Lezione 5

Alessandro Ardizzoni

Caratterizzazione biiettività

Proposizione

Una funzione è biiettiva ⇔ la sua corrispondenza opposta è una funzione.

Proof.

Consideriamo una funzione $f: X \to Y$. Poiché f è, in particolare, una corrispondenza, possiamo considerare la sua corrispondenza opposta $f^{\mathrm{op}}: Y \to X$.

Per definizione, la corrispondenza $f^{\mathrm{op}}: Y \to X$ è una funzione \Leftrightarrow

$$\forall y \in Y, \exists! x \in X, \ (y, x) \in f^{\mathrm{op}}. \tag{1}$$

D'altra parte $(y,x) \in f^{op} \Leftrightarrow (x,y) \in f \Leftrightarrow f(x) = y$. Quindi (1) diventa

$$\forall y \in Y, \exists! x \in X, \ f(x) = y \ . \tag{2}$$

Come visto nell'ultima lezione, questo vuol dire che f è biiettiva.

Lemma

Sia
$$f: X \rightarrow Y$$
 una funzione. Allora

$$f \circ \mathrm{Id}_{\mathsf{X}} = f$$

$$f \circ \operatorname{Id}_X = f$$
 e $\operatorname{Id}_Y \circ f = f$.

Proof.

Componendo le funzioni $X \xrightarrow{\operatorname{Id}_X} X \xrightarrow{f} Y$ otteniamo la funzione $X \xrightarrow{f \circ \operatorname{Id}_X} Y$ che ha lo stesso dominio e codominio di f.

Per vedere che $f \circ Id_X$ ed f sono uguali resta solo da controllare che $f \circ Id_X$ e f hanno la stessa immagine su tutti gli elementi del proprio dominio. In effetti, preso $x \in X$, abbiamo

$$(f \circ \mathrm{Id}_X)(x) = f(\mathrm{Id}_X(x)) = f(x)$$

e quindi $f \circ \mathrm{Id}_X = f$.

Similmente si ottiene che $Id_{Y} \circ f = f$.

Una funzione $X \xrightarrow{f} Y$ si dice invertibile se esiste una funzione $Y \xrightarrow{g} X$ tale che $f \circ g = \operatorname{Id}_Y$ e $g \circ f = \operatorname{Id}_X$. In tal caso diremo che $g \ \grave{\text{e}}$ un'inversa di f.

Proposizione (Unicità dell'inversa)

Una funzione invertibile ha un'unica inversa.

Proof.

Se g e g' sono inverse di f, si ha in particolare che $g' \circ f = \operatorname{Id}_X$ e $f \circ g = \operatorname{Id}_Y$. Pertanto, per l'associatività otteniamo

$$g \stackrel{\mathsf{lemma}}{=} \mathrm{Id}_X \circ g = (g' \circ f) \circ g \stackrel{\mathsf{ass.}}{=} g' \circ (f \circ g) = g' \circ \mathrm{Id}_Y \stackrel{\mathsf{lemma}}{=} g'.$$

Dato che ci può essere un'inversa sola possiamo chiamarla l'inversa di f ed indicarla con il simbolo $f^{-1}: Y \to X$.

Valgono quindi le seguenti uguaglianze quando f è invertibile:

$$f \circ f^{-1} = \operatorname{Id}_{Y}$$
 e $f^{-1} \circ f = \operatorname{Id}_{X}$.

A. Ardizzoni Algebra 1 4/23

Osservazione

Le uguaglianze $f \circ f^{-1} = \operatorname{Id}_Y e f^{-1} \circ f = \operatorname{Id}_X ci dicono che anche f^{-1} è invertibile e che la sua inversa è proprio f. In simboli <math>(f^{-1})^{-1} = f$.

Lemma

Se $f: X \to Y$ una funzione invertibile, allora $\forall x \in X, y \in Y$ si ha che

$$f^{-1}(y) = x \quad \Leftrightarrow \quad y = f(x).$$
 (3)

Inoltre $f^{-1} = f^{op}$. Quindi se f è invertibile allora f^{op} è una funzione.

