GROUP HOMOMORPHISM

f:
$$(G, o) \rightarrow (H, *)$$
 is group homomorphism

if $\forall a, b \in G$ $f(a \circ b) = f(a) * f(b)$

Ex: f: $(Z, +) \rightarrow (Z_4, +)$

is an homomorphism

$$f(x) = [x] = \{x + 4k \mid k \in Z\}$$

$$f(x + 4) = [x + 4] = [x] + [y] = f(x) + f(y)$$

(Homomorphism

(Itomomorphism

 $(Z, +) \rightarrow (Z_n, +)$
 $(Z_n, +) = [x + 4]$

Properties:
$$f:(G,o) \to (H,*)$$
 $e_{H} \in id(H)$
 $e_{G} \in id(G)$
 $e_{H} = f(e_{G})$ $e_{G} = f(e_{G}) * f(e_{G})$
 $e_{H} * f(e_{G}) = f(e_{G}) = f(e_{G}) * f(e_{G})$
 $f(a^{-1}) = [f(a)]^{-1}$
 $f(a^{-1}) * f(a) = f(e_{G}) = e_{H}$
 $f(a^{-1}) * f(a) = f(e_{G}) = e_{H}$
 $f(a^{-1}) * f(a) = [f(a)]^{n}$
 $f(a^{n+1}) = f(a^{n} \circ a)$
 $f(a^{n+1}) = f(a^{n} \circ a)$
 $f(a^{n+1}) = f(a^{n} \circ a)$
 $f(a^{n+1}) = f(a^{n} \circ a)$

S of G, f(S) is a subgroup of H 4 Subgroups $\forall a,b \in S$ $x = f(a) \in f(S)$ y = f(b) Ef (S) (i) $x * y = f(a) * f(b) = f(a \circ b) \in f(s)$ Ly Closure Property $f(\alpha^{-1}) = [f(\alpha)]^{-1} \in f(S)$ Ly Existance of Inverse (hi) : f(s) is a subgroup of H.V GROUP ISOMOR PHISM

 $f:(G,o) \rightarrow (H,*)$ is a homomorphism and f: bijective (one-to-one + onto)

Ex: G={1,-1,i,-i} under * (mult.) fisomorphism $H = (Z_A, +)$ $f: (G, *) \rightarrow (Z_A, +) \quad \text{such that} \quad \begin{cases} f(1) = [0] \\ f(-1) = [2] \end{cases}$ $f: (G, *) \rightarrow (Z_A, +) \quad \text{such that} \quad \begin{cases} f(1) = [0] \\ f(1) = [1] \end{cases}$ R bijective f(-i) = [3]f(1*-1) = f(-1) = [2] = [0] + [2]= f(1) + f(-1)f(i * -i) = f(1) = [0] = [1] + [3] = f(i) + f(-i)

G = {1, -1, i, -i} group under * L'Generated by (i) or (-i) CYCLIC GROUPS $\exists \alpha \in G$ such that $\forall \alpha \in G$ $\alpha = \alpha^n (n \in \mathbb{Z})$ Ex. (1) $H = (\mathbb{Z}_{4}, +)$ is a cyclic growp $\langle [3]^{3}, \langle [1] \rangle$ $[3]^{1} = [3], [3]^{2} = [2], [3]^{3} = [1], [3^{4}] = [0]$ 2 (Zg, +,*) Ring (Ug,*) cyclic group $[2]^{1} = [2]$, $[2]^{2} = [4]$, $[2]^{3} = [8]$ | generator: $\langle [2] \rangle$, $\langle [5] \rangle$ $[2]^4 = [7]$, $[2]^5 = [5]$, $[2]^6 = [1]$

