Metodi Numerici A.A. 2020-2021

Esercitazione N. 4 Metodo di eliminazione gaussiana e sua equivalente fattorizzazione - Codici

Obiettivo

Preparazione dei codici relativi all'applicazione del metodo di eliminazione gaussiana e sua equivalente fattorizzazione con/senza pivoting e sperimentazione.

Codici

Si consideri il sistema lineare Ax = b, con $A \in \mathbb{R}^{n \times n}$, $b, x \in \mathbb{R}^n$.

1. Si implementi una function che risolve il sistema lineare nel caso di matrice A triangolare superiore con il metodo della risoluzione backward

$$x_i = \left(b_i - \sum_{j=i+1}^{n-1} a_{ij} x_j\right) / a_{ii}, \quad i = n-1, n-2, ..., 0.$$

2. Si implementi una function che risolve il sistema lineare nel caso di matrice A triangolare inferiore con il metodo della risoluzione forward

$$x_i = \left(b_i - \sum_{j=0}^{i-1} a_{ij} x_j\right) / a_{ii}, \quad i = 0, 1, ..., n-1.$$

- 3. Si implementi una function che risolve il sistema lineare nel caso di fattorizzazione PA = LU assegnata, combinando i metodi di risoluzione forward e backward precedentemente implementati.
- 4. Si implementi una function che utilizzi il metodo di eliminazione gaussiana secondo l'algoritmo base

per
$$k = 0: n - 1$$
,
per $i = k + 1: n - 1$,
 $m_{ik} = \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}}$ t.c. $a_{ik}^{(k+1)} = 0$
per $j = k + 1: n - 1$,
 $a_{ij}^{(k+1)} = a_{ij}^{(k)} - m_{ik}a_{kj}^{(k)}$

o secondo la sua versione **vettorizzata**

per ottenere le matrici della fattorizzazione LU.

5. Si consideri una variante della function al punto 4, in cui si applica la tecnica del pivot parziale

determinare
$$a_{rpiv,k}$$
 t.c. $|a_{rpiv,k}| = \max_{i=k,...,n} |a_{i,k}|$

e scambiare la riga rpiv con la riga k se necessario,

e si restituiscono in output le corrispondenti matrici della fattorizzazione PA = LU.

Test da eseguire

1. Al variare di $n = 100, \ldots, 200$ costruire la matrice

$$A[i,j] = sqrt(2/(n+1)) * sin((i+1) * (j+1) * \pi/(n+1))$$

i,j=0,...,n-1 di dimensione $n \times n$, definire la soluzione xesatta = $(1:n)^T$ e calcolare il termine noto come b=A·xesatta. Utilizzando le tre diverse function implementate calcolare xnopivot, xparziale, e confrontarli con xesatta usando i grafici in scala semilogaritmica dell'errore relativo al variare di n. Confrontare anche xpython=scipy.linalg.solve(A,b) con xesatta. Inoltre, per verificare che il numero di operazioni è proporzionale a n^3 , con n dimensione del sistema, riportare in un grafico in scala semilogaritmica il tempo impiegato a risolvere il sistema al variare di n. Il grafico dovrebbe essere (asintoticamente) una retta con pendenza 3. Per verificarne la pendenza, disegnare contemporaneamente anche la curva n^3 e controllare che siano parallele. La strategia di pivot non dovrebbe influenzare il risultato.

2. Calcolare la soluzione dei seguenti sistemi lineari Ax = b usando il metodo di fattorizzazione LU senza pivoting e con pivoting parziale.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 1 \\ 1 & 3 & 5 \end{bmatrix}, \qquad b = \begin{bmatrix} 6 \\ 1 \\ 9 \end{bmatrix}$$

e

$$A = \begin{bmatrix} 1 & 1 & 0 & 3 \\ 2 & 1 & -1 & 1 \\ -1 & 2 & 3 & -1 \\ 3 & -1 & -1 & 2 \end{bmatrix}, \qquad b = \begin{bmatrix} 5 \\ 3 \\ 3 \\ 3 \end{bmatrix}.$$

In entrambi i casi la soluzione esatta ha componenti $x_i = 1$ per ogni i = 1, ..., n. Come è possibile giustificare a priori l'insuccesso del metodo di fattorizzazione LU in assenza di pivot?

