AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application.

LISTING OF CLAIMS

- (currently amended) A disk controller for implementing efficient disk I/O for a computer system, comprising:
- a bus interface for interfacing with a processor and a system memory of the computer system;
 - a disk I/O engine coupled to the bus interface;
 - a bus master controller coupled to the disk I/O engine;
 - a bypass register coupled to the bus master controller, wherein the

bypass register <u>has more than 8 bits</u> is memory mapped and implements aggregation of <u>aggregates</u> disk transaction information <u>from memory mapped data transfers</u> from a host CPU by using a memory mapped data transfer;

an arbiter couple to the bus master controller and the disk I/O engine, to coordinate data transfers within the disk controller;

a chain memory coupled to the disk I/O engine for buffering a plurality of CPBs to extend a number of disk transactions scheduled for execution by the disk I/O engine; and

a device interface coupled to the disk I/O engine for interfacing the disk I/O engine with a disk drive, wherein the disk I/O engine is configured to cause a start up of the disk drive upon receiving a disk start up command from the processor, the start up

NVID-P000828 Serial No. 10/725,663 command configured to hide a start latency of the disk drive, the disk I/O engine further

configured to execute a disk transaction by processing the disk transaction information

from the bypass register coupled to the disk I/O engine.

2. (withdrawn) The disk controller of claim 1, wherein the bus interface is configured to

interface with the processor and the system memory of the computer system in

accordance with a hyper transport protocol.

3. (withdrawn) The disk controller of claim 1, wherein the device interface is configured

to coupled to a serial ATA interface of the disk drive.

4. (withdrawn) The disk controller of claim 1, wherein the device interface is configured

to couple to an IDE interface of the disk drive.

5. (withdrawn) The disk controller of claim 1, further comprising:

a completion status register coupled to the disk I/O engine configured to notify

the disk I/O engine and indicate a completion of a pending disk I/O command.

6. (previously presented) The disk controller of claim 1, further comprising:

a CPB pointer buffer coupled to the disk I/O engine for dynamically appending a

plurality of CPB pointers to extend to a number of disk transactions scheduled for

execution by the disk I/O engine, the CPB pointer buffers directly connected to the disk

I/O engine for control independent of the arbiter.

NVID-P000828 Serial No. 10/725,663 Examiner: Lee, Chun Art Unit: 2181 7. (canceled)

8. (currently amended) A bridge component for implementing efficient disk I/O for a

computer system, comprising:

a bus interface for interfacing with a processor and a system memory of the

computer system;

a disk controller for executing disk I/O transactions for the computer system, the

disk controller further comprising:

a disk I/O engine coupled to the bus interface;

a bus master controller coupled to the disk I/O engine;

a bypass register coupled to the bus master controller, wherein the bypass register

is memory mapped, wherein the bypass register has more than 8 bits and implements

aggregation of aggregates disk transaction information from a host CPU by using a

memory mapped data transfer;

an arbiter couple to the bus master controller and the disk I/O engine, to

coordinate data transfers within the disk controller;

a chain memory coupled to the disk I/O engine for buffering a plurality of CPBs

to extend a number of disk transactions scheduled for execution by the disk I/O engine;

and

a device interface coupled to the disk I/O engine for interfacing the disk I/O

engine with a disk drive, wherein the disk I/O engine is configured to cause a start up of

the disk drive upon receiving a disk start up command from the processor and before

completion of said start up, the disk start up command configured to hide a start latency

of the disk drive, the disk I/O engine further configured to execute a disk transaction by

4

NVID-P000828 Serial No. 10/725,663 processing the disk transaction information from the bypass register coupled to the disk

I/O engine.

9. (withdrawn) The bridge component of claim 8, wherein the bridge component includes

a plurality of disk controllers for implementing a plurality of channels for a

corresponding plurality of disk drives.

10. (withdrawn) The bridge component of claim 9, wherein at least one of the channels is

a serial AT A channel.

11. (withdrawn) The disk controller of claim 8, further comprising:

a completion status register coupled to the disk I/O engine configured

to notify the disk I/O engine and indicate a completion of a pending disk I/O

command.

12. (previously presented) The disk controller of claim 8, further comprising:

a CPB pointer buffer coupled to the disk I/O engine for dynamically appending a

plurality of CPB pointers to extend to a number of disk transactions scheduled for

execution by the disk I/O engine, the CPB pointer buffers directly connected to the disk

I/O engine for control independent of the arbiter.

13. (canceled)

NVID-P000828 Serial No. 10/725,663 Examiner: Lee, Chun Art Unit: 2181 14. (withdrawn) A computer system configured to implement efficient disk I/O, comprising:

a processor;

a system memory coupled to the processor;

a bridge component coupled to the processor; and

a disk controller coupled to the bridge component, the disk controller including a

plurality of bypass registers, wherein the processor executes software code stored in the

system memory, the software code causing the computer system to implement a method

comprising:

transferring a command from the processor to the disk controller, the command

causing a start up of a disk drive coupled to the disk controller;

preparing disk transaction information by packaging a plurality of data structures

comprising the disk transaction;

transferring the disk transaction information to the bypass registers of the disk

controller;

implementing a disk I/O, wherein the disk controller processes the disk

transaction information to control the disk drive.

15. (withdrawn) The computer system of claim 14, wherein the bridge component

includes a plurality of disk controllers for implementing a plurality of channels for a

corresponding plurality of disk drives.

16. (withdrawn) The computer system of claim 15, wherein at least one of the channels is

a serial AT A channel.

17. (withdrawn) The computer system of claim 16, further comprising:

a completion status register coupled to the disk I/O engine configured to notify

the disk I/O engine and indicate a completion of a pending disk I/O command.

18. (withdrawn) The computer system of claim 17, further comprising:

a CPB pointer buffer coupled to the disk I/O engine for dynamically appending a

plurality of CPB pointers to extend to a number of disk transactions scheduled for

execution by the disk I/O engine.

19. (withdrawn) The computer system of claim 18, further comprising:

a chain memory coupled to the disk I/O engine for buffering a plurality of CPBs

to extend to a number of disk transactions scheduled for execution by the disk I/O engine.

20. (withdrawn) The computer system of claim 19, wherein the bridge component is a

Southbridge component.

21. (currently amended) A disk controller for implementing efficient disk I/O for a

computer system, comprising:

a bus interface for interfacing with a processor and a system memory of the

computer system;

a disk I/O engine coupled to the bus interface;

a bus master controller coupled to the disk I/O engine;

a bypass register coupled to the bus master controller, wherein the

bypass register has more than 8 bits is memory mapped and implements aggregation of

aggregates disk transaction information from a host CPU by using a memory mapped

data transfer;

an arbiter couple to the bus master controller and the disk I/O engine, to

coordinate data transfers within the disk controller;

a chain memory coupled to the disk I/O engine for buffering a plurality of CPBs

to extend a number of disk transactions scheduled for execution by the disk I/O engine;

and

a device interface coupled to the disk I/O engine for interfacing the disk I/O

engine with a disk drive, wherein the disk I/O engine is configured to cause a start up of

the disk drive upon receiving a disk start up command from the processor and before

completion of said start up, the start up command configured to hide a start latency of the

disk drive, the disk I/O engine further configured to execute a disk transaction by

processing the disk transaction information from the bypass register coupled to the disk

I/O engine.

NVID-P000828 Serial No. 10/725,663