Relational Algebra Operations

SONY P

College of Engineering Chengannur

February 4, 2018

- Introduction
- Rename
- Set Operations
- UNION
- Cartesian Product
- JOIN
- Division

INTRODUCTION

- Unary Relational Operations -select Project, Rename
- Relational Algebra Operations From Set Theory- Union, Intersection, set difference
- Binary Relational Operations Cartesian Product, join ,natural join
- Additional Relational Operations- Outer join, division ,Aggregate functions
- Examples of Queries in Relational Algebra

Figure: Company Database P + (B) (B) (C)

Figure 5.6
One possible database state for the COMPANY relational database schema.

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	s	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	м	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	E	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

DEPARTMENT

Dname	Dnumber	Mgr_ssn	Mgr_start_date
Research	5	333445555	1988-05-22
Administration	4	987654321	1995-01-01
Headquarters	1	888665555	1981-06-19

DEPT_LOCATIONS

Dnumber	Dlocation
1	Houston
4	Stafford
5	Bellaire
5	Sugarland
5	Houston

WORKS_ON

Essn	Pno	Hours
123456789	1	32.5
123456789	2	7.5
666884444	3	40.0
453453453	1	20.0
453453453	2	20.0
333445555	2	10.0

PROJECT

Pname	Pnumber	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

- The general RENAME operation ρ can be expressed by any of the following forms:
 - ρ_{S (B1, B2, ..., Bn)}(R) changes both:
 - the relation name to S, and
 - the column (attribute) names to B1, B1,Bn
 - ρ_S(R) changes:
 - the relation name only to S
 - ρ_(B1, B2, ..., Bn)(R) changes:
 - the column (attribute) names only to B1, B1,Bn

Figure: Rename.

To retrieve the first name, last name, and salary of all employees who work in department number 5

 $\pi_{\text{FNAME, LNAME, SALARY}}(\sigma_{\text{DNO=5}}(\text{EMPLOYEE}))$

OR

- DEP5_EMPS $\leftarrow \sigma_{DNO=5}(EMPLOYEE)$
- RESULT $\leftarrow \pi_{\text{FNAME. LNAME. SALARY}}$ (DEP5_EMPS)

$$\rho_{S(B_1, B_2, ..., B_n)}(R)$$
 or $\rho_{S}(R)$ or $\rho_{(B_1, B_2, ..., B_n)}(R)$

Figure: Rename.

9/28

(a)

ı	Fname	Lname	Salary
	John	Smith	30000
	Franklin	Wong	40000
	Ramesh	Narayan	38000
	Joyce	English	25000
ı	, , , , ,		

(b) TEMP

Fname	Minit	Lname	<u>Ssn</u>	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston,TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston,TX	М	40000	888665555	5
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble,TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5

R

First_name	Last_name	Salary
John	Smith	30000
Franklin	Wong	40000
Ramesh	Narayan	38000
Joyce	English	25000

Figure 6.2

Results of a sequence of operations.
(a) $\pi_{\text{Fname, Lname, Salary}}(\sigma_{\text{Dno=5}}(\text{EMPLOYEE}))$.

(b) Using intermediate relations and renaming of attributes.

Figure: Rename .

(a) STUDENT

Fn	Ln
Susan	Yao
Ramesh	Shah
Johnny	Kohler
Barbara	Jones
Amy	Ford
Jimmy	Wang
Ernest	Gilbert

INSTRUCTOR

oiiiooioii			
Fname	Lname		
John	Smith		
Ricardo	Browne		
Susan	Yao		
Francis	Johnson		
Ramesh	Shah		

(b)

)	Fn	Ln
	Susan	Yao
	Ramesh	Shah
	Johnny	Kohler
	Barbara	Jones
	Amy	Ford
	Jimmy	Wang
	Ernest	Gilbert
	John	Smith
	Ricardo	Browne
	Francis	Johnson

(c)

Fn	Ln
Susan	Yao
Ramesh	Shah

(d)

Fn	Ln
Johnny	Kohler
Barbara	Jones
Amy	Ford
Jimmy	Wang
Ernest	Gilbert

(e)

е
n

Figure 6.4

The set operations UNION, INTERSECTION, and MINUS. (a) Two union-compatible relations. (b) STUDENT ∪ INSTRUCTOR. (c) STUDENT ∩ INSTRUCTOR. (d) STUDENT − INSTRUCTOR.

