

TOPOLOGÍA I. CURSO 2019-20 RELACIÓN 1: ESPACIOS TOPOLÓGICOS

- 1. En los siguientes casos, estudiar si T es o no una topología en el conjunto X:
 - a) $X \neq \emptyset$ y $T = \mathcal{P}(A) \cup \{X\}$, donde $A \subseteq X$ y $A \neq \emptyset$.
 - b) $X = \mathbb{N}$ y $T = \{U_n / n \in \mathbb{N}\} \cup \{\emptyset, \mathbb{N}\}$, donde $U_n = [n, +\infty) \cap \mathbb{N}$.
 - c) $X = \{f : (-1,1) \to \mathbb{R} \text{ función}\}\ y\ T = \{U \subseteq X \ / \ \exists f \in U \text{ derivable}\} \cup \{\emptyset\}.$
- 2. Describir todas las topologías de X cuando #X=2 y #X=3.
- 3. Sea X un conjunto no vacío y $\{T_{\alpha}\}_{{\alpha}\in\Lambda}$ una familia de topologías en X.
 - a) Demostrar que la intersección

$$T = \bigcap_{\alpha \in \Lambda} T_{\alpha} = \{ U \subseteq X / U \in T_{\alpha} \ \forall \alpha \in \Lambda \}$$

es una topología en X.

b) Probar mediante un contraejemplo que, en general, la unión

$$T = \bigcup_{\alpha \in \Lambda} T_{\alpha} = \{ U \subseteq X / U \in T_{\alpha} \text{ para algún } \alpha \in \Lambda \}$$

no es una topología en X.

- 4. Sea X un conjunto no vacío y $A, B \subsetneq X$ con $A, B \neq \emptyset$. ¿Qué debe cumplirse para que la familia $T = \{\emptyset, A, B, X\}$ sea una topología en X?
- 5. Para cada $\alpha \in \mathbb{R}$ se define el semiplano $U_{\alpha} = \{(x,y) \in \mathbb{R}^2 / y > \alpha\}.$
 - a) Demostrar que la familia $T = \{U_{\alpha} / \alpha \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}^2\}$ es una topología en \mathbb{R}^2 .
 - b) Estudiar si $T \leqslant T_u$ o $T_u \leqslant T$.
 - c) Describir la familia de cerrados C_T .
- 6. (Topología fuerte en un punto). Sea X un conjunto y $x_0 \in X$. Definimos:

$$C = \{F \subseteq X \mid x_0 \in F\} \cup \{F \subseteq X \mid F \text{ es finito}\}.$$

Probar que existe una única topología T en X cuya familia de cerrados es C. Describir los abiertos de T.

7. (Topología de Zariski). Sea $\mathbb{R}[x_1,\ldots,x_n]$ la familia de los polinomios con coeficientes reales en las variables x_1,\ldots,x_n . Dado $E\subseteq\mathbb{R}[x_1,\ldots,x_n],\ E\neq\emptyset$, se define el

subconjunto de \mathbb{R} dado por:

$$F_E = \{ a \in \mathbb{R}^n / p(a) = 0, \forall p \in E \}.$$

- a) Demostrar que $\mathcal{C}_Z = \{F_E / E \subseteq \mathbb{R}[x_1, \dots, x_n]\}$ es la familia de cerrados de una única topología T_Z en \mathbb{R}^n .
- b) Probar que, si n=1, entonces $T_Z=T_{CF}$. ¿Es cierta esta igualdad si $n\geqslant 2$?
- 8. Resolver de forma razonada estas cuestiones:
 - a) ¿Existe una topología T en $X = \{1, 2, 3, 4, 5\}$ tal que $\mathcal{B} = \{\{1, 2\}, \{2, 4, 5\}\}$ es una base de T?
 - b) ¿Es la familia $\mathcal{B} = \{(a,b) / a, b \in \mathbb{Q}, a < b\}$ una base de (\mathbb{R}, T_u) ?
- 9. En \mathbb{R} se consideran las familias:

$$T_1 = \{(a, +\infty) / a \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\}, \quad T_2 = \{[a, +\infty) / a \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\}.$$

