

Ť

Europäisches Patentamt

European **Patent Office** Office européen des brevets

10,650,452

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application conformes à la version described on the following page, as originally filed.

Les documents fixés à cette attestation sont initialement déposée de la demande de brevet européen spécifiée à la page sulvante.

Patentanmeldung Nr.

Patent application No. Demande de brevet n°

02425540.8

Der Präsident des Europäischen Patentamts: Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets p.o.

R C van Dijk

THIS PAGE BLANK (USPTO)

Anmeldung Nr:

Application no.:

02425540.8

Demande no:

Anmeldetag:

Date of filing: 30.08.02

Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

STMicroelectronics S.r.1. Via C. Olivetti, 2 20041 Agrate Brianza (Milano) ITALIE Nokia Corporation Keilalahdentie 4 00045 Espoo FINLANDE

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention: (Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung. If no title is shown please refer to the description.
Si aucun titre n'est indiqué se referer à la description.)

In Anspruch genommene Prioriät(en) / Priority(ies) claimed /Priorité(s) revendiquée(s)
Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/Classification internationale des brevets:

G01P15/00

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

THIS PAGE BLANK (USPTO)

SENSORE INERZIALE CON SOGLIA DI ROTTURA

....)

La presente invenzione si riferisce ad un sensore inerziale con soglia di rottura.

5 le moderne di Come è noto, tecniche dei semiconduttori microlavorazione possono essere vantaggiosamente sfruttate per realizzare vari sensori estremamente sensibili e precisi, oltre che di ingombro ridotto. I cosiddetti sensori micro-elettro-meccanici, 10 o sensori MEMS (dall'inglese "Micro-Electro-Mechanical System"), sono sensori integrabili in una piastrina semiconduttrice e sono adatti а rilevare varie grandezze. In particolare, sono noti accelerometri MEMS sbilanciamento capacitivo sia lineari, sia 15 rotazionali. In sintesi, tali accelerometri normalmente provvisti di un corpo fisso e di una massa mobile, entrambi conduttivi, accoppiati capacitivamente. Inoltre, la capacità presente fra il corpo fisso e la massa mobile è variabile e il suo 20 valore dipende dalla posizione relativa della massa mobile e del corpo fisso. Quando l'accelerometro è sottoposto a una sollecitazione, la massa mobile si sposta rispetto al corpo fisso e causa una variazione della capacità di accoppiamento, che viene rilevata 25 mediante un apposito circuito di lettura.

Come accennato in precedenza, gli accelerometri MEMS sono estremamente sensibili e precisi; tuttavia, non sono adatti a essere utilizzati in molte essi applicazioni, principalmente perché sono complessi da realizzare e il loro costo è molto elevato. Da un lato, infatti, i processi di fabbricazione richiedono l'esecuzione di numerose fasi non standard l'impiego di substrati non standard (ad esempio, substrati SOI); dall'altro lato, occorre normalmente realizzare circuiti di lettura retroazionati basati su amplificatori di carica differenziali, il cui progetto comporta spesso delle difficoltà.

5

10

Inoltre, in molti casi non è richiesta la precisioni dei sensori MEMS capacitivi e, anzi, non è 15 neppure necessario disporre di una misura istantanea valore di accelerazione. Al contrario, semplicemente verificare se un dispositivo incorporante l'accelerometro ha subito accelerazioni superiori a una soglia prefissata, normalmente a causa 20 di un urto. Ad esempio, la maggior parte dei dispositivi elettronici di uso comune, quali i telefoni cellulari, sono protetti da una garanzia, che decade se eventuali malfunzionamenti sono dovuti non a difetti di fabbricazione, ma a un urto conseguente a una caduta o 25 comunque a un uso non conforme alle istruzioni. A meno

riscontrino danni visibili, che non si come sull'involucro o la rottura di alcune parti, praticamente impossibile dimostrare che il dispositivo ha subito un trauma che invalida la garanzia. D'altro canto, i dispositivi portatili, come appunto i telefoni cellulari, sono particolarmente esposti a cadute e consequenti rotture, proprio per come vengono utilizzati.

Eventi di questo tipo potrebbero essere facilmente 10 rilevati da un sensore inerziale, che sia in grado di registrare accelerazioni superiori a una prefissata soglia. Tuttavia, l'impiego di accelerometri MEMS di capacitivo tipo in questi casi comporterebbe costi eccessivi. evidentemente Sarebbe 15 desiderabile disporre di sensori realizzabili tecniche di microlavorazione dei semiconduttori, quindi aventi ingombro paragonabile a quello dei sensori MEMS capacitivi, ma più semplici per quanto riguarda sia la struttura del sensore, sia il circuito di lettura. 20 Inoltre, anche i processi di fabbricazione dovrebbero essere nell'insieme semplici e poco costosi.

