St., Mitarb., B. 62, 245. Durch Zusatz von Jod sowie von anorganischen und organischen Jodverbindungen wird die Polymerisation beschleunigt (Moureu, Duffaisse, C. r. 178, 828). Die Polymerisation bei der Destillation unter gewöhnlichem Druck läßt sich durch Zusatz von etwas Hydrochinon oder Benzochinon wenigstens teilweise verhindern (Sabetax, Bl. [4] 45, 72; vgl. a. Breitenbach, B. 71 [1938], 1438).

Styrol liefert bei der Destillation über einen glühenden Platindraht bei ca. 20—30 mm Druck geringe Mengen Benzol, Naphthalin, Distyrol und einen nicht näher untersuchten, bei 1046 unscharf schmelzenden Kohlenwasserstoff (H. FISCHER, TREIBS, A. 446, 253).

Die Autoxydation wird durch Phenole wie Hydrochinon, Brenzcatechin, Pyrogallol usw. und deren Derivate stark verlangsamt (Mou., Du., C. r. 174, 259), durch Jod und durch anorganische oder organische Jodverbindungen beschleunigt (Mou., Du., C. r. 178, 828). Beeinflussung der Autoxydation durch anorganische oder organische Schwefelverbindungen: Mou., Du., Badoche, C. r. 179, 241; durch stickstoffhaltige organische Verbindungen: Mou., Du., Bah, C. r. 183, 409, 823; durch Blausäure und Milchsäurenitril: Mou., Du., Bah, C. r. 186, 1676). Beeinflussung der Autoxydation durch anorganische und organische Phosphorverbindungen: Mou., Du., Bah, C. r. 187, 157; durch anorganische und organische Siliciumund Borverbindungen: Mou., Du., Bah, C. r. 187, 917; durch anorganische und organische Siliciumund Borverbindungen: Mou., Du., Laplagne, C. r. 187, 1266; durch anorganische und organische und organische Und organische Antimon-, Wismut- und Vanadinverbindungen: Mou., Du., Bah, C. r. 187, 1092. Geschwindigkeit der Absorption von Sauerstoff durch Styrol allein und bei Zusatz von Anthracen oder Benzopersäure bei 110°: Milas, Pr. nation. Acad. USA. 14, 844; C. 1929 I, 646.

Styrol wird durch Brom und konz. Salpetersäure zu einem Gemisch von Bromnitromethanen oxydiert (Datta, Chatterjee, Am. Soc. 45, 480). Liefert mit überschüssiger Benzopersäure in Chloroform bei 0° Styroloxyd (Syst. Nr. 2366) (HIBBERT, BURT, Am. Soc. 47, 2243). Geschwindigkeit der Oxydation mit Benzopersäure in Chloroform + Tetrachlorschlenstoff: Bößseken, Derx, R. 40, 524; D., R. 41, 332; in Chloroform oder Tetrachlorschlenstoff bei 0—30°: Böe., Blumberger, R. 44, 93.

Geschwindigkeit der Hydrierung in verschiedenen Lösungsmitteln bei Zimmertemperatur in Gegenwart verschieden hergestellter Platin- oder Palladium-Katalysatoren: Kariyone, J. pharm. Soc. Japan 1925, Nr. 515, S. 2; C. 1925 I, 2377; Kern, Shriner, Adams, Am. Soc.

47, 4149; in Alkohol in Gegenwart von Palladium: Salkind, Ж. 52, 195; C. 1923 III, 1392; in Gegenwart von Platinschwarz bei 19°: Lebedew, Kobljanski, Jakubtschik, Soc. 127, 422; Ж. 56, 265; in Alkohol in Gegenwart von Platinschwarz im Gemisch mit anderen ungesättigten Verbindungen: L., K., J., Soc. 127, 426; Ж. 56, 277; Vavon, Jakeš, C. r. 183, 300; Bl. [4] 41, 90. — Liefert bei Einw. von Brom-Kaliumbromid-Lösung bei 90° Brommethyl-phenyl-carbinol; bei Zimmertemperatur erhält man außerdem kleine Mengen Styroldibromid (Read, Reid, Soc. 1928, 1488). Geschwindigkeit der Einw. von Jod in Chloroform bei 16°: Bößenen, Blumberger, R. 44, 97. — Bei der Umsetzung von 2 Mol Styrol mit 1 Mol Dischwefeldichlorid bei 100° entsteht β.β'-Dichlor-β.β'-diphenyl-diäthylsulfid (Pope, Smith, Soc. 121, 1168). Liefert bei der Einw. von ¹/4 n-Ammoniumdisulfit-Lösung in Gegenwart von Kießelgur 1-Phenyl-äthan-sulfonsäure-(1) (Ashworth, Burkhardt. Soc. 1928, 1798). Bei Einw. von Stickstofftrichlorid in Tetrachlorkohlenstoff bei —10° und folgendem Einleiten von Chlorwasserstoff bilden sich Styroldichlorid und 2-Chlor-1-amino-1-phenyl-äthan (Coleman, Campbell. Am. Soc. 50, 2754). Liefert mit Quecksilberacetat in Eisessig [β-Acetoxy-β-phenyl-äthyl]-quecksilberacetat (Syst. Nr. 2342) (Priewe, D. R. P. 459145; C. 1928 II, 1615; Frdl. 16, 2571). Einw. von Quecksilberacetat in wäßr. Lösung: Manchot, A. 421, 319, 329.

Styrol gibt bei der Einw. von Nitrosobenzol in der Kälte N-Phenyl-isobenzaldoxim: daneben entstehen Azoxybenzol, Benzaldehyd, Benzoesäure und Ameisensäure (ALESSANDRI. G. 54, 434; INGOLD, WEAVER, Soc. 125, 1462); reagiert analog mit 4-Chlor-1-nitroso-benzol (I., W.). Liefert mit Tetralin in Gegenwart von konz. Schwefelsäure 1(oder 5)-α-Phenäthyltetralin (v. Braun, Kirschbaum, B. 54, 609). Einfluß von Licht und von Piperidin auf die Geschwindigkeit der Addition von Thiophenol: Ashworth, Burkhardt, Soc. 1928, 1797. 1800. Styrol lagert Diphenylketen beim Erwärmen im Rohr auf 60° unter Bildung von 1.1.2-Triphenyl-cyclobutanon-(4) an (Staudinger, Suter, B. 53, 1096; vgl. St., Rheiner, Helv. 7, 9; Bergmann, Blum-Bergmann, Soc. 1938, 727). Gibt mit Phosgen in Gegenwart von Aluminiumchlorid in Toluol bei  $35-40^{\circ}$   $\beta$ -Chlor-hydrozimtsäure-chlorid (Pace, G. 59, 583). Bei der Einw. von Chlorharnstoff in wäßr. Essigsäure entsteht Chlormethyl-phenylcarbinol (Detoeuf, Bl. [4] 31, 176). Rhodan wird nur bei Belichtung unter Bildung von Styroldirhodanid angelagert; die Reaktion kann erfolgen in Tetrachlorkohlenstoff (Kaufmann, Liepe, Ber. disch. pharm. Ges. 33, 146; C. 1923 III, 612; K., D. R. P. 404175; C. 1925 I, 295; Frdl. 14, 369), in Eisessig + Tetrachlorkohlenstoff (K., B. 59, 1391) oder in Benzol (SÖDERBÄCK, A. 443, 154); Styroldirhodanid entsteht auch bei gleichzeitiger Einw. von Rhodaniden und Halogen auf Styrol (I. G. Farbenind., D. R. P. 484360; C. 1929 I. 2697; Frdl. 16, 434). Bei 12-stdg. Aufbewahren mit Azo-N(CO2 · CH3) · NH · CO2 · CH3 dicarbonsäure-dimethylester in Äther bildet sich 4-[α.β-Dicarbomethoxy-hydrazino]-1.2.3.4-tetrahydrocinnolin-dicarbon-CH\_CH2 säure-(1.2)-dimethylester (s. nebenstehende Formel; Syst. Nr. N N CO2 CH3 3783) (DIELS, ALDER, A. 450, 246); reagiert vielleicht analog mit Azodicarbonsäurediäthylester (vgl. die Vorbemerkung CO2 CH3

INGOLD, WEAVER (Soc. 127, 381, 386) ergeben jedoch äquimolekulare Mengen Styrol und Azodicarbonsäure-diäthylester bei mehrtägigem Aufbewahren 5-Phenyl-hexahydro-1.2.3.4-tetrazin-tetracarbonsäure-(1.2.3.4)-tetraäthylester (Syst. Nr. 4015). Styrol reagiert nicht mit Benzylmagnesiumchlorid oder Triphenylmethylmagnesiumchlorid (GILMAN, MCGLUMPHY, R. 47, 421).

zu den Reaktionen dieser Verbindung in E II 3, 98); nach

Literatur über das physiologische Verhalten s. bei H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt., 2. Bd. [Berlin-Leipzig 1932], S. 47. — Styrol zeigt intensiven Leuchtgasgeruch (Mailhe, Bl. [4] 39, 924). Einfluß auf die Keimung von Samen: Sigmund, Bio. Z. 146, 398.

### Polymerisationsprodukte des Styrols.

Polystyrol, "Metastyrol" (C<sub>8</sub>H<sub>8</sub>)<sub>x</sub> (H 476; E I 229). Zum Ersatz der Bezeichnung Metastyrol durch Polystyrol vgl. H. Staudinger, Mitarb., B. 62, 241 Ann. 4; C. Ellis. The chemistry of synthetic resins, Bd. I [New York 1935], S. 232 Ann. 3. — Literatur: W. Heuer in H. Staudinger, Die hochmolekularen organischen Verbindungen [Berlin 1932], S. 157. — C. Ellis, The chemistry of synthetic resins, Bd. I [New York 1935], S. 232. — A. J. Weith in R. E. Burk, H. E. Thompson, A. J. Weith, J. Williams, Polymerisation and its applications in the fields of rubber, synthetic resins and petroleum [New York 1937], S. 185. — E. Trommsdorff in R. Houwink, Chemie und Technologie der Kunststoffe [Leipzig 1939], S. 329. — K. H. Meyer, H. Mark, Hochpolymere Chemie [Leipzig 1940], Bd. I, S. 321; Bd. II, S. 104. — O. Kausch, Handbuch der künstlichen plastischen Massen, 2. Aufl. [München-Berlin 1939], S. 313.

Polystyrol ist ein Gemisch polymer-homologer Verbindungen, in denen die Styrolgruppen zu langen Kettenmolekülen vereinigt sind (Staudinger, B. 53, 1082; 59, 3037; Z. ang. Ch.

42, 39; STAU., Mitarb., B. 62, 253, 2914; STAU., BREUSCH, B. 62, 448; W. HEUER in H. STAUDINGER, Die hochmolekularen organischen Verbindungen [Berlin 1932], S. 223). Bei den höheren Gliedern der Reihe treten auch Verzweigungen im Makromolekül auf, und zwar um so stärker, je höher die Polymerisationstemperatur ist (STAU., SCHULZ, B. that zwar um so starker, je hoher die Folymerisationsteinperatur ist (STAU., SCHULZ, B. 68 [1935], 2334; Signer, Helv. 19 [1936], 897). Über Strukturformeln der Polystyrole vgl. STAU., B. 53, 1082; 59, 3035; Z. ang. Ch. 42, 39; STAU., Mitarb., B. 62, 243; W. Heuer in Staudinger, Hochmolekulare organische Verbindungen, S. 162; STAU., STEINHOFER, A. 517 [1935], 42; STAU., SCHULZ, B. 68 [1935], 2334; Midgley, Henne, Leicester, Am. Soc. 58 [1936], 1961; Risi, Gauvin, Canad. J. Res. 13 B, 244; C. 1936 II, 284; STAUDINGER in W. Röhrs, H. STAUDINGER, R. Vieweg, Fortschritte der Chemie, Physik und Technik der makromolekularen Stoffe [München-Berlin 1939], S. 7.

Die Moleküle von hochmolekularem Polystyrol lassen sich in Lösung ultramikroskopisch nicht wahrnehmen (Staudinger, B. 59, 3036; 62, 2906). Kryoskopische Bestimmung des Mol.-Gew. von niedermolekularen Polystyrolen in Benzol: St., Mitarb., B. 62, 244, 258, 261; in Campher: St., Mitarb., B. 62, 247, 261. Über das Mol.-Gew. vgl. a. den Abschnitt Viscosität von Lösungen (S. 366). Das durchschnittliche Mol.-Gew. der Polystyrole ist um so niedriger, je rascher die Polymerisation des Styrols verläuft. Hohe Temperatur und Verdünnen durch Lösungsmittel begünstigen die Bildung der niedermolekularen (hemikolloiden) Produkte, während vor allem hoher Reinheitsgrad zu hochmolekularen (eukolloiden) Polymeren führt. Die Wärmepolymerisation von Styrol liefert oberhalb 200° pulverisierbare Gläser, die ohne zu quellen niederviscose Lösungen geben, also niedermolekularen Charakter haben, während bei tiefer Temperatur zähe Gläser entstehen, die sich unter Quellung hochviscos lösen, also makromolekulare Eigenschaften besitzen. Beide Gruppen sind nicht scharf getrennt, sondern durch Übergänge verbunden (vgl. hierüber STAUDINGER, B. 59, 3031; STAU., Mitarb., B. 62, 241, 257; STAU., MACHEMER, B. 62, 2921; vgl. a. Heuer in Staudinger, Die hochmolekularen organischen Verbindungen, S. 157—224. Trennung von durch Polymerisation von Styrol mit Žinn(IV)-chlorid in Benzol hergestelltem niedermolekularem Polystyrol in Fraktionen von verschiedenem Mol.-Gew. durch Behandeln mit Benzol, Alkohol,

Aceton und Äther: STAU., Mitarb., B. 62, 246, 260.

B. Durch Polymerisation von Styrol bei einem Druck von 9000 Atm.: BRIDGMAN, CONANT, Pr. nation. Acad. USA. 15, 681; C. 1929 II, 2765; in Tetralin bei 200°: STAUDINGER, Mitarb., B. 62, 2920; in Gegenwart von Floridaerde: Stau., Breusch, B. 62, 455; N. I. Toivonen in Staudinger, Hochmolekulare organische Verbindungen, S. 160. Durch Katalysatoren wie Zinn(IV)-chlorid — am besten in verd. Lösung in Benzol, Chloroform oder Tetrachlorkohlenstoff — erfolgt schon in der Kälte rasche Polymerisation des Styrols unter Bildung von niedermolekularem Polystyrol (Stau., B. 59, 3031; Stau., Mitarb., B. 62, 245, 259). — Technische Darstellung von Polystyrol: E. Trommsdorff in R. Houwink, Chemie

und Technologie der Kunststoffe [Leipzig 1939], S. 316.

Die Polystyrole sind amorph (STAUDINGER, Mitarb., B. 62, 247; St., B. 62, 2902) und zeigen bei der Röntgenuntersuchung keine Krystallinterferenzen (KATZ, Ph. Ch. 125, 328; zeigen bei der Kontgenuntersuchung keine Krysteininterferenzen (KATZ, Ph. Ch. 125, 328; Kautschuk 1927, 219; C. 1927 II, 1206; K., Selman, Z. Phys. 46, 401; C. 1928 I, 1743; HAUSER, ROSBAUD, Kautschuk 1927, 20; C. 1927 I, 2608; HENGSTENBERG bei ST., Mitarb., B. 62, 255 Anm. 37), auch nicht im gedehnten Zustand (HÜNEMÖRDER, Kautschuk 1927, 106; C. 1927 I, 2390; WHITBY, McNALLY, GALLAY, Colloid Symp. Mon. 6 [1928], 234; C. 1929 II, 2164). Die Zähigkeit der niedermolekularen Polystyrole ist sehr gering, sie nimmt mit werdenden Molekülara 60 au. (Sp. 1950, 2028). Sp. Mit. 18 20 2029. mit wachsender Molekülgröße zu (St., B. 59, 3038; St., Mitarb., B. 62, 252); bei zunehmender Kettenlänge bilden die Polystyrole erst hochviscose Flüssigkeiten, dann amorphe feste Körper (ST., B. 62, 2903; St., Machemer, B. 62, 2931). Die Elastizität von Polystyrol hängt vom Polymerisationsgrad ab; bei Zimmertemperatur polymerisiertes Styrol verhält sich oberhalb etwa 65° im wesentlichen wie Rohkautschuk (s. H 30, 15) (Whitby, McNally, GALLAY, Colloid Symp. Mon. 6, 233, 234; C. 1929 II, 2164). Reines hochmolekulares Polystyrol wird erst bei 100° elastisch (St., Mach., B. 62, 2922).

Die Löslichkeitseigenschaften der Polystyrole ändern sich ganz allmählich mit wachsendem Molekulargewicht, es können hier alle Übergänge zwischen Lösung und Quellung verfolgt werden (St., B. 62, 2900, 2904; vgl. St., Mach., B. 62, 2923). Niedermolekulares Polystyrol löst sich leicht in Benzol, Schwefelkohlenstoff und Chloroform (St., B. 62, 2901). Die Lösungen der Polystyrole sind farblos (St., Mitarb., Helv. 12, 954 Anm.). Das durch Polymerisation von Styrol in der Kälte hergestellte sehr zähe glasige hochmolekulare Polystyrol quillt mit organischen Lösungsmitteln wie Benzol oder Chloroform stark auf und löst sich sehr langsam und nur in sehr geringer Menge (St., Mitarb., B. 62, 244, 251). Aufnahme von Benzol durch feste Stücke von hochmolekularem Polystyrol: Whitby, McNally, GALLAY, Colloid Symp. Mon. 6 [1928], 231. Die zur Fällung von Solen in Benzol erforderliche Menge Alkohol nimmt mit steigernder Solkonzentration ab; bei Polystyrolen von verschiedenem Polymerisationsgrad erfordern die viscosen Lösungen bei gleicher Konzentration weniger Fällungsmittel als die weniger viscosen (Wh., McN., G., Colloid Symp. Mon. 6,

226; C. 1929 II, 2164). Zur Fällbarkeit von Polystyrol durch verschiedene Lösungsmittel vgl. Wh., McN., G.

Die Viscosität von Lösungen von hochmolekularen Polystyrolen folgt nicht dem Hagen-Poiseuilleschen Gesetz, während Lösungen von niedermolekularen Polystyrolen diesem Gesetz gehorchen (Staudinger, Machemer, B. 62, 2924, 2928). Über die Viscosität von Polystyrol in verschiedenen Lösungsmitteln bei verschiedenen Konzentrationen, Drucken und Temperaturen und die daraus errechneten durchschnittlichen Molekulargewichte vgl. St., B. 59, 3031, 3036; St., Mitarb., B. 62, 242, 245, 250, 258; Helv. 12, 940; St., Frey, B. 62, 2909; St., Mach., B. 62, 2921, 2924; St., Heuer, B. 62, 2933; Whitby, McNally, Gallay, Colloid Symp. Mon. 6, 229; C. 1929 II, 2164.

Depolarisationswinkel des Tyndall-Lichtes an einer 0,04% igen Lösung in Benzol: Herzog, Lange, B. 62, 494.

Lösungen von hochmolekularem Polystyrol altern nicht beim Aufbewahren (Staudinger. FREY, B. 62, 2910). Beim Erhitzen unter Luftausschluß werden nieder- und hochmolekulare Polystyrole in reinem Zustand erst bei 260° merklich abgebaut, hochmolekulare Produkte, die sich erst bei hoher Temperatur verflüssigen, werden auch bei 260° kaum verändert; in Lösungsmitteln wie Benzol beginnt die thermische Spaltung schon bei viel niedrigeren Temperaturen (St., Machemer, B. 62, 2928). Beim Erhitzen technischer hochmolekularer Polystyrole tritt oberhalb 130° ein starker Abbau ein (St., Ma., B. 62, 2930). Thermische Zersetzung von nieder- und hochmolekularen Polystyrolen in Benzol unter Luftausschluß bei 150°, 210° und 260°: St., Ma., B. 62, 2928; beim Erhitzen in Benzol, Toluol, Xylol und Tetralin auf 80-206,5° und in Benzol + Eisessig auf 200°: St., Mitarb., B. 62, 2919. In der Kälte werden Lösungen von hochmolekularem Polystyrol nicht autoxydiert (St., Frex, B. 62, 2910), während bei höherer Temperatur schon die geringsten Mengen Sauerstoff abbauend einwirken (St., Mitarb., B. 62, 2916 Anm. 12; St., Ma., B. 62, 2921). Veränderungen von hochmolekularen Polystyrolen beim Erhitzen an der Luft in Benzol auf 130-240°: St., Mitarb., B. 62, 249. Polystyrol gibt beim Einleiten von Ozon in eine Lösung in Tetrachlorkohlenstoff unter allmählichem Zusatz von Essigsäure, Zersetzen des Ozonids mit siedendem Wasser und nachfolgenden Kochen mit Salpetersäure Polyacrylsäure (E II 2, 384) (St., URECH, WEHRLI, Helv. 12, 1125, 1132). — Bei der Hydrierung in Gegenwart von Nickelkatalysator nach Kelber bilden sich niedermolekulare Hexahydropolystyrole (s. u.) aus hochmolekularen Polystyrol bei 270—280° unter 100 Atm. Wasserstoffdruck (St., B. 59, 3040; St., Geiger, HUBER, B. 62, 266) und aus niedermolekularem Polystyrol in Methylcyclohexan oder Dekalin bei 200° unter 100—140 Atm. Wasserstoffdruck (St., Wiedersheim, B. 62, 2409). Polystyrol läßt sich in Gegenwart von Platin oder von Nickelkatalysator nach Schroeter bei Zimmertemperatur nicht reduzieren (St., G., H., B. 62, 265; St., W., B. 62, 2407).

Hochmolekulares Polystyrol wird durch Brom in Schwefelkohlenstoff oder Benzol schon bei gewöhnlicher Temperatur unter Bildung bromhaltiger Produkte gespalten; Lösungen von niedermolekularen Polystyrolen erfahren bei Zusatz von Brom kaum einen Abbau (St., Mitarb., B. 62, 2914, 2918; St., Machemer, B. 62, 2932). Abbau von hochmolekularem Polystyrol durch verschiedene anorganische und organische Verbindungen: St., B. 59, 3036; St., Mitarb., B. 62, 2917. Polystyrol gibt mit Tetranitromethan farbige Additionsprodukte (St., W., B. 62, 2407 Anm. 12).

Spritzgußmassen aus Polystyrol werden unter dem Namen Trolitul (Dynamit A.G. Nobel, Troisdorf), Folien in Dicken von 0,02—0,15 mm unter dem Namen Styroflex (Norddeutsche Seekabelwerke, Nordenham) hergestellt (E. Trommsdorff in R. Houwink, Chemie und Technologie der Kunststoffe [Leipzig 1939], S. 330, 333); weitere Handelsprodukte gehen unter den Bezeichnungen Victron (Naugatuck Chemical Co.) und Resoglaz (Advance Solvents and Chemical Corp.) (C. Ellis, The chemistry of synthetic resins, Vol. I [New York 1935], S. 232). Polystyrol findet vor allem als Isolierstoff in der Elektrotechnik Verwendung; vgl. z. B. Ellis, The chemistry of synthetic resins, Bd. I, S. 232; P. Nowak in W. Röhrs, H. Staudinger, R. Vieweg in Fortschritte der Chemie, Physik und Technik der makromolekularen Stoffe [München-Berlin 1939], S. 240.

"Hexahydropolystyrol"  $(C_8H_{14})_x$ . Hexahydropolystyrole sind wie Polystyrol Gemische polymer-homologer Verbindungen (STAUDINGER, GEIGER, HUBER, B. 62, 265; ST., WIEDERS-HEIM, B. 62, 2408). — B. Niedermolekulare Hexahydropolystyrole entstehen bei der Hydrierung von hochmolekularen Polystyrolen in Gegenwart von Nickelkatalysator nach Kelber bei 270—280° unter 100 Atm. Wasserstoffdruck (St., B. 59, 3040; St., G., H., B. 62, 266) und von niedermolekularen Polystyrolen in Gegenwart von Nickel in Methylcyclohexan oder Dekalin bei 200° unter 100—140 Atm. Wasserstoffdruck (St., W., B. 62, 2409). — Die unter den angegebenen Bedingungen gewonnenen niedermolekularen Hexahydropolystyrole sind Pulver (aus Ather + Alkohol oder Benzol + Methanol), die sich bei 150—160° (St., G., H.) oder 150—200° verflüssigen (St., W.). Kryoskopische Molekulargewichtsbestimmung in Benzol: St., G., H.; St., W. Viscosität in Benzol: St., G., H.; St., W. — Zersetzt sich beim Erhitzen

auf 350—400° unter Bildung eines Gemisches von sehr niedermolekularen Hexahydropolystyrolen und geringer Mengen Vinylcyclohexan (S. 46) (St., G., H.). Sehr beständig gegen chemische Reagenzien (St., G., H.; St., W.).

#### Substitutionsprodukte des Styrols.

4-Chlor-1-vinyl-benzol, 4-Chlor-styrol  $C_8H_7Cl = C_6H_4Cl \cdot CH \cdot CH_2$ . B. In geringer Menge durch Umsetzung von 4-Chlor-benzaldehyd mit Methylmagnesiumjodid und Destillation des gebildeten, nicht näher beschriebenen Methyl-[4-chlor-phenyl]-carbinols mit Kaliumdisulfat (STAUDINGER, SUTER, B. 53, 1099). — Kp<sub>12</sub>: ca. 74° (ST., SU.). — Polymerisiert sich beim Aufbewahren zu einer hochmolekularen Masse (ST., SU.). Einw. von Aluminiumchlorid in Chlorbenzol: BÖESEKEN, ADLER, R. 48, 484. Liefert beim Erhitzen mit Diphenylketen im Rohr auf 60° 1.1-Diphenyl-2-[4-chlor-phenyl]-cyclobutanon-(4) (ST., SU.; vgl. ST., RHEINER, Helv. 7, 9).

[α-Chlor-vinyl]-benzol, α-Chlor-styrol C<sub>8</sub>H<sub>7</sub>Cl = C<sub>6</sub>H<sub>5</sub>·CCl:CH<sub>2</sub> (H 476; E I 230). B. Durch Einw. von Phosphorpentachlorid auf Acetophenon in siedendem Petroläther (Dufraisse, Viel., Bl. [4] 37, 877). — Aromatisch riechende Flüssigkeit. F: —24° bis —23° (D., V.). Kp<sub>9</sub>: 64° (D., V.); an verschiedenen Präparaten wurden gefunden: Kp<sub>17</sub>: 73—74°; Kp<sub>23,5</sub>: 85—85,5; Kp<sub>23</sub>: 83° (Ley, Rinke, B. 56, 776). D°: 1,1224; D¹¹₀·⁵: 1,1131; D²³₀·⁵: 1,1029 (D., V.); zwei Präparate zeigten D̄²: 1,0975 und 1,0916 (L., R.). n̄²₀·⁵: 1,5584 (D., V.). Ultraviolett-Absorptionsspektrum in Alkohol: L., R., B. 56, 773. — Sehr unbeständig an der Luft; ist auch im Vakuum nicht unbegrenzt haltbar (D., V.). Beim Erhitzen mit 24% iger alkoholischer Kalilauge auf 120° wird das Chlor nur teilweise abgespalten (D., V.). Geschwindigkeit der Reaktion mit Kaliumhydroxyd, Silbernitrat oder Piperidin in 95% igem Alkohol bei 90°: Ретгенко-Кritschenko, B. 62, 587; ж. 61, 1785.

[β-Chlor-vinyl]-benzol, β-Chlor-styrol, ω-Chlor-styrol C<sub>8</sub>H<sub>7</sub>Cl = C<sub>6</sub>H<sub>5</sub>·CH:CHCl (H 476; E I 230). B. Zur Bildung durch Einw. von Chlor auf Zimtsäure (H 476) vgl. Read, Andrews, Soc. 119, 1777; Forster, Saville, Soc. 121, 2596. Als Nebenprodukt beim Behandeln von zimtsaurem Natrium mit Natriumhypochlorit in Sodalösung bei 4° (F., S., Soc. 121, 2596, 2600). Aus β-Styrylmagnesiumbromid und Benzolsulfochlorid in Äther unter Kühlung mit Kältemischung (Gilman, Forhergill, Am. Soc. 51, 3506). — Kp<sub>22</sub>: 92—93° (Dann, Howard, Davies, Soc. 1928, 609). Ultraviolett-Absorptionsspektrum in Alkohol: Ley, Rinke, B. 56, 773. — Geschwindigkeit der Hydrolyse mit 2n-Kalilauge in etwas Methanol und Wasser enthaltendem Alkohol bei 40,3—81°: Dann, Howard, Davies; der Reaktion mit Kaliumhydroxyd, Silbernitrat oder Piperidin in 95%igem Alkohol bei 90°: Petrenko-Kritschenko, B. 62, 587; Ж. 61, 1785. Geschwindigkeit der Addition von Brom in Schwefelkohlenstoff: Reich, van Wijck, Waelle, Helv. 4, 248.

[a. $\beta$ -Dichlor-vinyl]-benzol, a. $\beta$ -Dichlor-styrol  $C_8H_6Cl_2=C_6H_5\cdot CCl: CHCl$  (H 477). Geschwindigkeit der Reaktion mit Kaliumhydroxyd, Silbernitrat und Piperidin in 95% igem Alkohol bei 90°: Petrenko-Kritschenko, B. 62, 587;  $\mathcal{H}$ . 61, 1785.

[ $\beta$ , $\beta$ -Dichlor-vinyl]-benzol,  $\beta$ , $\beta$ -Dichlor-styrol,  $\omega$ . $\omega$ -Dichlor-styrol  $C_8H_6Cl_2=C_6H_5\cdot CH:CCl_2$  (H 477). Geschwindigkeit der Reaktion mit Kaliumhydroxyd, Silbernitrat und Piperidin in 95%igem Alkohol bei 90°: Petrenko-Kritschenko, B. 62, 587;  $\mathcal{H}$ . 61, 1785.

[Trichlorvinyl]-benzol,  $\alpha.\beta.\beta$ -Trichlor-styrol  $C_8H_5Cl_3=C_8H_5\cdot CCl\cdot CCl_2$  (H 477). B. Aus Dibenzoylperoxyd und Tetrachloräthylen bei 110—115°, neben anderen Produkten (Reijnhart, R. 46, 75). — Kp<sub>3</sub>: 87—89°.  $D^{35}$ : 1,40.  $n_5^{15}$ : 1,5758.

4-Brom-1-vinyl-benzol, 4-Brom-styrol  $C_8H_7Br=C_8H_4Br\cdot CH: CH_2$ . B. Beim Erhitzen von Methyl-[4-brom-phenyl]-carbinol mit Phosphorpentoxyd in Benzol (Quellet, Bl. [4] 45, 88) oder mit geschmolzenem Natriumdisulfat auf 150° (Ziegler, Tiemann, B. 55, 3415). — Flüssigkeit von angenehmem Geruch. Erstarrt bei +4,5° zu blättrigen Krystallen (Z., T.). Kp<sub>16</sub>: 88,5—89,5°; Kp<sub>11</sub>: 83,5—84,5° (Z., T.); Kp<sub>12</sub>: 87—88° (Qu.). D<sub>1</sub><sup>18</sup>: 1,4098 (Z., T., B. 55, 3416); D<sub>1</sub><sup>18</sup>: 1,404 (Qu.).  $\alpha_{\alpha}^{18}$ : 1,5920;  $\alpha_{\alpha}^{18}$ : 1,5993;  $\alpha_{\beta}^{18}$ : 1,6196;  $\alpha_{\gamma}^{18}$ : 1,6380 (Z., T.);  $\alpha_{\alpha}^{18}$ : 1,599 (Qu.). — Beim Behandeln mit Brom in Chloroform entsteht 4-Brom-1-[α.β-dibrom-āthyl]-benzol (Z., T.; Qu.). Reagiert nicht mit Magnesium in wasserfreiem Ather (Qu., C. r. 186, 764; Bl. [4] 45, 255).

[α-Brom-vinyl]-benzol, α-Brom-styrol C<sub>8</sub>H<sub>7</sub>Br = C<sub>6</sub>H<sub>5</sub>·CBr:CH<sub>2</sub> (H 477). B. Zur Bildung beim Kochen von Styroldibromid mit alkoh. Kalilauge vgl. Bourguel, A.ch. [10] 3, 228; Ashworth, Burkhardt, Soc. 1928, 1801. Beim Erhitzen von Styroldibromid mit Natriumamid in Toluol auf 110° (Bou., A.ch. [10] 3, 226). Aus α.β-Dibrom-α-phenyl-athylphosphonsaure bei der Einw. von kalter Sodalösung oder besser von kalter konzentrierter Natronlauge (Conant, Coyne, Am. Soc. 44, 2534). — Zur Darstellung aus Phenyl-

acetylen und trocknem Bromwasserstoff in Eisessig vgl. Dufraisse, C.r. 171, 961; A.ch. [9] 17, 171. — F: —44° bis —43°;  $Kp_{7-8}$ : 71°;  $D^{16.4}$ : 1,4400;  $D^{23.7}$ : 1,4025;  $n_2^{16.5}$ : 1,5881 (D., C.r. 171, 961; A.ch. [9] 17, 171). — Oxydiert sich sehr leicht an der Luft (D., A.ch. [9] 17, 174) unter Bildung von  $\omega$ -Brom-acetophenon (D., C.r. 172, 162). Beeinflussung der Autoxydation durch Jod sowie organische und anorganische Jodverbindungen: Moureu, D., C.r. 178, 829. Bei der Einw. von Brom in kaltem Schwefelkohlenstoff entsteht  $\alpha$ -Bromstyrol-dibromid (D., C.r. 171, 962; A.ch. [9] 17, 174). Liefert mit Natriumamid in hochsiedendem Petroleum bei 160° Phenylacetylen (Bourguel, A.ch. [10] 3, 228). Kurzes Kochen mit Ameisensäure ergibt Acetophenon (Ashworth, Burkhardt, Soc. 1928, 1801).

- [β-Brom-vinyl]-benzol, β-Brom-styrol, ω-Brom-styrol C<sub>8</sub>H<sub>7</sub>Br = C<sub>6</sub>H<sub>8</sub>·CH:CHBr.
  a) Höherschmelzende Form (H 477; E I 230). B. Aus der niedrigerschmelzenden Form im Sonnenlicht (Dufraisse, C.r. 172, 67; A.ch. [9] 17, 200; vgl. Dann, Howard, Davies, Soc. 1928, 608). Zur Darstellung durch Erhitzen von Zimtsäuredibromid mit Sodalösung nach Nef (A. 308 [1899], 267) vgl. Du., C.r. 171, 960; A.ch. [9] 17, 170. Gelbliche, beim Aufbewahren allmählich dunkler werdende Flüssigkeit von angenehmem Hyazinthengeruch (Du., C.r. 172, 67; A.ch. [9] 17, 199). F: +6° bis +7° (Du., C.r. 171, 961; A.ch. [9] 17, 170). Lagert sich im Sonnenlicht und auch beim Aufbewahren im Halbdunkel in die niedrigerschmelzende Form um; über das Gleichgewicht der beiden Formen vgl. Dufraise, C.r. 172, 67; A.ch. [9] 17, 199; Dann, Howard, Davies, Soc. 1928, 608. Liefert mit Brom in einem geeigneten Lösungsmittel ω-Brom-styrol-dibromid (Du., C.r. 171, 962; A.ch. [9] 17, 173). Geschwindigkeit der Addition von Brom in Schwefelkohlenstoff: Reich, van Wijck, Waelle, Helv. 4, 248. Geschwindigkeit der Hydrolyse des ungetrennten Gemisches mit der niedrigerschmelzenden Form in Alkohol mit 7n-Kalilauge bei 17—42°: Dann, Howard, Davies, Soc. 1928, 609. Wird von siedender Ameisensäure kaum angegriffen (Ashworth, Burkhardt, Soc. 1928, 1801). Liefert bei 38-tägiger Einw. auf Lithiumbutyl in Petroläther 1-Phenyl-hexen-(1) und trans-trans-1.4-Diphenyl-butadien-(1.3) (Marvell, Hager, Coffman, Am. Soc. 49, 2326). Setzt man ω-Brom-styrol in Äther mit Magnesium um und erwärmt das Reaktionsprodukt mit Benzophenon, so erhält man Diphenylstyrylcarbinol (Syst. Nr. 544) (Ziegler, Richter, Schnell, A. 443, 167, 178) neben Phenylacetylen und trans-trans-1.4-Diphenyl-butadien-(1.3) (K. H. Meyer, Schuster, B. 55, 817; vgl. Straus, Ehrenstein, A. 442, 97, 114; Z., B. 58, 359). Physiologisches Verhalten: H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt., 2. Bd. [Berlin-Leipzig 1932], S. 77. Zur Verwendung in der Parfümerie vgl. Z., R., Sch., A. 443, 177
- b) Niedrigerschmelzende Form. B. Aus der höherschmelzenden Form im Sonnenlicht (Dufraisse, C. r. 172, 67; A. ch. [9] 17, 200; vgl. Dann, Howard, Davies, Soc. 1928, 608). Beim Behandeln von ω-Brom-ω-benzyliden-acetophenon mit gepulvertem Natriumhydroxyd in der Wärme (Du., C. r. 171, 961; A. ch. [9] 17, 162). Farblose Flüssigkeit von brenzligem, teerartigem Geruch (Du., C. r. 172, 67; A. ch. [9] 17, 169; vgl. dagegen Wright, J. org. Chem. 1 [1936], 459). F: —8° bis —7°; Kp<sub>8-7</sub>: 71°; Kp<sub>25-26</sub>: 108°; D<sup>16,5</sup>: 1,4322; D<sup>20,1</sup>: 1,4266; n<sub>2</sub><sup>2,3</sup>: 1,5990 (Du., C. r. 171, 962; A. ch. [9] 17, 163). Lagert sich im Sonnenlicht in die höherschmelzende Form um, verändert sich nicht beim Aufbewahren im Halbdunkel; über das Gleichgewichtsgemisch der beiden Formen vgl. Du., C. r. 172, 67; A. ch. [9] 17, 199; Dann, Howard, Davies, Soc. 1928, 608. Bei der Einw. von Brom in einem geeigneten Lösungsmittel am Sonnenlicht entsteht ω-Brom-styrol-dibromid (Du., C. r. 171, 962; A. ch. [9] 17, 172). Liefert beim Erhitzen mit alkoh. Kalilauge Phenylacetylen (Du., C. r. 171, 962; A. ch. [9] 17, 172). Geschwindigkeit der Hydrolyse des ungetrennten Gemisches mit der höherschmelzenden Form in Alkohol mit 7n-Kalilauge bei 17—42°: Dann, Howard, Davies, Soc. 1928, 609.

[Trijodvinyl] - benzol,  $\alpha.\beta.\beta$  - Trijod - styrol  $C_8H_5I_3=C_6H_5\cdot CI:CI_2$  (H 478; E I 230). Zur Bildung beim Erwärmen von phenylpropiolsaurem Silber mit Jod in Benzol vgl. Wieland, Fischer, A. 446, 55, 67.

4-Nitro-1-vinyl-benzol, 4-Nitro-styrol  $C_0H_7O_2N=O_2N\cdot C_0H_4\cdot CH:CH_2$  (H 478). B. Durch Erhitzen von Dimethyl-[4-nitro- $\beta$ -phenäthyl]-amin in Gegenwart von  $\beta$ -Phenäthyl-chlorid auf dem Wasserbad, neben anderen Produkten (Hanhart, Ingold, Soc. 1927, 1009).

 $[\beta\text{-Nitro-vinyl}]$ -benzol,  $\beta$ -Nitro-styrol,  $\omega$ -Nitro-styrol  $C_8H_7O_2N=C_6H_5\cdot CH\cdot CH\cdot NO_2$  (H 478; E I 230). B. Neben Zimtsäure bei der Einw. von methylalkoholischer Kalilauge auf  $[\alpha.\beta\text{-Dinitro-}\beta\text{-phenyl-āthyl}]$ -styryl-keton (Wieland, Blümich, A. 424, 91). Neben anderen Produkten durch Einw. von Benzil auf Nitromethan-natrium in Alkohol und Zersetzung des erhaltenen gelbbraunen, natriumhaltigen Pulvers mit verd. Mineralsäure; eine weitere Menge entsteht aus dem bei der Zersetzung des gelbbraunen Pulvers erhaltenen

ätherlöslichen Öl (vielleicht  $\beta$ -Nitro- $\alpha$ -phenyl-äthylalkohol) beim Erhitzen auf 150° (Kashiwagi, C.r. 184, 36; Bl. chem. Soc. Japan 2 [1927], 204). — Kp<sub>760</sub>: 250°; Kp<sub>239</sub>: 189,5°; Kp<sub>14</sub>: 149,5° (Herbst, Koll. Beih. 23, 336; C. 1926 II, 2544). Flüchtigkeit: H.

ω-Nitro-styrol gibt bei der Hydrierung in Gegenwart von Platinschwarz in Äther (Banus, Pascual, An. Soc. españ. 20, 690; C. 1923 III, 1074) oder in Gegenwart eines Nickelkatalysators nach Kelber (Kohler, Drake, Am. Soc. 45, 1286) höherschmelzendes 1.4-Dinitro-2.3-diphenyl-butan als Hauptprodukt neben Phenylacetaldoxim; in Gegenwart von Platinschwarz in Äther + Eisessig (Ba., Pa.) oder in methylalkoholischer Salzsäure erhält man Phenylacetaldoxim und geringere Mengen 1.4-Dinitro-2.3-diphenyl-butan. Bei der Hydrierung in Gegenwart von kolloidem Platin in einem Gemisch aus Eisessig, Alkohol und konz. Salzsäure unter 2 Atm. Überdruck bildet sich β-Phenäthylamin (Skita, D. R. P. 406449; C. 1925 I, 1530; Frdl. 14, 343). Läßt sich mit Salpetersäure (D: 1,49) bei — 15° zu viel 4.β-Dinitrostyrol, weniger 2.β-Dinitro-styrol und sehr geringen Mengen 3.β-Dinitro-styrol nitrieren (Baker, Wilson, Soc. 1927, 845). Beim Leiten von Ammoniak durch eine Lösung von β-Nitrostyrol in Benzol entsteht Bis-[β-nitro-α-phenyl-äthyl]-amin, während bei der Einw. von alkoh. Ammoniak polymeres β-Nitro-styrol (s. u.) gebildet wird; die Polymerisation von β-Nitro-styrol wird durch Feuchtigkeit beschleunigt und erfolgt auch bei der Einw. von Hydrazin, Guanidin, Aminoguanidin, Benzylamin, N.N-Dimethyl-p-phenylendiamin und N-Methyl-N-phenyl-hydrazin in Alkohol (Worrall, Am. Soc. 49, 1600, 1604). Anilin wird von β-Nitro-styrol unter Bildung von 2-Nitro-1-anilino-1-phenyl-äthan angelagert; reagiert analog mit p-Toluidin, p-Phenylendiamin, Benzidin, 4-Amino-diphenylamin, Phenylhydrazin, N.N-Diphenyl-hydrazin, p-Tolylhydrazin, β-Naphthylhydrazin, Piperidin, Semicarbazid und Thiosemicarbazid (W.). Reaktion mit α- und β-Naphthylhydrazin, Piperidin, Semicarbazid und Thiosemicarbazid (W.). Reaktion mit α- und β-Naphthylhydrazin, Fropp, H. 178, 135).

Polymeres  $\beta$ -Nitro-styrol ( $C_8H_7O_2N)_x$  (H 479). B. Aus  $\beta$ -Nitro-styrol beim Behandeln mit Ammoniak, Hydrazin, Guanidin, Aminoguanidin, Benzylamin, N.N-Dimethyl-p-phenylendiamin und N-Methyl-N-phenyl-hydrazin in Alkohol (Worrall, Am. Soc. 49, 1600, 1604).

2-Nitro-1-[ $\beta$ -chlor-vinyl]-benzol,  $\beta$ -Chlor-2-nitro-styrol  $C_8H_8O_2NCl = O_2N\cdot C_6H_4\cdot CH: CHCl$  (H 479). B. Durch Einleiten von Kohlendioxyd in eine Lösung von 2-Nitro-zimtsäure in Sodalösung, allmähliches Zufügen von Natriumhypochlorit-Lösung unter Eiskühlung und anschließende Wasserdampfdestillation (Dann, Howard, Davies, Soc. 1928, 608). — Blaßgelbe Nadeln. Riecht angenehm. F: 58°. — Geschwindigkeit der Hydrolyse mit 2n-Kalilauge in etwas Methanol und Wasser enthaltendem Alkohol bei 40,3—81°: D., H., D.

3-Nitro-1-[ $\beta$ -chlor-vinyl]-benzol,  $\beta$ -Chlor-3-nitro-styrol  $C_8H_6O_2NCl = O_2N \cdot C_6H_4 \cdot CH \cdot CHCl$ . B. Analog der vorangehenden Verbindung (Dann, Howard, Davies, Soc. 1928, 608). — Gelbe Prismen (aus Alkohol), die sich am Licht rasch dunkler färben. Riecht angenehm. F: 83°. — Geschwindigkeit der Hydrolyse mit 2n-Kalilauge in etwas Methanol und Wasser enthaltendem Alkohol bei 40,3—81°: D., H., D.

4-Nitro-1[ $\beta$ -chlor-vinyl]-benzol,  $\beta$ -Chlor-4-nitro-styrol  $C_8H_6O_2NCl = O_2N\cdot C_6H_4\cdot CH:CHCl.$  B. Analog den vorangehenden Verbindungen (Dann, Howard, Davies, Soc. 1928, 608). — Blaßgelbe Nadeln (aus Alkohol). Riecht angenehm. F: 128°. In Alkohol viel schwerer löslich als die beiden vorangehenden Verbindungen. — Geschwindigkeit der Hydrolyse mit 2n-Kalilauge in etwas Methanol und Wasser enthaltendem Alkohol bei 40,3° bis 81°: D., H., D.

2-Nitro-1-[ $\beta$ -brom-vinyl]-benzol,  $\beta$ -Brom-2-nitro-styrol  $C_8H_6O_2NBr = O_2N \cdot C_8H_4$ · CH:CHBr. Existiert in einer krystallisierten und einer öligen Form — B. Die beiden Formen entstehen nebeneinander beim Erhitzen von  $\alpha.\beta$ -Dibrom-2-nitro-hydrozimtsäure mit 30 %iger wäßr. Natriumacetat-Lösung; man trennt die beiden Formen durch Destillation im Vakuum (Dann, Howard, Davies, Soc. 1928, 607); nach Reich, Chang (Helv. 3, 240) erhält man beim Erwärmen von  $\alpha.\beta$ -Dibrom-2-nitro-hydrozimtsäure mit Natriumacetat auf dem Wasserbad in wäßr. Lösung die feste Form, in absol. Alkohol die ölige Form. Die krystallisierte Form entsteht aus der öligen Form beim Belichten von Lösungen in Äther oder Benzol mit Sonnenlicht im ultraviolettem Licht (D., H., D.).

a) Krystallisierte Form. Gelbe Blättchen (aus Wasser), hellgelbe Prismen von angenehmem Geruch (aus Alkohol). F: 39° (Dann, Howard, Davies, Soc. 1928, 607), 40°(?) (Reich, Chang, Helv. 3, 240; vgl. D., H., D.). Kp<sub>31</sub>: 165—167° (D., H., D.). — Wird am Licht tiefer gelb (D., H., D.). Liefert mit Brom in Chloroform 2-Nitro-1-[α.β.β-tribrom-āthyl]-benzol (R., Ch.). Geschwindigkeit der Hydrolyse mit 7n-Kalilauge in Alkohol bei 14° und 17°: D., H., D.

b) Ölige Form. Gelbes Öl von angenehmem Geruch (DANN, HOWARD, DAVIES, Soc. 1928, 607). Kp<sub>21</sub>: unterhalb ca. 165°; erstarrt nicht bei 0° (D., H., D.). — Geht bei Belichtung

von Lösungen in die krystallisierte Form über (D., H., D.). Liefert mit Brom in Chloroform 2-Nitro-1- $[\alpha.\beta.\beta$ -tribrom-äthyl]-benzol (R., Ch.).

- 3-Nitro-1-[ $\beta$ -brom-vinyl]-benzol,  $\beta$ -Brom-3-nitro-styrol  $C_8H_6O_2NBr=O_2N\cdot C_6H_4\cdot CH:CHBr.$
- a) Krystallisierte Form (E I 231). B. Entsteht neben dem öligen Isomeren beim Erhitzen von α.β-Dibrom-3-nitro-hydrozimtsäure mit 30%iger Natriumacetat-Lösung; man trennt die beiden Formen durch Destillation im Vakuum (Dann, Howard, Davies, Soc. 1928, 697). Riecht angenehm. F: 77°. Kp<sub>18</sub>: 150°. Wird am Licht tiefer gelb. Geschwindigkeit der Hydrolyse mit 7n-Kalilauge in Alkohol bei 14—24°: D., H., D.

b) Olige Form (E I 231). B. s. o. — Geht am Sonnen- oder ultravioletten Licht nur in geringem Umfang in das krystallisierte Isomere über (Dann, Howard, Davies, Soc. 1928, 607).

- 4-Nitro-1-[β-brom-vinyl]-benzol, β-Brom-4-nitro-styrol  $C_8H_6O_2NBr = O_2N \cdot C_8H_4 \cdot CH : CHBr$ . Existiert in einer höherschmelzenden und einer niedrigerschmelzenden Form. B. Die beiden Formen entstehen nebeneinander beim Erwärmen von  $\alpha.\beta$ -Dibrom-β-4-nitro-hydrozimtsäure mit 30%iger wäßriger Natriumacetat-Lösung (Dann, Howard, Davies, Soc. 1928, 607); die Angaben von Reich, Chang (Helv. 3, 239), wonach man beim Erwärmen von  $\alpha.\beta$ -Dibrom-4-nitro-hydrozimtsäure mit wäßr. Natriumacetat-Lösung oder wäßr. Sodalösung die höherschmelzende, mit Natriumacetat in absol. Alkohol die niedrigerschmelzende Form erhält, konnten Dann, Howard, Davies nur bezüglich der Bildung der niedrigerschmelzenden Form bestätigen.
- a) Höherschmelzende Form. Gelbliche Nadeln von angenehmem Geruch (aus Alkohol oder Petroläther). F: 160° (Dann, Howard, Davies, Soc. 1928, 607,) 123° (Reich, Chang, Helv. 3, 239). Unverändert sublimierbar im Kathodenvakuum (D., H., D.). Wird am Licht tiefer gelb (D., H., D.). Liefert mit Brom in Schwefelkohlenstoff 4-Nitro-1-[α,β,β-tribrom-āthyl]-benzol (R., Ch.). Geschwindigkeit der Hydrolyse mit 7n-Kalilauge in Alkohol bei 14—41,3°: D., H., D.
- b) Niedrigerschmelzende Form. Gelbe Prismen von angenehmem Geruch (aus Petroläther), gelbliche Nadeln (aus Ligroin). F: 49° (Dann, Howard, Davies, Soc. 1928, 608), 45—46° (Reich, Chang, Helv. 3, 239). Kp<sub>31</sub>: 168—170° (D., H., D.). Geht in Benzol-Lösung im Sonnenlicht in Quarz- oder Glasgefäßen teilweise in die höherschmelzende Form über. Liefert mit Brom in Schwefelkohlenstoff 4-Nitro-1-[α.β.β-tribrom-äthyl]-benzol (R., Ch.). Geschwindigkeit der Hydrolyse mit 7n-Kalilauge in Alkohol bei 39,3—41,3°: D., H., D.
- [ $\beta$ -Brom- $\beta$ -nitro-vinyl]-benzol,  $\beta$ -Brom- $\beta$ -nitro-styrol  $C_8H_6O_2NBr=C_6H_5\cdot CH: CBr\cdot NO_2$  (H 480). Lagert p-Toluidin an unter Bildung von 2-Brom-2-nitro-1-p-toluidino-1-phenyl-äthan: addiert analog Phenylhydrazin (Worrall,  $Am.\,Soc.\,43,\,920$ ). Die Additionsprodukte mit Anilin, seinen Derivaten und Phenylhydrazin-Derivaten zersetzen sich meist schon bei der Bildung in Bromnitromethan und Schiffsche Basen, die je nach den Bedingungen miteinander weiterreagieren (W.).
- 2-Nitro-1-[ $\beta$ -nitro-vinyl]-benzol, 2. $\beta$ -Dinitro-styrol  $C_8H_4O_4N_2=O_2N\cdot C_6H_4\cdot CH:$   $CH\cdot NO_2$  (H 480). B. Zur Bildung aus  $\beta$ -Nitro-styrol nach Priebs (A. 225 [1884], 350) vgl. Baker, Wilson, Soc. 1927, 845. Durch Behandeln von 2-Nitro-zimtsäure mit Salpetersäure (D: 1,52) oder durch aufeinanderfolgende Nitrierung von Zimtsäure mit Salpetersäure (D: 1,48—1,5) und mit Salpetersäure (D: 1,52) (van der Lee, R. 45, 689, 690). F: 105° bis 106° (v. d. L.). Leicht löslich in Benzol und Alkohol (v. d. L.). Liefert bei der Reduktion mit Eisenpulver und Eisessig, mit Zinkstaub und wäßr. Essigsäure oder mit amalgamiertem Aluminium in feuchtem Ather geringe Mengen Indol (Nenitzescu, B. 58, 1063; v. d. R. 44, 1090). Bei der Einw. von Na<sub>2</sub>S<sub>2</sub>O<sub>4</sub> in alkal. Lösung entsteht Indigo (N.).
- 3-Nitro-1-[ $\beta$ -nitro-vinyl]-benzol, 3. $\beta$ -Dinitro-styrol  $C_0H_4O_4N_2=O_2N\cdot C_0H_4\cdot CH:$   $CH\cdot NO_3$  (H 480). B. In sehr geringer Menge neben anderen Produkten durch Eintragen von  $\beta$ -Nitro-styrol in Salpetersäure (D: 1,49) bei —15° (Baker, Wilson, Soc. 1927, 845). Aus 3-Nitro-benzeldehyd und Nitromethan in alkoh. Kalilauge unterhalb 5° (De, J. indian chem. Soc. 5, 31; C. 1928 I, 2393). Bei der Einw. von Salpetersäure (D: 1,52) auf 3-Nitro-benzyliden-aceton, Bis-[3-nitro-benzyliden]-aceton (van der Lee, R. 47, 924, 925) oder 3-Nitro-zimtsäure (v. d. L., R. 45, 689). Krystalle (aus Benzol). F: 126—126,5° (v. d. L., R. 45, 689), 123—124° (De).
- 4-Nitro-1-[β-nitro-vinyl]-benzol, 4.β-Dinitro-styrol C<sub>8</sub>H<sub>4</sub>O<sub>4</sub>N<sub>2</sub> = O<sub>2</sub>N·C<sub>6</sub>H<sub>4</sub>·CH: CH·NO<sub>2</sub> (H 480; E I 231). Zur Bildung aus β-Nitro-styrol nach Priebs (A. 225 [1884], 350) vgl. Baker, Wilson, Soc. 1927, 845. Bei der Einw. von Salpetersäure (D: 1,52) auf 4-Nitro-benzylidenaceton oder Bis-[4-nitro-benzyliden]-aceton bei 0° (van der Lee, R. 47, 923, 924). Zur Bildung aus 4-Nitro-zimtsäure mit Salpetersäure (D: 1,52) vgl. v. d. L., R. 45, 690. Darstellung durch aufeinanderfolgende Nitrierung von Zimtsäure mit Salpeter-

säure (D: 1,48—1,5) und mit Salpetersäure (D: 1,52): v. d. L., R. 45, 690. — Gelbe Nadeln (aus Aceton). F: 201—203° (Zers.). Schwer löslich in Benzol und Alkohol (v. d. L., R. 45, 690).

[α.β-Dinitro-vinyl]-benzol, α.β-Dinitro-α-phenyl-äthylen, α.β-Dinitro-styrol  $C_8H_6O_4N_2=C_6H_5\cdot C(NO_3):CH\cdot NO_2$ . B. Beim Einleiten von Stickstoffdioxyd in eine Lösung von Phenylacetylen in Åther + Petroläther unter Kühlung (Wieland, Blümich, A. 424, 103). — Goldgelbe Nadeln (aus Äther + Petroläther). F: 81°; beginnt gegen 100°, sich zu zersetzen. Ziemlich leicht löslich in Petroläther, sehr leicht in den meisten übrigen Lösungsmitteln. — Liefert beim Behandeln mit alkoh. Kalilauge Benzonitril und andere Produkte. Löst sich in konz. Schwefelsäure mit brauner Farbe und wird durch Wasser aus dieser Lösung unverändert gefällt.

4-Chlor-2-nitro-1-[β-nitro-vinyl]-benzol, 4-Chlor-2-β-dinitro-styrol  $C_8H_5O_4N_2Cl$ , s. nebenstehende Formel. B. Aus 4-Chlor-2-nitro-benzaldehyd und Nitromethan bei Gegenwart von methylalkoholischer Kalilauge in Alkohol (VAN DER LEE, R. 45, 692). Beim Behandeln von 4-Chlor-2-nitro-zimtsäure mit Salpetersäure (D: 1,52) (v. p. L.). — Hellgelbe Krystalle. F: 98—99°. Leicht löslich in organischen Lösungsmitteln außer Petroläther, unlöslich in Wasser.



4-Chlor-3-nitro-1-[ $\beta$ -nitro-vinyl]-benzol, 4-Chlor-3. $\beta$ -dinitro-styrol  $C_8H_5O_4N_2Cl$ , Formel I. B. Aus 4-Chlor-3-nitro-benzaldehyd und Nitromethan in Gegenwart von methylalkoholischer Kalilauge in Alkohol (VAN DER LEE, R. 45, 693). Beim Behandeln von 4-Chlor-3-nitro-zimtsäure mit Salpetersäure (D: 1,52) (v. d. L., R. 45, 692). — Nadeln (aus Alkohol). F: 150—151° (Zers.). Ziemlich leicht löslich in Alkohol, Äther, Benzol, Chloroform und Aceton, unlöslich in Petroläther und Wasser.

4-Brom-2-nitro-1- $[\beta$ -nitro-vinyl]-benzol, 4-Brom-2. $\beta$ -dinitro-styrol  $C_8H_5O_4N_2Br$ , Formel II. B. Beim Behandeln von 4-Brom-2-nitro-zimtsäure mit Salpetersäure (D: 1,52) (VAN DER LEE, R. 45, 692). — Krystalle (aus Alkohol). F: 114—116,5°. Leicht löslich in organischen Lösungsmitteln außer Petroläther, unlöslich in Wasser.

4-Brom-3-nitro-1- $[\beta$ -nitro-vinyl]-benzol, 4-Brom-3. $\beta$ -dinitro-styrol  $C_8H_5O_4N_2Br$ , Formel III. B. Beim Behandeln von 4-Brom-3-nitro-zimtsäure mit Salpetersäure (D: 1,52) (VAN DER LEE, R. 45, 693). — Krystalle (aus Alkohol). F: 147—149°. Schwer löslich in Wasser und Petroläther, löslich in Äther, Benzol, Chloroform, Aceton und heißem Alkohol. — Gibt mit alkal. Permanganat-Lösung 4-Brom-3-nitro-benzoesäure.

3.4.5-Tribrom-2-nitro-1- $[\beta$ -nitro-vinyl]-benzol, 3.4.5-Tribrom-2. $\beta$ -dinitro-styrol  $C_8H_3O_4N_2Br_3$ , Formel IV. B. Aus 3.4.5-Tribrom-zimtsäure oder 3.4.5-Tribrom-2-nitro-zimtsäure durch Behandeln mit Salpetersäure (D: 1,52) erst bei 0°, dann in der Wärme (VAN DE BUNT, R. 48, 126). — Krystalle (aus Aceton). 'F: 228—230°. Leicht löslich in Aceton, schwerer in Benzol, Chloroform und Alkohol, schwer in Petroläther, unlöslich in Wasser. — Bei der Reduktion mit Eisenpulver in Alkohol + Eisessig entstehen geringe Mengen einer halogenhaltigen Substanz.

## 2. Kohlenwasserstoffe $C_9H_{10}$ .

1. Propenylbenzol, 1-Phenyl-propen-(1), α-Methyl-β-phenyl-āthylen, β-Methyl-styrol C<sub>0</sub>H<sub>10</sub> = C<sub>4</sub>H<sub>5</sub>·CH:CH·CH<sub>3</sub> (H 481; E I 231). B. Entsteht als Hauptprodukt beim Kochen von [α·Brom-propyl]-benzol mit Natriumsulfit-Lösung (Evans, Mabbott, Turner, Soc. 1927, 1165). Beim Leiten von Allylbenzol über Infusorienerde bei 500° (Ramart, Amagat, C. r. 188, 638). Als Nebenprodukt beim Kochen von 1-Brom-2-phenyl-propen-(1) mit Magnesiumspänen in Äther (Hurd, Webb, Am. Soc. 49, 557). Aus Äthylphenylcarbinol beim Erwärmen mit Äthylmagnesiumbromid oder -jodid in Benzol (Meisenheimer, A. 442, 199). Als Hauptprodukt beim Leiten von Äthylphenylcarbinol und β-Phenyl-propylalkohol bei 300—400° (Ra., Am., A. ch. [10] 8, 302, 303) und von γ-Phenyl-propylalkohol bei 400—500° über Infusorienerde (Ra., Am., C. r. 188, 639). Neben überwiegenden Mengen Allylbenzol beim Behandeln von γ-Phenyl-propylalkohol mit Thionylchlorid (Ra., Am., C. r. 188, 638). Aus Butyl-cinnamyl-āther bei der Einw. von Natrium in Alkohol in der Wärme (Bert, Anglade, C. r. 189, 645). Bei der Einw. von Sodalösung auf β-Brom-α-methyl-hydrozimtsäure (Simonsen, Soc. 117, 569). Durch Zersetzung von 4-Propenyl-phenylmagnesium-bromid mit Wasser (Quelet, C. r. 186, 766; Bl. [4] 45, 256).

Darstellung durch Erhitzen von Äthylphenylcarbinol mit Acetanhydrid in Gegenwart von Phosphoroxychlorid: Späth, Koller, B. 58, 1269.

Kp<sub>760</sub>: 173° (Böeseken, Blumberger, R. 44, 91). D'.: 0,918; n'<sub>D</sub>: 1,558 (Quelet, Bl. [4] 45, 256). Ultraviolett-Absorptionsspektrum: Ramart, Amagat, C. r. 188, 639. Depolarisationsgrad des Streulichts in flüssigem Propenylbenzol bei 18°: Lautsch, Ph. Ch. [B] 1, 118. — Geschwindigkeit der Oxydation mit Benzopersäure in Chloroform oder Tetrachlorkohlenstoff bei 0—30°: Bö., Bl., R. 44, 93. Geschwindigkeit der Addition von Brom in Schwefelkohlenstoff: Reich, van Wijck, Waelle, Helv. 4, 247. Liefert bei Behandlung mit Bromtrinitromethan in Methanol [β-Brom-α-methoxy-propyl]-benzol, in Alkohol den entsprechenden Äthyläther (Schmidt, Schumacher, Asmus, B. 55, 2101), in Ameisensäure das entsprechende Formiat (Schm., Schumacher, Asmus, B. 56, 1241). Bei längerem Aufbewahren mit Azodicarbonsäure-dimethylester wird 2.6-Bis-[α,β-dicarbomethoxy-hydrazino]-β-methyl-styrol(?) gebildet (Diels, Alder, A. 450, 240, 249). Beim Behandeln mit α-Phenyl-isopropyl-kalium in Äther und Einleiten von Kohlendioxyd in die erhaltene braunrote Lösung entsteht β.γ-Dimethyl-α,γ-diphenyl-n-valeriansäure (Ziegler, Mitarb., A. 473, 23).

[ $\alpha$ -Chlor-propenyl]-benzol, 1-Chlor-1-phenyl-propen-(1),  $\alpha$ -Chlor- $\beta$ -methyl-styrol  $C_9H_9Cl=C_6H_5\cdot CCl: CH\cdot CH_3$  (E I 232). Liefert mit Natriumamid in Toluol bei 110° Spuren von 3-Phenyl-propin-(1) neben anderen Produkten (Bourguel, A. ch. [10] 3, 351).

[ $\gamma.\gamma$ -Dichlor-propenyl]-benzol, 3.3-Dichlor-1-phenyl-propen-(1), Cinnamylidenchlorid, Cinnamalchlorid  $C_9H_8Cl_2=C_6H_5\cdot CH\cdot CH\cdot CH\cdot CH\cdot Cl_2$  (H 482; E I 231). Liefert beim Kochen mit Zinkstaub in Alkohol geringe Mengen 1.6-Diphenyl-hexatrien-(1.3.5) (Kuhn, Winterstein, Helv. 11, 108).

4-Brom-1-propenyl-benzol, 4-Brom- $\beta$ -methyl-styrol  $C_0H_0Br=C_0H_0Br:CH:CH:CH:CH_0$  (E I 232). B. Beim Behandeln von 4-Brom-1-allyl-benzol mit isoamylalkoholischer Kalilauge bei ca. 130° (Quelet, C. r. 182, 1284; Bl. [4] 45, 79). Durch Erhitzen von Äthyl-[4-brom-phenyl]-carbinol mit Natriumdisulfat auf 150° (Ziegler, Tiemann, B. 55, 3415) oder mit Kaliumdisulfat auf etwa 75° oder besser durch Kochen mit Phosphorpentoxyd in Benzol (Qu., Bl. [4] 45, 91). — Riecht anisartig (Qu., C. r. 182, 1284), fenchelartig (Z., T.). F: 35° (Z., T.). Kp: 238—239°; Kp<sub>11</sub>: 108—110° (Z., T.); Kp<sub>12</sub>: 110° (Qu., Bl. [4] 45, 80). D<sup>∞</sup><sub>1</sub>: 1,332 (Qu., Bl. [4] 45, 96); D<sup>∞</sup><sub>1</sub>: 1,3309 (Z., T., B. 55, 3416). n<sup>∞</sup><sub>2</sub>: 1,590 (Qu., Bl. [4] 45, 96); n<sup>∞</sup><sub>3</sub>: 1,5775; n<sup>∞</sup><sub>6</sub>: 1,5839; n<sup>∞</sup><sub>3</sub>: 1,6037; n<sup>∞</sup><sub>4</sub>: 1,6216 (Z., T.). — Gibt bei der Umsetzung mit Magnesium in Äther und Zersetzung der Magnesiumverbindung mit Wasser Propenylbenzol, 1.4-Dipropenyl-benzol und andere Produkte (Qu., C. r. 186, 766; Bl. [4] 45, 255). Bei der Einw. von Benzopersäure in Chloroform erhält man α-Methyl-α'-[4-brom-phenyl]-äthylenoxyd (Qu., Bl. [4] 45, 80).

[ $\alpha$ -Brom-propenyl]-benzol, 1-Brom-1-phenyl-propen-(1),  $\alpha$ -Brom- $\beta$ -methyl-styrol  $C_9H_9Br=C_6H_5\cdot CBr: CH\cdot CH_3$  (vgl. H 482). B. Bei der Behandlung von  $\alpha.\beta$ -Dibrom- $\beta$ -phenyl-isobuttersäure mit Sodalösung (Wohl, Jaschinowski, B. 54, 481). — Gelb. Riecht angenehm. — Wird durch siedende alkoholische Kalilauge in Methyl-phenyl-acetylen übergeführt.

[γ-Brom-propenyl]-benzol, 3-Brom-1-phenyl-propen-(1), Cinnamylbromid  $C_9H_9Br=C_6H_5\cdot CH:CH\cdot CH_2Br$  (H 483; E I 232). Die von Klages, Klenk (B. 39 [1906], 2555) als [α-Brom-allyl]-benzol  $C_9H_5\cdot CHBr\cdot CH:CH_2$  (H 5, 484) beschriebene Verbindung wurde als Cinnamylbromid erkannt (Claisen, J. pr. [2] 105, 72; B. 58, 279 Anm. 15). — B. Aus α-Phenyl-allylalkohol beim Behandeln mit Bromwasserstoff in Eisessig in der Kälte oder mit Phosphortribromid in siedendem Benzol (Moureu, Gallagher, Bl. [4] 29, 1010) oder auch in Gegenwart von Pyridin (Bouis, A. ch. [10] 9, 446). — Darst. Man turbiniert Zimtalkohol mit der dreifschen Menge 48%iger Bromwasserstoffsäure (Claisen, Tietze, B. 59, 279). — F: 28,2° (C., T.), 29° (B.), 29—30° (M., G.). E: 28,1° (C., T.). Kp<sub>14</sub>: 127—128° (B.); Kp<sub>15</sub>: 130—131° (C., T.); Kp<sub>17</sub>: 132° (M., G.). D³0: 1,3428; n⁵0: 1,6157 (B.). — Unbeständig,

auch im Vakuum über Schwefelsäure (M., G.; C., T.). Gibt bei der Oxydation mit Permanganat in saurer Lösung oder in Aceton Benzoesäure (M., G., Bl. [4] 29, 1013). Bei der Ozonspaltung werden Benzaldehyd und Bromacetaldehyd erhalten (Burton, Ingold, Soc. 1928, 915). Liefert mit Natriumamid in Toluol bei 110° Spuren von 3-Phenyl-propin-(1) neben anderen Produkten (Bourguel, A. ch. [10] 3, 351). Durch Umsetzen mit Magnesium in Äther und Behandeln des Reaktionsprodukts mit Zimtaldehyd entstehen geringe Mengen Terphenyl (Kuhn, Winterstein, Helv. 11, 108). Gibt bei der Einw. von Phenol in Natriumalkylat-Lösung oder bei Gegenwart von Kaliumcarbonat in Aceton Phenylcinnamyläther; reagiert analog mit p-Kresol; beim Kochen mit Natriumphenolat in Benzol entsteht 2-Cinnamylphenol (Claisen, Tietze, B. 58, 279; C., A. 442, 233, 234).

- 4-Chlor-1-[ $\gamma$ -brom-propenyl]-benzol, 4-Chlor-cinnamylbromid  $C_9H_8$ ClBr =  $C_8H_4$ Cl·CH:CH·CH $_2$ Br. B. Aus 4-Chlor-zimtalkohol oder  $\alpha$ -[4-Chlor-phenyl]-allylalkohol und einer kalten Lösung von Bromwasserstoff in Eisessig (Burton, Soc. 1928, 1656). Tafeln (aus Eisessig). F: 62—63°. Wird durch Ozon in Chloroform-Lösung in 4-Chlor-benzoesäure und Bromacetaldehyd gespalten.
- 2.4-Dinitro-1-[ $\beta$ -chlor-propenyl]-benzol, 2-Chlor-1-[2.4-dinitro-phenyl]-propen-(1),  $\beta$ -Chlor-2.4-dinitro- $\beta$ -methyl-styrol  $C_0H_7O_4N_2Cl$ , s. nebenstehende Formel. B. Beim Erhitzen von Methyl-[2.4-dinitro-benzyl]-keton mit Phosphorpentachlorid in Chloroform (Neber, Hartung, Ruopp, B. 58, 1245). Nadeln (aus Alkohol). F: 85—96°.
- 2. Allylbenzol. 3-Phenyl-propen-(1), Benzyläthylen C<sub>9</sub>H<sub>10</sub> = C<sub>6</sub>H<sub>5</sub>·CH<sub>2</sub>·CH: CH<sub>2</sub> (H 484; E I 233). B. Durch Behandlung von [γ-Brom-allyl]-benzol mit Magnesium in Ather, neben anderen Produkten (Porcher, Bl. [4] 31, 339). Aus Allylalkohol und Benzol bei Gegenwart von Aluminiumchlorid bei 20—25°, neben anderen Produkten (Huston, Sager, Am. Soc. 48, 1957). Neben geringen Mengen Propenylbenzol beim Behandeln von γ-Phenyl-propylalkohol mit Thionylchlorid (Ramart-Lucas, Amagat, C. r. 188, 638). In geringer Menge bei der Einw. von Phenylmagnesiumbromid auf Benzoesäureallylester (Gilman, Robinson, Bl. [4] 45, 640). Durch Zersetzung von 4-Allyl-phenylmagnesiumbromid mit Wasser (Quelet, Bl. [4] 45, 263). Flüssigkeit von starkem Geruch. Kp<sub>760</sub>: 156° (Böesken, Blumberger, R. 44, 91); Kp: 155—156° (Böe., Elsen, B. 48, 367); Kp<sub>730</sub>: ca. 154° (Qu.). Ultraviolett-Absorptionsspektrum: R.-L., A. Liefert beim Leiten über Infusorienerde bei 500° Propenylbenzol (R.-L., A.). Geschwindigkeit der Oxydation mit Benzopersäure in Chloroform oder Tetrachlorkohlenstoff bei 0—30°: Böe., Bl., R. 44, 92. Geschwindigkeit der Einw. von Jod in Chloroform bei 16°: Böe., Bl., R. 44, 97. Liefert bei längerem Kochen mit Bromtrinitromethan in Methanol [γ-Brom-β-methoxy-propyl]-benzol; reagiert analog in alkoh. Lösung (Schmidt, Bartholomé, B. 57, 2039). Gibt mit Benzol bei Gegenwart von Aluminiumchlorid wahrscheinlich 1.2-Diphenyl-propan (Huston, Sager, Am. Soc. 48, 1956). Wird bei längerer Einw. von Peressigsäure hauptsächlich in Benzyläthylenglykol-diacetat übergeführt (Böeseken, Elsen, R. 48, 367).
- [ $\alpha$ -Chlor-allyl]-benzol, 3-Chlor-3-phenyl-propen-(1)  $C_9H_9Cl=C_6H_5\cdot CHCl\cdot CH: CH_2$  (H 484). Die unter dieser Formel beschriebene Verbindung von Klages, Klenk (B. 39 [1906], 3554) wurde von Meisenheimer, Schmidt (A. 475, 178) als Cinnamylchlorid (S. 372) erkannt.
- [γ-Chlor-allyl]-benzol, 1-Chlor-3-phenyl-propen-(1)  $C_6H_6$ Cl =  $C_6H_5$ ·CH<sub>2</sub>·CH:CHCl. B. Aus 1.3-Dichlor-propen und Phenylmagnesiumbromid in siedendem Toluol (Bert, C. r. 180, 1504; Bl. [4] 37, 879) oder in Äther (v. Braun, Kühn, B. 58, 2171). Flüssigkeit von durchdringendem benzolartigem Geruch. Kp: 212—214° (korr.); Kp<sub>18</sub>: 97° (Bert, Bl. [4] 37, 880). Addiert 2 Atome Brom (Bert, C. r. 180, 1504). Gibt beim Erhitzen mit absolut-alkoholischer Kalilauge auf 130—135° [γ-Äthoxy-allyl]-benzol (Bert, C. r. 180, 1505; Bl. [4] 37, 881). Beim Zufügen von [γ-Chlor-allyl]-benzol zu einer Suspension von Natriumamid in hochsiedendem Petroleum bei 105—110° und folgenden Ansäuern bildet sich 3-Phenyl-propin-(1) (Bert, Dorier, Bl. [4] 39, 1611; Bourguel, Bl. [4] 41, 193).
- 4-Brom-1-allyl-benzol C<sub>2</sub>H<sub>9</sub>Br = C<sub>6</sub>H<sub>4</sub>Br·CH<sub>2</sub>·CH:CH<sub>2</sub>. B. Aus 4-Brom-phenyl-magnesiumbromid und Allylbromid in Äther; Reinigung über das Dibromid (QUELET, C. r. 182, 1283; Bl. [4] 45, 76, 78). Riecht angenehm anisartig. Kp<sub>12</sub>: 96°; Kp<sub>15</sub>: 99°; Kp<sub>750</sub>: 222—223°. D<sub>4</sub><sup>43</sup>: 1,324. n<sub>5</sub><sup>45</sup>: 1,559. Lagert sich beim Erhitzen mit isoamylalkoholischer (weniger gut mit alkoholischer) Kalilauge in 4-Brom-1-propenyl-benzol um (Qu., C. r. 182, 1284; Bl. [4] 45, 80). Gibt bei der Oxydation mit Benzopersäure in Chloroform α-[4-Brombenzyl]-āthylenoxyd (Qu., Bl. [4] 45, 80). Durch Umsetzen mit Magnesium in Äther und Behandeln des Reaktionsprodukts mit Wasser entstehen Allylbenzol und andere Produkte (Qu., Bl. [4] 45, 263).

[a-Brom-allyl]-benzol, 8-Brom-3-phenyl-propen-(1) C<sub>9</sub>H<sub>9</sub>Br = C<sub>6</sub>H<sub>5</sub>·CHBr·CH: CH<sub>2</sub> (H 484). Die unter dieser Formel beschriebene Verbindung von Klages, Klenk (B. 39 [1906], 2555) wurde von Claisen (J. pr. [2] 105, 72; B. 58, 279 Anm. 15) als Cinnamylbromid (S. 372) erkannt.

[β-Brom-allyl]-benzol, 2-Brom-3-phenyl-propen-(1), α-Brom-α-benzyl-äthylen  $C_0H_0$ Br =  $C_0H_5$ · $CH_2$ ·CBr: $CH_2$ . B. Aus 2.3-Dibrom-propen-(1) und Phenylmagnesium-bromid in Äther (Lespieau, Garreau, C. r. 171, 112; L., Bl. [4] 29, 531; Bourguel, C. r. 177, 689; A. ch. [10] 3, 378; v. Braun, Kühn, B. 58, 2171). — F: —12.5° (L., G.; L.):  $Kp_{17}$ : 102° (L., G.; L.):  $Kp_{14}$ : 94—95° (v. Br., K.);  $Kp_{14}$ : 99°;  $Kp_p$ : 89—90° (Bou., A. ch. [10] 3, 378). D°: 1,39 (L., G.; L.). — Addiert 2 Atome Brom (L., G., C. r. 171, 112; L., Bl. [4] 29, 531; v. Br., K.). Liefert mit alkoh. Kalilauge bei 110° 1-Phenyl-propin-(1) (L., G., C. r. 171, 112; L., Bl. [4] 29, 531; Bou., A. ch. [10] 3, 350). Beim Erhitzen mit Natrium-amid in hochsiedendem Petroleum auf 110° und nachfolgenden Ansäuern entsteht 3-Phenyl-propin-(1) neben anderen Produkten (Bou., C. r. 176, 753; 177, 690; A. ch. [10] 3, 229, 384).

[γ-Brom-allyl]-benzol, 1-Brom-3-phenyl-propen-(1), β-Brom-α-benzyl-äthylen  $C_9H_9Br = C_6H_5 \cdot CH_2 \cdot CH \cdot CHBr$ . B. Bei der Einw. von 1.3-Dibrom-propen-(1) auf Phenylmagnesiumbromid in Äther (v. Braun, Kühn, B. 58, 2171; Kirrann, C. r. 182, 1630; Bl. [4] 41, 319, 321). Aus [β.γ-Dibrom-allyl]-benzol beim Behandeln mit 20%iger alkoholscher Kalilauge, neben anderen Produkten (Porcher, Bl. [4] 31, 339). — Kp: 217—221° (P.); Kp<sub>13</sub>: 106° (v. B., Kü.); Kp<sub>12</sub>: 106—108° (Ki.). D°: 1,351 (P.); D; 1,3418 (Ki.). n; 1,5629 (Ki.). — Beim Umsetzen mit Magnesium in Äther und Sättigen der Lösung mit Kohlendioxyd entstehen Allylbenzol, 3-Phenyl-propin-(1) und γ-Phenyl-crotonsäure (P.).

4-Brom-1-[ $\gamma$ -chlor-allyl]-benzol, 1-Chlor-3-[4-brom-phenyl]-propen-(1)  $C_9H_8ClBr=C_9H_4Br\cdot CH_2\cdot CH:CHCl.$  B. Aus 1.3-Dichlor-propen und [4-Brom-phenyl]-magnesiumbromid in Ather (Bert, C. r. 180, 1506). — Kp<sub>14</sub>: 140°.  $D_4^{10.5}$ : 1,433.  $n_5^{10.5}$ : 1,580. — Addiert 2 Atome Brom.

[β.γ-Dibrom-γ-jod-allyl]-benzol, 1.2-Dibrom-1-jod-3-phenyl-propen-(1), α.β-Dibrom-β-jod-α-benzyl-äthylen  $C_9H_7Br_2I=C_6H_5\cdot CH_2\cdot CBr:CBrI.$  B. Aus 1-Jod-3-phenyl-propin-(1) durch Einw. von Brom in Chloroform (Grignard, Perrichon, A. ch. [10] 5, 25). — Kp<sub>3</sub>: 150—160° (unter geringer Zersetzung).

 $[\beta, \gamma, \gamma$ -Trijod-allyl]-benzol, 1.1.2-Trijod-3-phenyl-propen-(1),  $\alpha.\beta.\beta$ -Trijod- $\alpha$ -benzyl-äthylen  $C_9H_7I_3=C_6H_5\cdot CH_2\cdot CI:CI_2$ . B. Durch Einw. von überschüssigem Jod auf die Kupferverbindung des 3-Phenyl-propins-(1) (Lespieau, Garreau, C.  $\tau$ . 171, 113; L., Bl. [4] 29, 533). — Nadeln (aus Alkohol). F: 84—85°. — Färbt sich am Licht rot.

- 3. Isopropenylbenzol, 2-Phenyl-propen, α-Methyl-α-phenyl-āthylen, α-Methyl-styrol C<sub>9</sub>H<sub>10</sub> == C<sub>6</sub>H<sub>5</sub>·C(CH<sub>3</sub>):CH<sub>2</sub> (H 484; E I 233). B. In geringer Menge beim Kochen vcn 1-Brom-2-phenyl-propen-(1) mit Magnesiumspänen in Äther (Hurd, Webb, Am. Soc. 49, 557). In geringer Menge bei der Behandlung von Dimethylphenylcarbinol mit trocknem Sauerstoff bei 102—104° (Stephens, Am. Soc. 50, 190) und bei der Destillation von β-Phenyl-propylalkohol bei 300—400° in Gegenwart von Infusorienerde (Ramart, Amagat, A. ch. [10] 8, 303). Beim Kochen von β-Methyl-zimtsäure für sich oder mit 50% iger Schwefelsäure (Johnson, Kon, Soc. 1926, 2753). Bei der Destillation von Trimethyl-[β-phenyl-propyl]-ammoniumhydroxyd (E I 12, 497) (v. Braun, Heider, Neumann, B. 49 [1916], 2619). Darstellung durch Erhitzen von Dimethylphenylcarbinol mit Essigsäureanhydrid oder entwässerter Oxalsäure: Hurd, Webb, Am. Soc. 49, 549; Danilow, Venus-Danilowa, B. 60, 1059; Ж. 59, 199; Staudinger, Breusch, B. 62, 449. Kp<sub>752</sub>: 163—164° (v. B., H., N.). Kp<sub>18</sub>: 60.5—61,5°; Kp<sub>13</sub>: 56° (D., V.-D.). An 2 Präparaten wurde gefunden D°: 0,9272; D°: 0,9142 und D°: 0,9273; D°: 0,9154 (D., V.-D.).
- α-Methyl-styrol polymerisiert sich weder bei langem Aufbewahren noch beim Belichten: beim Erhitzen wie bei der Einw. von Katalysatoren tritt die Polymerisation bedeutend schwerer ein als bei Styrol (Staudinger, Breusch, B. 62, 443, 455). Ein flüssiges Dimeres C<sub>18</sub>H<sub>80</sub> (St., Br.), das als 4-Methyl-2.4-diphenyl-penten-(2) (S. 563) aufzufassen ist (Bergmann, Taubadel., Weiss, B. 64 [1931], 1493), bildet sich als Hauptprodukt bei der Polymerisation durch Erhitzen auf 250° in Stickstoff-Atmosphäre, durch Behandeln mit Bortrichlorid und Titan(IV)-chlorid (St., Br.) sowie mit Florida-Bleicherde (St., Br.; vgl. Lebedew, Filomenko, B. 58, 167; Ж. 57, 133). Bei der Einw. von Zinn(IV)-chlorid ohne Lösungsmittel entsteht unter heftiger Reaktion eine Reihe von gesättigten Polymeren; von ihnen wurde in überwiegender Menge ein festes Dimeres isoliert (St., Br.), das als 1.1.3-Trimethyl-3-phenyl-hydrinden (S. 565) zu formulieren ist (B., T., W., B. 64, 1495; vgl. Welsh, Drake, Am. Soc. 60 [1938], 61), ferner das Trimere bis Oktamere (S. 375) (St., Br.). Behandlung mit Zinn(IV)-chlorid in Lösungsmitteln wie Benzol ergibt im wesentlichen nur das feste Dimere (St., Br.). Verhalten bei monatelanger Bestrahlung mit ultraviolettem Licht in einer Stickstoffatmosphäre: Staudinger, Breusch, B. 62, 455.

375

Oxydation mit Chromsäure in wäßr. Lösung in Gegenwart von KHSO<sub>4</sub> ergibt Ameisensäure und Acetophenon (Danilow, Venus-Danilowa, B. 60, 1059; Ж. 59, 199). Liefert bei 0° mit überschüssiger Benzopersäure in Chloroform α-Methyl-α-phenyl-āthylenoxyd, bei ungenügender Kühlung oder in Gegenwart von Säuren entstehen außerdem Methyl-phenylacetaldehyd und 2.5-Dimethyl-2.5-diphenyl-1.4-dioxan (D., V.-D.). Geschwindigkeit der Hydrierung in Gegenwart von Platinschwarz in Alkohol bei 15° und im Gemisch mit Methylheptenon bei 13°: Lebedew, Kobljanski, Jakubtschik, Soc. 127, 423, 432; Ж. 56, 265. Liefert bei 12-stdg. Einw. von Azodicarbonsäure-dimethylester in Äther unter Kühlung 2-[α,β-Dicarbomethoxy-hydrazino]-α-methyl-styrol (Diels, Alder, A. 450, 249). Beim Behandeln mit α-Phenyl-isopropyl-kalium in Äther und Einleiten von Kohlendioxyd in die rotbraune Lösung entsteht α,γ-Dimethyl-α,γ-diphenyl-n-valeriansäure (Ziegler, Mitarb., A. 473, 23).

Polymerisationsprodukte des  $\alpha$ -Methyl-styrols. — Flüssiges dimeres  $\alpha$ -Methyl-styrol s. 4-Methyl-2.4-diphenyl-penten-(2), S. 563; festes dimeres  $\alpha$ -Methyl-styrol s. 1.1.3-Trimethyl-3-phenyl-hydrinden, S. 565. — Die nachstehend aufgeführten, gegen Brom gesättigten Verbindungen entstehen sämtlich neben 1.1.3-Trimethyl-3-phenyl-hydrinden bei der Einw. von Zinn(IV)-chlorid auf  $\alpha$ -Methyl-styrol in Benzol (Staudinger, Breusch, B. 62, 453, 454). Die Einheitlichkeit ist fraglich. Die Molekulargewichte sind in Benzol und Campher kryoskopisch bestimmt. Viscosität von Lösungen in Benzol: St., B.

Trimeres  $\alpha$ -Methyl-styrol  $C_{27}H_{30}$ . Ist bei Zimmertemperatur ein zähflüssiges Öl. Verflüssigt sich bei  $-3^{\circ}$  bis  $+9^{\circ}$  (Staudinger, Breusch, B. 62, 453). Kp<sub>0,1</sub>: 172–178°. D<sup>20</sup>: 1,0455. n<sup>60</sup>: 1,5843. 1 g löst sich bei 20° in 21,7 cm³ Methanol.

Tetrameres α-Methyl-styrol C<sub>36</sub>H<sub>40</sub>. Stäbchenförmige Krystalle, die bei 127—129° schmelzen, oder amorphe Flocken, die sich bei 38—48° verflüssigen (Staudinger, Breusch, B. 62, 453). Die Krystalle gehen beim Aufbewahren langsam, schneller beim Erwärmen auf 100° in den amorphen Zustand über. Kp<sub>0,1</sub>: 208—212°. D<sup>20</sup> (amorph): 1,0594, (krystallisiert): 1,1452. n<sup>20</sup>: 1,5934. 1 g löst sich bei 20° in 74,8 cm³ Methanol.

Pentameres α-Methyl-styrol C<sub>45</sub>H<sub>50</sub>. Amorphe Flocken. Verflüssigt sich bei 60—68° (STAUDINGER, BREUSCH, B. 62, 453). Kp<sub>0,1</sub>: 240—244° (geringe Zersetzung). D<sup>20</sup>: 1,0624. 1 g löst sich bei 20° in 203 g Methanol; in siedendem Methanol ist die Löslichkeit ca. 50 mal so groß. Brechungsindex einer 50% igen Lösung in Benzol: St., B.

Hexameres α-Methyl-styrol C<sub>54</sub>H<sub>60</sub>. Amorphes Pulver. Verflüssigt sich bei 98° bis 108° (Staudinger, Breusch, B. 62, 454). — Kp<sub>0,1</sub>: 275—285° (unter teilweiser Zersetzung). D<sup>20</sup>: 1,0657. 1 g löst sich bei 20° in 625 g Methanol; in heißem Methanol ist die Löslichkeit wesentlich größer. Brechungsindex einer 50% igen Lösung in Benzol: St., B.

Heptameres  $\alpha$ -Methyl-styrol  $C_{63}H_{70}$ . Amorphes Pulver. Erweicht bei 125—133° (STAUDINGER, BREUSCH, B. 62, 454). Kp<sub>0,1</sub>: 312—316° (unter teilweiser Zersetzung). D<sup>20</sup>: 1,0671. 1 g löst sich bei 20° in 2400 cm<sup>3</sup> Methanol. Brechungsindex einer 50% igen Lösung in Benzol: St., B.

Oktameres  $\alpha$ -Methyl-styrol  $C_{72}H_{80}$ . Amorphes Pulver. Erweicht bei 165—1720 (Staudinger, Breusch, B. 62, 454).  $Kp_{0,1}$ : 345—3600 (unter starker Zersetung). D<sup>20</sup>: 1,0684. 1 g löst sich bei 200 in 25000 cm<sup>3</sup> Methanol. Brechungsindex einer 20% igen Lösung in Benzol: St., B.

4-Brom-1-isopropenyl-benzol, 4-Brom-α-methyl-styrol  $C_9H_9Br=C_6H_4Br\cdot C(CH_3)$ : CH<sub>2</sub>. B. Durch Umsetzung von 4-Brom-phenylmagnesiumbromid mit Aceton und Erhitzen des Reaktionsprodukts mit geschmolzenem Natriumdisulfat auf 150° (Ziegler, Tiemann, B. 55, 3415). — Riecht angenehm. Erstarrt bei 11°. Kp: 228°; Kp<sub>11</sub>: 110°. D<sup>12.0</sup>: 1,3592.  $n_4^{12.0}$ : 1,5772;  $n_5^{12.0}$ : 1,5835;  $n_5^{12.0}$ : 1,6050;  $n_7^{12.0}$ : 1,6209.

[β-Brom-α-methyl-vinyl]-benzol, 1-Brom-2-phenyl-propen-(1), β-Brom-α-methyl-α-phenyl-äthylen  $C_0H_0$ Br =  $C_0H_5$ ·C( $CH_3$ ):CHBr (H 485). Bei der Einw. von Magnesium in Äther und Zersetzung des Reaktionsprodukts mit Wasser entsteht außer den H 485 genannten Reaktionsprodukten noch 2.5-Diphenyl-hexadien-(2.4) (H 5, 682) (Tiffeneau, C. r. 135, 1348; A. ch. [8] 10, 171; vgl. a. Hurd, Webb, Am. Soc. 49, 557).

4. 1-Methyl-2-vinyl-benzol, 2-Vinyl-toluol, o-Tolyldthylen, 2-Methyl-styrol C<sub>2</sub>H<sub>10</sub>, s. nebenstehende Formel (E I 233). B. Beim Durchleiten von 1-Methyl-2-āthyl-benzol durch ein auf 580—620° erhitztes Rohr im Kohlendioxyd-Strom (Naugatuck Chemical Co., D. R. P. 476270; C. 1929 II, 488; Frdl. 16, 329). Bei der Destillation von Methyl-o-tolyl-carbinol über Kaliumpyrosulfat (Eisenlohr, Schulz, B. 57, 1816). Bei der Destillation von Trimethyl-[a-o-tolyl-āthyl]-ammoniumjodid mit Kalilauge (v. Braun, Weissbach, B. 62, 2422). — Kp: 170° bis 174° (El., Sch.). Ist mit Wasserdampf flüchtig (El., Sch.). — Liefert beim Hydrieren in Gegenwart von kolloidem Palladium in Wasser 1-Methyl-2-āthyl-benzol (El., Sch.).

376

- 5. 1-Methyl-3-vinyl-benzol, 3-Vinyl-toluol, m-Tolyläthylen, 3-Methyl-styrol C<sub>9</sub>H<sub>10</sub>. s. nebenstehende Formel (H 485). B. Bei der Destillation von Trimethyl-[β-m-tolyl-āthyl]-ammoniumhydroxyd im Vakuum (v. Braun, Karpf, Garn, B. 53, 107; Titley, Soc. 1926, 509, 512) sowie beim Erhitzen von Trimethyl-[β-m-tolyl-āthyl]-ammoniumjodid mit methylalkoholischer Kalilauge (T., Soc. 1926, 517). Flüssigkeit von charakteristischem Geruch. Kp<sub>1a</sub>: 61—62° (T.), 62—63° (v. B., K., G.). D!°: 0,900; n!°: 1,5403 (v. B., K., G.). Geht unter Luft- und Lichtausschluß in ein durchsichtiges, sehr hartes, in allen Lösungsmitteln unlösliches Glas über (v. B., K., G., B. 53, 108). Die Oxydation mit überschüssigem Permanganat ergibt Isophthalsäure (v. B., K., G.). Gibt bei der Hydrierung in Gegenwart von kolloidalem Palladium in Methanol 1-Methyl-3-āthyl-benzol (v. B., K., G., B. 53, 109; vgl. T., Soc. 1926, 512). Beim Behandeln mit Brom in Chloroform oder Schwefelkohlenstoff unter Kühlung entsteht 1-Methyl-3-[α,β-dibrom-āthyl]-benzol (v. B., K., G.; T.).
- 6. 1-Methyl-4-vinyl-benzol, 4-Vinyl-toluol, p-Tolyläthylen, 4-Methyl-styrol C<sub>9</sub>H<sub>10</sub>, s. nebenstehende Formel (H 485; E I 234). B. Beim Durchleiten von 1-Methyl-4-äthyl-benzol oder p-Cymol durch ein auf 640—650° erhitztes Rohr im Kohlendioxyd-Strom (Naugatuck Chemical Co., D.R. P. 476270; C. 1929 II, 488; Frdl. 16, 329). Bei der Destillation von Methyl-p-tolyl-carbinol über Kaliumpyrosulfat (Eisenlohr, Schulz, B. 57, 1817). Durch Erhitzen von β-p-Tolyl-äthylakhohol mit gepulvertem Kaliumhydroxyd (Sabetay, Bl. [4] 45, 72). Beim Kochen von β-p-Tolyl-äthylamin-hydrojodid bzw. von Trimethyl-[β-p-tolyl-äthyl-ammonium-jodid mit methylalkoholischer Kalilauge (Titley, Soc. 1926, 513, 519). Kp: 172—175° (Ei., Sch.), 170—173° (Sa.); Kp<sub>13</sub>: 59—60° (Ti.). Liefert beim Erhitzen mit Diphenylketen im Rohr auf 60° 1.1-Diphenyl-2-p-tolyl-cyclobutanon-(4) (Staudinger, Suter, B. 53, 1098; vgl. St., Rheiner, Helv. 7, 9).
- 4-[ $\alpha$ -Chlor-vinyl]-toluol,  $\alpha$ -Chlor- $\alpha$ -p-tolyl-äthylen  $C_9H_9Cl = CH_3 \cdot C_6H_4 \cdot CCl \cdot CH_2$  (H 485). B. Durch Einw. von Phosphorpentachlorid auf 4-Methyl-acetophenon (Johnson, McEwen, Am. Soc. 48, 475). Liefert beim Kochen mit starker alkoholischer Kalilauge p-Tolylacetylen.
- 4-[ $\beta$ . $\beta$ -Dichlor-vinyl]-toluol,  $\beta$ . $\beta$ -Dichlor- $\alpha$ -p-tolyl-äthylen  $C_0H_3Cl_2=CH_3\cdot C_0H_4\cdot CH:CCl_2$  (H 486). Wird durch Permanganat in alkal. Lösung zu p-Toluylsäure oxydiert (v. Auwers, Jülicher, B. 55, 2181).
- 4-Trijodvinyl-toluol, p-Tolyl-trijodäthylen  $C_0H_7I_3=CH_3\cdot C_6H_4\cdot CI:CI_2$ . B. Aus p-Tolyl-jodacetylen durch Kochen mit Jod in Äther (Grignard, Perrichon, A. ch. [10] 5, 25). Krystalle. F: 70—71°.
- 7. Indan, Hydrinden C<sub>e</sub>H<sub>10</sub>, s. nebenstehende Formel (H 486; E I 234). Für die hiervon abgeleiteten Namen wird in diesem Handbuch die angegebene Stellungsbezeichnung gebraucht. Zur Konstitution vgl. Mills, Nixon, Soc. 1930, 2512; Fieser, Lothrop, Am. Soc. 58 [1936], 2050; E. Clar, Aromatische Kohlenwasserstoffe [Berlin 1941], S. 52, 55.

   B. Entsteht bei der trocknen Destillation von Steinkohle und findet

Enhance der die Kruber, B. 57, 1012; Weissgerber, Kr., Brennstoffch. 5, 210; C. 1925 I, 2271). Zur Bildung beim Erhitzen von Inden vgl. Weissgerber, Seidler, B. 60, 2090. Aus Inden und Natriumammonium in flüssigem Ammoniak im Autoklaven, neben Indennatrium (Lebeau, Picon, C. r. 173, 85). Neben anderen Produkten bei längerem Erhitzen von Inden unter 75 Atm. Wasserstoff-Anfangsdruck auf 440—465° in Gegenwart eines Gemisches aus gleichen Teilen Tonerde und Eisenoxyd (Ipatjew, Orlow, B. 62, 596; Ж. 61, 1299). — Darstellung durch Hydrierung von Inden in Gegenwart von Nickel unter Druck bei erhöhter Temperatur: v. Braun, Kirschbaum, B. 55, 1681; Goth, B. 61, 1459; bei Gegenwart von kolloidalem Palladium unter gewöhnlichem Druck: Borsche, Pommer, B. 54, 102; in Gegenwart von Platinschwarz in Ather: Courtot, Dondelinger, C. r. 178, 495; A. ch. [10] 4, 290. — Kp: 176° (Bo., Po., B. 54, 102; v. Br., Ki.); Kp<sub>10</sub>: 58—57° (C., D., A. ch. [10] 4, 291). D<sup>11</sup>: 0,9671; n<sup>12</sup>: 1,5405 (C., D., A. ch. [10] 4, 291); D<sup>20</sup>: 0,9645; n<sub>10</sub>: 1,5381 (Bo., Po., B. 54, 102). Beugung von Röntgenstrahlen an flüssigem Hydrinden: Katz, Z. ang. Ch. 41, 332. Tesla-Luminescenzspektrum: McVicker, Marsh, Stewart, Soc. 125, 1745; Marsh, Phil. Mag. [6] 49, 977; C. 1925 II, 890.

Hydrinden bleibt beim Leiten durch ein heißes Glas- oder Eisenrohr bis etwa 700° fast unverändert, oberhalb 700° zersetzt es sich unter Verkohlung (v. Braun, Hahn, Seemann, B. 55, 1690). Bei Verwendung eines stark verzinnten Eisenrohres tritt jedoch bei etwa 650° Dehydrierung ein, wenn man vermeidet, daß der Zinnüberzug durch Abscheidung von Kohlenstoff unwirksam gemacht wird; es entsteht hauptsächlich Inden neben wenig Chrysen und harzigen Produkten (Kruber, B. 57, 1011). Die Oxydation mit Permanganat in alkal.

Lösung ergibt Phthalsäure (v. Br., B. 56, 2334). Beim Eintropfen von Brom in Hydrinden in Gegenwart von etwas rotem Phosphor bilden sich Inden und bromhaltige Produkte in je nach den Bedingungen wechselnden Mengen (Borsche, Pommer, B. 54, 102). Ein Gemisch von 4- und 5-Nitro-hydrinden entsteht neben anderen Produkten beim Nitrieren von Hydrinden mit konz. Salpetersäure und konz, Schwefelsäure bei —10° (Lindner, Bruhin, B. 60, 435) sowie mit Salpetersäure (D: 1,52) und Acetanhydrid bei Gegenwart von Harnstoffnitrat bei —10° (Bo., Po., B. 54, 104). Liefert mit konz. Schwefelsäure bei 150° hauptsächlich Hydrinden-sulfonsäure-(5) (Bo., Po., B. 54, 105). Gibt beim Erhitzen mit Phthalsäure-anhydrid in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff 2-[Hydrindoyl-(5)]-benzoesäure (v. Braun, Kirschbaum, Schuhmann, B. 53, 1165). Die Einw. von Acetylchlorid in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff führt zu 5-Acetyl-hydrinden (v. Br., K., Sch., B. 53, 1163) und wenig 4-Acetyl-hydrinden (Borsche, Pommer, B. 54, 107); die Einw. von Benzoylchlorid unter denselben Bedingungen ergibt 5-Benzoyl-hydrinden und andere Produkte (Bo., Po., B. 54, 109). Beim Erwärmen mit Hydrinden-carbonsäure-(5)-chlorid in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff entsteht Di-hydrindyl-(5)-keton (Bo., John, B. 57, 660). Liefert in Schwefelkohlenstoff in Gegenwart von Aluminiumchlorid mit Oxalylchlorid Hydrinden-carbonsäure-(5) und wenig Hydrinden-carbonsäure-(4)(?) (v. Br., Ki., Sch., B. 53, 1159), mit Diäthylmalonylchlorid 2.2-Diäthyl-4.5-trimethylen-indandion-(1.3) (v. Br., K., Sch., B. 53, 1173). Einw. von Bromcyan in Gegenwart von Aluminiumchlorid führt zu Hydrinden-carbonsäure-(5)-nitril (Bo., Po., B. 54, 106 Anm. 1).

- 1-Chlor-hydrinden, 1-Chlor-indan, Indenhydrochlorid C<sub>θ</sub>H<sub>θ</sub>Cl = C<sub>6</sub>H<sub>4</sub> CHCl > CH<sub>2</sub> (E I 234). Darst. Durch Einleiten von trocknem Chlorwasserstoff in gekühltes Inden (Courtot, Dondelinger, A. ch. [10] 4, 349; Pacaud, Allen, Org. Synth. 18 [1938], 47). Unbeständig; zersetzt sich selbst in geschlossenen Gefäßen (C., D., A. ch. [10] 4, 351). Bei der Destillation hinterbleibt in geringer Menge flüssiges polymeres Inden (C., D., A. ch. [10] 4, 350). Bei der Einw. von Chromschwefelsäure bei 55—57° entsteht α-Hydrindon (Courtot, Krolikowski, C. r. 182, 322). Gibt mit flüssigem Ammoniak im geschlossenen Gefäß bei Zimmertemperatur 1-Amino-hydrinden neben Di-hydrindyl-(1)-amin, mit 22 %igem wäßrigem Ammoniak bei gewöhnlicher Temperatur wenig 1-Amino-hydrinden, viel Indanol-(1) und etwas Inden (C., D., C. r. 178, 493; A. ch. [10] 4, 234). Liefert bei der Kondensation mit Phenol oder mit Phenolaten in An- oder Abwesenheit von Lösungsmitteln wie Benzol oder Äther bei Zimmertemperatur 1-[4-Oxy-phenyl]-hydrinden sowie geringere Mengen 1-Phenoxy-hydrinden und eine bernsteingelbe glasige Masse, die unter 8 mm Druck bei 293° siedet; reagiert analog mit o- und m-Kresol (C., C. r. 187, 662). Einw. von Salicylsäuremethylester: C., C. r. 187, 663. Gibt mit wasserfreiem Methylamin im Rohr bei gewöhnlicher Temperatur 1-Methylamino-hydrinden; reagiert analog mit anderen primären oder sekundären Aminen (C., D., C. r. 177, 537; 178, 494; A. ch. [10] 4, 246, 260).
- 1.2-Dichlor-hydrinden, Indendichlorid  $C_0H_8Cl_2=C_6H_4$  CH2 CHCl. B. Beim Einleiten von 2 Atomen trocknem Chlor in eine kalte Lösung von Inden in Äther (SPILKER, B. 26 [1893], 1541; vgl. SUTER, LUTZ, Am. Soc. 60 [1938], 1360). Öl. Kp<sub>3</sub>: 83—85° (SU., L.). Liefert beim Kochen mit Wasser höherschmelzendes und niedrigerschmelzendes 2-Chlor-1-oxy-hydrinden (Courtot, Fayet, Parant, C. r. 186, 372).
- 1-Brom-hydrinden, 1-Brom-indan, Indenhydrobromid  $C_0H_0Br = C_6H_4 < \frac{CH_0}{CHBr} > CH_2$ . Wurde nicht rein erhalten. B. Beim Einleiten von trocknem Bromwasserstoff in gekühltes Inden, neben anderen Produkten (Courtot, Dondelinger, C. r. 179, 1168; A. ch. [10] 4, 352). Sehr bewegliche, stark lichtbrechende Flüssigkeit. Kp<sub>14</sub>: 101—102°. D<sup>4</sup>: 1,147. Selbst im Vakuum nicht unzersetzt destillierbar. Liefert beim Behandeln mit o-Toluidin bei —10° 1-o-Toluidino-hydrinden.
- 5-Brom-hydrinden, 5-Brom-indan C<sub>0</sub>H<sub>0</sub>Br, s. nebenstehende Br CH<sub>2</sub> CH<sub>2</sub> Formel. B. Beim Umsetzen von diazotiertem 5-Amino-hydrinden-hydrobromid mit Kupfer(I)-bromid, neben wenig 5-Oxy-hydrinden (Borsche, Bodenstein, B. 59, 1913). Durch Verkochen von diazotiertem 6-Brom-5-amino-hydrinden mit Alkohol (B., B.).—Ol von charakteristischem würzigem Geruch. F: —7°. Kp<sub>15</sub>: 112—113°; Kp<sub>16</sub>: 113—114°. Wird von Salpeterschwefelsäure bei 0° zu 5-Brom-4.6-dinitro-hydrinden nitriert. Liefert beim Erwärmen mit aktiviertem Magnesium und Jod in siedendem Äther und Sättigen mit Kohlendioxyd Hydrinden-carbonsäure-(5).
- 1.2-Dibrom-hydrinden, Indendibromid  $C_9H_8Br_2 = C_9H_4 < CH_{Br} > CHBr$  (H 487). Liefert beim Kochen mit Magnesiumcarbonat in wäßr. Aceton 2-Brom-1-oxy-hydrinden (ISHIWARA, J. pr. [2] 108, 195).

4.6-Dibrom-hydrinden C<sub>9</sub>H<sub>8</sub>Br<sub>2</sub>, s. nebenstehende Formel. B. Durch Verkochen von diazotiertem 4.6-Dibrom-5-amino-hydrinden mit Alkohol (Borsche, Bodenstein, B. 59, 1915). — Gelbliches Öl von aromatischem Geruch. Kp<sub>15</sub>: 148<sup>n</sup>. — Liefert mit Salpeterschwefelsäure 5.7-Dibrom-4.6-dinitro-hydrinden.

1-Jod-hydrinden, 1-Jod-indan, Indenhydrojodid  $C_9H_9I = C_8H_4 < \frac{CH_2}{CHI} > CH_2$ . Reinheit sehr fraglich. — B. Beim Einleiten von trocknem Jodwasserstoff in gekühltes Inden. neben anderen Produkten (Courtot, Dondelinger, C. r. 179, 1168; A. ch. [10] 4, 356). — Rötliche, an der Luft stark rauchende Flüssigkeit. Sehr unbeständig; zersetzt sich sehon bei geringer Temperatursteigerung. Liefert mit o-Toluidin bei —10° 1-o-Toluidino-hydrinden.

4-Nitro-hydrinden, 4-Nitro-indan C<sub>9</sub>H<sub>9</sub>O<sub>2</sub>N. s. nebenstehende O<sub>2</sub>N Formel (E I 235). B. Neben 5-Nitro-hydrinden bei der Nitrierung von Hydrinden mit Salpetersäure (D: 1,52) in Acetanhydrid bei Gegenwart von Harnstoffnitrat bei —10° (Borsche, Pommer, B. 54, 104). — Darstellung durch Nitrieren von Hydrinden mit Salpetersehwefelsäure bei —10°: Linder Brihn, B. 60, 438. — Fast farblose Krystalle (aus Alkohol). F: 44—44,5°: Kp<sub>ca.10</sub>: 139° (Li., Br.). Leicht löslich in organischen Lösungsmitteln (Li., Br.). Thermische Analyse des binären Systems mit 5-Nitro-hydrinden (Eutektikum, F: 12° bei 50% 4-Nitro-hydrinden): Li., Br. — Oxydation mit alkal. Permanganat-Lösung ergibt 3-Nitro-phthalsäure (Li., Br.). Reduktion zu 4-Amino-hydrinden erfolgt mit Eisenpulver auf dem Wasserbad in 75% iger Essigsäure (Bor., Bod.) oder in verd. Alkohol (Li., Br.).

Eine von Borsche, Bodenstein (B. 59, 1912) durch Erwärmen von diazotiertem 4-Nitro-5-amino-hydrinden mit Alkohol erhaltene, als 4-Nitro-hydrinden angesehene Verbindung (Prismen aus Petroläther; F: 40°; Kp<sub>16</sub>: 145—146°) hat nicht diese Konstitution (Lindner, Bruhin, B. 60, 438; Goth, B. 61, 1459).

5-Nitro-hydrinden, 5-Nitro-indan C<sub>9</sub>H<sub>9</sub>O<sub>2</sub>N, s. nebenstehende Formel (E I 235). B. Neben 4-Nitro-hydrinden bei der Nitrierung von Hydrinden mit Salpetersäure (D: 1.52) in Acetanhydrid in Gegenwart von Harnstoffnitrat bei —10° (Borsche, Pommer, B. 54, 104). — Darstellung durch Nitrieren von Hydrinden mit Salpeterschwefelsäure bei —10°: LINDNER, BRUHIN, B. 60, 433. — Gelbe Krystalle. F: 40—40,5°; Kp ca. 14: 152° (LI., Br.). Leicht löslich in organischen Lösungsmitteln (Li., Br.). Thermische Analyse des binären Systems mit 4-Nitro-hydrinden (Eutektikum, F: 12° bei 50% 5-Nitro-hydrinden): Li., Br. — Liefert bei der Oxydation mit alkal. Permanganat-Lösung 4-Nitro-phthalsäure (Li., Br.).

5-Brom-4.6-dinitro-hydrinden C<sub>9</sub>H<sub>2</sub>O<sub>4</sub>N<sub>2</sub>Br, s. nebenstehende Formel. B. Beim Nitrieren von 5-Brom-hydrinden mit Salpeterschwefelsäure bei 0° (Borsche, Bodenstein, B. 59, 1914). — Nadeln (aus Alkohol). F: 128°. — Liefert beim Erwärmen mit Natriummethylat in Methanol 4.6-Dinitro-5-methoxy-hydrinden.

methylat in Methanol 4.0-Dinitro-o-methoxy-nydrinden. 5.7-Dibrom-4.6-dinitro-hydrinden  $C_0H_0O_4N_2Br_2$ , s. nebenstehende Formel. B. Beim Nitrieren von 4.6-Dibrom-hydrinden mit Salpeterschwefelsäure bei Zimmertemperatur (Borsche, Bodenstein, B. 59, 1915). — Krystalle (aus Alkohol). F: 143°.

$$\begin{array}{c|c} O_2 N \\ \hline Br & CH_2 \\ O_2 N & -CH_2 \end{array}$$

$$\begin{array}{c|c}
O_2N \\
Br \\
CH_2
\end{array}$$

$$CH_2$$

## 3. Kohlenwasserstoffe $C_{10}H_{12}$ .

1. α-Butcnyl-benzol, 1-Phenyl-buten-(1), α-Äthyl-β-phenyl-äthylen, β-Āthyl-styrol C<sub>10</sub>H<sub>12</sub> = C<sub>6</sub>H<sub>5</sub>·CH·CH·C<sub>2</sub>H<sub>5</sub> (H 487; E I 235). B. Als Hauptprodukt bei tagelangem Schütteln von 1-Brom-1-phenyl-butan mit Natriumsulfit-Lösung bei Zimmertemperatur (Evans, Mabbott, Turner, Soc. 1927, 1167). Bei der Destillation von Propylphenylcarbinol in Gegenwart von Infusorienerde (Ramart, Amagat, A. ch. [10] 8, 305). Als Hauptprodukt bei der Destillation von β-Phenyl-butylalkohol bei 300—400° in Gegenwart von Infusorienerde (R., A., A. ch. [10] 8, 304). Bei der Zersetzung von 4-α-Butenyl-phenylmagnesiumbromid mit Wasser (Quelet, C.r. 186, 237; Bl. [4] 45, 95. 262). — Kp<sub>780</sub>: 180° (Böeseken, Blumberger, R. 44, 91); Kp<sub>12</sub>: 80° (Qu.). D<sup>(1)</sup><sub>4</sub>: 0,907; n<sup>(1)</sup><sub>5</sub>: 1,550 (Qu., Bl. [4] 45, 262). — Geschwindigkeit der Oxydation mit Benzopersäure in Chloroform oder Tetrachlorkohlenstoff bei 0—1° und 15—16°: Böe., Bl., R. 44, 94. Wird durch Natrium und flüssiges Ammoniak in Ather in Gegenwart von überschüssigem Ammoniumchlorid zwischen —80° und —50° zu Butylbenzol reduziert (Schlubach, Miedel, B. 57, 1684). Geschwindigkeit der Addition von Brom in Schwefelkohlenstoff: Reich, van Wijck, Waelle, Helv. 4, 247; von Jod in Chloroform bei 16°: Böeseken, Blumberger, Bl. [4] 33, 1644.

- 4-Chlor-1-α-butenyl-benzol  $C_{10}H_{11}Cl = C_6H_4Cl\cdot CH\cdot CH\cdot C_2H_5$ . B. Aus 4-Chlor-butyrophenon durch Behandlung mit amalgamiertem Zink und Salzsäure in der Wärme. neben anderen Produkten (ΜοκβαΝ, Ηισκινβοττομ, Soc. 119, 1886). Nach Anis riechende Flüssigkeit.  $Kp_{749}: 234-237^{\circ}$ . Gibt beim Behandeln mit Brom 4-Chlor-1- $[\alpha.\beta-dibrombutyl]$ -benzol und eine oberhalb 230° unter Zersetzung siedende, nach Hyazinthen riechende Flüssigkeit, die beim Kochen mit Pyridin 4-Chlor-1-α-butenyl-benzol zurückbildet.
- [γ.δ.δ-Trichlor-α-butenyl]-benzol, 3.4.4-Trichlor-1-phenyl-buten-(1)  $C_{10}H_9Cl_3 = C_6H_5\cdot CH\cdot CH\cdot CHCl\cdot CHCl_2$ . B. Beim Leiten der berechneten Menge Chlor in 4-Chlor-1-phenyl-butadien-(1.3) (Muskat, Huggins, Am.Soc. 51, 2502).  $Kp_5$ : 140°. Bei der Ozonolyse entstehen Benzaldehyd, Benzoesäure und andere Produkte. Gibt beim Sättigen mit Chlor [α.β.γ.δ.δ-Pentachlor-butyl]-benzol.
- 4-Brom-1-α-butenyl-benzol  $C_{10}H_{11}Br = C_6H_4Br\cdot CH\cdot C_2H_5$ . B. Durch Erhitzen von Propyl-[4-brom-phenyl]-carbinol mit Kaliumdisulfat auf ca. 180° (Quellet, C. r. 186, 236; Bl. [4] 45, 94). Anisartig riechende Blättchen (aus Alkohol). F: 30°. Kp<sub>14</sub>: 126—127°. D<sup>n</sup><sub>1</sub>: 1,282. n<sup>n</sup><sub>5</sub>: 1,580. Liefert bei der Oxydation mit wäßrig-alkoholischer Permanganat-Lösung 4-Brom-benzoesäure. Bei der Einw. von Benzopersäure in Chloroform erhält man α-Athyl-α'-[4-brom-phenyl]-äthylenoxyd. Gibt bei der Einw. von Magnesium in Äther und nachfolgenden Zersetzung mit Wasser α-Butenyl-benzol und andere Produkte (Qu., Bl. [4] 45, 261).
- [ $\gamma$ . $\delta$ -Dibrom- $\alpha$ -butenyl]-benzol, 3.4-Dibrom-1-phenyl-buten-(1)  $C_{10}H_{10}Br_2=C_4H_5\cdot CH:CH\cdot CHBr\cdot CH_2Br$  (H 487). Zur Ozonolyse (Straus, B. 42 [1909], 2883) vgl. Muskat, Huggins, Am. Soc. 51, 2497 Anm. 9, 2499.
- 2.  $\beta$ -Butenyl-benzol, Crotylbenzol, 1-Phenyl-buten-(2),  $\alpha$ -Methyl- $\beta$ -benzyl-āthylen  $C_{10}H_{12}=C_6H_5\cdot CH_2\cdot CH:CH\cdot CH_3$  (H 488; E I 235). B. Aus 1-Brombuten-(2) und Phenylmagnesiumbromid in Ather (v. Braun, Schirmacher, B. 56, 543).  $Kp_{760}:176^0$  (Böeseken, Blumberger, R. 44, 91);  $Kp_{12}:61-63^0$  (v. Br., Sch.).  $D_1^{(9)}:0.9069$ ;  $n_D:1.5157$  (v. Br., Sch.). Geschwindigkeit der Oxydation mit Benzopersäure in Chloroform oder Tetrachlorkohlenstoff bei  $0-1^0$  und  $15-16^0$  und der Einw. von Jod in Chloroform bei  $15^0$  und  $16^0$ : Böe., Bl., R. 44, 94, 96, 98.
- [ $\delta$ -Brom- $\beta$ -butenyl]-benzol, 4-Brom-1-phenyl-buten-(2),  $\gamma$ -Benzyl-allylbromid  $C_{10}H_{11}Br=C_6H_5\cdot CH_2\cdot CH\cdot CH_2\cdot Br.$  B. Aus 1.4-Dibrom-buten-(2) und Phenylmagnesium-bromid in Äther, neben geringeren Mengen anderer Produkte (v. Braun, Lemke, B. 55, 3547).

   Scharf riechendes, nicht erstarrendes Öl. Kp<sub>14</sub>: 112—115°.
- 3. γ-Butenyl-benzol, 4-Phenyl-buten-(1) C<sub>10</sub>H<sub>19</sub> = C<sub>6</sub>H<sub>5</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub></sub>
- [ $\delta$ -Chlor- $\gamma$ -butenyl]-benzol, 1-Chlor-4-phenyl-buten-(1)  $C_{10}H_{11}Cl = C_6H_5 \cdot CH_2 \cdot CH_2 \cdot CH$ : CH: CHCl. B. Beim Behandeln von 1.3-Dichlor-propen mit Benzylmagnesiumchlorid in Toluol bei etwa 100° (Bert, Dorier, Lamy, C. r. 181, 555; vgl. B., C. r. 180, 1504). Gibt mit Natriumamid in Xylol bei 110—120° 1-Phenyl-butin-(3) (B., D., L.).
- **4-Brom-1-** $\gamma$ -butenyl-benzol  $C_{10}H_{11}Br = C_6H_4Br \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot B$ . Aus 4-Brombenzylmagnesiumchlorid und Allylbromid in Ather, neben anderen Produkten (QUELET, C. r. 184, 889; Bl. [4] 45, 80, 84). Flüssigkeit von starkem Geruch.  $Kp_{14}$ : 113°;  $Kp_{12}$ : 106° (Qu.).  $D_4^{\mu}$ : 1,259;  $D_4^{\mu}$ : 1,275;  $n_5^{\mu}$ : 1,554;  $n_5^{\mu}$ : 1,553 (Qu.). Liefert mit Benzopersäure

- 3.4-Oxido-1-[4-brom-phenyl]-butan. Gibt bei der Einw. von Magnesium in siedendem Äther und Zersetzung der Magnesiumverbindung  $\gamma$ -Butenyl-benzol und andere Produkte (Qu., C. r. 186, 765; Bl. [4] 45, 264).
- [ $\gamma$ -Brom- $\gamma$ -butenyl]-benzol, 2-Brom-4-phenyl-buten-(1)  $C_{10}H_{11}Br=C_6H_5\cdot CH_2\cdot CH_2\cdot CBr$ ;  $CH_2\cdot CBr$ ;  $CH_3\cdot CH_2\cdot CBr$ ;  $CH_3\cdot CH_3\cdot 
- 4. [Buten-(2)-yl-(2)]-benzol, 2-Phenyl-buten-(2),  $\alpha.\beta$ -Dimethyl- $\alpha$ -phenyl-āthylen,  $\alpha.\beta$ -Dimethyl-styrol  $C_{10}H_{12}=C_6H_5\cdot C(CH_3):CH\cdot CH_3$  (H 488; E I 235). B. Als Hauptprodukt beim Erhitzen von  $\beta$ -Phenyl-isobutylchlorid mit Pyridin auf 120° (Haller, Ramart, C. r. 174, 1212, 1214).
- 5. [Buten-(1)-yl-(2)]-benzol, 2-Phenyl-buten-(1).  $\alpha$ -Äthyl- $\alpha$ -phenyl-äthylen,  $\alpha$ -Äthyl-styrol  $C_{10}H_{12}=C_6H_5\cdot C(:CH_2)\cdot C_2H_5$ . B. In geringer Menge neben anderen Produkten bei der Destillation von  $\beta$ -Phenyl-butylalkohol bei 300—400° in Gegenwart von Infusorienerde (Ramart, Amagat, A. ch. [10] 8, 305) und beim Kochen von 2-Phenyl-buten-(2)-carbonsäure-(1) oder von stabiler  $\beta$ -Äthyl-zimtsäure mit 50% iger Schwefelsäure (Johnson, Kon, Soc. 1926, 2755). Kp<sub>20</sub>: 81—82° (J., K.). Gibt bei der Oxydation mit alkal. Permanganat-Lösung Propiophenon (J., K.).
- 6. [β-Methyl-α-propenyl]-benzol, Isocrotylbenzol, α.α-Dimethyl-β-phenyl-athylen, β.β-Dimethyl-styrol C<sub>10</sub>H<sub>12</sub> = C<sub>6</sub>H<sub>5</sub>·CH:C(CH<sub>3</sub>)<sub>2</sub> (H 489; E I 236). Zur Konstitution vgl. v. Auwers, B. 62, 694, 696; Ziegler, Colonius, Schäfer, A. 473, 38. B. Durch Einw. von Benzylmagnesiumchlorid auf 2-Brom-2-methyl-1-phenyl-propan in Ather, neben anderen Produkten (Trotman, Soc. 127, 94). Entsteht fast ausschließlich beim Leiten von β-Phenyl-isobutylalkohol über Infusorienerde bei 300—400° (Haller, Ramart, C. r. 174, 1212, 1214). Zur Bildung durch Erhitzen von Isopropyl-phenyl-carbinol mit krystallisierter Oxalsäure nach Tiffeneau (A. ch. [8] 10 [1907], 365) vgl. Conant, Blatt, Am. Soc. 50, 557. Kp: 180—182° (Tiffeneau, Orechow, Bl. [4] 29, 815), 181° (Tr.). Gibt bei der Oxydation mit Benzopersäure in Chloroform α.α-Dimethyl-σ'-phenyl-āthylenoxyd (Ti., Lévy, Bl. [4] 39, 775). Geschwindigkeit der Addition von Brom in Schwefelkohlenstoff: Reich, van Wijck, Waelle, Helv. 4, 247. Gibt beim Behandeln mit Jod und gelbem Quecksilber(II)-oxyd in feuchtem Ather Dimethyl-[α-jod-benzyl]-carbinol, in absol. Methanol den entsprechenden Methyläther (Ti., Or., C. r. 172, 380; Bl. [4] 29, 815, 819). Liefert bei der Einw. von Kalium-Natrium-Legierung in Ather unter Stickstoff eine rote Metall-verbindung, die bei der Behandlung mit Kohlendioxyd β.β.β',β'-Tetramethyl-α-diphenyl-adipinsäure, bei der Zersetzung mit wenig Wasser 2.2.3.3-Tetramethyl-1.4-diphenyl-butan ergibt (Co., Bl.). Beim Behandeln mit α-Phenyl-isopropyl-kalium in Ather und Einleiten von Kohlendioxyd in das Reaktionsgemisch entsteht β-Benzyliden-buttersäure (Ziegler, Mitarb., A. 473, 24).

Nitrosit  $C_{10}H_{12}O_3N_2$  (H 489; E I 236). F: 150° (Haller, Ramart, C. r. 174, 1212), 156° (Tiffeneau, Orechow, Bl. [4] 29, 815).

- 7. 1-Methyl-2-propenyl-benzol, 2-Propenyl-toluol, 1-o-Tolyl-propen-(1),  $\alpha$ -Methyl- $\beta$ -o-tolyl-ālhylen  $C_{10}H_{12}=CH_3\cdot C_4H_4\cdot CH\cdot CH\cdot CH_3$ . B. Durch Destillation von Äthyl-o-tolyl-carbinol über Kaliumpyrosulfat (Eisenlohr, Schulz, B. 57, 1817). Kp: 188—190°. Liefert bei der Reduktion mit Natrium in Alkohol 2-Propyl-toluol.
- 8. 1-Methyl-2-allyl-benzol, 2-Allyl-toluol, 3-o-Tolyl-propen-(1)  $C_{10}H_{12}=CH_3\cdot C_4H_4\cdot CH_2\cdot CH_2\cdot CH_2\cdot CH_3\cdot CH$
- **2-**[ $\gamma$ -Chlor-allyl]-toluol, 1-Chlor-3-o-tolyl-propen-(1)  $C_{10}H_{11}Cl = CH_3 \cdot C_0H_4 \cdot CH_2 \cdot CH$ ; CH: CHCl. B. Aus 1.3-Dichlor-propen und o-Tolylmagnesiumbromid in Toluol bei etwa 100° (Bert, C. r. 180, 1506). Kp<sub>16</sub>: 109°; D<sub>4</sub>: 1,061; n<sub>0</sub>.: 1,545 (B.). Liefert mit Natriumamid in Xylol bei 110—120° 3-o-Tolyl-propin-(1) (B., Dorier, Lamy, C. r. 181, 555).
- 9. 1-Methyl-3-propenyl-benzol, 3-Propenyl-toluol, 1-m-Tolyl-propen-(1)  $C_{10}H_{12}=CH_1\cdot C_6H_4\cdot CH\cdot CH_2\cdot CH_3\cdot CH_3$
- 8-[γ-Brom-propenyl]-toluol, 3-Brom-1-m-tolyl-propen-(1), 3-Methyl-cinnamyl-bromid C<sub>10</sub>H<sub>11</sub>Br = CH<sub>3</sub>·C<sub>6</sub>H<sub>4</sub>·CH·CH·CH<sub>2</sub>Br. B. Aus α-m-Tolyl-allylalkohol und einer kalten Lösung von Bromwasserstoff in Eisessig (Burton, Soc. 1928, 1656). Strohgelbes Öl, das sich allmählich unter Bildung einer schwarzen viscosen Masse zersetzt. Kp<sub>11</sub>: 138° bis 140° (geringe Zersetzung). Wird durch Ozonolyse in m-Toluylsäure und Bromacetaldehyd gespalten.

10. 1-Methyl-4-propenyl-benzol, 4-Propenyl-toluol, 1-p-Tolyl-propen-(1)  $C_{10}H_{12}=CH_3\cdot C_6H_4\cdot CH\cdot CH\cdot CH_3$ .

4-[ $\gamma$ -Brom-propenyl]-toluol, 3-Brom-1-p-tolyl-propen-(1), 4-Methyl-cinnamyl-bromid  $C_{10}H_{11}Br=CH_3\cdot C_8H_4\cdot CH:CH\cdot CH_2Br.$  Beim Behandeln von  $\gamma$ - oder von  $\alpha$ -p-Tolyl-allylalkohol mit Bromwasserstoff in Eisessig (Burton, Ingold, Soc. 1928, 915). — Tafeln (aus Eisessig). F: 64—65°.

11. 1-Methyl-4-allyl-benzol, 4-Allyl-toluol, 3-p-Tolyl-propen-(1)  $C_{10}H_{12} = CH_s \cdot C_sH_4 \cdot CH_s \cdot CH_s \cdot CH_s$ .

4-[ $\gamma$ -Chlor-allyl]-toluol, 1-Chlor-3-p-tolyl-propen-(1)  $C_{10}H_{11}Cl = CH_3 \cdot C_0H_4 \cdot CH_2 \cdot CH$ : CH: CHCl. B. Aus 1.3-Dichlor-propen und p-Tolylmagnesiumbromid in Toluol bei etwa 100° (Bert, C. r. 180, 1506). — Kp<sub>16</sub>: 112,5°; D<sub>4</sub>.5°; 1,053; n<sub>5</sub>.5°; 1,542 (B.). — Liefert mit Natriumamid in Xylol bei 110—120° 3-p-Tolyl-propin-(1) (B., Dorier, Lamy, C. r. 181, 555).

12. 1-Methyl-2-isopropenyl-benzol, 2-o-Tolyl-propen, CH<sub>3</sub> α-Methyl-α-o-tolyl-āthylen. 2.α-Dimethyl-styrol C<sub>10</sub>H<sub>12</sub>, s. nebenstehende Formel (H 490; E I 236). B. Durch Destillation von Dimethylo-tolyl-carbinol über Kaliumpyrosulfat (EISENLOHR, SCHULZ, B. 57, 1818). — Kp: 183—185°. — Liefert bei der Reduktion mit Natrium in Alkohol oder bei der Hydrierung in Gegenwart von kolloidalem Palladium o-Cymol.

13. 1-Methyl-3-isopropenyl-benzol, 2-m-Tolyl-propen, α-Methyl-α-m-tolyl-āthylen, 3.α-Dimethyl-styrol C<sub>10</sub>H<sub>12</sub>, s. nebenstehende Formel (H 490; E I 236). B. Durch Destillation von Dimethylm-tolyl-carbinol mit Kaliumpyrosulfat (ΕΙSΕΝΙΟΗR, SCHULZ, B. 57, 1818).

— Kp: 182—184°. — Liefert bei der Hydrierung in Gegenwart von kolloidalem Platin, ebenso bei der Reduktion mit Natrium in Alkohol, m-Cymol.

14. 1-Methyl-4-isopropenyl-benzol, 2-p-Tolyl-propen, α-Methyl-α-p-tolyl-āthylen, 4.α-Dimethyl-styrol C<sub>10</sub>H<sub>12</sub>, s. nebenstehende Formel (H 490; E I 236). B. Aus Dimethyl-p-tolyl-carbinol durch Erhitzen mit alkoh. Kalilauge auf dem Wasserbad, besser mit Kaliumdisulfat auf 200° (ΕΡΡΙΕ, RUHEMANN, B. 59, 299) oder durch Erhitzen mit Kaliumpyrosulfat oder 90%iger Ameisensäure (ΕΙΣΕΝΙΟΗΡ, SCHULZ, B. 57, 1819). — Kp: 187° bis 189° (Ε., RUH.), 186° (RUPE, WIEDERKEHR, Helv. 7, 664), 183—184° (ΕΙ., SCH.). — Liefert bei der Hydrierung in Gegenwart von kolloidem Platin oder bei der Reduktion mit Natrium in Alkohol p-Cymol (ΕΙ., SCH.).

H 490, Z. 6 v. u. nach "p-Tolylaceton" schalte ein "(TIFFENEAU)".

4-[ $\beta$ -Chlor- $\alpha$ -methyl-vinyl]-toluol, 1-Chlor-2-p-tolyl-propen-(1),  $\beta$ -Chlor-4. $\alpha$ -dimethyl-styrol  $C_{10}H_{11}Cl=CH_3\cdot C_6H_4\cdot C(CH_8)$ :CHCl (H 490). B. Durch Einw. von Natronlauge oder Sodalösung auf  $\beta.\beta$ -Dichlor- $\alpha$ -p-tolyl-isobuttersäure (v. Auwers, Ziegler, A. 425, 283).

15. 1.5 - Dimethyl - 2-vinyl - benzol, [2.4-Dimethyl - phenyl] - äthylen, 2.4-Dimethyl-styrol  $C_{10}H_{12}$ , Formel I.

1.5-Dimethyl-2-[ $\alpha$ -chlor-vinyl]-benzol,  $\alpha$ -Chlor- $\alpha$ -[2.4-dimethyl-phenyl]-äthylen,  $\alpha$ -Chlor-2.4-dimethyl-styrol  $C_{10}H_{11}Cl$ , Formel II. B. Aus 2.4-Dimethyl-acetophenon und Phosphorpentachlorid in der Kälte (Grignard, Perrichon, A. ch. [10] 5, 7). — Kp<sub>19</sub>: 104—105°. D<sub>4</sub>\*: 1,044. n<sub>D</sub>\*: 1,5446. — Liefert beim Erhitzen mit Natriumamid 2.4-Dimethyl-phenylacetylen.



1.5-Dimethyl-2-[ $\beta$ -chlor-vinyl]-benzol,  $\beta$ -Chlor-2.4-dimethyl-styrol  $C_{10}H_{11}Cl$ , Formel III (H 491). B. Beim Kochen von  $\beta$ - $\beta$ -Dichlor- $\alpha$ -[2.4-dimethyl-phenyl]-propionsaure mit Sodalösung (v. Auwers, Ziegler, A. 425, 293).

16. 1.3-Dimethyl-5-vinyl-benzol, [3.5-Dimethyl-phenyl]
āthylen, 3.5-Dimethyl-styrol C<sub>10</sub>H<sub>12</sub>, s. nebenstehende Formel.

B. Beim Durchleiten von 1.3-Dimethyl-5-āthyl-benzol durch ein auf 640—650° erhitztes Rohr im Kohlendioxydstrom (Naugatuck Chemical Co., D. R. P. 476270; Frdl. 16, 329). Bei der Destillation von Trimethyl-[3.5-dimethyl-β-phenāthyl]-ammoniumhydroxyd im Vakuum (v. Braun, Engel, B. 58, 284; vgl. Pitley, Soc. 1926, 509). — Terpenartig riechendes Öl. Kp<sub>14</sub>: 71—72° (v. B., E.). D<sup>10</sup><sub>4</sub>: 0,9012; n<sup>10</sup><sub>5</sub>: 1,5371 (v. B., E.). — Gibt bei der Oxydation mit Salpetersäure Trimesinsäure (v. B., E.).

17. 1.2.3.4-Tetrahydro-naphthalin, Tetralin C<sub>10</sub>H<sub>12</sub>, s. nebenstehende Formel (H 491; E I 236). Für die von Tetralin abgeleiteten Namen wird in diesem Handbuch diese Stellungsbezeichnung gebraucht. Zur Konstitution vgl. Mills, Nixon, Soc. 1930, 2513, 2515; Fieser, Lothrop, Am. Soc. 58 [1936], 2050; Ganapathi, B. 72 [1939], 1384; E. Clar, Aromatische Kohlenwasserstoffe [Berlin 1941], S. 53, 55.

#### Bildung und Darstellung.

B. Tetralin entsteht bei der Hydrierung von 1.2-Dihydro-naphthalin oder 1.4-Dihydro-naphthalin bei Gegenwart von Palladiumsol in verd. Alkohol unter Druck (STRAUS, LEMMEL, B. 54, 39, 40). Neben Naphthalin beim Leiten von 1.4-Dihydro-naphthalin über Palladium-asbest im Kohlendioxyd-Strom bei 130° (Zelinsky, Pawlow, B. 57, 1070). Durch Hydrierung von Naphthalin bei erhöhter Temperatur oder bei erhöhter Temperatur unter Druck in Gegenwart von Nickel (Schroeter, A. 426, 10; Tetralin-Ges., D. R. P. 324861; C. 1921 II, 448; Frdl. 13, 303; Lush, J. Soc. chem. Ind. 46, 454 T; C. 1928 I, 1358), in Gegenwart von Nickel und Kieselsäure oder Aluminiumoxyd (Lush), in Gegenwart von Nickeloxyd und Aluminiumoxyd (Ipatjew, Kljukwin, B. 58, 2; Ж. 56, 246) oder in Gegenwart von Nickeloxyd und Kupferoxyd, Manganoxyd oder Thoriumoxyd (Agfa, D. R. P. 298541, 298553, 301275, 369944; C. 1921 II, 559; 1923 II, 915; Frdl. 13, 310, 311; 14, 462). Bei der Hydrierung von Naphthalin in Gegenwart von wenig Sauerstoff enthaltendem Platinmohr in Eisessig oder unter Anwendung von etwas Sauerstoff enthaltendem Wasserstoff (Willstätter, Seitz, B. 56, 1389, 1393, 1400, 1405). Beim Erhitzen von Naphthalin mit Wasserstoff in Gegenwart von Natrium oder Natrium-Kalium-Legierung und Kieselgur auf 230° unter Druck (Comp. d'Alais, D. R. P. 473457; C. 1929 I, 2825; Frdl. 16, 659). Durch Reduktion von in Solventnaphtha gelöstem Naphthalin oder β-Naphthol-āthylāther mit Natrium und langsam zutropfendem Wasser bei etwa 145° (Chem. Fabr. Griesheim-Elektron, D. R. P. 370974; C. 1923 IV, 539; Frdl. 14, 456). Tetralin entsteht neben anderen Produkten bei der Hydrierung von α-Naphthol (Schroeter, A. 426, 88) und von β-Naphthol (Nishimatsu, Kimura, Sexagint, Festschrift für Y. Osaka [Kyoto 1927], S. 220; C. 1928 I, 2369) in Gegenwart von Nickel bei 200° bzw. 135—140°.

Darst. Man bläst in vorgereinigtes geschmolzenes Naphthalin in Gegenwart einer geeigneten nickelhaltigen Verbindung in einem Autoklaven reinen Wasserstoff bis zu einem Druck von 12—15 Atm. ein und steigert die Temperatur auf 180—200°; ist bei dieser Temperatur der Druck auf 8—5 Atm. gefallen, so wird das Einblasen von Wasserstoff auf 12 bis 15 Atm. so oft wiederholt, bis die berechnete Menge Wasserstoff absorbiert ist (Schroeter, A. 426, 13). Technische Darstellung durch Hydrierung von geschmolzenem Naphthalin in Gegenwart von Nickelkatalysater unter Druck: Schrauth, Z. ang. Ch. 35, 26; S. P. Schotz, Synthetic organic compounds [London 1925], S. 49, 57. Trennung von Dekalin mit Hilfe von flüssigem Schwefeldioxyd: Tetralin-Ges., D. R. P. 310781; C. 1920 II, 601; Frdl. 13, 308. Zur Reinigung wird rohes Tetralin mit Schwefelsäure sulfuriert und die Tetralinsulfonsäure-(6) mit Wasserdampf gespalten (Schr., A. 426, 12, 84; Willstätter, Seitz, B. 56, 1392; vgl. Herz, Schuftan, Ph. Ch. 101, 270). Reinigung von technischem Tetralin durch Schütteln mit 1/10 Vol. NaHSO3-Lösung: Schr., B. 57, 1997.

#### Physikalische Eigenschaften.

Riecht sehr schwach naphthalinähnlich (Straus, Lemmel, B. 54, 27). F: —35° (Herz, Schuftan, Ph. Ch. 101, 274); E: —36,3° (de Carli, R. A. L. [6] 4, 528), —27° bis —30° (Schr., A. 426, 15). Kp<sub>700</sub>: 207,3° (korr.) (Herz, Schu., Ph. Ch. 101, 269), 212° (korr.) (Boedtker, Rambech, Bl. [4] 35, 633); Kp<sub>700</sub>: 206,5—207° (korr.); Kp<sub>716,3</sub>: 204,0—204,5° (korr.) (Willstätter, Seitz, B. 56, 1393); Kp<sub>705</sub>: 206,5° (korr.); Kp<sub>25</sub>: 100—101° (korr.) (Schr., A. 426, 16); Kp<sub>21</sub>: 96° (Straus, Lemmel, B. 54, 39); Kp<sub>0,35</sub>: 45° (Stempel, Ar. 1929, 486). Dampfdruck bei 20°: 0,18 mm (Weissenberger, Gas-Wasserfach 69 [1926], 552); zwischen 93,8° (20 mm) und 206,2° (740 mm): Herz, Schuftan, Ph. Ch. 101, 271. Ebullioskopische Konstante (für 1 kg Lösungsmittel): 5,56—5,6 (Herz, Schu., Ph. Ch. 101, 272). Van der Waalssche Konstanten zwischen 20° und 30°: Wei., Herk, J. pr. [2] 115, 77. D<sup>4,1</sup>: 0,9842; D<sup>15,1</sup>: 0,9731; D<sup>4,7</sup>: 0,9658; D<sup>4,1</sup>: 0,9210; D<sup>15,0</sup>: 0,8718 (Herz, Schuftan, Ph. Ch. 101, 275); D<sup>17</sup>: 0,9737 (Boedtker, Rambech, Bl. [4] 35, 633); D<sup>10</sup>: 0,9624; D<sup>4,1</sup>: 0,9612; D<sup>5,1</sup>: 0,9591 (Grumach, Schweikert, Ph. Ch. 113, 436); D<sup>5,1</sup>: 0,9709 (Wei., Gas-Wasserfach 69, 551), 0,9712 (Wi., Sei., B. 56, 1393); D<sup>5,1</sup>: 0,9729 (Krollffeifer, A. 430, 204). Viscosität bei 25°: 0,02003 g/cmsec; bei 50°: 0,01302, bei 75°: 0,00907 g/cmsec (Herz, Schuftan, Ph. Ch. 101, 276); über Viscosität bei 20° vgl. Vorländer, Walter, Ph. Ch. 118, 16. Oberflächenspannung zwischen 13,3° (36,2 dyn/cm) und 179,6° (19,9 dyn/cm): Hfrz, Schu., Ph. Ch. 101, 278; zur Oberflächenspannung vgl. a. Gr., Schw., Ph. Ch. 113, 437. Spezifische Wärme bei 15—18°: 0,403 cal/g (Herz, Schu., Ph. Ch. 101, 274). — n<sup>10</sup>: 1,5468 (Boedtker, Rambech, Bl. [4] 35, 633); n<sup>50</sup>: 1,5428 (Willstätter, Seitz, B. 56, 1393), 1,5434 (Schroeter,

A. 426, 13);  $n_{\alpha}^{\infty,2}$ : 1,5418;  $n_{\alpha}^{\infty,3}$ : 1,5461;  $n_{\gamma}^{\infty,2}$ : 1,5587;  $n_{\gamma}^{\infty,2}$ : 1,5691 (Krollpfeiffer, A. 430, 204). Lichtabsorption im Ultraviolett: Brode, J. phys. Chem. 30, 61. Luminescenzspektrum des Dampfes bei Anregung durch Spitzenentladungen: Kraemer, Z. wiss. Phot. 24, 222; C. 1926 II, 1506; durch Teslastrahlen: McVicker, Marsh, Stewart, Soc. 125, 1746; durch Kathodenstrahlen: Marsh, Soc. 1927, 127.

H 492, Z. 9 v. o. vor "206° (korr.)" füge ein "Kp:".

Tetralin nimmt beim Durchleiten von mit Wasserdampf gesättigter Luft nur Spuren von Wasser auf (Weissenberger, Gas-Wasserfach 69 [1926], 551). Ünlöslich in flüssigem Ammoniak (DE CARLI, G. 57, 351). Ist mit reinem flüssigem Schwefeldioxyd unbegrenzt, mit wasserhaltigem Schwefeldioxyd nur teilweise mischbar (Fontein, Z. ang. Ch. 36, 5; DE C.; vgl. Zerner, Weiss, Opalski, Z. ang. Ch. 35, 255; 36, 6); gasförmiges Schwefeldioxyd löst sich nicht in Tetralin (Weissenberger, Hadwiger, Z. ang. Ch. 40, 734). Tetralin besitzt besonders bei gelinder Wärme ein großes Lösungsvermögen für Schwefel, Naphthalin, Anthracen und viele andere aromatische Kohlenwasserstoffe sowie andere organische Substanzen und für Fette, Öle und Harze (Schroeter, A. 426, 16). Ist mit Chloroform, Petroläther, Äther, absolutem und 95 %igem Alkohol in jedem Verhältnis mischbar; löst Jod (mit brauner Farbe), Schwefel und Kautschuk (Utz, Gummi-Ztg. 34, 779; C. 1920 IV, 182). Lösungsvermögen für Sauerstoff: F. FISCHER, PFLEIDERER, Abh. Kenntnis Kohle 5 [1920], 575; Z. anorg. Ch. 124, 69; für Naphthalin zwischen —14° und 36°: Weiss., Gas-Wasserfach 69 [1926], 550; Z. ang. Ch. 40, 776. Löst bei 30° erhebliche Mengen Naphthalin, ist bei höherer Temperatur in jedem Verhältnis mit Naphthalin mischbar (Tetralin-Ges., D. R. P. 301 651; C. 1920 IV, 199; Frdl. 13, 314). Absorptionsvermögen von Tetralin bei 20° für Dämpfe von Benzol und Benzin: Weiss., Schuster, Z. ang. Ch. 38, 360; von Benzol, Alkohol, Aceton und Athylacetat: Weiss., Henke, Sperling, Z. ang. Ch. 38, 1161. Über die Emulgierung der Lösungen von Natriumoleat in Tetralin durch Wasser vgl. Weichherz, Koll.-Z. 47, 134; C. 1929 I, 2286. Verteilung von Jod, Quecksilber(II)-chlorid, Essigsäure und Pikrinsäure zwischen Tetralin und Wasser bei 25°: Herz, Schuffan, Ph. Ch. 101, 281. Thermische Analyse des Systems mit flüssigem Schwefeldioxyd (s. S. 386): DE CARLI, R. A. L. [6] 4, 527. Flüchtigkeit mit Wasserdampf: Brüggemann, Glückauf 62 [1926], 715. Druck und Zusammensetzung des Dampfes über Gemischen mit Chloroform bei 200: Weissen-BERGER, HENKE, SCHUSTER, Z. anorg. Ch. 152, 330. Dampfdrucke von binären Gemischen mit Chloroform, Hexan, Benzol, Alkohol, Äther und Aceton bei 18°: Weiss., Schuster, Mayer, M. 45, 451; mit Tetrachlorkohlenstoff, Äthylidenchlorid, Trichloräthylen, Methylacetat und Äthylacetat bei 20°: Weiss., Sch., Zack, Z. ang. Ch. 39, 271; mit Benzol bei 20°: Weiss., Sch., Z. ang. Ch. 38, 629. Dampfdrucke ternärer Gemische von Tetralin mit Phenol als zweitem und Methylacetat, Athylacetat oder Chloroform als drittem Bestandteil bei 20°: Weiss., Sch., Z., Z. ang. Ch. 38, 1010. Dichte von binären Gemischen mit Naphthalin: Weiss., Gas-Wasserfach 69 [1926], 551; mit 1.4-Dichlor-naphthalin bei 20,2° und mit α-Naphthylamin bei 20,7°: Krollpfeiffer, A. 430, 204, 212; mit Methanol, Alkohol und Butylalkohol bei 25°: HERZ, SCHUFTAN, Ph. Ch. 101, 284. Viscosität von binären Gemischen mit Methanol, Alkohol und Butylalkohol bei 25°: Herz, Schu.; von Lösungen von Kolophonium in Tetralin bei 25—51°: Keyssner, Z. ang. Ch. 39, 104. Viscosität und Oberflächenspannung der binären Gemische mit Chloroform, Hexan, Benzol, Äther und Aceton bei 180: WEISSEN-BERGER, SCHUSTER, MAYER, M. 45, 454. Einfluß einer dünnen Wandschicht von Tetralin auf die Ausflußzeit von Wasser aus Capillaren: TRAUBE, WHANG, Ph. Ch. 138, 111. Brechungsindices von binären Gemischen mit 1.4-Dichlor-naphthalin bei 20,20 und mit α-Naphthylamin bei 20,7°: Krollffeiffer, A. 430, 204, 212; von ternären Gemischen mit Naphthalin und cis-Dekalin bei 20°: Willstätter, Seitz, B. 56, 1392. Gemische von Borsäure und wenig Tetralin zeigen nach Ultraviolett-Bestrahlung gelblichgrünes Nachleuchten (TIEDE, RAGOSS, B. 56, 658).

#### Chemisches Verhalten.

Tetralin gibt beim Erhitzen ohne Katalysator auf 450° unter 50—100 Atm. Druck (Ssachanen, Tilitschejew, B. 62, 668), mit Aluminiumoxyd und Eisenoxyd auf 440° bis 465° im Autoklaven (IPATJEW, ORLOW, B. 62, 597; Ж. 61, 1300) oder mit Aluminiumoxyd und Kupferoxyd unter Wasserstoffdruck auf 480° (I. O., B. 60, 1968) Naphthalin und andere Kohlenwasserstoffe. Beim Durchleiten durch ein verzinntes Eisenrohr im Wasserstoffstrom bei 800—860° entsteht neben Naphthalin und anderen Produkten auch Benzol (F. Fischer, Schrader, Meyer, Abh. Kenntnis Kohle 5, 431; C. 1922 IV, 1039). Beim Erhitzen mit Wasser und Aluminiumoxyd unter Druck auf 470° entstehen Naphthalin, Benzol und andere aromatische Kohlenwasserstoffe (IP., Petrow, Ž. prikl. Chim. 2, 332; C. 1929 II, 2402). — Die Einw. von 1—2% Aluminiumchlorid auf Tetralin bei 70—80° ergibt Benzol, 1.2.3.4.5.6.7.8-Oktahydro-anthracen, 1.2.3.4.5.6.7.8-Oktahydro-phenanthren und 1-Phenyl-4-tetralyl-(6)-butan neben wenig Ditetralyl-(2.6'), Perhydroanthracen und anderen Produkten (Schroeter)

B. 57, 1997; Tetralin-Ges., D. R. P. 333158; C. 1921 II, 739; Frdl. 13, 380; BOEDTKER, RAMBECH, Bl. [4] 35, 631).

Temperaturgrenzen und Geschwindigkeit der Explosion von Tetralin-Nebeln in Luft: Haber, Wolff, Z. ang. Ch. 36, 375. Flammpunkt: 78° (Schrofter, A. 426, 15). Die Autoxydation wird durch Zusatz von Pyrogallol, Malachitgrün und Methylenblau gehemmt, während α und β-Naphthylamin erst verzögernd, dann beschleunigend wirken (Moureu, Dufraise, Chaux, C.r. 184, 414). Tetralin wird beim Leiten des mit Luft gemischten Dampfes über aktive Kieselsäure bei 350° (I. G. Farbenind., D. R. P. 520828; C. 1931, 3287; Frdl. 16, 3011) und beim Erhitzen mit Kupferoxyd, 1.3-Dinitro-benzol und Chinolin auf 240—245° (Zetzsche, Zala, Helv. 9, 289) zu Naphthalin dehydriert. Beim Erhitzen mit Schwefel auf 240—250° unter Druck erhält man neben Naphthalin geringe Mengen einer Verbindung C. 18, 258; C. 1928 II, 1757). Reduziert Eugenol, Olsaure, Zimtsäure und Cumarin (in Toluol) in Gegenwart von Palladiumschwarz bei 115° bis 120° zu Dihydroeugenol, Stearinsäure, Hydrozimtsäure und Hydrocumarin (Akabori, Suzuki, Pr. Acad. Tokyo 5, 255; C. 1929 II, 2033). Tetralin gibt bei der Oxydation mit Chromsäure in wäßr. Essigsäure (Schrofter, D. R. P. 346948; C. 1922 II, 1141; Frdl. 14, 492) oder mit Chromtrioxyd in Acetanhydrid + Tetrachlorkohlenstoff (Treibs, Schmidt, B. 61, 463) α-Tetralon. Gibt bei der Einw. von Chromylchlorid und Destillation des Reaktionsprodukts mit Wasserdampf ein Gemisch von α und β-Tetralon (v. Brauns, Bra

Tetralin wird durch Chlor bei niedriger Temperatur im aromatischen, bei höherer Temperatur im hydrierten Kern substituiert. Bei der Einw. von 2 Atomen Chlor in Gegenwart von Jod bei 10° erhält man ein Gemisch von ca. 66% 6-Chlor-tetralin und ca. 34% 5-Chlor-tetralin neben geringeren Mengen 5.6.7.8-Tetrachlor-tetralin und anderen Produkten (v. Braun, B. 56, 2337, 2339); ähnlich verläuft die Einw. von 2 Atomen Chlor in Gegenwart von Eisendraht unter Kühlung (J. D. Riedel, D. R. P. 417927; C. 1926 I, 235; Frdl. 15, 292); erschöpfende Chlorierung im diffusen Tageslicht bei 15° führt zu 5.6.7.8-Tetrachlortetralin (v. Braun, B. 56, 2337 Anm.), während beim Einleiten von 4 Atomen Chlor in Tetralin bei 100° 1.2-Dichlor-tetralin neben anderen Produkten entsteht (v. Br., Kirschbaum, B. 54, 617). In analoger Weise erhält man durch Bromierung in Gegenwart von Jod bei 10° ein Gemisch von etwa 75% 6-Brom- und etwa 25% 5-Brom-tetralin und geringe Mengen bromreicherer Produkte (v. B., B. 56, 2339), bei der Bromierung auf dem Wasserbad 1.2-Dibrom-tetralin (v. B., K., B. 54, 602; v. B., D. R. P. 316218; C. 1920 II, 241; Frdl. 13, 326). Bei der Nitrierung von Tetralin mit Salpeterschwefelsäure entstehen je nach den Bedingungen Gemische von 5- und 6-Nitro-tetralin oder von 5.6- und 5.7-Dinitro-tetralin (Schroefer, A. 426, 19, 39). Über Bildung von Sulfinsäuren durch Einw. von Schwefeldioxyd in Gegenwart von Aluminiumchlorid vgl. v. Braun, Kaiser, B. 56, 552. Tetralin gibt beim Eintragen in konz. Schwefelsäure Tetralin-sulfonsäure-(6) neben geringen Mengen Tetralinsulfonsäure-(5) (SCHR., A. 426, 111). Beim Leiten von Tetralin-Dampf über auf 2200 erhitzte Schwefelsäure erhält man Di-tetralyl-(6)-sulfon (H. MEYER, A. 433, 342). Beim Eintragen von Tetralin in überschüssige Chlorsulfonsäure bei —5° bilden sich etwa gleiche Teile Tetralin-sulfochlorid-(6) (Schroeter, A. 426, 114; Tetralin-Ges., D. R. P. 336615; C. 1921 IV, 125; Frdl. 13, 322; Schr., Schrauth, D. R. P. 299604; C. 1920 II, 447; Frdl. 13, 325); mit überschüssiger Fluorsulfonsäure wird bei 15—20° Tetralin-sulfofluorid-(5) und wahrscheinlich ein isomeres Tetralinsulfofluorid erhalten (STEINKOPF, J. pr. 1811-181). [2] 117, 53). Überführung in organische Phosphorverbindungen durch Einw. von Phosphortrichlorid und Phosphorpentachlorid in Gegenwart von Aluminiumchlorid: Cassella & Co., D. R. P. 452064; C. 1928 I, 2308; Frdl. 15, 1667. Tetralin liefert mit Tantal(V)-chlorid bei gelindem Erwärmen Tetralyl-(x)-tantaltetrachlorid, bei 1-stdg. Kochen entsteht Di-tetralyl-(x)-tantaltrichlorid (Funk, Niederländer, B. 61, 1387). Gibt mit Kohlenoxyd und Chlorwasserstoff in Gegenwart von Kupfer(I)-chlorid und Aluminiumchlorid, zuletzt bei 35°, geringe Mengen Tetralin-aldehyd-(6) neben 1.2.3.4.5.6.7.8 Oktahydro-anthracen, 1.2.3.4.5.6.7.8-Oktahydro-phenanthren und anderen Produkten (v. Braun, B. 55, 1709).

Tetralin schützt Eisen vor Rost (Ostwald, C. 1922 II, 1179; Weissenberger, Gas-Wasserfach 69 [1926], 553).

Tetralin gibt beim Erwärmen mit Äthylbromid in Gegenwart von Aluminiumchlorid 6.Äthyl-tetralin; reagiert analog mit anderen Alkylchloriden (Boedter, Rambech, Bl. [4] 35, 633). Beim Einleiten von Acetylen in eine Mischung von Tetralin mit konz. Schwefelsäure und Quecksilber(II)-oxyd unterhalb 10° erhält man neben anderen Produkten 1.1-Ditetralyl-(x)-äthan (Reilly, Nieuwland, Am. Soc. 50, 2565). Gibt beim Behandeln mit Cyclohexen und Aluminiumchlorid in Schwefelkohlenstoff 6-Cyclohexyl-tetralin und andere Produkte (Bodroux, A. ch. [10] 11, 541). Beim Erhitzen von Tetralin mit Benzylchlorid in Gegenwart von Zinkchlorid auf 120° entsteht ein zähflüssiges Öl vom Kp<sub>140</sub>: 200—202° (Tetralin-Ges., D. R. P. 319799; C. 1920 IV, 133; Frdl. 13, 670). Tetralin lagert sich in Gegenwart von konz. Schwefelsäure an Styrol an unter Bildung von 1(oder 5)-α-Phenäthyltetralin (V. Braun, Kirschbaum, B. 54, 609). Einw. von Formaldehyd s. u. Bei längerem Aufbewahren von Tetralin in Benzol mit Bernsteinsäureanhydrid und Aluminiumchlorid entsteht β-[5.6.7.8-Tetrahydro-naphthoyl-(2)]-propionsäure (Krollfferfer, Schäffer, B. 56, 628); reagiert analog mit Phthalsäureanhydrid (Schroeter, B. 54, 2245; Tetralin-Ges., D. R. P. 346673; C. 1922 II, 1080; Frdl. 13, 387) und Pyromellitsäureanhydrid (Philippi, Seka, M. 45, 265). Tetralin liefert beim Erhitzen mit Chloracetylchlorid und Phosphorpentoxyd auf 190° 5-Chloracetyl-tetralin und 6-Chloracetyl-tetralin (Schroeter, B. 57, 2015); bei der analogen Umsetzung mit Benzoylchlorid und Phosphorpentoxyd bei 280° bis 300° entsteht ein viscoses Öl vom Kp<sub>13</sub>: 228—230° (Tetralin-Ges., D. R. P. 319799; C. 1920 IV, 133; Frdl. 13, 670). Tetralin gibt in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff mit Oxalylchlorid 5.6.7.8-Tetrahydro-naphthoesäure-(2) (v. Braun, Kirschbaum, Schuhmann, B. 53, 1161), mit Dimethylmalonylchlorid 2.2-Dimethyl-4.5-tetramethylen-indandion-(1.3) (Fleischer, Siefert, A. 422, 287; B. 53, 1256), mit Diäthyl-ks., A. 422, 296; B. 53, 1258) und 2.2-Diäthyl-5.6-tetramethylen-i

#### Biochemisches Verhalten.

Zum Schicksal im Organismus (E I 237) vgl. noch Lewin, Z. dtsch. Öl-Fettind. 40 [1920], 440; Röckemann, Ar. Pth. 92, 52; C. 1922 I, 1115. Eine Übersicht über das physiologische Verhalten von Tetralin s. bei H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt., 2. Bd. [Berlin-Leipzig 1932], S. 47—48. Wirkung auf Bakterien und Bakteriophagen: Prausnitz, Firle, Klin. Wschr. 1, 1641; C. 1922 III, 886; auf Infusorien, Streptokokken und Staphylokokken: Stoye, Z. Hyg. Inf.-Kr. 103, 103; C. 1924 II, 1214. Insecticide Wirkung: Tattersfield, Gimingham, J. Soc. chem. Ind. 46, 369 T; C. 1927 II, 1884. Toxizität in Beziehung zur Verwendung als technisches Lösungsmittel: E. Gross in K. B. Lehmann, F. Flury, Toxikologie und Hygiene der technischen Lösungsmittel [Berlin 1938], S. 222.

#### Verwendung; Analytisches; additionelle Verbindungen.

Tetralin wird technisch verwandt als Lösungs-, Extraktions- und Verdünnungsmittel für Fette, Öle, Harze und Lacke (Tetralin-Ges., D. R. P. 320807; C. 1920 IV, 225; Frdl. 13, 315; Schrauth, Z. ang. Ch. 35, 27; A. Hausamann, A. Krebser in F. Ullmann, Enzyklopädie der technischen Chemie, 2. Aufl., 7. Bd. [Berlin-Wien 1931], S. 78; Th. H. Durrans, Solvents, 4. Aufl. [London 1938], S. 89, 228; H. Gnamm, Die Lösungsmittel und Weichhaltungsmittel [Stuttgart 1941], S. 77). Tetralin kann als Terpentinöl-Ersatz dienen (Agfa, D. R. P. 303386; C. 1921 II, 743; IV, 912; Frdl. 13, 672); es beschleunigt die Trocknung von Lacken (Hueter, Farben-Ztg. 31, 2671; C. 1926 II, 1790). Über Verwendung als Zusatz zu Motortreibstoffen vgl. z. B. Schrauth, Z. ang. Ch. 35, 27; Formánek, C. 1922 IV, 77; Ostwald, C. 1922 IV, 78; Gesell, C. 1922 IV, 1114; Wurmbach, C. 1923 IV, 170; Häusser, Bestenorn, Ellerbusch, C. 1923 IV, 220; H., B., C. 1925 I, 2522. Verhalten bei der Verbrennung im Motor: Brutzkus, C. r. 176, 1810. Überführung in ölige Produkte durch Chlorierung in Gegenwart von Phosphorpentachlorid und Erhitzen mit Phosphorpentoxyd: Tetralin-Ges., D. R. P. 319799; C. 1920 IV, 133; Frdl. 13, 670; durch Einw. von Athylen in Gegenwart von Aluminiumchlorid: I. G. Farbenind., D. R. P. 505403; C. 1930 II, 2306; Frdl. 16, 477; durch Kondensation mit Benzylchlorid: Tetralin-Ges., D. R. P. 319799; C. 1920 IV, 133; Frdl. 13, 670. Überführung in Kunstharze durch Kondensation mit Formaldehyd: Tetralin-Ges., D. R. P. 333060; C. 1921 II, 805, Frdl. 13, 671; Agfa, D. R. P. 305575; C. 1921 II. 607; Frdl. 13, 678; Chem. Fabr. Albert, D. R. P. 387836; C. 1924 II, 549; Frdl. 14, 634; Höchster Farbw., D. R. P. 406999, 407000; C. 1925 I, 1816; Frdl. 14, 628, 629.

Tetralin gibt mit schr geringen Mengen von Manganverbindungen eine Rosafärbung (Lauffs, Ch. Z. 47, 315; C. 1924 I, 250). Technisches gelbes Tetralin (nicht aber farbloses reines Tetralin) ist nachweisbar durch die Blaufärbung mit Stärke, Kaliumjodid-Lösung und verd. Salzsäure (Hueter, Autotech. 12, Nr. 3/4, S. 17; C. 1928 II, 976; Formánek, Ch. Z. 52, 347; C. 1928 II, 513). Nachweis in Treibstoffen mit Hilfe von Drakorubin oder Algolrot BTK: Hueter; Formánek. Refraktometrische Bestimmung neben Naphthalin und Dekalin: Willstätter, Seitz, B. 56, 1390.

Verbindungen mit Schwefeldioxyd (durch thermische Analyse nachgewiesen):

Verbindungen mit Schwefeldioxyd (durch thermische Analyse nachgewiesen):  $C_{10}H_{12} + SO_2$ . F: —58° (DE CARLI, R. A. L. [6] 4, 527). Bildet Eutektika mit Tetralin (F: —64,5°) und mit der folgenden Verbindung. —  $C_{10}H_{12} + 2SO_2$ . F: —66,2° (DE C.). —  $C_{10}H_{12} + 3SO_2$ . F: —70° (DE C.). Bildet ein Eutektikum mit Schwefeldioxyd (F: —76,5°).

## Substitutionsprodukte des Tetralins.

5-Chlor-1.2.3.4-tetrahydro-naphthalin, 5-Chlor-tetralin C<sub>10</sub>H<sub>11</sub>Cl, 8. nebenstehende Formel (E I 237). B. Entsteht im ungetrennten Gemisch mit 6-Chlor-tetralin und anderen Produkten beim Einleiten von 2 Atomen Chlor in Tetralin in Gegenwart von etwas Jod bei 10° (v. Braun, B. 56, 2337) oder in Gegenwart von Eisendraht unter Kühlung (J. D. RIEDEL, D. R. P. 417927; C. 1926 I, 235; Frdl. 15, 292). Zur Bildung aus 5.6.7.8-Tetrahydro-naphthylamin-(1) vgl. v. B., B. 56, 2336. — Kp: 240° (Weissenberger, Henke, Katschinka, Z. anorg. Ch. 153, 33); Kp<sub>12</sub>: 115—116° (v. B.). D<sub>20</sub><sup>20</sup>: 1,129 (W., H., K.). Dampfdruck über binären Systemen mit Alkohol, Chloroform, Tetrachlorkohlenstoff, Aceton, Essigsäuremethylester, Cyclohexen und Benzol: W., H., K. — Liefert bei der Oxydation mit Permanganat in alkal. Lösung 3-Chlor-phthalsäure, 3-Chlor-phthalonsäure und 6-Chlor-phthalonsäure [isoliert in Form von 2-Phenyl-5 (bzw. 8)-chlor-phthalazon-carbonsäure-(4), Syst. Nr. 3696]; bei weiterer Oxydation in schwefelsaurer Lösung entsteht nur 3-Chlor-phthalsäure (v. B., B. 56, 2337). Beim Erwärmen mit rauchender Schwefelsäure (10 % SO<sub>3</sub>) entsteht 8-Chlor-tetralin-sulfonsäure-(5) (J. D. RIEDEL).

6-Chlor-1.2.3.4-tetrahydro-naphthalin, 6-Chlor-tetralin  $C_{10}H_{11}Cl$ , s. nebenstehende Formel. B. durch Chlorierung von Tetralin s. o. im Artikel 5-Chlor-tetralin. — Liefert bei der Öxydation mit Permanganat erst in alkalischer, dann in schwefelsaurer Lösung 4-Chlor-phthalsäure (v. Braun, B. 56, 2337, 2338). Beim Erwärmen mit rauchender Schwefelsäure (10%  $SO_3$ ) entsteht 6-Chlor-tetralin-sulfonsäure-(5) (J. D. RIEDEL, D. R. P. 417927; C. 1926 l, 235; Frdl. 15, 292).

2-Chlor-1.2.3.4-tetrahydro-naphthalin, 2-Chlor-tetralin  $C_{10}H_{11}Cl=C_{6}H_{4}$   $CH_{2}\cdot CH_{2}$  (H 492). Liefert beim Erhitzen auf 190—200° 1.2-Dihydro-naphthalin und andere Produkte (STRAUS, LEMMEL, B. 54, 34).

1.2-Dichlor-1.2.3.4-tetrahydro-naphthalin, 1.2-Dichlor-tetralin  $C_{10}H_{10}Cl_2 = CHCl \cdot CHCl$  CH<sub>4</sub> CH<sub>2</sub>—CH<sub>2</sub>. B. Beim Einleiten von 4 Atomen Chlor in Tetralin bei 100°, neben anderen Produkten (v. Braun, Kirschbaum, B. 54, 617). — Wurde nicht rein erhalten. Kp<sub>20</sub>: 155—160°. — Liefert mit Zinkspänen in Alkohol bei 60° 1.2-Dihydro-naphthalin.

5.6.7.8-Tetrachlor-1.2.3.4-tetrahydro-naphthalin, 5.6.7.8-Tetrachlor-tetralin C<sub>10</sub>H<sub>8</sub>Cl<sub>4</sub>, s. nebenstehende Formel. B. Durch erschöpfende Chlorierung von Tetralin bei 15° in diffusem Tageslicht (v. Braun, B. 56, 2337 Anm.). In geringer Menge bei der Monochlorierung von Tetralin in Gegenwart von etwas Jod bei 10° (v. B.). — Krystalle (aus Eisessig). F: 172°. Kp<sub>26</sub>: 180°. — Liefert mit der berechneten Menge Brom in siedendem Schwefelkohlenstoff 5.6.7.8-Tetrachlor-1.2-dibrom-tetralin.

1.2.3.4 - Tetrachlor - 1.2.3.4 - tetrahydro - naphthalin, 1.2.3.4 - Tetrachlor - tetralin, Naphthalin - tetrachlorid - (1.2.3.4) C<sub>10</sub>H<sub>8</sub>Cl<sub>4</sub> = C<sub>6</sub>H<sub>4</sub> CHCl · CHCl · (H 492). B. Neben anderen Produkten bei der Einw. von unterchloriger Säure auf Naphthalin (KLINGSTEDT, Acta Acad. Abo. 4, Nr. 2, S. 13, 19; C. 1928 I, 504). — Härte der Krystalle: Reis, Zimmermann, Ph. Ch. 102, 329. Röntgenogramm: Bragg, Z. Kr. 66, 27; Robertson, Pr. roy. Soc. [A] 118, 709; C. 1928 II, 2700. F: 180,5—181,5° (K.). — Gibt beim Nitrieren mit Salpetersäure (D: 1,5) bei höchstens 30—35° und Erhitzen des Reaktionsprodukts mit Natriumcarbonat in Methanol oder mit Natriumdicarbonat in Methanol + Benzol auf 130—150° 5.8-Dichlor-1-nitro-naphthalin (Matter, D. R. P. 317755; C. 1920 II, 601; Frdl. 13, 289). Überführung in Kunstharze durch Erhitzen mit Metallhalogeniden: Agfa, D. R. P. 332391,

387

334710; C. 1921 II, 652, 964; Frdl. 13, 680, 682; durch Erhitzen mit Naphthalin in Gegenwart von Bleicherde: Schering-Kahlbaum, Freund, Jordan, D. R. P. 461358; Frdl. 15, 1823.

1.1.2.3.4-Pentachlor-1.2.3.4-tetrahydro-naphthalin, 1.1.2.3.4-Pentachlor-tetralin, 1.Chlor-naphthalin-tetrachlorid-(1.2.3.4)  $C_{10}H_7Cl_5=C_6H_4$  CHCl-CHCl (H 493). B.

Neben anderen Produkten bei der Einw. von unterchloriger Säure auf Naphthalin (KLING-

STEDT, Acta Acad. Abo. 4, Nr. 2, S. 13; C. 1928 I, 504).

1.2.3.4.5.8-Hexachlor-1.2.3.4-tetrahydro-naphthalin, 1.2.3.4.5.8-Hexachlor-tetralin, 5.8-Dichlor-naphthalin-tetrachlorid-(1.2.3.4) C<sub>10</sub>H<sub>4</sub>Cl<sub>6</sub>, s. nebenstehende Formel (H 493). Röntgenogramm: ROBERTSON, *Pr. roy. Soc.* [A] **118**, 709; *C.* **1928** II, 2700.

5-Brom-1.2.3.4-tetrahydro-naphthalin, 5-Brom-tetralin  $\rm C_{10}H_{11}Br$ , s. nebenstehende Formel (H494). B. Entsteht im Gemisch mit viel 6-Bromtetralin und anderen Produkten beim Behandeln von Tetralin mit der berechneten Menge Brom in Gegenwart von etwas Jod bei 10° (v. Braun, B. 56, 2339). — Liefert bei der Oxydation mit Permanganat in alkal.

Lösung ein Gemisch von 3-Brom- und 6-Brom-phthalonsäure neben etwas 3-Brom-phthalsäure; bei weiterer Oxydation mit Permanganat in saurer Lösung entsteht nur 3-Bromphthalsäure.

6-Brom-1.2.3.4-tetrahydro-naphthalin, 6-Brom-tetralin  $C_{10}H_{11}Br$ , s. nebenstehende Formel (H 494). B. Entsteht als Hauptprodukt im ungetrennten Gemisch mit 5-Brom-tetralin und anderen Produkten beim Behandeln von Tetralin mit der berechneten Menge

Brom (v. Braun, B. 56, 2339). — Liefert bei der Oxydation mit Permanganat erst in alkalischer, dann in saurer Lösung 4-Brom-phthalsäure.

1.2-Dibrom-1.2.3.4-tetrahydro-naphthalin, 1.2-Dibrom-tetralin  $C_{10}H_{10}Br_2 =$  $CHBr \cdot CHBr$ (E I 237). B. Aus 1.2-Dihydro-naphthalin und 2 Atomen Brom in  $CH_2 - CH_2$ Schwefelkohlenstoff (Straus, Lemmel, B. 54, 33; v. Braun, Kirschbaum, B. 54, 611). Beim Einleiten von trocknem Bromwasserstoff in eine gekühlte Lösung von 2-Brom-1.2.3.4-tetrahydro-naphthol-(1) in Benzol (St., Rohrbacher, B. 54, 54; v. B., K., B. 54, 612). — Darst. Man versetzt Tetralin mit 4 Atomen Brom auf dem Wasserbad (v. B., K., B. 54, 602; v. B., D. R. P. 316218; C. 1920 II, 241; Frdl. 13, 326). — Krystalle (aus Chloroform + Alkohol). F: 70—71° (Rowe, Levin, Soc. 117, 1578), 70° (v. B., K., B. 54, 602). Kp<sub>12</sub>:

165—173° (geringe Zersetzung) (v. B., K.). Liefert beim Erhitzen bei 13 mm Druck auf 130° und dann bei 50 mm Druck auf 175° 4-Brom-1.2-dihydro-naphthalin(?) neben Naphthalin, 1.2-Dihydro-naphthalin und anderen Produkten (Straus, Rohrbacher, B. 54, 51); 4-Brom-1.2-dihydro-naphthalin(?) entsteht auch neben wenig Naphthalin bei der Einw. von Piperidin auf 1.2-Dibrom-tetralin (v. Braun, KIRSCHBAUM, B. 54, 603). Beim Behandeln mit der berechneten Menge Magnesium in alkoholfreiem Äther in Gegenwart einer Spur Jod entsteht 1.2-Dihydro-naphthalin in quantitativer Ausbeute (v. B., K., B. 54, 610; v. B., D. R. P. 316218; C. 1920 II, 241; Frdl. 13, 326; St., Ekhard, A. 444, 155); zur Überführung in 1.2-Dihydro-naphthalin oder dessen Polymerisationsprodukte durch Behandeln mit Zink in Alkohol oder hydroxylfreien Lösungsmitteln wie Benzol, Äther oder Aceton vgl. v. B., K., B. 54, 604; St., E. Gibt beim Erwärmen mit wäßr. Aceton 2-Brom-1.2.3.4-tetrahydro-naphthol-(1) (TIFFENEAU, ORECHOW, Bl. [4] 27, 790; STRAUS, ROHRBACHER, B. 54, 53; v. BRAUN, KIRSCHBAUM, B. 54, 611; Tetralin-Ges., D. R. P. 335477; C. 1921 II, 1063; Frdl. 13, 327), beim Kochen mit Methanol 2-Brom-1.2.3.4-tetrahydro-naphthol-(1)-methyläther (S., R.; v. B., K.; Tetralin-Ges.); reagiert analog mit anderen Alkoholen (v. B., K.; Tetralin-Ges.); beim Kochen mit 1 % iger Natriummethylat-Lösung entsteht 2-Brom-1.2.3.4-tetrahydro-naphthol-(1)-methyläther als Hauptprodukt neben Naphthalin und anderen Produkten (St., R., B. 54, 52). Beim Erwärmen mit wäßr. Kaliumearbonat-Lösung, weniger gut beim Kochen mit verd. Kalilauge, erhält man höherschmelzendes 1.2-Dioxy-tetralin (T., O., Bl. [4] 27, 790; St., R., B. 54, 65). Bei kurzem Kochen mit der berechneten Menge Kaliumacetat in Eisessig entsteht 2-Brom-1.2.3.4-tetrahydronaphthyl-(1)-acetat (v. B., K., B. 54, 617; Tetralin-Ges., D. R. 9. 335 477; C. 1921 II, 1063; Frâl. 13, 328); bei längerem Kochen erhält man ein Gemisch der Acetate des höherschmelzenden und des niedrigerschmelzenden 1.2-Dioxy-tetralins, während bei längerem Kochen mit Silberacetat in Eisessig hauptsächlich das Acetat des niedrigerschmelzenden 1.2-Dioxytetralins entsteht (STRAUS, ROHRBACHER, B. 54, 66). Liefert mit primären und sekundären aromatischen Aminen zähe, bromfreie, hochmolekulare Produkte; tertiäre Amine wirken kaum ein (v. Braun, Kirschbaum, B. 54, 602).

2.3 - Dibrom - 1.2.3.4 - tetrahydro - naphthalin, 2.3 - Dibrom - tetralin  $C_{10}H_{10}Br_2 = C_{6}H_{4}$  CH3 · CHBr (H 494; E I 237). B. Beim Leiten von Bromdampf in eine Lösung von 1.4 Dihydro naphthalin in Chloroform unter Kühlung (Colver, Noves, Am. Soc. 43, 900). Zur Bildung nach BAMBERGER, LODTER (B. 20 [1887], 1705) vgl. C., N. — F: 71,5—72°

Zur Bildung nach Bamberger, Lodter (B. 20 [1887], 1705) vgl. C., N. — F: 71,5—72. (Rowe, Levin, Soc. 117, 1577). — Gibt mit Harnstoff bei 1400 4.5.1'.4'. Tetrahydro - [naphtho - 2'.3':4.5 - oxazolon - (2)] - imid (s. nebenstehende Formel; Syst. Nr. 4279) (Takeda, Kuroda, J. pharm. Soc. Japan 1921, Nr. 467, S. 10; C. 1921 I, 789).

H 494, Z. 30 v. o. hinter "509, 521)" füge zu "und Tetrahydronaphthylenoxyd (H 17, 64) (Bamberger, Lodter, A. 288, 90)".

5.6.7.8 - Tetrachlor -1.2 - dibrom -1.2.3.4 - tetrahydró - naph - thalin, 5.6.7.8 - Tetrachlor -1.2 - dibrom - tetralin  $C_{10}H_6Cl_4Br_g$ , s. nebenstehende Formel. B. Aus 5.6.7.8 - Tetrachlor - tetralin und der berechneten Menge Brom in siedendem Schwefelkohlenstoff (v. Braun, B. 56, 2337 Anm.). — F: 142°. — Liefert mit Natriumäthylat-Lösung 1.2.3.4 - Tetrachlor - naphthalin.

1.1.2-Tribrom-1.2.3.4-tetrahydro-naphthalin (?), 1.1.2-Tribrom-tetralin (?)  $C_{10}H_{1}Br_{3} = C_{6}H_{4} < \frac{CBr_{2} \cdot CHBr}{CH_{2} \cdot CH_{2}}$  (?). B. Aus 4-Brom-1.2-dihydro-naphthalin (?) und Brom in Schwefelkohlenstoff (v. Braun, Kirschbaum, B. 54, 603). — Blättchen (aus Chloroform + Alkohol). F: 71°.

5 - Nitro - 1.2.3.4 - tetrahydro - naphthalin, 5 - Nitro - tetralin  $C_{10}H_{11}O_2N$ , s. nebenstehende Formel (E I 237). Liefert mit Chromtrioxyd in Eisessig 5-Nitro-tetralon-(1) (J. D. RIEDEL, D. R. P. 397150; C. 1924 II, 1405; Frdl. 14, 460). Gibt bei der Oxydation mit Permanganat in schwach sodaalkalischer Lösung hauptsächlich 3-Nitro-phthalonsäure

in schwach sodaalkalischer Lösung hauptsächlich 3-Nitro-phthalonsäure neben wenig 6-Nitro-phthalonsäure und sehr wenig 3-Nitro-phthalsäure; bei weiterer Oxydation mit Permanganat in schwefelsaurer Lösung entsteht als Hauptprodukt 3-Nitro-phthalsäure (v. Braun, B. 56, 2334). Bei der Reduktion mit Zinkstaub und siedender alkoholischer Natronlauge entstehen je nach den Bedingungen wechselnde Mengen 5.6.7.8.5'.6'.7'.8'-Oktahydro-[1.1'-hydrazonaphthalin], 5.6.7.8.5'.6'.7'.8'-Oktahydro-[1.1'-azonaphthalin] und 5.6.7.8.5'.6'.7'.8'-Oktahydro-[1.1'-azoxynaphthalin] (Schroeter, A. 426, 49; Tetralin-Ges., D. R. P. 333157; C. 1921 II, 738; Frdl. 13, 321); Reduktion zu 5.6.7.8-Tetrahydro-naphthyl-amin-(1) erfolgt beim Behandeln mit Natriumsulfid und Natriumhydrosulfid in wäßrigalkoholischer Lösung (Veselý, Chudožilov, R. 44, 355, 357) und bei der Hydrierung in Gegenwart von Nickelkatalysator unter Druck in der Wärme (Sch., A. 426, 53; Tetralin-Ges., D. R. P. 333157; C. 1921 II, 738; Frdl. 13, 320). 5-Nitro-tetralin wird durch Einw. von 2 Mol Brom bei 100° und nachfolgendes Erhitzen auf 140—150° in 1-Nitro-naphthalin übergeführt (v. Braun, Hahn, Seemann, B. 55, 1696). Gibt beim Erwärmen mit rauchender Schwefelsäure (10% SO<sub>3</sub>) auf 70—80° 8-Nitro-tetralin-sulfonsäure-(6) (Sch., A. 426, 139).

6-Nitro-1.2.3.4-tetrahydro-naphthalin, 6-Nitro-tetralin C<sub>10</sub>H<sub>11</sub>O<sub>2</sub>N, s. nebenstehende Formel (E I 237). F: 31,5° (Veselý, Chudožilov, R. 44, 358). — Wird beim Destillieren durch ein auf O<sub>2</sub>N. — CH<sub>2</sub> Ch<sub>2</sub> Chohe Temperatur erhitztes Rohr zersetzt (v. Braun, Hahn, Seemann, B. 55. 1695). Liefert bei der Oxydation mit Chromtrioxyd in Essigsäure 6-Nitrotetralon-(1) (J. D. Riedel, D. R. P. 397150; C. 1924 II, 1405; Frdl. 14, 460; vgl. v. Br., A. 451, 40 Anm.). Die Oxydation mit der berechneten Menge Permanganat in alkal. Lösung auf dem Wasserbad ergibt ein Gemisch von nicht näher beschriebenen Nitrophthalonsäuren, das bei weiterer Oxydation mit Permanganat in saurer Lösung in 4-Nitro-phthalsäure übergeht (v. Braun, B. 56, 2334). Reduktion zu 5.6.7.8-Tetrahydro-naphthylamin-(2) erfolgt beim Behandeln mit etwas Natriumsulfid enthaltendem Natriumhydrosulfid in wäßrig-alkoholischer Lösung (V., Ch., R. 44, 355, 357) und bei der Hydrierung in Gegenwart von Nickelkatalysator unter Druck oberhalb 120° (SCHROETER, A. 426, 53; Tetralin-Ges., D. R. P. 333157; C. 1921 II, 738; Frdl. 13, 320). Wird durch 2 Mol Brom bei 100° in x-Dibrom-6-nitrotetralin übergeführt (v. Braun, Hahn, Seemann, B. 55, 1695; vgl. Tetralin-Ges., D. R. P. 332593; C. 1921 II, 805; Frdl. 13, 287). Gibt beim Erwärmen mit rauchender Schwefelsäure (10% SO<sub>2</sub>) 7-Nitro-tetralin-sulfonsäure-(5) (SCH., A. 426, 140).

6-Brom-5-nitro-1.2.3.4-tetrahydro-naphthalin, 6-Brom-5-nitro-tetralin  $C_{10}H_{10}O_2NBr$ , s. nebenstehende Formel. B. Aus diazotiertem 5-Nitro-6-amino-tetralin durch Einw. von Kupfer(I)-bromid (Veselý, Chudožilov, Bl. [4] 37, 1438). — Krystalle (aus

389

Alkohol oder Benzol). F: 101—102°. Schwer löslich in Alkohol, leichter in Benzol. — Gibt beim Erhitzen mit Brom auf ca. 200° 2-Brom-1-nitro-naphthalin. Wird von Salpeterschwefelsäure zu 6-Brom-5.7-dinitro-tetralin nitriert.

7-Brom-5-nitro-1.2.3.4-tetrahydro-naphthalin, 7-Brom-5-nitro-tetralin  $C_{10}H_{10}O_2NBr$ , s. nebenstehende Formel. B. Durch Einw. von Kupfer(I)-bromid auf diazotiertes 8-Nitro-6-amino-tetralin (Veselý, Chudožilov, Bl. [4] 37, 1441). — Gelbe Krystalle (aus Alkohol). F: 76—76,5°. Ziemlich leicht löslich in Alkohol und warmem Eisessig. — Gibt beim Erhitzen mit Brom 3-Brom-1-nitro-naphthalin.

8-Brom-5-nitro-1.2.3.4-tetrahydro-naphthalin, 8-Brom-5-nitro-tetralin  $C_{10}H_{10}O_2NBr$ , s. nebenstehende Formel. B. Durch Einw. von Kupfer(I)-bromid auf diazotiertes 8-Nitro-5-amino-tetralin (Veselý, Chudožilov, Bl. [4] 37, 1441). — Krystalle (aus Methanol). F: 68-69°. Sehr schwer löslich in Methanol. — Gibt beim Erhitzen mit Brom 4-Brom-1-nitro-naphthalin.

5-Brom-6-nitro-1.2.3.4-tetrahydro-naphthalin, 5-Brom-6-nitro-tetralin  $C_{10}H_{10}O_2NBr$ , s. nebenstehende Formel. B. Durch Einw. von Kupfer(I)-bromid auf diazotiertes 6-Nitro-5-amino-tetralin bei ca. 50° (Vesely, Chudožilov, Bl. [4] 37, 1439). — Gelbe Nadeln (aus Alkohol). F: 50—51,5°. Leicht löslich in Alkohol. — Gibt beim Erhitzen mit Brom auf 200° 1-Brom-2-nitro-naphthalin.

7-Brom-6-nitro-1.2.3.4-tetrahydro-naphthalin, 7-Brom-6-nitro-tetralin  $C_{10}H_{10}O_2NBr$ , s. nebenstehende Formel. B. Durch Einw. von Kupfer(I)-bromid auf diazotiertes 7-Nitro-6-aminotetralin (Veselý, Chudožilov, Bl. [4] 37, 1440). — Krystalle (aus Methanol). F: 50-510. — Gibt beim Erhitzen mit Brom 2-Brom-3-nitro-naphthalin.

8-Brom-6-nitro-1.2.3.4-tetrahydro-naphthalin, 8-Brom-6-nitro-tetralin  $C_{10}H_{10}O_2NBr$ , s. nebenstehende Formel. B. Durch Einw. von Kupfer(I)-bromid auf diazotiertes 7-Nitro-5-aminotetralin (Vesely, Chudožilov, Bl. [4] 37, 1440). — Braune Krystalle (aus Alkohol). F: 106—106,5°. — Gibt beim Erhitzen mit Brom 4-Brom-2-nitro-naphthalin.

CH2 CH2

**x-Dibrom-6-nitro-1.2.3.4-tetrahydro-naphthalin, x-Dibrom-6-nitro-tetralin**  $C_{10}H_9O_2NBr_2$ . Wurde nicht rein erhalten. — B. Aus 6-Nitro-tetralin und 2 Mol Brom bei 100° (v. Braun, Hahn, Seemann, B. 55, 1695; vgl. Tetralin-Ges., D. R. P. 332593; C. 1921 II, 805; Frdl. 13, 287). — Sehr zähe Masse. Schwer löslich in Alkohol. — Spaltet bei 140—150° lebhaft Bromwasserstoff ab und geht in 2-Nitro-naphthalin über.

5.6 - Dinitro - 1.2.3.4 - tetrahydro - naphthalin, 5.6 - Dinitro tetralin  $C_{10}H_{10}O_4N_2$ , s. nebenstehende Formel. B. Neben anderen Produkten bei der Nitrierung von Tetralin mit Salpeterschwefelsäure (Schroeter, A. 426, 44). — Gelbliche Platten (aus Alkohol). F: 102—103° (Sch.). Schwer löslich in Tetrachlorkohlenstoff, Alkohol

und Äther, leichter in Aceton, Chloroform und Eisessig, löslich in konz. Schwefelsäure (Sch.). Bildet mit 5.7-Dinitro-tetralin ein bei 72—73° sehmelzendes Eutektikum (Sch.). — Liefert bei der partiellen Reduktion mit Wasserstoff in Gegenwart von Platinschwarz in Alkohol 5-Nitro-6-amino-tetralin (Veselý, Rein, Collect. Trav. chim. Tchécosl. 1, 364; C. 1929 II, 1669), bei der vollständigen Reduktion mit Wasserstoff in Gegenwart von Nickel in Tetralin oder mit Zinn(II)-chlorid und alkoh. Salzsäure 5.6-Diamino-tetralin (SCH., A. 426, 76). Gibt beim Bromieren bei 100° und Erhitzen des Reaktionsprodukts auf 180° 1.2-Dinitronaphthalin (V., Dvořák, Bl. [4] 33, 326). Nitrierung mit Salpeterschwefelsäure ergibt 5.6.8-Trinitro-tetralin (SCH., A. 426, 48). Liefert beim Kochen mit alkoh. Ammoniak unter Druck 6-Nitro-5-amino-tetralin (V., Chudožilov, Bl. [4] 37, 1439).

5.7 - Dinitro - 1.2.3.4 - tetrahydro - naphthalin , 5.7 - Dinitro tetralin  $\rm C_{10}H_{10}O_4N_2$ , s. nebenstehende Formel (E I 238). Ist in organischen Lösungsmitteln etwas leichter löslich als 5.6-Dinitro-tetralin; löst sich leicht in konz. Schwefelsäure (Schrofter, A. 426, 45). Bildet mit 5.6-Dinitro-tetralin ein bei 72—73°, mit 5.6.8-Trinitro-

$$O_2N$$
 $CH_2$ 
 $CH_2$ 
 $CH_2$ 

tetralin ein bei 81-82° schmelzendes Eutektikum (SCH.). - Liefert bei der Oxydation mit siedender 30% iger Salpetersäure 3.5-Dinitro-phthalsäure (Sch., A. 426, 46). Gibt bei der Reduktion mit Natriumhydrosulfid in Alkohol + Essigester bei Siedetemperatur 8-Nitro-6-amino-tetralin (Tetralin-Ges., D. R. P. 333157; C. 1921 II, 738; Frdl. 13, 321), bei der naphthalin.

Hydrierung in Gegenwart von Nickel-Katalysator in Tetralin bei 180° unter Druck 8-Nitro-6-amino-tetralin und 5.7-Diamino-tetralin, bei der Reduktion mit Zinn(II)-chlorid und alkoh. Salzsäure in Eisessig außerdem noch 7-Nitro-5-amino-tetralin (Sch., A. 426, 64, 70, 78; Tetralin-Ges.). Beim Behandeln mit Brom bei 100° und nachfolgenden Erhitzen auf 180° entsteht 1.3-Dinitro-naphthalin (Veselý, Dvořák, Bl. [4] 33, 326).

5.8-Dinitro-1.2.3.4-tetrahydro-naphthalin, 5.8-Dinitro-tetralin  $C_{10}H_{10}O_4N_2$ , s. nebenstehende Formel. B. Bei der Einw. von Natriumnitrit und Kupferbronze auf diazotiertes 8-Nitro-5-amino-tetralin (Chudožilov, Collect. Trav. chim. Tchécosl. 1, 304; C. 1929 II, 738).

— Rote Plättchen (aus Alkohol). F: 87—88°. — Liefert bei der Einw. von Brom und nachfolgendem Erhitzen auf 1900 1.4-Dinitro-naphthalin.

6.7 - Dinitro - 1.2.8.4 - tetrahydro - naphthalin, 6.7 - Dinitro tetralin  $\rm C_{10}H_{10}O_4N_2$ , s. nebenstehende Formel. B. Bei der Einw. von Natriumnitrit und Kupferbronze auf diazotiertes 7-Nitro-6-amino- $O_2N$ tetralin (Chudožilov, Collect. Trav. chim. Tchécosl. 1, 303; C. 1929 II, 738). — Rote Nadeln (aus Methanol). F: 98—99°. Leicht löslich in Alkohol und Äther. — Liefert bei der Einw. von Brom und nachfolgendem Erhitzen auf 190° 2.3-Dinitro-

CH<sub>2</sub>

6-Brom-5.7-dinitro-1.2.3.4-tetrahydro-naphthalin, 6-Brom-CH. 5.7-dinitro-tetralin C<sub>10</sub>H<sub>9</sub>O<sub>4</sub>N<sub>2</sub>Br, s. nebenstehende Formel (H 495  $O_2N$ als 6-Brom-x.x-dinitro-naphthalin-tetrahydrid-(1.2.3.4) be-CH<sub>2</sub> Schrieben; zur Konstitution vgl. Veselý, Chudožilov, Bl. [4] 37, 1437). — B. Durch Nitrieren von 6-Brom-5-nitro-tetralin mit Salpeterschwefelsäure (V., Ch., Bl. [4] 37, 1443). Bei der Einw. von Kupfer(I)-bromid auf diazotiertes 5.7-Dinitro-6-amino-tetralin (V., Ch., Bl. [4] 37, 1442). — Krystalle (aus Alkohol). F: 135—136°. Schwer löslich in heißem Alkohol, leicht in Benzol, Aceton und Eisessig. — Gibt beim Behandeln mit Brom in Gegenwart von etwas Tetralin und nachfolgenden Erhitzen auf 2000 2-Brom-1.3-dinitro-naphthalin.

8-Brom-5.7-dinitro-1.2.3.4-tetrahydro-naphthalin, 8-Brom-5.7-dinitro-tetralin  $C_{10}H_9O_4N_2Br$ , s. nebenstehende Formel (H 494 als 5-Brom-x.x-dinitro-naphthalin-tetrahydrid-(1.2.3.4) beschrieben; zur Konstitution vgl. Vesely, Chudožilov, Bl. [4] 37, 1437). — B. Bei der Einw. von Kupfer(I)-bromid auf diazotiertes 6.8-Dinitro-5-amino-tetralin (V., Сн., Bl. [4] 37, 1442). — Krystalle

(aus Alkohol). F: 91°. Schwer löslich in heißem Alkohol, leichter in Benzol und Eisessig. — Gibt beim Behandeln mit Brom und nachfolgenden Erhitzen auf 200° 4-Brom-1.3-dinitronaphthalin.

5.6.8-Trinitro-1.2.3.4-tetrahydro-naphthalin, 5.6.8-Trinitrotetralin C<sub>10</sub>H<sub>9</sub>O<sub>6</sub>N<sub>3</sub>, s. nebenstehende Formel. B. Beim Erwärmen von 5.6-Dinitro-tetralin mit Salpeterschwefelsäure (Schroeter, A. 426, 45, 48). — Krystalle (aus Alkohol + Eisessig oder aus Eisessig + Ameisensäure). F: 95°. Leicht löslich in Tetrachlorkohlenstoff. Bildet mit 5.7-Dinitro-tetralin ein bei 81—82° schmelzendes 24.

Eutektikum. — Die Oxydation mit Permanganat in Aceton ergibt 3.4.6(oder 3.5.6)-Trinitrohydrozimtsäure-carbonsåure-(2)(?), die Reduktion mit Zinn(II)-chlorid und alkoh. Salzsäure führt zu 5.6.8-Triamino-tetralin.

18. 4-Methyl-hydrinden, 4-Methyl-indan C<sub>10</sub>H<sub>12</sub>, s. nebenstehende Formel. V. Im Steinkohlen-Urteer (KRUBER, B. 57, 1010; WEISSGERBER, Brennstoffch. 5, 210; C. 1925 I, 2270); Isolierung erfolgt CHa durch Behandlung mit Schwefelsäure und Destillieren des Natriumsalzes der Sulfonsäure mit überhitztem Wasserdampf und 70% iger Schwefelsäure bei 160—170° (Kr., B. 57, 1011). — Öl von wenig charakteristischem Geruch. Kp: 203°; D. 0,9350 (Kr.). Beugung von Röntgenstrahlen an flüssigem 4-Methyl-hydrinden: Katz, Z. ang. Ch. 41, 332. — Liefert beim Durchleiten durch ein auf ca. 650° erhitztes, verzinntes Eisenrohr Inden, 4(oder 7)-Methyl-inden und andere Produkte (Kr.). Die Oxydation mit wäßr. Kaliumpermanganat-Lösung führt zu 2.6-Dicarboxy-phenylglyoxylsäure (Kr.).

x-Tribrom-4-methyl-hydrinden C<sub>10</sub>H<sub>9</sub>Br<sub>8</sub>. B. Durch Einw. von überschüssigem Brom auf 4-Methyl-hydrinden in Gegenwart von Jod (KRUBER, B. 57, 1011). — Nadeln (aus Alkohol + Toluol). F: 1830. Sehr schwer löslich in heißem Alkohol.

19. 4.7-Methylen-4.7.8.9-tetrahydro-inden, 2.5-Methylen-bicyclo-[0.3.4]-nonadien-(3.7), Dicyclopentadien-1) C<sub>10</sub>H<sub>12</sub>, s. nebenstehende Formel (H 495; E I 238). Zur Konstitution vgl. Alder, Stein, A. 485 [1931], 225; Ang. Ch. 47 [1934], 837. Zur Konfiguration vgl. Al., St., A. 504 [1933], 221; Ang. Ch. 47, 839; Kohlrausch, Seka, B. 69 [1936], 731, 738. — V. In den niedrigersiedenden Fraktionen eines gealterten Rohbenzol-Vorlaufs (Perkins, Cruz, Am. Soc. 49, 518). — B. Bei der Einw. von Dimethylketen auf Cyclopentadien anfangs bei —80°, zuletzt bei —20°, neben anderen Produkten (Staudinger, Meyer, Helv. 7, 21). — F: 32,7° (P., C.), 32,5° (St., Rheiner, Helv. 7, 26), 32° (Farmer, Scott, Soc. 1929, 177). Gelegentlich wurden Krystalle vom Schmelzpunkt 19° (Fa., Sc., Soc. 1929, 177) oder 19,5° (St., Rh., Helv. 7, 23, 26) erhalten; vgl. darüber auch Wieland, Bergel, A. 446, 19; St., Bruson, A. 447, 98. Kp<sub>13</sub>: 56° (Wie, Be., A. 446, 19; Fa., Sc., Soc. 1929, 177). Kryoskopische Konstante: 41 (für 1 kg Lösungsmittel) (Wie, Be.). Lösungsmittel) (WIE., BE.).

Dicyclopentadien liefert bei längerem Erhitzen auf 150-200° Tricyclopentadien (S. 475), Dicyclopentadien liefert bei längerem Erhitzen auf 150—200° Tricyclopentadien (S. 567), Pentacyclopentadien (S. 608) und unlösliches Polycyclopentadien (S. 78), wobei die Mengenverhältnisse der einzelnen Produkte von der Dauer des Erhitzens und der Temperatur abhängig sind (Staudinger, Bruson, A. 447, 99, 105; vgl. St., Rheiner, Helv. 7, 29; St., B. 59, 3026). Depolymerisation zu Cyclopentadien durch Destillation mit Eisenspänen: Perkins, Cruz, Am. Soc. 49, 518; Farmer, Scott, Soc. 1929, 177. Bei der Oxydation mit Permanganat in Aceton entsteht eine harzige Tetracarbonsäure(?) der annähernden Zusammensetzung C<sub>10</sub>H<sub>12</sub>O<sub>8</sub>, die ein in Natronlauge lösliches, in Wasser und Alkohol unlösliches saures Bleisalz liefert (Bergel, Widmann, A. 467, 20). Cibt in Chloroform bei Einw. von etwas mehr als 1 Mol Benzonersäure Dicyclo-89). Gibt in Chloroform bei Einw. von etwas mehr als 1 Mol Benzopersäure Dicyclopentadienoxyd (Syst. Nr. 2366), mit mehr als 2 Mol Benzopersäure Dicyclopentadiendioxyd (Syst. Nr. 2672) (Wieland, Be., A. 446, 28). Liefert in Eisessig bei 20-stdg. Einleiten von 5% igem Ozon Isodicyclopentadiendiozonid (s. u.); bei 48-stdg. Einleiten entsteht außerdem 5% gem Ozon Isodicyclopentadiendiozonid (s. u.); bei 48-stdg. Einleiten entsteht außerdem das Isodicyclopentadienoxodiozonid (S. 392) (St., B. 58, 1094). Die Lösung in Tetrachlor-kohlenstoff gibt beim Sättigen mit 5% igem Ozon Polycyclopentadienozonid (S. 78) (St., B. 58, 1095). Liefert in Gegenwart von Palladiumschwarz oder Platinschwarz in Äther mit 2 Atomen Wasserstoff Dihydrodicyclopentadien (S. 330) (Wie., Be., A. 446, 25; St., Rh., Helv. 7, 27), mit mehr Wasserstoff Tetrahydrodicyclopentadien (S. 109) (St., Rh.). Nimmt ein Mol Brom rasch, das zweite langsam auf (St., Bruson, A. 447, 103; vgl. St., Rh.); bei der Einw. von Brom in Eisessig entsteht eine blaue unlösliche Verbindung (C<sub>12</sub>H<sub>13</sub>OBr)<sub>X</sub>, die sich bei höherer Temperatur unter Bromwasserstoff-Abspaltung zersetzt (St., Br., A. 447, 404). Liefert beim Außerwahren mit Diphanylketen in Petroläther eine Verbindung 447, 104). Liefert beim Aufbewahren mit Diphenylketen in Petroläther eine Verbindung C<sub>24</sub>H<sub>22</sub>O (Syst. Nr. 658) (St., Rh., Helv. 7, 18).

Dimolekulares Dicyclopentadien-nitrosochlorid, Bis-dicyclopentadien-nitrosochlorid  $C_{20}H_{24}O_2N_2Cl_2=(C_{10}H_{12}ONCl)_2$  (H 496). Zur Konstitution vgl. Alder, Stein, A. 485 [1931], 227. — Liefert beim Kochen mit Isoamylalkohol das monomolekulare

Nitrosochlorid (Wieland, Bergel, A. 446, 20).

Monomolekulares Dicyclopentadien-nitrosochlorid C<sub>10</sub>H<sub>12</sub>ONCl (H 496). Zur Konstitution vgl. Adler, Stein, A. 485 [1931], 227. — B. Aus dem dimolekularen Nitrosochlorid beim Kochen mit Isoamylalkohol (Wieland, Bergel, A. 446, 20). — Krystalle (aus Benzol). — Gibt beim Erwärmen mit wäßrig-alkoholischem Ammoniak neben anderen Produkten Bis-[6-oximino-4.7-methylen-4.5.6.7.8.9-hexahydro-indenyl-(5)]-amin (Formel I;

$$I. \begin{bmatrix} HC & CH_2 - HC & CH - CH - CH - CH_2 & HC & CH_2 - HC & CH_2 - HC & CH_3 - CH_4 & CH_4 - CH_5 & CH_5$$

Syst. Nr. 1873), beim Erwärmen mit Diäthylamin in Alkohol 5-Diäthylamino-6-oximino-

4.7-methylen-4.5.6.7.8.9-hexahydro-inden (Formel II; Syst. Nr. 1873) (W., B., A. 446, 30). Verbindung C<sub>10</sub>H<sub>11</sub>ON (H 496). Liefert beim Kochen mit Zinkstaub und konz. Salzsäure in Alkohol 6-Oxo-4.7-methylen-4.5.6.7.8.9-hexahydro-inden (s. nebenstehende Formel) neben anderen Produkten (Wieland, Bergel, A. 446, 21; vgl. Alder, Stein, A. **485** [1931], 227).

Isodicy clopentadiendiozonid C<sub>10</sub>H<sub>12</sub>O<sub>6</sub>. Zur Bezeichnung vgl. STAUDINGER, B. 58, 1089. — Das Mol.-Gew. ist kryoskopisch in Eisessig bestimmt (St., B. 58, 1094). — B. Bei

<sup>1)</sup> Ein von dem gewöhnlichen, (α-)Dicyclopentadien nicht frei erhaltenes, als β-Dicyclopentadien bezeichnetes flüssiges Stereoisomeres wurde nach dem Literatur-Schlußtermin des Ergänzungswerkes II [1. I. 1930] von ALDER, STEIN, A. 504 [1933], 220, 238; Ang. Ch. 47 [1934], 839) dargestellt.

20-stdg. Einleiten von 5%igem Ozon in eine Lösung von Dicyclopentadien in Eisessig (Sr.).—Sehr hygroskopisches körniges Pulver. F: 95—98° (Zers.); explodiert bei höherem Erhitzen. Sehr leicht löslich in Aceton und Pyridin, etwas schwere in Eisessig, schwer in Benzol, Essigester, Tetrachlorkohlenstoff und Schwefelkohlenstoff, unlöslich in Äther und Petroläther.—Zersetzt sich an der Luft. Löst sich bei kurzem Kochen in Wasser.

Indianalen eine Kochen in Wasser.

Isodicyclopentadienoxodiozonid C<sub>10</sub>H<sub>12</sub>O<sub>7</sub>. Zur Bezeichnung vgl. Staudinger, B. 58, 1093. — B. Neben Isodicyclopentadiendiozonid bei 48-stdg. Einleiten von 5 %igem Ozon in Dicyclopentadien in Eisessig (St., B. 58, 1095). — Hygroskopisches Pulver. F: 105—108° (Zers.); explodiert bei höherem Erhitzen. In der Kälte unlöslich in Eisessig, Tetrachlorkohlenstoff und Benzol, leicht löslich in Wasser.

## 5. Kohlenwasserstoffe $C_{11}H_{14}$ .

- 1.  $\alpha$ -Pentenyl-benzol, 1-Phenyl-penten-(1),  $\alpha$ -Phenyl- $\alpha$ -amylen,  $\beta$ -Propyl-styrol  $C_{11}H_{14}=C_6H_5\cdot CH\cdot CH\cdot CH_2\cdot C_2H_5$  (H 497; E I 238). B. Beim Kochen von [ $\alpha$ -Brompentyl]-benzol mit Natriummethylat-Lösung (Conant, Blatt, Am. Soc. 50, 557). In geringer Menge bei der Einw. von wasserfreiem Kupfer(II)-chlorid auf  $\alpha$ -Butyl-benzylmagnesium-bromid in Ather (C., Bl., Am. Soc. 50, 556). Kp: 212—215°. Mit Wasserdampf flüchtig.— Liefert bei der Einw. einer Kalium-Natrium-Legierung in Äther in einer Stickstoffatmosphäre und folgenden Behandlung mit Kohlendioxyd  $\beta$ - $\beta$ '-Dipropyl- $\alpha$ - $\alpha$ '-diphenyl-adipinsäure.
- 2.  $\delta$ -Pentenyl-benzol, 5-Phenyl-penten-(1),  $\varepsilon$ -Phenyl- $\alpha$ -amylen  $C_{11}H_{14}=C_{6}H_{5}\cdot CH_{2}\cdot 
- 3. [Penten-(1)-yl-(2)]-benzol, 2-Phenyl-penten-(1),  $\beta$ -Phenyl- $\alpha$ -amylen,  $\alpha$ -Propyl-styrol  $C_{11}H_{14}=C_6H_5\cdot C(:CH_2)\cdot CH_2\cdot C_2H_5$  (H 497). B. Aus 2-Phenyl-penten-(2)-carbonsäure-(1) oder aus  $\beta$ -Propyl-zimtsäure bei der trocknen Destillation oder beim Kochen mit 50%iger Schwefelsäure, neben anderen Produkten (Johnson, Kon, Soc. 1926, 2756). Kp<sub>14</sub>: 86°. Gibt bei der Oxydation mit alkal. Permanganat-Lösung Butyrophenon.
- 4. [β-Methyl-α-butenyl]-benzol, 2-Methyl-1-phenyl-buten-(1), α-Methyl-α-āthyl-β-phenyl-āthylen, β-Methyl-β-āthyl-styrol C<sub>11</sub>H<sub>14</sub> = C<sub>e</sub>H<sub>5</sub>·CH:C(CH<sub>5</sub>)·C<sub>2</sub>H<sub>5</sub>. B. Aus Methyl-āthyl-benzyl-carbinol beim Erwärmen mit Acetanhydrid und wenig konz. Schwefelsäure auf dem Wasserbad (Tiffenau, Levy, Bl. [4] 33, 769). Neben anderen Produkten bei der Einw. von Kaliumhydroxyd auf Methyl-āthyl-[α-jod-benzyl]-carbinol in Ather (T., L.). Beim Überleiten des Dampfes von β-Methyl-β-phenyl-butylalkohol bei Rotglut über Infusorienerde, neben anderen Produkten (Blondeau, A.ch. [10] 2, 32; Ramart, Bl., C. r. 176, 1321). Beim Einleiten von Wasserdampf in eine Suspension von β-Methyl-β-āthyl-α-phenyl-trimethylenglykol in 14%iger Schwefelsäure, neben 5-Methyl-5-āthyl-4-phenyl-1.3-dioxan (Franke, Stern, M. 49, 25). Entsteht wahrscheinlich bei der Einw von Athylmagnesiumbromid oder von Magnesium in Gegenwart von Jod auf eine āther. Lösung von 2-Brom-2-benzyl-butan, neben anderen Produkten (Trotman, Soc. 127, 91). Kp<sub>13</sub>: 86° (Fr., St.); Kp<sub>23</sub>: 98—100°; Kp<sub>765</sub>: 199—200° (T., L.). D: 0,924 (T., L.). Liefert bei der Oxydation mit Chromessigsäure Methyläthylketon und Benzoesäure (Bl.; R., Bl.). Addiert in Chloroform 1 Mol Brom (Fr., St.). Bei der Einw. von Jod und gelbem Quecksilberoxyd in Gegenwart von wasserhaltigem Äther erhält man Methyl-āthyl-[α-jod-benzyl]-carbinol (T.). Mit Natriumnitrit in essigsaurer Lösung bildet sich ein Nitrosit (Krystalle; F: 129—130°; schwer löslich in Alkohol, löslich in Benzol) (T., L.).
- 5.  $[\beta-Methyl-\beta-butenyl]-benzol, 2-Methyl-1-phenyl-buten-(2), \alpha.\beta-Dimethyl-\alpha-benzyl-dthylen <math>C_{11}H_{14}=C_6H_5\cdot CH_5\cdot C(CH_3):CH\cdot CH_3$ . B. Beim Behandeln von  $\beta.\beta$ -Dimethyl- $\gamma$ -phenyl-propylalkohol mit Thionylchlorid und folgenden Erhitzen mit Pyridin im Rohr auf 120—130° (Haller, Ramart, C. r. 174, 1214). Kp: 198—203°. Liefert bei der Oxydation mit Chromessigsäure Methylbenzylketon und Essigsäure.
- 6. [ $\gamma$ -Methyl- $\alpha$ -butenyl]-benzol, 3-Methyl-1-phenyl-buten-(1),  $\alpha$ -Isopropyl- $\beta$ -phenyl-āthylen,  $\beta$ -Isopropyl-styrol  $C_{11}H_{14}=C_{4}H_{5}\cdot CH:CH:CH(CH_{3})_{2}$  (H 497; E I 239). B. Durch längeres Kochen von [ $\gamma$ - $\gamma$ -Dimethyl-allyl]-benzol mit etwas Kalikalk (Claisen, J. pr. [2] 105, 83). Aus Isobutylphenylcarbinol sowie (neben wenig  $\alpha$ -Isopropyl- $\alpha$ -phenyl-āthylen) aus  $\gamma$ -Methyl- $\beta$ -phenyl-butylalkohol durch Destillieren über Infusorienerde bei 300—400° (Ramart, Amagat, A. ch. [10] 8, 307). Kp<sub>30</sub>: 98—100° (R., A.). Bei

der Oxydation mit Chromessigsäure entstehen Benzoesäure und Isobuttersäure (R., A.). Addition von Brom in Schwefelkohlenstoff: Reich, van Wijck, Waelle, Helv. 4, 247.

7. [γ-Methyl-β-butenyl]-benzol, [γ.γ-Dimethyl-allyl]-benzol, 2-Methyl-4-phenyl-buten-(2), α.α-Dimethyl-β-benzyl-āthylen C<sub>11</sub>H<sub>14</sub> = C<sub>6</sub>H<sub>5</sub>·CH<sub>2</sub>·CH: C(CH<sub>3</sub>)<sub>8</sub> (H 498). B. Aus Dimethyl-β-phenāthyl-carbinol bei aufeinanderfolgender Destillation über Ammoniumjodid und Phosphorpentoxyd im Vakuum (Claisen, J. pr. [2] 105, 82). Entsteht als Hauptprodukt beim Leiten des Dampfes von β.β-Dimethyl-γ-phenyl-propylalkohol über Infusorienerde bei 300—400° (Haller, Ramart, C. r. 174, 1214). Aus 4-Brom-2-methyl-buten-(2) bei Einw. von Phenylmagnesiumbromid und folgender Behandlung des Reaktionsprodukts mit verd. Salzsäure (Cl., J. pr. [2] 105, 81; STAUDINGER, KREIS, SCHILT, Helv. 5, 754). — Nach Rosen riechendes Öl. Kp<sub>751</sub>: 205—206,5° (Cl.); Kp<sub>12</sub>: ca. 90° (St., Kr., Sch.). D<sup>16</sup>: 0,8958 (Cl.). — Liefert bei der Oxydation mit Chromessigsäure Aceton und Benzoesäure (H., R.). Reduziert Quecksilber(I)-acetat zu Quecksilber(I)-acetat (Cl.). Gibt bei der Ozonspaltung in Chloroform Phenylessigsäure und Aceton (St., Kr., Sch.). Beim Hydrieren bei Gegenwart von Palladium(II)-chlorid in Alkohol erhält man Isoamylbenzol (Cl.). Bei der Einw. von Brom entsteht [β.γ-Dibrom-isoamyl]-benzol (Cl.). Bei längerem Erhitzen mit Bromwasserstoffsäure in Eisessig im Rohr auf 100° erhält man [γ-Brom-isoamyl]-benzol(?) (Cl.). Liefert bei längerem Kochen mit etwas Kalikalk [γ-Methyl-α-butenyl]-benzol (Cl.).

Nitrosat C<sub>11</sub>H<sub>14</sub>O<sub>4</sub>N<sub>2</sub>. F: 159-160° (Zers.) (Haller, Ramart, C. r. 174, 1214).

- 8. [a,β-Dimethyl-α-propenyl]-benzol, 2-Methyl-3-phenyl-buten-(2), Trimethyl-phenyl-dthylen, α.β.β-Trimethyl-styrol C<sub>11</sub>H<sub>14</sub> = C<sub>6</sub>H<sub>5</sub>·C(CH<sub>3</sub>):C(CH<sub>3</sub>)<sub>2</sub> (H 498; E I 239). Zur Konstitution vgl. Schlenk, Bergmann, A. 463, 33; v. Auwers. B. 62, 694. B. Durch Einw. von Isopropylmagnesiumjodid auf Acetophenon in siedendem trocknem Äther (Glattfeld, Milligan, Am. Soc. 42, 2323; Gl., Hopkins, Thurber, Am. Soc. 49, 1040). Kp: 187—188° (Gl., M.). Liefert beim Kochen mit gesättigter Jodwasserstoffsäure und rotem Phosphor unter Zugabe von Jod 2-Methyl-3-phenyl-butan (Gl., M.). Reagiert nicht mit Natrium (Schl., B.).
- 9. 3-Methyl-2-phenyl-buten-(1).  $\alpha$ -Isopropyl- $\alpha$ -phenyl- $\ddot{\alpha}$ thylen,  $\alpha$ -Isopropyl-styrol  $C_{11}H_{14}=C_6H_5\cdot C(:CH_2)\cdot CH(CH_3)_2$  (H 498). B. Aus  $\beta$ -Isopropyl-zimtsäure sowie aus 3-Methyl-2-phenyl-buten-(2)-carbonsäure-(1) bei der trocknen Destillation oder, neben anderen Produkten, beim Kochen mit 50% iger Schwefelsäure (Johnson, Kon, Soc. 1926, 2757). Entsteht in geringer Menge neben  $\beta$ -Isopropyl-styrol bei der Destillation von  $\gamma$ -Methyl- $\beta$ -phenyl-butylalkohol bei 300—400° in Gegenwart von Infusorienerde (Ramart, Amagat, A. ch. [10] 8, 307). Kp<sub>15</sub>: 89° (J., K.). Gibt bei der Oxydation Isobutyrophenon (J., K.).
- 10. 1-Methyl-4-[β-methyl-propenyl]-benzol, 4-Isocrotyl-toluol, 2-Methyl-1-p-tolyl-propen-(1), α.α-Dimethyl-β-p-tolyl-āthylen C<sub>11</sub>H<sub>14</sub>, s. nebenstehende Formel (H 499). Liefert bei der Einw. von CH<sub>3</sub> CH:C(CH<sub>3</sub>)<sub>2</sub> Benzopersäure α.α-Dimethyl-α'-p-tolyl-äthylenoxyd (TIFFENEAU, LÉVY, C. r. 184, 1466). Bei der Behandlung mit Jod und Quecksilberoxyd erhält man nicht näher untersuchtes 2-Jod-1-oxy-2-methyl-1-p-tolyl-propan, dæs bei der Einw. von Kaliumhydroxyd in Dimethyl-p-tolyl-acetaldehyd übergeht.
- 11. 1.5 Dimethyl 2-propenyl benzol, 4 Propenyl CH<sub>3</sub>
  m-xylol, 1-[2.4-Dimethyl phenyl] propen-(1) C<sub>11</sub>H<sub>14</sub>,
  s. nebenstehende Formel (H 500). B. Bei der Einw. von Natrium auf Butyl-[2.4-dimethyl-cinnamyl]-äther in absol. Alkohol + Toluol cH<sub>3</sub>
  in der Wärme (Bert, Anglade, C. r. 189, 646). Beim Behandeln eines Gemisches von 4-Brom-m-xylol und α-Brom-propylen mit Natrium (B., A., C. r. 189, 646 Anm. 1). Flüssigkeit von ziemlich angenehmem Geruch. Kp<sub>735</sub>: 213—215° (korr.); Kp<sub>20</sub>: 100°; D<sup>17,5</sup>; 0,9096. n<sup>13,15</sup>: 1,540.
- 12. Cyclopentylbenzol, Phenylcyclopentan C<sub>11</sub>H<sub>14</sub> = C<sub>0</sub>H<sub>5</sub>·HC CH<sub>2</sub>·CH<sub>2</sub> (H 501; E I 240). B. Durch Erwärmen von 1-Phenyl-cyclopentanol-(1) mit Eisessig-Jodwasserstoffsäure auf dem Wasserbad unter allmählichem Zusatz von Zinkstaub (Zelinsky, B. 58, 2761). Aus 2-Brom-1-phenyl-cyclopentan bei wiederholtem Kochen mit Zinkstaub und Eisessig oder, neben anderen Produkten, beim Behandeln mit Magnesium (v. Braun, Kühn, B. 60, 2560, 2561). Kp: 215°; D<sup>n</sup>. 0,9553; n<sup>n</sup>. 1,5330 (v. Br., K.). Kp: 215—217°; D<sup>n</sup>. 0,9503; n<sup>n</sup>. 1,5305 (Z.). Mit Wasserdampf flüchtig (v. Br., K.). Liefert beim Behandeln mit Aluminiumchlorid in Petroläther bei 60° geringe Mengen eines höher siedenden Ols

pentan-carbonsäure-(1).

(v. Br., K.). Verhalten beim Überleiten über Palladium- oder Platinasbest oder mit Platin aktivierte Kohle bei 300°: Z.

- vierte Kohle bei  $300^{\circ}$ : Z.

  2-Brom-1-phenyl-cyclopentan  $C_{11}H_{13}Br = C_{6}H_{5} \cdot HC \stackrel{CH_{2}-CH_{2}}{\leftarrow} B$ . Bei zweimaligem je 2-stdg. Erwärmen von 1-Phenyl-cyclopenten-(2) mit Bromwasserstoff in Eisessig auf 100° (v. Braun, Kühn, B. 60, 2560). — Flüssigkeit von angenehmem, süßlichem Geruch. Kp13: 138—140°. — Liefert beim Kochen mit Zinkstaub und Eisessig Phenylcyclopentan. Beim Behandeln mit Magnesium und Umsetzen des Reaktionsprodukts mit Kohlendioxyd erhält man Phenylcyclopentan, 2.2'-Diphenyl-dicyclopentyl-(1.1') und 2-Phenyl-cyclopentyl- orthonesium (1.1') und 2-Phenyl-cyclop
- 2.3-Dibrom -1-phenyl-cyclopentan  $C_{11}H_{12}Br_2 = C_0H_5 \cdot HC \stackrel{CH_2-CH_2}{CHBr \cdot CHBr}$ . B. Aus 1-Phenyl-cyclopenten-(2) beim Behandeln mit Brom in Chloroform bei 0° (v. Braun, Kühn, B. 60, 2555). — Kp<sub>1</sub>: 130—135°.
- 13. 1.2-Benzo-cyclohepten-(1), Benzosuberen (Benzosuberen), Phenheptamethylen C<sub>11</sub>H<sub>14</sub>, s. nebenstehende Formel.

  B. Beim Kochen von 1.2-Benzo-cyclohepten-(1)-on-(3) mit amalgamiertem Zink und Salzsäure (Borsche, Roth, B. 54, 175). Leicht bewegliches Ol von petroleumartigem Geruch. Kp<sub>764</sub>: 217° (Bo., R.). D<sub>1</sub>°: 0,9693; n<sub>p</sub>: 1,5458 (v. Braun, Stuckenschmidt, B. 56, 1726). D<sub>1</sub>°: 1,5436; n<sub>16</sub>°: 1,5436; n<sub>16</sub>°: 1,5486; n<sub>p</sub>°: 1,5604; n<sub>1</sub>°: 1,5711 (v. Auwers, B. 60, 2137). Liefert bei mehrmaligem Destillieren iher Relevand Bimestein hei 7009 Norbitalia und andere Produkte (v. Br. Sr.) über Bleioxyd-Bimsstein bei 700° Naphthalin und andere Produkte (v. Br., St.).
- 14. 1-Methyl-5.6.7.8-tetrahydronaphthalin, 5-Methyl-tetralin C<sub>11</sub>H<sub>14</sub>,

  Formel I.

  5-Chlormethyl-tetralin, Tetralyl-(5)methylchlorid C<sub>11</sub>H<sub>13</sub>Cl, Formel II. B. Aus

  5-Benzaminomethyl-tetralin beim Schmelzen mit Phosphorpentachlorid (v. Braun, Gruber, Kurschbaum, B. 55, 3673).

  Stechend rischende Krystelle F. 50, 540 Kr. 1440
- Kirschbaum, B. 55, 3673). Stechend riechende Krystalle. F: 50—51°. Kp<sub>13</sub>: 144° bis 145°. Liefert beim Kochen mit Kaliumcyanid in wäßrig-alkoholischer Lösung 5-Cyanmethyl-tetralin.
- 15. 2-Methyl-5.6.7.8-tetrahydro-naphthalin, 6-Methyl-tetralin C11H14, Formel III. B. Aus 2-Methyl-naphthalin durch katalytische Reduktion mit einem Nickel-katalysator bei 150—170° (Schrofter, B. 54, 2248; Tetralin-Ges., D. R. P. 346673; C. 1922 II, 1080; Frdl. 13, 388). Durch Behandlung von 5-Oxo-2-methyl-5.6.7.8-tetrahydronaphthalin mit amalgamiertem Zink und Salzsäure (Krollpfeiffer, Schäfer, B. 56,

- 625). Flüssigkeit. Kp:  $220-222^{\circ}$  (SCHR.);  $224-226^{\circ}$  (KR., SCH.).  $D_4^{is.i}$ : 0.9541;  $n_{\alpha}^{is.i}$ : 1.5332;  $n_{\alpha}^{is.i}$ : 1.5372;  $n_{\beta}^{is.i}$ : 1.5491;  $n_{\beta}^{is.i}$ : 1.5590 (KR., SCH.). Gibt mit Brom in Schwefelkohlenstoff bei Gegenwart von Jod 5-Brom-6-methyl-tetralin (MAYER, SCHÄFER, ROSENBACH, Ar. 1929, 576). Liefert beim Behandeln mit  $\alpha$ -Naphthoylchlorid bei Gegenwart von Aluminiumchlorid in kaltem Benzol 6-Methyl- $7-\alpha$ -naphthoyl-tetralin; reagiert analog mit  $\beta$ -Naphthoylchlorid (Clar, B. 62, 1580). Bei der Umsetzung mit Phthalsäureanhydrid bei Gegenwart von Aluminiumchlorid in Benzol bei  $70^{\circ}$  erhält man 6-Methyl-7-[2-carboxy-benzoul] tetralin (Schromer) benzoyl]-tetralin (SCHROETER).
- 6-Chlormethyl-tetralin, Tetralyl-(6)-methylchlorid  $C_{11}H_{12}Cl$ , Formel IV. B. Aus 6-Benzaminomethyl-tetralin beim Schmelzen mit Phosphorpentachlorid (v. Braun, Gruber, Kirschbaum, B. 55, 3673). Riecht stechend. Kp<sub>12</sub>: 141—142°.
- 1-Brom-2-methyl-5.6.7.8-tetrahydro-naphthalin, 5-Brom-6-methyl-tetralin  $C_{11}H_{13}Br$ , Formel V. B. Aus 6-Methyl-tetralin beim Behandeln mit Brom in Schwefelkohlenstoff bei Gegenwart von Jod (Mayer, Schäfer, Rosenbach, Ar. 1929, 576).  $Kp_{11-12}$ : 140---155°.
- 16. 1-Åthyl-hydrinden C<sub>11</sub>H<sub>14</sub>, s. nebenstehende Formel. -CH<sub>2</sub>CH<sub>2</sub> 1- $[\beta$ -Brom-äthyl]-hydrinden,  $\beta$ -[Hydrindyl-(1)]-äthylbromid  $C_{11}H_{13}Br = C_{6}H_{4}$   $CH_{2}CH_{2}Br)$   $CH_{2}$  B. Man erwärmt 1- $[\beta$ -Oxy--CH/ CaHs äthyl]-hydrinden zweimal je 6 Stdn. mit überschüssiger rauchender Bromwasserstoffsäure auf

## METHYLTETRALIN

120° (v. Braun, Reutter, B. 59, 1924). — Ziemlich dickes Öl.  $Kp_{16}$ : 145—147° (v. Br., Reu.). Wird am Licht gelblich (v. Br., Reu.). — Liefert beim Erwärmen mit Natriummalonester in alkoh. Lösung  $\gamma$ -[Hydrindyl-(1)]-äthylmalonsäure-diäthylester (v. Br., Rath, B. 60, 1184).

17. **4.6-Dimethyl-hydrinden** C<sub>11</sub>H<sub>14</sub>, s. nebenstehende Formel.

V. Im Steinkohlen-Urteer (Weissgerber, Brennstoffch. 5, 210; C.

1925 I, 2271). — Kp: 224—226°. D: 0,9464. — Liefert bei der Oxydation mit Permanganat Benzol-tetracarbonsäure-(1.2.3.5).

**x-Dibrom-4.6-dimethyl-hydrinden**  $C_{11}H_{12}Br_2 = (CH_3)_2C_9H_6Br_2$ . B. Aus 4.6-Dimethyl-hydrinden beim Behandeln mit Brom (Weissgerber, Brennstoffch. 5, 210; C. 1925 I. 2271). — Nadeln.

## 6. Kohlenwasserstoffe $C_{12}H_{16}$ .

- 1.  $\alpha$ -Hexenyl-benzol, 1-Phenyl-hexen-(1),  $\beta$ -Butyl-styrol  $C_{12}H_{16}=C_6H_5$ :  $CH:CH:CH:[CH_2]_3\cdot CH_3$ . B. Bei 38-tägiger Einw. von Lithiumbutyl auf  $\beta$ -Brom-styrol in Petroläther (Marvel, Hager, Coffman, Am. Soc. 49, 2326).  $Kp_8:97$ — $100^{\circ}$ .  $D_0^{ss}:0.9455$ .  $n_0^{ss}:1.5377$ .
- 2. [ $\delta$ -Methyl- $\alpha$ -pentenyl]-benzol, 4-Methyl-1-phenyl-penten-(1),  $\beta$ -Isobutyl-styrol  $C_{12}H_{16}=C_6H_5\cdot CH\cdot CH\cdot CH_2\cdot CH(CH_3)_2$ . B. Beim Sättigen von Isoamylphenylcarbinol mit Chlorwasserstoff bei  $0^0$  und Erhitzen des Reaktionsprodukts mit Pyridin auf  $125^0$  (Reich, van Wijck, Waelle, Helv. 4, 244). Bewegliche Flüssigkeit von angenehmem Geruch. Kp<sub>11</sub>: 107— $109^0$ . Addition von Brom in Schwefelkohlenstoff: R., v. W., W.
- 3. [Hexen-(3)-yl-(3)]-benzol,  $1-\bar{A}thyl-1$ -phenyl-buten-(1), 3-Phenyl-bexen-(3),  $\alpha.\beta$ -Diāthyl-styrol  $C_{12}H_{16}=C_6H_5\cdot C(C_2H_5)$ :  $CH\cdot C_2H_5$ . B. Entsteht vermutlich als Hauptprodukt beim Leiten von Äthyl-propyl-phenyl-carbinol-Dampf über auf Rotglut erhitzte Infusorienerdė (Yéramian, C. r. 173, 364). Gibt bei der Oxydation mit Chromtrioxyd in Essigsäure Propiophenon.

Nitrosat. Nadeln (Y., C. r. 173, 364 Anm. 1).

- 4.  $[\beta-\ddot{A}thyl-\alpha-butenyl]-benzol, 2-\ddot{A}thyl-1-phenyl-buten-(1), \beta.\beta-Diäthyl-styrol$   $C_{12}H_{16}=C_6H_5\cdot CH:C(C_2H_5)_2$  (H 502; E I 240). B. Als Hauptprodukt beim Überleiten des Dampfes von  $\beta$ -Äthyl- $\beta$ -phenyl-butylalkohol über Infusorienerde bei etwa 400° (Blondeau, A. ch. [10] 2, 29; Ramart, Blondeau, C. r. 176, 1322). Kp: 217° (B., A. ch. [10] 2, 31 Anm.). Liefert bei der Oxydation mit Chromessigsäure Diäthylketon und Benzoesäure (B., A. ch. [10] 2, 30; R., B., C. r. 176, 1322).
- 5.  $[a.a-Dimethyl-\beta-butenyl]-benzol(?)$ ,  $[a.a.\gamma-Trimethyl-allyl]-benzol(?)$ , 4-Methyl-4-phenyl-penten-(2)(?)  $C_{12}H_{16}=C_6H_5\cdot C(CH_3)_2\cdot CH\cdot CH\cdot CH_3(?)$ . B. Beim Erhitzen von Methyl- $[\beta-phenyl-isobutyl]$ -carbinol mit wasserfreiem Zinkchlorid (HOFFMAN, Am. Soc. 51, 2545). Wurde nicht ganz rein erhalten.  $Kp_{17}:96-98^{\circ}$ .  $D_{25}^{\circ}:0.889$ . Liefert bei der Oxydation mit Chromessigsäure Acetophenon und andere Produkte.
- 6.  $[\alpha.\beta-Dimethyl-\alpha-butenyl]-benzol, 3-Methyl-2-phenyl-penten-(2), \alpha.\beta-Dimethyl-\beta-āthyl-styrol <math>C_{12}H_{16}=C_6H_5\cdot C(CH_3)\cdot C_2H_5$ . B. Neben 2-Methyl-3-phenyl-penten-(2) (s. u.) aus  $[\alpha.\alpha-Dimethyl-propyl]$ -phenyl-carbinol beim Überleiten über Infusorienerde bei 300—400° (APOLIT, C. r. 172, 1494; A. ch. [10] 2, 98). Aus Methyl-sek.butyl-phenyl-carbinol beim Erhitzen mit Infusorienerde auf 180° (A., A. ch. [10] 2, 103). Gelbliche bewegliche Flüssigkeit.  $Kp_{760}$ : 204—206°. Löslich in den üblichen Lösungsmitteln. Liefert bei der Oxydation mit Chromessigsäure Acetophenon.
- 7.  $[\beta, \gamma$  Dimethyl  $\beta$  butenyl] benzol,  $[\beta, \gamma, \gamma$  Trimethyl allyl] benzol, 2.3-Dimethyl-1-phenyl-buten-(2)  $C_{12}H_{16}=C_6H_5\cdot CH_2\cdot C(CH_3):C(CH_3)_2$ . B. Bei der Einw. von Phenylmagnesiumbromid auf 1-Brom-2.3-dimethyl-buten-(2) (Claisen, J. pr. [2] 105, 90). Nach Geranien riechendes öl.  $Kp_{750}:220-221^{\circ}$ .  $D_{15}^{\circ\circ}:0.903$ . Reduziert Quecksilber(II)-acetat quantitativ zu Quecksilber-(I)-acetat. Liefert ein öliges Dibromid. Beim Erhitzen mit Bromwasserstoff und Eisessig im Rohr auf 100° erhält man  $[\beta(\text{oder }\gamma)-\text{Brom-}\beta,\gamma-\text{dimethyl-butyl}]$ -benzol.
- 8.  $[\beta-Methyl-\alpha-\ddot{a}thyl-\alpha-propenyl]$ -benzol, 2-Methyl-3-phenyl-penten-(2),  $\beta.\beta$ -Dimethyl- $\alpha$ - $\ddot{a}thyl$ -styrol  $C_{13}H_{16}=C_{4}H_{5}\cdot C(C_{2}H_{5})$ :  $C(CH_{3})_{3}$  (H 502; E I 240). B. Neben 3-Methyl-2-phenyl-penten-(2) (s. o.) beim Erhitzen von  $[\alpha.\alpha$ -Dimethyl-propyl]-phenyl-carbinol auf 300° in Gegenwart von Infusorienerde (Apolit, C. r. 172, 1494; A. ch. [10] 2, 98). Durch mehrmalige Destillation von Athyl-isopropyl-phenyl-carbinol unter gewöhnlichem Druck bei Gegenwart von Infusorienerde (A., A. ch. [10] 2, 102). Kp: 202—205° (A., A. ch. [10]

396

- 2, 102). Liefert bei der Oxydation mit Chromessigsäure Propiophenon (A., C. r. 172, 1494; A. ch. [10] 2, 102).
  - 9. 4-Isopropyl-1-allyl-benzol  $C_{12}H_{16} = (CH_3)_2CH \cdot C_6H_4 \cdot CH_2 \cdot CH \cdot CH_2$ .
- 4-Isopropyl-1-[ $\gamma$ -chlor-allyl]-benzol  $C_{12}H_{15}Cl=(CH_3)_2CH\cdot C_6H_4\cdot CH_5\cdot CH: CHCl. B. Bei der Einw. von 4-Isopropyl-phenylmagnesiumbromid auf 1.3-Dichlor-propen-(1) in siedendem Toluol (Bert, <math>C.r.$  180, 1506).  $Kp_{30}: 146^0$ .  $D_4^{30}: 1,019; n_5^{30}: 1,532$ .
- 10. Cyclohexylbenzol, Phenylcyclohexan, 1.2.3.4.5.6-Hexahydro-diphenyl C<sub>12</sub>H<sub>16</sub>, s. nebenstehende Formel (H 503; E I 242). B. Bei der Einw. von Zinkstaub auf 3-Brom-1-phenyl-cyclohexan in siedendem Alkohol bei Gegenwart von Sand (Boyd, Clifford, Probert, Soc. 117, 1388). Aus 1-Phenyl-cyclohexadien-(2.5) durch katalytische Hydrierung mit Palladium (Schlenk, Bergmann, A. 463, '94). Zur Bildung aus Diphenyl durch katalytische Hydrierung in Gegenwart von Platinoxyd vgl. Hückel, Mitarb. A. 477 [1930], 118. Zur Bildung durch Erhitzen von Cyclohexylchlorid mit Benzol in Gegenwart von Aluminiumchlorid nach Kurssanow (A. 318 [1901], 309) vgl. Mayes, Turner, Soc. 1929, 502. Entsteht auch beim Behandeln eines Gemisches von Benzol und Cyclohexen mit Aluminiumchlorid (Berry, Reid, Am. Soc. 49, 3149; Bodroux, C. r. 186, 1005; A. ch. [10] 11, 516). Beim Erwärmen von Benzol mit Cyclohexylalkohol in 80%iger Schwefelsäure auf 70° (H. Meyer, Bernhauer, M. 53/54, 728). Beim Kochen von Cyclohexan mit Dibenzoylperoxyd, neben anderen Produkten (Gelissen, Hermans, B. 59, 664). Entsteht neben Diphenyl beim Erhitzen von Dicyclohexyl mit platiniertem Asbest auf 320—330° (H., Mitarb., A. 477, 126). F: 6,5° (Boyd, Clifford, Probert, Soc. 117, 1388), 7—8° (Mey., Bern.), 7° (Ge., He., B. 59, 664). Kp<sub>755</sub>: 233—234° (Boyd, Cl., Pr.); Kp<sub>30</sub>: 132°; Kp<sub>15</sub>: 115° (Mayes, Turner, Soc. 1929, 502). Die: 0,947; n; 1,528 (Bodroux); n; 1,5274 (Ge., He.). Liefert beim Behandeln mit Brom bei Gegenwart von Aluminiumbromid Hexabrombenzol (Bodroux, A. ch. [10] 11, 547). Beim Behanleln mit Salpetersäure (D: 1,5) bei 0° erhält man [4-Nitro-phenyl]-cyclohexan und [2.4-Dinitro-phenyl]-cyclohexan; bei Durchführung der Reaktion in Eisessig entsteht in der Hauptsache [4-Nitro-phenyl]-cyclohexan (Ca. 62%) neben [2-Nitro-phenyl]-cyclohexan (Mayes, Turner, Soc. 1929, 503).
- [4-Chlor-phenyl]-cyclohexan  $C_{12}H_{15}Cl$ , s. nebenstehende Cl. Cl.  $CH_2 \cdot CH_2 \cdot CH_2$  Formel. B. Aus Cyclohexylchlorid und Chlorbenzol bei Gegenwart von Aluminiumchlorid (Mayes, Turner, Soc. 1929, 502). Aus [4-Amino-phenyl]-cyclohexan durch Diazotieren und Behandeln mit Kupfer(I)-chlorid (M., T., Soc. 1929, 502). Flüssigkeit.  $Kp_{19}$ : 145°;  $Kp_{15}$ : 140°;  $Kp_{10}$ : 134°.  $D_2^{ss}$ : 1,065.  $n_2^{ss}$ : 1,5386. Liefert bei der Oxydation mit Chromschwefelsäure 4-Chlor-benzoesäure. Nitrierung: M., T., Soc. 1929, 505.
- 3-Brom-1-phenyl-cyclohexan  $C_{12}H_{15}Br = C_6H_5 \cdot CH < \begin{array}{c} CH_2 CHBr \\ CH_2 CH_2 \\ \end{array} > CH_2$ . B. Bei Einw. von rauchender Bromwasserstoffsäure auf 1-Phenyl-cyclohexanol-(3) (BOYD, CLIFFORD, PROBERT, Soc. 117, 1388). Flüssigkeit von angenehmem Geruch. Kp40: 186° bis 187°. Liefert bei der Einw. von Zinkstaub in siedendem Alkohol bei Gegenwart von Sand Phenylcyclohexan.
- [4-Brom phenyl] cyclohexan C<sub>13</sub>H<sub>15</sub>Br, s. nebenstehende Formel. B. Aus Cyclohexylchlorid und Brombenzol bei Gegenwart von Aluminiumchlorid (Mayes, Turner, Soc. 1929, 503). Aus [4-Aminophenyl]-cyclohexan durch Diazotieren und Behandeln mit Kupfer(I)-bromid (M., T.). Flüssigkeit. Kp<sub>23</sub>: 160°. D<sup>\*\*</sup><sub>2</sub>: 1,283. n<sup>\*\*</sup><sub>2</sub>: 1,5584. Liefert bei der Oxydation mit Chromschwefelsäure 4-Brom-benzoesäure. Nitrierung: M., T., Soc. 1929, 506.
- [4-Jod-phenyl]-cyclohexan  $C_{12}H_{15}I$ , s. nebenstehende Formel. B. Aus [4-Amino-phenyl]-cyclohexan beim Diazotieren und Behandeln mit Kaliumjodid (Mayes, Turner, Soc. 1929, 503). Öl. Kp<sub>21</sub>: 185°; Kp<sub>11</sub>: 174°. D<sub>1</sub>°: 1,448. n<sub>5</sub>°: 1,5900. Liefert bei der Einw. von Salpetersäure (D: 1,48) bei 0° 4-Jod-1-nitro-benzol (M., T., Soc. 1929, 507).
- [2-Nitro-phenyl]-cyclohexan  $C_{12}H_{15}O_2N$ , s. nebenstehende Formel. B. Entsteht in geringer Menge neben [4-Nitro-phenyl]-cyclohexan beim Behandeln von Phenylcyclohexan mit Salpetersäure (D: 1,5) und Eisessig bei 0° (MAYES, TURNER, Soc. 1929, 504). Ol. Kp<sub>16</sub>: 174°. D\*: 1,111. n\*: 1,5472. Erstarrungspunkte von Gemischen mit [4-Nitro-phenyl]-cyclohexan: M., T., Soc. 1929, 504. Liefert bei der Nitrierung [2.4-Dinitro-phenyl]-cyclohexan. Wird durch Chromschwefelsäure zersetzt.

- [4-Nitro-phenyl]-cyclohexan  $C_{12}H_{15}O_2N$ , s. nebenogen  $O_{2N}$ . HC $<_{CH_2\cdot CH_2}^{CH_2\cdot CH_2}$ CH2 stehende Formel (H 504). B. Zur Bildung durch Nitrierung von Phenylcyclohexan vgl. Boyd, Clifford, Probert, Soc. 117, 1389; Mayes, Turner. Soc. 1929, 503. Gelbliche Tafeln (aus Alkohol). F: 57,5—58° (B., Cl., Pr.), 58,5° (M., T.). Kp25: 210°; Kp16: 198° (M., T.). Erstarrungspunkte von Gemischen mit [2-Nitro-phenyl]-cyclohexan: M., T., Soc. 1929, 504.
- [4-Chlor-3-nitro-phenyl]-cyclohexan  $C_{12}H_{14}O_2NCl$ , s. nebenstehende Formel. B. Entsteht neben [4-Chlor-2-nitro-phenyl]-cyclohexan bei der Einw. von Salpetersäure (D: 1,5) Cl.  $\rightarrow$  HC<CH $_2$ -CH $_2$ >CH $_2$  auf [4-Chlor-phenyl]-cyclohexan in Eisessig bei 5—10° oder von Salpetersäure (D: 1,48) bei 0° (Mayes, Turner, Soc. 1929, 506). Reagiert mit Piperidin.
- [2.4-Dinitro-phenyl]-cyclohexan C<sub>12</sub>H<sub>14</sub>O<sub>4</sub>N<sub>2</sub>, s. nebenstehende Formel. B. Beim Behandeln von Phenylcyclohexan mit Salpetersäure (D: 1,5) bei 0°, neben [4-Nitro-phenyl]-cyclohexan (MAYES, TURNER, Soc. 1929, 503). Durch Nitrierung von [2-Nitro-phenyl]-cyclohexan sowie von [4-Nitro-phenyl]-cyclohexan (M., T.). Hellgelbe Plättchen (aus Alkohol). F: 57°. Kp<sub>15</sub>: 222°. Liefert bei der Oxydation mit Chromschwefelsäure 2.4-Dinitro-benzoesäure.
- [4-Chlor-2.5-dinitro-phenyl]-cyclohexan C<sub>12</sub>H<sub>13</sub>O<sub>4</sub>N<sub>2</sub>Cl, NO<sub>2</sub> s. nebenstehende Formel. B. Beim Behandeln von [4-Chlor-phenyl]-cyclohexan mit der 8-fachen Menge Salpetersäure (D: 1,5) bei —5° bis 0° (MAYES, TURNER, Soc. 1929, 505). NO<sub>2</sub>
  Durch Einw. von überschüssiger Salpetersäure (D: 1,5) auf [4-Chlor-2-nitro-phenyl]-cyclohexan (M., T.). Tafeln (aus Alkohol). F: 92°. Liefert bei der Reduktion mit Eisenfeile in verd. Essigsäure bei 100° [4-Chlor-2.5-diamino-phenyl]-cyclohexan.
- 11. **1-Methyl-3-phenyl-cyclopentan**  $C_{12}H_{16} = C_6H_5 \cdot HC \stackrel{CH_2 \cdot CH_2}{CH_2 \cdot CH_2}$  (H 504; E I 242). B. Bei der Behandlung von [ $\varepsilon$ -Chlor-isohexyl]-benzol mit Aluminiumchlorid in Petroläther, neben anderen Produkten (v. Braun, Kühn, B. 60, 2562). Angenehm riechendes Öl. Kp<sub>12</sub>: 93—94°. Mit Wasserdampf flüchtig.  $D_4^{tr}$ : 0,9173.  $n_5^{tr}$ : 1,5136. Liefert bei längerem Erwärmen mit Permanganat-Lösung auf dem Wasserbad Benzoesäure.
- 12.  $1-\ddot{A}thyl-1.2.3.4-tetrahydro-naphthalin$ ,  $1-\ddot{A}thyl-tetralin$   $C_{12}H_{16}$ , s. nebenstehende Formel.

  1  $[\beta$  Brom  $\ddot{a}thyl]$  tetralin,  $\beta$  [Tetralyl-(1)]  $\ddot{a}thylbromid$   $C_{12}H_{16}Br=C_6H_4$   $C_{12}CH_2$   $CH_2$   H
- 13. 2-Āthyl-5.6.7.8-tetrahydro-naphthalin, 6-Āthyl-tetralin C<sub>12</sub>H<sub>16</sub>, s. nebenstehende Formel. B. Durch Reduktion von 2-Acetyl-5.6.7.8-tetrahydro-naphthalin (Fleischer, Siefert, H<sub>2</sub>C CH<sub>2</sub>).

  B. 53, 1259) und von 8-Oxo-2-äthyl-5.6.7.8-tetrahydro-naphthalin mit amalgamiertem Zink und Salzsäure (Krollpfeiffer, Schäfer, B. 56, 626). Beim Erwärmen von Tetralin mit Äthylbromid in Gegenwart von Aluminiumchlorid (Boedtker, Rambech, Bl. [4] 35, 633). Flüssigkeit. Kp: 245—246° (Kr., Sch.), 244° (korr.) (B.. R.); Kp<sub>21</sub>: 127° (Fl., Sie.); Kp<sub>18</sub>: 118—120° (v. Braun, Hahn, Seemann, B. 55, 1690): Kp<sub>12</sub>: 119—120° (B., R.). D<sub>4</sub>°: 0,9632; n<sub>0</sub>°: 1,5414 (B., R.); D<sub>4</sub>°: 0,9499; n<sub>0</sub>°: 1,5307: n<sub>0</sub>°: 1,5347; n<sub>0</sub>°: 1,5463; n<sub>2</sub>°: 1,5559 (Kr., Sch.). Wird beim Leiten durch ein auf 600° erhitztes Rohr nur wenig verändert; bei 650° bildet sich neben anderen Produkten 2-Äthyl-naphthalin, bei 750° entstehen größere Mengen Naphthalin (v. Br., H., See.). Beim Acetylieren und folgenden Reduzieren erhält man 2.3-Diäthyl-5.6.7.8-tetrahydro-naphthalin (Fl., Sie.). Liefert beim Behandeln mit Diäthylmalonyl-tetralin (Fl., Retze, B. 56, 230).

- 14. 1.2 Dimethyl-x-tetrahydro-naphthalin  $C_{12}H_{16} = C_{10}H_{10}(CH_3)_2$ . B. Entsteht im Gemisch mit sehr wenig 1.2-Dimethyl-x-dihydro-naphthalin bei der Einw. von Natrium auf 2-Methyl-1-brommethyl-naphthalin in feuchtem Äther (Ziegler, Tiemann, B. 55, 3411). Wurde nicht rein erhalten. Kp<sub>11</sub>: 123,5—124,5°. Dichten und Brechungsindices: Z., T.
- 15. 1.3 Dimethyl 5.6.7.8 tetrahydro naphthalin, 5.7-Dimethyl-tetralin  $C_{12}H_{16}$ , s. nebenstehende Form. B. Aus 5-Oxo-1.3-dimethyl-5.6.7.8-tetrahydro-naphthalin durch Reduktion mit amalgamiertem Zink und Salzsäure (Krollpfeiffer, Schäfer, B. 56, 627). Flüssigkeit. Kp: 250—252°.  $D_4^{\text{n.o}}$ : 0,9589.  $n_{\alpha}^{\text{n.o}}$ : 1,5368;  $n_{\alpha}^{\text{n.o}}$ : 1,5409;  $n_{\beta}^{\text{n.o}}$ : 1,5529;  $n_{\gamma}^{\text{n.o}}$ : 1,5630.
- H<sub>2</sub>C CH<sub>2</sub> CH<sub>3</sub>
- 16. 1.6 Dimethyl 5.6.7.8 tetrahydro naphthalin.

  2.5 Dimethyl-tetralin C<sub>12</sub>H<sub>16</sub>, s. nebenstehende Formel. B. Aus
  1.6 Dimethyl-5.8 dihydro-naphthalin durch Hydrieren bei Gegenwart von Palladium(II)-chlorid in wäßr. Alkohol (Mayer, Schulte, CH3 HC CH3 E 55, 2166). Über eine Bildung aus 1.6-Dimethyl-naphthalin durch Hydrierung in Gegenwart von Nickelkatalysator vgl. M., Sch. Öl. Kp<sub>10</sub>: 110—111°. D<sup>16</sup>: 0,9487. Liefert beim Erhitzen mit verd. Salpetersäure im Rohr auf 150—160° Hemimellitsäure.

Nitrosochlorid C<sub>12</sub>H<sub>16</sub>ONCl. B. Aus Dicyclohexadien beim Behandeln mit Isoamylnitrit und Chlorwasserstoff in Eisessig unter Kühlung (Hofmann, Damm, Mitt. Kohlenforschungsinst. Breslau 2, 146; C. 1926 I, 2344). — Krystalle. Bräunt sich bei 125°; F: 132° bis 133°. Unlöslich in den gebräuchlichen Lösungsmitteln.

- 19. Kohlenwasserstoff  $C_{12}H_{16}$  aus Lignin. Das Mol.-Gew. wurde kryoskopisch in Cyclohexan bestimmt. B. Beim Erhitzen von Lignin aus Fichtenholz unter 5—25 mm Druck auf 350—390° (Pictet, Gaulis, Helv. 6, 634). Kp: 230—240°. D: 0,917. n: 1,523.

# 7. Kohlenwasserstoffe $\mathrm{C_{13}H_{18}}$

- 1.  $[\beta$ -Methyl- $\alpha$ -hexenyl]-benzol, 2-Methyl-1-phenyl-hexen-(1),  $\beta$ -Methyl- $\beta$ -butyl-styrol  $C_{13}H_{18}=C_6H_5\cdot CH:C(CH_3)\cdot [CH_2]_3\cdot CH_3$ . B. Beim Erwärmen von 1-Oxy-2-methyl-1-phenyl-hexan mit Schwefelsäure (D: 1,5) (Reich, van Wijck, Waelle, Helv. 4, 244). Bewegliche Flüssigkeit. Kp<sub>13</sub>: 114—116°. D<sup>17</sup>: 0,8974. n: 1,515. Addition von Brom in Schwefelkohlenstoff: R., v. W., W.
- 2. 1-Isopropyl-4- $\gamma$ -butenyl-benzol, 4-[4-Isopropyl-phenyl]-buten-(1)  $C_{13}H_{18} = (CH_3)_1CH \cdot C_6H_4 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_2$ .
- 1-Isopropyl-4-[ $\delta$ -chlor- $\gamma$ -butenyl]-benzol, 1-Chlor-4-[4-isopropyl-phenyl]-buten-(1)  $C_{13}H_{17}Cl = (CH_3)_2CH \cdot C_6H_4 \cdot CH_2 \cdot CH_2 \cdot CH : CHCl. B.$  Aus 1.3-Dichlor-propen-(1) und 4-Isopropyl-benzylmagnesiumbromid in Toluol (Bert, C. r. 180, 1506). Kp<sub>20</sub>: 1480. D<sub>6</sub>: 1,015. n<sub>D</sub>: 1,537.

3. 1-Methyl-4-isopropyl-2-allyl-benzol, 2-Allyl-p-cymol C<sub>13</sub>H<sub>18</sub>, s. nebenstehende Formel.

CH<sub>3</sub>  $CH_2 \cdot CH : CH_2$ 

1-Methyl-4-isopropyl-2-[ $\gamma$ -chlor-allyl]-benzol, 2-[ $\gamma$ -Chlor-allyl]-p-cymol  $C_{13}H_{17}Cl=(CH_3)_2CH\cdot C_6H_3(CH_3)\cdot CH_2\cdot CH\cdot CHCl.$  B. Aus 1.3-Dichlor-propen-(1) beim Behandeln mit 2-Methyl-5-isopropyl-phenyl-magnesiumbromid in Toluol (Berr, C. r. 180, 1506). —  $Kp_{15}$ : 140°.  $D_1^{16}$ : 1,018.  $n_2^{16}$ : 1,530.

Cyclohexylphenylmethan, Benzylcyclohexan, 1.2.3.4.5.6-Hexahydro-diphenylmethan  $C_{13}H_{18}$ , s.  $CH_2 \cdot HC < CH_2 \cdot CH$ nebenstehende Formel.

Cyclohexylphenylchlormethan, [ $\alpha$ -Chlor-benzyl]-cyclohexan  $C_{13}H_{17}Cl=C_{6}H_{5}$ · CHCl· $C_{6}H_{11}$ . Linksdrehende Form. B. Beim Erhitzen von linksdrehendem Cyclohexylphenyl-carbinol mit Thionylchlorid auf dem Wasserbad (LEVENE, MIKESKA, J. biol. Chem. 75, 595). Ein schwächer linksdrehendes Präparat entsteht beim Behandeln von linksdrehendem Cyclohexyl-phenyl-carbinol mit Phosphorpentachlorid in Chloroform (L., M.). — Kp<sub>0,7</sub>: 105—107°. [ $\alpha$ ]<sup>6</sup>: —29,4° (Äther; c = 10). — Gibt beim Kochen mit alkoh. Kaliumhydrosulfid-Lösung rechtsdrehendes [ $\alpha$ -Mercapto-benzyl]-cyclohexan.

- [1.2 Dibrom cyclohexyl] phenyl methan, 1.2 Dibrom 1 benzyl cyclohexan  $C_{13}H_{16}Br_2 = C_0H_5 \cdot CH_2 \cdot BrC < \frac{CHBr \cdot CH_2}{CH_2 - CH_2} > CH_2. \quad B. \quad \text{Aus 1-Benzyl-cyclohexen-(1) beim Be-}$ handeln mit Brom in Äther unter Kühlung (Schöpf, Boettcher, A. 448, 16). — Zersetzliches, an der Luft rauchendes Ol. — Liefert beim Erhitzen mit 3,5 Mol Methylamin in Benzol im Rohr auf 115-120° 6-Methylamino-1-benzyl-cyclohexen-(1) und andere Produkte. Reagiert analog mit Dimethylamin.
- 5. [3-Methyl-cyclohexyl]-benzol, 1-Methyl-3-phenyl-cyclohexan  $C_{13}H_{18}=C_6H_5\cdot HC<\frac{CH_2\cdot CH(CH_3)}{CH_2\cdot CH_2\cdot CH_2}>CH_2$ . Linksdrehende Form (H 505). B. Aus aktivem 1-Methyl-3-[4-amino-phenyl]-cyclohexan beim Diazotieren in salzsaurer Lösung, Eintragen in kalte verdünnte Natronlauge und Zufügen einer alkal. Zinn-Lösung (v. Braun, A. 472, 85). —  $\mathrm{Kp_{14}}\colon 123-124^{\circ}$ .  $D_{\bullet}^{\mathfrak{A}}\colon 0,9304$ .  $n_{\bullet}^{\mathfrak{B}}\colon 1,5176$ .  $[\alpha]_{\bullet}^{\mathfrak{B}}\colon -5,26^{\circ}$ .
- 4-Brom-1-[3-methyl-cyclohexyl]-benzol, 1-Methyl-3-[4-brom-phenyl]-cyclohexan  $C_{13}H_{17}Br = C_6H_4Br \cdot HC < \frac{CH_2 \cdot CH(CH_3)}{CH_2} > CH_2$ . Linksdrehende Form. B. Aus aktivem 1-Methyl-3-[4-amino-phenyl]-cyclohexan beim Diazotieren in bromwasserstoffsaurer Lösung und Behandeln des Reaktionsgemischs mit Kupfer(I) bromid (v. Braun, A. 472, 86). —  $Kp_{14}$ : 165—167°.  $D_{4}^{18}$ : 1,2100.  $[\alpha]_{D}^{18}$ : —2,23° (unverdünnt).
- 6. Cyclohexyltoluol, Tolylcyclohexan  $C_{13}H_{18} = CH_3 \cdot C_6H_4 \cdot HC < \frac{CH_2 \cdot CH_2}{CH_2 \cdot CH_2} > CH_2$ (vgl. H 505, Nr. 11 und Nr. 12). B. Ein Produkt, das wahrscheinlich aus verschiedenen Isomeren besteht, bildet sich beim Behandeln von Toluol mit Cyclohexen und Aluminiumchlorid (Bodroux, C. r. 186, 1006; A. ch. [10] 11, 519). — Gibt beim Behandeln mit Brom bei Gegenwart von Aluminiumbromid Pentabromtoluol (B., A. ch. [10] 11, 547).
- 7. [2.5-Dimethyl-phenyl]-cyclopentan  $C_{13}H_{18}$ , s. nebenstehende Formel. B. Beim Kochen von 2(?)-Brom-1-[2.5-dimethylphenyl]-cyclopentan mit Zinkstaub und Eisessig (v. Braun, Kühn, B. 60, 2566). — Kp<sub>13</sub>: 122° D. D. 0,9621. n. 1,5344.
- 2(?) Brom 1 [2.5 dimethyl phenyl] cyclopentan  $C_{13}H_{17}Br =$ CHBr·CH<sub>2</sub> (?). B. Beim Erwärmen von 1-[2.5-Dimethyl-phenyl]-cyclopenten-(2) mit Bromwasserstoff-Eisessig auf 100° (v. Braun, Kühn, B. 60, 2566). — Kp<sub>13</sub>: 163—165°. — Liefert beim Kochen mit Zinkstaub und Eisessig [2.5-Dimethyl-phenyl]cyclopentan.
- 8. 3'.6'- Dimethyl-[benzo-1'.2':1.2-cyclohepten-(1)], 3'.6'- Dimethyl-[benzo-1'.2':1.2-suberen] (Dimethylbenzosuberan)  $C_{13}H_{18}$ , s. nebenstehende Formel. B. Bei der Behandlung von  $\varepsilon$ -[2.5-Dimethyl-phenyl]-n-amylchlorid mit Alumniumchlorid in Petroläther-Lösung (v. Braun, Kühn, B. 60, 2565). —  $Kp_{13}$ : 121—125°.  $D_{1}^{n}$ : 0,9373.  $n_{D}^{n}$ : 1,5330. Ist mit Wasserdampf flüchtig. — Liefert beim Behandeln mit Permanganat auf dem Wasserbad Benzol-tetracarbonsäure-(1.2.3.4).

- 9. 2 Isopropyl 5.6.7.8 tetrahydro naphthalin,  $_{\rm H_2C}$  CH<sub>2</sub>. 6-Isopropyl-tetralin  $_{\rm C_{18}H_{18}}$ , s. nebenstehende Formel. B.  $_{\rm H_2C}$  CH<sub>2</sub>. Aus Tetralin beim Erhitzen mit Propylchlorid in Gegenwart von  $_{\rm H_2C}$  CH<sub>2</sub>. ·CH(CH<sub>3</sub>)<sub>2</sub> Aluminiumchlorid (Boedtker, Rambech, Bl. [4] 35, 634). — Kp: 255—256° (korr.); Kp<sub>2</sub>: 127°. D<sub>4</sub>°: 0,9518. n<sub>p</sub>°: 1,5352.
- 10. 1.1.6-Trimethyl-1.2.3.4-tetrahydro-naphthalin, 1.1.6 - Trimethyl - tetralin, Jonen C<sub>18</sub>H<sub>18</sub>, s. nebenstehende Formel (H 506; E I 243). Zur Konstitution vgl. Bogert, Fourman, CH<sub>2</sub>.

  Am. Soc. 55 [1933], 4670; vgl. a. A. Müller, J. pr. [2] 154 [1940], 82. — Kp<sub>18</sub>: 110—116° (Ruzicka, Rudolph, Helv. 10, 918). D<sub>1</sub>°: 0,934. — Liefert beim Erhitzen mit Schwefel auf 180—250° 1.6-Dimethyl-naphthalin.
- 11. 5-tert.-Butyl-hydrinden C<sub>18</sub>H<sub>18</sub>, Formel I (H 506). Zur Konstitution vgl. NOELTING, Chim. et Ind. 6, 728, 729; C. 1922 II, 751. B. Zur Bildung aus Hydrinden durch Behandeln mit tert.-Butylchlorid in Gegenwart von Aluminiumchlorid vgl. N. Kp: 238°.

I. 
$$(CH_3)_3C$$
  $CH_2$   $CH_2$ 

- 6.7 Dinitro 5 tert. butyl hydrinden  $C_{13}H_{16}O_4N_4$ , Formel II (H 506). Zur Konstitution vgl. Noelting, *Chim. et Ind.* 6, 729; *C.* 1922 II, 751. Zur Bildung aus 5-tert. Butyl-hydrinden durch Nitrierung mit Salpeterschwefelsäure vgl. N. F: 124°. Behandelt man vorsichtig mit Salpeterschwefelsäure bei 50—55°, so erhält man 4.6.7-Trinitro-5-tert.-butyl-hydrinden; bei Wasserbadtemperatur entsteht 5.6-Dinitro-4-tert.-butyl-phthalsäure.
- 4.6.7 Trinitro 5 tert. butyl hydrinden  $C_{13}H_{18}O_6N_3$ ,, Formel III (H 506). Zur Konstitution vgl. Noelling, Chim. et Ind. 6, 729; C. 1922 II, 751.
- 12. **2.2-Diāthyl-hydrinden**  $C_{13}H_{18} = C_6H_4 < \frac{CH_2}{CH_3} > C(C_2H_5)_2$  (E I 243).  $D_4^{15,4}$ : 0,9295 (v. Auwers, B. 60, 2140).  $n_{\alpha}^{15,4}$ : 1,5141;  $n_{He}^{15,4}$ : 1,5182;  $n_{P}^{15,4}$ : 1,5279;  $n_{Y}^{15,4}$ : 1,5364.
- 13. Hexahydroperinaphthindan. 1.8-Trimethylen-hexahydronaphthalin C<sub>13</sub>H<sub>18</sub>. Struktur des Kohlenstoffskeletts s. nebenstehende Formel. B. Wurde neben anderen Produkten beim Erhitzen von Perinaphthindandion-(1.3) mit rotem Phosphor und Jodwasserstoffsäure (D: 1,7) im Rohr auf 160—200° erhalten (Fleischer, Retze, B. 55, 3286, 3287). Die Einheitlichkeit ist fraglich. Ol. D. 0,9624. n. 1,5209.

# 8. Kohlenwasserstoffe C<sub>14</sub>H<sub>20</sub>.

- 1.  $\alpha$ -Octenyl-benzol, 1-Phenyl-octen-(1),  $\beta$ -n-Hexyl-styrol  $C_{14}H_{20}=C_0H_5$ . CH: CH:  $(CH_2)_5$ . CH<sub>2</sub>. B. Bei kurzem Erwärmen von n-Hexyl-benzyl-carbinol mit Schwefelsäure (D: 1,5) (Reich, van Wijck, Waelle, Helv. 4, 245). Kp<sub>18</sub>: 136—138°. D<sup>17</sup>: 0,9063. n: 1,507. Addition von Brom in Schwefelkohlenstoff: R., v. W., W., Helv. 4, 247.
- 2.  $\delta$ -Benzyliden-heptan oder  $\delta$ -Benzyl- $\gamma$ -heptylen  $C_{14}H_{30}=C_{6}H_{5}\cdot CH:C(CH_{2}\cdot CH_{2}\cdot CH_{3})_{3}$  oder  $C_{6}H_{5}\cdot CH_{3}\cdot C(:CH\cdot CH_{2}\cdot CH_{3})\cdot CH_{2}\cdot CH_{3}\cdot CH_{3}$  (E I 243). E I 243, Z. 8 v. u. statt "erhitztes Thoriumoxyd" lies "Tonerde bei 300°"
- 3. 1.4 Dimethyl 2 cyclohexyl benzol, 2 Cyclohexyl-p-xylol, [2.5 - Dimethyl - phenyl] - cyclohexan  $\rightarrow HC < CH_2 \cdot CH_2 > CH_2$ C<sub>14</sub>H<sub>20</sub>, s. nebenstehende Formel. Das Mol.-Gew. wurde kryoskopisch in Essigsäure bestimmt (BODROUX, A.ch. [10] 11,520).—
  B. Beim Behandeln von Cyclohexen mit p-Xylol und Aluminiumchlorid, neben 1.4-Dimethyl-x-dicyclohexyl-benzol (B., C. r. 186, 1006; A. ch. [10] 11, 520). — Aromatisch riechende Flüssigkeit. Kp<sub>758</sub>: 261—263°. D<sup>18</sup>: 0,936. n<sup>18</sup>: 1,529.
- 4. 1.3-Dimethyl-5-cyclohexyl-benzol, 5-Cyclohexylm-xylol, [3.5-Dimethyl-phenyl]-cyclohexan C<sub>14</sub>H<sub>20</sub>, s. nebenstehende Formel. Das Mol. Gew. wurde kryoskopisch in Benzol bestimmt (Bodroux, A. ch. [10] 11, 522). — B. Beim Behandeln von Cyclohexen mit m-Xylol und Aluminiumchlorid (B., C. r. 186, 1006; A. ch. [10] 11, 522). Beim Behandeln von Cyclohexylbromid mit m-Xylol in Gegenwart von Eisenchlorid oder Aluminiumchlorid unter anfänglicher Kühlung und
- späterem Erwärmen auf 50°, neben wenig 1.3-Dimethyl-2.5 (oder 4.5)-dicyclohexyl-benzol

(Battegay, Kappeler, Bl. 35, 990, 992). Durch Erhitzen von 2.6-Dimethyl-anilin-hydrochlorid mit Cyclohexylbromid im Rohr auf 200—250° und folgende Deaminierung des Reaktionsprodukts (Ba., K.). — Aromatisch riechende Flüssigkeit. Kp<sub>763</sub>: 266—268° (Bo.); Kp<sub>748</sub>: 265—266°; Kp<sub>17</sub>: 142—143° (Ba., K.). D<sup>18</sup>: 0,931; n<sup>19</sup>: 1,525 (Bo.). Löslich in Äther, Benzol und Schwefelkohlenstoff, schwer löslich in Eisessig (Ba., K.). — Liefert beim Behandeln mit Salpeterschwefelsäure bei 0° 2.4.6-Trinitro-5-cyclohexyl-m-xylol (Ba., K.; Bo.).

- 2.4.6-Trinitro-5-cyclohexyl-m-xylol  $C_{14}H_{17}O_6N_3$ , s. nebenstehende Formel. B. Beim Nitrieren von 5-Cyclohexyl-m-xylol mit einem Gemisch aus 15 g 94%iger Salpetersäure und 30 g rauchender Schwefelsäure (15% SO<sub>3</sub>-Gehalt) bei 0° (Battegay, Kappeler, Bl. [4] 35, 993; Bodroux, A. ch. [10] 11, 523). Blättchen oder Prismen (aus Alkohol). F: 117—118° (Ba., K.; Bo.). Leicht löslich in Alkohol, Äther und Benzol (Ba., K.).
- 5. 2-tert.-Butyl-5.6.7.8-tetrahydro-naphthalin.
  6-tert.-Butyl-tetralin C<sub>14</sub>H<sub>20</sub>, s. nebenstehende Formel. B.

  Aus Tetralin beim Erwärmen mit tert.-Butylchlorid in Gegenwart von Aluminiumchlorid auf dem Wasserbad (BOEDTKER, RAMBECH, Bl. [4] 35, 635). Kp: 265,5—266,5°; Kp<sub>9</sub>: 138°. D<sub>1</sub><sup>15</sup>: 0,9463. n<sub>D</sub><sup>15</sup>: 1,5348.
- 6. 1-Methyl-4-isopropyl-5.6.7.8-tetrahydro-naph-thalin, 5-Methyl-8-isopropyl-tetralin C<sub>14</sub>H<sub>20</sub>, s. nebenstehende Formel. B. Beim Kochen von 5-Oxo-1-methyl-4-iso-propyl-5.6.7.8-tetrahydro-naphthalin mit amalgamiertem Zink und H<sub>2</sub>C CH<sub>2</sub> CH<sub>2</sub> O''siger Salzsäure (RUZICKA, MINGAZZINI, Helv. 5, 714). Ol. Kp<sub>12</sub>: 135—140° (R., MI.). Liefert beim Erhitzen mit Schwefel auf 180—230° 1-Methyl-4-isopropyl-naphthalin (R., MI.). Beim Erhitzen mit konz. Salpetersäure im Rohr auf 150—180° erhält man Benzol-tetracarbonsäure-(1.2.3.4) (R., SCHINZ, MEYER, Helv. 6, 1089).
- 7. 2.3-Diäthyl-5.6.7.8-tetrahydro-naphthalin, 6.7-Diäthyl-tetralin  $C_{14}H_{20}$ , s. nebenstehende Formel. B. Aus 2-Äthyl-5.6.7.8-tetrahydro-naphthalin durch Acetylierung und nachfolgende Reduktion (Fleischer, Siefert, B. 53, 1260). Flüssigkeit von petroleumartigem Geruch. Kp<sub>18</sub>: 150—1519. Wird durch weitere Acetylierung und nachfolgende Reduktion in 1.2.3-Triäthyl-5.6.7.8-tetrahydro-naphthalin übergeführt.
- 8. 5-Methyl-2.2-diäthyl-hydrinden  $C_{14}H_{20}$ , s. nebenstehende Formel. B. Aus 5-Methyl-2.2-diäthyl-indandion-(1.3) durch Erhitzen mit amalgamiertem Zink und überschüssiger rauchender Salzsäure (FLEISCHER, A. 422, 247). Bewegliches Öl. Kp<sub>18</sub>: 123—127°.  $D_{\rm n}^{\rm n,5}$ : 0,9197; n<sub>h</sub>.5: 1,5106. Liefert beim Erhitzen mit Diäthylmalonylchlorid bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff 6-Methyl-2.2-diäthyl-4.5-diäthylmalonyl-hydrinden.
- 9. Dekahydroanthracen C<sub>14</sub>H<sub>20</sub> (H 507). B. Produkte, die die Zusammensetzung eines Dekahydroanthracens aufwiesen, wurden von Schroeter (B. 57, 2015) bei der Hydrierung von Anthracen mit einem Nickel-Tetralin-Katalysatorgemisch sowie von v. Braun, Bayer (B. 58, 2679) bei der Hydrierung von Anthrachinon, von 1.2.3.4-Tetrahydro-anthranol und von 1.2.3.4.5.6.7.8-Oktahydro-anthranol in Gegenwart von Nickel erhalten; das von Schroeter erhaltene Produkt schmolz bei 30—35°, während die Präparate von v. Braun, Bayer aus Alkohol in Blättchen vom Schmelzpunkt 39° krystallisierten.

# 9. Kohlenwasserstoffe $\mathrm{C_{15}H_{22}}.$

- 1. 1.3.5 Trimethyl 2 cyclohexyl benzol,
  2 Cyclohexyl mesitylen, [2.4.6 Trimethyl phenyl]-cyclohexan C<sub>15</sub>H<sub>22</sub>, s. nebenstehende Formel.

  Das Mol.-Gew. wurde kryoskopisch in Benzol bestimmt
  (Bodroux, A. ch. [10] 11, 524). B. Beim Behandeln
  von Cyclohexen mit Mesitylen und Aluminiumchlorid in Schwefelkohlenstoff (B., C. r. 186, 1006; A. ch. [10] 11, 524). Die anfangs farblose Flüssigkeit wird rasch gelb. Kp<sub>740</sub>: 283°
  bis 284,5°. D°: 0,946. n°<sub>p</sub>: 1,535. Liefert beim Behandeln mit Brom in Gegenwart von Aluminiumbromid Tribrommesitylen (B., A. ch. [10] 11, 548).
- 2. 2-tert.-Amyl-5.6.7.8-tetrahydro-naphthalin, 6-tert.-Amyl-tetralin C<sub>15</sub>H<sub>22</sub>, s. nebenstehende Formel.

  B. Aus Tetralin und tert. Amylchlorid in Gegenwart von Aluminiumchlorid (Boedtker, Rambech, Bl. [4] 35, 636).

  Kp: ca. 280° (teilweise Zersetzung); Kp<sub>12</sub>: 149,2—150°. D<sup>1</sup><sub>4</sub>: 0,9478. n<sup>1</sup><sub>5</sub>: 1,5332.

  BEILSTEINs Handbuch, 4. Aufl. 2. Erg.-Werk, Bd. V. 26

- 3. 2.2.5 Tridthyl-hydrinden  $C_{15}H_{22}$ , s. nebenstehende  $C_{2H_5}$ . Formel.  $D_{15}^{(6,2)}$ : 0,9178;  $D_{15}^{(6,0)}$ : 0,9250 (v. Auwers, B. 60, 2140). C(C2H5)2  $\begin{array}{c} n_{\alpha}^{_{15,2}}:\ 1,5108;\ n_{He}^{_{15,2}}:\ 1,5147;\ n_{\beta}^{_{16,2}}:\ 1,5243;\ n_{\gamma}^{_{16,2}}:\ 1,5324;\ n_{\alpha}^{_{16,05}}:\ 1,5132;\\ n_{He}^{_{16,05}}:\ 1,5174;\ n_{\beta}^{_{16,05}}:\ 1,5268;\ n_{\gamma}^{_{14,05}}:\ 1,5352. \end{array}$
- 4. 1.4; 5.8 Dimethylen 2.3 trimethylen - $\begin{array}{lll} dekahydronaphthalin, \ Tetrahydro-tricyclo-\\ pentadien & C_{15}H_{22}, & s. \ nebenstehende \ Formel. \end{array}$  Das Mol. Gew. wurde kryoskopisch in Benzol und in Campher bestimmt (STAUDINGER, BRUSON, A. 447, 110). — B. Aus Tricyclopentadien durch Einw. von Wasserstoff bei Gegenwart von Platin in Ather (St., Br., A. 447, 110). — Krystalle (aus Methanol). F: 43°. Unzersetzt destillierbar. Leicht löslich in Äther und Petroläther, schwer in Methanol und Alkohol, sehr schwer in Eisessig.
- 5. Juniperen C<sub>15</sub>H<sub>22</sub>. B. Durch 3—4-stdg. Erhitzen von Juniperol (Syst. Nr. 533) mit 60% iger Schwefelsäure auf 100° (Mattsson, Bidrag till kännedom af Finlands natur och folk 72 [1913], Nr. 1, S. 11; HINTIKKA, Ann. Acad. Sci. fenn. [A] 20, Nr. 4, S. 5; C. 1923 I, 1540). Öl. Kp<sub>780</sub>: 251—253° (M.); Kp<sub>12</sub>: 120—121° (H.). D<sub>20</sub>: 0,9331; n<sub>20</sub>: 1,5023; [α]<sub>20</sub>: —29,9° (M.); D<sub>4</sub>°: 0,9303; n<sub>20</sub>: 1,5024 (H.). Addiert lebhaft Brom (M.).
- 6. Cedrenen  $C_{15}H_{22}$ . Zur Benennung vgl. Blumann, Schulz, B. 64 [1931], 1540. B. Beim Kochen von Cedrenol (Syst. Nr. 533) mit Acetanhydrid und Natriumacetat (Blumann, Hellriegel, Schulz, B. 62, 1699).  $Kp_{10}$ : 121—130°.  $D^{15}$ : 0,955.  $\alpha_D$ : —125°.
- 7. Calamenen C<sub>15</sub>H<sub>22</sub> (E I 244). B. Bei kurzem Aufkochen von Calamenenol (Syst. Nr. 533) mit konz. Ameisensäure (Ruzicka, Meyer, Mingazzini, Helv. 5, 358). Kp<sub>12</sub>: 136<sup>o</sup> bis 140°. Die: 0,942. np.: 1,5239. — Liefert beim Erhitzen mit Schwefel Cadalin.
- 2.6-Dimethyl-6-p-tolyl-hepten-(1 und 2), l-a-Curcumen C15H22, Gemisch aus CH<sub>3</sub>·C<sub>6</sub>H<sub>4</sub>·CH<sub>2</sub>(CH<sub>3</sub>)·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>3</sub>): CH<sub>2</sub> und CH<sub>3</sub>·C<sub>6</sub>H<sub>4</sub>·CH(CH<sub>3</sub>)·CH<sub>2</sub>·CH<sub>2</sub>·CH: C(CH<sub>3</sub>)<sub>2</sub>. Zur Zusammensetzung und Konstitution vgl. Carter, Copp. Rao, Simonsen, Subramaniam, Soc. 1939, 1504; Ca., Si., Williams, Soc. 1940, 451. — V. Im äther. Öl aus der Wurzel von Curcuma aromatica Salisb. (RAO, SIMONSEN, Soc. 1928, 2496; vgl. RAO, SHINTRE, SIMONSEN, J. indian Inst. Sci. [A] 9, 140; C. 1927 I, 654). — Läßt sich durch fraktionierte Destillation oder über das Monohydrochlorid nur unvollkommen von  $1-\beta$ -Curcumen trennen. Ein sehr reines l-α-Curcumen erhält man bei der Destillation von l-α-Dihydrocurcumenyltrimethylammoniumhydroxyd (s. beim Jodid, s. u.) unter 400 mm Druck (R., Si.). — Öl. Kp<sub>7</sub>: 128—130°; D<sub>20</sub>: 0,8633; n<sub>20</sub>: 1,4944; [α<sub>10</sub>: -22,9° (R., Si.). — Zeigt bei der Titration mit Benzopersäure oder Phthalpersäure in Chloroform eine Doppelbindung an (CA., Mitarb., Soc. 1939, 1506; vgl. R., Sr.). Bei der Hydrierung in Gegenwart von Palladiumschwarz in alkoh. Lösung werden 2 Atome Wasserstoff sehr schnell aufgenommen; weitere Wasserstoffaufnahme, wahrscheinlich unter Hydrierung des aromatischen Kerns, erfolgt sehr langsam (Ca., Mitarb.; vgl. R., Si.). Wird durch Natrium und Alkohol nicht reduziert (R., Si.). Gibt bei der Dehydrierung mit Selen bei 250—310° ein Azulen; bei der Dehydrierung von lα-Curcumen-monohydrochlorid mit Selen unter den gleichen Bedingungen entsteht neben diesem Azulen noch Cadalin (Ca., Mitarb.; vgl. R., Si.). Absorbiert in Chloroform 1 Mol Brom (R., Si.). Gibt beim Sättigen mit Chlorwasserstoff in Essigsäure unter Kühlung ein

Monohydrochlorid (Öl; Kp<sub>8</sub>: 150—155°) (R., Sl.). — Die Lösung in Eisessig wird auf Zusatz von Schwefelsäure erst gelb, dann rosa (R., Sl.).

Nitrosat des 1-α-Curcumens C<sub>15</sub>H<sub>22</sub>O<sub>4</sub>N<sub>2</sub>. B. Aus 1-α-Curcumen beim Behandeln mit Isoamylnitrit und Salpetersäure (D: 1,42) in Eisessig unter Kühlung (RAO, SIMONSEN, Soc. 1928, 2500). — Krystalle (aus Methanol). F: 100—101°; schmilzt nach 3-wöchigem Aufbewahren bei 110°. Leicht löslich in den meisten organischen Lösungsmitteln außer Methanol Alkohol und Petroläther. [c.130]. Methanol, Alkohol und Petroläther.  $[\alpha]_0^{\text{nc}}: -20,4^{\circ}$  (Chloroform; c=6). — Gibt beim Kochen mit alkoh. Kalilauge l-α-Oximino-curcumen (s. u.). Liefert beim Erhitzen mit Benzylamin in Alkohol l-α-Curcumennitrolbenzylamin (Blättchen; F: 102-104°; [α]<sup>10</sup>: -19,5° in Methanol).

1-α-Oximinocurcumen. B. Durch Kochen von l-α-Curcumennitrosat (s. o.) mit alkoh. Kalilauge (RAO, SIMONSEN, Soc. 1928, 2501). — Ol. Kp<sub>17</sub>: 182—185°. D<sub>20</sub>: 0,9817. n<sub>20</sub>: 1,5134. [α]<sub>17</sub>: —27,2°. Löslich in alkoh. Kalilauge, unlöslich in wäßr. Kalilauge und in wäßriger und alkoholischer Salzsäure. — Absorbiert in Chloroform-Lösung 2 Atome Brom. Liefert beim Sättigen einer äther. Lösung mit Chlorwasserstoff ein Monohydrochlorid (Tafeln; F: 135—136°). Gibt bei der Reduktion mit Natrium in siedendem Alkohol 1-α-Dihydrocurcumenylamin (s. u.). Beim Schütteln mit Benzoylchlorid und Natronlauge erhält man ein Benzoylderivat (Krystalle; F: 84—85°).

l-α-Dihydrocurcumenylamin C<sub>15</sub>H<sub>25</sub>N. Zur Zusammensetzung vgl. Carter, Copp, Rao, Simonsen, Subramaniam, Soc. 1939, 1506. — B. Durch Reduktion von l-α-Oximino-

curcumen (s. o.) mit Natrium in siedendem Alkohol (RAO, SIMONSEN, Soc. 1928, 2502). Man reinigt über das saure Oxalat oder das nicht näher beschriebene Nitrosat. — Stark basisch riechendes Öl.  $Kp_{17}$ : 151—152°.  $D_{\infty}^{\infty}$ : 0,9026.  $n_{\infty}^{\infty}$ : 1,4983.  $[\alpha]_{\infty}^{\infty}$ : —22.2°. Liefert beim Erhitzen mit Acetanhydrid ein Monoacetylderivat  $C_{17}H_{27}$ ON (Nadeln; F: 109—110°). Toxische Wirkung: R., Si. — Saures Oxalat  $C_{15}H_{25}N + C_2H_2O_4 + H_2O$ . Nadeln (aus Wasser). F: 143—144°. Leicht löslich in Methanol, Aceton und Benzol, sehr schwer in kaltem Wasser, Essigester und Chloroform. Ist gegen Brom in Chloroform beständig.

l-α-Dihydrocurcumenyltrimethylammoniumjodid  $C_{18}H_{32}NI = C_{15}H_{23}N(CH_{5})_3$ · I. B. Das Jodid entsteht durch Einw. von Methyljodid auf l-α-Dihydrocurcumenylamin in heißer verdünnter Natronlauge (RAO, SIMONSEN, Soc. 1928, 2503). — Nadeln (aus Åther). F: 163—164°. — Liefert bei der Einw. von feuchtem Silberoxyd und Destillation des entstandenen sehr hygroskopischen Ammoniumhydroxyds unter 400 mm Druck l-α-Curcumen und l-α-[N.N-Dimethyl-dihydrocurcumenylamin]  $C_{17}H_{29}N$  (stark basisch riechendes Ol;  $Kp_{15}$ : 130—140°;  $D_{20}^{20}$ : 0,8824;  $n_{20}^{20}$ : 1,4913;  $[\alpha]_{20}^{20}$ : —23,0°).

9. **Desoxykessylen**, Kessylen  $C_{15}H_{22}$ . B. Zur Benennung vgl. Asahina, Nakanishi, J. pharm. Soc. Japan **52**, 5; C. **1932** I, 2461. — B. Beim Erhitzen von Kessylalkohol (Syst. Nr. 4865) mit Palladium-Kohle auf 220—240°, neben S-Guajazulen (S. 473) (A., N., J. pharm. Soc. Japan **48**, 6, 8; C. **1928** I, 1861). — Wurde nicht rein erhalten. Kp<sub>18</sub>: 127—138°. D<sup>18</sup>: 0,9115.  $n_5^{19}$ : 1,4890.  $[\alpha]_{25}^{19}$ : +16,89°. — Liefert bei der katalytischen Hydrierung Tetrahydrodesoxykessylen (S. 117).

#### 10. Kohlenwasserstoffe $\mathrm{C_{16}H_{24}}$ .

- 1. 1.2.3 Triäthyl 5.6.7.8 tetrahydro naphthalin, 5.6.7-Triäthyl-tetralin  $C_{16}H_{24}$ , s. nebenstehende Formel. B. Aus 2.3-Diäthyl-5.6.7.8-tetrahydro-naphthalin durch Acetylierung und nachfolgende Reduktion (Fleischer, Siefert, B. 53, 1260). H2C CH2 CH2 CC2H5 (i). Kp<sub>23</sub>: 165—172°.
- 2. 1.4; 5.8-Dimethylen-perhydroanthracen C<sub>16</sub>H<sub>24</sub>, s. nebenstehende Formel. B. Aus 1.4; 5.8-Dimethylen-dodekahydroanthrachinon (Syst. Nr. 673) durch Kochen mit amalgamiertem Zinkstaub und rauchender Salzsäure in Eisessig (Diels, Alder, A. 460, 109) oder mit amalgamiertem Zink und verd. Salzsäure (Bergel, Widmann, A. 467, 90). Kp<sub>15</sub>: 155—157° (B., W.); Kp<sub>16</sub>: 157—159° (D., A.). Leicht löslich in Äther, schwer in Wasser, Alkohol und Eisessig (D., A.). Liefert beim Erhitzen mit Selen auf 360—380° 1.4; 5.8-Dimethylen-1.2.3.4.5.6.7.8-oktahydro-anthracen (S. 523) (D., A.).

# 11. Kohlenwasserstoffe $C_{17}H_{26}$ .

- 1. [Undecen-(2)-yl-(2)]-benzol, [ $\alpha$ -Methyl- $\alpha$ -decenyl]-benzol, 2-Phenyl-undecen-(2)  $C_{17}H_{26}=C_6H_5\cdot C(CH_3):CH\cdot [CH_2]_7\cdot CH_3$ . B. Beim Behandeln von Methyln-nonyl-keton mit Phenylmagnesiumbromid in Ather und Erhitzen des entstandenen Alkohols mit 60% iger Schwefelsäure (Thoms, Ambrus, Ar. 1925, 271). Kresseartig riechende Flüssigkeit. Kp<sub>11</sub>: 166—170°. D: 0,8801. Löslich in Äther, schwer löslich in Alkohol, unlöslich in Wasser. Liefert bei der Oxydation mit Kaliumpermanganat Pelargonsäure und Acetophenon.
- 2. [β-Methyl-β-āthyl-butyl]-5.6.7.8-tetra-hydro-naphthalin, 6-[β.β-Diāthyl-propyl]-tetralin C<sub>17</sub>H<sub>26</sub>, s. nebenstehende Formel. B. Bei 10-stdg. Kochen von 2.2-Diāthyl-4.5-tetramethylen-indandion-(1.3) mit amalgamiertem Zink und konz. Salzsäure (v. Braun, Kirschbaum, Schuhmann, B. 53, 1172). Leicht bewegliche Flüssigkeit. Kp<sub>11</sub>: 141—144°. Liefert beim Erhitzen mit Salpetersäure im Rohr Trimellitsäure.
- 3. 4-Methyl-2.2-diäthyl-7-isopropyl-hydrinden C<sub>17</sub>H<sub>26</sub>, s. nebenstehende Formel. B. Aus 4-Methyl-2.2-diäthyl-7-isopropyl-indandion-(1.3) durch Erhitzen mit amalgamiertem Zink und rauchender Salzsäure (Fleischer, A. 422, 251). Flüssigkeit. Kp<sub>18</sub>: 157° bis 165°. D<sup>n</sup><sub>7</sub>: 0,9148. n<sup>n</sup><sub>9</sub>: 1,5112. Liefert beim Kochen mit Acetyl-chlorid und Aluminiumchlorid in Schwefelkohlenstoff 4-Methyl-2.2-diäthyl-7-isopropyl-5 (oder 6)-acetyl-hydrinden. Beim Erhitzen mit Diäthylmalonyl-chlorid in Schwefelkohlenstoff bei Gegenwart von Aluminiumchlorid erhält man 4-Methyl-2.2-diäthyl-7-isopropyl-5.6-diäthylmalonyl-hydrinden.

# 12. Kohlenwasserstoffe $C_{18}H_{28}$ .

- 4. 2.2.5.6 Tetraathyl hydrinden  $C_{17}H_{26}$ , s. nebenstehende Formel.  $D_{\alpha}^{\text{t.s.}}$ : 0.9246 (v. Auwers, B. 60, 2140).  $n_{\alpha}^{\text{t.s.}}$ : 1,5158;  $n_{He}^{\text{t.s.}}$ : 1,5290;  $n_{\beta}^{\text{t.s.}}$ : 1,5293;  $n_{\gamma}^{\text{t.s.}}$ : 1,5378. C2H5.
- 1.  $[\beta-Methyl-\alpha-undecenyl]$ -benzol. 2-Benzyliden-undecan  $C_{18}H_{28}=C_6H_5$ ·  $(H:C(CH_3)\cdot[CH_2]_8\cdot CH_3$ . B. Beim Erhitzen von Methyl-n-nonyl-benzyl-carbinol mit 60 % iger Schwefelsäure auf 140—160° (Thoms, Ambrus, Ar. 1925, 273). Gelbliche, kresseartig riechende Flüssigkeit. Kp<sub>12</sub>: 177—178°; Kp<sub>13</sub>: 180° (geringe Zersetzung). D: 0,8790. Leicht löslich in Åther, schwer in Alkohol, unlöslich in Wasser. Liefert bei der Oxydation mit Permanganat in Alkohol Methyl-n-nonyl-keton und Benzoesäure.
- 2. Dekahydroreten  $C_{18}H_{28}$ . Struktur des Kohlenstoffskeletts s. nebenstehende Formel. B. Beim Erhitzen von 6 g Reten mit 7 g rauchender Jodwasserstoffsäure (D: 1,96) und 3 g rotem Phosphor in einem mit Kohlendioxyd gefüllten Rohr auf C 285° (Virtanen, B. 53, 1888). — Wasserhelle, nach Petroleum riechende Flüssigkeit. Kp<sub>10</sub>: 155—158°. D<sub>10</sub>°: 0,9342. n<sub>10</sub>°: 1,5150. Sehr leicht löslich in Ligroin, Chloroform, Äther, Benzol und Eisessig. — Wird durch heiße konzentrierte Salpetersäure nitriert. — Löst sich in konz. Schwefelsäure allmählich unter Braunfärbung.
- 3. Hexadekahydro-triphenylen,  $A^{s(14)}$ -Hexadekahydro-9.10-benzo-phenanthren  $C_{18}H_{28}$ , s. nebenstehende Formel. B. Durch Erwärmen von 1-[Dodekahydrodiphenylyl-(2)]-cyclohexanon-(2) mit Zinkchlorid auf 180° (SCHRAUTH, GÖRIG, B. 56, 2027). Flüssigkeit. Kp<sub>12</sub>: 186—188,5°;  $D_{4}^{sc}$ : 0,9518 (SCH., G.). Viscosität bei 200 und Doppelbrechung der rotierenden Flüssigkeit. VOR-200 und Doppelbrechung der rotierenden Flüssigkeit: Vor-LÄNDER, WALTER, Ph. Ch. 118, 12. Leicht löslich in Äther, Benzin und Benzol, schwer in Alkohol (Sch., G.). — Entfärbt Kaliumpermanganat-Lösung sofort (Sch., G.).
- Das Mol. Gew. wurde kryoskopisch in Benzol bestimmt (Baker, Soc. 1926, 670). — B. Durch Kochen von Isophoron (Syst. Nr. 616) mit amalgamiertem Zink und konz. Salzsäure (B., Soc. 1926, 669). — Nadeln (aus verd. Alkohol). F: 112°. — Liefert bei der Oxydation mit Permanganat in siedender Natriumdicarbonat-Lösung trans-Caronsäure (Syst. Nr. 964). Entfärbt Brom in Tetrachlorkohlenstoff.

# 13. Kohlenwasserstoffe $C_{19}H_{30}$ .

- 1. **2.2.4.5.6-Pentaäthyl-hydrinden**  $C_{19}H_{30}$ , s. nebenstehende Formel.  $D_{1}^{4,1}$ : 0,9234 (v. Auwers, *B.* 60, 2140).  $n_{\alpha}^{4,1}$ : 1,5170;  $n_{\text{He}}^{\text{td.1}}$ : 1,5211;  $n_{\text{B}}^{\text{td.1}}$ : 1,5304;  $n_{\text{Y}}^{\text{td.1}}$ : 1,5388.
- 2. 1.12-Dimethyl-7-isopropyl-dekahydro-phenanthren, Abieten ("Diterebentyl")  $C_{10}H_{30}$  (H 508). Struktur des Kohlenstoffskeletts, s. nebenstehende Formel. Zur Konstitution vgl. die bei Abietin (S. 429) angeführte Literatur. — B. Bei der Destillation von Abletin (S. 429) angerunte Literatur. — B. Bei der Destination von & Fichten-Kolophonium aus der Bukowina (CZERNY, Bulet. Soc. chim. România 7, 92; C. 1926 I, 2803). Alle aus amerikanischem Kolophonium dargestellten Präparate sind (hauptsächlich durch Abietin) verunreinigt (Ruzicka, Schinz, Helv. 6, 840). Zur Bildung durch Erhitzen von Abietinsäure vgl. Ru., Meyer, Helv. 5, 338; Ru., Sch., Helv. 6, 841; Rouin, Bl. Inst. Pin 1928, 225; C. 1928 II, 2722. — Kp<sub>0,1</sub>: 143—145°; Di. (9,9672; ni. 1,5318; [a]<sub>n</sub>: +99,4° (Ru., Sch.). Kp<sub>20</sub>: 232—234°; Die: 0,979; ni. 1,5328; ni. 1,5311; a<sub>578</sub>: +107,23°; a<sub>546</sub>: +122,58° (Rouin). — Liefert bei der katalytischen Hydrierung in Essigester Dihydroabieten (S. 359) (Ru., Sch.).
- 14. Kohlenwasserstoffe  $C_{20}H_{32}$  ("Diterpene").

Ist vermutlich ein Gemisch von Isomeren; zur Konstitution vgl. Ruzicka, Stoll, Helv. 7, 271. — Kp12: 190—192°. — Isomerisierung durch siedende 95 %ige Ameisensäure: R., St.

- 2. Kohlenwasserstoff C<sub>20</sub>H<sub>32</sub> aus Dipenten-bis-hydrochlorid sowie aus Dipenten-bis-hydrobromid. B. Aus hochschmelzendem Dipenten-bis-hydrochlorid (S. 28) sowie aus hochschmelzendem oder niedrigschmelzendem Dipenten-bis-hydrobromid (S. 29) bei der Einw. von feinverteiltem Silber oder Kupfer in Alkohol bei Zimmertemperatur Roberts, Soc. 127, 2451). Sehr viscose Flüssigkeit. Kp<sub>13</sub>: 173—183°. D<sup>30</sup>: 0,9361. n<sup>5</sup><sub>17</sub>: 1,5170.
- 3. Kohlenwasserstoff C<sub>20</sub>H<sub>32</sub> aus l-α-Phellandren (vgl. E I 245). B. Neben anderen Produkten beim Schütteln von l-α-Phellandren mit Phosphorsäure (D: 1,75) (Савтев, Smith, Read, J. Soc. chem. Ind. 44, 545 T; C. 1926 I, 2466). Dichten, Brechungsindices und Drehungsvermögen verschiedener Präparate: C., Sm., R., J. Soc. chem. Ind. 44, 543 T; C. 1926 I, 2467.
- 4. Kohlenwasserstoff  $C_{20}H_{32}$  aus d-Limonen (vgl. E I 246). B. Beim Schütteln von d-Limonen mit Phosphorsäure (D: 1,75) (Carter, Smith, Read, J. Soc. chem. Ind. 44, 545 T; C. 1926 I, 2466).  $Kp_{23}$ : 192—194°.  $D_{10}^{\infty}$ : 0,9278.  $n_{10}^{\infty}$ : 1,5186.
- 5. Kohlenwasserstoff C<sub>20</sub>H<sub>32</sub> aus d-Δ³-Caren. B. Entsteht als Hauptprodukt beim Erwärmen von d-Δ³-Caren mit 50% iger Schwefelsäure in Eisessig auf 60° (Gibson, Simonsen, Soc. 1929, 311). Sehr viscoses Öl von unangenehmem Geruch, das beim Aufbewahren an der Luft rasch gelb wird. Kp<sub>10</sub>: 175°. D<sub>∞</sub> : 0,9309. n<sub>∞</sub> : 1,5168. [α]<sub>bei</sub> : +5,69°. Absorbiert Brom in Chloroform unter Entwicklung von Bromwasserstoff. Beim Zufügen von wenig Schwefelsäure zu einer Lösung in Eisessig entsteht eine tiefrote Färbung, die langsam über Violett in ein schmutziges Braun übergeht.
- 6. Kohlenwasserstoffe C<sub>20</sub>H<sub>32</sub> aus Pinen (Dipinen, Colophen, Diterpilen) (H 509; E I 246). B. Aus Pinen bei der Einw. von Fullererde, insbesondere bei erhöhter Temperatur (Venable, Am. Soc. 45, 729); beim Einleiten von feuchtem Chlorwasserstoff in eine Mischung mit Petroläther und Zufügen von wasserfreiem Eisen(III)-chlorid (Briggs, Short, Soc. 1928, 3119); bei längerem Schütteln mit Phosphorsäure (D: 1,75) (Carter, Smith, Read, J. Soc. chem. Ind. 44, 546 T; C. 1926 I, 2467); beim Behandeln mit Phosphorpentachlorid (Bert, Bl. [4] 33, 787), mit Antimontrichlorid, Aluminiumchlorid, Aluminiumjodid, Eisen(III)-chlorid oder Borfluorid (Kondakow, Saprikin, Bl. [4] 37, 1057, 1058, 1059, 1060); bei mehrmonatiger Einw. von wasserfreier Ameisensäure (Reisman, Bl. [4] 41, 98). Liefert bei der Oxydation mit Mangandioxyd in siedender Schwefelsäure Benzoesäure, Terephthalsäure und Trimellitsäure (Br., Sh., Soc. 1928, 3119).

7. Kohlenwasserstoffe C<sub>10</sub>H<sub>32</sub> aus Nadelholzharzen.

In einem Nadelholzharz aus dem nördlichen Schweden fand Wienhaus (III. Nordiska Kemistmötet 1926, 211; C. 1929 I, 1446) ein Diterpen  $C_{20}H_{32}$  [F: 63°;  $Kp_8$ : 178°;  $[\alpha]_p$ : +214° (Äther); löslich in Petroläther].

Weitere Diterpene C<sub>20</sub>H<sub>32</sub> wurden erhalten aus dem Harz von Pinus maritima und von Pinus palustris (Balaš, *C. čsl. Lékárn.* 7, 327, 328; *C.* 1929 I, 2531).

- 8. Dibornylen C<sub>20</sub>H<sub>32</sub>(?). B. Aus den l-Bornylestern der Benzolsulfonsäure, Naphthalinsulfonsäure-(1) und Naphthalin-sulfonsäure-(2) beim Erhitzen im Rohr auf 80—90°, beim Destillieren unter 18 mm Druck oder beim Erhitzen in Benzol bzw. Toluol auf 110° (Patterson, McAlpine, Soc. 1928, 2466). Zähe Flüssigkeit. Kp<sub>4</sub>: 168°.
- 9. Phyllocladen, Dacren C<sub>20</sub>H<sub>32</sub> (E I 245). Zur Identität von Phyllocladen und Dacren und zur Konstitution vgl. Briggs, Soc. 1937, 79; Brandt, New Zealand J. Sci. Technol. 20, 8 B; C. 1939 II, 856. V. Im Öl der Blätter von Phyllocladus rhomboidalis (R. T. Baker, H. G. Smith, A Research of the pines of Australia [Sydney 1910], S. 420; Sm., J. Soc. chem. Ind. 30 [1911], 1356). Im äther. Öl der Blätter von Dacrydium biforme (GOUDIE, J. Soc. chem. Ind. 42, 357 T; C. 1923 III, 1371; Aitken, J. Soc. chem. Ind. 47, 224 T; C. 1928 II, 2197). Krystalle (aus Alkohol), Tafeln (aus Benzol). F: 95° (korr.); [α]<sub>D</sub>: +16,1° (Benzol oder Chloroform) (B., Sm.). F: 91°; [α]<sub>D</sub>: +14,9° (G.). F: 96°; [α]<sub>D</sub>: +16,7° (AI.). Sehr leicht löslich in Chloroform, Benzol, Petroläther und Äther, schwer in kaltem Alkohol und Eisessig, unlöslich in Wasser (AI.). Eim Sättigen der äther. Lösung mit Chlorwasserstoff erhält man Dacren-hydrochlorid (S. 360) (AI.). Bei der Einw. von Brom in Äther unter Kühlung entsteht Dacren-dibromid (S. 360) (G.; AI.).

Das Nitrosit ist blau, das Nitrosochlorid blaugrün; beide sind flüssig (AITKEN).

- 10. Isodacren C<sub>20</sub>H<sub>32</sub>. B. Beim Behandeln von Dacren-hydrochlorid (S. 360) mit warmem Alkohol oder mit Silberacetat in Eisessig (ΑΙΤΚΕΝ, J. Soc. chem. Ind. 47, 224 T; C. 1928 II, 2197). Nadeln. F: 107°. [α]<sub>b</sub>: +48,4°. Liefert beim Behandeln mit Chlorwasserstoff Dacren-hydrochlorid.
- 11. Kauren Cp.Hss. Zur Konstitution vgl. Brandt, New Zealand J. Sci. Technol. 20 [1938], 9 B. Das Mol.-Gew. wurde kryoskopisch und ebullioskopisch in Benzol bestimmt

[Syst. Nr. 473

406

(Hosking, R. 47, 581). — V. Im äther. Öl der Blätter und Zweigspitzen von Agathis australis (Neuseeland) (H.). — Tafeln (aus Chloroform + Methanol). F:  $57-58^{\circ}$  (H.). Kp<sub>10</sub>:  $184^{\circ}$  bis  $186^{\circ}$ ; Kp<sub>1</sub>:  $140-142^{\circ}$ ; D<sub>10</sub>: 0.9631; n<sub>10</sub>: 1.5132; n<sub>10</sub>: 1.5150 (H.). Optisch inaktiv (H.). — Liefert beim Behandeln mit Chlorwasserstoff in Eisessig + Ather Kauren-hydrochlorid (S. 360) (H.).

- 12. Miren C<sub>20</sub>H<sub>32</sub>. Zur Konstitution vgl. Brandt, New Zealand J. Sci. Technol. 20, 9 B; C. 1939 II, 856. V. Im äther. Öl der Blätter und Zweige von Podocarpus ferrugineus (Hosking, Short, R. 47, 834). Krystalle (aus Äther + Alkohol). F: 102—104° (H., Sh.). Kp<sub>0.6</sub>: 151—152° (H., Sh.). [α]<sup>16</sup><sub>16</sub>: +27.2° (Chloroform; p = 3) (H., Sh.). Leicht löslich in Äther, Chloroform und Benzol, schwer in kalem Methanol und Alkohol (H., Sh.). - Liefert mit Chlorwasserstoff in Ather + Eisessig Phyllocladen-hydrochlorid (H., SH.; vgl. Br.).
- 13. Kohlenwasserstoff  $C_{20}H_{32}$  aus Sandarak-Harz (H 510). Der von Henry (Soc. 79, 1149) beschriebene "natürliche Kohlenwasserstoff" ist nach Vesterberg (A. 440, 307) möglicherweise als Oktahydroreten  $C_{18}H_{26}$  aufzufassen.
- 14. Kohlenwasserstoff C<sub>20</sub>H<sub>32</sub> aus Thujopsis dolabrata. V. Im äther. Öl von Thujopsis dolabrata (UCHIDA, J. Soc. chem. Ind. Japan Spl. 31, 121 B; C. 1929 I, 948). Kp: 336°. D<sub>4</sub> : 0,9629. n<sub>D</sub> : 1,5131.
- 15. Kohlenwasserstoff  $C_{20}H_{32}$  aus Chamaecyparis obtusa. V. Im äther. Ölder Blätter von Chamaecyparis obtusa (UCHIDA, J. Soc. chem. Ind. Japan Spl. 31, 159 B; C. 1928 II, 1577). Kp: 340—343°.  $D_{15}^{16}$ : 0,9632.  $n_{10}^{\infty}$ : 1,5190.
- 15. 2.2.4.5.6.7 Hexaathyl hydrinden  $C_{21}H_{34}$ , s. nebenstehende Formel. D<sub>4.5</sub><sup>4.5</sup>: 0,9263 (v. Auwers, B. 60, 2140).  $n_{\alpha}^{4.5}$ :  $C_{2}H_{5}$ :

#### 16. Kohlenwasserstoffe $C_{27}H_{46}$ .

- Cholesten-(5), Cholesten C<sub>27</sub>H<sub>46</sub>, Formel I, s. 4. Hauptabteilung, Sterine.
- 2. Cholesten-(4), Pseudocholesten, Koprosten C2, H46, Formel II, s. 4. Hauptabteilung, Sterine.

3. Cholesten-(2), Neocholesten C<sub>27</sub>H<sub>46</sub>, Formel III, s. 4. Hauptabteilung, Sterine.

17. Sitosten C<sub>29</sub>H<sub>50</sub>, Formel IV, s. 4. Hauptabteilung, Sterine.

## 6. Kohlenwasserstoffe $C_n H_{2n-10}$ .

1. Acetylenylbenzol, Phenylacetylen  $C_8H_6=C_6H_5\cdot C:CH$  (H 511; E I 246). B. Bei der Zersetzung von Benzol im elektrischen Flammenbogen, neben anderen Produkten (F. G. MÜLLER, BÄNNINGER, Helv. 10, 765). Die Natriumverbindung des Phenylacetylens entsteht neben anderen Produkten bei der Behandlung von Styroldibromid mit Natriumamid in Toluol oder besser in hochsiedendem Petroleum bei 160° (Bourguel, C. r. 176, 752; A. ch. [10] 3, 225, 383) oder von α-Brom-styrol mit Natriumamid in hochsiedendem Petroleum bei 160° (Bou., A. ch. [10] 3, 228). Aus den beiden stereoisomeren ω-Brom-styrolen beim Erhitzen mit alkoh. Kalilauge (Dufraisse, C. r. 171, 962; A. ch. [9] 17, 172). Über Bildung durch Erhitzen von ω-Brom-styrol mit Phosphorpentoxyd, Tonerde oder Metall-chloriden vgl. Hein, Meyer, Fr. 72, 30. Neben anderen Produkten beim Erwärmen von ω-Brom-ω-benzal-acetophenon mit gepulvertem Natriumhydroxyd auf 70° (D., A. ch. [9] 17, 162). Beim Erhitzen des Silbersalzes der Benzalmalonsäure im Vakuum, neben anderen Produkten (Staudinger, Schneider, Helv. 6, 319). Beim Aufbewahren von β-Brom-α-phenyl-vinylphosphonsäure in Sodalösung (Conant, Coyne, Am. Soc. 44, 2535). — Zur Darstellung durch Zugabe von ω-Brom-styrol zu geschmolzenem Kaliumhydroxyd bei ca. 200—215° (E I 246) vgl. Hessler, Am. Soc. 44, 425; Rupe, Rinderknecht, A. 442, 66.

Kp: 142—143° (korr.) (Bourguel, A. ch. [10] 3, 229), 142—142,5° (Salkind, Ж. 52, 191; C. 1923 III, 1392), 139—140° (Krassuski, Kiprijanow, Ж. 56, 5; C. 1926 I, 895); Kp<sub>14</sub>: 39—40° (Johnson, McEwen, Am. Soc. 48, 474).  $D_i^{\infty}$ : 0,9295;  $D_i^{\infty,1}$ : 0,9265 (v. Auwers, Bergmann, A. 476, 276);  $D_i^{\infty}$ : 0,930 (Bou.).  $n_{\infty}^{\infty}$ : 1,5416;  $n_{\rm B}^{\infty}$ : 1,5646;  $n_{\rm C}^{\infty}$ : 1,5790;  $n_{\infty}^{\infty,1}$ : 1,5410;  $n_{\rm He}^{\infty,1}$ : 1,5472;  $n_{\rm B}^{\infty,1}$ : 1,5637;  $n_{\rm C}^{\infty,1}$ : 1,5784 (v. Au., Be.);  $n_{\rm C}^{\infty}$ : 1,548 (Bou.). Ultrarot-Absorptionsspektrum: Lecomte, C. r. 178, 1532. Tesla-Luminescenzspektrum: McVicker, Marsh, Stewart, Soc. 125, 1746; Marsh, Phil. Mag. [6] 49, 977; C. 1925 II, 890. Fluorescenzspektrum des Dampfes bei 12—15 mm Druck: Marsh, Soc. 123, 3321, 3322. Dichte und Brechungsindices von Lösungen in 1-Methyl-naphthalin: v. Au., Be., A. 476, 276.

Beim Erhitzen auf 230—240° bilden sich Gase und amorphe Produkte (SKRAUP, BENG, B. 60, 945), ebenso beim Erhitzen bis auf 266° (KRASSUSKI, KIPRIJANOW, Ж. 56, 5; C. 1926 I, 895). Geschwindigkeit der Hydrierung in Gegenwart von Platinmohr in Ather: Salkind, Ph. Ch. 104, 189; 3K. 52, 191; C. 1923 III, 1392; in Gegenwart von Palladium in Alkohol: S., 3K. 52, 191; C. 1923 III, 1392; vgl. Bourguel, Gredy, C. r. 189, 758, 1 Mol Phenylacetylen liefert bei mehrstündigem Erhitzen im Rohr auf ca. 260° mit 5 Mol Methylamin oder Åthylamin in 33 %iger wäßriger Lösung 1.3.5-Triphenyl-benzol; beim Erhitzen mit Alkalilauge, Ammoniak, Dimethylamin, Diäthylamin, Trimethylamin oder Piperidin tritt Verharzung ein (K., K.,  $\times$  .56, 5, 7; C. 1926 I, 895). In Äther + Petroläther gelöstes Phenylacetylen gibt beim Einleiten von Stickstoffdioxyd α.β-Dinitro-styrol (Wieland, Blümich, A. 424, 103); beim Behandeln mit Natriumnitrit und verd. Schwefelsäure oder beim Einleiten von aus Arsenik und verd. Salpetersäure entwickelten Stickoxyden entsteht Phenylfuroxan (Syst. Nr. 4492) (WIE., A. 424, 113, 115). Phenylacetylen liefert mit Arsentrichlorid bei wochenlangem Aufbewahren oder beim Erhitzen auf 110° [α-Chlor-styryl]-dichlorarsin und Bis-[α-chlor-styryl]-chlorarsin (Hunt, Turner, Soc. 127, 998; Ipatjew, Rasuwajew, Ssisow. ж. 61, 1870; B. 63, 175). Erwärmen der Kupferverbindung mit Kupfer(II)-chlorid-Lösung auf dem Wasserbad führt zu Diphenyldiacetylen (STRAUS, KOLLEK, B. 59, 1680). Die Natriumverbindung gibt bei der Einw. von Dimethylsulfat 1-Phenyl-propin-(1) (BOURGUEL, C. r. 186, 1212). Phenylacetylen gibt mit 2 Mol Äthylhypochlorit in Tetrachlorkohlenstoff bei —20° w.w-Dichlor-acetophenon (Goldschmidt, Endres, Dirsch, B. 58, 575). Beim Erhitzen mit Kalium-phenylessigsäure-äthylester auf 125—130° und Zersetzen der entstandenen Kaliumverbindung mit verd. Schwefelsäure entsteht 2.5-Diphenyl-3.6-dibenzylbenzochinon-(1.4); bei der Spaltung der Kaliumverbindung mit Kohlendioxyd tritt ein farbloses Produkt auf, das sich langsam in 2.5-Diphenyl-3.6-dibenzyl-benzochinon-(1.4) umwandelt (SCHEIBLER, MAHBOUB, B. 60, 560). Bei der Einw. von Phenylpropiolsäurechlorid auf Phenylacetylennatrium in absol. Äther entstehen geringe Mengen Tris-phenylacetylenyl-carbinol (HESS, WELTZIEN, B. 54, 2515). Phenylacetylen addiert Rhodan in Benzol oder Ather unter Bildung von Phenylacetylen-dirhodanid (SÖDERBÄCK, A. 443, 160; vgl. KAUFMANN, B. 59, 1391). Bei der Kondensation der Natriumverbindung mit Salicoylchlorid und Destillation des Reaktionsprodukts unter vermindertem Druck entsteht Flavon (Simonis, Z. ang. Ch. 39, 1462). Die Natriumverbindung gibt mit 4-Methoxy-benzhydroximsäure-chlorid in Äther 5-Phenyl-3-[4-methoxy-phenyl]-isoxazol (Weygand, Bauer, A. 459, 143). Umsetzung mit dem Kaliumsalz des α.γ-Diphenyl-acetessigesters (Syst. Nr. 1299): Sch., M., B. 60, 563. Beim Behandeln mit Methylmagnesiumjodid wird 1 Mol Methan entwickelt (Kuhn, Furter, B. 60, 1157). Reagiert nicht mit 4-Chlor-phenylmagnesiumbromid (GILMAN, McGLUMPHY, R. 47, 422). Über die Reaktionen der Phenylacetylenmagnesiumhalogenide vgl. Syst. Nr. 2337.

Phenylacetylen läßt sich gravimetrisch und titrimetrisch als Kupferverbindung C<sub>8</sub>H<sub>5</sub>Cu bestimmen (Hein, Meyer, Fr. 72, 30).

Phenylacetylennatrium  $C_8H_5$ Na. Zur Bildung vgl. Dufraisse, A. ch. [9] 17, 138. Entzündet sich spontan an der Luft, sobald die Benetzung mit Äther aufhört. — Phenylacetylenmagnesiumbromid  $C_6H_5 \cdot C : C \cdot MgBr$  s. Syst. Nr. 2337. — Phenylacetylenquecksilber  $Hg(C_8H_5)_2$ . B. Aus einer alkoh. Lösung von Phenylacetylen und alkal. Kalium-

quecksilber(II)-jodid-Lösung (Johnson, McEwen, Am. Soc. 48, 474). Blättchen (aus Alkohol). F: 124,5—125°. Ziemlich schwer löslich in kaltem Äther und Alkohol, leicht in Chloroform, Benzol und heißem Alkohol.

Chloracetylenylbenzol, Phenylchloracetylen  $C_8H_5Cl = C_6H_5 \cdot C: CCl (H 513)$ . B. Aus Phenylacetylenmagnesiumbromid und Benzolsulfochlorid in Ather unter Kühlung mit Kältemischung, neben anderen Produkten (Gilman, Fothergill, Am. Soc. 51, 3506).

Jodacetylenylbenzol, Phenyljodacetylen C<sub>2</sub>H<sub>5</sub>I = C<sub>4</sub>H<sub>5</sub>·C:CI (H 513; EI 247). B. Entsteht neben anderen Produkten beim Erhitzen des Silbersalzes der Phenylpropiolsäure mit Jod in Benzol (Wieland, Fischer, A. 446, 67). — Kp<sub>12</sub>: 114—116° (W., F.). — Liefert mit Quecksilber-di-p-tolyl in siedendem Toluol p-Tolylquecksilberjodid und teerige Produkte (Whitmore, Thurman, Am. Soc. 51, 1498).

2-Nitro-1-acetylenyl-benzol, 2-Nitro-phenylacetylen  $C_8H_5O_4N=O_2N\cdot C_6H_4\cdot C: CH$  (H 513). Die Lösung in Benzol färbt sich am Sonnenlicht rot und setzt langsam einen ziegelroten Niederschlag ab (Alessander, G. 57, 197 Anm. 9). Beim Behandeln mit Nitrosobenzol in Äther oder Benzol entstehen in je nach den Bedingungen wechselnden Mengen Diisatogen (Syst. Nr. 3601), Isatin- $\alpha$ -oxim-N-phenyläther (Syst. Nr. 3206), Azoxybenzol, eine Verbindung  $C_{14}H_{10}O_3N_2$  (Nadeln; F: 150—151°) und andere Produkte (A., G. 57, 209). Beim Behandeln mit Nitrosobenzol in Eisessig erhält man Diisatogen, N-Oxy-isatin (Syst. Nr. 3206) und Azoxybenzol; die beiden erstgenannten Verbindungen bilden sich neben Isatin auch bei der Einw. von Nitrosobenzol in Chloroform (A.).

#### 2. Kohlenwasserstoffe C<sub>9</sub>H<sub>8</sub>.

[γ-Brom-α-propinyl]-benzol, 3-Brom-1-phenyl-propin-(1), Brommethyl-phenylacetylen, γ-Phenyl-propargylbromid  $C_9H_7Br=C_6H_5\cdot C:C\cdot CH_2Br$ . B. Als Hauptprodukt bei der Einw. von Phosphortribromid auf γ-Phenyl-propargylalkohol in Chloroform (v. Braun, Tauber, A. 458, 105). — Hellgelbe Flüssigkeit.  $Kp_{15}:135^\circ$ . — Wird durch Wasser unter Abspaltung von Bromwasserstoff zersetzt. Liefert mit Trimethylamin bei  $0^\circ$  in Ather Trimethyl-[γ-phenyl-propargyl]-ammoniumbromid. Gibt beim Behandeln mit Anilin anfangs bei Zimmertemperatur, dann auf dem Wasserbad [γ-Phenyl-propargyl]-anilin; reagiert analog mit Cinnamylanilin.

Flüssigkeit von gleichzeitig aromatischem und acetylenartigem Geruch und brennendem Geschmack (LESPIEAU, GARREAU, C. r. 171, 113; LE., Bl. [4] 29, 533). Kp<sub>780</sub>: ca. 166° (unter

Verharzung);  $Kp_{20}$ : 70—71° (Le., Ga.; Le.);  $Kp_{18}$ : 69,5—70°:  $Kp_{16}$ : 68—68,5°;  $Kp_{15}$ : 67°;  $Kp_{11}$ : 63°;  $Kp_{2}$ : 59,5—60° (Bourguel, C. r. 176, 753; 178, 1985; 186, 1212; A. ch. [10] 3, 230);  $Kp_{17}$ : 68—69° (Bert, Dorier, Bl. [4] 39, 1611), 71—73° (Grignard, Lapayre, Tchéoufaki, C. r. 187, 518).  $D^{14}$ : 0,935 (Bou., C. r. 186, 1213);  $D^{20}$ : 0,932 (Bou., C. r. 186, 1212), 0,936 (Bou., C. r. 192, 686);  $D_{2}^{3}$ : 0,931 (Gr., La., Tch.)  $n_{1}^{3}$ : 1,536 (Bou., C. r. 186, 1213);  $n_{2}^{3}$ : 1,535 (Bou., C. r. 186, 1212), von Bert, Dorier (Bl. [4] 39, 1612; 41, 1171) und Bourguel (Bl. [4] 41, 192; A. ch. [10] 3, 230) beschriebene Präparate mit niedrigerer Dichte und niedrigerem Brechungsindex konnten bei späteren Versuchen nicht wieder erhalten werden (Bou., C. r. 186, 1212; vgl. a. C. r. 192 [1931], 687).

Wandelt sich beim Erhitzen von 140° ab in ein helles Harz um (Bourguel, A. ch. [10] 3, 230); läßt sich daher unter gewöhnlichem Druck schwer destillieren (Lespieau, Garreau. C. r. 171, 113; Le., Bl. [4] 29, 533; Bou., A. ch. [10] 3, 230). Isomerisiert sich beim Erhitzen mit Natriumhydroxyd auf 110° zu 1-Phenyl-propin-(1) (Bou., A. ch. [10] 3, 231). Gibt bei der Oxydation mit Permanganat Benzoesäure (Bou., C. r. 186, 1213). Die Kupferverbindung liefert mit überschüssigem Jod 1.1.2-Trijod-3-phenyl-propen-(1) (Le., Ga.; Le.). Die mit Hilfe von Methylmagnesiumbromid hergestellte Magnesiumbromid-Verbindung gibt mit Bromeyan unter Eiskühlung 1-Brom-3-phenyl-propin-(1), mit 1 Mol äther. Jod-Lösung 1-Jod-3-phenyl-propin-(1) (Grignard, Perrichon, A. ch. [10] 5, 9, 13). Die Natriumverbindung läßt sich durch Einw. von Kohlendioxyd in Benzylpropiolsäure überführen (Bou., A. ch. [10] 3, 388).

Kupferverbindung. Gelb (Lespieau, Garreau, C.r. 171, 413; Le., Bl. [4] 29, 533; Bert, Dorier, Bl. [4] 39, 1611). —  $AgC_9H_7+AgNO_3$ . Krystalle. Löslich in heißem Alkohol (Le., Ga.; Le.). — Quecksilberverbindung  $Hg(C_9H_7)_2$ . B. Aus Benzylacetylen in Alkohol und alkal. Kaliumquecksilber(II)-jodid-Lösung (Johnson, McEwen, Am. Soc. 48, 474). Nadeln (aus Alkohol). F: 106,5—107,5°.

[γ-Brom-propargyl]-benzol, 1-Brom-3-phenyl-propin-(1), Benzylbromacetylen  $C_9H_7Br=C_6H_5\cdot CH_2\cdot C:CBr.$  B. Bei langsamer Zugabe der mit Hilfe von Methylmagnesiumbromid dargestellten Magnesiumbromid-Verbindung des 3-Phenyl-propins-(1) zu einer äther. Lösung von Bromcyan unter Eiskühlung (GRIGNARD, PERRICHON, A. ch. [10] 5, 9). — Kp<sub>15</sub>: 106—107°.  $D_*^{u,\delta}$ : 1,377.  $n_*^{u,\delta}$ : 1,5693. — Liefert beim Kochen mit saurer Quecksilber(II)-sulfat-Lösung Brommethyl-benzyl-keton (G., P., A. ch. [10] 5, 23).

[γ-Jod-propargyl]-benzol, 1-Jod-3-phenyl-propin-(1), Benzyljodacetylen  $C_8H_7I = C_8H_5 \cdot CH_2 \cdot C$ : CI. B. Aus der Magnesiumbromid-Verbindung des 3-Phenyl-propins-(1) bei Einw. von 1 Mol äther. Jod-Lösung unter Eiskühlung (GRIGNARD, PERRICHON, A. ch. [10] 5, 13). — Kp<sub>19</sub>: 139—140°. D<sub>1</sub><sup>11,5</sup>: 1,6397. n<sub>1</sub><sup>11,5</sup>: 1,6129. — Bei Einw. von Quecksilber(II)-chlorid in Alkohol und nachfolgender Hydrolyse mit sehr verd. Salzsäure entsteht Chlormethyl-benzyl-keton (G., P., A. ch. [10] 5, 24). Addiert Brom in Chloroform unter Bildung von α.β-Dibrom-β-jod-α-benzyl-äthylen.

- 3. 1-Methyl-4-acetylenyl-benzol, 4-Acetylenyl-toluol, p-Tolylacetylen C<sub>9</sub>H<sub>3</sub> = CH<sub>3</sub>·C<sub>6</sub>H<sub>4</sub>·C:CH (H 514; E I 247). Darst. Aus α-Chlor-α-p-tolyl-āthylen durch Kochen mit starker alkoholischer Kalilauge (Johnson, McEwen, Am. Soc. 48, 475) oder durch Erhitzen mit Natriumamid auf 150° (Willemart, Bl. [4] 45, 644). Kp<sub>20</sub>: 63° (J., McE.); Kp<sub>11-12</sub>: 53—56° (W.). Die mit Hilfe von Methylmagnesiumbromid dargestellte Magnesiumbromid-Verbindung gibt beim Behandeln mit 1 Mol āther. Jodlösung p-Tolyl-jodacetylen, bei der Einw. von Chlorcyan und nachfolgenden Hydrolyse p-Tolyl-propiolsäurenitril, beim Behandeln mit Bromcyan unter Eiskühlung p-Tolyl-brom-acetylen (Grignard, Perrichon, A. ch. [10] 5, 8, 13, 32). Quecksilberverbindung Hg(C<sub>9</sub>H<sub>7</sub>)<sub>2</sub>. B. Aus p-Tolylacetylen in Alkohol und alkal. Kaliumquecksilber(II)-jodid-Lösung (J., McE.). Nadeln (aus Toluol + Petrolāther). F: 199—202°. Schwer löslich in kaltem Benzol und Toluol, sehr schwer in Äther, fast unlöslich in kaltem Alkohol.
- 4-Bromacetylenyl-toluol, p-Tolyl-brom-acetylen  $C_9H_7Br=CH_3\cdot C_6H_4\cdot C: CBr$ . Bei langsamer Zugabe der Magnesiumbromid-Verbindung des p-Tolylacetylens zu einer äther. Lösung von Bromcyan unter Eiskühlung (GRIGNARD, PERRICHON, A. ch. [10] 5, 9). -- Kp<sub>6</sub>: 93—94°. D<sub>4</sub>°: 1,3326. n<sub>5</sub>°: 1,5985. Unbeständig. Liefert beim Behandeln mit konz. Schwefelsäure + Eisessig  $\omega$ -Brom-4-methyl-acetophenon (G., P., A. ch. [10] 5, 20).
- 4-Jodacetylenyl-toluol, p-Tolyl-jod-acetylen  $C_0H_7I=CH_3\cdot C_6H_4\cdot C:CI.$  B. Aus der Magnesiumbromid-Verbindung des p-Tolylacetylens durch Einw. von 1 Mol äther. Jodlösung unter Eiskühlung (GRIGNARD, PERRICHON, A. ch. [10] 5, 13). Kp<sub>14</sub>: 126—127°. D<sub>4</sub>": 1,6249. n<sub>5</sub>": 1,6494. Unbeständig. Liefert beim Behandeln mit konz. Schwefelsäure + Eisessig  $\omega$ -Jod-4-methyl-acetophenon (G., P., A. ch. [10] 5, 21). Beim Kochen mit Jod in Äther entsteht p-Tolyltrijodäthylen (G., P., A. ch. [10] 5, 25).

4. Inden C9H8, s. nebenstehende Formel (H 515; E I 248). Für die 4. Inden C<sub>9</sub>H<sub>8</sub>, s. nebenstenende Formei (H 515; E 1 248). Für die hiervon abgeleiteten Namen wird in diesem Handbuch diese Stellungsbezeichnung gebraucht. — Nach Schlenk, Bergmann (A. 463, 125; B. 62, 745) und Bergmann, Mark (B. 62, 756) sind die Ringe des Indens gegeneinander geneigt. Diese Arbeiten haben jedoch einer Nachprüfung nicht standgehalten (Meisenheimer, Theilacker, A. 469, 26; Meerwein, Migge, B. 62, 1046; Ziegler, Crössmann, B. 62, 1768). Zur Lage der Doppelbindungen im Inden-Molekül vgl. Alder, Pascher, Vagt, B. 75 [1942], 1503, 1506.

#### Vorkommen, Bildung und Darstellung.

V. Im Steinkohlen-Urteer (Weissgerber, Brennstoffch. 5, 212; C. 1925 I, 2271). Über Vorkommen in carburiertem Wassergas vgl. Brown, Berger, Ind. Eng. Chem. 17, 173; C. 1925 I, 2129. — B. Inden bildet sich neben anderen Produkten beim Leiten von Acetylen inden unter gewöhnlichem oder vermindertem Druck vgl. Stobbe, Färber, B. 57, 1849. Bei der Destillation von Truxan (S. 606) unter Atmosphärendruck (Sт., Zscносн, B. 60, 462, 471).

Zur Isolierung aus Teeröl oder Rohbenzol führt man Inden in Indennatrium (WALTERS, J. Soc. chem. Ind. 46, 151 T; C. 1927 II, 69) oder Indenkalium über und zerlegt diese Verbindungen mit Wasser (Ges. f. Teerverwertung, Weissgerber, D. R. P. 350737; C. 1922 IV, 160; Frdl. 14, 514).

#### Physikalische Eigenschaften.

Kp<sub>760</sub>: 181,7—183,0° (Lecat, R. 46, 243; Ann. Soc. scient. Bruxelles 47 I [1927]. 110; 48 I [1928], 58; 49 [1929], 18, 112); Kp<sub>754</sub>: 181—182° (Zelinsky, Turowa-Pollak, B. 62, 2867); Kp: 179,0—180,4° (MacVicker, Marsh. Stewart, Soc. 125, 1745), 179,5° bis 180° (Ze., Borissow, B. 57, 2060), 181—181,5° (Whitby, Katz, Am. Soc. 50, 1165), 179° (Stobbe, Färber, B. 57, 1845). D;: 1,0060; D;°: 0,9975; D;°: 0,9915 (Sto., F.); D;°: 1,000 (Brown, Ind. Eng. Chem. 17 [1925], 921). n;°: 1,5784 (Ze., Bo.); n;°: 1,5642 (Br.). Ultraviolett-Absorptionsspektrum in Ather: Sto., F., B. 57, 1840; in Akohol: Sto., Zschoch. B. 60, 463. Tesla-Luminescenzspektrum: McV., Marsh, Ste., Soc. 125, 1745; Marsh, Phil. Mag. [6] 49, 977; C. 1925 II 890. Bengung von Röntgenstrahlen an flüssigen Inden. Mag. [6] 49, 977; C. 1925 II, 890. Beugung von Röntgenstrahlen an flüssigem Inden: Karz, Kautschuk 1927, 217; C. 1927 II, 1206; Z. ang. Ch. 41, 332; K., Selman, Z. Phys. 46, 401; C. 1928 I, 1743. Azeotrope Gemische, die Inden enthalten, s. in der untenstehenden Tabelle.

Inden enthaltende binäre azeotrope Gemische.

| Komponente        | Kp760<br>0                                        | Gew%<br>Inden                | Komponente                                                                                                                             | Кр760<br>0                                                 | Gew%<br>Inden                                       |
|-------------------|---------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------|
| dl-Octanol-(2) 4) | 176<br>160<br>173,2<br>177,8<br>182,9<br>172,5 °) | ca. 40 25 55 53 91 ca. 43 6) | Glycerin-\alpha.\alpha'-\di- chlorhydrin^5). Acetamid^2) Acetamid^5) Butters\u00e4ure^5). Isovalerians\u00e4ure^5) Anilin^3) Anilin^5) | 173,5<br>175<br>177,6<br>161,0<br>173,5<br>176,8<br>180,35 | 33,5<br>80<br>82,5<br>—<br>ca. 45<br>ca. 55<br>52,5 |

1) LECAT, R. 46, 243. — 2) L., R. 47, 17. — 3) L., Ann. Soc. scient. Bruxelles 47 I [1927], 110. — 4) L., Ann. Soc. scient. Bruxelles 48 I [1928], 58. — 5) L., Ann. Soc. scient. Bruxelles 49 [1929], 18, 21, 22, 23, 112. — 6) Unsichere Werte.

#### Chemisches Verhalten.

H<sub>2</sub>C CH<sub>2</sub> Bei langem Aufbewahren in der Kälte wird Inden nicht polymerisiert; auch bei 100° geht die Polymerisation nur sehr langsam vor sich (STAUDINGER, Mitarb., Helv. 12, 937). -CH<sub>2</sub> Das als Diinden bezeichnete Dimerisationsprodukt des Indens,

dem die Konstitution eines 2- $\alpha$ -Hydrindyl-indens (s. obenstehende Formel; S. 606) zukommt (Bergmann, Taubadel, B. 65 [1932], 464; vgl. Stobbe, Färber, B. 57, 1839). entsteht aus Inden als einziges Reaktionsprodukt oder neben je nach den Bedingungen

wechselnden Mengen Polyinden bei der Einw. von Salzsäure, verdünnter und konzentrierter Schwefelsäure, krystallisierter Phosphorsäure, von wäßr. Zinkchlorid-Lösung sowie von Lösungen von Aluminiumchlorid in Wasser und Ather (Sto., F., B. 57, 1846); geringe Mengen (verunreinigtes?) Diinden entstehen auch neben 1-Brom-hydrinden beim Einleiten von Bromwasserstoff in gekühltes Inden (Courtot, Dondelinger, C. r. 179, 1168; A. ch. [10] 4, 351). Weitere Produkte, die bei der Polymerisation durch Erhitzen entstehen. s. bei Polyinden (S. 412). Geschwindigkeit der Polymerisation zu Polyinden bei 100—200° im geschlossenen Rohr: Whitby, Katz, Am. Soc. 50, 1167; vgl. Stobbe, Färber, B. 57. 1844, 1850; bei 300°, 400° und 500° im Stickstoffstrom, auch in Gegenwart wechselnder Mengen Sauerstoff: Brown, Ind. Eng. Chem. 17, 920; C. 1926 II, 827; bei Belichtung unter Stickstoff oder Luft bei etwa 20°: Sto., F., B. 57, 1843, 1849. Polymerisation zu Polyinden unter einem Druck von 9000 Atm.: Bridgman, Conant, Pr. nation. Acad. USA. 15, 681; C. 1929 II, 2765; in Toluol-Lösung bei —80° bis +110°: Staudinger, Mitarb. Helv. 12, 936; durch Einw. von Fluorwasserstoff: Courtot, Dondelinger, C. r. 179, 1169. A. ch. [10] 4, 348; von konz. Schwefelsäure: Stobbe, Färber, B. 57, 1848; von konz. Schwefelsäure in Benzol: Stau., Mitarb., Helv. 12, 936, 950; durch Floridaerde: Stau., Mitarb., Helv. 12, 936, 967; unter der katalytischen Wirkung von Halogeniden des Bors, Aluminiums. Titans, Zinns, Phosphors und Antimons und anderen Metallhalogeniden: Stau., Mitarb., Helv. 12, 936, 949; durch Calciumchlorid, Zinkchlorid und Aluminiumchlorid: Stobbe, Färber, B. 57, 1849; durch Zinn(IV)-chlorid in Benzol, Chloroform oder Toluol: Stau., B. 59, 3033: Stau., Mitarb., Helv. 12, 935, 950; Whitby, Katz, Am. Soc. 50, 1166.

Inden gibt bei der Oxydation mit Permanganat in alkoholisch-wäßriger Lösung bei 40° cis-1.2-Dioxy-hydrinden neben Spuren von trans-1.2-Dioxy-hydrinden (HERMANS. Ph. Ch. 113, 365; vgl. BÖESEKEN, R. 47, 687). Reagiert lebhaft mit Acetpersäure unter Bildung eines ungetrennten Gemisches der Mono- und Diacetate des 1,2-Dioxy-hydrindens (BÖE., ELSEN, R. 48, 368). Die Oxydation von Inden mit Benzopersäure in neutraler, saurer oder alkalischer Lösung bei 10-200 oder in der Siedenitze liefert cis- und trans-1.2-Dioxyhydrinden in je nach den Bedingungen wechselnden Mengen; gelegentlich entsteht auch β-Hydrindon (Böe., R. 47, 690; vgl. Bauer, Bähr, J. pr. [2] 122, 211). Geschwindigkeit der Reaktion mit Benzopersäure: Böe., Derx, R. 40, 524; D., R. 41, 332. — Bei längerem Erhitzen von Inden mit Wasserstoff unter 75 Atm. Anfangsdruck auf 440-465° in Gegenwart eines Gemisches aus gleichen Teilen Tonerde und Eisenoxyd erhält man Hydrinden und andere Produkte (IPATJEW, ORLOW, B. 62, 596; 38. 61, 1299). Inden gibt beim Durchleiten durch ein verzinntes Eisenrohr im Wasserstoffstrom bei 760—770° neben anderen Produkten geringe Mengen Benzol (F. FISCHER, SCHRADER, MEYER, Abh. Kenntnis Kohle 5, 432; C. 1922 IV, 1039). Liefert bei der Hydrierung in Gegenwart von Nickelkatalysator nach Schroe-TER in der Hitze unter erhöhtem Druck (v. Braun, Kirschbaum, B. 55, 1681; Goth, B. 61. 1459), in Gegenwart von kolloidalem Palladium unter gewöhnlichem Druck (Borsche, Pommer. B. 54, 102) und in Gegenwart von Platinschwarz in Ather (Courtot, Dondelinger, C.r. 178, 495; A. ch. [10] 4, 290) Hydrinden, in Gegenwart von Palladium-Asbest bei 150—160° (Zelinsky, Borissow, B. 57, 2060; Z., Titz, B. 62, 2871), von Osmium-Asbest unterhalb 100° (Z., Turowa-Pollak, B. 62, 2867), von Platin-Kohle (Z., T.-P., B. 62, 1662) oder von Platinoxyd (STAUDINGER, Mitarb., Helv. 12, 966) cis-Hydrindan (S. 51). Geschwindigkeit der Hydrierung in Gegenwart von Platinschwarz in Alkohol bei 15°, auch im Gemisch mit Cyclohexen und Terpineol: Lebedew, Platonow, Soc. 1930, 323, 326; Ж. 61, 2153. Inden gibt mit Natriumammonium in flüssigem Ammoniak im Autoklaven Indennatrium und Hydrinden (LEBEAU, PICON, C. r. 173, 85).

Inden liefert in Tetrachlorkohlenstoff-Lösung bei —20° mit Chlormonoxyd 1(oder 2)-Chlor-1.2-oxido-hydrinden (Syst. Nr. 2367) und eine Verbindung C<sub>18</sub>H<sub>28</sub>O<sub>30</sub>Cl<sub>3</sub> (Krystalle; F: 125°) (Goldschmidt, Schüssler, B. 58, 571), mit Äthylhydochlorit bei —20° 2-Chlor-1-oxy-hydrinden (Go., Endres, Dirsch, B. 58, 575). Beim Behandeln von Inden mit Bromwasser bei 2° oder bei 90° oder in Gegenwart von Petroläther oder von Kieselgur (Read. Hurst, Soc. 121, 2552; Walters, J. Soc. chem. Ind. 46, 152 T; C. 1927 II, 69), mit Bromcyan bei 80—90° (Steinkoff, A. 430, 104) oder mit N-Brom-acetamid und Wasser (E. Schmidt, V. Knilling, Ascherl, B. 59, 1282) entsteht 2-Brom-1-oxy-hydrinden als Hauptprodukt. Einw. von Jod in Benzol oder Ather am Sonnenlicht und von Jod in Kaliumjodid-Lösung: Stobbe, Färber, B. 57, 1845, 1851. Inden liefert mit Jod und Quecksilber(II)-oxyd in Ather 2-Jod-1-oxy-hydrinden (Tiffeneau, Orechow, C. r. 170, 466; Bl. [4] 27, 793). Gibt mit Athylnitrit und konz. Salzsäure in Eisessig Indennitrosochlorid (S. 412) (Straus, Ekhard, A. 444, 160). Liefert beim Behandeln mit Athylnitrat in Ather bei Gegenwart von Kaliumäthylat zwischen 10° und 30° das Kaliumsalz des 3-Isonitro-indens (Wislicenus, Pfeilsticker, A. 436, 38). Gibt beim Erhitzen mit Kaliumhydroxyd im Autoklaven auf 300—310° Hydrinden, sehr geringe Mengen o-Xylol und andere Produkte (Weissgerber, Seidler,

B. **60**, 2089).

Liefert mit Bromtrinitromethan in Methanol bei  $0^{\circ}$  2-Brom-1-methoxy-hydrinden (?) (E. SCHMIDT, SCHUMACHER, ASMUS, B. 56, 1240). Inden kondensiert sich mit Formaldehyd beim Kochen in siedender Salzsäure zu einem Öl, das an der Luft zu einem Lack eintrocknet (CLAASZ, D. R. P. 310783; C. 1920 II, 38; Frdl. 13, 666), mit Athylformiat bei Gegenwart von Kaliumäthylat zu einem roten Öl (WISLICENUS, HENTRICH, A. 436, 19). Gibt mit Azodicarbonsäurediäthylester bei längerem Aufbewahren ohne Zusatz 2- $[\alpha.\beta$ -Dicarbäthoxy-hydrazino]-inden (DIELS, ALDER, A. 450, 248); bei der Einw. von Azodicarbonsäure-dimethylester in Gegenwart von Chlorwasserstoff und wenig Jod erhält man 1-Chlor-5(oder 6)- $[\alpha.\beta$ -dicarbomethoxy-hydrazino]-hydrinden (Stollé, Reichert, J. pr. [2] 123, 79). Inden liefert mit Lithiumäthyl in Benzol bei  $60^{\circ}$  in Stickstoff-Atmosphäre Inden-(3)-lithium (SCHLENK, Bergmann, A. 463, 227; vgl. Blum-Bergmann, A. 484 [1930], 28, 40).

#### Biochemisches Verhalten; Analytisches.

Eine kurze Übersicht über das biologische Verhalten von Inden findet sich bei H. STAUB in J. HOUBEN, Fortschritte der Heilstoffchemie, 2. Abt., 2. Bd. [Berlin-Leipzig 1932], S. 49. Inden gibt in Alkohol oder Chloroform auf Zusatz von konz. Schwefelsäure eine rotviolette Färbung (DE FAZI, G. 51 I, 167; vgl. STOBBE, FÄRBER, B. 57, 1848; St., ZSCHOCH. B. 60, 471). Gibt mit Pikrinsäure in alkal. Lösung eine rote Färbung (Weise, Tropp, H. 178, 134).

#### Additionelle Verbindungen und Umwandlungsprodukte unbekannter Konstitution aus Inden.

Verbindung mit 1.3.5-Trinitro-benzol  $C_0H_6+C_0H_3O_6N_3$ . Citronengelb (Hertel. 4. 451, 191). — Pikrat  $C_9H_8+C_0H_3O_7N_3$ . F: 98° (H.), 96° (Stobbe, Färber, B. 57, 1846).

