Structure topologique de l'espace des réseaux unitaires

Table des matières

1	Des réseaux aux matrices	1
2	Des matrices au demi-plan	2
3	Du demi-plan aux deux tores	3
4	Des deux tores au nœud de trèfle	5

Introduction

L'espace des réseaux unitaires de \mathbb{R}^2 noue des liens avec de nombreux domaines des mathématiques. Entre autres, dans les avancées les plus récentes, Étienne Ghys a montré en 2006 que les nœuds modulaires (orbites périodiques de l'action du sous-groupe diagonal de $\mathrm{SL}_2(\mathbb{R})$ sur l'espace des réseaux unitaires) sont en correspondance bijective avec les nœuds de Lorenz (solutions périodiques du système différentiel de Lorenz dans \mathbb{R}^3) (cf [Ghys]).

On se propose, dans ce TIPE, d'étudier la structure topologique de l'espace des réseaux unitaires. Après avoir défini une topologie sur cet espace, nous montrerons qu'il est homéomorphe à la sphère unité en dimension 4 privée d'un nœud de trèfle. La démonstration présentée ici est essentiellement celle donnée dans [DCP] (théorème 3.1).

1 Des réseaux aux matrices

Définition 1. Un réseau est un sous-groupe discret de \mathbb{R}^2 l'engendrant comme espace vectoriel (cf image 1 page 7). On note $\mathcal{R}(\mathbb{R}^2)$ l'ensemble des réseaux.

Proposition 2. $\Lambda \subset \mathbb{R}^2$ est un réseau si et seulement s'il existe $g \in GL_2(\mathbb{R})$ tel que $\Lambda = g(\mathbb{Z}^2)$.

Démonstration: Pour le sens direct, on choisit $u \in \Lambda - \{0\}$ de norme minimale, puis $v \in \Lambda - \mathbb{R}u$ dont la distance à $\mathbb{R}u$ est minimale (qui existent par discrétude de Λ et car $\operatorname{Vect}(\Lambda) = \mathbb{R}^2$). On a alors $\mathbb{Z}u \oplus \mathbb{Z}v \subset \Lambda$, et réciproquement si $x \in \Lambda$, par des translations autorisées (car Λ est un groupe) on peut le ramener dans $[0,1[u \oplus [0,1[v, \text{donc par minimalité} \text{de } v \text{ et de } u \text{ on avait bien } x \in \mathbb{Z}u \oplus \mathbb{Z}v.$ Il suffit enfin de poser g la matrice de passage de (u,v) à la base canonique.

L'autre sens est facile.

Proposition 3. Soit $g, g' \in GL_2(\mathbb{R})$, alors $g(\mathbb{Z}^2) = g'(\mathbb{Z}^2)$ si et seulement si $g^{-1}g' \in GL_2(\mathbb{Z})$. En particulier, si $g(\mathbb{Z}^2) = g'(\mathbb{Z}^2)$, $|\det(g)| = |\det(g')|$.

Démonstration : $g(\mathbb{Z}^2) = g'(\mathbb{Z}^2)$ ssi $g^{-1}g'(\mathbb{Z}^2) = \mathbb{Z}^2$. On a donc $g^{-1}g' \in \mathcal{M}_2(\mathbb{Z})$ d'où le résultat car $g^{-1}g'$ est inversible dans $\mathcal{M}_2(\mathbb{Z})$, et donc de déterminant ± 1 .

Définition 4. Soit Λ un réseau, $g \in GL_2(\mathbb{R})$ tel que $\Lambda = g(\mathbb{Z}^2)$. On note $Vol(\mathbb{R}^2/\Lambda) = |\det(g)|$ et on définit $\mathcal{R}_1(\mathbb{R}^2) = {\Lambda \in \mathcal{R}(\mathbb{R}^2) \mid Vol(\mathbb{R}^2/\Lambda) = 1}$ l'ensemble des réseaux unitaires.

Démonstration: Cette définition a un sens d'après les deux propositions précédentes.