Scopo della presente invenzione è realizzare un sensore inerziale con soglia di rottura, che permetta di superare i problemi descritti.

25 Secondo la presente invenzione viene realizzato un

sensore inerziale con soglia di rottura, come definito nella rivendicazione 1.

Per una migliore comprensione dell'invenzione, ne vengono ora descritte alcune forme di realizzazione, a puro titolo di esempio non limitativo e con riferimento ai disegni allegati, nei quali:

5

- le figure 1 e 2 sono sezioni trasversali attraverso una fetta semiconduttrice in successive fasi di fabbricazione;
- la figura 3 è una vista in pianta dall'alto della fetta di figura 2;
 - la figura 4 mostra un particolare ingrandito della figura 3;
- la figura 5 è una sezione trasversale della
 15 fetta di figura 3 in una successiva fase di
 fabbricazione;
 - la figura 6 è una vista in pianta dall'alto della fetta di figura 5;
- le figure 7 e 8 sono sezioni trasversali della 20 fetta di figura 6 in una successiva fase di fabbricazione, prese lungo i piani di traccia VII-VII e, rispettivamente, VIII-VIII di figura 6;
 - la figura 9 è una vista in pianta dall'alto della fetta di figura 7, incorporante un sensore inerziale realizzato in una prima forma di attuazione

della presente invenzione;

20

- le figure 10 e 11 sono sezioni trasversali della fetta di figura 9, prese lungo i piani di traccia X-X e, rispettivamente, XI-XI di figura 9;
- 5 la figure 12 e 13 sono sezioni trasversali attraverso una fetta composita e, rispettivamente, un "die" realizzati a partire dalla fetta di figura 9;
- la figura 14 è una vista schematica di tre quarti dall'alto di un dispositivo incorporante il
 "die" di figura 13;
 - la figura 15 mostra schematicamente un sensore inerziale del tipo delle figure 9-13 in configurazione operativa;
- la figura 16 è un particolare di un sensore 15 inerziale realizzato secondo una variante della prima forma di attuazione della presente invenzione;
 - la figura 17 è una vista in pianta dall'alto di un sensore inerziale realizzato secondo un'ulteriore variante della prima forma di attuazione della presente invenzione;
 - la figura 18 è una sezione trasversale del sensore di figura 17;
 - la figura 19 è una vista in pianta dall'alto di un sensore inerziale realizzato in una seconda forma di attuazione della presente invenzione;

- la figura 20 mostra un particolare ingrandito della figura 19;
- la figura 21 è una vista in pianta dall'alto di un sensore inerziale realizzato in una terza forma di attuazione della presente invenzione;

- la figura 22 mostra un particolare ingrandito della figura 21;
- la figura 23 mostra schematicamente due sensori inerziali del tipo di figura 21 in configurazione
 10 operativa;
 - la figura 24 è una sezione trasversale attraverso una fetta semiconduttrice in una fase iniziale di fabbricazione di un sensore inerziale;
- la figura 25 è una vista in pianta dall'alto della fetta di figura 24;
 - la figura 26 mostra la fetta di figura 24 in una successiva fase di fabbricazione;
- la figura 27 è una vista in pianta dall'alto della fetta di figura 26 in una successiva fase di 20 fabbricazione, in cui è realizzato un sensore inerziale secondo una quarta forma di attuazione del presente procedimento;
- la figura 28 è una sezione trasversale attraverso la fetta di figura 27, presa secondo il piano di traccia XXVIII-XXVIII di figura 27;

