APU设计构想书

- 系统架构
- 功能介绍
- 关联部件
- 硬件设计
- 软件设计
- 机构设计

项目号: VAD01

汽车智能化

姜泉 Spring Jiang WeChat:ruquan887 M:13216680533

1.1APU系统组成

1.2VAD01系统框架

1.3ECU规格

No.	ltem	Value
1	额定电压Rated Voltage(V)	12V
2	工作电压范围Operation Voltage Range(V)	9∼16V
3	工作温度范围Operation Temperature Range(℃)	-40∼+85°C
4	储存温度范围Storage Temperature Range(℃)	-40∼+95℃
5	CAN速率H-CAN	500Kbps

2.1功能介绍

- □ APU包含两种工作模式:
- ◆ 自动驾驶
- ◆ 非自动驾驶

通过APU按键来激活。

- □ Function功能:
- ◆ VAD.1监控影像
- ◆ VAD.2交通标示识别
- ◆ VAD.3障碍物检测
- ◆ VAD.4前方碰撞预警
- ◆ VAD.5自动紧急刹车
- ◆ VAD.6电子驻车

通过基于控制芯片开发控制软件结合线控方案实现在以下场景:厂区内部,封闭道路,无高大建筑物遮挡,实现下列具体功能。

监控影像

基于单摄像 头或多向摄 像头的监控 方案,环视 影像或仅前 视或后视

交通标示识别

基于车速标识的识别方案,最高或最低车速

障碍物检测

利用图像以 及雷达识别 算法,识别 车辆行进方 向中、短距 离的障碍物

前方碰撞预警

行车前进方 向检测到障 碍物后,对 司乘人员发 出视觉或声 觉信号警告

自动紧急制动

障碍物距离 行人小于安 全距离时, 车辆自行制 动保证安全

电子驻车

告别传统手 刹,以简便 线控方式实 现驻车制动

2.2功能介绍

□ Ability车辆能力解析(T1级评估):

		Item	Description	Pre-design	Re.
认知与	1	RZ01交通标志	评估标志>5种	摄像头,识别限速(最高/ 最低)算法	
交通法 规遵守	2	RZ02交通标线	评估标线>5种	摄像头,算法	
能力	3	RZ03交通信号灯	红绿2种通行测试	摄像头,算法	
应急处	4	HMI01紧急情况处置	故障时,提醒驾驶员、减速、后车监视、 靠边停车、开启危险报警闪光灯	HMI、车辆纵向控制、后车 雷达、车辆横向控制、 BCM	
置与人 工介入	5	HMI02人工介入后的 可操作性	自动驾驶状态下,人工接管车辆并实现 控制操纵,时间长于1分钟	方向盘人工干预检测、车 辆控制	
能力	6	HMI03紧急停车	自动驾驶状态下,车速不超过40km/h时,评估人员下发指令到测试员实现停车,时间不超过2秒	方向盘人工干预检测,制 动效能,系统的响应	
	7	ZH01起步	系统或人工进行车辆自检, D档, 开启转向灯, 无驾驶员介入时, 起步、无后溜	换档器、BCM、车辆纵向 控制	
	8	ZH02停车	遇到前车拥堵缓行停车时,自动降低车 速并停车,但不驻车	前车雷达、行车制动	
综合驾	9	ZH03跟车	根据所在车道、路况和前车车速,合理 加减速,速度变化及时、平顺	前车雷达、摄像头、算法、 车辆纵向控制	
驶能力	10	ZH04变更车道	变更车道前,开启转向灯,确认后方交 通安全,变更车道完成后关闭转向灯。	BCM、后车雷达、车辆横 向控制	
	11	ZH05直行通过路口	依据路口情况,减速或停车,正确安全 通过路口。	车辆纵向控制、摄像头、 算法	
	12	ZH06通过人行横道线	减速,依据两侧交通情况,正确安全通过,遇行人停车让行。	车辆纵向控制、摄像头、 行人识别算法	

3.1关联部件功能需求

3.1大	、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	而水		
No.	product	description	components (supplier)	number
1	感知模块			
1.1	GPS和IMU	进行GPS定位和惯性定位,通过串口连接	Novatel SPAN-IGM-A1(北斗星通)	
1.2	激光雷达	进行测距和物体识别,通过以太网连接	Velodyne HDL-64E S3(科艺仪器)	
1.3	摄像头	用于视觉感知,通过USB连接	Leopard Imaging LI-USB30-AR023ZWDR	
1.4	毫米波雷达	用于前方障碍物探测,通过CAN卡连接	Continental ARS408-21(今创奇科技)	
1.5	超声波雷达	用于车辆周边障碍物探测	BOSCH Ultrasonic sensors	
2	认知模块			
2.1	APU	车辆小脑,自动驾驶时,进行图像处理、图像数据和点云数据运算处理,数据融合,根据车道规划和车辆当前状态,输出转向、加速和制动控制信号;非自动驾驶时,提供行车引导、提示、预警。	Neousys Nuvo-6108GC(宸曜科技) Drive PX2(英伟达)	
2.2	VCU	车辆大脑,驾驶模式管理,其中自动驾驶时,交出部分管理如下:制动管理、档位管理、扭矩解析与驱动、车辆横向控制等		
3	行为模块			
3.1	IPC	接收APU发出的自动驾驶、行车引导、提示、预警信息并以视频、图片和提示音的形式发送给驾驶员		
3.2	ABS or ESC(ESP)	ABS或者ESC要发送轮速脉冲信号和轮速信号等信息给APU,用于车辆当前状态判定、行驶轨迹计算、车道规划		
3.3	ЕРВ	手自一体驻车,其中停车后自动驻车,检测到左转向灯并且有油门信号时,自动释放,有提示;具备低速时的动态驻车,即低速时制动		
3.4	iBooster	应用于行车制动时快速建压		
3.5	EPS	通过相关握手协议实现APU对方向盘的控制,并实时发出当前方向盘转角值,该转角值也可通过其他模块发出,如SAS方向盘角度传感器		
3.6	MCU	提供车辆纵向方向信号、车辆纵向驱动控制		
3.7	BCM	提供档位信号、转向灯信号、车外温度信号等		
3.8	НМІ	实现人与机器的信息交换,包括地图、娱乐信息等		
4	支撑模块			
4.1	CAN通讯卡	与汽车进行通讯,控制汽车的加速、制动、档位、方向等信号,内接在APU里	ESD CAN-PCIe/402-B4	