<u>DIMOSTRAZIONE</u>. Per verificare (3), basta suddividerla nelle due implicazioni. Ne dimostriamo una (l'altra si fa similmente):

$$f^{-1}(y) = x \Rightarrow f(f^{-1}(y)) = f(x) \Rightarrow (f \circ f^{-1})(y) = f(x) \Rightarrow \operatorname{Id}(y) = f(x) \Rightarrow y = f(x).$$

Riguardando f e f^{-1} come corrispondenze, possiamo riscrivere (3) come $(y,x) \in f^{-1} \Leftrightarrow (x,y) \in f$. Ciò significa $f^{-1} = f^{op}$.

A. Ardizzoni Algebra 1 5/23

Teorema

Sia f una funzione ed f^{op} la sua corrispondenza opposta.

LSAE (=Le seguenti affermazioni sono equivalenti).

- f è bijettiva:
- 2 f^{op} è una funzione:
- f è invertibile.

Se vale una di queste condizioni, si ha anche $f^{-1} = f^{op}$.

SOLUZIONE. Avendo già dimostrato $(1) \Leftrightarrow (2) \leftarrow (3)$, per concludere basta verificare $\mathbf{1} \Rightarrow \mathbf{3}$. Se $X \xrightarrow{f} Y$ è biiettiva, allora $f^{op}: Y \to X$ è una funzione. Vediamo che è l'inversa di f. Per ogni $x \in X, y \in Y$ si ha che

$$f^{\mathrm{op}}(y) = x \Leftrightarrow (y, x) \in f^{\mathrm{op}} \Leftrightarrow (x, y) \in f \Leftrightarrow f(x) = y.$$

Allora, $\forall x$ possiamo porre y := f(x) e ottenere

$$(f^{\operatorname{op}} \circ f)(x) = f^{\operatorname{op}}(f(x)) = f^{\operatorname{op}}(y) = x.$$

Similmente, $\forall y$, posto $x := f^{op}(y)$, otteniamo $(f \circ f^{op})(y) = y$.

Di conseguenza $f^{op} \circ f = Id_X$ e $f \circ f^{op} = Id_Y$ e quindi f è invertibile.

Osservazione

Dal teorema precedente segue che ogni funzione invertibile è biiettiva. Questo si può dimostrare direttamente nel modo seguente. Si ha che

$$f \circ f^{-1} = \operatorname{Id}_{Y} \quad \Rightarrow \quad f \circ f^{-1} \text{ suriettiva} \quad \Rightarrow \quad f \text{ suriettiva},$$

$$f^{-1} \circ f = \operatorname{Id}_{Y} \quad \Rightarrow \quad f^{-1} \circ f \text{ iniettiva} \quad \Rightarrow \quad f \text{ iniettiva}.$$

Pertanto f è sia suriettiva sia iniettiva e quindi biiettiva.

Osservazione

Abbiamo già osservato, nel definirla, che $\mathrm{Id}_X:X\to X$ è biiettiva. Ma allora è anche invertibile. In effetti da

$$\mathrm{Id}_X \circ \mathrm{Id}_X = \mathrm{Id}_X$$

deduciamo che la sua inversa è ancora Idx. In simboli

$$(\mathrm{Id}_X)^{-1}=\mathrm{Id}_X\ .$$

Proposizione

Siano $X \xrightarrow{g} Y$ e $Y \xrightarrow{f} Z$ delle funzioni invertibili. Allora $f \circ g$ e $g^{-1} \circ f^{-1}$ sono invertibili e sono l'una l'inversa dell'altra. In simboli

$$(f \circ g)^{-1} = g^{-1} \circ f^{-1}, \qquad (g^{-1} \circ f^{-1})^{-1} = f \circ g.$$

Proof.