- la figura 29 è una vista in pianta particolare di un sensore inerziale realizzato secondo una quinta forma di attuazione della presente invenzione
- la figura 30 è una vista laterale del 5 particolare di figura 29; e
 - la figura 31 è una vista laterale del figura 29, realizzato secondo particolare di una variante della quinta forma di attuazione della presente invenzione.
- Con riferimento alle figure 1-13, una fetta 1 di 10 materiale semiconduttore, ad esempio silicio monocristallino, comprende un substrato 2, sul quale viene cresciuto termicamente un sottile strato ossido di pad 3, ad esempio spesso 2,5 µm. Uno strato conduttivo 5 di polisilicio, avente ad esempio spessore 15 compreso fra 400 e 800 nm e drogaggio pari a 1019 atomi/cm3, viene poi deposto al di sopra dello strato di ossido di pad 3 e viene definito mediante un processo fotolitografico. Vengono così realizzati due campioni 6 20 aventi rispettivi piedi Τ, 6a, reciprocamente allineati ed estendentisi l'uno verso l'altro, rispettivi bracci 6b fra loro paralleli (figure 2-4). I piedi 6a e i bracci 6b di ciascun campione 6 sono rivolti lungo direzioni individuate da un primo asse X 25 e, rispettivamente, da un secondo asse Y ortogonali (un

terzo asse Z, ortogonale al primo e al secondo asse X, Y, è mostrato in figura 2). Inoltre, a rispettive estremità dei bracci 6b di entrambi i campioni 6 sono realizzate piazzole di ancoraggio 8, di 5 sostanzialmente rettangolare е aventi larghezza maggiore rispetto ai bracci 6b stessi. Come mostrato in figura 4, ciascuno dei campioni 6 presenta una prima e una seconda regione di indebolimento 9, 10. particolare, in entrambi i campioni 6, la prima e la 10 seconda regione di indebolimento 9, 10 sono realizzate come restringimenti del piede 6a e, rispettivamente, di uno dei bracci 6b; inoltre, le regioni di indebolimento 9, 10 sono definite da intagli 11 con profilo circolare o poligonale, praticati in corrispondenza di una zona di giunzione 6c fra il piede 6a e i bracci 6b e 15 attraversanti il campione 6 in direzione parallela al terzo asse Z. Lo spessore dello strato conduttivo 5 di polisilicio, le dimensioni dei piedi 6a e dei bracci 6b dei campioni 6 e la conformazione delle regioni 20 indebolimento 9, 10 determinano la resistenza meccanica alla rottura dei campioni 6 stessi. In particolare, intervenendo sulla forma e sulle dimensioni degli intagli 11 definenti la prima e la seconda regione di indebolimento 9, 10, è possibile ottenere prefissate 25 soglie di rottura dei campioni 6 lungo il primo, il

secondo e il terzo asse X, Y, Z; preferibilmente, tutte le soglie di rottura meccanica sono sostanzialmente uguali.

5

In seguito, uno strato sacrificale 12 di ossido di silicio viene deposto in modo da ricoprire lo strato di ossido di pad 3 e i campioni 6; in pratica, lo strato di ossido di pad 3 e lo strato sacrificale 12 formano un'unica regione sacrificale in cui sono annegati i campioni 6. Lo strato sacrificale 12 viene poi definito mediante un processo fotolitografico comprendente due 10 fasi di mascheratura. Durante una prima fase, nello strato sacrificale 12 vengono realizzate prime aperture 14 scoprenti rispettive estremità dei piedi campioni 6, come illustrato in figura 5. In una seconda fase del processo fotolitografico (figura 6), vengono 15 selettivamente attaccati sia lo strato sacrificale 12, sia lo strato di ossido di pad 3, in modo da realizzare seconde aperture 15 scoprenti porzioni 'del substrato 2.

Successivamente, sopra la fetta 1 viene cresciuto uno strato epitassiale 16 conduttivo, avente spessore, 20 ad esempio, di 15 μm e drogaggio pari a 10^{18} atomi/cm³. strato epitassiale 16 dettaglio, 10 In interamente lo strato sacrificale 12 e, attraverso le prime e le seconde aperture 14, 15, si estende a raggiungere, rispettivamente, 25 profondità fino

campioni 6 e il substrato 2 (figure 7 e 8).

Lo strato epitassiale 16 viene poi selettivamente preferibilmente attaccato, mediante attacco RIE ("Reactive Ion Etching"), e lo strato sacrificale 12 e lo strato di ossido di pad 3 vengono rimossi. Più in 5 dettaglio, durante la fase di attacco dello strato epitassiale 16, vengono formati una massa mobile 18; ancoraggi 19, realizzati sopra alle porzioni substrato 2 precedentemente scoperte dalle seconde 10 aperture 15; una pluralità di molle 20, colleganti la massa mobile 18 agli ancoraggi 19; e una struttura di supporto 21 ad anello, che circonda la massa mobile 18, i campioni 6, le molle 20 e i relativi ancoraggi 19 (si veda la figura 9, in cui lo strato sacrificale 12 e lo 15 strato di ossido di pad 3 sono già stati asportati).

