Correlation and Regression

Topics Covered:

- Is there a relationship bivariate data(between x and y)?
- What is the strength of this relationship
 - □ Pearson's r
- Can we describe this relationship and use this to predict y from x?
 - Regression
- Is the relationship we have described statistically significant?
 - □ t-test

The relationship bivariate data between *x* and *y*

- Correlation: is there a relationship between 2 variables?
- Regression: how well a certain independent variable predict dependent variable?
- CORRELATION ≠ CAUSATION
 - ☐ In order to infer causality: manipulate independent variable and observe effect on dependent variable

Scattergrams

Positive correlation

Negative correlation

No correlation

Variance vs Covariance

- First, a note on your sample:
 - If you're wishing to assume that your sample is representative of the general population (RANDOM EFFECTS MODEL), use the degrees of freedom (n − 1) in your calculations of variance or covariance.
 - But if you're simply wanting to assess your current sample (FIXED EFFECTS MODEL), substitute n for the degrees of freedom.

Variance vs Covariance

■ Do two variables change together?

Variance:

• Gives information on variability of a single variable.

Covariance:

- Gives information on the degree to which two variables vary together.
- Note how similar the covariance is to variance: the equation simply multiplies x's error scores by y's error scores as opposed to squaring x's error scores.

$$S_x^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$$

$$cov(x, y) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{n-1}$$

Covariance

$$cov(x, y) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{n-1}$$

- When $X \uparrow$ and $Y \uparrow$ cov (x,y) = pos.
- When $X \downarrow$ and $Y \uparrow$: cov(x,y) = neg.
- When no constant relationship: cov(x,y) = 0

Example Covariance

X	y	$x_i - x$	$y_i - y$	$(x_i - \overline{x})(y_i - \overline{y})$
0	3	-3	0	0
2	2	-1	-1	1
3	4	0	1	0
4	0	1	-3	-3
6	6	3	3	9
$\bar{x} = 3$	$\overline{y} = 3$			\(\sum_{= 7} = 7 \)

$$cov(x, y) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{n-1} = \frac{7}{4} = 1.75$$

What does this number tell us?

Example Covariance

X	у	$x_i - x$	$y_i - \overline{y}$	$\left (x_i - \overline{x})(y_i - \overline{y}) \right $
0	3	-3	0	0
2	2	-1	-1	1
3	4	0	1	0
4	0	1	-3	-3
6	6	3	3	9
$\begin{bmatrix} -x \\ x = 3 \end{bmatrix}$	$\overline{y} = 3$			$\sum = 7$

$$cov(x, y) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{n-1} = \frac{7}{4} = 1.75$$

What does this number tell us?

A positive covariance indicates that the two variables tend to move in the same direction, while a negative covariance indicates that they tend to move in opposite directions.

Problem with Covariance:

■ The value obtained by covariance is dependent on the size of the data's standard deviations: if large, the value will be greater than if small... even if the relationship between x and y is exactly the same in the large versus small standard deviation datasets.

Example of how covariance value relies on variance

	High variance data				Low variance data			
Subject	x	у	x error * y	-	х	у	X error * y error	
1	101	100	2500		54	53	9	
2	81	80	900		53	52	4	
3	61	60	100		52	51	1	
4	51	50	0		51	50	0	
5	41	40	100		50	49	1	
6	21	20	900		49	48	4	
7	1	0	2500		48	47	9	
Mean	51	50			51	50		
Sum of x error * y error :		7000		Sum of x error	* y error :	28		
Covariance:		1166.67		Covariance):	4.67		

Solution: Pearson's r

- Covariance does not really tell us anything
 - Solution: standardise this measure
- Pearson's R: standardises the covariance value.
- Divides the covariance by the multiplied standard deviations of X and Y:

$$r_{xy} = \frac{cov(x, y)}{s_x s_y}$$

Pearson's R continued

Formula for Correlation Coefficient

Population Correlation Coefficient

$$P_{xy} = \frac{\sigma_{xy}}{\sigma_{x} \sigma_{y}} = \frac{\sum (xi - \overline{x}) (yi - \overline{y})}{\sqrt{\left(\sum (xi - \overline{x})^{2}\right)\left(\sum (yi - \overline{y})^{2}\right)}}$$