(e) INSTRUCTOR – STUDENT.

To retrieve the social security numbers of all employees who either work in department 5 or directly supervise an employee who works in department 5

UNION

DEP5_EMPS $\leftarrow \sigma_{\text{DNO=5}}$ (EMPLOYEE) RESULT1 $\leftarrow \pi_{\text{SSN}}$ (DEP5_EMPS) RESULT2(SSN) $\leftarrow \pi_{\text{SUPERSSN}}$ (DEP5_EMPS) RESULT \leftarrow RESULT1 \cup RESULT2

UNION

Figure 6.3

Result of the UNION operation RESULT ← RESULT1 URESULT2.

RESULT1

RESULT2

Ssn 333445555 888665555

RESULT

Figure: Union .

To retrieve for each female employees, a list of the names of their dependent

- FEMALE_EMPS $\leftarrow \sigma_{SEX='F'}(EMPLOYEE)$
- EMPNAMES $\leftarrow \pi_{\text{FNAME, LNAME, SSN}}$ (FEMALE_EMPS)

Relational Algebra Operations

EMP DEPENDENTS ← EMPNAMES x DEPENDENT

- FEMALE EMPS $\leftarrow \sigma_{SFX='F'}$ (EMPLOYEE)
- EMPNAMES $\leftarrow \pi_{\text{FNAME, LNAME, SSN}}$ (FEMALE_EMPS)
- EMP_DEPENDENTS ← EMPNAMES x DEPENDENT
- ACTUAL_DEPS $\leftarrow \sigma_{SSN=ESSN}(EMP_DEPENDENTS)$
- RESULT $\leftarrow \pi_{\text{FNAME. LNAME. DEPENDENT NAME}}$ (ACTUAL_DEPS)

Figure: Cartesian Product.

Cartesian Product

Figure 6.5

The CARTESIAN PRODUCT (CROSS PRODUCT) operation.

FEMALE_EMPS

Fname	Minit	Lname	San	Bdate	Address	Sex	Salary	Super_ssn	Dno
Alicia.	J	Zelaya	999887777	1968-07-19	3321Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291Berry, Bellaire, TX	F	43000	888665555	4
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5

EMPNAMES

Fname	Lname	San
Alicia	Zelaya	999887777
Jennifer	Wallace	987654321
Joyce	English	453453453

EMP_DEPENDENTS

Fname	Lname	San	Essn	Dependent_name	Sex	Bdate	
Alicia	Zelaya	999887777	333445555	Alice	F	1986-04-05	
Alicia	Zelaya	999887777	333445555	Theodore	M	1983-10-25	
Alicia	Zelaya	999887777	333445555	Joy	F	1958-05-03	
Alicia	Zelaya	999887777	987654321	Abner	M	1942-02-28	
Alicia	Zelaya	999887777	123456789	Michael	M	1988-01-04	
Alicia.	Zelaya	999887777	123456789	Alice	F	1988-12-30	
Alicia	Zelaya	999887777	123456789	Elizabeth	F	1967-05-05	
Jennifer	Wallace	987654321	333445555	Alice	F	1986-04-05	
Jennifer	Wallace	987654321	333445555	Theodore	M	1983-10-25	
Jennifer	Wallace	987654321	333445555	Joy	F	1958-05-03	
Jennifer	Wallace	987654321	987654321	Abner	M	1942-02-28	
Jennifer	Wallace	987654321	123456789	Michael	M	1988-01-04	
Jennifer	Wallace	987654321	123456789	Alice	F	1988-12-30	
Jennifer	Wallace	987654321	123456789	Elizabeth	F	1967-05-05	
Joyce	English	453453453	333445555	Alice	F	1986-04-05	
Joyce	English	453453453	333445555	Theodore	M	1983-10-25	
Joyce	English	453453453	333445555	Joy	F	1958-05-03	
Joyce	English	453453453	987654321	Abner	M	1942-02-28	
Joyce	English	453453453	123456789	Michael	M	1988-01-04	
Joyce	English	453453453	123456789	Alice	F	1988-12-30	
Joyce	English	453453453	123456789	Elizabeth	F	1967-05-05	

