Second Recitation Class Linear Algebra

Yuzhou Li

UM-SJTU Joint Institute

May 29, 2019

Table of contents

Matrix Product: Exercise of adjacent matrix

Compute A_G^2 and trace (A_G^2)

Compute A_G^3

Remark

Exercise

Linear Combination

Linear Independence

Exercise

Answer

Linear Space

Definition of Linear Space

Normed Linear Space

Linear Subspace

Direct Sum

Basis

Compute A_G^2 and trace (A_G^2)

Compute A

Remark

Exercise

Linear Combination

Linear Independence

Exercise

Answer

Linear Space

Definition of Linear Space

Normed Linear Space

Linear Subspace

Direct Sum

Basis

Compute A_G^2 and trace (A_G^2)

1. Let
$$A_G = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
 be the adjacency matrix of a graph G . Compute $trace(A)$.

$$trace(A) = a_{11} + a_{22} + a_{33} = 0$$

2. Compute A_G^2 and $trace(A_G^2)$. Find the good interpretation for $trace(A_G^2)$ —the question is still open!

$$(A_G^2)_{ij} = \sum_{k=1}^3 a_{ik} a_{kj} \Rightarrow \text{we count only terms with } a_{ik} a_{kj} \neq 0$$

 $\Rightarrow a_{ik} \neq 0, \ a_{kj} \neq 0 \iff \underbrace{a_{ik} = a_{kj} = 1}_{v_i \sim v_k \sim v_j} \text{we count w.r.t } k$

 $(A_G^2)_{ij}$ = the number of common neighbors of v_i and v_j

Compute A_G^2 and trace (A_G^2)

Compute A_G^3

Remark

Exercise

Linear Combination

Linear Independence

Exercise

Answer

Linear Space

Definition of Linear Space

Normed Linear Space

Linear Subspace

Direct Sum

Basis

Compute A_G^3

3 Compute A_G^3 . What are the entries $(A_G^3)_{ij}$?

$$(A_G^3)_{ij} = \sum_{k=1}^3 \sum_{m=1}^3 a_{ik} a_{km} a_{mj} \Rightarrow a_{ik} a_{km} a_{mj} \neq 0$$

$$\iff \underbrace{a_{ik} = a_{km} = a_{mj} = 1}_{V_i \sim V_k \sim V_m \sim V_i}$$

 $(A_G^3)_{ij}$ is the number of walks of the length 3 from v_i to v_j

 $(A_G^m)_{ij}$ is the number of walks of the length m from v_i to v_j

Remark: Recall, that a walk from v_i to v_j in a graph is a sequence of vertices

$$v_i - -v_p - -v_k - -v_r - -v_s - - \ldots - -v_j$$

The length of a walk is the number of edges in the walk.

Compute A_G^2 and trace(A_G^2)

Remark

Exercise

Linear Combination

Linear Independence

Exercise

Linear Space

Definition of Linear Space

Normed Linear Space

Linear Subspace

Direct Sum

Basis

Remark

- 1. According to our definition of graphs, $trace(A_G) = 0$.
- 2. $(A_G^m)_{ij}$ is the number of walks of the length m from v_i to v_j .
- In the definition of walks, one can "return" to the place where it comes from.
- 4. Between two adjacent points i and j, there always exists a walk of the length (2n+1) for some $n \in N$ from v_i to v_j .
- 5. We can always directly write out A_G^n for any $n \in N$ since we know the definition of elements in such matrix.

Compute A_G^2 and trace(A_G^2)

Compute

Remark

Exercise

Linear Combination

Linear Independence

Exercise

Answer

Linear Space

Definition of Linear Space

Normed Linear Space

Linear Subspace

Direct Sum

Basis

Exercise

Directly write out the adjacency matrix A_G , A_G^2 of this graph.

Linear Combination

Definition: If $\bar{y} = \alpha \bar{x}_1 + \ldots + \alpha_k \bar{x}_k$, then \bar{y} is called a linear combination of $\bar{x}_1, \ldots, \bar{x}_k$ OR we say that \bar{y} is spanned by $\bar{x}_1, \ldots, \bar{x}_k$ and denote $\bar{y} = span(\bar{x}_1, \ldots, \bar{x}_k)$

Linear Independence

Definition: Elements $v_1, v_2, \ldots, v_n \in V$ are said to be linearly independent if

$$\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n = 0 \Rightarrow \alpha_1 = \ldots = \alpha_n = 0$$

Remark: An infinite set of vectors is said to be linearly independent if every finite subset is linearly independent.

