Лабораторная работа №17

Дисциплина - имитационное моделирование

Пронякова О.М.

03 апреля 2025

Российский университет дружбы народов, Москва, Россия

Докладчик

- Пронякова Ольга Максимовна
- студент НКАбд-02-22
- факультет физико-математических и естественных наук
- Российский университет дружбы народов

Создание презентации

Реализовать с помощью gpss модели работы вычислительного центра, аэропорта и морского порта.

Моделирование работы вычислительного центра На вычислительном центре в обработку принимаются три класса заданий А. В и С. Исходя из наличия оперативной памяти ЭВМ задания классов А и В могут решаться одновременно, а задания класса С монополизируют ЭВМ. Задачи класса С загружаются в ЭВМ. если она полностью свободна. Задачи классов А и В могут дозагружаться к решающей задаче. Смоделируем работу ЭВМ за 80 ч. и определим её загрузку. Построим модель, Задается хранилище ram на две заявки. Затем записаны три блока: первые два обрабатывают задания класса A и В. используя один элемент ram. а третий обрабатывает задания класса С. используя два элемента ram. Также есть блок времени генерирующий 4800 минут (80 часов). Из отчета увидим, что загруженность системы равна 0.994.(рис.1), (рис.2).

Untitled Model 1

ram STORAGE 2: GENERATE 20,5 QUEUE class A ENTER ram, 1 DEPART class A ADVANCE 20,5 LEAVE ram, 1 TERMINATE 0 GENERATE 20,10 QUEUE class A ENTER ram, 1 DEPART class A ADVANCE 21,3 LEAVE ram, 1 TERMINATE O GENERATE 28,5 QUEUE class A ENTER ram, 2 DEPART class A ADVANCE 28,5 LEAVE ram. 2 TERMINATE 0 GENERATE 4800 TERMINATE 1 START 1

1000/

QUEUE CLASS_A	1			CONT.	ENTRY 648		RY(0) 4		.CONT	. AVE TIN		VE.(-0	RETRY 0
STORAGE RAM		I	CAP.	REM.	MIN.	MAX.		IES	AVL.	AVE.C. 1.988	UTIL. 0.994		DELAY 181
FEC XN 650	PRI 0			.512	ASSE 650)	URRENT 0		EXT 1	PARAMETER	R V	ALUE	
636 651 637	0		4807	.704 .869	636 651 637		5 0 12	1:					
652 653	0			.506	652 653		0	2	8				

=100%

Модель работы аэропорта Самолёты прибывают для посадки в район аэропорта каждые 10 ± 5 мин. Если взлетно-посадочная полоса свободна, прибывший самолёт получает разрешение на посадку. Если полоса занята, самолет выполняет полет по кругу и возвращается в аэропорт каждые 5 мин. Если после пятого круга самолет не получает разрешения на посадку, он отправляется на запасной аэродром. В аэропорту через каждые 10 ± 2 мин к взлетно -посадочной полосе выруливают готовые к взлёту самолёты и получают разрешение на взлёт, если полоса свободна. Для взлета и посадки самолёты занимают полосу ровно на 2 мин. Если при свободной полосе одновременно один самолёт прибывает для посадки, а другой – для взлёта, то полоса предоставляется взлетающей машине. Требуется: • выполнить моделирование работы аэропорта в течение суток: подсчитать количество самолётов. которые взлетели, сели и были направлены на запасной аэродром: • определить коэффициент загрузки взлетно-посадочной полосы.

Построим модель. Блок для влетающих самолетов имеет приоритет 2, для прилетающий приоритет 1 (чем выше значение, тем выше приоритет). Происходит проверка: если полоса пустая, то заявка просто отрабатывается, если нет, то происходит переход в блок ожидания. При ожидании заявка проходит в цикле 5 раз, каждый раз проверяется не освободилась ли полоса, если освободилась – переход в блок обработки, если нет – самолет обрабатывается дополнительным обработчиком отправления в запасной аэродром. Время задаем в минутах – 1440 (24 часа). После запуска симуляции получаем отчёт(рис.3), (рис.4).

```
GENERATE 10.5...1
ASSIGN 1.0
QUEUE arrival
landing GATE NU runway, wait
SEIZE runway
DEPART arrival
ADVANCE 2
RELEASE runway
TERMINATE 0
: ожилание
wait TEST L pl,5, goaway
ADVANCE 5
ASSIGN 1+.1 :если вначение атрибута меньше 5.
: то счетчик прибавляет 1 (круг) и илет попытка приземления
TRANSFER O, landing
goaway SEIZE reserve
DEPART arrival
RELEASE reserve
TERMINATE O
;взлет
GENERATE 10.2...2
OUEUE takeoff
SEIZE runway
DEPART takeoff
ADVANCE 2
RELEASE runway
TERMINATE O
GENERATE 1440
TERMINATE 1
START 1
```

