5 Approximationsalgorithmen

- 5.1 Scheduling auf identischen Maschinen
- 5.2 Traveling Salesman Problem
- 5.3 Rucksackproblem

Optimierungsproblem

Ein Optimierungsproblem Π besteht aus den folgenden Komponenten.

- Menge \mathcal{I}_{Π} von Instanzen oder Eingaben
- für jedes $I \in \mathcal{I}_{\Pi}$ Menge \mathcal{S}_I von Lösungen
- für jedes $I \in \mathcal{I}_{\Pi}$ Zielfunktion $f_I : \mathcal{S}_I \to \mathbb{R}_{\geq 0}$, die jeder Lösung einen reellen Wert zuweist
- Angabe, ob minimiert oder maximiert werden soll

Für Eingabe I bezeichne OPT(I) den Wert einer optimalen Lösung.

Beispiel: Spannbaumproblem

- Eingabe /: ungerichteter Graph G = (V, E), Kantengewichte $c : E \to \mathbb{N}$
- Lösungsmenge S_l : Menge aller Spannbäume von G
- Zielfunktion f_l : $f_l(T) = \sum_{e \in T} c(e)$ für Spannbaum $T \in \mathcal{S}_l$
- Minimiere f_I

Es gilt
$$OPT(I) = min_{T \in S_I} f_I(T)$$
.

Ein Approximationsalgorithmus A für Π ist ein Polynomialzeitalgorithmus, der zu jeder Instanz I eine Lösung aus S_I ausgibt.

Ein Approximationsalgorithmus A für Π ist ein Polynomialzeitalgorithmus, der zu jeder Instanz I eine Lösung aus S_I ausgibt.

Es sei A(I) die Lösung, die A bei Eingabe I ausgibt, und $w_A(I) = f_I(A(I))$ ihr Wert.

Ein Approximationsalgorithmus A für Π ist ein Polynomialzeitalgorithmus, der zu jeder Instanz / eine Lösung aus S_I ausgibt.

Es sei A(I) die Lösung, die A bei Eingabe I ausgibt, und $w_A(I) = f_I(A(I))$ ihr Wert.

Definition 5.1 (Approximationsfaktor/Approximationsgüte)

Ein Approximationsalgorithmus A für ein Minimierungs- bzw. Maximierungsproblem Π erreicht einen Approximationsfaktor oder eine Approximationsgüte von $r \geq 1$ bzw. $r \leq 1$, wenn

$$w_A(I) \le r \cdot \mathrm{OPT}(I)$$
 bzw. $w_A(I) \ge r \cdot \mathrm{OPT}(I)$

für alle Instanzen $I \in \mathcal{I}_{\Pi}$ gilt. Wir sagen dann, dass A ein r-Approximationsalgorithmus ist.

Ein Approximationsalgorithmus A für Π ist ein Polynomialzeitalgorithmus, der zu jeder Instanz / eine Lösung aus S_I ausgibt.

Es sei A(I) die Lösung, die A bei Eingabe I ausgibt, und $w_A(I) = f_I(A(I))$ ihr Wert.

Definition 5.1 (Approximationsfaktor/Approximationsgüte)

Ein Approximationsalgorithmus A für ein Minimierungs- bzw. Maximierungsproblem Π erreicht einen Approximationsfaktor oder eine Approximationsgüte von $r \geq 1$ bzw. $r \leq 1$, wenn

$$w_A(I) \le r \cdot \mathrm{OPT}(I)$$
 bzw. $w_A(I) \ge r \cdot \mathrm{OPT}(I)$

für alle Instanzen $I \in \mathcal{I}_{\Pi}$ gilt. Wir sagen dann, dass A ein r-Approximationsalgorithmus ist.

Ist Π NP-schwer und gilt P \neq NP, so existiert für Π kein 1-Approximationsalgorithmus.