Where, $\sigma_{_{\mathbf{x}}}$, $\sigma_{_{\mathbf{u}}}$ ightarrow Population Standard Deviation

 $\sigma_{_{_{\mathbf{x}\mathbf{u}}}} o$ Population Covariance

 $\overline{X}, \overline{Y} \rightarrow Population Mean$

Sample Correction, coefficient between x and y

$$r_{xy} = \frac{S_{xy}}{S_x S_y} = \frac{\sum (xi - \overline{x}) (yi - \overline{y})}{\sqrt{(\sum (xi - \overline{x})^2)(\sum (yi - \overline{y})^2)}}$$

Where, S_x , $S_y \rightarrow Sample Standard Deviation$

 $S_{xu} \rightarrow Sample Covariance$

 $\overline{X}, \overline{Y} \rightarrow SampleMean$

Sample Correlation Coefficient

The formula for pearson correlation coefficient for population of size **N** (written as $\rho_{X,Y}$) is given as:

$$\rho_{X,Y} = \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{\sum_{i=1}^n \left(X_i - \bar{X}\right) \left(Y_i - \bar{Y}\right)}{\sqrt{\sum_{\Sigma_i=1}^n \left(X_i - \bar{X}\right)^2} \sqrt{\sum_{\Sigma_i=1}^n \left(Y_i - \bar{Y}\right)^2}}$$

where **cov** is the covariance and $(\text{cov}(X,Y) = \frac{\sum_{i=1}^{N} (X_i - X_i)(Y_i - Y_i)}{N}$, σ_X is standard deviation of X and σ_Y is standard deviation of Y.

Given X and Y are two random variables.

Population Correlation Coefficient

The formula for pearson correlation coefficient for sample of size $\bf n$ (written as $\bf r_{XY}$) is given as:

$$r_{x,y} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n}} (x_i - \bar{x})^2 \sqrt{\sum_{i=1}^{n}} (y_i - \bar{y})^2}$$

where **n** is the sample size, $\mathbf{x_i} \otimes \mathbf{y_i}$ are the ith sample points and $\mathbf{\bar{x}} \otimes \mathbf{\bar{y}}$ are the sample means for the random variables X and Y respectively.

Given X and Y are two random variables.

Linear Correlation Coefficient

It uses pearson's correlation coefficient to determine the linear relationship between two variables. Its value lies between -1 and 1. It is given as:

$$r = \frac{n(\Sigma xy) - (\Sigma x)(\Sigma y)}{\sqrt{[n\Sigma x^2 - (\Sigma x)^2][n\Sigma y^2 - (\Sigma y)^2]}}$$

where **n** is the sample size, $\mathbf{x_i} \otimes \mathbf{y_i}$ are the ith sample points and $\mathbf{\bar{x}} \otimes \mathbf{\bar{y}}$ are the sample means for the random variables x and y respectively.

Linear Correlation Coefficient

The sign of r indicates the strength of the linear relationship between the variables.

- •If r is near 1, then the two variables have a strong linear relationship.
- •If r is near 0, then the two variables have no linear relation.
- •If r is near -1, then the two variables have a weak (negative) linear relationship.

Limitations of r

- When r = 1 or r = -1:
 - ☐ We can predict y from x with certainty
 - \square all data points are on a straight line: y = ax + b
- r is actually \hat{r}

r = true r of whole population

 \hat{r} = estimate of r based on data

r is very sensitive to extreme values:

Pearson's R Example

Calculate the Correlation coefficient of given data.

X	41	42	43	44	45
У	3.2	3.3	3.4	3.5	3.6

Pearson's R Example

Solution:

Here n = 5

Let us find $\sum x$, $\sum y$, $\sum xy$, $\sum x^2$, $\sum y^2$

x	у	ху	x ²	y ²
41	3.2	131.2	1681	10.24
42	3.3	138.6	1764	10.89
43	3.4	146.2	1849	11.56
44	3.5	154	1936	12.25
45	3.6	162	2025	12.96
∑x = 215	∑y = 17	∑xy = 732	∑x² = 9255	$\sum y^2 = 57.9$

R calculation:

$$r = \sum ((x - \bar{x})(y - \bar{y})) / \sqrt{((\sigma \sigma_X)(\sigma \sigma_V))}$$

$$r = 1/\sqrt{((10)(0.1))} = 1$$

Since r = 1, this indicates significant relation between x and y.

