Before starting the lecture...

- Once again, this course is for the microelectronics.
 - It's about the circuit analysis...
- What is the most important rule for the circuit analysis?
 - Kirchhoff's current rule!
 - One example

Lecture1: Basic physics of semiconductor (1)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Information and Communications
Gwangju Institute of Science and Technology

Electronic circuit

- Our course is not about the semiconductor physics.
- Why do we consider the basic physics of semiconductor?
 - Especially, silicon.

In principle,

- There can be various ways to realize a component in the electronic circuit.
 - Even without semiconductors!
- For example,
 - NEM relay

S. Chong et al., ICCAD, 2009
GIST Lecture on March 7, 2016 (Internal use only)

In reality,

- Currently, <u>only semiconductor technologies</u> can achieve the tough specifications required.
 - Performance
 - Power consumption
 - Reliability
 - Variability
 - And most importantly, cost!

That's the reason why we first study the semiconductors.

Analogy

 SF writers sometimes imagine that the carbon-based life is not the only form of the living creature.

Magnified cells of bacterium GFAJ-1 (Wikipedia)

However, in reality?

Crystal structure of Si

Diamond cubic crystal structure

Taken from Wikipedia

GIST Lecture on March 7, 2016 (Internal use only)

Band structure

Band structure of silicon (Band gap ~ 1.12eV)

(J. R. Chelikowsky and M. L. Cohen, PRB, vol. 14, p. 556, 1976)

Reservation of seats

- In a movie theater,
 - Assume that you must reserve several movie tickets for your group members.
 - They are not rich at all.
 - Different seats with different prices!

- In this analogy,
 - Price = energy

I-680 (a *free*way in California)

• (Google image)

- Once again, in this analogy, fare = energy
 - Then, who pays?

Thermal energy

- At higher temperatures, electrons gain thermal energy.
 - The covalent bonds are broken.
 - They act as free charge carriers.

Go-stones

- Concept of holes
 - When freed from a covalent bond, an electron leaves a "void" behind.
 - It the void is called a "hole."

Go-stones (Google Image)

Electrons and holes are charge-carriers.

Intrinsic carrier density

- At higher temperatures,
 - There will be a certain amount of electrons and holes.
 - How many "free" electrons? (Assume the intrinsic material.)
 - It is the meaning of the intrinsic carrier density, n_i .
- Expression of n_i

$$n_i = 5.2 \times 10^{15} \, T^{1.5} \exp \frac{-E_g}{2k_B T} \, [electrons/cm^3]$$

- Boltzmann constant, k_B
- At 300K, n_i is roughly 10^{10} [electrons/cm³].

Impurity atom

- The phosphorus atom has 5 valence electrons.
 - Additional electron (e⁻ in the right figure) serves as a charge carrier.

Pure silicon

Silicon with "impurity" atom (For example, phosphorus)

Impurity atoms

- One impurity atom contributes a "free" electron.
 - If 2 (, 3, 4, 5, ...) phosphorus atoms are introduced?
 - 2 (, 3, 4, 5, ...) additional electrons will be generated!
- More specifically,
 - When the density of the phosphorus atom is $N [atoms/cm^3]$,
 - The electron density becomes N [electrons/cm³].
- Typical value? (Feeling about the numbers)
 - $10^{15} [atoms/cm^3]$: Almost no impurity
 - $10^{17} [atoms/cm^3]$: Low (or moderate) impurity density
 - $10^{19} [atoms/cm^3]$: High impurity density (Not extremely high)
- What is it good for?
 - Conductivity can be changed drastically.

n-type? p-type?

- Phosphorus has 5 valence electrons.
 - Therefore, it contributes an electron.
 - n-type
- Boron has 3 valence electrons.
 - It cannot provide 4 valence electrons to complete 4 bonds.
 - Instead, it contributes a hole.
 - p-type

Minority carrier density

- Majority vs. minority
 - In the n-type semiconductor, electrons are majority carriers.
 - On the other hand, holes are minority carriers.
 - At equilibrium,

$$np = n_i^2$$

Nonequilibrium

- Up to now, we have considered the equilibrium case.
- Various ways to generate the nonequilibrium cases:
 - Electric potential difference
 - Others?
- Result?
 - Flow of charged particles!