La massa mobile 18 è collegata al substrato 2 mediante le molle 20, che sono a loro volta vincolate agli ancoraggi 19 (figura 11). Le molle 20, di per sé note, sono conformate in modo da permettere 20 oscillazioni della massa mobile 18 rispetto al lungo ciascuno dei tre assi X, substrato 2 impedendo però rotazioni. La massa mobile 18 è inoltre vincolata al substrato 2 mediante i campioni 6. Più in dettaglio, la massa mobile 18 presenta, in una porzione 25 mediana, una coppia di blocchi di ancoraggio 22,

in direzioni proiettantisi verso l'esterno opposte lungo il secondo asse Y. I blocchi di ancoraggio 22 collegati all'estremità del piede 6a di un sono rispettivo dei campioni 6, come mostrato in figura 10. A loro volta, i campioni 6 sono ancorati al substrato 2 5 tramite le piazzole di ancoraggio 8. Controllando la durata dell'attacco dello strato sacrificale 12 e dello strato di ossido di pad 3, l'ossido di silicio viene infatti rimosso solo parzialmente al di sotto delle piazzole di ancoraggio 8, che sono più larghe rispetto 10 ai piedi 6a e ai bracci 6b dei campioni 6; in questo modo, porzioni residue 3' dello strato di ossido di pad 3, che non vengono attaccate, fissano le piazzole di ancoraggio 8 al substrato 2, fungendo da elementi di 15 incollaggio.

Lo strato sacrificale 12 e le restanti porzioni pad 3 vengono invece ossido di dello strato di completamente asportate e, quindi, la massa mobile 18 e i campioni 6 vengono liberati. In pratica, la massa mobile 18 è sospesa a distanza sul substrato 2 e può 20 oscillare attorno a una posizione di riposo, in accordo con i gradi di libertà concessi dalle molle 20 particolare, può traslare lungo gli assi X, Y e Z). Anche i campioni 6 sono elementi elastici che collegano la massa mobile 18 al substrato 2, analogamente alle 25

molle 20. In particolare, i campioni sono conformati in modo da essere sottoposti a sforzo, quando la massa mobile 18 si trova al di fuori di una posizione relativa di riposo rispetto al substrato 2; i campioni 5 sono però molto sottili е presentano preferenziali di rottura in corrispondenza regioni di indebolimento 9, 10. Per questa ragione, la resistenza meccanica alla rottura è inferiore a quella delle molle 20 e si rompono in modo controllato quando sono sottoposti a uno sforzo di 10 prefissata intensità.

In pratica, a questo punto del procedimento, la massa mobile 18, il substrato 2, le molle 20 con gli ancoraggi 19 e i campioni 6 formano un sensore inerziale 24, il cui funzionamento verrà descritto in dettaglio più avanti.

15

Una struttura di incapsulamento 25 del sensore inerziale 24 viene poi applicata al di sopra della fetta 1, formando una fetta composita 26 (figura 12). 20 In particolare, la struttura di incapsulamento 25 è un'ulteriore fetta semiconduttrice, nella quale è stato preventivamente ricavato un recesso 27, in una regione destinata a essere sovrapposta alla massa mobile 18. La struttura di incapsulamento 25 viene accoppiata alla 25 struttura di supporto 21 ad anello, mediante

l'interposizione di uno strato di saldatura 29. Quindi, la fetta composta 26 viene tagliata in una pluralità di "dice" 30, ciascuno comprendente un sensore inerziale 24 e un rispettivo cappuccio protettivo 31, formato dal frazionamento della struttura di incapsulamento 25 (figura 13).

5

Il "die" 30 viene infine montato su un dispositivo 32, ad esempio un telefono cellulare; preferibilmente, il dispositivo 32 è provvisto di un involucro all'interno del quale il "die" 30 viene fissato, come 10 mostrato in figura 14. Inoltre (figura 15), il sensore inerziale 24 è collegato a terminali di un circuito di test 35, che misura il valore di resistenza elettrica fra tali terminali. Più in dettaglio, le piazzole 8 dei 15 bracci 6b in cui sono formate le seconde regioni di indebolimento 10 sono collegate ciascuna un rispettivo terminale del circuito di test 35.

