GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: January 14, 2004, 10:28:18; Search time 32.5171 Seconds

(without alignments)

165.965 Million cell updates/sec

Title: US-09-843-221A-163

Perfect score: 34

Sequence: 1 SVSEIQLMHNKGKHLNSMERVEWLRKKLODVHNF 34

Scoring table: OLIGO

Gapop 60.0 , Gapext 60.0

Searched: 1107863 segs, 158726573 residues

Word size: 0

Total number of hits satisfying chosen parameters: 75810

Minimum DB seq length: 28 Maximum DB seq length: 40

Post-processing: Listing first 1000 summaries

Database : A Geneseq 19Jun03:*

1: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1980.DAT:*
2: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1981.DAT:*
3: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1982.DAT:*

4: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1983.DAT:*
5: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1984.DAT:*

6: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1985.DAT:*

7: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1986.DAT:*
8: /SIDS1/gcgdata/geneseg/genesegp-embl/AA1987.DAT:*

8: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1987.DAT:*9: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1988.DAT:*

10: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1989.DAT:*

11: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1990.DAT:*

12: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1991.DAT:*
13: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1992.DAT:*

14: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1993.DAT:*

15: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1994.DAT:*

16: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1995.DAT:*

17: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1996.DAT:*

18: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1997.DAT:*

19: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1998.DAT:*

20: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1999.DAT:*

21: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA2000.DAT:*

22: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA2001.DAT:*

23: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA2002.DAT:*

24: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA2003.DAT:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed,

and is derived by analysis of the total score distribution.

SUMMARIES

_		ક				
Result	_	Query	_			
No.	Score	Match	Length	DB	ID	Description
1	34	100.0	34	13	AAR22296	Human parathyroid
2	34	100.0	34	23	AAU73030	Parathyroid hormon
3	30	88.2	30	23	AAU73053	Parathyroid hormon
4	30	88.2	35	23	AAU73174	Parathyroid hormon
5	24	70.6	34	18		
6	23	67.6	28	13	AAW08108 AAR22064	Human parathyroid Modified hPTH(7-34
7	23	67.6	28	21		
8	23			23	ABJ10776	Human parathyroid
9	23	67.6	28	23	AAE23734	Human parathyroid
		67.6	28		AAU73044	Parathyroid hormon
10	23	67.6	30	23	AAE23752	Human parathyroid
11	23	67.6	32	21	AAB07468	Antigenic peptide
12	23	67.6	32	23	AAE23735	Human parathyroid
13	23	67.6	34	4	AAP30022	Human parathyroid-
14	23	67.6	34	6	AAP50377	[Met (O) 8, 18] hPTH-(
15	23	67.6	34	7	AAP60031	Sequence of the fi
16	23	67.6	34	11	AAR07919	Human parathyroid
17	23	67.6	34	13	AAR22283	Parathyroid hormon
18	23	67.6	34	13	AAR22292	Human parathyroid
19	23	67.6	34	13	AAR22293	Human parathyroid
20	23	67.6	34	13	AAR22294	Human parathyroid
21	23	67.6	34	14	AAR41549	[D-Ser3]hPTH (1-34
22	23	67.6	34	14	AAR41550	[D-Ala3]hPTH (1-34
23	23	67.6	34	14	AAR41570	[Gln25]hPTH (1-34)
24	23	67.6	34	15	AAR49697	Sequence of varian
25	23	67.6	34	15	AAR49698	Sequence of varian
26	23	67.6	34	15	AAR58291	[Lys(For)26, Lys(F
27	23	67.6	34	15	AAR58228	[D-Asp30]-hPTH(1-3
28	23	67.6	34	15	AAR58016	N-alpha-Isopropyl-
29	23	67.6	34	15	AAR58017	[Lys(N-epsilon-Iso
30	23	67.6	34	15	AAR55724	Parathormone N-ter
31	23	67.6	34	16	AAR74521	Human parathyroid
32	23	67.6	34	17	AAW99449	Human parathyroid
33	23	67.6	34	17	AAW15812	[Trp(10)]-hPTH(1-3)
34	23	67.6	34	17	AAR99978	Human parathyroid
35	23	67.6	34	17	AAR98951	Target peptide (PT
36	23	67.6	34	17	AAR98966	PTH(1-34). Not sp
37	23	67.6	34	17	AAR88835	Human parathyroid
38	23	67.6	34	18	AAW24273	Wild type parathyr
39	23	67.6	34	18	AAW08120	Human PTH derivati
40	23	67.6	34	18	AAW08109	Human parathyroid
41	23	67.6	34	18	AAW08113	Human PTH derivati
42	23	67.6	34	18	AAW08114	Human PTH derivati
43	23	67.6	34	18	AAW08117	Human PTH derivatį
44	23	67.6	34	18	AAW08118	Human PTH derivati
45	23	67.6	34	18	AAW08119	Human PTH derivati
46	23	67.6	34	18	AAW19994	Cyclised human par
47	.23	67.6	34	18	AAW20000	Cyclised human par
48	23	67.6	34	18	AAW20006	Cyclised human par
49	23	67.6	34	18	AAW17941	Human parathyroid
50	23	67.6	34	18	AAW17943	Human parathyroid

