Variational Inference: "Does it work?"

Anna, Chris and Sahra

December 2, 2019

Bayesian inference

• Data x

Introduction

- Latent parameter θ
- Given prior $p(\theta)$ and likelihood $p(\mathbf{x}|\theta)$ posterior $p(\theta|\mathbf{x})$ is given by

$$\pi(\theta) = p(\theta|\mathbf{x}) = \frac{p(\mathbf{x}|\theta)p(\theta)}{p(\mathbf{x})}$$

• In practice $\pi(\theta)$ is intractable \longrightarrow an approximation: $\hat{\pi}$ is needed.

Variational Inference

Introduction

• Approximation of posterior by variational distribution $\pi^*(\theta)$ in variational family Q, such that:

$$\pi^*(\theta) = \underset{q \in \mathcal{Q}}{\operatorname{argmin}} \ D_{\mathsf{KL}}(q(\theta)||\pi(\theta))$$

- Diagnostics presented:
 - Yao et al. (2018)
 - Huggins et al. (2019)

3/22

•
$$\hat{\pi}_{IS}(\theta) = \sum_{i=1}^{S} \tilde{w}_i \delta(\theta^i)$$
, with $\tilde{w}_i = \frac{w_i}{\sum_{i=1}^{S} w_i}$

•
$$\hat{\pi}_{PSIS}(heta) = \sum_{i=1}^S \tilde{r}_i \delta(heta^i)$$
, with $\tilde{r}_i = \frac{r_i}{\sum_{i=1}^S r_i}$

Pareto-Smoothed Importance Sampling (PSIS)

Given variational approximation to the posterior $\hat{\pi}(\theta)$, what is the most appropriate way to estimate the integral $\mathsf{E}_{\pi}[h(\theta)]$ sampling from θ^{i} $\overset{i.i.d}{\sim}$ $\hat{\pi}$?

- Monte Carlo: $T_{MC} = \frac{1}{S} \sum_{i=1}^{S} h(\theta^{i})$ biased, inconsistent, low variance
- Importance Sampling: $w_i = \frac{p(\theta^i, \mathbf{x})}{\hat{\pi}(\theta^i)}$ $T_{IS} = \frac{\sum_{i=1}^S w_i h(\theta^i)}{\sum_{i=1}^S w_i}$ asymptotically unbiased, consistent, high variance?
- Pareto Smoothed Importance Sampling: $T_{PSIS} = \frac{\sum_{i=1}^{S} r_i h(\theta^i)}{\sum_{i=1}^{S} r_i}$ asymptotically unbiased, lower variance

Anna, Chris and Sahra December 2, 2019 3/22

Yuling Yao, Aki Vehtari, Daniel Simpson, and Andrew Gelman (2018). "Yes, but Did It Work?: Evaluating Variational Inference"

Pareto-Smoothed Importance Sampling (PSIS) ctd...

The weights r_i are derived by fitting the generalised Pareto distribution to the highest $\min(\frac{S}{5}, 3\sqrt{S})$ importance weights w_i , replacing the largest importance weights w_i with the expected value of the fitted distribution.

$$p(y|k,\mu,\sigma) = \frac{1}{\sigma} (1 + k(\frac{y-\mu}{\sigma}))^{-\frac{1}{k}-1}$$
 (1)

4 / 22

- Extreme value distributions of random variables: X|X>u converge to generalised Pareto distributions.
- Parameter k links to moments of random variables: $k = \inf\{c \in \mathbb{R} : \mathbb{E}[X^{\frac{1}{c}}] < \infty\}$
- Hence, \hat{k} is estimator of $k = \inf\{c \in \mathbb{R} : \mathsf{E}_{\pi^*}[\frac{p(\theta,\mathsf{x})}{\pi^*(\theta)}]^{\frac{1}{c}}] < \infty\}$
- Low \hat{k} fast convergence of (Pareto smoothed) importance sampling, high \hat{k} , slow convergence

Yuling Yao, Aki Vehtari, Daniel Simpson, and Andrew Gelman (2018). "Yes, but Did It Work?: Evaluating Variational Inference"

Anna, Chris and Sahra December 2, 2019

Pareto-Smoothed Importance Sampling (PSIS) ctd...

- Finiteness of the moments of $E_{\pi^*}[\frac{p(\theta,\mathbf{x})}{\pi^*(\theta)}^{\frac{1}{k}}]$ corresponds to the finiteness of the Rényi divergence $D_{\frac{1}{k}}(\pi||\pi^*) = \frac{k}{1-k}\log(\int_{\Theta}\pi(\theta)^{\frac{1}{k}}\pi^*(\theta)^{1-\frac{1}{k}}).$
- Thus, also serves as a measure of accuracy of samples from the posterior.
- $\hat{k} \ge 1$ implies infinite KL divergence...!