- **5 Approximationsalgorithmen**
- 5.1 Scheduling auf identischen Maschinen
- 5.2 Traveling Salesman Problem
- 5.3 Rucksackproblem

Scheduling auf identischen Maschinen:

Eingabe: Menge $J = \{1, \dots, n\}$ von Jobs, Jobgrößen $p_1, \dots, p_n \in \mathbb{R}_{>0}$

Menge $M = \{1, ..., m\}$ von Maschinen

Lösungen: alle **Schedules** $\pi: J \rightarrow M$

Scheduling auf identischen Maschinen:

Eingabe: Menge $J = \{1, \dots, n\}$ von Jobs, Jobgrößen $p_1, \dots, p_n \in \mathbb{R}_{>0}$

Menge $M = \{1, ..., m\}$ von Maschinen

Lösungen: alle **Schedules** $\pi: J \rightarrow M$

Wir bezeichnen mit $L_i(\pi)$ die Ausführungszeit von Maschine $i \in M$ in Schedule π , d. h.

$$L_i(\pi) = \sum_{j \in J: \pi(j)=i} p_j.$$

Scheduling auf identischen Maschinen:

Eingabe: Menge $J = \{1, ..., n\}$ von Jobs, Jobgrößen $p_1, ..., p_n \in \mathbb{R}_{>0}$

Menge $M = \{1, \dots, m\}$ von Maschinen

Lösungen: alle **Schedules** $\pi: J \rightarrow M$

Wir bezeichnen mit $L_i(\pi)$ die Ausführungszeit von Maschine $i \in M$ in Schedule π , d. h.

$$L_i(\pi) = \sum_{j \in J: \pi(j)=i} p_j.$$

Der Makespan $C(\pi)$ soll minimiert werden:

$$C(\pi) = \max_{i \in M} L_i(\pi).$$

Scheduling auf identischen Maschinen:

Eingabe: Menge $J = \{1, \dots, n\}$ von Jobs, Jobgrößen $p_1, \dots, p_n \in \mathbb{R}_{>0}$

Menge $M = \{1, \dots, m\}$ von Maschinen

Lösungen: alle **Schedules** $\pi: J \rightarrow M$

Wir bezeichnen mit $L_i(\pi)$ die Ausführungszeit von Maschine $i \in M$ in Schedule π , d. h.

$$L_i(\pi) = \sum_{j \in J: \pi(j) = i} p_j.$$

Der Makespan $C(\pi)$ soll minimiert werden:

$$C(\pi) = \max_{i \in M} L_i(\pi).$$

Dieses Problem ist NP-schwer (Übung).

Greedy-Algorithmus LEAST-LOADED: Betrachte Jobs in der Reihenfolge $1, 2, \ldots, n$ und weise jeden Job einer Maschine zu, die die kleinste Ausführungszeit bezogen auf die bereits zugewiesenen Jobs besitzt.

Theorem 5.2

Der Least-Loaded-Algorithmus ist ein (2-1/m)-Approximationsalgorithmus für das Problem Scheduling auf identischen Maschinen.

Beweis:

Untere Schranken für OPT:

Sei π^* ein optimaler Schedule. Es gilt

$$C(\pi^*) \geq rac{1}{m} \sum_{j \in J} p_j \qquad ext{und} \qquad C(\pi^*) \geq \max_{j \in J} p_j.$$

Obere Schranke für den Makespan von LEAST-LOADED:

Sei π der Schedule, den der LEAST-LOADED-Algorithmus berechnet.

Sei $i \in M$ eine Maschine mit größter Ausführungszeit, d. h. $C(\pi) = L_i(\pi)$.

Obere Schranke für den Makespan von LEAST-LOADED:

Sei π der Schedule, den der LEAST-LOADED-Algorithmus berechnet.

Sei $i \in M$ eine Maschine mit größter Ausführungszeit, d. h. $C(\pi) = L_i(\pi)$.

$$C(\pi) = L_i(\pi) \leq \frac{1}{m} \left(\sum_{k=1}^{J-1} p_k \right) + p_j$$

Obere Schranke für den Makespan von LEAST-LOADED:

Sei π der Schedule, den der LEAST-LOADED-Algorithmus berechnet.

Sei $i \in M$ eine Maschine mit größter Ausführungszeit, d. h. $C(\pi) = L_i(\pi)$.

$$C(\pi) = L_i(\pi) \leq \frac{1}{m} \left(\sum_{k=1}^{j-1} p_k \right) + p_j \leq \frac{1}{m} \left(\sum_{k \in J \setminus \{j\}} p_k \right) + p_j$$

Obere Schranke für den Makespan von LEAST-LOADED:

Sei π der Schedule, den der LEAST-LOADED-Algorithmus berechnet.