Per associatività della composizione, abbiamo

$$(g^{-1} \circ f^{-1}) \circ (f \circ g) = g^{-1} \circ f^{-1} \circ f \circ g = g^{-1} \circ \operatorname{Id} \circ g = g^{-1} \circ g = \operatorname{Id}.$$

Quindi $(g^{-1} \circ f^{-1}) \circ (f \circ g) = \operatorname{Id}$.

Similmente si vede che $(f \circ g) \circ (g^{-1} \circ f^{-1}) = \operatorname{Id}$.

Queste due uguaglianze ci dicono che $f \circ g$ e $g^{-1} \circ f^{-1}$ sono invertibili e sono l'una l'inversa dell'altra.

A. Ardizzoni Algebra 1 8 / 23

Esercizio

Per ognuna delle seguenti funzioni, dire se è iniettiva e/o suriettiva. Se è biiettiva, determinare la funzione inversa.

<u>SOLUZIONE</u>. Trattiamo tutti i casi uno alla volta.

- Iniettiva. Siano $m, n \in \mathbb{Z}$. Se f(m) = f(n) allora $m^3 + 1 = n^3 + 1$ da cui $m^3 = n^3$. Di qui deduciamo m = n (l'Analisi ci dice che la funzione $f(x) := x^3$ è strettamente crescente perché ha derivata prima $f'(x) = 3x^2 > 0$ per $x \neq 0$; pertanto è iniettiva). Quindi f è iniettiva.
- <u>Suriettiva</u>. Non è suriettiva perché non tutti gli interi sono della forma n^3+1 . Ad esempio, se $\exists n \in \mathbb{Z}$ per cui $3=n^3+1$ allora si avrebbe $2=n^3$ e quindi n sarebbe necessariamente pari. Allora potremmo scrivere n=2k

da cui $2 = n^3 = (2k)^3 = 8k^3$ il che è assurdo perché 8 > 2.

<u>Iniettiva</u>. Siano (m_1, n_1) e (m_2, n_2) tali che $f((m_1, n_1)) = f((m_2, n_2))$ cioé $m_1 - n_1 = m_2 - n_2$. In questo caso non possiamo dedurre che $(m_1, n_1) = (m_2, n_2)$. Ad esempio 2 - 1 = 1 - 0 ma $(2, 1) \neq (1, 0)$. Pertanto f non è iniettiva.

<u>Suriettiva</u>. Se $k \in \mathbb{Z}$, allora k = k - 0 = f((k,0)) e dunque f è suriettiva.

Iniettiva. Siano $m, n \in \mathbb{Z}$. Se f(m) = f(n) allora

$$(m-1, m+1) = (n-1, n+1)$$
 da cui $m-1 = n-1$ e $m+1 = n+1$.

Semplificando, otteniamo m = n e dunque f è iniettiva.

Suriettiva. Notiamo che (n+1)-(n-1)=2 e quindi ogni elemento $(a,b)\in\mathbb{Z}^2$ con $b-a\neq 2$ non sta nell'immagine di f. In particolare (0,1) non sta nell'immagine di f e quindi f non è suriettiva.

A. Ardizzoni Algebra 1 10 / 23

4 $f: \mathbb{Z}^2 \to \mathbb{Z}^2, (m, n) \mapsto (m-2, n+1)$. Iniettiva. Siano (m_1, n_1) e (m_2, n_2) tali che $f((m_1, n_1)) = f((m_2, n_2))$ cioé

Inlettiva. Siano (m_1, n_1) e (m_2, n_2) tall the $f((m_1, n_1)) = f((m_2, n_2))$ cloe $(m_1 - 2, n_1 + 1) = (m_2 - 2, n_2 + 1)$. Allora $m_1 - 2 = m_2 - 2$ e $n_1 + 1 = n_2 + 1$. Otteniamo $m_1 = m_2$ e $n_1 = n_2$ da cui $(m_1, n_1) = (m_2, n_2)$. Pertanto f è iniettiva.

