Divide-and-Conquer: Polynomial Multiplication

Neil Rhodes

Department of Computer Science and Engineering University of California, San Diego

Data Structures and Algorithms Algorithmic Toolbox

- 1 Problem Overview
- 2 Naïve Algorithm
- 3 Naïve Divide and Conquer Algorithm
- 4 Faster Divide and Conquer

Uses of multiplying polynomials

- Error-correcting codes
- Large-integer multiplication
- Generating functions
- Convolution in signal processing

Example

$$A(x) = 3x^{2} + 2x + 5$$

$$B(x) = 5x^{2} + x + 2$$

$$A(x)B(x) = 15x^{4} + 13x^{3} + 33x^{2} + 9x + 10$$

Input: Two n-1 degree polynomials: $a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \cdots + a_1x + a_0$ $b_{n-1}x^{n-1} + b_{n-2}x^{n-2} + \cdots + b_1x + b_0$ Output: The product polynomial: $c_{2n-2}x^{2n-2}+c_{2n-3}x^{2n-3}+\cdots+c_1x+c_0$ where: $c_{2n-2} = a_{n-1}b_{n-1}$ $c_{2n-3} = a_{n-1}b_{n-2} + a_{n-2}b_{n-1}$

$$c_{2n-3} = a_{n-1}b_{n-2} + a_{n-2}b_{n-2}$$
...
 $c_2 = a_2b_0 + a_1b_1 + a_0b_2$
 $c_1 = a_1b_0 + a_0b_1$
 $c_0 = a_0b_0$

Example

Input:
$$n = 3, A = (3, 2, 5), B = (5, 1, 2)$$

$$A(x) = 3x^{2} + 2x + 5$$

$$B(x) = 5x^{2} + x + 2$$

$$A(x)B(x) = 15x^{4} + 13x^{3} + 33x^{2} + 9x + 10$$

Output: C = (15, 13, 33, 9, 10)

- 1 Problem Overview
- 2 Naïve Algorithm
- 3 Naïve Divide and Conquer Algorithm
- 4 Faster Divide and Conquer

```
MultPoly(A, B, n)
pair \leftarrow Array[n][n]
for i from 0 to n-1:
```

 $pair[i][j] \leftarrow A[i] * B[j]$

for i from 0 to n-1:

 $product[i + j] \leftarrow product[i + j] + pair[i][j]$

for i from 0 to n-1: $product \leftarrow Array[2n-1]$ for i from 0 to 2n-1: $product[i] \leftarrow 0$

for i from 0 to n-1:

return *product*

Naïve Solution: $O(n^2)$

- Multiply all $a_i b_j$ pairs (n^2 multiplications)
- Sum needed pairs $(n^2 \text{ additions})$

- 1 Problem Overview
- 2 Naïve Algorithm
- 3 Naïve Divide and Conquer Algorithm
- 4 Faster Divide and Conquer

Let
$$A(x) = D_1(x)x^{\frac{n}{2}} + D_0(x)$$
 where $D_1(x) = a_{n-1}x^{\frac{n}{2}-1} + a_{n-2}x^{\frac{n}{2}-2} + ... + a_{\frac{n}{2}}$
 $D_0(x) = a_{n-1}x^{\frac{n}{2}-1} + a_{n-2}x^{\frac{n}{2}-2} + ... + a_0$

$$E_{1}(x) = b_{n-1}x^{\frac{n}{2}-1} + b_{n-2}x^{\frac{n}{2}-2} + \dots + b_{\frac{n}{2}}$$

$$E_{0}(x) = b_{\frac{n}{2}-1}x^{\frac{n}{2}-1} + b_{\frac{n}{2}-2}x^{\frac{n}{2}-2} + \dots + b_{0}$$

$$AB = (D_{1}x^{\frac{n}{2}} + D_{0})(E_{1}x^{\frac{n}{2}} + E_{0})$$

$$= (D_1 E_1) x^n + (D_1 E_0 + D_0 E_1) x^{\frac{n}{2}} + D_0 E_0$$
• Calculate $D_1 E_1$, $D_1 E_0$, $D_0 E_1$, and $D_0 E_0$

Recurrence:
$$T(n) = 4T(\frac{n}{2}) + kn$$
.

