

CS 310: Algorithms

Lecture 20

Instructor: Naveed Anwar Bhatti

Chapter 6: **Dynamic Programming**

Section:

- Least squares:
 - Foundational problem in statistic and numerical analysis.
 - Given n points in the plane: $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$.
 - Find a line y = ax + b that minimizes the sum of the squared error:

$$E = \sum_{i=1}^{n} (y_i - ax_i - b)^2$$

• **Solution:** Calculus \Rightarrow min error is achieved when

$$a = \frac{n\sum_{i} x_{i} y_{i} - (\sum_{i} x_{i})(\sum_{i} y_{i})}{n\sum_{i} x_{i}^{2} - (\sum_{i} x_{i})^{2}}$$

$$b = \frac{\sum_{i} y_{i} - a \sum_{i} x_{i}}{n}$$

Segmented least squares:

- Points lie roughly on a sequence of several line segments
- Given \mathbf{n} points in the plane $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$
- find a sequence of lines that minimizes f(x):
 - the sum of the sums of the squared errors **E** in each segment
 - the number of lines L

Q: What's a reasonable choice for f(x) to balance accuracy and parsimony?

Tradeoff function: **E + c L**, for some constant **c > 0**

Dynamic Programming: Multiway Choice

- Notation.
 - OPT(n) = minimum cost for points $p_1, p_{i+1}, \ldots, p_n$.

- To compute OPT(n):
 - Last segment uses points p_i , p_{i+1} , . . . , p_n for some i.
 - $e(i, n) = minimum sum of squares for points <math>p_i, p_{i+1}, \ldots, p_n$
 - Cost = e(i, n) + c + OPT(i-1).

$$OPT(n) = \begin{cases} 0 & \text{if } n = 0\\ \min_{1 \le i \le n} \{e(i, n) + c + OPT(i - 1)\} & \text{otherwise} \end{cases}$$

Dynamic Programming: Multiway Choice

$$OPT(n) = \begin{cases} 0 & \text{if } n = 0\\ \min_{1 \le i \le n} \{e(i, n) + c + OPT(i - 1)\} & \text{otherwise} \end{cases}$$

Let say we have 4 points i.e., n=4

```
OPT(4) = min\{e(1, 4) + c + OPT(0), e(2, 4) + c + OPT(1), e(3, 4) + c + OPT(2), e(4, 4) + c + OPT(3)\}

OPT(3) = min\{e(1, 3) + c + OPT(0), e(2, 3) + c + OPT(1), e(3, 3) + c + OPT(2)\}

OPT(2) = min\{e(1, 2) + c + OPT(0), e(2, 2) + c + OPT(1)\}

OPT(1) = min\{e(1, 1) + c + OPT(0)\}

OPT(0) = 0
```


Segmented Least Squares: Algorithm

```
INPUT: n, p_1, ..., p_N, c
for i=0 to n:
     M[n] = -1
M[0] = 0
OPT(){
    if n == 0:
         return 0
    if M[0]!=-1:
         return M[n]
    min cost = 0;
                                                               O(n)
    for i=1 to n: O(n)

cost = e(i,n) + c + OPT(i - 1)
         if cost < min_cost:</pre>
              min cost = cost
    M[n] = min cost
    return min cost
```

Running time: $O(n^3)$.

Bottleneck =
 computing e(i, j) for
 O(n²) pairs, O(n) per
 pair using previous
 formula.

Chapter 6: **Dynamic Programming**

Section : **Bonus Topic Bellman-ford Algorithm**

1st Iteration

If (d[u]+e(u,v) < d[v])d[v]=d[u]+e(u,v)

1st Iteration

If
$$(d[u]+e(u,v) < d[v])$$

 $d[v]=d[u]+e(u,v)$

1st Iteration

If (d[u]+e(u,v) < d[v])d[v]=d[u]+e(u,v)

1st Iteration

If (d[u]+e(u,v) < d[v])d[v]=d[u]+e(u,v)

1st Iteration

If
$$(d[u]+e(u,v) < d[v])$$

 $d[v]=d[u]+e(u,v)$

2nd Iteration

If (d[u]+e(u,v) < d[v])d[v]=d[u]+e(u,v)

2nd Iteration

If (d[u]+e(u,v) < d[v])d[v]=d[u]+e(u,v)

2nd Iteration

If (d[u]+e(u,v) < d[v])d[v]=d[u]+e(u,v)

2nd Iteration

If
$$(d[u]+e(u,v) < d[v])$$

 $d[v]=d[u]+e(u,v)$

2nd Iteration

If
$$(d[u]+e(u,v) < d[v])$$

 $d[v]=d[u]+e(u,v)$

2nd Iteration

If
$$(d[u]+e(u,v) < d[v])$$

 $d[v]=d[u]+e(u,v)$

2nd Iteration

If (d[u]+e(u,v) < d[v])d[v]=d[u]+e(u,v)

