Appendix B. Demographic and disease parameters used in the agent-based model

Deer Landscape Disease.

Table B1. Demographic parameters used in DeerLandscapeDisease. CFL = contiguous forest landscape, FFL = fragmented forest landscape.

Parameter	Value	Source
Chance of dispersal	Males: 0.7	(Hawkins et al., 1971;
	Females: 0.2	Nixon et al., 2007, 1994;
		Rosenberry et al., 1999)
Chance of exploratory	CFL:	Estimated from field data
movement	Gestation: 0.32	
	Fawning: 0.08	
	Prerut: 0.20	
	Rut: 0.96 FLL:	
	Gestation: 2.33	
	Fawning: 0.33	
	Prerut: 0.11	
	Rut: 0.61	
	1 Tut. 0.01	
Duration of exploratory	12-24 hours	Estimated from field data
movement		
Duration of mating-related	1-7 days	(Marchington and Hirth,
grouping		1984)
Gestation time	187-222 days	(Marchington and Hirth, 1984)
Group adhesion	Females: 0.95	Added in model to account
(probability of staying in	Males: 0.40	for male groups being more
group)	Females (fawning): 0	fluid than female
group)	Males (rut): 0	Traid than Temate
Maximum group size	Males: 10	(Marchington and Hirth,
(adults)	Females: 4	1984)
Maximum home range size	CFL: 6.46	Calculated from field data
(ha)	FFL: 5.34	
Minimum forest proportion	CFL: 0.185	Calculated from field data
in home range	FFL: 0.22	
Number of fawns born to	1 fawn: 0.25	(Verme and Ullrey, 1984)
each female (proportions)	2 fawns: 0.50	
	3 fawns: 0.25	
Yearly mortality	Males: 0.40	(Hawkins et al., 1970;
	Females: 0.20	Nixon et al., 1994, 1991;
	Fawns, 0-2 months: 0.44	Rohm et al., 2007)
	Fawns, 2-12 months: 0.2	

Table B2. Disease parameters used in DeerLandscapeDisease. CFL = contiguous forest landscape, FFL = fragmented forest landscape. CDF= Gaussian cumulative distribution function.

Parameter	Value	Source	
Chance of infection	Direct contact: 0.0218	Calibrated values to match a	
	Indirect contact: 8.235E-6	10 year rise in prevalence with	
		a factor of 1.715, (Wisconsin	
		Department of Natural	
		Resources, 2012)	
Deer infectivity/change	CDF X~N (20,4)	Based on the assumption that	
of shedding prions		infectivity increases with	
		disease progression after an	
		initial incubation time of 18	
		months	
Disease mortality	CDF X~N (28,2)	Based on the assumption that	
		mortality increases with	
		disease progression after an	
		initial incubation time of 18	
		months.	
Prion half life	6 months	Based on known persistence	
		of prion proteins (Williams et	
		al., 2002)	
Start prevalence	Direct scenarios: 0.04	Calibrated values to match a	
	Indirect scenarios: 0.047	10 year rise in prevalence with	
		a factor of 1.715 (Wisconsin	
		Department of Natural	
		Resources, 2012)	

Table B3. Movement parameters used in DeerLandscapeDisease. CFL = contiguous forest landscape, FFL = fragmented forest landscape. N=Normal distribution, LN= log-normal distribution, WCauchy=Wrapped Cauchy distribution, Wei=Weibull distribution, Exp=Exponential distribution.

Parameter	Value	Details
Dispersal	Step lengths as in general movement.	Step length from field data, turn angle averaged
	Turn angles from wrapped cauchy: WCauchy(μ_b , ρ_t), μ_t =0.02, ρ_t =0.99	around zero
Exploratory movement	Step lengths as in general movement Turn angles from wrapped cauchy:	Step length from field data, turn angle averaged
	WCauchy(μ_{ν} , ρ_{t}), μ_{t} =0.02, ρ_{t} =0.99	around zero
Fawn movement (< 6 months)	Turn angles facing mother deer	Turn angle and step length
	Step lengths from exponential distribution,	modeled to stay closed to mother
	$X \sim \text{Exp}(\lambda), \lambda = 0.1$	
Group movement	Turn angles facing leader deer	Step length fitted to field data, see
	Step lengths from exponential distribution $X \sim \text{Exp}(\lambda)$:	Appendix C
	CFL and FFL:	
	Gestation: $\lambda = 0.00442$ Fawning: $\lambda = 0.00331$	
	Prerut: $\lambda = 0.00317$ Rut: $\lambda = 0.00406$	
Mating movement, male following female	Turn angles facing female	Turn angle and step length
	Step lengths from exponential distribution, $X \sim \text{Exp}(\lambda)$, $\lambda = 0.1$	modeled to stay closed to female
Turn angle, Wrapped Cauchy distribution	$X \sim \text{WCauchy}(\mu_t, \rho_t)$ $\mu_t = \theta c_t$	Estimated from field data, see
	$\rho_t = \rho_\infty + (\rho_0 - \rho_\infty) * \exp(-\gamma_\rho d_t),$	Appendix C for details
	parameter θc_t is the turn angle pointing towards home range center, d_t is distance from home range center	ρ ₀ ∈ [−1, 1]
	<i>ρ_t</i> : CFL:	$ \rho_{\infty} \in [-1, 1] $
	Gestation: ρ_0 : $((X+1)/2)$, X ~Beta(72.76,79.22)	$\gamma_{\rho} \in [0, \infty)$