Polynomial Mult: Divide & Conquer

$$A(x) = 4x^3 + 3x^2 + 2x + 1$$

$$B(x) = x^3 + 2x^2 + 3x + 4$$

$$A(x) = 4x^{3} + 3x^{2} + 2x + 1$$

$$B(x) = x^{3} + 2x^{2} + 3x + 4$$

$$D_{1}(x) = 4x + 3$$

$$D_{2}(x) = 2x + 1$$

$$B(x) = x^3 + 2x^2 + 3x + 4$$

 $D_1(x) = 4x + 3$ $D_0(x) = 2x + 1$

$$D_1(x) = x^2 + 2x^2 + 3x + 4$$

 $D_1(x) = 4x + 3$ $D_0(x) = 2x + 3x + 4$

$$D_1(x) = 4x + 3$$
 $D_0(x) = 2x + 4$
 $E_1(x) = x + 2$ $E_0(x) = 3x + 4$

 $6x^2 + 11x + 4$

$$E_1(x) = x + 2$$
 $E_0(x) = 3x + 4$
 $D_1E_1 = 4x^2 + 11x + 6$ $D_1E_0 = 12x^2 + 29$

$$E_1(x) = x + 2$$
 $E_0(x) = 3x + 4$
 $D_1E_1 = 4x^2 + 11x + 6$ $D_1E_0 = 12x^2 + 25x$

$$D_1E_1 = 4x^2 + 11x + 6$$
 $D_1E_0 = 12x^2 + 25x + 12$
 $D_0E_1 = 2x^2 + 5x + 2$ $D_0E_0 = 6x^2 + 11x + 4$

$$D_0E_1 = 2x^2 + 5x + 2$$
 $D_0E_0 = 6x^2 + 11x + 4$
 $AB = (4x^2 + 11x + 6)x^4 + 6$

$$D_0 E_1 = 2x^2 + 5x + 2 D_0 E_0 = 6x^2 + 11x + 4$$

$$AB = (4x^2 + 11x + 6)x^4 + (12x^2 + 25x + 12 + 2x^2 + 5x + 2)x^2 + 6x^2 +$$

 $=4x^{6} + 11x^{5} + 20x^{4} + 30x^{3} + 20x^{2} + 11x + 4$

Function Mult2(A, B, n, a_l, b_l) R = array[0..2n - 2]

if
$$n = 1$$
:
 $R[0] = A[a_I] * B[b_I]$; return R
 $R[0..n-2] = Mult2(A, B, \frac{n}{2}, a_I, b_I)$

$$R[0..n-2] = Mult2(A, B, \frac{1}{2}, a_l, b_l)$$

 $R[n..2n-2] = Mult2(A, B, \frac{n}{2}, a_l + \frac{n}{2}, b_l + \frac{n}{2})$
 $D_0E_1 = Mult2(A, B, \frac{n}{2}, a_l, b_l + \frac{n}{2})$
 $D_1E_0 = Mult2(A, B, \frac{n}{2}, a_l + \frac{n}{2}, b_l)$

 $R[\frac{n}{2} \dots n + \frac{n}{2} - 2] + D_1 E_0 + D_0 E_1$

return R

Total: $\sum_{i=0}^{\log_2 n} \frac{k!}{4^i k \frac{n}{2^i}} = \Theta(n^2)$

- 1 Problem Overview
- 2 Naïve Algorithm
- 3 Naïve Divide and Conquer Algorithm
- 4 Faster Divide and Conquer

Karatsuba approach

$$A(x) = a_1 x + a_0$$

$$B(x) = b_1 x + b_0$$

$$C(x) = a_1b_1x^2 + (a_1b_0 + a_0b_1)x + a_0b_0$$

Needs 4 multiplications

Rewrite as:
$$C(x) = a_1b_1x^2 +$$

 a_0b_0

Needs 3 multiplications

$$x^2$$
+

$$(a_1b_1x^2+$$

 $((a_1+a_0)(b_1+b_0)-a_1b_1-a_0b_0)x+$

$$a_0b_0$$

Karatsuba Example $A(x) = 4x^3 + 3x^2 + 2x + 1$

$$B(x) = x^3 + 2x^2 + 3x + 4$$

$$D_1(x) = 4x + 3$$

$$D_1(x) = 4x + 3$$

$$E_1(x) = x + 2$$

 $6x^2 + 11x + 4$

$$E_1(x) = x + 2$$
 $E_0(x) = 3x + 4$
 $D_1E_1 = 4x^2 + 11x + 6$ $D_0E_0 = 6x^2 + 1$

$$11x + 6$$

$$(D_1 + D_0)(E_1 + E_0) = (6x + 4)(4x + 6)$$

$$= 24x^2 +$$

$$= 24x^{2} + AB = (4x^{2} + 11x + 6)x^{4} + AB = (4x^{2} + 11$$

 $=4x^{6} + 11x^{5} + 20x^{4} + 30x^{3} + 20x^{2} + 11x + 4$

$$= 24x^2 + 52x + 24$$
$$6)x^4 +$$

$$(4x^2 + 11x + 6)x^4 +$$

 $(24x^2 + 52x + 24 - (4x^2 + 11x + 6))$

 $-(6x^2+11x+4))x^2+$

 $D_0(x) = 2x + 1$

 $D_0 E_0 = 6x^2 + 11x + 4$

 $=\Theta(n^{1.58})$