The Pumping Lemma Context-Free Languages

Generates an infinite number of different strings

Example: $S \rightarrow AB$

 $A \rightarrow aBb$

Take an infinite context-free language

$$\begin{array}{c}
* \\
B \Rightarrow aBbbb \\
B \Rightarrow aBbbb \\
* \\
S \Rightarrow abbB \\
* \\
B \Rightarrow aBbbb \\
* \\
S \Rightarrow abb(a)^2 b(bbb)^2 \\
* \\
S \Rightarrow abb(a)^2 B(bbb)^2$$

L

Let
$$G$$
 be the grammar of $L - \{\lambda\}$

Take G so that L has no unit-productions no λ -productions

Let m=p+1

Example $G: S \to AB$ $A \to aBb$ $B \to Sb$

ole
$$G: S \to AB$$

 $A \to aBb$
 $B \to Sb$
 $p = 4 \times 3 = 12$
 $m = p + 1 = 13$

p = (Number of productions) X

(Largest right side of a production)

 $B \rightarrow b$

14

Take a string
$$w \in L(G)$$
 with length $|w| \ge m$
$$v_1 \Rightarrow v_2 \Rightarrow \cdots \Rightarrow v_k \Rightarrow w$$
 We will show:
$$s = v_1$$
 in the derivation of w a variable of s is repeated

$$v_1 \Rightarrow v_2 \Rightarrow \cdots \Rightarrow v_k \Rightarrow w$$

 $p < k \cdot f$

 $v_1 \Rightarrow v_2 \Rightarrow \cdots \Rightarrow v_k \Rightarrow w$

Number of productions in grammar

 $|w| < k \cdot f$

 $|v_i| < |v_{i+1}| + f \leftarrow$

 $m \le |w| \le k \cdot f$ \longrightarrow $p < k \cdot f$

 $w \in L(G)$

Derivation of string W

 $S \Rightarrow \cdots \Rightarrow a_1 A a_2 \Rightarrow \cdots \Rightarrow a_3 A a_4 \Rightarrow \cdots \Rightarrow w$

 $|w| \ge m$

Some variable is repeated

$A \Rightarrow vAy$ $A \Rightarrow vAy$ $A \Rightarrow x$ $S \Rightarrow uAz$ This string is also generated: This string is also generated:

We know:

 $S \Rightarrow uAz \Rightarrow uxz$ $S \Rightarrow uAz \Rightarrow uvAyz \Rightarrow uvxyz$

We know:

The original $w = uv^1xy^1z$

We know:

 uv^2xy^2z

We know:

 uv^3xy^3z

 $\Rightarrow uvvvAyyyz \Rightarrow uvvvxyyyz$

We know: Therefore, any string of the form $A \Rightarrow x$ $A \Rightarrow vAy$ $S \Rightarrow uAz$ This string is also generated: $S \stackrel{*}{\Rightarrow} uAz \stackrel{*}{\Rightarrow} uvAyz \stackrel{*}{\Rightarrow} uvvAyyz \stackrel{*}{\Rightarrow}$ $\stackrel{*}{\Rightarrow} uvvvAyyyz \stackrel{*}{\Rightarrow} ...$ $\stackrel{*}{\Rightarrow} uvvv\cdots vAy\cdots yyyz \stackrel{*}{\Rightarrow}$ $\stackrel{*}{\Rightarrow} uvvv\cdots vxy\cdots yyyz$

 $uv^i xy^i z$ is generated by the grammar G Therefore, knowing that $uvxyz \in L(G)$ we also know that $uv^i x y^i z \in L(G)$ $L(G) = L - \{\lambda\}$ Observation: $|vxy| \le m$

Since A is the last repeated variable

For infinite context-free language Lthere exists an integer m such that

for any string $w \in L$, $|w| \ge m$

and it must be:

The Pumping Lemma:

we can write
$$w = uvxyz$$

with lengths $|vxy| \le m$ and $|vy| \ge 1$

 $uv^i x y^i z \in L$, for all $i \ge 0$

we can write w = uvxyz

Since there are no unit or λ -productions

Applications of The Pumping Lemma

Non-context free languages

$L = \{a^n b^n c^n : n \ge 0\}$ Theorem: The language $L = \{a^n b^n c^n : n \ge 0\}$ Assume for contradiction that Lis **not** context free is context-free Proof: Use the Pumping Lemma Since L is context-free and infinite for context-free languages we can apply the pumping lemma

46

 $L = \{a^n b^n c^n : n \ge 0\}$

 $w = a^m b^m c^m$

such that:

Pick any string
$$w \in L$$
 with length $|w| \ge m$

We pick:
$$w = a^m b^m c^m$$

with lengths
$$|vxy| \le m$$
 and $|vy| \ge 1$

We can write: w = uvxyz

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge$$

 $w = a^m b^m c^m$

 $L = \{a^n b^n c^n : n \ge 0\}$

Pumping Lemma says:

 $uv^i x y^i z \in L$ for all $i \ge 0$

We examine
$$\underline{all}$$
 the possible locations of string vxy in w

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$w = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$w = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$w = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$w = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$w = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$w = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$w = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$uvxy \quad |vxy| \le m \quad |vy| \ge 1$$

$$uvxy \quad |vxy| \le m \quad |vy| \ge 1$$

$$uvxy \quad |vxy| \le m \quad |vy| \ge 1$$

$$uvxy \quad |vxy| \le m \quad |vy| \ge 1$$

$$L = \{a^nb^nc^n : n \ge 0\}$$

$$w = a^mb^mc^m$$

$$w = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$k \ge 1$$

$$m+k \quad m \quad m$$

$$aaaaaaa...aaaaaa bbb...bbb ccc...ccc$$

$$u \quad v^2xy^2 \quad z$$

$$L = \{a^nb^nc^n : n \ge 0\}$$

$$w = a^mb^mc^m$$

$$w = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$k \ge 1$$

$$m+k \quad m \quad m$$

$$aaaaaaa...aaaaaa bbb...bbb ccc...ccc$$

$$u \quad v^2xy^2 \quad z$$

$$L = \{a^nb^nc^n : n \ge 0\}$$

$$w = a^mb^mc^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$k \ge 1$$

$$L = \{a^nb^nc^n : n \ge 0\}$$

$$w = a^mb^mc^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |v|$$

$$w = uvxyz \qquad |vxy| \le m \qquad |v|$$

$$k \ge 1$$

$$Case 2: vxy \text{ is within } b^m$$

$$aaa...aaa bbb...bbb ccc...ccc$$

$$Contradiction!!!$$

$$L = \{a^nb^nc^n : n \ge 0\}$$

$$w = a^mb^mc^m$$

$$w = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$w = a^mb^mc^m$$

$$w = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$Case 2: Similar analysis with case 1$$

$$m \quad m \quad m$$

$$aaa...aaa bbb...bbb ccc...ccc$$

$$u \quad vxy \quad z$$

$$u \quad vxy \quad z$$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$w = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$w = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$w = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$w = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$w = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$w = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$w = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$u = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$u = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$u = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$u = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$u = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$u = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$u = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

in.

$$L = \{a^nb^nc^n : n \ge 0\}$$

$$w = a^mb^mc^m$$

$$w = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$w = a^mb^mc^m$$

$$w = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$w = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$w=a^mb^mc^m$$
 $w=uvxyz$ $|vxy| \le m$ $|vy| \ge 1$ $w=uvxyz$ $|vxy| \le m$ $|vy| \ge 1$

Case 4: From Pumping Lemma: $uv^2xy^2z \in L$ $k_1+k_2 \ge 1$
 $w=a^mb^mc^m$ $w=uvxyz$ $|vxy| \le m$ $|vy| \ge 1$

Case 4: From Pumping Lemma: $uv^2xy^2z \in L$ $k_1+k_2 \ge 1$

 $L = \{a^n b^n c^n : n \ge 0\}$

 $m + k_1 \qquad m + k_2 \qquad m$ aaa...aaaaaaaa bbbbbbbb...bbb ccc...ccc $uv^2 xy^2 z = a^{m+k_1} b^{m+k_2} c^m \notin L$

$$L = \{a^nb^nc^n : n \ge 0\}$$

$$w = a^mb^mc^m$$

$$w = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$w = a^mb^mc^m$$

$$w = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$w = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$w = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$x = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$w=a^mb^mc^m$$

 $w=uvxyz$ $|vxy| \le m$ $|vy| \ge 1$ $w=a^mb^mc^m$
 $w=uvxyz$ $|vxy| \le m$ $|vy| \ge 1$ $w=uvxyz$ $|vxy| \le m$ $|vxy| \ge m$

$$w = uvxyz$$
 $|vxy| \le m$ $|vy| \ge 1$

Case 4: From Pumping Lemma: $uv^2xy^2z \in \mathbb{R}$

 $L = \{a^n b^n c^n : n \ge 0\}$

 $w = a^m b^m c^m$

$$w = a^m b^m c^m$$

 $w = uvxyz$ $|vxy| \le m$ $|vy| \ge 1$ $|vxy| \le m$ $|vy| \ge 1$
Case 4: Possibility 3: v contains only a
 y contains a and b
 m
 m
 m
 m
 $aaa...aaa bbb...bbb ccc...ccc$ Similar analysis with Possibility 2

 $L = \{a^n b^n c^n : n \ge 0\}$

$$L = \{a^{n}b^{n}c^{n} : n \ge 0\}$$

$$w = a^{m}b^{m}c^{m}$$

$$w = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$w = a^{m}b^{m}c^{m}$$

$$w = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$w = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$w = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$w = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$w = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$w = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$w = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$u = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$u = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$u = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$u = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$u = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$u = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

$$u = uvxyz \quad |vxy| \le m \quad |vy| \ge 1$$

There are no other cases to consider (since $|vxy| \le m$, string vxy cannot overlap a^m , b^m and c^m at the same time)

Therefore: The original assumption that $L = \{a^n b^n c^n : n \ge 0\}$

In all cases we obtained a contradiction

Conclusion: L is not context-free

is context-free must be wrong

- Keep the following in mind when using the context-free pumping lemma when w = uvxyz:
 - Both v and y must be pumped at the same time.
 - v and y need not be contiguous in the string.
 - One of v and y may be empty.
 - vxy may be anywhere in the string.