Definition: If

$$\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n = 0 \Rightarrow \exists \alpha_i \neq 0$$

then the elements $v_1, v_2, \ldots, v_n \in V$ are said to be linearly dependent.

Definition: A vector v_i is said to be redundant if it is represented as a linear combination of preceding vectors

$$\mathbf{v}_i = \alpha_1 \mathbf{v}_1 + \ldots + \alpha_{i-1} \mathbf{v}_{i-1}$$

Compute A_G^2 and trace (A_G^2)

Compute

Remark

Exercise

Linear Combination

Linear Independence

Exercise

Answer

Linear Space

Definition of Linear Space

Normed Linear Space

Linear Subspace

Direct Sum

Basis

Let
$$A = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix}$$
. Show that $A^2 = \begin{bmatrix} 2 & 3 \\ 6 & 11 \end{bmatrix}$ is a linear combination of A and I_2 .

Compute A_G^2 and trace (A_G^2)

Compute

Remark

Exercise

Linear Combination

Linear Independence

Exercise

Answer

Linear Space

Definition of Linear Space

Normed Linear Space

Linear Subspace

Direct Sum

Racio

Basis

Solution

We have to find scalars c_1 and c_2 such that

$$A^2 = c_1 A + c_2 I_2,$$

or

$$\begin{bmatrix} 2 & 3 \\ 6 & 11 \end{bmatrix} = c_1 \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix} + c_2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

$$c_1=3, c_2=2.$$

Compute A_G^2 and trace (A_G^2)

Compute

Remark

Exercise

Linear Combination

Linear Independence

Exercise

Answer

Linear Space

Definition of Linear Space

Normed Linear Space

Linear Subspace

Direct Sum

Basis

Definition

Linear spaces (or vector spaces)

A linear space³ V is a set endowed with a rule for addition (if f and g are in V, then so is f + g) and a rule for scalar multiplication (if f is in V and k in \mathbb{R} , then kf is in V) such that these operations satisfy the following eight rules⁴ (for all f, g, h in V and all c, k in \mathbb{R}):

- 1. (f+g)+h=f+(g+h).
- 2. f + g = g + f.
- There exists a neutral element n in V such that f + n = f, for all f in V.
 This n is unique and denoted by 0.
- For each f in V there exists a g in V such that f + g = 0. This g is unique and denoted by (-f).
- 5. k(f+g) = kf + kg.
- 6. (c+k)f = cf + kf.
- 7. v(kf) = (ck)f.
- 8. 1f = f.

Figure: Definition of Linear Space

Compute A_G^2 and trace (A_G^2)

Compute A

Remark

Exercise

Linear Combination

Linear Independence

Exercise

Answer

Linear Space

Definition of Linear Space

Normed Linear Space

Linear Subspace

Direct Sum

Basis

Definition

Definition: Let X be a linear space over a scalar field \mathbb{K} . A real-valued function $||\cdot|| \colon X \to \mathbb{R}$ defined on X is called a norm provided

- 1. $||x|| \ge 0 \quad \forall x \in X \text{ and } ||x|| = 0 \text{ iff } x = 0$
- 2. $||\alpha x|| = |\alpha|||x|| \quad \forall x \in X \, \forall \alpha \in \mathbb{K}$
- 3. $||x + y|| \le ||x|| + ||y|| \quad \forall x, y \in X$

Compute A_G^2 and trace (A_G^2)

Compute A

Remark

Exercise

Linear Combination

Linear Independence

Exercise

Answer

Linear Space

Definition of Linear Space

Normed Linear Space

Linear Subspace

Direct Sum

Basis

Definition

Definition: Let V be a linear space over \mathbb{K} .

