XABIER LÓPEZ, JON M. MATXAIN, DAVID DE SANCHO & IRENE CASADEMONT

QUÍMICA FÍSICA

PRÁCTICAS DE ORDENADOR

Introducción general

En este primer capítulo explicaremos los objetivos que queremos alcanzar y cuáles son las herramientas que vamos a utilizar. En los siguientes capítulos utilizaremos a fondo estas herramientas. Profundizaremos en la información que como químicos podemox extraer de la Mecánica Cuántica y en las relaciones que la computación permite establecer entre teoría y experimentos.

En concreto el problema en que nos vamos a centrar es la determinación del espectro rotovibracional del monóxido de carbono (CO). A continuación determinaremos las variaciones en el espectro ultravioleta en presencia de diferentes disolventes.

A continuación en este manual introduciremos los fundamentos teóricos y las herramientas que vamos a utilizar para alcanzar nuestros objetivos. Por un lado, la mecánica cuántica; por otro, la computación, que se usa hoy en día para resolver las ecuaciónes mecanocuánticas. Éstas han sido incorporadas en un *software* de cálculo, **Gaussiano3**. Pero antes de describir cómo vamos a hacer uso de este programa, presentaremos el sistema operativo **Linux**.

Linux

Qué es Linux

Linux es una familia de sistemas operativos (*OS*) de código abierto organizados en torno al *Linux kernel*, desarrollado inicialmente por Linus Torvalds. La *Free Software Foundation* usa el nombre GNU/Linux para referirse a la familia de sistemas operativos así como a distribuciones específicas, que incluyen el kernel pero además multitud de programas y librerías del proyecto GNU. A pesar de que este sistema operativo no es el más extendido para usuarios domésticos, domina en el ámbito de la supercomputación, y ha sido la base para el desarrollo del Android OS.

4 Xabier López, Jon M. Matxain, david de Sancho & Irene Casademont

Comando	Descripción	Opciones
ls	Lista de archivos y directorios	-l,-lt,-ltr
pwd	Escribe el <i>path</i>	
df	Mostrar la cantidad de espacio libre en disco	
du	Mostrar uso de disco por parte de archivos y directorios	
man command	Mostrar manual del programa command	
grep	Seleccionar un argumento	
bg	Mandar proceso al background	
fg	Traer proceso al foreground	
touch file_name	Crear archivo	
rm file_name	Borrar archivo	
cat file_name	Mostrar archivo por pantalla	
more file_name	Mostrar gradualmente el archivo	
nano file_name	Mostrar el archivo con el editor nano	
mkdir folder_name	Crear directorio	
cd folder_name	Cambio de directorio cd folder_name	
mv file1 file2	Mover archivo	
cp file1 file2	Crear copia de file1	

Comandos de Linux

A pesar de que Linux dispone de un entorno gráfico análogo al de Windows o Mac OS X, la interfaz más importante entre el usuario y el sistema operativo en Linux es la **terminal**. En la Tabla 1 mostramos algunos de los comandos más habituales.

Introducción a la Química Cuántica

2 Átomos

Método de Hartree Fock para átomos

Las ecuaciones que debemos resolver

Soluciones

Input para el programa Gaussian

Output de Gaussian

Moléculas: Introducción

Moléculas: Cálculo de frecuencias

Espectro rotovibracional del CO

7

Estados excitados del CO (espectro ultravioleta-visible)