Suriettiva. Siano $(a,b) \in \mathbb{Z}^2$. Per vedere che f è suriettiva dobbiamo individuare $(m,n) \in \mathbb{Z}^2$ tale che f((m,n)) = (a,b) cioé (m-2,n+1) = (a,b). Ciò vuol dire m-2=a e n+1=b da cui m=a+2 e n=b-1. In effetti (a,b)=f((a+2,b-1)). Quindi f è suriettiva. Biiettiva. Visto che f è sia iniettiva sia suriettiva, allora f è biiettiva. Pertanto è invertibile, cioè ha l'inversa f^{-1} . Dobbiamo descriverla esplicitamente. Per farlo, da (a,b)=f((a+2,b-1)) deduciamo che $f^{-1}((a,b))=(a+2,b-1)$. Dunque l'inversa di f è

$$f^{-1}: \mathbb{Z}^2 \to \mathbb{Z}^2, \ (a,b) \mapsto (a+2,b-1).$$

A. Ardizzoni Algebra 1 11/23

Immagine e controimmagine

Sia $f: A \rightarrow B$ una funzione.

• Sia $A' \subseteq A$. Allora l'immagine di A' tramite f è l'<u>insieme</u>

$$f(A') := \{ f(a) \mid a \in A' \} \subseteq B.$$

In altri termini è l'insieme di tutte le immagini degli elementi di A'.

• Sia $B' \subseteq B$. Allora la controimmagine di B' tramite f è l'insieme

NON SIGNIFICATION
$$f^{-1}(B') := \{a \in A \mid f(a) \in B'\} \subseteq A.$$

Quindi è l'insieme di tutte le controimmagini degli elementi di B'.

Osservazione

Si noti che la controimmagine di una funzione esiste sempre anche se la funzione non è invertibile e quindi non è detto abbia l'inversa. Insomma il simbolo $f^{-1}(B')$ NON vuol dire che l'inversa f^{-1} esista.

Esempio

Ecco un esempio di calcolo di f(A') e di $f^{-1}(B')$ per una funzione $f: \{1,2,3\} \rightarrow \{1,2,3\}$ dove $A':= \{1,3\}$ e $B':= \{1\}$.

In pratica

- $f(A') = f(\{1,3\}) = \{f(1), f(3)\} = \{1,2\}$ è l'insieme degli elementi su cui arrivano le frecce che partono da A';
- $f^{-1}(B') = f^{-1}(\{1\}) = \{2,3\}$ è l'insieme degli elementi da cui partono le frecce che arrivano in B'.

Esercizio

Si consideri la funzione f qui accanto, calcolare $\mathscr{F} = \{f(S) \mid S \subseteq A\}$ e $\mathscr{G} = \{f^{-1}(S) \mid S \subseteq B\}$

<u>SOLUZIONE.</u> I sottoinsiemi di A sono \emptyset , $\{1\}$, $\{2\}$, $\{3\}$, $\{1,2\}$, $\{1,3\}$, $\{2,3\}$, $\{1,2,3\}$. Si ha che

$$f(\emptyset) = \emptyset$$
, $f(\{1\}) = \{f(1)\} = \{2\}$, $f(\{2\}) = \{f(2)\} = \{1\}$, $f(\{3\}) = \{f(3)\} = \{1\}$, $f(\{1,2\}) = \{f(1), f(2)\} = \{1,2\}$,...

da cui

$$\mathscr{F} = \{\emptyset, \{2\}, \{1\}, \{1\}, \{2,1\}, \{2,1\}, \{1,1\}, \{2,1,1\}\} = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}.$$
 I sottoinsiemi di B sono gli stessi di A . Si ha che

$$f^{-1}(\emptyset) = \emptyset$$
, $f^{-1}(\{1\}) = \{2,3\}$, $f^{-1}(\{2\}) = \{1\}$, $f^{-1}(\{3\}) = \emptyset$, $f^{-1}(\{1,2\}) = \{1,2,3\}$, ...

Quindi
$$\mathscr{G}=\{\emptyset,\{2,3\},\{1\},\emptyset,\{1,2,3\},\{2,3\},\{1\},\{1,2,3\}\}=\{\emptyset,\{1\},\{2,3\},\{1,2,3\}\}.$$

A. Ardizzoni Algebra 1 14/23

Osservazione

Vediamo alcuni casi particolari dove $f:A\to B,\ A'\subseteq A\ e\ B'\subseteq B$.