51	23	67.6	34	18	AAW17939	Human parathyroid
52	23	67.6	34	18	AAW17957	Human parathyroid
53	23	67.6	34	18	AAW01609	Parathryoid hormon
54	23	67.6	34	19	AAW67274	Parathyroid hormon
55	23	67.6	34	19	AAW67276	Parathyroid hormon
56	23	67.6	34	19	AAW67278	Parathyroid hormon
57	23	67.6	34	19	AAW67290	Parathyroid hormon
58	23	67.6	34	19	AAW67291	Parathyroid hormon
59	23	67.6	34	19	AAW67299	Parathyroid hormon
60	23	67.6	34	19	AAW61658	Parathyroid hormon
61	23	67.6	34	19	AAW65975	Human parathyroid
62	23	67.6	34	20	AAY50593	Resin bound cyclic
63	23	67.6	34	20	AAY17752	Human parathyroid
64	23	67.6	34	20	AAY14151	Human parathyroid
65	23	67.6	34	20	AAY02579	N-terminal 34 resi
66	23	67.6	34	20	AAW81871	Human PTH N-termin
67	23	67.6	34	21	ABJ10706	Human parathyroid
68	23	67.6	34	21	ABJ10712	Human parathyroid
69	23	67.6	34	21	ABJ10713	Human parathyroid
70	23	67.6	34	21	ABJ10714	Human parathyroid
71	23	67.6	34	21	ABJ10717	Human parathyroid
72	23	67.6	34	21	ABJ10719	Human parathyroid
73	23	67.6	34	21	ABJ10722	Human parathyroid
74	23	67.6	34	21	ABJ10724	Human parathyroid
75	23	67.6	34	21	ABJ10727	Human parathyroid
76	23	67.6	34	21	ABJ10729	Human parathyroid
77	23	67.6	34	21	ABJ10730	Human parathyroid
78	23	67.6	34	21	ABJ10733	Human parathyroid
79	23	67.6	34	21	ABJ10736	Human parathyroid
80	23	67.6	34	21	ABJ10737	Human parathyroid
81	23	67.6	34	21	ABJ10769	Human parathyroid
82	23	67.6	34	21	AAB07454	Amino acids 1-34 o
83	23	67.6	34	21	AAY98010	Human amino-termin
84	23	67.6	34	21	AAY98011	Human amino-termin
85	23	67.6	34	21	AAY98014	Human amino-termin
86	23	67.6	34	21	AAY98017	Human amino-termin
87	23	67.6	34	21	AAY82631	Human parathyroid
88	23	67.6	34	21	AAY68763	Amino acids 1-34 o
89	23	67.6	34	22	AAB84778	Native rat parathy
90	23	67.6	34	22	AAB96898	Human parathyroid
91	23	67.6	34	22	AAB81079	Human parathyroid
92	23	67.6	34	22	AAB91098	Parathyroid hormon
93	23	67.6	34	22	AAB91113	Parathyroid hormon
94	23	67.6	34	22	AAB61638	Peptide #1 that ca
95	23	67.6	34	23	ABJ05328	Human PTH(1-34) pe
96	23	67.6	34	23	AAE23727	Human parathyroid
97	23	67.6	34	23	AAE23728	Human parathyroid
98	23	67.6	34	23	ABB06329	Human parathyroid
99	23	67.6	34	23	ABB08595	C-terminal truncat
100	23	67.6	34	23	AAE18395	Human PTH peptide
101	23	67.6	34	23	AAE18399	Human PTH peptide
102	23	67.6	34	23	ABB07147	Parathyroid hormon
103	23	67.6	34	23	AAU73028	Parathyroid hormon
104	23	67.6	34	23	AAU73029	Parathyroid hormon
105	23	67.6	34	23	AAU73032	Parathyroid hormon
106	23	67.6	34	24	ABP71500	Human parathyroid
107	23	67.6	34	24	ABG74235	Human parathyroid

1.65	2.2	65 6	2.5		33DE010E	[2.2
165	23	67.6	36	15	AAR58197	[Ala3] -hPTH(1-36) -
166	23	67.6	36	15	AAR58198	[D-Ser3]-hPTH(1-36
167	23	67.6	36	15	AAR58199	[D-Glu4]-hPTH(1-36
168	23	67.6	36	15	AAR58200	[D-His9]-hPTH(1-36)
169	23	67.6	36	15	AAR58201	[Ala10] -hPTH(1-36)
170	23	67.6	36	15	AAR58202	[D-Asn10] -hPTH(1-3
171	23	67.6	36	15	AAR58210	[D-His14]-hPTH(1-3
172	23	67.6	36	15	AAR58211	[D-Asn16] -hPTH(1-3
173	23	67.6	36	15	AAR58213	[D-Ser17] -hPTH(1-3
174	23	67.6	36	15	AAR58215	[D-Glu19] -hPTH(1-3
175	23	67.6	36	15	AAR58220	[D-Lys26] -hPTH(1-3
176	23	67.6	36	15	AAR58169	[D-Bys20] -Hr H (1-36
177	23	67.6	36	15	AAR58170	
178	23		36			[Nva1] -hPTH(1-36) -
		67.6		15	AAR58171	[N-Me-Ser1]-hPTH(1
179	23	67.6	36	15	AAR58172	[Indole-2-carboxyl
180	23	67.6	36	15	AAR58173	[Indole-3-carboxyl
181	23	67.6	36	15	AAR58174	[Pyridine-3-carbox
182	23	67.6	36	15	AAR58175	[Pyridine-2-carbox
183	23	67.6	36	15	AAR58176	[Hexahydropyridazi
184	23	67.6	36	15	AAR58177	[Morpholine-2-carb
185	23	67.6	36	15	AAR58178	[Pro1] -hPTH(1-36) -
186	23	67.6	36	15	AAR58179	[Leu1] -hPTH(1-36)-
187	23	67.6	36	15	AAR58180	[Ile1] -hPTH(1-36) -
188	23	67.6	36	15	AAR58182	[Nva8] -hPTH(1-36) -
189	23	67.6	36	15	AAR58026	N-alpha-methyl[Ala
190	23	67.6	36	15	AAR58168	
191	23					[1-amino-cyclopent
		67.6	37	12	AAR11882	Parathyroid hormon
192	23	67.6	37	13	AAR24778	hPTH(1-37)-amide/e
193	23	67.6	37	15	AAR58244	[Ala0]-hPTH(1-36)-
194	23	67.6	37	15	AAR58245	[Pro0]-hPTH(1-36)-
195	23	67.6	37	22	AAB86226	Human parathyroid
196	23	67.6	37	22	AAB86229	Human parathyroid
197	23	67.6	37	23	ABB82203	Human parathyroid
198	23	67.6	37	23	AAU73027	Parathyroid hormon
199	23	67.6	38	15	AAR58269	[Leu8] -hPTH(1-38)-
200	23	67.6	38	15	AAR58282	[Trp (SO2Pmc) 23] -hP
201	23	67.6	38	15	AAR58283	[Trp(Pmc)23]-hPTH(
202	23	67.6	38	15	AAR58018	Isopropyl-[Lys(Iso
203	23	67.6	38	15	AAR58019	N-alpha-methyl[Ala
204	23	67.6	38	15	AAR58022	[Ile1]-hPTH(1-38)-
205	23	67.6	38	15	AAR58022	
206	23	67.6	38			[Ala1, Abu2 or Nva2
				15	AAR58024	[Ala1, Ile2] -hPTH(1
207	23	67.6	38	15	AAR58028	[Thr1] -hPTH(1-38) -
208	23	67.6	38	15	AAR58029	[Leu1]-hPTH(1-38)-
209	23	67.6	38	15	AAR58030	[Abul or Gabal]-hP
210	23	67.6	38	15	AAR54234	PTH N-terminal. S
211	23	67.6	38	17	AAR98958	Target peptide (PT
212	23	67.6	38	20	AAY02580	N-terminal 38 resi
213	23	67.6	38	22	AAB91101	Parathyroid hormon
214	23	67.6	38	23	AAE23729	Human parathyroid
215	23	67.6	38	23	AAE18400	Human PTH peptide
216	23	67.6	38	23	AAU73026	Parathyroid hormon
217	22	64.7	28	13	AAR22065	Modified [Tyr 34]h
218	22	64.7	31	5	AAP40760	Human parathyroid
219	22	64.7	32	5	AAP40427	Parathyroid antago
220	22	64.7	33	17		
221					AAR88841	Human parathyroid
221	22	64.7	33	21	AAY98012	Human amino-termin

