COMP108 Data Structures and Algorithms

Graphs (Part I)

Professor Prudence Wong

pwong@liverpool.ac.uk

2022-23

Outline

Graphs

- Basic terminologies
- Undirected and directed graphs
- Euler circuits
- Graph traversals using queues & stacks

Learning outcomes:

- Be able to tell what a graph is
- Be able to represent a graph using matrix and list
- Be able to describe different algorithms to traverse a graph

Graph theory

- introduced in the 18th century
- an old subject with many modern applications
- Mathematician Euler in Konigsberg
- Can we go around the city by crossing each bridge exactly once?

Map of Konigsberg

bridges and river banks

The graph

Graphs

An undirected graph G = (V, E) consists of a set of vertices V and a set of edges E. Each edge is an unordered pair of vertices.
 (E.g., {b, c} & {c, b} refer to the same edge.)

Graphs

An undirected graph G = (V, E) consists of a set of vertices V and a set of edges E. Each edge is an unordered pair of vertices. (E.g., $\{b, c\}$ & $\{c, b\}$ refer to the same edge.)

A directed graph G = (V, E) consists of . . . Each edge is an ordered pair of vertices.

(E.g., (b, c) refer to an edge from b to c and differs from (c, b).)

Graphs

An undirected graph G = (V, E) consists of a set of vertices V and a set of edges E. Each edge is an unordered pair of vertices.
 (E.g., {b, c} & {c, b} refer to the same edge.)

A directed graph G = (V, E) consists of . . . Each edge is an ordered pair of vertices.

(E.g., (b, c) refer to an edge from b to c and differs from (c, b).)

represent a set of interconnected objects

undirected graph

directed graph

represent a set of interconnected objects

``friend'' relationship on Facebook

``follower'' relationship on Twitter

undirected graph

directed graph

Applications of graphs

- In computer science, graphs are often used to model
 - computer networks,
 - precedence among processes,
 - state space of playing chess (Al applications)
 - resource conflicts, · · ·
- In other disciplines, graphs are also used to model the structure of objects. E.g.,
 - biology evolutionary relationship
 - chemistry structure of molecules

simple graph: at most one edge between two vertices, no self loop (i.e., an edge from a vertex to itself)

- simple graph: at most one edge between two vertices, no self loop (i.e., an edge from a vertex to itself)
- multigraph: allows more than one edge between two vertices

In an undirected graph G, suppose that $\mathbf{e} = \{\mathbf{u}, \mathbf{v}\}$ is an edge of G

 \blacktriangleright u and v are said to be adjacent and called neighbors of each other.

In an undirected graph G, suppose that $e = \{u, v\}$ is an edge of G

- ightharpoonup u and v are said to be adjacent and called neighbors of each other.
 - ightharpoonup u and v are called endpoints of e.
 - ightharpoonup e is said to be incident with u and v.
 - \triangleright e is said to connect u and v.

In an undirected graph G, suppose that $\mathbf{e} = \{\mathbf{u}, \mathbf{v}\}$ is an edge of G

ightharpoonup u and v are said to be adjacent and called neighbors of each other.

- ightharpoonup u and v are called endpoints of e.
- ightharpoonup e is said to be incident with u and v.
- \triangleright e is said to connect u and v.
- The degree of a vertex v, denoted by deg(v), is the number of edges incident with it (a loop contributes twice to the degree)
- ► The degree of a graph is the maximum degree over all vertices. sum of degrees = 2 x number of edges

u 3 v 2

Directed graph

A directed graph G = (V, E) consists of . . . Each edge is an ordered pair of vertices.

E.g., (b, c) refer to an edge from b to c and differs from (c, b).

(a,b) is in E but not (b,a); both (a,c) and (c,a) are in E

Directed graph

- A directed graph G = (V, E) consists of . . . Each edge is an ordered pair of vertices.
 - E.g., (b, c) refer to an edge from b to c and differs from (c, b).
- Given a directed graph G, a vertex a is said to be connected to a vertex b if there is a path from a to b.

(a,b) is in E but not (b,a); both (a,c) and (c,a) are in E

Directed graph

- A directed graph G = (V, E) consists of . . . Each edge is an ordered pair of vertices.
 - E.g., (b, c) refer to an edge from b to c and differs from (c, b).
- Given a directed graph G, a vertex a is said to be connected to a vertex b if there is a path from a to b.
- Road network (with one way roads)

(a,b) is in E but not (b,a); both (a,c) and (c,a) are in E

- ightharpoonup in-degree of a vertex v: the number of edges leading to v
- ightharpoonup out-degree of a vertex v: the number of edges leading away from v.

v in-deg(v) out-deg(v)

- lacktriangledown in-degree of a vertex v: the number of edges leading to v
- ightharpoonup out-degree of a vertex v: the number of edges leading away from v.