Définition 5.
$$\begin{cases} \operatorname{SL}_2(\mathbb{R})/\operatorname{SL}_2(\mathbb{Z}) & \longrightarrow & \mathcal{R}_1(\mathbb{R}^2) \\ g\operatorname{SL}_2(\mathbb{Z}) & \longmapsto & g(\mathbb{Z}^2) \end{cases} \text{ est une bijection. On munit } \mathcal{R}_1(\mathbb{R}^2) \text{ de } \\ \text{l'unique topologie qui fasse de cette application un homéomorphisme, et on a ainsi} \\ \hline{\mathcal{R}_1(\mathbb{R}^2) \cong \operatorname{SL}_2(\mathbb{R})/\operatorname{SL}_2(\mathbb{Z})}.$$

Démonstration : Découle des propositions précédentes.

2 Des matrices au demi-plan

Proposition 6.
$$\begin{cases} \operatorname{SL}_2(\mathbb{R})/\operatorname{SL}_2(\mathbb{Z}) & \longrightarrow & \operatorname{PSL}_2(\mathbb{Z})\backslash\operatorname{PSL}_2(\mathbb{R}) \\ g\operatorname{SL}_2(\mathbb{Z}) & \longmapsto & \operatorname{PSL}_2(\mathbb{Z})(\pm g^{-1}) \end{cases} \text{ est un homéomorphisme, d'où } \\ \left[\operatorname{SL}_2(\mathbb{R})/\operatorname{SL}_2(\mathbb{Z}) \cong \operatorname{PSL}_2(\mathbb{Z})\backslash\operatorname{PSL}_2(\mathbb{R}) \right] (\operatorname{PSL}_2(A) = \operatorname{SL}_2(A)/\{\pm I_2\}). \end{cases}$$

Démonstration : L'application $\left\{ \begin{array}{ccc} \operatorname{SL}_2(\mathbb{R}) & \longrightarrow & \operatorname{PSL}_2(\mathbb{Z}) \backslash \operatorname{PSL}_2(\mathbb{R}) \\ g & \longmapsto & \operatorname{PSL}_2(\mathbb{Z})(\pm g^{-1}) \end{array} \right\}$ est continue, surjective, et deux éléments de $\operatorname{SL}_2(\mathbb{R})$ ont la même image si et seulement s'ils sont dans la même classe à gauche suivant $\operatorname{SL}_2(\mathbb{Z})$, donc passe au quotient en une bijection continue. On vérifie de même que sa bijection réciproque est également continue.

Définition 7. On pose $\mathbb{H} = \{z \in \mathbb{C} \mid \text{Im}(z) > 0\}$ le demi-plan de Poincaré et $T_1\mathbb{H} = \mathbb{H} \times \mathbb{S}^1$ son fibré tangent unitaire. On notera $\Gamma = \text{PSL}_2(\mathbb{Z})$. Les applications suivantes définissent des actions de groupe à gauche de $\text{PSL}_2(\mathbb{R})$ sur respectivement \mathbb{H} et $T_1\mathbb{H}$:

$$\begin{cases}
\operatorname{PSL}_{2}(\mathbb{R}) \times \mathbb{H} & \longrightarrow \mathbb{H} \\
\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}, z \right) & \longmapsto \frac{az+b}{cz+d} \\
\end{cases}$$

$$\begin{cases}
\operatorname{PSL}_{2}(\mathbb{R}) \times T_{1}\mathbb{H} & \longrightarrow T_{1}\mathbb{H} \\
\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}, (z, v) \right) & \longmapsto \begin{pmatrix} \frac{az+b}{cz+d}, \frac{|cz+d|^{2}}{(cz+d)^{2}}v \end{pmatrix}
\end{cases}$$

Démonstration : Calcul.