 $\alpha$ -Indennitrosit C<sub>0</sub>H<sub>8</sub>O<sub>3</sub>N<sub>2</sub> (H 516). Zur Bildung aus Inden und Stickoxyden vgl. Straus, Ekhard, A. 444, 159 Anm. 2. — Zersetzt sich bei 107—109°.

Inden'nitrosochlorid C<sub>9</sub>H<sub>7</sub>ONCl. B. Durch Einw. von Äthylnitrit und konz. Salzsäure auf Inden in Eisessig (Straus, Ekhard, A. 444, 160). — Krystalle (aus Chloroform + Äther). Färbt sich gegen 180° schwarz. — Beim Kochen mit Piperidin in Alkohol entsteht 1-Oximino-2-piperidino-hydrinden.

Polyinden, "Parainden", "Metainden" (C<sub>9</sub>H<sub>8</sub>)<sub>x</sub> (H 516). Zur Bezeichnung Polyinden vgl. Staudinger, Mitarb., Helv. 12, 935. — Polyinden ist ein Gemisch polymer-homologer verhältnismäßig niedermolekularer (hemikolloider) Verbindungen; hochmolekulare (eukolloide) Polyindene konnten bisher nicht erhalten werden (Stau., Mitarb., Helv. 12, 937; Whitby, Katz, Am. Soc. 50, 1160). Über Strukturformeln der Polyindene vgl. Stau., B. 59, 3033; Stau., Mitarb., Helv. 12, 942; Wh., K., Am. Soc. 50, 1162; Canad. J. Res. 4, 349; C. 1932 I, 386; Risi, Gauvin, Canad. J. Res. 13 B, 229, 242; C. 1936 II, 283. — Die durchschnittliche Molekulargröße ist um so niedriger, je höher die Polymerisations, temperatur liegt (Wh., K., Am. Soc. 50, 1161; vgl. Stau., Mitarb., Helv. 12, 937); die Bildung kürzerer Ketten wird auch durch Verdünnen mit Lösungsmitteln begünstigt (Stau., Mitarb., Helv. 12, 935, 952); so erhält man bei wochenlangem Erhitzen von Inden auf 178° ein Produkt vom ungefähren Mol.-Gew. 886, bei 200° ein Produkt vom ungefähren Mol.-Gew. 676 (Wh., K., Am. Soc. 50, 1161); ein durch 25-stdg. Erhitzen von Inden auf 260° gewonnenes gelbes zähflüssiges Harz bestand in der Hauptsache aus einem tetrameren Inden C<sub>36</sub>H<sub>32</sub> (hellgelbes, amorphes Pulver; schmilzt je nach der Art des Erhitzens zwischen 100° und 110°) (Bruson, B. 60, 1095; vgl. Whitby, Katz, Am. Soc. 50, 1161 Anm. 3). Bildung durch Polymerisation von Inden unter Druck und unter der Einw. von Fluorwasserstoff, Schwefelsäure und verschiedenen Chloriden s. S. 411. Trennung von Polyindenen verschiedener Darstellungsweise in Fraktionen von verschiedenem Molekulargewicht: Whitby, Katz, Am. Soc. 50, 1166, 1167; Staudinger, Mitarb., Helv. 12, 941, 946, 954.

Die Polyindene sind amorphe Pulver (Staudinger, Mitarb., Helv. 12, 935, 947; Stobbe, Färber, B. 57, 1849) und zeigen bei der Röntgenuntersuchung keine Krystallinterferenzen (Katz, Kautschuk 1927, 220; C. 1927 II, 1206; K., Selman, Z. Phys. 46, 401; C. 1928 I, 1743). Der Schmelzpunkt von mit konz. Schwefelsäure unter Kühlung hergestellten Polyindenen schwankt zwischen 230° und 280° (Sto., F., B. 57, 1849); ein mit konz. Schwefelsäure in Benzol-Lösung gewonnenes Präparat verflüssigte sich bei 210—215° (Stau., Mitarb., Helv. 12, 950). Leicht löslich in Benzol, Chloroform und Tetrachlorkohlenstoff, sehr schwer in Alkohol und Eisessig (Sto., F., B. 57, 1849; Stau., Mitarb., Helv. 12, 935). Über die verschiedene Löslichkeit von Polyinden-Fraktionen in Äther und Cyclohexan vgl. Stau., Mitarb., Helv. 12, 939, 941; die leichter löslichen Fraktionen haben ein geringeres Durchschnitts-Molekulargewicht als die schwer löslichen (Stau., Mitarb., Helv. 12, 937). Relative Viscosität verschieden hergestellter Polyindene in Benzol: Stau., Mitarb., Helv. 12, 936, 938, 951; bei 25°: Whitey, Katz, Am. Soc. 50, 1166.

Beim Erhitzen im trocknen Zustand und in Benzol auf 200° bleiben die Polyindene in Stickstoff-Atmosphäre im wesentlichen unverändert, während in Luft und vor allem in Sauerstoff unter Braunfärbung ein Abbau eintritt (Staudinger, Johner, Wiedersheim, Helv. 12, 958; vgl. Stobbe, Färber, B. 57, 1849). Zur Bildung von Truxen (S. 701) bei der Destillation unter Atmosphärendruck vgl. Sto., F., B. 57, 1849; Bruson, B. 60, 1095. Veränderungen beim Erhitzen im Rohr auf 200—220°: Sto., F.; auf 270—280°: Stau., J., W., Helv. 12, 961. Bei der Destillation von aus Inden mit konz. Schwefelsäure gewonnenem Polyinden unter 20 mm Druck wurde neben Diinden, Truxen und anderen Produkten ein gelbes, amorphes, bei etwa 155° schmelzendes Pulver von der ungefähren Zusammensetzung eines hexameren Indens C5448 erhalten (Sto., F., B. 57, 1849): ungefähr dieselben Produkte bilden sich bei der thermischen Zersetzung von Polyinden im Hochvakuum (Stau., Mitarb., Helv. 12, 952). Bei der Einw. von Ozon in Tetrachlorkohlenstoff entsteht ein bei 200° verkohlendes gelbes Pulver (Stau., Mitarb., Helv. 12, 952). Die niederen Glieder der Polyinden-Reihe entfärben Permanganat-Lösung und addieren Brom (Bruson, B. 60, 1095; Whitby, Katz, Am. Soc. 50, 1161, 1166; Canad. J. Res. 4, 357; C. 1932 I. 386), die höheren Glieder reagieren nicht (Stobbe, Färber, B. 57, 1849; Risi, Gauvin, Canad. J. Res. 13 B, 234, 240; C. 1936 II, 283). Bei der Hydrierung von Polyindenen verschiedener Darstellungsart in Gegenwart von Nickelkatalysatoren oder Platinoxyd, teilweise mit Floridaerde als Katalysatorträger, in Methylcyclohexan oder Dekalin bei 200—220° oder ohne Lösungsmittel bei 270° erhält man ein Gemisch von Hydropolyindenen; daneben entstehen, namentlich in Gegenwart von Floridaerde, Produkte des thermischen Abbaus (Staudinger, Mitarb., Helv. 12, 962; vgl. Stau., B. 59, 3033).

- 3-Brom-inden C<sub>9</sub>H<sub>7</sub>Br = C<sub>6</sub>H<sub>4</sub> CHBr CH (E I 248). Beim Behandeln mit Anilin entsteht 3-Anilino-inden (Courtot, Dondelinger, C. r. 177, 536; A. ch. [10] 4, 225).
  - 3-Nitro-inden bzw. 3-Isonitro-inden  $C_9H_7O_2N = C_6H_4 \underbrace{CH(NO_9)}_{CH}CH$  bzw.

C<sub>6</sub>H<sub>4</sub>C(:NO<sub>2</sub>H) CH. B. Das Kaliumsalz entsteht beim Behandeln von Inden mit Äthylnitrat in Äther bei Gegenwart von Kaliumäthylat zwischen 10° und 30° (WISLICENUS, PFEILSTICKER, A. 436, 38). — Grünlichgelbe Nadeln (aus sehr verd. Salzsäure). F: 50°. Schwer löglich in Wasser, unlöglich in Benzin, leicht löglich in den übrigen Lösungsmitteln. — Unbeständig; spaltet bei gewöhnlicher Temperatur Stickoxyde ab. Die Lösung des Kaliumsalzes in Methanol liefert mit Benzaldehyd und konz. Schwefelsäure 1-Nitro-3-benzyliden-inden, mit Benzoylchlorid in Ather 3-Nitro-1-benzoyl-inden. Gibt mit Nitrosodimethylanilin eine amorphe dunkelgrüne, bei 155° schwelzende Verbindung. Das Kaliumsalz kuppelt mit Diazoverbindungen unter Bildung roter zersetzlicher Produkte. — Kaliumsalz KC<sub>2</sub>H<sub>6</sub>O<sub>2</sub>N. Gelbe Krystalle (aus Aceton oder Aceton + Chloroform). Löst sich in Wasser mit gelber Farbe. Zersetzt sich leicht unter Braunfärbung.

# 3. Kohlenwasserstoffe $\mathrm{C}_{10}H_{10}$ .

- 1.  $\alpha$ -Butinyl-benzol, 1-Phenyl-butin-(1), Äthylphenylacetylen  $C_{10}H_{10}=C_8H_5\cdot C:C\cdot C_2H_5$  (H 517). B. Aus Phenylacetylenmagnesiumbromid und Diäthylsulfat in Äther (Gilman, Hoyle, Am. Soc. 44, 2623, 2625). Setzt sich mit Äthylmagnesiumbromid in siedendem Äther nicht um (G., Shumaker, Am. Soc. 47, 515).
- [ $\delta$ -Chlor- $\alpha$ -butinyl]-bensol, 4-Chlor-1-phenyl-butin-(1), [ $\beta$ -Chlor-äthyl]-phenyl-scetylen  $C_{10}H_9Cl = C_0H_5 \cdot C \cdot C \cdot CH_3 \cdot CH_3Cl$ . B. Aus Phenylacetylenmagnesiumbromid und p-Toluolsulfonsäure-[ $\beta$ -chlor-äthylester] in Äther (Gilman, Beaber, Am. Soc. 45, 842). Siedet bei 245—246° unter geringer Abspaltung von Chlorwasserstoff.
- 2.  $\gamma$ -Butinyl-benzol, 4-Phenyl-butin-(1),  $\beta$ -Phenäthyl-acetylen  $C_{10}H_{10}=C_{6}H_{5}\cdot CH_{2}\cdot C:CH$  (E I 248). B. Bei der Einw. von Natriumamid auf 1-Chlor-4-phenyl-buten-(1) in Xylol bei 110—120° (Bert, Dorier, Lamy, C. r. 181, 555) und auf 2-Brom-4-phenyl-buten-(1) in Paraffinöl bei 150—155° (Johnson, McEwen, Am. Soc. 48, 375). Leicht schäumende Flüssigkeit von durchdringendem Geruch (B., D., L.). Kp<sub>17</sub>: 95—99° (J., McE.); Kp<sub>18</sub>: 83° (B., D., L.). D½: 0,928; D½: 0,918; n½: 1,518 (B., D., L.). Die Magnesiumbromid-Verbindung liefert bei Behandlung mit Bromeyan unter Eiskühlung 1-Brom-4-phenyl-butin-(1), mit 1 Mol äther. Jod-Lösung 1-Jod-4-phenyl-butin-(1) (Grignard, Perbichon, A. ch. [10] 5, 9), mit Chloreyan  $\beta$ -Phenäthyl-projolsäure-nitril (G., P., A. ch. [10] 5, 32). Quecksilberverbindung  $Hg(C_{10}H_{9})_{2}$ . B. Aus  $\beta$ -Phenäthyl-acetylen und alkal. Kaliumquecksilber(II)-jodid-Lösung in Alkohol (J., McE.). Krystalle (aus Benzol + Petroläther). F: 83,5—84,5°.

[Syst. Nr. 474

[ $\delta$ -Brom- $\gamma$ -butinyl]-benzol, 1-Brom-4-phenyl-butin-(1),  $\beta$ -Phenäthyl-brom-acetylen  $C_{10}H_9Br=C_6H_5\cdot CH_2\cdot CH_2\cdot C:CBr$ . B. Aus der Magnesiumbromid-Verbindung des 4-Phenyl-butins-(1) und Bromeyan unter Eiskühlung (Grignard, Perrichon, A.ch. [10] 5, 9). — Kp<sub>7</sub>: 110—111°.  $D_4^{11.5}$ : 1,3354.  $n_b^{11.5}$ : 1,5636.

[ $\delta$ -Jod- $\gamma$ -butinyl]-benzol, 1-Jod-4-phenyl-butin-(1),  $\beta$ -Phenäthyl-jodacetylen  $C_{10}H_9I=C_6H_5\cdot CH_2\cdot CH_2\cdot CI$ . B. Aus der Magnesiumbromid-Verbindung des 4-Phenylbutins-(1) mit 1 Mol äther. Jod-Lösung unter Eiskühlung (Grignard, Perrichon, A.ch. [10] 5, 13). —  $Kp_{28}$ : 170—171°;  $Kp_9$ : 142—143°.  $D_4^{15}$ : 1,5814.  $n_2^{15}$ : 1,601.

- 3. α.γ-Butadienyl-benzol, 1-Phenyl-butadien-(1.3) C<sub>10</sub>H<sub>10</sub> = C<sub>6</sub>H<sub>5</sub>·CH:CH·CH:CH:CH:CH:2 (H 517; E I 248). Zur sterischen Einheitlichkeit vgl. Muskat, Herrman, Am. Soc. 53 [1931], 252; Wright, J. org. Chem. 1, 457; C. 1937 II, 1362. B. Beim Erwärmen von [α.β.γ.δ-Tetrachlor-butyl]-benzol mit Zinkstaub auf dem Wasserbad (Muskat, Huggins, Am. Soc. 51, 2500). Zur Darstellung aus Zimtaldehyd und Methylmagnesiumbromid in Äther vgl. Prévost, A. ch. [10] 10, 372. D<sup>16</sup>: 0,9309; n<sup>6</sup>: 1,6428 (Böeseken, Ravenswaay, R. 44, 242). Beim Leiten von 2 Atomen Chlor in 1-Phenyl-butadien-(1.3) oder in dessen Lösung in Chloroform, Ligroin, Schwefelkohlenstoff oder Eisessig bei —80° bis etwa +150° entsteht 3.4-Dichlor-1-phenyl-buten-(1) (Mu., Hu., Am. Soc. 51, 2499). Liefert beim Erhitzen mit Naphthochinon-(1.4) 1-Phenyl-anthrachinon (Diels. Alder. B. 62. 2361). mit Naphthochinon-(1.4) 1-Phenyl-anthrachinon (DIELS, ALDER, B. 62, 2361).
- vinyl-essigsäure. Beim Einleiten von 2 Atomen Chlor entsteht 3.4.4-Trichlor-1-phenylbuten-(1).
- 4. 1-Methyl-2-propargyl-benzol, 2-Propargyl-toluol, 3-o-Tolyl-propin-(1), 2-Methyl-benzylacetylen  $C_{10}H_{10}=CH_3\cdot C_6H_4\cdot CH_2\cdot C:CH$ . B. Aus 2-[ $\gamma$ -Chlorallyl]-toluol und Natriumamid in Xylol bei 110—120° (Bert, Dorier, Lamy, C. r. 181, 555). Flüssigkeit von durchdringendem Geruch. Kp<sub>15</sub>: 80°. D°: 0,951; D°: 0,940. ni: 1,532.
- 1-Methyl-4-propargyl-benzol, 4-Propargyl-toluol, 3-p-Tolyl-propin - (1), 4 - Methyl - benzylacetylen C<sub>10</sub>H<sub>10</sub> = CH<sub>2</sub>·C<sub>6</sub>H<sub>4</sub>·CH<sub>2</sub>·C:CH. B. Aus 4-[y-Chlor-allyl]-toluol und Natriumamid in Xylol bei 110—120° (BERT, DORIER, LAMY, C. r. 181, 555). — Flüssigkeit von durchdringendem Geruch. Kp<sub>15</sub>: 83°. D<sup>o</sup>: 0,958; D<sup>o</sup>: 0,947. n<sup>14</sup>: 1,533.

- **1.2-Divinyl-benzol**  $C_{10}H_{10}=CH_2:CH\cdot C_6H_4\cdot CH:CH_2.$  Polymeres 1.2-Divinyl-benzol  $(C_{10}H_{10})_x$ . B. Neben anderen Produkten beim Kochen von 1.2-Bis- $[\beta$ -dimethylamino-äthyl]-benzol-monojodmethylat mit Alkalilauge oder beim Erwärmen einer wäßr. Lösung von 1- $[\beta$ -Dimethylamino-äthyl]-2-vinyl-benzol-hydroxymethylat (v. Braun, Neumann, B. 53, 113). — Wurde nicht rein erhalten. Gelbliches Pulver (aus Tetralin + Äther). Färbt sich bei 200° dunkel, schmilzt bei 206—207°. Sehr schwer löglich in Xylol, löslich in Tetralin, unlöslich in Äther, Alkohol, Chloroform, Benzol und Eisessig.
- 7. 1.5-Dimethyl-2-acetylenyl-benzol, 4-Acetylenyl-m-xylol, CH<sub>3</sub> 2.4-Dimethyl-phenylacetylen C<sub>10</sub>H<sub>10</sub>, s. nebenstehende Formel. B. Beim Erhitzen von α-Chlor-α-[2.4-dimethyl-phenyl]-äthylen mit Natriumamid (Grignard, Perrickon, A. ch. [40] 5, 7). — Flüssigkeit von acetylenartigem Geruch. Kp<sub>756</sub>: 184—186°; Kp<sub>22</sub>: 85°. D<sub>1</sub>°: 0,9258. n<sub>2</sub>°: 1,5438. — Die Magnesiumbromid-Verbindung liefert mit Bromcyan unter Eiskühlung [2.4-Dimethyl-phenyl]-bromacetylen, mit 1 Mol äther. Jodlösung unter Eiskühlung [2.4-Dimethyl-phenyl]-jodacetylen und mit ½ Mol Jod in Äther in der Siedehitze Bis-[2.4-dimethyl-phenyl]-diacetylen. Die letztgenannte Verbindung entsteht auch bei der Einw. der Magnesiumbromid-Verbindung auf [2.4-Dimethyl-phenyl]-jodacetylen. Behandlung der Magnesiumbromid-Verbindung mit Chlorcyan unter Eiskühlung ergibt 2.4-Dimethyl-phenylpromiolskure-nitril (G. P. A ch. Chlorcyan unter Eiskühlung ergibt 2.4-Dimethyl-phenylpropiolsäure-nitril (G., P., A. ch. [10] 5, 33).
- 4-Bromacetylenyl-m-xylol, [2.4-Dimethyl-phenyl]-bromacetylen  $C_{10}H_0Br =$ (CH<sub>3</sub>)<sub>2</sub>C<sub>6</sub>H<sub>3</sub>·C:CBr. B. Bei der Einw. von Bromcyan auf die Magnesiumbromid-Verbindung des 2.4-Dimethyl-phenylacetylens unter Eiskühlung (Geignard, Perrichon, A. ch. [10] 5, 9).

  — Kp<sub>6</sub>: 100—101°. D<sup>1</sup><sub>4</sub>: 1,2969. n<sup>1</sup><sub>5</sub>: 1,5927. — Unbeständig. Liefert mit konz. Schwefelsäure + Eisessig ω-Brom-2.4-dimethyl-acetophenon (G., P., A. ch. [10] 5, 20).
- 4 Jodacetylenyl m xylol, [2.4 Dimethyl phenyl] jodacetylen  $C_{10}H_0Br = (CH_3)_2C_0H_3 \cdot C: CI.$  B. Bei der Einw. von 1 Mol äther. Jodlösung auf die Magnesium-

bromid-Verbindung des 2.4-Dimethyl-phenylacetylens unter Eiskühlung (GRIGNARD, PERRICHON, A. ch. [10] 5, 13). — Kp<sub>5</sub>: 122—123°. D<sub>4</sub><sup>13</sup>: 1,5657. n<sub>5</sub><sup>13</sup>: 1,6396. — Unbeständig. Liefert bei Behandlung mit konz. Schwefelsäure in Eisessig  $\omega$ -Jod-2.4-dimethyl-acetophenon, mit Quecksilber(II)-chlorid in Alkohol  $\omega$ -Chlor-2.4-dimethyl-acetophenon (G., P., A. ch. [10] 5, 21, 24). Bei der Einw. auf die Magnesiumbromid-Verbindung des 2.4-Dimethyl-phenyl-acetylens entsteht Bis-[2.4-dimethyl-phenyl]-diacetylen (G., P., A. ch. [10] 5, 14).

8. 1.2-Dihydro-naphthalin,  $\Delta^1$ -Dihydronaphthalin,  $\Delta^1$ -Diatin C<sub>10</sub>H<sub>10</sub>, s. nebenstehende Formel (E I 249). B. Als Hauptprodukt beim Erhitzen von 2-Chlor-tetralin auf 190—200° (STRAUS, LEMMEL, B. 54, 34). Beim Erwärmen von 1.2-Dichlor-tetralin mit Zinkfeile in Alkohol auf 60° (v. Braun, Kirschbaum, B. 54, 618). Aus 1.2-Dibrom-tetralin beim Erhitzen unter vermindertem Druck, neben anderen Produkten (St., Rohrbacher, B. 54, 51), beim Behandeln mit der berechneten Menge Magnesium in alkoholfreiem Ather in Gegenwart einer Spur Jod in fast quantitativer Ausbeute (v. B., K., B. 54, 610; v. B., D. R. P. 316218; C. 1920 II, 241; Frdl. 13, 326; St., EKHARD, A. 444, 155) und bei der Einw. von Zink in Alkohol oder hydroxylfreien Lösungsmitteln wie Benzol, Ather und Aceton (v. B., K., B. 54, 604; v. B., Ď. R. P. 316218; St., E., A. 444, 155). Durch Umlagerung von 1.4-Dihydronaphthalin beim Erhitzen mit Natriumäthylat in Alkohol (St., Le., B. 54, 36) oder mit Natrium in Isoamylalkohol (TIFFENEAU, ORECHOW, Bl. [4] 27, 788). Aus 1.2.3.4-Tetrahydro-naphthol-(1) durch Destillation unter gewöhnlichem oder schwach vermindertem Druck (Schroeter, D. R. P. 346948; C. 1922 II, 1141; Frdl. 14, 492). Bei der Reduktion von 2-Brom-1.2.3.4-tetrahydro-naphthol-(1) mit Natrium in feuchtem Äther, mit amalgamiertem Aluminium in Ather oder mit verkupfertem Zinkstaub in siedendem absolutem Alkohol (Straus, Rohrbacher, B. 54, 54). Aus 2-Brom-1.2.3.4-tetrahydro-naphthol-(1)äthyläther bei der Destillation oder besser beim Kochen mit verd. Schwefelsäure (v. Braun, äthyläther bei der Destillation oder besser beim Kochen mit verd. Schwefelsäure (v. Braun, Kirschbaum, B. 54, 615). Beim Erhitzen von 1.2.3.4-Tetrahydro-naphthol-(2) mit festem Kaliumhydroxyd auf 200° (St., Lemmel, B. 54, 34). Beim Erhitzen der Phenylurethane von 1.2.3.4-Tetrahydro-naphthol-(1) und -(2) in Stickstoff-Atmosphäre auf etwa 200° (St., Ro., B. 54, 31, 55, 58). In geringer Menge beim Behandeln von β-Naphthol mit Natrium in siedendem Isoamylalkohol (St., Le., B. 54, 34) und bei der Destillation von 2-[γ-Oxy-propyl]-benzylalkohol unter 13 mm Druck (v. B., Zobel, B. 56, 2141). Beim Erhitzen des Kaliumsalzes der 3.4-Dihydro-naphthoesäure-(1) mit Kalk im Wasserstoffstrom, neben anderen Produkten (St., Le., B. 54, 32, 35). Aus Tetralyl-(2)-amin beim Erhitzen mit Isoamylnitrit über freier Flamme oder beim Erhitzen des Nitrits auf 150° (St., Le., B. 54, 35). Aus diazotiertem 5 6(coder 7 8)-Dihydro-naphthylamip.(4) bei Behandlung mit 54, 35). Aus diazotiertem 5.6(oder 7.8)-Dihydro-naphthylamin-(1) bei Behandlung mit alkal. Natriumstannit-Lösung (Rowe, Levin, Soc. 117, 1578).

Darst. Man gießt eine Lösung von 45 g Naphthalin in 900 cm³ absol. Alkohol allmählich auf 68 g Natrium, kocht bis zur Lösung des Metalls und destilliert 300—350 cm³ Alkohol langsam ab (STRAUS, LEMMEL, B. 54, 28, 32; vgl. ST., B. 46 [1913], 1053). Darstellung durch langsame Zugabe von Wasser zu einer mit Natrium versetzten siedenden Lösung von Naphthalin in einem bei 115—120° siedenden Gemisch von aliphatischen Kohlenwasserstoffen: Chem. Fabr. Griesheim-Elektron, D. R. P. 370 974; C. 1923 IV, 539; Frdl. 14, 456. Reinigung über das Dibromid (ST., LE., B. 54, 33).

1.2-Dihydro-naphthalin hat einen sehr scharfen Geruch (Straus, Lemmel, B. 54, 27; v. Braun, Kirschbaum, B. 54, 611). F: —8° (v. B., K.), —9° (Rowe, Lewin, Soc. 117, 1578). Kp<sub>15</sub>: 91° (v. B., K.). D<sub>4</sub><sup>1,5</sup>: 0,9963 (v. B., K.). Über Mischkrystalle mit Naphthalin vgl. St., B. 46 [1913], 1051 Anm. 3; St., Le., B. 54, 26, 33; St., Ekhard, A. 444, 155.

1.2-Dihydro-naphthalin wird durch Licht oder Wärme nicht polymerisiert (v. Braun, Kirschbaum, B. 54, 606). Beim Aufbewahren von 1.2-Dihydro-naphthalin in mit Benzol, Xylol oder Tetralin verdünnter konzentrierter Schwefelsäure entstehen eine feste und eine ölige Form eines dimolekularen 1.2-Dihydro-naphthalins (S. 416); Behandlung von 1.2-Dihydro-naphthalin mit konz. Schwefelsäure oder Schwefelsäure + Eisessig ergibt schmierige Produkte (v. B., K., B. 54, 606). Liefert bei der Oxydation mit wäßr. Permanganat-Lösung in Gegenwart von Magnesiumsulfat niedrigerschmelzendes 1.2-Dioxy-tetralin neben etwas Hydrozimtsäure-o-carbonsäure und anderen Produkten (Straus, Rohrbacher, B. 54, 69); bei der Oxydation mit Quecksilber(II)-acetat entstehen beide stereoisomeren 1.2-Dioxy-tetraline (St., Lemmel, B. 46 [1913], 233, 237; 54, 26, 36; St., Ro., B. 54, 68; Böeseken, Derx, R. 40, 522). Geschwindigkeit der Oxydation mit Benzopersäure in Chloroform: B., D., R. 40, 524; D., R. 41, 332. Die Ozonspaltung ergibt 2-Formyl-hydrozimtaldehyd, geringe Mengen Hydrozimtsäure-o-carbonsäure und andere Produkte (v. B., Zobel, B. 56, 2139). Wird in Gegenwart von Palladiumsol in verd. Alkohol unter Druck zu Tetralin hydriert (St., Le., B. 54, 39). Liefert beim Behandeln mit einer wäßr. Lösung von Chlor

kalk und Borsäure 2-Chlor-1-oxy-tetralin neben gelblichen Ölen (STRAUS, ROHRBACHER, B. 54, 52), mit Jod und Quecksilber(II)-oxyd in feuchtem Äther 2-Jod-1-oxy-tetralin (TIFFENEAU, ORECHOW, C. r. 170, 466; Bl. [4] 27, 788; ST., Ro., B. 54, 53 Anm.). Gibt bei der Einw. von Stickoxyden in Petroläther hauptsächlich 1.2-Dihydro-naphthalin-pseudonitrosit (s. u.), in Eisessig 2-Nitro-1-oximino-tetralin und wenig Pseudonitrosit, in kaltem Äther 3-Nitro-1-2-dihydro-naphthalin, geringe Mengen Pseudonitrosit und eine bei 172—173° (Zers.) schmelzende Verbindung, die auch beim Einleiten von reinem Stickstoffdioxyd in die gekühlte Lösung in Aceton erhalten wird (STRAUS, EKHARD, A. 444, 155, 156, 161). Gibt mit Isoamylnitrit und konz. Salzsäure in der Kälte 1.2-Dihydro-naphthalin-nitrosochlorid (s. u.) (St., E., A. 444, 159). Gibt mit Bromtrinitromethan in siedendem Methanol 2-Brom-1-methoxy-tetralin (?) (E. SCHMIDT, BARTHOLOMÉ, LÜBKE, B. 55, 2107). — Die Reaktion mit Quecksilber(II)-acetat (S. 415) kann zur Bestimmung neben 1.4-Dihydronaphthalin dienen (St., LEMMEL, B. 54, 26, 38).

- 1.2-Dihydro-naphthalin-pseudonitrosit C<sub>20</sub>H<sub>20</sub>O<sub>e</sub>N<sub>4</sub>. B. Bei der Einw. von Stickoxyden auf die Lösung von 1.2-Dihydro-naphthalin in Petroläther (STRAUS, EKHARD, 4. 444, 155). Krystallpulver (aus Tetrachloräthan + Petroläther). Zersetzt sich bei 95—96°. Leicht löslich in Tetrachloräthan, schwerer in Chloroform und Aceton, unlöslich in den übrigen Lösungsmitteln. Geht beim Aufbewahren, auch im Vakuum, oder beim Kochen mit Alkohol in 2-Nitro-1-oximino-tetralin über, das auch beim Behandeln mit Anilin in siedendem Alkohol erhalten wird. Zersetzt sich beim Erwärmen mit Lösungsmitteln unter Grünfärbung und Entwicklung von Stickoxyden. Gibt bei der Einw. von wäßrigalkoholischer Kaliauge unter Kühlung oder von Piperidin in siedendem Alkohol 3-Nitro-1.2-dihydro-naphthalin.
- 1.2-Dihydro-naphthalin-nitrosochlorid C<sub>10</sub>H<sub>10</sub>ONCl. B. Durch Einw. von Isoamylnitrit und konz. Salzsäure auf 1.2-Dihydro-naphthalin in der Kälte (Straus, Екнагр, A. 444, 159). Krystalle (aus Chloroform + Methanol oder aus Benzol). Zersetzt sich bei etwa 128—129°. Löslich in Chloroform. Liefert beim Kochen mit Piperidin in Alkohol 2-Piperidino-tetralon-(1)-oxim.

Dimolekulares 1.2-Dihydro-naphthalin (Bis-dialin)  $C_{20}H_{20}$ . Ist nach v. Braun, Kirschbaum (B. 54, 599) als I oder II zu formulieren. Das Mol.-Gew. ist kryoskopisch in

Benzol bestimmt (v. B., K., B. 54, 607). — B. Entsteht in einer festen und einer öligen Form (s. u.) beim Behandeln von 1.2-Dihydro-naphthalin in Benzol, Xylol oder Tetralin mit konz. Schwefelsäure (v. Braun, Kirschbaum, B. 54, 607; vgl. du Pont de Nemours & Co., Walker, A. P. 216 8011; C. 1940 I, 1760).

— Bei der Destillation über Bleioxyd im Kohlendioxyd-Strom gibt die feste Form größere Mengen, die ölige geringere Mengen Bis-naphthylen C<sub>20</sub>H<sub>12</sub> (Formel III oder IV?) (gelbes Pulver; F: 165°), das auch beim Erhitzen von Ditetralyl-(2.2') (S. 601)

mit Schwefel auf 205° erhalten wird (v. B., K.). Liefert bei energischer Oxydation mit Permanganat Phthalsäure, gelegentlich ließ sich als Zwischenprodukt Phthalonsäure isolieren (v. B., K.).

- a) Feste Form. B. s. o. Krystalle (aus Alkohol). F: 93°; Kp<sub>12</sub>: 243—245° (v. Braun, Kirschbaum, B. 54, 607). Schwer löslich in Alkohol. Festes Bis-dialin hat vielleicht auch in einem Kohlenwasserstoff  $C_{20}H_{20}$  (gelbe, blau fluorescierende Blättchen; F: 97,5° bis 100°) vorgelegen, den Straus, Lemmel (B. 54, 32, 36) aus 3.4-Dihydro-naphthoesäure durch Erhitzen des Kaliumsalzes mit Kalk im Wasserstoffstrom in geringer Menge erhielten.
- b) Olige Form. Einheitlichkeit fraglich. B. s. o. Kp<sub>12</sub>: 243—245° (v. Braun, Kirschbaum, B. 54, 607).

Polymolekulare 1.2-Dihydro-naphthaline  $(C_{10}H_{10})_x$ . Bei der Einw. von Zinkfeile auf Lösungen von 1.2-Dibrom-1.2.3.4-tetrahydro-naphthalin in Äther, Aceton oder Benzol entstand ein Gemisch von polymolekularen 1.2-Dihydro-naphthalinen, aus dem durch Umlösen aus Chloroform + Alkohol und aus Benzol + Alkohol ein bei ca. 220° schmelzendes leuchtend gelbes Produkt vom Mol.-Gew. ca. 960 abgetrennt werden konnte (v. Braun, Kirschbaum, B. 54, 599, 605).

- 4-Brom-1.2-dihydro-naphthalin (?), 1-Brom- $\triangle^1$ -dihydronaphthalin (?)  $C_{10}H_0Br = C_0H_4$   $CH_2 \cdot CH_2$  (?).
- a) Präparat von Straus, Rohrbacher. B. Entsteht neben anderen Produkten, wenn man 1.2-Dibrom-tetralin erst unter 13 mm Druck auf 130°, dann unter 50 mm Druck auf 175° erhitzt (Straus, Rohrbacher, B. 54, 51). Öl. Kp<sub>17</sub>: 144—146°. Färbt sich beim Aufbewahren dunkel. Entfärbt sodaalkalische Permanganat-Lösung momentan. Verbraucht Brom in Schwefelkohlenstoff erst nach längerer Zeit.
- auf 175° ernitzt (Straus, Rohrbacher, B. 54, 51). Ol. Kp<sub>17</sub>: 144—146°. Farot sich beim Aufbewahren dunkel. Entfärbt sodaalkalische Permanganat-Lösung momentan. Verbraucht Brom in Schwefelkohlenstoff erst nach längerer Zeit.

  b) Präparat von v. Braun, Kirschbaum. B. Neben etwas Naphthalin bei der Einw. von Piperidin auf 1.2-Dibrom-tetralin (v. Braun, Kirschbaum, B. 54, 603). Stark lichtbrechende Flüssigkeit. Kp<sub>15</sub>: 130—140°. Färbt sich allmählich gelb. Gibt bei der Hydrierung in Gegenwart von kolloidem Platin Tetralin. Liefert mit Brom in Schwefelkohlenstoff 1.1.2-Tribrom-tetralin (?).
- 3-Nitro-1.2-dihydro-naphthalin, 2-Nitro- $\Delta^1$ -dihydronaphthalin  $C_{10}H_9O_2N=CH=C\cdot NO_2$ . B. Neben anderen Produkten bei der Einw. von Stickoxyden auf 1.2-Dihydro-naphthalin in Äther (Straus, Ekhard, A. 444, 157). Beim Behandeln von 1.2-Dihydro-naphthalin-pseudonitrosit mit wäßrig-alkoholischer Kalilauge unter Kühlung oder mit Piperidin in siedendem Alkohol (St., E.). Citronengelbe Krystalle von zimtähnlichem Geruch (aus verd. Methanol). F: 52°. Gibt bei der Reduktion mit Zinkstaub und Essigsäure β-Tetralon-oxim und geringe Mengen einer Verbindung vom Schmelzpunkt 206° (Zers.).
- 1.4-Dihydro-naphthalin,  $\Delta^2$ -Dihydronaphthalin,  $\Delta^2$ -Dialin C<sub>10</sub>H<sub>10</sub>, s. nebenstehende Formel (H 518; E I 249). B. Durch Einw. von alkal. Natriumstannit-Lösung auf diazotiertes 5.8-Dihydro-naphthylamin-(1) (Rowe, Levin, Soc. 117, 1577). Beim Behandeln von 1.4-Dilithium-1.4-dihydro-naphthalin (Syst. Nr. 2357) in Äther mit Alkohol (Schlenk, Bergmann, A. 463, 91). Bei langsamer Zugabe von Wasser zu einer mit Natrium versetzten Lösung von Naphthalin in siedendem Ligroin (Kp: 115—120°) (Chem. Fabr. Griesheim-Elektron, D. R. P. 370974; C. 1923 IV, 539; Frdl. 14, 456). Entsteht entgegen Bamberger, Lodter (B. 23, 208) nicht beim Erhitzen von 1.2.3.4-Tetrahydro-naphthol-(2) mit festem Kalium-(B. 23, 208) filest beint Erintzen von 1.2.3.4-letranydro-naphthol-(2) mit lesten Mahmhydroxyd (Straus, Lemmel, B. 54, 34). — Zur Darstellung durch Reduktion von Naphthalin mit Natrium und Alkohol nach Bamberger, Lodter (A. 288 [1895], 75) vgl. Straus, Lemmel, B. 54, 28, 39; Derx, R. 41, 337. — Hat nur schwachen Geruch (St., L., B. 54, 27). F: 25° (D.), 28° (Sch., B.). Kp: 208,5—209° (Sch., B.), 211—212° (Zelinsky, Pawlow, B. 57, 1070). Über Mischkrystalle mit Naphthalin vgl. St., B. 46 [1913], 1051; St., L., B. 54, 26, 33. — Wandelt sich beim Erhitzen mit Natriumätylat in Alkohol (St., L., B. 54, 26), oder mit Natriumätylat in Alkohol (St., L., B. 54, 26), oder mit Natrium und Jecomyellegold (Typerment Ormology, Bl. [41] 27. L.. B. 54, 36) oder mit Natrium und Isoamylalkohol (TIFFENEAU, ORECHOW, Bl. [4] 27, 788) in 1.2-Dihydro-naphthalin um. Liefert beim Leiten über Palladiumasbest bei 130° im Kohlendioxyd Strom Naphthalin und Tetralin (Z., P., B. 57, 1070). Gibt bei der Hydrierung bei Gegenwart von kolloidem Palladium unter Druck in verd. Alkohol Tetralin (St., L., B. 54, 40). Bei der Einw. von Ozon auf die Lösung in Tetrachlorkohlenstoff unter Kühlung entsteht ein amorphes Ozonid, das sich erst bei längerem Kochen mit Wasser zersetzt (Coffey, R. 42, 414). Geschwindigkeit der Oxydation mit Benzopersäure in Chloroform: Böeseken, Derx, R. 40, 524; D., R. 41, 332. Liefert mit Stickstoffdioxyd in Benzol + Petroläther Naphthalin,  $\beta$ -Naphthalindiazoniumnitrat und ein bei 128—130° unter Zersetzung schmelzendes Produkt (Wieland, Blömich, A. 424, 89; vgl. St., Ekhard, A. 444, 146). Zur Bildung von krystallisierten Quecksilberderivaten bei der Einw. von Quecksilber(II) acetat (H 519) vgl. St., L., B. 54, 37 Anm. 3. Liefert mit Bromtrinitromethan in siedendem Methanol 3-Brom-2-methoxy-1.2.3.4-tetrahydro-naphthalin (E. Schmidt, Bartholomé, LÜBKE, B. 55, 2107). Einw. von Äthylhypochlorit in Tetrachlorkohlenstoff unterhalb —10°: GOLDSCHMIDT, ENDRES, DIRSCH, B. 58, 572, 575. Liefert mit Diäthylmalonylchlorid und Aluminiumchlorid in siedendem Schwefelkohlenstoff 5.6(oder 6.7)-Diäthylmalonyl-1.4-dihydro-naphthalin (Fleischer, Siefert, A. 422, 302).
- 10. 1-Methyl-inden C<sub>10</sub>H<sub>10</sub>, s. nebenstehende Formel (H 520; CH<sub>2</sub> E I 249). B. Beim Kochen von 3-Methyl-inden-carbonsäure-(1)-methyl-ester bzw. -äthylester mit methylalkoholischer bzw. äthylalkoholischer Kalilauge (Wislioenus, Mauthe, A. 436, 33). Aus Inden-(1)-yl-(3)-glyoxylsäure-äthylester beim Erhitzen mit Methyljodid in Alkohol bei Gegenwart von Kaliumäthylat und Kochen des entstandenen zähen braunen Ols mit verd. Schwefelsäure (W., Hentrich, A. 436, 19). Kp: 198,5° (W., H.); Kp<sub>30</sub>: 95° (W., M.). D\* 0,9640 (W., H.). Der Dampf bleibt beim Überleiten im Kohlendioxyd-Strom über auf Rotglut erhitzte Bimssteinstückchen unverändert (Mayer, Sieglitz, Ludwig, B. 54, 1401).

418

11. **4** (oder 7) - Methyl-inden  $C_{10}H_{10}$ , s. nebenstehende Formeln (vgl. H 521). V. Im Steinkohlen-Urteer (Weissgerber, Brennstoffch. 5, 212; C. 1925 I, 2271). CH oder -CH<sub>2</sub>\ - B. Neben anderen Produkten beim Durchleiten von 4-Methyl-hydrinden durch ein stark verzinntes Eisenrohr bei ca. 650° (KRUBER, B. 57, 1012). — Wurde nicht rein erhalten. Liefert bei der Kondensation mit Benzaldehyd 4(oder 7)-Methyl-3-benzyliden-inden.

#### 4. Kohlenwasserstoffe $C_{11}H_{12}$ .

- 1.  $\alpha.\gamma$ -Pentadienyl-benzol, 1-Phenyl-pentadien-(1.3), "Methylphenylbutadien"  $C_{11}H_{12}=C_6H_5$  CH:CH:CH:CH:CH:CH; E I 250). B. Aus Athyl-styrylcarbinol beim Erhitzen mit 4-Nitro-benzoylchlorid in Ather im Rohr (MEISENHEIMER, SCHMIDT, A. 475, 179). Beim Erhitzen von 4-Nitgo-benzoesäure-[a-äthyl-cinnamylester] im Vakuum auf 210° (M., Sch., A. 475, 180). Zur Darstellung aus Zimtaldehyd und Athylmagnesiumbromid in Ather vgl. M., A. 442, 208; Prévost, A. ch. [10] 10, 372. — Kp<sub>12</sub>: 118° (M., Sch., A. 475, 179). — Addiert 4 Atome Brom unter Bildung von stereoisomeren 1.2.3.4-Tetrabrom-1-phenyl-pentanen (näher beschrieben ist das 1.2.3.4-Tetrabrom-1-phenyl-pentanen von Schmelznught 1560 S. 231) die heim Fintenen in auf 4000 mbelten alles 121-14 pentan vom Schmelzpunkt 156°, S. 331), die beim Eintragen in auf 100° gehaltene alkoholische Kalilauge Methylphenyldiacetylen ergeben (P., C. r. 180, 1852; A. ch. [10] 10, 372).
- 1.2.3.4 Tetrabrom 1 phenyl pentadien (1.3)  $C_{11}H_8Br_4 = C_6H_5 \cdot CBr \cdot CBr \cdot CBr$ :
- CBr·CH<sub>3</sub>.

  a) Niedrigerschmelzende Form. B. Entsteht neben geringen Mengen der höherschmelzenden Form beim Behandeln von Methylphenyldiacetylen mit Brom in Tetrachlorkohlenstoff (Prévost, C. r. 180, 1853; A. ch. [10] 10, 372). Krystalle (aus Benzol). F: 98°. In Eisessig leichter löslich als die höherschmelzende Form.

  L. Häherschmelzende Form. B. s. o. Krystalle (aus Eisessig). F: 127—131°

(Prevost, C. r. 180, 1853; A. ch. [10] 10, 372).

- 2. 3-Methyl-1-phenyl-butin, Isopropyl-phenyl-acetylen  $C_{11}H_{12} = C_6H_5$  $C: C \cdot CH(CH_{\bullet})_{\bullet}$
- 3-Chlor-3-methyl-1-phenyl-butin, [ $\alpha$ -Chlor-isopropyl]-phenyl-acetylen  $C_{11}H_{11}Cl = C_6H_5 \cdot C : C \cdot CCl(CH_3)_2$ . B. Eine Verbindung, der wahrscheinlich diese Konstitution zukommt, entsteht beim Behandeln von Dimethyl-phenylacetylenyl-carbinol mit Phosphortrichlorid in Ather (Willemart, A. ch. [10] 12, 374). — Wurde nicht rein erhalten. Kp<sub>1,2</sub>: 76° bis 79°. — Gibt bei der Destillation keinen Chlorwasserstoff ab.
- 3. 1.4-Dimethyl-2-propargyl-benzol, 2-Propargyl-p-xylol, 3-[2.5-Dimethyl-phenyl]-propin-(1), 2.5-Dimethyl-benzylacetylen  $C_{11}H_{12}$ , s. nebenstehende Formel. B. Aus nicht näher beschrie-CH<sub>3</sub> CH2.C:CH benem 2-[γ-Chlor-allyl]-p-xylol und Natriumamid in Xylol bei 110—120° (Bert, Dorier, Lamy,  $\hat{C}$ . r. 181, 555). —  $Kp_{15}$ : 98°.  $D_4^{\circ}$ : 0,951;  $D_4^{\circ}$ : 0,939. CHa ni: 1,531.
- 4. 1.5 Dimethyl 2-propargyl benzol. 4-Propargylm-xylol, 3-[2.4-Dimethyl-phenyl]-propin-(1), 2.4-Dimethyl-benzylacetylen C<sub>11</sub>H<sub>14</sub>, s. nebenstehende Formel. B. Aus
  nicht näher beschriebenem 4-[γ-Chlor-allyl]-m-xylol und Natriumamid
  in Xylol bei 110—120° (Bert, Dorier, Lamy, C. r. 181, 555). Kp<sub>15</sub>: 95°. D°: 0,952; D°: 0,941. nh: 1,534.
- 5.  $\Delta^1$  Cyclopentenyl benzol, 1 Phenyl cyclopenten (1)  $C_{11}H_{12} =$ C<sub>6</sub>H<sub>5</sub>·C<sub>C</sub>H<sub>2</sub>·CH<sub>2</sub> (E I 250). Liefert bei der Oxydation mit Kaliumpermanganat in Gegen-CH·CH<sub>2</sub> (E I 250). Liefert bei der Oxydation mit Kaliumpermanganat in Gegenwart von Magnesiumsulfat bei -40° bis -50° cis-1-Phenyl-cyclopentandiol-(1.2) (MAAN, R. 48, 333, 335; vgl. Böeseken, R. 47, 686), mit Benzopersäure in Chloroform 1.2-Oxido-1-phenyl-cyclopentan (M., R. 48, 334; vgl. B., R. 47, 690).
- 6.  $\triangle^2$  Cyclopentenyl benzol, 1 Phenyl cyclopenten (2)  $C_{11}H_{12} = C_6H_5 \cdot HC \stackrel{CH_2 \cdot CH_2}{\leftarrow} C_H$ . Diese Konstitution kommt vielleicht dem H 522 beschrieb Diese Konstitution kommt vielleicht dem H 522 beschriebenen Phenylcyclopenten von Borsche, Menz (B. 41 [1908], 206) zu (v. Braun, Kühn, B. 60, 2555). — B. Aus 3-Chlor-cyclopenten-(1) und Phenylmagnesiumbromid in Ather (v. B., K., B. 60, 2555). — Kp<sub>13</sub>: 92—93°. D<sub>1</sub>\*: 0,9668. n<sub>1</sub>\*: 1,5396. — Addiert in Chloroform bei 0° 2 Atome Brom. Liefert beim Erwärmen mit Bromwasserstoff in Eisessig auf 100° 2-Brom-1-phenyl-cyclopentan (v. B., K., B. 60, 2560).

- 7. 1-Methyl-3.4-dihydro-naphthalin C<sub>11</sub>H<sub>12</sub>, s. nebenstehende Formel. B. Aus 1-Oxy-1-methyl-tetralin beim Erwärmen mit technischer Ameisensäure auf dem Wasserbad (SCHROETER, B. 58, 720) oder, neben anderen Produkten, bei der Behandlung mit 95 %iger Ameisensäure in der Kälte oder mit Phosphorpentoxyd, Kaliumdisulfat oder Grignard-Reagens (v. Auwers, B. 58, 154). Durch Kochen von 3.4-Dihydro-naphthyl-(1)-essigsäure mit verd. Schwefelsäure (SCH.). Kp<sub>14</sub>: 107° (SCH.). D<sub>1</sub>°: 0,9901 (SCH.). Molekularrefraktion und Dispersion bei 20°: SCH. Geht beim Sieden unter gewöhnlichem Druck langsam in 1-Methyl-naphthalin über (v. Au., B. 58, 151). Liefert bei der Ozonspaltung in Chloroform 2-Acetyl-hydrozimtaldehyd und andere Produkte (SCH., B. 58, 721). Gibt bei der Oxydation mit Permanganat in wäßr. Aceton unter Kühlung 2-Acetyl-hydrozimtsäure und cis-1.2-Dioxy-1-methyl-1.2.3.4-tetrahydro-naphthalin (v. Au., B. 58, 155).
- 8. 1-Methylen-1.2.3.4-tetrahydro-naphthalin, 1-Methylen-tetralin C<sub>11</sub>H<sub>12</sub>, s. nebenstehende Formel. B. Neben anderen Produkten beim Behandeln von 1-Oxy-1-methyl-1.2.3.4-tetrahydro-naphthalin mit 95%iger Ameisensäure, Kaliumdisulfat oder überschüssigem Grignard-Reagens (v. Auwers, B. 58, 154). Durch Kochen von Tetralyliden-(1)-essigsäure mit verd. Schwefelsäure (Schroeter, B. 58, 720). Leicht bewegliches Öl. Kp<sub>14</sub>: 103° (Sch.). D<sup>∞</sup><sub>1</sub>: 0,9836 (Sch.). Molekularrefraktion und Dispersion bei 20°: Sch. Bei der Oxydation mit Permanganat in wäßr. Aceton unter Kühlung (v. Au., B. 58, 155) und bei der Ozonspaltung (Sch.) entsteht α-Tetralon.
- 9. 1-Athyl-inden C<sub>11</sub>H<sub>12</sub>, s. nebenstehende Formel (EI 250). B. Beim Behandeln von Inden-carbonsäure-(1) mit Äthylbromid in Gegenwart von Kaliumäthylat in Alkohol + Äther (Wislicenus, Hentrich, A. 436, 30). Beim Kochen von 3-Äthyl-inden-carbonsäure-(1)-äthylester mit alkoh. Kalilauge (W., Mauthe, A. 436, 34). Durch Erhitzen von Inden-(1)-yl-(3)-glyoxylsäure-äthylester mit Athyljodid und Kaliumäthylat-Lösung und nachfolgendes Kochen mit verd. Schwefelsäure (W., H., A. 436, 20). Kp: 215—216° (unter geringer Zersetzung); Kp<sub>18</sub>: 116° (W., H.). Färbt sich an der Luft langsam braun (W., H.). Löst sich in konz. Schwefelsäure mit violettstichig-braunroter Farbe (W., H.).

# 5. Kohlenwasserstoffe $C_{12}H_{14}$ .

- 1. 1.4-Dipropenyl-benzol C<sub>12</sub>H<sub>14</sub>, s. nebenstehende CH<sub>3</sub>·CH:CH·CH<sub>3</sub> Formel. B. Beim Erhitzen von Äthyl-[4-propenyl-phenyl]-carbinol mit Phosphorpentoxyd in Benzol (QUELET, Bl. [4] 45, 272). Anisartig riechende Blättchen (aus Alkohol). F: 63—64°. Kp<sub>12</sub>: 123—125°. Gibt bei der Oxydation mit 5%iger Permanganat-Lösung in verd. Alkohol Terephthalsäure.
- 2. **1-Propenyl 4-allyl-benzol**  $C_{12}H_{14}$ , s. nebence  $C_{H_3} \cdot C_{H_1} \cdot C_{H_2} \cdot C_{H$
- 3. 1.4 Diallyl benzol C<sub>12</sub>H<sub>14</sub>, s. nebenstehende CH<sub>2</sub>: CH·CH<sub>2</sub>. CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·
- 4. **4-Isopropyl-1-propargyl-benzol**, **3-[4-Iso-**  $_{\rm HC:C\cdot CH_2\cdot}$  CH(CH<sub>3</sub>)<sub>2</sub> **propyl-phenyl]-propin-(1)** C<sub>12</sub>H<sub>14</sub>, s. nebenstehende Formel. B. Aus 4-Isopropyl-1-[ $\gamma$ -chlor-allyl]-benzol und Natriumamid in Xylol bei 110° bis 120° (Bert, Dorier, Lamy, C. r. 181, 555). Kp<sub>15</sub>: 101°. D<sup>o</sup>;: 0,933; D<sup>o</sup>;: 0,924. n<sup>o</sup>;: 1,523.
- 5. Δ¹-Cyclohexenyl-benzol, 1-Phenyl-cyclohexen-(1), 2.3.4.5 Tetrahydro diphenyl C<sub>12</sub>H<sub>14</sub>, s. nebenstehende Formel (H 523; E I 251). B. Beim Erwärmen von 1-Phenyl-cyclohexanol-(1) mit 50% iger Schwefelsäure auf dem Wasserbad (Nametkin, Iwanowa, B. 56, 1805; Ж. 55, 65; C. 1925 I, 222). Bei der Destillation von (unreinem) 1-Phenyl-cyclohexanol-(2) über KHSO<sub>4</sub> (Bedos, C. r. 177, 112; vgl. Cook, Lawrence, Hewitt, Soc. 1936, 71; Price, Karabinos, Am. Soc. 62 [1940], 1159). Kp<sub>760</sub>: 251—253° (Verkade, Mitarb., A. 467, 232); Kp<sub>17</sub>: 125—126° (Be.); Kp<sub>16</sub>: 128° (N., I.). D¹: 0,982 (Be.); D²: 0,9939 (N., I.). n¹: 1,5505 (Be.); n²: 1,5695 (N., I.). Bei der Oxydation mit Permanganat entstehen je nach den Bedingungen wechselnde Mengen δ-Benzoyl-n-valeriansäure (N., I., B. 56, 1806; Ж. 55, 67; C. 1925 I, 222) und cis-1-Phenyl-cyclohexandiol-(1.2) (N., I., B. 56, 1806;

Ж. 55, 67; 57, 75; C. 1925 I, 222; 1926 I, 2686; BÖESEKEN, R. 47, 688; B. 56, 2410; VERKADE, Mitarb., A. 467, 232). Die Oxydation mit Benzopersäure in Äther ergibt 1.2-Oxido-1-phenylcyclohexan (Syst. Nr. 2367) (N., I., B. 56, 1805; Ж. 55, 66, 67; C. 1925 I, 222; BÖE., R. 47, 691). Über die Einw. von Benzol und Aluminiumchlorid vgl. BODROUX, A. ch. [10] 11, 577.

- 6. 1-Phenyl-cyclohexen-(x)  $C_{12}H_{14}=C_6H_9\cdot C_6H_5$  (H 523; E I 251). Zur Bildung nach Bamberger, Lodter (B. 20 [1887], 3076) vgl. Fleischer, Siefert, A. 422, 310.  $Kp_{14}$ : 124—126°.  $D_4^a$ : 0,9806.  $n_{\rm D}$ : 1,5598.
- 7. **1-Athyl-x-dihydro-naphthalin**  $C_{12}H_{14}=C_{10}H_{9}\cdot C_{2}H_{5}$ . B. Bei der Reduktion von Methyl-x-naphthyl-carbinol mit Natrium in Alkohol (DE POMMEREAU, C. r. 175, 106).  $Kp_{760}$ : 240°.
- 8. 1.6-Dimethyl-5.8-dihydro-naphthalin C<sub>12</sub>H<sub>14</sub>, s. nebenstehende Formel. B. Aus 1.6-Dimethyl-naphthalin durch Reduktion mit Natrium in siedendem Isoamylalkohol (MAYER, SCHULTE, B. 55, 2165). Kp<sub>10</sub>: 118°. D<sup>18</sup>: 0,9700. Liefert bei der Hydrierung in Gegenwart von Palladium(II)-chlorid in verd. Alkohol unter Druck 1.6-Dimethyl-5.6.7.8-tetrahydrò-naphthalin. Gibt mit Brom in Chloroform ein öliges Dibromid, das bei der Vakuumdestillation in 1.6-Dimethyl-naphthalin übergeht.
- 9. 2.6 Dimethyl 1.4 dihydro naphthalin C<sub>12</sub>H<sub>14</sub>, s. nebenstehende Formel. B. Aus 2.6-Dimethyl-naphthalin und Natrium in siedendem Isoamylalkohol (MAYER, ALKEN, B. 55, 2280). Kp<sub>15</sub>: 125—126°. Mit Wasserdampf flüchtig. Liefert mit Brom in Chloroform ein öliges Dibromid, das bei der Destillation in 2.6-Dimethyl-naphthalin übergeht.
- 10. 1-Isopropyliden-hydrinden, ω.ω-Dimethyl-1.2-dihydro-benzofulven C<sub>12</sub>H<sub>14</sub>, Formel I (E I 252). Liefert bei der Oxydation mit Ozon in Chloroform α-Hydrindon (Courtot, A. ch. [9] 5 [1916], 70).
- 11, 1.8-Äthylen-1.2.3.4-tetrahydro-naph-thalin, 3.4.5.11-Tetrahydro-acenaphthen, I. CH<sub>2</sub> CH<sub>2</sub> III. CH<sub>2</sub> C

drierung von Acenaphthen in Gegenwart von Niekelsalzen unter Druck bei 210° (v. Braun. Kirschbaum, B. 55, 1682). Zur Bildung aus Acenaphthen und Natrium in siedender amylalkoholischer Lösung nach Bamberger, Lodter (B. 20 [1887], 3067) vgl. Fleischer, Siefer, A. 422, 303. Bei der Druckhydrierung von Acenaphthenon oder Acenaphthenchinon in Gegenwart von Niekel in Dekalin bei ca. 230°, neben anderen Produkten (v. Br. Bayer, B. 59, 922). — Fast geruchlos (v. Br., K.). Kp: 252° (v. Br., K., Schuhmann, B. 53, 1162); Kp<sub>24</sub>: 138—139° (F., S.); Kp<sub>12</sub>: 115° (v. Br., K.). D<sup>21</sup>: 1,0290; n<sub>D</sub>: 1,5777 (F., S.). — Im geschlossenen Gefäß haltbar; färbt sich an der Luft gelblich (v. Br., K.). Entfärbt Permanganat-Lösung, wird von Chromschwefelsäure lebhaft angegriffen, ebenso von Salpetersäure (v. Br., K.). Liefert beim Erhitzen mit Schwefel auf 180° Acenaphthen (v. Br., Hahn, Seemann, B. 55, 1694). Beim Behandeln mit konz. Schwefelsäure, am besten in der Kälte, erhält man hauptsächlich 3.4.5.11-Tetrahydro-acenaphthen-sulfonsäure-(8) (v. Br., K., B. 55, 1684). Läßt sich mit Acetylchlorid in Gegenwart von Aluminiumehlorid in Schwefelkohlenstoff in 5-Acetyl-6.7.8.9-tetrahydro-acenaphthen überführen (v. Br., K., B. 55, 1683). Gibt mit Oxalylchlorid in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff 6.7.8.9-Tetrahydro-acenaphthen-carbonsäure-(3) und 6.7.8.9-Tetrahydro-acenaphthen-carbonsäure-(5) (v. Br., K., Sch.). Bei der Einw. von Dimethylmalonylchlorid und Aluminiumchlorid in Schwefelkohlenstoff auf dem Wasserbad entsteht 4.5-Dimethylmalonyl-6.7.8.9-tetrahydro-ace-

malonyl-6.7.8.9-tetrahydro-acenaphthen

H<sub>2</sub>C — CH<sub>2</sub>

H<sub>2</sub>C — CH<sub>2</sub>

H<sub>2</sub>C — CH<sub>2</sub>

H<sub>2</sub>C — CH<sub>2</sub>

III. H<sub>2</sub>C — CO

C(C<sub>2</sub>H<sub>5</sub>)

CO

C(C<sub>2</sub>H<sub>5</sub>)

CO

C(C<sub>2</sub>H<sub>5</sub>)

neben geringen Mengen 5.6-Diäthylmalonyl-acenaphthen (Formel IV) gebildet (F., S., A. 422, 307; B. 53, 1261).

#### 12. x-Tetrahydro-acenaphthen C<sub>12</sub>H<sub>14</sub>.

Dibromacenaphthentetrabromid  $C_{13}H_8Br_6$  (H 523). B. Aus Acenaphthen und Brom in Chloroform (Mayer, Kaufmann, B. 53, 292). — Krystalle (aus Chloroform + Ligroin). F: 179—180°. — Liefert mit siedender konzentrierter alkoholischer Kalilauge ein Tetrabromacenaphthen vom Schmelzpunkt 180—181°.

#### 421

#### 6. Kohlenwasserstoffe $C_{13}H_{16}$ .

- 1. [Heptadien-(1.3)-yl-(2)]-benzol, 2-Phenyl-heptadien-(1.3), 1-Phenyl-1-methylen-hexen-(2)  $C_{13}H_{16}=C_6H_5\cdot C(:CH_2)\cdot CH:CH\cdot CH_2\cdot C_2H_5$ . B. In geringer Menge beim Erhitzen von 2-Phenyl-hepten-(3)-ol-(2) mit Metaphosphorsäure auf 145—150° (GRIGNARD, DUBIEN, A. ch. [10] 2, 310). Kp: 246—248°.  $D_4^{\text{is}}: 0.9384.$   $n_5^{\text{is}}: 1,5422.$
- 2.  $[\varepsilon$ -Methyl- $\alpha$ . $\gamma$ -hexadienyl]-benzol, 5-Methyl-1-phenyl-hexadien-(1.3)  $C_{13}H_{16}=C_6H_5\cdot CH\cdot CH\cdot CH\cdot CH\cdot CH\cdot CH_3)_2$  (H 524). B. Entsteht in sehr geringer Menge neben anderen Produkten beim Erwärmen von Zimtaldehyd mit Isobutylmagnesiumbromid in Äther (Hess, Wustrow, A. 437, 270).
- 3. 1-Methyl-4-isopropyl-2-propargyl-benzol, 2-Propargyl-p-cymol, 3-[2-Methyl-5-isopropyl]-propin-(1) C<sub>13</sub>H<sub>16</sub>, s. nebenstehende Formel. B. Aus 1-Methyl-4-isopropyl-2-[\gamma-chlored]-chlor-allyl]-benzol und Natriumamid in Xylol bei 110—120° (Bert, Dorier, Lamy, C. r. 181, 555). Kp<sub>15</sub>: 115°. D<sup>0</sup><sub>2</sub>: 0,929; D<sup>0</sup><sub>4</sub>: 0,919. n<sup>0</sup><sub>15</sub>: 1,525.
- 4. Benzylidencyclohexan <sup>1</sup>)  $C_{13}H_{16} = C_6H_5 \cdot CH : C < \frac{CH_2 \cdot CH_2}{CH_2 \cdot CH_2} > CH_2$  (vgl. H 524; E I 253). Einen als Benzylidencyclohexan angesehenen Kohlenwasserstoff erhielten Reich, van Wijck, Waelle (Helv. 4, 246) bei kurzem Erwärmen von Cyclohexylphenylcarbinol mit Schwefelsäure (D: 1,5). Anisartig riechende Flüssigkeit. Kp<sub>11</sub>: 122—123°. D<sup>17</sup>: 0,964.  $n_D$ : 1,5395. Nimmt in Schwefelkohlenstoff-Lösung 2 Atome Brom auf.
- 5. 1-Benzyl-cyclohexen-(1) C<sub>13</sub>H<sub>16</sub> = C<sub>6</sub>H<sub>5</sub>·CH<sub>2</sub>·CCCH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>>CH<sub>2</sub> (E I 253; vgl. H 524, Nr. 5) ¹). B. Bei der Destillation von 1-Benzyl-cyclohexanol-(1) in Gegenwart von mit Schwefelsäure getränktem Bimsstein unter 35—40 mm Druck (TIFFENEAU, PORCHER, Bl. [4] 31, 328). D°: 0,9802 (T., P.). Liefert mit Brom in Ather 1.2-Dibrom-1-benzyl-cyclohexan (T., P.; Schöff, Boetticher, A. 448, 4, 16). Gibt mit gelbem Quecksilber(II)oxyd und Jod in feuchtem Ather 2-Jod-1-benzyl-cyclohexanol-(1) (T., P.).
- E I 253, Z. 16—17 v. o. Die Worte "oder mit wasserfreier Oxalsäure im CO<sub>2</sub>-Strom unter 50 mm Druck" sind nach Z. 18 v. o. hinter "160°" zu verschieben.
- 6. 1-Methyl-4-phenyl-cyclohexen-(3), 4-Methyl-2.3.4.5-tetrahydro-diphenyl  $C_{13}H_{16}=C_6H_5\cdot C \stackrel{CH_2}{\subset} CH_2 \stackrel{CH_2}{\subset} CH_3$  (H 525; E I 253). Gibt bei der Einw. von Benzopersäure 3.4-Oxido-1-methyl-4-phenyl-cyclohexan (Lévy, Sfiras, C.r. 187, 46; Bl. [4] 49 [1931], 1834).
- 7. 1.4-Dimethyl-2-[A²-cyclopentenyl]-benzol, 1-[2.5-Di-methyl phenyl] cyclopenten (2) C<sub>13</sub>H<sub>16</sub>, s. nebenstehende Formel. B. Beim Behandeln von [2.5-Dimethyl-phenyl]-magnesium-bromid in Ather mit Δ²-Cyclopentenylchlorid (v. Braun, Kühn, B. 60, 2566). Kp<sub>14</sub>: 125—127°. D<sup>25</sup>: 0,9613. n<sup>25</sup>: 1,5380. Liefert CH3 beim Erwärmen mit Bromwasserstoff in Eisessig auf 100° 2(?)-Brom-1-[2.5-dimethyl-phenyl]-cyclopentan.
- 8. 2-Isopropyl-1.4-dihydro-naphthalin (?) C<sub>13</sub>H<sub>16</sub>, s. nebenstehende Formel. B. Bei der Reduktion von 2-Isopropenyl-naphthalin mit Natrium und absol. Alkohol bei 110° (RUZICKA, CAPATO, A. 453, 68, 80). Reinheit fraglich. Kp<sub>12</sub>: 125°. Liefert beim Erhitzen mit Schwefel auf 180—250° 2-Isopropyl-naphthalin.

¹) Die Konstitution des oben beschriebenen Präparats ist unsicher. Als reines Benzylidencyclohexan angesehene Präparate wurden nach dem Literatur-Schlußtermin des Ergänzungswerks II [1. I. 1930] von Kurssanow (B. 64 [1931], 2298) und Prévost, Donzelot, Balla (C. r. 198 [1934], 1042) dargestellt; vgl. dazu v. Auwers, B. 68 [1935], 2175; Tiffenbau, Mitarb., C. r. 201 [1935], 279. — Die Frage nach der Konstitution der als Benzylidencyclohexan und 1-Benzyl-cyclohexen-(1) angesehenen Kohlenwasserstoffe ist auch durch die neuere Literatur nicht sicher zu entscheiden, weil die mitgeteilten Konstanten keinen genauen Vergleich der nach verschiedenen Methoden hergestellten Präparate zulassen. Es ist ferner zu beachten, daß Cook, Hewett (Soc. 1936, 62) bei der Wasserabspaltung aus 1-Benzyl-cyclohexanol-(1), 1-Benzyl-cyclohexanol-(2) und Cyclohexylphenyl-carbinol mit Hilfe von Phosphorpentoxyd einen völlig abweichenden Reaktionsverlauf featstellten.

- 422
- 9. 1.4.6-Trimethyl-1.2-dihydro-naphthalin C<sub>13</sub>H<sub>16</sub>, s. nebenstehende Formel. B. Durch Umsetzung von 4-0xo-1.6-dimethyl-1.2.3.4-tetrahydro-naphthalin mit Methylmagnesiumjodid in CH<sub>3</sub>. Äther, zuletzt auf dem Wasserbad (Rupe, Schütz, Helv. 9, 993, 998).

  — Flüssigkeit von acetonartigem Geruch. Kp<sub>12</sub>: 122—123°. — Wird von Permanganat-Lösung heftig angegriffen. Liefert bei der Ozonspaltung 4.β-Dimethyl-2-acetyl-hydrozimtsäure und

wenig 1.3.6-Trimethyl-inden-aldehyd-(2).

- 10. 1.7 Tetramethylen hydrinden, Homotetraphthen C13H16, Formel I. B. Durch Reduktion von 6-Homotetraphthenketon (Formel II) mit amalgamiertem Zink und konz. Salz-säure (v. Braun, Rath, B. 60, 1185).— Leicht bewegliches Öl von schwachem Geruch.  $Kp_{12}$ : 127—128°.  $D_4^{15}$ : 1,0295;  $D_4^{17,1}$ : 1,0364.  $n_D^{10}$ : 1,5750;  $n_{\alpha}^{17,1}$ : 1,5736;  $n_{He}^{17,1}$ : 1,5793;  $n_{\beta}^{\iota 7,\iota} \colon \ 1,5935 \ ; \ n_{\Upsilon}^{\iota 7,\iota} \colon \ 1,6065.$
- 11. 1.8 Trimethylen 1.2.3.4 tetrahydro naphthalin, 4.5.6.12 - Tetrahydro - perinaphthindan C<sub>13</sub>H<sub>16</sub>, s. nebenstehende Formel. B. Durch Reduktion von 1.8-Trimethylen-tetralon-(4) mit amalgamiertem Zink und konz. Salzsäure (v. Braun, Reutter, B. 59, 1926). — Ziemlich leicht bewegliche Flüssigkeit von schwachem Geruch. Kp<sub>14</sub>: 132—135°. D<sup>3</sup><sub>2</sub>: 1,027; n<sup>3</sup><sub>2</sub>: 1,5636. Ist mit Wasserdampf flüchtig.
  - Kohlenwasserstoff  $C_{13}H_{16}$  aus Alantolacton (H 525). H 525, Z. 18 v. u. statt "132° lies "152°.
- 13. Kohlenwasserstoff C<sub>13</sub>H<sub>16</sub> aus Lignin. Das Mol.-Gew. ist kryoskopisch in Cyclohexan bestimmt (Picter, Gaulis, Helv. 6, 634). B. Bei der Destillation von Lignin aus Fichtenholz unter 5—25 mm Druck bei 350—390° (P., G.). Reinheit fraglich. Kp: 250° bis 260°. D: 0,9372;  $n_D$ : 1,5422. — Bildet ein bei 193° schmelzendes Tetra brom id  $C_{13}H_{12}Br_4$ .

# 7. Kohlenwasserstoffe $\mathrm{C_{14}H_{18}}$ .

- 1. 6-Methyl-2-phenyl-heptadien (1.5)  $C_{14}H_{18} = C_6H_5 \cdot C(:CH_2) \cdot CH_2 \cdot CH_2 \cdot CH_3 \cdot C(:CH_3)_2$ . B. Beim Erhitzen von 2-Methyl-6-phenyl-hepten-(2)-ol-(6) mit Acetanhydrid auf  $160^{\circ}$ , mit Metaphosphorsäure auf  $165^{\circ}$  (Escourrou, Bl. [4] 39, 1253) oder mit wasserfreier Oxalsaure auf 140° (E., Bl. [4] 39, 1470). — Schwach riechende Flüssigkeit. 3 Prāparate zeigten  $Kp_{22}$ : 140—142°;  $D^{10}$ : 0,9205;  $n_0^{10}$ : 1,5362;  $n_0^{10}$ : 1,5345;  $Kp_{745}$ : 245—247°;  $Kp_{10}$ : 126° bis 128°;  $D^{10}$ : 0,9296;  $n_0^{10}$ : 1,5435;  $Kp_{22}$ : 139—140°;  $D^{10}$ : 0,9280;  $n_0^{10}$ : 1,5417;  $n_0^{10}$ : 1,5395. — Gibt bei der Einw. von Natrium ein gelatinöses Polymeres (E., Bl. [4] 39, 1253).
- 2.  $\alpha$ -Cyclohexyl- $\beta$ -phenyl- $\ddot{a}$ thylen,  $\beta$ -Cyclo-hexylbenzylcarbinol mit Schwefelsäure (D: 1,5) (Reich, van Wijck, Waelle, Helv. 4, 246).

  — Flüssigkeit von angenehmem Geruch. Kp<sub>14</sub>: 145—147°. D<sup>17</sup>: 0,9595. n<sub>D</sub>: 1,5370. — Gibt bei der Öxydation mit Permanganat Benzoesäure und Hexahydrobenzoesäure. Nimmt in Schwefelkohlenstoff-Lösung 2 Atome Brom auf.
- 3. 1-Methyl-4-benzyl-cyclohexen-(3) C<sub>14</sub>H<sub>18</sub>, s. nebenstehende Formel (vgl. H 526)<sup>1</sup>). B. Bei der Destil-CH<sub>2</sub>·CC<sub>CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub>3</sub>·CH<sub></sub></sub> lation von 1-Methyl-4-benzyl-cyclohexanol-(4) in Gegenwart von etwas mit Schwefelsäure getränktem Bimsstein unter 35-40 mm Druck (TIFFENEAU, PORCHER, Bl. [4] 31, 332). — Kp<sub>35</sub>: 160—165°. — Liefert mit gelbem Quecksilber(II)-oxyd und Jod in feuchtem Äther 3-Jod-1-methyl-4-benzyl-cyclohexanol-(4).
- 4. 1 Methyl 7 isopropyl 3.4 dihydro naph-thalin C<sub>14</sub>H<sub>18</sub>, s. nebenstehende Formel. B. Beim Kochen von 7-Isopropyl-tetralon-(1) mit Methylmagnesiumjodid in Äther (RUZICKA, STOLL, Helv. 5, 935). Ol. Kp<sub>12</sub>: 137°. Liefert beim Erhitzen mit Schwefel auf 180—230° Eudalin. C(CH<sub>3</sub>)
- 5. 1.2.3.4.5.6.7.8-Oktahydro-anthracen, Okthracen C<sub>14</sub>H<sub>18</sub>, s. nebenstehende Formel. Diese Konstitution H<sub>2</sub>C CH<sub>2</sub> kommt dem H 526 beschriebenen Oktahydroanthracen H<sub>2</sub>C CH<sub>2</sub> von Godchot zu (Schroeter, B. 57, 2007). Zur Bezeichnung

<sup>1)</sup> Vgl. a. S. 421, Anm. 1.

Okthracen vgl. Sch., B. 57, 1996. — B. Neben anderen Produkten bei der Einw. von Aluminiumchlorid auf Tetralin bei 50—70° (Schroeter, B. 57, 1998; Tetralin-Ges., D.R.P. 333158; C. 1921 II, 739; Frdl. 13, 380; Boedtker, Rambech, Bl. [4] 35, 631) und auf 1.2.3.4.5.6.7.8-Oktahydro-phenanthren bei 80° (Sch., B. 57, 2003). Bei der Hydrierung von Anthracen in Gegenwart von Nickelkatalysator in Tetralin unter Druck bei 180—200° (Sch., B. 57, 2014; Sch., Tetralin-Ges., D. 3. P. 352721; C. 1922 IV, 159; Frdl. 14, 831), von 1.2.3.4.5.6.7.8-Oktahydro-anthranol (v. Braur, Bayer, B. 58, 2679), von 2-Oxy-1.2.3.4-tetrahydro-anthracen (v. Br., B., A. 472, 110), von 1.2.3.4-Tetrahydro-anthranol und Anthrachinon (v. Br., B., B. 58, 2679), von 2-Anthrol (v. B., B., A. 472, 104) und von 1-Amino-anthracen und 2-Amino-anthracen (v. Br., B., A. 472, 114, 121) in Gegenwart von Nickel in Dekalin unter Druck in der Hitze. Bei der Hydrierung von Anthracen-carbonsäure-(9) bei Gegenwart von Palladium-Bariumsulfat in siedendem Isopropylalkohol (Meerwein, Migge, B. 62, 1049). Durch Reduktion von 1-Oxo-1.2.3.4.5.6.7.8-oktahydro-anthracen mit amalgamiertem Zink und konz. Salzsäure (Schroeter, B. 57, 2018). Aus dem Natriumsalz der 1.2.3.4.5.6.7.8-Oktahydro-anthracen-sulfonsäure-(9) durch Erhitzen auf 230—240° unter 13 mm Druck (Sch., B. 60, 2042) oder durch Kochen mit rauchender Salzsäure (Sch., B. 57, 2023; 60, 2041; Sch., Tetralin-Ges. D. R. P. 352721; C. 1922 IV, 159; Frdl. 14, 832).

1.2.3.4.5.0.7.8-OKtanydro-anthracen-sunonsaure-(9) durch Erinizen auf 230—240° unter 13 mm Druck (Sch., B. 60, 2042) oder durch Kochen mit rauchender Salzsäure (Sch., B. 57, 2023; 60, 2041; Sch., Tetralin-Ges. D. R. P. 352721; C. 1922 IV, 159; Frdl. 14, 832).

Blätter (aus Eisessig). F: 73—74° (Schroeter, B. 57, 1998), 72—73° (Boedtker, Rambech, Bl. [4] 35, 632), 71,6° (McVicker, Marsh, Stewart, Soc. 127, 1002). Kp<sub>760</sub>: 293—295°; Kp<sub>12</sub>: 167° (Sch.); Kp: 299° (B., R.). D<sup>0</sup><sub>1</sub>: 1,131 (Ziegler, Ditzel, A. 473, 206); D<sup>0</sup><sub>1</sub>: 0,9626 (v. Auwers, Krollpfeiffer, A. 430, 253). n<sup>0</sup><sub>2</sub>: 1,5323; n<sup>0</sup><sub>2</sub>: 1,5363; n<sup>0</sup><sub>3</sub>: 1,5479; n<sup>0</sup><sub>3</sub>: 1,5579 (v. Au., Kr.). Ultraviolett-Absorptionsspektrum: Capper, Marsh, Soc. 1926, 726. Tesla-Luminescenzspektrum: McV., Ma., St., Soc. 127, 1002. Kathodenluminescenzspektrum: Ma., Soc. 1927, 127. Die Lösungen des reinen Okthracens fluorescieren

nicht (Sch., B. 57, 2007).

Liefert beim Erhitzen mit Schwefel auf 180—220°, bei der Zinkstaubdestillation oder beim Leiten über Kupfer im Kohlendioxyd-Strom bei 550° Anthracen (Schroeter, B. 57, 1998; Tetralin-Ges., D. R. P. 333158; C. 1921 II, 739; Frdl. 13, 380). Beim Erwärmen mit Aluminiumchlorid auf 70—80° entstehen 1.2.3.4.5.6.7.8-Oktahydro-phenanthren, 1.2.3.4.5.6.7.8.9.10.11.12-Dodekahydro-triphenylen, Tetralin und andere Produkte (SCH., B. 57, 2002); Tetralin wird neben anderen Produkten auch beim Kochen mit Aluminiumchlorid in Benzol gebildet (Boedtker, Rambech, Bl. [4] 35, 632). Liefert bei gemäßigter Oxydation mit Chromsaure in Eisessig 1-Oxo-1.2.3.4.5.6.7.8-oktahydro-anthracen neben 1.2.3.4-Tetrahydro-anthrachinon-(9.10) (Sch., B. 57, 2019; Sch., Tetralin-Ges., D. R. P. 352 721; C. 1922 IV, 159; Frdl. 14, 832). Die Oxydation mit wäßr. Permanganat-Lösung auf dem Wasserbad ergibt Pyromellitsäure (v. Braun, Lemke, B. 57, 681; Sch., B. 57, 2023); Phthalsaure (vgl. H 526) konnte nicht erhalten werden (Sch., B. 57, 2023). Gibt mit Brom in Chloroform 9.10-Dibrom-1.2.3.4.5.6.7.8-oktahydro-anthracen (Sch., B. 60, 2038, 2042). Beim Nitrieren mit einer auf —15° abgekühlten Salpeterschwefelsäure entsteht 9.10-Dinitro-1.2.3.4.5.6.7.8-oktahydro-anthracen (SCH., B. 60, 2044). Liefert mit rauchender Salpeter-säure x-Tetranitro-x-dioxy-anthrachinon (BOEDTKER, RAMBECH, Bl. [4] 35, 632). Die Sulfonierung durch 5—10 Min. langes Erwärmen mit konz. Schwefelsäure auf 75° ergibt 1.2.3.4.5.6.7.8-Oktahydro-anthracen-sulfonsäure-(9) (Sch., B. 57, 2022; vgl. Sch., B. 57, 2022; Sch., Tetralin-Ges., D. R. P. 352721; C. 1922 IV, 159; Frdl. 14, 832), die bei längerer Einw. von konz. Schwefelsäure oder bei Einw. von konz. Schwefelsäure bei höherer Temperatur unter teilweiser Zersetzung in 1.2.3.4.5.6.7.8-Oktahydro-phenanthren-sulfonsäure-(9) übergeht; diese Verbindung entsteht ausschließlich bei 20 Min. langer Einw. von konz. Schwefelsäure bei Gegenwart von etwas Eisessig bei 90-100° (Sch., B. 60, 2036, 2041). Behandlung mit Chlorsulfonsäure führt zu 1.2.3.4.5.6.7.8-Oktahydro-anthracen-sulfochlorid-(9) (Sch., B. 57, 2022). — Ein Pikrat konnte nicht erhalten werden (Sch., B. 57, 2007).

9-Chlor-oktahydroanthracen  $C_{14}H_{17}Cl = C_6H_{10} < C_{CH_2} C_6H_4$  (H 526). Ist wahrscheinlich ein Gemisch von Okthracen mit 9.10-Dichlor-1.2.3.4.5.6.7.8-oktahydro-anthracen gewesen (SCHROETER, B. 60, 2040).

9.10 - Dichlor - 1.2.3.4.5.6.7.8 - oktahydro - anthracen, 9.10-Dichlor-okthracen  $C_{14}H_{16}Cl_2$ , s. nebenstehende Formel. Diese Konstitution kommt dem H 526 beschriebenen 9.10-Dichlor-oktahydroanthracen von Godchot zu (Schroeter,  $H_{2}C$  CH<sub>2</sub> B. 60, 2040).

9-Brom-1.2.3.4.5.6.7.8-oktahydro-anthracen, 9-Brom-okthracen  $C_{14}H_{17}Br$ , s. nebenstehende Formel. B. Durch  $H_{2}C$  CH<sub>2</sub> Einw. von Kaliumbromid und Kaliumbromat auf das Natrium-salz der 1.2.3.4.5.6.7.8-Oktahydro-anthracen-sulfonsäure-(9) in

verd. Salzsäure bei 40° (Schroeter, B. 60, 2042). — Nadeln (aus Eisessig). F: 74—75°. — Beim Glühen mit Kalk entsteht Anthracen. Bleibt beim Erhitzen mit Alkalien oder Silbernitrat-Lösung unverändert. Liefert beim Behandeln mit absol. Schwefelsäure bei 50-60° 9.10 - Dibrom - 1.2.3.4.5.6.7.8 - Oktahydro - anthracen und 1.2.3.4.5.6.7.8 - Oktahydro anthracen-sulfonsäure (9); mit Chlorsulfonsäure unter Kühlung 10-Brom-1.2.3.4.5.6.7.8-oktahydro-anthracen-sulfochlorid-(9). Die Nitrierung mit Salpeterschwefelsäure in Chloroform ergibt 10-Brom-9-nitro-1.2.3.4.5.6.7.8-oktahydro-anthracen.

- 9 · Brom · oktahydroanthracen  $C_{14}H_{17}Br = C_6H_{10} < C_{CH_2} > C_6H_4$  von Godchot H 527). Ist wahrscheinlich ein Gemisch von Okthracen und 9.10-Dibrom-okthracen gewesen SCHROETER, B. 60, 2040).
- 9.10 Dibrom 1.2.3.4.5.6.7.8 oktahydro anthracen,
  9.10 Dibrom okthracen C<sub>14</sub>H<sub>14</sub>Br<sub>2</sub>, s. nebenstehende Formel.
  Diese Konstitution kommt dem H 527 beschriebenen 9.10 Dibrom oktahydroanthracen zu (SCHROETER, B. 60, 2040).

  1. 1. 2.4.5.6.7.8 Oktahydroanthracen zu und Brom in - B. Aus 1.2.3.4.5.6.7.8-Oktahydro-anthracen und Brom in Chloroform (Sch., B. 60, 2042). Beim Behandeln von 9-Brom-1.2.3.4.5.6.7.8-oktahydro-anthracen mit konz. Schwefelsäure bei 50—60°, neben anderen Produkten (Sch., B. 60, 2043). Bei der Einw. von Brom in Eisessig auf 1.2.3.4.5.6.7.8-Oktahydro-anthracen-sulfonsäure-(9) (Sch.). — Krystalle (aus Eisessig). F: 200—201°.
- 9-Jod-1.2.3.4.5.6.7.8 oktahydro-anthracen, 9-Jod-okthracen C<sub>14</sub>H<sub>17</sub>I, s. nebenstehende Formel. B. Durch Einw. von Kaliumjodid und Kaliumjodat auf das Natrium-salz der 1.2.3.4.5.6.7.8-Oktahydro-anthracen-sulfonsäure-(9) in H<sub>2</sub>C CH<sub>2</sub> verd. Salzsäure bei 35° (Schrofter, B. 60, 2043). — Nadeln (aus Eisessig). F: 72—73°. — Liefert beim Glühen mit Kalk Anthracen. Bleibt beim Erhitzen mit Alkalien oder Silbernitrat-Lösung unverändert.
- 10-Brom-9-nitro-1.2.3.4.5.6.7.8-oktahydro-anthracen, TER, B. 60, 2044). Beim Erwärmen des Natriumsalzes der 10-Brom-1.2.3.4.5.6.7.8-oktahydro-anthracen-sulfonsäure-(9) in Eisessig und Essigsäureanhydrid mit 80% iger Salpetersäure in Eisessig auf 90° (Sch.). — Krystalle (aus Eisessig). F: 235° (Zers.). — Gibt bei der Reduktion mit Titan(III)-chlorid
- 9.10 Dinitro 1.2.3.4.5.6.7.8 oktahydro anthracen, 9.10-Dinitro-okthracen C<sub>14</sub>H<sub>16</sub>O<sub>4</sub>N<sub>2</sub>, s. nebenstehende Formel. H<sub>2</sub>C CH<sub>2</sub>
  B. Aus Okthracen und Salpeterschwefelsäure bei —15° (Schroeter, B. 60, 2044). — Wurde nicht rein erhalten. Krystalle (aus Eisessig). F: 305—310°.

in alkoh. Salzsäure 10-Brom-9-amino-1.2.3.4.5.6.7.8-oktahydro-anthracen.

6. 1.2.3.4.5.6.7.8-Oktahydro-phenanthren,

Oktanthren C<sub>14</sub>H<sub>18</sub>, s. nebenstehende Formel. Die H 527; E I 255 beschriebenen Oktahydrophenanthrene sind wahrscheinlich unreines Oktahydrophenanthrene sind wahrscheinlich unreines Oktahydrophenanthrene sind wahrscheinlich unreines Oktanthren gewesen (SCHROE-TER, B. 57, 2026, 2027). Zur Bezeichnung Oktanthren vgl. SCH., B. 57, 1996. — B. Neben anderen Produkten bei der Einw. von Aluminiumchlorid auf Tetralin bei 50—70° (SCHROETER, B. 57, 1999; Tetralin-Ges., D. R. P. 333158; C. 1921 II, 739; Frdl. 13, 380; BOEDTKER, B. MARKEY B. [41] 35, 632) und auf 4, 24, 5, 6, 7, 8 Oktobudge options of the control of the cont RAMBECH, Bl. [4] 35, 632) und auf 1.2.3.4.5.6.7.8-Oktahydro-anthracen bei 70-80° (Sch., B. 57, 2002). Bei der Hydrierung von Phenanthren mit der berechneten Menge Wasserstoff in Gegenwart von Nickelkatalysator in Tetralin unter Druck bei 200-220° (Sch., B. 57, 2027; Sch., Tetralin-Ges., D. R. P. 352719; C. 1922 IV, 159; Frdl. 14, 834; vgl. Sch., Müller, HUANG, B. 62, 649). Neben anderen Produkten bei der Hydrierung von Phenanthrol-(9) oder von Phenanthrenchinon in Gegenwart von Nickel in Dekalin unter Druck bei 250° (v. Braun, Bayer, B. 58, 2682). Durch 24-stdg. Kochen des Natriumsalzes der 1.2.3.4.5.6.7.8-Oktahydro-phenanthren-sulfonsäure-(9) mit rauchender Salzsäure (SCH., B. 57, 2030; **60**, 2041).

Krystalle. F: 16,7°; Kp<sub>760</sub>: 195°; Kp<sub>15</sub>: 169°; Kp<sub>15</sub>: 167,5° (Schroeter, B. 57, 1999, 2031). D<sup>30</sup>: 1,026 (Sch.); D<sup>3,5</sup>: 1,0313 (v. Auwers, Krollpfeiffer, A. 430, 259).  $n_{\alpha}^{13,5}$ : 1,5659;  $n_b^{\text{in.e.}}$ : 1,5701;  $n_b^{\text{in.e.}}$ : 1,5819;  $n_\gamma^{\text{in.e.}}$ : 1,5919 (v. Au., K.). — Liefert beim Erhitzen mit Schwefel auf 220° je nach der Erhitzungsdauer Phenanthren oder 1.2.3.4-Tetrahydro-phenanthren in wechselnden Mengen (Sch., B. 57, 1999, 2032). Beim Erwärmen mit Aluminium-

chlorid auf 80° entstehen 1.2.3.4.5.6.7.8-Oktahydro-anthracen, 1.2.3.4.5.6.7.8.9.10.11.12-Dodekahydro-triphenylen und andere Produkte (Sch., B. 57, 2003). Gibt bei der Oxydation mit wäßr. Permanganat-Lösung in der Wärme Mellophansäure (Sch., B. 57, 2031), mit Chromsäure in wäßr. Essigsäure 1-Oxo-1.2.3.4.5.6.7.8-oktahydro-phenanthren und etwas Chromsaure in walf. Essigsaure 1-Oxo-1,2.3.4.5.6.7.8-oktanydro-pnenanthren und etwas 4-Oxo-1,2.3.4.5.6.7.8-oktanydro-pnenanthren und etwas 4-Oxo-1,2.3.4.5.6.7.8-oktanydro-pnenanthren und etwas 397150; C. 1924 II, 1405; Frdl. 14, 460). Beim Erwärmen mit konz. Schwefelsäure auf 70° erhält man 1,2.3.4.5.6.7.8-Oktahydro-pnenanthren-sulfonsäure-(9) (Sch., B. 57, 2030; Sch., Tetralin-Ges., D. R. P. 352719; C. 1922 IV, 159; Frdl. 14, 834). Liefert beim Erhitzen mit Chloracetylchlorid und Phosphorpentoxyd auf 175° 9-Chloracetyl-1,2.3.4.5.6.7.8-oktahydro-phenanthren (Sch., B. 57, 2031). Beim Behandeln mit Oxalylchlorid und Aluminiumchlorid in Schwefelkohlenstoff und nachfolgenden Zersetzen mit Eis und Salzsäure opticial und Salzsäure (9) (Sch., B. 57, 2031). entsteht 1.2.3.4.5.6.7.8-Oktahydro-phenanthren-carbonsäure-(9) (Sch., B. 57, 2031).

9.10-Dibrom-1.2.3.4.5.6.7.8-oktahydro-phenan thren, 9.10-Dibrom-oktanthren  $C_{14}H_{16}Br_2$ , s. nebenstehende Formel. B. Beim Behandeln des Natriumsalzes der 1.2.3.4.5.6.7.8-Oktahydro-phenanthren-sulfon- $H_{2C}C_{H_2}$   $C_{H_2}$   $C_{H_2}$ säure-(9) mit Bromwasser bis zur bleibenden Färbung (SCHROETER, B. 60, 2041). — Krystalle (aus Eisessig). F: 147—148,5°.

1.2.3.4.9.10.11.12 - Oktahydro - phenanthren  $C_{14}H_{18}$ , Formel I. Benennung als Phenoktalin: Aschan, B. 55, 2951.

8. 1-Äthyl-3.4.5.11-tetrahydro-acenaphthen C<sub>14</sub>H<sub>18</sub>, Formel II.

1- $[\beta$ -Brom-äthyl]-3.4.5.11-tetrahydro-acenaphthen,  $\beta$ -Tetraphthyl-äthylbromid  $C_{14}H_{17}Br=C_{10}H_{10}\overset{CH_{2}}{\underset{CH}{\leftarrow}}CH_{2}\cdot CH_{2}\cdot B. \ \ Beim\ Erhitzen\ von\ \beta\text{-}Tetraphthyl-äthylalkohol\ mit}$ rauchender Bromwasserstoffsäure auf 130° (v. Braun, Rath, B. 61, 959). — Gelbliche Flüssigkeit. Kp<sub>15</sub>: 182—185°.

9. Kohlenwasserstoffe  $C_{14}H_{18}$  aus Steinkohle. Aus dem Pyridinextrakt oberschlesischer Steinkohle erhielten Hofmann, Damm (Brennstoffch. 3, 89: C. 1922 IV, 79) geringe Mengen ungesättigter Kohlenwasserstoffe von der ungefähren Zusammensetzung  $C_{14}H_{18}$ , die sich in 4 Fraktionen mit Siedepunkten von 274° bis 295° und Dichten  $D_{4}^{2}$  von 0,9529 bis 0,9699 unterteilen ließen; zum Teil lieferten sie in roten Nadeln krystallisierende, bei etwa 80° schmelzende Pikrate  $C_{14}H_{18}+C_{6}H_{3}O_{7}N_{3}$ .

#### 8. Kohlenwasserstoffe $C_{15}H_{20}$ .

1. **6-Methyl-2-benzyl-heptadien-(1.5)**  $C_{15}H_{20}=C_6H_5\cdot CH_2\cdot C(:CH_2)\cdot CH_2\cdot CH_2\cdot CH_2\cdot CH_3\cdot  säure auf 170° (ESCOURROU, Bl. [4] 39, 1254). — Bewegliche, gelbliche, angenehm aromatisch riechende Flüssigkeit. Kp<sub>4</sub>: 101-104°; Kp<sub>12</sub>: 136-138°. D<sup>11</sup>: 0,9289.  $n_0^{tt}$ : 1,5325.

2. 1.1- Dimethyl-2-phenyl-3-methylen-cyclo-hexan, 2-Phenyl- $\gamma$ -cyclogeraniolen  $C_{15}H_{20}$ , s. neben-stehende Formel. B. Beim Erhitzen von 2.6-Dimethyl-1-phenyl-hepten-(5)-ol-(2) mit wasserfreier Oxalsäure auf 140° (Escourrou, Bl. [4] 39, 1468). – Etwas viscose, gelbliche Flüssigkeit von aromatischem Geruch. Kp<sub>5</sub>: 105–107°. D<sup>11</sup>: 0,9403. n<sup>n</sup>; 1,5312. – Bei der Destillation über Natrium tritt teilweise Polymerisation ein (E., Bl. [4] 39, 1468). Die Ozonspaltung ergibt Formaldehyd (E., Bl. [4] 43, 1278).

3. 1.6 - Dimethyl - 4 - isopropyl - x - dihydro - naphthalin, Dihydrocadalin C<sub>15</sub>H<sub>20</sub>. Struktur des Kohlenstoffskeletts s. nebenstehende Formel. B. Beim Erwärmen von Cadalin (S. 473) mit Natrium und Alkohol auf dem Wasserbad (RUZICKA, MEYER, Helv. 4, 509). — Ol. Kp<sub>12</sub>: 151—153°. — Entfärbt Permanganat-Lösung in der Kälte.

4. 1-Methyl-1.2.3.4.5.6.7.8-oktahydro-anthracen

C<sub>15</sub>H<sub>20</sub>, s. nebenstehende Formel. B. Bei der Hydrierung von
1-Methyl-anthrachinon in Gegenwart von Nickel in Dekalin
unter Druck bei ca. 200° (v. Braun, Bayer, Fieser, A. 459,

EH2C

CH2

CH2 CH-CH<sub>8</sub> CH<sub>2</sub> ∠CH2

0,9685. np: 1,5320.

- 5. 2-Methyl-1.2.3.4.5.6.7.8 oktahydro an thracen C<sub>13</sub>H<sub>20</sub>, s. nebenstehende Formel. B. Durch Einw. von Wasserstoff auf 2-Methyl-anthrachinon oder besser auf 2-Methyl-anthracen oder auf ein Gemisch von 2-Methyl-1.2.3.4.5.6.7.8-oktahydro-anthranol und 3-Methyl-1.2.3.4.5.6.7.8-oktahydro-anthranol in Gegenwart von Nickel in Dekalin unter Druck bei 160—180° (v. Braun, Bayer,
- 6. 4'.4'-Dimethyl-5.6.7.8-tetrahydro-[cyclopen-teno-1'.2':1.2-naphthalin], 2.2-Dimethyl-4.5-tetra-methylen-hydrinden (2-Dimethyltetrahydronaphthalin), 2.2-Dimethyltetrahydronaphthalin], 2.2-Dimethyltetrahydronaphthalin, 3.2-Dimethyltetrahydronaphthalin, 3.2-Dimethyltetrahydronaphthalin, 3.2-Dimethyltetrahydronaphthalin, 3.2-CH<sub>2</sub> C(CH<sub>3</sub>)<sub>2</sub> Reduktion von 2.2-Dimethyl-4.5-tetramethylen-indandion-(1.3) mit amalgamiertem Zink und Salzsäure (D: 1,19) (Fleischer, Siefert, A. 422, 289; B. 53, 1257). Leicht bewegliches Öl von schwach petroleumartigem Geruch. Kp<sub>18</sub>: 156°. D<sub>1</sub>°:
- 7. 4- $\ddot{A}$ thyl-1.8-trimethylen-1.2.3.4-tetrahydro-naph-thalin, 1- $\ddot{A}$ thyl-2.3.4.5.6.12-hexahydro-perinaphthinden  $C_{14}H_{10}$ , s. nebenstehende Formel (R =  $C_2H_5$ ).

FIESER, A. 459, 300). — Öl. Kp<sub>13</sub>: 163—165°.

- $C_{15}H_{20}$ , s. nebenstehende Formel (R =  $C_2H_5$ ).

  1-[ $\beta$ -Brom-äthyl]-2.3.4.5.6.12-hexahydro-perinaphthinden (Hexahydrobenzonaphthyl-äthylbromid)  $C_{15}H_{19}$ Br, s. neben-
- stehende Formel ( $R = CH_2 \cdot CH_2Br$ ). B. Beim Erhitzen von 1-[ $\beta$ -Oxy-äthyl]-2.3.4.5.6.12-hexahydro-perinaphthinden mit rauchender Bromwasserstoffsäure auf 130° (v. Braun, Rath, B. 61, 962). Flüssigkeit. Kp<sub>12</sub>: 192—194°. Zu etwa 3% löslich in heißem Alkohol.
- 8. Kohlenwasserstoff C<sub>15</sub>H<sub>20</sub> aus Lignit, Simonellit. V. Findet sich als Ausblühung auf einem Lignit aus Fognano in Italien (Ciusa, Galizzi, G. 51 I, 55; Ann. Chim. applic. 15, 209, 213; C. 1926 I, 278). Krystalle (aus Alkohol), Tafeln (aus Essigester). Krystallographisches: Boeris. F: 61—62°. Kp: 314—316°; Kp<sub>23</sub>: 208—210°. Sehr leicht löslich in Benzol, Chloroform, Petroläther und Essigester, ziemlich leicht in Äther, schwerer in Alkohol (bei 15° zu 1,1%). Die alkoh. Lösung ist optisch inaktiv. Wird von Chromsäure oder alkal. Permanganat-Lösung zu einem roten amorphen Produkt oxydiert.

# 9. Kóhlenwasserstoffe $C_{16}H_{22}$ .

- 1. 1.4-Di-[penten-(2)-yl-(3)]-benzol, 1.4-Bis[α-āthyl-α-propenyl]-benzol (3-p-Phenylen-bis2-penten) C<sub>16</sub>H<sub>22</sub>, s. nebenstehende Formel. B. Aus Terephthalsäuredimethylester und Äthylmagnesiumjodid in Äther (Bogert, Nisson, Pr. nation. Acad. USA. 10, 429; C. 1925 I, 62). Hellgelbe Flüssigkeit. Riecht angenehm pinenartig. Kp<sub>20</sub>: 149—151°. Entfärbt Brom in Tetrachlorkohlenstoff.
- 2. 1-Methyl-4-isopropyl-3-phenyl-cyclohexen-(2 oder 3), 3-Phenyl-p-menthen-(2 oder 3)  $C_{1e}H_{22} = CH_3 \cdot HC < CH_2 CH_2 \cdot CH_3 \cdot CH_4 \cdot CH_3 \cdot CH_3 \cdot CH_4 \cdot CH_5 \cdot$
- a) Präparat aus l-Menthon. B. Durch Erhitzen von linksdrehendem 1-Methyl-4-isopropyl-3-phenyl-cyclohexanol-(3) ( $[\alpha]_D^{n}: -22.9^{\circ}$ ; aus l-Menthon) mit wasserfreier Oxalsäure auf 150° (Read, Watters, Soc. 1929, 2171). Kp<sub>18</sub>: 149—151°. D. 0.9365. n. 1.5275.  $[\alpha]_D^{n}: +43.5^{\circ}$ .
- b) Praparat aus d-Isomenthon. B. Durch Erhitzen von rechtsdrehendem 1-Methyl-4-isopropyl-3-phenyl-cyclohexanol-(3) ([ $\alpha$ ] $^6$ :  $+0.4^\circ$ ; aus d-Isomenthon) mit wasserfreier Oxalsäure auf  $150^\circ$  (Read, Watters, Soc. 1929, 2171). Kp<sub>8</sub>: 127—130 $^\circ$ .  $n_5^6$ : 1,5270. [ $\alpha$ ] $^6$ :  $+16.3^\circ$ .
- 3. 2-Cyclohexyl-5.6.7.8-tetrahydro-naph-thalin, 6-Cyclohexyl-tetralin C<sub>14</sub>H<sub>22</sub>, s. nebenstehende Formel. Einheitlichkeit fraglich. B. H<sub>2</sub>C CH<sub>2</sub>

  Neben anderen Produkten bei der Einw. von Cyclohexen und Aluminiumchlorid auf Tetralin in Schwefelkohlenstoff (Bodroux, A. ch. [10] 11, 541). Flüssigkeit von schwachem Geruch. Kp<sub>748</sub>: 329—335°. D<sup>16</sup>: 0,991; D<sup>20</sup>: 0,9855. n<sup>8</sup>: 1,553; n<sup>8</sup>: 1,5498. Gibt beim Erhitzen mit Schwefel auf 230—250° geringe Mengen 2-Phenyl-naphthalin.

#### PHENYLDEKALIN

- 4. **Dekalyl** (2) benzol, 2 Phenyl dekalin  $C_{15}H_{12}$ , s. nebenstehende Formel. Ist ein Gemisch von 2-Phenyl-cis-dekalin und 2-Phenyl-trans-dekalin (Gysin, H<sub>2</sub>C CH<sub>2</sub> CH CH<sub>2</sub> CH<sub>2</sub> CH<sub>3</sub> CH<sub>5</sub> Helv. 9, 60). — B. Aus technischem 2-Chlor-dekalin (S. 59) und Benzol in Gegenwart von Aluminiumchlorid auf dem Wasserbad (G., Helv. 9, 63; FERRERO. FEHLMANN, Helv. 11, 770). In geringer Menge aus Chlor- oder Brombenzol und Dekalin in Gegenwart von Aluminiumchlorid auf dem Wasserbad (F., F., Helv. 11, 771). — Grünc-Flüssigkeit mit blauer Fluorescenz; wird nach 24 Stdn. dunkelgelb mit schwacher violetter Fluorescenz (G.). Kp<sub>13</sub>: 163—164° (F., F.). D<sup>14</sup>: 0,9799; n; 1: 1,5419 (F., F.). — Liefert beim Behandeln mit Phthalsaureanhydrid in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff wenig 2-[3-Dekalyl-(2)-benzoyl]-benzoesäure (Syst. Nr. 1301) (F., F.).
- 5. 1.7.7 Trimethyl 4 phenyl bicyclo [1.2.2] heptan, 4-Phenyl-camphan  $C_{16}H_{22}$ , s. nebenstehende Formel. B. Beim Erhitzen von 4-Phenyl-campher-hydrazon mit Natriumäthylat im Rohr auf  $H_{2}C$   $C(C_{1}H_{3})$   $CH_{2}$ 180—190° (NAMETKIN, KITSCHKIN, KURSSANOW, J. pr. [2] 124, 156; 36. 61, 1077). — F: 13,5°. Kp<sub>14</sub>: 147,5—148°. D. 0,9817. n. 1,5387. — Liefert bei langdauerndem Erhitzen mit verd. Salpetersäure im Rohr auf 140—145° 2-Nitro-4-phenylcamphan und geringere Mengen 4-Phenyl-campher.
- 2-Nitro-1.7.7-trimethyl-4-phenyl-bicyclo-[1.2.2]-heptan, 2-Nitro-4-phenyl-camphan  $C_{16}H_{21}O_2N$ , s. nebenstehende Formel. B. Als Hauptprodukt bei langdauerndem Erhitzen von 4-Phenyl-camphan mit verd. Salpetersäure im Rohr auf 140—1450 (Nametrkin, Kitschkin, Kurssanow, J. pr. [2] 124, 149, 157; 3K. 61, 1078). — Ol. Löslich in heißer Alkalilauge. Gibt die Pseudonitrol-Reaktion.
- anthranol in Gegenwart von Nickel in Dekalin bei 1900 bis 200° unter Druck (v. Braun, Bayer, Fieser, A. 459, 296). — Nadeln (aus Petroläther). F: 90-92°.
- 7. Kohlenwasserstoff C<sub>16</sub>H<sub>22</sub>. B. Wurde einmal aus 1.1.2.5-Tetramethyl-2-benzoyl-cyclopentan bei der Reduktion mit Natrium in Alkohol erhalten (RUPE, A. 428, 168). Dünnflüssiges Öl von angenehmem aromatischem Geruch. Kp<sub>12</sub>: 136—137°.

# 10. Kohlenwasserstoffe $m C_{17}H_{24}$

- 1. 1.1.2.5-Tetramethyl-2-styryl-cyclopental C<sub>17</sub>H<sub>24</sub>, s. nebenstehende Formel. B. Beim Kochen von [1.2.2.3-Tetramethyl-cyclopentyl-(1)]-benzyl-carbinol mit Acetanhydrid, neben anderen Produkten (RUPE, LÄUGER, Helv. 3, 296). Beim Kochen von [1.2.2.3-Tetramethyl-cyclopentyl-(1)]-benzyl-carbinol-acetat mit alkoholisch-wäßriger Kalilauge (R., L.). — Schwach blau fluorescierende Blättchen (aus verd. Alkohol) von angenehmem, an Stilben erinnerndem Geruch. F: 51°. Kp<sub>11</sub>: 146—149°.
- 2. **2-m-Tolyl-dekalin** oder **2-p-Tolyl-deka-**lin  $C_{17}H_{24}$ , s. nebenstehende Formel. B. Aus tech.  $H_{2}C$   $CH_{2}$   $CH_{2}$   $CH_{2}$   $CH_{3}$   $CH_{4}$   $CH_{3}$  nischem 2-Chlor-dekalin (S. 59) und Toluol in Gegenwart von Aluminiumchlorid auf dem Wasserbad (GYSIN, Helv. 9, 64; FERRERO, FEHLMANN, Helv. 11, 772). — Gelbe, violett fluorescierende Flüssigkeit (G.). Kp<sub>18</sub>: 178—180° (F., F.).
- 3. 4'.4'- Diāthyl 5.6.7.8 tetrahydro [cyclo-penteno 1'.2': 2.3 naphthalin], 2.2 Diāthyl  $H_2C$   $CH_2$   $CH_$
- 4. 4'.4'-Diāthyl-5.6.7.8-tetrahydro-[cyclopen-teno-1'.2': 1.2-naphthalin], 2.2-Diāthyl-4.5-tetra- $^{\rm H_{2C}}$ CH<sub>2</sub> methylen-hydrinden (2.2-Diathyl-tetrahydronaphth- H2C-CH<sub>2</sub> C(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>  $\alpha.\beta$ -hydrinden)  $C_{17}H_{24}$ , s. nebenstehende Formel. B. Durch Reduktion von 2.2-Diäthyl-4.5-tetramethylen-indandion-(1.3)

mit amalgamiertem Zink und konz. Salzsäure (v. Braun, Kirschbaum, Schuhmann, B. 53, 1172; Fleischer, Siefert, A. 422, 279, 300; B. 53, 1258). — Öl von petroleumartigem Geruch. Kp<sub>12</sub>: 163—165° (F., S.); Kp<sub>11</sub>: 164—166° (v. B., K., Sch.). — Einw. von Diäthylmplopulehlorid und Aluminiumaklorid in Schuhmfellschlanderff. B. S. malonylchlorid und Aluminiumchlorid in Schwefelkohlenstoff: F., S.

#### 11. Kohlenwasserstoffe $C_{18}H_{26}$ .

- Alkohol + Essigester ein dünnflüssiges Öl ([a]m: -3,7°), das unter 10 mm Druck bei 168° bis 170°, unter 0.05 mm Druck bei 93° siedet.
- 2. 1.4-Dicyclohexyl-benzol, 1.2.3.4.5.6.1".2".3".4".5".6"-Dodekahydroterphenyl C<sub>18</sub>H<sub>26</sub>, s. nebenstehende Formel. B. Aus Cyclohexylbromid und Benzol bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff, neben anderen Produkten (v. Braun, B. 60, 1180). — Krystalle (aus Alkohol oder Methanol). F: 100° (v. B.). D?: 1,049 (ZIEGLER, DITZEL, A. 473, 206). Ziemlich schwer löslich in organischen Lösungsmitteln (v. B.). — Liefert beim Erhitzen mit verd. Salpetersäure im Rohr Terephthalsäure (v. B.). Gibt beim Erhitzen mit 12 Atomen Brom 214 160° Terephenyl (v. B.) Gegenwart von Aluminiumchlorid in Schweauf 160° Terphenyl (v. B.).
- 3. 2-[3.5-Dimethyl-phenyl]-dekahydronaphthalin, 2-[3.5-Dimethyl-phenyl]-dekalin

  C<sub>18</sub>H<sub>26</sub>, s. nebenstehende Formel. B. Aus technischem

  2-Chlor-dekalin (S. 59) und m-Xylol in Gegenwart von
  Aluminiumehlorid auf dem Wasserbad (Gysin, Helv.

  9, 64). — Wurde nicht rein erhalten. Viscoses Öl. Kp<sub>18</sub>: 182—192°. Fluoresciert violett. - Färbt sich mit der Zeit gelb.

4. 1-Methyl-7-isopropyl-x-oktahydro-phenanthren, x-Oktahydro-reten

C<sub>18</sub>H<sub>26</sub>.
a) Präparat aus Reten. B. Beim Erhitzen von Reten mit rauchender JodwasserRheenhor im mit Kohlendioxvd gefüllten Rohr auf 240° (VIRTANEN, B. 53, 1885, 1887). — Flüssigkeit von ziemlich angenehmem Geruch. Kp<sub>10</sub>: 163—165°. D<sub>1</sub><sup>20</sup>: 0,9578. n<sub>D</sub><sup>20</sup>: 1,5302. Mit Chloroform, Ligroin, Eisessig, Benzol und Ather in jedem Verhältnis mischbar. Löst sich in konz. Schwefelsäure bei gewöhnlicher Temperatur langsam mit braunroter, im durchgehenden Licht tiefroter Farbe, die beim Erwärmen in Schwarzgrün übergeht. — Wird von Permanganat sowie von konz. Schwefelsäure in der Kälte nicht angegriffen.

b) Präparat aus Abietinsäure. B. Beim Verschmelzen von Abietinsäure mit Zink chlorid, neben anderen Produkten (Rouin, Bl. Inst. Pin 1929, 251; C. 1929 II, 2775). — ()]. Kp<sub>15</sub>: 202—203°. D<sup>15</sup>: 0,955; n<sup>12</sup><sub>550</sub>: 1,5230; n<sup>12</sup><sub>560</sub>: 1,5210. Ist in alkoh. Lösung optisch-inaktiv. c) Präparat aus Kolophonium. Einheitlichkeit fraglich. — B. Entsteht neben anderen Produkten bei der Destillation von amerikanischem Kolophonium über Nickel-

Bimsstein (Vesterberg, A. 440, 307) und bei der Destillation von Fichten-Kolophonium aus Billiestein (V.S.F.Broaks, A. 120, 567) and 561 det Destination von Frinch-Toopholman auseinen eisernen Gefäß (Czeny, Bulet. Soc. chim. România 7, 91; C. 1926 I, 2803). — Öl.  $Kp_{758}$ : 323° (korr.);  $Kp_1$ : 142—143° (V.);  $Kp_9$ : 195—198° (Cz.).  $D^{15}$ : 0,9647 (Cz.);  $D_4^{50}$ : 0,9686;  $n_5^{50}$ : 1,5370 (V., A. 440, 309).  $[\alpha]_0$ : —48,4° (Benzol) (V.). — Gibt mit Salpeterschwefelsäure auf dem Wasserbad Trimellitsäure (Cz.).

# 12. Kohlenwasserstoffe $C_{19}H_{28}$ .

1. Dicyclohexyl-phenyl-methan, 1.2.3.4.5.6.1'.2'.3'.4'.5'.6'-Dodekahydrotriphenylmethan  $C_{19}H_{28}=C_6H_5\cdot CH(C_6H_{11})_2$  (H 528).

a) Prāparat von Zelinsky, Gawerdowskaja. B. Beim Leiten von Dicyclohexylphenyl-carbinol über aktive Kohle bei 300° (Zelinsky, Gawerdowskaja, B. 61, 1051). —

Kp<sub>20</sub>: 210—212°. D<sub>4</sub>°: 0,9890.

NP: 210—212°. D7: 0,9890.
b) Präparat von Ipatjew, Dolgow. Einheitlichkeit fraglich. — Neben anderen Produkten bei der Einw. von Wasserstoff auf 4-Oxy-tetraphenylmethan in Gegenwart von Nickel(III)-oxyd in Benzol oder Cyclohexan bei 275—285° und 80—100 Atmosphären Druck (IPATJEW, Dolgow, C. r. 185, 212; Bl. [4] 41, 1624; Ж. 59, 1090). — Viscoses Ol von angenehmem Geruch. Kp<sub>17</sub>: 196—197°. D<sub>0</sub>°: 0,9737; D<sub>0</sub>°: 0,9671; D<sub>0</sub>°: 0,9550. n<sub>0</sub>°: 1,5258; n<sub>0</sub>°: 1,5253. — Liefert bei weiterer Hydrierung in Gegenwart von Nickel(III)-oxyd bei 275° bis 285° unter Druck Tricyclohexylmethan.

Cyclohexyl - [1 - chlor - cyclohexyl] - phenyl - methan  $C_{19}H_{27}Cl =$ 

 $C_6H_5\cdot CH(C_6H_{11})\cdot CIC < CH_2\cdot CH_2\cdot CH_2 > CH_2$ . B. Beim Sättigen einer Lösung von Cyclohexylphenyl-cyclohexyliden-methan in absol. Alkohol mit Chlorwasserstoff bei  $0^o$  (CONANT, SMALL, SLOAN, Am. Soc. 48, 1756). — Krystalle (aus Alkohol). F: 54-55°. — Geht beim Kochen mit fein verteiltem Silber in Toluol wieder in Cyclohexyl-phenyl-cyclohexylidenmethan über.

Dicyclohexyl-phenyl-chlormethan  $C_{19}H_{27}Cl = C_6H_5 \cdot CCl(C_6H_{11})_2$ . B. Bei der Einw. von Acetylchlorid auf Dicyclohexyl-phenyl-carbinol in Benzol (Gray, Marvel, Am. Soc. 47, 2800). — Krystalle. F: 122°. — Liefert beim Kochen mit fein verteiltem Silber in Toluol Cyclohexyl-phenyl-cyclohexyliden-methan (G., M.: Conant, Small, Sloan, Am. Soc. 48, 1756), mit feuchtem Silberoxyd in Aceton Dicyclohexyl-phenyl-carbinol (C., Sm., Sl.).

2. 1.12-Dimethyl-7-isopropyl-x-oktahydro-phen-anthren. Abietin C<sub>19</sub>H<sub>28</sub>; Struktur des Kohlenstoffskeletts s. nebenstehende Formel (H 528). Zur Konstitution des zugrunde liegenden Abietans vgl. Sterling, Bogert, J. org. Chem. 4 [1939],

23; zur Konstitution der zugrunde liegenden Abietinsäure vgl. z. B. RUZICKA, STERNBACH. JEGER, Helv. 24 [1941], 504, 508. Zur Identität der Präparate aus Abietinsäure und Pin-

abietinsäure vgl. Aschan, B. 55, 2951.

- a) Präparataus Abietinsäure (H 528). Zur Lage der Doppelbindungen vgl. Ruzicka, SCHINZ, MEYER, Helv. 6, 1081. — B. Entsteht in geringer Menge im ungetrennten Gemisch mit Abieten (S. 404) beim Erhitzen von Abietinsäure im Kohlendioxyd-Strom auf 300—3100 (R., Sch., Helv. 6, 841). — Verhalten bei der Oxydation mit wäßr. Permanganat-Lösung in der Kälte: R., Sch.; R., Sch., M.; bei der Oxydation mit Braunstein und Schwefelsäure: R., Sch., M., Helv. 6, 1083, 1088.
- b) Präparat aus Pinabietinsäure, Pinabietin. Einheitlichkeit sehr fraglich; zur Nichteinheitlichkeit der Pinabietinsäure vgl. HASSELSTROM, McPHERSON, HOPKINS. Paper Trade J. 110, Nr. 4, S. 41; C. 1940 I, 1553. — B. Durch Erhitzen von Pinabietinsäure im Rohr auf 260—270° oder durch Erhitzen von Pinabietinsäure mit Phosphorpentachlorid und folgende Destillation im Vakuum (VIRTANEN, A. 424, 209; B. 53, 1884). — Farblose, nicht fluorescierende Flüssigkeit. Kp<sub>10</sub>: 191—193°. D<sup>10</sup>: 0,9734—0,9740. Leicht löslich in Ather und Benzol, schwer in Alkohol. — Wird von Permanganat nicht angegriffen. Die Oxydation durch Kochen mit verd. Salpetersäure oder mit Braunstein und verd. Schwefelsäure ergibt Trimellitsäure. Beim Erhitzen mit Schwefel bildet sich Reten. Erwärmen mit Brom in Wasser liefert eine amorphe Verbindung der ungefähren Zusammensetzung C<sub>19</sub>H<sub>24</sub>Br<sub>4</sub> (F: 60-70°). Beim Erwärmen mit konz. Schwefelsäure entsteht eine amorphe Pinabietinmonosulfonsäure. Die Einw. von rauchender Salpetersäure führt zu harzigen Produkten.
- 3. 3.4'.4' Triāthyl 5.6.7.8 tetrahydro [cyclo penteno - 1'.2': 1.2 - naphthalin], 2.2.7 - Triäthyl - H<sub>2</sub>CH<sub>2</sub>
  4.5-tetramethylen-hydrinden (2.2.4-Triäthyl-tetra-H<sub>2</sub>CH<sub>2</sub>
  hydronanthy & hydrinden (2.2.4-Triäthyl-tetra-H<sub>2</sub>CH<sub>2</sub> hydronaphth- $\alpha$ . $\beta$ -hydrinden)  $C_{19}H_{28}$ , s. nebenstehende Formel. B. In geringer Menge durch Reduktion von 2.2.7-Triäthyl-4.5-tetramethylen-indandion-(1.3) mit amalgamiertem Zink und rauchender Salzsäure (FLEISCHER, RETZE, B. 56, 232). — Wasserklares Öl. Kp<sub>19</sub>: 203—205°. D<sub>4</sub>°: 0,9673. n<sub>2</sub>°: 1,5352. C2H5
- 4. **Dextropimarin** C<sub>19</sub>H<sub>28</sub>. Zur Konstitution der zugrunde liegenden Dextropimarsäure vgl. Ruzicka, Sternbach, Helv. **23** [1940], 125; Fleck, Palkin, Am. Soc. **62** [1940], 2044. — B. Aus Dextropimarsäure bei mehrtägigem Erhitzen im Kohlendioxyd Strom auf 310° oder beim Behandeln mit Thionylchlorid auf dem Wasserbad und Destillieren des nicht näher beschriebenen Dextropimarsäurechlorids im Vakuum (R., Balas, Helv. 7, 879. hert haner beschriebenen Dextropmarsatrechords im Vakuum (R., Balas, Aev. 7, 878. 880). — Dickflüssiges Öl. Die beiden Präparate zeigten Kp<sub>12</sub>: 184—186°, D<sub>4</sub><sup>33</sup>: 0,9717;  $n_5^{32}$ : 1,5406; [ $\alpha$ ]<sub>0</sub>: +30,1° (Chloroform; p = 4) und Kp<sub>12</sub>: 182—184°; D<sub>4</sub><sup>43</sup>: 0,9693;  $n_5^{13}$ : 1,5349;  $\alpha$ <sub>p</sub>: +109° (R., B.). — Verhält sich gegen Brom in Schwefelkohlenstoff-Lösung und gegen Permanganat in Aceton stark ungesättigt (R., B.). Liefert beim Kochen mit Alkohol und konz. Schwefelsäure im Kohlendioxyd-Strom Dehydrodextropimarin C<sub>19</sub>H<sub>26</sub> (Kp<sub>12</sub>: 203—212°) von fraglicher Reinheit) (R., B.).

# 13. Kohlenwasserstoffe $C_{20}H_{30}$ .

1. 1.3 - Dimethyl - 2.5 (oder 4.5) - di cyclohexyl-benzol, 2.5 (oder 4.5)-Di-I. cyclohexyl - m - xylot  $C_{10}H_{30}$ , Formel I oder II. B. Bei der Einw. von Cyclohexyl-

I. 
$$C_{6}H_{11}$$
  $C_{6}H_{11}$   $C_{6}H_{11}$   $C_{6}H_{11}$   $C_{6}H_{11}$   $C_{6}H_{11}$ 

bromid und Eisenchlorid oder Aluminiumchlorid auf m-Xylol oder auf 5-Cyclohexyl-m-xylol in Schwefelkohlenstoff (Battegay, Kappeler, Bl. [4] 35, 990 Anm. 2, 992). — Blättchen (aus Äther). F: 104°.

- 2. 1.4-Dimethyl-2.x-dicyclohexyl-benzol, 2.x-Dicyclohexyl-p-xylol  $C_{20}H_{30}=(CH_3)_2C_6H_2(C_6H_{11})_2$ . B. In geringer Menge bei der Kondensation von p-Xylol mit Cyclohexen in Gegenwart von Aluminiumchlorid, neben anderen Produkten (Bodroux, C. r. 186, 1006). Nadeln (aus Alkohol + Benzol). F: 156—157°.
- 3. 1.x-Bis-[x-methyl-cyclohexyl]-benzol C<sub>20</sub>H<sub>30</sub>. B. Neben anderen Produkten beim Eintragen von 1-Methyl-cyclohexen-(x) (S. 44) in ein Gemisch von Benzol und Aluminiumchlorid (Bodroux, A. ch. [10] 11, 569). Flüssigkeit. Kp<sub>20</sub>: 230—235°. D<sup>22</sup>: 0,962. n<sup>20</sup>: 1,533.
- 4.  $2-[2\ (oder\ 5)-Methyl-5\ (oder\ 2)-isopropyl-phenyl]-dekahydronaphthalin, 2-Carvacryl-dekalin oder 2-Thymyl-dekalin <math>C_{20}H_{30}$ , Formel I oder II.

$$I. \begin{array}{c} H_2C \xrightarrow{CH_2} $

- B. Aus technischem 2-Chlor-dekalin (S. 59) und p-Cymol in Gegenwart von Aluminium-chlorid auf dem Wasserbad (Gysin, Helv. 9, 64). Wurde nicht rein erhalten. Gelbe, violett fluorescierende Flüssigkeit. Kp<sub>18</sub>: 192—212°.
- 5. 12-Methyl-1-äthyl-7-isopropyl-x-oktahydro-phenanthren, Homoabietin, "Methylabietin" C<sub>20</sub>H<sub>30</sub>; Struktur des Kohlenstoffskeletts s. nebenstehende Formel. Zur Bezeichnung Homoabietin vgl. Ruzicka, de Graaff, Müller, Helv. 15 [1932], 1301. Zur Struktur des Kohlenstoffskeletts vgl. Ru., de G., Mü.; Haworth, Soc. 1932, 2718. Zur Lage der Doppelbindungen vgl. Ru., Schinz, Meyer, Helv. 6, 1081. B. Aus Abietinol (Syst. Nr. 534) durch Behandlung mit Phosphorpentachlorid in Petroläther erst unter Eiskühlung, dann auf dem Wasserbad und nachfolgendes Erhitzen mit Chinolin auf 250—260° (Ru., Mey., Helv. 5, 590; Ru., Sch., Mey., Helv. 6, 1088). Dickflüssiges Öl. Von Ruzicka, Meyer (Helv. 5, 590) erhaltene Präparate zeigten Kp<sub>0,5</sub>: 145—147° und Kp<sub>0,8</sub>: 147—152°; Di: 0,9795; Di<sup>1</sup>: 0,9750; ni<sup>1</sup>: 1,5477; ni<sup>1</sup>: 1,5444; α<sub>D</sub>: +56,2°. Ein von Ruzicka, Schinz, Meyer (Helv. 6, 1088) erhaltenes Präparat zeigte Kp<sub>0,5</sub>: 144°; Di<sup>1</sup>: 0,9718; ni<sup>1</sup>: 1,5397; α<sub>D</sub>: +101,8°. Ist beständig gegen Kochen mit Alkohol und 50% iger Schwefelsäure; verhält sich gegen Brom in Schwefelkohlenstoff und gegen Permanganat in Aceton stark ungesättigt (Ru., Sch., Mey., Helv. 6, 1081, 1089). Liefert beim Kochen mit Braunstein und 57% iger Schwefelsäure Trimellitsäure und Mellophansäure (Ru., Sch., Mey., Helv. 6, 1083, 1092). Beim Erhitzen mit Schwefel auf 190—270° entsteht 1-Äthyl-7-isopropyl-phenanthren (Homoreten) (S. 600) (Ru., Mey., Helv. 5, 590; Ru., DE Graaff, Müller, Helv. 15, 1301; Haworth, Soc. 1932, 2718).
- 6. 1.2 Bis [6.6 dimethyl bicyclo CH-CH<sub>2</sub>-CH HC-CH<sub>2</sub>-CH [1.1.3] hepten (2) yl (2)] āthan, Di CH<sub>2</sub> | CH
- 7. Methyldextropimarin C<sub>20</sub>H<sub>30</sub>. Zur Konstitution der als erstes Ausgangsmaterial zugrunde liegenden Dextropimarsäure vgl. Ruzicka, Sternbach, Helv. 23 [1940], 125; Fleck, Palkin, Am. Soc. 62 [1940], 2044. Zur Lage der Doppelbindungen vgl. R., Balas, Helv. 7, 877. B. Aus Dextropimarol (Syst. Nr. 534) durch Behandlung mit Phosphorpentachlorid in Petroläther erst unter Eiskühlung, dann auf dem Wasserbad und nachfolgendes Erhitzen mit Chinolin auf 260° (R., B., Helv. 7, 882). Dickflüssiges Öl. Kp<sub>0.3</sub>: 140—145°; D<sub>1</sub>.: 0,9587; n<sub>0</sub>.: 1,5301 (R., B.). Verhält sich stark ungesättigt gegen Brom in Schwefelkohlenstoff und gegen Permanganat in Aceton (R., B.). Bei der Dehydrierung der Dämpfe im Vakuum über Palladiumasbest bei 300—420° und über Nickelkatalysator bei 300° scheint vorwiegend Dehydromethyldextropimarin C<sub>20</sub>H<sub>48</sub> zu entstehen (R., B., Helv. 7, 883). Liefert beim Erhitzen mit Schwefel auf 180—250° 7-Methyl-1-āthyl-phenanthren (S. 596) und andere Produkte (R., B., Helv. 7, 884; R., De Graaff, Müller, Helv. 15 [1932], 1300; Haworth, Soc. 1932, 2718).

#### HOMOABIETIN

14. 3.4.4'.4'-Tetraäthyl-5.6.7.8-tetrahydro-[cyclopenteno-1'.2':1.2-naphthalin], 2.2.6.7-Tetraäthyl-  $\frac{H_2C}{H_2C}$   $\stackrel{CH_2}{\longrightarrow}$ 4.5-tetramethylen-hydrinden (2.2.4.5-Tetraäthyltetrahydronaphth -  $\alpha$ .  $\beta$  - hydrinden)  $C_{21}H_{32}$ , s. nebenstehende Formel. B. Durch Reduktion von 2.2.7-Triäthyl-6-acetyl-4.5-tetramethylen-hydrinden mit amalgamiertem Zink

und ca. 18% iger Salzsäure in der Siedehitze (Fleischer, Retze, B. 56, 233). — Hellgelbes, sehr viscoses Ol, das bei längerer Aufbewahrung in der Kälte wachsartig erstarrt. Kp20: 220—2220.  $D_4^{27}$ : 0,9647.  $n_{11}^{27}$ : 1,5365.

#### 15. Kohlenwasserstoffe C<sub>22</sub>H<sub>34</sub>.

- 1. 1-Methyl-4-isopropyl-x-dicyclohexyl-benzol, x-Dicyclohexyl-p-menthan  $C_{22}H_{34} = (CH_3)[(CH_3)_2CH]C_6H_2(C_6H_{11})_2$ . Besteht wahrscheinlich aus einem Gemisch verschiedener Isomeren (Bodroux, C.r. 186, 1006). B. Neben viel 1-Methyl-4-isopropyl-x-cyclohexyl-benzol bei der Kondensation von p-Cymol mit Cyclohexen in Gegenwart von Aluminiumchlorid (B.). Gelbliche, dicke Flüssigkeit.  $Kp_{22}$ : 210—220°.
- 2. Kohlenwasserstoff C<sub>22</sub>H<sub>34</sub> aus Lignit. V. Neben anderen Kohlenwasserstoffen im Lignit von Fognano in Italien (Ciusa, Galizzi, Ann. Chim. applic. 15, 213; C. 1926 I, 278).

   Flüssigkeit. Kp<sub>20</sub>: 209—211°. Wird von Brom nicht angegriffen.

### 16. Dehydronorcholen C<sub>23</sub>H<sub>36</sub>, Formel I, s. 4. Hauptabteilung, Sterine.

#### 17. Kohlenwasserstoffe C<sub>24</sub>H<sub>38</sub>.

- 1. 1.4-Di-[nonen-(4)-yl-(5)]-benzol, 5-p-Phenylen-bis-4-nonen C<sub>24</sub>H<sub>38</sub>, Formel II. B. Eine Verbindung, der vermutlich diese Konstitution zukommt, entsteht beim Behandeln von Terephthalsäuredimethylester mit Butylmagnesiumbromid und Destillieren des Reaktionsprodukts im Vakuum (Bogert, Nisson, Pr. nation. Acad. USA. 10, 429; C. 1925 I, 62). Kp<sub>19</sub>: 230—232°. Entfärbt Brom in Tetrachlorkohlenstoff.
- 2. 3-Methyl-4'.4'.4''.-tetraāthyl-6-iso-propyl-fdicyclopenteno-1'.2':1.2; 1''.2'':4.5-benzol], 2.3; 5.6-Bis- $[\beta$ -diāthyl-trimethylen]-p-cymol ("Benz-4-methyl-8-isopropyl-2-diāthyl-s-dihydrinden")  $C_{24}H_{38}$ , s. nebenstehende Formel. B. Aus 4-Methyl-2.2-diāthyl-7-isopropyl-5.6-diāthylmalonyl-hydrinden durch Erhitzen mit amalgamiertem Zink und rauchender Salzsäure (Fleischer, A. 422, 237, 253). Spieße (aus Alkohol). F: 69—71°.  $Kp_{12}$ : 215—220°.  $D_1^{**}$ : 0,9466.  $n_2^{**}$ : 1,5247 (unterkühlt). Leicht löslich in Äther und Benzol, schwer in kaltem Alkohol, unlöslich in Wasser.

#### 18. Kohlenwasserstoff C<sub>26</sub>H<sub>42</sub>, Formel III, s. 4. Hauptabteilung, Sterine.

#### 19. Kohlenwasserstoffe $C_{27}H_{44}$ .

- 1. Cholestadiene C<sub>27</sub>H<sub>44</sub> s. 4. Hauptabteilung, Sterine.
- 2. Kohlenwasserstoff C17H44 (F: 690) aus Neoergosterin s. 4. Hauptabteilung,

# 20. Kohlenwasserstoff $C_{29}H_{48}$ .

Stigmasterinchlorid C29H47Cl, Formel IV, s. 4. Hauptabteilung, Sterine.

432

21. Tetracyclosqualen  $C_{30}H_{50}$ . Einheitlichkeit fraglich. — B. Beim Erhitzen von Squalen (E II 1, 250) mit schwefelsäurehaltigem Eisessig (MAJIMA, KUBOTA, Japan. J. Chem. 1, 32; C. 1923 III, 734), mit schwefelsäurehaltigem Acetanhydrid, mit 15% iger alkoholischer Schwefelsäure, mit 98% iger Ameisensäure (Heilbron, Kamm, Owens, Soc. 1926, 1635, Schweießaure, mit 98%iger Ameisensäure (Heilbron, Kamm, Owens, Soc. 1926, 1635, 1641) oder mit einer Ameisensäure, die schon vorher zur Isomerisation des Squalens verwendet worden war (Harvey, Heil, Ka., Soc. 1926, 3139). — Farbloses bis gelbliches zähes Öl. Eigenschaften des Präparats von Majima, Kubota: Kp<sub>0,55</sub>: 240—248°; D<sub>m</sub>. 0,9343; n<sub>m</sub>. 1,5157; eines durch 1—3-tägiges Kochen von Squalen mit 98%iger Ameiseusäure erhaltenen Präparats von Heilbron, Kamm, Owens: Kp<sub>3</sub>: 232—233°; D<sub>m</sub>. 0,9359; n<sub>m</sub>. 1,5211; des Präparats von Harvey, Heilbron, Kamm: Kp<sub>3</sub>: 228—230°; D<sub>m</sub>. 0,9237; n<sub>m</sub>. 1,5098. — Liefert beim Erhitzen mit Schwefel auf 200—270° 1.2.5-Trimethyl-naphthalin und andere Produkte (Ha., Heil, Ka., Soc. 1926, 3138, 3140; vgl. Heil, Wilkinson, Soc. 1930, 2546; Ruzicka, Hosking, Helv. 13 [1930], 1405).

#### 7. Kohlenwasserstoffe $C_n H_{2n-12}$ .

#### 1. Kohlenwasserstoffe $C_{10}H_8$ .

1. Azulen C<sub>10</sub>H<sub>8</sub>, s. nebenstehende Formel. Für die hiervon abgeleiteten Namen wird in diesem Handbuch die angegebene Stellungsbezeichnung gebraucht. Die Bezeichnung "Azulen"  $^{7}$  8 9 1 2  $^{2}$  wurde ursprünglich für die blauen Bestandteile des Kamillen-  $^{1}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$   $^{2}$ öls und anderer äther. Öle gebraucht (Piesse, Chem. N. 8 [1863], 245). Heute wird mit diesem Namen nur noch die Verbindung obenstehender Formel bezeichnet.

2. Naphthalin  $C_{10}H_8$ , s. nebenstehende Formel (H 531; EI 257). Zur onstitution vgl. die bei Benzol (S. 119) angegebene Literatur. Konstitution vgl. die bei Benzol (S. 119) angegebene Literatur.

#### Vorkommen und Bildung.

V. In neuseeländischen Erdölen (Easterfield, McClelland, Chem. and Ind. 1923, 938; C. 1924 I, 2847). Im persischen Erdöl (Birch, Norris, Soc. 1926, 2552). In geringer Menge im Steinkohlen-Urteer (Schütz, Buschmann, Wissebach, B. 57, 421; Kurihara, J. Fuel Soc. Japan 7, 61; C. 1928 II, 1733). — B. Bei der Destillation von Kimmeridge-Ölschiefer aus Dorset (Challenger, Mitarb., Brennstoffch. 7, 374; C. 1927 I, 827). Neben anderen Produkten bei längerem Erhitzen einer Harzölfraktion aus Kolophonium vom Kp<sub>14</sub>: 165—181° (Orlow, B. 62, 712, 717; 37. 60, 1449, 1455) oder von Holzteer (Ipatjew, Petrow, B. 62, 406) oder einer aus schwerem Steinkohlenteeröl gewonnenen, nanhthalinfreien Fraktion B. 62, 406) oder einer aus schwerem Steinkohlenteeröl gewonnenen, naphthalinfreien Fraktion vom Kp: 260—300° (I., O., B. 60, 1970) mit Wasserstoff unter 70 Atm. Anfangsdruck auf 415-460° in Gegenwart von Tonerde und Eisenoxyd. Entsteht auch in Abwesenheit des Katalysatorgemisches beim Erhitzen von Holzteer auf 460-480° im eisernen Rohr (I., P.). Über die Bildung von Naphthalin während der Hochtemperatur-Verkokung vgl. Kosaka, Oshima, Proceedings of the international conference on bituminous coal [Pitts-burgh 1926], S. 463; C. 1928 I. 447.

Naphthalin entsteht in geringer Menge bei der Funkenentladung in Methan (STANLEY, NASH, J. Soc. chem. Ind. 48, 240 T; C. 1929 II, 3200). Über die Bildung aus Methan bei hohen Temperaturen unter verschiedenen Bedingungen vgl. F. FISCHER, Mitarb., Brennstoffch. 9, 313, 314; C. 1928 II, 2208; HAGUE, WHEELER, Soc. 1929, 383; WHEELER, WOOD, Fuel 7, 537; C. 1929 I, 1560. Bei der thermischen Zersetzung von Methylchlorid bei 800° bis 900° (Wiesler, Ch. Z. 52, 183; vgl. a. Perrot bei Allison, Meighan, J. ind. Eng. Chem. 11 [1919], 943). Entsteht neben anderen Produkten bei der thermischen Zersetzung von Athan bei 700—950° (Williams-Gardner, Fuel 4, 439; C. 1926 I, 2065; Hague, Wh., Soc. 1929, 384), von Butan bei 850—950° und von Athylen oberhalb 800° (H., Wh., Soc. 1929, 386, 390), beim Leiten von Athylen über Zinkoxyd bei 800—825° (Walker, J. phys. Chem. 31, 979) und bei der thermischen Zersetzung von Ceten (E I 1, 206) bei 650° (GAULT, ALTCHIDJIAN, C. r. 178, 2094; A. ch. [10] 2, 256). Naphthalin entsteht neben anderen Produkten aus Acetylen beim Leiten durch ein Eisenrohr bei 700° (Kovache, Tricot, Chim. et Ind. 13 [1923], 76 T), über aktive Kohle bei 600—650° (Zelinsky, B. 57, 272; C. r. 177, 885; 36, 154) oder über Elektrodenkohle bei 500—700° (Gros, D. R. P. 475883; Frdl. 16, 88) und beim Erhitzen mit Selen auf ca. 400° (Briscoe, Peel, Soc. 1928, 1742).

Beim Erhitzen von Cyclohexen auf 400—500°, neben Benzol (Hofmann, Lang, Brennstall)

stoffch. 10, 204; C. 1929 II, 165). Durch Leiten von Dekalin über Palladiumschwarz (Zelinsky, B. 56, 1723) oder über Palladiumasbest oder platinierte Kohle (Zel., Turowa-Pollak,

B. 58, 1298) bei 300°. Beim Erhitzen von Dekalin oder Tetralin mit Kupfer(II)-oxyd, 1.3-Dinitro-benzol und Chinolin im Rohr auf 240—245° (ZETZSCHE, ZALA, Helv. 9, 289). Naphthalin entsteht neben anderen Produkten aus Tetralin bei längerem Erhitzen auf 450° und 50-100 Atm. Druck (SSACHANEN, TILITSCHEJEW, B. 62, 668), beim Erhitzen mit Wasserstoff (Anfangsdruck ca. 70 Atm.) in Gegenwart von Tonerde und Kupferoxyd auf 480° (IPATJEW, ORLOW, B. 60, 1968) und beim Leiten durch ein verzinntes Eisenrohr bei 800° bis 860° im Wasserstoffstrom (F. FISCHER, SCHRADER, MEYER, Abh. Kenntnis Kohle 5, 431; C. 1922 IV, 1039) oder auch beim Erhitzen mit Schwefel auf 240—250° unter Druck (FRIED-MANN, Brennstoffch. 8, 258; C. 1928 II, 1757). Beim Erhitzen von 6-Athyl-1.2.3.4-tetrahydronaphthalin auf 700—750° mit oder ohne Bleioxyd-Bimsstein-Katalysator im Kohlendioxyd-strom (v. Braun, Hahn, Seemann, B. 55, 1690). Neben Tetralin beim Leiten von 1.4-Dihydro-naphthalin über Palladiumasbest im schwachen Kohlendioxydstrom bei 130° (Zelinsky, Pawlow, B. 57, 1070). Bei mehrmaligem Destillieren von 1.2-Benzo-cyclohepten-(1) (Benzosuberen, S. 394) über Bleioxyd-Bimsstein bei 700° (v. Br., Stuckenschmidt, B. 56, 1726). Durch Reduktion von 1- oder 2-Brom-naphthalin mit Natriumamalgam in Alkohol (Franzen, Stäuble, J. pr. [2] 103, 367). Aus 1-Brom-naphthalin beim Behandeln mit Natrium in flüssigem Ammoniak (Kraus, White, Am. Soc. 45, 774), mit Magnesium in Methanol (Zech-MEISTER, Rom, A. 488, 128), mit Natriumisoamylat in siedendem Isoamylalkohol in Gegenwart von Kupfer bei Bestrahlung mit ultraviolettem Licht (Rosenmund, Luxat, Tiedemann, B. 56, 1955) oder beim Kochen mit Kaliumcyanid in wäßr. Glykol-Lösung bei Gegenwart von Kupfer(I)-cyanid und einer Spur Naturkupfer C (Loevenich, Loeser, B. 60, 322). Aus 1-Methyl-naphthalin beim Leiten im Wasserstoffstrom durch ein verzinntes Eisenrohr bei 750-770°, neben Methan (F. FISCHER, SCHRADER, MEYER, Abh. Kenntnis Kohle 5, 422. 436; C. 1922 IV, 1039). Neben anderen Produkten aus 1- und 2-Methyl-naphthalin, 1.6- und 2.6-Dimethyl-naphthalin (Іратлеж, Orlow, B. 62, 594; Ж. 61, 1297, 1298), 1.2.3.4-Tetrahydro-phenanthren (Orlow, B. 62, 714, 716; Ж. 60, 1451, 1452) oder Phenanthren (O., B. 60, 1954; Ж. 59, 900) bei längerem Erhitzen mit Wasserstoff (Anfangsdruck 70—75 Atm.) in Gegenwart von Tonerde und Kupfer-, Nickel- oder Eisenoxyd auf 440—500°. Entsteht auch neben anderen Produkten bei der Destillation von 1.2.3.4-Tetrahydro-phenanthren, Anthracen und Phenanthren mit wasserfreiem Aluminiumchlorid und Erhitzen der bei 180-315° siedenden Fraktionen mit Schwefel auf 200-240° (O., B. 62, 715, 717; 38. 60, 1452, 1455). Beim Leiten des Dampfes von 2-Benzyl-1.2.3.4-tetrahydro-naphthalin über rotglühendes Blei(II)-oxyd im Kohlendioxydstrom (v. Braun, B. 61, 442). Über eine Bildung aus Reten vgl. Orlow, B. 62, 716; Ж. 60, 1454. Aus Chrysen bei längerem Erhitzen in Gegenwart von wasserfreiem Eisen(III)-chlorid auf 440—450° unter 100 Atm. Wasserstoffanfangsdruck (O., Lichatschew, B. 62, 720; Ж. 61, 1182).

Beim Auftropfen von Phenol auf Quarz oder Koks bei 700—900° (Kosaka, J. Soc. chem. Ind. Japan Spl. 31, 127 B; C. 1928 II, 2422; 1929 I, 1069). Beim Leiten von Phenol im Methanstrom durch ein auf 760—770° erhitztes verzinntes Eisenrohr (F. Fischer, Schrader, Meyer, Abh. Kenntnis Kohle 5, 416; C. 1922 IV, 1039). Beim Erwärmen von Acenaphthen-chinon mit Natriumamid auf ca. 80° (Kasiwagi, Bl. chem. Soc. Japan 1, 67; C. 1926 II, 205). Bei der Destillation von  $\beta$ -[Tetralyl-(2)]-propionsäure-äthylester über Bleioxyd-Bimsstein im Kohlendioxydstrom bei schwacher Rotglut (v. Braun, Bayer, Cassel, B. 60, 2607). Bei der Reduktion von  $\alpha$ -Naphthoylchlorid mit Wasserstoff in Gegenwart von Palladium-Bariumsulfat (Shoesmith, Guthrie, Soc. 1928, 2332). Aus  $\alpha$ -Naphthalinsulfonsäure bei der Einw. von Brom, neben 1.5- und 1.7-Dibrom-naphthalin (Datta, Bhoumik, Am. Soc. 43, 306) oder beim Behandeln mit Toluol- oder Benzol-Dampf bei 130° (H. Meyer, A. 438, 347). Durch Reduktion von 1-Nitramino-naphthalin in Wasser mit 4%igem Natrium-

amalgam, neben anderen Produkten (BAMBERGER, B. 55, 3391).

Über eine biochemische Bildung von Naphthalin nach Verabreichung von Tetralin an Menschen, Hunde und Kaninchen vgl. Lewin, Z. dtsch. Öl-Fettind. 40 [1920], 440; Röckemann, Ar. Pth. 92, 59, 66; C. 1922 I, 1115.

#### Technische Darstellung; Reinigung.

Technische Darstellung: L. Schumann, Kokereiteer und Rohbenzol [Stuttgart 1940], S. 123; W. Borrmann, Der Teer, seine Gewinnung und Verarbeitung [Leipzig 1940], S. 43. Über Abscheidung von Naphthalin aus Leuchtgas vgl. z. B. Ineson, Gas J. 164, 835; C. 1924 I, 1295; Bunte, Gas-Wasserjach 66, 489, 507; C. 1924 I, 1295; B., Pippig, Gas-Wasserjach 66, 657; C. 1924 I, 1296; Lupton, Gas J. 165, 262; C. 1924 I, 1606; Stavorinus, Het Gas 46, 304; C. 1928 II, 1603.

Reinigung durch Sublimation: RIEHM, D. R. P. 315958; C. 1920 II, 189; Frdl. 13, 298. Zur technischen Reinigung durch Sublimation vgl. BÜRK, Erdöl Teer 2, 27; C. 1926 I, 2270. Reinigung durch Umkrystallisieren aus Dekalin: Kutschenreuther, D. R. P. 317634; C. 1920 II, 447; Frdl. 13, 299; durch Behandeln mit Wasserstoff in Gegenwart von Eisen oder Nickel auf Tonerde: Tetralin-Ges., D. R. P. 299012, 324862; C. 1920 IV, 472, 1921 II,

448; Frdl. 13, 304, 306; durch Behandeln mit Natrium: Tetralin-Ges., D. R. P. 299012, 324862; D. R. P. 299013; C. 1920 IV, 473; Frdl. 13, 307; durch Erhitzen mit Natriumamid: Tetralin-Ges., D. R. P. 324863; C. 1921 II, 448; Frdl. 13, 305; durch Behandeln mit Schwefelsäure und nachfolgende Vakuumdestillation: Anonymus, Chem. Trade J. 80, 389; C. 1927 II, 167; durch Erwärmen mit Chlorsulfoessigsäurechlorid: Comp. d'Alais, F.P. 602 408; C. 1927 II, 2117; Guyot, Chim. et Ind. 19, Sondernummer, S. 409; C. 1928 II, 1561; durch Behandeln mit Bleicherde oberhalb 100°: Tetralin-Ges., D. R. P. 324861; C. 1921 II, 448; Frdl. 13, 302.

### Physikalische Eigenschaften.

Krystallstruktur. Röntgenographische Untersuchungen an Naphthalin wurden von A TYSILLISLTUKIUT. KONIGENOGRAPHISCHE UNICERSUCHUNGEN AN NAPHURAIIN WURGEN VON BRAGG (Pr. phys. Soc. London 34, 33; 35, 168; C. 1924 II, 1155; Soc. 121, 2783), BECKER, JANCKE (Ph. Ch. 99, 259), ASTBURY (Pr. roy. Soc. [A] 112, 456), HERZOG, JANCKE (Z. Phys. 45, 195; C. 1928 I, 639) und ROBERTSON (Pr. roy. Soc. [A] 125 [1929], 542) ausgeführt; vgl. a. Z. Kr. Strukturber. 1 [1913—1928], 729. — Härte der Krystalle: Reis, Zimmermann, Z. Kr. 57, 481; Ph. Ch. 102, 328. Krystallographisches: E. QUERCICH, Sulle relazioni cristallographisches. grafiche e d'isomorfismo fra naftalina,  $\alpha$ -naftolo e  $\beta$ -naftolo [Turin 1919], S. 15; C. 1920 III, 834; ORELKIN, Ж. 54, 515; С. 1923 III, 1019.

834; Orelkin, Ж. 54, 515; C. 1923 III, 1019.

Mechanische und thermische Eigenschaften. F: 80,1° (Mortimer, Murphy, Ind. Eng. Chem. 15 [1923], 1141), 80,05° (Monroe, Ind. Eng. Chem. 11, 1119 Anm. 1; C. 1921 I, 285), 80,04° (korr.) (v. Steiger, B. 55, 1972). Temperatur des Zusammenbackens: 60° (Tammann, Z. anorg. Ch. 157, 325). Kp<sub>788</sub>: 217,4—217,8° (Movicker, Marsh, Stewart, Soc. 125, 1745); Kp<sub>780</sub>: 218,05° (Lecat, R. 46, 246), 217,97° (Eppley, J. Franklin Inst. 205, 393; C. 1928 I, 2166); Kp<sub>736</sub>,80: 216,61° (Brunel, Am. Soc. 45, 1335). Siedepunkt zwischen 799,44 mm (220,20°) und 699,26 mm (214,36°): Finck, Wilhelm, Am. Soc. 47, 1579. Abhängigkeit des Siedepunkts vom Druck: log t<sub>p</sub> = 0,20248 log p + 1,755102 ± 0,004° (zwischen 824—704 mm) (Eppley). Dampfdruck zwischen —36° (0,000 034 mm) und +3° (0,0056 mm): Andrews, J. phys. Chem. 30, 1498; zwischen —11° (0,0048 mm) und 18° (0,0646 mm): Found, Dushman, Phys. Rev. [2] 23, 741; C. 1924 II, 1769; zwischen 87,4° (11,9 mm) und 221,45° (825,2 mm): Nelson, Senseman, Ind. Eng. Chem. 14, 60; 15, 621; C. 1922 I, 563; 1923 III, 556; zwischen 87,2° (11,4 mm) und 224,1° (881,0 mm): Mortimer, Murphy. Dampfdruck bei 10 + 0,01°: 0,0174 ± 0,0002 mm, bei 20 + 0,01°: 0,0648 +

C. 1922 I, 563; 1923 III, 556; zwischen  $87,2^{\circ}$  (11,4 mm) und  $224,1^{\circ}$  (881,0 mm): MORTMER, MURPHY. Dampfdruck bei  $10 \pm 0,01^{\circ}$ :  $0,0174 \pm 0,0002$  mm, bei  $20 \pm 0,01^{\circ}$ :  $0,01648 \pm 0,0005$  mm, bei  $30 \pm 0,01^{\circ}$ :  $0,177 \pm 0,001$  mm (Swan, Mack, Am. Soc. 47, 2115).

D°: 1,186 (Ziegler, Ditzel, A. 473, 204); D³0: 1,175 (E. Quercieh, Sulle relazioni cristallografiche e d'isomorfismo fra naftalina  $\alpha$ -naftolo e  $\beta$ -naftolo [Turin 1919], S. 38; C. 1920 III, 834); D°5: 0,9757 (v. Steiger, B. 55, 1972); D°5: 0,9629 (Krollpfeiffer, B. 56, 80); D°5: 0,9643 (v. Auwers, B. 54, 3190 Anm. 7). — Oberflächenspannung von geschmolzenen Naphthalin bei 80,1°: 32,26 dyn/cm (Bhatnagar, Singh, J. Chim.

phys. 25, 25). Parachor: BH., S.

Mittlere spezifische Wärme von festem Naphthalin zwischen —182,8° und 0°: 0,178 cal/g, zwischen —182,8° und 24°: 0,192 cal/g, zwischen —182,8° und 79°: 0,220 cal/g (Taylor, Rinkenbach, Am. Soc. 46, 1506), zwischen —183,6° und —78,2°: 0,140 cal/g (Maass, WALDBAUER, Am. Soc. 47, 8), zwischen 0° und 80°: 0,303 cal/g (PADOA, G. 52 II, 206). Molekularwarme von festem Naphthalin zwischen 25° (38,1 cal) und dem Schmelzpunkt (51,3 cal) Rularwarme von festem Naphthalin zwischen 25° (38,1 cal) und dem Schmelzpunkt (51,3 cal) und von flüssigem Naphthalin zwischen dem Schmelzpunkt (52,5 cal) und 200°: Andrews, Lynn, Johnston, Am. Soc. 48, 1286. Schmelzwärme: 4540 cal/Mol (A., L., J.). — Verbrennungswärme bei konstantem Volumen (auf Wägung in Luft bezogen): 9613 cal/g (Karrer, B. 55, 2854; Schläpfer, Fiorini, Helv. 6, 723, 725; Swietoslawski, Starczewska, Bl. [4] 31, 663), 9614 cal/g (Verkade, Coops, Hartman, R. 41, 272; V., C., R. 47, 608; Keffler, Guthrie, J. phys. Chem. 31, 62, 63; vgl. a. Richards, Davis, Am. Soc. 42, 1614), 9615,1 cal/g (V., C., R. 47, 710, 713). Zur Verbrennungswärme vgl. a. Henning, Ph. Ch. 97, 467; W. A. Roth in Landolt-Börnst. H 1589; E I 867; E III, 2896. Geschwindigkeit der Krystallisation aus übersättigten Lösungen in Methanol bei 0°

Geschwindigkeit der Krystallisation aus übersättigten Lösungen in Methanol bei 00 und ihre Beeinflussung durch Zusätze: Jenkins, Am. Soc. 47, 906. Verdampfungsgeschwin-

digkeit bei 25°: MACK, Am. Soc. 47, 2473.

Optische und elektrische Eigenschaften. nps.: 1,58996 (v. Steiger, B. 55, 1972), 1,58987 (Willstätter, Seitz, B. 56, 1392);  $\mathbf{n}_{\alpha}^{\text{w.5}}$ : 1,5754;  $\mathbf{n}_{\alpha}^{\text{w.5}}$ : 1,5829;  $\mathbf{n}_{\beta}^{\text{w.5}}$ : 1,6040 (Kroll-PFEIFFER, B. 56, 80). Ultraviolett-Absorptionsspektrum des Dampfes: DE LASZLO, Ph. Ch. 118, 383; HENRI, DE L., C. r. 178, 1004; Pr. roy. Soc. [A] 105, 666, 672; C. 1924 II, 803; der Lösung in Hexan: H., STEINER, C. r. 175, 421; DE L., Ph. Ch. 118, 382; C. r. 180, 205; in Alkohol: Marchlewski, Moroz, Bl. [4] 33, 1406; H., St.; in Ather und Wasser: H., St. Ultrarot-Absorptionsspektrum der geschmolzenen Substanz bei 95°: Bell, Am. Soc. 47, 2811, 2814; der Lösungen in Schwefelkohlenstoff und Tetrachlorkohlenstoff: Stang, Phys. Rev. 9 [1917], 547; vgl. a. DE Laszlo, Ph. Ch. 118, 394. Fluorescenzspektrum von festem Naphthalin bei Zimmertemperatur und der Temperatur der flüssigen Luft sowie einer 1%igen Lösung in Alkohol: Reimann, Ann. Phys. [4] 80, 63. Phosphorescenzspektrum von Naphthalin in Alkohol bei —170°: Tiede, Ragoss, B. 56, 664. Tesla-Luminescenzspektrum von Naphthalin-Dampf: McVicker, Marsh, Stewart, Soc. 125, 1745; Marsh, Phil. Mag. [6] 49, 979, 1213; C. 1925 II, 890, 1336. Luminescenzspektrum des Dampfes bei Anregung durch Spitzenentladungen: Kraemer, Z. wiss. Phot. 24, 222; C. 1926 II, 1506. Kathoden-Luminescenzspektrum: Marsh, Soc. 1927, 127. Die von O. Fischer (C. 1908 II, 1406) im Kathoden-Luminescenzspektrum gefundenen drei breiten Banden zwischen 410 und 470 mµ sind nach Marsh (Soc. 1927, 130) auf als Verunreinigung vorhandenes Anthracen zurückzuführen. Röntgen-Luminescenzspektrum: Newcomer, Am. Soc. 42, 2001, 2003; de Beaujeu, J. Phys. Rad. [6] 4 [1923]., 266; C. 1924 I, 134.

Normandenes Anthracen zuruckzulturen. Nontgen-Luminescentzpektrum: Newcomek, Am. Soc. 42, 2001, 2003; de Beaujeu, J. Phys. Rad. [6] 4 [1923], 266; C. 1924 I, 134. Molekulare Lichtzerstreuung an dampfförmigem Naphthalin und Depolarisationsgrad des Streulichts: Ramanathan, Srinivasan, Pr. indian Assoc. Cult. Sci. 9, 206; C. 1926 II, 1930; Cabannes, Granier, C. r. 182, 886; Rao, Indian J. Phys. 2, 84; C. 1928 I, 1838. Depolarisationsgrad des an flüssigem Naphthalin gestreuten Lichts bei 85°: Lautsch, Ph. Ch. [B] 1, 118; bei 80°, 200° und 300°: Martin, Leerman, J. phys. Chem. 27, 562. Raman-Effekt: Petrikain, Hochberg, Ph. Ch. [B] 3, 222, 405; P., Ph. Ch. [B] 3, 362; Dadieu, Kohlrausch, M. 52, 390; Phys. Z. 30, 384; C. 1929 II, 970; Raman, Krishnan, Nature 121, 619; C. 1928 II, 1304. Beugung von Röntgenstrahlen in flüssigem Naphthalin bei 85°: Katz. Z. ang. Ch. 41, 332. Röntgenogramm von festem Naphthalin s. S. 434.

619; C. 1928 II, 1304. Beugung von Kontgenstrahlen in flussigem Naphthalin bei 85°: Katz, Z. ang. Ch. 41, 332. Röntgenogramm von festem Naphthalin s. S. 434. Dipolmoment  $\mu \times 10^{18}$ : 0,72 bzw. 0,69 (verd. Lösung; Hexan bzw. Schwefelkohlenstoff) (Williams, Phys. Z. 29 [1928], 178; W., Ogg, Am. Soc. 50, 99). — Elektrische Leitfähigkeit von festem Naphthalin bei 62° und 78° und von flüssigem Naphthalin bei 81,8°: Rabinowitsch, Ph. Ch. 119, 72; Ж. 58, 234. Verhalten von Naphthalin-Tropfen in elektrischen Feldern: Ruff, Niese, Thomas, Ann. Phys. [4] 82, 632. Magnetische Susceptibilität: Bhagavantam, Pr. roy. Soc. [A] 124, 548; C. 1929 II, 3113; Raman, Nature 123, 605; C. 1929 II, 144.

### Physikalische Eigenschaften von Naphthalin enthaltenden Gemischen.

Mechanische und thermische Eigenschaften. Löslich in flüssigem Schwefelwasserstoff (Quam, Am. Soc. 47, 105). Ist in flüssigem Schwefeldioxyd zu 23% löslich (DE CARLI, G. 57, 351; vgl. Zerner, Weiss, Opalski, Z. ang. Ch. 35, 254; 36, 6). Unlöslich in flüssigem Ammoniak (DE C.). Löslich in Vanadinoxytrichlorid (Brown, Snyder, Am. Soc. 47, 2673). Löst sich in Selenoxybromid unter chemischer Veränderung (Lenher, Am. Soc. 44, 1671). Vermischt sich mit Harnstoff in flüssigem Zustand nicht (Puschin, König, M. 49, 81). Löslichkeit in Kautschuk: Bruni, R. A. L. [5] 30 I, 78. Naphthalin bildet mit Nickel haltbare kolloidale Lösungen (Prax, Chem. Versuchs- und Verwertungs-Ges., F. P. 533033; C. 1922 II, 1219; vgl. Frdl. 14, 461; N. V. Chem. Maatschappy Vega, D. R. P. 424702; Frdl. 14, 1485).

Löslichkeit in Benzolwaschölen bei 0—40°: Bunte, Gas-Wasserfach 66, 490, 508; C. 1924 I, 1295; B., Pippig, Gas-Wasserfach 66, 658; C. 1924 I, 1296; in Solventnaphtha und in Steinkohlenteer-Schweröl bei verschiedenen Temperaturen und Einfluß von m-Kresol sowie von Chinolin darauf: Rhodes, Eisenhauer, Ind. Eng. Chem. 19, 415; C. 1928 I, 196; in Leichtöl, Naphthalinwaschöl und Anthracenöl zwischen—19,0° und 56,5°: Schläpfer, Flachs, Monats-Bull. Schweiz. Ver. Gas-Wasserfachmänner 8 [1928], 305. 0,1 g löst sich bei Zimmertemperatur in ca. 0,5 cm³ Chloroform, in ca. 1 cm³ Ather und in ca. 1,5 cm³ Ligroin (Kp: 82—97°) (Dimroth, Bamberger, A. 438, 97). Über Löslichkeit in Wasser und organischen Lösungsmitteln s. Tabelle 1, S. 436. Löslichkeit (g Naphthalin in 100 g Lösungsmittel) in 1.1.2.2-Tetrachlor-äthan bei 30,0° und Drucken zwischen 0 Atm. (35,07) und 1000 Atm. (20,89): Cohen, de Meester, Moesveld, Ph. Ch. 114, 331; Versl. Akad. Amsterdam 33, 791; C. 1925 I, 1274; bei 20—25° in Alkohol: 9,80; in Chinolin: 3,02 sowie in 1 Mol Alkohol + 1 Mol Chinolin: 4,69 (Pucher, Dehn, Am. Soc. 43, 1755). Löslichkeit in Athylpropyläther, Athylisopropyläther, Dibutyläther sowie cyclischen Athern wie Pentamethylenoxyd bei verschiedenen Temperaturen: Bennett, Philip, Soc. 1928, 1940. Löslichkeit in [2-, 3- und 4-Nitro-benzyl]-diäthylamin bei verschiedenen Temperaturen: Bennett, Nabot, Cr. 176, 1619; J. Chim. phys. 20, 486. — Kritische Lösungstemperatur von Gemischen mit geschmolzenem weißem Phosphor: Hildebrand, Buehrer, Am. Soc. 42, 2217.

Kryoskopisches Verhalten von Naphthalin in Benzol: Schläffer, Flachs, Helv. 10, 385; in Gegenwart von Phosphorpentoxyd oder Hydraten des Natriumsulfats: Jones, Bury, Soc. 127, 1949. Einfluß auf den Erstarrungspunkt eines Gemisches aus gleichen Gewichtsteilen Alkohol und Benzol: Wright, Soc. 127, 2337. Kryoskopisches Verhalten in Nitrobenzol bei Gegenwart oder Abwesenheit von Feuchtigkeit, Phosphorpentoxyd oder Hydraten des Natriumsulfats: Brown, Bury, Soc. 125, 2224; in Zimtsäure: Falciola,

G. 52 I. 177.

# KOHLENWASSERSTOFFE Cn H2n-12

Tabelle 1. Löslichkeit von Naphthalin in Wasser und organischen Lösungsmitteln 1).

| Lösungsmittel                         | Temperatur<br>0                                                           | g<br>Naphthalin                  | Lösungsmittel                    | g Naphthalin<br>in 100 g Lösung |
|---------------------------------------|---------------------------------------------------------------------------|----------------------------------|----------------------------------|---------------------------------|
| Wasser                                | 15 ²)                                                                     | 0,022                            | 100                              |                                 |
| Tetrachlorkohlenstoff                 | 25<br>0,4 ³)                                                              | 0,040<br>0,536                   | 100<br>4,743                     |                                 |
| Äthylidenchlorid                      | 72,4<br>33,0 4)                                                           | 3,000<br>1,259                   | 0,596<br>1,629                   |                                 |
| Äthylenchlorid                        | 75,6<br>27,2 <sup>4</sup> )                                               | 2,637<br>1,193                   | 0,180<br>1,821                   |                                 |
| Athylidenbromid                       | 75,7<br>23,9 4)                                                           | 2,386<br>1,016                   | 0,164<br>3,239                   |                                 |
| Athylenbromid                         | 74,3<br>20,7 <sup>4</sup> )                                               | 2,231<br>1,065                   | 0,370<br>4,287                   |                                 |
| Hexan                                 | 76,8<br>8,7 ³)                                                            | 2,213<br>0,200                   | 0,184<br>2,035                   |                                 |
| Dekalin                               | 72,5<br>10 <sup>5</sup> )                                                 | 3,000                            | 0,367                            | 10,3                            |
| Cetralin                              | 48<br>-14 5)                                                              |                                  |                                  | 76,5<br>10                      |
| Benzol                                | $ \begin{array}{c c} +36 \\ -5,0 & \\ +41,0 \\ 1,1 & \\ \end{array} $     | 26,86<br>128,45<br>1,000         | 100<br>100<br>3,424              | 60<br>21,23<br>56,20            |
| Chlorbenzol                           | 70,3<br>4,2 3)<br>62,6                                                    | 3,000<br>1,000<br>3,000          | 0,368<br>3,865<br>1,047          |                                 |
| Nitrobenzol                           | . 2,9 <sup>3</sup> ) 71,8                                                 | 0,710<br>3,000                   | 3,548<br>0,501                   |                                 |
| l'oluol                               | $ \begin{array}{c} -26,0 & 6 \\ +41,0 \\ -15,0 & 7 \\ +40,0 \end{array} $ | 10,15<br>104,45                  | 100<br>100                       | 9.19<br>51,10<br>13,0<br>48,8   |
| Cylol ,                               | 8,2 3)<br>67,4<br>—26,0 6)                                                | 1,000<br>3,000<br>2,77           | 3,209<br>0,771<br>100            | 2,69                            |
|                                       | $^{+41,0}_{-22,0}$                                                        | 90,06                            | 100                              | 47,35<br>4,7                    |
| Cymol                                 | 44,7<br>30 8)<br>0,8 3)                                                   | 14,22<br>0,100                   | 100<br>2,310                     | 50,0                            |
| Butylalkohol                          | 74,3<br>11,7 ³)                                                           | 3,000<br>0,200                   | 0,165<br>2,746                   |                                 |
| yclohexanol                           | 76,0<br>10 <sup>5</sup> )                                                 | 3,000                            | 0,184                            | 5,1                             |
| fethylcyclohexanol (,,Methylhexalin") | 50<br>10 <sup>5</sup> )<br>45                                             |                                  |                                  | 35,4<br>3,9<br>41,2             |
| ceton                                 | 6,3 *)<br>69,5                                                            | 1,000<br><b>3,</b> 000           | 3,124<br>0,324                   | ,-                              |
| Cisessig                              | 15,6 <sup>3</sup> )<br>75,1<br>0,6 <sup>3</sup> )<br>74,4                 | 0,300<br>3,000<br>0,400<br>3,000 | 3,082<br>0,313<br>3,896<br>0,296 |                                 |

<sup>1)</sup> Bei den Angaben über die Löslichkeit in organischen Lösungsmitteln sind nur die bei den obersten und untersten Versuchstemperaturen ermittelten Werte aufgenommen. — 2) MITCHELL, Soc. 1926, 1336. — 3) WARD, J. phys. Chem. 30, 1324. — 4) SUNIER, ROSENBLUM, J. phys. Chem. 32, 1053. — 5) WEISSENBERGER, Z. ang. Ch. 40, 776. — 6) SCHLÄPFER, FLACHS, Helv. 10, 383. — 7) RHODES, EISENHAUER, Ind. Eng. Chem. 19, 415; C. 1928 I, 196. — 6) WHEELER, Am. Soc. 42, 1844.

Thermische Analyse der binären Systeme mit Cyclohexan (Eutektikum bei -5,6° und 5,6 Mol-% Naphthalin): Linard, Bl. Soc. chim. Belg. 34, 386; C. 1926 I, 2427; mit 1.3-Dinitro-benzol (Eutektikum bei 51° und 56 Mol.-% Naphthalin): Puschin, Ph. Ch. 124, 18; mit 1-Nitro-naphthalin: PASCAL, Bl. [4] 27, 388; mit 2.4.6-Trinitro-m-xylol (Eutektikum bei 76,0° und ca. 82 Gew.-% Naphthalin): Jefremow, Tichomirowa, Izv. Inst. fiz.-chim. Anal. 4, 69, 77; C. 1929 I, 745; mit tert.-Butylalkohol (Eutektikum bei 19° und 5 Gew.-% Anal. 4, 69, 77; C. 1929 1, 745; mit tert.-Butylalkohol (Eutektikum bei 19° und 5 Gew.-% Naphthalin): Kremann, Mitarb., M. 43, 332; mit 4-Nitrophenol und mit Pikrinsäure: RHEINBOLDT, J. pr. [2] 111, 249, 253; mit o-Kresol: Rhodes, Hance, J. phys. Chem. 25, 493; mit  $\alpha$ -Naphthol: E. Quercigh, Sulle relazioni cristallografiche e d'isomorfismo fra naftalina,  $\alpha$ -naftolo e  $\beta$ -naftolo [Turin 1919], S. 33; C. 1920 III, 834; mit  $\beta$ -Naphthol (bildet eine lückenlose Reihe von Mischkrystallen): Quercigh; Rheinboldt, Kircheisen, J. pr. [2] 113, 202; mit Brenzcatechin: Rhei, J. pr. [2] 111, 251; mit Guajacol: Puschin, Varó, M. 47, 534; mit Triphenylcarbinol: Kremann, Mitarb., M. 43, 333. Thermische Analyse der binären Systeme mit Campher: Jefremow, Izv. imp. Akad. Petrog. [6] 9 [1915], 1327. Izv. soss. Akad. [6] 13 [1919], 768; C. 1925 I. 1932; II. 524; mit Chinon: Kremann Analyse der binären Systeme mit Campher: Jefremow, Izv. imp. Akad. Petrog. [6] 9 [1915], 1327; Izv. ross. Akad. [6] 13 [1919], 768; C. 1925 I, 1932; II, 524; mit Chinon: Kremann, Mitarb., M. 43, 308; mit Benzoesäure: Puschin, Wilowitsch, B. 58, 2864; mit Salol: Angeletti, Giorn. Farm. Chim. 77, Nr. 4, S. 20; C. 1928 I, 2845; mit Tetryl (N-Nitro-N-methyl-2.4.6-trinitro-anilin): Je., Tichomirowa, Izv. Inst. fiz.-chim. Anal. 4, 94, 105; C. 1929 I, 745; mit N-Allyl-N'-phenyl-thioharnstoff: Schischokin, Z. anorg. Ch. 181, 145; C. 1929 I, 2957; mit β-Naphthylamin: Rheinboldt, Kircheisen, J. pr. [2] 113, 205; mit Phthalsäureanhydrid: Monroe, Ind. Eng. Chem. 11 [1919], 1120. Über Mischkrystalle mit 1.2-Dihydro-naphthalin (F: 56°) und mit 1.4-Dihydro-naphthalin (F: 41,5°) vgl. Straus, Lemmel, B. 54, 26, 33; Str., B. 46 [1913], 1051.

Zustandsdiagramm des quaternären Systems Naphthalin-β-Naphthol-Azobenzol-Stilben: Wahl. III. Nordiska kemistmötet förbandlingar och föredrag [Helsingfors 1928]. S. 181.

WAHL, III. Nordiska kemisimötet, förhandlingar och föredrag [Helsingfors 1928], S. 181; C. 1929 I, 1413.

Ebullioskopisches Verhalten von Naphthalin in Schwefelkohlenstoff: WALDEN, Izv. imp. Akad. Petrog. [6] 9 [1915], 248; C. 1925 I, 1674; in Methanol-Schwefelkohlenstoff-Gemischen: Drucker, Weissbach, Ph. Ch. 117, 213; Dr., Z. El. Ch. 31, 409. Siedepunkte von Gemischen mit 1-Nitro-naphthalin: Varma, Menon, J. indian chem. Soc. 3 [1926], 331. Binäre azeotrope Gemische, die Naphthalin enthalten, s. in der Tabelle 2. — Dampfdruck von Naphthalin-Benzolwaschöl-Gemischen bei 0—40°: Bunte, Gas-Wasserfach 66, 490, 509; C. 1924 I, 1295; B., Pippig, Gas-Wasserfach 66, 659; C. 1924 I, 1296.

Tabelle 2. Naphthalin enthaltende binäre Azeotrope.

| Komponente                                                                                                                                                                                                                                                                                                                                                                       | Kp <sub>760</sub>                                                                               | Naphthalin<br>in Gew%                                                        | Komponente | Kp <sub>760</sub><br>0                                                            | Naphthalin<br>in Gew%                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------|
| 1.3.5-Triäthylbenzol <sup>5</sup> ) d-Citronellol <sup>6</sup> ) Menthol <sup>3</sup> ) Terpineol <sup>2</sup> ) Borneol <sup>1</sup> ) <sup>8</sup> ) 4-Chlor-phenol <sup>1</sup> ) 2-Nitro-phenol <sup>10</sup> ). m-Kresol <sup>9</sup> ) Benzylalkohol <sup>8</sup> ) <sup>9</sup> ). β-Phenäthylalkohol <sup>2</sup> ) γ-Phenyl-propylalkohol <sup>8</sup> ) <sup>8</sup> ) | ca. 215,0<br>ca. 217,8<br>215,15<br>212<br>213,0<br>216,3<br>215,75<br>202,08<br>204,1<br>214,2 | 15<br>70<br>74,5<br>ca. 45<br>35<br>63,5<br>40<br>97,2<br>40<br>56<br>ca. 80 | Glykol 2)  | 183,9<br>217,45<br>214,65<br>199,55<br>187,1<br>264,65<br>202,0<br>216,2<br>217,7 | 49<br>88,5<br>ca. 28<br>72,8<br>22<br>68,5<br>ca. 30<br>94<br>95 |

1) Lecat, R. 47, 16, 17. — 2) L., Ann. Soc. scient. Bruxelles 45 I [1926], 172, 173. — 3) L., Ann. Soc. scient. Bruxelles 45 I, 287, 290. — 4) L., Ann. Soc. scient. Bruxelles 47 I [1927], 25. — 5) L., Ann. Soc. scient. Bruxelles 47 I, 110, 112. — 6) L., Ann. Soc. scient. Bruxelles 48 I [1928], 58. — 7) L., Ann. Soc. scient. Bruxelles 48 II [1928], 117, 118. — 6) L., Ann. Soc. scient. Bruxelles 48 II [1928], 117, 118. — 7) L., Ann. Soc. scient. Bruxelles 49 [1929], 21, 22. — 10) L., Ann. Soc. scient. Bruxelles 49 [1929], 21, 22. — 10) L., Ann. Soc. scient. Bruxelles 49 [1929], 21, 22. — 10) L., Ann. Soc. scient. Bruxelles 49 [1929], 21, 22. — 10) L., Ann. Soc. scient. Bruxelles 49 [1929], 21, 22. — 10) L., Ann. Soc. scient. Bruxelles 49 [1929], 21, 22. — 10) L., Ann. Soc. scient. Bruxelles 49 [1929], 21, 22. — 10) L., Ann. Soc. scient. Bruxelles 49 [1929], 21, 22. — 10) L., Ann. Soc. scient. Bruxelles 49 [1929], 21, 22. — 10) L., Ann. Soc. scient. Bruxelles 49 [1929], 21, 22. — 10) L., Ann. Soc. scient. Bruxelles 49 [1929], 21, 22. — 10) L., Ann. Soc. scient. Bruxelles 49 [1929], 21, 22. — 10) L., Ann. Soc. scient. Bruxelles 49 [1929], 21, 22. — 10) L., Ann. Soc. scient. Bruxelles 49 [1929], 21, 22. — 10) L., Ann. Soc. scient. Bruxelles 49 [1929], 21, 22. — 10) L., Ann. Soc. scient. Bruxelles 49 [1929], 21, 22. — 10) L., Ann. Soc. scient. Bruxelles 49 [1929], 21, 22. — 10) L., Ann. Soc. scient. Bruxelles 49 [1929], 21, 22. — 10) L., Ann. Soc. scient. Bruxelles 49 [1929], 21, 22. — 10) L., Ann. Soc. scient. Bruxelles 49 [1929], 21, 22. — 10) L., Ann. Soc. scient. Bruxelles 49 [1929], 21, 22. — 10) L., Ann. Soc. scient. Bruxelles 49 [1929], 21, 22. — 10) L., Ann. Soc. scient. Bruxelles 49 [1929], 21, 22. — 10) L., Ann. Soc. scient. Bruxelles 49 [1929], 21, 22. — 10) L., Ann. Soc. scient. Bruxelles 49 [1929], 21, 22. — 10]

Dichte von Gemischen mit Chloroform zwischen 6° und 22°: DE KOLOSSOWSKY, Bl. Soc. chim. Belg. 34 [1925], 229; bei 20° und 40°: GRUNERT, Z. anorg. Ch. 164, 257; mit Tetrachlorkohlenstoff zwischen 15° und 32°: DE K.; bei 20°, 40° und 60°: GR.; HERZ, SCHE-LIGA, Z. anorg. Ch. 169, 162; mit Äthylenbromid bei 17,4°: KROLLPFEIFFER, A. 430, 202; mit Hexan bei 25°: Williams, Ogg, Am. Soc. 50, 98; mit Benzol zwischen 10° und 32,3°: DE K.; bei 20°, 40° und 60°: Gr.; H., Sch.; mit Nitrobenzol bei 14,6°: Kroll.; mit Toluol zwischen 7º und 31º: DE K.; bei 20º, 40º und 60º: GR.; H., SCH.; mit Anisol bei 16,6º und 16,8º und mit m-Kresol bei 18º: Kroll.; mit Aceton bei 15,7º: Kroll.; bei 20º und 40º: GR.; H., SCH.; mit Cyclohexanon bei 17,6º und 17,8º und mit Acetophenon bei 14,9º: Kroll.; mit Benzoesäureisoamylester bei 15,5º und 15,6º und mit Phthalsäurediäthylester bei 17,5º: Kroll.; mit Schwefelkohlenstoff bei 25º: Williams, Ogg; bei 20º und 40º: Grunert; Herz, SCHELIGA; mit Anilin bei 17,2º und 17,8º, mit Diäthylanilin bei 12,9º und 13,2º sowie mit Pyridin bei 16,9º und 17,0º und mit Chinolin bei 16,8º und 16,9º: Krollpfeiffer. Spezifisches Volumen von binären Gemischen mit 1.1.2.2-Tetrachlor-äthan und Benzol bei 30º: Cohen, De Meester, Moesveld, Ph. Ch. 108, 105; R. 42, 780.

Viscosität von Gemischen mit Schwefel zwischen 140° und 206°: Mondain-Monval, Schneider, C. r. 186, 751; Bl. [4] 43, 1319; mit Chloroform zwischen 6,1° und 21,5°: DE Kolossowski, Bl. Soc. chim. Belg. 34, 228; C. 1926 I, 1097; G. 55, 854; mit Tetrachlor-kohlenstoff zwischen 15° und 32°: DE K.; bei 20°, 40° und 60°: Herz, Scheliga, Z. anorg. Ch. 169, 162; mit Benzol zwischen 10° und 32,3°: DE K.; bei 20°, 40° und 60°: H., Sch.; mit Toluol zwischen 7° und 31°: DE K.; bei 20°, 40° und 60°: H., Sch.; mit Aceton und Schwefel-kohlenstoff bei 20° und 40°: H., Sch.

Oberflächenspannung von Lösungen in Benzol: Schechtman, Izv. imp. Akad. Petrog. [6] 13 [1919], 661; C. 1925 II, 530; von Lösungen von Naphthalin sowie von gleichen Teilen Naphthalin und Phenanthren in Tetrachlorkohlenstoff, Benzol und Toluol bei 20°, 40° und 60° und in Aceton und Schwefelkohlenstoff bei 20° und 40°: Herz, Knaebel, Ph. Ch. 131, 402. Bewegung auf Wasser: Karczag, Roboz, Bio. Z. 162, 23. Kontaktwinkel mit Wasser: Nietz, J. phys. Chem. 32, 261. Adhäsion an Stahl: Nottage, Pr. roy. Soc. [A] 118, 615; C. 1929 I, 731.

Wärmetönung der Auflösung in Benzol, Alkohol, Äther, Aceton, Eisessig, Schwefelkohlenstoff und Anilin: Gehlhoff, Ph. Ch. 98, 254.

Optische und elektrische Eigenschaften. Brechungsindices (nα, n<sub>D</sub>, nβ und nγ) binärer Gemische mit Äthylenbromid, Nitrobenzol, Anisol, m-Kresol, Aceton, Cyclohexanon, Acetophenon, Benzoesäureisoamylester, Phthalsäurediäthylester, Anilin, Diäthylanlin, Pyridin und Chinolin bei ca. 13—18°: Krollffelffer, A. 430, 202. n<sup>∞</sup> ternärer Gemische mit Tetralin und eis-Dekalin: Willstätter, Seitz, B. 56, 1392. — Gemische von Borsäure und wenig Naphthalin zeigen nach Ultraviolettbestrahlung mattgrünes Nachleuchten (Tiede, Ragoss, B. 56, 658).

Elektrische Leitfähigkeit von Lösungen in Ather bei 25°: Rabinowitsch, Ph. Ch. 119, 76; Ж. 58, 235. Dielektr. Konst. binärer Gemische mit Hexan und Schwefelkohlenstoff bei 25°: Williams, Ogg, Am. Soc. 50, 96. Elektrische Doppelbrechung von Naphthalin-Pulversuspensionen in Benzol und Toluol: Procopiu, C. r. 172, 1173; Ann. Physique [10] 1, 252. — Magnetische Doppelbrechung von Lösungen in Tetrachlorkohlenstoff: Ramanadham, Indian J. Phys. 4, 111; C. 1929 II, 3216.

#### Chemisches Verhalten.

Einwirkung von Wärme und Elektrizität. Naphthalin wird beim Erhitzen auf 425° unter 30 Atm. Druck im Eisenautoklaven kaum verändert; beim Erhitzen auf 475° unter 25—50 Atm. Druck entsteht in sehr geringer Menge Dinaphthyl-(2.2') (SSACHANEN, TILITSCHEJEW, B. 62, 664). Zersetzt sich an einem glühenden Wolfram-Draht bei Temperaturen über 1227° und geringen Drucken unter Bildung von Wasserstoff und Kohlenstoff (Andrews, Dushman, J. Franklin Inst. 192, 545; C. 1922 I, 1318). Naphthalin zersetzt sich im elektrischen Lichtbogen unter Bildung von Acetylen, wenig Methan, geringen Mengen Kohlenwasserstoffen CnH2n und viel Wasserstoff (Contard, Atti Congr. naz. Chim. ind. 1924, 369; C. 1925 I, 2346). Bei der Zersetzung durch Glimmstrom-Entladung entstehen Kohlenstoff, Wasserstoff und andere Zersetzungsprodukte (Kohlschütter, Frumkin, B, 54, 592). Naphthalin gibt bei der Einw. einer elektrischen Glimmentladung in Wasserstoff-Atmosphäre Acetylen, in Stickstoff-Atmosphäre Blausäure (F. Fischer, Peters, Ph. Ch. [A] 141, 193, 194). Durch Einw. von Teslaentladungen entsteht eine geringe Menge einer Verbindung C24H30O, die sich bei ca. 300° schwärzt und bei 350° noch nicht geschmolzen ist (Bhatnagar, Sharma, Mitra, J. indian chem. Soc. 5, 381; C. 1928 II, 1971).

Oxydation. Naphthalin ist bei 160° sehr wenig autoxydierbar (Moureu, Dufraisse, Chaux, C. r. 184, 414). Liefert beim Erhitzen mit Luft unter Druck auf 260° Phthalsäureanhydrid, Kohlendioxyd und geringe Mengen Ameisensäure, Essigsäure und Oxalsäure (Schrader, Abh. Kenntnis Kohle 4, 333; C. 1921 I, 537). Oxydation von Naphthalin-Dampf zu Phthalsäure bzw. Phthalsäureanhydrid durch Luft in Gegenwart verschiedener, insbesondere Vanadinsäure enthaltender Katalysatoren: Conover, Gibbs, J. ind. Eng. Chem. 14. 120; C. 1922 I, 809; Maxted, J. Soc. Chem. Ind. 47, 104 T; C. 1928 I, 3029; Kusama, Bl. phys. chem. Res. Tokyo 1, 105; C. 1929 I, 752; Wohl, D. R. P. 379822; C. 1923 IV,

439

663; Frdl. 14, 450; Verein für chem. und metallurg. Produktion, D. R. P. 478192; C. 1929 II, 3251; Frdl. 16, 671; in Gegenwart von Aluminiumoxyd bei 400-450°: Conover, GIBBS; BARRETT Co., A. P. 1374722; C. 1922 II, 1055. Verhalten bei der Oxydation mit Luft in Gegenwart und Abwesenheit von Quecksilber bei 183—184°: Kailan, Ölbrich, M. 48, 540. Verhalten bei der Verbrennung im Motor: Brutzkus, C. r. 176, 1810. Naphthalin wird durch Chromschwefelsäure nur teilweise zu Kohlendioxyd verbrannt, vollständiger verläuft die Verbrennung mit Silberchromat (Simon, C. r. 177, 266). Wird von 2n-Permanganat-Lösung in der Kälte nicht angegriffen (Schläpfer, Flachs, Monats-Bull. Schweiz. Ver. Gas-Wasserfachmänner 8 [1928], 255). Oxydation durch Brom und konz. Salpetersäure zu einem Gemisch von Bromnitromethanen: Datta, Chatterjee, Am. Soc. 45, 480. Bei der Oxydation mit Chlorpikrin am Licht entstehen ca. 9% Benzoesäure und ca. 7% Phthalsäure (PIUTTI, BADOLATO, R. A. L. [5] 33 I, 477). Phthalsäure entsteht auch beim Erhitzen von Naphthalin mit Anhydropyridinschwefelsäure bei Gegenwart von Quecksilber(II)-chlorid auf 135—140° (BATTEGAY, BRANDT, Bl. [4] 33, 1673 Anm. 1).

Reduktion. Hydrierung von ungereinigtem Naphthalin zu Tetralin in Gegenwart von Legierungen aus Natrium und Kalium (NaK oder NaK<sub>2</sub>): Comp. d'Alais, D. R. P. 473457; C. 1929 I, 2825; Frdl. 16, 659; GUYOT, Chim. et Ind. 19 Sondernummer, S. 410; C. 1928 II, 1561. Bei der Hydrierung nach Leroux (A. ch. [8] 21, 466; H 535) bei 160—162° in Gegenwart von bei 250° reduziertem Nickel entsteht überwiegend trans-Dekalin (WILLSTÄTTER, SEITZ, B. 57, 684). Zelinsky (B. 56, 1723) konnte bei der Hydrierung in Gegenwart von bei 300° reduziertem Nickel nur Tetralin erhalten. Nach Lush (J. Soc. chem. Ind. 46, 454 T; C. 1928 I, 1358) entsteht bei der Hydrierung in Gegenwart eines Nickelkatalysators aus Naphthalin-Dampf ausschließlich Tetralin, aus flüssigem Naphthalin ausschließlich Dekalin. Bei der Hydrierung bei Gegenwart von Platinmohr mit beträchtlichem Sauerstoffgehalt in Eisessig erhält man im wesentlichen Tetralin, bei niedrigem Sauerstoffgehalt des Platinmohrs hauptsächlich cis-Dekalin (WILLSTÄTTER, SEITZ, B. 56, 1396, 1406; vgl. W., S., B. 57, 683). Hydrierung zu Tetralin in Gegenwart von Nickel oder geeigneten Nickelverbindungen bei erhöhter Temperatur (H 535) unter Druck: SCHROETER, A. 426, 13; Tetralin-Ges., D. R. P. 324861; C. 1921 II, 448; Frdi. 13, 303; in Gegenwart von Nickel-Aluminiumoxyd und Nickel-Kieselsäure: Lush; in Gegenwart verschiedener Gemische aus Kupferoxyd, Nickeloxyd, Manganoxyd und Thoriumoxyd: Agfa, D.R.P. 298541, 298553, 301275, 369944; C. 1921 II, 559; 1923 II, 915; Frdl. 13, 310, 311; 14, 462. Hydrierung in Gegenwart von Nickelcarbonat bei 200—280° unter Druck: N. V. Chem. Maatschappy Vega, D.R.P. 424702; Frdl. 14, 1485. Beim Leiten von Naphthalin im Wasserstoffstrom über 25% igen Osmiumasbest bei 100—120° entsteht cis-Dekalin (Zelinsky, Turowa-Pollak, B. 62, 2867). Über Grenztemperaturen bei der Hydrierung von Naphthalin bei hohen Temperaturen und Drucken (Berginisierung) und den Einfluß von Katalysatoren wie Aluminiumchlorid darauf vgl. KLING, FLORENTIN, C. r. 182, 390, 526; 184, 822; Bl. [4] 41, 864; Hugel, Friess, Bl. [4] 41, 1185; Spilker, Zerbe, Z. ang. Ch. 39, 1139. Bei längerem Erhitzen von Naphthalin mit Wasserstoff in Gegenwart von Nickeloxyd + Aluminiumoxyd auf 450—480° unter 100 Atm. Druck entstehen Benzol, Toluol, o-Xylol, Tetralin und andere Produkte (Іратиєж, 100 Atm. Druck entstehen Benzol, Toluol, o-Xylol, Tetralin und andere Produkte (IPATJEW, KLJUKWIN, B. 58, 2; M. 56, 246). Bei der Reduktion von Naphthalin mit Natrium und absol. Alkohol nach Bamberger, Lodter (B. 20, 3075; A. 288, 75; H 535) entsteht 1.4-Dihydronaphthalin, das sich durch Einw. von Natriumäthylat in der Wärme in 1.2-Dihydro-naphthalin unlagert; außerdem entsteht wenig Tetralin (Straus, Lemmel, B. 54, 28, 32; Str., B. 46 [1913], 1053; s. a. Hückel, Bretschneider, A. 540 [1939], 164). Gibt bei der Reduktion mit Natrium und langsam zutropfendem Wasser in Solventnaphtha bei ca. 1450 hauptsächlich Tetralin, in Petroleum bei 115—1200 hauptsächlich Dihydronaphthalin (Chem. Fabr. Crischeim Elektrop, D. R. P. 370074. C. 1923 IV 530. Fedl 14, 456). Finw von Natrium Griesheim-Elektron, D.R.P. 370974; C. 1923 IV, 539; Frdl. 14, 456). Einw. von Natriumammonium in flüssigem Ammoniak auf Naphthalin führt zur Bildung von Tetralin (LEBEAU, Picon, C. r. 175, 224).

Halogenierung. Bei der Einw. von Chlor auf Naphthalin-Dampf bei 250-350° in An- oder Abwesenheit von Katalysatoren entsteht hauptsächlich 1-Chlor-naphthalin, neben wenig Dichlornaphthalin (Ferrero, Wunenburger, Helv. 11, 418). Die Einw. von 2 Atomen Chlor auf geschmolzenes Naphthalin oder Lösungen von Naphthalin in Tetrachlorkohlenstoff, Benzol, Chlorbenzol oder p-Dichlorbenzol führt hauptsächlich zur Bildung von 1-Chlornaphthalin, neben geringen Mengen Dichlornaphthalin (besonders 1.4-) und Trichlornaphthalin; über den Einfluß des Lösungsmittels, der Verdünnung, der Temperatur und von Katalysatoren auf diese Chlorierung vgl. Ferr., Fehlmann, Helv. 12, 584. Die Monochlorierung wird durch Jod, die Polychlorierung durch Eisenchlorid und Kälte begünstigt (Ferr., Wun.; FERR., FEHL., Helv. 12, 589; J. pr. [2] 122, 341). Über Monochlorierung bei Gegenwart von Eisenspänen in Benzol vgl. Traubenberg, Wasserman, J. pr. [2] 120, 177; vgl. dagegen FERR., FEHL., J. pr. [2] 122, 341. Bei der Einw. von unterchloriger Säure auf Naphthalin erhielt Klingstedt (Acta Acad. Abo. 4, Nr. 2, S. 5; C. 1928 I, 503, 504; vgl. Neuhoff, A. 136 [1865], 342) Naphthalindichlorid C<sub>10</sub>H<sub>8</sub>Cl<sub>2</sub> (vgl. H 5, 519), 1.2.3.4-Tetrachlor1.2.3.4-tetrahydro-naphthalin, 1-Chlor-naphthalin, 1.4-Dichlor-naphthalin und andere Produkte in wechselnden Mengen je nach der Konzentration der Säure. Liefert mit Diselendibromid in Schwefelkohlenstoff bei Gegenwart von Aluminiumbromid 1-Brom-naphthalin und α.α-Dinaphthyl (Loevenich, Sipmann, J. pr. [2] 124, 132). Gibt mit Brom in Gegenwart von Aluminiumbromid ein x-Hexabromnaphthalin vom Schmelzpunkt 312° (Bodroux, A. ch. [10] 11, 549; Zelinsky, Turowa-Pollak, B. 62, 1659). Beim Erhitzen mit 3 Tln. Brom und 1 Tl. Jod auf 310° erhält man ein weiteres x-Hexabromnaphthalin (S. 449) (Missenden, Chem. N. 125, 158; C. 1923 I, 165).

Nitrierung. Nach Lenchold (Ž. chim. Promyšl. 6, 805; C. 1929 II, 2886) entsteht bei der Mononitrierung von Naphthalin (H 536) nicht nur 1-Nitro-naphthalin, sondern auch in geringer Menge 2-Nitro-naphthalin. Zur Nitrierung zu 1-Nitro-naphthalin mit Salpetersäure (D: 1,33) nach Piria (A. 78, 32; H 536) vgl. Oddo, G. 55, 179, 180. Ausbeuten an 1-Nitro-naphthalin bei der Nitrierung in Gegenwart von konz. Schwefelsäure, Acetanhydrid, Calciumoxyd (so im Original), Calciumsulfat, Phosphorpentoxyd und Nitrosulfonsäure als wasserentziehenden Mitteln: Varma, Menon, J. indian chem. Soc. 3, 329; C. 1927 I, 1433. 1-Nitro-naphthalin entsteht auch beim Einleiten von Stickoxyden (aus arseniger Säure und Salpetersäure) in geschmolzenes Naphthalin (Varma, Menon) oder bei der Einw. von Stickstoffdioxyd bzw. Distickstofftetroxyd in konz. Schwefelsäure (Pinck, Am. Soc. 49, 2539); beim Einleiten von Stickstoffdioxyd oder Stickstoffmonoxyd in geschmolzenes Naphthalin entstehen nur geringe Mengen 1-Nitro-naphthalin (Varma, Menon). 1-Nitro-naphthalin erhält man ferner aus Naphthalin beim Eintragen von Naphthalin in verd. Schwefelsäure und Erhitzen auf 110° (Varma, Menon), bei der Einw. eines Gemisches aus Nitrosylschwefelsäure + rauchender Salpetersäure (D: 1,502) (Varma, Kulkarni, Am. Soc. 47, 145), beim Erhitzen mit einem Gemisch von Salpetersäure (D: 1,52), Pyridin und wasserfreiem Zinkchlorid auf 130°, neben 3-Nitro-phthalsäure (Battegat, Brandt, Bl. [4] 31, 914) und (in geringer Menge) beim Erhitzen mit Wismut(III)-nitrat (Spiegel, Haymann, B. 59, 203). Naphthalin liefert bei der Nitrierung mit verd. Salpetersäure bei Gegenwart von Quecksilber(II)-nitrat neben den gewöhnlichen Nitrierungsprodukten auch Nitroderivate des «-Naphthols (Davis, Am. Soc. 44, 1589).

Sulfurierung. Bei allmählicher Einw. von 1 Mol Schwefeltrioxyd auf die Lösung von Naphthalin in Chloroform bei 0—10° erfolgt Monosulfonierung, bei Einw. von 3 Mol Schwefeltrioxyd erhält man einen farblosen Niederschlag [Additionsverbindung aus 1 Mol Naphthalin-disulfonsäure-(1.5) und 2 Mol Schwefeltrioxyd], der beim Zersetzen mit Eis in Naphthalin-disulfonsäure-(1.5) und Schwefelsäure zerfällt (Courtot, Bonnet, C. r. 182, 856). Überführung in Naphthalin-monosulfonsäuren und Naphthalin-disulfonsäuren durch Erhitzen mit 1 bzw. 2 Mol Schwefelsäure unter kontinuierlicher Entfernung des gebildeten Wassers mit Hilfe von Tetrachlorkohlenstoff bei 100°: H. MEYER, A. 433, 333; mit Hilfe von Tetrachlorkohlenstoff, Ligroin oder Kohlendioxyd bei 140—170°: Gay, Aumeras, Mion, Chim. et Ind. 19, 390; Monit. Prod. chim. 11, Nr. 112, S. 8; C. 1928 I, 2988; II, 1198. Bei der Einw. von Naphthalin-Dampf auf 80—95%ige Schwefelsäure bei 220—245° entsteht hauptsächlich Naphthalin-disulfonsäure-(2.7) neben wenig Naphthalin-disulfonsäure-(2.6) und Spuren von Naphthalin-sulfonsäure-(2) (Ambler, Lynch, Haller, Ind. Eng. Chem. 16, 1264; C. 1925 I, 844). Naphthalin liefert beim Eintragen in rauchende Schwefelsäure unterhalb 35°, nachfolgenden 15-stdg. Aufbewahren des Reaktionsgemisches bei 20° und 1-stdg. Erwärmen auf 160° Naphthalin-trisulfonsäure-(1.3.6), Naphthalin-tetrasulfonsäure-(1.3.5.7) und ein Gemisch von Naphthalindisulfonsäuren (Fierz, Schmid, Helv. 4, 383). Beim Behandeln mit 2 Mol Chlorsulfonsäure in Tetrachlorkohlenstoff, am besten bei  $-5^{
m o}$  bis  $-15^{
m o}$ entstehen Naphthalin-sulfonsäure-(1) und Naphthalin-sulfonsäure-(1)-chlorid; mit 4 Mol Chlorsulfonsäure entstehen Naphthalin-disulfonsäure-(1.5) und Naphthalin-disulfonsäure-(1.5)dichlorid (Corbellini, Giorn. Chim. ind. appl. 9, 118; C. 1927 II, 929; vgl. a. Schuloff, Pollak, Riesz, B. 62, 1851). Gibt beim Erhitzen mit überschüssigem Chlorsulfonsäuremethylester Naphthalin-sulfonsäure-(1)-methylester und wenig (nicht rein erhaltenen) Naphthalin-sulfonsäure-(2)-methylester (FRÈREJACQUE, C. r. 183, 607; A. ch. [10] 14, 157, 159). Liefert mit überschüssiger Fluorsulfonsäure in Schwefelkohlenstoff bei 20—23° Naphthalinsulfonsäure (1)-fluorid; beim Eintragen von Naphthalin in 4 Tle. Fluorsulfonsäure bei 70° bis 80° entstehen Naphthalin-disulfonsäure-(1.5)-difluorid und ein Naphthalin-disulfonsäuredifluorid vom Schmelzpunkt 125° (STEINKOPF, J. pr. [2] 117, 46). Beim Erhitzen von Naphthalin mit Anhydropyridinschwefelsäure auf 170° erhält man vorwiegend Naphthalin sulfonsäure-(1) und wenig Naphthalin-sulfonsäure-(2) (BAUMGARTEN, B. 59, 1982; BATTEGAY, SCHNEIDER, Bl. [4] 41, 1941; BATT., BRANDT, Bl. [4] 33, 1673 Anm. 1); Herabsetzung der Temperatur begünstigt die Bildung von Naphthalinsulfonsäure-(2) (BATT., SCHN.). Sulfurierung und gleichzeitige Alkylierung von Naphthalin zu kernalkylierten Naphthalinsulfonsauren s. S. 441, 442.

Einwirkung weiterer anorganischer Verbindungen. Naphthalin liefert beim Erwärmen mit Phosphortrichlorid in Gegenwart von Aluminiumchlorid  $\alpha$ -Naphthyl-

dichlorphosphin (?) (LINDNER, STRECKER, M. 53/54, 275, 281; L., Fr. 66, 327). Gibt mit Lithium in Ather 1.4-Dilithium-1.4-dihydro-naphthalin (Syst. Nr. 2357) (SCHLENK, BERGMANN, A. 463, 85, 91; vgl. a. HÜCKEL, BRETSCHNEIDER, A. 540 [1939], 164). Reduktion mit Natrium s. S. 439. Naphthalin gibt mit Tantal(V)-chlorid je nach den Reaktionsbedingungen eine Additionsverbindung C<sub>10</sub>H<sub>8</sub>+TaCl<sub>5</sub> (S. 443), Naphthyltantalterachlorid oder Dinaphthyltantaltrichlorid (Funk, Niederländer, B. 61, 1386). Liefert in analoger Reaktion mit Niob(V)-chlorid Naphthylniobtetrachlorid und Dinaphthylniobtrichlorid (F., N.).

Beispiele für die Einwirkung organischer Verbindungen. Kondensation von Naphthalin mit Methylchlorid und Athylchlorid in Gegenwart von Zinkchlorid, Eisen(III)chlorid oder Aluminiumchlorid und Zinkoxyd oder Magnesiumoxyd bei 170-180° unter Druck: I. G. Farbenind., D. R. P. 483779; Č. 1929 II, 3252; Frdl. 16, 481. Bei Abwesenheit der Oxyde tritt keine Alkylierung ein, sondern Bildung höherer Kondensationsprodukte wie z. B. Dinaphthyl (I. G. Farbenind., D. R. P. 483779). Äthylierung von Naphthalin durch Einw. von Äthylen und Aluminiumchlorid unter Druck: WULFF, Z. ang. Ch. 41, 626; I. G. Farbenind., D. R. P. 505403; C. 1930 II, 2306; Frdl. 16, 477; durch Einw. von äthylierten Benzolen in Gegenwart von Aluminiumchlorid bei 80°: MILLIGAN, REID, Am. Soc. 44, 209. Liefert, heim Erwämmen mit Leonopylalbohol und 60° ion Schwefeleine Am. Soc. 44, 209. Liefert beim Erwärmen mit Isopropylalkohol und 60% iger Schwefelsäure 1-Isopropyl-naphthalin, 2-Isopropyl-naphthalin, 1.6-Diisopropyl-naphthalin, 2.6- und 2.7-Diisopropyl-naphthalin (nachgewiesen durch Überführung in die entsprechenden Naphthalindicarbonsaure-dimethylester), Triisopropyl- und Tetraisopropyl-naphthaline; beim Erwarmen mit Isopropylalkohol und konz. Schwefelsäure auf 40-45° erhält man eine x.x-Diisopropylnaphthalin-sulfonsäure-(1) (Schmelzpunkt des Chlorids: 119°); behandelt man Naphthalin bei 80° mit konz. Schwefelsäure und fügt bei 120° Isopropylalkohol zu, so erhält man ein Tetraisopropylnaphthalin und Sulfonsäuren der Triisopropyl- und Tetraisopropylnaphthaline (H. Meyer, Bernhauer, M. 53/54, 741, 747, 750). Einführung von Isopropylgruppen durch Behandlung mit Diisopropylbenzol in Gegenwart von Aluminiumchlorid bei 90°: Berry, Reid, Am. Soc. 49, 3149. Beim Erwärmen mit Isobutylalkohol und 80% iger Schwefelsäure auf 80-100° entsteht neben anderen Produkten x-Di-tert. butyl-naphthalin (F: 142°) (MEYER, BERNHAUER). Gibt mit Cyclohexen und Aluminiumchlorid in Schwefelkohlenstoff festes und flüssiges 2-Cyclohexyl-naphthalin und ein Dicyclohexyl-naphthalin (BODROUX, A. ch. [10] 11, 535, 541). Liefert bei der Einw. von Benzylchlorid in Gegenwart von Zinkchlorid je nach den Bedingungen wechselnde Mengen 1- und 2-Benzyl-naphthalin, 1.8-Dibenzyl-naphthalin, x-Dibenzylnaphthaline und ββ-Dinaphthyl (Dziewonski, Moszew, Bl. Acad. polon. [A] 1928, 283; C. 1929 I, 1104; vgl. a. Dz., Dziecielewski, Bl. Acad. polon. [A] 1927, 277; C. 1928 I, 57). Der bei der Einw. von 1.1.2.2-Tetrachlor-äthan und Aluminium chlorid auf Naphthalin und Destillation des Reaktionsprodukts unter vermindertem Druck erhaltene, von Homer (Soc. 97, 1148) als  $\alpha.\beta.\alpha'.\beta'$ -Dinaphthanthracen  $C_{22}H_{14}$  angesehene Kohlenwasserstoff wird als Perylen  $C_{20}H_{12}$  (Syst. Nr. 490) erkannt (Cook, Soc. 1931, 488; vgl. a. Clar, B. 62, 352).

Gibt mit Chlormethyl-āthyl-āther bei Gegenwart von Zinn(II)-chlorid in Äther (de Pommereau, C. r. 175, 106) oder bei der Einw. von Paraformaldehyd in Petroläther bei Gegenwart von Zinkchlorid (Blanc, Bl. [4] 33, 319) 1-Chlormethyl-naphthalin. Reaktion mit α.α'-Dichlor-dimethyläther: Stephen, Short, Gladding, Soc. 117, 512. Beim Leiten von Keten in eine Mischung von Naphthalin und Aluminiumchlorid in Schwefelkohlenstoff bei 0° entstehen Methyl-α-naphthyl-keton, Methyl-β-naphthyl-keton und andere Produkte, in siedendem Schwefelkohlenstoff erhält man ferner β.β-Dinaphthyl und geringe Mengen α.α-Dinaphthyl (Hurd, Am. Soc. 47, 2778). Bei der Einw. von Acetylchlorid auf Naphthalin in Gegenwart von Aluminiumchlorid (H 538) entstehen in Ligroin nahezu gleiche Mengen Methyl-α-naphthyl-keton und Methyl-β-naphthyl-keton, in Athylchlorid und Schwefelkohlenstoff bildet sich ausschließlich Methyl-α-naphthyl-keton, in Brombenzol hauptsächlich Methyl-α-naphthyl-keton, in Nitrobenzol hauptsächlich Methyl-β-naphthyl-keton (Chopin, Bl. [4] 35, 613). Durch Umsetzung mit Chloracetylchlorid bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff erhält man 69% Chlormethyl-β-naphthyl-keton (Morgan, Stanley, J. Soc. chem. Ind. 44, 494 T; C. 1926 I, 927). Überschüssiges Naphthalin liefert beim Erhitzen mit Chloracetylchlorid und Phosphorpentoxyd auf 150—180° ca. 84% Chlormethyl-α-naphthyl-keton und 16% Chlormethyl-β-naphthyl-keton (Schroefer, Müller, Huang, B. 62, 655). Kondensiert sich mit Trichloracetonitril in Gegenwart von Aluminiumchlorid und Chlorwasserstoff zu Trichlormethyl-α-und β-naphthyl-keton (Houben, Fischer, J. pr. [2] 123, 328; vgl. a. B. 66 [1933], 341).

E I 260, Z. 17 v. u. statt "C. r. 154" lies "C. r. 153".

Naphthalin gibt bei der Einw. von Bromcyan bei Gegenwart von Aluminiumchlorid ein Gemisch von  $\alpha$ - und  $\beta$ -Naphthonitril (Karrer, Rebmann, Zeller, Helv. 3, 261). Liefert mit Azodicarbonsäure-dimethylester in äther. Salzsäure in Gegenwart von wenig Jod 1.4-Bis-[N.N'-dicarbomethoxy-hydrazino]-naphthalin (Stollé, Adam, J. pr. [2] 111, 168). Beim

Schütteln mit Diphenyldisulfid-dicarbonsäure-(3.3') und Schwefelsäure in Petroläther entsteht x-Bis-[3-carboxy-phenylmercapto]-naphthalin (Smiles, Graham, Soc. 121, 2509). Gibt beim Kochen mit der Aluminiumchlorid-Verbindung der 2-Benzoyl-benzoesäure und Acetanhydrid in Benzol ein Gemisch von 3-Phenyl-3-α-naphthyl-phthalid und 3-Phenyl-3-β-naphthyl-phthalid (McMullen, Am. Soc. 44, 2057). Bei langsamem Erhitzen mit Benzylsulfonsäureazid auf 170° entsteht Benzylsulfonsäure-α-naphthylamid (Curtius, Haas, J. pr. [2] 102, 101). Gibt beim Kochen mit Oxalsäure-bis-phenylimidehlorid in Schwefelschlenstoff bei Gegenwart von Aluminiumchlorid Spuren von Acenaphthenchinon und amorphe Produkte (Staudinger, Goldstein, Schlenker, Helv. 4, 349).

Naphthalin liefert beim Erwärmen mit Phthalid bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff auf dem Wasserbad 2-[β-Naphthyl-methyl]-benzoesäure; reagiert analog mit 3-Phenyl-phthalid (King, Am. Soc. 49, 563). Kondensiert sich mit Bernsteinsäureanhydrid in Gegenwart von Aluminiumchlorid zu β-[Naphthoyl-(1)]-propionsäure und β-[Naphthoyl-(2)]-propionsäure (Borsche, Saueenneemer, B. 47 [1914], 1645; Giua, B. 47, 2115; Krollpfeiffer, Schäfer, B. 56, 623). Gibt beim Erwärmen mit Maleinsäureanhydrid bei Gegenwart von Aluminiumchlorid in Benzol β-[Naphthoyl-(2)]-acrylsäure; bei einem Versuch entstand nebenher in geringer Menge eine Verbindung vom Schmelzpunkt 158—159° (Oddy, Am. Soc. 45, 2157). Bei der Kondensation mit Phthalsäureanhydrid bei Gegenwart von Aluminiumchlorid in Benzol (H 538) entsteht neben 2-[Naphthoyl-(1)]-benzoesäure namentlich in der Wärme auch 2-[Naphthoyl-(2)]-benzoesäure (Willstätter, Waldschmidt-Leitz, B. 54, 1423; McMullen, Am. Soc. 44, 2058). Bildung von 2-Naphthoyl-benzoesäure durch Kondensation von Naphthalin mit Phthalsäureanhydrid in Gegenwart von Aluminiumchlorid ohne Verdünnungsmittel: I. G. Farbenind., D. R. P. 495447; C. 1931 I, 1675; Frdl. 16, 375. Liefert mit Chinolinsäureanhydrid bei Gegenwart von Aluminiumchlorid in heißem Benzol 3-β-Naphthoyl-pyridin-carbonsäure-(2) und 3-α-Naphthoyl-pyridin-carbonsäure-(2) (Jephcott, Am. Soc. 50, 1190).

### Physiologisches Verhalten; Verwendung.

Über gärungshemmende Wirkung des Naphthalins, Verwertung durch Bodenbakterien, bactericide und insecticide Wirkung, Verhalten im Organismus, Giftwirkungen bei Menschen und Tieren, besonders über Augenstörungen vgl. die Übersicht von H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 49—61. Über insecticide Wirkung s. ferner Tattersfield, Gimingham, J. Soc. chem. Ind. 46, 369 T; C. 1927 II, 1884. Über den Einfluß auf die Geschwindigkeit der alkoh. Gärung s. noch Mameli, Giorn. Chim. ind. appl. 8, 559; C. 1927 I, 1032.

Überführung in kernalkylierte Naphthalinsulfonsäuren und wasserlösliche Produkte, die als Textilhilfsmittel, Emulgierungsmittel oder schaumbildende Mittel dienen, durch Sulfurierung und gleichzeitige Einw. von Benzylchlorid: I. G. Farbenind., D. R. P. 436881, 466361, 472289, 472959; C. 1927 II, 2117; 1929 I, 1149, 3145, 3146; Frdl. 15, 1286; 16, 2122, 2125, 2126; von Methanol oder Alkohol: I. G. Farbenind., D. R. P. 476906, 478332; C. 1930 I, 3610; Frdl. 16, 2117, 2119; von Propyl-, Butyl-, Hexylalkohol oder Cyclohexanol: I. G. Farbenind., D. R. P. 449114, 451421, 469482, 481995, 493875; C. 1927 II, 2118, 2713; 1929 I, 1149; 1929 II, 2606; 1930 I, 3723; Frdl. 15, 1284, 1285; 16, 502, 2119, 2124; von Benzylchlorid + Butylalkohol: I. G. Farbenind., D. R. P. 449113; C. 1927 II, 2117; Frdl. 15, 1287; von Cellulose: BASF, D. R. P. 358126; C. 1922 IV, 912; Frdl. 14, 694; von Alkoholen und kernkondensierenden Mitteln wie Formaldehyd oder Schwefeldichlorid: I. G. Farbenind., D. R. P. 455588; C. 1928 I, 1714; Frdl. 16, 2120.

Überführung in ölige Kondensationsprodukte durch Einw. von Aralkylchloriden: BAYER & Co., D. R. P. 301713, 302521; C. 1921 II, 336; IV, 619; Frdl. 13, 673. Überführung in Harze durch Erhitzen mit Dischwefeldichlorid und Eisenpulver: Dubois & Kaufmann, D. R. P. 372664; C. 1923 IV, 600; Frdl. 14, 644; durch Chlorieren in Chloroform oder Tetrachloräthan und nachfolgendes Erhitzen mit Aluminiumchlorid oder mit Phenol und Eisenchlorid: AGFA, D. R. P. 332391, 334710; C. 1921 II, 652, 964; Frdl. 13, 680, 682; durch Kondensation mit Benzylchlorid: Höchster Farbw., D. R. P. 400312, 416904, 417442; C. 1925 I, 307; 1925 II, 2101; 1926 I, 508; Frdl. 14, 674; 15, 1149, 1150; durch Kondensation mit Tetralin: Schering-Kahlbaum, Freund, Jordan, D. R. P. 461358; C. 1929 I, 1052; Frdl. 15, 1823; durch Kondensation mit Aldehyden: Bayer & Co., D. R. P. 349741; C. 1922 IV, 50; Frdl. 14, 629; Chem. Fabr. Albert, D. R. P. 387836; C. 1924 II, 549; Frdl. 14, 634; Höchster Farbw., D. R. P. 403264; C. 1925 I, 307; Frdl. 14, 626; durch Behandeln des Kondensationsprodukts aus Naphthalin und Xylylchlorid mit Formaldehyd-Lösung und konz. Schwefelsäure: I. G. Farbenind., D. R. P. 446999; C. 1927 II, 1403; Frdl. 15, 1178; durch Kondensation mit Oxalsäure: Elektrochem. Werke, Bosshard, Strauss, D. R. P. 380577; C. 1924 I, 1715; Frdl. 14, 633; mit Glykolsäure oder Glykolid: E. W., B., St.,

D. R. P. 354864; C. 1922 IV, 397; Frdl. 14, 631; durch Erhitzen mit Schwefel und Naphthalinsulfonsäure: Hassler, D. R. P. 409713; C. 1925 I, 2730; Frdl. 14, 650.

Überführung in künstliche Gerbstoffe: BASF, D. R. P. 358126, 391315; C. 1922 IV. 912; 1924 I, 2053; Frdl. 14, 584, 607; Chem. Fabr. Worms, D. R. P. 382905, 386469, 386470; C. 1924 I, 2661; Frdl. 14, 574, 576, 577; Elektrochem. Werke, Bosshard, Strauss, D. R. P. 386012, 386930; C. 1924 I, 1730; Frdl. 14, 592, 594; Chem. Fabr. Weiler. Ter Meer, D. R. P. 397405; C. 1924 II, 1546; Frdl. 14, 578; Hassler, D. R. P. 399063, 407994; C. 1924 II, 1546; 1925 I, 2138; Frdl. 14, 601, 602; Riebecksche Montanwerke, D. R. P. 441399; C. 1927 I, 2263; Frdl. 15, 1296.

#### Analytisches.

Reinheitsprüfung: Berl-Lunge, Chemisch-technische Untersuchungsmethoden, 8. Aufl. Bd. IV [Berlin 1933], S. 303; Bd. V [1934], S. 1216. Naphthalin gibt mit Phosphorwolframsäure eine blaue Färbung (Scheiner, Bio. Z. 205, 252), mit Benzalchlorid und konz. Schwefelsäure in der Kälte eine fuchsinrote Färbung (Lippmann, Pollak, M. 23 [1902], 670).

Mikrochemischer Nachweis durch Krystallhabitus, Farbreaktionen und Überführung in additionelle Verbindungen mit 2.7-Dinitro-phenanthrenchinon, Chrysamminsäure und Pikrinsäure: Behrens-Kley, Organische mikrochemische Analyse [Leipzig 1922], S. 7. Zum Nachweis geringer Mengen in Mehl suspendiert man 50 g Mehl in 100 cm³ 10 %iger Schwefelsäure, destilliert mit Wasserdampf, extrahiert das Destillat mit Chloroform und erwärmt den Extrakt mit Aluminiumchlorid; bei Anwesenheit von 1 Tl. Naphthalin in 100000 Tln. Mehl tritt eine violette Färbung auf (Epstein, Harris, Cereal Chem. 3, 62; C. 1926 I, 3287).

Bestimmung von Naphthalin durch Sulfurierung mit Oleum, Oxydation der entstandenen Sulfonsäuren zu Sulfophthalsäuren mit Vanadinsäure und Rücktitration mit Kaliumpermanganat: Calcott, English, Downing, Ind. Eng. Chem. 16, 28; C. 1924 I, 1696. — Bestimmung in Luft: Berl.-Lunge, Chemisch-technische Untersuchungsmethoden, 8. Aufl. Bd. II [Berlin 1932], S. 437; in Benzol und Kraftstoffen: ebenda, Bd. II, S. 58, 127; Bd. IV [Berlin 1933], S. 294; Ergänzungswerk zur 8. Aufl. von J. D'Ans, Bd. II [Berlin 1939], S. 108; in Gas, Teer und Teerölen: Berl.-Lunge, Bd. I [1931], S. 668; Bd. IV, S. 105, 107, 165, 256, 267, 270, 304, 306, 343, 356; J. D'Ans, Bd. I [1939], S. 161, 162; Bd. II, S. 96, 97. Kritik verschiedener Methoden zur Bestimmung von Naphthalin in Rohnaphthalin, festen, flüssigen und gasförmigen Kohledestillationsprodukten mit Pikrinsäure und Verbesserungen dieser Methode: Mezger, Gas-Wasserfach 64, 413; C. 1921 IV, 760; Schläpfer, Flachs, Monats-Bull. Schweiz. Ver. Gas-Wasserfachmänner 8, 225, 250, 283, 302; C. 1928 II, 1843, 2693; C. 1929 I, 1172. Zur quantitativen Bestimmung neben Inden im Steinkohlengas mit Hilfe von Pikrinsäure vgl. Walters, J. Soc. chem. Ind. 45, 205 T; C. 1926 II, 1916; vgl. a. Brown, Berger, Ind. Eng. Chem. 16, 917; C. 1924 II, 2627. Zur Bestimmung in Gasen vgl. a. Bonte, Bl. Soc. chim. Belg. 36, 485; C. 1928 I, 384. Bestimmung in Imprägniermassen und Dachpappen: Anonymus, Mitt. Materialpr. Berl. 42, 21; C. 1925 I, 1036.

#### Additionelle Verbindungen und Umwandlungsprodukte von unbekannter Konstitution aus Naphthalin.

C<sub>10</sub>H<sub>8</sub>+TaCl<sub>5</sub>. B. Beim Eintragen von Tantal(V)-chlorid in geschmolzenes Naphthalin, Abgießen der orangefarbenen Lösung, Behandeln mit Tetrachlorkohlenstoff und sofortigen Filtrieren (Funk, Niederländer, B. 61, 1386). Gelbes Pulver. Sehr empfindlich gegen Feuchtigkeit. Gibt mit wäßr. Ammoniak einen fast farblosen Rückstand.

Verbindung mit 1.3-Dinitro-benzol  $C_{10}H_8+C_6H_4O_4N_2$  (H 539; E I 261). B. Entsteht entgegen Heff (A. 215 [1882], 379) auch aus den Komponenten in Alkohol (DIMROTH, BAMBERGER, A. 438, 106). Ist nach Buehler, Heaf (Am. Soc. 48, 3169) grünlichgelb. F: 52° (D., Ba.), 50,7—51,6° (korr.) (Bue., H.). Läßt sich aus Benzol und aus Chloroform, aber nicht aus Alkohol unverändert umkrystallisieren (D., Ba.). — Verbindung mit 3-Chlor-1.2-dinitro-benzol  $C_{10}H_8+C_6H_3O_4N_4$ Cl. Hellgelbe Krystalle (aus Alkohol) (van de Vliet, R. 43, 61, 64, 616). — Verbindung mit 1.3.5-Trinitro-benzol  $C_{10}H_8+C_6H_3O_4N_3$ Cl. Hellgelbe Nadeln (aus Alkohol). F: 126-113° (van de V.). — Verbindung mit 5-Chlor-1.2.3-trinitro-benzol  $C_{10}H_8+C_6H_2O_6N_3$ Cl. Hellgelbe Nadeln (aus Alkohol). F: 112—113° (van de V.). — Verbindung mit 5-Chlor-1.2.3-trinitro-benzol  $C_{10}H_8+C_6H_2O_6N_3$ Cl. Hellgelbe Nadeln (aus Alkohol). F: 10° (van de V.). Sehr unbeständig, kann aus Alkohol nicht ohne Zersetzung umkrystallisiert werden. — Verbindung mit 5-Chlor-1.2.4-trinitro-benzol  $C_{10}H_8+C_6H_2O_6N_3$ Cl. Hellgelbe Nadeln (aus Alkohol). F: 108° (van de V.). — Verbindung mit 6-Chlor-1.2.4-trinitro-benzol  $C_{10}H_8+C_6H_2O_6N_3$ Cl. Hellgelbe Nadeln (aus Alkohol). F: 95-96° (van de V.). — Verbindung mit 2-Chlor-1.3.5-trinitro-benzol (Pikrylchlorid)  $C_{10}H_8+C_6H_2O_6N_3$ Cl (H 539; E I 261). Hellgelbe Nadeln (aus Alkohol). F: 94° (van de V.). — Verbindung mit 2.4-Dinitro-toluol  $C_{10}H_8+C_7H_6O_4N_2$  (H 540). F: 60,1—60,9° (korr.) (Buehler, Heap, Am. Soc. 48, 3169). — Verbindung

KOHLENWASSERSTOFFE CnH2n-12

[Syst. Nr. 476

mit 2.4.6 Trinitro-toluol C<sub>10</sub>H<sub>8</sub> + C<sub>7</sub>H<sub>5</sub>O<sub>5</sub>N<sub>3</sub> (H 540). Gelbliche Nadeln. F: 96,4° (Brown, Soc. 127, 346). Dissoziation in Nitrobenzol: Br.

Pikrat  $C_{10}H_8 + C_6H_3O_7N_3$ . Gelb. F: 149° (Hertel, A. 451, 191), 149,5° (Brown, Soc. 127, 346).

Naphthalindiozonid C<sub>10</sub>H<sub>8</sub>O<sub>6</sub> (H 540). Magnetische Susceptibilität: Vaidyanathan, Indian J. Phys. 2, 427; C. 1928 II, 1985.

Verbindung C<sub>20</sub>H<sub>12</sub>S (E I 261). B. Entsteht in geringer Menge neben Naphthalin beim Erhitzen von Tetralin mit Schwefel auf 240—250° unter Druck (FRIEDMANN, Brennstoffch. 8, 258; C. 1928 II, 1757). — Krystalle (aus Schwefelkohlenstoff + Alkohol). F: 247° bis 248°

Verbindung C<sub>24</sub>H<sub>20</sub>O s. S. 438.

[HOMANN]

# Substitutionsprodukte des Naphthalins.

## a) Halogen-Derivate.

1-Fluor-naphthalin,  $\alpha$ -Fluor-naphthalin  $C_{10}H_7F$  (H 540). B. Aus  $\alpha$ -Naphthalin-diazoniumbortetrafluorid durch trocknes Erhitzen (Balz, Schiemann, B. 60, 1189). —  $Kp_{758}$ : 215°;  $Kp_{17}$ : 110°.

1-Chlor-naphthalin, α-Chlor-naphthalin C<sub>10</sub>H<sub>7</sub>Cl (H 541; E I 262). B. Beim Durchleiten eines Gemisches von Chlor und Naphthalin-Dampf durch ein Porzellanrohr bei ca. 350°, zweckmäßig in Gegenwart von etwas Jod (Ferrero, Wunenburger, Helv. 11, 418). Beim Leiten von Chlor in eine siedende Lösung von Naphthalin in Tetrachlor-kohlenstoff, Benzol, Chlorbenzol oder 1.4-Dichlor-benzol in Gegenwart oder Abwesenheit von Jod oder Eisenchlorid oder in geschmolzenes Naphthalin in Gegenwart von Jod bei 126° (Ferr., Fehlmann, Helv. 12, 584, 587, 589; J. pr. [2] 122, 342). Durch Chlorieren von Naphthalin in gekühlter Benzol-Lösung in Gegenwart von Eisenspänen (Trauenberg, Wassermann, J. pr. [2] 120, 177; vgl. dagegen Ferr., Feh., J. pr. [2] 122, 340). Neben anderen Produkten bei der Einw. von unterchloriger Säure auf Naphthalin unter Kühlung und Ausschluß von direktem Licht (Klingstedt, Acta Acad. Abo. 4, Nr. 2, 5, 11, 15; C. 1928 I. 504). Aus α-Naphthyl-magnesiumbromid und Benzolsulfochlorid in Ather unter Kühlung mit Kältemischung (Gilman, Fothergill, Am. Soc. 51, 3506). — Darst. Man leitet unter Rühren Chlor in eine siedende Lösung von 256 g Naphthalin in 450 g Chlorbenzol in Gegenwart von 1,3 g Jod bis zu einer Gewichtszunahme von 66—68 g; Ausbeute 81% des angewandten Naphthalins (Ferr., Feh., Helv. 12, 602).

Kp<sub>760</sub>: 262,7<sup>6</sup> (Lecat, Ann. Soc. scient. Bruxelles 49 [1929], 24). D<sup>a.s.</sup><sub>1</sub>: 1,1906; D<sup>oc.</sup><sub>2</sub>: 1,1291 (v. Auwers, Frühling, A. 422, 200).  $n_n^{a.s.}$ : 1,6237;  $n_n^{b.s.}$ : 1,6318;  $n_n^{a.s.}$ : 1,6546;  $n_n^{v.s.}$ : 1,6752;  $n_n^{oc.}$ : 1,5908;  $n_n^{oc.}$ : 1,5989;  $n_n^{oc.}$ : 1,6202 (v. Au., Fr.). Ultraviolett-Absorptionsspektrum in Hexan: De Laszlo, Pr. roy. Soc. [A] 111, 359; C. 1926 II, 536; vgl. De L., Am. Soc. 50, 895. Kathodenluminescenz-Spektrum: Marsh, Soc. 1927, 128. Intensität des durch flüssiges 1-Chlor-naphthalin gestreuten Lichtes: Martin, J. phys. Chem. 24, 487. — Lösungsvermögen für Phosgen: Atkinson, Heycocok, Pope, Soc. 117, 1423. Über 1-Chlor-naphthalin enthaltende binäre Azeotrope (Lecat, Ann. Soc. scient. Bruxelles 49 [1929], 19, 22, 23, 24, 110, 111) s. nachfolgende Tabelle. Grenzflächenspannung zwischen 1-Chlor-naphthalin und Wasser: Harkins, Feldman, Am. Soc. 44, 2672. Breitet sich nicht auf Wasser aus (H., F.).

#### 1-Chlor-naphthalin enthaltende binäre Azeotrope.

| Komponente                                 | Kp760                                                             | Gehalt an<br>1-Chlor-<br>naphthalin<br>in Gew%  | Komponente                                                                                                       | Kp <b>76</b> 0                             | Gehalt an<br>1-Chlor-<br>naphthalin<br>in Gew% |
|--------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------|
| Diphenylmethan Diphenyläther Brenzcatechin | ca. 262,55<br>259,22<br>241,0<br>255,8<br>213,9<br>218,6<br>247,8 | ca. 93<br>ca. 6<br>41<br>74<br>47,8<br>61<br>43 | Benzoesäureiso- amylester Phenylessigsäure . Zimtsäuremethyl- ester Oxalsäurediisoamyl- ester 4-Amino-phenetol . | 261,65<br>255,9<br>260,7<br>262,5<br>249,7 | 23<br>70<br>55<br>ca. 92                       |

Gemische von Borsäure und wenig 1-Chlor-naphthalin zeigen nach Ultraviolett-Bestrahlung ein rasch abklingendes, mattgrünes Nachleuchten (Tiede, Ragoss, B. 56, 659).

Liefert bei Einw. von Magnesium in Methanol Naphthalin (Zechmeister, Rom, A. 468, 128). Wird von Natriumamalgam in Alkohol nicht angegriffen (Franzen, Stäuble, J. pr. [2] 103, 389). Liefert bei der Einw. von Brom in Gegenwart von Aluminiumchlorid bzw. von Aluminiumbromid zwei isomere 1-Chlor-x-hexabrom-naphthaline (Bodroux, A. ch. [10] 11, 549). Beim Behandeln mit konz. Schwefelsäure oder Schwefelsäuremono-hydrat unterhalb 100° entsteht 4-Chlor-naphthalin-sulfonsäure-(1); bei 140—150° erhält man Gemische von Sulfonsäuren, bei 160° wurde 5-Chlor-naphthalin-sulfonsäure-(2), beim Eintragen in Chlorsulfonsäure bei 30° 4-Chlor-naphthalin-sulfonsäure-(1)-chlorid isoliert (Ferrero, Bolliger, Helv. 11, 1150). Geschwindigkeit der Reaktion mit Kaliumhydroxyd in Alkohol bei 320°: Petrenko-Kritschenko, B. 62, 587; Ж. 61, 1785. Bei der Einw. von Dischwefeldichlorid in Schwefelkohlenstoff in Gegenwart von amalgamiertem Aluminium entsteht x-Dichlor-x-dibenzo-thianthren (Syst. Nr. 2682) (Rây, Soc. 119, 1964). Einw. von Athylen in Gegenwart von Aluminiumchlorid bei 100° und einem Druck von 20—30 Atm.: I. G. Farbenind., D. R. P. 505403; C. 1930 II, 2306; Frdl. 16, 477. Reagiert nicht mit Piperidin in Alkohol bei 320° (P.-K.). — Physiologisches Verhalten: H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 73. Insecticide Wirkung: Tattersfield, Gimingham, J. Soc. chem. Ind. 46, 369 T; C. 1927 II, 1884.

Verwendung zur Herstellung von Kunstharzen durch Kondensation mit Formaldehyd in Gegenwart von konz. Schwefelsäure: AGFA, D. R. P. 332334, 332391; C. 1921 II, 652; Frdl. 13, 680; durch Kondensation mit Glykolsäure, Glykolid oder Oxalsäure in Gegenwart von konz. Schwefelsäure: Elektrochem. Werke, BOSSHARD, STRAUSS, D. R. P. 398256; C. 1924 II, 1412; Frdl. 14, 632. Überführung in künstliche Gerbstoffe: BASF, D. R. P. 358126, 391315; C. 1922 IV, 912; 1924 I, 2053; Frdl. 14, 584, 607.

2-Chlor-naphthalin, β-Chlor-naphthalin  $C_{10}H_7Cl$  (H 541; E I 262).  $Kp_{12}$ : 121—122° (v. Auwers, Frühling, A. 422, 194).  $D_4^{m,1}$ : 1,1377 (v. Au., F.).  $n_4^{m,7}$ : 1,6002;  $n_1^{p,7}$ : 1,6079;  $n_2^{p,7}$ : 1,6297 (v. Au., F.). Ultraviolett-Absorptionsspektrum in Hexan: de Laszlo, Pr. roy. Soc. [A] 111, 359; C. 1926 II, 536; Am. Soc. 50, 897. Dichte und Brechungsindices einer 10% igen Lösung in Chinolin bei 15,3°: Krollffelfer, A. 430, 204. — Wird von Natriumamalgam in Alkohol nicht angegriffen (Franzen, Stäuble, J. pr. [2] 103, 389). Liefert bei der Einw. von Brom in Gegenwart von Aluminiumchlorid 2-Chlor-x-hexabrom-naphthalin vom Schmelzpunkt 236°, in Gegenwart von Aluminiumbromid 2-Chlor-x-hexabrom-naphthalin vom Schmelzpunkt 295° (Bodroux, A. ch. [10] 11, 549). Bei der Einw. von Salpeterschwefelsäure, zuletzt bei 100°, erhält man 7-Chlor-1.3.8-trinitro-naphthalin; beim Behandeln mit konz. Salpetersäure allein bei 0° entstehen daneben isomere Nitroderivate (van der Kam, R. 45, 568, 569). Geschwindigkeit der Reaktionen mit Kaliumhydroxyd und mit Piperidin in Alkohol bei 320°: Petrenko-Kritschenko, B. 62, 587; Ж. 61, 1785.

1.2-Dichlor-naphthalin  $C_{10}H_6Cl_2$ , s. nebenstehende Formel (H 542; E I 262). Kp<sub>19</sub>: 151—153° (v. Auwers, Frühling, A. 422, 194, 200).  $D_4^{a,5}$ : 1,3147 (v. Au., F.).  $n_{\alpha}^{a,5}$ : 1,6257;  $n_{D}^{a,5}$ : 1,6338;  $n_{D}^{a,5}$ : 1,6562;  $n_{T}^{a,5}$ : 1,6772 (v. Au., F.). Ultraviolett-Absorptionsspektrum des Dampfes und der Lösung in Hexan: DE LASZLO, C. r. 185, 600; Am. Soc. 50, 896.

1.3 - Dichlor - naphthalin  $C_{10}H_6Cl_2$ , s. nebenstehende Formel (H 542; E I 262). Ultraviolett-Absorptionsspektrum des Dampfes und der Lösung in Hexan: DE Laszlo, C. r. 185, 600; Am. Soc. 50, 896.

1.4 - Dichlor - naphthalin C<sub>10</sub>H<sub>6</sub>Cl<sub>2</sub>, s. nebenstehende Formel (H 542; Cl E I 262). B. Neben anderen Produkten bei der Einw. von unterchloriger Säure auf Naphthalin (KLINGSTEDT, Acta Acad. Abo. 4, Nr. 2, 5, 18; C. 1928 I, 504). Beim Erhitzen von 4-Chlor-naphthalin-sulfonsäure-(1)-chlorid mit überschüssigem Phosphorpentachlorid auf 160—180° (Ferrero, Bolliger, Helv. 11, 1146). — Krystalle (aus Methanol). F: 68° (v. Auwers, Frühling, A. 422, 195, 200). Kp<sub>12</sub>: 147°; D<sup>π,s</sup>; 1,2997; n<sup>π,s</sup>; 1,6151; n<sup>π,s</sup>; 1,6228; n<sup>π,s</sup>; 1,6454; n<sup>π,s</sup>; 1,6659 (v. Au., F.). Ultraviolett-Absorptionsspektrum des Dampfes und der Lösung in Hexan: De Laszlo, C. r. 185, 600; Am. Soc. 50, 895. Dichten und Brechungsindices von Gemischen mit Benzoesäureisoamylester, Phthalsäurediäthylester, Chinolin, Diāthylanilin und Tetralin: Kroll-Pfeiffer, A. 430, 204. — Einw. von Acetylchlorid oder anderen Carbonsäurechloriden in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff: I. G. Farbenind., D. R. P. 495332; C. 1930 II, 2695; Frdl. 16, 496. Überführung in Kunstharze durch Kondensation mit Glyoxylsäure, Glykolid oder Oxalsäure: Elektrochem. Werke, Bosshard, Strauss, D. R. P. 398256; C. 1924 II, 1412; Frdl. 14, 632.

1.5 - Dichlor - naphthalin C<sub>10</sub>H<sub>6</sub>Cl<sub>2</sub>, s. nebenstehende Formel (H 543; E I 262). B. Beim Erhitzen von 5-Chlor-naphthalin-sulfonsäure-(1)-chlorid mit tiberschüssigem Phosphorpentachlorid auf 160—180° (FERRERO, BOLLIGER, Helv. 11, 1146). — Krystalle (aus Methanol). F: 105—107° (F., B.), 106,5° (KROLL-PFEIFFER, A. 430, 198). Ultraviolett-Absorptionsspektrum des Dampfes und der Lösung in Hexan: DE Laszlo, C. r. 185, 600; Am. Soc. 50, 895. Dichten und Brechungsindices von Lösungen in Chinolin: Kr.



1.8 - Dichlor - naphthalin  $C_{10}H_{e}Cl_{2}$ , s. nebenstehende Formel (H 543; EI 262). Ultraviolett-Absorptionsspektrum des Dampfes und der Lösung in Hexan: DE LASZLO, C. r. 185, 600; Am. Soc. 50, 896.

Cl

1.7 - Dichlor - naphthalin C<sub>10</sub>H<sub>6</sub>Cl<sub>2</sub>, s. nebenstehende Formel (H 543; E I 263). F: 640 (Krollpfeiffer, A. 430, 198, 204).  $D_4^{\text{so,5}}$ : 1,2611 (Kr.).  $n_{\alpha}^{\text{so,5}}$ : 1,6017;  $n_{\nu}^{\infty,5}$ : 1,6092;  $n_{\beta}^{\infty,5}$ : 1,6307;  $n_{\gamma}^{\infty,5}$ : 1,6495 (Kr.). Ultraviolett-Absorptionsspektrum des Dampfes und der Lösung in Hexan: DE LASZLO, C. r. 185, 600; Am. Soc. 50, 896. Dichten und Brechungsindices von Lösungen in Chinolin: Kr.



1.8-Dichlor-naphthalin  $C_{10}H_6Cl_2$ , s. nebenstehende Formel (H 544). F: 88,5° (Krollpfeiffer, A. 430, 198).  $D_{\bullet}^{\infty,8}$ : 1,2924 (Kr.).  $n_{\alpha}^{\infty,8}$ : 1,6155;  $n_{D}^{\infty,8}$ : 1,6236; ng. 1,6468; ng. 1,6656 (Kr.). Ultraviolett-Absorptionsspektrum des Dampfes und der Lösung in Hexan: DE LASZLO, C. r. 185, 600; Am. Soc. 50, 895. Dichten und Brechungsindices von Lösungen in Chinolin: KR.



2.3 - Dichlor - naphthalin  $C_{10}H_6Cl_2$ , s. nebenstehende Formel (H 544). Ultraviolett-Absorptionsspektrum des Dampfes und der Lösung in Hexan: DE LASZLO, C. r. 185, 600; Am. Soc. 50, 897.



2.6-Dichlor-naphthalin  $C_{10}H_6Cl_2$ , s. nebenstehende Formel (H 544). B. Bei der Destillation von 6-Brom-naphthol-(2) mit Phosphorpentachlorid (Franzen, Stäuble, J. pr. [2] 103, 354, 370). Aus diazotiertem 2.6-Diamino-naphthalin beim Behandeln mit fein verteiltem Kupfer in Gegenwart von überschüssiger Salzsäure (Veselý, Jakeš, Bl. [4] 33, 948). — Blättchen (aus Alkohol). F: 135° (V., J.), 140—141° (Fr., St.). Ultraviolett-Absorptionsspektrum des Dampfes und der Lösung in Hexan: DE Laszlo, C. r. 185, 600; Am. Soc. 50, 897.

2.7-Dichlor-naphthalin  $C_{10}H_6Cl_2$ , s. nebenstehende Formel (H 544). CI F: 114° (Krollpfeiffer, A. 430, 198). Ultraviolett-Absorptionsspektrum des Dampfes und der Lösung in Hexan: DE LASZLO, C. r. 185, 600; Am.

Soc. 50, 897. Dichten und Brechungsindices von Lösungen in Chinolin: Kr. 1.3.5 - Trichlor - naphthalin  $C_{10}H_5Cl_3$ , s. nebenstehende Formel (H 545; E I 263). B. Bei der Einw. von Salzsäure und Kupfer(I)-chlorid auf 4.8-Di-



chlor-naphthalin-diazoniumsulfat-(2) (FRIEDLÄNDER, KARAMESSINIS, SCHENK, B. 55, 49). — Gelbliche Nadeln (aus Alkohol). F: 94°. Schwer flüchtig mit Wasserdampf. Leicht löslich in den gebräuchlichen Lösungsmitteln. 1.4.5-Trichlor-naphthalin  $C_{10}H_5Cl_3$ , s. nebenstehende Formel (H 545). B. In geringer Menge bei der Einw. von Natriumchlorat und verd. Salzsäure auf 5-Nitro-naphthalin-sulfonsäure-(1) in Gegenwart von Dichlorbenzol oder Trichlorbenzol bei 90-95° (FRIEDLÄNDER, KARAMESSINIS, SCHENK, B. 55, 47). — Nadeln (aus Alkohol). F: 133°. Schwer löslich in Alkohol.



2.3.6-Trichlor-naphthalin C<sub>10</sub>H<sub>5</sub>Cl<sub>3</sub>, s. nebenstehende Formel (H 546).

B. Aus dem Natriumsalz der 3-Chlor-naphthalin-disulfonsäure-(2.7) und
Phosphorpentachlorid im Rohr bei 220° (Franzen, Stäuble, J. pr. [2] 103, 356, 377). — Hellgelbe Krystalle (aus Methanol oder Alkohol). F: 145° (Fr., St.; vgl. dagegen Armstrong, Wynne, Chem. N. 61 [1890], 275; H 546).

1.2.3.4 - Tetrachlor - naphthalin  $C_{10}H_4Cl_4$ , s. nebenstehende Formel. B. Aus 5.6.7.8-Tetrachlor-1.2-dibrom-tetralin beim Behandeln mit Natrium-äthylat-Lösung (v. Braun, B. 56, 2337 Anm.). — F: 198° (v. B.). — Liefert beim Nitrieren mit Salpetersäure (D: 1,5) bei höchstens 30—35° und Erhitzen Cl Cl des Reaktionsprodukts mit Natriumcarbonat und Methanol auf 130—140° oder mit Natriumdicarbonat, Methanol und Benzol auf 140-150° 5.8-Dichlor-1-nitro-naphthalin (MATTER, D. R. P. 317755; C. 1920 II, 601; Frdl. 13, 289).

Oktachlornaphthalin, Perchlornaphthalin C<sub>10</sub>Cl<sub>8</sub> (H 547). B. Durch Erhitzen eines Gemisches von Naphthol-(2)-disulfonsäure-(1.5)-dichlorid und Naphthol-(2)-disulfonsäure-(1.6)-dichlorid mit Phosphorpentachlorid im Rohr (Pollak, Gebauer-Fülnegg, Blumenstock-Halward, M. 49, 199; 53/54, 83; P., Bl.-H., M. 49, 207). — Physiologisches

BROMNAPHTHALIN

Verhalten: H. STAUB in J. HOUBEN, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 73.

1-Brom-naphthalin, α-Brom-naphthalin C<sub>10</sub>H<sub>7</sub>Br (H 547; E I 263). B. Aus Naphthalin und 1,5 Atomen Brom in Tetrachlorkohlenstoff (BLICKE, Am. Soc. 49, 2846). Bei der Einw. von Brom in Sodalösung auf Naphthalin (TISCHTSCHENKO, Ж. 60, 157; C. 1928 II, 767). Aus Naphthalin und Diselendibromid in Schwefelkohlenstoff-Lösung bei Gegenwart von Aluminiumbromid (LOEVENICH, SIPMANN, J. pr. [2] 124, 132). Aus α-Naphthylamin nach SANDMEYER (v. AUWERS, FRÜHLING, A. 422, 194). — Darst. Man läßt zu einem schwach siedenden Gemisch von 512 g Naphthalin und 275 g Tetrachlorkohlenstoff unter Rühren allmählich 707 g Brom hinzutropfen, entfernt Tetrachlorkohlenstoff durch Destillation bei vermindertem Druck, rührt die restliche Mischung bei 90—100° mehrere Stunden mit 20—30 g pulverisiertem oder gekörntem Natriumhydroxyd und reinigt durch Vakuumdestillation (CLARKE, BRETHEN, Org. Synth. 10 [New York 1930], S. 14).

Einfluß von Sättigung mit trockner Luft bei Atmosphärendruck auf den Erstarrungs-EIRIME Voli Sattigung int trockief Lint bei Athiospharendruck auf dei Ersteffungs-punkt: Foote, Leopold, Am. J. Sci. [5] 11, 45; C. 1926 I, 1773. Kp: 278—279,5° (v. Auwers, Frühling, A. 422, 194); Kp<sub>26</sub>: 281,8° (Lecar, Ann. Soc. scient. Bruxelles 49 [1929], 20); Kp<sub>20</sub>: 144° (v. Au., Fr.). D<sub>1</sub><sup>18,5</sup>: 1,4833 (v. Au., Fr., A. 422, 200). Dichte zwischen 13,6° (1,488) und 83,5° (1,425): Bhatnagar, Singh, J. indian chem. Soc. 8, 264; C. 1929 II, 1274. Adiabatische Kompressibilität zwischen 10° und 50°: Freyer, Hubbard, Andrews, Am. Soc. 51. 766. Schallgeschwindigkeit in 1-Brom-naphthalin zwischen 10° und 50°: F., Hu., An. Oberflächenspannung zwischen 13,6° (45,97 dyn/cm) und 83,5° (38,92 dyn/cm): BH., S.  $n_{\alpha}^{18,1}$ : 1,6497;  $n_{D}^{18,3}$ : 1,6584;  $n_{P}^{18,2}$ : 1,6824;  $n_{Y}^{18,2}$ : 1,7045;  $n_{\alpha}^{18,3}$ : 1,6495;  $n_{D}^{19,3}$ : 1,6580;  $n_{P}^{19,5}$ : 1,6820; n<sub>y</sub><sup>18,5</sup>: 1,7040 (v. Au., Fr., Å. 422, 200); n<sub>p</sub><sup>19</sup>: 1,6600 (Szivessy, Ann. Phys. [4] 68, 152). Ültraviolett-Absorptionsspektrum des Dampfes und der Lösung in Hexan:  $exttt{de}$  Laszlo, Pr. roy. Soc. [A] 111, 356, 358; C. 1926 II, 536. Elliptische Polarisation von linear polarisiertem Licht bei der Streuung an Oberflächen von 1-Brom-naphthalin: BOUHET, C. r. 185, 201. Zum Dipolmoment vgl. Smyth, Am. Soc. 46, 2163. Elektrische Leitfähigkeit bei 25°: Rabinowitsch, Ph. Ch. 119, 73; Ж. 58, 234. Magnetische Doppelbrechung zwischen 5,7° und 52,4°: Sz.; bei 17,5°: Bou. — 1-Brom-naphthalin bildet binäre azeotrope Gemische mit Brenzcatechin (Kp<sub>760</sub>: 245,5°; ca. 20 Gew.-% 1-Brom-naphthalin) (LECAT, Ann. Soc. scient. Bruxelles 49 [1929], 111), Resorcin (Kp<sub>760</sub>: 266,3°; 55 Gew.-% 1-Brom-naphthalin) (L., Ann. Soc. scient. Bruxelles 49, 110), Acetamid (Kp<sub>760</sub>: 217,35°; 43,5 Gew.-% 1-Brom-naphthalin) (L., Ann. Soc. scient. Bruxelles 49, 110), Benzoesäure (Kp<sub>760</sub>: 249,9°; ca. 5 Gew.-% 1-Brom-naphthalin) (L., Ann. Soc. scient. Bruxelles 49, 22), Phenylessigsaure (Kp760: 264,0°; 46,5 Gew.-% 1-Brom-naphthalin) (L., Ann. Soc. scient. Bruxelles 49, 24) und Phthalsaure-dimethylester (Kp<sub>760</sub>: 278,85°; 61 Gew.-% 1-Brom-naphthalin) (L., Ann. Soc. scient. Bruxelles 49, 20). Grenzflächenspannung zwischen 1-Brom-naphthalin und Wasser: HARKINS, FELD-MAN, Am. Soc. 44, 2673. Adsorption aus Alkohol, Benzol und Diäthylcarbonat an Zuckerkohle: Bartell, Sloan, Am. Soc. 51, 1641, 1651, 1652, 1653. Wärmetönung der Benetzung von Zuckerkohle durch binäre Gemische von 1-Brom-naphthalin mit Schwefelkohlenstoff und Nitrobenzol: Ba., Fu, J. phys. Chem. 33, 1763. Adhäsionsarbeit von 1-Brom-naphthalin an Kohle und Kieselsäure: Ва., Озтиног, Ph. Ch. 130, 723. Breitet sich bei 20° auf Wasser nicht aus (HA., FE.). Verhalten polymolekularer Filme auf starken Calciumchlorid-Lösungen: HA., MORGAN, Pr. nation. Acad. USA. 11, 641; C. 1926 I, 1950; HA., Colloid Symp. Mon. 5, 24; C. 1928 II, 229.

Wird durch Natrium in flüssigem Ammoniak (Kraus, White, Am. Soc. 45, 774) sowie durch Magnesium in Methanol (Zechmeister, Rom, A. 468, 128) zu Naphthalin reduziert. Wird durch konstant siedende Jodwasserstoffsäure in Eisessig bei 100° nicht merklich reduziert (Shoesmith, Rubli, Soc. 1927, 3105). Zinn und wäßrig-alkoholische Salzsäure greifen 1-Brom-naphthalin nicht an (Franzen, Stäuble, J. pr. [2] 101, 64). Liefert mit Natriumisoamylat in siedendem Isoamylalkohol in Gegenwart von Kupfer und unter Bestrahlung mit ultraviolettem Licht Naphthalin (Rosenmund, Luxat, Tiedemann, B. 56, 1951, 1955). Beim Erhitzen mit Kupferpulver bei Gegenwart von wenig Jod auf 280—285° entstehen α.α-Dinaphthyl sowie geringe Mengen α.β-Dinaphthyl, β.β-Dinaphthyl und eine Verbindung vom Schmelzpunkt 282—283° (vielleicht ein Dinaphthyl-naphthalin) (Schoeffle, Am. Soc. 45, 1569). Liefert beim Erhitzen mit Kaliumcyanid in 10% iger wäßriger Glykol-Lösung in Gegenwart von Kupfer (I)-cyanid und Kupfer α-Naphthoesäure und Naphthalin (Loevenich, Loeser, B. 60, 322). Beim Erhitzen mit Natriumacetat, Calciumcarbonat und Kupferacetat in verd. Alkohol im Rohr auf 260—270° entsteht α-Naphthol (L., L.). Liefert beim Erhitzen mit Kupfer (I)-rhodanid in Pyridin und wenig Wasser im Rohr auf 160—195° α.α-Dinaphthylsulfid und andere Produkte (Rosenmund, Harms, B. 53, 2238). Fügt man zu dem Reaktionsprodukt aus Benzaldehyd und Natrium 1-Brom-naphthalin, so erhält man Diphenyl-α-naphthyl-carbinol und Benzylalkohol (Blicke, Am. Soc. 46,

2570). Beim Erhitzen mit Benzamid, Kaliumcarbonat und Nitrobenzol in Gegenwart einer Spur Kupfer entsteht Benzoyl-a-naphthylamin (L., L.). Liefert beim Erhitzen mit 2-Amino-Spur Kupfer entstent Benzoyl-α-napntnylamin (L., L.). Liefert beim Ernitzen mit 2-Aminobenzaldehyd, Naphthalin, wasserfreier Soda und etwas Kupferpulver auf 220° und nachfolgenden Behandeln des Reaktionsprodukts mit konz. Schwefelsäure auf dem Wasserbad 3.4-Benzo-acridin (MAYER, BANSA, B. 54, 17, 22). Geschwindigkeit der Reaktion mit Piperidin bei 16—18°: Tronow, Ж. 58, 1289; С. 1927 II, 1145.

Physiologisches Verhalten: H. Stauß in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 78. Anthelmintische Wirkung: Rico, C. r. Soc. Biol. 97, 881; C. 1928 II, 689. — Überführung in Kunstharze durch Kondensation mit Clykolsäure oder Oralsäure in Gegenwart, von konz. Schwefelsäure. Elektrochem Wasle

Glykolsäure oder Oxalsäure in Gegenwart von konz. Schwefelsäure: Elektrochem. Werke,

BOSSHARD, STRAUSS, D. R. P. 398256; C. 1924 II, 1412; Frdl. 14, 632.

2-Brom-naphthalin, β-Brom-naphthalin C<sub>10</sub>H<sub>2</sub>Br (H 548; E I 263). B. Zur Bildung aus β-Naphthylamin nach Oddo (G. 20 [1890], 639; H 548) vgl. van der Kam, R. 45, 569.

— Tafeln (aus Alkohol). F: 57° (van der K.). Ultraviolett-Absorptionsspektrum des Dampfes und der Lösung in Hexan: de Laszlo, Pr. roy. Soc. [A] 111, 356, 358; C. 1926 II, 536. Bewegung auf einer Wasseroberfläche: Karczag, Roboz, Bio. Z. 162, 23. — Wird durch Natriumamalgam in Alkohol zu Naphthalin reduziert (Franzen, Stäuble, J. pr. [2] 103, 367). Liefert beim Lösen in höchstkonzentrierter Salpetersäure bei 0° und nachfolgenden kurzen Erwärmen auf dem Wasserbad 7-Brom-1.3.8-trinitro-naphthalin (VAN DER K.). Beim Behandeln mit Magnesium in Äther in Gegenwart einer Spur Jod und Einleiten von Kohlendioxyd in das Reaktionsgemisch entsteht neben wenig  $\beta.\beta$ -Dinaphthyl  $\beta$ -Naphthoesäure (GILMAN, JOHN, R. 48, 743; vgl. LOEVENICH, LOESER, B. 60, 324). Liefert mit Kaliumphenolat in Gegenwart von Kupfer beim Erhitzen bis 250° 2-Phenoxy-naphthalin (L., L.). Bei der Einw. von Benzophenon in wasserfreiem Ather bei Gegenwart von Natrium bei Zimmertemperatur entsteht Diphenyl- $\beta$ -naphthyl-carbinol (L., L.). Liefert beim Erhitzen mit Kaliumcyanid in Gegenwart von Kupfer in wäßr. Glykol-Lösung  $\beta$ -Naphthoesäure (L., L.). Beim Erhitzen mit Natriumacetat, Calciumcarbonat und Kupferacetat in verd. Alkohol auf 270° im Rohr entsteht  $\beta$ -Naphthol (L., L.). Beim Schmelzen mit Quecksilber (II)-acetat entsteht 2-Brom-1-acetoxymercuri-naphthalin (Kryński, Roczniki Chem. 8, 80; C. 1928 II, 2143). Liefert beim Erhitzen mit Benzamid und Kaliumcarbonat in Nitrobenzol in Gegenwart von Kupferpulver Benzoyl-β-naphthylamin (L., L.). Beim Erhitzen mit Chlorameisensäureäthylester und 1% igem Natriumamalgam auf 150° erhält man Quecksilber-di-β-naphthyl und  $\beta$ -Naphthoesäure-äthylester (L., L.).

**4-Chlor-1-brom-naphthalin**  $C_{10}H_6ClBr$ , Formel I (H 548). F: 64,3° (Missenden, *Chem. N.* 125, 158; *C.* 1923 I, 165). Kp: 308°. Löslich in Alkohol.

5-Chlor-1-brom-naphthalin C<sub>10</sub>H<sub>e</sub>ClBr, Formel II (H 548). F: 116,7° (Missender, Chem. N. 125, 158; C. 1923 I, 165). Fast unlöslich in Alkohol.

5 (oder 8)-Chlor-1-brom-naphthalin  $C_{10}H_6ClBr$ , Formel III oder IV (H 548). Prismen (Missenden, Chem. N. 125, 158; C. 1923 I, 165). Fast unlöslich in Alkohol. — Gibt bei der Oxydation 3-Chlor-phthalsäure.

1.2 - Dibrom - naphthalin  $C_{10}H_0Br_2$ , Formel V (H 549). B. Beim Behandeln von 2-Brom-1-acetoxymercuri-naphthalin mit Brom (Kryński, Roczniki Chem. 8, 80; C. 1928 II, 2143). — F: 68° (K.). — Liefert beim Erhitzen mit Kupfer(I)-cyanid und Pyridin im Rohr auf 200° [Naphthalin-dicarbonsäure-(1.2)]-imid und unreines Kupfer-1.2-naphthalocyanin (DE DIESBACH, VAN DER WEID, Helv. 10, 888; vgl. LINSTEAD, LOWE, Soc. 1934, 1022; BRAD-BROOK, LI., Soc. 1936, 1744).

1.5-Dibrom-naphthalin  $C_{10}H_gBr_2$ , Formel VI (H 549). B. Bei der Einw. von Brom auf Naphthalin-sulfonsäure-(1), neben 1.7-Dibrom-naphthalin und Naphthalin (Datta, BHOUMIK, Am. Soc. 43, 306).

1.7-Dibrom-naphthalin C<sub>10</sub>H<sub>6</sub>Br<sub>2</sub>, Formel VII (H 549). B. Bei der Einw. von Brom auf Naphthalin-sulfonsäure-(1), neben 1.5-Dibrom-naphthalin und Naphthalin (Datta, BHOUMIK, Am. Soc. 43, 306).

1.3.6-Tribrom-naphthalin C<sub>10</sub>H<sub>5</sub>Br<sub>2</sub>, Formel VIII, S. 449. Als solches ist nach Franzen, STÄUBLE (J. pr. [2] 101, 61) die von Claus, Jäck (J. pr. [2] 57 [1898], 17; H 550) als 1.4.6-Tribrom-naphthalin beschriebene Verbindung aufzufassen.

### TETRABROMNAPHTHALIN

1.2.6.8-Tetrabrom-naphthalin  $C_{10}H_4Br_4$ , Formel IX. B. Bei 20-stdg. Erhitzen von 1.2.6.8-Tetranitro-naphthalin mit 8 Atomen Brom und einer Spur Jod im Rohr auf 220° (Dhar, Soc. 117, 998). — Gelbliche Nadeln (aus Benzol). Schmilzt oberhalb 315°. — Liefert beim Erhitzen mit Salpeterschwefelsäure auf dem Wasserbad 1.2.6.8-Tetrabrom-x-nitronaphthalin.

1.3.5.8-Tetrabrom-naphthalin C<sub>10</sub>H<sub>4</sub>Br<sub>4</sub>, Formel X. B. Bei 20-stdg. Erhitzen von 1.3.5.8-Tetranitro-naphthalin mit 8 Atomen Brom und einer Spur Jod im Rohr auf 2200 (Dhar, Soc. 117, 997). — Nadeln (aus Benzol). F: 310°. — Liefert beim Erhitzen mit Salpeterschwefelsäure auf dem Wasserbad 1.3.5.8-Tetrabrom-x-nitro-naphthalin.

1.8.6.8-Tetrabrom-naphthalin C<sub>10</sub>H<sub>4</sub>Br<sub>4</sub>, Formel XI. B. Bei 20-stdg. Erhitzen von 1.3.6.8-Tetranitro-naphthalin mit 8 Atomen Brom und einer Spur Jod im Rohr auf 220° (Dhar, Soc. 117, 998). — Nadeln. Schmilzt oberhalb 315°. — Liefert beim Erhitzen mit Salpeterschwefelsäure auf dem Wasserbad 1.3.6.8-Tetrabrom-x-nitro-naphthalin.

1.4(P).5.8-Tetrabrom-naphthalin C<sub>10</sub>H<sub>4</sub>Br<sub>4</sub>, Formel XII. B. Bei 5-stdg. Erhitzen von 1.5-Dinitro-naphthalin oder 1.8-Dinitro-naphthalin mit 4 Atomen Brom in Gegenwart von Jod im Rohr auf 2000 (Dhar, Soc. 117, 997). — Nadeln (aus Benzol). F: 3080. — Liefert bei der Einw. von Salpeterschwefelsäure 1.4(?).5.8-Tetrabrom-x-nitro-naphthalin.

1.4.6.7-Tetrabrom-naphthalin  $C_{10}H_4Br_4$ , Formel XIII (H 550). F: 191,3° (MISSENDEN, Chem. N. 125, 158; C. 1923 I, 165). Unlöslich in Wasser.

1.4.x.x-Tetrabrom-naphthalin  $C_{10}H_4Br_4$  (H 550). F: 127° (MISSENDEN, Chem. N. 125, 158; C. 1923 I, 165). Leicht löslich in Äther, unlöslich in Wasser.

**1.4.6.7.x** - Pentabrom - naphthalin C<sub>10</sub>H<sub>3</sub>Br<sub>5</sub>. B. Aus 1.4.6.7-Tetrabrom-naphthalin beim Erhitzen mit Brom auf 165,3° (MISSENDEN, Chem. N. 125, 158; C. 1923 I, 165). — Körnige Masse. Unlöslich in Alkohol

x-Hexabrom-naphthalin  $C_{10}H_2Br_6$ . a) Präparat vom Schmelzpunkt 250—252° [nicht identisch mit dem Präparat von Roux vom Schmelzpunkt 252° (H 550)]. B. Aus 2-Cyclohexyl-naphthalin beim Behandeln mit Brom bei Gegenwart von Aluminiumbromid (Bodroux, A. ch. [10] 11, 548). — Nadeln (aus Xylol). F: 250—252° (unter Schwärzung).

b) Präparat vom Schmelzpunkt 252° (H 550). B. Bei der Einw. von Brom auf

1-Jod-naphthalin in Gegenwart von Aluminiumchlorid (Bodroux, A. ch. [10] 11, 549). —

F: 252°

c) Präparat vom Schmelzpunkt 269°. B. Aus trans-Dekalin und Brom (Zelinsky, Turowa-Pollak, B. 62, 1659). — Schuppen (aus Toluol). F: 269°.

d) Präparat vom Schmelzpunkt 280—285°. B. Bei 20-stdg. Erhitzen von 1.4.5.8-

Tetranitro-naphthalin mit 8 Atomen Brom in Gegenwart von Jod im Rohr auf 2200 (DHAR,

Soc. 117, 997). — Nadeln (aus Benzol). F: 280—285°.

e) Prāparat vom Schmelzpunkt 312°. B. Aus cis-Dekalin und Brom oder aus durch Dehydrierung von cis-Dekalin gewonnenem Naphthalin und Brom in Gegenwart von Aluminiumbromid (Zelinsky, Turowa-Pollak, B. 62, 1659). Bei der Einw. von Brom auf

1-Jod-naphthalin in Gegenwart von Aluminiumbromid (Boddoux, A.ch. [10] 11, 549).

— Mikroskopische Nadeln (aus Toluol). F: 312° (Z., T.-P.; B.).

f) Präparat von Missenden. B. Aus Naphthalin beim Erhitzen mit 3 Tln. Brom und 1 Tl. Jod auf 310° (Missenden, Chem. N. 125, 158; C. 1923 I, 165). — Prismen. Schwer löslich in Benzol und Chloroform, unlöslich in Ather, Alkohol und Wasser.

1-Chlor-x-hexabrom-naphthalin  $C_{10}$ HClBr $_{6}$ . Bodroux (A. ch. [10] 11, 549) erhielt bei der Bromierung von 1-Chlor-naphthalin in Gegenwart von Aluminiumchlorid ein Präparat vom Schmelzpunkt 250°, in Gegenwart von Aluminiumbromid ein solches vom Schmelzpunkt 281°.

**2-Chlor-x-hexabrom-naphthalin**  $C_{10}HClBr_e$ . Bodroux (A. ch. [10] 11, 549) erhielt bei der Bromierung von 2-Chlor-naphthalin in Gegenwart von Aluminiumchlorid ein Präparat vom Schmelzpunkt 236°, in Gegenwart von Aluminiumbromid ein solches vom Schmelzpunkt 295°.

1-Jod-naphthalin,  $\alpha$ -Jod-naphthalin  $C_{10}H_{7}I$  (H 550).  $Kp_{15}$ : 161—162° (Kroll-pfeiffer, A. 430, 198).  $D_{14}^{4,0}$ : 1,7474;  $n_{\alpha}^{4,0}$ : 1,6955;  $n_{5}^{4,0}$ : 1,7054;  $n_{5}^{4,0}$ : 1,7330 (Kr., A. 430,

450

204). — Reduktion durch konstantsiedende Jodwasserstoffsäure in Eisessig bei 100°: Sнок-SMITH, RUBLI, Soc. 1927, 3105. Liefert bei der Einw. von Brom in Gegenwart von Aluminiumchlorid x-Hexabromnaphthalin vom Schmelzpunkt 252°, in Gegenwart von Aluminium-bromid x-Hexabromnaphthalin vom Schmelzpunkt 312° (BODROUX, A. ch. [10] 11, 549).

 $\alpha$  - Naphthyl-jodidchlorid  $C_{10}H_7Cl_2I=C_{10}H_7\cdot ICl_2$  (H 551 im Artikel 1-Jodoso-naphthalin). F: 65—70° (Challenger, Allpress, Soc. 107, 23).

2-Jod-naphthalin, β-Jod-naphthalin C<sub>10</sub>H<sub>7</sub>I (H 552; E I 264). B. Zur Bildung nach Schmidlin, Huber (B. 43 [1910], 2829; E I 264) vgl. Raiford, Lankelma, Am. Soc. 47, 1118 Ann. — F: 54,5° (Krollffeiffer, A. 430, 198). D<sub>4</sub><sup>∞,4</sup>: 1,6319; n<sub>α</sub><sup>∞,4</sup>: 1,6567; n<sub>α</sub><sup>∞,4</sup>: 1,6662; ng. 1,6926 (Kr., A. 430, 204). Dichte und Brechungsindices einer Lösung in Chinolin bei 16,8°: Kr., A. 430, 204. — Wird durch konstantsiedende Jodwasserstoffsäure in Eisessig bei 1000 nicht merklich reduziert (Shoesmith, Rubli, Soc. 1927, 3105).

### b) Nitroso- und Nitro-Derivate.

1-Nitroso-naphthalin,  $\alpha$ -Nitroso-naphthalin  $C_{10}H_7ON=C_{10}H_7\cdot NO$  (H 553). B. Aus dem Ammoniumsalz des  $\alpha$ -Naphthyl-nitrosohydroxylamins durch Zersetzung mit siedendem Wasser (Baudisch, D. R. P. 227659; C. 1910 II, 1578; Frdl. 10, 127).

1-Nitro-naphthalin,  $\alpha$ -Nitro-naphthalin  $C_{10}H_7O_2N=C_{10}H_7\cdot NO_2$  (H 553; E I 264). B. Aus Naphthalin beim Erhitzen mit einem Gemisch von Salpetersäure (D: 1,52), Pyridin und wasserfreiem Zinkchlorid auf 130° (Battegay, Brandt, Bl. [4] 31, 914); bei der Einw. eines Gemisches aus Nitrosylschwefelsäure + rauchender Salpetersäure (D: 1,502) (Varma, Varma, Varma). KULKARNI, Am. Soc. 47, 145); beim Eintragen von Natriumnitrit in eine Suspension in verd. Schwefelsäure und Erhitzen auf 110° (VARMA, MENON, J. indian chem. Soc. 3, 333; C. 1927 I, 1433); bei der Nitrierung mit einer Lösung von Distickstofftetroxyd in konz. Schwefelsäure (Pinck, Am. Soc. 49, 2539); in geringer Menge beim Erhitzen mit Wismut(III)nitrat (Spiegel, Haymann, B. 59, 203). Bei der Einw. von Stickoxyden (aus arseniger Säure und Salpetersäure) auf geschmolzenes Naphthalin (V., M.). Ausbeuten an 1-Nitro-naphthalin bei der Nitrierung von Naphthalin in Gegenwart von konz. Schwefelsäure, Acetanhydrid, Calciumoxyd, Calciumsulfat, Phosphorpentoxyd und Nitrosulfonsäure: V., M. Man bromiert Calciumoxyd, Calciumsulfat, Phosphorpentoxyd und Nitrosulfonsaure: V., M. Man bromiert 5-Nitro-1.2.3.4-tetrahydro-naphthalin mit 4 Atomen Brom bei 100° und spaltet durch Erhitzen auf 140—150° Bromwasserstoff ab (v. Braun, Hahn, Seemann, B. 55, 1696). — Technische Darstellung durch Nitrieren von Naphthalin mit Salpeterschwefelsäure: H. E. Fierz-David, L. Blangey, Grundlegende Operationen der Farbenchemie, 4. Aufl. [Wien 1938], S. 122. F: 57,2—57,5° (Senden, Bl. Soc. chim. Belg. 32, 98; C. 1923 III, 305), 61° (v. Braun, Hahn, Seemann, B. 55, 1696). E: 55,8° (Senden), ca. 56° (Wogrinz, Vari, Z. Schieß-Sprengstoffw. 14 [1919], 251), 56,7° (Desvergnes, Monit. scient. [5] 16, 73; C. 1926 I, 3229).

D: 1,34 (SKRAUP, EISEMANN, A. 449, 9). Oberflächenspannung von geschmolzenem 1-Nitronaphthalin bei 61,5°: 43,31 dyn/cm (Bhatnagar, Singh, J. Chim. phys. 25, 25). Parachor: Bh., S. Krystallisationsgeschwindigkeit der stabilen und der instabilen Form: Müller, Ph. Ch. 86 [1914], 229. Dipolmoment  $\mu \times 10^{18}$ : 3,62 (verd. Lösung; Benzol) (HÖJENDAHL, Phys. Z. 30, 394; C. 1929 II, 1898). — Schwer löslich mit gelber Farbe in flüssigem Schwefeldioxyd, mit roter Farbe in flüssigem Ammoniak (DE CARLI, G. 57, 351). 100 cm<sup>3</sup> Alkohol lösen bei Zimmertemperatur ca. 4,5 g 1-Nitro-naphthalin (v. B., H., S.). Über die Löslichkeit in verschiedenen Lösungsmitteln (g Substanz in 100 g Lösungsmittel) (Desvergnes) s. die nachfolgende Tabelle. Kritische Lösungstemperatur in 95 %igem Alkohol: 44,0—44,1°

| Lösungsmittel           | g (t 0)        | Lösungsmittel        | g (tº)       |
|-------------------------|----------------|----------------------|--------------|
| Wasser                  | . 0,005 (18)   | 96%iger Alkohol      | 5,949 (18)   |
|                         | 0,009 (50)     | J.                   | 11,57 (32,5) |
|                         | 0,012 (100)    | Absol. Alkohol       | 7,080 (18)   |
| Chloroform              | 94,152 (18)    |                      | 24,41 (37)   |
|                         | 179,22 (30)    | Äther                | 43,484 (18)  |
| Tetrachlorkohlenstoff . | . 24,315 (18)  |                      | 117,71 (28)  |
|                         | 112,65 (32)    | Aceton               | 131,602 (18) |
| Benzol                  | . 113,779 (18) |                      | 327,60 (32)  |
|                         | 213,28 (29,5)  | Essigsäureäthylester | 73,265 (18)  |
| Toluol                  | 85,083 (18)    |                      | 189,93 (32)  |
|                         | 184,53 (31)    | Schwefelkohlenstoff  | 62,063 (18)  |
| Methanol                | 6,195 (18)     |                      | 136,53 (29)  |
| *                       | 15,47 (31)     | Pyridin              | 117,805 (18) |
|                         |                |                      | 217,82 (32)  |

(Crismer, Bl. Soc. chim. Belg. 29, 29, 32; C. 1920 IV, 695). Kryoskopisches Verhalten in Benzol: Ginsburg, Muchin, Ukr. chemič. Ž. 2, 448; C. 1928 I, 146; in Nitrobenzol bei Gegenwart von Phosphorpentoxyd, wasserfreiem oder wasserhaltigem Natriumsulfat oder Wasser: Brown, Bury, Soc. 125, 2224; der Gemische mit Triäthylamin in Benzol: G., M. Thermische Analyse der binären Systeme mit 2.4.6-Trinitro-toluol: Wogrinz, Vári, Z. Schieβ-Sprengstoffw. 14 [1919], 269; mit Pikrinsäure: Jovinet, Mém. Pond. 23, 37; C. 1928 II, 1051; der binären Systeme mit Brenzcatechin, Resorcin und Hydrochinon: Senden, Bl. Soc. chim. Belg. 32, 101; C. 1923 III, 305; der ternären Systeme 1-Nitro-naphthalin-Resorcin-Brenzcatechin und 1-Nitro-naphthalin-Hydrochinon-Brenzcatechin: Senden, Bl. Soc. chim. Belg. 32, 281, 284; C. 1923 III, 1467. Siedepunkte von Gemischen mit Naphthalin: Varma, Menon, J. indian chem. Soc. 3, 331; C. 1927 I, 1433. Verzögert die Oxydation von Dimethylbutadien-Kautschuk (BASF, D. R. P. 332305; C. 1921 II, 877; Frdl. 13, 640).

Beim Leiten des mit Luft vermischten Dampfes über Ammoniumvanadat auf Bimsstein bei 320—370° bilden sich Phthalimid und geringere Mengen Phthalsäureanhydrid (British Dyestuffs Corp., A. G. Green, S. J. Green, D. R. P. 394849; C. 1924 II, 1023; Frdl. 14, 452). Wird von siedender alkalischer Kaliumpermanganat-Lösung zu Phthalonsäure oxydiert (Gardner, Am. Soc. 49, 1832). Liefert beim Erhitzen mit Zinkstaub und Ammoniumchlorid in verd. Alkohol auf 70—78° je nach der angewandten Menge Zink  $\alpha.\alpha'$ -Azoxynaphthalin,  $\alpha.\alpha'$ -Azonaphthalin oder  $\alpha.\alpha'$ -Hydrazonaphthalin (Cumming, Steel, Soc. 123, 2466). Läßt sich durch Behandlung mit Natriumhydrosulfid in Benzol + Wasser in Gegenwart von Calciumchlorid zu N-α-Naphthyl-hydroxylamin reduzieren (HAWORTH, LAPWORTH, Soc. 119, 774). Verhalten beim Behandeln mit Natriumhydrosulfid in warmer wäßrig-alkoholischer Lösung: Veselý, Chudožilov, R. 44, 356, 358. «Naphthylamin entsteht bei der Hydrierung in Benzol bei 215° unter ca. 40 Atm. Druck in Gegenwart eines Nickel-Katalysators (Brown, Etzel, Henke, J. phys. Chem. 32, 634); bei der Hydrierung in alkoh. Lösung bei 80—100° unter 40 Atm. Druck in Gegenwart eines mit Oxydisilin dargestellten Kupferkatalysators (I. G. Farbenind., E. P. 301 577; F. P. 641 652; C. 1929 II, 93); bei der Hydrierung in Isoamylalkohol in Gegenwart von Nickel bei einem Druck von 10—15 kg/cm³ und 120<sup>6</sup> bis 1300 (Brochet, Bl. Soc. ind. Mulh. 88, 706; C. 1923 II, 959); beim Einleiten von Schwefelwasserstoff in eine auf dem Wasserbad erhitzte Lösung von 1-Nitro-naphthalin in Pyridin (Brady, Day, Reynolds, Soc. 1929, 2266); bei der Reduktion durch 6 Mol Titan(III)-chlorid in Gegenwart von 7 Mol Salzsäure in verdünnter wäßriger Lösung; in Gegenwart von 24 Mol Salzsäure entsteht hierbei als Hauptprodukt 4-Chlor-naphthylamin-(1) (KNECHT, Soc. 125, 1539). Über die Hydrierung in Alkohol in Gegenwart von Platinschwarz (aus Platinoxyd) unter 2,5—3 Atm. Druck bei 25—30° vgl. Adams, Cohen, Rees, Am. Soc. 49, 1095. Einfluß von Temperatur, Druck, Katalysator, Reaktionszeit und Lösungsmittel bei der katalytischen Reduktion von 1-Nitro-naphthalin zu α-Naphthylamin: PARRETT, Lowy, Am. Soc. 48, 778. Liefert bei gelindem Sieden mit Na<sub>2</sub>S<sub>2</sub>O<sub>4</sub> und Eisessig Acetyl-α-naphthylamin, Naphthylamin-(1)-sulfonsäure-(2)(?) und Naphthylamin-(1)-sulfonsäure-(4) (Bucherer, D. R. P. 423029; C. 1926 I, 3183; Frdl. 15, 223). Bei 20—25-stdg. Erhitzen mit Salpetersäure und rauchender Schwefelsäure auf 100—110° entsteht Tetranitromethan (McKie, J. Soc. chem. Ind. 44, 431 T; C. 1926 I, 84). Liefert beim Erhitzen mit 2-Amino anthrachinon und konz. Schwefelsäure einen schwarzen Farbstoff und 2-Amino-1-oxy-anthrachinon (Bucherer, Maki, B. 60, 2077). Bei der Umsetzung mit Methylmagnesiumjodid bzw. Äthylmagnesiumbromid in Äther entstehen Methyl- bzw. Äthyl-α-naphthylamin und wenig α.α'-Azonaphthalin (Hepworth, Soc. 117, 1011, 1012). Analog erhält man mit überschüssigem Phenylmagnesiumbromid in Äther unter Kühlung Phenyl-α-naphthylamin und andere Produkte (GILMAN, McCracken, Am. Soc. 51, 826). — Schädigende Wirkung beim Aufstäuben auf Bohnenblätter: Moore, Campbell, J. agric. Res. 28, 402; C. 1925 I, 2253. — Trennung von Pikrinsäure durch Tetrachlorkohlenstoff: Desvergnes, Ann. Chim. anal. appl. [2] 7, 99; C. 1925 II, 420. Zur titrimetrischen Bestimmung mit Titan(III)-chlorid in Gegenwart von Natriumcitrat vgl. Kolthoff, Robinson, R. 45, 174.

Verbindung mit 1.3.5-Trinitro-benzol  $C_{10}H_7O_2N+C_6H_3O_6N_3$ . D: 1,52 (Skraup, Eisemann, A. 449, 9).

2-Nitro-naphthalin, β-Nitro-naphthalin C<sub>10</sub>H<sub>7</sub>O<sub>2</sub>N = C<sub>10</sub>H<sub>7</sub>·NO<sub>2</sub> (H 555; E I 264). B. Aus 6-Nitro-1.2.3.4-tetrahydro-naphthalin durch Einw. von 4 Atomen Brom bei erhöhter Temperatur und Destillation des Reaktionsprodukts unter vermindertem Druck (v. Braun, Hahn, Seemann, B. 55, 1696; Tetralin-Ges., D. R. P. 332593; C. 1921 II, 805; Frdl. 13, 286). Zur Bildung aus β-Naphthylamin vgl. Vesselý, Dvořák, Bl. [4] 31, 424; zur Bildung aus 2-Nitro-naphthylamin-(1) vgl. Hoddson, Kilner, Soc. 1926, 9. — Kp<sub>14</sub>: 180—1840 (v. B., H., S.). Thermische Analyse der binären Gemische mit Naphthalin (Eutektikum bei 36,7° und 73,6 Mol-% 2-Nitro-naphthalin), 1.5-Dinitro-naphthalin und 1.8-Dinitro-naphthalin: Pascal, Bl. [4] 27, 388; der ternären Gemische mit 1.5- und 1.8-Dinitro-naphthalin: P. — Liefert bei der Reduktion mit Zinkstaub und wäßrig-alkoholischer Ammonium

chlorid-Lösung bei 70—75° je nach den Bedingungen  $\beta.\beta'$ -Azoxynaphthalin,  $\beta.\beta'$ -Azonaphthalin oder  $\beta.\beta'$ -Hydrazonaphthalin, das sich beim Eindampfen des Reaktionsgemisches unter vermindertem Druck in 2.2'-Diamino-dinaphthyl-(1.1') umlagert (Cumming, Ferrer, Soc. 125, 1108). Selektive Reduktion von 2-Nitro-naphthalin (zu  $\beta$ -Naphthylamin) im Gemisch mit 1-Nitro-naphthalin durch Natriumhydrosulfid in warmer wäßrig-alkoholischer Lösung: Vesely, Chudožilov, R. 44, 356, 358. Liefert bei 8-stdg. Erwärmen mit Ammoniumsulfit in Gegenwart von wenig Ammoniumcarbonat in verd. Alkohol  $\beta$ -Naphthyl-sulfamidsäure und wenig  $\beta$ -Naphthylamin; ohne Zugabe von Ammoniumcarbonat entsteht quantitativ  $\beta$ -Naphthylamin (Levi, Quilico, Giorn. Chim. ind. appl. 7, 128; C. 1925 II, 179). Wird in verdünnter wäßriger Lösung durch 6 Mol Titan(III)-chlorid in Gegenwart von mindestens 7 Mol Salzsäure zu  $\beta$ -Naphthylamin reduziert (Knecht, Soc. 125, 1540). Reduktion mit Natriumbenzylat bei Zusatz von Benzol: Sutter, Dains, Am. Soc. 50, 2735. Gibt bei der Behandlung mit 2 Atomen unverdünntem Brom, zuletzt auf dem Wasserbad, 5-Brom-2-nitro-naphthalin (v. Braun, Hahn, Seemann, B. 55, 1697). Bei der Nitrierung in konz. Schwefelsäure entsteht neben Dinitronaphthalinen hauptsächlich 1.3.8-Trinitronaphthalin; wird die Nitrierung in heißem Eisessig mit 1 Tl. Salpetersäure (D: 1,525) und 2 Tln. Schwefelsäuremonohydrat durchgeführt, so entstehen 1.6-Dinitro-naphthalin und 1.7-Dinitro-naphthalin (Veselý, Jakeš, Bl. [4] 33, 954). — Anthelmintische Wirkung: Rico, C. r. Soc. Biol. 97, 882; C. 1928 II, 689.

2-Chlor-1-nitro-naphthalin C<sub>10</sub>H<sub>6</sub>O<sub>2</sub>NCl, Formel I (H 555). B. Zur Bildung aus 1-Nitro-naphthylamin-(2) vgl. Hougson, Kilner, Soc. 1926, 9.

4-Chlor-1-nitro-naphthalin C<sub>10</sub>H<sub>6</sub>O<sub>2</sub>NCl, Formel II

4-Chlor-1-nitro-naphthalin C<sub>10</sub>H<sub>6</sub>O<sub>2</sub>NCl, Formel II
(H 555; E I 264). B. Aus 1-Chlor-naphthalin und Salpeter-schwefelsäure bei 0—95° sowie in Tetrachlorkohlenstoff und Eisessig in je nach den Bedingungen wechselnden Mengen (Ferrero, Caflisch, Helv. 11, 807). Aus 4-Nitro-1-aminonaphthalin nach Sandmeyer (Franzen, Helwert, B. 53, 320; Fe., C.). — F: 84—85° Fr., H.), 85° (Fe., C.). Bei einem Versuch erhielten Fr., H. ein Präparat vom Schmelzpunkt 60—61°. — Zur Umsetzung mit Piperidin vgl. Fr., H.

5-Chlor-1-nitro-naphthalin C<sub>10</sub>H<sub>6</sub>O<sub>2</sub>NCl, s. nebenstehende Formel (H 556).

B. Aus 1-Chlor-naphthalin und Salpeterschwefelsäure bei 0—85° sowie in Tetrachlorkohlenstoff und Eisessig in je nach den Bedingungen wechselnden Mengen (Ferrero, Caflisch, Helv. 11, 807). Aus 5-Nitro-naphthylamin-(1) nach Sandmeyer (Fe., C.). Bei der Einw. von Natriumchlorat auf 5-Nitro-naphthalinsulfonsäure-(1) in verd. Salzsäure + Dichlorbenzol oder Trichlorbenzol bei 90° bis 95° (Friedländer, Karamessinis, Schenk, B. 55, 47). — Nadeln (aus verd. Alkohol oder Essigsäure). — Wird durch Zinn(II)-chlorid oder Eisen und Essigsäure zu 5-Chlornaphthylamin-(1) reduziert (Fr., K., Sch.).

8-Chlor-1-nitro-naphthalin C<sub>10</sub>H<sub>6</sub>O<sub>2</sub>NCl, s. nebenstehende Formel (H 556). Cl NO<sub>2</sub>
B. Aus Naphthalindichlorid (vgl. H 5, 519) durch Einw. von Salpetersäure
(D: 1,5) bei einer 40° nicht übersteigenden Temperatur und Kochen des Reaktionsprodukts mit Wasser oder Erhitzen des Reaktionsprodukts mit Kalkwasser unter Einleiten von Wasserdampf (Matter, D. R. P. 317755; C. 1920 II, 601; Frdl. 13, 289). Aus 1-Chlor-naphthalin und Salpeterschwefelsäure bei 0—95° sowie in Tetrachlorkohlenstoff und Eisessig in je nach den Bedingungen wechselnden Mengen (Ferrero, Caflisch, Helv. 11, 807). Beim Einleiten von Chlor in ein geschmolzenes Gemisch von 1-Nitro-naphthalin und Eisen(III)-chlorid bei 55° (F., C.). Beim Behandeln von 8-Nitro-naphthalin-sulfonsäure-(1) mit Natriumchlorat und heißer verdünnter Salzsäure (Kalle & Co., D. R. P. 343147; C. 1922 II, 143; Frdl. 13, 287) unter Zusatz von Dichlorbenzol oder Trichlorbenzol (Friedländer, Karamessinis, Schenk, B. 55, 47). — Gibt bei der Reduktion 8-Chlor-naphthylamin-(1) (M.).

1-Chlor-2-nitro-naphthalin C<sub>10</sub>H<sub>6</sub>O<sub>2</sub>NCl, s. nebenstehende Formel. B.

Durch Diazotierung von 2-Nitro-naphthylamin-(1) und nachfolgende Behandlung mit Kupfer(I)-chlorid in konz. Salzsäure (Hodgson, Kilner, Soc. 1926, 8, 9). — Blaßgelbe Nadeln (aus Alkohol). F: 76°.

4.8-Dichlor-1-nitro-naphthalin  $C_{10}H_5O_2NCl_2$ , s. nebenstehende Formel (H 556). B. Durch Behandeln von 5-Chlor-8-nitro-naphthalin-sulfonsäure-(1) mit Chlor oder Chlorat und Salzsäure in heißer wäßriger Lösung (Kalle & Co., D. R. P. 343147; C. 1922 II, 143; Frdl. 13, 287; Friedländer, Karamessinis, Schenk, B. 55, 50). Bei der Einw. von Natriumchlorat auf 4-Nitro-naphthalindisulfonsäure-(1.5) in verd. Salzsäure bei 90—95° (F., K., Sch.). — Etwas flüchtig mit Wasserdampf (F., K., Sch.). Leicht löslich in den gebräuchlichen Lösungsmitteln (F., K., Sch.). — Wird durch Zinn(II)-chlorid oder Eisen und Salzsäure zu 4.8-Dichlor-naphthylamin-(1) reduziert (F., K., Sch.).

NO<sub>2</sub> Cl

5.8-Dichlor-1-nitro-naphthalin  $C_{10}H_5O_2NCl_2$ , s. nebenstehende Formel (H 556; E I 264). B. Durch Nitrieren von 1.2.3.4-Tetrachlor-1.2.3.4-tetrahydronaphthalin mit Salpetersäure (D: 1,5) bei höchstens 30-35° und Erhitzen des Reaktionsprodukts mit Natriumcarbonat und Methanol auf 130-140° oder mit Natriumdicarbonat, Methanol und Benzol auf 140-1500 (MATTER, D. R. P. Čl 317755; C. 1920 II, 601; Frdl. 13, 289) oder Behandeln des Reaktionsprodukts mit methylalkoholischem Ammoniak bei gewöhnlicher Temperatur (M., D. R. P. 348069; C. 1922 IV, 45; Frdl. 14, 467). Bei der Einw. von Natriumchlorat auf das bei der Nitrierung von 4-Chlor-naphthalin-sulfonsäure-(1) mit Salpeterschwefelsäure unterhalb 20° entstehende Nitrosulfonsäure-Gemisch in verd. Salzsäure bei Siedetemperatur (Friedländer, Karamessinis, Schenk, B. 55, 50). Durch Behandeln von 4-Chlor-8-nitro-naphthalin-sulfonsäure-(1) mit Chlor oder Chlorat und Salzsäure in heißer wäßriger Lösung (Kalle & Co., D. R. P. 343147; C. 1922 II, 143; Frdl. 13, 287). — Gelbliche Nadeln (aus Alkohol, Ligroin

oder Methanol). F: 93° (K. & Co.), 94° (M., D. R. P. 317755, 348069). — Gibt bei der Reduktion mit Zinn und Salzsäure 5.8-Dichlor-naphthylamin-(1) (M., D.R.P. 317755).

**4.8-Dichlor-2-nitro-naphthalin**  $C_{10}H_5O_2NCl_2$ , s. nebenstehende Formel. B. Durch Einw. von Natriumchlorat und verd. Salzsäure auf 3-Nitro-naphthalin-disulfonsäure (1.5) in heißer wäßriger Lösung (Kalle & Co., D. R. P. 343147; C. 1922 II, 143; Frdl. 13, 287; Friedländer, Karamessinis, Schenk, B. 55, 48). — Gelbliche Nadeln (aus Benzol). F: 132° (K. & Co.; F., K., Sch.). — Wird durch Zinn(II)-chlorid oder Eisen und Salzsäure zu 4.8-Dichlor-naphthylamin-(2) reduziert (F., K., Sch.).

NO<sub>2</sub>

2-Brom-1-nitro-naphthalin C<sub>10</sub>H<sub>6</sub>O<sub>2</sub>NBr, s. nebenstehende Formel (H 556). B. Aus 6-Brom-5-nitro-1,2.3.4-tetrahydro-naphthalin durch Erhitzen mit Brom auf ca. 2000 (Veselý, Chudožilov, Bl. [4] 37, 1439). — F: 99—100°.

 $NO_2$ Br

3-Brom-1-nitro-naphthalin  $C_{10}H_6O_2NBr$ , s. nebenstehende Formel. B. Aus 7-Brom-5-nitro-1.2.3.4-tetrahydro-naphthalin durch Erhitzen mit Brom oder aus 4-Nitro-naphthylamin-(2) durch Ersatz der Aminogruppe durch Brom (Vesely, Chudožilov, Bl. [4] 37, 1441). — F: 97—98°.

 $NO_2$ Br

**4-Brom-1-nitro-naphthalin**  $C_{10}H_aO_2NBr$ , Formel I (H 557). B. Beim Erhitzen von 8-Brom-5-nitro-1.2.3.4tetrahydro-naphthalin mit Brom (Veselý, Chudožilov, Bl. [4] 37, 1442). —  $F: 85-86^{\circ}$ .

 $NO_2$  $NO_2$ II. Вr

5-Brom-1-nitro-naphthalin C<sub>10</sub>H<sub>6</sub>O<sub>2</sub>NBr, Formel II (H 557). B. Bei allmählicher Einw. von Brom auf geschmolzenes 1-Nitro-naphthalin bei 80-1000 unter starkem Rühren (Shoeshmith, Rubli, Soc. 1927, 3104). — F: 122°.

1-Brom-2-nitro-naphthalin  $C_{10}H_6O_2NBr$ , s. nebenstehende Formel. B. Aus 5-Brom-6-nitro-1.2.3.4-tetrahydro-naphthalin durch Erhitzen mit Brom (VESELÝ, CHUDOŽILOV, Bl. [4] 37, 1440) oder aus 2-Nitro-naphthylamin-(1) nach Sandmeyer (V., Ch.; Hodgson, Kilner, Soc. 1926, 9). — Hellgelbe Nadeln (aus Alkohol). F: 97° (H., K.), 98—99° (V., Ch.).

 $\mathbf{Br}$ NO<sub>2</sub>

**3-Brom-2-nitro-naphthalin**  $C_{10}H_6O_2NBr$ , s. nebenstehende Formel. B. Beim Erhitzen von 7-Brom-6-nitro-1.2.3.4-tetrahydro-naphthalin mit Brom (Vesely, Chudožilov, Bl. [4] 37, 1440). — Bräunliche Nadeln (aus Methanol). F: 82-83°. Leicht löslich in Methanol und Alkohol.

NO<sub>2</sub> Br

4-Brom-2-nitro-naphthalin C<sub>10</sub>H<sub>6</sub>O<sub>2</sub>NBr, s. nebenstehende Formel (H 557). B. Aus 8-Brom-6-nitro-1.2.3.4-tetrahydro-naphthalin durch Erhitzen mit Brom oder aus 3-Nitro-naphthylamin-(1) durch Ersatz der Aminogruppe durch Brom (Vesely, Chudožilov, Bl. [4] 37, 1441). — Krystalle (aus Alkohol). F: 128—129°.

 $NO_2$ Вr

5-Brom-2-nitro-naphthalin  $C_{10}H_{0}O_{2}NBr$ , s. nebenstehende Formel. B. Aus 2-Nitro-naphthalin und 2 Atomen Brom, zuletzt auf dem Wasserbad  $NO_2$ (v. Braun, Hahn, Seemann, B. 55, 1697). Aus 6-Nitro-naphthylamin-(1) nach Sandmeyer (Veselý, Jakeš, Bl. [4] 33, 953).— Orangegelbe Nadeln (aus Alkohol). F: 130,5° (V., J.), 131° (v. B., H., S.). Leicht löslich in Chloroform, Benzol und heißem Alkohol, sehr schwer in Ather und Ligroin (v. B., H., S.).— Liefert mit Zinn(II)-chlorid 5-Brom-naphthylamin-(2) (v. B., H., S.).

1.2.6.8-Tetrabrom-x-nitro-naphthalin  $C_{10}H_3O_2NBr_4 = C_{10}H_3Br_4 \cdot NO_2$ . B. Beim Erhitzen von 1.2.6.8-Tetrabrom-naphthalin mit Salpeterschwefelsäure auf dem Wasserbad (DHAR, Soc. 117, 998). — Bräunlich gelber Niederschlag. F: 230°.

NO<sub>2</sub>

1.3.5.8 Tetrabrom - x - nitro - naphthalin C<sub>10</sub>H<sub>2</sub>O<sub>2</sub>NBr<sub>4</sub> = C<sub>10</sub>H<sub>2</sub>Br<sub>4</sub>·NO<sub>2</sub>. B. Beim Erhitzen von 1.3.5.8 Tetrabrom-naphthalin mit Salpeterschwefelsauer auf dem Wasserbad (Dhar, Soc. 117, 998). — Gelbbrauner Niederschlag. F: 205°. Zersetzt sich nicht bis 280°.

1.3.6.8 - Tetrabrom - x - nitro - naphthalin  $C_{10}H_3O_2NBr_4 = C_{10}H_3Br_4 \cdot NO_2$ . B. Beim Erhitzen von 1.3.6.8-Tetrabrom-naphthalin mit Salpeterschwefelsaure auf dem Wasserbad (Dhar, Soc. 117, 998). — Bräunlichgelbes Pulver. F: 210°.

1.4 (?).5.8-Tetrabrom-x-nitro-naphthalin  $C_{10}H_3O_2NBr_4=C_{10}H_3Br_4\cdot NO_2$ . B. Durch Einw. von Salpeterschwefelsäure auf 1.4 (?).5.8-Tetrabrom-naphthalin (DHAR, Soc. 117, 997). — Gelber Niederschlag. F: 220° (Zers.).

4-Jod-1-nitro-naphthalin  $C_{10}H_6O_2NI$ , s. nebenstehende Formel (H 557). B. Zur Bildung aus 4-Nitro-naphthylamin-(1) nach MELDOLA (Soc. 47 [1885], 519) vgl. Schoepfle, Am. Soc. 45, 1571. — Liefert beim Erhitzen mit Kupferpulver und etwas Naphthalin auf 220-230° 4.4'-Dinitro-dinaphthyl-(1.1').

5-Jod-1-nitro-naphthalin  $C_{10}H_6O_2NI$ , s. nebenstehende Formel. B. Aus 5-Nitro-1-amino-naphthalin durch Diazotieren bei Zimmertemperatur in salz-NO<sub>2</sub>

saurer Lösung und nachfolgendes Erwärmen mit Kaliumjodid-Lösung (SCHOLL, M. 42, 405). — Strohgelbe Nadeln (aus Eisessig). F: 164°. Sublimierbar. Leicht löslich in heißem Benzol und in Chloroform, löslich in Alkohol und Eisessig. Löst sich in konz. Schwefelsäure bei gelindem Erwärmen mit gelber Farbe. Liefert beim Erhitzen mit Kupferpulver auf 220-2300 5.5'-Dinitro-dinaphthyl-(1.1'), neben anderen Produkten.

1-Jod-2-nitro-naphthalin C<sub>10</sub>H<sub>6</sub>O<sub>2</sub>NI, s. nebenstehende Formel (H 557). B. Zur Bildung aus 2-Nitro-naphthylamin-(1) nach Meldola (Soc. 47 [1885], 519) vgl. Hodgson, Kilner, Soc. 1926, 9. — Blaßgelbe Platten (aus Alkohol). F: 111º.

NO2

NO2

1.2-Dinitro-naphthalin  $C_{10}H_6O_4N_2$ , s. nebenstehende Formel. B. Bei der Einw. von Brom auf 5.6-Dinitro-1.2.3.4-tetrahydro-naphthalin bei 100°  $NO_2$ NO<sub>2</sub> und nachfolgendem Erhitzen des Reaktionsprodukts auf 180° (Veselý, Dvořík Rl. [4] 33. 326). — Bräunliche Nadeln (aus Alkohol). F: 158° Dvořák, Bl. [4] 33, 326). — Bräunliche Nadeln (aus Alkohol). F: 158° (V., D.). Schwer löslich in Alkohol und Benzol (V., D.). — Liefert bei der partiellen Reduktion mit Wasserstoff in Alkohol in Gegenwart von Platinschwarz (Veselý, Rein, Collect. Trav. chim. Tchécosl. 1, 364; C. 1929 II, 1669) sowie bei der Einw. von gesättigtem alkoholischem Ammoniak bei Zimmertemperatur (V., D.) 2-Nitro-naphthylamin-(1). Bei der Reduktion mit Zinn(II)-chlorid in Alkohol + Eisessig in Gegenwart von Chlorwasserstoff entsteht 1-Nitro-naphthylamin-(2) (V., D.). Gibt mit siedender 5 % iger Natronlauge 2-Nitro-naphthol-(1) (V., D.).

**1.3-Dinitro-naphthalin**  $C_{10}H_6O_4N_2$ , s. nebenstehende Formel (H 557; E I 264). B. Bei der Einw. von Brom auf 5.7-Dinitro-1.2.3.4-tetrahydronaphthalin bei 100° und nachfolgendem Erhitzen des Reaktionsprodukts  $NO_2$ auf 180° (Vesely, Dvorak, Bl. [4] 33, 326). Bei der Einw. von Hydrazin oder Hydrazinhydrat auf 4-Chlor-1.3-dinitro-naphthalin in Alkohol (Müller, Weisbrod, J. pr. [2] 111, 309, 311, 312). — Gelbbraune Krystalle (aus Alkohol), Nadeln (aus Benzol). F: 143° (M., W.), 144—145° (V., D.). — Liefert bei der partiellen Reduktion mit Wasserstoff in Gegenwart von Platinschwarz in Alkohol 3-Nitro-naphthylamin-(1) (V., Rein, Collect. Trav. chim. Tchécosl. 1, 364; C. 1929 II, 1669). Beim Einleiten von Schwefelwasserstoff in die ammoniakalisch-alkoholische Lösung oder bei der Reduktion mit Zinn(II)-chlorid und Alkohol erhält man 3-Nitro-naphthylamin-(1) und 4-Nitro-naphthylamin-(2) (V., D.).

1.4-Dinitro-naphthalin  $C_{10}H_6O_4N_2$ , s. nebenstehende Formel. B. Aus 5.8-Dinitro-1,2.3.4-tetrahydro-naphthalin durch Einw. von Brom und darauf-NO2 folgendes Erhitzen des Reaktionsprodukts auf 190° (Chudožilov, Collect. Trav. chim. Tchécosl. 1, 305; C. 1929 II, 738). In geringer Menge durch Eintragen von diazotiertem 4-Nitro-naphthylamin-(1) in eine wäßr. Natriumnitrit-Lösung bei Gegenwart von Kupferbronze (Vesely, Dvorak, Bl. [4] 33, 324; Ch.). — Gelbliche Nadeln (aus Methanol oder verd. Alkohol). F: 129° (V., D.), 131—132° (Ch.). leicht löslich in allen organischen Lösungsmitteln, löslich in Wasser. NO<sub>2</sub> Sehr

1.5 - Dinitro - naphthalin  $C_{10}H_6O_4N_2$ , s. nebenstehende Formel (H 558; E I 284). Zur Darstellung aus 1-Nitro-naphthalin durch Einw. von Salpeterschwefelsaure vgl. Finzi, Ann. Chim. applic. 15, 59; C. 1925 I, 2494; vgl. a. Oddo, G. 55, 181. — F: 217,5° (Desvergnes, Monit. scient. [5] 16, 75; C. 1926 I, 3229). Verbrennungswärme bei konstantem Volumen: 1157,7 kcal/Mol (Tomioka, O2N Takahashi in Landolt-Börnst. E III, 2915). Dipolmoment  $\mu \times 10^{18}$ : 0,6 (verd. Lösung; Benzol) (Höjendahl, Phys. Z. 30, 394; C. 1929 II, 1898). — Über die Löslichkeit in verschiedenen Lösungsmitteln nach Desvergnes (g Substanz in 100 g Lösungsmittel) s. die untenstehende Tabelle. Thermische Analyse der binären Gemische mit 2-Nitro-naphthalin (Eutektikum bei 54,5° und 8 Mol-% 1.5-Dinitro-naphthalin), mit 1.8-Dinitro-naphthalin und 1.3.5-Trinitro-naphthalin: Pascal, Bl. [4] 27, 390, 391, 394, 396; der ternären Gemische mit 2-Nitro-naphthalin und 1.8-Dinitro-naphthalin, mit 1.8-Dinitro-naphthalin und 1.3.5-Trinitro-naphthalin, mit 1.8-Dinitro-naphthalin und 1.3.5-Trinitro-naphthalin. P. — Liefert bei 5-stdg. Erhitzen mit 4 Atomen Brom in Gegenwart von Jod

| Lösungsmittel ,       | g (t 0)                    | Lösungsmittel        | g (t0)                   |
|-----------------------|----------------------------|----------------------|--------------------------|
| Wasser                | 0,0058 (12)<br>0,0086 (50) | 96%iger Äthylalkohol | 0,026 (16)<br>0,173 (50) |
|                       | 0,0140 (100)               | Absol. Äthylalkohol  | 0.026 (16)               |
| Chloroform            | 0,312 (16)                 |                      | 0,181 (50)               |
|                       | 0,751 (50)                 | Diäthyläther         | 0,065 (16)               |
| Tetrachlorkohlenstoff | 0,022 (16)                 |                      | 0,202 (32,5)             |
|                       | 0,121 (50)                 | Aceton               | 0,465 (16)               |
| Benzol                | 0,381 (16)                 |                      | 1,556 (50)               |
|                       | 1,479 (50)                 | Essigsäureäthylester | 0,313 (16)               |
| Toluol                | 0,413 (16)                 | *                    | 1,024 (50)               |
|                       | 1,347 (50)                 | Schwefelkohlenstoff  | 0,024 (16)               |
| Methanol              | 0,027 (16)                 |                      | 0,121 (32,5)             |
|                       | 0,245 (50)                 | Pyridin              | 0,781 (16)               |
|                       | ` '                        | -                    | 2,802 (50)               |

im Rohr auf 200° 1.4(?).5.8-Tetrabrom-naphthalin (Dhar, Soc. 117, 997). Gibt bei Einw. von heißer Salpetersäure 1.3.5-Trinitro-naphthalin, 1.4.5-Trinitro-naphthalin und andere Produkte (Dimroth, Ruck, A. 446, 130). Beim Erhitzen mit Salpeterschwefelsäure auf ca. 95° entstehen 1.3.5-Trinitro-naphthalin und 1.4.5-Trinitro-naphthalin (Pascal, Bl. [4] 27, 398). Wird beim Erhitzen mit wäßrig-methylalkoholischem Ammoniak auf 150° nicht verändert (Burton, Kenner, 121, 495).

1.6-Dinitro-naphthalin C<sub>10</sub>H<sub>6</sub>O<sub>4</sub>N<sub>2</sub>, s. nebenstehende Formel (H 559; E I 265). B. Neben 1.7-Dinitro-naphthalin beim Nitrieren von 2-Nitro-naphthalin in heißem Eisessig mit Salpeterschwefelsäure (Veselé, Jakes, Bl. [4] 33, 954). Durch Eintragen von diazotiertem 5-Nitro-naphthylamin-(2) eine wäßr. Natriumnitrit-Lösung bei Gegenwart von Kupferbronze (V., Dvořák, Bl. [4] 33, 324). — Nadeln (aus Alkohol). F: 160—161° (V., J.), 161—162° (V., D.). — Beim Einleiten von Schwefelwasserstoff in die ammoniakalisch-alkoholische Lösung und nachfolgenden Kochen entsteht 5-Nitro-naphthylamin-(2) (V., D.). Bei der Reduktion mit Zinn(II)-chlorid und Chlorwasserstoff + Eisessig in Alkohol entsteht 6-Nitro-naphthylamin-(1) (V., D.).

1.7-Dinitro-naphthalin C<sub>10</sub>H<sub>6</sub>O<sub>4</sub>N<sub>2</sub>, s. nebenstehende Formel. B. Über Bildung aus 2-Nitro-naphthalin s. im vorhergehenden Artikel. Durch Eintragen von diazotiertem 8-Nitro-naphthylamin-(2) in Natriumnitrit-Lösung bei Gegenwart von Kupferbronze (Veselt, Dvořák, Bl. [4] 33, 324). — Gelbliche Krystalle (aus Alkohol). F: 156° (V., D.; V., Jakeš, Bl. [4] 33, 955). Schwer löslich in Alkohol, löslich in Benzol, Aceton und Eisessig (V., D.). — Bei der Reduktion mit Zinn(II)-chlorid und Chlorwasserstoff + Eisessig in Alkohol entsteht 7-Nitro-naphthylamin-(1) (V., D., Bl. [4] 33, 330). Beim Einleiten von Schwefelwasserstoff in die ammoniakalisch-alkoholische Lösung und nachfolgenden Kochen entsteht 8-Nitro-naphthylamin-(2) (V., D.).

1.8 - Dinitro - naphthalin  $C_{10}H_6O_4N_2$ , s. nebenstehende Formel (H 559;  $O_2N$  NO2 E I 265). B. Zur Bildung aus 1-Nitro-naphthalin durch Behandlung mit Salpeter-schwefelsäure vgl. Oddo, G. 55, 181. — F: 171—171,5° (Desvergnes, Monit. scient. [5] 16, 76; C. 1926 I, 3229). Verbrennungswärme bei konstantem Volumen: 1164,45 kcal/Mol (Tomioka, Takahashi in Landolt-Börnst. E III, 2945). Dipolmoment  $\mu \times 10^{18}$ : 7,1 (verd. Lösung; Benzol) (Höjendahl, Phys. Z. 30, 394; C. 1929 II, 1898). — Über die Löslichkeit in verschiedenen Lösungsmitteln nach Desvergnes (g Substanz in 100 g Lösungsmittel) s. die Tabelle auf S. 456. Thermische Analyse der binären Gemische mit 2-Nitro-naphthalin (Eutektikum bei 44° und 16 Mol-% 1.8-Dinitro-naphthalin), mit 1.5-Dinitro-naphthalin und mit 1.3.5-Trinitro-naphthalin: Pascal, Bl. [4] 27, 390, 391, 394; der ternären Gemische mit 2-Nitro-naphthalin und 1.5-Dinitro-naphthalin, mit

| Lösungsmittel         | g (t <sup>0</sup> )        | Lösungsmittel        | g (t 0)                  |
|-----------------------|----------------------------|----------------------|--------------------------|
| Wasser                | 0,0034 (15)<br>0,0049 (50) | 96%iger Äthylalkohol | 0,213 (16)<br>0,925 (50) |
| _                     | 0,0430 (100)               | Absol. Äthylalkohol  | 0,273 (16)               |
| Chloroform            | 1,227 (16)                 |                      | 0,960 (50)               |
|                       | 3,230 (50)                 | Diäthyläther         | 0,345 (16)               |
| Tetrachlorkohlenstoff | 0,032 (16)                 |                      | 0,480 (30)               |
|                       | 0,115 (50)                 | Aceton               | 7,003 (16)               |
| Benzol                | 0,750 (16)                 |                      | 19,163 (50)              |
|                       | 2,754 (50)                 | Essigsäureäthylester | 1,863 (16)               |
| Toluol                | 0,630 (16)                 |                      | 4,707 (50)               |
|                       | 1,794 (50)                 | Schwefelkohlenstoff  | 0,067 (16)               |
| Methanol              | 0,341 (16)                 |                      | 0,135 (30)               |
|                       | 1,231 (50)                 | Pyridin              | 5,727 (16)               |
| ľ                     |                            |                      | 23,630 (50)              |

1.5. Dinitro-naphthalin und 1.3.5. Trinitro-naphthalin, mit 1.5. Dinitro-naphthalin und 1.3.8. Trinitro-naphthalin: P.

Bei der Hydrierung in Gegenwart von Platinschwarz in Alkohol erhält man 8-Nitronaphthylamin-(1) (Veselý, Rein, Collect. Trav. chim. Tchécosl. 1, 364; C. 1929 II, 1669). Wird durch Titan (III)-chlorid in Gegenwart von Salzsäure zu 1.8-Diamino-naphthalin reduziert (Knecht, Soc. 125, 1540). Liefert beim Kochen mit NaHSO<sub>3</sub>-Lösung entgegen Fischesser & Co. (D. R. P. 79577; Frdl. 4, 565; H 560) nicht 4.5-Diamino-naphthalin-trisulfonsäure-(1.3.6 oder 1.3.7), sondern 4.5-Diamino-naphthalin-trisulfonsäure-(1.3.8) in schlechter Ausbeute; in sekundärer Reaktion entsteht daneben der Schwefligsäureester der 8-Amino-naphthol-(1)-trisulfonsäure-(4.5.7) (Bucherer, Barsch, J. pr. [2] 111, 317, 325). Beim Kochen mit NaHSO<sub>3</sub>-Lösung in ammoniakalischer Lösung nach Höchster Farbw. (D. R. P. 215338; Frdl. 10, 182; H 560) entsteht neben Naphthylamin-(1)-disulfonsäure-(4.7) wenig 4.5-Diamino-naphthalin-disulfonsäure-(1.6) und der Schwefligsäureester der 8-Amino-naphthol-(1)-disulfonsäure-(2.5) (Bu., Ba.). Liefert beim Kochen mit Na<sub>2</sub>S<sub>2</sub>O<sub>4</sub> und Eisessig eine 1.8-Diamino-naphthalin-disulfonsäure-(x.x) (Bu., D. R. P. 423029; C. 1926 I, 3183; Frdl. 15, 223). Gibt bei 5-stdg. Erhitzen mit 4 Atomen Brom in Gegenwart von Jod im Rohr auf 200° 1.4(7).5.8-Tetrabrom-naphthalin (Dhar, Soc. 117, 997). Beim Erhitzen mit Salpeterschwefelsäure (bestehend aus 30,19 Tln. Salpetersäure, 62,87 Tln. Schwefelsäure, 6,67 Tln. Stickstoffdioxyd und 0,27 Tln. Wasser) auf ca. 95° entstehen 1.3.8-Trinitro-naphthalin und wenig 1.4.5-Trinitro-naphthalin (Pascal, Bl. [4] 27, 397). Beim Erhitzen mit Natronlauge eine gelbrote, mit Ammoniak eine rötliche Färbung (Rudolph, Fr. 60, 240).

2.3-Dinitro-naphthalin C<sub>10</sub>H<sub>6</sub>O<sub>4</sub>N<sub>2</sub>, s. nebenstehende Formel. B. Aus 6.7-Dinitro-1.2.3.4-tetrahydro-naphthalin durch Einw. von Brom und darauffolgendes Erhitzen des Reaktionsprodukts auf 190° (Chudožilov, Collect. Trav. chim. Tchécosl. 1, 304; C. 1929 II, 738). — Gelbe Nadeln (aus Methanol). F: 170—171°. Leicht löslich in Alkohol.

2.6-Dinitro-naphthalin C<sub>10</sub>H<sub>6</sub>O<sub>4</sub>N<sub>2</sub>, s. nebenstehende Formel. B. Durch Eintragen von diazotiertem 6-Nitro-naphthylamin-(2) in Natrium-nitrit-Lösung in Gegenwart von Kupferpulver (Vesely, Jakes, Bl. [4] 33, 949). — Rötliche Schuppen (aus Eisessig). F: 268°. Sehr schwer löslich in heißem Alkohol, löslich in Benzol und Eisessig.

4-Chlor-1.3-dinitro-naphthalin C<sub>10</sub>H<sub>5</sub>O<sub>4</sub>N<sub>2</sub>Cl, s. nebenstehende Formel (H 561; E I 264). Krystalle (aus Benzol). F: 146,5° (Talen, R. 47, 335). 100 cm³ einer gesättigten methylalkoholischen Lösung enthalten bei 0° 0,1056 g, bei 25° 0,2378 g; 100 cm³ einer gesättigten äthylalkoholischen Lösung enthalten bei 0° 0,0752 g, bei 25° 0,1780 g Substanz (T., R. 47, 335, 794 Anm.). — Liefert bei Einw. von Hydrazin in Alkohol 4.4′-Dinitro-2.2′-azonaphthalin und 1.3-Dinitro-naphthalin; bei Anwendung von Hydrazinhydrat erhält man daneben das Hydrazinsalz des 2.4-Dinitro-naphthols-(1) und wenig Hydrazinsalz des 1-Oxy-4′-nitro-[naphtho-1′.2′:4.5-triazols] (Müller, Weisbrod, J. pr. [2] 111, 312). Mit Natriumazid in siedendem Alkohol entstehen 2.4-Dinitro-1-azido-naphthalin und wenig 2.4-Dinitro-naphthol-(1)-natrium (M., W., J. pr. [2] 113, 35). Geschwindigkeit der Reaktion mit Natriummethylat und Natriumäthylat bei 0°, 15° und 25°: Talen, R. 47, 335. Liefert

mit Natriumphenolat in Phenol bei 100° 2.4-Dinitro-1-phenoxy-naphthalin (Borsche, Feske, B. 59, 683 Anm. 2). Reaktion mit Ammoniumrhodanid: T., R. 47, 793. Gibt mit Natrium-Acetessigester in Ather  $\alpha$ -[2.4-Dinitro-naphthyl-(1)]-acetessigsäure-äthylester (Veselý, Pastak, Bl. [4] 37, 1446). Liefert bei mehrstündigem Kochen mit 1 Mol 2-Amino-diphenylamin in Alkohol N-Phenyl-N'-[2.4-dinitro-naphthyl-(1)]-o-phenylendiamin; reagiert analog mit 5-Chlor-2-amino-diphenylamin (Kehrmann, B. 56, 2385).

- **4-Chlor-1.8-dinitro-naphthalin**  $C_{10}H_5O_4N_2Cl$ , Formel I (H 561). B. Bei der Chlorierung von 4.5-Dinitro-naphthalin-sulfonsäure-(1) mit Natriumchlorat in verd. Salzsäure (FRIEDLÄNDER, KARAMESSINIS, SCHENK, B. 55, 52).
- **2-Brom-1.3-dinitro-naphthalin**  $C_{10}H_5O_4N_2Br$ , Formel II. *B.* Beim Erhitzen von 6-Brom-5.7-dinitro-1.2.3.4-tetrahydro-naphthalin mit Brom in Gegenwart von einigen Tropfen 1.2.3.4-Tetrahydro-naphthalin (Veselý, Chudožilov, *Bl.* [4] 37, 1443). Hellgelbe Nadeln. F: 183—184°.

- **4-Brom-1.3-dinitro-naphthalin**  $C_{10}H_5O_4N_2Br$ , Formel III. B. Beim Erhitzen von 8-Brom-5.7-dinitro-1.2.3.4-tetrahydro-naphthalin mit Brom (Veselý, Chudožilov, Bl. [4] 37, 1442). Rötliche Krystalle. F: 151—152°. Sehr schwer löslich in Alkohol.
- 1.2.5-Trinitro-naphthalin C<sub>10</sub>H<sub>6</sub>O<sub>6</sub>N<sub>3</sub>, Formel IV (H 563). Die von Will (B. 28 [1895], 377; H 563) durch Erhitzen von 1.5-Dinitro-naphthalin mit Salpetersäure (D: 1,42) erhaltene und als 1.2.5-Trinitro-naphthalin angesprochene Verbindung ist nach Дімкотн, Ruck (A. 446, 125, 129) ein Gemenge verschiedener Nitrierungsprodukte gewesen. Über die Bildung einer als 1.2.5-Trinitro-naphthalin angesehenen Verbindung vgl. a. Pascal, Bl. [4] 27, 398.
- 1.3.5 Trinitro naphthalin C<sub>10</sub>H<sub>5</sub>O<sub>8</sub>N<sub>3</sub>, s. nebenstehende Formel (H 563; E I 265). B. Zur Bildung aus 1.5-Dinitro-naphthalin durch Erhitzen mit Ammoniak nach Will (B. 28 [1895], 377; H 563) vgl. Dimroth, Ruck, A. 446, 129. Beim Erhitzen von 1.5-Dinitro-naphthalin mit Salpeterschwefelsäure auf ca. 95°, neben anderen Produkten (PASCAL, Bl. [4] 27, 398). Trennung von Isomeren und Reindarstellung über die Additionsverbindung mit β-Naphthol: D., R. F: 119,5° (D., R.), 126° (P.). Thermische Analyse der binären Gemische mit 1.5-Dinitro-naphthalin (Eutektikum bei 101° und 90 Mol·% 1.3.5-Trinitro-naphthalin) und 1.8-Dinitro-naphthalin (Eutektikum bei 88° und 78 Mol-% 1.3.5-Trinitro-naphthalin): P., Bl. [4] 27, 394; mit 1.3.8-Trinitro-naphthalin und mit 1.4.5-Trinitro-naphthalin: P.; der ternären Gemische mit 1.5- und 1.8-Dinitro-naphthalin: P.
- 1.3.8 Trinitro naphthalin C<sub>10</sub>H<sub>5</sub>O<sub>6</sub>N<sub>3</sub>, s. nebenstehende Formel (H<sub>2</sub> 563; E I 265). B. Entsteht wahrscheinlich beim Erhitzen des Eutektikums von 5.7-Dinitro-1.2.3.4-tetrahydro-naphthalin mit 5.6.8-Trinitro-1.2.3.4-tetrahydro-naphthalin mit 30% iger Salpetersäure (SCHROETER, A. 426, 46). Bei der Nitrierung von 2-Nitro-naphthalin in konz. Schwefelsäure, neben anderen Produkten (Vesely, Jakeš, Bl. [4] 33, 952). Beim Erhitzen von 1.8-Dinitro-naphthalin

| Lösungsmittel         | g (t0)                     | Lösungsmittel        | g (t0)                   |
|-----------------------|----------------------------|----------------------|--------------------------|
| Wasser                | 0,0018 (15)<br>0,0124 (50) | 96%iger Äthylalkohol | 0,063 (15)<br>0,274 (50) |
| Chloroform            | 0,0208 (100)               | Absol. Äthylalkohol  | 0,069 (15)               |
|                       | 0,373 (15)<br>0,445 (50)   | Diäthyläther         | 0,285 (50)<br>0,128 (15) |
| Tetrachlorkohlenstoff | 0,029 (15)<br>0,032 (50)   | Aceton               | 0,201 (34)<br>3,187 (15) |
| Benzol                | 0,407 (15)<br>0,987 (50)   | Essigsäureäthylester | 6,415 (50)<br>1,072 (15) |
| Toluol                | 0,081 (15)<br>1,004 (50)   | Schwefelkohlenstoff  | 2,123 (50)<br>0,021 (15) |
| Methanol              | 0,118 (15)<br>0,368 (50)   | Pyridin              | 0,079 (33)<br>0,900 (15) |
|                       |                            |                      | 9,632 (50)               |

mit Salpeterschwefelsäure auf ca. 95°, neben wenig 1.4.5-Trinitro-naphthalin (PASCAL, Bl. [4] 27, 397). — F: 214° (P.), 215—216° (V., J.), 216—217° (SCH.), 216,5—217° (DESVERGNES, Monit. scient. [5] 16, 77; C. 1926 I, 3229). Verbrennungswärme bei konstantem Volumen: 1120,65 kcal/Mol (BADOCHE in Landolt-Börnst. E III, 2915). — Über die Löslichkeit von 1.3.8-Trinitro-naphthalin in verschiedenen Lösungsmitteln nach Desvergnes (g Substanz in 100 g Lösungsmittel) s. die Tabelle auf S. 457. Thermische Analyse der binären Gemische mit 1.5-Dinitro-naphthalin und mit 1.8-Dinitro-naphthalin: PASCAL, Bl. [4] 27, 396; mit 1.3.5-Trinitro-naphthalin und mit 1.4.5-Trinitro-naphthalin: P.; der ternären Gemische mit 1.5- und 1.8-Dinitro-naphthalin: P.

1.4.5-Trinitro-naphthalin  $C_{10}H_5O_6N_3$ , s. nebenstehende Formel (H 563).

B. In geringer Menge beim Erhitzen von 1.5-Dinitro-naphthalin oder 1.8-Dinitro-naphthalin mit Salpeterschwefelsäure auf ca. 95°, neben anderen Produkten (Pascal, Bl. [4] 27, 397, 398). Entsteht neben 1.3.5-Trinitro-naphthalin und anderen Produkten aus 1.5-Dinitro-naphthalin beim Behandeln win heißer Salpetersäure (Dimroth, Ruck, A. 446, 130). Zur Bildung durch Behandeln von 1.5-Dinitro-naphthalin mit Salpeterschwefelsäure nach Beilstein, Kuhlberg (A. 169, 97; H 563) vgl. D., R. — Krystallisiert aus Benzol in Tafeln, die Krystallbenzol enthalten und an der Luft rasch verwittern. F: 148,3° (Desvergenes, Monit. scient. [5] 16, 79; C. 1926 I, 3229), 148—149° (D., R.). E·147,2° (Des.). Über die Löslichkeit in verschiedenen Lösungsmitteln (g Substanz in 100 g Lösungsmittel) nach Desvergenes s. die nachfolgende Tabelle.

| Lösungsmittel         | g (t 0)                    | Lösungsmittel        | g (t 0)                    |
|-----------------------|----------------------------|----------------------|----------------------------|
| Wasser                | 0,0040 (15)<br>0,0085 (50) | 96%iger Äthylalkohol | 0,113 (15)<br>0,760 (50)   |
| Chloroform            | 0,0410 (100)<br>0,656 (15) | Absol. Äthylalkohol  | 0,175 (15)<br>0,858 (50)   |
|                       | 1,845 (50)                 | Diäthyläther         | 0,430 (15)                 |
| Tetrachlorkohlenstoff | 0,062 (15)<br>0,067 (50)   | Aceton               | 0,871 (35)<br>10,901 (15)  |
| Benzol                | 0,917 (15)<br>6,874 (50)   | Essigsäureäthylester | 35,918 (50)<br>3,132 (15)  |
| Toluol                | 1,908 (15)<br>5,617 (50)   | Schwefelkohlenstoff  | 8,994 (50)<br>0,047 (15)   |
| Methanol              | 0,206 (15)                 |                      | 0,141 (35)                 |
|                       | 0,925 (50)                 | Pyridin              | 15,485 (15)<br>57,180 (50) |

Thermische Analyse der binären Gemische mit 1.3.8-Trinitro-naphthalin (Eutektikum bei 105° und 71 Mol-% 1.4.5-Trinitro-naphthalin) und mit 1.3.5-Trinitro-naphthalin: Pascal, Bl. [4] 47, 405. — Liefert beim Nitrieren 1.3.5.8-Tetranitro-naphthalin und 1.4.5.8-Tetranitro-naphthalin (D., R.). Zur Einw. von Pyridin vgl. Desvergnes.

4 - Chlor - 1.3.8 - trinitro - naphthalin 
$$C_{10}H_4O_6N_3Cl$$
, Formel I (E I 265). Nadeln (aus Eisessig). F: 147—148° (Talen, R. 47, 354). — I. Geschwindigkeit der Reaktion mit Natriummethylat-Lösung bei  $0^\circ$ : T., R. 47, 339.

7-Chlor-1.3.8-trinitro-naphthalin C<sub>10</sub>H<sub>4</sub>O<sub>6</sub>N<sub>3</sub>Cl, Formel II. B. Durch Lösen von 2-Chlor-naphthalin in Salpeterschwefelsäure bei 0° und nachfolgendes Erwärmen, zuletzt auf 100° (van der Kam, R. 45, 569). — Nadeln (aus Benzol). F: 194° (van der K.). Sehr leicht löslich in Eisessig und heißem Aceton, leicht in Benzol und Chloroform, löslich in Alkohol, schwer löslich in Äther und Petroläther (van der K.). Bei 15° lösen 100 cm³ Methanol 0,1984 g, 100 cm³ Alkohol 0,0876 g (van der K.). — Liefert beim Umsetzen mit Natronlauge in Aceton bei Zimmertemperatur 1.6.8-Trinitro-naphthol-(2) (van der K., R. 45, 725). Beim Erhitzen mit alkoh. Ammoniak im Rohr auf 100° entsteht 1.6.8-Trinitro-2-amino-naphthalin, mit Methylamin in alkoh. Lösung 1.6.8-Trinitro-2-methylamino-naphthalin (van der K., R. 45, 572, 573). Liefert beim Kochen mit Natriumsulfid in Alkohol 1.6.8.1'.6'.8'-Hexanitro-dinaphthylsulfid-(2.2') und 1.6.8-Trinitro-2-äthoxy-naphthalin (van der K., R. 45, 730). Beim Kochen mit Natriumdisulfid in Alkohol erhält man 1.6.8.1'.6'.8'-Hexanitro-dinaphthyldisulfid-(2.2') (van der K., R. 45, 730, 731). Beim Umsetzen mit Natriummethylat-Lösung entsteht 1.6.8-Trinitro-2-methoxy-naphthalin, mit Natriumäthylat-Lösung 1.6.8-Trinitro-2-äthoxy-naphthalin (van der K., R. 45, 573). Über die Geschwindigkeit dieser Reaktionen

bei 25°, 15° und 0° vgl. van der K., R. 45, 575. Liefert bei der Einw. von Natriumphenolat in absol. Alkohol 1.6.8-Trinitro-2-phenoxy-naphthalin (VAN DER K., R. 45, 726).

 $NO_2$ 7-Brom-1.3.8-trinitro-naphthalin  $C_{10}H_4O_6N_3Br$ , s. nebenstehende Formel. B. Durch Lösen von 2-Brom-naphthalin in höchstkonzentrierter Salpetersäure bei 0° und nachfolgendes kurzes Erwärmen auf  $NO_2$ dem Wasserbad (van der Kam, R. 45, 570). In geringer Menge neben anderen Verbindungen durch Eintragen von 2-Brom-naphthalin in Salpeterschwefelsäure bei 0° und nachfolgendes Erwärmen auf dem Wasserbad (VAN DER K.). - Fast farbloser Niederschlag (aus Benzol). F: 205°. — Liefert beim Erhitzen mit alkoh. Ammoniak im Rohr auf 100° 1.6.8-Trinitro-2-amino-naphthalin, mit Methylamin in alkoh. Lösung 1.6.8-Trinitro-2-methylamino-naphthalin. Beim Umsetzen mit Natriummethylat-Lösung entsteht 1.6.8-Trinitro-2-methoxy-naphthalin, mit Natriumäthylat-Lösung 1.6.8-Trinitro-2-äthoxynaphthalin. Über die Geschwindigkeit dieser Reaktionen bei 25°, 15° und 0° vgl. van DER K., R. 45, 575.

1.2.5.8-Tetranitro-naphthalin  $C_{10}H_4O_6N_4$ , Formel I (H 564). Die von WILL (B. 28 [1895], 369; H 564) aus 1.5-Dinitro-naphthalin durch Nitrieren erhaltene und als 1.2.5.8-Tetranitro-naphthalin aufgefaßte Verbindung wird von Dimroth, Ruck (A. 446, 125) als 1.4.5.8-Tetranitro-naphthalin erkannt.

1.2.6.8-Tetranitro-naphthalin  $C_{10}H_4O_8N_4$ , Formel II. B. Bei Einw. von Salpeterschwefelsäure auf 1.8-Dinitro-naphthalin auf dem Wasserbad, neben 1.3.6.8-Tetranitronaphthalin (Dhar, Soc. 117, 1004). — Pulver. Schmilzt nicht bis 300°. — Liefert bei 20-stdg. Erhitzen mit 8 Atomen Brom und einer Spur Jod im Rohr auf 220° 1.2.6.8-Tetrabromnaphthalin.

1.3.5.8-Tetranitro-naphthalin  $C_{10}H_4O_8N_4$ , Formel III (H 564). Liefert bei 20-stdg. Erhitzen mit 8 Atomen Brom und einer Spur Jod im Rohr auf 220 $^\circ$  1.3.5.8-Tetrabromnaphthalin (DHAR, Soc. 117, 997).

1.3.6.8-Tetranitro-naphthalin  $C_{10}H_4O_8N_4$ , Formel IV (H 564). B. Bei Einw. von Salpeterschwefelsäure auf 1.8-Dinitro-naphthalin auf dem Wasserbad, neben 1.2.6.8-Tetranitro-naphthalin (DHAR, Soc. 117, 1004). — Krystalle (aus Salpetersäure).

1.4.5.8-Tetranitro-naphthalin  $C_{10}H_4O_8N_4$ , Formel V. Ist nach Dimroth, Ruck (A. 446, 125) die von Will (B 28 [1895], 369; H 564) aus 1.5-Dinitro-naphthalin erhaltene und als 1.2.5.8-Tetranitro-naphthalin aufgefaßte Verbindung; zur Konstitution vgl. a. D., Roos, A. 456, 178. — B. Aus 1.4.5-Trinitro-naphthalin durch Nitrieren (D., Ruck, A. 446, 129). — Nadeln (aus Nitrobenzol). F: 340—345° (Zers.) (D., Ruck). Unlöslich in Aceton (D., RUCK). — Durch Reduktion mit Zinn(II)-chlorid + Salzsäure und Kochen des Produkts erst mit verd. Natronlauge, dann mit verd. Salzsäure wird NH Naphthazarin erhalten (D., Ruck). Liefert beim Erwärmen mit Zinn(II)chlorid in 90% iger Ameisensäure und folgende Einw. von Schwefelwasserstoff auf das entstandene braune Zinndoppelsalz das Dihydrochlorid des Diperimidins (Syst. Nr. 4026, s. nebenstehende Formel) (D., Roos). Beim

c) Azido-Derivate.

1-Azido-naphthalin,  $\alpha$ -Naphthylazid  $C_{10}H_7N_3=C_{10}H_7\cdot N_3$  (H 565; E I 265). Liefert mit Triphenylphosphin in Äther bei —20° Triphenylphosphin- $\alpha$ -naphthylazid ( $C_6H_5$ )<sub>3</sub>P: N.N: $N \cdot C_{10}H_7$  (Syst. Nr. 2272), bei Zimmertemperatur Triphenylphosphin- $\alpha$ -naphthylimid ( $C_eH_5$ )<sub>3</sub> $P:N \cdot C_{10}H_7$  (Syst. Nr. 2272) und Stickstoff (Staudinger, Hauser, Helv. 4, 875).

5-Nitro-1-azido-naphthalin  $C_{10}H_6O_2N_4$ , s. nebenstehende Formel (H 565). B. Aus 5-Nitro-1-amino-naphthalin durch Diazotieren in salzsaurer Lösung und Versetzen mit einer wäßr. Lösung von Hydroxylamin oder hydroxylamin-sulfonsaurem Kalium (Scholl, M. 42, 408). — Goldgelbe Nadeln (aus Alkohol) F: 121°.

Erhitzen mit 8 Atomen Brom in Gegenwart von Jod im Rohr auf 2200

entsteht x-Hexabrom-naphthalin vom Schmelzpunkt 280—285° (Dhar, Soc. 117, 997).

punkt 172°.

[GOTTFRIED]

 $NO_2$ 

460

2.4-Dinitro-1-azido-naphthalin  $C_{10}H_{\delta}O_4N_5$ , s. nebenstehende Formel. B. Aus 1-Chlor-2.4-dinitro-naphthalin und Natriumazid in siedendem absolutem Alkohol (MÜLLER, WEISBROD, J. pr. [2] 113, 31, 35). — Gelbe rhombische Nadeln (aus Alkohol). F: 105° (Zers.). Löslich in kaltem Äther, Discone Nadeln (aus Aikonol). F: 100 (2018). Losien in katein Atter, Chloroform, Benzol, Toluol, Eisessig, heißem Alkohol und heißem Ligroin. — NO2
Verliert beim Erhitzen auf 110—115° oder in siedendem p-Xylol 2 Atome
Stickstoff und geht in 4-Nitro-naphthochinon-(1.2)-dioximperoxyd (Syst. Nr. 674) über.
Gibt mit Natriumäthylat-Lösung 2.4-Dinitro-1-äthoxy-naphthalin und wenig 2.4-Dinitro-naph.nol-(1)-natrium. Liefert bei Einw. von Natriummalonester in siedendem Alkohol
2.4-Dinitro-naphthylamin-(1) und geringe Mengen einer gelben Verbindung vom Schmelz-

# 2. Kohlenwasserstoffe $C_{11}H_{10}$ .

 1. 1-Methyl-naphthalin, α-Methyl-naphthalin C<sub>11</sub>H<sub>10</sub> = C<sub>10</sub>H<sub>7</sub>·CH<sub>3</sub> (H 566; E I 265). V. In neuseeländischen Erdölen (Easterfield, McClelland, Chem. and Ind. 1923, 938; C. 1924 I, 2847). Im Kokereiteer (Weiss, Downs, Ind. Eng. Chem. 15, 1022; C. 1924 I, 1294). Im Steinkohlen-Urteer (Kurihara, J. Fuel Soc. Japan 7, 61; C. 1928 II. 1733). — B. Entsteht bei der Dehydrierung einer Neutralölfraktion aus Braunkohlenteer 1733). — B. Entsteht bei der Denydrierung einer Neutralohrfaktion aus Braunkonienteer (Kp<sub>10</sub>: 110—116°) mit Schwefel bei 240° (HERZENBERG, RUHEMANN, B. 60, 897). Neben β-Methyl-naphthalin bei längerem Erhitzen von Reten unter 70—75 Atm. Wasserstoff-Anfangsdruck auf 450—470° in Gegenwart von Eisenoxyd und Tonerde und längerem Erhitzen einer bei dieser Reaktion erhaltenen Fraktion vom Siedepunkt 210—300° mit Selen auf 300—320° (ORLOW, B. 62, 716; Ж. 60, 1454). Durch thermische Zersetzung von 1-Methyl-3.4-dihydro-naphthalin in der Siedehitze unter gewöhnlichem Druck (v. Auwers, B. 58, 151). Neben β-Methyl-naphthalin und anderen Produkten bei längerem Erhitzen von Chryson mit Wasserstoff in Gagenwart von wasserfreiem Eisenehlorid auf Erhitzen von Chrysen mit Wasserstoff in Gegenwart von wasserfreiem Eisenchlorid auf 440-450° erst unter 85, dann unter 100 Atm. Druck (Or., Lichatschew, B. 62, 720; 3K. 61, 1182). Beim kurzen Erwärmen von 1-Methyl-1.2.3.4-tetrahydro-naphthol-(1) mit Phosphorpentoxyd auf 80° (v. Au., B. 58, 154; vgl. v. Au., A. 415 [1918], 163). In geringer Menge bei längerem Erhitzen von Phenyl-α-menaphthyl-äther mit Natrium im Rohr auf  $100^{\circ}$ ; ebenso unter gleichen Bedingungen aus o-Tolyl- $\alpha$ -menapnthyl-äther (SCHORIGIN, B. 59, 2512). Bei der Vakuumdestillation eines Gemisches aus dem Bariumsalz der 1-Methyl-3.4-dihydro-naphthalin-carbonsäure-(2) und Natriummethylat (v. Au., B. 58, 151 Anm. 5)

3.4-dihydro-naphthalm-carbonsaure-(2) und Natriummethylät (V. Au., B. 58, 151 Anm. 5) oder aus dem Calciumsalz der 1-Methyl-naphthalin-carbonsaure-(3) und gebranntem Kalk (Darzens, C.r. 183, 750). Aus α-Naphthylmagnesiumbromid durch Einw. von Dimethylsulfat (DE POMMEREAU, C. r. 172, 1504; Bl. [4] 31, 696).

F: ca. —19° (DE LASZLO, Ph. Ch. 118, 399). Kp<sub>780</sub>: 244,6° (Lecat, Ann. Soc. scient. Bruxelles 48 I [1928], 118; 49 [1929], 22); Kp<sub>20</sub>: 121—123° (v. Auwers, B. 58, 154). Di<sup>18.6</sup>; 1,0248; Di<sup>18.6</sup>; 0,9656 (v. Au., Frühlling, A. 422, 200). ng<sup>18.6</sup>; 1,6130; ni<sup>18.6</sup>; 1,6212; ni<sup>18.6</sup>; 1,6433; ni<sup>18.6</sup>; 1,6637; ng<sup>18.6</sup>; 1,5735; ng<sup>18.6</sup>; 1,5808; ng<sup>18.6</sup>; 1,6016; ng<sup>18.7</sup>; 1,6207 (v. Au., F.). Über Methyl paphthalin onthaltonde hijöre Atcetron val die vertenthande Tabelle. Ultra α-Methyl-naphthalin enthaltende binäre Ateotrope vgl. die untenstehende Tabelle. Ultra-violett-Absorptionsspektrum des Dampfes und von Lösungen in Hexan: DE LASZLO, Ph. Ch. 118, 400; C. r. 180, 204; in Alkohol: Marchlewski, Moroz, Bl. [4] 35, 478. Tesla-Luminescenzspektrum: McVicker, Marsh, Stewart, Soc. 127, 1001. Kathodenluminescenz: MARSH, Soc. 1927, 128. Fluorescenz bei Bestrahlung mit Röntgenstrahlen: NEWCOMER,

α-Methyl-naphthalin enthaltende binäre Azeotrope.

| Komponente                                                                                                                                                       | Kp760                                 | α-Methyl-<br>naphthalin<br>in Gew%  | Komponente  | Kp <sub>760</sub>                                   | α-Methyl-<br>naphthalin<br>in Gew%     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------|-------------|-----------------------------------------------------|----------------------------------------|
| γ-Phenyl-propyl- alkohol <sup>6</sup> ) Brenzcatechin <sup>3</sup> ) Resorcin <sup>5</sup> ) Resorcinmono- methyläther <sup>2</sup> ) Zimtaldehyd <sup>5</sup> ) | 234<br>235,1<br>243,1<br>243<br>244,4 | ca. 40<br>60<br>85,5<br>—<br>ca. 95 | Glycerin 4) | 237,25<br>209,8<br>215,0<br>233,5<br>239,6<br>243,2 | ca. 82<br>56,2<br>48<br>48<br>73<br>88 |

<sup>1)</sup> LBCAT, R. 47, 16. — 2) L., Ann. Soc. scient. Bruxelles 47 I [1927], 154, 155. — 3) L., Ann. Soc. scient. Bruxelles 48 I [1928], 15. — 4) L., Ann. Soc. scient. Bruxelles 48 I, 59. — 5) L., Ann. Soc. scient. Bruxelles 48 I, 118, 119, 121. — 6) L., Ann. Soc. scient. Bruxelles 49 [1929], 22. — 7) L., Ann. Soc. scient. Bruxelles 49, 112.

Am. Soc. 42, 2003. α-Methyl-naphthalin enthaltende Borsäure-Phosphore zeigen nach Ultraviolett-Bestrahlung gelblichgrünes Nachleuchten (vgl. Tiede, Ragoss, B. 56, 658).