$$U_{g} = \{[1], [2], [4], [5], [7], [8]\} \\
U_{g} = \langle [2] \rangle, \langle [5] \rangle \qquad \langle [4] \rangle = \{[1], [4], [7]\} \\
\langle [1] \rangle = \{[1]\} \qquad \langle [8] \rangle = \{[1], [8]\} \\
\langle [1] \rangle = \{[1]\} \qquad \langle [8] \rangle = \{[1], [8]\} \\
\langle [1] \rangle = \{[1]\} \qquad \langle [8] \rangle = \{[1], [4], [7]\} \\
\langle [1] \rangle = \{[1]\} \qquad \langle [8] \rangle = \{[1], [4], [7]\} \\
\langle [1] \rangle = \{[1], [2], [4], [5], [7]\} \\
\langle [1] \rangle = \{[1], [2], [4], [5], [7]\} \\
\langle [1] \rangle = \{[1], [4], [7]\} \\
\langle [2] \rangle = \{[1], [4], [7]\} \\
\langle [3] \rangle = \{[1], [4], [7]\} \\
\langle [4] \rangle = \{[1], [4], [4], [4]\} \\
\langle [4] \rangle = \{[1], [4], [4], [4], [4]\} \\
\langle [4] \rangle = \{[1], [4], [4], [4]\} \\
\langle [4] \rangle = \{[1], [4], [4], [4]\} \\
\langle [4] \rangle = \{[1], [4], [4], [4]\} \\
\langle [4] \rangle = \{[1], [4], [4], [4]\} \\
\langle [4] \rangle = \{[1], [4], [4], [4]\} \\
\langle [4] \rangle = \{[1], [4], [4], [4]\} \\
\langle [4] \rangle = \{[1], [4], [4], [4]\} \\
\langle [4] \rangle = \{[1], [4], [4]\} \\
\langle [4] \rangle = \{[1], [4], [4]\} \\
\langle [4] \rangle = \{[1], [4], [4]$$

 $|\langle \alpha \rangle| = finite.$ ① $\alpha^1 = e = \alpha^0$ $|\langle \alpha \rangle| = 1$ 2) When $a \neq e$ $\langle a \rangle = \{a, a^2, ..., a^k\}$ $a^t = a^s$ | $\leq s < t$ = $\leq a^m | m \in \mathbb{Z}$ $\Rightarrow \alpha^{t-s} = e$ Let, smallest in such that $\alpha^n = e$ (i) $\langle a \rangle = \{ a, a^2, a^3, \dots, a^n (=e) \}$ $|\langle a \rangle| \geq n$ otherwise $a^{v} = a^{v}$ ($1 \leq u < v \leq n$) $\Rightarrow a^{v-v} = e$ CONTRADICTS n is minimal. (ii) If $|\langle \alpha \rangle| > n$ K = qn + r $(0 \le r < n)$ $\alpha^{K} = \alpha^{rn+r} = (\alpha^{r})^{r} \cdot \alpha^{r} = \alpha^{r} \quad \text{where } r < r$ Order of Cyclic groups: $O(\langle a \rangle) = |\langle a \rangle| = n$ when $a^h = e$ (smallest n) \square (a) is cyclic group with $O(\langle a \rangle) = n$. If $K \in \mathbb{Z}$ such that $a^k = e$ then $n \mid k$ Proof: k = qn + r (o $\leq r < n$) $a^{k} = a^{m+r} = (a^{m})^{k} a^{r} = e^{q} \cdot a^{r}$ $= e \cdot \alpha^{\gamma} = \alpha^{\gamma}$ (because $\gamma < \gamma$) if ak=e=ar CONTRADICT the MINIMALITY of n So, $\gamma = 0 \Rightarrow k = qn \Rightarrow n k$

Cyclic Group with Homomorphisms Ug = <[2]> = <[5]> $E^{\chi'}$ $f:(V_g,*) \rightarrow (Z_6,+)$ $f(2^1) = [1] = f([2])$ where $f(2^i) = [i]$ $f\left(2^{m} * 2^{n}\right) = f\left(2^{m+n}\right)$ $f(2^2) = [2] = f([4])$ = [m+n] = [m] + [n] $f(2^3) = [3] = f([8])$ $= f(2^m) + f(2^n)$ $f(2^4) = [4] = f([7])$ Homo morphism $f(2^5) = [5] = f([5])$ f(26) = [6] = f([1])This is a sum of the second secon $\frac{\text{Verify}}{\text{Lisip}} : \left(151 \right) = [1]$ - - - - SO ON

Theorem: G is Cyclic Group $|G| = infinite, then <math>f:(G,0) \rightarrow (Z,+)$ (2) |G| = finite, then $f: (G,0) \rightarrow (\mathbb{Z}_n,t)$ = n > 1Here, of as an Isomorphism Proof: (1) $f(a^k) = k \in \mathbb{Z}$ one-to-one & onto $2) f(a^{k}) = [k] \in \mathbb{Z}_{n}$ Homomorphism with I

