Image Computation for Quantum Transition Systems

高丁超 应圣钢,洪鑫,李三江,应明生

2023年6月11日

transition system

our method

transition system: (S, I, Σ, T)

where
$$\begin{cases} x = x_1, \cdots, x_n \\ y = y_1, \cdots, y_n \\ \sigma = \sigma_1, \cdots, \sigma_m \end{cases}$$

Quantum transition system: (S, S_0, Σ, R)

$$\mathsf{CNOT} \ = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array} \right]$$

benchmark	time
Grover 20	\sim 5min
Quantum Fourier Transform 20	\sim 20min
Quantum Random walk 20	\sim 6min
Bernstein-Vazirani 50	\sim 4min
GHZ 500	\sim 3sec

benchmark	basic	$\operatorname{addition}$	contraction
Grover 20	\sim 5min	\sim 4min	\sim 4sec
Quantum Fourier Transform 20	\sim 20min	$\sim\!\!11\mathrm{min}$	<1sec
Quantum Random walk 20	\sim 6min	\sim 4min	${\sim}15{\sf sec}$
Bernstein-Vazirani 50	\sim 4min	\sim 4min	${\sim}16{\sf sec}$
GHZ 500	\sim 3sec	\sim 1.5sec	\sim 1.7sec

circuit		k = 0	k = 1	k = 3
Grover_40	time	1,510.42	1,519.24	1,495.20
	max #node	589,865	393,423	245,814
QFT_100		121.28	118.78	
	max #node	524,369	262,226	131,155

efficient quantum image computation algorithms

contraction partition-based algorithm