FMI, Info, Anul I

Logică matematică și computațională

Seminar 5

(S5.1) Considerăm limbajul de ordinul I $\mathcal{L}_{ar} = (\dot{<}; \dot{+}, \dot{\times}, \dot{S}; \dot{0})$ (limbajul aritmeticii) și \mathcal{L}_{ar} -structura $\mathcal{N} = (\mathbb{N}, <, +, \cdot, S, 0)$.

- (i) Fie $x, y \in V$ cu $x \neq y$, şi $t = \dot{S}x \dot{\times} \dot{S}\dot{S}y = \dot{\times}(\dot{S}x, \dot{S}\dot{S}y)$. Să se calculeze $t^{\mathcal{N}}(e)$, unde $e: V \to \mathbb{N}$ este o evaluare ce verifică e(x) = 3 şi e(y) = 7.
- (ii) Fie $\varphi = x \dot{<} \dot{S}y \rightarrow (x \dot{<} y \vee x = y) = \dot{<} (x, \dot{S}y) \rightarrow (\dot{<} (x, y) \vee x = y)$. Să se arate că $\mathcal{N} \models \varphi[e]$ pentru orice $e: V \rightarrow \mathbb{N}$.

(S5.2) Considerăm limbajul de ordinul I $\mathcal{L}_{ar} = (\dot{<}; \dot{+}, \dot{\times}, \dot{S}; \dot{0})$ (limbajul aritmeticii) și \mathcal{L}_{ar} structura $\mathcal{N} = (\mathbb{N}, <, +, \cdot, S, 0)$. Fie formula $\varphi = \forall v_4(v_3 \dot{<} v_4 \lor v_3 = v_4)$. Să se caracterizeze acele $e: V \to \mathbb{N}$ ce au proprietatea că $\varphi^{\mathcal{N}}(e) = 1$.

Notația 1. Fie \mathcal{L} un limbaj de ordinul I. Pentru orice variabile x, y cu $x \neq y$, orice \mathcal{L} structură \mathcal{A} cu universul notat cu A, orice $e: V \to A$ și orice $a, b \in A$, avem că:

$$(e_{y\mapsto b})_{x\mapsto a} = (e_{x\mapsto a})_{y\mapsto b}.$$

În acest caz, notăm valoarea lor comună cu $e_{x\mapsto a,y\mapsto b}$. Aşadar,

$$e_{x\mapsto a,y\mapsto b}:V\to A,\quad e_{x\mapsto a,y\mapsto b}(v)=\begin{cases} e(v) & dac v\neq x \text{ $\it si$ $v\neq y$}\\ a & dac v=x\\ b & dac v=y. \end{cases}$$

(S5.3) Fie \mathcal{L} un limbaj de ordinul I. Să se arate că pentru orice formule φ , ψ ale lui \mathcal{L} și orice variabile x, y cu $x \neq y$ avem,

- (i) $\forall x(\varphi \wedge \psi) \vDash \forall x\varphi \wedge \forall x\psi;$
- (ii) $\exists y \forall x \varphi \vDash \forall x \exists y \varphi;$
- (iii) $\forall x\varphi \vDash \exists x\varphi;$

(iv) $\forall x(\varphi \to \psi) \vDash \exists x\varphi \to \exists x\psi$.

(S5.4) Fie x, y variabile cu $x \neq y$. Să se dea exemple de limbaj de ordinul I, \mathcal{L} , și de formule φ, ψ ale lui \mathcal{L} astfel încât:

- (i) $\forall x(\varphi \lor \psi) \not\vDash \forall x\varphi \lor \forall x\psi$;
- (ii) $\forall x \exists y \varphi \not\models \exists y \forall x \varphi$.

(S5.5) Considerăm limbajul $\mathcal{L}_{ar} = (\dot{<}, \dot{+}, \dot{\times}, \dot{S}, \dot{0})$ (limbajul aritmeticii) și \mathcal{L}_{ar} -structura canonică peste acest limbaj $\mathcal{N} := (\mathbb{N}, <, +, \cdot, S, 0)$. Să se dea exemplu de \mathcal{L}_{ar} -formule $\varphi_1, \varphi_2, \varphi_3$ astfel încât pentru orice $e: V \to \mathbb{N}$,

- (i) $\mathcal{N} \vDash \varphi_1[e] \Leftrightarrow e(v_0)$ este par;
- (ii) $\mathcal{N} \vDash \varphi_2[e] \Leftrightarrow e(v_0)$ este prim;
- (iii) $\mathcal{N} \vDash \varphi_3[e] \Leftrightarrow e(v_0)$ este putere a lui 2 cu exponent strict pozitiv.