V	in-deg(v)	out-deg(v)
а	1	4

- lacktriangledown in-degree of a vertex v: the number of edges leading to v
- ightharpoonup out-degree of a vertex v: the number of edges leading away from v.

in-deg(v)	out-deg(v)
1	4
3	1
	1

- lacktriangledown in-degree of a vertex v: the number of edges leading to v
- ightharpoonup out-degree of a vertex v: the number of edges leading away from v.

V	in-deg(v)	out-deg(v)
а	1	4
b	3	1
C	2	1

- lacktriangledown in-degree of a vertex v: the number of edges leading to v
- ightharpoonup out-degree of a vertex v: the number of edges leading away from v.

V	in-deg(v)	out-deg(v)
а	1	4
b	3	1
C	2	1
d	1	2

- lacktriangledown in-degree of a vertex v: the number of edges leading to v
- ightharpoonup out-degree of a vertex v: the number of edges leading away from v.

V	in-deg(v)	out-deg(v)
а	1	4
b	3	1
C	2	1
d	1	2
е	3	1

- lacktriangledown in-degree of a vertex v: the number of edges leading to v
- ightharpoonup out-degree of a vertex v: the number of edges leading away from v.

V	in-deg(v)	out-deg(v)
а	1	4
b	3	1
C	2	1
d	1	2
e	3	1
f	1	2

- lacktriangledown in-degree of a vertex v: the number of edges leading to v
- ightharpoonup out-degree of a vertex v: the number of edges leading away from v.

V	in-deg(v)	out-deg(v)
а	1	4
b	3	1
C	2	1
d	1	2
е	3	1
f	1	2
sum:	11	11

- ightharpoonup in-degree of a vertex v: the number of edges leading to v
- ightharpoonup out-degree of a vertex v: the number of edges leading away from v.

V	in-deg(v)	out-deg(v)
а	1	4
b	3	1
C	2	1
d	1	2
e	3	1
f	1	2
sum:	11	11

sum of in-degree
= sum of out-degree
= number of edges

in/out-deg always equal?

Claim on Handshaking

In a room full of people, some shake hands with others.

Some people have odd number of handshakes.

Some people have even number of handshakes.

Claim: The number of people with odd number of handshakes must be even.

In the context of graph

Claim: The number of vertices with odd degree must be even.

Representation of undirected graphs

- An undirected graph can be represented by adjacency matrix, adjacency list, incidence matrix or incidence list
- Adjacency matrix/list: relationship between vertex adjacency (vertex vs vertex)
- Incidence matrix/list: relationship between edge incidence (vertex vs edge)

Matrix / 2-Dimensional Array

m-by-*n* matrix

- m rows
- n columns

 $A_{i,j}$

row i, column j

$$\begin{pmatrix} A_{1,1} & A_{1,2} & A_{1,3} & \cdots & A_{1,n} \\ A_{2,1} & A_{2,2} & A_{2,3} & \cdots & A_{2,n} \\ A_{3,1} & A_{3,2} & A_{3,3} & \cdots & A_{3,n} \\ \vdots & \vdots & \vdots & & \vdots \\ A_{m,1} & A_{m,2} & A_{m,3} & \cdots & A_{m,n} \end{pmatrix}$$

Adjacency matrix M for a simple undirected graph with n vertices is an $n \times n$ matrix

- ightharpoonup M(i,j)=1 if vertex *i* and vertex *j* are adjacent
- ightharpoonup M(i,j)=0 otherwise

Adjacency matrix M for a simple undirected graph with n vertices is an $n \times n$ matrix

- ightharpoonup M(i,j)=1 if vertex i and vertex j are adjacent
- ightharpoonup M(i,j)=0 otherwise

Adjacency matrix M for a simple undirected graph with n vertices is an $n \times n$ matrix

- M(i,j) = 1 if vertex i and vertex j are adjacent
- ightharpoonup M(i,j)=0 otherwise

Adjacency matrix M for a simple undirected graph with n vertices is an $n \times n$ matrix

- M(i,j) = 1 if vertex *i* and vertex *j* are adjacent
- ightharpoonup M(i,j)=0 otherwise

Adjacency matrix M for a simple undirected graph with n vertices is an $n \times n$ matrix

- M(i,j) = 1 if vertex *i* and vertex *j* are adjacent
- ightharpoonup M(i,j)=0 otherwise

Adjacency matrix M for a simple undirected graph with n vertices is an $n \times n$ matrix

- ightharpoonup M(i,j)=1 if vertex i and vertex j are adjacent
- ightharpoonup M(i,j)=0 otherwise