In condizioni normali, ossia quando il sensore inerziale 24 è integro, i campioni 6 e la massa mobile 20 18 formano un percorso conduttivo che permette il passaggio di corrente fra una coppia qualsiasi di piazzole di ancoraggio 8. In pratica, il circuito di test 35 rileva bassi valori di resistenza elettrica fra le piazzole di ancoraggio 8 a cui è collegato. Durante 25 il normale utilizzo, il dispositivo 32 subisce modeste

sollecitazioni, che causano lievi oscillazioni della massa mobile 18 attorno alla posizione di risposo, senza compromettere l'integrità del sensore inerziale 24.

5 Quando il dispositivo 32 subisce un urto, la massa mobile 18 del sensore inerziale 24 viene bruscamente accelerata e sottopone a uno sforzo i campioni 6 e le molle 20. A seconda dell'intensità della sollecitazione trasmessa al sensore inerziale 24, tale sforzo può superare una delle soglie di rottura meccanica dei 10 campioni 6, che quindi si spezzano. In particolare, la rottura si verifica in corrispondenza di una delle regioni di indebolimento 9, 10, che hanno la resistenza meccanica minima. In entrambi i casi, viene interrotto 15 il percorso conduttivo fra le due piazzole 8 collegate al circuito di test 35, che quindi rileva un valore di resistenza elettrica elevato fra i propri terminali, permettendo così di riconoscere il verificarsi eventi in grado di danneggiare il dispositivo 32.

Secondo una variante della forma di realizzazione descritta, a cui si riferisce la figura 16, vengono realizzati campioni 37 a T presentanti un'unica regione di indebolimento 38; in particolare, la regione di indebolimento 38 è un restringimento definito da una coppia di intagli 39 obliqui rispetto a un piede 37a e

a bracci 37b dei campioni 37.

5

Secondo un'ulteriore variante, mostrata nelle figure 17 e 18, i due campioni 6 a T sono collocati in un'intercapedine 36 fra il substrato 2 e la massa mobile 18 e hanno le estremità dei rispettivi piedi 6a a reciproco contatto. Inoltre, entrambi i campioni 6 sono fissati a un unico blocco di ancoraggio 22' disposto centralmente rispetto alla massa mobile 18 stessa.

10 sopra discusso, è chiaro che Da quanto l'invenzione presenta diversi vantaggi. In primo luogo, il sensore inerziale descritto ha ingombro contenuto. Generalmente, infatti, l'ingombro maggiore di sensore inerziale è dovuto alla massa mobile, che deve assicurare la precisione e la sensibilità richieste. In 15 questo caso, è sufficiente che, a fronte di prefissata accelerazione, la massa mobile causi rottura delle regioni di indebolimento dei campioni, che hanno resistenza meccanica molto bassa; è quindi 20 evidente che anche la massa mobile può essere dimensioni ridotte. Inoltre, la soglia di rottura dei campioni può essere agevolmente controllata tramite il dimensionamento delle regioni di indebolimento. Rispetto ai sensori inerziali di tipo capacitivo, poi, 25 è richiesto un numero di elettrodi molto più basso e

quindi l'ingombro può essere ulteriormente ridotto.

Il sensore inerziale secondo l'invenzione può poi essere fabbricato con un procedimento semplice, resa elevata e quindi a bassissimo costo. Infatti, vengono impiegate fasi standard della microelettronica, quali fasi di deposizione di strati di materiale sia isolante, sia conduttivo, processi fotolitografici, una fase di crescita epitassiale e fasi standard di attacco silicio epitassiale e degli strati isolanti; del vantaggiosamente, viene eseguita una sola fase di ossidazione termica e quindi la fetta alloggiante il sensore viene sottoposta a modeste sollecitazioni durante la fabbricazione. Inoltre, il sensore inerziale viene realizzato a partire da un substrato standard, poco costoso.

10

15

20

25

Di conseguenza, sensori del tipo descritto sono particolarmente adatti a essere impiegati nei casi in cui, più della precisione, sono richiesti ingombro ridotto e costo contenuto, ad esempio, quando necessario registrare l'intervento di sollecitazioni dannose per un dispositivo, ma è superfluo fornire misure puntuali delle accelerazioni. In particolare, essi possono essere vantaggiosamente impiegati per verificare la validità della garanzia nel caso di dispositivi elettronici di uso comune, quali, ad

esempio, i telefoni cellulari.