~

1.00	2.2	6				
108	23	67.6	35			Parathyroid hormon
109	23	67.6	35		AAU73172	Parathyroid hormon
110	23	67.6	35	23	AAU73173	Parathyroid hormon
111	23	67.6	36	12	AAR15842	Human parathyroid
112	23	67.6	36	13	AAR23995	Human papethyroid
113	23	67.6	36	14		Ser-Val-(hPTH 3-35
114	23	67.6	36	15	AAR58286	
115	23	67.6	36	15	AAR58292	[D-Leu24] -hPTH(1-3
116	23	67.6	36	15	AAR58293	[D-Lys27] -hPTH(1-3
117	23	67.6	36	15	AAR58294	[D-Leu28] -hPTH(1-3
118	23	67.6	36	15	AAR58295	[D-Phe34] -hPTH(1-3
119	23	67.6	36	15	AAR58296	[D-Val35] -hPTH(1-3
120	23	67.6	36	15		[Ala35] -hPTH(1-36)
121	23	67.6	36		AAR58297	[Pro35]-hPTH(1-36)
122	23	67.6		15	AAR58298	[NMeVal35]-hPTH(1-
123	23	67.6	36	15	AAR58299	[Thr35,Ala36]-hPTH
124	23		36	15	AAR58300	[D-Ala36] -hPTH(1-3
125		67.6	36	15	AAR58301	[NMeAla36]-hPTH(1-
	23	67.6	36	15	AAR58254	[4-aminosalicylic
126	23	67.6	36	15	AAR58255	[TMSA1]-hPTH(1-36)
127	23	67.6	36	15	AAR58256	[Phe1] -hPTH(1-36) -
128	23	67.6	36	15	AAR58257	[Propargylglycin1]
129	23	67.6	36	15	AAR58259	[aBU2] -hPTH(1-36) -
130	23	67.6	36	15	AAR58260	[D-Val2]-hPTH(1-36
131	23	67.6	36	15	AAR58261	[Tert.Leu] -hPTH(1-
132	23	67.6	36	15	AAR58262	[Ala1] -hPTH(1-36) -
133	23	67.6	36	15	AAR58263	[D-Ile5] -hPTH(1-36)
134	23	67.6	36	15	AAR58264	[D. Clast] -HMH(1-36
135	23	67.6	36	15	AAR58265	[D-Gln6] -hPTH(1-36
136	23	67.6	36	15	AAR58266	[D-Leu7] -hPTH(1-36
137	23	67.6	36	15	AAR58267	[Nle8] -hPTH(1-36) -
138	23	67.6	36	15	AAR58268	[Phe8] -hPTH(1-36) -
139	23	67.6	36	15	AAR58270	[Cha8] -hPTH(1-36) -
140	23	67.6	36	15	AAR58271	[D-Leul1] -hPTH(1-3
141	23	67.6	36	15		[Ala11] -hPTH(1-36)
142	23	67.6	36		AAR58272	[D-Lys13] -hPTH(1-3
143	23	67.6	36	15	AAR58273	[D-Leu15] -hPTH(1-3
144	23	67.6		15	AAR58276	[Met(O2)18]-hPTH(1
145	23	67.6	36	15	AAR58278	[D-Met18]-hPTH(1-3
146	23		36	15	AAR58280	[D-Arg20]-hPTH(1-3
147		67.6	36	15	AAR58281	[D-Val21] -hPTH(1-3
148	23	67.6	36	15	AAR58284	[D-Trp23]-hPTH(1-3
	23	67.6	36	15	AAR58227	[D-Gln29]-hPTH(1-3
149	23	67.6	36	15	AAR58230	[D-Val31] -hPTH(1-3
150	23	67.6	36	15	AAR58233	[D-His32]-hPTH(1-3
151	23	67.6	36	15	AAR58235	[D-Asn33] -hPTH(1-3
152	23	67.6	36	15	AAR58237	[NMePhe34] -hPTH(1-
153	23	67.6	36	15	AAR58238	[D-Asp30]-hPTH(1-3
154	23	67.6	36	15	AAR58242	[Lys(Isopropyl)13]
155	23	67.6	36	15	AAR58243	Propargyl - [A1] -hPT
156	23	67.6	36	15	AAR58246	Acetyl-hPTH(1-36)-
157	23	67.6	36	15	AAR58247	[Hrm1] PDWI(1-36)-
158	23	67.6	36	15	AAR58248	[Hyp1] -hPTH(1-36) -
159	23	67.6	36	15	AAR58249	N-Dimethyl-[Ala1]-
160	23	67.6	36	15	AAR58250	[D-Ser1] -hPTH(1-36
161	23	67.6	36	15	AAR58251	[Lys(For)1]-hPTH(1
162	23	67.6	36	15	AAR58251 AAR58252	[D-glyceric acid1]
163	23	67.6	36	15		[Asn1] -hPTH(1-36) -
164	23	67.6	36	15	AAR58253	[4-aminobenzoic ac
		37.0	20	τɔ	AAR58196	[D-Phe34, D-Ala36]