Proposition 8. $\left\{ \begin{array}{ccc} \mathrm{PSL}_2(\mathbb{R}) & \longrightarrow & T_1\mathbb{H} \\ g & \longmapsto & g \cdot (i,1) \end{array} \right. \text{ est un hom\'eomorphisme.}$

Démonstration :

Injectivité : calcul

- Surjectivité :
$$\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{y} & 0 \\ 0 & \frac{1}{\sqrt{y}} \end{pmatrix} \begin{pmatrix} \cos\left(\frac{\theta}{2}\right) & \sin\left(\frac{\theta}{2}\right) \\ -\sin\left(\frac{\theta}{2}\right) & \cos\left(\frac{\theta}{2}\right) \end{pmatrix} \cdot (i,1) = (x+iy,e^{i\theta})$$

- Continuité : clair par compositions de fonctions continues
- Continuité de la réciproque : si pour $x \in T_1\mathbb{H}$ on pose $\theta_x : \begin{cases} \operatorname{PSL}_2(\mathbb{R}) & \longrightarrow & T_1\mathbb{H} \\ g & \longmapsto & g \cdot x \end{cases}$, il suffit de montrer que tous les θ_x sont continus en 0, ce qui découle de la locale compacité de $T_1\mathbb{H}$ et de $\operatorname{PSL}_2(\mathbb{R})$, et du théorème de Baire.

Démonstration: L'application précédente passe au quotient.

3 Du demi-plan aux deux tores

Définition 10. On définit $D = \{z \in \mathbb{H} \mid |z| \ge 1 \text{ et } |\operatorname{Re}(z)| \le \frac{1}{2}\}$ le domaine fondamental de Γ sur \mathbb{H} et $T_1D = D \times \mathbb{S}^1$ (cf image 2).

Proposition 11. Soit $z \in \mathbb{H}$. Alors d'une part, $\Gamma z \cap D \neq \emptyset$, et d'autre part, si $\operatorname{Card}(\Gamma z \cap D) > 1$, alors $\Gamma z \cap D = \{z_0, -\overline{z_0}\}$ avec un $z_0 \in \partial D$

Démonstration :

- Existence : on choisit un élément de Γz de partie imaginaire maximale (possible car $\operatorname{Im}(gz) = \frac{\operatorname{Im}(z)}{|cz+d|^2}$ qui admet un plus grand élément) qu'on peut supposer de partie réelle inférieure à $\frac{1}{2}$ en valeur absolue en faisant agir la puissance adéquate de $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z})$, et l'action de $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z})$ montre alors que son module est supérieur à 1, sinon il ne serait pas de partie imaginaire maximale.
- Unicité (ou pas) : étude de cas

Remarque 12. Il est difficile de se représenter $\Gamma \setminus T_1 \mathbb{H}$ sans comprendre comment Γ agit sur $T_1 \mathbb{H}$. La proposition suivante, conjointement avec la précédente, montre que $\Gamma \setminus T_1 \mathbb{H}$ est homéomorphe au fibré tangent unitaire de D, recollé suivant le bord de D, symétriquement par rapport à l'axe des ordonnées (cf image 3).

Proposition 13. $\Gamma \setminus T_1 \mathbb{H} \cong \Gamma \setminus T_1 D$ $(\Gamma \setminus T_1 D \text{ représente l'espace quotient pour la relation d'équivalence induite par l'action de <math>\Gamma$ sur $T_1 \mathbb{H}$)

Démonstration : L'application canonique de $\Gamma \setminus T_1 \mathbb{H}$ dans $\Gamma \setminus T_1 D$ est bien définie d'après la proposition précédente, bijective, et fermée (un fermé de $\Gamma \setminus T_1 \mathbb{H}$ se relève en un fermé saturé de $T_1 \mathbb{H}$ donc en un fermé saturé de $T_1 D$, qui s'envoie sur un fermé de $\Gamma \setminus T_1 D$).

Pour la continuité il faut montrer que si F est un fermé de T_1D , $\bigcup_{\gamma\in\Gamma}\gamma F$ est également fermé ce qui découle du fait qu'un compact K de $T_1\mathbb{H}$ n'intersecte qu'un nombre fini de γT_1D . En effet, l'intersection $(\bigcup_{\gamma\in\Gamma}\gamma F)\cap K=\bigcup_{\gamma\in\Gamma}((\gamma F)\cap K)$ se réduit alors à une union finie de fermés donc est fermée, et une partie de $T_1\mathbb{H}$ est fermée si et seulement si son intersection avec tout compact est fermée. La démonstration du fait qu'un compact K de $T_1\mathbb{H}$ n'intersecte qu'un nombre fini de γT_1D n'est pas très compliquée mais légèrement calculatoire.