Adjacency matrix M for a simple undirected graph with n vertices is an $n \times n$ matrix

- M(i,j) = 1 if vertex i and vertex j are adjacent
- ightharpoonup M(i,j)=0 otherwise

Adjacency matrix M for a simple undirected graph with n vertices is an $n \times n$ matrix

- M(i,j) = 1 if vertex *i* and vertex *j* are adjacent
- ightharpoonup M(i,j)=0 otherwise

Adjacency list: each vertex has a list of vertices to which it is adjacent

sparse graph: when there are very few edges

Incidence matrix M for a simple undirected graph with n vertices and m edges is an $m \times n$ matrix

- ightharpoonup M(i,j)=1 if edge *i* and vertex *j* are incident
- M(i,j) = 0 otherwise

Incidence matrix M for a simple undirected graph with n vertices and m edges is an $m \times n$ matrix

- ightharpoonup M(i,j)=1 if edge i and vertex j are incident
- M(i,j) = 0 otherwise

Incidence matrix M for a simple undirected graph with n vertices and m edges is an $m \times n$ matrix

- ightharpoonup M(i,j)=1 if edge *i* and vertex *j* are incident
- ightharpoonup M(i,j)=0 otherwise

		а	b	C	d	ϵ	è
1	1	1	0	1	0	0	\
1 2 3		1	0	0	1	0	
3							
4							
5							
6							
7	/						

Incidence matrix M for a simple undirected graph with n vertices and m edges is an $m \times n$ matrix

- ightharpoonup M(i,j)=1 if edge i and vertex j are incident
- ightharpoonup M(i,j)=0 otherwise

		а	b	С	d	e
1	1	1	0	1	0	0 \
2		1	0	0	1	0
3		0	1	1	0	0
4						
5						
6	1					
7						

Incidence matrix M for a simple undirected graph with n vertices and m edges is an $m \times n$ matrix

- ightharpoonup M(i,j)=1 if edge i and vertex j are incident
- ightharpoonup M(i,j)=0 otherwise

		а	b	C	d	e
1	1	1	0	1	0	0 \
2		1	0	0	1	0
3	l	0	1	1	0	0
4	l	0	1	0	1	0
5	l					
6	l					}
7						J

Incidence matrix M for a simple undirected graph with n vertices and m edges is an $m \times n$ matrix

- ightharpoonup M(i,j)=1 if edge i and vertex j are incident
- ightharpoonup M(i,j)=0 otherwise

		а	b	C	d	е
1	1	1	0	1	0	0 \
2 3	1	1	0	0	1	0
3	ı	0	1	1	0	0
4	ı	0	1	0	1	0
5	l	0	0	1	1	0
6	l					
7						

Incidence matrix M for a simple undirected graph with n vertices and m edges is an $m \times n$ matrix

- ightharpoonup M(i,j)=1 if edge i and vertex j are incident
- ightharpoonup M(i,j)=0 otherwise

		а	b	C	d	е
1	/	1	0	1	0	0 \
2		1	0	0	1	0
3		0	1	1	0	0
4		0	1	0	1	0
5		0	0	1	1	0
6	l	0	0	0	1	1
7						

Incidence matrix M for a simple undirected graph with n vertices and m edges is an $m \times n$ matrix

- ightharpoonup M(i,j)=1 if edge i and vertex j are incident
- ightharpoonup M(i,j)=0 otherwise

		а	b	C	d	е
1	/	1	0	1	0	0 \
2	1	1	0	0	1	0
3	l	0	1	1	0	0
4	l	0	1	0	1	0
5	l	0	0	1	1	0
6	l	0	0	0	1	1
7		0	0	1	0	1 /

Incidence matrix M for a simple undirected graph with n vertices and m edges is an $m \times n$ matrix

- ightharpoonup M(i,j)=1 if edge i and vertex j are incident
- ightharpoonup M(i,j) = 0 otherwise

	а	b	С	d	ϵ	9
1	/ 1	0	1	0	0	١
2	1	0	0	1	0	
3	0	1	1	0	0	
4	0	1	0	1	0	
5	0	0	1	1	0	
6	0	0	0	1	1	
7	/ 0	0	1	0	1	,

Representation of directed graphs

- Similar to undirected graph, a directed graph can be represented by adjacency matrix, adjacency list, incidence matrix or incidence list
- but needs to handle direction of connection of the edges

Adjacency matrix M for a directed graph with n vertices is an $n \times n$ matrix

- ightharpoonup M(i,j)=1 if (i,j) is an edge, i.e., i points to j
- ightharpoonup M(i,j)=0 otherwise

Adjacency matrix M for a directed graph with n vertices is an $n \times n$ matrix