222	22	64.7	33	21	AAY98015	Human amino-termin
223	22	64.7	33	21	AAY98018	Human amino-termin
224	22	64.7	34	11	AAR07922	Human parathyroid
225	22	64.7	34	11	AAR08300	Human parathyroid
226	22	64.7	34	15	AAR58193	[L8,D10,K11,T33,A3
227	22	64.7	34	15	AAR58194	[A1,H5,L8,D10,K11,
228	22	64.7	34	18	AAW08121	Human PTH derivati
229	22	64.7	34	18	AAW08115	Human PTH derivati
230	22	64.7	34	18	AAW08116	Human PTH derivati
231	22	64.7	34	18	AAW17955	Human parathyroid
232	22	64.7	34	18	AAW17959	Human parathyroid
233	22	64.7	34	19	AAW48392	Human parathyroid
234	22	64.7	34	21	ABJ10772	Human parathyroid
235	22	64.7	34	21	ABJ10773	Human parathyroid
236	22	64.7	34	22	AAB96929	Human parathyroid
237	22	64.7	36	15		[Ala34] -hPTH(1-36)
					AAR58191	
238	22	64.7	36	15	AAR58203	[Ala12] -hPTH(1-36)
239	22	64.7	38	3	AAP20248	Parathyroid hormon
240	22	64.7	38	15	AAR58089	[Arg12] -hPTH(1-38)
241	22	64.7	38	15	AAR58090	[Ser12]-hPTH(1-38)
242	21	61.8	28	13	AAR22066	Modified [D-Trp 12
243	21	61.8	32	17	AAR88840	Human parathyroid
244	21	61.8	34	11	AAR08303	Human parathyroid
245	21	61.8	34	15	AAR58181	[Thr33, Ala34]-hPT
		61.8				Human PTH derivati
246	21		34	18	AAW08112	· · · · · · · · · · · · · · · · · · ·
247	21	61.8	34	19	AAW42614	Human parathyroid
248	21	61.8	34	22	AAB96893	Rat parathyroid ho
249	21	61.8	34	22	AAB96930	Rat parathyroid ho
250	21	61.8	36	15	AAR58236	[Ala33] -hPTH(1-36)
251	21	61.8	36	15	AAR58204	[Gln13] -hPTH(1-36)
252	21	61.8	36	15	AAR58205	[His13]-hPTH(1-36)
253	21	61.8	36	15	AAR58206	[Leu13] -hPTH(1-36)
254	21	61.8	36	15	AAR58207	[Ala13] -hPTH(1-36)
255	21	61.8	38	15	AAR58161	[Pro3, Thr33] -hPTH(
256	21	61.8	38	15	AAR58162	[Arg33] -hPTH(1-38)
						_
257	21	61.8	38	15	AAR58163	[Pro33] -hPTH(1-38)
258	21	61.8	38	15	AAR58164	[Asp33] -hPTH(1-38)
259	21	61.8	38	15	AAR58165	[Ile33]-hPTH(1-38)
260	21	61.8	38	15	AAR58166	[Lys33]-hPTH(1-38)
261	21	61.8	38	15	AAR58075	[Ser33]-hPTH(1-38)
262	21	61.8	38	15	AAR58076	[Thr33]-hPTH(1-38)
263	21	61.8	38	15	AAR58077	[Leu33]-hPTH(1-38)
264	21	61.8	38	15	AAR58078	[Gly33] -hPTH(1-38)
265	21	61.8	38	15	AAR58084	[Gln33]-hPTH(1-38)
266	21	61.8	38	15	AAR58091	[Cys13] -hPTH(1-38)
						-
267	21	61.8	38	15	AAR58092	[Ile13] -hPTH(1-38)
268	21	61.8	38	15	AAR58093	[Asn13] -hPTH(1-38)
269	21	61.8	38	15	AAR58094	[Trp13] -hPTH(1-38)
270	21	61.8	38	15	AAR58095	[Asp13] -hPTH(1-38)
271	21	61.8	38	15	AAR58096	[Val13]-hPTH(1-38)
272	21	61.8	38	15	AAR58097	[Thr13]-hPTH(1-38)
273	21	61.8	38	15	AAR58098	[Ser13]-hPTH(1-38)
274	21	61.8	38	15	AAR58099	[Tyr13]-hPTH(1-38)
275	21	61.8	38	15	AAR58100	[Met13] -hPTH(1-38)
276	21	61.8	38	15	AAR58101	[Gln13] -hPTH(1-38)
277	21	61.8	38	15	AAR58101	[Leu13] -hPTH(1-38)
278	21	61.8	38	15		[Ala13] -hPTH(1-38)
210	41	01.0	30	τS	AAR58103	[A1013] -Hr1n(1-30)
						·