Anna, Chris and Sahra December 2, 2019 5 / 22

Yuling Yao, Aki Vehtari, Daniel Simpson, and Andrew Gelman (2018). "Yes, but Did It Work?: Evaluating Variational Inference"

Variation Simulation Based Calibration (VSBC)

Given a defined Bayesian model, with D dimensional parameter $\theta = (\theta_1, \dots, \theta_D)^T$ the following steps are conducted:

- 1) Generate parameter θ^i from the prior $p(\theta)$
- 2) Generate dataset \mathbf{x}^i from the likelihood $p(\mathbf{x}|\theta^i)$ the resulting values (θ^i, \mathbf{x}^i) are a sample from the joint distribution $p(\mathbf{x}^i, \theta)$, and therefore θ^i is a sample from $p(\theta|\mathbf{x}^i)$
- 3) Use a VI approach to approximate $p(\theta|\mathbf{x}^i)$ with $\hat{\pi}_i(\theta)$

Anna, Chris and Sahra December 2, 2019 6 / 22

Yuling Yao, Aki Vehtari, Daniel Simpson, and Andrew Gelman (2018). "Yes, but Did It Work?: Evaluating Variational Inference"

Variation Simulation Based Calibration (VSBC) ctd...

4) Generate sufficiently large S samples of $\theta^{ij} \sim q_i(\theta)$

Introduction

5) For each parameter component, record $U_d^i = \hat{F}_d^i(\theta_d^i)$, where $\hat{F}_d^i(c) = \frac{1}{5} \sum_{i=1}^{5} \mathbb{I}[\theta_d^{ij} \leq c]$

This method assesses the performance of VI under a Bayesian model for any set of responses from the prior predictive $p(\mathbf{x})$.

Anna, Chris and Sahra December 2, 2019 7/22

Yuling Yao, Aki Vehtari, Daniel Simpson, and Andrew Gelman (2018). "Yes, but Did It Work?: Evaluating Variational Inference"

Combining PSIS with VSBC

We can use VSBC to assess the impact of adjusting variational posteriors with PSIS:

- Particle approximation to the posterior distribution is given by sampling from:
 - $\hat{\pi}_{IS}(\theta) = \sum_{i=1}^{S} \tilde{w}_i \delta(\theta^i)$, with $\tilde{w}_i = \frac{w_i}{\sum_{i=1}^{S} w_i}$
 - $\hat{\pi}_{PSIS}(\theta) = \sum_{i=1}^{S} \tilde{r}_i \delta(\theta^i)$, with $\tilde{r}_i = \frac{\sum_{i=1}^{I-1} r_i}{\sum_{i=1}^{S} r_i}$

Sample from these distributions, instead of from $\hat{\pi}$.

Anna, Chris and Sahra December 2, 2019 8 / 22

Yuling Yao, Aki Vehtari, Daniel Simpson, and Andrew Gelman (2018). "Yes, but Did It Work?: Evaluating Variational Inference"

Posterior Error Bounds From Variational Objectives

- goal: post-hoc accuracy measure
- method: bounds on the error of posterior mean & uncertainty estimates
- requirement: approximating & exact posterior have polynomial momements
 - + computational efficiency
 - + weak tail restrictions
 - + evaluation of relevant targets

Anna, Chris and Sahra December 2, 2019 9 / 22

Jonathan H. Huggins, Mikolaj Kasprzak, Trevor Campbell, and Tamara Broderick (2019). "Practical Posterior Error Bounds from Variational Objectives"

10 / 22

Workflow for Variational Inference (Part 1)

- 1) Select variational family Q with sufficiently heavy tails.
- Minimize discrepancy measure to find variational approximation $\hat{\pi}$.
 - \rightarrow **KLVI**: maximizing ELBO $\hat{=}$ minimizing KL-divergence
 - \rightarrow **CHIVI**: minimizing CUBO $\hat{=}$ minimizing α -Rényi divergence
- 3) Compute \hat{k} .
 - \rightarrow **if** there is no guarantee that k < 0
 - \rightarrow if $\hat{k} > 0$.

then refine Q or reparameterize the model.

Anna, Chris and Sahra December 2, 2019

Jonathan H. Huggins, Mikolaj Kasprzak, Trevor Campbell, and Tamara Broderick (2019). "Practical Posterior Error Bounds from Variational Objectives"

Workflow for Variational Inference (Part 2)

4) Compute ELBO($\hat{\pi}$) and CUBO₂($\hat{\pi}$).

Introduction

- (optional) Further optimize the ELBO(ξ).
- 6) Compute bound on α -divergence $\bar{\delta} > D_2(\pi | \hat{\pi})$.
- 7) Compute bound on *p*-Wasserstein distance $\bar{w}_2 \geq W_2(\pi, \hat{\pi})$.

Anna, Chris and Sahra December 2, 2019 11/22

Jonathan H. Huggins, Mikolaj Kasprzak, Trevor Campbell, and Tamara Broderick (2019). "Practical Posterior Error Bounds from Variational Objectives"

Workflow for Variational Inference (Part 3)

8) If $\bar{\delta}_2 \uparrow$ and $\bar{w}_2 \uparrow$, then refine Q or reparameterize the model.