Définition 14. Pour étudier $\Gamma \setminus T_1D$ on a besoin d'étudier séparément ce qu'il se passe au niveau des deux points « critiques », à savoir $\{i\}$ et $\omega = \{e^{\frac{i\pi}{3}}, e^{\frac{2i\pi}{3}}\}$. On définit ainsi

$$\begin{array}{rcl} A & = & \{(z,v) \in \Gamma \backslash T_1D, |\mathrm{Re}(z)| = \frac{1}{4} \} \\ \tau_i & = & \{(z,v) \in \Gamma \backslash T_1D, |\mathrm{Re}(z)| \leq \frac{1}{4} \} \\ \tau_\omega & = & \{(z,v) \in \Gamma \backslash T_1D, |\mathrm{Re}(z)| \geq \frac{1}{4} \} \end{array}$$

 τ_i et τ_ω sont fermés, connexes, de réunion $\Gamma \backslash T_1D$ et d'intersection A (cf image 4).

Proposition 15.
$$\Gamma \setminus T_1D \cong \tau_i \sqcup_{id_A} \tau_{\omega}$$
 (recollement de τ_i et τ_{ω} selon A)

Démonstration : L'application canonique de $\tau_i \sqcup \tau_\omega$ dans $\Gamma \backslash T_1D$ est surjective, continue, fermée, et deux éléments ont la même image si et seulement s'ils sont dans A, donc elle passe au quotient en un homéomorphisme.

Définition 16. Soit $\mathbb{D}=\{z\in\mathbb{C}\mid |z|\leq 1\}$ le disque unité fermé et $\omega=e^{\frac{2i\pi}{3}}.$

On définit $T_i = (\mathbb{D} \times \mathbb{S}^1)/(\mathbb{Z}/2\mathbb{Z})$ où $\pm \in \mathbb{Z}/2\mathbb{Z}$ agit sur $\mathbb{D} \times \mathbb{S}^1$ par $(z, v) \mapsto (\pm z, \pm v)$, et $C_i = (\{\pm 1\} \times \mathbb{S}^1)/(\mathbb{Z}/2\mathbb{Z}) \subset T_i$

De même, $T_{\omega} = (\mathbb{D} \times \mathbb{S}^1)/(\mathbb{Z}/3\mathbb{Z})$, où $n \in \mathbb{Z}/3\mathbb{Z}$ agit sur $\mathbb{D} \times \mathbb{S}^1$ par $(z, v) \mapsto (\omega^n z, \omega^n v)$ et $C_{\omega} = (\{1, \omega, \omega^2\} \times \mathbb{S}^1)/(\mathbb{Z}/3\mathbb{Z}) \subset T_{\omega}$

Remarque 17. T_i et T_{ω} sont deux tores pleins « vrillés », C_i est une courbe fermée sur la surface de T_i faisant deux tours autour de l'axe de T_i , tandis que C_{ω} fait trois tours autour de l'axe de T_{ω} . Le nombre de tours qu'elles font autour de l'âme (cercle intérieur) de $T_{i,\omega}$ est quelconque, car $T_{i,\omega}$ ne sont pas a priori plongés dans \mathbb{R}^3 et si l'on veut les plonger dans \mathbb{R}^3 , le recollement peut être effectué de diverses manières non isotopes (cf image 5).

Proposition 18. $\varphi: \left\{ \begin{array}{ccc} \partial T_i & \longrightarrow & \partial T_\omega \\ (z,v) & \longmapsto & (z',v') = (z^{-\frac{2}{3}},z^{\frac{1}{3}}v) \end{array} \right.$ est un homéomorphisme qui envoie C_i sur C_ω .