Sei $i \in M$ eine Maschine mit größter Ausführungszeit, d. h. $C(\pi) = L_i(\pi)$.

$$C(\pi) = L_j(\pi) \le \frac{1}{m} \left(\sum_{k=1}^{j-1} p_k \right) + p_j \le \frac{1}{m} \left(\sum_{k \in J \setminus \{j\}} p_k \right) + p_j$$
$$= \frac{1}{m} \left(\sum_{k \in J} p_k \right) + \left(1 - \frac{1}{m} \right) p_j$$

Obere Schranke für den Makespan von LEAST-LOADED:

Sei π der Schedule, den der LEAST-LOADED-Algorithmus berechnet.

Sei $i \in M$ eine Maschine mit größter Ausführungszeit, d. h. $C(\pi) = L_i(\pi)$.

$$C(\pi) = L_i(\pi) \le \frac{1}{m} \left(\sum_{k=1}^{j-1} p_k \right) + p_j \le \frac{1}{m} \left(\sum_{k \in J \setminus \{j\}} p_k \right) + p_j$$

$$= \frac{1}{m} \left(\sum_{k \in J} p_k \right) + \left(1 - \frac{1}{m} \right) p_j \le \frac{1}{m} \left(\sum_{k \in J} p_k \right) + \left(1 - \frac{1}{m} \right) \cdot \max_{k \in J} p_k$$

Obere Schranke für den Makespan von LEAST-LOADED:

Sei π der Schedule, den der LEAST-LOADED-Algorithmus berechnet.

Sei $i \in M$ eine Maschine mit größter Ausführungszeit, d. h. $C(\pi) = L_i(\pi)$.

Es sei $j \in J$ der Job, der als letztes Maschine i hinzugefügt wurde.

$$C(\pi) = L_i(\pi) \le \frac{1}{m} \left(\sum_{k=1}^{j-1} p_k \right) + p_j \le \frac{1}{m} \left(\sum_{k \in J \setminus \{j\}} p_k \right) + p_j$$

$$= \frac{1}{m} \left(\sum_{k \in J} p_k \right) + \left(1 - \frac{1}{m} \right) p_j \le \frac{1}{m} \left(\sum_{k \in J} p_k \right) + \left(1 - \frac{1}{m} \right) \cdot \max_{k \in J} p_k$$

$$\le C(\pi^*) + \left(1 - \frac{1}{m} \right) \cdot C(\pi^*) = \left(2 - \frac{1}{m} \right) \cdot C(\pi^*),$$

wobei wir die beiden unteren Schranken für $C(\pi^*)$ benutzt haben.

Untere Schranke für den Approximationsfaktor von LEAST-LOADED:

Sei *m* beliebig.

Setze n = m(m-1) + 1 mit $p_1 = ... = p_{n-1} = 1$ und $p_n = m$.

Untere Schranke für den Approximationsfaktor von LEAST-LOADED:

Sei *m* beliebig.

Setze n = m(m-1) + 1 mit $p_1 = \ldots = p_{n-1} = 1$ und $p_n = m$.

Dann gilt: OPT = m.

Untere Schranke für den Approximationsfaktor von LEAST-LOADED:

Sei *m* beliebig.

Setze n = m(m-1) + 1 mit $p_1 = \ldots = p_{n-1} = 1$ und $p_n = m$.

Dann gilt: OPT = m.

LEAST-LOADED verteilt die ersten m(m-1) Jobs gleichmäßig auf den Maschinen und platziert den letzten Job auf einer beliebigen Maschine i. Diese Maschine hat dann eine Ausführungszeit von (m-1)+m=2m-1.

Untere Schranke für den Approximationsfaktor von LEAST-LOADED:

Sei *m* beliebig.

Setze
$$n = m(m-1) + 1$$
 mit $p_1 = \ldots = p_{n-1} = 1$ und $p_n = m$.

Dann gilt: OPT = m.

LEAST-LOADED verteilt die ersten m(m-1) Jobs gleichmäßig auf den Maschinen und platziert den letzten Job auf einer beliebigen Maschine i. Diese Maschine hat dann eine Ausführungszeit von (m-1)+m=2m-1.

Für den Approximationsfaktor von LEAST-LOADED gilt auf dieser Eingabe:

$$\frac{2m-1}{m}=2-\frac{1}{m}.$$

LONGEST-PROCESSING-TIME (LPT)

- 1. Sortiere die Jobs so, dass $p_1 \ge p_2 \ge ... \ge p_n$ gilt.
- 2. Führe den LEAST-LOADED-Algorithmus auf den so sortierten Jobs aus.