L'utilizzo di un unico punto di ancoraggio fra i campioni e la massa mobile, come illustrato nella seconda variante di figura 17 e 18, ha un ulteriore vantaggio rispetto a quelli già evidenziati, permette di rilasciare più efficacemente gli stress dovuti a dilatazione dei materiali. In particolare, può accadere che le parti di polisilicio anche parzialmente annegate nell'ossido di silicio (provini e porzioni dello strato epitassiale) siano sottoposte a 10 compressione, in quanto, durante la fabbricazione, sia il polisilicio, sia l'ossido tendono a dilatarsi in direzioni opposte. Quando l'ossido viene rimosso, viene eliminata l'azione di compressione sul polisilicio, che 15 quindi può espandersi. Chiaramente, la dilatazione maggiore in termini assoluti è quella della massa mobile, che ha dimensioni maggiori. L'impiego di un unico punto di ancoraggio al posto di due ancoraggi distanziati permette di rilasciare in modo più efficace gli stress dovuti a tale espansione, in quanto la massa 20 mobile può dilatarsi liberamente, senza modificare la situazione di carico dei campioni.

I sensori inerziali illustrati sono ulteriormente vantaggiosi perché rispondono in modo sostanzialmente isotropo alle sollecitazioni meccaniche. In pratica,

quindi un solo sensore inerziale è sufficiente a rilevare forze agenti lungo qualsiasi direzione.

Una seconda forma di realizzazione dell'invenzione è illustrata nelle figure 18 e 19, in cui parti uguali a quelle già mostrate sono indicate con gli stessi 5 di riferimento. Secondo tale forma direalizzazione, un sensore inerziale 40 è dotato di campioni 41 conformati a L; come nel caso precedente, i campioni 41 vengono realizzati sagomando uno strato conduttivo di polisilicio deposto al di sopra di uno 10 strato di ossido di pad (qui non mostrato), che è stato a sua volta cresciuto su un substrato 42 di una fetta semiconduttrice 43. Mediante fasi di processo analoghe quelle già descritte, vengono successivamente realizzati la massa mobile 18, gli ancoraggi 19 e le 15 molle 20.

In dettaglio, i campioni 41 hanno prime estremità collegate a rispettivi blocchi di ancoraggio 22 della massa mobile 18; e seconde estremità terminanti con 20 . rispettive piazzole di ancoraggio 41, fissate al substrato 2 come spiegato in precedenza. Inoltre, intagli 42 praticati in corrispondenza di rispettivi vertici 43 dei campioni 41 definiscono regioni indebolimento 44 dei campioni 40 stessi.

25 Le figure 21 e 22 illustrano una terza forma di

attuazione dell'invenzione, secondo la quale un sensore inerziale 50, realizzato su un substrato 54, comprende campioni 51 sostanzialmente rettilinei e paralleli al primo asse X. In questo caso, durante di la fase attacco RIE, oltre alla massa mobile 18, vengono realizzati due ancoraggi 52 e due molle 53, ei tipo noto, colleganti la massa mobile 18 agli ancoraggi 52 e conformate in modo da impedire sostanzialmente rotazione della massa mobile 18 stessa attorno al primo asse X.

5

10

15

I campioni 51 hanno prime estremità saldate a rispettivi blocchi di ancoraggio 22 della massa mobile 18 e seconde estremità terminanti con piazzole di ancoraggio 55, realizzate come descritto in precedenza. Inoltre, coppie di opposti intagli 57 trasversali definiscono rispettive regioni di indebolimento 58 lungo i campioni 51 (figura 22).

Il sensore inerziale 50 risponde preferenzialmente a sollecitazioni orientate secondo un piano ortogonale 20 ai campioni 51, ossia il piano individuato dal secondo asse Y e dal terzo asse Z. In questo caso, per rilevare sollecitazioni in modo sostanzialmente isotropo, è possibile utilizzare due sensori 50 collegati in serie fra i terminali di un circuito di test 59 e ruotati di 25 90° l'uno rispetto all'altro, come mostrato in figura

23.

20

25

Le figure 24-28 mostrano fasi di fabbricazione di un sensore inerziale 80 realizzato secondo una quarta forma di attuazione dell'invenzione e comprendente un substrato 61 di una fetta semiconduttrice 60, una massa mobile 71 e un campione 63, oltre che ancoraggi 72 e molle 73. Inizialmente, al di sopra del substrato 61, viene cresciuto uno strato di ossido di pad 62; quindi, uno strato conduttivo 63 di silicio policristallino (qui indicato con linea a tratteggio) viene deposto 10 sullo strato di ossido di pad 61 e viene definito in modo da formare il campione 64, che è sostanzialmente rettilineo e si estende parallelamente al primo asse X (figura 25). Il campione 64 ha una piazzola ancoraggio 65, ad una propria estremità, e presenta 15 centralmente una regione di indebolimento 66 definita da una coppia di intagli 67.