Every cyclic Group is Abelian

Proof: $G = \langle \alpha \rangle$ under * $a^m * a^n = a^m = \alpha * a^m = \alpha * a^m$ L. Commutative Property

Is every Abelian Group Cyclic??

$$H = \{e, a, b, c\}$$
 $0 \mid e \mid a \mid b \mid c$
 $e \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$
 $0 \mid e \mid a \mid b \mid c$

KLEIN'S GROUP of ORDER = 4 Theorem: Every Subgroup of cyclic group is also cyclic Proof: H is a subgroup of $G = \langle a \rangle$ at EH where the minimum Claim: $H = \langle a^t \rangle \quad \langle a^t \rangle \subseteq H \quad [H \text{ is also}]$ $\langle a^t \rangle \neq b = a^S \in H \quad a^S = a^{t+\gamma} \quad (0 \leqslant r \leqslant t)$ $\Rightarrow \alpha^{Y} = (\alpha^{t})^{-q} \cdot \alpha^{S} = (\alpha^{t})^{-q} \cdot b \in H$ If Or EH where (rxt) 1 rxt

CONTRADICTS minimality of t s.t at EH

COSETS: His a subgroup of G (under*)

+ a E G aH = {ah | h E H} + Left Coset

Ha = {ha| h E H} + Right

Coset of Hin G.

(Additive Growps) $a + H = \{a + h \mid h \in H\} \leftarrow Left Coset$ $a + H = \{h + a \mid h \in H\} \leftarrow Right Coset$ Ex' $G = (Z_{12}, +)$ $H = \{[0], [4], [8]\}$ $[0] + H = \{[0], [4], [8]\} = [4] + H = [8] + H = H = [2] + H = ?$ $[3] + H = {[1], [5], [9]} = [5] + H = [9] + H$ Partition of G = H U (11+H) U([2]+H) U([3]+H) ~

1 H is subgroup of G (finite) ① $\forall \alpha \in G$ $|\alpha H| = |H|$ ② $\forall \alpha, b \in G$ αH $\cap bH = \emptyset$ or $\alpha H = bH$ Proof: aH = {ah | hEH} => |aH| < |H| (1) $ah_1 = ah_2$ if |aH| < |H| $\Rightarrow h_1 = h_2$ (as $h_1, h_2, a \in G$) |aH| = |H|(2) $aH \cap bH \neq \emptyset \Rightarrow c \in aH \cap bH \mid c = ah_y = bh_z$ $2 \in \alpha H \rightarrow \chi = \alpha h \left(h \in H \right) = \left(b h_2 h_1^{-1} \right) h \qquad \Rightarrow \alpha = b h_2 h_1^{-1}$ $\begin{cases} y \in bH \implies y = bh = (ah_1h_2)h = a(h_1h_2)h = ah_1h_2 \\ \Rightarrow bH \subseteq aH \end{cases} = b \left(\frac{h_2h_1h_2}{h}\right) = ah_1h_2$

LAGRANGE'S THEOREM! If G finite group of o(6)=n

H is a subgroup of G, o(H)=m}m|n Proof: G=H Otherwise G≠H $\alpha \notin H \Rightarrow \alpha H \neq H \Rightarrow \alpha \in G - H$ i.e ahn $H = \emptyset \longrightarrow G = aHUH$ then |G| = 2|H|Otherwise, b ∈ G - (aHUH) b∉aHUH ⇒ bH≠H i.e. bH NH=Ø=bHNaH If $G = \alpha H \cup bH \cup H$ then |G| = 3|H|

Otherwise, $c \in G - (aHUbHVH)$, ... So on... $L \Rightarrow G = a_1HUa_2HU...Ua_kH \Rightarrow |G| = k|H|$ COROLLARY:

(1) G is finite group and $\forall a \in G$ $o(\langle a \rangle) | o(G) \Rightarrow |\langle a \rangle| | |G|$ (2) Every group of Prime Order is Cyclic |G| = p + prime Every subgroup 1 or p elements 'e" 'G" (Extension from Lagrange's Theorem)