LONGEST-PROCESSING-TIME (LPT)

- 1. Sortiere die Jobs so, dass $p_1 \ge p_2 \ge \ldots \ge p_n$ gilt.
- 2. Führe den LEAST-LOADED-Algorithmus auf den so sortierten Jobs aus.

LONGEST-PROCESSING-TIME (LPT)

- 1. Sortiere die Jobs so, dass $p_1 \ge p_2 \ge ... \ge p_n$ gilt.
- 2. Führe den LEAST-LOADED-Algorithmus auf den so sortierten Jobs aus.

- 1. Sortiere die Jobs so, dass $p_1 \ge p_2 \ge \ldots \ge p_n$ gilt.
- 2. Führe den LEAST-LOADED-Algorithmus auf den so sortierten Jobs aus.

- 1. Sortiere die Jobs so, dass $p_1 \ge p_2 \ge \ldots \ge p_n$ gilt.
- 2. Führe den LEAST-LOADED-Algorithmus auf den so sortierten Jobs aus.

- 1. Sortiere die Jobs so, dass $p_1 \ge p_2 \ge \ldots \ge p_n$ gilt.
- 2. Führe den LEAST-LOADED-Algorithmus auf den so sortierten Jobs aus.

- 1. Sortiere die Jobs so, dass $p_1 \ge p_2 \ge \ldots \ge p_n$ gilt.
- 2. Führe den LEAST-LOADED-Algorithmus auf den so sortierten Jobs aus.

- 1. Sortiere die Jobs so, dass $p_1 \ge p_2 \ge \ldots \ge p_n$ gilt.
- 2. Führe den LEAST-LOADED-Algorithmus auf den so sortierten Jobs aus.

- 1. Sortiere die Jobs so, dass $p_1 \ge p_2 \ge \ldots \ge p_n$ gilt.
- 2. Führe den LEAST-LOADED-Algorithmus auf den so sortierten Jobs aus.

- 1. Sortiere die Jobs so, dass $p_1 \ge p_2 \ge \ldots \ge p_n$ gilt.
- 2. Führe den LEAST-LOADED-Algorithmus auf den so sortierten Jobs aus.

LONGEST-PROCESSING-TIME (LPT)

- 1. Sortiere die Jobs so, dass $p_1 \ge p_2 \ge ... \ge p_n$ gilt.
- 2. Führe den LEAST-LOADED-Algorithmus auf den so sortierten Jobs aus.

Theorem 5.3

Der Longest-Processing-Time-Algorithmus ist ein $\frac{4}{3}$ -Approximationsalgorithmus für Scheduling auf identischen Maschinen.

Beweis durch Widerspruch:

Sei Eingabe $p_1 \ge ... \ge p_n$ mit m Maschinen gegeben, auf der LPT einen Schedule π mit $C(\pi) > \frac{4}{3} \cdot \mathrm{OPT}$ berechnet. Außerdem sei n kleinstmöglich gewählt.

Beweis durch Widerspruch:

Sei Eingabe $p_1 \geq \ldots \geq p_n$ mit m Maschinen gegeben, auf der LPT einen Schedule π mit $C(\pi) > \frac{4}{3} \cdot \mathrm{OPT}$ berechnet. Außerdem sei n kleinstmöglich gewählt.

Es sei nun $i \in M$ eine Maschine mit größter Ausführungszeit und $j \in J$ der letzte Job, der Maschine i zugewiesen wird. Dann gilt j = n und

$$C(\pi) = L_i(\pi) \leq \frac{1}{m} \left(\sum_{k=1}^{n-1} p_k \right) + p_n \leq \mathrm{OPT} + p_n.$$

Beweis durch Widerspruch:

Sei Eingabe $p_1 \geq \ldots \geq p_n$ mit m Maschinen gegeben, auf der LPT einen Schedule π mit $C(\pi) > \frac{4}{3} \cdot \mathrm{OPT}$ berechnet. Außerdem sei n kleinstmöglich gewählt.