Uno strato sacrificale 69 di ossido di silicio viene deposto in modo da ricoprire l'intera fetta 60 e poi selettivamente asportato per formare un'apertura 68 in corrispondenza di un'estremità del campione 64 opposta alla piazzola di ancoraggio 65.

Viene quindi cresciuto uno strato epitassiale 70 (figura 26), che viene attaccato in modo da formare la massa mobile 71, gli ancoraggi 72, le molle 73 e un

supporto, per comodità non mostrato; anello di strato sacrificale 69 e lo strato di ossido di pad 62 vengono rimossi, ad eccezione di una porzione residua 62' dello strato di ossido di pad 62 sottostante la piazzola di ancoraggio 65 (figure 27 e 28). La massa 5 il campione vengono così liberati. mobile 71 e precisamente, la massa mobile 71, avente centralmente un'apertura passante 74 al di sopra del campione 64, è vincolata al substrato 61 attraverso gli ancoraggi 72 e 10 le molle 73, che sono conformate in modo da impedire traslazioni e rotazioni secondo il primo asse Х. Inoltre, il campione 65 ha opposte estremità rispettivamente collegate al substrato 2, attraverso la piazzola di ancoraggio 65, e alla massa mobile 71 ed è 15 disposto in un'intercapedine 76 compresa fra la massa mobile 71 e il substrato 61.

Il sensore inerziale 80 viene poi incapsulato mediante fasi analoghe a quelle descritte con riferimento alle figure 12 e 13.

Anche in questo caso, l'utilizzo di un unico punto di ancoraggio fra il campione e la massa mobile permette vantaggiosamente di rilasciare in modo efficace gli stress dovuti a dilatazione della massa mobile.

25 Secondo una variante non illustrata, il campione è

conformato a T, come quelli mostrati in figura 9.

5

La figura 29 mostra un particolare di un campione 81, ad esempio rettilineo, di un sensore inerziale realizzato secondo una quinta forma di attuazione dell'invenzione. In particolare, il campione 81 presenta una regione di indebolimento definita da una scanalatura trasversale 82 estendentesi fra lati opposti 83 del campione 81 stesso.

La scanalatura 82 viene realizzata mediante 10 attacco mascherato a durata controllata del campione 81 (figura 30).

In alternativa (figura 31), viene deposto e definito un primo strato 85 di polisilicio; vengono poi formati uno strato di arresto 86 di ossido di silicio e un secondo strato 87 di polisilicio; infine viene scavata una scanalatura 82' attaccando il secondo strato 87 di polisilicio fino allo strato di arresto 86.

Risulta infine evidente che al sensore inerziale 20 descritto possono essere apportate modifiche varianti, senza uscire dall'ambito della presente invenzione. In particolare, le regioni di indebolimento possono essere definite contemporaneamente da intagli laterali dei campioni e da scanalature estendentisi fra 25 intagli laterali. qli Inoltre, le regioni di

indebolimento possono essere definite da aperture passanti attraversanti i campioni anziché da intagli laterali.

RIVENDICAZIONI

1. Sensore inerziale con soglia di rottura,
comprendente:

un primo corpo (2; 42; 54; 61) e un secondo corpo 5 (18; 71) fra loro relativamente mobili e vincolati mediante una pluralità di elementi elastici (20; 53; 73);

almeno un elemento campione (6; 37; 40; 51; 64; 81; 81') collegato fra detto primo corpo (2; 42; 54; 10 61) e detto secondo corpo (18; 71) e conformato in modo da essere sottoposto a sforzo quando detto secondo corpo (18; 71) è al di fuori di una posizione relativa di riposo rispetto a detto primo corpo (2; 42; 54; 61);

caratterizzato dal fatto che detto elemento 15 campione (6; 37; 40; 51; 64; 81; 81') comprende almeno una regione di indebolimento (9, 10; 38; 44; 58; 66; 82; 82').

- 2. Sensore secondo la rivendicazione 1, caratterizzato dal fatto che detta regione 20 indebolimento (9, 10; 38; 44; 58; 66; 82; comprende un restringimento di detto elemento campione (6; 37; 40; 51; 64; 81; 81').
 - 3. Sensore secondo la rivendicazione 1 o 2, caratterizzato dal fatto che detta regione di indebolimento (9, 10; 38; 44; 58; 66) è definita da

intagli (11; 39; 42; 57; 67) praticati su detto elemento campione (6; 37; 40; 51; 64).