Introduction

- 9) If $\bar{\delta}_2 \downarrow$ and $\bar{w}_2 \uparrow$, then use IS or PSIS to refine the posterior expectations produced by $\hat{\pi}$.
- 10) If $\bar{\delta}_2 \downarrow$ and $\bar{w}_2 \downarrow$, then use $\hat{\pi}$ to approximate π .

Anna, Chris and Sahra December 2, 2019 12 / 22

Jonathan H. Huggins, Mikolaj Kasprzak, Trevor Campbell, and Tamara Broderick (2019). "Practical Posterior Error Bounds from Variational Objectives"

Diabetes Dataset

input: age, sex, bmi value, blood pressureoutput: measure of disease progression

	age	sex	bmi	bp	У
125	-2.437433	1.0	-3.695818	-0.984661	5.081404
333	12.012805	1.0	-2.743032	12.711079	5.099866
32	15.223969	1.0	55.376907	12.711079	5.831882
160	-4.043015	0.0	-27.515464	-32.941387	3.970292
104	-12.070925	0.0	28.698902	-0.984661	4.553877

Bayesian Linear Regression Model Setup

Prior distributions

$$p(\alpha) = \mathcal{N}(\alpha; 0, 10)$$

 $p(\beta) = \mathcal{N}(\beta; 0, 1)$
 $p(\sigma) = Gamma(\sigma; 1, 1)$

Likelihood

Introduction

$$\begin{split} \mu_i &= \alpha + \beta_{\textit{age}} \cdot \mathsf{age}_i + \beta_{\textit{sex}} \cdot \mathsf{sex}_i + \beta_{\textit{bmi}} \cdot \mathsf{bmi}_i + \beta_{\textit{bp}} \cdot \mathsf{bp}_i \\ p(\mathbf{y} | \alpha, \beta) &= \mathcal{N}(y; \mu, \sigma^2) \end{split}$$

Variational Distribution Setup

Variational Inference Method: Stochastic Mean-Field VI Variational Family: Gaussians

$$q(\alpha) = \mathcal{N}(\alpha; \ \mu_{\alpha}, \ \sigma_{\alpha})$$

$$q(\beta) = \mathcal{N}(\beta; \ \mu_{\beta}, \ \sigma_{\beta})$$

$$q(\sigma) = \mathcal{N}(\sigma; \ \mu_{\sigma}, \ \sigma_{\sigma})$$

Initialization:

$$q(\alpha) = \mathcal{N}(\alpha; 0, 1)$$

$$q(\beta) = \mathcal{N}(\beta; 0, 1)$$

$$q(\sigma) = \mathcal{N}(\sigma; 1, 0.05)$$

Gaussian Process Regression Model Setup

Prior distributions and Likelihood:

$$y_i = f(x_i) + \epsilon_i$$

where

$$f \sim \mathcal{GP}(0, K)$$
,

K is the squared exponential kernel,

$$\epsilon_i \sim \mathsf{Student}\text{-t}(\mathsf{df})$$

Variational Inference Method: variational Gaussian approximation (Opper and Archambeau, 2009)

Variational Family: Gaussians

$$q(f) = N(\mu_f, K_f)$$

roduction PSIS and VSBC Posterior Error Bounds Results Conclusion References

0 00000 0000 0000 0

Investigating VI for the model: PSIS with VSBC

Anna, Chris and Sahra December 2, 2019

17 / 22

Investigating VI for the GP model: PSIS with VSBC

18 / 22

Anna, Chris and Sahra December 2, 2019

PSIS and VSBC Posterior Error Bounds Results Conclusion References

○○○○○ ○○○ ○○○○ ○○○○○○ ○

KLVI vs. CHIVI vs. HMC

Marginal Posterior density - Regression Coefficients

Anna, Chris and Sahra

Error Bounds on Posterior Quantities

KLVI: SVI with KL-divergence as variational objective

CHIVI: SVI with 2-Rényi divergence as variational objective

GP KLVI: Variational Gaussian Approximation with KL-divergence as

variational objective and Gaussian process prior

	KLVI	CHIVI	GP KLVI
D ₂ bound	9.84	11.50	0.07
\mathcal{W}_2 bound	1.64	2.48	4.25
mean error	1.64	2.48	4.25
std error	3.16	4.79	8.22

Posterior Error Bounds Introduction PSIS and VSBC Results Conclusion References

Conclusion

PSIS + simple rules

- arbitrary decision bounds

VSBC + focuses on measure

> +/- does not assess for a particular dataset

+/- looks at marginals

- computationally expensive

divergence/Wasserstein bounds

+ computationally efficient

+ weak tail restrictions

+ possible stopping criteria

ntroduction PSIS and VSBC Posterior Error Bounds Results Conclusion References

References I

- Jonathan H. Huggins, Mikolaj Kasprzak, Trevor Campbell, and Tamara Broderick. Practical posterior error bounds from variational objectives. 2019.
- Manfred Opper and Cédric Archambeau. The variational Gaussian approximation revisited. *Neural computation*, 21(3):786–792, 2009.
- Yuling Yao, Aki Vehtari, Daniel Simpson, and Andrew Gelman. Yes, but did it work?: Evaluating variational inference. *arXiv preprint arXiv:1802.02538*, 2018.