α-Methyl-naphthalin gibt bei der elektrolytischen Oxydation in Aceton und 1 n-Schwefelsäure an einer Bleidioxyd-Anode 4.4'-Dimethyl-dinaphthyl-(1.1') und Harz (Fichter, Hersz-BEIN, Helv. 11, 1265). Liefert bei der Oxydation mit alkal. Permanganat-Lösung Phthalonsäure (Herzenberg, Ruhemann, B. 60, 893). Bei der Oxydation mit Chromessigsäure entsteht 5-Methyl-naphthochinon-(1.4) (H., R.). Beim Leiten von α-Methyl-naphthalin im Wasserstoffstrom durch ein verzinntes Eisenrohr bei 760—770° entstehen Naphthalin und Methan (F. Fischer, Schrader, Meyer, Abh. Kenntnis Kohle 5, 435; C. 1922 IV, 1039). Die gleichen Produkte und geringere Mengen an Benzolkohlenwasserstoffen und Hydrierungsprodukten von Naphthalin und  $\alpha$ -Methyl-naphthalin entstehen bei längerem Erhitzen von α-Methyl-naphthalin unter 70 Atm. Wasserstoffanfangsdruck auf 440—465° in Gegenwart eines Gemisches aus gleichen Teilen Tonerde und Eisenoxyd (Ігатлем, Оклом, В. 62, 594; 3. 61, 1297). Bei der Reduktion mit Natrium und Alkohol entsteht ein Gemisch aus Kohlenwasserstoffen C<sub>11</sub>H<sub>12</sub> (s. u.) (DE POMMEREAU, C. r. 172, 1503; Bl. [4] 31, 696; vgl. Vesellý, Kapp, Collect. Trav. chim. Tchécosl. 3, 449; C. 1931 II, 3474). Beim Erwärmen mit Sulfurylchlorid entsteht 4-Chlor-1-methyl-naphthalin (I. G. Farbenind., D. R. P. 495331; Frdl. 16, 483). Die Lösung in Schwefelkohlenstoff liefert mit 1 Mol Brom auf dem Wasserbad, am besten im Dunkeln, als Hauptprodukt 4-Brom-1-methyl-naphthalin, daneben etwas 4-Brom-1-brommethyl-naphthalin und andere Produkte (F. MAYER, SIEGLITZ, B. 55, 1839). Beim Einleiten von mit Bromdampf beladenem Kohlendioxyd in α-Methyl-naphthalin bei 200° entsteht α-Brommethyl-naphthalin (Schobigin, B. 59, 2509 Ann. 17). Gibt mit konz. Schwefelsäure unter Kühlung 1-Methyl-naphthalin-sulfonsäure-(4) (Elbs, Christ, J. pr. [2] 108, 17). Beim Kochen mit Diäthylmalonsäure-dichlorid und Aluminiumehlorid in Schwefelkohlenstoff entsteht eine ölige Verbindung  $C_{18}H_{18}O_2$  (s. u.) (Fleischer, A.422, 256). — Kondensation mit Benzylchlorid bei 170°: Höchster Farbw., D. R. P. 416904; C.1925 II, 2102; Frdl. 15, 1149; Überführung des so erhaltenen Öls in ein wasserlösliches Kondensationsprodukt durch Sulfurierung: I. G. Farbenind., D. R. P. 466361; C. 1929 I, 1149; Frdl. 16, 2122.

Kohlenwasserstoff C<sub>11</sub>H<sub>12</sub> [Gemisch von 1-Methyl-5.6(oder 7.8)-dihydro-naphthalin mit 1-Methyl-5.8-dihydro-naphthalin]. Zur Zusammensetzung vgl. Veselý, Kapp, Collect. Trav. chim. Tchécosl. 3, 449; C. 1931 II, 3474. — B. Bei der Reduktion von α-Methylnaphthalin oder α-Naphthyl-carbinol oder α-Naphthoesäureäthylester mit Natrium und Alkohol (de Pommereau, C. r. 172, 1503; Bl. [4] 31, 696). — Kp<sub>760</sub>: 228°; Kp<sub>20</sub>: 115° (de P.). — Lagert 2 Atome Brom an unter Bildung eines Dibromids C<sub>11</sub>H<sub>12</sub>Br<sub>2</sub> vom Schmelzpunkt 84° (de P.), 86—87° (V., K.).

Verbindung  $C_{10}H_{18}O_2$ . B. Aus  $\alpha$ -Methyl-naphthalin beim Kochen mit Diäthylmalonsäuredichlorid und Aluminiumchlorid in Schwefelkohlenstoff (Fleischer, A. 422, 256). — Gelbes Öl. Kp<sub>14</sub>: 234—236°. — Beim Erhitzen mit Salpetersäure (D: 1,4) im Rohr auf 150° entsteht eine Verbindung  $C_{11}H_6O_{10}(?)$ , die bei 210° zu erweichen beginnt und sich bei 223° bis 226° zersetzt.

2-Chlor-1-methyl-naphthalin  $C_{11}H_0Cl$ , s. nebenstehende Formel. B. Aus diazotiertem 2-Amino-1-methyl-naphthalin beim Behandeln mit Kupfer(I)-chlorid und konz. Salzsäure (Scholl, Seer, Zinke, M. 41, 589). — Mit Wasserdampf flüchtiges Öl. Kp<sub>12</sub>: 144—145°; Kp<sub>23</sub>: 155°. — Liefert mit Salpetersäure (D: 1,4) bei 5° 2-Chlor-x-nitro-1-methyl-naphthalin (F: 133—134°; S. 463) und ein bei 70—80° schmelzendes Isomeres. Beim Kochen mit Phthalsäureanhydrid und Aluminium-chlorid in Schwefelkohlenstoff entsteht 2-[6-Chlor-5-methyl-naphthoyl-(2)]-benzoesäure.

4-Chlor-1-methyl-naphthalin C<sub>11</sub>H<sub>0</sub>Cl, s. nebenstehende Formel. B. Beim Erwärmen von 1-Methyl-naphthalin mit Sulfurylchlorid auf 30—40° (I. G. Farbenind., D. R. P. 495331; Frdl. 16, 483). — Kp: 278—283° (unkorr.).

1-Chlormethyl-naphthalin, α-Naphthylmethylchlorid, α-Menaphthylchlorid C<sub>11</sub>H<sub>1</sub>Cl = C<sub>10</sub>H<sub>2</sub>·CH<sub>2</sub>Cl (H 566). B. Bei der Einw. von Paraformaldehyd und Chlorwasserstoff auf Naphthalin in Petroläther bei Gegenwart von Zinkchlorid (Blanc, Bl. [4] 33, 319; C. 1923 I, 1571). Aus Naphthalin und Chlormethyl-äthyl-äther bei Gegenwart von Zinn(IV)-chlorid in Ather (DE POMMERBAU, C. r. 175, 106). Durch Erwärmen von α-Naphthylcarbinol mit Salzsäure im Rohr (v. Braun, Moldaenke, B. 56, 2168) oder gelindes Kochen von α-Naphthylcarbinol mit Thionylchlorid in trocknem Toluol (Gilman, Kirby, Am. Soc. 51, 3476). Aus Di-α-menaphthyläther bei der Einw. von Phosphorpentachlorid (DE P., Bl. [4] 31, 696). Durch Verschmelzen von N-α-Menaphthyl-benzamid oder von N.N-Di-α-menaphthyl-benzamid mit Phosphorpentachlorid und Destillieren des Reaktionsgemisches im Vakuum (v. Br., M.). — Säulen. F: 32° (DE POMMEREAU, C. r. 175, 106), 34° (v. Br.,

CH<sub>3</sub>

 $\mathbf{Br}$ 

M.). Kp<sub>6</sub>: 135—139° (G., K.), 145—146° (Bl.). — Beim Behandeln mit siedender Kupfernitrat-Lösung entsteht α-Naphthaldehyd (Bl.). Beim Erwärmen von α-Menaphthylchlorid mit 2 Mol Dimethylamin in Benzol im Rohr auf 100° entsteht Dimethyl-α-menaphthylamin; mit 4 Mol Methylamin erhält man unter gleichen Bedingungen Methyl-α-menaphthylamin, Methyl-α.α-dimenaphthylamin und andere Produkte (v. Br., M.). Spaltet bei 1½-stdg. Erhitzen mit Wasser auf 100° 21% des Chlors ab (v. Br., M.).

4-Brom-1-methyl-naphthalin C<sub>11</sub>H<sub>0</sub>Br, s. nebenstehende Formel. Ist die H 567 als eso-Brom-1-methyl-naphthalin beschriebene Verbindung (F. Mayer, Sieglitz, B. 55, 1835, 1839). — B. Durch direkte Bromierung von α-Methyl-naphthalin in Schwefelkohlenstoff, am besten unter Ausschluß von Licht (M., S.; vgl. a. Shoesmith, Rubli, Soc. 1927, 3102). — Kp<sub>12</sub>: 162—164° (M., S.). — Liefert beim Kochen mit verd. Salpetersäure 4-Brom-naphthoe säure-(1) (M., S.). Geschwindigkeit der Reduktion durch konstantsiedende Jodwasserstoffsäure in Eisessig bei 100°: Sh., R., Soc. 1927, 3105. Gibt beim Einleiten von Brom bei 210—220° 4-Brom-1-brommethyl-naphthalin (Sh., R.).

Pikrat C<sub>11</sub>H<sub>9</sub>Br+C<sub>6</sub>H<sub>3</sub>O<sub>7</sub>N<sub>3</sub>. F: 123-124° (F. MAYER, SIEGLITZ, B. 55, 1839).

1-Brommethyl-naphthalin,  $\alpha$ -Naphthylmethylbromid,  $\alpha$ -Menaphthylbromid  $C_{11}H_0Br=C_{10}H_7\cdot CH_2Br$  (H 567; E I 266). B. Durch Einleiten von mit Bromdampf beladenem Kohlendioxyd in  $\alpha$ -Methyl-naphthalin bei 200° (Schorigin, B. 59, 2509 Anm. 17). Zur Bildung aus α-Methyl-naphthalin durch Einw. von Brom vgl. a. Wislicenus, Butterfass, Koken, A. 436, 72 Anm. 2; F. Mayer, Sieglitz, B. 55, 1841; Shoesmith, Rubli, Soc. 1927, 3101. Entsteht ferner durch Einw. von Bromwasserstoffsäure auf α-Naphthylcarbinol (DE POMMEREAU, C. r. 175, 106). Durch Verschmelzen von N-α-Menaphthyl-benzamid oder von N.N-Di-α-menaphthyl-benzamid mit Phosphorpentabromid und anschließendes Destillieren im Vakuum (v. Braun, Moldaenke, B. 56, 2168). — Zu Tränen reizende, auf der Haut brennende Krystalle (aus Alkohol oder Benzin). F: 53° (Sh., R.), 53,5—54,5° (Sch.). Kp<sub>10</sub>: 167° (Sch.). — Wird durch konstantsiedende Jodwasserstoffsäure in Eisessig bei 100° innerhalb 1 Stunde fast vollständig reduziert (Shoesmith, Rubli, Soc. 1927, 3105). Spaltet bei 1½-stdg. Erhitzen mit Wasser auf 100° 18% des Broms ab (v. Braun, Moldaenke). Geschwindigkeit der Hydrolyse in wäßr. Alkohol bei 25°: SH., R., Soc. 1927, 3099, 3105. Liefert beim Kochen mit einer Lösung von Phenol und Kaliumhydroxyd in Alkohol auf dem Wasserbad Phenyl-α-menaphthyl-äther; reagiert analog mit o-Kresol (Schorigin). Bei der Einw. von Hexamethylentetramin in siedendem 60%igem Alkohol erhält man α-Naphthaldehyd, beim Arbeiten in Chloroform eine Additionsverbindung von α-Naphthylmethylbromid mit Hexamethylentetramin (Nadeln aus Alkohol; F: 175—179°) (ΜΑΥΕΝ, SIEGLITZ, B. 55, 1846). Durch Einw. von Acetaldehyd auf die Organomagnesiumverbindung aus α-Naphthylmethylbromid in Ather entsteht 1.2-Di-α-naphthyl-athan (M., S.). Beim Erhitzen mit Natriummalonester in Benzol entstehen  $\beta$ -[Naphthyl-(1)]-isobernsteinsäurediäthylester und x-Brom-1-methyl-naphthalin (M., S.).

**x-Brom-1-methyl-naphthalin**  $C_{11}H_9Br=C_{10}H_6Br\cdot CH_3$ . B. Beim Erhitzen von 1-Brommethyl-naphthalin mit Natriummalonester in Benzol, neben  $\beta$ -[Naphthyl-(1)]-isobernsteinsäurediäthylester (F. Mayer, Sieglitz, B. 55, 1843). — Kp<sub>11</sub>: 161—162°. — Liefert bei der Oxydation mit Chromessigsäure x-Brom-naphthoesäure-(1) vom Schmelzpunkt 215-216°. - Pikrat. F: 127-128°.

· 4.11- Dibrom -1-methyl-naphthalin, 4-Brom -1-brommethyl-naph-CH<sub>2</sub>Br thalin, [4-Brom-naphthyl-(1)]-methylbromid  $C_{11}H_8Br_2$ , s. nebenstehende Formel. B. Als Nebenprodukt bei der Bromierung von  $\alpha$ -Methyl-naphthalin in Abwesenheit von Lösungsmitteln in der Hitze im Licht einer Bogenlampe oder in Schwefelkohlenstoff-Lösung im Dunkeln auf dem Wasserbad (F. MAYER, SIEGLITZ, B. 55, 1839, 1848). Durch Einleiten von Brom in 4-Brom-1-methylnaphthalin bei 210—220° (Sновямтн, Rubli, Soc. 1927, 3102). Entsteht ferner durch Bromierung von 1-Brommethyl-naphthalin in der Hitze im Licht einer Bogenlampe (M., S., B. 55, 1848). — Nadeln (aus Ligroin). F: 103° (Sh., R.), 103—104° (M., S.). — Geschwindigkeit der Hydrolyse in wäßr. Alkohol bei 25°: Sh., R., Soc. 1927, 3099, 3105. Liefert beim Kochen mit Natriumäthylat-Lösung Äthyl-[4-brom-α-menaphthyl]-äther (M., S.). Bei der Einw. von Kaliumcyanid in verd. Alkohol entsteht [4-Brom-naphthyl-(1)]-essigsäure-nitril (M., S.). Beim Erhitzen mit Natriummalonester in Benzol erhält man  $\beta$ -[4-Brom-naphthyl-(1)]-isobernsteinsäurediäthylester.

5.11-Dibrom-1-methyl-naphthalin, 5-Brom-1-brommethyl-naphthalin, [5-Brom-naphthyl-(1)]-methylbromid C<sub>11</sub>H<sub>8</sub>Br<sub>2</sub>, s. nebenstehende Formel. B. Aus [5-Brom-naphthyl-(1)]-carbinol und Bromwasserstoff in Benzol (Shoesmith, Rubli, Soc. 1927, 3104). — Auf der Haut brennende Nadeln (aus Petroläther). F: 101°. — Geschwindigkeit der Hydrolyse in wäßr. Alkohol bei 25°: Sh., R.

CH<sub>2</sub>Br

- 2-Jod-1-methyl-naphthalin C<sub>11</sub>H<sub>2</sub>I, s. nebenstehende Formel (E I 266).

  B. Aus 2-Amino-1-methyl-naphthalin durch Diazotieren in schwefelsaurer
  Lösung und darauffolgende Einw. von Kaliumjodid (F. MAYER, SCHNECKO,

  B. 56, 1410). Blättchen (aus Ligroin). F: 53°. Kp<sub>30</sub>: 196—199°.
- 2-Chlor-x-nitro-1-methyl-naphthalin  $C_{11}H_8O_2NCl = O_2N\cdot C_{10}H_8Cl\cdot CH_8$ . B. Neben einem offenbar nicht rein erhaltenen Isomeren (F: 70—80°) aus 2-Chlor-1-methyl-naphthalin und Salpetersäure (D: 1,4) bei 5° (SCHOLL, SEER, ZINKE, M. 41, 590). Hellgelbe Nadeln (aus Alkohol). F: 133—134°.
- 2.4-Dinitro-1-methyl-naphthalin C<sub>11</sub>H<sub>8</sub>O<sub>4</sub>N<sub>2</sub>, s. nebenstehende Formel.

  B. Aus [2.4-Dinitro-naphthyl-(1)]-essigsäure durch Erhitzen über den Schmelzpunkt oder durch Befeuchten mit Pyridin (Veselý, Pastak, Bl. [4] 37, 1448). Nadeln (aus Alkohol). F: 161°.

Bl. [4] 23, 237; A. ch. [9] 13, 221).

F: 34° (DE LASZLO, Ph. Ch. 118, 399; McVicker, Marsh, Stewart, Soc. 127, 1001), 39° (Mailhe, Bl. [4] 23, 238; A. ch. [9] 13, 221).  $D_{\bullet}^{o}$ : 1,077 (Ziegler, Ditzel, A. 473, 204);  $D_{\bullet}^{o,0}$ : 0,9939;  $D_{\bullet}^{o,0}$ : 0,9491 (v. Auwers, Frühling, A. 422, 200).  $n_{\alpha}^{o,0}$ : 1,5950;  $n_{\alpha}^{o,0}$ : 1,6026;  $n_{\alpha}^{o,0}$ : 1,6240;  $n_{\alpha}^{o,0}$ : 1,6428;  $n_{\alpha}^{o,0}$ : 1,5672;  $n_{\alpha}^{o,0}$ : 1,5743;  $n_{\alpha}^{o,0}$ : 1,5945 (v. Au., F.). Ultraviolett-Absorptionsspektrum des Dampfes und von Lösungen in Hexan: De L., Ph. Ch. 118, 400; C. r. 180, 204; in Alkohol: Marchlewski, Moroz, Bl. [4] 35, 478. Tesla-Luminescenz-spektrum: McVicker, Marsh, Stewart, Soc. 127, 1001. Kathodenluminescenz: Marsh, Soc. 1927, 128. Fluorescenz bei Bestrahlung mit Röntgenstrahlen: Newcomer, Am. Soc. 42, 2003. — 0,5 cm³ Alkohol lösen ca. 0,1 g (Dimroth, Bamberger, A. 438, 99). Liefert bei der Oxydation mit Chromessigsäure 2-Methyl-naphthochinon-(1.4) (Vesely,

Liefert bei der Oxydation mit Chromessigsäure 2-Methyl-naphthochinon-(1.4) (Veselý, Kapp, Chem. Listy 18 [1924], 246; Orlow, B. 62, 715; Ж. 60, 1452). Bei der Hydrierung mit Wasserstoff unter Druck bei 150—170° in Gegenwart eines Nickel-Katalysators entsteht 2-Methyl-5.6.7.8-tetrahydro-naphthalin (Schroefer, B. 54, 2248; Tetralin-Ges., D. R. P. 346673; C. 1922 II, 1080; Frdl. 13, 388). Bei längerem Erhitzen mit Wasserstoff auf 440° bis 465° unter 70 Atm. Anfangsdruck in Gegenwart eines Gemisches aus gleichen Teilen Tonerde und Eisenoxyd entstehen Benzol-Kohlenwasserstoffe, Naphthalin sowie Hydrierungsprodukte des Naphthalins und β-Methyl-naphthalins (IPATJEW, Orlow, B. 62, 595; Ж. 61, 1297). Beim Behandeln mit Sulfurylchlorid entsteht 1-Chlor-2-methyl-naphthalin (I. G. Farbenind., D. R. P. 495331; Frdl. 16, 483). Die Lösung in Schwefelkohlenstoff liefert beim Behandeln mit 1 Mol Brom, am besten im Dunkeln auf dem Wasserbad, 1-Brom-2-methyl-naphthalin und sehr wenig 1-Brom-2-brommethyl-naphthalin (F. Mayer, Sieglitz, B. 55, 1851, 1858; vgl. ferner Shoesmith, Rubli, Soc. 1927, 3102). Bei der Bromierung bei 230° im Licht einer Bogenlampe erhält man 2-Brommethyl-naphthalin und wenig 1-Brom-2-brommethyl-naphthalin (M., S., B. 55, 1853, 1858). Beim Nitrieren mit Salpetersäure (D: 1,38) unter Eiskühlung entstehen 1-Nitro-2-methyl-naphthalin, 4-Nitro-2-methyl-naphthalin, 6(?)-Nitro-2-methyl-naphthalin und 8-Nitro-2-methyl-naphthalin (getrennt bzw. nachgewiesen durch selektive Reduktion mit Ammoniumhydrosulfid) (Vesely, Kapp, R. 44, 364; Chem. Listy 18, 203; C. 1924 II, 2750). Liefert beim Erhitzen

mit konz. Schwefelsäure (D: 1,84) auf 90—100° hauptsächlich 2-Methyl-naphthalinsulfonsäure-(6) (Dziewoński, Schoenówna, Waldmann, B. 58, 1212). 2-Methyl-naphthalin kondensiert sich mit Äthylen in Gegenwart von Aluminiumchlorid bei 100—140° und 20 Atm. Anfangsdruck zu öligen und harzartigen Produkten (I. G. Farbenind., D. R. P. 505 403; C. 1930 II, 2306; Frdl. 16, 477). Ein Gemisch mit α-Naphthoylchlorid in Schwefelkohlenstoff liefert bei allmählicher Einw. von Aluminiumchlorid in der Kälte, folgendem längerem Schütteln und Behandeln des Reaktionsprodukts mit Eis und Salzsäure Naphthyl-(1)-[2-methyl-naphthyl-(1)]-keton (Clar, B. 62, 353; I. G. Farbenind., D. R. P. 481819; C. 1930 I, 1053; Frdl. 16, 717); bei analoger Behandlung mit β-Naphthoylchlorid erhält man Naphthyl-(2)-[2-methyl-naphthyl-(1)]-keton und Naphthyl-(2)-[x-methyl-naphthyl-(1)]-keton (Cl.; Fieser, Dietz, B. 62, 1829). Mit Phenanthren-carbonsäure-(9)-chlorid in Tetrachlorathan bei Gegenwart von Aluminiumchlorid bei 100° entsteht 9-[2-Methyl-naphthoyl-(1)]-phenanthren (F., D.). Einw. von Oxalylchlorid bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff in der Kälte führt zu 3-Methyl-acenaphthenchinon-(1.2), Bis-[2(oder 7)-methyl-naphthoyl-(1)] und einem Gemisch von Säuren (Lesser, Gad, B. 60, 243). Beim Kochen mit Diäthylmalonylchlorid und Aluminiumchlorid in Schwefelkohlenstoff erhält man ölige Fraktionen, aus denen nach 1-jährigem Stehen eine feste Verbindung C<sub>18</sub>H<sub>18</sub>O<sub>2</sub> (F: 79—82°) isoliert wurde (Fleischer, A. 422, 257). — Die anthelminthische Wirkung ist nur gering (Rico, C. r. Soc. Biol. 97, 881; C. 1928 II, 689).

1-Chlor-2-methyl-naphthalin  $C_{11}H_0Cl$ , s. nebenstehende Formel (vgl. eso-Chlor-2-methyl-naphthalin, H 567). B. Aus 2-Methyl-naphthalin bei Einw. von Sulfurylchlorid (I. G. Farbenind., D. R. P. 495331; Frdl. 16, 483). — Kp: 273—275° (unkorr.).

- 2-Chlormethyl-naphthalin, β-Naphthylmethylchlorid, β-Menaphthylchlorid  $C_{11}H_9Cl = C_{10}H_7\cdot CH_2Cl$  (H 567). B. Durch Verschmelzen von N-β-Menaphthyl-benzamid oder von N.N-Di-β-menaphthyl-benzamid mit Phosphorpentachlorid und Destillieren im Vakuum (v. Braun, Moldaenke, B. 56, 2169). F: 48°. Kp<sub>15</sub>: 162°. Spaltet bei 1½-stdg. Erhitzen mit Wasser auf 100° 17% des Chlors ab. Gibt beim Erwärmen mit 4 Mol Methylamin in Benzol auf 100° Methyl-β-menaphthyl-amin und Methyl-di-β-menaphthyl-amin. Beim Erwärmen mit benzolischer Dimethylamin-Lösung auf 100° entsteht Dimethyl-di-β-menaphthyl-ammoniumchlorid als Hauptprodukt; bei Verwendung von überschüssigem Dimethylamin erhält man Dimethyl-β-menaphthyl-amin.
- 1-Brom 2 methyl naphthalin C<sub>11</sub>H<sub>3</sub>Br, s. nebenstehende Formel. Br Ist mit der H 568 als eso-Brom-2-methyl-naphthalin beschriebenen Verbindung identisch (F. Mayer, Sieglitz, B. 55, 1835). B. Zur Bildung durch Bromierung von β-Methyl-naphthalin vgl. a. M., S., B. 55, 1851; Shoesmith, Rubli, Soc. 1927, 3102. Kp<sub>13</sub>: 165—170° (M., S.). Geschwindigkeit der Reduktion durch konstantsiedende Jodwasserstoffsäure in Eisessig bei 100°: Sh., R. Liefert beim Einleiten von Brom oberhalb 210° 1-Brom-2-brommethyl-naphthalin (M., S.; Sh., R.); beim Bromieren in der Kälte erhält man 1.x-Dibrom-2-methyl-naphthalin vom Schmelzpunkt 88° (M., S.). Die Organomagnesiunverbindung aus 1-Brom-2-methyl-naphthalin liefert mit Dimethylsulfat in absol. Äther in der Kälte bei nachfolgendem Zersetzen mit kalter verdünnter Schwefelsäure 1.2-Dimethyl-naphthalin (M., S.).
- **4-Brom 2-methyl-naphthalin**  $C_{11}H_9Br$ , s. nebenstehende Formel. B. Aus 4-Amino-2-methyl-naphthalin durch Diazotieren und Behandeln der Diazoniumsalz-Lösung mit Kupfer(I)-bromid; wurde als Pikrat isoliert (Vesely, Kapp, R. **44**, 370; Chem. Listy **18** [1924], 246). — Mit Wasserdampf flüchtig. — Pikrat  $C_{11}H_9Br + C_6H_9O_7N_3$ . F: 90—91°.

r t f Br

5-Brom - 2-methyl - naphthalin  $C_{11}H_9Br$ , s. nebenstehende Formel. B. Aus 5-Brom-1-amino-2-methyl-naphthalin durch Diazotierung und Verkochen mit Alkohol (Veselý, Kapp, R. 44, 375; Chem. Listy 18, 248; C. 1924 II, 2751). — Gelbliches Ol. — Pikrat  $C_{11}H_9Br + C_6H_3O_7N_3$ . F: 91—92°.

Br · CH<sub>3</sub>

8-Brom - 2-methyl - naphthalin C<sub>11</sub>H<sub>2</sub>Br, s. nebenstehende Formel.

B. Aus 7-Amino-2-methyl-naphthalin durch Diazotieren und Umsetzen mit Kupfer(I)-bromid-Lösung (Veselý, Kapp, R. 44, 367; Chem. Listy 18, 244; C. 1924 II, 2750). Durch Diazotieren von 8-Brom - 1-amino-2-methyl-naphthalin und Verkochen mit Alkohol (V., Rein, Collect. Trav. chim. Tchécosl. 1, 367; C. 1929 II, 1669). — Gelbes Öl. — Pikrat C<sub>11</sub>H<sub>2</sub>Br+C<sub>2</sub>H<sub>3</sub>O<sub>7</sub>N<sub>3</sub>. F: 98—101° (V., R.), 99° bis 101° (V., K.).

2-Brommethyl-naphthalin,  $\beta$ -Naphthylmethylbromid,  $\beta$ -Menaphthylbromid  $C_{11}H_{\bullet}Br=C_{10}H_{\bullet}\cdot CH_{\bullet}Br$  (H 568). B. Aus 2-Methyl-naphthalin und Brom bei 230° im

Sonnenlicht, neben anderen Produkten (F. MAYER, SIEGLITZ, B. 55, 1853; SHOESMITH, Rubli, Soc. 1927, 3101). Durch Verschmelzen von N- $\beta$ -Menaphthyl-benzamid oder von N.N.-Di-β-menaphthyl-benzamid mit Phosphorpentabromid und anschließendes Destillieren im Vakuum (v. Braun, Moldaenke, B. 56, 2169). — Zu Tränen reizende, auf der Haut brennende Krystalle (aus Alkohol) (Sh., R.). F: 56° (v. Br., Mo.; Sh., R.). Kp<sub>13</sub>: 168—172° (May., S.); Kp<sub>14</sub>: 165—169° (v. Br., Mo.). — Wird durch konstantsiedende Jodwasserstoffsäure in Eisessig bei 100° in 1 Stde. fast vollständig reduziert (Sh., R.). Spaltet bei 1¹/2-stdg. Erhitzen mit Wasser auf 100° 12% des Broms ab (v. Br., Mo.). Geschwindigkeit der Hydrolyse in wäßr. Alkohol bei 25°: Sn., R. Liefert beim Kochen mit einer Lösung von Phenol und Kaliumhydroxyd in absol. Alkohol Phenyl- $\beta$ -menaphthyläther; reagiert analog mit o-Kresol (Schorigin, B. 59, 2509). Bei der Einw. von Hexamethylentetramin in siedendem 60% igem Alkohol erhält man  $\beta$ -Naphthaldehyd, beim Arbeiten in Chloroform eine Additionsverbindung von β-Naphthylmethylbromid mit Hexamethylentetramin (Blättchen, die sich bei 160° zersetzen) (Max., S.). Bei der Einw. von Acetaldehyd auf die Organomagnesiumverbindung aus  $\beta$ -Naphthylmethylbromid in Äther entsteht 1.2 Di- $\beta$ -naphthyl-äthan (MAY., S.).

1.21-Dibrom-2-methyl-naphthalin, 1-Brom-2-brommethyl-naphthalin, [1-Brom-naphthyl-(2)]-methylbromid  $C_{11}H_8Br_2$ , s. nebenstehende Formel. B. Neben überwiegenden Mengen  $\beta$ -Brommethyl-naph-· CH<sub>2</sub>Br thalin bei der Einw. von Brom auf  $\beta$ -Methyl-naphthalin im Licht einer Bogenlampe bei 230° (F. MAYER, SIEGLITZ, B. 55, 1853, 1858). Bei Einw. von Brom auf 1-Brom-2-methyl-naphthalin oberhalb 210° (M., S.; SHOESMITH, RUBLI, Soc. 1927, 3102). — Nadeln (aus Alkohol), Krystalle (aus Petroläther). F: 107° (Sh., R.), 107—108° (M., S.). — Geschwindigkeit der Hydrolyse in wäßr. Alkohol bei 25°: Sh., R., Soc. 1927, 3099. Liefert mit Kaliumcyanid in wäßr. Alkohol [1-Brom-naphthyl-(2)]-acctonitril (M., S.). Beim Erhitzen mit Natriummalonester in Benzol entsteht  $\beta$ -[1-Brom-naphthyl-(2)]-isobernsteinsäurediäthylester (M., S.).

1.x-Dibrom-2-methyl-naphthalin  $C_{11}H_8Br_2 = C_{10}H_5Br_2 \cdot CH_3$ . B. Bei der Einw. von Brom auf 1-Brom-2-methyl-naphthalin in der Kälte (F. Mayer, Sieglitz, B. 55, 1858). - F: 88°.

1-Nitro-2-methyl-naphthalin C<sub>11</sub>H<sub>9</sub>O<sub>2</sub>N, s. nebenstehende Formel  $NO_2$ (H 568; E I 267). B. Durch Einw. von Salpetersäure (D: 1,38) auf  $\beta$ -Methyl-· CH<sub>3</sub> naphthalin unter Kühlung, neben 4-, 6(?)- und 8-Nitro-2-methyl-naphthalin (Veselý, Kapp, R. 44, 364; Chem. Listy 18, 203; C. 1924 II, 2750). Aus 1-Nitro-8-amino-2-methyl-naphthalin durch Diazotieren und Verkochen auf dem Wasserbad (V., Rein, Collect. Trav. chim. Tchécosl. 1, 365; C. 1929 II, 1669). — Gelbe Nadeln (aus Alkohol). F: 79° (V., R.), 80° (V., K.). Kp<sub>18</sub>: 180—182° (V., K.). — Zur Reduktion mit Zinn(II)-chlorid und wäßrig-alkoholischer Salzsäure (E I 5, 267) vgl. a. Fries, Lohmann, B. 54, 2916. Bleibt beim Behandeln mit warmer alkoholischer Ammoniumhydrosulfid-Lösung unverändert (V., K.). Gibt bei der Bromierung 5-Brom-1-nitro-2-methyl-naphthalin (V., K.). Mit heißer Salpeterschwefelsäure entstehen 1.5-Dinitro-2-methyl-naphthalin und 1.8(?)-Dinitro-2-methyl-naphthalin (V., K.). Bei der Kondensation mit Oxalsäurediäthylester (vgl. E I 5, 267) bei Gegenwart von überschüssiger ätherisch-alkoholischer Kaliumäthylat-Lösung entsteht fast ausschließlich 1.2-Bis-[1-nitro-naphthyl-(2)]-äthan (Wislicenus, Mun-DINGER, A. 436, 64).

**4-Nitro-2-methyl-naphthalin**  $C_{11}H_9O_2N$ , s. nebenstehende Formel. B. CH<sub>3</sub> Neben 1-Nitro-, 6(?)-Nitro- und 8-Nitro-2-methyl-naphthalin beim Behandeln von 2-Methyl-naphthalin mit Salpetersäure (D: 1,38) unter Eiskühlung  $NO_2$ (VESELY, KAPP, R. 44, 364; Chem. Listy 18, 203; C. 1924 II, 2750). Beim

Diazotieren von 4-Nitro-1-amino-2-methyl-naphthalin und Erwärmen mit Alkohol (V., K.).

— Gelbliche Nadeln (aus Alkohol). F: 49—50°. Mit Wasserdampf flüchtig. Sehr leicht löslich in Alkohol, löslich in Ather. — Liefert beim Behandeln mit warmer alkoholischer Ammoniumhydrosulfid-Lösung 4-Amino-2-methyl-naphthalin.

6 (P)-Nitro-2-methyl-naphthalin C<sub>11</sub>H<sub>9</sub>O<sub>2</sub>N, s. nebenstehende Formel. B. Entsteht neben 1-Nitro-, 4-Nitro- und 8-Nitro-2-methyl-naphthalin bei der Einw. von Salpetersäure (D: 1,38) auf 2-Methyl-naphthalin unter Kühlung (Veselý, Kapp, R. 44, 364; Chem. Listy 18, 203; C. 1924 II, 2750). — Nicht isoliert. Liefert beim Behandeln mit warmer alkoholischer Ammoniumhydrosulfid-Lösung 6(?)-Amino-2-methyl-naphthalin.

8-Nitro-2-methyl-naphthalin C<sub>11</sub>H<sub>9</sub>O<sub>2</sub>N, s. nebenstehende Formel. B. O<sub>2</sub>N. Entsteht neben 1-Nitro-, 4-Nitro- und 6(?)-Nitro-2-methyl-naphthalin bei der Einw. von Salpetersäure (D: 1,38) auf 2-Methyl-naphthalin unter Kühlung (Veselý, Kapp, R. 44, 364; Chem. Liety 18, 203; C. 1924 II, 2750). CH<sub>3</sub> Nicht isoliert. Liefert beim Behandeln mit warmer, alkoholischer Ammoniumhydrosulfid-Lösung 8-Amino-2-methyl-naphthalin.

5-Brom-1-nitro-2-methyl-naphthalin  $C_{11}H_8O_2NBr$ , s. nebenstehende Formel. Ist identisch mit der von Lesser (A. 402 [1914], 33) als x-Brom-1-nitro-2-methyl-naphthalin (E I 267) beschriebenen Verbindung (Vesely, Kapp, R. 44, 363; Chem. Listy 18 [1924], 203, 248). — B. Aus diazotiertem 1-Nitro-5-amino-2-methyl-naphthalin beim Behandeln mit Kupfer(I)-bromid-Lösung (V., K., R. 44, 374; Chem. Listy 18, 248; C. 1924 II, 2751). — Hellgelbe Nadeln (aus Alkohol). F: 94°.

8-Brom-1-nitro-2-methyl-naphthalin C<sub>11</sub>H<sub>8</sub>O<sub>2</sub>NBr, s. nebenstehende Formel. B. Durch Diazotieren von 1-Nitro-8-amino-2-methyl-naphthalin und Behandeln des Reaktionsprodukts mit Kupfer(I)-bromid (Vesel'x, Rein, Collect. Trav. chim. Tchécosl. 1, 366; C. 1929 II, 1669). — Gelbe Nadeln (aus Alkohol). F: 1139. — Liefert bei der Reduktion mit Zinkstaub und Eisessig 8-Brom-1-amino-2-methyl-naphthalin.

x-Brom-1-nitro-2-methyl-naphthalin  $C_{11}H_8O_9NBr = C_{10}H_5Br(CH_3)\cdot NO_2$  (E I 267) ist als 5-Brom-1-nitro-2-methyl-naphthalin (s. o.) erkannt worden (Veselý, Kapp, R. 44, 363; Chem. Listy 18 [1924], 203, 248).

1-Brom-4-nitro-2-methyl-naphthalin C<sub>11</sub>H<sub>8</sub>O<sub>2</sub>NBr, s. nebenstehende Formel. B. Aus 1-Brom-2-methyl-naphthalin beim Nitrieren mit Salpetersäure (D: 1,53) in Eisessig, zunächst unter Eiskühlung, dann unter Ansteigenlassen der Temperatur bis auf 80° (Veselý, Kapp, R. 44, 372). Beim Diazotieren von 4-Nitro-1-amino-2-methyl-naphthalin und Behandeln der Diazoniumsalz-Lösung mit Kupfer (I)-bromid (V., K.). — Gelbe Nadeln (aus Alkohol). F: 100—101°.



1.5-Dinitro-2-methyl-naphthalin C<sub>11</sub>H<sub>8</sub>O<sub>4</sub>N<sub>2</sub>, s. nebenstehende Formel.

B. Neben 1.8-Dinitro-2-methyl-naphthalin beim Behandeln von 1-Nitro-2-methyl-naphthalin in Eisessig mit Salpeterschwefelsäure, zuletzt auf dem Wasserbad (Vesely, Kapp, R. 44, 373; Chem. Listy 18, 247; C. 1924 II, 2751). — Krystalle (aus Alkohol oder Eisessig). F: 131°. — Liefert bei der partiellen Hydrierung in Gegenwart von Platinschwarz in Alkohol (V., Rein, Collect. Trav. chim. Tchécosl. 1, 367; C. 1929 II, 1669) und bei der Reduktion mit kaltem alkoholischem Ammoniumsulfid (V., K.) 1-Nitro-5-amino-2-methyl-naphthalin; die Reduktion mit Zinn(II)-chlorid und Zinn führt zu 1.5-Diamino-2-methyl-naphthalin (V., K.).

1.8-Dinitro-2-methyl-naphthalin C<sub>11</sub>H<sub>8</sub>O<sub>4</sub>N<sub>2</sub>, s. nebenstehende Formel O<sub>2</sub>N NO<sub>2</sub> (vgl. H 568; E I 267). Ist identisch mit der Verbindung von K. E. SCHULZE (B. 17 [1884], 844) und Lesser (A. 402 [1914], 32); zur Konstitution vgl. Veselý, Rein, Collect. Trav. chim. Tchécosl. 1, 362; C. 1929 II, 1669.

B. Neben 1.5-Dinitro-2-methyl-naphthalin beim Behandeln von 1-Nitro-2-methyl-naphthalin in Eisessig mit Salpeterschwefelsäure, zuletzt auf dem Wasserbad (V., Kapp, R. 44, 373; Chem. Listy 18, 247; C. 1924 II, 2751). — Krystalle (aus Eisessig). F: 209°. — Bleibt bei der Einw. von Ammoniumhydrosulfid oder Zinn(II)-chlorid unverändert (V., K.). Liefert bei der partiellen Reduktion mit Wasserstoff in Gegenwart von Platinschwarz in Alkohol 1-Nitro-8-amino-2-methyl-naphthalin (V., R.).

# 3. Kohlenwasserstoffe $C_{12}H_{12}$ .

1. 1-Phenyl-cyclohexadien-(2.4), 1.2-Dihydro-diphenyl  $C_{12}H_{12}=C_6H_5\cdot HC < CH_2\cdot CH_2\cdot CH$ 

3.5-Dichlor -1-phenyl - cyclohexadien - (2.4), 3.5 - Dichlor -1.2 - dihydro - diphenyl  $C_{12}H_{10}Cl_2 = C_0H_5 \cdot HC < CH_2 \cdot CCl > CH$ . Diese Konstitution kommt der H 5, 569 als 3.5-Dichlor-1-phenyl-cyclohexadien - (2.5) beschriebenen Verbindung zu (Hinkel, Hey, Soc. 1928, 2786). — B. Neben 3.5-Dichlor-diphenyl beim allmählichen Eintragen von überschüssigem Phosphorpentachlorid in eine Suspension von Phenyldihydroresorcin in trocknem Chloroform, zuletzt bei gelinder Wärme (Hil, Hey). — Kp<sub>10</sub>: 156°. — Beim Einleiten von Chlor in die Lösung in trocknem Chloroform unter Wasserkühlung entsteht 3.5-Dichlor-diphenyl; leitet man Chlor in eine heiße Lösung in trocknem Chloroform, so erhält man außerdem noch geringe Mengen 2.3.5-Trichlor-diphenyl.

- 2. 1-Phenyl-cyclohexadien (2.5), 1.4-Dihydro-diphenyl  $C_{12}H_{12} = C_6H_5 \cdot HC < CH = CH_5 \cdot CH_2$ . Über eine als 1.4-Dihydro-diphenyl aufgefaßte Verbindung, die aus dem Lithiumadditionsprodukt des Diphenyls (Syst. Nr. 2357) bei der Einw. von Alkohol auf die äther. Lösung entsteht (Schlenk, Bergmann, A. 463, 93), vgl. a. Hückel, Bretschneider, A. 540 [1939], 173. Angenehm riechendes Öl. Kp<sub>10</sub>: 110° (Sch., Be.). Liefert bei der Hydrierung bei Gegenwart von Palladium in Alkohol Cyclohexylbenzol und wenig Diphenyl (Sch., Be.).
- **3.5-Dichlor-1-phenyl-cyclohexadien-(2.5)**  $C_{12}H_{10}Cl_2 = C_eH_s \cdot HC < CH:CCl > CH_2$ . Die H 5, 569 unter dieser Formel beschriebene Verbindung ist als 3.5-Dichlor-1-phenyl-cyclohexadien-(2.4) (S. 466) erkannt (HINKEL, HEY, Soc. 1928, 2786).
- 3. 1-Äthyl-naphthalin,  $\alpha$ -Äthyl-naphthalin  $C_{12}H_{12} = C_{10}H_7 \cdot C_2H_5$  (H 569; E I 267). B. Aus Naphthyl-(1)-magnesiumbromid durch Einw. von Diäthylsulfat (GILMAN, HOYLE, Am. Soc. 44, 2623) oder p-Toluolsulfonsäureäthylester (G., Beaber, Am. Soc. 47, 522) in siedendem Äther. Bei der Einw. von Dimethylsulfat auf  $\alpha$ -Menaphthyl-magnesium-chlorid in Äther (G., Kirby, Am. Soc. 51, 3477). Kp<sub>742</sub>: 247—249° (G., K.); Kp: 256° bis 259° (unkorr.) (G., H.). D<sub>4</sub>\*: 1,019 (G., B.).
  - $\textbf{1-[\alpha-Chlor-$a$thyl]-naphthalin} \ \ C_{12}H_{11}Cl = C_{10}H_{7}\cdot CHCl\cdot CH_{3}.$
- a) Rechtsdrehende Form. B. Beim Behandeln von linksdrehendem Methyl- $\alpha$ -naphthyl-carbinol ( $[\alpha]_D^m$ :  $-35,2^0$  in Alkohol; c=7) mit Phosphorpentachlorid in Chloroform; wurde nicht vollkommen rein erhalten (Levene, Mikeska, J. biol. Chem. 75, 598).  $[\alpha]_D^m$ :  $+5,4^0$  (Äther; c=18).
- b) Linksdrehende Form. B. Beim Behandeln von rechtsdrehendem Methyl- $\alpha$ -naphthyl-carbinol [ $\alpha$ ]%:  $+11,1^{\circ}$ ) mit Thionylchlorid in Äther unter Kühlung (Levene, Mikeska, J. biol. Chem. 75, 598). Krystalle (aus Petroläther unter Kühlung mit Äther-Kohlendioxyd-Gemisch), die bei Zimmertemperatur schmelzen. [ $\alpha$ ]%: —36,4° (Äther; c=9). Gibt beim Kochen mit alkoh. Kaliumhydrosulfid-Lösung rechtsdrehendes 1-[ $\alpha$ -Mercaptoäthyl]-naphthalin.
- 4. 2-Äthyl-naphthalin,  $\beta$ -Äthyl-naphthalin  $C_{12}H_{12}=C_{10}H_7\cdot C_2H_5$  (H 569). B. In mäßiger Ausbeute beim Leiten von 6-Äthyl-tetralin im Kohlendioxydstrom durch ein Rohr bei 650° mit oder ohne Bleioxyd-Bimsstein-Katalysator (v. Braun, Hahn, Seemann, B. 55, 1690). Beim Erhitzen von Phenanthren mit Wasserstoff unter 75 Atm. Anfangsdruck in Gegenwart von Tonerde und Kupfer-, Nickel- oder Eisenoxyd auf ca. 500°, neben anderen Produkten (Orlow, B. 60, 1954;  $\mathcal{H}$ . 59, 900). Kp: 251—252° (v. Br., H., S.).  $D_0^{55}$ : 1,0015;  $n_2^{55}$ : 1,591 (O.). Pikrat  $C_{12}H_{12}+C_6H_3O_7N_3$ . F: 72° (v. Br., H., S.).
- 2-[ $\alpha\alpha$ -Dichlor- $\beta$ -brom-äthyl]-naphthalin  $C_{12}H_9Cl_2Br = C_{10}H_7 \cdot CCl_2 \cdot CH_2Br$ . B. Bei der Einw. von Phosphorpentachlorid auf Brommethyl- $\beta$ -naphthyl-keton (WILLEMART, A. ch. [10] 12, 355). Krystalle (aus Alkohol). F: 102—103° (Maquennescher Block).
- 5. 1.2 Dimethyl naphthalin C<sub>12</sub>H<sub>12</sub>, s. nebenstehende Formel (E I 267). B. Aus dem Natriumsalz der [1-Methyl-naphthyl-(2)]-essigsäure beim Erhitzen mit Kupferpulver und Natronkalk im Vakuum (FRIES, KÜSTER, A. 470, 35). Durch Einw. von Dimethylsulfat in absol. Ather auf die Grignard-Verbindung aus 1-Brom-2-methyl-naphthalin (F. MAYER, SIEGLITZ, B. 55, 1853). Kp<sub>12</sub>: 131,5° (FRIES, K.); Kp<sub>13</sub>: 137° (M., S.); Kp<sub>22</sub>: 144° (v. AUWERS, FRÜHLING, A. 422, 193); Kp<sub>749</sub>: 264° (FRIES, K.). D<sup>a</sup>.: 1,019 (FRIES, K.); D<sup>a</sup>.: 1,0219; n<sup>a</sup>.: 1,6101; n<sup>a</sup>.: 1,6180; n<sup>a</sup>.: 1,6395; n<sup>c</sup>.: 1,6598 (v. Au., FRÜ.); n<sup>a</sup>.: 1,6069; n<sup>a</sup>.: 1,6146; n<sup>a</sup>.: 1,6361 (M., S.).
- 2-Methyl-1-chlormethyl-naphthalin, 1¹-Chlor-1.2-dimethyl-naphthalin, [2-Methyl-naphthyl-(1)]-methylchlorid C<sub>12</sub>H<sub>11</sub>Cl, s. nebenstehende Formel. B. Durch Sättigen der Lösung von [2-Methyl-naphthyl-(1)]-carbinol in Eisessig mit Chlorwasserstoff (Ziegler, Tiemann, B. 55, 3410). Krystalle (aus Methanol oder Eisessig). F: 61—63°. Leicht löslich in den üblichen Lösungsmitteln.
- 2-Methyl-1-brommethyl-naphthalin, 1¹-Brom-1.2-dimethyl-naphthalin, [2-Methyl-naphthyl-(1)]-methylbromid C<sub>12</sub>H<sub>11</sub>Br, s. nebenstehende Formel. B. Durch Einw. von überschüssigem Bromwasserstoff auf [2-Methyl-naphthyl-(1)]-carbinol in Eisessig bei 60° (ZIEGLER, TIEMANN, B. 55, 3411).

   Nadeln (aus Eisessig). F: 87,5—89° (Z., T.), 88° (SHOESMITH, RUBLI, Soc. 1927, 3103). Liefert bei der Reduktion mit Natrium und feuchtem Äther 1.2-Dimethyl-x-tetrahydronaphthalin und geringe Mengen 1.2-Dimethyl-x-dihydro-naphthalin (Z., T.). Hydrolyse in wäßr. Alkohol bei 25°: Sh., R.

- 6. 1.4-Dimethyl-naphthalin C<sub>12</sub>H<sub>12</sub>, Formel I (H 570; E I 268). V. In neusee-ländischen Erdölen (Easterfield, McClelland, Chem. and Ind. 1923, 938; C. 1924 I, 2847).
- 4-Methyl-1-brommethyl-naphthalin, 1¹-Brom1.4-dimethyl-naphthalin, [4-Methyl-naphthyl-(1)]methylbromid (¹¹²H¹¹¹¹βr, Formel II. B. Durch Einw.
  von Bromwasserstoff auf [4-Methyl-naphthyl-(1)]-carbinol
  in trocknem Benzol (Shoesmith, Rubli, Soc. 1927, 3102).

  Nadeln (aus Petroläther). F: 77°. Hydrolyse in
  wäßr. Alkohol bei 25°: Sh., R.
- 7. 1.6-Dimethyl-naphthalin C<sub>12</sub>H<sub>12</sub>, s. nebenstehende Formel (Е I 268). V. Findet sich vermutlich im persischen Erdöl (Віясн, Norris, Soc. CH<sub>3</sub> 1926, 2553). — B. Beim Erhitzen von Jonen mit Schwefel auf 180—2500 CH<sub>3</sub>. (RUZICKA, RUDOLF, Helv. 10, 918). Durch Destillieren des Calciumsalzes der 1.6-Dimethyl-2 (oder 4)-acetyl-naphthalin-dicarbonsäure- (4.7 oder 2.7) im Luftstrom (Feist, Janssen, Chou-Ay Chen, B. 60, 206). — Kp<sub>13</sub>: ca. 130° (Ruz., Rud.). D<sub>1</sub><sup>(6,2)</sup>: 1,0049 (v. Auwers, Frühling, A. 422, 200).  $n_{\alpha}^{(6,3)}$ : 1,6012;  $n_{\beta}^{(6,3)}$ : 1,6089;  $n_{\beta}^{(6,3)}$ : 1,6302;  $n_{\gamma}^{(6,3)}$ : 1,6496 (v. Au., Fr.). Beugung von Röntgenstrahlen im flüssigen Zustand: KATZ, Z. ang. Ch. 41, 332. Liefert bei längerem Erhitzen unter 70 Atm. Wasserstoffanfangsdruck auf 440—465° in Gegenwart eines Gemisches aus Tonerde und Eisenoxyd Naphthalin, eine Fraktion, die beim Überleiten über platinierte Kohle bei 310°  $\beta$ -Methyl-naphthalin liefert, und andere Produkte (IPATJEW, ORLOW, B. 62, 595; Ж. 61, 1298). Bei der Reduktion mit Natrium und siedendem Amylalkohol entsteht 1.6-Dimethyl-5.8-dihydro-naphthalin; bei der Hydrierung mit Nickel bei 240° und 20-25 Atm. Druck erhält man ein Gemisch aus 1.6-Dimethyl-1.2.3.4-tetrahydro-naphthalin und 1.6-Dimethyl-5.6.7.8-tetrahydro-naphthalin, das beim Erhitzen mit Salpetersäure im Rohr auf 150° annähernd gleiche Mengen Trimellitsäure und Hemimellitsäure liefert (F. MAYER, SCHULTE, B. 55, 2165). Beim Nitrieren mit einem gekühlten Gemisch aus konz. Schwefelsäure und konz. Salpetersäure erhält man x-Trinitro-1.6-dimethyl-naphthalin (F., J., Ch.). Kondensiert sich mit Oxalylchlorid in Gegenwart von Aluminium chlorid in Schwefelkohlenstoff zu 3.6-Dimethyl-acenaphthenchinon-(1.2) und anderen Produkten (Lesser, Gad, B. 60, 243; I. G. Farbenind., D. R. P. 470277; C. 1929 I. 3037; Frdl. 16, 518).
- x-Trinitro-1.6-dimethyl-naphthalin  $C_{12}H_9O_6N_3=C_{10}H_3(NO_2)_3(CH_3)_2$ . B. Aus 1.6-Dimethyl-naphthalin und einem gekühlten Gemisch von konz. Schwefelsäure und konz. Salpetersäure (3:2 Gewichtsteile) (Feist, Janssen, Chou-Ay Chen, B. 60, 206). Nadeln (aus Eisessig). F: 189°.
- 8. 1.7 Dimethyl naphthalin C<sub>12</sub>H<sub>12</sub>, s. nebenstehende Formel (vgl. H 570). Diese Konstitution kommt vielleicht auch dem Dimethylnaphthalin aus Borneopetroleum (H 5, 570) zu (Darzens, Heinz, C.r. 184, 35). B. Aus 1.7-Dimethyl-naphthalin-carbonsäure-(3) beim Erhitzen mit Kalk im Vakuum (D., H.). Gelbliche Flüssigkeit von naphthalinartigem Geruch. Kp<sub>15</sub>: 147—149°. Pikrat. F: 123—124°.
- 9. 2.3-Dimethyl-naphthalin, Guajen C<sub>12</sub>H<sub>12</sub>, s. nebenstehende Formel (H 571; E I 268). V. Zum Vorkommen von 2.3-Dimethyl-naphthalin im Steinkohlenteeröl und seiner Isolierung aus einer geeignet vorbehandelten Fraktion durch Sulfurierung (vgl. E I 5, 268) oder Ausfrieren vgl. KRUBER, B. 62, 3044. Blätter (aus Alkohol). Riecht ähnlich wie 2-Methyl-naphthalin. Kp<sub>767</sub>: 265—266° (unkorr.). Schwer löslich in kaltem Alkohol, Eisessig, leicht in Benzol und seinen Homologen. Liefert bei der Sulfurierung mit konz. Schwefelsäure bei 40—50° und Umlagerung bei 160° 2.3-Dimethyl-naphthalin-sulfonsäure-(6). Neigt in Berührung mit überhitztem Wasserdampf zur Verharzung.
- 10. 2.6-Dimethyl-naphthalin C<sub>12</sub>H<sub>12</sub>, s. nebenstehende Formel (H 570; E I 268). B. Bei der Vakuumdestillation von 2.3-Dibrom-2.6-dimethyl-1.2.3.4-tetrahydro-naphthalin (erhalten durch Anlagerung von Brom an 2.6-Dimethyl-1.4-dihydro-naphthalin in Chloroform) (F. Mayer, Alken, B. 55, 2278, 2280). D<sup>o</sup>: 1,142 (Ziegler, Ditzel, A. 473, 204). Ultraviolett-Absorptionsspektrum des Dampfes und von Lösungen in Hexan: De Laszlo, Ph. Ch. 118, 408; C. r. 180, 204. Verhalten bei längerem Erhitzen unter 70 Atm. Wasserstoffanfangsdruck auf 440—465° in Gegenwart eines Gemisches aus gleichen Teilen Tonerde und Eisenoxyd: IPATJEW, ORLOW, B. 62, 595; Ж. 61, 1298. Bei der Reduktion mit Natrium und Isoamylalkohol entsteht 2.6-Dimethyl-1.4-dihydro-naphthalin (M., A., B. 55, 2280). Beim Behandeln mit 1 Mol Sulfurylchlorid entsteht 1(?)-Chlor-2.6-dimethyl-naphthalin, bei der Einw. von 2 Mol Sulfurylchlorid erhält man 1.5(?)-Dichlor-2.6-dimethyl-naphthalin (I. G. Farbenind., D. R. P. 495331; Frdl. 16, 483). Durch Nitrierung der Lösung in Eisessig mit Salpetersäure

- (D: 1,51) bei 70° entsteht 1-Nitro-2.6-dimethyl-naphthalin (M., A.). Gibt mit Benzoylchlorid in Schwefelkohlenstoff bei längerer Einw. von Aluminiumchlorid unter Kühlung
  2.6-Dimethyl-1.5-dibenzoyl-naphthalin; mit Acetanhydrid oder Acetylchlorid und Aluminiumchlorid entsteht unter sonst gleichen Bedingungen 2.6-Dimethyl-1-acetyl-naphthalin (Clar,
  Wallenstein, Avenarius, B. 62, 953). Bei der Einw. von 1 Mol β-Naphthoylchlorid in
  Schwefelkohlenstoff bei Gegenwart von Aluminiumchlorid entsteht 2.6-Dimethyl-1-β-naphthoyl-naphthalin, bei Einw. von 2 Mol 2.6-Dimethyl-1.5-di-β-naphthoyl-naphthalin (Fieser,
  Dietz, B. 62, 1831). Gibt mit Oxalylchlorid und Aluminiumchlorid 3.7-Dimethyl-acenaphthenchinon-(1.2), 2.6-Dimethyl-naphthoesäure-(1?) und andere Produkte (Lesser, Gad,
  B. 60, 244).
- 1(?)-Chlor-2.6-dimethyl-naphthalin  $C_{12}H_{11}Cl=C_{10}H_5Cl(CH_3)_2$ . B. Aus 2.6-Dimethylnaphthalin bei Einw. von 1 Mol Sulfurylchlorid (I. G. Farbenind., D. R. P. 495331; Frdl. 16, 483). Nadeln. F: 39°.
- 1.5 (P)-Dichlor-2.6-dimethyl-naphthalin  $C_{12}H_{10}Cl_2=C_{10}H_4Cl_2(CH_3)_2$ . B. Aus 2.6-Dimethyl-naphthalin bei Einw. von 2 Mol Sulfurylchlorid (I. G. Farbenind., D. R. P. 495331; Frdl. 16, 483). Prismen (aus Alkohol oder Eisessig). F: 135°.
- 1-Nitro-2.6-dimethyl-naphthalin C<sub>12</sub>H<sub>11</sub>O<sub>2</sub>N, s. nebenstehende
  Formel. B. Aus 2.6-Dimethyl-naphthalin in Eisessig bei der Einw. von
  1 Mol Salpetersäure (D: 1,51) bei 70° (F. MAYER, ALKEN, B. 55, 2280).

   Gelbe Blättchen (aus Eisessig). F: 68°. Beim Nitrieren mit einem
  Gemisch aus konz. Salpetersäure (D: 1,51) und konz. Schwefelsäure unter Eiskühlung entsteht 1.8-Dinitro-2.6-dimethyl-naphthalin; bei der Einw. von Salpetersäure (D: 1,51) auf eine
  Lösung von 1-Nitro-2.6-dimethyl-naphthalin in Eisessig erhält man 1.5-Dinitro-2.6-dimethyl-naphthalin und 1.4.5(?)-Trinitro-2.6-dimethyl-naphthalin (s. u.) (M., A.; vgl. VESELÝ, MED-VEDEVA, Collect. Trav. chim. Tchécosl. 8, 125; C. 1936 I, 4724). Liefert beim Kochen mit Oxalsäurediäthylester in Gegenwart von Natriumäthylat-Lösung und folgenden Behandeln mit verd. Natronlauge [1-Nitro-6-methyl-naphthyl-(2)]-brenztraubensäure (M., A.).
- 1.5-Dinitro-2.6-dimethyl-naphthalin  $C_{12}H_{10}O_4N_2$ , Formel I. Zur Konstitution vgl. Veselý, Medvedeva, Collect. Trav. chim. Tchécosl. 8, 125; C. 1936 I, 4724. B. Aus 1-Nitro-2.6-dimethyl-naphthalin in Eisessig und Salpetersäure (D: 1,51), neben 1.4.5(?)-Trinitro-2.6-dimethyl-naphthalin (F. Mayer, Alken, B. 55, 2281). Gelbe Nadeln (aus Eisessig). F: 179° (M., A.). Die alkoh. Lösung liefert bei der Reduktion mit Zinn(II)-chlorid und konz. Salzsäure 1.5-Diamino-2.6-dimethyl-naphthalin (M., A.).

- 1.8-Dinitro-2.6-dimethyl-naphthalin  $C_{12}H_{10}O_4N_2$ , Formel II. Zur Konstitution vgl. Veselý, Medvedeva, Collect. Trav. chim. Tchécosl. 8, 125; C. 1936 I, 4724. B. Aus 1-Nitro-2.6-dimethyl-naphthalin bei der Einw. von Salpetersäure (D: 1,51) in konz. Schwefelsäure unter Eiskühlung (F. Mayer, Alken, B. 55, 2281). Nadeln (aus Eisessig). F: 186° (M., A.).
- 1.4.5 (P)-Trinitro-2.6-dimethyl-naphthalin  $C_{12}H_9O_8N_3$ , Formel III. B. Aus 1-Nitro-2.6-dimethyl-naphthalin in Eisessig und konz. Salpetersäure (D: 1,51), neben 1.5-Dinitro-2.6-dimethyl-naphthalin (F. Mayer, Alken, B. 55, 2282).
- 11. 2.7-Dimethyl-naphthalin C<sub>12</sub>H<sub>12</sub>, Formel IV (E I 268). Krystalle (aus Hexan). F: 96° (DE LASZLO, Ph. Ch. 118, 408). Ultraviolett-Absorptionsspektrum des Dampfes und von Lösungen in Hexan: DE L., Ph. Ch. 118, 408; C. r. 180, 204. Liefert mit überschüssigem Benzoylchlorid in Schwefelkohlenstoff bei längerer Einw. von Aluminiumchlorid unter Kühlung ein Produkt, das wahrscheinlich ein Gemisch von 2.7-Dimethyl-1.5-dibenzoylnaphthalin und 2.7-Dimethyl-1.8-dibenzoyl-naphthalin darstellt (CLAR, WALLENSTEIN, AVENARIUS, B. 62, 953). Bei Einw. von Oxalylchlorid in Gegenwart von Aluminiumchlorid erhält man 2.7-Dimethyl-naphthoesäure-(1) und sehr wenig 3.8-Dimethyl-acenaphthenchinon-(1.2) (LESSER, GAD, B. 60, 244).
- 12. 1-Allyl-inden C<sub>12</sub>H<sub>12</sub>, s. nebenstehende Formel. B. Aus Indenoxalsäure-äthylester beim Erhitzen mit Allylbromid in Alkohol bei Gegenwart von Kaliumäthylat und Kochen des Reaktionsprodukts mit alkoh. Natronlauge (WISLICENUS, HENTRICH, A. 436, 21).— Gelbliche Flüssigkeit. Kp<sub>27</sub>: 138°. Färbt sich an der Luft erst rot, dann braun. Gibt mit konz. Schwefelsäure eine rote Färbung und Abscheidung von Harz.

# 4. Kohlenwasserstoffe $C_{13}H_{14}$ .

- 1. 1-Isopropyl-naphthalin,  $2-\alpha$ -Naphthyl-propan  $C_{13}H_{14}=C_{10}H_7\cdot CH(CH_3)_2$ . B. Neben  $\beta$ -Isopropyl-naphthalin und anderen Produkten bei allmählicher Einw. von Isopropylalkohol auf ein Gemisch aus Naphthalin und 80% iger Schwefelsäure bei 80°, Verdünnen der Schwefelsäure auf 60% und Destillieren mit überhitztem Wasserdampf; die Abtrennung aus der Fraktion vom  $Kp_{Ca. 15}$ : 144—149° erfolgt durch Überführung in die entsprechenden Sulfonsäuren (H. MEYER, BERNHAUER, M. 53/54, 741, 742). Aus 1-Isopropyl-naphthalin-sulfonsäure-(4) beim Kochen mit Natriumamalgam und Wasser (M., B.).

  Öl.  $Kp_{Ca. 15}$ : 144—147°. Liefert beim Erwärmen mit 96% iger Schwefelsäure auf 40° bis 45° 1-Isopropyl-naphthalin-sulfonsäure-(4).
- 2. 2-Isopropyl-naphthalin. 2- $\beta$ -Naphthyl-propan  $C_{13}H_{14} = C_{10}H_7 \cdot CH(CH_3)_2$  (H 571). B. Bildung aus Naphthalin s. bei  $\alpha$ -Isopropyl-naphthalin. Entsteht ferner beim Erhitzen von´10-Methyl-2-isopropyliden-1.2.3.4.5.6.9.10-oktahydro-naphthalin, 2-Isopropyl- $\Delta^2$ (?)-dihydronaphthalin oder 10-Methyl-2-isopropyliden-dekalol-(8) mit Schwefel (Ruzicka, Capato, A. 453, 78, 79, 80). Durch Kochen von 2-Isopropyl-naphthalin-sulfonsäure-(1) mit Natriumamalgam und Wasser (H. Meyer, Bernhauer, M. 53/54, 743). Öl. Kp<sub>12</sub>: 125° (R., C.). Liefert beim Erwärmen mit 96%iger Schwefelsäure auf 40—45° 2-Isopropyl-naphthalin-sulfonsäure-(1) (M., B.). Pikrat. F: 91° (R., C.).
- 3. 1-Methyl-2-āthyl-naphthalin  $C_{13}H_{14}$ , s. nebenstehende Formel.  $Kp_{12}$ : 137,5—140° (Krollpfeiffer, A. 480, 198).  $D_4^{15.4}$ : 1,0014 (K., A. 480, 204).  $n_{\alpha}^{15.4}$ : 1,5942;  $n_{\beta}^{15.4}$ : 1,6014;  $n_{\gamma}^{15.4}$ : 1,6400. Dichte und Brechungsindices einer 64,4% igen Lösung in Chinolin: K.
- 4. **1-Methyl-4-** äthyl-naphthalin  $C_{13}H_{14}$ , s. nebenstehende Formel. Kp<sub>12</sub>: 138—140° (Krollpfeiffer, A. 430, 198).  $D_{4}^{15,1}$ : 1,0086 (K., A. 430, 204).  $n_{\alpha}^{15,1}$ : 1,5984;  $n_{\beta}^{15,1}$ : 1,6262;  $n_{\gamma}^{15,1}$ : 1,6449.
- 5. 1.2.5-Trimethyl-naphthalin C<sub>13</sub>H<sub>14</sub>, s. nebenstehende Formel. Zur Konstitution vgl. Ruzicka, Hosking, Helv. 13, 1405; Heilbron, Wilkinson, Soc. 1930, 2546. B. Beim Erhitzen von Tetracyclosqualen (S. 432) mit Schwefel auf 200—270° (Harvey, Heilbron, Kamm, Soc. 1926, 3138).

   Aus den bei 100—150° (12 mm) siedenden Kohlenwasserstoffen, die beim Erhitzen der Manilakopalsäuren erhalten werden, durch Erhitzen mit Schwefel auf 180—250° (R., Steiger, Schinz, Helv. 9, 975). Beim Erhitzen des Methylesters einer aus Manilakopal isolierten Säure C<sub>15</sub>H<sub>24</sub>O<sub>2</sub> (Gemisch?) mit Schwefel (R., St., Sch., Helv. 9, 978). Durch Erhitzen von Kongokopal-Ol (flüchtige Bestandteile der pyrogenen Zersetzung von Kongokopal bei 300°) mit Schwefel auf 250° (Westenberg, R. 48, 581). Über die Gewinnung von 1.2.5-Trimethyl-naphthalin aus dem amorphen ätherlöslichen Harzsäure-Gemisch des Kaurikopals mit Hilfe von Selen als Dehydrierungsmittel vgl. R., Hosking, A. 469, 173. Nadeln (aus Alkohol). F: 33,5° (Ha., Heil, K.). Kp<sub>12</sub>: 140° (R., St., Sch.); Kp<sub>15</sub>: 145° (Ha., Heil, K.). D<sup>16</sup>: 1,011 (R., St., Sch.); D<sup>26</sup>: 1,0103 (Ha., Heil, K.). n<sup>16</sup>: 1,6082 (R., St., Sch.); n<sup>26</sup>: 1,6110 (Ha., Heil, K.). Liefert bei der Oxydation mit Chromessigsäure 5.8-Diacetoxy-1.6-dimethyl-naphthalin und eine einbasische Säure C<sub>12</sub>H<sub>12</sub>O<sub>4</sub> vom Schmelzpunkt 204° (Nadeln; schwer löslich in Wasser (We.; vgl. a. Heil, Wi.). Pikrat C<sub>13</sub>H<sub>14</sub> + C<sub>6</sub>H<sub>3</sub>O<sub>7</sub>N<sub>3</sub>. F: 138° (R., St., Sch.), 139—140° (Ha., Heil, K.). Vgl. We.).
- 6. 1.2.7-Trimethyl-naphthalin, Sapotalin C<sub>13</sub>H<sub>14</sub>, s. nebenstehende Formel. Zur Konstitution vgl. Späth, Hromatka, M. 60 [1932], 117, 125. B. Aus einem Gemisch von α- und β-Amyrin oder dem Kohlenwasserstoff-Gemisch, das beim Erhitzen von Amyrin in Kohlendioxydstrom auf 440—460° entsteht, durch Erhitzen mit Schwefel oder besser mit Selen (Ruzicka, Mitarb., A. 471, 35). Ferner auch bei der Dehydrierung von Äscigenin, Caryocarsapogenin, Cyclamiretin, Guajacsapogenin, Glycyrrhetinsäure, Hederagenin, Mimusopssapogenin, Quillajasapogenin, Ursolsäure, Zuckerrübensapogenin oder Betulin mit Selen bei 340—390° (Ruz., van Veen, H. 184, 74) sowie beim Erhitzen von Gypsogenin oder der Fraktion vom Kp<sub>12</sub>: 135—150°, die beim Erhitzen von Gypsogenin-methylester im Kohlendioxydstrom auf 400—450° erhalten wird, durch Erhitzen mit Selen (Ruz., van V., R. 48, 1022). Auch die durch Dehydrierung einer Neutralölfraktion aus Braunkohlenteer (Kp<sub>10</sub>: 132—138°) (Herzenberg, Ruhemann, B. 60, 899) oder der Sequiterpen-Fraktion des Birkenteeröls (Vesterberg, Nydahl, Svensk kem. Tidskr. 39, 119; C. 1927 II, 1103) erhaltenen Kohlenwasserstoffe C<sub>13</sub>H<sub>14</sub> sind vermutlich 1.2.7-Trimethyl-naphthalin (He., v. Winterfeld, B. 64 [1931], 1039). Kp<sub>16</sub>: 147—148°; D<sub>1</sub><sup>1</sup>: 1,008; n<sub>0</sub><sup>1</sup>: 1,6093 (Ruz., Mitarb.). —

C2H5

Č<sub>2</sub>H<sub>5</sub>

- 7. x-Trimethyl-naphthalin aus  $\beta$ -Naphthol  $C_{13}H_{14}=C_{10}H_5(CH_3)_3$ . B. Beim Leiten eines Gemisches von  $\beta$ -Naphthol und Methanol über Aluminium xyd bei ca.  $425^{\circ}$ (Plüss, Helv. 8, 509). — Hellgelbes Öl. Kp<sub>12</sub>: 142—145°. — Liefert bei der Einw. von 65 % iger Salpetersäure in Eisessig bei 5-10° die nachfolgende Verbindung.
- **x-Nitro-x-trimethyl-naphthalin**  $C_{13}H_{13}O_2N=C_{10}H_4(CH_3)_3\cdot NO_2$ . B. Durch Nitrierung von x-Trimethyl-naphthalin aus  $\beta$ -Naphthol mit 65% iger Salpetersäure in Eisessig bei 5—10° (PLüss, Helv. 8, 510). Gelbe Nadeln (aus Alkohol). F: 142—143°.
- 8. x Trimethyl naphthalin aus persischem Erdöl  $C_{13}H_{14} = C_{10}H_5(CH_3)_3$  (vgl. H 572). Pikrat  $C_{13}H_{14} + C_4H_3O_7N_3$ . F: 119—120° (Birch, Norris, Soc. 1926, 2553).

## 5. Kohlenwasserstoffe $C_{14}H_{16}$ .

- 1. 1-Butyl-naphthalin, 1- $\alpha$ -Naphthyl-butan  $C_{14}H_{16}=C_{10}H_7\cdot [CH_2]_3\cdot CH_3$  (H 572). B. Beim Erhitzen von 1- $\alpha$ -Naphthyl-butanon-(3) mit amalgamiertem Zink und Salzsäure (F. Mayer, Sieglitz, B. 55, 1843). Bewegliche Flüssigkeit. Kp<sub>14</sub>: 151—152°.
- 2. **2-Butyl-naphthalin**, **1-\beta-Naphthyl-butan**  $C_{14}H_{16} = C_{10}H_7 \cdot [CH_2]_3 \cdot CH_3$  (H 572). Beim Erhitzen von 1- $\beta$ -Naphthyl-butanon-(3) mit amalgamiertem Zink und Salzsäure (F. MAYER, SIEGLITZ, B. 55, 1854). — Kp<sub>13</sub>: 125—130°. CH<sub>3</sub>
- 3. 1-Methyl-4-isopropyl-naphthalin  $C_{14}H_{16}$ , s. nebenstehende Formel. B. Beim Erhitzen von 5-Methyl-8-isopropyl-tetralin mit Schwefel auf 180-230° (Ruzicka, Mingazzini, Helv. 5, 714). — Ol. Kp12: 135° bis 145°. — Pikrat  $C_{14}H_{16} + C_6H_3O_7N_3$ . F: 99—100°.
- CH(CH<sub>3</sub>)<sub>2</sub>

4. 1-Methyl-7-isopropyl-naphthalin, Eudalin C<sub>14</sub>H<sub>16</sub>, s. cH<sub>3</sub> nebenstehende Formel. B. Beim Erhitzen von 1-Methyl-7-isopropyl-(CH<sub>3</sub>)<sub>2</sub>CH.

3.4-dihydro-naphthalin mit Schwefel auf 180—230° (RUZICKA, STOLL, Helv. 5, 936). Durch Dehydrierung von Sesquiterpenen oder den entsprechenden Sesquiterpenalkoholen wie Elemen (RUZICKA, VAN VEEN, A. 476, 85), Selinen und seinen Isomerisationsprodukten (R., STOLL, Helv. 6, 850; R., MEYER, MINGAZZINI, Helv. 5, 363), Mitsubaen (Hrao, Bl. chem. Soc. Japan 1, 76, 79; Sci. Rep. Töhoku Univ. 15, 668; C. 1926 II, 234; 1927 I, 1173), Eudesmen (R., MEY, MI.; BRIGGS, SHORT, J. Soc. Chem. Ind., 47, 323 T. C. 1929 I, 1215), Machilen Machilel (Taylor), Indams Soc. Japan Soc. Japan 1, 76, 79; Sci. Rep. Tohoku Univ. 15, 1688; Chem. Ind., 47, 323 T. C. 1929 I, 1215), Machilen Machilel (Taylor), Indams Soc. Japan 1, 76, 79; Sci. Rep. Tohoku Univ. 15, 1688; Chem. Ind., 47, 323 T. C. 1929 I, 1215), Machilen Machilel (Taylor), Indams Soc. Japan 1, 76, 79; Sci. Rep. Tohoku Univ. 15, 1688; Chem. Ind., 47, 323 T. C. 1929 I, 1215), Machilen Machilel (Taylor), Indams Soc. Japan 1, 76, 79; Sci. Rep. Tohoku Univ. 15, 1688; Chem. Ind., 47, 323 T. C. 1929 I, 1215), Machilen Machilel (Taylor), Indams Soc. Japan 1, 76, 79; Sci. Rep. Tohoku Univ. 15, 1688; Chem. Ind., 47, 323 T. C. 1929 I, 1215), Machilen chem. Ind. 47, 323 T; C. 1929 I, 1215), Machilen, Machilel (Takagi, J. pharm. Soc. Japan 1924, Nr. 514, S. 2, 4; C. 1925 I, 1715) und Sesquiterpenalkohol-Fraktionen aus Campheröl (R., St., Helv. 7, 266) oder Vetiveröl (R., Capato, Huyser, R. 47, 373, 377) mit Schwefel, Selen und im Falle des Elemens auch mit Antimonpentasulfid. — Kp<sub>12</sub>: 142—143° (R., Mey., Ml.), 148° (Ta.); Kp<sub>16</sub>: 155—156° (Ta.); Kp<sub>790</sub>: 280—281° (R., Mey., Ml.). D<sub>4</sub><sup>a</sup>: 0,9765; n<sub>1</sub><sup>b</sup>: 1,5827 (Ta.); D<sub>4</sub><sup>a</sup>: 0,9797; n<sub>15</sub>: 1,5768 (R., van V.); D<sub>4</sub><sup>a</sup>: 0,9747; n<sub>15</sub>: 1,5850 (R., Mey., Ml.). — Liefert beim Kochen mit verd. Salpetersäure Naphthalin-dicarbonsäure (1.7) (R., St., Helv. 5, 931) und ein nicht näher untersuchtes Dinitro-eudalin vom Schmelzpunkt 1656 (Ta.). Bei der Oxydation mit Kaliumferricyanid erhält man Naphthalin-dicarbonsäure-(1.7) (R., 

5. 7-Methyl-1-isopropyl-naphthalin C<sub>14</sub>H<sub>18</sub>, s. nebenstehende CH(CH<sub>3</sub>)<sub>2</sub> Formel. B. Bei der Destillation des Bariumsalzes der 6-Methyl-4-iso-CH<sub>3</sub>. propyl-naphthoesäure-(1) mit Calciumhydroxyd im Wasserstoffstrom (Ruzicka, Mingazzini, *Helv.* 5, 712). — Ol. Kp<sub>12</sub>: 139—141° (R., M.). — Dr: 0,9833; n<sub>0</sub>°: 1,5884 (R., M.). — Liefert beim Kochen mit verd. Salpetersäure außer Naphthalin-dicarbonsaure-(1.7) noch x-Nitro-7-methyl-1-isopropyl-naphthalin und x-Nitro-8-isopropyl-naphthoesaure-(2) (R., Stoll, Helv. 5, 932). — Pikrat  $C_{14}H_{16}+C_6H_3O_7N_3$ . F: 101° bis 102° (R., M.). — Styphnat  $C_{14}H_{16}+C_6H_3O_8N_3$ . F: 163—164° (R., M.).

- **x-Nitro-7-methyl-1-isopropyl-naphthalin**  $C_{14}H_{16}O_2N=CH_3\cdot C_{10}H_5(NO_2)\cdot CH(CH_3)_2$ . B. Beim Kochen von 7-Methyl-1-isopropyl-naphthalin mit verd. Salpetersaure, neben anderen Produkten (Ruzicka, Štoll, Helv. 5, 932). — Gelbliche Nadeln (aus Methanol). F: 112—113°.
- 6. **1.4-Diäthyl-naphthalin**  $C_{14}H_{16}$ , s. nebenstehende Formel.  $Kp_{12}$ : 150—152,5° (Krollffeiffer, A. 430, 198).  $D_{18}^{18,1}$ : 0,9983.  $n_{18}^{18,1}$ : 1,5901;  $n_{18}^{18,1}$ : 1,5970;  $n_{\beta}^{18,1}$ : 1,6164;  $n_{\gamma}^{18,1}$ : 1,6342.
- 7. x-Tetramethyl-naphthalin  $C_{14}H_{16}=C_{10}H_4(CH_3)_4$ . B. Beim Erhitzen eines Gemisches von  $\beta$ -Naphthol und Methanol in Gegenwart von Aluminium-

oxyd auf 423—426° (Briner, Plüss, Paillard, Helv. 7, 1054; Pl., Helv. 8, 508). — Nadeln (aus Alkohol). F: 107—108° (Pl.). — Versuche zur Sulfurierung mit 98% iger Schwefelsäure (in der Kälte, bei 40° und bei 70°) und mit Chlorsulfonsäure in Tetrachlorkohlenstoff: PL. — Pikrat. F: 184-1850 (B., Pl., PAI.).

- 8. 2-Benzyliden-bicyclo-[1.2.2]-heptan. 1.4-Methylen2-benzyliden-cyclohexan (Phenyl-endomethylencyclohexyliden-methan) C<sub>14</sub>H<sub>16</sub>, s. nebenstehende Formel. B. Aus 2-[α-Oxybenzyl]-bicyclo-[1.2.2]-heptan beim Erhitzen mit Kaliumdisulfat auf 190° (DIELS, ALDER, A. 470, 81). — Dünnflüssiges, stark lichtbrechendes Öl. Kp<sub>15</sub>: 145° bis 147°.
- 9. 1.2.3.4.5.6 Hexahydro anthracen  $C_{14}H_{16}$ , s.  $H_{2}C \longrightarrow CH_{2}$  nebenstehende Formel. B. Eine Verbindung, der\_vielleicht diese Konstitution zukommt, entsteht neben anderen Produkten H2C CH2 aus dem Phenylurethan des 2-Oxy-1.2.3.4.5.6.7.8-oktahydroanthracens bei der Destillation (v. Braun, Bayer, A. 472, 110). — Blättchen (aus Methanol). F: 70°. Leicht löslich in Benzol, schwer in Alkohol. — Verhalten bei der Einw. von Brom: v. Braun, Bayer.
- 10.  $\beta$ -Hexahydro-anthracen  $C_{14}H_{16}=C_6H_{10}(C_2H_2)C_6H_4$  (H 573) von Godchot (Bl. [4] 1, 703; A. ch. [8] 12, 488) ist nach Schroeter (B. 60, 2040) wahrscheinlich unreines 1.2.3.4.5.6.7.8-Oktahydro-anthracen.
- 11. Derivate eines Hexahydroanthracens  $C_{14}H_{16}$  mit ungewisser Stellung der angelagerten Wasserstoffatome.
- 9.10-Dichlor-hexahydroanthracen  $C_{14}H_{14}Cl_2 = C_6H_8 < \frac{CHCl}{CHCl} > C_6H_4$  (H 573) von GODCHOT (C. r. 139 [1904], 606; Bl. [3] 31 [1904], 1342; [4] 1, 708; A. ch. [8] 12, 492) ist wahrscheinlich nicht ganz reines 9.10-Dichlor-1.2.3.4-tetrahydro-anthracen (Schroeter, B. 60, 2040).
- 9.10-Dibrom-hexahydroanthracen  $C_{14}H_{14}Br_2 = C_6H_8 < \frac{CHBr}{CHBr} > C_6H_4$  (H 573) von GODCHOT (C. r. 139 [1904], 606; Bl. [3] 31 [1904], 1341; [4] 1, 706; A. ch. [8] 12, 489) ist wahrscheinlich nicht ganz reines 9.10-Dibrom-1.2.3.4-tetrahydro-anthracen (SCHROETER, B. 60, 2040).
- Hexahydrophenanthren C<sub>14</sub>H<sub>16</sub> von Breteau (C. r. 140 [1905], 942) (H 573) enthielt wahrscheinlich 1.2.3.4-Tetrahydro-phenanthren (Schroeter, B. 57, 2025).
- 13. Niedrigersiedender Kohlenwasserstoff C<sub>14</sub>H<sub>16</sub> aus Braunkohlenteer. V. In der durch Schwefel bei 240° dehydrierten Neutralölfraktion vom Kp<sub>10</sub>: 120—126° des Braunkohlenteers (Herzenberg, Ruhemann, B. 60, 898). Kp<sub>10</sub>: 124—126°; Kp: 248—250°. D<sub>4</sub><sup>15</sup>: 1,0200. n<sub>5</sub><sup>15</sup>: 1,6130. Liefert bei der Oxydation mit Permanganat-Lösung Phthalonsäure. Bei der Oxydation mit Chromessigsäure erhält man die Verbindung C<sub>14</sub>H<sub>14</sub>O<sub>2</sub>

Phthalonsäure. Bei der Oxydation mit Unromessigsaure ernalt man die Verdindung C<sub>14</sub>H<sub>14</sub>O<sub>2</sub> (s. u.). Bei mehrtägigem Kochen mit verd. Salpetersäure erhält man eine Säure C<sub>12</sub>H<sub>10</sub>O<sub>2</sub> (beginnt bei 160° zu sintern und ist bei 215° völlig geschmolzen), die wahrscheinlich eine Methylnaphthoesäure darstellt. — Pikrat C<sub>14</sub>H<sub>16</sub>+C<sub>6</sub>H<sub>3</sub>O<sub>7</sub>N<sub>3</sub>. F: 112°. Verbindung C<sub>14</sub>H<sub>14</sub>O<sub>2</sub> vom Schmelzpunkt 68° (Homologes des Naphthochinons). B. Durch Oxydation des Kohlenwasserstoffs C<sub>14</sub>H<sub>16</sub> vom Kp<sub>10</sub>: 124—126° mit Chromessigsäure (Herzenberg, Ruhemann, B. 60, 898). — Stechend riechende, gelbe Nadeln (aus Petroläther). F: 68°. Mit Wasserdampf flüchtig. — Liefert beim Kochen mit wäßr. Permanganat-Lösung Mellophansäure.

14. Höhersiedender Kohlenwasserstoff  $C_{14}H_{16}$  aus Braunkohlenteer. V. In der durch Schwefel bei 240° dehydrierten Neutralölfraktion vom Kp<sub>10</sub>: 160—170° von der durch Schwefel bei 240° dehydrierten Neutralölfraktion vom Kp<sub>10</sub>: 160—170° von Braunkohlenteer, neben einem festen Isomeren (s. u.) (Herzenberg, Ruhemann, B. 60, 901). — Naphthalinähnlich riechende Flüssigkeit. Kp<sub>10</sub>: 148—150°. D<sub>4</sub><sup>11</sup>: 1,0014. n<sub>2</sub><sup>12</sup>: 1,5991. — Liefert bei der Oxydation mit wäßr. Permanganat-Lösung Phthalonsäure. Bei der Oxydation mit Chromessigsäure erhält man eine Verbindung C<sub>14</sub>H<sub>14</sub>O<sub>3</sub> (s. u.) und ein bei ca. 45° schmelzendes Produkt. — Pikrat C<sub>14</sub>H<sub>16</sub> + C<sub>6</sub>H<sub>3</sub>O<sub>7</sub>N<sub>3</sub>. F: 138°. Verbindung C<sub>14</sub>H<sub>14</sub>O<sub>2</sub> vom Schmelzpunkt 186° (Homologes des Naphthochinons). B. Durch Oxydation des Kohlenwasserstoffs C<sub>14</sub>H<sub>16</sub> vom Kp<sub>10</sub>: 148—150° mit Chromessigsäure (Herzenberg, Ruhemann, B. 60, 901). — Braunes Krystallpulver (aus Benzol). F: 186° (Zers.). Ziemlich leicht löslich in Benzol und Alkohol, schwerer in Ather.

15. Fester Kohlenwasserstoff C<sub>14</sub>H<sub>18</sub> aus Braunkohlenteer. V. u. B. Findet sich im Gelböl, Rotöl, Gasöl und Paraffinöl des Braunkohlenteers (Oehler, Z. ang. Ch. 12 [1899], 563; vgl. Herzenberg, Ruhemann, B. 60, 900). Entsteht neben einem flüssigen

473

Isomeren vom Kp<sub>10</sub>: 148—150° (s. o.) durch Dehydrierung einer Neutralölfraktion vom Kp<sub>10</sub>: 160—170° aus Braunkohlenteer (H., R., B. 60, 900). — Nadeln (aus Alkohol oder Eisessig). F: 115° (H., R.), 117° (OE.). Kp: 300—303° (OE.). Sublimierbar. Leicht löslich in Benzol, Schwefelkohlenstoff, Chloroform, Aceton und Äther, schwer in Alkohol und Eisessig (OE.; H., R.). Mit Wasserdampf flüchtig (OE.; H., R.). — Pikrat C<sub>14</sub>H<sub>16</sub>+C<sub>6</sub>H<sub>3</sub>O<sub>7</sub>N<sub>3</sub>. F: 1520 (H., R.), 1540 (OE.).

Mononitroderivat  $C_{14}H_{15}O_2N = C_{14}H_{15}\cdot NO_2$ . B. Aus der vorangehenden Verbindung durch Einw. von Salpetersäure (D: 1,4) in Eisessig (Herzenberg, Ruhemann, B. 60, 901). — Gelbbraune Blättchen (aus Methanol). F: 102—103°.

16. Kohlenwasserstoff C<sub>14</sub>H<sub>16</sub>(?) aus Acetylen s. E II 1, 221. [GERISCH]

## 6. Kohlenwasserstoffe $C_{15}H_{18}$ .

- 1. **2-Isoamyl-naphthalin**,  $\beta$ -Isoamyl-naphthalin  $C_{15}H_{18} = C_{10}H_7 \cdot CH_2 \cdot CH_2 \cdot CH(CH_3)_2$  (H 574). V. Im Burma-Petroleum (Mulany, Watson, J. Soc. chem. Ind. 43, 312 T; C. 1925 I, 186). Pikrat. F: 108—110°.
- 2. 1.6-Dimethyl-4-isopropyl-naphthalin, Cadalin  $\mathrm{C}_{15}\mathrm{H}_{18}$ , s. nebenstehende Formel. Zur Konstitution vgl. RUZICKA, SEIDEL. CH<sub>3</sub> Helv. 5, 369. — B. Bei der Dehydrierung vieler Sesquiterpene mit Schwefel bei 180—260°; z. B. bei der Dehydrierung von Zingiberen CH<sub>3</sub>. (S. 346), Isozingiberen (S. 347), l.Cadinen (S. 347) und Calamen (S. 349) CH(CH<sub>3</sub>)<sub>2</sub> (Ruzicka, Meyer, Helv. 4, 508; Ruz., Mey., Mingazzini, Helv. 5, 356, 358, 359); ferner bei der Dehydrierung von Isocadinen (S. 348) (HENDERSON, ROBERT-Soo, Sos, Sos); terner bet der Denydrierung von Isocadinen (S. 548) (HENDERSON, ROBERTSON, Soc. 1926, 2814), Copaen (S. 349) (HE., M'NAB, Ro., Soc. 1926, 3079) und von Dysoxylonen (S. 352) (Penfold, J. Pr. Soc. N. S. Wales 61, 345; C. 1929 I, 948). Aus l-Cadinen beim Leiten über Platinschwarz-Asbest bei 300—310° unter 0,5 mm Druck (Ruz., Stoll, Helv. 7, 90) oder bei der Dehydrierung mit Selen bei ca. 280° (Diels, Karstens, B. 60, 2325). Bei der Reduktion von 5-Oxo-1.6-dimethyl-4-isopropyl-5.6.7.8-tetrahydro-naphthalin mit Natrium in absol. Alkohol bei 130° und rachfolgendem Erhitzen des Reaktionsgemisches mit Schwafel auf 480, 240% men geinich fache des Schwafel auf 480, 240% men geinich fache des Reaktionsgemisches mit Schwefel auf 180—210°; man reinigt über das Styphnat (Ruz., Sei., Helv. 5, 374). — Ol. Kp<sub>11</sub>: 155—156° (Ruz., Sei.); Kp<sub>12</sub>: 157—158° (Ruz., Mex.); Kp<sub>720</sub>: 291—292° (Ruz., Mex.). D<sup>19</sup>: 0,9792 (Ruz., Mex.). n<sup>19</sup>: 1,5851 (Ruz., Mex.), 1,582 (Ruz., Sei.). — Bei der Oxydation mit Chromessigsäure bei 40—45° wurden 6-Methyl-4-isopropyl-naphthoesäure-(1) und wenig 2.5-Dimethyl-8-isopropyl-naphthochinon-(1.4) (nachgewiesen als Oxim) isoliert (Ru., Mey., Min.). Liefert bei der Reduktion mit Natrium in absol. Alkohol auf dem Wasserbad Dihydrocadalin (S. 425) (Ru., Mey.). — Pikrat  $C_{15}H_{18} + C_6H_3O_7N_3$ . Orangegelbe Nadeln (aus Alkohol). F: 115° (Ru., Mey.). — Styphnat  $C_{15}H_{18} + C_6H_3O_6N_3$ . Gelbe Nadeln (aus Alkohol). F: 1380 (Ru., Mey.).
- 3.  $1-Methyl-2.4-di\ddot{a}thyl-naphthalin$   $C_{15}H_{18}$ , s. nebenstehende Formel.  $D_4^{18,8}$ : 0,9870 (Krollpfeiffer, A. 430, 204).  $n_{\alpha}^{18,4}$ : 1,5855;  $n_{D}^{18,8}$ : 1,5923;  $n_{\beta}^{13,3}$ : 1,6114;  $n_{\gamma}^{13,3}$ : 1,6287.

CH<sub>3</sub> C2H5 4. 1.4-Dimethyl-7-isopropyl-azulen, S-Guajazulen, Kess-C2H5

[1936], 864, 867; PL., LEMAY, Helv. 23 [1940], 897; PL., MAGYAR, Helv. 24 [1941], 191. Zur Identität von Kessazulen und S-Guajazulen vgl. Ruzicka, Haagen-Smit, Helv. 14 [1931], 1109; Asahina, Nakanishi, J. pharm. Soc. Japan 52, 2; C. 1932 I, 2461. Zur Identität von Gurjunazulen und Eucazulen mit S-Guajazulen vgl. Pfau, Plattner, Helv. 19, 861. — V. Im Braunkohlenteer (Herzenberg, Ruhemann, B. 58, 2249; Ruh., Lewy, B. 60, 2464). Im äther. Öl von "rose wood", dem Holz von Dysoxylon Fraseranum Benth. (Penfold, J. Pr. Soc. N. S. Wales 61, 346; C. 1929 I, 949). Im Destillationsöl des Harzes (Penfold, J. Pr. Soc. N. S. Wales 61, 346; C. 1929 I, 949). Im Destillationsol des Harzes ("Black dammar") von Canarium strectum Roxb. (Moudgill, J. Soc. chem. Ind. 44, 170 T; C. 1925 II, 1490). — B. Bei der Dehydrierung von Aromadendren (S. 356) (Pfau, Plattner, Helv. 19, 871; Radcliffe, Short, Soc. 1938, 1201; vgl. Briggs, Short, Soc. 1928, 2527) oder von Guajen (S. 349) (Ruzicka, Rudolph, Helv. 9, 134) mit Schwefel. Bei der Dehydrierung der Sesquiterpenfraktion Kp<sub>12</sub>: 121—135° aus dem äther. Öl von Eucalyptus Globulus Lab. mit Schwefel (Ruzicka, Rudolph, Helv. 9, 133). Bei der katalytischen Dehydrierung von α-Gurjunen mit Nickel (Pfau, Plattner, Helv. 19, 862, 872; vgl. He., Ru., B. 58, 2256). Beim Erhitzen von Kessylalkohol C<sub>15</sub>H<sub>26</sub>O<sub>2</sub> (aus Kessoöl, dem äther. Öl der Wurzel von Valeriana officinalis L. var. augustifolia Miq.) mit Palladium-Kohle auf 220—250°, neben Desoxykessylen (Asahina, Nakanishi, J. pharm. Soc. Japan 48, 6; C. 1928 I, 1861). Man reinigt das Rohprodukt über die Phosphorsäure-Verbindung oder über das Pikrat (Ruz., Rub.).

Blaues Ol. Kp<sub>11</sub>: 164° (Ruzicka, Rudolph, Helv. 9, 134), 167—168,4° (Kremers, Am. Soc. 45, 718); Kp<sub>7</sub>: 153° (Asahina, Nakanishi, J. pharm. Soc. Japan 48, 7; C. 1928 I. 1861); Kp<sub>1,1</sub>: 135,6° (Kr.). Ist mit Wasserdampf und Petrolätherdampf flüchtig (Herzenberg, Ruhemann, B. 58, 2250; Ruh., Lewy, B. 60, 2465). D<sup>1</sup>; 0,9759 (Ruz., Rud.); D<sup>1</sup>; 0,9717 (As., Na.); D<sup>1</sup>; 0,9877 (Kr.). Absorptionsspektrum in Alkohol: As., Na.; He., Ruh.; in Hexan: Ruz., Rud.; Plattner, Helv. 24 [1941], 290 E, 291 E, 292 E. Leicht löslich in konz. Schwefelsäure und Phosphorsäure (As., Na.). — Zur Oxydation mit alkal. Permanganat-Lösung vgl. Kr.; Ruh., L.; Ruz., Rud., Helv. 9, 120. Liefert bei der katalytischen Hydrierung in Gegenwart von Palladiumschwarz Oktahydro-S-guajazulen (S. 116) (Ruz., Rud.; As., Na.; vgl. Ruz., Haagen-Smit, Helv. 14 [1931], 1110 Anm. 2; Melville, Am. Soc. 55 [1933], 3288). Wird durch Natriumamalgam unter Verschwinden der blauen Farbereduziert (Kr.). — C<sub>12</sub>H<sub>18</sub>+H<sub>4</sub>Fe(CN)<sub>8</sub>. Niederschlag. Wird durch Wasser in die Komponenten zerlegt (Ruh., L., B. 60, 2466). — Pikrat C<sub>15</sub>H<sub>18</sub>+C<sub>6</sub>H<sub>3</sub>O<sub>7</sub>N<sub>3</sub>. Schwarze Nadeln (aus Methanol). F: 105—106° (Ruz., Rud.), 106° (As., Na.).

Azulene, bei denen es sich wahrscheinlich um S-Guajazulen handelt, wurden ferner gefunden: Im Urteer (Kurihara, J. Fuel Soc. Japan 7, 62; C. 1928 II, 1733). Im äther. Öl der Baumwollpflanze (Power, Chesnut, Am. Soc. 47, 1764). Im äther. Öl der Rhizome und Wurzeln von Asarum caudatum (Burlage, Lynn, J. am. pharm. Assoc. 16, 411; C. 1927 II, 579).

- 5. Elemazulen C<sub>15</sub>H<sub>18</sub>. B. Entsteht in geringer Menge neben viel Eudalin bei der Dehydrierung von Elemen (S. 352) mit Selen bei 220—280° (RUZICKA, VAN VEEN, A. 476, 87; R., HAAGEN-SMIT, Helv. 14 [1931], 1107, 1116). Violettblaues Öl. Pikrat C<sub>15</sub>H<sub>18</sub> + C<sub>6</sub>H<sub>3</sub>O<sub>7</sub>N<sub>3</sub>. Schwarze Krystalle. F: 110° (R., H.-Sm.). Am Licht und an der Luft unbeständig. Styphnat. F: ca. 87°. Leicht zersetzlich (R., H.-Sm.).
- 6. Chamazulen C<sub>15</sub>H<sub>18</sub>. V. Im Kamillenöl (Ruhemann, Lewy, B. 60, 2466; Ruzicka, Rudolph, Helv. 9, 132). Im Schafgarbenöl (Ruz., Rud.). Man reinigt das Rohprodukt über die Phosphorsäure-Verbindung und über das Pikrat (Ruz., Rud.). Kp<sub>12</sub>: 161<sup>6</sup> (Ruz., Rud.). D<sub>∗</sub><sup>∞</sup>: 0,9883 (Ruz., Rud.). Ultraviolett-Absorptionsspektrum in Hexan: Ruz., Rud., Helv. 9, 129. Zur Oxydation mit alkal. Permanganat-Lösung vgl. Ruz., Rud. Bei der katalytischen Hydrierung in Essigester in Gegenwart von Platinschwarz entsteht Oktahydrochamazulen (S. 116) (Ruz., Rud.). Gibt beim Erwärmen mit Natrium und Isoamylalkohol Hexahydrochamazulen (S. 357) (Ruz., Rud.). Reduktion mit Natrium und feuchtem Äther und mit Natrium und Alkohol: Ruz., Rud.). Zersetzt sich bei ca. 5-stdg. Erhitzen mit Ameisensäure auf 90<sup>6</sup> in einer Kohlendioxyd-Atmosphäre (Ruz., Rud.). Pikrat C<sub>15</sub>H<sub>18</sub> + C<sub>6</sub>H<sub>3</sub>O<sub>7</sub>N<sub>3</sub>. Krystalle (aus Alkohol). F: 115<sup>6</sup> (Ruz., Rud.). Styphnat. Schwarze Krystalle (aus Alkohol) F: 95—96<sup>6</sup> (Ruz., Rud.).
- 7. **9.9 Dimethyl 1.2.3.4(?)**-tetrahydro-fluoren C<sub>15</sub>H<sub>18</sub>, Formel I. B. Aus 9.9-Dimethyl-fluoren beim Behandeln mit Natriumammonium (Lebeau, Picon, C.r. 173, 85). Kp<sub>762</sub>: 280° bis 281°; Kp<sub>30</sub>: 148—149°.

$$I. \begin{picture}(100,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0)$$

- 8. 2.2-Dimethyl-1-phenyl-3.6-methylen-bicyclo-[0.1.3]-hexan. Phenyl- $\alpha$ -pericycloapocamphan  $C_{15}H_{18}$ , Formel II. B. Beim Erhitzen von aktivem oder inaktivem 2.2-Dimethyl-3-phenyl-bicyclo-[1.2.2]-heptanol-(3) mit Acetanhydrid oder Kaliumdisulfat im Rohr auf 170—180° (Bredt-Savelberg, B. 56, 559). Schwach und angenehm riechendes dünnes Öl. Kp<sub>5</sub>: 96—97°.  $D_{*}^{10,0}$ : 1,0061.  $n_{*}^{10,0}$ : 1,55471. Beständig gegen alkal. Permanganat-Lösung. Liefert mit Ameisensäure bzw. Eisessig + wenig konz. Schwefelsäure im Rohr bei 65—75° das Formiat bzw. Acetat des 7.7-Dimethyl-1-phenyl-bicyclo-[1.2.2]-heptanols-(2).
- 9. Tri-cyclopenteno-benzol, 1.2; 3.4; 5.6-Tris-trimethylen-benzol, Tricyclotrimethylenbenzol C<sub>12</sub>H<sub>18</sub>, s.
  nebenstehende Formel (H 574). B. Beim Leiten von Chlorwasserstoff durch eine Lösung von Dicyclopentyliden-hydrazin in Tetrahydronaphthalin bei 180° (Perkin, Plant, Soc. 127, 1140).
  Nadeln (aus Alkohol). F: 97° (Pe., Pl.). Kp<sub>20</sub>: 180—185° (Pe., Pl.).
  B<sup>2</sup>: 1,141 (ZIEGLER, DITZEL, A. 473, 206).

10. 6.7-Åthylen - 4.5.6.12-tetrahydro-perinaphthindan, 1.8-Åthylen-4.5-trimethylen-1.2.3.4-tetrahydro-naphthalin, Hexahydro-peribenzo-acenaphthinden C<sub>15</sub>H<sub>18</sub>, s. nebenstehende Formel. B. Durch Reduktion von 1-Oxo-5.6-trimethylen-3.4.5.11-tetrahydro-acenaphthen mit amalgamiertem Zink und Salzsäure (v. Braun, Rath, B. 61, 961). — Krystallmasse. F<sub>i</sub>: 29°. Kp<sub>12</sub>: 130—132°. Leicht flüchtig mit Wasserdampf.

11. 4.5-Methylen-1.2.3.4.5.6.7.8-oktahydrophenanthren, 1.7; 3.4-Bis-trimethylen-hydrinden  $C_{18}H_{18}$ , s. nebenstehende Formel. B. Durch Reduktion von 1.0xo.4.5-methylen-1.2.3.4.5.6.7.8-okta-

hydro-phenanthren mit amalgamiertem Zink und Salzsäure (v. Braun, Rath, B. 61, 960).

— F: 47°. Kp: 238°; Kp<sub>15</sub>: 130—132°. Mit Wasserdampf leicht flüchtig. Ziemlich schwer löslich in Alkohol und Petroläther. — Liefert bei Dehydrierungsversuchen mit Bleioxyd, Zinkstaub, Palladium, Nickel oder Schwefel nur ölige oder harzige Produkte.

A. 496 [1932], 204; Ang. Ch. 47 [1934], 838. — Das Mol.-Gew. ist kryoskopisch in Benzol und in Campher bestimmt (Staudinger, Bruson, A. 447, 109). — B. Aus Dicyclopentadien (S. 391) durch 14-stdg. Erhitzen auf 150—160° (Stau., Br., A. 447, 109; vgl. Stau., Rheiner, Helv. 7, 29). — Krystalle (aus Methanol). Röntgendiagramm: Hengstenberg, A. 467, 92. F: 60° (Stau., Rh.; Stau., Br.). Kp<sub>3</sub>: 110° (Stau., B. 59, 3026). Kp<sub>0.06</sub>: 90—92° (Stau., Rh.). Leicht löslich in Ather und Petroläther, schwer in Alkohol und Methanol, sehr schwer in Eisessig (Stau., Br.). — Läßt sich im Vakuum unzersetzt destillieren; zersetzt sich beim Erhitzen unter gewöhnlichem Druck teilweise zu Cyclopentadien (Stau., Br.). Wird durch konz. Salpetersäure heftig oxydiert (Stau., Br.). Bei der Einw. von Wasserstoff in Äther bei Gegenwart von Platin entsteht Tetrahydrotricyclopentadien (S. 402) (Stau., Br.). Nimmt in Schwefelkohlenstoff 2 Mol Brom auf (Stau., Br.).

# 7. Kohlenwasserstoffe $C_{16}H_{20}$ .

- 1. 1-Methyl-4-isopropyl-3-phenyl-cyclohexadien-(1.3), 3-Phenyl-p-menthadien-(1.3)  $C_{18}H_{20} = CH_3 \cdot C < \frac{CH_2}{CH \cdot C(C_9H_5)} > C \cdot CH(CH_3)_2$ . B. Aus dl-Piperiton und Phenylmagnesiumbromid in Ather (Read, Watters, Soc. 1929, 2170). Kp<sub>15</sub>: 145—148°. D<sub>1</sub><sup>\*\*</sup>: 0,9552. n<sub>15</sub><sup>\*\*</sup>: 1,5525.
- 2. 1.6-Diisopropyl-naphthalin C<sub>16</sub>H<sub>20</sub>, s. nebenstehende Formel. B. Neben anderen Produkten aus Naphthalin, Isopropylalkohol und 60% iger Schwefelsäure bei der Destillation mit überhitztem Wasserdampf (H. Meyer, Bernhauer, M. 53/54, 745).

  Aus 1.6-Diisopropyl-naphthalin-sulfonsäure-(3 oder 7) durch Destillation des Kaliumsalzes mit Phosphorsäure und überhitztem Wasserdampf (Mey., B., M. 53/54, 750). Blättchen (aus Alkohol). F: 52°. Liefert beim Kochen mit 5% iger Salpetersäure Naphthalin-dicarbonsäure-(1.6) und 1 (oder 6)-Isopropyl-naphthalin-carbonsäure-(6 oder 1).
- 3. x Diisopropyl naphthalin vom Schmelzpunkt  $38^{\circ}$  C<sub>13</sub>H<sub>30</sub> = C<sub>10</sub>H<sub>6</sub>[CH (CH<sub>3</sub>)<sub>2</sub>]<sub>2</sub>. B. Aus dem Kaliumsalz der x-Diisopropyl-naphthalin-sulfonsäure-(1) (Schmelzpunkt des Sulfochlorids: 119°) beim Erhitzen mit Phosphorsäure und überhitztem Wasserdampf (H. Meyer, Bernhauer, M. 53/54, 751). Krystalle (aus Alkohol). F: 38°. Kp: 317° bis 319°. Liefert bei der Sulfurierung eine isomere x-Diisopropyl-naphthalin-sulfonsäure-(1) (Schmelzpunkt des Sulfochlorids: 127°).
- 4. 6.6-Dimethyl-2-benzyl-bicyclo-[1.1.3]-hepten-(2), HC:C(CH<sub>2</sub>·C<sub>6</sub>H<sub>5</sub>)—CH Myrtenylphenyl C<sub>16</sub>H<sub>30</sub>, s. nebenstehende Formel. B. Aus Myrtenylbromid durch Erwärmen mit Phenylmagnesiumbromid in absol. Ather (Rupe, A. 459, 182). Dünnflüssiges Öl von H<sub>2</sub>C ——CH C(CH<sub>3</sub>)<sub>2</sub> angenehmem Geruch. Kp<sub>12</sub>: 138—141°. D<sub>4</sub>°: 0,9712. [ $\alpha$ ]<sub>0</sub>°: +29,49°. Rotationsdispersion bei 20°: R. Ziemlich leicht löslich in Alkohol.
- 5. 2.2 Dimethyl 1 phenyl  $H_2C C(C_0H_5) C(CH_3)_2$   $H_2C C(C_0H_5) CH_2$  3-methylen-bicyclo-[1.2.2]-heptan, 4-Phenyl-camphen,  $\beta$ -Phenyl-camphen  $C_{18}H_{30}$ , Formel I. B.  $H_2C C(C_0H_5) CH_2$  II.  $C(CH_3)_2$   $C(CH_3)_2$   $C(CH_3)_2$   $C(CH_3)_3$   $C(CH_3)_4$   $C(CH_3)_4$

Beim Erhitzen von 4-Phenyl-isoborneol (Formel II, S. 475; Syst. Nr. 535) mit der doppelten Menge Kaliumdisulfat auf 150—160° (NAMETRIN, KITSCHKIN, KURSSANOW, J. pr. [2] 124, 151, 154; Ж. 61, 1075). — Krystalle (aus Methanol). F: 32,5°. Kp<sub>7</sub>: 128—129°. D<sup>30</sup>: 0,9919. n<sup>30</sup>: 1,5449. — Liefert beim Erhitzen mit Eisessig in Gegenwart von Schwefelsäure auf 50—60° [4-Phenyl-isobornyl]-acetat (Syst. Nr. 535).

- 6. 3.3-Dimethyl-1-phenyl-2-methylen-bicyclo-[1.2.2]-  $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{16}^{12}$ - $_{$
- 7. Kohlenwasserstoff  $C_{16}H_{20}$  aus 2 (oder 3)-Phenyl-camphanol-(3 oder 2). B. Aus dem Gemisch von festem und flüssigem 2(oder 3)-Phenyl-camphanol-(3 oder 2) durch Kochen mit Ameisensäure oder durch Erhitzen mit sirupöser Phosphorsäure auf  $200^{\circ}$  (Rupe, Wilz., Verh. naturf. Ges. Basel 38, 183, 184; C. 1928 I. 908). Aromatisch riechendes bewegliches Ol. Kp<sub>10</sub>: 135—141°. Eigenschaften des mit Hilfe von Ameisensäure dargestellten Präparats:  $D_{1}^{\infty}$ : 0,9767;  $n_{D}^{\infty}$ : 1,5417;  $[\alpha]_{D}^{\infty}$ : +40,56°. Eigenschaften des mit Hilfe von Phosphorsäure dargestellten Präparats:  $D_{1}^{\infty}$ : 0,9865;  $n_{D}^{\infty}$ : 1,5445;  $[\alpha]_{D}^{\infty}$ : +8,33°. Rotationsdispersion: R., W.
- 8. 1.8; 4.5-Bis-trimethylen-1.2.3.4-tetrahydro-naphthalin, 1.2.3.4.5.8.9.10.11.16-Dekahydro-pyren C<sub>16</sub>H<sub>20</sub>, s. nebenstehende Formel. B. Durch Reduktion von 5-Oxo-1.2.3.4.5.8.9.10.11.16-dekahydro-pyren mit amalgamiertem Zink und Salzsäure (v. Braun, Rath, B. 61, 962). Krystallmasse. F: 34°. Kp<sub>12</sub>: 151—152°. Leicht löslich in Ather, schwer in Alkohol. An unterkühlter Flüssigkeit gemessen: D<sup>∞</sup>: 1,0612; n<sup>∞</sup>: 1,5806. Wird beim Überleiten über hellrot glühenden, mit Bleioxyd imprägnierten Bimsstein in Kohlendioxyd-Atmosphäre zu Pyren dehydriert.

# 8. Kohlenwasserstoffe $C_{17}H_{22}$ .

- 1. 6.6-Dimethyl-2- $\beta$ -phenäthyl-bicyclo-[1.1.3]- HC:C(CH<sub>2</sub>·CH<sub>2</sub>·C<sub>6</sub>H<sub>5</sub>)-CH hepten-(2), Myrtenylbenzyl  $C_{17}H_{22}$ , s. nebenstehende Formel. B. Aus Myrtenylbromid durch Behandeln mit Benzylmagnesiumchlorid unter Eiskühlung (RUPE, A. 459, 151—152°. Dimflüssiges Öl von süßlichem Geruch. Kp<sub>10</sub>: 151—152°. Die: 0,9633. [ $\alpha$ ] 182). + 16,18°. Rotationsdispersion bei 20°: RUPE.
- 2. 4'.4'- Dimethyl-6.7.8.9-tetrahydro-[cyclopenteno-1'.2': 4.5-acenaphthen], 4.5-[ $\beta$ . $\beta$ -Dimethyl-trimethylen]-6.7.8.9-tetrahydro-acenaphthen, 2-Dimethylen]-6.7.8.9-tetrahydro-acenaphthen, 2-Dimethylengen Grown B. Aus H2C CH2 CCH3)2 4.5-Dimethylmalonyl-6.7.8.9-tetrahydro-acenaphthen durch Erhitzen mit amalgamiertem Zink und Salzsäure (D: 1,19) (Fleischer, Siefert, A. 422, 305). Ol von schwach petroleumartigem Geruch, Kp13: 173—175°, D22: 0,9884; np: 1,5399.

# 9. Kohlenwasserstoffe $C_{18}H_{24}$ .

- 1. 5.9 Dimethyl 1 phenyl-decatrien (1.3.8)  $C_{18}H_{24} = C_6H_5 \cdot CH \cdot CH \cdot CH \cdot CH \cdot CH \cdot CH \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_3 \cdot CH_3 \cdot B$ . Beim Kochen von 5.9 Dimethyl 1 phenyl-decadien (3.8) in (1) (S. 524) mit verkupfertem Zink in verd. Alkohol + Essigester (Rupe, Rindernecht, A. 442, 70). Hellgebes, dünnflüssiges Öl von schwachem Geruch. Kp<sub>10</sub>: 170—173°; Kp<sub>0.05</sub>: 95°, D<sub>4</sub>°: 0,9273; [ $\alpha$ ] $_0$ °: +52,85° (Ru., Ri.). Zur Rotationsdispersion vgl. Ri., Helv. 8, 184. Ziemlich schwer löslich in Alkohol und Äther (Ru., Ri.). Addition von Brom in Chloroform: Ru., Ri.,
- 2. x-Di-tert.-butyl-naphthalin  $C_{18}H_{24}=C_{10}H_6[C(CH_3)_3]_2$ . B. Neben anderen Produkten aus Naphthalin beim Behandeln mit Isobutylalkohol und 80% iger Schwefelsäure bei 80—100° (H. Meyer, Bernhauer, M. 53/54, 751). Krystalle (aus Essigsäure). F: 142°.

- 477
- 3. 6.6-Dimethyl-2-[y-phenyl-propyl]-bicyclo-[1.1.3]-hepten-(2), Myrtenyl- $\beta$ -phenäthyl  $C_{18}H_{24}$ , s. nebenstehende Formel. B. Aus Myrtenylbromid durch  $H_{2C}$   $C_{18}H_{24}$   Rupe, A. 459, 183). — Schwach aromatisch riechendes Öl. Kp<sub>10</sub>: 166—167°. D<sup>∞</sup><sub>1</sub>: 0,9574. n<sup>∞</sup><sub>2</sub>: 1,5312. Zwei verschiedene Präparate zeigten [α]<sup>∞</sup><sub>1</sub>: —15,3° und —4,6°. Rotationsdispersion bei 20°: Rupe. Ziemlich leicht löslich in Alkohol.
- Kohlenwasserstoff C<sub>18</sub>H<sub>14</sub> aus 2-β-Phenäthyl-borneol. B. Aus 2-β-Phenäthyl-borneol beim Erhitzen mit Åmeisensäure (Rupe, A. 436, 195). Dünnflüssiges Öl. Kp: 165-1680.
- 5. 1-Methyl-7-isopropyl-x-hexahydro-phenanthren, x-Hexahydro-reten 5. I-Methyl-7-isopropy-x-nexanyaro-phenanthren, x-Hexanyaro-reten C<sub>18</sub>H<sub>14</sub> = CH<sub>3</sub>·C<sub>14</sub>H<sub>14</sub>·CH(CH<sub>3</sub>)<sub>2</sub>. B. Beim Erhitzen von 6 g Reten mit 7 g rauchender Jodwasserstoffsäure (D: 1,96) und 3 g rotem Phosphor im mit Kohlendioxyd gefüllten Rohr auf 190—200° (Virtanen, B. 53, 1887). — Wasserhelle, etwas blau fluorescierende Flüssigkeit von sehr schwachem, nicht unangenehmem Geruch. Kp<sub>10</sub>: 175—177°. D<sup>∞</sup><sub>1</sub>: 0,9802. n<sup>∞</sup><sub>D</sub>: 1,5477. Mischbar mit Chloroform, Ligroin, Eisessig, Benzol und Äther in jedem Verhältnis. Löst sich in konz. Schwefelsäure bei gewöhnlicher Temperatur mit tiefbrauner Farbe, die beim Erwärmen in Braunschwarz übergeht. — Reaktion mit konz. Salpetersäure: V. Beständig gegen Permanganat.
- 6. 1.2 Tetramethylen-4.5 [hexahydro-o-xylylen]-benzol, 1.2.3.4.5.6.7.8.9.10.17.18  $\frac{\text{H}_2\text{C}}{\text{CH}_2}$   $\frac{\text{CH}_2}{\text{CH}_2}$   $\frac{\text{CH}_2}{\text{CH}_$ tetralanthracen C<sub>18</sub>H<sub>24</sub>, s. nebenstehende Formel. B. Aus 2.3-Tetramethylen-anthrachinon bei der katalytischen Hydrierung in Gegenwart von Nickel in Dekalin bei 180—190° unter Druck, neben anderen Produkten (v. Braun, Bayer, Fieser, A. 459, 303). — Krystalle (aus Ligroin). F: 82—83°. Sehr leicht löslich in Benzol und Äther. — Liefert bei der Behandlung mit der berechneten Menge Permanganat erst in alkalischer, dann in saurer Lösung Benzol-tetracarbonsäure-(1.2.4.5).
- $\begin{array}{c} \text{H}_2\text{C} \stackrel{\text{CH}_2-\text{CH}_2}{\longleftarrow} \text{CH}_2 \\ \text{CH}_2\text{C} \stackrel{\text{CH}_2}{\longleftarrow} \text{CH}_2 \stackrel{\text{CH}_2}{\longleftarrow} \text{CH}_2 \end{array}$ dro-triphenylen  $C_{18}H_{24}$ , s. nebenstehende Formel (H 576; E I 270). B. Neben anderen Verbindungen beim Erhitzen von Cyclohexanon auf 320° in Gegenwart von Aluminiumoxyd unter 30 Atm. Druck (Petrow, Bl. [4] 43, 1274; Ж. 60, 1438) wart von Auminiumoxyu unter 30 Athi. Druck (FEROW, Br. [12] 30, 1213, 111. 30, 1205) oder bei 250—300° im Hochdruck-Autoklaven in Gegenwart von unglasierten Tonscherben (TREIBS, B. 61, 684) oder beim Kochen von Cyclohexanon mit Zinkchlorid in Toluol (Kunze, B. 59, 2086). Zur Bildung aus Cyclohexanon nach Mannich (B. 40, 154) vgl. Ku., B. 59, 2086. Neben 1-Cyclohexyliden-2-[2-oxo-cyclohexyliden]-cyclohexanon in absol. Methanol unter Zusatz von konz. Schwefelsäure (Ku., B. 59, 2088). Aus 1-Cyclohexyliden-2-[2-oxo-cyclohexyliden] cyclohexanon beim Aufbawahren in alkoholisch-alkalischer Lösung (Ku. B. 59, 2088). cyclohexyliden]-cyclohexan beim Aufbewahren in alkoholisch-alkalischer Lösung (Ku., B. 59, 2088). Aus 1.2.3.4.5.6.7.8 Oktahydro-anthracen oder aus 1.2.3.4.5.6.7.8 Oktahydro-phenanthren beim Erwärmen mit Aluminiumchlorid auf 70—80°, neben anderen Produkten (SCHROETER, B. 57, 2003). — Krystalle (aus Alkohol oder besser aus Benzol + Eisessig). F: 232—233° (korr.) (SCHR.), 232° (KU.).  $\mathbb{D}_{0}^{3}$ : 1,148 (ZIEGLER, DITZEL, A. 473, 206). — Liefert beim Erhitzen mit Selen auf 280—290° Triphenylen (DIELS, KARSTENS, B. 60, 2324).

# 10. Kohlenwasserstoffe $C_{19}H_{26}$ .

7. 1.2; 3.4; 5.6-Tris-tetramethylen-benzol, 1.2.3.4.5.6.7.8.9.10.11.12 - Dodekahy -

1. Cyclohexyl - phenyl - cyclohexyliden - methan C<sub>19</sub>H<sub>26</sub> = C<sub>6</sub>H<sub>1</sub>C<sub>1</sub>C<sub>6</sub>C<sub>1</sub>C<sub>2</sub>CH<sub>2</sub>·CH<sub>2</sub> CH<sub>3</sub> (H 576). Das Mol.-Gew. wurde kryoskopisch in Benzol und Naphthalin bestimmt (Conant, Small, Sloan, Am. Soc. 48, 1756). — B. Beim Kochen von Dicyclohexyl-phenyl-chlormethan (Gray, Marvel, Am. Soc. 47, 2800; C., Sm., Sl., Am. Soc. 48, 1756) oder von Cyclohexyl-[1-chlor-cyclohexyl-phenyl-methan (C., Sm., Sl.) mit fein verteiltem Silber in Toluol. — Gelbliche, zähe Flüssigkeit. Kp<sub>1,75</sub>: 170—171° (G., M.); Kp<sub>0,8</sub>: 134—135° (C., Sm., Sl.). Erstarrt nicht bei 0° (G., M.). D<sup>10</sup>: 0,982; 0,987 (C., Sm., Sl.). n<sup>20</sup>: 1,545; 1,546 (C., Sm., Sl.), 1,6710 (G., M.). Leicht löslich in Benzol und Toluol, schwer in absol. Alkohol (G., M.). — Ist an der Luft beständig. Wird bei ½-stdg. Erhitzen auf 330° nicht oxydiert (G., M.). Beim Sättigen der Lösung in absol. Alkohol mit Chlorwasserstoff bei 0° entsteht Cyclohexyl-[1-chlor-cyclohexyl-]-phenyl-methan (C., Sm., Sl.). stoff bei 0° entsteht Cyclohexyl-[1-chlor-cyclohexyl]-phenyl-methan (C., Sm., SL.).

- 2. 2.2 Diāthyl 5  $[\Delta^x$  cyclohexenyl] hydrinden  $C_{6H_9}$ .  $C_{19}H_{26}$ , s. nebenstehende Formel. B. Aus 1.3-Dioxo-2.2-diāthyl-5- $[\Delta^x$ -cyclohexenyl]-hydrinden durch Erhitzen mit amalgamiertem Zink und Salzsäure (D: 1,19) (Fleischer, Siefert, A. 422, 316). Öl: Kp<sub>27</sub>: 220°. D<sub>4</sub>°: 0,9475. n<sub>p</sub>: 1,5274.
- 3. 6.6 Dimethyl 2  $[\delta$  phenyl butyl] HC:C(CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>5</sub>) CH bicyclo-[1.1.3]-hepten-(2), Myrtenyl- $[\gamma$ -phe-nyl-propyl] C<sub>10</sub>H<sub>26</sub>, s. nebenstehende Formel. B. Aus Myrtenylbromid durch Erwärmen mit  $[\gamma$ -Phenyl-propyl]-magnesiumbromid in absol. Äther (RUPE, A. 459, 184). Öl von hyazinthenähnlichem Geruch. Kp<sub>10</sub>: 182,5—183,5°. D<sub>4</sub>°: 0,9522.  $[\alpha]_0^m$ : +4,96°. Rotationsdispersion bei 20°: RUPE. Ziemlich schwer löslich in kaltem Alkohol.
- 4. 4'.4'-Diāthyl-6.7.8.9-tetrahydro-[cyclopen-teno-1'.2': 4.5-acenaphthen], 4.5- $[\beta.\beta-Diāthyl-trimethylen]$  6.7.8.9 tetrahydro-acenaphthen, 2. Diāthyl-tetrahydroacenaphth- $\alpha.\beta$  hydrinden C<sub>19</sub>H<sub>26</sub>, s. nebenstehende Formel. B. Aus 4.5-Diāthyl-malonyl-6.7.8.9-tetrahydro-acenaphthen durch Einw. von amalgamiertem Zink und Salzsäure (D: 1,19) (Fleischer, Siefer, A. 422, 309; B. 53, 1261). Flüssigkeit. Kp<sub>16</sub>: 190—195°.

## 11. Kohlenwasserstoffe $C_{20}H_{28}$ .

1.  $\begin{array}{ll} \textbf{1-Methyl-4-isopropenyl-6-benzyl-2-propyliden-cyclohexan} & \mathrm{C_{20}H_{28}} = \mathrm{CH_3 \cdot HC} < \overset{\mathrm{CH}(\mathrm{CH_2 \cdot C_6H_5}) \cdot \mathrm{CH_2}}{\mathrm{C}(\mathrm{:CH \cdot C_2H_5}) - \mathrm{CH_2}} > \mathrm{CH \cdot C} < \overset{\mathrm{CH}_3}{\mathrm{CH_2}} & (\mathrm{E\ I\ 271}). \end{array}$ 

E I 271, Z. 8 v. o. statt ,,3677" lies ,,3077".

- 2. 4'.4''.4''-Tetramethyl-5.6.7.8-tetrahydro-[dicyclopenteno-1'.2':1.2; 1''.2'':3.4-naphthalin], 1.2; 3.4-Bis-[\beta,\beta-dimethyl-trimethylen]-5.6.7.8-tetrahydro-naphthalin ("2 Dimethyl 5 dimethyl tetrahydro-naphthalin ("2 Dimethyl 5 dimethyl tetrahydro-naphthalin ("2 Dimethyl-1.3.4-dimethylmalonyl-5.6.7.8-tetrahydro-naphthalin durch Kochen mit amalgamiertem Zink und Salzsäure (D: 1,19) (Fleischer, Siefer, A. 422, 292; B. 53, 1257). Prismen (aus absol. Alkohol). F: 105—106°. Schwer löslich in kaltem Methanol, leicht in Aceton, Ligroin und Äther.
- 3. 2.3-Trimethylen-1.4; 5.8; 9.10-tris-methylen-perhydroanthracen, Tetrahydro-tetracyclopentadien C<sub>20</sub>H<sub>28</sub>, s. nebenstehende Formel. B. Bei der Reduktion von Tetracyclopentadien (S. 567) in Äther mit Wasserstoff in Gegenwart von Platinmohr (Staudinger, Rheiner, Helv. 7, 30; St., Bruson, A. 447, 108). Krystalle (aus Essigester). F: 200—202°. Läßt sich unzersetzt destillieren. Leicht löslich in Benzol, Chloroform, Äther und Petroläther, unlöslich in Alkohol.
- 4. Kohlenwasserstoff  $C_{20}H_{28}$  aus Citral. B. Neben anderen Produkten beim Erhitzen von Citral mit Kaliumdisulfat auf 140° (Horiuchi, Mem. Coll. Sci. Kyoto Univ. [A] 11, 191; C. 1928 II, 1326).  $Kp_{14}$ : 190—194°.  $D_4^\infty$ : 0,9244.  $n_D^\infty$ : 1,5280. Katalytische Hydrierung in Gegenwart von Platinschwarz: Ho.
- 12. x-Tetraisopropyl-naphthalin  $C_{22}H_{32}=C_{10}H_4[CH(CH_3)_2]_4$ . B. Aus Naphthalin beim Behandeln mit Isopropylalkohol und 60% iger Schwefelsäure, neben anderen Produkten, oder besser beim Behandeln mit konz. Schwefelsäure bei 80° und Zufügen von Isopropylalkohol bei 120° (H. Meyer, Bernhauer, M. 53/54, 747). Krystalle (aus Aceton). F: 127°. Liefert bei mehrtägigem Kochen mit verd. Salpetersäure in Gegenwart von etwas Brom x-Diisopropyl-naphthalin-dicarbonsäure-(x) (M., B.).
- x-Nitro-x-tetraisopropyl-naphthalin  $C_{22}H_{31}O_2N$ . B. Aus x-Tetraisopropyl-naphthalin beim Behandeln mit Salpetersäure (D: 1,3) und konz. Schwefelsäure bei  $40^6$  (H. Meyer, Bernhauer, M. 53/54, 748). Gelbe Nadeln (aus Eisessig). F:  $201^{\circ}$ .

## 13. Kohlenwasserstoffe C<sub>30</sub>H<sub>48</sub> (Triterpene).

- 1.  $\alpha$ -Amyrilen C<sub>30</sub>H<sub>48</sub>. Rechtsdrehendes  $\alpha$ -Amyrilen, Dextro- $\alpha$ -amyrilen (H 576). Zur Bildung aus  $\alpha$ -Amyrin beim Behandeln mit Phosphorpentachlorid vgl. Ruzicka, Mitarb., A. 471, 33. F: 134° (Vesterberg, Westerlind, A. 428, 251). Kp<sub>15</sub>: 285° (unkorr.) (V., W.). Kp<sub>0,1</sub>: 235° (R., Mitarb.). D<sub>1</sub><sup>10</sup>: 0,9857; n<sub>D</sub><sup>10</sup>: 1,5420 (R., Mitarb.).
- 2.  $\beta$ -Amyrilen  $C_{20}H_{48}$  (H 576). Zur Bildung aus  $\beta$ -Amyrin durch Einw. von Phosphorpentachlorid in Petroläther vgl. Ruzicka, Mitarb., A. 471, 33.  $Kp_{0,1}$ : 235°.  $D_i^m$ : 0,9811.  $n_0^m$ : 1,5410.
- 3. Lapeylen C<sub>30</sub>H<sub>48</sub>. B. Durch Behandeln von Lupeol (Syst. Nr. 535) mit Phosphorpentachlorid in Petroläther-Lösung (Vesterberg, Nöjd, B. 59, 661; N., Ar. 1927, 388). Beim Erhitzen von Lupeol mit Selen auf 380—420° (Ruzicka, van Veen, H. 184, 80, 81). Krystalle (aus Alkohol). F: etwa 173° (R., v. V.), 173—174° (V., N.; N.). Kp<sub>10</sub>: 287° (N.). [\alpha]<sub>0</sub><sup>6</sup>: +27,5° (Chloroform; c = 10) (N.). Leicht löslich in Benzol, Äther und Chloroform, fast unlöslich in Alkohol (N.). Oxydation mit Permanganat: Nöjd.
- 4. Triterpen  $C_{30}H_{48}$  aus "Boswellinsäure". Das Mol.-Gew. wurde kryoskopisch in Campher und ebullioskopisch in Benzol bestimmt (Beaucourt, M. 53/54, 909). B. Aus stark verunneinigter, amorpher "Boswellinsäure" (Syst. Nr. 1087) durch Erhitzen auf 160° und nachfolgende Hochvakuumdestillation (Beaucourt, M. 53/54, 908; vgl. Winterstein, Stein, H. 208 [1932], 11, 13). Doppelbrechende Nadeln (aus Ather + Alkohol oder Eisessig). F: 126—127° (B.). Brechungsindices der Krystalle: B. F: 126—127° (B.). [ $\alpha$ ]; + 183° (Benzol; p = 4); [ $\alpha$ ]; + 225,2° (Chloroform; p = 2) (B.). Fast unlöslich in kaltem Alkohol, sohwer löslich in siedendem Alkohol und Eisessig, leicht in Ather, Benzol und Chloroform (B.). Quantitative Bestimmung der Doppelbindungen mit Benzopersäure, durch katalytische Hydrierung in Gegenwart von Platinmohr oder Platinoxyd und durch Bromtitration ergaben das Vorliegen einer Doppelbindung (B.). Einw. von Brom in Schwefelkohlenstoff: Beaucoupt.
- 5. Kohlenwasserstoff  $C_{30}H_{48}$  aus l-Pinen. B. Neben anderen Produkten bei der Behandlung von l-Pinen mit Antimon(III)-chlorid (Kondakow, Saprikin, Bl. [4] 37, 1065). Viscose Flüssigkeit.  $Kp_{11}$ : 250—255°.  $D^{25,5}$ : 0,89°.  $[\alpha]_D$ : —1,3° (Benzol). [Ammerlahn]

## 8. Kohlenwasserstoffe $C_nH_{2n-14}$ .

1. 1-Phenyl-pentadiin-(1.3), Methyl-phenyl-diacetylen  $C_{11}H_8=CH_3\cdot C:C\cdot C:C\cdot C_6H_5$ . Das Mol.-Gew. ist kryoskopisch in Eisessig bestimmt (Prévost, C.r. 180, 1852; A.ch. [10] 10, 374). — B. Beim Behandeln von 1-Phenyl-pentadien-(1.3) mit Brom und Kochen des entstandenen Gemisches von stereoisomeren 1.2.3.4-Tetrabrom-1-phenyl-pentanen mit alkoh. Kalilauge (P., C.r. 180, 1852; A.ch. [10] 10, 372). — Tafeln. Krystallographisches: P. F: 22,45°;  $Kp_{20}$ : 129°;  $D_1^{10}$ : 0,9745;  $n_2^{10}$ : 1,6368 (unterkühlte Schmelze) (P., A.ch. [10] 10, 374). — Addiert 4 Atome Brom unter Bildung zweier stereoisomerer 1.2.3.4-Tetrabrom-1-phenyl-pentadiene-(1.3) (F: 98° und 127—131°) (S. 418) (P.). — Gibt mit Quecksilber(II)-chlorid keinen Niederschlag (P., A.ch. [10] 10, 376).

## 2. Kohlenwasserstoffe $C_{12}H_{10}$ .

1. **Diphenyl**  $C_{13}H_{10}=C_6H_5\cdot C_6H_5$  (H 576; E I 271). Zur Stereochemie des Diphenyls vgl. R. Kuhn in K. Freudenberg, Stereochemie [Leipzig-Wien 1933], S. 810; W. Hückel, Theoretische Grundlagen der organischen Chemie, 3. Aufl., Bd. I [Leipzig 1940], S. 51; Bd. II [Leipzig 1941], S. 63, 77; E. Müller, Neuere Anschauungen der organischen Chemie [Berlin 1940], S. 48.

#### Bildung und Darstellung.

Diphenyl entsteht aus Benzol bei längerem Erhitzen in der Bombe auf 525° (Herndon, Reid, Am. Soc. 50, 3069), beim Erhitzen im Platinrohr auf hohe Temperatur (Peytral, Bl. [4] 29, 44) oder beim Auftropfenlassen auf Quarz- oder Kokstückehen bei 700—900° (Kosaka, J. Soc. chem. Ind. Japan Spl. 31, 125 B; J. Fuel Soc. Japan 7, 121; C. 1928 II, 2422; 1929 I, 1069). Mechanismus der Bildung aus Benzol beim Erhitzen im Rohr auf 300°: Pyl., B. 60, 1133; vgl. dagegen Fuchs, B. 60, 1663. Diphenyl entsteht ferner in geringer Menge bei der Zersetzung von Benzol im elektrischen Flammenbogen (F. G. Müller, Bänninger, Helv. 10, 765). Bei der Zersetzung von Benzol-Dampf in der Hochfrequenz-Glimmentladung (Hiedemann, Ann. Phys. [5] 2, 230). Aus Kupferphenyl beim Erhitzen auf 80°

oder beim Kochen mit Benzol (Reich, C.r. 177, 323). Bei der Selbstzersetzung von Silberphenyl (Reich). Zur Bildung beim Behandeln von Brombenzol mit Natrium in Benzol vgl. a. Schlubach, Goes, B. 55, 2898. Diphenyl bildet sich bei der Elektrolyse von Phenylmagnesiumbromid in Äther an Platin- bzw. Tantal-Elektroden (Gaddum, French, Am. Soc. 49, 1295). Zur Bildung aus Phenylmagnesiumbromid beim Behandeln mit Kupfer(II)-chlorid vgl. Sakellarios, Kyrimis, B. 57, 324; mit Eisen(III)-chlorid vgl. Job, Champetier, Bl. [4] 47, 284; C. r. 189, 1090; Michailenko, Sassypkina, K. 53, 343; C. 1923 III, 1014. Entsteht ferner aus Phenylmagnesiumhalogeniden beim Kochen mit Silberbromid in Äther (Gardner, Borgstrom, Am. Soc. 51, 3376), beim Behandeln mit Silbercyanat, Silberrhodanid, Kupfer(I)-rhodanid oder Kupfer(I)-cyanid in Äther oder Toluol in der Wärme (Gilman, Kirby, R. 48, 157), bei der Einw. von Phosphorpentachlorid in Äther (Kolitowska, Roczniki Chem. 8, 571; C. 1929 I, 1316), beim Behandeln mit Vanadium(IV)-chlorid in Äther bei —8° (Supniewski, Roczniki Chem. 7, 174; C. 1928 I, 1523) oder mit Monochloramin in Äther unterhalb 0° (Coleman, Hauser, Am. Soc. 50, 1196). Beispiele für das Auftreten von Diphenyl bei Umsetzungen von Phenylmagnesiumbromid mit verschiedenen organischen Verbindungen: Wedekind, Schenk, B. 54, 1609; Tschitschibabin, Ssergejew, B. 59, 658; Boyd, Hatt, Soc. 1927, 909; Rheinboldt, Kirberg, J. pr. [2] 118, 13; Gilman, Pickens, Am. Soc. 47, 2408; Gi., Adams, Am. Soc. 47, 2818; Gi., McCracken, Am. Soc. 49, 1058; 51, 825. Diphenyl bildet sich in geringer Menge bei der Einw. von Wasser auf das Produkt der Umsetzung von 1.3-Dibrom-benzol mit Magnesium in Äther bei Gegenwart von etwas Jod (Salkind, Rogowina, K. 59, 1015; C. 1928 I, 2939). Beim Erhitzen von Jodbenzol mit zuvor im Wasserstoffstrom erhitztem Aluminium auf 250° (Ray, Dutt. J. indian chem. Soc. 5, 106; C. 1928 I, 2370). Über Bildung bei der Einw. von Wasserstoffoder Hydrazinhydrat auf Halogenbenzole bei Gegenwart von Palladium-Calciumcarbonat in

Diphenyl entsteht in geringer Menge beim Auftropfen von Phenol auf Quarz- oder Koksstückchen bei 700—900° (Kosaka, J. Fuel Soc. Japan 7, 123; C. 1929 I, 1069). Bei der thermischen Zersetzung von Benzaldehyd (PEYTRAL, Bl. [4] 29, 45; HURD, BENNETT. Am. Soc. 51, 1200). Bei der Elektrolyse von Mangan(II) benzoat in geschmolzener Benzoe-Zersetzung von Acetylbenzoylperoxyd oder von Dibenzoylperoxyd (Fichter, Fritsch, Helv. 6, 336; Fi., Erlenmeyer, Helv. 9, 148; Reynhart, R. 46, 69). Beim Erwärmen von Dibenzoylperoxyd mit Benzol (Gelissen, van Roon, R. 43, 365) oder mit Benzol und Aluminium, Leider Einschleid, Bergern van Roon, R. 43, 365) oder mit Benzol und Aluminium, Leider Einschleid, Bergern van Roon, R. 43, 365) oder mit Benzol und Aluminium, Leider Einschleid, Bergern van Roon, R. 43, 365) oder mit Benzol und Aluminium, Leider Einschleid, Bergern van Roon, R. 43, 365) oder mit Benzol und Aluminium, Leider Einschleid, Bergern van Roon, R. 43, 365) oder mit Benzol und Aluminium, Leider Einschleid, Bergern van Roon, R. 43, 365) oder mit Benzol und Aluminium, Leider Einschleid, Bergern van Roon, R. 43, 365, oder mit Benzol und Aluminium, Leider Einschleid, Bergern van Roon, R. 43, 365, oder mit Benzol und Aluminium, Leider Einschleid, Bergern van Roon, R. 43, 365, oder mit Benzol und Aluminium, Leider Einschleid, Bergern van Roon, R. 43, 365, oder mit Benzol und Aluminium, Leider Einschleid, Bergern van Roon, R. 43, 365, oder mit Benzol und Aluminium, Leider Einschleid, Bergern van Roon, R. 43, 365, oder mit Benzol und Aluminium, Leider Einschleid, Bergern van Roon, R. 43, 365, oder mit Benzol und Aluminium, Leider Einschleid, Bergern van Roon, R. 43, 365, oder mit Benzol und Aluminium, Leider Einschleid, Bergern van Roon, R. 43, 365, oder mit Benzol und Aluminium, Leider Einschleid, Bergern van Roon, R. 43, 365, oder mit Benzol und Aluminium, Leider Einschleid, Bergern van Roon, R. 43, 365, oder mit Benzol und Aluminium, Leider Einschleid, Bergern van Roon, R. 43, 365, oder mit Benzol und Aluminium, Leider Einschleid, Bergern van Roon, R. 43, 365, oder mit Benzol und Aluminium, Leider Einschleid, Bergern van Roon, R. 43, 365, oder mit Benzol und Aluminium, Leider Einschleid, Bergern van Roon, R. 43, 365, oder mit Benzol und Aluminium, Leider Einschleid, Benzol und Aluminium, Leider Einschleid, Benzol und Aluminium, Leider Einschleid, Benzol miniumchlorid oder Eisenchlorid (Böeseken, Rey., Versl. Akad. Amsterdam 34, 1102; C. 1926 I, 2196; REY., R. 46, 58, 59). Bei der Einw. von Natrium auf Phenylsenföl in flüssigem Ammoniak (Kraus, White, Am. Soc. 45, 775). Zur Bildung von Diphenyl aus Benzoldiazonium-salzen nach Gattermann, Ehrhardt (B. 23, 1226) vgl. Gerngross, Schachnow, Jonas, B. 57, 747. Entsteht ferner beim Eintragen von Kupferpulver in eine Lösung von Benzoldiazoniumformiat in konz. Ameisensäure (GE., DUNKEL, B. 57, 742). Bei der Einw. von Kupferwasserstoff und Alkohol auf Benzoldiazoniumsulfat-Lösung bei 0° (Neogi, Mitra, Soc. 1928, 1332). Bei der Einw. von Alkohol auf Natriumbenzolisodiazotat in alkal. Lösung (BRYDOWNA, Roczniki Chem. 7, 443; C. 1928 I, 2820). Bei tropfenweiser Zugabe von Natronlauge zu einer Mischung aus Benzoldiazoniumchlorid-Lösung, Benzol und Magnesiumsulfat unter Kühlung oder durch langsames Eintragen von Benzoldiazoniumchlorid in ein Gemisch aus Benzol und Alkalilauge (GOMBERG, BACHMANN, Am. Soc. 46, 2341, 2342; 49, 250).

Diphenyl entsteht aus Dicyclohexyl beim Überleiten über Palladium-Asbest bei 300° bis 305°, über Platin-Kohle bei 300° (Zelinsky, B. 58, 2762; vgl. Ze., Titz, Fatejew, B. 59, 2590; Ze., Titz, B. 64 [1931], 184) oder über Platin-Asbest bei 320—330° (W. Hückel, Mitarb., A. 477 [1930], 126). In geringer Menge beim Durchleiten von Diphenylmethan durch ein verzinntes Eisenrohr im Wasserstoffstrom bei 760—770° (F. Fischer, Schrader, Meyer, Abh. Kenntnis Kohle 5, 420, 427; C. 1922 IV, 1039). Bei der Destillation von Fluoren über Aluminiumchlorid (Orlow, Belopolski, B. 62, 1231; Ж. 61, 1274). Beim Leiten von Diphenylenoxyd über Calciumhydrid im Wasserstoffstrom bei 450° (Fuchs, B. 61, 2599).

H 578, Z. 2 v. o. streiche "Wasser oder". Z. 3 v. o. streiche "J. 1864, 435;".

Zur Darstellung von Diphenyl durch thermische Zersetzung von Benzol vgl. a. Banús, An. Soc. españ. 12 [1914], 164; Lowe, James, Am. Soc. 45, 2666; Bell, Kenyon, Robinson, Soc. 1926, 1242.

#### Physikalische Eigenschaften.

Härte der Krystalle: Reis, Zimmermann, Ph. Ch. 102, 328. Röntgenographische Untersuchung: Herzog, Jancke, Z. Phys. 45, 195; C. 1928 I, 639; Hengstenberg, Mark, Z. Kr. 70, 285. F: 69,2° (Peytral, Bl. [4] 29, 44), 69,4° (Garrick, Trans. Faraday Soc. 23 [1927], 561), 70° (Hiedemann, Ann. Phys. [5] 2, 230; Reynhart, R. 46, 69), 70,5°

(v. Auwers, Frühling, A. 422, 224; van Hove, Bl. Acad. Belgique [5] 8 [1922], 506; Gomberg, Bachmann, Am. Soc. 46, 2343; Sakellarios, Kyrimis, B. 57, 324; Pyl, B. 60, 1134). Kp<sub>760</sub>: 255,9° (Lecat, Ann. Soc. scient. Bruxelles 49 [1929], 111). Dampfdruck zwischen 153,31° (37,25 mm) und 253,69° (749,62 mm): Ga. Dichte von festem Diphenyl: D<sup>\*\*</sup><sub>4</sub>: 1,180 (Ziegler, Ditzel, A. 473, 200); D<sup>\*\*</sup><sub>4</sub>: 1,156 (Schiemann, Roselius, B. 62, 1808); von flüssigem Diphenyl: D<sup>\*\*</sup><sub>4</sub>: 1,9896 (v. Au., Fr.); D<sup>\*\*</sup><sub>4</sub>: 0,9890 (v. Steiger, B. 55, 1972); Dichte zwischen 75° (0,991) und 155° (0,925): Lautsch, Ph. Ch. [B] 1, 123. Verbrennungswärme bei konstantem Volumen: 1493,5 kcal/Mol (Roth, Müller, Landolt-Börnst. E I 867). Verdampfungsgeschwindigkeit bei 25°: Mack, Am. Soc. 47, 2473.

np. 1. 1,5873 (v. Steiger, B. 55, 1972);  $n_{\pi}^{\pi,i}$ : 1,5811;  $n_{\pi}^{p,i}$ : 1,5882;  $n_{\pi}^{p,i}$ : 1,6076;  $n_{\gamma}^{\pi,i}$ : 1,6254 (v. Auwers, Frühling, A. 422, 224). Ultraviolett-Absorptionsspektrum des Dampfes: Castille, Bl. Soc. chim. Belg. 36, 301; C. 1927 I, 1126; II, 1004; vgl. a. Henri, C. r. 177, 1040. Ultraviolett-Absorptionsspektrum in absolut-alkoholischer Lösung: Marchlewski, Moroz, Bl. [4] 33, 1406; Tasaki, Acta phytoch. 2, 69; C. 1925 II, 1354; Tsuzuki, Bl. chem. Soc. Japan 2, 82; C. 1927 I, 2651; 1928 I, 63; in Hexan: Castille. Depolarisationsgrad des an flüssigem Diphenyl gestreuten Lichts: Lautsch, Ph. Ch. [B] 1, 118. Beugung von Röntgenstrahlen an flüssigem Diphenyl: Herzog, Jancke, Z. Phys. 45, 195; C. 1928 I, 639. Tesla-Luminescenzspektrum von Diphenyl-Dampf: McVicker, Marsh, Stewart, Soc. 127, 999. Fluorescenz bei Bestrahlung mit Röntgenstrahlen: Newcomer, Am. Soc. 42, 2001; de Beaujeu, J. Phys. Rad. [6] 4 [1923], 263. Dielektr.-Konst. von festem Diphenyl bei 170°: 2,57 (Estermann, Ph. Ch. [B] 1, 156); von flüssigem Diphenyl zwischen 75° (2,53) und 155° (2,39): Lautsch. Dipolmoment  $\mu \times 10^{18}$ : 0 (verd. Lösung; Benzol) (Williams, Phys. Z. 29 [1928], 684; Weissberger, Williams, Ph. Ch. [B] 3, 371; Bretscher, Helv. phys. Acta 1, 361; C. 1929 I, 725). Zum Dipolmoment vgl. a. E., Ph. Ch. [B] 1, 158, 167.

Diphenyl löst sich in flüssigem Schwefelwasserstoff (QUAM, Am. Soc. 47, 105). Ist mit Harnstoff in geschmolzenem Zustand nicht mischbar (Puschin, König, M. 49, 81). Kryoskopisches Verhalten in Eisessig: Berlande, Bl. [4] 33, 466. Thermische Analyse des binären Systems mit Dianisalaceton (Eutektikum bei ca. 62° und ca. 82 Gew.-% Diphenyl): Pfeiffer, Schmitz, Inoue, J. pr. [2] 121, 79, 82. Azeotrope Gemische, die Diphenyl enthalten, s. in der untenstehenden Tabelle. Dichte von Gemischen mit Benzol

#### Diphenyl enthaltende binäre Azeotrope.

| Komponente                                                        | Kp <sub>760</sub><br>0    | Diphenyl<br>in Gew% | Komponente  | Кр <sub>760</sub><br>0              | Diphenyl<br>in Gew%            |
|-------------------------------------------------------------------|---------------------------|---------------------|-------------|-------------------------------------|--------------------------------|
| γ-Phenyl-propyl-<br>alkohol 1)<br>Brenzcatechin 3)<br>Resorcin 3) | 235,4<br>239,85<br>252,15 | <br>43,5<br>79      | Glycerin 1) | 243,8<br>212,95<br>246,05<br>252,15 | ca. 45<br>49,5<br>49,5<br>76,7 |

<sup>1)</sup> LECAT, Ann. Soc. scient. Bruxelles 48 I [1928], 55, 59; 48 II [1928], 118. — 2) L., Ann. Soc. scient. Bruxelles 49 [1929], 23, 24. — 3) L., Ann. Soc. scient. Bruxelles 49, 111.

bei 25°: Weissberger, Williams, Ph. Ch. [B] 3, 372; mit Chinolin bei 13,1°: Krollffeiffer, A. 430, 222. Kontaktwinkel gegen Wasser: Nietz, J. phys. Chem. 32, 261. Wärmetönung beim Lösen in Benzol, Alkohol und Aceton: Gehlhoff, Ph. Ch. 98, 254. Brechungsindices einer Lösung in Chinolin bei 13,1°: Kr. Gemische aus Borsäure und wenig Diphenyl zeigen nach Ultraviolett-Bestrahlung grünlichblaues Nachleuchten (Tiede, Ragoss, B. 56, 658). Dielektr.-Konst. einiger Lösungen in Benzol bei 25°: Weissberger, Williams.

#### Chemisches und physiologisches Verhalten.

Über die Zersetzung von Diphenyl durch Kanalstrahlen vgl. Kohlschütter, Frumkin, B. 54, 592. Beim Leiten von Diphenyl-Dampf durch ein auf 500—600° erhitztes Porzellander Eisenrohr bilden sich Benzol und etwas Terphenyl (Fichter, Erlenmeyer, Helv. 9, 150). Benzol entsteht auch beim Leiten von Diphenyl durch ein gewöhnliches oder ein verzinntes Eisenrohr im Wasserstoff-Strom bei 760—770° (F. Fischer, Schrader, Brennstoffch. 1, 23; C. 1921 I, 12; Fi., Schr., Meyer, Abh. Kenntnis Kohle 5, 426; C. 1922 IV, 1039) oder beim Erhitzen mit Wasserstoff auf 500° unter 80 Atm. Anfangsdruck (F. Hofmann, Lang, Brennstoffch. 10, 204; C. 1929 II, 164) oder in Gegenwart eines Tonerde-Kupferoxyd-Katalysators auf 450—480° unter 55 Atm. Anfangsdruck (Orlow, B. 60, 1955; 3K. 59, 901; vgl. a. Ipatjew, Orlow, B. 60, 1968). Diphenyl wird durch Chromschwefelsäure nur unvollständig, durch Silberdichromat in Schwefelsäure dagegen quantitativ zu Kohlen

dioxyd oxydiert (Simon, C. r. 177, 266). Liefert bei der Hydrierung in Eisessig in Gegenwart von Platinoxyd Dicyclohexyl und Phenylcyclohexan (Hückel, Mitarb., A. 477 [1930], 118; vgl. a. Ranedo, León, An. Soc. españ. 21, 272; C. 1924 I, 768). Bei der Einw. von Salpetersäure (D: 1,5) in Eisessig erhält man neben 2-Nitro-diphenyl und 4-Nitro-diphenyl wahrscheinlich 3.5.4'-Trinitro-4-oxy-diphenyl (Syst. Nr. 539) (van Hove, Bl. Acad. Belgique [5] 8, 507, 527; C. 1923 I, 313). Liefert bei kurzem Kochen mit rauchender Salpetersäure außer 4.4'-Dinitro-diphenyl und 2.4'-Dinitro-diphenyl noch 2.2'-Dinitro-diphenyl (Bell, Kenyon, Soc. 1926, 2707). Beim Behandeln mit Athylnitrat in konz. Schwefelsäure bei —5° erhält man 2.4.4'-Trinitro-diphenyl (Raudnitz, B. 60, 740). Umsetzung von Diphenyl mit Lithium in Ather: Schlenk, Bergmann, A. 463, 86, 92; vgl. hierzu Hückel, Bretschneider, A. 540 [1939], 173.

Diphenyl liefert beim Behandeln mit Cyclohexen bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff 4-Cyclohexyl-diphenyl, 4.4'-Dicyclohexyl-diphenyl und andere Produkte (Bodroux, A. ch. [10] 11, 527; vgl. Basford, Soc. 1936, 1593). Gibt bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff mit 1 Mol Acetylchlorid 4-Phenyl-acetophenon, mit 2 Mol Acetylchlorid 4.4'-Diacetyl-diphenyl (Ferriss, Turner, Soc. 117, 1142, 1147; Dillthey, J. pr. [2] 101, 194, 195). Beim Erwärmen mit Dibenzoylperoxyd auf dem Wasserbad entstehen Benzol, Terphenyl, Quaterphenyl, wenig Phenylbenzoat und harzige Produkte (Gelissen, Hermans, B. 58, 293, 764). Beim Sättigen eines erwärmten Gemisches von Diphenyl und Azodicarbonsäure-dimethylester mit Chlorwasserstoff in Gegenwart von wenig Jod erhält man 4.4'-Bis-[N.N'-dicarbomethoxy-hydrazino]-diphenyl (Stolle, Adam, J. pr. [2] 111, 167, 170). Diphenyl liefert bei der Kondensation mit Azobenzol bei Gegenwart von Aluminiumchlorid und Chlorwasserstoff in Schwefelkohlenstoff hauptsächlich 4-Aminoterphenyl (Syst. Nr. 1738) (Pummerer, Mitarb., B. 55, 3097, 3103; Pu., Bittner, B. 57, 85). Beim Erhitzen mit Chionlinsäureanhydrid in Benzol bei Gegenwart von Aluminiumchlorid bildet sich 3-[4-Phenyl-benzoyl]-pyridin-carbonsäure-(2) (Syst. Nr. 3366) (Jephcott, Am. Soc. 50, 1190).

Physiologisches Verhalten: H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 61. Schädigende Wirkung beim Aufstäuben auf Pflanzen: Moore, Campbell, J. agric. Res. 28 [1924], 402.

Diphenyltetraozonid  $C_{19}H_{10}O_{18}$  (H 579). Magnetische Susceptibilität: Vaidyanathan, Indian J. Phys. 2, 427, 428; C. 1926 II, 1985. Ist in verd. Lösung in Athylacetat beständig (V.).

#### Substitutionsprodukte des Diphenyls.

- 2-Fluor-diphenyl C<sub>18</sub>H<sub>9</sub>F = C<sub>6</sub>H<sub>5</sub>·C<sub>6</sub>H<sub>4</sub>F. B. Beim Diazotieren von fluorwasserstoffsaurem 2-Amino-diphenyl und Verkochen der Diazoniumfluorid-Lösung (van Hove, Bl. Acad. Belgique [5] 8, 511; C. 1923 I, 311). Bei der thermischen Zersetzung von Diphenyldiazoniumbortetrafluorid-(2) (Schlemann, Roselius, B. 62, 1806, 1810). Prismen (aus Alkohol). F: 71—72° (Sch., R.), 73,5° (van H.). Sublimierbar (van H.; Sch., R.). Kp: 248° (van H.). D<sup>3</sup>: 1,2452 (Sch., R.). Leicht löslich in Ather, kaltem Alkohol, warmem Ligroin, Tetrachlorkohlenstoff, Chloroform und Petroläther (Sch., R.). Flüchtig mit Wasserdampf (van H.; Sch., R.). Gibt beim Behandeln mit Salpetersäure (D: 1,5) in Eisessig, zuletzt unter Erwärmen 2'-Fluor-2-nitro-diphenyl, 2'-Fluor-4-nitro-diphenyl und wenig 2-Fluor-4-nitro-diphenyl (van H.).
- 3-Fluor-diphenyl  $C_{12}H_{5}F=C_{6}H_{5}\cdot C_{6}H_{4}F$ . B. Bei der thermischen Zersetzung von Diphenyl-diazoniumbortetrafluorid-(3) (Schlemann, Rosellus, B. 62, 1811). Krystalle (aus Alkohol). F: 26—27° (korr.).  $D_{4}^{a}$ : 1,2874. Leicht löslich in Äther, kaltem Alkohol, heißem Ligroin, Tetrachlorkohlenstoff, Chloroform und Petroläther. Mit Wasserdampf flüchtig.
- 4-Fluor-diphenyl C<sub>13</sub>H<sub>8</sub>F = C<sub>6</sub>H<sub>5</sub>· C<sub>6</sub>H<sub>4</sub>F. B. Beim Diazotieren von fluorwasserstoff-saurem 4-Amino-diphenyl unterhalb 5° und Verkochen der Diazoniumfluorid-Lösung (van Hove, Bl. Acad. Belgique [5] 8, 510; C. 1923 I, 311). Bei der thermischen Zersetzung von Diphenyl-diazoniumbortetrafluorid-(4) (Schlemann, Roselius, B. 62, 1811). Tafeln (aus Alkohol). F: 74,2° (van H.), 74—75° (Sch., R.). Sublimierbar (van H.). Kp:253° (van H.). D.: 1,247 (Sch., R.). Leicht löslich in Äther, heißem Alkohol und Eisessig (van H.). Flüchtig mit Wasserdampf (Sch., R.; van H.). Gibt beim Behandeln mit Salpetersäure (D: 1,5) in Eisessig zunächst unter Kühlung, dann auf dem Wasserbad 4'-Fluor-4-nitro-diphenyl, 4'-Fluor-2-nitro-diphenyl, wenig 4-Fluor-2-nitro-diphenyl und ein nicht näher beschriebenes 4-Fluor-x.x-dinitro-x-oxy-diphenyl C<sub>13</sub>H<sub>7</sub>O<sub>8</sub>N<sub>2</sub>F (van H.).
- 4.4'-Difluor-diphenyl C<sub>12</sub>H<sub>8</sub>F<sub>8</sub> = C<sub>2</sub>H<sub>4</sub>F·C<sub>6</sub>H<sub>4</sub>F (H 579; E I 272). B. Bei der thermischen Zersetzung von Diphenyl-bis-diazoniumbortetrafluorid-(4.4') (Balz, Schiemann, B. 60, 1189; Sch., Bolstad, B. 61, 1406; Sch., Winkelmüller, Org. Synth. 18 [1938], 21). Krystalle (aus Alkohol oder durch Sublimation). F: 94—95° (korr.) (Balz, Sch.).

 $Kp_{M}$ : 119°;  $Kp_{11}$ : 115—116° (Sch., Bo.).  $D_{1}^{45}$ : 1,336 (Sch., Roselius, B. 62, 1808). Dipolmoment  $\mu \times 10^{18}$ : 0,35 (verd. Lösung; Benzol) (Bretscher, Helv. phys. Acta 1, 361; C. 1929 I, 725). Sehr leicht löslich in Essigester und warmem Aceton, leicht in warmem Methanol, Alkohol, Benzol, Toluol und Eisessig, löslich in siedendem Wasser (Balz, Sch.). Flüchtig mit Wasser- und Alkohol-Dampf (Sch., Bo.).

Liefert beim Kochen mit Chromtrioxyd in Eisessig bei Gegenwart von etwas Vanadinpentoxyd 4-Fluor-benzoesäure (Schiemann, Roselius, B. 62, 1813). Bei langsamem Erwärmen mit Salpetersäure (D: 1,40) bis auf 105° bildet sich vorwiegend 4.4′-Difluor-2-nitrodiphenyl (Sch., Bolstad, B. 61, 1406; Sch., R., B. 62, 1811; vgf. Le Fèvre, Turner, Soc. 1930, 1159; Sch., R., B. 64 [1931], 1333); dieses entsteht auch beim Stehenlassen der Lösung in Eisessig mit einem Gemisch von konz. Salpetersäure (D: 1,40) und rauchender Salpetersäure (D: 1,52) und nachfolgenden Erwärmen auf 60° (Sch., R., B. 62, 1812). — Zum physiologischen Verhalten vgf. H. Staub in J. Houben, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 67.

2.4.4'-Trifluor-diphenyl C<sub>12</sub>H<sub>7</sub>F<sub>3</sub>, s. nebenstehende Formel. Zur Konstitution vgl. Le Fèvre, Turner, Soc. 1930, 1160; Schiemann, Roselius, B. 64 [1931], 1333. — B. Bei der thermischen Zersetzung Foon 4.4'-Difluor-diphenyl-diazoniumbortetrafluorid-(2) (Sch., Bolstan, B. 61, 1409; Sch., R., B. 62, 1812). — Nadeln (durch Sublimation). F: 83°; D<sup>35</sup>: 1,481 (Sch., R., B. 62, 1808, 1812). — Liefert beim Kochen mit Chromtrioxyd in Eisessig bei Gegenwart von etwas Vanadinpentoxyd 4-Fluor-benzoesäure (Sch., R., B. 62, 1813). Beim Erwärmen mit Salpetersäure (D: 1,40) auf 100—105° bildet sich 4.6.4'-Trifluor-3-nitro-diphenyl (Sch., R., B. 62, 1812).

2.4.5.4'-Tetrafluor-diphenyl C<sub>12</sub>H<sub>6</sub>F<sub>4</sub>, s. nebenstehende Formel.

Zur Konstitution vgl. Le Fèvre, Turner, Soc. 1930, 1160; Schiemann, Roselius, B. 64 [1931], 1333. — B. Bei der thermischen Zersetzung von 4.6.4'-Trifluor-diphenyl-diazoniumbortetrafluorid-(3) (Sch., R., B. 62, 1813). — Nadeln. F: 138,5—139°; D<sub>4</sub><sup>48</sup>: 1,708 (Sch., R., B. 62, 1813). — Liefert beim Kochen mit Chromtrioxyd in Eisessig bei Gegenwart von etwas Vanadinpentoxyd 4-Fluor-benzoesäure (Sch., R., B. 62, 1814).

2-Chlor-diphenyl  $C_{12}H_9Cl = C_6H_5 \cdot C_6H_4Cl$  (H 579; E I 272). B. In geringer Menge beim Diazotieren von 2-Amino-diphenyl in salzsaurer Lösung und Behandeln der Diazonium-chlorid-Lösung mit Kupferpaste (Bell, Soc. 1928, 2773). — F: 33°.

3-Chlor-diphenyl  $C_{19}H_9Cl=C_6H_5\cdot C_6H_4Cl$  (vgl. H 579). B. Bei langsamem Eintragen von Natronlauge in eine Mischung aus diazotiertem 3-Chlor-anilin, Benzol und Magnesiumsulfat unter Kühlung (Gomberg, Bachmann, Am. Soc. 46, 2343; 49, 250). — Kp: 284—285°.

4-Chlor-diphenyl  $C_{19}H_9Cl=C_9H_5\cdot C_9H_4Cl$  (H 579). B. Bei langsamem Eintragen von Natronlauge in eine Mischung aus diazotiertem 4-Chlor-anilin, Benzol und Magnesiumsulfat unter Kühlung (Gomberg, Bachmann, Am. Soc. 46, 2343; 49, 250). Bei längerer Einw. von N-Nitroso-4-chlor-acetanilid auf Benzol in Chloroform bei Zimmertemperatur (Bamberger, B. 53, 2320). Neben anderen Verbindungen bei längerem Kochen von Bis-[4-chlor-benzoyl]-peroxyd mit Benzol (Gelissen, Hermans, B. 58, 292; Fichter, Adler, Helv. 9, 285). — Krystalle (aus verd. Alkohol). F: 77,2—77,4° (Ge., H.), 77,5° (F., A.), 77,7° (Go., Bach.).

2.5-Dichlor-diphenyl C<sub>12</sub>H<sub>3</sub>Cl<sub>2</sub>, s. nebenstehende Formel. B. Aus diazotiertem 5-Chlor-2-amino-diphenyl nach Sandmeyer (Scarborough, Waters, Soc. 1927, 94). — Nicht rein erhalten. Hellgelbes Öl. Kp<sub>15</sub>: 171°. — Liefert bei der Oxydation mit Chromtrioxyd in Eisessig 2.5-Dichlor-benzoesäure.

2.2'-Dichlor-diphenyl  $C_{18}H_8Cl_8=C_8H_4Cl\cdot C_6H_4Cl$  (E I 273). B. Beim Erhitzen von 2-Chlor-1-jod-benzol mit Kupferpulver auf 220—290° (Bretscher, Helv. phys. Acta 2, 266; C. 1929 II, 2155). Aus 2.2'-Dinitro-diphenyl beim Erhitzen mit Thionylchlorid im Rohr auf 200—210° (Mascarelli, Gatti, G. 59, 868). — Krystalle (aus Petroläther). F: 59° (M., G.), 61—62° (B.). Dipolmoment  $\mu \times 10^{18}$ : 1,7 (verd. Lösung; Benzol) (B.).

8.4-Dichlor-diphenyl C<sub>18</sub>H<sub>8</sub>Cl<sub>1</sub>, s. nebenstehende Formel. B.

Beim Diazotieren von 3-Chlor-4-amino-diphenyl und nachfolgenden
Behandeln mit Kupfer(I)-chlorid-Lösung (SCARBOROUGH, WATERS, Soc.)

C1

1926, 560); entsteht in analoger Weise auch aus 4-Chlor-3-amino-diphenyl
(BLAKEY, SC., Soc. 1927, 3007). — Nicht rein erhalten. Blaßgelbe Krystalle. F: 46° (korr.)
(Sc., W.; B., Sc.). Kp<sub>18</sub>: 195—200° (Sc., W.). — Liefert bei der Oxydation mit Chromtrioxyd in Eisessig 3.4-Dichlor-benzoesäure (Sc., W.; B., Sc.).

31\*

#### KOHLENWASSERSTOFFE Cn H2n-14

3.5-Dichlor-diphenyl C<sub>12</sub>H<sub>8</sub>Cl<sub>2</sub>, s. nebenstehende Formel. B. Beim Einleiten von Chlor in eine Lösung von 3.5-Dichlor-1-phenyl-cyclohexadien-(2.4) in trocknem Chloroform bei Zimmertemperatur (Hinkel, Hex, Soc. 1928, 2787, 2789). Neben 3.5-Dichlor-1-phenyl-cyclohexadien-(2.4) bei allmählichem Eintragen von etwas mehr als 2 Mol Phosphorpentachlorid in eine Suspension von 1 Mol Phenyldihydroresorcin in Chloroform und nachfolgendem Erwärmen (Hi., Hey). Aus 3.5-Dichlor-2-amino-diphenyl durch Eliminierung der Aminogruppe (Scarborough, Waters, Soc. 1927, 93; Hi., Hey). — Nadeln (aus Alkohol). F: 36°; Kp<sub>10</sub>: 166° (Hi., Hey). — Liefert bei der Oxydation mit Chromtrioxyd in Eisessig 3.5-Dichlor-benzoesäure (Sc., W.; Hi., Hey). Beim Behandeln mit rauchender Salpetersäure in Eisessig erhält man 3'.5'-Dichlor-4-nitro-diphenyl und wenig 3'.5'-Dichlor-2-nitro-diphenyl (Hi., Hey).

3.3'-Dichlor-diphenyl  $C_{12}H_8Cl_2=C_8H_4Cl\cdot C_6H_4Cl$  (H 579; E I 272). B. Beim Erhitzen von 3.3'-Dinitro-diphenyl mit Thionylchlorid im Rohr auf 200—210° (MASCARELLI, GATTI, G. 59, 868). — Kp: 320—326°.

4.4'-Dichlor-diphenyl  $C_{12}H_8Cl_2=C_6H_4Cl\cdot C_6H_4Cl$  (H 579; E I 273). B. Beim Erhitzen von 4.4'-Dinitro-diphenyl mit Thionylchlorid im Rohr auf 200—210° (MASCARELLI, GATTI, G. 59, 869). Bei der thermischen Zersetzung von Bis-[4-chlor-benzoyl]-peroxyd in einer Stahlbombe bei ca. 180° (FICHTER, ADLER, Helv. 9, 285). — Prismen (aus Alkohol). F: 148° (FI., A.; MA., G.), 147—148° (korr.) (Weissberger, Williams, Ph. Ch. [B] 3, 369). D; 1.442 (Ziegler, Ditzel, A. 473, 200). Dipolmoment  $\mu \times 10^{18}$ : 0,33 (verd. Lösung; Benzol) (Bretscher, Helv. phys. Acta 1, 361; C. 1929 I, 725); nach Williams (Phys. Z. 29 [1928], 684) und Williams, Weissberger (Am. Soc. 50, 2335; Ph. Ch. [B] 3, 371) besitzt 4.4'-Dichlor-diphenyl kein Dipolmoment. Krystallographische Untersuchung der Mischrystalle mit 4.4'-Dibrom-diphenyl und 4.4'-Dimethyl-diphenyl: Mielettner, Z. Kr. 55, 631. Dichte und Dielektr.-Konst. einiger Lösungen in Benzol bei 25°: Wi., Wei., Am. Soc. 50, 2334.

Liefert beim Erwärmen mit Kaliumnitrat und wenig konz. Schwefelsäure in Eisessig und Essigsäureanhydrid 4.4'-Dichlor-2-nitro-diphenyl (Le Fèvre, Turner, Soc. 1926, 2044). Bei der Nitrierung mit überschüssiger Salpetersäure (D: 1,52) unter Eiskühlung bildet sich ein Gemisch von viel 4.4'-Dichlor-2.3'-dinitro-diphenyl und wenig 4.4'-Dichlor-2.2'-dinitro-diphenyl (Shaw, T., Soc. 1932, 288, 295; vgl. Hodgson, Gorowara, Soc. 1926, 1756, 1757).

2.3.5-Trichlor-diphenyl  $C_{12}H_{7}Cl_{3}$ , s. nebenstehende Formel. B. In geringer Menge beim Einleiten von Chlor in eine heiße Lösung von 3.5-Dichlor-1-phenyl-cyclohexadien-(2.4) in Chloroform (Hinkel, Hey, Soc. 1928, 2787, 2789). Aus 3.5-Dichlor-2-amino-diphenyl nach Sandmeyer (H1., Hey). — Nadeln (aus verd. Alkohol). F: 41°. — Ist gegen Chromtrioxyd in siedendem Eisessig beständig. Gibt beim Behandeln mit rauchender Salpetersäure in Eisessig 2'.3'.5'-Trichlor-4-nitro-diphenyl.

2.3'.5'-Trichlor-diphenyl C<sub>12</sub>H<sub>7</sub>Cl<sub>3</sub>, s. nebenstehende Formel. B. Beim
Diazotieren von 3'.5'-Dichlor-2-amino-diphenyl und nachfolgenden Behandeln mit Kupfer(I)-chlorid-Lösung (HINKEL, HEY, Soc. 1928, 2788, 2791).

Blaßgelbe Nadeln (aus Alkohol). F: 58°.

3.5.4'-Trichlor-diphenyl C<sub>12</sub>H<sub>7</sub>Cl<sub>3</sub>, s. nebenstehende Formel. B.
Beim Diazotieren von 3'.5'-Dichlor-4-amino-diphenyl in salzsaurer
Lösung bei 0° und nachfolgenden Behandeln mit Kupfer(I)-chloridLösung (Hinkel, Hey, Soc. 1928, 2788, 2791). Aus 3.5.4'-Trichlor4-amino-diphenyl durch Eliminierung der Aminogruppe (Hi., Hey).

Nadeln (aus Alkohol). F: 88°.

2.4.4'-Trichlor-diphenyl C<sub>12</sub>H<sub>2</sub>Cl<sub>3</sub>, s. nebenstehende Formel. B.

Neben 4.4'-Dichlor-diphenyl beim Erhitzen von 4.4'-Dinitro-diphenyl
mit Thionylchlorid auf 200—210° (MASCARELLI, GATTI, G. 59, 870). CI

Beim Erhitzen von 2.4.4'-Trinitro-diphenyl mit Thionylchlorid auf
180° (RAUDNITZ. B. 60, 743). — Krystalle (aus Eisessig oder verd. Alkohol); Nadeln (aus Eisessig). F: 55° (unkorr.)(R.), 55—56° (M., G.); wird durch Sublimation in faserigen Gebilden vom Schmelzpunkt 61° erhalten, die bei der Krystallisation aus Eisessig wieder in die niedrigerschmelzenden Krystalle übergehen (M., G.). Ziemlich leicht löslich in Alkohol, sehr leicht in Petroläther und den meisten anderen organischen Lösungsmitteln (M., G.).

2.4.2'.4'-Tetrachlor-diphenyl C<sub>12</sub>H<sub>e</sub>Cl<sub>4</sub>, s. nebenstehende Formel (H 579). B. Neben anderen Verbindungen bei der thermischen Zersetzung von Bis-[2.4-dichlor-benzoyl]-peroxyd im Vakuum (FICHTER, Cl. ADLER, Helv. 9, 287). — F: 83°.

- 2-Brom-diphenyl C<sub>12</sub>H<sub>9</sub>Br = C<sub>8</sub>H<sub>5</sub>·C<sub>8</sub>H<sub>4</sub>Br (H 580). B. Neben 4-Brom-diphenyl bei allmählichem Hinzufügen von Natronlauge zu einem Gemisch aus diazotiertem Anilin, Brombenzol und Magnesiumsulfat unter Kühlung (GOMBERG, BACHMANN, Am. Soc. 46, 2343; 49, 250).
- 3-Brom-diphenyl  $C_{12}H_0Br = C_0H_5 \cdot C_0H_4Br$ . B. Bei tropfenweiser Zugabe von Natronlauge zu einer Mischung aus diazotiertem 3-Brom-anilin, Benzol und Magnesiumsulfat unter Kühlung (Gomberg, Bachmann, Am. Soc. 46, 2343; 49, 250). Kp: 299—301°.
- 4-Brom-diphenyl C<sub>12</sub>H<sub>9</sub>Br = C<sub>6</sub>H<sub>5</sub>·C<sub>6</sub>H<sub>4</sub>Br (H 580; E I 273). B. Bei tropfenweiser Zugabe von Natronlauge zu einer Mischung aus diazotiertem 4-Brom-anilin, Benzol und Magnesiumsulfat unter Kühlung (Gomberg, Bachmann, Am. Soc. 46, 2343; 49, 250). Neben 2-Brom-diphenyl bei allmählichem Zusatz von Natronlauge zu einer Mischung aus diazotiertem Anilin, Brombenzol und Magnesiumsulfat unter Kühlung (G., Bach.). Bei längerer Einw. von N-Nitroso-4-brom-acetanilid auf Benzol in Chloroform bei Zimmertemperatur (Bamberger, B. 53, 2319). F: 89—90° (Bam.), 91,2° (G., Bach.). Liefert beim Behandeln mit Hydrazinhydrat in Gegenwart von Palladium-Calciumcarbonat in methylalkoholischer Kalilauge Quaterphenyl (Busch, Schmidt, B. 62, 2618).
- 5-Chlor-3-brom-diphenyl C<sub>12</sub>H<sub>8</sub>ClBr, s. nebenstehende Formel. B. Aus 5-Chlor-3-brom-4-amino-diphenyl durch Eliminierung der Amino-gruppe (Scarborough, Waters, Soc. 1927, 1136). Blaßgelbe Nadeln. F: 29° (korr.). Kp<sub>30</sub>: 225°. Gibt bei der Oxydation mit Chromtrioxyd in Eisessig 5-Chlor-3-brom-benzoesäure.
- 4'-Chlor-4-brom-diphenyl C<sub>12</sub>H<sub>8</sub>ClBr = C<sub>6</sub>H<sub>4</sub>Cl·C<sub>6</sub>H<sub>4</sub>Br. B. Beim Erhitzen des Diazoniumperbromids aus 4'-Chlor-4-amino-diphenyl mit Eisessig (Groves, Turner, Soc. 1929, 511). Beim Kochen des Diazoniumchlorids aus 4'-Chlor-4-amino-diphenyl mit Kupfer(I)-bromid in schwefelsaurer Lösung (Angeletti, Gatti, G. 58, 634). Krystalle (aus Aceton). F: 157—158° (Shaw, Turner, Soc. 1932, 297). Sublimierbar (A., Ga.). Löslich in Chloroform, Äther, Aceton und Benzol, schwer löslich in Petroläther, Alkohol und Wasser (A., Ga.). Liefert beim Behandeln mit überschüssiger Salpetersäure (D: 1,52) unter Eiskühlung ein Gemisch von nicht näher beschriebenem 4'-Chlor-4-brom-2.2'-dinitro-diphenyl (14,7%), 4'-Chlor-4-brom-2.3'-dinitro-diphenyl (52,5%) und 4-Chlor-4'-brom-2.3'-dinitro-diphenyl (32,8%) (Sh., T.).
- 2.4-Dibrom-diphenyl C<sub>12</sub>H<sub>8</sub>Br<sub>2</sub>, s. nebenstehende Formel. B. Durch Hydrolyse von 4.6-Dibrom-3-acetamino-diphenyl mit alkoh. Bromwasserstoffsäure und nachfolgende Eliminierung der Aminogruppe (Blakey, Scarborough, Soc. 1927, 3007). Kp<sub>7</sub>: 174—176° (Case, Am. Soc. 58 [1936], 1247); Kp<sub>2</sub>: 125° (Suter, Smith, Am. Soc. 61 [1939], 167). Liefert bei der Oxydation mit Chromtrioxyd in Eisessig 2.4-Dibrom-benzoesäure (B., Sc.).
- 2.5-Dibrom-diphenyl C<sub>12</sub>H<sub>8</sub>Br<sub>2</sub>, s. nebenstehende Formel. B. Aus 5-Brom-2-amino-diphenyl nach Sandmeyer (Scarborough, Waters, Soc. 1927, 94). Gelbes Öl. Wird bei 0° viscos, ohne zu erstarren. Kp<sub>15</sub>: 209°. Gibt bei der Oxydation mit Chromtrioxyd und Eisessig 2.5-Dibrom-benzoesäure.
- 3.4-Dibrom-diphenyl C<sub>12</sub>H<sub>8</sub>Br<sub>2</sub>, s. nebenstehende Formel. Die von Blakey, Scarborough (Soc. 1927, 3007) als 3.4-Dibrom-diphenylangesehene Substanz ist nach Case (Am. Soc. 58 [1936], 1249) ein Gemisch von 2.5-Dibrom-diphenyl mit wenig 3.4-Dibrom-diphenyl gewesen.
- 3.5-Dibrom-diphenyl C<sub>12</sub>H<sub>8</sub>Br<sub>2</sub>, s. nebenstehende Formel. B. Aus
  3.5-Dibrom-2-amino-diphenyl (Scarborough, Waters, Soc. 1927, 95) oder
  3.5-Dibrom-4-amino-diphenyl (Sc., W., Soc. 1926, 561) durch Eliminierung
  der Aminogruppe. F: 42° (Bellavita, G. 67 [1937], 575, 578), 41—41,5°
  (Suter, Smith, Am. Soc. 61 [1939], 167). Kp<sub>15</sub>: 208° (Sc., W.). Liefert
  beim Erhitzen mit Chromtrioxyd in Eisessig im Rohr auf 200° 3.5-Dibrom-benzoesäure
  (Sc., W.).
- 4.4'-Dibrom-diphenyl C<sub>12</sub>H<sub>8</sub>Br<sub>2</sub> = C<sub>6</sub>H<sub>4</sub>Br·C<sub>6</sub>H<sub>4</sub>Br (H 580; E I 273). B. Beim Erhitzen von Diphenyl mit konz. Schwefelsäure auf ca. 85° und Erwärmen des mit Wasser verd. Reaktionsgemisches mit Brom auf dem Wasserbad (Datta, Bhoumik, Am. Soc. 43, 313). F: 164,5° (Boyd, Hatt, Soc. 1927, 909), 165° (Salkind, Rogowina, Ж. 59, 1017), 167° (Da., Bh.). D<sup>0</sup>; 1,906 (Ziegler, Ditzel, A. 473, 200). Besitzt kein Dipolmoment (Bretscher, Helv. phys. Acta 1, 361; C. 1929 I, 725). Krystallographische Untersuchung der Mischkrystalle mit 4.4'-Dichlor-diphenyl und 4.4'-Dimethyl-diphenyl: Mieleitner, Z. Kr. 55, 631, 634.

Liefert bei der Hydrierung in Gegenwart von Palladium-Calciumcarbonat in methylalkoholischer Kalilauge je nach den Bedingungen wechselnde Mengen von Diphenyl, Quaterphenyl und bromiertem Quaterphenyl (Busch, Schmidt, B. 62, 2618, 2619). Beim Erwärmen mit Kaliumnitrat und konz. Schwefelsäure in Eisessig und Essigsäureanhydrid bildet sich 4.4'-Dibrom-2-nitro-diphenyl (Le Fèvre, Turner, Soc. 1926, 2044); dieses entsteht auch bei der Einw. der berechneten Menge Salpetersäure (D: 1,5) in Eisessig (Dennett, T., Soc. 1926, 476, 478). Bei Anwendung von überschüssiger Salpetersäure (D: 1,52) unter Eiskühlung erhält man ein Gemisch von 4.4'-Dibrom-2.3'-dinitro-diphenyl mit wenig 4.4'-Dibrom-2.2'-dinitro-diphenyl (Shaw, T., Soc. 1932, 286, 291; vgl. De., T.).

2.4.6-Tribrom-diphenyl C<sub>12</sub>H<sub>7</sub>Br<sub>3</sub>, s. nebenstehende Formel. Zur Konstitution vgl. Case, Am. Soc. 61 [1939], 3488. — B. Aus 2.4.6-Tribrom-3-amino-diphenyl durch Eliminierung der Aminogruppe (Blakey, Scarborough, Soc. 1927, 3008). — Nadeln (aus Methanol). F: 64° (B., Sc.). — Liefert bei der Oxydation mit Chromtrioxyd in essigsaurer Lösung 4-Brom-benzoesäure (Case; vgl. B., Sc.).



2.6.2'.6'-Tetrabrom-diphenyl C<sub>12</sub>H<sub>6</sub>Br<sub>4</sub>, s. nebenstehende Formel. B. Br In geringer Menge beim Diazotieren von 2.6.2'.6'-Tetrabrom-benzidin in rauchender Salzsäure und Eintragen der Bisdiazoniumchlorid-Lösung in überschüssigen siedenden Alkohol (R. MEYER, W. MEYER, TAEGER, B. Br 53, 2037, 2050). — Krystalle (aus Alkohol, Äther oder Xylol). F: 215°. Br Schwer löslich in den gebräuchlichen Lösungsmitteln. — Liefert beim Behandeln mit Methylenbromid und Natrium in absol. Äther etwas Diphenyl.

2-Jod-diphenyl  $C_{12}H_0I=C_0H_5\cdot C_0H_4I$ . B. Bei der Einw. von Kaliumjodid auf diazotiertes 2-Amino-diphenyl (Gilman, Kirby, Kinney, Am. Soc. 51, 2260). — Kp<sub>6</sub>: 158°; D<sup>\*\*</sup><sub>3</sub>: 1,6038 (G., K., K.). — Liefert beim Erhitzen mit Kupferbronze auf 260° 2.2′-Diphenyldiphenyl (Bachmann, Clarke, Am. Soc. 49, 2094). Gibt bei der Umsetzung mit Magnesium und durch Jod aktivierter Kupfer-Magnesium-Legierung in Ather o-Diphenylyl-magnesiumjodid (Syst. Nr. 2337) (G., K., K.). Beim Erhitzen mit Jodbenzol und Kupferbronze im Rohr auf 240° erhält man Diphenyl, 1.2-Diphenyl-benzol und 2.2′-Diphenyl-diphenyl (B., Cl.).

4-Jod-diphenyl C<sub>12</sub>H<sub>0</sub>I = C<sub>6</sub>H<sub>5</sub>·C<sub>6</sub>H<sub>4</sub>I (H 581; E I 273). B. Bei der Einw. von Wasserstoff auf 1.4-Dijod-benzol in Gegenwart von Palladium-Calciumearbonat in methylalkoholischer Kalilauge (Busch, Schmidt, B. 62, 2619). — Nadeln. F: 111° (B., Schmidt, 112° (Pfeiffer, Schmidt, Inoue, J. pr. [2] 121, 78). Thermische Analyse der binären Systeme mit 1.3.5-Trinitro-benzol (Eutektikum bei 88,5° und 64 Gew. % 4-Jod-diphenyl), Menthol, α-Naphthol, Dianisylidenaceton, α-Naphthylamin, Piperonylidenacetophenon, Dipiperonylidenaceton und 1.4-Dimethyl-2.5-dioxo-piperazin: Pf., Schmidt, I. — Liefert beim Behandeln mit Hydrazinhydrat in Gegenwart von Palladium-Calciumearbonat in methylalkoholischer Kalilauge Diphenyl und Quaterphenyl (B., Schmidt). Beim Erhitzen mit Anilin, Kalium-carbonat und wenig Kupfer in Nitrobenzol auf ca. 230° bilden sich geringe Mengen Phenylbis-diphenylyl-amin (Piccard, Helv. 7, 796; Am. Soc. 48, 2881); mit Diphenylamin entsteht auf analoge Weise Diphenyl-diphenylyl-amin (Pi., de Montmollin, Helv. 6, 1016).

4-Jodoso-diphenyl  $C_{12}H_9OI = C_6H_5 \cdot C_6H_4 \cdot IO$ . B. Das salzsaure Salz entsteht beim Einleiten von Chlor in eine Lösung von 4-Jod-diphenyl in Chloroform unter Kühlung; die freie Base erhält man beim Verreiben des salzsauren Salzes mit verd. Natronlauge (Pfeiffer, Schmitz, Inoue, J. pr. [2] 121, 74). — Nicht rein erhalten. Blaßgelbes Pulver. Schmilzt unscharf bei 225—230°. — Salzsaures Salz, p-Diphenylyljodidchlorid  $C_{12}H_9Cl_2I$ . Gelbe Nadeln. F: 102° (Zers.). Gibt bei Einw. von schwefliger Säure in Alkohol 4-Jod-diphenyl.

4'-Chlor-4-jod-diphenyl C<sub>18</sub>H<sub>8</sub>ClI = C<sub>8</sub>H<sub>4</sub>Cl·C<sub>2</sub>H<sub>4</sub>I. B. Aus 4'-Chlor-4-amino-diphenyl beim Diazotieren und Kochen mit Kaliumjodid (ANGELETTI, GATTI, G. 58, 635).—Hellgelbe Krystalle (aus verd. Alkohol). F: 147—148°. Leicht löslich in Chloroform, Alkohol, Ather, Petroläther und Aceton, sehr schwer in Wasser.

4.4'-Dijod-diphenyl C<sub>12</sub>H<sub>8</sub>I<sub>2</sub> = C<sub>6</sub>H<sub>4</sub>I·C<sub>5</sub>H<sub>4</sub>I (H 581). Liefert bei der Einw. von Wasserstoff in Gegenwart von Palladium-Calciumcarbonat in methylalkoholischer Kalilauge Diphenyl, Quaterphenyl und geringe Mengen jodhaltiges Quaterphenyl (Busch, Schmidt, B. 62, 2619). Beim Erhitzen mit über Phosphorpentoxyd im Vakuum getrocknetem Kupferpulver im Rohr bis auf 300° bilden sich Diphenyl, Quaterphenyl, jodhaltiges Sexiphenyl und eine weitere jodhaltige Verbindung (Kuhn, A. 475, 135; vgl. Pummerer, Seligsberger, B. 64 [1931], 2477; Pu., B. 66 [1933], 802; Sircar, Majumdar, J. indian chem. Soc. 5, 417; C. 1928 II, 2248). Gibt beim Erhitzen mit Diphenylamin, Kaliumcarbonat und wenig Kupfer in Nitrobenzol auf ca. 230° N.N.N'.N'-Tetraphenyl-benzidin (Piccard, Helv. 7, 797; Am. Soc. 48, 2882 Anm.).

- 4-Nitroso-diphenyl  $C_{12}H_0ON = C_0H_5 \cdot C_0H_4 \cdot NO$ . B. In geringer Menge beim Behandeln von 4-Hydroxylamino-diphenyl mit Kaliumdichromat in kalter 10% iger Schwefelsäure (Vorländer, B. 58, 1913). Gelbgrüne Prismen von chinonartigem Geruch (aus Alkohol). F: 84° unter Grünfärbung. Löslich in Benzol, Petroläther und Eisessig. Flüchtig mit Wasserdampf.
- 2-Nitro-diphenyl C<sub>13</sub>H<sub>9</sub>O<sub>2</sub>N = C<sub>8</sub>H<sub>5</sub>·C<sub>6</sub>H<sub>4</sub>·NO<sub>2</sub> (H 582; E I 273). B. Bei tropfenweiser Zugabe von Natronlauge zu einer Mischung aus diazotiertem 2-Nitro-anilin, Benzol und Magnesiumsulfat unter Kühlung (Gomberg, Bachmann, Am. Soc. 46, 2343; 49, 250). Zur Bildung bzw. Darstellung durch Nitrierung von Diphenyl vgl. a. van Hove, Bl. Acad. Belgique [5] 8, 507; C. 1923 I, 311; Bell, Kenyon, Robinson, Soc. 1926, 1242; de Crauw, R. 50 [1931], 774. F: 36,7° (Go., Ba., Am. Soc. 46, 2343), 37° (van Ho.), 37—38° (korr.) (Gull, Turner, Soc. 1929, 495). Kp<sub>30</sub>: 200—201° (van Ho.). Ziemlich leicht löslich in heißem Alkohol (van Ho.). Liefert bei der Reduktion mit Zinn und konz. Salzsäure in siedendem Alkohol 2-Amino-diphenyl und 5-Chlor-2-amino-diphenyl (Scarborough, Waters, Soc. 1927, 90, 92; vgl. a. van Ho.; Hübner, A. 209 [1881], 349). Bei der Einw. von Brom in wäßr. Lösung bei Gegenwart von Eisenchlorid bildet sich 4'-Brom-2-nitro-diphenyl (Le Fèvre, Turner, Soc. 1926, 2043). Beim Behandeln mit Salpetersäure (D: 1,42) unter allmählichem Zufügen von Salpetersäure (D: 1,5) bei 35° erhält man ca. 61% 2.4'-Dinitro-diphenyl und ca. 39% 2.2'-Dinitro-diphenyl (Gull, T.; vgl. a. Bell, Kenyon, Soc. 1926, 2707).
- 3-Nitro-diphenyl C<sub>19</sub>H<sub>2</sub>O<sub>2</sub>N = C<sub>6</sub>H<sub>5</sub>·C<sub>6</sub>H<sub>4</sub>·NO<sub>2</sub> (H 582). B. Bei tropfenweiser Zugabe von Natronlauge zu einer Mischung aus diazotiertem 3-Nitro-anilin, Benzol und Magnesium-sulfat unter Kühlung (Gomberg, Bachmann, Am. Soc. 46, 2343; 49, 250; vgl. a. Blakey, Scarborough, Soc. 1927, 3003). Neben anderen Verbindungen beim Kochen von Bis-[3-nitro-benzoyl]-peroxyd mit Benzol (Gelissen, Hermans, B. 58, 293). Blaßgelbe Nadeln (aus Alkohol). F: 61° (Go., Ba.), 62° (Bl., Sc.). Liefert beim Einleiten von Chlor bei Gegenwart von Eisenchlorid je nach den Bedingungen 4'-Chlor-3-nitro-diphenyl, 2'.4'-Dichlor-3-nitro-diphenyl, 5.2'.4'-Trichlor-3-nitro-diphenyl(?) und 5.2'.4'.6'-Tetrachlor-3-nitro-diphenyl(?) (Bl., Sc.). 4'-Chlor-3-nitro-diphenyl bildet sich auch beim Einleiten von Chlor in eine Lösung von 3-Nitro-diphenyl in Tetrachlorkohlenstoff bei Gegenwart von etwas Jod (Bl., Sc.). Gibt bei kurzem Erhitzen mit Brom und Eisenchlorid in Wasser 4'-Brom-3-nitro-diphenyl (Bl., Sc.). Beim Behandeln mit Salpetersäure (D: 1,5) entstehen 2.3'-Dinitro-diphenyl und 3.4'-Dinitro-diphenyl (Bl., Sc.).
- 4-Nitro-diphenyl C<sub>12</sub>H<sub>9</sub>O<sub>2</sub>N = C<sub>4</sub>H<sub>5</sub>·C<sub>5</sub>H<sub>4</sub>·NO<sub>2</sub> (H 583; E I 273). B. Bei tropfenweiser Zugabe von Natronlauge zu einer Mischung aus diazotiertem Anilin, Nitrobenzol und Magnesiumsulfat unter Kühlung (Gomberg, Bachmann, Am. Soc. 46, 2343; 49, 250). Entsteht in analoger Weise aus diazotiertem 4-Nitro-anilin und Benzol in Natronlauge (Go., Bach.). Durch Eliminierung der Aminogruppe aus 4-Nitro-3-amino-diphenyl (Blakey, Scarborough, Soc. 1927, 3008). Zur Darstellung durch Nitrierung von Diphenyl vgl. a. Banús, An. Soc. españ. 12 [1914], 168; van Hove, Bl. Acad. Belgique [5] 8, 507; C.1923 I, 311; Piccard, De Montmollin, Helv. 6, 1015; Raiford, Colbert, Am. Soc. 47, 1456; Belli, Kenyon, Robinson, Soc. 1926, 1242. F: 114° (Go., Bach., Am. Soc. 46, 2143; Belli, Ke., Rob.), 114—115° (Banús; Schiemann, Roselius, B. 62, 1809), 115° (Pi., de M.). Gibt beim Erhitzen mit Eisenpulver und Eisenchlorid in Wasser 4-Amino-diphenyl

Gibt beim Erhitzen mit Eisenpulver und Eisenchlorid in Wasser 4-Amino-diphenyl und Diphenyl (Banús, An. Soc. españ. 12 [1914], 168; vgl. a. Le Fèvre, Turner, Soc. 1928, 253). Bei der Reduktion mit Zinkstaub in wäßrig-alkoholischer Ammoniumchlorid-Lösung bildet sich 4-Hydroxylamino-diphenyl (Gilman, Kirby, Am. Soc. 48, 2192). Liefert bei der Reduktion mit amalgamiertem Aluminium in feuchtem Ather unter Kühlung ein Gemisch von 4-Amino-diphenyl, 4.4'-Diphenyl-azoxybenzol, Diphenyl-\(\lambda\) azo 4\(\rangle\)-diphenyl, N.N'-Bis-p-diphenylyl-hydrazin und 4-Hydroxylamino-diphenyl (Bell, Kenyon, Robinson, Soc. 1926, 1242). Bei der Chlorierung in Gegenwart von etwas Zinn(IV)-jodid oberhalb 114° bildet sich 4'-Chlor-4-nitro-diphenyl (Le F., T., Soc. 1928, 253). Beim Erhitzen mit Brom in Eisessig auf 100° entsteht 4'-Brom-4-nitro-diphenyl (Le F., T., Soc. 1926, 2045). Liefert bei der Einw. von Salpetersäure (D: 1,45) bei 40—50° 63% 4.4'-Dinitro-diphenyl und 37% 2.4'-Dinitro-diphenyl (Gull, T., Soc. 1929, 494).

- 4-Fluor-2-nitro-diphenyl C<sub>12</sub>H<sub>8</sub>O<sub>2</sub>NF, s. nebenstehende Formel.

  B. In geringer Menge beim Behandeln von 4-Fluor-diphenyl mit Salpetersäure (D: 1,5) in Eisessig zunächst unter Kühlung, dann unter Erwärmen (van Hove, Bl. Acad. Belgique [5] 8, 512; C. 1923 I, 312). Prismen (aus Alkohol oder Eisessig). F: 53—54°. Liefert bei der Oxydation mit Chromtrioxyd in essigsaurer Lösung 4-Fluor-2-nitro-benzoesäure.
- **2'-Fluor-2-nitro-diphenyl**  $C_{12}H_8O_9NF=C_8H_4F\cdot C_6H_4\cdot NO_2$ . B. Neben anderen Verbindungen beim Behandeln von 2-Fluor-diphenyl mit Salpetersäure (D: 1,5) in Eisessig, zuletzt unter Erwärmen (VAN HOVE, Bl. Acad. Belgique [5] 8, 520; C. 1923 I, 312). —

Tafeln (aus Alkohol oder Petroläther). F: 71,5°. — Gibt bei der Oxydation mit Chromtrioxyd in Eisessig auf dem Wasserbad 2-Nitro-benzoesäure.

- 4'-Fluor 2 nitro diphenyl C<sub>12</sub>H<sub>8</sub>O<sub>2</sub>NF = C<sub>6</sub>H<sub>4</sub>F·C<sub>5</sub>H<sub>4</sub>· NO<sub>2</sub>. B. Neben anderen Verbindungen beim Behandeln von 4-Fluor-diphenyl mit Salpetersäure (D: 1,5) in Eisessig unter Kühlung, zuletzt auf dem Wasserbad (van Hove, Bl. Acad. Belgique [5] 8, 512; C. 1923 I, 312). Nadeln (aus Alkohol oder Eisessig). F: 59—60°. Gibt beim Erhitzen mit Salpetersäure (D: 1,2) im Rohr auf 150° 2-Nitro-benzoesäure. Beim Erhitzen mit Kaliumpermanganat in neutraler Lösung bildet sich 4-Fluor-benzoesäure.
- 2-Fluor-4-nitro-diphenyl C<sub>12</sub>H<sub>8</sub>O<sub>2</sub>NF, s. nebenstehende Formel.

  B. In geringer Menge beim Behandeln von 2-Fluor-diphenyl mit
  Salpetersäure (D: 1,5) in Eisessig, zuletzt auf dem Wasserbad (van Hove,
  Bl. Acad. Belgique [5] 8, 520; C. 1923 I, 312). Nadeln. F: 81°.

  Liefert bei aufeinanderfolgendem Behandeln mit Zinn(II)-chlorid und Essigsäureanhydrid
  2-Fluor-4-acetamino-diphenyl.
- 2'-Fluor 4 nitro diphenyl  $C_{12}H_8O_8NF=C_6H_4F\cdot C_6H_4\cdot NO_8$ . B. Neben anderen Verbindungen beim Behandeln von 2-Fluor-diphenyl mit Salpetersäure (D: 1,5) in Eisessig, zuletzt auf dem Wasserbad (van Hove, Bl. Acad. Belgique [5] 8, 520; C. 1923 I, 312). -- Nicht rein erhalten. Hellgelbe Nadeln. F: 74,5°. Liefert beim Erwärmen mit Chromtrioxyd in Eisessig auf dem Wasserbad 4-Nitro-benzoesäure.
- 4'-Fluor-4-nitro-diphenyl  $C_{12}H_8O_2NF = C_6H_4F\cdot C_6H_4\cdot NO_2$ . B. Neben anderen Verbindungen beim Behandeln von 4-Fluor-diphenyl mit Salpetersäure (D: 1,5) in Eisessig zunächst unter Kühlung, dann auf dem Wasserbad (VAN HOVE, Bl. Acad. Belgique [5] 8, 512; C. 1923 I, 312). Nadeln (aus Alkohol). F: 123°. Gibt beim Erhitzen mit Salpetersäure (D: 1,2) im Rohr auf 150° 4-Nitro-benzoesäure.
- 4.4'-Difluor-2-nitro-diphenyl C<sub>12</sub>H<sub>7</sub>O<sub>2</sub>NF<sub>2</sub>, s. nebenstehende
  Formel. Zur Konstitution vgl. Le Fèvre, Turner, Soc. 1930, 1159;
  Schiemann, Roselius, B. 64 [1931], 1333; Shaw, Turner, Soc. F

  1932, 509. B. Aus 4.4'-Difluor-diphenyl bei langsamem Erwärmen
  mit Salpetersäure (D: 1,40) bis auf 105° (Sch., Bolstad, B. 61, 1406; Sch., R., B. 62, 1811)
  oder beim Aufbewahren mit einem Gemisch von konz. Salpetersäure (D: 1,40) und rauchender Salpetersäure (D: 1,52) in Eisessig und nachfolgenden Erwärmen auf 60° (Sch., R., B.
  62, 1812). Gelbe Krystalle (aus Alkohol oder Petroläther). F: 94,6° (korr.) (Sch., B.).
  Leicht löslich in Ather, Petroläther, heißem Tetrachlorkohlenstoff, Alkohol und Eisessig (Sch., B.). Mit Wasserdampf flüchtig (Sch., B.). Liefert beim Kochen mit Chromtrioxyd in Eisessig bei Gegenwart von etwas Vanadinpentoxyd 4-Fluor-benzoesäure und andere Produkte (Sch., R., B. 62, 1814). Beim Kochen mit wenig methylalkoholischer Kalilauge bildet sich 4'-Fluor-2-nitro-4-methoxy-diphenyl (Syst. Nr. 539) (Sch., B.; Sch., Ch. Z. 52
  [1928], 754; Sch., R., B. 64, 1336), beim Kochen mit überschüssiger methylalkoholischer Kalilauge oder mit Natriummethylat-Lösung erhält man 2".2"-Dinitro-4".4"-dimethoxy-quaterphenyl (?) (Syst. Nr. 571) (Sch.; Sch., R., B. 64, 1337).
- 4.6.4'-Trifluor-3-nitro-diphenyl C<sub>12</sub>H<sub>6</sub>O<sub>2</sub>NF<sub>3</sub>, s. nebenstehende Formel. Zur Konstitution vgl. Le Fèvre, Turner, Soc. 1930, 1160; Schiemann, Roselius, B. 64 [1931], 1333. B. Beim Erwärmen Fvon 2.4.4'-Trifluor-diphenyl mit Salpetersäure (D: 1,40) auf 100° bis 105° (Sch., R., B. 62, 1812). Hellgelbe Nadeln (aus Ligroin und Alkohol). F: 103,8° (korr.) (Sch., R., B. 62, 1812).

$$\mathbf{F} \cdot \underbrace{\hspace{1cm}}_{\mathbf{F}} \cdot \mathbf{F}$$

- 3'-Chlor-3-nitro-diphenyl  $C_{19}H_8O_2NCl=C_8H_4Cl\cdot C_6H_4\cdot NO_2$ . B. Neben 3.3'-Dichlor-diphenyl beim Erhitzen von 3.3'-Dinitro-diphenyl mit Thionylchlorid im Rohr auf nahezu 200° (Mascarelli, Gatti, G. 59, 869). Aus diazotiertem 3'-Nitro-3-amino-diphenyl beim Behandeln mit Kupfer(I)-chlorid-Lösung (M., G., Atti Acad. Torino 65 [1929/30], 146; vgl. M., G., G. 59, 869). F: 101°. Mit Wasserdampf flüchtig.
- 4'-Chlor-3-nitro-diphenyl  $C_{12}H_8O_2NCl = C_6H_4Cl\cdot C_8H_4\cdot NO_3$ . B. Durch Chlorierung von 3-Nitro-diphenyl in Gegenwart von Eisen(III)-chlorid bei 80° oder in Gegenwart von etwas Jod in Tetrachlorkohlenstoff (Blakey, Scarborough, Soc. 1927, 3003). Nadeln (aus Methanol). F: 89°.
- 4'-Chlor-4-nitro-diphenyl C<sub>12</sub>H<sub>8</sub>O<sub>2</sub>NCl = C<sub>5</sub>H<sub>4</sub>Cl·C<sub>5</sub>H<sub>4</sub>·NO<sub>3</sub>. B. Durch Chlorierung von 4-Nitro-diphenyl in Gegenwart von etwas Zinn(IV)-jodid oberhalb 114° (LE FÈVRE, TUENER, Soc. 1928, 253). Aus diazotiertem 4'-Nitro-4-amino-diphenyl beim Behandeln mit Kupfer(I)-chlorid-Lösung (Angeletti, Giorn. Farm. Chim. 75, 262; C. 1926 II, 3045). Blaßgelbe Nadeln (durch Sublimation oder aus Eisessig). F: 143° (A.), 157—158° (LE F., T.). Mit Wasserdampf flüchtig (A.). Liefert beim Behandeln mit Salpetersäure (D: 1,5) bei Zimmertemperatur 4'-Chlor-2.4.3'-trinitro-diphenyl (LE F., T.).

### DICHLORNITRODIPHENYL

4.4'-Dichlor-2-nitro - diphenyl C<sub>12</sub>H<sub>7</sub>O<sub>2</sub>NCl<sub>2</sub>, s. nebenstehende Formel. B. Durch Einw. von Salpeterschwefelsäure auf 4.4'-Dichlor-diphenyl in Eisessig und Essigsäureanhydrid bei ca. 100° (LE Fèvre, Cl. Turner, Soc. 1926, 2044). — Gelbe Nadeln (aus Tetrachlorkohlenstoff). F: 102°.

3'.5'- Dichlor - 2 - nitro - diphenyl C<sub>12</sub>H<sub>7</sub>O<sub>2</sub>NCl<sub>2</sub>, s. nebenstehende Cl NO<sub>2</sub> Formel. B. In geringer Menge beim Behandeln von 3.5-Dichlor-diphenyl mit rauchender Salpetersäure in Eisessig (HINKEL, HEY, Soc. 1928, 2788, 2790). — Nadeln (aus Alkohol). F: 75°. — Zersetzt sich beim Kochen mit Chromtrioxyd in Eisessig.

2'.4'-Dichlor-3-nitro-diphenyl  $C_{12}H_2O_2NCl_2$ , s. nebenstehende Formel. B. Beim Chlorieren von 3-Nitro-diphenyl in Gegenwart von Eisen(III)-chlorid bei 100° (Blakey, Scarborough, Soc. 1927, 3004). — Cl. Nadeln (aus Methanol oder Eisessig). F: 115°.

3'.5'-Dichlor-4-nitro-diphenyl  $C_{12}H_7O_2NCl_2$ , s. nebenstehende Formel. B. Neben wenig 3'.5'-Dichlor-2-nitro-diphenyl beim Behandeln von 3.5-Dichlor-diphenyl mit rauchender Salpetersäure in Eisessig (HINKEL, HEY, Soc. 1928, 2788, 2790). — Blaßgelbe Nadeln (aus Alkohol). F: 146°. — Liefert beim Kochen mit Chromtrioxyd in Eisessig geringe Mengen 4-Nitro-benzoesäure.

Ċl Ċl

5.2'.4'-Trichlor-3-nitro-diphenyl (?)  $C_{12}H_6O_2NCl_3$ , s. nebenstehende Formel. B. Bei längerer Einw. von Chlor auf 3-Nitro-diphenyl in Gegenwart von Eisen(III)-chlorid bei 100° (BLAKEY, SCARBOROUGH, Soc. 1927, 3000, 3004). — Nadeln (aus Benzol oder Aceton). F: 211°.

 $\begin{array}{c|c} Cl & NO_2 \\ \hline \\ Cl & \hline \\ Cl & \hline \end{array}$ 

2'.3'.5'-Trichlor-4-nitro-diphenyl C<sub>12</sub>H<sub>6</sub>O<sub>2</sub>NCl<sub>3</sub>, s. nebenstehende Formel. B. Beim Behandeln von 2.3.5-Trichlor-diphenyl mit rauchender Salpetersäure in Eisessig (HINKEL, HEY, Soc. 1928, 2789, 2791).

— Gelbe Nadeln (aus Alkohol). F: 155°. — Ist gegen Chromtrioxyd beständig.

5.2'.4'.6'-Tetrachlor-3-nitro-diphenyl (?)  $C_{12}H_5O_2NCl_4$ , s. nebenstehende Formel. B. Beim Chlorieren von 3-Nitro-diphenyl in Gegenwart von Eisenchlorid bei 120° (BLAKEY, SCARBOROUGH, Soc. 1927, 3000, 3004). — Nadeln (aus Alkohol). F: 175°.

 $CI \cdot \underbrace{ \begin{array}{c} CI \\ CI \end{array}}_{CI} \cdot \underbrace{ \begin{array}{c} CI \\ NO^{5} \end{array}}_{C} (5)$ 

4'-Brom-2-nitro-diphenyl  $C_{12}H_8O_2NBr=C_6H_4Br\cdot C_6H_4\cdot NO_2$  (H 583). B. Zur Bildung durch Nitrierung von 4-Brom-diphenyl vgl. a. Banús, Medrano, An. Soc. españ. 20, 476; C. 1923 III, 1157. Bei der Einw. von Brom auf 2-Nitro-diphenyl bei Gegenwart von Eisenchlorid in Wasser (Le Fèvre, Turner, Soc. 1926, 2043). — Krystalle (aus Alkohol). F: 65° bis 68° (B., M.). — Liefert bei der Einw. von Salpetersäure (D: 1,5) bei Zimmertemperatur 4'-Brom-2.4.3'-trinitro-diphenyl (Le F., T.).

5-Brom-3-nitro-diphenyl C<sub>12</sub>H<sub>8</sub>O<sub>2</sub>NBr, s. nebenstehende Formel. B. Aus 5-Brom-3-nitro-4-amino-diphenyl durch Eliminierung der Aminogruppe (Scarborough, Waters, Soc. 1927, 1138). — Blaßgelbe Nadeln (aus Alkohol). F: 72° (korr.). Kp<sub>30</sub>: 240—250°. — Gibt bei der Oxydation mit Chromtrioxyd in Eisessig 5-Brom-3-nitro-benzoesäure.



4'-Brom-3-nitro-diphenyl  $C_{12}H_8O_2NBr=C_8H_4Br\cdot C_8H_4\cdot NO_2$ . B. Bei kurzem Erhitzen von 3-Nitro-diphenyl mit Brom und Eisenchlorid in Wasser auf dem Wasserbad (Blakey, Scarborough, Soc. 1927, 3004). — Tafeln (aus Alkohol). F: 95°. — Liefert bei der Reduktion mit Zinn(II)-chlorid in alkoh. Salzsäure 4'-Brom-3-amino-diphenyl.

2'-Brom - 4 - nitro - diphenyl  $C_{12}H_8O_2NBr = C_6H_4Br\cdot C_6H_4\cdot NO_2$ . B. Aus 4'-Nitro-2-amino-diphenyl nach Sandmeyer (Scarborough, Waters, Soc. 1927, 96). — Gelbe Nadeln (aus Alkohol). F: 82,5° (korr.). — Gibt bei der Oxydation mit Chromtrioxyd in Eisessig 4-Nitro-benzoesäure.

4'-Brom-4-nitro-diphenyl  $C_{19}H_8O_3NBr=C_6H_4Br\cdot C_6H_4\cdot NO_9$  (H 583). B. Zur Bildung durch Nitrierung von 4-Brom-diphenyl vgl. a. Banús, Medrano, An. Soc. españ. 20, 476; C. 1923 III, 1157. Beim Erhitzen von 4-Nitro-diphenyl mit Brom in Eisessig auf 100° (Le Fèvre, Turner, Soc. 1926, 2045). — Nadeln (aus Eisessig). F: 170—172° (Le F., T.), 173° (B., M.). D4: 1,714 (Ziegler, Ditzel, A. 473, 200). — Liefert bei der Reduktion mit Zinn(II)-chlorid und konz. Salzsäure in siedendem Alkohol 4'-Brom-4-amino-diphenyl (Le F., T., Soc. 1926, 2045). Gibt bei der Nitrierung je nach den Bedingungen 4-Brom-3.4'-dinitro-diphenyl (Le F., Moir, T., Soc. 1927, 2337) oder 4'-Brom-2.4.3'-trinitro-diphenyl (Le F., T., Soc. 1926, 2044).

490

4.4'-Dibrom-2-nitro-diphenyl C<sub>12</sub>H<sub>7</sub>O<sub>2</sub>NBr<sub>2</sub>, s. nebenstehende Formel (H 583 als 4.4'-Dibrom-x-nitro-diphenyl aufgeführt). NO<sub>2</sub> Bei der Einw. von Salpeterschwefelsäure auf 4.4'-Dibromdiphenyl in Eisessig und Essigsäureanhydrid bei 85—90° (LE Fèvre,
Turner, Soc. 1926, 2044). Zur Bildung aus 4.4'-Dibrom diphenyl und Salpetersäure
(D: 1,5) in Eisessig vgl. Denrett, T., Soc. 1926, 478. Aus diazotiertem 2-Nitrobenzidin beim Behandeln mit Kupfer(I)-bromid und Natriumbromid in Bromwasserstoffsäure, zuletzt bei 100° (D., T., Soc. 1926, 476, 478). — Krystalle (aus Alkohol). F: 124° (D., T.; LE F., T.). — Liefert bei weiterer Nitrierung mit Salpetersäure (D: 1,5) 4.4′-Dibrom-2.3′-dinitro-diphenyl und wenig 4.4′-Dibrom-2.2′-dinitro-diphenyl (Shaw, T., Soc. 1932, 287, 294; vgl. D., T.).

4.5 - Dibrom - 3 - nitro - diphenyl C<sub>12</sub>H<sub>2</sub>O<sub>2</sub>NBr<sub>2</sub>, s. nebenstehende Formel. B. Aus diazotiertem 5-Brom-3-nitro-4-amino-diphenyl bei allmählichem Erwärmen mit Kupfer(I)-bromid in Bromwasserstoffsäure (Hinkel, Hey, Soc. 1928, 1839). — Blaßgelbe Nadeln (aus Methanol). F: 125°. — Gibt bei der Oxydation mit Chromtrioxyd in Eisessig 4.5-Dibrom-3-nitro-benzoesäure.

Br

4.4'-Dibrom-8-nitro-diphenyl  $C_{12}H_7O_2NBr_2$ , s. nebenstehende Formel. B. Beim Kochen des Diazoniumperbromids aus 4'-Brom- $NO_2$ 3-nitro-4-amino-diphenyl mit Eisessig (LE FEVRE, TURNER, Soc. 1926, Br. 2046). — Cremefarbene Tafeln (aus Alkohol). F: 101—102°. — Liefert beim Erwärmen mit Salpetersäure (D: 1,5) 4.4'-Dibrom-2.3'-dinitro-diphenyl und wahrscheinlich 4.4'-Dibrom-3.3'-dinitro-diphenyl. Beim Erhitzen mit Piperidin bildet sich 4'-Brom-3-nitro-4-piperidino-diphenyl.

4.4'-Dibrom-x-nitro-diphenyl  $C_{12}H_7O_2NBr_2=C_6H_4Br\cdot C_6H_3Br\cdot NO_2$  (H 583). Wird von Dennett, Turner (Soc. 1926, 476) als 4.4'-Dibrom-2-nitro-diphenyl (s. o.) erkannt.

4.3'.4'-Tribrom-2-nitro-diphenyl (?) C<sub>12</sub>H<sub>6</sub>O<sub>2</sub>NBr<sub>3</sub>, s. nebenstehende Formel. B. Beim Kochen des Bisdiazoniumperbromids aus 2-Nitro-benzidin mit Eisessig (LE Fèvre, Turner, Soc. 1926, Br-2043). — Nadeln (aus Eisessig). F: 195—196°.

4'-Jod-4-nitro-diphenyl  $C_{12}H_8O_2NI = C_9H_4I\cdot C_9H_4\cdot NO_2$ . B. Aus diazotiertem 4'-Nitro-4-amino-diphenyl beim Behandeln mit Kaliumjodid-Lösung (Angeletti, Giorn. Farm. Chim. 75, 261; C. 1926 II, 3045). — Hellrote Krystalle (aus Eisessig). F: 206°. Leicht löslich in Eisessig.

4.4'- Dijod - 2 - nitro - diphenyl C<sub>18</sub>H<sub>7</sub>O<sub>2</sub>NI<sub>2</sub>, s. nebenstehende  $NO_2$ Formel. B. Beim Diazotieren von 2-Nitro-benzidin in konz. Schwefelsäure und nachfolgenden Behandeln mit Kaliumjodid-Lösung (Hodgson, Soc. 1926, 2385). — Hellgelbe Nadeln (durch Sublimation im Vakuum). F: 156°. Schwer löslich in Alkohol und Eisessig. — Liefert bei der Einw. von Salpetersäure 4.4'-Dijod-2.3'-dinitro-diphenyl.

2.4-Dinitro-diphenyl  $C_{12}H_8O_4N_2$ , s. nebenstehende Formel. B. Beim Erhitzen äquimolekularer Mengen Jodbenzol und 4-Chlor-1.3-dinitro-benzol mit Kupferbronze auf 210-230° (Gull, Turner, Soc. 1929, 496). — Goldgelbe Tafeln (aus Methanol). F: 110°. Liefert beim Erhitzen mit Salpetersäure (D: 1,5) auf 100° 45% 2.4.2'-Trinitro-diphenyl und 55% 2.4.4'-Trinitro-diphenyl.

2.2'- Dinitro - diphenyl  $C_{19}H_8O_4N_2=O_2N\cdot C_6H_4\cdot C_9H_4\cdot NO_2$  (H 583; E I 273). B. Zur Bildung beim Erhitzen von 2-Chlor-1-nitro-benzol mit Kupferbronze vgl. a. LE FEVRE, Soc. 1929, 735. Bei der Einw. von Alkohol auf Natrium-[2-nitro-benzolisodiazotat] in alkal. Lösung (Brydowna, Roczniki Chem. 7, 442; C. 1928 I, 2820). Neben 2.4'-Dinitro-diphenyl und 4.4'-Dinitro-diphenyl bei kurzem Kochen von Diphenyl mit rauchender Salpetersäure (Bell, Kenyon, Soc. 1926, 2707). Neben 2.4'-Dinitro-diphenyl beim Behandeln von 2-Nitrodiphenyl mit starker Salpetersäure (Bell, Kenyon, Soc. 1926, 2707; Gull, Turner, Soc. 1929, 495, 496). Bei allmählichem Erhitzen von 2.2'-Dinitro-diphenyl-carbonsäure-(4) mit Natriumdicarbonat und Kupferbronze auf 305° (Gull, T., Soc. 1929, 500). Die Bildung aus 6.6'-Dinitro-diphensäure (J. Schmidt, Kaempf, B. 36, 3747) ist zu streichen; das Ausgangsmaterial ist als 4.6'-Dinitro-diphensaure erkannt worden (Christie, Holdeness, Kenner, Soc. 1926, 671; Kuhn, Albrecht, A. 455, 274, 281, 289; J. Schmidt, Priv.-Mitt.). - F: 127-1280 (Bell, Kenyon). Doc: 1,449 (Ziegler, Ditzel, A. 478, 200). Dipolmoment  $\mu \times 10^{18}$ : 5,1 (verd. Lösung; Benzol) (Bretscher, Helv. phys. Acta 2, 263; C. 1929 II, 2155). Löst sich in Alkohol bei 20° zu 0,39°/00; die Lösung ist gelb (Mascarelli, Gatti, G. 59. 863). Thermische Analyse des binären Systems mit 2.4′-Dinitro-diphenyl: Gull, Turner. Bleibt beim Erhitzen mit wäßrig-methylalkoholischem Ammoniak auf 200° unverändert (Burton, Kenner, Soc. 121, 495). Wird durch Ammoniak und Schwefelwasserstoff in warmem verdünntem Alkohol zu 2′-Nitro-2-amino-diphenyle und verd (Mascarelli, Gatti. G. 59, 860; R. A. L. [6] 10, 442). Bei der Reduktion mit Eisen und verd. Salzsäure bildet sich 2.2′-Diamino-diphenyl (Le Fèvre, Soc. 1929, 736). Beim Erhitzen mit Thionylchlorid im Rohr auf 200—210° erhält man 2.2′-Dichlor-diphenyl (M., Ga., G. 59, 868). Liefert bei allmählichem Eintragen in Salpetersäure (D: 1,5) bei 75—80° 2.4.2′-Trinitro-diphenyl und

2.3'-Dinitro-diphenyl  $C_{12}H_8O_4N_3=O_2N\cdot C_6H_4\cdot C_8H_4\cdot NO_2$  (E I 274). B. Neben 3.4'-Dinitro-diphenyl bei der Einw. von Salpetersäure (D: 1,5) auf 3-Nitro-diphenyl (ВŁАКБУ, SCARBOROUGH, Soc. 1927, 3000, 3005). Zur Bildung beim Kochen von diazotiertem 2.3'-Dinitro-benzidin mit Alkohol vgl. a. Brady, McHugh, Soc. 123, 2051; Bl., Sc., Soc. 1927. 3005. — Tafeln (aus Eisessig). F: 120° (Bl., Sc.). — Liefert beim Nitrieren mit Salpeterschwefelsäure 2.4.3'.4'-Tetranitro-diphenyl (Bl., Sc.).

andere Produkte (GULL, TURNER, Soc. 1929, 497).

- 2.4'- Dinitro diphenyl C<sub>12</sub>H<sub>8</sub>O<sub>4</sub>N<sub>1</sub> = O<sub>2</sub>N·C<sub>6</sub>H<sub>4</sub>·C<sub>6</sub>H<sub>4</sub>·NO<sub>2</sub> (H 584; E I 274). B. Zur Bildung aus Diphenyl und rauchender Salpetersäure vgl. a. Christie, Holderness. Kenner, Soc. 1926, 674; Bell, Kenyon, Soc. 1926, 2707. Neben 2.2'-Dinitro-diphenyl beim Erwärmen von 2-Nitro-diphenyl mit starker Salpetersäure (B., Kenyon, Soc. 1926. 2707; Gull, Turner, Soc. 1929, 495, 496); entsteht in analoger Weise aus 4-Nitro-diphenyl neben 4.4'-Dinitro-diphenyl (B., Kenyon, Soc. 1926, 2707; G., T., Soc. 1929, 494). Beim Erhitzen von 2.4'-Dinitro-diphenyl-carbonsäure-(4) mit Natriumdicarbonat und Kupferbronze auf 305° (G., T., Soc. 1929, 500). Aus 4.6'-Dinitro-diphensäure bei allmählichem Erhitzen mit Naturkupfer C unter 30 mm Druck auf 285° (Christie, Holderness, Kenner, Soc. 1926, 674). F: 92,5—93,5° (kort.) (G., T.). Thermische Analyse des binären Systems mit 2.2'-Dinitro-diphenyl (Eutektikum bei ca. 64° und ca. 63 Gew.-% 2.4'-Dinitro-diphenyl): G., T. Liefert bei kurzem Erhitzen mit Salpetersäure (D: 1,5) auf 100° 47,5% 2.4.2'-Trinitro-diphenyl (G., T.).
- 3.3'-Dinitro-diphenyl C<sub>12</sub>H<sub>8</sub>O<sub>4</sub>N<sub>2</sub> = O<sub>2</sub>N·C<sub>6</sub>H<sub>4</sub>· C<sub>6</sub>H<sub>4</sub>· NO<sub>2</sub> (H 584; E I 274). B. Bei der Einw. von Alkohol auf Natrium-[3-nitro-benzolisodiazotat] in alkal. Lösung (Brydowna, Roczniki Chem. 7, 442; C. 1928 I, 2820). Zur Bildung aus diazotiertem 3.3'-Dinitro-benzidin beim Kochen mit Alkohol vgl. a. Brady, McHugh, Soc. 123, 2051. F: 200° (Mascarelli, Gatti, G. 59, 862). Löst sich in Alkohol bei 20° zu 0.59°/<sub>00</sub>; die Lösung ist farblos (M., G., G. 59, 863). Liefert bei der Reduktion mit Ammoniak und Schwefelwasserstoff in Alkohol + Toluol auf dem Wasserbad 3'-Nitro-3-amino-diphenyl (M., G., G. 59, 862; R. A. L. [6] 10, 443). Bei der Reduktion mit Eisen und Eisenchlorid in siedendem Wasser bildet sich wenig 3.3'-Diamino-diphenyl (Dennett, Tuener, Soc. 1926, 481). Liefert beim Erhitzen mit Thionylchlorid im Rohr auf 200—210° 3.3'-Dichlor-diphenyl und 3'-Chlor-3-nitro-diphenyl; oberhalb 210° entsteht neben 3.3'-Dichlor-diphenyl eine in Nadeln krystallisierende Verbindung vom Schmelzpunkt 188°, wahrscheinlich ein höher chloriertes Diphenyl (M., G., G. 59, 868).
- 3.4'-Dinitro-diphenyl  $C_{19}H_6O_4N_2=O_3N\cdot C_6H_4\cdot C_6H_4\cdot NO_2$ . B. Neben 2.3'-Dinitro-diphenyl beim Behandeln von 3-Nitro-diphenyl mit Salpetersäure (D: 1,5) (Blakey. Scarborough, Soc. 1927, 3000, 3005). Durch Eliminierung der Aminogruppe aus 5.4'-Dinitro-2-amino-diphenyl oder 3.4'-Dinitro-4-amino-diphenyl (Scarborough, Waters, Soc. 1927, 91, 96, 1139). Blaßgelbe Nadeln (aus Aceton). F: 189° (korr.) (Sc., W.; B., Sc.). Liefert beim Behandeln mit Kaliumnitrat in konz. Schwefelsäure 2.4.3'.4'-Tetranitro-diphenyl (B., Sc.).
- 4.4'-Dinitro-diphenyl C<sub>12</sub>H<sub>8</sub>O<sub>4</sub>N<sub>9</sub> = O<sub>2</sub>N·C<sub>6</sub>H<sub>4</sub>·C<sub>6</sub>H<sub>4</sub>·NO<sub>2</sub> (H 584; E I 274). B. Bei der Einw. von Äthylalkohol auf Natrium-[4-nitro-benzolisodiazotat] in alkal. Lösung (Brydowna, Roczniki Chem. 7, 442; C. 1928 I, 2820). Zur Bildung durch Nitrierung von Diphenyl vgl. a. Bell, Kenyon, Soc. 1926, 2707; Gull, Turner, Soc. 1929, 495. Neben 2.4'-Dinitro-diphenyl beim Behandeln von 4-Nitro-diphenyl mit starker Salpetersäure (Bell, Kenyon, Soc. 1926, 2707; Gull, T., Soc. 1929, 494). Aus 4.4'-Dinitro-diphensäure beim Erhitzen mit Naturkupfer C unter 12 mm Druck auf 290° (Kuhn, Albrecht, A. 455, 281, 290). F: 233° (Vorländer, Ph.Ch. 126, 470), 238—239° (korr.) (Weissberger, Williams, Ph. Ch. [B] 3, 369), 239—243° (korr.) (Gull, T.). D<sup>0</sup>: 1,444 (Ziegler, Ditzel, A. 473, 200). Besitzt kein Dipolmoment (Williams, Phys. Z. 29 [1928], 684; Wi., Wei., Am. Soc. 50, 2335; Ph. Ch. [B] 3, 371). Löst sich in Alkohol bei 20° zu 1,46°/<sub>00</sub> (Mascarelli, Gatti, Am. Soc. 50, 2334. Liefert beim Erhitzen mit Thionylchlorid im Rohr auf 200—210° 4.4'-Dichlor-diphenyl und 2.4.4'-Trinthor-diphenyl (M., Ga., G. 59, 869). Beim Kochen mit Salpetersäure (D: 1,5) bildet sich 2.4.4'-Trintro-diphenyl (Gull, T.).

4.4'-Diohlor-2.8'-dinitro-diphenyl C<sub>15</sub>H<sub>6</sub>O<sub>4</sub>N<sub>2</sub>Cl<sub>2</sub>, s. nebenstehende Formel (H 585; E I 274). B. Neben wenig 4.4'-Diohlor-diphenyl beim Behandeln von 4.4'-Diohlor-diphenyl mit Cl überschüssiger Salpetersäure (D: 1,52) unter Eiskühlung (SHAW, TURNER, Soc. 1932, 288, 295; vgl. Hodgson, Gorowara, Soc. 1926, 1756, 1757). Beim Diazotieren von 2.3'-Dinitro-benzidin in konz. Schwefelsäure bei 0° und Behandeln der Bisdjazoniumsulfat-Lösung mit einer Lösung von Kupfer(I)-chlorid in konz. Salzsäure (H. G.; vgl. Le Fèvre, T., Soc. 1926, 1760; Le F., Moir, T., Soc. 1927, 2330). — F: 141—142° (Sh., T., Soc. 1932, 295; vgl. H., G.). — Beim Erhitzen mit alkoh. Ammoniak im Rohr auf ca. 160° bildet sich 4'-Chlor-3.2'-dinitro-4-smino-diphenyl (H., G.; Le F., T., Soc. 1926, 2048). Liefert beim Kochen mit Phenol und konz. Kalilauge 4'-Chlor-3.2'-dinitro-4-phenoxy-dishenyl (I. F. T. Soc. 1928, 2048). diphenyl (LEF., T., Soc. 1926, 2048). Beim Kochen mit Anilin entsteht 4'-Chlor-3.2'-dinitro-4-anilino-diphenyl; reagiert analog mit Methylanilin, Piperazin (LE F., T., Soc. 1926, 2047, 2048) und Piperidin (DENNETT, T., Soc. 1926, 479).

4.4'- Dichlor - 3.3'- dinitro - diphenyl  $C_{12}H_6O_4N_2Cl_2$ , s. nebenstehende Formel. B. Aus diazotiertem 4-Chlor-3-nitro-anilin beim Behandeln mit Kupfer(I)-chlorid in konz. Salzsäure (Hodgson, Goro-Cl-WARA, Soc. 1926, 1758). — Nadeln (aus Benzol oder Eisessig). F: 237°.

Als nicht rein erhaltenes 4.4'-Dichlor-3.3'-dinitro-diphenyl ist nach Hodgson, Hollt (Soc. 1934, 1431; vgl. a. Hodgson, Walker, Soc. 1933, 1621) die von Cain, Coulthard. MICKLETHWAIT (Soc. 103, 2080; vgl. a. HODGSON, GOROWARA, Soc. 1926, 1758) aus tetrazotiertem 3.3'-Dinitro-benzidin erhaltene und als Dichlor-tetranitro-benzerythren (E I 5, 369) aufgefaßte Verbindung anzusehen.

- 4-Brom-3.4'-dinitro-diphenyl C<sub>12</sub>H<sub>7</sub>O<sub>4</sub>N<sub>2</sub>Br, s. nebenstehende Formel. B. Beim Erhitzen von 4'-Brom-4-nitro-diphenyl mit Salpeterschwefelsäure auf 90° (LE FÈVRE, MOIR, TURNER, Soc. 1927, 2337). — 02N Nadeln (aus Eisessig). F: 135°. — Liefert bei weiterer Nitrierung mit Salpeterschwefelsäure 4'-Brom-2.4.3'-trinitro-diphenyl. Beim Kochen mit Anilin bildet sich 3.47-Dinitro-4-anilino-diphenyl.
- 4.4'-Dibrom-2.2'-dinitro-diphenyl C<sub>12</sub>H<sub>6</sub>O<sub>4</sub>N<sub>2</sub>Br<sub>2</sub>, s. nebenstehende Formel (H 585). F: 150° (Shaw, Turner, Soc. 1932, 286; vgl. Ullmann, Bielecki, B. 34, 2181). Liefert beim Kochen mit Br. Eisenfeile in Wasser 4.4'-Dibrom-2.2'-diamino-diphenyl (Le Fèvre, Soc.  $O_2N$  $NO_2$ 1929, 737). Reagiert in geringem Maße mit siedendem Piperidin (SH., T.; vgl. Dennett, T., Soc. 1926, 477, 479).
- 4.4'-Dibrom -2.3'-dinitro-diphenyl  $C_{12}H_6O_4N_2Br_2$ , s. nebenstehende Formel (H 585; EI 274). B. Neben wenig 4.4'-Dibrom-2.2'-dinitro-diphenyl beim Behandeln von 4.4'-Dibrom-diphenyl mit Br überschüssiger eisgekühlter Salpetersäure (D: 1,52) (Shaw, Turner, Soc. 1932, 286, 291; vgl. Dennett, T., Soc. 1926, 478). Bei der Einw. von warmer Salpetersäure (D: 1,5) auf 4.4'-Dibrom-2-nitro-diphenyl (D., T., Soc. 1926, 476, 479; vgl. Sh., T., Soc. 1932, 287, 294) oder auf 4.4'-Dibrom-3-nitro-diphenyl (E. Fèvre, T., Soc. 1926, 2046). Zur Bildung aus dem Bisdiazoniumperbromid aus 2.3'-Dinitro-benzidin durch Einw. von Eisessig vgl. a. Le F., T., Soc. 1926, 1763. — Nadeln (aus Eisessig). F: 152—153° (Sh., T., Soc. 1932, 291). — Liefert beim Erhitzen mit Eisenpulver und Eisenchlorid in Wasser 4.4'-Dibrom-2.3'-diamino-diphenyl (D., T.). Bei der Einw. von Salpetersäure (D: 1,5) in konz. Schwefelsäure bildet sich 4.4'-Dibrom-2.3'-5' trinitro-diphenyl (Le F., Moir, T., Soc. 1927, 2338). Beim Kochen mit Phenol und konz. Kalilauge entsteht 4'-Brom-3.2'-dinitro-4-phenoxy-diphenyl (Le F., T., Soc. 1926, 2047). Gibt beim Erhitzen mit wäßrig-alkoholischem Ammoniak unter Druck auf 140—160° 4'-Brom-3.2'-dinitro-4-amino-diphenyl (Le F., T., Soc. 1926, 2048); reagiert analog mit Anilin, Methylanilin, Piperazin (LE F., T., Soc. 1926, 2047) und Piperidin (D., T.).
- 4.4'-Dibrom-3.3'-dinitro-diphenyl  $C_{12}H_6O_4N_2Br_2$ , s. nebenstehende Formel (E I 274). B. Entsteht wahrscheinlich neben 4.4'-Dibrom-2.3'-dinitro-diphenyl beim Erwärmen von 4.4'-Dibrom-3-nitro- Bromphenyl mit Salpetersäure (D: 1,5) (LE Fèvre, Turner, Soc. 1926, 2048). — F: 259° (Hodgson, Holt, Soc. 1934, 1433; vgl. Cain, Coulthard, Micklethwait, Mickl Soc. 103, 2082; LE F., T., Soc. 1926, 1764). — Liefert beim Kochen mit Phenol und Kalium-hydroxyd 3.3'-Dinitro-4.4'-diphenoxy-diphenyl (LE F., T., Soc. 1926, 2048). Beim Erhitzen mit Anilin bildet sich 3.3'-Dinitro-4.4'-dianilino-diphenyl; reagiert analog mit Methylanilin und Piperidin (Le F., T., Soc. 1926, 1764, 2048).

  Als nicht rein erhaltenes 4.4'-Dibrom-3.3'-dinitro-diphenyl ist nach Hodgson, Holt

(Soc. 1934, 1431) die von Cain, Coulthard, Micklethwait (Soc. 103, 2081) aus in Schwefel-

säure tetrazotiertem 3.3'-Dinitro-benzidin durch Zersetzen mit Kupferpulver und Bromwasserstoffsäure erhaltene und als Dibrom-tetranitro-benzerythren (EI5, 369) aufgefaßte Verbindung anzusehen.

4.4'-Dijod-2.2'-dinitro-diphenyl C<sub>12</sub>H<sub>6</sub>O<sub>4</sub>N<sub>2</sub>I<sub>2</sub>, s. nebenstehende Formel. B. Aus in konz. Schwefelsäure tetrazotiertem 2.2'-Dinitrobenzidin beim Behandeln mit Kaliumjodid-Lösung (Hodgson, Soc. 1926, 2385). — Hellgelbe Nadeln (aus Alkohol). Sublimiert langsam im Vakuum. F: 1880.

 $O_2N$  $NO_2$ 

**4.4'- Dijod-2.3'- dinitro-diphenyl**  $C_{12}H_6O_4N_2I_2$ , s. nebenstehende Formel (E I 274). B. Beim Behandeln von 4.4'-Dijod-2-nitro-diphenyl mit Salpetersäure (Hongson, Soc. 1926, 2385). — Hellgelbe Nadeln (durch Sublimation im Vakuum). F: 156-157°.

4.4'- Dijod-3.3'- dinitro-diphenyl C<sub>12</sub>H<sub>6</sub>O<sub>4</sub>N<sub>2</sub>I<sub>2</sub>, s. nebenstehende Formel (E I 274). B. Aus tetrazotiertem 3.3'-Dinitro-benzidin und Kaliumjodid auf dem Wasserbad (PFEIFFER, SCHMITZ, INOUE, J. pr. [2] 121, 76). — Gelbe Nadeln (aus Eisessig), Tafeln (durch Sublimation). F: 246—247° (Pf., Sch., I.), 252° (Hodgson, Soc. 1926, 2385). Schwer löslich in Chloroform, Methanol, Alkohol, Äther, Benzol, Ligroin und Eisessig (Pf., Sch., I.).

**2.4.6-Trinitro-diphenyl**  $C_{12}H_7O_6N_3$ , s. nebenstehende Formel. B. Beim Erhitzen von Pikrylchlorid mit Jodbenzol und Kupferbronze auf 195—200° (GULL, TURNER, Soc. 1929, 498). — Blaßgelbe Nadeln (aus Alkohol). F: 130° (korr.).

 $NO_2$ · NO2 NO<sub>2</sub>

 $NO_2$  $O_2N$ 

(D: 1,5) bei 75—80° (Gull, Turner, Soc. 1929, 497). Neben 2.4.4'-Trinitro-diphenyl beim Erhitzen von 2.4-Dinitro-diphenyl oder von 2.4'-Dinitro-diphenyl mit Salpetersäure (D: 1,5) auf 100° (G., T., Soc. 1929, 496, 497). — Blaßgelbe Prismen (aus Eisessig). F: 150—151° (korr.). Schmelzpunkte von Gemischen mit 2.4.4'-Trinitro-diphenyl: G., T. — Liefert beim Erhitzen mit Salpetersäure (D: 1,5) in konz. Schwefelsäure auf 100° 2.4.2'.4'-Tetranitro-diphenyl.

**2.4.4'-Trinitro-diphenyl**  $C_{12}H_7O_6N_3$ , s. nebenstehende Formel.  $NO_2$ B. Beim Behandeln von Diphenyl mit Athylnitrat in konz. Schwefelsäure bei —50 (RAUDNITZ, B. 60, 740). Neben 2.4.2'-Tri- 02Nnitro-diphenyl beim Erhitzen von 2.4-Dinitro-diphenyl oder von 2.4'-Dinitro-diphenyl mit Salpetersäure (D: 1,5) auf 100° (Gull, Turner, Soc. 1929, 496, 497). Beim Kochen von 4.4'-Dinitro-diphenyl mit Salpetersäure (D: 1,5) (G., T., Soc. 1929, 495). — Blaßgelbe Krystalle (aus Eisessig oder Salpetersäure). F: 175,5° (R.), 176° (korr.) (G., T.). Schmelzpunkte von Gemischen mit 2.4.2'-Trinitro-diphenyl: G., T. — Liefert beim Erhitzen mit Thionylchlorid auf 180° 2.4.4'-Trichlor-diphenyl (R.). Beim Erhitzen mit Salpeterschwefelsäure auf 100° bildet sich 2.4.2°.4′-Tetranitro-diphenyl (G., T.).

4'- Chlor - 2.4.3'- trinitro - diphenyl  $C_{12}H_6O_8N_9Cl$ , s. nebenstehende Formel. B. Beim Behandeln von 4'-Chlor-4-nitro-diphenyl mit Salpetersäure (D: 1,5) bei Zimmertemperatur (LE FEVRE, TURNER, CI-Soc. 1928, 253). — Krystalle (aus Eisessig). F: 153—154°.

4'-Brom - 2.4.3'-trinitro - diphenyl C<sub>12</sub>H<sub>6</sub>O<sub>6</sub>N<sub>3</sub>Br, s. nebenstehende Formel. B. Bei der Einw. von überschüssiger Salpetersäure (D: 1,5) auf 4'-Brom-2-nitro-diphenyl oder auf 4'-Brom-Br-(4-nitro-diphenyl bei Zimmertemperatur (LE Fèvre, Turner, Soc.  $NO_2$ 1926, 2044). Beim Erhitzen von 4-Brom-3.4'-dinitro-diphenyl mit Salpeterschwefelsäure auf 90° (Le F., Moir, T., Soc. 1927, 2332, 2337). — Nadeln (aus Eisessig). F: 176° (Le F., M., T.). Schwer löslich in Alkohol (Le F., T.). — Liefert beim Erhitzen mit alkoh. Ammoniak im Rohr auf 150° geringe Mengen 3.2'.4'-Trinitro-4-amino-diphenyl (Le F., M., T.). Beim Durchleiten von Ammoniak durch die Lösung in siedendem Nitrobenzol bildet sich Bis-[3.2'.4'-trinitro-diphenylyl-(4)]-amin (Syst. Nr. 1734) (LE F., M., T.). Liefert beim Erwärmen mit Piperidin 3.2'.4'-Trinitro-4-piperidino-diphenyl (LE F., T.).

**4.4'-Dibrom-2.5.3'-trinitro-diphenyl**  $C_{19}H_5O_6N_3Br_2$ , s. nebenstehende Formel. B. Beim Erhitzen des Bisdiazoniumperbromids  $NO_2$ > Br aus 2.5.3'-Trinitro-benzidin mit Eisessig (Le Fèvre, Moir, Turner, Soc. 1927, 2338). — Nadeln (aus Eisessig). F: 251—252°. — Reagiert mit Piperidin unter Bildung von 2.5.3'-Trinitro-4.4'-dipiperidino-diphenyl.  $NO_2$ 

4.4'-Dibrom-2.3'.5'-trinitro-diphenyl C<sub>12</sub>H<sub>5</sub>O<sub>6</sub>N<sub>2</sub>Br<sub>2</sub>, s. nebenstehende Formel (H 585 als 4.4'-Dibrom-x.x.x-trinitro-diphenyl aufgeführt). Zur Konstitution vgl. LE FEVRE, MOIR, TURNER, Soc. 1927, 2333. — B. Beim Behandeln von 4.4'-Dibrom-2.3'-dinitrodiphenyl mit Salpeterschwefelsäure (LE F., M., T., Soc. 1927, 2338).

— Nadeln (aus Toluol). F: 176—177°. — Reagiert mit Piperidin in der Kälte unter Bildung

 $NO_2$ NO2 NO<sub>2</sub>

von 4'-Brom-3.5.2'-trinitro-4-piperidino-diphenyl.

**2.4.2'.4'-Tetranitro-diphenyl**  $C_{12}H_6O_8N_4$ , s. nebenstehende Formel (H 585). B. Beim Erhitzen von 2.4.2'-Trinitro-diphenyl oder von 2.4.4'-Trinitro-diphenyl mit Salpetersäure (D: 1,5) in konz. Schwefelsäure auf 100° (Gull, Turner, Soc. 1929, 495). — Nadeln (aus Eisessig). F: 165° (korr.) (G., T.)¹).

- 2.4.3'.4'-Tetranitro-diphenyl  $C_{12}H_4O_8N_4$ , s. nebenstehende Formel. B. Beim Behandeln von 2.3'-Dinitro-diphenyl oder 3.4'-Di-NO<sub>2</sub> nitro-diphenyl mit Salpeterschwefelsäure (Blakey, Scarborough, O2N ·NO2 Soc. 1927, 3006). — Blaßgelbe Krystalle (aus Methanol). F: 173°. Liefert beim Erwärmen mit Piperidin 3.2'.4'-Trinitro-4-piperidino-diphenyl.
- 2.4.6.2'.4'.6'-Hexanitro-diphenyl  $C_{12}H_4O_{12}N_6$ , s. nebenstehende Formel (H 585; E I 274). B. Zur Bildung durch Erhitzen von Pikrylchlorid mit Kupferpulver in Nitrobenzol vgl. van Duin, R. 39, 686. — Gelbbraune Krystalle (aus Eisessig). F: 242° (korr.) (VAN D.). Ebullioskopisches Verhalten in Nitrobenzol:

Schlubach, Mergenthaler, B. 58, 2736. — Empfindlichkeit gegen Stoß oder Schlag: van D.

4.4'-Diazido-diphenyl  $C_{12}H_8N_6=N_3\cdot C_6H_4\cdot C_6H_4\cdot N_3$  (H 585). B. Beim Behandeln von Diphenyl-bis-diazoniumtetrachlorjodid-(4.4') mit Ammoniak und Eis (Chattaway, GARTON, PARKES, Soc. 125, 1984). — Hellbraune Blättchen (aus Benzol). F: 131°. — Zersetzt sich beim Erhitzen auf 165—170°. Explodiert bei plötzlichem Erwärmen oder beim Berühren mit einem Tropfen konz. Schwefelsäure. Beim Hinzufügen einiger Krystalle zu Schwefelsäure entsteht eine rote Lösung. — Liefert beim Erhitzen mit einer bei 06 gesättigten Lösung von Acetylen in Aceton im Rohr auf 100° 4.4'-Bis-[1.2.3-triazolyl-(1)]-diphenyl (Syst. Nr. 3798).

2. 1-Vinyl-naphthalin,  $[\alpha$ -Naphthyl]-äthylen  $C_{12}H_{10} = C_{10}H_7 \cdot CH : CH_2$ .

1- $[\beta$ -Nitro-vinyl]-naphthalin,  $\beta$ -Nitro- $\alpha$ - $[\alpha$ -naphthyl]-äthylen  $C_{12}H_2O_2N=C_{10}H_1$ -CH:CH:NO<sub>2</sub>. B. Beim Behandeln von  $\alpha$ -Naphthaldehyd mit Nitromethan in wäßrig-alkoholischer Kalilauge bei 5° (Mayer, Sieglitz, B. 55, 1836, 1847). — Gelbe Nadeln (aus Alkohol). F: 87,5°. — Liefert bei der Reduktion mit amalgamiertem Aluminium und feuchtem Äther unter Kühlung [α-Naphthyl]-acetaldoxim.

2-Vinyl-naphthalin,  $[\beta$ -Naphthyl]-äthylen  $C_{12}H_{10} = C_{10}H_7 \cdot CH : CH_2$ .

2-[ $\beta$ -Nitro-vinyl]-naphthalin,  $\beta$ -Nitro- $\alpha$ -[ $\beta$ -naphthyl]-äthylen  $C_{12}H_0O_2N=$  $C_{10}H_1 \cdot CH : CH \cdot NO_2$ . B. Beim Behandeln von  $\beta$ -Naphthaldehyd mit Nitromethan in alkoh. Kalilauge unterhalb 5° (MAYER, SIEGLITZ, B. 55, 1836, 1858). — Gelbe Nadeln (aus Akohol). F: 123°. — Liefert bei der Reduktion mit Aluminiumamalgam in Ather unter Kühlung [ $\beta$ -Naphthyl]-acetaldoxim.

CH2 4. Acenaphthen C<sub>12</sub>H<sub>10</sub>, s. nebenstehende Formel (H 586; E I 274). Für die von Acenaphthen abgeleiteten Namen wird in diesem Handbuch die angegebene Stellungsbezeichnung gebraucht. V. In geringer Menge im Steinkohlen-Urteer (Weissgerber, Brennstoffch. 5, 210; C. 1925 I, 2271). — B. Beim Erhitzen von 3.4.5.11-Tetrahydro-acenaphthen mit Schwefel auf 180° (v. Braun, Hahn, Seemann, B. 55, 1694). Aus Acenaphthenon oder Acenaphthenon bei der Druckhydrierung bei Gegenwart von Nickel in Dekalin bei 180—240° (v. Braun, Bayer, B. 59, 921, 923). Beim Erwärmen von Acenaphthenon-oxim mit Zinktham, Bayer, B. 59, 921, 923). staub in 75 % iger Essigsäure auf dem Wasserbad (Morgan, Stanley, J. Soc. chem. Ind. 44, 494 T; C. 1926 I, 927). Beim Erhitzen von Acenaphthenchinon-disemicarbazon mit Natriumäthylat-Lösung im Rohr auf 200° (Schönberg, B. 54, 2839).

<sup>1)</sup> Nach einer nach dem Literatur-Schlußtermin des Ergänzungswerkes II [1. I. 1930] erschienenen Arbeit von VAN ALPHEN (R. 51, 456) ist 2.4.2'.4'-Tetranitro-diphenyl dimorph (F: 150-1516 baw. 166°). Die Schmelspunktsangabe (F: 143°) von Brass, Ferber (B. 55, 553) beruht nach van ALPHEN auf einem Druckfehler.

#### Physikalische Eigenschaften.

Härte der Krystalle: Reis, Zimmermann, Ph. Ch. 102, 328. Röntgenographische Untersuchung von festem Acenaphthen: Bragg, Pr. phys. Soc. London 34, 43; C. 1924 II, 1155. F: 95° (v. Auwers, Frühling, A. 422, 200; Schönberg, B. 54, 2839), 96,2° (Jefremow, Tichomibowa, Ж. 59, 376). Kp<sub>780</sub>: 277,9° (Lecat, Ann. Soc. scient. Bruxelles 49 [1929], 22, 111). Dampfdruck zwischen 147,2° (19,2 mm) und 287,8° (943,0 mm): Mortimer, Murphy, Ind. Eng. Chem. 15, 1141; C. 1924 I, 985.  $D_{1}^{o}$ : 1,225 (Ziegler, Ditzel, A. 473, 204);  $D_{1}^{o}$ : 1,0242 (v. Au., Fr.).  $D_{2}^{o}$ : 1,5988;  $D_{2}^{o}$ : 1,6066;  $D_{3}^{o}$ : 1,6284 (v. Au., Fr.). Tesla-Luminescenzspektrum von Acenaphthen-Dampf: McVicker, Marsh, Stewart, Soc. 127, 1000. Fluorescenz von festem Acenaphthen bei Bestrahlung mit Röntgenstrahlen: Newcomer, Am. Soc. 42, 2004; de Beaujeu, J. Phys. Rad. [6] 4 [1923], 266; bei Bestrahlung mit Kathodenstrahlen: Marsh, Soc. 1927, 127.

Bei 18° lösen 100 cm³ Benzol 23,12 g, 100 cm³ Eisessig 3,11 g Acenaphthen; Löslichkeit in Chloroform, Tetrachlorkohlenstoff, Alkohol, Äther, Ligroin und Aceton: DIMROTH, BAMBERGER, A. 438, 106. Löslich in flüssigem Schwefeldioxyd mit gelber Farbe, unlöslich in flüssigem Ammoniak (DE CARLI, G. 57, 351). Thermische Analyse der binären Systeme mit 2.6-Dinitro-toluol (Eutektikum bei 46° und 27 Gew.-% Acenaphthen) und 3.4-Dinitro-toluol (Eutektikum bei 39° und 30 Gew.-% Acenaphthen): KREMANN, HÖNIGSBERG, MAUER-MANN, M. 44, 69, 71, 73, 75; mit 2.4.6-Trinitro-m-xylol: JEFREMOW, TICHOMIROWA, Izv. Inst. fiz.-chim. Anal. 4, 69, 70, 78; C. 1929 I, 745; mit 2.4.6-Trinitro-m-kresol: JEF., TICH., Ж. 59, 377, 385; C. 1928 I, 188; mit Fluorenon: PFEIFFER, A. 440, 258; mit Chinon: KRE., Mitarb., M. 43, 308; mit Dianisylidenaceton: PF., A. 440, 263; mit Tetryl: JEF., TICH., Izv. Inst. fiz.-chim. Anal. 4, 94; C. 1929 I, 745; mit 4.4'-Bis-dimethylamino-benzo-phenon und 4.4'-Bis-dimethylamino-dibenzylidenaceton: PF., A. 440, 278. Thermische Analyse der binären Systeme mit 1.3.5-Trinitro-benzol, 3.5-Dinitro-toluol und 2.4.6-Trinitro-toluol s. S. 496, 497. Azeotrope Gemische, die Acenaphthen enthalten, s. in untenstehender Tabelle. Gemische von Borsäure und wenig Acenaphthen zeigen nach Ultraviolett-Bestrahlung rasch abklingendes grünlichgelbes Nachleuchten (Tiede, Ragoss, B. 56, 658).

## Acenaphthen enthaltende binäre Azeotrope.

| Komponente                 | Кр <sub>760</sub><br>0             | Acenaphthen in Gew%      | Komponente                                                                                               | Kp <sub>760</sub>         | Acenaphthen in Gew% |
|----------------------------|------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------|---------------------------|---------------------|
| Glykol 1) Brenzcatechin 2) | 194,65<br>245,25<br>266,2<br>259,1 | 25,8<br>16<br>59<br>71,0 | Propionamid <sup>2</sup> )<br>Benzoesäure <sup>1</sup> )<br>Phenylessigsäure <sup>1</sup> )<br>Dimethyl- | 220,9<br>ca. 250<br>262,2 | $\frac{25}{29}$     |
| Acetamid 1)                | 217,0                              | 35,8                     | phthalat 2)                                                                                              | 276,35                    | 66,5                |

<sup>1)</sup> LBCAT, Ann. Soc. scient. Bruxelles 49 [1929], 22-25. - 1) L., Ann. Soc. scient. Bruxelles 49, 111.

#### Chemisches Verhalten.

Acenaphthen liefert beim Leiten durch ein verzinntes Eisenrohr im Wasserstoff-Strom bei 760—770° vorwiegend Acenaphthylen (F. FISCHER, SCHRADER, MEYER, Abh. Kenntnis Kohle 5, 414, 415, 432; C. 1922 IV, 1039); Acenaphthylen entsteht ferner in guter Ausbeute beim Erhitzen von Acenaphthen in Gegenwart von Nickel auf ca. 300° (Goswami, C. r. 179, 1269). Beim Leiten von Acenaphthen-Dampf durch ein mit Eisen- oder Kupferdraht beschicktes, auf Rotglut erhitztes Quarzrohr im Kohlendioxyd-Strom entstehen neben Acenaphthylen Leukacen C<sub>34</sub>H<sub>32</sub> (S. 731), Rhodacen C<sub>30</sub>H<sub>16</sub> (S. 714), Chalkacen C<sub>30</sub>H<sub>16</sub> (S. 714), Polyacenaphthylen (S. 530), eine Verbindung vom Schmelzpunkt 240° (,α-Chromacen"), eine Verbindung vom Schmelzpunkt ca. 265° (,β-Chromacen") und eine oberhalb 400° schmelzende Verbindung (,γ-Chromacen") (Dziewonski, B. 53, 2173, 2180).

Beim Überleiten von Acenaphthen-Dampf im Gemisch mit viel Luft über eine vanadinhaltige Kontaktmasse bei 330—360° bildet sich Naphthalsäureanhydrid (Syst. Nr. 2482); bei Anwendung von wenig Luft erhält man bei 310—330° hauptsächlich Acenaphthylen neben Acenaphthenchinon (Syst. Nr. 676a), Biacenaphthylidendion (Syst. Nr. 689) und Naphthalaldehydsäure (Syst. Nr. 1298) (I. G. Farbenind., D. R. P. 428088; C. 1926 II, 1101; Frdl. 15, 394). Beim Behandeln mit 30%igem Wasserstoffperoxyd in Eisessig auf dem Wasserbad entstehen Acenaphthenchinon und Naphthalsäure (Charrier, Moggi, G. 57, 740). Acenaphthen wird durch Mangan(VII)-oxyd in Schwefelsäure oder Tetrachlorkohlenstoff in der Kälte quantitativ zu Kohlendioxyd oxydiert (Durand, C. r. 178, 1194). Chromschwefelsäure oxydiert Acenaphthen unvollständig, Silberdichromat in Schwefelsäure

dagegen quantitativ zu Kohlendioxyd (Simon, C. r. 177, 266). Gibt bei der Einw. von Bleidioxyd in Eisessig Acenaphthenol  $C_{10}H_6$   $C_{12}H_2$ , Acenaphthenolacetat und harzige

Produkte (MARQUIS, C. r. 182, 1228). Liefert beim Erhitzen mit wasserfreiem Bleidioxyd im Rohr auf 170°, Entfernen des entstandenen Wassers und weiteren Erhitzen auf 200-220° Fluorocyclen C<sub>48</sub>H<sub>58</sub> (S. 729), wenig Dekacyclen C<sub>36</sub>H<sub>18</sub> (S. 723) und eine gelbbraune, in Benzol leicht lösliche Verbindung (Dziewonski, Suszko, B. 58, 723, 727). Beim Leiten von Acenaphthen-Dampf mit Wasserstoff über Nickel bei 150° erhält man ein Gemisch von 3.4.5.11-Tetrahydro-acenaphthen und Dekahydroacenaphthen (Goswami, C. r. 179, 1269). Bei der Hydrierung in Gegenwart von Nickelsalzen unter 10—15 Atm. Druck bei 210° entsteht 3.4.5.11-Tetrahydro-acenaphthen in theoretischer Ausbeute (v. Braun. Kirschbaum, B. 55, 1681). Liefert bei der katalytischen Hydrierung mit Nickeloxyd und Hopcalite unter 60-70 Atm. Anfangsdruck bei 210-230° Dekahydroacenaphthen (Orlow, Belopolski, B. 62, 1232; Ж. 61, 1274). Hydrierung von Acenaphthen unter 75 Atm. Anfangsdruck bei 450°: Spilker, Zerbe, Z. ang. Ch. 39, 1142. Acenaphthen liefert beim Erhitzen mit Wasserstoff in Gegenwart eines Tonerde-Kupferoxyd-Katalysators unter ca. 70 Atm. Anfangsdruck auf 450-470° Naphthalin und andere Produkte (IPATJEW, ORLOW, B. 60, 1968).

Beim Behandeln mit Brom in Chloroform entsteht neben 5-Brom-acenaphthen (vgl. H 587) auch 1.2.x.x-Tetrabrom-acenaphthen (DE FAZI, G. 53, 502; R. A. L. [5] 32 I, 344). MAYER, KAUFMANN (B. 53, 293) erhielten bei der Einw. von Brom in Chloroform Dibromacenaphthentetrabromid (S. 420). Nitrierung mit Benzoylnitrat und mit Diacetylorthosalpetersäure: MORGAN, HARRISON, J. Soc. chem. Ind. 49 [1930], 413 T; vgl. MOR., SHEASBY, J. Soc. chem. Ind. 44, 409 T; C. 1926 I, 85; Mo., HA., J. Soc. chem. Ind. 47, 16 T; C. 1928 I, 2398. Acenaphthen liefert beim Behandeln mit der berechneten Menge Chlorsulfonsäure oder konz. Schwefelsäure in Nitrobenzol-Lösung bei 0-3° als Hauptprodukt Acenaphthen-sulfonsäure-(5); beim Erhitzen mit der berechneten Menge konz. Schwefelsäure Acenaphthen-sulfonsäure-(5); beim Erintzen int der bereinneten Menge konz. Schweielsaute auf 100° bildet sich dagegen vorwiegend Acenaphthen-sulfonsäure-(3) (Dziewonski, Galitzerowna, Kocwa, Bl. Acad. polon. [A] 1926, 210, 223, 234; C. 1926 II, 2816; vgl. Dzie., Stolyhwo, B. 57, 1531; Morgan, Yarsley, J. Soc. chem. Ind. 44, 513 T; C. 1926 I, 1171). Zur Bildung von Disulfonsäuren beim Behandeln mit überschüssiger konzentrierter Schwefelsäure unterhalb 20° bzw. bei 100° vgl. Dzie., Sto.

Acenaphthen gibt beim Erhitzen mit Athylbromid in Schwefelkohlenstoff bei Gegenwart

von Aluminiumchlorid 5-Athyl-acenaphthen (MAYER, KAUFMANN, B. 53, 293). Bei 2-jähriger Belichtung eines Gemisches von Acenaphthen und Benzaldehyd in Benzol im Rohr entstehen 1-Benzoyl-acenaphthen, Tribenzaldehyd (vgl. H 7, 206), Tetrabenzaldehyd (vgl. H 7, 206), Stilben und Isostilben (DE FAZI, R. A. L. [6] 9, 1004). Acenaphthen liefert beim Erwärmen mit frisch hergestelltem Bromcyan und Aluminiumchlorid in Schwefelkohlenstoff auf 60-70° Acenaphthen-carbonsäure-(5)-nitril (KARRER, REBMANN, ZELLER, Helv. 3, 261, 264). Bei der Umsetzung mit Acetylchlorid in Schwefelkohlenstoff bei Gegenwart von Aluminiumchlorid bilden sich 5-Acetyl-acenaphthen und 5.6-Diacetyl-acenaphthen (Fleischer, Wolff, B. 53, 925; vgl. Dziewonski, Spirer, Bl. Acad. polon. [A] 1931, 232). Bei der Reaktion mit Bromacetylbromid in Gegenwart von Aluminiumchlorid entstehen 5-Bromacetyl-acenaphthen und eine Verbindung vom Schmelzpunkt 94—96° (Fl., W., B. 53, 930). Einw. von Öxalylchlorid in Gegenwart von Aluminiumchlorid: MAYER, KAUFMANN, B. 53, 290; Fl., W., B. 53, 928. Liefert beim Behandeln mit Oxalylbromid in Schwefelkohlenstoff bei Gegenwart von Aluminiumchlorid 5.6-Oxalyl-acenaphthen (Syst. Nr. 680a) (Fl., W.). Beim Erwarmen mit Malonylbromid in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff erhält man 5.6 Malonyl-acenaphthen (Syst. Nr. 681) (FL., HITTEL, W., B. 53, 1850). Acenaphthen reagiert mit 4.4 Bis-dimethylamino-benzophenon und Natrium in Benzol bei 85—90° unter Bildung von Bis-[4-dimethylamino-phenyl]-[acenaphthenyl-(1)]-carbinol (Syst. Nr. 1868) (Rodd, Linch, Soc. 1927, 2187). Beim Erhitzen mit Chinolinsäureanhydrid in Benzol bei Gegenwart von Aluminiumchlorid entsteht 3-Acenaphthoyl-pyridin-carbon-säure-(2) (Syst. Nr. 3366) (Јернсотт, *Am. Soc.* 50, 1190).

## Analytisches; additionelle Verbindungen des Acenaphthens.

Uber Farbreaktionen mit Aldehyden in Gegenwart von konz. Schwefelsäure vgl. noch DE FAZI, G. 51 I, 328. Mikrochemischer Nachweis in Form von additionellen Verbindungen mit 2.7-Dinitro-phenanthrenchinon und Chrysamminsäure: Behrens-Kley, Organische mikrochemische Analyse [Leipzig 1922], S. 9.

Verbindung mit 1.3-Dinitro-benzol (E I 275). Lichtabsorption von Lösungen in Tetrachloräthan: v. Halban, Zimpelmann, Ph. Ch. 117, 472. — Verbindung mit 1.3.5-Trinitro-benzol C<sub>12</sub>H<sub>10</sub>+C<sub>6</sub>H<sub>3</sub>O<sub>6</sub>N<sub>3</sub> (E I 275). F: 161° (Kremann, Strzelba, M. 42, 177), 168° (Hertel, A. 451, 191). D: 1,43 (SKRAUP, EISEMANN, A. 449, 9). Bildet

Eutektika mit Acenaphthen (F: 87°; 92 Gew.-% Acenaphthen) und mit 1.3.5-Trinitro-benzol (F: 115°; 6 Gew.-% Acenaphthen) (Kr., Strz.). Lichtabsorption von Lösungen in Tetrachloräthan: v. Ha., Z., Ph. Ch. 117, 471. — Verbindung mit 3.5-Dinitro-toluol C<sub>18</sub>H<sub>10</sub> + C<sub>7</sub>H<sub>6</sub>O<sub>4</sub>N<sub>2</sub>. Durch thermische Analyse nachgewiesen (Kremann, Hönigsberg, Mauermann, M. 44, 77, 78, 80). F: 94°. Bildet Eutektika mit 3.5-Dinitro-toluol (F: 72°; 15 Gew.-% Acenaphthen) und mit Acenaphthen (F: 79°; 73 Gew.-% Acenaphthen). — Verbindung mit 2.4.6-Trinitro-toluol C<sub>18</sub>H<sub>10</sub> + C<sub>7</sub>H<sub>5</sub>O<sub>6</sub>N<sub>3</sub> (H 587; E I 276). F: 109° (Skrauf, Eisemann, A. 449, 10), 112° (Kremann, Strzelba, M. 42, 177). D: 1,49 (Sk., El.). Bildet Eutektika mit Acenaphthen (F: 81°; 82 Gew.-% Acenaphthen) und mit 2.4.6-Trinitro-toluol (F: 72°; 8 Gew.-% Acenaphthen) (Kr., Strz.).

4-Chlor-acenaphthen C<sub>12</sub>H<sub>9</sub>Cl, s. nebenstehende Formel. B. Durch Behandeln von Acenaphthen-diazoniumchlorid-(4) mit Kupfer(I)-chlorid-Lösung bei 50° (Morgan, Stanley, J. Soc. chem. Ind. 44, 495 T; C. 1926 I, 928). — Angenehm riechendes Öl. Erstarrt nicht im Kältegemisch. Schwärzt sich bei 250°, siedet nicht unterhalb 290°. — Pikrat C<sub>12</sub>H<sub>9</sub>Cl + C<sub>6</sub>H<sub>3</sub>O<sub>7</sub>N<sub>3</sub>. F: 79—80°.

5 - Chlor - acenaphthen C<sub>12</sub>H<sub>9</sub>Cl, s. nebenstehende Formel (E I 276). H<sub>2</sub>C—CH<sub>2</sub> F: 69—70° (DZIEWONSKI, ZAKRZEWSKA - BARANOWSKA, Bl. Acad. polon. [A] 1927, 65, 70; C. 1927 II, 426). — Liefert bei der Oxydation mit Natrium-dichromat in Eisessig je nach den Bedingungen 6.6′-Dichlor-2.2′-dioxo-diacenaphthenyliden-(1.1′) (Syst. Nr. 689) und 4-Chlor-naphthalsäure oder 5-Chlor-acenaphthenchinon und 4-Chlor-naphthalsäure (Dz., Z.-B.; vgl. CRMPTON, CYRIAX, C. 1909 I, 1876). Gibt bei der Einw. von Salpetersäure (D: 1,5) in wenig Eisessig 6-Chlor-5-nitro-acenaphthen und eine bei 160—166° schmelzende Verbindung (FARNELL, Soc. 123, 60; vgl. a. Dz., Z.-B.). Beim Erwärmen mit konz. Schwefelsäure auf ca. 70° bildet sich 6-Chlor-acenaphthen-sulfonsäure-(5)(?) (Dz., Z.-B.).

1.2 - Dibrom - acenaphthen, Acenaphthylendibromid  $C_{12}H_8Br_2 = C_{10}H_6$  CHBr (H 587). Liefert beim Erhitzen mit Alkohol und konz. Salzsäure 2-Oxo-diacenaphthenyliden-(1.1') (Syst. Nr. 662) und Acenaphthenon (Dziewonsky, Litynski, B. 58, 2542).

1.2.x.x-Tetrabrom-acenaphthen C<sub>12</sub>H<sub>6</sub>Br<sub>4</sub> (H 588). B. Neben überwiegenden Mengen 5-Brom-acenaphthen und anderen Produkten beim Behandeln von Acenaphthen mit Brom in Chloroform (DE Fazi, G. 53, 502, 504; R. A. L. [5] 32 I, 344). — Nadeln (aus Alkohol). F: 169—170° (Zers.). Löslich in Alkohol, Chloroform, Benzol und Eisessig, unlöslich in Äther. — Wird beim Aufbewahren am Sonnenlicht orangerot. Löslich in konz. Schwefelsäure mit grünlichgelber Farbe.

x-Tetrabrom - acenaphthen C<sub>12</sub>H<sub>6</sub>Br<sub>4</sub>. B. Aus Dibromacenaphthentetrabromid (S. 420) beim Kochen mit konzentrierter alkoholischer Kalilauge (MAYER, KAUFMANN, B. 53, 293). — Orangefarbene Krystalle (aus Ligroin). F: 180—181°.

5-Jod-acenaphthen C<sub>12</sub>H<sub>2</sub>I, s. nebenstehende Formel (EI 276). Liefert beim Behandeln mit Salpetersäure (D: 1,50) in Eisessig bei 15° 5-Jod-6-nitro-acenaphthen und 5-Jod-x-nitro-acenaphthen (MORGAN, STANLEY, J. Soc. chem. Ind. 43, 345 T; C. 1925 I, 503).

5-Nitro-acenaphthen C<sub>12</sub>H<sub>9</sub>O<sub>2</sub>N, s. nebenstehende Formel (H 588; E I 276).

B. Zur Bildung durch Nitrierung von Acenaphthen in Eisessig vgl. Rowe,
Davies, Soc. 117, 1346. — F: 101—102° (R., Da.). — Gibt bei der Oxydation
mit verschiedenen Oxydationsmitteln 4-Nitro-naphthalin-dicarbonsäure-(1.8)
(R., Da.). Liefert bei der Reduktion mit Na<sub>2</sub>S<sub>2</sub>O<sub>4</sub> in siedendem verdünntem
Alkohol 5-Amino-acenaphthen, Acenaphthen-sulfamidsäure-(5) und 5-Amino-acenaphthen-sulfonsäure-(4) (Fleischer, Schranz, B. 55, 3253, 3261; Morgan, Yarsley,
J. Soc. chem. Ind. 44, 514 T; C. 1926 I, 1171; vgl. a. R., Da.). Bei der Einw. der berechneten
Menge Chlorsulfonsäure in Nitrobenzol bei 20° bildet sich 6-Nitro-acenaphthen-sulfonsäure-(4) (Dziewonski, Orzelski, Bl. Acad. polon. [A] 1926, 347, 351; C. 1927 I, 1461).

6-Chlor-5-nitro-acenaphthen C<sub>13</sub>H<sub>8</sub>O<sub>2</sub>NCl, s. nebenstehende Formel. B. H<sub>2</sub>C—CH<sub>2</sub> Beim Behandeln von 5-Chlor-acenaphthen mit Salpetersäure (D: 1,5) in wenig Eisessig (Farnell, Soc. 123, 60; vgl. a. Dziewonski, Zakrzewska-Baranowska, Bl. Acad. polon. [A] 1927, 68, 72; C. 1927 II, 426). — Hellgelbe Nadeln (aus Alkohol). F: 136—138° (F.; Dz., Z.-B.). — Gibt bei der Oxydation mit Chromsäure 5-Chlor-4-nitro-naphthalin-dicarbonsäure-(1.8) (F.). Liefert beim Koohen mit Na<sub>2</sub>S<sub>2</sub>O<sub>4</sub> in verd. Alkohol 6-Chlor-5-amino-acenaphthen (F.; Dz., Z.-B.). Geht bei der Hydrierung in Gegenwart von Palladium in 5-Amino-acenaphthen über (F.).

- 5-Jod-4-nitro-acenaphthen  $C_{12}H_8O_2NI$ , s. nebenstehende Formel. B.  $H_2C$ — $CH_2$  Aus diazotiertem 4-Nitro-5-amino-acenaphthen beim Erwärmen mit Kalium-jodid-Lösung auf  $70^o$  (Morgan, Stanley, J. Soc. chem. Ind. 43, 344 T; C. 1925 I, 503). Gelbrote Nadeln (aus Petroläther). F: 148°. Leicht löslich in Chloroform, Äther, Aceton und Benzol, schwer in Eisessig, unlöslich in Wasser. Liefert bei der Reduktion mit Zinn und siedender wäßrigalkoholischer Salzsäure 4-Amino-acenaphthen.
- 6-Jod-5-nitro-acenaphthen  $C_{12}H_8O_2NI$ , s. nebenstehende Formel. B. Neben 5-Jod-x-nitro-acenaphthen beim Behandeln von 5-Jod-acenaphthen mit Salpetersäure (D: 1,50) in Eisessig bei 15° (MORGAN, STANLEY, J. Soc. chem. Ind. 43, 345 T; C. 1925 I, 503). Gelbliche Prismen (aus Eisessig). F: 179—180°. Schwer löslich in Alkohol, leicht in anderen organischen Lösungsmitteln. Bei der Reduktion mit Zinn und siedender wäßrig-alkoholischer Salzsäure entsteht 5-Amino-acenaphthen.
- 5.6-Dinitro-acenaphthen C<sub>12</sub>H<sub>8</sub>O<sub>4</sub>N<sub>2</sub>, s. nebenstehende Formel (H 588; H<sub>2</sub>C CH<sub>2</sub> E I 277). Liefert beim Erhitzen mit Natriumdichromat in Eisessig auf 140° [4.5-Dinitro-naphthalsäure]-anhydrid (MAYER, KAUFMANN, B. 53, 292, 298). [MATERNE]

## 3. Kohlenwasserstoffe $\mathrm{C_{13}H_{12}}$ .

1. Diphenylmethan  $C_{13}H_{12} = (C_6H_5)_2CH_2$  (H 588; E I 277). Der von Klages, Heilmann (B. 37, 1452) als  $\alpha.\alpha$ -Diphenyl-butan beschriebene Kohlenwasserstoff (H 5, 618) wird auch von Blicke, Powers (Am. Soc. 51, 3378) als Diphenylmethan erkannt.

#### Bildung und Darstellung.

B. Bei 6-stdg. Erhitzen von Dicyclohexylmethan mit Schwefel auf 2800 (IPATJEW, Dolgow, C. r. 185, 1485; Bl. [4] 43, 247; X. 60, 512). Beim Einleiten von Chlorwasserstoff in ein Gemisch von Benzol und 40%iger Formaldehyd-Lösung in Gegenwart von gepulvertem Zinkchlorid bei ca. 60°, neben anderen Produkten (Blanc, Bl. [4] 33, 315; C. 1923 I, 1571). In geringer Menge neben anderen Produkten beim Kochen von Chloroform oder Tetrachlorkohlenstoff mit Benzol in Gegenwart von zuvor im Wasserstoff-Strom auf 5000 erhitztem Aluminium (RAY, DUTT, J. indian chem. Soc. 5, 108; C. 1928 I, 2371). In geringer Menge bei der Einw. von Natrium auf Chlorbenzol und Toluol, neben anderen Produkten (BACH-MANN, CLARKE, Am. Soc. 49, 2095). Diphenylmethan entsteht aus Benzylchlorid und Benzol in Gegenwart von zuvor im Wasserstoff-Strom auf 500° erhitztem Aluminium bei Siedetemperatur (R., D.), in Gegenwart von Chrompulver bei Siedetemperatur (CHAKRABARTY, D., J. indian chem. Soc. 5, 516; C. 1929 I, 500), in Gegenwart der Aluminiumchloridverbindung des Nitrobenzols bei 30° (OLIVIER, R. 45, 818), in Gegenwart von Zirkon(IV)-chlorid bei Zimmertemperatur, neben anderen Produkten (Krishnamurti, C. 1929 I, 2156) oder in Gegenwart von Titan(IV)-chlorid (Stadnikow, Kaschtanow, B. 61, 1390; ж. 60, 1119) oder von Eisenpyriten (SMYTHE, Soc. 121, 1276) bei Siedetemperatur. Bildet sich in analoger Weise aus Benzol beim Kochen mit Benzylbromid in Gegenwart von Zinn(IV)-chlorid (Pfeiffer, Eister, J. pr. [2] 124, 182), bei allmählicher Einw. von Benzylalkohol und 70% iger Schwefelsäure (H. Meyer, Bernhauer, M. 53/54, 725), beim Erwärmen mit Äthylbenzyläther und Titan(IV)-chlorid auf dem Wasserbad, neben anderen Produkten (STADNIKOW, KASCHTANOW, B. 61, 1389; Ж. 60, 1118) und beim Kochen mit Benzolsulfonsäure-benzylester, neben anderen Produkten (Földi, B. 61, 1612). Neben anderen Produkten bei der Einw. von  $\omega$ . $\omega'$ -Dibrom-m-xylol auf Benzol in Gegenwart von Aluminiumchlorid bei 30—35° (Reindel, Siegel, B. 5°, 1553). Beim Erhitzen von  $\beta.\beta$ -Dichlor- $\alpha.\alpha$ -diphenyläthylen mit 2 Mol trocknem Natriummethylat, neben anderen Produkten (Staudinger, RATHSAM, Helv. 5, 648, 654).

Bei der Reduktion von Benzhydrol mit amalgamiertem Zink und siedender alkoholischer Salzsäure (Steinkoff, Wolfram, A. 430, 137). Durch Hydrierung von Benzoesäure-benzhydrylester in Gegenwart von Palladium-Bariumsulfat in siedendem Xylol (Rosenmund, Zetzsche, B. 54, 2040). Bei der thermischen Zersetzung von Dibenzhydrylsulfid bei ca. 290° im Kohlensäurestrom (Schönberg, Mitarb., B. 62, 2554) und von Dibenzhydryldisulfid (Staudinger, Freudenberger, B. 61, 1583; vgl. a. Wuyts, B. 36 [1903], 864). Bei der Hydrierung von 4-Oxy-triphenylcarbinol in Gegenwart von Nickeloxyd in Cyclohexan bei 220° unter 80—100 Atm. Anfangsdruck (Ipatjew, Dolgow, C. r. 185, 1484;

Bl. [4] 43, 245; 36. 60, 510). Diphenylmethan bildet sich aus Benzophenon bei der Hydrierung in Gegenwart von kolloidalem Palladium in Aceton bei 170 (STRAUS, GRINDEL, A. 439, 301), bei der Reduktion mit amalgamiertem Zink und siedender alkoholischer Salzsäure, neben anderen Produkten (STEINKOPF, WOLFRAM, A. 430, 137), beim Erhitzen mit Wasserstoff auf 400—430° unter Druck, neben geringeren Mengen Benzol (IPATJEW, PETROW, B. 60, 1958, 1961; Ж. 59, 910), beim Erhitzen mit Wasserstoff und feinverteiltem Kupfer auf 120° bzw. 190° unter 50—67 Atm. Druck, neben anderen Produkten (Kubota, Hayashi, Bl. chem. Soc. Japan 1, 15, 68; C. 1926 I, 2911; II, 200), bei der Einw. von Natrium und überschüssigem Ammoniumchlorid in flüssigem Ammoniak zwischen — 80° und —50° (Schlubach, Miedel, B. 57, 1685) und bei der Destillation mit Aluminium im Wasserstoff- oder Kohlendioxyd-Strom bei Dunkelrotglut (RAY, DUTT, J. indian chem. Soc. 5, 106; C. 1928 I, 2370). In geringer Menge beim Leiten von Benzophenonoxim über Kupfer in einer Wasserstoff-Atmosphäre bei 200°, neben anderen Produkten (Yamaguchi, Bl. chem. Soc. Japan 1, 39; C. 1926 I, 3538). Neben anderen Produkten bei der Hydrierung von Benzophenonanil in Gegenwart von Palladium-Bariumsulfat in Eisessig (ROSENMUND, PFANKUCH, B. 56, 2262). Beim Einleiten von Schwefelwasserstoff in geschmolzenes Benzophenonanil (REDDELIEN, DANILOF, B. 54, 3136). Aus Diphenyldiazomethan durch Einw. von Wasserstoff bei Gegenwart von kolloidalem Palladium in ca. 60 % igem Alkohol (Staudinger, Gaule, Siegwart, Helv. 4, 215). Aus Dibenzhydrylketon durch Zinkstaubdestillation oder durch Erhitzen mit Jodwasserstoffsäure (D: 1,70) und rotem Phosphor in Eisessig im Rohr auf 170—175°, neben anderen Produkten (Vorländer, Rack, B. 56, 1126, 1129). Entsteht entgegen der Angabe von Nierenstein (B. 38, 3642) nicht bei der Destillation von Tannin mit Zinkstaub (J. Dekker, Die Gerbstoffe [Berlin 1913], S. 331).

Darstellung durch allmähliche Einw. von Benzylchlorid auf heißes Benzol bei Gegenwart von amalgamiertem Aluminium: HARTMAN, PHILLIPS, Org. Synth. 14 [1934], 34.

#### Physikalische Eigenschaften.

F: 26—27° (V. Auwers, Frühling, A. 422, 221; Orndorff, Mitarb., Am. Soc. 49, 1541), 27° (Danilow, Ж. 52, 413).  $Kp_{760}$ : 265,6° (Lecar, R. 48, 244);  $Kp_{745}$ : 261,0—261,8° (McVicker, Marsh, Stewart, Soc. 127, 999);  $Kp_{18}$ : 144° (Rosemmund, Zetzsche, B. 54, 2040);  $Kp_{16}$ : 133—135° (V. Au., Fr.);  $Kp_{11}$ : 128—129° (Nametrin, Kurssanow, Ж. 60, 918);  $Kp_{1}$ : 99—102° (Földi, B. 61, 1612);  $Kp_{0.05}$ : 68° (Staudinger, Freudenberger, B. 61, 1583).  $D_{1}^{\circ}$ : 1,139 (Ziegler, Ditzel, A. 473, 201).  $D_{1}^{\circ}$ : 1,006 (flüssig) (V. Au., Fr.);  $D_{2}^{\circ}$ : 1,090 (fest);  $D_{2}^{\circ}$ : 1,008 (flüssig);  $D_{2}^{\circ}$ : 0,996 (Estermann, Ph. Ch. [B] 1, 154). Viscosität von unterkühltem Diphenylmethan bei 20°: Vorländer, Walter, Ph. Ch. 118, 16. Parachor: Sugden, Soc. 125, 1181.  $n_{2}^{\infty}$ : 1,5715;  $n_{2}^{\infty}$ : 1,5768;  $n_{2}^{\infty}$ : 1,5918;  $n_{2}^{\infty}$ : 1,6048 (V. Au., Fr.). Ultraviolett-Absorptionsspektrum in Hexan: Castille, Bl. Soc. chim. Belg. 36, 296; Bl. Acad. Belgique [5] 12, 505; C. 1927 I, 1126; in Alkohol: Orndorff, Mitarb., Am. Soc. 49, 1541. Zum Absorptionsspektrum des Dampfes vgl. C.; Henri, C. r. 177, 1039. Kathoden-luminescenzspektrum: Marsh. Soc. 1927, 128. Röntgenluminescenzspektrum: De Beauleu. luminescenzspektrum: Marsh, Soc. 1927, 128. Röntgenluminescenzspektrum: DE BEAUJEU, J. Phys. Rad. [6] 4, 263; C. 1924 I, 134. Tesla-Luminescenzspektrum: McVicker, Marsh, Stewart, Soc. 127, 999. Raman-Effekt: Petrikaln, Hochberg, Ph. Ch. [B] 3, 227. Beugung von Röntgenstrahlen an flüssigem Diphenylmethan: Krishnamurri, *Indian J. Phys.* 3, 237; C. 1929 I, 840. Dielektr.-Konst. von festem Diphenylmethan bei 20°: 2,47; von flüssigem Diphenylmethan bei 20°: 2,564; bei 50°: 2,522 (ESTERMANN, *Ph. Ch.* [B] 1, 154). Dipolmoment  $\mu \times 10^{18}$ : 0,37 (verd. Lösung; Benzol sowie Molekularstrahl-Methode) (E., Ph. Ch. [B] 1, 154, 167).

Binäre, Diphenylmethan enthaltende Azeotrope.

| Komponente                                    | Кр <sub>760</sub><br>0                                 | Gehalt an<br>Diphenyl-<br>methan<br>in Gew% | Komponente                                                                                                                                                    | Кр <sub>760</sub><br>0                       | Gehalt an<br>Diphenyl-<br>methan<br>in Gew% |
|-----------------------------------------------|--------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------|
| α-Chlor-naphthalin b Clykol 2 Brenzcatechin 4 | 262,55<br>193,3<br>243,05<br>258,95<br>264,8<br>248,95 | ca. 7<br>31,5<br>35<br>74<br>ca. 80<br>18   | Phenylessigsäure <sup>5</sup> )<br>Acetamid <sup>2</sup> )<br>Propionamid <sup>3</sup> )<br>Methylcinnamat <sup>1</sup> ).<br>Diisoamyloxalat <sup>5</sup> ). | 258,7<br>215,15<br>219,2<br>261,55<br>265,35 | 65<br>43,5<br>ca. 40<br>ca. 5<br>86         |

<sup>1)</sup> LECAT, R. 46, 244. — 1) L., R. 47, 16, 17. — 1) L., Ann. Soc. scient. Bruxelles 47 I [1927], 154. - 4) L., Ann. Soc. scient. Bruxelles 48 I [1928], 15, 118, 119. - 5) L., Ann. Soc. scient. Bruxelles 49 [1929], 19, 24, 111.

Leicht löslich in flüssigem Schwefeldioxyd mit gelber Farbe, unlöslich in flüssigem Ammoniak (DE Carli, G. 57, 351). Thermische Analyse der binären Systeme mit 3- und 4-Nitro-phenol, Pikrinsäure,  $\alpha$ - und  $\beta$ -Naphthol, Brenzcatechin, Resorcin, Hydrochinon, Pyrogallol,  $\alpha$ - und  $\beta$ -Naphthylamin und mit p-Phenylendiamin: KREMANN, FRITSCH, M. Fyrogalioi, a. und p. Naphthylamin und int p. Fieldylandiamin: Rremann, frieder, M. 41, 633—653. Dichte und Brechungsindices einer Lösung in Chinolin bei 15,6°. Kroll-Pfeiffer, A. 430, 222. Kontaktwinkel mit Wasser: Nietz, J. phys. Chem. 32, 261. Verhalten der Krystalle bei Berührung mit tropfendem Quecksilber: Moll, Ph. Ch. 136, 183; vgl. Volmer, Adhikari, Z. Phys. 35 [1925], 170. Breitet sich nicht auf einer Wasseroberfläche aus (Harkins, Feldman, Am. Soc. 44, 2672; vgl. jedoch Nietz).

#### Chemisches Verhalten.

Diphenylmethan geht beim langsamen Überleiten über platinierte Kohle bei 300° in Fluoren über (Zelinsky, Titz, Gawerdowskaja, B. 59, 2591). Liefert bei der Einw. von Aluminiumchlorid sowohl bei gewöhnlicher wie auch bei erhöhter Temperatur Benzol, Anthracen und wahrscheinlich 1.4-Dibenzyl-benzol (Scholl, Seer, B. 55, 338). Liefert beim Kochen mit Bleitetraacetat in Eisessig Benzhydrylacetat (DIMROTH, SCHWEIZER, B. 56, 1384). Wird weder durch Silberdichromat und Schwefelsäure noch durch Chromtrioxyd und Schwefelsäure vollständig zu Kohlendioxyd oxydiert (Simon, C. r. 177, 266). Liefert beim Erhitzen mit Wasserstoff unter 60 Atm. Anfangsdruck in Gegenwart von Tonerde und Kupferoxyd auf 500° wenig Benzol (IPATJEW, ORLOW, B. 60, 1968). Spaltet sich beim Durchleiten durch ein verzinntes Eisenrohr im Wasserstoffstrom bei 760—770° weitgehend unter Bildung von Benzol, Methan und wenig Diphenyl (F. Fischer, Schrader, Meyer, Abh. Kenninis Kohle 5, 427; C. 1922 IV, 1039). Läßt sich bei Gegenwart von Platinoxyd in Eisessig bei 25—30° und 2—3 Atm. Druck leicht zu Dicyclohexylmethan hydrieren (Adams, Marshall, Am. Soc. 50, 1972). Gibt mit Natriumammonium im Autoklaven bei Zimmertemperatur nur langsam und in geringer Menge eine in Ather unlösliche Natriumverbindung (Lebeau, Picon, C. r. 173, 84). Liefert beim Kochen mit Aluminiumpulver wenig 1.1.2.2-Tetraphenyl-äthan (Postowsky, Lugowkin, J. pr. [2] 122, 145; 38. 61, 1283). Läßt man Diphenylmethan auf Dischwefeldichlorid in Schwefelkohlenstoff bei Gegenwart von amalgamiertem Aluminium einwirken, so erhält man x-Dibenzyl-thianthren (Syst. Nr. 2684) (Rãy, Soc. 119, 1965).

Gibt beim Behandeln mit Cyclohexen bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff 4-Cyclohexyl-diphenylmethan und 4-Benzyl-diphenyl; mit 1-Methyl-cyclohexen-(1) erhält man in der Hauptsache ein Gemisch von isomeren Methylcyclohexyl-diphenylmethanen (Bodroux, A. ch. [10] 11, 529, 574). Liefert bei der Behandlung mit Benzylalkohol in Gegenwart von Phosphorpentoxyd 1.4-Dibenzyl-benzol (NAMETKIN, KURSSANOW, Ж. 60, 919; С. 1929 I, 996). Liefert beim Erhitzen mit Benzolsulfonsäure-benzylester auf 110° in mäßiger Menge 1.2-Dibenzyl-benzol, das mit wenig 1.4-Dibenzyl-benzol-benzyl-benzol (Räyny 1.4-Dibenzyl-benzyl-benzol-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benzyl-benz benzol verunreinigt ist, und andere Produkte (FÖLDI, B. 61, 1613). Kondensiert sich mit Benzoylchlorid in Gegenwart von Aluminiumchlorid auf dem Wasserbad zu 4.4'-Dibenzoyldiphenylmethan (WITTIG, LEO, B. 61, 858).

Verwendung als Fixiermittel in der Riechstoffindustrie: CLEMENTE, Riechstoffind. 1927, 130; C. 1927 II, 1405.

#### Substitutionsprodukte des Diphenylmethans.

2 - Chlor - diphenylmethan  $C_{13}H_{11}Cl = C_6H_5 \cdot CH_2 \cdot C_6H_4Cl$ . B. Beim Kochen von 2-Chlor-diphenylcarbinol mit Jodwasserstoff-Eisessig (Tschitschibabin, Schessleb, 3K. 56, 151; C. 1926 I, 919). — F: 13,2°. Kp<sub>19</sub>: 164,5°. D<sup>0</sup> (unterkühlt): 1,1530; D<sup>1,1,2</sup>; 1,1385.

4-Chlor-diphenylmethan C<sub>13</sub>H<sub>11</sub>Cl = C<sub>6</sub>H<sub>5</sub>·CH<sub>3</sub>·C<sub>6</sub>H<sub>4</sub>Cl (H 590; E I 278). B. Durch kurzes Kochen von 4-Chlor-diphenylcarbinol mit Jodwasserstoff-Eisessig (TSCHITSCHIBABIN, SCHESSLER, Ж. 58, 150; C. 1926 I, 919). — Erstarrt beim Abkühlen krystallinisch. F: 7,5°.  $Kp_{11}$ : 160°.  $D_0^0$  (unterkühlt): 1,1408;  $D_0^{20}$ : 1,1247.

Diphenylchlormethan, Diphenylmethylchlorid, Benzhydrylchlorid  $C_{13}H_{11}Cl=C_6H_5\cdot CHCl\cdot C_6H_5$  (H 590; E I 278). Diphenylchlormethan hat in der von Klages, Heilmann (B. 37, 1451) als  $\alpha$ -Chlor- $\alpha$ . $\alpha$ -diphenyl-butan (H 5, 618) beschriebenen Ver-

bindung vorgelegen (BLICKE, POWERS, Am. Soc. 51, 3378).

B. Beim Kochen von Benzhydrol mit Thionylchlorid in Toluol (GILMAN, KIRBY, Am. Soc. 48, 1735). Durch Einleiten von Chlorwasserstoff in eine Suspension von Dibenzhydryläther in Benzol bei Zimmertemperatur (WARD, Soc. 1927, 2289). Neben anderen Produkten bei der Einw. einer äther. Lösung von Diphenylbrommethan und Chlorcyan auf Magnesium GRIONARD, ONO, Bl. [4] 39, 1594). — F: 13—14° (GR., O.), 17—18° (NORRIS, BANTA, Am. Soc. 50, 1807), 18° (unkorr.) (GI., K.), 20,5° (W.), Kp<sub>13</sub>: 169—170° (GR., O.); Kp<sub>16</sub>: 167° (N., B.); Kp<sub>15</sub>: 165,5°; Kp<sub>18</sub>: 158,5—159,5° (W.); Kp<sub>13</sub>: 161—162° (unkorr.) (GI., K.). D<sub>4</sub>,5; 1,1398;  $n_0^{18,5}$ : 1,5959 (Gr., O.). Verändert die Leitfähigkeit von flüssigem Schwefeldioxyd nicht (Straus, Dützmann, J. pr. [2] 103, 42).

Liefert mit Magnesium in Äther hauptsächlich 1.1.2.2-Tetraphenyl-äthan und nur wenig Benzhydrylmagnesiumchlorid; die Reaktion wird durch Phenylisocyanat oder Dimethylsulfat verhindert (GILMAN, KIRBY, Am. Soc. 48, 1735). Leitet man während der Grignardierung Kohlendioxyd ein, so erhält man in leidlicher Ausbeute Diphenylessigsäure (G., K.). Liefert bei mehrtägiger Einw. von absolutem oder verdünntem Alkohol, wäßrig-alkoholischer Natronlauge oder Natriumäthylat-Lösung bei 25° Athylbenzhydryläther und wenig Benzhydrol (WARD, Soc. 1927, 2289). Geschwindigkeit dieser Reaktionen bei 25° und 35°: W.; Geschwindigkeit der Umsetzung mit absolutem und verdünntem Alkohol bei 0° und 25°: Norris, Morton, Am. Soc. 50, 1800; N., Ph. Ch. 130, 664; vgl. a. N., Banta, Am. Soc. 50, 1806; mit Isopropylalkohol bei 25°: N., B. Liefert beim Erhitzen mit 1 Mol Phenol auf 110°, am besten in Gegenwart von Zinkchlorid, 4-Oxy-triphenylmethan und 2.4-Dibenzhydrylphenol (?), beim Erhitzen mit 1/3 Mol Phenol auf ca. 180° 2.4.6-Tribenzhydryl-phenol (?) und 1.1.2.2-Tetraphenyläthan (van Alphen, R. 46, 799). Verbindet sich mit 4-Oxy-benzaldehyd auf dem Wasserbad unter Chlorwasserstoff-Entwicklung und Bildung einer Verbindung C<sub>33</sub>H<sub>27</sub>O<sub>2</sub>Cl (s. bei 4-Oxy-benzaldehyd, Syst. Nr. 746) (Busch, Knoll, B. 60, 2253).

Löst sich in konz. Schwefelsäure unter Chlorwasserstoff-Entwicklung mit intensiv rotgelber Farbe; gibt mit Zinn(IV)-chlorid in Benzol eine gelbe, ohne Verdünnungsmittel eine orangegelbe Färbung (STRAUS, DÜTZMANN, J. pr. [2] 103, 42).

- 4.4'-Dichlor-diphenylmethan  $C_{13}H_{10}Cl_2 = C_6H_4Cl\cdot CH_2\cdot C_6H_4Cl$  (H 590). B. Aus Chlorbenzol und Bis-chlormethyl-äther in Gegenwart von konz. Schwefelsäure bei 40° (STEPHEN, SHORT, GLADDING, Soc. 117, 522). Bei Einw. von konz. Schwefelsäure auf eine erkaltete Schmelze von 4-Chlor-benzylchlorid und Chlorbenzol (St., Sh., Gl.). Bei der Einw. von Kupfer(I)-chlorid auf diazotiertes 4.4'-Diamino-diphenylmethan in konz. Salzsäure unter Kühlung und Zersetzung des Reaktionsprodukts bei 100° (Le Fèvre, Turner, Soc. 1927, 1120). Nadeln (aus Methanol). F: 55° (St., Sh., Gl.), 55—56° (Le F., T.). Kp<sub>18</sub>: 186—190° (Le F., T.); Kp<sub>15</sub>: 208—210° (St., Sh., Gl.). Wird durch kalte Chromessigsäure zu 4.4'-Dichlor-benzophenon oxydiert (St., Sh., Gl.). Liefert bei der Einw. von Salpetersäure (D: 1,5) unter Kühlung 4.4'-Dichlor-3.3'-dinitro-diphenylmethan (Le F., T.), bei der Einw. von Salpetersäure (D: 1,42) auf dem Wasserbad 4.4'-Dichlor-3.3'-dinitro-diphenylmethan und 4.4'-Dichlor-3.3'-dinitro-benzophenon (St., Sh., Gl.).
- $2 \cdot \alpha$ -Dichlor-diphenylmethan,  $2 \cdot \text{Chlor-diphenylchlormethan}$ ,  $2 \cdot \text{Chlor-benz-hydrylchlorid}$   $C_{13}H_{10}Cl_2 = C_6H_5 \cdot \text{CHCl} \cdot C_6H_4\text{Cl.}$  B. Bei der Einw. von Chlorwasserstoff auf  $2 \cdot \text{Chlor-benzhydrol}$  in Äther oder Benzol (Norris, Banta, Am.Soc. 50, 1807). Zersetzt sich bei  $90^\circ$ . Geschwindigkeit der Umsetzung mit Alkohol bei  $25^\circ$ : N., B.; vgl. a. N., Ph.Ch. 130, 665.
- 8.  $\alpha$  Dichlor-diphenylmethan, 3-Chlor-diphenylchlormethan, 3-Chlor-benzhydrylchlorid  $C_{13}H_{10}Cl_2=C_eH_5$ ·CHCl· $C_eH_4$ Cl. B. Bei der Einw. von Chlorwasserstoff auf 3-Chlor-benzhydrol in Petroläther und Benzol (Norris, Blake, Am. Soc. 50, 1812). Öl. Erstarrt nicht bei —10°. Geschwindigkeit der Umsetzung mit Alkohol bei 25°: N., Bl.; vgl. a. N., Banta, Am. Soc. 50, 1804; N., Ph. Ch. 130, 665.
- 4.  $\alpha$  Dichlor diphenylmethan, 4 Chlor diphenylchlormethan, 4 Chlor benzhydrylchlorid  $C_{13}H_{10}Cl_2=C_6H_5\cdot CHCl\cdot C_6H_4Cl.$  B. Bei der Einw. von Chlorwasserstoff auf 4-Chlor-benzhydrol in Ather oder Benzol (Norris, Banta, Am. Soc. 50, 1807). Kp<sub>6</sub>: 172—173°. Geschwindigkeit der Umsetzung mit Alkohol bei 25°: N., B.; vgl. a. N., Ph. Ch. 130, 665.

Diphenyldichlormethan, Benzophenonchlorid  $C_{13}H_{10}Cl_2=C_6H_5\cdot CCl_2\cdot C_6H_5$  (H 590; E I 278). B. Beim Erhitzen von Tetraphenyläthylen mit Phosphorpentachlorid auf 150° (MAGIDSON, B. 58, 439). Beim Einleiten von Chlor in Thiobenzophenon (Staudinger, Freudenberger, B. 61, 1582). — Breitet sich nicht auf einer Wasseroberfläche aus (Harkins, Freidman, Am. Soc. 44, 2672). — Liefert beim Kochen mit wenig 60 %igem Alkohol (Mag.) oder bei der Einw. von Äther in Gegenwart von Aluminiumchlorid (Norris, Young, Am. Soc. 46, 2582) Benzophenon. Liefert mit Triphenylmethylnatrium in Äther unter Stickstoff Pentaphenyläthyl (Schlenk, Mark, B. 55, 2295). Beim Behandeln mit wasserfreier Magnesiummethylat-Lösung erhält man Benzophenondimethylacetal; bei Anwendung von feuchtem Methanol entstehen Benzhydrol, Benzpinakon und andere Produkte (Zechmeister, Rom, A. 468, 127). Liefert bei längerem Erhitzen mit Natriumisoamylat-Lösung auf 130—170° Benzophenon-diisoamylacetal (Mackenzie, Soc. 121, 1696); bei der Umsetzung mit Natrium-tert.-amylat-Lösung in Xylol erfolgt Reduktion zu Tetraphenyläthylen (Mack.). Gibt bei 25-stdg. Erhitzen mit Phenol auf 135—155° 4.4′-Dioxy-tetraphenylmethan; die analoge Reaktion mit m-Kresol verläuft außerst langsam, die mit p-Kresol

dagegen schon bei Zimmertemperatur sehr heftig (Mack.). Liefert mit Methylphenylsulfid bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff auf dem Wasserbad 4-Methylmercapto-triphenylcarbinol (Brand, Vogt, J. pr. [2] 107, 387). Beim Erhitzen mit Brenzcatechin-dimethyläther in Schwefelkohlenstoff bei Gegenwart von Aluminiumchlorid entsteht 3.4-Dimethoxy-triphenylcarbinol; analog erhält man mit Resorcin-dimethyläther oder mit Hydrochinon-dimethyläther 2.4-Dimethoxy- bzw. 2.5-Dimethoxy-triphenylcarbinol (Gomberg, Forrester, Am. Soc. 47, 2386). Liefert mit Benzophenon-dinatrium in Äther  $\alpha$ -Benzpinakolin ( $C_6H_5$ )<sub>2</sub>C C( $C_6H_5$ )<sub>2</sub>, mit Fluorenon-dinatrium in Äther Diphenylphenanthron (Schlenk, Bergmann, A. 463, 208). Gibt beim Erwärmen mit Thioessigsäure im Kohlendioxyd-Strom auf 80—100° Thiobenzophenon (Schönberg, Schütz, Nickel, B. 61, 1378). Liefert bei der Einw. von überschüssiger 40%iger wäßriger Methylamin-Lösung Benzophenonmethylimid (Sommelet, C. r. 184, 1338). Analoge Reaktionen mit anderen primären Aminen verlaufen am besten in Pyridin-Lösung (S.). Kondensiert sich mit Thiophen bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff unter Bildung geringer Mengen Diphenylathinellen (Minnis, Am. Soc. 51, 2144).

 $[(C_6H_5)_2CCl]SnCl_5$ . Zur Konstitution vgl. Hantzsch, B. 55, 959. B. Aus Benzophenon-chlorid und Zinn(IV)-chlorid in wasserfreiem Chloroform (H., B. 55, 969). — Tief orange-farbene Krystalle. Schwer löslich in Chloroform mit intensiv gelber Farbe. Außerhalb der Mutterlauge leicht zersetzlich (H.).

4.4'.a-Trichlor-diphenylmethan, 4.4'-Dichlor-diphenylchlormethan, 4.4'-Dichlor-benzhydrylchlorid C<sub>13</sub>H<sub>9</sub>Cl<sub>3</sub>=C<sub>6</sub>H<sub>4</sub>Cl·CHCl·C<sub>6</sub>H<sub>4</sub>Cl (H 592). B. Bei der Einw. von Chlorwasserstoff auf 4.4'-Dichlor-benzhydrol in Äther oder Benzol (Norris, Banta, Am. Soc. 50, 1807). — F: 63°. — Geschwindigkeit der Umsetzung mit Alkohol und Isopropylalkohol bei 25°: N., B.; vgl. a. N., Ph. Ch. 130, 665.

Diphenylbrommethan, Diphenylmethylbromid, Benzhydrylbromid  $C_{13}H_{11}Br = C_6H_5 \cdot CHBr \cdot C_6H_5$  (H 592; E I 279). B. Bei der Einw. von Phosphortribromid auf Benzhydrol in Tetrachlorkohlenstoff, anfangs bei Zimmertemperatur, dann bei 60—70° (Claisen, A. 442, 245, Anm. 2). Reinigung durch Vakuumdestillation: Schlenk, Bergmann, A. 463, 196, Anm. 2. — Kp<sub>26</sub>: 193° (Schl., B.).

Bei allmählicher Einw. einer äther. Lösung von Diphenylbrommethan auf aktiviertes Magnesium erhält man 1.1.2.-Tetraphenyl-timen Spuren von Benzhydrylmagnesium-

bromid; erfolgt die Einw. unter gleichzeitigem Einleiten von Kohlendioxyd, so erhält man 1.1.2.2-Tetraphenyl-äthan und Diphenylessigsäure (Bert, C. r. 177, 325). Beim Kochen mit Quecksilber in Toluol entsteht ebenfalls 1.1.2.2-Tetraphenyl-äthan (Whitmore, Thur-MAN, Am. Soc. 51, 1500). Diphenylbrommethan gibt beim Kochen mit Benzol in Gegenwart von Zinn(IV)-chlorid Triphenylmethan (Pfeiffer, Eistert, J. pr. [2] 124, 183). Liefert mit Fluorenlithium oder Fluorennatrium in Äther hauptsächlich 9-Benzhydryl-fluoren (Schlenk, Bergmann, A. 463, 196). Gibt beim Kochen mit methylalkoholischer Kalilauge Methylbenzhydryläther (Bergmann, Hervey, B. 62, 915). Verharzt bei der Einw. von Dimethylsulfat bei ca. 150° unter Entwicklung von Bromwasserstoff und Schwefeldioxyd (Bert). Liefert beim Erwärmen mit 1 Mol Phenol 4-Benzhydryl-phenol und geringe Mengen 2-Benzhydryl-phenol, 2.4-Dibenzhydryl-phenol und Phenylbenzhydryläther (Busch, Knoll, B. 60, 2247). Gibt mit Natriumphenolat in siedendem Ather 2-Benzhydryl-phenol und sehr wenig Phenylbenzhydryläther (B., Kn.), in Benzol 2-Benzhydryl-phenol und große Mengen harziger Produkte (Claisen, A. 442, 245), bei Gegenwart von freiem Phenol in äther. Lösung annähernd gleiche Mengen 2-Benzhydryl-phenol und Phenylbenzhydryläther (Schorigin, B. 59, 2508; B., Kn.), in alkoh. Lösung überwiegend Athylbenzhydryläther (B., Kn.). Bei der Einw. von Diphenylbrommethan auf p-Kresol oder Natrium-p-kresolat unter verschiedenen Bedingungen erhält man nur 2-Benzhydryl-p-kresol und 2.6-Dibenzhydryl-p-kresol (B., Kn.). Liefert mit Thiophenol bei  $60-70^{\circ}$  Phenylbenzhydrylsulfid, mit  $\alpha$ -Thionaphthol α-Naphthyl-benzhydryl-sulfid (Knoll, J. pr. [2] 113, 42). Gibt beim Kochen mit Benzhydrylmercaptan in Benzol Dibenzhydrylsulfid (Schönberg, Schütz, Nickel, B. 61, 2176). Eine mercaptan in Benzoi Dibenzhydrylsulfid (SCHONBERG, SCHUTZ, NICKEL, B. 61, 2776). Eine äther. Lösung von Diphenylbrommethan und Chlorcyan gibt bei der Einw. auf Magnesium Diphenylchlormethan, wenig Diphenylacetonitril und 1.1.2.2-Tetraphenyl-äthan (GRIGNARD, Ono, Bl. [4] 39, 1594). Liefert bei der Einw. von Trimethylamin in Benzol Trimethylbenzhydrylammoniumbromid (SOMMELET, C. r. 180, 76). Mit N-Phenylhydroxylamin in Gegenwart von krystallwasserhaltigem Natriumacetat erhält man N-Phenyl-N-benzhydryl-hydroxylamin (RUPE, WITTWER, Helv. 5, 219). Liefert bei tagelangem Kochen mit Quecksilberdibutyl in Toluol als Hauptprodukt Butylquecksilberbromid neben 1.1.2.2-Tetraphenyl-sthan und einem bei 277—2789 siedenden Ol. [Rutyldiphenylmethan (2)] (WHITTWER) äthan und einem bei 277—278° siedenden Ol [Butyldiphenylmethan (?)] (WHITMORE, THURMAN, Am. Soc. 51, 1500). Bei tagelangem Kochen mit überschüssigem Quecksilber. diphenyl in Toluol entsteht Triphenylmethan, mit Quecksilber-di-p-tolyl Diphenyl-p-tolylmethan (WH., TH.).

- α-Chlor-4-brom-diphenylmethan, 4-Brom-diphenylchlormethan, 4-Brom-benz-hydrylchlorid  $C_{13}H_{10}ClBr = C_6H_5 \cdot CHCl \cdot C_6H_4Br$ . B. Bei der Einw. von Chlorwasserstoff auf 4-Brom-benzhydrol in Äther oder Benzol (Norris, Banta, Am. Soc. 50, 1807). Öl. Kp<sub>10</sub>: 188—191°. Geschwindigkeit der Umsetzung mit Alkohol bei 25°: N., Blake, Am. Soc. 50, 1810; vgl. a. N., Banta; N., Ph. Ch. 130, 665.
- 4.4'- Dichlor  $\alpha$  brom diphenylmethan, 4.4'- Dichlor diphenylbrommethan, 4.4'- Dichlor-benzhydrylbromid  $C_{13}H_9Cl_2Br=C_6H_4Cl\cdot CHBr\cdot C_6H_4Cl\cdot B$ . Beim Kochen von 4.4'- Dichlor-diphenylcarbinol mit konstant siedender Bromwasserstoffsäure (NORRIS, TIBBETTS, Am. Soc. 42, 2091). Krystalle (aus Äther). F: 70—71°. Beim Erhitzen auf 150° entsteht 4.4'.4". Tetrachlor-tetraphenyläthylen.
- 4.4'-Dibrom-diphenylmethan  $C_{13}H_{10}Br_2 = C_6H_4Br\cdot CH_2\cdot C_6H_4Br$  (H 593). B. Bei der Einw. von Bis-chlormethyl-äther auf Brombenzol in Gegenwart von Zinkchlorid-monohydrat, neben 4-Brom-benzylchlorid (STEPHEN, SHORT, GLADDING, Soc. 117, 524). Liefert mit rauchender Salpetersäure bei 0° oder mit Salpetersäure (D: 1,42) in Acetanhydrid bei ca. 30° 4.4'-Dibrom 3.3'-dinitro diphenylmethan (MENON, J. indian chem. Soc. 4, 438; C. 1928 I, 501).

Diphenyldibrommethan, Benzophenonbromid  $C_{13}H_{10}Br_2 = C_6H_5 \cdot CBr_2 \cdot C_6H_5 (H 593; E I 279)$ . Beim Einleiten von Ammoniak in eine Chloroform-Lösung von Benzophenonbromid bildet sich bromwasserstoffsaures Benzophenonimid (Moore, B. 43 [1910], 564).

- 2-Jod-diphenylmethan  $C_{13}H_{11}I=C_6H_5\cdot CH_2\cdot C_6H_4I$ . B. Bei der Behandlung von diazotiertem 2-Amino-diphenylmethan mit Kaliumjodid in salzsaurer Lösung bei Zimmertemperatur (Seidel, B. 61, 2276). Geruchlos.  $Kp_{14-17}$ : 175—185°.
- 4.4'-Dijod-diphenylmethan  $C_{13}H_{10}I_2=C_6H_4I\cdot CH_2\cdot C_6H_4I$ . B. Beim Kochen von Jodbenzol mit Formaldehyd und starker Schwefelsäure (Nastjukow, Scheljagin, J. pr. [2] 119, 304). Beim Erhitzen von diazotiertem 4.4'-Diamino-diphenylmethan mit Kaliumjodid in schwefelsaurer Lösung (Menon, J. indian chem. Soc. 4, 438; C. 1928 I, 501). Krystalle (aus Benzol oder Alkohol). F: 92—93° (N., Sch.), 93—93,5° (M.). Kp40: 238—241° (N., Sch.). Leicht löslich in den gebräuchlichen organischen Lösungsmitteln (M.). Wird durch Chromylchlorid in Schwefelkohlenstoff zu 4.4'-Dijod-benzophenon oxydiert (N., Sch.).
- 2-Nitro-diphenylmethan  $C_{13}H_{11}O_2N=C_6H_5\cdot CH_2\cdot C_6H_4\cdot NO_2$  (H 593; E I 279). Zur Darstellung nach Geigy, Königs, B. 18, 2402; Städel, A. 283, 157 vgl. Tanasescu, Bl. [4] 39, 1453. Färbt sich im Licht zuerst gelbgrün, dann gelbrot.
- **4-Nitro-diphenylmethan**  $C_{13}H_{11}O_2N = C_6H_5 \cdot CH_2 \cdot C_6H_4 \cdot NO_2$  (H 593).  $D_6^o$ : 1,278 (Ziegler, Ditzel, A. 473, 201).
- 3.5 Dinitro diphenylmethan (?) C<sub>13</sub>H<sub>10</sub>O<sub>4</sub>N<sub>2</sub>, s. nebenstehende Formel. B. In geringer Menge aus technischem, Dinitro-benzol enthaltendem Nitrobenzol und Benzolsulfonsäure benzylester bei 150° (FÖLDI, B. 61, 1613). Nadeln (aus verd. Alkohol). F: 183—185°. Leicht löslich in Alkohol, Aceton und Benzol.
- 3.3'-Dinitro-diphenylmethan  $C_{13}H_{10}O_4N_2 = O_2N \cdot C_6H_4 \cdot CH_2 \cdot C_6H_4 \cdot NO_2$  (H 595; E I 280). B. Bei der Einw. von Aluminiumchlorid auf Nitrobenzol und Chlordimethyläther, neben geringen Mengen 3-Nitro-benzylchlorid (STEPHEN, SHORT, GLADDING, Soc. 117, 525).
- 4.4'-Dichlor-3.3'-dinitro-diphenylmethan  $C_{13}H_8O_4N_2Cl_2$ , s. nebenstehende Formel. B. Aus 4.4'-Dichlor-diphenylmethan bei der Einw. von Salpetersäure (D: 1,5) unter Kühlung (LE Fèvre, Cl. CH<sub>2</sub>. CH<sub>2</sub>. Cl. Choren, beim Erwärmen mit Salpetersäure (D: 1,42) (Stephen, Short, Gladding, Soc. 117, 523). Krystalle (aus Essigsäure). F: 198—199° (LE F., T.). Löslich in Benzol, Chloroform und Alkohol, schwer löslich in Petroläther und Aceton (LE F., T.).
- 4.4'-Dibrom -3.3'-dinitro-diphenylmethan  $C_{13}H_8O_4N_2Br_2$ , s. nebenstehende Formel. B. Durch Einw. von rauchender Salpetersäure bei 0° oder von Salpetersäure (D: 1,42) in Acetanhydrid bei ca. 30° auf 4.4'-Dibrom-diphenylmethan (Menon, J. indian chem. Soc. 4, 438; C. 1928 I, 501). Gelbe Nadeln (aus Isoamylalkohol). F: 238—240°. Schwer löslich in den gewöhnlichen organischen Lösungsmitteln.
- 2.4.2'.4'-Tetranitro-diphenylmethan  $C_{13}H_8O_8N_4$ , s. nebenstehende Formel (H 596). Zur Darstellung nach Schöfff, B. 27, 2318 vgl. Matsumura, Am. Soc. 51, 817; Gulland, O2N CH2 NO2 ROBINSON, Soc. 127, 1499. F: 173° (M.). Die Lösungen in Benzol, Chloroform, Athylacetat usw. färben sich bei monatelanger Bestrahlung mit Sonnenlicht schwach grün, ohne daß eine nennenswerte chemische Veränderung festzustellen

ist (Tanasescu, Bl. [4] 39, 1453). Die Oxydation zu 2.4.2'.4'-Tetranitro-benzophenon wird vorteilhafter mit Chromschwefelsäure auf dem Wasserbad anstatt mit Chromessigsäure nach STÄDEL (A. 218 [1883], 341) ausgeführt (G., R.).

- 2. 2-Methyl-diphenyl, 2-Phenyl-toluol C<sub>13</sub>H<sub>13</sub> = C<sub>6</sub>H<sub>5</sub>·C<sub>6</sub>H<sub>4</sub>·CH<sub>3</sub> (H 596). B. Neben 1.2-Bis-o-diphenylyl-āthan bei der Einw. von Natrium auf 2-Phenyl-benzylbromid in Äther (v. Braun, Manz, A. 468, 275). Neben anderen Produkten bei längerem Erhitzen von Dibenzoylperoxyd mit Toluol auf dem Wasserbad (Gelissen, Hermans, B. 58, 478). In geringer Menge neben anderen Produkten beim Hinzufügen einer Lösung von Benzoldiazoniumchlorid zu einer Mischung von überschüssigem Toluol und überschüssiger Natronlauge bei ca. 0° oder beim Hinzufügen einer Lösung von o-Toluoldiazoniumchlorid zu einer Mischung von überschüssigem Benzol und überschüssiger Natronlauge unterhalb 5° (Gomberg, Pernert, Am. Soc. 48, 1376). Kp: 255—258° (G., P.).
- 2-Chlormethyl-diphenyl, 2-Phenyl-benzylchlorid  $C_{13}H_{11}Cl = C_6H_5 \cdot C_6H_4 \cdot CH_2Cl$ . B. Bei der Einw. von konz. Salzsäure auf 2-Phenyl-benzylalkohol bei 100° (v. Braun, Manz, A. 468, 275). Besitzt einen scharfen, die Schleimhaut stark reizenden Geruch.  $Kp_{12}$ : 154°.
- 4-Brom-2-methyl-diphenyl C<sub>13</sub>H<sub>11</sub>Br, s. nebenstehende Formel.

  B. In geringer Menge neben anderen Produkten beim Hinzufügen von Natronlauge zu einer Mischung aus Benzol und einer Lösung von 5-Bromtoluol-diazoniumchlorid-(2) (GOMBERG, PERNERT, Am. Soc. 48, 1381).

  Kp: 303—304°.
- 4'-Brom-2-methyl-diphenyl  $C_{13}H_{11}Br=C_{6}H_{4}Br\cdot C_{6}H_{4}\cdot CH_{3}$ . B. In geringer Menge neben anderen Produkten beim Hinzufügen von Natronlauge zu einer Mischung aus Toluol und einer Lösung von 4-Brom-benzol-diazoniumchlorid-(1) (GOMBERG, PERNERT, Am. Soc. 48, 1378). Kp: 303—305°.
- 2-Brommethyl-diphenyl, 2-Phenyl-benzylbromid  $C_{13}H_{11}Br = C_8H_5 \cdot C_6H_4 \cdot CH_2Br$ . B. Bei der Einw. von konz. Bromwasserstoffsäure auf 2-Phenyl-benzylalkohol bei  $100^{\circ}$  (v. Braun, Manz, 468, 275). Besitzt einen scharfen, die Schleimhäute stark reizenden Geruch.  $Kp_{12}$ :  $166^{\circ}$ . Liefert bei der Einw. von Natrium in Äther 2-Methyl-diphenyl und 1.2-Bis-o-diphenylyl-äthan.
- 3. 3-Methyl-diphenyl, 3-Phenyl-toluol  $C_{13}H_{12}=C_6H_5\cdot C_6H_4\cdot CH_3$  (H 596). B. Durch Destillation von 2-Methyl-4-phenyl-benzoesäure mit Kalk (v. Auwers, Jülicher, B. 55, 2184). Beim Hinzufügen einer Lösung von m-Toluoldiazoniumchlorid zu einer Mischung von überschüssigem Benzol und überschüssiger Natronlauge unterhalb 5° (Gomberg, Pernert, Am. Soc. 48, 1379). Gelbliches Öl. Kp: 272—274° (v. Au., J.), 267—269° (G., P.).  $D_4^{16.7}$ : 1,0182;  $n_3^{16.7}$ : 1,5975;  $n_3^{16.7}$ : 1,6044;  $n_3^{16.7}$ : 1,6239 (v. Au., J.).
- 4. 4-Methyl-diphenyl, 4-Phenyl-toluol C<sub>13</sub>H<sub>13</sub> = C<sub>6</sub>H<sub>5</sub>·C<sub>6</sub>H<sub>4</sub>·CH<sub>3</sub> (H 597). B. In geringer Menge bei der Einw. von Natrium auf Chlorbenzol und Toluol, neben anderen Produkten (Bachmann, Clarke, Am. Soc. 49, 2095). Bei allmählicher Einw. von N·Nitrosoacet-p-toluidid auf Benzol (Kliegl, Huber, B. 53, 1655). Neben anderen Produkten bei längerem Erhitzen von Dibenzoylperoxyd mit Toluol auf dem Wasserbad (Gelissen, Hermans, B. 58, 478; Dietreich, Helv. 8, 153). Zur Bildung aus Benzoldiazoniumchlorid und Toluol in Gegenwart von Aluminiumchlorid nach Möhlau, Berger, B. 26 [1893], 1997 vgl. Knowles, Am. Soc. 43, 897. In geringer Menge neben anderen Produkten beim Hinzufügen einer Lösung von Benzoldiazoniumchlorid zu einer Mischung von überschüssigem Toluol und überschüssiger Natronlauge bei ca. 0° oder, in besserer Ausbeute, beim Hinzufügen einer Lösung von p-Toluoldiazoniumchlorid zu einer Mischung von überschüssigem Benzol und überschüssiger Natronlauge unterhalb 5° (Gomberg, Perner, Am. Soc. 48, 1375). Blättehen (aus Methanol). F: 49—50° (Kl., H.), 47,7° (G., P.). Kp: 267—268° (G., P.), 264° (Kn.). Sehr leicht löslich in organischen Lösungsmitteln (G., P.). Beim Chlorieren von 4-Methyl-diphenyl im Dunkeln bei 210° und Erhitzen des Reaktionsgemisches mit Wasser im Rohr auf 150° entsteht 4-Phenyl-benzaldehyd (Kn.). Liefert mit Brom in siedendem Tetrachlorkohlenstoff 4′-Brom-4-methyl-diphenyl (G., P.).
- 2'-Chlor-4-methyl-diphenyl  $C_{13}H_{11}Cl=C_6H_4Cl\cdot C_6H_4\cdot CH_3$ . B. Neben 4'-Chlor-4-methyl-diphenyl beim Hinzufügen von p-Toluoldiazoniumchlorid-Lösung zu einer Mischung von Chlorbenzol und Natronlauge bei ca. 0° (Gomberg, Pernert, Am. Soc. 48, 1379). Kp: 288—290°.
- 4'-Chlor-4-methyl-diphenyl C<sub>13</sub>H<sub>11</sub>Cl = C<sub>5</sub>H<sub>4</sub>Cl·C<sub>5</sub>H<sub>4</sub>·CH<sub>5</sub>. B. siehe bei der vorangehenden Verbindung. F: 122° (GOMBERG, PERNERT, Am. Soc. 48, 1379).

METHYLDIPHENYL

**4-Chlormethyl-diphenyl**, **4-Phenyl-benzylchlorid**  $C_{13}H_{11}Cl = C_6H_5 \cdot C_6H_4 \cdot CH_2Cl$ . B. Beim Erhitzen von 4-Phenyl-benzylalkohol mit Salzsäure im Rohr auf  $100^\circ$  (v. Braun, Engel, A. **486**, 309). — F: 68°. — Geschwindigkeit der Reaktion mit Natriumäthylatlösung bei  $31,6^\circ$ : v. B., E., A. **436**, 320.

2-Brom-4-methyl-diphenyl C<sub>13</sub>H<sub>11</sub>Br, s. nebenstehende Formel.

B. Neben wenig 3-Brom-toluol beim Hinzufügen von Natronlauge zu einer Mischung von diazotiertem 3-Brom-4-amino-toluol und Benzol (GOMBERG, PERNERT, Am. Soc. 48, 1380). — Öl. Kp: 301—303°.

2'-Brom-4-methyl-diphenyl C<sub>i3</sub>H<sub>11</sub>Br = C<sub>6</sub>H<sub>4</sub>Br·C<sub>6</sub>H<sub>4</sub>·CH<sub>3</sub>. B. Neben 4'-Brom-4-methyl-diphenyl beim Hinzufügen von p-Toluoldiazoniumchlorid-Lösung zu einer Mischung von Brombenzol und Natronlauge bei ca. 0° (Gomberg, Pernert, Am. Soc. 48, 1378). — Öl. Kp: 301—303°.

4'-Brom-4-methyl-diphenyl C<sub>13</sub>H<sub>11</sub>Br = C<sub>6</sub>H<sub>4</sub>Br·C<sub>6</sub>H<sub>4</sub>·CH<sub>3</sub>. Diese Konstitution kommt der von Carnelley, Thomson, Soc. 47, 589; 51, 87 als 2- oder 3-Brom-4-methyl-diphenyl (H 597) beschriebenen Verbindung zu (Gomberg, Pernert, Am. Soc. 48, 1377); das H 597 als 4'-Brom-4-methyl-diphenyl beschriebene Präparat vom Schmelzpunkt 27° bis 30° war wohl ein durch Verwendung unreinen Ausgangsmaterials entstandenes Gemisch (Beilstein-Redaktion). — B. Bei der Einw. von Brom auf 4-Methyl-diphenyl in Tetrachlorkohlenstoff (G., P.). Bei der Einw. von Kupfer(I)-bromid auf diazotiertes 4'-Amino-4-methyl-diphenyl (G., P.). In geringer Menge neben anderen Produkten beim Hinzufügen von Natronlauge zu einer Mischung von 4-Brom-benzoldiazoniumchlorid-Lösung und Toluol oder von p-Toluoldiazoniumchlorid-Lösung zu einer Mischung von Brombenzol und Natronlauge bei ca. 0° (G., P.). — Krystalle (aus Alkohol oder Benzol). F: 133°. Kp: 314—315°. Ziemlich leicht löslich in Benzol, fast unlöslich in kaltem Alkohol und Tetrachlorkohlenstoff. — Liefert bei der Oxydation mit Chromessigsäure bei 90° 4'-Brom-diphenyl-carbonsäure-(4).

4'-Nitro-4-methyl-diphenyl  $C_{13}H_{11}O_2N=O_2N\cdot C_6H_4\cdot C_8H_4\cdot CH_3$  (H 597). B. Beim Hinzufügen von p-Toluoldiazoniumchlorid-Lösung zu einer Mischung von Nitrobenzol und Natronlauge bei ca. 0° (GOMBERG, PERNERT, Am. Soc. 48, 1379).

5.  $[\alpha-Methyl-benzyliden]-cyclopentadien, \omega-Methyl-\omega-phenyl-fulven C_{13}H_{12} = H_{\rm C:CH}^{\rm C:CH} C:C_{6}H_{5}$  (H 598; E I 280). Liefert mit Diphenylketen in geringer Menge eine Anlagerungsverbindung  $C_{27}H_{22}O$  (s. bei Diphenylketen, Syst. Nr. 654) (Staudinger, Suter, B. 53, 1103).

6. 1-Allyl-naphthalin,  $3-\alpha$ -Naphthyl-propen-(1)  $C_{13}H_{12} = C_{10}H_{7} \cdot CH_{2} \cdot CH : CH_{2}$ . 1-[ $\gamma$ -Chlor-allyl]-naphthalin  $C_{13}H_{11}Cl = C_{10}H_{7} \cdot CH_{2} \cdot CH : CHCl$ . B. Aus  $\alpha$ -Naphthyl-magnesiumbromid und 1.3-Dichlor-propen-(1) in Toluol bei 100° (Bert, Dorler, Bl. [4] 37, 1601). — Blaßgelbes, schwach riechendes Ol. Kp<sub>14</sub>: 170° (korr.). D°: 1,196; D¹: 1,185.  $n_{1}^{10}$ : 1,632. — Gibt bei der Einw. von Natriumamid in Xylol bei 120° 1- $\beta$ -Propinyl-naphthalin.

1-[ $\beta$ -Brom-allyl]-naphthalin  $C_{13}H_{11}Br=C_{10}H_7\cdot CH_2\cdot CBr: CH_2$ . B. Bei der Einw. von 2.3-Dibrom-propen-(1) auf  $\alpha$ -Naphthylmagnesiumbromid in Äther (v. Braun, Kühn, B. 58, 2171). — Kp<sub>12</sub>: 165—170°.

7. 2 - Isopropenyl - naphthalin,  $2 - \beta$  - Naphthyl - propen,  $\alpha$ -Methyl- $\alpha$ - $(\beta$ -naphthyl]-āthylen  $C_{13}H_{12}$ , s. nebenstehende Formel (H 598). B. Durch Umsetzung von  $\beta$ -Naphthoesäure-äthylester mit Methylmagnesiumjodid in Ather bei Zimmertemperatur und Erwärmen des Reaktionsprodukts mit Acetanhydrid auf dem Wasserbad (Ruzicka, Capato, A. 453, 79). — Dickflüssiges Öl. Kp<sub>12</sub>: 126—127°. — Liefert bei der Reduktion mit Natrium in siedendem Alkohol 2-Isopropyl-1.4(?)-dihydro-naphthalin.

8. 1.8-Trimethylen-naphthalin, Perinaphthindan, Peri-trimethylennaphthalin, Perinaphthan C<sub>13</sub>H<sub>12</sub>, s. nebenstehende Formel (E I 280). Für die von Perinaphthindan abgeleiteten Namen wird in diesem Handbuch die angegebene Stellungsbezeichnung gebraucht; vgl. a. R. STELZNER, H. Kuh, Nomenklaturfragen [Leipzig-Berlin 1921], S. 60; PATTERSON, Am. Soc. 47, 549. — B. Beim Erhitzen von Perinaphthindandion mit Jodwasserstoffsäure (D: 2,0) und rotem Phosphor im Rohr auf 160—180° und Leiten des erhaltenen Kohlenwasserstoff-Gemisches im Kohlendioxyd-Strom über Kupfer bei 500° (FLEISCHER, RETZE, B. 55, 3286). — F: 66—67°. — Liefert mit Malonyl-bromid in Schwichlichketeff bei Gegenvert von Aluminusphlosid 2.5 Discontinus des Schwichlichketeff bei Gegenvert von Aluminusphlosid 2.5 Discontinusphlosid 2.5 Di

H<sub>2</sub>C CH<sub>2</sub>

CH<sub>2</sub>

erhaltenen Kohlenwasserstoff-Gemisches im Kohlendioxyd-Strom über Kupfer bei 500° (Fleischer, Retze, B. 55, 3286). — F: 66—67°. — Liefert mit Malonylbromid in Schwefelkohlenstoff bei Gegenwart von Aluminiumchlorid 3.5-Dioxo-3.4.5.8.9.10-hexahydro-pyren. — Verbindung mit 1.3.5-Trinitrobenzol C<sub>13</sub>H<sub>12</sub>+C<sub>6</sub>H<sub>3</sub>O<sub>6</sub>N<sub>3</sub>. Gelbe Nadeln (aus Alkohol). Verfärbt sich bei 130° und schmilzt bei 159—160° (Fl., R.). — Das Pikrat verfärbt sich bei 124° und schmilzt bei 134—135° (Fl., R.).

# 4. Kohlenwasserstoffe $C_{14}H_{14}$ .

(OTT. SCHRÖTER, B. 60, 642).

1. 1.2-Diphenyl-āthan, Dibenzyl C<sub>14</sub>H<sub>14</sub>, s. nebenstehende Formel (H 598; E I 280). Für die von Dibenzyl abgeleiteten Namen wird in diesem Handbuch die angegebene Stellungsbezeichnung gebraucht. — B. Bei raschem Überleiten von 1.2-Dicyclohexyl-āthan über platinierte Kohle im Kohlendioxyd-Strom bei 275° (Zelinsky, Titz, B. 62, 2872). In geringer Menge bei mehrmonatiger Einw. von Luft auf Toluol in Gegenwart von Anthrachinon im Sonnenlicht, neben anderen Produkten (Eckert, B. 58, 314; D. R. P. 383 030; Frdl. 14, 443; vgl. John, B. 58, 1563). Beim Kochen von Benzylchlorid mit Magnesium in Äther, in quantitativer Ausbeute bei Gegenwart von wasserfreiem Kupfer(II)-chlorid, Quecksilber(II)-bromid, Eisenchlorid oder Eisenbromid (Michalenko, Protassowa, Ж. 53, 348; C. 1923 III, 1014). Beim Erhitzen von Benzylchlorid auf 200° in Gegenwart von zuvor im Wasserstoff-Strom auf ca. 500° erhitztem Aluminium (Ray, Dutt, J. indian chem. Soc. 5, 107; C. 1928 I, 2371). Zur Bildung aus Benzylhalogenid und Alkylmagnesium-halogenid nach Späth (M. 34, 1992, 1994, 1995) vgl. Fuson, Am. Soc. 48, 2686; Bert, C. r. 186, 588. Durch Hydrierung von Stilben in Gegenwart von Platinoxyd in Alkohol (Buck, Jenkins, Am. Soc. 51, 2166) oder in Eisessig bei Zimmertemperatur (Kuhn, Winterstein, Helv. 11, 136) oder in Gegenwart von kolloidalem Palladium in Alkohol bei 10° (Sal-Kind, Iljin, Ж. 58, 997; C. 1927 I, 2073). Bei der Hydrierung von Tolan in Gegenwart von durch Luftsauerstoff aktiviertem Nickel-Tierkohle-Katalysator in feuchtem Äther

Bei der Einw. von Natrium auf Dibenzyldisulfid in Alkohol (Moses, Reid, Am. Soc. 48, 777). Neben geringeren Mengen Benzoin bei tagelanger Einw. von Magnesiumpulver und Jod auf Benzylbenzoat in Äther + Benzol bei Zimmertemperatur (Gomberg, Bachmann, Am. Soc. 50, 2768). Bei 2-stdg. Kochen von p-Toluolsulfonsäure-[β-chlor-äthyl]-ester mit Benzol in Gegenwart von Aluminiumchlorid (Clemo, Walton, Soc. 1928, 728). Beim Erhitzen von Benzylharnstoff auf 160—170° (Davis, Blanchard, Am. Soc. 45, 1819). Dibenzyl entsteht aus Benzylmagnesiumchlorid bei der Elektrolyse in Äther an Platin-Elektroden (Gaddum, French, Am. Soc. 49, 1298), in geringer Menge bei der Zersetzung mit kalter Salzsäure, neben viel Toluol und sehr geringen Mengen p.p-Ditolyl (Gilman, Kirby, Am. Soc. 51, 1574), bei der Einw. von Kupfer(II)-chlorid in Äther, neben geringen Mengen p.p-Ditolyl (Gil, K., Am. Soc. 51, 1576; Sakellarios, Kyrimis, B. 57, 325), beim Kochen mit Silberbromid in Äther (Gardner, Borgstrom, Am. Soc. 51, 3376), beim Behandeln mit Silberoyanid in Äther (Gil, K., R. 48, 157), bei der Einw. von p-Toluolsulfonsäure-benzylester in Äther unter Kühlung (Gil, Beaber, Am. Soc. 47, 523), bei der Umsetzung mit 0.5 Mol Azobenzol in Äther, neben überwiegenden Mengen Benzidin (Gil, K., Am. Soc. 51, 1576) oder beim Kochen mit 0,5 Mol 4-Dimethylamino-azobenzol in Benzol + Äther, neben anderen Produkten (Gil, Pickens, Am. Soc. 47, 2411). Bei der Einw. von Alkohol auf 1.2 - Dilithium -1.2 - diphenyl-äthan (Syst. Nr. 2357) in Äther (Schlenk, Bergmann, A. 463, 114). Beim Einleiten eines Gemenges von Athylenoxyd und Chlorwasserstoff in Benzol bei Gegenwart von Aluminiumchlorid unter Kühlung, neben geringen Mengen β-Phenyl-äthylalkohol (Schaarschmidt, Hermann, Szemzö, B. 58, 1916).

H 599, Z. 34 v. o. statt ,,B. 8, 36" lies ,,B. 7, 1036".

Röntgenographische Untersuchung: Hengstenberg, Mark, Z. Kr. 70, 292. F: 52° (Kuhn, Winterstein, Helv. 11, 136; Sakellarios, Kyrimis, B. 57, 325), 53° (Buck, Jenkins, Am. Soc. 51, 2166), 53,4° (McVicker, Marsh, Stewart, Soc. 127, 1000). Kp<sub>780</sub>: 284,9° (Lecat, Ann. Soc. scient. Bruxelles 49 [1929], 111). D°: 1,104 (Ziegler, Ditzei, A. 473, 201); Dichte zwischen 58° (0,958) und 178° (0,867): Lautsch, Ph. Ch. [B] 1, 124. np: 1,5526 (Lautsch). Ultraviolett-Absorptionsspektrum in Alkohol: Ley, Rinke, B. 56, 773; Tasaki, Acta phytochim. 3, 278; C. 1927 II, 1949; in Hexan: Castille, Bl. Acad. Belgique [5] 12, 504; Bl. Soc. chim. Belg. 36, 297; C. 1927 I, 1126; vgl. a. Ramart-Lucas, Hoch, C. r. 192, 53. Zum Absorptionsspektrum des Dampfes vgl. C.; Henri, C. r. 177, 1039. Tesla-Luminescenzspektrum: McVicker, Marsh, Stewart, Soc. 127, 1000. Die von O. Fischer (C. 1908 II, 1406) beobachtete Kathodenluminescenz ist nach Marsh (Soc. 1927, 130) auf Verunreinigung durch Anthracen zurückzuführen. Depolarisationsgrad des Streulichts bei 60°: Lautsch, Ph. Ch. [B] 1, 118. Dielektr.-Konst. zwischen 58° (2,47) und 178° (2,265): Lau., Ph. Ch. [B] 1, 124.

Löslich in flüssigem Schwefeldioxyd mit gelber Farbe, unlöslich in flüssigem Ammoniak (DE CARLI, G. 57, 351). Erstarrungspunkte, Zusammensetzung der festen und flüssigen Phasen und Krystallisationsgeschwindigkeiten im binären System mit Azobenzol: Bogo-Jawlensky, Sacharow, zit. bei Tammann, Ph. Ch. 81 [1913], 176; T., Laass, Z. anorg. Ch. 172, 80. Dibenzyl bildet azeotrope Gemische mit Acetamid (Kp<sub>760</sub>: 218,2°; 32% Dibenzyl) (Lecat, Ann. Soc. scient. Bruxelles 48 I [1928], 58), mit Resorcin (Kp<sub>760</sub>: 269,7°; 53%

Dibenzyl) und mit Phenylessigsäure (Kp760: 264,3°; ca. 10% Dibenzyl) (L., Ann. Soc. scient. Bruxelles 49 [1929], 22, 111). Kontaktwinkel mit Wasser: Nietz, J. phys. Chem. 32, 261. Breitet sich auf einer Wasseroberfläche aus (N.).

Dibenzyl liefert beim Überleiten über platinierte Kohle bei 300° Phenanthren (Zelinsky, Trrz, GAWERDOWSKAJA, B. 59, 2592). Wird durch Luft bei Gegenwart von Anthrachinon in Eisessig im Sonnenlicht zu Benzoesäure oxydiert (Eckert, B. 58, 316; D. R. P. 383 030: In Eisessig im Somiement 2b Benzesaute vaydiet (EAERI, B. 58, 16; B. 17, 3505). Frdl. 14, 443). Ohne Sauerstoffüberträger und ohne Lösungsmittel erhält man durch Luft-oxydation bei ca. 150—284° Benzaldehyd und Benzoesäure (Carbide & Carbon Chemicals Corp., D. R. P. 430 959; Frdl. 15, 388). Liefert bei der Hydrierung in Gegenwart von Platinoxyd in Eisessig bei 25—30° und 2—3 Atm. Druck (ADAMS, MARSHALL, Am. Soc. 50, 1972) oder in Gegenwart von platinierter Kohle bei 150—160° (Z., T., B. 62, 2872) 1.2-Dicyclohexyl-äthan. Wird durch längeres Erhitzen unter 70 Atm. Wasserstoffanfangsdruck auf 440, 445° in Cognition Comiches aus gleichen Teilen Tenden und Februard von 440—465° in Gegenwart eines Gemisches aus gleichen Teilen Tonerde und Eisenoxyd zu Toluol hydriert (IPATJEW, ORLOW, B. 62, 597; 3K. 61, 1300). Gibt beim Behandeln mit Cyclohexen bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff isomere Cyclohexyl-dibenzyle (Bodroux, A.ch. [10] 11, 532). Liefert mit Benzylchlorid bei ca. 150°, am besten bei Gegenwart von etwas Zinkstaub, 4-Benzyl-dibenzyl (Fuson, Am. Soc. 48, 2941).

Physiologisches Verhalten: H. STAUB in J. HOUBEN, Fortschritte der Heilstoffchemie,

2. Abt. Bd. II [Berlin-Leipzig 1932], S. 61.

#### Substitutionsprodukte des Dibenzyls.

1-Chlor-1.2-diphenyl-äthan,  $\alpha$ -Chlor-dibenzyl, Phenylbenzylchlormethan, Stilbenhydrochlorid  $C_{14}H_{13}Cl = C_6H_5 \cdot CH_2 \cdot CHCl \cdot C_6H_5$ .

a) Rechtsdrehende Form. B. Beim Erhitzen von linksdrehendem Phenylbenzyl-

carbinol mit Thionylchlorid (Levene, Mikeska, J. biol. Chem. 65, 512). — Erstarrt unter-

halb 0°.  $[\alpha]_{D}^{90}$ : +7,4° (c = 13).

- b) Linksdrehende Form. B. Beim Behandeln von rechtsdrehendem Phenylbenzylcarbinol mit Phosphorpentachlorid in Chloroform bei gewöhnlicher Temperatur (LEVENE, MIKESKA, J. biol. Chem. 65, 512). —  $[\alpha]_0^{\infty}$ : —2,1° (c = 17) (L., M., J. biol. Chem. 65, 512). -10,7° (c = 12) (L., M., J. biol. Chem. 65, 518). — Gibt bei der Einw. von alkoh. Kaliumhydrosulfid-Lösung rechtsdrehendes α-Mercapto-dibenzyl (L., M., J. biol. Chem. 65, 518).
  c) Inaktive Form. B. Bei der Behandlung von Dibenzyl mit Chromylchlorid in
- Schwefelkohlenstoff, neben anderen Produkten (Weiler, B. 32 [1899], 1054). Beim Erhitzen von Benzylalkohol mit Zinkchlorid und konz. Salzsäure (Steinkopf, Wolfram, A. 430, 160). Aus Phenylbenzylcarbinol und Chlorwasserstoff in Äther oder Benzol (Norris, Banta, Am. Soc. 50, 1807). — Kp<sub>18</sub>: 180—184° (Sr., Wo.). — Zersetzt sich von 190° ab unter Entwicklung von Chlorwasserstoff; bei 310—315° (korr.) destilliert unter Atmosphärendruck reines Stilben ab (WEI.). Geschwindigkeit der Reaktion mit Alkohol bei 25°: N., B.; vgl. a. N., Ph. Ch. 130, 665.
- 1.2-Bis-[4-chlor-phenyl]-äthan, 4.4'-Dichlor-dibenzyl  $C_{14}H_{12}Cl_2 = C_6H_4Cl \cdot CH_2 \cdot CH_2$ CH<sub>2</sub>·C<sub>6</sub>H<sub>4</sub>Cl (H 600; È I 281). B. In sehr geringer Menge neben anderen Produkten bei 2-jährigem Aufbewahren von 4-Chlor-toluol mit Wasser und einer Spur Jod im Sonnenlicht (SILBERRAD, Soc. 125, 2197).
- $\textbf{1.2-Dichlor-1.2-diphenyl-\"{a}than, } \alpha.\alpha'-\textbf{Dichlor-dibenzyl, Stilbendichlorid} \\ C_{14}H_{12}Cl_2 = \textbf{1.2-Dichlor-dibenzyl, Stilbendichlorid} \\ C_{14}H$  $C_6H_5 \cdot CHCl \cdot CHCl \cdot C_6H_5$ . Hochschmelzende Form,  $\alpha \cdot Stilbendichlorid$  (H 600; E I 281). B. Bei der Behandlung von Dibenzyl mit Chromylchlorid in Schwefelkohlenstoff, neben anderen Produkten (Weiler, B. 32 [1899], 1054). Beim Kochen von hochschmelzendem Stilbendibromid mit Zinn(IV)-chlorid in Benzol (Pfeiffer, Eistert, J. pr. [2] 124, 175). — Nadeln (aus Ligroin). F: 192° (Pr., El.). Zersetzt sich nicht bis 240° (Pr., El.).
- 1.1.2.2-Tetrachlor-1.2-diphenyl-äthan,  $\alpha.\alpha.\alpha'.\alpha'$ -Tetrachlor-dibenzyl, Tolantetrachlorid  $C_{14}H_{10}Cl_4=C_6H_5\cdot CCl_2\cdot Ccl_2\cdot C_6H_6$  (H 601; E I 282). B. Zur Bildung durch Einw. von Kupferpulver auf Benzotrichlorid vgl. Karrer, Mitarb., Helv. 11, 235.
- 1-Chlor-2-brom-1.2-diphenyl-äthan,  $\alpha'$ -Chlor- $\alpha$ -brom-dibenzyl  $C_{14}H_{12}ClBr=$ C<sub>6</sub>H<sub>5</sub>·CHCl·CHBr·C<sub>6</sub>H<sub>5</sub>. B. Bei kurzer Einw. von Zinn(IV)-chlorid auf hochschmelzendes Stilbendibromid in Benzol bei Zimmertemperatur (Pfeiffer, Eistert, J. pr. [2] 124, 174). — Nadeln (aus Toluol oder Ligroin). F: 225° (Zers.).
- 1.2-Bis-[2-brom-phenyl]-äthan, 2.2'-Dibrom-dibenzyl  $C_{14}H_{12}Br_2=C_6H_4Br\cdot CH_2\cdot CH_2\cdot C_6H_4Br$ . B. Bei der Einw. von gelbem Quecksilber(II)-oxyd auf N.N-Bis-[2-brom-phenyl]-äthan, 2.2'-Dibrom-dibenzyl  $C_{14}H_{12}Br_2=C_6H_4Br\cdot CH_2\cdot C_6H_4$ benzyl]-hydrazin in Chloroform (KENNER, WILSON, Soc. 1927, 1111). — Plättchen (aus Alkohol). F: 84,5°. — Liefert beim Kochen mit einer Suspension von Natriumpulver in Ather Dibenzyl, Phenanthren oder 9.10-Dihydro-phenanthren und andere Produkte.
- 1.2-Bis-[4-brom-phenyl]-äthan, 4.4'-Dibrom-dibenzyl  $C_{14}H_{12}Br_2 = C_6H_4Br \cdot CH_2 \cdot CH_2$ CH<sub>2</sub>·C<sub>6</sub>H<sub>4</sub>Br (H 602). B. Bei der Einw. von Magnesium auf 4-Brom-benzylchlorid in feuchtem

Ather (QUELET, C. r. 184, 888; Bl. [4] 45, 82). — F: 114° (QU.; LE FÈVRE, TURNER, Soc. 1927, 1120). Kp<sub>10</sub>: ca. 198° (QU.). — Liefert bei der Einw. von warmer Salpetersäure (D: 1,5) 4.4'-Dibrom-3.3'-dinitro-dibenzyl (LE F., T.).