If $U \subset V$ and U is also a linear space closed w.r.t binary operations defined for V, then we say that U is a linear subspace of V:

- 1. $0_U = 0_V \in U$
- 2. $u_1, u_2 \in U \to u_1 + u_2 \in U$
- 3. $\alpha \in \mathbb{K}$, $u \in U \rightarrow \alpha u \in U$

Compute A_G^2 and trace (A_G^2)

Compute

Remark

Exercise

Linear Combination

Linear Independence

Exercise

Answer

Linear Space

Definition of Linear Space

Normed Linear Space

Linear Subspace

Direct Sum

Basis

Definition

Definition: Let U_1, \ldots, U_m be linear subspaces of V. The direct sum $U_1 \oplus \ldots \oplus U_m$ of U_1, \ldots, U_m is a linear space s.t. any of its elements can be *uniquely* represented as $u_1 + \ldots + u_m, \quad u_i \in U_i, \ i = 1..m$

Compute A_G^2 and trace (A_G^2)

Compute

Remark

Exercise

Linear Combination

Linear Independence

Exercise

Answer

Linear Space

Definition of Linear Space

Normed Linear Space

Linear Subspace

Direct Sum

Basis

Definition

Definition: In a lin. space V, elements v_1, \ldots, v_m form a basis if

- 1. $V = span(v_1, ..., v_m)$, and
- 2. v_1, \ldots, v_m are linear independent.

Remark: If $v_1, v_2, \ldots, v_m \in V$ for a basis of V then $\forall x \in V$ there exists a unique representation

$$x = c_1 v_1 + c_2 v_2 + \ldots + c_m v_m, \quad c_1, \ldots, c_m \in \mathbb{K}.$$

Definition: The scalars c_1, \ldots, c_m are called coordinates of $x \in V$ in the basis v_1, \ldots, v_m . **Examples:** In class.

Definition: The number of elements in the basis is called the dimension of a linear space.

Compute A_G^2 and trace (A_G^2)

Compute A

Remark

Linear Combination

Linear Independence

Exercise

Answer

Linear Space

Definition of Linear Space

Normed Linear Space

Linear Subspace

Direct Sum

Basis

Problem 1

Use the matrix A, along with its reduced row-echelon form, rref(A), to answer the problems below:

$$A = \begin{bmatrix} 2 & 2 & 6 & 4 \\ 0 & 1 & 2 & 1 \\ 0 & 4 & 8 & 4 \end{bmatrix}, \qquad rref(A) = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- (a) (2 points) What is the rank of A?
- (b) (5 points) Give a formula that describes all solutions to $A\vec{x} = \vec{0}$.
- (c) (4 points) Let V denote the set of all solutions from the previous part. Is V a subspace of R⁴? Explain.
- (d) (5 points) Find a basis for the image of A. What is the dimension of image(A)?
- (e) (4 points) Is $\begin{bmatrix} 10\\1\\4 \end{bmatrix}$ in the image of A? Explain.

(a) (2 points) What is the rank of A?

Solution:

rank(A) = 2 because there are two leading ones in rref(A).

(b) (5 points) Give a formula parametrizing all $\vec{x} \in \mathbb{R}^4$ satisfying $A\vec{x} = \vec{0}$.

$$\begin{aligned} & \textbf{Solution:} \\ & \vec{x} = s \begin{bmatrix} -1 \\ -2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ -1 \\ 0 \\ 1 \end{bmatrix}. \end{aligned}$$

(c) (4 points) Let V denote the set of all solutions from part (b). Is V a subspace of R⁴? Explain.

Solution:

Yes. The set of all solutions to $A\vec{x}=\vec{0}$ form the kernel, and the kernel of a matrix with four columns is a subspace of \mathbb{R}^4 . Alternatively, the set of all solutions is the span of the vectors (-1,-2,1,0) and (-1,-1,0,1), and the span of a set of vectors is a subspace. Or, you could check the conditions defining a subspace directly: Let $\vec{v}_1=(-1,-2,1,0)$ and $\vec{v}_2=(-1,-1,0,1)$.

