Лабораторная работа № 6 Разработка диалогового приложения на QT

- 1. Разработать приложение для рисования графиков функции.
- 2. Продумать и разработать интерфейс для ввода параметров, содержащихся в заданных формулах.
- 3. Продумать и разработать интерфейс для определения масштаба рисования, определения границ области.
- 4. С помощью имеющихся элементов управления организовать диалог с пользователем приложения, для ввода значений параметров.
- 5. Изменения параметров прорисовки должны автоматически к изменению графика функции.
- 6. В контекстной области окна также должна быть отражена текстовая информация о параметрах прорисовки (график должен быть снабжен текстовой информацией).

Задача 1. Построить графики функции, заданной параметрически, при разных значениях параметров (должна быть реализована возможность вывода нескольких графиков при разных значениях параметров)

Задача 2. Методом деления отрезка пополам найти с точностью ε решение уравнения: f(x) = 0, при этом известно, что корень принадлежит отрезку [a, b].

Построить график функции и столбчатую диаграмму зависимости числа итераций метода от точности є.

Варианты	Индивидуальные задания	
_	Задача 1	Задача 2
1, 8	$x = t^2 - at,$	$f(x) = x^3 + x^2 - 3$
	$y = t^2 + at$	[a, b] = [0.6, 1.4]
2, 9	$x = a\cos^3 t,$ $y = \sin t (a > 0)$	$x^{5} - x - 0.2 = 0$ $[a, b] = [0.9, 1.1]$
3, 10	$x = te^{at},$ $y = t e^{-at}$	$5x^3 - x - 1 = 0$ [0.6, 0.8]
4, 11	x = a(sht - t), $y = a(cht - 1)$ $(a > 0)$	$x^3 - 2x - 5 = 0$ [1.9, 2.93]
5, 12	$x = a\cos(t) + b\sin(t),$ $y = a\cos(t) - b\sin(t)$ (a,b > 0)	$x^3 + x^2 - 3 = 0$ [0.6, 1.4]

 $^{^1}$ Построение приближений к корню уравнения $f(x)\!\!=\!\!0$ следует заканчивать, как только будет получено такое приближение \bar{x} , для которого $|f(\bar{x})|\!<\!\varepsilon$

6, 13	$x = a\cos(t) + \sin(bt),$ $y = a\cos(t) - \sin(bt)$ (a,b > 0)	$x^3 + x = 1000$ [9.1, 10.0]
7, 14	$x = \sin(at + \frac{\pi}{2}),$ $y = \sin(bt)$ $(a, b > 0)$	$x^4 + 2x^3 - x - 1 = 0$ [0, 1].