- 1.2-Dibrom-1.2-diphenyl-äthan,  $\alpha.\alpha'$ -Dibrom-dibenzyl, Stilbendibromid  $C_{14}H_{12}Br_2$ = C<sub>4</sub>H<sub>5</sub>·CHBr·CHBr·C<sub>6</sub>H<sub>5</sub>. Hochschmelzende Form, α-Stilbendibromid (H 602; E I 282). F: 244° (korr.) (van Duin, R. 45, 351). — Liefert beim Behandeln mit Kaliumjodid in 90% igem Alkohol oder in Eisessig Stilben (van D.). Gibt bei kurzer Einw. von Zinn(IV) chlorid in Benzol bei Zimmertemperatur  $\alpha'$ -Chlor- $\alpha$ -brom-dibenzyl, beim Kochen dagegen hochschmelzendes Stilbendichlorid (Pfeiffer, Eister, J. pr. [2] 124, 174). Bei längerem Kochen mit Quecksilber-di-p-tolyl in Toluol entstehen Stilben, p-Tolyl-quecksilberbromid und geringe Mengen 4-Brom-toluol (Whitmore, Thurman, Am. Soc. 51, 1502).
- 1.2-Dibrom-1-phenyl-2-[4-chlor-phenyl]-äthan, 4-Chlor- $\alpha$ . $\alpha$ '-dibrom-dibenzyl, 4-Chlor-stilbendibromid  $C_{14}H_{11}ClBr_2=C_6H_5\cdot CHBr\cdot CHBr\cdot C_6H_4Cl$ . F: 190° (Anschütz, B. 60, 1322).
- 1.2-Dibrom-1-phenyl-2-[4-brom-phenyl]-äthan, 4. $\alpha$ . $\alpha'$ -Tribrom-dibenzyl, 4-Brom-stilbendibromid  $C_{14}H_{11}Br_3=C_6H_5\cdot CHBr\cdot CHBr\cdot C_6H_4Br.$  F: 1990 (Anschütz, B. 60, 1322).
- 1-Chlor-2-brom-1-phenyl-2-[4-nitro-phenyl]-äthan,  $\alpha'$ -Chlor- $\alpha$ -brom-4-nitro-dibenzyl  $C_{14}H_{11}O_2NClBr = C_6H_5\cdot CHCl\cdot CHBr\cdot C_6H_4\cdot NO_2$ . B. Beim Kochen von  $\alpha.\alpha'$ -Dibrom-4-nitro-dibenzyl mit Zinn(IV)-chlorid in Benzol (Pfeiffer, Eistert, J. pr. [2] 124, 175). — Fast farblose Blättchen (aus Alkohol). F: 180—181°.
- 1.2-Dibrom-1-phenyl-2-[4-nitro-phenyl]-äthan,  $\alpha.\alpha'$ -Dibrom-4-nitro-dibenzyl, 4-Nitro-stilbendibromid  $C_{14}H_{11}O_2NBr_2=C_6H_5\cdot CHBr\cdot CHBr\cdot C_6H_4\cdot NO_2$  (E I 283). Krystalle (aus Xylol). F: 205—206° (Zers.) (Pfeiffer, Eistert, J. pr. [2] 124, 175). Liefert beim Kochen mit Zinn(IV)-chlorid in Benzol  $\alpha'$ -Chlor- $\alpha$ -brom-4-nitro-dibenzyl.
- 1.2-Bis-[4-nitro-phenyl]-äthan, 4.4'-Dinitro-dibenzyl  $C_{14}H_{12}O_4N_2 = O_2N \cdot C_6H_4 \cdot CH_2 \cdot CI_4 \cdot NO_2$  (H 604). B. Zur Bildung durch Behandlung von 4-Nitro-toluol mit Oxalester und Alkaliäthylat in Äther (Reissert, B. 30 [1897], 1053) vgl. Wislicenus, SCHULTZ, A. 436, 56.
- 1.2-Dinitro-1.2-diphenyl-äthan,  $\alpha.\alpha'$  Dinitro-dibenzyl  $C_{14}H_{12}O_4N_2=C_6H_5\cdot CH(NO_2)\cdot C_1O_2$  $CH(NO_{\mathfrak{g}}) \cdot C_{\mathfrak{g}}H_{\mathfrak{g}}$ .
- a) Hochschmelzende Form (H 604; E I 283). B. Neben der niedrigschmelzenden Form und anderen Produkten beim Kochen von Stilbenpseudonitrosit mit Eisessig (WiE-LAND, BLÜMICH, A. 424, 81). Beim Schütteln von Phenylbromnitromethan mit fein verteiltem Silber in Ather (W., B.). — Nadeln (aus Eisessig). F: 226° (Zers.).
- b) Niedrigschmelzende Form (H 604; E I 283). B. Bei der Einw. von Jod auf aci-Phenylnitromethan-natrium oder -kalium in verd. Alkohol bei 0° (NENITZESCU, B. 62, 2671). Neben der hochschmelzenden Form und anderen Produkten beim Kochen von Stilbenpseudonitrosit mit Eisessig (Wieland, Blümich, A. 424, 82). — Krystalle (aus Alkohol). F: 150-151° (N.).
- 1.2-Bis-[4-chlor-2-nitro-phenyl]-athan, 4.4'-Dichlor-NO<sub>2</sub> 2.2'-dinitro-dibenzyl C<sub>14</sub>H<sub>10</sub>O<sub>4</sub>N<sub>2</sub>Cl<sub>2</sub>, s. nebenstehende Formel.

  B. Aus 4-Chlor-2-nitro-toluol bei der Einw. von Isoamyl-CH2.CH2. formiat und Natriumäthylat in Äther unterhalb 0° oder, neben dem Natriumsalz des 4-Chlor-2-nitro-benzaldoxims, bei der Einw. von Isoamylnitrit und Natriumäthylat in Ather unterhalb 0° (van der Lee, R. 45, 683). — Hellgelbe Prismen (aus Aceton). F: 195°. Leicht löslich in Eisessig und Toluol, ziemlich leicht in siedendem Aceton und Benzol, unlöslich in Wasser, Äther und Petroläther; löst sich nicht in Säuren und Basen.
- 1.2-Dichlor-1-[8-nitro-phenyl]-2-[4-nitro-phenyl]- $\alpha$   $\alpha$   $\alpha$  Dichlor- $\alpha$   $\alpha$  Dichlor- $\alpha$   $\alpha$ nitro-dibenzyl, 3.4'-Dinitro-stilbendichlorid  $C_{14}H_{10}O_4N_2Cl_2 = O_2N \cdot C_6H_4 \cdot CHCl \cdot CHCl$
- a) Hochschmelzende Form. B. Entsteht im Gemisch mit der niedrigschmelzenden Form beim Einleiten von Chlor in eine Suspension von 3.4'-Dinitro-stilben in Chloroform (HARRISON, WOOD, Soc. 1926, 581). — Plättchen (aus Eisessig). F: 207° (H., W.). Ziemlich leicht löslich in Alkohol (H., W.). — Liefert bei der Reduktion mit Zink und Salzsäure in alkoh. Lösung bei 15° 3.4'-Diamino-stilben und ein hellbraunes chlorhaltiges Produkt vom Schmelzpunkt 202—205° (H., Soc. 1926, 1236). Gibt mit konz. Schwefelsäure eine blaßrosa Lösung, bei ca. 80° tritt etwas Verkohlung auf (H., W.). Liefert bei längerem Erhitzen mit Pyridin α'-Chlor-3.4'-dinitro-stilben (H., W.).

  b) Niedrigschmelzende Form. B. s. bei der hochschmelzenden Form. — Wurde nicht rein erhalten. F: 132—138° (HARRISON, WOOD, Soc. 1926, 581). Ziemlich leicht löslich im Allechal. Est zich leichten in Fingering als die hochschmelzende Form.
- in Alkohol; löst sich leichter in Eisessig als die hochschmelzende Form. Zeigt dieselben

**50**9

Reaktionen wie die hochschmelzende Form; bei der Einw. von Pyridin erweist sich die niedrigschmelzende Form als weniger stabil.

1-Chlor-2-brom-1-phenyl-2-[2.4-dinitro-phenyl] - äthan,  $\alpha'$ -Chlor -  $\alpha$  - brom - 2.4 - dinitro - dibenzyl  $C_{14}H_{10}O_1N_2ClBr$ , s. nebenstehende Formel. Noben der niedrig

a) Hochschmelzende Form. B. Neben der niedrigschmelzenden α.α'-Dibrom-2.4-dischmelzenden Form beim Kochen von hoch- oder niedrigschmelzendem α.α'-Dibrom-2.4-dinitro-dibenzyl mit Zinn(IV)-chlorid in Benzol (Pfeiffer, Eistert, J. pr. [2] 124, 177). — Krystalle (aus Eisessig). F: 161—162°.

- b) Niedrigschmelzende Form. B. s. bei der hochschmelzenden Form. — Nadeln (aus Eisessig). F: 145—146° (Pfeiffer, Eistert, J. pr. [2] 124, 177).

1.2-Dibrom-1-phenyl-2-[2.4-dinitro-phenyl]-āthan,  $\alpha.\alpha'$ -Dibrom-2.4-dinitro-dibenzyl, 2.4-Dinitro-stilbendibromid  $C_{14}H_{10}O_4N_9Br_9$ , s. nebenstehende Formel.

dibromid C<sub>14</sub>H<sub>10</sub>O<sub>4</sub>N<sub>2</sub>Br<sub>2</sub>, s. nebenstehende Formel.

a) Hochschmelzende Form (H 605; E I 284). B. Aus niedrigerschmelzenden 2.4-Dinitro-stilben und einem geringen Überschuß von Brom in Lösungsmitteln (Stoermer, Oehlert, B. 55, 1238). — F: 185—186° (St., Oe.). — Liefert beim Kochen mit Zinn(IV)-chlorid in Benzol hochschmelzendes und niedrigschmelzendes α'-Chlor-α-brom-2.4-dinitro-dibenzyl (Pfeiffer, Eistert, J. pr. [2] 124, 177). Gibt beim Kochen mit alkoh. Natrium-oder Kaliumacetat-Lösung höherschmelzendes 2.4-Dinitro-stilben, beim Kochen mit Silberacetat in Eisessig 2.4-Dinitro-α'-oxy-α-acetoxy-dibenzyl (Bishop, Brady, Soc. 121, 2367).
b) Niedrigschmelzende Form (E I 284). Liefert beim Kochen mit Zinn(IV)-chlorid

b) Niedrigschmelzende Form (EI 284). Liefert beim Kochen mit Zinn(IV)-chlorid in Benzol hochschmelzendes und niedrigschmelzendes  $\alpha'$ -Chlor- $\alpha$ -brom-2.4-dinitro-dibenzyl (Pfeiffer, Eistert, J. pr. [2] 124, 177).

1.2 - Bis - [4-brom - 2 - nitro - phenyl] - äthan, 4.4'-Dibrom - 2.2'-dinitro - dibenzyl  $C_{14}H_{10}O_4N_2Br_2$ , s. nebenstehende Formel. B. Aus 4-Brom-2-nitro-toluol bei der Brom-2-nitro-toluol b

1.2-Bis-[4-brom-3-nitro-phenyl]-äthan, 4.4'-Dibrom-3.3'-dinitro-dibenzyl  $C_{14}H_{10}O_4N_2Br_2$ , s. nebenstehende Formel. Diese Konstitution kommt dem 4.4'-Dibrom-x.x'-dinitro-dibenzyl (H 605) zu (Le Fèvre, Turner, Soc. 1927, 1120). — Blaßgelbe Krystalle (aus Benzol). F: 204°. Gibt beim Erwärmen mit Piperidin 3.3'-Dinitro-4.4'-dipiperidino-dibenzyl.

1.2-Dibrom-1-[3-nitro-phenyl]-2-[4-nitro-phenyl]-äthan,  $\alpha.\alpha'$ -Dibrom-3.4'-di-nitro-dibenzyl, 3.4'-Dinitro-stilbendibromid  $C_{14}H_{10}O_4N_2Br_2=O_2N\cdot C_6H_4\cdot CHBr\cdot CHBr\cdot C_6H_4\cdot NO_2$ .

a) Hochschmelzende Form. B. Entsteht im Gemisch mit der niedrigschmelzenden Form bei längerer Einw. von Brom auf 3.4'-Dinitro-stilben in Chloroform; längere Bestrahlung der Chloroform-Lösung mit Tageslicht begünstigt die Bildung der hochschmelzenden Form (Harrison, Soc. 1926, 1234). — Prismen (aus Eisessig oder Nitrobenzol). F: 234° (H.). Schwer löslich in den meisten organischen Lösungsmitteln (H.). — Löst sich in konz. Schwefelsäure mit rosa Farbe; die Lösung gibt bei 70—80° einen Teil des Broms als Bromwasserstoff ab (H., Wood, Soc. 1926, 582). Gibt beim Kochen mit wäßrig-alkoholischer Kalilauge 3.4'-Dinitro-tolan und Spuren von 3.4'-Dinitro-stilben (H.). Beim Erhitzen mit Pyridin auf 90° erhält man 3.4'-Dinitro-stilben (H.).

b) Niedrigschmelzende Form. B. s. bei der hochschmelzenden Form. — Hellbraune Plättchen (aus Eisessig), Prismen (aus Nitrobenzol). F: 214° (Harrison, Soc. 1926, 1235). Ziemlich leicht löslich in Eisessig und Chloroform, schwer in den meisten anderen organischen Lösungsmitteln (H.). — Gibt die gleichen Reaktionen wie die hochschmelzende Form.

1.2-Dibrom-1.2-bis-[4-nitro-phenyl]-äthan,  $\alpha.\alpha'$ -Dibrom-4.4'-dinitro-dibenzyl, 4.4'-Dinitro-stilbendibromid  $C_{14}H_{10}O_4N_2Br_2=O_2N\cdot C_6H_4\cdot CHBr\cdot CHBr\cdot C_6H_4\cdot NO_2$  (H 605; E I 284). B. Beim Kochen von hochschmelzendem 4.4'-Dinitro-stilben mit überschüssigem Brom in Eisessig (Pfeiffer, Eistert, J. pr. [2] 124, 176). — Fast farblose Krystalle (aus Aceton). F: 288° (Zers.). Wird beim Kochen mit Zinn(IV)-chlorid in Benzol nicht verändert.

2. 1.1-Diphenyl-äthan, Methyldiphenylmethan  $C_{14}H_{14} = (C_6H_5)_2CH \cdot CH_3$  (H 605; E I 285). B. Neben anderen Produkten beim Einleiten von Vinylchlorid in Benzol bei Gegenwart von Aluminiumchlorid bei  $0-5^{\circ}$  (Davidson, Lowy, Am. Soc. 51, 2979).

Neben anderen Produkten beim Einleiten von Acetylen in Benzol bei Gegenwart von Aluminiumchlorid (Cook, Chambers, Am. Soc. 43, 336; vgl. a. Schroeter, B. 57, 1996) oder, neben wenig 9.10-Dimethyl-9.10-dihydro-anthracen, bei Gegenwart von konz. Schwefelsäure und wenig Quecksilber(II)-sulfat bei 10—20° (Reichert, Nieuwland, Am. Soc. 45, 3090). Bei allmählicher Zugabe einer Lösung von α.α-Diphenyl-äthylen in Toluol zu einer Lösung von Natrium in flüssigem Ammoniak und Zersetzung des Reaktionsprodukts mit Ammoniumchlorid (Ziegler, Colonius, Schäfer, A. 473, 54). Bei der Reduktion von Methyldiphenylcarbinol mit Wasserstoff über aktiver Kohle bei 300° (Zelinsky, Gawerdowskaja, B. 61, 1052). Bei der Einw. von Dimethylsulfat auf frisch dargestelltes Benzhydrylmagnesiumchlorid in Äther (Gilman, Kirby, Am. Soc. 48, 1735). — Kp.: 268—269° (Zelinsky, Gawerdowskaja, B. 61, 1052), 268—272° (Reichert, Nieuwland, Am. Soc. 45, 3090), 286° (Cook, Chambers, Am. Soc. 43, 336); Kp<sub>II</sub>: 147° (Adams, Marshall, Am. Soc. 50, 1972). D<sup>∞</sup><sub>1</sub>: 0,9875 (Ze., G.), 1,001 (Ziegler, Colonius, Schäfer, A. 473, 55). Parachor: Sugden, Soc. 125, 1181. n<sup>∞</sup><sub>2</sub>: 1,5684; n<sup>∞</sup><sub>He</sub>: 1,5738; n<sup>∞</sup><sub>B</sub>: 1,5878 (Zie., C., Sch.).

Zersetzt sich beim Erhitzen in einer Stahlbombe auf 425° (Herndon, Reid, Am. Soc. 50, 3069, 3072). Läßt sich bei Gegenwart von Platinoxyd in Eisessig bei 25—30° und 2—3 Atm. Druck zu 1.1-Dicyclohexyl-äthan hydrieren (Adams, Marshall, Am. Soc. 50, 1972). Die bei der Nitrierung von 1.1-Diphenyl-äthan mit rauchender Salpetersäure in Eisessig nach Anschütz, Romig, B. 18, 664, 935; A. 233, 327; vgl. Konowalow, Jatzentitsch,  $\mathcal{M}$ . 37, 543; C. 1905 II, 825 neben anderen Produkten entstehende Verbindung  $C_{14}H_{10}O_4N_2$  (H 605) wird als  $\beta$ . $\beta$ -Dinitro-α.α-diphenyl-äthylen erkannt (A., Hilbert, B. 54, 1857).

Verbindung  $(C_{14}H_{12})_x$  (polymeres Diphenyläthylen?) (H 606) s. S. 544 bei  $\alpha.\alpha$ -Diphenyläthylen.

- 1.1-Bis-[4-chlor-phenyl]-äthan  $C_{14}H_{12}Cl_2 = (C_6H_4Cl)_2CH\cdot CH_3$ . B. Beim Einleiten von Acetylen in Chlorbenzol in Gegenwart von Aluminiumchlorid bei 90—95°, neben anderen Produkten (Cook, Chambers, Am. Soc. 43, 338). Kp<sub>760</sub>: 319—321°; Kp<sub>30</sub>: 210—212°. Liefert bei der Oxydation mit Chromsäure 4.4′-Dichlor-benzophenon.
- 2.2-Dichlor-1.1-diphenyl-äthan  $C_{14}H_{12}Cl_2 = (C_6H_5)_2CH \cdot CHCl_2$  (H 606; E I 285). B. Entsteht manchmal neben anderen Produkten bei der Hydrierung von 2.2.2-Trichlor-1.1-diphenyl-äthan in Gegenwart von Nickel in Alkohol + Pyridin (Brand, Horn, J. pr. [2] 115, 361). Zur Bildung nach Brand, Z. El. Ch. 16, 669 vgl. a. Br., B. 54, 1987. F: 74°. Löst sich in konz. Schwefelsäure mit roter Farbe.
- 2.2.2-Trichlor-1.1-diphenyl-āthan  $C_{14}H_{11}Cl_3 = (C_6H_5)_2CH \cdot CCl_3$  (H 606; E I 285). B. Zur Bildung nach Frankforter, Kritchevsky, Am. Soc. 36 [1914], 1516 vgl. Harris, Fr., Am. Soc. 48, 3146. Krystalle (aus Alkohol). F: 64° (H., Fr.). Liefert bei der elektrolytischen Reduktion an einer Kupfer-Kathode in siedender alkoholischer Salzsäure als Hauptprodukt 2.2-Dichlor-1.1-diphenyl-āthan neben 2.2.3.3-Tetrachlor-1.1.4.4-tetraphenyl-butan (Brand, B. 54, 1987). Gibt bei der Hydrierung in Gegenwart von Palladium-Calciumcarbonat oder Nickel in Alkohol + Pyridin 2.2.3.3-Tetrachlor-1.1.4.4-tetraphenyl-butan und geringe Mengen höherschmelzendes und niedrigerschmelzendes 2.3-Dichlor-1.1.4.4-tetraphenyl-buten-(2), zuweilen auch 2.2-Dichlor-1.1-diphenyl-āthan (Br., Horn, J. pr. [2] 115, 359). Liefert bei der Einw. einer Aluminium-Kupfer-Zink-Legierung oder Kupfer-Magnesium-Legierung in siedendem Alkohol bei Gegenwart von wenig Kupfer-chlorid geringe Mengen 2.2.3.3-Tetrachlor-1.1.4.4-tetraphenyl-butan und 2.3-Dichlor-1.1.4.4-tetraphenyl-buten-(2) (Br., B. 54, 1995). Wird beim Kochen mit Natriumpulver in Benzol in der Hauptsache zu Stilben reduziert (H., Fr.). Liefert beim Erhitzen mit Natriumäthylat-Lösung im Rohr auf 180—200° hauptsächlich ein Öl, das beim Behandeln mit konz. Salzsäure Diphenylessigsäure gibt (H., Fr.).
- 1.2 Dibrom 1.1 diphenyl äthan,  $\alpha.\alpha$  Diphenyl äthylenbromid  $C_{14}H_{12}Br_2 = (C_eH_5)_eCBr\cdot CH_2Br$ . B. Bei der Einw. von Brom auf  $\alpha.\alpha$ -Diphenyl-äthylen in Schwefelkohlenstoff bei Kühlung mit Kältemischung (Lipp, B. 56, 569). Plättchen oder Prismen (aus Petroläther). Zersetzt sich bei langsamem Erhitzen bei 63—64° (korr.). Leicht löslich in den meisten organischen Lösungsmitteln. Spaltet beim Erhitzen Bromwasserstoff ab und geht in  $\beta.\beta$ -Diphenyl-vinylbromid über. Liefert mit methylalkoholischer Kalilauge 2-Brom-1-methoxy-1.1-diphenyl-äthan (L.; vgl. Ziegler, Richter, Schnell, A. 443, 173 Anm. 1).
- 1.2.2 Tribrom 1.1 diphenyl äthan  $C_{14}H_{11}Br_3 = (C_9H_5)_2CBr \cdot CHBr_2$ . B. Neben anderen Produkten bei der Einw. von Brom auf  $9 [\beta.\beta-Diphenyl-vinyl]$ -xanthen oder  $9 Athyl-9 [\beta.\beta-Diphenyl-vinyl]$ -xanthen in Ather (Ziegler, A. 434, 61, 63). Nadeln (aus Chloroform + Petroläther). F: 88—89° (Zers.).
- **2.2.2-Tribrom-1.1-diphenyl-äthan**  $C_{14}H_{11}Br_3=(C_6H_5)_2CH\cdot CBr_3$  (H 606). B. Bei der Einw. von Benzol auf Bromal in Schwefelkohlenstoff bei Gegenwart von Aluminium-

chlorid unterhalb 0° (HARRIS, FRANKFORTER, Am. Soc. 48, 3146). — Krystalle (aus Alkohol + Äther). F: 76°. — Liefert bei der Oxydation mit siedender Chromessigsäure Benzophenon.

1.2-Dinitro-1.1-diphenyl-äthan  $C_{14}H_{12}O_4N_2=(C_8H_5)_2C(NO_2)\cdot CH_2\cdot NO_2$ . B. Neben  $\beta$ -Nitro- $\alpha$ . $\alpha$ -diphenyl-äthylalkohol beim Einleiten von sorgfältig getrocknetem Stickstoff-dioxyd in eine Lösung von  $\alpha$ . $\alpha$ -Diphenyl-äthylen in trocknem Petroläther unter Kühlung (Wieland, Rahn, B. 54, 1773). — Nadeln (aus Ligroin). F: 68°. Leicht löslich in den meisten organischen Lösungsmitteln. — Die Lösung in Äther gibt beim Schütteln mit überschüssiger verdünnter Natronlauge  $\beta$ -Nitro- $\alpha$ . $\alpha$ -diphenyl-äthylen.

3. 2-Methyl-diphenylmethan, 2-Benzyl-toluol, Phenyl-o-tolyl-methan  $C_{14}H_{14}=C_6H_5\cdot CH_2\cdot C_6H_4\cdot CH_3$ .

α-Chlor-2-metliyl-diphenylmethan, Phenyl-o-tolyl-chlormethan  $C_{14}H_{13}Cl = C_8H_5$ · CHCl·C<sub>6</sub>H<sub>4</sub>·CH<sub>3</sub>. B. Durch Einw. von Chlorwasserstoff auf Phenyl-o-tolyl-carbinol in Petroläther und Benzol (Norris, Blake, Am. Soc. 50, 1811). — Plättchen. F: 40—40,5°. Löslich in den gebräuchlichen Lösungsmitteln. — Geschwindigkeit der Umsetzung mit Alkohol bei 25°: N., Bl.; vgl. a. N., Banta, Am. Soc. 50, 1804; N., Ph. Ch. 130, 665.

4. 3-Methyl-diphenylmethan, 3-Benzyl-toluol, Phenyl-m-tolyl-methan  $C_{14}H_{14}=C_6H_5\cdot CH_2\cdot C_6H_4\cdot CH_3$ .

α-Chlor-3-methyl-diphenylmethan, Phenyl-m-tolyl-chlormethan  $C_{14}H_{13}Cl = C_6H_5 \cdot CHCl \cdot C_6H_4 \cdot CH_3$ . B. Bei der Einw. von Chlorwasserstoff auf Phenyl-m-tolyl-carbinol in Petroläther und Benzol (Norris, Blake, Am. Soc. 50, 1812). — Öl. — Geschwindigkeit der Reaktion mit Alkohol bei 25°: N., Bl.; vgl. a. N., Banta, Am. Soc. 50, 1804; N., Ph. Ch. 130, 665.

5. 4-Methyl-diphenylmethan, 4-Benzyl-toluol, Phenyl-p-tolyl-methan  $C_{14}H_{14} = C_6H_5 \cdot CH_2 \cdot C_6H_4 \cdot CH_3$  (H 607; E I 286). B. Durch Kondensation von Toluol mit Benzylchlorid in Gegenwart von Methylmagnesiumjodid, neben anderen Produkten (Montagne, A. ch. [10] 13, 109). Neben Anthracen bei der Einw. von Benzylalkohol auf Toluol in 70% iger Schwefelsäure bei 40° (H. Meyer, Bernhauer, M. 53/54, 728). Beim Kochen von Benzolsulfonsäurebenzylester mit überschüssigem Toluol, neben geringen Mengen von Dibenzyltoluolen (Földi, B. 61, 1612). — Kp: 279° (M., B.); Kp<sub>16</sub>: 144° (v. Auwers, Frühling, A. 422, 224), 153—154° (Mo.); Kp<sub>1</sub>: 110° (F.).  $D_1^{0.3}$ : 0,9978;  $n_{\alpha}^{0.3}$ : 1,5658;  $n_{\beta}^{10.8}$ : 1,5710;  $n_{\beta}^{0.3}$ : 1,5857;  $n_{\gamma}^{10.3}$ : 1,5980 (v. Au., Fr.). — Liefert mit Salpetersäure (D: 1,5) unter Eiskühlung 3,4′-Dinitro-4-methyl-diphenylmethan (F.).

α-Chlor-4-methyl-diphenylmethan, Phenyl-p-tolyl-chlormethan  $C_{14}H_{13}Cl = C_6H_5 \cdot CHCl \cdot C_6H_4 \cdot CH_3$ . B. (Bei der Einw. von Chlorwasserstoff auf Phenyl-p-tolyl-carbinol in Äther oder Benzol (Norris, Banta, Am. Soc. 50, 1807). — Kp<sub>2</sub>: 147—148°. — Geschwindigkeit der Umsetzung mit Alkohol bei 25°: N., B.; vgl. a. N., Ph. Ch. 130, 665.

α.α - Dichlor - 4 - methyl - diphenylmethan, Phenyl - p - tolyl - dichlormethan, 4 - Methyl - benzophenonchlorid C<sub>14</sub>H<sub>12</sub>Cl<sub>2</sub> = C<sub>6</sub>H<sub>5</sub>·CCl<sub>2</sub>·C<sub>6</sub>H<sub>4</sub>·CH<sub>3</sub> (H 608). B. Zur Bildung aus Phenyl-p-tolyl-keton und Phosphorpentachlorid vgl. Hahn, Am. Soc. 43, 176. — Hellgelbes Öl. — Leicht verseifbar unter Bildung von 4-Methyl-benzophenon. Liefert mit Phenol ohne Lösungsmittel bei Zimmertemperatur ein untrennbares Gemisch der benzoiden und chinoiden Form des 4'-Oxy-4-methyl-triphenylcarbinols, beim Erhitzen auf dem Wasserbad 4'-4''-Dioxy-4-methyl-tetraphenylmethan; beim Kochen mit Phenol in trocknem Benzol entsteht Phenyl-p-tolyl-keton-diphenylacetal.

**2.4'- Dinitro - 4- methyl- diphenylmethan**  $C_{14}H_{12}O_4N_2$ , s. nebenstehende Formel (H 608). Das H 608 beschriebene Präparat von ZINCKE, B. 5, 684 wird von Földi, B. 61, 1613 als verunreinigtes 3.4'- Dinitro - 4-methyl- diphenylmethan angesehen.

 $O_2N \cdot \underbrace{\hspace{1cm} . O_2}_{CH_2 \cdot \underbrace{\hspace{1cm} . CH_3}}_{CH_3} \cdot CH_3$ 

8.4'- Dinitro - 4-methyl - diphenylmethan  $C_{14}H_{12}O_4N_2$ , s. nebenstehende Formel (H 608). B. Beim Eintragen von 4-Methyl-diphenylmethan in Salpetersäure (D: 1,5) unter Eis-  $O_2N$   $CH_2$   $CH_3$  kühlung (FÖLDI, B. 61, 1612). — Gelbliche Krystalle (aus Alkohol + Chloroform). F: 142—143°. Leicht löslich in Chloroform, schwer in Alkohol und Ather.

6. 4-Äthyl-diphenyl C<sub>14</sub>H<sub>14</sub> = C<sub>6</sub>H<sub>5</sub>· C<sub>6</sub>H<sub>4</sub>· C<sub>2</sub>H<sub>5</sub>. B. In geringer Menge beim Schütteln von 4-Methyl-4-trichlormethyl-1-phenyl-cyclohexadien-(2.5)-ol-(1) mit kalter konzentrierter Ameisensäure und Destillieren des entstandenen gelben Öls im Vakuum (v. Auwers, Jülicher, B. 55, 2182). Durch Reduktion von 4-Acetyl-diphenyl mit amalgamiertem Zink und siedender Salzsäure (v. Au., J.). — Tafeln (aus verd. Methanol). F: 46—47°. Siedet unter gewöhnlichem Druck oberhalb 280°; Kp<sub>15</sub>: 140°. Leicht löslich in fast allen organischen Lösungsmitteln.

- 7. 2.4 Dimethyl diphenyl, 4 Phenyl m xylol C<sub>14</sub>H<sub>14</sub>, s. nebenstehende Formel. B. Beim Erwärmen von m-Xylol-diazonium-chlorid (4) mit Benzol in Gegenwart von Aluminiumchlorid (Jacobson, A. 427, 216). Ol. Kp<sub>7e7</sub>: 270—276° (unkorr.). Liefert beim Behandeln mit Salpeter-Schwefelsäure ein unscharf um 160° schmelzendes Produkt, das bei weiterer Nitrierung in ein Tetranitroderivat (s. u.) übergeht.
- **x-Tetranitro-[2.4-dimethyl-diphenyl]**  $C_{14}H_{10}O_8N_4$ . B. Beim Behandeln von 2.4-Dimethyl-diphenyl mit Salpeter-Schwefelsäure anfangs bei Zimmertemperatur, dann auf dem Wasserbad (Jacobson, A. 427, 217). Krystalle (aus Benzol + Petroläther). F: 154,5—155°.
- 8. 2.6 Dimethyl diphenyl, 2 Phenyl m xylol C<sub>14</sub>H<sub>14</sub>, s. nebenstehende Formel. B. Beim Erwärmen von m-Xylol diazonium-chlorid (2) mit Benzol in Gegenwart von Aluminiumchlorid (JACOBSON, A. 427, 216). Bei der Einw. von kalter unterphosphoriger Säure auf diazotiertes 4.4'-Diamino-2.6-dimethyl-diphenyl (J., A. 427, 213). Gelbliches Ol. Kp: 260—265° (unkorr.).
- x-Trinitro-[2.6-dimethyl-diphenyl]  $C_{14}H_{11}O_eN_3$ . B. Beim Behandeln von 2.6-Dimethyl-diphenyl mit Salpeter-Schwefelsäure bei Zimmertemperatur (Jacobson, A. 427, 214). Krystalle (aus Eisessig). F: 257—258°.
- **x-Tetranitro-[2.6-dimethyl-diphenyl]**  $C_{14}H_{10}O_8N_4$ . B. Beim Erwärmen von x-Trinitro-[2.6-dimethyl-diphenyl] mit konz. Salpeter-Schwefelsäure (Jacobson, A. 427, 214). Tafeln (aus Eisessig). F:  $227-229^\circ$ .
- 9. 2.2'-Dimethyl-diphenyl, Ditolyl-(2.2'), o.o-Ditolyl  $C_{14}H_{14} = CH_3 \cdot C_6H_4 \cdot CH_3$  (H 608; E I 286). B. Neben 9.10-Dihydro-phenanthren bei wiederholtem Kochen von  $\omega$ . $\omega$ '-Dibrom-ditolyl-(2.2') mit Natriumpulver in Äther (Schroeter, Müller, Huang, B. 62, 652). Bei der Destillation von Di-o-tolyl-selenid mit Kupferpulver (Loevenich, Sipmann, J. pr. [2] 124, 131). Neben anderen Produkten bei der Einw. von sublimiertem Chrom(III)-chlorid auf o-Tolylmagnesiumbromid in Äther unter Kühlung (Hein, Spaete, B. 57, 907).
- 4.4'- Dibrom 2.2'-dimethyl diphenyl (?), 4.4'- Dibrom ditolyl-(2.2') (?) C<sub>14</sub>H<sub>12</sub>Br<sub>2</sub>, s. nebenstehende Formel. B. In sehr geringer Menge bei der elektrolytischen Oxydation von 4-Brom- brotoluol an Platinelektroden in 20% iger Salpetersäure bei 100° (Conn, Lowr, Trans. am. electroch. Soc. 50, 335; C. 1926 II, 2789). Nadeln (aus Benzol). F: 216°. Schwer löslich in Chloroform und heißem Benzol, unlöslich in heißem Wasser, Alkohol und Ather sowie in verd. Säuren und verd. Alkalien.
- 2.2'-Bis-brommethyl-diphenyl,  $\omega.\omega'$ -Dibrom-ditolyl-(2.2')  $C_{14}H_{12}Br_2=CH_2Br$ - $C_4H_4\cdot C_4H_4\cdot CH_2Br$  (E I 286). Liefert bei wiederholtem Kochen mit Natriumpulver in Äther Ditolyl-(2.2') und 9.10-Dihydro-phenanthren (Schroeter, Müller, Huang, B. 62, 652).
- 5.5'-Dinitro-2.2'-dimethyl-diphenyl, 5.5'-Dinitro-ditolyl-(2.2')

  C<sub>14</sub>H<sub>13</sub>O<sub>4</sub>N<sub>3</sub>, s. nebenstehende Formel (H 609). B. Zur Bildung nach
  ULIMANN, FRENTZEL, B. 38, 728 vgl. PUMMERER, PUTTFARCKEN, SCHOPFLOCHER, B. 58, 1816. Beim Erhitzen von 2-Jod-4-nitro-toluol (E I 5, 166)
  mit Kupferpulver auf 220—270° (P., P., Sch.). Gelbbraune Nadeln

  (aus Eisessig). F: 177°.
- 6.6'-Dinitro-2.2'-dimethyl-diphenyl, 6.6'-Dinitro-ditolyl-(2.2')

  C<sub>14</sub>H<sub>13</sub>O<sub>4</sub>N<sub>3</sub>, s. nebenstehende Formel (H 609). F: 111—112° (Kenner,
  Stubbings, Soc. 119, 600). Liefert bei der Reduktion mit 3% igem
  Natriumamalgam in Methanol unter Kühlung 4.5-Dimethyl-phenazon
  (Syst. Nr. 3487).

  H 609, Z. 13 v. o. statt "Schwefelsäure" lies "Salzsäure".
- 10. 2.3'- Dimethyl-diphenyl, Ditolyl-(2.3'), o.m-Ditolyl C<sub>14</sub>H<sub>14</sub>, s. nebenstehende Formel (H 609). B. Beim Erhitzen von 2-Jod-toluol und 3-Jod-toluol mit Kupferpulver im Rohr auf 230—240°, neben anderen Produkten (MAYER, FREITAG, B. 54, 356). Bei der Destillation von 4.4'-Dihydrazino-2.3'-dimethyl-diphenyl mit Kupferacetat (M., Fr., B. 54, 354). Stark lichtbrechendes Öl. Kp: 273—274°. D<sup>28</sup>: 0,9984. n<sup>28</sup>: 1,5848. Wird durch siedende verdünnte Permanganat-Lösung zu Diphenyl-dicarbonsäure-(2.3') oxydiert.
- 11. 2.4'-Dimethyl-diphenyl. Ditolyl-(2.4'), o.p-Ditolyl
  C<sub>14</sub>H<sub>14</sub>, s. nebenstehende Formel (H 609; E I 286). B. In geringer
  Menge bei der Umsetzung von diazotiertem p-Toluidin mit Toluol

in Natronlauge bei ca. 0°, neben wenig 4.4'-Dimethyl-diphenyl (GOMBERG, PERNERT, Am. Soc. 48, 1380). — Kp: 273—276°. — Liefert bei der Oxydation mit neutraler Permanganat-Lösung Diphenyl-dicarbonsäure-(2.4').

12. 3.3'- Dimethyl-diphenyl, Ditolyl-(3.3'), m.m-Ditolyl  $C_{14}H_{14}=CH_{3}$ ·  $C_{6}H_{4}\cdot C_{6}H_{4}\cdot CH_{3}$  (H 609; E I 286). B. Bei etwa 20-stdg. Kochen von 3.5-Dibrom-toluol mit Natrium in Äther, neben anderen Produkten (Fuchs, Metzl., B. 55, 739, 746).

4.4'-Dichlor - 3.3'-dimethyl-diphenyl, 4.4'-Dichlor-ditolyl-(3.3') C<sub>14</sub>H<sub>12</sub>Cl<sub>2</sub>, s. nebenstehende Formel (H 610). F: 58° bis 58,5° (Pfeiffer, Schmitz, Inoue, J. pr. [2] 121, 74), 52—53° Cl. CLE Fèvre, Turner, Soc. 1928, 968). Kp: 310—320° (Le F., T.).

— Gibt beim Nitrieren mit Salpetersäure (D: 1,5) bei 100° 4.4'-Dichlor-6.6'-dinitro-3.3'-dimethyl-diphenyl (Le F., T.).

5.5'-Dichlor-3.3'-dimethyl-diphenyl, 5.5'-Dichlor-ditolyl-(3.3')
C<sub>14</sub>H<sub>12</sub>Cl<sub>2</sub>, s. nebenstehende Formel. B. Beim Erhitzen von 5-Chlor-3-jodtoluol mit Kupferpulver anfangs auf 250—260°, dann auf 290° (McALISTER, KENNER, Soc. 1928, 1915). — Krystalle (aus Alkohol). F: 101—102°.

4.4'- Dibrom - 3.3'- dimethyl - diphenyl, 4.4'- Dibrom - ditolyl-(3.3') C<sub>14</sub>H<sub>12</sub>Br<sub>2</sub>, s. nebenstehende Formel (H 610). Gelbliche Blättchen (aus Alkohol), F: 71° (Peeffers, Schmitz, Inoue, Br. J. pr. [2] 121, 75); farblose Nadeln (aus Alkohol), F: 63—64° (Le Fèvre, Turner, Soc. 1928, 968). Kp<sub>20</sub>: 202—215° (Le F., T.). — Gibt bei der Nitrierung mit Salpetersäure (D: 1,5) unterhalb 20° 4.4'-Dibrom-6.6'-dinitro-3.3'-dimethyl-diphenyl (Le F., T.).

4.4'-Dijod-3.3'-dimethyl-diphenyl, 4.4'-Dijod-ditolyl-(3.8')  $C_{14}H_{12}I_2$ , Formel I. Gelbe Blättchen (aus Eisessig oder Methanol). F: 109—110° (Pfeiffer, Schmitz, Inoue,  $J.\ pr.\ [2]\ 121,\ 74$ ).

3.3'-Dimethyl-diphenylen-(4.4')-bis-jodidchlorid, Dijodditolyljodidchlorid  $C_{14}H_{12}Cl_4l_2$ , Formel II. B. Beim Einleiten von Chlor in eine Lösung von 4.4'-Dijod-



3.3'-dimethyl-diphenyl in Chloroform unter Kühlung mit Eiswasser (Pfeiffer, Schmitz, Inoue, J. pr. [2] 121, 75). — Gelbes Pulver. F: 101—102° (Zers.).

6.6'- Dinitro - 3.3'- dimethyl - diphenyl, 6.6'- Dinitro - ditolyl - (3.3')  $C_{14}H_{12}O_4N_2$ , Formel III (H 610).

H 610, Z. 27 v. o. statt "2 Mol.-Gew." lies "1 Mol.-Gew.". Z. 28 v. o. statt "1 Mol.-Gew." lies "2 Mol.-Gew.".

4.4'-Dichlor-6.6'-dinitro-3.3'-dimethyl-diphenyl, 4.4'-Di-chlor-6.6'-dinitro-ditolyl-(3.3')  $C_{14}H_{10}O_4N_2Cl_2$ , s. nebenstehende Formel. B. Beim Nitrieren von 4.4'-Dichlor-3.3'-dimethyl-diphenyl mit Salpetersäure (D: 1,5), zuletzt bei 100° (LE Fèvre, Turner, Soc. 1928, 968). Bei der Einw. von Kupfer(I)-chlorid auf diazotiertes 6.6'-Dinitro-3.3'-dimethyl-benzidin in salzsaurer Lösung (Le. F., T.). — Gelbe Krystalle (aus Eisessig). F: 212°.

4.4'-Dibrom -5.5'-dinitro -3.3'-dimethyl-diphenyl, 4.4'-Dibrom -5.5'-dinitro -ditolyl-(3.3')  $C_{14}H_{10}O_4N_2Br_2$ , s. nebenstehende Formel. B. Durch Einw. einer Lösung von Brom in Bromwasser stoffsäure (D: 1,49) auf diazotiertes 5.5'-Dinitro-3.3'-dimethyl-benzidin ord. Schwefelsäure unter Eiskühlung und Zersetzung des Perbromids mit siedendem Eisessig (LE FÈVRE, TURNER, Soc. 1928, 967). — Blaßgelbe Nadeln (aus Eisessig). F: 271—272°. Schwer löslich in Eisessig. — Gibt beim gelinden Kochen mit Piperidin 5.5'-Dinitro-4.4'-dipiperidino-3.3'-dimethyl-diphenyl.

4.4'-Dibrom - 6.6'-dinitro - 3.3'-dimethyl-diphenyl, 4.4'-Dibrom - 6.6'-dinitro - ditolyl - (3.3')  $C_{14}H_{10}O_4N_2Br_3$ , s. nebenstehende Formel. B. Beim Nitrieren von 4.4'-Dibrom - 3.3'-dimethyl-diphenyl Br mit Salpetersäure (D: 1,5) unterhalb 20° (Le Fèvre, Turner, Soc. 1928, 969). Bei der Einw. einer Lösung von Brom in Bromwasserstoffsäure (D: 1,49) auf diazotiertes 6.6'-Dinitro-3.3'-dimethyl-benzidin in verd. Schwefel-

stonsaure (D: 1,49) auf diazotiertes 6.6 Dintro-3.3 dimethyl-benzidin in verd. Schwefelsäure unter Eiskühlung und Zersetzung des Perbromids mit siedendem Eisessig (LE F., T.).

— Gelbe Nadeln (aus Eisessig). F: 230—233°. — Reagiert nicht mit siedendem Piperidin.

13. 4.4'-Dimethyl-diphenyl, Ditolyl-(4.4'), p.p-Ditolyl C<sub>14</sub>H<sub>14</sub> = CH<sub>3</sub>·C<sub>6</sub>H<sub>4</sub>·CH<sub>4</sub>·CH<sub>3</sub> (H 610; E I 286). B. Bei der Reduktion von 4-Brom-toluol mit Hydrazinhydrat in alkoh. Kalilauge bei Gegenwart von Palladium, neben Toluol (Визси, Schmidt, B. 62, 2617). In sehr geringer Menge bei der Umsetzung von diazotiertem p-Toluidin mit Toluol in Natronlauge bei ca. 0°, neben wenig 2.4'-Dimethyl-diphenyl (GOMBERG, PERNERT, Am. Soc. 48, 1380). Neben anderen Produkten beim Erhitzen einer mit Kupferpulver oder Kupfer(I)-48, 1380). Neben anderen Frodukten beim Erintzen einer ihn kupier pulver oder Rupier (1)chlorid behandelten alkoholischen Lösung des Salzes p-CH<sub>3</sub>·C<sub>6</sub>H<sub>4</sub>·N<sub>3</sub>·[As(OH)Cl<sub>3</sub>] mit
Natronlauge (Földi, B. 56, 2497). Entsteht aus p-Tolylmagnesiumbromid in guter Ausbeute bei tropfenweiser Zugabe einer äther. Lösung zu einer Suspension von wasserfreiem
Kupfer(II)-chlorid in Äther unter Kühlung (Sakellarios, Kyrimis, B. 57, 324), beim
Kochen mit Silberbromid in Äther + Benzol (Gardner, Borgstrom, Am. Soc. 51, 3376)
und bei der Einw. von Vanadium(IV)-chlorid in Äther bei —8° (Supplewski, Roczniki Chem. 7, 174; C. 1928 I, 1523), neben anderen Produkten beim Behandeln der äther. Lösung mit Sauerstoff unter Kühlung (GILMAN, WOOD, Am. Soc. 48, 810), bei der Einw. von Siliciumtetrachlorid in Äther bei 0° (PINK, KIPPING, Soc. 123, 2832), bei der Einw. von sublimiertem Chrom(III)-chlorid in Äther unter Kühlung (Hein, Spaete, B. 57, 901) und bei der Einw. von Azobenzol in siedendem Äther (Gilman, Pickens, Am. Soc. 47, 2408).

F: 121° (GOMBERG, PERNERT, Am. Soc. 48, 1380; SAKELLARIOS, KYRIMIS, B. 57, 324), 121° (korr.) (SUPNIEWSKI, Roczniki Chem. 7 [1927], 174). Kp<sub>76</sub>: 198°; Kp<sub>50</sub>: 188°; Kp<sub>41</sub>: 181°; Kp<sub>35</sub>: 178°; Kp<sub>20</sub>: 168° (PINK, KIPPING, Soc. 123, 2832 Anm.). Schwer löslich in kaltem Alkohol (HEIN, SPAETE, B. 57, 902). Krystallographische Beschreibung von Mischkrystallen mit 4.4'-Dichlor-diphenyl und 4.4'-Dibrom-diphenyl: MIELEITNER, Z. Kr. 55, 633. — Wird von Salpetersäure in Eisessig in der Kälte nicht angegriffen, beim Eindampfen mit der berechneten Menge Salpetersäure (D: 1,4) in Eisessig entsteht 2(oder 3)-Nitro-4.4'-dimethyl-diphenyl, bei der Einw. von Salpetersäure (D: 1,5) bei Zimmertemperatur 2.3'(?)-Dinitro-4.4'-dimethyl-diphenyl (DENNETT, TURNER, Soc. 1926, 480).

4.4'-Bis-chlormethyl-diphenyl,  $\omega.\omega'$ -Dichlor-ditolyl-(4.4')  $C_{14}H_{12}Cl_2 = CH_2Cl \cdot C_6H_4 \cdot C_{14}H_{12}Cl_2 = CH_2Cl \cdot C_6H_4  CaHa·CH2Cl (H 610). B. Bei der Einw. von Bis-chlormethyl-ather auf Diphenyl in Gegenwart von wasserfreiem Zinkchlorid (Stephen, Short, Gladding, Soc. 117, 512).

2 (oder 3)-Nitro-4.4'-dimethyl-diphenyl, 2 (oder 3)-Nitro-ditolyl-(4.4')  $C_{14}H_{13}O_2N=$  $CH_3 \cdot C_6H_4 \cdot C_6H_3(NO_2) \cdot CH_3$ . Beim Eindampfen von 4.4'-Dimethyl-diphenyl mit der berechneten Menge Salpetersäure (D: 1,4) in Eisessig (DENNETT, TURNER, Soc. 1926, 480).

— Gelbe Prismen (aus Alkohol). F: 91—92°. Leicht löslich in Alkohol, Benzol und Eisessig.

2.2'-Dinitro - 4.4'-dimethyl-diphenyl, 2.2'-Dinitro-ditolyl-(4.4') C<sub>14</sub>H<sub>12</sub>O<sub>4</sub>N<sub>2</sub>, s. nebenstehende. Formel (H 610). Liefert bei der Reduktion mit Schwefelwasserstoff in alkoholisch-ammonia- CH3. CH<sub>3</sub> kalischer Lösung auf dem Wasserbad 2'-Nitro-2-amino-4.4'-dimethyldiphenyl (Mascarelli, Gatti, R. A. L. [6] 10, 443; G. 59, 862).

2.3'(?)-Dinitro-4.4'-dimethyl-diphenyl, 2.3'(?)-Dinitro-ditolyl-(4.4')  $C_{14}H_{12}O_4N_2$ , s. nebenstehende Formel. B. Bei  $0_2N$  $NO_2$ der Einw. von Salpetersaure (D: 1,5) auf 4.4'-Dimethyl-diphenyl bei Zimmertemperatur (DENNETT, TURNER, Soc. 1926, 480). CH3 · CH<sub>3</sub>(?) - Gelbe Nadeln (aus Eisessig). F: 119°.

3.3'- Dinitro - 4.4'- dimethyl - diphenyl, 3.3'-Dinitro-ditolyl-(4.4')  $C_{14}H_{19}O_4N_2$ , s. nebenstehende Formel (H 611). B. Beim Erhitzen von 4-Jod-2-nitro-toluol mit Kupferbronze auf  $CH_3$ 240-2600 (DENNETT, TURNER, Soc. 1926, 480). - Krystalle (aus Alkohol). F: 175-176°.

6.6'-Dichlor-2.2'-dinitro-4.4'-dimethyl-diphenyl, 6.6'-Dichlor-2.2'-dinitro-ditolyl-(4.4') C<sub>14</sub>H<sub>10</sub>O<sub>4</sub>N<sub>2</sub>Cl<sub>3</sub>, s. nebenstehende Formel. B. Beim Erhitzen von 5-Chlor-4-jod-3-nitro-toluol oder CH<sub>3</sub>. 4.5-Dichlor-3-nitro-toluol mit Kupferpulver auf 230—250° (BURTON, KENNER, Soc. 121, 495). — Prismen (aus Benzol + Petroläther). F: 165°. — Wird beim Erhitzen mit wäßrig-methylalkoholischem Ammoniak auf 200° nicht verändert.

14. 1.2.3.4-Tetrahydro-anthracen, Tethracen  $C_{14}H_{14}$ , s. nebenstehende Formel. Ist wahrscheinlich identisch mit dem  $\gamma$ -Tetra-CH2 hydroanthracen von Godchor, C.r. 142, 1204; A.ch. [8] 12, ĊH2 525 (H 612) sowie mit dem aus Anthracen durch Reduktion mit komprimiertem Wasserstoff in Gegenwart von Nickeloxyd beim Erhitzen entstehenden Tetrahydroanthracen von Ipatjew, Jakowlew, Rakitin, B. 41, 997; 3K. 40, 495; C. 1908 II, 1098 (vgl. H 5, 661 Z. 27 v. u.) (SCHROETER, B. 57, 2010). — B. Bei der Hydrierung von Anthracen bei Gegenwart von Nickel in Tetralin bei 140—170° und 10—20 Atm. Druck, neben 9.10-Dihydro-anthracen und 1.2.3.4.5.6.7.8-Oktahydro-anthracen (SCHROETER, B. 57, 2013; D.R.P. 463830; C. 1928 II, 1386; Frdl. 16, 1279). Bei der Hydrierung von 9.10-Dihydro-anthracen bei Gegenwart von Nickel in Tetralin bei 180° und 14 Atm. Druck (Sch., B. 57, 2014). Entsteht ferner bei der Hydrierung von 2-Oxy-1.2.3.4-tetrahydro-anthracen (v. Braun, Bayer, A. 472, 109), 1-Oxy-9.10-dihydro-anthracen (v. B., B., A. 472, 103), 9-Oxy-9.10-dihydro-anthracen (v. B., B., B. 58, 2680), von 1-Oxy-anthracen und 1-Oxo-1.2.3.4-tetrahydro-anthracen (v. B., B., A. 472, 104) und von 1-Amino-anthracen und 2-Amino-anthracen (v. B., B., A. 472, 115, 118) in Gegenwart von Nickel in Dekalin bei 200—210° unter Druck. Neben anderen Produkten bei der Hydrierung von Anthracen-carbonsäure-(9) in Gegenwart von Palladium-Bariumsulfat in siedendem Isopropylalkohol (Meerwein, Migge, B. 62, 1048). Bei der Destillation von 1.2.3.4-Tetrahydro-anthracen-sulfonsäure-(9) in 50 %iger Schwefelsäure mit überhitztem Wasserdamof von 140—150° (Schroetter, B. 60, 2045).

Schwefelsäure mit überhitztem Wasserdampf von 140—150° (Schroetter, B. 60, 2045).

Blättchen (aus Alkohol), Krystalle (aus Eisessig). F: 106—107° (Schroetter, B. 60, 2045), 104—105° (Meerwein, Migge, B. 62, 1048). Zeigt bei der Bestrahlung mit Kathodenlicht ein violettes Leuchten (M., M.). — Liefert bei der Oxydation mit Permanganat Phthalsäure, bei der Oxydation mit kalter Chromessigsäure 1.2.3.4-Tetrahydro-anthrachinon-(9.10) (Sch., B. 57, 2014; D. R. P. 463830; C. 1928 II, 1386; Frdl. 18, 1279). Gibt bei der Reduktion mit Natrium in Isoamylalkohol ein Hexahydroanthracen(?) (gelbliche Blättchen aus Alkohol; F: 57—59°; Kp14: 162—163°; bildet kein Pikrat) (v. Braun, Bayer, A. 472, 111 Anm. 1). Liefert mit 2 Mol Brom in Chloroform 9.10-Dibrom-1.2.3.4-tetrahydro-anthracen (Sch., B. 57, 2014). — Das Pikrat schmilzt bei 116—117° (Sch., B. 57, 2014; D. R. P. 463830; Frdl. 16, 1279).

1.2.3.4.9.10 - Hexachlor - 1.2.3.4 - tetrahydro - anthracen, 9.10-Dichlor-anthracen-tetrachlorid-(1.2.3.4)  $C_{14}H_8Cl_6$ , s. nebenstehende Formel (H 611; E I 287). F: 205—207° (BARNETT, MATTHEWS, WILTSHIRE, R. 45, 561). — Liefert beim Erwärmen mit Pyridin auf dem Wasserbad 2.3.9.10-Tetrachlor-anthracen.

chci chci

1.2 - Dibrom - 1.2.3.4 - tetrahydro - anthracen C<sub>14</sub>H<sub>12</sub>Br<sub>2</sub>, s. nebenstehende Formel. B. Bei der Einw. von Brom auf 1.2-Dihydro-anthracen in kaltem Schwefelkohlenstoff (v. Braun, Bayer, A. 472, 108). — F: 102°. — Spaltet beim Erwärmen mit wäßr. Aceton einen Teil des Broms ab.

CHBr CHBr CHBr CH2

9.10-Dibrom-1.2.3.4-tetrahydro-anthracen, ms-Dibrom-tethracen  $C_{14}H_{12}B_{72}$ , s. nebenstehende Formel. B. Bei der Einw. von 2 Mol Brom auf 1.2.3.4-Tetrahydro-anthracen in Chloroform (Schroeter, B. 57, 2014). Bei der Einw. von Brom auf das Natriumsalz der 1.2.3.4-Tetrahydro-anthracen-sulfonsäure-(9) in Eisessig (Sch., B. 60, 2045). — Blättchen (aus Eisessig). F: 166—168°.

Br CH2 CH2
CH2

1.2.3.4.9.10 - Hexabrom - 1.2.3.4 - tetrahydro - anthracen, 9.10 - Dibrom - anthracen - tetrabromid - (1.2.3.4)  $C_{14}H_8Br_8$ , s. nebenstehende Formel (H 611; E I 287). Liefert mit kaltem Pyridin 2.9.10-Tribrom-anthracen und 2.3.9.10-Tetrabrom-anthracen (Barnett, Cook, Soc. 127, 1490).

15.  $\gamma$ -Tetrahydroanthracen C<sub>14</sub>H<sub>14</sub> (H 612) von Godchot, C. r. 142, 1204; A. ch. [8] 12, 525 wird von Schroeter, B. 57, 2010 als 1.2.3.4-Tetrahydro-anthracen aufgefaßt.

16.  $\beta$ -Tetrahydroanthracen  $C_{14}H_{14}$  (H 612) von Godchot,  $C.\tau$ . 139, 605; Bl. [3] 31, 1339; A.ch. [8] 12, 477, 481 wird von Schroeter, B. 57, 2011 als mit höheren Hydrierungsprodukten des Anthracens verunreinigtes 9.10-Dihydro-anthracen aufgefaßt.

17. 1.2.3.4-Tetrahydro-phenanthren, Tetanthren

C14H14, s. nebenstehende Formel. Die früher als α-Tetrahydrophenanthren (H 612; E I 287) beschriebene Verbindung
ist nach Schroeter, B. 57, 2027; vgl. v. Auwers, Kraul, A. 443, 187; Schr., Müller,
Huang, B. 60, 653; Orlow, B. 60, 711; Ж. 60, 1448, unreines 1.2.3.4-Tetrahydro-phenanthren gewesen. — B. Beim Erhitzen von 1.2.3.4.5.6.7.8-Oktahydro-phenanthren mit
Schwefel auf 220° bis zur Abspaltung der berechneten Menge Schwefelwasserstoff (Schroeter,
B. 57, 2032). Entsicht vielleicht bei der Hydrierung von 1.4-Dihydro-phenanthren(?) bei
Gegenwart von Palladium-Bariumsulfat in Alkohol (Schlenk, Bergmann, A. 463, 87).
Bei partieller Reduktion von sorgfältig gereinigtem Phenanthren mit Wasserstoff in Gegenwart von Nickel in Tetralin oder ohne Lösungsmittel bei ca. 200° unter ca. 20 Atm. Druck,
neben 1.2.3.4.5.6.7.8-Oktahydro-phenanthren und 9.10-Dihydro-phenanthren (Schr., B. 57,
2032; Schr., Müller, Huang, B. 62, 649; vgl. a. Schr., Tetralin-Ges., D. R. P. 352719;

C. 1922 IV, 159; Frdl. 14, 834). Neben 9.10-Dihydro-phenanthren bei allmählicher Einw. von Natrium auf eine siedende Lösung von Phenanthren in Isoamylalkohol (SCHR., M., H.). — Blättchen (aus Methanol). F: 33—34° (SCHR.; SCHR., M., H.), 33° (ORLOW, B. 62, 711; Ж. 60, 1448).  $Kp_{771}$ : 311—315° (O.); Kp: 307° (v. Auwers, Kraul, A. 443, 186);  $Kp_{11}$ : 173° (SCHR., M., H.);  $Kp_{10}$ : 165—167° (v. Au., K.).  $D_0^{\pi}$ : 1,052 (O.);  $D_0^{\pi}$ : 1,0601 (SCH., M., H.)  $n_0^{\pi}$ : 1,6092 (O.); Molekularrefraktion bei 40° für verschiedene Wellenlängen: SCHR. M., H. Dichten und Brechungsindices eines wahrscheinlich nicht ganz reinen Präparats: v. Au., K.

Liefert bei der Destillation mit wasserfreiem Aluminiumchlorid neben anderen Produkten eine benzinartige Fraktion und in überwiegender Menge eine höhersiedende Flüssigkeit, die bei der Dehydrierung mit Schwefel bei 200—240° in Naphthalin und Naphthalinhomologe übergeht (Örlow, B. 62, 716; Ж. 60, 1454). Wird bei allmählicher Einw. von Chromessigsäure unter Kühlung zu Phenanthren und 1-Oxo-1.2.3.4-tetrahydro-phenanthren, bei allmählicher Einw. von Permanganat in Aceton zu 1-Oxo- und 4-Oxo-1.2.3.4-tetrahydro-phenanthren, beim Kochen mit wäßr. Permanganat-Lösung zu Phthalsäure und Benzoltetracarbonsäure-(1.2.3.4) oxydiert (Schroeter, Müller, Huang, B. 62, 653). Liefert bei längerem Erhitzen mit Wasserstoff unter 70—75 Atm. Anfangsdruck auf 450—470° in Gegenwart von Eisenoxyd und Tonerde Benzol-Kohlenwasserstoffe, Naphthalin, β-Methylnaphthalin, Phenanthren, Tetralin und Hydride des β-Methyl-naphthalins und Dimethyloder Äthyl-naphthalins (O.).

Das Pikrat schmilzt bei 1110 (SCHROETER, MÜLLER, HUANG, B. 62, 653).

18. 5-Äthyl-acenaphthen C<sub>14</sub>H<sub>14</sub>, s. nebenstehende Formel. B. In geringer Menge bei der Einw. von Äthylbromid auf Acenaphthen in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff (MAYER, KAUFMANN, B. 53, 293). Beim Kochen von 5-Acetyl-acenaphthen mit amalgamiertem Zink und Salzsäure (FLEISCHER, WOLFF, B. 53, 926). — Krystalle (aus Methanol). F: 42,50 big 430 (F. W.) Kr. + 1580 (F. W.) Leight löglich in heißem Methanol und

H<sub>2</sub>C CH<sub>2</sub>

Salzsäure (FLEISCHER, WOLFF, B. 53, 926). — Krystalle (aus Methanol). F: 42,5° C<sub>2</sub>H<sub>5</sub> bis 43° (F., W.). Kp<sub>13</sub>: 158° (F., W.). Leicht löslich in heißem Methanol und Alkohol und in kaltem Äther, Aceton, Ligroin, Benzol und Chloroform; schwer löslich in Wasser (F., W.). — Liefert bei der Oxydation mit heißer Chromessigsäure 4-Äthyl-naphthalindicarbonsäure-(1.8) (M., K.). Wird durch Destillation mit Zinkstaub zu Acenaphthylen reduziert (M., K.). Liefert mit Brom bei 170° ein gelbes Öl, das durch heiße alkoholische Kalilauge nicht verändert wird (M., K.). Gibt mit Acetylchlorid bei Gegenwart von Aluminiumchlorid 6-Äthyl-5(?)-acetyl-acenaphthen (F., W.). — Das Pikrat schmilzt bei 95—96° (M., K.).

# 5. Kohlenwasserstoffe $\mathrm{C}_{15}H_{16}.$

1. 1.3-Diphenyl-propan, Dibenzylmethan C<sub>18</sub>H<sub>16</sub> = C<sub>8</sub>H<sub>5</sub>·[CH<sub>2</sub>]<sub>3</sub>·C<sub>6</sub>H<sub>5</sub> (H 613; E I 288). B. Aus 3-Chlor-1-brom-propan und Benzol in Gegenwart von Aluminiumchlorid (Zelinsky, Titz, B. 62, 2869). Aus flüssigem 1.3-Diphenyl-propen bei der Reduktion mit Natrium in siedendem Alkohol oder beim Hydrieren in Gegenwart von palladiniertem Calciumcarbonat in Alkohol (Stoermer, Thier, B. 58, 2613). Bei der Einw. von 3 Mol Wasserstoff auf Benzylidenacetophenon in Gegenwart von Palladium(II)-chlorid in Aceton bei etwa 17° (Straus, Grindel, A. 439, 295, 296). — Kp: 292—293° (Str., Grl.); Kp: 301—303° (korr.); Kp<sub>16</sub>: 166—168° (Stoe., Th.); Kp<sub>10</sub>: 177—178° (Zel., Titz). D<sup>1,15</sup>: 0,9982 (Zel., Titz); D<sup>20</sup>: 1,007 (Vorländer, Walter, Ph. Ch. 118, 12). n<sup>1,15</sup>: 1,5712 (Zel., Titz). Viscosität bei 20°: V., W. Doppelbrechung der rotierenden Flüssigkeit: V., W. — 1.3-Diphenyl-propan wird beim Leiten über aktive Platin-Kohle im Kohlendioxydstrom bei 300° bis 310° nicht verändert (Zel., Titz). Liefert beim Erhitzen auf 440° unter 70—75 Atm. Wasserstoff-Druck in Gegenwart von Tonerde und Eisenoxyd 65% leichte, zwischen 94° und 150° siedende Kohlenwasserstoffe (IPatjew, Orlow, Lichatschew, Ж. 61, 1342; B. 63 [1930], 159).

1-Chlor-1-phenyl-3-[2-chlor-phenyl]-propan  $C_{15}H_{14}Cl_2 = C_6H_4Cl\cdot CH_2\cdot CH_2\cdot CHCl\cdot C_6H_5$ . B. Aus  $\alpha$ -Phenyl- $\gamma$ -[2-chlor-phenyl]-propylalkohol und Chlorwasserstoff bei  $60^\circ$  (Pfeiffer, Mitarb., J.pr. [2] 119, 113, 122). — Wurde nicht rein erhalten. Gelbliches dünnflüssiges Öl. Kp<sub>2</sub>: 151—154° (unter geringer Chlorwasserstoff-Abspaltung?). — Liefert beim Behandeln mit Kupferbronze nicht näher beschriebenes 1-Phenyl-3-[2-chlor-phenyl]-propen-(1).

1.2-Dibrom-1.3-diphenyl-propan,  $\alpha$ -Phenyl- $\alpha'$ -benzyl-äthylenbromid  $C_{15}H_{14}Br_2 = C_6H_5 \cdot CH_2 \cdot CHBr \cdot CHBr \cdot C_4H_5$  (H 613). B. Aus 1.3-Diphenyl-propen (Kp<sub>14</sub>: 165—166°; sterisch wohl nicht einheitlich) und Brom in Chloroform (Ramarr, Amagar, A. ch. [10] 8, 309, 311). — Nadeln (aus Alkohol). F: 112° (Maquennescher Block).

2.2-Dibrom-1.3-diphenyl-propan, Dibenzyldibrommethan  $C_{15}H_{14}Br_2=C_6H_5\cdot CH_2\cdot C_6H_5\cdot CH_2\cdot C_6H_5$ . Härte der Krystalle: Reis, Zimmermann, Ph. Ch. 102, 329.

- 2-Chlor-2-nitroso-1.3-diphenyl-propan, Dibenzylchlornitrosomethan  $C_{15}H_{14}ONCl = C_6H_5 \cdot CH_3 \cdot CCl(NO) \cdot CH_2 \cdot C_6H_5 \cdot B$ . Aus Dibenzylketoxim durch Behandeln mit Nitrosylchlorid in Äther (Rheinboldt, Dewald, A. 455, 310) oder durch Einw. von Chlor in konz. Salzsäure (Rh., D., A. 455, 311). Blaue Krystalle von honigartigem Geruch (aus Alkohol). F: 90—91°. Zersetzt sich bei 105°. Leicht löslich in Chloroform, Äther, Benzol und Ligroin, schwerer in Tetrachlorkohlenstoff und Eisessig, schwer in Alkohol. Die Lösungen des Dibenzylchlornitrosomethans entfärben sich im Sonnenlicht sowie bei Utraviolett-Bestrahlung unter Bildung von Dibenzylchlornitromethan. Auch bei der Oxydation mit Salpetersäure in Eisessig wird Dibenzylchlornitromethan gebildet. Beim Erwärmen mit Phenylhydrazin in Eisessig wird Stickstoff entwickelt.
- 2-Chlor-2-nitro-1.3-diphenyl-propan, Dibenzylchlornitromethan  $C_{15}H_{14}O_2NCl = C_6H_5\cdot CH_2\cdot CCl(NO_2)\cdot CH_2\cdot C_6H_5$ . B. Durch Oxydation von Dibenzylchlornitrosomethan mit Salpetersäure in Eisessig (Rheinboldt, Dewald, A. 455, 312). Durch Bestrahlung von Dibenzylchlornitrosomethan in Benzol oder Alkohol mit Sonnenlicht oder mit einer Quecksilberdampflampe (Rh., D.). Krystalle (aus Alkohol). F: 127°. Sehr schwer löslich in Ligroin, schwer in Eisessig, Alkohol, Äther und Benzol, ziemlich leicht in Nitrobenzol, leicht in Chloroform. Die Lösung in Äther-Alkohol färbt sich auf Zusatz von Diphenylamin-Schwefelsäure sofort blau.
- 2-Nitroso-2-nitro-1.3-diphenyl-propan, Dibenzylnitrosonitromethan, Diphenyl-propylpseudonitrol  $C_{18}H_{14}O_3N_2=C_6H_5\cdot CH_2\cdot C(NO)(NO_2)\cdot CH_2\cdot C_6H_5$ . Das Mol.-Gew. wurde kryoskopisch in Benzol und in Blausäure bestimmt (Rheinboldt, Dewald, B. 60, 251). B. Aus Dibenzylketoxim durch Einw. von Äthylnitrit und Salpetersäure (D: 1,4) in Äther unter Kühlung oder beim Behandeln mit Stickstofftetroxyd in Äther bei  $^{10}$  (Rh., D., B. 60, 250). Blaue Krystalle (aus kaltem Äther + Alkohol). Rhombisch (Brauns bei Rh., D.). F: 88° (Zers.). Leicht löslich in Äther, Chloroform und Benzol, schwerer in Eisessig, schwer in Alkohol und Ligroin, unlöslich in Wasser. Die tiefblaue Lösung in flüssiger Blausäure wird durch 12-stdg. Stehenlassen im Dunkeln entfärbt. Zersetzt sich schnell beim Aufbewahren am Licht. Beim Belichten der Lösungen in Äther oder in Benzol oder beim Behandeln der Lösung in Eisessig mit Salpetersäure entsteht Dibenzyldinitromethan. Scheidet aus Jodwasserstoffsäure Jod ab. Entwickelt mit Phenylhydrazin in Eisessig bei schwachem Erwärmen Stickstoff. Färbt die alkoholisch-ätherische Lösung von Diphenylaminschwefelsäure tiefblau. Gibt die Liebermannsche Nitrosoreaktion.
- 2.2-Dinitro-1.3-diphenyl-propan, Dibenzyldinitromethan  $C_{15}H_{14}O_4N_2 = C_6H_5 \cdot CH_2 \cdot C(NO_2)_2 \cdot CH_2 \cdot C_6H_5$ . B. Aus Dibenzylnitrosonitromethan bei der Oxydation in Eisessig mit Salpetersäure oder beim Belichten der Lösungen in Äther oder Benzol (Rheinboldt, Dewald, B. 60, 251). Krystalle (aus Alkohol). F: 132°. Leicht löslich in Chloroform, schwerer in Nitrobenzol, ziemlich schwer in Äther, Eisessig und Benzol, sehr schwer in Alkohol und Ligroin, unlöslich in Wasser.
- 2. 1.2-Diphenyl-propan, a-Methyl-dibenzyl  $C_{15}H_{16}=C_6H_5 \cdot CH_2 \cdot CH(CH_3) \cdot C_6H_5$  (H 613; E I 288). B. Beim Leiten von Methyl-phenyl-benzyl-carbinol über aktive Kohle bei 300° (Zelinsky, Gawerdowskaja, B. 61, 1053). Über Bildung von 1.2-Diphenyl-propan bei der Einw. von Aluminiumchlorid auf Benzol und Allylalkohol oder Allylbenzol bei 20—25° vgl. Huston, Sager, Am. Soc. 48, 1957. Kp<sub>751</sub>: 278° (Z., G.); Kp<sub>745</sub>: 277° bis 280° (H., S.).  $D_4^{\infty}$ : 0,9807 (Z., G.).
- 3-Chlor-1.2-diphenyl-propan,  $\alpha$ -Chlormethyl-dibenzyl,  $\beta$ . $\gamma$ -Diphenyl-propyl-chlorid  $C_{15}H_{15}Cl = C_6H_5 \cdot CH_2 \cdot CH(CH_2Cl) \cdot C_6H_5 \cdot B$ . Beim Verschmelzen von N-Benzoyl- $\beta$ . $\gamma$ -diphenyl-propylamin mit Phosphorpentachlorid (v. Braun, Bayer, Cassel, B. 60, 2608). Gelbliche Flüssigkeit. Kp<sub>11</sub>: 150°.
- 3-Brom-1.2-diphenyl-propan,  $\alpha$ -Brommethyl-dibenzyl,  $\beta$ . $\gamma$ -Diphenyl-propylbromid  $C_{18}H_{15}$ Br =  $C_{6}H_{5}$  CH<sub>2</sub> CH(CH<sub>2</sub>Br)· $C_{6}H_{5}$  (E I 288). B. Aus  $\beta$ . $\gamma$ -Diphenyl-propylalkohol beim Erhitzen mit rauchender Bromwasserstoffsäure auf 130° (v. Braun, Manz, A. 468, 265). Dicke gelbliche Flüssigkeit. Kp<sub>18</sub>: 188—190°. Liefert beim Behandeln mit Kaliumcyanid in verd. Alkohol  $\beta$ . $\gamma$ -Diphenyl-butyronitril und  $\alpha$ -Methyl-stilben.
- 2.3-Dibrom-1.2-diphenyl-propan,  $\alpha$ -Brom- $\alpha$ -brommethyl-dibenzyl,  $\alpha$ -Benzyl-styroldibromid  $C_{15}H_{14}Br_2 = C_0H_5 \cdot CH_2 \cdot CBr(CH_2Br) \cdot C_6H_5$ . B. Aus  $\alpha$ -Benzyl-styrol und Brom in Schwefelkohlenstoff (v. Braun, Seemann, Schultheiss, B. 55, 3815). Krystalle. F: 98°. Schwer löslich in Alkohol.
- 3. 1.1-Diphenyl-propan, Äthyldiphenylmethan  $C_{15}H_{16}=(C_6H_5)_2CH\cdot C_2H_5$  (H 614; E I 289). B. Beim Leiten von Äthyldiphenylcarbinol-Dampf über aktive Kohle bei 300° (Zelinsky, Gawerdowskaja, B. 61, 1052). Durch Reduktion von  $\gamma$ -Phenyl-zimtalkohol mit Natrium und Alkohol (Ziegler, Tiemann, B. 55, 3412, 3413). Kp<sub>760</sub>: 280°;

 $\mathrm{Kp_{18}}\colon 140-141^{\circ}\ (\mathrm{Z_{IE.}},\ \mathrm{T.});\ \mathrm{Kp_{759}}\colon 278-279^{\circ}\ (\mathrm{Z_{IE.}},\ \mathrm{G.}).\ D_4^{i_4,i_1}\colon 0,9951;\ n_5^{i_4,i_2}\colon 1,5681\ (\mathrm{Z_{IE.}},\ \mathrm{T.}).$  Parachor: Sugden, Soc. 125, 1181.

- 4. 4-Äthyl-diphenylmethan  $C_{15}H_{16} = C_6H_5 \cdot CH_2 \cdot C_6H_4 \cdot C_2H_5$ .
- 4-Äthyl-diphenylchlormethan, 4-Äthyl-benzhydrylchlorid  $C_{15}H_{15}Cl = C_6H_6$ . CHCl· $C_6H_4$ · $C_2H_5$ . B. Bei der Einw. von Chlorwasserstoff auf 4-Äthyl-benzhydrol in Äther, Benzol oder Petroläther (Norris, Banta, Am. Soc. 50, 1807; N., Blake, Am. Soc. 50, 1810, 1811). Schwach purpurrot fluorescierende Flüssigkeit. Erstarrt nicht bei —15°;  $Kp_{1-2}$ : 122° (N., Bl.). Geschwindigkeit der Umsetzung mit Alkohol bei 25°: N., Ba., Am. Soc. 50, 1804; N., Bl.; N., Ph. Ch. 130, 665.
- 5. 2.4 Dimethyl diphenylmethan, 1.5 Dimethyl CH3
  2 benzyl benzol, 4 Benzyl m xylol C<sub>18</sub>H<sub>18</sub>, s. nebenstehende Formel (H 615; E I 289). B. Entsteht neben viel 2. Methyl-anthracen bei der Kondensation von m-Xylol und Benzylalkohol in Gegenwart von etwa 70—80 % iger Schwefelsäure in der Wärme (H. MEYER, BERNHAUER, M. 53/54, 722, 731).
- x-Nitro-2.4-dimethyl-diphenylmethan  $C_{15}H_{15}O_2N = C_{15}H_{15}\cdot NO_2$ . B. Aus 2.4-Dimethyl-diphenylmethan beim Behandeln mit Salpetersäure (D: 1,4) bei 4—5° (H. MEYER, BERNHAUER, M. 53/54, 732). Gelbliche Nadeln (aus Alkohol). F: 115°.
- 6. 2.5-Dimethyl-diphenylmethan, 1.4-Dimethyl-2-ben-zyl-benzol, 2-Benzyl-p-xylol C<sub>15</sub>H<sub>16</sub>, s. nebenstehende Formel (H 645). B. Neben 2-Methyl-anthracen aus p-Xylol und Benzylalkohol in Gegenwart von etwa 70-80%iger Schwefelsäure in der Wärme (H. MEYER, BERNHAUER, M. 53/54, 732). Liefert bei der Oxydation mit Chromschwefelsäure Benzoylterephthalsäure.



- 7. 2.2'-Dimethyl-diphenylmethan, Di-o-tolyl-methan  $C_{15}H_{16}=CH_3\cdot C_6H_4\cdot CH_2\cdot C_6H_4\cdot CH_3$ .
- 5.5'- Dinitro -2.2'- dimethyl diphenylmethan C<sub>18</sub>H<sub>14</sub>O<sub>4</sub>N<sub>2</sub>, s. nebenstehende Formel (H 615). B. Entsteht neben 4-Nitro-1-methyl-2-chlormethyl-benzol bei der Einw. von rauchender Schwefelsäure (20% SO<sub>3</sub>) auf 4-Nitro-toluol und Bis-chlormethyl-äther (STEPHEN, SHORT, GLADDING, Soc. 117, 527). Gibt bei aufeinanderfolgender Oxydation mit Chromsäure in Eisessig und mit Permanganat 5.5'-Dinitro-benzophenon-dicarbonsäure-(2.2').
- phenon-dicarbonsäure-(2.2').

  8. 4.4'-Dimethyl-diphenylmethan, Di-p-tolyl-methan C<sub>15</sub>H<sub>16</sub> = CH<sub>3</sub>·C<sub>6</sub>H<sub>4</sub>·CH<sub>3</sub>·C<sub>6</sub>H<sub>4</sub>·CH<sub>3</sub>·C<sub>6</sub>H<sub>4</sub>·CH<sub>3</sub>·C<sub>6</sub>H<sub>4</sub>·CH<sub>3</sub>·C<sub>6</sub>H<sub>4</sub>·CH<sub>3</sub>·C<sub>6</sub>H<sub>4</sub>·CH<sub>3</sub> (H 615; E I 289). B. Entsteht neben ω-Chlor-p-xylol aus Toluol und Bischlormethyl-äther in Gegenwart von Zinkchlorid bei Zimmertemperatur (Stephen, Short, Gladding, Soc. 117, 520). Neben anderen Produkten bei der Einw. von Chlordimethyläther auf Toluol in Gegenwart von Zinn(IV)-chlorid in der Kälte (Sommelet, C. r. 180, 1349, 1350). Neben Benzoesäure bei 5-stdg. Erhitzen von ω.ω-Di-p-tolyl-acetophenon mit alkoh. Kalilauge im Rohr auf 140° (Danllow, Ж. 58, 153; C. 1926 II, 2300). E: 22,5° (St., Sh., Gl.). F: 28—29° (Somm.), 27,5° (D.). Kp: 293° (St., Sh., Gl.); Kp<sub>768</sub>: 302° (korr.) (Somm.); Kp<sub>10</sub>: 149° (D.). Parachor: Suden, Soc. 125, 1181. Leicht löslich in organischen Lösungsmitteln, unlöslich in Wasser (St., Sh., Gl.). Wird durch Chromsäure in Eisessig zuerst zu 4.4'-Dimethyl-benzophenon, bei längerer Einw. zu Benzophenon-dicarbonsäure-(4.4') oxydiert; diese entsteht auch bei der Oxydation mit Permanganat (St., Sh., Gl.). Durch Einw. von Salpetersäure (D: 1,42) bei 60—70° erhält man 3.3'-Dinitro-4.4'-dimethyl-diphenylmethan und 3.3'-Dinitro-4.4'-dimethyl-benzophenon (St., Sh., Gl.).
- 4.4'-Dimethyl-diphenylchlormethan, Di-p-tolyl-chlormethan, Di-p-tolyl-methylchlorid, 4.4'-Dimethyl-benzhydrylchlorid  $C_{15}H_{15}Cl=CH_3\cdot C_6H_4\cdot CHCl\cdot C_6H_4\cdot CH_3$ . B. Durch Einw. von Chlorwasserstoff auf Di-p-tolyl-carbinol in Ather, Benzol oder Petrolather (Norris, Banta, Am. Soc. 50, 1807; N., Blake, Am. Soc. 50, 1810, 1811). Prismen (aus Petrolather). F: 45—46° (N., Bl.). Geschwindigkeit der Umsetzung mit Alkohol bei 25°: N., Ba., Am. Soc. 50, 1804; N., Bl.; N., Ph. Ch. 130, 665.
- 3.3' Dinitro 4.4' dimethyl diphenylmethan, C<sub>15</sub>H<sub>14</sub>O<sub>4</sub>N<sub>2</sub>, s. nebenstehende Formel (H 615; E I 290). B. Neben 3.3'-Dinitro-4.4'-dimethyl-benzophenon beim Behandeln yon 4.4'-Dimethyl-diphenylmethan mit Salpetersäure (D: 1,42) bei 60—70° (Stephen, Short, Gladding, Soc. 117, 521). Neben 2-Nitro-1-methyl-4-chlormethyl-benzol bei der Kondensation von 2-Nitro-toluol mit Chlordimethyläther oder Bischlormethyl-äther in Gegenwart von Aluminiumchlorid (St., Sh., Gl., Soc. 117, 525).

519

Tafeln (aus Eisessig). F: 170°. Sehr leicht löslich in kaltem Aceton, schwer in heißem Alkohol und Methanol. — Gibt bei der Oxydation mit Chromsäure in Eisessig 3.3′-Dinitro-4.4′-dimethyl-benzophenon.

#### 9. 9-Methyl-1.2.3.4-tetrahydro-anthracen C<sub>15</sub>H<sub>16</sub>, Formel I.

10-Brom-9-brommethyl-anthracen-tetrabromid-(1.2.3.4)  $C_{15}H_{10}Br_6$ , Formel II. B. Durch Stehenlassen von 9-Methyl-anthracen in Schwefelkohlenstoff mit 4 Mol Brom (Barnett, Matthews, B. 59, 1435). — Nadeln (aus Benzol-Benzin). F: 140° (Zers.). —

$$I. \begin{picture}(200,0) \put(0,0){\line(1,0){$C$}} \put(0,0){\line(1,0)$$

Wird durch Kochen mit alkoh. Kalilauge und nachfolgende Oxydation mit Chromsäure in 2.3-Dibrom-anthrachinon übergeführt.

- 10. 2 Äthyl 4.5 benzo hydrinden, 2 Äthyl 4.5 benzo indan C<sub>15</sub>H<sub>16</sub>, Formel III. B. Aus 2-Äthyl-6.7-benzo-hydrindon-(1) durch Erhitzen mit amalgamiertem Zink und verd. Salzsäure (F. MAYER, SIEGLITZ, B. 55, 1857). Kp<sub>14</sub>: 157—160°.
- 11. 2-Äthyl-perinaphthindan, Äthyldihydrophenalin C<sub>15</sub>H<sub>16</sub>, H<sub>16</sub>, s. nébenstehende Formel. B. Aus 2-Äthyl-perinaphthindanon-(1) durch Er-H<sub>2</sub>C CH<sub>2</sub> hitzen mit amalgamiertem Zink und verd. Salzsäure (F. Mayer, Sieglitz, B. 55, 1845). Kp<sub>16</sub>: 167—168°.

## 6. Kohlenwasserstoffe $C_{16}H_{18}$ .

- 1. 1.4-Diphenyl-butan C<sub>16</sub>H<sub>18</sub> = C<sub>6</sub>H<sub>5</sub>·[CH<sub>2</sub>]<sub>4</sub>·C<sub>6</sub>H<sub>5</sub> (H 616; E I 290). B. Durch Einw. von wasserfreiem Kupfer(II)-chlorid auf β-Phenäthyl-magnesiumbromid (Turner, Bury, Soc. 123, 2490). Bei der Zersetzung von Dihydrozimtsäureperoxyd durch Erhitzen (Fichter, Senti, Festschrift für A. Tschirch [Leipzig 1926], S. 414; C. 1927 II, 55). Durch Hydrierung von trans-trans-1.4-Diphenyl-butadien-(1.3) mit der berechneten Menge Wasserstoff in Gegenwart von Platinoxyd in Eisessig bei 19° (Kuhn, Winterstein, Helv. 11, 127, 137). Fluoresciert weder in Lösung noch in fester Form (K., W.). Liefert beim Erhitzen auf 440° unter 70—75 Atm. Wasserstoffdruck in Gegenwart von Tonerde und Eisenoxyd 80% leichte, zwischen 107° und 140° siedende Kohlenwasserstoffe (Іратуем, Orlow, Lichatschew, Ж. 61, 1342; B. 63, 159).
- E I 290, Z. 25 v. o. statt ,,C. r. 156, 1624) oder mit kolloidalem Palladium" lies ,,C. r. 156, 1624). Aus dem Diacetat des höherschmelzenden α.δ-Dioxy-α.δ-diphenyl-β-butins bei der Hydrierung in Gegenwart von kolloidalem Palladium".
- 2-Chlor-1.4-diphenyl-butan  $C_{16}H_{17}Cl=C_{6}H_{5}\cdot CH_{2}\cdot CH_{2}\cdot CHCl\cdot CH_{2}\cdot C_{6}H_{5}(?)$ . B. Aus 2-Oxy-1.4-diphenyl-butan durch Behandeln mit Phosphorpentachlorid (v. Braun, Kochen-dörfer, B. 56, 2177). Flüssigkeit.  $Kp_{15}$ : 192—193°.
- 1.4-Dibrom-1.4-diphenyl-butan  $C_{16}H_{16}Br_2 = C_6H_5 \cdot CHBr \cdot CH_2 \cdot CH_2 \cdot CHBr \cdot C_6H_5$ . B. Beim Erwärmen der beiden stereoisomeren 1.4-Dioxy-1.4-diphenyl-butane (F: 113—113,5° und 89—90°) mit Phosphortribromid in Toluol (Bachér, J. pr. [2] 120, 327, 337). Krystalle (aus Benzol + Petroläther). F: 139°. Liefert beim Erwärmen mit Kaliumjodid in Aceton 1.4-Dijod-1.4-diphenyl-butan. Beim Behandeln mit Zinkstaub in Aceton entsteht ein hellgelbes Ol (1.2-Diphenyl-cyclobutan?).
- 1.2.3.4 Tetrabrom 1.4 diphenyl butan  $C_{16}H_{14}Br_4=C_6H_5\cdot CHBr\cdot CHBr\cdot CHBr\cdot CHBr\cdot CHBr\cdot C_6H_5$  (H 616). B. Wurde in geringer Menge beim Behandeln von 3-Amino-2.4-diphenyl-cyclobutan-carbonsäure-(1) vom Zersetzungspunkt 195—196° (Syst. Nr. 1907) mit Nitrosylbromid in Ather erhalten (Stoermer, Schenck, B. 60, 2577, 2585). Nadeln (aus Eisessig). F: 252° (Zers.).
- 1.4-Dijod-1.4-diphenyl-butan  $C_{16}H_{16}I_2 = C_6H_5 \cdot \text{CHI} \cdot \text{CH}_2 \cdot \text{CH}_2 \cdot \text{CHI} \cdot C_6H_5$ . B. Beim Erwärmen von 1.4-Dibrom-1.4-diphenyl-butan mit Kaliumjodid in Aceton (Bacher, J. pr. [2] 120, 337). F: 140°. Färbt sich beim Aufbewahren am Licht bräunlich.
- 2. 1.3-Diphenyl-butan C<sub>16</sub>H<sub>18</sub> = C<sub>6</sub>H<sub>5</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>(CH<sub>3</sub>)</sub>·C<sub>6</sub>H<sub>5</sub> (H 616; E I 290). B. Beim Erhitzen von Acetophenon mit amalgamiertem Zink und Salzsäure im Dampfbad (Steinkopf, Wolfram, A. 430, 153).
  - 1.2-Dibrom-1.3-diphenyl-butan  $C_{16}H_{16}Br_2 = C_6H_5 \cdot CHBr \cdot CHBr \cdot CH(CH_3) \cdot C_6H_5$ .
- a) 1.2-Dibrom-1.3-diphenyl-butan vom Schmelzpunkt 79°. B. Entsteht neben den Isomeren vom Schmelzpunkt 122° und 129° beim Bromieren von 1.3-Diphenyl-buten-(1)

(flüssigem Distyrol); beim Umkrystallisieren des Rohprodukts aus Alkohol scheidet sich ein bei 102° unscharf schmelzendes Gemisch der Dibromderivate vom Schmelzpunkt 122° und 129° aus, das durch Krystallisation aus Petroläther + Äther getrennt werden kann; die Mutterlauge enthält das bei 79° schmelzende Isomere (Stoermer, Kootz, B. 61, 2331, 2335; vgl. Stoermer, Thier, B. 58, 2613). — Plättchen (aus Alkohol). F: 79°. Leicht löslich in Alkohol. — Liefert beim Kochen mit Zinkstaub und Alkohol 1.3-Diphenyl-buten-(1) zurück.

b) 1.2-Dibrom-1.3-diphenyl-butan vom Schmelzpunkt 122°. Bildung und Trennung von den Isomeren s. beim 1.2-Dibrom-1.3-diphenyl-butan vom Schmelzpunkt 79°. — Nadeln (aus Petroläther + Äther). F: 122° (Stoermer, Kootz, B. 61, 2332, 2335). — Liefert beim Kochen mit Zinkstaub und Alkohol 1.3-Diphenyl-buten-(1) zurück.

c) 1.2-Dibrom-1.3-diphenyl-butan vom Schmelzpunkt 129°. Bildung und Trennung von den Isomeren s. beim 1.2-Dibrom-1.3-diphenyl-butan vom Schmelzpunkt 79°. — Krystalle (aus Äther + Petroläther). F: 129° (STOERMER, THIER, B. 58, 2613; St., Kootz, B. 61, 2332, 2335). — Liefert beim Kochen mit Zinkstaub und Alkohol 1.3-Diphenyl-buten-(1) zurück (St., K.).

d) 1.2-Dibrom-1.3-diphenyl-butan vom Schmelzpunkt 102° (H 616; EI 290). Wurde von Stoermer, Kootz (B. 61, 2332, 2335) als ein Gemisch der 1.2-Dibrom-1.3-diphenyl-butane vom Schmelzpunkt 129° und 122° erkannt.

3. 2-Methyl-1.3-diphenyl-propan, Methyldibenzylmethan  $C_{16}H_{18} = C_{6}H_{5}$ .  $CH_{2} \cdot CH(CH_{3}) \cdot CH_{5} \cdot C_{6}H_{5}$  (E I 290). B. Entsteht neben anderen Produkten bei der Einw. von Äthylmagnesiumbromid auf 2-Brom-2-methyl-1.3-diphenyl-propan in Äther bei Zimmertemperatur (Trotman, Soc. 127, 92). — Kp: 290—294°.

2-Brom-2-methyl-1.3-diphenyl-propan, 2-Brom-1-phenyl-2-benzyl-propan  $C_{16}H_{17}Br=C_6H_5\cdot CH_2\cdot CBr(CH_2)\cdot CH_2\cdot C_6H_5$ . B. Durch Sättigen einer äther. Lösung von Methyldibenzylcarbinol oder von 2-Methyl-1,3-diphenyl-propen(?) mit Bromwasserstoff (Trotman, Soc. 127, 92, 93). — Prismen (aus Petroläther und Alkohol). F: 78,5°. Leicht löslich in Alkohol, Äther und Benzol, schwer in Petroläther. — Verliert beim Erhitzen Bromwasserstoff; kann auch unter 0,2 mm Druck nicht destilliert werden. Liefert bei Einw. von Äthylmagnesiumbromid in Äther, zuletzt bei Siedetemperatur, 2-Methyl-1.3-diphenyl-propan, 2-Methyl-1.3-diphenyl-propen(?) und etwas 2.2.3.3-Tetrabenzyl-butan. Mit Benzylmagnesiumchlorid bei 100° wurden 1-Phenyl-2.2-dibenzyl-propan, 2-Methyl-1.3-diphenyl-propen(?) und Dibenzyl erhalten. Auch beim Kochen mit Pyridin entsteht 2-Methyl-1.3-diphenyl-propen(?).

4. 1.2-Diphenyl-butan  $C_{16}H_{18}=C_{6}H_{5}$   $CH_{2}$   $CH(C_{2}H_{5})\cdot C_{6}H_{5}$  (H 616; E I 290). Fuson (Am. Soc. 48, 2940) sight die von Späth (M. 34 [1913], 1994) aus Benzylchlorid und Äthylmagnesiumbromid erhaltene, als 1.2-Diphenyl-butan beschriebene Verbindung als 4-Propyldiphenylmethan an; vgl. a. Späth, B. 60, 703. — B. 1.2-Diphenyl-butan entsteht neben wenig  $\beta$ -Phenyl- $\beta$ -benzyl-butylamin bei der Reduktion von  $\alpha$ -Phenyl- $\alpha$ -benzyl-butylamin bei der Reduktion von  $\alpha$ -Phenyl- $\alpha$ -benzyl-butylamin bei der Reduktion von  $\alpha$ -Phenyl- $\alpha$ -benzyl-butylomitril mit Natrium in absol. Alkohol (Blondeau, A. ch. [10] 2, 38). — Kp<sub>18</sub>: 161° (B.).

5. 2.3-Diphenyl-butan, 1.2-Dimethyl-1.2-diphenyl-äthan,  $\alpha.\alpha'$ -Dimethyl-dibenzyl  $C_{16}H_{16}=C_6H_5\cdot CH(CH_3)\cdot CH(CH_3)\cdot C_6H_5$ .

a) Höherschmelzende Form, meso-2.3-Diphenyl-butan (H 617; E I 290).

a) Höherschmelzende Form, meso-2.3-Diphenyl-butan (H 617; E I 290). B. Entsteht neben wechselnden Mengen der Racemform bei der Hydrierung von nicht einheitlichem (5—10% der trans-Form enthaltendem) cis-α.α'-Dimethyl-stilben bei Gegenwart von Palladium-Kohle oder Nickel-Kohle in trocknem Äther (Ott, B. 61, 2137). Aus trans-α.α'-Dimethyl-stilben beim Hydrieren bei Gegenwart von Palladium-Bariumsulfat in siedendem Eisessig (Ott, B. 61, 2129; vgl. Schlenk, Bergmann, A. 463, 118), bei der Reduktion mit Natrium und Alkohol im Wasserbad (Ott, B. 61, 2138) oder beim Behandeln mit Natrium oder Lithium in Äther unter Stickstoff und Zersetzen der entstandenen Alkaliverbindungen mit Alkohol (Ott, B. 61, 2139; vgl. Schl., Berg.). Bei der Hydrierung von Acetophenon in Gegenwart von feinverteiltem Kupfer bei 160° und 66 Atm. Druck, neben anderen Produkten (Kubota, Hayashi, Bl. chem. Soc. Japan 1, 68; C. 1926 II, 200). Entsteht neben der Racemform aus inakt. [α-Chlor-āthyl]-benzol beim Kochen mit Magnesium in feuchtem Äther oder beim Aufbewahren mit Natrium in trocknem Äther bei 20° (Ott, B. 61, 2141). Entsteht neben rechtsdrehendem 2.3-Diphenyl-butan beim Behandeln von linksdrehendem [α-Chlor-āthyl]-benzol (S. 277) mit Natrium in trocknem Äther bei 20° (Ott, B. 61, 2142). Neben der linksdrehenden Form aus rechtsdrehendem [α-Chlor-āthyl]-benzol mit Natrium in trocknem Äther bei 20° (Ott, B. 61, 2142). Neben der linksdrehenden Form aus rechtsdrehendem [α-Chlor-āthyl]-benzol mit Natrium in trocknem Äther bei 20° (Ott, B. 61, 2142). Neben der linksdrehenden Form aus rechtsdrehendem [α-Chlor-āthyl]-benzol mit Natrium in trocknem Äther bei 20° (Ott, B. 61, 2142). Neben der linksdrehenden Form aus rechtsdrehendem [α-Chlor-āthyl]-benzol mit Natrium in trocknem Äther bei 20° (Ott, B. 61, 2142). Neben der linksdrehenden Form aus rechtsdrehendem [α-Chlor-āthyl]-benzol mit Natrium in trocknem Ather bei 20° (Ott, B. 61, 2142). Neben der linksdrehenden Form aus rechtsdrehendem [α-Chlor-āthyl]-benzol mit Natrium in trocknem Ather (Ley, Rin

oder der aus N.N'-Di-a-phenäthyl-hydrazin durch Oxydation entstehenden Verbindung C<sub>16</sub>H<sub>18</sub>N<sub>2</sub> (SCHULZE, LOCHTE, Am. Soc. 48, 1033, 1035). — F: 126—127° (Отт, В. 61, 2137). Verbrennungswärme bei konstantem Volumen: 2217,9 kcal/Mol (W. A. ROTH bei Отт, В. 61, 2128; Landolt-Börnst. E II, 1635). Ultraviolett-Absorptionsspektrum der alkoh. Lösung: LEY, RINKE, B. 56, 773.

b) Niedrigerschmelzende Form, racem. 2.3-Diphenyl-butan (E I 291). B. Bei der Hydrierung von trans-α.α'-Dimethyl-stilben bei 200 in Gegenwart von Palladium-Kohle in trocknem Ather oder in Eisessig (Ott, B. 61, 2129, 2137, 2138) oder bei 180° in Gegenwart von Nickel-Kohle in Methanol unter 40 Atm. Wasserstoffdruck (Ott, B. 61, 2139). Weitere Bildungen s. bei der Mesoform. — Kp<sub>1</sub>: 104° (Ott, B. 61, 2138). Kp<sub>26</sub>: 162—164° (Ley, Rinke, B. 56, 776). Verbrennungswärme bei konstantem Volumen: 2223,9 kcal/Mol (Verkade bei Ott, B. 61, 2128; Landolt-Börnst. E II, 1635).

c) Rechtsdrehendes 2.3-Diphenyl-butan. B. Entsteht neben meso-2.3-Diphenyl-

butan aus linksdrehendem [α-Chlor-äthyl]-benzol beim Behandeln mit Natrium in trocknem

Ather bei 20° (Ott, B. 61, 2142). —  $D_4^{19}$ : 0,9784.  $[\alpha]_5^{19}$ :  $+20,24^{\circ}$  (unverdünnt). d) Linksdrehendes 2.3-Diphenyl-butan. B. Entsteht neben meso-2.3-Diphenylbutan beim Behandeln von ziemlich weitgehend racemisiertem rechtsdrehendem [a-Chloräthyl]-benzol mit Natrium in trocknem Äther bei 20° (OTT, B. 61, 2142). —  $[\alpha]_{\rm b}^{\rm gr}$ : —4.6° (unverdünnt).

- 2.3-Dibrom-2.3-diphenyl-butan,  $\alpha.\alpha'$ -Dibrom- $\alpha.\alpha'$ -dimethyl-dibenzyl,  $\alpha.\alpha'$ -Dimethyl-stilbendibromid  $C_{16}H_{16}Br_2=C_6H_6\cdot CBr(CH_3)\cdot CBr(CH_3)\cdot C_6H_5$  (E I 291). B. Aus trans- $\alpha.\alpha'$ -Dimethyl-stilben in Petroläther beim Behandeln mit einer Lösung von Brom in Chloroform (Lévy, Bl. [4] 29, 890). — Krystalle (aus Petroläther). Schmilzt unscharf zwischen 150° und 155° (Quecksilberbad). Sehr schwer löslich in Petroläther.
- 1.4 Dinitro 2.3 diphenyl butan  $C_{16}H_{16}O_4N_2 = C_6H_5 \cdot CH(CH_2 \cdot NO_2) \cdot CH(CH_2 \cdot NO_2) \cdot C_6H_5$ . Höherschmelzende Form (E I 291). B. Entsteht bei der Hydrierung von  $\omega$ -Nitrostyrol in äther. Lösung in Gegenwart von Platinschwarz (Banús, Pascual, An. Soc. españ. 20, 690; C. 1923 III, 1074). — Krystalle (aus Benzol). F: 237°.
- 6. 1.2-Di-p-tolyl-athan, 4.4'-Dimethyl-dibenzyl  $C_{16}H_{18} = CH_3 \cdot C_8H_4 \cdot CH_2 \cdot C_8H_4 \cdot CH_3 \cdot (H 617; E I 291)$ . B. Neben anderen Produkten bei längerem Kochen von Phenylazid mit p-Xylol unter Ausschluß von Feuchtigkeit oder beim Erhitzen der Komponenten unter Druck auf 150-160° und Destillation des entstandenen orangegelben ()ls mit Wasserdampf nach Zusatz von verd. Salzsäure (Bertho, B. 57, 1141).
- 7. 1.1-Diphenyl-butan, Propyldiphenylmethan  $C_{10}H_{18} = (C_0H_5)_2CH \cdot CH_2 \cdot C_2H_5$  (H 618; E I 292). Die von Klages, Heilmann (B. 37 [1904], 1452) bei der Reduktion von 1.1-Diphenyl-buten-(1) mit Natrium und Alkohol erhaltene und als 1.1-Diphenyl-butan angesehene Verbindung ist nach BLICKE, POWERS (Am. Soc. 51, 3378) Diphenylmethan. B. 1.1-Diphenyl-butan entsteht neben anderen Produkten beim Kochen von α-Äthyl- $\beta$ .  $\beta$ -diphenyl-propiophenon mit Natriumamid in Xylol (Alberto, A. ch. [9] 18, 258). — Bewegliche Flüssigkeit. Kp<sub>10</sub>: 152° (A.).
- 1-Chlor-1.1-diphenyl-butan, Propyldiphenylchlormethan  $C_{16}H_{17}Cl = (C_6H_5)_2CCl \cdot CH_2 \cdot C_2H_5$  (H 618). Die von Klages, Heilmann (B. 37 [1904], 1451) als 1-Chlor-1.1-diphenylbutan beschriebene Verbindung ist nach BLICKE, POWERS (Am. Soc. 51, 3378) Diphenylchlormethan.
- 8. **4-Propyl-diphenylmethan**, **1-Propyl-4-benzyl-benzol**  $C_{16}H_{18} = C_6H_5 \cdot C_6H_4 \cdot CH_2 \cdot C_2H_5$ . Diese Konstitution kommt nach Fuson (Am. Soc. 48, 2940) der von Späth (M. 34 [1913], 1994; E I 290) als 1.2-Diphenyl-butan beschriebenen, aus Benzylchlorid und Äthylmagnesiumbromid dargestellten Verbindung zu; vgl. dazu auch Sратн, В. 60, 703. — B. Aus Propylbenzol und Benzylchlorid in Gegenwart von Zinkstaub bei ca. 150° (Fuson, Am. Soc. 48, 2942). — Bewegliche Flüssigkeit. Kp<sub>10</sub>: 152—155°; D<sub>1</sub>°: 0,9739; n<sub>5</sub>°: 1,5552 (F.). — Wird von Chromessigsäure zu 4-Benzoyl-benzoesäure oxydiert (F.).
- 9. 2-Methyl-1.1-diphenyl-propan, 1.1-Dimethyl-2.2-diphenyl-āthan, Isopropyldiphenylmethan  $C_{16}H_{18}=(C_6H_5)_2CH\cdot CH(CH_3)_2$  (E I 292). B. Entsteht neben anderen Produkten beim Kochen von  $\alpha.\alpha$ -Dimethyl- $\beta.\beta$ -diphenyl-propiophenon mit Natriumamid in Xylol (RAMART, Albesco, C. r. 174, 1290; A., A. ch. [9] 18, 247). — Bewegliche, fast geruchlose Flüssigkeit. Kp<sub>13</sub>: 145°.
- 1.2-Dibrom-2-methyl-1.1-diphenyl-propan,  $\alpha.\alpha$ -Dimethyl- $\beta.\beta$ -diphenyl-äthylenbromid  $C_{18}H_{16}Br_3 = (C_6H_5)_2CBr\cdot CBr(CH_3)_2$ . B. Bei vorsichtiger Bromierung kleiner Mengen von  $\alpha.\alpha$ -Dimethyl- $\beta.\beta$ -diphenyl-äthylen in Schwefelkohlenstoff unter Kühlung (Ziegler, Bähr, B. 62, 1696). Mikrokrystallines Pulver (aus Methanol). F: 570 (Zers.). Sehr unberstelling Schwefelkohlenstoff unter Kühlung (Ziegler, Bähr, B. 62, 1696). ständig; zerfließt bald beim Aufbewahren unter Bildung von  $\beta$ -Methyl- $\gamma$ - $\gamma$ -diphenyl-allylbromid.

- 522
- 10. 1-Phenyl-1-p-tolyl-propan, Äthyl-phenyl-p-tolyl-methan  $C_{16}H_{18} = C_{6}H_{5} \cdot CH(C_{6}H_{5}) \cdot C_{6}H_{4} \cdot CH_{3}$ .
- 3-Brom-1-phenyl-1-p-tolyl-propan  $C_{16}H_{17}Br = C_6H_5 \cdot CH(CH_2 \cdot CH_2Br) \cdot C_6H_4 \cdot CH_3$ . B. Aus  $\gamma$ -Phenyl- $\gamma$ -p-tolyl-propylalkohol durch 50-stdg. Erhitzen mit rauchender Bromwasserstoffsäure auf 100° (v. Braun, Manz, Reinsch, A. 468, 295). Gelblich.  $Kp_{16}$ : 202—203°.
- 11. 4.4'.α-Trimethyl-diphenylmethan, 1.1-Di-p-tolyl-äthan C<sub>16</sub>H<sub>18</sub> = (CH<sub>3</sub>·C<sub>6</sub>H<sub>4</sub>)<sub>2</sub>CH·CH<sub>3</sub> (H 618; E I 292). B. Entsteht in geringer Menge beim Einleiten von Acetylen in Toluol bei Gegenwart von Aluminiumchlorid (Cook, Chambers, Am. Soc. 43, 337). Darst. Man leitet Acetylen in eine Mischung von Toluol und konz. Schwefelsäure in Gegenwart von Quecksilber(II)-sulfat bei 10—20° (Reichert, Nieuwland, Am. Soc. 45, 3091; Org. Synth. Coll. Vol. I [1932], £24). Kp: 295—300° (R., N.); Kp<sub>12</sub>: 155—157° (Anschütz, Hilbert, B. 57, 1699). Die Lösung in Eisessig liefert bei Einw. von ½ oder 1 Mol Salpetersäure anfangs bei gewöhnlicher Temperatur, zuletzt auf dem Wasserbad β-Nitro-α.α.di-p-tolyl-äthylen (A., H.).
- 2.2.2-Trichlor-1.1-di-p-tolyl-āthan C<sub>18</sub>H<sub>15</sub>Cl<sub>3</sub> = (CH<sub>3</sub>·C<sub>6</sub>H<sub>4</sub>)<sub>2</sub>CH·CCl<sub>3</sub> (H 619; E I 292). B. Aus Toluol und Chloral in Schwefelkohlenstoff bei Gegenwart von Aluminium-chlorid bei höchstens 0° (Harris, Frankforter, Am. Soc. 48, 3146, 3147). Krystalle (aus Alkohol). F: 89° (H., F.). Bleibt bei der Reduktion mit Devardascher (Aluminium-Kupfer-Zink) oder Arndscher (Kupfer-Magnesium) Legierung in siedendem wäßrigem Alkohol bei Gegenwart von Eisenchlorid größtenteils unverändert; in kleinen Mengen entstehen dabei die beiden stereoisomeren Formen des 2.3-Dichlor-1.1.4.4-tetra-p-tolyl-butens-(2) und 4.4'-Dimethyl-stilben (Brand, Wendel, J. pr. [2] 115, 335, 340). Bei der Hydrierung mit der jeweils berechneten Menge Wasserstoff in Gegenwart von Palladium-Calciumcarbonat in Alkohol + Pyridin bei schwacher Erwärmung entstehen 2.2.3.3-Tetrachlor-1.1.4.4-tetra-p-tolyl-butens-(2) und etwas 4.4'-Dimethyl-stilben (Brand, Wendel, J. pr. [2] 115, 339). Geht beim Kochen mit alkoh. Kalilauge in β.β-Dichlor-α.α-di-p-tolyl-āthylen über (H., F.).
- 2.2.2 Tribrom -1.2 di p tolyl äthan C<sub>18</sub>H<sub>15</sub>Br<sub>3</sub> = (CH<sub>3</sub>·C<sub>6</sub>H<sub>4</sub>)<sub>2</sub>CH·CBr<sub>3</sub>. B. Aus Toluol und Tribromacetaldehyd bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff bei höchstens 0° (HARRIS, FRANKFORTER, Am. Soc. 48, 3146, 3147). Aus Bromalhydrat und Toluol in konz. Schwefelsäure + wenig Eisessig beim Schütteln (BRAND, WENDEL, J. pr. [2] 115, 347). Prismen (aus Alkohol). F: 132° (B., W., J. pr. [2] 115, 347 Anm. 2). Bei der Oxydation mit siedender Chromessigsäure entsteht 4.4 'Dimethyl-benzophenon (H., F.). Liefert bei der Reduktion mit Devardascher oder Arndscher Legierung in Gegenwart von Kupfer(II)- oder Eisen(III)-chlorid in siedendem wäßrigem Alkohol 2.2.3.3-Tetrabrom-1.1.4.4-tetra-p-tolyl-buten-(2) (F: 175–176°); dieselben Verbindungen erhält man bei der Hydrierung von 2.2.2-Tribrom-1.1-di-p-tolyl-äthan mit der jeweils berechneten Menge Wasserstoff in Gegenwart von Palladium-Calcium-carbonat in Alkohol oder Alkohol + Pyridin bei schwacher Erwärmung (Br., W., J. pr. [2] 115, 338, 348, 350).
- 12. 2-Methyl-4-äthyl-diphenylmethan. 1-Methyl-5-äthyl-2-benzyl-benzol C<sub>16</sub>H<sub>18</sub>, s. nebenstehende Formel.

  B. Bei der Hydrierung von 2-Methyl-4-äthyl-benzophenon in Gegenwart von Nickel bei 280° (Mailhe, Bl. [4] 35, 367). Kp: 298—300°. D<sup>11</sup>: 1,0141.
- 13. 2.4.4' (oder 3.4.4')-Trimethyl-diphenylmethan  $C_{16}H_{18}=CH_3\cdot C_6H_4\cdot CH_2\cdot C_8H_3(CH_3)_2$ .

 $2^1$  (oder  $3^1$ )-Chlor-2.4.4' (oder 3.4.4')-trimethyl-diphenylmethan, 4.4'-Dimethyl-2 (oder 3)-chlormethyl-diphenylmethan  $C_{16}H_{17}Cl$ , s. untenstehende Formeln. B. Neben

anderen Produkten bei der Einw. von Chlormethyläther auf Toluol in Gegenwart von Zinn(IV)-chlorid (Sommelet, C. r. 180, 1350). — Kp<sub>1s</sub>: 198—200°. — Liefert bei der Einw. von Dimethylamin 2¹ (oder 3¹)-Dimethylamino-2.4.4′ (oder 3.4.4′)-trimethyl-diphenylmethan.

14. 2.4.2'.4'-Tetramethyl-diphenyl C<sub>16</sub>H<sub>18</sub>, s. nebenstehende Formel (H 620; E I 292). Röntgen-Luminescenzspektrum:

DE BEAUJEU, J. Phys. Rad. [6] 4, 263; C. 1924 I, 134.

## DIPHENYLPENTAN

15. 2-Cyclohexyl-naphthalin C<sub>16</sub>H<sub>18</sub>, s. nebenstehende Formel.

Das Mol.-Gew. wurde kryoskopisch in Äthylenbromid bestimmt (Bodroux, A. ch. [10] 11, 538). — B. Neben anderen Produkten beim Eintragen von Aluminiumchlorid in eine auf dem Wasserbad geschmolzene Mischung von Naphthalin und Cyclohexen und Behandeln des nach 15 Stdn. in Schwefelkohlenstoff gelösten Reaktionsprodukts mit verd. Salzsäure (B.). — Blättchen (aus Methanol). F: 31°. — Gibt beim Behandeln mit Brom bei Gegenwart von Aluminiumbromid das bei 250—252° schmelzende Hexabromnaphthalin. — Bei mehrstündigem Erhitzen mit Schwefel im Ölbad auf 230—250° entsteht 2-Phenyl-naphthalin. — Das Pikrat schmilzt bei 100—101°.

### 16. 9-Athyl-1.2.3.4-tetrahydro-anthracen C<sub>16</sub>H<sub>18</sub>, Formel I.

1.2.3.4.10-Pentabrom-9-äthyl-1.2.3.4-tetrahydro-anthracen, 10-Brom-9-äthyl-anthracen-tetrabromid-(1.2.3.4)  $C_{18}H_{13}Br_5$ , Formel II. B. Aus 9-Äthyl-anthracen und

I. 
$$\begin{array}{c|cccc} C_2H_5 & & & H_2C-CH_2 \\ \hline CH_2 & CH_2 & & II. & CHBr & CHBr \\ \hline CH_2 & CH_2 & & & & H_5C_2 & C_2H_5 \\ \hline \end{array}$$

4 Mol Brom in Schwefelkohlenstoff (Barnett, Matthews, B. 59, 1435). — Nadeln. F: 177° (Zers.). — Liefert beim Kochen mit alkoh. Kalilauge 2.3.10-Tribrom-9-äthyl-anthracen.

- 17. 5.6(?)-Diäthyl-acenaphthen C<sub>16</sub>H<sub>18</sub>, Formel III. B. Aus 6-Äthyl-5(?)-acetyl-acenaphthen beim Behandeln mit amalgamiertem Zink und Salzsäure (Fleischer, Wolff, B. 53, 928). Gelbliches Öl. Erstarrt in Kältemischung zu Nädelchen. F: 10—11°. Kp<sub>14</sub>: 182°.
- 18. 1.4; 5.8 Dimethylen 1.2.3.4.5.6.7.8 okta hydro-anthracen C<sub>16</sub>H<sub>18</sub>, s. nebenstehende Formel. B. Aus 1.4; 5.8-Dimethylen-perhydroanthracen durch Erhitzen mit Selen auf 360—380° (Diels, Alder, A. 460, 110). Krystalle (aus Alkohol). F: 157°. Leicht löslich in den gebräuchlichen organischen Lösungsmitteln.

# 7. Kohlenwasserstoffe $C_{17}H_{20}$ .

- 1. 1.5-Diphenyl-pentan  $C_{17}H_{20}=C_6H_5\cdot[CH_2]_5\cdot C_6H_5$  (E I 293). B. Aus  $\omega$ -Cinnamyliden-acetophenon beim Behandeln mit 4 Mol Wasserstoff in Aceton bei etwa 14° in Gegenwart von Palladium(II)-chlorid (Straus, Grindel, A. 439, 306). Kp<sub>20</sub>: 185° (St., G.). D<sup>13</sup>: 0,985 (Vorländer, Walter, Ph. Ch. 118, 12). Viscosität bei 20° und Doppelbrechung der rotierenden Flüssigkeit: V., W.
- **x-Tetranitro-[1.5-diphenyl-pentan]**  $C_{17}H_{16}O_8N_4=C_{17}H_{16}(NO_2)_4$  (E I 293). Farblose Nadeln (aus Eisessig). F: 125—126,5° (STRAUS, GRINDEL, A. 439, 306).
- 2. 2.2-Dimethyl-1.3-diphenyl-propan, 2.2-Dibenzyl-propan, Dimethyl-dibenzyl-methan  $C_{17}H_{20}=C_6H_6\cdot CH_2\cdot C(CH_3)_2\cdot CH_2\cdot C_6H_5$ . B. Durch Einw. von Benzyl-magnesiumchlorid auf 2-Brom-2-benzyl-propan in Äther (Trotman, Soc. 127, 94). Nadeln (aus Alkohol). F: 68—69°. Kp: 293—294°. Leicht löslich in den meisten organischen Lösungsmitteln. Riecht ziemlich angenehm.
- 1-Chlor-2.2-dimethyl-1.3-diphenyl-propan  $C_{17}H_{19}Cl = C_8H_5 \cdot CH_2 \cdot C(CH_3)_2 \cdot CHCl \cdot C_8H_5$ . B. Aus  $\beta.\beta$ -Dimethyl- $\alpha.\gamma$ -diphenyl-propylalkohol und Thionylchlorid zuerst unter Kühlung, zum Schluß auf dem Wasserbad (Apolit, A. ch. [10] 2, 76). Körner (aus Alkohol). F: 54—55°. Löslich in Äther und Benzol.
- 3. 1.1-Diphenyl-pentan, Butyldiphenylmethan  $C_{17}H_{20}=(C_0H_5)_2CH\cdot[CH_2]_3\cdot CH_2$ . B. Entsteht in geringer Menge neben anderen Produkten bei längerem Kochen von Diphenylbrommethan mit überschüssigem Quecksilberdibutyl in Toluol (Whitmore, Thurman, Am. Soc. 51, 1500). Öl. Kp: 277—278°.
- 4. 2 Methyl 4.4 diphenyl butan, Isobutyldiphenylmethan  $C_{17}H_{20} = (C_8H_8)_2\text{CH}\cdot\text{CH}_3\cdot\text{CH}\cdot\text{CH}_3\cdot\text{CH})_2$  (E I 294). B. Ein untrennbares Gemisch von Isobutyldiphenylmethan und 3-Methyl-1.1-diphenyl-buten-(1) entsteht bei der Kondensation von Benzol mit Isovaleraldehyd in Gegenwart von Aluminiumchlorid anfangs unter Kühlung, zum Schluß bei 60° (SCHAARSCHMIDT, HERMANN, SZEMZÖ, B. 58, 1916).

## 5. 2.2-Diphenyl-pentan $C_{17}H_{30} = (C_8H_5)_3C(CH_3) \cdot CH_2 \cdot C_2H_5$ .

8-Chlor-2.2-diphenyl-pentan  $C_{17}H_{19}Cl = (C_6H_5)_2C(CH_3) \cdot CHCl \cdot C_2H_5$ . B. Aus Äthyl-[ $\alpha.\alpha$ -diphenyl-athyl]-carbinol und Thionylchlorid (Ramart, C.r. 173, 1184). — Bewegliche Flüssigkeit. Zersetzt sich bei der Destillation.

# 6. 2-Methyl-3.3-diphenyl-butan (?) $C_{17}H_{20} = (C_8H_5)_2C(CH_3) \cdot CH(CH_3)_2$ (?).

2-Chlor-2-methyl-3.3-diphenyl-butan C<sub>17</sub>H<sub>19</sub>Cl = (C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>C(CH<sub>3</sub>)·CCl(CH<sub>3</sub>)<sub>2</sub> (E I 294).

B. Zur Bildung aus tert. Butyl-diphenyl-carbinol, Acetylchlorid und Acetanhydrid nach RAMART-LUCAS (C. r. 154 [1912], 1088; A. ch. [8] 30 [1913], 391) vgl. R., C. r. 173, 1182; 176, 684; BATEMAN, MARVEL, Am. Soc. 49, 2915. Beim Behandeln von 2-Methyl-3.3-diphenyl-buten-(1) in Alkohol-Åther mit trocknem Chlorwasserstoff (Ba., M., Am. Soc. 49, 2918; vgl. a. R., C. r. 173, 1182; 176, 684). Aus α.α-Dimethyl-β-diphenyl-propylalkohol beim Behandeln mit Thionylchlorid (R., C. r. 173, 1184). — F: 109—110° (R., C. r. 173, 1183). — Liefert beim Erhitzen mit Pyridin im Rohr auf 120° 2-Methyl-3.3-diphenyl-buten-(1) (R., C. r. 176, 685; vgl. Ba., M., Am. Soc. 49, 2915). Beim Behandeln mit Kalium-Natrium-Legierung in Ather entsteht 2-Kalium-2-methyl-3.3-diphenyl-butan(?) (Syst. Nr. 2357) (CONANT, BIGELOW, Am. Soc. 50, 2042, 2048).

7. 2.2 - Dimethyl-1.1-diphenyl-propan, tert. - Butyl-diphenyl-methan  $C_{17}H_{20} = (C_6H_5)_2CH\cdot U(CH_3)_3$ .

1-Chlor-2.2-dimethyl-1.1-diphenyl-propan, tert.-Butyl-diphenyl-chlormethan, tert.-Butyl-diphenyl-methylchlorid  $C_{17}H_{19}Cl = (C_6H_5)_2CCl\cdot C(CH_3)_3$  (E I 294). F: 72° (RAMART, C.r. 173, 1183), 71° (CONANT, BIGELOW, Am. Soc. 50, 2045). — Liefert in äther. Lösung beim Behandeln mit 40% igem Natriumamalgam oder mit Kalium-Natrium-Legierung in einer Stickstoff-Atmosphäre unter Eiskühlung die Alkaliverbindung des tert.-Butyl-diphenyl-methans (Syst. Nr. 2357); ist die Menge der Kalium-Natrium-Legierung ungenügend, so entsteht nebenher ein bei 145° schmelzender Kohlenwasserstoff  $C_{34}H_{38}$  (S. 678) (Co., BI.). Beim Erhitzen mit Pyridin im Rohr auf 120° (R., C.r. 176, 685; vgl. a. BATEMAN, MARVEL. Am. Soc. 49, 2915), beim Schütteln mit fein verteiltem Silber in Toluol oder beim Behandeln mit Magnesium in Ather (Ba., Ma., Am. Soc. 49, 2919) entsteht 2-Methyl-3.3-diphenyl-buten-(1).

8. 2-(oder 4)-Methyl-4'-isopropyl-diphenylmethan, 2-(oder 4)-Cuminyltoluol  $C_{17}H_{20}=CH_3\cdot C_6H_4\cdot CH_2\cdot C_6H_4\cdot CH_3\cdot C_8H_4\cdot C_8H_4\cdot CH_3\cdot C_8H_4\cdot CH_3\cdot C_8H_4\cdot C_8H_4$ 

9. 9-Isopropyl-1.2.3.4-tetrahydro-anthracen C<sub>17</sub>H<sub>20</sub>, Formel I. 1.2.3.4.10-Pentabrom-9-iso- CH(CH<sub>3</sub>)<sub>2</sub> CH(CH<sub>3</sub>)<sub>3</sub> CH(CH<sub>3</sub>) CH(CH<sub>3</sub>) CH(CH<sub>3</sub>)<sub>3</sub> CH(CH<sub>3</sub>) CH(CH<sub>3</sub>

propyl - 1.2.3.4 - tetrahydro - an - thracen, 10-Brom-9-isopropyl-anthracen-tetrabromid-(1.2.3.4)  $C_{17}H_{15}Br_5$ , Formel II. B. Aus 9-Isopropyl-anthracen und 4 Mol Brom in Schwefelkohlenstoff (Barnett, Matthews, B. 59, 1436). — Nadeln. F: 163° (Zers.). — Liefert mit siedender alkoholischer Kalilauge 2.3.10-Tribrom-9-isopropyl-anthracen.

10. 1.9 - Trimethylen - 1.4.5.6.7.8 - hexahydro - anthracen, 1.4.5.6.7.8.Bz 1.Bz 2-Oktahydro-peribenzanthren C<sub>17</sub>H<sub>20</sub>, s. nebenstehende Formel. B. Durch Reduktion von 1.9 Trimethylen-5.6.7.8 - tetrahydro-anthracen nit Natrium und Alkohol (v. Braun, Bayer, B. 58, 2685). — Kp<sub>13</sub>: 212—214°. — Entfärbt Permanganat sofort. Liefert mit Brom ein öliges Dibromid.

# 8. Kohlenwasserstoffe $C_{18}H_{22}$ .

1. 5.9-Dimethyl-1-phenyl-decadien - (3.8) -in - (1) C<sub>18</sub>H<sub>22</sub> = C<sub>6</sub>H<sub>5</sub>·C: C·CH: CH·CH·CH<sub>3</sub>)·CH<sub>2</sub>·CH<sub>2</sub>·CH·C(CH<sub>3</sub>)<sub>2</sub>¹). B. Aus 8-Oxy-2.6-dimethyl-10-phenyl-decen-(2)-in-(9) beim Destillieren über Aluminiumphosphat unter vermindertem Druck bei 210—240° (RUPE, RINDERKNECHT, A. 442, 65, 68). — Hellgelbes, stark lichtbrechendes Öl. Kp<sub>10</sub>: 172—175°; Kp<sub>0-05</sub>: 95°; D<sup>∞</sup><sub>4</sub>: 0,9318; nα: 1,5478; n<sub>D</sub>: 1,5538; ηβ: 1,5696; [α]<sup>∞</sup><sub>5</sub>: +84.35° (unverdünnt) (Ru., Ri.). Rotationsdispersion: Ru., Ri.; vgl. Ri., Helv. 8, 184. Leicht löslich in organischen Lösungsmitteln außer in Alkohol und Äther (Ru., Ri.). — Liefert bei längerem Kochen mit verkupfertem Zink in verd. Alkohol + Essigester das entsprechende Dimethylphenyldecatrien (S. 476) (Ru., Ri.). Bei der Hydrierung bei Gegenwart von Nickel in Alkohol + Essigester entsteht ein Gemisch von Hexa- und Oktahydroderivat (Ru., Ri.). Nimmt in stark gekühlter Chloroform-Lösung sofort 4 Atome Brom auf; addiert beim Stehenlassen mit überschüssigem Brom je nach der Einwirkungsdauer bis zu 6 Atomen Brom (Ru., Ri.). Anlagerung von Bromwasserstoff in Eisessig-Lösung: Ru., Ri.

<sup>1)</sup> Vgl. dazu E II 1, 803 Zeile 16-22 v. o. über die Einheitlichkeit des Citronellals.

- 2. 1.6-Diphenyl-hexan C<sub>18</sub>H<sub>22</sub> = C<sub>6</sub>H<sub>5</sub>·[CH<sub>2</sub>]<sub>6</sub>·C<sub>6</sub>H<sub>5</sub> (E I 295). B. Durch Hydrieren von 1.6-Diphenyl-hexadien-(2.4) in Gegenwart von Palladium-Kohle in Eisessig bei 16<sup>o</sup> (Kuhn, Winterstein, Helv. 11, 132) oder von 1.6-Diphenyl-hexatrien-(1.3.5) bei 19<sup>o</sup> in Gegenwart von Platinoxyd oder Palladium-Kohle in Eisessig (K., W., Helv. 11, 137). Blättchen (aus Methanol). F: 137<sup>o</sup>. Leicht löslich in Äther, Petroläther, Chloroform und Benzol, mäßig löslich in kaltem Eisessig und Methanol.
- 3-Chlor-1.6-diphenyl-hexan  $C_{18}H_{21}Cl = C_6H_5 \cdot [CH_2]_3 \cdot CHCl \cdot CH_2 \cdot CH_2 \cdot C_6H_5$ . B. Aus 3-Oxy-1.6-diphenyl-hexan beim Behandeln mit Phosphorpentachlorid (v. Braun, Kochendörfer, B. 56, 2175). Flüssigkeit.  $Kp_{10}$ : 215—217°.
- 1.2.3.4.5.6-Hexabrom-1.6-diphenyl-hexan  $C_{18}H_{16}Br_6=C_6H_5\cdot [CHBr]_6\cdot C_6H_5$  (H 621). B. Aus 1.6-Diphenyl-hexatrien-(1.3.5) und der berechneten Menge Brom in Tetrachlorkohlenstoff (Kuhn, Winterstein, Helv. 11, 142). Über Bildung aus 3.6-Dibrom-1.6-diphenyl-hexadien-(1.4)(?) durch Bromierung vgl. K., W., Helv. 11, 91, 129. F: 279—280° (Zers.). Sehr schwer löslich in den meisten Lösungsmitteln außer Cyclohexylacetat und Pentachloräthan. Ist beständig gegen konz. Schwefelsäure und Salpetersäure. Liefert beim Kochen mit Zinkstaub in Aceton 1.6-Diphenyl-hexatrien-(1.3.5) (K., W., Helv. 11, 91, 108).
- 3. 2-Methyl-2-āthyl-1.3-diphenyl-propan, 2.2-Dibenzyl-butan  $C_{18}H_{22}=C_6H_5\cdot CH_2\cdot C(CH_3)(C_2H_6)\cdot CH_2\cdot C_6H_5.$
- 1-Chlor-2-methyl-2-äthyl-1.3-diphenyl-propan, 1-Chlor-2-methyl-1-phenyl-2-benzyl-butan  $C_{18}H_{21}Cl=C_6H_5\cdot CH_2\cdot C(CH_3)(C_2H_5)\cdot CHCl\cdot C_6H_5$ . B. Aus  $\beta$ -Methyl- $\alpha$ -phenyl- $\beta$ -benzyl-butylalkohol und Thionylchlorid in Gegenwart von Pyridin zuerst unter Kühlung, zum Schluß auf dem Wasserbad (APOLIT, A. ch. [10] 2, 79). Hellgelbe viscose Flüssigkeit. Löslich in den gewöhnlichen Lösungsmitteln. Liefert beim Erhitzen mit Pyridin in Gegenwart von Kupfer im Autoklaven auf 200—210° neben anderen Produkten 2-Methyl-1.3-diphenyl-penten-(2) (A., A. ch. [10] 2, 113).
  - $4. \quad \textbf{2.2-Dimethyl-1.3-diphenyl-butan} \\ \textbf{C}_{18}\textbf{H}_{22} = \textbf{C}_{6}\textbf{H}_{5} \cdot \textbf{C}\textbf{H}_{2} \cdot \textbf{C}(\textbf{C}\textbf{H}_{3})_{2} \cdot \textbf{C}\textbf{H}(\textbf{C}\textbf{H}_{3}) \cdot \textbf{C}_{6}\textbf{H}_{5}.$
- 3-Chlor-2.2-dimethyl-1.3-diphenyl-butan  $C_{18}H_{21}Cl = C_6H_5 \cdot CH_2 \cdot C(CH_3)_2 \cdot CCl(CH_3) \cdot C_6H_5$ . B. Durch Sättigen von 3.3-Dimethyl-2.4-diphenyl-buten-(1) in absol. Alkohol mit Chlorwasserstoff (APOLIT, A. ch. [10] 2, 126). Krystalle. F: 86—87°. Löslich in Äther und Ligroin, unlöslich in Alkohol.
- 5. 3.4 Diphenyl hexan,  $\alpha.\alpha'$  Diāthyl dibenzyl  $C_{18}H_{22}=C_{6}H_{5}\cdot CH(C_{2}H_{5})\cdot C_{18}H_{22}=C_{6}H_{5}\cdot CH(C_{2}H_{5})\cdot C_{18}H_{23}=C_{18}H_{23}\cdot CH(C_{2}H_{5})\cdot C_{18}H_{23}$ . Entsteht in geringer Menge neben anderen Produkten bei der Umsetzung von  $\alpha$ -Phenyl-propylmagnesiumbromid mit Chlorcyan in trocknem Äther und nachfolgenden Hydrolyse (GRIGNARD, ONO, Bl. [4] 39, 1593).
- 3.4-Dibrom-3.4-diphenyl-hexan,  $\alpha.\alpha'$ -Dibrom- $\alpha.\alpha'$ -diäthyl-dibenzyl  $C_{18}H_{20}Br_2=C_6H_5\cdot CBr(C_2H_5)\cdot CBr(C_2H_5)\cdot C_6H_5$ . B. Durch Einw. von Brom auf das bei 89—90° schmelzende  $\alpha.\alpha'$ -Diäthyl-stilben in Tetrachlorkohlenstoff (RISING, ZEE, Am. Soc. 50, 1706). F: 122—123° (Zers.).
- 6. 2.3-Di-m-tolyl-butan (?), 3.3'.α.α'-Tetramethyl-dibenzyl (?) C<sub>18</sub>H<sub>32</sub> = CH<sub>3</sub>·C<sub>6</sub>H<sub>4</sub>·CH(CH<sub>3</sub>)·C<sub>6</sub>H<sub>4</sub>·CH<sub>3</sub>(?). B. Durch Reduktion von 3-[α-Brom-āthyl]toluol mit Natrium in Äther bei allmählicher Wasserzugabe (v. Auwers, Kolligs, B. 55, 41). Nadeln (aus Methanol). F: 97°. Kp: ca. 195°. Sehr leicht löslich in Benzol und Petroläther, leicht in Alkohol, schwer in Methanol.
- 7.  $\alpha$ -Methyl-4.4'-diāthyl-diphenylmethan, 1.1-Bis-[4-āthyl-phenyl]-āthan, 4.4'-Āthyliden-bis-[1-āthyl-benzol]  $C_{18}H_{22}=C_2H_5\cdot C_8H_4\cdot CH(CH_3)\cdot C_8H_4\cdot C_2H_5$ . B. Beim Leiten von Acetylen in Äthylbenzol bei Gegenwart von konz. Schwefelsäure und wenig Quecksilber(II)-sulfat bei 10—20° (Reichert, Nieuwland, Am. Soc. 45, 3091). Siedet unzersetzt. Zeigt Fluorescenz.
- 8. 2.4.2'.4'.a-Pentamethyl-diphenylmethan,
  1.1-Bis-[2.4-dimethyl-phenyl]-dihan C<sub>18</sub>H<sub>22</sub>, s.
  nebenstehende Formel (H 622). B. Beim Leiten von CH<sub>3</sub>. CH<sub>(CH<sub>3</sub>)</sub>. CH<sub>(CH<sub>3</sub>)</sub>. CH<sub>3</sub>
  Acetylen in m-Xylol in Gegenwart von konz. Schwefelsäure und wenig Quecksilber(II)-sulfat bei 10—20° (REICHERT, NIEUWLAND, Am. Soc. 45, 3091). Kp: 322—326°.
  - 9. **4.4'-Diisopropyl-diphenyl**  $C_{18}H_{22} = (CH_3)_2CH \cdot C_6H_4 \cdot C_6H_4 \cdot CH(CH_3)_2$ .
- a) Höherschmelzende Form. B. Neben 4-Isopropyl-phenylmagnesiumbromid aus 4-Brom-1-isopropyl-benzol und Magnesium in Äther bei Gegenwart von etwas Brom (Bert, Bl. [4] 37, 1398; C. r. 177, 452). Wurde von Boedtker (Bl. [4] 45, 646) gelegentlich

nach dem gleichen Verfahren wie die niedrigerschmelzende Form erhalten. — Blättchen (aus siedendem Alkohol). F: 65—66° (Boe.), 64—65° (Maquennescher Block) (Bert). Kp.: ca. 335° (korr.) (Bert). Leicht löslich in siedendem Alkohol, Äther und Benzol, schwer in kaltem Alkohol (Bert).

- b) Niedrigerschmelzende Form (E I 296). B. Zur Bildung aus 4-Jod-1-isopropylbenzol nach Schreiner (J. pr. [2] 81 [1910], 424) vgl. Boedtker, Bl. [4] 45, 646. Blättchen (aus Methanol). F: 49°.
- 10. 2.4.6.2'.4'.6'-Hexamethyl-diphenyl, Dimesityl

  C<sub>18</sub>H<sub>22</sub>, s. nebenstehende Formel (H 622). B. Durch Umsetzung
  von 2.4.6-Trimethyl-phenylmagnesiumbromid mit Kupfer(II)-chlorid
  in Äther anfangs unter Kühlung, zum Schluß auf dem Dampfbad
  (Moyer, Adams, Am. Soc. 51, 632). Beim Behandeln von Mesitylen mit Diselendibromid in Schwefelkohlenstoff in Gegenwart von Aluminiumbromid
  (Loevenich, Sipmann, J. pr. [2] 124, 132). Liefert beim Behandeln mit Brom in Tetrachlorkohlenstoff unter Eiskühlung 3.3'-Dibrom-2.4.6.2'.4'.6'-hexamethyl-diphenyl (M., A.).
  Gibt in Tetrachlorkohlenstoff-Lösung beim Behandeln mit einer Lösung von Acetylnitrat in Acetanhydrid anfangs bei 0°, später bei 35—40° 3.3'-Diintro-2.4.6.2'.4'.6'-hexamethyl-diphenyl (M., A.).
  Beim Nitrieren mit Salpetersäure in heißem Eisessig oder kaltem Tetrachlorkohlenstoff sowie beim Behandeln mit Kaliumnitrat in konz. Schwefelsäure wurde kein einheitliches Produkt erhalten (M., A.). Wird von Salpetersäure (D: 1,50) in einer Kältemischung in 3.5.3'.5'-Tetranitro-2.4.6.2'.4'.6'-hexamethyl-diphenyl übergeführt (M., A.).
- 3.3'-Dibrom-2.4.6.2'.4'.6'-hexamethyl-diphenyl  $C_{18}H_{20}Br_2 = C_6HBr(CH_3)_3 \cdot C_6HBr(CH_3)_3 \cdot B$ . Durch Einw. von Brom auf 2.4.6.2'.4'.6'-Hexamethyl-diphenyl in Tetrachlor-kohlenstoff unter Eiskühlung (Moyer, Adams, Am. Soc. 51, 633). Krystalle (aus Alkohol). F: 112—113°.
- 3.3'- Dinitro 2.4.6.2'.4'.6'- hexamethyl-diphenyl  $C_{18}H_{20}O_4N_2 = C_6H(NO_2)(CH_3)_3$ .  $C_6H(NO_2)(CH_3)_3$ . B. Durch Einw. einer Lösung von Acetylnitrat in Acetanhydrid auf 2.4.6.2'.4'.6'-Hexamethyl-diphenyl in Tetrachlorkohlenstoff anfangs bei  $0^{\circ}$ , später bei  $35^{\circ}$  bis  $40^{\circ}$  (Moyer, Adams, Am. Soc. 51, 634). Krystalle (aus Essigsäure oder Alkohol). F: 162.5— $163.5^{\circ}$  (korr.). Liefert bei der Reduktion mit Zinkstaub und Salzsäure in Essigsäure bei 80— $90^{\circ}$  3.3'-Diamino-2.4.6.2'.4'.6'-hexamethyl-diphenyl.
- 3.5.3'.5'-Tetranitro -2.4.6.2'.4'.6'-hexamethyl diphenyl  $C_{18}H_{18}O_8N_4 = C_6(NO_2)_2(CH_3)_3 \cdot C_6(NO_2)_2(CH_3)_3$ . B. Beim Eintragen von 2.4.6.2'.4'.6'-Hexamethyl diphenyl in rauchende Salpetersäure (D: 1,50) unter Kühlung mit Kältemischung (Moyer, Adams, Am. Soc. 51, 633). Krystalle (aus Eisessig). F: 270—271°. Läßt sich zu 3.5.3'.5'-Tetramino-2.4.6.2'.4'.6'-hexamethyl-diphenyl reduzieren.
- 11. 6.6 Dimethyl 2 cinnamyl bicyclo [1.1.3] hepten-(2), Myrtenylstyryl, Phenyläthylenmyrtenyl  $C_{18}H_{22}$ ,  $H_{C-C-CH}$ s. nebenstehende Formel. B. Aus Phenylacetylenmyrtenyl (S. 565)
  durch längeres Kochen mit verkupfertem Zink in wäßr. Alkohol
  (Rupe, Heritier, A. 459, 184). Öl.  $Kp_{10}$ : 167,5—168,5°.  $D_{4}^{\infty}$ :  $H_{2}C-CH-C(CH_{3})_{2}$ 0,9683.  $n_{\infty}^{\infty}$ : 1,5407;  $n_{D}^{\infty}$ : 1,5453.  $[\alpha]_{D}^{\infty}$ : +13,05° (unverdünnt). Rotationsdispersion: R., H.
- 12. 2.2-Dimethyl-3-[ $\beta$ -phenyl-allyliden]-bicyclo- $_{\rm H_2C-CH-C(CH_3)_2}$  [1.2.2] heptan,  $_{\rm 2^1-[\alpha-Phenyl-vinyl]}$  camphen,  $_{\rm CH_2}$  | Phenylcamphenylāthylen  $_{\rm C_1BH_2}$ , s. nebenstehende Formel.  $_{\rm H_2C-CH-C:CH-C:CH-C(:CH_2)\cdot C_6H_5}$  B. Durch Kochen von 2¹-Acetyl-camphen mit Phenylmagnesiumbromid oder von 2¹-Benzoyl-camphen mit Methylmagnesiumjodid in Äther und Zersetzung der Reaktionsprodukte mit Eis und Ammoniumchlorid-Lösung (LIFP, QUAEDVLIEG, B. 62, 2318, 2320). Fast geruchloses Öl. Kp<sub>0,19</sub>: 126—127°; Kp<sub>0,07</sub>: 104—105,5°. D<sub>1</sub><sup>10,3</sup>: 1,0033. Zersetzt sich beim Aufbewahren unter Oxydation zu Formaldehyd und 2¹-Benzoyl-camphen.
- 13. x-Tetrahydro-1-methyl-7-isopropyl-phen-anthren, x-Tetrahydroreten C<sub>18</sub>H<sub>12</sub>, Struktur des Kohlenstoffgerüsts s. nebenstehende Formel (H 623). Gelbliches Öl von sehr eigentümlichem, unangenehmem Geruch.

  Kp<sub>10</sub>: 180—183° (VIRTANEN, B. 53, 1886). D<sup>∞</sup>: 1,0057. n<sup>∞</sup>: 1,5606. In jedem Verhältnis mischbar mit Chloroform, Ligroin, Eisessig, Benzol und Ather. Löst sich in konz. Schwefelsäure bei gewöhnlicher Temperatur langsam mit hellroter Farbe, die beim Erwärmen dunkelrot und schließlich schwarzgrün wird; die Lösung bleibt beim Verdünnen mit Wasser klar.

# 9. Kohlenwasserstoffe C<sub>19</sub>H<sub>24</sub>.

1. 2.2.8.8 - Tetramethyl-5 - phenyl-nonadiin - (3.6)  $C_{19}H_{24} = C_6H_5 \cdot CH[C:C]$  $C(CH_3)_3]_2$ .

5-Brom-2.2.8.8-tetramethyl-5-phenyl-nonadiin-(3.6), Bis-[tert.-butyl-acetyle-nyl]-phenyl-brommethan  $C_{10}H_{23}Br=C_4H_5\cdot CBr[C:C\cdot C(CH_3)_3]_2$ . B. Bei der Einw. von Phosphortribromid auf 5-Oxy-2.2.8.8-tetramethyl-5-phenyl-nonadiin-(3.6) in Ather bei 0° constant of the constant of (Rossander, Marvel, Am. Soc. 51, 934). — Krystalle (aus Alkohol + Ather). F: 58—59°. — Liefert beim Schütteln mit fein verteiltem Silber in absol. Äther 1.1.2.2-Tetrakis-[tert.-butylacetylenyl]-1.2-diphenyl-äthan. Beim Schütteln der äther. Lösung mit feinverteiltem Silber in einer Sauerstoffatmosphäre entsteht ein öliges Produkt. Wird durch Einw. von 40%igem Natriumamalgam unter Stickstoff oder durch Grignardierung und Behandlung der Reaktionsprodukte mit Kohlendioxyd in Bis-[tert.-butyl-acetylenyl]-phenyl-essigsäure übergeführt.

2. 3-Methyl-1.6-diphenyl-hexan  $C_{19}H_{24} = C_6H_5 \cdot [CH_2]_3 \cdot CH(CH_3) \cdot CH_2 \cdot CH_2 \cdot C_6H_5$ .

**3-Brommethyl-1.6-diphenyl-hexan**  $C_{19}H_{23}Br = C_8H_5 \cdot [CH_9]_3 \cdot CH(CH_9Br) \cdot CH_2 \cdot CH_2 \cdot C_9H_5$ . B. Durch Einw. von Phosphortribromid auf 3-Oxymethyl-1.6-diphenyl-hexan in Chloroform (v. Braun, Teuffert, B. 62, 240). — Kp<sub>13</sub>: ca. 242—2450. — Reagiert mit Trimethylamin auch im Rohr bei 1000 sehr langsam.

3. 3.5.3'.5'.a.a-Hexamethyl-diphenylmethan, 2.2-Bis-[3.5-dimethyl-phenyl]-propan C<sub>19</sub>H<sub>24</sub>, s. nebenstehende Formel. B. Aus m-Xylol bei der Einw. von 2.2-Dichlor-propan

oder 2-Chlor-propen-(1) in Gegenwart von Aluminiumchlorid zunächst bei —10°, zum Schluß bei 70—80° (Gouder, Schenker, Helv. 10, 138). — Krystalle (aus Alkohol). F: 174,5°. — Liefert mit 65 %iger Salpetersäure auf dem Wasserbad 2.2-Bis-[4(?)-nitro-3.5-dimethyl-phenyl]-propan, mit Salpetersäure (D: 1,50) ein Gemisch von 2.2-Bis-[2.4-dinitro-3.5-dimethyl-phenyl]-propan und wenig 2.2-Bis-[4(?)-nitro-3.5-dimethyl-phenyl]-propan.

4.(?) - Dinitro - 3.5.3'.5'.α.α - hexamethyl - diphenylmethan, 2.2-Bis-[4 (?)-nitro-3.5-dimethyl-phenyl]-propan C<sub>10</sub>H<sub>22</sub>O<sub>4</sub>N<sub>2</sub> = [O<sub>2</sub>N·C<sub>6</sub>H<sub>2</sub>(CH<sub>3</sub>)<sub>2</sub>]<sub>2</sub>C(CH<sub>3</sub>)<sub>2</sub>. B. Aus 2.2-Bis. [3.5-dimethyl-phenyl]-propan und 65% iger Salpetersäure auf dem Wasserbad (GOUDET, SCHENKER, Helv. 10, 134, 138). — Gelbliche Krystalle (aus Isoamylalkohol). F: 256° (Zers.). — Liefert beim Kochen mit 97% iger Salpetersäure 2.2-Bis-[2.4-dinitro-3.5-dimethyl-phenyl]propan.

2.4.2'.4'-Tetranitro - 3.5.3'.5'. $\alpha$ . $\alpha$  - hexamethyl - diphenylmethan, 2.2-Bis-[2.4-dinitro-3.5-dimethyl-phenyl]-propan  $C_{19}H_{20}O_8N_4=[C_6H(CH_3)_2(NO_2)_2]_2C(CH_3)_2$ . B. Beim Kochen von 2.2-Bis-[4(?)-nitro-3.5-dimethyl-phenyl]-propan mit 97% iger Salpetersäure (GOUDET, SCHENKER, Helv. 10, 134, 139). Neben dem Dinitroderivat aus 2.2-Bis-[3.5-dinitroderivat] methyl-phenyl]-propan und Salpetersäure (D: 1,5) (G., Sch.). — Krystalle (aus Isoamylakohol). Zersetzt sich bei 295—300° (Maquennescher Block). — Liefert beim Erhitzen mit rauchender Schwefelsäure (31 % SO<sub>3</sub>) und 97 % iger Salpetersäure 2.2-Bis-[2.4.6-trinitro-3.5-dimethyl-phenyl]-propan.

2.4.6.2'.4'.6' - Hexanitro -  $3.5.3'.5'.\alpha.\alpha$  - hexamethyl - diphenylmethan, 2.2 - Bis- $[2.4.6 - trinitro - 3.5 - dimethyl - phenyl] - propan C_{19}H_{18}O_{13}N_6 = [C_6(CH_3)_2(NO_2)_3]_2C(CH_3)_2.$ B. Beim Erhitzen von 2.2-Bis-[2.4-dinitro-3.5-dimethyl-phenyl]-propan mit rauchender Schwefelsäure (31% SO<sub>3</sub>) und 97% iger Salpetersäure zum Sieden (GOUDET, SCHENKER, Helv. 10, 134, 139). — Gelbliche Krystalle (aus Isoamylalkohol). Die Farbe vertieft sich beim Aufbewahren am Licht. Zersetzt sich bei 2050 unter schwacher Explosion (Maquennescher Block). Sehr schwer löslich in warmem Isoamylalkohol.

4. 9-Isoamyl-1.2.3.4-tetrahydro-anthracen  $C_{19}H_{24}$ , For-

1.2.3.4.10 - Pentabrom - 9 - isoamyl -1.2.3.4-tetrahydro - anthra-

cen, 10-Brom-9-isoamyl-anthracen-tetrabromid-(1.2.8.4)  $C_{19}H_{19}Br_5$ , Formel II. B. Aus 9-Isoamyl-anthracen und 3 Mol Brom in Schwefelkohlenstoff (Barnert, Matthews, B. 59, 1436). — Nadeln (aus Benzol + Ligroin). F: 1620 (Zers.). — Liefert mit siedender alkoholischer Kalilauge 2.3.10-Tribrom-9-isoamyl-anthracen.

# 10. Kohlenwasserstoffe C20H26.

1. **1.8-Diphenyl-octan**  $C_{20}H_{26}=C_6H_5\cdot [CH_2]_8\cdot C_6H_5$  (E I 297). B. Bei der Hydrierung von 1.8-Diphenyl-octatrien-(1.3.5) oder von 1.8-Diphenyl-octatetraen-(1.3.5.7) in Gegenwart

von Palladium-Kohle bei 15—16° in Eisessig (Kuhn, Winterstein, Helv. 11, 133). — Öl. Erstarrt bei 10° krystallinisch. Leicht löslich in Benzol, Äther und Chloroform, schwer in Alköhol.

- 1.2.3.4.5.6.7.8 Oktabrom 1.8 diphenyl octan  $C_{20}H_{18}Br_8 = C_6H_5 \cdot [CHBr]_8 \cdot C_6H_5$  (H 623). Krystalle (aus Chloroform). Schwer löslich in allen Lösungsmitteln (Kuhn, Winterstein, *Helv.* 11, 142). Liefert beim Kochen mit Zinkstaub in Aceton quantitativ 1.8-Diphenyl-octatetraen-(1.3.5.7).
- 2. 2.2.3.3-Tetramethyl-1.4-diphenyl-butan. 1.1.2.2-Tetramethyl-1.2-dibenzyl-āthan  $C_{20}H_{26}=C_6H_5\cdot CH_2\cdot C(CH_3)_2\cdot C(CH_3)_2\cdot CH_2\cdot C_6H_5$ . B. Aus  $\beta.\beta$ -Dimethylstyrol bei der Einw. von Kalium-Natrium-Legierung in trocknem Ather unter Stickstoff und folgender Behandlung mit feuchtem Ather (Conant, Blatt, Am. Soc. 50, 557). Nadeln (aus Alkohol). F: 131—132°. Sehr leicht löslich in Ather, löslich in Alkohol und Essigester. Wird durch Kalium-Natrium-Legierung in Dioxan-Lösung bei 100° nicht angegriffen.
- 3. 2.5 Dimethyl-3.4-diphenyl-hexan, 1.2 Disopropyl-1.2-diphenyl-äthan, α.α'-Disopropyl-dibenzyl C<sub>20</sub>H<sub>20</sub>=(CH<sub>3</sub>)<sub>2</sub>CH·CH(C<sub>6</sub>H<sub>5</sub>)·CH(C<sub>6</sub>H<sub>5</sub>)·CH(CH<sub>3</sub>)<sub>2</sub>.

  B. Bei Einw. von wasserfreiem Kupfer(II)-chlorid auf α-Isopropyl-benzylmagnesiumbromid in Äther (Conant, Blatt, Am. Soc. 50, 555). Nadeln (aus Alkohol). F: 150—150,5°. Löslich in kaltem Äther und Essigester, schwer löslich in Alkohol und Eisessig. Wird beim Kochen in Dioxan von Kalium-Natrium-Legierung nicht angegriffen.
- 4. 2.3-Dimethyl-2.3-di-p-tolyl-butan, 1.1.2.2-Tetramethyl-1.2-di-p-tolyl-äthan  $C_{20}H_{26} = CH_3 \cdot C_6H_4 \cdot C(CH_3)_2 \cdot C_6H_4 \cdot CH_3$ . Diese Konstitution kommt der von Ciamician, Silber (B. 43 [1910], 1536) beschriebenen, durch Belichten einer Lösung von Benzophenon in Cymol dargestellten Verbindung (vgl. E I 297, Nr. 4) zu (Boedtker, Kerlor, C. r. 188, 1681; vgl. B., J. Pharm. Chim. [8] 9 [1929], 423). Das Mol.-Gew. ist kryoskopisch in Benzol bestimmt (B., K., C. r. 188, 1683; B., J. Pharm. Chim. [8] 9, 422). V. Findet sich im rohen Cymol, das bei der Sulfitzellstoffherstellung erhalten wird (B., J. Pharm. Chim. [8] 9, 422). B. Durch Einw. von Jodwasserstoff-Eisessig auf Dimethyl-p-tolyl-carbinol und Behandlung des erhaltenen Dimethyl-p-tolyl-jodmethans mit Zinkstaub in Eisessig (B., K.). Blättchen (aus Alkohol). F: 1570 (B., K.). Kp<sub>15</sub>: ca. 2000 (B.).
- 5. 1.2 Bis [4 isopropyl phenyl] āthan, 4.4' Diisopropyl dibenzyl, Dicuminyl C<sub>20</sub>H<sub>26</sub> = (CH<sub>3</sub>)<sub>2</sub>CH·C<sub>6</sub>H<sub>4</sub>·CH<sub>2</sub>·C<sub>6</sub>H<sub>4</sub>·CH(CH<sub>9</sub>)<sub>2</sub> (H 623). Die in E I 5. 297 als Dicuminyl beschriebene Verbindung ist als 1.1.2.2 Tetramethyl-1.2 di-p-tolyl-āthan erkannt worden (Boedtker, Kerlor, C. r. 188, 1682; vgl. a. Boe., J. Pharm. Chim. [8] 9, 422). B. 4.4'-Diisopropyl-dibenzyl entsteht neben anderen Produkten aus 4-Isopropyl-benzylchlorid und Magnesium in Ather (Bert, C. r. 177, 196; Bl. [4] 37, 1267, 1578). Blättchen (aus Alkohol). F: 58°; Kp: ca. 350°; Kp<sub>19</sub>: 210—211°; sehr leicht löslich in heißem, weniger in kaltem Alkohol (Bert).
- 6.  $\alpha$ -Methyl-4.4'-dipropyl-diphenylmethan, 1.1-Bis-[4-propyl-phenyl]-äthan, 4.4'-Åthyliden-bis-[1-propyl-benzol]  $C_{20}H_{26}=C_2H_5\cdot CH_2\cdot C_6H_4\cdot CH_5\cdot C_6H_4\cdot CH_2\cdot C_2H_5$ . B. Entsteht in geringer Menge beim Einleiten von Acetylen in Propyl-benzol in Gegenwart von konz. Schwefelsäure und Quecksilber(II)-oxyd unterhalb 10° (Reilly, Nieuwland, Am. Soc. 50, 2565). Viscose gelbbraune Flüssigkeit. Kp42: 192° bis 194°. Nicht flüchtig mit Wasserdampf.
- 7.  $\alpha$ -Methyl-4.4'-diisopropyl-diphenylmethan, 1.1-Bis-[4-isopropyl-phenyl]-äthan, 4.4'-Äthyliden-bis-[1-isopropyl-benzol]  $C_{20}H_{16}=(CH_3)_2CH\cdot C_6H_4\cdot CH(CH_3)\cdot C_6H_4\cdot CH(CH_3)_2$ . B. Entsteht in geringer Menge beim Einleiten von Acetylen in Isopropylbenzol bei Gegenwart von konz. Schwefelsäure und Quecksilber(II)-oxyd unterhalb  $10^o$  (Reilly, Nieuwland, Am. Soc. 50, 2565). Viscose gelbbraune Flüssigkeit. Kp<sub>15</sub>: 240—245°. Nicht flüchtig mit Wasserdampf.
- 8. 2.4.6.2'.4'.6'.\(\alpha\) Heptamethyl diphenyl methan, 1.1 Bis [2.4.6 trimethyl phenyl] \(\alpha\) than, 1.1 Dimesityl-\(\alpha\) than C<sub>20</sub>H<sub>26</sub>, s. nebenstehende Formel. B. Beim Leiten von Acetylen in Mesitylen bei Gegenwart von konz. Schwefels\(\alpha\) ure und Quecksilber(II)-sulfat bei 10—20° (REICHERT, NIEUWLAND, Am. Soc. 45, 3091). Kp: 344—348°. Zeigt Fluorescenz.
- 9. **4.4'-Dibutyl-diphenyl**  $C_{20}H_{26}=CH_2\cdot[CH_2]_3\cdot C_6H_4\cdot C_6H_4\cdot [CH_2]_3\cdot CH_3$ . B. Durch Kochen von 4-Jod-1-butyl-benzol mit Kupferpulver (Boedtker, Bl. [4] **45**, 648). Krystallisiert beim Aufbewahren nach einigen Monaten. F: 58—59°. Kp<sub>16</sub>: 228—230°.  $D_4^{11}$ : 0,9499;  $n_2^{19}$ : 1,5503 (unterkühlt).

- 10. **4.4'-Di-sek.-butyl-diphenyl**  $C_{20}H_{26} = C_2H_5 \cdot CH(CH_3) \cdot C_6H_4 \cdot C_6H_4 \cdot CH(CH_3) \cdot C_2H_5$ . **B.** Durch Kochen von 4-Jod-1-sek.-butyl-benzol mit Kupferpulver (Boedtker, Bl. [4] **45**, 649). Gelbes Öl.  $Kp_{20}$ : 222—224°.  $D_4^{15}$ : 0,9530.  $n_7^{10}$ : 1,5577.
- 11. **4.4'-Di-tert.-butyl-diphenyl**  $C_{20}H_{26}=(CH_3)_3C\cdot C_6H_4\cdot C_6H_4\cdot C(CH_3)_3$  (E I 298). B. Entsteht in wechselnden Mengen bei der Einw. von Magnesium auf 4-Brom-1-tert.-butyl-benzol in Äther bei Gegenwart einer Spur Jod (Tschitschibabin, Elgasin, Lengold, Bl. [4] 43, 241;  $\mathcal{K}$ . 60, 351). Aus 4-Jod-1-tert.-butyl-benzol und Magnesium in Äther in Gegenwart einer Spur Jod (Boedtker, Kerlor, Bl. [4] 45, 647). Krystalle (aus Alkohol). F: 122° (Boe., K.), 128—129° (Tsch., E., L.). Kp<sub>18</sub>: 190—192° (Tsch., E., L.).

## 11. Kohlenwasserstoffe $C_{22}H_{30}$ .

- 1. 5.6-Diphenyl-decan, 1.2-Dibutyl-1.2-diphenyl-āthan,  $\alpha.\alpha'$ -Dibutyl-dibenzyl  $C_{12}H_{30} = CH_3 \cdot [CH_2]_3 \cdot CH(C_6H_5) \cdot CH(C_6H_5) \cdot [CH_2]_3 \cdot CH_3$ . B. Bei der Einw. von wasserfreiem Kupfer(II)-chlorid auf  $\alpha$ -Butyl-benzylmagnesiumbromid in Äther (Conant, Blatt, Am. Soc. 50, 556). Krystalle (aus Alkohol). F: 80°. Schwer löslich in Alkohol, löslich in Essigester, ziemlich leicht löslich in Äther.
- 2. 2.2.5.5-Tetramethyl-3.4-diphenyl-hexan, 1.2-Di-tert.-butyl-1.2-di-phenyl-dthan,  $\alpha.\alpha'$ -Di-tert.-butyl-dibenzyl  $C_{22}H_{30} = (CH_3)_3C \cdot CH(C_6H_5) \cdot CH(C_6H_5) \cdot C(CH_3)_3$ . B. Bei der Einw. von wasserfreiem Kupfer(II)-chlorid auf  $\alpha$ -tert.-Butyl-benzyl-magnesiumbromid in Äther (Conant, Blatt, Am. Soc. 50, 556). Prismen oder Tafeln (aus Eisessig). F: 180—181°. Löslich in Äther, schwer löslich in kaltem Alkohol, Eisessig und Essigester.
- 3.  $\alpha$ -Methyl-4.4'-dibutyl-diphenylmethan, 1.1-Bis-[4-butyl-phenyl]-äthan, 4.4'-Äthyliden-bis-[1-butyl-benzol]  $C_{22}H_{30}=CH_3\cdot[CH_2]_3\cdot C_8H_4\cdot CH(CH_3)\cdot C_8H_4\cdot[CH_2]_3\cdot CH_3$ . B. Beim Einleiten von Acetylen in Butylbenzol bei Gegenwart von konz. Schwefelsäure und Quecksilber(II)-oxyd unterhalb 10° (Reilly, Nieuwland, Am. Soc. 50, 2565). Viscose gelbbraune Flüssigkeit. Kp<sub>37</sub>: 244—248°. Nicht flüchtig mit Wasserdampf.
- 4.  $\alpha$ -Methyl-4.4'-di-sek.-butyl-diphenylmethan, 1.1-Bis-[4-sek.-butyl-phenyl]- $\delta$ than, 4.4'- $\delta$ thyliden bis [1-sek.-butyl-benzol]  $C_{22}H_{30}=CH_3$ ·  $CH[C_6H_4\cdot CH(CH_3)\cdot C_2H_5]_2$ . B. Beim Einleiten von Acetylen in sek.-Butyl-benzol bei Gegenwart von konz. Schwefelsäure und Quecksilber(II)-oxyd unterhalb 10° (Reilly, Nieuwland, Am. Soc. 50, 2565). Viscose gelbbraune Flüssigkeit. Kp<sub>11</sub>: 250—252°. Nicht flüchtig mit Wasserdampf.
- 5.  $\alpha$ -Methyl-4.4'-di-tert.-butyl-diphenylmethan, 1.1-Bis-[4-tert.-butyl-phenyl]-äthan. 4.4'-Åthyliden-bis-[1-tert.-butyl-benzol]  $C_{22}H_{30}=(CH_3)_3C\cdot C_6H_4\cdot CH(CH_3)\cdot C_6H_4\cdot C(CH_3)_3$ . B. Beim Einleiten von Acetylen in tert.-Butyl-benzol bei Gegenwart von konz. Schwefelsäure und Quecksilber(II)-oxyd unterhalb 10° (Reilly, Nieuwland),  $Am.\ Soc.\ 50$ , 2565). Krystalle (aus Alkohol). F: 94°.  $Kp_{16}$ : 212—214°. Nicht flüchtig mit Wasserdampf.
- 6. **4.4'-Di-tert.-amyl-diphenyl**  $C_{22}H_{30} = C_2H_5 \cdot C(CH_3)_2 \cdot C_8H_4 \cdot C_6H_4 \cdot C(CH_3)_2 \cdot C_2H_5$ . B. Beim Kochen von 4-Jod-1-tert.-amyl-benzol mit Kupferpulver (Boedtker, Bl. [4] **45**, 650). Gelbes Öl. Kp<sub>16</sub>: 224°.  $D_1^{is}$ : 1,5503.  $n_2^{is}$ : 1,5570. Bei längerem Aufbewahren scheiden sich geringe Mengen einer krystallinischen Verbindung ab, die sich bei 200° ohne zu schmelzen verflüchtigt.
- 7. Kohlenwasserstoff  $C_{22}H_{30}$  aus  $\alpha$ -Naphthol. B. Neben anderen Produkten beim Leiten von  $\alpha$ -Naphthol durch ein mit Glasringen gefülltes Quarzrohr bei 660° (Hagemann, Z. ang. Ch. 42, 360). Nadeln (aus Benzin). F: 178,5—179,5°.

## 12. Kohlenwasserstoffe C24H34.

- 1.  $\alpha$ -Methyl-4.4'-di-[pentyl-(3)]-diphenylmethan, 4.4'-Äthyliden-bis-[1-diāthylmethyl-benzol]  $C_{24}H_{34}=CH_5\cdot CH[C_6H_4\cdot CH(C_2H_5)_2]_2$ . B. Beim Einleiten von Acetylen in Diāthyl-phenyl-methan bei Gegenwart von konz. Schwefelsäure und Quecksilber(II)-oxyd unterhalb 10° (Reilly, Nieuwland, Am. Soc. 50, 2565). Viscose gelbbraune Flüssigkeit. Kp<sub>29</sub>: 234—236°. Nicht flüchtig mit Wasserdampf.
- 2.  $\alpha$ -Methyl-4.4'-bis- $[\alpha.\beta$ -dimethyl-propyl]-diphenylmethan, 4.4'-Athyliden bis-/1-(methyl-isopropyl-methyl) benzol]  $C_{24}H_{34} = CH_3 \cdot CH[C_4H_4 \cdot CH_4] \cdot CH_4$

CH(CH<sub>3</sub>)·CH(CH<sub>3</sub>)<sub>2</sub>]<sub>2</sub>. B. Beim Einleiten von Acetylen in 2-Methyl-3-phenyl-butan bei Gegenwart von konz. Schwefelsäure und Quecksilber(II)-oxyd unterhalb 10° (REILLY, NIEUWLAND, 4m. Soc. 50, 2565). — Viscose gelbbraune Flüssigkeit. Kp<sub>13</sub>: 225—228°. Nicht flüchtig mit Wasserdampf.

## 9. Kohlenwasserstoffe $C_n H_{2n-16}$ .

## 1. Kohlenwasserstoffe $C_{12}H_8$ .

- 1. 1-Acetylenyl-naphthalin, α-Naphthylacetylen C<sub>12</sub>H<sub>8</sub>, s. nebenstehende Formel (H 624). Das durch Einw. von Methylmagnesiumbromid in Ather erhältliche α-Naphthylacetylen-magnesiumbromid liefert bei der Umsetzung mit 2 Atomen Jod α-Naphthyl-jodacetylen, mit 1 Atom Jod Diananphthyl-diacetylen, bei der Umsetzung mit Bromcyan α-Naphthyl-bromacetylen (GRIGNARD, PERRICHON, A. ch. [10] 5, 9, 13, 15).
- 1-Bromacetylenyl-naphthalin,  $\alpha$ -Naphthyl-bromacetylen  $C_{12}H_7Br=C_{10}H_7\cdot C$ : CBr. B. Bei der Einw. von Bromcyan auf  $\alpha$ -Naphthylacetylen-magnesiumbromid in Äther unter Eiskühlung (Grignard, Perrichon, A. ch. [10] 5, 9). Wurde nicht rein erhalten. Läßt sich auch im Vakuum nicht unzersetzt destillieren. Bräunt sich am Licht. Liefert beim Behandeln mit konz. Schwefelsäure Brommethyl- $\alpha$ -naphthyl-keton und wenig Methyl- $\alpha$ -naphthyl-keton.
- 1-Jodacetylenyl-naphthalin,  $\alpha$ -Naphthyl-jodacetylen  $C_{12}H_7I = C_{10}H_7 \cdot C : CI$ . B. Bei der Einw. von 2 Atomen Jod auf  $\alpha$ -Naphthylacetylen-magnesiumbromid in Äther unter Eiskühlung (Grignard, Perrichon, A. ch. [10] 5, 13). Wurde nicht rein erhalten. Auch im Vakuum nicht unzersetzt destillierbar.
- 2. o-Diphenylen C<sub>12</sub>H<sub>8</sub> (E I 298). Besitzt nach Baker (Nature 150, 211; C. 1943 I, 501) nebenstehende Konstitution.

E I 298, Z. 4 v. u. statt "Syst. No. 4776" lies "E I 18, 476".

3. Acenaphthylen C<sub>12</sub>H<sub>8</sub>, s. nebenstehende Formel (H 625; E I 299). Für

die von Acenaphthylen abgeleiteten Namen wird in diesem Handbuch die in der Formel angegebene Stellungsbezeichnung gebraucht. — B. Entsteht in geringer Menge beim Durchgang elektrischer Funken durch Methan (STANLEY, Nash, J. Soc. chem. Ind. 48, 240 T; C. 1929 II, 3200). Zur Bildung beim Leiten von Acenaphthen-Dampf durch ein rotglühendes Quarzrohr in Kohlendioxyd-Atmosphäre vgl. Dziewonski, B. 53, 2180. Aus Acenaphthen-Dampf beim Leiten durch ein verzinntes Eisenrohr im Wasserstoffstrom bei 760—770° (F. Fischer, Schrader, Meyer, Abh. Kenntnis Kohle 5, 414, 415, 433; C. 1922 IV, 1039) oder beim Erhitzen in Gegenwart eines Nickelkatalysators auf ca. 300° (Goswami, C. r. 179, 1269). Aus Acenaphthencol-(1) durch Einw. von Thionylchlorid in Gegenwart von Pyridin (Marquis, C. r. 182, 1228). In geringer Menge bei der Druckhydrierung von Acenaphthenon oder Acenaphthenchinon bei Gegenwart von Nickel in Dekalin bei 180—240° (v. Braun, Bayer, B. 59, 922, 923). Aus Acenaphthen-sulfonsäure-(3) oder Acenaphthen-sulfonsäure-(5) beim Schmelzen mit Alkali oder beim Destillieren mit Kaliumcyanid unter vermindertem Druck (Kalle & Co., D. R. P. 248994; C. 1912 II, 300; Frdl. 11, 227; Dziewonski, Stolyhwo, B. 57, 1535, 1537; vgl. Dz., Galitzerowna, Kocwa, Bl. Acad. polon. 1926, 218, 223; C. 1926 II, 2816). Bei der Zinkstaub-Destillation von 5-Athyl-acenaphthen (Mayer, Kaufmann, B. 53, 294). Beim Leiten von S-Acetyl-6.7.8.9-tetrahydro-acenaphthen oder 5-Acetyl-acenaphthen durch ein auf 700° erhitztes Rohr bei Gegenwart oder Abwesenheit von Bleidioxyd (v. Braun, Hahn, Seemann, B. 55, 1694).

E I 299, Z. 21—23 v.o. Der Satz "Durch Dest. . . . . R. A. L. [5] 21 I, 782)" ist durch folgenden zu ersetzen: Durch Destillation des Kaliumsalzes der Acenaphthen-sulfonsäure-(3) mit Kaliumferrocyanid (Oliveri-Mandalà, R. A. L. [5] 21 I, 782; Dziewonski, Galitzerowna, Kocwa, Bl. Acad. polon. 1926, 216, 234; C. 1926 II, 2816).

H 625, Z. 13 v. o. statt "Benzin" lies "Benzol".

Polyacenaphthylen (C<sub>12</sub>H<sub>8</sub>)<sub>x</sub> (E I 299). B. Neben Acenaphthylen und anderen Produkten beim Leiten von Acenaphthen-Dampf durch ein mit Eisen- oder Kupferdraht beschicktes Quarzrohr bei Rotglut im Kohlendioxydstrom (Dziewonski, B. 53, 2190). Neben Acenaphthylen bei der Alkalischmelze von Acenaphthen-sulfonsäure-(3) oder Acenaphthen-sulfonsäure-(5) (Dz., Stolyhwo, B. 57, 1533, 1535, 1537). — Fast farblos (Dz.).

## 2. Kohlenwasserstoffe $C_{13}H_{10}$ .

- 1. 1-Propargyl-naphthalin, 3- $\alpha$ -Naphthyl-propin-(1)  $C_{13}H_{10}=C_{10}H_{7}\cdot CH_{2}\cdot C$ : CH. B. Beim Behandeln von 1- $[\gamma$ -Chlor-allyl]-naphthalin mit Natriumamid in Xylol bei 120°; man reinigt über das Kupfersalz (Bert, Dorier, Bl. [4] 37, 1601). Hellgelbe, wenig bewegliche Flüssigkeit von charakteristischem und anhaftendem Geruch. Kp<sub>15</sub>: 154° (korr.).  $D_{4}^{0}$ : 1,066;  $D_{4}^{15}$ : 1,056.  $n_{5}^{15}$ : 1,630.  $AgC_{13}H_{9}+AgNO_{3}$ . Weißer Niederschlag.
- 2. Fluoren C<sub>13</sub>H<sub>10</sub>, s. nebenstehende Formel (H 625; E I 300). Für die von Fluoren abgeleiteten Namen wird in diesem Handbuch die in der Formel angegebene Stellungsbezeichnung gebraucht. Literatur: RIEVESEHL, RAY, The chemistry of fluorene and its derivatives, Chem. Reviews 23 [1938], 287—389. Zur Konstitution vgl. v. Auwers, Krollpfeiffer, A. 430, 264.



V. u. B. Findet sich in geringer Menge in Berginöl aus niederschlesischer Kohle (Heyn, Dunkel, Brennstoffch. 7, 85; C. 1926 II, 1709). In geringer Menge beim Leiten von Acetylen über aktivierte Holzkohle bei 650° (Zelinsky, B. 57, 268, 272; C. r. 177, 885; K. 55, 148, 154). Zur Bildung beim Leiten von Acetylen und Wasserstoff durch Porzellanröhren bei höherer Temperatur vgl. R. Meyer, W. Meyer, B. 51 [1918], 1574, 1576; R. M., Taeger, B. 53, 1262. Beim Leiten von Dicyclohexylmethan, Diphenylmethan, Dicyclohexylketon oder Benzophenon über Platin-Kohle bei 300° (Zelinsky, Titz, Gawerdowskaja, B. 59, 2591, 2592). Aus Fluorenol bei kurzem Kochen mit überschüssiger Jodwasserstoffsäure (D: 1,96) in Eisessig (Wanscheidt, B. 59, 2098; K. 58, 67).

Physikalische Eigenschaften. Härteanisotropie: Reis, Zimmermann, Ph. Ch. 102, 328. Röntgenographische Untersuchung: Hengstenberg, Mark, Z. Kr. 70, 289. F: 114—114,5° (Capper, Marsh, Soc. 1926, 724), 114,2° (Mortimer, Murphy, Ind. Eng. Chem. 15 [1923], 1141), 116° (Zelinsky, Titz, Gawerdowskaja, B. 59, 2591). Dampfdruck zwischen 161,0° (18,0 mm) und 300,4° (812,3 mm): Mo., Mu. D. 1203 (Ziegler, Ditzel, A. 473, 204). Verbrennungswärme bei konstantem Volumen: 1585,1 kcal/Mol (Roth in Landolt-Börnst. H, 1590). Ultraviolett-Absorptionsspektrum in Chloroform: Ca., Marsh, Soc. 1926, 724, 727; in Hexan und Alkohol: Menczel, Ph. Ch. 125, 187, 191. Tesla-Luminescenzspektrum: McVicker, Marsh, Stewart, Soc. 127, 1000. Röntgen-Luminescenzspektrum: De Beaujeu, J. Phys. Rad. [6] 4 [1923], 263. Luminescenz im Kathodenlicht: Marsh, Soc. 1927, 128. Spektrum der durch Ultraviolett-Bestrahlung bewirkten Fluorescenz der festen Substanz: Andant, Chim. et Ind. 19, Sonder-Nr., S. 269; C. 1929 I, 1538; vgl. Kirchhof, Phys. Z. 30, 241; C. 1929 I, 3071; nach der Belichtung tritt eine bläuliche Phosphorescenz auf (K.).

Löslichkeit in einigen organischen Lösungsmitteln bei 0—100°: Mortimer, Am. Soc. 45, 634; vgl. Dimroth, Bamberger, A. 438, 100. Löslich in flüssigem Schwefeldioxyd mit gelber Farbe, unlöslich in flüssigem Ammoniak (de Carli, G. 57, 351). Thermische Analyse der binären Systeme mit 2.6-Dinitro-toluol (Eutektikum bei 46° und 30 Gew.-% Fluoren), 3.4-Dinitro-toluol (Eutektikum bei 37° und 29 Gew.-% Fluoren) und 3.5-Dinitro-toluol (Eutektikum bei 42° und 39 Gew.-% Fluoren): Kremann, Hönigsberg, Mauermann, M. 44, 69, 73, 77; mit 2.4.6-Trinitro-m-xylol (Eutektikum bei 100,6° und 64,5 Gew.-% Fluoren): Jefremow, Tichomirowa, Izv. Inst. fiz.-chim. Anal. 4, 70, 89; C. 1929 I, 745; mit 2.4.6-Trinitro-m-kresol: J., T., X. 59, 378, 386; C. 1928 I, 188; mit p-Chinon: Kr., Mitarb., M. 43, 308, 310; mit Tetryl: J., T., Izv. Inst. fiz.-chim. Anal. 4, 99, 108; C. 1929 I, 745. Dichte und Brechungsindices einer Lösung in Chinolin bei 16,8°: Krollpfeiffer, A. 430, 222. Gemische aus Borsäure und sehr geringen Mengen Fluoren zeigen nach Ultraviolett-Bestrahlung grünlichblaues Nachleuchten (Tiede, Ragoss, B. 56, 658, 664).

Chemisches Verhalten. Zersetzung von Fluoren durch Kanalstrahlen: Kohlschütter, Frumkin, B. 54, 592. Über pyrogene Zersetzung des Fluorens vgl. Dziewonski, Suszko, Bl. Acad. polon. 1921, 68; C. 1923 I, 528; B. 58, 2544; Eckert, J. pr. [2] 121, 280; vgl. dazu a. E. Clar, Aromatische Kohlenwasserstoffe [Berlin 1941], S. 278. Fluoren wird durch Chromschwefelsäure nur teilweise zu Kohlendioxyd oxydiert; vollständiger verläuft die Oxydation mit Silberdichromat (Simon, C. r. 177, 266). Die bei der Destillation von Fluoren über erhitztes Bleioxyd entstehende, von Manchot, Krische (A. 337 [1904], 200) als 9-Methylen-fluoren aufgefaßte Verbindung ist hauptsächlich ein Gemisch aus Difluorenyliden, Difluorenyl-(9.9') und unverändertem Fluoren gewesen (Wieland, Reindel, Ferrer, B. 55, 3317). Gibt nach Ssadikow, Michailow (B. 61, 1792; Ж. 60, 1567) bei der Druckhydrierung bei ca. 300° in Gegenwart von Nickeloxyd-Asbest Δ<sup>11(12)</sup>-Dekahydrofluoren, in Gegenwart von Osmium-Asbest vorwiegend Δ<sup>11(12)</sup>-Dekahydrofluoren neben Perhydrofluoren, in Gegenwart von auf Asbest aufgetragenen Gemischen aus Nickeloxyd und Cerdioxyd, Osmium und Cerdioxyd oder Osmium und Thoriumdioxyd fast ausschließlich Perhydrofluoren (vgl. indessen Orlow, Belopolski, B. 62, 1227; Ж. 61, 1268). Bei wieder-

532

holter Hydrierung zunächst in Gegenwart von Nickeloxyd, dann in Gegenwart von Nickeloxyd und Hopcalit bei 210—230° und 60—70 Atm. Anfangsdruck erhält man neben Methan-Kohlenwasserstoffen Perhydrofluoren (O., B.). Läßt man Wasserstoff bei 460—470° und 75 Atm. Anfangsdruck auf Fluoren in Gegenwart eines Gemisches aus Tonerde und Eisenoxyd oder von wasserfreiem Eisenchlorid einwirken, so entstehen Benzol, Toluol und andere Produkte (O., B. 62, 718; 36, 60, 1456). Über Hydrierung bei hohen Temperaturen und Drucken vgl. a. Spilker, Zerbe, Z. ang. Ch. 39, 1142. Beim Leiten von Fluoren-Dampf durch ein verzinntes Eisenrohr im Wasserstoffstrom bei 760—770° erhält man Benzol und geringe Mengen Chrysen (F. Fischer, Schrader, Meyer, Abh. Kenntnis Kohle 5, 414, 433; C. 1922 IV, 1039).

Fluoren liefert in Chloroform beim Einleiten von Chlor bei 0—5° je nach den Reaktionsbedingungen 2-Chlor-fluoren (Courtot, Vignati, C. r. 184, 1179; C., A. ch. [10] 14 [1930], 52, 55), 2.7-Dichlor-fluoren (Sieglitz, Schatzkes, B. 54, 2073; Jandebeur, Dissert. [München 1925], S. 36; C., V., C. r. 184, 1179; C., A. ch. [10] 14, 52, 55, 95; vgl. Hodgkinson, Matthews, Soc. 48 [1883], 170) und 2.4.7-Trichlor-fluoren (J.; vgl. Sie., zit. bei Krollpfeiffer, A. 430, 224 Anm. 2); bei der Bromierung entstehen 2-Brom-fluoren (C., V., C. r. 184, 608; Bl. [4] 41, 59; C., A. ch. [10] 14, 58; vgl. Ho., Ma.) und 2.7-Dibrom-fluoren (Sie., B. 53, 1236; Novelli, An. Asoc. quim. arg. 15, 198 Anm. 26; C. 1928 I, 1410; C., V., C. r. 184, 608; Bl. [4] 41, 60; C., A. ch. [10] 14, 59, 98). Fluoren gibt bei der Einw. von rauchender Salpetersäure in Eisessig bei Zimmertemperatur neben 2.7-Dinitro-fluoren auch wenig 2.5-Dinitro-fluoren (Morgan, Thomason, Soc. 1926, 2693; Courtot, A. ch. [10] 14, 83). Liefert bei 14-tägiger Einw. von Königswasser geringe Mengen 2.7-Dichlor-fluorenon und andere Produkte (Blumenstock-Halward, M. 48, 100). Bei der Einw. von Chlorsulfonsäure auf Fluoren in Chloroform unter Kühlung erhält man Fluoren-sulfonsäure-(2) (C., Geoffroy, C. r. 178, 2261; C., A. ch. [10] 14, 10, 17; vgl. Ho., Ma.); diese bildet sich auch bei gelindem Erwärmen mit einem Gemisch aus 1 Mol Schwefelsäure und 2 Mol Acetanhydrid (Wedekind, Stüsser, B. 56, 1561). Fluoren liefert in Stickstoff-Atmosphäre bei längerem Erwärmen mit Lithiumäthyl in Benzol auf 70° Lithiumfluoren, beim Aufbewahren mit Triphenylmethylnatrium in Äther Natriumfluoren (Syst. Nr. 2357) (Schlenk, Bergmann, A. 463, 192). Beim Destillieren mit Aluminiumchlorid entstehen Diphenyl und andere Produkte (Orlow, Belopolski, B. 62, 1231; Ж. 61, 1273).

Beim Kochen von Fluoren mit Methylal und Phosphorpentoxyd in Chloroform erhält man Di-fluorenyl-(2)-methan und geringe Mengen eines Kohlenwasserstoffs C<sub>55</sub>H<sub>40</sub> (s. u.) (Dziewonski, Panek, Bl. Acad. polon. [A] 1927, 747, 751; C. 1928 II, 445). Liefert bei der Kondensation mit Benzaldehyd in Natriumäthylat-Lösung neben 9-Benzyliden-fluoren auch 9-Cinnamyliden-fluoren (Schlenk, Bergmann, B. 62, 749; B., B. 63 [1930], 1618; Kliegl, Weng, Wiest. B. 63, 1632); analoge Verbindungen entstehen bei entsprechender Einw. von 4-Methoxy-benzaldehyd (Sch., B.; B., B. 63, 1618), 4-Dimethylamino-benzaldehyd und Piperonal (de Fazi, G. 51 I, 332, 337; B., B. 63, 2598). Gibt bei längerem Erwärmen mit 4-4'-Bis-dimethylamino-benzphenon und Natrium in Benzol auf 85—90° 9-[4.4'-Bis-dimethylamino-benzhydryl]-fluoren und 9-[4.4'-Bis-dimethylamino-diphenylmethylen]-fluoren (Rodd, Linch, Soc. 1927, 2187; Sch., B., B. 62, 747, 750; B., B. 63, 1619, 1626). Kondensiert sich beim Erhitzen mit 4-4'-Dimethoxy-thiobenzophenon auf 270° zu 9-[4-4'-Dimethoxy-diphenylmethylen]-fluoren (Schönberg, B. 58, 1795, 1801). Beim Sättigen eines auf dem Wasserbad erwärmten Gemisches aus Fluoren und Azodicarbonsäure-dimethylester mit Chlorwasserstoff in Gegenwart von wenig Jod entsteht 2.7-Bis-[N.N'-dicarbomethoxy-hydrazino]-fluoren (Stollé, Adam, J. pr. [2] 111, 167, 171). Erhitzt man Fluoren mit Benzophenon-anil oder Fluorenon-anil in Gegenwart von Anilin-hydrobromid im Kohlendioxyd-Strom auf 300—340°, so erhält man vorwiegend Difluorenyl-(9.9') neben Difluorenyliden und Anilin (Reddelen, B. 53, 356, 357).

Antiklopfwirkung im Verbrennungsmotor: EGERTON, GATES, J. Inst. Petr. Technol.

13. 278; C. 1928 II. 211. — Farbreaktionen mit cyclischen Aldehyden in alkoh. Lösung in Gegenwart von konz. Schwefelsäure: DE FAZI, G. 50 II, 147; 51 I, 328. Fluoren gibt mit Pikrinsäure in alkal. Lösung eine rote Färbung (Weise, Tropp, H. 178, 134). — Mikrochemischer Nachweis in Form von additionellen Verbindungen mit 2.7-Dinitro-phenanthrenchinon oder Chrysamminsäure: Behrens-Kley, Organische mikrochemische Analyse [Leipzig 1922], S. 10. Verhalten bei der Jodzahlbestimmung nach Hübl und Wijs: MacLean, Thomas, Biochem. J. 15, 321.

Kohlenwassenstoff C. H. D. Nober überwichen Mengen Dieflegengt (2)

Kohlenwasserstoff C<sub>55</sub>H<sub>40</sub>. B. Neben überwiegenden Mengen Di-fluorenyl-(2)-methan beim Kochen von Fluoren mit Methylal und Phosphorpentoxyd in Chloroform (Dziewonski, Panek, Bl. Acad. polon. [A] 1927, 746, 751; C. 1928 II, 445). — Krystall-pulver (aus Xylol oder Cumol). F: 246—2470. — Gibt bei der Oxydation mit Natrium-dichromat in siedendem Eisessig eine Verbindung C<sub>55</sub>H<sub>30</sub>O<sub>5</sub> (gelbe Mikrokrystalle aus Xylol; F: 324—3260), die bei der Alkalischmelze in eine Säure C<sub>27</sub>H<sub>20</sub>O<sub>7</sub> (fast farblose Mikrokrystalle; F: 235—2370) übergeht.

#### Substitutionsprodukte des Fluorens.

2-Chlor-fluoren C<sub>13</sub>H<sub>9</sub>Cl, s. nebenstehende Formel. B. Beim Erwärmen von Fluoren-diazoniumchlorid-(2) mit Kupfer(I)-chlorid in konz. Salzsäure auf dem Wasserbad (Courtot, Vignati, C. r. 184, 607; Chanussot, Bl. [4] 41, 1626). Beim Einleiten von Chlor in eine Lösung von Fluoren in Chloroform bei 0—5°, neben wenig 2.7-Dichlor-fluoren (C., V., C. r. 184, 1179; C., A. ch. [10] 14 [1930], 52, 55). — Blättchen (aus Alkohol). F: 97° (C., V.), 98° (Ch.). Leicht sublimierbar (C., V.). Leicht löslich in den gebräuchlichen organischen Lösungsmitteln (C., V.; Ch.). — Liefert bei der Oxydation mit Natriumdichromat in Eisessig 2-Chlor-fluorenon (C., V., C. r. 184, 1180; C., A. ch. [10] 14, 54; Ch.). Beim Behandeln mit Salpetersäure in Eisessig bei 70—80° entsteht 7-Chlor-2-nitro-fluoren (C., V., C. r. 184, 1180; C., A. ch. [10] 14, 104).

9-Chlor-fluoren  $C_{13}H_9Cl=\frac{C_6H_4}{C_6H_4}$ CHCl (H 627; E I 301). Als 9-Chlor-fluoren ist die H 7, 467 als Fluorenonhydrat(?  $C_{13}H_{10}O_2$  beschriebene Verbindung erkannt worden (Kuhn, Wassermann, B. 58, 2230). — F: 91,5 $^6$  (unkorr.) (K., W.).

Gibt bei der Oxydation mit Chromschwefelsäure bei 95-97° Fluorenon (Courtot, Pierron, Bl. [4] 45, 290). Bei der Reduktion mit Natriumamalgam in Alkohol entsteht Fluoren (Kuhn, Wassermann, B. 58, 2230). Liefert beim Kochen mit Natriumsulfit-Lösung vielleicht das Natriumsalz der Fluoren-sulfonsäure-(9) und andere Produkte (Wedekind, Stüsser, B. 56, 1560). Wird durch Wasser bei 95—97° völlig hydrolysiert (C., Pl.). Liefert bei der Einw. von alkoh. Alkalilauge Difluorenyliden (Kliegl, Wünsch, Weigele, B. 59, 640); beim Behandeln mit wasserfreiem Ammoniak erhält man außerdem Di-fluorenyl-(9)amin und Spuren von 9-Amino-fluoren (C., Petitcolas, C. r. 180, 297). Reagiert mit primären Aminen R·NH<sub>2</sub> unter Bildung von Verbindungen vom Typus C<sub>13</sub>H<sub>9</sub>·NH·R (C., Pe.). Gibt beim Kochen mit Natriumhydrosulfid in wäßrig-alkoholischer Lösung Di-fluorenyl-(9)sulfid, beim Kochen mit Natriumdisulfid in Alkohol Di-fluorenyl-(9)-disulfid (Bergmann, HERVEY, B. 62, 914). Liefert beim Erwärmen mit Silbernitrat in absol. Alkohol auf dem MENUEY, B. 62, 914]. Liefert beim Erwarmen mit Sibernitat in absol. Ankono auf dem Wasserbad 9-Äthoxy-fluoren (Kl., Wü., Wei.; Kl., B. 62, 1334 Anm. 30). Bei der Umsetzung mit Benzhydrylnatrium in Äther entstehen 9-Benzhydryl-fluoren, 1.1.2.-Tetraphenyl-äthan und geringe Mengen Difluorenyl-(9.9') (Kl., B. 62, 1330; 64 [1931], 2422; vgl. Schlenk, Bergmann, A. 463, 198; B., B. 63 [1930], 1626). Kondensiert sich bei kurzem Kochen mit 1.2;7.8-dibenzo-fluoren und Kaliummethylat-Lösung in Aceton zu 9-[Fluorenyl-(9)]-1.2;7.8-dibenzo-fluoren (Wanscheider, B. 59, 2099; Ж. 58, 76). Gibt bei der Kondensiert in Benzeldehud in Kondensiert von Koliumanhenzen in Schoppen der eine Gronvert von Koliumanhenzen der eine Gronve sation mit Benzaldehyd, insbesondere auch in Gegenwart von Kaliumcarbonat in siedendem Methanol, vorwiegend 9-Methoxy-9-[α-oxy-benzyl]-fluoren; bei einem Versuch wurde in Gegenwart von methylalkoholischer Kalilauge in siedendem Alkohol 9-Benzyliden-fluorenoxyd erhalten (BERGMANN, HERVEY, B. 62, 902). Liefert mit 4-Nitro-benzaldehyd in Gegenwart von Kaliumcarbonat in siedendem Methanol 9-[4-Nitro-benzyliden]-fluoren-oxyd; bei einem Versuch entstand statt dessen eine Substanz, die sich bei 217° zersetzt (B., H., B. 62, 895, 902). 9-Chlor-fluoren gibt beim Kochen mit Fluorenon in Gegenwart von Kaliumcarbonat in Methanol hauptsächlich Difluorenylidenoxyd (Syst. Nr. 2377) (B., H., B. 62, 897, 908). Beim Kochen mit 4-Nitroso-dimethylanilin in Gegenwart von Kaliumcarbonat

in Methanol entsteht die Verbindung C<sub>6</sub>H<sub>4</sub>·C:N(:O)·C<sub>8</sub>H<sub>4</sub>·N(CH<sub>3</sub>)<sub>2</sub> (Syst. Nr. 1769) (B., H., B. **62**, 898, 910). Liefert beim Kochen mit 4.4'-Bis-dimethylamino-thiobenzophenon in Gegenwart von Kaliumcarbonat in Propylalkohol 9-[4.4'-Bis-dimethylamino-diphenyl-methylen]-fluoren, Bis-[4.4'-bis-dimethylamino-benzhydryl]-disulfid und Di-fluorenyl-(9)-disulfid (B., H., B. **62**, 897, 912; vgl. a. B., Magat, Wagenberg, B. **63**, 2582). — Die Lösung in warmer konzentrierter Schwefelsäure ist grün (Wanscheidt, B. **59**, 2098).

2.7-Dichlor-fluoren C<sub>13</sub>H<sub>8</sub>Cl<sub>2</sub>, s. nebenstehende Formel (H 627 als x.x-Dichlor-fluoren beschrieben; zur Konstitution vgl.

Sieglitz, Schatzkes, B. 54, 2073; Courtot, A. ch. [10] 14 [1930],

94). — B. Zur Bildung aus Fluoren und Chlor in Chloroform nach Hodgkinson, Matthews (Soc. 43 [1883], 170) vgl. Sie., Sch.; Jandebeur, Dissert. [München 1925], S. 36; C., Vignati, C. r. 184, 1179; C., A. ch. [10] 14 [1930], 52, 55, 95. Beim Erhitzen von 2.7-Dichlor-fluorenon mit 50%iger Jodwasserstoffsäure und rotem Phosphor auf 115—120° (Sie., Sch.).

— Tafeln oder Nadeln (aus Benzol). F: 125° (J.), 128° (C., A. ch. [10] 14, 95). — Liefert beim Kochen mit überschüssigem Kaliumdichromat in viel Eisessig 2.7-Dichlor-fluorenon (J.; vgl. Sie., Sch.; C., V.; C., A. ch. [10] 14, 95). Bei der Einw. von überschüssigem Chlor in Gegenwart von wenig Jod in siedendem Chloroform entsteht 2.4.7-Trichlor-fluoren (J.; vgl. Sie., zit. bei Krollffeffer, A. 430, 224 Anm. 2). Reagiert mit Benzaldehyd analog 2.7-Dibrom-fluoren (S. 535) (Sie., Sch.).

**9.9** - Dichlor - fluoren, Fluorenonchlorid  $C_{13}H_8Cl_2 = \frac{C_6H_4}{C_6H_4}CCl_2$  (H 627; E I 301). 102—102,5° (unkorr.) (Straus. Dützmann I am 101 102—103,5° (unkorr.)

F: 102—102,5° (unkorr.) (Straus, Dützmann, J. pr. [2] 103. 48; Pummerer, Binapfl, B. 54, 2775 Anm. 1). Die Lösung in flüssigem Schwefeldioxyd ist farblos und zeigt keine Leitfähigkeit (St., D.). — Geschwindigkeit der Umsetzung von 9.9-Dichlor-fluoren mit Wasser in Äther bei 19° und mit Methanol in Benzol bei 20—22°: St., D. Liefert beim Aufbewahren mit alkoh. Kaliumhydrosulfid-Lösung Di-fluorenyl-(9)-disulfid (Smedley, Soc. 87 [1905], 1253; vgl. Bergmann, Hervey, B. 62, 913). Bei der Einw. von Triphenylmethylnatrium in Äther in Stickstoff-Atmosphäre erhält man β.β.β-β-Triphenyl-α.α-diphenylen-äthyl (Schlenk, Mark, B. 55, 2301). Gibt in äther. Lösung beim Behandeln mit Benzophenon-dinatrium (Syst. Nr. 652) α.α-Diphenyl-β-diphenylen-äthylen und α.α-Diphenyl-β-diphenylen-äthylenoxyd (Sch., Bergmann, A. 463, 205, 210; Kliegl, B. 62, 1331; 64 [1931], 2422); beim Behandeln mit Fluorenon-dinatrium (Syst. Nr. 654) entsteht Diphenylenphenanthron (Syst. Nr. 663) (Sch., Be.).

2.4.7-Trichlor-fluoren C<sub>13</sub>H<sub>7</sub>Cl<sub>3</sub>, s. nebenstehende Formel. B. Beim Einleiten von überschüssigem Chlor in eine Lösung von Fluoren oder 2.7-Dichlor-fluoren bei Gegenwart von wenig Jod in siedendem Chloroform (Jandebeur, Dissert. [München 1925], S. 46; vgl. Sieglitz, zit. bei Krollpfeiffer, A. 430, 224 Anm. 2).

Cl · CH<sub>2</sub> · Cl

Nadeln (aus Ligroin). F: 128° (J.). Sehr leicht löslich in Benzol, leicht in Chloroform, Ligroin und Eisessig, sehr schwer in Methanol und Alkohol; löslich in heißer konzentrierter Schwefelsäure mit roter Farbe (J.). Dichte und Brechungsindices einiger Lösungen in Chinolin: K., A. 430, 220. — Liefert beim Kochen mit überschüssigem Kaliumdichromat in viel Eisessig 2.4.7-Trichlor-fluorenon (J.).

2.9.9 - Trichlor - fluoren, 2-Chlor-fluorenonchlorid C<sub>13</sub>H<sub>7</sub>Cl<sub>3</sub>, s. nebenstehende Formel. B. Beim Erhitzen von 2-Nitro-fluorenon mit Phosphorpentachlorid im Rohr auf 140° (SIEGLITZ, SCHATZKES, B. 54, 2073 Anm. 5). — Krystalle (aus Eisessig). F: 113°. — Gibt beim Kochen mit Wasser 2-Chlor-fluorenon.

2.7.9.9-Tetrachlor-fluoren, 2.7-Dichlor-fluorenonchlorid C<sub>13</sub>H<sub>6</sub>Cl<sub>4</sub>, s. nebenstehende Formel (E I 301). B. Beim Erhitzen von Fluorenon-disulfonsäure-(2.7) mit Phosphorpentachlorid im Rohr auf 180° (Courtot, Geoffroy, C. r. 178, 2262; C., A. ch. [10] 14 [1930], 39). — F: 216° (C., G., C. r. 180, 1667).

2.4.7.9.9 - Pentachlor - fluoren  $C_{13}H_5Cl_5$ , s. nebenstehende Formel. B. Aus 2.4.7-Trichlor-fluorenon oder 2.4.7-Trinitro-fluorenon beim Erhitzen mit Phosphorpentachlorid im Rohr auf 180° (Jandebeur, Dissert. [München 1925], S. 54, 55; Sieglitz, Priv.-Mitt.). — Nadeln (aus Methanol). F: 123,5° (J.; S.). Sehr

CI · CI

leicht löslich in Chloroform, Ligroin und Benzol, ziemlich leicht in Methanol und Eisessig, sehr schwer in Alkohol; löslich in heißer konzentrierter Schwefelsäure mit braungelber Farbe (J.). — Liefert beim Kochen mit 50% iger Schwefelsäure 2.4.7-Trichlor-fluorenon (J.).

2-Brom-fluoren C<sub>13</sub>H<sub>9</sub>Br, s. nebenstehende Formel (H 628; E I 301 als x-Brom-fluoren beschrieben; zur Konstitution vgl. COURTOT, VIGNATI, Bl. [4] 41, 61). — B. Zur Bildung aus Fluoren und Brom in Chloroform nach Hodgkinson, Matthews (Soc. 43 [1883], 165) vgl. C., V., C. r. 184, 608; Bl. [4] 41, 59; C., A. ch. [10] 14 [1930], 58. Beim Kochen von Fluoren-diazonium-sulfat-(2) mit Kupfer(I)-bromid in konz. Bromwasserstoffsäure (C., V.; C., A. ch. [10] 14, 55; vgl. Chanussot, Bl. [4] 41, 1625). — Krystalle (aus Alkohol). F: 111,5° (C., V.; C.). Kp<sub>135</sub>; ca. 185° (C.). — Gibt bei der Oxydation mit Natriumdichromat in siedendem Eisessig 2-Brom-fluorenon (C., V.; C., A. ch. [10] 14, 61). Beim Erwärmen mit Salpetersäure und Eisessig auf dem Wasserbad erhält man 7-Brom-2-nitro-fluoren (C., V.; C., A. ch. [10] 14, 109).

9-Brom-fluoren C<sub>13</sub>H<sub>9</sub>Br = C<sub>6</sub>H<sub>4</sub> CHBr (H 628; E I 301). B. Beim Erwärmen von 9-Oxy-fluoren mit 40% iger Bromwasserstoffsäure auf dem Wasserbad (KUHN, WASSERMANN, B. 58, 2231 Anm. 2). Zur Bildung aus 9-Oxy-fluoren und Bromwasserstoff in Eisessig vgl. INGOLD, JESSOP, Soc. 1929, 2358. — Krystelle (aus Alkohol). F: 100,5° (KUHN, WASS.), 103—104,5° (I., J.), 104° (KLIEGL, WÜNSCH, WEIGELE, B. 59, 639 Anm. 21). — Bleibt auch bei anhaltendem Kochen in Toluol unverändert (WHITMORE, THURMAN, Am. Soc. 51, 1502). Liefert bei der Umsetzung mit Natriumjodid in Aceton 9-Jod-fluoren (WANSCHEIDT, B. 59, 2095, 2098; Ж. 58, 63). Gibt bei anhaltendem Kochen mit 2 Mol Quecksilber-di-p-tolyl

#### DIBROMFLUOREN

in Toluol Difluorenyliden und p-Tolylquecksilberbromid; analog verläuft die Reaktion mit Quecksilberdiphenyl (Wh., Тн.). — Die Lösung in warmer, konzentrierter Schwefelsäure ist grün (Wanscheidt).

9-Chlor-2-brom-fluoren C<sub>13</sub>H<sub>8</sub>ClBr, s. nebenstehende Formel. Diese Konstitution kommt der H 6, 692 als 2-Brom-9-oxy-fluoren beschriebenen Verbindung zu (Courtot, Vignati, Bl. [4] 41, 62). — B. Beim Erwärmen von 2-Brom-9-oxy-fluoren (Syst. Nr. 540) mit konz. Salzsäure (C., V.). — Krystalle (aus Alkohol). F: 100—102°.

H Cl Br

2.7 - Dibrom - fluoren C<sub>13</sub>H<sub>8</sub>Br<sub>2</sub>, s. nebenstehende Formel (H 628; E I 301). B. Zur Bildung aus Fluoren und Brom in Chloroform nach Hodgkinson, Matthews (Soc. 43 [1883], 165 vgl.

Sieglitz, B. 53, 1236; Novelli, An. Asoc. quim. arg. 15, 198 Anm. 26; C. 1928 I, 1410; Courtot, Vignati, C. r. 184, 608; Bl. [4] 41, 60; C., A. ch. [10] 14 [1930], 59, 98). — F: 162° bis 163° (C., V.; C.), 164° (Sie., B. 53, 1236). Dichte und Brechungsindices einiger Lösungen in Chinolin: Krollefeiffer, A. 480, 222.

Gibt beim Kochen mit wäßrig-alkoholischer Alkalilauge (STAHRFOSS, Bl. [4] 29, 147) oder beim Kochen mit Natriumäthylat-Lösung unter Durchschütteln mit Luft (SIEGLITZ, B. 53, 2249; vgl. Bergmann, Hoffmann, Winter, B. 66 [1933], 51) 1.2-Bis-[2.7-dibrom-fluorenyliden]-äthan. Liefert bei kurzem Kochen mit Benzaldehyd in Natriumäthylat-Lösung 2.7-Dibrom-9-benzyliden-fluoren und wenig 1.2-Bis-[2.7-dibrom-fluorenyliden]-äthan; reagiert analog mit anderen aromatischen Aldehyden, jedoch nicht mit aliphatischen Aldehyden und mit Ketonen (Sie., B. 53, 1234, 1237). Bei der Kondensation mit p-Nitroso-methylanilin in siedender Natriumäthylat-Lösung entsteht 2.7-Dibrom-fluorenon-[4-methylamino-anil] (Novelli, An. Asoc. quím. arg. 15, 203). Über eine bei der Einw. von 4-Amino-phenol und alkoh. Kalilauge entstehende rote Verbindung vgl. St., Bl. [4] 29, 152. — Gibt mit 4-Chlor-1.3-dinitro-benzol und alkoh. Kalilauge eine tiefblaue Färbung, die beim Aufbewahren oder Ansäuern verschwindet (St.).

2-Jod-fluoren C<sub>18</sub>H<sub>8</sub>I, s. nebenstehende Formel. B. Beim Erhitzen von Fluoren-diazoniumjodid-(2) mit Kupfer(I)-jodid und Jodwasserstoffsäure auf dem Wasserbad (Courtot, Vignati, C. r. 184, 607; Courtot, A. ch. [10] 14 [1930], 66; Chanussot, Bl. [4] 41, 1625; vgl. a. Korczynski, Bl. [4] 48, 346). Beim Behandeln von Fluoren-diazoniumchlorid-(2) mit Kaliumjodid in Wasser (Ch., An. Asoc. quim. arg. 15, 7; C. 1927 II, 1348). Man erwärmt 2-Hydrazino-fluoren-hydrochlorid erst mit Kaliumjodid-Lösung auf 60°, dann mit Jod-Kaliumjodid-Lösung auf 90° (Korczynski, Karlowska, Kierzek, Bl. [4] 41, 69). — Schuppen (aus Alkohol). F: 126—127° (Ch., An. Asoc. quim. arg. 15, 7). Löslich in Chloroform und Tetrachlorkohlenstoff, schwer löslich in Methanol. Alkohol und Eisessig (Ch., An. Asoc. quim. arg. 15, 7). — Gibt bei der Oxydation mit Dichromat in siedendem Eisessig 2-Jod-fluorenon (Ch., An. Asoc. quim. arg. 15, 8; Ko., Ka., Kie.). Liefert beim Behandeln mit Salpetersäure (D: 1,4) in siedendem Eisessig 7-Jod-2-nitro-fluoren (Ch., An. Asoc. quim. arg. 15, 9).

9-Jod-fluoren  $C_{13}H_9I = C_9H_4$  CHI. B. Beim Behandeln von 9-Brom-fluoren mit Natriumjodid in Aceton (Wanscheidt, B. 59, 2095, 2098;  $\mathcal{H}$ . 58, 63, 72). Bei der Einw. von Kaliumhypojodit-Lösung auf eine Lösung von Oxy-fluorenyliden-essigsäure-methylester in verd. Natronlauge (Kuhn, Levy, B. 61, 2244). — Gebliche Nadeln (aus Petroläther). Sehr leicht löslich in allen organischen Lösungsmitteln; löslich in warmer konzentrierter Schwefelsäure mit intensiv blauer Farbe (W.). — Zerfällt langsam beim Aufbewahren, schnell bei ca. 100° oder beim Erhitzen in Lösungsmitteln in Difluorenyl-(9.9') und Jod (W.).

2-Nitro-fluoren C<sub>13</sub>H<sub>9</sub>O<sub>2</sub>N, s. nebenstehende Formel (H 628; E I 302). Zur Darstellung aus Fluoren und Salpetersäure in Eisessig nach Diels (B. 34 [1901], 1759) vgl. Kuhn, Org. Synth. 13 [1933], 74; Bennett, Noyes, R. 48, 896. — F: 154—154,5° (korr.) (Moore, Huntress, Am. Soc. 49, 2621), 157,5—158° (korr.) (Loevenich, Loeser, J. pr. [2] 116, 326). — Liefert bei der Reduktion mit Zinkstaub in siedender wäßrig-alkoholischer Calciumchlorid-Lösung je nach den Mengenverhältnissen 2-Amino-fluoren (H 12, 1331) (Diels, B. 34 [1901], 1759) oder 2.2'-Azoxy-fluoren (Cielak, Eastman, Sentor, Am. Soc. 49, 2318, 2321). Wird durch siedende wäßrig-alkoholische Ammoniumsulfid-Lösung nicht verändert (C., Ea., S.). Gibt beim Behandeln mit Brom in siedendem Eisessig 9-Brom-2-nitro-fluoren (Korczynski, Karlowska, Kierzek, Bl. [4] 41, 70); beim Behandeln mit Brom in Chloroform bei 0—3° entsteht außerdem 7-Brom-2-nitro-fluoren (Courtot, Vignati, C. r. 184, 609). Bei der Einw.

von rauchender Salpetersäure in Eisessig erhält man 2.7-Dinitro-fluoren und 2.5-Dinitro-fluoren (Morgan, Thomason, Soc. 1926, 2693; Cou., A. ch. [10] 14 [1930], 84). Reagiert mit Benzaldehyd analog 2.7-Dibrom-fluoren (S. 535) (Sieglitz, Schatzkes, B. 54, 2073, 2078; Loev., Loeser).

H 628, Z. 22 v. u. statt "B. 17, 707" lies "B. 17, 107".

9-Nitro-fluoren  $C_{13}H_9O_2N = \frac{C_6H_4}{C_6H_4}CH\cdot NO_2$  (H 628). Die von Wislicenus, Wald-Müller (B. 41 [1908], 3338) als solches beschriebene Verbindung ist von Nenitzescu, Isacescu (B. 63 [1930], 2489) als 9.9'-Dinitro-difluorenyl-(9.9') (S. 691) erkannt worden.

aci-9-Nitro-fluoren, 9-Isonitro-fluoren  $C_{13}H_9O_2N = \frac{C_6H_4}{C_6H_4}C:NO_2H$  (H 628; E I 302). Das Kaliumsalz wird durch Jod in Kaliumjodid-Lösung oder durch elektrolytische Oxydation an einer Platin-Anode in 9.9'-Dinitro-difluorenyl-(9.9') übergeführt (Nentzescu, B. 62, 2670).

7 - Chlor - 2 - nitro - fluoren C<sub>13</sub>H<sub>8</sub>O<sub>2</sub>NCl, s. nebenstehende Formel. B. Beim Behandeln von 2-Chlor-fluoren mit Salpetersäure in Eisessig bei 70—80° (COURTOT, VIGNATI, C. r. 184, 1180; C., A. ch. [10] 14 [1930], 104). — Gelbliche Nadeln (aus Benzol). F: 237° (Maquennescher Block). — Gibt bei der Oxydation mit Natriumdichromat in Eisessig 7-Chlor-2-nitro-fluorenon.

7-Brom-2-nitro-fluoren C<sub>13</sub>H<sub>8</sub>O<sub>2</sub>NBr, s. nebenstehende Formel. B. Beim Erwärmen von 2-Brom-fluoren mit Salpetersäure in Eisessig auf dem Wasserbad (Courtot, Vignati, C. r. 184, 608; Bl. [4] 41, 63; C., A. ch. [10] 14 [1930], 109). Aus 2-Nitro-fluoren beim Behandeln mit Brom in Chloroform bei 0—3°, neben 9-Brom-2-nitro-fluoren (C., V., C. r. 184, 609). — Gelbliche Nadeln (aus Benzol). F: 23°. — Liefert bei der Oxydation mit Natriumdichromat in siedendem Eisessig 7-Brom-2-nitro-fluorenon (C., V.; C., A. ch. [10] 14, 111).

9-Brom-2-nitro-fluoren C<sub>13</sub>H<sub>8</sub>O<sub>2</sub>NBr, s. nebenstehende Formel.

B. Aus 2-Nitro-fluoren beim Kochen mit Brom in Eisessig (Korczynski, Karlowska, Kierzek, Bl. [4] 41, 70) oder (neben 7-Brom-2-nitro-fluoren) beim Behandeln mit Brom in Chloroform bei 0—3° (Courtot, Vignati, C. r. 184, 609). — Gelbliche Nadeln (aus Alkohol). F: 142° (C., V.), 143° (Ko., Ka., Kie.). — Liefert bei der Oxydation mit Natriumdichromat in siedendem Eisessig 2-Nitro-fluorenon (Ko., Ka., Kie.). Gibt beim Kochen mit Zinkstaub in Eisessig + konz. Salzsäure 2-Amino-fluoren (Ko., Ka., Kie.). Beim Kochen mit Kupferpulver in Nitro-benzol entsteht 2.2′-Dinitro-difluorenyl-(9.9′) (Ko., Ka., Kie.).

7-Jod-2-nitro-fluoren C<sub>13</sub>H<sub>8</sub>O<sub>2</sub>NI, s. nebenstehende Formel.

B. Bei tropfenweiser Zugabe von Salpetersäure (D: 1,4) zu einer
Lösung von 2-Jod-fluoren in siedendem Eisessig (Chanussot,

An. Asoc. quim. arg. 15, 9; C. 1927 II, 1348). — Gelbe Nadeln (aus Alkohol). F: 235°. Sehr schwer löslich in den gebräuchlichen Lösungsmitteln.

2.5-Dinitro-fluoren C<sub>13</sub>H<sub>8</sub>O<sub>4</sub>N<sub>2</sub>, s. nebenstehende Formel. B. Neben überwiegenden Mengen 2.7-Dinitro-fluoren beim Eintragen von Fluoren oder 2-Nitro-fluoren in ein Gemisch aus gleichen Raumteilen rauchender Salpetersäure und Eisessig bei Zimmertemperatur; man trennt die beiden Isomeren durch fraktionierte Krystallisation aus Eisessig (Morgan, Thomason, Soc. 1926, 2693; Courtot, A. ch. [10] 14 [1930], 83). — Gelbliche Nadeln (aus Eisessig). F: 207° (M., Th.; C.). — Liefert beim Kochen mit Chromtrioxyd in Eisessig 2.5-Dinitro-fluorenon (M., Th.; C., A. ch. [10] 14, 89).

2.7-Dinitro-fluoren C<sub>13</sub>H<sub>8</sub>O<sub>4</sub>N<sub>2</sub>, s. nebenstehende Formel.
Die H 629 als solches beschriebene Verbindung ist wahrscheinlich ein Gemisch aus 2.7-Dinitro-fluoren und 2.5-Dinitro-fluoren gewesen (vgl. Morgan, Thomason, Soc. 1926, 2692; Courtot, A. ch. [10] 14 [1930], 80, 83).

— B. 2.7-Dinitro-fluoren entsteht neben geringen Mengen 2.5-Dinitro-fluoren beim Eintragen von 2-Nitro-fluoren in ein Gemisch aus gleichen Raumteilen rauchender Salpetersäure und Eisessig (M., Th., Soc. 1926, 2693; C., A. ch. [10] 14, 84).

— Fast farblose Krystalle (aus Nitrobenzol). F: 334° (C.). Sehr schwer löslich in fast allen gebräuchlichen Lösungsmitteln (C.; M., Th.).

**2.9-Dinitro-fluoren**  $C_{13}H_8O_4N_2$ , s. nebenstehende Formel. Die von Wislicenus, Weitemeuer (A. **436**, 4) als solches beschriebene Verbindung ist als 2.9.2'.9'-Tetranitro-difluorenyl-(9.9') (S. 691) aufzufassen; zur Konstitution des Ausgangsmaterials vgl. Nentzescu, Isaoescu, B. **63** [1930], 2489.

- 3. **Perinaphthinden**  $C_{13}H_{10}$ , s. nebenstehende Formel. Für die von Perinaphthinden abgeleiteten Namen wird in diesem Handbuch die in der Formel angegebene Stellungsbezeichnung gebraucht.
- 4. Sequojen C<sub>13</sub>H<sub>10</sub>. Wurde nicht rein erhalten (LUNGE, STEINKAULER, B. 14 [1881], 2203). V. Im äther. Öl der Nadeln von Sequoja gigantea Torr. (L., St., B. 13, 1656; 14, 2202). Geruchlose Blättchen (aus Essigsäure). F: 105°. Kp: 290—300°. Sehr leicht löslich in Alkohol, Äther. Benzol und Chloroform, weniger in Ligroin, löslich in warmem Eisessig; unlöslich in Alkalilaugen und in kalter konzentrierter Schwefelsäure. — Liefert bei der Oxydation mit Chromtrioxyd in Eisessig auf dem Wasserbad sehr geringe Mengen einer in gelben Prismen

krystallisierenden, bei ca. 170° sich zersetzenden Verbindung und andere Produkte. Mit Pikrinsäure entsteht eine in roten Nadeln krystallisierende Verbindung. PALLUTZ

# 3. Kohlenwasserstoffe $\mathrm{C_{14}H_{12}}$ .

- 1. a. $\beta$ -Diphenyl-āthylen, Stilben und Isostilben  $C_{14}H_{12}=C_eH_5\cdot CH\cdot CH\cdot C_6H_5$ .
- a) trans-Form, Stilben  $\frac{\text{H} \cdot \text{C} \cdot \text{C}_6\text{H}_5}{\text{C}_6\text{H}_5 \cdot \text{C} \cdot \text{H}}$  (H 630; E I 302). Die von Fichter, Hirsch (B. 34, 2189) als α.θ-Diphenyl-α.γ.ε.η-octatetraen beschriebene Verbindung vom Schmelzpunkt 1240 (H 5, 709) wurde von Kuhn, Winterstein (Helv. 11, 96) als Stilben erkannt.

#### Bildung und Darstellung.

B. Beim Kochen von aci-Phenylnitromethan-natrium mit Jod in Alkalilauge (NENITzescu, B. 62, 2672). Aus hochschmelzendem Stilbendibromid erhält man Stilben beim Behandeln mit Kaliumjodid in 90%igem Alkohol oder Eisessig (van Duin, R. 45, 347, 351) sowie bei längerem Kochen mit Quecksilber-di-p-tolyl in Toluol (Whitmore, Thurman, Am. Soc. 51, 1502). Beim Kochen von 2.2.2-Trichlor-1.1-diphenyl-äthan mit Natriumpulver in Benzol (Harris, Frankforter, Am. Soc. 48, 3145, 3149). Stilben entsteht in geringer Menge beim Hydrieren von Tolan bei Gegenwart von Kobalt-Tierkohle in etwas Wasser enthaltendem Methanol (Ott, Schröter, B. 60, 641). Beim Erhitzen von Benzylkanthogensäure-methylester auf 180—350°, neben anderen Produkten (Nametkin, Kurssanow, J. pr. [2] 112, 167; ж. 57, 394). Bei kurzem Erhitzen von Phenylbenzylcarbinol mit Eisessig und konz. Salzsäure (Buck, Jenkins, Am. Soc. 51, 2166). Durch Behandlung von β.β. Diphenyl-athylalkohol mit Phosphorpentoxyd in Benzol und nachfolgende Destillation, zuletzt unter vermindertem Druck (RAMART, AMAGAT, C. r. 179, 900; A. ch. [10] 8, 313).

Aus Benzaldehyd entsteht Stilben in geringer Menge neben anderen Produkten beim Erhitzen mit amalgamiertem Zink und wenig Salzsäure (STEINKOPF, WOLFRAM, A. 430, 159), bei sehr langem Belichten eines Gemisches mit Acenaphthen im geschlossenen Glasrohr (DE FAZI, R. A. L. [6] 9, 1006) sowie bei der Elektrolyse eines Gemisches mit Triäthylamin und Äthyljodid an einer Kupferdrahtnetz-Kathode (NELSON, COLLINS, Am. Soc. 46, 2263). Zur Bildung von Stilben aus Benzaldehyd und Benzylmagnesiumchlorid (H 5, 631) vgl. Banús, Medrano, An. Soc. españ. 21, 450; C. 1924 I, 908; Adkins, Zartman, Org. Synth. 17 [1937], 90. Stilben wird ferner erhalten beim Erhitzen von  $\beta.\beta$ -Diphenyl-diazoathan mit verd. Schwefelsäure (Hellerman, Cohn, Hoen, Am.~Soc.~50, 1727). Neben überwiegenden Mengen α-Phenyl-zimtsäure bei der Destillation von Phenylbenzylglykolsäure unter gewöhnlichem Druck (Malkin, Robinson, Soc. 127, 376). Neben anderen Produkten beim Erhitzen von Benzylidenanilin mit Schwefelkohlenstoff unter Druck auf 170° (BIGELOW, Am. Soc. 47, 196) und beim Erhitzen von Thiobenzanilid auf ca. 310° (CHAPMAN, Soc. 1928, 1897). Entsteht in guter Ausbeute aus β.β-Diphenyl-äthylamin-hydrochlorid beim Erhitzen mit Natriumnitrit auf 160—195° (Hellerman, Cohn, Hoen, Am. Soc. 50, 1726) oder bei der Einw. von Natriumnitrit in verd. Essigsäure (Lévy, Gallais, Bl. [4] 43, 865). Bei der Destillation von 3.4.5-Triphenyl-isoxazol mit Zinkstaub (Meisenheimer, Weißezahn, B. 54, 3199).

Uber Bildung von Stilben aus Dibenzyl im Organismus des Hundes vgl. Knoop, Gehrke,

Reines Stilben erhält man durch Addition von Lithium an Isostilben und Behandlung des Reaktionsprodukts mit Quecksilber (Schlenk, Bergmann, A. 463, 113, 116).

#### Physikalische Eigenschaften.

Härte der Krystalle: Reis, Zimmermann, Ph. Ch. 102, 328. Röntgenographische Untersuchung: Hengstenberg, Mark, Z. Kr. 70, 294. F: 124—125° (kort.) (van Duin, R. 45, 351), 125° (Schlenk, Bergmann, A. 463, 116; Ley, Kirchner, Z. anorg. Ch. 173, 400). Läßt sich um 19° unterkühlen (L., K.).  $Kp_{744}$ : 305—307,5° (McVicker, Marsh, Stewart, Soc. 127, 1000). D: 1,14 (Skraup, Eisemann, A. 449, 9);  $D_{i}^{o}$ : 1,164 (Ziegler, Ditzel, A. 473, 201). Verbrennungswärme bei konstantem Volumen: 1759,04 kcal/Mol (Berner, Arch. Math. Naturvid. 39, Nr. 6, S. 129, 130; C. 1926 II, 2537), 1761,6 kcal/Mol (Roth. Müller in Landolt-Börnst. E I, 867). Ultraviolett-Absorptionsspektrum der Lösung in Chloroform: v.Euler, Hellström, Svensk kem. Tidskr. 41, 13; C. 1929 I, 1973; Ley, Rinke, B. 56, 773; in Hexan: Castille, Bl. Soc. chim. Belg. 36, 300; C. 1927 I, 1126; II, 1004; in Alkohol: Ley, R.: Stobbe, Färber, B. 57, 1840; Moir, Soc. 125, 1551; vgl. a. Ramart-Lucas. C. r. 186, 1303; 189, 802. Tesla-Luminescenzspektrum von Stilben-Dampf: McVicker, Marsh, Stewart, Soc. 127, 1000. Röntgen-Luminescenzspektrum: de Beaujeu, J. Phys. Rad. [6] 4, 263; C. 1924 I, 134. Luminescenz bei Erregung mit Kathodenstrahlen: Marsh, Soc. 1927, 126. Stilben zeigt keinen piczoelektrischen Effekt (Neuhaus, Z. Kr. 90, 427).

Bei 19° lösen sich in 1000 cm³ Benzol 102,12 g, in 1000 cm³ Chloroform 153,2 g Stilben (Kuhn, Winterstein, Helv. 11, 101). Stilben ist schwer löslich in flüssigem Schwefeldioxyd (mit gelber Farbe) und in flüssigem Ammoniak (DE Carli, G. 57, 351). Zustandsdiagramm des Systems Naphthalin-β-Naphthol-Azobenzol-Stilben: Wahl, III. Nordiska Kemistmötet 1926, S. 181; C. 1929 I, 1413. Kontaktwinkel mit Wasser: Nietz, J. phys. Chem. 32, 261. Dichten und Brechungsindices von Lösungen in Chinolin bei 19,9° und 21,7°: v. Auwers. Kraul. A. 443, 190.

#### Chemisches und biochemisches Verhalten.

Läßt sich über platinierter Kohle bei 300° fast quantitativ zu Phenanthren dehydrieren (Zelinsky, Titz, B. 62, 2870). Geschwindigkeit der Oxydation mit Permanganat in Aceton: Kuhn, Winterstein, Helv. 11, 115. Gibt beim Behandeln mit Acetpersäure und Verseisen des Reaktionsprodukts mit alkoh. Kalilauge Hydrobenzoin und Isohydrobenzoin (Böeseken. Elsen, R. 47, 695). Wird durch überschüssige Benzopersäure in wenig Chloroform zu höherschmelzendem α.α'-Diphenyl-äthylenoxyd oxydiert (Tiffeneau, Lévy, Bl. [4] 39, 781). Geschwindigkeit der Oxydation mit Benzopersäure in Chloroform oder Tetrachlorkohlenstoff bei 0°, 15° und 30°: Böe., Blumberger, R. 44, 93, 94. — Bei der Hydrierung in Gegenwart von Platinoxyd in Alkohol bei Zimmertemperatur entsteht Dibenzyl (Back, Jenkins, Am. Soc. 51, 2166). Geschwindigkeit der Hydrierung bei Gegenwart von Platinschwarz oder Palladiumschwarz (aus den Oxyden) in Alkohol unter 2—3 Atm. Druck bei 25°: Kern, Shriner, Adams, Am. Soc. 47, 1149; bei Gegenwart von kolloidalem Palladium bei 10°: Salkind, Iljin, Ж. 58, 997; C. 1927 I, 2073. Nach Lebedew, Kobljanskij, Jakubtschik (Soc. 127, 422; Ж. 56, 277) wird Stilben bei Gegenwart von Platinschwarz in Alkohol bei 19° sehr langsam hydriert.

Bei der Einw. von Chlor in Methanol bei 40-60° erhält man 2-Chlor-1-methoxy-1.2-diphenyl-äthan; daneben entsteht ein Gemisch, das wahrscheinlich aus einem stereoisomeren 2-Chlor-1-methoxy-1.2-diphenyl-athan und Stilbendichlorid besteht (JACKSON, Am. Soc. 48, 2173). Stilben liefert mit Stickstofftrichlorid in Tetrachlorkohlenstoff bei —14° nicht näher charakterisiertes Stilbendichlorid und 2-Chlor-1-amino-1.2-diphenyl-äthan (Coleman. CAMPBELL, Am. Soc. 50, 2756). — Geschwindigkeit der Addition von Brom in Schwefelkohlenstoff im Dunkeln: REICH, VAN WIJCK, WAELLE, Helv. 4, 248. Kinetik der photochemischen Bromierung in Tetrachlorkohlenstoff und in Schwefelkohlenstoff bei verschiedenen Temperaturen: Ghosh, Purkayastha, J. indian chem. Soc. 2, 261; 4, 413, 555; C. 1926 I, 2776; 1928 I, 650, 1938; Berthoud, Béraneck, Helv. 10, 289; J. Chim. phys. 24, 220; Berth., Ph. Ch. 120, 178; vgl. Cathala, J. Chim. phys. 25, 207. Über die Anlagerung von Brom an Stilben in Tetrachlorkohlenstoff vgl. a. Kaufmann, Barich, A. 1900, 260. Stilben sitt bei der Firm von Brown bei 40, 500 2 Brown Ar. 1929, 266. Stilben gibt bei der Einw. von Bromdampf in Methanol bei 40-50° 2-Brom-1-methoxy-1.2-diphenyl-athan und wenig hochschmelzendes Stilbendibromid (JACKSON. Am. Soc. 48, 2170). Liefert bei der Einw. von Brom in Pyridin unter Kühlung [β-Bromα.β-diphenyl-athyl]-pyridiniumbromid (BARNETT, COOK, PECK, Soc. 125, 1038). — In Chloroform-Lösung findet bei 160 keine Addition von Jod an Stilben statt (BÖESEKEN, BLUM-BERGER, R. 44, 98). — Bei der Einw. von Rhodan in Benzol im Sonnenlicht entsteht Stilbendirhodanid (SÖDERBÄCK, A. 448, 154). In Eisessig-Tetrachlorkohlenstoff-Lösung findet eine Anlagerung von Rhodan nur bei Belichtung statt (KAUFMANN, B. 59, 1391). Über die Anlagerung von Rhodan an Stilben vgl. a. K., Barich, Ar. 1929, 265.

Beim Einleiten von Stickoxyden in eine äther. Stilben-Lösung entsteht in der Hauptsache Stilbenpseudonitrosit (S. 539) neben wenig hochschmelzendem 1.2-Dinitro-1.2-diphenyläthan (Wieland, Blümich, A. 424, 80). Stilben reagiert rasch mit Stickstoffpentoxyd unter Bildung brauner klebriger Produkte (Haines, Adkins, Am. Soc. 47, 1422). Liefert mit Lithium in Äther 1.2-Dilithium-1.2-diphenyläthan (Syst. Nr. 2357) und reagiert analog mit Kalium (Schlenk, Bergmann, A. 463, 114). Halochromie-Erscheinungen mit Zinn(IV)-chlorid: Skraup, Freundlich, A. 431, 252; Pfeiffer, Schmitz, Inoue, J. pr. [2] 121, 72. Beim Behandeln von Stilben mit Lithiumbutyl in Äther und Einleiten von Kohlendioxyd in das Reaktionsgemisch entsteht 1.2-Diphenyl-hexan-carbonsäure-(1) (Ziecler, Mitarb. A. 473, 35). Bei der Einw. von α-Phenyl-isopropylkalium und Kohlendioxyd in Äther erhält

539

man 2 isomere  $\gamma$ -Methyl- $\alpha$ . $\beta$ . $\gamma$ -triphenyl-valeriansäuren (F: 215—216° und F: 245—246°) (Z., Bähr, B. 61, 260).

Verhalten im Organismus des Hundes: Knoop, Gehrke, H. 146, 70.

#### Additionelle Verbindungen und Umwandlungsprodukte ungewisser Konstitution aus Stilben.

Verbindung mit Zinn(IV)-chlorid. Gelb. Die Farbänderungen bei Verdünnung der Lösung in Benzol gehorchen nicht dem Beerschen Gesetz (Skraup, Freundlich, A. 431, 252). Absorptionsspektrum der Lösung in Chloroform: v. Euler, Hellström, Svensk kem. Tidskr. 41, 14; C. 1929 I, 1973. —  $C_{14}H_{12}+2\,\mathrm{SbCl_3}$ . B. Aus Stilben oder Isostilben und Antimontrichlorid in Chloroform (v. Euler, Willstraedt, Ark. Kemi [B] 10, Nr. 9, S. 3; C. 1929 II, 2052). Krystalle. F: 106—1070. —  $C_{14}H_{12}+2\,\mathrm{FeCl_3}$ . B. Aus Stilben oder Isostilben und Eisenchlorid in Chloroform (v. Eu., W.). Gelblich, mikrokrystallinisch. Schmilzt nicht bis 3260. Löslich in Alkohol, sehr schwer löslich in Chloroform.

Verbindung  $(C_{14}H_{12})_x$  (vgl. E I 303, Z. 35 von oben). Ebullioskopische Mol.-Gew.-Bestimmung in Benzol: Scholl, Schwarzer, B. 55, 327. — B. Bei der Einw. von Aluminium-chlorid auf Stilben in siedendem Schwefelkohlenstoff (Sch., Sch.). — Gelbe, amorphe Flocken (aus Benzol + Petroläther). Sintert bei etwa 165° und verkohlt bei höherer Temperatur. Fast unlöslich in Alkohol, Äther, Ligroin, Aceton und Eisessig, löslich in Benzol, leicht löslich in Chloroform und Schwefelkohlenstoff. Sehr schwer löslich in konz. Schwefelsäure mit gelbbrauner Farbe. — Wird durch Salpetersäure (D: 1,15) bei 150° zu einer gelben amorphen Säure  $(C_8H_5O_2)_x$  oxydiert.

Stilbennitrosit C<sub>14</sub>H<sub>12</sub>O<sub>3</sub>N<sub>2</sub> (H 632). Wird von Wieland, Blümich, A. 424, 75 als

Gemisch von Stilbenpseudonitrosit und 1.2-Dinitro-1.2-diphenyl-äthan erkannt.

Stilben pseudonitrosit C<sub>28</sub>H<sub>24</sub>O<sub>6</sub>N<sub>4</sub> = C<sub>6</sub>H<sub>5</sub>· CH(NO<sub>2</sub>)· CH(C<sub>6</sub>H<sub>5</sub>)· N<sub>2</sub>O<sub>2</sub>· CH(C<sub>6</sub>H<sub>5</sub>)· CH(NO<sub>3</sub>)· C<sub>6</sub>H<sub>5</sub>. B. Beim Einleiten von Stickoxyden, die aus Arsentrioxyd und Salpetersäure (D: 1,23) entwickelt wurden, in eine äther. Lösung von Stilben (Wieland, Blümich, A. 424, 80). — Krystalle (aus Aceton). F: 132°. Sehr schwer löslich in allen Lösungsmitteln. — Beim Erwärmen von Stilbenpseudonitrosit mit methylalkoholischer Kalilauge wird niedrigschmelzendes α-Nitro-stilben gebildet. Gibt beim Kochen in Alkohol Stilben und Stickstofftrioxyd. Liefert beim Kochen in Eisessig unter Durchleiten von Kohlendioxyd Stilben, beide Formen des α-α'-Dinitro-dibenzyls, Phenylnitromethan und Benzaldehyd; daneben wurde mitunter [β-Nitro-α-β-diphenyl-āthyl]-acetat erhalten.

b) cis-Form, Isostilben C<sub>14</sub>H<sub>12</sub> =  $\frac{\text{H} \cdot \text{C} \cdot \text{C}_6\text{H}_5}{\text{H} \cdot \text{C} \cdot \text{C}_6\text{H}_5}$  (H 633; E I 303). B. Zur Bildung bei der Hydrierung von Tolan in Gegenwart von Palladium nach Kelber, Schwarz (B. 45. 1951) vgl. Bourguel, C. r. 180, 1754; Bl. [4] 45, 1082; Schlenk, Bergmann, A. 463, 116. Aus Tolan erhält man Isostilben als Hauptprodukt bei der Einw. der berechneten Menge Wasserstoff bei Gegenwart verschiedener Nickel-Tierkohle- und Kobalt-Tierkohle-Katalysstoren in Methanol oder Äther (Ott. Schröfer B. 60, 641). Neben Stilben und anderen

Wasserstoff bei Gegenwart verschiedener Nickel-Tierkohle- und Kobalt-Tierkohle-Katalysatoren in Methanol oder Äther (Ott, Schröter, B. 60, 641). Neben Stilben und anderen Produkten bei sehr langem Belichten eines Gemisches von Benzaldehyd und Acenaphthen in geschlossenen Glasrohr (De Fazi, R. A. L. [6] 9, 1006). — Kp<sub>13</sub>: 145° (Schl., Be.); Kp<sub>12</sub>: 140° (Böeseer, Blumberger, R. 44, 91). Verbrennungswärme bei konstantem Volumen: 1769,18 kcal/Mol (Berner, Arch. Math. Naturvid. B. 39, Nr. 6, S. 129, 130; C. 1926 II, 2537). Geht in Gegenwart von Natrium schnell in Stilben über (Schlenk, Bergmann, A.

Geht in Gegenwart von Natrium schnell in Stilben über (SCHLENK, BERGMANN, A. 463, 117). Liefert mit Lithium in Äther eine tiefrotbraune Lösung, die mit Quecksilber reinstes Stilben und mit Kohlendioxyd rac. α.α'-Diphenyl-bernsteinsäure gibt (SCHL..., BE.). Gibt mit Antimontrichlorid und mit Eisenchlorid in Chloroform die entsprechenden Additionsverbindungen des Stilbens (s. oben) (v. Euler, Willstaedt, Ark. Kemi [B] 10, Nr. 9. S. 3; C. 1929 II, 2052). Beim Behandeln mit Acetpersäure und Verseifen des Reaktions, produkts mit alkoh. Kalilauge entstehen Hydrobenzoin und Isohydrobenzoin (BÖESEKEN, Elsen, R. 47, 696). Geschwindigkeit der Oxydation mit Benzopersäure in Chloroform oder Tetrachlorkohlenstoff bei 0° und 15°: BÖE., Blumberger, R. 44, 94.

### 

4-Chlor-stilben  $C_{14}H_{11}Cl=C_{6}H_{5}\cdot CH:CH\cdot C_{6}H_{4}Cl$  (H 633). B. Aus 4-Chlor-zimtsäurephenylester bei 260—270° (Skraup, Beng, B. 60, 946) oder aus Zimtsäure-[4-chlor-phenylester] bei 320—330° (Sk., B.; Anschütz, B. 60, 1322).

**4.4'-Dichlor-stilben**  $C_{14}H_{10}Cl_2=C_6H_4Cl\cdot CH\cdot CH\cdot C_6H_4Cl$  (E I 304). B. Durch Erhitzen von Fumarsäure-bis-[4-chlor-phenylester] (Anschütz, B. 60, 1321). — F: 170°.

**4-Brom-stilben**  $C_{14}H_{11}Br = C_6H_5 \cdot CH \cdot CH \cdot C_6H_4Br$ . B. Beim Erhitzen von Zimtsäure-[4-brom-phenylester] (Anschütz, B. 60, 1322). — F: 135°.

**4.4'-Dibrom-stilben**  $C_{14}H_{10}Br_2=C_6H_4Br\cdot CH:CH\cdot C_6H_4Br$  (H 635). B. Aus Fumar-säure-bis-[4-brom-phenylester] beim Erhitzen auf 240—245° (Anschütz, B. 60, 1322). F: 210-2110.

 $\alpha.\beta$ -Dibrom -  $\alpha.\beta$ -diphenyl - äthylen,  $\alpha.\alpha'$ -Dibrom - stilben  $C_{14}H_{16}Br_2=C_8H_5\cdot CBr$ :

CBr·C<sub>6</sub>H<sub>5</sub>. a) Hochschmelzende Form, a Tolandibromid (H 635; E I 305). F: 2110 (korr.)

(LIPP, B. 56, 571).

b) Niedrigschmelzende Form, β-Tolandibromid (H 636; E I 305). Beim Behandeln mit Rhodan in Benzol unter Belichtung entstehen  $\alpha$ - und  $\beta$ -Tolandirhodanid (Söderваск, А. 443, 150, 161).

4-Jod-stilben  $C_{14}H_{11}I = C_6H_5 \cdot CH \cdot CH \cdot C_6H_4I$ . B. Beim Erhitzen von diazotiertem 4-Amino-stilben mit Kaliumjodid in verd. Salzsäure auf dem Wasserbad (Pfeiffer, Schmitz, INOUE, J. pr. [2] 121, 76). — Blättchen (aus Eisessig). F: 152°. Leicht löslich in Benzol, Chloroform, Tetrachlorkohlenstoff, Ligroin; löslich in Methanol und Alkohol. — Wird durch Zinn(IV)-chlorid in Chloroform blaßgrün gefärbt.

4-Nitro-stilben  $C_{14}H_{11}O_2N = C_6H_5\cdot CH: CH\cdot C_6H_4\cdot NO_2$ .

a) Hochschmelzende Form (E I 305). B. Bei der Einw. von Sonnenlicht auf niedrigschmelzendes 4-Nitro-stilben in Benzol bei Gegenwart von Jod (Stoermer, Oehlert, B. .O∖

55, 1239). Beim Kochen von 4-Nitro-stilbenoxyd C<sub>6</sub>H<sub>5</sub>·CH—CH·C<sub>6</sub>H<sub>4</sub>·NO<sub>2</sub> mit Kalium-jodid in Eisessig (Bergmann, Hervey, B. 62, 905). — Krystalle (aus Isoamylalkohol). F: 157° (unkorr.) (B., H.). Absorptionsspektrum: Moir, Soc. 125, 1551. — Geht bei 3-tägiger Bestrahlung der Lösung in Chloroform mit ultraviolettem Licht in niedrigschmelzendes 4-Nitro-stilben über (St., OE.). Liefert bei der Reduktion mit Eisen(II)-sulfat in wäßrig-alkoholischem Ammoniak stabiles 4-Amino-stilben (F: 151°) (St., OE.).

b) Niedrigschmelzende Form. B. In geringer Ausbeute bei 3-tägiger Bestrahlung von hochschmelzendem 4-Nitro-stilben in Chloroform mit ultraviolettem Licht (Stoermer. OEHLERT, B. 55, 1239). — Bräunlichgelbe Krystalle (aus Alkohol). F: 65°. Sehr leicht löslich in Benzol, Chloroform, Alkohol, Ather und Eisessig. — Geht in Benzol in Gegenwart von Jod am Sonnenlicht sofort in hochschmelzendes 4-Nitro-stilben über und liefert bei der Reduktion mit Eisen(II)-sulfat in alkoholisch-wäßrigem Ammoniak labiles nicht krystallisierendes 4-Amino-stilben.

α-Nitro-α.β-diphenyl-äthylen, α-Nitro-stilben  $C_{14}H_{11}O_2N = C_6H_5 \cdot CH : C(NO_2) \cdot C_6H_5$ . Niedrigschmelzende Form (H 636; E I 305). B. Aus Stilbenpseudonitrosit Erwärmen mit methylalkoholischer Kalilauge (WIELAND, BLÜMICH, A. 424, 83). — Gelbe Nadeln (aus Alkohol). F: 75° (W., BL.). — Gibt bei der Hydrierung bei Gegenwart von Platingshwarz in Xthen Describengein wir (Kom von Describengein von Alle Gegenwart von Platingshwarz in Xthen Describengein von Reine Gegenwart von Platinschwarz in Äther Desoxybenzoin-oxim (Kohler, Drake, Am. Soc. 45, 1286). a-Nitrostilben liefert beim Kochen mit Phenylnitromethan in sehr verd. Natriummethylat-Lösung 3.4.5-Triphenyl-Δ²-isoxazolinoxyd und 3.4.5-Triphenyl-isoxazol (K., Barrett, Am. Soc. 46, 2109); beim Kochen mit [4-Brom-phenyl]-nitromethan anfangs in verdünnter, später in konzentrierterer Natriummethylat-Lösung entsteht 3.4-Diphenyl-5-[4-brom-phenyl]-isoxazol neben 4.5-Diphenyl-3-[4-brom-phenyl]-isoxazol und 3.4.5-Triphenyl-isoxazol (K., Richtmyer, Am. Soc. 50, 3092, 3104). Über eine analoge Kondensation mit 4-Methoxyphenylnitromethan vgl. Meisenheimer, Weibezahn, B. 54, 3203. Gibt beim Kochen mit Malonsäuredimethylester in sehr verd. Natriummethylat-Lösung [β-Nitro-α.β-diphenyl-sthyl]-malonsäuredimethylester und gesinge Mongen 3.4.5 Triphenyl (β isoxazolinoxyd (K.) äthyl]-malonsäuredimethylester und geringe Mengen 3.4.5-Triphenyl-22 isoxazolinoxyd (K., BA., Am. Soc. 48, 1773).

**4-Jod-2-nitro-stilben**  $C_{14}H_{10}O_2NI$ , s. nebenstehende Formel. B. Bei der Einw. von Kaliumjodid-Lösung auf diazotiertes 2-Nitro-4-amino-stilben (GULLAND, ROBINSON, Soc. 127, 1502; PFEIFFER, SCHMITZ, INOUE, J. pr. [2] 121, 76). — Grünlichgelbe Nadeln (aus Eisessig). F: 105° (G., R.), 110° (Pf., Sch., I.). Leicht löslich in Chloroform und Benzol (Pr., Sch., I.).

2.4-Dinitro-stilben C<sub>14</sub>H<sub>10</sub>O<sub>4</sub>N<sub>2</sub>, s. nebenstehende Formel.

a) Höherschmelzende Form (H 636; E I 305). B. Zur
Bildung aus 2.4-Dinitro-toluol und Benzaldehyd (H 5, 636)
vgl. Bishop, Brady, Soc. 121, 2367; Pastak, Bl. [4] 39, 74.
Beim Kochen von 2.4-Dinitro-stilbendibromid mit alkoh. Natrium- oder Kaliumacetat-Lösung (Bl., Br.). Zur Bildung aus niedrigerschmelzendem 2.4-Dinitro-stilben im Sonnenlicht bei Gegenwart von Jod vgl. Stoermer, Oehlert, B. 55, 1237. — F: 143—145° (Pa.).
Löst sich in Benzol bei 20° zu 3.7% (St., OE). — Angeben von Stoermer, Oehlert (R Löst sich in Benzol bei 20° zu 3,7% (St., OE.). — Angaben von Stoermer, Oehlert (B. 55, 1235, 1236) über die Existenz mehrerer verschieden gefärbter Modifikationen von gleichem

Schmelzpunkt konnten von Pfeiffer (J. pr. [2] 109, 216) nicht bestätigt werden. — Zur

Überführung in niedrigschmelzendes 2.4-Dinitro-stilben bei Bestrahlung mit ultraviolettem Licht vgl. STOERMER, OEHLERT, B. 55, 1236. Wird durch Benzoin, Anisoin oder Furoin bei Gegenwart von Natriummethylat oder Natriumäthylat in Alkohol zu 3.3'-Dinitro-4.4'-distyryl-azoxybenzol reduziert (NISBET, Soc. 1927, 2085). — Gibt beim Kochen mit Dioxopiperazinen in stark verdünnter Natriumäthylat-Lösung rotbraune Färbungen (ABDER-HALDEN, KOMM, H. 140, 101).

b) Niedrigerschmelzende Form (E I 306). B. Zur Bildung bei der Bestrahlung von höherschmelzenden 2.4-Dinitro-stilben mit ultraviolettem Licht vgl. Stoermer, Oehlert, B. 55, 1236. – In Benzol lösen sich bei 20° 11,79%. — Zur Umwandlung in höherschmelzendes 2.4-Dinitro-stilben im Sonnenlicht bei Gegenwart von Jod vgl. St., Or. Färbt sich bei wochenlanger Einw. von Sonnenlicht in Abwesenheit von Jod braun, ohne den Schmelzpunkt zu ändern. Bei der Reaktion mit etwas überschüssigem Brom in Lösungsmitteln wird hochschmelzendes 2.4-Dinitro-stilbendibromid gebildet (St., OE.). Bei der Einw. von Schwefelammonium in alkoh. Lösung entsteht neben höherschmelzendem 2.4-Dinitro-stilben das gleiche 2-Nitro-4-amino-stilben wie aus dem höherschmelzenden 2.4-Dinitro-stilben.

**3.4'-Dinitro-stilben**  $C_{14}H_{10}O_4N_2=O_2N\cdot C_6H_4\cdot CH:CH\cdot C_6H_4\cdot NO_2$ . a) Hochschmelzende Form. *B.* Beim Behandeln von  $\alpha$ -[3-Nitro-phenyl]- $\beta$ -[4-nitro-phenyl]- $\beta$ -[4 phenyl]-äthylalkohol mit siedendem Piperidin oder mit kalter konzentrierter Schwefelsäure (HARRISON, WOOD, Soc. 1926, 580). Durch Erhitzen von 3-Nitro-benzaldehyd und 4-Nitrophenylessigsäure mit Piperidin anfangs auf 110°, dann auf 150°, neben anderen Produkten (H., W., Soc. 1926, 580). Man fügt Piperidin zu einer siedenden Lösung von eis- oder trans-3-Nitro-α-[4-nitro-phenyl]-zimtsāure in Aceton, destilliert das Aceton ab und erhitzt den Rückstand auf 225° (H., W., Soc. 1926, 1199). — Gelbe Nadeln (aus Eisessig, Nitrobenzol oder Pyridin). F: 217°; schwer löslich in heißem Benzol, Aceton, Athylacetat und Chloroform, sehr schwer in siedendem Alkohol (H., W., Soc. 1926, 580). Die Lösungen sind blaßgelb (H., W., Soc. 1926, 578). — Gibt bei der Reduktion mit Zinkstaub, Eisessig und Salzsäure bei ca. 70° 3.4'-Diamino-stilben (H., Soc. 1926, 1236). Beim Einleiten von Chlor in eine Suspension von 3.4'-Dinitro-stilben in Chloroform entstehen beide Formen des 3.4'-Dinitrostilben-dichlorids (H., W., Soc. 1926, 581); in analoger Weise erhält man bei mehrtägiger Einw. von Brom in Chloroform höherschmelzendes und niedrigerschmelzendes β-3.4'-Dinitrostilbendibromid; längere Einw. von Tageslicht scheint in diesem Fall die Bildung der höher-

schmelzenden Form zu begünstigen (H., Soc. 1926, 1234).

b) Niedrigschmelzende Form. B. Beim Erhitzen von 3-Nitro-benzaldehyd mit 4-Nitro-phenylessigsäure in Gegenwart von Piperidin auf 100° (Cullinane, Soc. 123, 2060). — Gelbe Nadeln (aus Eisessig). F: 155°. Löslich in Chloroform, Benzol und Aceton, schwer löslich in Alkohol. Die Lösungen in Alkohol und Aceton sind grün, verd. Lösungen in Benzol sind grünlichgelb, in Eisessig und Trichloressigsäure dunkelgelb (C., Soc. 123, 2055, 2060).

4.4'-Dinitro-stilben  $C_{14}H_{10}O_4N_2 = O_2N \cdot C_6H_4 \cdot CH \cdot CH \cdot C_6H_4 \cdot NO_2$ .

a) Hochschmelzende Form (H 637; E I 306). B. Durch 1-stdg. Erhitzen von äquimolekularen Mengen 4-Nitro-benzaldehyd und 4-Nitro-phenylessigsäure mit etwas Piperidin auf 170—180° (PFEIFFER, EISTERT, J. pr. [2] 124, 176). Aus höher- oder niedrigerschmelzendem 4.4'-Dinitro-stilbenoxyd durch Kochen mit Kaliumjodid in Eisessig (BERGMANN, HERVEY, B. 62, 904). Neben anderen Produkten beim Behandeln von 4-Nitro-toluol mit Oxalester in Äther bei Gegenwart von Kaliumäthylat (Wislicenus, Schultz, A. 436, 58). Beim Kochen von 4-Nitro-benzylchlorid mit Kaliumcarbonat in Methanol, neben anderen Produkten (Kleucker, B. 55, 1645). — Gelbliche Nadeln (aus Eisessig oder Nitrobenzol) (W., Sch.). F: 293° (unkorr.) (B., H.), 286° (Pr., El.). — Bei kurzem Kochen mit überschüssigem Brom

in Eisessig entsteht 4.4'-Dinitro-stilben-dibromid (Pf., El.).
b) Niedrigschmelzende Form (H 637). B. Bei 1-stdg. Erhitzen von 4-Nitro-phenylessigsaure mit 4-Nitro-benzaldehyd in Gegenwart von wenig Piperidin auf 120° (Cullinane. Soc. 123, 2060). — Hellgelbe Nadeln (aus Eisessig), Krystalle (aus Nitrobenzol). F: 234° bis 235° (C., Soc. 123, 2060). Die Lösungen in Benzol, Eisessig und Trichloressigsäure sind

gelb (C., Soc. 123, 2055).

 $\alpha$ -Nitro- $\alpha$ -phenyl- $\beta$ -[4-nitro-phenyl]-äthylen, 4. $\alpha'$ -Dinitro-stilben, Phenyl-[4-nitro-benzyliden]-nitromethan  $C_{14}H_{10}O_4N_2=C_6H_5\cdot C(NO_2)$ :  $CH\cdot C_6H_4\cdot NO_2$ . B. Beim Erwärmen von Phenylnitromethan mit 4-Nitro-benzaldehyd in Gegenwart von Methylamin (Baker, Wilson, Soc. 1927, 844). — Gelbe Nadeln (aus Essigester + Ligroin). F: 155°. — Bei der Einw. von Salpetersäure (D: 1,49) bei —20° bis —15° entstehen 2.4'.α-Trinitrostilben, 3.4'.a-Trinitro-stilben und 4.4'.a-Trinitro-stilben ungefähr im Verhältnis 3:2:5 (B., W., Soc. 1927, 847).

 $\alpha.\beta-\text{Dinitro-}\alpha.\beta-\text{diphenyl-\"{a}thylen, }\alpha.\alpha'-\text{Dinitro-stilben }C_{14}H_{10}O_4N_2=C_6H_5\cdot C(NO_2):$  $C(NO_{\bullet}) \cdot C_{\bullet}H_{\bullet}$ 

a) Hochschmelzende Form (H 637). Gibt bei der Hydrierung bei Gegenwart von Palladiumschwarz in Äther 2.3.5.6-Tetraphenyl-piperazin und Desoxybenzoin-oxim (Wie542

LAND, BLÜMICH, A. 424, 105). Liefert beim Behandeln mit methylalkoholischer Kalilauge Phenyl-[ $\alpha$ -nitro-benzyl]-keton-dimethylacetal und  $\beta$ -Nitro- $\alpha$ -methoxy-stilben.

- b) Niedrigschmelzende Form (H 637). Verhält sich bei der Hydrierung in Äther bei Gegenwart von Palladiumschwarz sowie bei der Einw. von methylalkoholischer Kalilauge wie die hochschmelzende Form (Wieland, Blümich, A. 424, 105).
- 2'-Chlor 2.4 dinitro stilben C<sub>14</sub>H<sub>9</sub>O<sub>4</sub>N<sub>2</sub>Cl, s. nebenstehende Formel. B. Beim Erhitzen von 2.4 Dinitro toluol mit 2-Chlor-benzaldehyd bei Gegenwart von Piperidin (ROBINSON, ZAKI, Soc. 1927, 2489). Gelbe Nadeln (aus Alkohol oder Athylacetat). F: 174°. Schwer löslich in den meisten organischen Lösungsmitteln. Die Lösung in heißem Piperidin ist braungelb und wird beim Abkühlen grün.
- α-Chlor-α-[3-nitro-phenyl]-β-[4-nitro-phenyl]-äthylen, α-Chlor-3.4'-dinitro-stilben  $C_{14}H_9O_4N_2Cl$ , s. nebenstehende Formel. B. Durch Erhitzen von [3-Nitro-phenyl]-[4-nitro- $O_2N$ -CH:CCl-benzyl]-keton mit Phosphorpentachlorid auf 102° (Harrison, Wood, Soc. 1926, 582). Hellbraune Nadeln (aus Eisessig). F: 162°. Löslich in Pyridin, Benzol, Chloroform, Aceton, Ameisensäure und Essigsäure, schwer löslich in Alkohol, Äther und Tetrachlorkohlenstoff. Die Lösung in konz. Schwefelsäure ist rot. Gibt beim Erwärmen mit konz. Schwefelsäure auf 60° [3-Nitro-phenyl]-[4-nitro-benzyl]-keton, bei 80° findet Verkohlung statt.
- α-Chlor-β-[3-nitro-phenyl]-α-[4-nitro-phenyl]-äthylen, α'-Chlor-3.4'-dinitro-stilben C<sub>14</sub>H<sub>2</sub>O<sub>4</sub>N<sub>2</sub>Cl, s. nebenstehende Formel. B. Aus der hochschmelzenden oder leichter O<sub>2</sub>N. CCI:CH aus der niedrigschmelzenden Form des 3.4'-Dinitro-stilbendichlorids durch Erhitzen mit Pyridin auf 100° (HARRISON, WOOD, Soc. 1926, 581). Durch Erhitzen von [4-Nitro-phenyl]-[3-nitro-benzyl]-keton mit Phosphorpentachlorid auf 134° (H., W., Soc. 1926, 582). Hellgelbe Nadeln (aus Eisessig). F: 161°. Löslich in Pyridin, Benzol, Chloroform, Aceton, Ameisensäure und Eisessig, schwer löslich in Alkohol, Ather und Tetrachlorkohlenstoff (H., W., Soc. 1926, 581). Die Lösung in konz. Schwefelsäure ist rot (H., W., Soc. 1926, 582). Bei der Reduktion mit Zinn(II)-chlorid in Essigsäure entsteht [4-Amino-phenyl]-[3-amino-benzyl]-keton (H., Soc. 1926, 1237, 1238). Gibt bei vorsichtigem Erwärmen mit konz. Schwefelsäure [4-Nitrophenyl]-[3-nitro-benzyl]-keton; oberhalb 60° tritt Verkohlung ein (H., W., Soc. 1926, 581).
- 2.4.6-Trinitro-stilben C<sub>14</sub>H<sub>9</sub>O<sub>6</sub>N<sub>3</sub>, s.nebenstehende Formel (H 638). Zur Bildung aus 2.4.6-Trinitro-toluol und Benzaldehyd bei Gegenwart von Piperidin (H 5, 638) vgl. BISHOP, BRADY, Soc. 121, 2367; PASTAK, Bl. [4] 39, 80. Bei der Einw. von Benzoin bei Gegenwart von 6% Natriummethylat oder -äthylat in heißem Alkohol entstehen geringe Mengen 3.5.3'.5'-Tetranitro-4.4'-distyryl-azoxybenzol (NISBET, Soc. 1927, 2085).
- 2.4.3'-Trinitro-stilben C<sub>14</sub>H<sub>9</sub>O<sub>6</sub>N<sub>3</sub>, s. nebenstehende Formel (H 638). B. Zur Bildung aus 2.4-Dinitro-toluol und 3-Nitro-benzaldehyd in Gegenwart von Piperidin (H 5, 638) vgl. Pfelffer, A. 411 [1915], 128; NISBET, Soc. 1927, 2082. Wird durch Benzoin bei Gegenwart von 6% Natriummethylat oder -äthylat in heißem Alkohol zu 3.3'-Dinitro-4.4'-bis-[3-nitro-styryl]-azoxybenzol reduziert (N., Soc. 1927, 2085).
- 2.4.4'-Trinitro-stilben C<sub>14</sub>H<sub>9</sub>O<sub>6</sub>N<sub>3</sub>, s. nebenstehende Formel (H 638; E I 307). Zur Bildung aus 2.4-Dinitrotoluol und 4-Nitro-benzaldehyd bei Gegenwart von Piperidin vgl. Nisbet, Soc. 1927, 2082. — Dunkelorange Nadeln. F: 234—235°.
- 2.4.6.2'-Tetranitro-stilben C<sub>14</sub>H<sub>8</sub>O<sub>8</sub>N<sub>4</sub>, s. nebenstehende Formel. B. Aus 2.4.6-Trinitro-toluol und 2-Nitro-benzaldehyd bei Gegenwart von etwas Piperidin in siedendem Benzol (BISHOP, BRADY, Soc. 121, 2367). — Hellbraune Nadeln (aus Alkohol). NO<sub>2</sub>
  NO<sub>2</sub>
  NO<sub>2</sub>
  NO<sub>2</sub>
  NO<sub>2</sub>
  NO<sub>2</sub>
  NO<sub>2</sub>
  NO<sub>2</sub>
- 2.4.6.3'-Tetranitro-stilben C<sub>14</sub>H<sub>8</sub>O<sub>8</sub>N<sub>4</sub>, s. nebenstehende Formel. B. Aus 2.4.6-Trinitro-toluol und 3-Nitro-benzaldehyd in Gegenwart von etwas Piperidin in siedendem Benzol (BISHOP, BRADY, Soc. 121, 2367). — Gelbe Blättchen (aus Benzol und Aceton). F: 159°.

2.4.2'.4'- Tetranitro - stilben  $C_{14}H_8O_8N_4$ , s. nebenstehende Formel.

a) Höherschmelzende Form (H 638). B. Zur Bil-  $O_2N$  CH: CH:  $O_2N$  dung durch Einw. von alkoh. Kalilauge auf 2.4-Dinitro-benzylchlorid (H 5, 638) vgl. PLISSOW, Ükr. chemič. Ž. 1, 418; C. 1926 I, 646. — Gelbliche Nadeln (aus Chloroform oder Aceton). F: 269°; löslich in den üblichen organischen Lösungsmitteln (P., Ükr. chemič. Ž. 1, 418). — Lagert sich unter dem Einfluß des Lichtes teilweise in die niedrigerschmelzende orangefarbene Form (s. u.) um (P., Ükr. chemič. Ž. 1, 419). Die Lösung in Pyridin wird im Sonnenlicht intensiv grün: se entsteht eine aus Eisessig in Würfeln

benzylchlorid (H 5, 638) vgl. PLISSOW, Ukr. chemic. Z. 1, 418; C. 1926 1, 646. — Gelbiche Nadeln (aus Chloroform oder Aceton). F: 269°; löslich in den üblichen organischen Lösungsmitteln (P., Ukr. chemič. Ž. 1, 418). — Lagert sich unter dem Einfluß des Lichtes teilweise in die niedrigerschmelzende orangefarbene Form (s. u.) um (P., Ukr. chemič. Ž. 1, 419). Die Lösung in Pyridin wird im Sonnenlicht intensiv grün; es entsteht eine aus Eisessig in Würfeln krystallisierende Verbindung vom Schmelzpunkt 219° (P., Ukr. chemič. Ž. 1, 643; C. 1926 II, 199). Bei der Oxydation mit Kaliumpermanganat in Eisessig entsteht 2.4-Dinitro-benzoesäure (P., Ukr. chemič. Ž. 1, 421). Addiert kein Brom (P., Ukr. chemič. Ž. 1, 420). Die Lösung in Aceton gibt mit Kalilauge eine rote Färbung (P., Ukr. chemič. Ž. 1, 423).

b) Niedrigerschmelzende Form. B. Beim Bestrahlen der höherschmelzenden Form (s. o.) mit Sonnenlicht oder Glühlampenlicht (PLISSOW, Ukr. chemič. Ž. 1 [1925], 419). — Orangefarbene Krystalle (aus Eisessig). F: 263°. Löslich in heißem Nitrobenzol und siedendem Eisessig; unlöslich in Aceton und Chloroform. Wird durch Sonnenlicht nicht verändert.

2. α.α-Diphenyl-āthylen, α-Phenyl-styrol C<sub>14</sub>H<sub>12</sub> = (C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>C:CH<sub>2</sub> (H 639; E I 308). B. Zur Bildung aus Methyldiphenylcarbinol nach Klages (B. 35, 2647) vgl. Lipp, B. 56, 569; zur Bildung nach Tiffeneau (A. ch. [8] 10, 359) vgl. Hurd, Webb, Am. Soc. 49, 549. Entsteht aus Methyldiphenylcarbinol auch bei sofortigem Zersetzen einer Lösung in Schwefelsäure oder Überchlorsäure mit Wasser (Madelung, Völker, J. pr. [2] 115, 37), bei längerer Einw. von ½ Mol Salpetersäure in Eisessig bei Zimmertemperatur (Anschütz, Hilbert, B. 54, 1858) oder am besten durch Behandeln mit konz. Schwefelsäure in Eisessig (A., H., B. 54, 1856; Kohler, Drake, Am. Soc. 45, 1287; Schlenk, Bergmann, A. 463, 25). Durch Einw. von Methylmagnesiumjodid auf Benzophenon und Zersetzung des Reaktionsprodukts mit 30% iger Schwefelsäure (Leerdew, Andrejewski, Matjuschkina, Ж. 54, 224; B. 56, 2349). Aus 1-Dimethylamino-1.1-diphenyl-āthan beim Kochen mit Acetanhydrid oder beim Erwärmen mit Methyljodid in Methanol (Sommelet, C. r. 183, 303). Entsteht im Gemisch mit etwas 1.1-Diphenyl-āthan und anderen Produkten bei der Destillation von Tributyl-[β,β-diphenyl-āthyl]-phosphoniumhydroxyd in einer Stickstoff-Atmosphäre unter vermindertem Druck (Fenton, Ingold, Soc. 1929, 2354). Aus 1.4-Dikalium-1.1.4.4-tetraphenyl-butan bei der Einw. von Jod, Methylenjodid oder Tetramethyläthylendibromid (Wittig, Lupin, B. 61, 1633). — Darstellung aus Phenylmagnesiumbromid und Athylacetat: Allen, Converse, Org. Synth. Coll. Vol. 1 [1932], 221; Noller, Lataillade, Org. Synth. 18 [1938], 87.

18 [1938], 87. Kp<sub>1-3</sub>: 113° (Kohler, Drake, Am. Soc. 45, 1287); Kp<sub>10</sub>: 134° (Lebedew, Andrejewski, Matjuschkina, B. 56, 2350;  $\mathcal{H}$ . 54, 224); Kp<sub>11</sub>: 139° (korr.) (Lipp, B. 56, 569); Kp<sub>13</sub>: 135° bis 136° (Schlenk, Bergmann, A. 463, 25); Kp<sub>15</sub>: 143—144° (Sieglitz, B. 55, 2042); Kp<sub>25</sub>: 162—163° (Kern, Shriner, Adams, Am. Soc. 47, 1156). Ultraviolett-Absorptions-spektrum in Hexan: Lardy, J. Chim. phys. 21, 361; in Alkohol: Lifschitz, R. 48, 409. Zum Absorptionsspektrum von  $\alpha.\alpha$ -Diphenyl-āthylen vgl. a. Henri, C. r. 177, 1038, 1040; Ramart-Lucas, C. r. 186, 1303; 189, 802. Dipolmoment  $\mu \times 10^{18}$ : 0,5 (verd. Lösung in Benzol) (Estermann, Ph. Ch. [B] 1, 425).

Färbt sich bei längerer Ultraviolettbelichtung gelb (Lebedew, Andrejewski, Matjuschkina, B. 56, 2350; Ж. 54, 225). Polymerisiert sich beim Behandeln mit konz. Schwefelsäure oder mit Floridin bei gewöhnlicher Temperatur unter Bildung von 1.1.3.3-Tetraphenylbuten-(1) und 1.1.3.3-Tetraphenyl-cyclobutan(?) (L., A., M.). Bei längerem Einleiten von Sauerstoff im Licht bei Zimmertemperatur entstehen polymeres α.α-Diphenyl-äthylen-peroxyd (S. 544) und Formaldehyd; im Dunkeln reagiert α.α-Diphenyl-äthylen nur langsam mit Sauerstoff; bei erhöhter Temperatur, z. B. 100° oder 150° wurden Benzophenon, Formaldehyd und geringe Mengen harziger Produkte, jedoch kein Peroxyd erhalten (Staudinger, B. 58, 1078). Reagiert mit Sauerstoff unter ca. 100 Atm. Druck bei 40—50° unter starker Explosion (St., B. 58, 1077). Geschwindigkeit der Oxydation mit Benzopersäure in Chloroform bei 0°: Meerwein, J. pr. [2] 113, 11, 25. Geschwindigkeit der Hydrierung bei Gegenwart von Platinschwarz in Alkohol bei 15°, auch im Gemisch mit anderen ungesättigten Verbindungen: Lebedew, Kobljanski, Jakubtschik, Soc. 127, 423, 427, 430, 432; Ж. 56, 279, 289, 298, 313; bei Gegenwart von Platinschwarz in essigsaurer Lösung: Lebedew, Andrejewski, Matjuschkina, B. 56, 2351; Ж. 54, 227; bei Gegenwart von Platin- oder Palladiumschwarz (aus den Oxyden) unter 2—3 Atm. Druck bei 25°: Kern, Shriner, Adams, Am. Soc. 47, 1149.

Liefert mit trocknem Brom in Schwefelkohlenstoff bei Kühlung mit Kältemischung 1.2-Dibrom-1.1-diphenyl-äthan (Lipp, B. 56, 569). Beim Zufügen der Lösung in Toluol zu

[Syst. Nr. 480

einer Lösung von Natrium in flüssigem Ammoniak und Zersetzen des Reaktionsprodukts mit Ammoniumchlorid entsteht 1.1-Diphenyl-āthan; wird das Reaktionsprodukt mit Benzylchlorid umgesetzt, so wird 1.2.2-Triphenyl-propan gebildet; fügt man Natrium vorsichtig zu einem Gemisch von α.α-Diphenyl-āthylen, Ammoniak und Toluol hinzu und zersetzt das Reaktionsprodukt mit Ammoniumchlorid, so erhält man geringe Mengen 1.1.4.4-Tetraphenyl-butan (Ziegler, Colonius, Schäfer, A. 473, 55). Liefert in āther. Lösung mit Natrium-Kalium-Legierung 1.4-Dikalium-1.1.4.4-tetraphenyl-butan (Wittig, Lupin, B. 61, 1633). Reaktion mit Stickstofftrichlorid: Coleman, Campbell, Am. Soc. 50, 2756. Gibt bei Einw. von feuchtem Stickstofftrioxyd in Petroläther unter Kühlung mit Kältemischung β-Nitro-α.α-diphenyl-āthylalkohol und β-Nitro-α.α-diphenyl-āthylen; bei Einw. von sorgfältig getrocknetem Stickstofftrioxyd entsteht in der Hauptsache β-Nitro-α.α-diphenyl-āthylen; in siedendem Ligroin erhält man Benzophenon (Lipp, A. 449, 21). Beim Leiten von reinem trocknem Stickstoffdioxyd in eine stark gekühlte Lösung von α.α-Diphenyl-āthylen in Petroläther entstehen β-Nitro-α.α-diphenyl-āthylalkohol und 1.2-Dinitro-1.1-diphenyl-āthan; leitet man Stickstoffdioxyd ohne Kühlung über den Kohlenwasserstoff, so wird die Methylengruppe als Formaldehyd abgespalten (Wibland, Rahn, B. 54, 1774). Reagiert mit absol. Salpetersäure in trocknem Tetrachlorkohlenstoff bei —10° unter Bildung von β-Nitro-α.α-diphenyl-āthylalkohol (Wie, Rahn, B. 54, 1773). Gibt bei der Einw. von 1 Mol Salpetersäure in Eisessig, anfangs bei Zimmertemperatur, später bei 100° außer β-Nitro-α.α-diphenyl-āthylen (Anschütz, Hilbert, B. 54, 1856; vgl. A., Romig, B. 18 [1885], 664; A. 233 [1886], 342; Konovalow, Jatzewitsch, Ж. 87, 543; C. 1905 II, 825).

α.α-Diphenyl-āthylen gibt beim Aufbewahren mit Nitrosobenzol in wenig Chloroform N-Phenyl-benzophenonisoxim (Syst. Nr. 1604) und weniger N.N'-Diphenyl-harnstoff (Ingold, Weaver, Soc. 125, 1461; Burkhardt, Lapworth, Walkden, Soc. 127, 2458). Bei 14-tägigem Erhitzen mit 2 Mol Diphenylketen im Rohr auf 100° erhält man 1.1.3.5.5-Hexaphenyl-cyclohexandion-(2.4) (Staudinger, Suter, B. 53, 1105). Gibt mit 2 Mol Azodicarbonsäure-dimethylester bei 90—100° α.α-Bis-[2-(N.N'-dicarbomethoxy-hydrazino)-phenyl]-äthylen (Diels, Alder, A. 450, 248), mit 1 Mol Azodicarbonsäurediäthylester bei gewöhnlicher Temperatur 5.5-Diphenyl-hexahydro-1.2.3.4-tetrazin-tetracarbonsäure-(1.2.3.4)-tetraäthylester (Ingold, Weaver, Soc. 127, 386). Beim Behandeln mit Lithiumbutyl in Benzol und Einleiten von Kohlendioxyd in das Reaktionsgemisch erhält man 1.1-Diphenyl-hexancarbonsäure-(1) (Ziegler, Mitarb., A. 473, 32). Geschwindigkeit der Reaktion mit Lithiumäthyl, Lithiumpropyl und Lithiumbutyl: Z., Mitarb., A. 473, 33. Liefert bei aufeinanderfolgender Einw. von α-Phenylisopropylkalium und Kohlendioxyd in Ather hauptsächlich γ-Methyl-α.α.γ-triphenyl-valeriansäure und etwas α.α.α'.α'-Tetraphenyl-adipinsäure (Z., Bähr, B. 61, 260). Reagiert nicht mit Alkyl-oder Aryl-magnesiumhalogeniden (Gilman, McGlumphy, R. 47, 421).

α.α-Diphenyl-äthylen gibt mit konz. Schwefelsäure sowie mit Überchlorsäure in Acetanhydrid + Eisessig eine grünstichig gelbe Färbung (Pfeiffer, Wizinger, A. 461, 135).

Verbindung mit Zinn(IV)-chlorid. Grünstichig gelb. Die Farbänderungen bei Verdünnung der Lösung in Benzol gehorchen nicht dem Beerschen Gesetz (SKRAUP, FREUNDLICH, A. 431, 253).

α.α-Diphenyl-äthylen-ozonid C<sub>14</sub>H<sub>12</sub>O<sub>3</sub>. B. Bei der erschöpfenden Ozonisierung von 1.1.3.3-Tetraphenyl-buten-(1) in Chloroform oder Tetrachlorkohlenstoff bei 0° (LEBEDEW, ANDREJEWSKI, MATJUSCHKINA, Ж. 54, 228, 230; B. 56, 2351). — Wird aus der Lösung in Athylacetat durch Petroläther gefällt. — Liefert bei der Zersetzung mit Wasser Benzophenon und Ameisensäure.

Polymeres  $\alpha.\alpha$ -Diphenyl-äthylen(?) ( $C_{14}H_{12}$ )<sub>x</sub> (H 606). B. Entsteht in geringer Menge neben monomerem  $\alpha.\alpha$ -Diphenyl-äthylen und anderen Produkten bei der Destillation von Tributyl- $[\beta.\beta$ -diphenyl-äthyl]-phosphoniumhydroxyd in einer Stickstoff-Atmosphäre unter vermindertem Druck (Fenton, Ingold, Soc. 1929, 2355). — Blättchen (aus Benzol + Ligroin). F: 189—190°.

Polymeres α.α-Diphenyl-āthylenperoxyd (C<sub>14</sub>H<sub>12</sub>O<sub>2</sub>)x. Zur Konstitution vgl. Staudinger, B. 58, 1076. — B. Durch Einleiten von Sauerstoff in α.α-Diphenyl-āthylen bei Zimmertemperatur unter Belichtung (St., B. 58, 1078). — Pulver. F: 131—132° (Zers.). Unlöslich in organischen Lösungsmitteln. Liefert in Benzol fein verteilte Suspensionen. Macht beim Kochen mit Kaliumjodid kein Jod frei und entfärbt Indigoschwefelsäure nicht. Beim Kochen mit Toluol sowie beim Erhitzen, am besten in Gegenwart von Glaspulver, entsteht Formaldehyd neben Polymerisationsprodukten und geringen Mengen Zersetzungsprodukten. Beim Erhitzen mit der 20-fachen Menge Wasser im Rohr auf 120—130° wird das Peroxyd quantitativ in Benzophenon und Formaldehyd gespalten.

HOEHN, Am. Soc. 63 [1941], 1184).

 $\beta$ .  $\beta$ - Dichlor - α.α - diphenyl- äthylen  $C_{14}H_{10}Cl_2 = (C_eH_5)_2C$ :  $CCl_2$  (H 639). B. Aus  $\beta$ .  $\beta$ -Dichlor-α.α - diphenyl- äthylensulfid (Syst. Nr. 2370) bei 2-stdg. Erhitzen auf 100°, bei kurzem Erhitzen auf 160°, bei längerem Kochen mit Methanol oder beim Erhitzen mit Zink (Staudinger, Siegwart, Helv. 3, 846). — Liefert beim Kochen mit Natriumpulver in Benzol Tolan (Harris, Frankforter, Am. Soc. 48, 3145, 3149). Beim Erhitzen mit 2 Mol Natriummethylat entstehen Tolan, Diphenylmethan, Methanol und wahrscheinlich Benzol (St., Rathsam, Helv. 5, 654). Bei der Einw. von Lithium in Äther und Behandlung des Reaktionsprodukts mit Alkohol erhält man je nach den Bedingungen 1.2.3.4-Tetraphenyl-butadien-(1.3) (S. 695) oder 1.2.3-Triphenyl-naphthalin (S. 702) (Schlenk, Bergmann, A. 463, 81; Smith,

β-Brom-α.α-diphenyl-äthylen, β.β-Diphenyl-vinylbromid C<sub>14</sub>H<sub>11</sub>Br = (C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>C: CHBr (H 640). B. Beim Erhitzen von α.β-Dibrom-α.α-diphenyl-äthan (Lipp, B. 56, 570). — Krystalle (aus Alkohol). F: 41—42°; Kp<sub>11,5</sub>: 175—176° (korr.) (Lipp). — Beim Schmelzen mit Kaliumhydroxyd entsteht Tolan (Lipp). Liefert bei 1—2-tägiger Einw. von Lithium in Äther eine braunrote Lösung, die beim Behandeln mit Alkohol hochschmelzendes 1.1.4.4-Tetraphenyl-buten-(2), sehr wenig 1.2.4-Triphenyl-1.4-dihydro-naphthalin und einen Kohlenwasserstoff C<sub>28</sub>H<sub>24</sub> (S. 686), bei der Umsetzung mit Jod oder Phenylsenföl 1.1.4.4-Tetraphenyl-butadien-(1.3) gibt (Blum, B. 62, 889). Reagiert mit Natrium in Äther unter Bildung von 1-Natrium-1.2.4-triphenyl-1.4-dihydro-naphthalin (Syst. Nr. 2357) (B., B. 62, 883). Bei der Einw. von Magnesium, Äthyljodid und etwas Jod in Äther entsteht neben der normalen Grignard-Verbindung wenig 1.1.4.4-Tetraphenyl-butadien-(1.3) (Hurd, Webb, Am. Soc. 49, 557). Setzt man β.β-Diphenyl-vinylbromid mit aktiviertem Magnesium in Äther um und leitet in das Reaktionsgemisch Kohlendioxyd ein, so erhält man β.β-Diphenyl-acrylsäure und wenig 1.1.4.4-Tetraphenyl-butadien-(1.3) (Lipp, B. 56, 571). Läßt man Paraformaldehyd auf das Reaktionsprodukt aus β.β-Diphenyl-vinylbromid und aktiviertem Magnesium in Äther einwirken, so entsteht neben wenig 1.1.4.4-Tetraphenyl-butadien-(1.3) γ-Phenyl-zimtalkohol (Ziegler, Tiemann, B. 55, 3412).

 $\beta.\beta$ -Dibrom - $\alpha.\alpha$ -diphenyl-äthylen  $C_{14}H_{10}Br_2 = (C_6H_5)_2C$ :  $CBr_2$  (H 640). B. Beim Kochen von 1.2.2-Tribrom-1.1-diphenyl-äthan mit methylalkoholischer Kalilauge (Ziegler, A. 434, 61). Durch Einw. von überschüssigem Brom auf 1.1.3.3-Tetraphenyl-buten-(1) in siedendem Eisessig (Hildebrand, Dissert. [Straßburg 1909], S. 29). — F: 84° (Harris, Frankforter, Am. Soc. 48, 3148). — Verhält sich gegen Lithium wie  $\beta.\beta$ -Dichlor- $\alpha.\alpha$ -diphenyl-äthylen (s. oben) (Schlenk, Bergmann, A. 463, 81).

β-Nitro-α.α-diphenyl-äthylen C<sub>14</sub>H<sub>11</sub>O<sub>2</sub>N = (C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>C:CH·NO<sub>2</sub> (E I 308). Zur Konstitution vgl. Anschütz, Hilbert, B. 54, 1856. — Zur Bildung aus 1.1-Diphenyl-äthan oder aus α.α-Diphenyl-äthylen in Eisessig durch Behandeln mit Salpetersäure vgl. A., H., B. 54, 1856; Kohler, Drake, Am. Soc. 45, 1287. Entsteht beim Schütteln einer äther. Lösung von 1.2-Dinitro-1.1-diphenyl-äthan mit überschüssiger, etwa 1n-Natronlauge (Wieland, Rahn, B. 54, 1774). Aus α.α-Diphenyl-äthylen durch Einw. von trocknem Stickstoff-trioxyd in Petroläther unter starker Kühlung (Lipp, A. 449, 21). Bei der Einw. von rauchender Salpetersäure auf 1.1.3.3-Tetraphenyl-buten-(1) in Eisessig auf dem Wasserbad (Hilderand [Dissert. Straßburg 1909], S. 31). — Liefert bei der Reduktion mit amalgamiertem Aluminium in Äther 2-Amino-1.1-diphenyl-äthan, Diphenylacetaldoxim und Bis-[β.β-diphenyl-vinyl]-amin (Lipp, A. 449, 24). Gibt bei der Hydrierung bei Gegenwart von Platinschwarz in Äther Diphenylacetaldehyd-imid (Kohler, Drake, Am. Soc. 45, 1287). Zur Überführung in Benzophenon durch Spaltung mit alkoh. Kalilauge vgl. Lipp, A. 449, 17, 22.

 $\beta$ . Dinitro -α.α -diphenyl-äthylen  $C_{14}H_{10}O_4N_2 = (C_0H_5)_3C:C(NO_2)_3$ . Diese Konstitution kommt nach Anschütz, Hilbert (B. 54, 1857) der Verbindung  $C_{14}H_{10}O_4N_2$  von Anschütz, Romig, A. 233, 340 (H 5, 605) zu. — B. Zur Bildung durch Behandeln von 1.1-Diphenyl-äthan oder α.α-Diphenyl-äthylen mit Salpetersäure in Eisessig vgl. A., H. — Gelbe Krystalle (aus Alkohol). F: 146—147° (A., H.). — Liefert bei der Hydrierung bei Gegenwart von Platinschwarz in Alkohol oder Ather Tetraphenyl-bernsteinsäuredinitril, wenig Diphenylacetonitril und ölige Produkte (Kohler, Drake, Am. Soc. 45, 1288). Gibt bei der Reduktion mit amalgamiertem Aluminium in Ather Diphenylacetonitril und Diphenylessigsäure-amidoxim (Lipp, A. 449, 27).  $\beta$ .  $\beta$ -Dinitro-α.α-diphenyl-äthylen löst sich in konzentrierter wäßriger Lauge unter schwachem Erwärmen mit intensiver Orangefärbung; beim Kochen mit methylakoholischer Kalilauge entstehen das Kaliumsalz des  $\beta$ .  $\beta$ -Dinitro-α.α-diphenyl-āthylakohols und geringe Mengen eines beim Erhitzen detonierenden Produkts (Lipp, A. 449, 22).

3. 9.10 - Dihydro - anthracen, Dihydroanthracen  $C_{14}H_{12} = C_6H_4 < {CH_2 \atop CH_2} > C_6H_4$  (H 641; E I 308). B. In geringer Menge neben anderen Produkten bei der Kondensation von Acetylen in der Hitze (Kovache, Tricot, Chim. et Ind. 13 [1923], 77 T). Bildet sich in

sehr rascher Reaktion neben 1.2.3.4-Tetrahydro-anthracen bei der Hydrierung von sehr reinem Anthracen in Gegenwart von Nickel-Katalysator in Tetralin unter 10—20 Atm. Wasserstoff-Druck bei 120—150° (SCHROETER, B. 57, 2012). Neben anderen Produkten beim Behandeln von 9.10-Dihydro-anthranol-(9) mit 2 Atomen Wasserstoff bei Gegenwart von Nickel in Dekalin bei 200° unter Druck (v. Braun, Bayer, B. 58, 2680). In geringer Menge neben anderen Produkten beim Hydrieren von Anthrachion in Gegenwart von Nickel in Dekalin bei 160-170° mit 8 Atomen Wasserstoff (v. Br., Bay., B. 58, 2676). Beim Behandeln von 9-Benzoyl-dihydroanthracen mit siedender alkoholischer Kalilauge, mit Natriumäthylat-Lösung, mit siedender Natriumisoamylat-Lösung oder mit Zinkstaub und 50% iger wäßriger Kalilauge (Соок, Soc. 1926, 1681), beim Kochen von 9-Benzoyl-anthracen mit Natriumisoamylat-Lösung sowie beim Erhitzen von 2-Benzoyl-anthracen mit 50% iger Jodwasserstoffsäure und rotem Phosphor auf 180° (Cook), ferner beim Kochen von 9.10-Dibenzoyl-dihydroanthracen mit Natriumisoamylat-Lösung (Cook, Soc. 1926, 1683). — F: 108° (Krollpfeiffer, A. 480, 224; v. Braun, Bayer, B. 58, 2676). Do: 1,208 (Ziegler, Ditzel, A. 473, 204). Verbrennungswärme bei konstantem Volumen: 1742,1 kcal/Mol (Klaproth in Landolt-Börnst. E II, 1635). Ultraviolett-Absorptionsspektrum in alkoh. Lösung: BARNETT, COOK, ELLISON, Soc. 1928, 886. Dichten und Brechungsindices von Lösungen in Chinolin: Kr., A. 430, 226.

Bei der Einw. von Aluminiumchlorid in Benzol oder ohne Lösungsmittel entsteht Anthracen (Scholl, Seer, B. 55, 340). Liefert unter 14 Atm. Wasserstoff-Druck in Gegenwart von Nickel-Katalysator in Tetralin bei ca. 180° 1.2.3.4-Tetrahydro-anthracen (Schroeter, B. 57, 2014). Bei der Reaktion mit Phthalsäureanhydrid in Gegenwart von Aluminiumchlorid in Benzol-Lösung erst in der Kälte, dann auf dem Wasserbad und nachfolgenden Oxydation des Reaktionsgemischs mit Chromtrioxyd in Eisessig bei Zimmertemperatur erhält man 2-[2-Carboxy-benzoyl]-anthrachinon, Phthalsäure und Anthrachinon (DE DIESBACH, CHAR-DONNENS, Helv. 7, 610, 613).

1.5.9.10-Tetrachlor-9.10-dihydro-anthracen, 1.5-Dichlor-anthracon-dichlorid-(9.10) C<sub>14</sub>H<sub>8</sub>Cl<sub>4</sub>, s. nebenstehende Formel (E I 309). Zur Konfiguration vgl. BARNETT, COOK, MATTHEWS, R. 44, 728, 818. — B. Bei der Einw. von Chlor auf 1.5-Dichlor-anthracen (B., C., M., R. 44, 736). Beim Erhitzen von cis- oder trans-1.5-Dichlor-9.10-dioxy-9.10-dihydro-anthracen mit alkoh. Salzsäure auf dem Wasserbad oder beim Kochen von

cis-1.5-Dichlor-9.10-dioxy-9.10-dihydro-anthracen mit Acetylchlorid (B., C., M., R. 44, 736). Aus cis-1.5-Dichlor-9.10-diacetoxy-9.10-dihydro-anthracen durch Kochen mit konz. Salzsäure (B., C., M., B. 58, 982). — Ultraviolett-Absorptionsspektrum in alkoh. Lösung: Barnett, COOK, ELLISON, Soc. 1928, 886.

Liefert beim Erhitzen auf 230° oder beim Kochen mit alkoh. Kalilauge 1.5.9-Trichloranthracen (Barnett, Cook, Matthews, R. 44, 736; 45, 73). Verhält sich gegen Silberoxyd in Wasser wie 1.5-Dichlor-anthracen-dibromid-(9.10) (S. 548). Wird durch Kochen mit Xylol nicht verändert; beim Kochen mit p-Cymol erhält man 1.5-Dichlor-anthracen (B., C., M., R. 44, 736; 45, 73). Wird durch Kochen mit absol. Alkohol in cis-1.5-Dichlor-9.10-diäthoxy-9.10-dihydro-anthracen übergeführt (B., C., M., R. 44, 737). Beim Kochen mit wäßr. Aceton entsteht hauptsächlich 1.5-Dichlor-anthron-(9) (B., C., M., R. 44, 734). Gibt beim Erwärmen mit Anilin 1.5 - Dichlor - 9.10 - dianilino - 9.10 - dihydro - anthracen, mit Methylanilin 1.5-Dichlor-9.10-bis-methylanilino-9.10-dihydro-anthracen und mit Dimethylanilin 1.5-Dichlor-9.10-bis-[4-dimethylamino-phenyl]-9.10-dihydro-anthracen (B., C., M., R. 44, 822, 824). Beim Erhitzen mit Piperidin auf dem Wasserbad entstehen 1.5-Dichlor-9.10-dipiperidino-9.10-dihydro-anthracen und 1.5.9-Trichlor-anthracen; bei der Einw. von Piperidin in siedendem Xylol erhält man nur 1.5.9-Trichlor-anthracen (B., C., M., R. 44, 822). Bei der Umsetzung mit Pyridin auf dem Wasserbad entsteht [1.5-Dichlor-9.10-dihydro-anthrylen-(9.10)]-bis-pyridiniumchlorid (B., C., M., R. 44, 825).

1.8.9.10-Tetrachlor-9.10-dihydro-anthracen, 1.8-Dichlor-anthracen-dichlorid-(9.10)  $C_{14}H_8Cl_4$ , s. nebenstehende Formel (E I 309). B. Die Bildung aus 1.8-Dichlor-anthracen und Chlor in Tetrachlorkohlenstoff verläuft bei Verwendung von reinem Ausgangsmaterial sehr langsam und kann durch eine Spur Jod beschleunigt werden (Barnett, Cook, Matthews, R. 45, 72). — Liefert beim Erhitzen auf 200—220°, beim Kochen mit alkoh. Kalilauge, beim Kochen mit Xylol oder mit Phenol und Benzol, beim Behandeln mit Piperidin oder Diäthylamin und beim Erhitzen mit Chinolin auf dem Wasserbad 1.8.10—200—200°, beim Kochen mit Allehel Rutylelkohol

CI CI

Trichlor-anthracen (B., Č., M., R. 45, 73, 74, 77). Beim Kochen mit Alkohol, Butylalkohol oder Isoamylalkohol erhält man neben 1.8.10-Trichlor-anthracen nicht rein isolierte Alkyläther des 4.5-Dichlor-anthranols-(9), die beim Kochen mit Eisenchlorid und Eisessig in 1.8.1'.8'-Tetrachlor-9.9'-dihydrodianthron übergehen (B., C., M., R. 45, 74). Gibt beim Kochen

mit Natriumacetat in Eisessig 1.8.1'.8'-Tetrachlor-9.9'-dihydro-dianthron und ein Gemisch von Verbindungen, das beim Kochen mit Eisenchlorid und Eisessig 1.8.1'.8'-Tetrachlor-9.9'-dihydro-dianthron und 1.8.10-Trichlor-anthracen gibt (B., C., M., R. 45, 74). Bei längerem Aufbewahren von 1.8-Dichlor-anthracen-dichlorid-(9.10) mit Silberoxyd und Wasser und nachfolgendem Erhitzen auf dem Wasserbad entstehen 1.8.1'.8'-Tetrachlor-9.9'-dihydro-dianthron und geringe Mengen einer anthronartigen Verbindung (gelbliche Nadeln; F: 156' bis 160°) (B., C., M., R. 45, 74). Gibt beim Erhitzen mit Anilin auf dem Wasserbad 4.5-Dichlor-9-anilino-anthracen (Syst. Nr. 1604), beim Erwärmen mit Dimethylanilin 1.8.10-Tri-chlor-anthracen und geringere Mengen 4.5-Dichlor-9-[4-dimethylamino-phenyl]-anthracen (B., C., M., R. 45, 77).

1.5.9.9.10 - Pentachlor - 9.10 - dihydro - anthracen, 1.5.9-Trichlor-anthracen-dichlorid-(9.10) C<sub>14</sub>H<sub>7</sub>Cl<sub>5</sub>, s. nebenstehende Formel. B. Bei der Einw. von Chlor auf 1.5.9-Trichlor-anthracen in Tetrachlorkohlenstoff (Barnett, Cook, Matthews, R. 44, 895). — Krystalle (aus wäßt. Aceton). F: 162° (Zers.) (B., C., M., R. 44, 896). — Liefert beim Erhitzen auf 190° (B., C., M., R. 45, 73), beim Kochen mit wäßrig-alkoholischer Kalilauge oder beim Erwärmen mit Tripropylamin auf dem Wasserbad (B., C., M., R. 44, 896). — Liefert beim Erhitzen auf 190° (B., C., M., R. 45, 73), beim Kochen mit Xylol nur sehr langsam zersetzt; beim Kochen mit n.Cumol entsteht 15 9. Trichlor-anthracen (R. C., M. R. 44, 896). beim Kochen mit p-Cymol entsteht 1.5.9-Trichlor-anthracen (B., C., M., R. 44, 896).



1.8.9.10.10-Pentachlor-9.10-dihydro-anthracen, 1.8.10-Trichlor-anthracen-dichlorid-(9.10) C<sub>14</sub>H<sub>7</sub>Cl<sub>5</sub>, s. nebenstehende Formel. B. Durch Umsetzen von 1.8.10-Trichlor-anthracen oder 4.5-Dichlor-9-brom-anthracen mit Chlor in Tetrachlorkohlenstoff bei Gegenwart von Jod (BARNETT, COOK, MATTHEWS, R. 45, 72). — Nadeln (aus Chloroform). F: 180—186° (Zers.) (B., C., M., R. 45, 72). — Liefert beim Erhitzen auf 200—230° 1.8.9.10-Tetra-

chlor-anthracen, beim Kochen mit Xylol 1.8.10-Trichlor-anthracen (B., C., M., R. 45, 73, 74), beim Kochen mit Calciumcarbonat in wäßr. Aceton 4.5.10-Trichlor-anthron-(9), beim Kochen mit alkoh. Kalilauge 1.8.1'.8'-Tetrachlor-9.9'-dihydro-dianthron (B., C., M., R. 45, 75, 76). Beim Aufbewahren mit Silberoxyd und Wasser und nachfolgenden Erhitzen auf dem Wasserbad entsteht 4.5-Dichlor-10-oxy-anthron-(9); beim Kochen mit absol. Alkohol entsteht der entsprechende Athyläther, beim Kochen mit Natriumacetat und Eisessig das entsprechende Acetat (B., C., M., R. 45, 76). Gibt mit Diathylamin in siedendem Benzol 1.8.10-Trichlor-anthracen und geringere Mengen 4.5-Dichlor-10-diathylamino-anthron-(9), beim Erhitzen mit Dimethylanilin auf dem Wasserbad 1.8.10-Trichlor-anthracen und 4.5-Dichlor-9-[4-dimethylamino-phenyl]-anthracen, beim Aufbewahren mit Piperidin in Benzol 4.5-Dichlor-10-piperidino-anthron-(9) und geringe Mengen 1.8.10-Trichlor-anthracen und beim Erhitzen mit Pyridin und Acetanhydrid auf dem Wasserbad [4.5.10-Trichlor-anthranyl-(9)]-pyridiniumchlorid (B., C., M., R. 45, 78, 79).

1.4.9.9.10.10 - Hexachlor - 9.10 - dihydro - anthracen, 1.4-Dichloranthrachinon-tetrachlorid C<sub>14</sub>H<sub>6</sub>Cl<sub>6</sub>, s. nebenstehende Formel. B. In geringer Menge bei kurzem Kochen von 1.4-Dioxy-anthrachinon mit Phosphorpentachlorid in Nitrobenzol (Barnett, Matthews, Wiltshire, R. 45, 563). — Nadeln (aus Toluol). F: 255—257° (Zers.). — Wird durch Chromsäure zu 1.4-Dichlor-anthrachinon oxydiert.

$$\begin{array}{c|c} Cl_2 & CI \\ \hline Cl_2 & CI \\ \hline Cl_2 & CI \\ \end{array}$$

9.10-Dibrom-9.10-dihydro-anthracen, Anthracen-dibromid-(9.10)  $C_{14}H_{10}Br_2 =$ C<sub>6</sub>H<sub>4</sub><CHBr C<sub>6</sub>H<sub>4</sub> (H 641; E I 309). Zur Konfiguration vgl. Barnett, Cook, Matthews, R. 44, 217. — B. Zur Bildung aus Anthracen und Brom vgl. B., C., Soc. 125, 1085. — Gibt bei Zimmertemperatur langsam Bromwasserstoff ab; beim Erhitzen auf dem Wasserbad entsteht 9.10-Dibrom-anthracen (B., C.). Beim Einleiten von trocknem Ammoniak in eine Suspension von Anthracendibromid in Chloroform entstehen harzige Substanzen und wenig 9-Brom-anthracen; beim Behandeln mit Schwefelwasserstoff in Eisessig bei 50° erhält man Anthracen und wahrscheinlich 9-Brom-anthracen; bei der Einw. von Natriumsulfid in Alkohol bei gewöhnlicher Temperatur werden Anthracen und geringe Mengen Dianthranol (Syst. Nr. 690) gebildet; beim Einleiten von Schwefeldioxyd in eine Suspension des Dibromids in Eisessig in der Kälte entsteht 9-Brom-anthracen (B., C., MATTHEWS, R. 44, 222). Läßt man eine 1% ige Lösung von Phenol in Toluol längere Zeit erst bei Zimmertemperatur, dann bei 50°, zuletzt kurz auf dem Wasserbad auf Anthracendibromid einwirken, so erhält man 9-Brom-anthracen; bei Verwendung von 44 % Phenol entsteht unter gleichen Bedingungen Anthracen (B., C.). Anthracen wird auch beim Behandeln des Dibromids mit einer Mischung von Eisessig und Jodwasserstoffsäure unter Kühlung erhalten (B., C.). Gibt, mit absol. Alkohol anfangs bei gewöhnlicher Temperatur, zuletzt auf dem Wasserbad behandelt, Dianthranol und 9-Athoxy-anthracen (B., C., M., R. 44, 222). Bei der Einw. von Diäthylamin in Chloroform, anfangs unter Kühlung, bilden sich Anthracen und 9-Brom-anthracen; ohne Lösungsmittel und ohne Kühlung entsteht nur Anthracen (B., C., M., R. 44, 221). Liefert mit Dimethylanilin in Chloroform unter Kühlung 9-[4-Dimethylamino-phenyl]-anthracen und 9.10-Bis-[4-dimethylamino-phenyl]-9.10-dihydro-anthracen, mit Piperidin in Chloroform in der Kälte 9-Piperidino-anthracen (B., C., M., R. 44, 220, 221). Bei der Einw. von Pyridin bei Zimmertemperatur entsteht [9.10 - Dihydro - anthrylen - (9.10)] - bis - pyridiniumbromid (BARNETT, COOK, Soc. 119, 904).

1-Chlor-9.10-dibrom-9.10-dihydro-anthracen, 1-Chlor-anthracen-dibromid-(9.10) C<sub>14</sub>H<sub>9</sub>ClBr<sub>2</sub>, s. nebenstehende Formel. B. Bei der Einw. von Brom auf 1-Chlor-anthracen in Tetrachlorkohlenstoff unter Kühlung (Barnett, Matthews, R. 43, 535). — Liefert beim Kochen mit Xylol 1-Chlor-anthracen und 4-Chlor-9-brom-anthracen (B., M.; Cook, Soc. 1928, 2803). Reagiert mit Pyridin ebenso wie Anthracen-dibromid-(9.10) (s. o.) (B., M.).

2-Chlor-9.10-dibrom-9.10-dihydro-anthracen, 2-Chlor-anthracen-dibromid-(9.10) C<sub>14</sub>H<sub>2</sub>ClBr<sub>2</sub>, s. nebenstehende Formel. B. Bei der Einw. von Brom auf 2-Chlor-anthracen in Schwefelkohlenstoff unter Kühlung (Barnett, Matthews, R. 43, 536). — Unbeständig. — Reagiert mit Pyridin analog wie Anthracen-dibromid-(9.10) (s. o.).



1.4-Dichlor-9.10-dibrom-9.10-dihydro-anthracen, 1.4-Dichloranthracen - dibromid - (9.10) C<sub>14</sub>H<sub>8</sub>Cl<sub>2</sub>Br<sub>2</sub>, s. nebenstehende Formel. B. Durch Behandeln von 1.4-Dichlor-anthracen mit Brom in Tetrachlorkohlenstoff (BARNETT, MATTHEWS, WILTSHIRE, R. 45, 560). — Krystallinisches Pulver (aus Benzol). Sintert bei 155°, schmilzt bei 169° (Zers.). — Beim Kochen mit Calciumcarbonat in wäßr. Aceton erhält man 1.4-Dichlor-9.10-

dioxy-9.10-dihydro-anthracen und wenig 1.4-Dichlor-anthracen; beim Kochen mit Toluol entsteht 1.4-Dichlor-anthracen. Gibt mit Anilin 1.4-Dichlor-9.10-dianilino-9.10-dihydroanthracen, mit Methylanilin 1.4-Dichlor-9.10-bis-methylanilino-9.10-dihydro-anthracen, mit Dimethylanilin auf dem Wasserbad 1.4-Dichlor-9.10-bis-[dimethylamino-phenyl]-9.10-dihydro-anthracen, mit Piperidin 1.4-Dichlor-9.10-dipiperidino-9.10-dihydro-anthracen. Reagiert mit Pyridin analog wie Anthracen-dibromid-(9.10) (s. oben).

1.5-Dichlor-9.10-dibrom-9.10-dihydro-anthracen, 1.5-Dichlor-anthracen-dibromid-(9.10)  $C_{14}H_6Cl_2Br_2$ , s. nebenstehende Formel (E I 309). Zur Konfiguration vgl. Barnett, Matthews, R. 43, 530; B., Cook, M., R. 44, 728, 818. — B. Bei der Einw. von Brom auf 1.5-Dichloranthracen in Tetrachlorkohlenstoff oder Schwefelkohlenstoff bei gewöhnlicher Temperatur im Dunkeln (B., M., R. 43, 537). Beim Leiten von Bromwasser-

stoff durch eine Suspension von cis- oder trans-1.5-Dichlor-9.10-dioxy-9.10-dihydro-anthracen

in warmem Toluol (B., Cook, M., R. 44, 737).

Beim Behandeln mit Silberoxyd in Wasser bei Zimmertemperatur erhält man cisund trans-1.5-Dichlor-9.10-dioxy-9.10-dihydro-anthracen, beim Kochen mit Silberoxyd in wäßr. Aceton wird hauptsächlich 1.5-Dichlor-anthracen gebildet (BARNETT, COOK, MATTHEWS, R. 44, 734). 1.5-Dichlor-anthracen entsteht aus dem Dibromid auch beim Kochen mit alkoh. Bromwasserstoffsäure (B., C., M., R. 44, 737), bei der Einw. von Schwefeldioxyd und Schwefelwasserstoff in Eisessig bei 100°, von Natriumsulfid in siedendem verdünntem Alkohol, von Natriumacetessigester und Natriummalonester in siedendem absolutem Alkohol (B., C., M., R. 44, 825), beim Kochen mit Xylol (B., M., R. 43, 537) oder beim Behandeln mit Phenol (B., C., M., R. 44, 731). Liefert beim Kochen mit wäßr. Aceton in Gegenwart von überschüssigem Calciumcarbonat, Magnesiumcarbonat oder Magnesiumoxyd cis- und trans-1.5-Dichlor-9.10-dioxy-9.10-dihydro-anthracen, 1.5-Dichlor-anthracen, 1.5-Dichlor-anthracen hydro-dianthron; in Abwesenheit eines Neutralisationsmittels entstehen cis-1.5-Dichlor-9.10-dioxy-9.10-dihydro-anthracen, 1.5-Dichlor-anthracen, 1.5-1.5-Dichlor-anthron, 1.5-Dichlor-anthron, 1.5-Dichlor-anthron-(9) und wahrscheinlich 1.5-Dichlor-10-oxy-anthron-(9); beim Kochen mit verd. Salzsäure und Aceton wurden 1.5-Dichlor-anthracen, 1.5-Dichlor-anthron-(9), 1.5-Dichlor-anthrachinon und 1.5.1'.5'-Tetrachlor-9.9'-dihydro-dianthron erhalten (B., C., M., R. 44, 728, 733, 734, 735). Gibt beim Kochen mit Alkohol viel cis-1.5-Dichlor-9.10-diathoxy-9.10-dihydro-anthracen und wenig 1.5-Dichlor-9-athoxy-anthracen (B., C., M., R. 44, 730, 737). Bei der Umsetzung mit Natriumacetat und Eisessig in Siedehitze erhält man cis-1.5-Dichlor-9.10-diacetoxy-9.10-dihydro-anthracen und 1.5-Dichlor-anthracen (B., C., M., R. 44, 735). Beim Erhitzen mit Kaliumcyanid und Alkohol auf dem Wasserbad entsteht

1.5-Dichlor-9-cyan-anthracen (B., C., M., R. 44, 826).

Liefert beim Behandeln mit Methylamin in Toluol bei 100° 1.5-Dichlor-anthracen; die gleiche Umsetzung findet statt bei der Einw. von Dimethylanilin, Diphenylamin, α-Picolin und Chinolin (Barnett, Cook, Matthews, R. 44, 821, 824, 825). Gibt mit Dimethylamin

in Benzol bei 60° 1.5-Dichlor-9.10-bis-dimethylamino-9.10-dihydro-anthracen und reagiert analog mit Diäthylamin, Anilin, Methylanilin, p-Toluidin und Piperidin (B., C., M., R. 44, 821, 822, 823). Liefert mit 3-Nitro-anilin in Toluol auf dem Wasserbad 1.5-Dichlor-9-[3-nitro-anilino]-anthracen und 1.5-Dichlor-anthracen (B., C., M., R. 44, 823). Bleibt beim Behandeln mit Ammoniak, Triäthylamin, Tripropylamin oder N-Methyl-piperidin fast unverändert (B., C., M., R. 44, 822).

- 1.8-Dichlor-9.10-dibrom-9.10-dihydro-anthracen, 1.8-Dichlor-anthracen-dibromid-(9.10)  $C_{14}H_8Cl_2Br_2$ , s. nebenstehende Formel. B. Bei der Einw. von überschüssigem Brom auf 1.8-Dichlor-anthracen in Tetrachlorkohlenstoff oder Schwefelkohlenstoff bei gewöhnlicher Temperatur im Dunkeln (Barnett, Matthews, R. 43, 537). Beim Erhitzen auf 200—230°, beim Kochen mit alkoh. Kalilauge, beim Erhitzen mit Eisessig auf dem Wasserbad im Schwefeldioxyd- oder Schwefelwasserstoff-Strom sowie beim Behandeln mit Piperidin oder Diäthylamin entsteht 4.5-Dichlor-9-brom-anthracen (B., Cook, M., R. 45, 73, 75, 77, 79). Gibt beim Erhitzen mit Chinolin auf dem Wasserbad neben 4.5-Dichlor-9-brom-anthracen vielleicht auch eine geringe Menge 1.8-Dichlor-anthracen (B., C., M., R. 45, 77). Beim Kochen mit Xylol entsteht ein Gemisch, das wahrscheinlich 1.8-Dichlor-anthracen, 1.8-Dichlor-9-brom-anthracen und 4.5-Dichlor-9-brom-anthracen enthält (B., M., R. 43, 538). 1.8-Dichlor-anthracen-dibromid liefert beim Kochen mit Calcium-carbonat in wäßr. Aceton 1.8.1'.8'-Tetrachlor-9.9'-dihydro-dianthron und eine Substanz, die beim Kochen mit alkoh. Kalilauge in ein amorphes anthronähnliches Produkt übergeht (vielleicht trans-1.8-Dichlor-9-10-dioxy-9.10-dihydro-anthracen) (B., C., M., R. 45, 75).
- 10-Chlor-9-nitro-9.10-dihydro-anthracen  $C_{14}H_{10}O_2NCl = C_6H_4$   $CH(NO_2)$   $C_6H_4$  (H 641). Liefert beim Erwärmen mit konz. Schwefelsäure in Eisessig auf dem Wasserbad 9.9'-Dihydro-dianthron (Barnett, Cook, Matthews, Soc. 123, 2002). Beim Erwärmen mit Jodwasserstoffsäure in Eisessig auf dem Wasserbad unter Einleiten von Kohlendioxyd entsteht Anthracen.
- 9.10-Dinitro-9.10-dihydro-anthracen  $C_{14}H_{10}O_4N_2 = C_6H_4 < C_{CH(NO_2)}^{CH(NO_2)} > C_6H_4$  (H 642). Liefert bei der Einw. von kaltem Pyridin und Alkohol 9-Nitro-anthracen (BARNETT, Soc. 127, 2042).
- 1.5-Dichlor-9.10-dinitro-9.10-dihydro-anthracen  $C_{14}H_8O_4N_2Cl_2$ , Formel I. B. Durch Einleiten von überschüssigem Stickstoffdioxyd in eine Lösung von 1.5-Dichloranthracen in Chloroform unter Kühlung (Barnett, Soc. 127, 2042). Krystalle (aus Aceton). F: 156° (Zers.). Wird beim Erhitzen gelb. Liefert beim Behandeln mit kaltem Pyridin und Alkohol

II.

1.5-Dichlor-9-nitro-anthracen.

1.8-Dichlor-9.10-dinitro-9.10-dihydro-anthracen C<sub>14</sub>H<sub>8</sub>O<sub>4</sub>N<sub>2</sub>Cl<sub>2</sub>, Formel II. B. Durch Einleiten von überschüssigem Stickstoffdioxyd in eine Lösung von 1.8-Dichlor-anthracen in Chloroform

Losung von 1.8-Dienior-anthracen in Chioroform unter Kühlung (BARNETT, Soc. 127, 2042). — Krystalle mit 1½ CHCl<sub>3</sub>. F: 215° (Zers.). Wird beim Erhitzen gelb. — Liefert beim Behandeln mit kaltem Pyridin und Alkohol 1.8(oder 4.5)-Diehlor-9-nitro-anthracen.

či <sub>H</sub>/

- 9.10 Dichlor 9.10 dinitro 9.10 dihydro anthracen  $C_{14}H_8O_4N_2Cl_2 = C_6H_4 < \frac{CCl(NO_2)}{CCl(NO_2)} > C_6H_4$ . B. Durch Einw. von Stickstoffdioxyd auf 9.10-Dichlor-anthracen in Chloroform unter Kühlung (Barnett, Soc. 127, 2043). Krystalle (aus Chloroform). Zersetzt sich schon bei Zimmertemperatur. Geht beim Kochen in Chloroform momentan in Anthrachinon über.
- 1.5.9-Trichlor-9.10-dinitro-9.10-dihydro-anthracen C<sub>14</sub>H<sub>7</sub>O<sub>4</sub>N<sub>2</sub>Cl<sub>3</sub>, s. nebenstehende Formel. B. Durch Einw. von Stickstoffdioxyd auf 1.5.9-Trichlor-anthracen in Chloroform unter Kühlung (BARNETT, Soc. 127, 2044). Schwach gelbes Krystallpulver. Zersetzt sich bei 156°. Liefert bei der Einw. von kaltem Pyridin und Alkohol 1.5-Dichlor-9.10-dinitro-anthracen.
- 9 Brom 9.10 dinitro 9.10 dihydro anthracen  $C_{14}H_9O_4N_2Br = C_6H_4 < \frac{CBr(NO_2)}{CH(NO_2)} > C_6H_4$ . B. Als Hauptprodukt bei der Einw. von Stickstoffdioxyd auf 9-Brom-anthracen in Chloroform unter Kühlung (BARNETT, Soc. 127, 2043). Krystalle. Sintert bei ca. 115°. Wird beim Erhitzen gelb. Liefert bei der Einw. von kaltem Pyridin und Alkohol 9.10-Dinitro-anthracen.

9.9.10-Trinitro-9.10-dihydro-anthracen  $C_{14}H_9O_6N_3=C_6H_4$   $C(NO_2)_2$   $C_6H_4$  (H 642). Bei der Einw. von kaltem Pyridin (Barnett, Cook, Grainger, Soc. 121, 2065) oder von kaltem Pyridin und Alkohol (B., Soc. 127, 2042) entsteht 9.10-Dinitro-anthracen.

- 4. 1.2-Dihydro-anthracen C<sub>14</sub>H<sub>12</sub>, s. nebenstehende Formel.
  Bezeichnung als 1.2-Diacen: v. Braun, Bayer, A. 472, 107. —
  B. Neben anderen Produkten bei der trocknen Destillation von Carbanilsäure-[1.2.3.4-tetrahydro-anthryl-(2)]-ester (v. Br., B.). —
  Blättchen (aus Alkohol). F: 150°. Leicht löslich in kaltem Benzol und Äther, schwerer in Petroläther, sehr schwer in kaltem Alkohol. Bei der Einw. von Brom in kaltem Schwefelkohlenstoff entsteht 1.2-Dibrom-1.2.3.4-tetrahydro-anthracen. Pikrat. F: 115°.
- 5. 9.10 Dihydro phenanthren C<sub>14</sub>H<sub>12</sub>, s. nebenstehende Formel. Die H 642; E I 309 als 9.10-Dihydro-phenanthren beschriebene Substanz vom Schmelzpunkt 95° ist nach Schroefer, Müller, Huang (B. 62, 645) ein Gemisch von Phenanthren und wenig 1.2.3.4-Tetrahydro-phenanthren. B. 9.10-Dihydro-phenanthren entsteht bei der Hydrierung von Phenanthren in Tetralin bei Gegenwart von Nickelkatalysator unter 20 Atm. Wasserstoffdruck bei 150—180°, neben 1.2.3.4-Tetrahydro-phenanthren und 1.2.3.4.5.6.7.8-Oktahydro-phenanthren (Schroefer, Müller, Huang, B. 62, 649). Neben 1.2.3.4-Tetrahydro-phenanthren und Verharzungsprodukten bei allmählicher Einw. von Natrium auf eine siedende Lösung von Phenanthren in Isoamylalkohol (Sch., M., H., B. 62, 651). Neben anderen Produkten durch längeres Kochen von ω.ω'-Dibrom-o.o'-ditolyl mit Natriumpulver in Äther und folgendes nochmaliges Behandeln der bei 170—187° (19 mm) siedenden Fraktion des Reaktionsprodukts mit Natrium (Sch., M., H., B. 62, 652). Reinigung durch Sulfurierung und Hydrolyse der entstandenen Disulfonsäure: Sch., M., H. Nadeln (aus Methanol). F: 34,5—35°. Kp<sub>15</sub>: 168—169°. D<sub>1</sub>": 1,0953; D<sub>2</sub>": 1,0757. Mol.-Refr. bei 14,7°: Sch., M., H. Läßt sich in geschmolzenem Zustand leicht unterkühlen. Liefert beim Erwärmen mit konz. Schwefelsäure auf 80° isomere 9.10-Dihydro-phenanthren-disulfonsäuren. Bildet mit Pikrinsäure in Alkohol Mischkrystalle, die bei 60—103° schmelzen.
- 2.9.10 Tribrom 9.10 dihydro phenanthren (?),
  2-Brom-phenanthren dibromid (9.10) (?) C<sub>14</sub>H<sub>9</sub>Br<sub>3</sub>, s.
  nebenstehende Formel. B. Neben 9.10-Dibrom-9.10-dihydro-phenanthren bei 48-stdg. Einw. von 4 Atomen Brom
  unter Ausschluß von Feuchtigkeit in Tetrachlorkohlenstoff auf Phenanthren (Henstock,
  Soc. 119, 56, 57). Hellgelbe Nadeln (aus Eisessig). F: 100—102° (Zers.). Geht beim
  Erhitzen auf den Schmelzpunkt oder beim Aufbewahren an warmer Luft in 2-10-Dibromphenanthren(?) über. Ist in siedendem Eisessig beständig.
- 9.10-Diohlor-4- nitro-phenanthren-dichlorid-(9.10), 4-Nitro-phenanthrenchinon-tetrachlorid C<sub>14</sub>H<sub>7</sub>O<sub>2</sub>NCl<sub>4</sub>, s. nebenstehende
  Formel. B. In geringer Menge beim Erhitzen von 4-Nitro-phenanthrenchinon mit Phosphorpentachlorid im Rohr auf 120° (J. SCHMIDT,
  AECKERLE, B. 57, 367). Braungelbe Nadeln (aus Eisessig). F: 164—165°. Leicht löslich in den üblichen Lösungsmitteln. Gibt beim Kochen mit Phenylhydrazin in Alkohol sowie mit fein verteiltem Silber oder mit Kupferpulver in trocknem Benzol 9.10-Dichlor-4-nitro-

9.9.10.10 - Tetrachlor -4- nitro - 9.10 - dihydro - phenanthren,

- 6. 1.4 Dihydro phenanthren (?) C<sub>14</sub>H<sub>12</sub>, s. nebenstehende Formel. B. Durch Umsetzung von Phenanthren mit Lithium in Äther und Hydrolyse des Reaktionsprodukts mit Alkohol unter Kühlung, neben geringen Mengen eines isomeren Dihydro-phenanthrens (s. u.) (SCHLENK, BERGMANN, A. 463, 84, 87). Flüssig. Kp<sub>15</sub>: 168—170°. Bei der Hydrierung bei Gegenwart von Palladium-Bariumsulfat in Alkohol entsteht 1.2.3.4(?)-Tetrahydro-phenanthren.
- 7. x.x Dihydro phenanthren  $C_{14}H_{19}$ . Das Mol.-Gew. wurde in schmelzendem Campher bestimmt. B. s. im vorangehenden Artikel. Blättchen (aus Petroläther). F: 71—73° (SCHLENK, BERGMANN, A. 463, 88).
  - 8. 2-Methyl-fluoren C<sub>14</sub>H<sub>12</sub>, Formel I.



2-Chlormethyl-fluoren, Fluorenyl-(2)-methylchlorid C<sub>14</sub>H<sub>11</sub>Cl, Formel II. B. Durch kurzes Erwärmen von 2-Oxymethyl-fluoren mit Phosphorpentachlorid auf dem Wasserbad (v. Braun, Engel, B. 57, 193). — Krystalle (aus Ather + wenig Benzol). F: 100°.

551

- 2-Brommethyl-fluoren, Fluorenyl-(2)-methylbromid C<sub>14</sub>H<sub>11</sub>Br, Formel III, S. 550. B. Bei der Einw. von Phosphortribromid auf 2-Oxymethyl-fluoren in Chloroform, zuletzt auf dem Wasserbad (v. Braun, Engel, B. 57, 194). — Gelbliche Krystalle. F: 95°. — Liefert beim Aufbewahren mit der 1½-fachen Menge Hexamethylentetramin in Chloroform und Erwärmen des Reaktionsprodukts mit Wasser 2-Formyl-fluoren.
- 9. 3-Methyl-fluoren C<sub>14</sub>H<sub>12</sub>, s. nebenstehende Formel. B. Beim Erhitzen von 3-Methyl-fluoren-carbonsäure-(9) (E I 9, 298) mit Natronkalk (Vorländer, Pritzsche, B. 48 [1913], 1795). Aus 3-Methyl-fluorenon beim Erhitzen mit 50% iger Jodwasserstoffsäure und rotem Phosphor unter Ďruck auf 150° (Sieglitz, Schatzkes, B. 54, 2071). — Blättchen (aus Alkohol). F. 88° (V., P.; S., Sch.).

10. 9-Methyl-fluoren, 1.1-Diphenylen-äthan  $C_{14}H_{12} = \frac{C_6H_4}{C_6H_4}CH \cdot CH_3$ .

a) Hochschmelzende Form. B. Beim Erhitzen von 9-Oxy-9-methyl-fluoren mit Aluminiumphosphat im Vakuum auf ca. 250°, neben anderen Produkten (Wieland, Reindel, Ferrer, B. 55, 3316; W., Krause, A. 443, 133). — Krystalle (aus verd. Alkohol). F: 58°

- (W., R., F.).
  b) Niedrigschmelzende Form (H 642; E I 310). B. Bei der Hydrierung von

  Bellediumschwarz in Äther (Wieland, Reindel, 9-Methylen-fluoren in Gegenwart von Palladiumschwarz in Äther (Wieland, Reindel, FERRER, B. 55, 3317; FE., An. Soc. españ. 20, 465; C. 1923 III, 1161). Beim Leiten von Methyl-diphenyl-carbinol über platinierte Kohle im Wasserstoff-Strom bei 300° (Zelinsky, GAWERDOWSKAJA, B. 61, 1052). Aus 9-Methyl-fluoren-glyoxylsäure-(9)-äthylester durch Kochen mit Natronlauge (v. Auwers, Frühling, A. 422, 223). — Krystalle (aus Alkohol). F: 45° (v. Au., Fr.), 45—46° (W., R., Fr.; Fr.), 46° (Z., G.). Kp<sub>16</sub>: 141—144° (v. Au., Fr.).  $D_{\bullet,\bullet}^{\text{es.}}$ : 1,0263;  $n_{\bullet,\bullet}^{\text{es.}}$ : 1,6101;  $n_{\bullet,\bullet}^{\text{ps.}}$ : 1,6319 (v. Au., Fr.).
- 9 Chlor 9 methyl fluoren  $C_{14}H_{11}Cl = \frac{C_6H_4}{C_6H_4}CCl \cdot CH_3$ . B. Beim Einleiten von Chlorwasserstoff in eine äther. Lösung von 9-Oxy-9-methyl-fluoren unter Kühlung (Wieland, Krause, A. 443, 135). Hellgelbes, dickflüssiges Öl; zeigt mitunter Ansätze zur Krystallisation (W., K.). Beim Erwärmen auf ca. 80° entsche 9-Methylen-fluoren, das Arystanisation (W., K.). — Beim Erwarmen auf Ca. 80° entstell 9-methylen-intoren, das sich teilweise polymerisiert (W., K.). Bei kurzem Kochen mit Alkohol erhält man nur monomolekulares 9-Methylen-fluoren (W., K.). Gibt mit Brom in Eisessig unter Kühlung 9-Brom-9-brommethyl-fluoren (W., K.). Beim Behandeln mit Natriummethylat-Lösung (W., K.) oder Natriumäthylat-Lösung (W., CEREZO, A. 457, 255) bei Zimmertemperatur entsteht 9-Methoxy- bzw. 9-Athoxy-9-methyl-fluoren.
- 2.7 Dibrom 9 methyl fluoren C<sub>14</sub>H<sub>10</sub>Br<sub>2</sub>, s. nebenstehende Formel. B. Bei der Destillation von 9-Chlor-2.7-dibrom-9-methyl- Br-fluoren im Vakuum (Sieglitz, Jassoy, B. 55, 2038). Durch Einw. von Methyljodid auf die Natriumverbindung des [2.7-Dibrom-fluorenyl-(9)]-glyoxylsäure-äthylesters in Alkohol und Kochen des Reaktionsprodukts mit 20% iger Kalilauge (Sieglitz, B. 53, 2246). — Blätter (aus Eisessig). F: 133—134° (Krollpfeiffer, A. 430, 220), 137—138° (S.). Dichten und Brechungsindices von Lösungen in Chinolin: Kr., A. 430, 222.
- 9.9¹-Dibrom-9-methyl-fluoren, 9-Brom-9-brommethyl-fluoren,  $\alpha.\alpha$ -Diphenylen-äthylen-dibromid, Dibensofulvendibromid  $C_{14}H_{10}Br_2 = \frac{C_6H_4}{C_6H_4}CBr\cdot CH_2Br$  (H 643). B. Durch Einw. von Brom auf 9-Chlor-9-methyl-fluoren in Eisessig (Wieland, Krause, A. 443. 136) oder auf 9-Methylen-fluoren in Petroläther (W., REINDEL, FERRER, B. 55, 3315). -Nadeln (aus Ligroin oder Alkohol), Krystalle (aus Methanol oder Essigester). F: 143° (Zers.) (W., R., F.). Leicht löslich in Ather, ziemlich schwer in heißem Alkohol, Eisessig und heißem Ligroin, schwer in Petroläther (W., R., F.). — Liefert beim Erwärmen mit Zinkstaub in Alkohol + Eisessig 9-Methylen-fluoren (W., R., F.). Beim Kochen mit methylalkoholischer Kalilauge entsteht 9-Methoxymethylen-fluoren (W., K.). Wird durch Kochen mit Natriumacetat und Eisessig in 9-Brommethylen-fluoren und wenig Difluorenylidenäthan übergeführt (W., K.). Beim Erhitzen mit Dimethylanilin auf 150° entsteht Difluorenylidenäthan, wobei ein Teil des Dimethylanilins zu Krystallviolett oxydiert wird (W., K.).
- 9-Chlor-2.7-dibrom-9-methyl-fluoren C<sub>14</sub>H<sub>2</sub>ClBr<sub>2</sub>, s. nebenstehende Formel. B. Beim Kochen von 2.7-Dibrom-9-oxy-9-methyl-Brfluoren mit Eisessig und konz. Salzsäure (Sieglitz, Jassoy, B. 55, 2037). Nadeln (aus Alkohol). F: 182—183°. Liefert bei der Destilla-·Br tion im Vakuum 2.7-Dibrom-9-methyl-fluoren. Bei kurzem Kochen mit Eisessig entsteht 2.7-Dibrom-9-methylen-fluoren.

- 9.91.91-Tribrom-9-methyl-fluoren, 9-Brom-9-dibrommethyl-fluoren  $C_{14}H_9Br_3=$  $C_6H_4$  CBr·CHBr<sub>2</sub>. B. Aus 9-Brommethylen-fluoren und 1 Mol Brom in Petroläther (Wieland, Krause, A. 443, 138). — Nadeln (aus Essigester). F: 127°.
- 9.91-Dibrom-91-nitro-9-methyl-fluoren, 9-Brom-9-bromnitromethyl-fluoren  $C_{14}H_9O_2NBr_2 = \frac{C_6H_4}{C_6H_4}CBr\cdot CHBr\cdot NO_2$ . B. Aus 9-Nitromethylen-fluoren und Brom in Carrowlicht (Wiffiand Krause, A. 448, 140). — Prismen (aus Schwefelkohlenstoff im Sonnenlicht (Wieland, Krause, A. 443, 140). — Prismen (aus Alkohol). F: 110°.
- 9.9¹-Dinitro-9-methyl-fluoren, 9-Nitro-9-nitromethyl-fluoren, 1.2-Dinitro-1.1-diphenylen-äthan  $C_{14}H_{10}O_4N_2 = \frac{C_6H_4}{C_6H_4}C(NO_2)\cdot CH_2\cdot NO_2$ . B. Durch Einw. von Stickstoffdioxyd auf 9-Methylen-fluoren in Äther und Petroläther unter Kühlung (WIELAND, KRAUSE. A. 443, 139). — Nadeln (aus Äther oder Alkohol). F: 117—1180 (Zers.). Löslich in den meisten Lösungsmitteln. — Ist in der Wärme ziemlich unbeständig. Die alkoh. Lösung liefert beim Behandeln mit wäßr. Ammoniak 9-Nitromethylen-fluoren.
- 11. Kohlenwasserstoff C<sub>14</sub>H<sub>12</sub> von Lippmann, M. 7 [1886], 524 (H 643, Nr. 7). Wird als Gemisch von 2- und 4-Phenyl-toluol erkannt (Gelissen, Hermans, B. 58, 476). [KOBEL]

## 4. Kohlenwasserstoffe $C_{15}H_{14}$ .

- 1. 1.3-Diphenyl-propen,  $\alpha$ -Phenyl- $\beta$ -benzyl-āthylen,  $\beta$ -Benzyl-styrol  $C_{18}H_{14}=C_6H_5\cdot CH_2\cdot CH\cdot CG_6H_5$ .
- a) Niedrigerschmelzende Form (H 643; E I 310 als flüssige Form beschrieben). B. Neben anderen Produkten beim Erhitzen von Phenylagetaldehyd mit alkoh. Kalilauge auf dem Wasserbad (Stoermer, Thier, B. 58, 2611). — Erstarrt in der Kälte zu Tafeln; F: 15—16°. Kp<sub>14</sub>: 178—179° (korr.). — Liefert bei der Oxydation mit Permanganat in alkal. Lösung oder beim Ozonisieren in Eisessig Benzaldehyd, Benzoesäure und Phenylessigsäure, mit Permanganat in Aceton und 10 %iger Schwefelsäure Benzaldehyd und α.β-Diphenyl-propionaldehyd-hydrat(?) Wird beim Kochen mit 50 %iger Schwefelsäure nicht verändert. Gibt mit Isoamylnitrit in Eisessig 1.3-Diphenyl-propenpseudonitrosit, in mit Chlorwasserstoff gesättigtem Eisessig 1.3-Diphenyl-propen-nitrosochlorid.

  1.3-Diphenyl-propen und Isoamylnitrit in Eisessig bei Zimmertemperatur oder rascher auf dem Wasserbad (Stoermer, Thier, B. 58, 2612). — Krystallpulver. Schmilzt je nach der Art des Erhitzens bei 142—150° (Zers.). Löst sich in siedendem Xylol mit grüner Farbe unter Zersetzung, teilweise auch in heißem Eisessig. — Liefert beim Erhitzen mit Diäthylamin in Alkohol 2(oder 1)-Nitro-1(oder 2)-diäthylamino-1.3-diphenyl-propan. auf dem Wasserbad (Stoermer, Thier, B. 58, 2611). — Erstarrt in der Kälte zu Tafeln;
- unter Zersetzung, teilweise auch in neibem Eisessig. Liefert beim Erntzen int Diathylamin in Alkohol 2(oder 1)-Nitro-1(oder 2)-diäthylamino-1.3-diphenyl-propan.

  1.3-Diphenyl-propen-nitrosochlorid C<sub>15</sub>H<sub>14</sub>ONCl. B. Aus niedrigerschmelzendem 1.3-Diphenyl-propen und Isoamylnitrit in mit Chlorwasserstoff gesättigtem Eisessig unter Kühlung (Stoermer, Thier, B. 58, 2612). Krystallpulver (aus Benzol). F: 166° (unter Zersetzung und Grünfärbung). Unlöslich in Alkohol, Ather, Eisessig und Essigester, löslich in Benzol mit grüner Farbe.
- b) 1.3-Diphenyl-propen-Präparate von fraglicher sterischer Einheitlichkeit. B. Neben sehr wenig 2.3-Diphenyl-propen-(1) bei der Destillation von  $\beta.\gamma$ -Diphenyl-propylalkohol im Vakuum in Gegenwart von Infusorienerde (RAMART, AMAGAT, A. ch. [10] 8, 309). Bei der Destillation von Dibenzylcarbinol im Vakuum in Gegenwart von Infusorienerde (R., A., A. ch. [10] 8, 310). Aus Cinnamylbromid und Phenylmagnesiumbromid in Äther (BÖESEKEN, ELSEN, R. 48, 364). Neben anderen Produkten bei 6-stdgm. Erhitzen von α.γ-Diphenyl-propylalkohol mit Zinkchlorid auf 130° (PFEIFFER, Mitarb., J. pr. [2] 119, 115). — Kp<sub>14</sub>: 165—166° (R., A.); Kp<sub>11</sub>: 164—168° (B., E.). D<sub>4</sub>": 1,0003; n<sub>2</sub>": 1,6010 (B., E.). — Mehrtägige Einw. von Acetpersäure führt zum Monoacetat des α.u. Diphenyl propylandylgel. (R. E.) des a.y-Diphenyl-propylenglykols (B., E.).
- 1.3 Dichlor 1.3 diphenyl propen  $C_{15}H_{19}Cl_2 = C_6H_5 \cdot CHCl \cdot CH \cdot CCl \cdot C_6H_5$  (H 643; E I 310). B. Aus Benzalacetophenon beim Erwärmen mit Phosphorpentachlorid in Benzol (STRAUS, EHRENSTEIN, A. 442, 105). Liefert, beim Erwärmen mit Phenylmagnesiumbromid in Ather 1-Chlor-1.3.3-triphenyl-propen-(1) und eine Verbindung vom Schmelzpunkt 152—154° (Zers.) (Sт., Ен., А. 442, 104).
- 2. 1.2-Diphenyl-propen-(1),  $\alpha$ -Methyl- $\alpha$ . $\beta$ -diphenyl- $\tilde{\alpha}$ thylen,  $\alpha$ -Methyl-stilben  $C_{15}H_{14}=C_{6}H_{5}\cdot CH:C(CH_{8})\cdot C_{6}H_{5}$  (H 644; E I 311). Diese Konstitution kommt der

von Stoermer, Biesenbach (B. 38, 1966) als 1.3-Diphenyl-cyclobutan (H 5, 648) beschriebenen Verbindung zu (Stoermer, Thier, B. 58, 2607). — B. Neben  $\beta.\gamma$ -Diphenyl-buttersäurenitril beim Behandeln von  $\beta.\gamma$ -Diphenyl-propylbromid mit Kaliumcyanid in verd. Alkohol (v. Braun, Manz, A. 468, 266). Aus Methyl-phenyl-benzyl-carbinol durch Destillation mit entwässertem Natriumsulfat (v. Auwers, Kraul, A. 443, 190 Anm. 6) oder mit Phosphorpentoxyd (Ramart, Amagat, A. ch. [10] 8, 317). Neben anderen Produkten bei der Destillation von  $\beta.\beta$ -Diphenyl-propylalkohol mit Phosphorpentoxyd unter vermindertem Druck (Ra., Am.). Neben 3.3-Diphenyl-propen-(1) bei der Destillation von  $\beta.\beta$ -Diphenyl-isopropylalkohol bei Gegenwart von mit Schwefelsäure getränktem Bimsstein (Lévy, Gallais, Abragam, Bl. [4] 43, 874). Durch Einw. von Natriumnitrit auf  $\beta.\beta$ -Diphenyl-propylaminhydrochlorid in verd. Essigsäure (Lévy, Gallais, Bl. [4] 43, 866). Neben anderen Produkten beim Erhitzen größerer Mengen N-Benzoyl- $\beta.\gamma$ -diphenyl-propylamin mit Phosphorpentachlorid (v. Br., M., A. 468, 264).

F: 82—83° (V. Auwers, Kraul, A. 443, 190 Anm. 6; Lévy, Gallais, Bl. [4] 43, 866), 83° (Ley, Kirchner, Z. anorg. Ch. 173, 400). Läßt sich um 25° unterkühlen (Ley, Ki.). Kp<sub>45</sub>: 195—200° (Lé., Ga.); Kp<sub>13</sub>: 165° (v. Au., Kr.).  $D_{i}^{\infty,0}$ : 0,9565;  $n_{i}^{\infty,0}$ : 1,5836;  $n_{i}^{\infty,0}$ : 1,5918;  $n_{i}^{\infty,0}$ : 1,6147 (v. Au., Kr., A. 443, 190). Ultraviolett-Absorptionsspektrum in Alkohol: Ley, Rinke, B. 56, 773; vgl. Ramart-Lucas, C. r. 189, 803. Lichtabsorption eines äquimole-kularen Gemisches mit 1.3.5-Trinitro-benzol in Chloroform: Ley, Rinke. — Liefert bei der Einw. von α-Phenyl-isopropylkalium in Äther und Behandlung des Reaktionsgemisches mit Kohlendioxyd β-Phenyl-β-benzyliden-propionsäure (Ziegler, Mitarb., A. 473, 12, 27).

- 3. 2.3-Diphenyl-propen-(1),  $\alpha$ -Phenyl- $\alpha$ -benzyl-āthylen,  $\alpha$ -Benzyl-styrol  $C_{15}H_{14}=C_6H_5\cdot CH_2\cdot C(:CH_2)\cdot C_6H_5$  (vgl. E I 311). B. Bei der Vakuumdestillation von Trimethyl- $[\beta.\gamma$ -diphenyl-propyl]-ammoniumhydroxyd (v. Braun, Seemann, Schultheiss, B. 55, 3814). Neben überwiegenden Mengen 1.3-Diphenyl-propen bei der Vakuumdestillation von  $\beta.\gamma$ -Diphenyl-propylalkohol in Gegenwart von Infusorienerde (Ramart, Amagat, A. ch. [10] 8, 309). Öl. Kp: 140—143° (unter vermindertem Druck); D\$\frac{n}{2}\$: 1,0143;  $n_D^{n}$ : 1,5903 (v. B., S., Sch.). Gibt mit Brom in Schwefelkohlenstoff  $\alpha$ -Benzyl-styroldibromid (v. B., S., Sch.).
- 4.  $\alpha$ -Phenyl- $\beta$ -o-tolyl- $\ddot{a}$ thylen, 2-Methyl-stilben  $C_{15}H_{14} = C_6H_5 \cdot CH \cdot CH \cdot C_6H_4 \cdot CH_3$ .
- β-Nitro-α-phenyl-β-o-tolyl-äthylen, α-Nitro-2-methyl-stilben  $C_{15}H_{13}O_2N=C_6H_5$ ·  $CH:C(NO_2)\cdot C_6H_4\cdot CH_3$ . B. Beim Aufbewahren von o-Tolyl-nitromethan und Benzaldehyd in Alkohol in Gegenwart von Methylamin (Meisenheimer, Mitarb., A. 468, 217). Gelbe Blättchen (aus Alkohol). F: 92°. Leicht löslich in Chloroform, Benzol, Schwefelkohlenstoff, heißem Eisessig, Äther, Methanol und Alkohol, schwerer in Ligroin und Petroläther. Gibt beim Erhitzen mit zu dünnem Brei eingeengter methylalkoholischer Kalilauge auf 150—170° 2-Methyl-benzil-α-oxim-α'-dimethylacetal (Syst. Nr. 677a), beim Erhitzen mit 50% iger Natronlauge auf 150—160° 4-Phenyl-3.5-di-o-tolyl-isoxazol (M., Mitarb., A. 468, 206, 218, 229).
- α-Nitro-α-phenyl-β-o-tolyl-äthylen, α'-Nitro-2-methyl-stilben  $C_{15}H_{13}O_2N=C_8H_5\cdot C(NO_2)$ : CH·C<sub>6</sub>H<sub>4</sub>·CH<sub>3</sub>. B. Beim Aufbewahren von o-Toluylaldehyd mit Phenylnitromethan in Alkohol in Gegenwart von Methylamin (Meisenheimer, Mitarb., A. 468, 222). Nadeln (aus Alkohol). F: 99°. Gibt beim Erhitzen mit zum dünnen Brei eingeengter methylalkoholischer Kalilauge auf 162° 2-Methyl-benzil-α'-oxim-α-dimethylacetal, beim Erhitzen mit 50% iger Natronlauge auf 150—160° 3.5-Diphenyl-4-o-tolyl-isoxazol (M., Mitarb., A. 468, 207, 230).
- 5.  $\alpha$ -Phenyl- $\beta$ -m-tolyl-āthylen, 3-Methyl-stilben  $C_{15}H_{14}=C_6H_5\cdot CH:CH\cdot C_6H_4\cdot CH_3$ . B. In geringer Menge beim Behandeln von m-Toluylaldehyd mit Benzylmagnesiumchlorid und folgenden Destillieren des Reaktionsprodukts im Vakuum über Kaliumdisulfat (v. Auwers, Frühlling, A. 422, 221). Aus Zimtsäure-m-tolylester durch langsames Erhitzen (v. Au., F.). Krystalle (usu Alkohol). F: 52,5—53,5° (v. Au., F.). Kp<sub>30</sub>: 206—207° (v. Au., F.). D<sub>4</sub><sup>m,t</sup>: 0,9891;  $n_{\alpha}^{m,t}$ : 1,6250;  $n_{\alpha}^{m,t}$ : 1,6363;  $n_{\beta}^{m,t}$ : 1,6698 (v. Au., F.). Sehr leicht löslich in Benzol und Ligroin, leicht in Alkohol und Eisessig, schwer in kaltem Methanol (v. Au., F.). Dichte und Brechungsindices einer Lösung in Chinolin bei 14,7°: Krollfeiffer, A. 430, 222.
- β-Nitro-α-phenyl-β-m-tolyl-äthylen, α-Nitro-3-methyl-stilben  $C_{15}H_{13}O_3N = C_6H_5$ . CH:C(NO<sub>3</sub>)·C<sub>6</sub>H<sub>4</sub>·CH<sub>3</sub>. B. Beim Aufbewahren von m-Tolyl-nitromethan und Benzaldehyd in Alkohol in Gegenwart von Methylamin im Dunkeln (Μκισενηκιμακ, Mitarb., A. 468, 234). Gelbe Platten (aus Methanol oder Alkohol). F: 82°. Sehr leicht löslich in Äther, Benzol, Chloroform und Pyridin, schwer in kaltem Methanol und Alkohol. Liefert beim Schmelzen mit methylalkoholischem Kali bei 160° 3-Methyl-benzil-α-oxim-α'-dimethylacetal.

isoxazol.