3. Costruire una function per il calcolo della soluzione di una generale equazione AX = B, con X, B matrici, che usi la fattorizzazione LU con pivoting parziale. Utilizzarla poi per il calcolo dell'inversa delle matrici non singolari

$$A = \begin{bmatrix} 3 & 5 & 7 \\ 2 & 3 & 4 \\ 5 & 9 & 11 \end{bmatrix}, \qquad A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & -4 & 6 & 8 \\ -1 & -2 & -3 & -1 \\ 5 & 7 & 0 & 1 \end{bmatrix},$$

confrontando i risultati ottenuti con l'output della funzione scipy.linalg.inv(A). Ripetere l'esercizio utilizzando nella function per il calcolo di X la fattorizzazione LU senza pivoting. Che cosa si osserva?

4. Sia assegnato il sistema lineare Ax = b con

$$A = \begin{bmatrix} \varepsilon & 1 \\ 1 & 1 \end{bmatrix}, \qquad b = \begin{bmatrix} 2+\varepsilon \\ 4 \end{bmatrix}$$
 dove $\varepsilon > 0$.

Dopo aver osservato che quando $\varepsilon = 0$ tale sistema ha soluzione $[2,2]^T$, risolvere il sistema senza far uso della strategia pivotale per valori di ε pari a 10^{-k} con k=2:2:18. Confrontare i risultati ottenuti con le soluzioni trovate per i medesimi valori di ε quando viene applicata la strategia pivotale.

5. Sia assegnato il sistema lineare Ax = b con

$$A = \begin{bmatrix} 3 & 1 & 1 & 1 \\ 2 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 \end{bmatrix}, \qquad b = \begin{bmatrix} 4 \\ 1 \\ 2 \\ 4 \end{bmatrix},$$

la cui soluzione esatta è $x = [1, -1, 0, 2]^T$. Calcolare la fattorizzazione LU di A e osservare la presenza di fill-in nei fattori L e U. Osservare come l'utilizzo di pivot parziale determini moltiplicatori m_{ik} tali che $|m_{ik}| \leq 1$ ed una minor crescita del modulo degli elementi della matrice triangolare superiore U. Analizzare inoltre la fattorizzazione LU risultante nel caso del sistema lineare ottenuto permutando nella matrice A la prima riga con l'ultima, la prima colonna con l'ultima e nel termine noto la prima componente con l'ultima:

$$A = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2 \\ 1 & 1 & 1 & 3 \end{bmatrix}, \qquad b = \begin{bmatrix} 4 \\ 1 \\ 2 \\ 4 \end{bmatrix}.$$

La soluzione esatta di quest'ultimo è $x = [2, -1, 0, 1]^T$ come atteso considerando la permutazione effettuata sulle colonne della matrice A.

6. Dato n = 100, calcolare $Q = I_n - 2 \cdot vv^T$, dove I_n é la matrice identitá di ordine n e v é un vettore colonna di n componenti formato da numeri casuali ed avente norma 2 unitaria. Quindi, per k = 1, ..., 20, porre

$$D = I_n; D[n-1, n-1] = 10^k; A = Q \cdot D$$

(Tale costruzione produce una matrice A che abbia esattamente numero di condizionamento 10^k in norma 2).

Al variare di k e quindi del numero di condizionamento di A, studiare l'errore del metodo di eliminazione gaussiana senza pivoting e con pivoting parziale nella risoluzione del sistema lineare Ax = b, dove b=A·xesatta. e xesatta = $(1,1,\ldots,1)^T$

7. Per valori di n = 4:6:40, si consideri il sistema lineare $A_n x = b$ con A_n matrice di Hankel di ordine n di elementi

$$a_{i,n-1+k-i}^{(n)} = \left\{ \begin{array}{ll} 2^{k+1} & \text{se } k > 0, \\ 2^{1/(2-k-1)} & \text{se } k \leq 0, \end{array} \right. \qquad i = 0,...,n-1, \quad k = i+1-n,...,i,$$

e b scelto in modo che risulti $x = [1, 1, ..., 1]^T$. Si risolva tale sistema con il metodo di fattorizzazione LU con massimo pivot parziale e il metodo di fattorizzazione QR (Q,R=scipy.linalg.qr(A)). Calcolare gli errori relativi $||\delta x||_2/||x||_2$ da cui sono affette le soluzioni calcolate con i due metodi e produrre, al variare di n, un grafico in scala logaritmica (matplotlib.plyplot.loglog) degli errori relativi calcolati. Che cosa si osserva?

8. Ripetere l'esercizio precedente per risolvere il sistema lineare Ax = b con $A \in b$ così definiti:

$$a_{i,j}^{(n)} = \begin{cases} 1 & \text{se } i = j \text{ oppure se } j = n-1, \\ -1 & \text{se } i > j, \\ 0 & \text{altrimenti} \end{cases} b = A \cdot [1, ..., 1]^T,$$

per n=48:2:58 e b scelto in modo che risulti $x=[1,1,...,1]^T$. Che cosa si osserva?