2nd Iteration

If
$$(d[u]+e(u,v) < d[v])$$

 $d[v]=d[u]+e(u,v)$

2nd Iteration

If
$$(d[u]+e(u,v) < d[v])$$

 $d[v]=d[u]+e(u,v)$

2nd Iteration

If
$$(d[u]+e(u,v) < d[v])$$

 $d[v]=d[u]+e(u,v)$

3rd Iteration

If (d[u]+e(u,v) < d[v])d[v]=d[u]+e(u,v)

If (d[u]+e(u,v) < d[v])d[v]=d[u]+e(u,v)

3rd Iteration

If
$$(d[u]+e(u,v) < d[v])$$

 $d[v]=d[u]+e(u,v)$

3rd Iteration

If (d[u]+e(u,v) < d[v])d[v]=d[u]+e(u,v)

If (d[u]+e(u,v) < d[v])d[v]=d[u]+e(u,v)

3rd Iteration

If
$$(d[u]+e(u,v) < d[v])$$

 $d[v]=d[u]+e(u,v)$

3rd Iteration

If
$$(d[u]+e(u,v) < d[v])$$

 $d[v]=d[u]+e(u,v)$

If
$$(d[u]+e(u,v) < d[v])$$

 $d[v]=d[u]+e(u,v)$

If
$$(d[u]+e(u,v) < d[v])$$

 $d[v]=d[u]+e(u,v)$

If
$$(d[u]+e(u,v) < d[v])$$

 $d[v]=d[u]+e(u,v)$

1st Iteration

If
$$(d[u]+e(u,v) < d[v])$$

 $d[v]=d[u]+e(u,v)$

1st Iteration

If
$$(d[u]+e(u,v) < d[v])$$

 $d[v]=d[u]+e(u,v)$

1st Iteration

If
$$(d[u]+e(u,v) < d[v])$$

 $d[v]=d[u]+e(u,v)$

1st Iteration

If
$$(d[u]+e(u,v) < d[v])$$

 $d[v]=d[u]+e(u,v)$

1st Iteration

If
$$(d[u]+e(u,v) < d[v])$$

 $d[v]=d[u]+e(u,v)$

1st Iteration

If
$$(d[u]+e(u,v) < d[v])$$

 $d[v]=d[u]+e(u,v)$

1st Iteration

If
$$(d[u]+e(u,v) < d[v])$$

 $d[v]=d[u]+e(u,v)$

1st Iteration

If
$$(d[u]+e(u,v) < d[v])$$

 $d[v]=d[u]+e(u,v)$

1st Iteration

If
$$(d[u]+e(u,v) < d[v])$$

 $d[v]=d[u]+e(u,v)$

1st Iteration

If
$$(d[u]+e(u,v) < d[v])$$

 $d[v]=d[u]+e(u,v)$

2nd Iteration

If
$$(d[u]+e(u,v) < d[v])$$

 $d[v]=d[u]+e(u,v)$

2nd Iteration

If
$$(d[u]+e(u,v) < d[v])$$

 $d[v]=d[u]+e(u,v)$

2nd Iteration

If
$$(d[u]+e(u,v) < d[v])$$

 $d[v]=d[u]+e(u,v)$

2nd Iteration

If
$$(d[u]+e(u,v) < d[v])$$

 $d[v]=d[u]+e(u,v)$

2nd Iteration

If
$$(d[u]+e(u,v) < d[v])$$

 $d[v]=d[u]+e(u,v)$

2nd Iteration

If
$$(d[u]+e(u,v) < d[v])$$

 $d[v]=d[u]+e(u,v)$

2nd Iteration

If
$$(d[u]+e(u,v) < d[v])$$

 $d[v]=d[u]+e(u,v)$

2nd Iteration

If
$$(d[u]+e(u,v) < d[v])$$

 $d[v]=d[u]+e(u,v)$

3rd Iteration

If
$$(d[u]+e(u,v) < d[v])$$

 $d[v]=d[u]+e(u,v)$

If
$$(d[u]+e(u,v) < d[v])$$

 $d[v]=d[u]+e(u,v)$

Negative Cycle

$$(-2) + (-1) + 1 = -2$$

If
$$(d[u]+e(u,v) < d[v])$$

 $d[v]=d[u]+e(u,v)$

Negative Cycle

$$(-2) + (-1) + 10 = 7$$

If
$$(d[u]+e(u,v) < d[v])$$

 $d[v]=d[u]+e(u,v)$

Thanks a lot

If you are taking a Nap, wake up.....Lecture OVER