Es sei nun $i \in M$ eine Maschine mit größter Ausführungszeit und $j \in J$ der letzte Job, der Maschine i zugewiesen wird. Dann gilt j = n und

$$C(\pi) = L_i(\pi) \leq \frac{1}{m} \left(\sum_{k=1}^{n-1} \rho_k \right) + \rho_n \leq \mathrm{OPT} + \rho_n.$$

Aus $C(\pi) > \frac{4}{3} \cdot \text{OPT}$ folgt demnach $p_n > \text{OPT/3}$.

Beweis durch Widerspruch:

Sei Eingabe $p_1 \geq \ldots \geq p_n$ mit m Maschinen gegeben, auf der LPT einen Schedule π mit $C(\pi) > \frac{4}{3} \cdot \mathrm{OPT}$ berechnet. Außerdem sei n kleinstmöglich gewählt.

Es sei nun $i \in M$ eine Maschine mit größter Ausführungszeit und $j \in J$ der letzte Job, der Maschine i zugewiesen wird. Dann gilt j = n und

$$C(\pi) = L_i(\pi) \leq \frac{1}{m} \left(\sum_{k=1}^{n-1} \rho_k \right) + \rho_n \leq \mathrm{OPT} + \rho_n.$$

Aus $C(\pi) > \frac{4}{3} \cdot \text{OPT}$ folgt demnach $p_n > \text{OPT/3}$. Dies bedeutet, dass $p_i > \text{OPT/3}$ für alle $i \in J$ gilt.

 $\forall j \in J : p_j > \text{OPT/3}$

 \Rightarrow In opt. Schedule π^* erhält jede Maschine maximal zwei Jobs (insbesondere $n \le 2m$).

$$\forall j \in J : p_j > \text{OPT/3}$$

 \Rightarrow In opt. Schedule π^* erhält jede Maschine maximal zwei Jobs (insbesondere $n \le 2m$).

Optimaler Schedule:

- Jeder Job $j \in \{1, ..., \min\{n, m\}\}$ wird Maschine j zugewiesen.
- Jeder Job $j \in \{m+1, \ldots, n\}$ wird Maschine 2m-j+1 zugewiesen.

$$\forall j \in J : p_j > \text{OPT/3}$$

 \Rightarrow In opt. Schedule π^* erhält jede Maschine maximal zwei Jobs (insbesondere $n \le 2m$).

Optimaler Schedule:

- Jeder Job $j \in \{1, ..., \min\{n, m\}\}$ wird Maschine j zugewiesen.
- Jeder Job $j \in \{m+1, \ldots, n\}$ wird Maschine 2m-j+1 zugewiesen.

$$\forall j \in J : p_j > \text{OPT/3}$$

 \Rightarrow In opt. Schedule π^* erhält jede Maschine maximal zwei Jobs (insbesondere $n \le 2m$).

Optimaler Schedule:

- Jeder Job $j \in \{1, ..., \min\{n, m\}\}$ wird Maschine j zugewiesen.
- Jeder Job $j \in \{m+1, \ldots, n\}$ wird Maschine 2m-j+1 zugewiesen.

$$\forall j \in J : p_j > \text{OPT/3}$$

 \Rightarrow In opt. Schedule π^* erhält jede Maschine maximal zwei Jobs (insbesondere $n \le 2m$).

Optimaler Schedule:

- Jeder Job $j \in \{1, ..., \min\{n, m\}\}$ wird Maschine j zugewiesen.
- Jeder Job $j \in \{m+1, \ldots, n\}$ wird Maschine 2m-j+1 zugewiesen.

$$\forall j \in J : p_j > \text{OPT/3}$$

 \Rightarrow In opt. Schedule π^* erhält jede Maschine maximal zwei Jobs (insbesondere $n \le 2m$).

Optimaler Schedule:

- Jeder Job $j \in \{1, ..., \min\{n, m\}\}$ wird Maschine j zugewiesen.
- Jeder Job $j \in \{m+1, \ldots, n\}$ wird Maschine 2m-j+1 zugewiesen.

$$\forall j \in J : p_j > \text{OPT/3}$$

 \Rightarrow In opt. Schedule π^* erhält jede Maschine maximal zwei Jobs (insbesondere $n \le 2m$).

Optimaler Schedule:

- Jeder Job $j \in \{1, ..., \min\{n, m\}\}$ wird Maschine j zugewiesen.
- Jeder Job $j \in \{m+1, \ldots, n\}$ wird Maschine 2m-j+1 zugewiesen.

$$\forall j \in J : p_j > \text{OPT/3}$$

 \Rightarrow In opt. Schedule π^* erhält jede Maschine maximal zwei Jobs (insbesondere $n \le 2m$).