- a) Probar que T_1 es una topología en \mathbb{R} y que T_2 no lo es.
- b) Demostrar que T_2 es base de una única topología T en \mathbb{R} .
- c) Estudiar si $T_u \leqslant T_1, T_1 \leqslant T_u, T_u \leqslant T$ o $T \leqslant T_u$.
- d) En (\mathbb{R}, T) , ¿es la intersección arbitraria de abiertos un conjunto abierto?
- 10. (Semiplano de Moore). En $\mathbb{R}^2_+ = \{(x,y) \in \mathbb{R}^2 / y \ge 0\}$ se considera la familia:

$$\mathcal{B}_{M} = \{B((x,y),\varepsilon) / y > 0, \ \varepsilon \in (0,y)\} \cup \{B((x,y),y) \cup \{(x,0)\} / y > 0\}.$$

Probar que existe una única topología T_M en \mathbb{R}^2 tal que \mathcal{B}_M es base para T_M .

11. (Topología generada por una familia). Sea X un conjunto no vacío y $S \subseteq \mathcal{P}(X)$ con $S \neq \emptyset$. Definimos la familia:

$$\mathcal{B}(\mathcal{S}) = \left\{ \bigcap_{i \in I} S_i / I \neq \emptyset, I \text{ finito, } S_i \in \mathcal{S} \ \forall i \in I \right\} \cup \{\emptyset, X\}.$$

- a) Demostrar que $\mathcal{B}(\mathcal{S})$ es base de una única topología $T(\mathcal{S})$ en X.
- b) Probar que T(S) es la topología menos fina en X tal que $S \subseteq T(S)$.
- c) Identifica la topología T(S) es estos casos:
 - c1) $X = \mathbb{R}^2$ y \mathcal{S} es la familia de las rectas afines de \mathbb{R}^2 .
 - c2) $X \neq \emptyset$ y $S = \{X\}$.
 - c3) $X \neq \emptyset$ con $\#X \geqslant 3$ y $S = \{A \subseteq X / \#A = 2\}.$
- 12. (Subbases de topología). Sea (X,T) un espacio topológico y $S \subseteq \mathcal{P}(X)$ con $S \neq \emptyset$. Se dice que S es una *subbase* de T si T(S) = T, es decir, $\mathcal{B}(S)$ es una base de T. Demostrar que la familia:

$$S = \{(-\infty, b) / b \in \mathbb{R}\} \cup \{(a, +\infty) / a \in \mathbb{R}\}$$

es una subbase de (\mathbb{R}, T_u) pero no es una base.

- 13. Sea X un conjunto infinito. ¿Es (X, T_{CF}) un espacio de Hausdorff? ¿Es (X, T_{CF}) un espacio metrizable?
- 14. Dos distancias d y d' sobre un conjunto X son equivalentes si existen constantes m, m' > 0 tales que $d' \leq m d$ y $d \leq m' d'$. Probar que, si d y d' son equivalentes, entonces $T_d = T_{d'}$.
- 15. Sea (X, d) un espacio métrico y $\{x_m\}$ una sucesión en X con $\{x_m\} \to x$ para cierto $x \in X$. Si definimos $A = \{x_m / m \in \mathbb{N}\}$, demostrar que:

$$\overline{A} = A \cup \{x\}$$

para la topología T_d .

16. En \mathbb{R} se considera la familia de subconjuntos:

$$T = \{ U \subseteq \mathbb{R} / 0 \notin U \} \cup \{ U \subseteq \mathbb{R} / (-1, 1) \subseteq U \}.$$

- a) Probar que T es una topología en \mathbb{R} . Describir los cerrados de T.
- b) Encontrar una base \mathcal{B} para T con la menor cantidad posible de abiertos.
- c) Dado $x \in \mathbb{R}$, encontrar una base de entornos de x en (\mathbb{R}, T) .
- d) Calcular la clausura, el interior y la frontera de [0,1] en (\mathbb{R},T) .
- 17. Sea X un conjunto y $A \subsetneq X$ con $A \neq \emptyset$. Probar que la familia:

$$\mathcal{B} = \{ A \cup \{x\} / x \in X \}$$

es base de una topología T en X. Calcular el interior y la clausura de A en (X,T).