Démonstration : Tout d'abord la définition a bien un sens car si $z'^3 = z^{-2}$ et $v'^3 = zv^3$ avec z et v déterminés à $\mathbb{Z}/2\mathbb{Z}$ près, z' et v' sont bien déterminés à $\mathbb{Z}/3\mathbb{Z}$ près. L'application ψ : $\begin{cases} \partial T_\omega & \longrightarrow \partial T_i \\ (z,v) & \longmapsto (z^{-\frac{3}{2}},z^{\frac{1}{2}}v) \end{cases}$ est bien définie pour des raisons analogues, et on vérifie facilement que c'est la réciproque de φ donc cette dernière est bijective. φ et ψ sont continues toutes les deux donc φ est un homéomorphisme, et C_i est bien envoyé sur C_ω car $(e^{\frac{2in\pi}{3}})^3 = (\pm 1)^{-2}$.

Proposition 19. Il existe $f_{i,\omega}: \tau_{i,\omega} \to T_{i,\omega} - C_{i,\omega}$ des homéomorphismes tels que $f_{\omega}|_A = \varphi \circ f_i|_A$

Démonstration: On construit tout d'abord f_i et f_{ω} sans tenir compte de la dernière condition, en remarquant qu'on aura nécessairement $f_{i,\omega}(A) = \partial T_{i,\omega} - C_{i,\omega}$. En voyant $\mathbb{D} \times \mathbb{S}^1$ comme le fibré tangent unitaire du disque fermé, il est facile de voir géométriquement qu'on peut expliciter de tels homéomorphismes (l'absence de $C_{i,\omega}$ étant due à l'absence du point à l'infini dans D).

On peut ensuite déformer f_i et f_{ω} de façon à les rendre compatibles relativement à φ .

Proposition 20.
$$\tau_i \sqcup_{id_A} \tau_\omega \cong (T_i - C_i) \sqcup_{\varphi|_{\partial T_i - C_i}} (T_\omega - C_\omega)$$

Démonstration: L'application de $\tau_i \sqcup \tau_\omega$ dans $(T_i - C_i) \sqcup_{\varphi|\partial T_i - C_i} (T_\omega - C_\omega)$ induite par f_i et f_ω est continue, fermée et surjective. De plus, deux éléments ont la même image si et seulement s'ils sont dans A, donc elle passe au quotient en un homéomorphisme.

4 Des deux tores au nœud de trèfle

Définition 21. La sphère unité en dimension 4 est définie par $\mathbb{S}^3 = \{(z, z') \in \mathbb{C}^2 \mid |z|^2 + |z'|^2 = 1\}.$

En comparant les modules de z et z' on peut découper la sphère en les deux tores $\mathbb{T}_{\pm} = \{(z, z') \in \mathbb{S}^3 \mid |z| \geq |z'|\}$ d'intersection $\mathbb{T} = \{(z, z') \in \mathbb{C}^2 \mid |z| = |z'| = \frac{1}{\sqrt{2}}\}$

On considère enfin le nœud de trèfle $K_{\clubsuit} = \operatorname{Im} \left(\left\{ \begin{array}{cc} \mathbb{S}^1 & \longrightarrow & \mathbb{S}^3 \\ e^{i\theta} & \longmapsto & \frac{1}{\sqrt{2}}(e^{3i\theta}, e^{2i\theta}) \end{array} \right) \subset \mathbb{T} \ (cfinage 6)$

Remarque 22. Par projection stéréographique, \mathbb{S}^3 est homéomorphe à $\mathbb{R}^3 \cup \{\infty\}$. Ainsi \mathbb{T} est un tore, car il est homéomorphe au produit cartésien des deux cercles $|z| = \frac{1}{\sqrt{2}}$ et $|z'| = \frac{1}{\sqrt{2}}$, et \mathbb{T}_- et \mathbb{T}_+ étant les adhérences des composantes connexes de $\mathbb{S}^3 - \mathbb{T}$, ce sont des tores pleins.

Proposition 23.
$$\boxed{(\mathbb{T}_- - K_\clubsuit) \sqcup_{id_{\mathbb{T}-K_\clubsuit}} (\mathbb{T}_+ - K_\clubsuit) \cong \mathbb{S}^3 - K_\clubsuit}$$

Démonstration: Pareil qu'à la proposition 15.