						[G112] hpmi/1 20)
279	21	61.8	38	15	AAR58104	[Gly13] -hPTH(1-38)
280	20	58.8	30	6	AAP50665	Human parathyroid
281	20	58.8	31	17	AAR88830	Human parathyroid
282	20	58.8	31	19	AAW42059	Human parathyroid
283	20	58.8	31	19	AAW42051	Human parathyroid
284	20	58.8	31	20	AAY02578	N-terminal 31 resi
285	20	58.8	31	22	AAB81080	Human parathyroid
286	20	58.8	31	22	AAB91097	Parathyroid hormon
287	20	58.8	31	23	AAE23720	Human parathyroid
288	20	58.8	31	23	AAU73039	Parathyroid hormon
289	20	58.8	32	23	AAU73176	Parathyroid hormon
290	20	58.8	34	15	AAR58232	[Lys32]-hPTH(1-34)
291	20	58.8	34	18	AAW08129	Human PTH derivati
292	20	58.8	34	22	AAB84771	Parathyroid hormon
293	20	58.8	34	22	AAB84826	Parathyroid hormon
294	20	58.8	34	22	AAB96916	Parathyroid hormon
295	20	58.8	34	22	AAB96919	Parathyroid hormon
296	20	58.8	36	15	AAR58234	[Ala32] -hPTH(1-36)
297	20	58.8	36	15	AAR58209	[Ala14] -hPTH(1-36)
298	20	58.8	38	15	AAR58037	[Ser14]-hPTH(1-38)
299	20	58.8	38	15	AAR58105	[Val14]-hPTH(1-38)
300	20	58.8	38	15	AAR58106	[Ala14] -hPTH(1-38)
301	20	58.8	38	15	AAR58107	[Lys14]-hPTH(1-38)
302	20	58.8	38	15	AAR58108	[Arg14] -hPTH(1-38)
303	20	58.8	38	15	AAR58109	[Thr14]-hPTH(1-38)
304	20	58.8	38	15	AAR58110	[Ile14]-hPTH(1-38)
305	20	58.8	38	15	AAR58111	[Tyr14]-hPTH(1-38)
306	19	55.9	30	17	AAR88832	Human parathyroid
307	19	55.9	30	23	AAU73051	Parathyroid hormon
308	19	55.9	30	23	AAU73052	Parathyroid hormon
309	19	55.9	30	23	AAU73055	Parathyroid hormon
310	19	55.9	31	23	AAU73177	Parathyroid hormon
311	19	55.9	34	18	AAW17942	Human parathyroid
312	19	55.9	34	18	AAW17948	Human parathyroid
313	19	55.9	34	18	AAW17968	Human parathyroid
314	19	55.9	34	18	AAW17952	Human parathyroid
315	19	55.9	34	19	AAW67277	Parathyroid hormon
316	19	55.9	34	19		Parathyroid hormon
317	19	55.9	34	19		Parathyroid hormon
318	19	55.9	34			Human PTH/PTHrP hy
319	19	55.9	36	15		[Ala15] -hPTH(1-36)
320	19	55.9	36	15		[Ala31] -hPTH(1-36)
321	19	55.9	38	15		[Ile15]-hPTH(1-38)
322	19	55.9	38	15		[Ile31,Arg33]-hPTH
323	19	55.9	38	15		[Tyr15]-hPTH(1-38)
324	19	55.9	38	15		[Arg15] -hPTH(1-38)
325	19	55.9	38	15		[Val15]-hPTH(1-38)
326	18	52.9	28	13		Modified bovine PT
327	18	52.9	28	23		Parathyroid hormon
328	18	52.9	29	17		Human parathyroid
329	18	52.9	29	23		Parathyroid hormon
330	18	52.9	30	23		Parathyroid hormon
331	18	52.9	32	22		Parathyroid hormon
332	18	52.9	32	23		Bovine parathyroid
333	18	52.9	32	23		Bovine PTH peptide
334	18	52.9	32	23		Parathyroid hormon
335	18	52.9	34	11		Bovine parathyroid
		· -				

336	18	52.9	34	11	AAR08299	Bovine parathyroid
337	18	52.9	34	14	AAR41551	[Thr16]hPTH (1-34)
338	18	52.9	34	14	AAR41552	[Glu16]hPTH (1-34)
339	18	52.9	34	14	AAR41553	[Lys16]hPTH (1-34)
						[D-Lys16]hPTH (1-3
340	18	52.9	34	14	AAR41571	
341	18	52.9	34	14	AAR41573	[Gln16]hPTH (1-34)
342	18	52.9	34	14	AAR41574	[Ser16]hPTH (1-34)
343	18	52.9	34	14	AAR41575	[Gly16]hPTH (1-34)
344	18	52.9	34	14	AAR41576	[Lys16]hPTH (1-34)
345	18	52.9	34	17	AAR99979	Bovine parathyroid
346	18	52.9	34	18	AAW08124	Human PTH derivati
						Human PTH derivati
347	18	52.9	34	18	AAW08111	
348	18	52.9	34	18	AAW19995	Cyclised bovine pa
349	18	52.9	34	18	AAW20001	Cyclised bovine pa
350	18	52.9	34	18	AAW20007	Cyclised bovine pa
351	18	52.9	34	18	AAW17953	Human parathyroid
352	18	52.9	34	18	AAW17963	Human PTH analogue
353	18	52.9	34	19	AAW61659	Parathyroid hormon
	18	52.9	34	19	AAW65976	Bovine parathyroid
354						-
355	18	52.9	34	19	AAW42615	Bovine parathyroid
356	18	52.9	34	20	AAW81872	Bovine PTH N-termi
357	18	52.9	34	22	AAB84775	Parathyroid hormon
358	18	52.9	34	22	AAB96922	Parathyroid hormon
359	18	52.9	34	23	AAE23738	Bovine parathyroid
360	18	52.9	34	23	AAE18394	Bovine PTH peptide
361	18	52.9	34	23	AAU73034	Parathyroid hormon
362	18	52.9	36	15	AAR58275	[Ala16] -hPTH(1-36)
363	18	52.9	36	15	AAR58229	[Ala30] -hPTH(1-36)
364	18	52.9	37	22	AAB86230	Bovine parathyroid
365	18	52.9	37	22	AAB86233	Canine parathyroid
366	18	52.9	37	23	ABB82204	Bovine parathyroid
367	18	52.9	38	15	AAR58036	[Gln16]-hPTH(1-38)
368	18	52.9	38	15	AAR58115	[Lys16] -hPTH(1-38)
369	18	52.9	38	15	AAR58116	[Ser16]-hPTH(1-38)
370	18	52.9	38	15	AAR58117	[Leu16] -hPTH(1-38)
371	18	52.9	38	15	AAR58118	[Ala16] -hPTH(1-38)
372	18	52.9	38	15	AAR58119	[Gly16]-hPTH(1-38)
373	17	50.0	28	13	AAR22059	Modified [Tyr_34]b
374	17	50.0	28	13	AAR22060	Modified [D-Trp_12
375	17	50.0	28	17	AAR88837	Human parathyroid
376	17	50.0	28	21	AAY98048	Human parathyroid
377	17	50.0	28	21	AAY98050	Human parathyroid
378	17	50.0	28	21	AAY98052	Human parathyroid
						- -
379	17	50.0	28	22	AAB91115	Parathyroid hormon
380	17	50.0	28	23	AAE18405	Bovine PTH peptide
381	17	50.0	28	23	AAU73047	Parathyroid hormon
382	17	50.0	28	23	AAU73050	Parathyroid hormon
383	17	50.0	28	23	AAU73064	Parathyroid hormon
384	17	50.0	29	12	AAR11731	Adenine-rich PTH-(
385	17	50.0	29	23	AAU73179	Parathyroid hormon
386	17	50.0	31	5	AAP40510	Bovine parathyroid
387	17	50.0	31	21	AAY96973	Parathyroid hormon
388	17	50.0	31	21	AAY96974	Parathyroid hormon
389	17	50.0	34	11	AAR07921	Bovine parathyroid
390	17	50.0	34	11	AAR08302	Bovine parathyroid
201						
391	17	50.0	34	14	AAR41577	[Lys16, Asp17]hPTH
391				14 14	AAR41577 AAR41578	