- 18. Sea S un subespacio afín de \mathbb{R}^n .
 - a) Probar que S es cerrado en (\mathbb{R}^n, T_u) .
 - b) Demostrar que, si dim(S) < n, entonces el interior de S es vacío en (\mathbb{R}^n, T_n) .
- 19. En (\mathbb{R}, T_{CF}) calcular la clausura, el interior y la frontera de $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ y $\{1, 2\}$.
- 20. Calcular A' y Ais(A) en los siguientes casos:
 - a) (X, T_t) y $A \subseteq X$ con $\#A \geqslant 2$,
 - b) (X, T_D) y $A \subseteq X$,
 - c) (X, T_{CF}) y $A \subseteq X$ finito,
 - d) (\mathbb{R}, T_S) y A = (0, 1].
- 21. Se considera la recta de Sorgenfrey (\mathbb{R}, T_S).
 - a) Calcular la clausura de los conjuntos \mathbb{N} , \mathbb{Q} , $\{\frac{1}{n}/n \in \mathbb{N}\}$ y $\{\frac{-1}{n}/n \in \mathbb{N}\}$.
 - b) ¿Cuál es la frontera de los conjuntos (a, b] y [a, b)?

22. (Recta diseminada). En \mathbb{R} se considera la familia de subconjuntos:

$$T = \{ A \cup B / A \in T_u, B \subseteq \mathbb{R} - \mathbb{Q} \}.$$

- a) Demostrar que T es una topología en \mathbb{R} con $T_u < T$.
- b) Probar que los intervalos [a, b] y [c, d) con $d \in \mathbb{R} \mathbb{Q}$ son cerrados en (\mathbb{R}, T) .
- c) Calcular la clausura, el interior y la frontera en (\mathbb{R}, T) de [0, 1] y $[0, \sqrt{2})$.
- d) Calcular una base entornos de $x \in \mathbb{R}$ en (\mathbb{R}, T) .
- e) Obtener la clausura, el interior y la frontera de $\{x\}$ con $x \in \mathbb{R}$.
- 23. Tomemos el conjunto $A = [0,1) \cup (1,3) \cup \{5\}$ con la topología inducida por (\mathbb{R}, T_u) .
 - a) Estudiar si los conjuntos $\{5\}$ y (1,3) son abiertos o cerrados en $(A, T_{u|A})$.
 - b) Comprobar si [0, 1/2] es entorno de 0 en $(A, T_{u|A})$.
 - c) Calcular la clausura de [0,1) en $(A,T_{u|A})$.
- 24. Probar que en el semiplano de Moore (\mathbb{R}^2, T_M) definido en el ejercicio 10, el eje de abcisas es un subconjunto discreto.
- 25. Sea (X,T) un espacio topológico y $A \subseteq X$. Demostrar que $\partial \mathring{A} \subseteq \partial A$. Describe una situación en la que $\partial \mathring{A} = \partial A$ y otra en la que $\partial \mathring{A} \neq \partial A$.
- 26. Sea T_1 y T_2 dos topologías sobre un conjunto X con $T_1 \leq T_2$. Dado $A \subseteq X$, ¿existe alguna relación entre la clausura y el interior de A en (X, T_1) y en (X, T_2) ?
- 27. Resolver de forma razonada las siguientes cuestiones:
 - a) Probar que un espacio topológico admite un subconjunto denso no trivial si y sólo si la topología no es la discreta.
 - b) Sea X un conjunto no vacío y P una partición de X. Demostrar que existe una única topología T en X tal que P es base de T. Probar que los abiertos de T y los cerrados de T coinciden. ¿Es, en general, (X,T) un espacio de Hausdorff?
- 28. Resolver de forma razonada las siguientes cuestiones:
 - a) Dado un espacio métrico (X, d) y un punto $x \in X$, probar que:

$$\mathcal{V}_x = \{ \overline{B}(x, \varepsilon) / \varepsilon > 0 \}$$

es una base de entornos de x para la topología T_d .

b) Demostrar que si (X, d) es un espacio métrico y $A \subseteq X$, entonces la topología en A inducida por T_d coincide con la topología métrica en (A, d).