α-Nitro-α-phenyl-β-m-tolyl-äthylen, α'-Nitro-3-methyl-stilben  $C_{15}H_{13}O_2N=C_6H_5\cdot C(NO_2)$ : CH· $C_6H_4\cdot CH_3$ . B. Bei der Kondensation von Phenylnitromethan mit überschüßigem m-Toluylaldehyd in Gegenwart von aliphatischen Basen (ΜΕΙΣΕΝΗΕΙΜΕΕ, Μίταrb., A. 468, 243, 244). — Blaßgelbe Nadeln (aus Methanol). F: 51°. Kp<sub>14</sub>: 195°. Leicht löslich in Ather, Alkohol und Benzol, weniger löslich in Eisessig. — Liefert beim Schmelzen mit eingeengter methylalkoholischer Kalilauge 3-Methyl-benzil-α'-oxim-α-dimethylacetal. Gibt beim Behandeln mit Natriummethylat-Lösung niedrigerschmelzendes und höherschmelzendes

1-Nitro-2-methoxy-1-phenyl-2-m-tolyl-äthan und geringe Mengen 3.5-Diphenyl-4-m-tolyl-

6.  $\alpha$ -Phenyl- $\beta$ -p-tolyl-äthylen, 4-Methyl-stilben  $C_{15}H_{14}=C_5H_5\cdot CH:CH\cdot C_5H_4\cdot CH_3$  (H 644; E I 311). B. Bei der Destillation von  $\beta$ -Phenyl- $\beta$ -p-tolyl-äthylalkohol mit Phosphorpentoxyd in Benzol, zuletzt unter vermindertem Druck (Ramart, Amagat, A. ch. [10] 8, 314). — F: 119—120° (Ra., A.). Ultraviolett-Absorptionsspektrum in Alkohol: Ley, Rinke, B. 56, 773. — Gibt bei der Einw. von Benzopersäure  $\alpha$ -Phenyl- $\alpha$ -p-tolyl-äthylenoxyd (Tiffeneau, Lévy, C. r. 184, 1467).

β-Nitro-α-phenyl-β-p-tolyl-äthylen, α-Nitro-4-methyl-stilben  $C_{15}H_{13}O_2N=C_6H_5$ ·  $CH:C(NO_2)\cdot C_6H_4\cdot CH_3$ . B. Beim Aufbewahren von p-Tolyl-nitromethan mit Benzaldehyd in Alkohol in Gegenwart von Methylamin (Meisenheimer, Mitarb., A. 468, 249). — Gelbe Prismen (aus Alkohol). F: 75—76°. — Liefert beim Verschmelzen mit methylalkoholischem Kali bei 150° 4-Methyl-benzil-α-oxim-α'-dimethylacetal.

α-Nitro-α-phenyl-β-p-tolyl-äthylen, α'-Nitro-4-methyl-stilben  $C_{15}H_{19}O_2N = C_8H_5$ .  $C(NO_2):CH\cdot C_8H_4\cdot CH_3$ . B. Bei der Kondensation von p-Toluylaldehyd mit Phenylnitromethan in Alkohol in Gegenwart von Methylamin in der Kälte, neben anderen Produkten (ΜΕΙΣΕΝΗΕΙΜΕΡ, Mitarb., A. 468, 254). — Gelbe Nadeln oder Blättchen (aus Methanol). F: 70°. Leicht löslich in allen organischen Lösungsmitteln außer Ligroin. — Gibt beim Behandeln mit methylalkoholischem Kali bei gewöhnlicher Temperatur höherschmelzendes 1.Nitro-2-methoxy-1-phenyl-2-p-tolyl-äthan. Beim Schmelzen mit methylalkoholischem Alkali bei 160° entsteht 4-Methyl-benzil-α'-oxim-α-dimethylacetal.

α-Pikryl-β-p-tolyl-äthylen, 2'.4'.6'-Trinitro-4-methyl-stilben  $C_{15}H_{11}O_6N_3$ , s. nebenstehende Formel. B. Aus 2.4.6-Trinitro-toluol und p-Toluylaldehyd bei 80—90° in Gegenwart von etwas festem Piperazin (Pastak, Bl. [4] 39,  $\dot{N}O_2$ 

7. 1.1-Diphenyl-propen - (1),  $\alpha$ -Methyl- $\beta$ . $\beta$ -diphenyl-äthylen  $C_{15}H_{14}=(C_8H_5)_3C$ :  $CH\cdot CH_3$  (H 644; E I 312). Zur Konstitution vgl. v. Auwers, B. 62, 694; Ziegler. Colonius, Schäfer, A. 473, 37. — B. Durch Behandlung von Äthyl-diphenyl-carbinol mit Eisessig-Schwefelsäure in der Kälte (Lagrave, A. ch. [10] 8, 386). — F: 51° (La.). D?: 1,127 (Ziegler, Ditzel, A. 473, 201). Zum Ultraviolett-Absorptionsspektrum vgl. Ramart-Lucas, C. r. 189, 803. Löslich in Tetranitromethan mit roter Farbe (Skraup, Freundlich, A. 431, 262). Entfärbung von Lösungen in Eisessig-Schwefelsäure durch 75% igen Alkohol: Sk., Fr., A. 431, 265.

Gibt bei der Oxydation mit Benzopersäure in Chloroform α-Methyl-α'.α'-diphenyläthylenoxyd (LένΥ, Lagrave, C.r. 180, 1033; La., A.ch. [10] 8, 387); Geschwindigkeit dieser Reaktion bei 0°: Meerwein, J. pr. [2] 113, 11, 26. Geschwindigkeit der Hydrierung in Gegenwart von Platin- oder Palladiumschwarz (aus den Oxyden) in Alkohol unter 2—3 Atm. Druck bei 25°: Kern, Shriner, Adams, Am. Soc. 47, 1149. Resgiert nicht mit Natrium (Schlenk, Bergmann, A. 463, 46). Einw. von Kalium: Sch., B. Reaktion mit Stickstoff-trichlorid: Coleman, Campbell, Am. Soc. 50, 2756. Beim Behandeln mit α-Phenyl-isopropylkalium in Ather und Einleiten von Kohlendioxyd in das Reaktionsgemisch entsteht 3.3-Diphenyl-propen-(2)-carbonsäure-(1) (Ziegler, Mitarb., A. 473, 24). — Gibt mit Chinon und Thymochinon eine gelbe, mit Chloranil eine rote Färbung (Skraup, Freundlich, A. 431, 262).

Verbindung mit Zinn(IV)-chlorid. Gelb (SKRAUP, FREUNDLICH, A. 431, 252). Colorimetrische Bestimmung des Zerfalls in Benzol-Lösung: Sk., F. — Verbindung mit Zinn(IV)-bromid. Orangestichig gelb (Sk., F., A. 431, 253). Colorimetrische Bestimmung des Zerfalls in Benzol-Lösung: Sk., F.

Dimeres 1.1-Diphenyl-propen-(1)  $(C_{15}H_{14})_2$ . Das Mol.-Gew. wurde kryoskopisch in Benzol bestimmt (Lagrave, A. ch. [10] 8, 387).— B. In geringer Menge beim Behandeln von Athyl-diphenyl-carbinol mit größeren Mengen konz. Schwefelsäure in Eisessig (La.).— Krystalle (aus Benzol + Ligroin). F: 130°.

2-Brom-1.1-diphenyl-propen-(1),  $\alpha$ -Brom- $\alpha$ -methyl- $\beta$ - $\beta$ -diphenyl-äthylen  $C_{15}H_{13}Br=(C_{\bullet}H_{5})_{2}C:CBr\cdot CH_{3}$  (H 645). Liefert bei aufeinanderfolgender Einw. von Magnesium und

Paraformaldehyd in absol. Äther  $\beta$ -Methyl- $\gamma$ -phenyl-zimtalkohol (ZIEGLER, TIEMANN, B. **55**, 3413).

- 3-Brom-1.1-diphenyl-propen-(1),  $\gamma \cdot \gamma$ -Diphenyl-allylbromid  $C_{15}H_{13}Br = (C_6H_5)_2C$ : CH-CH<sub>2</sub>Br. B. Durch Einw. von Bromwasserstoff-Eisessig auf y-Phenyl-zimtalkohol in der Kälte (ZIEGLER, TIEMANN, B. 55, 3413). — F: 37—39°. — Gibt beim Behandeln mit Hexamethylentetramin in Chloroform und Kochen des Reaktionsprodukts mit Wasser γ-Phenyl-zimtaldehyd.
- 8. 3.3-Diphenyl-propen-(1), Benzhydryläthylen, Vinyldiphenylmethan C<sub>16</sub>H<sub>14</sub> = (C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>CH·CH·CH<sub>2</sub>. Nicht identisch mit dem E I 312 unter dieser Formel beschriebenen Kohlenwasserstoff. B. Neben α-Methyl-stilben bei der Destillation von β.β-Diphenyl-isopropylakohol bei Gegenwart von mit Schwefelsäure getränktem Bimsstein (Lévy, Gallais, Abragam, Bl. [4] 43, 873). Durch Einw. von Natriumnitrit auf β.β-Diphenyl-isopropylamin-hydrochlorid in verd. Essigsäure (L. G., A.). Kp. 295—296°. np: 1,596. — Gibt bei der Oxydation mit Chromsäure in Essigsäure Benzophenon. Beständig gegen Erhitzen mit alkoh. Kalilauge.
- 9.  $\alpha$ -Phenyl- $\alpha$ -p-tolyl-äthylen,  $\alpha$ -p-Tolyl-styrol  $C_{15}H_{14}=CH_2\cdot C_6H_4\cdot C(:CH_2)\cdot C_6H_5$  (H 645). Gibt bei der Einw. von Benzopersäure  $\alpha$ -Phenyl- $\alpha$ -p-tolyl-äthylenoxyd (Tiffeneau, Lévy, C.r. 184, 1467). Beim Behandeln mit Brom in Schwefelkohlenstoff entsteht  $\beta$ -Brom- $\alpha$ -phenyl- $\alpha$ -p-tolyl-äthylen (Hurd, Webb, Am. Soc. 49, 550).
- $\beta$ -Brom  $\alpha$  phenyl  $\alpha$  p-tolyl äthylen  $C_{15}H_{13}Br = CH_3 \cdot C_6H_4 \cdot C(:CHBr) \cdot C_6H_5$ . B. Aus  $\alpha$ -Phenyl- $\alpha$ -p-tolyl-äthylen und Brom in Schwefelkohlenstoff erst unter Kühlung, dann unter Erwärmen (HURD, WEBB, Am. Soc. 49, 550). — Hellgelbe Flüssigkeit. Kp20: 195° bis 202°. — Liefert in ather Lösung bei der Einw. von Magnesium-Kupfer-Legierung  $\beta$ -Phenyl- $\beta$ -p-tolyl-vinylmagnesiumbromid in guter Ausbeute; bei der Einw. von reinem Magnesium entsteht die Grignard-Verbindung nur in geringer Menge neben wenig 1.4-Diphenyl-1.4-dip-tolyl-butadien-(1.3) (H., W., Am. Soc. 49, 557).
- 1-Phenyl-hydrinden, 1-Phenyl-indan C<sub>15</sub>H<sub>14</sub>, s. nebenstehende Formel. B. Durch allmähliche Einw. von Natrium auf eine siedende Lösung von 1-Phenyl-inden in 96%igem Alkohol (MAYER, SIEGLITZ, LUDWIG, B. 54, 1399). — Kp<sub>13</sub>: 148—150°. Mit Wasserdampf flüchtig.

cH∕ČH2 C6H5

CH<sub>3</sub>

- 11. 2-Phenyl-hydrinden, 2-Phenyl-indan C<sub>15</sub>H<sub>14</sub>, s. nebenstehende Formel. B. Durch Hydrierung von 2-Phenyl-inden in Gegenwart von Palladium-Tierkohle in Methanol (v. Braun, Manz, B. 62, 1062). Gelbliches Öl. Kp<sub>10</sub>: 162—163°. D<sub>1</sub>°: 1,0821. n<sub>1</sub>°: 1,5955. - CH<sub>2</sub> - CH<sub>2</sub> CH ⋅ C<sub>6</sub>H<sub>5</sub>
- 1.2 Dibrom 2 phenyl hydrinden, 1.2 Dibrom 2 phenyl indan  $C_{15}H_{12}Br_2 =$  $C_6H_4 < CH_5 > CBr \cdot C_6H_5$ . B. Durch Einw. von Brom auf 2-Phenyl-inden in Schwefelkohlenstoff bei Zimmertemperatur (v. Braun, Manz, B. 62, 1062). — Krystalle (aus Benzol). F: 130—131°. Schwer löslich in Alkohol und Methanol. — Verhalten bei längerer Einw. von Brom in Schwefelkohlenstoff: v. Br., M.
- 12. 9-Methyl-9.10-dihydro-anthracen  $C_{15}H_{14}$ , s. nebenstehende Formel. B. Durch Kochen von 9-Methyl-anthracen mit überschüssigem 4%igem Natriumamalgam in wäßrig-alkoholischer Schwefelsäure (Sieglitz, Marx, B. 56, 1620). Beim Zersetzen der aus 9-Methylanthracen und Natrium in Ather erhaltenen Additionsverbindung mit Alkohol (Schlenk, Bergmann, A. 463, 160). — Nadeln (aus Alkohol). F: 61,5—62° (Sie., M.). — Reagiert nicht mit Pikrinsäure in Alkohol oder Benzol (Sie., M.). Löst sich
- in konz. Schwefelsäure mit grüner Farbe (Sir., M.). 1.5-Dichlor-9.10-dibrom-9-brommethyl-9.10-dihydro-anthracen BrCH<sub>2</sub> Br Cl C<sub>15</sub>H<sub>9</sub>Cl<sub>2</sub>Br<sub>3</sub>, s. nebenstehende Formel. B. Durch Einw. von überschüssigem Brom auf 1.5-Dichlor-9-methyl-anthracen in Schwefelkohlenstoff bei Zimmer-

temperatur, neben 1.5-Dichlor-10-brom-9-brommethylen-dihydroanthracen (Barnett, Cook, Matthews, B. 59, 2874). — Krystalle (aus Benzol + Cl H Petroläther). F: 130—132° (Zers.). — Gibt beim Kochen mit Benzol 1.5-Dichlor-9-brommethyl-anthracen, beim Erhitzen für sich außerdem 1.5-Dichlor-10-brom-9-brommethylen-dihydroanthracen. Liefert beim Kochen mit absol. Alkohol 1.5-Dichlor-9-brom-10-athoxy-9-athoxymethyl-9.10-dihydro-anthracen. Beim Erhitzen mit Calciumcarbonat und wäßr. Aceton erhält man eine Verbindung C<sub>15</sub>H<sub>10</sub>OCl<sub>2</sub> (F: 191—192°) und eine Verbindung C<sub>15</sub>H<sub>11</sub>O<sub>2</sub>Cl<sub>2</sub>Br (F: 179—181°). Liefert bei längerer Einwirkung von Anilin 1.5-Dichlor-9-brom-10-anilino-9-anilinomethyl-9.10-dihydro-anthracen. Bei der Einwirkung von Pyridin entsteht 11-[(1.5-Dichlor-anthryl-(9))-methyl]-pyridiniumbromid.

- 13. 9-Äthyl-fluoren  $C_{15}H_{14} = \frac{C_6H_4}{C_6H_4}CH \cdot C_2H_5$  (H 645; E I 313). B. Beim Leiten von Athyl-diphenyl-carbinol im Wasserstoffstrom über platinierte Kohle bei 300° (Zelinsky, Gawerdowskaja, B. 61, 1052). — F: 108°.
- 2.7 Dibrom 9 äthyl fluoren C<sub>18</sub>H<sub>18</sub>Br<sub>2</sub>, s. nebenstehende Formel. B. Neben 2.7-Dibrom-fluoren beim Kochen der Natrium-C2H5 CH. verbindung des [2.7-Dibrom-fluorenyl-(9)]-glyoxylsäureäthylesters mit Br Br Athyljodid in alkoh. Lösung und weiteren Erhitzen des Reaktionsprodukts mit 20 % iger Kalilauge (Sieglitz, B. 53, 2247). — Krystalle (aus Methanol). F: 80—81° (S.). D. 6: 1,5403; n. 6: 1,6353; n. 6: 1,6442; n. 6: 1,6695 (Krollpfeiffer, A. 430, 222).
- 9-Chlor-2.7-dibrom-9-äthyl-fluoren C<sub>15</sub>H<sub>11</sub>ClBr<sub>2</sub>, s. nebenstehende Formel. B. Beim Kochen von 2.7-Dibrom-9-oxy-9-äthyl-Br fluoren mit Eisessig und konz. Salzsäure (Sieglitz, Jassoy, B. 55, 2038). — Nadeln (aus Alkohol). F: 171°. — Liefert beim Kochen mit Eisessig 2.7-Dibrom-9-äthyliden-fluoren.
- 14. 9.9-Dimethyl-fluoren  $C_{15}H_{14} = \frac{C_6H_4}{C_6H_4}C(CH_3)_2$ . B. Aus Dinatriumfluoren und überschüssigem Methylchlorid in flüssigem Ammoniak (Lebeau, Picon, C. r. 173, 85). — F: 95—96° (Maquennescher Block). Kp<sub>784</sub>: 286,5°. — Liefert bei der Einw. von Natriumammonium ein Tetrahydroderivat (S. 474).

## 5. Kohlenwasserstoffe $C_{16}H_{16}$ .

1. 1.4-Diphenyl-buten-(1) C<sub>16</sub>H<sub>16</sub> = C<sub>6</sub>H<sub>5</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH:CH·C<sub>6</sub>H<sub>5</sub>. B. Beim Kochen von 1.4-Diphenyl-buten-(2) mit Natriumisoamylat-Lösung (Ziegler, Mitarb., A. 473, 28). Beim Behandeln von γ-Phenyl-propylmagnesiumbromid mit Benzaldehyd in absol. Ather. Zersetzen mit Eis und Salzsäure und nachfolgenden Erhitzen auf 180° (Kuhn, Winterstein, Helv. 11, 130). — Nadeln (aus Methanol). F: 42—42,5° (Z., Mitarb.), 47° (K., W.). Kp<sub>7</sub>: 172° bis 175° (K., W.). Sehr leicht löslich in Chloroform, Ather, Petroläther, Aceton und Benzol, schwer in kaltem Methanol und Eisessig (K., W.). — Liefert bei der Umsetzung mit α-Phenyl-isopropylkalium in Ather und nachfolgenden Behandlung mit Kohlendioxyd « Δ.Diphenyl-β-(α-phenyl-isopropylkalium) in Ather und Nachfolgenden Behandlung mit Kohlendioxyd « Δ.Diphenyl-β-(α-phenyl-isopropylkalium) in Ather und Nachfolgenden Behandlung mit Kohlendioxyd « Δ.Diphenyl-β-(α-phenyl-isopropylkalium) in Ather und Nachfolgenden Behandlung mit Kohlendioxyd « Δ.Diphenyl-β-(α-phenyl-isopropylkalium) in Ather und Nachfolgenden Behandlung mit Kohlendioxyd « Δ.Diphenyl-isopropylkalium) in Ather und Nachfolgenden Behandlung mit Kohlendioxyd « Δ.Diphenyl-isopropylkalium) in Ather und Nachfolgenden Behandlung mit Kohlendioxyd « Δ.Diphenyl-isopropylkalium) in Ather und Nachfolgenden Behandlung mit Kohlendioxyd « Δ.Diphenyl-isopropylkalium) in Ather und Nachfolgenden Behandlung mit Kohlendioxyd « Δ.Diphenyl-isopropylkalium) in Ather und Nachfolgenden Behandlung mit Kohlendioxyd « Δ.Diphenyl-isopropylkalium) in Ather und Nachfolgenden Behandlung mit Kohlendioxyd « Δ.Diphenyl-isopropylkalium) in Ather und Nachfolgenden Behandlung mit Kohlendioxyd « Δ.Diphenyl-isopropylkalium) in Ather und Nachfolgenden Behandlung mit Kohlendioxyd « Δ.Diphenyl-isopropylkalium) in Ather und Nachfolgenden Behandlung mit Kohlendioxyd « Δ.Diphenyl-isopropylkalium) in Ather und Nachfolgenden Behandlung mit Kohlendioxyd « Δ.Diphenyl-isopropylkalium) in Ather und Nachfolgenden Behandlung mit Kohlendioxyd « Δ.Diphenyl-isopropylkal

α.δ-Diphenyl-β-[α-phenyl-isopropyl]-n-valeriansaure (Z., Mitarb., A. 473, 12, 28).

Verbindung mit 1.3.5-Trinitro-benzol C<sub>16</sub>H<sub>16</sub> + 2C<sub>6</sub>H<sub>3</sub>O<sub>6</sub>N<sub>3</sub>. Gelbe Nadeln (aus Chloroform). F: 101° (Kuhn, Winterstein, Helv. 11, 148). — Pikrat C<sub>16</sub>H<sub>16</sub> + 2C<sub>6</sub>H<sub>3</sub>O<sub>7</sub>N<sub>3</sub>. Gelbe Nadeln. F: 102° (K., W.).

 1.4-Diphenyl-buten-(2), α.β-Dibenzyl-āthylen C<sub>16</sub>H<sub>16</sub> = C<sub>6</sub>H<sub>5</sub>·CH<sub>2</sub>·CH: CH·CH<sub>3</sub>·C<sub>6</sub>H<sub>5</sub>.
 a) Feste Form (H 646). D<sub>0</sub><sup>0</sup>: 1,104 (Ziegler, Ditzel, A. 473, 204). — Geht beim Kochen mit Natriumisoamylat-Lösung in 1.4-Diphenyl-buten-(1) über (Z., Mitarb., A. 473, 28). Bei der Umsetzung mit α-Phenyl-isopropylkalium in Ather und nachfolgenden Behandlung mit Keblendigung entstehen in helden behandlung. mit Kohlendioxyd entstehen je nach den Mengenverhältnissen 1.4-Diphenyl-buten-(2)-carbonsäure-(1) oder 1.4-Diphenyl-buten-(2)-dicarbonsäure-(1.4) vom Schmelzpunkt 233-2340 (Z., Mitarb.).

b) Flüssige Form. B. Durch Einw. von Alkohol auf 1.4-Dinatrium-1.4-diphenylbuten-(2) (Syst. Nr. 2357) in Ather (Schlenk, Bergmann, A. 463, 101). — Ol. Kp<sub>13</sub>: 176°. Uber einen Kohlenwasserstoff C<sub>16</sub>H<sub>16</sub> aus 1.4-Diphenyl-butanol-(2), der vermutlich ein Gemisch von 1.4-Diphenyl-buten-(1) und 1.4-Diphenyl-buten-(2) ist, vgl. v. Braun,

Kochendörfer, B. 56, 2177.

- 1.2.4-Tribrom-1.4-diphenyl-buten-(2)  $C_{16}H_{13}Br_3 = C_6H_5 \cdot CHBr \cdot CH : CBr \cdot CHBr \cdot C_6H_5 \cdot B$ . Aus höherschmelzendem Diphenyldiacetylen-bis-hydrobromid beim Behandeln mit gesättigtem Bromwasserstoff · Eisessig , neben anderen Produkten (Salkind, Kruglow, B. 59, 1939; Ж. 58, 1058). Beim Stehenlassen von 3-Brom-2.5-diphenyl-2.5-dihydro-furan mit verd. Bromwasserstoff · Essigsäure bei Zimmertemperatur (S., K.). Krystalle (aus Aceton). F: 155°. Schwer löslich in kaltem Petroläther und Ligroin.
- 3. 1.3-Diphenyl-buten-(2),  $\alpha$ -Methyl- $\alpha$ -phenyl- $\beta$ -benzyl-åthylen  $C_{16}H_{16}=C_6H_5\cdot CH_4\cdot CH_2\cdot CH_3\cdot C_6H_5^{-1}$ ). B. Aus 1.3-Diphenyl-buten-(1) beim Aufbewahren oder beim Kochen mit verd. Schwefelsäure sowie beim Belichten der Lösung in Schwefelkohlenstoff

<sup>1)</sup> Diese Verbindung wird nach dem Literatur-Schlußtermin des Ergänzungswerks II [1. I. 1930] von Risi, GAUVIN (Canad. J. Res. 14 [B], 263; C. 1937 I, 3461) als 1-Methyl-8-phenylhydrinden aufgefaßt; vgl. jedoch Marion, Canad. J. Res. 16 [B], 216; C. 1989 I, 2186.

in Gegenwart von wenig Jod (Stoermer, Kootz, B. 61, 2334). Durch Kochen von Methylphenyl-β-phenäthyl-carbinol mit 20% iger Schwefelsäure (St., K., B. 61, 2333). Neben anderen Produkten bei mehrtägigem Kochen von Zimtsäure mit verd. Schwefelsäure (St., K.).— Kp<sub>13</sub>: 169—170°. D<sub>1</sub><sup>20,6</sup>: 1,0149. n<sub>D</sub>: 1,577.— Liefert bei der Ozonisierung in trocknem Chloroform Phenylacetaldehyd und Acetophenon, bei vorsichtiger Oxydation mit Kaliumpermanganat Phenylessigsäure und Acetophenon. Bei der Einw. von Brom in Schwefelkohlenstoff entsteht ein flüssiges Produkt. Gibt mit Äthylnitrit und rauchender Salzsäure in Eisessig unter Kühlung ein bei ca. 126° (Zers.) schmelzendes Nitrosochlorid.

4. 1.3-Diphenyl-buten-(1), flüssiges Distyrol¹ C<sub>16</sub>H<sub>16</sub>=C<sub>6</sub>H<sub>5</sub>·CH:CH·CH(CH<sub>3</sub>)·C<sub>6</sub>H<sub>5</sub> (H 647; E I 313). Das von Fittig, Erdmann, A. 216 [1883], 187 beschriebene Präparat war ein Gemisch von 1.3-Diphenyl-buten-(1) mit 1.3-Diphenyl-buten-(2) (Stoermer, Kootz. B. 61, 2332). — B. Neben Styrol und anderen Produkten beim Erhitzen von Methyl-phenyl-carbinol mit 64,5% iger Schwefelsäure auf 110° (Senderens, C. r. 182, 614). Neben anderen Produkten bei 8-stdg. Kochen von Zimtsäure mit verd. Schwefelsäure (Stoermer, Kootz, B. 61, 2334). — Kp<sub>14</sub>: 175—176° (Stoe., K.). n<sub>D</sub>: 1,590 (Stoe., K.). Ultraviolett-Absorptionsspektrum: Stobbe, Färber, B. 57, 1840. Zeigt in reinem Zustand keine Fluorescenz (Stoe., K.). — Lagert sich beim Aufbewahren oder beim Kochen mit verd. Schwefelsäure sowie beim Belichten der Lösung in Schwefelkohlenstoff bei Gegenwart von etwas Jod in 1.3-Diphenyl-buten-(2) um (Stoe., K.). Bei der Ozonspaltung erhält man Hydratropaaldehyd und Benzoesäure bzw. Benzaldehyd (Stoe., K.). Gibt beim Behandeln mit Brom in Schwefelkohlenstoff drei 1.2-Dibrom-1.3-diphenyl-butane vom Schmelzpunkt 129°, 122° und 79° (Stoe., K.; vgl. Stoe., Thier, B. 58, 2613). Bleibt beim Erhitzen mit alkoh. Kalilauge unverändert (Stoe., Th.).

# 5. 2-Methyl-1.3-diphenyl-propen. $\alpha$ -Methyl- $\beta$ -phenyl- $\alpha$ -benzyl-äthylen. $\beta$ -Methyl- $\beta$ -benzyl-styrol $C_{16}H_{16}=C_6H_5\cdot CH_3\cdot C(CH_3):CH\cdot C_6H_5$ (vgl. E I 313). a) Präparat von Tiffeneau, Lévy. B. Aus Methyl-dibenzyl-carbinol durch Einw.

- a) Prāparat von Tiffeneau, Lévy. B. Aus Methyl-dibenzyl-carbinol durch Einw. von Acetylchlorid oder Acetanhydrid in Gegenwart von etwas Schwefelsäure (TIFFENEAU, LÉVY, Bl. [4] 33, 776). Nach Rosen riechende Flüssigkeit. Gibt mit Jod und gelbem Quecksilberoxyd in feuchtem Ather 3-Jod-2-oxy-2-methyl-1.3-diphenyl-propan. Gibt ein unbeständiges Nitrosit vom Schmelzpunkt 122—123°.
- b) Präparat von Trotman. B. Eine Verbindung, die wahrscheinlich als 2-Methyl-1.3-diphenyl-propen anzusehen ist, entsteht aus 2-Brom-2-methyl-1.3-diphenyl-propan durch Einw. von Athylmagnesiumbromid in Ather bei Zimmertemperatur oder Benzylmagnesiumchlorid bei 100° sowie beim Kochen mit überschüssigem Pyridin (Trotman, Soc. 127, 92). Ol. Kp: 294—296°. Gibt mit Brom in Chloroform ein unbeständiges Dibromid. Beim Sättigen mit Bromwasserstoff entsteht 2-Brom-2-methyl-1.3-diphenyl-propan.
- 6. 1.2-Diphenyl-buten-(1),  $\alpha$ -Āthyl- $\alpha$ . $\beta$ -diphenyl-āthylen,  $\alpha$ -Āthyl-stilben  $C_{16}H_{16}=C_6H_5\cdot CH:C(C_2H_5)\cdot C_6H_5$ .
- a) Feste Form (H 647). B. Neben der flüssigen Form bei der trocknen Destillation des Calciumsalzes der Distyrinsäure (Syst. Nr. 953) mit Natronkalk unter 12 mm Druck (STOERMER, BECKER, B. 56, 1447). F: 56,5°.
- b) Flüssige Form (H 647; E I 313). B. s. bei der festen Form (Stoermer, Becker, B. 56, 1447). B. Bei der Einw. von Natriumnitrit auf  $\beta.\beta$ -Diphenyl-butylamin-hydrochlorid in verd. Essigsäure (Lévy, Gallais, Bl. [4] 43, 867). Bildung aus Distyrinsäure s. bei der festen Form. Kp<sub>760</sub>: 300—305° (L., G.). Gibt bei der Oxydation mit Chromsäure in Eisessig Benzaldehyd und Propiophenon (L., G.).

7. 2.3-Diphenyl-buten-(2),  $\alpha.\beta$ -Dimethyl- $\alpha.\beta$ -diphenyl-äthylen,  $\alpha.\alpha'$ -Dimethyl-stilben  $C_{16}H_{16}=C_6H_5\cdot C(CH_3)\cdot C_6H_5\cdot$ 

a) Niedrigerschmelzende Form, cis-Form. Zur Konfiguration vgl. Ott, B. 61, 2128; v. Auwers, B. 68 [1935], 1349; Wessely, Welleba, B. 74 [1941], 779. — B. Neben der trans-Form beim Kochen von 2-Oxy-2.3-diphenyl-butan bei Gegenwart von mit Schwefelsäure getränktem Bimsstein und folgenden Destillieren des Reaktionsprodukts im Vakuum (Ramaet-Lucas, Salmon-Legagneur, Bl. [4] 45, 727). Neben der trans-Form und 2.3-Diphenyl-buten-(1) beim Erwärmen von 3-Oxy-2.2-diphenyl-butan mit Eisessig und konz. Schwefelsäure auf dem Wasserbad (Ott, B. 61, 2136). — Krystalle (aus Methanol oder Eisessig). Monoklin-prismatisch (Steinwachs, B. 61, 2136). F: 66° (Ott), 65—66° (R.-L., S.-L.). Ultraviolett-Absorptionsspektrum in Alkohol: R.-L., S.-L.; vgl. R.-L., C. r. 189, 803. — Gibt bei der Oxydation mit Benzopersäure in Chloroform bei 0° niedrigerschmelzendes a.a'-Dimethyl-a.a'-diphenyl-äthylenoxyd (R.-L., S.-L.). cis-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a'-Dimethyl-a.a

<sup>&</sup>lt;sup>1</sup>) Ist nach Marion (Canad. J. Res. 16 [B], 214; C. 1939 I, 2185) wahrscheinlich cis-1.3-Di-phenyl-buten-(1).

stilben liefert bei der Hydrierung in Gegenwart von Palladium-Kohle in Äther höherschmelzendes 2.3-Diphenyl-butan (S. 520); analog verläuft die Hydrierung in Gegenwart von Nickel-Kohle (Ott; vgl. Wessely, Welleba, B. 74, 782).

b) Höherschmelzende Form, trans-Form (E I 313). Zur Konfiguration vgl. Ott, B. 61, 2129; v. Auwers, B. 68 [1935], 1349; Wessely, Welleba, B. 74 [1941], 779. — B. Entsteht als einziges Produkt bei der Destillation von 2-Oxy-3-diphenyl-butan oder 3-Oxy-3-diphenyl-butan oder 3-Oxy 2.2-diphenyl-butan unter gewöhnlichem Druck oder im Vakuum bei Gegenwart von etwas Schwefelsäure (Levy, C. r. 172, 384; Bl. [4] 29, 887, 889; vgl. Schlenk, Bergmann, A. 463, 118). Weitere Bildungen aus 2-Oxy-2.3-diphenyl-butan und aus 3-Oxy-2.2-diphenylbutan s. bei der cis-Form. - Krystalle (aus Petroläther), alkoholhaltige Krystalle (aus Dutan s. bei der cis-rorm. — Krystalie (aus retrolather), alkonolhaltige Krystalie (aus Alkohol). F: 104—105° (Lévy), 106° (Sch., B.), 107° (Ott, B. 61, 2135). Kp<sub>16</sub>: 156—158° (Sch., B.). Ultraviolett-Absorptionsspektrum in Alkohol: Ramart-Lucas, Salmon-Legagneur, Bl. [4] 45, 729; R.-L., C.r. 189, 803; vgl. Ley, Rinke, B. 56, 773. Ziemlich leicht löslich in siedendem Alkohol (Lévy). Lichtabsorption eines äquimolekularen Gemisches mit 1.3.5-Trinitro-benzol in Chloroform: Ley, R.

Geht bei kurzem Erhitzen bei Gegenwart von mit Schwefelsäure getränktem Bimsstein teilweise in die niedrigerschmelzende Form über (RAMART-LUCAS, SALMON-LEGAGNEUR, Bl. [4] 45, 728). Gibt bei der Oxydation mit Benzopersäure in Chloroform bei 0° höherschmelzendes  $\alpha.\alpha'$ -Dimethyl- $\alpha.\alpha'$ -diphenyl-äthylenoxyd (R.-L., S.-L.). Bei der Oxydation mit Chromsäure in Eisessig entsteht Acetophenon (Lévy, Bl. [4] 29, 889). Liefert bei der Hydrierung in Gegenwart von Palladium- oder Nickel-Kohle in Äther, Eisessig oder Methanol oder bei der Reduktion mit Natrium in siedendem 95%igem Alkohol niedrigerschmelzendes 2.3-Diphenyl-butan (S. 521) und je nach den Reaktionsbedingungen wechselnde Mengen höherschmelzendes 2.3-Diphenyl-butan (Ott, B. 61, 2137; vgl. Wessely, Welleba, B. 74 [1941], 782); bei der Hydrierung in Gegenwart von Palladium-Bariumsulfat in siedendem Eisessig im Wasserstoffstrom entsteht höherschmelzendes 2.3-Diphenyl-butan als einziges Reaktionsprodukt (SCHLENK, BERGMANN, A. 463, 118). Addiert in Petroläther oder Chloroform 2 Atome Brom (Lévy). Liefert mit Natrium in Ather 2.3-Dinatrium-2.3-diphenylbutan (Syst. Nr. 2357), das mit Kohlendioxyd hochschmelzendes α.α'-Dimethyl-α.α'-diphenyl-bernsteinsäure gibt; das bei der Einw. von Lithium entstehende 2.3-Dilithium-2.3-diphenyl-butan (Syst. Nr. 2357) gibt mit Kohlendioxyd niedrigschmelzende α.α'-Dimethyl-α.α'-diphenyl-butan (Syst. Nr. 2357) gibt mit Kohlendioxy α.α'-diphenyl-bernsteinsäure (Sch., B.).

- 8.  $\alpha.\beta$ -Di-o-tolyl-āthylen, 2.2'-Dimethyl-stilben  $C_{16}H_{16} = CH_{2} \cdot C_{6}H_{4} \cdot CH \cdot CH \cdot CGH_{4} \cdot CH_{3}$  (H 647; E I 313). B. Neben anderen Verbindungen beim Erhitzen von o-Tolyl-carbinol mit Schwefel unter Einleiten von Kohlendioxyd auf 200—205° (SZPERL, Roczniki Chem. 6, 731, 732; C. 1927 I, 2985).
- 9. α.β-Di-m-tolyl-āthylen, 3.3'-Dimethyl-stilben C<sub>16</sub>H<sub>16</sub> = CH<sub>3</sub>·C<sub>6</sub>H<sub>4</sub>·CH:CH·C<sub>6</sub>H<sub>4</sub>·CH<sub>3</sub> (H 647). B. Neben anderen Verbindungen beim Erhitzen von m-Tolylcarbinol mit Schwefel unter Einleiten von Kohlendioxyd auf 190—200° (SZPERL, Roczniki Chem. 6, 735; C. 1927 I, 2985). Krystalle (aus Alkohol + Methanol). F: 55,1—56,2°. Entfärbt Kaliumpermanganat-Lösung.
- 10.  $\alpha.\beta$ -Di-p-tolyl-athylen, 4.4'-Dimethyl-stilben  $C_{16}H_{16} = CH_3 \cdot C_6H_4 \cdot CH \cdot CH \cdot CGH_4 \cdot CH_3$  (H 648; E I 313). B. In geringer Menge bei der Reduktion von 2.2.2-Trichlor-1.1-di-p-tolyl-äthan mit Wasserstoff und Palladium-Calciumcarbonat in Alkohol + Pyridin oder mit Devardascher Legierung in Gegenwart von wenig Eisenchlorid in siedendem verdünntem Alkohol (Brand, Wendel, J. pr. [2] 115, 339, 340). Neben anderen Produkten beim Erhitzen von p-Tolylcarbinol mit Schwefel unter Einleiten von Kohlendioxyd auf 190—200° (SZPERL, Roczniki Chem. 6, 736; C 1927 I, 2985) und beim Erhitzen von Dip-tolyl-acetaldehyd mit wäßrig-alkoholischer Schwefelsäure im Rohr auf ca. 1450 (Danilow, Venus-Danilowa, B. 59, 1038; 3. 57, 436). — Violett fluorescierende Blättchen (aus Alkohol + Aceton). F: 179—180° (Sz.).

11. 1.1-Diphenyl-buten-(1),  $\alpha$ -Äthyl- $\beta$ . $\beta$ -diphenyl-äthylen  $C_{16}H_{16} = (C_6H_5)_2C$ :  $CH \cdot C_2H_5$  (H. 648; E. I. 313).

Im Artikel des Hauptwerks sind die Angaben von Klages, Heilmann (B. 37, 1451) zu streichen; das als Propyldiphenylchlormethan angesehene Ausgangsmaterial ist als Diphenylchlormethan erkannt worden (vgl. Blicke, Powers, Am. Soc. 51, 3378; Schlenk, Bergmann, A. 463, 47 Anm.). — B. Durch Behandlung von Propyl-diphenyl-carbinol mit Eisessig-Schwefelsäure (Lagrave, A. ch. [10] 8, 391). Durch Umsetzung von Phenylmagnesiumbromid mit Butyrylchlorid in Äther und Zersetzung des Reaktionsprodukts mit verd. Essigsäure (GILMAN, FOTHERGILL, PARKER, R. 48, 750). — Entfärbung von Lösungen in Eisessig-Schwefelsäure durch 75 %igen Alkohol: SKRAUP, FREUNDLICH, A. 481, 265. — Gibt bei der Oxydation mit Benzopersäure in Chloroform α-Athyl-α'.α'-diphenyl-äthylenoxyd (Lźvy, LAGRAVE, C. r. 180, 1033; La., A. ch. [10] 8, 392). Addiert Brom in Chloroform (La.). Beim

Behandeln mit a-Phenyl-isopropylkalium in Äther und Einleiten von Kohlendioxyd in das Reaktionsgemisch erhält man  $\hat{\beta}$ -Diphenylmethylen-isobuttersäure (Ziegler, Mitarb., A.

473, 25).
Verbindung mit Zinn(IV)-chlorid. Gelbstichig grün (Skraup, Freundlich, A.
431, 252). Colorimetrische Bestimmung des Zerfalls in Benzol-Lösung: Sk., Fr.
Verbindung mit Zinn(IV)-bromid 2C<sub>16</sub>H<sub>16</sub>+SnBr<sub>4</sub>. Citronengelb (Skraup, Freundlich, A.
431, 253). Colorimetrische Bestimmung des Zerfalls in Benzol-Lösung: Sk., Fr.
Dimeres 1.1-Diphenyl-buten-(1) (C<sub>16</sub>H<sub>16</sub>)<sub>2</sub>. Das Mol.-Gew. ist kryoskopisch in Benzol bestimmt (Lagrave, A. ch. [10] 8, 392). — B. Als Nebenprodukt beim Behandeln von Propyl-diphenyl-carbinol mit Eisessig-Schwefelsäture (La.). — Mikrokrystallinisches Pulver (aus Benzol und Ligroin). F: 110—111°.

- 12. 2-Methyl-1.1-diphenyl-propen-(1),  $\alpha.\alpha$ -Dimethyl- $\beta.\beta$ -diphenyl-āthylen  $C_{16}H_{16}=(C_6H_6)_2C:C(CH_3)_2$  (H 648; E I 314). Zur Konstitution vgl. v. Auwers, B. 62, 694, 696; Ziegler, Colonius, Schäfer, A. 473, 38. B. Bei der Destillation von 1-Oxy-2-methyl-1.1-diphenyl-propan unter gewöhnlichem Druck oder im Vakuum in Gegenwart von etwas Bimsstein-Schwefelsäure (Lévy, C.r. 172, 384; Bl. [4] 29, 882). Aus Isopropyl-diphenyl-carbinol bei der Destillation unter gewöhnlichem Druck (Lévy), beim Erhitzen unter gewöhnlichem Druck bei Gegenwart von mit Schwefelsäure getränktem Bimse in (RAMART-LUCAS, Salmon-Legagneur, Bl. [4] 45, 729), beim Erwärmen in Eisessig-Schwefelsäure (Ziegler, Bähr, B. 62, 1696), beim Sättigen der äther. Lösung mit Chlorwasserstoff und Kochen des Reaktionsprodukts mit Pyridin (Schlenk, Bergmann, A. 463, 47). — F: 11—11,5° (Z., B.). Kp: 280—282° (Lévy); Kp<sub>18</sub>: 150—152° (R.-L., S.-L.); Kp<sub>14</sub>: 152—153° (Schl., Be.); Kp<sub>14</sub>: 152—154° (v. Au.). D°: 1,010 (Lévy);  $D_{i}^{i,6}$ : 1,0021;  $n_{\alpha}^{i,6}$ : 1,5817;  $n_{He}^{i,6}$ : 1,5886;  $n_{B}^{i,6}$ : 1,6051;  $n_{\nu}^{1,6}$ : 1,6206 (v. Au.). Ultraviolett-Absorptionsspektrum: Ramart-Lucas, C.r. 189, 803. Gibt bei der Oxydation mit Benzopersäure in Chloroform bei 0° α.α-Dimethyl-α'.α'-diphenyl-äthylenoxyd (RAMART-LUCAS, SALMON-LEGAGNEUR, Bl. [4] 45, 730). Beim Behandeln kleiner Mengen  $\alpha.\alpha$ -Dimethyl- $\beta.\beta$ -diphenyl-äthylen mit der berechneten Menge Brom in Schwefelkohlenstoff im Kältegemisch entsteht  $\alpha.\alpha$ -Dimethyl- $\beta.\beta$ -diphenyl-äthylenbromid, das beim Aufbewahren oder Erwärmen rasch unter Bromwasserstoff-Entwicklung in  $\beta$ -Methylγ.γ-diphenyl-allylbromid übergeht (ZIEGLER, BÄHR, B. 62, 1696). Reagiert nicht mit Natrium (SCHLENK, BERGMANN, A. 463, 33). Beim Behandeln der konzentrierten ätherischen Lösung mit Kalium-Natrium-Legierung und Einleiten von Kohlendioxyd in das Reaktionsgemisch entsteht α.α-Diphenyl-isovaleriansäure; in sehr verdünnter ätherischer Lösung entsteht außerdem β-Diphenylmethylen-buttersäure (Ziegler, Colonius, Schäfer, A. 473, 50, 53). Gibt beim Behandeln mit a-Phenyl-isopropylkalium in Ather und Einleiten von Kohlendioxyd in das Reaktionsgemisch  $\beta$ -Diphenylmethylen-buttersäure und  $\beta$ -Diphenylmethylen-glutarsäure (Ziegler, Mitarb., A. 478, 25). Beim Versetzen der äther. Lösung der Kaliumverbindung mit Phenylsenföl erhält man α.α-Diphenyl-thioisovaleriansäure-anilid (Z., С., Sch.). α.α-Dimethyl-β.β-diphenyl-äthylen liefert bei langem Schütteln mit Lithium eine braune Lösung, die mit einer äther. Lösung von Phenylsenföl β-Diphenylmethylen-thiobuttersäure-anilid (Syst. Nr. 1616) gibt (Schl., Be., A. 463, 48; Z., C., Sch., A. 473, 44, 54).

  Nitrosit C<sub>16</sub>H<sub>16</sub>O<sub>3</sub>N<sub>2</sub>. B. Bei tropfenweiser Zugabe von rauchender Salpetersäure zu einem Gemisch von α.α-Dimethyl-β.β-diphenyl-äthylen und Isoamylnitrit unterhalb 0° (Lévy, Bl. [4] 29, 883). — Krystalle (aus Alkohol). F: 116—117°.
- 3-Brom-2-methyl-1.1-diphenyl-propen-(1),  $\beta$ -Methyl- $\gamma$ . $\gamma$ -diphenyl-allylbromid  $C_{16}H_{16}Br = (C_6H_6)_2C:C(CH_3)\cdot CH_2Br.$  B. Aus dem beim Behandeln von  $\alpha.\alpha$ -Dimethyl- $\beta_{0}^{11}$ -Habital Archiver in kaltem Schwefelkohlenstoff entstehenden  $\alpha.\alpha$ -Dimethyl- $\beta.\beta$ -diphenyl-äthylenbromid beim Aufbewahren oder besser beim Erwärmen (Ziegler, Bähr, B. 62, 1697). Aus  $\beta$ -Methyl- $\gamma$ -phenyl-zimtalkohol und Bromwasserstoff in Eisessig (Z., B.). — Krystalle (aus Eisessig). F: 57—58°. Kp<sub>0,1—0,2</sub>: 135—140°.
- 13. α.α-Di-p-tolyl-āthylen C<sub>16</sub>H<sub>16</sub> = (CH<sub>3</sub>·C<sub>6</sub>H<sub>4</sub>)<sub>2</sub>C:CH<sub>2</sub> (H 648; E I 314). B. Beim Versetzen eines Gemisches von Bromacetaldehyd-dimethylacetal und Toluol mit konz. Schwefelsäure unter Kühlung und Kochen des Reaktionsprodukts mit methylalkoholischer Kalilauge (Pfeiffer, Wizinger, A. 461, 147). Beim Behandeln von p-Tolylmagnesium-bromid mit Essigsäureäthylester in Ather, Zersetzen des Reaktionsprodukts mit Ammoniumchlorid-Lösung und Destillieren im Vakuum (Anschütz, Hilbert, B. 57, 1698). — Krystalle (aus Ather). F: 61°; Kp<sub>13</sub>: 163—165° (A., H.). — Liefert bei der Reduktion mit Natrium und Alkohol 1.1-Di-p-tolyl-āthan (A., H.). Beim Behandeln mit 1 Mol oder  $^{1}$ /<sub>2</sub> Mol Salpetersäure in Eisessig zuletzt auf dem Wasserbad entsteht  $\beta$ -Nitro- $\alpha$ . $\alpha$ -di-p-tolyl-āthylen (A., H.). — Löst sich in konz. Schwefelsäure mit tiefgelber Farbe. Mit Überchlorsäure in Acetanhydrid und Eisessig entsteht eine gelbe Färbung (Pr., W.).
- $\beta.\beta$  Dichlor  $\alpha.\alpha$  di p tolyl äthylen  $C_{16}H_{14}Cl_2 = (CH_3 \cdot C_6H_4)_2C \cdot CCl_2$  (H 648). Krystalle (aus Alkohol). F: 85° (HARRIS, FRANKFORTER, Am. Soc. 48, 3148).

- β-Brom-α.α-di-p-tolyl-äthylen, β.β-Di-p-tolyl-vinylbromid  $C_{16}H_{15}Br=(CH_3\cdot C_6H_4)_2C:CHBr$  (E I 314). Nadeln (aus Isopropylalkohol). F: 67°; Kp<sub>20</sub>: 210° (Anschütz, Hilbert, B. 57, 1699).
- $\beta.\beta$ -Dibrom- $\alpha.\alpha$ -di-p-tolyl-äthylen  $C_{16}H_{14}Br_2 = (CH_3 \cdot C_6H_4)_2C:CBr_2$ . B. Beim Kochen von 2.2.2-Tribrom-1.1-di-p-tolyl-äthan mit alkoh. Kalilauge (Harris, Frankforter, Am. Soc. 48, 3148). Krystalle (aus Alkohol). F: 118°.
- $\beta$ -Nitro-α.α-di-p-tolyl-äthylen  $C_{16}H_{15}O_2N=(CH_3\cdot C_6H_4)_2C:CH\cdot NO_2$ . B. Durch Einw. von  $^1/_2$  oder 1 Mol Salpetersäure auf 1.1-Di-p-tolyl-äthan oder α.α-Di-p-tolyl-äthylen in Eisessig zuletzt auf dem Wasserbad (Anschütz, Hilbert, B. 57, 1699). Krystalle (aus Isopropylalkohol). F: 116°. Bei der Oxydation mit Chromsäure in Eisessig entsteht Di-p-tolyl-keton. Die Lösung in absol. Alkohol liefert bei längerem Schütteln mit Natrium-äthylat bei 30° das Natriumsalz des 2-Nitro-1-äthoxy-1.1-di-p-tolyl-äthans.
- 14. 1.3-Diphenyl-cyclobutan  $C_{16}H_{16} = C_6H_5 \cdot CH < \frac{CH_2}{CH_2} > CH \cdot C_6H_5$  (H 648). Die unter dieser Formel beschriebene Verbindung ist von Stoermer, Thier (B. 58, 2607) als 1.2-Diphenyl-propen-(1) (S. 552) erkannt worden.
- 15. 1- $\Delta^1$ -Cyclohexenyl-naphthalin, 1- $\alpha$ -Naphthyl-cyclohexen-(1)  $C_{16}H_{16} = H_2C < \frac{CH_2}{CH_2} \cdot CH_2 > C \cdot C_{10}H_7$ . B. Aus Cyclohexanon und  $\alpha$ -Naphthylmagnesiumbromid in absol. Ather (Weiss, Woidich, M. 46, 456). Krystalle (aus Methanol). F: 36° (W., W.), 46° (Cook, Hewett, Lawrence, Soc. 1936, 76). Kp<sub>260</sub>: 332° (W., W.). Liefert beim Erhitzen mit Schwefel auf 250° 1-Phenyl-naphthalin (W., W.).
- 16. 2-Phenyl-1.2.3.4-tetrahydro-naphthalin, 2-Phenyl-tetralin  $C_{16}H_{16} = C_{6}H_{4} \cdot CH_{2} \cdot CH_{2} \cdot B$ . Durch Reduktion von 4-0xo-2-phenyl-tetralin mit amalgamiertem Zink und Salzsäure (v. Braun, Manz, A. 468, 267). Kp<sub>13</sub>: 180—181°. D<sub>4</sub>\*: 1,0579.  $n_{19}^{16}$ : 1,5980. Beim Überleiten über erhitztes Bleioxyd entsteht 2-Phenyl-naphthalin.
- 17. 1-o-Tolyl-hydrinden  $C_{16}H_{16}=C_6H_4$   $CH_2$   $CH_2$   $CH_2$   $CH_2$ . B. Durch Reduktion von 3-Oxo-1-o-tolyl-hydrinden mit amalgamiertem Zink und Salzsäure (v. Braun, Manz, Reinsch, A. 468, 290). Nadeln. F: 57°.  $Kp_{14}$ : 160—162°.
- 18. 1-p-Tolyl-hydrinden  $C_{16}H_{16} = C_6H_4$   $CH_2$   $CH_2$   $CH_2$   $CH_2$ . B. Durch Reduktion von 3-Oxo-1-p-tolyl-hydrinden mit amalgamiertem Zink und Salzsäure (v. Braun, Manz, Reinsch, A. 468, 292). Kp<sub>14</sub>: 168—170°. D<sup>a</sup>: 1,0455.  $n^{ab}_{D}$ : 1,5878.
  - 19. 9- $\ddot{A}thyl$ -9.10-dihydro-anthracen  $C_{16}H_{16} = C_6H_4$   $CH_2$   $CH_2$   $C_6H_4$ .
- 1.5-Dichlor-9.10.9¹-tribrom-9-äthyl-9.10-dihydro-anthracen, CH<sub>3</sub>·CHBr Br Cl 1.5 Dichlor 9 [ $\alpha$  brom äthyl] anthracen dibromid (9.10) C<sub>18</sub>H<sub>11</sub>Cl<sub>2</sub>Br<sub>3</sub>, s. nebenstehende Formel. B. Durch Einw. von 2 Mol Brom auf 1.5-Dichlor-9-äthyl-anthracen in Schwefelkohlenstoff bei Zimmertemperatur (Barnett, Cook, Matthews, B. 59, 2877). Krystalle (aus Benzol-Petroläther). F: 126—127° (Zers.). Liefert beim Kochen mit Toluol 1.5-Dichlor-9-[ $\alpha$ -brom-āthyl]-anthracen.
- 20. 9.10-Dimethyl-9.10-dihydro-anthracen C<sub>16</sub>H<sub>16</sub> = C<sub>6</sub>H<sub>4</sub> < CH(CH<sub>8</sub>) > C<sub>6</sub>H<sub>4</sub> (H 649; E I 314). Das in der Literatur beschriebene 9.10-Dimethyl-9.10-dihydro-anthracen ist in Wirklichkeit 9.10-Dimethyl-anthracen (S. 593) (Barnett, Matthews, B. 59, 1432); das wahre 9.10-Dimethyl-9.10-dihydro-anthracen hat den Schmelzpunkt 101—102° (Badger, Goulden, Warren, Soc. 1941, 20).
- 9.10 Dibrom 9.10 dimethyl 9.10 dihydro anthracen  $C_{16}H_{14}Br_{2} = C_{6}H_{4} < \begin{array}{c} CBr(CH_{3}) > C_{6}H_{4} & (H 649). \end{array}$  Die unter dieser Formel beschriebene Verbindung ist von Barnett, Matthews (B. 59, 1433) als 9.10-Bis-brommethyl-anthracen (S. 594) erkannt worden.
- 21. 9-Isopropyl-fluoren C<sub>16</sub>H<sub>16</sub> = C<sub>6</sub>H<sub>4</sub> CH·CH(CH<sub>3</sub>)<sub>2</sub>. B. Beim Kochen von 9-Isopropyliden-fluoren mit Jodwasserstoffsäure (D: 1,7) in Eisessig (Martland, Tucker, Soc. 1929, 2564). Durch Einw. von Isopropyljodid auf die Kaliumverbindung des Fluorencarbonsäure-(9)-äthylesters in siedendem Äther, Kochen des Reaktionsprodukts mit alkoh.

Natronlauge und trocknes Erhitzen der erhaltenen Säure (M., T.). — Blättchen (aus Methanol). F: 53—55°. Leicht löslich in heißem Methanol.

- 9-[ $\alpha$ -Chlor-isopropyl]-fluoren,  $\alpha$ -[Fluorenyl-(9)]-isopropylchlorid  $C_{16}H_{15}Cl=C_6H_4$ CH·CCl(CH<sub>3</sub>)<sub>2</sub> (E I 314). Gibt beim Erhitzen auf 180° 9-Isopropyliden-fluoren und ein bei 50—59° schmelzendes Produkt (Mattland, Tucker, Soc. 1929, 2563).
- 9-[ $\alpha$ -Brom-isopropyl]-fluoren,  $\alpha$ -[Fluorenyl-(9)]-isopropylbromid  $C_{16}H_{15}Br = C_{6}H_{4}$  CH·CBr(CH<sub>3</sub>)<sub>2</sub>. B. Durch Einleiten von Bromwasserstoff in eine Lösung von Dimethyl-G<sub>6</sub>H<sub>4</sub> CH·CBr(CH<sub>3</sub>)<sub>2</sub>. B. Durch Einleiten von Bromwasserstoff in eine Lösung von Dimethyl-Gluorenyl-(9)]-carbinol in kaltem Alkohol oder Eisessig (Maitland, Tucker, Soc. 1929, 2563).

   Nicht rein erhalten. Krystalle (aus Alkohol, Eisessig oder Ligroin). Schmilzt bei 98—103°.
- 9.9¹- Dibrom 9 isopropyl fluoren, 9 Brom 9 [ $\alpha$  brom isopropyl] fluoren  $C_{16}H_{14}Br_2 = {C_6H_4 \choose C_6H_4}CBr\cdot CBr(CH_3)_2$ . B. Aus 9-Isopropyliden-fluoren und Brom in Schwefelkohlenstoff unter Kühlung (Maitland, Tucker, Soc. 1929, 2564). Grünliche Prismen (aus Ligroin). F: 126—127°.

#### 6. Kohlenwasserstoffe $C_{17}H_{18}$ .

- 1. 1-Phenyl-2-benzyl-buten-(1). 2-Åthyl-1.3-diphenyl-propen,  $\alpha$ -Åthyl- $\beta$ -phenyl- $\alpha$ -benzyl-āthylen  $C_{17}H_{18}=C_6H_5\cdot CH_2\cdot C(C_2H_5)\cdot CH\cdot C_6H_5$  (E I 315). B. Durch Überleiten der Dämpfe von  $\beta$ -Phenyl- $\beta$ -benzyl-butylalkohol über Infusorienerde bei beginnender Rotglut unter gewöhnlichem Druck oder bei ca. 400° im Vakuum (RAMART, BLONDEAU, C. r. 176, 1322; BLONDEAU, A. ch. [10] 2, 35). Allmählich gelb werdende Flüssigkeit von schwachem Geruch. Kp<sub>15</sub>: 177—178°. Gibt bei der Oxydation mit Chromsäure in Eisessig Benzoesäure und Äthylbenzylketon.
- 2. 2-Methyl-1.3-diphenyl-buten-(2). 2-Phenyl-3-benzyl-buten-(2), α.β-Dimethyl-α-phenyl-β-benzyl-dthylen C<sub>1.7</sub>H<sub>18</sub> = C<sub>8</sub>H<sub>5</sub>·CH<sub>2</sub>·C(CH<sub>3</sub>)·C(CH<sub>3</sub>)·C<sub>8</sub>H<sub>5</sub>.
   B. Entsteht im Gemisch mit 2-Methyl-3.4-diphenyl-buten-(2) beim Erhitzen von 1-Oxy-2.2-dimethyl-1.3-diphenyl-propan auf 240° in Gegenwart von Infusorienerde (APOLIT, C. r. 172, 1495; A. ch. [10] 2, 105, 108). Aus 3-Oxy-2-methyl-1.3-diphenyl-butan bei der Destillation unter 20 mm Druck oder beim Erhitzen auf 180° in Gegenwart von Infusorienerde (A., A. ch. [10] 2, 110). Kp<sub>30</sub>: 176—177°. Löslich in den gewöhnlichen Lösungsmitteln. Gibt bei der Oxydation mit Chromsäure in Eisessig Acetophenon und Methylbenzylketon.
- 3. 2-Methyl-3.4-diphenyl-buten-(2),  $\alpha.\alpha$ -Dimethyl- $\beta$ -phenyl- $\beta$ -benzyl-äthylen  $C_{17}H_{18}=C_6H_5\cdot CH_2\cdot C(C_6H_5):C(CH_3)_2$ . B. Entsteht im Gemisch mit 2-Methyl-1.3-diphenyl-buten-(2) beim Erhitzen von 1-Oxy-2.2-dimethyl-1.3-diphenyl-propan auf 240° in Gegenwart von Infusorienerde (APOLIT, C.r. 172, 1495; A.ch. [10] 2, 105, 108). Beim Erhitzen von 3-Oxy-2-methyl-3.4-diphenyl-butan in Gegenwart von Infusorienerde (A.). Löslich in den gewöhnlichen Lösungsmitteln.  $Kp_{20}$ : 168°. Gibt bei der Oxydation mit Chromtrioxyd in Eisessig Aceton und Desoxybenzoin.
- 4. 2.3 Diphenyl-penten (2),  $\alpha$  Methyl- $\beta$  äthyl- $\alpha$ . $\beta$  diphenyl- äthylen,  $\alpha$  Methyl- $\alpha'$  äthyl-stüben  $C_{17}H_{18}=C_6H_5\cdot C(C_1H_5)\cdot C(CH_3)\cdot C_6H_5$ . B. Aus 3-Oxy-2.3-diphenyl-pentan bei der Destillation unter gewöhnlichem Druck oder im Vakuum in Gegenwart von Spuren Schwefelsäure (Lévy, C. r. 172, 384; Bl. [4] 29, 886). Bei der Dehydratation von 2-Oxy-2.3-diphenyl-pentan (L., Bl. [4] 29, 887). Bei der Destillation von 4-Oxy-3.3-diphenyl-pentan unter gewöhnlichem Druck oder im Vakuum in Gegenwart einer Spur Schwefelsäure (L., C. r. 172, 384; Bl. [4] 29, 885). Kp<sub>785</sub>: 297—299°. D°: 1,040. Liefert bei der Oxydation mit Chromsäure in essigsaurer Lösung Acetophenon.
- 5. 1.1-Diphenyl-penten-(1),  $\alpha$ -Propyl- $\beta$ . $\beta$ -diphenyl-āthylen  $C_{17}H_{18}=(C_8H_5)_2C$ :  $CH \cdot CH_2 \cdot C_2H_5$ . B. Bei der Destillation des aus Benzophenon und Butylmagnesiumbromid oder besser aus n-Valeriansäure-āthylester und Phenylmagnesiumbromid erhaltenen Butyl-diphenyl-carbinols im Vakuum (Lagrave, A. ch. [10] 8, 398). Ol von aromatischem Geruch. Kp<sub>13</sub>: 170°. D°: 1,0139. n°: 1,5768. Bei der Oxydation mit Benzopersäure in Chloroform entsteht  $\alpha$ -Propyl- $\alpha$ '. $\alpha$ '-diphenyl-äthylenoxyd.
- 6. 3-Methyt-1.1-diphenyl-buten-(1),  $\alpha$ -Isopropyl- $\beta$ . $\beta$ -diphenyl- $\alpha$ thylen  $C_{17}H_{18}=(C_0H_5)_2C:CH\cdot CH(CH_3)_2$  (E I 316). B. Bei der Destillation des aus Benzophenon und Isobutylmagnesiumbromid oder besser aus Isovaleriansäureäthylester und Phenylmagnesiumbromid erhaltenen Isobutyl-diphenyl-carbinols im Vakuum (Lagrave, A.ch.

- [10] 8, 394). Zur Bildung aus Isobutyl-diphenyl-carbinol nach Sabatier, Murat (C. r. 156, 1952; A. ch. [9] 4, 296) vgl. v. Auwers, B. 62, 700. Im Gemisch mit 2-Methyl-4.4-diphenylbutan bei der Kondensation von Benzol mit Isovaleraldehyd in Gegenwart von Aluminiumbis 168° (v. Au.). D<sub>4</sub>: 0,9946 (La.); D<sub>4</sub><sup>17</sup>: 0,9813 (v. Au.). n<sub>5</sub><sup>18</sup>: 1,5754 (La.); n<sub>7</sub><sup>12</sup>: 1,5702; n<sub>He</sub>: 1,5767;  $n_{\beta}^{17}$ : 1,5927;  $n_{\gamma}^{17}$ : 1,6072 (v. Au.). — Mit Benzopersäure in Chloroform entsteht  $\alpha$ -Isopropyl-α'.α'-diphenyl-athylenoxyd (La.). Gibt ein nicht krystallisierendes Dibromid (La.).
- 7. 2 Methyl 3.3 diphenyl buten (1)  $C_{17}H_{18} = (C_6H_5)_2C(CH_3)\cdot C(CH_3)\cdot CH_2$  (E I 316). B. Beim Ericken von 2-Chlor-2-methyl-3.3-diphenyl-butan bei Gegenwart von Pyridin im Rohr auf 120° (RAMART, C. r. 176, 685; vgl. BATEMAN, MARVEL, Am. Soc. 49. 2915). Aus tert.-Butyl-diphenylchlormethan beim Behandeln mit fein verteiltem Silber in Toluol oder mit Magnesium in Äther (B., M., Am. Soc. 49, 2919) sowie beim Erhitzen mit Pyridin im Rohr auf 120° (R., C. r. 176, 685; vgl. B., M., Am. Soc. 49, 2915). Aus tert.-Butyl-diphenyl-carbinol beim Erhitzen in Gegenwart von Infusorienerde auf 300—400° (R., C. r. 176, 685; 179, 634, 852; vgl. B., M.), beim Behandeln mit Acetanhydrid und Acetyl-chlorid, neben 2-Chlor-2-methyl-3.3-diphenyl-butan (R., C. r. 173, 1182; 176, 684; 179, 634, 852; vgl. B., M.) oder beim Erwärmen mit Bromwasserstoff in Eisessig auf 40—50° als einziges Reaktionsprodukt (R., C. r. 179, 634, 852) sowie bei der Einw. von Acetylbromid in Benzol oder besser beim Erhitzen mit p-Toluolsulfonsäure auf dem Wasserbad (B., M., Am. Soc. 49, 2917). Beim Erhitzen von 2-Oxy-2-methyl-3.3-diphenyl-butan mit Infusorienerde (R., C. r. 176, 685; vgl. B., M., Am. Soc. 49, 2915) oder mit p-Toluolsulfonsäure auf 1250 (B., M., Am. Soc. 49, 2918).

(B., M., M., M., Soc. 36, 2010).

F: —14° bis —12° (Ramarr, C. r. 176, 686). Kp<sub>10</sub>: 150° (R.); Kp<sub>4,5</sub>: 132—133°; Kp<sub>3,5</sub>: 125—128° (Bateman, Marvell, Am. Soc. 49, 2918). D<sub>1</sub>°: 1,006 (B., M.); D<sub>1</sub>°: 1,009 (R.). n<sub>1</sub>°: 1,5757 (B., M.); n<sub>2</sub>°: 1,5746 (R.). — Gibt bei der Oxydation mit Permanganat-Lösung wenig Acetophenon und wenig Benzophenon (R.). Bei der Ozonisierung in Eissessig entsteht der Daniel auf der Ozonisierung der Daniel α.Methyl-α.α-diphenyl-aceton (B., M.). Liefert mit Kalium-Natrium-Legierung in Äther die Kaliumverbindung des 2-Methyl-3.3-diphenyl-butans(?) (CONANT, BIGELOW, Am. Soc. 50, 2048). Beim Einleiten von Chlorwasserstoff in die absolut-alkoholische Lösung bei -10° erhält man 2-Chlor-2-methyl-3.3-diphenyl-butan (R.; B., M.). Mit Brom in Chloroform bildet sich ein Tribromid vom Schmelzpunkt ca. 200° (Zers.) (R.).

- 2-Benzyl-1.2.3.4-tetrahydro-naphthalin, 2-Benzyl-tetralin  $C_{1}$ ,  $H_{18} =$  $CH_2 \cdot CH \cdot CH_2 \cdot C_6H_5$ C<sub>6</sub>H<sub>4</sub>C<sub>CH<sub>2</sub></sub>CH<sub>2</sub> B. Durch Reduktion von 1-0xo-2-benzyl-tetralin mit amalgamiertem Zink und Salzsäure (v. Braun, B. 61, 442). — Ziemlich dicke Flüssigkeit. Kp.,: 194—195°. — Gibt bei der Dehydrierung über erhitztem Bleioxyd im Kohlendioxydstrom Naphthalin.
- 9. 9 Propyl 9.10 dihydro anthracen  $C_{17}H_{18}$ , s. neben-CH2·C2H5 stehende Formel. B. Durch Reduktion von 9-Propyl-anthracen mit CН 4% igem Natriumamalgam und siedendem 96% igem Alkohol) (SIEGLITZ, MARX, B. 56, 1621). — Öl. Kp<sub>11</sub>: 175—176°. Zersetzt sich bei langsamer Destillation unter Gelbfärbung.
- 10. 1.2 Diäthyl-6.7-benzo-inden  $C_{17}H_{18}$ , s. nebenstehende Formel. B. Aus 2-Athyl-6.7-benzo-hydrindon-(1) und Athylmagnesiumbromid in Ather (MAYER, SIEGLITZ, B. 55, 1857, 2940). — Kp<sub>16</sub>: 205° bis 207°.
- C·C<sub>2</sub>H<sub>5</sub> 11. 2.3-Diäthyl-perinaphthinden (,, Diäthylphenalin") C<sub>17</sub>H<sub>18</sub>, s. nebenstehende Formel. B. Aus 2-Athyl-perinaphthindanon-(1) und Athyl-C2H5.C CH2 magnesiumbromid in Ather (MAYER, SIEGLITZ, B. 55, 1846). — Gelbes Öl. Kp<sub>12</sub>: 185°. — Bei der Oxydation mit Permanganat in verd. Kalilauge entsteht Benzol-tricarbonsäure-(1.2.3). Addiert Brom in der Kälte.
- 12. 1.9-Trimethylen-5.6.7.8-tetrahydro-anthracen, 5.6.7.8. Bz 1. Bz 2- Hexahydro-peribenzanthren C<sub>17</sub>H<sub>18</sub>, s. nebenstehende Formel. B. Durch Hydrierung von Benzanthron in Gegenwart von Nickel in Dekalin unter Druck bei ca. 200° (v. Braun, Bayer, B. 58, 2684; vgl. Cassella & Co., D. R. P. 473456; Frdl. 16, 1463). — Gelbliches dickes Öl. Kp<sub>18</sub>: 228—230° (v. B., B.). — Bei der Reduktion mit Natrium und Alkohol entsteht 1.9-Trimethylen-4.45.8.7.8 havebudge anthrocom (v. R. R.). — Rildet ein Pilkest vom Schmelspunkt 1250°

H2

C2H5

C·C2H5

1.4.5.6.7.8-hexahydro-anthracen (v. B., B.). — Bildet ein Pikrat vom Schmelzpunkt 1250 (v. B., B.).

#### 7. Kohlenwasserstoffe $C_{18}H_{20}$ .

- 1. Derivate von 1.6-Diphenyl-hexenen  $C_{18}H_{20} = C_6H_5 \cdot C_6H_{10} \cdot C_6H_5$ .
- x-Tetrabrom-1.6-diphenyl-hexen-(x), 1.6-Diphenyl-hexatrientetrabromid  $\mathrm{C_{18}H_{16}Br_4} = \mathrm{C_6H_5 \cdot C_6H_6Br_4 \cdot C_6H_5}.$
- a) Praparat von Kuhn, Winterstein. B. Aus 1.6-Diphenyl-hexatrien-(1.3.5) und der berechneten Menge Brom in Tetrachlorkohlenstoff bei 30° (KUHN, WINTERSTEIN, Helv. 11, 141). — Nadeln (aus Essigester + Alkohol). F: 180—181° (Bad 170°). Leicht löslich in Chloroform, Benzol und Essigester, schwer in Alkohol. — Beim Kochen mit Zinkstaub in Aceton entsteht 1.6-Diphenyl-hexatrien-(1.3.5) (K., W., Helv. 11, 108).
- b) Präparat von Farmer und Mitarbeitern. B. Durch Einw. von Brom auf 1.6-Diphenyl-hexatrien-(1.3.5) in Schwefelkohlenstoff (FARMER, Mitarb., Soc. 1927, 2956). Prismen. F: 165°.
- 2. 1.4-Diphenyl-hexen-(1)  $C_{18}H_{20} = C_6H_5 \cdot CH \cdot CH_2 \cdot CH(C_2H_5) \cdot C_6H_5$  (E I 317). Die unter dieser Formel beschriebene Verbindung ist von Prévost (B. [4] 49 [1931], 1373) und GILMAN, HARRIS (Am. Soc. 54 [1932], 2072; vgl. Am. Soc. 49, 1825) als 1.4-Diphenvlhexadien (1.5) (S. 597) erkannt worden.
- 3. 2.5 Diphenyl hexen (2) (?)  $C_{16}H_{20} = C_6H_5 \cdot CH(CH_3) \cdot CH_2 \cdot CH \cdot C(CH_3) \cdot C_6H_5$  (H 651). Diese von Klages (B. 35 [1902], 2639) beschriebene und von Staudinger, Breusch (B. 62, 443) als 2.5-Diphenyl-hexen-(2 oder 3) aufgefaßte Verbindung ist von Bergmann, TAUBADEL, WEISS (B. 64 [1931], 1494) als 4-Methyl-2.4-diphenyl-penten-(2) (s. u.) erkannt worden.
- 4. 2-Methyl-1.3-diphenyl-penten-(2), 3-Phenyl-2-benzyl-penten-(2)  $C_{18}H_{20} = C_6H_5 \cdot CH_2 \cdot C(CH_3) \cdot C(C_2H_5) \cdot C_6H_5$ . B. In geringer Menge beim Erhitzen von 1-Chlor-2-methyl-1-phenyl-2-benzyl-butan in Pyridin in Gegenwart von Kupfer unter Druck auf 200-210° (Apolit, A. ch. [10] 2, 114). Durch Überleiten der Dämpfe von 1-Oxy-2-methyl-1-phenyl-2-benzyl-butan über Infusorienerde bei beginnender Rotglut unter vermindertem Druck (A., A. ch. [10] 2, 117). Beim Erhitzen von 3-Oxy-2-methyl-1.3-diphenyl-pentan auf 200° in Gegenwart von Infusorienerde (A., A. ch. [10] 2, 118). Kp<sub>18</sub>: 175—177°. Löslich in den gewähnlichen Lösungsmitteln Liefert bei der Oxydation mit Chromesure in Fig. in den gewöhnlichen Lösungsmitteln. - Liefert bei der Oxydation mit Chromsäure in Eisessig Acetophenon und Methylbenzylketon.
- 5. **4 Methyl 2.4 diphenyl penten (2)** (flüssiges dimeres  $\alpha$  Methylstyrol)  $C_{18}H_{20}=C_6H_5\cdot C(CH_3):CH\cdot C(CH_3)_2\cdot C_6H_5$ . Diese Konstitution kommt der von Klages (B. 35 [1902], 2639) als 2.5-Diphenyl-hexen-(2)(?) beschriebenen Verbindung (H 651) zu (BERGMANN, TAUBADEL, WEISS, B. 64 [1931], 1494). — Das Mol.-Gew. ist kryoskopisch in Campher und Benzol bestimmt (STAUDINGER, BREUSCH, B. 62, 456). — B. Als Hauptprodukt bei der Polymerisation von unverdünntem  $\alpha$ -Methyl-styrol durch Einw. von  $\frac{1}{10}$  Mol Bortrichlorid oder Titan(IV)-chlorid bei —10° oder durch Behandeln mit Florida-Erde sowie in geringerer Ausbeute beim Erhitzen im mit Stickstoff gefüllten Rohr auf 250° (St., Br., B. 62, 455; vgl. Lebedew, Filonenko, B. 58, 167;  $\mathcal{H}$ . 57, 133). — Schwerflüssiges Ol. Kp<sub>0,1</sub>: 117—120° (St., Br.). D<sup>20</sup>: 0,9889; n<sup>20</sup>: 1,5677 (St., Br.). 1 g löst sich bei 20° in 6,8 cm<sup>3</sup> Methanol (St., Br.). — Addiert 1 Mol Brom unter Bildung eines Gemisches von Dibromiden (ST., BR.).
- 6. 3.3-Dimethyl-2.4-diphenyl-buten-(1)  $C_{18}H_{20} = C_6H_5 \cdot CH_2 \cdot C(CH_3)_3 \cdot C(:CH_2) \cdot C_6H_5$ . B. Bei der Destillation von 3-Oxy-2.2-dimethyl-1.3-diphenyl-butan unter vermindertem Druck und Erhitzen des Destillats mit Acetylchlorid und Acetanhydrid auf dem Wasserbad (Apolit, A. ch. [10] 2, 125). — Kp<sub>16</sub>: 175—177°. Löslich in den gewöhnlichen Lösungsmitteln. — Bei der Einw. von alkoh. Salzsäure entsteht 3-Chlor-2.2-dimethyl-1.3-diphenyl-butan.
- 7. 3.4-Diphenyl-hexen-(3), α.β-Diäthyl-α.β-diphenyl-äthylen, α.α'-Diäthyl-stilben C<sub>18</sub>H<sub>20</sub> = C<sub>4</sub>H<sub>5</sub>·C(C<sub>2</sub>H<sub>5</sub>)·C(C<sub>2</sub>H<sub>5</sub>)·C<sub>6</sub>H<sub>5</sub>.

  a) Präparat von Ramart-Lucas, Anagnostopoulos. B. Bei der Destillation des aus ms-Äthyl-desoxybenzoin und Äthylmagnesiumbromid erhaltenen, nicht näher beschriebenen Carbinols unter vermindertem Druck (RAMART-LUCAS, ANAGNOSTOPOULOS, C. r. 186, 1629; Bl. [4] 43, 1356). Beim Leiten von 1-Oxy-2-äthyl-1.2-diphenyl-butan über Infusorienerde unter vermindertem Druck bei 450—500° (R.-L., A.). Kp<sub>14</sub>: 168° (R.-L., A.). Ultraviolett-Absorptionspektrum in Alkohol: R.-L., A.; vgl. R.-L., C. r. 189, 803. Schelbei längerem Aufbawahren geringe Mengen einer isomeren Verbindung C. H. (Er. 740) ob bei längerem Aufbewahren geringe Mengen einer isomeren Verbindung C18H 20 (F: 74°) ab. Gibt bei der Oxydation mit Chromsäure in Eisessig Propiophenon.
- b) Präparat von Rising, Zee. B. Durch Einw. von kalter Schwefelsäure auf die Natrium verbindung des α-Phenyl-butyronitrils (RISING, ZEE, Am. Soc. 50, 1706). — F: 89-90°.

- 8. 1.1-Diphenyl-hexen-(1),  $\alpha$ -Butyl- $\beta$ . $\beta$ -diphenyl-āthylen  $C_{18}H_{20} = (C_6H_5)_2C$ :  $CH \cdot [CH_2]_3 \cdot CH_3$  (H 651).  $Kp_{18}$ : 1880 (Lagrave, A. ch. [10] 8, 403).
- 9. 4-Methyl-1.1-diphenyl-penten-(1),  $\alpha$ -Isobutyl- $\beta$ . $\beta$ -diphenyl-äthylen  $C_{18}H_{20}=(C_6H_5)_2C$ :  $CH\cdot CH_2\cdot CH(CH_3)_2$  (H 651). B. Aus Isocapronsäureäthylester und Phenylmagnesiumbromid in Äther (Lagrave, A. ch. [10] 8, 400). Kp<sub>17</sub>: 178—180°.
- 10. 2-Äthyl-1.1-diphenyl-buten-(1), α.α-Diāthyl-β.β-diphenyl-āthylen C<sub>18</sub>H<sub>20</sub> = (C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>C:C(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>. B. Aus 1-Oxy-2-āthyl-1.1-diphenyl-butan durch Destillation unter gewöhnlichem Druck oder durch Einw. einer gesättigten Lösung von Bromwasserstoff in Eisessig (RAMART-LUCAS, ANAGNOSTOPOULOS, C. r. 186, 1629; Bl. [4] 43, 1356). Beim Leiten von 1-Oxy-2-āthyl-1.2-diphenyl-butan über Infusorienerde unter vermindertem Druck bei 300—350° (R.-L., A.). Flüssigkeit. Kp<sub>11</sub>: 160° (R.-L., A.). Ultraviolett-Absorptionsspektrum: R.-J.., A.; vgl. R.,-L., C. r. 189, 803. Gibt bei der Oxydation mit Chromsäure in Eisessig Diāthylketon und Benzophenon.
- 11. a.a Bis [2.4 dimethyl phenyl] äthylen

  C<sub>18</sub>H<sub>20</sub>, s. nebenstehende Formel. B. Durch Einw. von Bromacetaldehyd-dimethylacetal auf m-Xylol in konz. Schwefel- CH<sub>3</sub> CH<sub>3</sub>

  Säure unter Kühlung und nachfolgendes Erhitzen des Reaktionsprodukts mit methylalkoholischer Kalilauge (Pfeiffer, Wizinger, A. 461, 148). Blaßgelbes Öl. Kp<sub>17</sub>: 197—200°. Wird beim Abkühlen dickflüssig, ohne zu krystallisieren. Unlöslich in Wasser, löslich in Alkohol, leicht löslich in Äther, Eisessig, Benzol und Ligroin. Einw. von Bromdampf: Pf., W. Löst sich in konz. Schwefelsäure mit orangeroter Farbe. Mit Zinn(IV)-chlorid in Benzol tritt vorübergehend Orangefärbung auf.
- 12. 1.4-Diphenyl-cyclohexan C<sub>18</sub>H<sub>20</sub>= C<sub>6</sub>H<sub>5</sub>·HC  $\stackrel{CH_2}{\text{CH}_2}$ ·CH<sub>2</sub>  $\stackrel{.}{\text{CH}_2}$  CH·C<sub>6</sub>H<sub>5</sub>. Diese Konstitution kommt der von Kurssanow (A. 318, 316) als 1.2-Diphenyl-cyclohexan (H 5, 652) beschriebenen Verbindung zu (Nenitzescu, Curcaneanu, B. 70 [1937], 346; Corson, IPATJEW, Am. Soc. 60 [1938], 747). Die Konstitution der von Thorpe, Wood (Soc. 103, 1573) als 1.4-Diphenyl-cyclohexan aufgefaßten Verbindung (E I 318) ist ungewiß (N., Cu., B. 70, 346 Anm.). B. Neben Phenylcyclohexan beim Behandeln von Cyclohexen mit Benzol und Aluminiumchlorid (B., A. ch. [10] 11, 517). Blättchen (aus Alkohol + Benzol). F: 169—170°
- 13. 4-Cyclohexyl-diphenyl, 1.2.3.4.5.6-Hexahydro-terphenyl  $C_{18}H_{20} = C_{6}H_{5} \cdot C_{6}H_{4} \cdot HC < CH_{2} \cdot CH_{2} > CH_{2}$ . Zur Konstitution vgl. Basford, Soc. 1936, 1593. B. Neben anderen Produkten beim Behandeln von Cyclohexen mit Diphenyl und Aluminium-chlorid in Schwefelkohlenstoff (Bodroux, A. ch. [10] 11, 527). Nadeln (aus Alkohol). F: 75—76°.
- 14. 1.2-Dimethyl-1.2-diphenyl-cyclobutan oder 1.3-Dimethyl-1.3-diphenyl-cyclobutan  $C_{18}H_{20} = \frac{(CH_3)(C_6H_5)C-CH_2}{(CH_3)(C_6H_5)C-CH_2} \frac{(CH_3)(C_6H_5)C-CH_2}{(CH_3)(C_6H_5)C-CH_2} \frac{(CH_3)(C_6H_5)C-CH_2}{(CH_3)(C_6H_5)C-CH_2} \frac{H_2C-C(C_6H_5)(CH_3)}{H_2C-C(C_6H_5)(CH_3)}$  (H 652). Die unter dieser Formel beschriebene Verbindung ist von Bergmann, Taubadell, Weiss (B. 64 [1931], 1495) als 1.1.3-Trimethyl-3-phenyl-hydrinden (S. 565) erkannt worden.
- 15. 1-β-Phenäthyl-1.2.3.4-tetrahydro-naphthalin, 1-β-Phenäthyl-tetralin C<sub>18</sub>H<sub>20</sub>, Formel I. B. Beim Erhitzen von 3-Oxy-1.6-diphenyl-hexan mit Zinkchlorid im Vakuum auf ca. 200° (v. Braun, Kochendörfer, B. 56, 2175). Schwach fluorescierende Flüssigkeit. Kp<sub>14</sub>: 204—208°. D<sup>10</sup><sub>4</sub>: 1,028. n<sup>10</sup><sub>5</sub>: 1,5770. Liefert beim Destillieren über Bleioxyd bei 620—650° im Kohlendioxydstrom Naphthalin, Styrol und etwas Athylbenzol.

- 16.  $1-\alpha$  Phenäthyl 1.2.3.4 (oder 5.6.7.8) tetrahydro naphthalin, 1(oder 5)- $\alpha$ -Phenäthyl-tetralin C<sub>18</sub>H<sub>20</sub>, Formel II oder III. B. Aus Styrol und Tetralin in Gegenwart von etwas konz. Schwefelsäure (v. Braun, Kirschbaum, B. 54, 609). Zähes, schwach gefärbtes Öl. Kp<sub>22</sub>: 221—225°.
- 17. 2-[ $\gamma$ -Phenyl-propyl]-hydrinden  $C_{18}H_{20}=C_8H_4<\frac{CH_2}{CH_2}>CH\cdot CH_2\cdot CH_2\cdot CH_2\cdot C_8H_5$ .

  B. Bei der Reduktion von 2-[ $\gamma$ -Phenyl-propyl]-hydrindon-(1) mit amalgamiertem Zink und Salzsäure (v. Braun, Manz, A. 468, 269). Ol. Kp<sub>13</sub>: 197°.  $D_4^{u}$ : 1,0128.  $n_5^{u}$ : 1,5667.

- 565
- 18. 1.1.3 Trimethyl 3 phenyl hydrinden (festes dimeres α-Methylstyrol) C<sub>18</sub>H<sub>20</sub> = C<sub>6</sub>H<sub>4</sub> C(CH<sub>3</sub>)(C<sub>6</sub>H<sub>5</sub>) CH<sub>2</sub>. Diese Konstitution kommt der H 5, 652 als 1.2-Dimethyl-1.2-diphenyl-cyclobutan oder 1.3-Dimethyl-1.3-diphenyl-cyclobutan beschriebenen Verbindung zu (Bergmann, Taubadel, Weiss, B. 64 [1931], 1495). Das Mol.-Gew. ist kryoskopisch in Benzol und in Campher bestimmt (Staudinger, Breusch, B. 62, 452). B. Neben geringeren Mengen anderer Produkte bei der Einw. von Zinn(IV)-chlorid auf α-Methyl-styrol (St., Br., B. 62, 450). Krystalle. F: 52°; geht bei starker Abkühlung in einα amorphe Modifikation über, die sich im unterkühlten Zustand zwischen 32° und 24° verflüssigt (St., Br.). Kp<sub>0,1</sub>: 118—120° (St., Br.). D<sup>20</sup>: 1,1183 (krystallisiert); D<sup>20</sup>: 1,0038 (unterkühlt) (St., Br.). n<sup>20</sup>: 1,5633 (unterkühlt) (St., Br.). 1 g löst sich bei 20°: St., Br.
- 19. **6.6-Dimethyl-2-[\gamma-phenyl-propargyl]-bicyclo-**[1.1.3]-heptan, Phenylacetylenmyrtenyl  $C_{18}H_{20}$ , s. nebenstehende Formel. B. Aus Myrtenylbromid (S. 101) durch Erwärmen mit Phenylacetylenmagnesiumbromid in absol. Äther (RUPE, A. 459, 186). Dickflüssiges, gelbliches Öl von süßlichem Geruch. Kp<sub>10</sub>: 177,5—178,5°; siedet im Kathodenlichtvakuum bei 89—90°. D<sub>1</sub>°: 0,9896.  $n_{\alpha}$ °: 1,5580;  $n_{\alpha}$ °: 1,5634;  $n_{\alpha}$ °: 1,5774. [ $\alpha$ ] $n_{\alpha}$ °: +18,73° (l = 0,5 dm). Rotationsdispersion (bei 20°): R. Polymerisiert sich beim Aufbewahren. Gibt beim Kochen mit verkupfertem Zink in Alkohol Myrtenyl-styryl (S. 526).
- 20. 9-Butyl-9.10-dihydro-anthracen C<sub>18</sub>H<sub>20</sub>, s. nebenstehende Formel. B. Durch Reduktion von 9-Butyl-anthracen mit 4%igem Natriumamalgam in siedendem 96%igem Alkohol (SIEGLITZ, MARX, B. 56, 1621). Blau fluorescierendes Öl. Kp<sub>11</sub>: 191—192°.
- 21. 9.9-Diāthyl-9.10-dihydro-anthracen  $C_{18}H_{20} = C_6H_4$   $C(C_2H_5)_2$   $C_6H_4$  (vgl. H 653). Eine von Kehrmann, Monnier, Ramm (B. 56, 172) als 9.9-Diāthyl-9.10-dihydro-anthracen beschriebene Verbindung vom Schmelzpunkt 210° ist nach Barnett, Matthews (B. 59, 774) 9.9.9'.9'-Tetraāthyl-9.10.9'.10'-tetrahydro-dianthranyl (S. 699).
- 22. 2.6.9.10 Tetramethyl 9.10 dihydro anthracen  $C_{18}H_{20} = CH_3 \cdot C_6H_3 \cdot C_6H_3 \cdot C_6H_3 \cdot CH_3 \cdot$
- 23. 1-Methyl-7-isopropyl-9.10-dihydro-phenanthren (?), 9.10-Dihydro-reten (?)

  C<sub>18</sub>H<sub>20</sub>, s. nebenstehende Formel. Zur Konstitution vgl. (CH<sub>3</sub>)<sub>2</sub>CH (?)

  NYMAN, Ann. Acad. Sci. fenn. [A] 41 [1935], Nr. 5,

  S. 10. B. Bei allmählichem Eintragen von 1 Tl. Natrium in eine Lösung von 2 Tln. Reten in siedendem Isoamylalkohol (VIRTANEN, B. 53, 1885). Dem Reten sehr ähnliche Blätter (aus Alkohol). F: 64—65°; Kp<sub>10</sub>: 188—190° (V.). Liefert bei der Oxydation mit Chromtrioxyd in Eisessig Retenchinon (V.). Beständig gegen Permanganat (V.). Gibt mit siedender alkoholischer Pikrinsäure-Lösung eine rote Färbung.
- 24. 2.3; 6.7-Bis-tetramethylen-naphthalin, 1.2.3.4.5.6.7.8-Oktahydro-naphthacen, "Tetrahydrotetralanthracen"  $C_{18}H_{20}$ , s. nebenstehende Formel.

  B. Durch Hydrierung von 2.3-Tetramethylen-anthracen mit 4 Atomen Wasserstoff in Gegenwart von Nickel in Dekalin unter Druck bei ca. 180° bis 190° (v. Braun, Bayer, Fieser, A. 459, 304); entsteht in geringer Menge bei der Einw. von knapp 11 Atomen Wasserstoff auch bei analoger Behandlung von 2.3-Tetramethylen-anthrachinon (v. Br., B., F., A. 459, 303). F: 174°. Löslich in Benzol. Gibt bei der Oxydation mit Chromtrioxyd in Eisessig 2.3-Tetramethylen-5.6.7.8-tetrahydroanthrachinon. Mit Permanganat entsteht Pyromellitsäure. Pikrat. F: 180°.

# 8. Kohlenwasserstoffe $C_{19}H_{22}$ .

1. 1.6-Diphenyl-3-methylen-hexan,  $\alpha-[\beta-Phen\ddot{a}thyl]-\alpha-[\gamma-phenyl-propyl]-\ddot{a}thylen$   $C_{19}H_{12}=C_{6}H_{5}\cdot [CH_{2}]_{3}\cdot C(:CH_{3})\cdot CH_{2}\cdot CH_{2}\cdot C_{6}H_{5}.$  B. Als Hauptprodukt beim Destillieren von Trimethyl- $[\beta-(\beta-phen\ddot{a}thyl)-\beta-(\gamma-phenyl-propyl)-\ddot{a}thyl]$ -ammoniumhydroxyd mit einer konz. Lösung von 4 Mol Kalilauge unter gewöhnlichem Druck (v. Braun, Teuffert, B. 62, 240). — Ziemlich dickflüssiges Öl. Kp<sub>14</sub>: 199—200°. D<sub>4</sub>°: 0,915. n<sub>2</sub>°: 1,5517.

- Beim Behandeln mit Ozon in Eisessig und folgenden Zersetzung des Reaktionsgemisches mit Wasser und Zinkstaub, zuletzt auf dem Wasserbad entsteht [ $\beta$ -Phenäthyl]-[ $\gamma$ -phenyl-propyl]-keton.
- 2. 3-Åthyl-1.2-diphenyl-penten-(2) (?), α.α-Diāthyl-β-phenyl-β-benzyl-āthylen(?) C<sub>10</sub>H<sub>21</sub> = C<sub>6</sub>H<sub>5</sub>·CH<sub>2</sub>·C(C<sub>6</sub>H<sub>5</sub>):C(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>(?). B. In geringer Menge bei der Destillation von 4-Oxy-3-āthyl-4.5-diphenyl-pentan unter vermindertem Druck und Erhitzen des Destillats mit Acetylchlorid und Acetanhydrid (Apolit, A. ch. [10] 2, 123). Kp<sub>15</sub>: 180° bis 182°. Löslich in den gewöhnlichen Lösungsmitteln.
- 3. 3-Phenyl-4-p-tolyl-hexen-(3),  $\alpha.\beta$ -Diäthyl- $\alpha$ -phenyl- $\beta$ -p-tolyl-äthylen, 4-Methyl- $\alpha.\alpha'$ -diäthyl-stilben  $C_{12}H_{22}=CH_3\cdot C_6H_4\cdot C(C_2H_5)\cdot C(C_2H_5)\cdot C_6H_6$ . Bei der Einw. einer gesättigten Lösung von Bromwasserstoff in Eisessig auf 4-Oxy-3-phenyl-4-p-tolyl-hexan (RAMART-LUCAS, ANAGNOSTOPOULOS, C.r. 186, 1629; Bl. [4] 43, 1357). Kp<sub>11</sub>: 170° (R.-L., A.). Ultraviolett-Absorptionsspektrum in Alkohol: R.-L., A.; vgl. R.-L., C.r. 189, 803.
- 4. 2-Åthyl-1-phenyl-1-p-tolyl-buten-(1),  $\alpha.\alpha$ -Diäthyl- $\beta$ -phenyl- $\beta$ -p-tolyl-äthylen  $C_{19}H_{22}={}^{CH_3\cdot C_6H_4}C_{C_9H_5}$ : B. Bei der Destillation des aus  $\alpha.\alpha$ -Diäthylacetophenon und p-Tolylmagnesiumbromid erhaltenen, nicht näher beschriebenen Carbinols (RAMART-LUCAS, ÅNAGNOSTOPOULOS, C. r. 186, 1629; Bl. [4] 43, 1356). Kp<sub>11</sub>: 172° (R.-L., A.). Ultraviolett-Absorptionsspektrum in Alkohol: R.-L., A.; vgl. Ra.-L., C. r. 189, 803.
- 5. Cyclohexyl-diphenyl-methan, 1.2.3.4.5.6-Hexahydro-triphenylmethan  $C_{19}H_{12} = (C_6H_8)_8CH\cdot C_6H_{11}$  (E I 318). B. Neben Ameisensäure beim Erhitzen von Cyclohexyl-diphenyl-acetaldehyd mit alkoh. Kalilauge im Rohr auf 130° (Danilow, Venus-Danilowa, B. 59, 385; D., Ж. 58, 144). Beim Behandeln des aus Cyclohexyl-diphenyl-carbinol-methyläther und Kalium in Äther erhaltenen Cyclohexyl-diphenyl-methylkaliums (Syst. Nr. 2357) mit Alkohol (Ziegler, Schnell, A. 487, 251). Krystalle (aus Alkohol). F: 56—57° (Z., Sch.), 58,5° (D., V.-D.). D?: 1,106 (Z., Ditzel, A. 473, 206). Leicht löslich in den gebräuchlichen Lösungsmitteln (D., V.-D.).
- 6. **4-Cyclohexyl-diphenylmethan**  $C_{19}H_{22}=C_6H_5\cdot CH_2\cdot C_6H_4\cdot C_9H_{11}$ . Das Mol.-Gew. ist kryoskopisch in Benzol bestimmt (Bodroux, A. ch. [10] 11, 530). B. Neben 4-Benzyl-diphenyl beim Behandeln von Cyclohexen mit Diphenylmethan und Aluminiumchlorid in Schwefelkohlenstoff (B.). Schwach riechende Flüssigkeit. Kp<sub>35</sub>: 252—257°. D<sup>6</sup>: 1,029; D<sup>30</sup>: 1,005.  $n_p^8$ : 1,587;  $n_p^9$ : 1,571.
- 7. **9-Isoamyl-9.10-dihydro-anthracen**  $C_{19}H_{12} = C_{6}H_{4} \xrightarrow{CH(C_{6}H_{11})} C_{6}H_{4}$  (H 653).  $Kp_{23}$ : 202° (v. Auwers, B. 53, 944).  $D_{4}^{\mu,\mu}$ : 0,9940;  $D_{4}^{\mu,\mu}$ : 1,0022;  $n_{\alpha}^{\mu,\mu}$ : 1,5579;  $n_{5}^{\mu,\mu}$ : 1,5626;  $n_{5}^{\mu,\mu}$ : 1,5765;  $n_{4}^{\mu,\mu}$ : 1,5887.  $n_{\alpha}^{\mu,\mu}$ : 1,5609;  $n_{5}^{\mu,\mu}$ : 1,5658;  $n_{5}^{\mu,\mu}$ : 1,5805.
- 8. 9-[2-Methyl-pentyl-(4)]-fluoren, 2-Methyl-4-[fluorenyl-(9)]-pentan  $C_{19}H_{22} = \frac{C_6H_4}{C_6H_4}$ CH·CH(CH<sub>3</sub>)·CH<sub>2</sub>·CH(CH<sub>3</sub>). B. Beim Kochen von höherschmelzendem 9-[ $\alpha$ . $\gamma$ -Dimethyl- $\beta$ (oder  $\gamma$ )-butenyliden]-fluoren (S. 607) mit Jodwasserstoffsäure (D: 1,7) und Eisessig (Maitland, Tucker, Soc. 1929, 2566). Krystalle (aus Methanol oder Alkohol). F: 101—103°.
- 9. 4.5-[\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.7-\(\theta\).6.

A. 422, 322) und von 2.2-Diāthyl-6.7-āthylen-perinaphthindandion-(1.3) (Fleischer, Wolff, B. 53, 931; Fl., S., A. 422, 320) mit siedender Jodwasserstoffsäure und rotem Phosphor. — Spieße (aus Alkohol), Tafeln (aus Methanol). F: 93—95° (F., W.; F., S.). Liefert bei Einw. von Diāthylmalonylchlorid und Aluminiumchlorid in Schwefelkohlenstoff 2.2-Diāthyl-6.7-āthylen-4.5-diāthylmalonyl-perinaphthindan (Formel II; Syst. Nr. 682 (F., S.).

## 9. Kohlenwasserstoffe C20H24.

1. 4-Cyclohexyl-dibenzyl C<sub>20</sub>H<sub>24</sub> = C<sub>5</sub>H<sub>5</sub>·CH<sub>2</sub>·CH<sub>2</sub>·C<sub>6</sub>H<sub>4</sub>·C<sub>5</sub>H<sub>11</sub>. Das Mol.-Gew. ist kryoskopisch in Benzol bestimmt (Bodroux, A. ch. [10] 11, 532). — B. Neben anderen

567

Produkten beim Behandeln von Cyclohexen mit Dibenzyl und Aluminiumchlorid in Schwefelkohlenstoff (B.). — Nadeln (aus Alkohol). F: 68—69°.

- 2. 2-β-Phenyl-butyl]-5.6.7.8-tetrahydro-naph-thalin, 1-Phenyl-4-[letralyl-(6)]-butan C<sub>30</sub>H<sub>24</sub>, s. nebenstehende Formel. B. Neben anderen Produkten im untrennbaren Gemisch mit wenig Ditetralyl-(2.6') beim Behandeln von Tetralin mit 1—2% Aluminiumchlorid bei 50—70° (SCHROETER, B. 57, 1999). Wird durch Einw. von etwas Aluminiumchlorid bei 50—60° in 2 Mol Tetralin gespalten. Bei der Oxydation mit Permanganat erhält man Benzoesäure, Trimellitsäure und Glutarsäure, mit Chromsäure 5-Oxo-2-[δ-phenyl-butyl]-5.6.7.8-tetrahydro-naphthalin. Gibt beim Erhitzen mit Schwefel auf 200—250° 1-Phenyl-4-β-naphthyl-butan.
- 3. 2.6 Disopropyl 9.10 dihydro anthracen (?)  $C_{20}H_{24} = (CH_3)_2CH \cdot C_6H_3 < \frac{CH_2}{CH_2} > C_6H_3 \cdot CH(CH_3)_2(?)$  (H 654). B. Neben anderen Produkten bei der Einw. von Magnesium auf 4-Isopropyl-benzylchlorid in Gegenwart von etwas Äthylbromid oder besser von Brom und nachfolgende Zersetzung des Reaktionsprodukts mit Wasser (Bert, C. r. 177, 195; Bl. [4] 37, 1579). Amorphes, gelbgraues Pulver (aus Äther und Alkohol). Die Lösungen in Äther, Benzol und Chloroform sind rot und fluorescieren grün.
- 4. 1.2.3.4.5.6.7.8.9.10 Dekahydro di naphthyl-(2.2'), 2-β-Dekalyl-naphthalin, H<sub>2</sub>C CH<sub>2</sub> CH<sub>3</sub> CH<sub>4</sub> S. nebenstehende Formel. B. In geringer Menge beim Erwärmen von technischem 2-Chlor-dekalin mit Naphthalin und Aluminiumchlorid in Schwefelkohlenstoff auf dem Wasserbad, neben einem stellungsisomeren oder strukturisomeren Naphthyl-dekalin vom Schmelzpunkt 68° und anderen Produkten (Gysin, Helv. 9, 66; vgl. Ferrero, Fehlmann, Helv. 11, 772). Blättchen (aus Methanol). F: 62°.
- 5. 1.4; 5.8; 9.10-Tris-methylen-dode-HC CH CH CH CH CH CH-CH2 kahydro-[cyclopentadieno-1'.2': 2.3-an- || CH2 | CH3 | CH4 | CH4 | CH4 | CH5 - 10. 1-Cyclohexyl-3.3-diphenyl-propan  $C_{21}H_{36} = (C_6H_6)_2CH \cdot CH_2 \cdot CH_2 \cdot C_6H_{11}$ . B. Durch Hydrierung von 1.1.3-Triphenyl-propin in Gegenwart von Platinoxyd in Eisessig (Wieland, Kloss, A. 470, 216). Kp<sub>1</sub>: 160—170°.

## 11. Kohlenwasserstoffe $C_{22}H_{28}$ .

- 1. x-Dicyclohexyl-naphthalin  $C_{22}H_{28}=C_{10}H_6(C_6H_{11})_2$ . B. In geringer Menge neben anderen Produkten beim Eintragen von Aluminiumchlorid in eine geschmolzene Mischung von Naphthalin und Cyclohexen auf dem Wasserbad und Behandeln des in Schwefelkohlenstoff gelösten Reaktionsprodukts mit verd. Salzsäure (Bodroux, A. ch. [10] 11, 537). Blättchen (aus Alkohol). F: 151—152°.
- 2. Tetradekahydropentacen C<sub>22</sub>H<sub>28</sub>. Über einen Kohlenwasserstoff dieser Zusammensetzung (F: 227°) vgl. Philippi, M. 53/54, 642.
- 12. 1.1-Diphenyl-hexadecen-(1)  $C_{28}H_{40}=(C_6H_5)_2C:CH\cdot[CH_1]_{13}\cdot CH_3$ . B. Beim Erhitzen des aus Palmitinsäuremethylester und Phenylmagnesiumbromid in Äther erhaltenen rohen Pentadecyl-diphenyl-carbinols auf 280—300° (SKRAUP, SCHWAMBERGER, A. 462, 154). Krystalle. F: 17—18°.  $Kp_{13}:265-270°$  (geringe Zersetzung). Bei der Oxydation mit Chromsäure in Eisessig entsteht n-Pentadecylsäure. Addiert Brom in Chloroform.

[Syst. Nr. 480

13. 1.1-Diphenyl-octadecen-(1) C<sub>30</sub>H<sub>44</sub> = (C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>C:CH·[CH<sub>2</sub>]<sub>15</sub>·CH<sub>2</sub>. B. Beim Erhitzen des aus Stearinsäuremethylester und Phenylmagnesiumbromid in Äther erhaltenen rohen Heptadecyl-diphenyl-carbinols auf 220—240° (SKRAUP, SCHWAMBERGER, A. 462, 152). — Schwach gelbliches Öl. Erstarrt in Kältegemisch krystallinisch. F: —1°. Kp<sub>18</sub>: 282—283°. — Gibt bei der Oxydation mit Chromsäure in Eisessig Benzophenon und Hexadecan-carbonsäure-(1). Addiert leicht Brom in Chloroform. [KÜHN]

# 10. Kohlenwasserstoffe C<sub>n</sub>H<sub>2n-18</sub>.

1. Phenyitriacetylen  $C_{12}H_6=C_6H_5\cdot C:C\cdot C:C\cdot C:CH$ . B. Aus Jod-diacetylen bei der Einw. von Phenylacetylen-magnesiumhalogenid in der Wärme (GRIGNARD, TCHÉOUFAKI, C. r. 188, 360). — Aromatisch riechende Flüssigkeit. Kp<sub>18</sub>: 52°. D<sub>4</sub><sup>10</sup>: 0,9708. n<sub>D</sub><sup>10</sup>: 1,534. —  $C_{12}H_6+3\, HgCl_2$ .

## 2. Kohlenwasserstoffe C14H10.

1. Diphenylacetylen, Tolan C<sub>14</sub>H<sub>10</sub> = C<sub>8</sub>H<sub>8</sub>·C:C·C<sub>6</sub>H<sub>5</sub> (H 656; E I 319). B. Aus β.β-Dichlor-α.α-diphenyl-āthylen beim Erhitzen mit 2 Mol trocknem Natriummethylat, neben anderen Produkten (Staudinger, Rathsam, Helv. 5, 654) oder beim Kochen mit Natriumpulver in Benzol (Harris, Frankforter, Am. Soc. 48, 3145, 3149). Beim Schmelzen von β.β-Diphenyl-vinylbromid oder von β-Brom-α-methoxy-α.α-diphenyl-āthan mit Kaliumhydroxyd (Lipp, B. 56, 570). — Zur Darstellung durch Oxydation von Benzildihydrazon mit Quecksilberoxyd in Benzol nach Curtius, Thun (J. pr. [2] 44 [1891], 172) vgl. Schlenk, Bergmann, A. 463, 76. — F: 60° (McVicker, Marsh, Stewart, Soc. 127, 1000), 60° (korr.) (Lipp, B. 56, 570), 62—63,5° (Salkind, Iljin, Ж. 58, 994; C. 1927 I, 2073). Kp<sub>10</sub>: 170° (Schle., B., A. 463, 76); Kp<sub>10,5</sub>: 158—160° (Lipp). D<sup>m,s</sup><sub>4</sub>: 0,9657; n<sup>m,s</sup><sub>α</sub>: 1,6060; n<sup>m,s</sup><sub>He</sub>: 1,6164; n<sup>m,s</sup><sub>β</sub>: 1,6430 (v. Auwers, Bergmann, A. 476, 276). Dichte und Brechungsindices einer Lösung in α-Methyl-naphthalin: v. Au., B. Tesla-Luminescenzspektrum von Tolan-Dampf: McVicker, Marsh, Stewart, Soc. 127, 1000. Luminescenz bei Einw. von Kathodenstrahlen: Marsh, Soc. 1927, 126.

Hydrierung von Tolan zu Isostilben (vgl. Kelber, Schwarz, B. 45 [1912], 1951) erfolgt auch in Gegenwart von 5 %igem Palladium-Bariumsulfat in Alkohol (SCHLENK, BERGMANN, A. 463, 116) und in Gegenwart von kolloidalem Palladium in Essigester (BOURGUEL, C. r. 180, 1754; Bl. [4] 45, 1082). Isostilben tritt ferner bei der Hydrierung in Gegenwart von Nickel-Tierkohle- oder Kobalt-Tierkohle-Katalysatoren in Methanol oder Ather als Hauptprodukt auf (OTT, SCHRÖTER, B. 60, 641). Geschwindigkeit der Hydrierung in Gegenwart von wäßrigem kolloidalem Palladium in Essigsäure, Benzol oder Petroläther: Bou., Bl. [4] 41, 1447; 48, 231; in absol. Alkohol bei 10,5—12°: Salkind, Iljin, Ж. 58, 995; C. 1927 I, 2073. Beim Einleiten von nitrosen Gasen in die äther. Lösung von Tolan erhält man x.x-Dinitro-tolan (S. 568) neben den beiden stereoisomeren α.β-Dinitro-α.β-diphenyläthylenen (vgl. H 5, 637) (Wieland, Blümich, A. 424, 105). Liefert bei 4-wöchigem Schütteln mit Natriumpulver in Ather eine dunkelbraune Lösung, die mit Alkohol geringe Mengen einer bei 295<sup>5</sup> schmelzenden Substanz gibt (Schl., B.); nach Ott, Schröter (B. 60, 642) entsteht bei dieser Reaktion vermutlich ein Distilben. Das bei der Einw. von Lithium auf Tolan in Äther entstehende lithiumhaltige Produkt liefert bei der Zersetzung mit Alkohol 1.2.3-Triphenyl-naphthalin, bei der Einw. von Jod unter Kühlung mit Eis-Kochsalz-Gemisch 4-Jod-1.2.3-triphenyl-naphthalin, beim Behandeln mit Quecksilber 9-Phenyl-1.2;3.4-dibenzo-anthracen (S. 709), bei der Einw. von Kohlendioxyd 2.3.4-Triphenyl-naphthoesäure (1), das Anhydrid der 1.2.3-Triphenyl-1.2-dihydro-naphthalin-dicarbonsäure-(1.2) und wenig 1.2.3-Triphenyl-naphthalin, bei aufeinanderfolgender Einw. von Wasser und Phenylsenföl 2.3.4-Triphenyl-thionaphthoesäure-(1)-anilid; bei längerer Einw. von Lithium erhält man eine Lithiumverbindung, die beim Behandeln mit Alkohol außer 1.2.3-Triphenyl-naphthalin auch 9-Phenyl-9.10-dihydro-1.2;3.4-dibenzo-anthracen (S. 703) liefert (Schlenk, Bergmann, A. 463, 76, 77, 79, 80; B., Zwecker, A. 487 [1931], 156, 157, 158 Anm. 1, 159). Tolan gibt beim Behandeln mit Rhodan in Benzol hochschmelzendes α.α'-Dirhodan-stilben (Syst. Nr. 564) (Söderbäck, A. 443, 147, 161; Bried, Hennion, Am. Soc. 60 [1938], 1719). Reagiert mit Rhodan in Eisessig-Tetrachlorkohlenstoff-Lösung auch im Dunkeln (Kaufmann, 280, 1930). Liefott bei längenge Einer von Nitherschand in Parcel Albeit Chaptern. B. 59, 1391). Liefert bei längerer Einw. von Nitrosobenzol in Benzol, Alkohol, Chloroform oder am besten in Eisessig Benzildioxim-N.N'-diphenyläther (Syst. Nr. 1604) und andere Produkte (Alessandri, G. 52 I, 194; 54, 438); reagiert analog mit 4-Nitroso-benzoesaureäthylester in Eisessig, während man bei Ausführung dieser Umsetzung in Chloroform Benzil und andere Produkte erhält (Al., G. 54, 445, 447).

- [3.4'-Dinitro-diphenyl]-acetylen, 3.4'-Dinitro-tolan  $C_{14}H_8O_4N_2=O_2N\cdot C_6H_4\cdot C:C\cdot C_6H_4\cdot NO_2$ . B. Beim Kochen von hochschmelzendem oder niedrigschmelzendem 3.4'-Dinitrostilbendibromid mit wäßrig-alkoholischer Kalilauge (Harrison, Soc. 1926, 1235). Krystalle (aus Alkohol). F: 173—174°. Leicht löslich in heißem Benzol, Nitrobenzol, Aceton und Äthylacetat, sehwerer in Eisessig, Chloroform und Alkohol, sehr schwer in Tetrachlorkohlenstoff, Schwefelkohlenstoff, Äther und Petroläther. Löst sich in konz. Schwefelsäure mit tiefroter Farbe. Gibt bei der Reduktion mit Zinkstaub und Salzsäure in alkoh. Suspension bei 10—15° 3.4'-Diamino-tolan; bei 70—80° wurde daneben [4-Amino-phenyl]-[3-amino-benzyl]-keton erhalten. Liefert beim Behandeln mit kalter konzentrierter Schwefelsäure geringe Mengen [3-Nitro-phenyl]-[4-nitro-benzyl]-keton.
- **x.x-Dinitro-diphenyl-acetylen, x.x-Dinitro-tolan**  $C_{14}H_8O_4N_2$ . B. Neben den beiden isomeren  $\alpha.\beta$ -Dinitro- $\alpha.\beta$ -diphenyl-äthylenen (vgl. H 5, 637) beim Einleiten von Stickoxyden in eine äther. Lösung von Tolan (Wieland, Blümich, A. **424**, 105). Krystalle (aus Eisessig). F: 234°.
- 2. Anthracen C<sub>14</sub>H<sub>10</sub>, s. nebenstehende Formel (H 657; E I 321). Für die von Anthracen abgeleiteten Namen wird in diesem Handbuch die nebenstehende Stellungsbezeichnung gebraucht. Zur Konstitution von Anthracen s. die bei Benzol (S. 119) zitierte Literatur.



#### Vorkommen, Bildung, Darstellung.

V. Im Steinkohlen-Urteer (Kurihara, J. Fuel Soc. Japan 7, 61; C. 1928 II, 1733).—
B. In geringer Menge beim Erhitzen von Steinkohle unter Wasserstoff-Druck (Heyn. DUNKEL, Brennstoffch. 7, 85; C. 1926 II, 1709). Entsteht in je nach den Versuchsbedingungen wechselnden Mengen neben anderen Produkten beim Leiten von Methan durch Porzellanoder Quarzröhren bei 875—1100° (F. FISCHER, Mitarb., Brennstoffch. 9, 311; C. 1928 II, 2208; Hague, Wheeler, Soc. 1929, 383; Wh., Wood, Fuel 7, 535; C. 1929 I, 1560). Neben anderen Produkten beim Leiten von Äthan durch Quarzröhren oberhalb 850° (Hague, Wheeler). WH., Soc. 1929, 384), beim Leiten von Acetylen über aktive Holzkohle bei 600-660° (ZE-LINSKY, B. 57, 272; R. 55, 154; C. r. 177, 885) und beim Erhitzen von Acetylen mit Selen im Quarzrohr auf ca. 400° (Briscoe, Peel, Soc. 1928, 1741). Über Bildung von Anthracen beim Leiten eines Gemischs von Athylen und Benzol durch ein Quarzrohr vgl. Zanetti. KANDELL, J. ind. Eng. Chem. 13, 209; C. 1921 III, 474. Bei der Zersetzung von Benzol im elektrischen Flammenbogen, neben anderen Produkten (MÜLLER, BÄNNINGER. Helv. 10, 766). Neben anderen Produkten aus m-Xylylenbromid und Benzol in Gegenwart von Aluminiumchlorid bei 30—35° (REINDEL, SIEGEL, B. 56, 1553). Aus 1.2.3.4.5.6.7.8-Oktahydro-anthracen beim Erhitzen mit Schwefel auf 180—220°, bei der Zinkstaubdestillation oder beim Überleiten im Kohlendioxyd-Strom über Kupfer bei 550° (Schroeter, B. 57, 1998). Beim Glühen von 9-Brom- und 9-Jod-1.2.3.4.5.6.7.8-oktahydro-anthracen mit Kalk (Schr., B. 60, 2043). Bei der Einw. von Aluminiumchlorid auf Diphenylmethan oder 9.10-Dihydro-anthracen (Scholl, Seer, B. 55, 338). Aus Anthracen-dibromid-(9.10) beim Rehandeln mit einer Mischung von Figersig und Lodwessortoffgäung oder bei längeren Finne Behandeln mit einer Mischung von Eisessig und Jodwasserstoffsäure oder bei längerer Einw. einer Lösung von Phenol in Toluol, zuletzt auf dem Wasserbad (BARNETT, COOK, Soc. 125, 1085), beim Behandeln mit Diäthylamin bei Zimmertemperatur, beim Schütteln mit Natriumsulfid in Alkohol bei Zimmertemperatur oder beim Einleiten von Schwefelwasserstoff in Eisessig bei 50° (B., C., MATTHEWS, R. 44, 221, 222). Bildet sich in geringer Menge beim Leiten von Phenantren-Dampf mit Wasserstoff durch ein glühendes Kupferrohr bei Temperaturen unterhalb 750° (ORLOW, B. 60, 1955; 3K. 59, 901).

Neben anderen Produkten beim Auftropfen von Phenol auf Quarz- oder Koksstückchen bei 700—900° (Kosaka, J. Soc. chem. Ind. Japan Spl. 31, 127 B, 128 B; C. 1928 II. 2422; 1929 I, 1069). Neben 4-Methyl-diphenylmethan aus Toluol und Benzylalkohol in 70% iger Schwefelsäure (H. Meyer, Bernhauer, M. 53/54, 723, 729). Durch Umsetzung von Benzaldehyd mit Benzol in Gegenwart von Aluminiumchlorid unter Kühlung und nachfolgendes Erwärmen auf 60°, neben anderen Produkten (Schaarschmidt, Hermann, Szemzö, B. 58, 1915). In geringer Menge beim Erhitzen von 1-Oxo-1.2.3.4-tetrahydro-anthracen zum Sieden (v. Braun, A. 451, 39; v. Br., Bayer, A. 472, 94, 100). Durch Reduktion von Anthranol mit amalgamiertem Aluminium und konz. Ammoniak in siedendem wäßrigem Alkohol (Hall, Perkin, Soc. 123, 2036). Bei der Zinkstaubdestillation von 2.4-Dioxo-1.2.3.4.9.10.11.12-oktahydro-anthracen (Colver, Nover, Am. Soc. 43, 905).— Neben anderen Produkten bei gelindem Kochen von 1.4-Di-o-toluyl-benzol oder 1.2-Di-o-toluyl-benzol (Clar, John, Hawran, B. 62, 947). Bei der trocknen Destillation von Abietinsäure oder Kolophonium mit akt. Kohle (Tsukamoto, J. pharm. Soc. Japan 48, 170; C. 1929 I, 1101). Durch trockne Destillation des Calciumsalzes der Anthracen-carbonsäure-(1) unter

gewöhnlichem oder vermindertem Druck (Scholl, Donat, B. 62, 1297). Beim Kochen des Natriumsalzes der Anthracen-sulfonsäure-(9) mit verd. Mineralsäuren (Minajew, Fedorow, B. 62, 2491; Ж. 61, 146).

Zur technischen Darstellung von Anthracen vgl. W. Borrmann, Der Teer, seine Gewinnung und Verarbeitung [Leipzig 1940], S. 44; L. Schumann, Kokereiteer und Rohbenzol [Stuttgart 1940], S. 110. — Gewinnung von reinem Anthracen aus Rohanthracen durch Umkrystallisieren aus Furfurol (Entfernung von Phenanthren und Carbazol): The Selden Co., D. R. P. 488527; Frdl. 16, 1185; Jaeger, Ind. Eng. Chem. 20, 1335; C. 1929 I, 1770. Gewinnung von nahezu reinem (95 %igem) Anthracen aus Rohanthracen durch Erhitzen mit Gemischen von Tetralin und Pyridin oder Methyläthylketon auf 100° oder mit Tetralin und Atzkali auf 205°: Deutsche Hydrierwerke A. G., D. R. P. 472183; C. 1929 I, 2825; Frdl. 16, 1183; vgl. dazu Tetralin-Ges., D. R. P. 301651; C. 1920 IV, 199; Frdl. 13, 314. Reinigung von Rohanthracen durch mehrmalige Krystallisation aus Tetralin und Waschen mit reinem Alkohol: Schroeter, Tetralin-Ges., D. R. P. 352721; C. 1922 IV, 159; Frdl. 14, 831); durch Krystallisation aus Dimethylanilin oder anderen aromatischen Aminen: Michael & Co., D. R. P. 377473; C. 1924 I, 967; Frdl. 14, 829; aus Cyclohexanon oder Cyclohexylacetat oder Gemischen beider: Tetralin-Ges., D. R. P. 389878; C. 1924 II, 889; Frdl. 14, 830; aus schwerem Teeről: Hardman, Chem. Trade J. 68, 768; C. 1921 IV, 653. Reinigung von Rohanthracen durch Destillation mit bei 260—315° siedendem Gasöl und Krystallisation des Destillation mit Gasöl in Gegenwart von Ätzkali: Weil, Chem. Fabr. Billwärder, D. R. P. 369366; Frdl. 14, 827; vgl. a. Wolfrum, Ch. Apparatur 12, 241; C. 1926 I, 1745; durch Destillation mit Gasöl und Behandeln der Dämpfe mit festem oder geschmolzenem Ätzkali: Weil, Chem. Fabr. Billwärder, D. R. P. 406819; frdl. 15, 658; durch Destillation mit Gasöl und Behandeln der Dämpfe mit festem oder geschmolzenem Atzkali: Weil, Chem. Fabr. Billwärder, D. R. P. 422573; Frdl. 15, 659; durch Leiten von Rohanthracen-Dampf im Gemisch mit Luft zwischen 360° und 440° über Katalysatore aus mit Titanoxyd, Ceroxyd, Eisenoxyd oder Manganvanadat und Kaliumsalzen getränktem Bi

#### Physikalische Eigenschaften.

Eigenschaften der reinen Substanz. Härte der Krystalle: Reis, Zimmermann, Ph. Ch. 102, 328. Krystallographisches: Bragg, Soc. 121, 2783; Pr. phys. Soc. London 34, 34; 35, 168; C. 1924 II, 1155. Röntgenogramm: Becker, Jancke, Ph. Ch. 99, 259; Herzog, Phys. Z. 27, 379; C. 1926 II, 558; Bragg, Z. Kr. 66, 23. F: 216° (McVicker, Marsh, Stewart, Soc. 127, 1000), 218° (kort.) (Kirby, J. Soc. chem. Ind. 40, 274 T; C. 1922 I, 344). Temperatur des Zusammenbackens: Tammann, Z. anorg. Ch. 157, 325. Kp: 340° (Ki.); Kp<sub>760</sub>: 342° (Nelson, Senseman, J. ind. Eng. Chem. 14, 61; C. 1922 I, 563). Abhängigkeit des Siedepunkts vom Druck: Finck, Wilhelm, Am. Soc. 47, 1578. Dampfdruck zwischen 226,53° (52,7 mm) und 343,25° (778,2 mm): Ne., Se., J. ind. Eng. Chem. 14, 60; 15, 622; C. 1922 I, 563; 1923 III, 556; zwischen 223,2° (48,0 mm) und 340,5° (742,2 mm): Mortimer, Murrhy, Ind. Eng. Chem. 15, 1141; C. 1924 I, 985. Verdampfungsgeschwindigkeit bei 99°: Mack, Am. Soc. 47, 2473. D. 1,252 (Ziegler, Ditzel, A. 473, 204); D: 1,26 (Skraup, Eisemann, A. 449, 9). Spezifische Wärme zwischen 0° und 79°: 0,301 cal/g (Padoa, G. 52 II, 206). Verbrennungswärme bei konstantem Volumen: 1688,8 kcal/Mol (Klappoth in Landolt-Börnst. E II, 1635), 9491 cal/g (Swietoslawski, Bl. Acad. polon. A 1927, 41; C. 1927 II, 24).

Nach Capper, Marsh (Am. Soc. 47, 2847) zeigt reines Anthracen entgegen den Angaben von Taylor, Lewis (Am. Soc. 46, 1607) in Chloroform im sichtbaren Gebiet, besonders auch bei 445 und 475 m $\mu$ , keine Absorption. Ultraviolett-Absorptionsspektrum des Dampfes und der reinen Substanz in Lösung: Capper, Marsh, Soc. 1926, 726; in Alkohol: Marchlewski, Moroz, Bl. [4] 33, 1406; Barnett, Cook, Ellison, Soc. 1928, 886; V. Henbi, Etudes de photochimie [Paris 1919], S. 127, 128; in Athylacetat: Radulescu, Barbulescu, Bulet. Cluj 4, 356; C. 1929 II, 1766. Molekularer Extinktionskoeffizient von Anthracen in Alkohol für  $\lambda = 366$  m $\mu$ : V. Halban, Geigel, Ph. Ch. 96, 229. Ultrarot-Absorptionsspektrum von Anthracen in Phenetol: Taylor, Lewis, Am. Soc. 46, 1608. Fluorescenz von reinem

Anthracen und von gelblich gefärbtem, mit "Chrysogenen" 1) verunreinigtem Anthracen: CAPPER, MARSH, Am. Soc. 47, 2849; von Anthracen in festem Zustand und in verschiedenen Lösungsmitteln: Ra., Ba., Bulet. Cluj 4, 353, 354, 356; C. 1929 II, 1766; von festem Anthracen: GYEMANT, Z. Phys. 26, 227; C. 1924 II, 1714. Zeitintervall zwischen Absorption und Emission des Lichtes bei der Fluorescenz: Wood, Pr. roy. Soc. [A] 99, 369; C. 1921 III, 1183. Fluorescenz- und Phosphorescenz-Licht von festem Anthracen sind unpolarisiert (CARRELLI, PRINGSHEIM, Z. Phys. 18, 324; C. 1924 I, 135); über die Polarisation der Fluorescenz-Strahlung von Anthracen-Lösungen vgl. Perrin, Ann. Physique [10] 12, 260. Entgegen älteren Angaben (vgl. H 5, 660) zeigt geschmolzenes Anthracen keine Fluorescenz (PERRIN. C. r. 177, 473). Tesla-Luminescenzspektrum von Anthracen-Dampf: McVicker, Marsh, C. 7. 177, 473). Testa-Luminescenzspektrum von Antriacen-Dampi: McVicker, Marsh, Stewart, Soc. 127, 1000; vgl. a. Marsh, Phil. Mag. [6] 49, 979, 1214; C. 1925 II, 890, 1336. Fluorescenz bei Bestrahlung mit Röntgenstrahlen: Newcomer, Am. Soc. 42, 2002; DE BEAUJEU, J. Phys. Rad. [6] 4, 264; C. 1924 I, 134; mit Kathodenstrahlen: Capper, Marsh, Am. Soc. 47, 2849; Marsh, Soc. 1927, 126. Nach Ghigi (G. 57, 284) sind reines Anthracen und feste Lösungen von Phenanthren, Chrysen, Dihydro-, Tetrahydro- und Hexahydroanthracen in Anthracen entgegen älteren Angaben (vgl. H 5, 660; E I 5, 321) nicht triboluminescent.

Elektrische Leitfähigkeit von festem Anthracen zwischen 1750 und 2150 und von flüssigem Anthracen zwischen 220° und 244°: Rabinowitsch, Ph. Ch. 119, 73; Ж. 58, 234. Magne-

tische Susceptibilität: Bhagavantam, Indian J. Phys. 4, 6; C. 1929 II, 2314.

Eigenschaften von Anthracen enthaltenden Gemischen. Fast unlöslich in kaltem Cyclohexylacetat und Cyclohexanon (Tetralin-Ges., D. R. P. 389878; C. 1924 II, 889: Frdl. 14, 830). Löslichkeit in trocknem und in wasserhaltigem Benzol bei 30,5°: Сонем, MIYAKE, Ph. Ch. 119, 252; in p-Cymol bei verschiedenen Temperaturen: WHEELER, Am. Soc. 42, 1844: in reinen organischen Lösungsmitteln und in binären Lösungsmittel-Gemischen bei verschiedenen Temperaturen: Disselkamp, Ph. Ch. 123, 102. Unlöslich in flüssigem Ammoniak, schwer löslich in flüssigem Schwefeldioxyd mit gelber Farbe (DE Carli, G. 57, 351). Löslich in flüssigem Schwefelwasserstoff (Quam, Am. Soc. 47, 105). — Kryoskopisches Verhalten in Zimtsäure: Falciola, G. 52 I, 176. Thermische Analyse binärer Systeme, die Anthracen enthalten, s. in der untenstehenden Tabelle. Thermische Analyse der binären

Thermische Analyse binärer Systeme.

| Komponente            | Eutektika       |                   |                       | Eutektika       |                   |
|-----------------------|-----------------|-------------------|-----------------------|-----------------|-------------------|
|                       | Temperatur<br>0 | Gew%<br>Anthracen | Komponente            | Temperatur<br>0 | Gew%<br>Anthracen |
| 1.2-Dinitro-benzol 1) | 110             | 12,5              | Reten 4)              | 88.5            | 8.50              |
| 1.3-Dinitro-benzol 1) | 84              | 8                 | Chrysen 4)            | 193,5           | 59,80             |
| 1.4-Dinitro-benzol 1) | 146             | 35                | 2-Nitro-phenol 1) .   | 44              | 2                 |
| 2.4-Dinitro-toluol 1) | 66              | 9                 | 4-Nitro-phenol 1) .   | 106             | 6                 |
| 2.6-Dinitro-toluol 2) | 54              | 6                 | 2.4-Dinitro-phenol 1) | 101             | 15,5              |
| 3.4-Dinitro-toluol 2) | 55              | 2                 | Pikrinsäure 3)        | 110             | 88                |
| 3.5-Dinitro-toluol 2) | 76              | 14                | Campher 5)            | 116,5           | 19,5 *)           |
| 2.4.6-Trinitro-       |                 |                   | Acridin 4)            | 109,5           | 7,7               |
| $toluol^1)$           | 75              | 6                 | 4-Methyl-acridin 4)   | 8485            | 8                 |

<sup>\*)</sup> Mol. % Anthracen. — ¹) Kremann, Müller, M. 42, 185, 193. — ²) Kr., Hönigsberg, Maurrmann, M. 44, 69, 72, 77. — ³) Rheinboldt, J. pr. [2] 111, 265; vgl. a. Kr., M. 26 [1905], 143. — 1) PASCAL, Bl. [4] 29, 650. — 1) JEFREMOW, Izv. imp. Akad. Petrog. [6] 10 [1916], 36; Izv. ross. Akad. [6] 13, 768; C. 1925 I, 2144; II, 524.

Systeme mit 1.3.5-Trinitro-benzol s. S. 574, mit 3-Nitro-phenol s. bei der Verbindung  $C_{14}H_{10}$  + C<sub>6</sub>H<sub>5</sub>O<sub>3</sub>N (Syst. Nr. 523). Anthracen zeigt in binären und ternären Gemischen mit Phenanthren und Carbazol lückenlose Mischkrystallbildung (PASCAL, Bl. [4] 29, 646). Thermische Analyse des binären Systems mit Chinon und des ternären Systems mit Chinon und Nitrobenzol: KREMANN, Mitarb., M. 43, 311, 312; des ternären Systems mit Carbazol und Chrysen: P., Bl. [4] 29, 655.

Dichte von Lösungen in Schwefelkohlenstoff bei 25°: WILLIAMS, OGG, Am. Soc. 50, 97; in geschmolzenem Naphthalin bei 90,35°: v. Steiger, B. 55, 1972; bei 99,4°: Krollpfeiffer, B. 56, 80; in Chinolin bei 99,5°: Kr., A. 430, 226. Verhalten dünner Filme auf 40%iger wäßriger Calciumchlorid-Lösung: HARKINS, Colloid Symp. Mon. 5, 26; C. 1928 II, 229. Kontaktwinkel gegen Wasser: NIETZ, J. phys. Chem. 32, 261.

<sup>1)</sup> Nach WINTERSTEIN, SOHÖN (Naturwiss. 22 [1934], 237) hauptsächlich Naphthacen.

Brechungsindices von Lösungen in geschmolzenem Naphthalin bei 99,4°: Krollffeiffer, B. 56, 80; bei 90,35°: v. Steiger, B. 56, 998; in Chinolin bei 99,5°: Kr., A. 430, 226. Strömungsdoppelbrechung von Anthracen-Hydrosol: Zocher, Ph. Ch. 98, 319. Absorptionsspektren von Anthracen-Lösungen s. S. 570. Dielektr.-Konst. binärer Gemische mit Schwefelkohlenstoff bei 25°: Williams, Ogg, Am. Soc. 50, 97. Magnetische Doppelbrechung von Lösungen in Tetrachlorkohlenstoff: Ramanadham, Indian J. Phys. 4, 112; C. 1929 II. 3216. Antioxydierende Wirkung auf Transformatorenöl: Butkow, Neft. Chozjajstvo 10, 388; C. 1926 II, 305.

#### Chemisches Verhalten.

Einwirkung von Licht, Wärme und Elektrizität. Polymerisation und Bildung von Dianthracen unter der Einw. von ultraviolettem Licht: Capper, Marsh, Am. Soc. 47, 2849; Taylor, Lewis, Am. Soc. 46, 1607; Weigert, Naturwiss. 15, 125; C. 1927 I, 1789. Geschwindigkeit der photochemischen Ionisation in Hexan-Lösungen verschiedener Konzentration: Volmer, Riggert, Ph. Ch. 100, 507. Über Bildung von Anthrachinon bei der Belichtung von gepulvertem Anthracen vgl. Hibbert, J. Soc. Dyers Col. 44, 377; C. 1929 I, 997. Über Zersetzung von Anthracen durch Kanalstrahlen vgl. Kohlschütter, Frumkin, B. 54, 592. — Verhalten beim Erhitzen auf 475° unter Drucken bis zu 70 Atm.: Ssachanow, Thlitschejew, B. 62, 665. Gibt bei der Destillation in Gegenwart von Aluminiumchlorid hydrierte Naphthalin- und Anthracenkohlenwasserstoffe, neben anderen Produkten (Orlow, B. 62, 717; Ж. 60, 1455).

Oxydation. Elektrochemische Oxydation zu Anthrachinon mit Bleidioxyd als Sauerstoffüberträger: RASCH, LOWY, Trans. am. electroch. Soc. 56, 478; C. 1929 II, 2158. Bei der unvollständigen Verbrennung von Anthracen-Dampf in der umgekehrten Flamme entsteht Acetylen (HOFMANN, WILL, B. 55, 3228). Gibt beim Erhitzen mit Luft unter Druck auf 210—260° Anthrachinon und geringere Mengen Phthalsäure, Naphthalin-dicarbonsäure-(2.3), Ameisensäure, Essigsäure und Oxalsäure (SCHRADER, Abh. Kenninis Kohle 4, 334; C. 1921 I. 537). Anthracen wird zu Anthrachinon oxydiert: durch Überleiten des Dampfes im Gemisch mit Luft oder Sauerstoff über borsäurehaltige Kontaktmassen bei 400-430° (BASF, D. R. P. 397212; C. 1924 II, 1023; Frdl. 14, 184), über mit Phosphorsäure getränkte Schamotte bei 380—400° (BASF, D. R. P. 419861; Frdl. 15, 389), über Vanadinpentoxyd oder Vanadate auf Bimsstein oder dergl. unter verschiedenen Bedingungen (Senseman, Nelson, Ind. Eng. Chem. 15, 521; C. 1923 IV, 289; WOHL, D. R. P. 349089, 347610; Frdl. 14, 836, 838), durch Überleiten im Gemisch mit feuchtem Kohlendioxyd über Vanadinpentoxyd auf Bimsstein bei 450—500° (BASF, D. R. P. 408184; C. 1925 I, 1811; Frdl. 14, 185), durch Behandeln mit Sauerstoff unter Druck in Gegenwart von Kupfervanadat oder Ammoniumvanadat in Eisessig bei 100—120° bzw. 160° (Wohl, D. R. P. 388382; C. 1924 I, 2634; Frdl. 14, 839), in Gegenwart von Natriumnitrit in Eisessig und Acetanhydrid bei 90° (Chem. Fabr. Worms, D. R. P. 350494; Frdl. 14, 840), durch Behandeln mit Sauerstoff in Gegenwart geringer Mengen rauchender Salpetersäure oder in Gegenwart geringer Mengen Stickoxyd und Kobaltnitrat in Eisessig bei 80-90° (Chem. Fabrik Worms, D. R. P. 406245; Frdl. 14, 841) oder in anderen Lösungs- oder Suspensionsmitteln (Chem. Fabrik Worms, D. R. P. 406777, 406778; Frdl. 14, 842), bei der Einw. von Stickoxyden in Wasser, Alkohol oder anderen Lösungsmitteln (Varma, Gupta, J. indian chem. Soc. 4, 297; C. 1928 I, 507) oder in Nitrobenzol (Illjinski, Maxorow, Z. chim. Promyšl. 5, 470; C. 1928 II, 2464), bei der Einw. von Stickstofftetrovyd in Bonrol (Page Investofftetrovyd in Bonrol (Page Investofftetrov)d (Page Investofftetrov)d (Page Investofftetrov)d (Page Investofftetrov)d (Page Investoff stofftetroxyd in Benzol (Bass, Johnson, Am. Soc. 46, 460), durch Erhitzen mit Wismutnitrat (Spiegel, Haymann, B. 59, 203), durch Oxydation mit Kaliumbromat oder Jodsäure in siedendem Eisessig (Williams, Am. Soc. 43, 1916). Die Oxydation von Anthracen zu Anthrachinon durch Cer(IV)-sulfat wird durch Zusatz von Schwefelsäure stark beschleunigt Anthrachinon durch Cer(IV)-suitat wird durch Zusatz von Schweieisaure stark descrieunige (Benrath, Ruland, Z. anorg. Ch. 114, 274). Anthracen liefert bei 25-stdg. Einw. von überschüssigem 30 %igem Wasserstoffperoxyd in Eisessig auf dem Wasserbad Anthrachinon (Charler, Mogel, G. 57, 741) und wenig 9.9'-Dianthron (Syst. Nr. 690); Sonnenlicht steigert die Ausbeute an 9.9'-Dianthron (Ch., Crippa, G. 57, 746). Gibt beim Ozonisieren ein Ozonid (S. 574) (Vaidyanathan, Indian J. Phys. 2 [1927/28], 429). Gibt man zu einer Lösung von gereinigtem Anthracen in Eisessig bei 7—8° tropfenweise konzentrierte Salpetersäure und erwärmt nach 2-tägigem Aufbewahren auf 50—55°, so entsteht 10.10'-Divited 10 'dioxy. 9 10 0' 10' tetra hydro dienthronyl (9 9') (Syst. Nr. 690) neben Anthranitro-10.10'-dioxy-9.10.9'.10'-tetrahydro-dianthranyl-(9.9') (Syst. Nr. 690), neben Anthrachinon; erwärmt man das Reaktionsgemisch sofort nach der Nitrierung auf 50—55°, so erhält man eine bis 290° nicht schmelzende Verbindung C<sub>18</sub>H<sub>18</sub>O<sub>10</sub>N<sub>4</sub> (Turski, Berlandstein, Roczniki Chem. 7, 463, 465; C. 1928 I, 2824). Anthracen wird durch Brom und konz. Salpetersäure zu einem Gemisch von Bromnitromethanen oxydiert (Datta, Chatterjee, Am. Soc. 45, 480). Liefert beim Rehandeln mit untershlorierer Säure und Golgenden Kochen. Am. Soc. 45, 480). Liefert beim Behandeln mit unterchloriger Säure und folgenden Kochen des Reaktionsprodukts mit überschüssigem Alkohol Oxanthranoläther (Syst. Nr. 753) (CHARRIER, CRIPPA, G. 57, 747). Anthracen läßt sich durch Chromschwefelsäure nur teilweise, durch Chromschwefelsäure + Silberchromat nahezu vollständig zu Kohlendioxyd oxydieren (Simon, C. r. 177, 266).

Reduktion. Anthracen ist in Gegenwart einer Natrium-Kalium-Legierung bei 250° und 20 Atm. leicht hydrierbar (Comp. d'Alais, D. R. P. 473457; C. 1929 I, 2825; Frdl. 16, 659. Anthracen wird beim Erhitzen auf 440—450° unter ca. 100 Atm. Wasserstoffdruck in hydrierte Anthracenkohlenwasserstoffe übergeführt (Spilker, Zerbe, Z. ang. Ch. 39, 1141; Kling, Florentin, Bl. [4] 41, 876), bei höherer Temperatur erfolgt gleichzeitig Abbau zu niederen Kohlenwasserstoffen verschiedener Sättigungsgrade; Zusatz von Eisen(III)-chlorid setzt die Temperatur des beginnenden Abbaus herab, Aluminiumchlorid verursacht schon bei ca. 450° starke Verkokung (Kling, Florentin, C. r. 182, 527; 184, 823; Bl. [4] 41, 864). Gibt bei der Hydrierung unter 10—20 Atm. Druck zwischen 120° und 200° in Gegenwart eines Tetralin-Nickel-Katalysatorgemischs je nach den Bedingungen wechselnde Mengen 9.10-Dihydro-anthracen, 1.2.3.4-Tetrahydro-anthracen, 1.2.3.4.5.6.7.8. Oktahydro-anthracen oder noch stärker hydrierte Produkte (Schroeter, B. 57, 2012; Schroeter, Tetralin-Ges., D. R. P. 352721; C. 1922 IV, 159; Frdl. 14, 831); mit der berechneten Menge Wasserstoff unter 10—12 Atm. Druck und 120—170° entsteht als Hauptprodukt 1.2.3.4-Tetrahydro-anthracen (Schroeter, D. R. P. 463830; C. 1928 II, 1386; Frdl. 16, 1279). Liefert bei der Hydrierung unter einem Anfangsdruck von ca. 70 Atm. bei 480—490° in Gegenwart von Tonerde und Kupferoxyd gasförnige Kohlenwasserstoffe und kohlige Produkte (Ipatjew, Orlow, B. 60, 1968).

Einwirkung weiterer anorganischer Verbindungen. Einw. von Schwefel auf Anthracen bei 200—250°: I. G. Farbenind., D. R. P. 479357; C. 1929 II, 1473; Frdl. 16, 1195. Liefert beim Behandeln mit Dischwefeldichlorid bei Zimmertemperatur Anthranyl-(9)-dithiochlorid (Syst. Nr. 541) (Friedländer, Simon, B. 55, 3972; vgl. H 5, 662), beim Kochen mit der gleichen Menge Dischwefeldichlorid in Benzol oder beim Verrühren mit 1,5 Tln. Dischwefeldichlorid bei gewöhnlicher Temperatur und Behandeln des Reaktionsprodukts mit einer heißen konzentrierten Lösung von Natriumsulfid das Natriumsalz des 9-Mercapto-anthracens (Petri & Stark, D. R. P. 360608; C. 1923 II, 481; Frdl. 14, 835). Zur Herstellung von Küpenfarbstoffen durch Erhitzen von Anthracen mit Dischwefeldichlorid (s. E I 5, 323) vgl. noch Cassella & Co., D. R. P. 396401; C. 1924 II, 2506; Frdl. 14, 889; I. G. Farbenind., D. R. P. 480377; C. 1929 II, 2381; Frdl. 16, 1191. Zur Sulfurierung (H 5, 662; E I 5, 323) vgl. noch Battegay, Brandt, Bl. [4] 33, 1673. Gibt beim Erhitzen mit Anhydropyridinschwefelsäure (Syst. Nr. 3051) in Pyridin unter Zusatz von Petroleum auf 165—175° Anthracen-sulfonsäure-(1) und sehr wenig Anthracensulfonsäure-(2) (Ba., Br., Bl. [4] 31, 911; 33, 1671, 1676). Anthracen reagiert mit Selenoxybromid (LENHER, Am. Soc. 44, 1671). Beim Erhitzen mit einem unter Kühlung hergestellten Gemisch von Salpetersäure (D: 1,52), Pyridin und Nitrobenzol auf 125° entstehen 9-Nitro-anthracen, wenig 10-Nitro-anthracen, wenig 10-Nitro-anthracen.

Zur Reaktion mit Natrium (Schlenk, Mitarb., B. 47 [1914], 479) vgl. Schlenk, Bergmann, A. 463, 142; vgl. a. den Artikel 9.10-Dinatrium-9.10-dihydro-anthracen, Syst. Nr. 2357. Über die Bildung einer Verbindung mit Aluminiumchlorid vgl. Lavaux. A. ch. [8] 20 [1910], 453; Scholl, Seer, B. 55, 339. Gibt mit einer Lösung von Tantal(V)-chlorid in Schwefelkohlenstoff unter Kühlung die Verbindung C<sub>14</sub>H<sub>10</sub> + TaCl<sub>5</sub> (S. 574), beim Erwärmen Anthranyltantaltetrachlorid (Syst. Nr. 2332a) und beim Kochen Dianthranyltantaltrichlorid; mit Niob(V)-chlorid erhält man schon in der Kälte Anthranyl-niobiumtetrachlorid (Funk, Niederländer, B. 61, 1387).

Einwirkung organischer Verbindungen. Über die Bildung verschiedener Kondensationsprodukte bei der Reaktion von Anthracen und Benzol in Gegenwart variierender Mengen Aluminiumchlorid unter gleichzeitigem Einleiten von Sauerstoff bei 50° oder Einleiten von Chlorwasserstoff vgl. Schaarschmidt, Mayer-Buoström, Sevon, B. 58, 156. Über die Bildung einer Butylanthracensulfonsäure bei der Einw. gleicher Gewichtsteile Chlorsulfonsäure und Butylalkohol auf Anthracen vgl. I. G. Farbenind., D. R. P. 451421: Frdl. 15, 1285. Anthracen gibt bei der Einw. von Acetylchlorid in Gegenwart von Aluminiumchlorid in Benzol bei 0—10° oder in Nitrobenzol bei 10—15° je nach den Bedingungen wechselnde Mengen 1-Acetyl-anthracen und 2-Acetyl-anthracen (Syst. Nr. 655), in Schwefelkohlenstoff bei 10—25° x.x. Diacetyl-anthracen vom Schmelzpunkt 173° und 212—215° (Syst. Nr. 682) (I. G. Farbenind., D. R. P. 492247; C. 1930 I, 2630; Frdl. 16, 1196), bei der Einw. eines großen Überschusses von Acetylchlorid in Benzol in Gegenwart von Aluminiumchlorid bei —5° bis 0° erhält man 9-Acetyl-anthracen (I. G. Farbenind., D. R. P. 493688; C. 1930 I. 3486; Frdl. 16, 1197). Liefert mit überschüssigem Benzoesäureanhydrid bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff 1-Benzoyl-anthracen und geringere Mengen 9.10-Dibenzoyl-anthracen (Cook, Soc. 1926, 1285). Anthracen gibt beim Erwärmen mit der Aluminiumchlorid-Verbindung der 2-Benzoyl-benzoesäure und Acetanhydrid in Benzol auf 70° wahrscheinlich zwei 3-Phenyl-3-anthryl-(x)-phthalide vom Schmelzpunkt 171—173° 1) und 280—283° (McMullen, Am. Soc. 44, 2059). Liefert mit überschüssigen

<sup>1)</sup> In dieser Verbindung kann indessen auch das eine der beiden oben erwähnten x.x-Diacetylanthracene vorgelegen haben.

Azodicarbonsäure-dimethylester in äther. Salzsäure in Gegenwart von wenig Jod 1-[N.N'-Dicarbomethoxy-hydrazino]-anthracen (Stollé, Adam, J. pr. [2] 111, 173). Anthracen gibt beim Schütteln mit α-Phenyl-isopropyl-kalium in Benzol und nachfolgenden Einleiten von Kohlendioxyd 10-[α-Phenyl-isopropyl]-9.10-dihydro-anthracen-carbonsäure-(9) (Ziegler, Bähr, B. 61, 261). Beim Behandeln mit Pyridin unter gleichzeitigem Einleiten von Chlorbei Temperaturen unterhalb —5° entsteht N.N'-[9.10-Dihydro-anthrylen-(9.10)]-bisyridiniumchlorid (Syst. Nr. 3051) (BASF, D. R. P. 381180; C. 1924 I, 1446; Frdl. 14, 836), bei analoger Einw. von überschüssigem Brom erhält man das entsprechende Dibromid (Barnett, Cook, Soc. 119, 905).

#### Physiologisches Verhalten; Verwendung; Analytisches.

Physiologisches Verhalten: H. STAUB in J. HOUBEN, Fortschritte der Heilstoffchemie,

2. Abt., Bd. II [Berlin-Leipzig 1932], S. 62.

Uber Verwendung von Anthracen zur Herstellung von harzartigen Kondensationsprodukten vgl. z. B. BAYER & Co., D. R. P. 349741; C. 1922 IV, 50; Frdl. 14, 630; BASF, D. R. P. 391315; Frdl. 14, 607; Höchster Farbw., D. R. P. 416904; C. 1925 II, 2102; Frdl. 15, 1149; Bakelite Ges., Florenz, D. R. P. 420443; C. 1926 I, 2253; Frdl. 15, 1172.

Anthracen gibt mit 2.7-Dichlor-anthrachinon eine blutrote, mit 1.2.3.4.5.6.7-Heptachlor-anthrachinon eine dunkelrote und mit 1-Nitro-anthrachinon eine schwarzrote Färbung (Hertel, Kurth, B. 61, 1652). Über den mikrochemischen Nachweis durch Krystallform, Oxydation zu Anthrachinon oder Überführung in das 2.7-Dinitro-phenanthrenchinon-Additionsprodukt vgl. Behrens-Kley, Organische mikrochemische Analyse [Leipzig 1922]. S. 17. In Abänderung des als Höchster Anthracen probe bezeichneten Bestimmungsverfahrens (s. H 5, 662) oxydiert man Anthracen in siedendem Eisessig mit einem geringen Überschuß an Chromsäure, in gleichen Teilen Eisessig und Wasser gelöst, verdünnt mit eiskaltem Wasser, filtriert, löst das entstandene Anthrachinon in alkal. Na<sub>2</sub>S<sub>2</sub>O<sub>4</sub>-Lösung, filtriert, oxydiert das Anthrahydrochinon mit Luft oder Wasserstoffperoxyd wieder zu Anthrachinon, filtriert, trocknet bei 100° und wägt; 1 g Anthrachinon = 0,8558 g Anthracen (Rütgers-Methode) (Sielisch, Z. ang. Ch. 39, 1249; S., Köppen-Kastrop, Z. ang. Ch. 39, 1249). Weitere Vorschläge zur Verbesserung der Höchster Anthracenprobe: Lewis, J. ind. Eng. Chem. 10 [1918], 425; Rhodes, Nichols, Morse, Ind. Eng. Chem. 17, 839; C. 1926 I, 180; Jacobsohn, Brennstoffch. 7 [1926], 311; Ch. Z. 50, 545; C. 1926 II, 1306; Koch, Fr. 68, 359; Pirak, Z. ang. Ch. 41, 231; Pieters, Koenen, Chem. Weekb. 26, 222; C. 1929 I, 2906; Berl-Lunge, Chemisch-technische Untersuchungsmethoden, 8. Aufl., Bd. IV [Berlin 1933], S. 309; Bd. V [Berlin 1934], S. 1255. Geringe Mengen Anthracen in Anthrachinon lassen sich kolorimetrisch mit rauchender Schwefelsäure bestimmung der Jodzahl nach Hübl und Wijs: MacLean, Thomas, Biochem. J. 15, 321.

#### Additionelle Verbindungen und Umwandlungsprodukte von ungewisser Konstitution aus Anthracen.

Verbindung mit Tantal(V)-chlorid C<sub>14</sub>H<sub>10</sub>+TaCl<sub>5</sub>. B. Aus den Komponenten in eisgekühltem Schwefelkohlenstoff (Funk, Niederländer, B. 61, 1387). Gelblich. Wird durch wäßr. Ammoniak entfärbt.

Verbindung mit 1.3.5-Trinitro-benzol  $C_{14}H_{10}+C_8H_3O_8N_3$ . Wurde bei der thermischen Analyse des Systems Anthracen-1.3.5-Trinitro-benzol beobachtet (Kremann, Müller, M. 42, 190, 192). Gelborange. F: 164° (Hertel, A. 451, 191), 165° (Kr., M.). Bildet Eutektika mit 1.3.5-Trinitro-benzol (F: 112°; 4 Gew. % Anthracen) und mit Anthracen (F: 162°; 51 Gew. % Anthracen) (Kr., M.). D: 1,37 (Skraup, Eisemann, A. 449, 9).

Verbindung mit 2.4.6-Trinitro-toluol C<sub>14</sub>H<sub>10</sub>+C<sub>7</sub>H<sub>5</sub>O<sub>6</sub>N<sub>3</sub>. B. Aus den Komponenten in Tetrachlorkohlenstoff (SKRAUP, EISEMANN, A. 449, 10). Ziegelrote Nadeln. F: 162°. D: 1,39.

Pikrat des Anthracens  $C_{14}H_{10} + C_6H_3O_7N_3$ . Rot. F: 138° (R. MEYER, TAEGER, B. 53, 1263; HERTEL, A. 451, 191).

Dianthracen, Paranthracen  $C_{28}H_{20}$  (H 663; E I 323). B. Über die photochemische Bildung aus Anthracen vgl. Taylor, Lewis, Am. Soc. 46, 1606; Capper, Marsh, Am. Soc. 47, 2849; Weigert, Naturwiss. 15, 125; C. 1927 I, 1789.

Anthracenozonid. B. Aus Anthracen und ozonisiertem Sauerstoff (VAIDYANATHAN, Indian J. Phys. 2, 429; C. 1928 II, 1985). Rotes Gel. Magnetische Susceptibilität: V.

#### Substitutionsprodukte des Anthracens.

1-Chlor-anthracen  $C_{14}H_0Cl$  (E I 324). B. Neben 4-Chlor-9-brom-anthracen beim Kochen von 1-Chlor-anthracen-dibromid-(9.10) mit Xylol (Barnett, Matthews, R. 43, 535). — F: 81—82° (Krollpfeiffer, A. 430, 225), 83,5° (B., M., R. 43, 535).  $D_4^{ab}$ : 1,1707;  $n_{\alpha}^{ab}$ :

1,6822; ng.: 1,6959; ng.: 1,7382 (Kr.). Dichte und Brechungsindices einiger Lösungen in Chinolin: Kr. — Gibt beim Kochen mit Salpetersäure (D: 1,48) in Eisessig und Kochen des Reaktionsprodukts mit Pyridin 1(oder 4)-Chlor-9-nitro-anthracen vom Schmelzpunkt 1960 (B., M.), beim Einleiten von überschüssigem Stickstoffdioxyd in Chloroform unter Kühlung und Behandeln der entstandenen Additionsverbindung mit kaltem Pyridin und Alkohol 1(oder 4)-Chlor-9-nitro-anthracen vom Schmelzpunkt 155° (B., Soc. 127, 2042).

2-Chlor-anthracen C<sub>14</sub>H<sub>9</sub>Cl (E I 324). F: 217—218<sup>o</sup> (Krollpfeiffer, A. 430, 228), 223<sup>o</sup> (Barnett, Matthews, R. 43, 536 Anm. 10). Dichte und Brechungsindices einiger Lösungen in Chinolin: Krollpfeiffer.

**9-Chlor-anthracen**  $C_{14}H_9Cl$  (H 663). B. Entsteht neben 10-Chlor-9-benzoyl-anthracen beim Erhitzen von 9.10-Dichlor-9-benzoyl-9.10-dihydro-anthracen über den Schmelzpunkt (COOK, Soc. 1926, 1286). — Gelbe Nadeln. F: 1060 (KROLLPFEIFFER, A. 430, 225). Dichte und Brechungsindices einiger Lösungen in Chinolin: KROLLPFEIFFER. Gibt stark violett fluorescierende Lösungen (C.).

1.4-Dichlor-anthracen  $C_{14}H_8Cl_2$ , s. nebenstehende Formel. B. Durch Reduzieren von 1.4-Dichlor-anthrachinon mit Zinkstaub und verd. Ammoniak auf dem Wasserbad (BARNETT, MATTHEWS, WILTSHIRE, R. 45, 559). Aus 1.4-Dichlor-anthracen-dibromid-(9.10) beim Kochen mit Toluol (B., M., W.). — Gelbe Krystalle (aus Methyläthylketon). F: 180° (B., M., W.), 179—180° (KROLLPFEIFFER, A. 430, 225). Dichte und Brechungsindices einiger Lösungen in Chinolin: Kr. — Liefert beim Behandeln mit Brom in Tetrachlorkohlenstoff 1.4-Dichlor-anthracen-dibromid-(9.10) (B., M., W.).

1.5-Dichlor-anthracen C<sub>14</sub>H<sub>8</sub>Cl<sub>2</sub>, s. nebenstehende Formel (E I 324).

B. Beim Kochen von 1.5-Dichlor-anthracen-dibromid-(9.10) mit Xylol (Barnett, Matthews, R. 43, 537) oder von 1.5-Dichloranthracen-dichlorid mit Cymol (Ba., Cook, M., R. 45, 73). Weitere analoge Bildungsweisen s. bei 1.5-Dichlor-anthracen-dibromid-(9.10), S. 548. Durch Reduktion von 1.5-Dichlor-anthron-(9) mit Zinkstaub und konz. Salzsäure in siedendem

Cl

Eisessig (Ba., M., Soc. 123, 2556). Bei der Reduktion von 1.5-Dichlor-10-benzhydryl-anthron-(9) mit Zinkstaub und alkoh. Kalilauge oder mit Zinkstaub und Salzsäure in Eisessig (Ba., GOODWAY, Soc. 1929, 21). — Darstellung durch Reduktion von 1.5-Dichlor-anthrachinon mit Zinkstaub und Ammoniak: Ba., M., R. 43, 540.

Krystalle (aus Pyridin). F: 190° (BARNETT, MATTHEWS, R. 43, 537). Dichte und Brechungsindices einiger Lösungen in Chinolin: Krollpfeiffer, A. 430, 228. Ultraviolett-Absorptionsspektrum in alkoh. Lösung: BA., COOK, ELLISON, Soc. 1928, 886, 890. — Beim Kochen mit Bleitetraacetat in Eisessig erhält man cis-1.5-Dichlor-9.10-diacetoxy-9.10-dihydro-anthracen; bei der Einw. von Brom und wasserfreiem Natriumacetat in siedendem Eisessig bildet sich daneben 1.5-Dichlor-anthronyl-(9)-acetat (BA., C., M., B. 58, 981). Liefert in Chloroform-Lösung beim Einleiten von überschüssigem Stickstoffdioxyd unter Kühlung 1.5-Dichlor-9.10-dinitro-9.10-dihydro-anthracen (BA., Soc. 127, 2042).

1.8-Dichlor-anthracen C<sub>14</sub>H<sub>8</sub>Cl<sub>2</sub>, s. nebenstehende Formel (E I 324).

B. Durch Kochen von 1.8(oder 4.5)-Dichlor-anthron-(9) mit Zinkstaub und Cl konz. Salzsaure in Eisessig (Barnett, Matthews, Soc. 123, 2556). — Gelbe Nadeln (aus Benzol + Eisessig). F: 160°. — Die Reaktion von reinem 1.8-Di-chlor-anthracen mit Chlor in Tetrachlorkohlenstoff wird durch Jod beschleunigt (Ba., Cook, M., R. 45, 72). Liefert in Chloroform-Lösung beim Einleiten von überschüssigem Stickstoffdioxyd unter Kühlung 1.8-Dichlor-9.10-dinitro-dihydroanthracen (BA., Soc. 127, 2043). Gibt beim Kochen mit rauchender Salpetersäure (D: 1,48) in Eisessig 1.8(oder 4.5)-Dichlor-10-nitro-dihydroanthranol-(9) (Ba., M., R. 43, 539).

2.3-Dichlor-anthracen  $C_{14}H_8Cl_2$ , s. nebenstehende Formel (H 664). Zur Darstellung durch Reduktion von 2.3-Dichlor-anthrachinon mit Zinkstaub und verd. Ammoniak auf dem Wasserbad vgl. BARNETT, MATTHEWS, WILTSHIRE, R. 45, 561. — F: 261°. — Liefert mit Brom in Schwefelkohlen-stoff 2.3-Dichlor-9.10-dibrom-anthracen. Beim Kochen mit Salpetersäure (D: 1,42) und Eisessig bildet sich 2.3-Dichlor-9-nitro-anthracen, mit Salpetersäure (D: 1,5) und Eisessig entsteht außerdem 2.3-Dichlor-9-nitro-9.10-dihydro-anthranyl-acetat.

9.10-Dichlor-anthracen C<sub>14</sub>H<sub>8</sub>Cl<sub>2</sub>, s. nebenstehende Formel (H 664; E I 324). B. Aus Anthracen bei der Einw. von Sulfurylchlorid in Tetrachlorkohlenstoff bei Zimmertemperatur (BARNETT, COOK, GRAINGER, Soc. 121, 2068). Durch längeres Erhitzen von Anthron mit Phosphorpentachlorid auf dem Wasserbad (Ba., C., Matthews, Soc. 123, 2007). — Gelbe Nadeln (aus Methyläthylketon). F: 209—210° (Ba., C., M.), 210° (Krollpfeiffer,

A. 430, 225). Dichte und Brechungsindices einiger Lösungen in Chinolin: Kr., A. 430, 228.

Ultraviolett-Absorptionsspektrum in Alkohol und Fluorescenzspektrum in festem Zustand und in verschiedenen Lösungsmitteln: Radulescu, Barbulescu, Bulet. Cluj 4, 354, 355, 356; C. 1929 II, 1766. Kathodenluminescenz: Marsh, Soc. 1927, 126. — Reagiert nach Barnett, Cook, Grainger (Soc. 121, 2060) nicht mit Brom in Pyridin. Liefert bei der Einw. von Stickstoffdioxyd in Chloroform unter Kühlung 9.10-Dichlor-9.10-dinitro-dihydroanthracen (Ba., Soc. 127, 2043). Gibt beim Kochen mit einer aus Natriumäthylat-Lösung und Schwefelwasserstoff in Alkohol hergestellten Natriumhydrosulfid-Lösung unter gleichzeitigem Einleiten von Schwefelwasserstoff und nachfolgenden Erhitzen unter Druck auf 120° je nach der Aufarbeitung Anthron, Dianthron, Anthrachinon und eine nicht näher untersuchte bei ca. 207° schmelzende gelbe krystalline, schwefelhaltige Substanz (Heilbron, Heaton, Soc. 123, 180).

- 1.5.9-Trichlor-anthracen C<sub>14</sub>H<sub>7</sub>Cl<sub>3</sub>, s. nebenstehende Formel (E I 325).

  B. Aus 1.5-Dichlor-anthracen-dichlorid-(9.10) beim Erhitzen auf 230° (Barnett, Cook, Matthews, R. 45, 73), beim Kochen mit alkoh. Kalilauge (B., C., M., R. 44, 736) oder beim Erhitzen mit Piperidin (B., C., M., R. 44, 822).

  Beim Kochen von 1.5.9-Trichlor-anthracen-dichlorid-(9.10) mit p-Cymol (B., C., M., R. 44, 896). Krystalle (aus Pyridin). F: 163° (B., C., M., R. 45, 73). Bei der Einw. von Brom in Tetrachlorkohlenstoff wurde einmal 1.5.10-Trichlor-9-brom-anthracen erhalten; bei der Einw. von Brom in siedendem Eisessig entsteht 1.5-Dichlor-10-brom-anthron-(9) (B., C., M., R. 44, 896). Liefert bei der Einw. von Stickstoffdioxyd in Chloroform unter Kühlung 1.5.9-Trichlor-9.10-dinitro-dihydroanthracen (Barnett, Soc. 127, 2044).
- 1.8.10-Trichlor-anthracen C<sub>14</sub>H<sub>7</sub>Cl<sub>3</sub>, s. nebenstehende Formel. B. Aus 1.8-Dichlor-anthracen-dichlorid-(9.10), am besten durch Kochen mit Xylol, ferner beim Erhitzen für sich auf 200—220°, beim Kochen mit alkoh. Kalilauge, mit Alkoholen oder mit Phenol in Benzol, beim Behandeln mit Diäthylamin oder Piperidin bei Zimmertemperatur oder beim Erwärmen mit Dimethylanilin oder Chinolin auf dem Wasserbad (BARNETT, COOK, MATTHEWS, R. 45, 73, 74, 77). Aus 1.8.10-Trichlor-anthracen-dichlorid-(9.10) beim Kochen nbeim Kochen mit Diäthylamin in Benzol, neben geringeren Mengen 4.5-Dichlor-10

R. 45, 73, 74, 77). Aus 1.8.10-Trichlor-anthracen-dichlorid-(9.10) beim Kochen mit Xylol, beim Kochen mit Diathylamin in Benzol, neben geringeren Mengen 4.5-Dichlor-10-diathylamino-anthron-(9) oder beim Erhitzen mit Dimethylanilin auf dem Wasserbad, neben 1.8-Dichlor-10-[4-dimethylamino-phenyl]-anthracen (B., C., M.). — Krystalle (aus Alkohol + Methyläthylketon). F: 194°. — Liefert beim Umsetzen mit Chlor in Tetrachlorkohlenstoff in Gegenwart von Jod 1.8.10-Trichlor-anthracen-dichlorid-(9.10).

- 1.5.9.10-Tetrachlor-anthracen C<sub>14</sub>H<sub>6</sub>Cl<sub>4</sub>, s. nebenstehende Formel. B. Aus 1.5.9-Trichlor-anthracen-dichlorid-(9.10) beim Erhitzen auf 190° (Barnett, Cook, Matthews, R. 45, 73), beim Kochen mit wäßrig-alkoholischer Kalilauge oder beim Erwärmen mit Tripropylamin auf dem Wasserbad (B., C., M., R. 44, 896). Gelbe Nadeln (aus Methyläthylketon oder aus Eisessig). F: 195° (B., C., M.). Wird bei 24-stdg. Aufbewahren in einer mit Chlor gesättigten Tetrachlorkohlenstoff-Lösung nicht verändert (B., C., M., R. 44, 896). Bei der Oxydation mit Chromsäure entsteht 1.5-Dichlor-anthrachinon (B., C., M., R. 44, 896).
- 1.8.9.10-Tetrachlor-anthracen C<sub>14</sub>H<sub>6</sub>Cl<sub>4</sub>, Formel I. B. Aus 1.8.10-Trichlor-anthracendichlorid durch Erhitzen auf 200—230<sup>6</sup> (Barnett, Cook, Matthews, R. 45, 73). Gelbe Nadeln (aus Eisessig). F: 217<sup>6</sup>.
- 2.3.9.10 Tetrachlor anthracen C<sub>14</sub>H<sub>6</sub>Cl<sub>4</sub>, Formel II (E I 326). B. Aus 9.10-Dichlor-anthracentetrachlorid-(1.2.3.4) (S. 515) beim Erwärmen mit Pyridin auf dem Wasserbad (Barnett, Matthews, Wiltshire, R. 45, 561). F: 245°.
- $\mathbf{I.} \begin{picture}(20,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,$

9-Brom-anthracen C<sub>14</sub>H<sub>9</sub>Br (H 665; E I 326). B. Aus Anthracen-dibromid-(9.10) bei längerem Aufbewahren einer mit etwas Phenol versetzten Suspension in Toluol und allmählichem Erwärmen bis auf 100° (Barnett, Cook, Soc. 125, 1086) oder beim Behandeln mit Diäthylamin in Chloroform oder mit Schwefeldioxyd in Eisessig unter Kühlung (B., C., Matthews, R. 44, 221, 222). — Krystalle (aus Alkohol). F: 98—99°. — Liefert bei der Einw. von Chlor in Schwefelkohlenstoff bei 0° oder von Sulfurylchlorid erst bei gewöhnlicher, dann bei erhöhter Temperatur 10-Chlor-9-brom-anthracen (B., C.). Gibt in Eisessig suspendiert, beim Behandeln mit Salpetersäure (D: 1,42) unter Kühlung 9.10-Dibrom-anthracen, 10-Nitro-anthron-(9) und geringe Mengen einer bei 210° schmelzenden Verbindung, in der wahrscheinlich ein Bromnitroanthracen vorliegt (B., C.). Bei der Einw. von Stickstoffdioxyd in Chloroform unter Kühlung erhält man 9-Brom-9.10-dinitro-dihydroanthracen und 9.10-Dibrom-anthracen (B., Soc. 127, 2043). Bei der Einw. von Benzhydrylnatrium

und Zersetzung des Reaktionsprodukts mit Kohlendioxyd entstehen Dianthranyl, Anthracen und geringe Mengen Diphenylessigsäure (SCHLENK, BERGMANN, A. 463, 168).

**4-Chlor-9-brom-anthracen**  $C_{14}H_8ClBr$ , s. nebenstehende Formel (vgl. E I 326). B. Neben 1-Chlor-anthracen beim Kochen von 1-Chlor-anthracen dibromid-(9.10) mit Xylol (BARNETT, MATTHEWS, R. 43, 535). Durch Einw. von 2 Mol Brom auf 1-Chlor-10-brom-9-benzyl-anthracen in Schwefelkohlenstoff (Cook, Soc. 1928, 2806). Aus 4-Chlor-9-[a-methoxy-benzyl]-anthracen durch Einw. von Brom in kaltem Schwefelkohlenstoff unter Kühlung und Kochen des Reaktionsprodukts mit Alkohol (Cook, Soc. 1928, 2806, 2810). — Hellgelbe Nadeln (aus Methyl-äthylketon + Alkohol oder Eisessig). F: 152-153° (C.), 150° (B., M.).



Unlöslich in siedendem Alkohol (B., M.). 10-Chlor-9-brom-anthracen  $C_{14}H_6ClBr$ , s. nebenstehende Formel. B. Aus 9-Brom-anthracen bei der Einw. von in Schwefelkohlenstoff gelöstem

Chlor bei 0° oder von Sulfurylchlorid in Chloroform zunächst bei gewöhnlicher, dann bei erhöhter Temperatur (BARNETT, COOK, Soc. 125, 1086). — Citronengelbe Nadeln (aus Chloroform, Pyridin oder Methyläthylketon). F: 207° Die Lösungen zeigen intensive blauviolette Fluorescenz.



1.5-Dichlor-9-brom-anthracen  $C_{14}H_{7}Cl_{2}Br$ , s. nebenstehende Formel. B. Durch Kochen von 1.5-Dichlor-9.10-dibrom-9-[ $\alpha$ -methoxy-benzyl]-9.10-dihydro-anthracen mit Benzol (BARNETT, COOK, MATTHEWS, B. 60, 2363). — Gelbe Nadeln (aus Benzol + Petroläther oder Benzol + Alkohol). F: 158° bis 159°. — Wird beim Kochen mit Pyridin nicht verändert.



4.5-Dichlor-9-brom-anthracen C<sub>14</sub>H<sub>7</sub>Cl<sub>2</sub>Br, s. nebenstehende Formel. B. Aus 1.8-Dichlor-anthracen-dibromid-(9.10) beim Erhitzen auf 200—230°. beim Kochen mit alkoh. Kalilauge, beim Erwärmen mit Eisessig auf dem Wasserbad im Schwefeldioxyd oder Schwefelwasserstoff-Strom, beim Behandeln mit Diäthylamin oder Piperidin oder beim Erwärmen mit Chinolin auf dem Wasserbad (BARNETT, COOK, MATTHEWS, R. 45, 73, 75, 77, 79). — Gelbe Nadeln (aus Eisessig). F: 202°. — Liefert mit Chlor in Tetrachlorkohlenstoff in Gegenwart von Jod 1.8.10-Trichlor-anthracen-dichlorid-(9.10) (B., C., M., R. 45, 72).



1.5.10 - Trichlor - 9 - brom - anthracen C<sub>14</sub>H<sub>6</sub>Cl<sub>3</sub>Br, s. nebenstehende Formel. B. Wurde einmal bei der Einw. von Brom auf 1.5.9-Trichloranthracen in Tetrachlorkohlenstoff erhalten (BARNETT, COOK, MATTHEWS, R. 44, 896). — Gelbes, krystallinisches Pulver (aus Toluol). F: 224°.

BrĊI ĊI

9.10-Dibrom-anthracen  $C_{14}H_8Br_2$ , s. nebenstehende Formel (H 665; E I 326). B. Durch Erhitzen von 9.10-Dibrom-dihydroanthracen auf dem Wasserbad oder neben anderen Produkten bei der Einw. von Salpetersäure (D: 1,42) auf eine Suspension von 9-Brom-anthracen in Eisessig unter Kühlung (BARNETT, COOK, Soc. 125, 1085, 1086). In geringer Menge bei der Einw. von Stickstoffdioxyd auf 9-Brom-anthracen in Chloroform unter Kühlung



(BARNETT, Soc. 127, 2043). Beim Kochen von 9-Nitro-anthracen mit Brom in Tetrachlorkohlenstoff (Barnett, Cook, Grainger, Soc. 121, 2065). Bei mehrstündiger Einw. von 2—3 Mol Brom auf 9-Benzyl-anthracen in Schwefelkohlenstoff bei Zimmertemperatur (Cook, Soc. 1926, 2166). Entsteht in geringer Menge neben 10-Brom-9-benzoyl-anthracen bei Einw. von 2 Mol Brom auf 9-Benzoyl-anthracen in Schwefelkohlenstoff und längerem Kochen des Reaktionsgemischs (Cook, Soc. 1926, 1285). — Fluorescenzspektrum in festem Zustand und in verschiedenen Lösungsmitteln: Radulescu, Barbulescu, Bulet. Cluj 4, 354; C. 1929 II, 1766. Röntgen-Luminescenzspektrum: DE BEAUJEU, J. Phys. Rad. [6] 4, 264; C. 1924 I, 134. Kathodenluminescenz: Marsh, Soc. 1927, 126. Ausbreitung auf wäßr. Calciumchlorid-Lösung: HARKINS, Ph. Ch. [A] 139, 685; Colloid Symp. Mon. 5, 26; C. 1928 II, 229; H., MORGAN, Pr. nation. Acad. USA. 11, 640; C. 1926 I, 1950. Dichte und Brechungsindices einiger Lösungen in Chinolin: Krollpfeiffer, A. 430, 228.

Reagiert nicht mit Brom in Pyridin (Barnett, Cook, Grainger, Soc. 121, 2060). Liefert bei Einw. von Stickstoffdioxyd in Chloroform erst unter Kühlung, zuletzt bei Zimmertemperatur 10-Brom-10-nitro-anthron-(9) (B., Soc. 127, 2041, 2043). Leitet man Schwefelwasserstoff in eine Lösung von 9.10-Dibrom-anthracen und 2 Mol Natriumisoamylat in Isoamylalkohol zunächst bei Zimmertemperatur, dann bei Siedehitze, so erhält man je nach den Bedingungen wechselnde Mengen 1.2;7.8 Dibenzo dithioperylenchinon (3.9) (Formel I, S. 578; Syst. Nr. 691), Dithioanthrachinon (Syst. Nr. 679), Dianthranyltetrasulfid  $C_{14}H_0 \cdot S_4 \cdot C_{14}H_0$  (Syst. Nr. 541), Dithiodihydrodianthron (Formel II, S. 578; Syst. Nr. 690) und bisweilen auch Dianthranylsulfid (Syst. Nr. 541) und Di-[thioanthronyl-(10)]-sulfid (Formel III, S. 578; Syst. Nr. 753) (HEILBRON, HEATON, Soc. 123, 182; COOKE, HEI., WALKER, Soc. 127, 2252); bei Verwendung von weniger als 2 Mol Natriumisoamylat entsteht 578

vorwiegend 1.2;7.8-Dibenzo-dithio-perylenchinon-(3.9) (Formel I), bei Verwendung von ca. 4 Mol Natriumisoamylat Dianthranyldisulfid (Formel IV) und Dianthranyloxyd (Formel V) (C., Hel., Wa., Soc. 127, 2252). Liefert bei der Einw. von Natriumsulfid in Isoamylalkohol im Autoklaven bei 150° 1.2;7.8-Dibenzo-dithioperylenchinon-(3.9) (Formel I), beim Kochen

mit Natriumdisulfid in Butylalkohol oder Isoamylalkohol Dianthranyldisulfid (Formel IV), bei der Einw. von krystallisiertem Natriumdisulfid in Isoamylalkohol bei 200° im Autoklaven Bis-[9-brom-1.2;7.8-dibenzo-perylenyl-(3)]-disulfid (Formel VI, Syst. Nr. 547), bei 2-tägigem

$$V. \qquad \begin{matrix} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

Kochen mit Natriumpolysulfid in Isoamylalkohol Dianthranyltetrasulfid  $C_{14}H_{\bullet} \cdot S_4 \cdot C_{14}H_{\bullet}$  (C., Hei., Wa., Soc. 1927, 2253). 9.10-Dibrom-anthracen gibt beim Erhitzen mit Thiophenol und etwas Piperidin in Benzol auf 180° unter Druck 9.10-Bis-phenylmercapto-anthracen (Formel VII) (Heilbron, Heaton, Soc. 123, 180).

- 1-Chlor-9.10-dibrom-anthracen C<sub>14</sub>H<sub>7</sub>ClBr<sub>2</sub>, Formel VIII. B. Durch Einw. von Brom auf 1-Chlor-9-[α-methoxy-benzyl]-anthracen in Schwefelkohlenstoff unter Kühlung und Kochen des Reaktionsprodukts mit Benzol (Cook, Soc. 1928, 2808). Orangegelbe Nadeln (aus Äthylacetat). F: 159—161°.
- 2.3-Dichlor-9.10-dibrom-anthracen C<sub>14</sub>H<sub>5</sub>Cl<sub>2</sub>Br<sub>2</sub>, Formel IX. B. Beim Behandeln von 2.3-Dichlor-anthracen mit Brom in Schwefelkohlenstoff (BARNETT, MATTHEWS, WILTSHIRE, R. 45, 562). Gelbe Nadeln (aus Benzol). F: 244°.

- 2.9.10-Tribrom-anthracen C<sub>14</sub>H<sub>7</sub>Br<sub>2</sub>, Formel X (H 665; E I 327). B. Durch Einw. von kaltem Pyridin auf 9.10-Dibrom-anthracen-tetra-bromid-(1.2.3.4), neben 2.3.9.10-Tetra-brom-anthracen (Barnett, Cook, Soc. 127, 1490).
- 2.3.9.10-Tetrabrom-anthracen C<sub>14</sub>H<sub>6</sub>Br<sub>4</sub>, Formel XI (H 665; E I 327). B. Bei der Einw, von kaltem Pyridin auf 9.10-Dibrom-anthracen-tetrabromid-(1.2.3.4), neben 2.9.10-Tribrom-anthracen (Barnett, Cook, Soc. 127, 1489, 1490). F: 274°. Liefert in Chloroform suspendiert bei Einw. von überschüssigem Stickstoffdioxyd unter Kühlung 2.3.10-Tribrom-10-nitro-anthron-(9) (B., Soc. 127, 2044).
- 9-Nitro-anthracen C<sub>14</sub>H<sub>9</sub>O<sub>2</sub>N = C<sub>14</sub>H<sub>9</sub>·NO<sub>2</sub> (H 666). B. Durch Einw. von kaltem Pyridin und Alkohol auf 9.10-Dinitro-dihydroanthracen (Barnett, Soc. 127, 2042). Beim Erhitzen von Anthracen mit einem unter Kühlung hergestellten Gemisch aus Pyridin, Nitrobenzol und Salpetersäure (D: 1,52) auf 125°, neben anderen Produkten (Batteoay, Brandt, Bl. [4] 31, 913). Aus 10-Nitro-9-methoxy-dihydroanthracen beim Behandeln mit kaltem Pyridin oder wäßr. Natronlauge oder aus 10-Nitro-9-acetoxy-dihydroanthracen beim Erwärmen in Methyläthylketon oder bei der Einw. von kaltem Pyridin oder von kalter, verdünnter Natronlauge (Bar., Cook, Matthews, Soc. 123, 2001). Kp<sub>17</sub>: ca. 275° (Batt., Br.). Eine alkoh. Lösung von 9-Nitro-anthracen ist im Dunkeln beständig; im Sonnenlicht erfolgt Zersetzung unter Bildung von Anthrachinon, Acetaldehyd und salpetriger Säure und Auftreten einer geringen Fluorescenz, die beim Schütteln mit Luft verschwindet (Batt., Br., Mortz, Bl. [4] 31, 915). Liefert beim Kochen mit Brom und Tetrachlorkohlenstoff 9.10-Dibrom-anthracen (Bae., C., Grainger, Soc. 121, 2065). 9-Nitro-anthracen gibt beim

Erwärmen mit Na<sub>2</sub>SO<sub>3</sub>-Lösung bis zum Sieden die Natriumsalze der Anthracen-sulfonsäure-(9) und der Dianthranyl-(9.9')-sulfonsäure-(10) (MINAJEW, FEDOROW, B. 62, 2490; Ж. 61, 145). Beim Behandeln mit Pyridin unter allmählichem Hinzufügen von Brom unter Kühlung erhält man N-[10-Nitro-anthranyl-(9)]-pyridiniumbromid (BAR., C., GR., Soc. 121, 2064).

1 (oder 4)-Chlor-9-nitro-anthracen C<sub>14</sub>H<sub>8</sub>O<sub>2</sub>NCl, Formel I oder II. a) Präparat vom Schmelzpunkt 155°. B. Beim Einleiten von überschüssigem Stickstoffdioxyd in eine Lösung von 1-Chlor-anthracen in Chloroform unter Kühlung und folgenden Behandeln mit kaltem Pyridin und Alkohol (BARNETT, Soc. 127, 2042). — Goldgelbe Nadeln (aus Alkohol oder Eisessig). F: 155°.
b) Präparat vom Schmelzpunkt 196°. B. Durch Kochen von 1-Chlor-anthracen

mit Salpetersäure (D: 1,48) in Eisessig und Kochen des Reaktionsprodukts mit Pyridin (Barnett, Matthews, R. 43, 538). — Hellgelbe Nadeln (aus Eisessig). F: 196°. — Färbt sich am Licht schnell dunkel.

$$I. \bigcirc \stackrel{NO_2 \ Cl}{\bigodot} II. \bigcirc \stackrel{NO_2}{\bigodot} III. \bigcirc \stackrel{NO_2}{\bigodot} IV. \bigcirc \stackrel{NO_2}{\bigodot} Cl$$

2 (oder 3) - Chlor -9 - nitro - anthracen  $C_{14}H_8O_2NCl$ , Formel III oder IV. B. Beim Kochen von 2-Chlor-anthracen mit Salpetersäure in Eisessig und Behandeln des Reaktions-B. Beim produkts mit Pyridin (Barnett, Matthews, R. 43, 538). — Krystalle (aus Eisessig). F: 185°.

1.5-Dichlor-9-nitro-anthracen C<sub>14</sub>H<sub>2</sub>O<sub>2</sub>NCl<sub>2</sub>, s. nebenstehende Formel. Beim Kochen von 1.5-Dichlor-anthracen mit Salpetersäure (D: 1,48) NO<sub>2</sub> Cl in Eisessig und Behandeln des Reaktionsprodukts (F: 201°) mit Pyridin (BARNETT, MATTHEWS, R. 43, 539). Beim Behandeln von 1.5-Dichlor-9.10-dinitro-dihydroanthracen mit kaltem Pyridin und Alkohol (B., Soc. 127, 2042). — Krystalle (aus Eisessig). F: 208° (B., M.).

2.3-Dichlor-9-nitro-anthracen C<sub>14</sub>H<sub>7</sub>O<sub>2</sub>NCl<sub>2</sub>, s. nebenstehende  $NO_2$ Formel. B. Beim Kochen von 2.3-Dichlor-anthracen mit Salpetersäure Cl (D: 1,42) und Eisessig (Barnett, Matthews, Wiltshire, R. 45, 562). -Gelbe Nadeln (aus Eisessig). F: 232°.

1.8 (oder 4.5)-Dichlor-9-nitro-anthracen  $C_{14}H_7O_2NCl_2$ , Formel V oder VI. B. Beim Behandeln von 1.8-Dichlor-9.10-dinitro-dihydroanthracen mit kaltem Pyridin und Alkohol (BARNETT, Soc. 127, 2043) oder von 1.8(oder 4.5)-Dichlor-10-nitro-9.10-dihydro-anthranol-(9) mit Pyridin (B., MATTHEWS, R. 43, 539). — Gelbe Nadeln (aus verd. Alkohol). F: 2036 (B., M.).



9.10-Dinitro-anthracen C<sub>14</sub>H<sub>8</sub>O<sub>4</sub>N<sub>2</sub>, Formel VII (H 666; E I 327). B. Durch Einw. von kaltem Pyridin und Alkohol auf 9-Brom-9.10-dinitro-dihydro-anthracen (BARNETT, Soc. 127, 2043) oder auf 9.9.10-Trinitro-dihydroanthracen (B., Cook, Grainger, Soc. 121, 2065; B., Soc. 127, 2042). — F: 310° (B.). Kathodenluminescenz: MARSH, Soc. 1927, 126. — Wird durch Brom in siedendem Tetrachlorkohlenstoff oder in kaltem Pyridin nicht verändert (B., C., G.).

1.5-Dichlor-9.10-dinitro-anthracen  $C_{14}H_8O_4N_2Cl_2$ , Formel VIII. B. Beim Behandeln von 1.5.9-Trichlor-9.10-dinitro-dihydroanthracen mit kaltem Pyridin und Alkohol (Barnett, Soc. 127, 2044). — Gelbliche Nadeln (aus Pyridin). F: 277°. [GAEDE]

 Phenanthren C<sub>14</sub>H<sub>10</sub>, s. nebenstehende Formel (H 667; E I 327). Die angegebene Stellungsbezeichnung wird in diesem Handbuch für die von Phenanthren abgeleiteten Namen benutzt. — Zur Konstitution vgl. v. Auwers, Krollpfeiffer, A. 480, 260; v. Au., Kraul, A. 443, 183 und die bei Benzol (S. 119) zitierte allgemeine Literatur.

#### Bildung und Darstellung.

Phenanthren entsteht bei der Berginisierung von mederschlesischer Kohle (HEYN, Dunken, Brennstoffch. 7, 85; C. 1926 II, 1709). In geringer Menge neben anderen Produkten beim Leiten von Methan durch Quarz- oder Porzellanröhren bei 875—1100° (F. FISCHER, Mitarb., Brennstoffch. 9, 314; C. 1928 II, 2208). Neben anderen Produkten beim Erhitzen von Acetylen mit Selen auf ca. 400° (Briscoe, Peel, Soc. 1928, 1742). Beim Erhitzen von Oktanthren mit Schwefel auf 180—220° (Schroeter, B. 57, 1999). In guter Ausbeute beim Leiten von Dibenzyl über Platin-Kohle bei 300° (Zelinsky, Titz, Gaverdowskaja, B. 59, 2592). In geringer Menge neben 1-Oxo-1.2.3.4-tetrahydro-phenanthren bei der Oxydation von 1.2.3.4-Tetrahydro-phenanthren mit Chromsäure in 92% iger Essigsäure unter Kühlung (Schroeter, Müller, Huang, B. 62, 653). Beim Leiten von Stilben oder von 1.2-Dicyclohexyl-äthan in schwachem Kohlendioxyd-Strom über aktive Platin-Kohle bei 300—310° (Z., T., B. 62, 2870). Neben anderen Produkten bei der Hydrierung von Chrysen unter 85—100 Atm. Anfangsdruck in Gegenwart von Eisen(III)-chlorid bei 440—450°; die Ausbeute läßt sich durch Leiten der vom Naphthalin befreiten Fraktion vom Siedepunkt 200—300° über Platin-Kohle bei 310—320° erhöhen (Orlow, Lichatschew, B. 62, 720; Ж. 61, 1182). Neben anderen Produkten bei der Hydrierung einer bei 165—181° siedenden Harzölfraktion in Gegenwart von Eisenoxyd-Tonerde-Katalysator unter 70 Atm. Anfangsdruck bei 460° (O., B. 62, 717; Ж. 60, 1455). Neben anderen Produkten bei der thermischen Zersetzung von Phenol in Gegenwart von Quarz- oder Koksstückchen bei 700—900° (Kosaka, J. Soc. chem. Ind. Japan Spl. 31, 127 B; C. 1928 II, 2422; C. 1929 I, 1069. Beim Erhitzen von 2-Jod-zimtsäure-methylester mit Kupferpulver auf 270—300° und nachfolgenden Kochen mit alkoh. Kalilauge (Weitzenböck, M. 34 [1913], 205). Bei der trocknen Destillation von Abietinsäure mit akt. Kohle (Tsukamoto, J. pharm. Soc. Japan 48, 171; C. 1929 I, 1101).

Phenanthren läßt sich aus Rohanthracen durch Erwärmen mit Furfurol, Methylfurfurol oder einem Gemisch beider isolieren; beim Abkühlen auf 15—20° krystallisiert Anthracen aus; der vom Furfurol befreite, Phenanthren und Carbazol enthaltende Rückstand wird mit Kalilauge oder Kalilauge + Natronlauge auf 150—200° erhitzt oder durch geeignete Lösungsmittel von Carbazol befreit (The Selden Co., Jaeger, D. R. P. 488527; Frdl. 18, 1187). Zur Darstellung von reinem Phenanthren erhitzt man technisches Phenanthren mit 3—4% Natrium oder anderen Metallen (Kalium, Eisen, Nickel) oder Natriumamid bzw. Calciumcarbid mehrere Stunden auf ca. 200° und destilliert das Phenanthren im Vakuum ab (Schroeter, B. 57, 2027; Sch., Tetralin-Ges. D. R. P. 352719; C. 1922 IV, 159; Frdl. 14, 834).

#### Physikalische Eigenschaften.

Härteanisotropie: Reis, Zimmermann, Ph. Ch. 102, 328. Röntgenogramm: Becker, Jancke, Ph. Ch. 99, 259; Hengstenberg, Mark, Z. Kr. 70, 287. Die Schmelze läßt sich unterkühlen (Vorländer, Ph. Ch. 105, 249). F: 98° (Capper, Marsh, Soc. 1926, 724), 101° (kort.) (Kirby, J. Soc. chem. Ind. 40, 274 T; C. 1922 I, 344). Kp: 332° (kort.) (Kl.), 340,2° (Nelson, Senseman, J. ind. Eng. Chem. 14, 61; C. 1922 I, 563). Dampfdruck zwischen 203,6° (27,2 mm) und 346,8° (883,9 mm): Mortimer, Murphy, Ind. Eng. Chem. 15, 1141; C. 1924 I, 985; zwischen 232,34° (62,2 mm) und 340,59° (764,2 mm): N., S., J. ind. Eng. Chem. 14, 61; vgl. N., S., Ind. Eng. Chem. 15, 622; C. 1923 III, 556. D.°; 1,213 (Ziegler, Dittel, A. 473, 204); Dissi: 1,0412 (Krollffeiffer, A. 430, 222). Oberflächenspannung von geschmolzenem Phenanthren bei 100,5°: 37,24 dyn/cm (Bhatnagar, Singh, J. Chim. phys. 25, 25). Parachor: Bh., S. Mittlere spezifische Wärme zwischen 0° und 79°: 0,301 cal/g (Padoa, G. 52 II, 206). Verbrennungswärme bei konstantem Volumen: 1684,2 kcal/Mol (Klaproth in Landoll-Börnst. E II, 1635). n. 100,000 (Padoa, G. 52 II, 206). Verbrennungswärme bei konstantem Volumen: 1684,2 kcal/Mol (Klaproth in Landoll-Börnst. E II, 1635). n. 100,000 (Paris 1919), S. 127; Marchlewski, Moroz, Bl. [4] 33, 1406; Kitasato, Acta phytoch. 3, 250; C. 1927 II, 1965. Phenanthren fluoresciert in festem, nicht hingegen in geschmolzenem Zustand (Perrin, C. r. 178, 2253; C. r. 177, 473). Fluorescenzspektrum von festem Phenanthren: Radulescu, Barbulescu, Barbulescu, Bulet. Cluj 4, 353, 355; C. 1929 II, 1766. Abhängigkeit der Fluorescenz benzolischer Lösungen von der Konzentration: P., C. r. 178, 1980. Fluorescenz bei Bestrahlung mit Röntgenstrahlen: McVicker, Marsh, Stewart, Soc. 127, 1001). Die von O. Fischer (C. 1908 II, 1406) beim Phenanthren beobachtete Kathodenluminescenz ist nach Marsh (Soc. 1927, 130) auf beigemengtes Anthracen zurückzuführen. Phenanthren sowie feste Lösungen von Phenanthren in Anthracen zeigen keine Triboluminescenz (Ghigi, G. 57, 284). Zerstäubung

Löslich in flüssigem Schwefeldioxyd mit gelber Farbe, unlöslich in flüssigem Ammoniak (DE CARLI, G. 57, 351). Löslichkeiten in Petroläther, Chloroform, Tetrachlorkohlenstoff, Benzol, Methanol, Alkohol, Äther, Eisessig, Schwefelkohlenstoff und Aceton bei Temperaturen zwischen —10° und +40°: Henstock, Soc. 121, 2125; Dimroth, Bamberger, A. 438, 99; in Methanol, Alkohol und Propylalkohol verschiedener Konzentration bei 20°: Gregg-

WILSON, WRIGHT, Soc. 1928, 3114. Löst sich in starken Säuren (Fieser, Am. Soc. 51, 2464 WILSON, WRIGHT, Soc. 1928, 5114. Lost sich in starken Saturen (FIRSER, Am. Soc. 51, 2404 Anm. 12). Kritische Lösungstemperatur des Systems mit geschmolzenem weißem Phosphor: 2006 (HILDEBRAND, BUEHRER, Am. Soc. 42, 2217). Thermische Analyse der binären Gemische mit 2.4.6-Trinitro-m-xylol (Eutektikum bei 86,96 und 73,0 Gew.-% Phenanthren): Jefremow, Tichomirowa, Izv. Inst. fiz.-chim. Anal. 4, 70, 80; C. 1929 I, 745; mit Reten, Chrysen und Acridin: Pascal, Bl. [4] 29, 650; mit 2.4.6-Trinitro-m-kresol: J., T., Ж. 59, 378, 385; C. 1928 I, 188; mit p-Chinon: Kremann, Mitarb., M. 43, 308, 310; mit Tetryl: J., T., Izv. Inst. fiz.-chim. Anal. 4, 99, 107; C. 1929 I, 745. Binäre und ternäre Gemische con Phospathren mit Anthrean und Carbargl bilden eine Bickeloes Beibe, von Misch von Phenanthren mit Anthracen und Carbazol bilden eine lückenlose Reihe von Mischkrystallen (P., Bl. [4] 29, 647). Kryoskopisches Verhalten von Phenanthren in einem Gemisch aus gleichen Teilen Alkohol und Benzol: WRIGHT, Soc. 127, 2337. Ebullioskopisches Verhalten in Tetrachlorathylen: Walden, Ann. Acad. Sci. fenn. [A] 29, Nr. 23, 16; C. 1928 I, 166. Temperatur-Dichte- und Temperatur-Druck-Diagramm von Lösungen in Ather im kritischen Gebiet: Schröer, Ph. Ch. [A] 142, 374. Dichte von Lösungen in Chloroform, Tetrachlorkohlenstoff, Aceton, Schwefelkohlenstoff, Benzol und Toluol bei 20°, 40° und 60°: Grunert, Z. anorg. Ch. 164, 259. Viscosität von Lösungen in Tetrachlorkohlenstoff, Benzol und Toluol bei 20°, 40° und 60° und in Aceton und Schwefelkohlenstoff bei 20° und 40°: Herz, Scheliga, Z. anorg. Ch. 169, 161. Viscosität konz. Lösungen in Toluol bei verschiedenen Temperaturen: Taimni, J. phys. Chem. 33, 61, 67. Dichte und Viscosität einiger Gemische von Naphthalin und Phenanthren in Tetrachlorkohlenstoff, Benzol und Toluol bei 20°, 40° und 60° und in Aceton und Schwefelkohlenstoff bei 20° und 40°: H., SCHE. Dichte und Brechungsindices von Lösungen in geschmolzenem Naphthalin und in Benzol: v. Steiger, B. 55, 1973; Krollpfeiffer, B. 56, 80; in Chinolin bei 15,7°: Kr., A. 430, 222. Oberflächenspannung von Lösungen in Tetrachlorkohlenstoff, Benzol und Toluol bei 20°, 40° und 60° und in Aceton und Schwefelkohlenstoff bei 20° und 40°: Herz, Knaebel, Ph. Ch. 131, 402. Einfluß von binären Gemischen mit Triakontan auf die Adhäsion zwischen Fr. Ch. 131, 402. Eintius von binaren Gemischen mit Triakontan auf die Adhäsion zwischen Stahl und Stahl: Nottage, Pr. roy. Soc. [A] 118, 614; C. 1929 I, 730. Verhalten polymole-kularer Filme auf Calciumchlorid-Lösung: Harkins, Colloid Symp. Mon. 5, 24; C. 1928 II, 229; H., Morgan, Pr. nation. Acad. USA. 11, 640; C. 1926 I, 1950. Ausbreitung von Gemischen mit Stearinsäure auf Wasser: H., Ph. Ch. [A] 139, 685; Colloid Symp. Mon. 5, 25; C. 1928 II, 229. Gemische von Borsäure und wenig Phenanthren zeigen nach Ultraviolett-Bestrahlung grünes Nachleuchten (Tiede, Ragoss, B. 56, 658, 664). Magnetische Doppelbrechung von Lösungen in Tetrachlorkohlenstoff: Ramanadham, Indian J. Phys. 4, 114; C. 1929 II, 3216.

#### Chemisches Verhalten.

Über die Zersetzung von Phenanthren durch Kanalstrahlen vgl. Kohlschütter, Frum-KIN, B. 54, 592. Phenanthren liefert bei längerem Erhitzen mit alkal. Kaliumpermanganat-Lösung auf dem Wasserbad Diphensäure (Charrier, Beretta, G. 54, 769). Phenanthren wird durch Chromschwefelsäure nur unvollständig zu Kohlendioxyd oxydiert; vollständiger verläuft die Oxydation mit Silberdichromat (Smon, C. r. 177, 266). Phenanthren liefert bei der Hydrierung unter 75 Atm. Anfangsdruck in Gegenwart von Tonerde und Kupfer-, Nickel- oder Eisenoxyd auf  $440-500^{\circ}$  Naphthalin,  $\alpha(\text{oder }\beta)$ -Methyl-naphthalin,  $\beta$ -Athyl-naphthalin,  $\alpha(\text{oder }\beta)$ -Propyl-naphthalin, sehr geringe Mengen Benzol, gasförmige gesättigte Kohlenwasserstoffe und andere Produkte (Orlow, B. 60, 1953; M. 59, 899; vgl. SCHROETER, Mürker Hydrogen Schroefer and Benzol sehr sie Weisenstein auch der Green Schroefer auch Schroefer and Schroefer MÜLLER, HUANG, B. 62, 645). Beim Leiten von Phenanthren-Dampf mit Wasserstoff durch ein zum Glühen erhitztes kupfernes Rohr bei Temperaturen unterhalb 750° erfolgt partielle Isomerisierung zu Anthracen (O.). Bei der Hydrierung von geschmolzenem Phenanthren oder einer Lösung von Phenanthren in Tetralin bei Gegenwart von Nickel-Katalysator unter 20 Atm.-Druck bei 150—200° entstehen 9.10-Dihydro-phenanthren, 1.2.3.4-Tetrahydro-phenanthren und 1.2.3.4.5.6.7.8-Oktahydro-phenanthren (Sch., B. 57, 2027, 2032; Sch., Tetralin-Ges., D. R. P. 352719; C. 1922 IV, 159; Frill. 14, 834; Sch., Müller, Huang, B. 62, 649). Zur katalytischen Hydrierung vgl. ferner Sandonnini, G. 52 I, 402. Hydrierung bei hohen Temperaturen und Drucken: SPILKER, ZERBE, Z. ang. Ch. 39, 1142. Beim Erhitzen von Phenanthren mit 4 Atomen Brom in Eisessig + Natriumacetat auf dem Wasserbad erhält man eine Verbindung C<sub>15</sub>H<sub>12</sub>O<sub>2</sub> (S. 583) und andere Produkte (Henstock, Soc. 119, 1462). Liefert bei der Einw. von 2 oder 3 Atomen Brom in Chloroform oder Tetrachlorkohlenstoff bei 0-76° fast nur 9-Brom-phenanthren; mit 4 oder 6 Atomen Brom erhält man 9.10-Dibrom-9.10-dihydro-phenanthren und je nach der angewandten Temperatur 9-Bromphenanthren, 1.9-, 2.7-, 2(†).10-, 3.9- oder 4.10-Dibrom-phenanthren bzw. Gemische derselben (H., Soc. 123, 3097). Bei 48-stdg. Einw. von 4 Atomen Brom auf Phenanthren in Tetrachlor-kohlenstoff wurde neben 9.10-Dibrom-9.10-dihydro-phenanthren (vgl. Austin, Soc. 93 [1908], 4762). 1763) 2(?).9.10-Tribrom-9.10-dihydro-phenanthren erhalten (H., Soc. 119, 57). Gibt bei der Nitrierung mit Salpetersäure (D: 1,5) in Eisessig und Acetanhydrid x-Dinitro-phenanthren vom Schmelzpunkt 255—260° (Callow, Gulland, Soc. 1929, 2425). Bei tropfenweiser Zugabe von konz. Salpetersäure zu einer Lösung von Phenanthren in Tetrachlorkohlenstoff

bei -10° bis -15° entsteht Bis-[10-nitro-9.10-dihydro-phenanthryl-(9)]-äther (Syst. Nr. 540) (Wieland, Rahn, B. 54, 1774). Liefert bei 3-tägigem Erwärmen mit konz. Schwefelsäure auf 60°8% Phenanthren-sulfonsäure-(1), 18% Phenanthren-sulfonsäure-(2), 19% Phenanthrensulfonsäure-(3) und 13% Phenanthren-sulfonsäure-(9) (FIESER, Am. Soc. 51, 2466). Zur Überführung in Phenanthrenmono- und -disulfonsäuren beim Erwärmen mit konz. Schwefelsäure auf 120—125° vgl. F., Am. Soc. 51, 2464, 2474. Bei der Umsetzung von Phenanthren mit Lithium in Äther entsteht ein schwarzbraunes Produkt (1.4-Dilithium-1.4-dihydrophenanthren?), das bei der Zersetzung mit Alkohol unter Kühlung 1.4-Dihydro-phenanthren liefert (Schlenk, Bergmann, A. 463, 86). Gibt mit Natrium in Äther eine rotviolette Lösung, aus der beim Einleiten von Kohlendioxyd 9.10.9'.10'-Tetrahydro-diphenanthryl-(9.9')-dicarbonsaure-(10.10') (Syst. Nr. 1003) ausgefällt wird (Schl., B.); diese Verbindung entsteht auch bei der Umsetzung mit α-Phenyl-isopropyl-kalium in Ather und Behandlung der entsteht standenen orangegelben Dikaliumverbindung mit Kohlendioxyd (ZIEGLER, BÄHR, B. 61, 261). Bei der Destillation von Phenanthren mit wasserfreiem Aluminiumchlorid entstehen gasförmige Produkte, ein braunes Harz und ein grün fluorescierendes Öl, das sich durch Erhitzen mit Schwefel auf 200—240° in Naphthalin und Homologe des Naphthalins überführen läßt (Orlow, B. 62, 715; Ж. 60, 1452). Liefert bei der Einw. von Aluminiumchlorid in Nitrobenzol schwarze Massen, in siedendem Schwefelkohlenstoff eine Verbindung  $(C_{14}H_{10})_x$  (?) (s. u.) (SCHOLL, SCHWARZER, B. 55, 328). Verhalten beim Lösen in Selenoxybromid: LENHER, Am. Soc. 44, 1671. Bei längerem

Schütteln von Phenanthren mit m-Xylol in Gegenwart von Aluminiumchlorid bei 50° im Kohlendioxyd-Strom und nachfolgender Destillation mit Wasserdampf erhält man eine Verbindung

I. 
$$CH_2$$
  $CH_3$   $CH \cdot OH$   $CH \cdot OH$ 

C<sub>29</sub>H<sub>16</sub>O (†) (Formel I oder II; Syst. Nr. 546) (Schaarschmidt, Mayer-Bugström, Sevon, B. 58, 159). Liefert mit 2.7-Dinitroanthrachinon eine additionelle Verbindung  $C_{14}H_{10}+C_{14}H_{4}O_{6}N_{2}$  (Börnstein, Schliewiensky, Szczesny-Heyl, B. 59, 2815). Bei der Umsetzung von Phenanthren mit o-Toluylchlorid in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff oder besser in Benzol bildet sich ein Ketongemisch, das bei der Pyrolyse 1.2;3.4-Dibenzo-anthracen (Formel III), 1.2;6.7-Dibenzo-phenanthren (Formel IV) und geringe Mengen 1.2;6.7-Dibenzo-anthracen (Formel V)

liefert (Clar, B. 62, 358, 1578). Bei der Umsetzung von Phenanthren mit Azodicarbonsäure-dimethylester in äther. Salzsäure in Gegenwart von wenig Jod entsteht 9-[N.N'-Dicarbomethoxy-hydrazino]-phenanthren (Stolle, Adam, J. pr. [2] 111, 174).

#### Physiologische Wirkung; Verwendung; Nachweis und Bestimmung.

Physiologisches Verhalten: H. STAUB in J. HOUBEN, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 64. Giftwirkung auf Bact. coli und Staphylokokken: TRAUBE, SOMOGYI, Bio. Z. 120, 93. Oxydation durch Bodenbakterien: TAUSSON, Planta 5, 239; C. 1929 I, 2066. Schädigende Wirkung beim Aufstäuben auf Pflanzen: Moore, CAMPBELL, J. agric. Res. 28 [1924], 402.

Verwendung zur Herstellung von Kunstharz durch Erhitzen mit Formaldehyd und Schwefelsaure: Bayer & Co., D. R. P. 349741; C. 1922 IV, 50; Frdl. 14, 629; zur Herstellung

eines Gerbstoffs: BASF, D. R. P. 391315; C. 1924 I, 2053; Frdl. 14, 607.
Gibt mit Uranyl- oder Eisenacetat in Gegenwart von Schwefelsäure und Spuren von Formaldehyd eine tiefblaue Färbung (J. Aloy, Valdiguie, R. Aloy, Bl. [4] 39, 794). Mikrochemischer Nachweis: Behrens-Kley, Organische mikrochemische Analyse [Leipzig 1922], S. 13. Zur quantitativen Bestimmung oxydiert man Phenanthren mit Jodsäure in siedendem Eisessig und setzt das entstandene Phenanthrenchinon mit 3.4-Diamino-toluol in Eisessig zu 6-Methyl-1.2;3.4-dibenzo-phenazin (Syst. Nr. 3493) um (WILLIAMS, Am. Soc. 43, 1914, 1918). Verhalten bei der Jodzahlbestimmung nach HÜBL und nach WIJS: MACLEAN, THOMAS, Biochem. J. 15, 321.

## Additionelle Verbindung und Umwandlungsprodukte unbekannter Konstitution aus Phenanthren.

Pikrat C<sub>14</sub>H<sub>10</sub>+C<sub>6</sub>H<sub>3</sub>O<sub>7</sub>N<sub>3</sub>. Dunkelorangegelb. F: 145° (Hertel, A. 451, 191). Verbindung (C<sub>14</sub>H<sub>10</sub>)<sub>x</sub>(?). Ebullioskopische Mol.-Gew.-Bestimmung in Benzol: Scholl, Schwarzer, B. 55, 329.—: B. Bei der Einw. von Aluminiumchlorid auf Phenanthren in

siedendem Schwefelkohlenstoff (SCHOLL, SCHW.). — Gelb, amorph. Zersetzt sich unter Dunkelfärbung bei ca. 225°. — Wird von Salpetersäure (D: 1,41) bei —8° zu einer amorphen Nitroverbindung nitriert. Färbt sich mit konz. Schwefelsäure schwarz; beim Erwärmen entsteht eine anfangs violette, später grüne Lösung.

Verbindung C<sub>15</sub>H<sub>12</sub>O<sub>2</sub> (von Henstock als 9-Acetoxy-fluoren angesehen). B. Neben anderen Produkten beim Erhitzen von Phenanthren mit 4 Atomen Brom in Eisessig + Natriumacetat auf dem Wasserbad (Henstock, Soc. 119, 1463). — Nadeln (aus Benzol). F: 272°. Sublimierbar. Flüchtig mit Wasserdampf. — Beständig gegen Chromsäure und Chromschwefelsäure.

Phenanthrendiozonid C<sub>14</sub>H<sub>10</sub>O<sub>6</sub> (H 670). Magnetische Susceptibilität: VAIDYANATHAN, Indian J. Phys. 2, 427; C. 1928 II, 1985.

#### Substitutionsprodukte des Phenanthrens.

- **9-Chlor-phenanthren**  $C_{14}H_{9}Cl$ , s. nebenstehende Formel (E I 329). F: 53° (v. Auwers, Kraul, A. **443**, 190).  $D_{4}^{\text{co.5}}$ : 1,2167.  $n_{\alpha}^{\text{co.5}}$ : 1,6630;  $n_{\text{He}}^{\text{co.5}}$ : 1,6739;  $n_{\beta}^{\text{co.5}}$ : 1,7029. Dichte und Brechungsindices von Lösungen in Chinolin: v. Au., Kr.
- 9.10 Dichlor phenanthren  $C_{14}H_8Cl_2$ , s. nebenstehende Formel (H 671; E I 329). F: 161° (v. Auwers, Kraul, A. 443, 190). Dichte und Brechungsindices von Lösungen in Chinolin: v. Au., Kr.
- 9-Brom-phenanthren  $C_{14}H_9Br$ , s. nebenstehende Formel (H 671; Br E I 330). Zur Bildung bei der Einw. von Brom auf Phenanthren in Chloroform oder Tetrachlorkohlenstoff bei 0—76° vgl. Henstock, Soc. 123, 3097, 3099.  $D_1^{400,7}$ : 1,4093;  $n_7^{600,7}$ : 1,6799;  $n_{He}^{100,7}$ : 1,6913;  $n_{B}^{600,7}$ : 1,7212 (v. Auwers, Kraul, A. 443, 190). Spaltet bei 8-stdg. Erwärmen mit Natriumäthylat-Lösung 1,7% des Broms ab (Salkind, Lubinskaja, B. 61, 269).
- 1.9 Dibrom phenanthren  $C_{14}H_8Br_2$ , s. nebenstehende Formel (E I 330). B. Neben anderen Produkten beim Behandeln von Phenanthren mit 4 oder 6 Atomen Brom in Tetrachlorkohlenstoff bei  $0^{\circ}$  (Henstock, Soc. 123, 3097—3099). F: 123°.
- 2.7-Dibrom-phenanthren C<sub>14</sub>H<sub>8</sub>Br<sub>2</sub>, s. nebenstehende Formel (H 671). B. Neben anderen Produkten bei der Einw. von 4 oder Br. Br. 6 Atomen Brom auf Phenanthren in Chloroform bei 61,5° oder in Tetrachlorkohlenstoff bei 76° (Henstock, Soc. 123, 3097—3099). F: 199—200°.
- 2(?).10-Dibrom-phenanthren  $C_{14}H_8Br_3$ , s. nebenstehende Formel.

  B. Neben anderen Produkten bei der Einw. von 4 oder 6 Atomen Brom auf Phenanthren in Chloroform bei 15° (Henstock, Soc. 123, 3097, 3099). Beim Erhitzen von 2(?).9.10-Tribrom-9.10-dihydro-phenanthren auf 100° (H., Soc. 119, 57). Dimorph. Krystallisiert aus konzentrierter alkoholischer Lösung in Nadeln, F: 162°; aus verdümnter alkoholischer Lösung in Tafeln, F: 161°. Die Nadeln wandeln sich bei längerem Aufbewahren in Tafeln um (H., Soc. 123, 57). Ziemlich leicht löslich in Chloroform, Benzol, Äther, Aceton und Eisessig, schwer in Petroläther und Alkohol, unlöslich in Wasser. Beide Krystallformen weisen in einigen der genannten Lösungsmittel geringe Unterschiede der Löslichkeit auf (H., Soc. 123, 58). Liefert beim Erhitzen mit Chromtrioxyd in Eisessig 2(?).10-Dibrom-9-oxy-phenanthren (H., Soc. 123, 58). Beim Versetzen einer Lösung von 2(?).10-Dibrom-phenanthren in Eisessig mit rauchender Salpetersäure in der Kälte und nachfolgendem Erhitzen zum Sieden entsteht 2(?).10-Dibrom-9-nitro-phenanthren. Verhalten beim Kochen mit 10 %iger alkoholischer Kalilauge: H.
- 3.9 Dibrom phenanthren C<sub>14</sub>H<sub>8</sub>Br<sub>2</sub>, s. nebenstehende Formel (H 671; E I 330). B. Neben anderen Produkten bei der Einw. von 4 oder 6 Atomen Brom auf Phenanthren in Tetrachlorkohlenstoff bei 30° (Henstock, Soc. 123, 3097, 3099). F: 143,5°.
- 4.10 Dibrom phenanthren C<sub>16</sub>H<sub>8</sub>Br<sub>2</sub>, s. nebenstehende Formel (H 672). B. Neben anderen Produkten bei der Einw. von 4 oder 6 Atomen Brom auf Phenanthren in Tetrachlorkohlenstoff bei 0° (Henstock, Soc. 123, 3097—3099). F: 113°.
- 9-Jod-phenanthren C<sub>14</sub>H<sub>9</sub>I, s. nebenstehende Formel. B. In geringer Menge bei der Einw. von Jod auf Phenanthryl-(9)-magnesiumbromid in Äther (Salkind, Lubinskaja, B. 61, 270). Gelbliche Nadeln (aus Alkohol). F: 87°. Schwer löslich in kaltem Alkohol, löslich in den



Вr



übrigen organischen Lösungsmitteln. — Gibt bei der Oxydation mit Chromsäure in Eisessig auf dem Wasserbad Phenanthrenchinon. Spaltet bei 8-stdg. Erwärmen mit Natriumäthylat-Lösung 30% des Jods ab. — Pikrat C<sub>14</sub>H<sub>9</sub>I + C<sub>6</sub>H<sub>3</sub>O<sub>7</sub>N<sub>3</sub>. F: 137°.

9.10-Dichlor-4-nitro-phenanthren C14H,O2NCl2, s. nebenstehende Formel. B. Beim Kochen von 9.9.10.10-Tetrachlor-4-nitro-9.10-dihydrophenanthren mit Phenylhydrazin in Alkohol oder mit fein verteiltem Šilber oder Kupfer in trocknem Benzol, neben anderen Produkten (J. SCHMIDT, AECKERLE, B. 57, 368). — Krystalle (aus Alkohol). F: 137°. — Spaltet beim Erhitzen mit alkoh. Ammoniak im Rohr kein Chlor ab (Schm., AE., B. 57, 364).

10-Brom-9-nitro-phenanthren C<sub>14</sub>H<sub>8</sub>O<sub>2</sub>NBr, s. nebenstehende Formel (H 673). Zur Darstellung nach Austin (Soc. 93 [1908], 1763) vgl. Callow, Gulland, Soc. 1929, 2424. — Krystalle (aus Aceton). F: 1950 bis 203°.

 $O_2N$ Br  $O_2N$ Br

2(P).10-Dibrom-9-nitro-phenanthren C<sub>14</sub>H<sub>7</sub>O<sub>2</sub>NBr<sub>2</sub>, s. nebenstehende Formel. B. Bei der Einw. von rauchender Salpetersäure auf eine 1%ige Lösung von 2(?).10-Dibrom-phenanthren in Eisessig (Henstock, Soc. 119, 58). — Gelbe Nadeln (aus Alkohol). F: 188°. Sehr leicht löslich in Chloroform und Benzol; löslich in siedendem Alkohol oder Aceton.

Br (?)

x-Dinitro-phenanthren vom Schmelzpunkt 255—260°  $C_{14}H_8O_4N_2=C_{14}H_8(NO_2)_2$ . B. Durch Einw. von Salpetersäure (D: 1,5) auf Phenanthren in Eisessig und Acetanhydrid (Callow, Gulland, Soc. 1929, 2425). Braungelbe Nadeln (aus Essigsäure). F: 255—260°. Schwer löslich.

4. 9-Methylen-fluoren, Dibenzofulven,  $\alpha.\alpha$ -Diphenylen-dthylen  $C_{14}H_m$ , s. nebenstehende Formel (H 673; E I 330). Die von Manchot, Krische (A. 337 [1904], 199) als 9-Methylen-fluoren beschriebene Verbindung wird von Wieland, Reindel, Ferrer (B. 55, 3317) als ein



Gemisch aus unverändertem Fluoren,  $\alpha.\beta$ -Bis-diphenylen-äthylen und  $\alpha.\beta$ -Bisdiphenylen-äthan erkannt. — B. Aus 9-Chlor-9-methyl-fluoren beim Erwärmen auf ca. 80° (neben polymerem 9-Methylen-fluoren, s. u.) oder bei kurzem Kochen mit Alkohol (Wieland, Krause, A. 443, 136). Aus 9-Brom-9-brommethyl-fluoren beim Behandeln mit Zinkstaub und Eisessig in Alkohol bei 30-40° und nachfolgenden kurzen Erhitzen zum Sieden (W., und Eisessig in Aikonol bei 30—40° und nachloigenden kurzen Ernitzen zum Sieden (W., Reindel, Ferrer; F., An. Soc. españ. 20, 463; C. 1923 III, 1161). Neben polymerem 9-Methylen-fluoren beim Erhitzen von 9-Oxy-9-methyl-fluoren (F: 174°) mit Aluminium-phosphat im Vakuum auf ca. 250° (W., R., F.; F.). Beim Kochen von 9-Benzoyloxy-9-methyl-fluoren mit Eisessig (Wieland, Cerezo, A. 457, 254). In geringer Menge neben polymerem 9-Methylen-fluoren bei der Destillation von [Fluorenyl-(9)-methyl]-urethan mit Calciumoxyd im Wasserstoff-Strom unter 20—30 mm Druck (Sieglitz, Jassoy, B. 55, 2032, 2034). Reinigung erfolgt über das Dibromid (W., R., F.; F.). — Blütenartig riechende Prismen (aus Ather). F. 53° (W. R. F.; F.). Ist unter Ausschluß von Tageslicht einige Zeit haltbar. Ather). F: 53° (W., R., F.; F.). Ist unter Ausschluß von Tageslicht einige Zeit haltbar; Achter). F: 55 (W., R., F., F.). Ist inter Ausschlub von lagesicht einige zeit lateral; geht im Licht der Quecksilberlampe und in diffusem Tageslicht, rascher beim Erwärmen, in das Polymere über (W., R., F.; F.). Sehr leicht löslich in den gebräuchlichen Lösungsmitteln außer in Wasser (W., R., F.; F.). — Liefert beim Erhitzen unter Luftzutritt Fluorenon und Formaldehyd (W., R., F.). Die Lösung in Ather liefert beim Schütteln mit Wasserstoff in Gegenwart von Palladiumschwarz 9-Methyl-fluoren (W., R., F.; F.). Gibt mit Brom in Petroläther 9-Brom-9-brommethyl-fluoren (W., R., F.; F.). Die äther. Lösung liefert beim Behandeln mit Stielvtoffdioxyd in Petroläther unter Köhlung 9 Nitro 9 nitro liefert beim Behandeln mit Stickstoffdioxyd in Petroläther unter Kühlung 9-Nitro-9-nitromethyl-fluoren (Wieland, Krause, A. 443, 139). Wird durch Salpetersäure selbst bei starker Kühlung sofort tiefblau gefärbt (W., K., A. 443, 132; vgl. F.). — Pikrat C<sub>14</sub>H<sub>10</sub> + C<sub>6</sub>H<sub>3</sub>O<sub>7</sub>N<sub>3</sub>. F: 152—153 (Sieglitz, Jassoy, B. 55, 2035).

Polymeres 9-Methylen-fluoren (C<sub>14</sub>H<sub>10</sub>)<sub>x</sub>. B. Beim Aufbewahren, schneller beim Erwärmen von 9-Methylen-fluoren im Licht (Wieland, Reindell, Ferrer, B. 55, 3317; F., An. Soc. españ. 20, 465; C. 1923 III, 1161). Neben 9-Methylen-fluoren bei der Destillation of the control of tion von [Fluorenyl.(9)-methyl]-urethan mit Calciumoxyd im Wasserstoff-Strom unter 20—30 mm Druck (Sieglitz, Jassov, B. 55, 2034). — Amorphes Pulver. Erweicht bei ca. 270° unter beginnender Depolymerisation (W., R., F.); ist bei 290° geschmolzen (F.; S., J.). Sehr schwer löslich in den üblichen Lösungsmitteln (W., R., F.). — Oxydiert sich

nicht bei gewöhnlicher Temperatur (F.).

9-Dichlormethylen-fluoren,  $\beta.\beta$ -Dichlor- $\alpha.\alpha$ -diphenylen-äthylen  $C_{14}H_{1}Cl_{2}$ , s. nebenstehende Formel. B. Aus  $\beta.\beta$ -Dichlor- $\alpha.\alpha$ -diphenylenathylensulfid (Syst. Nr. 2371) beim Aufbewahren im Exsiccator, beim Schmelzen, bei kurzem Kochen mit Benzol, Schwefelkohlenstoff oder besser



585

Br

mit Eisessig sowie beim Aufbewahren mit Methanol oder mit äther. Anilin-Lösung in der Kälte oder beim Erhitzen mit Zink (Staudinger, Siegwart, Helv. 3, 847). — Hellgelbe Nädelchen (aus Eisessig oder Methanol). F: 129—130°.

9 - Brommethylen - fluoren,  $\beta$  - Brom -  $\alpha$ . $\alpha$  - diphenylen - äthylen  $C_{14}H_9Br$ , s. nebenstehende Formel. B. Neben geringen Mengen 1.4-Bisdiphenylen-butadien-(1.3) beim Kochen von 9-Brom-9-brommethyl-fluoren mit Natriumacetat in Eisessig (Wieland, Krause, A. 443, 137).

Krystalle (aus Ather). F: 78°. — Liefert mit 1 Mol Brom in Petroläther 9-Brom-9-dibrommethyl-fluoren.

CH Br

2.7 - Dibrom - 9 - methylen - fluoren, 5'.4" - Dibrom - [dibenzo-CH<sub>2</sub> 1'.2':1.2; 1''.2'': 3.4-fulven]  $C_{14}H_8Br_2$ , s. nebenstehende Formel. B. Beim Kochen von 9-Chlor-2.7-dibrom-9-methyl-fluoren mit Eisessig Br (Sieglitz, Jassoy, B. 55, 2038). — Nadeln (aus Benzol oder absol. Alkohol). F: 205—206°. — Ist im Vakuum mehrere Tage haltbar. Aus der Lösung in Eisessig scheiden sich bei längerem Aufbewahren unlösliche Flocken ab. Entfärbt rasch eine Lösung von Brom in Chloroform.

9 - Nitromethylen - fluoren,  $\beta$  - Nitro -  $\alpha$ . $\alpha$  - diphenylen - äthylen  $C_{14}H_9O_2N$ , s. nebenstehende Formel. B. Bei der Einw. von konzentriertem wäßrigem Ammoniak auf eine Lösung von 9-Nitro-9-nitromethyl-fluoren in Alkohol (Wieland, Krause, A. 443, 140). — Orangegelbe Nadeln (aus Benzol). F: 132°.

CH·NO2

5. 1.2-Dimethylen-acenaphthen, 2.3-[Naphthylen-(1.8)]-butadien  $C_{14}H_{10}$ , s. nebenstehende Formel. B. Beim Kochen von 1.2-Di-CH2:C C: CH2 oxy-1.2-dimethyl-acenaphthen (F: 184°) mit Eisessig in Gegenwart von Salzsäure (Maxim, Bl. [4] 45, 1137, 1143). — Orangegelb. F: ca. 170°. Fast unlöslich in allen organischen Lösungsmitteln. — Liefert bei der Oxydation mit Natriumdichromat in siedendem Eisessig Naphthalsäureanhydrid und Acenaphthenchinon. [HILLGER]

# 2. Kohlenwasserstoffe $C_{15}H_{12}$ .

1. 1-Phenyl-inden C<sub>15</sub>H<sub>12</sub>, s. nebenstehende Formel (E I 330). F: 23°; Kp<sub>14</sub>: 153—154° (MAYER, SIEGLITZ, LUDWIG, B. 54, 1398). — Geht beim Überleiten über Bimsstein bei Dunkelrotglut im KohlendioxydStrom zum Teil in 2-Phenyl-inden über (v. Braun, Manz, B. 62, 1062; ygl. MAYER, S., L.). Bei längerem Kochen mit neutraler Kaliumpermanganat-CH<sub>2</sub> ĊH Lösung erhält man 2-Benzoyl-benzoesäure (M., S., L.). Liefert bei der Reduktion mit Natrium in siedendem 96% igem Alkohol 1-Phenyl-hydrinden (M., S., L.). Kondensiert sich mit Benzaldehyd in Gegenwart geringer Mengen Natriumäthylat in siedendem absolutem Alkohol zu 1-Phenyl-3-benzyliden-inden; reagiert analog mit anderen Aldehyden (M., S., L.) sowie mit Benzophenon (Brand, Berlin, B. 57, 847).

2. 2-Phenyl-inden  $C_{15}H_{12} = C_6H_4 < \frac{CH_2}{CH} > C \cdot C_6H_5$ . Als 2-Phenyl-inden ist auch der Kohlenwasserstoff C<sub>20</sub>H<sub>24</sub> von Tiffeneau, Dorlencourt, A. ch. [8] 16 [1909], 237 (H 5, 754, Nr. 4) zu formulieren (Blum-Bergmann, B. 65 [1932], 112, 120 Anm. 39; vgl. a. Lévy, Bl. [4] 29, 873). — B. Beim Überleiten von 1-Phenyl-inden-Dampf im Kohlendioxyd-Strom über auf schwache Rotglut erhitzten Bimsstein (v. Br., Manz, B. 62, 1062; vgl. Mayer, 14, 1662; vgl. Mayer, 15, 1662; vgl. Mayer, 15, 1662; vgl. Mayer, 16, 1663; vgl. Mayer, 1663; vgl. May Sieglitz, Ludwig, B. 54, 1398). Beim Kochen von 2-Oxy-2-phenyl-hydrinden mit 20% iger Schwefelsäure (v. Br., Manz, B. 62, 1063). Man reduziert 2-Phenyl-hydrindon-(1) mit amalgamierten Aluminium in feuchtem Ather und kocht das entstandene, nicht näher beschriebene 1-Oxy-2-phenyl-hydrinden mit 5%iger Schwefelsäure (MAYER, S., L.). Durch Kochen von Trimethyl-[2-phenyl-hydrindyl-(1)]-ammoniumjodid mit 50% iger Kalilauge (v. Br., Manz).—Blättchen (aus Alkohol). F: 167,5° (Mayer, S., L.), 167° (v. Braun, Manz).— Wird durch Erhitzen auf Rotglut nicht verändert (v. Br., Manz). Wird durch Kaliumdichromat in Eisessig nicht angegriffen; bei längerem Kochen mit Kaliumpermanganat entsteht Benzilcarbonsäure-(2) (Mayer, S., L., B. 54, 1400). Liefert bei der Hydrierung in Gegenwart von Palladium-Tierkohle in Methanol 2-Phenyl-hydrinden (v. Br., Manz). Addiert in Schwefelschlenstoff oder in Chloroform Länne der Zimmentenmentur schmell 2 Atoma Brown unter kohlenstoff oder in Chloroform-Lösung bei Zimmertemperatur schnell 2 Atome Brom unter Bildung von 1.2-Dibrom-2-phenyl-hydrinden (v. Br., Manz). Gibt bei der Einw. von Aldehyden in Gegenwart von Athylat-Lösung schwach gefärbte amorphe Produkte (M., S., L., B. 54, 1397).

3. 1-Methyl-anthracen,  $\alpha$ -Methyl-anthracen  $C_{15}H_{12}$ , s. nebenstehende Formel (H 674; E I 331). B. Man erwärmt 1-Methyl-anthrachinon 5 Stdn. mit Zinkstaub und Ammoniak auf dem Wasserbad und erhitzt das



ölige Reaktionsprodukt [1-Methyl-9.10-dihydro-anthranol(?)] (v. Braun, Bayer, B. 59, 916). \_ F: 85—86° (Krollpfeiffer, A. 430, 224), 86° (v. Br., B.).  $D_{i}^{\infty,i}$ : 1,0471;  $n_{\alpha}^{\infty,i}$ : 1,6669;  $n_{D}^{\infty,1}$ : 1,6803;  $n_{B}^{\infty,1}$ : 1,7211 (Kr., A. 430, 226; B. 56, 80). Dichten und Brechungsindices von Lösungen in Naphthalin bei 99,5°: Kr., B. 56, 80; in Chinolin bei 14,4° CH<sub>3</sub> bis 15,3°: Kr., A. 430, 226.

4-Chlor-1-methyl-anthracen C<sub>15</sub>H<sub>11</sub>Cl, s. nebenstehende Formel (E I 331). F: 113-1140 (Krollpfeiffer, A. 430, 225). Dichten und Brechungsindices von Lösungen in Chinolin: Kr.

Čl

4. 2-Methyl-anthracen, β-Methyl-anthracen C<sub>15</sub>H<sub>12</sub>, s. nebenstehende Formel (H 674; E I 331). V. Findet sich im Tieftemperatur-Teer aus englischen Steinkohlen (MORGAN, J. Soc. chem. Ind. 47, 132 T; C. 1928 II, 208; M., Pratt, Nature 118, 805; C. 1927 I, 1253). — B. Entsteht in geringer Menge neben anderen Produkten beim Einleiten von Acetylen in ein Gemisch von Toluol mit Aluminiumchlorid (COOK, CHAMBERS, Am. Soc. 43, 337). Aus m-Xylol oder p-Xylol und Benzylalkohol beim Erwärmen mit starker Schwefelsäure, neben 2.4-Dimethyldiphenylmethan bzw. 2.5-Dimethyl-diphenylmethan (H. MEYER, BERNHAUER, M. 53/54, 732). Beim Leiten von dampfförmigem 2.4-Dimethyl-diphenylmethan im Gemisch mit Luft über aktive, Mangan- und Kobaltoxyde enthaltende Kohle bei 400° oder über Kupferoxyd enthaltendes Silicagel bei 320° (I. G. Farbenind., D. R. P. 486766; C. 1930 I, 1052; Frdl. 16, 575). Man läßt 2.4-Dimethyl-benzophenon bei 380-400° in ein mit akt. Kohle gefülltes Kupferrohr eintropfen (I. G. Farbenind., D. R. P. 481819; C. 1930 I, 1053; Frdl. 16, 718). Entsteht neben anderen Produkten, wenn man 1.3-Bis-[2.4-dimethyl-benzoyl]-benzol, 1.4-Bis-[2.4-dimethyl-benzoyl]-benzol oder 1.2-Bis-[2.5-dimethyl-benzoyl]-benzol zu mäßigem Sieden erhitzt (Clar, John, Hawran, B. 62, 947). Durch Hydrierung von 2-Methyl-anthrachinon in Gegenwart eines Kupfer-Zink-Katalysators bei 460-475° (I. G. Farbenind., D. R. P. 472825; Frdl. 16, 1189) oder in Gegenwart von Nickel in Dekalin bei ca. 2000 unter Druck (v. Braun, Bayer, Fieser, A. 459, 298). — F: 207° (Krollpfeiffer, A. 430, 224; Majima, Kuroda, Acta phytoch. 1, 56; C. 1922 III, 677). D.: 1,181 (Ziegler, Ditzel, A. 473, 204). Fluorescenzspektrum der festen Substanz: RADULESCU, BARBULESCU, Bulet. Cluj 4, 354; C. 1929 II, 1766). Dichten und Brechungsindices von Lösungen in Chinolin: Kr. Bei der Einw. von 8 Atomen Wasserstoff unter Druck bei 160—180° in Gegenwart von

Nickel entsteht quantitativ 2-Methyl-1.2.3.4.5.6.7.8-oktahydro-anthracen (v. Braun, Bayer, FIESER, A. 459, 300). Liefert eine additionelle Verbindung mit 2.7-Dinitro-anthrachinon (s. dort; Syst. Nr. 679) (Börnstein, Schliewiensky, Szczesny-Heyl, B. 59, 2814; vgl. dazu Bö., B. 61, 443 Anm. 1). Gibt bei der Einw. von nicht isoliertem, aus wasserfreier Oxalsäure und Phosphorpentachlorid erhaltenem Oxalylchlorid und Aluminiumchlorid in Schwefelkohlenstoff bei gewöhnlicher Temperatur und Zersetzung des Reaktionsprodukts mit Eis 2-Methyl-anthracen-carbonsäure-(9 oder 10), 9 (oder 10)-Chlor-2-methyl-anthracen-carbonsäure-(10 oder 9) vom Schmelzpunkt 158° und 9.10-Dichlor-2-methyl-anthracen (Butescu, Bl. [4] 43, 1270).

7-Chlor-2-methyl-anthracen C<sub>18</sub>H<sub>11</sub>Cl, s. nebenstehende Formel. Cl. CH<sub>3</sub> B. Beim Leiten von 4'-Chlor-2.4-dimethyl-benzophenon über aktive Kohle bei 400° (I. G. Farbenind., D. R. P. 481819; C. 1930 I, 1053; Frdl. 16, 720, 721). — Silberglänzende Blättchen (aus Nitrobenzol). F: 270°. Sehr schwer löslich in Eisessig.

9.10-Dichlor-2-methyl-anthracen  $C_{18}H_{10}Cl_2$ , s. nebenstehende Formel. B. Entsteht neben anderen Produkten bei der Einw. von nicht isoliertem, aus wasserfreier Oxalsäure und 2 Mol Phosphorpentachlorid erhaltenem Oxalylchlorid auf 2-Methyl-anthracen in Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff und Zersetzung des Reaktionsgemischs mit Eis (Butescu, Bl. [4] 43, 1270). — Goldgelbe Nadeln (aus Benzol). F: 211°. Löslich in Benzol und in Alkohol mit blauer Fluorescenz;



die Lösung in Schwefelsäure ist grün. — Bei der Oxydation mit Chromessigsäure entsteht 2-Methyl-anthrachinon.

9.10 - Dibrom - 2 - methyl - anthracen  $C_{15}H_{10}Br_2$ , s. nebenstehende Formel (H 675; E I 332). Liefert eine additionelle Verbindung mit 2.7-Dinitro-anthrachinon (s. dort; Syst. Nr. 679) (Börnstein, Schlie-WIENSKY, SZCZESNY-HEYL, B. 59, 2815).

5. **9-Methyl-anthracen**  $C_{15}H_{13}$ , s. nebenstehende Formel. B. Aus 3 Mol Methylmagnesiumhalogenid und 1 Mol Anthron in äther. Suspension (Krollpfeiffer, Branscheid, B. 56, 1618) oder in Benzol-Lösung (Sieglitz, MARX, B. 56, 1620). Durch Reduktion von 10-Methyl-anthron-(9) mit Zink-

#### **METHYLANTHRACEN**

staub und konz. Salzsäure in siedendem Eisessig (Barnett, Matthews, B. 59, 769) oder mit Zinkstaub und Ammoniak (Ba., Ma.; vgl. Ba., Cook, Soc. 123, 2641). — Gelbliche Prismen (aus Benzol, Alkohol oder Methanol). F: 81,5° (Sieglitz, Marx, B. 56, 1620). 81° (Schlenk, Bergmann, A. 463, 160), 79—80° (Kr., Br., B. 56, 1618; Kr., A. 430, 226).  $Kp_{12}: 196-197^{\circ}$  (S., M.).  $D_{\bullet}^{\text{m.4}}: 1,0657$  (Kr.).  $n_{\bullet}^{\text{m.4}}: 1,6817; n_{\bullet}^{\text{m.4}}: 1,6959; n_{\bullet}^{\text{m.6}}: 1,7408$  (Kr.). Ultraviolett-Absorptionsspektrum in alkoh. Lösung: BARNETT, COOK, ELLISON, Soc. 1928, 890. Sehr leicht löslich in organischen Lösungsmitteln; die Lösung in konz. Schwefelsäure ist grün (Sieglitz, Marx). — Die bei der Einw. von Natrium entstehende Lösung ist anfangs tiefblau und erscheint später in dicker Schicht grün, in dünner Schicht rotviolett; sie liefert beim Versetzen mit Alkohol 9-Methyl-9.10-dihydro-anthracen (Schlenk, Bergmann, A. 463, 160). Bei der Einw. von ca. 1 Mol Brom in Schwefelkohlenstoff unter Kühlung mit Kältemischung entsteht 10-Brom-9-methyl-anthracen, bei Verwendung von 2 Mol Brom 10-Brom-9-brommethyl-anthracen; mit 4 Mol Brom in Schwefelkohlenstoff erhält man 1.2.3.4.10.91-Hexabrom-9-methyl-anthracen-tetrahydrid (BARNETT, MATTHEWS, B. 59, 1434). Pikrat  $C_{15}H_{12} + C_0H_3O_7N_3$ . F: 137° (Zers.) (SIEGLITZ, MARX, B. 56, 1620).

2-Chlor-9-methyl-anthracen C<sub>15</sub>H<sub>11</sub>Cl, s. nebenstehende Formel. B. In sehr geringer Menge bei der Einw. von 3 Mol Methylmagnesiumhalogenid auf 1 Mol 2-Chlor-anthron-(9) in Ather unter Kühlung (BARNETT, WILTSHIRE, Soc. 1928, 1824). — Gelbliche Nadeln (aus Alkohol oder Methanol). F: 84°.

CH<sub>3</sub> CI

**1.5 - Dichlor - 9 - methyl - anthracen**  $C_{15}H_{10}Cl_2$ , s. nebenstehende Formel. Durch Erhitzen von 1.5-Dichlor-9-methyl-10-benzhydryl-9.10-dihydroanthranol-(9) mit Eisessig und wenig Salzsäure (BARNETT, GOODWAY, Soc. 1929, 22) oder Schwefelsäure (B., COOK, MATTHEWS, B. 59, 2869) auf dem Wasserbad. — Gelbe Nadeln (aus Eisessig). F: 1150 (B., C., M.). Absorptionsspektrum in alkoh. Lösung: B., C., ELLISON, Soc. 1928, 890. — Bei der



Einw. von Chlor auf die Suspension in Tetrachlorkohlenstoff entsteht 1.5-Dichlor-9-chlormethyl-anthracen (B., C., M., B. 59, 2870). Die Suspension in Schwefelkohlenstoff liefert bei Einw. von 1 Mol Brom 1.5-Dichlor-9-brommethyl-anthracen, bei Einw. von ca. 2,5 Mol Brom 1.5-Dichlor-9.10-dibrom-9-brommethyl-9.10-dihydro-anthracen und 1.5-Dichlor-10-brom 9-brommethylen-9.10-dihydro-anthracen; fügt man 4 Mol Brom zur Lösung in Benzol und engt die Lösung durch langsames Destillieren ein, so entsteht 1.5-Dichlor-10-brom-9-brommethylen-9.10-dihydro-anthracen in fast quantitativer Ausbeute; bei der Behandlung mit Brom in Pyridin bildet sich N-{[1.5-Dichlor-anthranyl-(9)]-methyl}-pyridiniumbromid (B., C., M., B. 59, 2870, 2873, 2874, 2875). Beim Einleiten von Stickstoffdioxyd in eine Suspension von 1.5-Dichlor-9-methyl-anthracen in Chloroform unter starker Kühlung erhält man 1.5-Dichlor-10-nitro-9-methyl-anthracen (B., C., M., B. 59, 2873).

1.5.91-Trichlor - 9 - methyl - anthracen, 1.5-Dichlor - 9 - chlormethylanthracen C<sub>15</sub>H<sub>9</sub>Cl<sub>3</sub>, s. nebenstehende Formel. B. Durch Einw. von Chlor auf eine Suspension von 1.5-Dichlor-9-methyl-anthracen in Tetrachlorkohlenstoff (Barnett, Cook, Matthews, B. 59, 2870). Neben Bis-{[1.5-Dichloranthranyl-(9)]-methyl}-äther beim Einleiten von trocknem Chlorwasserstoff in eine siedende Lösung von 1.5-Dichlor-9-oxymethyl-anthracen vom Schmelz-punkt 133—134° oder vom Schmelzpunkt 139° in Benzol (B., C., M.). — Gelbe Nadeln (aus Benzol + Petroläther). F: 1496. [HACKENTHAL]



10-Brom-9-methyl-anthracen  $C_{18}H_{11}Br$ , Formel I. B. Bei der Einwirkung von Brom auf 9-Methyl-anthracen in Schwefelkohlenstoff unter starker Kühlung (BARNETT, MATTHEWS,

B. 59, 1434). — Gelbe Nadeln. F: 173°.

1.5-Dichlor-9-brommethyl-anthracen C<sub>15</sub>H<sub>2</sub>Cl<sub>2</sub>Br, Formel II. Zur Konstitution vgl. Barnett, Goodway, B. 62, 423; vgl. a. B., G., Wiltshire, B. 63 [1930], 474 Anm. 9. — B. Durch Einw. von 1 Mol Brom auf eine Suspension von 1.5-Dichlor-9-methyl-anthracen in Schwefelkohlenstoff (B., Cook, Matthews, B. 59, 2870). Beim Erhitzen von 1.5-Dichlor-9.10-dibrom-9-brommethyl-9.10dihydro-anthracen für sich oder besser in Benzol-Lösung (B., C., M., B. 59, 2874, 2875). Durch Einleiten



von Bromwasserstoff in eine siedende Lösung von 1.5-Dichlor-9-oxymethyl-anthracen vom Schmelzpunkt 139° in Benzol (B., C., M., B. 59, 2870). — Gelbe Nadeln (aus Benzol). F: 180—1840 (B., C., M.). Absorptionsspektrum in alkoh. Lösung: B., C., Ellison, Soc. 1928, 890.

Gibt beim Kochen mit Kupferpulver in Xylol oder bei der Einw. von Methylmagnesiumjodid oder Phenylmagnesiumbromid in Ather eine Verbindung C<sub>30</sub>H<sub>18</sub>Cl<sub>4</sub> (farblose Nadeln

aus Pyridin; F: 287º [Zers.]); bei Anwendung der Organomagnesiumverbindungen entstehen daneben geringe Mengen einer isomeren Verbindung C<sub>30</sub>H<sub>10</sub>Cl<sub>4</sub>(?) (gelbe Nadeln; F: 205" [Zers.]) (Barnett, Cook, Matthews, B. 59, 2865, 2873). Beim Kochen mit Calciumcarbonat und wäßr. Aceton entsteht 1.5-Dichlor-9-oxymethyl-anthracen vom Schmelzpunkt 133—134"; reagiert analog mit Methanol, Alkohol (B., C., M., B. 59, 2872), mit Benzylalkohol (B., Goodway, B. 62, 428) und mit Eisessig + wasserfreiem Natriumacetat (B., C., M., B. 59, 2871). Gibt mit Anilin 1.5-Dichlor-9-anilinomethyl-anthracen, mit Dimethylanilin 1.5-Dichlor-9-[4-dimethylamino-benzyl]-anthracen (B., C., M., B. 59, 2872). Bei kurzem Erwärmen mit Pyridin entsteht {[1.5-Dichlor-anthranyl-(9)]-methyl}-pyridiniumbromid (B., C., M., E. **59**, 2873).

10.91-Dibrom-9-methyl-anthracen, 10-Brom-9-brommethyl-anthracen  $C_{15}H_{10}Br_{25}$ , Formel I. B. Durch Zugeben der berechneten Menge Brom zu 9-Methyl-anthracen in Schwefelkohlenstoff (BAR-NETT, MATTHEWS, B. 59, 1434). — Gelbe Nadeln (aus Schwefelkohlenstoff). F: 200° (Zers.). — Beim Kochen mit Natriumacetat und Eisessig entsteht 10-Brom-9-acetoxymethyl-anthracen. Liefert beim Erhitzen mit Pyridin N-{[10-Brom-anthranyl-(9)]-methyl}-pyridiniumbromid.



1.5-Dichlor-10-nitro-9-methyl-anthracen  $C_{15}H_9O_3NCl_2$ , Formel II. B. Beim Einleiten von Stickstoffdioxyd in eine Suspension von 1.5-Dichlor-9-methyl-anthracen in Chloroform unter Kühlung (BARNETT, COOK, MATTHEWS, B. 59, 2873). — Gelbe Prismen (aus Aceton und Alkohol). F: 174°. Unlöslich in Alkalien.

# 6. 9-Methylen-dihydroanthracen $C_{15}H_{12} = C_{6}H_{4} \stackrel{C(:CH_{2})}{CH_{6}} C_{6}H_{4}$

CHBr 1.5-Dichlor-10.91-dibrom-9-methylen-dihydroanthracen, 1.5-Di-CI chlor-10-brom-9-brommethylen-dihydroanthracen C15H8Cl2Br2, s. nebenstehende Formel. B. Neben anderen Produkten beim Erhitzen von 1.5-Dichlor-9.10-dibrom-9-brommethyl-dihydroanthracen im Ölbad (BARNETT, COOK, MATTHEWS, B. 59, 2874). Durch Einw. von Brom auf eine Lösung von 1.5-Dichlor-9-methyl-anthracen in Benzol (B., C., M.). Nadeln (aus Benzol + Petroläther oder aus Methyläthylketon). F: 192° (Zers.). — Liefert beim Kochen mit Kupferpulver in Xylol eine Verbindung C<sub>30</sub>H<sub>16</sub>Cl<sub>4</sub>Br<sub>2</sub> [vielleicht 1.5.1'.5'-Tetrachlor - 10.10' - bis - brommethylen - tetrahydro - dianthranyl - (9.9'); Nadeln aus Nitrobenzol + Alkohol; sintert bei 290°, F: 309° (Zers.)]. Bei kurzem Erwärmen mit Anilin auf dem Wasserbad entsteht 1.5-Dichlor-10-anilino-9-brommethylen-dihydroanthracen.

7. 9 - Methyl - phenanthren C<sub>15</sub>H<sub>12</sub>, s. nebenstehende Formel (E I 332). B. Beim Erhitzen von Methyl-phenyl-benzyl-carbinol mit CH<sub>3</sub> platinierter Kohle in Wasserstoff-Atmosphäre auf 3000 (ZELINSKY, GAWER-DOWSKAJA, B. 61, 1052). Durch Kochen von 9-Methyl-9.10-dihydrophenanthren-carbonsäure-(10)-methylester mit Hydrazinhydrat, Behandeln des Hydrazids mit Natriumnitrit und verd. Salzsäure, Kochen des Azids mit absol. Alkohol, Verseifen des Urethans mit konz. Salzsäure und Eindampfen des Reaktionsgemischs (WINDAUS, JENSEN, SCHRAMME, B. 57. 1877). — Krystalle (aus verd. Alkohol), Nadeln (durch Sublimation). F: 90-91° (W., J., Sch.), 94° (Z., G.). - Pikrat. F: 152-153° (W., J., Sch.).

E I 332, Z. 14 v. o. statt "2.5.6.7- oder 3.5.6.7-Tetramethoxy-9-methyl-phenanthren" lies ,2.3.4.6 (oder 2.3.4.7)-Tetramethoxy-9-methyl-phenanthren".

- 8. x-Methyl-phenanthren  $C_{18}H_{12}$ . B. Neben anderen Produkten bei längerem Erhitzen von Reten unter 70—75 Atm. Wasserstoffanfangsdruck auf 450— $470^{\circ}$  in Gegenwart von Eisenoxyd und Tonerde (Orlow, B. 62, 717; K. 60, 1454). — Krystalle (aus Alkohol). F: 89-91°. — Pikrat. Gelbe Krystalle (aus Alkohol). F: 138-139,5°.
- C:CH·CH<sub>3</sub> 9. 9-Äthyliden-fluoren,  $\omega$ -Methyl-dibenzofulven  $C_{16}H_{12}=$ C<sub>6</sub>H<sub>4</sub> (H 675; E I 332). B. Beim Kochen einer Lösung von 9-[α-Oxy-äthyl]-fluoren in Eisessig mit konz. Salzsäure (Courtor, A. ch. [9] 4, 220). — F: 104° (C.). — Liefert bei Einw. von α-Phenyl-isopropylkalium in Ather und nachfolgendem Behandeln mit Kohlendioxyd 9-[α.β-Ďimethyl-β-phenyl-propyl]-fluoren-carbonsäure-(9) (Ziegler, Mitarb., A. 473, 7, 27).
- 2.7 Dibrom -9-äthyliden fluoren  $C_{15}H_{10}Br_2$ , s. nebenstehende Formel. B. Beim Kochen von 9-Chlor-2.7-dibrom-9-äthyl-fluoren mit Eisessig (Sieglitz, Jassoy, B. 55, 2038). — Nadeln (aus Eisessig). Br F: 130-131°. - Entfärbt Brom in Chloroform.

CH-CH<sub>3</sub>

- 589
- 10. Dihydro-idryl C<sub>15</sub>H<sub>12</sub> (H 675; E I 332). Ist als 1.2.3.4-Tetrahydro-fluoranthen C<sub>14</sub>H<sub>14</sub> (S. 595) erkannt worden (v. Braun, Manz, B. 68 [1930], 2608, 2612).
  - 11. Kohlenwasserstoff C<sub>18</sub>H<sub>12</sub> aus Cholesterin s. 4. Hauptabteilung, Sterine.

# 3. Kohlenwasserstoffe $C_{16}H_{14}$ .

- 1. 1.4-Diphenyl-butin-(2), Dibenzylacetylen  $C_{16}H_{14} = C_{6}H_{5} \cdot CH_{2} \cdot C \cdot CH_{2} \cdot C_{6}H_{5}$ . B. In geringer Menge neben anderen Produkten bei der Einw. von Benzylbromid auf Acetylen-bis-magnesiumbromid (GRIGNARD, LAPAYRE, TCHÉOUFAKI, C. r. 187, 518; G., TCH., C. r. 188, 1533; R. 48, 902) und bei der Hydrierung von Diphenyldiacetylen bei Gegenwart von Platin in Alkohol + Ather (G., TCH.). F: 80° (G., L., TCH.; G., TCH.). Rei der Organzeltung autsteht. Phonylogicischung (G., TCH.) Bei der Ozonspaltung entsteht Phenylessigsäure (G., Tch.)
  - 1.4-Diphenyl-butadien-(1.3), Distyryl  $C_{16}H_{14} = C_6H_5 \cdot CH \cdot CH \cdot CH \cdot CH \cdot CH \cdot C_6H_5$ .

a) trans-trans-Form C<sub>16</sub>H<sub>14</sub> = C<sub>6</sub>H<sub>5</sub> C—H (H 676; E I 332). B. Bei 38-tägiger Einw. von Lithiumbutyl auf höherschmelzendes ω-Brom-styrol in Petroläther (Marvell, Hager, Coffman, Am. Soc. 49, 2326). Zur Bildung bei der Einw. von Magnesium auf die äther. Lösung von ω-Brom-styrol vgl. van Duin, R. 45, 354. Beim Behandeln des aus ω-Brom-styrol und Magnesium in Äther dargestellten ω-Styrylmagnesiumbromids mit Kupfer(II)-chlorid in Ather (Sakellarios, Kyrimis, B. 57, 325) sowie in Benzol (GILMAN, PARKÉR, Am. Soc. 46, 2827) oder beim Behandeln mit Azobenzol in Ather (GI., PICKENS, Am. Soc. 47, 2410). In sehr geringer Menge bei der Hydrierung von Diphenyldiacetylen bei Gegenwart von Palladium-Tierkohle in Äther (OTT, SCHRÖTER, B. 60, 640). Neben anderen Produkten beim Erwärmen von  $\beta$ -Chlor- $\beta$ -phenyl- $\beta'$ -benzyliden-isobuttersäure mit verd. Natronlauge oder beim Kochen von  $\beta$ -Acetoxy- $\beta$ -phenyl- $\beta$ -benzyliden-isobuttersäure mit Eisessig-Schwefelsäure (Stoermer, Schenck, B. 61, 2314, 2318, 2322). Aus 2°-Phenyl-3°-[α-oxy-benzyl]-cyclopropan-carbonsäure-(1°)-methylester beim Erhitzen oder beim Behandeln mit Phosphorpentabromid in Ather (Sτ., Sch., B. 60, 2579, 2586). Beim Erhitzen von 2°-Phenyl-3°-[α-oxy-benzyl]-cyclopropan-carbonsäure-(1°) über den Schmelzpunkt (St., Sch., B. 60, 2583). Beim Behandeln von 3°-Amino-2°-4'-diphenyl-cyclobutan-carbonsäure-(1°) oder 4°-Amino-2°-3'-diphenyl-cyclobutan-carbonsäure-(1°) mit Nitrosylbromid in Äther, neben anderen Produkten (St., Sch., B. 60, 2577, 2588). Durch Vakuumdestillation von 3°-Phenyl 2°-[α-oxy-benzyl]-cyclobutan-carbonsäure-(1°)-phenyl cyclobutan-carbonsäure-(1°)-phenyl-cyclobutan-carbonsäure-(1°)-phenyl-cyclobutan-carbonsäure-(1°)-phenyl-cyclobutan-carbonsäure-(1°)-phenyl-cyclobutan-carbonsäure-(1°)-phenyl-cyclobutan-carbonsäure-(1°)-phenyl-cyclobutan-carbonsäure-(1°)-phenyl-cyclobutan-carbonsäure-(1°)-phenyl-cyclobutan-carbonsäure-(1°)-phenyl-cyclobutan-carbonsäure-(1°)-phenyl-cyclobutan-carbonsäure-(1°)-phenyl-cyclobutan-carbonsäure-(1°)-phenyl-cyclobutan-carbonsäure-(1°)-phenyl-cyclobutan-carbonsäure-(1°)-phenyl-cyclobutan-carbonsäure-(1°)-phenyl-cyclobutan-carbonsäure-(1°)-phenyl-cyclobutan-carbonsäure-(1°)-phenyl-cyclobutan-carbonsaure-(1°)-phenyl-cyclobutan-carbonsaure-(1°)-phenyl-cyclobutan-carbonsaure-(1°)-phenyl-cyc von 2°-Phenyl-3°-[a-oxy-benzyl]-cyclopropan-carbonsäure-(1°)-lacton oder 2°-Phenyl-3°-[a-oxybenzyl]-cyclopropan-carbonsaure-(1°)-lacton (St., Sch., B. 60, 2578, 2585). — Darst. Durch Kochen von Phenylessigsäure mit Zimtaldehyd, Acetanhydrid und Bleioxyd (Kuhn, Winter-STEIN, Helv. 11, 103; CORSON, Org. Synth. 16 [1936], 28).

Gelbstichige Krystalle mit stark blauvioletter Fluorescenz (aus Eisessig und Benzol + Alkohol (Kuhn, Winterstein, Helv. 11, 99, 104). F: 152,5—153,5° (Corson, Org. Synth. 16 [1936], 29), 152,5° (K., W., Helv. 11, 98), 151—152° (Stoermer, Schenck, B. 60, 2583, 2585), 147° (Sakellarios, Kyrimis, B. 57, 325). D.: 1,121 (Ziegler, Ditzel, A. 473, 204). Verbrennungswärme bei konstantem Volumen: 2028,3 kcal/Mol (Roth, Müller in Landolt-Börnst. E I, 868; vgl. Ott, B. 61, 2121). Bei 19° lösen sich 66,15 g in 1000 cm³ Benzol und 97,8 g in 1000 cm³ Chloroform (K., W., Helv. 11, 101). Ultraviolett-Absorptionsspektrum der Lösung in Hexan: Castille, Bl. Acad. Belgique [5] 12, 508; C. 1927 I, 1126.

Geschwindigkeit der Oxydation mit Permanganat in Aceton: Kuhn, Winterstein, Helv. 11, 115. Liefert bei der Hydrierung mit der berechneten Menge Wasserstoff in Gegenwart von Platinoxyd in Eisessig bei 19° 1.4-Diphenyl-butan, bei erschöpfender Hydrierung 1.4-Dioyclohexyl-butan (K., W., Helv. 11, 137). Beim Behandeln mit Natrium in Äther entsteht 1.4-Dinatrium-1.4-diphenyl-buten-(2) (Syst. Nr. 2357); reagiert analog mit Lithium (Schlenk, Bergmann, A. 463, 100). Gibt beim Zusammenschmelzen mit Maleinsäureanhydrid das Anhydrid der 3.6-Diphenyl-cis-1.2.3.6-tetrahydro-phthalsäure (DIELS, ALDER, R. 63, 2084). Beim Erwähmen mit Avoidenshopsäure dimethylester auf 1000 arkält man B. 62, 2084). Beim Erwärmen mit Azodicarbonsäure-dimethylester auf 1000 erhält man 3.6-Diphenyl-1.2.3.6-tetrahydro-pyridazin-dicarbonsäure-(1.2)-dimethylester (D., A., A. 450, 251). Liefert bei Einw. von  $\alpha$ -Phenyl-isopropyl-kalium in Xther und nachfolgender Behandlung mit Kohlendioxyd eine harzige Carbonsaure, von der ein Silbersalz AgC<sub>28</sub>H<sub>25</sub>O<sub>2</sub> erhalten werden konnte (ZIEGLER, Mitarb., A. 473, 29). Reagiert nicht mit Benzylmagnesiumchlorid (GILMAN, McGlumphy, R. 47, 421). — Beim Schütteln mit Chloroform + Schwefelsäure + Acetanhydrid färbt sich die Chloroform-Schicht violettrot, die Schwefelsäure-Schicht rot (Kuhn, Winterstein, Helv. 11, 151). Verhalten bei der Jodzahl-Bestimmung nach Hübl und Wijs: Maolean, Thomas, Biochem. J. 15, 326.

 $C_{14}H_{16} + 2$  FeCl<sub>2</sub>. Farblos (v. EULER, WILLSTAEDT, Ark. Kemi [B] 10, Nr. 9, S. 4; C. 1929 II, 2052).

**590** 

- b) cis-cis-Form  $C_{16}H_{14} = \frac{H-C}{H-C_6H_5}C_6H_5$   $C_6H_5-C_H$  (H 676; E I 332). B. Neben anderen Produkten bei der Hydrierung von Diphenyldiacetylen in Alkohol + Ather bei Gegenwart von Platin (GRIGNARD, TCHEOUFAKI, C. r. 188, 1533; R. 48, 902). Über Bildung bei der Hydrierung von Diphenyldiacetylen in Methanol oder Ather bei Gegenwart von verschiedenartig vorbereiteten Palladium-Tierkohle- und Nickel-Tierkohle-Katalysatoren (s. a. E I 332) vgl. Ott, Schröter, B. 60, 628, 638; vgl. a. Kelber, B. 57, 142. F: 69—70° (G., T.). Verbrennungswärme bei konstantem Volumen: 2033,1 kcal/Mol (Roth, Müller in Landoll-Börnst. E I, 868; vgl. Ott, B. 61, 2121).
- c) cis-trans-Form  $C_{16}H_{14} = \frac{H-C-C_6H_5}{H-C-C_6H_5}$  (H 676; E I 332). B. Zur Bildung bei der Hydrierung von Diphenyldiacetylen in Methanol oder Äther bei Gegenwart von Palladium-Tierkohle (E I 332) vgl. Ott, Schröter, B. 60, 628, 638; vgl. a. Kelber, B. 57, 142. Verbrennungswärme bei konstantem Volumen: 2054,9 kcal/Mol (Roth, Müller in Landolt-Börnst. E I, 868; vgl. Ott, B. 61, 2121). Autoxydation an der Luft: Ott, B. 60, 640.
- d) Substitutions produkte des 1.3 - Diphenyl - butadiens - (1.3)  $C_{16}H_{14} = C_6H_5 \cdot CH \cdot CH \cdot CH \cdot CH \cdot C_6H_5$ .
- 1.3 (oder 1.4 oder 2.3)-Dibrom-1.4-diphenyl-butadien-(1.3), Diphenyldiacetylenbis hydrobromid  $C_{16}H_{12}Br_2 = C_6H_5 \cdot CBr; CH \cdot CBr; CH \cdot C_6H_5$  oder  $C_6H_5 \cdot CBr; CH \cdot CH \cdot CBr; CH \cdot C_6H_5$ . Die Zuordnung der nachstehend aufgeführten Präparate zu den einzelnen Formeln ist unsicher; vgl. dazu Salkind, Kruglow, B. 59, 1938.
- a) Höherschmelzendes Diphenyldiacetylen-bis-hydrobromid. B. Aus 1.4-Diphenyl-butin-(2)-diol-(1.4) bei gewöhnlicher Temperatur mit verd. Bromwasserstoff-Essigsäure (Salkind, Kruglow, B. 59, 1940). Aus niedrigerschmelzendem Diphenyldiacetylenbis-hydrobromid beim Umlösen aus heißem Benzin oder heißem Aceton (S., K.). Prismen (aus Ligroin). F: 114—115°. Leicht löslich in Aceton, Benzol, Schwefelkohlenstoff, Chloroform und heißem Alkohol. Bei der Oxydation mit warmer Permanganat-Lösung entsteht Benzoesäure. Liefert beim Schütteln mit alkoh. Kalilauge Diphenyldiacetylen. Gibt bei längerem Aufbewahren mit einer gesättigten Lösung von Bromwasserstoffsäure in 92—95 %iger Essigsäure 1.2.4-Tribrom-1.4-diphenyl-buten-(2) und geringe Mengen des flüssigen Isomeren.
- b) Niedrigerschmelzendes Diphenyldiacetylen-bis-hydrobromid. B. Aus 1.4-Diphenyl-butin-(2)-diol-(1.4) und verd. Bromwasserstoffsäure-Essigsäure bei 0° (SALKIND, KRUGLOW, B. 59, 1940). Prismen (aus Petroläther). F: 92—95°. Geht beim Lösen in heißem Benzin oder heißem Aceton in das höherschmelzende Isomere über. Beim Schütteln mit alkoh. Kalilauge entsteht Diphenyldiacetylen.
- c) Flüssiges Diphenyldiacetylen-bis-hydrobromid. B. In geringer Menge aus dem höherschmelzenden Isomeren oder aus 1.4-Diphenyl-butin-(2)-diol-(1.4) bei der Behandlung mit einer gesättigten Bromwasserstoffsäure in 92—95% iger Essigsäure, neben anderen Produkten (Salkind, Kruglow, B. 59, 1941). Schweres gelbliches Öl. Läßt sich unter 50 mm Druck nicht unzersetzt destillieren.
- 1.4-Dinitro-1.4-diphenyl-butadien-(1.3)  $C_{16}H_{12}O_4N_5=C_6H_5\cdot C(NO_2)\cdot CH\cdot CH\cdot C(NO_2)\cdot C_6H_5$ . Diese Konstitution kommt dem H 677 beschriebenen 2.3-Dinitro-1.4-diphenyl-butadien-(1.3) von Wieland, Stenzl zu (Neber, Föhr, Bauer, A. 478 [1930], 201, 213). B. Durch längeres Aufbewahren einer mit Stickstofftetroxyd in Ather + Ligroin versetzten Suspension von 1.4-Diphenyl-butadien-(1.3)-carbonsäure-(1) in Ather unter Kühlung (N., Paeschke, B. 59, 2147; vgl. N., F., B., A. 478, 213). F: 223° (N., P.).
- 3. 1-Phenyl-3.4-dihydro-naphthalin C<sub>16</sub>H<sub>14</sub>, s. nebenstehende Formel. B. Beim Behandeln von Tetralon-(1) mit Phenylmagnesiumbromid in Ather (Weiss, Woidich, M. 46, 455). Öl. Kp<sub>13</sub>: 175—177°. Liefert beim Erhitzen mit Schwefel auf 250° 1-Phenyl-naphthalin.
- 4. 1-Benzyl-inden C<sub>16</sub>H<sub>14</sub>, s. nebenstehende Formel (H 678; E I 333).

  B. Beim Kochen von 3-Benzyl-inden-carbonsäure-(1)-äthylester mit alkoh.
  Kalilauge (Wislicenus, Mauthe, A. 436, 34). Aus Inden-(1)-yl-(3)-glyoxyl-säure-äthylester beim Erhitzen mit Benzylhalogenid in Alkohol bei Gegenwart von Natriumäthylat und folgenden Kochen mit verd. Schwefelsäure (W., Hentrich, A. 436, 20). F: 35°; Kp<sub>11</sub>: 179° (W., H.).



CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>

#### ÄTHYLANTHRACEN

- 5. 1-p-Tolyl-inden C<sub>16</sub>H<sub>14</sub>, s. nebenstehende Formel. B. Beim Behandeln von Hydrindon-(1) mit p-Tolylmagnesiumbromid in Äther und Destillieren des Reaktionsprodukts unter 11 mm Druck (v. Braun, Manz, B. 62, 1064). Gelbliches Öl. Kp<sub>11</sub>: 184—188°. Lagert sich beim Leiten des Dampfes über auf Dunkelrotglut erhitzten Bimsstein im Kohlendioxyd-Strom in 2-p-Tolyl-inden um.
  - CH2 CH C8H4·CH3
- 6. 2-m-Tolyl-inden  $C_{16}H_{14}=C_6H_4 < \begin{array}{c} CH_2 > C \cdot C_6H_4 \cdot CH_3. \\ CH > C \cdot C_6H_4 \cdot CH_3. \\ \end{array}$  B. Durch Kochen von nicht näher beschriebenem 2-Oxy-2-m-tolyl-hydrinden mit 20% iger Schwefelsäure (v. Braun, Manz, B. 62, 1065). Blättchen (aus Methanol). F: 99—100°.
- 7. **2-p-Tolyl-inden** C<sub>16</sub>H<sub>14</sub> = C<sub>6</sub>H<sub>4</sub> < CH<sub>3</sub> > C·C<sub>6</sub>H<sub>4</sub>·CH<sub>3</sub>. B. Beim Leiten des Dampfes von 1-p-Tolyl-inden über auf Leiten des Dampfes von 1-p-Tolyl-inden über auf Charles des Charles des Leiten des Dampfes von 1-p-Tolyl-inden über auf Leiten des Dampfes von 1-p-Tolyl-inden des Dampfes von 1-p-Tolyl-inden über auf Leiten des Dampfes von 1-p-Tolyl-inden - 8. 1-Methyl-2-phenyl-inden  $C_{16}H_{14}=C_6H_4$   $C_{(CH_3)}$   $C \cdot C_6H_5$ . Zur Konstitution vgl. Blum-Bergmann, B. 65 [1932], 110. B. Durch Erhitzen des 1.2-Dioxy-2-methyl-1.1-diphenyl-propans, der stereoisomeren 2.3-Dioxy-2.3-diphenyl-butane und der stereoisomeren  $\alpha.\beta$ -Dimethyl- $\alpha.\beta$ -diphenyl-āthylenoxyde in Gegenwart von Infusorienerde auf 500—550° (Ramart-Lucas, Salmon-Legagneur, Bl. [4] 45, 731, 733). Gelbe Nadeln oder Blättchen (aus Alkohol). F: 74—75° (R.-L., S.-L.). Leicht löslich in Benzol und Toluol (R.-L., S.-L.). Die alkoh. Lösung fluoresciert intensiv blauviolett (R.-L., S.-L.). Pikrat. F: 108—109° (R.-L., S.-L.).
- 9. **2-Methyl-1-phenyl-inden**  $C_{16}H_{14} = C_6H_4 < C(C_6H_5) = C \cdot CH_3$ . B. Durch Behandeln von 2-Methyl-hydrindon-(1) mit Phenylmesiumbromid in Åther, folgendes längeres Kochen und Zersetzen mit verd. Essigsäure (Mayer, Sieglitz, Ludwig, B. 54, 1401). Aus  $\beta$ -Methyl- $\gamma$ -phenyl-zimtalkohol durch Einw. von konz. Schwefelsäure und Eisessig unter Kühlung (ZIEGLER, TIEMANN, B. 55, 3414). Blaßgelbe Blättchen (aus Alkohol). F: 57,5° (M., S., L.), 56,5° (Z., T.). Kp<sub>14</sub>: 177° (M., S., L.).
- 10. 9-Āthyl-anthracen C<sub>18</sub>H<sub>14</sub>, s. nebenstehende Formel (H 678). C<sub>2</sub>H<sub>5</sub>
  B. Aus 9-Oxy-9-āthyl-dihydroanthracen beim Aufbewahren über Schwefelsäure im Vakuum (Krollpfeiffer, Branscheid, B. 56, 1618) oder bei der Vakuumdestillation (Sieglitz, Marx, B. 56, 1621). Durch Behandeln von Anthron mit Athylmagnesiumbromid in Äther und Erhitzen des Reaktionsprodukts (K., B.; S., M.). Blau fluorescierende Blättchen (aus Methanol oder Petroläther). F: 59° (K., B.; S., M.). D<sub>4</sub><sup>m2</sup>: 1,0413 (Krollpfeiffer, B. 56, 80; A. 430, 226). n<sub>2</sub><sup>m2</sup>: 1,6628; n<sub>3</sub><sup>m2</sup>: 1,6762; n<sub>3</sub><sup>m2</sup>: 1,7185 (K.). Dichten und Brechungsindices von Lösungen in Naphthalin bei 99,1°: K., B. 56, 78, 80. Beim Behandeln mit der berechneten Menge Chlor in Chloroform entsteht 10-Chlor-9-āthyl-anthracen (K., B.). Liefert in Schwefelkohlenstoff-Lösung mit 1 Mol Brom 10-Brom-9-āthyl-anthracen, mit 4 Mol Brom 1.2.3.4.9-Pentabrom-1.2.3.4-tetra-hydro-anthracen (Barnett, Matthews, B. 59, 1435).
- 2-Chlor-9-äthyl-anthracen  $C_{16}H_{13}Cl$ , s. nebenstehende Formel. B. Ourch Einw. von 2-Chlor-anthron-(9) auf Äthylmagnesiumhalogenid in Äther und kurzes Erwärmen des Reaktionsprodukts mit Eisessig und Salzsäure auf dem Wasserbad (Barnett, Willtshire, Soc. 1928, 1824). Blaßgelbe Nadeln (aus Alkohol oder Methanol). F: 79°. Liefert mit 1 Mol Brom in Schwefelkohlenstoff 2-Chlor-10-brom-9-äthyl-anthracen.

10-Chlor-9-äthyl-anthracen C<sub>16</sub>H<sub>15</sub>Cl, Formel I. B. Beim Behandeln von 9-Äthylanthracen in Chloroform mit der berechneten Menge Chlor (Krollffeiffer, Branscheid, B. 56, 1618). — Schwach gelbgrüne Nadeln (aus Methanol). F: 111° (K., B.). Dichten und Brechungsindices von Lösungen in Chinolin bei 12,6°: K., A. 430, 228.

$$I. \begin{picture}(20,0) \put(0,0){\line(1,0){13}} \put($$

1.4-Dichlor-9-äthyl-anthracen C<sub>16</sub>H<sub>12</sub>Cl<sub>2</sub>, Formel II. B. Durch Einwirkung von Athylmagnesiumbromid auf 1.4-Dichlor-anthron-(9) und Erwärmen des Reaktionsprodukts

mit Eisessig und wenig konz. Salzsäure auf dem Wasserbad (BARNETT, WILTSHIRE, B. 62. 1971). — Hellgelbe Krystalle (aus Methyläthylketon + Alkohol oder Äthylacetat + Methanol). F: 103°.

- 1.5-Dichlor-9-äthyl-anthracen C<sub>1e</sub>H<sub>12</sub>Cl<sub>2</sub>, Formel III, S. 591. B. Durch Einwirkung von wenig Schwefelsäure oder Salzsäure auf in Eisessig gelöstes 1.5-Dichlor-9-äthyl-9.10-dihydro-anthranol-(9) (BARNETT, COOK, MATTHEWS, B. 59, 2870) oder 1.5-Dichlor-9-äthyl-10-benzhydryl-9.10-dihydro-anthranol-(9) (B., GOODWAY, Soc. 1929, 22). Gelbe Nadeln (aus Eisessig). F: 108° (B., C., M.). Liefert in Schwefelkohlenstoff-Lösung mit 1 Mol Brom 1.5-Dichlor-9-[α-brom-āthyl]-anthracen, mit 2 Mol Brom 1.5-Dichlor-9.10-dibrom-9-[α-brom-āthyl]-dihydroanthracen (B., C., M., B. 59, 2876).
- 10-Brom-9-äthyl-anthracen C<sub>1e</sub>H<sub>13</sub>Br, Formel IV, S. 591. B. Aus 9-Äthyl-anthracen und 1 Mol Brom in Schwefelkohlenstoff (Barnett, Matthews, B. 59, 1435). Gelbe Nadeln (aus Alkohol). F: 104°.
- 2-Chlor-10-brom-9-äthyl-anthracen C<sub>16</sub>H<sub>12</sub>ClBr, Formel V. B. Durch Einwirkung von 1 Mol Brom auf 2-Chlor-9-äthyl-anthracen in Schwefelkohlenstoff (BARNETT, WILTSHIRE, Soc. 1928, 1824). Gelbe Krystalle (aus Benzol + Petroläther). F: 128°.
- 1.5-Dichlor-9-[ $\alpha$ -brom-äthyl]-anthracen  $C_{19}H_{11}Cl_2Br$ , Formel VI. B. Durch Kochen von 1.5-Dichlor-9.10-dibrom-9-[ $\alpha$ -brom-äthyl]-dihydroanthracen mit Toluol (BARNETT, COOK, MATTHEWS, B. 59, 2877). Durch Einw. von 1 Mol Brom auf 1.5-Dichlor-9-äthyl-anthracen in Schwefelkohlenstoff (B., C., M., B. 59, 2876). Gelbes mikrokrystallines Pulver (aus Benzol + Petroläther). F: 135—136° (Zers.). Liefert beim Kochen mit wasserfreiem Natriumacetat in Eisessig 1.5-Dichlor-9-[ $\alpha$ -acetoxy-äthyl]-anthracen.

- 2.3.10-Tribrom-9-äthyl-anthracen  $C_{16}H_{11}Br_3$ , Formel VII. B. Aus 10-Brom-9-äthyl-anthracen-tetrabromid-(1.2.3.4) durch Kochen mit alkoh. Kalilauge (Barnett, Matthews, B. 59, 1435). Gelbe Nadeln (aus Pyridin oder Eisessig). F: 169°. Gibt bei der Oxydation mit Chromsäure 2.3-Dibrom-anthrachinon.
- 11. 1.3 Dimethyl-anthracen  $C_{16}H_{14}$ , Formel VIII (H 678). Diese Konstitution kommt dem H 5, 688 beschriebenen "m-Dimethylanthracylen" von ELBS zu (V. BRAUN, BAYER, B. 59, 914, 918). B. Aus 1.3-Dimethyl-anthrachinon durch Reduktion mit Zinkstaub und Ammoniak und Behandeln des neben anderen Produkten erhaltenen 1.3-Dimethyl-9.10-dihydro-anthranols-(9) mit heißem Alkohol (v. B., B.). Schwach blau fluorescierende Blättchen (aus Äther). F: 83°. Pikrat  $C_{16}H_{16}+C_{6}H_{3}O_{7}N_{3}$ . F: 136°.
- 12. 1.4 Dimethyl anthracen C<sub>16</sub>H<sub>14</sub>, s. nebenstehende Formel.

  Diese Konstitution kommt dem H 5, 689 beschriebenen "p. Dimethylanthracylen" von Elbs zu (v. Braun, Bayer, B. 59, 914, 919). B. Aus 1.4-Dimethyl-9.10-dihydro-anthranol-(9) durch Behandeln mit heißem Alkohol oder durch Erhitzen auf den Schmelzpunkt (v. Br., B.). Nadeln (aus Alkohol). F: 74°. Schwer löslich in Alkohol. Bei der Oxydation mit Chromsäure in Eisessig entsteht 1.4-Dimethyl-anthrachinon. Pikrat C<sub>16</sub>H<sub>14</sub> + C<sub>6</sub>H<sub>3</sub>O<sub>7</sub>N<sub>3</sub>. F: 140°.
- 13. 1.6 (oder 1.7)-Dimethyl-anthracen  $C_{16}H_{14} = C_{14}H_{8}(CH_{8})_{2}$  (H 679; E I 334). Ist als 2.7-Dimethyl-anthracen erkannt worden (Morgan, Coulson, Soc. 1929, 2207).
- 14. 2.3-Dimethyl-anthracen C<sub>16</sub>H<sub>14</sub>, s. nebenstehende Formel (H 678). Zur Reinheit des Präparats von Elbs, Eurich (B. 20, 1365; J. pr. [2] 41, 5) vgl. Fairbourne, Soc. 119, 1574, 1581. Krystalle (aus salzsäurehaltigem Eisessig oder Benzol). F: 252° (Barnett, Morrison, B. 64 [1931], 541).
- 15. 2.6-Dimethyl-anthracen C<sub>16</sub>H<sub>14</sub> (H 678; E I 333). B.

  Durch Einleiten von Acetylen in ein Gemenge von Toluol und CH<sub>3</sub>.

  Aluminiumchlorid, neben anderen Produkten (Cook, CHAMBERS,
  Am. Soc. 43, 337; vgl. Morgan, Coulson, Soc. 1929, 2207). Aus 2.4.3'.Trimethyl-benzophenon durch mehrstündiges Kochen (M., Cou., Soc. 1929, 2213) oder durch Leiten über aktive Kohle (I. G. Farbenind., D. R. P. 481819; C. 1930 I, 1053; Frdl. 16, 717, 720). Durch mehrstündiges Kochen von 2.5.4'.Trimethyl-benzophenon (M., C., Soc. 1929, 2212). Bei der Destillation von 1.4.5.8-Tetraoxy-2.6-dimethyl-anthrachinon mit Zinkstub im Wasserstoffstrom (Flumiani, M. 45, 47). Krystalle (aus Schwefelkohlenstoff). F: 250° (korr.) (M., C., Soc. 1929, 2212), 242—243° (Fl.). Sublimierbar (M., C.).

- 16. 2.7-Dimethyl-anthracen C<sub>16</sub>H<sub>14</sub>, s. nebenstehende Formel. CH<sub>3</sub>···CH<sub>3</sub> Diese Konstitution kommt dem H 679; E I 334 als 1.6 (oder 1.7) · Dimethyl-anthracen beschriebenen Kohlenwasserstoff zu (Morgan, Coulson, Soc. 1929, 2207; vgl. a. Hey, Soc. 1935, 73; Beyer, B. 70 [1937], 1483).—B. In sehr geringer Menge beim Einleiten von Acetylen in ein Gemenge von Toluol und Aluminiumchlorid, neben anderen Produkten (Cook, Chambers, Am. Soc. 43, 338; vgl. Mo., Cou., Soc. 1929, 2207). Aus 2.4.4'-Trimethyl-benzophenon bei mehrstündigem Kochen (Mo., Cou., Soc. 1929, 2210) oder beim Leiten über aktive Kohle (I. G. Farbenind., D. R. P. 481819; C. 1930 I, 1053; Frdl. 16, 720).— Gelbliche, rot fluorescierende Krystalle (aus Schwefelkohlenstoff oder Eisessig). F: 241° (korr.) (Mo., Cou., Soc. 1929, 2210), 239° (I. G. Farbenind.).— Liefert mit 2.7-Dinitro-anthrachinon eine additionelle Verbindung (s. bei 2.7-Dinitro-anthrachinon, Syst. Nr. 679) (Börnstein, Schliewiensky, Szczesny-Heyl, B. 59, 2814; vgl. Mo., Cou., Soc. 1929, 2207).
- 17. **2.9-Dimethyl-anthracen** C<sub>16</sub>H<sub>14</sub>, s. nebenstehende Formel.

  B. Durch Einw. von Methylmagnesiumjodid auf 2-Methyl-anthron-(9) und kurzes Erwärmen des Reaktionsprodukts mit Eisessig und Salzsäure auf dem Wasserbad (Barnett, Goodway, Soc. 1929, 1758).

  Gelbe Krystalle (aus Methanol oder Petroläther). F: 85°. Liefert mit 1 Mol Brom in Schwefelkohlenstoff unter Kühlung 2-Methyl-9-brommethyl-anthracen; bei einem bei Zimmertemperatur ausgeführten Versuch wurde 10-Brom-2-methyl-9-brommethyl-anthracen erhalten.
- 9¹-Brom-2.9-dimethyl-anthracen, 2-Methyl-9-brommethyl-anthracen C<sub>16</sub>H<sub>13</sub>Br, s. nebenstehende Formel. B. Durch Einw. von 1 Mol Brom auf 2.9-Dimethyl-anthracen in Schwefelkohlenstoff in der Kälte (Barnett, Goodway, Soc. 1929, 1759). Gelbe Krystalle (aus Benzol oder Benzol + Petroläther). F: 150° (Zers.). Gibt bei weiterer Einw. von Brom in Schwefelkohlenstoff bei Zimmertemperatur 10-Brom-2-methyl-9-brommethyl-anthracen. Liefert beim Behandeln mit Anilin 2-Methyl-9-anilinomethyl-anthracen; reagiert analog mit Piperidin.
- 10.9¹-Dibrom-2.9-dimethyl-anthracen, 10-Brom-2-methyl-9-brommethyl-anthracen C<sub>16</sub>H<sub>12</sub>Br<sub>2</sub>, s. nebenstehende Formel. B. Aus 2-Methyl-9-brommethyl-anthracen durch Einw. von 1 Mol Brom in Schwefelkohlenstoff bei Zimmertemperatur (BARNETT, GOODWAY, Soc. 1929, 1759). Gelbe Krystalle (aus Benzol). F: 190° (unter Rotfärbung). Liefert mit Anilin 10-Brom-2-methyl-9-anilinomethyl-anthracen; reagiert analog mit Piperidin.
- 18. 2.10-Dimethyl-anthracen C<sub>16</sub>H<sub>14</sub>, s. nebenstehende Formel.

  B. Durch Einw. von Methylmagnesiumjodid auf 3-Methyl-anthron-(9)
  und kurzes Erwärmen des Reaktionsprodukts mit Eisessig und Salzsäure auf dem Wasserbad (Barnett, Goodway, Soc. 1929, 1759).

  Blaßgelbe Krystalle (aus Methanol oder Petroläther). F: 85°. Bei Einw. von 1 Mol Brom
  in Schwefelkohlenstoff unter Kühlung entsteht 2-Methyl-10-brommethyl-anthracen.
- 10¹-Brom-2.10-dimethyl-anthracen, 2-Methyl-10-brommethyl-anthracen C<sub>1s</sub>H<sub>13</sub>Br, s. nebenstehende Formel. B. Durch Einw. von 1 Mol Brom auf 2.10-Dimethyl-anthracen in Schwefelkohlenstoff unter Kühlung (Barnett, Goodway, Soc. 1929, 1759). Wurde nicht rein chalten. Gelb. F: 145° (Zers.). Bei weiterer Einw. von Brom in Schwefelkohlenstoff bei Zimmertemperatur entsteht 9-Brom-2-methyl-10-brommethyl-anthracen.
- 9.10¹-Dibrom-2.10-dimethyl-anthracen, 9-Brom-2-methyl10-brommethyl-anthracen C<sub>16</sub>H<sub>12</sub>Br<sub>2</sub>, s. nebenstehende Formel. B.
  Beim Behandeln von 2-Methyl-10-brommethyl-anthracen mit 1 Mol
  Brom in Schwefelkohlenstoff bei Zimmertemperatur (Barnett, Goodway,
  Soc. 1929, 1760). Gelbe Nadeln. F: 186° (unter Rotfärbung). —
  Liefert mit Piperidin in Chloroform 9-Brom-2-methyl-10-piperidinomethyl-anthracen.
- 19. 9.10 Dimethyl anthracen C<sub>16</sub>H<sub>14</sub>, s. nebenstehende Formel.

  Diese Konstitution kommt dem H 649; E I 349 und in der Literaturperiode des Ergänzungswerks II [1920—1930] als 9.10-Dimethyl-9.10-dihydro-anthracen beschriebenen Kohlenwasserstoff zu (Barnett, Matthews, B. 59, 1432; GIBSON, JOHNSON, Soc. 1931, 754; Blum-Bergmann, B. 65 [1932], CH<sub>3</sub> 110 Anm. 7). B. Neben anderen Produkten beim Einleiten von Vinyl-chlorid in Benzol in Gegenwart von Aluminiumchlorid bei 0—5°, in größerer Menge bei 60° bis 70° oder bei gleichzeitiger Gegenwart von etwas Jod in der Kälte (Davidson, Lowy,

BEILSTEINs Handbuch, 4. Aufl. 2. Erg.-Werk, Bd. V.

Am. Soc. 51, 2979). Neben anderen Produkten beim Leiten von Acetylen in Benzol bei Gegenwart von Aluminiumchlorid (Cook, Chambers, Am. Soc. 43, 336; vgl. BÖESEKEN, ADLER, R. 48, 476) oder bei Gegenwart von konz. Schwefelsäure und wenig Quecksilber(II)-sulfat (Reichert, Nieuwland, Am. Soc. 45, 3090). Durch Umsetzung von 10-Methylanthron-(9) mit Methylmagnesiumjodid in Äther, 1-stdg. Kochen des Reaktionsgemischs und Zersetzen mit verd. Salzsäure (Barnett, Matthews. B. 59, 1437). — Gelbe Nadeln (aus Pyridin, Eisessig oder Benzol), gelbe Plättchen (aus Alkohol). F: 181° (Cook, Ch.; Ba., Ma.), 179—181° (D., L., Am. Soc. 51, 2980). — Beim Behandeln mit 2 Mol Brom in Schwefelkohlenstoff entsteht 9.10-Bis-brommethyl-anthracen (Ba., Ma.). — Pikrat. F: 175—176° (Zers.) (Ba., Ma., B. 59, 1437).

9<sup>1</sup>.10<sup>1</sup>-Dibrom -9.10-dimethyl-anthracen, 9.10-Bis-brommethyl-anthracen C<sub>16</sub>H<sub>12</sub>Br<sub>2</sub>, s. nebenstehende Formel. B. Aus 9.10-Dimethyl-anthracen und 2 Mol Brom in Schwefelkohlenstoff (Barnett, Matthews, B. 59, 1437). — Gelbe Nadeln (aus Benzol). Färbt sich bei 315° dunkel.

CH<sub>2</sub>Br

20. 10 - Methyl - 9 - methylen - dihydroanthracen  $C_{16}H_{14}=C_6H_4< C_1(CH_3)> C_6H_4$ .

CI H CH3

1.5-Dichlor-10-methyl-9-methylen-dihydroanthracen C<sub>18</sub>H<sub>12</sub>Cl<sub>2</sub>, s. nebenstehende Formel. B. Durch Einw. von 1.5-Dichlor-10-methyl-anthron-(9) auf Methylmagnesiumjodid in Äther und Erhitzen des Reaktionsprodukts mit Eisessig und wenig Salzsäure auf dem Wasserbad (BARNETT, COOK, B. 61, 317). - Krystallpulver (aus Aceton und Essigester). F: 143°.

21. 1-Äthyl-phenanthren C<sub>16</sub>H<sub>14</sub>, s. nebenstehende Formel. Der beim Kochen von Aporphinmethin-jodmethylat mit Kalilauge und Erwärmen des gebildeten, nicht näher beschriebenen 1-Vinyl-phenanthrens mit Zinkstaub und alkoh. Salzsäure erhaltene Kohlenwasserstoff vom Schmelzpunkt 108°, der als 1-Äthyl-phenanthren aufgefaßt wird und mit dem H 680; E F 334 beschriebenen x-Äthyl-phenanthren vom Schmelzpunkt 109—110°, "α-Äthyl-phenanthren" identisch ist (Gadamer, Oberlin, Schoeler, Ar. 1925, 90, 98, 99), ist wahrscheinlich ein polymeres 1-Vinyl-phenanthren gewesen (Haworth, Mavin, Sheldrick, Soc. 1934, 454). — Wahres 1-Äthyl-phenanthren schmilzt bei 62,5° (H., M., Sh., Soc. 1934, 460), 63,5—64° (Bachmann, Wilds, Am. Soc. 60 [1938], 625).

22. **9-** $\mathring{A}thyl$ -phenanthren  $C_{16}H_{14}$ , s. nebenstehende Formel (H 680; E I 334). F: 62°;  $D_{1}^{\eta,5}$ : 1,0603;  $n_{\alpha}^{\eta,5}$ : 1,6483;  $n_{D}^{\eta,5}$ : 1,6582;  $n_{\beta}^{\eta,5}$ : 1,6859 (Krollpfeiffer, Frühling, A. **430**, 222).

23. 1.7-Dimethyl-phenanthren, Pimanthren C<sub>16</sub>H<sub>14</sub>, s. nebenstehende Formel. Zur Konstitution vgl. Ruzicka, de Graaff, Hosking, Helv. 14 [1931], 235; Haworth, Letsky, Mavin, Soc. 1932, 1785; vgl. R., Waldmann, Helv. 15 [1932], 907. — B. Beim Erhitzen von Dextropimarsäure (Syst. Nr. 949) oder Dextropimarsäureäthylester mit Schwefel auf etwa 250° (R., Balas, Helv. 6, 688; 7, 881). Man erhitzt das Gemisch der Methylester der höhersiedenden Manilakopalsäuren oder den höhersiedenden Anteil der bei der trocknen Destillation der Manilakopalsäuren erhaltenen Kohlenwasserstoffe mit Schwefel (R., Steiger, Schinz, Helv. 9, 977, 978). — Tafeln oder Blättchen (aus Alkohol). F: 86° (R., B., Helv. 6, 689). Ist im Hochvakuum destillierbar (R., B., Helv. 6, 689). — Liefert mit Chromtrioxyd in Eisessig auf dem Wasserbad Pimanthrenchinon (Syst. Nr. 681) (R., B., Helv. 6, 690). — Pikrat C<sub>16</sub>H<sub>14</sub> + C<sub>6</sub>H<sub>3</sub>O<sub>7</sub>N<sub>3</sub>. F: 131—132° (R., B., Helv. 6, 689).

24. 9-Isopropyliden-fluoren, ω.ω-Dimethyl-dibenzofulven, α.α-Dimethyl-β-β-diphenylen-äthylen C<sub>16</sub>H<sub>14</sub> = C<sub>6</sub>H<sub>4</sub> C:C(CH<sub>3</sub>)<sub>2</sub> (E I 334). B. Zur Bildung durch Erhitzen von 9-[α-Chlor-isopropyl]-fluoren mit Pyridin auf 100° nach Courtor (A. ch. [9] 4, 220) vgl. Schlenk, Bergmann, A. 463, 207; Mattland, Tucker, Soc. 1929, 2561. Durch Erhitzen von 9-[α-Chlor-isopropyl]-fluoren auf 180° (M., T., Soc. 1929, 2563). Beim Kochen einer bei —20° mit Chlorwasserstoff gesättigten ätherischen Lösung von 9-Oxy-9-isopropyl-fluoren mit Pyridin (Sch., B., A. 463, 215). Durch Umsetzung von Fluorenyl-(9)-magnesiumbromid mit Åceton oder von Isopropylmagnesiumbromid mit Fluorenon in Äther und Erhitzen der Reaktionsgemische auf 135° bzw. auf Wasserbadtemperatur (M., T., Soc. 1929, 2563, 2564). — Nadeln (aus Alkohol oder Ligroin). F: 113—117° (M., T., Soc. 1929, 2560), 113° (Sch., B.). — Ist beim Außbewahren im Dunkeln beständig; färbt sich am Licht gelb und erweicht (M., T., Soc. 1929, 2561; vgl. Sch., B., A. 463, 215). Liefert mit Brom in Schwefel-

kohlenstoff 9-Brom-9-[α-brom-isopropyl]-fluoren (M., T.). Beim Kochen mit Jodwasserstoffsäure (D: 1,7) in Eisessig entstehen 9-Isopropyl-fluoren und Difluorenyl-(9.9') (M., T.).

- 25. 1.2-Didthyliden-acenaphthen C<sub>16</sub>H<sub>14</sub>, s. nebenstehende CH<sub>3</sub>-CH:C—C:CH-CH<sub>3</sub> Formel. B. Durch Kochen von 1.2-Dioxy-1.2-diäthyl-acenaphthen mit Eisessig (Maxim, Bl. [4] 43, 777). Orangegelbe Krystalle (aus Alkohol). F: ca. 140°. Sehr leicht löslich in Ather, Benzol, Aceton und Chloroform, schwer in kaltem, ziemlich leicht in heißem Alkohol, unlöslich in Wasser. Liefert bei der Oxydation mit Natriumdichromat und Eisessig Acenaphthenchinon.
- 26. [Hydrindeno-2'.1': 1.2-hydrinden], Diphensuccindan C<sub>1e</sub>H<sub>14</sub>, s. nebenstehende Formel (H 680; E I 334).

  B. Durch Hydrierung von Diphensuccinden in Gegenwart von Palladium-Tierkohle in Alkohol (Brand, Müller, B. 55, 606). Nadeln (aus Alkohol). F: 102°.
- 3.8.3'.3'-Tetrachlor-[hydrindeno-2'.1':1.2-hydrinden],
  9.9.12.12-Tetrachlor-diphensuccindan C<sub>18</sub>H<sub>10</sub>Cl<sub>4</sub>, s. nebenstehende Formel. B. Beim Behandeln von Diphensuccindandion-(9.12) mit Phosphorpentachlorid (Brand, Müller,
  B. 55, 605). Nadeln (aus Benzol). F: 135° (Zers.). Zersetzt sich beim Aufbewahren,
- B. 55, 605). Nadeln (aus Benzol). F: 135° (Zers.). Zersetzt sich beim Aufbewahren, auch unter Luftabschluß, ferner in Alkohol oder Benzol-Lösung unter Bildung von 9.12-Dichlor-diphensuccindadien-(9.11). Gibt beim Kochen mit Wasser 9.12-Dichlor-diphensuccindadien-(9.11) und Diphensuccindandion-(9.12).
- 27. 1.8 o Phenylen 1.2.3.4 tetrahydro naphthalin, 1.2.3.4-Tetrahydro-fluoranthen C<sub>16</sub>H<sub>14</sub>, s. nebenstehende Formel. Diese Konstitution kommt dem von Goldschmidt (M. 1 [1880], 225) beschriebenen Dihydro-idryl C<sub>15</sub>H<sub>12</sub> (H 673) zu (v. Braun, Anton, B. 62, 146; v. B., Manz, B. 63 [1930], 2608, 2612). B. Aus 4-Oxo-CH<sub>2</sub> CH<sub>2</sub> 1.2.3.4-tetrahydro-fluoranthen durch längeres Behandeln mit amalgamiertem Zink und Salzsäure (v. B., A., B. 62, 150). Krystalle (aus Alkohol). F: 74—75° (v. B., M.). Liefert bei der Destillation über auf Rotglut erhitzten Bleioxyd-Bimsstein im Kohlendioxyd-Strom Fluoranthen (v. B., A.).

# 4. Kohlenwasserstoffe $C_{17}H_{16}$ .

- 1. 1.5-Diphenyl-pentadien-(1.3)  $C_{17}H_{16} = C_6H_5 \cdot CH_2 \cdot CH \cdot CH \cdot CH \cdot CH \cdot C_6H_5$ .
- 3.5 Dichlor -1.5 diphenyl pentadien (1.3), Dibenzalacetonketochlorid C<sub>17</sub>H<sub>16</sub>Cl<sub>2</sub> = C<sub>6</sub>H<sub>5</sub>·CHCl·CH:CCl·CH:CH·C<sub>6</sub>H<sub>5</sub> (E I 335). Absorptionsspektrum in Äther, Chloroform, konz. Schwefelsäure und einer Lösung von viel Zinn(IV)-chlorid in Chloroform: Hantsch, B. 55, 962. Liefert beim Kochen mit Quecksilber(II)-chlorid in absol. Ather unter Zusatz von etwas Methanol und Petroläther das Quecksilber(II)-chlorid-doppelsalz des 3-Chlor-3-methoxy-1.5-diphenyl-pentadiens-(1.4) (Straus, A. 458, 300).

E I 335, Z. 4 v. o. streiche "in Äther".

- 3-Chlor-5-brom-1.5-diphenyl-pentadien-(1.3), Dibenzalacetonketochlorobromid  $C_{17}H_{14}ClBr = C_6H_5 \cdot CHBr \cdot CH \cdot CCl \cdot CH \cdot C_6H_5$  (EI 336).

  E I 336, Z. 15 v. u. streiche ,,346".
- 2. Diphenylmethylen cyclobutan, Diphenylcyclobutylidenmethan (?)  $C_{17}H_{16}=(C_6H_5)_2C:C<\frac{CH_2}{CH_2}>CH_2(?)$  (E I 337).

E I 337, Z. 15 v. u. statt " $C_{17}H_{16}Br_2$  (S. 316)" lies " $C_{17}H_{16}Br_2$  (S. 317)".

- 3. 9-Propyl-anthracen C<sub>17</sub>H<sub>16</sub>, s. nebenstehende Formel. B. CH<sub>2</sub>·C<sub>2</sub>H<sub>5</sub> Durch Umsetzung von Anthron mit Propylmagnesiumhalogenid in Äther + Benzol und Behandeln des Reaktionsprodukts mit verd. Schwefelsäure (Sieglitz, Marx, B. 56, 1620). Nadeln (aus Benzol und Alkohol). F: 69° bis 70°. Gibt mit konz. Schwefelsäure eine grüne Färbung. Liefert beim Kochen mit Natriumamalgam in Alkohol 9-Propyl-dihydroanthracen. Pikrat C<sub>17</sub>H<sub>16</sub>+C<sub>6</sub>H<sub>3</sub>O<sub>7</sub>N<sub>3</sub>. F: 113,5—114,5° (Zers.).
- 2-Chlor-9-propyl-anthracen C<sub>17</sub>H<sub>15</sub>Cl, s. nebenstehende Formel. B. Durch Einw. von 2-Chlor-anthron-(9) auf Propylmagnesiumhalogenid in Ather und kurzes Erwärmen des Reaktionsprodukts mit Eisessig und Salzsäure auf dem Wasserbad (BARNETT, WILTSHIRE, Soc. 1928, 1824).—Blaßgelbe Nadeln (aus Alkohol oder Methanol). F: 82°.

596

4. 9-Isopropyl-anthracen С<sub>17</sub>Н<sub>16</sub>, Formel I. B. Beim Behandeln von Anthron mit Isopropylmagnesiumbromid in Äther und Zersetzen des Reaktionsprodukts mit verd. Salzsäure (Вакметт, Маттнеws, B. 59, 1436). — Krystalle (aus Methanol). F: 76° (В., М.). Absorptionsspektrum in alkoh. Lösung: В., Соок, Ellison, Soc. 1928, 890.

10-Brom-9-isopropyl-anthracen  $C_{17}H_{15}Br$ , Formel II. B. Aus 9-Isopropyl-anthracen and 1 Mol Brom in Schwefelkohlenstoff (Barnett, Matthews, B. 59, 1436). — Gelbliche Tafeln (aus Alkohol). F: 97°.

2.3.10-Tribrom-9-isopropyl-anthracen  $C_{17}H_{13}Br_3$ , Formel III. B. Aus 10-Brom-9-isopropyl-anthracen-tetrabromid-(1.2.3.4) und alkoh. Kalilauge (Barnett, Matthews, B. 59, 1436). — Gelbe Nadeln (aus Pyridin oder Eisessig). F: 210°. — Gibt bei der Oxydation mit Chromsäure 2.3-Dibrom-anthrachinon.

## 5. 9-Methyl-10-äthyliden-dihydroanthracen $C_{17}H_{16}$ . Formel IV (X = H).

1.5-Dichlor-9-methyl-10-äthyliden-dihydroanthracen  $C_{17}H_{14}Cl_2$ , Formel IV (X=Cl). B. Durch Einw. von 1.5-Dichlor-10-methyl-anthron-(9) auf Äthylmagnesiumjodid in Äther und Erhitzen des Reaktionsprodukts mit Eisessig und wenig Salzsäure auf dem Wasserbad, neben harzigen Produkten (BARNETT, COOK, B. 61, 317). — F: 153°.

6. 1.3.6-Trimethyl-anthracen  $C_{17}H_{16}$ , Formel V (H 682). B. Beim Leiten von 2.4.2'.4'. Tetramethyl-benzophenon über aktive Kohle bei  $400^\circ$  (I. G. Farbenind., D. R. P. 481819; C. 1930 I, 1053; Frdl. 16, 721). — Blättchen. F: 228— $229^\circ$ . Die Lösung in Schwefelsäure ist gelbbraun.

7. 1.4.6-Trimethyl-anthracen C<sub>17</sub>H<sub>16</sub>, Formel VI (H 682). B. Beim Leiten von 2.5.2′.5′-Tetramethyl-benzophenon über aktive Kohle bei hoher Temperatur (I. G. Farbenind., D. R. P. 481819; C. 1930 I, 1053; Frdl. 16, 721). — F: 227°.

8. 2.3.6-Trimethyl - anthracen C<sub>17</sub>H<sub>16</sub>, s. nebenstehende Formel. V. Findet sich gelegentlich im Urteer aus englischen Stein-CH<sub>3</sub>. CH<sub>3</sub> kohlen (Morgan, Coulson, Soc. 1929, 2551, 2558). — B. Neben anderen Produkten bei mehrtägigem Kochen von 2.4.5.4'-Tetramethyl-benzophenon (M., C., Soc. 1929, 2555). Durch Reduktion von 2.3.6-Trimethyl-anthrachinon mit Zinkstaub und wäßr. Ammoniak in der Wärme (M., C.). — Blaßgelbe, blau fluorescierende Krystalle (aus Eisessig). F: 255° (korr.). Sublimierbar. — Gibt bei der Oxydation mit Chromtrioxyd in siedendem Eisessig 2.3.6-Trimethyl-anthrachinon.

9. 7-Methyl-1-äthyl-phenanthren, Homopimanthren.
"Methylpimanthren"  $C_{17}H_{16}$ , s. nebenstehende Formel. Zur
Bezeichnung Homopimanthren vgl. Ruzicka, de Graaff, Müller, CH3.

Helv. 15 [1932], 1301; zur Konstitution vgl. R., de G., M.; Haworth,
Soc. 1932, 2718. — B. Beim Erhitzen von Methyldextropimarin (S. 430) mit Schwefel auf
180—250° (R., Balas, Helv. 7, 884). — Blättchen (durch Sublimation im Hochvakuum und
Krystallisation aus Alkohol). F: 81° (R., B.). — Liefert bei der Oxydation mit Chromtrioxyd
in Essigsäure auf dem Wasserbad 7-Methyl-1-äthyl-phenanthrenchinon (Syst. Nr. 681) (R.,
B.; H.). — Pikrat  $C_{17}H_{16} + C_{6}H_{3}O_{7}N_{3}$ . F: 115° (R., B.).

# 5. Kohlenwasserstoffe $\mathrm{C_{18}H_{18}}$ .

1. 1.6-Diphenyl-hexadien-(1.4) C<sub>18</sub>H<sub>18</sub> = C<sub>6</sub>H<sub>5</sub>·CH<sub>2</sub>·CH:CH·CH<sub>2</sub>·CH:CH·CH<sub>2</sub>·CH:CH·C<sub>6</sub>H<sub>5</sub>.

3.6 - Dibrom - 1.6 - diphenyl - hexadien - (1.4) (?) C<sub>18</sub>H<sub>16</sub>Br<sub>2</sub> = C<sub>6</sub>H<sub>5</sub>·CHBr·CH:CH·CH·CH·CH·CH·CH·Ch·C<sub>6</sub>H<sub>5</sub>(?). Zur Konstitution vgl. Kuhn, Winterstein, Helv. 11, 129. — B. Durch Einw. von 1 Mol Brom auf 1.6-Diphenyl-hexatrien-(1.3.5) in Schwefelkohlenstoff bei —20° (Farmer, Mitarb., Soc. 1927, 2956) oder in Tetrachlorkohlenstoff bei 20° (Kuhn, Winterstein, Helv. 11, 140). Beim Behandeln von Hydrocinnamoin (Syst. Nr. 565) mit Phosphortribromid in Äther in der Kälte (Fa., Mitarb., Soc. 1927, 2955; K., W., Helv. 11,

105). Beim Behandeln von x.x-Dioxy-1.6-diphenyl-x.x-hexadien (Syst. Nr. 565) mit Phosphortribromid (K., W., Helv. 11, 129, 141). — Nadeln (aus Tetrachlorkohlenstoff). F: 117° (Zers.) bei langsamem Erhitzen, 124—125° (Zers.) im auf 110° vorgewärmten Bad (K., W., Helv. 11, 106; Fa., Mitarb.). Schwer löslich in Äther, Benzol, Aceton, Chloroform und Alkohol, unlöslich in Petroläther (K., W.).

Ist in reinem Zustand beim Aufbewahren ziemlich beständig, zersetzt sich im feuchten Zustand unter Gelbfärbung und Auftreten von Benzaldehyd-Geruch (Kuhn, Winterstein, Helv. 11, 106). Zersetzt sich bei längerem Erwärmen in verschiedenen Lösungsmitteln, besonders leicht in Pyridin, Eisessig, Alkohol und Chloroform; bei schwachem Erwärmen mit Wasser entsteht ein halogenhaltiges harziges Produkt (K., W.). Verwandelt sich in 1.6-Diphenyl-hexatrien-(1.3.5) beim Erwärmen mit Chloroform (K., W., Helv. 11, 107), beim Schütteln mit Kaliumjodid in Aceton (K., W., Helv. 11, 109) oder mit Zinkstaub in Chloroform oder Aceton (Farmer, Mitarb., Soc. 1927, 2955; K., W.) oder beim Behandeln mit Diäthylamin oder Pyridin in Äther (Fa., Mitarb., Soc. 1927, 2956). 1.6-Diphenyl-hexatrien-(1.3.5) entstand ferner bei Versuchen zur Hydrierung in Gegenwart von Platinkohle, in geringer Menge auch bei der Einw. von Silbersalzen in Methanol, von Phenylhydrazin, Methylmagnesiumjodid und Zinkdimethyl (K., W., Helv. 11, 108). Beim Behandeln mit Bleiacetat in wäßr. Aceton entstehen geringe Mengen x.x-Dioxy-1.6-diphenyl-x.x-hexadien (Syst. Nr. 565) und ein Gemisch öliger Glykole, das mit Phosphortibromid 3.6-Dibrom-1.6-diphenyl-hexadien-(1.4)(?) zurückbildet und mit Diphosphor-tetrajodid 1.6-Diphenyl-hexatrien-(1.3.5) liefert; reagiert analog mit Silberoxyd oder Silbercarbonat, die als Nebenprodukt außerdem geringe Mengen 1.6-Diphenyl-hexatrien-(1.3.5) ergeben (K., W., Helv. 11, 129, 140). Bei der Ozonspaltung in Tetrachlorkohlenstoff entstehen 1 Mol Benzoesäure, ein bromhaltiges Produkt vom Schmelzpunkt 270° und bromhaltige Harze (K., W., Helv. 11, 128, 141).

- 2. **1.6-Diphenyl-hexadien-(1.5)**, **1.2-Distyryl-äthan**  $C_{18}H_{18} = [C_6H_5 \cdot CH : CH \cdot CH_2 -]_2$  (E I 338). Verbrennungswärme bei konstantem Volumen: 2342,3 kcal/Mol (Roth in Landolt-Börnst. H II, 1590). Verbindung mit 1.3.5-Trinitro-benzol  $C_{18}H_{18} + 2C_6H_3O_6N_3$ . Hellbraungelbe Nadeln (aus Chloroform). F: 145—145,5° (Kuhn, Winterstein, Helv. 11, 148). Pikrat  $C_{18}H_{18} + 2C_6H_3O_7N_3$ . F: 112° (K., W.).
- 3. 1.6-Diphenyl-hexadien-(2.4). 1.4-Dibenzyl-butadien-(1.3), α.δ-Dibenzyl-erythren C<sub>18</sub>H<sub>18</sub> = [C<sub>6</sub>H<sub>5</sub>·CH<sub>2</sub>·CH:CH-]<sub>2</sub>. B. Aus 1.6-Diphenyl-hexatrien-(1.3.5) durch Reduktion mit Aluminiumamalgam in feuchtem Ather oder mit Natriumamalgam in Benzol + absol. Alkohol (Kuhn, Winterstein, Helv. 11, 131) oder durch Schütteln mit Kalium-Natriumlegierung in über Phosphorpentoxyd getrocknetem Ather in Stickstoff-atmosphäre und Zersetzung der Alkaliadditionsverbindung mit feuchtem Stickstoff (K., W., Helv. 12, 497). Krystalle (aus Methanol + Aceton), Platten (aus Äther), Prismen (aus mäßig konzentrierter Aceton-Lösung), Nadeln (aus stark konzentrierter Aceton-Lösung). F: 79° (K., W., Helv. 11, 132). Ist unzersetzt destillierbar (K., W., Helv. 11, 132). Verbrennungswärme bei konstantem Volumen: 2338,4 kcal/Mol (Roth, Müller in Landolt-Börnst. E I 868). Sehr leicht löslich in Äther und Benzol, leicht in Petroläther und Aceton, sehwer in Methanol und Alkohol (K., W., Helv. 11, 132). Liefert beim Ozonisieren in Eisessig und nachfolgenden Kochen mit Wasserstoffperoxyd Phenylessigsäure (K., W., Helv. 11, 132). Bei der Hydrierung bei Gegenwart von Palladiumkohle in Eisessig bei 16° entsteht 1.6-Diphenyl-hexan (K., W., Helv. 11, 132). Liefert bei der Umsetzung mit α-Phenyl-isopropylkalium in Ather und Behandlung des Reaktionsprodukts mit Kohlendioxyd 1.6-Diphenyl-hexadien-(2.4)-dicarbonsäure-(1.6) (Ziegler, Mitarb., A. 473, 29).
- 4. **1.4-Diphenyl-hexadien-(1.5)** C<sub>18</sub>H<sub>18</sub> = C<sub>8</sub>H<sub>5</sub>·CH·CH·CH<sub>2</sub>·CH(C<sub>6</sub>H<sub>5</sub>)·CH·CH<sub>2</sub>. Diese Konstitution kommt der von Rupe, Bürgin (B. **43** [1940], 175) als 1.4-Diphenyl-hexen-(1) (E I 5, 317) beschriebenen Kohlenwasserstoff zu (Prévost, Bl. [4] **49** [1931], 1373; GILMAN, HARRIS, Am. Soc. **54** [1932], 2072; vgl. a. G., H., Am. Soc. **49**, 1825).
- 5. 2.5 Diphenyl-hexadien (2.4).  $\alpha.\delta$  Dimethyl-  $\alpha.\delta$  diphenyl-erythren  $C_{18}H_{18} = C_6H_5 \cdot C(CH_3) : CH \cdot CH : C(CH_3) \cdot C_6H_5$  (H 682). B. Zur Bildung beim Behandeln von  $\beta$ -Brom- $\alpha$ -methyl-styrol mit Magnesium in Äther nach Tiffeneau (C. r. 135, 1348; A. ch. [8] 10, 171) vgl. Hurd, Webb, Am. Soc. 49, 557. F: 134—136° (H., W.).
- **3.4 Dibrom 2.5 diphenyl hexadien (2.4)**  $C_{18}H_{16}Br_2 = C_6H_5 \cdot C(CH_3) \cdot CBr \cdot CBr \cdot C(CH_3)C_6H_5$ . Eine Verbindung, der vielleicht diese Konstitution zukommt, s. beim höherschmelzenden 1.4-Dioxy-1.4-dimethyl-1.4-diphenyl-butin-(2), Syst. Nr. 565.
- 6. **4.4'-Dipropenyl-diphenyl**  $C_{18}H_{18} = CH_3 \cdot CH : CH \cdot C_6H_4 \cdot C_6H_4 \cdot CH : CH \cdot CH_3$ . B. Ein Kohlenwasserstoff, dem wahrscheinlich diese Konstitution zukommt, entsteht neben anderen Produkten bei der Einw. von Magnesium auf 4-Brom-1-propenyl-benzol in Äther und Zersetzung des Reaktionsprodukts mit Wasser (Quelet, C. r. 186, 766; Bl. [4] 45, 257).

H CH3 X

Krystalle (aus Alkohol + Benzol). Sublimiert von 165° an. F: 186° (im geschlossenen Röhrchen). Sehr schwer löslich in Alkohol, Schwefelkohlenstoff, Chloroform und Ather, leicht in Benzol mit blauer Fluorescenz. - Addiert Brom unvollständig.

7. **9-Butyl-anthracen**  $C_{18}H_{18}$ , Formel I. B. Durch Umsetzung von Anthron mit Butylmagnesiumhalogenid in Ather + Benzol СНз [CH2]3·CH3 II. und Behandeln des Reaktionsprodukts mit verd. Schwefelsäure (Sieglitz, Marx, B. 56, CH(CH<sub>3</sub>)<sub>2</sub> 1621). — Nadeln (aus Alkohol). F: 49-50°.

Gibt mit konz. Schwefelsäure eine grüne Färbung. — Liefert beim Kochen mit Natriumamalgam in Alkohol 9-Butyl-dihydroanthracen. — Pikrat  $2C_{18}H_{18}+C_6H_3O_7N_3$ . F: 82°.

8. 1-Methyl-4-isopropyl-anthracen C<sub>18</sub>H<sub>18</sub>, Formel II. B. Bei der Reduktion von 1-Methyl-4-isopropyl-anthrachinon mit Zinkstaub und wäßr. Ammoniak auf dem Wasserbad (Phillips, Am. Soc. 46, 2535). — Löslich in Alkohol. — Das Pikrat schmilzt bei 131º (korr.).

9. 9 - Methyl - 10 - isopropyliden - dihydroanthracen  $C_{18}H_{18}$ , s. nebenstehende Formel (X = H).

1.5 - Dichlor - 9 - methyl-10-isopropyliden-dihydroanthracen  $C_{18}H_{16}Cl_2$ , s. nebenstehende Formel ( $\tilde{X} = \tilde{C}l$ ). B. Neben viel harzigen C(CH<sub>3</sub>)<sub>2</sub> Produkten durch Einw. von 1.5-Dichlor-10-methyl-anthron-(9) auf Isopropylmagnesiumhalogenid in Ather und Erhitzen des Reaktionsprodukts mit Eisessig und wenig Salzsäure auf dem Wasserbad (BARNETT, COOK, B. 61, 317). — Krystalle (aus Alkohol und Essigester). F: 134°.

10. 2.6.9.10-Tetramethyl-anthracen  $C_{18}H_{18}$ , Formel III. Diese Konstitution kommt dem H 5, 653 als 2.6.9.10-Tetramethyl-9.10-dihydro-anthracen beschriebenen Kohlenwasserstoff zu (Barnett, Matthews, B. 59, 1433).

11. 1-Methyl-7-isopropyl-phenanthren, Reten  $C_{18}H_{18}$ , Formel IV (H 683; E I 338). Literatur: Adelson, Bogert, Chem. Reviews 24 [1939], 135—176. — B. Beim Erhitzen von Fichtelit (S. 118) mit Schwefel auf 180—250° (Ruzicka, Balas, Schinz, Helv. 6, 693), von Josen (S. 359) mit Selen auf 360—380° (Soltys, M. 53/54, 182), von Pinabietin (S. 429) (VIRTANEN, A. 424, 212; B. 53, 1884), von Abietinol (Syst. Nr. 534) (Ru., MEYER, Helv. 5, 589) und von

Lävopimarsäure (Syst. Nr. 949) mit Schwefel auf 180—250° (Ru., III. BA., VILIM, Helv. 7, 470). Zur Erhitzen von Bildung durch

·CH<sub>3</sub> IV. (CH<sub>3</sub>)<sub>2</sub>CH·<

Abietinsäure (Syst. Nr. 949) mit
Schwefel auf 180—250° (Vesterberg, B. 36 [1903], 4200) vgl. Ru., Mey., Helv. 5, 586; bei der Dehydrierung von Abietinsäure mit Selen bei 280—340° wird Reten in bedeutend besserer Ausbeute erhalten (DIELS, KARSTENS, B. 60, 2324). Beim Erhitzen von Abietinsäuremethylester (Ruzicka, Meyer, *Helv.* 5, 587) oder von Pinabietinsäure 1) (Virtanen, A. 424, 199) mit Schwefel auf 180-250°. Bei der trocknen Destillation von japanischem Kolophonium mit aktiver Kohle (Tsukamoto, J. pharm. Soc. Japan 48, 171; C. 1929 I, 1101) und von amerikanischem Kolophonium über Nickel-Bimsstein (Vesterberg, A. 440, 307). — Darstellung durch Dehydrierung von Kolophonium oder Harzöl mit Hilfe von Schwefel bei 200° bis 250°: Cheung, Bl. Inst. Pin 1929, 109, 185, 189; C. 1929 II, 1528.

Härte der Krystalle: Reis, Zimmermann, Ph. Ch. 102, 328. Über den Einfluß der Temperatur auf die Krystallisation aus der unterkühlten Schmelze vgl. Schaum, Z. anorg. Ch. 120, 255. F: 98,5° (Cheung, Bl. Inst. Pin 1929, 108). Kp<sub>11</sub>: 216° (Vesterberg, A. 440, 307). Röntgen-Luminescenzspektrum: De Beaujeu, J. Phys. Rad. [6] 4, 264; C. 1924 I, 134. Tesla-Luminescenzspektrum: McVicker, Marsh, Stewart, Soc. 127, 1002. Thermische Analyse der binären Systeme mit Anthracen (Eutektikum bei 88,5° und 91,5 Gew.-% Reten) und mit Phenanthen (Eutektikum bei 56,5° und ca. 53,3 Gew.-% Reten): Pascal, Bl. [4] 29, 653; mit 2.4.6-Trinitro-m-kresol: Jeffremow, Tichomfrowa, K. 59, 378, 386; C. 1928 I, 188; mit Tetryl: Je., Ti., Izv. Inst. fiz.-chim. Anal. 4, 109, 116; C. 1929 I, 745; mit Carbazol: Pa., Bl. [4] 29, 654. Dichten und Brechungsindices von Lösungen in Chinolin bei 17,5° und 25,6°: v. Auwers, Kraul, A. 443, 190.

<sup>1)</sup> Zur Nichteinheitlichkeit der Pinabietinsäure vgl. HASSELSTROM, MCPHERSON, HOPKINS, Paper Trade J. 110, Nr. 4, S. 41; C. 1940 I, 1553.

Naphthalsäureanhydrid.

und ein rotviolettes, bromfreies Produkt.

Beim Erwärmen von Reten mit Permanganat-Lösung in Eisessig auf dem Wasserbad entsteht Retenchinon (Soltys, M. 53/54, 184). Gibt bei längerem Erhitzen unter 70-75 Atm. Wasserstoffanfangsdruck auf 450-470° in Gegenwart von Eisenoxyd und Tonerde gesättigte Kohlenwasserstoffe, Benzol-Kohlenwasserstoffe, x-Methyl-phenanthren (S. 588), eine bei 210—310° siedende Fraktion, die bei längerem Erhitzen mit Selen auf 300—320° Naphthalin,  $\alpha$ - und  $\beta$ -Methyl-naphthalin liefert, und andere Produkte (Orlow, B. 62, 716;  $\mathbb{K}$ . 60, 1454). Die Reduktion mit Natrium in siedendem trocknem Amylalkohol liefert je nach den Bedingungen 9.10(?)-Dihydro-reten oder x-Tetrahydroreten; die Reduktion durch Erhitzen mit Jodwasserstoffsäure und rotem Phosphor im mit Kohlendioxyd gefüllten Rohr führt je nach den Bedingungen zu x-Hexahydroreten, x-Oktahydroreten, x-Dekahydroreten und x-Dodekahydroreten (Virtanen, B. 53, 1885). Verhalten bei der Jodzahlbestimmung nach Hübl und Wijs: MacLean, Thomas, Biochem. J. 15, 321. Beim Erwärmen mit konz. Salpetersäure wird ein gelber Niederschlag erhalten, der vielleicht ein Dinitroreten darstellt (Arnot, D. R. P. 315623; C. 1920 II, 188; Frdl. 13, 221; vgl. Adelson, Bogert, Chem. Reviews 24 [1939], 158). Überführung in Schwefelfarbstoffe: Skogens Kol-Aktiebolag D. R. P. 411651; C. 1925 I, 2667; Frdl. 15, 799. Bildet eine additionelle Verbindung mit 2.7-Dinitro-anthrachinon (s. dort; Syst. Nr. 679) (Börnstein, Schliewinsky, Szczesny-Heyl, B. 59, 2815). — Mikrochemischer Nachweis: Behrens-Kley, Organische mikrochemische Analyse [Leipzig 1922], S. 17.

Pikrat  $C_{18}H_{18}+C_{6}H_{3}O_{7}N_{3}$ . F: 124—125° (Virtanen, A. 424, 200), 127° (Cheung, Bl. Inst. Pin 1929, 187).

12. 1.2-Dipropyliden-acenaphthen C<sub>18</sub>H<sub>18</sub>, s. neben. CH<sub>3</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>3</sub> stehende Formel. B. Beim Erhitzen von 1.2-Dioxy-1.2-dipropyl-acenaphthen mit Eisessig (Maxim, Bl. [4] 45, 1145).

— Orangefarbene Krystalle (aus Alkohol). F: 101°. Leicht löslich in Benzol, Äther und Chloroform, ziemlich leicht in Aceton, schwer in Alkohol, unlöslich in Wasser. - Gibt bei der Oxydation mit Chromsäuregemisch Acenaphthenchinon und

13. Dihydrindyl-(1.2'), Dihydrodiinden  $C_{18}H_{18} = C_6H_4 < \begin{array}{c} CH_2 \\ CH_2 \end{array} > CH \\ \hline H_2C < \begin{array}{c} CH_2 \\ CH_2 \end{array} > C_6H_4$ . Zur Konstitution vgl. die bei Diinden (S. 606) aufgeführte Literatur. — B. Durch Einw. von Natrium auf eine siedende alkoholische Lösung von Diinden (Stobbe, Färber, B. 57, 1848). — Intensiv blau fluorescierende Flüssigkeit. Erstarrt nicht bis —25°. Kp<sub>20</sub>: 225—226°; Kp<sub>50</sub>: 239—241°. — Wird durch kalte konzentrierte Schwefelsäure hellrot gefärbt ohne sich zu lösen; beim Erwärmen tritt Dunkelfärbung und Geruch nach schwefliger Säure auf. Liefert bei der Oxydation mit Chromtrioxyd in Eisessig bei 50-55° Benzoesäure und andere, zum Teil harzige Produkte.

1.2-Dibrom-2- $\alpha$ -hydrindyl-hydrinden, Diindendibromid  $C_{18}H_{16}Br_2 =$ C<sub>6</sub>H<sub>4</sub> CH<sub>Br</sub> CBr H<sub>2</sub>CC<sub>CH<sub>2</sub></sub> C<sub>6</sub>H<sub>4</sub>. B, Durch Einw. von Brom auf Diinden in Chloroform unter Kühlung (Stobbe, Färber, B. 57, 1847). — Krystalle (aus Äther). F: 120—121°. Löslich in den meisten Lösungsmitteln. — Liefert beim Erhitzen im Vakuum Diinden und hochsiedende Produkte. Gibt beim Behandeln mit alkoh. Kalilauge Kaliumbromid

1.2.3.4.9.10 - Hexahydro - naphthacen, 2.3-Tetramethylen-9.10-dihydro-anthracen, "Dihydrotetralanthracen"  $C_{18}H_{18}$ , s. nebenstehende Formel. B. Durch Reduktion von 2.3-Tetramethylenanthracen mit Natrium und Isoamylalkohol (v. Braun, Bayer, Fieser, A. 459, 301). In geringer Menge neben anderen Produkten bei der Hydrierung von 2.3-Tetramethylen-anthrachinon mit 8 Atomen Wasserstoff bei Gegenwart von Nickel unter Druck (v. B., B., F., A. 459, 303). — Krystalle (aus Alkohol). F: 128°. — Die Oxydation mit Chromtrioxyd ergibt 2.3-Tetramethylen-anthrachinon.

15. 3.3'- Dimethyl-/hydrindeno-2'.1': 1.2-hydrinden], 9.12-Dimethyl-diphensuccindan C<sub>18</sub>H<sub>18</sub>, s. nebenstehende Formel.

B. Durch Hydrieren von 9.12-Dimethyl-succindadien (9.11) bei Gegenwart von Palladium-Tierkohle in heißem verdünntem Alkohol (Brand, Schläger, B. 56, 2543). — Nadeln (aus verd. Alkohol). F: 94°.

# 6. Kohlenwasserstoffe $C_{19}H_{20}$ .

- 1. 4.4-Dimethyl-1.1-diphenyl-pentin-(2), tert.-Butyl-benzhydryl-acetylen  $C_{19}H_{20}=(C_{9}H_{5})_{2}CH\cdot C:C\cdot C(CH_{9})_{3}$ .
- 1-Brom-4.4-dimethyl-1.1-diphenyl-pentin-(2), [tert.-Butyl-acetylenyl]-diphenyl-brommethan  $C_{19}H_{19}Br = (C_6H_5)_2CBr\cdot C: C\cdot C(CH_3)_3$ . B. Aus [tert.-Butyl-acetylenyl]-diphenyl-carbinol und Phosphortribromid in Petroläther bei 0° (Salzberg, Marvel, Am. Soc. 50, 2842). Krystalle (aus Alkohol + Äther). F: 58,5—60,5° (korr.) (Sa., Ma.). Liefert bei der Einw. von fein verteiltem Silber in Äther 3.4-Di-tert.-butyl-1.1.6.6-tetraphenyl-hexatetraen-(1.2.4.5) (S. 711) (Sa., Ma.; Farley, Ma., Am. Soc. 58 [1936], 61; vgl. a. Stampfli, Ma., Am. Soc. 53 [1931], 4057; Althauser, Ma., Am. Soc. 54 [1932], 1175).
- 2. **9-Isoamyl-anthracen** C<sub>19</sub>H<sub>20</sub>, s. nebenstehende Formel (H 685). B. Zur Bildung aus 9-Oxy-9-isoamyl-9.10-dihydro-anthracen nach Liebermann (A. 212, 104) vgl. Krollpfeiffer, Branscheid, B. 56, 1618. Grünliche, blau fluoresciende Nadeln (aus Petroläther). F: 61° (K., B., B. 56, 1619), 58° (v. Auwers, B. 53, 943). D<sub>1</sub><sup>n0.5</sup>: 0,9982 (v. Au.); D<sub>2</sub><sup>n0.4</sup>: 0,9812 (K., A. 430, 226). n<sub>α</sub><sup>n0.5</sup>: 1,6235; n<sub>0</sub><sup>n0.5</sup>: 1,6348; n<sub>0</sub><sup>n0.5</sup>: 1,6701 (v. Au.); n<sub>α</sub><sup>n0.4</sup>: 1,6142; n<sub>0</sub><sup>n0.4</sup>: 1,6253; n<sub>0</sub><sup>n0.4</sup>: 1,6602 (K.). Absorptionsspektrum in alkoh. Lösung: Barnett, Cook, Ellison, Soc. 1928, 890.
- **2.3.10-Tribrom-9-isoamyl-anthracen**  $C_{10}H_{17}Br_3$ , Formel I. *B.* Durch Kochen von 10-Brom-9-isoamyl-anthracen-tetrabromid-(1.2.3.4) mit alkoh. Kalilauge (BARNETT, MATTHEWS, *B.* **59**, 1436). Nadeln (aus Eisessig oder Pyridin). F: 121°.
- 3. 1-Āthyl-7-isopropyl-phenanthren, Homoreten, "Methylreten" C<sub>19</sub>H<sub>20</sub>. Formel II. Zur Bezeichnung Homoreten vgl. Ruzicka, de Graaff, Müller, Helv. 15 [1932], 1301; zur Konstitution vgl. R., de G., M.; Haworth, Soc. 1932, 2718. B. Beim Erhitzen von Homoabietin (S. 430) mit Schwefel auf 190—270° (R., Meyer, Helv. 5, 590). Blättchen (aus Alkohol). F: 79° (R., Mey.). Liefert mit Chromtrioxyd in Eisessig erst bei ca. 50—60°, dann auf dem Wasserbad 1-Äthyl-7-isopropyl-phenanthrenchinon (Syst. Nr. 681) (R., Mey.). Gibt mit 1 Mol Pikrin-

1-Athyl-7-isopropyt-phenanthreneninon (Syst. Nr. 681) (R., MEY.). Gibt mit 1 Moi Fikrinsäure in heißer konzentrierter alkoholischer Lösung ein dunkelorangefarbenes Pikrat (?), das sich beim Umkrystallisieren zersetzt; mit überschüssiger Pikrinsäure entstehen 2—3 Mol Pikrinsäure enthaltende Fällungen, die beim Erhitzen heftig explodieren (R., MEY., Helv. 5, 592).

# 7. Kohlenwasserstoffe $\mathrm{C}_{20}H_{22}$ .

- 1. 1.1-Diphenyl-octin-(2), Pentyl-benzhydryl-acetylen  $C_{20}H_{22}=(C_6H_5)_2CH\cdot C:C\cdot [CH_2]_4\cdot CH_3$ .
- 1-Chlor-1.1-diphenyl-octin-(2)  $C_{20}H_{21}Cl = (C_0H_5)_2CCl \cdot C \cdot C \cdot [CH_2]_4 \cdot CH_3$ . B. Aus α-Heptinyl-diphenyl-carbinol bei der Einw. von Phosphortrichlorid in Petroläther oder von Phosphorpentachlorid in Ligroin bei 0—10° (WILLEMART, A. ch. [10] 12, 364). Reinheit fraglich. Gelbes Öl. Kp<sub>2,5</sub>: 178°. Beim 5-stdg. Kochen mit alkoh. Kalilauge wird nur etwa die Hälfte des Chlors abgespalten.
- 2.  $\alpha$ -Cyclohexyl- $\beta$ . $\beta$ -diphenyl- $\ddot{\alpha}$ thylen,  $[\beta.\beta$ -Diphenyl-vinyl]-cyclohexan  $C_{20}H_{22}=(C_6H_5)_2C:CH\cdot C_6H_{11}$ . B. Beim Erwärmen von Cyclohexylessigsäure-methylester mit Phenylmagnesiumbromid in Äther und Erhitzen des Reaktionsprodukts auf 200—220° (SKRAUP, SCHWAMBERGER, A. 462, 157). Gelbliches, viscoses Öl. Kp<sub>15</sub>: 210—215°. Liefert bei der Oxydation mit Chromsäure in Eisessig Benzophenon und Cyclohexancarbonsäure. Addiert Brom in Chloroform.
- 3. [4-Methyl-cyclohexyliden]-diphenylmethan, 1-Methyl-4-diphenylmethylen-cyclohexan  $C_{20}H_{22}=(C_8H_5)_2C:C<\frac{CH_2\cdot CH_2}{CH_2\cdot CH_2}>CH\cdot CH_3$ . B. Beim Erwärmen von 4-Methyl-cyclohexan-carbonsäure-(1)-methylester mit Phenylmagnesiumbromid in Äther und Erhitzen des Reaktionsprodukts (Skraup, Schwamberger, A. 462, 157). Krystalle (aus Alkohol). F: 65°. Kp<sub>12</sub>: 200°. Ziemlich flüchtig mit Wasserdampf. Liefert bei der Oxydation mit Chromsäure in Eisessig 1-Methyl-cyclohexanon-(4). Entfärbt nicht Brom in Chloroform.

601

4. 1.2-Diisobutyliden-acenaphthen C<sub>20</sub>H<sub>22</sub>, Formel I. B. Beim Erhitzen von 1.2-Dioxy-1.2-diisobutyl-acenaphthen in Eisessig (Maxim. Bl. [4] 45, 1146). — Orangerote Flüssigkeit. Kp<sub>15</sub>: ca. 215°. Leicht löslich in Äther, Benzol und Aceton, schwer in Alkohol. --Gibt bei der Oxydation mit Chromsäuregemisch Acenaphthenchinon und Naphthalsäureanhydrid.

I. 
$$\begin{array}{c} (CH_3)_2CH \cdot CH : C - C : CH \cdot CH(CH_3)_2 \\ \vdots \\ CH_2 - CH_2 - H_2C - CH_2 \end{array}$$

- 5. 1.2.3.4.1'.2'.3'.4'- Oktahydro-dinaphthyl-(2.2'), Ditetralyl-(2.2')  $C_{20}H_{22}$  Formel II. B. Bei der Reduktion von 3.4.3'.4'- Tetrahydro-dinaphthyl-(2.2') mit Natrium und Alkohol (v. Braun, Kirschbaum, B. 54, 615). Blättehen (aus Alkohol). F: 113°. Liefert beim Destillieren über Bleioxyd bei Rotglut  $\beta.\beta$ -Dinaphthyl. Beim Erhitzen mit Schwefel entsteht Bis-naphthylen (S. 416) (v. B., K., B. 54, 609).
- 6. 1.2.3.4.5'.6'.7'.8'-Oktahydro-dinaph-thyl-(2.2'), Ditetralyl-(2.6') C<sub>20</sub>H<sub>22</sub>, s. nebenstehende Formel. B. In geringer Menge neben anderen Produkten bei der Behandlung von Tetralin mit 1—2% Aluminiumchlorid bei 50—70° (SCHROETER, B. 57, 1990, 2002). Krystalle (aus Alkohol). F: 53—54°. — Liefert bei der Oxydation mit Permanganat wahrscheinlich Phthalsäure-essigsäure-(4) (Syst. Nr. 1008). Beim Erhitzen mit Schwefel auf 200—250° entsteht  $\beta.\beta$ -Dinaphthyl.

# 8. Kohlenwasserstoffe $C_{21}H_{24}$ .

1. 1-Benzyl-1.2.3.4.5.6.7.8-oktahydro-anthracen,
1-Benzyl-okthracen C<sub>21</sub>H<sub>24</sub>, s. nebenstehende Formel. B.

Durch Hydrierung von 1-Benzyl-3.4.5.6.7.8-hexahydro-anthracen in Gegenwart von Nickel in Tetralin unter Druck bei 150° (Schroeter, B. 57, 2020). — Viscoses Öl. Kp<sub>14</sub>: 244—246°. Erstarrt im Kältegemisch glasig. — Liefert mit 1 Mol Brom in Eisessig ein Brom-Substitutionsprodukt (Blättchen; F: 106°).

1.2 - Dibrom - 2 - benzyl - 1.2.3.4.5.6.7.8 - okta - hydro-anthracen  $C_{21}H_{22}Br_2$ , s. nebenstehende Formel. B. Aus 2-Benzyl-3.4.5.6.7.8-hexahydro-anthracen und Brom in Eisessig (Schroeter, B. 57, 2021). — F: 1199 bis 120° (Zers.). — Spaltet beim Kochen mit Eisessig langsam Bromwasserstoff ab.

# 9. Kohlenwasserstoffe $C_{22}H_{26}$ .

1. Derivat eines 1.10-Diphenyl-decadiens-(x.x)  $C_{22}H_{26} = C_6H_5 \cdot C_{10}H_{16} \cdot C_6H_5$ . x-Hexabrom-1.10-diphenyl-decadien-(x.x), 1.10-Diphenyl-decapentaen-hexabromid C<sub>22</sub>H<sub>30</sub>Br<sub>6</sub> = C<sub>6</sub>H<sub>5</sub>.C<sub>10</sub>H<sub>10</sub>Br<sub>6</sub>.C<sub>6</sub>H<sub>5</sub>. B. Aus 1.10-Diphenyl-decapentaen-(1.3.5.7.9) und Brom in Chloroform (Kuhn, Winterstein, Helv. 11, 129, 143). — Krystalle (aus Essigester + Alkohol). F: 175° (Zers.). Leicht löslich in Chloroform, Essigester und Benzol, schwer in Äther und Alkohol. — Liefert beim Behandeln mit Zinkstaub 1.10-Diphenyl-decapentaen-(1.3.5.7.9) zurück (K., W., Helv. 11, 130).

- 2. 2.2'- Diphenyl dicyclopentyl (1.1')  $C_{22}H_{26} =$ H<sub>2</sub>C·CH(C<sub>6</sub>H<sub>5</sub>)·CH·CH·CH<sub>2</sub> CH<sub>2</sub> CH<sub>2</sub> CH<sub>2</sub>

  H<sub>2</sub>C CH<sub>2</sub> CH<sub>2</sub> CH<sub>2</sub> CH<sub>2</sub>

  H<sub>3</sub>C CH<sub>2</sub> CH<sub>2</sub> CH<sub>2</sub>

  CH<sub>2</sub> CH<sub>2</sub> CH<sub>2</sub>

  CH<sub>3</sub> CH<sub>2</sub> CH<sub>2</sub>

  CH<sub>4</sub> CH<sub>2</sub> CH<sub>2</sub>

  CH<sub>2</sub> CH<sub>3</sub> B. Ein Kohlenwasserstoff, dem wahrscheinlich diese Konstitution zukommt, entsteht in geringer Menge beim Behandeln von 2-Bromstein Schlendinger Schlendinge 1-phenyl-cyclopentan mit Magnesium in Äther und nachfolgenden Einleiten von Kohlendioxyd (v. Вкаик, Кёнк, В. 60, 2560). — Schwach gelbes, dickes Öl. Bei 13 mm Druck destillierbar.
- 3. 1.1-Di-[tetralyl-(x)]- $\ddot{a}$ than. x.x'- $\ddot{A}$ thyliden-bis-[1.2.3.4-tetrahydro-naphthalin]  $C_{22}H_{26}=(C_{10}H_{11})_2CH\cdot CH_3$ . B. Beim Einleiten von Acetylen in eine Mischung

[Syst. Nr. 485 a

von Tetralin mit konz. Schwefelsäure und Quecksilber(II)-oxyd unterhalb 10°, neben anderen Produkten (Reilly, Nieuwland, Am. Soc. 50, 2565). — Viscose gelbbraune Flüssigkeit. Kp. 384°; Kp<sub>16</sub>: 261—263°. Nicht flüchtig mit Wasserdampf.

4. 9.12-Di-propyl-diphensuccindan C<sub>22</sub>H<sub>26</sub>, s. nebenstehende Formel. B. Bei der Hydrierung von 9.12-Dipropyl-diphensuccindadien-(9.11) oder 9.12-Dipropyliden-diphensuccindan bei Gegenwart von Palladium-Tierkohle in verd. Alkohol (Brand, Sasaki, B. 58, 2548). — Nadeln (aus Alkohol). F: 98—99°.

5. 9.12 - Diisopropyl - diphensuccindan C<sub>22</sub>H<sub>28</sub>, s. nebenstehende Formel. B. Bei der Hydrierung von 9.12-Diisopropyl-diphensuccindadien-(9.11) bei Gegenwart von Palladium-Tierkohle in verd. Alkohol (Brand, Sasaki, B. 58, 2550). — Nadeln. F: 80—81°.

10. 4.4'-Dicyclohexyl-diphenyl, 1.2.3.4.5.6.1'''.2'''.3'''.4'''.5'''.6'''-Dodekahydroquaterphenyl  $C_{24}H_{30}$ , s. nebenstehende Formel. Zur Konstitution vgl. Basford, Soc. 1936, 1593. —  $H_{2C} < CH_{2} \cdot CH_{2} > CH \cdot CH_{2} \cdot CH_{2} \cdot CH_{2} > CH_{2} \cdot CH_{2} \cdot CH_{2} > CH_{2} \cdot CH_{2$ 

11. 1.1-Diphenyl-octadecadien-(1.9)  $C_{30}H_{42}=CH_3\cdot[CH_2]_7\cdot CH:CH\cdot[CH_2]_6\cdot CH:C(C_6H_5)_2$ . B. Beim Erwärmen von Ölsäuremethylester mit Phenylmagnesiumbromid in Äther und Erhitzen des Reaktionsprodukts auf 200—240° (Skraup, Schwamberger, A. 462, 155). — Öl. Kp<sub>15</sub>: 285—286°. — Liefert bei der Oxydation mit Chromsäure in Eisessig Hexadecen-(7)-carbonsäure-(1) und Benzophenon. [Behrle]

## 11. Kohlenwasserstoffe $C_nH_{2n-20}$ .

# 1. Kohlenwasserstoffe $\mathrm{C_{16}H_{12}}$ .

1. 1.4-Diphenyl-butenin. Phenyl-styryl-acetylen oder 1.4-Diphenyl-butatrien  $C_{16}H_{12}=C_{6}H_{5}$ ·CH:CH·C:C· $C_{6}H_{5}$  oder  $C_{6}H_{5}$ ·CH:C:C:CH· $C_{6}H_{5}$  (vgl. H 686; E I 341). Die von Straus (A. 342 [1905], 225) als 1.4-Diphenyl-butenine angesehenen Verbindungen werden von Grignard, Tchéoufaki (C. r. 188, 1532; R. 48, 902) als 1.4-Diphenyl-butatriene formuliert.

a) Feste Form (H 686). B. Beim Belichten der flüssigen Form (GRIGNARD, TCHÉOUFAKI, C. r. 188, 1533; R. 48, 903). — Krystalle (aus Eisessig). F: 95°.

b) Flüssige Form (H 687). B. Neben anderen Produkten bei der Hydrierung von Diphenyldiacetylen in Gegenwart von Platinoxyd in Alkohol + Äther (GRIGNARD, TCHÉOU-FAKI, Č. r. 188, 1533; R. 48, 903). Beim Kochen von Diphenylbrombutenin oder Diphenylbrombutatrien (s. u.) mit Zinkstaub in Aceton unter Ausschluß von Licht (G., TCH.). — Kp<sub>13</sub>: 185—187°. — Geht beim Belichten in die feste Form über. Liefert bei der Ozonisierung in Tetrachlorkohlenstoff und Zersetzung des erhaltenen Ozonids mit Natriumsulfat Benzaldehyd.

Diphenylbrombutenin oder Diphenylbrombutatrien  $C_{16}H_{11}Br = C_{6}H_{5} \cdot C_{4}HBr \cdot C_{6}H_{5}$ . B. Beim Kochen von Diphenyldiacetylen mit Bromwasserstoffsäure (Kp: 129°) (GRIGNARD, TCHÉOUFAKI, C. r. 188, 1534; R. 48, 903). — F: 92°. — Die Lösung in Aceton liefert bei längerem Erhitzen mit Zinkstaub unter Ausschluß von Licht die flüssige Form des 1.4-Diphenyl-butatriens.