393	17	50.0	34	14	AAR41579	[Lys15,15,17]hPTH
394	17	50.0	34	14	AAR41580	[Lys16,17]hPTH (1-
395	17	50.0	34	14	AAR41581	[Arg16,17]hPTH (1-
396	17	50.0	34	14	AAR41582	[Arg15,16,17]hPTH
397	17	50.0	34	17	AAW14308	Cyclic parathyroid
398	17	50.0	34	17	AAW14309	Cyclic parathyroid
399	17	50.0	34	17	AAW14310	Cyclic parathyroid
400	17	50.0	34	17	AAW14311	Cyclic parathyroid
401	17	50.0	34	17	AAW14312	Cyclic parathyroid
402	17	50.0	34	17	AAW14313	Cyclic parathyroid
403	17	50.0	34	17	AAW14314	Cyclic parathyroid
404	17	50.0	34	17	AAW14315	Cyclic parathyroid
405	17	50.0	34	18	AAW08122	Human PTH derivati
406	17	50.0	34	18	AAW08123	Human PTH derivati
407	17	50.0	34	18	AAW17958	Human parathyroid
408	17	50.0	34	18	AAW01610	Parathryoid hormon
	17	50.0	34	19	AAW67293	Parathyroid hormon
409						_
410	17	50.0	36	15	AAR58190	[Ala29] -hPTH(1-36)
411	17	50.0	36	15	AAR58212	[Ala17] -hPTH(1-36)
412	17	50.0	38	15	AAR58120	[Ala17] -hPTH(1-38)
413	17	50.0	38	15	AAR58121	[Met17] - hPTH(1-38)
414	17	50.0	38	15	AAR58122	[Ile17] - hPTH(1-38)
415	16	47.1	28	21	ABJ10775	Human parathyroid
416	16	47.1	34	13	AAR22291	Human parathyroid
417	16	47.1	34	13	AAR22295	Human parathyroid
418	16	47.1	34	15	AAR58239	Isopropyl-[Nle8,18
419	16	47.1	34	15	AAR58241	[Nle8,18,D-Asn33,D
420	16	47.1	34	17	AAW14316	Cyclic parathyroid
421	16	47.1	34	17	AAR99981	Porcine parathyroi
422	16	47.1	34	18	AAW17947	Human parathyroid
423	16	47.1	34	18	AAW17951	Human parathyroid
424	16	47.1	34	19	AAW67282	Parathyroid hormon
425	16	47.1	34	19	AAW67286	Parathyroid hormon
426	16	47.1	34	19	AAW67298	Parathyroid hormon
427	16	47.1	34	19	AAW61660	Parathyroid hormon
428	16	47.1	34	19	AAW65977	Porcine parathyroi
429	16	47.1	34	19	AAW42616	Porcine parathyroi
430	16	47.1	34	20	AAW92218	Analogue of parath
431	16	47.1	34	20	AAW92219	Analogue of parath
432	16	47.1	34	20	AAY03920	Analogue of parath
433	16	47.1	34	20	AAY03921	Analogue of parath
434	16	47.1	34	20	AAY03922	Analogue of parath
435	16	47.1	34	20	AAY03923	Analogue of parath
436	16	47.1	34	20	AAY03924	Analogue of parath
437	16	47.1	34	20	AAY03925	Analogue of parath
438	16	47.1	34	20	AAY03926	Analogue of parath
439	16	47.1	34	20	AAY03927	Analogue of parath
440	16	47.1	34	20	AAY03928	Analogue of parath
441	16	47.1	34	20	AAY03929	Analogue of parath
442	16	47.1	34	20	AAY03930	Analogue of parath
443	16	47.1	34	20	AAY03931	Analogue of parath
444	16	47.1	34	20	AAY03932	Analogue of parath
445	16	47.1	34	20	AAY03933	Analogue of parath
446	16	47.1	34	20.		Analogue of parath
447	16	47.1	34	20	AAW92237	Analogue of parath
448	16	47.1	34	20	AAW92238	Analogue of parath
449	16	47.1	34	20	AAW92239	Analogue of parath
117	10	7 / · L	J 4	20		indiogue of parach

