In[9]:= ClearAll["Global`*"]

\$Assumptions = $(r_s \in Reals \&\& r_s > 0)$;

(* Print Euler-Lagrange equations *)

$$L = -\left(1 - \frac{r_s}{r[\tau]}\right) t'[\tau]^2 + \left(1 - \frac{r_s}{r[\tau]}\right)^{-1} r'[\tau]^2 + r[\tau]^2 \phi'[\tau]^2;$$

$$Print\left["\frac{d}{d\tau}\{", \partial_{t'[\tau]}L, "\} = ", \partial_{t[\tau]}L\right]$$

Print
$$\left[\frac{d}{d\tau} \{ ", \partial_{\theta'[\tau]} L, " \} = ", \partial_{\theta[\tau]} L \right]$$

$$Print\left["\frac{d}{d\tau}\{", \partial_{\phi'[\tau]}L, "\} = ", \partial_{\phi[\tau]}L\right]$$

$$Print\left["\frac{d}{d\tau}\{", \partial_{r'[\tau]}L, "\} = ", \partial_{r[\tau]}L\right]$$

$$\frac{d}{d\tau}\left\{2\left(-1+\frac{r_s}{r[\tau]}\right)t'[\tau]\right\} = 0$$

$$\frac{d}{d\tau}\{0\} = 0$$

$$\frac{d}{d\tau} \{ 2 r[\tau]^2 \phi'[\tau] \} = 0$$

$$\frac{d}{d\tau} \left\{ \frac{2 \, r'[\tau]}{1 - \frac{r_s}{r[\tau]}} \right\} = -\frac{r_s \, r'[\tau]^2}{r[\tau]^2 \left(1 - \frac{r_s}{r[\tau]}\right)^2} - \frac{r_s \, t'[\tau]^2}{r[\tau]^2} + 2 \, r[\tau] \, \phi'[\tau]^2$$

(* Solve Euler-Lagrange equations for t'[τ], ϕ '[τ], r'[τ], & r''[τ] *) tpSolution = Solve[tEqn, t'[7]][[1, 1]] ϕ pSolution = Solve[ϕ Eqn, ϕ '[τ]][[1, 1]] rpSolution = Solve[L == 1, $r'[\tau]$][[1, 1]] /. { ϕ pSolution, tpSolution} rppSolution = Solve[rEqn, r''[7]][[1, 1]]

$$\text{Out[19]= } \mathsf{t'[\tau]} \to \frac{\mathsf{er[\tau]}}{\mathsf{m(r[\tau]-r_s)}}$$

Out[20]=
$$\phi'[\tau] \rightarrow \frac{\Im}{\mathrm{mr}[\tau]^2}$$

$$\text{Out}[21] = \ \ r'[\tau] \rightarrow - \frac{\sqrt{1 - \frac{r_s}{r[\tau]}} \ \ \sqrt{-\frac{\Im^2}{m^2 \, r[\tau]} + r[\tau] + \frac{e^2 \, r[\tau]^3}{m^2 \, (r[\tau] - r_s)^2}} - \frac{e^2 \, r[\tau]^2 \, r_s}{m^2 \, (r[\tau] - r_s)^2} } {\sqrt{r[\tau]} }$$

Out[22]=
$$r''[\tau] \rightarrow \frac{1}{2} \left(1 - \frac{r_s}{r[\tau]} \right) \left(\frac{r_s r'[\tau]^2}{r[\tau]^2 \left(1 - \frac{r_s}{r[\tau]} \right)^2} - \frac{r_s t'[\tau]^2}{r[\tau]^2} + 2 r[\tau] \phi'[\tau]^2 \right)$$

 $\ln[23] = (* \text{ Substitute t'}[\tau], \phi'[\tau], \& \text{ r'}[\tau] \text{ into expression for r''}[\tau] *)$ rppExpression = ReplaceAll[rppSolution][r"[7]]; rppExpression = ReplaceAll[φpSolution][rppExpression]; rppExpression = ReplaceAll[tpSolution][rppExpression]; rppExpression = ReplaceAll[rpSolution][rppExpression];

Print
$$\left[\text{"m} \frac{d^2 r}{d\tau^2} \right] = \text{", FullSimplify[m rppExpression]}$$

$$m \frac{d^2 r}{d\tau^2} = \frac{2 J^2 r[\tau] - 3 J^2 r_s + m^2 r[\tau]^2 r_s}{2 m r[\tau]^4}$$

In[28]:= (* Integrate F(r) with respect to r, which we now have to call ho as to not confuse our symbolic integration routine *) $F[\rho_{-}] := m \text{ rppExpression } /. \{r[\tau] \rightarrow \rho\};$ Print["V(ρ) = ", FullSimplify[-Integrate[F[ρ], ρ]]]

$$V(\rho) = \frac{J^2 \rho + (-J^2 + m^2 \rho^2) r_s}{2 m \rho^3}$$