2. 1-Phenyl-naphthalin, α-Phenyl-naphthalin C<sub>16</sub>H<sub>12</sub> = C<sub>10</sub>H<sub>7</sub>·C<sub>6</sub>H<sub>5</sub> (H 687). Zur Stereochemie vgl. Mascarelli, G. 58, 793. — B. Beim Erhitzen von 1-Phenyl-3.4-dihydro-naphthalin oder 1-[α-Naphthyl]-cyclohexen-(1) mit Schwefel auf 250° (Weiss, Woidich, M. 46, 455). Durch reduzierende Diazotierung von 2-Amino-1-[2-amino-phenyl]-naphthalin in Alkohol (Fuchs, Niszel, B. 60, 214). — Zähes Öl. Kp: 310—320° (F., N.); Kp<sub>770</sub>: 334° (Weiss, Woidich). Leicht löslich in Alkohol, Äther, Benzol und Eisessig mit blauer Fluorescenz, unlöslich in Säuren und Alkalilaugen (F., N.). — Liefert mit Brom in Schwefelkohlenstoff bei Zimmertemperatur 4-Brom-1-phenyl-naphthalin (Weiss, Woi.;

Veselý, Štursa, Collect. Trav. chim. Tchécosl. 5, 344; C. 1933 II, 3849). Beim Erwärmen von 1-Phenyl-naphthalin mit rauchender Schwefelsäure (20% SO<sub>3</sub>) entsteht 1-Phenyl-naphthalin-sulfonsaure-(4) (WEISS, WOI., M. 46, 457). Gibt mit konz. Salpetersaure in Eisessig 4-Nitro-1-phenyl-naphthalin (WEISS, WOI.; V., St.).

4-Brom-1-phenyl-naphthalin C<sub>16</sub>H<sub>11</sub>Br, Formel I. B. Bei der Einw. von Brom auf 1-Phenyl-naphthalin in Schwefelkohlenstoff bei Zimmertemperatur (Weiss, Woidel, M. 46, 457; Veselý, Štursa, Collect. Trav. chim. Tchécosl. 5, 344; C. 1933 II, 3849). — Nadeln (aus Alkohol). F: 70° (Weiss, Woi.), 76—77° (V., Št.). C<sub>6</sub>H<sub>5</sub>

**4-Nitro-1-phenyl-naphthalin**  $C_{16}H_{11}O_2N$ , Formel II. B. Bei der Einw. von konz. Salpetersäure auf 1-Phenyl-naphthalin in Eisessig (Weiss, Woidich, M. **46**, 457; Vesellý, Štursa, Collect. Trav. chim. Tchécosl. **5**, 344; C. **1933** II, 3849). — Gelbe Nadeln (aus Ligroin). F: 132° (Weiss, Woi.).

3. 2-Phenyl-naphthalin,  $\beta$ -Phenyl-naphthalin  $C_{16}H_{12} = C_{10}H_7 \cdot C_6H_5$  (H 687; E I 341). Zur Stereochemie vgl. Mascarelli, G. 58, 795. — B. Beim Leiten des Dampfes von 2-Phenyl-1.2.3.4-tetrahydro-naphthalin über erhitztes Bleioxyd (v. Braun, Manz. A. 468, 267). Beim Erhitzen von  $\beta$ -Phenyl-serin mit 10% iger Schwefelsäure im Rohr auf 160—170° (Bettzieche, H. 150, 187). Beim Erhitzen von 2-Cyclohexyl-5.6.7.8-tetrahydronaphthalin oder 2-Cyclohexyl-naphthalin mit Schwefel auf 230—250° (BODROUX, A.ch. [10] 11, 540, 543).

4. 3-Benzyliden-inden, ω-Phenyl-benzofulven C<sub>16</sub>H<sub>12</sub>, s. nebenstehende Formel (H 688; Ε Ι 341). Absorptionsspektrum der Lägung in Methyläthylketon: JONESCU, Bullet, Clui 2, 297 · C. 1925 I Lösung in Methyläthylketon: Jonescu, Bulet. Cluj 2, 297; C. 1925 I, 2221. — Polymerisiert sich beim Erhitzen im Rohr auf 178° zum Tetrameren, bei der Einw. von Antimonpentachlorid in Chloroform zum Hexameren (WHITBY, KATZ, Am. Soc. 50, 1170).

Tetrameres Benzylideninden (C<sub>16</sub>H<sub>12</sub>)<sub>4</sub>. B. Beim Erhitzen von Benzylideninden im Rohr auf 178° (Whitby, Katz, Am. Soc. 50, 1170). — Orangefarbenes Pulver (aus Xylol + Alkohol). F: 238—242°. Unlöslich in Alkohol, löslich in Xylol mit roter Farbe. Hexameres Benzylideninden (C<sub>16</sub>H<sub>12</sub>)<sub>6</sub>. B. Bei der Einw. von Antimonpentachlorid auf Benzylideninden in Chloroform (Whitby, Katz, Am. Soc. 50, 1170). — Gelbes Pulver (aus Benzol + Alkohol). F: 252—255°.

1-Nitro-3-benzyliden-inden  $C_{16}H_{11}O_2N = C_6H_4 - \frac{C(:CH \cdot C_6H_5)}{C(NO_2)}$  CH. B. Beim Eintragen einer warmen Lösung des Kaliumsalzes des 3-Isonitro-indens in Methanol in eine heiße Mischung aus Benzaldehyd, Methanol und konz. Schwefelsäure (Wislicenus, Pfeil-STICKER, A. 436, 40). — Orangefarbene Blättchen (aus Alkohol + Benzol). F: 139°. Löst sich in wäßriger oder alkoholischer Kalilauge mit gelber Farbe. — Liefert bei der Reduktion mit Zinkstaub in siedender wäßrig-alkoholischer Salzsäure oder mit Aluminiumamalgam 1(oder 3)-Amino-3(oder 1)-benzyl-inden. — Bleisalz. Gelbes Pulver.

1-Nitro-3-[4-nitro-benzyliden]-inden  $C_{16}H_{10}O_4N_2 = C_6H_4 - C(:CH \cdot C_6H_4 \cdot NO_2) - C(:CH \cdot C_6O_2) - C(:CH \cdot$ B. Analog der vorangehenden Verbindung (WISLICENUS, PFEILSTICKER, A. 436, 41). — Rote Nadeln (aus Eisessig + Nitrobenzol). F: 218—220°.

5. 1-Vinyl-phenanthren C<sub>16</sub>H<sub>12</sub>, s. nebenstehende Formel. Einen Kohlenwasserstoff, in dem wahrscheinlich ein polymeres 1-Vinyl-phenanthren C<sub>16</sub>H<sub>12</sub>)<sub>x</sub> vorliegt, s. im Artikel 1-Äthylphenanthren (S. 504) phenanthren (S. 594).

6. [Indeno-2'.1':1.2-inden], Diphensuccinden-(10)
C<sub>16</sub>H<sub>12</sub>, s. nebenstehende Formel. B. Beim Kochen von 9.12-Dichlor-diphensuccindadien-(9.11) mit Zinkstaub in Alkohol, Isoamylalkohol oder Eisessig (Brand, Müller, B. 55, 606) oder von 12-Chlor-9-methoxy- oder 12-Chlor-9-äthoxy-diphensuccindadien-(9.11) mit Zinkstaub in Eisessig bei Gegenwart von wenig Quecksilber(II)-chlorid (B., M., KESSLER, B. 59. 1964). — Gelbliche Blättchen (aus Alkohol). F: 210° (B., M.; B., M., K.). Ziemlich leicht löslich in heißem Alkohol und anderen organischen Lösungsmitteln (B., M.). — Liefert bei der Hydrierung in Gegenwart von Palladium-Kohle in warmem Alkohol Diphensuccindan (B., M.). Kondensiert sich mit Benzaldehyd in Natriumäthylat-Lösung unter Kühlung mit

Wasser zu 9-Benzyliden-diphensuccinden-(10) und 9.12-Dibenzyliden-diphensuccinden-(10)

(B., M.). — Löst sich in konz. Schwefelsäure mit grüner Farbe; die Lösung in Alkohol färbt sich auf Zusatz von konz. Schwefelsäure rot (B., M.; B., M., K.).

7. "m-Dimethylanthracylen" C<sub>16</sub>H<sub>12</sub>,
Formel I (H 688) von ELBS (J. pr. [2] 41
[1890], 15) wird von v. Braun, Bayer (B.
59, 914) als 1.3-Dimethyl-anthracen erkannt. I.

8. "p-Dimethylanthracylen" C<sub>16</sub>H<sub>10</sub>.

8. ..p-Dimethylanthracylen"  $C_{18}H_{12}$ .
Formel II (H 689) von Elbs (J. pr. [2] 41
[1890]. 28) wird von v. Braun, Bayer (B. 59, 914) als 1.4-Dimethyl-anthracen erkannt.

# 2. Kohlenwasserstoffe $\mathrm{C_{17}H_{14}}$ .

1. I-Benzyl-naphthalin, Phenyl-α-naphthyl-methan C<sub>17</sub>H<sub>14</sub> = C<sub>10</sub>H<sub>7</sub>·CH<sub>2</sub>·C<sub>6</sub>H<sub>5</sub> (H 689, E I 341). B. Zur Bildung aus Naphthalin und Benzylchlorid in Gegenwart von Zinkehlorid nach Roux (A. ch. [6] 12 [1887], 326) vgl. Dziewoński, Dzięcielewski, Bl. Acad. polon. [A] 1927, 277; C. 1928 I, 57. Zur Bildung aus Phenyl-α-naphthyl-keton mit Zink und alkoh. Salzsäure nach Elbes, Steinicke (J. pr. [2] 35 [1887], 504) vgl. Skraup. Böhm, B. 59, 1011. Beim Kochen von Methyl-[phenyl-α-naphthyl-methyl]-keton (McKenzie. Tattersall, Soc. 127, 2529), von ms-[Naphthyl-(1)]-desoxybenzoin (Orekhoff, Tiffeneau. C. r. 178, 1620; McK., Dennler, Soc. 125, 2108) oder von [Phenyl-α-naphthyl-methyl]-p-tolyl-keton (McK., Ta.) mit alkoh. Kalilauge. Bei der Destillation des Bariumsalzes der 4-Benzyl-naphthalsäure mit Bariumhydroxyd unter 40—50 mm Druck (Loreman, Am. Soc. 47, 215). — Tafeln (aus Alkohol). F: 590 (Dziewoński, Dzięcielewski, Bl. Acad. polon. [A] 1927, 278; C. 1928 I, 57; Skraup, Böhm; Loreman). — Liefert mit konz. Schwefelsäure bei 660 oder mit Chlorsulfonsäure in Nitrobenzol bei Zimmertemperatur 1-Benzylnaphthalin-sulfonsäure-(4) (Dziew., Dzięc.). Bei der Destiliation über glühenden Bimsstein erhält man nicht Dihydrobenzanthren (vgl. E I 5, 342; Scholl, Seer, B. 44 [1911], 1671), sondern 1.10-Trimethylen-phenanthren (S. 605) (Clar, Furnari, B. 65 [1932], 1422).

1-[ $\alpha$ -Chlor-benzyl]-naphthalin, Phenyl- $\alpha$ -naphthyl-chlormethan  $C_{17}H_{14}=C_{10}H_{7}$ . CHCl· $C_{6}H_{5}$ . B. Bei der Einw. von Chlorwasserstoff auf Phenyl- $\alpha$ -naphthyl-carbinol in Petroläther und Benzol (Norris, Blake, Am. Soc. 50, 1812). — Nadeln (aus Ligroin). F: 64° bis 64,5°. — Geschwindigkeit der Umsetzung mit Alkohol bei 25°: N., Banta, Am. Soc. 50, 1804; N., Blake, Am. Soc. 50, 1810; N., Ph. Ch. 130, 665.

1-[a.a-Dichlor-benzyl]-naphthalin, Phenyl-a-naphthyl-dichlormethan, Phenyl-a-naphthyl-ketonchlorid  $C_{17}H_{12}Cl_2=C_{10}H_7\cdot CCl_2\cdot C_eH_5$ . B. Beim Erhitzen von Phenyla-naphthyl-keton mit Phosphorpentachlorid auf 100° (Gomberg, Lange, Am. Soc. 42, 1881). — Nadeln (aus Petroläther). Erweicht bei ca. 86° und schmilzt bei 92°. — Bei der Einw. von Phenol anfangs bei Zimmertemperatur, zuletzt bei ca. 50°, entsteht Benzochinon-[phenyl-a-naphthyl-methid]; beim Kochen der Komponenten in Benzol unter Ausschluß von Feuchtigkeit bildet sich Phenyl-a-naphthyl-keton-diphenylacetal; beim Erhitzen mit Phenol unter Sättigung mit Chlorwasserstoff und Ausschluß von Feuchtigkeit auf 110° erhält man Phenyl-bis-{4-oxy-phenyl}-a-naphthyl-methan.

2. 3-[4-Methyl-benzyliden]-inden 
$$C_{17}H_{14} = C_6H_4 < C(:CH \cdot C_6H_4 \cdot CH_3) - CH$$
.

1-Nitro-3-[4-methyl-benzyliden]-inden  $C_{17}H_{13}O_2N = C_6H_4 - \frac{C(:CH \cdot C_6H_4 \cdot CH_3)}{C(NO_2)}$  CH.

B. Beim Eintragen einer warmen Lösung des Kaliumsalzes des 3-Isonitro-indens in Methanol in eine heiße Mischung aus p-Toluylaldehyd, Methanol und konz. Schwefelsäure (Wislicenus, Preilsticker, A. 436, 40). — Rote Krystalle. F: 105°.

3. 4(oder 7)-Methyl-3-benzyliden-inden C<sub>17</sub>H<sub>14</sub>. Formel III
oder IV. B. Bei der Kondensation
von 4-(oder 7)-Methyl-inden mit
Benzaldehyd (KRUBER, B. 57, 1012).
— Goldgelbe Blättchen (aus Alkohol). F: 93°.

4. [Cyclopenteno - 1'.2': 2.3 - anthracen], [Hydr-indeno - 5'.6': 2.3 - naphthalin]. 2.3 - Trimethylen-anthracen, lin. Hydrindanthracen C<sub>17</sub>H<sub>14</sub>, s. nebenstehende

Formel. B. Bei der Reduktion von 2.3-Trimethylen-anthrachinon mit Zinkstaub und 15% igem Ammoniak auf dem Wasserbad (v. Braun, Kirschbaum, Schuhmann, B. 53,

1170). — Blättchen (aus Alkohol). F: 242—243°. Färbt sich an der Luft gelblich. Schwer löslich in Alkohol, Äther und Benzol. Die Lösung in Benzol färbt sich auf Zusatz von Pikrinsäure tiefrot.

5. **5.6-Benzo-perinaphthindan**, **1.10-Trimethylen-phenanthren** C<sub>17</sub>H<sub>14</sub>, s. nebenstehende Formel. Diese Formulierung kommt der von Scholl, Seer (B. **44** [1911], 1672) und Bally, Scholl (B. **44** [1911], 1670) als Dihydrobenzanthren (E I 342) beschriebenen Verbindung zu (Clar, Furnari, B. **65** [1932], 1422).

EI 342, Z. 12 v. o. statt "Benzanthron" lies "Benzanthren".

# 3. Kohlenwasserstoffe $C_{18}H_{16}$ .

Gelbe Blättchen (aus Chloroform), grünlichgelbe Nadeln (aus Tetrachlorkohlenstoff). F: 196° (Farmer, Mitarb., Soc. 1927, 2955), 200° (korr.) (Kuhn, Winterstein, Helv. 11, 107). Verbrennungswärme bei konstantem Volumen: 2286,3 kcal/Mol: Roth, Müller in Landoll-Börnst. E I, 868. — Fast unlöslich in Petroläther, Eisessig und Alkohol, schwer in Äther, leicht löslich in heißem Dioxan, Acetanhydrid, Chloroform und Pyridin; die Lösung in Aceton ist fast farblos (K., W.). Bei 19° löst 1 l Benzol 8,6 g, 1 l Chloroform 21,4 g (K., W., Helv. 11, 101). Absorptionsspektrum der Lösung in konz. Schwefelsäure: K., W., Helv. 11, 151. Fluoresciert in sehr verd. Lösungen stark blau (K., W., Helv. 11, 107).

Zersetzt sich beim Erhitzen über den Schmelzpunkt unter Bildung gelbgrün gefärbter, fluorescierender Ole (Kuhn, Winterstein, Helv. 11, 107). Geschwindigkeit der Oxydation mit Permanganat in Aceton: K., W., Helv. 11, 115. Bei der Reduktion von 1.6-Diphenylhexatrien (1.3.5) mit Aluminium amalgam in feuchtem Äther oder mit Natrium amalgam in Benzol + absol. Alkohol bildet sich 1.4-Dibenzyl-butadien (1.3) (K., W., Helv. 11, 131). Läßt sich mit der berechneten Menge Wasserstoff in Gegenwart von Platinoxyd oder Palladium-Kohle in Eisessig zu 1.6-Diphenyl-hexan, mit überschüssigem Wasserstoff in Gegenwart von Platinoxyd in Eisessig zu 1.6-Dicyclohexyl-hexan hydrieren (K., W., Helv. 11, 137). Gibt beim Schütteln mit Kalium-Natrium-Legierung in über Phosphorpentoxyd getrocknetem Äther eine Alkalimetallverbindung, die bei der Zersetzung mit feuchtem Stickstoff 1.4-Dibenzyl-butadien-(1.3) liefert; bei der Einw. von Kohlendioxyd auf die Alkalimetallverbindung entsteht das Alkalisalz einer Säure, die sich bei 170° unter Kohlendioxyd-Abspaltung zersetzt (Kuhn, Winterstein, Helv. 12, 497). Reaktion mit Lithium in absol. Äther: K., W., Helv. 12, 498. Liefert in Schwefelkohlenstoff oder Tetrachlorkohlenstoff mit 1 Mol Brom 3.6-Dibrom-1.6-diphenyl-hexadien-(1.4)(?), mit 2 Mol Brom 1.6-Diphenyl-hexadien-(1.4)(?). hexatrien (1.3.5)-tetrabromid (FARMER, Mitarb., Soc. 1927, 2956; K., W., Helv. 11, 140), mit 3 Mol Brom 1.2.3.4.5.6-Hexabrom-1.6-diphenyl-hexan vom Schmelzpunkt 228—230° (F., Mitarb.) bzw. vom Schmelzpunkt 279—280° (Zers.) (K., W., Helv. 11, 142). Beim Verschmelzen von 1.6-Diphenyl-hexatrien-(1.3.5) mit Maleinsäureanhydrid erhält man das Anhydrid der 3-Phenŷl-6-styryl-1.2.3.6-tetrahydro-phthalsäure(?) (Syst. Nr. 2486) (DIELS, ALDER, B. 62, 2086). - Löst sich in konz. Schwefelsäure mit orangegelber Farbe (K., W., Helv. 11, 98). Beim Schütteln mit Chloroform, konz. Schwefelsäure und Acetanhydrid färben sich beide Schichten blaugrün (K., W., Helv. 11, 151).

Pikrat (nicht ganz rein erhalten). F: ca. 170° (Kuhn, Winterstein, Helv. 11, 148). — Styphnat  $C_{18}H_{16}+2C_6H_3O_8N_3$ . F: 193—194° (K., W.). — Verbindung mit 1.3.5-Trinitro-benzol  $C_{18}H_{16}+2C_6H_3O_6N_3$ . Rote Nadeln (aus Chloroform). F: 161° bis 162° (K., W.).

606

- B. Bei der Einw. von Natrium auf ω.ω-Diphenyl-fulven in Äther und Zersetzung der entstandenen blutroten Reaktionsflüssigkeit mit Alkohol (Schlenk, Bergmann, A. 463, 58). Krystalle (aus Methanol). F: 36,5°. Sehr leicht löslich in Petroläther, schwer in heißem Methanol.
- 3.  $1-\beta$  Phenäthyl-naphthalin, 1 Phenyl- $2-\alpha$ -naphthyl-äthan  $C_{18}H_{16}=C_{10}H_7\cdot CH_2\cdot CH_2\cdot C_6H_5$ .
- 1-[ $\alpha$ . $\alpha$ -Dichlor- $\beta$ -phenyl-äthyl]-naphthalin, 2.2-Dichlor-1-phenyl-2- $\alpha$ -naphthyläthan  $C_{18}H_{14}Cl_2=C_{10}H_{7}\cdot CCl_2\cdot CH_2\cdot C_6H_5$ . B. Beim Kochen von Benzyl- $\alpha$ -naphthyl-keton mit Phosphorpentachlorid in trocknem Chloroform (Ruggli, Reinert, Helv. 9, 78). Nicht ganz rein erhalten. Krystalle (aus Äther + Petroläther). F: 102° (Zers.). Spaltet beim Aufbewahren Chlorwasserstoff ab. Liefert beim Erhitzen auf 120—130° und nachfolgender Vakuumdestillation 2-Chlor-1-phenyl-2- $\alpha$ -naphthyl-äthylen.
- 4. 2 Methyl 1 benzyl naphthalin  $C_{18}H_{16}$ , s. nebenstehende Formel. B. Beim Erhitzen von 2-Methyl-naphthalin mit Benzylchlorid und Zinkchlorid auf  $100-140^{\circ}$  (Dziewoński, Ritt, Bl. Acad. polon. [A] 1927, 185; C. 1927 II, 1568). Farblose Flüssigkeit.  $Kp_{17}$ :  $221-222^{\circ}$ . Sehr leicht löslich in organischen Lösungsmitteln. Ist mit überhitztem Wasserdampf flüchtig. Bei der Destillation über Zinkstaub entstehen 1.2-Benzo-anthracen und wenig 2.3-Benzo-anthracen.
- 5. 1-Äthyl-3-benzyliden inden C<sub>18</sub>H<sub>16</sub>, s. nebenstehende Formel. B. Beim Behandeln von 1-Äthyl-inden mit Benzaldehyd in methylalkoholischer Kalilauge (WISLICENUS, HENTRICH, A. 436, 20).

  Gelbe Tafeln (aus Alkohol). F: 57—58°. Färbt sich mit konz. Schwefelsäure vorübergehend violett.
- 6. 2-α-Hydrindyl-inden, Diinden C<sub>18</sub>H<sub>16</sub>, s. nebenstehende Formel (E I 342). Zur Konstitution des Diindens vgl. Stobbe, Färber, B. 57, 1838; Whitby, Katz, Canad. J. Res. 4, 351; C. 1932 I, 386; Bergmann, Taubadel, B. 65 [1932], 464. B. Zur Bildung aus Inden durch Erhitzen mit Phosphorsäure nach Weiss-Gerber (B. 44 [1911], 1440) vgl. St., F., B. 57, 1846. Aus Inden beim Kochen mit 23 %iger Salzsäure in Gegenwart von Bimsstein, beim Erhitzen mit 48 %iger Schwefelsäure, weniger gut beim Kochen mit 66 %iger Zinkchlorid-Lösung oder, neben anderen Produkten, bei der Einw. von wasserfreiem Aluminiumchlorid in Äther bzw. beim Kochen mit 33 %iger wäßriger Aluminiumchlorid-Lösung (St., F.; vgl. a. Courtot, Dondelinger, C. r. 179, 1168; A. ch. [10] 4, 349, 354). Neben anderen Produkten bei der Destillation von Polyinden (S. 413) unter 20 mm Druck (St., F.). Krystalle (aus verd. Alkohol oder Essigsäure). F: 57—58°; Kp<sub>25</sub>: 245—255°; Kp<sub>20</sub>: 230—240° (Stobbe, Färber, B. 57, 1839, 1846). Ultraviolett-Absorptionsspektrum der Lösung in Äther: St., F., B. 57, 1840. Bei der Oxydation von Diinden mit Chromtrioxyd in Eisessig bei 50° entsteht α-Hydrindon (St., F.). Verhalten bei der Oxydation mit Permanganat in wäßr. Aceton: St., F. Liefert bei der Reduktion mit Natrium in siedendem Alkohol Dihydrodiinden (St., F.). Bei der Einw. von Brom in Chloroform unter Kühlung erhält man Diindendibromid (St., F.). Verharzt beim Schütteln einer äther. Lösung von Diinden in Benzol mit 95 %iger Schwefelsäure (St., F.). Gibt mit Pikrinsäure ein rotes unbeständiges Pikrat (St., F.).
- 7. [Cyclohexeno-1'.2': 2.3-anthracen], 2.3-Tetra-methylen-anthracen, 1.2.3.4-Tetrahydro-naphthacen, Tetralanthracen, 1.2.3.4-Tetrahydro-naphthacen, Tetralanthracen C<sub>18</sub>H<sub>16</sub>, s. nebenstehende Formel. B. Beim Erhitzen von 9-Oxy-1.2.3.4-hexahydro-naphthacen auf 200° (v. Braun, Bayer, Firser, A. 459, 301). Neben anderen Produkten bei der Hydrierung von 2.3-Tetramethylen-anthrachinon in Gegenwart von Nickel in Dekalin bei 180—190° (v. Br., Bay., F.). Gelbgrüne, stark fluorescierende Blättchen (aus Toluol). F: 233°. Ziemlich schwer löslich in siedendem Benzol, schwer in Alkohol, fast unlöslich in Äther und Petroläther. Liefert bei der partiellen Hydrierung in Gegenwart von Nickel in Dekalin unter Druck bei 180—190° 2.3;6.7-Bis-tetramethylen-naphthalin und andere Produkte. Gibt bei der Reduktion mit Natrium in Isoamylalkohol 2.3-Tetramethylen-9.10-dihydro-anthracen. Die Lösung in Benzol färbt sich auf Zusatz von Pikrinsäure blutrot.
- 8. 1.2 ( $CH_2$ ); 3.4 ( $CH_2$ ) Dibenzylen cyclobutan. Truxan, Bisinden  $C_{10}H_{10}$ , s. nebenstehende Formel. B. In geringer Menge beim Erhitzen von Truxon (Syst. Nr. 683) mit amalgamiertem Zink und Salzsäure oder besser bei der Reduktion

von Truxandiol (Syst. Nr. 566) mit Jodwasserstoff in Eisessig unter Kühlung und danach mit Zinkstaub in Gegenwart von Platinchlorid, zuletzt auf dem Wasserbad (STOBBE, ZSCHOCH, B. 60, 470, 472). — Krystalle (aus Petroläther). F: 116°. Leicht löslich in Chloroform, Benzol, Äther, Methylacetat, heißem Alkohol und Eisessig, unlöslich in konz. Schwefelsäure. Zeigt in fester Form im Ultraviolett-Licht keine Fluorescenz. Ultraviolett-Absorption der Lösung in Äther: St., Z., B. 60, 463. — Wird beim Sieden unter Atmosphärendruck zu Inden depolymerisiert. Ist bei gewöhnlicher Temperatur gegen Permanganat und Salpetersäure (D: 1,4) beständig.

# 4. Kohlenwasserstoffe $C_{19}H_{18}$ .

- 1. 1.8-Diphenyl-octatrien-(2.4.6), 1.6-Dibenzyl-hexatrien-(1.3.5)  $C_{20}H_{20} = C_8H_5 \cdot CH_2 \cdot [CH : CH]_3 \cdot CH_2 \cdot C_6H_5$ . B. Bei der Reduktion von 1.8-Diphenyl-octatetraen-(1.3.5.7) mit Aluminiumamalgam in feuchtem Äther oder mit Natriumamalgam in Benzol + absol. Alkohol (Kuhn, Winterstein, Helv. 11, 133). Nadeln (aus Aceton + Methanol). F: 68°. Leicht löslich in Äther, Aceton, Benzol und Chloroform, ziemlich leicht in Petroläther und Eigenzig gehren in Alkohol. Eisessig, schwer in Alkohol. — Liefert bei der Ozonisierung in Eisessig und nachfolgendem Kochen des entstandenen Ozonids mit Perhydrol Phenylessigsäure. Wird bei der Hydrierung in Gegenwart von Palladium-Kohle in Eisessig bei 15° in 1.8-Diphenyl-octan übergeführt.
- 2. 1-Propyl-3-benzyliden-inden  $C_{19}H_{18} = C_{6}H_{4} < \stackrel{C(:CH \cdot C_{6}H_{5})}{C(CH_{2} \cdot C_{2}H_{5})} > CH$ . B. Beim Kochen von [Inden-(1)-yl-(3)]-glyoxylsäure-äthylester mit Propylbromid in Kaliumäthylatlösung und Kondensation des nicht näher beschriebenen 1-Propyl-indens mit Benzaldehyd in alkoh. Natronlauge (Wislicenus, Hentrich, A. 436, 13 Anm. 3). — Gelbe Krystalle (aus Benzol + Benzin oder Chloroform + Benzin). F: 132°. — Gibt mit konz. Schwefelsäure eine intensiv blauviolette Färbung.
- 3. 9-[ $\alpha.\gamma$ -Dimethyl- $\beta$  (oder  $\gamma$ ) butenyliden] fluoren, 2-Methyl-4-fluorenyliden-penten-(2 oder 1)  $C_{19}H_{18} = \frac{C_6H_4}{C_6H_4}C:C(CH_3)\cdot CH:C(CH_3)_2$  oder

 $C_6H_4$   $C:C(CH_3)\cdot CH_2\cdot C(CH_3):CH_2$ . Welche der beiden Formeln den zwei nachstehend

beschriebenen Verbindungen zukommt, konnte nicht entschieden werden.

a) Höherschmelzende Verbindung C<sub>19</sub>H<sub>18</sub>. B. In geringer Menge neben dem Isomeren vom Schmelzpunkt 58—61° (s. u.) und anderen Produkten beim Erhitzen von Fluorenyl-(9)-magnesiumbromid mit Diacetonalkohol auf 110—137° (MAITLAND, TUCKER, Soc. 1929, 2560). — Nadeln (aus Alkohol). F: 81—82°. Löslich in Methanol, Alkohol und Eisessig, leicht löslich in Tetrachlorkohlenstoff, Benzol und Essigester. Färbt sich bei kurzem Aufbewahren am Licht oberflächlich rötlich; die Farbe geht im Dunkeln wieder zurück. -Liefert bei der Reduktion mit Jodwasserstoffsäure (D: 1,7) in siedendem Eisessig 2-Methyl4-[fluorenyl-(9)]-pentan und einen bei 51—55° schmelzenden krystallinischen Kohlenwasserstoff C<sub>19</sub>H<sub>22</sub> oder C<sub>19</sub>H<sub>20</sub>.

b) Niedrigerschmelzende Verbindung C<sub>19</sub>H<sub>18</sub>. B. s. oben bei der höherschmelzenden Verbindung. Entsteht auch, neben anderen Produkten, beim Erhitzen von Fluorenyl-(9)-

magnesiumbromid mit Aceton auf 135° (MAITLAND, TUCKER, Soc. 1929, 2563). — Nadeln (aus Alkohol und Methanol). F: 58—61°. Leicht löslich in kaltem Tetrachlorkohlenstoff, Benzol, Aceton und Essigester und in heißem Methanol, Alkohol, Ligroin und Eisessig.

# 5. Kohlenwasserstoffe $C_{20}H_{20}$ .

1. 1-Phenyl-4- $\beta$ -naphthyl-butan  $C_{20}H_{20}=C_{10}H_7\cdot [CH_2]_4\cdot C_6H_5$ . B. Beim Erhitzen von 1-Phenyl-4-[tetralyl-(6)]-butan mit Schwefel auf 200—250° (SCHROETER, B. 57, 2000). — Bildet kein Pikrat.

2. Ditetralyliden-(1.1') C<sub>20</sub>H<sub>20</sub>, s. nebenstehende 2. Ditetralyliden-(1.1')  $C_{20}H_{20}$ , s. nebenstehende Formel (X = H).

2.2'- Dibrom - ditetralyliden - (1.1')  $C_{20}H_{18}Br_2$ ,  $H_2C$   $CH_2$  CHX  $CH_2$   $CH_2$   $CH_2$   $CH_3$  s. nebenstehende Formel (X = Br). B. Bei der Einw. von Brom auf 3.4.3'.4'- Tetrahydro-dinaphthyl-(1.1') (SCHROETER, B. 58, 716). — F:

3. 1.2-Diphenyl-tricyclooctan  $C_{20}H_{20} = \frac{H_2C \cdot CH \cdot CH \cdot CH \cdot C_6H_5}{H_2C \cdot CH \cdot CH \cdot CH \cdot C_6H_5}$  (H 692). Diese Verbindung ist nach Kuhn, Deutsch (B. 65 [1932], 44, 48) als 2- $\beta$ -Phenäthyl-diphenyl (S. 624) extentes are (S. 621) aufzufassen.

- 4. x-Oktahydro-perylen C<sub>20</sub>H<sub>20</sub>. Einheitlichkeit fraglich (ZINKE, BENNDORF, M. 59, 243). B. Neben anderen Produkten bei der Hydrierung von Perylen (S. 655) in Gegenwart von Palladium-Kohle in Eisessig unter 230—240 mm Überdruck bei 19—23° (Z., SCHNIDERSCHITSCH, M. 51, 282). Blättchen (aus Essigsäure oder verd. Alkohol). F: 159—161° (unkorr.). Leicht löslich in Alkohol, Eisessig, Xylol und Toluol. Schwer löslich in kalter konzentrierter Schwefelsäure mit blaßgelber Farbe, die beim Erwärmen über Gelbbraun in Braunrot übergeht.
  - 5. Dimolekulares 1.2 Dihydro naphthalin (Bis-dialin) C<sub>20</sub>H<sub>20</sub> s. S. 416.

# 6. Kohlenwasserstoffe $C_{21}H_{22}$ .

- 1. 1-Benzyl-3.4.5.6.7.8-hexahydro-anthracen

  C<sub>21</sub>H<sub>22</sub>, s. nebenstehende Formel. B. Beim Kochen von
  1-Oxo-1.2.3.4.5.6.7.8-oktahydroanthracen mit Benzylmagnesiumchlorid in Äther und nachfolgender Destillation des entstandenen, nicht näher beschriebenen 1-Oxy-1-benzyl1.2.3.4.5.6.7.8-oktahydroanthracens (SCHROETER, B. 57, 2019). Zähe Flüssigkeit. Kp<sub>16</sub>:
  240—245°. Erstarrt nicht im Kältegemisch. Liefert bei der Hydrierung in Gegenwart
  von Nickel in Tetralin bei 150° unter Druck 1-Benzyl-1.2.3.4.5.6.7.8-oktahydro-anthracen.
  Gibt mit Brom in Eisessig unter Kühlung ein Gemisch von Bromiden, das beim Erwärmen
  mit Eisessig in 1-Benzyl-5.6.7.8-tetrahydro-anthracen übergeht.
- 2. 2-Benzyl-3.4.5.6.7.8-hexahydro-anthracen  $C_{21}H_{22}$ , s. nebenstehende Formel. B. Beim Erhitzen von 1-Oxy-2-benzyl-1.2.3.4.5.6.7.8-oktahydro-anthracen mit Kaliumdisulfat auf 170° (SCHROETER, B. 57, 2020). Kp<sub>13</sub>: 255—258°. Liefert mit Brom in Eisessig 1.2-Dibrom-2-benzyl-1.2.3.4.5.6.7.8-oktahydro-anthracen. Pikrat. F: 80—100°.
- 3. 9-Benzyl-hexahydroanthracen  $C_{21}H_{22}=C_6H_{10}$   $C(CH_2\cdot C_6H_5)$   $C_6H_4$  (H 692). Der von Godchot (Bl. [4] 1, 125; A. ch. [8] 12, 514) beim Erhitzen von "Benzyloktahydroanthranol" mit Kaliumdisulfat erhaltene Kohlenwasserstoff  $C_{21}H_{22}$  wird von Schroeter (B. 57, 2008, 2021) als 2-Benzyl-3.4.5.6.7.8-hexahydro-anthracen erkannt; der von Godchot (Bl. [4] 1, 127; A. ch. [8] 12, 517) durch Umsetzung von "Hexahydroanthron" mit Benzylmagnesiumchlorid gewonnene Kohlenwasserstoff  $C_{21}H_{22}$  wird von Schroeter (B. 57, 2008, 2019) als 1-Benzyl-3.4.5.6.7.8-hexahydro-anthracen erkannt.
- 7. Kohlenwasserstoff  $C_{24}H_{28}$ . Kryoskopische Mol.-Gew.-Bestimmung im Campher: Hoffmann,  $Am.\,Soc.\,51,\,2544.\,-B$ . Beim Erhitzen von Methyl- $[\beta$ -phenyl-isobutyl]-keton mit wasserfreiem Zinkchlorid auf ca. 180° (H.,  $Am.\,Soc.\,51,\,2544$ ). Nadeln oder Tafeln (aus Petroläther). F: 130,5—131° (korr.). Kp<sub>18</sub>: 195°. Entfärbt Permanganat in kaltem feuchtem Aceton nicht; wird beim Kochen mit Permanganat-Lösung oder beim Verreiben mit Braunstein und 50% iger Schwefelsäure bei 50° wenig oder gar nicht angegriffen. Bleibt beim Kochen mit verd. Salpetersäure unverändert; bei längerem Kochen mit Salpetersäure (D: 1,42) entsteht eine Verbindung  $C_{24}H_{25}O_{4}N_{3}$  [Nadeln (aus Methanol); F: 180—184°; unlöslich in Sodalösung]. Die Lösung in Eisessig färbt sich beim Kochen mit Chromsäure langsam grün.
- 8. Pentacyclopentadien C<sub>25</sub>H<sub>30</sub>, s. nebenstehende Formel. Zur Konstitution vgl. die bei Dicyclopentadien (S. 391) angegebene Literatur. Das Mol.-Gew. ist in Benzol ebullioskopisch und in Campher kryoskopisch bestimmt worden Staudinger, Bruson, A. 447, 107). B. Bei 22-stdg. Erhitzen von Dicyclopentadien auf 170—180° (St., Br., A. 447, 106). Pulver (aus Benzol). F: 270°. Ist im Hochvakuum unzersetzt destillierbar. Sehr schwer löslich in kaltem, löslich in heißem Chloroform, Benzol, Nitrobenzol, Toluol, Xylol, Schwefelkohlenstoff und Pyridin, unlöslich in Methanol, Alkohol, Ather und Petroläther. Scheidet sich aus sehr verd. Lösungen in Form einer dicken Gallerte ab. Wird beim Erhitzen zu Cyclopentadien depolymerisiert. Verhalten beim Kochen mit Salpetersäure: St., Br. Addiert Brom.

## 12. Kohlenwasserstoffe $C_n H_{2n-22}$ .

## 1. Kohlenwasserstoffe $C_{16}H_{10}$ .

1. **Diphenylbutadiin**, **Diphenyldiacetylen**  $C_{16}H_{10} = C_{6}H_{5} \cdot C : C \cdot C : C \cdot C_{6}H_{5} \cdot (H 693; E I 343)$ . B. Durch längeres Erwärmen von Phenylacetylenkupfer mit wäßr. Kupfer (II) chlorid-Lösung auf dem Wasserbad (STRAUS, KOLLEK, B. 59, 1680). Bei der Einw. von 2 Atomen Jod auf 2 Mol Phenylacetylenmagnesiumbromid in Ather (GRIGNARD, TCHÉOUFAKI, C. r. 188, 358). Aus höherschmelzendem oder niedrigerschmelzendem Diphenyldiacetylenbis-hydrobromid beim Schütteln mit alkoh. Kalilauge (Salkind, Kruglow, B. 59, 1940). — Verbrennungswärme bei konstantem Volumen: 1974,1 kcal/Mol (Rотн, Müller in Landolt-

Börnst. EI 868). Zur Molekularrefraktion vgl. G., Tch.

Gibt bei der Einw. von Ozon in Tetrachlorkohlenstoff bei 0° und nachfolgendem Zersetzen des Ozonids mit Eis Benzoesäure und Oxalsäure (Grignard, Tchéoufakí, C. r. 188, Setzen des Ozondos int Elis Benzoesadre did Okaisadre (Okierak), 1.7. 185, 527; R. 48, 900). Wird durch Wasserstoff in Gegenwart von Nickel-Katalysator in Hexan in sehr kurzer Zeit reduziert (Kelber, B. 57, 142). Liefert bei der Hydrierung in Gegenwart von Platin in Alkohol + Äther cis-cis-1.4-Diphenyl-butadien-(1.3), Dibenzylacetylen und 1.4-Diphenyl-butatrien (Gr., Tch., C. r. 188, 1532; R. 48, 902). Über Bildung von cis-cis-, cis-transund trans-trans-1.4-Diphenylbutadien-(1.3) durch Hydrierung von Diphenyldiacetylen mit verschiedenen Palladium-Tierkohle- und Nickel-Tierkohle-Katalysatoren in Methanol und Stehen und Okaisadre (1.3) durch Hydrierung von Diphenyldiacetylen mit verschiedenen Palladium-Tierkohle- und Nickel-Tierkohle-Katalysatoren in Methanol und Stehen und Okaisadre (1.3) durch Hydrierung von Diphenyldiacetylen mit verschiedenen Palladium-Tierkohle- und Nickel-Tierkohle-Katalysatoren in Methanol und Äther vgl. Ott, Schröter, B. 60, 628, 638. Liefert beim Kochen mit Bromwasserstoffsäure (Kp: 1290) Diphenylbrombutenin oder Diphenylbrombutatrien (S. 602) (Gr., Tch., C. r. 188, 1534; R. 48, 903). Gibt mit Natrium oder Lithium in Äther dunkelbraune Lösungen, die mit Alkohol oder Kohlendioxyd nicht reagieren (Schlenk, Bergmann, A. 463, 82). Setzt sich mit Äthylmagnesiumjodid und mit Triphenylmethylmagnesiumchlorid nicht um (GIL-MAN, SHUMAKER, Am. Soc. 47, 515; GI., McGLUMPHY, R. 47, 421).

Bis-[2-nitro-phenyl]-butadiin, 2.2'-Dinitro-diphenyldiacetylen  $C_{16}H_8O_4N_2=O_2N\cdot C_6H_4\cdot C:C\cdot C:C\cdot C_6H_4\cdot NO_2$  (H 693). Liefert beim Aufbewahren in Chloroform am Sonnenlicht Diisatogen (Syst. Nr. 3601) (Ruggli, Bolliger, Helv. 4, 636).

## 2. Diphensuccindadien-(9.11) C<sub>16</sub>H<sub>10</sub>, Formel I.

9.12-Dichlor-diphensuccindadien-(9.11)  $C_{16}H_8Cl_2$ , Formel II. B. Aus 9.9.12.12-Tetrachlor-diphensuccindan bei der Einw. von Alkohol, Benzol oder siedendem Wasser, ferner beim Aufbewahren mit oder ohne Luftzutritt oder durch Behandeln mit Natriumacetat in Alko-

hol (Brand, Müller, B. 55, 605). Bei längerem Erhitzen von Diphensuccindandion (9.12) mit Phosphor I. pentachlorid auf 220° (Br., M.). -Rotbraune Nadeln (aus Alkohol,



verd. Alkohol, Toluol oder Eisessig). F: 191°. Schwer löslich in Alkohol, leicht in Benzol, Toluol, Chloroform, Tetrachlorkohlenstoff, Essigester, Amylacetat, heißem Eisessig. — Liefert bei der Reduktion mit Zinkstaub und Alkohol, Isoamylalkohol oder Eisessig in Gegenwart von wenig Quecksilber(II)-chlorid Diphensuccinden-(10). Liefert bei der Einw. von Natriummethylat-Lösung in heißem Toluol 12-Chlor-9-methoxy-diphensuccindadien-(9.11); reagiert analog mit Natriumäthylat-Lösung (Br., M., Kessler, B. 59, 1963).

3. 1.8 - o - Phenylen - naphthalin, 1.2 - Benzo - acenaphthylen, Fluoranthen (Idryl) C<sub>16</sub>H<sub>19</sub>, s. nebenstehende Formel (H685; EI 344). Für die von Fluoranthen abgeleiteten Namen wird in diesem Handbuch die angegebene Stellungsbezeichnung gebraucht. — B. Durch Destillation von 1.2.3.4-Tetrahydro-fluoranthen im Kohlendioxyd-Strom über auf Rotglut erhitzten Bleioxyd-Bimsstein (v. Braun, Anton, B. 62, 145). — Krystalle (aus Alkohol). F: 110° (v. Br., A.). D. 1,252 (Ziegler, Ditzel, A. 473, 204). Dichten und Brechungsindices einiger Lösungen in Chinolin: v. Auwers, Kraul, A. 443, 190.

Verbindung mit 1.3.5-Trinitro-benzol  $C_{16}H_{10} + C_6H_3O_6N_3$ . Citronengelbe Krystalle. F: 200,5° (Hertel, A. 451, 191). — Pikrat  $C_{16}H_{10} + C_6H_3O_7N_3$ . F: 183,5° (He.).

4. **Pyren** C<sub>16</sub>H<sub>10</sub>, Formel III (H 693; E I 343); die darin angegebene Stellungsbezeichnung (vgl. Scholl, SEER, A. 394, 121; R. STELZNER, H. KUH, Nomenklaturfragen [Leipzig-Berlin 1921], S. 74; E. CLAR, Aromatische Kohlenwasserstoffe [Berlin 1941], S. 7) wird auch in diesem Handbuch gebraucht i). B. Beim Überleiten von 1.2.3.4.5.6.7.8.13.14 - Deka-



<sup>1)</sup> In der Literatur finden sich auch andere Bezifferungen, besonders die in Formel IV; vgl. z. B. PATTERSON, Am. Soc. 47, 550; COOK, Soc. 1932, 1473; Chem. Abstr., Subject Indexes 1937ff.

hydro-pyren über hellrot glühenden Bleioxyd-Bimsstein im Kohlendioxyd-Strom (v. Braun, Катн, В. 61, 963). Durch Zinkstaubdestillation von 3.5-Dioxo-3.4.5.8.9.10-hexahydro-pyren (FLEISCHER, RETZE, B. 55, 3289). — Krystalle (aus Alkohol). F: 150° (v. Br., R.). D.: 1,277 (ZIEGLER, DITZEL, A. 473, 204). Dichten und Brechungsindices einiger Lösungen in Chinolin: V. Auwers, Kraul, A. 443, 190. — Mikrochemischer Nachweis als Pyrenchinon: Behrens-Kley, Organische mikrochemische Analyse [Leipzig 1922], S. 20.

Verbindung mit 1.3.5-Trinitro-benzol C<sub>16</sub>H<sub>10</sub>+ C<sub>6</sub>H<sub>3</sub>O<sub>6</sub>N<sub>3</sub>. Dunkelgelbe Krystalle.

F: 245° (Hertel, A. 451, 191). — Pikrat C<sub>16</sub>H<sub>10</sub>+ C<sub>6</sub>H<sub>3</sub>O<sub>7</sub>N<sub>3</sub>. F: 218—219° (Fleischer,

RETZE, B. 55, 3289), 2220 (HE.).

3.5.8.10-Tetrachlor-pyren  $C_{16}H_6Cl_4$ , s. nebenstehende Formel (H 694). B. Beim Leiten von trocknem Chlor in eine Lösung von Pyren in trocknem Trichlorbenzol oder 1.2-Dichlorbenzol (H. E. Fierz-David, L. Blangey, Cl Grundlegende Operationen der Farbenchemie, 4. Aufl. [Wien 1938], S. 165). — Nadeln (aus Nitrobenzol). F: 368°.



# 2. Kohlenwasserstoffe $C_{17}H_{12}$ .

1. 1.2 - Benzo - fluoren, Chrysofluoren C<sub>17</sub>H<sub>12</sub>, s. nebenstehende Formel (H 695). Für die von Chrysofluoren abgeleiteten stenende formei (H 096). Fur die von Unrysofiuoren abgeleiteten Namen wird in diesem Handbuch die angegebene Stellungsbezeichnung gebraucht. B. Aus Chrysofluorenol (Syst. Nr. 543) bei kurzem Kochen mit Jodwasserstoffsäure (D: 1,96) in Eisessig (Wanscheider, B. 59, 2098; Ж. 58, 66). Bei der Destillation von 3-Oxy-1.2-benzo-fluorenon mit Zinkstaub im Wasserstoffstrom (Fierz-David, Jaccard, Helv. 11, 1046). — Blättchen (aus Alkohol). F: 188° (F.-D., J.). — Liefert bei der Oxydation mit Permanganat in wäßr. Natronlauge Diphthalylsäure (F.-D., J.).



9-Chlor-1.2-benzo-fluoren, 11-Chlor-chrysofluoren, Chrysofluorenylchlorid  $C_{17}H_{11}Cl = C_{10}H_{6} CHCl.$  B. Aus Chrysofluorenol in siedendem Eisessig bei tropfenweisem Zusatz von Salzsäure (D: 1,19) (Wanscheidt, B. 59, 2097; Ж. 58, 61). — Grünlichgelbe Nadeln (aus Ligroin). F: 146° (korr.) unter Rotfärbung und Chlorwasserstoff-Entwicklung. In heißer konzentrierter Schwefelsäure mit blauer Farbe löslich. — Liefert mit 1.2;7.8-Dibenzo-fluoren bei Gegenwart von Kaliummethylat in siedendem Aceton 1.2;7.8;1'.2'-Tribenzo-difluorenyl-(9.9) (S. 722) (W., B. 59, 2100).

9-Brom-1.2-benzo-fluoren, 11-Brom-chrysofluoren, Chrysofluorenylbromid  $C_{17}H_{11}Br = \frac{C_{10}H_6}{C_6H_4}$  CHBr. B. Aus Chrysofluorenol durch Behandlung mit Bromwasserstoff in heißem Eisessig (Wanscheidt, B. 59, 2097, 2098; Ж. 58, 61). — Hellgelbe Nadeln (aus Ligroin). F: 142º (Zers.). Löst sich mit blauer Farbe in warmer, konzentrierter Schwefelsäure. Beim Schmelzen wird Bromwasserstoff entwickelt unter Bildung eines roten Produktes (W., **%**. **58**, 65). Liefert bei Behandlung mit Natriumjodid in Aceton fast augenblicklich Chrysofluorenyljodid; bei 2-stdg. Kochen mit einer Lösung von Natriumjodid in Aceton erhält man unter Abscheidung von Jod 1.2;7.8;1'.2';7'.8'-Tetrabenzo-difluorenyl-(9.9') (S. **727**).

9-Jod-1.2-benzofluoren, 11-Jod-chrysofluoren, Chrysofluorenyljodid  $C_{17}H_{11}I=$  $C_{10}H_6$  CHI. B. Aus Chrysofluorenylbromid und Natriumjodid in Aceton (Wanscheidt, 8. 59, 2097; Ж. 58, 64). — Gelbe Nadeln (aus Ligroin). Löst sich in organischen Lösungsmitteln schwerer als das entsprechende Bromid. Die Lösung in konz. Schwefelsäure ist violett. — Zersetzt sich bei ca. 103°(?) (B. 59, 2098), bei 130° (Ж. 58, 64) plötzlich unter Ausscheidung von Jod und Bildung von 1.2;1'.2'-Dibenzo-difluorenyl-(9.9') (S. 716); dieses entsteht auch beim Erhitzen in über 150° siedenden Lösungsmitteln.

2. 1.9-Benzanthren-(10), Peribenzanthren, "Benzanthren" C<sub>17</sub>H<sub>19</sub>, s. nebenstehende Formel (E I 344). Für die von Benzanthren abgeleiteten Namen wird in diesem Handbuch die angegebene Stellungsbezeichnung gebraucht. Zur Konstitution vgl. Clar, B. 65 [1932], 1420, 1425. — B. Man leitet Benzanthron im Wasserstoffstrom bei 425° langsam über Kupfer (I. G. Farbenind., D. R. P. 472825; Frdl. 16, 1189). Bei der Zinkstaubdestillation von 2-Oxy-benzanthron (FIERZ-DAVID, JACCARD, Helv. 11, 1044). Aus dem Lakton der 2-Oxy-benzanthron-Bz 1-carbonsäure bei der Destillation mit Zinkstaub im Wasserstoffstrom (Bradshaw, PERKIN, Soc. 121, 916). — F: 82-840 (I. G. Farbenind.).



#### 611

## 3. Kohlenwasserstoffe $C_{18}H_{14}$ .

- 1. 1.6-Diphenyl-hexadiin-(2.4), Dibenzyldiacetylen C<sub>18</sub>H<sub>14</sub> = C<sub>6</sub>H<sub>5</sub>·CH<sub>2</sub>·C;C·C:C·CH<sub>2</sub>·C<sub>6</sub>H<sub>5</sub>. B. Bei der Einw. von 1 Mol Jod auf 2 Mol Benzylacetylenmagnesiumbromid in Ather (Grignard, Tchéoufaki, C. r. 188, 359). F: 101°. Zur Mol.-Refr. vgl. G., Tch.
- 2. 1.2-Diphenyl-benzol, 2-Phenyl-diphenyl C<sub>18</sub>H<sub>14</sub>, s. nebenstehende Formel. Das Mol.-Gew. ist in Benzol ebullioskopisch bestimmt. B. Neben anderen Produkten bei der Einw. von Natrium auf siedendes Chlorbenzol (BACHMANN, CLARKE, Am. Soc. 49, 2093). Beim Erhitzen von 2-Jod-diphenyl mit Jodbenzol und Kupferbronze im Rohr auf 240° (B., Cl.). Prismen (aus Methanol). F: 57° (korr.). Kp: 332° (korr.). Schwer löslich in kaltem Methanol, sehr leicht in Aceton und Chloroform. Gibt bei der Oxydation mit Chromessigsäure 2-Phenyl-benzoesäure.
- 3. 1.3-Diphenyl-benzol, 3-Phenyl-diphenyl C<sub>18</sub>H<sub>14</sub>, s. nebenstehende Formel (H 695; E I 345). B. In geringer Menge beim Erhitzen von Benzol in der Bombe auf 525° (Herndon, Reid, Am. Soc. 50, 3069). Bei der Destillation des Natriumsalzes der 3.5-Diphenyl-2(oder 4)-benzoyl-benzoesäure über Calciumoxyd bei ca. 300° (Gastaldi, G. 50 I, 80). Gelbliche Nadeln (aus Alkohol). F: 86—87° (Ga.), 87° (korr.) (Bachmann, Clarke, Am. Soc. 49, 2093). Kp: 365° (korr.) (B., Cl.).
- 4. 1.4 Diphenyl benzol, 4 Phenyl diphenyl, Terphenyl C<sub>18</sub>H<sub>14</sub>, s. nebenstehende Formel (H 695; E I 345). Für die von Terphenyl abgeleiteten Namen wird in diesem Handbuch die angegebene Stellungsbezeichnung gebraucht (vgl. v. Braun, B. 66, 1472 Anm.). Die H 697 als Kohlenwasserstoff C<sub>18</sub>H<sub>14</sub> von ungewisser Struktur bezeichnete Verbindung ist als Terphenyl erkannt (Kuhn, Winterstein, B. 60, 432). B. Terphenyl entsteht in geringer Menge neben anderen Produkten beim Erhitzen von Benzol in der Bombe auf 5256 (Herndon, Reid, Am. Soc. 50, 3069) und bei der Einw. von Natrium auf siedendes Chlorbenzol (Bachmann, Clarke, Am. Soc. 49, 2093). In geringer Menge bei der Reduktion von 1.4-Dibrom-benzol mit Wasserstoff in Gegenwart von Palladium-Calciumcarbonat in methylalkoholischer Kalilauge (Busch, Schmidt, B. 62, 2618). Beim Erhitzen von 1.4-Dicyclohexyl-benzol mit 12 Atomen Brom auf 1600 (v. Braun, B. 60, 1181). In geringer Menge beim Leiten von Diphenyl-Dampf durch ein auf 500—600° erhitztes Porzellan- oder Eisenrohr, neben anderen Produkten (Fichter, Erlenmeyer, Helv. 9, 151). Beim Erhitzen von 4-Jod-terphenyl mit aktiviertem Kupferpulver auf 280—300° (Pummerer, Bittner, B. 57, 87).

In geringer Menge beim Erhitzen von Benzaldehyd in Stickstoffatmosphäre auf 680° bis 690° (HURD, BENNETT, Am. Soc. 51, 1200). Neben anderen Produkten bei der Reduktion von Zimtaldehyd mit amalgamiertem Aluminium in feuchtem Ather (KUHN, WINTERSTEIN, Helv. 11, 104). Bildet sich aus dem bei der Reduktion von Zimtaldehyd mit verkupfertem Zinkstaub neben Hydrocinnamoin entstehenden Ol bei der Destillation (KUHN, WINTER-STEIN, B. 60, 435; vgl. THIELE, B. 32 [1899], 1297; FARMER, Mitarb., Soc. 1927, 2954), beim Erhitzen mit Acetanhydrid auf 150° und beim Behandeln mit Benzoylchlorid in alkal. Lösung (FA.; Mitarb.). In geringer Menge bei der Umsetzung von Cinnamylmagnesiumbromid mit Zimtaldehyd in Äther (K., W., Helv. 11, 108). Aus Polyporsäure (3.6-Dioxy-2.5-diphenyl-benzochinon-(1.4); Syst. Nr. 810) durch Destillation mit Zinkstaub (Kögl., A. 447, 84) und aus Atromentin (Syst. Nr. 854) bei der Destillation mit Zinkstaub (Kögl., Postowsky, A. 440, 32; 445, 164). Entsteht neben anderen Produkten aus Dibenzoyl-peroxyd bei der Explosion in einer Stahlbombe bei 180—200° (Fichter, Fritsch, Helv. 8, 236, Er. Fritzer, Weller 9, 451), bei längeren Kochen mit Benzol (Converge 6, 336; Fi., Erlenmeyer, Helv. 9, 151), bei längerem Kochen mit Benzol (Gelissen, Hermans, B. 58, 291) und beim Erhitzen mit Diphenyl auf dem Wasserbad (Ge., He., B. 58, 293, 764). Aus dem Calciumsalz der cis-3.6-Diphenyl-1.2.3.6-tetrahydro-phthalsäure durch Destillation mit Kalk und Zinkstaub (DIELS, ALDER, B. 62, 2085). Neben anderen Produkten bei der Zersetzung von Benzoldiazoniumsulfat in wäßr. Lösung mit Alkohol und Kupferpulver (Gerngross, Schachnow, Jonas, B. 57, 749) oder in Eisessig-Lösung mit Ameisensäure, Eis und Kupferpulver (Ge., Dunkel, B. 57, 742) oder bei der Zersetzung von Benzoldiazoniumformiat mit Kupferpulver in starker Ameisensäure (Ge., D.). In geringer Menge bei der Behandlung von diazotiertem 4-Amino-diphenyl mit Kupferpulver und starker Ameisensäure in Eisessig (G., Sch., J., B. 57, 750) oder mit Natronlauge, zweckmäßig in Gegenwart von Magnesiumsulfat (GOMBERG, BACHMANN, Am. Soc. 46, 2343; 49, 250). Beim Eintragen von Terphenyl-diazoniumsulfat-(4) in alkal. Natriumstannit-Lösung (Pummerer, Mitarb., B. 55, 3104). Bildet sich neben anderen Produkten beim Behandeln von äther. Phenylmagnesiumbromid-Lösung mit Sauerstoff (Porter, Steel, Am. Soc. 42, 2652) und bei der Umsetzung von Phenylmagnesiumbromid mit Nitrobenzol

oder mit N.N-Diphenyl-hydroxylamin in Äther (Gilman, McCracken, Am. Soc. 49, 1058, 1060) oder mit Nitrobenzol, 2-Nitro-toluol oder 4-Nitro-toluol in Äther (Gi., McC., Am. Soc. 51, 825).

Krystalle (aus Eisessig). F: 209,5° (Gerngross, Dunkel, B. 57, 742), 209—210° (Kuhn, Winterstein, B. 60, 433; Helv. 11, 104; Gomberg, Bachmann, Am. Soc. 46, 2343; 49, 250), 213° (korr.) (Bachmann, Clarke, Am. Soc. 49, 2093). Sublimiert unter 14 mm bei 210—250° (Pummerer, Mitarb., B. 57, 742). Kp: 376° (B., Cl.). D?: 1,234 (Ziegler, Ditzel, A. 473, 200). Löslich in der 22-fachen Menge siedenden Benzols, leicht löslich in heißem Isoamylacetat und Nitrobenzol (Ge., D.). Zeigt entgegen älteren Angaben in Benzol-Lösung keine Fluorescenz (K., Wi., B. 60, 433; Ge., D., B. 57, 742). — Liefert nach langem Schütteln mit Natrium in Äther oder Dioxan 1.4-Dinatrium-1.4-diphenyl-cyclohexadien-(2.5) (Syst. Nr. 2357) (Schlenk, Bergmann, A. 463, 95).

- 4'-Jod-4-phenyl-diphenyl, 4-Jod-terphenyl  $C_{18}H_{13}I = C_6H_5 \cdot C_6H_4 \cdot C_6H_4I$ . B. Aus diazotiertem 4-Amino-terphenyl und Kaliumjodid in Wasser (Pummerer, Bittner, B. 57, 87). Blättchen (aus Benzol). F: 247° (unkorr.). Sublimiert unter 14 mm bei 280—310°. Leicht löslich in Benzol, ziemlich schwer in siedendem Eisessig, Äther und Alkohol. Liefert mit Silberpulver bei 330° Sexiphenyl, mit aktiviertem Kupferpulver bei 280—300° Terphenyl und sehr geringe Mengen Sexiphenyl.
- 1.4-Bis-[4-nitro-phenyl]-benzol, 4.4"-Dinitro-terphenyl  $C_{18}H_{12}O_4N_2 = O_2N \cdot C_6H_4 \cdot C_6H_4 \cdot NO_2$ . Diese Konstitution kommt der H 696 als x.x-Dinitro-[1.4-diphenylbenzol] beschriebenen Verbindung zu (France, Heilbron, Hey, Soc. 1938, 1368). F: 272° (Vorländer, Ph. Ch. 126, 470).
- 4.2'.4"-Trinitro-terphenyl  $C_{18}H_{11}O_6N_3$ , s. nebenstehende Formel. Diese Konstitution kommt der H 696 als x.x.x.Trinitro-[1.4-diphenyl-benzol] beschriebenen Verbindung zu (France, Heilbron, Hey, Soc. 1938, 1368, 1373).

$$0_2N \cdot \bigcirc \cdot \bigcirc \cdot \times 0_2$$

- 5. Diphenylmethylen cyclopentadien,  $\omega.\omega$  Diphenyl fulven  $C_{18}H_{14} = CH:CH$   $C:C(C_6H_5)_2$  (H 696; E I 345).  $D_4^0:1,162$  (Ziegler, Ditzel, A. 473, 204). Liefert CH:CH  $C:C(C_6H_5)_2$  (H 696; E I 345).  $D_4^0:1,162$  (Ziegler, Ditzel, A. 473, 204). Liefert beim Erwärmen mit Maleinsäureanhydrid in Benzol die  $C:C(C_6H_5)_2$   $C:C(C_6$
- 6.  $\alpha$ -Phenyl- $\beta$ -[ $\alpha$ -naphthyl]-äthylen, 1-Styryl-naphthalin  $C_{18}H_{14}=C_{10}H_7\cdot CH\cdot C_6H_5$ .
- $\beta$ -Chlor-α-phenyl- $\beta$ -[α-naphthyl]-äthylen  $C_{18}H_{18}Cl = C_{10}H_7$ ·CCl:CH·C<sub>8</sub>H<sub>5</sub>. B. Beim Erhitzen von 2.2-Dichlor-1-phenyl-2-α-naphthyl-äthan auf 120—130° (Ruggli, Reinert, Helv. 9, 78). Beim Erhitzen von Benzyl-α-naphthyl-keton mit Phosphorpentachlorid auf 100—200° (Ru., Rei.). Dickflüssiges, gelbes Öl. Kp<sub>11</sub>: 228—233°. Bei 7-stdg. Kochen mit Kaliumhydroxyd in Pyridin werden nur ca. 10% des Chlors abgespalten. Liefert beim Schmelzen mit Kaliumhydroxyd + Natriumhydroxyd ein braunes Harz.
- $\beta$ -Brom-α-phenyl- $\beta$ -[x-dibrom-naphthyl-(1)]-äthylen  $C_{18}H_{11}Br_3 = C_{10}H_5Br_2\cdot CBr$ : CH·C<sub>6</sub>H<sub>5</sub>. B. Beim Erhitzen von Benzyl-α-naphthyl-keton mit Phosphorpentabromid auf 100—180° (Ruggli, Reinert, Helv. 9, 79). Nicht ganz rein erhalten. Krystalle (aus Eisessig). F: 170—171°.
- α-Phenyl- $\beta$ -[2.4-dinitro-naphthyl-(1)]-äthylen, 2.4-Dinitro-1-styryl-naphthalin  $C_{18}H_{12}O_4N_2$ , s. nebenstehende Formel. B. Aus 1-Methyl-2.4-dinitro-naphthalin und Benzaldehyd in Gegenwart von einem Tropfen Piperidin in Pyridin (Pastak, Bl. [4] 39, 74). Schuppen (aus Benzol oder Eisessig). F: 166°. Fast unlöslich in Petroläther, schwer löslich in Alkohol, leicht in Aceton und Chloroform.

7.  $\alpha$ -Phenyl- $\beta$ -[ $\beta$ -naphthyl]-āthylen. 2-Styryl-naphthalin  $C_{18}H_{14}=C_{10}H_{7}$ ·CH:CH:C $\theta$ - $\theta$ - $\theta$ - $\theta$ - $\theta$ - $\theta$ - $\theta$ -naphthylester durch Erhitzen unter gewöhnlichem Druck (Anschütz, B. 60, 1321; Ch. Selden, Dissert. [Erlangen 1888], S. 10). — Silberglänzende Blättchen (aus Alkohol). F: 145°. Leicht löslich in Chloroform. — Gibt ein bei 192° (Zers.) schmelzendes Bromid.

- 613
- $\beta$ -Chlor-α-phenyl- $\beta$ -[ $\beta$ -naphthyl]-äthylen  $C_{18}H_{13}Cl=C_{10}H_{7}\cdot CCl: CH\cdot C_{6}H_{5}.$  B. Beim Kochen von Benzyl- $\beta$ -naphthyl-keton mit Phosphorpentachlorid in Chloroform (Ruggli, Reinert, Helv. 9, 75). Krystalle (aus Alkohol). F: 116—117°. Destilliert bei 11 mm Druck unter geringer Zersetzung. Permanganat-Lösung wird entfärbt. Ist beständig gegen methylalkoholische Kalilauge und gegen Schmelzen mit Kaliumhydroxyd + Natriumhydroxyd. Liefert beim Kochen mit Kaliumhydroxyd in Pyridin Phenyl- $\beta$ -naphthyl-acetylen.
- 8. α-Phenyl-α-[α-naphthyl]-āthylen C<sub>18</sub>H<sub>14</sub> = C<sub>10</sub>H<sub>7</sub>·C(:CH<sub>2</sub>)·C<sub>6</sub>H<sub>5</sub> (H 697). Zur Bildung nach Stoermer, Simon (B. 37 [1904], 2757) vgl. Hurd, Webb, Am. Soc. 49, 549. Gibt ein Jodhydrin, das beim Behandeln mit Silbernitrat oder Quecksilberoxyd in die Ausgangsverbindung und unterjodige Säure zerfällt (Luce, C. r. 180, 146).
- $\beta$ -Brom-α-phenyl-α-[α-naphthyl]-äthylen  $C_{18}H_{18}Br=C_{10}H_{\gamma}\cdot C(:CHBr)\cdot C_6H_5$  (H 697). Stellt man aus  $\beta$ -Brom-α-phenyl-α-[α-naphthyl]-äthylen die Grignard-Verbindung her und kuppelt diese in Äther bzw. siedendem Benzol mit 4-Dimethylamino-benzophenon und erhitzt dann unter 5 mm Druck auf ca. 280°, so erhält man ein Isomeres des 1.3-Diphenyl-α-naphthyl-3-[4-dimethylamino-phenyl]-allens (Hurd, Webb, Am. Soc. 49, 552). Die Grignard-Verbindung aus  $\beta$ -Brom-α-phenyl-α-[α-naphthyl]-āthylen liefert mit Methyl- $\beta$ -pyridyl-keton in siedendem Äther 1-Phenyl-1-[α-naphthyl]-3-[ $\beta$ -pyridyl]-buten-(1)-ol-(3).
- 9. 3-Cinnamyliden-inden, ω-Styryl-benzofulven C<sub>18</sub>H<sub>14</sub>, s. nebenstehende Formel (H 697). Zur Bildung
  nach Thiele (B. 33 [1900], 3399) vgl. Whitby, Katz, Am.

  Soc. 50, 1169. Absorptionsspektrum in Methyläthylketon-Lösung: Jonescu, Bulet. Cluj 2,
  298; C. 1925 I, 2221. Polymerisiert sich beim Erhitzen auf 200° und bei Einw. von
  Zinn(IV)-chlorid unter Bildung von gemischten Kondensationsprodukten, die Polymere bis
  zu ca. (C<sub>18</sub>H<sub>14</sub>)<sub>8</sub> enthalten. Die Polymerisation unter dem Einfluß von Antimon(V)-chlorid
  erfolgt so heftig, daß Verkohlung eintritt (Wh., K.).
- 1-Nitro-3-cinnamyliden-inden  $C_{18}H_{13}O_2N = O_2N \cdot C < C_6H_4 > C:CH \cdot CH : CH \cdot C_6H_5$ .

  B. Aus dem Kaliumsalz des 3-Isonitro-indens beim Behandeln mit Zimtaldehyd in Methanol bei Gegenwart von konz. Säuren in der Hitze (WISLICENUS, PFEILSTICKER, A. 436, 41).
- B. Aus dem Kallumsalz des 3-18onitro-indens beim Benandem mit Zimtaldenyd in Methanol bei Gegenwart von konz. Säuren in der Hitze (Wislicenus, Pfellsticker, A. 436, 41). Tiefrote Krystalle (aus Eisessig). Zersetzt sich bei 208°. Löst sich in Alkali mit hellgelber Farbe.

10. 1.1'- Dimethyl - [indeno - 3'.2': 2.3 - inden],

- 9.12-Dimethyl-diphensuccindadien-(9.11) C<sub>18</sub>H<sub>14</sub>, s. nebenstehende Formel. B. Durch Kochen von 9.12-Dimethyl-diphensuccindandiol-(9.12) mit Ameisensäure und Eisessig (Brand, Schläger, B. 56, 2543). Tiefrote Nadeln (aus Amylacetat), braunrote, manchmal auch hellere Nadeln (aus Eisessig), gelbbraune Nadeln (aus Alkohol). F: 212°. Ist in gepulvertem Zustand stets gelb. Die heiße Lösung in verd. Alkohol liefert beim Schütteln mit Wasserstoff in Gegenwart von Palladium-Tierkohle 9.12-Dimethyl-diphensuccindan. Läßt sich durch Zink und Eisessig nicht reduzieren.
- 11. Kohlenwasserstoff  $C_{18}H_{14}$  von ungewisser Struktur (H 697) wird als Terphenyl erkannt (Kuhn, Winterstein, B. 60, 432).

# 4. Kohlenwasserstoffe $C_{19}H_{16}$ .

1. Triphenylmethan, Tritan C<sub>19</sub>H<sub>16</sub> = (C<sub>6</sub>H<sub>5</sub>)<sub>3</sub>CH (H 698; E I 345). B. Beim Erhitzen von Benzol mit Chloroform oder Tetrachlorkohlenstoff in Gegenwart von im Wasserstoffstrom erhitztem Aluminium (RAY, DUTT, J. indian chem. Soc. 5, 108; C. 1928 I, 2371), von Chrompulver (CHAKRABAETY, DUTT, J. indian chem. Soc. 5, 516; C. 1929 I, 501) oder von Zirkoniumchlorid (Krishnamurt, C. 1929 I, 2156). Aus Diphenylbrommethan durch Kochen mit thiophenfreiem Benzol und Zinn(IV)-chlorid unter Feuchtigkeitsausschluß (Pfeiffer, Eistert, J. pr. [2] 124, 183) oder mit überschüssigem Quecksilberdiphenyl im Toluol (Whitmore, Thurman, Am. Soc. 51, 1500). Bei der Einw. von Zinkchlorid auf Triphenylfluormethan in Äther (BLICKE, Am. Soc. 46, 1517). Zur Bildung aus Triphenylchlormethan nach Schmdlin, Garcia-Banus (B. 45, 3189) vgl. Hatt, Soc. 1929, 2421. Bei der Einw. von Äther, Alkohol oder Dibutyläther auf Triphenylchlormethan in Gegenwart von Aluminiumchlorid (Norris, Young, Am. Soc. 46, 2581, 2582). Beim Erhitzen von Triphenylchlormethan mit p-Kresol und Zinkchlorid auf 180°, neben einem gelbroten Farbstoff (Van Alphen, R. 46, 291). Bei der Einw. von Hydrazobenzol auf Triphenylchlormethan in siedendem Benzol (Aspelund, Acta Acad. Abo. 5, Nr. 1, 115; C. 1929 I, 2417) oder auf Triphenylmethyl in siedendem Toluol (Goldschmidt, Wurzschmitt, B. 55, 3219). Zur Bildung bei

der Bestrahlung von Triphenylmethyl mit Licht verschiedener Wellenlängen in verschiedenen Lösungsmitteln vgl. Bowden, Jones, Soc. 1928, 1149.

Triphenylmethan entsteht beim Destillieren von 1.1.1-Triphenyl-2-[2-oxy-phenyl]-āthan mit Zinkstaub im Wasserstoffstrom (Schorigin, B. 59, 2507). Die labile Form des Triphenylmethans entsteht beim Leiten von Triphenylcarbinol-Dampf über vorher auf 150—1800 erhitzte platinierte Kohle im Wasserstoffstrom; bei 3000 erhält man bei Anwendung aktivierter Kohle die stabile Form (Zelinsky, Gawerdowskaja, B. 61, 1049). Beim Erhitzen von Triphenylcarbinol mit konz. Salzsäure im Rohr auf 1450 (Gilman, Kirby, Kinney, Am. Soc. 51, 2259). Neben anderen Produkten durch Einw. von 2-, 3- und 4-Chlor-phenol (Hardy, Soc. 1929, 1007) oder von p-Kresol (Schorigin, B. 60. 2375, 2377) auf Triphenylcarbinol in Eisessig-Schwefelsäure. Aus Triphenylcarbinol oder Äthyltrityläther durch Einw. von Äther bei Gegenwart von Aluminiumchlorid (Norris, Young, Am. Soc. 46, 2581). Bei der thermischen Zersetzung von Äthyl-, Isopropyl- und Butyltrityläther (Norris, Young, Am. Soc. 46, 2582) und beim Kochen von Äthyltrityläther mit wasserfreier Ameisensäure (Schlenk, Bergmann, A. 463, 152). Bei längerem Erwärmen von o-, m- oder p-Tolyltrityläther mit Natrium in Toluol im Rohr auf ca. 1000, heben anderen Produkten (Schorigin, B. 59, 2511; 60, 2371). Beim Erhitzen von p-Tolyltrityläther mit Zinkchlorid auf 1800 (Scho., Makarow-Semljanski, B. 61, 2521; vgl. dazu van Alphen, B. 61, 277).

Aus Benzaldehyd und Benzol in Gegenwart von Aluminiumchlorid oder besser Eisenchlorid, zuletzt unter Erwärmen auf 60—80°, neben anderen Produkten (SCHAARSCHMIDT, HERMANN, SZEMZÖ, B. 58, 1915). Aus dem Kalium- oder Natriumsalz der Triphenylessigsäure in wäßrig-alkoholischer Lösung bei Bestrahlung mit kurzwelligem Licht (Jaeger, Soc. 119, 2074; J., Berger, R. 41, 76, 79). Durch Einw. von Benzylmagnesiumbromid auf Triphenylacetonitril in Toluol und Zersetzung der Magnesiumverbindung mit verd. Salzsäure (Ramart-Lucas, Salmon-Legagneur, Bl. [4] 43, 329). Beim Kochen von Tritylanilin mit wäßrig-alkoholischer Salzsäure (Gilman, Kirby, Kinney, Am. Soc. 51, 2259). Beim Erhitzen von Trityl-p-toluidin mit Zinkchlorid auf 190° (van Alphen, R. 46, 504). Aus N.N'-Ditrityl-hydrazin beim Schmelzen sowie beim Erhitzen mit Zinkchlorid auf ca. 100° oder mit Benzol auf 250° (Stieglitz, Brown, Am. Soc. 44, 1277, 1278, 1279). Bei der Zersetzung von α-Benzolazo-triphenylmethan in reinem Ligroin bei 70—80° (Wielland, Popper, Seefried, B. 55, 1825). Durch Erhitzen von Triphenylmethan-α-phosphonsäure (Syst. Nr. 2292) mit Natronkalk (Boyd, Smith, Soc. 125, 1477). Neben anderen Produkten bei der Einw. von Kohlenoxyd auf Phenylmagnesiumbromid in Äther + Benzol bei Gegenwart von Chrom(III)-chlorid (Job, Cassal, Bl. [4] 41, 820) oder von Nickelcarbonyl (Gilliand, Blanchard, Am. Soc. 48, 419). Bei der Umsetzung von überschüssigem Phenylmagnesiumbromid mit Benzoylameisensäure (Peter, Mitard., Am. Soc. 47, 453) oder mit Benzoylcyanid in Äther, neben anderen Produkten (Adams, Bramlet, Tendick; Am. Soc. 42, 2373). In geringer Menge aus Phenylcalciumjodid und Benzoylchlorid in Äther (Gilman, Schulze, Am. Soc. 48, 2467). Beim Behandeln von Lithiumtrityl oder Rubidiumtrityl mit Wasser (v. Grosse, B. 59, 2651) oder von Kaliumtrityl mit Methoxy-trimethyl-ammoniumjodid in absol. Äther (Jones, Seymour, Am. Soc. 50, 1152).

Darstellung aus Benzol und Tetrachlorkohlenstoff in Gegenwart von Aluminiumchlorid: Norris, Young, Am. Soc. 46, 2581; N., Org. Synth. Coll. Vol. I [1932], 532.

Physikalische Eigenschaften. Außer der stabilen und der instabilen Form existiert nach Schaum (A. 462, 207) noch eine sehr unbeständige dritte Modifikation. Umwandlungsgeschwindigkeit der instabilen Form: Schaum. Röntgenogramm der stabilen Form: Becker, Rose, Z. Phys. 14 [1923], 371; 17 [1923], 351; 24 [1924], 65; vgl. dazu Mark, Weissen-Berg, Z. Phys. 17, 347; 24, 68; Herzog, Jancke, Z. Phys. 45, 195; C. 1928 I, 639. Beugung von Röntgenstrahlen in geschmolzenem Triphenylmethan: H., J. Schmelzpunkt der stabilen Form: 91° (Vorländer, Haberland, B. 58, 2654), 91—92° (Jones, Seymour, Am. Soc. 50, 1972), 92° (Zelinsky, Gawerdowskaja, B. 61, 1050), 92,2—92,5° (Adams, Marshall, Am. Soc. 50, 1972), 92,5—93° (Orndorff, Mitarb., Am. Soc. 49, 1543); der instabilen Form: 81° (Z., G.). D°: 1,148 (Ziegler, Ditzel, A. 473, 207); D°: 1,0140; D°: 1,0155 (v. Auwers, Bergmann, A. 476, 276); Dichte zwischen 94° (1,018) und 175° (0,956): Lautsch, Ph. Ch. [B] 1, 124. — nc 100,5°: 1,5788; nc 1,5852; nc 1,5852; nc 1,5997; nc 1,5997; nc 1,6136 (L.). Ultraviolett-Absorptionsspektrum der Lösung in absol. Alkohol: Orndorff, Mitarb., Am. Soc. 49, 1543; in Äther: Anderson, Am. Soc. 50, 209; 51, 1890. Luminescenz bei Bestrahlung mit Röntgenstrahlen: De Beaujeu, J. Phys. Rad. [6] 4, 263; C. 1924 I, 134; mit Kathodenstrahlen: Marsh, Soc. 1927, 128. Tesla-Luminescenzspektrum: McVicker, Marsh, Stewart, Soc. 127, 999. Depolarisationsgrad des an flüssigem Triphenylmethan bei 95° gestreuten Lichtes: Lautsch, Ph. Ch. [B] 1, 124. Raman-Effekt: Petrikaln, Hocherg, Ph. Ch. [B] 3, 227. Dielektr.-Konst. zwischen 94° (2,46) und 175° (2,35): L. Zeigt piezoelektrischen Effekt (Giebe, Scheibe, Z. Phys. 33, 765; C. 1926 I, 317).

Die labile Form des Triphenylmethans ist schwer löslich in konz. Schwefelsäure unter Gelbfärbung und gibt mit Benzol eine Komplexverbindung; die stabile Form gibt mit konz. Schwefelsäure eine farblose Lösung, die sich nach einigen Stunden goldgelb färbt und bildet mit Benzol keine Komplexverbindung (Zelinsky, Gawerdowskaja, B. 61, 1050). Triphenylmethan löst sich in flüssigem Schwefeldioxyd mit roter Farbe (De Carli, G. 57, 351). Unlöslich in flüssigem Ammoniak (De C.; vgl. Kraus, Rosen, Am. Soc. 47, 2740). Kryoskopisches Verhalten in Benzol bei Gegenwart von Natriumsulfat verschiedenen Wassergehaltes: Jones, Bury, Soc. 127, 1950. Thermische Analyse der binären Systeme mit Phenol und mit 2-, 3 und 4-Nitro-phenol: Kremann, Odelga, Zawodsky, M. 42, 120; mit 2.4-Dinitro-phenol: Kr., Mitarb., M. 43, 324; mit Pikrinsäure: Kr., O., Z., M. 42, 144; Rheinboldt, Kircheisen, J. pr. [2] 112, 190; mit α- und β-Naphthol: Kr., O., Z., M. 42, 132; mit Triphenylcarbinol: Kr., Mitarb., M. 43, 325; mit Brenzcatechin, Resorcin, Hydrochinon und Pyrogallol: Kr., O., Z., M. 42, 134; mit Benzophenon: Schaum, Rosenberger, Z. anorg. Ch. 136, 335; mit Chinon: Kr., Mitarb., M. 43, 308; mit Anilin, p-Toluidin, α- und β-Naphthylamin: Kr., O., Z., M. 42, 120, 122, 128; mit σ-Phenylendiamin: Kr., Mitarb., M. 43, 323; mit m-Phenylendiamin: Kr., O., Z., M. 42, 124; mit Sarkosinanhydrid: Pfeiffer, Angern, H. 154, 285. Ebullioskopisches Verhalten in Tetrachloräthylen: Walden, Ann. Acad. Sci. fenn. 29, Nr. 23, 16; C. 1928 I, 166. Temperatur-Dichte- und Temperatur-Druck- Diagramm äther. Triphenylmethan-Lösungen in der Umgebung des kritischen Punktes: Schröer, Ph. Ch. [A] 142, 378. Viscosität von geschmolzenen Gemischen mit Schwefel: Mondain-Monval, Schneider, Cr. 186, 751; Bl. [4] 43, 1316. Kontaktwinkel gegen Wasser: Nietz, J. phys. Chem. 32, 261. Dichte und Brechungsindices einer Lösung in 1-Methyl-naphthalin bei 18,2°: v. Auwers, Bergmann, A. 476, 276.

Chemisches und biochemisches Verhalten. Triphenylmethan läßt sich bei Gegenwart von Platinoxyd in Eisessig bei 60° und 2—3 Atm. Druck zu Tricyclohexylmethan hydrieren (Adams, Marshall, Am. Soc. 50, 1972). Liefert beim Erhitzen mit Wasserstoff unter Druck in Gegenwart von Tonerde und Kupferoxyd auf 500° Benzol, Diphenylmethan und andere Produkte (Ifatjew, Orlow, B. 60, 1967). Reagiert mit Natrium in flüssigem Ammoniak unter Wasserstoff-Entwicklung und Bildung von Natriumtrityl (Kraus, Kawamura, Am. Soc. 45, 2758). Gibt mit Kaliumamid oder Natriumamid in reinem oder Ammoniumsalze enthaltendem flüssigem Ammoniak farblose Lösungen; in Gegenwart von in flüssigem Ammoniak löslichen Alkalien entstehen rote Lösungen von Kaliumtrityl bzw. Natriumtrityl (Kraus, Rosen, Am. Soc. 47, 2741, 2743). Liefert beim Kochen mit Bleitetraacetat in Eisessig Tritylacetat (DIMROTH, SCHWEIZER, B. 56, 1384).

Triphenylmethan wird nach Verfütterung an Kaninchen und Hunde zum großen Teil unverändert im Harn wieder ausgeschieden (MIRIAM, WOLF, SHERWIN, J. biol. Chem. 71, 697). Physiologisches Verhalten: H. STAUB in J. HOUBEN, Fortschritte der Heilstoffchemie, 2. Abt. Bd. II [Berlin-Leipzig 1932], S. 65.

#### Substitutionsprodukte des Triphenylmethans.

Triphenylfluormethan, Triphenylmethylfluorid, Tritylfluorid  $C_{19}H_{15}F=(C_6H_5)_3CF$ . B. Aus Triphenylcarbinol und Acetylfluorid in Benzol (BLICKE, Am. Soc. 46, 1517). — Krystalle (aus Petroläther oder Alkohol). F:  $102-104^{\circ}$ . Sehr leicht löslich in Benzol, Äther und Schwefelkohlenstoff. — Wird von Kaliumpermanganat in Aceton unter Bildung von Triphenylcarbinol oxydiert. Beständig gegen fein verteiltes Silber, Quecksilber und Zink in Benzol und gegen Kupferbronze und Magnesium in Äther. Geht bei Einw. von Zinkchlorid in Äther in Triphenylmethan über. Liefert mit Aluminiumchlorid ein rotes Öl, mit Zinn(II)-chlorid und Eisenchlorid eine orangefarbene, mit Zinkchlorid und fluorid eine gelbe Verbindung. Wird beim Kochen mit Sodalösung, wäßr. Silbernitrat-Lösung oder Essigsäure in Triphenylcarbinol übergeführt. Liefert beim Kochen mit p-Toluidin in Benzol Tritylptoluidin. Gibt bei der Einw. von Phenylmagnesiumbromid in kaltem Äther eine orangefarbene Lösung von Triphenylmethyl, ferner Triphenylcarbinol und ein rotes Öl.

Triphenylchlormethan, Triphenylmethylchlorid, Tritylchlorid  $C_{19}H_{15}Cl=(C_{6}H_{5})_{3}CCl$  (H 700, E I 346). B. Durch Erwärmen von Benzotrichlorid und Benzol in Gegenwart von Chrompulver (Chakrabarty, Dutt, J. indian chem. Soc. 5, 516; C. 1929 I, 501). Bei der Einw. von Aluminiumchlorid auf Äthyltrityläther in Schwefelkohlenstoff (Norris, Young, Am. Soc. 46, 2582). Beim Behandeln von Tritylamin in flüssigem Ammoniak mit Ammoniumchlorid (Kraus, Rosen, Am. Soc. 47, 2745). Durch Erwärmen von Tritylphosphonsäure mit Phosphorpentachlorid auf 70° (Hatt, Soc. 1929, 2421).

F: 106° (Charrabarty, Dutt, J. indian chem. Soc. 5, 516; C. 1929 I, 501), 109—110° (Orndorff, Mitarb., Am. Soc. 49, 1543). Löst sich in Acetylchlorid, Benzoylchlorid, Thionylchlorid, Nitromethan, Nitrobenzol und heißem Tetrachloräthan mit gelber Farbe, in anderen

indifferenten Lösungsmitteln farblos; Einfluß der Temperatur auf die Farbe der Lösungen: HANTZSCH, B. 54, 2591. Die farbigen Lösungen werden durch absol. Äther entfärbt (H.). Colorimetrische Untersuchung des Gleichgewichts zwischen farbloser und gelber Form in Nitromethan: H. Ultraviolett-Absorptionsspektrum der Lösung in absol. Alkohol und Äther: O., Mitarb.; Anderson, Am. Soc. 50, 211; in Hexan, m-Kresol und Pyridin sowie bei Gegenwart von Schwefeldioxyd in Chloroform: H., B. 54, 2582, 2586, 2594. Sehr schwer löslich in flüssigem Ammoniak unter geringer Hydrolyse; die Lösung leitet den elektrischen Strom (Kraus, Rosen, Am. Soc. 47, 2743, 2745). Elektrische Leitfähigkeit in flüssigem Schwefeldioxyd und in Blausäure + Benzol bei —80 und 00: Gomberg, Sullivan, Am. Soc. 44, 1818; in m-Kresol: H., B. 54, 2602. — Zur Konstitution des Triphenylchlormethans in seinen farblosen und gefärbten Lösungen vgl. Hantzsch, B. 54, 2569, 2573; Burawoy, B. 64, 1635; H., Bu., B. 64, 1622; 67 [1934], 793; Lifschttz, B. 64 [1931], 161; 67, 1413; Z. wiss. Phot. 32 [1933], 131.

Gibt bei der Einw. von Kaliumpermanganat in Aceton Triphenylcarbinol (BLICKE, Am. Soc. 46, 1518). Bei der Einw. von wenig Wasser auf eine Lösung in absol. Aceton entsteht eine in hellgelben Prismen krystallisierende Verbindung, die sich bei 50—60° unter Umwandlung in Triphenylcarbinol zersetzt (Rebek, Kramarsic, B. 62, 484). Gibt mit dem Natriumsalz des Phosphorigsäurediäthylesters in Benzol + Äther Tritylphosphonsäurediäthylester (Syst. Nr. 2292) (Arbusow, Arbusow, B. 62, 1873; Ж. 61, 1926). Liefert bei Einw. von überschüssigem Rubidiumamalgam in absol. Äther unter Ausschluß von Luft Rubidiumtrityl; reagiert analog mit Caesium- und Lithiumamalgam (v. Grosse, B. 59, 2651). Einw. von 4 Atomen Caesium in absol. Äther: v. G. Liefert in flüssigem Ammoniak mit Natrium Natriumtrityl, mit Kalium Kaliumtrityl, mit Calcium eine rötlichbraune Verbindung, die sich bei Zimmertemperatur sofort, langsam bei ca. —35° zersetzt (Kraus, Kawamura, Am. Soc. 45, 2757). Zur Reaktion mit Calcium in flüssigem Ammoniak vgl. ferner Kr., Rosen, Am. Soc. 47, 2743. Addiert in flüssigem Ammoniak ca. 2 Mol Ammoniak; beim Leiten von Ammoniak lösliche Komplexverbindung, die nach Vertreiben des überschüssigen Ammoniaks in Tritylamin und Ammoniumchlorid zerfällt (Kr., R.). Geschwindigkeit der Umsetzung mit Kaliumjodid in Aceton bei 0°: Conant, Kirner, Hussey, Am. Soc. 47, 498. Triphenylchlormethan liefert bei längerem Schütteln mit überschüssigem Silbercarbonat in Benzol Ditritylcarbonat (Halford, Am. Soc. 51, 2158). Gibt bei der Einw. von Zinkwolle in siedendem Benzol 9-Phenyl-fluoren (Gilman, Kirby, Kinney, Am. Soc. 51, 2259). Liefert bei der Einw. von Aluminiumchlorid in Äther, Alkohol oder Dibutyläther Triphenylmethan und ammorphe Produkte, die sich bei der Destillation zersetzen (Norris, Young, Am. Soc. 46, 2582).

Triphenylchlormethan gibt beim Erwärmen mit o. bzw. p-Kresol in absol. Pyridin auf dem Wasserbad o. bzw. p-Tolyltrityläther (SCHORIGIN, B. 59, 2506; van Alphen, B. 61, 277; R. 46, 290; vgl. dazu Boyd, Hardy, Soc. 1928, 630). Beim Erhitzen mit o.Kresol auf 180°, zweckmäßig in Gegenwart von etwas Zinkchlorid (van A., R. 46, 289) oder mit o.Kresol und etwas o.Kresol-natrium auf 120° (SCH., B. 58, 2507) erhält man 4-Oxy-3-methyl-tetraphenylmethan (vgl. Boyd, Hardy, Soc. 1928, 631, 632; Iddles, French, Mellon, Am. Soc. 61 [1939], 3192; I., Mickler, Am. Soc. 62 [1940], 2757); analoge Verbindungen entstehen beim Kochen mit m-Kresol-natrium in Xylol (SCHORIGIN, B. 60, 2376) und beim Erhitzen mit p-Kresol-natrium und p-Kresol auf 120—140° (SCH., B. 60, 2378; vgl. Boyd, Hardy, Soc. 1928, 632), während man beim Erhitzen mit p-Kresol und Zinkchlorid auf 180° Triphenylmethan und einen gelbroten, in Kalilauge löslichen Farbstoff erhält (van Alphen, R. 46, 289, 291). Liefert beim Schütteln mit der Kaliumverbindung des Triphenylcarbinols in Benzol im Rohr und Kochen des Reaktionsprodukts mit Aceton und verd. Natronlauge 4-Oxy-triphenylcarbinol (Blicke, Am. Soc. 45, 1969). Gibt mit 0,5 Mol Brenzcatechin in Pyridin auf dem Wasserbad Brenzcatechin-ditrityläther; mit 2 Mol Brenzcatechin entsteht eine Verbindung C<sub>22</sub>H<sub>20</sub>O<sub>2</sub> (s. bei Brenzcatechin, Syst. Nr. 553) (Helferich, Speidel, Toeldte, B. 56, 770). Kondensiert sich mit der Kaliumverbindung des Dibenzoylmethans in Benzol bei ca. 50° zu ω.ω-Diphenyl-ω'.ω'.dibenzoyl-p-xylol (Gold-schmidt, Mitarb., B. 61, 834). Bildet additionelle Verbindungen mit 1—2 Mol Anilin (F: 189—190°) und mit 1 Mol Pyridin (F: 173—174°) (Kraus, Rosen, Am. Soc. 47, 2744). Gibt beim Erhitzen mit p-Toluidin-hydrochlorid und Zinkchlorid auf 160° Triphenylmethan und einen roten Farbstoff (van Alphen, R. 46, 504). Wird beim Kochen mit Hydrazobenzol in Benzol zu Triphenylmethan reduziert (Aspelund, Ata Acad. Abo. 5, 115; C. 1929 I, 2417). Reagiert mit Triphenylmotatrium in äther. Lösung bei Luftabechluß unter

iodid in Benzol + Ather wechselnde Mengen 5.5'-Ditrityl-dithienyl-(2.2')(?), sowie Triphenylmethan und Ditritylperoxyd (MINNIS, Am. Soc. 51, 2145). Bei 9-tägiger Einw. auf Lithiumbutyl in Petroläther erhält man mäßige Mengen 1.1.1-Triphenylpentan (MARVEL, HAGER, COFFMAN, Am. Soc. 49, 2327). Gibt mit Natriumtrityl in flüssigem Ammoniak + Toluol Triphenylmethyl, mit Kaliumtrityl eine Verbindung vom Schmelzpunkt 210° und eine Verbindung vom Schmelzpunkt 235—236° (Kraus, Kawamura, Am. Soc. 45, 2759, 2760). Liefert mit dem aus Tetraphenyläthylen und Natriumpulver in Äther entstehenden Dinatriumtetraphenyläthan in Äther unter Stickstoff wenig Pentaphenyläthyl (S. 712) und Triphenylmethyl (Schlenk, Mark, B. 55, 2297, 2289).

Verhalten bei der Bestimmung des aktiven Wasserstoffs nach Zerewitinow: H. Fischer, Postowsky, H. 152, 308; Fi., Walter, B. 60, 1988.

 $(C_6H_5)_3CCl+HgCl_2$ . Absorptionsspektrum in Äthylenbromid: Hantzsch, B. 54, 2585. —  $(C_6H_5)_3CCl+SnCl_4$  bzw.  $[(C_6H_5)_3C]SnCl_5$ . Absorptionsspektrum in Chloroform +2% Acetanhydrid: H., B. 54, 2585, 2593.

4.4'. $\alpha$ -Trichlor-triphenylmethan, 4.4'-Dichlor-triphenylchlormethan, 4.4'-Dichlor-tritylchlorid  $C_{19}H_{19}Cl_3=C_6H_5\cdot CCl(C_6H_4Cl)_2$  (H 703). Wurde von Stagner (Am. Soc. 38 [1916], 2075) in Form einer bei 43—50° schmelzenden Krystallmasse erhalten.

**2-Brom-triphenylmethan**  $C_{19}H_{15}Br = (C_6H_5)_2CH\cdot C_6H_4Br$  (E I 348). *B*. Bei der Einw. von Phenylmagnesiumbromid auf 2-Brom-benzoesäureathylester bei Gegenwart von Magnesium in Ather bei 50° in Stickstoffatmosphäre, Zersetzung des Reaktionsprodukts und nachfolgenden Destillation unter vermindertem Druck (HATT, Soc. 1929, 1628). - F: 84-85°.

Triphenylbrommethan, Triphenylmethylbromid, Tritylbromid  $C_{18}H_{15}Br = (C_6H_5)_8CBr$  (H 704; E I 348). B. Durch Einw. von Bromwasserstoff auf Triphenylcarbinol in Gegenwart von etwas Acetanhydrid in Eisessig (Hantzsch, B. 54, 2589). — Röntgenogramm: Mark, Noethling, Z. Kr. 65, 449). F: 152° (Hantzsch; Pfeiffer, Eistert, J. pr. [2] 124, 184), 150° (M., N.). D: 1,55 (M., N.). Erscheint fein pulverisiert farblos; färbt sich beim Erhitzen gelb und wird beim Erkalten wieder fast farblos (H.). Löst sich in Tetrachlorkohlenstoff, Chloroform, Tri- und Tetrachloräthylen farblos, in Nitromethan, Tetrachloräthan, 1,2,3,Trichlor, propen Trichlorpitromethan, Nitrobenzol Benzol methan, Tetrachloräthan, 1.2.3-Trichlor-propan, Trichlornitromethan, Nitrobenzol, Benzonitril, Dichloräthylen und Dichlormethan mit gelber Farbe von in dieser Reihe abnehmender Intensität; die gelben Lösungen werden durch Äther entfärbt (H.). Einfluß der Temperatur auf die Farbe der Lösungen: H., B. 54, 2591. Absorptionsspektrum in Hexan, Tetrachloräthan und m-Kresol und in Tetrachloräthan bei Gegenwart von Schwefeldioxyd: H., B. 54, 2582, 2586, 2594. Colorimetrische Untersuchung des Gleichgewichts zwischen farbloser und gelber Modifikation in Tetrachloräthan, Nitromethan und bei Gegenwart von Schwefeldioxyd in Tetrachloräthan: H., B. 54, 2591. Elektrische Leitfähigkeit in flüssigem Schwefeldioxyd in Tetrachloräthan: H., B. 54, 2591. dioxyd und in Blausaure + Benzol bei -80 und 00: Gomberg, Sullivan, Am. Soc. 44, 1818; in m-Kresol: H., B. 54, 2602. Einfluß auf die Klopffestigkeit von Treibstoffen: EGERTON, GATES, J. Inst. Petr. Technol. 13, 279; C. 1928 II, 211. — Zur Konstitution der farblosen und der gelben Modifikation vgl. die S. 616 bei Triphenylchlormethan zitierte Literatur.

Reagiert mit Silbernitrat in Acetonitril und mit Kaliumrhodanid in Aceton bei Zimmertemperatur sofort unter Bildung von Silberbromid bzw. Kaliumbromid (CAROTHERS, Am. Soc. 48, 3193). Liefert beim Schütteln mit Ammoniumacetat in Benzol oder beim Sättigen der Lösung in Eisessig + Benzol mit Ammoniak Tritylacetat (Schoeffle, Am. Soc. 47, 1470). Reagiert sofort mit absolutem Methanol (Ca.). Gibt bei der Einw. auf Natriumacetessigester in Äther + Benzol entgegen den Angaben von Allen, Kölliker, A. 227, 111; H 5, 704) Triphenylmethyl und α-Tritylacetessigester, der bei der Verseifung mit heißer wäßrig alkoholichen verseifung mit heißer wäßrig mit heißer wäßrig alkoholichen verseifung mit heißer wäßrig mit heißen verseifung mit heißen verseif lischer Natronlauge unter Bildung von  $\beta.\beta.\beta$ -Triphenyl-propionsaure gespalten wird (BLICKE, Am. Soc. 48, 739). Liefert mit Natriumcyanessigester in Alkohol oder Äther sehr geringe Mengen  $\beta.\beta.\beta$ -Triphenyl- $\alpha$ -cyan-propionsäure-äthylester(?) (Hellerman, Am. Soc. 49, 1737). Gibt bei der Einw. von Natriumdiäthylphosphit in Benzol + Äther Triphenylmethyl, wenig Triphenylmethan und ein phosphorhaltiges, flüssiges Produkt (Kp<sub>3</sub>: 146—149°); in absol. Alkohol entsteht nur Äthyltrityläther (Arbusow, Arbusow, B. **62**, 1874; Ж. **61**, 1926). Liefert beim Erhitzen mit Trialkylphosphiten Tritylphosphonsäuredialkylester und Alkylbromide (Ar., Ar., 231; C. 1929 I, 2979). Beim Erhitzen mit Isopropyloxydiphenylphosphin (Syst. Nr. 2272) auf 100—200° entstehen Diphenyl-trityl-phosphinoxyd und Isopropylbromid (Ar., Ar.). Reagiert mit Diphenylarsenjodid unter Bildung einer tiefroten Substanz, die begierig große Mengen Sauerstoff absorbiert (BLICKE, SMITH, Am. Soc. 51, 2275). Beim Behandeln mit 4.4'.4". Trinitro-triphenylmethan-natrium in Benzol entstehen Triphenylmethyl und 4.4'.4". Trinitro-triphenylmethyl (ZIEGLER, BOYE, A. 458, 254).

Verbindung mit Zinn(IV)-chlorid C<sub>19</sub>H<sub>15</sub>Br + SnCl<sub>4</sub>. B. Aus den Komponenten in siedendem Benzol (Pfeiffer, Eistert, J. pr. [2] 124, 184). Nicht rein erhalten. Orangefarbenes Pulver.

- $\alpha$ -Chlor-2-brom-triphenylmethan, 2-Brom-triphenylchlormethan, 2-Brom-tritylchlorid  $C_{19}H_{14}ClBr = (C_6H_5)_2CCl\cdot C_6H_4Br$  (H 704; E I 348). F: 116—118° (HATT, Soc. 1929, 1628).
- α-Chlor-4-brom-triphenylmethan, 4-Brom-triphenylchlormethan, 4-Brom-tritylchlorid C<sub>19</sub>H<sub>14</sub>ClBr = (C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>CCl·C<sub>6</sub>H<sub>4</sub>Br (H 705; E I 348). Die Lösung in Xylol bzw. Brombenzol liefert bei ca. 20 Min. langem Schütteln mit fein verteiltem Silber unter Luftabschluß 4-Brom-triphenylmethyl; bei längerem Schütteln wird auch ein Teil des Broms abgespalten (Gomberg, Blicke, Am. Soc. 45, 1775). Liefert bei mehrtägigem Schütteln mit Silbersulfat in Nitrobenzol unter Luftabschluß bei 50° eine rote Lösung, die bei der Hydrolyse mit 3%iger Natronlauge 4-Oxy-triphenylcarbinol gibt (G., Bl.; vgl. Bowden, Watkins, Soc. 1940, 1253); bei längerem Schütteln erhält man ein rotes, alkalilösliches Ol (G., Bl.).
- 4.4'.4"-Tribrom-triphenylmethan  $C_{19}H_{13}Br_3 = (C_6H_4Br)_3CH$  (H 706; E I 349). B. Beim Erhitzen von 4.4'.4".4"'-Tetrabrom-benzpinakolin mit alkoh. Kalilauge auf dem Wasserbad, neben 4-Brom-benzoesäure (Montagne, R. 43, 642). F: 116,5° (korr.). Kp<sub>12</sub>: 295° (korr.).
- 4-Brom-α-jod-triphenylmethan, 4-Brom-triphenyljodmethan, 4-Brom-trityljodid  $C_{19}H_{14}BrI = (C_6H_5)_2CI \cdot C_6H_4Br$ . B. Bei der Einw. von Jod auf eine Lösung von 4-Brom-triphenylmethyl in Benzol (Gomberg, Blicke, Am. Soc. 45, 1775). Liefert beim Schütteln mit Silberchlorid in Benzol 4-Brom-tritylchlorid.
- 2-Nitro-triphenylmethan  $C_{19}H_{15}O_2N = (C_6H_5)_2CH \cdot C_6H_4 \cdot NO_2$  (H 707; E I 349). B. Zur Bildung aus 2-Nitro-benzylidenchlorid und Benzol in Gegenwart von Aluminium-chlorid vgl. Tanasescu, Bl. [4] 39, 1454. Bei 2-tägigem Belichten der Lösungen in Benzol, Äthylacetat, Chloroform, Tetrachlorkohlenstoff, Schwefelkohlenstoff oder Aceton bildet sich 2-Isonitro-triphenylmethan  $(C_6H_5)_2C:C_6H_4:NO\cdot OH$  (rötliche Flocken; F: 55°); beim Belichten in Pyridin-Lösung erhält man 2-Nitroso-triphenylcarbinol (T., Bl. [4] 39, 1454; 41, 1471).
- Triphenylnitromethan  $C_{19}H_{15}O_2N = (C_6H_5)_3C\cdot NO_2$  (E I 349). B. Aus Chlorpikrin und Benzol in Gegenwart von Quecksilber(II)-chlorid und wenig Aluminium bei 45° (Râx, Soc. 117, 1339). Krystalle (aus Alkohol). F: 145° (Zers.).
- 2.4-Dinitro-triphenylmethan  $C_{10}H_{14}O_4N_2 = (C_6H_5)_2CH \cdot C_6H_3(NO_2)_2^{*,4}$ . B. In geringer Menge aus 2.4-Dinitro-benzylidenchlorid und Benzol in Gegenwart von Aluminiumchlorid bei Zimmertemperatur (Tanasescu, Bl. [4] 39, 1719, 1723). Krystalle (aus Alkohol). F: 93—94° (unkorr.). Gibt mit Alkalien rote Färbungen Verhalten beim Belichten der Lösungen: T., Bl. [4] 39, 1720.
- 4.4'.4"-Trinitro-triphenylmethan  $C_{19}H_{13}O_6N_3=(O_2N\cdot C_6H_4)_3$ CH (H 707; E I 349). B. Zur Bildung durch Nitrierung von Triphenylmethan vgl. noch Shoesmith, Sosson. Hetherington, Soc. 1927, 2227. Thermische Analyse des Systems mit Sarkosinanhydrid: Pfeiffer, Angern, H. 154, 285.
- α-Brom-4.4'.4"-trinitro-triphenylmethan, 4.4'.4"-Trinitro-triphenylbrommethan, 4.4'.4"-Trinitro-tritylbromid  $C_{19}H_{12}O_6N_3Br = (O_2N\cdot C_6H_4)_3CBr$ . B. Durch Einw. von Brom auf 4.4'.4"-Trinitro-triphenylmethyl in Tetrachlorkohlenstoff (Ziegler, Boye, A. 458, 255) oder auf 4.4'.4"-Trinitro-triphenylmethan-natrium in Ather + Tetrachlorkohlenstoff (Z., B., A. 458, 253). Gelbliches Krystallpulver. Zersetzt sich bei 191°: der Zersetzungspunkt sinkt nach dem Umkrystallisieren aus trocknem Xylol. Liefert beim Behandeln mit 4.4'.4"-Trinitro-triphenylmethan-natrium in Pyridin unter Stickstoff 4.4'.4"-Trinitro-triphenylmethyl.
- 2.4.2'.4'.2''.4''- Hexanitro triphenylmethan  $C_{19}H_{10}O_{12}N_6 = CH[C_6H_3(NO_2)_2^{*4}]_3$  (H 708). Verbindungen mit Pyridin s. Syst. Nr. 3051.

Triphenylazidomethan, Triphenylmethylazid, Tritylazid  $C_{19}H_{15}N_3 = (C_6H_5)_3C\cdot N_3$  H 708; E I 349). B. Beim Schütteln einer Lösung von Triphenylcarbinol-perchlorat in Chloroform mit Natriumazid (LIFSCHITZ, GIRBES, B. 61, 1488). — Krystalle. F: 65°. Die Lösung in Alkohol färbt sich im ultravioletten Licht ziegelrot bis braunrot.

2. 4-Benzyl-diphenyl, 4-Phenyl-diphenylmethan, Phenyl-diphenylylmethan  $C_{19}H_{16} = C_6H_5 \cdot CH_2 \cdot C_6H_4 \cdot C_6H_5 \cdot (H 708)$ . B. Neben 4-Cyclohexyl-diphenylmethan beim Behandeln von Cyclohexen mit Diphenylmethan und Aluminiumchlorid in Schwefelkohlenstoff (Bodroux, A. ch. [10] 11, 530). —  $D_1^o$ : 1,171 (Ziegler, Ditzel, A. 473, 201).

Phenyl-diphenylyl-chlormethan, 4-Phenyl-benzhydrylchlorid  $C_{19}H_{18}Cl = C_6H_5$ . CHCl· $C_6H_4$ · $C_6H_5$ . B. Aus Phenyl-diphenylyl-carbinol und Chlorwasserstoff in Äther oder Benzol (Norris, Banta, Am. Soc. 50, 1807). — Krystalle (aus Petroläther) (N., B.), sehr

unbeständige Krystalle mit ½ Tetrachlorkohlenstoff (aus Tetrachlorkohlenstoff bei —15°) (N., Tibbetts, Am. Soc. 42, 2092). F: 71—72,5° (N., B.). — Geschwindigkeit der Umsetzung mit Alkohol bei 25°: N., B., Am. Soc. 50, 1804; N., Ph. Ch. 130, 665.

Phenyl-diphenylyl-dichlormethan, 4-Phenyl-benzophenonchlorid  $C_{19}H_{14}Cl_2 = C_6H_5 \cdot CCl_2 \cdot C_6H_4 \cdot C_6H_5$  (E I 350). B. Zur Bildung aus 4-Phenyl-benzophenon vgl. Schlenk. Bergmann, A. 463, 120. — Nädelchen (aus Ligroin). F: 72° (vgl. dagegen die abweichende Angabe im Ergw. I). Färbt sich an der Luft rosa. — Liefert beim Kochen mit reiner Kupferbronze in Benzol im Kohlendioxyd-Strom cis- und trans- $\alpha.\beta$ -Diphenyl- $\alpha.\beta$ -bis-diphenylyl-äthylen und etwas 4-Phenyl-benzophenon.

- 3. 1-Phenyl-1. $\alpha$ -naphthyl-propen-(1),  $\alpha$ -Methyl- $\beta$ -phenyl- $\beta$ -[ $\alpha$ -naphthyl]-äthylen  $C_{19}H_{16}=C_{10}H_{7}\cdot C(C_{6}H_{5})\cdot CH\cdot CH_{3}$ . Vgl. darüber Luce,  $C.\ r.$  180, 146.
- 4. 1-Phenyl-4.5-benzo-hydrinden C<sub>19</sub>H<sub>16</sub>, s. nebenstehende Formel. B. Durch Reduktion von 3-Oxo-1-phenyl-4.5-benzo-hydrinden mit amalgamiertem Zink und Salzsäure (v. Braun, Manz, Reinsch, A. 468, 297). Krystalle (aus Methanol). F: 79°. Kp<sub>13</sub>: 226—229°.

-CH<sub>2</sub> CH<sub>2</sub> CH

5. 3 (oder 4)-Benzyl-acenaphthen  $(,\beta \cdot B \in n \ z \ y \mid a \in n \ a \ p \mid b \mid b \in n$ ")  $C_{19}H_{16}$ , Formel I oder II. B. Neben 5-Benzyl-acenaphthen beim Erhitzen von

Acenaphthen mit Benzylchlorid in Gegenwart von Zinkchlorid (Dziewonski, Leonhard, Bl. Acad. polon. [A] 1928, 108; C. 1929 I, 1339). — Krystalle (aus Alkohol). F: 45—46°. Kp $_{20}$ : 260—265°. Sehr leicht löslich in den meisten organischen Lösungsmitteln. Löst sich in konz. Schwefelsäure mit violettroter Farbe. — Liefert bei der Oxydation mit Natriumdichromat in siedendem Eisessig [2(oder 3)-Benzoyl-naphthalsäure]-anhydrid. — Pikrat  $C_{19}H_{18}+2C_{6}H_{3}O_{7}N_{3}$ . F: 101—102°.

6. **5-Benzyl-acenaphthen** (,,  $\alpha$ -Benzylacenaphthen")  $C_{19}H_{16}$ . s. nebenstehende Formel. Diese Konstitution kommt der früher als 4-Benzyl-acenaphthen (H 708) beschriebenen Verbindung zu (Dziswonski, Rychlik, B. 58, 2239, 2243; Lorriman, Am. Soc. 47, 213). — B. Zur Bildung aus Acenaphthen und Benzylchlorid in Gegenwart von Zinkchlorid vgl. Dziewonski, Leonhard, Bl. Acad. polon. [A] 1928,

H<sub>2</sub>C—CH<sub>2</sub>

CH<sub>2</sub>·C<sub>6</sub>H<sub>5</sub>

Zinkchlorid vgl. Dziewoński, Leonhard, Bl. Acad. polon. [A] 1928,
102; C. 1929 I, 1339. Beim Kochen von 5-Benzoyl-acenaphthen mit Natrium in absol. Alkohol (Dz., R.). Bei der Destillation von 5-[2-Carboxy-benzyl]-acenaphthen mit überschüssigem Bariumhydroxyd unter 40—50 mm Druck (Lo., Am. Soc. 47, 215). — F: 110° bis 111° (Dz., R.), 111—112° (Lo.). Sehr leicht löslich in Benzol, löslich in heißem Eisessig (Lo.). Löst sich in konz. Schwefelsäure mit olivgrüner Farbe (Dz., Le., Bl. Acad. polon. [A] 1928, 109). — Beim Überleiten der Dämpfe über rotglühenden Eisen-bzw. Nickeldraht entsteht 5-Benzyl-acenaphthylen (Dziewoński, Leonhard, Bl. Acad. polon. [A] 1928, 107; C. 1929 I, 1339). Gibt bei der Oxydation mit 2 Tln. Natriumdichromat in Eisessig anfangs bei 40—50°, zuletzt bei 100° 2.2′-Dioxo-5.5′-dibenzyl-diacenaphthenyliden-(1.1′)

(Formel III) und 2.2'-Dioxo-5.5'-dibenzoyl-diacenaphthenyliden-(1.1') (Formel IV) (Dz., Le., Bl. Acad. polon. [A] 1928, 106); bei der Oxydation mit 4 Tln. Natriumdichromat in Eisessig bei 120—130° erhält man 5-Benzyl-acenaphthenchinon, 5-Benzoyl-acenaphthenchinon, [4-Benzyl-naphthalsäure]-anhydrid und 4-[Benzoyl-naphthalsäure]-anhydrid (Dz., Le., Bl. Acad. polon. [A] 1928, 102; LORRIMAN, Am. Soc. 47, 215). Liefert bei der Einw. von 30% iger Salpetersäure 6-Nitro-5-benzyl-acenaphthen(?) (Dz., Le.).

6-Nitro-5-benzyl-acenaphthen (?) C<sub>19</sub>H<sub>18</sub>O<sub>2</sub>N, Formel V. B.
Durch Einw. von 30% iger Salpetersäure auf 5-Benzyl-acenaphthen
(Dzizwonski, Leonhard, Bl. Acad.
polon. [A] 1928, 107; C. 1929 I,
1339). — Goldgelbe Nadeln (aus Alkohol). F: 144°.

2.α-Hydrindyl-naphthalin, 1-β-Naphthyl-hydrinden C<sub>19</sub>H<sub>16</sub>, Formel VI.
 Durch Hydrierung von 1-β-Naphthyl-inden in Gegenwart von Palladium-Tierkohle (v. Braun, Manz, Reinsch, A. 468, 298). — Krystalle (aus Methanol). F: 47°. Kp<sub>13</sub>: 229° bis 230°. [Beger]

## 5. Kohlenwasserstoffe $C_{20}H_{18}$ .

- 1. **1.8-Diphenyl-octadiin-(3.5)**  $C_{20}H_{18} = [C_8H_5 \cdot CH_2 \cdot CH_2 \cdot C : C -]_2$ . B. Bei der Einw. von 1 Mol Jod auf 2 Mol  $\beta$ -Phenäthyl-acetylenmagnesiumbromid in Äther (Grignard, Tcheoufaki, C. r. 188, 359). F: 118°. Zur Mol.-Refr. vgl. Gr., Tch.
- 2. 1.8-Diphenyl-octatetraen-(1.3.5.7), 1.2-Dicinnamyliden-āthan C<sub>20</sub>H<sub>18</sub>= C<sub>6</sub>H<sub>5</sub>·[CH:CH]<sub>4</sub>·C<sub>6</sub>H<sub>5</sub> (H 709). B. Beim Erhitzen von Bernsteinsäure mit Zimtaldehyd, Bleioxyd und Essigsäureanhydrid auf 140° (Kuhn, Winterstein, Helv. 11, 93, 109). Beim Kochen von Zimtaldehyd mit bernsteinsaurem Blei in Eisessig + Acetanhydrid oder, weniger gut, von Cinnamylidendiacetat mit Bernsteinsäure, Bleioxyd und Acetanhydrid (K., W., Helv. 11, 93, 110). Zur Bildung aus Zimtaldehyd, bernsteinsaurem Natrium und Acetanhydrid nach Fittig, Batt (A. 331 [1904], 160) vgl. K., W., Helv. 11, 92, 110. Beim Erhitzen von Dicinnamylidenbernsteinsäure-anhydrid mit Acetanhydrid und Bleioxyd (K., W., Helv. 11, 94). Grünstichig chromgelbe Schuppen (aus Acetanhydrid). Schmilzt ohne Zersetzung bei 232° (kort.) (K., W., Helv. 11, 96, 98, 111). Läßt sich in sehr kleiner Menge unzersetzt destillieren (K., W.). Bei 19° beträgt die Löslichkeit in Chloroform 2,95 g/l, in Benzol 1,2 g/l; schwer löslich in der Hitze in Acetanhydrid, Cyclohexanol. Pyridin und Dioxan (K., W., Helv. 11, 101, 111). Die Lösungen sind gelb und fluorescieren beim Belichten grün (K., W., Helv. 11, 98).

Wird beim Bestrahlen mit ultraviolettem Licht unter Luftausschluß nicht verändert (Kuhn, Winterstein, Helv. 11, 100; vgl. Stobbe, B. 42 [1909], 567). Zersetzt sich beim Erhitzen über den Schmelzpunkt (K., W.). Geschwindigkeit der Oxydation durch Permanganat in Aceton: K., W., Helv. 11, 115. Die Absättigung der Doppelbindungen durch Benzopersäure (Pummerer, Rebmann, Reindell, B. 62, 1417) und die Addition von Chlorjod (Mac Lean, Thomas, Biochem. J. 15, 326; P., R., R.) verlaufen nicht quantitativ. Liefert bei der Hydrierung in Gegenwart von Palladiumkohle in Eisessig 1.8-Diphenyl-octan, in Gegenwart von Platinoxyd 1.8-Dicyclohexýl-octan (K., W., Helv. 11, 138, 139). Gibt bei der Reduktion mit Natriumamalgam in Benzol + absol. Alkohol oder mit Aluminiumamalgam in feuchtem Ather 1.6-Dibenzyl-hexatrien-(1.3.5) (K., W., Helv. 11, 133). Bei langem Schütteln mit Lithium in absolutem, über Phosphorpentoxyd destilliertem Äther entsteht eine olivgrüne Additionsverbindung (K., W., Helv. 12, 498). Beim Anlagern von 2 Mol Maleinsäureanhydrid. Dehydrieren und Decarboxylieren wird Quaterphenyl erhalten (K., A. 475, 132). — Die Lösung in konz. Schwefelsäure ist rot; beim Lösen in einem Gemisch von konz. Schwefelsäure, Chloroform und Acetanhydrid werden beide Schichten olivgrün gefärbt (K., W., Helv. 11, 151); über das Absorptionsspektrum in konz. Schwefelsäure vgl. K., W.

Das H 709 beschriebene farblose 1.8-Diphenyl-octatetraen-(1.3.5.7) ist zu streichen; in dem Präparat von Fichter, Hirsch (B. 34 [1901], 2189) hat Stilben vorgelegen (Kuhn, Winterstein, Helv. 11, 96, 100).

- 4. 1.1.2-Triphenyl-äthan C<sub>20</sub>H<sub>18</sub> = (C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>CH·CH<sub>2</sub>·C<sub>6</sub>H<sub>5</sub> (H 709; E I 350). B. Aus dem Anlagerungsprodukt von Natrium an Triphenyläthylen in Äther durch Behandeln mit Alkohol (Schlenk, Bergmann, A. 463, 45). Durch Einw. von Benzylmagnesiumchlorid auf Diphenyl-benzyl-acetonitril in Toluol oder Xylol und Zersetzung des Reaktionsprodukts mit verd. Salzsäure (Ramart-Lucas, Salmon-Legagneur, Bl. [4] 43, 328). F: 56° (Sch., B.).
- 1.2.2-Trichlor-1.1.2-triphenyl-äthan  $C_{20}H_{15}Cl_3=(C_0H_5)_2CCl\cdot CCl_2\cdot C_0H_5$ . B. Beim Behandeln von Triphenylbromäthylen mit überschüssigem Chlor in Tetrachlorkohlenstoff (Meisenheimer, A. 456, 146). Rhombische Blättchen (aus Alkohol). F: 124°. Leicht löslich in den meisten Lösungsmitteln, schwer in kaltem Alkohol.
- 1.2 Dibrom -1.1.2 triphenyl äthan, Triphenyläthylendibromid  $C_{30}H_{16}Br_2 = (C_6H_5)_2CBr\cdot CHBr\cdot C_6H_5$  (H 709). Zur Bildung aus Triphenyläthylen und Brom vgl. Meisenheimer, A. 456, 144. Krystalle. F: 95°. Leicht löslich in den gebräuchlichen Lösungsmitteln, schwer in Ligroin. Die Krystalle zersetzen sich langsam, sind aber beim Aufbewahren unter Ligroin beständiger. Beim Aufbewahren von Lösungen in Chloroform, Benzol

oder Eisessig entstehen Triphenyläthylen, Triphenylbromäthylen, Brom und Bromwasserstoff. In siedendem absolutem Alkohol wird außer diesen Verbindungen  $\beta$ -Äthoxy- $\alpha$ . $\alpha$ . $\beta$ -triphenyl-äthylen erhalten.

5. Diphenyl-o-tolyl-methan, 2-Methyl-triphenylmethan  $C_{20}H_{18} = (C_6H_5)_2CH \cdot C_6H_4 \cdot CH_3$ .

Diphenyl-o-tolyl-chlormethan, 2-Methyl-triphenylchlormethan  $C_{20}H_{17}Cl = (C_8H_5)_2Cl\cdot C_6H_4\cdot CH_3$  (H 710). Liefert beim Behandeln mit Natriumamalgam in Äther und nachfolgenden Einleiten von Kohlendioxyd Diphenyl-o-tolyl-essigsäure (Schlenk, Bergmann, A. 463, 264).

- 6. Diphenyl p tolyl methan. 4 Methyl triphenylmethan  $C_{20}H_{18} = (C_9H_5)_2CH \cdot C_9H_4 \cdot CH_3$  (H 710; E I 350). B. Bei längerem Kochen von Diphenylbrommethan mit Quecksilber-di-p-tolyl in Toluol oder m-Xylol (Whitmore, Thurman, Am. Soc. 51, 1499).
- 7. 2-β-Phenäthyl-diphenyl C<sub>20</sub>H<sub>18</sub>, s. nebenstehende Formel.
  Diese Konstitution kommt vermutlich der H 5, 692 als 1.2-Diphenyltric yclooctan beschriebenen Verbindung zu (Kuhn, Deutsch, B.

  65 [1932], 44, 48).
- 8. 1-Phenyl-1-diphenylyl-äthan, 4- $\alpha$ -Phenäthyl-diphenyl  $C_{20}H_{18}=C_{6}H_{5}\cdot C_{6}H_{4}\cdot CH(CH_{3})\cdot C_{6}H_{5}$ .
- 1.2-Dibrom -1-phenyl -1-diphenylyl äthan, 4-[ $\alpha.\beta$ -Dibrom - $\alpha$ -phenyl äthyl] diphenyl  $C_{20}H_{16}Br_2=C_6H_6\cdot C_6H_4\cdot CBr(CH_2Br)\cdot C_6H_5$ . B. Durch Bromierung von  $\alpha$ -Phenyl- $\alpha$ -diphenylyl-äthylen (Delaville, C. r. 184, 463). F: 156°.
- 9. 1.2-Dibenzyl-benzol C<sub>20</sub>H<sub>18</sub> = C<sub>6</sub>H<sub>5</sub>·CH<sub>2</sub>·C<sub>6</sub>H<sub>4</sub>·CH<sub>2</sub>·C<sub>6</sub>H<sub>5</sub> (H 710; E I 351). B. Entsteht neben 1.4-Dibenzyl-benzol und anderen Produkten: beim Kochen eines Gemisches von Benzol und Benzylchlorid in Gegenwart von Eisenpyriten (SMYTHE, Soc. 121, 1277), beim Kochen eines Gemisches von Benzol und Benzolsulfonsäure-benzylester (FÖLDI, B. 61, 1612) oder beim Erhitzen von Diphenylmethan mit Benzolsulfonsäure-benzylester auf 110° (F., B. 61, 1613). Beim Kochen von 1.3-Diphenyl-thiophthalan C<sub>6</sub>H<sub>4</sub><a href="CH(C<sub>6</sub>H<sub>5</sub>)">CH(C<sub>6</sub>H<sub>5</sub>)</a> mit Zinkstaub und rauchender Salzsäure in Eisessig (BISTRZYCKI, BRENKEN, Helv. 5, 25). Prismen (aus Alkohol + Wasser). F: 78° (BI., BR.), 79° (SM.).
- 10. 1.3-Dibenzyl-benzol  $C_{20}H_{18}=C_6H_5\cdot CH_2\cdot C_6H_4\cdot CH_2\cdot C_6H_5$  (E I 351). B. Neben 1.4-Dibenzyl-benzol und anderen Produkten beim Behandeln von Benzol mit Benzylchlorid oder Äthylbenzyläther in Gegenwart von Titan(IV)-chlorid, anfangs unter Kühlung, danach auf dem Wasserbad (Stadnikow, Kaschtanow, B. 61, 1389;  $\mathcal{H}$ . 60, 1118, 1119). Krystalle (aus Alkohol). F: 58—59°.
- 11. 1.4-Dibenzyl-benzol  $C_{20}H_{18}=C_8H_5\cdot CH_2\cdot C_8H_4\cdot CH_2\cdot C_8H_5$  (H 711; E I 351). B. Entsteht neben anderen Produkten aus Benzol und  $\omega.\omega'$ -Dibrom-m-xylol in Gegenwart von Aluminiumchlorid bei 30—35° (Reindel, Siegel, B. 56, 1553), aus Benzol und Benzylalkohol in Gegenwart von 70% iger Schwefelsäure bei 40° (Meyer, Bernhauer, M. 53/54, 725) oder in Gegenwart von Phosphorpentoxyd (Nametkin, Kurssanow, Ж. 60, 919; C. 1929 I, 996) und aus Diphenylmethan und Benzylalkohol in Gegenwart von Phosphorpentoxyd (N., K.). Weitere Bildungen s. in den Artikeln 1.2-Dibenzyl-benzol und 1.3-Dibenzyl-benzol
- 12. 1.4-Di-p-tolyl-benzol(?), 4.4"-Dimethyl-terphenyl(?)  $C_{20}H_{18} = CH_3 \cdot C_6H_4 \cdot C_6H_4 \cdot C_6H_4 \cdot CH_3$ . B. In geringer Menge bei der Reaktion von diazotiertem p-Toluidin mit Benzol in Natronlauge unterhalb 5° (Gomberg, Pernert, Am. Soc. 48, 1375). Fast farblose Blättchen (aus Eisessig), Prismen (aus Nitrobenzol). F: 249—250°.
  - 13. 5- $\beta$ -Phenäthyl-acenaphthen  $C_{20}H_{18}$ , Formel I.

5-[ $\alpha.\alpha$ -Dichlor- $\beta$ -phenyl-äthyl]-acenaphthen  $C_{20}H_{16}Cl_2$ , Formel II. B. Beim Behandeln von Benzyl-acenaphthenyl-(5)-keton mit Phosphorpentachlorid in siedendem Chloro-



form (Ruggli, Jenny, Helv. 10, 233). — Braunes Öl. — Liefert bei längerem Aufbewahren bei gewöhnlicher Temperatur, schneller beim Erhitzen im Vakuum auf 140° oder beim Kochen mit methylalkoholischer Kalilauge 5-[α-Chlor-β-phenyl-vinyl]-acenaphthen.

- 6-Nitro-5- $[\alpha.\alpha$ -dichlor- $\beta$ -phenyl-äthyl]-acenaphthen  $C_{20}H_{15}O_3NCl_2$ , Formel III auf S. 621. B. Beim Behandeln von Benzyl-[6-nitro-acenaphthenyl-[5]-keton mit Phosphorpentachlorid in siedendem Chloroform (Ruggli, Jenny, Helv. 10, 238). Nadeln (aus Chloroform + Äther). F: 136° (Zers.). Löslich in Chloroform, schwer löslich in Äther und Petroläther. Liefert beim Erhitzen im Vakuum auf 140° 6-Nitro-5- $[\alpha$ -chlor- $\beta$ -phenyl-vinyl]-acenaphthen. Verharzt beim Behandeln mit verd. Alkalilauge.
- 14. 3.4.3'.4'-Tetrahydro-dinaphthyl-(1.1'), Bis-[3.4-dihydro-naph-thyl-(1)] C<sub>20</sub>H<sub>18</sub>, Formel I. B. Aus Bis-[1-oxy-1.2.3.4 tetrahydro-naphthyl-(1)] bei kurzem Kochen in Eisessig (SCHROETER, B. 58, 716). F: 139—140°. Beim Bromieren entsteht 2.2'-Dibrom-ditetralylen-(1.1').
- 15. 3.4.3'.4'-Tetrahydro-dinaphthyl-(2.2'), Bis-[3.4-dihydro-naphthyl-(2)], ac. β-Bisdialin C<sub>20</sub>H<sub>18</sub>, Formel II. B. Neben 1.2-Dihydro-naphthalin beim Behandeln von Äthyl-[2-brom-1.2.3.4-tetrahydro-naphthyl-(1)]-äther mit Magnesium in Äther, Zersetzen mit verd. Säure und anschließenden Erwärmen des Reaktionsprodukts mit alkoh. Schwefelsäure (v. Braun, Kirschbaum, B. 54, 615; Tetralin-Ges., D. R. P. 335477; C. 1921 II, 1063; Frdl. 13, 328). Blättchen (aus Alkohol). F: 156° (v. Br., K.), 158° (Tetralin-Ges.). Schwer löslich in Alkohol und Äther (v. Br., K.). Die alkoh. Lösung fluoresciert violett (v. Br., K.). Liefert bei der Reduktion mit Natrium und Alkohol Ditetralyl-(2.2') (v. Br., K.). Beim Behandeln mit Brom in Chloroform erhält man Dinaphthyl-(2.2') (v. Br., K.; Tetralin-Ges.).

- 16. 9.12-Diäthyl-diphensuccindadien-(9.11) C<sub>20</sub>H<sub>18</sub>, Formel III. B. Neben 9.12-Diäthyliden-diphensuccindan (s. u.) beim Kochen von 9.12-Diäthyl-diphensuccindandiol-(9.12) mit Eisessig + Ameisensäure (Brand, Schläger, B. 56, 2543). Aus 9.12-Diäthyliden-diphensuccindan beim Kochen mit wenig konz. Schwefelsäure in Eisessig (B., Sch., B. 56, 2544). Rote bis rotbraune Blättchen (aus Methanol). F: 154°. Sehr leicht löslich in heißem Eisessig, Alkohol, Äther und Benzol.
- 17. 9.12-Diäthyliden-diphensuccindan C<sub>20</sub>H<sub>18</sub>, s. nebenstehende Formel. B. Neben 9.12-Diäthyl-diphensuccindadien-(9.11) (s. o.) beim Kochen von 9.12-Diäthyl-diphensuccindandiol-(9.12) mit Eisessig + Ameisensäure (Brand, Schläger, B. 56, 2543).

  Farblose Krystalle (aus Alkohol, Eisessig, Essigester oder Isoamylacetat). F: 199,5°. Schwer löslich in den meisten Lösungsmitteln. Liefert bei der Oxydation mit Chromtrioxyd in Eisessig auf dem Wasserbad Diphensuccindandion und Acetaldehyd. Geht beim Kochen mit wenig konz. Schwefelsäure in Eisessig in 9.12-Diäthyl-diphensuccindadien-(9.11) über.
- 18. 1.2.3.10.11.12 (oder 1.2.3.7.8.9) Hexahydroperylen C<sub>20</sub>H<sub>18</sub>, Formel IV oder V
  (E I 351). Zur Konstitution vgl.
  ZINKE, SCHNIDERSCHITSCH, M. 51, 280; Z., BENNDORF, M. 59 [1932],

246; Hua-chih, Conrad-Billroth, Ph. Ch. [B] 20 [1933], 339. — B. Beim Schütteln von Perylen mit Wasserstoff bei Gegenwart von Palladium-Tierkohle in Eisessig unter 230—240 mm Überdruck bei 19—23° (Z., Sch., M. 51, 282). — F: 189° (unkorr.) (Z., Sch.).

# 6. Kohlenwasserstoffe $\mathrm{C}_{21}\mathrm{H}_{20}$ .

1. 1.1.3-Triphenyl-propan C<sub>21</sub>H<sub>20</sub> = (C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>CH·CH<sub>2</sub>·C<sub>6</sub>H<sub>5</sub>. B. Aus 1.1.3-Triphenyl-propen-(1) bei der Reduktion mit Natrium in siedendem Alkohol (ZIEGLER, GRABBE, ULRICH, B. 57, 1990) oder beim Behandeln einer Lösung in Toluol mit Natrium in flüssigem Ammoniak und Zersetzen des Reaktionsprodukts mit Ammoniumchlorid (Z., Colonius, Schäfer, A. 473, 56). Aus 1.3.3-Triphenyl-propen-(1) bei der Reduktion mit Natrium in siedendem Alkohol (Z., Richter, Schnell, A. 443, 180). Durch Hydrierung von 1.3.3-Triphenyl-propin-(1) in Gegenwart von Palladiumschwarz in Eisessig (Wieland, Kloss, A. 470, 216). Durch Reduktion von α.α.γ-Triphenyl-propylalkohol mit Jodwasserstoffsäure und Phosphor (W., K.). — Prismen (aus Methanol). F: 46° (W., K.), 46—47° (Z., G., U.).

- 1.2 Dibrom 1.1.3 triphenyl propan  $C_{21}H_{18}Br_2 = (C_6H_5)_2CBr\cdot CHBr\cdot CH_2\cdot C_6H_5$ . B. Beim Behandeln von 1.1.3 Triphenyl propen (1) mit Brom in Ather unter Kühlung (ZIEGLER, RICHTER, SCHNELL, A. 443, 172). Krystalle (aus Ather + Petroläther). F: 94—95°. Liefert beim Erwärmen über den Schmelzpunkt 2-Brom-1.1.3-triphenyl-propen-(1). Bei kurzem Kochen mit Methanol erhält man 2-Brom-1-methoxy-1.1.3-triphenyl-propan.
- 2. 1.2.3-Triphenyl-propan, Phenyl-dibenzyl-methan  $C_{21}H_{20}=C_6H_5\cdot CH_2\cdot CH(C_6H_5)\cdot CH_2\cdot C_6H_5$  (H 711). Die E I 352 von Späth (M. 34 [1913], 1992) als solches beschriebene Verbindung war vielleicht 4-Benzyl-dibenzyl (Fuson, Am. Soc. 48, 2937; vgl. Späth, B. 60, 703). B. Bei der Reduktion von Phenyldibenzylcarbinol mit 45% iger Jodwasser-methan von Phenyldibenzylcarbinol mit 45% stoffsäure und rotem Phosphor in siedendem Eisessig (F., Am. Soc. 48, 2941). — Dickflüssiges Ol. Kp<sub>10</sub>: 225—230°; Kp<sub>2</sub>: 179—181°; D<sub>4</sub><sup>18</sup>: 1,0482; n<sub>2</sub><sup>28</sup>: 1,6042 (F.).

α.β.β'-Triphenyl-isopropyl-kalium s. Syst. Nr. 2357.

2-Phenyl-1.3-bis-[2.4.6-trinitro-phenyl]propan, 2-Phenyl-1.3-dipikryl-propan, 2.4.6.2'.4'6'-Hexanitro-ms-phenyl-dibenzylmethan C<sub>21</sub>H<sub>14</sub>O<sub>12</sub>N<sub>6</sub>, s. nebenstehende Formel. B. Aus Benzaldehyd und 2.4.6-Trinitro-toluol

$$\begin{array}{c} O_2N & NO_2 \\ O_2N \cdot \overbrace{\hspace{1cm}} \cdot CH_2 \cdot CH(C_6H_5) \cdot CH_2 \cdot \overbrace{\hspace{1cm}} \cdot NO_2 \\ O_2N \cdot \overbrace{\hspace{1cm}} \cdot NO_2 \end{array}$$

in Pyridin in Gegenwart von wenig Piperidin bei Zimmertemperatur (Pastak, Bl. [4] 39, 80). — Gelbes Pulver (aus Eisessig). F: 183—185°. Bräunt sich am Licht.

2-[3-Nitro-phenyl]-1.3-bis-[2.4.6-trinitro-phenyl]-propan, 2-[3-Nitro-phenyl]-1.3-dipikryl-propan, 2.4.6.2'.4'.6'-Hexa- $O_2N$ .  $CH_2 \cdot CH(C_6H_4 \cdot NO_2) \cdot CH_2 \cdot CH_2$  intro-pnenyl-dipikryl-propan, 2.4.6.2'.4'.6'-Hexa- $O_2N$ .  $O_2N$   $O_2N$ 

$$\begin{array}{c} O_2N \\ \\ O_2N \cdot \underbrace{\begin{array}{c} NO_2 \\ \\ O_2N \\ \end{array}} \cdot CH_2 \cdot CH(C_6H_4 \cdot NO_2) \cdot CH_2 \cdot \underbrace{\begin{array}{c} NO_2 \\ \\ \\ NO_2 \\ \end{array}} \cdot NO_2 \end{array}$$

- wart von wenig Piperidin (Pastak, Bl. [4] 39, 81). Hellgelb. F: 207—208°. Schwer löslich in Eisessig.
- 3. 1.2.2-Triphenyl-propan  $C_{21}H_{20}=C_6H_5\cdot CH_2\cdot C(C_6H_5)_2\cdot CH_3$ . B. Aus  $\alpha.\alpha$ -Diphenyl-thyl-kalium und Benzylchlorid (Ziegler, Schnell, A. 437, 244). Bei der Einw. einer Lösung von  $\alpha.\alpha$ -Diphenyl-athylen in Toluol auf eine Lösung von Natrium in flüssigem Ammoniak und Behandeln des Reaktionsprodukts mit Benzylchlorid (Z., Colonius, Schäfer, A. 473, 56). Aus α.α.β-Triphenyl-āthyl-kalium und Methyljodid (Z., Schn.). — Prismen (aus Benzol und Alkohol). F: 116—117° (Z., Schn.). — Zur Reaktion mit Kalium vgl. Z., Schn., A. 437, 230 Anm. 2.
- 4. 1.1.2-Triphenyl-propan  $C_{21}H_{20} = (C_6H_5)_2CH \cdot CH(CH_3) \cdot C_6H_5$  (H 712). B. Durch Einw. von Alkohol auf das aus 1.1.2-Triphenyl-propen-(1) und Natrium in Äther erhaltene Anlagerungsprodukt (Schlenk, Bergmann, A. 463, 46). — Prismen (aus Petroläther). F: 73—75°.
- 5. Phenyl-di-o-tolyl-methan, 2.2'- Dimethyl-triphenylmethan  $C_{21}H_{20} = C_6H_5 \cdot CH(C_6H_4 \cdot CH_3)_2$ . B. Aus Phenyl-di-o-tolyl-carbinol beim Durchleiten von Bromwasserstoff bei 130—140° oder, weniger gut, beim Kochen mit Zink und etwas konz. Salzsäure in Eisessig (Weiss, Reichel, M. 53/54, 197). Krystalle (aus Eisessig). F: 104°. Kp<sub>12</sub>: 180—185°. Beim Behandeln mit Chlor bei 125—130° entstehen x-Dichlor-2.2'-dimethyl-triphenylmethan (Krystalle, F: 57°) und x-Tetrachlor-2.2'-dimethyl-triphenylmethan (Krystalle, F: 63°) triphenylmethan (Krystalle; F: 63-65°).
- Phenyl-di-p-tolyl-methan, 4.4'-Dimethyl-triphenylmethan  $C_{21}H_{20} =$  $C_0H_5 \cdot CH(C_0H_4 \cdot CH_3)_9$ .
- [2.4-Dinitro-phenyl]-di-p-tolyl-methan, 2".4"-Dinitro-4.4'-dimethyl-triphenylmethan  $C_{31}H_{18}O_4N_2 = (O_2N)_2C_4H_3 \cdot CH(C_4H_4 \cdot CH_3)_2$ . B. Aus 2.4-Dinitro-benzaldehyd und Toluol in Gegenwart von konz. Schwefelsäure (Tanasescu, Bl. [4] 41, 533, 537). — Gelbe Krystalle (aus Alkohol). F: 280° (Zers.).
- 7. 4-Benzyl-dibenzyl  $C_{21}H_{20}=C_6H_5\cdot CH_2\cdot CH_2\cdot C_6H_4\cdot CH_2\cdot C_6H_5$ . Ist nach Fuson (Am. Soc. 48, 2937; vgl. Späth, B. 60, 702) vielleicht identisch mit der in E I 352 als  $\alpha.\beta.\gamma$ -Triphenyl-propan beschriebenen Verbindung von Späth (M. 34 [1913], 1992). — B. Aus Dibenzyl und Benzylchlorid bei ca. 150° in Gegenwart von wenig Zinkstaub (F., Am. Soc. 48, 2941). — Bewegliche Flüssigkeit. Kp<sub>10</sub>: 225—230°; Kp<sub>5</sub>: 213—216°; D<sub>1</sub>°: 1,0394; n<sub>1</sub>°: 1,5929 (F.). — Wird von Chromtrioxyd in Eisessig zu 4-Benzoyl-benzoesäure oxydiert (F.).
- 8. 2-Methyl-3-phenyl-3- $\alpha$ -naphthyl-buten-(1)  $C_{21}H_{20} = C_{10}H_7 \cdot C(CH_3)(C_6H_5) \cdot C(CH_3): CH_2$ . B. Aus 2.2-Dimethyl-1-phenyl-1- $\alpha$ -naphthyl-propanol-(1) beim Leiten des Dampfes über Infusorienerde, beim Kochen mit Acetanhydrid + Acetylchlorid oder besser

beim Erwärmen mit einer Lösung von Bromwasserstoff in Eisessig auf 40-500 (RAMART, C. r. 179, 634, 852; Volmar, Dissert. [Paris 1913], S. 91). - F: 85°.

9. 1-Benzyl-5.6.7.8-tetrahydro-anthracen, 1-Benzyl-tethracen C21H20, Formel I. B. Beim Behandeln von 1-Benzyl-3.4.5.6.7.8-hexahydro-anthracen mit Brom in Eisessig und Erwärmen des Bromierungsprodukts (Schroeter, B. 57, 2020). - Nadeln.

$$I. \begin{array}{c} H_2 \\ H_2 \\ H_2 \\ H_2 \end{array} \qquad III. \begin{array}{c} CH_2 \cdot C_6H_5 \\ H_2 \\ H_2 \\ H_2 \end{array} \qquad III. \begin{array}{c} CH_2 \cdot C_6H_5 \\ CHBr \\ CHBr \\ CHBr \\ CHBr \end{array}$$

- 10. 9-Benzyl-1.2.3.4-tetrahydro-anthracen C<sub>21</sub>H<sub>20</sub>, Formel II.
- 1.2.3.4.10-Pentabrom-9-benzyl-1.2.3.4-tetrahydro-anthracen  $C_{21}H_{15}Br_{5}$ , Formel III. a) Höherschmelzende Form. B. Aus 10-Brom-9-benzyl-anthracen und 4 Atomen Brom in Schwefelkohlenstoff bei Zimmertemperatur (Cook, Soc. 1926, 2166). — Krystalle

(aus Chloroform und Äther). F: 192° (Zers.). — Liefert beim Erwärmen mit alkoh. Kalilauge

auf dem Wasserbad 2.3.10-Tribrom-9-benzyl-anthracen.

b) Niedrigerschmelzende Form. B. Entstand einmal neben der höherschmelzenden Form aus 10-Brom-9-benzyl-anthracen und 4 Atomen Brom in Schwefelkohlenstoff bei Zimmertemperatur (Cook, Soc. 1926, 2167). — Nadeln (aus Benzol und Petroläther). F: 127º (Zers.).

# 7. Kohlenwasserstoffe $C_{22}H_{22}$ .

1. 1.10-Diphenyl-decatetraen-(2.4.6.8), 1.8-Dibenzyl-octatetraen-(1.3.5.7) C<sub>22</sub>H<sub>22</sub> = C<sub>8</sub>H<sub>5</sub>·CH<sub>2</sub>·[CH:CH]<sub>4</sub>·CH<sub>2</sub>·C<sub>8</sub>H<sub>5</sub>. B. Bei der Reduktion von 1.10-Diphenyl-decapentaen-(1.3.5.7.9) mit 4% igem Natriumamalgam in Benzol + absol. Alkohol (Kuhn, Winterstein, Helv. 11, 134). — Nadeln (aus Aceton). F: 109—110°. Leicht löslich in Äther und Chloroform, löslich in Aceton, schwer löslich in Petroläther und Eisessig, unlöslich in Alkohol. — Zersetzt sich beim Aufbewahren. Liefert beim Behandeln mit Brom in Chloroform 1.10-Diphenyl-decapentaen-(1.3.5.7.9) zurück. Beim Ozonisieren in Eisessig und nachfolgenden Kochen der Lösung mit Wasserstoffperoxyd werden geringe Mengen Phenyl-gestaldehyd und Phenylessigsurg gehalten acetaldehyd und Phenylessigsäure erhalten.

#### 2. Tribenzylmethan $C_{22}H_{22} = CH(CH_2 \cdot C_6H_5)_3$ .

Tribenzylchlormethan, Tribenzylmethylchlorid,  $\beta.\beta'.\beta''$ -Triphenyl-tert.-butylchlorid  $C_{22}H_{21}Cl = CCl(CH_2\cdot C_6H_5)_3$  (H 713; E I 352). B. Beim Kochen von Tribenzylcarbinol mit Acetylchlorid (Jones, Scott, Am. Soc. 44, 419). — Nadeln (aus Acetylchlorid). F: ca. 1730 (Zers.). Löslich in heißem Benzol und heißem Aceton, sehr schwer löslich in Ligroin, unlöslich in Wasser, Alkohol und Äther. — Wird durch siedendes Wasser oder siedende 10% ige Kalilauge sehr langsam zersetzt. Beim Erhitzen über den Schmelzpunkt wird Chlorwasserstoff entwickelt. Reagiert nicht mit Magnesium in Äther oder Benzol.

Tribenzylbrommethan, Tribenzylmethylbromid,  $\beta.\beta'.\beta''$ -Triphenyl-tert.-butylbromid  $C_{22}H_{21}Br = CBr(CH_2 \cdot C_0H_5)_3$  (H 713). B. Durch Sättigen einer Lösung von Tribenzylcarbinol in Äther mit Bromwasserstoff (Trotman, Soc. 127, 90, 93). — Liefert beim Behandeln mit Äthylmagnesiumbromid in Benzol + Äther 1.3-Diphenyl-2-benzylpropen und wenig Hexabenzyläthan, mit Benzylmagnesiumchlorid die erstgenannte Verbindung und wenig Tetrabenzylmethan; beim Behandeln mit Zinkdiäthyl erhält man nur 1.3-Diphenyl-2-benzyl-propen.

- 1.2-Dibrom-1.3-diphenyl-2-benzyl-propan,  $\alpha.\gamma$ -Diphenyl- $\beta$ -benzyl-propylen-dibromid  $C_{22}H_{20}Br_2 = (C_6H_5 \cdot CH_2)_2CBr \cdot CHBr \cdot C_6H_5$  (E I 352). F: 127—128° (TROTMAN, Soc. 127, 93), 128—129° (TIFFENEAU, LÉVY, Bl. [4] 39, 780).
- 3. 1.3 Diphenyl-2-p-tolyl-propan, p-Tolyl-dibenzyl-methan  $C_{22}H_{22}=CH_3\cdot C_6H_4\cdot CH(CH_2\cdot C_6H_5)_2$ .
- 1.3 Bis [2.4.6 trinitro phenyl] 2-ptolyl-propan, 1.3-Dipikryl-2-p-tolylpropan, 2.4.6.2'.4'.6'-Hexanitro-ms-p- 02N. tolyl-dibenzylmethan  $C_{22}H_{16}O_{12}N_6$ , s. nebenstehende Formel. B. Aus p-Toluylaldehyd on wenig Piperidin bei Zimmertemperatur und 2.4.6-Trinitro-toluol in Pyridin in Gegenwart von wenig Piperidin bei Zimmertemperatur

(Pastak, Bl. [4] 39, 81). — Citronengelbe Nadeln (aus Eisessig). F: 183—186°. Bräunt sich am Licht.

#### TRITOLYLMETHAN

- 4. o-Tolyl-di-p-tolyl-methan, 2.4'.4"-Trimethyl-triphenylmethan  $C_{22}H_{22}=$  $(CH_2)^2C_6H_4\cdot CH[C_6H_4(CH_3)^4]_2$ .
- o-Tolyl-di-p-tolyl-chlormethan, 2.4'.4"-Trimethyl-triphenylchlormethan  $C_{22}H_{21}Cl=(CH_3)^2C_6H_4\cdot CCl[C_6H_4(CH_3)^4]_2$ . B. Durch Einw. von p-Tolylmagnesiumbromid auf o Toluylsäure äthylester in Äther anfangs bei 0°, dann unter Kochen, Zersetzen mit verd. Schwefelsäure und Behandeln der Lösung des Reaktionsprodukts in Petroläther mit Chlorwasserstoff in Gegenwart von Calciumchlorid (HATT, Soc. 1929, 1630). — Nadeln (aus Petroläther). F: 106°.
- 5. Tri-p tolyl methan, 4.4'.4'' Trimethyl triphenylmethan  $C_{22}H_{22}=CH[C_6H_4(CH_3)^4]_3$  (H 713; E I 352). B. Neben 4-Methyl-benzoesäure beim Erhitzen von 4-Methyl-β.β.β-tri-p-tolyl-acetophenon mit alkoh. Kalilauge (Gomberg, Bachmann, Am. Soc. 49, 250).
- 6. 9.12-Dipropyl-diphensuccindadien-(9.11)  $C_{22}H_{22}$ , s. nebenstehende Formel. B. Neben 9.12-Dipropyliden-diphensuccindan (s. u.) beim Kochen von 9.12-Dipropyl-diphensuccindandiol-(9.12) mit Eisessig + Ameisensäure oder mit wenig konz. Salzsäure enthaltendem Alkohol (Brand, Sasaki, B. 58, 2548). — Rote Nadeln (aus Alkohol). F: 135—136°. — Liefert bei der Hydrierung in Gegenwart von Palladium-Tierkohle in verd. Alkohol 9.12-Dipropyl-diphensuccindan.



9.12-Dipropyliden-diphensuccindan  $C_{22}H_{22}$ , s. nebenstehende Formel. B. Neben 9.12-Dipropyl-diphensuccindadien-(9.11) (s. o.) beim Kochen von 9.12-Dipropyl-diphensuccindandiol-(9.12) mit Eisessig + Ameisensäure oder mit wenig konz. Salzsäure enthaltendem Alkohol (Brand, Sasaki, B. 58, 2548). — Farblose Nadeln (aus Alkohol). F: 157—158°. — Liefert bei der Hydrierung in Gegenwart von Palladium-Tierkohle in verd. Alkohol 9.12-Dipropyl-diphensuccindan.



8. 9.12-Diisopropyl-diphensuccindadien-(9.11)  $C_{22}H_{22}$ , s. nebenstehende Formel. B. Neben 9.12-Diisopropyliden-diphensuccindan (s. u.) beim Kochen von 9.12-Diisopropyl-diphensuccindandiol-(9.12) mit Eisessig + Ameisensäure oder mit wenig konz. Salzsäure enthaltendem Alkohol (Brand, Sasaki, B. 58, 2549). — Rote bis braunrote Krystalle (aus Alkohol). F: 178—179°. — Liefert bei



der Hydrierung in Gegenwart von Palladium-Tierkohle in verd. Alkohol 9.12-Diisopropyldiphensuccindan.

9. **9.12**-Diisopropyliden-diphensuccindan  $C_{22}H_{22}$ , s. nebenstehende Formel. B. Neben 9.12-Diisopropyl-diphensuccindadien-(9.11) (s. o.) beim Kochen von 9.12-Diisopropyl-diphensuccindandiol-(9.12) mit Eisessig + Ameisensäure oder mit wenig konz. Salzsäure enthaltendem Alkohol (Brand, Sasaki, B. 58, 2549). — Farblose Nadeln (aus Alkohol). F: 1890. — Liefert bei

der Hydrierung in Gegenwart von Palladium-Tierkohle in verd. Alkohol ein öliges Produkt.

## 8. Kohlenwasserstoffe $C_{23}H_{24}$ .

- 1. 1-Phenyl-2.2-dibenzyl-propan, 1.1.1-Tribenzyl-dthan, Methyltribenzylmethan  $C_{23}H_{24}=CH_3\cdot C(CH_2\cdot C_6H_5)_3$ . B. In kleiner Menge durch Einw. von Benzylmagnesiumchlorid auf 2-Brom-1-phenyl-2-benzyl-propan bei 100° (Trotman, Soc. 127, 93). — Prismen (aus Alkohol). F. 113°. Schwer löslich in Alkohol und Petroläther, leichter in anderen organischen Lösungsmitteln.
- 2.2-Dimethyl-1.1.3-triphenyl-propan  $C_{23}H_{24} = (C_6H_5)_2CH \cdot C(CH_3)_2 \cdot CH_2 \cdot C_6H_5$ . 1-Chlor-2.2-dimethyl-1.1.3-triphenyl-propan  $C_{23}H_{23}Cl = (C_6H_5)_2CCl \cdot C(CH_3)_3 \cdot CH_2 \cdot C_3H_3 \cdot CH_3 \cdot C_3H_3  C<sub>6</sub>H<sub>5</sub>. B. Beim Behandeln von 2.2-Dimethyl-1.1.3-triphenyl-propanol mit Thionylchlorid (RAMART, C. r. 179, 278).
- 3. 2-Methyl-2.3.4-triphenyl-butan  $C_{23}H_{24} = C_6H_5 \cdot C(CH_3)_2 \cdot CH(C_6H_5) \cdot CH_2 \cdot C_6H_5$ . Kalium verbindung  $C_6H_5 \cdot C(CH_3)_2 \cdot CH(C_6H_6) \cdot CHK \cdot C_6H_5$  s. Syst. Nr. 2357.
- 4. 1.1.1-Triphenyl-pentan, Butyl-triphenyl-methan  $C_{23}H_{24} = (C_6H_5)_3C \cdot [CH_2]_3 \cdot CH_3$ . B. Neben anderen Produkten bei längerer Einw. von Lithiumbutyl auf Triphenylchlormethan in Petroläther (Marvel, Hager, Coffman, Am. Soc. 49, 2327). — Krystalle (aus Petroläther, Aceton oder Alkohol). F: 153-154°.

626

- 5. 2.2-Dimethyl-1.1.1-triphenyl-propan. 1.1.1-Trimethyl-2.2.2-triphenyläthan, tert.-Butyl-triphenyl-methan C<sub>23</sub>H<sub>24</sub> = (C<sub>6</sub>H<sub>5</sub>)<sub>3</sub>C·C(CH<sub>3</sub>)<sub>3</sub> (E I 353). B.
  Neben anderen Produkten beim Aufbewahren von Triphenylmethyl-trimethylacetyl-diimid
  in Ather oder Petroläther (Wieland, Hintermaier, Dennstedt, A. 452, 17). Krystalle
  (aus Benzol + Alkohol). F: 189,5°.
- 6. Phenyl-bis-[2.4-dimethyl-phenyl]-methan, CH<sub>3</sub> CH<sub>3</sub> 2.4.2'.4'-Tetramethyl-triphenylmethan C<sub>23</sub>H<sub>24</sub>,
  s. nebenstehende Formel. Kp<sub>10</sub>: 210° (I. G. Farbenind., CH<sub>3</sub> CH<sub>6</sub> CH<sub>6</sub>)—CH(C<sub>6</sub>H<sub>5</sub>)—CH<sub>3</sub>
  D. R. P. 468766; C. 1930 I, 1052; Frdl. 18, 575).—Liefert beim Leiten des Dampfes im Gemisch mit Luft über Manganoxyd und Kupferoxyd enthaltende Kohle bei 380° 2-Methyl-10-[2.4-dimethyl-phenyl]-anthracen.
- 7. 2.2 Dimethyl 1 [\$\beta\$, \$\beta\$ diphenyl vinyl] 3.6 methylen bicyclo [0.1.3] hexan, \$\omega\$ Diphenylmethylen tricyclen \$C\_{23}H\_{24}\$, s. nebenstehende Formel. \$B\$. Aus \$2^1\$-Benzoylcamphen und Phenylmagnesiumbromid in siedendem \$\beta\$ther (Lipp, Quaedvlieg, \$B\$. 62, 2321; vgl. Asahina, Sano, \$B\$. 73 [1940], 747). Krystalle (aus w\beta\$fr. Methanol). F: 70—71°. Kp<sub>0,5</sub>: 183—186°. Liefert bei der Ozonspaltung in Eisessig Benzophenon und Tricyclens\beta\*ure. Nimmt bei der Hydrierung in Gegenwart von Platinmohr in \$\beta\$ther mehr als 2 \$\text{Atome Wasserstoff auf.}\$

Einen isomeren Kohlenwasserstoff  $C_{23}H_{24}$  (Blättchen aus wäßr. Methanol; F:  $83^{\circ}$  bis  $84^{\circ}$ ;  $Kp_{0.5}$ :  $176-177^{\circ}$ ), den Lipp, Quaedvlieg (B. 62, 2320) bei der Einw. von Phenylmagnesiumbromid auf ein Gemisch aus  $2^{1}$ -Benzoyl-camphen und  $\omega$ -Benzoyl-tricyclen (vgl. Asahina, Sano, B. 73, 749) erhielten, konnten Asahina, Sano auf diese Weise nicht isolieren.

9. 1.3-Diphenyl-2-[4-isopropyl-phenyl]-propan, Dibenzyl-[4-isopropyl-phenyl]-methan  $C_{24}H_{26}=(CH_5)_2CH\cdot C_6H_4\cdot CH(CH_2\cdot C_6H_5)_2$ .

B. Aus Cuminaldehyd und 2.4.6-Trinitro-toluol in Pyridin in Gegenwart von wenig Piperidin bei Zimmertemperatur (Разтак, Bl. [4] 39, 81). — Gelbe Nadeln (aus Eisessig). F: 202—203°. Bräunt sich allmählich am Licht.

# 13. Kohlenwasserstoffe C<sub>n</sub>H<sub>2n-23</sub>.

1. Triphenylmethyl bzw. Hexaphenyläthan  $C_{19}H_{15} = (C_6H_5)_3C$  bzw.  $C_{38}H_{30} = (C_6H_5)_3C \cdot C(C_6H_5)_3$  (H 715; E I 353). B. Neben Triphenylcarbinol beim Erwärmen von Phenylmagnesiumbromid in Äther mit Tetrachlorkohlenstoff und Zersetzen des Reaktionsprodukts mit verd. Schwefelsäure (Binaghi, G. 53, 882). Neben anderen Produkten bei der Einw. von Phenylmagnesiumbromid auf Triphenylfluormethan in kaltem Äther (Blicke, Am. Soc. 46, 1516). Aus Triphenylmethyl-natrium und Triphenylchlormethan in flüssigem Ammoniak + Toluol (Kraus, Kawamura, Am. Soc. 45, 2759). Aus Triphenylbrommethan bei der Einw. des Natriumsalzes des Phosphorigsäurediäthylesters in Äther (Arbusow, Arbusow, B. 62, 1874; Ж. 61, 1928) oder in kleiner Menge durch Einw. von Natriumacetessigester in Äther + Benzol (Blicke, Am. Soc. 48, 739). Bei der Reduktion von Triphenylcarbinol mit Vanadium(II)-chlorid in Aceton + konz. Salzsäure oder Essigsäure (Conant, Small, Taylor, Am. Soc. 47, 1971). Durch Erwärmen von  $\alpha$ -Benzolazo-triphenylmethan in Ligroin auf 70—80° (Wieland, Popper, Seeffled, B. 55, 1824).

H 717, Z. 8 v. o. nach "
$$[C_6H_4\cdot CO\cdot O\cdot C=]_2$$
" füge hinzu "(WOHL)".

Über die Dichte der aus verschiedenen Lösungsmitteln erhaltenen Krystalle vgl. Ziegler, Ditzel, A. 473, 209. Absorptionsspektrum in verschiedenen organischen Lösungsmitteln: Ziegler, Ewald, A. 473, 186. Elektrische Leitfähigkeit in flüssigem Schwefeldioxyd + Toluol bei —8°: Gomberg, Sullivan, Am. Soc. 44, 1818. Potential von Triphenylmethyl + Triphenylmethylsulfat gegen Chloranil + Tetrachlorhydrochinon in schwefelsaurer Lösung: Conant, Small, Taylor, Am. Soc. 47, 1960.

Die photochemische Zersetzung in Triphenylmethan und  $\alpha.\beta$ -Diphenyl- $\alpha.\beta$ -bis-diphenylenathan in indifferenten Lösungsmitteln erfolgt am schnellsten durch Bestrahlung mit grünblauem Licht (530-400 mµ); in Schwefeldioxyd tritt diese Reaktion nicht ein (Bowden, JONES, Soc. 1928, 1155). Geschwindigkeit dieser Reaktion: B., J. Wärmetönung und Gleichgewichtskonstante des Zerfalls von Hexaphenyläthan in 2 Mol Triphenylmethyl in verschiedenen organischen Lösungsmitteln: ZIEGLER, EWALD, A. 473, 179). Geschwindigkeit der Oxydation durch Sauerstoff zum Peroxyd in Brombenzol allein oder in Gegenwart von Aceton, Alkylsulfid oder Schwefelkohlenstoff bei 23.5°: ROGERS, DOUGHERTY, Am. Soc. 50, 154. Wird durch Natrium in flüssigem Ammoniak (Kraus, Kawamura, Am. Soc. 45, 2759), durch Natriumkaliumlegierung oder Natriumamalgam in Äther oder Benzol (Conant, Garvey, Am. Soc. 49, 2600) sowie durch Triphenylborylnatrium ( $C_6H_5$ )<sub>3</sub>BNa in Äther (Krause, Polack, B. 59, 783) in Triphenylmethyl-natrium übergeführt. Liefert beim Behandeln mit Nitrosobenzol in Benzol 4.4'-Ditrityl-azoxybenzol und eine leichtlösliche Verbindung, aus der durch Hydrolyse Triphenylcarbinol entsteht (Goldschmidt, Christmann, A. 442, 249, 250). Bei Einw. m von~Bis-[10-methoxy-phenanthryl-(9)]-peroxyd in Benzol entsteht eine nicht näher beschriebene Verbindung, welche beim Behandeln mit verd. Natronlauge Triphenylcarbinol und Phenanthrenhydrochinon-monomethyläther gibt (Go., SCHMIDT, B. 55, 3209). Mit o-Chinon in Benzol wird eine ölige, zersetzliche Verbindung erhalten (Go., GRAEF, B. 61, 1863, 1868). Benzoi wird eine olige, zersetzliche verbindung ernaiten (Go., Graef, B. 61, 1863, 1868). Mit Anilin in absol. Äther in Gegenwart von Bleidioxyd und Natriumsulfat entsteht α-Anilinotriphenylmethan; analoge Produkte werden mit o-Toluidin und p-Toluidin erhalten (Go., Wurzschmitt, B. 55, 3218). Liefert bei der Einw. von Diphenylstickstoffoxyd (Syst. Nr. 1932) in Äther + Benzol die Verbindung (C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>N·O·C(C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>·C<sub>6</sub>H<sub>4</sub>·C(C<sub>6</sub>H<sub>5</sub>)<sub>3</sub> (Syst. Nr. 1932), mit Bis-[4-nitro-phenyl]-stickstoffoxyd dagegen N.N-Bis-[4-nitro-phenyl]-O-tritylhydroxylamin (O<sub>2</sub>N·C<sub>6</sub>H<sub>4</sub>)<sub>2</sub>N·O·C(C<sub>6</sub>H<sub>5</sub>)<sub>3</sub> (Wieland, Roth, B. 53, 219, 228). Bei der Reaktion mit Hydrazobenzol in siedendem Toluol erhält man Triphenylmethan und Azobenzol (Go., Wu., B. 55, 3219). Liefert mit N.N'-Diphenyl-N.N'-bis-[4-diāthylamino-phenyl]-hydrazin in Benzol Phenyl-[4-diāthylamino-phenyl]-trityl-amin (Syst. Nr. 1768) (Wie., B. 53, 1321). Gibt beim Erwärmen mit 1.1.4.4-Tetraphenyl-2.3-diacetyl-tetrazan in Chloroform auf ca. 60° eine Verbindung  $C_{33}H_{28}ON_2$  (Prismen; F: 159°), die beim Kochen mit Eisessig in Triphenylcarbinol und N'-Acetyl-N.N-diphenyl-hydrazin zerfällt; in Benzol entsteht statt dessen eine Verbindung C<sub>33</sub>H<sub>28</sub>ON<sub>2</sub> (F: ca. 256°), die durch siedenden Eisessig nicht verändert wird (Goldschmidt, A. 437, 206, 216). Reaktion mit Hexaphenyltetrazan: Go., B. 53, 46, 57.

Tetramethyl-triphenylmethyl-ammonium, Triphenylmethyl-tetramethyl-ammonium  $C_{23}H_{27}N=(C_6H_5)_3C\cdot N(CH_3)_4$  (E I 354). Zur Konstitution vgl. Hantzsch, B. 54, 2615. — Triphenylmethyl-natrium s. Syst. Nr. 2357.

Verbindung mit Dimethylsulfid  $C_{38}H_{30}+C_2H_6S$ . B. Aus Triphenylchlormethan beim Schütteln mit Quecksilber und Dimethylsulfid (ROGERS, DOUGHERTY, Am. Soc. 50, 150, 152, 153). Farblose bis hellgelbe Krystalle. Leicht löslich in Benzol, Äther, Chloroform und organischen Sulfiden. Verliert leicht Dimethylsulfid. Bei der thermischen Zersetzung treten außer dem Zerfall in die Komponenten noch andere Reaktionen ein. Die Lösungen absorbieren Sauerstoff unter Bildung von Bis-[triphenylmethyl]-peroxyd. — Verbindung mit Diäthylsulfid  $C_{38}H_{30}+C_4H_{10}S$ . Verliert leicht Diäthylsulfid; besitzt im übrigen die bei der vorangehenden Verbindung angegebenen Eigenschaften (R., D., Am. Soc. 50, 153). — Verbindung mit Dipropylsulfid  $C_{38}H_{30}+C_6H_{14}S$ (?). Farblose bis hellgelbe Krystalle; ist unbeständiger als die beiden vorangehenden Verbindungen (R., D., Am. Soc. 50, 153).

4-Brom-triphenylmethyl  $C_{19}H_{14}Br = (C_8H_8)_2C \cdot C_8H_4Br$ . B. Bei kurzem Behandeln von 4-Brom-triphenylchlormethan mit überschüssigem fein verteiltem Silber in Xylol oder Brombenzol (Gomberg, Blicke, Am. Soc. 45, 1774). — Ist nur in Lösung erhalten worden. Sehr leicht löslich in organischen Lösungsmitteln außer Petroläther. — Zersetzt sich beim Konzentrieren der Lösungen. Die Lösungen absorbieren nahezu die theoretische Menge Sauerstoff unter Bildung von Bis-[4-brom-triphenylmethyl]-peroxyd. Die Addition von Jod in Benzol unter Bildung von 4-Brom-trityljodid verläuft nicht quantitativ.

4.4'.4''-Trinitro-triphenylmethyl  $C_{19}H_{12}O_6N_3 = (O_2N\cdot C_6H_4)_3C$ . B. Durch Behandeln von 4.4'.4''-Trinitro-triphenyl-methyl-natrium mit Silbernitrat oder 4.4'.4''-Trinitro-tritylbromid in Pyridin (ZIEGLER, BOYE, A. 458, 254, 255). Neben Triphenylmethyl aus 4.4'.4''-Trinitro-triphenylmethyl-natrium und Triphenylbrommethan in Benzol (Z., B.). — Im durchfallenden Licht grüne, im reflektierten Licht kupferrote Krystalle. Sehr wenig löslich. — Oxydiert sich langsam an der Luft. Beim Behandeln mit Brom in Tetrachlorkohlenstoff entsteht 4.4'.4''-Trinitro-tritylbromid.

2. 4.4'.4"-Trimethyl-triphenylmethyl, Tri-p-tolyl-methyl  $C_{22}H_{21} = (CH_3 \cdot C_4H_4)_9C$  (E I 354). B. Bei der Zersetzung von  $\alpha$ -[4-Chlor-benzolazo]-tri-p-tolyl-methan in heißem Ligroin (Wieland, Popper, Seeffeld, B. 55, 1829). [Knobloch]

## 14. Kohlenwasserstoffe C<sub>n</sub> H<sub>2 n-24</sub>.

## 1. Kohlenwasserstoffe $C_{18}H_{12}$ .

- 1. Phenyl- $\beta$ -naphthyl-acetylen  $C_{18}H_{12} = C_{10}H_{7} \cdot C : C \cdot C_{6}H_{5}$ . B. Beim Kochen von  $\beta$ -Chlor- $\alpha$ -phenyl- $\beta$ -[ $\beta$ -naphthyl]-äthylen mit Kaliumhydroxyd in Pyridin (Ruggli, Reinert, Helv. 9, 75). Durch Schütteln von Phenyl- $\beta$ -naphthyl-glyoxal-dihydrazon mit gelbem Quecksilberoxyd in Benzol (Ruggli, Jenny, Helv. 10, 241). Krystalle (aus Alkohol). F: 117° (R., J.). Entfärbt Permanganat-Lösung langsam (R., R.). Gibt bei der Einw. von konz. Schwefelsäure nach Eingießen in Eiswasser Benzyl- $\beta$ -naphthyl-keton (R., R.).
- 2.3 Benzo-anthracen, 2.3 Benzanthracen, Naphthacen, Tetracen, Chrysogen der älteren Literatur, Chrysogen des Anthracens 1) C<sub>18</sub>H<sub>18</sub>, s. nebenstehende Formel (H 718). Die sin der Formel angegebene Stellungsbezeichnung wird in diesem Handbuch für die von Naphthacen abgeleiteten Namen gebraucht.

  Zur Bezeichnung Tetracen vgl. Clar, B. 72 [1939], 2137. Identität von Naphthacen und Chrysogen des Anthracens: Winterstein, Schön, Vetter, H. 230 [1934], 159; vgl. Capper, Marsh, Am. Soc. 47, 2848; Soc. 1926, 725; Cook, Mitarb., Pr. roy. Soc. [B] 111 [1932], 469. V. Findet sich in geringer Menge im Roh-Anthracen (Fritzsche, C. r. 54 [1862], 912; 67 [1868], 1105; Z. 1866, 139; J. pr. [1] 106 [1869], 274, 277; Morton, Chem. N. 26 [1872], 201; Winterstein, Schön, Vetter, H. 230, 159). B. In sehr geringer Menge neben 1.2-Benzo-anthracen bei der Destillation von 2-Methyl-1-benzyl-naphthalin über Zinkstaub (Dziewonski, Ritt, Bl. Acad. polon. [A] 1927, 182, 187; C. 1927 II, 1568). Isolierung aus käuflichem Anthracen durch chromatographische Adsorption an aktiviertes Aluminiumoxyd aus Benzin-Lösung: W., Sch., V., H. 230, 159, 164, 335—336° unter Sublimation (Dz., R.). Schwer löslich in den meisten organischen Lösungsmitteln; verd. Lösungen fluorescieren grün (Dz., R.). Absorptionsspektrum in Chloroform: Capper, Marsh, Am. Soc. 47, 2848; Soc. 1926, 726; in Benzol: Winterstein, Schön, Vetter, H. 230 [1934], 159; in Tetrachlorkohlenstoff: Radulescu, Barbulescu, Ph. Ch. [B] 5, 302. Spektrum der durch ultraviolettes Licht erzeugten Fluorescenz der festen Substanz und der Lösung in Äthylacetat: Ra., Ba., Bulet. Cluj 4, 353, 353, 412 Tafel II und III; C. 1929 II, 1766. Geht ebenso wie Anthracen beim Belichten einer Xylol-Lösung in ein farbloses Dimeres (?) über, bei dessen Zersetzung wieder Naphthacen erhalten wird (Capper, Marsh, Am. Soc. 47, 2848; vgl. Fritzsche, C. r. 54 [1862], 912; 67 [1868], 1105; Z. 1866, 143; J. pr. [1] 106, 277).
- 3. 1.2-Benzo-anthracen, 1.2-Benzanthracen, "Naphthan-thracen"  $C_{18}H_{12}$ , s. nebenstehende Formel (H 718). B. Entsteht aus 2-Methyl-1-benzyl-naphthalin bei der Destillation über Zinkstaub, neben wenig Naphthacen (Dziewonski, Ritt, Bl. Acad. polon. [A] 1927, 186; C. 1927 II, 1568) und beim Leiten des mit Luft gemischten Dampfes über aktive, Manganoxyd und Kupferoxyd enthaltende Kohle bei 350° (I. G. Farbenind., D. R. P. 486 766; C. 1930 I, 1052; Frdl. 16, 575). Beim Leiten des Dampfes von 1-o-Toluylnaphthalin über Aluminiumoxyd oder besser über akt. Kohle bei 420° (I. G. Farbenind., D. R. P. 481 819; C. 1930 I, 1053; Frdl. 16, 718, 721). Bildet sich aus 2-Methyl-1-benzoylnaphthalin beim Erhitzen zu gelindem Sieden (Fieser, Dietz, B. 62, 1830) und bei der Destillation über Zinkstaub (Dziewonski, Ritt, Bl. Acad. polon. [A] 1927, 189). Zur Bildung durch Reduktion von 1.2-Benzo-anthrachinon mit Zinkstaub und Ammoniak (Elbs, B. 19, 2211) vgl. Barnett, Matthews, Chem. N. 130, 339; C. 1925 II, 562. Gelbgrün fluorescierende Blättchen oder Tafeln (aus Eisessig oder Alkohol). F: 167° (I. G. Farbenind., D. R. P. 481 819, 486 766), 159° (McVicker, Marsh, Stewart, Soc. 127, 1001), 158—159° (Barnett, Matthews; Dziewonski, Ritt), 155—157° (Fieser, Dietz). Ziemlich schwer löslich in siedendem Alkohol, leicht in Benzol (Dz., R.). Ultraviolett-Absorptionsspektrum in Lösung: Capper, Marsh, Soc. 1926, 726, 727. Tesla-Luminescenzspektrum: McV., M., St. Spektrum der durch Ultraviolett-Bestrahlung bewirkten Fluorescenz der festen Substanz: Radulescu, Barbellescu, Bulet. Cluj 4, 353, 355, 412 Tafel II und III; C. 1929 II, 1766. Luminescenz im Kathodenlicht: Marsh, Soc. 1927, 126. Gemische von Borsäure und wenig 1.2-Benzoanthracen zeigen nach Ultraviolett-Bestrahlung rotes Nachleuchten (Tiede, Ragoss, B. 56,

<sup>1)</sup> Die Bezeichnung Chrysogene wird in der neueren Literatur in erweitertem Sinne für die hartnäckig anhaftenden gefärbten Begleiter bestimmter aromatischer Kohlenwasserstoffe benutzt; vgl. Dufraisse, Horclois, Bl. [5] 3 [1936], 1874; L. F. Fieser, The chemistry of natural products related to phenanthrene [New York 1936], S. 18—20, 101.

658). Löslich in konz. Schwefelsäure mit roter Farbe und gelbroter Fluorescenz (I. G. Farbenind., D. R. P. 481819).

Pikrat. Rote Nadeln (aus Xylol). F: 132° (I. G. Farbenind., D. R. P. 481819; C. 1930 I, 1053; Frdl. 16, 719).

9 (oder 10)-Nitro-1.2-benzo-anthracen C<sub>18</sub>H<sub>11</sub>O<sub>2</sub>N, Formel I oder II. B. Bei der Einw. von Salpetersäure (D: 1,5) auf 1.2-Benzo-anthracen in Eisessig (BARNETT, MATTHEWS, Chem. N. 130, 339; C. 1925 II, 562). — Nadeln (aus wäßr. Pyridin). F: 165°.



4. 1.2-Benzo-phenanthren, Chrysen C<sub>18</sub>H<sub>12</sub>, Formel III (H 718; E I 355). B. In geringer Menge beim Leiten von Hydrinden über verzinntes Eisen bei ca. 650° (KRUBER, B. 57, 1011, 1012) und beim Leiten von Fluoren durch ein verzinntes Eisenrohr im Wasserstoffstrom bei 760—770° (F. FISCHER, SCHRADER, MEYER, Abh. Kenntnis Kohle 5, 434; C. 1922 IV, 1039). Entsteht neben anderen Produkten aus Cholesterin (s. 4. Hauptabt., Sterine) beim Erhitzen mit Palladium-Kohle (Diels, Gädke, B. 58, 1231; 60, 141; SCHMID, ZENTNER, M. 49, 96), mit akt. Kohle, mit akt. Kohle und Schwefel oder mit japanischer Fullererde (Tsukamoto, J. pharm. Soc. Japan 48, 18, 19; C. 1928 I, 2408). Bildet sich auch beim Erhitzen des von Mauthner, Suida, M. 17 [1896], 41 aus Cholesterylchlorid erhaltenen Kohlenwasserstoffs C<sub>19</sub>H<sub>28</sub> mit Palladiumkohle, neben anderen Produkten (Diels, Gädke, Körding, A. 459, 11).

Ist auch in fester Lösung in Anthracen nicht triboluminescent (GHIGI, G. 57, 284). F: 254—255° (DIELS, GÄDKE, B. 58, 1233; 60, 141), 252,5° (PASCAL, Bl. [4] 29, 654). Spezifische Wärme zwischen 0° und 79°: 0,262 cal/g (PADOA, G. 52 II, 206). Ultraviolett-Absorptionsspektrum in absolut-alkoholischer Lösung: MARCHLEWSKI, MOROZ, Bl. [4] 33, 1406. Röntgen-Luminescenzspektrum eines käuflichen Präparats: DE BEAUJEU, J. Phys. Rad. [6] 4 [1923], 265. Spektrum der durch Ultraviolett-Bestrahlung erzeugten Fluorescenz der festen Substanz: RADULESCU, BARBULESCU, Bult. Cluj 4, 353, 355, 412, Tafel II und III; C. 1929 II, 1766; ANDANT, Chim. et Ind. 19, Sonder-Nr., S. 269; C. 1929 I, 1538. Ist nicht piezoelektrisch (NEUHAUS, Z. Kr. 90, 427). Löslichkeit in Äther bei verschiedenen Drucken: TIMMERMANS, J. Chim. phys. 20, 506. Thermische Analyse der binären Systeme mit Anthracen (Eutektikum, F: 193,5° bei 40,2% Chrysen), Phenanthren (Eutektikum, F: 95,5°, 87% Chrysen) und Carbazol (Eutektikum, F: 204,5°, 51% Chrysen) und des ternären Systems mit Anthracen und Carbazol (Eutektikum, F: 192°): PASCAL, Bl. [4] 29, 654, 655.

Verhalten bei der Oxydation mit Chromschwefelsäure und mit Silberdichromat und Schwefelsäure: Simon, C. r. 477, 266. Erhitzt man Chrysen unter hohem Wasserstoffdruck in Gegenwart von Eisen(III)-chlorid auf 440—450°, so erhält man neben beträchtlichen Mengen kohliger Produkte Phenanthren, Naphthalin, Hydrierungsprodukte des Phenanthrens, Naphthalins und der Methyl-naphthaline, Benzol-Kohlenwasserstoffe, Methan und andere Produkte (Orlow, Lichatschew, B. 62, 720; Ж. 61, 1182). — Mikrochemischer Nachweis durch Sublimation und durch Überführung in die Verbindung mit 2.7-Dinitro-phenanthrenchinon: Behrens-Kley, Organische mikrochemische Analyse [Leipzig 1922], S. 22.

5. 9.10 - Benzo-phenanthren, Triphenylen C<sub>18</sub>H<sub>19</sub>, s. nebenstehende Formel (H 720). Die in der Formel angegebene Stellungsbezeichnung wird in diesem Handbuch für die von Triphenylen abgeleiteten Namen gebraucht (vgl. a. R. STELZNER, H. KUH, Nomenklaturfragen [Leipzig-Berlin 1921], S. 75). — B. In geringer Menge neben anderen Produkten bei der Einw. von Natrium auf siedendes Chlorbenzol (BACHMANN, CLARKE, Am. Soc. 49, 2093, 2094). Beim Erhitzen von Dodekahydrotriphenylen (S. 477) mit Selen auf 280—290° (DIELS, KARSTENS, B. 60, 2324). — Nadeln (aus Chloroform). F: 199° (korr.); Kp: 425° (korr.) (B., C.). — Pikrat F: 223° (korr.) (B., C.).



# 2. Kohlenwasserstoffe $C_{19}H_{14}$ .

1. 2-[Indenyl-(1)]-naphthalin, 1- $\beta$ -Naphthyl-inden  $C_{19}H_{14}$ , s. nebenstehende Formel. B. Durch Umsetzung von  $\alpha$ -Hydrindon mit  $\beta$ -Naphthylmagnesiumbromid (v. Braun, Manz, Reinsch, A. 468, 298). — Blättchen (aus Methanol). F: 88°. Kp<sub>14</sub>: 246—250°. Schwer löslich in kaltem Methanol.

**63**0

2. 9-Phenyl-fluoren. Phenyl-diphenylen-methan C<sub>19</sub>H<sub>14</sub>, s. nebenstehende Formel (H 720; E I 355). B. Beim Kochen von Triphenylchlormethan mit Zinkwolle in Benzol (Gilman, Kirby, Kinney, Am. Soc. 51, 2259). Beim Leiten von Dicyclohexyl-phenyl-carbinol über platinierte Kohle im Wasserstoffstrom bei 300° (Zelinsky, Gawerdowskaja, B. 61, 1051). Beim Kochen von 9-Phenyl-9-[4-oxy-phenyl]-fluoren mit Jodwasserstoffsäure und Eisessig (Hardy, Soc. 1929, 1009). Bildet sich aus N-[2-Phenyl-benzhydryl]-anilin (Syst. Nr. 1738) beim Erhitzen mit konz. Salzsäure im Rohr auf 145°, beim Kochen mit wäßrig-alkoholischer Salzsäure und beim Kochen mit Acetylchlorid und Acetanhydrid (Gilman, Kirby, Kinney, Am. Soc. 51, 2259). — D°: 1,232 (Ziegler, Ditzel,

Luminescenz im Kathodenlicht: Marsh, Soc. 1927, 128.

9-Chlor-9-phenyl-fluoren  $C_{19}H_{13}Cl = \begin{array}{c} C_6H_4 \\ C_6H_4 \end{array}$  CCl·C<sub>6</sub>H<sub>5</sub> (H 721; E I 355). Liefert beim Behandeln mit Phenylmagnesiumbromid in Ather 9-Phenyl-fluorenyl-(9) (S. 638) (Schmidt-Nickels, B. 62, 919).

A. 473, 207). Tesla-Luminescenzspektrum: McVicker, Marsh, Stewart, Soc. 127, 1001.

(Schmidt-Nickels, B. 02, 919). 9-Brom-9-phenyl-fluoren  $C_{19}H_{13}Br = \frac{C_6H_4}{C_6H_4}CBr\cdot C_6H_5$  (H 720; E I 355). Liefert beim Erhitzen mit äther. Benzylmagnesiumchlorid-Lösung 9-Phenyl-9-benzyl-fluoren (Bachmann, Am. Soc. 52 [1930], 3291).

3. 5-Benzyl-acenaphthylen C<sub>19</sub>H<sub>14</sub>, s. nebenstehende Formel. B. Bei der Destillation von 5-Benzyl-acenaphthen über rotglühenden Nickeloder Eisendraht (DZIEWONSKI, LEONHARD, Bl. Acad. polon. [A] 1928, 107; C. 1929 I, 1339). — Hellgelbe Nadeln (aus Alkohol). F: 104—105°. Schr leicht löslich in organischen Lösungsmitteln. Löst sich in konz. Schwefelsäure mit grüner Farbe.

3. HC=CH 1. CH<sub>2</sub>.

 $CH_2 \cdot C_6H_5$ 

4. 6-Methyl-1.2-benzo-anthracen, β-Methyl-naphthanthracen C<sub>19</sub>H<sub>14</sub>, s. nebenstehende Formel. B. Bei der Destillation von 2-Methyl-1-p-toluyl-naphthalin über Zinkstaub (Dziewonski, Ritt, Bl. Acad. polon. [A] 1927, 191; C. 1927 II, 1568). Beim Leiten CH<sub>3</sub> des Dampfes von 1-[2.4-Dimethyl-benzoyl]-naphthalin im Gemisch mit Luft über aktive Kohle bei 400° (I. G. Farbenind., D. R. P. 481819; C. 1930 I, 1053: Frdl. 16, 719, 721). — Hellgelbe, grün fluorescierende Tafeln (aus Alkohol), gelbe, grüngelb fluorescierende Blättchen (aus Xylol). F: 127° (Dz., R.), 130—131° (I. G. Farbenind.). Leicht löslich in organischen Lösungsmitteln (Dz., R.). Löslich in konz. Schwefelsäure mit roter Farbe und gelbroter Fluorescenz (I. G. Farbenind.).

5. 8-Methyl-1.2-benzo-anthracen C<sub>19</sub>H<sub>14</sub>, s. nebenstehende Formel. B. Entsteht aus 2-Methyl-1-o-toluyl-naphthalin bei der Destillation über Zinkstaub (Dziewonski, Ritt, Bl. Acad. polon. [A] 1927, 192; C. 1927 II, 1568) oder über hochporöse Stoffe (z. B. aktive Kohle) bei hoher Temperatur (I. G. Farbenind., D. R. P. 481819; C. 1930 I, 1053; Frdl. 16, 722). — Gelbe, blaugrün fluorescierende Blättchen oder Täfelchen (aus Alkohol). F: 145° (Dz., R.), 142° (I. G. Farbenind.). Ziemlich leicht löslich in organischen Lösungsmitteln (Dz., R.). Die Lösung in Schwefelsäure ist rot (I. G. Farbenind.).

## 3. Kohlenwasserstoffe $C_{20}H_{16}$

1. Triphenyläthylen, α-Phenyl-stilben C<sub>20</sub>H<sub>16</sub> = C<sub>6</sub>H<sub>5</sub>·CH:C(C<sub>6</sub>H<sub>5</sub>)<sub>2</sub> (H 722; E I 355). Der von Stadnikow (Ж. 46, 883; B. 47, 2140) als Triphenyläthylen angesehene Kohlenwasserstoff ist als Diphenyl erkannt worden (Boyd), Hatt, Soc. 1927, 902, 909). — B. Beim Behandeln von Diphenylbenzylcarbinol mit Acetylchlorid, zuletzt auf dem Wasserbad (Lagrave, A. ch. [10] 8, 411). Entsteht aus dem Nitrit des β.β.β-Triphenyl-äthylamins beim Erhitzen für sich auf 135° oder mit Wasser auf dem Wasserbad sowie neben Triphenylacetaldehyd, beim Erhitzen mit gelbem Quecksilberoxyd auf 135° (Hellerman, Cohn, Hoen, Am. Soc. 50, 1723, 1724, 1728). — Darstellung durch Einw. von Benzylmagnesium-chlorid auf Benzophenon: Adkins, Zartman, Org. Synth. 17 (1937), 89.

beim Erhitzen für sich auf 135° oder mit Wasser auf dem Wasserbad sowie neben Triphenylacetaldehyd, beim Erhitzen mit gelbem Quecksilberoxyd auf 135° (Hellerman, Cohn, Hoen, Am. Soc. 50, 1723, 1724, 1728). — Darstellung durch Einw. von Benzylmagnesiumchlorid auf Benzophenon: Adkins, Zartman, Org. Synth. 17 [1937], 89.

F: 72° (Ley, Kirchner, Z. anorg. Ch. 173, 400), 70° (Lagrave, A. ch. [10] 8, 411). 69—70° (Schlenk, Bergmann, A. 463, 44), 68° (kort.) (Hellerman, Cohn, Hoen, Am. Soc. 50, 1724), 67—69° (v. Auwers, B. 62, 700). Läßt sich leicht unterkühlen (L., K.). D<sub>1</sub><sup>n.4</sup>: 1,0373 (v. Au.); Dichte und Viscosität der unterkühlten Schmelze zwischen 12° und 35°: L., K., Z. anorg. Ch. 173, 405. n<sub>a</sub><sup>n.4</sup>: 1,6292; n<sub>He</sub><sup>n.4</sup>: 1,6401; n<sub>p</sub><sup>n.4</sup>: 1,6680 (v. Au.); Brechungsindices der unterkühlten Schmelze bei 25°: L., K., Z. anorg. Ch. 173, 402. Ultraviolett-Absorptionsspektrum in Chloroform: Ley, Rinke, B. 56, 773; L., Manecke, B. 56, 779.

Liefert in Chloroform-Lösung mit 1 Mol Benzopersäure bei gewöhnlicher Temperatur Triphenyläthylenoxyd, mit überschüssiger Benzopersäure bei 40° Triphenyläthylenoxyd und Diphenylbenzoylmethan (Lagrave, A. ch. [10] 8, 411, 416). Gibt mit Brom in kaltem Tetrachlorkohlenstoff 1.2-Dibrom-1.1.2-triphenyl-äthan (Meisenheimer, A. 456, 144; HELLERMAN, COHN, HOEN, Am. Soc. 50, 1724; vgl. Klages, Hellmann, B. 37 [1904], 1456), in Schwefelkohlenstoff Triphenylbromäthylen (Mei., A. 456, 146). Bei der Einw. von Natrium auf Triphenyläthylen in Äther entsteht eine braunschwarze Lösung, die bei der Zersetzung mit Alkohol 1.1.2-Triphenyl-äthan, beim Behandeln mit Kohlendioxyd und Ansäuern mit verd. Schwefelsäure in der Wärme Triphenylbernsteinsäureanhydrid gibt (Schlenk, Bergmann, A. 463, 45). Gibt in Benzol-Lösung mit Zinn(IV)-chlorid eine orangegelbe, mit Zinn(IV)-bromid eine schwach orangefarbene Additionsverbindung; Farbänderungen dieser Lösungen beim Verdünnen: Skraup, Freundlich, A. 431, 252, 253. Gibt mit 1.3.5-Trinitro-benzol in Chloroform eine gelbe Komplexverbindung (LEY, RINKE,

- β-Brom-α.α.β-triphenyl-äthylen, Triphenylbromäthylen  $C_{20}H_{15}Br=C_6H_5\cdot CBr$ :  $C(C_6H_5)_2$  (H 722). B. Aus Triphenyläthylen und Brom in Schwefelkohlenstoff (Meisenheimer, A. 456, 146). Liefert bei der Einw. von überschüssigem Chlor in Tetrachlorkohlenstoff 1.2.2-Trichlor-1.1.2-triphenyl-athan (Mel.). Gibt beim Erhitzen mit wasserfreiem Kaliumacetat und Eisessig im Rohr auf 2000 Diphenylbenzoylmethan (Ley, Manecke, B. 56, 783).
- 2.  $\alpha$ -Phenyl- $\alpha$ -diphenylyl-āthylen  $C_{20}H_{16}=C_6H_5\cdot C_6H_4\cdot C:CH_2)\cdot C_6H_5\cdot B$ . Aus Methyl-phenyl-diphenylyl-carbinol durch Wasserabspaltung (Delayille, C. r. 184, 463; vgl. Schlenk, Bergmann, A. 464, 31). Durch Umsetzung von Phenyl-diphenylyl-keton mit Methylmagnesiumjodid in siedendem Äther (Sch., B., A. 464, 32). — Blättchen (aus Methanol oder Eisessig). F: 96° (Sch., B.), 93° (D.). — Bei der Addition von unterjodiger Säure und Behandlung des erhaltenen, nicht näher beschriebenen Jodhydrins mit überschüssigem Silbernitrat erhält man 1-Oxo-1-phenyl-2-diphenylyl-äthan (D.). Liefert bei der Einw. von Benzopersäure ein Oxyd, das sich in Phenyl-diphenylyl-acetaldehyd umlagern läßt (D.). — Die Lösung in konz. Schwefelsäure ist blaustichig kirschrot (Sch., B.). Bildet ein bei 1366 schmelzendes Nitrosit (D.).
- 3. 9 Phenyl dihydroanthracen  $C_{20}H_{16}$ , s. nebenstehende Formel. Das H 722 als 9-Phenyl-dihydroanthracen beschriebene Präparat von Baeyer (A. 202, 56, 63), das auch von Schlenk, Bergmann (A. 463, 161, 164) einmal bei der Reduktion von 9-Phenyl-anthracen mit Natrium und Isoamylalkohol erhalten wurde, ist eine Additionsverbindung

C<sub>6</sub>H<sub>5</sub> CH

aus 9-Phenyl-dihydroanthracen und 9-Phenyl-anthracen (s. S. 639); der von Bakyer durch energischere Einw. von Jodwasserstoffsäure und Phosphor auf Phenyloxanthranol oder Triphenylmethan-carbonsäure-(2) erhaltene Kohlenwasserstoff vom Schmelzpunkt 86—88° ist als wahres 9-Phenyl-dihydroanthracen anzusehen (HAACK, B. 62, 1779). — B. 9-Phenyldihydroanthracen entsteht aus 9-Phenyl-anthracen bei der Reduktion mit 4 Atomen Natrium in siedendem Isoamylalkohol oder mit 4-5 Atomen Natrium oder Kalium in Xylol unter tropfenweiser Zugabe von Alkohol (HAACK, B. 62, 1783; vgl. Schlenk, Bergmann, A. 463, 163, 164) oder durch Einw. von 2 Atomen Natrium in Ather und Behandlung der erhaltenen Lösung mit Alkohol (Sch., B.). Neben überwiegenden Mengen 9-Phenyl-anthracen bei der Einw. von Chloroform und Aluminiumchlorid auf Benzol (Linebarger, Am. 18 [1891], 555). Bei der Einw. von Natrium auf 10-Methoxy-10-phenyl-anthron-(9) in siedendem Iso-amylalkohol (Sch., B., A. 463, 276). — Nadeln (aus Methanol oder Benzin). F: 90—91° (korr.) (H.), 87—88° (Sch., B.), 87° (L.). Zeigt im Kathodenlicht rotviolette Luminescenz und grünes Nachleuchten (Sch., B., A. 463, 161). Thermische Analyse des binären Systems mit 9-Phenyl-anthracen: HAACK, B. 62, 1776. — Reagiert nicht mit Natrium in Äther (Sch., B. 483, 161). B., A. 463, 164). Gibt beim Erhitzen mit Schwefel auf 180-190° 9-Phenyl-anthracen (H., B. 62, 1783).

1.5.9.10 - Tetrachlor -9 - phenyl - dihydroanthracen  $C_{20}H_{12}Cl_4$ , s. nebenstehende Formel. B. Durch Behandlung von 1.5-Dichlor-9-phenylanthracen mit einer gesättigten Lösung von Chlor in Tetrachlorkohlenstoff (Barnett, Matthews, B. 59, 672, 677). — Krystalle (aus Benzol + Ligroin). F: 175° (Zers.). — Liefert beim Erhitzen auf 200° 1.5.10-Trichlor-9-phenylanthracen. Verharzt beim Erhitzen in Xylol oder Cylor oder Cylor beim Kochen auf Teichlor 9-phenylanthracen.

Kochen mit Calciumcarbonat und wäßr. Aceton 1.5-Dichlor-9.10-dioxy-9-phenyl-dihydroanthracen, beim Kochen mit Methanol den Dimethyläther dieser Verbindung, beim Kochen mit Alkohol 1.5-Dichlor-10-athoxy-9-phenyl-anthracen und geringere Mengen 1.5-Dichlor-9.10-diathoxy-9-phenyl-dihydroanthracen. Gibt mit Anilin in Chloroform bei gewöhnlicher Temperatur 1.5-Dichlor-10-phenyl-anthron (9)-anil (Syst. Nr. 1604). Liefert mit Dimethylanilin in siedendem Chloroform 1.5-Dichlor-9-phenyl-10-[4-dimethylamino-phenyl]-anthracen.

- 9-[2-Chlor-benzyl]-fluoren  $C_{20}H_{15}Cl = \frac{C_6H_4}{C_6H_4}CH \cdot CH_2 \cdot C_6H_4Cl$ . B. Durch Reduktion von 9-[2-Chlor-benzyliden]-fluoren (E I 5, 358) mit amalgamiertem Aluminium in feuchtem Äther (Sieglitz, Jassox, B. 54, 2134, 2138). Blättchen (aus Alkohol). F: 67—68°.
- 9 [3 Chlor benzyl] fluoren  $C_{20}H_{15}Cl = \frac{C_6H_4}{C_6H_4}CH \cdot CH_2 \cdot C_6H_4Cl$ . B. Analog der vorangehenden Verbindung. Nadeln (aus Alkohol). F: 122—123° (SIEGLITZ, JASSOY, B. 54, 2138).
- 9 [4 Chlor benzyl] fluoren  $C_{20}H_{15}Cl = {C_6H_4 \over C_6H_4}CH \cdot CH_2 \cdot C_6H_4Cl$ . B. Analog den vorangehenden Verbindungen. Spieße (aus Eisessig). F: 150—151° (Sieglitz, Jassoy, B. 54, 2138).
- 2.7 Dichlor 9 benzyl fluoren C<sub>20</sub>H<sub>14</sub>Cl<sub>2</sub>, s. nebenstehende Formel. B. Durch Reduktion von 2.7-Dichlor-9-benzyliden-fluoren (S. 640) mit amalgamiertem Aluminium und feuchtem Äther (Sieg-CILITZ, SCHATZKES, B. 54, 2077). Blättchen (aus Eisessig). F: 110° bis 111°.
- 2.7 Dichlor 9 [2-chlor-benzyl]-fluoren  $C_{20}H_{13}Cl_3 = \frac{C_6H_3Cl}{C_6H_3Cl}CH\cdot CH_2\cdot C_6H_4Cl$ . B. Analog den vorangehenden Verbindungen. Blättchen (aus Eisessig). F: 116—117° (SIEGLITZ, SCHATZKES, B. 54, 2078).
- 2.7-Dichlor-9-[2.6-dichlor-benzyl]-fluoren  $C_{20}H_{12}Cl_4 = {C_6H_3Cl \choose C_6H_3Cl} CH \cdot CH_2 \cdot C_6H_3Cl_2$ .

  B. Analog den vorangehenden Verbindungen. Nadeln (aus Eisessig). F: 129—130° (Sieglitz, Schatzkes, B. 54, 2078).
- 9-[3-Brom-benzyl]-fluoren  $C_{20}H_{15}Br = \frac{C_6H_4}{C_6H_4}CH\cdot CH_2\cdot C_6H_4Br$ . B. Analog den vorangehenden Verbindungen. Blätter (aus Eisessig). F: 143—144° (SIEGLITZ, JASSOY, B. 54, 2138).
- 2.7 Dibrom 9 benzyl fluoren  $C_{90}H_{14}Br_2$ , s. nebenstehende Formel. B. Durch Reduktion von 2.7-Dibrom-9-benzyliden-fluoren mit amalgamiertem Aluminium in feuchtem Äther (SIEGLITZ, B. 53, Br. 2247). Durch Umsetzung von 2.7-Dibrom-fluoren-glyoxylsäure-(9)-äthylester mit Natrium und Benzylchlorid in Alkohol und Kochen des Reaktionsgemisches mit Kalilauge (S.). Gelbliche Blättchen (aus Eisessig). F: 126° bis 127°.
- 2.7-Dibrom-9-[2-chlor-benzyl]-fluoren  $C_{20}H_{13}ClBr_2 = {C_6H_3Br \choose C_6H_3Br}CH\cdot CH_2\cdot C_6H_4Cl.$  B. Durch Reduktion von 2.7-Dibrom-9-[2-chlor-benzyliden]-fluoren mit amalgamiertem Aluminium in feuchtem Äther (Sieglitz, B. 53, 2247). Krystalle (aus Alkohol). F: 117°.
- 2.7 Dibrom -9 [4-chlor benzyl] fluoren  $C_{20}H_{13}ClBr_2 = \frac{C_6H_3Br}{C_6H_3Br}CH \cdot CH_2 \cdot C_6H_4Cl$ .

  B. Analog der vorangehenden Verbindung (Sieglitz, B. 53, 2247). Nadeln (aus Eisessig). F: 150°.
- 9 [3 Jod benzyl] fluoren  $C_{20}H_{15}I = \frac{C_6H_4}{C_6H_4}CH \cdot CH_2 \cdot C_6H_4I$ . B. Analog den vorangehenden Verbindungen. Blättchen (aus Eisessig). F: 134—135° (Sieglitz, Jassoy, B. 54, 2138).
- 5. 5-Styryl-acenaphthen,  $\alpha$ -Phenyl- $\beta$ -[acenaphthenyl-(5)]-äthylen  $C_{20}H_{16}$ , Formel I auf S. 633.
- 5-[α-Chlor-β-phenyl-vinyl]-acenaphthen, β-Chlor-α-phenyl-β-[acenaphthenyl-(5)]-äthylen  $C_{20}H_{15}Cl$ , Formel II auf S. 633. B. Entsteht aus 5-[α.α-Dichlor-β-phenyl-äthyl]-acenaphthen langsam beim Aufbewahren, rascher beim Erhitzen im Vakuum auf 140° oder beim Kochen mit methylalkoholischer Kalilauge (Ruggli, Jenny, Helv. 10, 233). Nadeln (aus Alkohol). F: 77,5°. Löslich in Chloroform, schwer löslich in Äther und kaltem Alkohol. Entfärbt kalte Permanganat-Lösung langsam.

633

6-Nitro-5-[ $\alpha$ -chlor- $\beta$ -phenyl-vinyl]-acenaphthen  $C_{20}H_{14}O_{2}NCl$ , Formel III. B. Beim Erhitzen von 6-Nitro-5-[ $\alpha$ . $\alpha$ -dichlor- $\beta$ -phenyl-athyl]-acenaphthen im Vakuum auf 140°

(Ruggli, Jenny, Helv. 10, 239). — Gelbliche Krystalle (aus Alkohol). F: 160—161°. — Zersetzt sich bei der Einw. von Alkalien.

6. 3.6-Dimethyl-1.2-benzo-anthracen C<sub>20</sub>H<sub>16</sub>, s. nebenstehende Formel. B. Beim Leiten von 1-Methyl-4-[2.4-dimethyl-benzoyl]-naphthalin über hochporöse Stoffe (z. B. aktive Kohle) bei hoher Temperatur (I. G. Farbenind., D. R. P. 481819; C. 1930 I, CH<sub>3</sub> 1053; Frdl. 16, 722). — Gelbliche Blättchen. F: 124°. Die Lösung in Schwefelsäure ist bordeauxrot.

#### 7. Derivat eines Tetrahydroperylens $C_{20}H_{16}$ .

Dekachlor-tetrahydroperylen C<sub>30</sub>H<sub>e</sub>Cl<sub>10</sub>. B. Durch Chlorierung von Perylen (S. 655) bei Gegenwart von Aluminiumchlorid oder Antimonpentachlorid in Nitrobenzol bei 130—140° (ZINKE, FUNKE, IPAVIC, M. 48, 742, 748). — Braune Krystalle (aus Nitrobenzol). Schmilzt nicht bis 400°. Sehr schwer löslich in Nitrobenzol mit orangegelber Farbe und grüner Fluorescenz; unlöslich in kalter konzentrierter Schwefelsäure, löst sich in heißer konzentrierter Schwefelsäure teilweise mit violetter Farbe, in kalter rauchender Schwefelsäure (25% SO<sub>3</sub>) mit grüner, beim Erhitzen auf 150° in Ultramarinblau übergehender Farbe; hierbei bildet sich Oktachlor-oktahydroperylendichinon (Syst. Nr. 723).

8. Kohlenwasserstoff C<sub>20</sub>H<sub>16</sub> aus Steinkohlen-Urteer (vielleicht ein Dimethylnaphthacen). V. Im Urteer aus englischen Steinkohlen (Morgan, J. Soc. chem. Ind. 47, 132 T; C. 1928 II, 208). — Orangefarben, goldglänzend. F: 320°. — Läßt sich zu einem Chinon oxydieren.

## 4. Kohlenwasserstoffe $C_{21}H_{18}$ .

1. 1.1.3-Triphenyl-propen-(1), α.α.γ-Triphenyl-propylen, α.α-Diphenyl-β-benzyl-āthylen C<sub>21</sub>H<sub>18</sub> = (C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>C:CH·CH<sub>2</sub>·C<sub>6</sub>H<sub>5</sub> (E I 356). B. Aus Diphenyl-β-phenāthyl-carbinol (1-Oxy-1.1.3-triphenyl-propan) beim Kochen mit 5 Tln. Acetanhydrid (Ziegler, Grabbe, Ulrich, B. 57, 1989) oder beim Erwärmen mit Eisessig und etwas konz. Schwefelsäure auf dem Wasserbad (Ziegler, Richter, Schnell, A. 443, 171; Schlenk, Bergmann, A. 463, 50; vgl. a. Ziegler, Colonius, Schäfer, A. 473, 38). — Krystalle (aus Alkohol). F: 31—32° (Z., G., U.). Hält sich sehr lange im unterkühlten Zustand (Z., R., Sch., A. 443, 172 Anm. 1). Kp<sub>15</sub>: 228—229° (Lagrave, A. ch. [10] 8, 405); Kp<sub>12</sub>: 225° (Z., G., U.); Kp<sub>10</sub>: 222° (Schl., B.).

Gibt mit Benzopersäure in Äther α.α.γ-Triphenyl-propylenoxyd (Lagrave, A. ch. [10] 8, 406). Reagiert mit Natrium in Äther langsam unter Bildung einer tiefroten Lösung, die beim Behandeln mit Alkohol 1.1.3-Triphenyl-propen-(1) zurückliefert (Schlenk, Bergmann, A. 463, 50). Bei der Einw. von Natrium in flüssigem Ammoniak auf eine Lösung in Toluol und Zersetzung des Reaktionsprodukts mit Ammoniumchlorid entsteht 1.1.3-Triphenyl-propan (Ziegler, Colonius, Schäfer, A. 473, 56). Liefert beim Behandeln mit α-Phenyl-isopropylkalium in Äther und Einleiten von Kohlendioxyd in das Reaktionsgemisch α.γ.γ-Triphenyl-vinylessigsäure (Ziegler, Mitarb., A. 473, 26).

3-Chlor-1.1.3-triphenyl-propen-(1), αγ.γ-Triphenyl-allylchlorid C<sub>21</sub>H<sub>17</sub>Cl = (C<sub>8</sub>H<sub>8</sub>)<sub>8</sub>C:CH·CHCl·C<sub>8</sub>H<sub>8</sub>. B. Durch Einw. von Chlorwasserstoff auf α.γ.γ-Triphenyl-allylalkohol oder dessen Methyläther in Äther (Ziegler, Grabbe, Ulrich, B. 57, 1987) oder bei Gegenwart von Calciumchlorid in Benzol (Straus, Ehrenstein, A. 442, 109). — F: 93—94,5° (Zers.) (St., E.), 94—95° (Zers.) (Z., Richter, Schnell, A. 443, 179; vgl. Z., G., U.). — Geht bei längerem Erhitzen über den Schmelzpunkt oder beim Kochen mit höhersiedenden indifferenten Lösungsmitteln in dimeres Triphenylallen (S. 722) über (Z., G., U.; St., E.); in der Wärme oder im hellen Licht umkrystallisierte Präparate wandeln sich beim Aufbewahren von selbst in dimeres Triphenylallen um (St., E.). Gibt mit feuchtem Silberoxyd auf Kieselgur in Äther α.γ.γ-Triphenyl-allylalkohol (St., E., A. 442, 110). Löst sich in konz. Schwefelsäure unter Chlorwasserstoff-Entwicklung; beim Ausfällen mit Eis erhält man α.γ.γ-Triphenyl-allylalkohol (Z., G., U., B. 57, 1987). Liefert mit Methanol den Methyläther des α.γ.γ-Triphenyl-allylalkohols (Z., G., U.; St., E.); beim Behandeln mit Natriummethylat-Lösung entsteht daneben der Methyläther des Diphenyl-styryl-carbinols (Ziegler,

STEIN, A. 442, 107, 110.

- 2-Brom-1.1.3-triphenyl-propen-(1) C<sub>21</sub>H<sub>17</sub>Br = (C<sub>8</sub>H<sub>5</sub>)<sub>2</sub>C:CBr·CH<sub>2</sub>·C<sub>8</sub>H<sub>5</sub>. B. Durch Bromierung von 1.1.3-Triphenyl-propen-(1) (Ziegler, Grabbe, Ulrich, B. 57, 1989 Anm. 18). Beim Erhitzen von 1.2-Dibrom-1.1.3-triphenyl-propan über den Schmelzpunkt (Z., Richter, Schnell, A. 443, 172). Aus 2-Brom-1-methoxy-1.1.3-triphenyl-propan beim Erwärmen mit Eisessig und einer Spur Mineralsäure oder beim Sättigen der äther. Lösung mit Chlorwasserstoff oder Bromwasserstoff (Z., R., Sch., A. 443, 173). Krystalle (aus Eisessig). F: 97—98°. Verändert sich nicht bei längerem Kochen mit alkoh. Alkalilaugen (Z., G., U.); spaltet beim Kochen mit isoamylalkoholischer Natronlauge rasch Bromwasserstoff ab und verharzt (Z., R., Sch., A. 443, 172 Anm. 2).
- 2. 1.3.3-Triphenyl-propen-(1). α.γ.γ-Triphenyl-α-propylen. Diphenyl-styryl-methan C<sub>21</sub>H<sub>18</sub> = (C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>CH·CH:CH·C<sub>6</sub>H<sub>5</sub>. B. Durch Einw. von Cinnamylidenchlorid auf Phenylmagnesiumbromid in siedendem Äther (ZIEGLER, RICHTER, SCHNELL, A. 443, 179). Krystalle (aus Eisessig). F: 97—98°. Kp<sub>15</sub>: 230°; Kp<sub>0·2</sub>: ca. 180°. Liefert bei der Oxydation mit Chromtrioxyd in Eisessig Benzoesäure und Diphenylessigsäure. Gibt bei der Redüktion mit Natrium und absol. Alkohol 1.1.3-Triphenyl-propan. Reagiert in verd. Lösung nicht mit Brom in Schwefelkohlenstoff (Z., R., Sch., A. 443, 169).
- 1-Chlor-1.3.3-triphenyl-propen-(1)  $C_{21}H_{17}Cl = C_6H_5 \cdot CCl : CH \cdot CH(C_6H_5)_2$ . B. Durch Einw. von 1.3-Dichlor-1.3-diphenyl-propen auf Phenylmagnesiumbromid in siedendem Äther (STRAUS, EHRENSTEIN, A. 442, 104). Tafeln (aus Petroläther). F: 84,5—85.5°: leicht löslich in den üblichen Lösungsmitteln außer Methanol und Alkohol (ST., E.). Liefert beim Kochen mit Natriummethylat-Lösung die Methyläther des  $\alpha, \gamma, \gamma$ -Triphenylallylalkohols und des Diphenyl-styryl-carbinols (ST., E., A. 442, 106, 108; vgl. Ziegler, Richter, Schnell, A. 443, 163); Geschwindigkeit dieser Reaktion: ST., E., A. 442, 105. Löst sich in konz. Schwefelsäure allmählich mit gelber Farbe; beim Eintragen der äther. Lösung in konz. Schwefelsäure entsteht sofort eine gelbe Lösung (ST., E.).
- 3. 1.2.3 Triphenyl propen.  $\alpha.\beta.\gamma$  Triphenyl propylen.  $\alpha.\beta$  Diphenyl- $\alpha$ -benzyl-äthylen  $C_{21}H_{18}=C_6H_5\cdot CH_2\cdot C(C_6H_5):CH\cdot C_6H_5$  (E I 356). B. Beim Behandeln von Phenyldibenzylcarbinol mit Phosphorpentoxyd (Ramart, Amagat, C. r. 182, 1344; A. ch. [10] 8, 320). Entsteht als Hauptprodukt bei der Einw. von Phosphorpentoxyd auf  $\beta.\beta.\gamma$ -Triphenyl-propylalkohol (R., A., C. r. 182, 1343; A. ch. [8] 10, 318). Bei der Reduktion von 3.4.5-Triphenyl- $\Lambda^2$ -pyrazolin mit rauchender Jodwasserstoffsäure auf dem Wasserbad (Ectors, Bl. Acad. Belgique [5] 9, 514; C. 1924 I, 913). F: 63—64° (R., A.), 61—62° (E.). Kp<sub>12</sub>: 220—222° (R., A., A. ch. [10] 8, 318).
- 4. 1.1.2 Triphenyl propen (1),  $\alpha.\alpha.\beta$ -Triphenyl  $\alpha$ -propylen,  $\alpha$ -Methyl- $\alpha.\beta.\beta$ -triphenyl-äthylen  $C_{21}H_{18} = C_6H_5 \cdot C(CH_3) \cdot C(C_6H_5)_2$  (H 723; E I 356). B. Entsteht aus 1-Oxy-1.1.2 triphenyl-propan (= Diphenyl- $\alpha$ -phenäthyl-carbinol) (Lévy, Bl. [4] 29, 893), aus 2-Oxy-1.1.2-triphenyl-propan (L., Bl. [4] 29, 892; SCHLENK, BERGMANN, A. 463, 45) und aus 1-Oxy-1.2.2-triphenyl-propan (L., Bl. [4] 29, 891) bei der Destillation in Gegenwart von wenig Schwefelsaure unter vermindertem Druck. Bildet sich aus 1-Oxy-1.2.2-triphenylpropan auch bei langsamem Eintragen in Schwefelsäure (D: 1,84) (L., Bl. [4] 29, 892). Durch Einw. von α-Chlor-propionsäure-äthylester auf Phenylmagnesiumbromid in siedendem Äther (Lévy, Bl. [4] 29, 894). Durch Umsetzung von Hydratropasäure-äthylester mit 2 Mol Phenylmagnesiumbromid und nachfolgendes Kochen mit Acetanhydrid (Ziegler, Grabbe. ULRICH,  $\vec{B}$ . 57, 1989 Anm. 19). — Krystalle (aus Alkohol). F: 92—93° (SCHLENK, BERGMANN, A. 463, 45), 89—90° (Lévy, Bl. [4] 29, 894), 86—87° (Z., G., U.). Ein nicht ganz einheitliches Präparat zeigte  $D_1^{(00,2)}$ : 0.9956;  $n_{\alpha}^{(00,2)}$ : 1,5841;  $n_{\alpha}^{100,2}$ : 1,5925;  $n_{\alpha}^{(00,3)}$ : 1,6147 (v. Auwers. B. 62, 700). 1 g löst sich in 4 cm<sup>3</sup> siedendem Alkohol (L., Bl. [4] 29, 894). — Oxydation mit Chromsaure: Levy, Bl. [4] 29, 894; vgl. indessen Schlenk, Bergmann, A. 479 [1930], 51; BERGMANN, UKAI, B. 66 [1933], 55. Liefert mit 2 Atomen Brom in Tetrachlorkohlenstoff, zuletzt bei Zimmertemperatur, 3-Brom-1.1.2-triphenyl-propen-(1) (Meisenheimer. A. 456, 147; vgl. Ziegler, Bähr, B. 62, 1695). Beim Erhitzen mit überschüssigem Brom in Tetrachlorkohlenstoff entstehen gelbe, krystallisierende Produkte (M., A. 456, 150). Bei der Einw. von Natrium oder Lithium in Äther entsteht eine blutrote Lösung, aus der man beim Behandeln mit Alkohol 1.1.2-Triphenyl-propan erhält (Schlenk, Bergmann, A. 463, 45).
- **3-Brom-1.1.2-triphenyl-propen-(1)**  $C_{21}H_{17}Br = (C_6H_6)_2C:C(C_6H_6) \cdot CH_2Br$ . B. Durch Einw. von 2 Atomen Brom auf 1.1.2-Triphenyl-propen-(1) in Tetrachlorkohlenstoff, anfangs

- unter Kühlung, dann bei Zimmertemperatur (Meisenheimer, A. 456, 147). Nadeln (aus Petroläther). F: 122°; bei manchen Präparaten werden auch niedrigere Schmelzpunkte (von 96° an) beobachtet. Leicht löslich in den gebräuchlichen Lösungsmitteln, schwer in Petroläther. Liefert bei der Spaltung mit Ozon in Tetrachlorkohlenstoff-Lösung Benzophenon und Phenacylbromid. Gibt bei weiterer Bromierung im Sonnenlicht in der Kälte 3.3-Dibrom-1.1.2-triphenyl-propen-(1). Liefert beim Kochen mit absol. Alkohol 3-Äthoxy-1.1.2-triphenyl-propen-(1). Bei der Umsetzung mit Phenylmagnesiumbromid in Äther entsteht 1.1.2.3-Tetraphenyl-propen-(1).
- **3.3 Dibrom 1.1.2 triphenyl propen (1)**  $C_{21}H_{16}Br_2 = (C_6H_5)_2C:C(C_6H_5)\cdot CHBr_2$ . B. Durch Einw. von 2 Atomen Brom auf eine Lösung von 3-Brom-1.1.2-triphenyl-propen-(1) im Sonnenlicht unter Kühlung mit Eis (MEISENHEIMER, A. 456, 149, 150). Nadeln (aus Petroläther). F: 129° (Zers.); erstarrt wieder und schmilzt erneut bei 159°.
- 5. 1.1-Diphenyl-hydrinden C<sub>21</sub>H<sub>18</sub>, s. nebenstehende Formel.

  B. Durch Reduktion von 3.3-Diphenyl-inden mit Natrium und Alkohol oder mit Wasserstoff bei Gegenwart von Platinschwarz in Alkohol +

  Äther (Gagnon, A. ch. [10] 12, 338). Aus dem Semicarbazon oder Hydrazon des 3.3-Diphenyl-hydrindons-(1) beim Erhitzen mit Natriumäthylat-Lösung im Rohr auf ca. 200° (G., A. ch. [10]-12, 340, 341; vgl. Moureu, Dufraisse, Gagnon, C. r. 189, 218). Krystalle (aus Methanol oder Alkohol). F: 67—68°; Kp<sub>2</sub>: ca. 185° (G.).
- 2.3-Dibrom-1.1-diphenyl-hydrinden, 3.3-Diphenyl-inden-dibromid  $C_{21}H_{16}Br_2 = C_6H_4 < C(C_6H_5)_2 > CHBr$ . B. Aus 3.3-Diphenyl-inden und Brom in Äther bei 0° (Gagnon, A. ch. [10] 12, 334). Krystalle (aus Alkohol). F: 132—133°. Gibt bei der Reduktion mit Eisen und Essigsäure in Alkohol 3.3-Diphenyl-inden. Liefert beim Kochen mit Natriummethylat-Lösung 1 (oder 2)-Brom-3.3-diphenyl-inden.
- 6. 1.2-Diphenyl-hydrinden  $C_{21}H_{18}$ , s. nebenstehende Formel. Zur Konstitution vgl. Bergmann, Weiss, B. 63 [1930], 1175. B. Neben überwiegenden Mengen 1.2.3-Triphenyl-propen beim Behandeln von  $\beta$ . $\beta$ . $\gamma$ -Triphenyl-propylalkohol mit Phosphorpentoxyd (Ramart, Amagat, C. r. 182, 1343; A. ch. [10] 8, 318). Krystalle. F: 89° (R., A.).
- 7. 1.3-Diphenyl-hydrinden C<sub>21</sub>H<sub>18</sub> = C<sub>8</sub>H<sub>4</sub>  $< \frac{\text{CH(C_6H_5)}}{\text{CH(C_6H_5)}} > \text{CH}_2$ . B. Durch Reduktion von 1.3-Diphenyl-inden mit Natrium in siedenden Alkohol oder in feuchtem Äther (ZIEGLER. Grabbe, Ulrich, B. 57, 1988). Beim Kochen von dimerem Triphenylallen (S. 722) mit Jodwasserstoffsäure (D: 1,7) und rotem Phosphor in Eisessig (Z., G., U., B. 57, 1989). Nadeln (aus Benzol und Methanol). F: 156—157°.
- 1.2-Dibrom-1.3-diphenyl-hydrinden, 1.3-Diphenyl-inden-dibromid  $C_{21}H_{16}Br_2 = C_6H_4 < \frac{CH(C_6H_6)}{CBr(C_6H_6)} > CHBr.$  B. Aus 1.3-Diphenyl-inden und Brom in Äther unter Kühlung (WEISS, LUFT, M. 48, 341). Krystalle (aus Ligroin). Zersetzt sich bei 92—96°. Bräunt sich bei längerem Aufbewahren. Liefert beim Kochen mit Methanol 2-Brom-1-methoxy-1.3-diphenyl-hydrinden.
- 8. 9 Benzyl dihydroanthracen C<sub>21</sub>H<sub>18</sub>, s. nebenstehende Formel (H 723). B. Durch Reduktion von 9-Benzyl-anthracen mit Natrium und siedendem Isoamylalkohol (Cook, Soc. 1926, 2169). Entsteht aus 9-Benzoyl-dihydroanthracen (C., Soc. 1926, 1681), aus 9.10-Dibenzoyl-dihydroanthracen (C., Soc. 1926, 1684) und aus der

  Verbindung C<sub>6</sub>H<sub>4</sub> CO·CH(CH<sub>2</sub>·C<sub>6</sub>H<sub>5</sub>) C<sub>6</sub>H<sub>4</sub> (Syst. Nr. 685) (C., Soc. 1928, 62) beim Erhitzen mit 50% iron Ledwiczentofficial und aus and part of the second control of the second

hitzen mit 50% iger Jodwasserstoffsäure und rotem Phosphor im Rohr auf 180—200°. — F: 119—120° (C., Soc. 1926, 1681, 2169). — Reagiert bei gewöhnlicher Temperatur nicht mit Brom in Schwefelkohlenstoff oder mit Salpetersäure (D: 1,4) in Eisessig (C., Soc. 1926, 2169). Die Lösung in kalter konzentrierter Schwefelsäure ist farblos und nimmt beim Erwärmen infolge Bildung von 9-Benzyl-anthracen dunkelgrüne Färbung und rote Fluorescenz an (C., Soc. 1926, 1682).

2-Chlor-9.10.10-tribrom-9-benzyl-dihydroanthracen (?) C<sub>21</sub>H<sub>14</sub>ClBr<sub>3</sub>, s. nebenstehende Formel. B. Durch Einw. von 3-4 Mol Brom auf 2-Chlor-9-benzyl-anthracen in Schwefelkohlenstoff (BARNETT, WILTSHIRE, Soc. 1928, 1824). — Gelbliches Pulver (aus Benzol + Petroläther). Schmilzt unter heftiger Zersetzung bei cs. 150°.

1.5 Dichlor-9.10-dibrom-9-benzyl-dihydroanthracen, 1.5-Dichlor-9-benzyl-anthracen-dibromid C<sub>21</sub>H<sub>14</sub>Cl<sub>2</sub>Br<sub>2</sub>, s. nebenstehende Formel. Zur Konstitution vgl. Cook, B. 60, 2366. — B. Durch Einw. von 1 Mol Brom auf 1.5-Dichlor-9-benzyl-anthracen in kaltem Schwefelkohlenstoff (BARNETT, COOK, MATTHEWS, B. 60, 2359). - Farblos, unbeständig. Geht beim Aufbewahren in der Wärme in 1.5-Dichlor-10-brom-9-benzyliden-dihydroanthracen über (B., C., M.; vgl. C., B. 60, 2367; Soc. 1928, 2799, 2804).

- 9. 9-Methyl-10-phenyl-dihydroanthracen  $C_{21}H_{18} = C_6H_4 < \frac{CH(CH_3)}{CH(C_6H_6)} > C_6H_4$ .
- 1.5 Dichlor 9 brom 9 brommethyl 10 phenyl dihydroanthracen  $\mathrm{C}_{21}\mathrm{H}_{14}\mathrm{Cl}_2\mathrm{Br}_2$ , s. nebenstehende Formel. B. Durch Einw. von Brom auf 1.5-Dichlor-10-phenyl-9-methylen-dihydroanthracen in Schwefelkohlenstoff in der Kälte (BARNETT, COOK, B. 61, 319). — Gelbliches Krystallpulver (aus Benzol + Petroläther). F: 122°. Färbt sich beim Erhitzen oder beim Kochen mit Benzol gelb.
  - CH2Br Cl ĊL . C<sub>6</sub>H<sub>5</sub>
- 10. 9-[2-Methyl-benzyl]-fluoren  $C_{21}H_{18} = \begin{array}{c} C_6H_4 \\ C_6H_4 \end{array}$  CH·CH<sub>2</sub>·C<sub>6</sub>H<sub>4</sub>·CH<sub>3</sub>. B. Durch Reduktion von 9-[2-Methyl-benzyliden]-fluoren (E I 5, 359) mit amalgamiertem Aluminium in feuchtem Äther (Sieglitz, Jassoy, B. 54, 2137). — Würfel (aus Eisessig). F: 71—72°.
- 11. 9-[3-Methyl-benzyl]-fluoren  $C_{21}H_{18} = \frac{C_6H_4}{C_6H_4}CH\cdot CH_2\cdot C_6H_4\cdot CH_3$ . B. Aus 9-[3-Methyl-benzyliden]-fluoren (S. 649) durch Reduktion mit amalgamiertem Aluminium in feuchtem Ather oder durch Behandlung mit Brom in Chloroform und Reduktion des erhaltenen amorphen Dibromderivats mit Zinkstaub und Eisessig (DE FAZI, G. 51 I. 335, 336). - Nadeln (aus Alkohol). F: 111-1120. Leicht löslich in Äther, Alkohol und Eisessig.
- 12. 9-[4-Methyl-benzyl]-fluoren  $C_{21}H_{18} = \frac{C_6H_4}{C_6H_4}CH \cdot CH_2 \cdot C_6H_4 \cdot CH_3$ . B. Durch Reduktion von 9-[4-Methyl-benzyliden]-fluoren (E I 5, 359) mit amalgamiertem Aluminium in feuchtem Äther (Sieglitz, Jassoy, B. 54, 2137). — Spieße (aus Eisessig). F: 136—137°.
- 2.7-Diehlor-9-[4-methyl-benzyl]-fluoren  $C_{21}H_{16}Cl_2$ , s. neben-CH2-C6H4-CH3 stehende Formel (X = Cl). B. Analog der vorangehenden Verbindung (Sieglitz, Schatzkes, B. 54, 2078). — Blättchen (aus Eisessig). F: 136-137°.
- 2.7-Dibrom-9-[4-methyl-benzyl]-fluoren  $C_{21}H_{16}Br_2$ , s. obenstehende Formel (X = Br). B. Analog den vorangehenden Verbindungen (Sieglitz, B. 53, 2247). — Stäbehen (aus Eisessig). F: 141-1420

# 5. Kohlenwasserstoffe $C_{22}H_{20}$ .

- 1. 1.10-Diphenyl-decapentaen-(1.3.5.7.9)  $C_{22}H_{20}=C_6H_5\cdot [CH:CH]_5\cdot C_6H_5$ . B. Entsteht in geringer Ausbeute beim Erhitzen von Buten-(2)-dicarbonsäure-(1.4) mit Zimtaldehyd, Acetanhydrid und Bleioxyd auf 130° und nachfolgenden Kochen (Kuhn, Winter-STEIN, Helv. 11, 112). — Orangefarbene Blättchen (aus Acetanhydrid). F: 2530; zersetzt sich beim Erhitzen über den Schmelzpunkt. Bei 190 lösen 1000 cm3 Benzol 0,125 g, 1000 cm3 Chloroform 0,20 g; leichter löslich in siedendem Chloroform, Acetanhydrid, Benzol, Pyridin und Dioxan (K., W., Helv. 11, 101, 112). — Beim Schütteln einer Suspension in Benzol + Alkohol mit 4% igem Natriumamalgam entsteht 1.10-Diphenyl-decatetraen-(2.4.6.8) (S. 624). das bei der Reduktion mit amalgamiertem Aluminium und feuchtem Äther nur in sehr geringer Menge erhalten wird (K., W., Helv. 11, 133, 134). Liefert mit Brom in Chloroform 1.10-Diphenyl-decapentaen-hexabromid (S. 601); bei der Einw. von Bromdampf auf die feste Substanz entstehen grün bis blaugrün gefärbte, einige Zeit beständige Additionsprodukte (K., W., Helv. 11, 143). — Löst sich in konz. Schwefelsäure mit violettroter Farbe (Hauptabsorption bei 595 m $\mu$ ); beim Schütteln mit Chloroform und konz. Schwefelsäure färbt sich das Chloroform violett, die Schwefelsäure blauviolett; beim Schütteln mit Chloroform, Acetanhydrid und Schwefelsäure sind die Schichten grün und blaugrün (K., W., Helv. 11, 151). Gibt mit 1.3.5-Trinitro-benzol in Chloroform tief braunviolette Nadeln (K., W., Helv. 11, 149).
- 2. 1.3 Diphenyl 2 benzyl propen, 1.3 Diphenyl 2 benzyl propen,  $\alpha$ -Phenyl  $\beta$   $\beta$  dibenzyl  $\alpha$ -thylen  $C_{22}H_{20} = (C_6H_5 \cdot CH_2)_2C \cdot CH \cdot C_6H_5$  (E I 356). B. Entsteht als Hauptprodukt bei der Umsetzung von Tribenzylbrommethan mit Arbylmagnesiumbromid in Äther + Benzol (neben Hexabenzyläthan) oder mit Benzylmagnesiumchlorid

in Äther + Benzol (neben Tetrabenzylmethan) (Trotman, Soc. 127, 93, 94). — Krystalle (aus Alkohol), F: 42—43° (Tr.); durch Wasserabspaltung aus Tribenzylearbinol (s. E I 356) dargestellte Präparate zeigten F: 29—30°; Kp<sub>11</sub>: 231—232°; Kp<sub>20</sub>: 241—245° (Tiffeneau, Lévy, Bl. [4] 39, 780). — Liefert mit Benzopersäure in Chloroform  $\alpha.\gamma$ -Diphenyl- $\beta$ -benzylpropylenoxyd (Syst. Nr. 2374) (Ti., L., C. r. 182, 392; Bl. [4] 39, 780). Gibt mit Brom das entsprechende Dibromid (S. 624) (Tr.; Ti., L.).

3.  $9-[\gamma-Phenyl-propyl]-fluoren, 1-Phenyl-3-[fluorenyl-(9)]-propan <math>C_{22}H_{20} = \stackrel{C_6H_4}{\stackrel{}{\smile}} CH \cdot [CH_2]_3 \cdot C_6H_5$ . B. Durch Hydrierung von 9-Cinnamyliden-fluoren in Gegenwart von Palladiumkohle in Eisessig bei  $24^{\circ}$  (Kuhn, Winterstein, Helv. 11, 139). — Nadeln (aus Methanol), Prismen (aus Äther beim Verdunsten). F: 71°. Leicht löslich in Äther, Petroläther, Chloroform und Benzol, schwerer in Alkohol, schwer in Methanol und Eisessig.

## 6. Kohlenwasserstoffe $C_{23}H_{22}$ .

- 1. 2-Methyl-1.3.3-triphenyl-buten-(1)  $C_{23}H_{22} = (C_6H_5)_2C(CH_3) \cdot C(CH_3) \cdot CH \cdot C_6H_5$ .
- a) Höherschmelzende (stabile) Form. B. Entsteht aus  $\beta$ . $\beta$ -Dimethyl- $\alpha$ . $\alpha$ . $\gamma$ -triphenyl-propylalkohol  $C_6H_5 \cdot CH_2 \cdot C(CH_3)_2 \cdot C(C_6H_5)_2 \cdot OH$ : neben überwiegenden Mengen Isobutylbenzol und Benzophenon beim Leiten der Dämpfe über Kieselgur bei 300—350° (RAMART, C.r. 179, 278, 400), neben der niedrigerschmelzenden Form beim Kochen mit Acetanhydrid und Acetylchlorid (R., C.r. 179, 278, 400), als einziges Reaktionsprodukt beim Behandeln mit Bromwasserstoff-Eisessig bei 40—50° (R., C.r. 179, 635, 636, 852). Bildet sich neben der niedrigerschmelzenden Form beim Leiten des Dampfes von  $\alpha$ -Methyl- $\beta$ - $\beta$ -diphenyl- $\alpha$ -benzyl-propylalkohol  $C_6H_5 \cdot CH_2 \cdot C(CH_3)(OH) \cdot C(C_6H_5)_2 \cdot CH_3$  über Kieselgur bei 300—350° und beim Kochen dieses Alkohols mit Acetanhydrid und Acetylchlorid (R., C.r. 179, 401). Beim Behandeln der niedrigerschmelzenden Form mit Bromwasserstoff in Eisessig (R., C.r. 179, 278, 401). Krystalle. F: 110° (R., C.r. 179, 278, 401). Ultraviolett-Absorptionsspektrum: RAMART-Lucas, C.r. 186, 1303. Entfärbt Brom sehr langsam (R., C.r. 179, 278).
- b) Niedrigerschmelzende (labile) Form. B. s. im vorangehenden Abschnitt. Krystalle. F: 89—90° (RAMART, C. r. 179, 278, 400). Ultraviolett-Absorptionsspektrum: RAMART-Lucas, C. r. 186, 1303. Entfärbt Brom sehr langsam (R., C. r. 179, 278). Wandelt sich beim Behandeln mit Bromwasserstoff in Eisessig in die höherschmelzende Form um (R., C. r. 179, 278, 401).
- 2. 9-[4-Isopropyl-benzyl]-fluoren  $C_{23}H_{22}$ , s. nebenstehende Formel (X = H).  $\begin{array}{c} CH_2 \cdot C_6H_4 \cdot CH(CH_3)_2 \\ \hline 2.7 Dichlor-9-[4-isopropyl-benzyl]-fluoren C_{23}H_{20}Cl_2, \\ s. nebenstehende Formel (X = Cl). B. Durch Reduktion von \\ \end{array}$

2.7-Dichlor-9-[4-isopropyl-benzyliden]-fluoren mit amalgamiertem
Aluminium und feuchtem Äther (Sieglitz, Schatzkes, B. 54, 2078). — Nadeln (aus Methanol). F: 115°.

7. 9.9 - Diäthyl - 10 - phenyl - dihydroanthracen  $C_{24}H_{24}$ , s. nebenstehende Formel. B. Durch Einw. von alkoh. Schwefelsäure auf 10-0xy-9.9-diäthyl-10-phenyl-dihydroanthracen (Kehrmann, Monnier, Ramm, B. 56, 172). — Nadeln (aus Alkohol). F: 135—136°. Die alkoh. Lösung fluoresciert blau. Löst sich in Schwefelsäure langsam unter Blaufärbung.

- 8. Trimeres  $\alpha$ -Methyl-styrol  $C_{27}H_{30}~\mathrm{s.~S.~375.}$
- 9. 1 Cyclohexyl 3.3.3 tri p tolyl propan  $C_{30}H_{36} = (CH_3 \cdot C_8H_4)_3C \cdot CH_2 \cdot CH$

10. Kohlenwasserstoff C<sub>32</sub>H<sub>40</sub>, Formel I, s. 4. Hauptabteilung, Sterine.

$$I. \begin{array}{c} H_{3C} \xrightarrow{C(C_{6}H_{5})_{2}} \\ H_{2C} \xrightarrow{CH_{2}} \xrightarrow{C} \xrightarrow{CH} \xrightarrow{CH} \xrightarrow{CH} \xrightarrow{CH} \xrightarrow{CH_{2}} \xrightarrow{CH} \xrightarrow{CH_{2}} \xrightarrow{CH} \xrightarrow{CH} \xrightarrow{CH_{2}} \xrightarrow{CH} \xrightarrow{CH} \xrightarrow{CH_{2}} \xrightarrow{CH} \xrightarrow{CH} \xrightarrow{CH_{2}} \xrightarrow{CH} \xrightarrow{$$

- 11. Kohlenwasserstoff  $C_{34}H_{44}$ , Formel II [R = C(CH<sub>3</sub>):C(C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>] s. 4. Hauptabteilung, Sterine.
- 12. Kohlenwasserstoff  $C_{36}H_{48}$ , Formel II [R =  $CH(CH_3) \cdot CH_2 \cdot CH : C(C_6H_5)_2$ ] s. 4. Hauptabteilung, Sterine.

## 13. Kohlenwasserstoffe $C_{40}H_{56}$ .

- 1. Carotin im älteren Sinn, gewöhnliches Carotin C<sub>40</sub>H<sub>56</sub> (H 30, 84). V. In den Blütenblättern von Acacia discolor, A. linifolia und A. longifolia aus Australien (Petrie, Biochem. J. 18, 963). Carotin-Gehalt von Bananenschalen während der Reifung: Loesecke, Am. Soc. 51, 2439. Bei 25° löst 1 absol. Alkohol 15,5 mg, 1 l absol. Äther 1,005 g. 1 l Petroläther (Kp: 30—50°) 0,626 g (Schertz, J. agric. Res. 30, 470; C. 1925 II, 1283). Adsorption von Carotin aus Lösungen von Butterfett in Petroläther an verschiedene Kohlen, an Calciumchlorid, Quecksilber(II)-chlorid und einige Sulfide: Willimott, J. biol. Chem. 73, 589. Bei 0° sind Lösungen von Carotin in absol. Alkohol oder Petroläther sehr beständig; peroxydhaltiger Äther bewirkt auch bei 0° rasche Zersetzung (Schertz). Über Oxydation von Carotin zu Xanthophyll durch Einw. von Luft auf eine Lösung in Chloroform oder durch Einw. von Eisenchlorid in Aceton vgl. Baly, Davies, Pr. roy. Soc. [A] 116, 223; C. 1927 II, 2493. Carotin gibt in Chloroform-Lösung mit 4 oder 6 Mol Brom eine bräunlichrote, mit 8 Mol Brom eine schwach bräunliche Färbung; bei weiterem Bromzusatz tritt die Farbe des freien Broms auf (Zechmeister, Tuzson, B. 62, 2231). Versuche zur Darstellung von Additionsverbindungen mit Antimontrichlorid: v. Euler, Willstaedt, Ark. Kemi [B] 10, Nr. 9, S. 5; C. 1929 II, 2052.
- 2.  $\gamma$  Carotin  $C_{40}H_{56} = H_2C < \frac{CH_2 \cdot C(CH_3)_2}{CH_2 \cdot C(CH_3)_2} > C \cdot CH : CH \cdot C(CH_3) : CH \cdot CH : CH \cdot C(CH_3) : CH \cdot CH : CH_3) \cdot CH_2 \cdot CH_2 \cdot CH : CH_3)_2$  s. H 30, 92.
- 3.  $\beta$ -Carotin  $C_{40}H_{56} = \begin{bmatrix} H_2C < CH_2 \cdot C(CH_3)_2 \\ CH_2 \cdot C(CH_3)_2 \end{bmatrix} \cdot C \cdot CH \cdot CH \cdot C(CH_3) \cdot CH \cdot CH \cdot C(CH_3) \cdot CH \cdot CH = \end{bmatrix}_2 (H 30, 87)$ . Carotin aus Tomaten ist nahezu reines  $\beta$ -Carotin (Kuhn, Grundmann, B. 65, 1886).
- - 5. Isocarotin  $C_{40}H_{56}$  oder  $C_{40}H_{54}$  s. H 30, 88.

## 15. Kohlenwasserstoffe C<sub>n</sub>H<sub>2 n-25</sub>.

9-Phenyl-fluorenyl-(9), Phenyl-diphenylen-methyl bzw. 9.9'-Diphenyl-difluorenyl-(9.9'), 1.2-Diphenyl-1.1; 2.2-bis-diphenylen-äthan  $C_{19}H_{13}=C_{6}H_{4}$   $C\cdot C_{6}H_{5}$  bzw.  $C_{38}H_{26}=\frac{C_{6}H_{4}}{C_{6}H_{4}}\cdot C(C_{6}H_{5})\cdot C(C_{6}H_{5})\cdot \frac{C_{6}H_{4}}{C_{6}H_{4}}$  (E I 357). B. Durch Einw. von 9-Chlor-9-phenyl-fluoren auf Phenylmagnesiumbromid in Äther (Schmidt-Nickels, B. 62, 919). Die photochemische Bildung aus Triphenylmethyl erfolgt vorzugsweise im blauen und grünen Licht (4000—5300 Å) und verläuft in Hexan, Toluol, Mesitylen und m-Xylol rascher als in Benzol (Bowden, Jones, Soc. 1928, 1150, 1156, 1157). — D?: 1,266 (Ziegler, Ditzel, A. 473, 207).

CAROTIN: PHENYLANTHRACEN

639

#### 16. Kohlenwasserstoffe C<sub>n</sub> H<sub>2 n-26</sub>.

## 1. Kohlenwasserstoffe $C_{20}H_{14}$ .

1. 9-Phenyl-anthracen C<sub>10</sub>H<sub>14</sub>, s. nebenstehende Formel (H 725).

B. Beim Erhitzen von 9-Phenyl-dihydroanthracen mit Schwefel auf 180° bis 190° (Haack, B. 62, 1778, 1783). Aus 9.9-Diphenyl-dihydroanthracen bei der Einw. von Aluminiumchlorid in siedendem Schwefelkohlenstoff (Barnett, Cook, Nixon, Soc. 1927, 512). Aus 9-Oxy-9-phenyl-dihydroanthracen beim Versetzen mit konz. Schwefelsäure in der Kälte (Krollpfeiffer, Branscheid, B. 56, 1619). Beim Erwärmen von Anthron mit Phenylmagnesiumbromid in Äther (Kr., Br., B. 56, 1619). Beim Erwärmen von Anthron-(10) mit Zinkstaub und Ammoniak unter Zusatz einiger Tropfen Platinchlorid-Lösung auf dem Wasserbad (Ba., Cook, Soc. 123, 2638). Durch Kochen von 9-Phenyl-0-benzoyl-anthracen mit Schwefelsäure in Eisessig (Cook, Soc. 1926, 2170). Aus dem Hydrazon des 10-Methoxy-10-phenyl-anthrons-(9) beim Erhitzen mit Natriumäthylat-Lösung im Rohr auf 140° (Sch., Be., A. 463, 277). — Krystalle (aus Eisessig oder Alkohol). F: 155—157° (Barnett, Cook, Nixon, Soc. 1927, 512), 156° (McVicker, Marsh, Stewart, Soc. 127, 1001), 152° (Schlenk, Bergmann, A. 463, 163, 277), 151—152° (Krollffeiffer, Branscheid, B. 56, 1619). Ultraviolettes Absorptionsspektrum: Capper, Marsh, Soc. 1926, 726; in alkoh. Lösung: Ba., Cook, Ellison, Soc. 1928, 890. Tesla-Luminescenzspektrum: McV., Ma., St. Über die Luminescenz bei Bestrahlung mit Kathodenstrahlen vgl. Marsh, McV., Ma., St. Über die Luminescenz bei Bestrahlung mit Kathodenstrahlen vgl. Marsh.

Soc. 1927, 126.

Liefert bei der Reduktion mit Natrium und siedendem Isoamylalkohol oder bei der Einw. von Natrium oder Kalium in Äther oder Xylol und Zersetzung des Reaktionsprodukts mit Alkohol 9-Phenyl-dihydroanthracen (Schlenk, Bergmann, A. 463, 163, 164; Haack, B. 62, 1778, 1783). Bei Einw. von Brom in Pyridin, Schwefelkohlenstoff oder Chloroform entsteht 10-Brom-9-phenyl-anthracen (Cook, Soc. 1926, 2168). Liefert beim Behandeln mit Salpetersäure (D: 1,42) in Eisessig unter Kühlung und im Dunkeln (Barnett, Cook, Soc. 123, 2638) oder bei Einw. von überschüssigem Stickstoffdioxyd in Chloroform unter Kühlung (Ba., Soc. 127, 2044) 10-Nitro-9-phenyl-anthracen. Gibt bei der Einw. von Benzoesäureanhydrid und Aluminiumchlorid in Schwefelkohlenstoff auf dem Wasserbad 10-Phenyl-9-benzoyl-anthracen (Cook, Soc. 1926, 2170).

Verbindung mit 9-Phenyl-9.10-dihydro-anthracen C<sub>20</sub>H<sub>14</sub> + C<sub>20</sub>H<sub>18</sub>. Ist früher als 9-Phenyl-9.10-dihydro-anthracen angesehen worden; vgl. die S. 631 zitierte Literatur. —

Durch thermische Analyse nachgewiesen. F: 123° (korr.) (HAACK, B. 62, 1779). Bildet mit 9-Phenyl-dihydroanthracen ein Eutektikum bei 87° und ca. 5% 9-Phenyl-anthracen.

1.5-Dichlor-9-phenyl-anthracen C<sub>20</sub>H<sub>12</sub>Cl<sub>2</sub>, s. nebenstehende Formel.

B. Beim Erwärmen der beiden 1.5-Dichlor-10-phenyl-9-benzhydryl-9.10-di-hydro-anthranole-(10) vom Schmelzpunkt 259° und 271° mit Eisessig und wenig Salzsäure auf dem Wasserbad (Barnett, Goodway, Soc. 1929, 22).

Beim Kochen von 1.5-Dichlor-10-phenyl-anthron-(9) mit Zinkstaub in Eisessig + konz. Salzsäure (B., Matthews, B. 59, 676). — Gelbe Nadeln (aus Aceton oder Methyläthylketon). F: 104° (B., M.). — Liefert beim Behandeln mit einer gesättigten Lösung von Chlor in Tetrachlorkohlenstoff 1.5.9.10-Tetrachlor-9-phenyl-dihydroanthracen (B., M.). Beim Kochen mit Brom in Eisessig oder beim Stehenlassen in einer Lösung von überschüssigem Brom in Tetrachlorkohlenstoff erhält man 1.5-Dichlor-10-brom-9-phenyl-anthracen (B., M.). Beim Erwärmen der Suspension in Eisessig mit Salpetersäure (D: 1,42) auf 70—80° entsteht 1.5-Dichlor-10-nitro-9-acetoxy-9-phenyl-dihydroanthracen; bei einem Versuch wurde eine damit isomere Verbindung C<sub>22</sub>H<sub>15</sub>O<sub>4</sub>NCl<sub>2</sub> vom Schmelzpunkt 189° erhalten (B., M.).

1.5.10-Trichlor-9-phenyl-anthracen  $C_{20}H_{11}Cl_2$ , Formel I. B. Beim Erhitzen von 1.5.9.10-Tetrachlor-9-phenyl-dihydroanthracen auf 200° (BARNETT, MATTHEWS, B. 59, 677). — Citronengelbe Nadeln (aus Alkohol). F: 96°.



10-Brom-9-phenyl-anthracen C<sub>20</sub>H<sub>13</sub>Br, Formel II. B. Durch Einw. von 1 Mol Brom auf 9-Phenyl-anthracen in Pyridin, Schwefelkohlenstoff oder Chloroform bei Zimmertemperatur (Cook, Soc. 1926, 2168). — Gelbe Blättchen (aus Eisessig, Methyläthylketon oder Alkohol). F: 154—155°.

640

- 1.5-Dichlor-10-brom-9-phenyl-anthracen C<sub>20</sub>H<sub>11</sub>Cl<sub>2</sub>Br, Formel III auf S. 639. B. Aus 1.5-Dichlor-9-phenyl-anthracen beim Kochen mit Brom in Eisessig oder beim Stehenlassen in einer Lösung von überschüssigem Brom in Tetrachlorkohlenstoff (Barnett, Matthews, B. 59, 677). Gelbe Nadeln (aus Eisessig). F: 174—175°.
- 10-Nitro-9-phenyl-anthracen C<sub>20</sub>H<sub>13</sub>O<sub>2</sub>N, Formel IV auf S. 639. B. Beim Behandeln von 9-Phenyl-anthracen mit überschüssigem Stickstoffdioxyd in Chloroform unter Kühlung (Barnett, Soc. 127, 2044) oder mit Salpetersäure (D: 1,42) in Eisessig unter Kühlung und im Dunkeln (B., Cook, Soc. 123, 2638). Gelbe Krystalle (aus Eisessig). Leicht löslich in Schwefelkohlenstoff, Chloroform und Benzol; ziemlich leicht in Äther (B., C.). Färbt sich am Licht rot (B., C.). Liefert bei kurzem Kochen mit überschüssiger Chromsäure in Eisessig 10-Oxy-10-phenyl-anthron-(9) und wenig Anthrachinon (B., C.).
- 2. 9-Benzyliden-fluoren,  $\omega$ -Phenyl-dibenzofulven,  $\beta$ -Phenyl- $\alpha.\alpha$ -diphenylen-äthylen  $C_{20}H_{14} = \frac{C_6H_4}{C_6H_4}C$ :  $C_6H_6$  (H 725; E I 358). Zur Darstellung aus Fluoren, Benzaldehyd und Natriumäthylat-Lösung nach Thiele, Henle (A. 347 [1906], 296) vgl. Jonescu, Bulet. Cluj 2, 293; C. 1925 I, 2221. D\_1^2: 1,169 (Ziegler, Ditzel, A. 473, 204). Absorptionsspektrum in Benzol: Wanscheidt,  $\mathcal{K}$ . 58, 291; C. 1927 I, 92; in Alkohol: Ley, Manecke, B. 56, 779; in Methyläthylketon: J. Liefert mit Natrium in trocknem Äther 1.4-Dinatrium-2.3-diphenyl-1.4-bis-diphenylen-butan  $C_6H_4$  (Syst. Nr. 2357) (Schlenk, Bergmann, A.  $C_6H_4$  (CNa  $\cdot$  CH( $C_6H_5$ )  $\cdot$  CH( $C_6H_5$ )  $\cdot$  CNa  $\cdot$  Claurel (Syst. Nr. 2357) (Schlenk, Bergmann, A. 6. 56, 780). Beim Behandeln mit  $\alpha$ -Phenyl-isopropylkalium in Äther entsteht eine rote Lösung, die bei Einw. von Kohlendioxyd 9-[ $\alpha.\beta$ -Diphenyl-isobutyl]-fluoren-carbonsäure-(9)  $\cdot$  Claurel (Column)  $\cdot$  Claurel
- 9-[ $\alpha$ -Chlor-benzyliden]-fluoren,  $\beta$ -Chlor- $\beta$ -phenyl- $\alpha$ . $\alpha$ -diphenylen-äthylen  $C_{20}H_{13}Cl = \begin{array}{c} C_6H_4 \\ C_6H_5 \\ C_6H_$
- 2.7-Dichlor-9-benzyliden-fluoren  $C_{20}H_{12}Cl_2$ , Formel I. B. Aus 2.7-Dichlor-fluoren und Benzaldehyd in siedender Natriumäthylat-Lösung (Sieglitz, Schatzkes, B. 54, 2074). Blaßgelbe Krystalle (aus Eisessig). F: 94°.
- 2.7-Dichlor-9-[2-chlor-benzyliden]-fluoren C<sub>20</sub>H<sub>11</sub>Cl<sub>3</sub>, Formel II. B. Aus 2.7-Dichlor-fluoren und 2-Chlor-benzaldehyd in siedender Natriumäthylat-Lösung (Sieglitz, Schatzkes, B. 54, 2076). Blaßorangegelbe Nadeln (aus Eisessig). F: 159—160°.
- 2.7 Dichlor 9 [3 chlor benzyliden] fluoren  $C_{20}H_{11}Cl_3$ , Formel II. B. Aus 2.7 Dichlor fluoren und 3 Chlor benzaldehyd in siedender Natriumäthylat Lösung (Sieglitz, Schatzkes, B. 54, 2076). Gelbe Nadeln (aus Eisessig). F: 134—135°.
- 2.7 Dichlor 9 [4 chlor benzyliden] fluoren  $C_{20}H_{11}Cl_3$ , Formel II. B. Aus 2.7 Dichlor fluoren und 4 Chlor benzaldehyd in siedender Natriumäthylat Lösung (Sieglitz, Schatzkes, B. 54, 2076). Citronengelbe Nadeln (aus Eisessig). F: 204—205°.

- 2.7 Dichlor 9 [2.6 dichlor benzyliden] fluoren  $C_{20}H_{10}Cl_4$ , Formel III. B. Aus 2.7 Dichlor fluoren und 2.6 Dichlor benzaldehyd in siedender Natriumäthylat Lösung (Sieglitz, Schatzkes, B. 54, 2076). Gelbe Blättchen (aus Benzol). F: 212—213°.
- 9-[4-Brom-benzyliden]-fluoren  $C_{20}H_{13}Br = \frac{C_6H_4}{C_6H_4}C$ :  $C:CH\cdot C_6H_4Br$ . B. Aus Fluoren und 4-Brom-benzaldehyd in heißer Natriumäthylat-Lösung (Sieglitz, B. 53, 1235). Gelbe Nadeln (aus Eisessig). F: 144°. Löst sich in warmer konzentrierter Schwefelsäure mit grünblauer Farbe.

- 2.7-Dichlor-9-[3-brom-benzyliden]-fluoren C<sub>20</sub>H<sub>11</sub>Cl<sub>2</sub>Br, Formel IV, S. 640. B. Aus 2.7-Dichlor-fluoren und 3-Brom-benzaldehyd in siedender Natriumäthylat-Lösung (Sieglitz, Schatzkes, B. 54, 2076). Gelbe Nadeln (aus Eisessig). F: 146—147°.
- 2.7 Dibrom 9 benzyliden fluoren C<sub>20</sub>H<sub>12</sub>Br<sub>2</sub>, Formel V. B. Als Hauptprodukt bei kurzem Kochen von 2.7-Dibrom-fluoren mit Benzaldehyd in Natriumäthylat-Lösung (Sieglitz, B. 53, 1237). Blaßgelbe Krystalle (aus Eisessig). F: 98—99°. Liefert mit amalgamiertem Aluminium in feuchtem Äther 2.7-Dibrom-9-benzyl-fluoren (S., B. 53, 2247).
- 2.7 Dibrom 9 [2 chlor benzyliden] fluoren C<sub>20</sub>H<sub>11</sub>ClBr<sub>2</sub>, Formel VI. B. Aus 2.7-Dibrom-fluoren und 2-Chlor-benzaldehyd in siedender Natriumäthylat-Lösung (Sirglitz, B. 53, 1239). Gelbe Nadeln (aus Eisessig). F: 168—169°. Gibt mit amalgamiertem Aluminium in feuchtem Äther 2.7-Dibrom-9-[2-chlor-benzyl]-fluoren (S., B. 53, 2247).
- 2.7 Dibrom 9 [3 chlor benzyliden] fluoren C<sub>20</sub>H<sub>11</sub>ClBr<sub>2</sub>, Formel VI. B. Aus 2.7 Dibrom-fluoren und 3 Chlor benzaldehyd in siedender Natriumäthylat-Lösung (Sieglitz, B. 53, 1239). Hellgelbe Nadeln (aus Eisessig). F: 136—137°.
- 2.7 Dibrom 9 [4 chlor benzyliden] fluoren C<sub>20</sub>H<sub>11</sub>ClBr<sub>2</sub>, Formel VI. B. Aus 2.7 Dibrom fluoren und 4 Chlor benzaldehyd in siedender Natriumäthylat Lösung (Sieglitz, B. 53, 1239). Gelbe Nadeln (aus Eisessig). F: 211—212°. Gibt mit amalgamiertem Aluminium in feuchtem Äther 2.7 Dibrom [4 chlor benzyl] fluoren (S., B. 53, 2247).

- 2.7-Dibrom-9-[3-brom-benzyliden]-fluoren  $C_{20}H_{11}Br_3$ , Formel VII. B. Aus 2.7-Dibrom-fluoren und 3-Brom-benzaldehyd in siedender Natriumäthylat-Lösung (Sieglitz, B. 53, 1239). Gelbe Nadeln (aus Eisessig). F: 152—153°.
- 9-[3-Jod-benzyliden]-fluoren  $C_{20}H_{13}I = \frac{C_6H_4}{C_6H_4}C:CH\cdot C_6H_4I$ . B. Aus Fluoren und 3-Jod-benzaldehyd in siedender Natriumäthylat-Lösung (Sieglitz, B. 53, 1235). Gelbe Nadeln (aus Alkohol). F: 103°. Gibt mit warmer konzentrierter Schwefelsäure eine tiefgrüne Färbung.
- **9-[4-Jod-benzyliden]-fluoren**  $C_{20}H_{13}I = \frac{C_0H_4}{C_0H^4}C:CH\cdot C_0H_4I$ . B. Aus Fluoren und 4-Jod-benzaldehyd in siedender Natriumäthylat-Lösung (Sieglitz, B. **53**, 1235). Hellgelbe Prismen (aus Eisessig). F: 121°. Gibt mit warmer konzentrierter Schwefelsäure eine blaue Färbung.
- 2.7-Dibrom-9-[4-jod-benzyliden]-fluoren  $C_{20}H_{11}Br_2I$ , Formel VIII. B. Aus 2.7-Dibrom-fluoren und 4-Jod-benzaldehyd in siedender Natriumäthylat-Lösung (Sieglitz, B. 53, 1239). Orangegelbe Nadeln (aus Eisessig). F: 207—208°.
- 2-Nitro-9-benzyliden-fluoren C<sub>20</sub>H<sub>13</sub>O<sub>2</sub>N, Formel IX. B. Aus 2-Nitro-fluoren und Benzaldehyd in Natriumäthylat-Lösung (LOEVENICH, LOESER, J. pr. [2] 116, 326). Gelbe Nadeln (aus Eisessig). F: 148,5—149,5° (korr.). Sehr leicht löslich in Chloroform und Benzol, leicht in Eisessig, schwer in Alkohol und Äther.
- 2-Nitro-9-[2-chlor-benzyliden]-fluoren C<sub>20</sub>H<sub>12</sub>O<sub>2</sub>NCl, Formel X. B. Aus 2-Nitro-fluoren und 2-Chlor-benzaldehyd in Natriumäthylat-Lösung (LOEVENICH, LOESER, J. pr. [2] 116, 329). Citronengelbe Nadeln (aus Eisessig). F: 240,5—241,5° (korr.). Sehr leicht löslich in Chloroform und Benzol, leicht in Eisessig, schwer in Alkohol und Äther.
- 2-Nitro-9-[4-chlor-benzyliden]-fluoren  $C_{20}H_{12}O_2NCl$ , Formel X. B. Aus 2-Nitro-fluoren und 4-Chlor-benzaldehyd in siedender Natriumäthylat-Lösung (Sieglitz, Schatzkes, B. 54, 2078). Mattgelbe Nadeln (aus Eisessig). F: 246°.

- 2.7-Dichlor-9-[2-nitro-benzyliden]-fluoren  $C_{20}H_{11}O_{2}NCl_{2}$ , Formel XI. B. Als Hauptprodukt aus 2.7-Dichlor-fluoren und 2-Nitro-benzaldehyd in siedender Natrium-äthylat-Lösung (Sieglitz, Schatzkes, B. 54, 2076). Gelbe Nadeln (aus Eisessig). F: 173° bis 174°.
- 2.7-Dichlor-9-[3-nitro-benzyliden]-fluoren  $C_{30}H_{11}O_{2}NCl_{2}$ , Formel XI. B. Als Hauptprodukt aus 2.7-Dichlor-fluoren und 3-Nitro-benzaldehyd in siedender Natrium-

äthylat-Lösung (Sieglitz, Schatzkes, B. 54, 2077). — Citronengelbe Nadeln (aus Eisessig). F: 180—181°.

- 2.7 Dichlor -9 [4 nitro benzyliden] fluoren C<sub>20</sub>H<sub>11</sub>O<sub>2</sub>NCl<sub>2</sub>, Formel XI, S. 641. B. Als Hauptprodukt aus 2.7 Dichlor fluoren und 4-Nitro-benzaldehyd in siedender Natriumäthylat-Lösung (Sieglitz, Schatzkes, B. 54, 2077). Gelbe Nadeln (aus Eisessig). F: 196° bis 197°.
- 2-Nitro-9-[3-brom-benzy-liden]-fluoren C<sub>20</sub>H<sub>12</sub>O<sub>2</sub>NBr, Formel XII. B. Aus 2-Nitro-fluoren und 3-Brom-benzaldehyd in Natriumathylat-Lösung (Loevench, Loeser, J. pr. [2] 116, 329). Orangefarbene Nadeln (aus Eisessig). F: 155.5—156,5° (korr.). Sehr leicht löslich in Chloroform und Benzol, leicht in Eisessig, schwer in Alkohol und Äther.
- 2.7-Dibrom-9-[2-nitro-benzyliden]-fluoren  $C_{20}H_{11}O_2NBr_2$ , Formel XIII. B. Aus 2.7-Dibrom-fluoren und 2-Nitro-benzaldehyd in siedender Natriumäthylat-Lösung (Sieglitz, B. 53, 1240). Orangegelbe Nadeln (aus Eisessig). F: 201—202°.
- 2.7-Dibrom-9-[3-nitro-benzyliden]-fluoren  $C_{20}H_{11}O_2NBr_2$ , Formel XIII. B. Aus 2.7-Dibrom-fluoren und 3-Nitro-benzaldehyd in siedender Natriumäthylat-Lösung (Sieglitz, B. 53, 1240). Gelbe Krystalle (aus Eisessig). F: 154—155°.
- 2.7-Dibrom-9-[4-nitro-benzyliden]-fluoren C<sub>20</sub>H<sub>11</sub>O<sub>2</sub>NBr<sub>2</sub>, Formel XIII. B. Aus 2.7-Dibrom-fluoren und 4-Nitro-benzaldehyd in siedender Natriumäthylat-Lösung (Sieglitz, B. 53, 1240). Orangegelbes Pulver (aus Eisessig). F: 195—196°.
- 2.7 Dibrom 9 [6 chlor 3 nitro benzyliden] fluoren  $C_{20}H_{10}O_2NClBr_2$ , s. nebenstehende Formel. B. Aus 2.7-Dibrom-fluoren und 6-Chlor-3-nitro-benzaldehyd in siedender Natrium-äthylat-Lösung (Sieglitz, B. 53, 1240). Gelbe Nadeln (aus Eisessig). F: 216—218°.
- 2-Nitro-9-[3-jod-benzyliden]-fluoren  $C_{20}H_{12}O_2NI$ , s. nebenstehende Formel. B. Aus 2-Nitro-fluoren und 3-Jod-benzaldehyd in Natriumäthylat-Lösung (Loevenich, Loeser, J. pr. [2] 116, 329). Gelbe Nadeln (aus Eisessig). F: 168—169° (korr.). Sehr leicht löslich in Chloroform und Benzol, leicht in Eisessig, schwer in Alkohol und Äther.



- 3. Dinaphthyl-(1.1'). α.α-Dinaphthyl C<sub>20</sub>H<sub>14</sub>, s. nebenstehende Formel (H 725; E I 358). Die von Walder (B. 15 [1882], 2170) und Julius (B.19 [1886], 2549) durch Destillation von 2.2'-Dioxydinaphthyl-(1.1') mit Zinkstaub erhaltenen Präparate sind als β-Dinaphthylenoxyd (Syst. Nr. 2376) erkannt worden (Schoepfle, Am. Soc. 45, 1567). Zur Stereochemie vgl. Mascarelli, G. 58, 797. B. Beim Behandeln von Naphthalin mit Diselendibromid in Schwefelkohlenstoff in Gegenwart von Aluminiumbromid, neben anderen Produkten (Loevenich, Sipmann, J. pr. [2] 124, 132). Beim Erhitzen von 1-Chlor-naphthalin mit Natrium in Toluol (Rodd, Linch, Soc. 1927, 2178). Darst. Durch Erhitzen von 1-Bromnaphthalin mit Kupferpulver bei Gegenwart von Jod auf 280—285° (Sch., Am. Soc. 45, 1569). Durch Einw. von Kupfer(II)-chlorid auf α-Naphthyl-magnesiumbromid in Äther + Benzol (Sakellarios, Kyrimis, B. 57, 325). Blättchen (aus Eisessig). F: 157°; Kp<sub>13</sub>: ca. 240° (Sch., Am. Soc. 45, 1569). Liefert mit Salpetersäure (D: 1,42) in Eisessig bei ½-stdg. Erwärmen auf 90—95° 4-Nitro-dinaphthyl-(1.1'), bei mehrstündigem Erwärmen 4.4'-Dinitro-dinaphthyl-(1.1') und zwei weitere Dinitroderivate (S. 643) (Sch.).
- 2.2′- Dichlor dinaphthyl (1.1′)  $C_{20}H_{12}Cl_2 = C_{10}H_6Cl \cdot C_{10}H_6Cl$ . B. Beim Eingießen von diazotiertem 2.2′- Diamino dinaphthyl (1.1′) in eine siedende salzsaure Lösung von Kupfer(I)-chlorid (Corbellini, Debenedetti, G. 59, 399). Hellgelbe Nadeln (aus Alkohol). F: 151—152°. Im Vakuum sublimierbar. Löslich in Alkohol und Äther, leicht löslich in Chloroform und Benzol. Liefert beim Erhitzen mit phosphoriger Säure auf 500° Perylen (Hansgirg, D. R. P. 386040; C. 1924 I, 1869; Frdl. 14, 479).
- 4.4'-Dichlor-dinaphthyl-(1.1')  $C_{20}H_{12}Cl_2 = C_{10}H_6Cl \cdot C_{10}H_6Cl \cdot B$ . Beim Eingießen von diazotiertem 4.4'-Diamino-dinaphthyl-(1.1') in eine siedende salzsaure Lösung von Kupfer(I)-chlorid (Corbellini, Debenedetti, G. 59, 397). Hellgelbe Nadeln (aus Eisessig). F: 215,5—216°. Löslich in Benzol, Eisessig und Chloroform, schwer löslich in Schwefelkohlenstoff, fast unlöslich in Alkohol und Äther.
- 4.4'-Dibrom-dinaphthyl-(1.1')  $C_{20}H_{12}Br_2=C_{10}H_{e}Br\cdot C_{10}H_{e}Br$  (H 726 als Dibrom-dinaphthyl-(1.1') beschrieben; zur Konstitution vgl. Corbellini, Debenedeti, G. 59,

- 394). B. Man erhitzt die schwefelsaure Diazoniumverbindung des 4.4'-Diamino-dinaphthyls-(1.1') mit Kupfer(I)-bromid-Lösung auf dem Wasserbad (C., D., G. 59, 397). Nadeln (aus Benzol). F: 217,5°. Im Vakuum sublimierbar. Löslich in Benzol, Chloroform und Schwefelkohlenstoff, fast unlöslich in Alkohol und Äther.
- 4-Nitro-dinaphthyl-(1.1')  $C_{20}H_{13}O_2N=C_{10}H_7\cdot C_{10}H_6\cdot NO_2$ . B. Durch ½-stdg. Erwärmen von Dinaphthyl-(1.1') mit Salpetersäure (D: 1.42) in Eisessig auf 90—95° (Schoepfle, Am. Soc. 45, 1570). Hellgelbe Nadeln (aus Alkohol). F: 104°. Leicht löslich in Benzol und Äther, ziemlich leicht in Eisessig, schwer in Alkohol und Petroläther. Geht bei weiterem Erwärmen mit Salpetersäure (D: 1,42) in Eisessig in 4.4'-Dinitro-dinaphthyl-(1.1') und zwei weitere 4.x-Dinitro-dinaphthyle-(1.1') (s. u.) über.

Nitro-dinaphthyl-(1.1')  $C_{20}H_{13}O_2N = C_{10}H_7\cdot C_{10}H_6\cdot NO_2$  (H 726). Die unter dieser Formel von Julius (B. 19 [1886], 2550) beschriebene Verbindung wird von Schoepfle (Am. Soc. 45, 1567, 1569) als x-Nitro- $\beta$ -dinaphthylenoxyd (Syst. Nr. 2376) erkannt.

- 4.4'-Dinitro-dinaphthyl-(1.1')  $C_{20}H_{12}O_4N_2 = O_2N \cdot C_{10}H_6 \cdot C_{10}H_6 \cdot NO_2$ . B. Beim Erhitzen von 4-Jod-1-nitro-naphthalin mit Kupferpulver und etwas Naphthalin auf 220—230° (Schoepfle. Am. Soc. 45, 1571). Beim Erwärmen von Dinaphthyl-(1.1') oder 4-Nitro-dinaphthyl-(1.1') mit Salpetersäure (D: 1,42) in Eisessig (Sch.). Krystalle (aus Benzol). F: 246°. Schwer löslich in kaltem Benzol, sehr schwer in Eisessig, Alkohol, Äther und Petroläther.
- 5.5'-Dinitro-dinaphthyl-(1.1')  $C_{20}H_{12}O_4N_2 = O_2N \cdot C_{10}H_6 \cdot C_{10}H_6 \cdot NO_2$ . B. Beim Erhitzen von 5-Jod-1-nitro-naphthalin mit Kupferpulver auf 220—230° (Scholl, M. 42, 407). Hellbraune Blättchen (aus wäßr. Essigsäure oder wäßr. Pyridin). F: 228—228,5°. Löslich in Benzol und Pyridin, schwer löslich in Eisessig, sehr schwer löslich in Alkohol, unlöslich in Äther. Löst sich in heißer konzentrierter Schwefelsäure mit gelbroter Farbe.
- 4.x-Dinitro-dinaphthyl-(1.1') vom Schmelzpunkt 228°  $C_{20}H_{12}O_4N_2$ . B. Als Nebenprodukt beim Erwärmen von Dinaphthyl-(1.1') oder 4-Nitro-dinaphthyl-(1.1') mit Salpetersäure (D: 1.42) in Eisessig (Schoepfle, Am. Soc. 45, 1570). Hellgelbe Krystalle (aus Benzol). F: 228°. Schwer löslich in Benzol.
- 4.x Dinitro dinaphthyl (1.1') vom Schmelzpunkt 144°  $C_{20}H_{12}O_4N_2$ . B. Als Nebenprodukt beim Erwärmen von Dinaphthyl-(1.1') oder 4-Nitro-dinaphthyl-(1.1') mit Salpetersäure (D: 1,42) in Eisessig (Schoeffle, Am. Soc. 45, 1570). Hellgelbe Krystalle (aus Benzol + Petroläther). F: 144°. Leicht löslich in Benzol, ziemlich leicht in Alkohol, Ather und Eisessig, schwer in Petroläther.

Dinitro-dinaphthyl-(1.1')  $C_{20}H_{12}O_4N_2=C_{20}H_{12}(NO_2)_2$  (H 726). Die unter dieser Formel von Julius (B. 19 [1886], 2550) beschriebene Verbindung wird von Schoepfle (Am. Soc. 45, 1567, 1569) als x-Dinitro- $\beta$ -dinaphthylenoxyd (Syst. Nr. 2376) erkannt.

4. Dinaphthyl-(1.2'), α.β-Dinaphthyl C<sub>20</sub>H<sub>14</sub>, s. nebenstehende Formel (H 726; E I 358). Zur Stereochemie vgl. MASCARELLI, G. 58, 799. — B. In geringer Menge neben anderen Produkten beim Erhitzen von 1-Brom-naphthalin mit Kupferpulver bei Gegenwart von Jod auf 280—285° (SCHOEPFLE, Am. Soc. 45, 1570).



5. Dinaphthyl-(2.2'). β.β-Dinaphthyl C<sub>20</sub>H<sub>14</sub>, s. nebenstehende Formel (H 727; E I 359). Zur Stereochemie vgl. Mascarelli, G. 58, 798. — B. Neben anderen Produkten bei mehrstündigem Erhitzen von Naphthalin auf 475° bei 25—50 Atm. Druck (Ssachanen, Tilitschejew, B. 62, 664). Beim Erwärmen von Naphthalin mit Zinkchlorid und Benzylehlorid auf 110° bis 120°, neben anderen Produkten (Dziewonski, Moszew, Bl. Acad. polon. [A] 1928, 286; C. 1929 I, 1104). Zur Bildung aus β-Chlor-naphthalin beim Erhitzen mit Natrium in Toluol vgl. Rodd, Linch, Soc. 1927, 2178. In sehr geringer Menge neben anderen Produkten beim Erhitzen von 1-Brom-naphthalin mit Kupferpulver in Gegenwart von Jod auf 280—285° (Schoepfle, Am. Soc. 45, 1570). Beim Kochen von 2-Brom-naphthalin mit Magnesium bei Gegenwart von Methyljodid in Äther (Loevenich, Loeser, B. 60, 325). Beim Destillieren von Ditetralyl-(2.2') (S. 601) über rotglühendes Bleioxyd (v. Braun, Kirschbaum, B. 54, 615). Beim Erhitzen von Ditetralyl-(2.6') (S. 601) mit Schwefel auf 200—250° (Schroepfer, B. 57, 2000, 2002). Aus Bis-[3.4-dihydro-naphthyl-(2)] durch Einw. von Brom in Chloroform (v. Br., K., B. 54, 615; Tetralin-Ges., D. R. P. 335477; C. 1921 II, 1063; Frdl. 13, 328). Bei der Zinkstaubdestillation von 1.4.1'.4'-Tetraoxy-dinaphthyl-(2.2') (Syst. Nr. 602) (Korn, B. 17 [1884], 3025; Bamberger, Böcking, Kraus, J. pr. [2] 105, 263). Beim Destillieren von Methyl-[5.6.7.8-tetrahydro-naphthyl-(2)]-keton durch ein auf 750° erhitztes Rohr (v. Br., Hahn, Seemann, B. 55, 1691). In geringer Menge neben β-Naphthoesäure bei der Einw. von Kohlendioxyd auf β-Naphthylmagnesiumbromid in Äther + Benzol (Gilman, John, R. 48, 744). — F: 187—189° (Dziewonski, Moszew), 187° (Loevenich, Loeser, B. 60, 325), 186° (v. Braun, Kirschbaum, B. 54, 616).

6. [Naphtho-2'.3': 4.5-acenaphthen]. Acenaphthanthracen  $C_{20}H_{14}$ , Formel I. Zur Konstitution vgl. Cook, Soc. 1930, 1090. — B. Beim Leiten von I. 5-o-Toluyl-acenaphthen über poröse Stoffe, z. B. aktive Kohle, bei hoher Temperatur (I. G. Farbenind., D. R. P. 481819; C. 1930 I, 4053; Frdl. 16, 722). — Hellgelbe

I. 
$$CO \longrightarrow CO_2H$$

Blättchen. F: 191°. Die Lösung in Schwefelsäure ist rotviolett und zeigt rote Fluorescenz. -Liefert bei der Oxydation mit Natriumdichromat in siedendem Eisessig 1.2-Phthalylnaphthalin-dicarbonsäure (4.5) (Formel II) (I. G. Farbenind., D. R. P. 485314; C. 1930 I, 1539; Frdl. **16**, 1273).

## 2. Kohlenwasserstoffe $C_{21}H_{16}$ .

1. 1.3.3-Triphenyl-propin-(1). Phenyl-benzhydryl-acetylen  $C_{21}H_{16} = (C_6H_5)_2CH\cdot C: C\cdot C_6H_5$ . B. Aus Phenylacetylenmagnesiumbromid und Diphenylchlormethan in Ather (Wieland, Kloss, A. 470, 216). — Prismen (aus Petroläther). F: 79° (W., K.). Leicht löslich in den meisten organischen Lösungsmitteln außer in kaltem Petroläther und Eisessig (W., K.). Dichte und Brechungsindices in 1-Methyl-naphthalin bei 21,60: v. Auwers, Bergmann, A. 476, 276. — Liefert bei der Oxydation mit Permanganat in Aceton 1.3.3.4.4.6-Hexaphenyl-hexadiin-(1.5), bei der Hydrierung in Eisessig in Gegenwart von Palladiumschwarz 1.1.3-Triphenyl-propan, in Gegenwart von Platinoxyd wahrscheinlich 1-Cyclohexyl-3.3-diphenyl-propan (W., K.).

3-Chlor-1.3.3-triphenyl-propin-(1)  $C_{21}H_{15}Cl = (C_6H_6)_2CCl\cdot C : C \cdot C_6H_5$ . B. Aus Diphenyl-phenylacetylenyl-carbinol beim Behandeln mit Phosphortrichlorid in Benzol bei  $0^9$ (Moureu, Dufraisse, Mackall, Bl. [4] 33, 939). — Krystalle (aus Äther + Alkohol). F: 70° bis 71° (Mou., Du., Ma.). Sehr leicht löslich in Äther, Benzol und Petroläther, fast unlöslich in Alkohol (Mou., Du., Ma.). — Sehr unbeständig auch im Vakuum und im Dunkeln; wird bereits von Spuren von Alkohol zersetzt (Mou., Du., Ma.). Bei monatelangem Aufbewahren in wasserfreiem Äther entsteht 9-Chlor-9.10.11.12-tetraphenyl-9.10-dihydro-naphthacen (S. 725) neben wenig Rubren (S. 725) (Mou., Du., Robin, U. r. 188, 1583; R., A. ch. [10] 18 [1931], 447; Allen, Gilman, Am. Soc. 58 [1936], 939); bei gelindem Erwärmen steigt die Menge an Rubren an, bis es beim Erhitzen auf  $120^{\circ}$  im Vakuum ohne Lösungsmittel zum Hauptprodukt wird (Mou., Du., R.; R.; Mou., Du., Dean, C. r. 182, 1441; Mou., Du., WILLEMART, ('. r. 187, 266). 3-Chlor-1.3.3-triphenyl-propin-(1) gibt bei der Einw. von Metallen, am besten beim Erwärmen mit Eisen in Eisessig unter Luftabschluß oder bei der Einw. von Natriumjodid in Aceton 1.3.3.4.4.6-Hexaphenyl-hexadiin-(1.5) und geringe Mengen eines gelben krystallinen Kohlenwasserstoffs (F: 245° [Maquennescher Block]) (Mou., Du., Houghton, Bl. [4] 41. 56). Beim Einleiten von trocknem Ammoniak in die alkoh. Lösung bildet sich 3-Amino-1.3.3-triphenyl-propin-(1) neben anderen Produkten (R., U. r. 189, 254; A. ch. [10] 16, 508). Kochen mit Wasser in Aceton ergibt Diphenyl-phenylacetylenyl-carbinol (Mov., Dv., Ma., Bl. [4] 33, 940). Bei der Einw. von Brom in Tetrachlorkohlenstoff-Lösung bei 0° entsteht unter Abspaltung von Bromwasserstoff ein gelbes Ol (Mou., Du., Ma.). Liefert beim Kochen mit Alkohol Phenyl- $[\beta,\beta$ -diphenyl-vinyl]-keton (Mou., Du., Ma.). Beim Kochen der gesättigten Lösung in Anilin oder beim Behandeln mit einer alkoh. Lösung von Anilin bei 80--90° erhält man das Anil des Phenyl-[β.β-diphenyl-vinyl]-ketons (R., C. r. 189, 252; A. ch. [10] 16, 474, 485).

3-Brom-1.3.3-triphenyl-propin-(1)  $C_{21}H_{15}Br = (C_6H_5)_2CBr \cdot C : C \cdot C_6H_5$ . Aus Diphenyl-phenylacetylenyl-carbinol und Phosphortribromid in Petroläther bei —10° (MOUREU, Dufraisse, Mackall, Bl. [4] 33, 940). — Krystalle (aus Petroläther). F: 72—73 $^{\circ}$ . — Sehr unbeständig. Brom wird in Chloroform-Lösung bei -10° absorbiert, bei -5° entweicht

Bromwasserstoff unter Bildung eines gelben Öls. 2. **3.3-Dipheny**t-inden  $C_{21}H_{16}$ , s. nebenstehende Formel. B. Aus 2.3-Dibrom-1.1-diphenyl-hydrinden beim Erwärmen mit Eisen und Alkohol bei Gegenwart von Essigsäure auf 70° (GAGNON, A. ch. [10]

12, 332). Aus dem Hydrochlorid des 3-Amino-1.1-diphenyl-hydrindens bei der Destillation unter 10 mm Druck (G.). Aus Trimethyl-[3.3-diphenyl-hydrindyl-(1)]-ammoniumjodid bei kurzem Erhitzen bei Atmosphärendruck auf 300° (G.). — Platten (aus Alkohol). F: 91-92°. Leicht löslich in den gewöhnlichen Lösungsmitteln, schwer in Alkohol. Methanol und Essigsäure. Gibt mit Schwefelsäure eine blaßgrüne Färbung. — Liefert bei der Reduktion mit Natrium und Alkohol oder bei der Hydrierung bei Gegenwart von Platinschwarz in Alkohol-Äther 1.1-Diphenyl-hydrinden. Beim Behandeln mit Brom in Äther bei 0° entsteht 2.3-Dibrom-1.1-diphenyl-hydrinden.

- 1 (oder 2) Brom 3.3 diphenyl inden  $C_{21}H_{15}Br = C_6H_4 C_{CBr}^{C(C_6H_5)_2}CH$  oder  $C_6H_4 C_{CBr}^{C(C_6H_5)_2}CBr$ . B. Beim Kochen von 2.3-Dibrom-1.1-diphenyl-hydrinden mit Natriummethylat-Lösung (Gagnon, A. ch. [10] 12, 336). Nadeln (aus Alkohol). F: 103° bis 104°.
- 3. 1.2-Diphenyl-inden C<sub>21</sub>H<sub>16</sub>, s. nebenstehende Formel (E I 359).

  Zur Bildung durch Kochen von 2.3-Diphenyl-inden mit alkoh. Kalilauge vgl. Banús, Calvet, An. Soc. españ. 27, 55; C. 1929 II. 1793.

  Bei mehrstündigem Erhitzen von 1.3-Diphenyl-isochroman mit Salzsäure und Acetanhydrid auf 145—170° (B., MEDRANO, An. Soc. españ. 21, 459; C. 1924 I, 908).

  Krystalle (aus Alkohol). F: 108° (B., M.), 110° (B., C.). Kp<sub>12</sub>: 235—240° (B., M.). Löslich in Ather, Benzol und Petroläther, schwer löslich in kaltem Alkohol (B., M.).

  Liefert bei der Oxydation mit Permanganat in Aceton Benzoesäure und 2-Benzoyl-benzoesäure. Beim Behandeln mit Brom in Tetrachlorkohlenstoff entsteht 3-Brom-1.2-diphenyl-inden (B., M.).
- **3-Brom-1.2-diphenyl-inden**  $C_{21}H_{15}Br = C_6H_4 < C(C_6H_5) > C \cdot C_6H_5$  (E I 359). B. Beim Behandeln von 1.2-Diphenyl-inden mit Brom in Tetrachlorkohlenstoff (Banús, Medrano, An. Soc. españ. 21, 461; C. 1924 I, 909). Krystalle (aus Essigsäure). F: 159—160°.
- 4. 2.3-Diphenyl-inden C<sub>21</sub>H<sub>16</sub>, s. nebenstehende Formel (E I 359).

  B. Zur Bildung durch Versetzen von 1.2.3-Triphenyl-propen in Chloroform mit 1 Mol Brom und Kochen des Reaktionsprodukts mit Eisessig vgl. Banús, Medrano, An. Soc. españ. 21 [1923], 463. Bei der Einw. von Acetylchlorid in der Siedehitze auf racemisches (Orechow, Tiffeneau, Bl. [4] 31, 255; B., Calvet, An. Soc. españ. 27, 53; C. 1929 II, 1792) oder linksdrehendes 1.2-Dioxy-1.2.3-triphenyl-propan (Roger, McKenzie, B. 62, 284). Neben anderen Produkten beim Erwärmen von racem. 1.2-Dioxy-1.2.3-triphenyl-propan mit Phosphorpentoxyd in Benzol auf dem Wasserbad (O., T., Bl. [4] 31, 254). Bei der Einw. von Acetanhydrid und etwas konz. Schwefelsäure auf 1.3-Diphenyl-isochroman, neben anderen Produkten (B., M., An. Soc. españ. 21, 441; C. 1924 I, 908; B., An. Soc. españ. 26, 374; C. 1929 II, 1412). Nadeln (aus Eisessig oder Benzol). F: 176—177° (O., T.; R., McK.). Leicht löslich in Chloroform, schwer löslich in Alkohol, Benzol und Aceton (R., McK.). Gibt mit konz. Schwefelsäure eine tiefblaue, allmählich grünlichblau werdende Färbung (R., McK.). Liefert bei der Einw. von Ozon in Eisessig [2-Benzoyl-phenyl]-benzoyl-carbinol (B., C., An. Soc. españ. 27, 57; C. 1929 II, 1792).
- 5. 1.3-Diphenyl-inden C<sub>21</sub>H<sub>16</sub>, s. nebenstehende Formel. B. Aus Diphenyl-styrylcarbinol sowie aus dessen Methyläther und aus α.γ.γ-Triphenyl-allylalkohol bzw. dessen Methyläther durch Behandeln mit konz. Schwefelsäure bei —15° bis —20° und folgende Einw. von überschüssiger Natronlauge unter Kühlung (Ziegler, Richter, Schnell, A. 443, 179). Bei Einw. von Phosphorpentoxyd auf α.γ.γ-Triphenyl-allylalkohol oder dessen Methyläther, neben anderen Produkten (Z., Grabbe, Ulrich, B. 57, 1988). Aus 3-Phenyl-hydrindon-(1) durch Behandlung mit Phenylmagnesiumbromid in trocknem Benzol und folgende Destillation im Vakuum (Z., G., U.). Blättchen (aus Eisessig). F: 71—72°; Kp<sub>15</sub>: 230° (Z., G., U.). Bei der Reduktion mit Natrium und siedendem Alkohol entsteht 1.3-Diphenyl-hydrinden (Z., G., U.). Lagert Brom in Äther unter Bildung von 1.2-Dibrom-1.3-diphenyl-hydrinden an (Weiss, Luft, M. 48, 341). Ziemlich beständig gegen Mineralsäuren (Z., G., U.).
- 2.3-Dibrom-1.3-diphenyl-inden  $C_{21}H_{14}Br_2 = C_6H_4 \stackrel{CBr}{\subset} (C_6H_5) \stackrel{CBr}{\subset} (B.$  Aus Phenyl- $[\beta.\beta$ -diphenyl-vinyl]-keton und Brom in Chloroform bei Zimmertemperatur, neben anderen Produkten (Barré, Kohler, Am. Soc. 50, 2039). Beim Erhitzen von Phenyl- $[\alpha$ -brom- $\beta.\beta$ -diphenyl-vinyl]-keton mit einer gesättigten Lösung von Bromwasserstoff in Eisessig auf 100° (B., K.). Gelbe Krystalle (aus Petroläther). F: 104—105°. Löslich in den gewöhnlichen organischen Lösungsmitteln, schwer löslich in Petroläther. Gibt mit konz. Schwefelsäure eine gelbe Lösung, die beim Erhitzen rot wird. Liefert bei der Ozonspaltung 1.2-Dibenzoyl-benzol. Beim Kochen mit Alkohol entsteht 2-Brom-3-äthoxy-1.3-diphenyl-inden.
- 6. 9-Benzyl-anthracen C<sub>21</sub>H<sub>16</sub>, s. nebenstehende Formel (H 728). CH<sub>2</sub>·C<sub>6</sub>H<sub>5</sub> Zur Reinheit des Präparats von Bach (B. 23 [1890], 1570) vgl. Cook, Soc. 1926, 2166. B. Beim Aufbewahren von 9-Oxy-9-benzyl-dihydroanthracen im Vakuumexsiccator (Barnett, C., Wiltshire, Soc. 1927, 1729). Beim Kochen von 10-Oxy-9-benzyl-dihydroanthracen mit Eisessig (C., Soc. 1926,

646

- 2165). Nadeln (aus Alkohol). F: 133° (C.). Schwer löslich in Alkohol; die Lösungen zeigen violette Fluorescenz (C.). Gibt mit Schwefelsäure eine grüne, rot fluorescierende Lösung (C.). Absorptionsspektrum in alkoh. Lösung: B., C., Ellison, Soc. 1928, 890. Liefert bei der Einw. von 1 Mol Chlor in Tetrachlorkohlenstoff 10-Chlor-9-benzyl-anthracen; dieses entsteht auch neben 9.10-Dichlor-anthracen beim Erhitzen mit Sulfurylchlorid in Chloroform (C.). Gibt bei Einw. von 1 Mol Brom in Schwefelkohlenstoff 10-Brom-9-benzylanthracen; mit überschüssigem Brom wird 9.10-Dibrom-anthracen gebildet (C.). Beim Behandeln mit Salpetersäure (D: 1,4) in Essigsäure bei Zimmertemperatur entsteht 10-Nitro-9-oxy-9-benzyl-dihydroanthracen; Einleiten von Stickstoffdioxyd in die Suspension in Chloroform unter Kühlung und Versetzen des Reaktionsprodukts mit Pyridin und Alkohol führt zu 10-Nitro-9-benzyl-anthracen (C.). Bei der Einw. einer Lösung von 1 Mol Brom in Pyridin entsteht [9-Benzyl-9.10-dihydro-anthrylen-(9.10)]-bis-pyridiniumbromid (C.).
- 1-Chlor-9-benzyl-anthracen  $C_{21}H_{15}Cl$ , s. nebenstehende Formel. Cl  $CH_2 \cdot C_0H_5$  B. Beim Aufbewahren von 1-Chlor-9-oxy-9-benzyl-dihydroanthracen in Eisessig-Salzsäure (Cook, Soc. 1928, 2806). Blaßgelbe Krystalle (aus Benzol + Alkohol). F: 119—120°. Bei Einw. von 1 Mol Brom in Schwefelkohlenstoff entsteht als Hauptprodukt 1-Chlor-10-brom-9-benzyliden-dihydroanthracen neben 1-Chlor-10-brom-9-benzyl-anthracen.
- 2-Chlor-9-benzyl-anthracen C<sub>21</sub>H<sub>15</sub>Cl, Formel I. B. Durch Einw. von 2-Chloranthron-(9) auf Benzylmagnesiumchlorid in Äther und kurzes Erwärmen des Reaktionsprodukts mit Eisessig und Salzsäure auf dem Wasserbad (Barnett, Wiltshire, Soc. 1928, 1824). Blaßgelbe Nadeln (aus Alkohol oder Methanol). F: 132°. Liefert, in Schwefelkohlenstoff gelöst, bei Einw. von 1 Mol Brom 2-Chlor-10-brom-9-benzyl-anthracen; bei längerer Einw. von überschüssigem Brom entsteht wahrscheinlich 2-Chlor-9.10.10-tribrom-9-benzyl-dihydroanthracen.
- 4-Chlor-9-benzyl-anthracen  $C_{21}H_{15}Cl$ , Formel II. B. Durch Einw. von 4-Chloranthron-(9) auf Benzylmagnesiumchlorid in Ather und Aufbewahren des nicht näher beschriebenen 4-Chlor-9-oxy-9-benzyl-dihydroanthracens in Eisessig-Salzsäure (Cook, Soc. 1928, 2806). — Blaßgelbe Nadeln (aus Essigester + Alkohol). F: 120°. — Bei Einw. von Brom in Schwefelkohlenstoff entsteht 4-Chlor-9-[α-brom-benzyl]-anthracen.



- 10 Chlor 9 benzyl anthracen C21H15Cl, Formel III. Aus 9-Benzyl-anthracen bei der Einw. von 1 Mol Chlor in Tetrachlorköhlenstoff oder neben 9.10-Dichlor-anthracen beim Erhitzen der Lösung in Chloroform mit Sulfurylchlorid (Cook, Soc. 1926, 2168). Gelbe Nadeln (aus Isoamylalkohol). F: 127—128°.
- 9-[4-Chlor-benzyl]-anthracen  $C_{21}H_{15}Cl$ , Formel IV. B. Durch Einw. von 4-Chlorbenzylmagnesiumchlorid auf Anthron und Erhitzen des nicht näher beschriebenen 9-Oxy-9-[4-chlor-benzyl]-dihydroanthracens mit Eisessig-Salzsäure auf dem Wasserbad (BARNETT, WILTSHIRE, B. 62, 3075). — Gelbe Krystalle (aus Alkohol + wenig Aceton oder Petroläther + Benzol). F: 1290. — Bei der Einw. von 1 Mol Brom in Schwefelkohlenstoff entsteht 10-Brom-9-[4-chlor-benzyl]-anthracen.
- 1.4-Dichlor-9-benzyl-anthracen  $C_{21}H_{14}Cl_2$ , s. nebenstehende Formel. B. Durch Einw. von Benzylmagnesiumchlorid auf 1.4-Dichlor-anthron-(9) und Erhitzen des Reaktionsprodukts mit Eisessig und wenig konz. Salzsäure auf dem Wasserbad (BARNETT, WILTSHIRE, B. 62, 1972). — Hellgelbe Krystalle (aus Alkohol oder Essigester + Methanol). F: 113°. — Liefert bei Einw. von 1 Mol Brom in Schwefelkohlenstoff 1,4-Dichlor-10-brom-9-benzyliden-dihydroanthracen.
  - CH2·C6H5
- 1.5-Dichlor-9-benzyl-anthracen  $C_{21}H_{14}Cl_2$ , s. nebenstehende Formel. B. Durch Erwärmen von 1.5-Dichlor-9-oxy-9-benzyl-dihydroanthracen mit Eisessig und etwas Salzsäure auf dem Wasserbad (Barnett, Cook, MATTHEWS, B. 60, 2359). — Gelbe Krystalle (aus Methyläthylketon oder Essigsäure). F: 127° (B., C., M.). Zeigt Fluorescenz und gibt mit konz. Schwefelsäure eine dunkelgrüne Färbung (B., C., M.). Absorptionsspektrum in alkoh. Lösung: B., C., Ellison, Soc. 1928, 888. — Leigt bei Einw. von 1 Mol Brom in

CH2·C6H5

Schwefelkohlenstoff unter Kühlung 1.5 - Dichlor - 9.10 - dibrom - 9-benzyl - dihydroanthracen (S. 636); beim Aufbewahren der Reaktionsmischung bei Zimmertemperatur entsteht 1.5-Dichlor-10-brom-9-benzyliden-dihydroanthracen (B., C., M.). Gibt in Chloroform beim Einleiten von überschüssigem Stickstoffdioxyd unter Kühlung eine Verbindung  $C_{21}H_{14}O_4N_2Cl_2$  (Krystalle; F: 177° unter Zersetzung), die beim Behandeln mit Pyridin in eine Verbindung  $C_{21}H_{13}O_2NCl_2$  (gelbes Pulver; F: 176°) übergeht (B., C., M., B. 60, 2365).

1.5-Dichlor-9-[4-chlor-benzyl]-anthracen C<sub>21</sub>H<sub>13</sub>Cl<sub>3</sub>, Formel V. B. Durch Einw. von 4-Chlor-benzylmagnesiumchlorid auf 1.5-Dichlor-anthron-(9) und Erwärmen des nicht näher beschriebenen 1.5-Dichlor-9-oxy-9-[4-chlor-benzyl]-dihydroanthracens mit salzsäure-haltigem Eisessig auf dem Wasserbad (BARNETT, WILTSHIRE, B. 62, 3075). — Gelbe Nadeln (aus Aceton + Methanol oder Benzol). F: 175°. — Liefert bei Einw. von 1 Mol Brom in Schwefelkohlenstoff 1.5-Dichlor-10-brom-9-[4-chlor-benzyliden]-dihydroanthracen.

10-Brom-9-benzyl-anthracen C<sub>21</sub>H<sub>15</sub>Br, Formel VI. Ist identisch mit dem H 728 in unreiner Form beschriebenen x-Brom-9-benzyl-anthracen (Cook, Soc. 1926, 2166).

— B. Bei Einw. von 1 Mol Brom auf 9-Benzyl-anthracen in Schwefelkohlenstoff (C.). — Gelbe Nadeln (aus Essigsäure). F: 144°. — Liefert bei Einw. von 2 Mol Brom in Schwefelkohlenstoff bei Zimmertemperatur 1.2.3.4.10-Pentabrom-9-benzyl-1.2.3.4-tetrahydro-anthracen vom Schmelzpunkt 192°; einmal entstand daneben ein stereoisomeres 1.2.3.4.10-Pentabrom-9-benzyl-1.2.3.4-tetrahydro-anthracen vom Schmelzpunkt 127°.



1-Chlor-10-brom - 9 - benzyl - anthracen  $C_{21}H_{14}ClBr$ , Formel VII. B. Neben überwiegenden Mengen 1-Chlor-10-brom-9-benzyliden-dihydroanthracen bei der Einw. von 1 Mol Brom auf eine Lösung von 1-Chlor-9-benzyl-anthracen in Schwefelkohlenstoff (Cook, Soc. 1928, 2806). — Gelbe Nadeln (aus Essigester). F: 160°. — Bleibt beim Kochen mit Acetanhydrid und Natriumacetat oder mit alkoh. Kali unverändert. Liefert, in Schwefelkohlenstoff gelöst, bei Einw. von überschüssigem Brom 4-Chlor-9-brom-anthracen.

2-Chlor-10-brom-9-benzyl-anthracen C<sub>21</sub>H<sub>14</sub>ClBr, Formel VIII. B. Bei Einw. von 1 Mol Brom auf eine Lösung von 2-Chlor-9-benzyl-anthracen in Schwefelkohlenstoff (Barnett, Wiltshire, Soc. 1928, 1824). — Gelbe Nadeln (aus Eisessig oder Essigester). F: 167°.

10-Brom-9-[4-chlor-benzyl]-anthracen C<sub>21</sub>H<sub>14</sub>ClBr, Formel IX. B. Bei Einw. von 1 Mol Brom auf 9-[4-Chlor-benzyl]-anthracen in Schwefelkohlenstoff (BARNETT, WILTSHIRE, B. 62, 3075). — Gelbe Krystalle (aus Benzol). F: 199°. — Wird beim Kochen mit Piperidin in Chloroform-Lösung nicht verändert.

4-Chlor-9-[ $\alpha$ -brom-benzyl]-anthracen  $C_{21}H_{14}ClBr$ , Formel X. B. Bei Einw. von 1 Mol Brom auf eine Lösung von 4-Chlor-9-benzyl-anthracen in Schwefelkohlenstoff (Cook, Soc. 1928, 2807). — Gelbe Krystalle (aus Benzol + Petroläther). F: 165—166°. — Liefert beim Erhitzen mit Wasser und Aceton in Gegenwart von Calciumcarbonat auf dem Wasserbad 4-Chlor-9-[ $\alpha$ -oxy-benzyl]-anthracen. Beim Erhitzen mit Methanol und Calciumcarbonat auf dem Wasserbad entsteht 4-Chlor-9-[ $\alpha$ -methoxy-benzyl]-anthracen; reagiert analog mit Alkohol.

2.3.10-Tribrom-9-benzyl-anthracen  $C_{21}H_{13}Br_3$ , Formel XI. B. Beim Erhitzen von 1.2.3.4.10-Pentabrom-9-benzyl-1.2.3.4-tetrahydro-anthracen vom Schmelzpunkt 192° mit alkoh. Kalilauge (Cook, Soc. 1926, 2167). — Gelbe Nadeln (aus Methyläthylketon). F: 206—207°. Die Lösungen zeigen violette Fluorescenz. — Liefert bei der Oxydation mit Chromessigsäure 2.3-Dibrom-anthrachinon.

10-Nitro-9-benzyl-anthracen C<sub>21</sub>H<sub>15</sub>O<sub>2</sub>N, Formel XII. B. Beim Einleiten von Stickstoffdioxyd in eine Suspension von 9-Benzyl-anthracen in Chloroform unter Kühlung und Behandeln des Reaktionsprodukts mit Pyridin und Alkohol (Cooκ, Soc. 1926, 2169). Aus einer Lösung von 10-Nitro-9-oxy-9-benzyl-dihydroanthracen in Eisessig durch Einw. von Mineralsäuren, am besten von Jodwasserstoffsäure (C.). — Goldgelbe Nadeln (aus Eisessig, Pyridin + Alkohol oder Isoamylalkohol). F: 178—180°.

#### 7. 9-Benzyliden-dihydroanthracen C<sub>21</sub>H<sub>16</sub>, Formel I, S. 648.

1-Chlor-10-brom-9-benzyliden-dihydroanthracen  $C_{21}H_{14}ClBr$ , Formel II, S. 648. B. Als Hauptprodukt beim Behandeln einer Lösung von 1-Chlor-9-benzyl-anthracen in Schwefel-

kohlenstoff mit 1 Mol Brom (Cook, Soc. 1928, 2806). Durch Einleiten von Bromwasserstoff in eine siedende Lösung von 1-Chlor-9-[ $\alpha$ -methoxy-benzyl]-anthracen in Benzol (C.). — Nadeln (aus Benzol + Petroläther). F: 151—153°. — Beim Erhitzen mit Wasser und Calcium-carbonat in Aceton auf dem Wasserbad entsteht 1-Chlor-10-oxy-9-benzyliden-dihydroanthracen; analog wird beim Erhitzen mit Methanol 1-Chlor-10-methoxy-9-benzyliden-dihydroanthracen gebildet. Liefert beim Kochen mit Natriumacetat und Eisessig 1-Chlor-9-[ $\alpha$ -acetoxy-benzyl]-anthracen.

- 1.4-Dichlor -10-brom -9-benzyliden dihydroanthracen C<sub>21</sub>H<sub>13</sub>Cl<sub>2</sub>Br, Formel III.

  B. Bei Einw. von 1 Mol Brom auf 1.4-Dichlor-9-benzyl-anthracen in Schwefelkohlenstoff unter Kühlung (ΒΑΚΝΕΤΤ, WILTSHEE, B. 62, 1972). Fast farblose Krystalle (aus Benzol + Petroläther). F: 206°. Liefert beim Kochen mit Methanol in Gegenwart von Calcium-carbonat 1.4-Dichlor-10-methoxy-9-benzyliden-dihydroanthracen; reagiert analog mit Alkohol. Bei kurzem Kochen mit wasserfreiem Kaliumacetat in Eisessig und Erhitzen des Reaktionsprodukts mit Eisessig entsteht 1.4-Dichlor-9-[α-acetoxy-benzyl]-anthracen. Behandlung mit Piperidin in Chloroform ergibt 1.4-Dichlor-10-piperidino-9-benzyliden-dihydroanthracen.
- 1.5-Dichlor-10-brom-9-benzyliden-dihydroanthracen  $C_{21}H_{13}Cl_2Br$ , Formel IV. Zur Konstitution vgl. Cook, B. 60, 2367; Soc. 1928, 2804. B. Beim Aufbewahren von 1.5-Dichlor-9.10-dibrom-9-benzyl-dihydroanthracen (S. 636) in der Wärme oder besser beim 1.5-Dichlor-9-10-diprom-9-benzyl-dihydroanthracen (S. 636) in der Wärme oder besser beim Behandeln von 1.5-Dichlor-9-benzyl-anthracen mit 1 Mol Brom in Schwefelkohlenstoff bei Zimmertemperatur (Barnett, Cook, Matthews, B. 60, 2359). Beim Einleiten von Bromwasserstoff in siedende Lösungen von 1.5-Dichlor-9-[a-oxy-benzyl]-anthracen, von 1.5-Dichlor-10-oxy-9-benzyliden-dihydroanthracen (B., C., M., B. 60, 2362) oder von 1.5-Dichlor-9.10-dioxy-9-benzyl-dihydroanthracen in Toluol (C., Soc. 1928, 2804; B., Goodway, B. 62, 426 Anm. 8). — Hellgelbe Nadeln (aus Benzol + Petroläther). F: 1849 (B., C., M., B. 60, 2359). Absorptionsspektrum in alkoh. Lösung: B., C., Ellison, Soc. 1928, 888. — Liefert beim Kochen mit Wasser und Accton 4.5-Dichlor-9-[roovy-benzyll-anthracen und accton 4.5-Dichlor-9beim Kochen mit Wasser und Aceton 1.5-Dichlor-9 [a-oxy-benzyl]-anthracen und ein schwer lösliches, bei 240—260° schmelzendes Produkt (B., C., M., B. 60, 2361); beim Kochen mit Wasser und Aceton in Gegenwart von Calciumcarbonat entsteht 1.5-Dichlor-10-oxy-9-benzyliden-dihydroanthracen (B., C., M., B. 60, 2360). Gibt in absol. Chloroform beim Einleiten von überschüssigem Stickstoffdioxyd unter Kühlung eine Verbindung  $C_{21}H_{13}O_{6}N_{3}Cl_{2}$ (Syst. Nr. 545 bei 1.5-Dichlor-10-äthoxy-9-benzyliden-dihydroanthracen) (B., C., M., B. 60, 2365). Liefert beim Kochen mit Methanol ohne Zusätze 1.5-Dichlor-9-[α-methoxy-benzyl]-anthracen (B., C., M., B. 60, 2362), in Gegenwart von Calciumcarbonat 1.5-Dichlor-10-methoxy-9-benzyliden-dihydroanthracen (B., C., M., B. 60, 2361). Beim Kochen mit Alkohol ohne Zusätze entsteht hauptsächlich 1.5-Dichlor-9-[α-äthoxy-benzyl]-anthracen und wenig 1.5-Dichlor-10-athoxy-9-benzyliden-dihydroanthracen (B., C., M., B. 60, 2363); beim Kochen mit Alkohol in Gegenwart von Calciumcarbonat wird nur die letztgenannte Verbindung gebildet (B., C., M., B. 60, 2361). Kurzes Kochen mit Kaliumacetat und Eisessig ergibt 1.5-Dichlor-10-acetoxy-9-benzyliden-dihydroanthracen (B., C., M., B. 60, 2360). Beim Erhitzen mit Diathylamin in Chloroform erhält man 1.5-Dichlor-10-diathylamino-9-benzyliden-dihydroanthracen; reagiert analog mit Anilin und Piperidin (B., C., M., B. 60, 2364). Gibt beim Erwärmen mit Dimethylanilin auf dem Wasserbad 1.5-Dichlor-9-[4-dimethylamino-phenyl]-10-benzyliden-dihydroanthracen (B., C., M.). Beim Aufbewahren in Pyridin bei Zimmertemperatur entsteht N-[1.5-Dichlor-10-benzyliden-9.10-dihydroanthranyl-(9)]-pyridiniumbromid (B., C., M., B. 60, 2364).
- 1.5-Dichlor-10-brom-9-[4-chlor-benzyliden]-dihydroanthracen  $C_{21}H_{12}Cl_3Br$ , s. nebenstehende Formel. B. Aus 1.5-Dichlor-9-[4-chlor-benzyl]-anthracen und 1 Mol Brom in Schwefelkohlenstoff (Barnett, Wiltshire, B. 62, 3075). Blaßgelbe Nadeln mit  $1C_eH_g$  (aus Benzol). F: 175°. Liefert beim Kochen mit Methanol in Gegenwart von Calcium-carbonat 1.5-Dichlor-10-methoxy-9-[4-chlor-benzyliden]-dihydroanthracen; reagiert analog mit Alkohol und mit Kaliumacetat in Eisessig.
  - C C C Br Cl
- 8. 2-Methyl-7-phenyl-anthracen C<sub>21</sub>H<sub>16</sub>, Formel I, S. 649. B. Beim Leiten von 4-[2.4-Dimethyl-benzoyl]-diphenyl über hochporôse Stoffe (aktive Kohle) bei hoher Temperatur (I. G. Farbenind., D. R. P. 481819; C. 1930 I, 1053; Frdl. 16, 722). Gelbliche Blättchen. F: 253°. Die Lösung in Schwefelsäure ist rot und zeigt orangerote Fluorescenz.
- 9. 9-Methyl-10-phenyl-anthracen C<sub>21</sub>H<sub>16</sub>, Formel II, S. 649. B. Beim Kochen von 10-Methyl-anthron-(9) mit Phenylmagnesiumbromid oder von 10-Phenyl-anthron-(9) mit

Methylmagnesiumjodid in Äther (BARNETT, MATTHEWS, B. 59, 1437). Beim Erhitzen von 9-Oxy-9-methyl-10-phenyl-dihydroanthracen mit Eisessig und etwas konz. Salzsäure oder in Xylol mit Kalium und tert. Butylchlorid (SCHLENK, BERGMANN, A. 463, 182). — Blaßgelbe Tafeln (aus Alkohol + Methyläthylketon) (B., M.); Blättchen (aus Propylalkohol) (Sch., B.). F: 116° (Sch., B.), 112° (B., M.). Absorptionsspektrum in alkob. Lösung: B., Соок, Ellison, Soc. 1928, 890. Die Lösung in Propylalkohol fluoresciert violett (Sch., B.).

— Liefert mit Brom in Schwefelkohlenstoff 9-Brommethyl-10-phenyl-anthracen (B., M.).

$$I. \overset{CH_3}{\longleftarrow} \overset{CH_3}{\longleftarrow} III. \overset{CH_3}{\longleftarrow} III. \overset{CH_3}{\longleftarrow} IV. \overset{CH_2Br}{\longleftarrow}$$

- 1.5-Dichlor-9-methyl-10-phenyl-anthracen C<sub>21</sub>h<sub>14</sub>Cl<sub>2</sub>, Formel III. B. Beim mehrstündigem Kochen von 1.5-Dichlor-10-phenyl-9-methylen-dihydroanthracen mit Eisessig und konz. Salzsäure (Barnett, Cook. B. 61, 318 Anm.). Beim Erwärmen von 1.5-Dichlor-10-oxy-9-methyl-10-phenyl-dihydroanthracen mit Eisessig und verd. Salzsäure auf dem Wasserbad (B., C., B. **61**, 318). — Grüngelbe Krystalle (aus Aceton + wenig Wasser). F: 104°. - Liefert bei mehrstündigem Erwärmen mit Eisessig und konz. Salzsäure auf dem Wasserbad 1.5-Dichlor-10-phenyl-9-methylen-dihydroanthracen.
- 9-Brommethyl-10-phenyl-anthracen  $C_{21}H_{15}Br$ , Formel IV. B. Aus 9-Methyl-10-phenyl-anthracen und 1 Mol Brom in Schwefelkohlenstoff (Barnett, Matthews, B. 59, 1438). Gelbe Nadeln (aus Benzol + Benzin). F: 177°.

#### 10-Phenyl-9-methylen-dihydroanthracen C<sub>21</sub>H<sub>16</sub>, Formel I.

1.5-Dichlor - 10-phenyl - 9-methylen - dihydroanthracen  $C_{21}H_{14}Cl_2$ , Formel II. B. Bei mehrstündigem Erwärmen von 1.5-Dichlor-9-methyl-10-phenyl-anthracen mit Eisessig und konz. Salzsäure auf dem

und Erwärmen des Reaktionspro-



dukts mit Eisessig und wenig Schwefelsäure oder Salzsäure auf dem Wasserbad (B., C., Wiltshire, Soc. 1927, 1731). — Krystalle (aus Aceton oder Essigester). F: 151° (B., C.), 150° (B., C., W.). Absorptionsspektrum in alkoh. Lösung: B., C., Ellison, Soc. 1928, 888. — Liefert bei mehrstündigem Erhitzen mit Eisessig und konz. Salzsäure 1.5-Dichlor-9-methyl-10-phenyl-anthracen (B., C., B. 61, 318 Anm.). Die Oxydation mit Chromsäure in Eisessig ergibt 1.5-Dichlor-10-phenyl-anthron-(9), die Bromierung mit Brom in Schwefelkohlenstoff 1.5-Dichlor-9-brom-9-brommethyl-10-phenyl-dihydroanthracen (B., C., B. 61, 319).

11. **9-\beta-Phenäthyliden-fluoren**  $C_{21}H_{16} = \frac{C_6H_4}{C_6H_4}C:CH\cdot CH_2\cdot C_6H_5$ . B. Aus Fluoren und Phenylacetaldehyd in Gegenwart von Natriumathylat-Lösung (DE FAZI, MONFORTE, R. A. L. [6] 10, 655).

fluoren mit 2-Methyl-benzaldehyd in

siedender Natriumathylat-Lösung (Sieglitz, Schatzkes, B. 54, 2075). — Gelbe Krystalle (aus Eisessig). F: 142-143°.

**2.7 - Dibrom - 9 - [2 - methyl - benzyliden] - fluoren**  $C_{21}H_{14}Br_2$ , Formel II. B. Aus 2.7-Dibrom-fluoren und 2-Methyl-benzaldehyd in siedender Natriumäthylat-Lösung (Sieglitz, B. 53, 1237). — Orangegelbe Blättchen (aus Eisessig). F: 141—142°.

13. **9-[3-Methyl-benzyliden]-fluoren**  $C_{21}H_{16} = \frac{C_6H_4}{C_6H_4}C:CH \cdot C_6H_4 \cdot CH_3$ . B. mehrtägigem Aufbewahren von Fluoren mit 3-Methyl-benzaldehyd in Natriumäthylat-Lösung (DE FAZI, G. 51 I, 334). — Orangefarbene, harzige Masse von angenehmem Geruch. Löst sich langsam in konz. Schwefelsäure mit gelber, in Blaugrün übergehender Farbe. Gibt mit Aluminiumamalgam in feuchtem Äther 9-[3-Methyl-benzyl]-fluoren. — Pikrat  $C_{21}H_{16}+C_{6}H_{3}O_{7}N_{3}$ . F: 104—105°.

2.7 - Dichlor - 9 - [8 - methyl-benzyliden] - f! 10ren C<sub>21</sub>H<sub>14</sub>Cl<sub>2</sub>, Formel I. B. Als Hauptprodukt bei der Behandlung von 2.7-Dichlor-fluoren mit 3-Methyl-benzaldehyd in siedender Natriumäthylat-Lösung (Sieglitz, Schatzkes, B. 54, 2075). — Hellgelbe Krystalle (aus Alkohol). F: 96—97°.

2.7-Dibrom-9-[3-methyl-benzyliden]-fluoren C<sub>21</sub>H<sub>14</sub>Br<sub>2</sub>, Formel II. B. Aus 2.7-Dibrom-fluoren und 3-Methyl-benzaldehyd in siedender Natriumäthylat-Lösung (Sieglitz, B. 53, 1237). — Gelbe Prismen (aus Eisessig). F: 95—96°.

# 14. 9-[4-Methyl-benzyliden]-fluoren $C_{21}H_{16} = \frac{C_6H_4}{C_8H_4}C:CH\cdot C_6H_4\cdot CH_3$ .

2.7-Dichlor-9-[4-methyl-benzyliden]-fluoren C<sub>21</sub>H<sub>14</sub>Cl<sub>2</sub>, Formel I. B. Als Hauptprodukt bei der Behandlung von 2.7-Dichlor-fluoren mit 4-Methyl-benzaldehyd in siedender Natriumäthylat-Lösung (Sieglitz, Schatzkes, B. 54, 2075). — Hellgelbe Nadeln (aus Eisessig). F: 148°.

2.7-Dibrom-9-[4-methyl-benzyliden]-fluoren C<sub>21</sub>H<sub>14</sub>Br<sub>2</sub>, Formel II. B. Aus 2.7-Dibrom-fluoren und 4-Methyl-benzaldehyd in siedender Nafriumäthylat-Lösung (SIEGLITZ, B. 53, 1237). — Gelbe Nadeln (aus Eisessig). F: 140—141°. — Liefert mit amalgamiertem Aluminium in feuchtem Äther 2.7-Dibrom-9-[4-methyl-benzyl]-fluoren (S., B. 53, 2247).

2-Nitro-9-[4-methyl-benzyliden]-fluoren  $C_{21}H_{15}O_{2}N$ , Formel III. B. Aus 2-Nitro-fluoren und 4-Methyl-benzaldehyd in Natriumäthylat-Lösung (Loevenich, Loeser, J. pr. [2] 116, 327). — Gelbe Nadeln (aus Eisessig). F: 163,5—164,5° (korr.). Sehr leicht löslich in Chloroform und Benzol, leicht in Eisessig, schwer in Alkohol und Äther.

15. Di-α-naphthyl-methan C<sub>21</sub>H<sub>16</sub>, s. nebenstehende Formel (H 728; E I 360). B. Neben anderen Produkten beim Erhitzen von Tetra-α-naphthyl-äthylen mit Phosphorsäure im mit Kohlendioxyd gefüllten Rohr auf 235—245° (Magidson, B. 58, 437). Zur Bildung beim Kochen von Di-α-naphthylcarbinol mit Jodwasserstoffsäure (D: 1.96) in Eisessig vgl. BLICKE, Am. Soc. 49, 2848. — Nadeln (aus Alkohol). F: 107—108° (B.). — Überführung in eine gerbend wirkende Sulfonsäure: BASF, D. R. P. 409984; C. 1925 I, 2136; Frdl. 14, 582.

# 3. Kohlenwasserstoffe $\mathrm{C}_{22}H_{18}$ .

1. 3.3-Diphenyl-1-p-tolyl-propin-(1)  $C_{22}H_{18} = (C_6H_5)_2CH \cdot C \cdot C \cdot C_6H_4 \cdot CH_3$ .

3-Chlor-3.3-diphenyl-1-p-tolyl-propin-(1)  $C_{22}H_{17}Cl = (C_6H_5)_2CCl \cdot C \cdot C_6H_4 \cdot CH_3$ . Beim Behandeln von Diphenyl-p-tolylacetylenyl-carbinol mit Phosphortrichlorid in Petroläther bei  $+4^{\circ}$  (Willemart, A. ch. [10] 12, 376). — Krystalle (aus Alkohol). F: 130—131° (Zers.). — Gibt beim Kochen mit Alkohol  $\alpha.\alpha$ -Diphenyl- $\beta$ -[4-methyl-benzoyl]-äthylen. Liefert beim Erhitzen auf ca. 140—150°, am besten bei Gegenwart von Chinolin, Dimethyl-rubren (S. 726) (W., A. ch. [10] 12, 394).

2. 1-Benzhydryl-inden C<sub>22</sub>H<sub>18</sub>, s. nebenstehende Formel (E I 361).
B. Beim Behandeln des Einwirkungsprodukts aus Natrium und ω.ω-Diphenyl-benzofulven in Äther mit Alkohol (Schlenk, Bergmann, A. 463, 61). — Krystalle (aus Alkohol). F: 114°.

3. 3-Phenyl-2-benzyl-inden C<sub>22</sub>H<sub>18</sub>, s. nebenstehende Formel. Diese Konstitution kommt der E I 362 als 1-Phenyl-2-benzyl-inden beschriebenen Verbindung zu (Blum-Berg-Mann, Soc. 1935, 1021). B. Zur Bildung durch Erhitzen von 1.2-Dibrom-1.3-diphenyl-2-benzyl-propan auf 150—155° vgl. Bl.-Be. Neben anderen Produkten beim Erhitzen von rechtsdrehendem 1.2-Dioxy-1.3-diphenyl-2-benzyl-propan mit verd. Schwefelsäure (Roger, McKenzie, B. 62, 274, 282). — Ist dimorph; die aus Petroläther erhaltenen Krystalle schmelzen bei 97—99°, die aus Alkohol gewonnenen Prismen bei 93—94,5° (Bl.-Be.; vgl. R., McK.).

- 4. 1-Phenyl-2-benzyl-inden C<sub>22</sub>H<sub>18</sub>, s. nebenstehende Formel. Die E I 362 unter dieser Formel beschriebene Verbindung von Orechow, Grinberg (ж. 48, 1719; C. 1923 I,
- 1619) wird von Blum-Bergmann (Soc. 1935, 1021) als 3-Phenyl-2-benzyl-inden erkannt. B. 1-Phenyl-2-benzyl-inden entsteht bei mehrstündigem Erhitzen von 1-Amino-2-oxy-1.3-diphenyl-2-benzyl-propan mit 10%iger Salzsäure auf 160° im Rohr (Bettzleche, Ehrlich, H. 160, 17; vgl. Bl.-Be.). Gelbliche Krystalle (aus Petroläther), Prismen (aus Methanol). F: 96—97,5° (Bl.-Be.), 101° (Bett., E.). Löslich in Alkohol, leicht löslich in Benzol, Petroläther und Ligroin (Bett., E.). Liefert beim Behandeln mit Kalium-permanganat und verd. Schwefelsäure in Eisessig bis zur bleibenden Rotfärbung 1.2-Dioxy-1-phenyl-2-benzyl-hydrinden; bei längerem Kochen mit Kaliumpermanganat in Essigsäure erhält man 2-Benzoyl-benzoesäure und Benzoesäure (Bett., E.). Die Oxydation mit starker Salpetersäure führt zu Benzoesäure und einem nicht krystallisierenden Öl (Bett., E.). Gibt bei kurzem Einleiten von nitrosen Gasen in die äther. Lösung einen isomeren Kohlenwasserstoff C22H<sub>18</sub> (Nadeln; F: 92°); bei ½-stdg. Einleiten eines lebhaften Stroms von nitrosen Gasen unter Eiskühlung in die Lösung in Äther oder Petroläther entsteht eine Verbindung C22H<sub>18</sub>O<sub>4</sub>N<sub>2</sub> (Krystalle; F: 164°) (Bett., E.).
- 5. 2 Methyl 9 benzyl anthracen C<sub>22</sub>H<sub>18</sub>. Formel I. B. Durch Einw. von Benzylmagnesiumchlorid auf 2-Methyl-anthron-(9) in Äther unter Kühlung und Erwärmen des Reaktionsprodukts mit Eisessig-Salzsäure auf dem Wasserbad (Barnett, Goodway, Soc. 1929, 1760). Krystalle (aus Methanol). F: 139°. Liefert mit 1 Mol Brom in Schwefelkohlenstoff 10-Brom-2-methyl-9-benzyl-anthracen.
- 10-Brom-2-methyl-9-benzyl-anthracen C<sub>22</sub>H<sub>17</sub>Br, Formel II. B. Durch Einw. von 1 Mol Brom auf 2-Methyl-9-benzyl-anthracen in Schwefelkohlenstoff unter Kühlung (BARNETT, GOODWAY, Soc. 1929, 1761). Hellgelbes Krystallpulver (aus Benzol). F: 164°.

$$I. \underbrace{\begin{array}{c} \operatorname{CH}_2 \cdot \operatorname{C}_6 \operatorname{H}_5 \\ \operatorname{CH}_3 \end{array}}_{\operatorname{Br}} II. \underbrace{\begin{array}{c} \operatorname{CH}_2 \cdot \operatorname{C}_6 \operatorname{H}_5 \\ \operatorname{CH}_3 \end{array}}_{\operatorname{CH}_2 \cdot \operatorname{C}_6 \operatorname{H}_5} IV. \underbrace{\begin{array}{c} \operatorname{CH}_3 \cdot \operatorname{C}_6 \operatorname{H}_5 \\ \operatorname{CH}_2 \cdot \operatorname{C}_6 \operatorname{H}_5 \end{array}}_{\operatorname{CH}_2 \cdot \operatorname{C}_6 \operatorname{H}_5} IV.$$

- 6. 2-Methyl-10-benzyl-anthracen C<sub>22</sub>H<sub>18</sub>, Formel III. B. Durch Einw. von Benzylmagnesiumchlorid auf 3-Methyl-anthron-(9) in Äther unter Kühlung und Erwärmen des Reaktionsprodukts mit Eisessig-Salzsäure auf dem Wasserbad (Barnett, Goodway, Soc. 1929, 1761). Krystalle (aus Methanol oder Petroläther). F: 101°. Liefert bei Einw. von 1 Mol Brom in Schwefelkohlenstoff 9-Brom-2-methyl-10-benzyl-anthracen.
- 9-Brom-2-methyl-10-benzyl-anthracen  $C_{22}H_{17}Br$ , Formel IV. B. Durch Einw. von 1 Mol Brom auf 2-Methyl-10-benzyl-anthracen in Schwefelkohlenstoff (Barnett, Goodway, Soc. 1929, 1761). Blaßgelbe Krystalle (aus Benzol + Petroläther). F: 139°.

#### 7. 10-Benzyl-9-methylen-dihydroanthracen C<sub>22</sub>H<sub>18</sub>, Formel V.

1.5-Dichlor-10-benzyl-9-methylen-dihydroanthracen  $C_{22}H_{16}Cl_2$ , Formel VI. B. Durch Einw. von Methylmagnesiumjodid in Äther auf 1.5-Dichlor-10-benzyl-anthron-(9) und Erwärmen des Reaktionsprodukts mit Eisessig unter Zusatz von wenig Salz- oder Schwefelsäure auf dem Wasserbad (Barnett, Cook, Soc. 1928, 570). — Krystalle (aus Alkohol). F: 123°.

$$V. \begin{picture}(20,0) \put(0,0){\line(1,0){$C$}} \put(0,0){\line(1,0){$$

- 1.8-Dichlor-10-benzyl-9-methylen-dihydroanthracen  $C_{22}H_{16}Cl_2$ , Formel VII. B. Beim Erwärmen von 1.8-Dichlor-9-methyl-10-benzyl-9.10-dihydro-anthranol-(9) mit Eisessig und wenig konz. Salzsäure auf dem Wasserbad (Barnett, Wiltshire, B. 62, 3070). Krystalle (aus Essigester + Methanol). F: 116°. Die Oxydation mit Chromessigsäure ergibt 1.8-Dichlor-10-benzyl-anthron-(9).
- 4.5-Dichlor-10-benzyl-9-methylen-dihydroanthracen C<sub>22</sub>H<sub>16</sub>Cl<sub>2</sub>, Formel VIII. B. Beim Erwärmen von 4.5-Dichlor-9-methyl-10-benzyl-9.10-dihydro-anthranol-(9) mit Eisessig-Salzsäure auf dem Wasserbad (BARNETT, WILTSHIRE, B. 62, 3071). Krvstalle (aus Methanol oder Essigester). F: 114°.

# 8. 9-Methyl-10-benzyliden-dihydroanthracen C<sub>22</sub>H<sub>18</sub>, Formel I.

1.5-Dichlor-9-methyl-10-benzyliden-dihydroanthracen  $C_{22}H_{10}Cl_2$ , Formel II. B. Durch Einw. von 1.5-Dichlor-10-methyl-anthron-(9) auf Benzylmagnesiumchlorid in Äther und Erwärmen des Reaktionsprodukts mit Eisessig und wenig Salzsäure auf dem Wasserbad (Barnett, Cook, B. 61, 318). — Krystalle (aus Essigester). F: 165°.

I. 
$$CH_3$$
  $CH_3$   $CH_3$   $CH_5$   $CH_5$ 

9. 9-Äthyl-10-phenyl-anthracen C<sub>22</sub>H<sub>18</sub>, Formel III. B. Durch Einw. von Äthylmagnesiumhalogenid in Äther auf 10-Phenyl-anthron-(9) und Erwärmen des Reaktionsprodukts mit Eisessig allein oder unter Zusatz von Acetanhydrid oder einiger Tropfen Salzsäure oder verd. Schwefelsäure (Barnett, Cook, Wiltshire, Soc. 1927, 1730). — Stark fluorescierende Krystalle (aus Alkohol). F: 110°.

10. 10 - Phenyl - 9 - äthyliden - dihydroanthracen  $C_{22}H_{18}$ , s. nebenstehende Formel (X = H).

1.5-Dichlor-10-phenyl-9-äthyliden-dihydroanthracen  $C_{22}H_{16}Cl_2$ , s. nebenstehende Formel (X = Cl). B. Durch Einw. von Äthylmagnesiumhalogenid in Äther auf 1.5-Dichlor-10-phenyl-anthron-(9) und Kochen des  $\dot{C}_6H_5$ Reaktionsprodukts mit Eisessig unter Zusatz einer Mineralsäure (BARNETT,

COOK, WILTSHIRE, Soc. 1927, 1731). — Krystalle (aus Alkohol oder Essigester). F: 1590.

11. 
$$9 - [y - Phenyl - propyliden] - fluoren C22H18 =  $\begin{bmatrix} C_6H_4 \\ C_6H_4 \end{bmatrix}$ C:CH·CH<sub>2</sub>·CH<sub>2</sub>·C<sub>6</sub>H<sub>5</sub>.$$

Der H 730 als Dihydro-cinnamylidenfluoren  $C_{22}H_{18}$  beschriebenen Verbindung kommt diese Konstitution zu (Kuhn, Winterstein. Helv. 11, 125, 135). — B. Bei der Einw. von Natriumamalgam auf 9-[ $\gamma$ -Phenyl- $\alpha$ -propenyl]-fluoren (s. u.) oder auf 9-Cinnamylidenfluoren (S. 661) in Benzol + absol. Alkohol unter Kühlung (K., W.). — Krystalle (aus Methanol). F: 81 $^{\circ}$ . — Gibt bei der Ozonspaltung Hydrozimtsäure und Fluorenon. — Pikrat  $C_{22}H_{18}+C_{6}H_{3}O_{7}N_{3}$ . F: 127 $^{\circ}$ .

12.  $9-fy-Phenyl-\alpha-propenyl]-fluoren, \alpha-Benzyl-\beta-fluorenyl-äthylen$   $C_{22}H_{18}=\frac{C_6H_4}{C_6H_4}$ CH·CH·CH·CH<sub>2</sub>·C<sub>6</sub>H<sub>5</sub> (H 730). Zur Bildung aus 9-Cinnamyliden-fluoren und Aluminiumamalgam in feuchtem Äther nach Thiele, Henle (A. 347 [1906], 308) vgl. Kuhn, Winterstein, Helv. 11, 125, 134. — Krystalle (aus Methanol). F: 88°. — Gibt bei der Ozonspaltung Phenylessigsäure und Phenylacetaldehyd. Lagert sich beim Aufbewahren mit 5%igem Natriumamalgam in Benzol + absol. Alkohol in der Kälte in 9-[γ-Phenylpropyliden]-fluoren um.

2.7-Dibrom-9-[ $\gamma$ -phenyl- $\alpha$ -propenyl]-fluoren,  $\alpha$ -Benzyl- $\beta$ -[2.7-dibrom-fluorenyl-(9)]-äthylen  $C_{22}H_{16}Br_2$ , Formel I. B. Aus 2.7-Dibrom-9-cinnamyliden-fluoren und amalgamiertem Aluminium in feuchtem Äther (Kuhn, Winterstein, Helv. 11, 136). — F: 185°. Leicht löslich in Benzol, Chloroform und Äther, schwer in Eisessig, unlöslich in Alkohol und Petroläther.

13. 9-[2-.ithyl-benzyliden]-fluoren  $C_{22}H_{18} = \frac{C_6H_4}{C_6H_4}C:CH \cdot C_6H_4 \cdot C_2H_5$ .

2.7-Dibrom - 9 - [2-.äthyl-benzylidea]-fluoren  $C_{22}H_{16}Br_2$ , CH:CH·CH<sub>2</sub>·C<sub>6</sub>H<sub>5</sub> CH·C<sub>6</sub>H<sub>4</sub>·C<sub>2</sub>.

I. Br. CH:CH·CH<sub>2</sub>·C<sub>6</sub>H<sub>5</sub> CH·C<sub>6</sub>H<sub>4</sub>·C<sub>2</sub>.

Br. CH:CH·CH<sub>2</sub>·C<sub>6</sub>H<sub>5</sub> CH·C<sub>6</sub>H<sub>4</sub>·C<sub>2</sub>.

Br. CH:CH·CH<sub>2</sub>·C<sub>6</sub>H<sub>5</sub> CH·C<sub>6</sub>H<sub>4</sub>·C<sub>2</sub>.

CH:CH·CH<sub>2</sub>·C<sub>6</sub>H<sub>5</sub> CH·C<sub>6</sub>H<sub>4</sub>·C<sub>2</sub>.

CH:CH·CH<sub>2</sub>·C<sub>6</sub>H<sub>5</sub> CH·C<sub>6</sub>H<sub>4</sub>·C<sub>2</sub>.

CH:CH·CH<sub>2</sub>·C<sub>6</sub>H<sub>5</sub> CH·C<sub>6</sub>H<sub>4</sub>·C<sub>2</sub>. in siedender Natriumäthylat-

Lösung (Sieglitz, B. 53, 1238). — Gelbe Prismen und Blätter (aus Alkohol). F: 132—133°.

# 

2.7 - Dibrom - 9 - [3 -  $\ddot{a}$ thyl - benzyliden] - fluoren  $C_{22}H_{16}Br_2$ , Formel II. B. Aus 2.7 - Dibrom - fluoren und 3 -  $\ddot{a}$ thyl - benzaldehyd in siedender Natriumäthylat - Lösung (Sieglitz, B. 53, 1238). — Gelbe Krystalle (aus Methanol). F: 83—84°.

- 15. 1.2-Di-α-naphthyl-äthan C<sub>22</sub>H<sub>18</sub> = C<sub>10</sub>H<sub>7</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·C<sub>10</sub>H<sub>7</sub> (H 730; E I 362). B. Neben anderen Produkten bei längerem Erhitzen von α-Naphthylcarbinol-phenyläther oder -0-tolyläther mit Natrium im Rohr auf 100° (Schorigin, B. 59, 2512). In geringer Menge aus α-Naphthylmethylmagnesiumchlorid und Formaldehyd in Äther (Gilman, Kirby, Am. Soc. 51, 3478). Bei der Einw. von Acetaldehyd auf α-Naphthylmethylmagnesiumbromid in Äther (F. Mayer, Sieglitz, B. 55, 1842). Farblose Krystalle (aus Benzol). F: 161° bis 162° (M., Sie.), 162—163° (Sch.). Die Lösungen fluorescieren nicht (M., Sie.; Sch.).
- 16. 1.2-Di- $\beta$ -naphthyl-āthan  $C_{22}H_{18}=C_{10}H_7\cdot CH_2\cdot CH_2\cdot C_{10}H_7$  (H 731; E I 362). B. In sehr geringer Menge bei längeren Erhitzen von  $\beta$ -Naphthylcarbinol-phenyläther mit Natrium und Toluol auf 100°; besser aus  $\beta$ -Naphthylcarbinol-o-tolyläther und Natrium ohne Lösungsmittel bei 100° (Schorigin, B. 59, 2513). Bei der Einw. von Acetaldehyd auf  $\beta$ -Naphthylmethylmagnesiumbromid in Äther (F. Mayer, Sieglitz, B. 55, 1854). Krystalle (aus Chloroform oder Benzol). F: 182° (M., Sie.), 182—183° (Sch.).
- 1.2-Bis-[1-nitro-naphthyl-(2)]-äthan  $C_{22}H_{16}O_4N_2=O_2N\cdot C_{10}H_6\cdot CH_2\cdot CH_2\cdot C_{10}H_6\cdot NO_2$ . B. Aus 1-Nitro-2-methyl-naphthalin durch Einw. von Oxalsäurediäthylester in Gegenwart von überschüssigem Kaliumäthylat (WISLICENUS, MUNDINGER, A. 436, 65). Braungelbe Prismen (aus Chlorbenzol). F: 251°. Unlöslich in Äther, Wasser, Säuren und Alkalien.
- 17. **4.4'-Dimethyl-dinaphthyl-(1.1')**  $C_{22}H_{18} = CH_3 \cdot C_{10}H_6 \cdot C_{10}H_6 \cdot CH_3$ . Zur Konstitution vgl. a. Fichter, *J. Soc. chem. Ind.* **48** [1929], 328 T. *B.* Bei der elektrolytischen Oxydation von 1-Methyl-naphthalin an einer Blei(IV)-oxyd-Anode in Aceton und 1 n-Schwefelsäure (F., Herszbein, *Helv.* 11, 1265). Krystalle (aus Aceton). F: 147° (F., H.). Liefert beim Kochen mit Brom in Tetrachlorkohlenstoff x-Dibrom-4.4'-dimethyl-dinaphthyl-(1.1') (F: 243°) und amorphe Produkte (F., H.). Beim Erwärmen mit Salpetersäure (D: 1,4) in Eisessig auf dem Wasserbad entsteht ein x-Dinitro-4.4'-dimethyl-dinaphthyl-(1.1')  $C_{22}H_{16}O_4N_2$  (vielleicht ein Isomerengemisch; gelbes Pulver vom Zersetzungspunkt 125—130°) (F., H.).
- 18. 1.1'-Dimethyl-dinaphthyl-(2.2') C<sub>22</sub>H<sub>18</sub> = CH<sub>3</sub>·C<sub>10</sub>H<sub>6</sub>·C<sub>10</sub>H<sub>6</sub>·CH<sub>3</sub> (E I 362). B. In geringer Menge beim Leiten von Kohlendioxyd in die äther. Lösung des Reaktionsprodukts aus 2-Jod-1-methyl-naphthalin und Magnesium, neben anderen Produkten (F. MAYER, SCHNECKO, B. 56, 1410). F: 227°. Unlöslich in Äther.

# 4. Kohlenwasserstoffe $C_{23}H_{20}$ .

- 3-Chlor-1.5.5-triphenyl-pentadien-(1.3)  $C_{23}H_{19}Cl = (C_6H_5)_2CH \cdot CH \cdot CCl \cdot CH \cdot CH \cdot C_6H_5$ . B. Aus 3.5-Dichlor-1.5-diphenyl-pentadien-(1.3) beim Behandeln mit Phenylmagnesiumbromid in Äther (Straus, Ehrenstein, A. 442, 112). Nadeln (aus Petroläther). F: 72° bis 73°. Löst sich in flüssigem Schwefeldioxyd mit schwach gelblicher Farbe. Beim Erwärmen mit konz. Schwefelsäure, ebenso beim Zufügen von Schwefelsäure zu der ätherischen oder zu der heißen benzolischen Lösung entsteht eine orangefarbene Lösung. Liefert beim Kochen mit Natriummethylat-Lösung 5-Methoxy-1.1.5-triphenyl-pentadien-(1.3).
- 2. 9-Propyl-10-phenyl-anthracen С<sub>23</sub>Н<sub>20</sub>, Formel I. B. Beim Erwärmen von 9-Propyl-10-phenyl-9.10-dihydroanthranol-(9) mit Eisessig allein oder unter Zusatz von Acetanhydrid oder wenig Salzsäure oder Schwefelsäure (Вакнетт, Соок, Wiltshire, Soc. 1927, 1730). Stark fluorescierende Krystalle (aus Alkohol). F: 115—116°.
- 1.5-Dichlor-9-propyl-10-phenyl-anthracen  $C_{23}H_{18}Cl_2$ , Formel II. B. In sehr geringer Menge durch Einw. von Propylmagnesiumhalogenid in Äther auf 1.5-Dichlor-10-phenyl-anthron-(9) und Erwärmen des Reaktionsprodukts mit Essigsäure und wenig Schwefelsäure (Barnett, Cook, Wiltshire, Soc. 1927, 1731). Stark fluorescierende, gelbe Krystalle (aus Essigester). F: 196°.

$$I. \begin{picture}(20,0) \put(0,0){\line(1,0){$C$}} \put(0,0){\line(1,0){$$

3. 10-Phenyl-9-propyliden-dihydroanthracen C<sub>23</sub>H<sub>20</sub>, Formel III.

1.5-Dichlor-10-phenyl-9-propyliden-dihydroanthracen  $C_{23}H_{18}Cl_2$ , Formel IV. B. In geringer Menge durch Einw. von Propylmagnesiumhalogenid in Äther auf 1.5-Dichlor-10-phenyl-anthron-(9) und Erwärmen des Reaktionsprodukts mit Eisessig und wenig Salzsäure (Barnett, Cook, Wiltshire, Soc. 1927, 1731). — Krystalle (aus Methanol). F: 135°.

[Syst. Nr. 489

4. 9-Isopropyl-10-phenyl-anthracen C<sub>23</sub>H<sub>20</sub>, Formel V. B. Bei der Einw. von Isopropylmagnesiumhalogenid in Äther auf 10-Phenyl-anthron-(9) und Erwärmen des Reaktionsprodukts mit Essigsäure allein oder unter Zusatz von Acetanhydrid oder wenig Salz- oder Schwefelsäure (Barnett, Cook, Wiltshire, Soc. 1927, 1730). — Stark fluorescierende Krystalle (aus Methyläthylketon + Alkohol). F: 166—167°.

$$V. \qquad \begin{array}{c} CH(CH_3)_2 \\ \hline V. \\ \hline \\ C_6H_5 \end{array} \qquad \begin{array}{c} CI \quad CH(CH_3)_2 \\ \hline \\ VI. \\ \hline \\ C_6H_5 CI \end{array} \qquad \begin{array}{c} VII. \\ \hline \\ C_6H_3(CH_3)_3^2 \end{array}$$

- 1.5-Dichlor-9-isopropyl-10-phenyl-anthracen C<sub>23</sub>H<sub>18</sub>Cl<sub>2</sub>, Formel VI. B. Bei der Einw. von Isopropylmagnesiumhalogenid in Äther auf 1.5-Dichlor-10-phenyl-anthron-(9) und Erwärmen des Reaktionsprodukts mit Essigsäure und wenig Salzsäure oder Schwefelsäure (BARNETT, COOK, WILTSHIRE, Soc. 1927, 1731). Stark fluorescierendes, gelbes Krystall-pulver. F: 195°.
- 5. 2-Methyl-10-[2.4-dimethyl-phenyl]-anthracen C<sub>23</sub>H<sub>20</sub>, Formel VII. B. Beim Leiten des Dampfes von 2.4-Dimethyl-triphenylmethan im Gemisch mit Luft über Manganoxyd + Kupferoxyd enthaltende Kohle bei 380° (I. G. Farbenind., D.R.P. 486766; C. 1930 I, 1052; Frdl. 16, 575). Gelbliche Blättchen (aus Eisessig). F: 224°.
- 6. 9-[4-Isopropyl-benzyliden]-fluoren, 9-Cuminyliden-fluoren  $C_{23}H_{20} = C_6H_4$  C: $C_6H_4$  C: $C_6H_4$  C: $C_6H_4$  C: $C_6H_5$  C: $C_6H_6$  C:
- 2.7-Dichlor-9-[4-isopropyl-benzyliden]-fluoren  $C_{23}H_{18}Cl_2$ , Formel VIII. B. Als Hauptprodukt beim Behandeln von 2.7-Dichlor-fluoren mit 4-Isopropyl-benzaldehyd in siedender Natriumäthylat-Lösung (Sieglitz, Schatzkes, B. 54, 2075). Blaßgelbe Krystalle (aus Alkohol). F: 94—95°.