Remarque 24. On vient de voir que \mathbb{S}^3 peut se décomposer en le recollement de deux tores sur leur bord. La proposition suivante montre qu'il est alors possible de plonger les deux tores « abstraits » T_i et T_{ω} dans \mathbb{S}^3 en identifiant T_i à \mathbb{T}_- et T_{ω} à \mathbb{T}_+ , ceci de telle sorte que les deux courbes C_i et C_{ω} se confondent. Étant donné que l'âme de \mathbb{T}_- est l'axe de \mathbb{T}_+ et réciproquement, d'après la remarque 17 la courbe commune fait deux tours autour de l'axe de T_i et trois tours autour de son âme, ce qui montre qu'il ne peut s'agir que du nœud de trèfle.

Proposition 25.
$$\boxed{ (T_i - C_i) \sqcup_{\varphi|_{\partial T_i - C_i}} (T_\omega - C_\omega) \cong (\mathbb{T}_- - K_\clubsuit) \sqcup_{id_{\mathbb{T} - K_\clubsuit}} (\mathbb{T}_+ - K_\clubsuit) }$$

passe au quotient en un homéomorphisme de T_i dans \mathbb{T}_- qui envoie C_i sur K_{\clubsuit} . ($\mathbb{D} \times \mathbb{S}^1$ est compact)

De même on vérifie que $\begin{cases} \mathbb{D} \times \mathbb{S}^1 & \longrightarrow \mathbb{T}_+ \\ (z,v) & \longmapsto \frac{1}{\sqrt{2}}(\sqrt{2-|z|^2}v^3,zv^2) \end{cases}$ passe au quotient en un homéomorphisme de T_ω dans \mathbb{T}_+ qui envoie C_ω sur K_{\clubsuit} .

D'après la définition de φ , on vérifie que le passage au quotient se fait bien, d'où le résultat.

Théorème 26. On a donc finalement $\mathbb{R}_1(\mathbb{R}^2) \cong \mathbb{S}^3 - K_{\clubsuit}$.

Références

- [Ghys] É. Ghys « Knots and dynamics », dans Proceedings of the International Congress of Mathematicians (Madrid, 2006), Vol. 1, Amer. Math. Soc., 2006, p. 247–277 http://www.icm2006.org/proceedings/Vol_I/15.pdf
- [Dal'Bo] F. Dal'Bo « Trajectoires géodésiques et horocycliques », EDP Sciences/CNRS Éditions, 2007
- [DCP] F. Dal'Bo & G. Courtois & F. Paulin « Sur la dynamique des groupes de matrices et applications arithmétiques », Éditions de l'École Polytechnique, 2008

Fig. 1 – Le réseau unitaire engendré par (1,0) et $(\sqrt{3},1)$

Fig. 2 – Domaine fondamental D de l'action de Γ sur $\mathbb H$

FIG. 3 – À droite est représenté $\Gamma \backslash D$, le recollement de D suivant son bord (en rouge) symétriquement par rapport à l'axe des ordonnées (en bleu). Le point noir correspond au point $\{e^{i\frac{\pi}{3}}, e^{i\frac{2\pi}{3}}\}$. Pour imaginer $\Gamma \backslash T_1D$, il suffit de reprendre ce recollement mais avec $T_1\mathbb{H}$ et T_1D à la place de \mathbb{H} et D

FIG. 4 – La courbe verte représente A, la partie de gauche est τ_i et celle de droite τ_{ω} (le tout projeté sur $\Gamma \backslash D$, il ne faut pas oublier qu'ils vivent en fait dans $\Gamma \backslash T_1D$)

Fig. 5 – Deux plongements possibles de T_i et T_ω dans \mathbb{R}^3 : la courbe rouge (C_i) fait deux fois le tour de l'axe et cinq fois le tour de l'âme, la courbe verte (C_ω) trois et cinq

Fig. 6 – Le nœud de trèfle plongé dans \mathbb{R}^3