- Se A' = A, f(A) si indica anche con Im(f) ed è detta immagine di f.
- ② Se B' = B, $f^{-1}(B) = \{a \in A \mid f(a) \in B\} = A$.
- Se $B' = \{b\}$ scriveremo semplicemente $f^{-1}(b)$ in luogo di $f^{-1}(\{b\})$.

 Quindi

 CONTINUO CONTI

$$f^{-1}(b) = \{a \in A \mid f(a) \in \{b\}\} = \{a \in A \mid f(a) = b\}$$

è l'insieme delle controimmagini di b in A.

Esercizio

Sia $f: A \rightarrow B$ una funzione, $A' \subseteq A$ e $B' \subseteq B$.

- Dimostrare che $A' \subseteq f^{-1}(f(A'))$, che l'uguaglianza non vale in generale ma che vale se f è iniettiva.
- ② Dimostrare che $f(f^{-1}(B')) \subseteq B'$, che l'uguaglianza non vale in generale ma che vale se f è suriettiva.

A. Ardizzoni Algebra 1 15 / 23

SOLUZIONE. 1 Vediamo che $A' \subset f^{-1}(f(A'))$. Si ha $a' \in A' \Rightarrow f(a') \in f(A')$ $\Rightarrow a' \in f^{-1}(f(A'))$. L'uguaglianza non vale in generale. Ad esempio, se $f: \{1,2\} \to \{3\}, a \mapsto 3 \text{ e } A' := \{2\}, \text{ allora } f(A') = \{f(2)\} = \{3\} \text{ da cui}$ $f^{-1}(f(A')) = f^{-1}(\{3\}) = \{1,2\} \neq A'.$

Supponiamo f iniettiva e dimostriamo $f^{-1}(f(A')) \subseteq A'$:

$$a \in f^{-1}(f(A')) \Rightarrow f(a) \in f(A') \Rightarrow \exists a' \in A', f(a) = f(a') \stackrel{f \text{ injet.}}{\Rightarrow} a = a' \Rightarrow a \in A'.$$
2) Vediamo che $f(f^{-1}(B')) \subseteq B'$. Sia $b \in f(f^{-1}(B'))$. Allora esiste $a \in f^{-1}(B')$ tale che $b = f(a)$. D'altra parte $a \in f^{-1}(B')$ significa $f(a) \in B'$ e in definitiva $b \in B'$. L'uguaglianza non vale in generale. Infatti, se $f: \{1\} \to \{2,3\}, 1 \mapsto 2$ e $B':=\{2,3\}$, allora $f^{-1}(B')=\{1\}$ e quindi $f(f^{-1}(B'))=f(\{1\})=\{2\} \neq B'$.

Supponiamo f suriettiva e dimostriamo $B'\subseteq f(f^{-1}(B'))$. Se $b'\in B'$ allora esiste $a \in A$ tale che b' = f(a). Ma allora $f(a) \in B'$ e quindi $a \in f^{-1}(B')$. Pertanto $b' = f(a) \in f(f^{-1}(B'))$ da cui $B' \subseteq f(f^{-1}(B'))$.

A. Ardizzoni

Esercizio (per casa)

Sia $f: A \to B$ una funzione. Stabilire se $\{f^{-1}(b) \mid b \in \operatorname{Im}(f)\}$ è una partizione di A. Dimostrare che $\{f^{-1}(b) \mid b \in B\}$, è una partizione di A se e solo se f è suriettiva. Stabilire se $\{f^{-1}(S) \mid S \subseteq \operatorname{Im}(f)\}$ è una partizione di A.

Esercizio

Si consideri la funzione $f: \mathbb{R} \times \mathbb{Z} \to \mathbb{R}, (x,y) \mapsto x\sqrt{2} + y$.