X values

$$\sum x = 215$$

$$\sum x^2 = 9255$$

$$\bar{x} = 43$$

$$\sum (x - \bar{x})^2 = \sigma \sigma_X = 10$$

Y values:

$$\sum y = 17$$

$$\Sigma y^2 = 57.9$$

$$\sum (y - \bar{y})^2 = \sigma \sigma_V = 0.1$$

X and Y combined

$$N = 5$$

$$\sum ((x - \bar{x})(y - \bar{y})) = 1$$

$$\sum xy = 732$$

Regression

■ Correlation tells you if there is an association between x and y but it doesn't describe the relationship or allow you to predict one variable from the other.

■ To do this we need REGRESSION!

Best-fit Line

- Aim of linear regression is to fit a straight line, $\hat{y} = ax + b$, to data that gives best prediction of y for any value of x
- = ax + bThis will be the line that minimises distance between data and fitted line, i.e. intercept the residuals $= \hat{y}$, predicted value $\bullet = y_i$, true value $\varepsilon = residual error$

Least Squares Regression

■ To find the best line we must minimise the sum of the squares of the residuals (the vertical distances from the data points to our line)

Model line:
$$\hat{y} = ax + b$$
 $a = slope, b = intercept$
Residual $(\epsilon) = y - \hat{y}$
Sum of squares of residuals $= \sum (y - \hat{y})^2$

we must find values of a and b that minimise

$$\Sigma (y - \hat{y})^2$$

Finding b

■ First we find the value of b that gives the min sum of squares

■ Trying different values of b is equivalent to shifting the line up and down the scatter plot

Finding a

Now we find the value of a that gives the min sum of squares

■ Trying out different values of a is equivalent to changing the slope of the line, while b stays constant

Minimising sums of squares

- Need to minimise $\Sigma(y-\hat{y})^2$
- $\hat{y} = ax + b$
- so need to minimise:

$$\Sigma$$
(y - ax - b)²

- If we plot the sums of squares for all different values of a and b we get a parabola, because it is a squared term
- So the min sum of squares is at the bottom of the curve, where the gradient is zero.

The maths bit

- The min sum of squares is at the bottom of the curve where the gradient = 0
- So we can find a and b that give min sum of squares by taking partial derivatives of $\Sigma(y ax b)^2$ with respect to a and b separately
- Then we solve these for 0 to give us the values of a and b that give the min sum of squares

The solution

Doing this gives the following equations for a and b:

$$\mathbf{a} = \frac{\mathbf{r} \mathbf{S}_{\mathbf{y}}}{\mathbf{S}_{\mathbf{x}}}$$
 r = correlation coefficient of x and y
$$\mathbf{s}_{\mathbf{y}} = \text{standard deviation of y}$$

$$\mathbf{s}_{\mathbf{x}} = \text{standard deviation of x}$$

- From you can see that:
 - A low correlation coefficient gives a flatter slope (small value of a)
 - Large spread of y, i.e. high standard deviation, results in a steeper slope (high value of a)
 - Large spread of x, i.e. high standard deviation, results in a flatter slope (high value of a)

The solution cont.

- Our model equation is $\hat{y} = ax + b$
- This line must pass through the mean so:

$$\bar{y} = a\bar{x} + b$$
 $b = \bar{y} - a\bar{x}$

■ We can put our equation for a into this giving:

$$\mathbf{b} = \mathbf{\bar{y}} - \frac{\mathbf{r} \mathbf{S}_{\mathbf{y}}}{\mathbf{S}_{\mathbf{X}}} \mathbf{\bar{x}}$$

$$\mathbf{r} = \text{correlation coefficient of x and y}$$

$$\mathbf{s}_{\mathbf{y}} = \text{standard deviation of y}$$

$$\mathbf{s}_{\mathbf{x}} = \text{standard deviation of x}$$

■ The smaller the correlation, the closer the intercept is to the mean of y

Back to the model

$$\hat{\mathbf{y}} = \mathbf{a}\mathbf{x} + \mathbf{b} = \mathbf{r} \mathbf{s}_{\mathbf{y}} \mathbf{x} + \mathbf{\bar{y}} - \mathbf{r} \mathbf{s}_{\mathbf{y}} \mathbf{\bar{x}}$$
Rearranges to:
$$\hat{\mathbf{y}} = \mathbf{r} \mathbf{s}_{\mathbf{y}} \mathbf{x} + \mathbf{\bar{y}} - \mathbf{\bar{x}} \mathbf{\bar{x}}$$