ρ_{∞} : 1 (48%) or X ~Beta(4.40,1,70)	
γ_{ρ} :X ~N(y , MSE),	
$y = -2.79 \rho_{\infty} - 4.32$, $MSE = 1.21$	
Fawning:	
ρ_0 : $((X + 1)/2)$, $X \sim Beta(41.51, 54.02)$ ρ_∞ : 1 (33%) or $X \sim Beta(2.41, 0.74)$	$X \in [0.4,1]$
γ_{ρ} :X ~N(y , MSE),	
$y = -2.79 \rho_{\infty} - 4.32$, $MSE = 1.21$	
Prerut:	
• • • • • • • • • • • • • • • • • • • •	
, p	$X \in [0.4,1]$
Rut:	
ρ_0 : $((X+1)/2)$, X ~Beta(4.24,5.96) ρ_∞ : 1 (30%) or X ~Beta(28.48,32.63)	
γ_{ρ} :X ~N(y , MSE),	
$y = -2.79 \rho_{\infty} - 4.32$, $MSE = 1.21$	
	$X \in [0.4,1]$
ρ_{∞} : 1 (25%) or X ~Beta(4.54,2.35)	
γ_{ρ} :X ~N(y , MSE),	
$y = -2.79 \rho_{\infty} - 4.32$, $MSE = 1.21$	
Fawning:	
ρ_0 . $((X + 1)/2)$, $X \sim Beta(13.01, 18.04)$ ρ_∞ : 1 (33%) or $X \sim Beta(4.25, 2.72)$	
γ_{ρ} :X ~N(y , MSE),	$X \in [0.4,1]$
$y = -2.79 \rho_{\infty} - 4.32$, $MSE = 1.21$	
ρ_0 : ((X + 1)/2), X ~Beta(7.00,10.17) ρ_∞ : 1 (29%) or X ~Beta(2.87,1.22)	
γ_{ρ} :X ~N(y , MSE),	
$y=-2.79\rho_{\infty}-4.32$, $MSE=1.21$	
ρ_0 : $((X+1)/2)$, X ~Beta(10.79,15.13) ρ_∞ : 1 (21%) or X ~Beta(4.64,2.76)	
γ_{ρ} :X ~N(y , MSE),	
$y = -2.79 \rho_{\infty} - 4.32$, $MSE = 1.21$	X ∈ [0.4,1]
	V_{ρ} :X ~N(v , MSE), $y=-2.79\rho_{\infty}-4.32$, $MSE=1.21$ Fawning: ρ_{0} : $((X+1)/2)$, X ~Beta(41.51,54.02) ρ_{ω} : 1 (33%) or X ~Beta(2.41,0.74) V_{ρ} :X ~N(v , MSE), $y=-2.79\rho_{\omega}-4.32$, $MSE=1.21$ Prerut: ρ_{0} : $((X+1)/2)$, X ~Beta(0.41,1.07) ρ_{ω} : 1 (71%) or X ~Beta(3.26,0.86) V_{ρ} :X ~N(v , MSE), $y=-2.79\rho_{\omega}-4.32$, $MSE=1.21$ Rut: ρ_{0} : $((X+1)/2)$, X ~Beta(4.24,5.96) ρ_{ω} : 1 (30%) or X ~Beta(28.48,32.63) V_{ρ} :X ~N(v , MSE), $y=-2.79\rho_{\omega}-4.32$, $MSE=1.21$ FFL: Gestation: ρ_{0} : $((X+1)/2)$, X ~Beta(36.72,40.78) ρ_{ω} : 1 (25%) or X ~Beta(4.54,2.35) V_{ρ} :X ~N(v , MSE), $y=-2.79\rho_{\omega}-4.32$, $MSE=1.21$ Fawning: ρ_{0} : $((X+1)/2)$, X ~Beta(15.01,18.04) ρ_{ω} : 1 (33%) or X ~Beta(4.25,2.72) V_{ρ} :X ~N(v , MSE), $y=-2.79\rho_{\omega}-4.32$, $MSE=1.21$ Prerut: ρ_{0} : $((X+1)/2)$, X ~Beta(7.60,10.17) ρ_{ω} : 1 (29%) or X ~Beta(2.87,1.22) V_{ρ} :X ~N(v , MSE), $y=-2.79\rho_{\omega}-4.32$, $MSE=1.21$ Rut: ρ_{0} : $((X+1)/2)$, X ~Beta(10.79,15.13) ρ_{ω} : 1 (21%) or X ~Beta(4.64,2.76) V_{ρ} :X ~N(v , MSE),