′

450	16	47.1	34	20	AAW92240		Analogue of	narath
451	16	47.1	34	20	AAW92241		Analogue of	
452	16	47.1	34	20	AAW92242		Analogue of	
453	16	47.1	34	20	AAW92243		Analogue of	
	16	47.1	34	20	AAW92243		Analogue of	
454								
455	16	47.1	34	20	AAW92245		Analogue of	
456	16	47.1	34	20	AAW92246		Analogue of	
457	16	47.1	34	20	AAW92247		Analogue of	
458	16	47.1	34	20	AAW92248		Analogue of	
459	16	47.1	34	20	AAW92249		Analogue of	
460	16	47.1	34	20	AAW92250		Analogue of	
461	16	47.1	34	20	AAY03919		Analogue of	
462	16	47.1	34	20	AAW92220		Analogue of	
463	16	47.1	34	20	AAW92221		Analogue of	
464	16	47.1	34	20	AAW92222		Analogue of	parath
465	16	47.1	34	20	AAW92223		Analogue of	parath
466	16	47.1	34	20	AAW92224		Analogue of	parath
467	16	47.1	34	20	AAW92225		Analogue of	parath
468	16	47.1	34	20	AAW92226		Analogue of	parath
469	16	47.1	34	20	AAW92227		Analogue of	parath
470	16	47.1	34	20	AAW92228		Analogue of	parath
471	16	47.1	34	20	AAW92229		Analogue of	
472	16	47.1	34	20	AAW92230		Analogue of	
473	16	47.1	34	20	AAW92231		Analogue of	
474	16	47.1	34	20	AAW92232		Analogue of	
475	16	47.1	34	20	AAW92233	,	Analogue of	_
476	16	47.1	34	20	AAW92234		Analogue of	
477	16	47.1	34	20	AAW92235		Analogue of	
478	16	47.1	34	20	AAY03947		Analogue of	
479	16	47.1	34	20	AAY03947		Analogue of	
	16		. 34	20	AA103948 AAW92204		Analogue of	
480	16	47.1	34	20	AAW92204 AAW92205		Analogue of	
481		47.1						
482	16	47.1	34	20	AAW92207		Analogue of	
483	16	47.1	34	20	AAW92208		Analogue of	
484	16	47.1	34	20	AAW92209		Analogue of	
485	16	47.1	34	20	AAW92210		Analogue of	
486	16	47.1	34	20	AAW92211		Analogue of	
487	16	47.1	34	20	AAW92212		Analogue of	
488	16	47.1	34	20	AAW92213		Analogue of	
489	16	47.1	34	20	AAW92214		Analogue of	
490	16	47.1	34	20	AAW92215		Analogue of	
491	16	47.1	34	20	AAW92216		Analogue of	
492	16	47.1	34	20	AAW92217		Analogue of	f parath
493	16	47.1	34	20	AAW92206		Analogue of	f parath
494	16	47.1	34	20	AAW92203		Analogue of	f parath
495	16	47.1	34	20	AAY03934		Analogue of	E parath
496	16	47.1	34	20	AAY03935		Analogue of	
497	16	47.1	34	20	AAY03936		Analogue of	
498	16	47.1	34	20	AAY03937		Analogue of	
499	16	47.1	34	20	AAY03938		Analogue of	
500	16	47.1	34	20	AAY03939		Analogue of	
501	16	47.1	34	20	AAY03940		Analogue of	-
502	16	47.1	34	20	AAY03941		Analogue of	
503	16	47.1	34	20	AAY03942		Analogue of	
504	16	47.1	34	20	AAY03943		Analogue of	
505	16	47.1	34	20	AAY03943		Analogue of	
506	16	47.1	34	20	AAY03944 AAY03945		Analogue of	
200	10	- /	24	20	WI 02342		Miarogue U	Paracii

. 507	16	47.1	34	20	AAY03946	Analogue	of parath	1
508	16	47.1	34	20	AAY03949	Analogue		
509	16	47.1	34	20	AAY03950	Analogue		
510	16	47.1	34	20	AAY03951	Analogue		
511	16	47.1	34	20	AAY03952	Analogue		
512	16	47.1	34	20	AAY03953	Analogue		
513	16	47.1	34	20	AAY03954	Analogue		
514	16	47.1	34	20	AAY03955	Analogue		
51 4 515	16	47.1	34	20	AAY03956	Analogue		
516	16	47.1	34	20	AA103936 AAW92198			
						Analogue		
517	16	47.1	34	20	AAW92199	Analogue	-	
518	16	47.1	34	20	AAW92200	Analogue		
519	16	47.1	34	20	AAW92201	Analogue		
520	16	47.1	34	20	AAW92202	Analogue		
521	16	47.1	34	20	AAW92183	Analogue		
522	16	47.1	34	20	AAW92184	Analogue		
523	16	47.1	34	20	AAW92185	Analogue		
524	16	47.1	34	20	AAW92186	Analogue		
525	16	47.1	34	20	AAW92187	Analogue		
526	16	47.1	34	20	AAW92167	Analogue		
527	16	47.1	34	20	AAW92188	Analogue		
528	16	47.1	34	20	AAW92189	Analogue	of parath	1
529	16	47.1	34	20	AAW92190	Analogue	of parath	1
530	16	47.1	34	20	AAW92191	Analogue	of parath	1
531	16	47.1	34	20	AAW92192	Analogue	of parath	1
532	16	47.1	34	20	AAW92193	Analogue	of parath	1
533	16	47.1	34	20	AAW92194	Analogue	of parath	1
534	16	47.1	34	20	AAW92195	Analogue	of parath	1
535	16	47.1	. 34	20	AAW92196	Analogue	of parath	1
536	16	47.1	34	20	AAW92197	Analogue	of parath	1
537	16	47.1	34	20	AAW92166	Analogue		
538	16	47.1	34	20	AAW92168	Analogue	of parath	1
539	16	47.1	34	20	AAW92169	Analogue		
540	16	47.1	34	20	AAW92170	Analogue		
541	16	47.1	34	20	AAW92171	Analogue		
542	16	47.1	34	20	AAW92172	Analogue		
543	16	47.1	34	20	AAW92173	Analogue		
544	16	47.1	34	20	AAW92174	Analogue		
545	16	47.1	34	20	AAW92175	Analogue		
546	16	47.1	34	20	AAW92176	Analogue		
547	16	47.1	34	20	AAW92177	Analogue		
548	16	47.1	34	20	AAW92178	Analogue		
549	16	47.1	34	20	AAW92179	Analogue		
550	16		34	20	AAW92180	Analogue		
551	16	47.1	34	20	AAW92181	Analogue		
552	16	47.1	34	20	AAW92182	Analogue		
553	16	47.1	34	20	AAW92152	Analogue		
554	16	47.1	34	20	AAW92150	Analogue		
555	16	47.1	34	20	AAW92151	Analogue		
556	16	47.1	34	20	AAW92153	Analogue		
557	16	47.1	34	20	AAW92154	Analogue		
558	16	47.1	34	20	AAW92155	Analogue		
559	16	47.1	34	20	AAW92156	Analogue		
560	16	47.1	34	20	AAW92157	Analogue		
561	16	47.1	34	20	AAW92158	Analogue		
562	16	47.1	34	20	AAW92159	Analogue		
563	16	47.1	34	20	AAW92160	Analogue		
303	10		J.	_ 0		111010900	or paraci.	•

