

Università degli Studi di Torino

Corso di Laurea Magistrale in Astrofisica e Fisica Teorica

Titolo

TESI DI LAUREA MAGISTRALE

Relatore:

Prof.

Panero Marco

Candidato:

Aliberti Marco Matricola 855766

Anno Accademico 2022/2023

Abstract

Contents

1	QCD on the Lattice	4
	1.1 The QCD Continuum Action	5
	1.1.1 Spinor Fields	5
	1.1.2 Quantum Electrodynamics	5
2	Computer Simulation of Gauge Theories	7
3	Gauge Theories Simulation on non-hypercubic lattice F4	8
4	Simulation Results	9
5	Conclusions	10

QCD on the Lattice

1.1 The QCD Continuum Action

In order to write the action of QCD on the lattice, I must first recall how the theory is formulated in the continuum.

1.1.1 Spinor Fields

Let us take into consideration a (free) quantum field theory describing a fermion, such as a quark or a lepton, in a 4-dimensional spacetime with metric $\eta_{\mu\nu} = \text{diag}(-1, 1, 1, 1)$. Its action (in natural units, where $c = \hbar = 1$) can be written as:

$$S_F[\psi(x), \overline{\psi}(x)] = \int d^4x \left(i\overline{\psi} \partial \psi - m\overline{\psi} \psi \right)$$
 (1.1.1)

from which, upon the application of the variational principle, the Dirac equation follows:

$$(i\partial \!\!\!/ - m) \psi(x) = 0 \tag{1.1.2}$$

It can now be easily checked by direct computation that this action is invariant under a rigid phase transformation:

$$\psi \to \psi' = e^{-i\alpha}\psi$$

$$\overline{\psi} \to \overline{\psi}' = \overline{\psi}e^{i\alpha}$$
(1.1.3)

where α is a constant that does not depend on the spacetime coordinate x, while if $\alpha = \alpha(x)$ the action (1.1.1) would not be invariant because of the kinetic term.

1.1.2 Quantum Electrodynamics

As the free field theory itself is non interacting, it does not provide any real-world prediction, so it is useful to write an interacting action where the spinor field is coupled, for instance, to a vector field A_{μ} , i.e. the photon. The action for the vector field is written in terms of its field-strength, namely: ¹

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} \tag{1.1.4}$$

where two different fields A_{μ} and A'_{μ} describe the same physics if one can be obtained from another throug a gauge transformation:

$$A'_{\mu}(x) = A_{\mu}(x) - \frac{1}{g}\partial_{\mu}\Lambda(x)$$

$$F'_{\mu\nu} = F_{\mu\nu} - \frac{1}{g}(\partial_{\mu}\partial_{\nu} - \partial_{\nu}\partial_{\mu})\Lambda = F_{\mu\nu}$$

$$(1.1.5)$$

with $\Lambda(x)$ being any (at least C^2) scalar function.

Thus, the free action for the vector field is:

$$S_{EM} = -\frac{1}{4} \int d^4x F_{\mu\nu} F^{\mu\nu}$$
 (1.1.6)

¹Actually, this is not a definition, as $F_{\mu\nu}$ is defined as the curvature tensor, obtained through the commutator of the covariant derivative: $F_{\mu\nu} \equiv -\mathrm{i}g\left[D_{\mu},D_{\nu}\right]$

That is also gauge invariant, i.e. invariant under (1.1.5), as $F_{\mu\nu}$ is gauge invariant. In order to write a fully covariant, gauge-invariant interacting action, the covariant derivative on the spinor has to be defined as follows:

$$D_{\mu}\psi \equiv (\partial_{\mu} + igA_{\mu})\psi \tag{1.1.7}$$

Computer Simulation of Gauge Theories

Gauge Theories Simulation on non-hypercubic lattice F4