9/21

	~	*/		Ψ.	~	
	9	TERMINATE	146	0	0	
WAIT	10	TEST	38	0	0	
	11	ADVANCE	38	0	0	
	12	ASSIGN	38	0	0	
	13	TRANSFER	38	0	0	
GOAWAY	14	SEIZE	0	0	0	
	15	DEPART	0	0	0	
	16	RELEASE	0	0	0	
	17	TERMINATE	0	0	0	
	18	GENERATE	142	0	0	
	19	QUEUE	142	0	0	
	20	SEIZE	142	0	0	
	21	DEPART	142	0	0	
	22	ADVANCE	142	0	0	
	23	RELEASE	142	0	0	
	24	TERMINATE	142	0	0	
	25	GENERATE	1	0	0	
	26	TERMINATE	1	0	0	
FACILITY	ENTRIE	sI util. AVE	. TIME AVAIL. OW	NER PEND IN	TER RETRY	DELA'
RUNWAY	288	0.400	2.000 1	0 0	0 0	
QUEUE	MAX	CONT. ENTRY EN	NTRY(0) AVE.CONT.	AVE.TIME	AVE.(-0)	RETR'
TAKEOFF	1	0 142	114 0.017	0.173	0.880	0
ARRIVAL	2	0 146	114 0.132	1.301	5.937	0

10/21

1000/]

Взлетело 142 самолета, село 146, а в запасной аэропорт отправилось 0. В запасной аэропорт не отправились самолеты, поскольку процессы обработки длятся всего 2 минуты, что намного быстрее, чем генерации новых самолетов. Коэффициент загрузки полосы равняется 0.4. полоса большую часть времени не используется. Моделирование работы морского порта Морские суда прибывают в порт каждые часов. В порту имеется N причалов. Каждый корабль по длине занимает М причалов и находится в порту часов. Требуется построить GPSS-модель для анализа работы морского порта в течение полугода, определить оптимальное количество причалов для эффективной работы порта. Рассмотрим два варианта исходных данных. Построим модель для первого варианта(рис.5), (рис.6).

Untitled Model 1

pier STORAGE 10 GENERATE 20,5 ; моделирование занятия причала OUEUE arrive ENTER pier, 3 DEPART arrive ADVANCE 10.3 LEAVE pier, 3 TERMINATE O GENERATE 24 TERMINATE 1 START 180

1000/1

QUEUE ARRIVE			AVE.CONT.		
STORAGE PIER			RIES AVL. 645 l		

При запуске с 10 причалами видно, что судна обрабатываются быстрее, чем успевают приходить новые, так как очередь не набирается. Кроме того загруженность причалов очень низкая.Соответственно, установив наименьшее возможное число причалов – 3, получаем оптимальный результат, что видно на отчете(рис.7).

UEUE	MAX	CONT.	ENTR:	Y ENTRY	(0) AVE	.CONT.	AVE.TI	ME A	VE. (-0)	RETRY
ARRIVE	1	0	215	5 21	5 0	.000	0.0	00	0.000	0
						I				
TORAGE PIER	CAP.	REM.	MIN.	MAX.	ENTRIES	AVL.	AVE.C.	UTIL.	RETRY	DELAY
PIER	3	0	0	3	645	1	1.485	0.495	0	0

Построим модель для второго варианта(рис.8), (рис.9).

Untitled Model 1

```
pier STORAGE 6
GENERATE 30,10
; моделирование занятия причала
QUEUE arrive
ENTER pier, 2
DEPART arrive
ADVANCE 8,4
LEAVE pier, 2
TERMINATE 0
GENERATE 24
TERMINATE 1
START 180
```

1000/

	2	155	TIME	100	,	,	v	
QUEUE ARRIVE	MAX 1	CONT.		AVE.CONT.			VE.(-0)	
STORAGE PIER	CAF	. REM.	MIN.	RIES AVL. 286 1				DELAY 0

При запуске с 6 причалами видно, что судна обрабатываются быстрее, чем успевают приходить новые, так как очередь не набирается. Кроме того загруженность причалов очень низкая. Соответственно, установив наименьшее возможное число причалов – 2, получаем оптимальный результат, что видно из отчета(рис.10).

QUEUE ARRIVE							AVE.TIN		VE.(-0)	
STORAGE	CAP.	REM.	MIN.	MAX. E	NTRIES	AVL.	AVE.C.	UTIL.	RETRY	DELAY
PIER	2	0	0	2	286	1	0.524	0.262	0	0

Выводы

В результате выполнения данной лабораторной работы я реализовала с помощью gpss: • модель работы вычислительного центра; • модель работы аэропорта; • модель работы морского порта. :::