- Dire se f è iniettiva e/o suriettiva.
- ② Determinare f(A) dove $A := \{(\sqrt{2}, a) \mid a \in \mathbb{Z}\}.$
- **3** Determinare $f^{-1}(0)$ e $f^{-1}(\mathbb{Z})$.

<u>SOLUZIONE</u>. **1** Se $x_1, x_2 \in \mathbb{R}, y_1, y_2 \in \mathbb{Z}$, son tali che $f((x_1, y_1)) = f((x_2, y_2))$, allora $x_1\sqrt{2} + y_1 = x_2\sqrt{2} + y_2$ vale a dire $(x_1 - x_2)\sqrt{2} = y_2 - y_1$. Ad esempio $(\sqrt{2} - 0)\sqrt{2} = 2 - 0$ e quindi $(\sqrt{2}, 0) \neq (0, 2)$ hanno la stessa immagine. Allora f non è iniettiva. $\forall r \in \mathbb{R}$, abbiamo $r = \frac{r}{\sqrt{2}}\sqrt{2} + 0 = f\left(\left(\frac{r}{\sqrt{2}}, 0\right)\right)$ e quindi f è suriettiva.

A. Ardizzoni Algebra 1 17 / 23

② Visto che $f: \mathbb{R} \times \mathbb{Z} \to \mathbb{R}, (x,y) \mapsto x\sqrt{2} + y$, abbiamo $f(A) = \{f(z) \mid z \in A\} = \{f((\sqrt{2},a)) \mid a \in \mathbb{Z}\} = \{2 + a \mid a \in \mathbb{Z}\} = \mathbb{Z}.$

3 Abbiamo visto che f non è iniettiva. Pertanto non è invertibile. Allora non esiste f^{-1} . Invece esiste sempre la controimmagine:

$$f^{-1}(0) = f^{-1}(\{0\}) = \{(x,y) \in \mathbb{R} \times \mathbb{Z} \mid f((x,y)) = 0\}.$$

Ora f((x,y))=0 significa $x\sqrt{2}+y=0$ da cui $x=-\frac{y}{\sqrt{2}}$. Allora $f^{-1}(0)=\{(-\frac{y}{\sqrt{2}},y)\mid y\in\mathbb{Z}\}$. Invece:

$$f^{-1}(\mathbb{Z}) = \{(x,y) \in \mathbb{R} \times \mathbb{Z} \mid f((x,y)) \in \mathbb{Z}\}.$$

Ora $f((x,y)) \in \mathbb{Z}$ significa

$$\exists z \in \mathbb{Z}, x\sqrt{2} + y = z \Leftrightarrow \exists z \in \mathbb{Z}, x\sqrt{2} = \overbrace{z - y}^{w} \Leftrightarrow \exists w \in \mathbb{Z}, x\sqrt{2} = w.$$

Quindi
$$f^{-1}(\mathbb{Z}) = \{(\frac{w}{\sqrt{2}}, y) \mid w, y \in \mathbb{Z}\}.$$

Assiomi di Peano e dimostrazione per induzione

Finora abbiamo usato l'insieme $\mathbb N$ dei numeri naturali senza introdurlo perché già visto scuola. Vogliamo ora discutere come questo insieme possa essere definito in modo assiomatico attraverso i cosiddetti Assiomi di Peano, pubblicati nel 1889.

(Assiomi di Peano)

L'insieme $\mathbb N$ è caratterizzato dai seguenti assiomi:

- P1) esiste un elemento 0 in \mathbb{N} detto zero;
- P2) esiste una funzione iniettiva $s : \mathbb{N} \to \mathbb{N}$ detta successore tale che $0 \notin \operatorname{Im}(s)$;
- P3) se $X \subseteq \mathbb{N}$ è tale che $0 \in X$ e per ogni $\underline{n} \in X$ anche $\underline{s}(\underline{n}) \in X$ allora deve risultare $X = \mathbb{N}$.