- ightharpoonup M(i,j)=1 if (i,j) is an edge, i.e., i points to j
- ightharpoonup M(i,j)=0 otherwise

Adjacency matrix M for a directed graph with n vertices is an $n \times n$ matrix

- ightharpoonup M(i,j)=1 if (i,j) is an edge, i.e., i points to j
- ightharpoonup M(i,j)=0 otherwise

Adjacency matrix M for a directed graph with n vertices is an $n \times n$ matrix

- ightharpoonup M(i,j)=1 if (i,j) is an edge, i.e., i points to j
- ightharpoonup M(i,j)=0 otherwise

Adjacency matrix M for a directed graph with n vertices is an $n \times n$ matrix

- M(i,j)=1 if (i,j) is an edge, i.e., i points to j
- ightharpoonup M(i,j)=0 otherwise

Adjacency matrix M for a directed graph with n vertices is an $n \times n$ matrix

- M(i,j)=1 if (i,j) is an edge, i.e., i points to j
- ightharpoonup M(i,j)=0 otherwise

Adjacency matrix M for a directed graph with n vertices is an $n \times n$ matrix

- M(i,j) = 1 if (i,j) is an edge, i.e., i points to j
- ightharpoonup M(i,j) = 0 otherwise

Incidence matrix M for a directed graph with n vertices and m edges is an $m \times n$ matrix

- ► M(i,j) = 1 if edge i is leading away from vertex j
- ► M(i,j) = -1 if edge i is leading to vertex j
- ightharpoonup M(i,j)=0 otherwise

Incidence matrix M for a directed graph with n vertices and m edges is an $m \times n$ matrix

- ► M(i,j) = 1 if edge i is leading away from vertex j
- ► M(i,j) = -1 if edge i is leading to vertex j
- ightharpoonup M(i,j)=0 otherwise

		а	b	C	d	е	
1 2 3 4 5 6	1	1	-1	0	0	0	١
2	1						
3	ı						
4	ı						
5	ı						
6							,

Incidence matrix M for a directed graph with n vertices and m edges is an $m \times n$ matrix

- ► M(i,j) = 1 if edge i is leading away from vertex j
- ► M(i,j) = -1 if edge i is leading to vertex j
- ightharpoonup M(i,j)=0 otherwise

		а	Ь	C	d	e	
1	1	1	b -1 -1	0	0	0	١
2	1	0	-1	1	0	0	
3	ı						
4	ı						
5	l						
6							,

Incidence matrix M for a directed graph with n vertices and m edges is an $m \times n$ matrix

- ► M(i,j) = 1 if edge i is leading away from vertex j
- ► M(i,j) = -1 if edge i is leading to vertex j
- ightharpoonup M(i,j)=0 otherwise

Incidence matrix M for a directed graph with n vertices and m edges is an $m \times n$ matrix

- ► M(i,j) = 1 if edge i is leading away from vertex j
- ► M(i,j) = -1 if edge i is leading to vertex j
- ightharpoonup M(i,j)=0 otherwise

		а	Ь	С	d	е	
1	1	1	-1 -1 1	0	0	0	١
1 2 3 4 5 6	1	0	-1	1	0	0	
3	ı	0	1	0	-1	0	
4	ı	0	1	0	0	-1	
5	l						
6	/						/

Incidence matrix M for a directed graph with n vertices and m edges is an $m \times n$ matrix

- ► M(i,j) = 1 if edge i is leading away from vertex j
- ► M(i,j) = -1 if edge i is leading to vertex j
- ightharpoonup M(i,j)=0 otherwise

Incidence matrix M for a directed graph with n vertices and m edges is an $m \times n$ matrix

- ► M(i,j) = 1 if edge i is leading away from vertex j
- ► M(i,j) = -1 if edge i is leading to vertex j
- ightharpoonup M(i,j)=0 otherwise

		а	b	C	d	e	
1	1	1	-1 -1	0	0	0	١
2		0	-1	1	0	0	
3	1	0	1	0	-1	0	
4	1	0	1	0	0	-1	
5		0	0	0	1	-1	
6	/	0	0 0	1	0	-1	/

Incidence matrix M for a directed graph with n vertices and m edges is an $m \times n$ matrix

- ► M(i,j) = 1 if edge i is leading away from vertex j
- ► M(i,j) = -1 if edge i is leading to vertex j
- ightharpoonup M(i,j)=0 otherwise

		а	b	C	d	e
1	1	1	-1 -1	0	0	0
2		0	-1	1	0	0
3		Ω	1	Ω	-1	Ω
4		0	i	0	0	-1
5		0	0	0	1	-1
6	/	0	0 0	1	0	-1

Summary

Summary: What is a graph and how to represent one?

Next: Paths, Circuits, Traversals

For note taking