- If the correlation is zero, we will simply predict the mean of y for every value of x, and our regression line is just a flat straight line crossing the x-axis at y
- But this isn't very useful.
- We can calculate the regression line for any data, but the important question is how well does this line fit the data, or how good is it at predicting y from x

How good is our model?

■ Total variance of y:
$$s_y^2 = \frac{\sum (y-y)^2}{n-1} = \frac{SS_y}{df_y}$$

■ Variance of predicted y values (ŷ):

$$s_{\hat{y}}^2 = \frac{\sum (\hat{y} - \overline{y})^2}{n - 1} = \frac{SS_{pred}}{df_{\hat{y}}}$$

This is the variance explained by our regression model

■ Error variance:

$$s_{error}^{2} = \frac{\sum (y - \hat{y})^{2}}{n - 2} = \frac{SS_{er}}{df_{er}}$$

This is the variance of the error between our predicted y values and the actual y values, and thus is the variance in y that is NOT explained by the regression model

How good is our model cont.

■ Total variance = predicted variance + error variance

$$s_{y}^{2} = s_{\hat{y}}^{2} + s_{er}^{2}$$

Conveniently, via some complicated rearranging

$$s_{\hat{y}}^2 = r^2 s_y^2$$

$$\downarrow \qquad \qquad \downarrow$$

$$r^2 = s_{\hat{y}}^2 / s_y^2$$

■ so r² is the proportion of the variance in y that is explained by our regression model

How good is our model cont.

■ Insert $r^2 s_y^2$ into $s_y^2 = s_{\hat{y}}^2 + s_{er}^2$ and rearrange to get:

$$s_{er}^2 = s_y^2 - r^2 s_y^2$$

= $s_y^2 (1 - r^2)$

■ From this we can see that the greater the correlation the smaller the error variance, so the better our prediction

Is the model significant?

• i.e. do we get a significantly better prediction of y from our regression equation than by just predicting the mean?

■ F-statistic:

$$F_{(df_{\hat{y}},df_{er})} = \frac{s_{\hat{y}}^2}{s_{er}^2} = \frac{r^2(n-2)^2}{1-r^2}$$

complicated

And it follows that:

(because
$$F = t^{2}$$
) $t_{(n-2)} = \frac{r(n-2)}{\sqrt{1-r^2}}$

So all we need to know are r and n

General Linear Model

Linear regression is actually a form of the General Linear Model where the parameters are a, the slope of the line, and b, the intercept.

$$y = ax + b + \varepsilon$$

■ A General Linear Model is just any model that describes the data in terms of a straight line

Multiple regression

- Multiple regression is used to determine the effect of a number of independent variables, x_1 , x_2 , x_3 etc, on a single dependent variable, y
- The different x variables are combined in a linear way and each has its own regression coefficient:

$$y = a_1x_1 + a_2x_2 + \dots + a_nx_n + b + \varepsilon$$

- The a parameters reflect the independent contribution of each independent variable, x, to the value of the dependent variable, y.
- i.e. the amount of variance in y that is accounted for by each x variable after all the other x variables have been accounted for

Calculate the regression coefficient and obtain the lines of regression for the following data

X	1	2	3	4	5	6	7
Y	9	8	10	12	11	13	14

Solution:

