Econ 139 Lecture 8 Scribe Notes

Chloe Li, Min Jae Shin February 14, 2019

Measures of Risk Aversion

• Absolute -
$$r_A(x) = -\frac{u''(x)}{u'(x)}$$

• Relative -
$$r_R(x) = -\frac{u''(x)}{u'(x)}x = r_A(x) \times x$$

$$r_A(x) = -\frac{du'(x)}{dx} \cdot \frac{1}{u'(x)} = -\frac{u''(x)}{u'(x)}$$

Absolute risk can be also shown in terms of growth rate per marginal wealth increase as:

$$r_A(x) = -\frac{du'(x)}{dx} \cdot \frac{1}{u'(x)} = -\frac{u''(x)}{u'(x)}$$

- Since the equation is negative, this can be reworded as "Rate of Decay of Marginal wealth increase by 1%

Elasticity:
$$\frac{df(x)}{dx} \cdot \frac{x}{f(x)} = \frac{\frac{df(x)}{f(x)}}{\frac{x}{dx}}$$

- Elasticity is the loss of marginal utility per increase in percent of wealth

Absolute:

- Start with x, consider gamble paying +h w.p. π and -h w.p. $1-\pi$.
- Want to find $\pi(x, h)$ such that we are indifferent between current wealth and current wealth plus gamble.

$$u(x) = \pi(x,h) u(x+h) + (1-\pi(x,h)) u(x-h)$$

Using Taylor's Theorem to approximate:

$$\pi(x,h) \approx \frac{1}{2} + \frac{1}{4}h \ r_A(x)$$

Probability $> \frac{1}{2}$ is required for a risk-averse investor

Relative:

- Start with x, consider gamble θ_x w.p. π and $-\theta_x$ w.p. $1-\pi$.
- Want to find $\pi(x, \theta_x)$ such that we are indifferent between current wealth and current wealth plus gamble.

$$u(x) = \pi (x, \theta_x) u (x + \theta_x) + (1 - \pi (x, \theta_x)) u (x - \theta_x)$$

$$\pi(x, \theta_x) \approx \frac{1}{2} + \frac{1}{4} \theta_x r_A(x) \approx \frac{1}{2} + \frac{1}{4} \theta_x \cdot r_R(x)$$

• Consider utility function:

$$u(x) = -\frac{1}{v}e^{-vx}$$

 $r_A(x) = -\frac{-ve^{-vx}}{e^{-vx}} = v$

This is constant absolute risk aversion (CARA)

$$\pi(x,h) \approx \frac{1}{2} + \frac{1}{4}hv$$

• Consider utility function:

$$u(x) = \frac{x^{1-\gamma}}{1-\gamma} \quad if \quad \gamma > 0, \ \gamma \neq 1$$
$$ln(x), \ if \ \gamma = 1$$
$$r_R(x) = -\frac{-\gamma x^{-\gamma-1}}{x^{-\gamma}} \cdot x = \gamma$$

Plug in
$$\pi(x, \theta_x) \approx \frac{1}{2} + \frac{1}{4} \theta_x \gamma$$
, $r_A(x) = \frac{\gamma}{x}$

Risk Premium

Suppose investor starts with wealth w and has the opportunity to invest in an asset with pay off X and E[X].

$$u(w + E[X]) \ge E[u[w+X]]$$

- Follows by Jensen's inequality

Certainty Equivalent (CE)

The maximum amount an investor is willing to give up in exchange for an asset.

CE satisfies

$$u(w + CE[X]) = E[u[w + X]]$$

So, $CE[X] \le E[X]$ where $CE[X] = E[X]$ if the investor is risk neutral

Risk Premium (RP)

The difference between E[X] and CE[X]. In other words, the maximum amount to pay to make the asset risk free (like insurance).

$$RP[X] = E[X] - CE[X]$$

Example:

Consider:

$$u(w) = \frac{w^{1-\gamma}}{1-\gamma} \quad \text{if } \gamma > 0, \ \gamma \neq 1$$
$$ln(w) \text{ if } \gamma = 1$$

Asset X has payoff

	Payoff	Probability of State
State 1	50000	0.5
State 2	100000	0.5

$$\rightarrow$$
 E(X) = 75,000
→ Assume 0 initial wealth

$$u(w + CE(X)) = E[u(w + X)]$$

When w = 0: u(CE(X)) = E[u(X)]

γ	0	1	2	5	10
CE	75000	70711	66667	58566	53991

Now suppose w = 100000. For $\gamma = 5$, CE = 66532 (which is greater than 58566 from table above, because initial wealth is higher now)

X	π_A	π_B	$F_{\pi A}$	$F_{\pi B}$
10	0.4	0.4	0.4	0.4
100	0.6	0.4	1.0	0.8
1000	0	0.2	1.0	1.0

^{*}Recall in probability, CDF (Cumulative Distribution Function) is given by $F(X) = P(X \le x)$ where $F : \mathbb{R} \subseteq [0, 1]$

We can say that an asset
$$X_{\pi B}$$
 First Order Stochastically Dominates (FSD) asset $X_{\pi A}$ if $F_{\pi B}(X) \leq F_{\pi A}(X)$

Formal definition:

- Preamble: let $F_{\pi A}$ and $F_{\pi B}$ be the CDFs for random payoffs X, with probability densities (PD) π_A and π_B respectively.
- <u>Definition and Theorem:</u> given preamble, we say that $X_{\pi B}$ FSD $X_{\pi A}$ iff

$$F_{\pi B}(X) \le F_{\pi A}(X)$$

$$E_{\pi B}[u(X)] \ge E_{\pi A}[u(X)]$$

Example:

X	π_A	π_B	$F_{\pi A}$	$F_{\pi B}$	$\int [F_{\pi B}(t) - F_{\pi A}(t)] dx$
1	0.33	0	0.33	0	0
4	0	0.25	0.33	0.25	-0.99
5	0	0.5	0.33	0.75	-1.07
6	0.33	0	0.66	0.75	-0.65
8	0.34	0	1.0	0.75	-0.47
9	0	0.25	1.0	1.0	-0.72

We can say that an asset $X_{\pi B}$ Second Order Stochastically Dominates (SSD) asset $X_{\pi A}$ if

$$\int [F_{\pi B}(X) - F_{\pi A}(X)]dt \le 0$$
 over an interval $[-\infty, t]$ for any t