2.7-Dibrom-9-[4-isopropyl-benzyliden]-fluoren  $C_{23}H_{18}Br_2$ , Formel IX. B. Aus 2.7-Dibrom-fluoren und 4-Isopropyl-benzaldehyd in siedender Natriumäthylat-Lösung (Sieglitz, B. 53, 1238). — Gelbe Nadeln (aus Eisessig). F: 116—117°.

#### 5. Kohlenwasserstoffe $C_{24}H_{22}$ .

1. 1.12-Diphenyl-dodecahexaen-(1.3.5.7.9.11)  $C_{24}H_{22}=C_6H_5\cdot [CH:CH]_6\cdot C_6H_5$ . B. Beim Kochen von Bernsteinsäure mit  $\beta$ -Styryl-acrolein, Acetanhydrid und Bleioxyd (KUHN, WINTERSTEIN, Helv. 11, 113; 12, 493). — Braun-orangefarbene Blättchen (aus Chloroform). F: 267° (Zers.). Bei 19° lösen sich 0,06 g in 1000 cm³ Benzol, 0,09 g in 1000 cm³ Chloroform (K., W., Helv. 11, 101). Die Lösungen in organischen Lösungsmitteln sind hellbraun. Löst sich in konz. Schwefelsäure mit blauer Farbe; beim Schütteln mit Chloroform + konz. Schwefelsäure oder mit Chloroform + konz. Schwefelsäure hauptig färbt sich die Chloroformschicht grünlich, die Schwefelsäure blaugrün (K., W., Helv. 11, 151).

### 2. 9-Isopropyl-10-benzyl-anthracen C<sub>24</sub>H<sub>22</sub>, Formel I.

1.5-Dichlor-9-isopropyl-10-benzyl-anthracen  $C_{24}H_{20}Cl_2$ , Formel II. B. Bei der Einw. von Isopropylmagnesiumbromid in Äther auf 1.5-Dichlor-10-benzyl-anthron-(9) und



Behandlung des Reaktionsprodukts mit Eisessig unter Zusatz von wenig Salzsäure bei Zimmertemperatur (Barnett, Cook, Soc. 1928, 570). — Gelbe Platten (aus Essigester + Alkohol oder aus Alkohol). F: 138°. Die Lösungen fluorescieren grün.

/ 15 16

- 655
- 3. 9-Butyl-10-phenyl-anthracen C<sub>24</sub>H<sub>22</sub>, Formel III, S. 654. B. Durch Einw. von Butylmagnesiumhalogenid in Äther auf 10-Phenyl-anthron-(9) und Erwärmen des Reaktionsprodukts mit Eisessig allein oder unter Zusatz von Acetanhydrid oder wenig Salzsäure oder Schwefelsäure (Barnett, Cook, Wiltshire, Soc. 1927, 1730). Stark fluorescierende, gelbe Krystalle (aus Essigester). F: 156°.
- 4. Derivat eines 1 Phenyl 5 fluorenyl pentens (x)  $C_{24}H_{22} = C_6H_4$   $CH \cdot C_5H_8 \cdot C_6H_5$ .
- x-Tetrabrom-1-phenyl-5-fluorenyl-penten-(x), 1-Phenyl-6-diphenylen-hexatrien-(1.3.5)-tetrabromid  $C_{24}H_{18}Br_4=C_{13}H_9\cdot C_5H_4Br_4\cdot C_6H_5$ . B. Aus 1-Phenyl-6-diphenylen-hexatrien-(1.3.5) und Brom in Chloroform (Kuhn, Winterstein, Helv. 11, 144). F: 170° (Zers.).
- 6. 9-Isoamyl-10-phenyl-anthracen C<sub>25</sub>H<sub>24</sub>, s. nebenstehende Formel. B. Bei der Einw. von Isoamylmagnesiumhalogenid in Äther auf 10-Phenyl-anthron-(9) und Erwärmen des Reaktionsprodukts mit Eisessig allein oder unter Zusatz von Acetanhydrid oder wenig Salzsäure oder Schwefelsäure (Barnett, Cook, Wiltshire, Soc. 1927, 1730). Stark fluorescierende Krystalle (aus Benzol + Alkohol). F: 203—204°. Absorptionsspektrum in alkoh. Lösung: B., C., Ellison, Soc. 1928, 890.
- 7. 3'-Phenyl-4'-benzhydryl-[cyclobutano-1'.2':1.2- $_{\rm H_2C}$   $_{\rm CH_2}$   $_{\rm CH_2CH_1C_6H_5}$  cyclobexan]  $C_{27}H_{28}$ , s. nebenstehende Formel. B. Aus  $_{\rm H_2C}$   $_{\rm CH_2}$   $_{\rm CH_2CH_1CH_1C_6H_5)_2}$  3-Phenyl-4-benzhydryl-1.2-benzo-cyclobuten-(1) bei der Hydrierung mit Palladium-Bariumsulfat in siedendem Propylalkohol (Schlenk, Bergmann, A. 463, 249). Nadeln (aus Propylalkohol). F: 170°.

# 17. Kohlenwasserstoffe C<sub>n</sub> H<sub>2 n-28</sub>.

# 1. Kohlenwasserstoffe $C_{20}H_{12}$ .

1. Perylen C<sub>20</sub>H<sub>12</sub>, s. nebenstehende Formel (E I 363). Literatur: E. Clar, Aromatische Kohlenwasserstoffe [Berlin 1941], S. 221—230; F. A. Mason, Ind. Chemist 5, 111, 137; C. 1929 I, 2981. — Für die von Perylen abgeleiteten Namen wird in diesem Handbuch die angegebene Stellungsbezeichnung gebraucht. — Der von Homen (Soc. 97, 1148) als Dinaphthanthracen aufgefaßte Kohlenwasserstoff (H 5, 735) ist als Perylen erkannt worden (Cook, Soc. 1931 488; vgl. Clar R 62, 352)

Braucht. — Der von Homer (30c. 91, 1143) als Dinaphthalthracen Edigefaßte Kohlenwasserstoff (H 5, 735) ist als Perylen erkannt worden (Cook, Soc.
1931, 488; vgl. Clar, B. 62, 352).

B. Beim Erhitzen von 2.2'-Dichlor-dinaphthyl-(1.1') mit phosphoriger
Säure auf 500° (Hansgirg, D. R. P. 386040; C. 1924 I, 1869; Frdl. 14, 479).
Aus 2.2'-Dioxy-dinaphthyl-(1.1') beim Erhitzen mit Phosphortrichlorid und
trockner phosphoriger Säure auf 500° in einem gußeisernen Kessel (Scharkun,
Scharkun, Edit 43, 4409



Kalilauge auf 250° im Autoklaven (I. G. Farbenind., D. R. P. 486491) oder bei der trocknen Destillation des Calciumsalzes (KALLE & Co., D. R. P. 394794; C. 1924 II, 1276; Frdl. 14, 482).

Physikalische Eigenschaften. Gelbe Krystalle (aus Toluol) (MARSCHALK, Bl. [4] Physikalische Eigenschaften. Gelde Krystalle (aus Toluol) (Marschalk, Bl. [4] 43, 1393), hellgelbe Nadeln (aus Xylol) (Cook, Hewett, Soc. 1933, 398); häufig sehen die Krystalle bronzefarben aus (Scharwin, Ssoborowski, H. 61, 791; C. 1931 II, 236; vgl. E. Clar, Aromatische Kohlenwasserstoffe [Berlin 1941], S. 224). Die Krystalle schmelzen nach Reinigung über das Pikrat bei 273—274° (Morgan, Mitchell, Soc. 1934, 536), ohne eine solche Reinigung bei 265° (Ma.; Sch., Ss.). Verbrennungswärme bei konstantem Volumen: 2333,0 kcal/Mol (Pongratz, Griengl, M. 53/54, 261). Kryoskopische Konstante: 25,7 (für 1 kg Lösungsmittel) (Zinke, Springer, Schmid, B. 58, 2388). Absorptionsspektrum in Bengol und in Alkohol. Dadien Ph. Ch. 135, 340. Zinke Mitarb. M. 50, 70 in Benzol und in Alkohol: DADIEU, Ph. Ch. 185, 349; ZINKE, Mitarb., M. 50, 79.

Chemisches Verhalten. Perylen wird beim Behandeln mit einer Lösung von Natriumnitrit in konz. Schwefelsäure bei 70-100° zu Perylenchinon-(3.10) oxydiert (MARSCHALK, Bl. [4] 41, 80). Gibt bei der Hydrierung in Gegenwart von Palladium-Tierkohle in Eisessig unter Druck bei 19-23° 1.2.3.10.11.12 (oder 1.2.3.7.8.9)-Hexahydro perylen (S. 622)

und Oktahydroperylen (S. 608) (ZINKE, SCHNIDERSCHITSCH, M. 51, 282).

Perylen liefert beim Erhitzen mit Phosphorpentachlorid oder Aluminiumchlorid in Nitrobenzol auf 130—150° oder beim Behandeln mit Chlorwasserstoff und der berechneten Menge Natriumdichromat in 90 %iger Essigsäure 3.9-Dichlor-perylen (ZINKE, FUNKE, LOBBER, B. 60, 579); beim Behandeln mit konz. Salzsäure und der berechneten Menge 30 %igem Wasserstoffperoxyd in Eisessig bei 90° tritt daneben 3.10-Dichlor-perylen auf (Z., Pongratz, Funke, B. 58, 331; Bensa, D. R. P. 498039; Frdl. 16, 1389). Weitere Chlorierung mit Salzsäure und der berechneten Mengen Wasserstoffperoxyd in Nitrobenzol und Eisessig bei 90° liefert 3.4.9.10-Tetrachlor-perylen und 3.4.9.10.x.x-Hexachlor-perylen (Z., P., F., B. 58, 332; B., D. R. P. 498039; Fral. 16, 1389). Beim Erhitzen von Perylen mit Aluminiumchlorid und Braunstein auf 150° entsteht 3.4.9.10-Tetrachlor-perylen (Z., F., L., B. 60, 579). Leitet man Chlor bei 130-140° in eine Lösung von Perylen in Nitrobenzol, bis sich aus der Reaktionslösung nur noch braungelbe Nadeln ausscheiden, so erhält man 3.4.9.10.x.x-Hexachlor-perylen (Z., F., IPAVIC, M. 48, 747); beim Einleiten von Chlor in eine Suspension von Perylen in Tetrachlorkohlenstoff bei Zimmertemperatur entsteht ein einheitlich krystallisierendes Gemisch von gleichen Teilen zweier Verbindungen C<sub>20</sub>H<sub>10</sub>Cl<sub>8</sub> und C<sub>20</sub>H<sub>12</sub>Cl<sub>10</sub> (Nadeln; sintert bei 198—200°, schmilzt bei 235°) (Z., F., I.; vgl. Z., Mitarb., M. 50, 80). Langdauerndes Behandeln einer Suspension von Perylen in Nitrobenzol mit Chlor in Gegenwart von Aluminiumchlorid bei 130—140° ergibt Dekachlor-tetrahydroperylen (S. 633) (Z., F., I.; vgl. BENSA, D. R. P. 487595; Frdl. 16, 1388). Ein Gemisch von 3.9- und 3.10-Dibrom-perylen entsteht bei der Behandlung von Perylen mit Brom ohne Lösungsmittel oder in Schwefelsäure, Nitrobenzol, Eisessig, Tetrachlorkohlenstoff, Schwefelkohlenstoff (Z., Linner, Wolf-BAUER, B. 58, 327) oder siedendem Benzol; bei der Bromierung in Benzol-Lösung wurde auch die Bildung von 3.4.9-Tribrom-perylen nachgewiesen (Z., Mitarb., M. 50, 82). Die Bromierung von Perylen mit wasserfreiem Aluminiumbromid und Nitrobenzol auf dem Wasserbad oder mit Natriumbromid und Wasserstoffperoxyd in wäßr. Essigsäure bei 90° liefert

3.9-Dibrom-perylen (Z., Funke, Lorber, B. 60, 579, 581).

Die Nitrierung mit Salpetersäure (D: 1,2) in Tetrachlorkohlenstoff führt zu 3.10-Dinitroperylen (Zinke, Funke, Lorber, B. 60, 580; F., Wolf, M. 52, 3), das auch bei der Einw. der berechneten Menge Kaliumnitrat und Schwefelsäure in Eisessig bei 100° erhalten wird (Bensa, D. R. P. 468453; Frdl. 16, 1386). Ein x-Trinitro-perylen (E I 5, 363) entsteht beim Erhitzen von Perylen mit Salpetersäure (D: 1,1) auf 100° im Rohr (Z., ÚNTERKREUTER, M. 40 [1919], 406). Kochen von Perylen mit Salpetersäure (D: 1,4) liefert 3.4.9.10-Tetranitro-perylen (Z., U., M. 40, 407; Z., Hirsch, Brozek, M. 51, 208, 210). Perylen gibt beim Erhitzen mit Phosphorpentasulfid und Kieselgur auf ca. 230° einen roten schwefelhaltigen Farbstoff (Bensa, D. R. P. 454912; Frdl. 16, 1379). Liefert beim Erwärmen mit konz. Schwefelsäure und Eisessig auf 75—80° Perylen-disulfonsäure-(3.9) und -(3.10) (MARSCHALK, Bl. [4] 41, 76; vgl. Kalle & Co., D. R. P. 432178; C. 1926 II, 2231; Frdl. 15, 787). Überführung in Küpenfarbstoffe durch Erhitzen mit konz. Schwefelsäure auf 190°, durch Behandeln mit konz. Schwefelsäure und Braunstein bei Zimmertemperatur und durch Erhitzen

mit Chlorsulfonsäure auf 100°: KALLE & Co.

Perylen liefert beim Behandeln mit Acetylchlorid und Aluminiumchlorid in Schwefelkohlenstoff 3.9-Diacetyl-perylen (Pongratz, M. 48, 589); reagiert analog mit Benzoylchlorid (vgl. E I 363) sowie substituierten Benzoylchloriden und Aluminiumchlorid in Schwefelkohlenstoff (ZINKE, FUNKE, B. 58, 2225; P., M. 48, 588; SCHARWIN, SSOBOROWSKI, & 61, 791; C. 1931 II, 236). Beim Erhitzen mit Benzoylchlorid und Aluminiumchlorid auf etwa 150° (BENSA, D. R. P. 445219; Frdl. 15, 780), am besten in Gegenwart von Braunstein (B., D. R. P. 464208; Frdl. 16, 1383) wird Isodibenzanthron (Formel I; Syst. Nr. 692) gebildet. Liefert mit Phthalsaureanhydrid und Aluminiumchlorid in Schwefelkohlenstoff oder Nitrobenzol auf dem Wasserbad ein Gemisch von Perylenphthaloylsäuren; nachfolgendes Erhitzen des Gemisches mit Aluminiumchlorid oder direktes Erhitzen von Perylen mit Phthalsäureanhydrid und Aluminiumchlorid auf 170° ergibt in geringer Menge 2.3;8.9-Diphthalylperylen (Formel II; Syst. Nr. 732); reagiert analog mit 4-Chlor-phthalsäure-anhydrid (ZINKE, GORBACH, SCHIMKA, M. 48, 595).

Substitutions produkte des Perylens.

3.9-Dichlor-perylen C<sub>20</sub>H<sub>10</sub>Cl<sub>2</sub>, s. nebenstehende Formel. B. Entsteht aus Perylen beim Erhitzen mit Phosphorpentachlorid oder Aluminiumchlorid in Nitrobenzol auf 130—150°, beim Behandeln mit Chlorwasserstoff und der berechneten Menge Natriumdichromat in 90 %iger Essigsäure (ZINKE, FUNKE, LORBER, B. 60, 579) oder (neben 3.10-Dichlor-perylen) beim Behandeln mit konz. Salzsäure und der berechneten Menge 30 %igem Wasserstoffperoxyd in Eisessig bei 90° (Z., PONGRATZ, F., B. 58, 331; BENSA, D. R. P. 498039; Frdl. 16, 1389). — Braunrote Nadeln (aus Benzol, Nitrobenzol, Anilin, Xylol oder Benzoesäureäthylester). F: 291° (Z., F., L.). Schwer löslich in Ather, Alkohol, Aceton und Eisessig, leicht

Pongratz, F., B. 58, 331; Bensa, D. R. P. 498039; Frdl. 16, 1389). — Braunrote Nadeln (aus Benzol, Nitrobenzol, Anilin, Xylol oder Benzoesäureäthylester). F: 291° (Z., F., L.). Schwer löslich in Äther, Alkohol, Aceton und Eisessig, leicht löslich in siedendem Xylol, Nitrobenzol, Anilin und Pyridin, meist mit gelber Farbe und grüner Fluorescenz (Z., P., F.). Löst sich sehr langsam in konz. Schwefelsäure mit violetter Farbe, die beim Erwärmen über Ultramarin in Rot übergeht (Z., Springer, Schmid, B. 58, 2386; vgl. Z., P., F.). Absorptionsspektrum einer Lösung in Benzol: Dadieu, Ph. Ch.

Liefert beim Erhitzen mit konz. Schwefelsäure auf 120° Perylenchinon-(3.9) (ZINKE, SPRINGER, SCHMID, B. 58, 2389; Z., HIRSCH, M. 52, 17, 21). Beim Einleiten von Chlor in eine Suspension in Tetrachlorkohlenstoff unter Eiskühlung entsteht ein einheitlich krystallisierendes Gemisch zweier Verbindungen C<sub>20</sub>H<sub>10</sub>Cl<sub>6</sub> und C<sub>20</sub>H<sub>8</sub>Cl<sub>8</sub> (Nadeln; F: 260° [Zers.]) (Z., F., IPAVIC, M. 48, 746; vgl. Z., Mitarb., M. 50, 80). Erwärmen mit der berechneten Menge Kaliumnitrat und konz. Schwefelsäure in Eisessig auf 100° liefert 4.10-Dichlor-3.9-dinitro-perylen (Z., F., LORBER, B. 60, 578; BENSA, D. R. P. 468453; Frdl. 16, 1386). Beim Erhitzen mit Kupfer(I)-cyanid auf 300° entsteht 3.9-Dicyan-perylen (Pongratz, M. 48, 587). Gibt mit Acetylchlorid und Aluminiumchlorid in Schwefelkohlenstoff 4.10-Dichlor-3.9-diacetyl-perylen (P., M. 48, 590); reagiert analog mit aromatischen Säurechloriden (Z., P., F., B. 58, 331, 802; Z., F., B. 58, 2225; P., M. 48, 590).

3.10-Dichlor-perylen  $C_{20}H_{10}Cl_2$ , Formel I. B. Neben 3.9-Dichlor-perylen beim Behandeln von Perylen mit konz. Salzsäure und der berechneten Menge 30% igem Wasserstoffperoxyd in Eisessig (Zinke, Pongratz, Funke, B. 58, 331). Wurde nicht rein erhalten. — Braune Blättchen (aus Eisessig). I. — Liefert beim Erhitzen mit konz. Schwefelsäure Perylenchinon-(3.10).



3.4.9.10-Tetrachlor-perylen C<sub>20</sub>H<sub>8</sub>Cl<sub>4</sub>, Formel II. B. Bei der Chlorierung von Perylen mit konz. Salzsäure und der berechneten Menge Wasserstoffperoxyd in Nitrobenzol + Eisessig bei 90° (ZINKE, PONGRATZ, FUNKE, B. 58, 332; BENSA, D. R. P. 498039; Frdl. 16, 1390) oder mit Aluminiumchlorid und Braunstein bei 150° (Z., F., LORBER, B. 60, 579). — Orangerote Nadeln (aus Anilin oder Nitrobenzol). F: 350° (Z., P., F.), 350—352° (Z., F., L.). Schwer löslich in Alkohol. Aceton, Äther und Eisessig, leicht in siedendem Nitrobenzol, Anilin, Xylol und Pyridin; löst sich in warmer konzentrierter Schwefelsäure mit violetter Farbe (Z., P., F.). Absorptionsspektrum einer Lösung in Benzol: Dadieu, Ph. Ch. 135, 350. — Liefert beim Erwärmen mit konz. Schwefelsäure im Kohlendioxyd-Strom auf 150° Perylendichinon-(3.4.9.10) (Z., Hirsch, M. 52, 17; B., D. R. P. 465989; Frdl. 16, 1384).

3.4.9.10.x.x-Hexachlor-perylen C<sub>30</sub>H<sub>6</sub>Cl<sub>6</sub>. B. Bei der Chlorierung von Perylen in Nitrobenzol mit konz. Salzsäure und der berechneten Menge Wasserstoffperoxyd in Eisessig bei 90° (ZINKE, PONGRATZ, FUNKE, B. 58, 332; BENSA, D. R. P. 498039; Frdl. 16, 1390) oder durch längeres Einleiten von Chlor bei 130—140° (Z., F., IPAVIC, M. 48, 747). Beim Kochen von 3.10-Dinitro-, 4.10-Dichlor-3.9-dinitro- oder 3.4.9.10-Tetranitro-perylen mit Phosphorpentachlorid in Nitrobenzol (Z., F., LORBER, B. 60, 580). — Hellgelbe Nadeln (aus Xylol,

Вr

Nitrobenzol oder Anilin). F: 354° (Z., F., L.), 356-357° (Z., P., F.). Schwer löslich in Alkohol, Aceton, Ather und Eisessig, leicht in siedendem Nitrobenzol, Anilin, Xylol und Pyridin; die Lösungen fluorescieren gelbgrün (Z., P., F.). Löst sich in warmer konzentrierter Schwefelsäure mit blauer Farbe (Z., P., F.), die beim Erwärmen auf 140—150° erst in Violett, dann in Rot übergeht (Z., Hirsch, M. 52, 13). Absorptionsspektrum einer Lösung in Benzol: DADIEU, Ph. Ch. 135, 350.

3.9-Dibrom-perylen C<sub>20</sub>H<sub>10</sub>Br<sub>2</sub>, s. nebenstehende Formel. B. Neben anderen Produkten bei der Bromierung von Perylen mit Brom ohne Lösungsmittel oder in Schwefelsäure, Nitrobenzol, Eisessig, Tetrachlorkohlenstoff, Schwefelkohlenstoff (ZINKE, LINNER, WOLFBAUER, B. 58, 327) oder siedendem Benzol (Z., Mitarb., M. 50, 84), als einziges Reaktionsprodukt beim Erwärmen von Perylen mit wasserfreiem Aluminiumbromid in Nitrobenzol auf dem Wasserbad oder beim Behandeln von Perylen mit Natriumbromid und Wasserstoffperoxyd in wäßr. Essigsäure bei 90° (Z., Funke, Lorber, B. 60, 579, 581). Bei der Einw. von Brom auf Perylendisulfonsäure-(3.9) in konz. Schwefelsäure und Eisessig (Marschalk, Bl. [4] 41, 77). — Orangegelbe Nadeln (aus Toluol, Xylol oder Nitrobenzol). F: 290° (Z., F., L., B. 60, 580), 290—291° (Pongratz, M. 48, 586), 289,5—291° (Z., L., W., B. 58, 328), 285° (M.). Absorptionsspektrum einer Lösung in Benzol: Dadieu, Ph. Ch. 135, 350. Unlöslich in Wasser

(M.), sehr schwer löslich in tiefer siedenden Lösungsmitteln, ziemlich schwer in siedendem Eisessig, Benzol und Toluol, leicht in siedendem Xylol, Anilin und Nitrobenzol (Z., L., W.).

Löst sich in kalter konzentrierter Schwefelsäure langsam mit violetter Farbe, beim Erwärmen rasch mit ultramarinblauer, oberhalb 100° in Rot übergehender Farbe (Zinke, Linner, Wolfbauer, B. 58, 328; Z., Springer, Schmid, B. 58, 2386) und geht dabei in Perylenchinon-(3.9) über (Z., Sp., Sch., B. 58, 2390; Bensa, D. R. P. 465989; Frdl. 16, 1384). Beim Einleiten von Chlor in eine Suspension in Tetrachlorkohlenstoff unter Eiskühlung entsteht eine Verbindung C<sub>20</sub>H<sub>9</sub>Cl<sub>5</sub>Br<sub>2</sub> (Nadeln; F: 240° [Zers.]) (Z., Funke, Ipavic, M. 48, 747). Gibt beim Erwärmen mit Kaliumnitrat in Wasser und konz. Schwefelsäure in Eisessig auf dem Wasserbad 4.10-Dibrom-3.9-dinitro-perylen (Funke, Wolf, M. 52, 5). Kochen mit Kupfer (I)-cyanid und Chinolin führt zu 3.9-Dicyan-perylen (Pongratz, M. 48, 586). Liefert mit Benzoylchlorid und Aluminiumchlorid in siedendem Schwefelkohlenstoff 4.10-Dibrom-3.9-dibenzoyl-perylen (Z., L., W., B. 58, 329), während beim Erhitzen mit Benzoylchlorid und Aluminiumchlorid auf 150—170° Isodibenzanthron (Syst. Nr. 692) entsteht (B., D. R. P. 455279, 464208; Frdl. 16, 1380, 1383).

3.10-Dibrom-perylen  $C_{20}H_{10}Br_2$ , Formel III. Reinheit fraglich. — B. Neben anderen Produkten bei der Bromierung von Perylen mit Brom ohne Lösungsmittel oder in Schwefelsäure, Nitrobenzol, Eisessig, Tetrachlorkohlenstoff oder Schwefelkohlenstoff (ZINKE, LINNER, WOLFBAUER, B. 58, 327). Bei der Einw. von Brom auf Perylen-disulfonsäure (3.10) in konz. Schwefelsäure und Eisessig (MARSCHALK, Bl. [4] 41, 77). — Gelbe Blättchen (aus Anilin). F: ca. 190° (Z., L., W.), 195—200° (M.). Schwer löslich in kaltem Benzol und Eisessig, leicht löslich in siedendem Xylol, Toluol, Anilin und Nitrobenzol (Z., L., W.). — Liefert beim Erwärmen mit konz. Schwefelsäure auf 130—140° Perylenchinon-(3.10) (Z., L., W., B. 58, 328; M.; Bensa, D. R. P. 465989; Frdl. 16, 1384). Beim Erhitzen mit Benzoylchlorid und Aluminiumchlorid auf 150—170° entsteht Dibenzanthron (Formel IV; Syst. Nr. 692) (B., D. R. P. 455279; Frdl. 16, 1380).



8.4.9-Tribrom-perylen C<sub>20</sub>H<sub>2</sub>Br<sub>3</sub>, Formel V. B. Neben anderen Produkten beim Behandeln von Perylen mit Brom in siedendem Benzol (ZINKE, Mitarb., M. 50, 82). Gibt beim Kochen mit Kupfer(I)-cyanid in Chinolin 3.4.9-Tricyan-perylen.

3.10-Dinitro-perylen C<sub>20</sub>H<sub>10</sub>O<sub>4</sub>N<sub>2</sub>, Formel VI. B. Aus Perylen beim Behandeln mit Salpetersäure (D: 1,2) in Tetrachlorkohlenstoff in der Kälte (ZINKE, FUNKE, LORBER, B. 60, 580; F., Wolf, M. 52, 3) oder mit der berechneten Menge Kaliumnitrat und Schwefelsaure in Eisessig bei 100° (Bensa, D. R. P. 468453; Frdl. 16, 1386). — Rote Nadeln (aus Nitrobenzol). Schwer löslich in tiefer siedenden Lösungsmitteln, leicht in siedendem Nitrobenzol und Anilin; löst sich in konz. Schwefelsäure mit braunroter Farbe (Z., F., L.). Absorptionsspektrum einer Lösung in Benzol: Dadieu, Ph. Ch. [B] 2, 254. — Liefert beim Erhitzen mit konz. Schwefelsäure auf 150° Perylendichinon-(3.4.9.10) (Z., Hirsch, Brozek, M. 51, 217). Gibt beim Kochen mit Phosphorpentachlorid in Nitrobenzol 3.4.9.10.x.x-Hexachlor-perylen (Z., F., L.). Die Reduktion durch Erhitzen mit Phenylhydrazin, mit Hydrazinhydrat ohne Lösungsmittel oder in Xylol sowie mit Natriumhydrosulfid oder Natriumsulfid in wäßrig-alkoholischer Natronlauge ergibt 3.10-Diamino-perylen (FUNKE, KIRCHMAYR, Wolf, M. 51, 223). Uberführung in Küpenfarbstoffe durch Erhitzen mit Aluminiumchlorid auf 160-180°: BENSA, D. R. P. 450821; Frdl. 15, 777; durch Erhitzen mit Benzoesäure, Benzoylchlorid oder Salicylsäure in Gegenwart von Aluminiumchlorid auf 150-180°: BE., D. R. P. 455279; Frdl. 16, 1380.

4.10-Dichlor-3.9-dinitro-perylen C<sub>20</sub>H<sub>8</sub>O<sub>4</sub>N<sub>2</sub>Cl<sub>2</sub>, s. nebenstehende Formel (X = Cl). B. Aus 3.9-Dichlor-perylen und der berechneten Menge Kaliumnitrat und konz. Schwefelsäure in Eisessig bei 100° (ZINKE, FUNKE, LOBBER, B. 60, 578; F., Wolf, M. 52, 3; Bensa, D. R. P. 468453; Frdl. 16, 1386). — Rote Nadeln (aus Nitrobenzol oder Xylol) (Z., F., L.; F., Wolf, M. 52, 3). Sehr schwer löslich in tiefer siedenden Lösungsmitteln, leicht in siedendem Nitrobenzol (Z., F., L.). Löst sich in konz. Schwefelsäure mit blauvioletter Farbe, die beim Erwärmen in Weinrot umschlägt (Z., F., L.). — Liefert beim Erhitzen mit konz. Schwefelsäure auf 150—160° Perylendichinon (3.4.9.10) (Z., Hirsch, Brozek, M. 51, 216). Gibt beim Kochen mit Phosphorpentachlorid in Nitrobenzol 3.4.9.10.x.x.-Hexachlor-perylen (Z., F., L., B. 60, 580).

NO<sub>2</sub>

4.10-Dibrom-3.9-dinitro-perylen  $C_{20}H_8O_4N_2Br_2$ , s. obenstehende Formel (X = Br). Bei der Behandlung von 3.9-Dibrom-perylen in Eisessig mit der berechneten Menge Kaliumnitrat und konz. Schwefelsäure auf dem Wasserbad (Funke, Wolf, M. 52, 5). — Hellrote Nadeln (aus Nitrobenzol oder Anilin). Sehr schwer löslich in niedrigsiedenden Lösungsmitteln, leicht in Nitrobenzol und Anilin. Löst sieh in konz. Schwefelsäure mit violetter Farbe, die beim Erwärmen in Rot übergeht. — Die Reduktion durch Erhitzen mit Phenylhydrazin in Xylol ergibt 4.10-Dibrom-3.9-diamino-perylen.

3.4.9.10-Tetranitro-perylen  $C_{20}H_8O_8N_4$ . Ist die E I 364 als x-Tetranitro-perylen beschriebene Verbindung (ZINKE, HIRSCH, BROZEK, M. 51, 208). — Ziegelrote bis rotbraune Nadeln (aus Nitrobenzol) (Z., H., BR., M. 51, 208). — Liefert beim Erhitzen mit konz. Schwefelsäure auf 130—140° Perylendichinon-(3.4.9.10) (Z., H., B., M. 51, 218). Gibt bei der Reduktion mit Na<sub>2</sub>S<sub>2</sub>O<sub>4</sub>, Natriumsulfid oder Zinn(II)-chlorid in siedender verdünnter Natronlauge 3.4.9.10-Tetraamino-perylen (Z., H., Br., M. 51, 211). Liefert beim Kochen mit Phosphorpentachlorid in Nitrobenzol 3.4.9.10.x.x-Hexachlor-perylen (Z., Funke, Lorber, B. 60, 580). Überführung in einen Küpenfarbstoff durch Erhitzen mit Aluminiumchlorid auf 160-180°: BENSA, D. R. P. 450821; Frdl. 15, 777.

2. **Bis-naphthylen**  $C_{20}H_{12}$  s. S. 416.

# 2. Kohlenwasserstoffe $C_{21}H_{14}$ .

1. [Indeno - 1'.2': 2.3 - anthracen], [Naphtho - 2'.3': 2.3 - fluoren]. 2.3 - o - Benzylen - anthracen,
Fluorenanthracen C<sub>21</sub>H<sub>14</sub>, s. nebenstehende Formel. B. Beim
Leiten von 2-o-Toluyl-fluoren über aktive Kohle bei hoher Temperatur (I. G. Farbenind.,
D. R. P. 481819; C. 1930 I, 1053; Frdl. 16, 722). — Gelbe Blättchen. F: 279°. — Die Lösung in Schwefelsäure zeigt eosinartige Farbe und Fluorescenz.

2. 1.2; 7.8 - Dibenzo - fluoren, Di- $\alpha$ -naphthofluoren  $C_{21}H_{14}$ , s. nebenstehende Formel (H 732; E I 364). B. Beim Kochen von Tetra- $\alpha$ -naphthyläthylen mit Zinkstaub in Eisessig + etwas Salzsäure (Magidson, B. 58, 437). Zur Bildung beim Erhitzen von Di-α-naphthyl-carbinol mit krystallisierter Phosphorsäure vgl. M.,

B. 58, 436. Aus 1.2;7.8-Dibenzo-fluorenol-(9) bei kurzem Erhitzen mit Jodwasserstoff-säure (D: 1,96) in Eisessig (Wanscheidt, B. 59, 2093, 2096, 2098; Ж. 58, 66, 75). Als Hauptprodukt beim Erhitzen von Bis-[di-α-naphthyl-methyl]-äther mit krystallisierter Phosphorsäure auf 165—170° (M.). — F: 236° (W.), 230° (M.). — Löst sich in siedendem Aceton nach Zugabe von methylalkoholischer Kalilauge oder Kaliummethylat-Lösung mit gelber Farbe; bei Ausschluß von Luft wird auf Zusatz von Wasser 1.2;7.8-Dibenzo-fluoren wieder erhalten, während bei Luftzutritt sich nach kurzer Zeit 1.2;7.8-Dibenzo-fluorenon abscheidet (W., B. 59, 2093, 2096). Liefert im Gemisch mit Tetra-a-naphthyläthylen beim Erhitzen im Kohlendioxyd-Strom auf 245—250° neben wenig Di-α-naphthylmethan als Hauptprodukt Bis-[1.2;7.8-dibenzo-fluorenyl-(9)] (M., B. 58, 437). Letztgenannte Verbindung entsteht auch beim Erhitzen von 1.2;7.8-Dibenzo-fluoren mit Äthylmagnesiumbromid in Xylol auf 140° und Erhitzen des entstandenen 1.2;7.8-Dibenzo-fluoren-magnesiumbromids mit Jod oder Nanthon (M., B. 58, 438, 441) sowie bei der Kondensation von 1.2;7.8-Dibenzo-fluoren mit 9-Brom-1.2;7.8-Dibenzo-fluoren in Kaliummethylat-Lösung und Aceton in der Siedehitze; analog vollziehen sich die Kondensationen von 1.2;7.8-Dibenzo-fluoren mit 9-Chlorfluoren und 11-Chlor-chrysofluoren (W.).

- 9-Chlor-1.2; 7.8-dibenzo-fluoren, Di- $\alpha$ -naphthofluorenylchlorid  $C_{21}H_{13}Cl=C_{10}H_6$  CHCl. B. Beim Erwärmen von Tetra- $\alpha$ -naphthyläthylen mit Phosphorpentachlorid  $C_{10}H_6$  und Phosphoroxychlorid (Magidson, B. 58, 440). Durch Einw. von Chlorwasserstoff auf die Lösung von 1.2; 7.8-Dibenzo-fluorenol-(9) in heißem Eisessig (M.; Wanschridt, B. 59, 2096;  $\mathcal{H}$ . 58, 62). Gelbe Nadeln (aus Benzol). F: 224° (W.), 220—222° (M.). Leicht löslich in Chloroform, ziemlich leicht in heißem Benzol, schwer in Alkohol und Eisessig, unlöslich in Äther (M.). Löst sich in konz. Schwefelsäure mit blaugrüner Farbe (M.); die Lösung wird schnell unter Entwicklung von Chlorwasserstoff braun (W.). Beim Erhitzen wird Chlorwasserstoff abgespalten (W.,  $\mathcal{H}$ . 58, 50, 65). Liefert beim Kochen mit 2 Teilen Kupferpulver in Xylol Bis-[1.2;7.8-dibenzo-fluorenyl-(9)] (M.). Einw. von Kaliumhydroxyd in Alkohol + Aceton oder Alkohol + Pyridin: W.,  $\mathcal{H}$ . 58, 50.
- 9.9-Dichlor-1.2;7.8-dibenzo-fluoren  $C_{21}H_{12}Cl_2 = \frac{C_{10}H_6}{C_{10}H_6}CCl_2$ . B. Durch Erhitzen von Di- $\alpha$ -naphthylketon mit Phosphorpentachlorid auf  $145-155^{\circ}$  (Magidson, B. 58, 438). Gelbe Nadeln (aus Benzol). F: 256-258°. Leicht löslich in heißem Benzol, Toluol und Chloroform, sehr schwer in Isoamylalkohol, unlöslich in Åther, Aceton, Alkohol und Benzin. Gibt mit konz. Schwefelsäure nach einiger Zeit, schneller bei schwachem Erwärmen eine kirschrote Färbung. Bei kurzem Kochen mit etwas konz. Schwefelsäure in Isoamylalkohol entsteht 1.2;7.8-Dibenzo-fluorenon. Liefert beim Erhitzen mit Kupferpulver in Benzol unter Ausschluß von Feuchtigkeit und Luft Bis-[1.2;7.8-dibenzo-fluorenyliden] (S. 728).
- 9-Brom-1.2; 7.8-dibenzo-fluoren, Di- $\alpha$ -naphthofluorenylbromid  $C_{21}H_{13}Br = C_{10}H_6$  CHBr. B. Bei der Einw. von Bromwasserstoff auf 1.2; 7.8-Dibenzo-fluorenol-(9)  $C_{10}H_6$  CHBr. B. Bei der Einw. von Bromwasserstoff auf 1.2; 7.8-Dibenzo-fluorenol-(9) in heißem Eisessig (Magidson, B. 58, 437; Wanscheidt, B. 59, 2097;  $\Re$ . 58, 62, 64, 73). Gelbe Nadeln (aus Benzol). F: 234° (Zers.) (M.; W.). Löst sich in heißer konzentrierter Schwefelsäure mit vorübergehender grüner Farbe (W.). Beim Erhitzen über den Schmelzpunkt wird Bromwasserstoff abgespalten (W.,  $\Re$ . 58, 50, 65). Liefert beim Kochen mit Kupferpulver in Benzol oder Xylol Bis-[1.2; 7.8-dibenzo-fluorenyl-(9)] (M.; W.); dieselbe Verbindung entsteht bei der Kondensation mit 1.2; 7.8-Dibenzo-fluoren in Kaliummethylat-Lösung und Aceton in der Siedehitze (W.). Die Einw. von Natriumjodid in Aceton führt bei Zimmertemperatur zu 9-Jod-1.2; 7.8-dibenzo-fluoren (W., B. 59, 2097;  $\Re$ . 58, 64), in der Siedehitze zu Bis-[1.2; 7.8-dibenzo-fluorenyl-(9)] (W.,  $\Re$ . 58, 73).
- 9 Jod 1.2; 7.8 dibenzo fluoren, Di  $\alpha$  naphthofluorenyljodid  $C_{21}H_{13}I=C_{10}H_6$  CHI. B. Aus 9-Brom-1.2; 7.8-dibenzo-fluoren durch Umsetzung mit Natriumjodid in Aceton bei Zimmertemperatur (Wanscheidt, B. 59, 2097; 36. 58, 64, 72). Orangegelbe Nadeln (aus Benzol). F: ca. 160° (Zers.). Löst sich in konz. Schwefelsäure mit grüner Farbe, die rasch in Violett übergeht. Geht beim Erhitzen unter plötzlichem Freiwerden von Jod in Bis-[1.2; 7.8-dibenzo-fluorenyl-(9)] über; die gleiche Umwandlung erfolgt beim Erhitzen mit Lösungsmitteln, namentlich mit oberhalb 150° siedenden.

# 3. Kohlenwasserstoffe $\mathrm{C}_{22}\mathrm{H}_{16}$ .

1. 1.4-Diphenyl-naphthalin C<sub>22</sub>H<sub>16</sub>, s. nebenstehende Formel. Ein von Franssen (Bl. [4] 37, 905) als 1.4-Diphenyl-naphthalin angesehener Kohlenwasserstoff (F: 308°) hat nicht diese Konstitution (SMITH, HOEHN, Am. Soc. 61 [1939]. 2621). — 1.4-Diphenyl-naphthalin wurde nach dem Literatur-Schlußtermin des Ergänzungswerks II [1. I. 1930] von Weiss, Abeles, Knapp (M. 61 [1932], 167) und Allen, Gilman (Am. Soc. 58 [1936], 939) dargestellt; F: 135—137° (W., A., K.), 134—136° (A., G.).

C<sub>6</sub>H<sub>5</sub>

2. 3-Diphenylmethylen-inden, 3-Benzhydrylideninden, ω.ω-Diphenyl-benzofulren C<sub>22</sub>H<sub>16</sub>, s. nebenstehende
Formel (Ε I 364). Absorptionsspektrum in Methyläthylketon-Lösung:
JONESCU, Bulet. Cluj 2, 298; C. 1925 I, 2221. — Liefert mit Natriumpulver in trocknem

Äther eine dunkelrote Lösung, die mit Alkohol 1-Benzhydryl-inden und mit Kohlendioxyd 3.[Diphenyl-carboxy-methyl]-inden-carbonsäure-(3) ergibt (Schlenk, Bergmann, A. 463, 61).

3. 1-Phenyl-3-benzyliden-inden, 1.ω-Diphenyl-benzo-fulven C<sub>22</sub>H<sub>16</sub>, s. nebenstehende Formel. B. Aus 1-Phenyl-inden und Benzaldehyd in Gegenwart von Natriumäthylat-Lösung (ΜΑΥΕΚ, SIEGLITZ, LUDWIG, B. 54, 1399). — Gelbe Nadeln (aus verd. Alkohol). c cH CeH5 F: 77,5° (M., S., L.). D: 1,213 (ZIEGLER, DITZEL, A. 473, 204).

-C:CH-C6H5

 $\textbf{1-Phenyl-3-[4-chlor-benzyliden]-inden} \quad C_{22}H_{15}Cl = C_6H_5 \cdot C \underbrace{C_6H_4}_{CH} \cdot C : CH \cdot C_6H_4Cl.$ B. Aus 1-Phenyl-inden und 4-Chlor-benzaldehyd in Gegenwart von Natriumäthylat-Lösung (MAYER, SIEGLITZ, LUDWIG, B. 54, 1400). — Goldgelbe Nadeln (aus Alkohol). F: 95°.

4. 9-Cinnamyliden-fluoren. ω-Styryl-dibenzofulven, 4-Phenyl-1.1-diphenylen - butadien - (1.3)  $C_{22}H_{16} = \frac{C_6H_4}{C_6H_4}C:CH:CH:CH:CH:C_6H_5$  (H 732). B. Neben 9-Benzyliden-fluoren aus Fluoren und Benzaldehyd in Natriumäthylat-Lösung (Bergmann, B. 63 [1930], 1618; KLIEGL, WENG, WIEST, B. 63, 1632; vgl. SCHLENK, B., B. 62, 749). Zur Bildung aus Fluoren und Zimtaldehyd in alkoh. Natriumäthylat-Lösung nach THIELE, Zur Bildung Bus Fidorei und Zinicatenyu in Sikoli. Natruntariyat-Losing inach Thiele, Henle (A. 347 [1906], 304) vgl. Kuhn, Winterstein, Helv. 11, 121; Whitey, Katz, Am. Soc. 50, 1168. — Gelbe Nadeln. F: 155° (Ku., Wi., Helv. 11, 119, 121), 155,5° (Wh., Ka.). D.: 1.215 (Ziegler, Ditzel, A. 473, 204). Die Lösungen in organischen Lösungsmitteln sind gelb (Wh., K.); die Lösung in konz. Schwefelsäure ist orange (Ku., Wi., Helv. 11, 119; vgl. De Fazi, G. 51 I, 331). Absorptionsspektrum in Methyläthylketon: Jonescu, Bulet. Cluj 2, 296; C. 1925 I, 2221. — Beim Erhitzen bis 190° ohne Lösungsmittel, auf 175° in Eigerig im Behr oder hei langem Kochen der Lösungen in Tolus Figerig. Yylel und Eisessig im Rohr oder bei langem Kochen der Lösungen in Toluol, Eisessig, Xylol und Tetralin bleibt 9-Cinnamyliden-fluoren unverändert (Wн., К.); Polymerisationsprodukte, die beim Erhitzen über 1900 oder bei Behandlung mit Antimon(V)-chlorid in Chloroform entstehen, s. u. Gibt bei der Reduktion mit überschüssigem Natriumamalgam in Benzol + Alkohol unterhalb 3º 9-[γ-Phenyl-propyliden]-fluoren, bei der Reduktion mit 4 Atomen Wasserstoff in Gegenwart von Palladiumkohle in Eisessig bei 24° 9-[y-Phenyl-propyl]-fluoren (Kuhn, Winterstein, Helv. 11, 135, 139). Liefert mit Natrium in trocknem Ather ein schwer lößliches, rotbraunes Produkt, das bei der Zersetzung mit Alkohol 1.2-Distyryl-1.2-di-fluorenyl-(9)-äthan (F: 257°) und geringe Mengen eines Kohlenwasserstoffs vom Schmelzpunkt 204° gibt (Schlenk, Bergmann, A. 463, 65). — Pikrat C<sub>22</sub>H<sub>16</sub> + 2C<sub>6</sub>H<sub>3</sub>O<sub>7</sub>N<sub>3</sub>. F: 179° (Ku., Wi., Helv. 11, 119).

Polymolekulares 9-Cinnamyliden-fluoren  $(C_{22}H_{16})_x$ . B. Gemische verhältnismäßig niedrigmolekularer Produkte entstehen aus 9-Cinnamyliden-fluoren bei langem Erhitzen auf mehr als 190° ohne Lösungsmittel oder beim Behandeln mit Antimonpentachlorid in Chloroform bei Zimmertemperatur, in geringerem Umfange bei der Einw. einiger anderer anorganischer Polymerisationsmittel (Whitby, Katz, Am. Soc. 50, 1163, 1168). — Rotbraunes, rötliches oder gelbes amorphes Pulver. Ein durch 3-wöchiges Erhitzen von 9-Cinnamyliden-fluoren auf 2000 in geringer Menge erhaltenes rotbraunes Produkt schmolz bei 168-170°; durch Ausfällen aus Benzol durch Alkohol gewonnene Fraktionen eines mit Antimonpentachlorid in Chloroform erhaltenen gelben Produktes zeigten Schmelz-punkte von 286—290° bis 365—368°. Mehr oder weniger löslich in Benzol, Chloroform und Tetrachlorkohlenstoff mit roter Farbe, unlöslich in Alkohol, Äther und Essigsäure. — Bei der trocknen Destillation eines durch Erhitzen auf 240-250° erhaltenen rötlichen Produkts entstand 9-Cinnamyliden-fluoren.

Kohlen wasserstoff  $(C_{22}H_{17})_X$  (H 732). Ist von Schlenk, Bergmann (A. 463, 65) als 1.2-Distyryl-1.2-difluorenyl-(9)-äthan vom Schmelzpunkt 257° (S. 725) erkannt worden.

2.7-Dichlor-9-cinnamyliden-fluoren  $C_{22}H_{14}Cl_2$ , Formel I. B. Als Hauptprodukt beim Behandeln von 2.7-Dichlor-fluoren mit Zimtaldehyd in siedendem Alkohol in Gegenwart von Natriumäthylat (Sieglitz, Schatzkes, B. 54, 2077). — Orangefarbene Nadeln (aus Eisessig). F: 1910.

CH-CH:CH-C6H5 CH-CH:CH-C6H5 CH-CH:CH-C6H5 · Cl · NO2

**2.7-Dibrom-9-cinnamyliden-fluoren**  $C_{22}H_{14}Br_2$ , Formel II. *B.* Als Hauptprodukt beim Behandeln von 2.7-Dibrom-fluoren mit Zimtaldehyd in Alkohol in Gegenwart von Natriumäthylat in der Wärme (Sieglitz, B. 53, 1241; Kuhn, Winterstein, Helv. 11, 122). —

Gelbe Nadeln (aus Eisessig oder Chloroform + Methanol). F: 210° (K., W.), 206-207° (S.). Leicht löslich in Chloroform, Benzol und Aceton, schwer in Äther, Alkohol und Eisessig (K., W.). - Liefert bei der Reduktion mit amalgamiertem Aluminium in feuchtem Äther α-Benzyl-β-[2.7-dibrom-fluorenyl-(9)]-äthylen und ein bei 260° (Zers.) schmelzendes, schwer lösliches Produkt; bei der Einw. von Natriumamalgam entsteht ein hellgelbes, halogenhaltiges Ol (K., W., H. 11, 136). — Verbindung mit 1.3.5-Trinitro-benzol. Rote Nadeln. F: 158° (K., W., Helv. 11, 150).

- 2-Nitro-9-cinnamyliden-fluoren C<sub>22</sub>H<sub>15</sub>O<sub>2</sub>N, Formel III, S. 661. B. Aus 2-Nitrofluoren und Zimtaldehyd in Natriumäthylat-Lösung, neben anderen Produkten (Loevenich, Loeser, J. pr. [2] 116, 329). — Grünlichgelbe Nadeln (aus Eisessig). F: 230,5—231,5° (korr.). Sehr leicht löslich in Chloroform und Benzol, leicht in Eisessig, schwer in Alkohol und Äther.
  - $9 [2 Nitro cinnamyliden] fluoren C<sub>22</sub>H<sub>15</sub>O<sub>2</sub>N = \frac{C_6H_4}{C_6H_4}C: CH \cdot CH : CH \cdot C_6H_4 \cdot NO_2.$
- B. Aus Fluoren und 2-Nitro-zimtaldehyd in Natriumäthylat Lösung (Kuhn, Winterstein, Helv. 11, 122). Hellbraune Blättchen (aus Chloroform + Methanol). F: 186°.
- 5.  $\alpha.\beta$ -Di- $\beta$ -naphthyl-äthylen, 3.4; 3'.4'-Dibenzo-stilben,  $\beta$ -Dinaphthostilben  $C_{22}H_{16}=C_{10}H_7\cdot CH:CH\cdot C_{10}H_7$  (H 733; E I 364). B. Neben anderen Produkten beim Leiten von  $\beta$ -Naphthol durch ein mit Glasringen gefülltes Quarzrohr bei 660° (Hagemann, Z. ang, Ch. 42, 361). Krystalle (aus Alkohol). F: 254—255° (korr.). Schwer löslich in Alkohol, leicht in Benzol und heißem Benzin.
- 6. 9.10 Dihydro-fnaphtho -2'.3': 2.3 anthracen], 1.4 Dihydro-2.3; 6.7 dibenzo-anthracen, 5.14 Di-



Nydro-pentacen C<sub>22</sub>H<sub>16</sub>, s. nebenstehende Formel. Diese Konstitution kommt dem Dihydro-dinaphthanthracen von W. H. Mills, M. Mills (Soc. 101 [1912], 2204; E I 365) zu; vgl. darüber Clar, John, B. 63 [1930], 2972; E. Clar, Aromatische Kohlenwasserstoffe [Berlin 1941], S. 182; über die Beziehungen zur folgenden Verbindung vgl. a. C., B. 75 [1942], 1284, 1331.—B. Aus 6.13-Dihydro-pentacen (s. u.) bei monatelangen Aufbewahren (Philippi, M. 58/54, 640; C., J.). -F: 300-310°; der Schmelzpunkt hängt von der Schnelligkeit des Erhitzens ab (C., J., B. 63, 2972 Anm. 20; vgl. PH.).

7. 1.4 - Dihydro - [naphtho - 2'.3': 2.3 - anthracen], 9.10-Dihydro-2.3; 6.7-dibenzo-anthracen, 6.13-Di-hydro-pentacen C<sub>22</sub>H<sub>16</sub>, s. nebenstehende Formel. Diese Konstitution kommt dem früher als 2.3;6.7-Dibenzo-anthra-



cen (E I 368) aufgefaßten Kohlenwasserstoff von Philippi (M. 35 [1914], 379; vgl. Ph., M. 53,54, 639) zu; vgl. Clar, John, B. 63 [1930], 2972; E. Clar, Aromatische Kohlenwasserstoffe [Berlin 1941], S. 182; über die Beziehungen zur vorangehenden Verbindung vgl. a. C. B. 75 [1942], 1284, 1331. Der E I 365 als 9.10-Dihydro-2.3;6.7-dibenzo-anthracen beschriebene Kohlenwasserstoff von W. H. Mills, M. Mills (Soc. 101 [1912], 2204) ist nach CLAR. JOHN (B. 63, 2972) als 5.14-Dihydro-pentacen (s. o.) anzusprechen. — B. Bei der Kondensation von 4.6-Dimethyl-1.3-dibenzoyl-benzol durch Erhitzen, neben anderen Produkten (C., J., B. 62, 3028). Beim Umkrystallisieren des roten Kohlenwasserstoffes C<sub>22</sub>H<sub>16</sub> (s. u.) aus Xylol (C., J., B. 62, 3029). — Nadeln (aus Xylol), Krystalle (aus Chloroform). F: 270—271° (Philippi, M. 53/54, 639), 270° (C., J., B. 62, 3028). 3029: 63. 2938). Fluoresciert im Ultraviolettlicht gelbgrün (C., J., B. 62, 3028). Leicht löslich in Chloroform; die Lösung ist im durchfallenden Licht olivgrün, im auffallenden Licht braun (Ph.). Die Lösung in Benzol fluoresciert blau (C., J.). Löslich in konz. Schwefelsäure mit roter, in Braun übergehender Farbe (C., J., B. 62, 3028). — Lagert sich bei monatelangem Aufbewahren in 5 14. Dibydronentagen um (C. J. 863, 2972, 2974, Ph. M. 58/54. langem Aufbewahren in 5.14-Dihydro-pentacen um (C., J., B. 63, 2972, 2974; Ph., M. 53/54. 640). Bei der Sublimation über Kupferpulver bei 370-400° unter 12-20 mm Kohlendioxyd-Druck entsteht 2.3:6.7-Dibenzo-anthracen (S. 667) (C., J., B. 62, 3028). Liefert bei der Oxydation mit überschüssigem Eisenchlorid Pentacenchinon (6.13) (Syst. Nr. 687) (Hernler, Schnürch, M. 53/54, 644; C., J., B. 63, 2972; vgl. C., J., B. 62, 3028).

8. Kohlenwasserstoff C22H16. Zur chemischen Natur vgl. CLAR, JOHN, B. 63 [1930]. 2973. — B. Neben anderen Produkten bei der Kondensation von 4.6-Dimethyl-1.3-dibenzoylbenzol durch Erhitzen (C., J., B. 62, 3029). — Rote Nadeln (durch Sublimation). F: 2700 (C., J., B. 62, 3029). Fluoresciert im Ultraviolettlicht rot; die Lösungen in Benzol oder Eisessig fluorescieren blau (C., J., B. 62, 3029). — Lagert sich beim Umkrystallisieren aus Xylol in 6.13-Dihydro-pentacen (s. o.) um (C., J., B. 62, 3029).

# 4. Kohlenwasserstoffe $C_{23}H_{18}$ .

- 1. 1.2.4 Triphenyl cyclopentadien (2.5)  $C_{23}H_{18} = \frac{C_6H_5 \cdot C \cdot CH}{C_6H_5 \cdot C \cdot CH} \cdot CH \cdot C_6H_5$ (H 733). D:: 1,191 (Ziegler, Ditzel, A. 473, 204).
- 2. Diphenyl-α-naphthyl-methan, 1-Benzhydryl-naphthalin C<sub>23</sub>H<sub>18</sub> = C<sub>10</sub>H<sub>7</sub>·CH(C<sub>6</sub>H<sub>5</sub>)<sub>2</sub> (H 733; E I 365). B. Bei der Hydrierung von Diphenyl-α-naphthyl-carbinol bei Gegenwart von Nickel(III)-oxyd in Cyclohexan unter 80—100 Atm. Druck bei 250° (IPATJEW, Dolgow, Bl. [4] 45, 960). Beim Kochen von Diphenyl-α-naphthyl-acetaldehyd mit wäßrig-alkoholischer Kalilauge (McKenzie, Dennlee, Soc. 125, 2108). Bei der Destillation von 2-[Phenyl-α-naphthyl-methyl]-benzoesäure (McMullen, Am. Soc. 44, 2059) oder von Phenyl-[2-carboxy-phenyl]-[4.5-dicarboxy-naphthyl-(1)]-methan (Lorriman, Am. Soc. 47, 214) mit überschüssigem Bariumhydroxyd. Nadeln (aus Eisessig oder verd. Alkohol). F: 152° (McM.; McK., D.), 149,5° (IP., D.). Di: 1,190 (Ziegler, Ditzel, A. 473, 207).
- Diphenyl-α-naphthyl-chlormethan  $C_{23}H_{17}Cl = C_{10}H_7 \cdot CCl(C_6H_5)_2$  (H 733; E I 365). B. Zur Bildung beim Einleiten von Chlorwasserstoff in eine äther. Lösung von Diphenyl-α-naphthyl-carbinol vgl. Dilthey, J. pr. [2] 109, 304. Löst sich in Eisessig, Acetanhydrid und Chlorbenzol in der Kälte farblos, in der Wärme unter Chlorwasserstoff-Entwicklung mit grünlicher Farbe, die beim Erkalten wieder verschwindet; die Lösung in Phenol ist grünlich; die Lösungen in konz. Schwefelsäure und in Chlorwasserstoff + Eisessig sind in der Aufsicht grünblau, in der Durchsicht rötlich (D.). Elektrische Leitfähigkeit in flüssigem Schwefeldioxyd und in Blausäure bei —8° bzw. 0°: Gomberg, Sullivan, Am. Soc. 44, 1818. Gibt beim Aufbewahren bei Gegenwart von Quecksilber(II)-oxyd in Benzol Diphenyl-α-naphthyl-carbinol (Halford, Am. Soc. 51, 2158). Spaltet bei längerem Erwärmen mit Eisessig, Acetanhydrid, Chlorbenzol, Benzaldehyd oder Malonester Chlorwasserstoff ab unter Bildung von 11-Phenyl-chrysofluoren (S. 669) (D., J. pr. [2] 109, 292, 305).

Diphenyl-α-naphthyl-brommethan  $C_{23}H_{17}Br = C_{10}H_7 \cdot CBr(C_6H_5)_2$  (E I 365). B. Beim Einleiten von Bromwasserstoff in eine äther. Lösung von Diphenyl-α-naphthyl-carbinol (Dilthey, J. pr. [2] 109, 307). — Krystalle (aus Benzol). F: 164—167° (Zers.) (D.). Schwer löslich in Eisessig und Acetanhydrid mit schwach gelber bis grüner Farbe; die Lösungen werden beim Erhitzen dunkelgrün, in der Durchsicht violett; beim Abkühlen geht die Farbe zurück (D.). Elektrische Leitfähigkeit in flüssigem Schwefeldioxyd und in Blausäure bei —8° bzw. 0°: Gomberg, Sullivan, Am. Soc. 44, 1818. — Liefert bei Behandlung mit dem Natriumsalz des Phosphorigsäurediäthylesters in Äther + Benzol unter Luftausschluß Diphenyl-α-naphthyl-methyl (S. 666) (A. E. Arbusow, B. A. Arbusow, B. 62, 1876;  $\mathfrak{R}$ . 61, 1930). Spaltet beim Erhitzen mit Chlorbenzol langsam Bromwasserstoff ab unter Bildung von 11-Phenyl-chrysofluoren (D., J. pr. [2] 109, 292, 307).

Phenyl-[4-brom-phenyl]-α-naphthyl-chlormethan  $C_{23}H_{16}ClBr = C_{10}H_7 \cdot CCl(C_6H_5) \cdot C_6H_6Br$ . B. Beim Einleiten von Chlorwasserstoff in eine Lösung von Phenyl-[4-brom-phenyl]-α-naphthyl-carbinol in Benzol (Gomberg, Blicke, Am. Soc. 45, 1771) oder in Äther (Dilthey, J. pr. [2] 109, 318). — Nadeln (aus Benzol). F: 180° (D.), 182—183° (G., B.). — Liefert bei 20 Min. langem Schütteln mit fein verteiltem Silber in absol. Äther unter Luftabschluß Phenyl-[4-brom-phenyl]-α-naphthyl-methyl (S. 666), bei längerem Schütteln entsteht unter teilweiser Abspaltung des Broms Phenyl-α-naphthyl- $\{4-[phenyl-(4-brom-phenyl)-α-naphthyl-methyl]-phenyl\}-methyl (S. 727) (G., B.). Über den Verlauf der Abspaltung von Chlor und Brom beim Schütteln mit fein verteiltem Silber in Äther vgl. G., B., Am. Soc. 45, 1766, 1768, 1775. Beim Erhitzen mit Eisessig und konz. Schwefelsäure wird 11-[4-Brom-phenyl]-chrysofluoren (S. 669) gebildet (G., B.). Mehrtägiges Schütteln mit Silbersulfat in Nitrobenzol unter Luftabschluß bei 50° und Behandeln des Reaktionsprodukts mit Natronlauge ergibt Benzochinon-(1.4)-[phenyl-α-naphthyl-methid]-(1) (G., B.). Liefert mit den Chloriden von Zink, Zinn, Eisen, Quecksilber und Aluminium grüne Additionsprodukte (G., B.).$ 

Diphenyl-[4-brom-naphthyl-(1)]-chlormethan  $C_{23}H_{16}ClBr = C_{10}H_{8}Br \cdot CCl(C_{6}H_{5})_{2}$ . B. Beim Sättigen einer Lösung von Diphenyl-[4-brom-naphthyl-(1)]-carbinol in absol. Äther mit Chlorwasserstoff (Gomberg, Blicke, Am. Soc. 45, 1774). — Krystalle (aus Benzol + Petroläther). F: 160—161°. Löst sich in konz. Schwefelsäure mit tiefgrüner Farbe. — Liefert bei 20 Min. langem Schütteln mit fein verteiltem Silber in absol. Äther unter Luftabschluß Diphenyl-[4-brom-naphthyl-(1)]-methyl (S. 666); bei mehrtägigem Schütteln wird auch ein Teil des Broms abgespalten unter Bildung von Diphenyl-(4-diphenyl-[4-brom-naphthyl-(1)]-methyl (S. 727). Über den Verlauf der Abspaltung von Chlor und Brom beim Schütteln mit fein verteiltem Silber in absol. Äther vgl. G., B., Am. Soc. 45, 1768. Mehrtägiges Schütteln mit Silbersulfat in Nitrobenzol unter Luftabschluß bei 50° und Behandeln des Reaktionsprodukts mit wäßrig-alkoholischer Natronlauge ergibt Naphthochinon-(1.4)-diphenylmethid-(1).

3.  $Diphenyl-\beta-naphthyl-methan$ , 2-Benzhydryl-naphthalin  $C_{22}H_{18}=C_{10}H_7\cdot CH(C_6H_5)_2$ . B. Beim Kochen von Diphenyl- $\beta$ -naphthyl-carbinol mit Zinkstaub und Eisessig (Gomberg, Sullivan, Am. Soc. 44, 1814). Bei der Destillation von 2-[Phenyl- $\beta$ -naphthyl-methyl]-benzoesäure mit überschüssigem Bariumhydroxyd im Vakuum bei ca. 225° (McMullen, Am. Soc. 44, 2060). — Krystalle (aus Alkohol). F: 77—78° (G., S.), 73—74° (McM.). Schwer löslich in Alkohol, löslich in Petroläther, leicht löslich in Ather, Chloroform, Benzol und Aceton (McM.).

Diphenyl- $\beta$ -naphthyl-chlormethan  $C_{23}H_{17}Cl = C_{10}H_7 \cdot CCl(C_6H_5)_2$ . B. Beim Sättigen einer äther. Lösung von Diphenyl- $\beta$ -naphthyl-carbinol in Äther mit Chlorwasserstoff bei Gegenwart von Calciumchlorid (Gomberg, Sullivan, Am. Soc. 44, 1815). — Krystalle (aus Petroläther). F: 94,5°. Elektrische Leitfähigkeit in flüssigem Schwefeldioxyd und in Blausäure bei —8° bzw. 0°: G., S., Am. Soc. 44, 1818. — Liefert beim Schütteln mit fein verteiltem Silber in Schwefelkohlenstoff Diphenyl- $\beta$ -naphthyl-methyl (S. 666). Gibt mit Zinn(IV)-chlorid und Quecksilber(II)-chlorid rote Additionsverbindungen.

Diphenyl- $\beta$ -naphthyl-brommethan  $C_{23}H_{17}Br = C_{10}H_7 \cdot CBr(C_6H_5)_2$ . B. Aus Diphenyl- $\beta$ -naphthyl-carbinol und Acetylbromid in Benzol (Gomberg, Sullivan, Am. Soc. 44, 1815). — Krystalle (aus Petroläther). F: 136°. Elektrische Leitfähigkeit in flüssigem Schwefeldioxyd und in Blausäure bei —8° bzw. 0°: G., S., Am. Soc. 44, 1818. — Zersetzt sich beim Aufbewahren unter Rotfärbung.

- 4. 1-Benzyl-3-benzyliden-inden  $C_{23}H_{18} = C_6H_4 < C_6(CH_2 \cdot C_6H_5) > CH$  (H 733). B. Zur Bildung aus 1-Benzyl-inden und Benzaldehyd in methylalkoholischer Kalilauge vgl. WISLICENUS, HENTRICH, A. 436, 20. F: 137,5°.
- 5. 2 Methyl 1 phenyl 3 benzyliden inden  $C_{23}H_{18} = C_6H_4 C(:CH \cdot C_6H_5) C \cdot CH_3$ .  $D_4^0$ : 1,199 (Ziegler, Ditzel, A. 473, 204).

#### 5. Kohlenwasserstoffe $C_{24}H_{20}$ .

1. Phenyl-p-tolyl- $\alpha$ -naphthyl-methan  $C_{24}H_{20}=C_{10}H_7\cdot CH(C_6H_5)\cdot C_8H_4\cdot CH_3$ . B. Aus Phenyl-p-tolyl- $\alpha$ -naphthyl-carbinol oder -chlormethan mit Zinkstaub in Eisessig (DILTHEY, J. pr. [2] 109, 313). — Krystalle (aus Alkohol). F: 133°. Löst sich in konz. Schwefelsäure farblos.

Phenyl-p-tolyl- $\alpha$ -naphthyl-chlormethan  $C_{24}H_{19}Cl = C_{10}H_7 \cdot CCl(C_4H_5) \cdot C_8H_4 \cdot CH_3$  (E I 366). B. Beim Einleiten von Chlorwasserstoff in die äther. Lösung von Phenyl-p-tolyl- $\alpha$ -naphthyl-carbinol (DILTHEY, J. pr. [2] 109, 312). — Krystalle (aus Benzol). F: 142°. Löslich in Benzol, schwer löslich in Äther und Ligroin ohne Färbung, in Gegenwart überschüssiger Säure und in konz. Schwefelsäure zeigen die Lösungen grünroten Dichroismus. Die farblose Lösung in Eisessig wird beim Erwärmen grünlichgelb; die Farbe geht beim Erkalten wieder zurück. Löst sich in Tetrachloräthan, Acetanhydrid, Naphthalin, Malonester, Chlor-, Bron- und Nitrobenzol in der Kälte farblos; die Lösungen färben sich beim Erwärmen unter Abgabe von Chlorwasserstoff violett und werden beim Abkühlen wieder farblos; bei längerem Kochen werden die Lösungen gelb unter Bildung von harzigen Produkten. In Nitromethan tritt die violette Farbe schon beim Lösen in der Kälte auf.

Phenyl-p-tolyl- $\alpha$ -naphthyl-brommethan  $C_{24}H_{19}Br = C_{10}H_7 \cdot CBr(C_6H_5) \cdot C_6H_4 \cdot CH_3$ . B. Beim Einleiten von Bromwasserstoff in die äther. Lösung von Phenyl-p-tolyl- $\alpha$ -naphthyl-carbinol (Dilthey, J. pr. [2] 109, 314). — Krystalle, die an der Luft mißfarbig werden. F. 140°. Löst sich in Chlorbenzol farblos, die Lösung wird beim Erwärmen violett; löst sich in Nitromethan beim Erhitzen violett unter Abspaltung von Bromwasserstoff. Die Lösung in konz. Schwefelsäure zeigt grünroten Dichroismus.

2. 1.8-Dibenzyl-naphthalin C<sub>24</sub>H<sub>20</sub>, s. nebenstehende Formel. C<sub>6</sub>H<sub>5</sub> H<sub>2</sub>C CH<sub>2</sub>·C<sub>6</sub>H<sub>5</sub> Ist der H 734 als Dibenzylnaphthalin beschriebene Kohlenwasserstoff (Dziewonski, Moszew, Bl. Acad. polon. [A] 1928, 284; C. 1929 I, 1104). — B. Neben anderen Produkten beim Erhitzen von Naphthalin mit Benzylchlorid in Gegenwart von geschmolzenem Zinkchlorid auf 100—120° (Dz., M., Bl. Acad. polon. [A] 1928, 286). Beim Behandeln von 1-Benzyl-naphthalin mit Benzylchlorid in Gegenwart von Aluminiumchlorid bei 120° (Dz., M.). — Nadeln (aus Alkohol oder Ligroin). F: 146,5°. — Bei der Oxydation mit verd. Salpetersäure entsteht 1.8-Dibenzyl-naphthalin. Liefert mit Chlorsulfonsäure in Nitrobenzol bei 100—110° 1.8-Dibenzyl-naphthalin-sulfonsäure-(4?). Die Nitrierung mit Salpeterschwefelsäure in Eisessig ergibt 4(?)-Nitro-1.8-dibenzyl-naphthalin.

- 4 (P)-Nitro-1.8-dibenzyl-naphthalin  $C_{24}H_{19}O_2N = O_2N \cdot C_{10}H_5(CH_2 \cdot C_6H_5)_2$ . B. Bei der Nitrierung von 1.8-Dibenzyl-naphthalin mit Salpeterschwefelsäure in Eisessig (Dziewonski, Moszew, Bl. Acad. polon. [A] 1928, 290; C. 1929 I, 1104). Gelbe Krystalle (aus Alkohol). F: 141°.
- 3. Dibenzylnaphthalin vom Schmelzpunkt 132° C<sub>24</sub>H<sub>20</sub> = C<sub>10</sub>H<sub>6</sub>(CH<sub>2</sub>·C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>. B. Neben anderen Produkten beim Erhitzen von Naphthalin mit Benzylchlorid in Gegenwart von geschmolzenem Zinkchlorid auf 100—120° (Dziewonski, Moszew, Bl. Acad. polon. [A] 1928, 288; C. 1929 I, 1104). Blätter oder Tafeln (aus Alkohol). F: 132°. Kp<sub>15</sub>: 310° bis 311°.
- 4. Dibenzylnaphthalin vom Schmelzpunkt 88°  $C_{24}H_{20} = C_{10}H_6(CH_2 \cdot C_6H_5)_2$ . B. Neben anderen Produkten beim Erhitzen von Naphthalin mit Benzylchlorid in Gegenwart von geschmolzenem Zinkchlorid auf 100—120° (Dziewonski, Moszew, Bl. Acad. polon. [A] 1928, 286; C. 1929 I, 1104). Nadeln (aus verd. Alkohol). F: 88°. Pikrat  $C_{24}H_{20} + C_6H_3O_7N_3$ . F: 107°.

5. 1-Benzyl-3-[4-methyl-benzyliden]-inden  $C_{24}H_{20} = C_6H_4$   $CH_2 \cdot C_6H_4 \cdot CH_3$ 

(E I 367). Gelbe Krystalle (aus Alkohol oder Benzol). F: 94° (WISLICENUS, HENTRICH, A. 486, 21). Sehr leicht löslich in Methanol. Gibt mit konz. Schwefelsäure eine indigoblaue Färbung.

#### 6. Kohlenwasserstoffe $C_{25}H_{22}$ .

1. Phenyl-[2.4-dimethyl-phenyl]- $\alpha$ -naphthyl-methan  $C_{25}H_{22}=C_{10}H_{7}\cdot CH(C_{6}H_{5})\cdot C_{6}H_{5}(CH_{5})^{2}$ .

Phenyl - [2.4 - dimethyl - phenyl] -  $\alpha$  - naphthyl - chlormethan  $C_{25}H_{21}Cl = C_{10}H_7$ ·  $CCl(C_6H_5) \cdot C_6H_3(CH_3)_2$ . B. Durch Umsetzung von 2.4-Dimethyl-benzophenon mit  $\alpha$ -Naphthyl-magnesiumbromid in Äther und Einleiten von Chlorwasserstoff in die äther. Lösung des erhaltenen Carbinols (DILTHEY, J. pr. [2] 109, 315). — Krystalle (aus Benzol + Ligroin). F: 132—133°. Löst sich in konz. Schwefelsäure mit dunkelvioletter bis schwarzgrüner, in Nitromethan mit dunkelvioletter, in Phenol mit grünlicher Farbe. Die dunkelviolette Lösung in heißem Chlorbenzol wird rasch braun.

2. Phenyl-[2.5-dimethyl-phenyl]- $\alpha$ -naphthyl-methan  $C_{25}H_{22}=C_{10}H_7\cdot CH(C_6H_5)\cdot C_6H_3(CH_3)^{2.5}_{2}$ .

Phenyl - [2.5 - dimethyl - phenyl] -  $\alpha$  - naphthyl - chlormethan  $C_{23}H_{21}Cl = C_{10}H_7$ ·  $CCl(C_6H_5) \cdot C_6H_3(CH_3)_2$ . B. Analog der vorangehenden Verbindung (Dilthey, J. pr. [2] 109, 314). — F: 133°. Löst sich in Chlorbenzol farblos, beim Erhitzen grünlich, später orangerot bis braun. Die Lösung in konz. Schwefelsäure zeigt grün-violetten Dichroismus. — Liefert beim Erwärmen mit Nitromethan (unter Violettfärbung und Entweichen von Chlorwasserstoff) oder bei der Destillation mit Wasserdampf 11-[2.5-Dimethyl-phenyl]-chrysofluoren (S. 673) und viel Naphthalin.

#### 3. $Di-p-tolyl-\alpha-naphthyl-methan C_{25}H_{22} = C_{10}H_7 \cdot CH(C_6H_4 \cdot CH_3)_2$

Di-p-tolyl-α-naphthyl-chlormethan  $C_{25}H_{21}Cl = C_{10}H_7 \cdot CCl(C_6H_4 \cdot CH_3)_2$ . B. Durch Umsetzung von 4.4'-Dimethyl-benzophenon mit α-Naphthylmagnesiumbromid in Äther und Einleiten von Chlorwasserstoff in die äther. Lösung des erhaltenen Carbinols (DILTHEY, J. pr. [2] 109, 317). — Krystalle. F: ca. 163°. Löst sich in konz. Schwefelsäure braunrot mit grünem Ablauf, in Phenol braunrot-grünlich. Die Lösung in Chlorbenzol ist farblos und wird beim Erwärmen unter Chlorwasserstoff-Entwicklung violett, bei längerem Kochen gelb.

4. α-Dypnopinalkolen C<sub>25</sub>H<sub>22</sub> (H 734). Auffassung als 1.3.5-Triphenyl-cycloheptadien-(1.4) H<sub>2</sub>C·C(C<sub>6</sub>H<sub>5</sub>):CH·C<sub>8</sub>H<sub>5</sub>: Delacre, A. ch. [9] 2 [1914], 88; vgl. H<sub>2</sub>C·C(C<sub>6</sub>H<sub>5</sub>):CH·C<sub>8</sub>H<sub>5</sub>: Delacre, A. ch. [9] 2 [1914], 88; vgl. Gastaldi, G. 51 II, 289. — Bei der Darstellung aus Acetophenon nach Terlinck (Bl. Acad. Belgique 1904, 1053; C. 1905 I, 367) ersetzt man Kaliumhydroxyd zweckmäßig durch gepulverten Kalikalk (G., G. 51 II, 297). — Krystalle (aus Eisessig oder Alkohol). F: 94—95° (G.). — Liefert beim Behandeln mit Benzoylchlorid in Schwefelkohlenstoff bei Gegenwart von Aluminiumchlorid 2.4.6-Triphenyl-pyryliumchlorid (Syst. Nr. 2394); ebenso entsteht bei Einw. von 4-Chlor-benzoylchlorid in Schwefelkohlenstoff bei Gegenwart von Aluminiumchlorid 2.4-Diphenyl-6-[4-chlor-phenyl]-pyryliumchlorid; reagiert analog mit 4-Brombenzoylchlorid und p-Toluylchlorid (G.).

- 7. 1.14-Diphenyl-tetradecaheptaen-(1.3.5.7.9.11.13)  $C_{26}H_{24} = C_6H_5$ · [CH:CH],  $C_6H_5$ . B. In geringer Menge beim Erhitzen von Buten-(2)-dicarbonsäure-(1.4) mit  $\beta$ -Styrylacrolein, Acetanhydrid und Bleioxyd auf 130° und nachfolgendem Kochen (Kuhn, Winterstein, Helv. 11, 114; 12, 493). Kupferbronzefarbene Blättchen (aus Acetanhydrid oder Chloroform). F: 279° (korr.; Zers.) (K., W., Helv. 11, 98). 0,07 g lösen sich in 1000 cm³ Chloroform bei 19°; sehr schwer föslich in den meisten Lösungsmitteln mit roter Farbe (K., W., Helv. 11, 101, 114). Löst sich in konz. Schwefelsäure mit blaugrüner Farbe (K., W., Helv. 11, 98, 151). Lichtabsorption in konz. Schwefelsäure: K., W., Helv. 11, 151; in Pyridin: K., W., Helv. 11, 99.
- 8. Kohlenwasserstoff  $C_{28}H_{28}$ . Auffassung als 1.3.5-Tri-p-tolyl-cycloheptadien-(1.4)  $H_2C \cdot C(C_6H_4 \cdot CH_3)$ : CH $\cdot C_6H_4 \cdot CH_3$ : Gastaldi, G. 51 II, 289. B. Beim Erhitzen von 4-Methyl-acetophenon mit pulverisiertem Kalikalk auf 140—160° (G., G. 51 II. 297). Würfel (aus Eisessig oder Alkohol). F: 122°. In der Kälte fast unlöslich in Alkohol, schwer löslich in Äther, Ligroin und Eisessig, löslich in Schwefelkohlenstoff und Aceton. Löst sich in konz. Schwefelsäure mit roter Farbe und grüner Fluorescenz. Liefert beim Behandeln mit Benzoylchlorid bei Gegenwart von Aluminiumchlorid in Schwefelkohlenstoff 2-Phenyl-4.6-di-p-tolyl-pyryliumchlorid; reagiert analog mit 4-Chlor-benzoyl-chlorid und p-Toluylchlorid.
- 9. Eikosihexahydrodekacyclen C<sub>36</sub>H<sub>44</sub>. B. Neben anderen Produkten bei mehrstündigem Erhitzen von Dekacyclen (S. 723) mit Jodwasserstoffsäure (D: 1,7) und rotem Phosphor im Rohr auf 285—290° (Dziewonski, Suszko, Bl. Acad. polon. [A] 1923, 21; C. 1924 I, 1377). Gelbliches, grün fluorescierendes Öl. Kp<sub>10-12</sub>: 330—340°. Leicht löslich in Alkohol, Ligroin und Benzol; löst sich in konz. Schwefelsäure mit gelber Farbe und olivgrüner Fluorescenz. Unbeständig. Wird an der Luft braun. Erstarrt bei längerem Stehenlassen teilweise vaselineartig.

#### 18. Kohlenwasserstoffe $C_n H_{2n-29}$ .

# Kohlenwasserstoffe $C_{23}H_{17}$ .

- 1. Diphenyl- $\alpha$ -naphthyl-methyl bzw. 1.1.2.2-Tetraphenyl-1.2- $(i-\alpha$ -naphthyl-dthan  $C_{23}H_{17} = (C_6H_5)_2C \cdot C_{10}H_7$  bzw.  $C_{46}H_{34} = (C_6H_5)_2C(C_{10}H_7) \cdot C(C_{10}H_7) \cdot$
- Phenyl-[4-brom-phenyl]- $\alpha$ -naphthyl-methyl  $C_{23}H_{16}Br = (C_6H_5)(C_6H_4Br)C\cdot C_{10}H_7$ . B. Eine Lösung in Äther wurde erhalten bei 20 Min. langem Schütteln von Phenyl-[4-brom-phenyl]- $\alpha$ -naphthyl-chlormethan mit fein verteiltem Silber in absol. Äther unter Luftabschluß (GOMBERG, BLICKE, Am. Soc. 45, 1775). Die violette Lösung in Äther liefert bei der Einw. von Luftsauerstoff Bis-[phenyl-(4-brom-phenyl)- $\alpha$ -naphthylmethyl]-peroxyd (Syst. Nr. 546); über den Verlauf der Sauerstoffabsorption in Äther vgl. G., B.
- Diphenyl-[4-brom-naphthyl-(1)]-methyl  $C_{23}H_{16}Br = (C_6H_5)_2C \cdot C_{10}H_6Br$ . B. Eine Lösung in Äther wurde erhalten bei 20 Min. langem Schütteln von Diphenyl-[4-brom-naphthyl-(1)]-chlormethan mit fein verteiltem Silber in absol. Äther unter Luftabschluß (Gomberg, Blicke, Am. Soc. 45, 1775). Die braunrote Lösung in Äther liefert mit Luftsauerstoff Bis-{diphenyl-[4-brom-naphthyl-(1)]-methyl}-peroxyd (Syst. Nr. 546); über den Verlauf der Sauerstoffabsorption in Äther vgl. G., B.
- 2. Diphenyl- $\beta$ -naphthyl-methyl bzw. 1.1.2.2-Tetraphenyl-1.2-di- $\beta$ -naphthyl-dthan  $C_{23}H_{17}=(C_6H_5)_2C\cdot C_{10}H_7$  bzw.  $C_{46}H_{34}=(C_6H_5)_2C(C_{10}H_7)\cdot C(C_{10}H_7)(C_6H_5)_2$ . Kryoskopische Bestimmungen des Mol.-Gew.: Gomberg, Sullivan, Am. Soc. 44, 1820. B. Beim Schüteln von Diphenyl- $\beta$ -naphthyl-chlormethan mit fein verteiltem Silber in Schwefelkohlenstoff (G., S., Am. Soc. 44, 1815) oder Cyclohexan (Ziegler, Ewald, A. 478, 190). Farbloses Krystallpulver (aus Aceton unter Luftabschluß). F: 135—140° (in Kohlendioxyd-Atmosphäre) (G., S.). Sehr leicht löslich in den gebräuchlichen Lösungsmitteln außer Petrol-

äther, unlöslich in flüssigem Schwefeldioxyd (G., S.). Konz. Lösungen sind rot, verd. Lösungen gelb (G., S.). Lichtabsorption in Cyclohexan bei 20°: Z., E., A. 473, 190. Über den Einfluß von Verdünnung und Temperatur auf die Farbe der Lösungen in verschiedenen Lösungsmitteln vgl. G., S., Am. Soc. 44, 1827. Elektrische Leitfähigkeit in flüssigem Schwefeldioxyd + Toluol bei —8°: G., S., Am. Soc. 44, 1818. — Färbt sich beim Aufbewahren rasch gelb; verändert sich nur langsam bei Belichtung (G., S.). Läßt sich kurze Zeit an der Luft aufbewahren, ohne oxydiert zu werden (G., S.). Beziehungen zwischen Entfärbung und Sauerstoffaufnahme in Brombenzol: G., S., Am. Soc. 44, 1824. Liefert mit Sauerstoff oder Luft in Brombenzol Bis-[diphenyl-\beta-naphthyl-methyl]-peroxyd (Syst. Nr. 546) (G., S.). Wird von Salzsäure zersetzt (G., S., Am. Soc. 44, 1828). Addiert in Benzol-Lösung ca. 70 % der berechneten Menge Jod (G., S.). Liefert eine additionelle Verbindung mit Methylbutylketon: mit anderen Ketonen, Äthern, Estern usw. konnten keine additionellen Verbindungen erhalten werden (G., S.).

#### 19. Kohlenwasserstoffe C<sub>n</sub> H<sub>2 n-30</sub>.

### 1. Kohlenwasserstoffe $C_{22}H_{14}$ .

- 1. [Naphtho-2'.3':2.3-anthracen], 2.3:6.7-Dibenzo-anthracen, Pentacen, lin. Dinaphthanthracen C<sub>22</sub>H<sub>14</sub>, s. nebenstehende Formel. Für die von Pentacen abgeleiteten Namen wird in diesem Handbuch die angegebene Stellungsbezeichnung gebraucht. Zur Bezeichnung als Pentacen vgl. PHILIPPI, M. 53/54, 638; CLAR, B. 72 [1939], 2137. Der von PHILIPPI (M. 35 [1914], 379:53/54, 639) als 2.3;6.7-Dibenzo-anthracen beschriebene Kohlenwasserstoff (E I 368) war nach CLAR, John (B. 63 [1930], 2972) 6.13-Dihydro-pentacen C<sub>22</sub>H<sub>16</sub> (S. 662). Zur Konstitution des Pentacens vgl. Cl.., J., B. 63, 2967; CL., B. 64 [1931], 1676, 2194; 65 [1932], 504; COOK, Soc. 1932, 1472 Anm.; E. MÜLLER, MÜLLER-RODLOFF, A. 517 [1935], 145: E. MÜLLER, Neuere Anschauungen der Organischen Chemie [Berlin 1940], S. 186; E. CLAR. Aromatische Kohlenwasserstoffe [Berlin 1941], S. 46, 183. B. Pentacen entsteht bei der Dehydrierung von 6.13-Dihydro-pentacen mit Kupferpulver bei 380° unter 12—20 mm Kohlensäuredruck (CL., J., B. 62, 3028). Blaue Nadeln (aus Nitrobenzol). Schmilzt sehr hoch (CL., J.). Läßt sich im Kohlendioxyd-Strom unter vermindertem Druck sublimieren (CL., J.). Läßt sich im siedendem Nitrobenzol, unlöslich in den übrigen gebräuchlichen Lösungsmitteln (CL., J.). Liefert bei der Oxydation mit Chromtrioxyd Pentacenchinon-(6.13) (Syst. Nr. 687) (CL., J.).
- cen], [Naphtho-2'.3': 2.3-phenanthren], 1.2; 6.7-Dibenzo-anthracen, Isopentaphen C<sub>22</sub>H<sub>14</sub>, s. nebenstehende Formel. B. Neben anderen Verbindungen bei der Kondensation von Phenanthren mit 2-Methyl-benzoylchlorid in Gegenwart von Aluminiumchlorid und Pyrolyse des entstandenen Ketongemisches (Clar, B. 62, 1578); man trennt von den begleitenden Kohlenwasserstoffen durch überführung in die Additionsverbindung mit Maleinsäureanhydrid und deren Zerlegung durch Überführung in die Additionsverbindung mit Maleinsäureanhydrid und deren Zerlegung durch Sublimation (Cl., Lombardi, B. 65 [1932], 1418). Beim Kochen von 2-Methyl-3-[α-oder β-naphthoyl]-5.6.7.8-tetrahydro-naphthalin mit Naturkupfer C (Cl., B. 62, 1580). Bei der Zinkstaubdestillation von 2.3-Phthalyl-phenanthren (Clar, B. 62, 1581). Gelbe Blättchen oder Nadeln (aus Xylol). F: 263—264° (unkorr.) (Cl.). Löst sich in konz. Schwefelsäure mit violettroter Farbe, die über Schmutzigbraun in Olivgrün übergeht (Cl.). Die Lösungen in organischen Lösungsmitteln zeigen grüne, die Krystalle bei Ültraviolett-Bestrahlung stark gelbe Fluorescenz (Cl.). Absorptionsspektrum in verd. Benzol-Lösung: Cl., L., B. 65, 1417; vgl. Cl. Liefert bei der Oxydation mit Chromtrioxyd in siedendem Eisessig 2.3-Phthalyl-phenanthren und 2.3-Phthalyl-phenanthren-chinon (Cl.).
- 3. [Naphtho-2'.3': 1.2-anthracen], 2.3; 6.7-Dibenzo-phenanthren, Pentaphen C<sub>12</sub>H<sub>14</sub>, s. nebenstehende Formel. Für die von Pentaphen abgeleiteten Namen wird in diesem Handbuch die angegebene Stellungsbezeichnung gebraucht. B. Bei der Pyrolyse von 1.2- oder 1.4-Di-o-toluyl-benzol, neben 6.13-Dihydro-pentacen und Anthracen; man trennt von 6.13-Dihydro-pentacen durch Kochen mit Chloranil in Xylol, wobei Dihydropentacen in schwer lösliches Pentacen übergeht (Clar, John, Hawran, B. 62, 947; vgl. Cl., J., B. 64 [1931], 986). Gelblichgrüne Nadeln oder Blättchen (aus Xylol). F: 257° (unkorr.) (Cl., J.). Die Krystalle fluorescieren bei

2. 1.2-Benzo-naphthacen, [Naphtho-1'.2': 2.3-anthra-



Ultraviolett-Bestrahlung intensiv gelbgrün, die Lösung in Xylol bei Tageslicht oder bei Ultraviolett-Bestrahlung blau (CL., J.). — Liefert bei der Oxydation mit Chromeisessig nahezu quantitativ 1.2-Phthalyl-anthrachinon (CL., J.; vgl. CL., J., H.; CL., J., B. 62, 3021). — Pikrat C<sub>22</sub>H<sub>14</sub> + 2C<sub>6</sub>H<sub>3</sub>O<sub>7</sub>N<sub>3</sub>. Orangerote Nadeln. F:184° (CL., J., B. 64, 986; vgl. CL., J., H.).

- 4. [Naphtho-2'.1': 1.2-anthracen], [Naphtho-2'.3': 1.2-phenanthren], 1.2; 6.7 Dibenzo phenanthren C<sub>21</sub>H<sub>14</sub>, s. nebenstehende Formel. B. Entsteht im Gemisch mit isomeren Kohlenwasserstoffen bei der Kondensation von Phenanthren mit 2-Methylbenzoylchlorid in Gegenwart von Aluminiumchlorid und Pyrolyse des entstandenen Ketongemisches (Clar, B. 62, 1578); man trennt von den Isomeren durch chromatographische Adsorption (Winterstein, Schön, H. 230 [1934], 150) oder durch Uberführung in die Additionsverbindung mit Maleinsäureanhydrid und deren Zerlegung durch Sublimation (Cl., Lombardi, B. 65 [1932], 1418). Bei der Zinkstaubdestillation von 1.2-Phthalyl-phenanthren (Cl., B. 62, 1579). Grünlichgelbe Blättchen (aus Xylol). F: 293—294° (unkorr.) (Cl.). Die Krystalle zeigen bei Ultraviolett-Bestrahlung grünlichgelbe, die verd. Lösungen in organischen Lösungsmitteln zeigen blaue, die konzentrierteren grünblaue Fluorescenz (Cl.). Absorptionsspektrum in Benzol: Cl., L., B. 65, 1416; vgl. Cl., B. 62, 1581. Löst sich in konz. Schwefelsäure mit roter Farbe, die über Rotviolett und Violettblau schließlich in Blaugrün übergeht (Cl.). Liefert bei der Oxydation mit
- chinon (CL.).

  5. 1.2; 7.8-Dibenzo-anthracen, ang. Dinaphthanthracen
  C<sub>22</sub>H<sub>14</sub>, s. nebenstehende Formel (vgl. H 735). Der von Homer (Soc.
  97 [1910], 1148) unter dieser Formel beschriebene Kohlenwasserstoff
  war Perylen (Cook, Soc. 1931, 488; vgl. Clar, B. 62, 352); ein von
  Clar (B. 62, 356; vgl. Fieser, Dietz, B. 62, 1830; I. G. Farbenind.,
  D.R. P. 481819; C. 1930 I, 1053; Frdl. 16, 717) ebenfalls unter dieser Formel beschriebener
  Kohlenwasserstoff war 1.2;5.6-Dibenzo-anthracen (Cook, Soc. 1931, 487). Das wahre
  1.2;7.8-Dibenzo-anthracen ist erst nach dem Literatur-Schlußtermin des Ergänzungswerks II
  [1. I. 1930] von Cook (Soc. 1932, 1472) beschrieben worden.

6. 1.2; 5.6-Dibenzo-anthracen, [Naphtho-1'.2': 2.3-phen-

7. [Naphtho-2'.3':9.10-phenanthren], 1.2; 3.4-Dibenzo-

Chromtrioxyd in siedendem Eisessig 1.2-Phthalyl-phenanthren und 1.2-Phthalyl-phenanthren-

- anthren] C<sub>22</sub>H<sub>14</sub>, s. nebenstehende Formel (E I 369). B. Bei der Pyrolyse von [Naphthyl-(2)]-[2-methyl-naphthyl-(1)]-keton (CLAR, B. 62, 357; FIESER, DIETZ, B. 62, 1830; vgl. I. G. Farbenind., D. R. P. 481819; C. 1930 I, 1053; Frdl. 16, 717) oder von [Naphthyl-(1)]-[2-methyl-naphthyl-(1)]-keton (Cl.; F., D.; vgl. I. G. Farbenind.; Cook, Soc. 1931, 487). Man entfernt eine häufig hartnäckig anhaftende Gelbfärbung (geringe Mengen 1.2-Benzo-naphthacen) durch Schütteln der Lösung in Toluol mit kleinen Mengen Schwefelsäure (COOK, Soc. 1931, 494), besser durch Kochen der Xylol-Lösung mit einer kleinen Menge Maleinsäureanhydrid (Cl., LOMBARDI, G. 62 [1932], 543) oder durch chromatographische Adsorption (WINTERSTEIN, SCHÖN, H. 230 [1934], 150, 156). Farblose Tafeln, die bei Ultraviolett-Bestrahlung violette Fluorescenz zeigen (Cook, Soc. 1931, 494 Anm.). F: 262° (unkorr.) (Cl.). Sublimierbar (Cl.). Leicht löslich in Benzol, Toluol und Xylol, schwer in Eisessig, sehr schwer in Alkohol und Äther; die Lösungen zeigen grünblaue Fluorescenz (Cl.). Ultraviolett-Absorptionsspektrum in Benzol: Cl., Lombardi, G. 62 [1932], 541; vgl. Cl. Löst sich bei längerem Aufbewahren in konz. Schwefelsäure mit blaßroter Farbe (Cl.). Liefert beim Kochen mit Chromsäure in Eisessig 1.2;5.6-Dibenzoanthrachinon (Cl.). Pikrat C<sub>22</sub>H<sub>14</sub> + 2C<sub>6</sub>H<sub>3</sub>O<sub>7</sub>N<sub>3</sub>. Rote Nadeln (aus Benzol). F: 214° (unkorr.) (Cl.).
- anthracen. 2.3-Benzo-triphenylen C<sub>32</sub>H<sub>14</sub>, s. nebenstehende Formel.

  B. Neben isomeren Kohlenwasserstoffen bei der Kondensation von 2-Methyl-benzoylehlorid mit Phenanthren in Gegenwart von Aluminium-chlorid in Benzol oder Schwefelkohlenstoff und Pyrolyse des entstandenen Ketongemisches (Clar, B. 62, 358; vgl. I. G. Farbenind., D. R. P. 481819; C. 1930 I. 1053; Frdl. 16, 717); man trennt von den Isomeren durch chromatographische Adsorption (Winterstein, Schön, H. 230 [1934], 150) oder durch Uberführung in die Additionsverbindung mit Maleinsäureanhydrid und deren Zerlegung durch Sublimation (Cl., Lombardi, B. 65 [1932], 1418); man reinigt über das Pikrat (Cl.; Cl., L.). Farblose Nadeln (aus Eisessig) (Cl., L.). F: 205° (unkorr.) (Cl., B. 62, 1576). Ziemlich leicht löslich in aromatischen Kohlenwasserstoffen (Cl., Aromatische Kohlenwasserstoffe [Berlin 1941], S. 140). Die Krystalle zeigen bei Ultraviolett-Bestrahlung gelbe, die Lösungen blaue Fluorescenz (Cl., B. 62, 359). Ultraviolett-Absorptionsspektrum in Eisessig:

CL., B. 62, 353; in Benzol: CL., L., B. 65, 1415. — Löst sich langsam in konz. Schwefelsäure mit etwas violettstichig roter Farbe (CL.). — Liefert beim Kochen mit der gleichen Gewichtsmenge Chromsäureanhydrid in der 10—20-fachen Menge Eisessig 1.2;3.4-Dibenzo-anthrachinon (CL.). — Pikrat C<sub>92</sub>H<sub>14</sub>+C<sub>6</sub>H<sub>3</sub>O<sub>7</sub>N<sub>3</sub>. Rote Nadeln. F: 207° (unkorr.) (CL.).

#### 2. Kohlenwasserstoffe $C_{23}H_{16}$ .

1. 9-Phenyl-1.2-benzo-fluoren, 11-Phenyl-chrysofluoren
C<sub>23</sub>H<sub>16</sub>, s. nebenstehende Formel (H 736; E I 369). B. Bei längerem
Erwärmen von Diphenyl-α-naphthyl-chlormethan mit Eisessig, Acetanhydrid, Chlorbenzol, Benzaldehyd oder Malonsäurediäthylester (DILTHEY, J. pr. [2] 109, 305). In wesentlich geringerer Menge beim Erhitzen
von Diphenyl-α-naphthyl-brommethan mit Chlorbenzol (D.). — Krystalle (aus Benzol).
F: 194° (D.). D<sup>3</sup>: 1,242 (ZIEGLER, DITZEL, A. 473, 207). Löst sich in kalter konzentrierter
Schwefelsäure farblos, in heißer konzentrierter Schwefelsäure mit blauer Farbe (D.).

11-[4-Brom-phenyl]-chrysofluoren C<sub>23</sub>H<sub>15</sub>Br, Formel I. B. Beim Erhitzen von Phenyl-[4-brom-phenyl]-α-naphthyl-carbinol oder von Phenyl-[4-brom-phenyl]-α-naphthyl-chlormethan mit Eisessig und konz. Schwefelsäure (Gomberg, Blicke, Am. Soc. 45, 1771). — Krystalle (aus Xylol). F: 233—235°. Schwer löslich in den gebräuchlichen organischen Lösungsmitteln. Gibt mit konz. Schwefelsäure keine Färbung. — Liefert beim Kochen mit Natriumdichromat in Eisessig 11-Oxy-11-[4-brom-phenyl]-chrysofluorenchinon (1.4) (Formel II; Syst. Nr. 787) und 2-[4-Brom-benzoyl]-benzoesäure.

I. CH-C<sub>6</sub>H<sub>4</sub>Br 
$$CH$$
-CCOH)

III.  $CH$ -CCOH<sub>2</sub>
 $CH$ -CCOH<sub>2</sub>
 $CH$ -CCOH<sub>3</sub>
 $CH$ -CCOH<sub>4</sub>
 $CH$ -CCOH<sub>4</sub>
 $CH$ -CCOH<sub>5</sub>

2. **9-Benzyliden-diphensuccinden-(10)** C<sub>23</sub>H<sub>16</sub>, Formel III. B. Neben 9.12-Dibenzyliden-diphensuccinden-(10) bei der Kondensation von Diphensuccinden-(10) mit Benzaldehyd in Natriumäthylat-Lösung (Brand, Müller, B. 55, 607). — Braunrote Blättchen oder Nadeln (aus Alkohol). F: 155°. — Vereinigt sich mit 1 Mol Benzaldehyd zu 9.12-Dibenzyliden-diphensuccinden-(10).

3. 4'- Methyl-[dibenzo-1'.2': 1.2; 1".2": 5.6-anthracen]  $C_{23}H_{16}$ , s. nebenstehende Formel. B. Bei der Pyrolyse von  $\beta$ -Naphthyl-[2.6-dimethyl-naphthyl-(1)]-keton (Fieser, Dietz, B. 62, 1831). — Gelbe Plättchen. F: 244—245° (unkorr.). Schwer löslich in Eisessig, leicht in Benzol mit grüner Fluorescenz. — Wird von Chromtrioxyd in siedendem Eisessig zu 4'-Methyl-[dibenzo-1'.2':1.2; 1".2":5.6-anthrachinon] oxydiert.

# 3. Kohlenwasserstoffe $\mathrm{C_{24}H_{18}}$ .

1. 2.2'-Diphenyl-diphenyl  $C_{24}H_{18}=C_6H_5\cdot C_6H_4\cdot C_6H_4\cdot C_6H_5$ . Das Mol.-Gew. ist ebullioskopisch in Benzol bestimmt (Bachmann, Clarke, Am.Soc. 49, 2094). — B. In geringer Menge neben anderen Produkten bei der Einw. von Natrium auf siedendes Chlorbenzol (B., Cl., Am.Soc. 49, 2093). Beim Erhitzen von 2-Jod-diphenyl mit Kupferpulver auf 260° (B., Cl.). — Krystalle (aus Aceton). F: 118° (korr.). Kp: 420° (korr.). Leicht löslich in Aceton und Chloroform, fast unlöslich in kaltem Methanol.

2. 4.4'- Diphenyl- diphenyl,

Bis-diphenylyl. Quaterphenyl,

Dibiphenyl, Benzerythren C24H18.

s. nebenstehende Formel (H 736; E I 369). Die angegebene Bezifferung wird in diesem Handbuch für die von Quaterphenyl abgeleiteten Namen gebraucht. — B. Bei der Reduktion von 4-Brom-diphenyl und von 4-Jod-diphenyl mit Hydrazin und siedender methylalkoholischer Kalilauge in Gegenwart von Palladium-Calciumcarbonat (Busch, Schmidt, B. 62, 2618). Entsteht neben anderen Produkten beim Erhitzen von 4.4'-Dijod-diphenyl mit über Phosphorpentoxyd getrocknetem Kupferpulver im Rohr auf 220° (Kuhn, A. 475, 135; vgl. Sircar, Majumdar, J. indian chem. Soc. 5, 417; C. 1928 II, 2248). Entsteht in geringer Menge neben anderen Produkten bei längerem Kochen von Dibenzoylperoxyd mit Benzol (Gelissen, Hermans, B. 58, 290) oder beim Erwärmen von Dibenzoylperoxyd mit Diphenyl af nicht mehr als 95° (Gel., H., B. 58, 293, 764). Durch Addition von Maleinsäureanhydrid an 1.8-Diphenyl-octatetraen-(1.3.5.7) und nachfolgendes Dehydrieren und Decarboxylieren des Reaktionsprodukts (Kuhn, A. 475, 132). Beim Behandeln von Benzoldiazoniumsulfat mit

670

Kupferpulver und starker Ameisensäure in Eisessig-Schwefelsäure (Gerngross, Dunkel, B. 57, 742) oder mit Kupferpulver und Alkohol (Gern., Schachnow, Jonas, B. 57, 749). In sehr geringer Menge beim Versetzen einer Lösung von diazotiertem 4-Amino-diphenyl in Eisessig + konz. Schwefelsäure mit Benzol, starker Ameisensäure und Kupferpulver unter Kühlung (Gern., Sch., J.). — Krystalle (aus Pyridin). F: 320° (Gern., D.; Gel., H.), 318° (korr.) (Kuhn). Sublimiert im Hochvakuum bei 180° (Gern., D.). Fast unlöslich in Alkohol und Äther, sehr schwer löslich in Eisessig, löslich in 500 Tln. siedendem Benzol, leichter löslich in siedendem Nitrobenzol, Xylol, Pyridin (0,32 g in 110 cm³), Chinolin, Benzoesäureäthylester und Amylacetat (Gern., D.).

4.4'-Bis-[4-nitro-phenyl]-diphenyl, 4.4"-Dinitro-quaterphenyl  $C_{24}H_{16}O_4N_2 = O_2N \cdot C_6H_4 \cdot C_6H_4 \cdot C_6H_4 \cdot NO_2$ . Schmilzt bei 257—260° zu einer enantiotrop krystallinflüssigen Phase, bei 285—290° zur amorphen Flüssigkeit (Vorländer, *Ph. Ch.* 105, 231; 126, 470).

(vgl. E I 309). Die von Cain, Coulthard, Micklethwait (80c. 103 [1913], 2080; vgl. a. Hodgson, Gorowara, Soc. 1926, 1758) unter dieser Formel beschriebene Verbindung war unreines 4.4'-Dichlor-3.3'-dinitro-diphenyl (S. 492) (Hodgson, Soc. 1934, 1431).

B. Durch Diazotierung von 3.3'-Dinitro-benzidin mit Natriumnitrit in konz. Schwefelsäure bei 0° und Behandlung des Reaktionsprodukts mit einer Lösung von Kupfer(I)-chlorid in konz. Salzsäure, neben anderen Produkten (Hodgson, Gorowara, Soc. 1926, 1758). — Orangerote Krystalle (aus Benzol). F: 300°.

2.2'-Dinitro - 4.4'-bis - [4 - brom - 3 - nitro - phenyl] - diphenyl, 4.4'''- Dibrom-3.3'.2''.3'''- totranitro - quaterphenyl, Dibrom tetranitro benzerythren C<sub>24</sub>H<sub>12</sub>O<sub>8</sub>N<sub>4</sub>Br<sub>2</sub>, s. nebenstehende Formel (vgl. E I 369). O<sub>2</sub>N O<sub>2</sub>N NO<sub>2</sub> NO<sub>2</sub> Die von CAIN, COULTHARD, MICKLETHWAIT (Soc. 103 [1913], 2081) unter dieser Formel beschriebene Brown variations war unreines 4.4'-Dibrom-3.3'-dinitro-diphenyl (s. S. 492) (Hodgson, Holt, Soc. 1934, 1432).

3. 1.3.5-Triphenyl-benzol C<sub>24</sub>H<sub>18</sub>, s. nebenstehende Formel (H 737; E I 370). B. Aus Acetophenon beim Erhitzen mit Anilin und Jod (KNOEVE-NAGEL, GOOS, B. 55, 1929, 1932), beim Erhitzen mit Anilin und Anilinhydrochlorid auf 170—175° unter trocknem Kohlendioxyd (VORLÄNDER, FISCHER, WILLE, B. 62, 2837), beim Erhitzen mit Calciumhydrid auf 240°, neben einer Verbindung C<sub>24</sub>H<sub>18</sub>O (SCHLENK, KARPLUS, B. 61, 1679; vgl. PORLEZZA, GATTI, G. 56, 273), beim Erhitzen in Gegenwart von Tonerde unter Druck auf 270—300°, neben anderen Produkten (IPATJEW, PETROW, B. 60, 1960; Ж. 59, 909) und beim Behandeln mit Äthyljodid und Aluminium in Äther (LEONE, BRAICOVIC, R. A. L. [5] 33 II, 569; G. 55, 303). Bei der Einw. von trocknem Chlorwasserstoff auf Acetophenonanil bei 180—190° (KNOEVENAGEL, GOOS, B. 55, 1934). Beim Erhitzen von Dypnonanil (K.N., G.). Aus Phenylacetylen oder Phenylacetaldehyd bei mehrstündigem Erhitzen mit 33 %igen wäßrigen Lösungen von Methylamin oder Äthylamin auf ca. 260° (KRASSUSKI, KIPRIANOW, Ж. 56, 5, 9; C. 1926 I, 895).

amin oder Athylamin aut ca. 260° (Krassuski, Kiprianow, m. 56, 5, 9; C. 1926 1, 890).

Nadeln (aus Alkohol). Härte der Krystalle: Reis, Zimmermann, Z. Kr. 57, 484; Ph. Ch.

102, 328. F: 174° (Vorländer, Haberland, B. 58, 2654), 171—172° (Schlenk, Karplus, B. 61, 1680). D.: 1.205 (Ziegler, Ditzel, A. 473, 200). Röntgen-Luminescenzspektrum: de Beaujeu, J. Phys. Rad. [6] 4, 263; C. 1924 I, 134. Über das kryoskopische Verhalten in Benzol vgl. Krassuski, Kiprianow, m. 56, 5; C. 1926 I, 895. Thermische Analyse der binären Gemische von 1.3.5-Triphenyl-benzol mit 2.4.6-Triphenyl-1.3.5-triazin und mit 2-Methyl-4.6-diphenyl-1.3.5-triazin: Pascal, Bl. [4] 37, 837. — Bleibt beim Erhitzen auf 450° unter 75 Atm. Wasserstoff-Druck in Gegenwart von Eisenoxyd-Tonerde unverändert (Ipatjew, Orlow, Lichatschew, m. 61, 1342; B. 63 [1930], 159). Liefert bei der Oxydation mit rauchender Salpetersäure (D: 1,52) in Eisessig unterhalb 120° hauptsächlich 1.3-Diphenyl-5-[4-nitro-phenyl]-benzol; daneben entstehen geringe Mengen 2-Nitro-1.3.5-tris-[4-nitro-phenyl]-benzol und Tetranitro-[1.3.5-triphenyl-benzol] vom Schmelzpunkt 107° (Vorländer, Fischer, Wille, B. 62, 2837; vgl. a. Mellin, B. 28 [1890], 2534).

1.3-Diphenyl-5-[4-nitro-phenyl]-benzol C<sub>24</sub>H<sub>17</sub>O<sub>2</sub>N, s. nebenstehende Formel. B. Durch Einw. von rauchender Salpetersäure (D: 1,52) auf 1.3.5-Triphenyl-benzol in Eisessig unterhalb 120° (Vorländer, Fischer, Wlile, B. 62, 2837). — Tafeln (aus Eisessig). F: 142—143° (korr.). Löslich in Methanol, Alkohol, Äther, Aceton und Benzol, schwer löslich in Eisessig und Petroläther, unlöslich in Wasser. Die unterkühlte amorphe Schmelze wird bei weiterem Erkalten lack-

CH2-C10H7

Br

artig, spröde und fest. — Liefert bei der Oxydation mit Chromtrioxyd in Eisessig bei 80° bis 90° 4-Nitro-benzoesäure, 3-Phenyl-5-[4-nitro-phenyl]-benzoesäure, wenig Benzoesäure und sehr wenig 5-[4-Nitro-phenyl]-isophthalsäure. Bei 260-stdg. Kochen mit Salpetersäure erhält man 4-Nitro-benzoesäure und 2-Nitro-1.3.5-tris-[4-nitro-phenyl]-benzol. Liefert bei der Reduktion mit Zinn(II)-chlorid und Chlorwasserstoff in siedendem Eisessig 1.3-Diphenyl-5-[4-amino-phenyl]-benzol.

2-Nitro - 1.8.5 - tris - [4-nitro - phenyl] - benzol, höherschmelzendes Tetranitro-[1.3.5 - triphenyl-benzol] von Mellin Cathlo Balance (H 737). B. Neben anderen Produkten bei der Einw. von rauchender Salpetersäure (D: 1,52) o2N·C6H4·NO2 auf 1.3.5-Triphenyl-benzol in Eisessig unterhalb 120° (Vorländer, Fischer, Wille, B. 62, 2837). Neben 4-Nitro-benzoesäure bei 260-stdg. Kochen von 1.3-Diphenyl-5-[4-nitro-phenyl]-benzol mit Salpetersäure (V., F., W., B. 62, 2841). — Liefert als Endprodukt der Oxydation mit Salpetersäure 4-Nitro-benzoesäure.

4. 9-[ $\varepsilon$ -Phenyl- $\beta$ . $\delta$ -pentadienyliden]-fluoren, 1-Phenyl-6-diphenylen-hexatrien-(1.3.5)  $C_{24}H_{18} = \frac{C_8H_4}{C_8H_4}$ C:CH·CH·CH·CH·CH·CH·C,  $H_5$ . B. Aus Fluoren und  $\beta$ -Styryl-acrolein in Natriumäthylat-Lösung, anfangs unter Erwärmen auf  $50^{\circ}$  (Kuhn, Winterstein, Helv. 11, 121). — Braunorangefarbene Nadeln (aus Aceton oder Acetanhydrid). F: 155,5° (Zers.). Leicht löslich in Chloroform und Benzol, schwer in Alkohol und Äther. Löst sich in konz. Schwefelsäure mit roter Farbe. — Liefert mit Brom in Chloroform 1-Phenyl-6-diphenylen-hexatrien-(1.3.5)-tetrabromid  $C_{24}H_{18}Br_4$  (S. 655) (K., W., Helv. 11, 144). — Pikrat  $C_{24}H_{18} + 2C_6H_3O_7N_3$ . Rote Nadeln. F:  $177^{\circ}$  (K., W., Helv. 11, 150).

- 5. 9- $[\alpha$ -Naphthyl-methyl]-fluoren, 9- $\alpha$ -Menaphthyl-fluoren,  $\alpha$ -Naphthyl-fluorenyl-methan  $C_{24}H_{18} = C_{6}H_{4} CH \cdot CH_{2} \cdot C_{10}H_{7}$ . B. Beim Kochen von Fluorenyl-(9)-glyoxylsäureäthylester mit 1-Brommethyl-naphthalin in Natriumäthylat-Lösung und nachfolgenden Behandeln des Reaktionsprodukts mit konz. Kalilauge (Sieglitz, Jassox, B. 54, 2138). Stäbchen (aus Eisessig). F: 133—134°.
- 2.7-Dibrom 9 [ $\alpha$  -naphthyl methyl] fluoren  $C_{24}H_{16}Br_2$ , s. nebenstehende Formel. B. Beim Kochen der alkoh. Lösung der Natriumverbindung des [2.7-Dibrom-fluorenyl-(9)]-glyoxylsäureäthylesters mit 1-Brommethyl-naphthalin und nachfolgenden Zusatz von Kalilauge (Sieglitz, B. 58, 2248). Nädelchen (aus Eisessig). F: 167—168°.
- 6. 9- $\beta$ -Naphthyl-methylj-fluoren, 9- $\beta$ -Menaphthyl-fluoren,  $\beta$ -Naphthyl-fluorenyl-methan  $C_{24}H_{18} = C_{6}H_{4}$   $CH \cdot CH_{2} \cdot C_{10}H_{7}$ . B. Beim Kochen von Fluorenyl-(9)-glyoxylsäureäthylester mit 2-Brommethyl-naphthalin in siedender Natriumäthylat-Lösung und nachfolgenden Behandeln des Reaktionsprodukts mit konz. Kalilauge (Sieglitz, Jassoy, B. 54, 2138). Stäbchen (aus Eisessig). F: 164°.
- 2.7 Dibrom 9  $[\beta$  naphthyl methyl] fluoren  $C_{24}H_{16}Br_2$ , s. nebenstehende Formel. B. Beim Kochen der alkoh. Lösung der Natriumverbindung des [2.7-Dibrom-fluorenyl-9)]-glyoxylsäureäthylesters mit 2-Brommethyl-naphthalin und nachfolgenden Zusatz von Kalilauge (SIEGLITZ, B. 53, 2248). Gelbliche Stäbchen (aus Eisessig). F: 145—146°.
- 7. 6.7'- Dimethyl- [naphtho-2'.3': 2.3-anthracen], 2.9- Dimethyl-pentacen C<sub>M</sub>H<sub>18</sub>, s. nebenstehende Formel. Zur Konstitution vgl. E. Clar, Aromatische Kohlenwasserstoffe [Berlin 1941], S. 183. B. Neben 2.11-Dimethyl-pentaphen (S. 672) bei der Pyrolyse von 1.4-Bis-[2.4-dimethyl-benzoyl]-benzol oder von 1.2-Bis-[2.5-dimethyl-benzoyl]-benzol (Syst. Nr. 684) und Oxydation des Reaktionsgemisches mit Chloranii in siedendem Xylol (Clar, John, Hawran, B. 62, 948; Cl., J., B. 64 [1931], 983, 987) oder durch Sublimation des Reaktionsgemisches über Kupferpulver bei 370—400° unter 12—20 mm Kohlendioxyd-Druck (Cl., J., B. 62, 3027). Blaue, zuweilen kupferglänzende Krystalle (durch Sublimation); blaue Nadeln (aus Nitrobenzol). Licht- und luftbeständig. F: 360° (Cl., J., B. 62, 3027). Unlöslich oder sehr schwer löslich in den gebräuchlichen Lösungsmitteln, schwer löslich in Nitrobenzol; die Farbe der Lösung ist je nach der Temperatur grün, blau oder rotviolett. Die Benzol-Lösung fluoresciert am Tageslicht violett, bei Ultraviolett-

Bestrahlung rot. Löslich in konz. Schwefelsäure mit violetter Farbe, die beim Verdünnen mit Wasser über Rot in Grün übergeht. — Liefert bei der Oxydation mit Chromsäure 2.9-Dimethyl-pentacenchinon-(6.13) (Syst. Nr. 687).

8. 4'.4"-Dimethyl-[dibenzo-1'.2':2.3; 1".2":6.7-phenanthren], 6.7'-Dimethyl-[naphtho-2'.3':1.2-anthracen], 2.10-Dimethyl-pentaphen C<sub>11</sub>H<sub>18</sub>, Formel I. Zur Konstitution vgl. E. Clar, Aromatische Kohlenwasserstoffe [Berlin 1941]. S. 154. — B. Neben nicht näher beschriebenem 2.10-Dimethyl-6.13-dihydro-pentacen

(Formel II) und anderen Verbindungen bei der Pyrolyse von 1.3-Bis-[2.4-dimethyl-benzoyl]benzol (Syst. Nr. 684) (Clar, John, Hawran, B. 62, 948; Cl., J., B. 64 [1931], 983, 987; vgl. I. G. Farbenind., D. R. P. 481819; C. 1930 I, 1053; Frdl. 16, 717). — Blaßgelbgrüne Nadeln (aus Xylol). F: 325° (Cl., Aromatische Kohlenwasserstoffe, S. 154 Anm. 5; vgl. Cl., J.). Die Lösungen fluorescieren blau, bei Ultraviolett-Bestrahlung stark grünlichgelb (Cl., J.). Löst sich in konz. Schwefelsäure erst mit brauner, dann mit schmutzig grüner Farbe (Cl.. J.). — Liefert bei der Oxydation mit siedendem Chromeisessig ein Dichinon C<sub>24</sub>H<sub>14</sub>O<sub>4</sub> (Formel III; Syst. Nr. 728) (Cl., J., H.; Cl., J., B. 62, 3022, 3026; 64, 987).

9. 4'.5"-Dimethyl-[dibenzo-1'.2':2.3:1".2":6.7-phenanthren], 7.7'-Dimethyl-[naphtho-2'.3':1.2-anthracen], 2.11-Dimethyl-pentaphen C<sub>24</sub>H<sub>18</sub>, Formel IV. Zur Konstitution vgl. E. Clar, Aromatische Kohlenwasserstoffe [Berlin 1941], S.154.—B. Neben nicht näher beschriebenem 2.9-Dimethyl-6.13-dihydro-pentacen (Formel V) und anderen Verbindungen bei der Pyrolyse von 1.4-Bis-[2.4-dimethyl-benzoyl]-benzol

(Syst. Nr. 684) oder von 1.2-Bis-[2.5-dimethyl-benzoyl]-benzol (Syst. Nr. 684) (CLAR, JOHN, HAWRAN, B. 62, 948; CL., J., B. 64 [1931], 983, 986). — Blaßgelbgrüne Nadeln (aus Xylol). F: 325° (CL., Aromatische Kohlenwasserstoffe, S. 154 Anm. 5; vgl. CL., J.). Die Lösungen fluorescieren blau, bei Ultraviolett-Bestrahlung stark grünlichgelb (CL., J.). Löst sich in konz. Schwefelsäure erst mit brauner, dann mit schmutzig grüner Farbe (CL., J.). — Liefert bei der Oxydation mit siedendem Chromeisessig ein Dichinon C<sub>24</sub>H<sub>14</sub>O<sub>4</sub> (Formel VI; Syst. Nr. 728) (CL., J., H.; Cl., J., B. 62, 3022, 3026; 64, 987).

# 4. Kohlenwasserstoffe $\mathrm{C_{25}H_{20}}$ .

- 1. Tetraphenylmethan C<sub>25</sub>H<sub>20</sub> = C(C<sub>6</sub>H<sub>5</sub>)<sub>4</sub> (H 738; E I 371). B. Bei der Umsetzung von Triphenylmethyl-Natrium (Syst. Nr. 2357) mit Brombenzol in flüssigem Ammoniak + Toluol (Kraus, Kawamura, Am. Soc. 45, 2759). Bei der Zersetzung von Benzolazo-triphenylmethan in reinem Ligroin bei 70—80° (Wieland, Popper, Seeffried, B. 55, 1825). Nadeln (aus Acetanhydrid). F: 281—282° (W., P., S.). Unlöslich in Alkohol, Äther, Petroläther und Ligroin, löslich in heißem Eisessig, Acetanhydrid, Benzol, Toluol und Äthylenbromid (Kr., Ka.). Kontaktwinkel gegen Wasser: Nietz, J. phys. Chem. 32, 261. Liefert bei der Hydrierung unter 80—100 Åtm. Druck in Gegenwart von Nickel(III)-oxyd in Cyclohexan bei 275—285° Dicyclohexylmethan und wahrscheinlich Phenylcyclohexylmethan; bei nochmaliger Hydrierung des Reaktionsprodukts erhält man Tricyclohexylmethan (IPATJEW, Dolgow, C. r. 185, 211; Bl. [4] 41, 1622; Ж. 59, 1088).
- 2. 4-Benzhydryl-diphenyl, 4-Phenyl-triphenylmethan, Diphenyl-diphenylyl-methan  $C_{25}H_{20}=(C_6H_5)_2CH\cdot C_6H_4\cdot C_6H_5$  (H 738). B. Aus Phenylmagnesium-bromid und Triphenylchlormethan in Äther + Toluol unter Einleiten von Kohlendioxyd (GILMAN, JONES, Am. Soc. 51, 2842). Krystalle (aus Alkohol). F: 111° (G., J.).  $D_4^0$ : 1,161 (ZIEGLER, DITZEL, A. 473, 207).

3. Bis - diphenylyl - methan, 4.4'- Diphenyl - diphenylmethan C<sub>25</sub>H<sub>20</sub> = (C<sub>6</sub>H<sub>5</sub>·C<sub>6</sub>H<sub>4</sub>)<sub>2</sub>CH<sub>2</sub> (H 738; E I 370). Blättchen (aus Alkohol). F: 159° (R. MEYER, W. MEYER, TAEGER, B. 53, 2039). D<sub>1</sub><sup>2</sup>: 1,176 (ZIEGLER, DITZEL, A. 473, 201). Löst sich in rauchender Schwefelsäure mit grüner bis blaugrüner Farbe, in konz. Schwefelsäure bei längerem Aufbewahren mit rötlicher Farbe, die beim Erwärmen in Karminrot, bei Zusatz von Natriumnitrit in ein tiefes Violett übergeht (M., M., T.).

Bis-diphenylyl-chlormethan, 4.4'-Diphenyl-benzhydrylchlorid, Dibiphenylyl-chlormethan  $C_{25}H_{19}Cl=(C_6H_5\cdot C_6H_4)_2CHCl$ .

a) Höherschmelzende Form. B. Durch längeres Einleiten von trocknem Chlor-

wasserstoff in eine mit Calciumchlorid versetzte Lösung von höherschmelzendem Bis-di-phenylyl-carbinol in Benzol (Straus, Demus, B. 59, 2427, 2430). Aus der niedrigerschmelzenden Form durch gelindes Erwärmen in Lösung auf dem Wasserbad oder durch Schmelzen (St., D.). — F: 130—131°. Leicht löslich in Benzol und Schwefelkohlenstoff, schwer in Äther und Petroläther. Löst sich in konz. Schwefelsäure unter Entwicklung von Chlorwasserstoff mit blauer Farbe; die Lösung zeigt in dicker Schicht roten Dichroismus. Die Lösung in flüssigem Schwefeldioxyd ist farblos. Absorptionsspektrum in Benzol: St., D. — Lagert sich beim Kochen in Benzol oder Schwefelkohlenstöff in das niedrigerschmelzende Isomere um. Liefert bei längerem Schütteln mit Natronlauge in Aceton das höherschmelzende

Bis-diphenylyl-carbinol.

b) Niedrigerschmelzende Form. B. Durch längeres Einleiten von Chlorwasserstoff in eine mit Calciumchlorid versetzte Lösung von niedrigerschmelzendem Bisdiphenylyl-carbinol in Benzol (Straus, Demus, B. 59, 2427, 2430). Aus dem höherschmelzenden Isomeren durch Kochen mit Schwefelkohlenstoff oder Benzol (St., D.). — Krystalle (aus Benzol + Petroläther oder Schwefelkohlenstoff + Petroläther). F: 98°. Leicht löslich in Benzol und Schwefelkohlenstoff, schwer in Petroläther und Äther. Löst sich in konz. Schwefelsäure unter Entwicklung von Chlorwasserstoff mit blauer Farbe; die Lösung zeigt in dicker Schicht roten Dichroismus. Die Lösung in flüssigem Schwefeldioxyd ist farblos. Absorptionsspektrum in Benzol: St., D. — Lagert sich bei gelindem Erwärmen in Lösung auf dem Wasserbad oder beim Schmelzen in das höherschmelzende Isomere um. Liefert bei längerem Schütteln mit Natronlauge + Aceton, mit Petroläther und Wasser oder mit Petroläther und 0,1 % iger Natronlauge ein Gemisch der beiden isomeren Bis-diphenylylcarbinole.

Bis-diphenylyl-dichlormethan, 4.4'-Diphenyl-benzophenonchlorid  $C_{25}H_{18}Cl_2 = (C_6H_5\cdot C_6H_4)_2CCl_2$  (E I 370). B. Aus 4.4'-Diphenyl-benzophenon und Phosphorpentachlorid bei 140° (STRAUS, DÜTZMANN, J. pr. [2] 103, 43). — Prismen (aus Äther). F: 135—136°. Löst sich in konz. Schwefelsäure unter Chlorwasserstoff-Entwicklung mit blaugrüner, in flüssigem Schwefeldioxyd mit rein blauer Farbe und rotem Dichroismus. Elektrische Leitfähigkeit in flüssigem Schwefeldioxyd: St., D.

CHCH:CH:CH-C<sub>6</sub>H<sub>5</sub> 4. 1-Benzyl-3-cinnamyliden-inden  $C_{25}H_{20} = C_6H_4$ CLCH2 CH5

Aus 1-Benzyl-inden und Zimtaldehyd (Wislicenus, Hentrich, A. 436, 21). — Orangefarbene Prismen (aus Alkohol). F: 161-1620. Leicht löslich in Benzol. Färbt sich mit konz. Schwefelsäure dunkelgrün.

5. 5-Benzhydryl-acenaphthen, Diphenyl-acenaphthyl-(5)methan CasH<sub>20</sub>, s. nebenstehende Formel. B. Bei der Destillation von 5-[2-Carboxy-benzhydryl]-acenaphthen mit überschüssigem Bariumhydroxyd (Lorriman, Am. Soc. 47, 214). — Krystalle (aus Ather). F: 176°. Sehr leicht löslich in Benzol und Toluol. — Liefert bei der Oxydation mit Dichromat in Eisessig 4-[α-Oxy-benzhydryl]-naphthalsäure, Benzophenon und Naphthalsäure.



6. 9 - [2.5 - Dimethyl - phenyl] - 1.2 - benzo - fluoren, 11-[2.5-Dimethyl-phenyl] - chrysofluoren C<sub>15</sub>H<sub>20</sub>, s. nebenstehende Formel. B. Aus Phenyl-[2.5-dimethyl-phenyl]-\(\alpha\)-naphthyl-chlormethan beim Erwärmen mit Nitromethan oder bei der Wasserdampfdestillation (Dilthey, J. pr. [2] 109, 315). — Krystalle (aus Alkohol). F: 215°.

# 5. Kohlenwasserstoffe $C_{26}H_{22}$ .

1. 1.1.2.2-Tetraphenyl-äthan, Dibenzhydryl  $C_{26}H_{22}=(C_6H_5)_2\text{CH}\cdot\text{CH}(C_6H_5)_2$  (H 739; E I 371). B. Durch Reduktion von Tetraphenyläthylen mit Natrium in siedendem Isoamylalkohol (Ley, Rinke, B. 56, 776). In geringer Menge beim Kochen von Diphenylmethan mit Aluminiumpulver (Postowski, Lugowkin, J. pr. [2] 122, 145;  $\times$  61, 1283).

Aus Diphenylchlormethan bei der Grignardierung in Gegenwart von etwas Jod (GILMAN, KIRBY, Am. Soc. 48. 1735) oder, neben 2.4.6-Tribenzhydryl-phenol, beim Erhitzen mit Mol Phenol auf ca. 180° (Van Alphen, R. 46, 801). Aus Diphenylbrommethan bei der Grignardierung in Gegenwart von etwas Athylbromid in Äther (Bert, C. r. 177, 325) oder in geringer Menge beim Kochen mit Quecksilber oder Quecksilberdibutyl in Toluol (Whitmore, Thurman, Am. Soc. 51, 1494, 1500). Aus Benzhydrol beim Kochen mit Aluminiumpulver (Postowski, Lugowkin, J. pr. [2] 122, 145; Ж. 61, 1283), in geringer Menge beim t'berleiten über Kupfer bei 330° (Hara, Mem. Coll. Sci. Kyoto [A] 9, 415; C. 1926 II, 2658) oder bei der Reduktion mit Vanadium(II)-chlorid in Aceton + konz. Salzsäure unter Kohlendioxyd (Conant, Small, Taylor, Am. Soc. 47, 1973). Neben anderen Produkten bei der Einw. von 9-Chlor-fluoren auf Benzhydrylnatrium (Syst. Nr. 2357) in Äther (Kliegl. B. 62, 1330; 64 [1931], 2422; vgl. Schlenk, Bergmann, A. 463, 198; B., B. 63 [1930], 1626). Neben anderen Produkten bei längerem Erhitzen von Phenyl-benzhydryläther mit Natrium im Rohr auf 100° und Behandeln des Reaktionsprodukts mit Äther, Alkohol und Wasser (Schorigin, B. 59, 2512). In geringer Menge neben anderen Produkten bei der Hydrierung von Benzophenon in Gegenwart von feinverteiltem Kupfer bei 190° und 52—67 Atm. Druck (Kubota, Hayashi, Bl. chem. Soc. Japan 1, 15, 68; C. 1926 I, 2911; II, 200) und beim Überleiten von Benzophenonoxim über Kupfer in Wasserstoff-Atmosphäre bei 200° (Yamaguchi, Bl. chem. Soc. Japan 1, 15, 68; C. 1926 I, 3538). In geringer Menge beim Durchleiten von Dibenzhydrylketon-Dampf durch ein rotglühendes Rohr (Vorländer, Rack, B. 56, 1125). Neben anderen Produkten beim Kochen von 23c-Dimethyl-β,β-diphenyl-propiophenon mit Natriumamid in Xylol und Zersetzen des Reaktionsprodukts mit Wasser (Ramart, Albesco, C. r. 174, 1290; Albesco, A. ch. [9] 18, 250). Durch Umsetzung von 1 Mol 1.1.2.2-Tetrachlor-āthan mit 4 Mol Phenylmagnesiumbromid und Ameisensäureäthylester in Ge

H 740, Z. 1 v.o. statt "konz. Kalilauge" lies "konzentrierter alkoholischer Kalilauge".

Krystalle mit 1C<sub>6</sub>H<sub>6</sub> (aus Benzol). F: 212,5° (Maquennescher Block) (Bert, C. r. 177, 325). D°: 1.170 (Ziegler, Ditzel, A. 473, 201). Ultraviolett-Absorptionsspektrum in Chloroform: Ley, Rinke, B. 56, 773. — Liefert mit Kalium-Natrium-Legierung in absol. Äther bei Zimmertemperatur Benzhydryl-kalium (Syst. Nr. 2357) (Ziegler, Thielmann, B. 56, 1743; vgl. Conant, Garvey, Am. Soc. 49, 2600). Über Komplexbildung mit 1.3.5-Trinitro-benzol vgl. L., R., B. 56, 775.

- 1.2-Dichlor-1.1.2.2-tetraphenyl-äthan, Tetraphenyläthylenchlorid  $C_{26}H_{20}Cl_2 = (C_6H_5)_2CCl\cdot CCl(C_6H_5)_2$  (E I 371). B. Beim Sättigen einer Lösung von Benzpinakon in Benzol mit Chlorwasserstoff (Madelung, Oberwegner, B. 60, 2484). Krystalle (aus Benzol + Petroläther). F: 186° (M., O.), 180—182° (Zers.) (Norris, Priv.-Mitt.; vgl. N., Am. Soc. 38, 707). Liefert mit Alkalilauge Benzpinakon zurück (M., O.).
- 1.1.2.2 Tetrakis [4 nitro phenyl] äthan  $C_{26}H_{18}O_8N_4 = (O_2N\cdot C_6H_4)_2CH\cdot CH(C_6H_4\cdot NO_2)_2$  (H 740). F: 334° (BINAGHI, G. 57, 675).
- 2. 1.1.1.2-Tetraphenyl-äthan, Triphenyl-benzyl-methan C<sub>26</sub>H<sub>22</sub> = (C<sub>6</sub>H<sub>5</sub>)<sub>3</sub>C·CH<sub>2</sub>·C<sub>6</sub>H<sub>5</sub> (H 740; E I 372). B. Neben anderen Produkten bei gelindem Erwärmen von Trityl-phenacetyl-diimid in Xylol oder in Petroläther unter Stickstoff (Wieland, Hintermaier, Dennstedt, A. 452, 19). Durch Umsetzung von Benzylhydrazin mit Triphenyl-chlormethan in Äther und Aufbewahren des Reaktionsgemisches an der Luft (W., H., D., A. 452, 31). F: 143—144° (W., H., D.), 144° (Van Alphen, R. 46, 503). Liefert mit Kalium-Natrium-Legierung in absol. Äther bei Zimmertemperatur Tritylkalium (Syst. Nr. 2357) und nicht isoliertes Benzyl-kalium(?) (Ziegler, Thielmann, B. 56, 1743). Bei der Destillation unter gewöhnlichem Druck entsteht hauptsächlich Triphenylmethan (Z., Th.).
- 3. Triphenyl-m-tolyl-methan, 3-Methyl-tetraphenylmethan  $C_{26}H_{22} = (C_6H_5)_3C \cdot C_6H_4 \cdot CH_3$ .
- 4-Chlor-3-methyl-tetraphenylmethan  $C_{26}H_{21}Cl = [(C_6H_5)_3C]^1C_6H_3Cl^4(CH_2)^3$ . B. Durch Einw. von siedender salzsaurer Kupfer(I)-chlorid-Lösung auf diazotiertes 4-Amino-3-methyltetraphenylmethan (Hardy, Soc. 1929, 1009). Wurde nicht ganz rein erhalten. Bräunliche Krystalle (aus Eisessig). F:  $160^{\circ}$ . Ist gegen Schwefelsäure und gegen Jodwasserstoff-Eisessig beständig.
- 4. 4-Methyl-4'-benzhydryl-diphenyl, 4-p-Tolyl-triphenylmethan C<sub>35</sub>H<sub>25</sub> = (C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>CH·C<sub>6</sub>H<sub>4</sub>·C<sub>6</sub>H<sub>4</sub>·CH<sub>3</sub>. B. Beim Kochen von 4-p-Tolyl-triphenylchlormethan mit Zink und Eisessig (Gomberg, Pernert, Am. Soc. 48, 1382). F: 131°.

- **4-p-Tolyl-triphenylchlormethan**, **4-p-Tolyl-triphenylmethylchlorid**  $C_{26}H_{21}Cl = (({}^{\circ}_{6}H_{5})_{2}CCl \cdot C_{6}H_{4} \cdot Cl_{4} \cdot Cl_{4} \cdot B.$  Bei der Einw. von Acetylchlorid auf 4-p-Tolyl-triphenylcarbinol (Syst. Nr. 547) in Benzol + Äther (Gomberg, Pernert, Am. Soc. **48**, 1382). Prismen. F: 122°. Löslich in absol. Methanol unter Bildung von 4-p-Tolyl-triphenylcarbinolmethyläther. Liefert beim Schütteln mit feinverteiltem Silber in Benzol 4-p-Tolyltriphenylmethyl (S. 678).
- 5. **2.2'-Diphenyl-dibenzyl**, 2.2'-Dibiphenyläthan  $C_{26}H_{22} = C_6H_5 \cdot C_6H_4 \cdot CH_2 \cdot CH_2 \cdot C_6H_5 \cdot B$ . Neben 2-Methyl-diphenyl beim Behandeln von 2-Phenyl-benzylbromid mit Natrium in Äther (v. Braun, Manz, A. **468**, 275). Zähes Öl. Kp<sub>12</sub>: 260°.
- 6. 3.5-Diphenyl-2-benzyl-toluol  $C_{2\eta}H_{22}$ , s. nebenstehende Formel. B. Beim Erhitzen von 3.5-Diphenyl-2-benzoyl-toluol (Syst. Nr. 661) mit Jodwasserstoffsäure und rotem Phosphor im Rohr auf  $C_{6H_5}$ .  $C_{6H_5}$ .  $C_{6H_5}$ .  $C_{6H_5}$ . Leicht löslich in heißem Alkohol und heißem Methanol, sehr leicht in kaltem Benzol und Ligroin.

#### 7. 1.2.3.4-Tetrahydro-9.10-diphenyl-anthracen C<sub>26</sub>H<sub>22</sub>, Formel I.

1.2.3.4-Tetrabrom-1.2.3.4-tetrahydro-9.10-diphenyl-anthracen, 9.10-Diphenyl-anthracen-tetrabromid-(1.2.3.4)  $C_{26}H_{18}Br_4$ , Formel II. B. Durch Einw. von 3 Mol Brom auf 9.10-Diphenyl-anthracen in Schwefelkohlenstoff (Barnett, Matthews, B. 59, 1438). — Krystalle (aus Benzol + Benzin). F: 160° (Zers.).

$$I. \begin{picture}(20,0) \put(0,0){\ovalign{\hfill{ \hfill{ \hfil} \hfil} \hfill{ \hfill{ \hfill{ \hfill{ \hfil}\ \hfill{ \hfill{ \hfil}\hfil}\ \hfill{ \hfill{ \hfil}\ \hfil}\ \hfil}\ \hfil}\$$

8. 5-[4-Methyl-benzhydryl]-acenaphthen, Phenyl-p-tolyl-acenaphthenyl-(5)-methan C<sub>26</sub>H<sub>22</sub>, Formel III. B. Bei der Destillation von [2-Carboxy-phenyl]-p-tolyl-acenaphthenyl-(5)-methan mit Bariumhydroxyd (Lorriman, Am. Soc. 47, 214).—F: 209°. Löslich in Äther und heißem Eisessig.

#### 6. Kohlenwasserstoffe $C_{27}H_{24}$ .

- 1. 1.1.3.3-Tetraphenyl-propan, Dibenzhydrylmethan  $C_{27}H_{24} = (C_6H_5)_2CH \cdot CH_2 \cdot CH(C_6H_5)_2$  (H 741). B. Durch 4-stdg. Kochen von 1.1.3.3-Tetraphenyl-propen mit Jodwasserstoffsäure und Eisessig (Vorländer, Weinstein, B. 56, 1123).  $D_4^o$ : 1,135 (Ziegler, Ditzel, A. 473, 204).
- 2. 1.1.1.3-Tetraphenyl-propan C<sub>27</sub>H<sub>24</sub> = (C<sub>6</sub>H<sub>5</sub>)<sub>3</sub>C·CH<sub>2</sub>·CH<sub>2</sub>·C<sub>6</sub>H<sub>5</sub>. B. Durch Hy-drierung von Tetraphenylpropin in Gegenwart von Platinoxyd in Eisessig (Wieland, Kloss, A. 470, 214). Prismen (aus Alkohol). F: 126°.
- 3. 1.3 Dimethyl 5 triphenylmethyl benzol, 5 Trityl m-xylol C<sub>27</sub>H<sub>24</sub>, s. nebenstehende Formel. B. Aus 1.3 Dimethyl 5-triphenylmethyl-benzol-diazoniumsulfat-(2) beim Behandeln mit absol. Alkohol und Kupferpulver (BATTEGAY, KAPPELER. Bl. [4] 35, 995). (C<sub>6</sub>H<sub>5</sub>)<sub>3</sub>C · CH<sub>3</sub> Blättchen (aus Alkohol). F: 154°. Kp: 450°.
- 4.  $2-\beta$ -Phenäthyl-triphenylmethan, 2-Benzhydryl-dibenzyl  $C_{27}H_{24}=(C_6H_5)_2CH\cdot C_6H_4\cdot CH_2\cdot CH_2\cdot C_6H_5$ .
- 2-β-Phenäthyl-triphenylchlormethan C<sub>27</sub>H<sub>23</sub>Cl = (C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>CCl·C<sub>5</sub>H<sub>4</sub>·CH<sub>2</sub>·CH<sub>2</sub>·C<sub>6</sub>H<sub>5</sub>.

  B. Durch Sättigung der Lösung von 2-β-Phenäthyl-triphenylcarbinol und Acetylchlorid in Benzol mit Chlorwasserstoff unter Eiskühlung (SCHLENK, BERGMANN, A. 463, 267). Stäbchen (aus Benzin). F: 128—130°. Liefert beim Erhitzen mit Chinolin im Rohr auf 150° 1.1.2-Triphenyl-hydrinden.

#### 7. Kohlenwasserstoffe $C_{28}H_{26}$ .

1. 1.16-Diphenyl-hexadecaoktaen-(1.3.5.7.9.11.13.15)  $C_{28}H_{26} = C_6H_5 \cdot [CH: CH]_8 \cdot C_6H_5$ . B. In geringer Menge beim Kochen von 1-Phenyl-heptatrien-(1.3.5)-al-(7) mit Bernsteinsäure, Acetanhydrid und Bleioxyd (Kuhn, Winterstein, Helv. 11, 114). — Wurde nicht rein erhalten. Blaustichig kupferrote Blättchen (aus Acetanhydrid. Dioxan oder Chloroform). F: 2856 (Zers.). Sehr schwer löslich in allen Lösungsmitteln mit roter Farbe. Löst sich in konz. Schwefelsäure mit blaugrüner Farbe (K., W., Helv. 11, 151).

- 2. 1.1.4.4-Tetraphenyl-butan C<sub>28</sub>H<sub>28</sub> = (C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>CH·CH<sub>2</sub>·CH<sub>2</sub>·CH(C<sub>6</sub>H<sub>6</sub>)<sub>2</sub> (H 741; E I 373). B. Aus α.α-Diphenyl-āthylen beim Schütteln mit Natriumpulver in Äther und Zersetzen des Reaktionsprodukts mit Wasser (Schlenk, Mitarb., B. 47 [1914], 478; SCH., D. R. P. 292310; Č. 1916 II, 114; Frdl. 13, 214), beim Schütteln mit einer Natrium-Kalium-Legierung in Äther und Zersetzen des Reaktionsprodukts mit Alkohol (WITTIG, v. Lupin, B. 61, 1633) oder in geringer Menge beim Behandeln mit Natrium, Animoniak und Toluol und Zersetzen des Reaktionsprodukts mit Ammoniumchlorid (Ziegler, Colonius, Schäfer, A. 473, 56). Aus dem höher- oder niedrigerschmelzenden 1.1.4.4-Tetraphenyl-buten-(2) beim Kochen mit Natrium und Isoamylalkohol (Schlenk, Bergmann, A. 463, 102, 106). Durch Hydrierung von 1.1.4.4-Tetraphenyl-butin-(2) in Gegenwart von Palladiumschwarz in Eisessig (Wieland, Kloss, A. 470, 215). Aus Tetraphenylbutatrien (S. 701) durch Reduktion mit Natrium in siedendem Isoamylalkohol oder durch Hydrierung in Gegenwart von Palladium-Tierkohle in Alkohol-unter Druck (Brand, B. 54, 2004; Salkind, Kruglow, B. 61, 2310). Durch Einw. von Jodwasserstoffsäure und Phosphor auf 1.4-Dioxy-1.1.4.4-tetraphenyl-butan (Wie, K.). Bei der Reduktion von 2.3-Dichlor-1.4-dimethoxy-1.1.4.4-tetraphenyl-butan oder von 3.4-Dichlor-2.2.5.5-tetraphenyl-tetrahydrofuran mit Natrium in siedendem Isoamylalkohol (Wittig, v. Lupin, B. 61, 1631). Krystalle (aus Methanol). F: 122° (Z., C., Sch.).
- 2.2.3.3 Tetrachlor 1.1.4.4 tetraphenyl butan  $C_{28}H_{22}Cl_4 = (C_6H_5)_2CH \cdot CCl_2 \cdot CCl_4(C_6H_5)_2$ . B. Entsteht aus 2.2.2-Trichlor-1.1-diphenyl-athan in ziemlich guter Ausbeute bei der Hydrierung in Gegenwart von Palladium-Calciumcarbonat in Alkohol + Pyridin bei ca. 50° (Brand, Horn, J. pr. [2] 115, 359), in geringer Menge beim Kochen mit Kupfer(II)-chlorid und Aluminium-Kupfer-Zink-Legierung oder Kupfer-Magnesium-Legierung in Alkohol (Br., B. 54, 1995) und bei der elektrolytischen Reduktion an einer Kupferkathode in heißer alkoholischer Salzsäure (Br., B. 54, 1987; vgl. Br., B. 46 [1913], 2940). Nadeln (aus Eisessig). F: 188—190° (Br., B. 54, 1995). Schwer löslich in Alkohol, löslich in siedendem Eisessig, Essigester, Aceton, Isoamylalkohol und Isoamylacetat, leicht löslich in kaltem Pyridin, Chloroform, Benzol und Toluol (Br., B. 54, 1996). Wird durch siedendes Pyridin nicht, durch siedende Natriumäthylat-Lösung nur wenig verändert; Einw. von siedender Natriumisoamylat-Lösung: Br., B. 54, 1996. Liefert beim Kochen mit Zinkstaub und Eisessig oder Alkohol, bei der elektrolytischen Reduktion an einer Bleikathode in siedendem Eisessig + konz. Salzsäure oder bei der Hydrierung in Gegenwart von Palladium-Calciumcarbonat in Pyridin + Alkohol ein Gemisch der beiden stereoisomeren 2.3-Dichlor-1.1.4.4-tetraphenyl-butene-(2) (Br., B. 54, 1997; Br., H.).
- 2.2.3.3-Tetrabrom -1.1.4.4-tetraphenyl-butan  $C_{28}H_{22}Br_4 = (C_8H_{5})_2CH\cdot CBr_2\cdot CBr_2\cdot CH(C_6H_{5})_2$ . B. Beim Kochen von 2.2.2-Tribrom-1.1-diphenyl-äthan mit Kupfer(II)-chlorid und Aluminium-Kupfer-Zink-Legierung in 95%igem Alkohol (Brand, B. 54, 1996). Krystalle (aus Essigester). F: 196—197°. Etwas schwerer löslich als die entsprechende Chlorverbindung (s. o.). Liefert beim Kochen mit Zinkstaub und Eisessig oder Alkohol 1.1.4.4-Tetraphenyl-butin-(2). Dieses entsteht auch neben geringen Mengen 2.3-Dibrom-1.1.4.4-tetraphenyl-buten-(2) bei der Hydrierung von 2.2.3.3-Tetrabrom-1.1.4.4-tetraphenyl-butan in Gegenwart von Palladium-Calciumcarbonat in Pyridin + Alkohol.
  - 3. 1.1.3.3-Tetraphenyl-butan  $C_{28}H_{26} = (C_6H_5)_2CH \cdot CH_2 \cdot C(C_6H_5)_2 \cdot CH_3$ .
- 1.2-Dibrom-1.1.3.3-tetraphenyl-butan  $C_{28}H_{24}Br_2 = (C_6H_5)_2CBr\cdot CHBr\cdot C(C_6H_5)_2\cdot CH_3$ . Beim Erwärmen von 1.1.3.3-Tetraphenyl-buten-(1) mit Brom in Tetrachlorkohlenstoff im Rohr (Lebedew, Andrejewski, Matjuschkina, Ж. 54, 227; B. 56, 2350). Zähes Öl.
- 4. 2.2.3.3 Tetraphenyl butan,  $\alpha.\alpha'$  Dimethyl dibenzhydryl  $C_{28}H_{26} = (C_6H_5)_2C(CH_3) \cdot C(CH_3)(C_6H_5)_2$ . B. Aus  $[\alpha.\alpha$ -Diphenyl-āthyl]-kalium (Syst. Nr. 2357) beim Behandeln mit Tetramethyläthylendibromid in Äther unter Kühlung (Ziegler, Schnell, A. 487, 232, 244) oder in geringerer Menge neben anderen Produkten bei der Einw. von Sauerstoff, Jod oder Brom (Z., Sch., A. 437, 231). Krystalle (aus Benzol + Alkohol). F: 126—127°. Zersetzt sich beim Erhitzen in Tetrachlorkohlenstoff auf 100° unter Bildung von 1.1-Diphenyl-äthan und  $\alpha.\alpha$ -Diphenyl-äthylen. Zersetzt sich auch beim Kochen mit Eisessig. Bei der Einw. von Kalium-Natrium-Legierung bildet sich  $[\alpha.\alpha$ -Diphenyl-äthyl]-kalium.
- 8. Tetrabenzylmethan  $C_{29}H_{28}=C(CH_2\cdot C_8H_5)_4$ . B. Entsteht neben viel 1.3-Diphenyl-2-benzyl-propen-(1) durch Einw. von äther. Benzylmagnesiumchlorid-Lösung auf Tribenzylbrommethan in Benzol und Erhitzen des Reaktionsprodukts auf 100° (Trotman. Soc. 127, 94). Krystalle (aus Äther). F: 164°. Sehr schwer löslich in Alkohol und Petroläther, leichter in anderen organischen Lösungsmitteln.

#### 9. Kohlenwasserstoffe $C_{30}H_{30}$ .

- 1. 1.1.6.6 Tetraphenyl-hexan  $C_{30}H_{30} = (C_6H_5)_2CH \cdot [CH_2]_4 \cdot CH(C_6H_5)_2$  (E I 374). B. Durch Reduktion von 1.1.6.6-Tetraphenyl-hexanol-(4)-on-(3) oder von 1.1.6.6-Tetraphenyl-hexandion-(3.4) mit Zinkstaub und konz. Salzsäure in Eisessig (Vorländer, Rack, Leister, B. 56, 1135). Durch Reduktion von 1.1.6.6-Tetraphenyl-hexanol-(4)-on-(3) mit amalgamiertem Zink und Salzsäure (V., R., L.). Blättchen (aus Eisessig), Nadeln (aus verd. Alkohol). F: 124—125°. Leicht löslich in heißem Eisessig, Alkohol, Benzol, Chloroform, Äther und Aceton, sehr schwer in Petroläther, unlöslich in Wasser. Gibt mit warmer konzentrierter Schwefelsäure eine gelbe Lösung, die beim weiteren Erhitzen braun wird.
- 2. 3.3.4.4 Tetraphenyl hexan  $C_{30}H_{30} = C_2H_5 \cdot C(C_6H_5)_2 \cdot C(C_6H_5)_2 \cdot C_2H_5$ . B. Aus  $[\alpha.\alpha$ -Diphenyl-propyl]-kalium (Syst. Nr. 2357) beim Behandeln mit Tetramethyläthylendibromid in Äther bei  $-20^{\circ}$  (Ziegler, Schnell, A. 437, 247). Krystalle (aus Chloroform und Alkohol). F: 85–86°. Zersetzt sich leicht beim Kochen in Schwefelkohlenstoff. Geschwindigkeit der Zersetzung in Benzol: Z., Sch.
- 3. 4.4'-Di-α-phenāthyl-dibenzyl C<sub>30</sub>H<sub>30</sub> = [C<sub>6</sub>H<sub>5</sub>·CH(CH<sub>3</sub>)·C<sub>6</sub>H<sub>4</sub>·CH<sub>2</sub>-]<sub>2</sub>. B. Beim Schütteln von 4.4'-Bis-[α-methoxy-α-phenyl-āthyl]-dibenzyl mit flüssiger Natrium-Kalium-Legierung in Dioxan unter Stickstoff und Behandeln der erhaltenen Kaliumverbindung mit Alkohol (Wittig, Leo, B. 61, 862). Blättchen (aus Alkohol). F: 97—98°.

#### 10. Kohlenwasserstoffe $C_{32}H_{34}$ .

- 1. 2.3-Dimethyl-1.4-diphenyl-2.3-dibenzyl-butan, 2.2.3.3-Tetrabenzyl-butan  $C_{32}H_{34} = (C_6H_5 \cdot CH_2)_2C(CH_3) \cdot C(CH_3)(CH_2 \cdot C_6H_5)_2$ . B. In geringer Menge neben anderen Produkten bei der Einw. von Äthylmagnesiumbromid auf 2-Brom-1-phenyl-2-benzyl-propan in Äther bei Zimmertemperatur (Trotman, Soc. 127, 92). Tafeln (aus Petrol-äther). F: 171°.
- 2. 1.1.4.4-Tetra-p-tolyl-butan  $C_{32}H_{34} = (CH_3 \cdot C_6H_4)_2CH \cdot CH_2 \cdot CH_2 \cdot CH_4 \cdot CH_3)_2$  (E I 374). B. Durch erschöpfende Hydrierung von Tetra-p-tolyl-butatrien in Gegenwart von Palladium-Tierkohle in Alkohol bei 60—70° (Brand, Wendel, J. pr. [2] 115, 347). Nadeln (aus Alkohol). F: 126°.
- 2.2.3.3-Tetrachlor-1.1.4.4-tetra-p-tolyl-butan  $C_{32}H_{30}Cl_4 = (CH_3 \cdot C_6H_4)_2CH \cdot CCl_2 \cdot CCl_2 \cdot CH(C_6H_4 \cdot CH_3)_2$ . B. Bei der Hydrierung von 2.2.2-Trichlor-1.1-di-p-tolyl-äthan mit der berechneten Menge Wasserstoff in Gegenwart von Palladium-Calciumcarbonat in Alkohol + Pyridin (Brand, Wendel, J. pr. [2] 116, 339). Krystalle (aus Eisessig). F: 178°. Leicht löslich in Benzol, Toluol, Xylol und Pyridin, schwer in heißem Eisessig, Essigester, Aceton und Isoamylalkohol, sehr schwer in heißem Alkohol. Liefert beim Kochen mit Zinkstaub und Eisessig oder Alkohol oder bei der Einw. von 2 Atomen Wasserstoff in Gegenwart von Palladium-Calciumcarbonat in Alkohol + Pyridin bei 40—50° die beiden stereoisomeren Formen des 2.3-Dichlor-1.1.4.4-tetra-p-tolyl-butens-(2).
- 2.2.3.3 Tetrabrom -1.1.4.4 tetra -p- tolyl butan  $C_{32}H_{30}Br_4 = (CH_3 \cdot C_6H_4)_2CH \cdot CBr_2$   $CBr_2 \cdot CH(C_6H_4 \cdot CH_3)_2$ . B. Aus 2.2.2-Tribrom-1.1-di-p-tolyl-äthan durch Kochen mit Kupfer (II)-chlorid oder Eisenchlorid und Aluminium-Kupfer-Zink-Legierung oder Kupfer-Magnesium-Legierung in Alkohol oder durch Hydrierung mit der berechneten Menge Wasserstoff in Gegenwart von Palladium-Calciumcarbonat in Alkohol (Brand, Wendel, J. pr. [2] 115, 348). Krystalle (aus Essigester). F: 233°. Fast unlöslich in kaltem Alkohol, schwer löslich in heißem Alkohol und in Eisessig, leicht in Essigester, Aceton, Benzol, Toluol, Xylol und Pyridin. Liefert beim Kochen mit Zinkstaub und Eisessig 1.1.4.4-Tetra-p-tolyl-butin-(2).

#### 11. Kohlenwasserstoffe $C_{34}H_{38}$ .

1. 2.2.5.5 - Tetramethyl - 3.3.4.4 - tetraphenyl - hexan, 1.2-Di-tert.-butyl-1.1.2.2 - tetraphenyl - åthan  $C_{34}H_{38} = (CH_3)_3 \cdot C(C_6H_5)_2 \cdot C(C_6H_5)_2 \cdot C(C_4H_3)_3$ . Das Mol. Gew. wurde kryoskopisch in Benzol und 4-Chlor-toluol unter Stickstoff bestimmt (Conant, Bigelow, Am. Soc. 50, 2046). — B. Bei der Einw. von Tetramethyläthylendibromid auf die Natriumverbindung des tert. Butyl-diphenylmethans (Syst. Nr. 2357) in Äther unter Stickstoff (C., B., Am. Soc. 50, 2045). — Krystalle (aus Äther + Petroläther). Schmilzt unter Stickstoff bei 138—141° zu einer roten Flüssigkeit, an der Luft bei 40—50°. — Ist unter Stickstoff im Dunkeln und am gedämpften Tageslicht haltbar. Geht an der Luft rasch in eine klebrige braune Masse über; zuweilen erfolgt auch (vielleicht durch Verunreinigungen oder Feuchtigkeit) spontane Zersetzung unter starker Erhitzung und Bildung eines gelben Ols, das einen weißen Rauch ausstößt. Eine 0,05 molare Lösung in Äthylbenzoat unter

678

Stickstoff ist bei Zimmertemperatur nur schwach gefärbt, wird aber bei 50° hellgelb, von 100° ab tiefgelb unter allmählicher Zersetzung. Die heiße unzersetzte Lösung wird beim Abkühlen wieder farblos. Geschwindigkeit der Zersetzung in 4-Chlor-toluol-Lösung bei 100°: C., B. Absorbiert in Äther- oder Brombenzol-Lösung Sauerstoff. Geschwindigkeit der Sauerstoffsufnahme bei 14°: C., B. Liefert bei Einw. von Kalium-Natrium-Legierung oder von 40% igem Natriumamalgam in Äther oder Benzol unter Stickstoff die Alkaliverbindung des tert. Butyl-diphenyl-methans; 1% iges Natriumamalgam greift nicht an.

- 2. Kohlenwasserstoff  $C_{34}H_{38}$ . Das Mol.-Gew. wurde kryoskopisch in Benzol bestimmt (Conant, Bigelow, Am. Soc. 50, 2048). B. Bei der Einw. einer ungenügenden Menge Kalium-Natrium-Legierung auf tert.-Butyl-diphenyl-chlormethan in Äther unter Stickstoff (C. B., Am. Soc. 50, 2043, 2048). Krystalle (aus Alkohol + Äther). F: 145°. Reagiert nicht mit Sauerstoff oder Kalium-Natrium-Legierung.
- 12. Bis-[2.2.8.8-tetramethyl-5-phenyl-nonadiin-(3.6)-yl-(5)], 1.1.2.2-Tetra-kis-[tert.-butyl-acetylenyl]-1.2-diphenyl-äthan  $C_{36}H_{46}=[(CH_3)_3C\cdot C:C]_2$   $C(C_6H_5)\cdot C(C_6H_5)[C:C\cdot C(CH_3)_3]_2$ . B. Beim Schütteln von Bis-[tert.-butyl-acetylenyl]-phenyl-brommethan mit fein verteiltem Silber in absol. Äther (Rossander, Marvel, Am. Soc. 51, 934). Krystalle (aus Alkohol + Äther). F: 98—99°. Die Lösungen in Brombenzol, Hexan, absol. Alkohol oder Xylol färben sich beim Erhitzen auf 100—140° gelblich bis dunkelrot. Die Lösung in Brombenzol wird beim Schütteln mit Sauerstoff bei ca. 100° nicht oxydiert. Liefert beim Schütteln mit Kalium-Natrium-Legierung oder besser mit 40 % igem Natrium-amalgam in Äther unter Stickstoff und Behandeln des Reaktionsprodukts mit Kohlendioxyd Bis-[tert.-butyl-acetylenyl]-phenyl-essigsäure.

#### 20. Kohlenwasserstoffe C<sub>n</sub> H<sub>2n-31</sub>.

4-p-Tolyl-triphenylmethyl  $C_{26}H_{21}=CH_8\cdot C_6H_4\cdot C_6H_4\cdot C(C_6H_5)_2$ . B. Eine Lösung in Benzol wurde beim Schütteln von 4-p-Tolyl-triphenylchlormethan mit feinverteiltem Silber in Benzol erhalten (Gomberg, Pernert, Am. Soc. 48, 1382). — Sehr leicht löslich in den meisten Lösungsmitteln, schwer in Petroläther. Die Lösung in Benzol ist orangerot und selbst im Sonnenlicht einige Zeit haltbar; unter dem Einfluß von Luftsauerstoff wird die Lösung unter Bildung von Bis-[4-p-tolyl-triphenylmethyl]-peroxyd (Syst. Nr. 547) farblos. Die Lösung in Benzol addiert 44% der berechneten Menge Jod. [Ammerlahn]

# 21. Kohlenwasserstoffe C<sub>n</sub>H<sub>2n-32</sub>.

1. 1.2; 3.4-Di-[naphthylen-(1.8)]-buten-(2), Diacenaph- H<sub>2</sub>C C CH<sub>2</sub> thenyliden, Biacen, Diacenaphthyliden C<sub>24</sub>H<sub>16</sub>, s. nebenstehende Formel (E I 374). B. Beim Kochen von 2-Oxo-diacenaphthenyliden oder 2.2'-Dioxo-diacenaphthenyliden mit Zinkstaub und Natriumacetat in Acetanhydrid (Dziewoński, Lityński, B. 58, 2543). — Sehr schwer löslich in Alkohol und Eisessig, leichter in siedendem Benzol, Xylol und Nitrobenzol. Sehr verdünnte, im durchgehenden Licht fast farblose Lösungen in Benzol und anderen Lösungsmitteln zeigen eine starke violettblaue Fluorescenz. Leicht löslich in konz. Schwefelsäure mit grüner Farbe; beim Aufbewahren wird die Lösung im auffallenden Licht feuerrot, im durchfallenden Licht indigoblau, schließlich verschwinden die dichroitischen Erscheinungen und die Lösung zeigt eine olivgrüne Färbung. — Pikrat. Carminrote Nadeln. F: 214° (Zers.).

# 2. Kohlenwasserstoffe $C_{25}H_{18}$ .

1. 3.3 - Diphenyl - 1- $\beta$  - naphthyl - propin - (1),  $\beta$  - Naphthyl - benzhydryl - acetylen  $C_{25}H_{18}=C_{10}H_7\cdot C:C\cdot CH(C_6H_5)_2$ .

8-Chlor-3.3-diphenyl-1- $\beta$ -naphthyl-propin-(1)  $C_{25}H_{17}Cl = C_{10}H_7 \cdot C : C \cdot CCl(C_5H_5)_2 \cdot B$ . Beim Behandeln von 3.3-Diphenyl-1- $\beta$ -naphthyl-propin-(1)-ol-(3) mit Phosphortrichlorid in Petroläther (Willemart, A. ch. [10] 12, 389). — Krystalle mit  $^{1}$ /<sub>1</sub>(?) Ather (aus Ather). F: 116—117° (Zers.; Maquennescher Block). — Gibt beim Kochen mit Alkohol  $\alpha$ .  $\alpha$ -Diphenyl- $\beta$ -[ $\beta$ -naphthoyl]-äthylen (W., C.  $\tau$ . 188, 1174; A. ch. [10] 12, 390). Liefert bei raschem Erhitzen im Wasserstrahlvakuum auf ca. 200° Dibenzorubren (S. 729) (W., A. ch. [10] 12, 399).

- 1.3-Diphenyl-3- $\alpha$ -naphthyl-propin-(1)  $C_{25}H_{18} = C_6H_5 \cdot C : C \cdot CH(C_6H_5) \cdot C_{10}H_7$ .
- 3-Chlor-1.3-diphenyl-3-α-naphthyl-propin-(1) C<sub>25</sub>H<sub>17</sub>Cl = C<sub>6</sub>H<sub>5</sub>·C·CCl(C<sub>6</sub>H<sub>5</sub>)·C·<sub>10</sub>H<sub>7</sub>. B. Beim Behandeln von 1.3-Diphenyl-3-α-naphthyl-propin-(1)-ol-(3) mit Phosphortrichlorid in absol. Äther (WILLEMART, A. ch. [10] 12, 380). F: 130—131° (Zers.; Maquennescher Block). Zersetzt sich beim Aufbewahren nach einigen Stunden unter Chlorwasserstoff-Abspaltung. Gibt beim Erhitzen unter Abspaltung von Chlorwasserstoff ein stark gefärbtes Harz, dessen Fluorescenz am Sonnenlicht verschwindet. Liefert bei 2-stdg. Kochen mit Alkohol β-[Naphthyl-(1)]-chalkon (W., C. r. 188, 1173; A. ch. [10] 12, 383).
- 3. 9.9 Diphenyl fluoren, Diphenyl diphenylen methan  $C_{25}H_{18} =$ C<sub>6</sub>H<sub>4</sub> C(C<sub>6</sub>H<sub>5</sub>)<sub>2</sub> (H 743). B. Aus 9.9-Diphenyl-fluoren-carbonsäure-(4) durch Destillation mit 2 Tln. Calciumoxyd im Vakuum (SSERGEJEW, Ж. 61, 1438; C. 1930 II. 391). — Prismen oder Nadeln (aus Alkohol). F: 222—223° (Ss.). D<sup>o</sup>: 1,220 (ZIEGLER, DITZEL, A. 473, 207). Leicht löslich in Benzol; Sislich in Alkohol (Ss.). Gibt mit konz. Schwefelsäure eine farblose Lösung, die beim Erwärmen rötlichgelb wird (Ss.).

# 3. Kohlenwasserstoffe $C_{26}H_{20}$ .

1. Tetraphenyl-äthylen  $C_{2e}H_{20}=(C_eH_5)_2C:C(C_eH_5)_2$  (H 743; E I 376). B. Aus Benzophenonchlorid bei der Einw. von Kupferpulver in siedendem absolutem Benzol (SCHLENK, BERGMANN, A. 463, 15), von Natrium-tert.-amylalkoholat in Xylol (MACKENZIE, (Schlenk, Bergmann, A. 463, 10), von Natrhum-tert.-amylaikonoiat in Ayloi (Mackenzie, Soc. 121, 1697) oder der Dinatriumverbindung des 1.2-Dianilino-1.2-diphenyl-äthans in Äther (Sch., B., A. 463, 321). Neben anderen Produkten beim Erhitzen von Benzhydrol mit krystallisierter Phosphorsäure im Rohr auf 200° (Magidson, B. 58, 438). Durch Erhitzen von Benzhydryl-xanthogensäure-methylester auf 190—260° (Kurssanow, Ж. 60, 924; С. 1929 I, 997). Zur Bildung aus Thiobenzophenon und Kupferpulver nach Gattermann, Schulze (B. 29 [1896], 2945) vgl. Schönberg, Schütz, Nickel, B. 61, 1383. Aus Benzpinakon, Benzophenon oder β-Benzpinakolin beim Einleiten von Chlorwasserstoff in die siedende alkoholische Lösung bei Gegenwart von amelgamiertem Zink (Sternwart Wolfbergen Wolfb siedende alkoholische Lösung bei Gegenwart von amalgamiertem Zink (STEINKOPF, WOLFRAM. A. 430, 134, 137). Beim Einleiten von Bromwasserstoff in eine Lösung von Benzpinakon in kaltem Benzol (MADELUNG, OBERWEGNER, B. 60, 2484). Neben anderen Produkten durch Einleiten von Kohlenoxyd in eine äther. Lösung von Phenylmagnesiumbromid bei Gegenwart von Nickeltetracarbonyl (GILLILAND, BLANCHARD, Am. Soc. 48, 419). Durch Einw. von Schwefelkohlenstoff, Senföl oder Dithiobenzoesäureäthylester auf Diphenyldiazomethan (Staudinger, Siegwart, Helv. 3, 836). Beim Erhitzen von Tetraphenyläthylensulfid (C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>C<sub>-S</sub>C(C<sub>6</sub>H<sub>5</sub>)<sub>2</sub> auf ca. 175° (St., S., Helv. 3, 838).

Krystalle (aus Äther + Benzol oder Chloroform + Alkohol). F: 222° (SCHLENK, BERGMANN, A. 463, 15), 223—224° (Kurssanow, Ж. 60, 924; C. 1929 I, 997). Läßt sich um ca. 18° unterkühlen (Ley, Kirchner. Z. anorg. Ch. 173, 401).  $\mathbb{D}_0^*$ : 1,155 (Ziegler. Ditzel, A. 473, 201). Ultraviolett-Absorptionsspektrum in Chloroform: Ley, Rinke, B. 56, 773. — Bei der Oxydation mit Benzopersäure in Chloroform bei ca. 40° erhält man  $\alpha$ -Benzpinakolin ( $\mathbb{C}_6\mathbb{H}_5$ ) $_2\mathbb{C}_{-0}$   $\subset$   $\mathbb{C}(\mathbb{C}_6\mathbb{H}_5)_2$  (Syst. Nr. 2377) (Lévy, Lagrave, Bl. [4] 43, 440). Beim Behandeln mit Ozon in Chloroform entsteht Benzophenon (H. FISCHER, MÜLLER, H. 148, 175). Ist gegen Brom indifferent (LEY, R.). Reaktion mit Stickstofftrichlorid: Colle-MAN, CAMPBELL, Am. Soc. 50, 2757. Liefert beim Erhitzen mit Phosphorpentachlorid auf 150° Benzophenonchlorid (Magibson, B. 58, 439). Über die Bildung von 1.2-Dinatrium-1.1.2.2-tetraphenyläthan (Syst. Nr. 2357) bei der Einw. von Natriumpulver auf Tetraphenyläthylen (E I 5, 376) vgl. a. Schlenk, Mark, B. 55, 2297; Sch., Bergmann, A. 463, 3, 11. Zur Bildung eines farbigen Komplexes mit 1.3.5-Trinitro-benzol vgl. LEY, RINKE.

H 744, Z. 2-3 v. o. statt "der Verbindung ... Syst. Nr. 652)" lies "von Dibenzhydryldisulfid (H 6, 681)".

Z. 4 v. o. hinter ,,5, 970" schalte ein ,,Wuyts, B. 36, 863; Billmann, A. 364, 328".

Triphenyl-[4-chlor-phenyl]-äthylen, 4-Chlor-tetraphenyläthylen  $C_{26}H_{19}Cl=(C_6H_5)$ -C: $C_6C_6H_4Cl$  (E I 376). Zur Bildung durch Erhitzen von 4-Chlor-benzophenon-

chlorid mit Diphenylmethan vgl. Norris, Tibbetts, Am. Soc. 42, 2091. Verbindung mit Tetrachlorkohlenstoff  $C_{26}H_{10}Cl+2CCl_4$ . B. Beim Abdampfen einer Lösung von 4-Chlor-tetraphenyläthylen in Tetrachlorkohlenstoff bei  $-15^{\circ}$  (Norris, Tibbetts, Am. Soc. 42, 2092). Krystalle, die sich bei Zimmertemperatur rasch zersetzen.

Tetrakis - [4-chlor-phenyl] - äthylen, 4.4'.4''.- Tetrachlor - tetraphenyläthylen  $C_{ss}H_{16}Cl_4 = (C_eH_4Cl)_eC:C(C_eH_4Cl)_e$  (E I 376). B. Beim Erhitzen von Bis-[4-chlor-phenyl]-brommethan auf 150° (Norris, Tibbetts, Am. Soc. 42, 2091).

Additionelle Verbindungen: Norris, Tibbetts, Am. Soc. 42, 2091. — Verbindung mit Tetrachlorkohlenstoff  $C_{26}H_{16}Cl_4+2CCl_4$ . B. Beim Auflösen von 4.4'.4''.4'''-Tetrachlor-tetraphenyläthylen in Tetrachlorkohlenstoff. Krystalle, die Tetrachlorkohlenstoff sehr einer heißen. — Verbindung mit Benzol  $C_{26}H_{16}Cl_4+C_6H_6$ . B. Beim Abkühlen einer heißen Lösung von 4.4.'4''.4'''-Tetrachlor-tetraphenyläthylen in Benzol auf Zimmertemperatur. Gibt beim Erhitzen auf 110° Benzol ab. — Verbindung mit Aceton  $C_{26}H_{16}Cl_4+2C_3H_6$ 0. B. Aus 4.4'.4''.4'''-Tetrachlor-tetraphenyläthylen in Aceton beim Abkühlen mit Calciumchlorid-Eis-Gemisch. Verwittert an der Luft schnell unter Abgabe von Aceton. — Verbindung mit Methyläthylketon  $C_{26}H_{16}Cl_4+C_4H_8$ 0. B. Beim Abkühlen einer heißen Lösung von 4.4'.4''.4'''-Tetrachlor-tetraphenyläthylen in Methyläthylketon auf Zimmertemperatur. Gibt beim Erhitzen auf 110° Methyläthylketon ab.

Tetrakis-[4-brom-phenyl]-äthylen, 4.4'.4''.4'''.Tetrabrom-tetraphenyläthylen  $C_{2a}H_{16}Br_4=(C_6H_4Br)_2C:C(C_6H_4Br)_2$  (H 744; E I 377). Krystalle (aus Eisessig oder Xylol). F: 242—243° (Mackenzie, Soc. 121, 1697). Löslich in Xylol, sehwer löslich in Ather (Norris, Tibbetts, Am. Soc. 42, 2089).

TIBBETTS, Am. Soc. 42, 2089).

Additionelle Verbindungen: Norris, Tibbetts, Am. Soc. 42, 2089. — Verbindung mit Chlorbenzol  $C_{26}H_{16}Br_4+C_6H_5Cl$ . B. Beim Kochen von 4.4'.4''.4'''. Tetrabromtetraphenyläthylen in Chlorbenzol. Krystalle. Verwittert an der Luft unter Abgabe von Chlorbenzol. — Verbindung mit Toluol  $C_{26}H_{16}Br_4+C_7H_8$ . B. Beim Kochen von 4.4'.4'''. Tetrabrom-tetraphenyläthylen in Toluol. Nadeln. Gibt bei  $110^\circ$  Toluol ab. — Verbindung mit p. Xylol  $C_{26}H_{16}Br_4+C_8H_{10}$ . B. Beim Abkühlen einer heißen gesättigten Lösung von 4.4'.4''.4'''. Tetrabrom-tetraphenyläthylen in p. Xylol auf Zimmertemperatur. Krystalle. Xylol wird bei  $110^\circ$  abgegeben. — Verbindung mit Diäthyläther  $C_{26}H_{16}Br_4+C_4H_{10}O$ . B. Beim Abdunsten einer verd. Lösung von 4.4'.4''.4'''. Tetrabrom-tetraphenyläthylen in Äther bei —  $10^\circ$ . Krystalle. — Verbindung mit Methylpropylketon  $C_{26}H_{16}Br_4+C_5H_{10}O$ . B. Beim Auflösen von 4.4'.4''.4'''. Tetrabrom-tetraphenyläthylen in siedendem Methylpropylketon. An der Luft schnell verwitternde Krystalle. — Verbindung mit Propyla cetat  $C_{26}H_{16}Br_4+C_5H_{10}O_2$ . B. Beim Auflösen von 4.4'.4''.4'''. Tetrabrom-tetraphenyläthylen in siedendem Propylacetat. An der Luft schnell verwitternde Krystalle. — Verbindung mit Åthylpropionat  $C_{26}H_{16}Br_4+C_5H_{10}O_2$ . B. Beim Auflösen von 4.4'.4''.4'''. Tetrabrom-tetraphenyläthylen in siedendem Propylacetat. An der Luft schnell verwitternde Krystalle. — Verbindung mit Åthylpropionat  $C_{26}H_{16}Br_4+C_5H_{10}O_2$ . B. Beim Auflösen von 4.4'.4''.4'''. Tetrabrom-tetraphenyläthylen in siedendem Åthylpropionat. An der Luft schnell verwitternde Krystalle. —

- 2.  $\alpha.\beta$ -Diphenyl- $\alpha$ -diphenylyl-āthylen,  $\alpha$ -Diphenylyl-stilben  $C_{26}H_{20}=C_6H_5\cdot C_6H_4\cdot C(C_6H_5)$ :  $CH\cdot C_6H_5$ . B. Aus Phenylbenzyl-diphenylyl-carbinol beim Einleiten von Chlorwasserstoff in die benzolische Lösung (Schlenk, Bergmann, A. 464, 29). Nadeln (aus Benzin). F: 134—135°. Gibt mit konz. Schwefelsäure erst nach langem Stehen eine blaustichig kirschrote Färbung.
- 3. α.α-Bis-diphenylyl-āthylen C<sub>28</sub>H<sub>20</sub> = C<sub>8</sub>H<sub>5</sub>·C<sub>6</sub>H<sub>4</sub>·C(:CH<sub>2</sub>)·C<sub>6</sub>H<sub>4</sub>·C<sub>6</sub>H<sub>5</sub>. B. Aus Methyl-bis-diphenylyl-carbinol durch Kochen mit Eisessig (Wittig, Lupin, B. 61, 1633) oder durch Erwärmen mit Eisessig und etwas konz. Schwefelsäure auf dem Wasserbad (Schlenk, Bergmann, A. 463, 43). Durch Einw. von Jod oder Tetramethyläthylendibromid auf 1.4-Dikalium-1.1.4.4-tetrakis-diphenylyl-butan in Benzol (W., L.). Krystalle (aus Eisessig + Benzol oder Xylol). F: 204—205,5° (W., L.), 211° (Sch., B.). Sehr schwer löslich in Äther (Sch., B.). Gibt mit konz. Schwefelsäure eine blaustichige Rotfärbung (Sch., B.; W., L.). Reagiert mit Natrium in äther. Lösung unter Bildung von 1.4-Dinatrium-1.1.4.4-tetrakis-diphenylyl-butan (Syst. Nr. 2357) (Sch., B.); in ähnlicher Weise wird auch die entsprechende Kaliumverbindung erhalten (W., L.).
- 4. 1-Phenyl-8-diphenylen-octatetraen-(1.3.5.7), 1-Phenyl-7-fluoreny-liden-heptatrien-(1.3.5)  $C_{26}H_{20} = \begin{array}{c} C_6H_4 \\ C_6H_4 \end{array}$  C:CH·[CH:CH]<sub>3</sub>·C<sub>6</sub>H<sub>5</sub>. B. In geringer Menge bei der Einw. von Fluoren auf 1-Phenyl-heptatrien-(1.3.5)-al-(7) in Natriumäthylat-Lösung, erst bei 55°, dann bei Zimmertemperatur (Kuhn, Winterstein, Helv. 11, 122). Wurde nicht vollkommen rein erhalten. Rote Nadeln (aus Aceton-Methanol). F: ca. 166° (Zers.). Leicht löslich in Chloroform, Benzol und Acetanhydrid, schwer in Alkohol und Äther. Löst sich in konz. Schwefelsäure mit blauer Farbe. Pikrat. F: 194° (K., W., Helv. 11, 150).
- 5. 9.9-Diphenyl-dihydroanthracen  $C_{36}H_{30}=C_6H_4$   $C_6C_4H_5)_2$   $C_6H_4$  (H 744). B. Durch Einw. von Phenylmagnesiumbromid auf 2-Benzyl-benzoesäure-äthylester in Äther, Zersetzung des Reaktionsprodukts mit Eis und Salzsäure und nachfolgendes Erwärmen mit einer Lösung von Chlorwasserstoff in Eisessig auf dem Wasserbad (BARNETT, COOK,

681

NIXON, Soc. 1927, 508). — F: 200°. — Liefert beim Erhitzen auf 250° im Sauerstoff-Strom oder beim Behandeln mit Benzalchlorid oder Benzophenonchlorid in der Hitze 10.10.10′.10′-Tetraphenyl-9.10.9′.10′-tetrahydro-dianthryl-(9.9′) (S. 728). Bei der Einw. von Aluminium-chlorid in siedendem Schwefelkohlenstoff entsteht 9-Phenyl-anthracen.

- 10-Chlor-9.9-diphenyl-dihydroanthracen  $C_{26}H_{19}Cl = C_6H_4 < C(C_6H_5)_2 > C_6H_4$ . B. Durch Einw. von Chlorwasserstoff auf 10-Oxy-9.9-diphenyl-dihydroanthracen in Eisessig (Bergmann, Hervey, B. 62, 916). Krystalle (aus Benzol). F: 226° (unkorr.). Liefert beim Kochen mit Kaliumcarbonat in Methanol 10-Methoxy-9.9-diphenyl-dihydroanthracen.
- 6. 9.10 Diphenyl 9.10 dihydro anthracen  $C_{26}H_{20} = C_6H_4 < \frac{CH(C_6H_5)}{CH(C_6H_5)} > C_6H_4$  (vgl. H 745).
- a) Niedrigerschmelzende Form. B. Neben dem höherschmelzenden Isomeren beim Kochen von 9.10-Diphenyl-anthracen mit Kalium in Xylol unter. tropfenweiser Zugabe von Alkohol oder mit Natrium und Isoamylalkohol (SCHLENK, BERGMANN, A. 463, 153; HAACK, B. 62, 1781). Bei der Einw. von Alkohol auf eine äther. Lösung von 9.10-Dinatrium-9.10-diphenyl-dihydroanthracen (SCHLENK, BERGMANN, A. 463, 154). Existiert in 2 polymorphen Formen: Lange, seidenglänzende Nadeln (bei langsamem Erkalten einer isoamylalkoholischen Lösung) vom Schmelzpunkt 199° (SCH., B.), 198,5—199,5° (korr.) (H.) und glitzernde Täfelchen (bei raschem Abkühlen im Quarzreagenzglas) vom Schmelzpunkt 190° (SCH., B.); bei längerem Aufbewahren unter der Mutterlauge gehen die Nadeln in die Täfelchen über (SCH., B.). Thermische Analyse des binären Systems mit 9.10-Diphenyl-anthracen: H., B. 62, 1776. Ultraviolett-Absorptionsspektrum: H.. B. 62, 1782, 1774. Die Lösung in Isoamylalkohol zeigt intensive Fluorescenz (SCH., B.). Fluoresciert und phosphoresciert im Kathodenlicht himmelblau (SCH., B.). Wird beim Verschmelzen mit Schwefel quantitativ in 9.10-Diphenyl-anthracen übergeführt (H.). Liefert mit Brom in siedendem Chloroform in heftiger Reaktion x-Tetrabrom-9.10-diphenyl-anthracen (SCH., B., 4. 463, 156).
- b) Höherschmelzende Form. B. Neben dem niedrigerschmelzenden Isomeren beim Kochen von 9.10-Diphenyl-anthracen mit Natrium und Isoamylalkohol (SCHLENK. BERGMANN, A. 463, 153; HAACK. B. 62, 1781; vgl. a. BARNETT, COOK, NIXON, Soc. 1927, 512) oder mit Kalium in Xylol unter allmählichem Zusatz von Alkohol (H., B., 62, 1772, 1780, 1781; vgl. SCH., BE., A. 463, 175). Ein Präparat, das vielleicht noch geringe Mengen des niedrigerschmelzenden Isomeren enthält, entsteht durch Einw. von Wasser auf 9.10-Dikalium (bzw. 9.10-Dinatrium)-9.10-diphenyl-dihydroanthracen (Ingold, Marshall. Soc. 1926, 3084). Tafeln (aus Essigester). F: 227—228° (korr.) (H.). Thermische Analyse des binären Systems mit 9.10-Diphenyl-anthracen: H., B. 62, 1776. Ultraviolett-Absorptionsspektrum in Lösung: H., B. 62, 1774. Die Lösung in Isoamylalkohol fluoresciert nicht (SCH., BE., A. 463, 153). Leuchtet bei Bestrahlung mit Kathodenlicht schneeweiß mit blauem Nachleuchten (SCH., BE., A. 463, 155). Wird beim Verschmelzen mit Schwefel quantitativ in 9.10-Diphenyl-anthracen übergeführt (H.). Liefert mit Brom in siedendem Chloroform x-Tetrabrom-9.10-diphenyl-anthracen (SCH., BE., A. 463, 156). Bei der Einw. von Aluminiumchlorid in siedendem Schwefelkohlenstoff erhält man 9.10-Diphenyl-anthracen und andere Produkte (BA., C., N.).
- 9.10-Dichlor-9.10-diphenyl-dihydroanthracen  $C_{26}H_{18}Cl_2 = C_6H_4 < \frac{CCl(C_6H_5)}{CCl(C_6H_5)} > C_6H_4$  (H 745). B. Durch Chlorieren einer Lösung von 9.10-Diphenyl-anthracen in Chloroform (Ingold, Marshall, Soc. 1926, 3083). Zur Bildung aus 9.10-Dioxy-9.10-diphenyl-dihydroanthracen und Chlorwasserstoff vgl. a. I., M. Nadeln. F: 170° (Zers.). Löst sich in flüssigem Schwefeldioxyd mit tiefgelber Farbe. Liefert bei der Reduktion mit Zinkstaub und Eisessig sowie beim Behandeln mit Kaliumjodid-Lösung oder wäßr. Harnstoff-Lösung 9.10-Diphenyl-anthracen. Beim Kochen mit Wasser entsteht 9.10-Dioxy-9.10-diphenyl-dihydroanthracen. Die Lösung in heißem Benzol liefert bei Einw. von 4 Mol Anilin 9.10-Dianilino-9.10-diphenyl-dihydroanthracen.

 $\textbf{9.10-Bis-[4-chlor-phenyl]-dihydroanthracen} \ \ C_{26}H_{18}Cl_2 = C_6H_4 < \begin{matrix} CH(C_6H_4Cl) \\ CH(C_6H_4Cl) \end{matrix} > C_6H_4.$ 

- a) Höherschmelzende Form. B. Neben der niedrigerschmelzenden Form bei der Reduktion einer siedenden alkoholischen Suspension von 9.10-Bis-[4-chlor-phenyl]-anthracen mit Natriumamalgam (Ingold, Marshall, Soc. 1926, 3086). Nadeln (aus Toluol + Alkohol). F: ca. 206°.
- b) Niedrigerschmelzende Form. B. s. o. bei der höherschmelzenden Form. Nadeln (aus Toluol + viel Alkohol). F: ca. 165° (INGOLD, MARSHALL, Soc. 1926, 3086).

1.5.9.10 - Tetrachlor - 9.10 - diphenyl - dihydroanthracen C<sub>28</sub>H<sub>16</sub>Cl<sub>4</sub>, s. nebenstehende Formel. B. Durch Behandeln von 1.5-Dichlor-9.10-diphenyl-anthracen mit einer Lösung von Chlor in Tetrachlorkohlenstoff (BARNETT, COOK, WILTSHIRE, Soc. 1927, 1729). Beim Einleiten von trocknem Chlorwasserstoff in eine Lösung von 1.5-Dichlor-9.10-dioxy-9.10-diphenyl-dihydroanthracen in sieden-

CCl(C6H3

essigsauren Kaliumjodid-Lösung Jod in Freiheit.

dem Tetralin (B., C., W.). - Krystalle. F: 2500 unter Rotfärbung. - Setzt aus einer 9.10 - Dichlor - 9.10 - bis - [4 - brom - phenyl] - dihydroanthracen  $C_{26}H_{16}Cl_2Br_2 =$ 

C<sub>6</sub>H<sub>4</sub> CCl(C<sub>6</sub>H<sub>4</sub>Br) C<sub>6</sub>H<sub>4</sub>. B. Beim Einleiten von Chlor in eine Lösung von 9.10-Bis-CCl(C<sub>6</sub>H<sub>4</sub>Br) Durch (Property Marghall Soc. 1996, 3087). Durch [4-brom-phenyl] ant hracen in Chloroform (Ingold, Marshall, Soc. 1926, 3087). Durch kurzes Einleiten von Chlorwasserstoff in eine heiße Lösung von 9.10-Dioxy-9.10-bis-[4-brom-phenyl] phenyl]-dihydroanthracen in Eisessig (I., M.). — Fast farblose Nadeln (aus Benzol). F: 218°. Löst sich in Schwefelsäure mit dunkelblauer, in flüssigem Schwefeldioxyd mit orangegelber Farbe.

7. 9.10-Diphenyl-9.10-dihydro-phenanthren C<sub>26</sub>H<sub>20</sub>, s. nebenstehende Formel. B. Aus der äther. Lösung von 9.10-Dilithium-9.10-diphenyl-9.10-dihydro-phenanthren (Syst. Nr. 2357) mit Alkohol (SCHLENK. CH-CaH5 ĊH•C6H5 BERGMANN, A. 463, 89). — Prismen (aus Benzin). F: 130—131°.

- 9-Benzhydryl-fluoren, 1.1-Diphenyl-2-diphenylen-äthan  $C_{26}H_{20}=$  $C_6H_4$  CH·CH( $C_6H_5$ )<sub>2</sub> (H 745). B. Durch Reduktion von  $\alpha.\alpha$ -Diphenyl- $\beta$ -diphenylen-äthylen mit siedendem Isoamylalkohol und Natrium (Schlenk, Bergmann, A. 463, 212). Neben anderen Produkten bei der Einw. von 9-Chlor-fluoren auf Diphenylmethylnatrium in Äther (Sch., B., A. 463, 198; vgl. Kliegl, B. 62, 1330; B., B. 63 [1930], 1626; K., B. 64 [1931]. 2422). Bei Einw. von Fluorenyllithium oder Fluorenylnatrium auf Diphenyl-brommethan in Benzol (Sch., B., A. 463, 196). — Nadeln (bei raschem Abkühlen aus Benzin) oder Blätter (bei langsamem Abkühlen). F: 217° (Sch., B.). Zeigt bei Einw. mit Kathodenstrahlen hellblaue Fluorescenz und anfänglich grüne, dann dunkelblaue Phosphorescenz (Sch., B., A. 463, 190). — Bildet eine additionelle Verbindung mit Difluorenyl-(9.9') (K., B. 64, 2422).
- 9. 9-Phenyl-9-benzyl-fluoren, 1.2-Diphenyl-1.1-diphenylen-äthan  $C_{26}H_{20} = \frac{C_6H_4}{C_6H_4} C(C_6H_5) \cdot CH_2 \cdot C_6H_5 \text{ (H 745)}. B. \text{ Durch Erhitzen von 9-Brom-9-phenyl-fluoren}$ mit Benzylmagnesiumchlorid oder von Benzylchlorid mit 9-Phenyl-fluorenyl-(9)-magnesiumbromid in ather. Lösung (BACHMANN, Am. Soc. 52 [1930], 3291). Aus 9-Phenyl-fluorenylnatrium (Syst. Nr. 2357) bei Einw. von Benzylchlorid in Äther (Schlenk, Bergmann, B. **62**, 749; vgl. Schmidt, Stein, Bamberger, B. **62**, 1890; Bachmann, Am. Soc. **52**, 3291). – Prismen (aus Eisessig oder Propylalkohol). F: 136-136,5° (unkorr.), 139° (SCHL., BE.). 140,3-140,8° (korr.) (BACH.).
- 10. Kohlenwasserstoff  $C_{26}H_{20}$  von Staudinger (E I 377). Zur Konstitution vgl. Bergmann, B. 63 [1930]. 1628 Anm. 41.
  - E I 377, Z. 15 v. o. statt "gelben Verbindung" lies "isomeren Verbindungen".
- 11. Kohlenwasserstoff  $C_{26}H_{20}$  von Linebarger (H 745; dort als 9.10 Diphenylanthracen-dihydrid-(9.10)(?) beschrieben). B. Beim Erwärmen von Benzol mit Chloroform oder Benzalchlorid in Gegenwart von Quecksilber(II)-chlorid und Aluminium bei ca. 50° (RAx, Soc. 117, 1337). — Krystalle (aus wäßr. Aceton). F: 159° (R.). — Gibt beim Erhitzen mit Essigsäureanhydrid in Gegenwart von Pyridin eine krystallisierte Verbindung CosHo4Oo(?) vom Schmelzpunkt 92º (R.).

# 4. Kohlenwasserstoffe $C_{27}H_{22}$ .

1. 1.13.3 - Tetraphenyl - propen, α.α - Diphenyl - β - benzhydryl - äthylen C<sub>27</sub>H<sub>28</sub> = (C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>CH·CH:C(C<sub>6</sub>H<sub>5</sub>)<sub>2</sub> (H 745). B. Bei kurzem Kochen von Tetraphenylallen mit Jodwasserstoffsäure, Eisessig und rotem Phosphor (Vorländer, Weinstein, B. 56. 1122). Aus 3-Chlor-1.1.3-triphenyl-propen beim Behandeln mit Phenylmagnesiumbromid in Äther (Straus, Ehrenstein, A. 442, 111). Bei der Einw. von Alkohol auf 2.3-Dinatrium-1.1.3.3-tetraphenyl-propen (Syst. Nr. 2357) in Äther (Schlenk, Bergmann. A. 463. 235). Durch Einw. von Alkohol auf [α.α.γ.γ.-Tetraphenyl-allyl]-kalium (Syst. Nr. 2357) (Ziegler, Thielmann, B. 56, 1740). — Krystalle (aus Alkohol). F: 127—128° (V., W.).

Die Schmelzen neigen auch bei Anwesenheit von Impfkrystallen zu Unterkühlungserscheinungen (V., W.; V., Ph. Ch. 105, 248). Di: 1,135 (Ziegler, Ditzel, A. 473, 201). Löst sich in konz. Schwefelsäure mit citronengelber Farbe (Str., E.; Ziegler, A. 434, 46 Anm. 2). — Wird durch Chromessigsäure zu Benzophenon und Diphenylessigsäure oxydiert (V., W.). Beim Kochen mit Jodwasserstoff und Eisessig entsteht 1.1.3.3-Tetraphenyl-propan (V., W.). Bei der Einw. von Brom erhält man 2-Brom-1.1.3.3-tetraphenyl-propen (V., W.). Reagiert mit Natrium in Äther sehr langsam unter Bildung einer braunroten Lösung; die bei der Einw. von Lithium entstehende dunkelbraune Lösung gibt mit Alkohol 1.2.3-Triphenyl-hydrinden, mit Kohlendioxyd 1.2.3-Triphenyl-hydrinden-carbonsäure-(1 oder 2) (?), mit Jod 1.1.4.4-Tetraphenyl-butadien-(1.3), Diphenylmethan und eine Verbindung vom Schmelzpunkt 221°; bei der Einw. von Äthylsenföl auf die Lithiumverbindung erhält man eine Verbindung C<sub>30</sub>H<sub>27</sub>NS (F: 193°) (Sch., B., A. 463, 38, 51, 54).

- 2-Brom-1.1.8.3-tetraphenyl-propen C<sub>27</sub>H<sub>21</sub>Br = (C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>CH·CBr:C(C<sub>6</sub>H<sub>5</sub>)<sub>2</sub> (H 745). Addiert in der Kälte kein Brom (Vorländer, Weinstein, B. 56, 1123). Gibt mit siedender alkoholischer Kalilauge Tetraphenylallen (V., W.; Schlenk, Bergmann, A. 463, 235).
- 2. 1.1.2.3 Tetraphenyl-propen (1), Triphenylbenzyläthylen  $C_{27}H_{22} = (C_6H_5)_2C:C(C_6H_5)\cdot CH_2\cdot C_6H_5$ . B. Aus 3-Brom-1.1.2-triphenyl-propen-(1) und Phenylmagnesiumbromid in absol. Äther (Meisenheimer, A. 456, 151). Krystalle (aus Alkohol). F: 139°. Leicht löslich in Benzol, Chloroform und Tetrachlorkohlenstoff, schwerer in Äther, fast unlöslich in kaltem Alkohol und Eisessig.
- 3. 1.1.2 Triphenyl hydrinden  $C_{27}H_{22} = C_6H_4 < C_{(C_6H_5)_2} CH \cdot C_6H_5$ . B. Durch Erhitzen von 2- $\beta$ -Phenäthyl-triphenylchlormethan mit Chinolin im Rohr auf 150° (Schlenk. Bergmann, A. 463, 268). Pulver (aus Propylalkohol). F: 83°.
- 4. 1.1.3-Triphenyl-hydrinden  $C_{27}H_{22} = C_6H_4 < \frac{CH(C_6H_5)}{C(C_6H_5)_2} > CH_2$ . B. Durch Reduktion von 1.3.3-Triphenyl-inden mit Wasserstoff und palladiniertem Bariumsulfat in siedendem Propylalkohol oder mit rotem Phosphor und Jodwasserstoffsäure (D: 1.7) (SCHLENK, BERGMANN, A. 463, 223). Nadeln (aus Propylalkohol). F: 111—112°. Zeigt im Kathodenlicht bläulichweiße Fluorescenz mit blaugrünem Nachleuchten (SCH., B., A. 463, 217 Anm.).
- 5. **1.2.2-Triphenyl-hydrinden**  $C_{27}H_{22} = C_6H_4$   $CH_2CH(C_6H_5)$   $C(C_6H_5)_2$ . B. Aus 1-Oxy-1.2.2-triphenyl-hydrinden bei der Reduktion mit rotem Phosphor und Jodwasserstoffsäure (D: 1,7) in siedendem Eisessig (Schlenk, Bergmann, A. 463, 260). Aus  $\alpha,\beta,\beta,\gamma$ -Tetraphenyl-propylalkohol beim Erhitzen mit Essigsäureanhydrid und etwas konz. Schwefelsäure auf 140° (Sch., B.). Stäbchen (aus Propylalkohol). F: 142°.
- 6. 1.2.3-Triphenyl-hydrinden  $C_{27}H_{22} = C_6H_4 < \binom{c_1H(C_6H_5)}{c_1H(C_6H_5)} > c_1H \cdot c_8H_5$ . B. Durch Behandlung des aus 1.1.3.3-Tetraphenyl-propen und Lithium in Ather entstandenen Reaktionsprodukts mit Alkohol (Schlenk, Bergmann, A. 463, 51). Durch Reduktion von 1.2.3-Triphenyl-inden mit Natrium und Isoamylalkohol (Ziegler, Crössmann, B. 62, 1770). Behandeln von 3-Oxy-1.2.3-triphenyl-inden mit Jodwasserstoffsäure (D: 1.7) und rotem Phosphor (Sch., B., A. 463, 257). Nadeln (aus Alkohol, Eisessig oder Benzin). F: 153° (Sch., B., A. 463, 52, 257; Z., Cr.).

SCHLENK, BERGMANN (A. 463, 53, 254 Anm. 2) vermuten, daß die beim Erhitzen von 1.2.3-Triphenyl-hydrinden-carbonsäure-(1 oder 2) mit Natronkalk im Rohr auf 280° in geringer Menge erhaltene Verbindung vom Schmelzpunkt 126° ein Stereoisomeres des 1.2.3-Triphenyl-hydrindens darstellt.

7. 3-Phenyl-4-benzhydryl-1.2-benzo-cyclobuten - (1), 1.3.3-Triphenyl-1.2-o-phenylen-propan C<sub>27</sub>H<sub>22</sub>, s. nebenstehende Formel. B. Durch Einw. von Alkohol auf die aus Tetraphenylallen und Lithium in Äther unter Eiskühlung erhaltene violette Lithiumverbindung (SCHLENK, BERGMANN, A. 463, 246). — Krystalle (aus Benzin). F: 184°. Liefert beim Hydrieren in Gegenwart von palladiniertem Bariumsulfat in siedendem Propylalkohol 3'-Phenyl-4'-benzhydryl-[cyclobutano-1'.2':1.2-cyclohexan]. Beim Behandeln mit 1 Mol Brom in Chloroform unter Eiskühlung entsteht x-Tribrom-3-phenyl-4-benzhydryl-1.2-benzo-cyclobuten (1) [Nadeln (aus Aceton oder Benzin); F: 212° (Zers.); gibt mit konz. Schwefelsäure eine tiefrote Färbung]. Bei der Einw. von Natrium oder Lithium in Äther sowie beim Behandeln mit Lithiumäthyl in Benzol erhält man die blutrote Lösung eines Substitutionsproduktes, die beim Umsetzen mit Kohlendioxyd 1.3.3-Triphenyl-1.2-o-phenylen-propan-carbonsäure-(x) liefert. Gibt mit konz. Schwefelsäure eine blaßrosa

Färbung, die beim Stehen blaustichig blutrot wird; beim Lösen in konz. Schwefelsäure bei Gegenwart von etwas konz. Salpetersäure entsteht sofort die blutrote Färbung (Sch., B., A. 463, 247).

- 8. 9-Benzhydryl-dihydroanthracen. Diphenyl-[9.10-dihydro-anthranyl]-methan  $C_{27}H_{22}=C_6H_4$  CH[CH( $C_6H_5$ )<sub>2</sub>]  $C_6H_4$ . B. Durch Einw. von Natrium und siedendem Isoamylalkohol auf ms-Diphenylmethylen-anthron (SCHLENK, BERGMANN, A. 463, 269). Stäbchen (aus Benzin). F: 207,5°.
- 9. 9 Phenyl 10 benzyl dihydroanthracen  $C_{27}H_{22} =$ C<sub>6</sub>H<sub>4</sub> CH(C<sub>6</sub>H<sub>5</sub>) C<sub>6</sub>H<sub>4</sub>. B. Aus dem Reaktionsprodukt von 9-Phenyl-10-benzylanthracen mit Natrium in Ather durch Behandeln mit Alkohol (SCHLENK, BERGMANN, A. 463, 280). — Tafeln (aus Methanol). F: 119°.
- 10. 9 Phenyl 10 o tolyl dihydroanthracen  $C_{27}H_{22} =$ C<sub>6</sub>H<sub>4</sub> CH(C<sub>6</sub>H<sub>5</sub>) C<sub>6</sub>H<sub>4</sub>. B. Aus 9-Phenyl-10-o-tolyl-anthracen beim Kochen mit Kalium in Xylol unter allmählicher Zugabe von Alkohol (Нааск, B. 62, 1776, 1782; vgl. Schlenk, Bergmann, A. 463, 181) oder durch Reduktion mit Natrium und siedendem Isoamylalkohol (H.). — Krystalle (aus Xylol). F: 186—187° (korr.) (H.), 172—173° (Sch., B.). Thermische Analyse des binären Systems mit 9-Phenyl-10-o-tolyl-anthracen: H., B. 62. 1776. -- Liefert beim Verschmelzen mit Schwefel 9-Phenyl-10-o-tolyl-anthracen (H.). Zeigt in siedendem Benzoesäureäthylester eine reversible Gelbfärbung (Sch., B.).
- 11. 9 Methyl 9.10 diphenyl dihydroanthracen  $C_{27}H_{22}$  $C_6H_4 < C(CH_3)(C_6H_5) > C_6H_4$ . B. Aus 10-Oxy-9-methyl-9.10-diphenyl-9.10-dihydroanthracen beim Behandeln mit rotem Phosphor und Jodwasserstoffsäure (D: 1,7) in siedendem Eisessig (Schlenk, Bergmann, A. 463, 278). — Krystalle (aus Propylalkohol). F: 171°. Die Schmelze und die äther. Lösung fluorescieren.
- 12. 9-[β.β-Diphenyl-äthyl]-fluoren, 1.1-Biphenyl-3.3-diphenylen-propan, Benzhydryl-fluorenyl-(9)-methan  $C_{27}H_{22} = \frac{C_6H_4}{C_6H_4}$ CH·CH<sub>2</sub>·CH(C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>. B. Aus α.α-Diphenyl-β-[fluorenyl-(9)]-äthylen durch Reduktion mit Natrium und siedendem Isoamylalkohol (Schlenk, Bergmann, A. 463, 272). — Tafeln (aus Benzin). F: 107°.
- 13. Kohlenwasserstoff C<sub>27</sub>H<sub>22</sub> vom Schmelzpunkt 103°. B. Aus dem Kohlenwasserstoff C<sub>27</sub>H<sub>20</sub> vom Schmelzpunkt 186° (S. 694) durch Addition von Natrium in Äther und Hydrolyse des Reaktionsprodukts mit Alkohol (Schlenk, Bergmann, A. 463, 253). Krystalle (aus Propylalkohol). F: 103°.
- 14. Kohlenwasserstoff  $C_{27}H_{22}$  vom Schmelzpunkt 167—168°. B. Aus dem Kohlenwasserstoff  $C_{27}H_{20}$  vom Schmelzpunkt 186° (S. 694) durch Reduktion mit Natrium und siedendem Isoamylalkohol oder rotem Phosphor und Jodwasserstoffsäure (D: 1.7) (Schlenk, Bergmann, A. 463, 253). — Krystalle (aus Propylalkohol). F: 167—168°.
- 15. Kohlenwasserstoff C<sub>27</sub>H<sub>22</sub> vom Schmelzpunkt 129—130°. В. Aus 1-Natrium-1.1.3.3-tetraphenyl-propen in Äther mit benzolischer Jod-Lösung (Schlenk, BERGMANN, A. 463, 245). — Prismen und Oktaeder (aus Benzin). F: 129—130°.

# 5. Kohlenwasserstoffe $C_{28}H_{24}$ .

1. 1.1.4.4 - Tetraphenyl - buten - (2),  $\alpha.\beta$  - Dibenzhydryl - äthylen  $C_{28}H_{24}$  =  $(C_{\bullet}H_{\bullet})_{\bullet}CH \cdot CH : CH \cdot CH(C_{\bullet}H_{\bullet})_{\bullet}^{\prime}$ 

a) Niedrigerschmelzende Form. B. Bei der Einw. von Alkohol auf das Reaktionsprodukt von Bis  $[\beta,\beta]$ -diphenyl-vinyl-quecksilber (Syst. Nr. 2340) und Natrium in Äther (Schlenk, Bergmann, A. 463, 100, 105). — Tafeln (aus Benzin). F: 123—124°. — Lagert sich beim Erwärmen in Eisessig bei Gegenwart von etwas konz. Schwefelsäure in die höherschmelzende Form um (Sch., B., A. 463, 100). Bei der Reduktion mit Natrium und siedendem Isoamylalkohol entsteht 1.1.4.4-Tetraphenyl-butan (Sch., B., A. 463, 106).

b) Höherschmelzende Form. B. Durch Reduktion von 1.1.4.4-Tetraphenyl-butadien-(1.3) mit Natriumamalgam in Alkohol bei Zimmertemperatur (Schlenk, Bergmann, A. 463, 103). Durch Einw. von Alkohol auf 1.4-Dikalium-1.1.4.4-tetraphenyl-buten-(2) oder 1.4-Dinatrium-1.1.4.4-tetraphenyl-buten-(2) in Äther (Wittig. v. Lupin, B. 61, 1628, 1632; Schlenk, Bergmann, A. 463, 102). Über eine analoge Bildung aus 1.4-Dilithium-

- 1.1.4.4-tetraphenyl-buten-(2) vgl. BLUM, B. 62, 889. Beim Erwärmen der niedrigerschmelzenden Form in Eisessig mit einer Spur konz. Schwefelsäure (Sch., B., A. 463, 100). — Blättchen (aus verd. Essigsäure, Eisessig oder Benzin). Sintert bei 137° (BL.); F: 140—141° (BL.), 140,5 (Sch., B.). - Liefert bei der Reduktion mit Natrium und siedendem Isoamylalkohol 1.1.4.4-Tetraphenyl-butan (Sch., B., A. 463, 102).
- **2.3-Dichlor-1.1.4.4-tetraphenyl-buten-(2)**  $C_{28}H_{22}Cl_2 = (C_6H_5)_2CH \cdot CCl \cdot CCl \cdot CH(C_6H_5)_2$ .

  a) Niedrigerschmelzende Form. B. Neben der höherschinelzenden Form und anderen Produkten bei der Einw. von Wasserstoff auf 2.2.2-Trichlor-1.1-diphenyl-äthan in Gegenwart von Palladium-Calciumcarbonat-Katalysator oder Nickel in Alkohol + Pyridin bei erhöhter Temperatur (Brand, Horn, J. pr. [2] 115, 359) oder beim Kochen von 2.2.2-Trichlor-1.1-diphenyl-äthan mit Aluminium-Kupfer-Zink-Legierung oder Kupfer-Magnesium-Legierung in Alkohol bei Gegenwart von etwas Kupfer(II)-chlorid (Br., B. 54, 1995). Gemische mit der höherschmelzenden Form und anderen Produkte entstehen ferner aus 2.2.3.3-Tetrachlor-1.1.4.4-tetraphenyl-äthan durch elektrolytische Reduktion an einer Blei-Kathode in siedendem Eisessig + konz. Salzsäure, beim Behandeln mit Wasserstoff bei Gegenwart von Palladium-Calciumcarbonat-Katalysator in Pyridin + Alkohol oder durch Kochen mit Zinkstaub und Eisessig oder Alkohol (Br., B. 54, 1997). Die Trennung erfolgt durch fraktionierte Krystallisation aus Alkohol, in dem die höherschmelzende Form schwerer löslich ist (Br., B. 54, 1998). — Nadeln (aus Alkohol). F: 106—108° (Br., B. 54, 1998). 108—110° (Br., H.). — Versuche zur elektrochemischen Reduktion an einer Bleikathode: Br., B. 54, 2021. Beim Kochen mit wäßrig-alkoholischer Kalilauge erhält man Tetraphenylbutatrien und ein Öl, das beim Kochen mit Eisessig oder alkoh. Mineralsäuren 1-Phenyl-3. diphenylmethylen-inden ergibt (Br., B. 54, 1996, 1998, 2002; Br., Berlin, B. 57, 846).
  b) Höherschmelzende Form. B. s. bei der niedrigerschmelzenden Form. — Nadeln

(aus Álkohol). F: 137—138° (Brand, B. 54, 1998). — Über das chemische Verhalten vgl. die

niedrigerschmelzende Form.

- **2.3** Dibrom 1.1.4.4 tetraphenyl buten (2)  $C_{28}H_{22}Br_2 = (C_6H_5)_2CH \cdot CBr : CBr$ CH(C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>. B. Ein Gemisch der beiden stereoisomeren Formen entsteht neben anderen Produkten beim Kochen von 2.2.2-Tribrom-1.1-diphenyl-äthan mit Aluminium-Kupfer-Zink-Legierung bei Gegenwart von etwas Kupfer(II)-chlorid in Alkohol (Brand, B. 54, 1996). Entsteht ferner in geringer Menge bei Einw. von Wasserstoff auf 2.2.3.3-Tetrabrom-1.1.4.4tetraphenyl-butan in Pyridin + Alkohol bei Gegenwart von Palladium-Calciumcarbonat-Katalysator (B., B. 54, 2001). — Nadeln. Schmilzt unscharf bei 130—131°. — Liefert beim Kochen mit alkoh. Natronlauge Tetraphenylbutatrien.
- 2. 1.1.3.3-Tetraphenyl-buten-(1)  $C_{28}H_{24} = (C_6H_5)_2C:CH\cdot C(C_6H_5)_2\cdot CH_3$  (E.I 377). B. Aus  $\alpha.\alpha$ -Diphenyl-āthylen beim Aufbewahren mit konz. Schwefelsäure oder Floridin bei Zimmertemperatur, neben viel 1.1.3.3-Tetraphenyl-cyclobutan (Lebedew, Andrejewski, Matjuschkina, Ж. 54, 225; B. 56, 2350). Zur Bildung aus α.α-Diphenyl-äthylen beim Erhitzen mit Jod (Ε 1 377) vgl. a. L., A., M. Durch Umsetzen von Benzophenon mit Methylmagnesiumjodid in Äther, Sättigen des Reaktionsgemisches mit Schwefeldioxyd und Behandeln der nach Abdestillieren des Äthers erhaltenen rotbraunen Masse mit heißem Wasser (Schmidt-Nickels, B. 62, 919). Bei der Einw. von Methyljodid auf 2.3-Dinatrium-1.1.3.3-tetraphenyl-propen (Syst. Nr. 2357) oder 1-Natrium-1.1.3.3-tetraphenyl-propen (Syst. Nr. 2357) in Ather bei Zimmertemperatur (Schlenk, Bergmann, A. 463, 239, 240). Prismen (aus Methanol). F: 113,5° (korr.) (L., A., M.), 113—114° (SCHM.-N.). — Entfärbt Permanganat weder in wäßriger noch in Aceton-Lösung (L., A., M.). Liefert beim Ozonisieren in Tetrachlorkohlenstoff oder Chloroform bei 0º das Ozonid des 1.1.3.3-Tetraphenyl-butens-(1): bei längerem Ozonisieren entsteht das Ozonid des α.α-Diphenyl-äthylens (L., A., M.). Verhalten bei der Hydrierung in Essigsäure in Gegenwart von Platinschwarz: Lebedew, Andre-JEWSKI, MATJUSCHKINA, Ж. 54, 227; B. 56, 2351. Läßt sich mit palladiniertem Bariumsulfat und Wasserstoff nicht hydrieren (Sch., B.). Entfärbt Bromwasser nicht (Sch., B.). (ibt bei Einw. von Brom in Tetrachlorkohlenstoff im Rohr bei 100° 1.2-Dibrom-1.1.3.3-tetraphenyl-butan (L., A., M.). Liefert mit überschüssigem Brom in siedendem Eisessig β.β-Dibrom-α.α-diphenyl-āthylen (HILDEBRAND, Dissert. [Straßburg 1909], S. 29). Die Lösung in Eisessig gibt mit rauchender Salpetersäure auf dem Wasserbad β-Nitro-α.α-diphenyl-äthylen (HILDEBRAND, Dissert., S. 31). Liefert beim Erwärmen mit Floridin im Rohr auf 2150 1.1.3.3-Tetraphenyl-cyclobutan(?) (L., A., M.). Gibt mit Tetranitromethan eine intensive Gelbfärbung (L., A., M.).

Ozonid des 1.1.3.3-Tetraphenyl-butens-(1) C<sub>28</sub>H<sub>24</sub>O<sub>3</sub>. B. Durch Einw. von Ozon auf 1.1.3.3-Tetraphenyl-buten-(1) in Tetrachlorkohlenstoff oder Chloroform bei 0° (Lebedew, Andrejewski, Matjuschkina, Ж. 54, 228; B. 56, 2351). — Gelbliche, viscose Flüssigkeit. Löslich in Benzin (Kp. 30—60°). — Verbrennt auf dem Platinblech, ohne zu explodieren. Liefert beim Kochen mit Wasser Benzophenon, Benzophenon peroxyd.

Methyl-diphenyl-acetaldehyd und Methyl-diphenyl-essigsäure.

- 3.  $\alpha.\alpha$  Diphenyl- $\beta.\beta$  dibenxyl- äthylen  $C_{2\beta}H_{24} = (C_6H_5 \cdot CH_2)_2C : C(C_6H_5)_2$ . Zur Konstitution vgl. Ziegler, Colonius, Schäffer, A. 473, 37. B. Durch Überführen von  $\alpha.\alpha.\gamma$ -Triphenyl- $\beta$ -benzyl-propylalkohol in das entsprechende Chlorid und Kochen dieses Produkts mit Pyridin (Schlenk, Bergmann, A. 463, 49). Krystalle (sus Methanol). F: 78° (Sch., B.). Reagiert nicht mit Natrium (Sch., B.).
- 4. 1.1.3.3-Tetraphenyl-cyclobutan C<sub>28</sub>H<sub>24</sub> = (C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>C<br/>
  CH<sub>2</sub>C(C<sub>6</sub>H<sub>6</sub>)<sub>2</sub>. B. Aus α.α-Diphenyl-āthylen beim Aufbeaten mit konz. Schwefelsäure oder Floridin bei Zimmertemperatur, neben etwas 1.1.3.3-Tetraphenyl-buten-(1) (Lebeddew, Andrelewski, Matjusch-Kina, Ж. 54, 225; B. 56, 2350). Durch Erwärmen von 1.1.3.3-Tetraphenyl-buten-(1) mit Floridin im Rohr auf 215° (L., A., M.). F: 143° (korr.). Färbt sich mit Tetranitromethan gelblich. Gibt bei der Oxydation mit Chromsäure-Gemisch Benzophenon.
- 5. 1.2.3-Triphenyl-1.2.3.4-tetrahydro-naphthalin, 1.2.3-Triphenyl-tetralin  $C_{28}H_{24} = C_6H_4$   $CH_2$   $CH_2$   $CH_5$   $CH_5$   $CH_5$   $CH_5$   $CH_5$  Bei der Reduktion von 1.2.3-Triphenyl-naphthalin mit Natrium und siedendem Isoamylalkohol (Schlenk, Bergmann, A. 463, 78; B., Zwecker, A. 487 [1931], 161). Krystalle (aus Propylalkohol). F: 136—137° (B., Z.).
- 6. 1.2.4-Triphenyl-1.2.3.4-tetrahydro-naphthalin, 1.2.4-Triphenyl-tetralin  $C_{28}H_{24} = C_{6}H_{4} CH(C_{6}H_{5}) \cdot CH_{2}$ . B. Durch Hydrierung von 1.2.4-Triphenyl-1.4-dihydro-naphthalin in Gegenwart von Palladium-Bariumsulfat in Propylalkohol (Blum, B. 62, 887). Bei der Reduktion von 1.2.4-Triphenyl-naphthalin mit Natrium in siedendem Amylalkohol, neben einem isomeren 1.2.4-Triphenyl-x-tetrahydro-naphthalin B.). Krystalle (aus Eisessig). F: 126—129°.
- 7. 1.2.4-Triphenyl-x-tetrahydro-naphthalin C<sub>38</sub>H<sub>24</sub>. B. s. im vorangehenden Artikel. Nadeln (aus Eisessig oder Propylalkohol). F: 186—187<sup>o</sup> (Blum, B. 62, 889).
  - 8. 1-Phenyl-3-benzhydryl-hydrinden C<sub>28</sub>H<sub>24</sub> = C<sub>6</sub>H<sub>4</sub> CH CH<sub>2</sub> CH<sub>2</sub> . B. Bei

der Reduktion von 1-Phenyl-3-benzhydryl-inden (S. 696) mit Natrium und siedendem Isoamylalkohol (Schlenk, Bergmann, A. 463, 225). Durch Hydrierung von 1-Phenyl-3-diphenylmethylen-hydrinden bei Gegenwart von Palladiumschwarz in Eisessig (Wieland, Kloss, A. 470, 220). Aus 1-Phenyl-3-diphenylmethylen-inden beim Hydrieren in Gegenwart von Platimohr in Äther unter geringem Überdruck (Salkind, Kruglow, B. 61, 2311; K. 61, 811), in Gegenwart von Palladiumschwarz in Eisessig (W., Kl., A. 470, 219) oder durch Reduktion mit Natrium und siedendem Isoamylalkohol (Sch., B., A. 463, 225). Aus 2-Chlor-1-phenyl-3-diphenylmethylen-inden durch Hydrierung in Gegenwart von Palladiumschwarz in Eisessig oder durch Reduktion mit Jodwasserstoffsäure (D: 1,7) und rotem Phosphor in Eisessig (W., Kl., A. 470, 219). — Existiert in 2 Modifikationen (S., Kr.). Blättechen (aus Propylalkohol), F: 135° (S., Kr.), 137° (Sch., B.) oder Krystalle (aus sehr verdünnter alkoholischer Lösung), F: 107° unter Übergang in die höherschmelzende Modifikation (S., Kr.).

- 9. 9.9-Dibenzyl-dihydroanthracen C<sub>28</sub>H<sub>24</sub> = C<sub>6</sub>H<sub>4</sub> C(CH<sub>2</sub>·C<sub>6</sub>H<sub>5</sub>)<sub>2</sub> C<sub>6</sub>H<sub>4</sub> (H 746). Die von Hallgarten (B. 21 [1888], 2509) unter dieser Formel beschriebene Verbindung wird von Bergmann, Fujisa (A. 480 [1930], 191) als 9-Benzyl-dihydroanthracen erkannt.
- 10. Kohlenwasserstoff  $C_{28}H_{24}$  vom Schmelzpunkt 126,5—127,5°. B. Bei ein- bis zweitägiger Einw. von Lithium auf  $\beta.\beta$ -Diphenyl-vinylbromid in Äther und Behandlung des Reaktionsprodukts mit Alkohol (Blum, B. 62, 889). Nadeln (aus Benzin). F: 126,5—127,5°. Liefert bei der Oxydation mit siedender Chromessigsäure Benzophenon und Benzoesäure. Bei der Hydrierung in Gegenwart von Palladium-Bariumsulfat-Katalysator in alkoholischer oder siedender propylalkoholischer Lösung erhält man einen öligen Kohlenwasserstoff  $C_{28}H_{26}$ .
- 11. Kohlenwasserstoff C<sub>28</sub>H<sub>24</sub> vom Schmelzpunkt 182°. B. Aus 1.2.3.4-Tetraphenyl-butadien-(1.3) durch katalytische Hydrierung mit Palladium oder durch Addition von Lithium und nachfolgende Hydrolyse mit Alkohol (Schlenk, Bergmann, A. 463, 81; vgl. Smith, Hoehn, Am. Soc. 63 [1941], 1184). F: 182°.
- 12. Kohlenwasserstoff C<sub>28</sub>H<sub>24</sub> vom Schmelzpunkt 185°. B. Entsteht bei der Einw. von Benzylidenchlorid auf Toluol in Gegenwart von Quecksilber(II)-chlorid und Aluminiumpulver bei 60—70° (Râx, Soc. 117, 1338). Krystalle (aus Eisessig). F: 185°.

#### TETRATOLYLÄTHYLEN

#### 6. Kohlenwasserstoffe $C_{30}H_{28}$ .

- 1. 1.1.3.3-Tetraphenyl-hexen-(1)  $C_{30}H_{28} = (C_6H_5)_2C:CH\cdot C(C_6H_5)_2\cdot CH_2\cdot C_2H_5$ .
- 6-Brom-1.1.3.3-tetraphenyl-hexen-(1)  $C_{30}H_{27}Br = (C_8H_5)_2C:CH \cdot C(C_8H_5)_2\cdot CH_2 \cdot CH_2$   $CH_2Br$ . B. Bei der Einw. von Trimethylenbromid auf 1-Natrium-1.1.3.3-tetraphenyl-propen-(2) (Syst. Nr. 2357) in Alkohol (Schlenk, Bergmann, A. 463, 244). Quadern (aus Benzin). F: 120—121°.
- 2. Tetra-p-tolyl-āthylen  $C_{30}H_{28} = (CH_3 \cdot C_6H_4)_2C \cdot C(C_6H_4 \cdot CH_3)_2$  (E I 746). B. Durch Erhitzen des aus Di-p-tolyl-carbinol und Chlor- bzw. Bromwasserstoff entstandenen Produkts für sich oder mit Pyridin (GILMAN, FLICK, R. 48, 462). Bei der Reduktion von Tetra-p-tolyl-äthylenglykol oder von Di-p-tolyl-keton mit amalgamiertem Zink und Chlorwasserstoff in alkoh. Lösung (G., F.). Beim Erhitzen des aus Di-p-tolyl-keton und Phosphorpentasulfid erhaltenen Thioketons mit Kupfer (G., F.). Aus Di-p-tolyl-keten-chinolin durch Einw. von Di-p-tolyl-keton (G., F.). F: 151°. Wird von Chromtrioxyd in Eisessig zu Di-p-tolyl-keton oxydiert.
- 3. Kohlenwasserstoff  $C_{30}H_{28}$  vom Schmelzpunkt 215°. B. Entsteht bei der Einw. von Chloroform auf Toluol in Gegenwart von Quecksilber(II)-chlorid und Aluminium-pulver bei 70° (Rây, Soc. 117, 1338). Krystalle (aus verd. Essigsäure). F: 215°.

#### 7. Kohlenwasserstoffe $C_{32}H_{32}$ .

- 1. 1.1.4.4 Tetra p tolyl buten (2)  $C_{32}H_{32} = (CH_3 \cdot C_6H_4)_2CH \cdot CH : CH \cdot CH \cdot CH \cdot (C_6H_4 \cdot CH_3)_2$ .
- 2.3 Dichlor -1.1.4.4 tetra -p tolyl buten (2)  $C_{32}H_{30}Cl_2 = (CH_3 \cdot C_6H_4)_2CH \cdot CCl \cdot CCl \cdot CH(C_6H_4 \cdot CH_3)_2$ .
- a) Niedrigerschmelzende Form. B. Neben der höherschmelzenden Form aus 2.2.2-Trichlor-1.1-di-p-tolyl-äthan durch Hydrierung mit der berechneten Menge Wasserstoff in Gegenwart von Palladium-Calciumearbonat in Pyridin + Alkohol bei 40—50° oder in geringerer Menge durch Reduktion mit Devardascher Legierung (Zink-Kupfer-Aluminium-Legierung) in siedendem wäßrigem Alkohol bei Gegenwart von etwas Eisenchlorid (Brand, Wendel, J. pr. [2] 115, 341). Entsteht auch aus 2.2.3.3-Tetrachlor-1.1.4.4-tetra-p-tolyl-butan beim Hydrieren mit der berechneten Menge Wasserstoff in Gegenwart von Palladium-Calcium-carbonat in Alkohol + Pyridin bei 40—50° oder durch Reduktion mit Zinkstaub und siedendem Eisessig oder Alkohol (B., W.). F: 164—165°. Leicht löslich in heißem Eisessig, Essigester, Benzol, Toluol, Isoamylalkohol, Isoamylacetat und Pyridin, ziemlich leicht in heißem, schwer in kaltem Alkohol. Die Lösung in Schwefelkohlenstoff addiert kein Brom. Liefert beim Kochen mit alkoh. Kalilauge oder mit Natriumäthylat-Lösung Tetra-p-tolyl-butatrien und ein braunes Öl, das beim Kochen mit Eisessig oder alkoh. Salzsäure in 5-Methyl-1-p-tolyl-3-[di-p-tolyl-methylen]-inden übergeht.
- b) Höherschmelzende Form. B. s. o. bei der niedrigerschmelzenden Form. Krystalle (aus Essigester oder Eisessig). F: 193—194°. Leicht löslich in kaltem Benzol, Toluol, Xylol und Pyridin, schwer in heißem Alkohol, löslich in heißem Eisessig, Essigester, Aceton, Isoamylalkohol und Isoamylacetat. Liefert beim Kochen mit Natriumäthylat in Alkohol + Isoamylalkohol Tetra-p-tolyl-butatrien und ein braunes Öl, das beim Kochen mit Eisessig oder alkoh. Salzsäure in 5-Methyl-1-p-tolyl-3-[di-p-tolyl-methylen]-inden übergeht (Brand, Wendel, J. pr. [2] 115, 345).
- 2.3-Dibrom-1.1.4.4-tetra-p-tolyl-buten-(2)  $C_{32}H_{30}Br_2 = (CH_3 \cdot C_6H_4)_2CH \cdot CBr \cdot CH(C_6H_4 \cdot CH_3)_2$ . B. Aus 2.2.2-Tribrom-1.1-di-p-tolyl-äthan durch Hydrierung mit der berechneten Menge Wasserstoff in Gegenwart von Palladium-Calciumcarbonat in Alkohol + Pyridin bei 40—50° oder durch Reduktion mit Devardascher (Zink-Kupfer-Aluminium)-oder Arndscher (Kupfer-Magnesium)-Legierung in Gegenwart von wenig Kupfer(II)-chlorid oder Eisenchlorid in siedendem wäßrigem Alkohol (Brand, Wendel, J. pr. [2] 115, 348, 350). Gelbliche Krystalle (aus Essigester). F: 175—176° (Zers.). Wird durch siedende Isoamylat-Lösung in Tetra-p-tolyl-butatrien übergeführt.
- 2. 1.1.4.4 Tetra -p-tolyl-buten (1 oder 2)  $C_{32}H_{32} = (CH_3 \cdot C_6H_4)_2C:CH \cdot CH_2 \cdot CH(C_6H_4 \cdot CH_3)_2$  oder  $(CH_3 \cdot C_6H_4)_2CH \cdot CH:CH \cdot CH(C_6H_4 \cdot CH_3)_2$ . B. Durch Hydrierung von Tetra-p-tolyl-butatrien in Gegenwart von Palladium-Tierkohle in Alkohol bei mäßiger Erwärmung (Brand, Wendel, J. pr. [2] 115, 346). Nadeln (aus Alkohol). F: 151°.
- 8. Tetrameres  $\alpha$ -Methyl-styrol  $C_{36}H_{40}$  s. bei  $\alpha$ -Methyl-styrol, S. 375.

Syst. Nr. 492a

## 22. Kohlenwasserstoffe $C_n H_{2n-33}$ .

 $\alpha.\alpha.\gamma.\gamma$ -Tetraphenyl-allyl  $C_{27}H_{31}=(C_6H_5)_2C:CH\cdot C(C_6H_5)_2$ . B. Aus 1.1.3.3-Tetraphenyl-allyl-perchlorat (Syst. Nr. 547) beim Behandeln mit Phenylmagnesiumbromid in Ather unter guter Kühlung (Ziegler, A. 434, 77). — Grasgrünes krystallines Pulver. Ist in gefrierendem Benzol zu etwa 80% als Radikal vorhanden. Beim Einleiten von Luft in die äther. Lösung entsteht Bis-[1.1.3.3-tetraphenyl-allyl]-peroxyd (Syst. Nr. 547).

#### 23. Kohlenwasserstoffe $C_n H_{2n-34}$ .

## 1. Kohlenwasserstoffe $C_{24}H_{14}$ .

1. Di- $\alpha$ -naphthyl-butadiin, Di- $\alpha$ -naphthyl-diacetylen  $C_{24}H_{14} = C_{10}H_7 \cdot C \cdot C \cdot C \cdot C_{10}H_7$  (H 747). B. Aus  $\alpha$ -Naphthyl-acetylenmagnesiumbromid beim Behandeln mit 1 Atom Jod in Ather (GRIGNARD, PERRICHON, A. ch. [10] 5, 15).

2. 3.4; 9.10-Dibenzo-pyren C<sub>24</sub>H<sub>14</sub>, s. nebenstehende Formel. B. Bei der Destillation von 3.4; 9.10-Dibenzo-pyrenchinon-(5.8) über Zink-Bimsstein im Wasserstoffstrom (Scholl, Neumann, B. 55, 123). — Grünlichgelbe Blättchen oder Prismen (aus Benzol). F: 281,5—282°. Sublimierbar. Sehr schwer löslich in Alkohol und Äther. Löslichkeit in siedendem Eisessig etwa 1:500, in siedendem Benzol etwa 1:200. Die gelben Lösungen fluorescieren blau. — Konzentrierte Schwefelsäure löst blau mit roter Fluorescenz, wobei — besonders schnell beim Erhitzen — Oxydation zu



3.4;9.10-Dibenzo-pyrenchinon-(5.8), manchmal außerdem noch Sulfurierung eintritt. Wird durch wenig Chromsäure in Eisessig zu 3.4;9.10-Dibenzo-pyrenchinon-(5.8), durch mehr Chromsäure zu Pentaphendichinon-(5.14;8.13) (Syst. Nr. 728) oxydiert.

# 2. Kohlenwasserstoffe $C_{26}H_{18}$ .

1. 9.10 - Diphenyl - anthracen C<sub>26</sub>H<sub>18</sub>, s. nebenstehende Formel (H 747; E I 377). B. Aus höher- und niedrigerschmelzendem 9.10-Diphenyl-9.10-dihydro-anthracen durch Verschmelzen mit Schwefel (HAACK, B. 62, 1782). Über Bildung beim Erhitzen eines Gemisches von höher- und niedriger-



schmelzendem 9.10-Diphenyl-9.10-dihydro-anthracen mit Aluminiumchlorid in Schwefelkohlenstoff vgl. Barnett, Cook, Nixon, Soc. 1927, 512. Aus 9.10-Dichlor-9.10-diphenyl-9.10-dihydro-anthracen durch Behandeln mit Zinkstaub und Eisessig oder mit wäßr. Kaliumjodid- oder Harnstoff-Lösung (Ingold, Marshall, Soc. 1926, 3083). Beim Erhitzen von Benzhydrol mit Calciumhydrid (Schlenk, Karplus, B. 61, 1677). Durch Kochen von 9-Oxy-9.10-diphenyl-9.10-dihydro-anthracen mit festem Kaliumhydroxyd oder Kaliummetall in Xylol (H., B. 62, 1772, 1781; vgl. Schlenk, Bergmann, A. 463, 175). Aus 9.10-Dioxy-9.10-diphenyl-9.10-dihydro-anthracen bei Einw. von konz. Schwefelsäure, neben anderen Produkten (KEHRMANN, MONNIER, RAMM, B. 56, 173), beim Behandeln mit Zinkstaub in Eisessig und beim Sättigen einer Lösung in Eisessig mit Bromwasserstoff bei 60° (In., Ma.). Durch Erhitzen von 9-Oxy-10-methoxy-9.10-diphenyl-9.10-dihydro-anthracen mit wasserfreier Ameisensäure (SCH., BE., A. 463, 152). Beim Erhitzen von Benzophenon mit Calciumhydrid (SCH., K.). Bei der Einw. von Phenylmagnesiumbromid in Äther auf 10-Phenyl-anthron-(9) (BARNETT, MATTHEWS, B. 59, 1438) oder Anthrachinon, neben anderen Produkten (BA., COOK, WILTSHIRE, Soc. 1927, 1727).

Die anfangs farblosen Krystalle werden beim Aufbewahren an der Luft oder in Stickstoff-Atmosphäre gelb (Schlenk, Bergmann, A. 463, 171, 179; vgl. Ingold, Marshall, Soc. 1926, 3084). F: 247° (Sch., Be., A. 463, 152), 249—250° (korr.) (Haack, B. 62, 1781), 249—250° (In., Ma.). Löst sich in flüssigem Schwefeldioxyd mit tief gelber Farbe (In., Ma.). Die Farbe der gelben Lösungen in organischen Lösungsmitteln (In., Ma., Soc. 1926, 3084) vertieft sich beim Erhitzen und hellt sich beim Abkühlen wieder auf, um bei neuem Erhitzen sich wieder zu vertiefen; im einzelnen ist dieses Verhalten untersucht in Benzylidenmethylamin (In., Ma., Soc. 1926, 3081, 3089), Mesitylen (BARNETT, COOK, WILTSHIRE, Soc. 1927, 1726) und Benzoesäureäthylester (Sch., Be., A. 463, 179). Die Krystalle fluorescieren schwach blau (H., B. 62, 1772) und zeigen bei Bestrahlung mit Kathodenlicht blaugrüne Fluorescenz mit ziemlich starkem Nachleuchten (Sch., Br., A. 463, 133, 172). Fluorescenzspektrum der festen Substanz: RADULESCU, BARBULESCU, Bulet. Cluj 4, 354; C. 1929 II, 1766. Die Lösung in Essigester fluoresciert violett (SCH., BE., A. 463, 152). Ultraviolett-Absorptionsspektrum; HAACK,

B. 62, 1774; in alkoh. Lösung: BARNETT, COOK, ELLISON, Soc. 1928, 890. Thermische Analyse der binären Systeme mit höher- und niedrigerschmelzendem 9.10-Diphenyl-9.10-dihydroanthracen: H., B. 62, 1776.

Beim Erhitzen an der Luft entsteht wahrscheinlich 9.10-Dioxy-9.10-diphenyl-9.10-dihydro-anthracen, das auch bei aufeinanderfolgendem Behandeln mit Silberoxyd in Xylol und mit Wasser gebildet wird (Ingold, Marshall, Soc. 1926, 3084). Liefert beim Kochen mit 1 Mol Kalium in Xylol unter tropfenweisem Zusatz von Alkohol oder bei der Reduktion mit Natrium in siedendem Isoamylalkohol höher- und niedrigerschmelzendes 9.10-Diphenyl-9.10-dihydro-anthracen (Haack, B. 62, 1781; vgl. Schlenk, Bergmann, A. 463, 154). Die Chlorierung in Chloroform-Lösung ergibt 9.10-Dichlor-9.10-diphenyl-9.10-dihydro-anthracen (In., Mar., Soc. 1926, 3083). Bei der Bromierung mit 3 Mol Brom in Schwefelkohlenstoff crhält man 9.10-Diphenyl-anthracen-tetrabromid-(1.2.3.4) (Barnett, Matthews, B. 59, 1438). Die Einw. von Natrium in flüssigem wasserfreiem Ammoniak führ zu 9.10-Dinatrium-9.10-diphenyl-9.10-dihydro-anthracen (Syst. Nr. 2357) (In., Mar., Soc. 1926, 3084); reagiert analog mit Natrium in Äther, mit Kalium in flüssigem Ammoniak und in Äther sowie mit Lithium in Äther (In., Mar., Soc. 1926, 3084; Sch., Be., A. 463, 154, 158).

Verbindung mit höherschmelzendem 9.10-Diphenyl-9.10-dihydro-anthracen  $({}^{\circ}_{28}H_{18}+C_{26}H_{20})$ . F: 214° (Haack, B. 62, 1773; vgl. Schlenk, Bergmann, A. 463, 175). Löst sich in heißer konzentrierter Schwefelsäure mit brauner Fluorescenz (Sch., B.). Ultraviolett-Absorptionsspektrum: H., B. 62, 1774.

- 1-Chlor-9.10-diphenyl-anthracen  $C_{28}H_{17}Cl$ , Formel I. B. Beim Kochen von 1-Chlor-anthrachinon mit Phenylmagnesiumbromid in Äther und Behandeln des nicht näher beschriebenen 1-Chlor-9.10-dioxy-9.10-diphenyl-9.10-dihydro-anthracens mit Zinkstaub und siedender Essigsäure (Barnett, Cook, Wiltshire, Soc. 1927, 1728). Gelbes Krystall-pulver (aus Toluol oder Essigsäure). F: 185°.
- 2-Chlor-9.10-diphenyl-anthracen C<sub>28</sub>H<sub>17</sub>Cl, Formel II. B. Durch Reduktion von 2-Chlor-9.10-dioxy-9.10-diphenyl-9.10-dihydro-anthracen mit Zinkstaub in siedendem Eisessig (INGOLD, MARSHALL, Soc. 1926, 3087). Beim Behandeln einer Lösung von 2-Brom-9.10-diphenyl-9.10-dihydro-anthracen in siedendem Eisessig mit Chlorwasserstoff, neben anderen Produkten (I., M., Soc. 1926, 3088). Blaßgelbe Krystalle. F: 193° (I., M.), 194° (BARNETT, COOK, WILTSHIRE, Soc. 1927, 1728). In den üblichen Lösungsmitteln viel leichter löslich als 9.10-Diphenyl-anthracen (I., M.).

$$I. \begin{picture}(20,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){$$

- 1.5-Dichlor-9.10-diphenyl-anthracen  $C_{28}H_{16}Cl_2$ , Formel III. B. Beim Kochen von 1.5-Dichlor-9.10-diphenyl-9.10-dihydro-anthranol-(9) mit Eisessig und wenig Salzsäure (Barnett, Cook, Wiltsher. Soc. 1927, 1732). Gelbes Pulver (aus Isoamylalkohol oder Benzol + Petroläther). F: 236° (nach vorherigem Sintern). Liefert bei der Oxydation mit Natriumdichromat in siedendem Eisessig 1.5-Dichlor-9.10-dioxy-9.10-diphenyl-9.10-dihydro-anthracen. Beim Behandeln mit in Tetrachlorkohlenstoff gelöstem Chlor entsteht 1.5.9.10-Tetrachlor-9.10-diphenyl-9.10-dihydro-anthracen (B., C., W., Soc. 1927, 1729).
- 9.10-Bis-[4-chlor-phenyl]-anthracen C<sub>26</sub>H<sub>16</sub>Cl<sub>2</sub>, Formel IV. B. Bei der Reduktion von 9.10-Dioxy-9.10-bis-[4-chlor-phenyl]-9.10-dihydro-anthracen mit Zinkstaub in siedendem Eisessig (Ingold, Marshall, Soc. 1926, 3085). Neben anderen Produkten beim Behandeln von 9.10-Dioxy-9.10-bis-[4-brom-phenyl]-9.10-dihydro-anthracen in Eisessig mit Chlorwasserstoff in der Hitze (I., M., Soc. 1926, 3088). Krystalle (aus Xylol). F: 306° bis 307,5° (I., M.). Die Farbe der Lösungen in Benzylidenmethylamin vertieft sich beim Erhitzen und hellt sich beim Abkühlen wieder auf (I., M., Soc. 1926, 3081, 3089); ébenso verhalten sich die Lösungen in Mesitylen (Barnett, Cook, Willtshire, Soc. 1927, 1726). Liefert bei der Reduktion mit Natriumamalgam in siedendem Alkohol höher- und niedrigerschmelzendes 9.10-Bis-[4-chlor-phenyl]-9.10-dihydro-anthracen (I., M.).
- 2 Brom 9.10 diphenyl anthracen C<sub>28</sub>H<sub>17</sub>Br, Formel V. B. Durch Reduktion von 2-Brom 9.10-dioxy 9.10 diphenyl 9.10 dihydroanthracen mit Zinkstaub in siedendem Eisessig (Ingold, Marshall, Soc. 1926, 3087). Blaßgrüngelbe Nadeln (aus Aceton + Ligroin). F: 185—187°.

$$V. \begin{tabular}{c|c} $C_6H_5$ & $C_6H_4Br$ \\ \hline \hline $V.$ & $C_6H_4Br$ \\ \hline \hline $C_6H_4Br$ & $C_6H_4Br$ \\ \hline \end{tabular}$$

9.10 - Bis - [4 - brom - phenyl] - anthracen C<sub>26</sub>H<sub>16</sub>Br<sub>2</sub>, Formel VI, S. 689. B. Durch Reduktion von 9.10-Dioxy-9.10-bis-[4-brom-phenyl]-9.10-dihydro-anthracen mit Zinkstaub in siedendem Eisessig (Ingold, Marshall, Soc. 1926, 3086). — Sintert bei 315°; F: 326° bis 327°. — Liefert in Chloroform beim Einleiten von Chlor 9.10-Dichlor-9.10-bis-[4-brom-phenyl]-9.10-dihydro-anthracen.

x-Tetrabrom-9.10-diphenyl-anthracen  $C_{26}H_{14}Br_4$ . B. Beim Erhitzen von höherund niedrigerschmelzendem 9.10-Diphenyl-9.10-dihydro-anthracen mit Brom in Chloroform (Schlenk, Bergmann, A. 463, 156). — Wurde nicht rein erhalten. Krystalle (aus Nitrobenzol). Schmilzt nicht bis 300°.

2. 9.10-Diphenyl-phenanthren C<sub>26</sub>H<sub>18</sub>, s. nebenstehende Formel (H 747; E I 378). Zur Bildung aus 1.2-Dichlor-1.1.2.2-tetraphenyl-āthan durch Einw. von Aluminiumchlorid in siedendem Benzol vgl. Schlenk, Bergmann, A. 463, 89. — Liefert mit Lithium in Äther 9.10-Dilithium-9.10-diphenyl-9.10-dihydro-phenanthren (Syst. Nr. 2357); reagiert analog mit Natrium.



3. 9-Diphenylmethylen-fluoren, 9-Benzhydryliden-fluoren,  $\omega.\omega$ -Diphenyldibenzofulven,  $\alpha.\alpha$ -Diphenyl- $\beta$ -diphenylen-äthylen  $C_{26}H_{18} = \begin{array}{c} C_6H_4 \\ C_6H_4 \end{array} C: C(C_6H_6)_2$  (H 748; E I 378). B. Neben  $\alpha.\alpha$ -Diphenyl- $\beta$ -diphenylen sthulonomia athylen  $C_{26}H_{18}$ 

(H 748; E I 378). B. Neben α.α-Diphenyl-β-diphenylen-āthylenoxyd aus 9.9-Dichlor-fluoren und Benzophenon-dinatrium (Syst. Nr. 652) in Äther (Schlenk, Bergmann, A. 463, 205, 211; Kliegl, B. 62, 1331; 64 [1931], 2422; B., B. 63 [1930], 1620). Beim Kochen von 9-Benzhydryl-fluorenol-(9) oder von Diphenyl-fluorenyl-(9)-carbinol mit Acetylchlorid (Sch., B., A. 463, 215, 217). Aus Fluorenyllithium (Syst. Nr. 2357) und Benzophenon in Benzol, neben anderen Produkten (Sch., B., A. 463, 216). Beim Kochen von α.α-Diphenyl-β-diphenylen-āthylenoxyd mit Acetylchlorid, neben anderen Produkten (Sch., B., A. 463, 213). Beim Erhitzen von α.α-Diphenyl-β-diphenylen-āthylensulfid auf ca. 200° (Staudinger, Siegwart, Helv. 3, 839). — Ist dimorph; beide Formen schmelzen bei 223,5—224,5° (Kliegl, B. 64, 2423 Anm. 18; Zedlitz, B. 64, 2424). F: 225° (St., Sie.; Schlenk, Bergmann). Absorptionsspektrum in Benzol: Wanscheidt, Ж. 58, 291; C. 1927 I, 92. — Liefert bei der Reduktion mit Natrium in siedendem Isoamylalkohol oder bei aufeinanderfolgender Einw. von Natrium und Alkohol auf die äther. Lösung 9-Benzhydryl-fluoren (Sch., B., A. 463, 212). Bildet mit α.α-Diphenyl-β-diphenylen-āthylenoxyd eine additionelle Verbindung (Kl., B. 62, 1331; 64, 2423; Z., B. 64, 2427).

4. 1.2 - Dibenzyliden - acenaphthen C<sub>26</sub>H<sub>18</sub>, s. nebenstehende Formel. B. Beim Erhitzen von 1.2-Dioxy-1.2-dibenzylacenaphthen in Eisessig (Maxim, Bl. [4] 45, 1148). — Orangegelbe Krystalle (aus Alkohol). F: ca. 142°. Leicht löslich in Benzol und Äther, schwer in Alkohol, unlöslich in Wasser. — Gibt bei der Oxydation mit Chromsäure-Gemisch Acenaphthenchinon, Benzoesäure und Naphthalsäureanhydrid.

5. Difluorenyl-(9.9'), 1.2-Bis-diphenylen-āthan, Dibiphenylenāthan C<sub>26</sub>H<sub>18</sub> = C<sub>6</sub>H<sub>4</sub> CH·CH C<sub>6</sub>H<sub>4</sub> (H 748; E I 378). B. Als Hauptprodukt beim Erhitzen von Fluoren mit Benzophenon-anil oder Fluorenon-anil im Kohlendioxyd-Strom auf 300—340° in Gegenwart von Anilinhydrobromid (Reddelen, B. 53, 357). In geringer Menge bei der Einw. von 9-Chlor-fluoren auf Diphenylmethyl-natrium in Äther (Kleegl, B. 62, 1330; 64 [1931], 2422; vgl. Schlenk, Bergmann, A. 463, 198; Be., B. 63 [1930], 1626). Beim Erhitzen von 9-Jod-fluoren in höhersiedenden Lösungsmitteln (Wanscheidt, B. 59, 2095; Ж. 58, 72). In geringer Menge bei der Einw. von Aceton oder Diacetonalkohol auf Fluorenyl-(9)-magnesiumbromid bei etwa 135° (Mattland, Tucker, Soc. 1929, 2563, 2565). Aus Fluorenyllithium (Syst. Nr. 2357) bei der Einw. von 9-Chlor-fluoren, weniger gut von Jod in Benzol (Sch., Be., A. 463, 202). Durch Kochen von 9-Isopropyliden-fluoren mit Jodwasserstoffsäure (D: 1,7) in Eisessig, neben anderen Produkten (M., T., Soc. 1929, 2564). Durch Reduktion von Difluorenyliden mit Wasserstoff und Platin in Pyridin, mit Hydrazinhydrat in Pyridin, mit Zinkstaub in siedendem Eisessig oder mit Antimonwasserstoff (W., Ж. 58, 252, 280, 282; C. 1927 I, 93). Neben Fluorenon (vgl. Hantzsch, Glover, B. 39 [1906], 4156) beim Aufbewahren einer Lösung von Difluorenyliden in Eisessig am Sonnenlicht (Ecker, J. pr. [2] 121, 279). Als Hauptprodukt beim Behandeln von Difluorenyliden mit Aluminiumchlorid in trockem Benzol oder besser Xylol bei Zimmertemperatur oder rascher bei 30—40° (Pummerer, Binapfl., B. 54, 2768, 2775). Durch Einw. von Alkohol auf das Reaktionsprodukt aus α.β-Bis-diphenylen-āthylen und Natrium in Äther (Schlenk, Bebg-Mann, A. 463, 62). Beim Erhitzen von Difluorenyl-(9.9')-dicarbonsäure-(9.9')-dichlorid mit konz. Salzsäure im Rohr (Stollé, Wolf, B. 46 [1913], 2250). — F: 246—247° (Maitland,

Tucker, Soc. 1929, 2563), 246° (E., J. pr. [2] 121, 279), 240° (Sch., Be., A. 463, 62, 202). — Liefert beim Schütteln mit Luft in heißem Pyridin bei Gegenwart von Kaliummethylat-Lösung Difluorenyliden (W., Ж. 58, 251; C. 1927 I, 92). Einw. von Natrium in siedendem Nylol: W., Ж. 58, 258; von Silberacetat in siedendem Pyridin: W., Ж. 58, 268.

- 2.7-Dibrom-difluorenyl-(9.9')  $C_{26}H_{16}Br_2 = \frac{C_6H_4}{C_6H_4}CH\cdot CH + \frac{C_6H_3Br}{C_6H_3Br}$ . B. Als Hauptprodukt beim Behandeln der Natriumverbindung des [2.7-Dibrom-fluorenyl-(9)]-glyoxylsäureäthylesters mit 9-Brom-fluoren in siedendem Alkohol und nachfolgenden Kochen mit Kalilauge (Sieglitz, B. 53, 2249). Nadeln (aus Benzol + Eisessig). F: 269—270°.
- 9.9'-Dibrom-difluorenyl-(9.9'), 1.2-Dibrom-1.2-bis-diphenylen-äthan  $C_{26}H_{16}Br_2=C_{6}H_{4}$  CBr·CBr $\stackrel{C_{6}H_{4}}{\downarrow}$  CBr·CBr $\stackrel{C_{6}H_{4}}{\downarrow}$  (H 748). B. Durch Einw. von Brom auf Difluorenyliden in Chloroform (Ingold, Jessor, Soc. 1929, 2360). Prismen (aus Chloroform + Ligroin). F: 236° (Zers.).
- 2.7.2'.7'-Tetrabrom-difluorenyl-(9.9')  $C_{26}H_{14}Br_4 = \frac{C_6H_3Br}{C_6H_3Br}CH\cdot CH \cdot \frac{C_6H_3Br}{C_6H_3Br}$  (E I 378). B. Als Hauptprodukt beim Erhitzen der alkoh. Lösung der Natriumverbindung des [2.7-Dibrom-fluorenyl-(9)]-glyoxylsäureäthylesters mit Jod (Sieglitz, B. 53, 2249). — Blättehen (aus Toluol + wenig Eisessig). F: 317—318°.
- 2.2' Dinitro difluorenyl (9.9')  $C_{28}H_{16}O_4N_2 = \frac{O_2N\cdot C_8H_3}{C_6H_4}\cdot CH\cdot CH\cdot \frac{C_6H_3\cdot NO_2}{C_8H_4}$ . B. Beim Erhitzen von 9-Brom-2-nitro-fluoren mit Kupferpulver in Nitrobenzol (Korczynski, Karlowska, Kierzek, Bl. [4] 41, 71). Gelbliche Nadeln (aus Essigsäure). F: 257—258°. Fast unlöslich in Alkohol, schwer löslich in Eisessig. Mehrstündiges Kochen mit Nitrobenzol ergibt 2.2'-Dinitro-difluorenyliden. Bei der Oxydation mit Blei(II)- oder Blei(IV)-oxyd bei 150—180° oder mit Natriumdichromat in Eisessig entsteht 2-Nitro-fluorenon.
- 9.9'-Dinitro-difluorenyl-(9.9'), 1.2-Dinitro-1.2-bis-diphenylen-äthan  $C_{26}H_{16}O_4N_2=C_6H_4$  (C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(NO<sub>2</sub>)·C(
- 2.9.2'.9' Tetranitro difluorenyl (9.9')  $C_{26}H_{14}O_8N_4$  ==  $\binom{0_2N\cdot C_6H_3}{C_6H_4} \cdot \binom{(NO_2)\cdot C(NO_2)\cdot C_6H_3}{C_6H_4} \cdot \binom{NO_2}{C_6H_4}$ . Diese Formulierung kommt wahrscheinlich der von Wislicenus, Weitemeyer (A. 436, 4) als 2.9-Dinitro-fluoren aufgefaßten Verbindung zu (Nenitzescu, Isacescu, B. 63 [1930], 2489). B. Bei der Einw. von Salpetersäure (D: 1,4) auf 9.9'-Dinitro-difluorenyl-(9.9') in Eisessig bei 70° (W., W.; N., I.) oder auf Fluorenyl-(9)-glyoxylsäureäthylester (Syst. Nr. 1300) in Eisessig unterhalb 70° (W., W.). Nadeln (aus Benzol). F: 136° (W., W.). Färbt sich am Licht gelb (W., W.). Leicht löslich in den gebräuchlichen Lösungsmitteln, unlöslich in Petroläther und Wasser (W., W.). Liefert beim Erhitzen über den Schmelzpunkt 2-Nitro-fluorenon (W., W.).

# 3. Kohlenwasserstoffe $\mathrm{C_{27}H_{20}}$ .

1. Tetraphenylpropin, Phenyltritylacetylen C<sub>27</sub>H<sub>20</sub> = (C<sub>6</sub>H<sub>5</sub>)<sub>3</sub>C·C:C·C<sub>6</sub>H<sub>5</sub>. B. Aus Phenylacetylenmagnesiumbromid und Triphenylchlormethan (Wieland, Kloss, A. 470, 203, 213). — Prismen (aus Essigester). F: 139° (W., K.). Leicht löslich in Äther, Aceton, Benzol und heißem Essigester, schwer in Alkohol, Eisessig und Petroläther (W., K.). Dichten und Brechungsindices von Lösungen in 1-Methyl-naphthalin bei 20,5° und 22,6°: v. Auwers, Bergmann, A. 476, 276. — Liefert bei der Hydrierung in Eisessig in Gegenwart von Platinoxyd 1.1.1.3-Tetraphenyl-propan (W., K.). Die Nitrierung mit rauchender Salpetersäure in Eisessig ergibt Tetrakis-[4(?)-nitro-phenyl]-propin (W., K.).

Tetrakis-[4(?)-nitro-phenyl]-propin  $C_{27}H_{16}O_8N_4=(O_2N\cdot C_6H_4)_3C\cdot C:C\cdot C_6H_4\cdot NO_2$ . B. Durch Einw. von rauchender Salpetersäure auf Tetraphenylpropin in Eisessig (Wieland, Kloss, A. 470, 213). — Hellgelbe Nadeln (aus Eisessig). F: 182° (Zers.).

2. Tetraphenylpropadien, Tetraphenylallen C<sub>27</sub>H<sub>20</sub> = (C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>C:C:C(C<sub>6</sub>H<sub>5</sub>)<sub>2</sub> (H 749; E 1 379). Zur Konfiguration vgl. Bergmann, Hampson, Soc. 1935, 989. — Aus α.α.γ.γ-Tetraphenyl-allylalkohol beim Erhitzen auf 140—150° (Ziegler, A. 434, 75). Beim Kochen von Diphenylessigsäureäthylester mit Kalium in Toluol und Äther und Erhitzen des Reaktionsgemisches mit Diphenylketen (Staudinger, Meyer, Helv. 5, 671). — Zur Darstellung durch Erhitzen von 2-Brom-1.1.3.3-tetraphenyl-propen mit alkoh. Kalilauge nach Vorländer, Siebert (B. 39 [1906], 1026) vgl. Schlenk, Bergmann, A. 463, 235. — F: 164° (Z.). — Wird bei gemäßigter Einw. von Chromtrioxyd in Eisessig zu Tetraphenylallendioxyd (C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>C — C — C(C<sub>6</sub>H<sub>5</sub>)<sub>2</sub> (Syst. Nr. 2685) oxydiert (Vorländer, Weinstein, B. 56, 1124). Liefert bei kurzem Kochen mit Jodwasserstoffsäure (D: 1,7), Eisessig und rotem Phosphor 1.1.3.3-Tetraphenyl-propen (V., W.). Bei kurzer Einw. von Chlor in Tetrachlorkohlenstoff oder beim Erwärmen mit Phosphorpentachlorid entsteht 2-Chlor-1.3.3-triphenyl-inden (V., W.). Zur Bildung eines Additionsprodukts mit Chlorwasserstoff (Vorländer, Siebert, B. 39 [1906], 1027) vgl. Ziegler, A. 434, 76. Beim Behandeln mit Überchlorsäure und Acctanhydrid in Äther entsteht [α.α.γ.γ.-Tetraphenyl-allyl]-perchlorat (C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>·C·C·H-C(C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>·C·CO<sub>4</sub> (Syst. Nr. 547) (Z., A. 434, 76). Jodadditionsvermögen bei der Bestimmung der Jodzahl nach Wijs: MacLean, Thomas, Biochem. J. 15, 326. Liefert mit Stickstofftrioxyd in Benzol ein Nitrosit (s. u.) (V., W.). Gibt mit Natrium in Äther Tetraphenylallen-dinatrium (Syst. Nr. 2357); reagiert analog mit Kalium (Schlerk, Bergmann, A. 463, 235). Zur Reaktion mit Lithium vgl. Sch., B., A. 463, 229, 246. Lagert sich beim Eintragen von Aluminiumchlorid in die Lösung in Benzol in 1.3.3-Triphenyl-inden (s. u.) um (V., W.).

Tetraphenylallen-nitrosit  $C_{27}H_{20}O_3N_2$ . Das Mol.-Gew. ist kryoskopisch in Benzol bestimmt (Vorländer, Weinstein, B. 56, 1124). — B. Aus Tetraphenylallen und Stickstofftrioxyd in Benzol (V., W.). — Krystalle (aus Äther). F: 141—142°. Schwer löslich in Äther, Alkohol und Aceton, leicht in Benzol und Chloroform. Färbt konz. Schwefelsäure beim Erwärmen olivgrün. — Zersetzt sich beim Erwärmen mit Alkohol oder Eisessig. Liefert in Berührung mit alkoh. Zinn(II)-chlorid-Lösung oder beim Einleiten von Chlorwasserstoff in eine Suspension in Alkohol oder Eisessig bei 50—60° Tetraphenylallendioxyd.

- 3. 1.3.3-Triphenyl-inden C<sub>27</sub>H<sub>20</sub> = C<sub>6</sub>H<sub>4</sub> < C(C<sub>6</sub>H<sub>5</sub>)<sub>2</sub> CH (H 750). B. Beim Eintragen von Aluminiumchlorid in eine Lösung von Tetraphenylallen in Benzol (Vorländer. Weinstein, B. 56, 1123). Aus α.α.γ.γ-Tetraphenyl-allylalkohol bei längerem Erhitzen mit Acetylchlorid (Ziegler, A. 434, 76). Zur Darstellung durch Behandeln von Tetraphenylallen mit Chlorwasserstoff in Eisessig nach Vorländer, Siebert (B. 39 [1906], 1030) vgl. Schlenk, Bergmann, A. 463, 223. F: 135° (Z.), 134—135° (Sch., B.). Die Reduktion mit Wasserstoff in Gegenwart von Palladium-Bariumsulfat in siedendem Propylalkohol oder mit rotem Phosphor und Jodwasserstoffsäure (D: 1,7) in siedendem Eisessig ergibt 1.1.3-Triphenyl-hydrinden (Sch., B., A. 463, 223). Liefert bei längerem Schütteln mit Natriumpulver in Äther einen hellgelben Niederschlag, der bei Behandlung mit Alkohol in 1.2.3-Triphenyl-inden übergeht (Ziegler, Crössmann, B. 62, 1770; vgl. Sch., B.).
- 2 Chlor 1.3.3 triphenyl inden  $C_{27}H_{19}Cl = C_6H_4 < \frac{C(C_6H_5)_2}{C(C_6H_5)} > CCl.$  B. Aus Tetraphenylallen bei kurzer Einw. von Chlor in Tetrachlorkohlenstoff oder beim Erwärmen mit Phosphorpentachlorid (Vorländer, Weinstein, B. 56, 1123). Krystalle (aus Alkohol). F: 167°.
- 4. 1.2.3 Triphenyl-inden C<sub>27</sub>H<sub>20</sub> = C<sub>6</sub>H<sub>4</sub> CH(C<sub>6</sub>H<sub>5</sub>) C·C<sub>6</sub>H<sub>5</sub> (H 749). B. Aus 1.3.3 Triphenyl-inden durch längeres Schütteln mit Natriumpulver in Äther und Behandeln des Reaktionsprodukts mit Alkohol (Ziegler, Crössmann, B. 62, 1770; vgl. Schlenk, Bergmann, A. 463, 224). Durch Einw. von Natrium auf 3-Methoxy-1.2.3-triphenyl-inden und Hydrolyse der gebildeten Natriumverbindung mit Alkohol (Sch., B., A. 463, 258). Krystalle (aus Benzin). F: 135° (Sch., B., A. 463, 259). D<sup>0</sup>: 1,176 (Ziegler, Ditzel, A. 473, 207). Die auf 200° überhitzte Schmelze und die Lösungen in Campher sind gelb-blaugrün dichroitisch (Sch., B., A. 463, 224). Zeigt unter der Einw. von Kathodenstrahlen azurblaue Fluorescenz (Sch., B., A. 463, 217 Anm.). Liefert bei der Reduktion mit Natrium und Isoamylalkohol 1.2.3-Triphenyl-hydrinden (Z., C.). Gibt mit Natrium in Äther eine hellgelbe Natriumverbindung (Sch., B., A. 463, 259).
  - **3-Brom-1.2.3-triphenyl-inden**  $C_{27}H_{19}Br = C_6H_4 < \begin{array}{c} CBr(C_6H_5) \\ C(C_6H_6) \end{array} \\ C \cdot C_6H_5 \quad (H 749).$   $H 750, Z. 8 \ v. \ o. \ statt \ ,AlCl_3" \ lies \ ,AlBr_3".$

- 5. 9 Phenyl 10 benzyl anthracen C<sub>27</sub>H<sub>20</sub>, s. nebenstehende Formel. B. Beim Erhitzen von 10-Oxy-9-phenyl-10-benzyl-9.10-dihydro-anthracen mit Eisessig allein oder unter Zusatz von Acetanhydrid oder wenig Salzsäure oder Schwefelsäure (Barnett, Cook, Wiltshire, Soc. 1927, 1730). Aus 10-Oxy-9-methoxy-9-phenyl-10-benzyl-9.10-dihydro-anthracen mit rotem Phosphor und Jodwasserstoffsäure (D: 1.7) in sieden-
- C<sub>6</sub>H<sub>5</sub>

dem Eisessig (SCHLENK, BERGMANN, A. 463, 279). — Gelbe fluorescierende Krystalle (aus Eisessig), F: 155° (B., C., W.); Blättchen mit grünlichem Oberflächenschimmer (aus Propylalkohol), F: 151° (SCH., B.). Bildet ein stark reibungselektrisches Pulver (SCH., B.). Gibt mit konz. Schwefelsäure eine schnell verblassende Rosafärbung (SCH., B.). — Liefert mit Natrium in Äther eine zuerst tiefblaue, dann braunviolette Lösung einer Natriumverbindung, die beim Behandeln mit Alkohol in 9-Phenyl-10-benzyl-9.10-dihydro-anthracen übergeht (SCH., B., A. 463, 280).

- 1.5 Dichlor 9 phenvl 10 benzyl-anthracen C<sub>27</sub>H<sub>18</sub>Cl<sub>2</sub>, s. nebenstehende Formel. B. Bei der Einw. von Eisessig und etwas Salzsäure auf 1.5 Dichlor 9 phenyl 10 benzyl 9.10 dihydro-anthranol (9) (Barnett, Cook, Soc. 1928, 570) oder auf 1.5 Dichlor 10 phenyl 9 benzyl 9.10 dihydro-anthranol (9) auf dem Wasserbad (B., C., Wiltshire, Soc. 1927, 1732). Celbe Krystalle (aus Benzol oder Toluol). F: 209° (B., C., W.), 211—212° (Cook, Soc. 1928, 2804), 213° (B., C.). Die Lösungen fluorescieren blau (B., C., W.). Absorptionsspektrum in alkoh. Lösung: B., C., Ellison, Soc. 1928, 890. Beim Behandeln mit Brom in Schwefelkohlenstoff entsteht 1.5 Dichlor 9 phenyl 10 [α brom-benzyl] anthracen (C., Soc. 1928, 2805).
- 1.5-Dichlor-9-phenyl-10-[ $\alpha$ -brom-benzyl]-anthracen  $C_{27}H_{17}Cl_2Br$ , s. nebenstehende Formel. B. Bei der Einw. von Brom auf eine Lösung von 1.5-Dichlor-9-phenyl-10-benzyl-anthracen in Schwefelkohlenstoff (Cook, Soc. 1928, 2805). Orangefarbene Krystalle (aus Benzol + Ather). F: 179—180°. Liefert beim Erhitzen mit Wasser, Aceton und Calciumcarbonat auf dem Wasserbad 1.5-Dichlor-9-phenyl-10-[ $\alpha$ -oxybenzyl]-anthracen; reagiert analog mit Alkohol.
- H<sub>5</sub>C<sub>6</sub> Cl
- 6. 9-Phenyl-10-o-tolyl-anthracen C<sub>27</sub>H<sub>20</sub>, Formel I. B. Durch Verschmelzen von 9-Phenyl-10-o-tolyl-9.10-dihydro-anthracen mit Schwefel (Haack, B. 62, 1783). Aus 10-Oxy-9-phenyl-10-o-tolyl-9.10-dihydro-anthracen durch Kochen mit Kaliumhydroxyd in Xylol (H., B. 62, 1782). Aus 10-Oxy-9-methoxy-9-phenyl-10-o-tolyl-9.10-dihydro-anthracen durch Kochen mit Natriumformiat und wasserfreier Ameisensäure (Schlenk, Bergmann, J. 463, 186). Gelbliche Stäbchen und Täfelchen (aus Essigester). F: 257—258° (Sch., B.), 261—262° (korr.) (H., B. 62, 1782). Liefert bei der Reduktion durch Kochen mit Kalium in Xylol unter Zugabe von Alkohol oder mit Natrium in siedendem Isoamylalkohol 9-Phenyl-10-o-tolyl-9.10-dihydro-anthracen (H.).
- 7. **9-Phenyl-10-m-tolyl-anthracen** C<sub>27</sub>H<sub>20</sub>, Formel I. *B.* Beim Kochen von 10-Oxy-9-methoxy-9-phenyl-10-m-tolyl-9.10-dihydro-anthracen mit Natriumformiat und wasserfreier Ameisensäure (Schlenk, Bergmann, *A.* **463**, 187). Krystalle (aus Isoamyl-alkohol). F: 182—183°.
- 8. 1-Methyl-9.10-diphenyl-anthracen C<sub>27</sub>H<sub>20</sub>, Formel II. B. Beim Kochen von 9.10-Dioxy-1-methyl-9.10-diphenyl-9.10-dihydro-anthracen mit Natriumformiat und wasserfreier Ameisensäure (Schlenk, Bergmann, A. 463, 184). Gelbe Prismen (aus Propylalkohol). F: 194°. Sehr leicht löslich in Essigester.

$$I. \begin{picture}(20,10) \put(0,0){\line(1,0){160}} \put(0,0){\line(1,0)$$

- 9. 2-Methyl-9.10-diphenyl-anthracen C<sub>2</sub>,H<sub>20</sub>, Formel III (H 749). B. Beim Kochen von 9.10-Dioxy-2-methyl-9.10-diphenyl-9.10-dihydro-anthracen mit Zink in Eisessig (Schlenk, Bergmann, A. 463, 186). Gelbliche Krystalle (aus Essigester). F: 214°.
- 10. 9.9-Diphenyl-10-methylen-dihydroanthracen C<sub>27</sub>H<sub>20</sub>, Formel IV. B. Durch Einw. von 1,5—2 Mol Methylmagnesiumjodid in Äther auf 10.10-Diphenyl-anthron-(9) und folgendes Erhitzen des Reaktionsprodukts mit Eisessig unter Zusatz von wenig Salzsäure oder Schwefelsäure auf dem Wasserbad (BARNETT, COOK, Soc. 1928, 570). Prismen (aus Essigester). F: 192°.

11. 9- $[\beta.\beta-Diphenyl-vinyl]$ -fluoren, 1.1-Diphenyl-3.3-diphenylen-propen-(1),  $\alpha.\alpha$ -Diphenyl- $\beta$ -[fluorenyl-(9)]- $[athylen C_{27}H_{20}]$ - $[c_{6}H_{4}]$ CH·CH·C( $[c_{6}H_{5}]_{2}$ .

B. Durch Sättigen der äther. Suspension von α.α-Diphenyl-β-[fluorenyl-(9)]-āthylalkohol mit Chlorwasserstoff unter Kühlung mit Kältemischung und Kochen des Reaktionsprodukts mit Pyridin (Schlenk, Bergmann, A. 463, 271). — Krystalle (aus Eisessig). F: 111—1129. Leicht löslich in Benzol, Petroläther und Benzin, schwer in Methanol. Färbt konz. Schwefelsäure gelb. — Liefert mit Natrium in siedendem Isoamylalkohol 9-[β.β-Diphenyl-āthyl]-fluoren

12. Phenyl-di-α-naphthyl-methan C<sub>27</sub>H<sub>20</sub> = (C<sub>10</sub>H<sub>7</sub>)<sub>2</sub>CH·C<sub>6</sub>H<sub>5</sub> (H 749). B. Neben anderen Produkten aus Phenyl-di-α-naphthyl-methyl bei monatelangem Aufbewahren in Benzol oder Åther unter Licht- und Luftausschluß oder bei der Einw. von Chlorwasserstoff in Benzol, insbesondere bei Gegenwart von fein verteiltem Silber (SCHOEPFLE, Am. Soc. 44, 192). Bei der Reduktion von Phenyl-di-α-naphthyl-carbinol mit Zinkstaub und Eisessig bei 75–80° (SCH., Am. Soc. 44, 191). — Nadeln (aus Eisessig oder Äther). F: 204°. Löslich in Benzol und Äther, sehr schwer löslich in Eisessig, Alkohol und Petroläther.

Phenyl-di- $\alpha$ -naphthyl-chlormethan  $C_{27}H_{19}Cl = (C_{10}H_7)_2CCl \cdot C_6H_5$ . B. Neben anderen Produkten bei der Einw. von Chlorwasserstoff auf Phenyl-di- $\alpha$ -naphthyl-methyl in Benzol (Schoepfle, Am. Soc. 44, 194). Aus Phenyl-di- $\alpha$ -naphthyl-carbinol in Benzol beim Einleiten von Chlorwasserstoff oder besser beim Behandeln mit Acetylchlorid (Sch., Am. Soc. 44, 190). — Krystalle (aus Benzol + Petroläther). F: 165—167° (Zers.). — Verfärbt sich langsam beim Aufbewahren. Geht bei Einw. von fein verteiltem Silber unter Ausschluß von Luft in Phenyl-di- $\alpha$ -naphthyl-methyl über. Liefert mit Ammoniak in Benzol Phenyl-di- $\alpha$ -naphthyl-methylamin. Bildet mit Quecksilber(II)-chlorid, Zinn(IV)-chlorid, Eisen(III)-chlorid, Aluminiumchlorid und Zinkchlorid unstabile tiefrote Additionsverbindungen, die alsbald in 9-Phenyl-1.2;7.8-dibenzo-fluoren übergehen. — Hydrochlorid. Tiefrot, unbeständig. Zersetzt sich leicht unter Bildung von 9-Phenyl-1.2;7.8-dibenzo-fluoren.

Phenyl-di- $\alpha$ -naphthyl-brommethan  $C_{27}H_{19}Br = (C_{10}H_7)_2CBr\cdot C_6H_5$ . B. Aus Phenyl-di- $\alpha$ -naphthyl-carbinol und Acetylbromid in Benzol (Schoeffle, Am. Soc. 44, 190). — Krystalle. F: 125—127° (Zers.). — Verfärbt sich langsam beim Aufbewahren. Liefert mit Ammoniak in Benzol Phenyl-di- $\alpha$ -naphthyl-aminomethan. — Liefert mit Bromwasserstoff ein Hydrobromid und bildet mit Metallchloriden Additionsverbindungen.

13. 2.2'- Methylen - di - fluoren. Di[fluorenyl-(2)] - methan C<sub>27</sub>H<sub>20</sub>, s. nebenstehende Formel. B. Entsteht als Hauptprodukt
beim Kochen von Fluoren mit Methylal und Phosphorpentoxyd in Chloroform (Dziewoński.
Panek, Bl. Acad. polon. [A] 1927, 747; C. 1928 II, 445). — Blättchen (aus Alkohol oder Ligroin). F: 201—202°. Löslich in siedendem Alkohol, leicht löslich in siedendem Eisessig und Ligroin, sehr leicht in Benzol. — Beim Kochen mit Chromessigsäure entsteht Di-[fluorenonyl-(2)]-keton.

x-Dinitro-di-[fluorenyl-(2)]-methan C<sub>27</sub>H<sub>18</sub>O<sub>4</sub>N<sub>2</sub>. B. Beim Kochen von Di-[fluorenyl-(2)]-methan mit Salpetersäure (D: 1,41) und Eisessig (Dziewoński, Panek, Bl. Acad. polon. [A] 1927, 748; С. 1928 II, 445). — Gelbe Krystalle (aus Benzol). F: 256—257°.

14. Kohlenwasserstoff C<sub>27</sub>H<sub>20</sub>. Das Mol.-Gew. ist kryoskopisch in Benzol bestimmt (SCHLENK, BERGMANN, A. 463, 252). — B. Bei der Einw. von Jod in Benzol oder von Quecksilber auf das Anlagerungsprodukt von Lithium an Tetraphenylallen (Syst. Nr. 2357) in Äther (Sch., B.). — Krystalle (aus Propylalkohol oder Isoamylalkohol). F: 186°. Färbt konz. Schwefelsäure grau mit einem Stich ins Rotviolette. — Bei der Addition von Natrium in Äther und nachfolgenden Hydrolyse des Reaktionsprodukts mit Alkohol erhält man einen Kohlenwasserstoff C<sub>27</sub>H<sub>22</sub> vom Schmelzpunkt 103° (S. 684), während bei der Reduktion mit Natrium in siedendem Isoamylalkohol oder mit rotem Phosphor und Jodwasserstoffsäure (D: 1,7) ein Kohlenwasserstoff C<sub>27</sub>H<sub>22</sub> vom Schmelzpunkt 167—168° (S. 684) entsteht.

# 4. Kohlenwasserstoffe $C_{28}H_{22}$ .

1. 1.1.4.4 - Tetraphenyl - butin - (2), Dibenzhydrylacetylen  $C_{28}H_{22} = (C_6H_5)_2\text{CH} \cdot \text{C:C-CH}(C_6H_5)_2$  (E I 379). B. Aus Acetylen-bis-magnesiumbromid und Diphenyl-chlormethan in Ather (Wieland, Kloss, A. 470, 215). Aus 2.2.3.3-Tetrabrom-1.1.4.4-tetraphenyl-butan durch Kochen mit Zinkstaub und Eisessig oder Alkohol oder durch Hydrierung in Gegenwart von Palladium in Pyridin + verd. Alkohol (Brand, B. 54, 2000). — Nadeln (aus Alkohol). F: 116° (Br.). 114° (W., K.). Dichten und Brechungsindices von Lösungen in 1-Methyl-naphthalin bei 19,8° und 23,3°: v. Auwers, Bergmann, A. 476, 276. — Die

Oxydation mit Calciumpermanganat in wäßr. Pyridin ergibt Tetraphenylbutatrien, Diphenylessigeäure und Benzophenon (Br., B. 54, 2020). Liefert bei der Hydrierung in Gegenwart von Palladiumschwarz in Eisessig 1.1.4.4-Tetraphenyl-butan (W., K.).

2. 1.1.4.4 - Tetraphenyl - butadien - (1.3).  $\alpha.\alpha.\delta.\delta$  - Tetraphenyl - erythren  $C_{28}H_{22} = (C_0H_5)_2C:CH\cdot CH:C(C_0H_5)_2$  (H 750; E I 379). B. In geringer Menge neben anderen Produkten aus  $\beta$ -Brom- $\alpha$ . $\alpha$ -diphenyl-athylen beim Erhitzen mit Magnesium, Athyljodid und etwas Jod in Äther (Hurd, Webb, Am. Soc. 49, 557), durch Einw. von Magnesium in Äther und folgendes Einleiten von Kohlendioxyd (Lipp, B. 56, 571), beim Behandeln mit Magnesium und Paraformaldehyd in Äther (ZIEGLER, TIEMANN, B. 55, 3412) sowie bei vielstündiger Einw. von Lithium in Äther und Umsetzung des Reaktionsprodukts mit Jod oder Phenylsenföl (BLUM, B. 62, 889). Aus dem Reaktionsprodukt von 1.1.3.3-Tetraphenyl-propen und Lithium in Äther durch Behandeln mit Jod, neben anderen Produkten (Schlenk, Bergmann, A. 463. 56). Aus 1.4-Dikalium-1.1.4.4-tetraphenyl-buten-(2) in äther. Suspension bei Einw. von Jod, Methylenjodid, Tetramethyläthylendibromid, Benzoylchlorid, Sauerstoff oder Schwefel (Wittig, v. Lupin, B. 61, 1633). Bei der Reduktion von Tetraphenylbutatrien durch Erhitzen mit Zinkwolle in Isoamylalkohol und Eisessig (Brand, B. 54, 2005) oder mit gesättigter Jodwasserstoffsaure und etwas rotem Phosphor (Salkind, Kruglow, B. 61, 2312; Ж. 61, 813). Aus 1.1.4.4-Tetraphenyl-butandiol-(1.4) bei der Einw. von Brom in Chloroform (Salkind, Teterin, B. 62, 1748; 36. 61, 1754), beim Kochen mit Eisessig und konz. Salzsäure oder Bromwasserstoffsäure oder bei der Einw. von Thionylchlorid in Chloroform (Wittig, v. Lupin, B. 61, 1630). Aus 1.4-Diäthoxy-1.1.4.4-tetraphenyl-butan durch Kochen mit Eisessig und Salzsäure (D: 1,19) (Arbusow, 3K, 53, 296; C. 1923 III, 1015). In sehr geringer Menge beim Erwärmen von 1.1.4.4-Tetraphenyl-butindiol-(1.4) mit nicht ganz gesättigter Jodwasserstoffsäure und etwas Jod (Sa., Kr.). Bei der Einw. von Brom auf 2.2.5.5-Tetraphenyl-tetra-

hydrofuran in Chloroform (Sa., Tr.).

Nadeln (aus Alkohol oder Aceton) (Salkind, Kruglow, B. 61, 2312; Ж. 61, 813); verwitternde Prismen oder Tafeln (aus Benzol), Prismen mit grünblauer Fluorescenz (aus Essigester) (Lipp, B. 56, 571). Schmilzt bei 192—193°, nach dem Wiedererstarren bei 200° bis 201° (Sa., Kr.; Sa., Teterin, B. 62, 1748; Ж. 61, 1754); schmilzt bei 193—194°, erstarrt bei 190° und schmilzt dann bei 202° (Ar.); F: 200° (Schlenk, Bergmann, A. 463, 56), 201° (WITTIG, V. LUPIN, B. 61, 1630), 202° (BRAND, B. 54, 2005), 205-206° (korr.) (L.). Sehr schwer löslich in Methanol (Sa., Te.), ziemlich schwer in heißem Alkohol, löslich in heißem Aceton und Essigester (L.). Die bläuliche Fluorescenz verstärkt sich beim Verreiben mit konz. Schwefelsäure unter Bildung einer rosa, später hellgrün, endlich braun gefärbten Lösung (WI., v. Lu.). Die Reduktion mit 3% igem Natriumamalgam in Alkohol ergibt höherschmelzendes 1.1.4.4-Tetraphenyl-buten-(2) (SCHLENK, BERGMANN, A. 463, 103). Liefert beim Einleiten von Chlor in die Suspension in Tetrachlorkohlenstoff und Behandeln des Reaktionsprodukts mit Methanol 2.3-Dichlor-1.4-dimethoxy-1.1.4.4-tetraphenyl-butan (Wittig, v. Lupin, B. 61, 1631). Bei der Einw. von Natrium in Äther entsteht 1.4-Dinatrium-1.1.4.4-tetraphenyl-buten-(2) (Syst. Nr. 2357); reagiert analog mit Lithium

Sch., Br., A. 463, 99).

2-Chlor-1.1.4.4-tetraphenyl-butadien-(1.3)  $C_{28}H_{21}Cl = (C_6H_5)_2C:CCl\cdot CH:C(C_6H_5)_2$ . B. Beim Erhitzen von 2.3-Dichlor-1.4-dimethoxy-1.1.4.4-tetraphenyl-butan über den Schmelzpunkt (Wittig, v. Lupin, B. 61, 1631). — Gelbliche Blättchen (aus Eisessig). F: 246—247°.

3. 1.2.3.4-Tetraphenyl-butadien-(1.3) C<sub>28</sub>H<sub>22</sub> = C<sub>6</sub>H<sub>5</sub>·CH:C(C<sub>6</sub>H<sub>5</sub>)·C(C<sub>6</sub>H<sub>5</sub>):CH·C<sub>6</sub>H<sub>5</sub> (E I 379). B. Bei der Einw. von Alkohol auf das Reaktionsprodukt von β.β-Diehloroder β.β-Dibrom-α.α-diphenyl-äthylen mit Lithium in Äther (SCHLENK, BERGMANN, A. 468, 75, 81; SMITH, HOEHN, Am. Soc. 63 [1941], 1184; vgl. a. Be., SCHREIBER, A. 500 [1933], 119). — F: 183° (SCHL., Be.). — Liefert bei der katglytischen Hydrierung in Gegenwart von Palladium oder hei der Addition von Lithium und nachfolgenden Hydrolyge mit Allechel von Palladium oder bei der Addition von Lithium und nachfolgenden Hydrolyse mit Alkohol einen Kohlenwasserstoff C<sub>28</sub>H<sub>24</sub> vom Schmelzpunkt 182° (S. 686) (SCHL., BE.).

4. 1.2.4-Triphenyl-1.4-dihydro-naphthalin  $C_{28}H_{22}$ , s. neben-C<sub>6</sub>H<sub>5</sub>  $c<_{c\cdot c_6H_5}$ stehende Formel. B. Neben anderen Produkten bei der Einw. von Alkohol auf 1-Natrium-1.2.4-triphenyl-1.4-dihydro-naphthalin (Syst. Nr. 2357) oder ĊН auf das Reaktionsprodukt aus  $\beta$ -Brom- $\alpha$ . $\alpha$ -diphenyl-äthylen und Lithium in Äther (Blum, B. 62, 885, 889). — Krystalle (aus Propylalkohol). F: 143° bis 144°. — Kurzes Erhitzen mit Chromtrioxyd und wäßr. Essigsäure ergibt 1.2.4-Triphenylnaphthalin und 2-Desyl-diphenylmethan- $\alpha$ -carbonsäure  $C_6H_5$ ·CO· $CH(C_6H_5)$ · $C_6H_4$ · $CH(C_6H_5)$ · $CO_2H$ ; 12-stdg. Kochen mit Chromessigsäure führt zu 1.2-Dibenzoyl-benzol. Bei der Hydrierung in Gegenwart von Palladium-Bariumsulfat in Propylalkohol entsteht 1.2.4-Triphenyl-1.2.3.4-tetrahydro-naphthalin. Liefert mit Natrium in Äther 1-Natrium-1.2.4-triphenyl-1.4-dihydro-naphthalin.

- 5. 1-Phenyl-3-benzhydryl-inden C<sub>28</sub>H<sub>22</sub>=C<sub>6</sub>H<sub>4</sub> CH[CH(C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>] CH. Zur Konstitution vgl. Blum-Bergmann, A. 484 [1930], 26, 40. B. Bei der Einw. von Natriumamalgam auf 1-Phenyl-3-benzhydryliden-inden in Alkohol, neben anderen Produkten (Schlenk, Bergmann, A. 463, 226). Neben 3-Phenyl-1-benzhydryl-inden bei der Einw. von Alkohol auf das Reaktionsprodukt aus 1-Phenyl-3-benzhydryliden-inden und Natrium in Äther (Schl., Be., A. 463, 225). Tafeln (aus Benzin), Blättchen (aus Propylalkohol). F: 174,5—175° (Bl.-Be.), 171° (Schl., Be.). Liefert bei der Reduktion mit Natrium in siedendem Isoamylalkohol 1-Phenyl-3-benzhydryl-hydrinden (Schl., Be., A. 463, 226).
- 6. 3-Phenyl-1-benzhydryl-inden C<sub>28</sub>H<sub>22</sub> = C<sub>6</sub>H<sub>4</sub> C<sub>[CH(C<sub>6</sub>H<sub>5</sub>)</sup> CH. Zur Konstitution vgl. Blum-Bergmann, A. 484 [1930], 26, 44. B. Neben 1-Phenyl-3-benzhydrylinden bei der Einw. von Alkohol auf das Reaktionsprodukt aus 1-Phenyl-3-diphenylmethylen-inden und Natrium in Äther (Schlenk, Bergmann, A. 463, 226). Nadeln (aus Benzin). F: 133—134,5° (Bl.-Be.), 131° (Sch., Be.).</sub>
- 7. 1-Phenyl-3-diphenylmethylen-hydrinden, 1-Phenyl-3-benzhydry-liden-hydrinden  $C_{28}H_{22}=C_6H_4 < C[:C(C_6H_5)_2] > CH_2$ . Zur Konstitution vgl. Blu M-Bergmann, A. 484 [1930], 27, 39. B. Durch Reduktion von 2-Chlor-1-phenyl-3-benz-hydryliden-inden mit Jodwasserstoffsäure (D: 1,7) und Phosphor in siedendem Eisessig (Wieland, Kloss, A. 470, 220). Nadeln (aus Alkohol). F: 115° (W., K.). Liefert be i der Oxydation mit Permanganat in heißem Aceton Benzophenon und 2-Benzoyl-benzoesäur e (W., K.). Die Hydrierung in Gegenwart von Palladiumschwarz in Eisessig ergibt 1-Phenyl-3-benzhydryl-hydrinden (W., K.).
- 8. 1.2 Diphenyl 3 benzyliden hydrinden  $C_{28}H_{22} = C_{6}H_{4} \subset C(:C_{6}H_{5}) \subset CH \cdot C_{6}H_{5}$ . Ein von Schlenk, Bergmann (A. 463, 81) bei der Einw. von Alkohol auf das Reaktionsprodukt von  $\beta.\beta$ -Diehlor- oder  $\beta.\beta$ -Dibrom- $\alpha.\alpha$ -diphenyl-äthylen mit Lithium in Äther erhaltener Kohlenwasserstoff, dem von Bergmann, Schreiber (A. 500 [1933], 119) diese Konstitution zugeschrieben wird, ist als 1.2.3.4-Tetraphenyl-buta-dien-(1.3) (S. 695) erkannt (Smith, Hoehn, Am. Soc. 63 [1941], 1184).
- 9. **9-Methyl-10-benzhydryl-anthracen** C<sub>28</sub>H<sub>22</sub>, Formel I. B. Beim Erhitzen von 9-Methyl-10-benzhydryl-9.10-dihydro-anthranol-(9) mit Eisessig und Salzsäure auf dem Wasserbad (Barnett, Goodway, Soc. 1929, 1757). Violett fluorescierende Krystalle (aus Petroläther + Benzol).
- 10. **9.10-Dibenzyl-anthracen** C<sub>28</sub>H<sub>22</sub>, Formel II (H 750). B. Beim Erhitzen von 9.10.10-Tribenzyl-9.10-dihydro-anthranol-(9) mit Eisessig und wenig Salzsäure auf dem Wasserbad (Barnett, Cook, Soc. **1928**, 571). Krystalle (aus Toluol). F: 245°.



11. 10-Benzyl-9-benzyliden-dihydroanthracen C28H22, Formel III.

1.5-Dichlor-10-benzyl-9-benzyliden-dihydroanthracen C<sub>28</sub>H<sub>20</sub>Cl<sub>2</sub>, Formel IV. B. Beim Erhitzen von 1.5-Dichlor-9.10-dibenzyl-9.10-dihydro-anthranol-(9) mit Eisessig unter Zusatz von wenig Salzsäure oder Schwefelsäure auf dem Wasserbad (BARNETT, Cook, Soc. 1928, 570). — Krystalle (aus Eisessig). F: 158°.



4.5-Dichlor-10-benzyl-9-benzyliden-dihydroanthracen C<sub>28</sub>H<sub>20</sub>Cl<sub>2</sub>, Formel V. B. Beim Erhitzen von 4.5-Dichlor-9.10-dibenzyl-9.10-dihydro-anthranol-(9) oder von 1.8-Dichlor-9.10-dibenzyl-9.10-dihydro-anthranol-(9) mit Eisessig und Salzsäure auf dem Wasserbad (Barnett, Wiltshire, B. 62, 3071, 3072). — Krystalle (aus Aceton + Methanol). F: 151°. — Liefert bei der Oxydation mit Chromsäure in Eisessig auf dem Wasserbad 4.5-Dichlor-10-benzyl-anthron-(9).

- 697
- 1.5 Dichlor 10 benzyl 9 [4 chlor benzyliden] dihydroanthracen  $C_{28}H_{19}Cl_3$ , Formel VI, S. 696. B. Beim Erhitzen von 1.5-Dichlor-10-benzyl-9-[4-chlor-benzyl]-9.10-dihydro-anthranol-(9) mit Eisessig und Salzsäure auf dem Wasserbad (BARNETT, WILT-SHIRE, B. 62, 3077). — F: 2260. — Ist gegen längeres Kochen mit salzsäurehaltigem Eisessig beständig.
- 1.5 Dichlor 10 [4 chlor benzyl] 9 benzyliden dihydroanthracen  $C_{28}H_{19}Cl_3$ , Formel VII, S. 696. B. Beim Erhitzen von 1.5-Dichlor-9-benzyl-10-[4-chlor-benzyl]-9.10-dihydro-anthranol-(9) mit salzsäurehaltigem Eisessig auf dem Wasserbad (BARNETT, WILTSHIRE, B. 62, 3077). — Krystalle (aus Aceton + Methanol). F: 168°. — Ist gegen Kochen mit Salzsäure und Eisessig beständig.
- 9.10-Di-p-tolyi-anthracen C<sub>28</sub>H<sub>22</sub>, Formel VIII, S. 696. B. Durch Reduktion von 9.10-Dioxy-9.10-di-p-tolyl-dihydroanthracen mit Zinkstaub in siedendem Eisessig (INGOLD, MARSHALL, Soc. 1926, 3085). — Blaßgelbe Prismen (aus Toluol). F: 278—279° (I., M.). Die Farbe der Lösungen in Benzyliden-methylamin (I. M. Soc. 1926, 3081, 3089) oder in Mesitylen (Barnett, Cook, Wiltshire, Soc. 1927, 1726) vertieft sich beim Erhitzen und hellt sich beim Abkühlen wieder auf. — Liefert bei der Einw. von Natrium in flüssigem Ammoniak 9.10-Dinatrium-9.10-di-p-tolyl-9.10-dihydro-anthracen (Syst. Nr. 2357); reagiert analog mit Kalium (I., M.).
- 13. 1'.4'-Bis-[1-methyl-indenyliden]-p-xylol.  $\omega.\omega'$ -p-Phenylen-bis-[1-methyl-benzofulven], Dimethylterephthalaldiinden  $C_{28}H_{22} = CH_3 \cdot C \in C_6H_4 \cdot C: CH \cdot C_6H_4 \cdot CH: C \in C_6H_4 \cdot C: CH_3$ . B. Aus 1-Methyl-inden und der halben Gewichtsmenge Terephthalaldehyd (MAYER, SIEGLITZ, LUDWIG, B. 54, 1402). Orangefarbene Krystalle (aus Benzol). F: 2240.
- 14. 9.12 Diphenyl diphensuccindan  $C_{28}H_{22}$ , s. nebenstehende Formel.
- CH(C<sub>6</sub>H<sub>5</sub>) a) Höherschmelzendes 9.12-Diphenyl-diphensuccindan. B. Bei der Hydrierung von 9.12-Diphenyl-diphensuccinden-(10) bei Gegenwart von Palladium-Tierkohle in warmem Eisessig (Brand, Mühlt, J. pr. [2] 110. 5). Aus 9.12-Diphenyl-diphensuccindadien-(9.11) bei der Reduktion bei Gegenwart von Palladium-Tierkohle in warmem Eisessig oder neben dem niedrigerschmelzenden Stereoisomeren durch Erhitzen mit Natrium und Isoamylalkohol (B., M.). — Nadeln (aus Essigester). F: 207—208°. Löslich in Eisessig, Essigester und Chloroform, schwer löslich in Alkohol; die Lösung in Chloroform fluoresciert stark. Absorptionsspektrum: B., M.
- b) Niedrigerschmelzendes 9.12-Diphenyl-succindan. B. Neben dem höherschmelzendem Stereoisomeren bei der Reduktion von 9.12-Diphenyl-diphensuccindadien-(9.11) mit Natrium und Isoamylalkohol (BRAND, MÜHL, J. pr. [2] 110, 6). — Nadeln (aus Essigester). F: 166—167°. Löslich in Eisessig. Essigester und Chloroform, schwer löslich in Alkohol; die Lösung in Chloroform fluoresciert stark. Absorptionsspektrum: B., M.
- 15. 9.10.9'.10'-Tetrahydro-dianthranyl, 9.10.9'.10'-Tetrahydro-dianthryl-(9.9') C<sub>28</sub>H<sub>22</sub>=C<sub>6</sub>H<sub>4</sub>< CH<sub>2</sub>CH<sub>4</sub>CH<sub>4</sub>CH<sub>4</sub>CH<sub>2</sub>CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>(H 751). B. Bei der Einw. von Natrium in siedendem Isoamylalkohol auf Dianthranyl (Cook, 50c. 1928, 1683; SCHLENK, Natrium in siedendem Isoamylalkohol auf Dianthranyl (Cook, 50c. 1928, 1683; SCHLENK, Natrium in siedendem Isoamylalkohol auf Dianthranyl (Cook, 50c. 1928, 1683; SCHLENK, Natrium in siedendem Isoamylalkohol auf Dianthranyl (Cook, 50c. 1928, 1683). BERGMANN, A. 463, 166) oder auf 10.10'-Dibenzoyl-9.10.9'.10'-tetrahydro-dianthranyl-(9.9') (C.). — Krystalle (aus Benzol + Petroläther oder aus Xylol). F: 256—257° (C.), 255° (Sch., B.).

# 5. Kohlenwasserstoffe $m C_{30}H_{26}$ .

- 1. 1.5-Diphenyl-3-benzhydryl-pentadien-(1.4), Distyryl-benzhydryl-methan, 1.1-Diphenyl-2.2-distyryl-äthan  $C_{30}H_{26}=(C_6H_5\cdot CH:CH)_2CH\cdot CH(C_6H_5)_2$ . B. Bei der Einw. von Alkohol auf 1.2-Dinatrium-1.1-diphenyl-2.2-distyryl-äthan (Syst. Nr. 2357) in Äther (Schlenk, Bergmann, A. 463, 68). — Gelbliche Tafeln. F: 151—152°.
- 2. 1.4 Diphenyt-1.4-di-p-tolyt-butadien (1.3)  $C_{30}H_{26} = CH_3 \cdot C_6H_4 \cdot C(C_6H_5)$ :  $CH \cdot CH : C(C_6H_5) \cdot C_6H_4 \cdot CH_3$ . B. Als Nebenprodukt beim Kochen von  $\beta$ -Brom- $\alpha$ -phenyt-2-p-tolyt-äthylen mit Magnesiumspänen in Äther (Hurd, Webb, Am. Soc. 49, 557). Krystalle (aus Essigester). F: 207-210°.
- 3. 1-Phenyl-3.3.3-tri-p-tolyl-propin-(1)  $C_{30}H_{26} = (CH_3 \cdot C_6H_4)_3C \cdot C \cdot C \cdot C_6H_5$ . B. Aus Phenylacetylenmagnesiumbromid und Tri-p-tolylchlormethan (Wieland, Kloss, A. 470, 214). — Krystalle (aus Alkohol). F: 141° (W., K.). Leicht löslich in Äther, Chloroform,

[Syst. Nr. 493

Benzol, Essigester und Pyridin, schwer in Alkohol, Eisessig und Petroläther; unlöslich in konz. Schwefelsäure (W., K.). Dichte und Brechungsindices in 1-Methyl-naphthalin bei 21,3°: v. Auwers, Bergman; A. 476, 276. — Liefert bei der Hydrierung bei Gegenwart von Platinoxyd in Eisessig 1-Cyclohexyl-3.3.3-tri-p-tolyl-propan (W., K.).

4. 4.4'- Bis- [α-phenyl-vinyl]-dibenzyl C<sub>30</sub>H<sub>26</sub> = C<sub>6</sub>H<sub>5</sub>·C(:CH<sub>2</sub>)·C<sub>6</sub>H<sub>4</sub>·CH<sub>2</sub>·CH<sub>2</sub>·CH<sub>2</sub>·C<sub>6</sub>H<sub>4</sub>·C(:CH<sub>2</sub>)·C<sub>6</sub>H<sub>5</sub>. B. Beim Erhitzen von 4.4'-Bis-[α-oxy-α-phenyl-āthyl]-dibenzyl oder seinem Dimethyläther mit Eisessig (Wittig, Leo, B. 61, 861). — Blättchen. F: 117—119°. — Die Lösung in Chloroform entfärbt Brom.

5. 9.12-Dibenzyl-diphensuccindan C<sub>30</sub>H<sub>26</sub>, s. nebenstehende Formel. B. Durch Hydrierung von 9.12-Dibenzyliden-diphensuccindan oder 9.12-Dibenzyliden-diphensuccinden. (10) bei Gegenwart von Palladin



succinden-(10) bei Gegenwart von Palladium-Tierkohle in Alkohol + Eisessig (Brand, Müller, B. 55, 608). — Krystalle (aus Alkohol). F: 141°.

6. **9.12-Di-m-tolyl-diphensuccin**dan C<sub>30</sub>H<sub>29</sub>, s. nebenstehende Formel. B. Bei der Hydrierung von 9.12-Di-m-tolyldiphensuccinden-(10) oder von 9.12-Di-m-to-



lyl-succindadien-(9.11) bei Gegenwart von Palladium-Tierkohle in Eisessig; aus letztgenannter Verbindung auch durch Reduktion mit Natrium und Isoamylalkohol (Brand, Mühl, J. pr. [2] 110, 9). — Krystalle (aus Eisessig oder Petroläther). F: 150°. Löslich in Alkohol, Eisessig. Essigester, Aceton, Äther und Petroläther.

 9.12-Di-p-tolyl-diphensuccindan C<sub>30</sub>H<sub>26</sub>, s. nebenstehende Formel.
 a) Höherschmelzende Form. B. Bei



der Hydrierung von 9.12-Di-p-tolyl-diphensuccinden-(10) in Eisessig bei Gegenwart von Palladium-Tierkohle (Brand, Mühl, J. pr. [2] 110, 7). Aus 9.12-Di-p-tolyl-succindadien-(9.11) bei der Reduktion in warmem Eisessig bei Gegenwart von Palladium-Tierkohle oder neben dem niedrigerschmelzenden Stereoisomeren und anderen Produkten durch Erhitzen mit Natrium und Isoamylalkohol (B., M.). — Krystalle (aus Alkohol). Nadeln (aus Eisessig). F: 188—189°. Löslich in Eisessig, Essigester und Chloroform, schwer löslich in Alkohol.

b) Niedrigerschmelzende Form. B. Neben dem höherschmelzenden Stereoisomeren und anderen Produkten bei der Reduktion von 9.12-Di-p-tolyl-diphensuccindadien-(9.11) mit Natrium und Isoamylalkohol (Brand, Mühl, J. pr. [2] 110, 7). — Krystalle (aus Alkohol). F: 145—146°. Löslich in Eisessig, Essigester und Chloroform, schwer löslich in Alkohol.

# 6. Kohlenwasserstoffe $\mathrm{C}_{32}\mathrm{H}_{36}$ .

- 1. 1.1.8.8-Tetraphenyl-octadien-(1.7) С<sub>22</sub>H<sub>30</sub>=(C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>C:CH·[CH<sub>2</sub>]<sub>4</sub>·CH:C(C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>.
  В. Beim Kochen von 1.1.8.8-Tetraphenyl-octandiol-(1.8) mit Eisessig (GODCHOT, С. т.
  171, 798). Gelbliche Blättchen. F: 92—93°. Ziemlich leicht löslich in siedendem Alkohol.
   Liefert bei der Oxydation mit Permanganat in Aceton Adipinsäure und Benzophenon.
  Addiert 4 Atome Brom.
- 2. 1.1.4.4-Tetra-p-tolyl-butin-(2) C<sub>32</sub>H<sub>30</sub> = (CH<sub>3</sub>·C<sub>6</sub>H<sub>4</sub>)<sub>2</sub>CH·C: C·CH(C<sub>6</sub>H<sub>4</sub>·CH<sub>3</sub>)<sub>2</sub> (E I 381). B. Bei der Reduktion von 2.2.3.3-Tetrabrom-1.1.4.4-tetra-p-tolyl-butan mit Zinkstaub und siedendem Eisessig (Brand, Wendel, J. pr. [2] 115, 349). Krystalle (aus Eisessig). Beim Erhitzen mit Natriumäthylat-Lösung entsteht 1.1.4.4-Tetra-p-tolyl-butadien-(1.3).
- 3. 1.1.4.4-Tetra-p-tolyl-butadien-(1.3) C<sub>32</sub>H<sub>30</sub> = (CH<sub>3</sub>·C<sub>6</sub>H<sub>4</sub>)<sub>2</sub>C:CH·CH·C(C<sub>6</sub>H<sub>4</sub>·CH<sub>3</sub>)<sub>2</sub> (E I 381). B. Beim Kochen von 1.1.4.4-Tetra-p-tolyl-butin-(2) mit Natriumäthylat-Lösung (Brand, Wendel, J. pr. [2] 115, 349). Durch Hydrierung von Tetra-p-tolyl-butatrien bei Gegenwart von Palladium-Tierkohle in Alkohol unter mäßiger Erwärmung (B., W., J. pr. [2] 115, 346). Krystalle (aus Eisessig).
- 4. 10.10.10'.10'-Tetramethyl-9.10.9'.10'-tetrahydro-dianthranyl-(9.9')  $C_{32}H_{30} = C_6H_4 \underbrace{C(CH_3)_2}_{C_6H_4} \underbrace{C_6H_4}_{C_6(CH_3)_2} \underbrace{C_6H_4}_{C_6H_4}$ . B. Beim Erhitzen einer Lösung von 10.10-Dimethyl-anthron-(9) in Eisessig mit Zinkstaub und konz.. Salzsäure (Barnett, Matthews, B. 59, 769). Krystallpulver (aus salzsäurehaltigem Isoamylalkohol). F: 315°.

#### PHENYL-DINAPHTHYL-METHYL

- 7. 1.1.9.9-Tetraphenyl-nonadien-(1.8)  $C_{33}H_{32} = (C_0H_5)_2C:CH\cdot[CH_2]_5\cdot CH:C(C_0H_5)_2$ .

  B. Beim Kochen von 1.1.9.9-Tetraphenyl-nonandiol-(1.9) mit Eisessig (Godchot, C, r.
  171, 798). Gelbliches Öl.  $Kp_{20}$ : ca. 310°.  $D^{20}$ : 1,047. Liefert bei der Oxydation mit Permanganat in Aceton Pimelinsäure und Benzophenon.
- 8. 1.1.10.10-Tetraphenyl-decadien-(1.9) Сз₄Нз₄=(С₅Н₅)₂С:СН·[СН₂]₀·СН:С(С₀Н₅)₂.
  В. Beim Kochen von 1.1.10.10-Tetraphenyl-decandiol-(1.10) mit Eisessig (Gорснот, С. г. 171, 799). Blättchen. F: 107⁰. Ziemlich leicht löslich in siedendem Alkohol. Liefert bei der Oxydation mit Permanganat in Aceton Korksäure und Benzophenon.
- 9. 10.10.10'.10'. Tetraäthyl-9.10.9'.10'-tetrahydro-dianthranyl-(9.9') (?)  $C_{36}H_{38} = C_6H_4$   $C_{(C_2H_5)_2}$   $C_6H_4$   $C_6H_4$   $C_{(C_2H_5)_2}$   $C_6H_4$  (?). Zur Konstitution vgl. Barnett. Matthews, B. 59, 770. B. Beim Erhitzen von 10.10-Diäthyl-anthron-(9) mit Zinkstaub und Eisessig (Kehrmann, Monnier, Ramm, B. 56, 172). Nadeln (aus Alkohol oder Benzol). F: 210° (K., M., R.). Unlöslich in kalter konzentrierter Schwefelsäure; wird von heißer konzentrierter Schwefelsäure oxydiert (K., M., R.).
- 10. 1.2-Dicyclohexyl-1.1.2.2-tetraphenyl-äthan(?),  $\alpha.\alpha$ -Dicyclohexyl-dibenz-hydryl (?)  $C_{38}H_{42} = H_2C < \frac{CH_2 \cdot CH_2}{CH_2 \cdot CH_2} > CH \cdot C(C_6H_5)_2 \cdot C(C_6H_5)_2 \cdot HC < \frac{CH_2 \cdot CH_2}{CH_2 \cdot CH_2} > CH_2$  (?). Reinheit fraglich. Das Mol.-Gew. ist kryoskopisch in Bromoform bestimmt (Ziegler. Schnell, A. 437, 252). B. Aus Cyclohexyl-diphenylmethyl-kalium beim Behandeln mit Tetramethyläthylendibromid in Äther (Z., Sch., A. 437, 237, 251). Krystallines Pulver. Schmilzt an der Luft zwischen 125° und 150°, in einer indifferenten Atmosphäre bei 168—169°. Schwer löslich in den meisten Lösungsmitteln, mäßig in Chloroform und Bromoform. Wird durch Sauerstoff in Chloroform verändert. Entfärbt Brom und Jod. Einw. von Kalium-Natrium-Legierung: Z., Sch., A. 437, 252.

# 24. Kohlenwasserstoffe C<sub>n</sub>H<sub>2 n-35</sub>.

Phenyl-di- $\alpha$ -naphthyl-methyl bzw. 1.2-Diphenyl-1.1.2.2-tetra- $\alpha$ -naphthyl-äthan  $C_{27}H_{19}=C_6H_5\cdot C(C_{10}H_7)_2$  bzw.  $C_{54}H_{38}=C_6H_5\cdot C(C_{10}H_7)_2\cdot C(C_{10}H_7)_2\cdot C_6H_5$ . B. Beim Behandeln von Phenyl-di- $\alpha$ -naphthyl-chlormethan mit fein verteiltem Silber unter Luftausschluß (Schoepfle, Am. Soc. 44, 192). — Bildet in Benzol, Äther, Schwefelkohlenstoff oder Aceton tief rotbraune Lösungen, die sich selbst bei Lichtausschluß allmählich fast völlig entfärben; dabei bilden sich durch Autoreduktion Phenyl-di- $\alpha$ -naphthyl-methan und 9-Phenyl-1.2;7.8-dibenzo-fluoren. Absorbiert in Lösung etwa 150% der für die Bildung des Peroxyds benötigten Menge an Sauerstoff. Liefert mit Chlorwasserstoff in Benzol Phenyl-di- $\alpha$ -naphthyl-chlormethan und Phenyl-di- $\alpha$ -naphthyl-methan. bei Gegenwart von fein verteiltem Silber nur die letztgenannte Verbindung.

# 25. Kohlenwasserstoffe C<sub>n</sub>H<sub>2 n-36</sub>.

# 1. Kohlenwasserstoffe $C_{26}H_{16}$ .

1. Difluorenyliden, α.β-Bis-diphenylen-äthylen, Dibiphenylenäthen  $C_{26}H_{16} = {C_6H_4 \choose C_6H_4}$  C:  $C_6H_4$  (H 752; E I 381). B. Beim Erhitzen von Fluoren mit Benzophenon-anil oder Fluorenon-anil im Kohlendioxyd-Strom auf 300—340° bei Gegenwart von Anilinhydrobromid, neben anderen Produkten (Reddellen, B. 53, 357). Beim Behandeln von 9-Chlor-fluoren mit wasserfreiem Ammoniak (Courtot, Petitcolas, C. r. 180, 297) oder alkoh. Alkali (Kliegl, Wünsch, Weigele, B. 59, 640). Bei längerem Kochen von 9-Bromfluoren mit überschüssigem Quecksilberdiphenyl oder Quecksilber-di-p-tolyl in Toluol (Whitmore, Thurman, Am. Soc. 51, 1502). Aus Difluorenyl-(9.9') beim Schütteln mit Luft

in heißem Pyridin bei Gegenwart von Kaliummethylat-Lösung (Wanscheidt, Ж. 58, 249, 251; C. 1927 I, 92). In geringer Menge beim Erhitzen von Fluorenonazin über den Schmelzpunkt (Kuhn, Winterstein, Helv. 11, 119). Durch Erhitzen von Trimethyl- oder Triäthyl-fluorenyl-(9)-ammoniumhydroxyd auf ca. 170°, neben anderen Produkten (Ingold, Jessof, Soc. 1929, 2360). — Reinigung erfolgt zweckmäßig durch Krystallisation aus Chloroform (Schlenk, Bergmann, A. 463, 62 Anm. 1). — F: 189—190° (I. J.), 188° (Wa.). Unlöslich in kalter konzentrierter Schwefelsäure (Ku., Wi., Helv. 11, 117). Absorptionsspektrum in Chloroform: Capper, Marsh, Soc. 1926, 726; in Benzol: Wa., Ж. 58, 291: Magidson, Trudy chim.-farm. Inst. Líg. 16 [1926], 46; C. 1928 I, 58; in Methyläthylketon: Jonescu, Bulet. Cluj 2, 296; C. 1925 I, 2221; in Pyridin: Ku., Wi., Helv. 11, 117.

E I 382, Z. 5 v. o. statt ,,kaltem" lies ,,siedendem".

Die Lösung in Eisessig liefert beim Aufbewahren im Sonnenlicht außer Fluorenon (vgl. Hantzsch, Glover, B. 39 [1906], 4156) Difluorenyl-(9.9') (Eckert, J. pr. [2] 121, 279). Nimmt beim Schütteln mit Luft in Pyridin bei Gegenwart von Kaliummethylat-Lösung Sauerstoff auf (Wanscheidt,  $\Re$ . 58, 251, 285). Bei der Ozonspaltung erhält man Fluorenon und eine Verbindung vom Schmelzpunkt 250—252° (H. Fischer, Müller, H. 148, 175; vgl. a. Graebe, v. Mantz, A. 290 [1896], 244; Klinger, Lonnes, B. 29 [1896], 2154). Gibt bei der Reduktion mit Wasserstoff und Platin in Pyridin, mit Hydrazinhydrat in Pyridin, mit Zinkstaub in siedendem Eisessig oder mit Antimonwasserstoff Difluorenyl-(9.9') (Wa.  $\Re$ . 58, 252, 280, 282; C. 1927 I, 93); dieses entsteht ferner als Hauptprodukt beim Behandeln von Difluorenyliden mit Aluminiumchlorid in trocknem Benzol oder besser Xylol bei Zimmertemperatur oder rascher bei 30—40° (Pummerer, Binapfl, B. 54, 2768, 2775). Erwärmen mit konz. Schwefelsäure auf dem Wasserbad liefert eine orangerote Sulfonsäure (Kehrmann. Buffat, Helv. 6, 955). Die Suspension in Eisessig gibt bei Einw. von konz. Salpetersäure und Kochen des Reaktionsprodukts mit Alkohol zwei als Dinitro-α.β-bis-diphenylenäthylene  $C_{26}H_{14}O_4N_2$  angesehene Verbindungen vom Schmelzpunkt 170° (orangerote Prismen) und 171° (tiefrote Körner) (K., B.). Die Lösungen in indifferenten Mitteln werden durch Behandlung mit Stickstoffdioxyd oder Isoamylnitrit momentan entfärbt (Wanscheidt,  $\Re$ . 58, 286). Beim Behandeln mit Natrium in trocknem Äther entsteht eine weinrote Lösung, die mit Alkohol Difluorenyl-(9.9'), mit Kohlendioxyd Difluorenyl-(9.9')-dicarbonsäure-(9.9') liefert (Schlenk, Bergmann, A. 463, 62).

Pikrat  $C_{26}H_{16} + C_6H_3O_7N_3$ . F: 176—177° (Whitmore, Thurman, Am. Soc. 51, 1502).

2.2'-Dinitro-difluorenyliden, 2.2'-Dinitro- $\alpha$ . $\beta$ -bis-diphenylen-äthylen  $C_{26}H_{14}O_4N_2$ . Formel I. B. Bei längerem Kochen von 2.2'-Dinitro-difluorenyl-(9.9') in Nitrobenzol (Korczynski, Karlowska, Kierzek, Bl. [4] 41, 72). — Rote Nadeln (aus Nitrobenzol). Schmilzt nicht bis 360° (K., K., K.), bis 310° (Bergmann, Hoffmann, Winter, B. 66 [1933]. 52); F: 300° (Hughes, Kuriyan, Soc. 1935, 1610). Sehr schwer löslich in den gewöhnlichen organischen Lösungsmitteln (K., K., K.).

2. [Naphtho-2'3': 1.2-naphthacen], [Anthraceno-2'.3': 1.2-anthracen], Hexaphen C<sub>26</sub>H<sub>16</sub>, Formel II. Für die von Hexaphen abgeleiteten Namen wird in diesem Handbuch die angegebene Stellungsbezeichnung gebraucht. Wurde von Clar, Wallenstein, Avenarius (B. 62, 951) als [Anthraceno-1'.2':1.2-anthracen] (Formel III) aufgefaßt; zur Konstitution vgl. E. Clar, B. 73 [1940], 81; Aromatische Kohlenwasserstoffe [Berlin 1941], S. 180. — B. Durch längere Einw. von Aluminiumchlorid auf eine



Lösung von 2.7-Dimethyl-naphthalin und überschüssigem Benzoylchlorid in Schwefelkohlenstoff und Erhitzen des Reaktionsprodukts zum Sieden, neben anderen Produkten (Clar, Wallenstein, Avenarius, B. 62, 955). — Goldgelbe Blätter (aus Xylol). F: 308°. Sublimierbar. Zeigt im Licht der Quarzlampe gelbe Fluorescenz. Fast unföslich in niedrig siedenden, leichter in höher siedenden Lösungsmitteln; die Lösungen fluorescieren grünlichblau. Ultraviolett-Absorptionsspektrum in Benzol: C., W., A. — Löst sich in konz. Schwefelsäure mit violetter Farbe, die nach längerer Zeit über Braun in Olivgrün übergeht. Bei der Oxydation

mit Chromtrioxyd in siedendem Eisessig entsteht Hexaphendichinon (5.16;9.14) (Formel IV). Gibt mit einem großen Überschuß an Pikrinsäure in Benzol geringe Mengen eines unbeständigen Pikrats (C., W., A., B. 62, 952).

3. [Anthraceno-2'.1': 1.2-anthracen], [Dinaphtho-2'.3': 1.2; 2".3": 5.6-naphthalin] C<sub>26</sub>H<sub>16</sub>, Formel V. Zur Konstitution vgl. E. Clar, B. 73 [1940], 81 Anm. 1; Aromatische Kohlenwasserstoffe [Berlin 1941], S. 163. — B. Beim Erhitzen von 2.6-Dimethyl-1.5-dibenzoyl-naphthalin zum gelindem Sieden, neben anderen Produkten (Clar. Wallenstein, Avenarius, B. 62, 954). — Gelbe Blätter oder Sterne (aus Xylol oder Nitrobenzol). F: ca. 400°. Leuchtet bei Bestrahlung mit der Quarzlampe gelb. Sehr sohwer löslich in den üblichen Lösungsmitteln außer Xylol und Nitrobenzol; die Lösungen fluorescieren tief blau. Die Lösung in konz. Schwefelsäure ist anfangs braun, dann grün. Ultraviolett-Absorptionsspektrum in Benzol: C. W., A. — Bei der Oxydation mit Chromtrioxyd in siedendem Eisessig entsteht [Anthrachinono-2'.1':1.2-anthrachinon] (Formel VI). Gibt mit einem großen Überschuß an Pikrinsäure in Benzol geringe Mengen eines unbeständigen Pikrats (C., W., A., B. 62, 952).

4. 1.2; 3.4; 5.6-Tribenzo-anthracen, [Naphtho-1'.2': 2.3-triphenylen] C<sub>26</sub>H<sub>18</sub>, Formel VII. B. Beim Erhitzen von 9-[2-Methyl-naphthoyl-(1)]-phenanthren auf Siedetemperatur (Fieser, Dietz, B. 62, 1831). — Krystalle (aus Benzol). F: 224° (F., D.). Schwer löslich in Benzol und Eisessig (F., D.). Absorptionsspektrum in Benzol: E. Clar, Aromatische Kohlenwasserstoffe [Berlin 1941], S. 148. — Wird durch Chromtrioxyd in siedendem Eisessig zu 1.2;3.4;5.6-Tribenzo-anthrachinon oxydiert (F., D.).

#### 2. Kohlenwasserstoffe $C_{27}H_{18}$ .

1. 9-Phenyl-1.2; 7.8-dibenzo-fluoren, Phenyl-di-α-naphthofluoren C<sub>27</sub>H<sub>18</sub>, s. nebenstehende Formel. B. Bei der Selbstzersetzung der Verbindungen des Phenyl-di-α-naphthyl-chlormethans oder -brommethans mit Halogenwasserstoffen oder Metallchloriden (Schoepfle, Am. Soc. 44, 190). Beim Aufbewahren von Phenyl-

di-α-naphthyl-methyl in Äther unter Ausschluß von Licht und Luft (Sch.). Beim Kochen von Phenyl-di-α-naphthyl-carbinol mit Eisessig (Sch.). Bei der Reduktion von 9-Oxy-9-phenyl-1.2; 7.8-dibenzo-fluoren mit Zinkstaub und Salzsäure in Eisessig (Sch.). — Nadeln (aus Eisessig). F: 2739. Ziemlich leicht löslich in Benzol, schwer in Äther, sehr schwer in Eisessig, Alkohol und Petroläther.

2. Truxen, Tribenzylenbenzol C.7H<sub>18</sub>, s. nebenstehende Formel (H 752; E I 382). Kryoskopische Molekulargewichtsbestimmung in Campher: CARLSOHN, B. 60, 473; vgl. Brass, Mosl., B. 59, 1279; Stobbe, ZSCHOCH, B. 60, 468. Ebullioskopische Mol.-Gew.-Bestimmung in Cumol und Phenol: St., Z., B. 60, 468, 473.—B. Zur Bildung beim Erhitzen von Inden vgl. Stobbe, ZSCHOCH, B. 60, 472; vgl. a. St., Färber, B. 57, 1846. Aus Polyinden (S. 412) bei der Destillation oder beim Erhitzen im Rohr auf 200—220°, neben anderen Produkten (St., F., B. 57, 1849; Bruson, B. 60, 1095). Durch Erhitzen von Tribenzoylenbenzol (Syst. Nr. 712) mit Zinkstaub in Acetanhydrid (Brass, Mosl., B. 59, 1277; St., Z., B. 60, 468).— Krystalle (aus Chloroform oder Cumol). Schmilzt nach vorangehender Bräunung und geringer Sublimation bei 369—370° (St., Z., B. 60, 472). Fluoresciert bei Ultraviolett-Bestrahlung in fester Form grünlich, in Chloroform-Lösung hellblau (St., Z.). Löslichkeit in Chloroform: St., Z., B. 60, 472. Färbt sich mit konzentrierter oder rauchender Schwefelsäure blauviolett (St., Z., B. 60, 471).— Liefert beim Behandeln mit konzentrierter oder rauchender Salpetersäure Tribenzoylenbenzol (B., M.; St., Z., B. 60, 468).

# 3. Kohlenwasserstoffe $\mathrm{C_{28}H_{20}}$ .

1. Tetraphenylbutatrien  $C_{28}H_{20}=(C_8H_5)_2C:C:C:C(C_6H_5)_2$  (vgl. E I 382). Der von Purdie, Arup (Soc. 97 [1910], 1542) unter dieser Formel beschriebene Kohlenwasserstoff stellt nach Blum (B. 62, 882; vgl. Brand, B. 54, 1992) 1.2.4-Triphenyl-naphthalin (S. 702) dar; zur Konstitution des Tetraphenylbutatriens vgl. Brand; Blum; Kuhn, Wallenfels, B. 71

[1938], 783. — B. Beim Erhitzen der beiden stereoisomeren Formen des 1.2-Dichlor-1.1.4.4-tetraphenyl-butens-(2) mit wäßrig-alkoholischer Kalilauge, neben anderen Produkten (Brand, B. 54, 2002). Durch Einw. von Calciumpermanganat auf 1.1.4.4-Tetraphenyl-butin-(2) in wäßr. Pyridin (Br., B. 54, 2020). Bei der Behandlung von 1.1.4.4-Tetraphenyl-butin-(2)-diol-(1.4) mit einer gesättigten Lösung von Jodwasserstoff in Eisessig bei 0°; bei 5—15° entsteht daneben 1.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\omega.\om

phenyl-butadien (1.3) und 1. $\omega$ . $\omega$ -Triphenyl-benzofulven (S., K., B. 61, 2310, 2312;  $\kappa$ . 61, 813). Dimeres Tetraphenylbutatrien(?)  $C_{56}H_{40}$ . Das Mol.-Gew. ist ebullioskopisch in Benzol bestimmt (Brand, B. 54, 2005). — B. Bei monatelangem Aufbewahren von Tetraphenylbutatrien im Sonnenlicht (B.). — Grün fluorescierende Krystalle (aus Chloroform).

F: 280—281°.

2. 1.2.3-Triphenyl-naphthalin C<sub>28</sub>H<sub>20</sub>, s. nebenstehende Formel.

B. Aus β.β. Dichlor- oder β.β-Dibrom-α.α-diphenyl-āthylen durch Einw. von Lithium in Äther-Lösung und Behandlung des Reaktionsprodukts mit Alkohol (Schlenk, Bergmann, A. 463, 81). Durch Einw. von überschüssigem Lithium auf Tolan in Äther und Behandlung des Reaktionsprodukts mit Alkohol (Sch., B., A. 463, 77; vgl. Smfth, Hoehn, Am. Soc. 63 [1941], 1185). — Nadeln (aus Benzin). F: 152° (Sch., B.). — Bleibt beim Kochen mit 5% igem Palladium-Bariumsulfat in Propylalkohol im Wasserstoffstrom unverändert (Sch., B.). Wird von Natrium und siedendem Isoamylalkohol zu 1.2.3-Triphenyl-1.2.3-4-tetrahydro-naphthalin (S. 686) reduziert (Sch., B., A. 463, 78; B., Zwecker, A. 487 [1931], 161). Die Einw. von Lithium in Äther und Hydrolyse des Reaktionsprodukts mit Alkohol ergibt 9-Phenyl-9.10-dihydro-1.2;3.4-dibenzo-anthracen (S. 703) (Sch., B., A. 463, 81; B., Z., A. 487, 161).

4-Jod-1.2.3-triphenyl-naphthalin C<sub>28</sub>H<sub>19</sub>I, s. nebenstehende Formel. B. Aus Tolan beim Schütteln mit Lithium in Äther und nachfolgenden Behandeln mit Jod unter Kühlung mit Eis-Kochsalz (BERGMANN, ZWECKER, A. 487 [1931], 159; vgl. SCHLENK, B., A. 463, 80). — Prismen (aus Essigester). F: 225°.

C6H5 C6H5

3. 1.2.4-Triphenyl-naphthalin C<sub>28</sub>H<sub>20</sub>, s. nebenstehende Formel. Diese Konstitution kommt nach Blum (B. 62, 882; vgl. Brand, B. 54, 1992) dem von Purdie, Arup (Soc. 97, 1542) als α.α.δ.δ-Tetraphenyl-butatrien(?) (E I 382) beschriebenen Kohlenwasserstoff und dem Kohlenwasserstoff (C<sub>14</sub>H<sub>10</sub>)<sub>x</sub> (H 6, 696) zu, den Buttenberg (A. 279, 329) durch Einw. von konz. Schwefelsäure auf Athyl-[β.β-diphenyl-vinyl]-äther erhielt.

C<sub>6</sub>H<sub>5</sub>

— B. Bei gelinder Oxydation von 1.2.4-Triphenyl-1.4-dihydro-naphthalin mit Chromtrioxyd in siedender essigsaurer Lösung, neben anderen Produkten (Blum, B. 62, 888). — Tafeln (aus Eisessig oder viel Methanol). F: 158—159° (Bl.). — Läßt sich in Gegenwart von Palladium-Bariumsulfat in siedendem Propylalkohol nicht hydrieren (Bl.). Liefert bei der Reduktion mit Natrium in siedendem Isoamylalkohol 1.2.4-Triphenyl-1.2.3.4-tetrahydro-naphthalin und einen damit isomeren Kohlenwasserstoff C<sub>28</sub>H<sub>34</sub> (Krystalle, F: 186—187°).

4. 1-Phenyl-3-diphenylmethylen-inden, 1-Phenyl-3-benzhydryliden-inden, 1.w.w-Triphenyl-benzofulven C<sub>28</sub>H<sub>20</sub>, s. nebenstehende Formel. B. Beim Kochen von 1-Phenylinden mit Benzophenon und Natriumäthylat-Lösung (Brand, Berlin, B. 57, 847). Durch Kochen von 2.3-Dichlor-1.1.4.4-tetraphenyl-

 $\begin{array}{c|c} C: C(C_6H_5)_2\\ \hline C = CH\\ \hline C_6H_5 \end{array}$ 

buten-(2) mit wäßrig-alkoholischer Kalilauge und Behandeln des erhaltenen Öls mit siedendem Eisessig oder alkoh. Mineralsäuren (Br., B. 54, 2002; Br., Br., B. 57, 846). Durch kurze Einw. von Jodwasserstoffsäure (D: 1,7) und Phosphor auf 2-Chlor-1-phenyl-3-diphenyl-

methylen-inden in siedendem Eisessig (WIELAND, KLOSS, A. 470, 218). Entsteht neben anderen Produkten beim Erhitzen von Tetraphenylbutatrien mit gesättigter wäßriger oder essigsaurer Jodwasserstoffsäure (Salkind, Kruglow, B. 61, 2310; K. 61, 809, 813). Aus 1.1.4.4-Tetraphenyl-butin-(2)-diol-(1.4) und aus 3-Jod-2.2.5.5-tetraphenyl-2.5-dihydro-furan beim Erwärmen mit gesättigter wäßriger oder essigsaurer Jodwasserstoffsäure (Sa., Kr.). — Orangefarbene Prismen (aus Essigester), Krystalle (aus Benzol + Alkohol). F: 207—208° (Br.), 207° (Br., Br.), 205—206° (Sa., Kr.; Wie., Kl.). Schwer löslich in Alkohol und Eisessig, ziemlich leicht löslich in heißem Essigester (Br., Br.), löslich in Ligroin und Aceton, leicht löslich in Benzol, Toluol und Chloroform (Sa., Kr., 3K. 61, 809).

Gibt bei der Oxydation mit Chromsäure in Eisessig (BRAND, B. 54, 2006) oder mit Permanganat in Aceton (Salkind, Kruglow, B. 61, 2311; 38. 61, 811) Benzophenon und 2-Benzoyl-benzoesäure. Liefert bei der Hydrierung in Gegenwart von Platinmohr in Äther (SA., KR.) oder in Gegenwart von Palladiumschwarz in Eisessig (Wieland, Kloss, A. 470, 219), oder bei der Reduktion mit Natrium in siedendem Isoamylalkohol (SCHLENK, BERGmann, A. 463, 224) 1-Phenyl-3-benzhydryl-hydrinden. Die Reduktion mit Natriumamalgam in Alkohol ergibt 1-Phenyl-3-benzhydryl-inden und geringe Mengen eines unschaff bei 1800 unter Rotfärbung schmelzenden Produkts (Schl., Be., A. 463, 226) [vielleicht ein Gemisch von 1.1.2.2-Tetraphenyl-äthan und 1.1'-Diphenyl-diindenyl-(3.3')] (Blum-Bergmann, A. 484 [1930], 29, 41). Die Einw. von Natrium in Äther führt zu einem braunroten Produkt, das bei der Behandlung mit Alkohol in 1-Phenyl-3-benzhydryl-inden und 3-Phenyl-1-benzhydryl-inden übergeht (Sch., Be., A. 463, 225; vgl. Bl.-Be., A. 484, 26, 40, 44). — Gibt mit konz. Schwefelsäure in Eisessig eine tiefblaue, rasch in Braungelb übergehende Färbung; die Lösung in Chloroform färbt sich auf Zusatz von Zinn(IV)-chlorid gelbstichig grün (Brand, B. 54, 2003).

 $\textbf{2-Chlor-1-phenyl-3-diphenylmethylen-inden} \ C_{\textbf{28}} H_{\textbf{19}} Cl = C_{\textbf{6}} H_{\textbf{5}} \cdot C \leqslant \overset{C_{\textbf{6}}}{CCl}^{\textbf{4}} \gt C : C(C_{\textbf{6}} H_{\textbf{5}})_{\textbf{2}}.$ B. Durch Einw. von Phosphorpentachlorid auf 1.1.4.4-Tetraphenyl-butin-(2)-diol-(1.4) in Ather (Wieland, Kloss, A. 470, 218). — Tiefrote Krystalle (aus Alkohol, Eisessig oder Ligroin). F: 158°. Leicht löslich in Äther, Benzol, Chloroform und Pyridin, schwer in

Alkohol, Eisessig und Petroläther und in konz. Schwefelsäure. — Gibt bei der Hydrierung in Gegenwart von Palladiumschwarz in warmem Eisessig 1-Phenyl-3-benzhydryl-hydrinden. Liefert bei der Reduktion mit Jodwasserstoffsäure (D: 1,7) und Phosphor in siedendem Eisessig je nach den Bedingungen 1-Phenyl-3-diphenylmethylen-inden, 1-Phenyl-3-diphenylmethylen-hydrinden oder 1-Phenyl-3-benzhydryl-hydrinden.

5. 9.10 - Dibenzyliden - dihydroanthracen  $C_{28}H_{20}$ , s. nebenstehende Formel. Dieser Kohlenwasserstoff hat in dem dimolekularen  $CH \cdot C_6H_5$ Dibenzenylanthracen von Lippmann, Fritsch (A. 351 [1907], 60) (H 766), in unreiner Form in dem dimolekularen Dibenzalanthracen von Lippmann, Fritsch (M. 25 [1904], 795; A. 351, 62) (H 765) vorgelegen;  $CH \cdot C_6H_5$ das monomolekulare Dibenzalanthracen von LIPPMANN, FRITSCH (M. 25, 799) (H 753) ist unreines 9.10-Dibenzyl-anthracen gewesen (Bergmann, Fujise, A. 480 [1930], 190). — B. Durch Einw. von Bromdampf auf 9.10-Dibenzyl-anthracen und Kochen des Reaktionsprodukts mit Acetanhydrid (Be., Fu., A. 480, 194; vgl. Li., Fr., M. 25, 795, 799). — Krystalle (aus Xylol). F: 199—200° (Be., Fu.). — Liefert bei der Oxydation mit Chromtrioxyd in siedendem Eisessig Anthrachinon, Benzoesäure und Benzaldehyd (BE., Fu.).

6. 9.12 - Diphenyl - diphensuccinden - (10) C<sub>28</sub>H<sub>20</sub>, s. nebenstehende Formel. B. Bei der Reduk-

tion von 9.12-Diphenyl-diphensuccindadien-(9.11) mit Zinkstaub und siedendem Eisessig (Brand, Mühl, J. pr. [2] 110, 4). — Nadeln (aus Eisessig). F: 285—286°. Schwer löslich in kaltem Eisessig und kaltem Essigester, leichter in Chloroform und Schwefelkohlenstoff. Die Lösungen in Chloroform fluorescieren stark. — Wird durch Brom in Schwefelkohlenstoff zu 9.12-Diphenyldiphensuccindadien-(9.11), durch Chromsäure in siedendem Eisessig je nach den Mengenverhältnissen zu 2.2'-Dibenzoyl-benzil oder 2-Benzoyl-benzoesäure oxydiert. Bei der Hydrierung bei Gegenwart von Palladium-Tierkohle in warmem Eisessig erhält man höherschmelzendes 9.12-Diphenyl-diphensuccindan.

7. 9-Phenyl-9.10-dihydro-1.2; 3.4-dibenzo-anthracen C<sub>28</sub>H<sub>20</sub>, Formel I auf S. 704. Zur Konstitution vgl. Bergmann, Zwecker, A. 487 [1931], 156. — B. Bei der Einw. von Lithium in Äther auf Tolan oder auf 1.2.3-Triphenyl-naphthalin in Äther und Hydrolyse der Reaktionsprodukte mit Alkohol (Schlenk, B., A. 463, 78, 81; vgl. B., Z., A. 487, 161). — Nadeln (aus Propylalkohol). F: 1920 (Sch., B., A. 463, 78).

8. 9.10-Dihydro-dianthranyl-(9.9') oder Bis-[9.10-dihydro-anthryliden-(9)] C<sub>28</sub>H<sub>20</sub>, Formel II oder III. Ein von Matthews (Soc. 1926, 236, 239) so formulierter Kohlenwasserstoff ist als Dianthranyl C<sub>28</sub>H<sub>18</sub> (S. 707) erkannt worden (Bergmann, Schuchardt, A. 487 [1931], 245).

$$\begin{array}{c|c} C_{0}H_{5} & CH_{2} \\ CH & CH \\ \end{array}$$

x-Dichlor-dihydrodianthranyl  $C_{28}H_{18}Cl_2$ . Eine von Barnett, Matthews (Soc. 123, 2554) so formulierte Verbindung ist als 4.4'-Dichlor-dianthranyl-(9.9') (S. 708) erkannt worden (M., B. 65 [1932], 1564).

- 9. 6.6'-Dimethyl-[anthraceno 2'.1': 1.2-an-thracen] C<sub>28</sub>H<sub>20</sub>, s. nebenstehende Formel. B. Beim Leiten von 1.5-Bis-[2.4-dimethyl-benzoyl]-naphthalin über aktive Kohle bei hoher Temperatur (I. G. Farbenind., D. R. P. 481819; C. 1930 I, 1053; Frdl. 16, 723). Gelbbraune Blättchen (aus Dichlorbenzol). Schmilzt unter Sublimation bei 378—379°. Die Lösung in Schwefelsäure ist rot.
- 10. 2.11-Dimethyl-6.7-benzo-pentaphen, 6'.7"-Dimethyl-fdinaphtho-2'.3': 1.2; 2".3": 3.4-naphthalin] C<sub>28</sub>H<sub>20</sub>, s. nebenstehende Formel. Zur Konstitution vgl. E. Clar, Aromatische Kohlenwasserstoffe [Berlin 1941], S. 159. B. Beim Leiten von 1.4-Bis [2.4-dimethyl-benzoyl]-naphthalin über aktive Kohle bei hoher Temperatur (I. G. Farbenind., D. R. P. 481819; C. 1930 I, 1053; Frdl. 16, 724). Gelbe Blättchen. F: 188° (I. G. Farbenind.). Die Lösung in Schwefelsäure ist rot (I. G. Farbenind.).



# 4. Kohlenwasserstoffe $C_{29}H_{22}$ .

1. 1.1.3.5-Tetraphenyl-pentatrien-(1.2.4), Triphenyl-styryl-allen  $C_{29}H_{22}=C_6H_5\cdot CH:CH\cdot C(C_6H_5)$ ; C:C( $C_6H_5$ ), B. Man behandelt 1.1.3.5-Tetraphenyl-pentadien-(2.4)-ol-(1) mit methylalkoholischer Salzsäure und befeuchtet das gebildete, bei etwa 64° schmelzende krystalline Produkt mit Methanol (Kohler, Butler, Am. Soc. 48, 1048). — Krystalle (aus Methanol). F: 158°. Leicht löslich in Benzol und Äther, schwer in Alkohol und Petroläther. — Gibt bei der Ozonspaltung Benzoesäure und Benzophenon.

2. 1.2.3.4 - Tetraphenyl - cyclopentadien - (1.3)  $C_{20}H_{22} = C_{6}H_{5} \cdot C:C(C_{6}H_{5}) \cdot CH_{2}$  (H 753). B. Man erhitzt 1.2.3.4-Tetraphenyl-cyclopentandiol-(2.3) mit konz. Schwefelsäure in Eisessig (Ziegler, Schnell, A. 445, 275). — D: 1,227 (Z., Ditzel, A. 478, 204). — Kondensiert sich mit Benzaldehyd in siedender Kaliummethylat-Lösung zu 1.2.3.4-Tetraphenyl-5-benzyliden-cyclopentadien-(1.3) (Löwenbein, Ulich, B. 58, 2666). Gibt mit 2 Mol 4-Nitroso-dimethylanilin in Gegenwart von Natriumäthylat-Lösung in siedendem Benzol Tetraphenylcyclopentadienon-[4-dimethylamino-anil] (Z., Sch.).

 $3. \quad Phenyl-\alpha-naphthyl-diphenylyl-methan \ C_{20}H_{22}=C_{10}H_7\cdot CH(C_6H_5)\cdot C_6H_4\cdot C_6H_5.$ 

Phenyl- $\alpha$ -naphthyl-diphenylyl-chlormethan  $C_{20}H_{21}Cl = C_{10}H_7 \cdot CCl(C_0H_5) \cdot C_0H_4 \cdot C_0H_5$  (E I 383). Sehr schwer löslich in kaltem Eisessig; die farblose Lösung wird beim Erhitzen blauviolett, beim Abkühlen wieder farblos (Dilthey, J. pr. [2] 109, 284). Die Lösungen in Eisessig + Phenol sind auch in der Kälte blauviolett. Absorptionsspektrum der Lösungen in heißem Eisessig, in kaltem Eisessig + Phenol und in geschmolzenem Phenol: D., J. pr. [2] 109, 285. — Liefert beim Erhitzen mit Milchsäure, Valeriansäure oder Chloressigsäure auf Temperaturen oberhalb 180° 6.9-Diphenyl-1.2-benzo-fluoren oder 9-Diphenylyl-1.2-benzo-fluoren (S. 709) (D., J. pr. [2] 109, 319).

Phenyl- $\alpha$ -naphthyl-diphenylyl-brommethan  $C_{29}H_{31}Br = C_{10}H_7 \cdot CBr(C_6H_6) \cdot C_6H_4 \cdot C_6H_5$ . B. Durch Einw. von Bromwasserstoff auf Phenyl- $\alpha$ -naphthyl-diphenylyl-carbinol (Dilthey, J. pr. [2] 109, 319). — Krystalle. F: 177°. Die Lösung in kaltem Eisessig ist nur wenig gefärbt, die Lösung in kaltem Acetanhydrid ist blauviolett. — Färbt sich an der Luft bald schmutzig-violett.

#### 705

# 5. Kohlenwasserstoffe $\mathrm{C_{30}H_{24}}$ .

1. 1.5 - Diphenyl-3-diphenylmethylen - pentadien - (1.4), 1.5 - Diphenyl-3-benzhydryliden-pentadien-(1.4)  $C_{30}H_{24}=(C_6H_5\cdot CH:CH)_2C:C(C_6H_5)_2$  (H 754). Ultraviolett-Absorptionsspektrum in Chloroform: Lifschitz, Mitarb., R. 43, 409. — Gibt mit Natrium in Äther die Natriumverbindung ( $C_6H_5\cdot CH:CH)_2CNa\cdot CNa(C_6H_5)_2$  (Syst. Nr. 2357) (Schlenk, Bergmann, A. 463, 68).

2. 1.2.4.5 - Tetraphenyl - cyclohexadien - (2.6), 1.2.4.5 - Tetraphenyl - 1.2-dihydro-benzol  $C_{30}H_{24} = C_6H_5 \cdot HC < CH = C(C_6H_5) \cdot CH > C \cdot C_6H_5$ . B. Aus der äther. Lösung von 1.2-Dinatrium-1.2.4.5-tetraphenyl-cyclohexadien-(3.5) (Syst. Nr. 2357) mit Alkohol oder Wasser (SCHLENK, BERGMANN, A. 463, 96). — Nadeln (aus Benzin). F: 208—210°. Sehr leicht löslich in Benzol. — Beim Behandeln mit Wasserstoff bei Gegenwart von Palladium in Propylalkohol erfolgt Dehydrierung zu 1.2.4.5-Tetraphenyl-benzol. Entfärbt Brom in Chloroform langsam.

3. Phenyl- $\alpha$ -naphthyl-[4-p-tolyl-phenyl]-methan  $C_{30}H_{24}=C_{10}H_{7}\cdot CH(C_{6}H_{5})\cdot C_{6}H_{4}\cdot C_{6}H_{4}\cdot CH_{3}$ . B. Beim Kochen von Phenyl- $\alpha$ -naphthyl]-[p-tolyl-phenyl]-chlormethan mit Zink in Essigsäure (Gomberg, Pernert, Am. Soc. 48, 1383). — F: 171°.

Phenyl- $\alpha$ -naphthyl-[4-p-tolyl-phenyl]-chlormethan  $C_{30}H_{23}Cl = C_{10}H_{7}\cdot CCl(C_{6}H_{5})\cdot C_{6}H_{4}\cdot C_{6}H_{4}\cdot CH_{3}$ . B. Bei der Einw. von Acetylchlorid auf Phenyl- $\alpha$ -naphthyl-[4-p-tolyl-phenyl]-carbinol in Benzol + Äther (Gomberg, Pernert, Am. Soc. 48, 1383). — Krystalle (aus Tetrachlorkohlenstoff), die bei 192° schmelzen; Krystalle mit  $1C_{6}H_{6}$  (aus Benzol). — Die Lauren in Benzol gibt hei Figure von fein versilten Sille mit  $1C_{6}H_{6}$  (aus Benzol). — Die Lösung in Benzol gibt bei Einw. von fein verteiltem Silber Phenyl-a-naphthyl-[4-p-tolylphenyl]-methyl.

p-Tolyl- $\alpha$ -naphthyl-diphenylyl-methan  $C_{30}H_{24} = C_{10}H_7 \cdot CH(C_6H_4 \cdot CH_3)$  $C_6H_4 \cdot C_6H_5$ .

p-Tolyl-α-naphthyl-diphenylyl-chlormethan C<sub>30</sub>H<sub>23</sub>Cl = C<sub>10</sub>H<sub>7</sub>·CCl(C<sub>6</sub>H<sub>4</sub>·CH<sub>3</sub>)·C<sub>6</sub>H<sub>4</sub>·C<sub>6</sub>H<sub>5</sub>. B. Beim Kochen von p-Tolyl-diphenylyl-keton und α-Naphthylmagnesiumbromid in Ather, Zersetzen mit Eiswasser und Ather und Einleiten von Chlorwasserstoff (Dilthey, J. pr. [2] 109, 316). — Krystalle (aus Benzol). F: 184° (Zers.). Löst sich in heißem Chlorbenzol mit blauer Farbe; die Lösung wird beim Abkühlen farblos, beim Aufbewahren in der Kälte unter geringer Chlorwasserstoff Entwickburg auch Die Lösung in Die in der Kälte unter geringer Chlorwasserstoff-Entwicklung gelb. Die Lösung in Phenol ist violett. Löst sich in konz. Schwefelsäure mit violettblaurotem Dichroismus; die Lösung wird beim Aufbewahren braunrot und färbt sich beim Versetzen mit Eisessig oder Wasser wieder violett.