		$X \in [0.4,1]$ $X \in [0.4,1]$
Step length, Weibull distribution:	$X \sim \text{Wei}(\alpha_t, \beta_t)$ $\alpha_t = \alpha$ $\beta_t = \beta_0 + \gamma_{\beta}^* d_{t,,}$ d_t is distance from home range center CFL: Gestation: $\alpha_t: X \sim \text{LN}(-0.048, 0.085)$ $\beta_o: X \sim \text{LN}(4.74, 0.25)$ $\gamma_{\beta}: X \sim \text{N}(0.15, 0.082)$ Fawning: $\alpha_t: X \sim \text{LN}(-0.026, 0.099)$ $\beta_o: X \sim \text{LN}(4.74, 0.25)$ $\gamma_{\beta}: X \sim \text{N}(0.12, 0.077)$ Prerut: $\alpha_t: X \sim \text{LN}(-0.044, 0.12)$ $\beta_o: X \sim \text{LN}(4.82, 0.36)$ $\gamma_{\beta}: X \sim \text{N}(0.18, 0.15)$ Rut: $\alpha_t: X \sim \text{LN}(-0.077, 0.058)$	$X \in [0.4,1]$ Estimated from field data, see Appendix C for details $\alpha \in [0, \infty)$ $\beta_0 \in [0, \infty)$ $\gamma_\beta \in (-\infty, \infty)$ $\beta_t \in [10,5241]$

β₀: X~LN (4.70,0.23) γ_{B} : X~N (0.17,0.085) FFL: Gestation: α_t : X ~LN(-0.15,0.074) β_0 : X~LN (6.595, 1.551) γ_{B} X~N (0.16,0,084) Fawning: α_t : X ~LN(-0.026,0.11) β_o : X~LN (6.595, 1.551) γ_{β} : X~N (0,19,0.11), Prerut: α_i : X ~LN(-0.14,0.092) β_0 : X~LN (6.595, 1.551) γ_{R} X~N (0.25,0.11) Rut: α_t : X ~LN(-0.05, 0.09) β_{o} : X~LN (6.595, 1.551) γ_{B} : X~N (0.17,0.089)

References

- Hawkins, R.E., Klimstra, W.D., Autry, D.C., 1971. Dispersal of deer from Crab Orchard National Wildlife Refuge. J. Wildl. Manage. 35, 216–220.
- Hawkins, R.E., Klimstra, W.D., Autry, D.C., 1970. Significant mortality factors of deer on Crab Orchard National Wildlife Refuge. Trans. Illinois State Acad. Sci. 63, 206.
- Marchington, R.L., Hirth, D.L., 1984. Behavior, in: Halls, L.K. (Ed.), White-Tailed Deer Ecology and Management. Stackpole Books, Harrisburg, Pennsylvania, USA, p. 870.
- Nixon, C.M., Hansen, L.P., Brewer, P.A., Chelsvig, J.E., 1991. Ecology of white-tailed deer in an intensively farmed region of Illinois. Wildl. Monogr. 3–77.
- Nixon, C.M., Hansen, L.P., Brewer, P.A., Chelsvig, J.E., Sullivan, J.B., Esker, T.L., Koerkenmeier, R., Etter, D.R., Cline, J., Thomas, J.A., 1994. Behavior, dispersal, and survival of male white-tailed deer in Illinois. Illinois Nat. Hist. Surv. Biol. Notes 139, 1–29. https://doi.org/10.5962/bhl.title.15183
- Nixon, C.M., Mankin, P.C., Etter, D.R., Hansen, L.P., Paul, A., Chelsvig, J.E., Esker, T.L., Sullivan, J.B., 2007. White-Tailed Deer Dispersal Behavior in an Agricultural Environment. Am. Midl.

- Nat. 157, 212–220.
- Rohm, J.H., Nielsen, C.K., Woolf, A., 2007. Survival of White-Tailed Deer Fawns in Southern Illinois. J. Wildl. Manage. 71, 851–860. https://doi.org/10.2193/2006-027
- Rosenberry, C.S., Lancia, R.A., Conner, M.C., 1999. Population Effects of White-Tailed Deer Dispersal. Wildl. Soc. Bull. 27, 858–864.
- Verme, L.J., Ullrey, D.E., 1984. Physiology and nutrition, in: Halls, L.K. (Ed.), White-Tailed Deer: Ecology and Management. Stackpole Books, Harrisburg, Pennsylvania, USA, pp. 91–118.
- Williams, E.S., Miller, M.W., Kreeger, T.J., Kahn, R.H., Thorne, E.T., 2002. Chronic Wasting Disease of Deer and Elk: A Review with Recommendations for Management. J. Wildl. Manage. 66, 551–563.
- Wisconsin Department of Natural Resources, 2012. No Title [WWW Document]. URL https://dnr.wi.gov