X	Y	X ²	Y ²	XY
1	9	1	81	9
2	8	4	64	16
3	10	9	100	30
4	12	16	144	48
5	11	25	121	55
6	13	36	169	78
7	14	49	196	98

 $\sum X = 28 \sum Y = 77 \sum X^2 = 140 \sum Y^2 = 875 \sum XY = 334$

$$\overline{X} = \frac{\sum X}{N} = \frac{28}{7} = 4,$$

$$\overline{Y} = \frac{\sum Y}{N} = \frac{77}{7} = 11$$

Regression coefficient of X on Y

$$b_{xy} = \frac{N\Sigma XY - (\Sigma X)(\Sigma Y)}{N\Sigma Y^2 - (\Sigma Y)^2}$$

$$= \frac{7(334) - (28)(77)}{7(875) - (77)^2}$$

$$= \frac{2338 - 2156}{6125 - 5929}$$

$$= \frac{182}{196}$$

$$b_{xy} = 0.929$$

Regression equation of X on Y

$$X - \overline{X} = b_{xy}(Y - \overline{Y})$$

 $X - 4 = 0.929(Y - 11)$
 $X - 4 = 0.929Y - 10.219$

 \therefore The regression equation *X* on *Y* is X = 0.929Y - 6.219

Calculate the regression coefficient and obtain the lines of regression for the following data

X	1	2	3	4	5	6	7
Y	9	8	10	12	11	13	14

Solution:

X	Y	X^2	Y ²	XY
1	9	1	81	9
2	8	4	64	16
3	10	9	100	30
4	12	16	144	48
5	11	25	121	55
6	13	36	169	78
7	14	49	196	98

 $\sum X = 28 \sum Y = 77 \sum X^2 = 140 \sum Y^2 = 875 \sum XY = 334$

$$\overline{X} = \frac{\Sigma X}{N} = \frac{28}{7} = 4,$$

$$\overline{Y} = \frac{\Sigma Y}{N} = \frac{77}{7} = 11$$

Regression coefficient of Y on X

$$b_{yx} = \frac{N\Sigma XY - (\Sigma X)(\Sigma Y)}{N\Sigma X^2 - (\Sigma X)^2}$$

$$= \frac{7(334) - (28)(77)}{7(140) - (28)^2}$$

$$= \frac{2338 - 2156}{980 - 784}$$

$$= \frac{182}{196}$$

$$b_{---} = 0.929$$

Regression equation of Y on X

$$Y - \overline{Y} = b_{yx}(X - \overline{X})$$

$$Y-11 = 0.929 (X-4)$$

$$Y = 0.929X - 3.716 + 11$$

= $0.929X + 7.284$

The regression equation of *Y* on *X* is Y = 0.929X + 7.284

Calculate the two regression equations of *X* on *Y* and *Y* on *X* from the data given below, taking deviations from a actual means of *X* and *Y*.

Price(Rs.)	10	12	13	12	16	15
Amount	40	38	43	45	37	43
demanded	40	30	43	43	37	43

Estimate the likely demand when the price is Rs.20.

Solution:

X	x = (X - 13)	x^2	Y	y = (Y - 41)	<i>y</i> ²	xy
10	-3	9	40	-1	1	3
12	-1	1	38	-3	9	3
13	0	0	43	2	4	0
12	-1	1	45	4	16	-4
16	3	9	37	-4	16	-12
15	2	4	43	2	4	4
$\sum X = 78$	$\sum x = 0$	$\sum x^2 = 24$	$\sum Y = 246$	$\sum y = 0$	$\sum y^2 = 50$	$\sum xy = -6$

Calculate the two regression equations of X on Y and Y on X from the data given below, taking deviations from a actual means of X and Y.

Price(Rs.)	10	12	13	12	16	15
Amount	40	20	12	4.5	27	12
demanded	40	38	43	45	37	43

Estimate the likely demand when the price is Rs.20.

Solution:

Regression equation of X on Y

$$X - \overline{X} = r \frac{\sigma_x}{\sigma_y} (Y - \overline{Y})$$

$$\overline{X} = \frac{78}{6} = 13, \ \overline{Y} = \frac{246}{6} = 41$$

$$b_{xy} = r \frac{\sigma_x}{\sigma_y} = \frac{\sum xy}{\sum y^2} = \frac{-6}{50} = -0.12$$

$$X - 13 = -0.12 \ (Y - 41)$$

$$X = -0.12Y + 17.92$$

X-13 = -0.12Y+4.92

When *X* is 20, *Y* will be
$$= -0.25 (20) + 44.25$$

 $= -5 + 44.25$

= 39.25 (when the price is Rs. 20, the likely demand is 39.25)

