

Our microbial ecosystem: the Microbiota

We are home to highly diverse and dynamic microbial communities

Laid end to end our body's microbiota would circle the earth **2.5 times**

The gut microbiota

~90% of our own bacteria found in gastrointestinal tract (GIT)

Mammalian intestine most densely colonised habitat found in nature

contains 100s of trillions of bacteria

Microbiome contains **150 times** more unique genes than human genome

Detecting who's there?

DNA sequencing

Who's in the gut microbiota?

>500 species of bacteria comprise the 10¹³ bacteria in the GIT

How does it evolve?

How does it evolve?

Proteobacteria

others

- New species, out compete early ones
- Rapid increase in diversity
- High instability
- Changes in response to e.g. diet

- Highly distinct, diverse microbiota
- Microbial community may continue to change, but at a slower rate than childhood

- Substantially different microbiota than younger adults
- Lower diversity

Early life development

Host-microbial crosstalk

host health

Diseases *associated* with microbiota differences

Autoimmune Disease

Rheumatoid arthritis
Lupus (SLE)
Type 1 diabetes
Multiple sclerosis

Intestinal Disease

Crohn's Disease
Ulcerative Colitis
Colon Cancer
Necrotising Enterocolitis

Metabolic Disease

Diabetes
Obesity
Malnutrition

Brain-linked Conditions

Depression
Anxiety
Irritable bowel syndrome
Autism

Immune Disease

Ezcema Rhinoconjunctivitis Food allergy

Microbiota disturbances

Causes

Genetic Factors

Antibiotics

Infections

Childbirth method

Environment

<u>Diet</u>

Stress

Antibiotics

- microbiota resilience decreases with each course of antibiotics
- once disrupted, normal microbiota may never completely recover
- may be replaced by resistant organisms

- Natural delivery helps to 'seed' infant with first microbiota
- C-section often results in 'skin-like' microbiota in the infant gut

Delivery method

Milk diet

Microbial

CONSEQUENCES

- Breast milk contains compounds that 'feed' specific bacteria (e.g. Bifidobacterium)
- Breast-milk also contains compounds that inhibit pathogens
- Breast milk may also contain live bacteria

Which members of the microbiota are important to maintain homeostasis?

What is their function?

Are these functions specific to one bacterial species?

Experimental model systems to study the microbiota

In vitro systems:

Immortal cell lines
(1 host cell type + microbial cell/compound)

Bacterial monocultures (single microbial community

Chemostat systems
(continuous influx/efflux of nutrients
Combination of host components and
diverse microbial community)

In vivo systems:

Mouse (animal) models (clonally similar individuals, immune deficient models)

Human samples/clinical trials (highly variability in individuals, trends, personalised medicine)

Why is this important?

- Early-life is a <u>critical window of opportunity</u> to change how the gut microbiota develop
- Developing novel tools to improve infant gut microbiota development
- →BAMBI food study to improve infant health
- → Personalized nutrition for infants
- Our gut microbiota is imprinted in early-life, and has long-term effects on adult health
 - -autoimmune diseases
 - -inflammatory diseases
 - -metabolic diseases

Stronger, healthy babies

Stronger, healthy adults

Tools used

- Monitoring changes in metabolite production can identify novel compounds to be used as prebiotics
- Combining metabolomic and metagenomics outputs to answer biological questions
- Two-way correspondence analysis that shows potential associations between metabolite data (NMR) and microbiota (16S rRNA analysis)
 - Illustrates similar trends in metabolites and microbiota composition across all infants
- Important to examine each sample on its' own to understand individual relationships between metabolomic, metagenomics and immune data

Lessons and Challenges

A microbiologist's perspective

- Proper preparation of control samples is the key!
- 1000's of signals (MS data) from metabolic extracts of biological samples whose masses don't match conventional charts/pipeline
- Large integrative datasets require biological interpretation & manual annotation
- Realistic expectations of what is possible (both in yield and annotation)

Hall lab:

Lindsay Hall Suparna Mitra Cristina Alcon Lukas Harnisch Raymond Kiu Helena Adjei Charlotte Leclaire ChoZin Soe Ian O'Neill Zoe Schofield

Sanger Institute

Shab Caim

Trevor Lawley Gordon Dougan

Stratagem IPM Ltd:

Isla Furlong Nicola Baker-Munton Richard Leggett

Acknowledgements

Milk Support:

Barcelona BioBank **IFR Metabolomics Team:** Gwen Le Gall & Mark Philo

NHS Foundation Trust Paul Clarke Karen Few Kate Lloyd

IFR Institute of **Food Research**

Collaborators:

John Wain (UEA) Douwe van Sinderen (UCC) Emma Allen-Vercoe (UofG) Albert Koulman (MRC) Larissa Richardson (MRC)

EM imaging:

Kathryn Cross

Cambridge University Hospitals **NHS**

Gusztav Belteki NHS Foundation Trust

MSCA-IF-EF-2014 Project 661594

Earlham Institute:

Matt Clark