L'assioma P1 garantisce che $\mathbb{N} \neq \emptyset$. L'assioma P2 dice che s è iniettiva ma non suriettiva: come vedremo più avanti, questo implica che \mathbb{N} non è un insieme finito. L'assioma P3 è detto anche principio di induzione.

Il principio di induzione implica che gli elementi

$$0, s(0), s(s(0)), s(s(s(0))), \dots$$
 (4)

comprendono tutti gli elementi di \mathbb{N} . Infatti l'insieme X i cui elementi sono gli elementi di \mathbb{N} che appaiono in (4) soddisfa le richieste dell'assioma P3: $0 \in X$ e per costruzione X contiene il successore di ogni suo elemento. Gli elementi in (4) li indichiamo così

$$0, \quad \underbrace{s(0)}_{1}, \quad \underbrace{s(s(0))}_{2}, \quad \underbrace{s(s(s(0)))}_{3}, \quad \dots \qquad \downarrow$$

$$0, \quad \underbrace{s(0)}_{1}, \quad \underbrace{s(s(0))}_{1}, \quad \underbrace{s(s(0))}_{$$

Possiamo dunque scrivere

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}. \qquad \qquad (\bigcirc_{i} s(o)_{i} s(s(o))_{i} s(s(o))_$$

Notiamo inoltre che

$$1 = s(0), \quad 2 = s(1), \quad 3 = s(2), \quad \dots$$

eccetera.

<u>SOMMA</u>. Una volta definito l'insieme $\mathbb N$ possiamo definire la somma m+m' di numeri naturali m,m'. Fissato $m\in\mathbb N$, allora m' potrà essere 0 oppure il successore s(n) di un altro numero n. Distinguiamo dunque questi due casi. Nel primo caso si definisce

$$m + 0 := m$$
.

Nel secondo caso, dando per noto m + n, si definisce

$$m+s(n):=s(m+n).$$

Quello appena dato è un esempio di definizione ricorsiva (il cui fondamento teorico si può dimostrare a partire dal principio di induzione).

Chiaramente, come risulta subito ponendo n=0 nell'ultima formula, la somma è definita in modo che risulti s(m)=m+1 per ogni $m\in\mathbb{N}$.

PRODOTTO. Il prodotto è definito similmente ponendo

$$m \cdot 0 := 0$$
 e $m \cdot s(n) := m \cdot n + m$.

Teorema (Dimostrazione per induzione)

Sia $\mathcal{P}(n)$ una proposizione dipendente da un numero naturale n. Supponiamo che

• PASSO INIZIALE o BASE:

$$\mathscr{P}(0)$$
 è vera.

• PASSO INDUTTIVO: per ogni numero naturale n, se $\mathscr{P}(n)$ è vera allora $\mathscr{P}(n+1)$ è vera.

Allora $\mathscr{P}(n)$ è vera per tutti i numeri naturali n, in simboli: $\forall n \in \mathbb{N}, \mathscr{P}(n)$.

Proof.

Sia $X \subseteq \mathbb{N}$ l'insieme dei numeri naturali per cui $\mathscr{P}(n)$ è vera.

- Il passo iniziale dice che $0 \in X$.
- Il passo induttivo dice che se $n \in X$ allora $n+1=s(n) \in X$.

Dunque per il principio di induzione $X = \mathbb{N}$. In altre parole $\mathcal{P}(n)$ è vera per ogni $n \in \mathbb{N}$.

A. Ardizzoni Algebra 1 22 / 23

Effetto domino

Visualizziamo la dimostrazione per induzione tramite l'effetto domino. Immaginiamo delle tessere del domino allineate e numerate (da 0). Indichiamo con $\mathcal{P}(n)$ l'affermazione "la tessera n cade". Affinché cadano tutte occorre accertarsi che

- (PASSO INIZIALE) la prima tessera cada ($\mathcal{P}(0)$ è vera);
- (PASSO INDUTTIVO) ogni tessera che cade faccia cadere quella successiva $(\forall n \in \mathbb{N}, \mathscr{P}(n) \Rightarrow \mathscr{P}(n+1))$.