Regression Equation of Y on X

$$Y-\overline{Y} = r \frac{\sigma_y}{\sigma_x} (X-\overline{X})$$

$$b_{yx} = r \frac{\sigma_y}{\sigma_x} = \frac{\sum xy}{\sum x^2} = -\frac{6}{24} = -0.25$$

$$Y-41 = -0.25 (X-13)$$

$$Y-41 = -0.25 X+3.25$$

$$Y = -0.25 X + 44.25$$

The following table shows the sales and advertisement expenditure of a form

	Sales	Advertisement expenditure (Rs. Crores)
Mean	40	6
SD	10	1.5

Coefficient of correlation r= 0.9. Estimate the likely sales for a proposed advertisement expenditure of Rs. 10 crores.

Solution:

Given
$$\overline{X} = 40$$
, $\overline{Y} = 6$, $\sigma_x = 10$, $\sigma_y = 1.5$ and $r = 0.9$

Equation of line of regression x on y is

$$X - \overline{X} = r \frac{\sigma_x}{\sigma_y} (Y - \overline{Y})$$

$$X - 40 = (0.9) \frac{10}{1.5} (Y - 6)$$

$$X - 40 = 6Y - 36$$

$$X = 6Y + 4$$

When advertisement expenditure is 10 crores i.e., Y=10 then sales X=6(10)+4=64 which implies sales is 64.

10

The two regression lines are 3X+2Y=26 and 6X+3Y=31. Find the correlation coefficient.

Solution:

Let the regression equation of *Y* on *X* be 3X+2Y=26

$$3X+2Y = 26$$

$$2Y = -3X+26$$

$$Y = \frac{1}{2}(-3X+26)$$

$$Y = -1.5X+13$$

$$r\frac{\sigma_y}{\sigma_x} = -1.5$$
Implies
$$b_{yx} = r\frac{\sigma_y}{\sigma_x} = -1.5$$

Let the regression equation of X on Y be

$$K = \frac{1}{6}(-3Y+31) = -0.5Y+5.17$$

$$r \frac{\sigma_x}{\sigma_y} = -0.5$$
Implies
$$b_{xy} = r \frac{\sigma_x}{\sigma_y} = -0.5$$

$$r = \pm \sqrt{b_{xy}.b_{yx}}$$

$$= -\sqrt{(-1.5).(-0.5)} \text{ (Since both the regression coefficient are negative)}$$

$$\therefore r = -0.866$$

In a laboratory experiment on correlation research study the equation of the two regression lines were found to be 2X-Y+1=0 and 3X-2Y+7=0. Find the means of X and Y. Also work out the values of the regression coefficient and correlation between the two variables X and Y.

Solution:

Solving the two regression equations we get mean values of *X* and *Y*

$$2X-Y = -1$$
 ... (1)

$$3X-2Y = -7$$
 ... (2)

Solving equation (1) and equation (2) We get X=5 and Y=11

Therefore the regression line passing through the means \overline{X} =5 and \overline{Y} =11

The regression equation of Y on X is 3X-2Y=-7

$$2Y = 3X + 7$$

$$Y = \frac{1}{2}(3X+7)$$

$$Y = \frac{3}{2}X + \frac{7}{2}$$

$$b_{yx} = \frac{3}{2}(>1)$$

In a laboratory experiment on correlation research study the equation of the two regression lines were found to be 2X-Y+1=0 and 3X-2Y+7=0. Find the means of X and Y. Also work out the values of the regression coefficient and correlation between the two variables X and Y.

Solution:

The regression equation of *X* on *Y* is

$$2X-Y = -1$$

$$2X = Y-1$$

$$X = \frac{1}{2}(Y-1)$$

$$X = \frac{1}{2}Y - \frac{1}{2}$$

$$b_{xy} = \frac{1}{2}$$

The regression coefficients are positive

$$r = \pm \sqrt{b_{xy}.b_{yx}} = \pm \sqrt{\frac{3}{2} \times \frac{1}{2}}$$

$$= \sqrt{\frac{3}{2} \times \frac{1}{2}}$$

$$= \sqrt{\frac{3}{4}}$$

$$= 0.866$$

$$r = 0.866$$