ACTUAL DEPENDENTS

HOTORE_DEFENDENTO									
Fname	Lname	San	Essn	Dependent_name	Sex	Bdate			
Jennifer	Wallace	987654321	987654321	Abner	M	1942-02-28			

RESULT

Fname Lname Dependent_name
Jennifer Wallace Abner

Suppose that we want to retrieve the name of the manager of each department

■ DEPT_MGR ← DEPARTMENT

DEPT MGR

Dname	Dnumber	Mgr_ssn		Fname	Minit	Lname	Ssn	
Research	5	333445555		Franklin	Т	Wong	333445555	
Administration	4	987654321		Jennifer	S	Wallace	987654321	
Headquarters	1	888665555		James	E	Borg	888665555	

Figure 6.6

Result of the JOIN operation

Figure: Manager.

Q1: Retrieve the name and address of all employees who work for the Research department.

JOIN

```
\begin{aligned} & \mathsf{RESEARCH\_DEPT} \leftarrow \sigma_{\mathsf{Dname}='Research'}(\mathsf{DEPARTMENT}) \\ & \mathsf{RESEARCH\_EMPS} \leftarrow (\mathsf{RESEARCH\_DEPT} \bowtie_{\mathsf{Dnumber}=\mathsf{Dno}} \mathsf{EMPLOYEE}) \\ & \mathsf{RESULT} \leftarrow \pi_{\mathsf{Fname},\,\mathsf{Lname},\,\mathsf{Address}}(\mathsf{RESEARCH\_EMPS}) \end{aligned}
```

As a single in-line expression, this query becomes:

 $\pi_{\mathsf{Fname},\,\mathsf{Lname},\,\mathsf{Address}}\left(\sigma_{\mathsf{Dname}=\,\mathsf{`Research'}}(\mathsf{DEPARTMENT}\,\bowtie\,_{\mathsf{Dnumber}=\mathsf{Dno}}(\mathsf{EMPLOYEE})\right)$

Q6: Retrieve the names of employees who have no dependents.

ALL_EMPS $\leftarrow \pi \text{ ssn}(\text{EMPLOYEE})$

EMPS_WITH_DEPS(SSN) $\leftarrow \pi$ essn(DEPENDENT)

 $EMPS_WITHOUT_DEPS \leftarrow (ALL_EMPS - EMPS_WITH_DEPS)$

 $\texttt{RESULT} \leftarrow \pi \texttt{ lname}, \texttt{fname} \left(\texttt{EMPS_WITHOUT_DEPS} * \texttt{EMPLOYEE} \right)$

THETA JOIN

- Each <condition> of the form A_i θ B_j
- A_i is an attribute of R
- B_i is an attribute of S
- A_i and B_j have the same domain
- θ (theta) is one of the comparison operators:
 - {=, <, ≤, >, ≥, ≠}

Variations of JOIN: The EQUIJOIN and NATURAL JOIN

EQUIJOIN

- Only = comparison operator used
- Always have one or more pairs of attributes that have identical values in every tuple

NATURAL JOIN

- Denoted by *
- Removes second (superfluous) attribute in an EQUIJOIN condition

A Complete Set of Relational Algebra Operations

- Set of relational algebra operations {σ, π, ∪, ρ, –, ×} is a complete set
 - Any relational algebra operation can be expressed as a sequence of operations from this set

(a)

SSN_PNOS

Essn	Pno
123456789	1
123456789	2
666884444	3
453453453	1
453453453	2
333445555	2
333445555	3
333445555	10
333445555	20
999887777	30
999887777	10
987987987	10
987987987	30
987654321	30
987654321	20
888665555	20

SMITH PNOS

Pno
1
2

SSNS

Ssn
123456789
453453453

(b)

R

Α	В
a1	b1
a2	b1
аЗ	b1
a4	b1
a1	b2
аЗ	b2
a2	b3
аЗ	b3
a4	b3
a1	b4
a2	b4

аЗ

b4

s

_		
	Α	
	a1	
	a2	
	аЗ	
_		

•

Figure 6.8

The DIVISION operation. (a) Dividing SSN_PNOS by SMITH_PNOS. (b) $T \leftarrow R \div S$.