Optimaler Schedule:

- Jeder Job $j \in \{1, ..., \min\{n, m\}\}$ wird Maschine j zugewiesen.
- Jeder Job $j \in \{m+1, \ldots, n\}$ wird Maschine 2m-j+1 zugewiesen.

5 Approximationsalgorithmen

5 Approximationsalgorithmen

- 5.1 Scheduling auf identischen Maschinen
- **5.2 Traveling Salesman Problem**
- 5.3 Rucksackproblem

Traveling Salesman Problem (TSP)

Eingabe: Menge $V = \{v_1, \dots, v_n\}$ von Knoten

symmetrische Distanzfunktion $d: V imes V o \mathbb{R}_{\geq 0}$

 $(\mathsf{d}.\,\mathsf{h}.\,\forall u,v\in V:d(u,v)=d(v,u)\geq 0)$

Lösungen: alle Permutationen $\pi: \{1, \dots, n\} \rightarrow \{1, \dots, n\}$

eine solche Permutation nennen wir auch Tour

Zielfunktion: minimiere $\sum_{i=1}^{n-1} d(v_{\pi(i)}, v_{\pi(i+1)}) + d(v_{\pi(n)}, v_{\pi(1)})$

Traveling Salesman Problem (TSP)

Eingabe: Menge $V = \{v_1, \dots, v_n\}$ von Knoten

symmetrische Distanzfunktion $d: V imes V o \mathbb{R}_{\geq 0}$

 $(\mathsf{d}.\,\mathsf{h}.\,\forall u,v\in V:d(u,v)=d(v,u)\geq 0)$

Lösungen: alle Permutationen $\pi: \{1, \dots, n\} \rightarrow \{1, \dots, n\}$

eine solche Permutation nennen wir auch Tour

Zielfunktion: minimiere $\sum_{i=1}^{n-1} d(v_{\pi(i)}, v_{\pi(i+1)}) + d(v_{\pi(n)}, v_{\pi(1)})$

Theorem 5.4

Falls P \neq NP, so existiert kein 2^n -Approximationsalgorithmus für das TSP.

Beweis:

Hamiltonkreis-Problem (HC): Existiert in einem ungerichteten Graph ein Kreis, der jeden Knoten genau einmal enthält?

HC ist NP-vollständig (das folgt aus einer Reduktion von 3-SAT).

Beweis:

Hamiltonkreis-Problem (HC): Existiert in einem ungerichteten Graph ein Kreis, der jeden Knoten genau einmal enthält?

HC ist NP-vollständig (das folgt aus einer Reduktion von 3-SAT).

Wir konstruieren polynomielle Reduktion von HC auf TSP, die folgenden Schluss zulässt: Falls ein 2ⁿ-Approximationsalgorithmus A für das TSP existiert, so kann HC in polynomieller Zeit gelöst werden.

Beweis:

Hamiltonkreis-Problem (HC): Existiert in einem ungerichteten Graph ein Kreis, der jeden Knoten genau einmal enthält?

HC ist NP-vollständig (das folgt aus einer Reduktion von 3-SAT).

Wir konstruieren polynomielle Reduktion von HC auf TSP, die folgenden Schluss zulässt: Falls ein 2ⁿ-Approximationsalgorithmus A für das TSP existiert, so kann HC in polynomieller Zeit gelöst werden.

Sei G = (V, E) Eingabe für HC. Wir konstruieren TSP-Instanz auf V mit:

$$\forall u, v \in V, u \neq v : d(u, v) = d(v, u) =$$

$$\begin{cases}
1 & \text{falls } \{u, v\} \in E, \\
n2^{n+1} & \text{falls } \{u, v\} \notin E.
\end{cases}$$

Beweis:

Hamiltonkreis-Problem (HC): Existiert in einem ungerichteten Graph ein Kreis, der jeden Knoten genau einmal enthält?

HC ist NP-vollständig (das folgt aus einer Reduktion von 3-SAT).

Wir konstruieren polynomielle Reduktion von HC auf TSP, die folgenden Schluss zulässt: Falls ein 2ⁿ-Approximationsalgorithmus A für das TSP existiert, so kann HC in polynomieller Zeit gelöst werden.