3.2关联部件CAN总线架构

3.3关联部件CAN总线TxRxMatrix

Tx\Rx	MessageList	APU	EPS	EPB	MCU	BCM	Ξ Ξ Ξ
APU	APU工作状态	/	R	R	R	R	R
	转向(角度)控制指令	/	R				
	加速度信号(集成IMU)	/					
	驻车指令	/		R			
	EPB刹车指令	/		R			
EPS	EPS工作状态	R	/				R
	驾驶员干预状态	R	/				
	转向角度信号(集成SAS)	R	/				
EPB	EPB工作状态	R		/	R	R	R
	EPB开关状态	R		/			
MCU	油门踏板信号	R		R	/		R
	挡位信号	R			/	R	R
	制动踏板信号	R		R	/		
	上电信号	R					
	电机当前转速	R			/		R
	电机当前转矩	R			/		
	电机电流	R			/		R
	电机电压	R			/		R
BCM	车外环境温度	R				/	R
	灯光控制信号	R				/	R
НМІ	人工设定指令	R					/
	地图路径信号	R					/

4.1APU主机接口定义

4.1APU主机接口定义

Connector	PIN No.	Definition	PIN No.	Definition	PIN No.	Definition
	1		2		3	
۸	4		5		6	
А	7		8		9	
	10		11		12	
	1		2		3	
В	4		5		6	
	7		8		9	
	1		2		3	
	4		5		6	
С	7		8		9	
	10		11		12	
	13		14			

5.1APU四种工作状态

5.1APU工作状态

No.	State	Description
1	Off	当ING Off时,APA处于该状态
2	Disable	当ING On时,系统初始化OK,但车辆处于"运行设计域"之外,或受人工干涉等,此时车辆APU系统处于该状态。同一上电周期里可以恢复。
3	Failed	当系统有故障,包括硬件故障、CAN通信故障等,导致APU无法工作时。同一上电周期里恢复是不可能的。
4	Enable	在某个状态转换为"Enable"之后,APU系统处于待命状态。
5	Active	当APU系统在Enable状态下,用户按下APU Switch时,APU处于该状态。APU系统在此状态进入自动驾驶模式。

6.1APU外形示意图

汽车智能化规划

功能	功能模块全称
PEPS	Passive Entry & Passive Start一键启动
VCS	Vehicular Communication Systems车联网系统
3D AVM	3D Around View Monitor 全景式监控影像系统
HHC	Hill-start hold control坡道起步辅助控制系统
ACC	Adaptive Cruise Control自适应巡航
IHC	Intelligent High Beam Control智能远光
TSR	Traffic Sign Recognition交通标识
LDW	Lane Departure Warning车道偏离预警
LKA	Lane Keeping Assist车道保持
PDS	Pedestrian detection行人检测
FCW	Forward Collision Warning 前方碰撞预警
ALC	Auto Lane Change自动变道
BSD	Blind Spot Detection盲点检测
TLR	Traffic Light Recognition交通信号灯识别系统
DFM	Driver Fatigue Monitor System疲劳驾驶预警系统
NVS	Night Vision System夜视系统
TMC	Traffic Message Channel实时交通系统
AR NAVI	Augmented Reality Navigation增强现实导航
AEB	Autonomous Emergency Braking自动紧急制动
S-APA	Semi-automatic Parking Assistant半自动泊车
EPB	Electrical Parking Brake电子驻车
DOW	Door Open Warning开门警示

一>法规标准:

- ▶ 《北京市自动驾驶车辆道路测试能力评估内容与方法(试行)》
- 《北京市自动驾驶车辆封闭测试场地技术要求(试行)》
- ▶ 北京市关于加快推进自动驾驶车辆道路测试有关工作的指导意见(试行)
- 北京市自动驾驶车辆道路测试管理实施细则(试行)
- ▶ GB T 26773-2011 智能运输系统 车道偏离报警系统(LDW) 性能要求与检测方法
- ISO 11898 Road vehicles Controller area network(CAN)
- ➢ ISO 14229 Road Vehicles Unified Diagnostic Services(UDS)
- > ISO 16787 Intelligent transport systems Assisted Parking System(APS) Performance requirements and test procedures
- ➤ ISO 15623 Intelligent transport systems Forward vehicle collision warning systems(FCW) Performance requirements and test procedures
- ➤ ISO 17361 Intelligent transport systems —Lane departure warning systems(LDW) Performance requirements and test procedures
- ➤ ISO 26262 Road vehicles Functional safety
- > SAE J3016 Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle Automated Driving Systems

->参考指南:

- ▶ ADS《自动驾驶系统 2.0:安全愿景》(Automated Driving Systems 2.0: A Vision for Safety)
- ▶ 《智能网联汽车技术的发展现状及趋势》——2017年第一期《汽车安全与节能学报》

