

The LIMA project update

on behalf of the
Beamline Control Unit – Software Group
Instrumentation Services & Development Division
ESRF

Talk outline

- LIMA goals & design
- Features
- Applications
- Detectors
- Collaboration
- Future directions

LIMA Goals

- Library for Image Acquisition
- Control system-independent
- Oriented to high-speed detectors
 - Favour the use of detector optimizations
 - Highly multi-threaded
- Common control functionality
 - Provide software alternatives to "missing" hardware capabilities
- C++, Python/SIP

Library structure layout

Image Reconstruction

Data readout sequence does not follow real geometry

Pixel Accumulation

Limited hardware integration: either in time or capacity

- Detect saturation (each frame) to signal non-linearity
- Intensity threshold ⇒ sensor protection

Image transformations

Data reduction

- Multi-Rol Statistics ⇒ Scalar & Spectrum counters
 - Polar coordinates, arbitrary shape (mask)
- Centroid (Beam Position Monitoring)
- Flat-field normalisation
- Image Mask
- pyFAI ⇒ Fast Azimuthal Integration in Python
 - Spatial distortion correction

Data saving

- Automatic & manual file saving
 - EDF[GZ], CBF, Nexus/HDF5 (Common Data Model), FITS
- Different metadata components:
 - Static detector type
 - Scan sample name, scan conditions
 - Frame:
 - Internal timestamp, CPU processing time
 - External user defined: SR current, monitor intensity
- Data rate
 - 2 250 MB/s

Other features

- Basic video interface
 - Common video modes (mono/color)
 - Gain control and auto-exposure

- External user processing plug-ins
 - Arbitrary operations (C++ or Python)

Frame processing & Events

Applications

- In operation for about 3 years
 - In more than 20 BLs
- TANGO device servers + SPEC
- Fast imaging & tomography
- Fast spectroscopy & diffraction
- Ptychography
- •
- Beam Position Viewer & Monitoring
- Sample visualization (microscope)

LIMA collaboration

- SOLEIL
- PETRA-III / DESY
- FRM-II / TUM
- ALBA
- MAX-Lab
- ADSC
- Rayonix
- DSG / Daresbury / STFC
- Nexeya Systems
- ILE/LULI/Ecole Polytechnique

LIMA Workshop on March 2013

FRM II
Forschungs-Neutronenquelle
Heinz Maier-Leibnitz

Detectors at the ESRF

- 14 ESRF Frelon
- 14 ESRF Maxipix (Single chip, 2x2, 5x1)
- **10 Dectris Pilatus (300w, 1M, 2M, 6MF)**
- 21 Basler
- 3 Prosilica
- 1 PointGrey
- 1 IDS uEye
- 2 Andor I-Kon
- 2 XPAD
- 4 PCO.Dimax & Edge
- 2 Perkin Elmer flat panel

2 Photonic Science

Total: 76 ... and increasing ...

Foreseen Detectors

- Legacy:
 - Dalsa, Sarnoff, Aviex

- Dexela CMOS flat panel
- STFC XH
- Rayonix HS
- SVS Vistek SVCam HR

- New:
 - Pilatus III
 - PSI & Dectris Eiger

Current limitations & New Functionality

- Delayed data processing & saving ⇒ dead time between scans
 - Need deferred frame processing
- Buffer memory management
 - Tracking of frame buffer usage
- Detector per-frame meta-data
- Sinogram software plugin
- More flexible saving management
 - Gradual migration to HDF-5 at the ESRF

Conclusions

- LIMA is a library for 2D detector control
- Oriented to high performance acquisitions
- Provides common functionality for a variety of detectors
 - Image transformations
 - Data reduction algorithms
- In operation at the ESRF on 20 BLs and in other large facilities
- Collaboration community around LIMA
- Developments on new detector plugins and acquisition strategies

Acknowledgements

ESRF

- ISDD Detector Group
- ESRF BLs
- TID / SC

- Software group:
 - Matias Guijarro
 - Alessandro Mirone, Jerome Kieffer
 - BCU, DAU, ACU

And all the collaborators!

Thank you for your attention!

http://lima.blissgarden.org