5. 9.12-Di-m-tolyl-diphensuccinden-(10) C<sub>30</sub>H<sub>24</sub>, Formel I. B. Bei der Reduktion von 9.12-Di-m-tolyl-diphen-succindadien-(9.11) mit Zinkstaub und siedendem Eisessig (Brand, Mühl, J. pr. [2] 110, 8). — Nadeln. F: 179—180°. Löslich in Eisessig, Essigester, Schwefelkohlenstoff und Chloroform. — Wird durch Brom in Schwefelkohlenstoff zu 9.12-Di-



m-tolyl-diphensuccindadien-(9.11) dehydriert. Bei der Hydrierung bei Gegenwart von Palladium-Tierkohle in Eisessig erhält man 9.12-Di-m-tolyl-diphensuccindan.

6. 9.12 - Di - p - tolyl - diphensuccinden - (10) C<sub>30</sub>H<sub>24</sub>, Formel I. B. Durch tage-lange Reduktion von 9.12-Di-p-tolyl-diphensuccindadien - (9.11) mit Zinkstaub und siedendem Eisessig (Brand, Mühl, J. pr. [2] 110, 7). — Nadeln (aus Eisessig). F: 200°. Löslich in Eisessig, Essigester, Chloroform und Chlorwasserstoff. — Wird durch Brom in Schwefelkohlenstoff zu 9.12-Di-p-tolyl-diphensuccindadien - (9.11) dehydriert. Bei der Hydrierung bei Gegenwart von Palladium Tierkohle in kaltem Eisessig erhält man höherschmelzendes 9.12-Di-p-tolyl-diphensuccindan.

7. 1-Anthranyl-2-[9.10-dihydro-anthranyl]-dthan C<sub>30</sub>H<sub>24</sub>, s. nebenstehende Formel. B. Durch Erwärmen von 10-Methylen-anthron-(9) mit Zinkstaub und wäßr. Ammoniak auf dem Wasserbad (BARNETT, MATTHEWS, B. 59, 767). — Blaßgelbe Nadeln (aus Xylol). F: 308°. Die Lösungen zeigen violette Fluorescenz.

8. 10.10'-Dimethyl-9.10-dihydro-dianthranyl oder Bis-[10-methyl-9.10-di-

BEILSTEINs Handbuch, 4. Aufl. 2. Erg.-Werk, Bd. V.

45

-CH<sub>2</sub>

СН3

H<sub>2</sub>C

[Syst. Nr. 494

Lösung von 10-Methyl-anthron-(9) in Eisessig mit Zinkstaub und konz. Salzsäure, neben anderen Produkten (Barnett, Matthews, B. 59, 769). — Gelbes krystallinisches Pulver (aus Benzol). Schmilzt nicht bis 300°.

9. Kohlenwasserstoff  $C_{30}H_{24}$  von unbekannter Konstitution (H 754, Nr. 4). Der von Tiffeneau, Dorlencourt (A.ch. [8] 16 [1909], 237) aus 1.2-Diphenyl-propandiol-(1.2) erhaltene Kohlenwasserstoff ist als 2-Phenyl-inden  $C_{15}H_{12}$  (S. 585) erkannt worden (Blum-Bergmann, B. 65 [1932], 112, 120 Anm. 39).

#### 6. Kohlenwasserstoffe $C_{32}H_{28}$ .

- 1. Tetra p tolyl butatrien C<sub>32</sub>H<sub>28</sub> = (CH<sub>3</sub>·C<sub>6</sub>H<sub>4</sub>)<sub>2</sub>C:C:C:C(C<sub>6</sub>H<sub>4</sub>·CH<sub>3</sub>)<sub>2</sub>. B. Beim Kochen von höherschmelzendem und niedrigerschmelzendem 2.3-Dichlor- oder 2.3-Dibromtetra-p-tolyl-buten-(2) mit alkoh. Kalilauge oder Natriumäthylat-Lösung (Brand, Wendel, J. pr. [2] 115, 344, 350). Gelbe Nadeln (aus Chloroform + Alkohol). F: 242°. Schwer lösich in heißem Eisessig, leicht in heißem Isoamylalkohol, Isoamylacetat, Essigester, Benzol, Chloroform und Toluol. Färbt sich mit konz. Schwefelsäure grünlich, mit Zinn(IV)-chlorid in Chloroform gelblichgrün. Verfärbt sich am Sonnenlicht. Wird durch Chromsäure in Eisessig zu Di-p-tolyl-keton oxydiert. Liefert bei der Hydrierung in Gegenwart von Palladium-Tierkohle in Alkohol bei mäßiger Wärme 1.1.4.4-Tetra-p-tolyl-butani-(1.3) und 1.1.4.4-Tetra-p-tolyl-butan.
- 2. 5-Methyl-1-p-tolyl-3-[di-p-tolyl-methylen]inden C<sub>32</sub>H<sub>28</sub>, s. nebenstehende Formel. B. Man kocht
  höherschmelzendes oder niedrigerschmelzendes 1.2-Dichlor1.1.4.4-tetra-p-tolyl-buten-(2) mit alkoh. Kalilauge oder Natriumäthylat-Lösung und kocht das neben Tetra-p-tolyl-butatrien entstehende braune Öl mit Eisessig oder alkoh. Salzsäure (BRAND, WENDEL, J. pr. [2]
  115, 345). Orangefarbene Krystalle (aus Essigester). F: 192—193°. Schwer löslich in
  heißem Alkohol, löslich in heißem Eisessig und heißem Essigester. Wird durch konz.
  Schwefelsäure grün gefärbt.
- 7. Oktadekahydrodekacyclen C<sub>3e</sub>H<sub>3e</sub>. B. Neben anderen Produkten beim Erhitzen von Dekacyclen (S. 723) mit rotem Phosphor und Jodwasserstoffsäure (D: 1,7) im Rohr auf 280° (Dziewonski, Suszko, Bl. Acad. polon. [A] 1923, 22; C. 1924 I, 1377). Gelbes, grün fluorescierendes Pulver. F: 124—128°. Ziemlich leicht löslich in Alkohol, leicht in Ligroin und Benzol mit grüner Fluorescenz. Schwer löslich in konz. Schwefelsäure.

## 26. Kohlenwasserstoffe $C_n H_{2n-37}$ .

Phenyl- $\alpha$ -naphthyl-[4-p-tolyl-phenyl]-methyl  $C_{30}H_{23}=C_{10}H_{7}\cdot C(C_{6}H_{5})\cdot C_{6}H_{4}\cdot C_{6}H_{4}\cdot CH_{3}$ . B. Eine Lösung in Benzol wird beim Schütteln von Phenyl- $\alpha$ -naphthyl-[4-p-tolyl-phenyl]-chlormethan mit fein verteiltem Silber in Benzol erhalten (GOMBERG, PERNERT, Am. Soc. 48, 1383). — Die Lösung in Benzol ist in dicker Schicht rotbraun, in dünner Schicht grünlichgelb. — Unter dem Einfluß von Luftsauerstoff wird die Lösung unter Bildung von Bis-[phenyl- $\alpha$ -naphthyl-(4-p-tolyl-phenyl)-methyl]-peroxyd rasch entfärbt.

# 27. Kohlenwasserstoffe $C_n H_{2n-38}$ .

1. 1.9; 5.10 - Di - o - phenylen - anthracen, Rubicen C<sub>26</sub>H<sub>14</sub>, s. nebenstehende Formel (E I 385). Literatur: E. Clar, Aromatische Kohlenwasserstoffe [Berlin 1941], S. 278. — Zur Konstitution vgl. Schlenk, Karplus, B. 61, 1679; Scholl, Meyer, B. 65 [1932], 926; vgl. a. Dziewoński, Suszko, Bl. Acad. polon. [A] 1921, 72; C. 1923 I, 528; B. 58, 2544; Pummerer, Ulrich, B. 58, 1806. — B. Neben anderen Produkten beim Leiten von Fluoren-Dampf über rotglühenden Eisen-, Kupfer- oder Platin-Draht (Dz., S.; Eckert, J. pr. [2] 121, 280). Beim Erhitzen von Fluorenon mit Calciumhydrid (Schlenk, Karplus, B. 61, 1679). — Rote Nadeln (aus Nitrobenzol, Xylol oder Cumol). F: 306° (Dz., S., Bl. Acad. polon. [A] 1921, 85; C. 1923 I, 528). Schwer löslich in

Ligroin, Benzol und Äthylenbromid, ziemlich schwer in Xylol und Nitrobenzol, fast unlöslich in konz. Schwefelsäure (Dz., S.). — Gibt mit 2 Mol Brom in Chloroform ein Dibromderivat, mit Salpetersäure (D: 1,5) in Eisessig ein Dinitroderivat und mit konz. Schwefelsäure bei 80° cinc Disulfonsäure (Dz., S.). — Pikrat C<sub>26</sub>H<sub>14</sub>+2C<sub>6</sub>H<sub>3</sub>O<sub>7</sub>N<sub>3</sub>. F: 258° (Dz., S., Bl. Acad. polon. [A] 1921, 86; C. 1923 I, 529).

Dibromrubicen  $C_{26}H_{12}Br_2$ . B. Durch Einw. von 2 Mol Brom auf Rubicen in Chloroform (Dziewoński, Suszko, Bl. Acad. polon. [A] 1921. 87; C. 1923 I, 529). — Rotbraune Nadeln (aus Nitrobenzol oder Xylol). F: 378° (Zers.). Ist in bezug auf Löslichkeit dem Rubicen sehr ähnlich; die Lösungen zeigen aber ein dunkleres Rot mit violetter Nuance und fluorescieren nicht.

Dinitrorubicen  $C_{26}H_{12}O_4N_2$ . B. Durch Einw. von Salpetersäure (D: 1,5) auf in Eisessig suspendiertes Rubicen (Dziewoński, Suszko, Bl. Acad. polon. [A] 1921, 87; C. 1923 I, 529). — Ziegelrote bis rotbraune Nadeln (aus Nitrobenzol). Färbt sich bei raschem Erhitzen oberhalb  $420^{\circ}$  violett und schmilzt unter Zersetzung bei  $440-442^{\circ}$ . Schwer löslich in den meisten organischen Lösungsmitteln. Löst sich in konz. Schwefelsäure beim Erwärmen mit violetter Farbe.

#### 2. Kohlenwasserstoffe $C_{28}H_{18}$ .

1. 9.12-Diphenyl-diphensuccindadien-(9.11)

C<sub>28</sub>H<sub>18</sub>, s. nebenstehende Formel (E I 386). B. Bei der Behandlung von 9.12-Diphenyl-diphensuccinden-(10) mit Brom in Schwefelkohlenstoff (Brand, Mühl., J. pr. [2] 110, 4).—

Braune Nadeln (aus Essigester). F: 259° (B., M.).— Gibt bei der Oxydation mit Chromsäure in Eisessig in der Kälte 2.2'-Dibenzoyl-benzil und wenig 2-Benzoyl-benzoesäure (B., Ludwig, B. 53, 812). Liefert bei der Reduktion mit Zinkstaub und siedendem Eisessig 9.12-Diphenyl-diphensuccinden-(10), bei der Reduktion mit Natrium in siedendem Isoamylakohol zwei stereoisomere 9.12-Diphenyl-diphensuccindane (F: 207—208° und 166—167°), daneben wurden bei einem Versuch in sehr geringer Menge Krystalle vom Schmelzpunkt 179° erhalten (B., M.). Bei der Hydrierung in Gegenwart von Palladium-Tierkohle in warmem Eisessig erhält man nur 9.12-Diphenyl-diphensuccindan vom Schmelzpunkt 207—208° (B., M.).

2. Dianthryl - (9.9'), Dianthranyl, 9.9'-Dianthracyl, 9.9'-Bianthryl C<sub>28</sub>H<sub>18</sub>, s. nebenstehende Formel (H 754; E I 385). Diese Konstitution kommt auch dem 9.10-Dihydro-dianthranyl oder Bis-[9.10-dihydro-anthryliden-(9)] von Matthews (Soc. 1926, 236, 239) und dem "Isodianthranyl" von Barnett, Goodway (Soc. 1929, 814) zu (Bergmann, Schuchardt, A. 487 [1931], 245; vgl. Clar, B. 65 [1932], 518). — B. Aus 9-Brom-anthracen bei der Einw. von Benzhydrylnatrium, neben anderen Produkten (Schl., Be., A. 463, 169). Zur Bildung aus 10.10'-Dioxy-9.10.9'.10'-tetrahydro-dianthranyl-(9.9') nach Eckert, Hofmann (M. 36 [1915], 502) vgl. Barnett, Matthews, Soc. 123, 384. Bei der Reduktion von Anthron mit Zinkstaub und konz. Salzsäure in siedendem Eisessig (Ba., Ma., Soc. 123, 390; Schl., Be., A. 463, 167; Clar, B. 65, 518; Ba., B. 65, 1564; Duffraisse, Velluz, Velluz, Bl. [5] 5 [1938], 606). Durch Kochen von 10-Benzhydryl-anthron-(9) mit Zinkstaub, Eisessig und konz. Salzsäure (Ba., Goodway, Soc. 1929, 814). Die Bildung durch Reduktion von Anthrachinon mit Zinn und Salzsäure in Eisessig nach Liebermann, Gimbel (B. 20 [1887], 1855), die durch eine Spur Platin(IV)-chlorid begünstigt wird (Eckert, Hofmann, M. 36 [1915], 500), ist nach Barnett, Matthews (Soc. 123, 380) und Schlenk, Bergmann (A. 463, 166) nicht reproduzierbar; sie läßt sich jedoch nach Clar (B. 65, 518) bei Verwendung von zerkleinertem Lötzinn an Stelle des ziemlich reinen Zinns des Handels durchführen. Aus Anthrachinon durch Reduktion mit Zink und Salzsäure (Ba., Ma., Soc. 123, 384). Beim Erhitzen von 10-Oxy-anthron-(9) in siedendem Eisessig mit Zinkstaub und konz. Salzsäure (Ma., Soc. 1926, 234). Beim Kochen von Dianthranyl-(9.9')-sulfonsäure-(10) mit verd. Mineralsäuren (Minajew, Fedorow, B. 62, 2493; Ж. 61, 149).

Gelbliche, lösungsmittelhaltige Krystalle (aus Toluol oder Xylol); gibt das Lösungsmittel bei 100° im Vakuum ab (Clar, B. 65 [1932], 518). F: 300° (Minajew, Fedorow, B. 62, 2493; Ж. 61, 149), 300—302° (Bergmann, Schuchardt, A. 487 [1931], 244), 304° (Schlenk, Be. A. 463, 169), 308—310° (Clar), 312° (Barnett, Goodway, Soc. 1929, 814), 319—320° (Gold-Block) (Dufraisse, Velluz, Velluz, Bl. [5] 5 [1938], 606). Die gelbrote Lösung in Xylol fluoresciert in dünner Schicht blauviolett (Schl., Be., A. 463, 169). — Bei der Reduktion mit Natrium in sjedendem Isoamylalkohol entsteht 9.10.9°.10′. Tetrahydro-

dianthranyl (S. 697) (Cook. Soc. 1926, 1683; Schlenk, Bergmann, A. 468, 166). Gibt bei der Einw. von überschüssigem Brom in kaltem Chlorwasserstoff 10.10-Dibrom-dianthranyl-(9.9') (Liebermann, Gimbel, B. 20 [1887], 1855; Ma., Soc. 1926, 239). Einw. von Salpetersäure (D: 1,42) in Eisessig in der Kälte oder bei 80-100° führt zu einem Mononitroderivat (s. u.) (MA., Soc. 1926, 239).

Ein "Dianthranyl vom Schmelzpunkt oberhalb 3600", das Barnett, Matthews (Soc. 123, 390) und Schlenk, Bergmann (A. 463, 167) durch Reduktion von Anthron mit Zink in siedendem Eisessig und konz. Salzsäure erhielten, ist ein Kohlenwasserstoff unbekannter Konstitution gewesen, dessen Darstellung nur unter besonderen Umständen reproduzierbar ist (BARNETT bei CLAR, B. 65 [1932], 518; vgl. BERGMANN, SCHUCHARDT, A. 487 [1931], 246 Anm. 1).

3.3'-Dichlor-dianthranyl-(9.9') C<sub>28</sub>H<sub>16</sub>Cl<sub>2</sub>, Formel I. B. Neben anderen Produkten beim Kochen von 3-Chlor-anthron-(9) mit Zinkstaub und konz. Salzsäure in Eisessig (Bar-NETT, MATTHEWS, Soc. 123, 2552, 2555). — Krystalle (aus wäßr. Pyridin oder Benzol — Petroläther). F: 254—255°. Die Lösungen fluorescieren purpurfarben.

I. 
$$\left[\begin{array}{ccc} & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

4.4'-Dichlor-dianthranyl-(9.9') C<sub>28</sub>H<sub>16</sub>Cl<sub>2</sub>, Formel II. Zur Konstitution vgl. BARNETT, B. 65 [1932], 1564. — B. Durch Kochen von 4-Chlor-anthron-(9) mit Zink und konz. Salzsaure in Eisessig (Barnett, Matthews, Soc. 123, 2554). — Krystalle (aus Pyridin). F: 2680 (M., Soc. 1926, 240 Anm.). Die Lösungen fluorescieren purpurrot (B., M.). — Gibt beim Erhitzen mit Salpetersäure (D: 1,42) in Eisessig 4.4'-Dichlor-x-dinitro-dianthranyl-(9.9') (M., Soc. 1926, 240).

10.10'-Dibrom-dianthranyl-(9.9')  $C_{28}H_{16}Br_2$ , Formel III (H 755). B. Zur Bildung durch Einw. von überschüssigem Brom auf Dianthranyl in Schwefelkohlenstoff vgl. MATTHEWS, Soc. 1926, 239; BERGMANN, SCHUCHARDT, A. 487 [1931], 245. — Gelbe Krystalle (aus Pyridin). Schmilzt nicht bis 320° (M.). Die Lösungen fluorescieren blau (M.). — Schwärzt sich beim Aufbewahren am Licht (M.).

ж-Nitro-dianthranyl C<sub>28</sub>H<sub>17</sub>O<sub>2</sub>N. Zur Konstitution des Ausgangsmaterials vgl. Bergmann, Schuchardt, A. **487** [1931], 145. — B. Durch Einw. von überschüssiger Salpetersäure (D: 1,42) auf Dianthranyl in Eisessig in der Kälte oder bei 80—100° (Маттнеws, Soc. 1926, 239). — Goldgelbe Nadeln (aus Eisessig). F: 305° (Zers.) (M.). Sehr schwer löslich in Eisessig (M.). — Schwärzt sich beim Aufbewahren am Licht (M.)

4.4'- Dichlor-x-dinitro-dianthranyl-(9.9')  $C_{28}H_{14}O_4N_2Cl_2$ . Zur Konstitution des Ausgangsmaterials vgl. Barnett, B. 65 [1932], 1564. — B. Beim Erhitzen einer Suspension von 4.4'-Dichlor-dianthranyl-(9.9') in Eisessig mit Salpetersäure (D: 1,42) (Matthews, Soc. 1926, 240). — Orangerote Nadeln (aus Pyridin + Alkohol). Schmilzt nicht bis 320° (M.). Wird beim Aufbewahren am Licht dunkelrot (M.).

3. 1.2 - Difluorenyliden - äthan, 1.4 - Bis - diphenylen - butadien - (1.3), Dibiphenylenbutadien  $C_{28}H_{18} = \begin{bmatrix} C_6H_4 \\ C_6H_4 \end{bmatrix}$ C:CH·CH:C $\begin{bmatrix} C_6H_4 \\ C_6H_4 \end{bmatrix}$  (E I 385). B. Aus 9-Brom-9-brommethyl-fluoren beim Erhitzen mit Dimethylanilin auf 150° oder in geringer Menge beim Kochen mit Natriumacetat in Erhitzen Krauer, A. 448, 137). In geringer Menge beim Kochen von Elwarnen mit Parentiering A. 448, 137). In geringer Menge beim Kochen von Fluorenon mit Bernsteinsäure, Acetanhydrid und Bleioxyd (Kuhn, WINTERSTEIN, Helv. 11, 119). — Hellbraune Nadeln (aus Chloroform), orangebraune Nadeln (aus Nitrobenzol). F: 360° (Wie., Kr.); färbt sich beim Erhitzen oberhalb 300° rot und sublimiert bei ca. 360° in orangeroten Nadeln (Kuhn, Win.). Schwer löslich in Acetanhydrid. Eisessig und Aceton; 100 cm<sup>3</sup> Chloroform lösen bei 20° 0,0707 g (Kuhn, Win., Helv. 11, 120). Unlöslich in kalter konzentrierter Schwefelsäure (Kuhn, Win., Helv. 11, 117). Absorptionsspektrum in Pyridin: Kuhn, Win., Helv. 11, 117. — Bei der Einw. von Brom in siedendem Chloroform entsteht unter Abspaltung von Bromwasserstoff eine Verbindung C<sub>28</sub>H<sub>18</sub>Br<sub>4</sub> (Krystalle aus Chloroform; F: 150°), die beim Schmelzen oder beim Kochen mit methylalkoholischer Kalilauge wieder in 1.2-Difluorenyliden athan übergeht (Wie., Kr., A. 448, 139). Über Anlagerung von Brom in Tetrachlorkohlenstoff-Lösung vgl. Kuhn, Win., Helv.

Verbindung mit 1.3.5-Trinitro benzol  $C_{28}H_{18} + 2C_6H_3O_6N_3$ . Hellbraune Nadeln (aus Chloroform). F: 240° (Zers.) (Kuhn, Winterstein, Helv. 11, 149). — Pikrat  $C_{28}H_{18} + 2C_6H_3O_7N_3$ . F: 262° (Zers.) (K., W., Helv. 11, 149).

- 1.2-Bis-[2.7-dichlor-fluorenyliden]-äthan, Tetrachlordibiphenylenbutadien  $C_{28}H_{14}Cl_4 = \begin{array}{c} C_8H_3Cl \\ C_8H_3Cl \end{array}$  C:CH·CH:C $\begin{array}{c} C_6H_3Cl \\ C_6H_5Cl \end{array}$ . B. Als Nebenprodukt bei der Behandlung von 2.7-Dichlor-fluoren mit aromatischen Aldehyden und Natriumäthylat-Lösung in siedendem Alkohol (Sieglitz, Schatzkes, B. 54, 2074). Zinnoberrote Nadeln (aus Toluol). Ist bei 300° noch nicht geschmolzen.
- 1.2-Bis-[2.7-dibrom-fluorenyliden]-äthan, Tetra brom dibiphenylen buta dien  $C_{28}H_{14}Br_4 = {C_{6}H_{3}Br \choose {C_{6}H_{3}Br}}C:CH\cdot CH:C {C_{6}H_{3}Br \choose {C_{6}H_{3}Br}}$ . B. Beim Kochen von 2.7-Dibrom-fluoren mit alkoh. Natronlauge oder Kalilauge (Stahrfoss, Bl. [4] 29, 147) oder mit Natriumäthylat-Lösung unter Durchschütteln mit Luft (Sieglitz, B. 53, 2249; vgl. Bergmann, Hoffmann, Winter, B. 66 [1933], 51); entsteht auch als Nebenprodukt bei der Kondensation von 2.7-Dibrom-fluoren mit aromatischen Aldehyden in Natriumäthylat-Lösung (Sie., B. 53, 1237). Rote Nadeln (aus Anilin oder Xylol). Schmilzt nicht bis 450° (St.). Unlöslich in den gewöhnlichen Lösungsmitteln, sehwer löslich in siedendem Anilin (St.). Wird durch Schwefelsäure und durch konz. Salpetersäure auch bei 100° nicht angegriffen; beim Hinzufügen von etwas konz. Salpetersäure zu einer Suspension in Schwefelsäure tritt unter Auftreten von roten, blauen und violetten Färbungen Lösung ein; beim Erwärmen oder Verdünnen mit Wasser verschwindet die Färbung (St.). Beim Kochen mit Eisessig, Salpetersäure und ctwas Schwefelsäure entsteht eine gelbe amorphe Substanz (St.).
- 4. 9-Phenyl-1.2; 3.4-dibenzo-anthracen C<sub>28</sub>H<sub>18</sub>, s. nebenstehende Formel. Zur Konstitution vgl. Bergmann, Zwecker, A. 487 [1931], 158.—B. Bei der Einw. von Quecksilber auf das Reaktionsprodukt von Tolan und Lithium in Äther (Schlenk, Bergmann, A. 463, 80).—Nadeln (aus Essigester). F: 227° (Sch., B.).

# C<sub>6</sub>H<sub>5</sub>

# 3. Kohlenwasserstoffe $C_{29}H_{20}$ .

1. 1-Phenyl-3.3-di- $\alpha$ -naphthyl-propin, Phenylacetylenyl-di- $\alpha$ -naphthyl-methan  $C_{29}H_{20}=(C_{10}H_7)_2CH\cdot C:C\cdot C_6H_5.$ 

3-Chlor-1-phenyl-3.3-di- $\alpha$ -naphthyl-propin, Phenylacetylenyl-di- $\alpha$ -naphthyl-chlormethan  $C_{29}H_{19}Cl=(C_{10}H_{7})_2CCl\cdot C:C\cdot C_8H_5$ . B. Beim Behandeln von Phenylacetylenyl-di- $\alpha$ -naphthyl-carbinol mit Phosphortrichlorid in Äther (Willemart, A.ch. [10] 12, 386). — Krystalle. F:122—123° (Zers.) (Maquennescher Block). — Sehr unbeständig. Spaltet beim Erhitzen auf 120—130° Chlorwasserstoff unter Bildung eines roten Harzes ab. Gibt beim Kochen mit Alkohol  $\alpha.\alpha$ -Di-[naphthyl-(1)]- $\beta$ -benzoyl-āthylen.

2. 6.9-Diphenyl-1.2-benzo-fluoren, 8.11-Diphenyl-chrysofluoren oder 9-Diphenylyl-1.2-benzo-fluoren, 11-Diphenylyl-chrysofluoren C<sub>29</sub>H<sub>20</sub>, s. nebenstehende Formeln. B. Aus Phenyl-α-naphthyl-diphenylyl-chlormethan

$$\begin{array}{c|c} H & C & C_6H_5 & H & C & C_6H_4 \cdot C_6H_5 \\ \hline & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \hline & C_6H_5 & \vdots & \vdots & \vdots & \vdots \\ \hline & C_6H_5 & \vdots & \vdots & \vdots & \vdots \\ \hline & C_6H_5 & \vdots & \vdots & \vdots \\ \hline & C_6H_5 & \vdots & \vdots & \vdots \\ \hline & C_6H_5 & \vdots & \vdots & \vdots \\ \hline & C_6H_5 & \vdots & \vdots & \vdots \\ \hline & C_6H_5 & \vdots & \vdots & \vdots \\ \hline & C_6H_5 & \vdots & \vdots & \vdots \\ \hline & C_6H_5 & \vdots & \vdots & \vdots \\ \hline & C_6H_5 & \vdots & \vdots & \vdots \\ \hline & C_6H_5 & \vdots & \vdots & \vdots \\ \hline & C_6H_5 & \vdots & \vdots & \vdots \\ \hline & C_6H_5 & \vdots & \vdots & \vdots \\ \hline & C_6H_5 & \vdots &$$

oder carbinol beim Erhitzen mit Milchsäure, Valeriansäure oder Chloressigsäure auf Temperaturen oberhalb 180° (Dідтнех, *J. pr.* [2] 109, 319). — Nadeln (aus Toluol). F: 275—276°. Löst sich in kalter konzentrierter Schwefelsäure farblos, beim Erhitzen wird die Lösung kornblumenblau.

# 4. Kohlenwasserstoffe $C_{30}H_{22}$ .

1. 1.2.4.5 - Tetraphenyl - benzol C<sub>30</sub>H<sub>22</sub>, s. nebenstehende Formel (H 755). B. Beim Behandeln von 1.2.4.5-Tetraphenyl-cyclohexadien-(2.6) mit Palladium in Propylalkohol in Wasserstoffatmosphäre (SCHLENK, BERGMANN, A. 463, 96). — Liefert mit Natrium in Äther 4.5-Dinatrium-1.2.4.5-tetraphenyl-cyclohexadien-(2.6) (Syst. Nr. 2357).

2. 1.4-Bis-diphenylyl-benzol, p-Quinquiphenyl C<sub>30</sub>H<sub>22</sub> = C<sub>6</sub>H<sub>5</sub>·[C<sub>6</sub>H<sub>4</sub>]<sub>3</sub>·C<sub>6</sub>H<sub>5</sub>. Zur Bezeichnung p-Quinquiphenyl vgl. Busch, Weber, J. pr. [2] 146 [1936], 29. — B. Neben anderen Produkten beim Versetzen von Benzoldiazoniumsulfat in konz. Schwefelsäure + Eisessig mit Ameisensäure und Kupferpulver unter Kühlung (Gerngross, Dunkel, B. 57, 742) oder in verd. Schwefelsäure mit Alkohol und Kupferpulver (G., Schachnow, Jonas, B. 57, 749). Beim Erhitzen von 4-Jod-diphenyl mit 4-Jod-terphenyl und Silberpulver auf 310—330° (G., D., B. 57, 746). — Nadeln (aus Chinolin). Beginnt im mit Kohlen-

dioxyd gefüllten Röhrchen, bei ca. 365° (korr.) zu sintern bzw. zu sublimieren; schmilzt bei 380° (korr.) zur krystallinen Flüssigkeit, bei 431° (korr.) zur amorphen Flüssigkeit (Vorländer, Ph. Ch. 126, 471; 134, 160); F: 388,5° (G., D., B. 57, 745). Sublimiert im Hochvakuum bei 285—290° (G., D., B. 57, 744). Mikroskopische Untersuchung der Krystalle: V., Ph. Ch. 126, 472. Unlöslich in siedendem Xylol und Pyridin, schwer löslich in Benzoesäureäthylester; Löslichkeit in siedendem Chinolin etwa 1:150, in Nitrobenzol 1:320, in Phenol 1:550, in schmelzendem Campher 1:250 (G., D.).

3. 9.12 - Dibenzyl - diphensuccinda - dien - (9.11) C<sub>30</sub>H<sub>32</sub>, s. nebenstehende Formel.

B. Entsteht wahrscheinlich neben 9.12-Dibenzyliden-diphensuccindan beim Kochen von 9.12-Dibenzyliden-diphensuccindandiol-(9.12) mit Ameisensäure in Eisessig (Brand, Schläger

benzyliden-diphensuccindandiol-(9.12) mit Ameisensäure in Eisessig (Brand, Schläger, B. 56, 2544). — Wurde nicht rein erhalten. Farbige Nadeln. Ist in Eisessig leichter löslich als 9.12-Dibenzyliden-diphensuccindan.

- 4. 9.12 Dibenzyliden diphensuccindan C<sub>30</sub>H<sub>22</sub>, s. nebenstehende Formel. B. Durch Reduktion von 9.12-Dibenzyliden-diphensuccinden-(10) mit Zinkstaub und siedendem Eisessig (Brand, K. O. Müller, B. 55, 608). Entsteht neben anderen Produkten beim Erhitzen von 9.12-Dibenzyl-succindandiol-(9.12) mit Ameisensäure in Eisessig (B., Schläger, B. 56, 2544).

  Nadeln (aus Eisessig oder Isoamylacetat). F: 255° (B., M.; B., Sch.). Löslich in heißem Eisessig und Äther, ziemlich leicht in siedendem Alkohol, leichter löslich in siedendem Isoamylacetat und Benzol (B., Sch.). Liefert beim Erhitzen mit Chromsäure in Eisessig Benzoesäure und Diphensuccindandion-(9.12) (B., Sch.). Die Hydrierung bei Gegenwart von Palladium-Tierkohle in Alkohol + Eisessig ergibt 9.12-Dibenzyl-diphensuccindan (B., M.).
- 5. 9.12-Di-o-tolyl-diphensuccindadien-(9.11) C<sub>30</sub>H<sub>22</sub>,
  Formel I. B. Man behandelt Diphensuccindandion-(9.12) mit
  o-Tolylmagnesiumbromid in Benzol + Äther und erhitzt das
  gebildete, nicht näher beschriebene 9.12-Di-o-tolyl-diphensuccindandiol-(9.12) mit Ameisensäure (Brand, Ludwig, Berlin, J. pr.
  [2] 110, 30). Braune Blättchen (aus Essigester). F: 240°. —
  Wird durch Chromsäure in wäßr. Essigsäure zu 2.2'.Di-o-toluyl-benzil oxydiert, in siedendem
  Eisessig geht die Oxydation bis zur 2-o-Toluyl-benzoesäure.
- 6. 9.12-Di-m-tolyl-diphensuccindadien-(9.11) C<sub>30</sub>H<sub>22</sub>, Formel I. B. Bei der Oxydation von 9.12-Di-m-tolyl-diphensuccinden-(10) mit Brom in Schwefelkohlenstoff (Brand, Mühl, J. pr. [2] 110, 8). Beim Kochen von 9.12-Di-m-tolyl-diphensuccindandiol-(9.11) mit Eisessig und Ameisensäure (B., Ludwig, J. pr. [2] 110, 33). Braune Krystalle (aus Eisessig oder Essigester). F: 184—185° (B., L.). Ziemlich leicht löslich in heißem Eisessig, leicht in Essigester und Benzol (B., L.). Wird durch Chromsäure in Essigsäure zu 2.2'-Di-m-tolyl-benzil und 2-m-Toluyl-benzoesäure oxydiert (B., L.). Liefert bei der Reduktion mit Zinkstaub und siedendem Eisessig 9.12-Di-m-tolyl-diphensuccinden-(10), bei der Reduktion mit Natrium und siedendem Amylalkohol oder bei der Hydrierung bei Gegenwart von Palladium-Tierkohle in Eisessig 9.12-Di-m-tolyl-diphensuccindan (B., M.).
- 7. 9.12-Di-p-tolyl-diphensuccindadien-(9.11) C<sub>30</sub>H<sub>23</sub>, Formel I (E I 386). B. Bei der Oxydation von 9.12-Di-p-tolyl-diphensuccinden-(10) mit Brom in Schwefelkohlenstoff (Brand, Mühl, J. pr. [2] 110, 7). F: 271° (B., M.). Die Oxydation mit Chromtrioxyd in Eisessig ergibt 2.2′-Di-p-toluyl-benzil (B., Ludwig, B. 53, 814). Liefert bei tagelanger Reduktion mit Zinkstaub und siedendem Eisessig 9.12-Di-m-tolyl-diphensuccinden-(10), bei der Reduktion mit Natrium und Isoamylalkohol höherschmelzendes und niedrigerschmelzendes 9.12-Di-p-tolyl-diphensuccindan, ferner geringe Mengen gelber Krystalle vom Schmelzpunkt 205—206°; bei der Hydrierung bei Gegenwart von Palladium-Tierkohle in warmem Eisessig erhält man nur höherschmelzendes 9.12-Di-p-tolyl-diphensuccindan (B., M.).
- 5. Phenyl-bis-diphenylyl-methan, 4.4'-Diphenyl-triphenylmethan  $C_{a_1}H_{24}=(C_cH_5\cdot C_cH_6)_2CH\cdot C_cH_5$  (H 755). B. Aus Phenyl-bis-diphenylyl-benzoyl-methan beim Erhitzen mit alkoh. Kalilauge (Gomberg, Bachmann, Am. Soc. 49, 251). F: 165° (G., B.).  $D_4^{\circ}$ : 1,205 (Ziegler, Ditzel, A. 478, 207).
- [3-Brom-phenyl]-bis-diphenylyl-methan, 3"-Brom-4.4'-diphenyl-triphenyl-methan  $C_{31}H_{22}Br = (C_6H_5\cdot C_6H_4)_2CH\cdot C_6H_4Br$ . B. Beim Kochen von [3-Brom-phenyl]-bis-diphenylyl-[3-brom-benzoyl]-methan mit alkoh. Kalilauge (Gomegra, Bailar, Am.

Soc. 51, 2237). Bei der Reduktion von [3-Brom-phenyl]-bis-diphenylyl-carbinol mit Zink und Eisessig (G., B.). — F: 143°.

[4-Brom-phenyl]-bis-diphenylyl-methan, 4"-Brom-4.4'-diphenyl-triphenyl-methan C<sub>31</sub>H<sub>23</sub>Br = (C<sub>6</sub>H<sub>5</sub>·C<sub>6</sub>H<sub>4</sub>)<sub>2</sub>CH·C<sub>6</sub>H<sub>4</sub>Br. B. Beim Kochen von [4-Brom-phenyl]-bis-diphenylyl-[4-brom-benzoyl]-methan mit alkoh. Kalilauge (GOMBERG, BAILAR, Am. Soc. 51, 2237). Bei der Reduktion von [4-Brom-phenyl]-bis-diphenylyl-carbinol mit Zink und Eisessig. — Krystalle (aus Eisessig). F: 186°.

#### 6. Kohlenwasserstoffe $C_{32}H_{26}$ .

1. Pentaphenyläthan C<sub>32</sub>H<sub>36</sub> = (C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>CH·C(C<sub>6</sub>H<sub>5</sub>)<sub>3</sub> (H 755; E I 386). B. Bei der Einw. von Wasser auf das aus Pentaphenyläthyl und Natriumamalgam in Äther entstehende Pentaphenyläthan-natrium (SCHLENK, MARK, B. 55, 2298). Entsteht neben anderen Produkten aus Triphenylmethyl-diphenylacetyl-diimid durch Erwärmen in Xylol auf 40° in einer Kohlendioxyd-Atmosphäre (Wieland, Hintermaier, Dennstedt, A. 452, 22). Beim Einleiten von Kohlenoxyd in eine äther. Lösung von Phenylmagnesiumbromid bei Gegenwart von Nickeltetracarbonyl, neben anderen Produkten (Gilliand, Blanchard, Am. Soc. 48, 419). — Krystalle (aus Eisessig, Essigester, Benzol oder Chloroform + Alkohol). Schmilzt an der Luft unter Gelbfärbung bei 173° (Sch., M.), in Kohlendioxyd-Atmosphäre bei 175° bis 180° (W., H., D.), bei 176° (Sch., M.). D<sup>2</sup><sub>4</sub>: 1,166 (Ziegler, Ditzel, A. 473, 207). — Zur Zersetzung beim Schmelzen vgl. G., B.

Pentaphenylchloräthan  $C_{32}H_{25}Cl = (C_6H_5)_3CCl \cdot C(C_6H_5)_3$  (vgl. H 756; E I 386). B. Aus Pentaphenyläthyl und Chlor in Chloroform + Äther unter Stickstoff (Schlenk, Mark, B. 55, 2296). — Krystalle. — Spaltet sich bei geringer Erwärmung in Pentaphenyläthyl und Chlor; ähnlich wirkt Kupferbronze. Wird durch Feuchtigkeit sofort zu Pentaphenyläthylalkohol hydrolysiert.

2. 9.12 - Bis - [3.4 - dimethyl - phenyl] - diphensuccindadien - (9.11) C<sub>32</sub>H<sub>26</sub>, s. nebenstehende Formel. B. Beim Kochen von 9.12-Bis-[3.4-dimethyl-phenyl]-succindandiol - (9.12) mit Eisessig und Ameisensäure (Brand, Ludwig, Berlin, J. pr. [2] 110, 34). — Braune Blättchen (aus Essigester). F: 212°.



# 7. Kohlenwasserstoffe $C_{34}H_{30}$ .

- 1. 1. Diphenyl-5-benzhydryl-nonatetraen-(1.3.6.8)  $C_{34}H_{30} = (C_6H_5 \cdot CH : CH : CH : CH)_2CH \cdot CH(C_6H_5)_3$ . Bei der Einw. von Alkohol auf das Reaktionsprodukt aus 1.9-Diphenyl-5-diphenylmethylen-nonatetraen-(1.3.6.8) und Natrium in Äther (SCHLENK, BERGMANN, A. 463, 69). Gelbliche Nadeln (aus Propylalkohol oder Benzin). F: 140°.
- 2. 1.2.x.x-Tetrabenzyl-benzol  $C_{34}H_{30} = C_0H_1(CH_2 \cdot C_0H_5)_4$ . B. In geringer Menge neben anderen Produkten bei der Einw. von Eisenpyriten auf eine siedende Mischung von Benzol und Benzylchlorid (SMYTHE, Soc. 121, 1278). Schmilzt bei etwa 90°. Die Oxydation mit Chromessigsäure führt zu 1.2.x.x-Tetrabenzoyl-benzol.
- 8. Hexadekahydrodekacyclen C<sub>36</sub>H<sub>34</sub>. B. Neben anderen Produkten beim Erhitzen von Dekacyclen (S. 723) mit rotem Phosphor und Jodwasserstoffsäure (D: 1,7) im Rohr auf 280° (Dziewoński, Suszko, Bl. Acad. polon. [A] 1923, 22; C. 1924 I, 1377). Orangegelbe Mikrokrystalle. F: 150—160°. Schwer löslich in siedendem Alkohol, leicht in Ligroin, sehr leicht in Benzol mit dunkelgelber Farbe und grüner Fluorescenz. Schwer löslich in konz. Schwefelsäure.
- 9. 3.4-Di-tert.-butyl-1.1.6.6-tetraphenyl-hexatetraen-(1.2.4.5)  $C_{38}H_{38} = (C_6H_5)_2$ C:C:C[C(CH<sub>3</sub>)<sub>3</sub>]·C[C(CH<sub>3</sub>)<sub>3</sub>]·C:C(C( $_6H_5$ )<sub>2</sub>. Zur Konstitution vgl. Farley, Marvel, Am. Soc. 58 [1936], 61; vgl. a. Stampfll, Ma., Am. Soc. 58 [1931], 4057; Althauser, Ma., Am. Soc. 54 [1932], 1175. B. Bei Einw. von fein verteiltem Silber auf [tert.-Butyl-acetylenyl]-diphenyl-brommethan in Äther (Salzberg, Marvel, Am. Soc. 50, 2842). Krystalle (aus Alkohol + Äther). F: 153,5—155° (korr.) (Sa., Ma.). Die Lösung in Äther ist grünlichgelb und fluoresciert rötlich; die Fluorescenz verschwindet bei Einw. von reinem Sauerstoff, erscheint aber an der Luft wieder, was sich 3—4mal wiederholen läßt (Sa., Ma.). Beständig gegen Hitze (Sa., Ma.). Wird durch 40% iges Natriumamalgam oder Natrium-Kalium-Legierung in Äther nicht gespalten; hierbei entstehen farbige Lösungen von Metall-derivaten, die von Kohlendioxyd entfärbt werden (Sa., Ma.).

## 28. Kohlenwasserstoffe C<sub>n</sub>H<sub>2 n-39</sub>.

Pentaphenyläthyl C<sub>12</sub>H<sub>25</sub> = (C<sub>4</sub>H<sub>5</sub>)<sub>2</sub>C·C(C<sub>6</sub>H<sub>5</sub>)<sub>3</sub>. Das Mol.-Gew. ist in Benzol kryoskopisch bestimmt. — B. Aus Pentaphenylchloräthan bei schwachem Erwärmen oder bei Einw. von Kupferbronze in Äther unter Stickstoff (SCHLENK, MARK, B. 55, 2296). Aus Triphenylmethylnatrium und Diphenyldichlormethan oder aus Triphenylchlormethan und 1.2-Dinatrium-1.2.3.4-tetraphenyl-äthan in Äther unter Stickstoff (SCH., M., B. 55, 2295). — Schwach metallisch schimmernde, gelbe Krystalle (SCH., M.; SCH., R. 41, 562). Leicht löslich in Benzol, ziemlich leicht in Äther; die Lösungen sind hellrot (SCH., M., B. 55, 2290). Absorptionsspektrum in Lösung: SCH., M., B. 55, 2299. — Sehr luftempfindlich. Gibt mit Chlor in Äther + Chloroform Pentaphenylchloräthan (SCH., M.). Wird durch Natriumamalgam in Äther in Pentaphenyläthan-natrium übergeführt, aus dem mit Wasser Pentaphenyläthan entsteht (SCH., M.).

#### 29. Kohlenwasserstoffe C<sub>n</sub>H<sub>2 n-40</sub>.

#### 1. Kohlenwasserstoffe $C_{30}H_{20}$ .

1. 9-Phenyl-10-α-naphthyl-anthracen C<sub>30</sub>H<sub>20</sub>, Formel I (H 757). B. Durch Kochen von 10-Phenyl-9-α-naphthyl-9.10-dihydro-anthranol-(9) mit Acetanhydrid (Barnett, Cook, Wiltshire, Soc. 1927, 1730). — Gelbe fluorescierende Krystalle aus (Benzol + Alkohol). F: 244—245°.

- 2. 9.12-Dibenzyliden-diphensuccinden-(10) C<sub>30</sub>H<sub>20</sub>, Formel II. B. Aus Diphensuccinden-(10) oder 9-Benzyliden-diphensuccinden-(10) mit Benzaldehyd in Natriumäthylat-Lösung (Brand, Müller, B. 55, 607). Zinnoberrote Blättchen (aus Isoamylacetat). F: 244°. Schwer löslich in Alkohol und Eisessig, leicht in Benzol, schwerer in Isoamylacetat. Wird durch Chromtrioxyd sofort oxydiert. Liefert bei der Hydrierung in Gegenwart von Palladium-Tierkohle in Alkohol + Eisessig 9.12-Dibenzyl-diphensuccindan, bei der Reduktion mit Zinkstaub und siedendem Eisessig 9.12-Dibenzyliden-diphensuccindan.
- 3. 1.4-Difluorenyliden-buten-(2), 1.6-Bis-diphenylen-hexatrien-(1.3.5)  $C_{30}H_{20} = {C_6H_4 \atop C_6H_4}$  C:CH·CH:CH·CH:C ${C_6H_4 \atop C_6H_4}$ . B. In geringer Menge beim Kochen von Fluorenon mit Buten-(2)-dicarbonsäure-(1.4), Acetanhydrid und Bleioxyd (Kuhn, Winterstein, Helv. 11, 120). Braunviolette Nadeln (aus Chloroform). F: 340° (Zers.). Ziemlich leicht löslich in Benzol, Aceton und Acetanhydrid, schwer in Alkohol und Essigsäure. 100 cm³ Chloroform lösen bei 20° 0,1353 g. Die Lösung in konz. Schwefelsäure zeigt stahlblaue Farbe (K., W., Helv. 11, 117). Absorptionsspektrum in Pyridin: K., W. Liefert mit überschüssigem Brom in Chloroform am Sonnenlicht eine Verbindung  $C_{30}H_{18}Br_8$ (?) (F: 218°) (K., W., Helv. 11, 144). Pikrat  $C_{30}H_{20}+2C_6H_3O_7N_3$ . F: 270° (Zers.) (K., W., Helv. 11, 149).

# 2. Kohlenwasserstoffe $C_{32}H_{24}$ .

- 1. 1.4 Bis diphenylmethylen cyclohexadien (2.5), p Chinon bis diphenylmethid,  $\omega.\omega.\omega'.\omega'$  Tetraphenyl p chinodimethan  $C_{22}H_{24} = (C_0H_5)_2C:C(C_0H_5)_2C:C(C_0H_6)_2$  (H 757; E I 388). B. Aus Chinon und Phenyl-benzoyldiazomethan (E I 7, 395) in siedendem Xylol (Staudinger, B. 49 [1916], 1971). Ultraviolett-Absorptionsspektrum in Chloroform: Lifschitz, Mitarb., R. 43, 416.
- 2. 9.9.10-Triphenyl-9.10-dihydro-anthracen  $C_{32}H_{24} = C_6H_4 < C_1(C_6H_5) > C_6H_4$  (H 758; E I 388). B. Aus 9.10.10-Triphenyl-9.10-dihydro-anthranol-(9) und Natrium in siedendem Isoamylalkohol (Barnett, Cook, Nixon, Soc. 1927, 511). Krystalle (aus Benzol + Alkohol). F: 230°. Einw. von Aluminiumchlorid: B., C., N., Soc. 1927, 512.
- 10 Chlor 9.9.10 triphenyl 9.10 dihydro anthracen  $C_{33}H_{23}Cl = C_8H_4 \cdot \frac{C(C_6H_5)}{CCl(C_6H_5)} \cdot C_6H_4$ . B. Durch Leiten von trocknem Chlorwasserstoff in eine siedende Lösung von 9.10.10 Triphenyl 9.10 dihydro anthranol (9) in Benzol (Barnett, Cook,

NIXON, Soc. 1927, 511). — Krystallisiert aus Benzol + Äther als Pulver mit Krystalllösungsmittel, das bei 120° abgegeben wird. F: 193—194°. — Gibt in siedendem Benzol mit Kupferpulver eine gelbe Lösung.

3. Triphenyl - fluorenyl - (9) - methan, 9 - Trityl - fluoren  $C_{32}H_{24}=C_6H_4$  CH  $\cdot$  C( $C_6H_5$ )3.

Triphenyl-[9-chlor-fluorenyl-(9)]-methan, 9-Chlor-9-trityl-fluoren,  $\beta.\beta.\beta$ -Triphenyl- $\alpha.\alpha$ -diphenylen-äthylchlorid  $C_{32}H_{23}Cl = {}^{C_6H_4}_{C_6H_4}$ CCl·C( $C_6H_5$ )<sub>3</sub>. B. Aus  $\beta.\beta.\beta$ -Triphenyl- $\alpha.\alpha$ -diphenylen-äthyl und Chlor in Chloroform  $\bot$  Äther (Schlenk, Mark, B. 55, 2302). — Dissoziiert im Sonnenlicht in Chlor und  $\beta.\beta.\beta$ -Triphenyl- $\alpha.\alpha$ -diphenylen-äthyl und wird in der Dunkelheit regeneriert. Sehr empfindlich gegen Feuchtigkeit. Bei der Einw. von Kupferpulver wird das Chlor abgespalten.

- 3. 1.9-Diphenyl-5-diphenylmethylen-nonatetraen-(1.3.6.8), 1.5-Distyryl-3-benzhydryliden-pentadien-(1.4)  $C_{34}H_{28} = (C_6H_5\cdot CH:CH\cdot CH:CH)_2C:C(C_6H_5)_2$  (H 759). B. Aus Dicinnamylidenaceton und Azibenzil in siedendem Xylol in einer Kohlendioxyd-Atmosphäre (Schlenk, Bergmann, A. 463, 69). Gelbe Krystalle (aus Essigester). F: 149° (Sch., B.). Ultraviolett-Absorptionsspektrum in Chloroform: Lifschitz. Mitarb., R. 43, 409. Liefert mit Natriumpulver in trocknem Äther eine grünstichig blaue Lösung, die mit Alkohol 1.9-Diphenyl-5-benzhydryl-nonatetraen-(1.3.6.8) und mit Kohlendioxyd 1.9-Diphenyl-5-[diphenyl-carboxy-methyl]-nonatetraen-(1.3.6.8)-carbonsäure-(5) gibt (Sch., B.).
- 4. Tetrameres Inden  $C_{36}H_{32}$  s. S. 413.
- 5. Pentameres  $\alpha$ -Methyl-styrol  $C_{45}H_{50}$  s. S. 375.

# 30. Kohlenwasserstoffe $C_n H_{2n-41}$ .

 $\beta.\beta.\beta$ -Triphenyl- $\alpha.\alpha$ -diphenylen-äthyl, Biphenylentriphenyläthyl  $C_{32}H_{23} = C_6H_4$   $C \cdot C(C_6H_5)_3$ . B. Aus Triphenylmethylnatrium und 9.9-Dichlor-fluoren in Äther unter Stickstoff (Schlenk, Mark, B. 55, 2301). — Violette Prismen (aus Äther). Schwer löslich in Äther. Ist nach kryoskopischen Bestimmungen in Benzol monomolekular gelöst. — Gibt mit Chlor in Chloroform + Äther 9-Chlor-9-trityl-fluoren.

# 31. Kohlenwasserstoffe C<sub>n</sub>H<sub>2n-42</sub>.

1. Dihydropyranthren (früher als Pyranthren bezeichnet)  $C_{30}H_{18}$ , s. nebenstehende Formel (E I 389). Zur Bezeichnung Dihydropyranthren vgl. Scholl, Tänzer. A. 433, 168 Anm. — B. Beim Erhitzen von amphi-Isopyranthron (Syst. Nr. 692) mit Jodwasserstoffsäure (Kp: 127°) und rotem Phosphor im Rohr auf 180° (Sch., T., A. 433, 180). — Gibt bei der Oxydation mit Chromtrioxyd in siedendem Eisessig Pyranthron.

2. 9.9 - Diphenyl - 10 - benzyliden - dihydroanthracen C<sub>33</sub>H<sub>24</sub>, s. nebenstehende Formel. B. Durch Erhitzen von 10-Oxy-9.9 - diphenyl-10-benzyl - dihydroanthracen mit Eisessig und wenig Salzsäure oder Schwefelsäure auf dem Wasserbad (Barnett, Cook, Soc. 1928, 571). — Krystalle (aus Toluol). F: 254—255°.

$$\begin{array}{c} C(C_6H_5)_2 \\ \vdots \\ CH\cdot C_6H_5 \end{array}$$

3. Kohlenwasserstoffe  $C_{34}H_{26}$ .

1. 9-Benzyl-10-benzhydryl-anthracen C<sub>34</sub>H<sub>26</sub>, s. nebenstehende Formel. B. Durch Erhitzen von 9-Oxy-9-benzyl-10-benzhydryl-dihydroanthracen mit Eisessig und etwas Salzsäure auf dem Wasserbad (BARNETT, GOODWAY, Soc. 1929, 1757). — Krystalle (aus wäßr. Pyridin oder aus Benzol + Petroläther). F: 236°.

- 2.  $\omega.\omega'$ -Di-fluorenyl-(9)-m-xylol, 9.9'-m-Xylylen-difluoren  $C_{34}H_{44}=$ C<sub>6</sub>H<sub>4</sub> CH·CH<sub>2</sub>·C<sub>6</sub>H<sub>4</sub>·CH<sub>2</sub>·HC C<sub>6</sub>H<sub>4</sub>. B. Durch Reduktion von ω.ω'-Difluorenyliden-m-xylol (S. 715) mit amalgamiertem Aluminium in feuchtem Ather (Sieglitz, Jassoy, B. 54, 2137). — Nadeln (aus Eisessig). F: 119—1209.
- 3.  $\omega.\omega'$ -Di-fluorenyl-(9)-p-xylol, 9.9'-p-xylylen-difluoren  $C_{34}H_{26}=C_6H_4$   $CH\cdot CH_2\cdot C_6H_4\cdot CH_2\cdot HC$   $C_6H_4$ . B. Analog der vorangehenden Verbindung (Sieglitz, Jassoy, B. 54, 2137). Stäbchen (aus Benzol). F: 239—240°.
- 4. Dodekahydrodekacyclen C<sub>36</sub>H<sub>30</sub>. B. Neben anderen Produkten beim Erhitzen von Dekacyclen (S. 723) mit rotem Phosphor und Jodwasserstoffsäure (D: 1,7) im Rohr auf 280° (Dziewonski, Suszko, Bl. Acad. polon. [A] 1923, 22; C. 1924 I, 1377). Dunkelrotes mikrokrystallinisches Pulver (aus Ligroin). Schmilzt bei 255—265°. Fast unlöslich in Alkohol, ziemlich schwer löslich in Ligroin, sehr leicht in Benzol mit roter Farbe und olivgrüner Fluorescenz.

#### 32. Kohlenwasserstoffe C<sub>n</sub>H<sub>2n-44</sub>.

#### 1. Kohlenwasserstoffe C<sub>30</sub>H<sub>16</sub>.

- 1. Chalkacen  $C_{30}H_{16}$ . Besitzt vielleicht die nebenstehende Konstitution. Das Mol.-Gew. ist in Nitrobenzol ebullioskopisch bestimmt. — B. Neben anderen Produkten beim Leiten von Acenaphthen-Dampf durch ein mit Eisen- oder Kupferdraht beschicktes, auf Rotglut erhitztes Quarzrohr im Kohlendioxyd-Strom (Dziewonski, B. 53, 2180, 2188). Aus Rhodacen (s. u.) beim Belichten verd. Lösungen oder bei längerem Kochen mit höhersiedenden Lösungsmitteln wie Cumol, Naphthalin oder Nitrobenzol (Dz., B. 53. 2186, 2187). Bei ½-stdg. Kochen von Leukacen (S. 731) mit Nitrobenzol (Dz., B. 53, 2188). — Kupferrote oder bordeauxrote, bronzeglänzende Nadeln oder Tafeln (aus Cumol oder Nitrobenzol). Rhombisch(?) (Kreutz). F: 358—360°. Fast unlöslich in Alkohol und Eisessig, sehr schwer löslich in Benzol, leichter in Xylol und Cumol, am leichtesten in Nitrobenzol. Verd. Lösungen sind orange und fluorescieren gelb, konzentrierte Lösungen sind orange bis bronzerot. Absorptionsspektrum von verd. Lösungen: Dz., B. 53, 2189. Löst sich in konz. Schwefelsäure mit kirschroter Farbe. — Gibt bei der Oxydation mit Chromsäure eine braunrote, amorphe Substanz.
- 2. Rhodacen C<sub>30</sub>H<sub>1e</sub>. Besitzt vielleicht die nebenstehende Konstitution. Das Mol.-Gew. ist in Naphthalin kryoskopisch bestimmt. B. Neben anderen Produkten beim Leiten von Acenaphthen-Damof durch ein mit Eisen- oder Kupferdraht beschicktes, auf Rotglut erhitztes Quarzrohr im Kohlendioxyd-Strom (Dziewonski, B. 58. 2180, 2186). Bei kurzem Kochen einer 4—5%igen Lösung von Leukacen (S. 731) in Nitrobenzol (Dz., B. 53, 2186). Entsteht aus Leukacen auch beim Erhitzen auf 175° unter vermindertem Druck, neben Acenaphthylen (Dz., B. 53, 2184). — Dunkelviolette, grünlich metallisch glänzende Krystalle (aus Xylol). F: 338—340°. Sehr schwer löslich in heißem Benzol und Xylol, leichter in Cumol, Nitrobenzol und Naphthalin. Die Lösungen in Benzol und Xylol sind blaustichig rot und zeigen ziegelrote Fluorescenz. Absorptionsspektrum in Benzol: Dz., B. 53, 2187. — Ist in Lösung im Dunkeln beständig; beim Belichten verd. Lösungen oder bei längerem Kochen mit höhersiedenden Lösungsmitteln, besonders mit Nitrobenzol, erfolgt Umwandlung in Chalkacen (s. o.).

# 2. 1.2.3.4.5 - Pentaphenyl-cyclopentadien - (1.3) $C_{as}H_{ae} =$

 $C_6H_5 \cdot C : C(C_6H_5)$   $CH \cdot C_6H_5$ . B. Aus 5-Chlor- oder 5-Brom-1.2.3.4.5-pentaphenyl-cyclopentadien (1.3) durch Erhitzen mit Zinkwolle in Essigester im Rohr auf 1000 oder besser durch Behandeln mit Zinkstaub in heißem Eisessig (ZIEGLER, SCHNELL, A. 445, 278). Durch Eintragen von konz. Schwefelsäure in eine siedende Lösung von 1.2.3.4.5-Pentaphenylcyclopentandiol-(1.2) in Eisessig (Z., Sch., A. 445, 280). — Schwach bläulich fluorescierende Krystalle (aus Benzol + Methanol). F: 250° (Z., Sch.). D: 1,206 (Z., DITZEL, A. 473, 207). 5 - Chlor - 1.2.3.4.5 - pentaphenyl - cyclopentadien - (1.3)  $C_{35}H_{25}Cl = C_6H_5 \cdot C:C(C_6H_5)$  CCl·C<sub>6</sub>H<sub>5</sub>. B. Beim Einleiten von Salzsäure in eine siedende Lösung von 1.2.3.4.5-Pentaphenyl-cyclopentadien-(1.3)-ol-(5) in Eisessig (Ziegler, Schnell, A. 445. 277). — Gelbe Krystalle (aus Eisessig). F: 167° (Z., Sch.). — Liefert beim Erhitzen mit Zinkwolle in Essigester im Rohr auf 100° oder beim Behandeln mit Zinkstaub in heißem Eisessig 1.2.3.4.5-Pentaphenyl-cyclopentadien-(1.3) (Z., Sch.). Umsetzung mit α-Phenyl-isopropyl-kalium: Z., Ewald, A. 473, 192.

5-Brom-1.2.3.4.5-pentaphenyl-cyclopentadien-(1.3)  $C_{35}H_{25}Br=C_{6}H_{5}\cdot C:C(C_{6}H_{5})$   $CBr\cdot C_{6}H_{5}\cdot B$ . Beim Einleiten von Bromwasserstoff in eine siedende  $C_{6}H_{5}\cdot C:C(C_{6}H_{5})$   $CBr\cdot C_{6}H_{5}\cdot B$ . Beim Einleiten von Bromwasserstoff in eine siedende  $C_{6}H_{5}\cdot C:C(C_{6}H_{5})$  Lösung von 1.2.3.4.5-Pentaphenyl-cyclopentadien-(1.3)-ol-(5) in Eisessig (Ziegler, Schnell, A. 445, 278). — Gelbe Krystalle (aus Benzol oder Xylol durch Fällen mit Petroläther). F: 188° bis 189° (Z., Sch.). — Gibt beim Behandeln mit Zinkstaub und heißem Eisessig 1.2.3.4.5-Pentaphenyl-cyclopentadien-(1.3) (Z., Sch.). Liefert beim Erwärmen mit fein verteiltem Silber in Benzol unter Luftabschluß (Ziegler, Schnell, A. 445, 280) oder bei der Umsetzung mit  $\alpha$ -Phenyl-isopropylkalium in Äther, wobei intermediär farbloses Pentaphenyl- $\Delta$ 2-4-cyclopentadienyl (s. u.).

#### 33. Kohlenwasserstoffe $C_n H_{2n-45}$ .

1.2.3.4.5-Pentaphenyl- $\Delta^{2.4}$ -cyclopentadienyl  $C_{35}H_{25} = \frac{C_6H_5 \cdot C:C(C_6H_5)}{C_6H_5 \cdot C:C(C_6H_5)} \cdot C \cdot C_6H_5$ . Das Mol.-Gew. ist in Benzol kryoskopisch bestimmt (Ziegler, Schnell, A. 445, 282). — B. Aus 5-Brom-1.2.3.4.5-pentaphenyl-cyclopentadien-(1.3) beim Erwärmen mit fein verteiltem Silber in Benzol unter Luftabschluß auf dem Wasserbad (Ziegler, Schnell, A. 445, 280) oder beim Eintragen in eine äther. Lösung von  $\alpha$ -Phenyl-isopropylkalium (Z. EWALD, A. 473, 192). — Rotviolette oder schwarzviolette Kryställchen. F: 260° (bei Sauerstoffausschluß); die Schmelze ist tiefrot (Z., Sch.). Die Lösungen sind blaustichig rot (Z., Sch., A. 445, 271); Absorptionsspektrum in verschiedenen Lösungsmitteln: Z., E., A. 473. 175. — In trocknem Zustand an der Luft ziemlich beständig; die Lösung in Nitrobenzol nimmt rasch Sauerstoff auf unter Bildung eines Peroxyds, das durch Sauerstoff allmählich weiter oxydiert wird (Z., Sch., A. 445, 282). Liefert beim Behandeln mit Brom 5-Brom-12.3.4.5-pentaphenyl-cyclopentadien-(1.3); reagiert auch mit Jod unter Entfärbung (Z., Sch., A. 445, 271).

# 34. Kohlenwasserstoffe C<sub>n</sub>H<sub>2n-46</sub>.

# 1. Kohlenwasserstoffe $\mathrm{C_{34}H_{22}}$ .

1. ω.ω' - Difluorenyliden - m - xylol, m-Phenylen - bis - dibenzofulven, Iso-phthalaldifluoren C<sub>34</sub>H<sub>22</sub> = c<sub>6</sub>H<sub>4</sub> C:CH·C<sub>6</sub>H<sub>4</sub>·CH:CC<sub>6</sub>H<sub>4</sub>. B. Aus 2 Mol Fluoren und 1 Mol Isophthalaldehyd in warmer Natriumäthylat-Lösung (Sieglitz, B. 53, 1235). — Hellgelbe Blättchen (aus Benzol + Eisessig). F: 178—179° (S.). — Absorptionsspektrum in Methyläthylketon: Jonescu, Bulet. Cluj 2, 296; C. 1925 I, 2221. Löst sich in warmer konzentrierter Schwefelsäure mit tiefgrüner Farbe (S.).

ω.ω'- Bis - [2.7 - dichlor - fluorenyliden] - m - xylol  $C_{34}H_{18}Cl_4 = C_6H_3Cl$   $C:CH\cdot C_6H_4\cdot CH:C \stackrel{C_6H_3Cl}{C_6H_3Cl}$  B. Analog der vorangehenden Verbindung (Sieglitz. Schatzkes, B. 54, 2075). — Hellgelbe Nädelchen (aus Benzol). F: 253—254°.

2.  $\omega.\omega'$ -Difluorenyliden-p-xylol, p-Phenylen-bis-dibenzofulven, Terephthalaldifluoren  $C_{34}H_{22} = \begin{array}{c} C_6H_4 \\ C_6H_4 \end{array}$ C:CH·C<sub>6</sub>H<sub>4</sub>·CH:C $\begin{array}{c} C_6H_4 \\ C_6H_4 \end{array}$ (E I 390). Absorptionsspektrum in Methyläthylketon: Jonescu, Bulet. Cluj 2, 296; C. 1925 I, 2221. Sehr schwer löslich in Äther (Siegliffe, Jassoy, B. 54, 2137).

 $\omega$ , $\omega'$  - Bis - [2.7 - dichlor - fluorenyliden] - p - xylol  $C_{34}H_{18}Cl_4$ 

C<sub>6</sub>H<sub>3</sub>Cl C:CH·C<sub>6</sub>H<sub>4</sub>·CH:C C<sub>6</sub>H<sub>3</sub>Cl B. Neben geringen Mengen anderer Produkte durch C'<sub>6</sub>H<sub>3</sub>Cl Umsetzung von 2 Mol 2.7-Dichlor-fluoren mit 1 Mol Terephthalaldehyd bei Gegenwart von wenig Natriumäthylat in siedendem absol. Alkohol (Sieglitz, Schatzkes, B. 54, 2075, 2076). — Gelbe Nadeln (aus Toluol). Färbt sich beim Erhitzen orangegelb, schmilzt nicht bis 285°.

 $m.\omega'$ - Bis - [2.7 - dibrom - fluorenyliden] - p - xylol  $C_{34}H_{18}Br_4 = C_6H_3Br$  C:CH·C<sub>6</sub>H<sub>4</sub>·CH:C $\frac{C_6H_3Br}{C_6H_3Br}$ . B. Analog der vorangehenden Verbindung (Sieglitz, B. 53, 1239). — Tieforangerote Blättchen (aus Toluol). Schmilzt nicht bis 300°. Unlöslich in siedendem Eisessig.

3. 1.2; 1'.2'-Dibenzo-difluorenyl-(9.9'), Dichryso-fluorenyl-(11.11') C<sub>34</sub>H<sub>22</sub>, s. nebenstehende Formel. B. Bei 2-stdg. Kochen von 9-Brom-1.2-benzo-fluoren mit 1 Tl. Natrium-jodid in Aceton (Wanscheidt, B. 59, 2098; Ж. 58, 73). Aus 9-Jod-1.2-benzo-fluoren beim Erhitzen für sich oder in über 150° siedenden Lösungsmitteln (W., Ж. 58, 72). — Tafeln (aus Benzol). F: 221° (korr.; unter Rotfärbung). Löslich in siedendem Benzol, publishich in Allechel. Löst sich in Pyridin in Gegenwert von



unlöslich in Alkohol. — Löst sich in Pyridin in Gegenwart von wenig Kaliummethylat-Lösung mit dunkelbrauner Farbe und kann aus der Lösung durch Neutralisation des Kaliummethylats unverändert zurückerhalten werden; beim Schütteln der Lösung mit Luft erfolgt Dehydrierung zu 1.2;1'.2'-Dibenzo-difluorenyliden (S. 718) (W., K. 58, 253, 277; C. 1927 I, 92). Bei der Einw. von Silberacetat in siedendem Pyridin entstehen keine definierten Produkte (W., K. 58, 267; C. 1927 I, 92). Gibt mit konz. Schwefelsäure auch beim Erwärmen keine Färbung (W., B. 59, 2098; K. 58, 73).

4. 1.2; 7.8 - Dibenzo - difluorenyl - (9.9'), 9 - [Fluorenyl - (9)] - 1.2; 7.8 - dibenzo - fluoren, Fluorenyl - dianaphthofluoren C<sub>34</sub>H<sub>22</sub>, s. nebenstehende Formel. B. Bei kurzem Kochen von 1.2; 7.8 - Dibenzo-fluoren und 9-Chlor-fluoren mit Kaliummethylat - Lösung in Aceton (Wanscheidt, B. 59, 2099; Ж. 58, 76). — Tafeln (aus Benzol). F: 270° (korr.). Löslich in heißem Benzol und Pyridin, schwer löslich in Alkohol, Äther und Aceton. Löst sich in Pyridin in Gegenwart von wenig Kalium-



methylat-Lösung mit braunroter Farbe und kann aus der Lösung durch Neutralisieren des Kaliummethylats unverändert zurück erhalten werden; beim Schütteln der Lösung mit Luft erfolgt Dehydrierung zu 9-Fluorenyliden-1.2;7.8-dibenzo-fluoren (W.,  $\mathcal{H}$ . 58, 255, 277; C. 1927 I. 92); dieses entsteht auch beim Kochen mit Silberacetat in Pyridin und bei der Einw. von Natrium in siedendem Xylol unter Luftzutritt (W.,  $\mathcal{H}$ . 58, 258, 266; C. 1927 I, 92). Gibt mit konz. Schwefelsäure keine Färbung (W.,  $\mathcal{H}$ . 58, 77).

# 2. Kohlenwasserstoffe $\mathrm{C_{36}H_{26}}$ .

- 1. Sexiphenyl C<sub>36</sub>H<sub>26</sub> C<sub>6</sub>H<sub>5</sub>·C<sub>6</sub>H<sub>4</sub>·C<sub>6</sub>H<sub>4</sub>·C<sub>6</sub>H<sub>4</sub>·C<sub>6</sub>H<sub>4</sub>·C<sub>6</sub>H<sub>5</sub>. B. Beim Erhitzen von 4-Jod-terphenyl mit Silberpulver auf 330° (Pummerer, Bittner, B. 57, 87). Blättchen (aus 1.2-Dichlor-benzol). Rhombisch (Steinmetz, B. 57, 87). F: 475° (unkorr.) (P., B.). Mikroskopische Beobachtungen über das Verhalten beim Schmelzen und Erstarren: Vorländer, Ph. Ch. 126, 472. Sublimiert im Vakuum bei 350—400° (P., B.). Löst sich bei Siedetemperatur etwas in Nitrobenzol, 1.2-Dichlor-benzol, Chinolin und Dekalin (P., B.).
- 2. 1.2.3.4-Tetraphenyl-5-benzyliden-cyclopentadien-(1.3), 1.2.3.4. $\omega$ -Pentaphenyl-fulven  $C_{36}H_{26} = \frac{C_6H_5 \cdot C:C(C_6H_5)}{C_6H_5 \cdot C:C(C_6H_5)} \cdot C:CH \cdot C_6H_5$ . B. Beim Einleiten von Chlorwasserstoff in eine Lösung von 1.2.3.4-Tetraphenyl-5-benzyl-cyclopentadien-(1.3)-ol-(5) in siedendem Eisessig (Löwenbein, Ulich, B. 58, 2666). Durch Kondensation von 1.2.3.4-Tetraphenyl-cyclopentadien-(1.3) mit Benzaldehyd in siedender Kaliummethylat-Lösung (L., U.). Tiefrote Krystalle (aus Eisessig). F: 204° (L., U.). D\_4^{\circ}: 1,165 (Ziegler, Ditzel, A. 473, 204).
- 3. 9.12-Di- $\beta$ -naphthy/-diphensuccindan  $C_{36}H_{26}$ , s. nebenstehende Formel. B. Durch Hydrierung von 9.12-Di- $\beta$ -naphthyl-diphensuccindadien-(9.11) in Gegenwart von Palladiumkohle in warmem verdünntem Alkohol (Brand, Trebing, B. 56, 2547). Nadeln. F: 225°. Leicht löslich in Eisessig und Essigester, etwas schwerer in Alkohol.

- 4. Oktahydro-dekacyclen C<sub>36</sub>H<sub>26</sub>. B. Neben anderen Produkten beim Erhitzen von Dekacyclen (S. 723) mit Jodwasserstoffsäure (D: 1,7) und rotem Phosphor im Rohr auf 280" (DZIEWONSKI, Suszko, Bl. Acad. polon. [A] 1923, 23; C. 1924 I, 1377). — Rotbraun, amorph (aus Benzol durch Alkohol gefällt). Schmilzt bei ca. 300—310°. Fast unlöslich in Alkohol und Ligroin, sehr leicht löslich in Benzol mit braunroter Farbe und olivgrüner Fluorescenz.
- 3. Tris-diphenylyl-methan, Tribiphenylmethan  $C_{37}H_{28} = (C_6H_5 \cdot C_6H_4)_3CH$ (E I 391). B. Aus Tris-diphenylyl-[4-phenyl-benzoyl]-methan beim Kochen mit alkoh. Kalilauge (Gomberg, Bachmann, Am. Soc. 49, 252). — F: 233°.

Tris-diphenylyl-chlormethan, Tribiphenylchlormethan  $C_{37}H_{27}Cl = (C_6H_5 \cdot C_6H_4)_3CCl$  (H 761; E I 391). Elektrische Leitfähigkeit in flüssigem Schwefeldioxyd: Straus. DÜTZMANN, J. pr. [2] 103, 67. — Geschwindigkeit der Umsetzung mit Wasser in Äther bei 16—17°: St., D. Liefert bei der Einw. von 4-Phenyl-benzophenon-kalium (vgl. E I 7, 291) Tris-diphenylyl-methyl (Schlenk, Thal, B. 46 [1913], 2854).

#### 4. Kohlenwasserstoffe $C_{38}H_{30}$ .

- 1. **Hexaphenyläthan**  $C_{38}H_{30} = (C_6H_5)_3C \cdot C(C_6H_5)_3$  s. bei Triphenylmethyl, S. 626.
- 4-Benzhydryl-tetraphenylmethan, ω.ω.ω.ω'.ω'-Pentaphenyl-p-xylol  $C_{38}H_{30} = (C_6H_5)_3C \cdot C_6H_4 \cdot CH(C_6H_5)_2$  (H 761; E I 391). B. Durch Hydrierung von 4-[\(\alpha\cdot\)Chlorbenzhydryl]-tetraphenylmethan bei Gegenwart von Palladiumschwarz in Ather (Wieland). Roth, B. 53, 222). — Unlöslich in konz. Schwefelsäure.
- 4-[ $\alpha$ -Chlor-benzhydryl]-tetraphenylmethan, 4-Trityl-triphenylchlormethan,  $\omega$ '-Chlor- $\omega$ . $\omega$ . $\omega$ '. $\omega$ '-pentaphenyl-p-xylol  $C_{38}H_{29}Cl=(C_6H_6)_3C\cdot C_6H_4\cdot CCl(C_6H_5)_2$ . B. Durch Einw. von äther. Salzsäure auf N.N-Diphenyl-O-(4-trityl-triphenylmethyl]-hydroxylamin (C<sub>5</sub>H<sub>5</sub>)<sub>3</sub>C·C<sub>6</sub>H<sub>4</sub>·C(C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>·O·N(C<sub>6</sub>H<sub>5</sub>)<sub>2</sub> (Syst. Nr. 1932) (Wieland, Roth, B. 53, 221). — Krystalle. F: 225° nach vorhergehendem Erweichen. — Liefert bei der Hydrierung in Gegenwart von Palladiumschwarz in Äther 4-Benzhydryl-tetraphenylmethan.
- 3. 1.2-Diphenyl-1.2-bis-diphenylyl-äthan. symm. Diphenyl-di-biphenyläthan  $C_{38}H_{30}=C_6H_5\cdot C_6H_4\cdot CH(C_6H_6)\cdot CH(C_6H_5)\cdot C_8H_4\cdot C_6H_5$ .

  a) Hochschmelzende Form. B. Neben geringeren Mengen der niedrigerschmelzen-

- den Form durch Einw. von Alkohol auf 1.2-Dinatrium-1.2-diphenyl-1.2-bis-diphenylyl-äthan oder die entsprechende Lithiumverbindung in Äther (Schlenk, Bergmann, A. 463, 122). --- Blättchen (aus Xylol). F: 247°. Unlöslich in Propylalkohol und Isoamylalkohol.
- b) Niedrigschmelzende Form. B. s. bei der hochschmelzenden Form. Würfel oder Prismen (aus Eisessig). F: 205-2060 (Schlenk, Bergmann, A. 463, 123).
- 4. 2.2'-Dibenzhydryl-diphenyl  $C_{38}H_{30}$ =( $C_6H_5$ ) $_2$ CH· $C_6H_4$ · $C_6H_4$ ·CH( $C_6H_5$ ) $_2$ · B. Aus 2.2'-Bis-[ $\alpha$ -oxy-benzhydryl]-diphenyl oder dem entsprechenden Anhydrid (Syst. Nr. 2377) durch Einw. von Jodwasserstoff in Eisessig bei Zimmertemperatur (Tschitschibabin, Ssergejew, B. 59, 656, 657); entsteht analog aus 2-Benzhydryl-2'-[ $\alpha$ -oxy-benzhydryl]diphenyl (Ss., 3K. 61, 1446; C. 1930 II, 391). — Nadeln oder Blättchen (aus Benzol + Ligroin). F: 236—237,5° (Tsch., Ss.). Ziemlich schwer löslich in Alkohol und Benzol, fast unlöslich in Ligroin; unlöslich in kalter konzentrierter Schwefelsäure (Tsch., Ss.).
- 2.2'- Bis [ $\alpha$ -brom benzhydryl] diphenyl  $C_{38}H_{28}Br_2 = (C_6H_5)_2CBr \cdot C_6H_4 \cdot C_6H_4$ . CBr( $C_6H_5$ )<sub>2</sub>. B. Durch Bromierung von 2.2'-Dibenzhydryl-diphenyl in Tetrachlorkohlenstoff-Lösung bei 50—60° im Sonnenlicht (SSERGEJEW, Ж. 61, 1447; C. 1930 II, 391). Fast schwarze, in der Durchsicht braunrote, metallglänzende Tafeln. F: ca. 192—194° (Zers.). Entfärbt sich beim Aufbewahren an der Luft oder beim Erwärmen mit Lösungsmitteln: ist im zugeschmolzenen Rohr haltbar. Gibt bei der Einw, von verd. Alkohol 9.9-Diphenyl-5-[α-oxy-benzhydryl]-fluoren (Syst. Nr. 547). Löst sich in konz. Schwefelsäure mit grüner Farbe.

# 5. Kohlenwasserstoffe $C_{39}H_{32}$ .

- 1. 1.1.1-Triphenyl-2-[4-benzhydryl-phenyl]-äthan,  $\omega.\omega$ -Diphenyl- $\omega'$ -trityl-p-xylot  $C_{39}H_{32}=(C_6H_5)_3C\cdot CH_2\cdot C_6H_4\cdot CH(C_6H_5)_2$ . B. Durch Reduktion von 4-Triphenylacetyl-triphenylmethan mit amalgamiertem Zink und konz. Salzsäure unter Einleiten von Chlorwasserstoff auf dem Wasserbad (Wieland, Kloss, A. 470, 222). — Nadeln (aus Ligroin). F: 177°.
- 2. **4.4' Dibenzhydryl diphenylmethan**  $C_{39}H_{32} = (C_6H_5)_2CH \cdot C_6H_4 \cdot CH_2 \cdot C_6H_4$  $CH(C_6H_5)_8$ .
- 4.4'-Bis-[α-chlor-benzhydryl]-diphenylmethan, p.p-Methylen-bis-triphenylchlormethan  $C_{39}H_{30}Cl_2 = [(C_6H_5)_2CCl \cdot C_6H_4]_2CH_2$ . B. Man sättigt eine äther. Lösung von

4.4'-Bis-[α-oxy-benzhydryl]-diphenylmethan mit Chlorwasserstoff, versetzt mit Acetylchlorid und leitet nochmals Chlorwasserstoff ein (WITTIG, LEO, B. 61, 859). — Krystalle. F: 157—160°. — Liefert beim Schütteln mit fein verteiltem Kupfer in Benzol, zuletzt bei 90°, p.p-Methylen-bis-triphenylmethyl (S. 720).

#### 6. 44'-Dibenzhydryl-dibenzyl $C_{40}H_{34} = (C_6H_5)_2CH \cdot C_6H_4 \cdot CH_2 \cdot CH_2 \cdot C_6H_4 \cdot CH(C_6H_5)_2$ .

4.4'-Bis-[ $\alpha$ -chlor-benzhydryl]-dibenzyl, p.p-Äthylen-bis-triphenylchlormethan  $C_{40}H_{32}Cl_2=[(C_6H_5)_2CCl\cdot C_6H_4\cdot CH_2-]_2$ . B. Durch Einw. von Chlorwasserstoff auf 4.4'-Bis-[ $\alpha$ -oxy-benzhydryl]-dibenzyl in siedendem Eisessig (Wittig, Leo, B. 61, 860). — Krystalle. F: 184—186° (Zers.). Löst sich in konz. Schwefelsäure sowie in heißem o-Kresol oder Eisessig mit grüner, in heißem Äthylbenzoat oder Dimethylanilin mit violetter Farbe; die Lösungen in organischen Lösungsmitteln werden beim Abkühlen wieder farblos. Liefert beim Schütteln mit fein verteiltem Kupfer in Benzol zuletzt bei 90°, p.p.Äthylen-bis-triphenylmethyl.

#### 7. Kohlen wasserstoffe $C_{42}H_{38}$ .

- 1. 1.2.3.4-Tetraphenyl-2.3-dibenzyl-butan, 1.2-Diphenyl-1.1.2.2-tetrabenzyl-äthan  $C_{42}H_{38}=(C_6H_5\cdot CH_2)_2C(C_6H_5)\cdot C(C_6H_5)(CH_2\cdot C_6H_5)_2$ . B. Durch Einw. von Tetramethyläthylenbromid auf  $\alpha.\beta.\beta'$ -Triphenyl-isopropylkalium in Åther (ZIEGLER, SCHNELL, A. 437, 254). Krystalle (aus Chloroform und absol. Alkohol). F: 126—127°.
- 2. 1.4-Bis-[4-benzhydryl-phenyl]-butan  $C_{42}H_{38} = (C_6H_5)_2CH \cdot C_6H_4 \cdot [CH_2]_4 \cdot C_6H_5$  $C_6H_4 \cdot CH(C_6H_5)_2$ .
- 1.4-Bis-[4-( $\alpha$ -chlor-benzhydryl)-phenyl]-butan, p.p-Tetramethylen-bis-triphenyl-chlormethan  $C_{42}H_{36}Cl_2=(C_6H_5)_2CCl\cdot C_6H_4\cdot [CH_2]_4\cdot C_6H_4\cdot CCl(C_6H_5)_2$ . B. Beim Einleiten von Chlorwasserstoff in eine mit etwas Acetylchlorid versetzte Lösung von 1.4-Bis-[4-( $\alpha$ -oxybenzhydryl)-phenyl]-butan in Äther (Wittig, Leo, B. 62, 1410). — Nadeln. F: 159—161°. Die Lösung in Eisessig ist in der Hitze grünlichgelb, in der Kälte farblos. — Gibt beim Schütteln mit fein verteiltem Kupfer in heißem Benzol in Stickstoffatmosphäre p.p-Tetramethylenbis-triphenylmethyl.
- 8. Hexabenzyläthan  $C_{44}H_{42} = (C_6H_5 \cdot CH_2)_3C \cdot C(CH_2 \cdot C_6H_5)_3$  (H 762). B. Neben überwiegenden Mengen 1.3-Diphenyl-2-benzyl-propen durch Einw. von Äthylmagnesiumbromid auf Tribenzylbrommethan in Åther + Benzol, zuletzt bei Siedetemperatur (TROTMAN, Soc. 127, 93). — F: 82—83°.

## 35. Kohlenwasserstoffe C<sub>n</sub> H<sub>2n-47</sub>.

Tris-diphenylyl-methyl, Tribiphenylmethyl  $C_{37}H_{27} = (C_6H_5 \cdot C_6H_4)_3C$  (H 762; E I 392). B. Durch Einw. von 4-Phenyl-benzophenon-kalium (vgl. E I 7, 291) auf Trisdiphenylyl-chlormethan (SCHLENK, THAL, B. 46 [1913], 2854).

# 36. Kohlenwasserstoffe C<sub>n</sub>H<sub>2n-48</sub>.

# 1. Kohlenwasserstoffe $C_{34}H_{20}$ .

1. 1.2; 1'.2' - Dibenzo - difluorenyliden, Dichryso **fluorenyliden**, symm. Di- $\alpha$ -naphthylen-diphenylen-äthen  $C_{34}H_{30}$ , s. nebenstehende Formel. Das H 763 unter dieser Formel



C34 H 30, 8. nebenstenende Formei. Das n 705 unter dieser Formei beschriebene Präparat von Graebe (A. 335, 137) ist wahrscheinlich unreines 1.2;1'.2'-Dibenzo-difluorenyl-(9.9') gewesen (Wanscheiden, 35, 252; C. 1927 I, 92). — B. Beim Schütteln einer heißen Lösung von 1.2;1'.2'-Dibenzo-difluorenyl-(9.9') in Pyridin + Kaliummethylat-Lösung mit Luft (Wanscheidt, 35, 253; C. 1927 I, 92). — Dunkelrote, metallglänzende Tafeln (aus Xylol). F: 317—318°. Löslich in Benzol, Schwefelkohlenstoff und Chloroform mit roter Farbe, fast unlöslich in Alkohol, Äther und Benzin (W., 36, 254, 271). Absorptionsspektrum in Benzol: W., 36, 291; C. 1927 I, 92. — Wird beim Schütteln der Lösung in Pyridin + Kaliummethylat-Lösung mit Luft zersetzt. Wird beim Schütteln der Lösung in Pyridin + Kaliummethylat-Lösung mit Luft zersetzt (W., 3K. 58, 253, 285). Die Lösungen in organischen Lösungsmitteln werden durch Oxydationsmittel, namentlich Isoamylnitrit und Stickstoffdioxyd, entfärbt (W., Ж. 58, 254, 286). Bei der Einw. von Reduktionsmitteln entsteht 1.2;1'.2'-Dibenzo-difluorenyl-(9.9') (W., Ж. 58, 255, 279). — Löst sich in konz. Schwefelsäure bei 60—70° mit indigoblauer, auf Zusatz von Wasser in Violettrot übergehender, bei 100° mit fuchsinroter Farbe (W., 36. 58, 276, 277).

2. 1.2; 7.8 - Dibenzo - difluoreny liden, 9 - Fluoreny liden - 1.2; 7.8 - dibenzo - fluoren C<sub>31</sub>H<sub>20</sub>, s. nebenstehende Formel. B. Entsteht aus 1.2; 7.8 - Dibenzo - difluorenyl - (9.9') beim Schütteln der Lösung in Pyridin + Kaliummethylat-Lösung mit Luft, besser beim Kochen mit Silberacetat in Pyridin (WANSCHEIDT, K. 58, 255, 266; C. 1927 I, 92). — Undurchsichtige, fast schwarzrote, metallglänzende Tafeln (aus Xylol). F: 315° (in Kohlendioxyd-Atmosphäre). Die Lösungen in organischen Lösungsmitteln



sind violettrot. Absorptionsspektrum in Benzol: W., X. 58, 291. Wird beim Schütteln der Lösung in Pyridin + Kaliummethylat-Lösung mit Luft zersetzt (W., X. 58, 285). Die Lösungen in organischen Lösungsmitteln werden durch Oxydationsmittel, namentlich Isoamylnitrit und Stickstoffdioxyd, entfärbt (W., X. 58, 286). Bei der Einw. von Reduktionsmitteln entsteht 1.2;7.8-Dibenzo-difluorenyl-(9.9') (W., 36. 58, 280). Einw. von Brom in Schwefelkohlenstoff: W., 36. 58, 286. — Die Lösung in heißer konzentrierter Schwefelsäure ist violettrot (W., 38. 58, 276).

3. [Dinaphtho - 1'.2': 4.5: 1".2": 10.11 - chrysen]  $C_{34}H_{20}$ , s. nebenstehende Formel. B. Bei 3-stdg. Kochen von 2.6-Dimethyl-1.5-di- $\beta$ -naphthoyl-naphthalin (FIESER, DIETZ, B. 62, 1832). — Orange Blättchen (aus Chinolin oder Pyridin). F: 500°. Sehr schwer löslich in Xylol (ca. 0,1 g in 1 l), etwas leichter in Dekalin, Tetralin oder Chinolin, noch leichter in Nitrobenzol (ca. 0,1 g in 100 cm³); bildet leicht übersättigte Lösungen. Färbt sich beim Erhitzen an der Luft dunkel.



- 2. Hexahydro-dekacyclen C<sub>36</sub>H<sub>24</sub>. B. Neben anderen Produkten beim Erhitzen von Dekacyclen mit Jodwasserstoffsäure (D: 1,7) und rotem Phosphor im Rohr auf 280° (Dziewonski, Suszko, Bl. Acad. polon. [A] 1923, 23; C. 1924 I, 1378). Braun, amorph (aus Benzol durch Alkohol gefällt). Schmilzt bei 355—365°. Schwer löslich in Benzol.
- 3. Kohlenwasserstoffe  $m C_{38}H_{28}$ .

 α.β-Diphenyl-α.β-bis-diphenylyl-āthylen, symm. Diphenyl-dibiphenyl-āthylen C<sub>38</sub>H<sub>28</sub> = C<sub>6</sub>H<sub>5</sub>·C<sub>6</sub>H<sub>4</sub>·C(C<sub>6</sub>H<sub>5</sub>)·C(C<sub>6</sub>H<sub>5</sub>)·C<sub>6</sub>H<sub>4</sub>·C<sub>6</sub>H<sub>5</sub>.
 a) Höherschmelzende Form. B. Neben der niedrigerschmelzenden Form beim Kochen von Phenyl-diphenylyl-chlormethan mit Kupferpulver in Benzol im Kohlendioxyd-Strom (Schlenk, Bergmann, A. 463, 121). — Nadeln (aus Dioxan + Eisessig). F: 255°. Unlöslich in Äther. — Liefert beim Schütteln mit Natrium in Äther 1.2-Dinatrium-1.2-diphenyl-1.2-bis-diphenylyl-äthan; reagiert analog mit Lithium in Äther.

b) Niedrigerschmelzende Form. B. s. o. bei der höherschmelzenden Form. — Krystalle (aus Dioxan + Eisessig). F: 218° (SCHLENK, BEROMANN, A. 463, 121). Löslich ir Äther, unlöslich in Methanol. — Reagiert mit Natrium oder Lithium in Äther wie die höher-

schmelzende Form.

C(C6H5)2 9.9.10.10-Tetraphenyl-dihydroanthracen C<sub>38</sub>H<sub>28</sub>, s. nebenstehende Formel. B. Bei der Kondensation von Tetrachlorkohlenstoff oder Benzotrichlorid mit Benzol in Gegenwart der aus Quecksilber(II)-chlorid und wenig Aluminium in Benzol hergestellten Verbindung CaHa-AlCl<sub>3</sub>+HgCl bei 50-70° (Rây, Soc. 117, 1339). — Krystalle (aus verd. Aceton). F: 159°.

3. 9.9-Diphenyl-4-benzhydryl-fluoren C<sub>38</sub>H<sub>28</sub>, s. nebenstehende Formel. B. Durch Reduktion von 9.9-Diphenyl-4-[α-οχy-benzhydryl]-fluoren mit Jodwasserstoff in Eisessig Ssergejew, Ж. 61, 1444; C. 1930 II, 391). Entsteht aus 2-Benzhydryl-2'-[a-oxy-benzhydryl]-diphenyl beim Behandeln



mit Bromwasserstoff oder Acetylchlorid in Eisessig (Ss., Ж. 61, 1446). — Nadeln (aus Alkohol + Chloroform oder Alkohol + Dimethylanilin). F: 219—220°. Löslich in Aceton und Benzol, ziemlich schwer löslich in Eisessig, sehr schwer in Alkohol. — Gibt mit konz. Schwefelsäure keine Färbung.

9.9-Diphenyl-4-[ $\alpha$ -brom-benzhydryl]-fluoren  $C_{38}H_{27}Br = C_{6}H_{4}$   $(C_{6}H_{5})_{2}CBr \cdot C_{6}H_{3}$ Durch Einw einer bei  $C_{38}H_{27}Br = C_{6}H_{4}$ 

B. Durch Einw. einer bei 0° gesättigten Lösung von Bromwasserstoff in Eisessig auf 9.9-Diphenyl-4-[α-oxy-benzhydryl]-fluoren in Tetrachlorkohlenstoff (SSERGEJEW, Ж. 61, 1444; С. 1980 II, 391). — Krystalle (aus Benzol). F: 246—247° (Zers.). — Gibt beim Auflösen in Pyridin und Eingießen der Lösung in Wasser wieder 9.9-Diphenyl-4-[α-oxy-benzhydryl]-fluoren. Gibt mit konz. Schwefelsäure eine grüne Färbung, die beim Erwärmen in Rot übergeht.

# 4. Kohlenwasserstoffe $C_{39}H_{40}$ .

- 1. p.p-Methylen-bis-triphenylmethyl  $C_{39}H_{30}=(C_6H_5)_2C\cdot C_5H_4\cdot CH_2\cdot C_6H_4\cdot C(C_6H_5)_2C\cdot C_9H_3\cdot C_9H$
- 2. 9- $[\alpha.\alpha.\beta.\beta$ -Tetraphenyl-äthyl]-fluoren  $C_{39}H_{30} = \frac{C_6H_4}{C_6H_4}CH \cdot C(C_6H_5)_2 \cdot CH(C_6H_5)_2$  (H 763; E I 393).

H~763, Z.~22~v.~o.~statt~, Tetraphenyldiphenylenpropylenoxyd"~lies~, Tetraphenyldiphenylentrimethylenoxyd".

5. p.p.-Äthylen-bis-triphenylmethyl  $C_{40}H_{32}=(C_8H_5)_2C\cdot C_8H_4\cdot CH_2\cdot CH_2\cdot C_8H_4\cdot C(C_6H_5)_2$ . Das Mol.-Gew. ist in Benzol kryoskopisch bestimmt. — B. Aus 4.4'-Bis-[ $\alpha$ -chlor-benzhydryl]-dibenzyl durch Einw. von fein verteiltem Kupfer in Benzol, zuletzt bei 90°, oder durch Einw. von Natriumtrityl in warmem Benzol (WITTIG, Leo, B. 61, 860, 861). — Fast farblose Flocken (aus Benzol + Petroläther). Die Lösung in Benzol ist blauviolett, in sehr dünnen Schichten purpurrot. — Zersetzt sich in Benzol-Lösung im Sonnenlicht. Beim Aufbewahren der Substanz im evakuierten Exsiccator oder Behandeln der Lösung in Benzol mit Luft wird Sauerstoff aufgenommen unter Bildung eines farblosen, flockigen Peroxyds  $C_{40}H_{32}O_2$ . Auch bei der Einw. von Chinon auf die Lösung in Benzol entstehen farblose Flocken.

# 6. Kohlenwasserstoffe $C_{42}H_{36}$ .

- 1. p.p-Tetramethylen-bis-triphenylmethyl  $C_{42}H_{36}=(C_6H_5)_2C\cdot C_6H_4\cdot [CH_2]_4\cdot C_6H_4\cdot C(C_6H_5)_2$ . B. Eine Lösung in Benzol, die das Radikal dem kryoskopischen Verhalten zufolge in polymerisierter Form enthält (Mol.-Gew. ca. 1200 statt 544), entsteht beim Schütteln von 1.4-Bis-[4-(α-chlor-benzhydryl)-phenyl]-butan mit fein verteiltem Kupfer in Benzol bei  $100^o$  (Wittig, Leo, B. 62, 1410). Die Lösung in Benzol ist gelb und fluoresciert grünlich. Beim Schütteln mit Sauerstoff entsteht eine gelbliche, bei  $150-160^o$  schmelzende Substanz der annähernden Zusammensetzung  $C_{42}H_{36}O$ .
- 2. 1.3 Diphenyl 2.4 dibenzhydryl cyclobutan  $C_{42}H_{36} = (C_6H_5)_2CH \cdot HC < CH(C_6H_5) > CH \cdot CH(C_6H_5)_2$ .
- 1.3-Diphenyl-2.4-bis-[ $\alpha$ -chlor-benzhydryl] cyclobutan,  $\varepsilon$ -Tetraphenyltruxill-diol-dichlorid  $C_{42}H_{34}Cl_2 = (C_6H_5)_2CCl\cdot HC < {CH(C_6H_5) \atop CH(C_6H_5)} > CH\cdot CCl(C_6H_5)_2$ . Zur Konfiguration dieser und der folgenden Verbindungen vgl. die Angaben bei  $\varepsilon$ -Truxillsäure, Syst. Nr. 994. B. Beim Erwärmen von  $\varepsilon$ -Tetraphenyl-truxilldiol (Syst. Nr. 573) mit Phosphortrichlorid in Tetrachlorkohlenstoff (Stoermer, Neumaerker, Schmidt, B. 58, 2712). Krystalle (aus Eisessig oder Tetrachlorkohlenstoff). F: 175—176°. Wird von siedendem Wasser oder Alkohol allmählich zersetzt. Liefert beim Kochen mit Eisessig das Anhydrid des  $\varepsilon$ -Tetraphenyl-truxilldiols (Syst. Nr. 2377).
- 1.3-Diphenyl-2.4-bis-[ $\alpha$ -brom-benzhydryl]-cyclobutan,  $\varepsilon$ -Tetraphenyltruxill-diol-dibromid  $C_{42}H_{34}Br_2=(C_6H_5)_2CBr\cdot HC < \frac{CH(C_6H_5)}{CH(C_6H_5)} > CH\cdot CBr(C_6H_5)_2$ . B. Beim Erwärmen von  $\varepsilon$ -Tetraphenyltruxilldiol (Syst. Nr. 573) mit Phosphortribromid in Tetrachlorkohlenstoff (Stoermer, Neumaerker, Schmidt, B. 58, 2712). Aus dem Anhydrid des  $\varepsilon$ -Tetraphenyl-truxilldiols (Syst. Nr. 2377) beim Erhitzen mit Bromwasserstoff-Eisessig (bzw. mit Acetanhydrid und bei 0° gesättigter Bromwasserstoffsäure) auf 100—125° (St., N., Sch.). Krystalle (aus Alkohol). F: 126°. Ist beim Kochen mit Wasser oder Alkohol beständiger als das Chlorid.

- 7. 1.3 Diphenyl 2.4 bis [4.4'-dimethyl-benzhydryl] cyclobutan  $C_{4e}H_{44} = (CH_3 \cdot C_6H_4)_2CH \cdot HC < \frac{CH(C_6H_5)}{CH(C_6H_5)} > CH \cdot CH(C_6H_4 \cdot CH_3)_2.$
- 1.8-Diphenyl-2.4-bis-[ $\alpha$ -chlor-4.4'-dimethyl-benzhydryl]-cyclobutan,  $\varepsilon$ -Tetrap-tolyl-truxilldiol-dichlorid  $C_{46}H_{42}Cl_2=$

 $(CH_3 \cdot C_6H_4)_2CCl \cdot HC < \frac{CH(C_6H_5)}{CH(C_6H_5)} > CH \cdot CCl(C_6H_4 \cdot CH_3)_2$ . B. Beim Einleiten von Chlorwasserstoff in die Lösung von  $\varepsilon$ -Tetra-p-tolyltruxilldiol (Syst. Nr. 533) oder dessen Anhydrid (Syst. Nr. 2377) in Tetrachlorkohlenstoff oder in heißem Benzol (Stoermer, Neumaerker, Schmidt, B. 58, 2713). — F: 155°.

1.3-Diphenyl-2.4-bis-[ $\alpha$ -brom-4.4'-dimethyl-benzhydryl]-cyclobutan,  $\varepsilon$ -Tetrap-tolyl-truxilldiol-dibromid  $C_{46}H_{42}Br_2=$  (CH<sub>3</sub>·C<sub>6</sub>H<sub>4</sub>)<sub>2</sub>CBr·HC $\stackrel{C}{\text{CH}}(C_6H_5)$ >CH·CBr(C<sub>6</sub>H<sub>4</sub>·CH<sub>3</sub>)<sub>2</sub>. B. Analog  $\varepsilon$ -Tetraphenyltruxilldiol-dibromid (S. 720) (Stoermer, Neumaerker, Schmidt, B. 58, 2713). — F: 112°.

8. Hexameres  $\alpha$ -Methyl-styrol  $C_{54}H_{60}$  s. S. 375.

# 37. Kohlenwasserstoffe $C_n H_{2n-50}$ .

1. 9.12-Di- $\beta$ -naphthyl-diphensuccindadien-(9.11)  $C_{36}H_{22}$ , s. nebenstehende Formel. B. Durch Erwärmen von 9.12-Di- $\beta$ -naphthyl-diphensuccindandiol-(9.12) (Syst. Nr. 573) mit Ameisensäure in Eisessig (Brand, Trebing, B. 56, 2545, 2547). — Rotbraune Blättchen (aus Dichloräthylen), fast schwarze Krystallaggregate (aus Nitrobenzol). F: 266°. Sehr schwer löslich in heißem Alkohol und



Eisessig, etwas leichter in siedendem Essigester, Benzol, Xylol und Dichloräthylen. Die Lösungen sind je nach der Konzentration orange, rotbraun oder braun. — Liefert bei der Oxydation mit Chromsäure in Eisessig bei 60—70° 2-β-Naphthoyl-benzoesäure; führt man die Oxydation bei Zimmertemperatur aus, so erhält man daneben eine bei 218 schmelzende gelbe Substanz (vielleicht 2.2′-Di-β-naphthoyl-benzil  $C_{10}H_7$ ·CO·C<sub>6</sub> $H_4$ ·CO·C<sub>6</sub> $H_4$ ·CO·C<sub>10</sub> $H_7$ ), während bei Siedetemperatur geringe Mengen Phthalsäure und Oxalsäure(?) als Nebenprodukte auftreten. Gibt bei der Hydrierung in Gegenwart von Palladiumkohle in verd. Alkohol bei 50—60° 9.12-Di-β-naphthyl-diphensuccindan (S. 716).

# 2. Kohlenwasserstoffe $\mathrm{C_{38}H_{26}}$ .

- 1. 9.10 Bis diphenylyl anthracen, 9.10 Di biphenylyl-anthracen C<sub>38</sub>H<sub>26</sub>, s. nebenstehende Formel. B. Beim Erhitzen von Phenyl-diphenylyl-keton mit Calciumhydrid auf 300° (SCHLENK, KARPLUS, B. 61, 1677). Beim Kochen von 9.10-Dioxy-9.10-bis-diphenylyl-dihydro-anthracen mit wasserfreier Ameisensäure (SCH., K., B. 61, 1678). Gelbe Nadeln (aus Äthylbenzoat oder Anisol). Schmilzt oberhalb 300°. Die Lösungen fluorescieren stark.
  - C<sub>6</sub>H<sub>4</sub>·C<sub>6</sub>H<sub>5</sub>
    C<sub>6</sub>H<sub>4</sub>·C<sub>6</sub>H<sub>5</sub>
- 2.  $\omega.\omega'$ -Bis-[1-phenyl-indenyliden-(3)] p-xylol, 1.1'-Diphenyl-3.3'-terephthalal-diinden C<sub>38</sub>H<sub>26</sub>, s. nebenstehende Formel. B. Aus 1 Mol Terephthalaldehyd und 2 Mol 1-Phenyl-inden bei Gegenwart von wenig Natriumäthylat in siedendem absolutem Alkohol (MAYER, SIEGLITZ, B. 54, 1399). — Rote Nadeln (aus Benzol). F: 231° bis 232°.
- 3. 9.9'-Diphenyl-difluorenyl-(9.9')  $C_{38}H_{26} = \frac{C_6H_4}{C_6H_4}C(C_6H_5) \cdot C(C_6H_5) \cdot \frac{C_6H_4}{C_6H_4}$  s. bei 9-Phenyl-fluorenyl-(9), S. 638.
- 3. 9.9-Diphenyl-10-diphenylmethylen-dihydroanthracen C( $C_{39}H_{28}$ ), s. nebenstehende Formel. B. Beim Erhitzen von 9.9-Diphenyl-dihydroanthracen mit Benzophenonchlorid auf 250°, neben anderen Produkten (Barnett, Cook, Nixon, Soc. 1927, 511). Krystallpulver (aus Xylol). F: 286°. Wird durch Zinkstaub und Salzsäure in siedendem Eisessig, durch Natrium in siedendem Isoamylalkohol oder Benzylalkohol und durch Jodwsserstoffsäure und Phosphor bei 180° nicht reduziert.

# 4. Kohlenwasserstoffe $C_{40}H_{30}$ .

- 1. 1.1.4.4.4-Hexaphenyl-butin, Bis-triphenylmethyl-acetylen, Ditrityl-acetylen C<sub>40</sub>H<sub>30</sub> = (C<sub>6</sub>H<sub>5</sub>)<sub>3</sub>C·C:C·C(C<sub>6</sub>H<sub>5</sub>)<sub>3</sub>. B. Durch Einw. von Triphenylchlormethan auf Acetylen-bis-magnesiumbromid in Ather und Zersetzung des Reaktionsprodukts mit Wasser (Wieland, Kloss, A. 470, 202, 211). Nadeln (aus Benzol). F: 260° (W., K.). Leicht löslich in Pyridin und Chlorwasserstoff, schwer in Eisessig, Aceton und Ather, sehr schwer in Alkoholen; unlöslich in konz. Schwefelsäure (W., K.). Dichten und Brechungsindices von Lösungen in α-Methyl-naphthalin bei 100°: v. Auwers, Bergmann, 4. 476, 276. Reagiert nicht mit Ozon, Permanganat, Wasserstoff in Gegenwart von Katalysatoren oder mit Brom (W., K.).
- 1.1.1.4.4.4 Hexakis [4 nitro phenyl] butin  $C_{40}H_{24}O_{12}N_6 = (O_2N \cdot C_6H_4)_3C \cdot C \cdot C \cdot C \cdot (C_6H_4 \cdot NO_2)_3$ . B. Durch Einw. von rauchender Salpetersäure auf 1.1.1.4.4.4 Hexaphenylbutin in Eisessig (Wieland, Kloss, A. 470, 212). Gelbgrüne Nadeln (aus Essigester). Schmilzt nicht bis 300°.
- 2. 9.10 Dibenzhydryl anthracen  $C_{40}H_{30}$ , Formel I (H 763). Barnett, Cook, Ninon (Soc. 1927, 507) konnten diese Verbindung nach den Angaben von Padova (C. r. 148, 291; A. ch. [8] 19, 436) nicht erhalten.

I. 
$$CH(C_6H_5)_2$$

$$CH(C_6H_5)_2$$

$$CH$$

$$CH$$

$$CH$$

$$CH$$

- 3. 10.10'- Diphenyl 9.10.9'.10'- tetrahydro dianthranyl (9.9') C<sub>40</sub>H<sub>30</sub>. Formel II. B. Durch Behandlung von 9.10.9'.10'-Tetranatrium-10.10'-diphenyl-9.10.9'.10'-tetrahydro-dianthranyl-(9.9') mit Alkohol (Schlenk, Bergmann, A. 464, 39, 40). Täfelchen (aus Xylol oder Benzoesäureäthylester). F: 260°.
- 4. 1.2-Diphenyl-1.2-di-fluorenyl-(9)-äthan, 2.3-Diphenyl-1.1; 4.4-bis-diphenylen-butan  $C_{40}H_{30} = \overset{C}{C_6}H_4$  CH·CH( $C_6H_5$ )·CH( $C_6H_5$ )·CH( $C_6H_5$ )·CH( $C_6H_6$ ). Das Mol.-Gew. ist in Campher kryoskopisch bestimmt. B. Durch Einw. von Alkohol auf in Äther suspendiertes 1.4-Dinatrium-2.3-diphenyl-1.1; 4.4-bis-diphenylen-butan (Syst. Nr. 2357) (SCHLENK, BERGMANN, A. 463, 63, 64). Prismen (aus Anisol). F: 321°. Sehr sehwer löslich in den üblichen organischen Lösungsmitteln.

# 38. Kohlenwasserstoffe C<sub>n</sub>H<sub>2 n-52</sub>.

1. 1.2; 7.8; 1'.2'-Tribenzo-difluorenyl-(9.9'), Chryso-fluorenyl-di-α-naphthofluoren C<sub>38</sub>H<sub>24</sub>, s. nebenstehende Formel. B. In geringer Menge beim Kochen von 9-Chlor-1.2-benzo-fluoren und 1.2; 7.8-Dibenzo-fluoren mit Kaliummethylat-Lösung in Aceton (Wanscheidt, B. 59, 2100; 3K. 58, 78). — Krystalle (aus Toluol oder Xylol). F: 267° (korr.). — Löst sich in Pyridin in Gegenwart von wenig Kaliummethylat-Lösung mit braunroter Farbe und kann aus der Lösung durch Neutralisation



des Kaliummethylats unverändert zurückerhalten werden; beim Schütteln der Lösung mit Luft bildet sich 1.2;7.8;1.'2'-Tribenzo-difluorenyliden (S. 724) (W., **%**. 58, 256, 277; C. 1927 I, 92); diese Verbindung entsteht auch beim Kochen mit Silberacetat in Pyridin und bei der Einw. von Natrium in siedendem Xylol unter Luftzutritt (W., **%**. 58, 258, 267). — Gibt mit konz. Schwefelsäure bei gewöhnlicher Temperatur keine Farbung (W., **%**. 58, 78).

2. 9.10-Bis-diphenylmethylen-dihydroanthracen, Anthrachinon-bis-diphenylmethid  $C_{40}H_{28}$ , s. nebenstehende Formel (H.763). Läßt sich entgegen den Angaben von Padova (C. r. 148, 291; A. ch. [8] 19, 436) nicht mit Natrium und Benzylalkohol reduzieren (Barnett, Cook, Nixon, Soc. 1927, 507).



3. 1.3 - Diphenyl-3 -  $[\alpha, \gamma, \gamma$  - triphenyl-allyl] - inden oder 1.3 - Diphenyl-3 -  $[\beta, \beta$  - diphenyl- $\alpha$  - benzyl-vinyl] - inden  $C_{42}H_{32}$ , Formel I oder II, S. 723, dimeres Triphenylallen. Das Mol.-Gew. ist in Campher kryoskopisch ermittelt (Zeegleer,

Ochs, B. 55, 2260); zur Konstitution vgl. Straus, Ehrenstein, A. 442, 100; Ziegler, Richter, Schnell, A. 443, 171. — B. Entsteht aus α.γ.γ-Triphenyl-allylchlorid beim Erhitzen über den Schmelzpunkt (Ziegler, Grabbe, Ulrich, B. 57, 1987), zweckmäßig

$$I. \begin{array}{c} C(C_6H_5) \cdot CH(C_6H_5) \cdot CH : C(C_6H_5)_2 \\ C = CH \\ C_6H_5 \end{array} \qquad II. \begin{array}{c} C(C_6H_5) \cdot C \cdot C(C_6H_5)_2 \\ C = CH \\ C_6H_5 \end{array}$$

unter vermindertem Druck (STRAUS, EHRENSTEIN. A. 442, 109) oder beim Kochen mit höhersiedenden indifferenten Lösungsmitteln (Z., G., U.); bildet sich aus manchen Präparaten von α.γ.γ-Triphenyl-allylchlorid auch durch spontane Umlagerung (ST., E.). Aus α.γ.γ-Triphenyl-allylalkohol und dessen Methyläther oder Äthyläther beim Kochen mit Eisessig und etwas Salzsäure oder Schwefelsäure (Z., G., U.); bildet sich ferner aus dem Methyläther beim Kochen mit Acetylchlorid oder beim Leiten von Chlorwasserstoff in eine kalte ätherische Lösung (K. H. Meyer, Schuster, B. 55, 818; vgl. dazu St., E., A. 442, 98 Anm. 1; Z., Richter, Schnell, A. 443, 162) sowie beim Aufbewahren einer Lösung in flüssigem Schwefeldioxyd in Kältemischung; bildet sich analog, aber langsamer, auch aus Diphenylstyrylcarbinol-methyläther (St., E., A. 442, 107, 109). Bei kurzem Kochen von Diphenylstyrylcarbinol mit Eisessig und wenig Mineralsäure (Z., R., Sch., A. 443, 178). Durch Umsetzung von 1-Chlor-1.3.3-triphenyl-propen-(1) mit Natriummethylat-Lösung und Behandlung des entstandenen Gemisches der Methyläther von α.γ.γ-Triphenyl-allylalkohol und Diphenylstyrylcarbinol mit konz. Überchlorsäure in Eisessig (St., E., A. 442, 106, 111). Blättchen (aus Eisessig oder Benzol + Alkohol). F: 210° (unkorr.) (K. H. Meyer, Schuster, B. 55, 818), 209—210° (Straus, Ehrenstein, A. 442, 111). Leicht löslich in

Blättchen (aus Eisessig oder Benzol + Alkohol). F: 210° (unkorr.) (K. H. MEYER, SCHUSTER, B. 55, 818). 209—210° (STRAUS, EHRENSTEIN, A. 442, 111). Leicht löslich in Chloroform und Petroläther, ziemlich schwer in Essigester, schwer in kaltem Eisessig, Alkohol, Benzol und Ligroin (M., Sch.). — Entfärbt sodaalkalische Permanganat-Lösung (M., Sch.). Gibt bei der Öxydation mit Chromtrioxyd in Eisessig Benzophenon, 1.2-Dibenzoyl-benzol, Benzoesäure, eine Säure, die beim Behandeln mit konz. Schwefelsäure in eine Verbindung C<sub>21</sub>H<sub>14</sub>O<sub>2</sub> oder C<sub>28</sub>H<sub>16</sub>O<sub>3</sub> (rote Nadeln aus Methanol; F: 177—178°; löslich in Schwefelsäure mit gelber Farbe) übergeht, und harzige Produkte (St., E., A. 442, 111). Liefert bei der Reduktion mit Jodwasserstoffsäure (D: 1,7) und rotem Phosphor in siedendem Eisessig 1.3-Diphenyl-hydrinden (Ziegler, Grabbe, Ulrich, B. 57, 1989). Nimmt Brom in Eisessig oder Chloroform sehr schwer auf (M., Sch.). — Gibt mit Quecksilber(II)-chlorid in Äther eine flockige Additionsverbindung (M., Sch.). Löst sich in konz. Schwefelsäure in der Kälte sehr langsam mit schwach orangegelber, bei Wasserbadtemperatur rasch mit intensiv orangegelber Farbe (Straus, Ehrenstein, A. 442, 107).

# 39. Kohlenwasserstoffe C<sub>n</sub>H<sub>2n-54</sub>.

1. Trinaphthylenbenzol, Dekacyclen  $C_{36}H_{18}$ , s. nebenstehende Formel (H 764; E I 393). Zur Darstellung durch Erhitzen von Acenaphthen mit Schwefel vgl. noch Dziewonski, Pochwalski, Bl. Acad. polon. [A] 1925, 169; C. 1926 I, 656. — Spezifische Wärme zwischen 0° und 79°: 0,28 cal/g (Padoa, G. 52 II, 206). — Beim Erhitzen von Dekacyclen mit Jodwasserstoffsäure (D: 1,7) und rotem Phosphor im Rohr auf 280—290° erhält man Hydroderivate des Dekacyclens, in denen 6, 8, 12, 16, 18



man Hydroderivate des Dekacyclens, in denen 6, 8, 12, 16, 18
und 26 Atome Wasserstoff eingetreten sind (s. S. 666, 706, 711, 714, 717 und 719) (Dz., Suszko, Bl. Acad. polon. [A] 1923, 20; C. 1924 I, 1377). Bei längerem Aufbewahren eines Gemisches aus 1 Tl. Dekacyclen und 5 Tln. 100%iger Schwefelsäure entsteht Dekacyclentrisulfonsäure (Syst. Nr. 1543) (Dz., Po., Bl. Acad. polon. [A] 1925, 170; C. 1926 I, 656). Uber Produkte, die bei der Einw. von rauchender Schwefelsäure (20 und mehr % SO<sub>3</sub>) entstehen, vgl. Anilinfarben u. Chemikalienfabr., Dziewonski, D. R. P. 379616, 385956; C. 1923 IV, 728; 1924 I, 710; Frdl. 14, 778, 779.

Trichlordekacyclen C<sub>36</sub>H<sub>15</sub>Cl<sub>3</sub>, s. nebenstehende Formel. B. Neben Tetrachlordekacyclen beim Erhitzen des Natriumsalzes der Dekacyclen-trisulfonsäure (Syst. Nr. 1543) mit Phosphorpentachlorid im Rohr auf 150° (DZIEWONSKI, POCHWALSKI, Bl. Acad. polon. [A] 1925, 173; C. 1926 I, 656). — Amorphes, hellbraunes Pulver (aus Nitrobenzol + Ligroin oder aus Chinolin + Alkohol). Schmilzt nicht bis 350°.

Tetrachlordekacyclen C<sub>38</sub>H<sub>14</sub>Cl<sub>4</sub>. B. s. im vorangehenden Artikel. — Gelbbraunes, amorphes, sehr hochschmelzendes

Pulver (aus Cumol + Ligroin) (DZIEWONSKI, POCHWALSKI, Bl. Acad. polon. [A] 1925, 173; C. 1926 1, 656). In organischen Lösungsmitteln, besonders in Xylol und Cumol, leichter löslich als Trichlordekacyclen.

2. 1.2; 7.8; 1'.2'-Tribenzo-difluorenyliden ("Tri- $\alpha$ -naphthylen-phenylen-äthen")  $C_{38}H_{22}$ , s. nebenstehende Formel. B. Durch Schütteln einer Lösung von 1.2;7.8;1′.2′-Tribenzo-difluorenyl-(9.9') in Pyridin mit Luft in Gegenwart von wenig Kaliummethylat-Lösung, weniger gut beim Kochen von 1.2;7.8;1'.2'-Tribenzo-difluorenyl-(9.9') mit Silberacetat in Pyridin oder mit Natrium in Xylol unter Luftzutritt (Wanscheidt, 3K. 58, 256, 258, 267, 277; C. 1927 I, 92). — Blaue, undurchsichtige Stäbchen. F: ca. 300°. Löslich in Chloroform, Benzol und Schwefelkohlenstoff, unlöslich in Allerbel. Tierrin Abeartierundsten in Pyridin 2004.



in Alkohol, Äther und Ligroin. Absorptionsspektrum in Benzol: W., 3. 58, 291. — Die Lösungen in indifferenten Mitteln werden durch Oxydationsmittel, besonders schnell durch Isoamylnitrit oder Stickstoffdioxyd, entfärbt; auch beim Schütteln der Pyridin-Lösung mit Luft in Gegenwart von wenig Kaliummethylat-Lösung erfolgt Oxydation (W., 38. 58, 285, 286). Wird durch Reduktionsmittel wieder in 1.2;7.8;1'.2'-Tribenzo-difluorenyl-(9.9') übergeführt (W., 38. 58, 279). — Löst sich in konz. Schwefelsäure bei 50—60° mit blaugrüner Farbe (W., 38. 58, 276).

3. 10.10'-Diphenyl-dianthranyl-(9.9')  $C_{40}H_{26}$ , s. nebenstehende Formel.  $B_c$  Durch Reduktion von 10-Phenylanthron-(9) (Barnett, Cook, Soc. 123, 2639) und von 10-Oxy-10-phenyl-anthron-(9) (Matthews, Soc. 1926, 240) mit Zinkstaub und konz. Salzsäure in siedendem Eisessig. -



(ielbes Krystallpulver (aus Toluol). Schmilzt nicht bis 300°; zeigt in Lösung intensive violette Fluorescenz (Ba., C.). — Liefert mit Natrium in Äther eine schwarzgrüne Lösung von 9.10.9'.10'. Tetranatrium-10.10'-diphenyl-9.10.9'.10'-tetrahydro-dianthranyl-(9.9') (SCHLENK, BERGMANN, A. 464, 40).

# 4. Kohlenwasserstoffe $C_{42}H_{30}$

1. 1.3.3.4.4.6 - Hexaphenyl - hexadiin, 1.1.2.2 - Tetraphenyl - 1.2-bis-phenylacetylenyl - äthan  $C_{42}H_{30} = C_6H_5 \cdot C \cdot C \cdot C(C_6H_5)_2 \cdot C(C_6H_5)_2 \cdot C \cdot C \cdot C_8H_5$ . Das Mol.-Gew. ist in Benzol und Äthylenbromid kryoskopisch bestimmt (Moureu, Dufraisse, HOUGHTON, Bl. [4] 41, 58); Bestimmungen in schmelzendem Campher nach RAST zeigen geringe Dissoziation in Diphenyl-phenylacetylenyl-methyl  $C_6H_5 \cdot C: C \cdot C(C_6H_5)_2$  an (Wieland, Kloss, A. 470, 217). — B. Aus 3-Chlor-1.3.3-triphenyl-propin-(1) durch Einw. von Metallen oder von Natriumjodid in Aceton, am besten durch Erwärmen mit Eisen in Eisessig auf 40° unter Luftabschluß (M., D., H., Bl. [4] 41, 56, 57). Durch Oxydation von 1.3.3-Triphenyl-propin-(1) mit Permanganat in Aceton (W., K., A. 470, 205, 217). Aus Diphenyl-phenylacetylenyl-carbinol durch Behandlung mit Titan(III)-chlorid in wäßr. Alkohol (W., (M., D., H.), 174—175° (unter Rotfärbung) (W., K.). Leicht löslich in Chloroform, Pyridin, Benzol und Aceton, ziemlich leicht in Essigester, sehwer in Alkohol, Äther, Eisessig und Ligroin; die Lösungen sind unterhalb 100° farblos, Lösungen in Xylol oder Naphthalin sind infolge Dissoziation (s. o.) intensiv orangerot und werden beim Erkalten langsam farblos, beim Erhitzen wieder orangerot (W., K.). Löst sich in konz. Schwefelsäure sehr langsam mit gelber Farbe (W., K.).

2. 1.3.5-Tris-diphenylyl-benzol, 1.3.5-Tri-biphenyl-benzol C<sub>42</sub>H<sub>30</sub>, s. nebenstehende Formel. B. Durch Erhitzen C6H4.C6H5 von 4-Acetyl-diphenyl mit Anilin und etwas Salzsäure auf 1800 (REDDELIEN, Z. ang. Ch. 36, 515). — Krystallisiert aus Benzol · C6H4·C6H5 in flachen, häufig zu dreistrahligen Sternen vereinigten Rhomboedern mit 1C. H., die das Benzol erst bei höherer Temperatur abgeben, aus m-Xylol in leicht verwitternden Prismen mit  $1C_8H_{10}$ ; die lösungsmittelfreie Verbindung hat dieselbe Krystallform wie die benzolhaltige. F: 228°.

725

3. 1.4.9.10 - Tetraphenyl - 9.10 - dihydro - 2.3 - benzo - anthracen. 9.10.11.12-Tetraphenyl-9.10-dihydro-naphthacen  $C_{42}H_{30}$ , Formel I.

9-Chlor-1.4.9.10-tetraphenyl9.10-dihydro-2.3-benzo-anthracen, 9-Chlor-9.10.11.12-tetraphenyl-9.10-dihydro-naphthacen C<sub>42</sub>H<sub>29</sub>Cl, Formel II. Zur Konstitution vgl. Allen, Giuman, Am. Soc. 58 [1936], 939; Dufraisse, Bl. [5] 3 [1936], 1858. — B. Aus 3-Chlor-1.3.3-triphenyl-propin-(1) bei mehrmonatigem Aufbewahren der äther. Lösung oder bei ½-stdg. Erwärmen auf 70° (Moureu, Dufraisse, Robin, C. r. 188, 1583). — Krystalle (aus Äther). F: 217° (Maquennescher Block) (M., D., R.). — Geht beim Aufbewahren in kalten indifferenten Lösungsmitteln oder beim Erwärmen in Rubren (s. u.) über (M., D., R.). Bei der Einw. von Alkohol entsteht eine chlorfreie Verbindung vom Schmelzpunkt 214—215°, die beim Erhitzen ebenfalls Rubren liefert (Robin, C. r. 189, 339).

# 5. 1.6-Diphenyl-3.4-di-fluorenyl-(9)-hexadien-(1.5), 1.2-Distyryl-1.2-di-fluorenyl-(9)-äthan $C_{44}H_{34}=\stackrel{C_6H_4}{\stackrel{\cdot}{C}_{c}H_4}$ $CH \cdot CH(CH:CH \cdot C_6H_5) \cdot CH(CH:CH \cdot C_6H_5) \cdot HC \stackrel{C_6H_4}{\stackrel{\cdot}{C}_{c}H_4}$

- a) Hochschmelzende Form. Als hochschmelzendes 1.2-Distyryl-1.2-di-fluorenyl-(9)-äthan ist der Kohlenwasserstoff (C<sub>22</sub>H<sub>17</sub>)<sub>x</sub> von Thiele, Henle (H 5, 732) zu formulieren; das Mol.-Gew. ist in schmelzendem Campher bestimmt (SCHLENK. Bergmann, A. 463, 65).

   B. Durch Einw. von Natrium auf 9-Cinnamyliden-fluoren in Äther und Behandlung des Reaktionsprodukts mit Alkohol (SCH., B., A. 463, 65). Tritt bei der Reduktion von 9-Cinnamyliden-fluoren mit amalgamiertem Aluminium und feuchtem Äther (Thiele, Henle, A. 347, 294, 308, 314) nur in geringer Menge auf (SCH., B., A. 463, 66). Krystalle (aus Xylol). F: 254—255° (SCH., B.), 257° (kort.) (Th., H.).
- b) Niedrigschmelzende Form. Als solche ist wahrscheinlich das bei 160—161° schmelzende Bismonohydrocinna mylidenfluoren C<sub>44</sub>H<sub>34</sub> (H 764) aufzufassen (Schlenk, Bergmann, A. 463, 66).

# 40. Kohlenwasserstoffe C<sub>n</sub>H<sub>2n-56</sub>.

# 1. Kohlenwasserstoffe $C_{42}H_{28}$ .

1. 1.4.9.10-Tetraphenyl-2.3-benzo-anthracen, 9.10.11.12-Tetraphenyl-naphthacen, Rubren (,, Tetraphenylruben")

C<sub>42</sub>H<sub>28</sub>, s. nebenstehende Formel. Zur Konstitution vgl. Duffalsse,
Bl. [5] 2 [1935], 1546; 3 [1936], 1847, 1866; Du., Horclois, Bl. [5] 3,
1894; Du., Velluz, Bl. [5] 3, 1905; Allen, Gilman, Am. Soc. 58

[1936], 937. — B. Beim Erhitzen von 3-Chlor-1.3.3-triphenyl-propin-(1)
auf 100—120° unter vermindertem Druck (Moureu, Duffalsse, Dean, C. r. 182, 1441;
M., Du., Ph. Ch. 130, 472; vgl. M., Du., Willemart, C. r. 187, 266). Aus 9-Chlor-9.10.11.12-tetraphenyl-9.10-dihydro-naphthacen (s. oben) beim Aufbewahren in kalten indifferenten Lösungsmitteln oder beim Erwärmen (M., Du., Robin, C. r. 188, 1583) oder durch Einw. von Alkohol und Erhitzen des Reaktionsprodukts (Robin, C. r. 189, 339). In geringer Menge beim Erhitzen von Diphenyl-phenylacetylenyl-carbinol in Gegenwart von Chlorwasserstoff (R., C. r. 189, 338). Aus dem Methyläther, Äthyläther, Acetat, Propionat, Butyrat oder Benzoat des Diphenyl-phenylacetylenyl-carbinols beim Erhitzen (R., C. r. 189, 338, 339). Beim Erhitzen von salzsaurem 3-Amino-1.3.3-triphenyl-propin-(1) (R., C. r. 189, 338, 339). Bus Erhitzen von salzsaurem 3-Amino-1.3.3-triphenyl-propin-(1) (R., C. r. 189, 254, 338). Aus Rubrenmonooxyd (Syst. Nr. 2377) bei der Reduktion mit Eisen und Essigsäure oder mit Jodwasserstoffsäure (M., Du., Enderlin, C. r. 188, 1529). Bildung aus Rubrenperoxyd s. bei diesem (Syst. Nr. 2688).

Orangerote Krystalle (aus Benzol + Ligroin). F: 331° (Maquennescher Block) (Moureu, Dufraisse, Dean, C. r. 182, 1441). Ziemlich schwer löslich in Benzol, schwerer in Schwefelkohlenstoff, Pyridin, Äthylenbromid, Chlorbenzol und Brombenzol, sehr schwer in Äther und Alkohol, unlöslich in Eisessig (M., Du., D., C. r. 182, 1442). Kryoskopisches Verhalten in Benzol und Äthylenbromid: M., Du., D., C. r. 182, 1442. Fluoresciert in organischen Lösungsmitteln außer Nitrobenzol auch bei großer Verdünnung gelb (M., Du., D.; M., Du., Ph. Ch. 130, 472). Absorptionsspektrum in Benzol: M., Du., Ph. Ch. 130, 473; Willemart, C. r. 188, 988, 990; A. ch. [10] 12, 402, 406. Fluorescenzspektrum: M., Du., Ph. Ch. 130, 474.

Die Lösung in Benzol nimmt aus der Luft beim Belichten Sauerstoff auf unter Bildung von Rubrenperoxyd (Syst. Nr. 2688) (Moureu, Dufraisse, Dean, C.r. 182, 1442, 1585; M., Du., Butler, C.r. 183, 101; M., Du., Ph. Ch. 130, 472); Versuche zur Ermittlung des Gleichgewichts dieser Reaktion: M., Du., Girard, C.r. 186, 1166. Die Umwandlung in Rubrenperoxyd wird durch Jod und durch Brenzcatechin oder Hydrochinon und deren Methyläther verzögert (M., Du., Bu., C.r. 183, 102; M., Du., Ph. Ch. 130, 473). Gibt bei der Einw. von 15% iger Salpetersäure oder von Chromsäure oder Permanganat Rubrenmonooxyd (Syst. Nr. 2377) (M., Du., Enderlin, C.r. 168, 1529); bei der Öxydation mit Chromsäure entstehen außerdem beträchtliche Mengen 1.2-Dibenzoyl-benzol (M., Du., E., C.r. 187, 406). Wird durch Wasserstoff in Gegenwart von Platinoxyd nicht verändert (M., Du., Berchet, C.r. 185, 1087). Nimmt in Chloroform-Lösung 4 Atome Brom auf unter Bildung außerordentlich hochschmelzender Produkte (Moureu, Dufraisse, Dean, C.r. 182, 1442; M., Du., Ph. Ch. 130, 472). Beim Einleiten von Jodwasserstoff in eine Lösung oder Suspension von Rubren in Benzol erfolgt Umlagerung in Pseudorubren (s. u.); daneben wird offenbar ein Teil des Rubrens unter Jodabscheidung reduziert (M., Du., Berchet, C.r. 185, 1085; M., Du., Enderlin, C.r. 186, 673, 675). Die Umlagerung in Pseudorubren erfolgt auch bei der Einw. von 98% iger Schwefelsäure, langsamer bei der Einw. von Bromwasserstoff oder Chlorwasserstoff in Benzol, sehr langsam bei der Einw. von Phosphorsäure; durch Ameisensäure, Essigsäure und Oxalsäure wird keine, durch 75% ige Schwefelsäure fast keine Umlagerung bewirkt (M., Du., E.). Bei der Reduktion mit Jodwasserstoffsäure und rotem Phosphor in Eisessig entsteht eine farblose, krystallinische, gegen 180° schwelelede Verbindung (M., Du., D., C.r. 182, 1442).

Pseudorubren  $C_{42}H_{28}$ . B. Entsteht aus Rubren beim Einleiten von Jodwasserstoff in eine Lösung oder Suspension in Benzol (MOUREU, DUFRAISSE, BERCHET, C. r. 185, 1085; M., D., ENDERLIN, C. r. 188, 673) oder bei der Einw. von konz. Schwefelsäure; entsteht in langsamer Reaktion bei der Einw. von Chlorwasserstoff oder Bromwasserstoff auf Rubren in Benzol (M., D., E., C. r. 188, 675). — Krystalle mit 1  $C_6H_6$  (aus Benzol). Schmilzt unter Abgabe des Benzols bei 210°, erstarrt wieder und schmilzt erneut bei 278° (Maquennescher Block); verflüchtigt sich bei hoher Temperatur unter Entwicklung violetter Dämpfe (M., D., B.). — Wird durch Wasserstoff in Gegenwart von Platinoxyd nicht verändert (M., D., B.). Beim Erhitzen mit Jodwasserstoffsäure im Rohr auf 200° erhält man ein nicht näher untersuchtes Ol (M., D., B.). — Löst sich in warmer konzentrierter Schwefelsäure mit grüner Farbe; die Lösung wird auf Zusatz von Wasser hellgrün und zeigt violette Fluorescenz (M., D., B.).

- 2. Tetra- $\alpha$ -naphthyl-äthylen  $C_{42}H_{28}=(C_{10}H_{7})_2C:C(C_{10}H_{7})_2$  (E I 394). B. Bei der Bildung durch Erhitzen von Di- $\alpha$ -naphthyl-carbinol mit Phosphorsäure läßt sich die Ausbeute durch Ausführung der Reaktion unter vermindertem Druck erhöhen (Magidson, B. 58, 436). Ausbeuten unter verschiedenen Reaktionsbedingungen: M. Liefert beim Kochen mit Zinkstaub und wenig Salzsäure in Eisessig 1.2;7.8-Dibenzo-fluoren. Gibt beim Erhitzen mit Phosphorsäure in Kohlendioxyd-Atmosphäre auf 235—245° Di- $\alpha$ -naphthyl-methan und 1.2;7.8;1'.2';7'.8'-Tetrabenzo-difluorenyl-(9.9'); die letztgenannte Verbindung entsteht anscheinend auch beim Schmelzen mit Campher. Gibt beim Erwärmen mit Phosphorpentachlorid und Phosphoroxychlorid 9-Chlor-1.2;7.8-dibenzo-fluoren. Beim Erhitzen eines Gemisches von Tetra- $\alpha$ -naphthyl-äthylen und 1.2;7.8-Dibenzo-fluoren auf 245—250° im Kohlendioxyd-Strom erhält man 1.2;7.8;1'.2';7'.8'-Tetrabenzo-difluorenyl-(9.9') und Di- $\alpha$ -naphthyl-methan.
- 2. 1.10-Diphenyl-4.9-di-p-tolyl-2.3-benzo-anthracen, 9.11-Diphenyl-10.12-di-p-tolyl-naphthacen, Dimethyl-rubren C<sub>44</sub>H<sub>32</sub>, s. nebenstehende Formel. Zur Konstitution vgl. Dufraisse, Bl. [5] 3 [1936], 1867.— B. Durch Erhitzen von 3-Chlor-3.3-diphenyl-1-p-tolyl-propin-(1) auf 140—150° unter 15 mm Druck, zweckmäßig in Gegenwart von 2% Chinolin (Willemart, A. ch. [10] 12, 394; vgl. Moureu, Du., W., C. r. 187, 266).— Orangerote Krystalle (aus Benzol). F: 315° (Maquennescher Block) (W.). Sehr schwer löslich in Äther, Petroläther, Aceton und Ligroin, schwer in Benzol (ca. 1—2%), leicht in Schwefelkohlenstoff, Äthylbromid, Pyridin, Anilin und geschmolzenem Naphthalin; die Lösungen fluorescieren auch in starker Verdünnung gelb (W.). Absorptionsspektrum in Benzol: W., C.r. 188, 989; A. ch. [10] 12, 403, 406.— Bei der Einw. von Luft auf die Lösung in Benzol am Licht entsteht Dimethylrubren-peroxyd (Syst. Nr. 2688) (W., A. ch. [10] 12, 396).

# 41. Kohlenwasserstoffe C<sub>n</sub>H<sub>2 n-58</sub>.

1. 1.2; 7.8; 1'.2'; 7'.8'-Tetrabenzo-difluorenyl-(9.9'), Bis-[1.2; 7.8-dibenzo-fluorenyl-(9)], Bis-di-α-naphthofluorenyl  $C_{42}H_{26}$ , s. nebenstehende Formel. B. Durch Erhitzen von 1.2;7.8-Dibenzo-fluoren mit Äthylmagnesiumjodidätherat in Xylol auf 140° bis zum Aufhören der Äthan-Entwicklung und Behandlung des Reaktionsgemisches mit Jod in der Kälte oder mit Xanthon bei Siedetemperatur (Magidson, B. 58, 438, 441). Entsteht aus 9-Brom-1.2; 7.8-dibenzo-fluoren beim Kochen mit fein verteiltem Kupfer in Xylol (Magidson, B. 58, 437) oder Benzol (Wanscheidt, Wanscheidt, B. 58, 437) oder Benzol (Wanscheidt, B. 58, 438) od



B. 59, 2099; X. 58, 73), bei der Einw. von Natriumjodid in siedendem Aceton (W., X. 58, 72) und bei der Umsetzung mit 1.2;7.8-Dibenzo-fluoren in Gegenwart von Kaliummethylat-Lösung in siedendem Aceton (W., B. 59, 2099; Ж. 58, 75). Beim Erhitzen von Tetra-a-naphthyl-athylen mit Phosphorsaure auf 235-245° in Kohlendioxyd-Atmosphare (M., R. 58, 437). Durch Reduktion von 1.2;7.8;1'.2';7'.8'-Tetrabenzo difluorenyliden (9.9') mit Zinkstaub und Eisessig (M., B. 58, 441) oder mit Wasserstoff in Gegenwart von Platin in Pyridin (WAN-

Tafeln (aus Xylol). Verkohlt beim Erhitzen im offenen Röhrchen bei ca. 300°, schmilzt im mit Kohlendioxyd gefüllten Röhrchen je nach Art des Erhitzens zwischen 338° und 350° unter Grünfärbung (Magidson, B. 58, 437, 438); F: 353—355° (korr.; bei raschem Erhitzen im zugeschmolzenem Röhrchen) (Wanscheidt, B. 59, 2099; Ж. 58, 74). Unlöslich in Alkohol, Äther, Aceton und kaltem Benzol, sehr schwer löslich in siedendem Toluol und Xylol (M.). Löslich in siedendem Dichlorbenzol, Xylol und Pyridin, sehr schwer löslich in Benzol, unlöslich in Alkohol, Äther und Eisessig sowie in kalter konzentrierter Schwefelsäure (W., M. 58, 74). Löst sich in Pyridin in Gegenwart von alkoh. Alkalilauge mit roter Farbe; die Lösung verfärbt sich beim Schütteln mit Luft (W., M. 58, 74, 277). — Läßt sich leicht, z. B. durch Schütteln der mit etwas Kaliummethylat-Lösung versetzten Lösung in Pyridin mit Luft, durch Kochen mit Natrium in Xylol unter Luftzutritt, am besten durch Kochen mit Silberacetat in Pyridin, in 1.2;7.8;1'.2';7'.8'-Tetrabenzo-difluorenyliden überführen (W., B. 59, 2099; Ж. 58, 258, 262, 283).

# 2. Kohlenwasserstoffe $C_{46}H_{34}$ .

1. 1.1.2.2 - Tetraphenyl - 1.2 - di -  $\alpha$  - naphthyl -  $\alpha$ than  $C_{46}H_{34} = C_{10}H_7 \cdot C(C_6H_5)_2 \cdot C_{10}H_7 \cdot C_{10}H_$  $C(C_6H_5)_3 \cdot C_{10}H_7$  s. bei Diphenyl- $\alpha$ -naphthyl-methyl, S. 666.

2. 1.1.2.2 - Tetraphenyl - 1.2 -  $di - \beta$  - naphthyl -  $dthan C_{46}H_{34} = C_{10}H_7 \cdot C(C_6H_5)_2 \cdot C_6H_5$  $C(C_6H_5)_2 \cdot C_{10}H_7$  s. bei Diphenyl- $\beta$ -naphthyl-methyl, S. 666.

# 42. Kohlenwasserstoffe $C_n H_{2n-59}$ .

# Kohlenwasserstoffe $C_{46}H_{33}$ .

 $\begin{array}{ll} 1. & \textbf{Phenyl-a-naphthyl-[4-(diphenyl-a-naphthyl-methyl)-phenyl]-methyl} \\ C_{46}H_{33} = C_{10}H_7 \cdot C(C_6H_5)_2 \cdot C_6H_4 \cdot C(C_6H_5) \cdot C_{10}H_7. \end{array}$ 

Phenyl- $\alpha$ -naphthyl- $\{4$ -[phenyl-(4-brom-phenyl)- $\alpha$ -naphthyl-methyl]-phenyl}-methyl  $C_{46}H_{31}Br = C_{10}H_7 \cdot C(C_6H_6)(C_6H_4Br) \cdot C_6H_4 \cdot C(C_6H_6) \cdot C_{10}H_7$ . B. Neben Phenyl-[4-brom-phenyl]- $\alpha$ -naphthyl-methyl bei mehrtägigem Schütteln von Phenyl-[4-brom-phenyl]- $\alpha$ -naphthyl-chlormethan mit fein verteiltem Silber in absol. Ather oder Schwefelkohlenstoff unter Luftabschluß (GOMBERG, BLICKE, Am. Soc. 45, 1775, 1776). — Nur in Lösung erhalten. Die Lösungen sind indigoblau und geben an der Luft das entsprechende Peroxyd (Syst. Nr. 547). Verlauf der Sauerstoffaufnahme in äther. Lösung: G., B., Am. Soc. 45, 1768.

 Diphenyl-[4-(diphenyl-α-naphthyl-methyl)-naphthyl-(1)]methyl  $C_{44}H_{33}$ , s. nebenstehende Formel (X = H).

Diphenyl-4-{diphenyl-[4-brom-naphthyl-(1)]-methyl}-naphthyl-(1)>-methyl C<sub>46</sub>H<sub>32</sub>Br, s. nebenstehende Formel (X = Br). B. Neben Diphenyl-[4-brom-naphthyl-(1)]-methyl bei mehrtägigem Schütteln von Diphenyl-[4-brom-naphthyl-(1)]-chlormethan mit fein verteiltem Silber in absol. Äther oder Brombenzol unter Luftabschluß (Gomberg, BLICKE, Am. Soc. 45, 1776, 1777). — Nur in Lösung erhalten. Die Lösungen sind vielett und geben an der Luft des entwestende Berovyd (Syst. Nr. 547). violett und geben an der Luft das entsprechende Peroxyd (Syst. Nr. 547). Verlauf der Sauerstoffaufnahme in äther. Lösung: G., B., Am. Soc. 45, 1768.



#### 43. Kohlenwasserstoffe C<sub>n</sub>H<sub>2n-60</sub>.

1. 1.2; 7.8; 1'.2'; 7'.8'-Tetrabenzo-difluorenyliden, Bis-1.2; 7.8-dibenzofluorenyliden, "Bis-di-α-naphtho-fluorenylen", "Di-bi-α-naphthylen-äthen" C<sub>42</sub>H<sub>24</sub>, s. nebenstehende Formel. B. Aus 1.2;7.8;1'.2';7'.8'-Tetrabenzo-difluorenyl-(9.9') durch Einw. dehydrierender Mittel, am besten durch Kochen mit Silberacetat in Pyridin (WANSCHEIDT, B. 59, 2099; ж. 58, 257, 262; C. 1927 I, 92). Ein nicht völlig einheitliches Präparat (vgl. dazu WANSCHEIDT, Ж. 58, 265) entsteht beim Erhitzen



von 9.9-Dichlor-1.2; 7.8-dibenzo-fluoren mit fein verteiltem Kupfer in Benzol auf 100° unter Ausschluß von Luft und Feuchtigkeit (Magidson, B. 58, 440). — Dunkelgrüne, fast schwarze, metallglänzende Tafeln (aus Xylol). Schmilzt in Kohlendioxyd-Atmosphäre bei ca. 357° (korr.) (W.). Löslich in Chloroform, Schwefelkohlenstoff, Benzol und Pyridin, unlöslich in Alkohol, Äther und Benzin (W.). Unlöslich in kalter konzentrierter Schwefelsäure; gibt beim Erwärmen mit Schwefelsäure auf 50° eine braunviolette, bei höherer Temperatur eine fast schwarze Lösung (W.). Absorptionsspektrum in Benzol: W., Ж. 58, 291; in Benzol und konz. Schwefelsäure: Magidson, Trudy chim.-farm. Inst. Lieferung 16 [1926], S. 46; C. 1928 I, 58. — Die grünen Lösungen in indifferenten Mitteln werden durch Luft, besonders am Licht, oder durch Einw. anderer Oxydationsmittel entfärbt (W., Ж. 58, 285, 286). Die Lösung in Pyridin wird auf Zusatz von Kaliummethylat-Lösung braunrot; Säuren, Ammoniumchlorid oder Wasser fällen Tetrabenzodifluorenyliden unverändert aus; Luft bewirkt sehr rasche Oxydation (W., Ж. 58, 278, 285). Gibt beim Kochen mit konz. Schwefelsäure an der Luft 1.2; 7.8-Dibenzo-fluorenon (M., B. 58, 441). Wird durch Zinkstaub in siedendem Eisessig (Magidson, B. 58, 441) oder durch Wasserstoff in Gegenwart von Platin oder durch Schwefelwasserstoff, Ammoniumhydrosulfid oder Antimonwasserstoff in Pyridin (W., Ж. 58, 280, 281, 282) zu 1.2; 7.8; 1'.2'; 7'.8'. Tetrabenzo-difluorenyl-(9.9') reduziert. Bromierung: M., B. 58, 441; W., Ж. 58, 287.

Dibromderivat C<sub>42</sub>H<sub>22</sub>Br<sub>2</sub>. B. Durch langsames Zufügen einer Lösung von überschüssigem Brom zu 1.2;7.8;1'.2';7'.8'-Tetrabenzo-difluorenyliden in Benzol (Magidson, B. 58, 441). — Grünes Pulver. Färbt sich bei 325° dunkler, zersetzt sich bei 380°. Leicht löslich in Benzol und Chloroform mit tiefgrüner Farbe, sehr schwer in Alkohol, Äther, Benzin und Aceton. Absorptionsspektrum in Benzol: M., Trudy chim.-farm. Inst. Lieferung 16 [1926], S. 47; C. 1928 I, 58.

2. Hexameres Inden  $C_{54}H_{48}$  s. S. 413.

# 44. Kohlenwasserstoffe C<sub>n</sub>H<sub>2n-62</sub>.

1. 1.1.4.4 - Tetrakis - diphenylyl - butan  $C_{52}H_{42} = (C_6H_5 \cdot C_6H_4)_2CH \cdot CH_2 \cdot CH(C_6H_4 \cdot C_6H_5)_2$ . B. Durch Einw. von Alkohol auf 1.4-Dinatrium-1.1.4.4-tetrakis-diphenylylbutan in Ather (Schlenk, Bergmann, A. 463, 44) oder auf die entsprechende Dikaliumverbindung in Benzol (Wittig, v. Lupin, B. 61, 1634). — Nadeln (aus Toluol oder Dioxan). F: 236° (Sch., B.), 234—235° (W., v. L.). Die Lösung in konz. Schwefelsäure ist farblos (W., v. L.).

# 45. Kohlenwasserstoffe C<sub>n</sub> H<sub>2n-64</sub>.

- 1. Tetrakis-diphenylyl-äthylen  $C_{50}H_{36} = (C_6H_5 \cdot C_6H_4)_2C:C(C_6H_4 \cdot C_6H_5)_2$  (E I 394). B. Neben Tris-diphenylyl-[4-phenyl-benzoyl]-methan beim Kochen von Tetrakis-diphenylyl-äthylenglykol mit Acetylchlorid und Eisessig in Benzol (Gomberg, Bachmann, Am. Soc. 49, 252).
- 2. Oktameres  $\alpha$ -Methyl-styrol  $C_{72}H_{80}$  s. S. 375.

# 46. Kohlenwasserstoffe C<sub>n</sub> H<sub>2 n-66</sub>.

10.10.10'.10'-Tetraphenyl-9.10.9'.10'-tetrahydro-dianthryl-(9.9')  $C_{52}H_{38}$ , s. nebenstehende Formel. Diese Konstitution kommt vermutlich dem Tetraphenylheptacyclen (H 765) zu (BARNETT, COOK, NIXON, Soc. 1927, 507). — B. Beim Kochen von 10.10-Di-

phenyl-anthron-(9) mit Zinkstaub und Eisessig unter langsamem Zusatz von konz. Salzsäure (B., C., N., Soc. 1927, 507, 510). Entsteht wahrscheinlich auch beim Erhitzen von 9.9-Diphenyl-dihydroanthracen im Sauerstoffstrom auf 250° oder mit Benzalchlorid oder Benzophenonchlorid auf 250° (B., C., N.). — Cremefarbiges Pulver (aus Nitrobenzol). Schmilzt nicht bis 320°. Fast unlöslich in Nitrobenzol.

#### 47. Kohlenwasserstoffe C<sub>n</sub>H<sub>2 n-68</sub>.

1. Tetra-naphthylen-(1.8)-cyclooctadien, Fluorocyclen  $C_{48}H_{28}$ , Formel I oder II (E I 395). B. Man erhitzt 10 g Acenaphthen mit 14 g wasserfreiem Blei(IV)-oxyd 4—5 Stdn. im Rohr auf 170°, läßt das gebildete Wasser als Dampf entweichen und erhitzt

nach erneutem Zuschmelzen 10—15 Stdn. auf 200—220° (Dziewonski, Suszko, B. 58, 727). — Gibt mit 2—4 Mol Brom in Chloroform bei gewöhnlicher Temperatur, rascher auf dem Wasserbad, Dibrom-dehydrofluorocyclen (S. 730); bei der Einw. von überschüssigem Brom in Gegenwart von Eisenspänen in siedendem Chloroform entsteht die Verbindung C<sub>48</sub>H<sub>26</sub>Br<sub>4</sub> (s. u.). Liefert beim Nitrieren mit Salpetersäure (D: 1.5) in Eisessig Dinitro-fluorocyclen und Tetranitrofluorocyclen. Gibt beim Behandeln mit rauchender Schwefelsäure (20 % SO<sub>3</sub>) unterhalb 30° Dioxy-fluorocyclen-tetrasulfonsäure (Syst. Nr. 1568).

Verbindung C<sub>48</sub>H<sub>26</sub>Br<sub>4</sub> ("Tetra bromfluorocyclen"). B. Durch Einw. von überschüssigem Brom auf Fluorocyclen in Gegenwart von Eisenpulver in siedendem Chloroform (Dziewonski, Suszko, B. 58, 726, 729). — Citronengelbe Krystalle (aus Nitrobenzol). F: 360° bis 365°. — Spaltet bei der Oxydation mit Chromsäure Brom ab. Bleibt auch bei längerer

Einw. von kalter konzentrierter Schwefelsäure unverändert.

Dinitro - fluorocyclen  $C_{48}H_{26}O_4N_2$ , s. nebenstehende Formel. B. Neben Tetranitro-fluorocyclen durch Einw. von Salpetersäure (D: 1,5) auf Fluorocyclen in Eisessig (Dziewonski, Suszko, B. 58, 729). — Orangerote Nadein (aus Nitrobenzol). Zersetzt sich oberhalb 360°. Schwer löslich in organischen Lösungsmitteln; die Lösungen fluorescieren intensiv gelb. — Liefert bei der Oxydation wit Chromosure 4 Nitro pankthelesure und

mit Chromsäure 4-Nitro-naphthalsäure und ein braunrotes amorphes, sauer reagierendes Produkt. Wird durch kalte konzentrierte Schwefelsäure schwer angegriffen.

Tetranitro-fluorocyclen  $C_{48}H_{24}O_8N_4$ , s. nebenstehende Formel. B. Neben Dinitro-fluorocyclen durch Einw. von Salpetersäure (D: 1,5) auf Fluorocyclen in Eisessig (Dziewonski, Suszko, B. 58, 729). — Orangerote Krystalle (aus Nitrobenzol oder Nitrobenzol + Ligroin). Zersetzt sich oberhalb 330° langsam. Schwer löslich in den meisten Lösungsmitteln, sehr leicht in Nitrobenzol; die Lösungen fluorescieren gelb. Löst sich in kalter konzentrierter Schwefelsäure mit kirschroter Farbe.

$$O_2N$$

$$CH \cdot CH - C = C$$

$$C = C + CH$$

$$NO_2$$

$$(?)$$

2. 1.10-Diphenyl-4.9-di- $\beta$ -naphthyl-2.3-benzo-anthracen, P11-Diphenyl-10.12-di- $\beta$ -naphthyl-naphthacen, Dibenzo-rubren  $C_{50}H_{32}$ , s. nebenstehende Formel. Zur Konstitution vgl. Dufraisse, Bl.~[5] 8 [1936], 1867. — B.~ Bei raschem Erhitzen von 3-Chlor-3.3-diphenyl-1- $\beta$ -naphthyl-propin-(1) auf 2000 unter vermindertem Druck, zweckmäßig in Gegenwart von ca. 2% Chinolin (Willemart, A.~ ch. [10] 12, 398; vgl. Moureu, Dufraisse, Willemart, C.~ r. 187, 266). — Rote Krystalle mit  $3C_6H_6$  (aus

Benzol). Schmilzt gegen 80°, wird wieder fest und schmilzt erneut bei ca. 280° (Maquennescher Block) (W.). Sehr schwer löslich in den meisten Lösungsmitteln; löst sich in Benzol zu etwa 2% (W.). Absorptionsspektrum in Benzol: W., C. r. 188, 989;

A. ch. [10] 12, 403, 407. — Die Lösung in Benzol gibt bei der Einw. von Luft am Sonnenlicht Dibenzorubren-peroxyd (Syst. Nr. 2688).

3. Tetraphenylheptacyclen  $C_{52}H_{36}$ , s. nebenstehende Formel (H 765). Ist wahrscheinlich als 10.10.10'.10'-Tetraphenyl-9.10.9'.10'-tetrahydro-dianthryl-(9.9') (S. 728) zur formulieren (Barnett, Cook, Nixon, Soc. 1927, 507).

# 48. Kohlenwasserstoffe C<sub>n</sub>H<sub>2 n-70</sub>.

- 1. 1.2 Diphenyl 1.1.2.2 tetra  $\alpha$  naphthyl äthan  $C_{54}H_{38}=C_6H_5\cdot C(C_{10}H_7)_2\cdot C_6H_5$  s. S. 699.
- 2. Kohlenwasserstoff  $C_{55}H_{40}$  s. S. 532.

# 49. Kohlenwasserstoffe C<sub>n</sub>H<sub>2 n-72</sub>.

1. Tetranaphthylen - (1.8) - cyclooctatetraen, Dehydrofluorocyclen  $C_{48}H_{24},\ Formel\ I\ (X=H).$ 

Dibrom-dehydrofluorocyclen C<sub>48</sub>H<sub>22</sub>Br<sub>2</sub>, Formel I (X = Br). B. Durch Einw. von 2 oder 4 Mol Brom auf in Chloroform suspendiertes Fluorocyclen bei gewöhnlicher Temperatur, rascher bei 100° (Dziewonski, Suszko, B. 58, 728). — Citronengelbe Nadeln oder Prismen. F: 390—394°. 100 cm³ siedendes Nitrobenzol lösen ca. 1,5 g; sehr schwer löslich in anderen organischen Lösungsmitteln. — Gibt bei der Oxydation mit Natriumdichromat

I. 
$$X \stackrel{O_2N}{\longleftrightarrow} X$$

II.  $O_2N \stackrel{C}{\longleftrightarrow} C \stackrel{C}$ 

in siedendem Eisessig [4-Brom-naphthalsäure]-anhydrid. Liefert mit Salpetersäure (D: 1,5) in Eisessig Dibrom-tetranitro-dehydrofluorocyclen. Löst sich in konz. Schwefelsäure erst nach mehrstündiger Einw. mit blauer Farbe. Beim Behandeln mit rauchender Schwefelsäure (20% SO<sub>3</sub>-Gehalt) entsteht Dibrom-dioxy-dehydrofluorocyclen-tetrasulfonsäure (Syst. Nr. 1568).

Dibrom-tetranitro-dehydrofluorocyclen  $C_{48}H_{16}O_8N_4Br_2$ , Formel II. B. Durch Einw. von Salpetersäure (D: 1,5) auf Dibrom-dehydrofluorocyclen in Eisessig (Dziewonski, Suszko, B. 58, 730). — Ziegelrotes oder carminrotes mikrokrystallinisches Pulver (aus Eisessig). Schmilzt nicht bis 440°; zersetzt sich bei raschem Erhitzen unter Verpuffen. Sehr schwer löslich in Alkohol und Benzol, schwer in Eisessig, sehr leicht in Nitrobenzol.

# 2. Kohlenwasserstoffe $C_{56}H_{40}$ .

- 1. Dimeres Tetraphenylbutatrien C56H40 (?) s. S. 702.
- Dimolekulares Dibenzalanthracen C<sub>56</sub>H<sub>40</sub> (H 765). Ist unreines 9.10-Dibenzyliden-dihydroanthracen gewesen (BERGMANN, FUJISE, A. 480 [1930], 190).

Dimolekulares Dibromdibenzalanthracen  $C_{58}H_{36}Br_4$  (H 765). Zur Natur des Ausgangsmaterials vgl. Bergmann, Fujise, A. 480 [1930], 190.

731

#### 50. Kohlenwasserstoffe C<sub>n</sub>H<sub>2 n-76</sub>.

1. Leukacen  $C_{54}H_{32}$ . Besitzt vielleicht die nebenstehende Konstitution; das Mol.-Gew. ist in Äthylenbromid und Nitrobenzol

athylenbrind und Nitoelizot ebullioskopisch bestimmt. — B. Beim Leiten von Acenaphthendampf durch ein mit Eisen- oder Kupferdraht beschicktes, auf Rotglut erhitztes Quarzrohr im Kohlendioxyd-Strom, neben anderen Produkten (Dziewonski, B. 53, 2173, 2180, 2182). — Farblose, wahrscheinlich rhombische Nadeln mit 1½ (gH<sub>6</sub> (aus Benzol), gelbliche monokline Tafeln oder Nadeln (aus Nitrobenzol oder Xylol) (Kreutz, B. 53, 2183). Färbt sich von ca. 120° an rosa, bei 210—220° dunkelrot bis rötlichviolett und schmilzt bei 250—252°. Wird beim Zerreiben stark elektrisch. Fast unlöslich in Alkohol, Äther und Ligroin, ziemlich schwer löslich in Benzol und Xylol, leicht (unter teilweiser Zersetzung) in Nitrobenzol, Cumol und Naphthalin. — Zerfällt beim Erhitzen unter vermindertem Druck bei ca. 175° in Acenaphthylen und Rhodacen (S. 714). Bei längerem Erhitzen an der Luft auf ca. 150° entsteht ein Gemisch von Polyacenaphthylen, Chalkacen (S. 714) und anderen Produkten. Die Lösungen in Nitrobenzol, Cumol und Naphthalin färben sich beim Kochen erst blaustichig rot, dann orange; bei 10—12 Min. langem Kochen einer 4—5% igen Lösung in Nitrobenzol erhält man Rhodacen und wenig Chalkacen; bei ½ stdg. Kochen bildet sich ausschließlich Chalkacen. Liefert bei der Oxydation mit Chromtrioxyd in heißem Eisessig oder in heißer Schwefelsäure in der Wärme Naphthalsäure und ein braungelbes amorphes Produkt. Gibt mit Brom in Lösung erst eine feurigrote, dann eine blaue, zuletzt unter Bromwasserstoff-Entwicklung eine violettschwarze Färbung und einen violettschwarzen Niederschlag, mit konz. Salpetersäure in kaltem Nitrobenzol erst eine blaugrüne, dann eine olivgrüne bis olivschwarze Färbung und einen violettschwarzen Niederschlag. Eöst sich in kalter konzentrierter Schwefelsäure mit violettroter, in Grauviolett übergehender Farbe.

2. Dimolekulares Dibenzenylanthracen  $C_{56}H_{36}$  (H 766). Ist reines 9.10-Dibenzyliden-dihydroanthracen gewesen (Bergmann, Fujise, A. 480 [1930], 190).

# 51. Kohlenwasserstoffe $C_n H_{2n-78}$ .

Tribenzyl-dekacyclen  $C_{57}H_{36}$  (H 766). Besitzt die nebenstehende Konstitution (Dziewonski, Rychlik, B. 58, 2240).

52. Kohlenwasserstoffe  $C_nH_{2n-80}$ .

Tetrameres Benzylideninden  $C_{64}H_{48}$  s. S. 603.  $C_{6}H_{5}\cdot\dot{C}H_{2}$ 

53. Kohlenwasserstoffe  $C_nH_{2\,n-120}$ .

Hexameres Benzylideninden  $C_{96}H_{72}~\mathrm{s.~S.~603.}$ 

[OSTERTAG]

CH2.C6H5

# Register.

Äthylen-hexahydronaphthas Α. Athyl-tetrahydronaphthalin lin 398. 397. - tetrahydronaphthalin 420. Abieten 404. tetralin 397. - toluol 308, 309, 310. Abietin 429. tetrahydroperinaphth= Acenaphthanthracen 644. indan 475. — xylol 328. Acenaphthen 494. trimethylentetrahydro: Allocholestan 361. Acenaphthylen 530. naphthalin 475. Allyl-benzol 373. Acenaphthylendibromid 497. Äthylfluoren 556. — cyclohexan 49. Acetoxyfluoren 583. Äthyliden-bisäthylbenzol 525. – inden 469. Acetylenyl-benzol 406. - bisbutylbenzol 529. Amatol 270. - cvclohexan 81. bisdiäthylmethylbenzol Amyl- s. a. Isoamyl-, Pentyl-. - naphthalin 530. Amvl-benzol 331, 333. — toluol 409. bisisopropylbenzol 528. - benzylchlorid **33**8. xylol 414. bismethylisopropylmethyl: — cyclohexan 32 Acinitro- s. Isonitro-. benzol 529—530. — tetrahydronaphthalin 401. Äthenyl- s. Vinyl-. bispropylbenzol 528. — tetralin 401. -- toluol 338; s. a. 337. Athinyl- s. Acetylenyl-. bistetrahydronaphthalin Athyl-acenaphthen 516. 601. Amvrilen 479. – amylbenzol 342. cyclohexan 46. Anthracen 569. — anthracen 591. cyclohexannitrolpiperidid  ${f Anthracendibromid}$  547. benzhydrylchlorid 518. Anthracenoanthracen 700, — benzohydrinden 519. evelohexannitrosat 46. 701. cyclohexannitrosochlorid benzoindan 519. Anthracenozonid 574. benzol 274. 46. Anthrachinon bisdiphen vl= benzylchlorid 310. fluoren 588. methid 722. benzylideninden 606. Äthyl-inden 419. Anthranyldihydroanthranyl= butenylbenzol 395. isoamyltoluol 344 äthan 705. butyltoluol 343. isobutylbenzol 337. Apocyclen 83. cyclogeraniolen 69. isobutyltoluol 343. Aralien 356. cyclohexan 20. — isopropylbenzol 334. Aromadendren 356. cyclohexen 46. Aromatische Kohlenwasser= isopropylphenanthren cyclohexylcyclohexan 73. 600. stoffe 119. cyclohexylcyclohexen 115. Artostan 362. - menthadien 113. Asphalt. Kohlenwasserstoffe cyclohexylidencyclohexen — mesitylen 336. 345. — myrtenyl 114. aus — 33, 73, 76, 77, - cyclopentan 19. – naphthalin 467. 119. cyclopenten 44. — perinaphthindan 519. Aster indicus, Sesquiterpen – cyclopropan 5. - phenanthren 594. aus — 357. evmol 340. Äthylphenyl-acetylen 413. Atractylen 348. - dihydronaphthalin 420. — äthylen 378, 380. Azido-benzol 207. dihydrophenalin 519. — anthracen 652. – naphthalin 459. — diphenyl 511. — benzyläthylen 561. - toluol 273, 274. — diphenyläthylen 557, 558. — brommethan 305. - triphenylmethan 618. diphenylbuten 564. --- buten 395. – xylol 296, 303. diphenylchlormethan 518. — chlormethan 304. Azulen (Bezeichnung) 432. diphenylmethan 517. — hexan 343. diphenylpenten 566. propylbromid 332. — diphenylpropen 561. tolylbuten 566.

Athyl-propylbenzol 332.

- propyltoluol 340.

- pseudocumol 336.

- styrol 378, 380.

stilben 557.

dodekahydrodiphenyl 73.

bistriphenylchlormethan

Athylen bicyclononan 112.

— bistriphenylmethyl 720.

B.

Benzal- s. a. Benzyliden-. Benzalchlorid 232. Benzanthracen 628. Benzanthren 610.

Benzerythren 669. Benzyl-bromid 237. Bis-brombenzhydryldiphenyl Benzhydryl-acenaphthen 673. butan 332. chlorid 227. brommethylanthracen 594. – äthylen 555. cinnamylideninden 673. brommethylcyclopropan 5. — bromid 502. — brommethyldiphenyl 512. — chlorid 500. cyclohexen 421. — cyclopentadien 606. dibenzyl 623, bromnitrophenyläthan - dihydroanthracen 684. dibromfluorenyläthylen 509. bromphenyläthan 507. 652. — diphenyl 672. - dihydroanthracen 635. bromphenylanthracen 690. — fluoren 682. - fluorenylmethan 684. — butylacetylenylphenyl-- diphenyl 618. Benzhydryliden- s. a. Benzylenanthracen 659. brommethan 527. phenylmethylen. Benzyl-fluorenyläthylen 652. butylphenyläthan 529. - fluorid 224. Bischlorbenzhydryl-dibenzyl Benzhydryliden-fluoren 690. 718. inden 660. heptylen 400. diphenylmethan 717. Benzhydryl-inden 650. - hexahydroanthracen 608. Benzyliden-bicycloheptan 472. phenylbutan 718. - naphthalin 663, 664. Bis-chlormethyldiphenyl 514. tetraphenylmethan 717. chlorid 232. cyclohexan 421. Benzmethylisopropyldiathyl= chlornitrophenyläthan – diphensuccinden 669. 508. dihydrinden 431. – fluoren 640. chlorphenyläthan 507, Benzo-acena phthylen 609. fluorid 224. 510. - anthracen 628 – heptan 400. chlorphenylanthracen 689. - cyclohepten 394. — inden 603. — chlorphenyldihydro= - difluoridchlorid 230. anthracen 681. inden, tetrameres und - fluoren 610 hexameres 603. diäthyltrimethylencymol Benzol, Konstitution 119; Vorkommen 119; Bildung undecan 404. 120; Darstellung 122; Benzyl-inden 590. dialin 416, 622. Eigenschaften 122, 127; - jodacetylen 409. dibenzofluorenyl 727. dibenzofluorenyliden 728. jodid 241. chemisches Verhalten methylbenzylideninden dibromfluorenylidenäthan 137; physiologisches Verhalten 144; Verwendung 665. 709. 144; Analytisches 145; – naphthalin 604. dibromfluorenylidenxylol oktahydroanthracen 601. 715, 716. additionelleVerbindungen dibrompropylbenzol 338, und Umwandlungspros okthracen 601. styrol 552, 553. dukte 146; Substitutions produkte 147-209. styroldibromid 517. dichlorfluorenylidenäthan Benzol-hexabromid 13. tethracen 624. 709. tetrahydroanthracen 624. dichlorfluorenylidenxylol - hexachlorid 11. – kohlenwasserstoffe s. Aros — tetrahydronaphthalin 562. 715, 716. matische Kohlenwasser= – tetralin 562. dicyclopentadiennitroso= — toluol 511. chlorid 391. stoffe. dihydroanthryliden 704. xylol 518. — melanin 139. - dihydronaphthyl 622. - melaninsäure 139. Biacen 678. Bianthryl 707. Benzo-naphthacen 667. dimethylbicycloheptenyl: – perinaphthindan 605. Bicyclo-decadien 330. äthan 430. Bisdimethylphenyl-äthan phenanthren 629. decan 56. — decen 92, 93, 761. Benzophenon-bromid 503. 525.äthylen 564. — heptan 45. chlorid 501. - hexan 41, 42. -- butadiin 620. Benzo-suberan 394. - nonan 50, 51. - diacetylen 620. - suberen 394. trichlorid 233. octan 48. diphensuccindadien 711. — trifluorid 224. Biphenyl- s. Diphenylyl-. propan 527. Bis-dimethyltrimethylen= triphenylen 668. Biphenylentriphenyläthyl Benzyl-acenaphthen 619. 713. tetrahydronaphthalin Birkenrindenöl, Sesquiterpen 478. — acenaphthylen 630. aus — 351. Bis- s. a. Di-. dinaphthofluorenyl 727. – acetylen 408. - dinaphthofluorenylen 728. — äthylen 373. Bisabolen 345. — allylbromid 379. — dinitrodimethylphenyl<sup>\*</sup> — anthracen 645. Bisabolen-hexabromid 33. propan 527. - azid 274. Bisdiphenylen-athan 690. trishydrochlorid 33. äthylen 699. benzhydrylanthracen 713. Bis-äthylphenyläthan 525 benzylideninden 664. äthylpropenylbenzol 426. butadien 708. - bromacetylen 409. benzylvinyläther 305. - hexatrien 712.

Bornylen-hydrobromid 65. Bisdiphenylmethylen-cyclos Brombrommethyl-fluoren 551. hydrochlorid 64. naphthalin 462, 465. hexadien 712. hydrojodid 66. Brom-bromnitromethyldihydroanthracen 722. Bisdiphenylyl 669. Bornyljodid 66. fluoren 552. Boswellinsäure, Triterpen Bisdiphenylyl-äthylen 680. butenylbenzol 379, 380. anthracen 721.  $C_{80}H_{48}$  aus — 479. Branchit 359. butinylbenzol 414. - benzol 709. butylacetylenyldiphenyl-- chlormethan 673. Braunkohle s. a. Lignit. methan 600. - dichlormethan 673. Braunkohle, Kohlenwasser butylbenzol 318, 319, 320. stoff C<sub>15</sub>H<sub>26</sub> aus — 117. Braunkohlenteer, Kohlens — methan 673. butylcyclohexan 26. butyleyelopentan 25. Bis-hydrocinnamyliden: fluoren 725. wasserstoffe C14H16 aus butylcyclopenten 50. butylphenylmethan 331, – inden 606. – isopropylphenyläthan 528. Bromacetylenyl-cyclohexan methylcyclohexylbenzol camphan 65. naphthalin 530. - camphen 108. camphenhydrobromid 66. - methyldihydroanthryliden toluol 409. - xylol 414. chlorallylbenzol 374. chlorbenzylanthracen 647. methylindenylidenxylol Bromäthyl-anthracen 592. 694 anthracentetra bromid 523. chlordibrompropylbenzol – naphthylen 416. benzol 278. 306. — nitrodimethylphenyl\* chrysofluoren 610. cyclohexan 20. -- cumol 307. propan 527. cyclopentan 19. - nitronaphthyläthan 653. cyclopenten 44. cycloheptadecan 34. - nitrophenyläthan 508. cyclopropan 5. cycloheptan 15. nitrophenylbenzol 612. cymol 340. cyclohexan 12. hexahydroperinaphths nitrophenylbutadiin 609. cyclohexen 40. nitrophenyldiphenyl 670. inden 426. Bromcyclohexyl-acetylen 81. nitrophenyljodonium: hydrinden 394. butan 26. hydroxyd 191. isopropylbenzol 334. - hexan 32. phenylindenylidenxylol phenylmethan 305. pentan 32. 721. tetrahydroacenaphthen propan 23. – phenylvinyldibenzyl 698. 425. propen 49. – propylphenyläthan 528. — tetralin 397. Brom-cyclopentan 4. — tetramethylcyclopentyl= – toluol 308, 309, **3**11. cyclopentenyltridecan 76. Brom-allylbenzol 373, 374. äthan 77. cyclopentenylundecan 75. - tetramethylencyclopenten allyleyclohexan 49. cyclopentylbutan 25. — allylnaphthalin 505. cyclopropylpropan 15. tetramethylennaphthalin — amyltoluol 338. cymol 326. anthracen 576. diäthylbenzol 327. — tetramethylphenylnona: azidobenzol 208. diathylxylol 341. diinyl 678. benzhydrylchlorid 503. dibenzofluoren 660. trimethylbicycloheptyl benzofluoren 610. dibromäthylbenzol 278. 359.benzol 158. dibrombutylbenzol 318. trimethylenhydrinden benzylacetylen 409. dibrommethylfluoren 552. benzyläthylen 374. dibrompropylbenzol 306. trimethylentetrahydro- benzylanthracen 647. – dihydronaphthalin 417. Bromdimethyl-anthracen 593. naphthalin 476. benzylbromid 239. – benzylbutan 332. trimethylphenyläthan bromisopropylcyclopropen 528. benzylchlorid 238. trinitrodimethylphenyl= benzylfluoren 632. brommethylbicycloheptan propan 527. – benzylidenfluoren 640. Bistrinitrophenyl- s. a. Di= — benzyljodid 242. butylbenzol 337. pikryl-. bisbutylacetylenylphenyls diathylbenzol 341. Bistrinitrophenyl-isopropyl= methan 527. diphenylpentin 600. phenylpropan 626. - bromisopropylfluoren 561. naphthalin 467, 468. tolylpropan 624. Brombrommethyl-anthracen phenylacetylen 414. Bistriphenylmethylacetylen phenylcyclopentan 399. anthracentetrabromid 519. phenylpropan 333. Bombiccit 359. cyclobutan 5. Bromdinitro-benzol 201. Bornyl-bromid 65. cyclopentan 14. — dihydroanthracen 549. chlorid 62. - diphenyl 492.

- hydrinden 378.

cyclopropan 4.

- dibenzyl 517.

Bornylen 105, 110.

|                                            |                              | •                             |
|--------------------------------------------|------------------------------|-------------------------------|
| Bromdinitro-naphthalin 457.                | Brommethyl-diphenylpropan    | Bromphenyl-azid 208.          |
| — naphthalintetrahydrid 390.               | 520.                         | — benzylpropan 520.           |
| — phenylmethan 266.                        | — diphenylpropen 559.        | — bisdiphenylylmethan 710,    |
| — styrol 371.                              | Brommethylenfluoren 585.     | 711.                          |
| — tetrahydronaphthalin 390.                | Brommethyl-fluoren 551.      | — butan 318, 319.             |
|                                            | — isopropylbenzol 326.       | — buten 379, 380.             |
| — tetralin 390.                            | — isopropylcyclohexan 29.    | — butin 414.                  |
| — toluol 265, 266.                         | — naphthalin 462, 464.       | - chrysofluoren 669.          |
| — xylol 303.                               |                              | — cyclohexan 396.             |
| Bromdiphenyl 485.                          | — phenylacetylen 408.        | — cyclopentan 394.            |
| Bromdiphenyl-athylen 545.                  | — phenyläthylen 375.         |                               |
| — anthracen 689.                           | — phenylanthracen 649.       | — dibromnaphthyläthylen       |
| — butatrien 602.                           | — phenylbutan 332, 333.      | 612.                          |
| — butenin 602.                             | — phenylmethan 278.          | - dinaphthylmethan 694.       |
| — chlormethan 503.                         | — phenylpropan 319, 320.     | fluoren 630.                  |
| Bromdiphenylenäthylen 585.                 | — styrol 372, 375.           | — naphthalin 603.             |
| Bromdiphenyl-inden 645.                    | — tetrahydronaphthalin 394.  | — naphthyläthylen 613.        |
| — methan 502.                              | — tetralin 394.              | — naphthyldiphenylyl:         |
| — naphthylmethan 663, 664.                 | - trichlormethyltribrom      | methan 704.                   |
| — propan 517.                              | methylcyclohexadien 82.      | — nitromethan 257.            |
| — propen 554, 555.                         | - vinylbenzol 375.           | — pentan 331.                 |
| - triphenylmethan 710, 711.                | Brom-naphthalin 447, 448.    | — propan 305.                 |
| Brom-ditolyläthylen 560.                   | - naphthylacetylen 530.      | — propen 372, 374, 375.       |
| — fluoren 534.                             | - naphthylmethylbromid       | - propin 408, 409.            |
|                                            | 462, 465.                    | — tolyläthylen 555.           |
| — hexylcyclohexan 32.                      | Bromnitro-äthylbenzol 279.   | - tolylnaphthylmethan 664.    |
| - hydrinden 377.                           |                              | — tolylpropan 522.            |
| — indan 377.                               | — anthracen 576.             | 1 7                           |
| — inden 413.                               | — benzol 188, 189.           | Brom-pinen 101.               |
| — isoamylanthracentetra:                   | — butylbenzol 321.           | — propargylbenzol 409.        |
| bromid 527.                                | — camphan 66.                | — propenylbenzol 372.         |
| — isoamylbenzol 332.                       | — camphananhydrid 67.        | — propenyltoluol 380, 381.    |
| — isobutylbenzol 319.                      | — diphenyl 489.              | — propinylbenzol 408.         |
| — isocamphan 67.                           | — fluoren 536.               | — propylbenzol 305.           |
| <ul> <li>isopropenylbenzol 375.</li> </ul> | — methylnaphthalin 466.      | — propylbenzylbromid 321.     |
| Bromisopropyl-anthracen 596.               | — naphthalin 453.            | — propylcyclohexan 23.        |
| - anthracentetrabromid 524.                | — nitrovinylbenzol 371.      | — propylisopropylbenzol 339.  |
| — benzol 307.                              | - oktahydroanthracen 424.    | — propylphenylmethan 318.     |
| — cyclopropan 15.                          | — okthracen 424.             | — propyltoluol 321, 322.      |
| — fluoren. 561.                            | - phenanthren 584.           | — propylxylol 335.            |
| — phenylmethan 319.                        | — phenyläthan 279.           | — stilben 539.                |
| T - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -    | — phenylmethan 257.          | - stilbendibromid 508.        |
| Bromjod-benzol 167, 168.                   | Bromnitroso-benzol 171.      | — styrol 367, 368.            |
| — dinitrobenzol 202.                       | 1                            | — styroldibromid 278, 279.    |
| - nitrobenzol 192.                         | — dinitrobenzol 203.         |                               |
| — toluol 242.                              | Bromnitro-styrol 369, 370.   | — tetrahydronaphthalin 387.   |
| — triphenylmethan 618.                     | — styroldibromid 280.        | — tetralin 387.               |
| Brom-menthan 29.                           | — tetrahydronaphthalin 388,  | — tetramethylbenzol 329.      |
| — mesitylen 315.                           | 389.                         | - tetramethylphenyl-          |
| Brommethyl-äthylcyclohexan                 | — tetralin 388, 389.         | nonadiin 527.                 |
| 23.                                        | — toluol 255, 256, 257.      | — tetraphenylhexen 687.       |
| — anthracen 587.                           | — trimethylbicycloheptan 66. | — tetraphenylpropen 683.      |
| — benzylanthracen 651.                     | — vinylbenzol 370.           | — toluol 234, 235, 236, 237.  |
| <ul><li>bromäthylbenzol 308.</li></ul>     | — xylol 302.                 | — tolylacetylen 409.          |
| — brommethylanthracen 593.                 | Brom-oktahydroanthracen      | — tolylpropan 321, 322.       |
| <ul> <li>brompropylbenzol 321.</li> </ul>  | 423, 424.                    | — tolylpropen 380, 381.       |
| - butylbenzol 332.                         | - okthracen 423.             | - tribenzylmethan 624.        |
| — camphan 70.                              | — oxyfluoren 535.            | - tricyclohexylmethan 118.    |
| — cyclobutan 5.                            |                              | - tridecylcyclopenten 76.     |
|                                            | — pentamethylcyclopentan     | - trifluormethylcyclohexan    |
| — cycloheptan 20.                          | 31.                          | 18.                           |
| - cyclohexan 18.                           | - pentaphenylcyclopentas     |                               |
| — cyclohexylbenzol 399.                    | dien 715.                    | Bromtrimethyl-äthylcyclos     |
| — cyclopentan 14.                          | — pentylbenzol 331.          | pentan 31.                    |
| - cyclopropan 3.                           | — pentylcyclohexan 32.       | — benzol 315.                 |
| - dibenzyl 517.                            | — phenäthylacetylen 414.     | — bicycloheptan 65, 67.       |
| — diphenyl 504, 505.                       | — phenanthren 583.           | - bicyclohepten 101.          |
| — diphenyläthylen 554.                     | — phenanthrendibromid 550.   | Bromtrinitro-benzol 206, 207. |
| — diphenylhexan 527.                       | - phenylanthracen 639.       | — diphenyl 493.               |
|                                            |                              |                               |

Chloräthyl-phenylmethan 304. Bromtrinitro-naphthalin 459. Camphendibromid 66. - toluol 308, 309, 310. Camphenen 330. — toluol 272. triphenylmethan 618. Camphen-hydrobromid 67; - xylol 328. s. a. 65 Anm. Chlor-allylbenzol 373. Bromtriphenyl-athylen 631. allylcymol 399. hydrochlorid 67; s. a. — chlormethan 618. 63 Anm. — allylnaphthalin 505. — inden 692. - jodmethan 618. hydrojodid 66. – allyltoluol 380, 381. - amyltoluol 338. Camphenilen 82. -- methan 617. anthracen 574, 575. — methyl 627. Camphenilondichlorid 51. anthracendibromid 548. propen 634. Camphen-jodhydrat 66. azidobenzol 208. propin 644. pseudonitrol 108. Brom-tritylchlorid 618. Campherdichlorid 64. benzhydrylchlorid 501. benzhydryltetraphenyl- trityljodid 618. Campholbrommethan 31. methan 717. Camphoren 404. undecylcyclopenten 75. benzofluoren 610. — vinylbenzol 367, 368. Camphorentetrakishydro: benzol 148. - xylol 285, 293, 301. chlorid 35. benzolhexachlorid 12. Butadienylbenzol 414. Canarium strictum, Sesquiterpen aus - 352. Butenyl-benzol 378, 379, 380. benzotrichlorid 234. Cannabis sativa, Sesquis benzylanthracen 646. cyclohexan 51, 52. benzylbromid 238, 239. cyclopropan 45. terpene aus - 351. Butenylidenmenthan 115. Caran 60. benzylchlorid 231. benzylcyclohexan 399. Caren 93, 94, 95. Butinyl-benzol 413. benzylfluoren 632. Caren-hydrochlorid 94, 95. cyclohexan 83, 84. benzylidenchlorid 232. Butyl-acetylenyldiphenyl= nitroläthylamin 95. benzylidenfluoren 640. brommethan 600. nitrolmethylamin 95. benzyljodid 242. nitrolpropylamin 95. – anthracen 598. benzylnaphthalin 604. - benzol 317, 319, 320. nitrosat 95. - benzylchlorid 333, 334. nitrosochlorid 95. bisdichlormethylbenzol — cyclohexan 25, 26. Carotin 638. bisdiphenylylmethan 673. Carvacryldekalin 430. — cyclopentan 25. Chlorbrom-äthylanthracen cyclopenten 50. Carven 88. 592. dihydroanthracen 565. Carvestren 84. anthracen 577. diphenyläthylen 564. Carvestren-bishydrobromid - diphenylchlormethan 524. – benzol 161, 162. 27. benzylanthracen 647. - diphenylmethan 502, 523. bishydrochlorid 27. benzylidendihydroanthras diphenylmethylchlorid Carvomenthen 52. cen 647. 524. Carvomenthylchlorid 28. hydrinden 400. Caryophyllen 353, 355, 356. dibenzyl 507. dinitrobenzol 201, 202. — naphthalin 471. Caryophyllen-bishydrochlorid dinitrodibenzyl 509. phenylanthracen 655. 75. phenylbrommethan 331, nitrosit 354. dinitrotoluol 266. ozonid 355. diphenyl 485. Cascarillöl, Kohlenwassers stoff C<sub>10</sub>H<sub>16</sub> aus — 111. diphenyläthan 507. phenylchlormethan 331. diphenylmethan 503. — phenylmethan 333. diphenylpentadien 595. — styrol 395. Cedren 350. - tetrahydronaphthalin 401. Cedrenen 402. -- fluoren 5**3**5. - tetralin 401. Cetylbenzol 360. jodbenzol 168. toluol 333, 334. Chalkacen 714. naphthalin 448. triphenylmethan 625, 626. Chamaecyparis obtusa, Koh-– nitrobenzol 190. — xylol 339. lenwasserstoffe aus -— nitrodibenzyl 508. nitrotoluol 257. 351, 406. - phenyldinitrophenyläthan Chamazulen 474. c. 509. Chaulmoogrylbromid 76. phenylnitrophenyläthan Cadalin 473. Chinonbisdiphenylmethid Cadinen 347, 348. 712. 508. Chlor-acenaphthen 497. phenylpropen 374.

Cadain 473.
Cadinen 347, 348.
Cadinen-bishydrobromid 74.
— bishydrochlorid 74.
Calamen 349.
Calamenen 402.
Camphan 62:
Camphan 62:
Camphen 105.
Camphen-bromhydrat 67;
s.a. 65 Anm.
— chlorhydrat 67; s.a.
63 Anm.

propenylbenzol 373.toluol 238, 239. acetylenylbenzol 408 Chlorathyl-anthracen 591. benzol 277. triphenylmethan 618. cyclohexan 20. xylol 293. Chlor-butenylbenzol 379. cymol 340. diphenylmethan 518. butinylbenzol 413. isopropylbenzol 334. naphthalin 467. - butylbenzol 317, 320. - butyldiphenylmethan 524. - butylphenylmethan 331. phenylacetylen 413.

#### REGISTER

| Chlor-butyltoluol 333, 334.                                            | Chlordiphenyl-äthan 507.                            | Chlormethyl-phenylbutin 418.                    |
|------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|
| — camphan 62, 64.                                                      | - anthracen 689.                                    | — phenylmethan 277.                             |
| — camphen 61, 107, 108.                                                | — bromnaphthylmethan 663.<br>— butan 500, 519, 521. | — phenylpentan 337.<br>— phenylpropan 319, 320. |
| — camphenhydrochlorid 67.<br>— cedren 350.                             | — chlormethan 501.                                  | — propylbenzol 322.                             |
| - chlormethylcyclobutan 5.                                             | — dihydroanthracen 681.                             | - styrol 372.                                   |
| - chlorpropylbenzol 305.                                               | - hexan 525.                                        | — tetralin 394.                                 |
| - chrysofluoren 610.                                                   | - methan 500.                                       | - tetraphenylmethan 674.                        |
| - cinnamylbromid 373.                                                  | — naphthylmethan 663, 664.                          | - triphenylmethan 621.                          |
| — cumol 307.                                                           | — naphthylpropin 678, 679.                          | — vinyltoluol 381.                              |
| — cyclohexan 11.                                                       | octin 600.                                          | Chlor-naphthalin 444, 445.                      |
| - cyclohexen 40.                                                       | — pentan 523.                                       | — naphthalintetrachlorid 387.                   |
| — cyclohexylphenylmethan                                               | — propan 517.                                       | — naphthan 59.                                  |
| 399.                                                                   | — tolylmethan 621.                                  | Chlornitro-acenaphthen 497.                     |
| — cyclohexylpropan 23.                                                 | - tolylpropin 650.                                  | - anthracen 579.                                |
| cyclopentan 4.                                                         | Chlor-ditolylmethan 518.                            | — benzol 180, 182, 183.<br>— benzylbromid 257.  |
| cyclopenten 36.                                                        | — ditolylnaphthylmethan 665.                        | — benzylchlorid 254.                            |
| — cyclopropylpropan 15.<br>— cymol 325, 326.                           | — durol 329.                                        | — cyclohexan 14.                                |
| — dekahydronaphthalin 59.                                              | — fluoren 533.                                      | — dibenzylmethan 517.                           |
| — dekalin 59.                                                          | — fluorenonchlorid 534.                             | - dihydroanthracen 549.                         |
| <ul> <li>diäthylbenzol 327.</li> </ul>                                 | - heptylbenzol 342.                                 | - diphenyl 488.                                 |
| - dibenzofluoren 660.                                                  | — hexabromnaphthalin 449.                           | — diphenylpropan 517.                           |
| dibenzyl 507.                                                          | — hexylbenzol 337.                                  | — fluoren 536.                                  |
| Chlordibrom-äthylfluoren 556.                                          | — hydrinden 377.                                    | — methylbenzylmethan 306.                       |
| — anthracen 578.                                                       | — indan 377.                                        | - methylnaphthalin 463.                         |
| - butylbenzol 318.                                                     | — isoamylbenzol 332.                                | — naphthalin 452.                               |
| - dibenzyl 508.                                                        | — isobutylbenzol 319.                               | — nitrovinylbenzol 371.                         |
| — dihydroanthracen 548.                                                | — isocamphan 67.<br>— isohexylbenzol 337.           | — phenylcyclohexan 397.<br>— phenylmethan 254.  |
| <ul> <li>methylfluoren 551.</li> <li>phenylpropan 305, 306.</li> </ul> | Chlorisopropyl-benzol 307.                          | — phenylnitrophenyläthylen                      |
| — propylbenzol 305, 306.                                               | — cyclopropan 15.                                   | 542.                                            |
| — propyleymol 343.                                                     | — fluoren 561.                                      | — phenylpropan 306.                             |
| <ul> <li>propylisopropylbenzol 339.</li> </ul>                         | - phenylacetylen 418.                               | - propylbenzol 306.                             |
| — propyltoluol 321, 322.                                               | - phenylbuten 398.                                  | Chlornitroso-benzol 171.                        |
| — toluol 239, 240.                                                     | — phenylmethan 319.                                 | — cyclohexan 13.                                |
| — tolylpropan 321, 322.                                                | Chlorjod-benzol 167.                                | — dekalin 93.                                   |
| Chlor-dicyclohexylphenyl                                               | — diphenyl 486.                                     | — dibenzylmethan 517.                           |
| methan 429.                                                            | — nitrobenzol 192.                                  | — diphenylpropan 517.                           |
| — dihydrocaryophyllen 117.                                             | — nitrotoluol 258.                                  | — methylbenzylmethan 306.                       |
| — dijodnitrobenzol 192.                                                | — propyibenzol 306.<br>— toluol 242.                | — nitrotoluol 258.<br>  — phenylpropan 306.     |
| Chlordimethyl-chlormethyl-<br>bicycloheptan 65.                        | Chlor-menthan 28.                                   | — propylbenzol 306.                             |
| — cyclopentan 19.                                                      | — menthen 52.                                       | Chlor-nitrostyrol 369.                          |
| — diphenylbutan 525.                                                   | — mesitylen 315.                                    | — nitrotoluol 251, 252, 253,                    |
| - diphenylmethan 518.                                                  | Chlormethyl-athylbenzol 310.                        | 254.                                            |
| - diphenylpropan 523, 524.                                             | — äthyldiphenylpropan 525.                          | — nitroxylol 286, 295, 302.                     |
| — methylenbicycloheptan                                                | — amylbenzol 338.                                   | — oktahydroanthracen 423.                       |
| 107, 108.                                                              | — anthracen 586, 587.                               | — pentaphenyläthan 711.                         |
| — naphthalin 467, 469.                                                 | — benzylchlorid 300.                                | — pentaphenylcyclopenta:                        |
| — phenyläthylen 381.                                                   | — butylbenzol 333, 334.                             | dien 715.                                       |
| — styrol 381.                                                          | — chlormethylbenzol 300.                            | — pentaphenylxylol 717.                         |
| — triphenylpropan 625.<br>Chlordinitro-benzol 196, 197.                | — cyclohexan 17, 18.                                | — pentylbenzol 331.<br>— pentyltoluol 338.      |
| — cymol 326.                                                           | — cymol 335.<br>— dibenzyl 517.                     | — pentylxylol 342.                              |
| — methylisopropylbenzol                                                | - diphenyl 504, 505.                                | — phenäthyltriphenylmethan                      |
| 326.                                                                   | — diphenylbutan 524.                                | 675.                                            |
| — methylstyrol 373.                                                    | - diphenylmethan 511.                               | — phenanthren 583.                              |
| — naphthalin 456, 457.                                                 | — fluoren 550, 551.                                 | Chlorphenyl-acenaphthenyl-                      |
| — phenylcyclohexan 397.                                                | — isopropylbenzol 325, 326.                         | äthylen 632.                                    |
| — phenylpropen 373,                                                    | — isopropylcyclohexan 28.                           | - acetylen 408.                                 |
| — stilben 542.                                                         | — isopropyleyclohexen 52.                           | - acetylenyldinaphthyl-                         |
| — styrol 371.                                                          | — naphthalin 461, 464.                              | methan 709.                                     |
| — toluol 262, 263, 264.                                                | — phenylbenzylbutan 525.                            | - azid 208.                                     |
| Chlordiphenyl 483.                                                     | — phenylbutan 332.                                  | — benzylmethan 507.                             |

Chlorphenyl-bromphenylnaphthylmethan 663.

butadien 414.

- butan 317. — buten 379.

— butin 413.

- chlorphenylpropan 516.

— cyclohexan 396.

— dimethylphenylnaphthyl= methan 665.

-- dinaphthylmethan 694. dinaphthylpropin 709.

dinitromethan 264.

- diphenylenäthylen 640.

 — diphenylmethyleninden 703.

diphenylylmethan 618.

— fluoren 630. — heptan 342.

— hexan 337.

- naphthyläthylen 612, 613.

— naphthyldiphenylyl\* methan 704.

- naphthylmethan 604. — naphthyltolylphenyl=

methan 705. - nitroisonitromethan 264.

— pentan 331.

— propan 304, 305, 307.

— propen 372, 373.

— tolylmethan 511. - tolylnaphthylmethan 664.

- vinylacenaphthen 632. Chlorpropenylbenzol 372. Chlorpropyl-anthracen 595.

— benzol 304, 305. - cyclohexan 23.

cymol 343.

 diphenylmethan 521. - isopropylbenzol 339.

- phenylmethan 317.

toluol 322.

xylol 335.

Chlor-pseudocumol 313.

— stilben 539.

- stilbendibromid 508.

styrol 367.

- tetrahydronaphthalin 386.

tetralin 386.

Chlortetraphenyl-äthylen

butadien 695.

— dihydrobenzoanthracen

725.- dihydronaphthacen 725. Chlortoluol 224, 226, 227.

Chlortolyl-äthylen 376. – ditolylmethan 625.

— naphthyldiphenylyl= methan 705.

propan 322.

- propen 380, 381. – triphenylmethan 675.

Chlor-tribenzylmethan 624. tribrombenzol 164.

Chlor-tribrombenzyldihydros anthracen 635.

- tribrompropylbenzol 306.

 tribromtoluol 240. -- tricyclen 110.

- trijodbenzol 169.

Chlortrimethyl-athylcyclo= pentan 30.

benzol 315.

bicycloheptan 62, 64, 67.

diphenylmethan 522.

— methylenbicyclohexan 110.

triphenylmethan 625. Chlortrinitro-benzol 205.

diphenyl 493. — naphthalin 458.

toluol 272.

Chlortriphenyl-dihydros anthracen 712.

-- inden 692.

— methan 615. — pentadien 653.

propen 633, 634.

propin 644.

Chlor-trisdiphenylylmethan

– tritvlfluoren 713.

trityltriphenylmethan 717.

— undecanaphthen 32. — vinylbenzol 367.

vinyltoluol 376.

-- xylol 283, 291, 299.

Cholan 361. Cholestadien 431.

Cholestan 361.

Cholesten 406. Cholesterin, Kohlenwasser=

stoff  $C_{15}H_{12}$  aus — 589. Chromacen 495. Chrysen 629.

Chrysofluoren 610. Chrysofluorenyl-bromid 610.

chlorid 610.

dinaphthofluoren 722.
jodid 610.

Chrysogen 628.

Cinnamal-s.a. Cinnamyliden-. Cinnamalchlorid 372.

Cinnamyl-bromid 372.

chlorid 372.

Cinnamyliden-chlorid 372. fluoren 661.

– flugren, polymolekulares 661.

 inden 613. Citralterpen 331.

Cloven 356. Colophen 405.

Conimen 352. Copaen 349.

Crithmen 85. Crotylbenzol 379.

Cuminyl- s. a. Isopropyl= benzyl-.

Cuminylchlorid 326. Cuminylidenfluoren 654. Cuminyltoluol 524.

Cumol 306.

Curcumen 351, 402.

Curcumen hydrochlorid 402. - nitrolbenzylamin 402.

— nitrosat 402.

— trihydrobromid 351.

 trihydrochlorid 351. Cyclen 109.

Cyclobutyl-methylbromid 5.

- methyljodid 5. propan 19.

Cyclodihydromyrcen 54. Cyclofenchen 110.

Cyclogeraniolen 49, 50.

Cyclogeraniolennitrosat 50. Cycloheptadecan 34.

Cycloheptadecen 76. Cycloheptadecylbromid 34.

Cycloheptan 15. Cyclohepten 42.

Cycloheptyl-bromid 15. methylbromid 20.

Cyclohexadecan 34. Cyclohexadien 79, 80, 81.

Cyclohexadiendibromid 80. Cyclohexan 6.

Cyclohexan-cyclohexanspiran 69.

dichlorcyclohexadien= spiran 336.

spirocyclopentan 55. Cyclohexen 37.

Cyclohexen-dibromid 12. nitrosat 40.

Cyclohexenoanthracen 606. Cyclohexen-ozonid 40.

pseudonitrosit 40. Cyclohexenyl-äthylen 81.

- benzol 419. bromid 40.

chlorid 40.

— naphthalin 560. propen 82.

Cyclohexyl-acetylen 81.

acetylenmagnesiumbromid

äthylbromid 20.

äthylen 46. benzol 396.

bromacetylen 81.

bromid 12. butan 25, 26.

 buten 51, 52. butin 83, 84.

butylbromid 26. chlorcyclohexylphenyl\*

methan 429. chlorid 11.

cyclohexen 113, 114.

cyclohexennitrosochlorid 114.

cyclopentenylmethan 114.

Cyclohexyl-dekalin 118. Cyclopentyl-butan 25. Diathyl-benzol 327. butylbenzol 343. butylbromid 25. – dibenzyl 566. - cyclohexan 29. — diphenyl 564. chlorid 4. - diphenyläthylen 600. — jodid 4. - cyclohexenylhydrinden methylbromid 14. 478. - diphenylmethan 566. cyclopenten 50. — diphenylpropan 567. propan 22. toluol 338. dodekahydrofluoren 359. dibenzyl 525. Cyclopropan 3. dihydroanthracen 565. — hexan 32. Cyclopropen 35. diphensuccindadien 622. — hexen 70. Cyclopropendibromid 3. diphenyläthylen 563, 564. - hexin 113. hexylbromid 32. Cyclopropyl-athylbromid 5. hydrinden 400. Cyclohexylidencyclohexan äthylen 37. Diäthyliden-acenaphthen — buten 45. 595. - methylbromid 3. diphensuccindan 622. Cyclohexyl-jodacetylen 81. - penten 47. Diäthyl-mesitylen 343. jodid 13. propen 41. — mesitylen 401. naphthalin 471. - methylbromid 18. Cyclotriakontan 35. naphthinden 562. Cymbopogon caesius, Sesquiperiacenaphthindan 566. methylcyclopenten 114. terpen aus - 351. perinaphthinden 562. methyljodid 18. Cymol 322. phenalin 562. — naphthalin 523. Cyperen 351. phenylbenzyläthylen 566. — oktahydronaphthalin 358. phenyldihydroanthracen --- oktalin 358. — pentan 32. D. phenyljodidchlorid 327. - penten 68, 69. phenylmethan 332. — pentin 111. phenyltolyläthylen 566. Dacren 405. pentylbromid 32. phenyläthylen 422. Dacren-dibromid 360. propyltetralin 403. - phenylchlormethan 399. — hydrochlorid 360. stilben 563. styrol 395. phenylcyclohexyliden= nitrosit 405. styrolnitrosat 395. - nitrosochlorid 405. methan 477. tetrahydroacenaphth= - propan 23. Dehydro-dextropimarin 429. methyldextropimarin 430. hydrinden 478. propen 49. Diathyltetrahydro-cyclo= norcholen 431. -- propin 82. Dekachlortetrahydropervlen pentenoacenaphthen propylbromid 23. 478. styrol 422. 633. - tetrahydronaphthalin 426. Dekacyclen 723. cyclopentenonaphthalin Dekahydro-acenaphthen 114. 427. — tetralin 426. naphthalin 401. — toluol 399. - anthracen 401. naphthhydrinden 427. tritolylpropan 637. — azulen 116 Anm. - cadalin 74. Diathyl-tetralin 401. - xylol 400. — dinaphthyl 567. tetramethylenhydrinden Cyclooctadecan 34. Cyclooctan 20. 427.diphenyl 113, 114. toluol 335. Cycloocten 45. — fluoren 343. trimethylenacenaphthen Cyclopentadecan 33. naphthalin 56. Cyclopentadien 77. pyren 476. trimethylentetrahydro: Cyclopentadienkautschuk 78. reten 404. Dekalen 92. acenaphthen 478. Cyclopentadienyldiphenyl= xylol 341. Dekalin 56, 57. methan 606. Dialin 415, 417. Dekalyl-benzol 427. Cyclopentan 4. naphthalin 567. Diallylbenzol 419. Cyclopentan-cyclohexan= Diamyldiphenyl 529. Dekanaphthen 31. spiran 55. Desoxykessylen 403. Dianthracen 574. - methylcyclopentanspiran Dextroamyrilen 479. Dianthracyl 707. Cyclopenten 35. Dextropimarin 429. Dianthranyl 707, 708. Dianthryl 707. Cyclopentendibromid 4. Di- s. a. Bis-. Diazido-benzol 209. Cyclopentenoanthracen 604. Diacen 550. diphenyl 494. Cyclopentenozonid 36. Diacenaphthenyliden 678. mesitylen 316. Cyclopentenyl-benzol 418. Diacenaphthyliden 678. trimethylbenzol 316. - butylbromid 50. Diäthyl-acenaphthen 523. Diazobenzolimid 207. chlorid 36. acenaphthindan 566. Cyclopentyl-athylbromid 19. — benzol 393. Dibenzal- s. a. Dibenzyliden-. äthylenperinaphthindan Dibenzala cetonketochlorid

benzoinden 562.

bromid 4.

595.

Dibenzal-acetonketochloros bromid 595. anthracen, monomolekus lares und dimolekulares Dibenzenylanthracen, dimoles kulares 703. Dibenzhydryl 673. Dibenzhydryl-acetylen 694. äthylen 684. - anthracen 722. - diphenyl 717. methan 675. Dibenzo-anthracen 662, 667, difluorenyl 716. — difluorenyliden 718, 719. — fluoren 659. fluorenmagnesiumbromid 660. fulven 584. — fulvendibromid 551. — phenanthren 667, 668. pyren 688. rubren 729. stilben 662. Dibenzyl 506. Dibenzyl-acetylen 589. — äthylen 556. - anthracen 696. — benzol 621. - butadien 597. — chlornitromethan 517. — chlornitrosomethan 517. diacetylen 611. dibrommethan 516. — dihydroanthracen 686. dinitromethan 517. diphensuccindadien 710. diphensuccindan 698. Dibenzylencyclobutan 606. Dibenzyl-erythren 597. hexatrien 607. Dibenzyliden- s. a. Dibenzal-. Dibenzyliden-acenaphthen — dihydroanthracen 703. — diphensuccindan 710. — diphensuccinden 712. Dibenzyl-methan 516. — naphthalin 664, 665. - nitrosonitromethan 517. — octatetraen 624. - propan 523. Dibinaphthylenäthen 728. Dibiphenyl 669. Dibiphenyl-s.a. Bisdiphenyl-. Dibiphenyläthan 675. Dibiphenylen äthan 690. athen 699.

- butadien 708.

721.

Dibiphenylylanthracen

Dibiphenylylchlormethan 673. Dibornylen 405. Dibrom-acenaphthen 497. acenaphthentetrabromid 420 - äthylbenzol 278. äthylbenzylidenfluoren 652. - äthyleyelopropan 5. - äthylfluoren 556. äthylidenfluoren 588. — äthyltoluol 310, 311. äthylxylol 328. anthracen 577. anthracentetrabromid 515. azidobenzol 209. benzol 162, 163. benzylbromid 240. benzylchlorid 239, 240. benzylcyclohexan 399. benzylfluoren 632. benzylidenfluoren 641. benzyloktahydroanthras cen 601. bisdiphenylenäthan 691. bisnitrophenyläthan 509. brombenzylidenfluoren 641. butenylbenzol 379. butylbenzol 318, 320. camphan 65, 66. chlorbenzylfluoren 632. chlorbenzylidenfluoren 641. chlornitrobenzyliden= fluoren 642. cinnamylidenfluoren 661. cyclohexan 12, 13. cyclohexen 40. cyclohexylphenylmethan 399. cyclopentan 4. cyclopenten 36. cyclopropan 3. cymol 326. dehydrofluorocyclen 730. dekahydronaphthalin 59, dekalin 59, 60. diäthyldibenzyl 525. diathylxylol 341. - dianthranyl 708. — dibenzofulven 585. — dibenzyl 507, 508. dibenzylmethan 516. - difluorenyl 691. dihydroanthracen 547. dimethoxymenthan 91. Dibromdimethyl-anthracen 593, 594. - cyclohexan 20, 21. - cyclopropan 5.

Dibromdimethyl-diathyl= benzol 341. dibenzyl 521. dihydroanthracen 560. dinaphthyl 653. diphenyl 512, 513. hydrinden 395. isopropyleyelopropen 47. Dibromdinaphthyl 642. Dibromdinitro-benzol 202. dibenzyl 509. dimethyldiphenyl 513. diphenyl 492. diphenylmethan 503. ditolyl 513. hydrinden 378. perylen 659. toluol 266. Dibromdiphenyl 485. Dibromdiphenyl-äthan 508, 510. athylen 540, 545. benzylpropan 624. butadien 590. butan 519, 520, 521. hexadien 596, 597. hexan 525. hydrinden 635. inden 645. methan 503. propan 516, 517. Dibrom-ditetralyliden 607. ditolyl 512, 513. ditolyläthylen 560. fluoren 535. hexahydroanthracen 472. hexamethyldiphenyl 526. hydrinden 377, 378. hydrindylhydrinden 599. isoamylbenzol 332. isopropylbenzol 307. isopropylbenzyliden= fluoren 654. isopropylfluoren 561. jodallylbenzol 374. jodbenzyläthylen 374. jodbenzylidenfluoren 641. jodcyclohexyläthylen 46. jodnitrobenzol 192. jodphenylpropen 374. jodvinylcyclohexan 46. menthan 27, 29. mesitylen 315. Dibrommethyl- s. a. Broms brommethyl .. Dibrommethyl-äthylbenzol anthracen 586, 588. benzylfluoren 636. benzylidenfluoren 649, 650. butylbenzol 332. cyclobutan 5.

| Dibrommethyl-cyclopentan    | Dibrom-stilben 540.                          | Dichlor-benzylanthracendis                       |
|-----------------------------|----------------------------------------------|--------------------------------------------------|
| 14.                         | — tethracen 515.                             | bromid 636.                                      |
| - cyclopropan 4.            | - tetrabenzodifluorenyliden                  | — benzylbenzylidendihydros                       |
| - diphenylpropan 521.       | 728.                                         | anthracen 696.                                   |
| Dibrommethylen-bicyclo=     | tetrahydroanthracen 515.                     | — benzylchlorbenzylidens                         |
| nonan 109.                  | tetrahydronaphthalin 387,                    | dihydroanthracen 697.                            |
| — fluoren 585.              | 388.                                         | _ benzylfluoren 632.                             |
| — oktahydroinden 109.       | tetralin 387, 388.                           | - benzylidenchlorid 234.                         |
| Dibrommethyl-fluoren 551.   | - tetramethylcyclobutan 23.                  | — benzylidenfluoren 640.                         |
| — isopropylbenzol 326.      | tetranitrobenzerythren                       | - benzylmethylendihydros                         |
| — isopropylcyclohexan 27,   | 493, 670.                                    | anthracen 651.                                   |
| 29.                         | — tetranitrodehydrofluoro=                   | — benzylnaphthalin 604.                          |
| _ naphthalin 462, 465.      | cyclen 730.                                  | — bisbromphenyldihydros                          |
| - phenylacetylen 408.       | — tetranitroquaterphenyl                     | anthracen 682.                                   |
| — phenylbutan 332.          | 670.                                         | - bisdichlormethylbenzol                         |
| — phenylpropan 320.         | — tetraphenylbutan 676.                      | 284, 292, 300.                                   |
| — propylbenzol 321.         | — tetraphenylbuten 685.                      | — bisdiphenylylmethan 673.                       |
| — trichlormethylmethylen=   | <u>tetratolylbuten</u> 687.                  | — bistrichlormethylbenzol                        |
| cyclohexadien 311.          | — toluol 239.                                | 293.                                             |
| Dibrom-naphthalin 448.      | — trifluormethylcyclohexan                   | Dichlorbrom-äthylanthracen                       |
| — naphthylmethylfluoren     | 18.                                          | 592.                                             |
| 671.                        | — trimethyläthylbenzol 336.                  | - āthylanthracendibromid                         |
| Dibromnitro-benzol 190.     | — trimethyläthylcyclobutan                   | 560.                                             |
| — benzylidenfluoren 642.    | 25.                                          | — äthylbenzol 278.                               |
| — cyclohexan 14.            | — trimethylbenzol 315.                       | — äthvlnaphthalin 467.                           |
| — dibenzyl 508.             | — trimethylbicycloheptan 65.                 | — anthracen 577.                                 |
| — diphenyl 490.             | — trimethylbicyclohepten                     | — benzol 162.                                    |
| — methylfluoren 552.        | 102.                                         | - benzylidendihydro-                             |
| — phenanthren 584.          | — trinitrodiphenyl 493, 494.                 | anthracen 648.                                   |
| — phenylmethan 257.         | — triphenyläthan 620.                        | — benzylidenfluoren 641.                         |
| — phenylnitrophenyläthan    | — triphenylpropan 623.                       | - brommethylendihydros                           |
| 509.                        | - triphenylpropen 635.                       | anthracen 588.                                   |
| — tetrahydronaphthalin 389. | — xylol 285, 293, 294, 301.                  | - brommethylphenyl=                              |
| — tetralin 389.             | Dibutadien 81.                               | dihydroanthracen 636.                            |
| — toluol 257.               | Dibutyl-benzol 344.                          | - chlorbenzylidendihydro                         |
| Dibrom-oktahydroanthracen   | diphonyl 529.                                | anthracen 648.                                   |
| 424.                        | — diphenyl 528, 529.                         | — diphenylmethan 503.                            |
| - oktahydrophenanthren 425. | — diphenylathan 529.                         | — methylanthracen 587.                           |
| - oktanthren 425.           | — naphthalin 476.<br>— tetraphenyläthan 677. | — nitrobenzol 190.                               |
| - okthracen 424.            | - tetraphenylhexatetraen                     | — phenylanthracen 640.                           |
| - perylen 658.              | 711.                                         | Dichlor-butenylbenzol 379.                       |
| — phenanthren 583.          | toluol 346.                                  | — camphan 64, 65.<br>— chlorbenzylanthracen 647. |
| Dibromphenyl-äthyldiphenyl  | Dicamphanäthan 360.                          | - chlorbenzylbenzyliden=                         |
| 621.                        | Dicamphanyl 359.                             | dihydroanthracen 697.                            |
| azid 209.                   | Dicamphanyläthan 360.                        | - chlorbenzylfluoren 632.                        |
| - bromphenyläthan 508.      | Dichlor-athylanthracen 591,                  | - chlorbenzylidenfluoren                         |
| — butan 318.                | 592.                                         | 640.                                             |
| — buten 379.                | - āthylbenzol 278.                           | - chlormethylanthracen 587.                      |
| — chlorphenyläthan 508.     | - āthyltoluol 309.                           | - cinnamylidenfluoren 661.                       |
| — cyclopentan 394.          | — anthracen 575.                             | - cyclohexan 11, 761.                            |
| — dinitrophenyläthan 509.   | - anthracendibromid 548,                     | - cyclopropan 3.                                 |
| — diphenylyläthan 621.      | 549.                                         | — cymol 326.                                     |
| - hydrinden 555.            | - anthracendichlorid 546.                    | — dekahydronaphthalin 59.                        |
| — indan 555.                | - anthracentetrachlorid 515.                 |                                                  |
| - nitrophenyläthen 508.     | - anthrachinontetrachlorid                   | — dianthranyl 708.                               |
| — propan 305, 307.          | 547.                                         | - dibenzofluoren 660.                            |
| — propenylfluoren 652.      | - azidobenzol 208.                           | — dibenzyl 507.                                  |
| Dibrom-propylbenzol 305.    | - benzhydrylbromid 503.                      | Dichlordibrom-anthracen 578.                     |
| - propyldibrompropylbenzol  |                                              | - benzyldihydroanthracen                         |
| 339.                        | — benzol 153, 154.                           | 636.                                             |
|                             |                                              |                                                  |
| — propylxylol 335.          | - benzotrichlorid 234.                       | — brommethyldihydro≤                             |

Dichlor-isopropylphenyl= Dichlorphenyl-methylendihys Dichlordibrom-dihydroanthracen 654. droanthracen 649. anthracen 548, 549. naphthyläthan 606. methylendihydroanthra: jodbenzol 167. — menthan 26, 28. — naphthylmethan 604. cen 588. menthandiol 104. propen 372. xylol 285. Dichlor-dichlorbenzylfluoren Dichlormethyl-äthyliden: propylidendihydros dihydroanthracen 596. anthracen 653. dichlorbenzylidenfluoren tolylmethan 511. anthracen 586, 587. benzylfluoren 636. Dichlor-pinan 61. 640. propenylbenzol 372. — dichlormethyltrichlor= — benzylidendihydroanthra= cen 652. propylbenzol 305. methylbenzol 292, 301. benzylidenfluoren 649, 650. propylphenylanthracen dihydrodianthranyl 704. 653. chlormethylcyclohexyl= - dihydrodiphenyl 466. stilben 539. heptan 33. Dichlordimethyl-bicyclos – cyclobutan 5. styrol 367. heptan 51. - diphenylmethan 511. tetrahydronaphthalin 386. chlormethylbicycloheptan Dichlormethylenfluoren 584. Dichlormethyl-isopropyl= tetralin 386. 62. - cyclohexadien 81. tetranitrobenzerythren benzol 326. 492, 670. — diphenyl 513; s. a. 514. isopropyldekalin 75. isopropylcyclohexan 26, tetranitroquaterphenyl naphthalin 469. isopropylidendihydro= tetraphenyläthan 674. triphenylmethan 623. tetraphenylbuten 685. Dichlordinaphthyl 642. anthracen 598. tetratolylbuten 687 methylendihydroanthra: Dichlordinitro-anthracen 579. toluol 230, 231, 232. cen 594. — benzol 197, 198, 199. - tolyläthylen 376. phenylanthracen 649. — cyclohexan 14. phenylmethan 278. tribromäthyldihydro-— dianthranyl 708. Dichlor-naphthalin 445, 446. anthracen 560. dibenzyl 508. naphthalintetrachlorid trimethylbicycloheptan dihydroanthracen 549. dimethyldiphenyl 513, 387. 61, 64, Dichlornitro-anthracen 579. trinitrotoluol 272. 514. - diphenyl 492. – azidobenzol 209. — triphenylchlormethan 617. - diphenylmethan 503. — benzol 185, 186, 762. — tritylchlorid 617. - ditolyl 513, 514. — benzylidenfluoren 641, 642. — vinylbenzol 367. perylen 659. — diphenyl 489. vinyltoluol 376. — methylanthracen 588. xylol 283, 291, 300. Dichlor-dinitrosocyclohexan --- naphthalin 452, 453. Dichrysofluorenyl 716. Dichrysofluorenyliden 718. — phenanthren 584. — dinitrotoluol 265. phenanthrendichlorid 550. Dicinnamylidenäthan 620. — dinitroxylol 287, 302. Dicuminyl 528. diphensuccindadien 609. – phenylazid 209. - phenylnitrophenyläthan Dicycloheptenyl 344. diphenyl 483, 484. Dicyclohexadien 398. Dichlordiphenyl-athan 507, 508. toluol 254, 255. Dicyclohexadiennitroso= 510. xylol 286, 287. chlorid 398. - äthylen 545. Dichlor-oktahydroanthracen Dicyclohexanspiran 69. – anthracen 689. - brommethan 503. Dicyclohexen 114. - okthracen 423. Dicyclohexenyl 342. chlormethan 502. dihydroanthracen 681. pentamethylencyclo= Dicyclohexyl 71. Dichlordiphenylenäthylen hexadien 336. Dicyclohexyl-äthan 73. äthylen 115. perylen 657. Dichlordiphenyl-methan 501. phenäthylbromid 278. benzol 428. phenanthren 583. butan 75. pentadien 595. propen 552. Dichlorphenyl-äthylacenaph= cyclohexan 118. Dichlor-ditolyl 513, 514. then 621. cyclohexen 358. ditolyläthylen 559. äthylidendihydroanthras dibenzhydryl 699. - fluoren 533, 534. cen 652. diphenyl 602. - fluorenonchlorid 534. — äthylnaphthalin 606. hexan 76. - anthracen 639. hexahydroanthracen 472. menthan 431. - hydrinden 377. azid 208. - methan 72. benzylanthracen 693. Dichlorisopropyl-benzyl= naphthalin 567. anthracen 654. brombenzylanthracen 693. octan 76.

cyclohexadien 466, 467.

- pentan 76.

- phenylchlormethan 429.

— buten 379.

benzylfluoren 637.

benzylidenfluoren 654.

Dicyclohexyl-phenylmethan tetraphenyläthan 699. - xylol 429, 430. Dicyclopentadien 391. Dicyclopentadiennitroso= chlorid, monomolekulares 391; dimolekulares 391. Dicyclopentyl 55. Difluor-benzol 147. — chlortoluol 230. diphenyl 482. Difluorenyl 690. Difluorenyliden 699. Difluorenyliden-äthan 708. buten 712. xylol 715. Difluorenyl-methan 694. xylol 714. Difluor-methylcyclohexan 17. — nitrobenzol 180. nitrodiphenyl 488.toluol 224. Dihydrindyl 599. Dihydro-abieten 359. — anthracen 545, 550. - aromadendren 117. — benzanthren 605. - benzol 79, 80. benzolkautschuk 80. — cadalin 425. cadinen 115. - camphen 67. camphylbromid 31. - camphylchlorid 30. - camphyljodid 31. — caryophyllen 116, 117. — cedren 117. cinnamylidenfluoren 652. curcumenylamin 402. - curcumenylamin, Acetylderivat 403. — curcumenyltrimethyl= ammoniumjodid 403. cyperen 117. – daoren 359. — dianthranyl 704, 707. dibenzoanthracen 662. dicyclopentadien 330. dicyclopentadiendibromid - diinden 599. dinaphthanthracen 662. - diphenyl 467. — elemen 117. - endocamphen 61.

eudesmen 116.guajen 116.idryl 589, 595.

isocaryophyllen 117.

— naphthalin 415, 417.

inen 117.

- limonen 52.

Dihydro-naphthalin, dimoles kulares 416; polymoleku= lares 416. naphthalinnitrosochlorid 416. naphthalinpseudonitrosit naphthoanthracen 662. pentacen 662. phenanthren 550. phyllocladen 359. pinen 61. pulegen 25. pyranthren 713. reten 565. santen 51. santennitrosit 83. — selinen 116. — terpinolen 54. — tetralanthracen 599. — toluol 81. — verbenen 102. -- xvlol 81. — zibetan 34. zingiberen 115. Diinden 606. Diindendibromid 599. Diisoamylcyclopentan 33. Diisobutylidenacenaphthen Diisopropyl-benzol 339. dibenzyl 528. dihydroanthracen 567. diphensuccindadien 625. diphensuccindan 602. diphenyl 525-526. diphenyläthan 528. Diisopropylidendiphen= succindan 625. Diisopropylnaphthalin 475. Dijod-benzol 168. dimethyldiphenyl 513. dinitrobenzol 202. dinitrodiphenyl 493. diphenyl 486. diphenylbutan 519. diphenylmethan 503. ditolyl 513. ditolyljodidehlorid 513. nitrodiphenyl 490. propylbenzol 306. Dilemen 357. Dimenthen 119. Dimesityl 526. Dimesityläthan 528. Dimethyl-acetylenylbenzol äthvlbenzol 328. äthylbicyclohepten 111. äthylcyclohexen 54. äthylcyclopentan 25.

Dimethyl-athylmethylen= cyclohexan 69. äthvlphenvlmethan 333. - äthylstyrol 395. allylbenzol 393. — anthracen 592, 593. — anthracenoanthracen 704. — anthracylen 592, 604. benzhydrylchlorid 518. benzoanthracen 633 benzocyclohepten 399. benzol 280, 281, 287, 296. benzopentaphen 704. benzosuberan 399. benzosuberen 399. Dimethylbenzyl-acetylen 418. äthylen 392, 393. äthylennitrosat 393. benzol 518. bicyclohepten 475. chlorid 313. Dimethyl-bicycloheptan 51. bicyclohepten 82. bicyclohexan 48. bicyclooctan 61. bicycloocten 96. bisbrommethylbenzol 329. bisbrommethylcvclobutan 23. bischlormethylbenzol 329. brommethylbromäthyl= cyclobutan 25. brommethylenbicyclo= heptan 108. brompropylbenzol 335. butenylbenzol 395. butenylidenfluoren 607. butylbenzol 337, 339. butylbicyclohepten 114. chlorathylbenzol 328. chlorisopropylbutylcyclo= hexan 33. Dimethylchlormethyl-benzol 313. diphenylmethan 522. methylenbicyclohexan Dimethyl-chlorpentylbenzol **342**. chlorpropylbenzol 335. chlorvinylbenzol 381. — cinnamylbicyclohepten 526. cyclogeraniolen 69. cyclohepten 48. cycloheptennitrosochlorid cyclohexadien 81. - cyclohexan 20, 21, 22. cyclohexen 46, 47. cyclohexennitrolpiperidid cyclohexylbenzol 400.

äthylidencyclohexadien

| Dimethyl-cyclopentan 19.                    | Dimethyl-fluoren 556.         | Dimethylphenyl-decatrien                          |
|---------------------------------------------|-------------------------------|---------------------------------------------------|
| — cyclopenten 44, 45.                       | — fulven 303.                 | 476.                                              |
| — cyclopentenylbenzol 421.                  | - hydrinden 395.              | - dekahydronaphthalin 428.                        |
| - cyclopropan 5.                            | - hydrindenohydrinden 599.    | — dekalin 428.                                    |
| <ul> <li>dekahydronaphthalin 71.</li> </ul> | — indenoinden 613.            | - jodacetylen 414.                                |
| — dekalin 71, 72.                           | - isobutylmethylencyclo-      | — methylenbicycloheptan                           |
| — diathylbenzol 341.                        | hexan 72.                     | 475, 476.                                         |
| — dianthranyl 705 Anm.                      | — isopropenylcyclohexen       | - methylenbicyclohexan 474.                       |
| - dibenzhydryl 676.                         | 111.                          | — methylencyclohexan 425.                         |
| - dibenzofulven 594.                        | Dimethylisopropyl-azulen 473. | — propan 333.                                     |
| — dibenzophenanthren 672.                   | — benzol 335.                 | - propargylbicycloheptan                          |
|                                             |                               | 565.                                              |
| — dibenzyl 520, 521.                        | — cyclohexadien 111.          | — propen 393.                                     |
| - dibenzylmethan 523.                       | — cyclohexen 69.              |                                                   |
| — dibromathylbenzol 328.                    | — cyclopentan 30.             | — propin 418.<br>— propylbicyclohepten 477.       |
| — dibrompropylbenzol 335.                   | - dekahydronaphthalin 74.     | Dimethyl-propargylbenzol                          |
| — dicyclohexyl 73.                          | — dekahydrophenanthren        | 1                                                 |
| — dicyclohexylbenzol 429,                   | 404.                          | 418.                                              |
| 430.                                        | — dekalin 74.                 | - propenylbenzol 393.                             |
| — dicyclopentyl 71.                         | — dihydronaphthalin 425.      | — propylbenzol 333, 334, 335.                     |
| - dihydroanthracen 560, 593.                | — hexahydronaphthalin 347.    | — propylbicyclohepten 114.                        |
| — dihydrobenzofulven 420.                   | Dimethylisopropyliden-        | — propylidencyclohexadien                         |
| - dihydrocurcumenylamin                     | bicyclohexan 113.             | 334.                                              |
| 403.                                        | - cyclohexen 111.             | - propylmethylencyclo-                            |
| — dihydrodianthranyl 705.                   | Dimethylisopropyl-naphthalin  | hexan 70.                                         |
| — dihydronaphthalin 420.                    | 473.                          | — rubren 726.                                     |
| — diisopropylidendicyclos                   | oktahydroazulen 116.          | — stilben 557, 558.                               |
| pentanocyclobutan 404.                      | — oktahydrophenanthren        | — stilbendibromid 521.                            |
| — dimethyltetrahydro-                       | 429.                          | — styrol 380, 381.                                |
| naphthdihydrinden 478.                      | Dimethylmethylen-bicyclos     | — styrolnitrosit 380.                             |
| — dinaphthonaphthalin 704.                  | heptan 102, 105, 108, 109.    | — terephthalaldiinden 697.                        |
| — dinaphthyl 653.                           | — bicyclohepten 330, 762.     | — terphenyl 621.                                  |
| — diphensuccindadien 613.                   | - bicyclohexan 83.            | Dimethyltetrahydro-                               |
| - diphensuccindan 599.                      | - cyclohexadien 311.          | acenaphthhydrinden 476.                           |
| Dimethyldiphenyl 512, 513,                  | — cyclohexan 50.              | - cyclopentenoacenaphthen                         |
| 514.                                        | - cyclopentan 48.             | 476.                                              |
| Dimethyldiphenyl-äthan 520,                 | Dimethyl-naphthacen 633.      | - cyclopentenonaphthalin                          |
| 521.                                        | — naphthalin 467, 468, 469.   | 426.                                              |
| — äthylen 557, 559.                         | - naphthoanthracen 671,       | — fluoren 474.                                    |
| — äthylenbromid 521.                        | 672.                          | — naphthalin 398.                                 |
| — äthylennitrosit 559.                      | — oktahydroanthracen 427.     | - naphthhydrinden 426.                            |
| — buten 563.                                | — pentacen 671.               | Dimethyl-tetralin 398.                            |
| - chlormethan 518.                          | — pentaphen 672.              | - tetramethylenhydrinden                          |
| — cyclobutan 564.                           | — phenäthylbicyclohepten      | 426.                                              |
| — dibenzylbutan 677.                        | 476.                          | — tolyläthylen 393.                               |
| Dimethyldiphenylen-äthylen                  | — phenanthren 594.            | — tolylhepten 402.                                |
| 594.                                        | Dimethylphenyl-acetylen 414.  | - triathylmethylbenzol 346.                       |
| — bisjodidchlorid 513.                      | — äthylen 380, 381.           | - trimethylentetrahydro                           |
| Dimethyldiphenyl-erythren                   | — allylidenbicycloheptan      | acenaphthen 476.                                  |
| 597.                                        | 526.                          |                                                   |
| - hexan 528.                                | - amylchlorid 342.            | — triphenylmethan 623.<br>— triphenylmethylbenzol |
| — methan 518.                               | — azid 296, 303.              | 675.                                              |
| — propan 523.                               | — benzofluoren 673.           |                                                   |
| - vinylmethylenbicyclos                     | benzolidoren 675.             | — triphenylpropan 626.                            |
| hexan 626.                                  | - benzyläthylen 561.          | — vinylbenzol 381.                                |
|                                             | - bromacetylen 414.           | Dimyrtenyl 430.                                   |
| Dimethyl-dipren 113.                        | — butan 337.                  | Dinaphthanthracen 655, 667,                       |
| — ditolylbutan 528.                         | buten 395.                    | 668.                                              |
| Dimethylen-acenaphthen 585.                 | — butylbicyclohepten 478.     | Dinaphtho-chrysen 719.                            |
| oktahydroanthracen 523.                     | - chrysofluoren 673.          | — fluoren 659.                                    |
| - oktahydrocyclopenta-                      | — cyclohexan 400.             | — fluorenylbromid 660.                            |
| dienonaphthalin 475.                        | — cyclopentan 399.            | — fluorenylchlorid 660.                           |
| — perhydroanthracen 403.                    | - cyclopenten 421.            | — fluorenyljodid 660.                             |
| - trimethylendekahydros                     | — decadien 428.               | — naphthalin 701.                                 |
| naphthalin 402.                             | — decadienin 524.             | — stilben 662.                                    |

Dinitrodiphenyl-butan 521.

diacetylen 609.

Dmaphthoylbenzil 721. Dinaphthyl 642, 643. Dinaphthyläthan 653. — athylen 662. — butadiin 688. — diacetylen 688. diphensuccindadien 721. - diphensuccindan 716. Dinaphthylen-buten 678. diphenylenäthan 718. Dinaphthyl-methan 650.
— naphthalin 447. Dinitro-acenaphthen 498. — äthylbenzol 280. — anilinomenthen 85. - anthracen 579. azidobenzol 209. azidodimethylbutylbenzol 340. azidonaphthalin 460. - azidotoluol 274. - benzol 193, 195. benzylbromid 265. benzylchlorid 263. — benzylidenchlorid 265. — benzyljodid 266. — bisbromnitrophenyls diphenyl 670. bischlornitrophenyl= diphenyl 670. - bisdiphenylenāthan 691. bisdiphenylenäthylen 700. butylbenzol 321. butylhydrinden 400. butyltoluol 334. — butylxylol 339. — chlorāthylbenzol 280. chlorphenylmethan 264. — chlorpropenylbenzol 373.— cymol 326. — dekalin 60. diäthylxylol 341. - dibenzyl 508. - dibenzylmethan 517. difluorenyl 691. difluorenyliden 700. difluorenylmethan 694. dihydroanthracen 549. Dinitrodimethyl-butylbenzol 339. — diäthylbenzol 341. dinaphthyl 653. -- diphenyl 512, 513, 514. diphenylmethan 518. — naphthalin 469. triphenylmethan 623. Dinitrodinaphthyl 643. Dinitrodiphenyl 490, 491. Dinitrodiphenyl-acetylen 569. äthan 508, 511 - athylen 541-542, 545. benzol 612. - butadien 590.

Dinitrodiphenylenäthan 552. Dinitrodiphenyl-jodonium hydroxyd 191. methan 503. propan 517. Dinitro-ditolyl 512, 513, durol 330. eudalin 471. fluoren 536, 691. fluorocyclen 729. hexamethyldiphenyl 526. hexamethyldiphenyls methan 527. mesitylen 316. Dinitromethyl-benzyliden= chlorid 302. butylbenzol 334. dichlormethylbenzol diphenylmethan 511. fluoren 552. isopropylbenzol 326. naphthalin 463, 466. Dinitro-naphthalin 454, 455, 456. oktahydroanthracen 424. — okthracen 424. pentyltoluol 337. perylen 658. phenäthylchlorid 280. phenanthren 584. phenyläthylen 371. phenylazid 209. phenylcyclohexan 397. phenylditolylmethan 623. — phenylmethan 262. - quaterphenyl 670. rubicen 707. Dinitroso-benzol 171. dinitrobenzol 203. — nitrotoluol 258. — oxybenzylalkohol 261. Dinitro-stilben 540, 541. stilbendibromid 509. stilbendichlorid 508. - styrol 370, 371. styrylnaphthalin 612. terphenyl 612. tetrahydronaphthalin 389, 390. tetralin 389, 390. tetramethylbenzol 330. - tolan 509. toluol 258, 259, 260, 261, trimethylbenzol 316. triphenylmethan 618. vinylbenzol 371. xylol 287, 295, 302.

Dinonenylbenzol 431. Dipenten 89. Dipenten-bishydrobromid 29. bishydrochlorid 28. hydrochlorid 52. Dipentenylbenzol 426. Diphenäthyldibenzyl 677. Diphensuccindan 595. Diphensuccinden 603. Diphenyl 479. Diphenyl-acenaphthylmethan - acetylen 568. äthan 506, 509. Diphenyläthylen 537, 543. Diphenyläthylen, polymeres Diphenyläthylen- s. a. Stilben-. Diphenyläthylen-bromid 510. ozonid 544. peroxyd, polymeres 544. Diphenyl-athylfluoren 684. - allylbromid 555. - anthracen 688 — anthracendihydrid 682. anthracentetrabromid 675. benzhydryläthylen 682. benzhydrylchlorid 673. benzhydrylfluoren 719. benzhydrylidenpentadien benzhydrylnonatetraen benzhydrylpentadien 697. benzofluoren 709. benzofulven 660, 661. benzol 611. benzophenonchlorid 673. benzyläthylen 633, 634. benzylidendihydroanthracen 713. benzylidenhydrinden 696. benzylpropen 636. benzylpropylen 636. benzylpropylendibromid 624 benzyltoluol 675. — bisbrombenzhydrylcyclos butan 720. bisbromdimethylbenz= hydryleyelobutan 721. bischlorbenzhydrylcyclos butan 720. bischlordimethylbenz= hydrylcyclobutan 721. bisdiphenylenäthan 638. bisdiphenylenbutan 722. bisdiphenylyläthan 717. bisdiphenylyläthylen 719. Diphenylbrom-benzhydryl= fluoren 719. butatrien 602.

Diphenyldiphenylmethylen-Diphenyl-propan 516, 517. Diphenylbrom-butenin 602. propen 552, 553, — methan 502. nonatetraen 713. - naphthylchlormethan 663. pentadien 705. 555. propen, dimeres 554. Diphenyl-diphenylyläthylen naphthylmethyl 666. propennitrosochlorid Diphenyl-butadien 589-590. 680. diphenylylmethan 672. 552. butadiin 609. distyryläthan 697. propenpseudonitrosit butan 519, 520, 521. — ditolylbenzoanthracen 726. **552**. — butatrien 602. – ditolylbutadien 697. propylbromid 517. — buten 556, 557, 558. propylchlorid 517. – ditolylnaphthacen 726. — buten, dimeres 559. propylpseudonitrol 517. dodecahexaen 654. - butenin 602. — butin 589. Diphenylen 530. styrylmethan 634. chlormethan 500. terephthalaldiinden 721. Diphenylen-äthan 551. tetrabenzyläthan 718. - äthylen 584. chrysofluoren 709. tetradecaheptaen 666. — cyclobutan 519, 553, 560. athylendibromid 551. tetrahydrodianthranyl cyclobutylidenmethan 595. anthracen 706. 722. Diphenyl-fluoren 679. - cyclohexan 564. tetranaphthyläthan 699. - fluorenyläthylen 694. — decan 529. tetraozonid 482. - decapentaen 636. fulven 612. - hexadecaoktaen 675. tolvlchlormethan 621. decapentaenhexabromid tolylmethan 621. - hexadecen 567. 601. tricyclooctan 607, 621. - hexadien 597. decatetraen 624. — hexadiin 611. triphenylallylinden 722. – diacetylen 609. triphenylmethan 710. diacetylenbishydrobromid - hexan 525. — hexatrien 605. tritylxylol 717. 590. hexatrientetrabromid 563. vinylbromid 545. — dianthranyl 724. dibenzofulven 690. hexen 563, 564. vinylcyclohexan 600. — hydrinden 635. vinylfluoren 694. dibenzyl 675. Diphenylyl-benzofluoren inden 644, 645. dibenzyläthylen 686. dibiphenyläthan 717. — indendibromid 635. 709. jodoniumhydroxyd 167. chrysofluoren 709. dibiphenyläthylen 719. jodidchlorid 486. - dibrommethan 503. – methan 498. Diphenylmethyl-s. a. Benzstilben 680. dichlormethan 501. hydryl-. Dipikryltolylpropan 624. dicyclopentyl 601. Diphenylmethyl-bromid 502. Dipinen 405. difluorenyl 638. chlorid 500. Dipren 84. difluorenvläthan 722. Dipren-bishydrobromid 27. Diphenylmethylen-cyclobutan — difluorenylhexadien 725. 595. bishydrochlorid 27. — dihydroanthracen 680, 681. cyclopentadien 612. Dipropenyl-benzol 419. — dihydroanthranylmethan – dihydroanthracen 693. diphenyl 597. 684. Dipropyl benzol 338. - dihydrofulven 606. — fluoren 690. hexan 565. diphensuccindadien 625. dihydrophenanthren 682. inden 660. diphensuccindan 602. — dinaphthylbenzoanthracen Dipropyliden-acenaphthen 599. tricyclen 626. dinaphthylnaphthacen 729. Diphenyl-naphthalin 660. diphensuccindan 625. diphensuccindadien 707. - naphthylbrommethan 663, — diphensuccindan 697. Distyrol 557. Distyryl 589-590. — diphensuccinden 703. naphthylchlormethan 663, Distyryl-äthan 597. diphenyl 669. - naphthylmethan 663, 664. äthylen 605. diphenylbenzylvinylinden naphthylmethyl 666. benzhydrylidenpentadien — diphenylbromnaphthyl= nitrophenylbenzol 670. octadecadien 602. - benzhydrylmethan 697. methylnaphthylmethyl octadecen 568. - difluorenyläthan 725. Diphenyldiphenylen-äthan octadiin 620. Diterebentyl 404. 682. octan 527. Diterpene 404 406. äthylen 690. - octatetraen 537, 620. Diterpilen 405. octatrien 607. Ditetralyl 601. - methan 679. propan 684. pentan 523. Ditetralyläthan 601. propen 694. penten 561. Ditolyl 512, 513, 514. — phenanthren 690. Diphenyldiphenylmethan 673. Ditolyl-athan 521, 522. Diphenyldiphenylmethylen- phenylacetylenylmethyl — äthylen 558, 559. dihydroanthracen 721. 724. - anthracen 697.

Fluor-brombenzol 161.

Ditolyl-benzol 621. — butan 525. — chlormethan 518. diphensuccindadien 710. — diphensuccindan 698. — diphensuccinden 705. jodoniumhydroxyd 241. — methan 518. — methylchlorid 518. naphthylchlormethan 665. vinylbromid 560. Ditritylacetylen 722. Divinylbenzol, polymeres 414. Dodekahydro-anthracen 345. — dekacyclen 714. — diphenyl 71. diphenylmethan 72. — fluoren 114. — naphthacen 477. quaterphenyl 602. — reten 358. — terphenyl 428. - triphenylen 477. triphenylmethan 428. Durol 329. Durylendibromid 329. Dypnopinalkolen 665. Dysoxylonen 352. Dysoxylonenhydrochlorid 352. E.

Echinopanacen 357. Eikosihexahydrodeka cyclen 666. Eleman 117. Elemazulen 474. Elemen 352. Endocamphen 96. Endomethylen s. bei Methylen -. Ergostan 361. Eucazulen 473. Eudalin 471. Eudesmen 348. Eudesmenbishydrochlorid 75.

#### F.

Fenchan 62, 68. Fenchen 104, 108, 109. Fenchylen 104. Fichtelit 118. Fichtenharzbalsam, Kohlens wasserstoff C<sub>20</sub>H<sub>34</sub> aus Fluoräthylbenzol 276, 277.

Fluoranthen 609. Fluor-benzol 147.

 benzotrifluorid 224. benzylbromid 238.

bromtoluol 238. — chlorbenzol 153. — chlornitrobenzol 185. — dichlorbenzol 155, 156. — dinitrooxydiphenyl 482. diphenyl 482. Fluoren 531. Fluorenanthracen 659. Fluorenonchlorid 534. Fluorenyl-dibenzofluoren 716. dinaphthofluoren 716. Fluorenylidendibenzofluoren 719. Fluorenyl-isopropylbromid isopropylchlorid 561. — methylbromid 551. methylchlorid 550. Fluor-jodbenzol 167. jodnitrobenzol 191. naphthalin 444. - nitrobenzol 180. — nitrodiphenyl 487, 488. — nitrotoluol 250, 251. Fluorocyclen 729. Fluor-pseudocumol 313. toluol 223, 224. trichlorbenzol 156. — trijodbenzol 169. — trimethylbenzol 313. triphenylmethan 615. xvlol 291.

G.

Formylcamphenbromhydrin

Galgantöl, Sesquiterpen aus ---351. Galipen 352. Globol 155. Gossypium, Sesquiterpen aus 352. Guajazulen 473, 474. Guajen 349, 468. Gurjunazulen 473. Gurjunen 352.

H.

Hartit 359.

Hemellitol 311. Hendekanaphthen 32. Heptachlor-cyclohexan 12. xylol 284, 300, 301; s. a. **2**92. Heptadienylbenzol 421. Heptamethyldiphenylmethan **528.** 

Heptyl-benzol 342. bromnitrobenzol 189, 190. toluol 344. Hexaäthyl-benzol 358. hydrinden 406. Hexabenzyläthan 718. Hexabrom-benzol 164. cyclobutan 3. — cyclohexan 13. - diphenyldecadien 601. — diphenylhexan 525. naphthalin 449. tetrahydroanthracen 515. toluol 240. Hexachlor-benzol 157. cvclohexan 11. dihydroanthracen 547. perylen 657.

> tetrahydroanthracen 515. tetrahydronaphthalin 387. — tetralin 387. toluol 234. xvlol 284, 300.

Hexadecylbenzol 360. Hexadekahydro-benzophen= anthren 404. dekacyclen 711.

- triphenylen 404. Hexahydro-acenaphthen 398. anthracen 472, 515.

benzanthren 562. — benzol 6. benzonaphthyläthyl= bromid 426.

benzylacetylen 82. benzylbromid 18. benzylcyclopenten 114.

benzyljodid 18. bisabolen 33. cadalin 348.

— chamazulen 357. cumol 23. cymol 27.

dekacyclen 719. diphenyl 396. durol 30.

hemellitol 24. isodurol 30. mesitylen 24. naphthacen 599.

naphthalin 330. naphthindan 400. peribenzanthren 562. peribenzoa cena phthinden 475.

perinaphthindan 400. perylen 622. phenanthren 472. polystyrol 366. pseudocumol 24. reten 477.

styrol 46. terphenyl 564. toluol 15.

Inden 410.

meres 413.

Inden, tetrameres 412; hexa-

Hexahydro-triphenylmethan Inden-dibromid 377. Isopropenyl-benzol 374. dichlorid 377. cyclopentan 761. 566. - xylol 21, 22. hydrobromid 377. cyclopropan 41. zingiberen 33. — hydrochlorid 377. methylencyclohexan 91. Hexajodbenzol 169. hydrojodid 378. - naphthalin 505. nitrosit 412. Isopropyl-athylidencyclos Hexakisnitrophenylbutin 722. nitrosochlorid 412. Hexalin 330. pentan 54. Hexamethyl-benzol 341. Indeno-anthracen 659. anthracen 596. — diphenyl 526. inden 603. benzol 306. Isopropylbenzyl- s. a. Indenylnaphthalin 629. – diphenylmethan 527. Inen 353. Cuminyl-. Hexanitro-diphenyl 494. Isopropyl-benzylchlorid 326. — hexamethyldiphenyl= Isoamyl-anthracen 600. methan 527. benzol 332. benzylidenfluoren 654. cyclohexan 32. chlorallylbenzol 396. — isopropylphenyldibenzylmethan 626 cyclopentan 30. chlorbutenylbenzol 398. — nitrophenyldibenzylcyclopenten 54. cyclohexan 23. cymol 346. cyclohexen 49. methan 623. cyclohexennitrosochlorid – dihydroanthracen 566. — phenyldibenzylmethan dimethylallylcyclopentan 623. 74. cyclopentan 22. - tolyldibenzylmethan 624. naphthalin 473. cyclopenten 47. - triphenylmethan 618. dihydronaphthalin 421. phenylanthracen 655. Hexaphen 700. diphenyläthylen 561. Hexaphenyl-athan 626. Isobornylan 68. Isobornyl-bromid 65. diphenylmethan 521. — butin 722. chlorid 63. fluoren 560. - hexadiin 724. Isopropyliden-cyclohexan 49. Hexenyl-benzol 395. jodid 66. Isobutyl-benzol 319. cyclopentadien 303. cyclohexan 70. - cyclogeraniolen 72. fluoren 594. Hexinylcyclohexan 113. - hydrinden 420. Hexyl-benzol 337. cyclohexan 26. Isopropyl-methylenbicyclo= cyclohexan 32. – cyclopentan 25. — cyclopenten 50. hexan 96. styrol 400. — diphenyläthylen 564. methylencyclohexen 87. Höchster Anthracenprobe — naphthalin 470. diphenylmethan 523. 574. phenäthylbromid 334. styrol 395. Hofmannit 359. phenäthylchlorid 334. Homo-abietin 430. Isocadinen 348. Isocamphan 67. phenyläthylen 392, 393. — cedrenol 350. phenylanthracen 654. cholan 361. Isocamphodien 330. phenylbrommethan 319. Isocarotin 638. — pimanthren 596. Isocarvestren 84. phenylchlormethan 319. — reten 600. tetraphthen 422. Isocaryophyllen 355. phenylpropin 419. Isocloven 356. propargylbenzol 419. - verbanen 111. Isocloven-hydrobromid 117. styrol 392, 393. xylylenbromid 308. tetrahydronaphthalin 400. Humulen 353. – hydrochlorid 117. Isocrotyl-benzol 380. tetralin 400. Hydnocarpylbromid 75. — toluol 322. toluol 393. Hydrindan 50. Isocyclen 110. xylol 335. Hydrindanthracen 604. Isodacren 405. Isostilben 539. Hydrinden 376. Hydrindeno-hydrinden 595. Isodianthranyl 707. Isozingiberen 347. Isodicyclopentadien-diozonid naphthalin 604. Hydrindyl-äthylbromid 394. J. inden 606. oxodiozonid 392. naphthalin 619. Isodipren 94. Hydro- s. a. Dihydro-, Tetra= Isodiprenhydrochlorid 95. Jodacenaphthen 497. Jodacetylenyl-benzol 408. hydro- usw. Isodurol 329. Isofenchen 104. Hydro-dicamphen 359. cyclohexan 81. naphthalin 530. polyinden 413. Isogurjunen 352. Isolaurolen 47. toluol 409. Isolimonen 91. xylol 414. I. Jod-athylbenzol 279. Isonitro-fluoren 536. - inden 413. amylbenzol 333. Idryl 609. benzofluoren 610. nitrophenylmethan 262. benzol 165. Indan 376. tolylmethan 286, 295, 302.

triphenylmethan 618.

Isophthalaldifluoren 715.

Isopentaphen 667.

benzylacetylen 409.

benzylbromid 242.

benzylchlorid 242.

Jod-benzylfluoren 632. benzylidenfluoren 641. butinylbenzol 414. — butylbenzol 318, 319, 320. — camphan 66. — chlorpropylbenzol 306. chrysofluoren 610. cyclohexan 13. cyclohexylacetylen 81. cyclopentan 4. diäthylbenzol 327. dibenzofluoren 660. — dijodosobenzol 169. — dimethylphenylacetylen 414. — dinitrobenzol 202. — dinitrotoluol 266. — diphenyl 486. diphenylmethan 503. — fluoren 535. hydrinden 378. — indan 378. jodpropylbenzol 306.mesitylen 316. - methylbicycloheptan 48. - methylcyclobutan 5. methylcyclohexan 18. - methylnaphthalin 463. - naphthalin 449, 450. — naphthylacetylen 530. Jodnitro-acenaphthen 498. - benzol 190, 191. diphenyl 490. fluoren 536. — mesitylen 316. — naphthalin 454. — stilben 540. -- toluol 257, 258. trimethylbenzol 316. Jodo-benzol 167. dinitrobenzol 202. Jod-oktahydroanthracen 424. okthracen 424. Jodonitrobenzol 191. Jodoso-benzol 166. diphenyl 486. — nitrobenzol 191. toluol 241. Jodotoluol 241. Jodoxy- s. a. Jodo . Jodoxybenzol 167. Jod-phenäthylacetylen 414. phenanthren 583. phenylacetylen 408. - phenylbutin 414. phenylcyclohexan 396. phenyldiphenyl 612. phenylpropan 306. phenylpropin 409. — propargylbenzol 409. propylbenzol 306. pseudocumol 313. stilben 540. terphenyl 612.

— toluol 240, 241.

Jod-toluoldichlorid 241. – tolylacetylen 409. — trimethyläthylcyclo= pentan 31. - trimethylbenzol 313, 316. trimethylbicycloheptan - trinitrobenzol 207. - triphenylnaphthalin 702. - xylol 286, 294, 302. Jodyl- s. a. Jodo-. Jodylbenzol 167. Jonen 400. Josen 359. Junipen 350. Junipenhydrochlorid 117. Juniperen 402. Juniperus virginiana, Sesquiterpen aus — 350.

#### K.

Kadeöl, Kohlenwasserstoff C<sub>15</sub>H<sub>24</sub> aus — 348.
Kamillenöl, Sesquiterpen aus — 357.
Kauren 405.
Kaurenhydrochlorid 360.
Kessazulen 473.
Kessylen 403.
Kohlenwasserstoffe 3; s. a. unter dem Stichwort "Verbindung".
Koprostan 361.
Koprosten 406.

Laurolen 47. Leukacen 731. Lignin, Kohlenwasserstoffe aus — 33, 73, 75, 337, 398, 422, Lignit s. a. Braunkohle. Lignit, Kohlenwasserstoffe aus — 75, 117, 426, 431. Limonen 88, 89. Limonen-bishydrobromid 29. bishydrochlorid 28. hydrochlorid 52. nitrosochlorid 88. tetrabromid 29. Longifolen 349. Longifolen-hydrobromid 349. - hydrochlorid 349. hydrojodid 349. Lupeylen 479.

#### M.

Machilen 348. Manilakopal, Kohlenwassers stoff C<sub>14</sub>H<sub>22</sub> aus — 345. Manuken 348.

749Melaleuca linariifolia, Kohlens wasserstoff C15H24 aus --Menaphthyl-bromid 462, 464. - chlorid 461, 464. - fluoren 671. Menthadien 84, 85, 86, 87, 88. 89, 91. Menthadiennitrosochlorid 91. Menthan 26, 27. Menthen 52, 53, 54. Menthen-hydrochlorid 54. nitrolbenzylamid 54. nitrolpiperidid 54. - nitrosochlorid 52, 53, 54. Menthyl-bromid 29. chlorid 28. Mesityl- s. Trimethylphenyl-. Mesitylen 313. Metainden 412. Metastyrol 364. Methyl-abietin 430. acetylenylbenzol 409. Methylathyl-benzol 308, 309, 310. benzylbenzol 522. benzylmethan 332. — butylbenzol 343. butyltetrahydronaphthalin 403. cyclohexen 49. cyclohexennitrosochlorid diphenyläthylen 561. - diphenylmethan 522. Methyläthylidencyclohexan= nitrosochlorid 49. Methyläthyl-isoamylbenzol 344. — isobutylbenzol 343. isopropylbenzol 340. — isopropylcyclohexadien 113. isopropylcyclohexen 70. isopropyloktahydro: phenanthren 430. naphthalin 470. — phenanthren 596. — phenyläthylen 392. propenylbenzol 395. propylbenzol 340. - stilben 561.

propenylbenzol 395.
propylbenzol 340.
stilben 561.
styrol 392.
styrolnitrosit 392.
Methyl-amylbenzol 338;
s. a. 337.
anthracen 585, 586.
benzhydrylacenaphthen

675.
— benzhydrylanthracen 696.
— benzhydryldiphenyl 674.
— benzoanthracen 630.
— benzoevelobentan 338

benzocycloheptan 338.
benzol 209, 762.
benzophenonchlorid 511.

Methylcyclohexyliden-cyclo= Methylen-benzylidencyclo Methylbenzyl-acetylen 414. — äthylen 379. hexen 343. hexan 472. diphenylmethan 600. bicycloheptan 81. — anthracen 651. bromid 285, 293, 301.
chlorid 283, 291, 299. Methyl-cycloocten 48. bicyclononadien 391. cyclooctennitrosochlorid bicyclononan 109. bicyclononen 330. — chlornitromethan 306. cyclopentadecan 34. bistriphenylchlormethan -- chlornitrosomethan 306. cyclopentadecen 75. 717. — cyclohexen 422. cyclopentan 14. bistriphenylmethyl 720. — fluoren 636. cyclopenten 41. camphan 112. - heptadien 425. Methylbenzyliden-chlorid 300. cyclopentylbutan 30. cyclobutan 36. - cyclopentadien 505. cyclopropan 3. cyclobutandibromid 5. cymol 335. — fluoren 649. cyclobutandichlorid 5. decenylbenzol 403. inden 604. cyclobuten 79. dekahydronaphthalin 69. cycloheptan 46. Methylbenzyl-jodid 286, 302. cyclohexan 44, 45. naphthalin 606. – dekalin 69. - dextropimarin 430. cyclohexannitrolpiperidid styrol 557. Methyl-bischlormethylbenzol — diäthylbenzol 335. 44. **313**. diäthyldiphenylmethan cyclooctan 51. bisdimethylpropyldiphe= **525**. — cyclopentan 41. nylmethan 529-530.diathylhydrinden 401. cyclopentannitrosochlorid — bornylen 112, 762. diäthylisopropylhydrinden - bromäthylbenzol 311. cyclopropan 35. bromäthylisopropylbenzol diäthylnaphthalin 473. cyclopropandibromid 4. diäthylstilben 566. 340. dekalin 112. brommethylanthracen dibenzoanthracen 669. difluoren 694. dibenzofulven 588. **593.** fluoren 584. — dibenzyl 517. fluoren, polymeres 584. --- brommethylnaphthalin - dibenzylmethan 520. hexahydrobenzyljodid 48. **467, 468.**  dibutylbenzol 346. hexahydroinden 330. bromnitrocamphans dibutyldiphenylmethan anhydrid 67. isopropylidencyclohexan bromphenylcyclohexan 529. 91. dichlormethylbenzol 399. - oktahydroinden 109. - butenylbenzol 392, 393. 300. oktahydrophenanthren butylbenzol 332, 333, 334. dicyclopentanspiran 55. 475. — butylstyrol 398. dihydroanthracen 555. tetrahydroinden 391. - dihydronaphthalin 419. - camphan 70. tetrahydronaphthalin 419. - camphen 112. diisopropyldiphenyl= tetralin 419. camphenilan 62. methan 528. Methyl-fenchen 112. dimethylhexenylcyclo= chloräthylisopropylbenzol fluoren 551. hexen 115. fluorenylidenpenten 607. dimethylhexylcyclohexan – chlordibrompropyliso: fluorenylpentan 566. propylbenzol 343. 33. heptylbenzol 344. - chlormethylisopropyl dimethylhexylidencyclos hexadienylbenzol 421. hexenylbenzol 398. benzol 335. hexan 73. chlormethylnaphthalin dimethylphenylanthracen hexylbenzol 342. 467. hydrinden 390. - chlorpropylisopropyls - dipentyldiphenylmethan indan 390. inden 417, 418. benzol 343.  $5\overline{2}9$ . cinnamylbromid 380, 381. Methyldiphenyl 504. isofenchen 112. cyclen 113. Methyldiphenyl-äthylen Methylisopropenyl-benzol cyclobutan 4. – cyclobuten 36. allylbromid 559. benzylpropylidencyclos — cyclogeraniolen 54. — anthracen 693. hexan 478. - cycloheptan 20. – butan 523. cyclohexen 84, 88, 91. cyclohepten 45. — buten 561, 562. Methylisopropyl-äthyliden= – cyclohexadien 81. dihydroanthracen 684. cyclohexan 70. - cyclohexan 15. - methan 509, 511. anthracen 598. - cyclohexen 42, 43, 44. — methylencyclohexan 600. benzol 322. - penten 563, 564. cyclohexennitrolpiperidid benzylchlorid 335.

- propan 520, 521.

propen 557, 559.

methan 528

Methyl-dipropyldiphenyl-

dodekahydrodiphenyl 72.

cyclohexennitrosat 43.

cyclohexylbenzol 399.

cyclohexylcyclohexan 72.

cyclohexylbutan 32.

bicyclohexan 60.

bicyclohexen 96.

115.

butenylidencyclohexan

chlorallylbenzol 399.

Methylphenyl-benzyläthylens Methyl-trichlordibromathyl= Methylisopropyl-cyclohexa: benzol 311. dien 84, 85, 86, 87. nitrosochlorid 557. benzylideninden 664. cyclohexan 26, 27. — trichlormethylmethylen= brommethan 278. cyclohexadien 311. — cyclohexen 52. butadien 418. - triphenyläthylen 634. — cyclohexylbenzol 325. triphenylbutan, Kalium: - cyclopentan 25. — butan 332, 333. dicyclohexylbenzol 431. buten 392, 393. verbindung 625. butylbromid 333. - triphenylbuten 637. — dihydronaphthalin 422. — triphenylchlormethan 621. dihydrophenanthren 565. chlormethan 277. — cyclohexan 399. triphenylmethan 621. — diphenylmethan 524. undecenylbenzol 404. — cyclohexen 421. hexahydrophenanthren 477. cyclopentan 397. vinylbenzol 375, 376. xylvlenbromid 308. Methylisopropyliden-cyclos — diacetylen 479. Miren 406. hexan 54. dichlormethan 278. Mirenhydrochlorid 360. — fulven 505. cyclohexen 87. oktahydronaphthalin 345. - heptadien 422. Mitsubaen 350. - oktalin 345. - hexadien 421. Moslen 85. Methylisopropyl-isoamyls — hexen 398. Muscen 75. hvdrinden 556 Anm. Myrcen 84. benzol 346. Myrtenyl-benzyl 476. methylencyclohexan 69. — inden 591. naphthalin 471. — naphthyläthylen 619. bromid 101. oktahydrophenanthren 428. — naphthylbuten 623. – phenäthyl 477. phenyl 475. pentan 337. — phenanthren 598. — penten 395. phenylpropyl 478. — phenylcyclohexadien 475. pentylchlorid 337. phenylcyclohexen 426. — styryl 526. — phenyldekahydronaphtha: — propan 319, 320. trimethylenbromid 320. lin 430. phenylmethan 333. Methyl-pimanthren 596. N. propargylbenzol 421. propargylbenzol 414. propin 421. propenylbenzol 380. Nadelholzharze, Kohlen= propylbenzol 321. propylidencyclohexan 72. wasserstoffe C<sub>20</sub>H<sub>32</sub> aus — tetrahydronaphthalin 401. propylisopropylbenzol 405. tetrahydrophenanthren 343. Naphthacen 628. 526. propylisopropyleyelo= Naphthalin 432—443. Naphthalin-dichlorid 439. – tetralin 401. hexen 72. propylisopropylhexadien Methyl-menthadien 111. - diozonid 444. tetrachlorid 386. methylcyclohexenyl= 114. Naphthanthracen 628. heptadien 346. pulegen 111. reten 600. Naphtho-acenaphthen 644. methylcyclohexenylhepten spirocyclononan 55. - anthracen 667, 668. 115. stilben 552, 553, 554.styrol 371, 374, 375, 376. methylcyclohexylheptan — fluoren 659. - naphthacen 700. - styrol, dimeres 563, 565; methylencyclopropen 79. - phenanthren 667, 668. methylpropenylbenzol 393. trimeres 375; tetrameres - triphenylen 701. - myrtenyl 111. 375; pentameres Naphthyl-acetylen 530. hexameres 375; hepta= - acetylenmagnesiumbromid — naphthalin 460, 463. - naphthanthracen 630. meres 375; oktameres 530. naphthyläthylen 505. 375. – azid 459. bromacetylen 530. stvroldibromid 310, 311. — naphthylmethylbromid – tetraäthylisopropyldi: – butan 471. **467, 468.** cyclopentenobenzol 431. cyclohexen 560. naphthylmethylchlorid - tetrahydrodiphenyl 421. – dekalin 567. 467. tetrahydronaphthalin 394. Naphthylenbutadien 585. — nitrophenylbutan 332. - tetralin 394. Naphthyl-fluorenylmethan oktahydroanthracen 425, tetramethylencyclos - hydrinden 619. - pentenylbenzol 395. pentan 55. pentylbenzol 337. – tolyläthylen 380, 381. — inden 629. — tolylbutan 338. — pentyldimethylhexyl\* jodacetylen 530. tolylditolylmethyleninden jodidchlorid 450. cyclohexan 34. - pentylfluoren 566. 706. – methylbromid 462, 464. phenanthren 588. - tolylheptan 345. — methylchlorid 461, 464. Methylphenyl-acetylen 408. tolylpropan 334. — methylfluoren 671. — äthylen 371, 374. tolylpropen 393. — propan 470.

– tribenzylmethan 625.

trichloräthylbenzol 310.

propen 505.

— propin 531.

anthracen 648.

- benzyläthylen 556, 557.

— dinaphthyl 643.

Nitro-diphenyl 487. Nitropseudocumol 313. Neocholesten 406. diphenyläthylen 540, 545. Nitroso-benzol 169. Nitro-acenaphthen 497. — acetylenylbenzol 408. diphenylenäthylen 585. caren 95. - äthylbenzol 279. diphenylmethan 503. dinitrobenzol 202. äthyltoluol 310. ditolyl 514. dinitrotoluol 266. - amyltoluol 338. ditolyläthylen 560. diphenyl 487. fluoren 535, 536. mesitylen 316. — anthracen 578. -- azidobenzol 209. hydrinden 378. — naphthalin 450. indan 378. nitrobenzol 192. - azidomesitylen 316. -- azidonaphthalin 459. inden 413. nitrodibenzylmethan 517. - azidotrimethylbenzol 316. isobornylan 68. nitrodimethylmethylen= — benzoanthracen 629. isonitrochlorphenyl= bicycloheptan 108. — benzol 171—180. methan 264. nitrodiphenylpropan 517. nitrotoluol 258. - benzotrifluorid 251. isonitrophenylmethan 262. Nitrobenzyl-acenaphthen 619. isopropylbenzol 307, 308. toluol 243. jodbenzylidenfluoren 642. trimethylbenzol 316. - anthracen 647. -- bromid 255, 256. mesitylen 316. xylol 294. butan 332. Nitromethyl-benzylbromid Nitro-stilben 540. -- chlorid 252, 253. 302. stilbendibromid 508. - fluorid 251. benzylchlorid 302. styrol 368. benzylidenfluoren 650. styrol, polymeres 369. Nitrobenzyliden-bromid 257. tetrahydronaphthalin 388. --- chlorid 254, 255. — benzylideninden 604. fluoren 641. brommethylbenzol 302. tetraisopropylnaphthalin inden 603. butylbenzol 332. 478. Nitro-benzyljodid 258. — camphan 70. tetralin 388. — bromäthylbenzol 279. camphenilan 62. - toluol **243, 246, 247, 249**, brombenzylidenfluoren chlormethylbenzol 286, **250.** 302.tolylmethan 286, 295, 302. 642.diphenyl 505. - bromphenylmethan 257. - tribromäthylbenzol 280. bromvinylbenzol 369, 370. Nitromethylenfluoren 585. trifluormethylcyclohexan -- butylbenzol 318, 319, 320, Nitromethyl-isopropylbenzol trimethyläthylbenzol 333. butyltoluol 334. isopropylcyclohexadien 87. trimethylbenzol 313, 316. - butylxylol 339. — isopropylnaphthalin 471. trimethylbicycloheptan 62, – naphthalin 465. — camphen 108. chloräthylbenzol 279. – stilben 553, 554. trimethylnaphthalin 471. — chlorbenzylidenfluoren Nitro-naphthalin 450, 451. trimethylphenylbicyclo= - naphthyläthylen 494. heptan 427. nitroäthylbenzol 279. — chlorphenylvinylace\* triphenylmethan 618. trisnitrophenylbenzol 671. naphthen 633. – nitrobenzylideninden 603. — chlorvinylbenzol 369. nitromethylfluoren 552. vinylbenzol 368. - cinnamylidenfluoren 662. nitrophenylmethan 262. — vinylnaphthalin 494. nitrovinylbenzol 370. xylol 286, 294, 295, 302. cinnamylideninden 613. - cumol 307, 308. phellandren 87. Nopinen 102. phenäthylbromid 279. — cyclohexen 41. Nopinen- s. unter Pinen-. cymol 326. phenäthylchlorid 279. Norbornylan 45. phenanthrenchinontetra-— dekalin 60. Norcamphan (Bezeichnung) diäthylbenzol 327. chlorid 550. Nitrophenyl-acetylen 408. dianthranyl 708. Norcamphen 81. diazidomesitylen 316. - äthan 279. Norcamphennitrosochlorid diazidotrimethylbenzol anthracen 640. 82. 316. — azid 209. Norcaran 45. – dibenzylnaphthalin 665. bistrinitrophenylpropan Norcholan 361. dibutylbenzol 344. 623. — dichlorphenyläthylaces – camphan **42**7. naphthen 622. – cyclohexan 396, **397.** 0. dihydronaphthalin 417. dipikrylpropan 623. — dimethylbutylbenzol 339. isonitromethan 262. Octadecylbenzol 361. dimethyldiphenyl 514. jodidchlorid 191. Octenylbenzol 400. dimethyldiphenylmethan — methan 249, 250. — naphthalin 603. Octylbenzol 343. Oktabromdiphenyloctan 528. Oktachlor-naphthalin 446. — xylol 293, 301. — dimethylmethylenbicyclo= nitromethan 262. heptan 108. nitrophenyläthylen 541. - dimethylnaphthalin 469. Oktadekahydrobenzophens — propan 308.

— tolyläthylen 553, 554.

anthren 359.

Oktadekahydro-chrysen 359. dekacyclen 706. Oktahydro anthracen 422. benzanthren 524. - camphoren 34. -- chamazulen 116. - dekacyclen 717. - dinaphthyl 601. -- guajazulen 116. — inden 50. -- kessazulen 116. -- naphthacen 565. - naphthalin 92, 93, 761. peribenzanthren 524. perylen 608. -- phenanthren 424, 425. --- reten 428. – tetralanthracen 477. ()ktalin 92, 93, 761. Oktalin-dibromid 59, 60. -- dichlorid 59. — nitrolpiperidid 93. nitrosochlorid 93. -- ozonid 93. Oktanthren 424. Okthracen 422. Oxidocamphan 65. Oximino-curcumen 402. - curcumen, Benzoylderivat 402. -- curcumenhydrochlorid 402.

P. Parainden 412. Paranthracen 574. Patschuliöl, Sesquiterpen aus — 357. Pentaäthyl-benzol 358. - hydrinden 404. Pentabrom-athyltetrahydros anthracen 523. benzylbromid 240. - benzyltetrahydroanthras cen 624. — isoamyltetrahydroanthra: cen 527. — isopropyltetrahydros anthracen 524. - naphthalin 449. toluol 240. Pentacen 667. Pentachlor-benzol 157. -- benzylchlorid 234. --- butylbenzol 318. dihydroanthracen 547. dimethylcyclohexen 46. — fluoren 534. nitrobenzol 188. phenylbutan 318. – tetrahydronaphthalin 387. — tetralin 387. - toluol 234. — xyiol 292.

Pentacyclopentadien 608. Phenylacetylen-magnesium: Pentadienylbenzol 418. bromid 407. Pentalan 48. myrtenyl 565. Pentamethyl-benzol 336. natrium 407. - quecksilber 407. diphenylmethan 525. Pentamethylencyclohexan 69. Phenylacetylenyldinaphthyl= Pentaphen 667. chlormethan 709. Pentaphenyl-äthan 711. Phenyläthyl- s. Phenäthyl-. - äthyl 712. Phenyl-athylen 362. - chloräthan 711. äthylenmyrtenyl 526. amylchlorid 331. - cyclopentadien 714. cyclopentadienyl 715. amylen 392 cyclopentadienylkalium anthracen 639. 715. anthrylphthalid 573. azid 207. fulven 716. xvlol 717. Phenylbenzhydryl-acetylen Pentenyl-benzol 392. 644. benzocyclobuten 683. cyclohexan 68, 69. - chlorid 618. cyclopropan 47. Pentinylcyclohexan 111. – cyclobutanocyclohexan 655. Pentyl. s. a. Amyl. – hydrinden 686. Pentyl-benzol 331, 332. Phenylbenzhydrylidenhydrinden 696. cyclohexan 32. toluol 337. inden 702. Phenyl-benzhydrylinden 696. Perchlornaphthalin 446. Perhydro-anthracen 115. benzofluoren 669. — benzofulven 603. - fluoren 114. benzohydrinden 619. inden 50. - benzophenonchlorid 619. phenylfluoren 359. phenylnaphthalin 118. Phenylbenzyl-äthylen 552, triphenylen 359. #thylenbromid 516. tritan 118. Peri-benzanthren 610. — anthracen 693. bromid 504. cyclocamphan 110. cyclohomocamphan 113. buten 561. — naphthan 505. chlorid 504, 505. naphthindan 505. chlormethan 507. naphthinden (Bezifferung) dihydroanthracen 684. - fluoren 682. 537. trimethylennaphthalin Phenylbenzylideninden 661. Phenylbenzyl-inden 650, 651. 505.Pervlen 655. penten 563. Petroleum, Kohlenwassers Phenyl-bisdimethylphenylstoffe aus — 32, 34, 35. methan 626. Phellandren 86, 87. bisdiphenylylmethan 710. bistrinitrophenylpropan Phellandrennitrosit 86, 87. Phenäthyl-acetylen 413. 623. bromacetylen 414. bromdinitromethan 266. bromnitromethan 257. bromid 278. chlorid 277. bromphenylnaphthyl= diphenyl 621. chlormethan 663. Phenäthylidenfluoren 649. bromphenylnaphthyl: Phenathyl-jodacetylen 414. methyl 666. jodid 279. butadien 414. butan 317, 319. phenylpropyläthylen 565. buten 378, 379, 380. tetrahydronaphthalin 564. butin 413. tetralin 564. triphenylchlormethan 675. butylbromid 318, 319. butylchlorid 317. Phenanthren 579. — butyltetrahydronaphtha: Phenanthrendiozonid 583. lin 567. Phenheptamethylen 394.

- camphan 427.

- chloracetylen 408.

camphen 475, 476. camphenyläthylen 526.

Phenoktalin (Bezeichnung)

Phenosetrichlorhydrin 146.

Phenylacetylen 406.

Phenylendomethylencyclos

Phenylen-naphthalin 609.

595.

tetrahydronaphthalin

hexylidenmethan 472.

Phenyl-chlorbenzylideninden Phenyl-fluoren 630. Phenyl-propin 408. fluorenyl 638. propylbromid 305. 661. chlornitromethan 254. fluorenylidenheptatrien propylchlorid 305. -- chlorphenylpropen 516. 680. propylfluoren 637. fluorenylpropan 637. propylhydrinden 564. -- chrysofluoren 669. — heptadien 421. propylidenfluoren 652. - cyclogeraniolen 425. --- cyclohexadien 467. heptan 342. propyljodid 306. -- cyclohexan 396. heptylchlorid 342. stilben 630. -- cyclohexen 419, 420. hexadecan 360. styrol 543. -- cyclopentan 393. hexan 337. styrylacetylen 602. hexen 395. cyclopenten 418. tetrahydronaphthalin — dekalin 427. — hexylchlorid 337. -- dibenzoanthracen 709. — hydrinden 555. tetralin 560. — dibenzofluoren 701. - indan 555. tetralylbutan 567. dibenzofulven 640. inden 585. – toluol 504. - dibenzyläthylen 636. isobutylchlorid 320. Phenyltolyl-acenaphthenyl--- dibenzylmethan 623. --- isonitromethan 250. methan 675. äthylen 553, 554, 555. dibenzylpropan 625. isopropylchlorid 304, 307. - dibromnitromethan 257. — anthracen 693. -- isopropylkalium 307. - dihydroanthracen 631. chlormethan 511. jodacetylen 408. - dihydrodibenzoanthracen - jodidchlorid 166. dichlormethan 511. — menthadien 475. dihydroanthracen 684. dihydronaphthalin 590. menthen 426. hexen 566. - dimethylphenylnaphthyl: methan 511. — methylencyclohexyliden: naphthylbrommethan 664. chlormethan 665. methan 472. – dinaphthofluoren 701. methylenhexen 421. naphthylchlormethan 664. - dinaphthylbrommethan naphthalin 602, 603. naphthylmethan 664. Phenyl-triacetylen 568. Phenylnaphthyl-acetylen 628. 694. äthylen 612, 613. dinaphthylchlormethan triphenylmethan 672. 694.anthracen 712. tritolylpropin 697. – dinaphthylmethan 694. butan 607. tritylacetylen 691. - dinaphthylmethyl 699. chlormethan 604. undecen 403. - dichlormethan 604. dinitromethan 262. Phenylvinyl- s. a. Styryl-. — dinitronaphthyläthylen - diphenylylbrommethan Phenyl-vinylcamphen 526. 612. 704. xylol 512. diphenyl 611. diphenylylchlormethan Phyllocladen 405. Phenyldiphenylen-äthylen 704. Phyllocladen-hydrochlorid 640. ketonchlorid 604. 360. butadien 661. — methan 604. nitrosit 405. – hexatrien 671. phenylbromphenylnaph: nitrosochlorid 405. — hexatrientetrabromid 655. thylmethylphenylmethyl Pikryl-azid 209. — methan 630. bromid 207. — methyl 638. propen 619. chlorid 205. octatetraen 680. tolylphenylchlormethan jodid 207. Phenyldiphenyl-methan 618. 705. tolyläthylen 554. methylenhydrinden 696. Pimanthren 594. – tolylphenylmethan 705. - methyleninden 702. tolylphenylmethyl 706. Pinabietin 429. Phenyldiphenylyl-äthylen Phenyl-nitrobenzylidennitros Pinan 61. Pinen 97, 101, 102. 631. methan 541. – äthylennitrosit 631. nitroisonitromethan 262. Pinen-bromhydrat 65. chlormethan 618. nitromethan 249, 250. chlorhydrat 62 Anm. dichlormethan 619. octadecan 361. chlorhydrin 104. methan 618. octan 343. dibromid 65. Phenyl-dipikrylpropan 623. octen 400. dichlorhydrin 104. ditolylmethan 623. pentadien 418. dichlorid 64, 100. Phenylenbis-dibenzofulven pentadienylidenfluoren hydrobromid 65. **715**. 671. hydrochlorid 100; s. a. pentadiin 479. 62 Anm – methylbenzofulven 697. — nonen 431. pentan 331, 332. hydrojodid 66. penten 426. penten 392. jodhydrat 66.

pericycloapocamphan 474. propan 303, 306.

propargylbromid 408.

propen 371, 373, 374.

propenylfluoren 652.

nitrosochlorid 101.

Pinonenhydrochlorid 94.

ozonid 104.

Pinolen 110.

Pinonen 93.

aus — 350. aus - 349. Pinus Pinea, Sesquiterpen aus - 349. Pirylen 79. Pirylentetrabromid 79. Pittosporum undulatum, Polyacenaphthylen 530. Polybenzyl 762. Polycylopentadien 78. ozonid 78. ozonid 331. Polyinden 412. Polystyrol 364. Populen 351. Populen-hydrobromid 351. hydrochlorid 351. Prehnitol 329. Propargyl-benzol 408. - cyclohexan 82. - cymol 421. - naphthalin 531. toluol 414. – xylol 418. Propenyl-allylbenzol 419. - benzol 371. cyclohexen 82. toluol 380. — xvlol 393. Propinyl- s. a. Propargyl-. Propinylbenzol 408. Propyl-anthracen 595. benzol 303. — benzylbenzol 521. benzylchlorid 322 - benzylideninden 607. butylbenzol 342. — cyclobutan 19. - cyclogeraniolen 70. — cyclohexan 23.

l'inus halepensis, Sesquiterpen | Pinus maritima, Sesquiterpen Sesquiterpen aus — 352. Polycyclopentadien-nitrosit78. — oxyd 78. Polydihydrodicyclopentadien = - cyclohexen 48, 49. cyclohexennitrolpiperidid 48. - cyclohexennitrosochlorid -- cyclopentan 22.

 cyclopenten 47. --- evmol 343. --- dihydroanthracen 562. - diphenyläthylen 561. diphenylchlormethan 521. diphenylmethan 521. isopropylbenzol 339. — menthadien 114. - myrtenyl 114. phenylanthracen 653. phenylbrommethan 318. puenylchlormethan 317. - pseudocumol 341.

Propyl-styrol 392. — toluol 321. xylol 334, 335. Pseudo-amylbenzol 333.

butvlbenzol 320.

— cholestan 361. — cholesten 406.

— cumol 312. - rubren 726.

xylidin 299.

Pulcgan 25. Pyranthren 713. Pyren 609.

Quaterphenyl 669. Quinquiphenyl 709.

R.

Reten 598. Rhodacen 714. Rhodien 357. Rohcaryophyllen 353. Rohxylol 280. Rubicen 706. Rubren 725.

RÜTGERS-Methode (zur Ans thracenbestimmung) 574.

S. Sabinen 96. Sabinenbishydrochlorid 96. Salven 68. Sandarakharz, Kohlenwasser≈ stoff C<sub>20</sub>H<sub>32</sub> aus — 406. Sandelholzöl, Sesquiterpene aus - 348, 352. Santalen 349. Santen 82. Santen-nitrosat 83. - nitrosit 83. nitrosithydrochlorid 83. Sapotalin 470. Schafgarbenöl, Sesquiterpen aus - 357. Selinen 348. Selinenbishydrochlorid 75. Sequojen 537. Sesquiterpene 345—358; s. a. Verbindung  $C_{15}H_{24}$ . Sexiphenyl 716. Silvestren 84. Silvestrenbishydrochlorid 26, 27. Simonellit 426. Sitostan 361. Sitosten 406. Smyrnium perfoliatum, Kohs

aus - 357.

Spinacen, Kohlenwasserstoff C<sub>10</sub>H<sub>18</sub> aus — 68. Spirocyclodecan 55. Spiropentan 36. Steinkohle, Kohlenwasser stoffe aus - 34, 76, 342, Steinkohlenurteer, Kohlenwasserstoff C<sub>20</sub>H<sub>16</sub> aus — 633. Stigmastan 361. Stigmasterinchlorid 431. Stilben 537. Stilben-dibromid 508. - dichlorid 507. — hydrochlorid 507. — nitrosit 539. – pseudonitrosit 539. Styroflex 366. Styrol 362.

Styrol-dibromid 278.

Styryl-benzofulven 613.

cyclohexan 422.

– naphthalin 612.

Suberan 15.

Suberen 42.

— ďibenzofulven 661.

dichlorid 278.

T.

Tetrabenzyl-benzol 711. — butan 677. - methan 676. Tetrabrom-acenaphthen 497. lenwasserstoff C10H16 — äthyltoluol 311. aus — 110; Sesquiterpen

Terephthalaldifluoren 715. Terpene 83. Terphenyl 611. Terpinen 85. Terpinen-bishydrochlorid 28. – nitrolanilid 86. nitrolpiperidid 86. - nitrosat 86. nitrosit 85. nitrosochlorid 86. Terpinolen 87. Tetanthren 515. Tethracen 514. Tetraäthyl-ammonium 761. benzol 344. hydrinden 404. tetra hydrocyclopenteno: naphthalin 431. tetrahydrodianthranyl 699. tetrahydronaphthhydrin= den 431. tetramethylenhydrinden 431. Tetrabenzo-difluorenyl 727. difluorenyliden 728.

— anthracen 578.

— benzol 164.

Tetrachlor-naphthalin 446. Tetrabrom-cyclohexan 13. -- nitrobenzol 187. – dekahydronaphthalin 60. nitrodihydrophenanthren — dekalin 60. - dibiphenylenbutadien 550.709. nitrodiphenyl 489. mitrotoluol 255. – dicyclohexyl 71. difluorenyl 691. perylen 657. - phenylbutan 317. — diphenyl 486. - phenyldihydroanthracen - diphenylanthracen 690. — diphenylbutan 519. 631. — diphenylhexen 563. pyren 610. dipropylbenzol 338, 339. tetrahydronaphthalin 386. — fluorocyclen 729. — tetralin 386. — menthan 29. -- tetraphenyläthylen methyläthylbenzol 311. 679—680. — methylisopropylcyclo-- tetraphenylbutan 676. – tetratolvibutan 677. hexan 29. - toluol 233, 234. — naphthalin 449. - xylol 284, 292, 300. - nitronaphthalin 453, 454. - pentylbenzol 331. Tetracyclo-pentadien 567. phenylfluorenylpenten - squalen 432. Tetradekadydro-anthracen 655. phenylpentadien 418. 115. phenylpentan 331. pentacen 567. phenylpropan 306. Tetrafluor-diphenyl 483. propylbenzol 306. toluol 224. — tetrahydrodiphenyl= Tetrahydro-acenaphthen 420. anthracen 514, 515. anthracen 675. - tetramethylencyclohexan atractylen 74. benzol 37. — tetraphenyläthylen 680. bisabolen 73. - tetraphenylbutan 676. cadinen 74. — tetratolylbutan 677. cumol 49. – xylol 285, 294, 302. cymol 52. desoxykessylen 117. Tetracen 628. Tetrachlor-äthyltoluol 309. - dianthranyl 697. – anthracen 576. - dianthryl 697. — benzol 156, 157. dicyclopentadien 109. — bisbrommethylentetra: — dinaphthyl 622. — diphenyl 419. hydrodianthranyl 588. bischlormethylbenzol 284. — durol 54. — elemen 73—74. bisdichlormethylbenzol 293, 301. elemylchlorid 33. eudesmen 74. butylbenzol 317. - fluoranthen 595. - camphan 63. — dekacyclen 723. isogurjunen 75. – dibenzyl 507. kessylen 117. machilen 74. — dibiphenylenbutadien **709**. methylisopropylphen= — dibromtetrahydros anthren 526. naphthalin 388. naphthacen 606. - naphthalin 382. dibromtetralin 388. dihvdroanthracen 546. - naphthindan 422. dimethyltriphenylmethan Tetrahydronaphthyl-623.s. Tetralyl-. dinitrobenzol 201. Tetrahydro-perinaphthindan — diphensuccindan 595. 422. diphenyl 484. phenanthren 515. — diphenyläthan 507. pseudocumol 50.

diphenyldihydroanthracen

hydrindenohydrinden 595.

hexylcyclohexan 35.

— methylpentyldimethyl=

682.

- fluoren 534.

reten 526.

— selinen 74.

- toluol 42, 43.

tetracyclopentadien 478.

tetralanthracen 565.

- tricyclopentadien 402.

Tetrahydro-xylol 46, 47. zingiberen 346. Tetraisopropyl-benzol 358. naphthalin 478. Tetrakis-bromphenyläthylen --- butylacetylenyldiphenyl: äthan 678. – chlorphenyläthylen 679 bis 680. -- diphenylyläthylen 728. - diphenylylbutan 728. — nitrophenyläthan 674. – nitrophenylpropin 691. Tetralanthracen 606. Tetralin 382. Tetralyl-äthylbromid 397. - methylchlorid 394. Tetramethyl-athylidencyclos hexadien 341. anthracen 598. — benzol 329. bicycloheptan 70. -- bicyclohepten 111, 112, 762. brommethyleyelopentan 31. — cyclohexan 30, — cyclohexen 54. — dibenzyl 525. -- dibenzyläthan 528. — dihydroanthracen 565, 598. diphenyl 522. — diphenylbutan 528. — diphenylhexan 529. – ditolyläthan 528. Tetramethylen-anthracen 606. bistriphenylchlormethan 718.bistriphenylmethyl 720. — cyclohexan 55. dihydroanthracen 599. hexahydroxylylenbenzol 477. -- hydrinden 422. Tetramethyl-methylenbicyclohexan 113. methyleneyelohexadien 336. methyleneyclohexan 69. -- naphthalin 471. styryleyelopentan 427. tetrahydrodianthranyl 698. tetrahydrodicyclopen= tenonaphthalin 478. tetraphenylhexan 677. triphenylmethan 626. triphenylmethylammos nium 627. Tetranaphthyläthylen 726. Tetranaphthylencyclooctas dien 729.

#### REGISTER

- tetralin 403.

| Tetranitro-benzol 207.                                                         |
|--------------------------------------------------------------------------------|
| — difluorenyl 691. — dimethyldiphenyl 512.                                     |
| dimethyldiphenyl 512.<br>diphenyl 494.                                         |
| - diphenylmethan 503.                                                          |
| — dinhenylpentan 523                                                           |
| — fluorocyclen 729.<br>— hexamethyldiphenyl 526.                               |
| - hexamethyldiphenyl                                                           |
| methan 527.                                                                    |
| — naphthalin 459.<br>— perylen 659.                                            |
| — stilben 542, 543.                                                            |
| — toluol 273                                                                   |
| — triphenylbenzol 671.<br>Tetraphenyl-äthan 673, 674.                          |
| – äthylen 679.                                                                 |
| - äthylenchlorid 674.                                                          |
| <ul><li>äthylfluoren 720.</li><li>allen 692.</li></ul>                         |
| — allennitrosit 692.                                                           |
| — allyl 688.                                                                   |
| <ul><li>benzoanthracen 725.</li><li>benzol 709.</li></ul>                      |
| - benzylidencyclopentadien                                                     |
| 716.                                                                           |
| <ul> <li>bisphenylacetylenyläthan</li> <li>724.</li> </ul>                     |
| - butadien 695.                                                                |
| butan 676.                                                                     |
| - butatrien 701, 702.                                                          |
| <ul><li>butatrien, dimeres 702.</li><li>buten 684, 685.</li></ul>              |
| - butenozonid 685.                                                             |
| - butin 694.<br>- chinodimethan 712.                                           |
| — cyclobutan 686.                                                              |
| cyclohexadien 705.                                                             |
| cyclopentadien 704.<br>decadien 699.                                           |
| — dibenzylbutan 718.                                                           |
| — dihydroanthracen 719.                                                        |
| - dinaphthyläthan 666                                                          |
| - erythren 695.                                                                |
| heptacyclen 728, 730.                                                          |
| — hexan 677.<br>— methan 672.                                                  |
| — naphthacen 725.                                                              |
| — nonadien 699.<br>— octadien 698.                                             |
| - pentatrien 704.                                                              |
| <ul><li>pentatrien 704.</li><li>propadien 692.</li></ul>                       |
| — propan 675.<br>— propen 682, 683.                                            |
| - propen 682, 683.                                                             |
| ruben 725.                                                                     |
| <ul> <li>tetrahydrodianthryl 728.</li> <li>truxilldioldibromid 720.</li> </ul> |
| - truxilldioldichlorid 720.                                                    |
| Tetraphthen 420.                                                               |
| Tetraphthyläthylbromid 425.<br>Tetratolyl-äthylen 687.                         |
| - butadien 698.                                                                |
| — butan 677.                                                                   |
|                                                                                |

Tetratolyl-butatrien 706. Triathyltetramethylen: buten 687. hydrinden 429. — butin 698. Triazido-mesitylen 317. trimethylbenzol 317. truxilldioldibromid 721. truxilldioldichlorid 721. Triazo- s. Azido-. Thuian 60. Tribenzo-anthracen 701. Thujen 96. — difluorenyl 722. Thujopsis dolabrata, Sesqui-- difluorenyliden 724. terpene aus - 350; Koh-Tribenzyl-äthan 625. lenwasserstoff C20H32 — brommethan 624. aus — 406. Thymianöl, Kohlenwasser chlormethan 624. — dekacyclen 731. Tribenzylenbenzol 701. stoff  $C_{10}H_{16}$  aus — 110. Tribenzylmethyl-bromid 624. Thymyldekalin 430. T. N. T. 268. - chlorid 624. Tolan 568. Tribiphenyl-benzol 724. Tolan-dibromid 540. - chlormethan 717. tetrachlorid 507. — methan 717. — methyl 718. Tolit 268. Tribrom-athylanthracen 592. Toluol 209—223, 762. Toluol, Substitutionsprodukte — äthvlbenzol 278, 279. — anthracen 578. 223-274. azidobenzol 209. Tolyl-acetylen 409. — äthylbromid 308, 309, 311. benzol 164. — äthylchlorid 308, 310. benzylanthracen 647. - äthylen 375, 376. benzylchlorid 240. – aziď 273. — butylbenzol 318. - bromacetylen 409. — dibenzyl 508. dihvdrophenanthren 550. — butan 333. – cyclohexan 399. dinitrobenzol 202. — dinitrostyrol 371. – dekalin 427. ditolylchlormethan 625. diphenyl 486. — diphenyläthan 510. heptan 344. hydrinden 560. — diphenylbuten 556, 557. inden 591. ditolvläthan 522. isonitromethan 286, 295, — hemellitol 312. 302. — isoamylanthracen 600. - jodacetylen 409. isopropylanthracen 596. jodidehlorid 241. jodbenzol 168. mesitylen 315. — naphthyldiphenylylchlor: methylfluoren 552. methan 705. - nitromethan 286, 295, 302. - methylhydrinden 390. pentan 337. — naphthalin 448. — nitrobenzol 190. pentylchlorid 338. nitrodiphenyl 490. --- propan 321. - propen 380, 381. nitronitrovinylbenzol 371. propin 414. nitrosobenzol 171. styrol 555. perylen 658. phenylazid 209. -- trijodäthylen 376. phenylbenzhydrylbenzo: triphenylchlormethan 675. triphenylmethan 674. cyclobuten 683. phenylpropan 306. — triphenylmethyl 678. triphenylmethylchlorid — propylbenzol 306. pseudocumol 313. 675. Tri 268. — tetrahydronaphthalin 388. Triäthyl-benzol 340. - tetralin 388. hydrinden 402. toluol 240. mesitylen 346. trifluormethylevelohexan methylxylol 346. trimethylbenzol 312, 313. — tetrahydrocyclopentenos naphthalin 429 315. trinitrobenzol 207. tetrahydronaphthalin 403. - triphenylmethan 618. tetrahydronaphthhydrin= Trichlor-athyltoluol 309, 310. den 429.

anthracen 576.

Trichlor-anthracendichlorid — benzol 156. - benzylidenchlorid 234. bisdichlormethylbenzol 284, 292, 300. bromanthracen 577. - brombenzol 162. — bromxylol 285. — butenylbenzol 379. — camphan 63. – dekacyclen 723. dibromäthyltoluol 311. dichlormethyltrichlors methylbenzol 293, 301. dimethylbenzol 284; s. a. Trichlorxylol. — dinitrobenzol 199, 200, 201, - dinitrodihydroanthracen 549. — dinitrotoluol 265. - diphenyl 484. -- diphenyläthan 510. -- diphenylmethan 502. - ditolyläthan 522. -- fluoren 534 -- mesitylen 315. - methylanthracen 587. - naphthalin 446. nitrobenzol 186, 187. — nitrobenzylchlorid 255. nitrodiphenyl 489. — nitroxylol 287. - phenylanthracen 639. - phenylbuten 379. — pinan 62. styrol 367. — tetrabromtrimethylevelo= hexadien 82. – toluol 232, 233. trimethylbenzol 315. — trinitrobenzol 206. trinitrotoluol 272. triphenyläthan 620. — triphenylmethan 617. vinylbenzol 367. - xylol 284, 292, 300. Tricyclen 109. Tricyclendichlorid 64. Tricyclenylchlorid 110. Tricyclohexyl-brommethan 118. - methan 118. - methylbromid 118. Tricyclooctan 82, 274. Tricyclopentadien 475. Tricyclopentenobenzol 474. Tricyclotrimethylenbenzol 474. Tricyclylchlorid 110. Trifluor-benzol 148. dibrommethylcyclohexan diphenyl 483.

Trifluor-methylcyclohexan Trimethyl-phenyläthylen 393. 17, 761. phenylbicycloheptan 427. phenylcyclohexan 401. methylcyclohexen 44. nitrodiphenyl 488. phenylhydrinden 565. phenylmethan 320. nitrotoluol 251. toluol 224. propylbenzol 341. Triisopropylbenzol 346. Trijod-allylbenzol 374. styrol 393. tetrahydronaphthalin 400. benzyläthylen 374. tetralin 400. triäthylbenzol 346. nitrobenzol 192. nitrotoluol 258. triphenyläthan 626. triphenylchlormethan 625. Trijodosobenzol, salzsaures triphenylmethan 625. Salz 169. triphenylmethyl 627. Trijod-phenylpropen 374. vinylcyclopentan 55. styrol 368. — vinylbenzol 368. Trinaphthylen-benzol 723. vinyltoluol 376. phenylenäthen 724. Trinitro-athyltoluol 310. Trilit 268. Trimethyl-acetylcyclopentan: äthylxylol 328. azidobenzol 209. carbonsäure 112. benzol 203. äthylbenzol 333, 336. äthylidencyclohexadien benzotrichlorid 272. 335. benzylbromid 272. — allylbenzol 395. benzylchlorid 272 butylhydrinden 400. - anthracen 596. benzol 311, 312, 313. butyltoluol 333. butylxylol 340. benzylchlorid 329. - bicycloheptan 60, 61, 62, cyclohexylxylol 401. cymol 327. 67, 68. - bicyclohepten 93, 94, 97, dihydroanthracen 550. 101, 102, 104, 105, 108. dimethyläthylbenzol 328. bromäthylcyclopentan 31. dimethylbutylbenzol 340. dimethyldiphenyl 512. — chloräthylcyclopentan 30. chlormethylbenzol 329. dimethylisopropylbenzol — cyclohexan 23, 24. 335. cyclohexen 49, 50, 761. dimethylnaphthalin 468, cyclohexylbenzol 401. 469. cyclohexylmethan 26. diphenyl 493. cyclopenten 47. diphenylbenzol 612. cyclopropan 15. menthen 85 diathylbenzol 343. mesitylen 316. dichloräthylbenzol 336. methylisopropylbenzol 327. methylstilben 554. dihydronaphthalin 422. diphenylmethan 522. naphthalin 457, 458. Trimethylen-anthracen 604. pentyltoluol 337. – hexahydroanthracen 524. Trinitrophenyl- s. Pikryl-. hexahydronaphthalin 400. Trinitro-pseudocumol 313. — naphthalin 505. stilben 541, 542. - phenanthren 605. terphenyl 612. - tetrahydroanthracen 562. tetrahydronaphthalin 390. - tetrahydronaphthalin 422. tetralin 390. toluol 266, 267, 268, 272. trimethylbenzol 313, 316. — trismethylenperhydros anthracen 478. Trimethyl-isopropenylcyclotriphenylbrommethan 618. hexen 113. triphenylmethan 618. isopropylcyclopentan 32. triphenylmethyl 627. - jodäthylcyclopentan 31. tritylbromid 618. methylenbicycloheptan xylol 287, 295, 303. 111, 112. Trinol 268. methylenbicyclohexan Triphenyl-äthan 620. 109, 110. athylen 630. methylencyclohexadien äthylendibromid 620. allen, dimeres 722. methylencyclohexan 54. allylchlorid 633. – naphthalin 470, 471. - azidomethan 618.

| Triphenyl-benzhydrylphenyle athan 717.  benzof 070.  benzol 070.  benzylisthylen 83.  benzylisthylen 634.  butylen 624.  butylen 624.  butylen 625.  chlorphenylisthylen 679.  cycloberstatien 685.  dihydroanthanen 712.  dihydroanthan 615.  chlorphenylen 689.  Triphenylen 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| athan 717. benezol 670. benezol 670. benezol 670. benezol 683. benezol 683. benezol 684. bromathylen 684. bromathylen 684. butylehorid 624. butylehorid 624. butylehorid 624. butylehorid 624. butylehorid 625. colorphenylathylen 675. colorphenylathylen 675. colorphenylathylen 675. colorphenylathylen 675. colorphenylathylen 675. colorphenylathylen 675. colorphenylathylen 685. dihydronaphthalin 685. dihydronaphthalin 685. dihydronaphthalin 685. bidiphenylenäthyl 713. diphenylenäthylehorid 713. diphenylenäthyl 713. diphenylenäthylehorid 713. diphenylenäthylehorid 713. diphenylenäthylehorid 713. diphenylenäthylehorid 714. diphenylenäthylehorid 715. butylehorid 626. Cristian 682. bidinydronaphthalin 685. colorphenylathylen 685. colorphenylathylen 685. colorphenylathylen 686. bereit 682. bidinydronaphthalin 685. colorphenylathylen 685. colorphenylathylen 685. colorphenylathylen 686. colorphenylathylen 686. colorphenylathylen 686. colorphenylathylen 686. colorphenylathylen 686. colorphenylathylen 686. colorphenylathylen 687. colorphenylathylen 688. colorphenylathylen 689. colorphenylathylen 689. colorphenylathylen 689. colorphenylathylen 685. colorphenylathylen 686. colorp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Twinhanul hanghudrulnhanuls 1 | Trityl-chlorid 645                                                   | Verhindung C. H.O. 461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| benzylithylen 683. benzylmethan 674. bromäthylen 631. brommethan 617. bytylbromid 624. blutylchlorid 624. chlorfluornylmethan 713. chlormethan 615. chlorphenyläthylen 679. cyclopertadien 663. dihydronaphthalin 663. dihydronaphthalin 663. dihydronaphthalin 615. hydrinden 683. liden 692. liden 692. liden 692. liden 692. liden 693. liden 694. liden 104. liden 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                                                      | ( H Rr 184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| benzylithylen 683. benzylmethan 674. bromäthylen 631. brommethan 617. bytylbromid 624. blutylchlorid 624. chlorfluornylmethan 713. chlormethan 615. chlorphenyläthylen 679. cyclopertadien 663. dihydronaphthalin 663. dihydronaphthalin 663. dihydronaphthalin 615. hydrinden 683. liden 692. liden 692. liden 692. liden 692. liden 693. liden 694. liden 104. liden 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                                                      | ( H N 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| benzylathylen 683. benzylathylen 683. benzylathylen 631. brommethan 617. by bytylbromid 624. chlorfluorenylmethan 713. chlorfluorenylmethan 713. chlormethan 615. chlorphenylathylen 679. cyclobeptadien 663. dihydroanthracen 712. dihydroanthracen 712. dihydroanthracen 712. dihydroanthracen 713. diphenylenāthylchlorid 713. diphenylenāthyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                                                      | - C <sub>11</sub> H <sub>15</sub> N 316.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| benyalmethan 674. bromathylen 631. bromathylen 631. bromathylen 631. bromathylen 632. butylchlorid 624. chlorfluorenylmethan 713. chlormethan 615. chlorphenylathylen 639. cyclopentadien 663. dihydroanthracen 712. dihydroanpthtalin 695. diphenylenathyl 713. Triphenylen 629. Triphenyl-fluormethan 615. hydrinden 683. inden 692. isopropylkalium 623. methan 613. bromid 615. chlorid 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                                                                      | (1 H OD- 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| bromathylen 631. brommethan 617. butylehomid 624. chlorfluorenylmethan 713. chlormethan 615. chlorphenyläthylen 679. cycloheptadien 663. dihydroanthracen 712. dihydronaphthalin 665. diphenylenäthylchlorid 713. Triphenylenäthylenörld 713. Triphenylenäthylchlorid 714. chlorid 615. chydrinden 683. chlorenathan 615. chydrinden 683. chydronaphthalin 623. cyclopethalid 685. chydronaphthalin 685. chydronaphthalin 686.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                                                                      | - U <sub>11</sub> Π <sub>17</sub> UDF 29.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| - brommethan 617 butylpromid 624 butylchlorid 624 butylchlorid 624 chlorfuorenylmethan 713 chlormethan 615 chlorphenylathylen 679 cyclopertadien 663 cyclopertadien 663 diphenylenathyl 713 Triphenylen 629 Triphenyl-fluormethan 615 hydrinden 683 inden 692 isopropylkalium 623 methan 613 bromid 615 chlorid 615 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                                                                      | $-C_{11}\Pi_{19}U_3N_3$ 08, 380.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| - butylchorid 624 chlorfluorenylmethan 713 chlormethan 615 chlorphenyläthylen 679 cycloheptadien 683 dihydronaphthalin 685 diiphenylenathyl r13 diphenylenathyl r14 riphenylenathyl r15 hydrinden 683 inden 692 isopropylkalium 623 methan 613 Crish, 293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                                                      | $-C_{11}H_{21}ON_3$ 350.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| butylchlorid 624. chlorfulcorenylmethan 713. chlormethan 615. chlorphenylathylen 679. cycloheptadien 663. dihydroanthracen 712. dihydroanpthalin 695. diphenylenäthyl 713. diphenylenäthylchlorid 713. Triphenylen 629. Triphenyl-fluormethan 615. hydrinden 683. inden 692. isopropylkalium 623. methan 613. Triphenylmethyl 526. Triphenylmethyl 526. Triphenylmethyl 527. Triphenylmethyl 528. Triphenylmethyl 529.  Triphenylmethyl 529. Triphenylmethyl 529. Triphenylmethyl 529. Triphenylmethyl 529. Triphenylmethyl 529. Triphenylmethyl 529. Triphenylmethyl 529. Triphenylmethyl 529. Triphenylmethyl 529. Triphenylmethyl 529. Triphenylmethyl 529. Triphenylmethyl 529. Triphenylmethyl 529. Triphenylmethyl 529. Triphenylmethyl 529. Triphenylmethyl 529. Triphenylmethyl 529. Triphenylmethyl 529. Triphenylmethyl 529. Triphenylmethyl 529. Triphenylmethyl 529. Triphenylmethyl 529. Triphenylmethyl 529. Triphenylmethyl 529. Triphenylmethyl 529. Triphenylmethyl 529. Triphenylmethyl 529. Triphenylmethyl 529. Triphenylmethyl 529. Triphenylmethyl 529. Triphenylmethyl 529.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                                                      | $-C_{11}H_{22}U_{2}N_{6}$ 48.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| - chlorfuorenylmethan 713 chlormethan 615 chlorphenylathylen 679 cycloheptadien 663 dihydroanthracen 712 dihydroanthracen 712 dihydronaphthalin 695 diphenylenathylchlorid 713 diphenylchlorid 713 diph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |                                                                      | C <sub>12</sub> H <sub>16</sub> 398.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 713. — chlormethan 615. — chlorphenylathylen 679. — cyclopentadien 665. — dihydronaphthalin 695. — diphenylenathyl 713. — diphenylenathylehorid 713.  Triphenylen 629.  Triphenylenathylehorid 713. — riphenylenathylehorid 714. — riphenylenathylehorid 714. — riphenylenathylehorid 715. — riphenylenathylenathylehorid 715. — riphenylenathylenathylenathylenathylenathylenathylenathylenathylenathylenathylenathylenathylenathylenathylenathylenathylenathylenathylenathylenathylenathylenathylenathylenathylenathylenathylenathylenathylenathylenathylenathylenath                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               | Tutol 268.                                                           | $-C_{12}H_{18}$ 342.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| - chlormethan 615 chlorphenyläthylen 679 cycloheptadien 663 dihydroanthracen 712 dihydronapthtalin 695 diphenylenäthylen ford 713 hydrinden ford 683 inden ford 692 isopropylkalium ford 623 methan ford ford ford ford ford ford ford ford                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - chlorfluorenylmethan        |                                                                      | $-C_{12}H_{22}$ 72.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| - chlormethan 615 chlorphenyläthylen 679 cycloheptadien 663 dihydroanthracen 712 dihydronapthtalin 695 diphenylenäthylen ford 713 hydrinden ford 683 inden ford 692 isopropylkalium ford 623 methan ford ford ford ford ford ford ford ford                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 713.                          |                                                                      | $$ $C_{12}H_{24}$ 32, 33.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| - chlorphenylathylen 679 cyclopentadien 665 cyclopentadien 665 cyclopentadien 665 cyclopentadien 665 cyclopentadien 665 dihydronaphthalin 695 diphenylenathylchlorid 713 diphenylenathylchlorid 713 diphenylenathylchlorid 713 diphenylenathylchlorid 713 diphenylenathylchlorid 713 diphenylenathylchlorid 713 hydrinden 639 hydrinden 639 cyclopentadien 623 hydrinden 635 hydrinden 636 hydrinden 636 cyll-goll 810 cyll-goll 810 hydrinden 636 hydrinden 637 cyll-goll 810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               | U.                                                                   | $$ $C_{12}H_{10}O_2$ 472.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| - cycloheptadien 665 cyclohoptadien 663 dihydroanthracen 712 dihydronapthtalin 695 diphenylenathyl 713 diphenyl-fluormethan 615 hydrinden 683 inden 692 isopropylkalium 623 methan 613 Triphenylmethyl 826 Triphenylmethyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | chlorphenyläthylen 679.       |                                                                      | $- C_{12}H_{12}O_4$ 470.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| - cyclopentadien 663 dihydronaphthalin 695 diphenylenāthyl 713 diphenylenāthyl 713 diphenylenāthyl 713 diphenylenāthyl 713 diphenylenāthyl 713 diphenylenāthyl 626. Triphenyl-fluormethan 615 hydrinden 683 inden 692 isopropylkalium 623 methan 613. Triphenylmethyl 626. Triphenylmethyl 626. Triphenylmethyl-azid 618 bromid 617 chlorid 615 fluorid 615 fluorid 615 fluorid 615 fluorid 615 fluorid 615 matrium 627 tetramethylammonium 627 tetramethylammonium 627 tetramethylenpropan 683 propan 622. 623 propin 644 propylen 633, 634 propin 644 propylen 633, 634 tetralin 686 tetramethylenbenzol 474 tritinethylenbenzol 474 tritinethylenbenzol 477 tritinethyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | — cycloheptadien 665.         | Undecanaphthen 32.                                                   | $- (C_{12}H_{16}Br_4)_X 80.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| - dihydroanphthain 695 diphenylenāthyl 713 diphenylenāthyl chlorid 713 Triphenylen 629. Triphenyl-fluormethan 615 hydrinden 683 inden 692 isopropylkalium 623 methan 613. Triphenylmethyl 826. Triphenylmethyl 826 ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N <sub>8</sub> O <sub>8</sub> - ChH <sub>0</sub> O <sub>8</sub> N                                                                                                                    |                               | Undecenylbenzol 403.                                                 | C <sub>19</sub> H <sub>20</sub> O <sub>2</sub> 356.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| - diphydronaphthalin 495 diphenylenāthyl 713 diphenylenāthylchlorid 713 diphenylenāthylchlorid 713 Triphenylen 629 Triphenylen 629 Triphenyl-fluormethan 615 hydrinden 683 inden 692 isopropylkalium 623 methan 613 Triphenylmethyl 626 Triphenylmethyl-azid 618 bromid 617 chlorid 615 fluorid 615 fluorid 615 fluorid 615 fluorid 615 fluorid 615 matrium 627 tetramethylammonium 627 tetramethylammonium 627 tetramethylamponium 628 phenylenpropan 683 propan 622 propan 622 chlorid 615 phenylenpropan 683 propan 625 phenylenpropan 683 propan 626 phenylenpropan 683 propan 624 propin 644 propin 644 propin 644 propin 644 propin 644 propin 647 tetramethylenbenzol 474 tritin 686 tetralin 686 tetralin 686 tetralin 686 tetralin 686 Tritiolyl-eyeloheptadien 686 Tritolyl-eyeloheptadien 686 methyl 627 Trityl-s. a. Triphenylmethyl-trityl-s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                                                                      | $-C_{12}H_{22}O^{2}73.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| - diphenylenāthyl 713 diphenylenāthylchorid 713. Triphenylen 629. Triphenyl-fluormethan 615 hydrinden 683 inden 692 isopropylkalium 623 methan 613. Triphenylmethyl 626. Triphenylmethyl-s. a. Trityl Triphenylmethyl-sa. Trityl-sa. Tritphenylmethyl Trityl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                                                                      | $-(C_{19}H_{13}OBr)_{y}$ 391.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| - diphenylenāthylchlorid 713.  Triphenylen 629. Triphenyl-fluormethan 615 hydrinden 683 inden 692 isopropylkalium 623 methan 613. Triphenylmethyl 626. Triphenylmethyl- s. a. Trityl- Triphenylmethyl- Triphenylmethyl- Triphenylmethyl- Triphenylmethyl- Triphenylmethyl- Triphenylmethyl- Triphenylmethyl- Triphenylmethyl- Trityl-s. a. Triphenylmethyl- Triphenylmeth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | <b>v.</b>                                                            | $-C_{13}H_{16}$ 422.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Triphenylen 629.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                                                      | C. H. 73.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Triphenyl-fluormethan 615.  — hydrinden 683. — inden 692. — isopropylkalium 623. — methan 613.  Triphenylmethyl 626.  Triphenylmethyl-azid 618. — bromid 617. — chlorid 615. — hydrinden 683. — isopropylkalium 623. — methan 613.  Triphenylmethyl-azid 618. — bromid 617. — chlorid 615. — hydrinden 683. — c. Hydo 2 38. — c. Hydo 3 38. —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               | Verbenen 330, 762.                                                   | $-C_{12}H_{22}$ 33.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Triphenyl-fluormethan 615. — hydrinden 683. — inden 692. — isopropylkalium 623. — methan 613. Triphenylmethyl 626. Triphenylmethyl-s. a. Trityl Triphenylmethyl-szid 618. — bromid 617. — chlorid 615. — fluorid 615. — fluorid 615. — natrium 627. Triphenyl-naphthalin 702. — isopropylen 633. — propan 622. 623. — propan 622. 623. — propan 622. 623. — proppin 644. — propylen 633, 634. — propylen 633, 634. — propylen 633, 634. — tetrahydronaphthalin 686. — tetrahydronaphthalin 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m                             |                                                                      | C. H. Br. 422.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| - hydrinden 683 isopropylkalium 623 methan 613. Triphenylmethyl 626. Triphenylmethyl 626. Triphenylmethyl-azid 618 bromid 615 fluorid 615 fluorid 615 fluorid 615 fluorid 615 natrium 627 tetramethylammonium 627. Triphenyl-naphthalin 702 nitromethan 618 pentan 625 phenylenpropan 683 propan 622, 623 propan 622, 623 propan 622, 623 propen 633, 634 propin 644 propin 644 propin 645 propin 645 propin 645 c <sub>0</sub> H <sub>10</sub> Q <sub>1</sub> 105 c <sub>0</sub> H <sub>10</sub> Q <sub>1</sub> 105 c <sub>0</sub> H <sub>10</sub> Q <sub>1</sub> 391 c <sub>0</sub> H <sub>10</sub> Q <sub>1</sub> 391 c <sub>0</sub> H <sub>10</sub> Q <sub>1</sub> 393 c <sub>0</sub> H <sub>10</sub> Q <sub>1</sub> 393 c <sub>1</sub> H <sub>10</sub> Q <sub>1</sub> Q <sub>1</sub> 393 c <sub>1</sub> H <sub>10</sub> Q <sub>1</sub> Q <sub>1</sub> 393 c <sub>1</sub> H <sub>10</sub> Q <sub>1</sub> Q <sub>1</sub> 393 c <sub>1</sub> H <sub>10</sub> Q <sub>1</sub> Q <sub>1</sub> 393 c <sub>1</sub> H <sub>10</sub> Q <sub>1</sub> Q <sub>1</sub> 393 c <sub>1</sub> H <sub>10</sub> Q <sub>1</sub> Q <sub>1</sub> 393 c <sub>1</sub> H <sub>10</sub> Q <sub>1</sub> Q <sub>1</sub> 393 c <sub>1</sub> H <sub>10</sub> Q <sub>1</sub> Q <sub>1</sub> 393 c <sub>1</sub> H <sub>10</sub> Q <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                                                      | - CHO. 356 Anm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| - inden 692 isopropylkalium 623 methan 613.  Triphenylmethyl 626. Triphenylmethyl s. a. Trityl  - c. Chi s. Ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | - CH O 38                                                            | — (C. H.) 582 702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| isopropylkalium 623 methan 613 methan 613 (C <sub>4</sub> H <sub>3</sub> O <sub>2</sub> S) <sub>3</sub> 80 (C <sub>4</sub> H <sub>3</sub> O <sub>2</sub> S) <sub>3</sub> 80 (C <sub>4</sub> H <sub>3</sub> O <sub>2</sub> S) <sub>3</sub> 80 (C <sub>4</sub> H <sub>3</sub> O <sub>2</sub> S) <sub>3</sub> 80 (C <sub>4</sub> H <sub>3</sub> O <sub>4</sub> S) <sub>3</sub> 80 (C <sub>4</sub> H <sub>3</sub> O <sub>4</sub> S) <sub>3</sub> 80 (C <sub>4</sub> H <sub>3</sub> O <sub>4</sub> S) <sub>3</sub> 80 (C <sub>4</sub> H <sub>3</sub> O <sub>4</sub> S) <sub>3</sub> 80 (C <sub>4</sub> H <sub>3</sub> O <sub>4</sub> S) <sub>3</sub> 80 (C <sub>4</sub> H <sub>3</sub> O <sub>4</sub> S) <sub>3</sub> 80 (C <sub>4</sub> H <sub>3</sub> O <sub>4</sub> S) <sub>3</sub> 80 (C <sub>4</sub> H <sub>3</sub> O <sub>4</sub> S) <sub>3</sub> 80 (C <sub>4</sub> H <sub>3</sub> O <sub>4</sub> S) <sub>3</sub> 80 (C <sub>4</sub> H <sub>3</sub> O <sub>4</sub> S) <sub>3</sub> 80 (C <sub>4</sub> H <sub>3</sub> O <sub>4</sub> S) <sub>3</sub> 80 (C <sub>4</sub> H <sub>3</sub> O <sub>4</sub> S) <sub>3</sub> 80 (C <sub>4</sub> H <sub>3</sub> O <sub>4</sub> S) <sub>3</sub> 80 (C <sub>4</sub> H <sub>3</sub> O <sub>4</sub> S) <sub>3</sub> 80 (C <sub>4</sub> H <sub>3</sub> O <sub>4</sub> S) <sub>3</sub> 80 (C <sub>4</sub> H <sub>3</sub> O <sub>4</sub> S) <sub>3</sub> 80 (C <sub>4</sub> H <sub>3</sub> O <sub>4</sub> S) <sub>3</sub> 80 (C <sub>4</sub> H <sub>3</sub> O <sub>4</sub> S) <sub>3</sub> 80 (C <sub>4</sub> H <sub>3</sub> O <sub>4</sub> S) <sub>3</sub> 80 (C <sub>4</sub> H <sub>3</sub> O <sub>4</sub> S) <sub>3</sub> 80 (C <sub>4</sub> H <sub>3</sub> O <sub>4</sub> S) <sub>3</sub> 80 (C <sub>4</sub> H <sub>3</sub> O <sub>4</sub> S) <sub>3</sub> 80 (C <sub>4</sub> H <sub>3</sub> O <sub>4</sub> S) <sub>3</sub> 80 (C <sub>4</sub> H <sub>3</sub> O <sub>4</sub> S) <sub>3</sub> 80 (C <sub>4</sub> H <sub>3</sub> O <sub>4</sub> S) <sub>3</sub> 80 (C <sub>4</sub> H <sub>3</sub> O <sub>4</sub> S) <sub>3</sub> 80 (C <sub>4</sub> H <sub>3</sub> O <sub>4</sub> S) <sub>3</sub> 80 (C <sub>4</sub> H <sub>3</sub> O <sub>4</sub> S) <sub>3</sub> 80 (C <sub>4</sub> H <sub>3</sub> O <sub>4</sub> S) <sub>3</sub> 80 (C <sub>4</sub> H <sub>3</sub> O <sub>4</sub> S) <sub>3</sub> 80 (C <sub>4</sub> H <sub>3</sub> O <sub>4</sub> S) <sub>3</sub> 80 (C <sub>4</sub> H <sub>3</sub> O <sub>4</sub> S) <sub>3</sub> 80 (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> S) <sub>3</sub> 834 (C <sub>4</sub> H <sub>3</sub> O <sub>4</sub> S) <sub>3</sub> 80 (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> S) <sub>3</sub> 83 (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> S) <sub>4</sub> 80 (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> S) <sub>4</sub> 80 (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> S) <sub>4</sub> 80 (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> S) <sub>4</sub> 80 (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> S) <sub>4</sub> 80 (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> S) <sub>4</sub> 80 (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> S) <sub>4</sub> 80 (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> S) <sub>4</sub> 80 (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> S) <sub>4</sub> 80 (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> S) <sub>4</sub> 80 (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> S) <sub>4</sub> 80 (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> S) <sub>4</sub> 80 (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> S) <sub>4</sub> 80 (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> S) <sub>4</sub> 80 (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> S) <sub>4</sub> 80 (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> S) <sub>4</sub> 80 (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> S) <sub>4</sub> 80 (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> S) <sub>4</sub> 80 (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> S) <sub>4</sub> 80 (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> S) <sub>4</sub> 80 (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> S) <sub>4</sub> 80 (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> S) <sub>4</sub> 80 (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> S) <sub>4</sub> 80 (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> S) <sub>4</sub> 80 (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> S) <sub>4</sub> 80 (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> S) <sub>4</sub> 80 (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> S) <sub>4</sub> 80 (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> S) <sub>4</sub> 80 (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> S) <sub>4</sub> 80 (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> S) <sub>4</sub> 80 (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> S) <sub>4</sub> 80 (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> S) <sub>4</sub> 80 (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> S) <sub>4</sub> 80 (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> S) <sub>4</sub> 80 (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> S) <sub>4</sub> 80 (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> S) <sub>4</sub> 80 (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> S) <sub>4</sub> 80 (C <sub>4</sub> H <sub>4</sub> O <sub>4</sub> |                               | CHON 180                                                             | CH 559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | - CH OCL 20                                                          | - 0 <sub>14</sub> 11 <sub>12</sub> 302.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Triphenylmethyl 626. Triphenylmethyl-s. a. Trityl s. a. Trityl-t. Triphenylmethyl-s. a. Trityl-s. a. Trityl-s. a. Triphenyl-methyl-s. a. Trityl-s. a. Triphenyl-methyl-methyl-s. a. Trityl-s. a. Triphenyl-methyl-methyl-ratified 686. Tritolyl-cycloheptadien 666. Trityl-a. a. Triphenyl-methyl-Trityl-a. a. Triphenyl-methyl-methyl-Trityl-a. a. Triphenyl-methyl-methyl-Trityl-a. a. Triphenyl-methyl-trityl-a. a. Triphenyl-methyl-i-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                                                                      | $C_{14}^{11}_{12}$ $C_{14}^{12}_{12}$ $C_{14}^{11}_{12}$ $C_{14}^{11}_{12}$ $C_{14}^{11}_{12}$ $C_{14}^{11}_{12}$ $C_{14}^{11}_{12}$ $C_{14}^{11}_{12}$ $C_{14}^{11}_{12}$ $C_{14}^{11}_{12}$ $C_{14}^{11}_{12}$ $C_{14}^{11}$ |
| Triphenylmethyl-azid 618. — $C_7H_1O_4$ 273. — $C_1H_{12}$ 344, 345. — $C_1H_2O_1N_1$ 273. — $C_1H_2O_1N_1$ 274. — $C_1H_2O_1N_1$ 274. — $C_1H_2O_1N_1$ 274. — $C_1H_2O_1N_1$ 274. — $C_1H_2O_1N_1$ 275. — $C_1H_2O_1N_1$ 274. — $C_1H_2O_1N_1$ 275. — $C_1H_2O_1N_1$ 276. — $C_1H_2O_1N_1$ 277. — $C_2H_1O_1N_1$ 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               | $-$ ( $C_6\Pi_8U_2S)_X$ 80.                                          | $- C_{14} \frac{\Pi_{16}}{\Pi_{16}} \frac{412}{495}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                                                                      | $-C_{14}\Pi_{18}$ 420.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tripnenyimetnyi-s.a. Trityi   | C <sub>7</sub> H <sub>6</sub> O <sub>4</sub> 218.                    | $-C_{14}H_{22}$ 344, 345.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $ \begin{array}{c} - \text{chlorid } 615. \\ \text{fluorid } 625. \\ - \text{natrium } 627. \\ - \text{tetramethylammonium} \\ 627. \\ - \text{tetramethylammonium} \\ 627. \\ - \text{Triphenyl-naphthalin } 702. \\ - \text{nitromethan } 618. \\ - \text{pentan } 625. \\ - \text{phenylenpropan } 683. \\ - \text{propan } 622, 623. \\ - \text{propan } 622, 623. \\ - \text{propin } 644. \\ - \text{propin } 644. \\ - \text{propin } 644. \\ - \text{tetrahydronaphthalin } 686. \\ - \text{tetrahydronaphthalin } 686. \\ - \text{tetrahindonaphthalin } 686. \\ - tetrahindonaphthal$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Triphenylmethyl-azid 618.     | $-(C_7H_7N)_4$ 273.                                                  | $-C_{14}H_{26}/3, 345.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{c} - \text{ fluorid } 615. \\ - \text{ natrium } 627. \\ - \text{ tetramethylammonium } \\ 627. \\ - \text{ Triphenyl-naphthalin } 702. \\ - \text{ nitromethan } 618. \\ - \text{ pentan } 625. \\ - \text{ phenylenpropan } 683. \\ - \text{ propan } 622, 623. \\ - \text{ propan } 622, 623. \\ - \text{ propin } 644. \\ - \text{ propin } 644. \\ - \text{ styrylallen } 704. \\ - \text{ styrylallen } 704. \\ - \text{ tetrahydronaphthalin } 686. \\ -  tetrahydronaphtha$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               | $-(C_7H_7N)_x$ 274.                                                  | $-C_{14}H_{14}O_2$ 472.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               | $-C_7H_6O_4N_2$ 261.                                                 | $-C_{14}H_{22}O_4$ 353.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | — fluorid 615.                | $-(C_8H_5O_3)_x$ 539.                                                | $-C_{14}H_8O_{13}N_{10}$ 206.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | natrium 627.                  | $- C_8 H_9 N 299.$                                                   | $-C_{14}H_{10}O_3N_2$ 170, 408.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - tetramethylammonium         | — C <sub>2</sub> H <sub>11</sub> N 299.                              | $- C_{14}H_{10}O_4N_2$ 510, 545.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Triphenyl-naphthalin 702.  — nitromethan 618. — pentan 625. — phenylenpropan 683. — propan 622, 623. — propen 633, 634. — propin 644. — propylen 633, 634. — propylen 633, 634. — styrylallen 704. — tetrahydronaphthalin 686. — tetrahin 686.  Trisdiphenylyl-benzol 724. — chlormethan 717. — methan 717. — methan 717. — methan 718.  Tris-methylendodekahydros cyclopentadienoanthras cen 567. — tetramethylenbenzol 474. Tritan 613.  Tritol 268.  Tritol 268.  Tritolyl-cycloheptadien 666. — methan 625. — methyl 627. — methan 625. — methyl 627. — methan 626. — Trityl-azid 618.  — C <sub>9</sub> H <sub>14</sub> 0 105. — C <sub>10</sub> H <sub>16</sub> 84. 91.  — C <sub>10</sub> H <sub>16</sub> 84. 91. 91. 91. 91. 91. 91. 91. 91. 91. 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               | $-C_{\mathbf{g}}\mathbf{H}_{1\mathbf{A}}\mathbf{O}_{\mathbf{A}}$ 90. | $- C_{14}H_{15}O_{2}N$ 473.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| - nitromethan 618 pentan 625 phenylenpropan 683 propan 622, 623 propen 633, 634 propin 644 propylen 633, 634 propylen 633, 634 propylen 633, 634 styrylallen 704 tetrahydronaphthalin 686 tetralin 686 tell 182 tetralin 686 tetralin 686 tetralin 686 tetrali                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Triphenyl-naphthalin 702.     | $- C_0 H_{14} 82.$                                                   | $- C_{14}H_{26}O_{2}N_{6}$ 356.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               | — C.H., 51.                                                          | — C, H, 589.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               | - C.H.O 105.                                                         | $- C_{15}^{13}H_{20}^{12}$ 426.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               | C.H.O. 105.                                                          | - C. H., 75, 345, 348, 350,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               | 111 321 351                                                          | C-H- 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |                                                                      | - C H 75 351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               | C H 34                                                               | C15H28 10, 001.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | - C <sub>10</sub> H <sub>20</sub> 31.                                | C151130 54.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               | - C <sub>10</sub> H <sub>12</sub> O <sub>8</sub> 381.                | - C <sub>15</sub> H <sub>12</sub> O <sub>2</sub> 500.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               | C <sub>10</sub> H <sub>13</sub> Cl 32U.                              | $-C_{16}\Pi_{20}C_{2}$ 333.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               | — C <sub>10</sub> H <sub>14</sub> O 102.                             | C15 T12 C 250 252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               | - C <sub>10</sub> H <sub>14</sub> O <sub>2</sub> 95.                 | $-C_{15}n_{24}C_{350}$ , 333.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               | $-C_{10}H_{14}Cl_4$ 93.                                              | - U <sub>15</sub> H <sub>24</sub> U <sub>4</sub> 353.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | $-C_{10}H_{15}Cl$ 61.                                                | $-C_{15}H_{24}Br_{2}$ 351, 353.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | — methyl 718.                 | $-C_{10}H_{16}O$ 65, 66.                                             | $-C_{15}H_{24}Br_6$ 345.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tris-methylendodekahydro=     | — C <sub>20</sub> H <sub>20</sub> O <sub>2</sub> 68, 356.            | $-C_{15}H_{25}Br 351.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | cyclopentadienoanthra=        | $-C_{10}H_{16}Cl_2$ 63, 67, 68.                                      | - C <sub>15</sub> H <sub>26</sub> O <sub>2</sub> 115.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cen 567.                      | $-C_{10}H_{18}O$ 356.                                                | $-C_{15}H_{26}O_3$ 115.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | — tetramethylenbenzol 477.    | $-C_{10}H_{18}O_{2}$ 66.                                             | $-C_{15}H_{99}O_{9}$ 73.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Tritan 613.  Triterpene 479.  Tritol 268.  Tritolyl-cycloheptadien 666.  — methan 625. — methyl 627.  Trityl- s. a. Triphenylmethyl  Trityl-azid 618. $ - C_{10}H_{11}ON 391.  - C_{10}H_{16}O_{6}N_{3} 85.  - C_{10}H_{14}ONBr 67.  - C_{10}H_{16}O_{4}Cl_{4}Cr_{2} 104.  - C_{10}H_{16}O_{3}Cl_{2}Se.  - C_{15}H_{24}O_{3}N_{2}Cl_{3}Se.  - C_{15}H_{24}O_{3}N_{2}Cl_{3}Se.  - C_{15}H_{25}O_{3}N_{2}Cl_{3}Se.  - C_{15}H_{25}O_{3}N_{2}Cl_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               | - C <sub>10</sub> H <sub>18</sub> Br <sub>9</sub> 90.                | $- C_{15}H_{10}OCl_2$ 555.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | $-C_{10}H_{10}I$ 31.                                                 | $- C_{15}H_{24}O_4N_2$ 349.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .m.                           | — C <sub>10</sub> H <sub>11</sub> ON 391.                            | $-C_{15}H_{29}O_{2}N_{2}$ 354.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | - C. H. O. N. 85.                                                    | — C,5H,5O,Cl.Br 555.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | - C. H. ONBr 67.                                                     | - C. H. ONCI 349.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | - CHO.Cl.Cr. 104                                                     | - C. H. O. N. Cl 354.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Trityl- s. a. Triphenylmethyl $-C_{11}H_{12}$ 461. $-C_{16}H_{16}$ 556. Trityl-azid 618. $-C_{16}H_{16}$ 337. $-C_{16}H_{16}$ 476.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | - C-H-ON-Cl 28                                                       | - C. H. O.N. I 354.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Trityl-azid 618. $-C_{11}H_{12}$ 337. $-C_{16}H_{20}$ 476. $-C_{16}H_{22}$ 427.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               | - C-H- 461                                                           | - C.H., 556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $- \text{ bromid 617.} \qquad -C_{11}H_{22} 32. \qquad -C_{16}H_{22} 427.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               | - C-H- 337                                                           | — C.H. 476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| wrommy ovi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - bromid 617                  | - C-H- 32                                                            | - CaHaa 427                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mavinia Vali                  | Clining on                                                           | - 168X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Verbindung C <sub>16</sub> H <sub>30</sub> 75, 76.                             | Verbindung C <sub>22</sub> H <sub>30</sub> 529.                      | Vinyl-benzol 362.                                 |
|--------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------|
| $-C_{16}H_{32}$ 34.                                                            | - C <sub>33</sub> H <sub>34</sub> 431.                               | - cyclohexan 46.                                  |
| $- C_{16}^{16132} C_7 N_3 101.$                                                | - C <sub>22</sub> H <sub>18</sub> O <sub>4</sub> N <sub>2</sub> 651. | — cyclohexen 81.                                  |
| $= C_{16}H_{21}O_4N_3 85.$                                                     | $-C_{23}^{22}H_{15}^{15}O_{4}^{2}NCl_{2}$ 639.                       | cyclopropan 37.                                   |
| C H O N 354                                                                    | — C <sub>23</sub> H <sub>24</sub> 626.                               | — diphenylmethan 555.                             |
| $\begin{array}{l} - C_{16}H_{27}O_{2}N 354. \\ - C_{17}H_{32} 76. \end{array}$ | $-C_{24}H_{28}^{14}$ 608.                                            | - phenanthren, polymeres                          |
| $- C_{17}^{17}H_{29}^{32}O_2N 354, 355.$                                       | $-C_{24}^{24}H_{48}^{28}$ 35.                                        | 603.                                              |
| C H O N 355                                                                    | - C <sub>24</sub> H <sub>20</sub> O 438.                             | toluol 375, 376.                                  |
| $-C_{17}^{1}H_{29}O_{3}N_{3}55.$                                               | $-C_{24}^{94}H_{25}^{120}O_{6}N_{3}$ 608.                            |                                                   |
| $$ $C_{17}^{1}H_{29}^{2}O_{2}^{2}NBr_{2}^{2}$ 355.                             | $- C_{25}^{24} H_{46}^{25} \stackrel{119}{119}.$                     |                                                   |
| $- C_{17}^{17}H_{30}O_{2}NCl_{355}$ .                                          | $-C_{26}^{25}H_{20}^{46}$ 682.                                       | <b>X.</b>                                         |
| $-C_{18}H_{14}$ 611, 613.                                                      | $C^{26}H^{20}$ 431                                                   | Vth-al                                            |
| C <sub>18</sub> H <sub>24</sub> 477.                                           | $-C_{26}H_{42}$ 431.                                                 | Xanthoxylum piperitum,                            |
| $-C_{18}H_{34}$ 76.                                                            | C <sub>27</sub> H <sub>20</sub> 694.                                 | Sesquiterpen aus — 352.                           |
| $-\frac{C_{18}H_{36}}{H_{36}}34.$                                              | - C <sub>27</sub> H <sub>22</sub> 684.                               | Xenyl- s. Diphenylyl                              |
| $-C_{18}H_{18}O_{2}$ 461, 464.                                                 | $-C_{27}H_{42}$ 51.                                                  | Xylol 280, 281, 287, 296.                         |
| $-C_{18}H_{17}O_{10}N_5$ 325.                                                  | $-C_{27}H_{44}$ 431.                                                 | Xylolmoschus 340.                                 |
| $-C_{18}H_{25}O_{10}Cl_3$ 411.                                                 | $-C_{27}H_{20}O_{7}532.$                                             | Xylyl- s. a. Dimethylphenyl-,                     |
| $-C_{18}H_{29}O_{2}N$ 355.                                                     | $-C_{28}H_{24}$ 686, 702.                                            | Methylbenzyl                                      |
| $-C_{18}H_{31}O_3N_355.$                                                       | $-C_{28}H_{26}$ 686.                                                 | Xylyl-bromid 285, 293, 301.                       |
| $-C_{18}H_{22}O_{2}NBr$ 67.                                                    | $-C_{28}H_{28}$ 666.                                                 | — chlorid 283, 291, 299.                          |
| $- C_{19}H_{20}$ 607.                                                          | $-C_{28}H_{18}O_3$ 723.                                              | Xylylen-bromid 285, 294,                          |
| $-C_{19}H_{22}$ 607.                                                           | $-C_{28}H_{18}Br_4$ 708.                                             | 301.                                              |
| $- C_{19}H_{36}$ 76.                                                           | $-C_{28}H_{24}O_{2}$ 682.                                            | — chlorid 283, 291, 300.                          |
| $- C_{19}H_{20}O_2$ 146.                                                       | - C <sub>28</sub> H <sub>28</sub> N <sub>4</sub> 273 Z. 1 v. u.      | — difluoren 714.                                  |
| $- C_{19}H_{30}O_5$ 347.                                                       | $-C_{28}H_{22}O_{10}N_4$ 572.                                        | Xylylidenchlorid 300.                             |
| $-C_{20}H_{16}$ 633.                                                           | $-C_{28}H_{30}ON_4$ 273 Z. 2 v. u.                                   | Xylyljodid 286, 302.                              |
| $-C_{20}H_{20}$ 416.                                                           | $-C_{30}H_{24}$ 585, 706.                                            |                                                   |
| $- C_{20}H_{28}$ 478.                                                          | $-C_{30}H_{28}$ 687.                                                 | •                                                 |
| $-C_{20}H_{32}$ 405, 406.                                                      | $-C_{30}H_{48}$ 479.                                                 | Υ.                                                |
| $- C_{20}H_{34}$ 360.                                                          | $- C_{30}H_{18}Cl_4$ 587, 588.                                       | Ysopöl, Sesquiterpen aus -                        |
| $- C_{20}H_{38}$ 77.                                                           | $-C_{80}H_{18}Br_8$ 712.                                             | 357.                                              |
| $-C_{20}H_{12}S$ 444.                                                          | $- C_{30}H_{16}Cl_4Br_2$ 588.                                        | 007.                                              |
| $-C_{20}H_{14}O_{2}$ 294.                                                      | $-C_{32}H_{40}$ 638.                                                 | 77                                                |
| $-C_{20}H_{28}S_3$ 360.                                                        | $-C_{33}H_{28}ON_{2}$ 627.                                           | Z.                                                |
| $-C_{20}H_{9}Cl_{5}Br_{2}$ 658.                                                | $- C_{34}H_{38}$ 678.                                                | Zibetan 76.                                       |
| $-C_{20}H_{31}O_4N_3$ 85.                                                      | $-C_{34}H_{44}$ 638.                                                 | Zingiberen 346.                                   |
| $-C_{21}^{20}H_{14}^{31}O_{2}^{3}$ 723.                                        | $- C_{36}H_{48}$ 638.                                                | Zingiberennitrosit 346.                           |
| $-C_{21}H_{17}C_{2}N$ 286.                                                     | - C <sub>36</sub> H <sub>27</sub> NS 683.                            | Zingiber nigrum, Kohlens                          |
| $-C_{22}H_{16}$ 662.                                                           | $-C_{48}^{\circ}H_{26}^{\circ}Br_{4}$ 729.                           | wasserstoff C <sub>10</sub> H <sub>16</sub> aus — |
| $-(C_{22}H_{17})_{x}$ 661, 725.                                                | $$ $C_{55}^{\bullet}H_{40}^{20}$ 532.                                | 110; Sesquiterpen aus                             |
| $-C_{22}H_{18}$ 651.                                                           | $-C_{55}^{56}H_{30}^{40}O_{5}$ 532.                                  | 351.                                              |
| ~22111g OO1.                                                                   | 500-300-5                                                            |                                                   |

# Nachträge und Berichtigungen.

#### Hauptwerk Band 1.

Seite 847 Zeile 2 v. o. statt "B. 21" lies "B. 20".

#### Ergänzungswerk II Band 1.

- Seite 115 Zeile 21—20 v. u. Die Angabe von Olson, Dershem, Storch bezieht sich nicht auf die Beugung, sondern auf die Absorption von Röntgenstrahlen.
  - ., 215 ,, 28—29 v. o. statt "2.7-Dimethyl-anthracen (C., Ch.)" lies "2.6-Dimethyl-anthracen neben sehr geringen Mengen 2.7-Dimethyl-anthracen (C., Ch.; vgl. Morgan, Coulson, Soc. 1929, 2207)".
  - ., 301 ., 22 v. u. statt ,,Am. Soc. 45, 800" lies ,,Am. Soc. 45, 480".
  - " 580 Tabelle 5, linke Spalte. Die auf Thymol bezüglichen Angaben sind zu streichen.

#### Ergänzungswerk II Band 2.

Seite 110 Zeile 25 v. u. statt "C. 1927 I, 1023" lies "C. 1927 I, 1032".

" 265 " 2 v. u. streiche "Кр<sub>16</sub>: 87—88<sup>o</sup> (Р., Sch.)."

# Ergänzungswerk II Band 3/4.

Seite 575 Zeile 22-19 v. u. sind zu streichen.

- ,, 575 ,, 15 v. u. statt ,,— F: ca. 85°·· lies ,,Bei der Einw. von Bromessigsäure auf Dimethylthiocarbamidsäure-O-l-menthylester in Benzol (Holmberg, Rosén, B. 58, 1841). Krystalle. F: 93,5° bis 94,5° (H., R.). Leicht löslich in Wasser (H., R.)".
- ., 596 ,, 20 v. o. nach "Lösung" füge zu: "von Tetraäthylammonium (C<sub>2</sub>H<sub>5</sub>)<sub>4</sub>N".
- .. 596 ,, 23 v. o. nach ,,2817"; füge zu ,,Sch., v. Zwehl, B. 56, 1889;".
- " 1131 1. Spalte Zeile 9 v. u. statt "614" lies "613, 614".
- " 1132 2. Spalte Zeile 9 v. o. statt "612" lies "621".

# Hauptwerk Band 5.

Seite 628 Zeile 22 v. u. statt "707" lies "107".

# Ergänzungswerk II Band 5.

Seite 11 Zeile 19 v. u. statt "trans-Chinit" lies "Chinit".

- ,, 17 ,, 24 v. o. nach "C. 1921 III, 33)." schalte ein "Neben anderen Produkten beim Hydrieren von ω.ω.ω-Trifluor-m-kresol in Gegenwart von Platinschwarz (Swarts, Bl. Acad. Belgique [5] 9, 347; C. 1924 I, 418)."
- ., 49 ,, 7—5 v. u. Nach Tiffeneau (Bl. [5] 3 [1936], 1950 Anm. 2) hat in dem von Godenot, Bedos als 1.1.2-Trimethyl-cyclohexen-(2) angesehenen Kohlenwasserstoff höchstwahrscheinlich Isopropenylcyclopentan C<sub>8</sub>H<sub>14</sub> vorgelegen.
- ,, 93 ,, 2-3 v. o. statt "cis-9.10-Oxido-oktalin" lies "cis-9.10-Oxido-dekalin".

```
Seite 112 Zeile 18-17 v. u. Die Überschrift des Artikels muß lauten
                                      .. 1.4.7.7 - Tetramethyl - bicyclo -
                                                                                         HC-C(CH<sub>3</sub>)-CH<sub>2</sub>
                                      [1.2.2]-hepten-(2), 4-Methyl-bor-
                                                                                              C(CH<sub>3</sub>)2
                                     nylen"; die Konstitutionsformel ist durch
                                                                                             -C(CH<sub>2</sub>)--CH<sub>2</sub>
                                     die nebenstehende Formel zu ersetzen.
                                     Vgl. dazu Nametrin, Brjussowa, Ж. 60, 265; A. 459, 153.
                  16 v. u. statt ,,6-Methyl-bornyl-(2)-xanthogensäuremethylester" lies ,,[4-Me-
      112
                                     thyl-bornyl]-xanthogensäure-methylester".
                  13 v. u. statt "5-Methyl-camphersäure" lies "3-Methyl-camphersäure".
      112
                  28-30 v. o. streiche den Satz "Gibt beim Kochen mit Natriumalkoholaten ... (McM., Ma.)."
      186
                  25 v. u. statt "Dinitrophloroglucin - dimethyläther" lies "Dinitrophloro-
      200
                                     glucin-trimethyläther".
                  20-19 v. u. statt ,, B. 58, 2428) oder bei 480-500° über auf Asbest nieder-
      210
                                     geachlagenes Eisen (St., G., W., Brennstoffch. 7, 8)" lies ,, B. 58, 2428; Brennstoffch. 7, 8; N. V. Handelsonderneming
                                     Feynald, D. R. P. 434211; C. 1926 II, 2494; Frdl. 15, 398).
     230 zwischen Zeile 12 und 11 v. u. schalte ein "Polybenzyle (C,H,)x (vgl. H 295, 306; E I 151, 152) s. bei Benzylalkohol, Syst. Nr. 528".
     330 Zeile 17-21 v. o. sind durch folgenden Text zu ersetzen:
                                     ,,25. 6.6-Dimethyl-2-methylen- HC-C(:CH_2)-CH
                                     bicyclo - [1.1.3] - hepten - (3).
                                                                                             CH<sub>2</sub>
                                     Verbenen C<sub>10</sub>H<sub>14</sub>, s. nebenstehende
Formel (E I 207). Zur Konst. vgl.
RUZICKA, TREBLER, Helv. 4, 569 Anm. 1; R., PONTALTI,
                                     Helv. 7, 492; vgl. a. J. L. Simonsen, The terpenes, Bd. II
                                     [Cambridge 1932], S. 186."
```

#### Ergänzungswerk I Band 6.

Seite 38 Zeile 9-7 v. u. sind zu streichen.

#### Hauptwerk Band 21.

Seite 92 Zeile 17 v. o. statt "1431" lies "1493".



# Indian Agricultural Research Institute (Pusa) LIBRARY, NEW DELHI-110012

| This book can be issued on or before |             |  |
|--------------------------------------|-------------|--|
| Return Date                          | Return Date |  |