4. Sensore secondo la rivendicazione 3, caratterizzato dal fatto che detta regione di indebolimento (9, 10; 38; 44; 58; 66) è definita da coppie di opposti intagli laterali (11; 39; 42; 57; 67).

5

- la rivendicazione 1 o 5. Sensore secondo 2, dal fatto che detta regione caratterizzato di 82') comprende 10 indebolimento (82; una scanalatura estendentesi trasversalmente fra opposti bordi (83) di detto elemento campione (81; 81').
- 6. Sensore secondo una qualsiasi delle rivendicazioni precedenti, caratterizzato dal fatto che detto elemento campione (64) è disposto in un'intercapedine (76) compresa fra detti primo e secondo corpo (18; 71).
- 7. Sensore secondo una qualsiasi delle rivendicazioni precedenti, caratterizzato dal fatto di 20 comprendere almeno due elementi campione (6; 37; 40; 51).
 - 8. Sensore secondo la rivendicazione 7 caratterizzato dal fatto che ciascuno di detti elementi campione (6; 37; 40; 51) comprende almeno una rispettiva detta regione di indebolimento (9, 10; 38;

44; 58).

5

- 9. Sensore secondo la rivendicazione 7 o 8, caratterizzato dal fatto che detti elementi campione (6; 37; 40; 51) si estendono lateralmente da detto secondo corpo (18; 71) in direzioni opposte.
- 10. Sensore secondo una qualsiasi delle rivendicazioni 7-9, caratterizzato dal fatto che detti elementi campione (6) sono sostanzialmente conformati a T.
- 10 11. Sensore secondo la rivendicazione 10, caratterizzato dal fatto che detti elementi campione (6) comprendono rispettivi primi tratti (6a), allineati e rivolti l'uno verso l'altro, e rispettivi secondi tratti (6b), sostanzialmente perpendicolari a detti primi tratti (6a) e fra loro paralleli.
 - 12. Sensore secondo la rivendicazione 11, caratterizzato dal fatto che ciascuno di detti elementi campione (6) comprende almeno due regioni di indebolimento (9, 10), definite da restringimenti di detti primi tratti (6a) e, rispettivamente, di detti secondi tratti (6b).
- 13. Sensore secondo la rivendicazione 11 o 12, caratterizzato dal fatto che estremità di detti primi tratti (6a) sono collegate a detto secondo corpo (18) e 25 opposte estremità di detti secondi tratti (6b) sono

fissate a detto primo corpo (2).

- 14. Sensore secondo una qualsiasi delle rivendicazioni 7-9, caratterizzato dal fatto che detti elementi campione (40) sono conformati a L.
- 15. Sensore secondo la rivendicazione 14, caratterizzato dal fatto che dette regioni di indebolimento (44) sono realizzate in corrispondenza di rispettivi vertici (43) di detti elementi campione.
- 16. Sensore secondo una qualsiasi delle rivendicazioni precedenti, caratterizzato dal fatto che detto almeno un elemento campione (51; 64) ha forma sostanzialmente rettilinea.
- 17. Sensore secondo una qualsiasi delle rivendicazioni precedenti, caratterizzato dal fatto che detto almeno un elemento campione (6; 40; 51; 64) presenta a una propria estremità almeno una piazzola di ancoraggio (8; 41; 55; 65) fissata a detto primo corpo (2; 42; 54; 61) mediante un elemento di incollaggio (3'; 62').
- 18. Sensore secondo una qualsiasi delle rivendicazioni precedenti, caratterizzato dal fatto che primo e secondo corpo (18; 71) e detto almeno un elemento campione (6; 37; 40; 51; 64; 81; 81') sono conduttivi.

RIASSUNTO

Un sensore inerziale con soglia di rottura, include: un primo corpo (2) e un secondo corpo (18) fra loro relativamente mobili e vincolati mediante una pluralità di elementi elastici; e almeno un elemento campione (6) collegato fra il primo corpo (2) e il secondo corpo (18) e conformato in modo da essere sottoposto a sforzo quando il secondo corpo (18) è al di fuori di una posizione relativa di riposo rispetto al primo corpo (2). L'elemento campione (6) ha almeno una regione di indebolimento (9, 10).

15 Figg. 9

Fig.17

Fig. 18