Sei G = (V, E) Eingabe für HC. Wir konstruieren TSP-Instanz auf V mit:

$$\forall u, v \in V, u \neq v : d(u, v) = d(v, u) =$$

$$\begin{cases} 1 & \text{falls } \{u, v\} \in E, \\ n2^{n+1} & \text{falls } \{u, v\} \notin E. \end{cases}$$

G enthält HC. \Rightarrow Es gibt TSP-Tour C der Länge n.

Beweis:

Hamiltonkreis-Problem (HC): Existiert in einem ungerichteten Graph ein Kreis, der jeden Knoten genau einmal enthält?

HC ist NP-vollständig (das folgt aus einer Reduktion von 3-SAT).

Wir konstruieren polynomielle Reduktion von HC auf TSP, die folgenden Schluss zulässt: Falls ein 2ⁿ-Approximationsalgorithmus A für das TSP existiert, so kann HC in polynomieller Zeit gelöst werden.

Sei G = (V, E) Eingabe für HC. Wir konstruieren TSP-Instanz auf V mit:

$$\forall u, v \in V, u \neq v : d(u, v) = d(v, u) =$$

$$\begin{cases}
1 & \text{falls } \{u, v\} \in E, \\
n2^{n+1} & \text{falls } \{u, v\} \notin E.
\end{cases}$$

G enthält HC. ⇒ Es gibt TSP-Tour C der Länge n. ⇒ *A* berechnet Tour *C'* mit $d(C') \le 2^n \cdot d(C) \le n2^n$.

Beweis:

Hamiltonkreis-Problem (HC): Existiert in einem ungerichteten Graph ein Kreis, der jeden Knoten genau einmal enthält?

HC ist NP-vollständig (das folgt aus einer Reduktion von 3-SAT).

Wir konstruieren polynomielle Reduktion von HC auf TSP, die folgenden Schluss zulässt: Falls ein 2ⁿ-Approximationsalgorithmus A für das TSP existiert, so kann HC in polynomieller Zeit gelöst werden.

Sei G = (V, E) Eingabe für HC. Wir konstruieren TSP-Instanz auf V mit:

$$\forall u, v \in V, u \neq v : d(u, v) = d(v, u) =$$

$$\begin{cases}
1 & \text{falls } \{u, v\} \in E, \\
n2^{n+1} & \text{falls } \{u, v\} \notin E.
\end{cases}$$

G enthält HC. \Rightarrow Es gibt TSP-Tour C der Länge n. \Rightarrow A berechnet Tour C' mit $d(C') \le 2^n \cdot d(C) \le n2^n$. C' enthält nur Kanten $e \in E \Rightarrow C'$ ist Hamiltonkreis in G.

Beim metrischen TSP bilden die Distanzen d eine Metrik auf V.

Beim metrischen TSP bilden die Distanzen d eine Metrik auf V.

Definition 5.5

Sei X eine Menge und $d: X \times X \to \mathbb{R}_{\geq 0}$ eine Funktion. Die Funktion d heißt Metrik auf X, wenn die folgenden drei Eigenschaften erfüllt sind.

- $\forall x, y \in X : d(x, y) = 0 \iff x = y$ (positive Definitheit)
- $\forall x, y \in X : d(x, y) = d(y, x)$ (Symmetrie)
- $\forall x, y, z \in X : d(x, z) \le d(x, y) + d(y, z)$ (Dreiecksungleichung)

Das Paar (X, d) heißt metrischer Raum.

Beim metrischen TSP bilden die Distanzen d eine Metrik auf V.

Definition 5.5

Sei X eine Menge und $d: X \times X \to \mathbb{R}_{\geq 0}$ eine Funktion. Die Funktion d heißt Metrik auf X, wenn die folgenden drei Eigenschaften erfüllt sind.

- $\forall x, y \in X : d(x, y) = 0 \iff x = y$ (positive Definitheit)
- $\forall x, y \in X : d(x, y) = d(y, x)$ (Symmetrie)
- $\forall x, y, z \in X : d(x, z) \le d(x, y) + d(y, z)$ (Dreiecksungleichung)

Das Paar (X, d) heißt metrischer Raum.

Das metrische TSP ist ein Spezialfall des TSP.

Es ist noch NP-schwer denn das TSP ist bereits dann NP-schwer, wenn alle Distanzen entweder 1 oder 2 sind.