- (i) If s=t=0, then $\vec{0}=s\vec{v}_1+t\vec{v}_2$, so $\vec{0}$ is an element of V.
- (ii) If \vec{x}_1 and \vec{x}_2 are in V, there are scalars s_1, t_1, s_2, t_2 such that $\vec{x}_1 = s_1 \vec{v}_1 + t_1 \vec{v}_2$ and $\vec{x}_2 = s_2 \vec{v}_1 + t_1 \vec{v}_2$. Then $\vec{x}_1 + \vec{x}_2$ is equal to $(s_1 + s_2)\vec{v}_1 + (t_1 + t_2)\vec{v}_2$, and so by (b) is also in V.
- (iii) If \(\vec{x} = s\vec{v}_1 + t\vec{v}_2 \) is any vector in \(V \), and \(k \) is a scalar, then we have \(k\vec{x} = ks\vec{v}_1 + kt\vec{v}_2 \), and so \(k\vec{x} \) is in \(V \).

(d) (5 points) Find a basis for the image of A. What is the dimension of image(A)?

Solution:

 $\mathcal{B} = \left\{ \begin{bmatrix} 2 \\ 0 \\ 1 \\ 4 \end{bmatrix} \right\} \text{ is a basis for } image(A) \text{ because the columns of } A \text{ span the image, but }$

rref(A) indicates the 3rd and 4th column are redundant. The dimension is 2 because the basis we have given has two elements.

(e) (4 points) Is $\begin{bmatrix} 10 \\ 1 \\ 4 \end{bmatrix}$ in the image of A? Explain.

Solution:

Yes: The vector $\begin{bmatrix} 10\\1\\4 \end{bmatrix}$ can be written as $4\begin{bmatrix}2\\0\\0\end{bmatrix} + \begin{bmatrix}2\\1\\4\end{bmatrix}$, and therefore is a linear combination of the two basis vectors of the image of A, which means that it is itself in the image of A.

Problem 2

(a) (5 points) Determine if the vectors below are linearly independent.

$$\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} 1 \\ -1 \\ 4 \\ 2 \end{bmatrix}, \quad \vec{v}_3 = \begin{bmatrix} 2 \\ 0 \\ 1 \\ 2 \end{bmatrix}$$

(b) (6 points) Let \(\vec{w} \) be the vector below, and let \(\vec{v}_1 \) and \(\vec{v}_3 \) be as in part (a). For which value(s) of \(b \) are the vectors \(\vec{v}_1 \), \(\vec{w}_1 \), and \(\vec{v}_3 \) linearly \(dependent? \)

$$\vec{w} = \begin{bmatrix} 1 \\ -1 \\ b \\ 2 \end{bmatrix}$$

(a) (5 points) Determine if the vectors below are linearly independent.

$$\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} 1 \\ -1 \\ 4 \\ 2 \end{bmatrix}, \quad \vec{v}_3 = \begin{bmatrix} 2 \\ 0 \\ 1 \\ 2 \end{bmatrix}$$

Solution:

They are linearly independent because the reduced row echelon form of the matrix $[\vec{v}_1 \ \vec{v}_2 \ \vec{v}_3]$ is:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Since there is a pivot in every column, none of $\vec{v}_1, \vec{v}_2,$ or \vec{v}_3 are redundant.

(b) (6 points) Let \(\vec{w} \) be the vector below, and let \(\vec{v}_1 \) and \(\vec{v}_3 \) be as in part (a). For which value(s) of \(b \) are the vectors \(\vec{v}_1, \vec{w}_1, \vec{w}_1, \vec{w}_1 \) and \(\vec{v}_3 \) linearly \(dependent? \)

$$\vec{w} = \begin{bmatrix} 1 \\ -1 \\ b \\ 2 \end{bmatrix}$$

Solution:

We perform a few steps of row reduction:

$$[\vec{v}_1 \ \vec{w} \ \vec{v}_3] = \begin{bmatrix} 1 & 1 & 2 \\ 1 & -1 & 0 \\ 1 & b & 1 \\ 0 & 2 & 2 \end{bmatrix} \begin{matrix} R_2 - R_1 \\ \overrightarrow{A} - \widehat{R}_1 \end{matrix} \begin{bmatrix} 1 & 1 & 2 \\ 0 & -2 & -2 \\ 0 & b - 1 & -1 \\ 0 & 2 & 2 \end{bmatrix} \begin{matrix} R_4 + R_2 \\ \overrightarrow{A} - \widehat{R}_2 \end{matrix} \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & b - 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

From here we can see that the columns are linearly dependent exactly when rows 2 and 3 are scalar multiples of each other, and that this occurs only when b=0.