564	16	47.1	34	20	AAW92161	Analogue of parath
565	16	47.1	34	20	AAW92162	Analogue of parath
566	16	47.1	34	20	AAW92163	Analogue of parath
567	16	47.1	34	20	AAW92164	Analogue of parath
568	16	47.1	34	20	AAW92165	Analogue of parath
569	16	47.1	34	20	AAW92148	Analogue of parath
570	16	47.1	34	20	AAW92149	Analogue of parath
571	16	47.1	34	20	AAW81873	Porcine PTH N-term
572	16	47.1	34	21	ABJ10735	Human parathyroid
573	16	47.1	34	21	ABJ10739	Human parathyroid
574	16	47.1	34	21	ABJ10740	Human parathyroid
575	16	47.1	34	21	ABJ10742	Human parathyroid
576	16	47.1	34	21	ABJ10743	Human parathyroid
577	16	47.1	34	22	AAB91084	Parathyroid hormon
578	16	47.1	34	22	AAB91085	Parathyroid hormon
579	16	47.1	34	22	AAB91087	Parathyroid hormon
580	16	47.1	34	23	AAU73036	Parathyroid hormon
581	16	47.1	35	2	AAP10140	h-PTH antigen. Sy
582	16	47.1	36	15	AAR58277	[Nle18] -hPTH(1-36)
583	16	47.1	36	15	AAR58183	[Gln18] -hPTH(1-36)
584	16	47.1	36	15	AAR58184	[Tyr18] -hPTH(1-36)
585	16	47.1	36	15	AAR58042	[L8,D10,K11,L18]-h
586	16	47.1	36	15	AAR58044	[L8,D10,K11,A17,L1
587	16	47.1	36	15	AAR58055	[L8,Q18]-hPTH(1-36
588	16	47.1	36	15	AAR58057	[L8,D10,A16,Q18]-h
589	16	47.1	36	15	AAR58057	[Aib3, Gln18]-hPTH
590	16	47.1	36	15	AAR55820	[L8,D10,K11,Q18]-h
591	16	47.1	36	15	AAR55824	[L8,D10,K11,Q18]-II
592	16	47.1	36	15	AAR58027	[A1,A3,L8,Q18]-hPT
592 593	16	47.1	36	15	AAR58027 AAR58031	[L8,K11,Q18]-hPTH(
	16	47.1	36	15		Isopropyl-[L8,D10,
594 595	16	47.1	36 36	15	AAR58072 AAR58074	[L8,Y18]-hPTH(1-36
						[1-amino-cyclopent
596 507	16	47.1	36	15	AAR58088	
597	16	47.1	37	22	AAB86232	Porcine parathyroi [Val28]-hPTH(1-38)
598 500	16	47.1	38	15	AAR58159	[lle28]-hPTH(1-38)
599	16	47.1	38	15	AAR58160	
600	15	44.1	28	13	AAR22061	Modified [Nle_8,18
601	15	44.1	28	13	AAR22062	Modified [Nle_8,18
602	15	44.1	28	13	AAR22067	Modified [Nle_8,_1
603		44.1	28	13		Modified [Nle_8,_1
604	15	44.1	28	17	AAR88838	Human parathyroid
605	15	44.1	28	21	ABJ10774	Human parathyroid
606	15	44.1	28	22	AAB81074	Human parathyroid
607	15	44.1	28	23	AAE18404	Bovine PTH peptide
608	15	44.1	28	23	AAU73045	Parathyroid hormon
609	15	44.1	28	23	AAU73048	Parathyroid hormon
610	15	44.1	28	23	AAU73049	Parathyroid hormon
611	15	44.1	29	17	AAR88839	Human parathyroid
612	15	44.1	29	22	AAB81075	Human parathyroid
613	15	44.1	30	17	AAR88833	Human parathyroid
614	15	44.1	30	19	AAW42052	Human parathyroid
615	15	44.1	30	22	AAB91089	Parathyroid hormon
616	15	44.1	30	22	AAB91092	Parathyroid hormon
617	15	44.1	30	23	AAU73062	Parathyroid hormon
618	15	44.1	31	5	AAP40511	Bovine parathyroid
619	15	44.1	31	5	AAP40761	Human parathyroid
620	15	44.1	31	17	AAR88831	Human parathyroid

621	15	44.1	31	19	AAW42056	Human parathyroid
622	15	44.1	31	19	AAW42057	Human parathyroid
623	15	44.1	31	19	AAW42060	Human parathyroid
624	15	44.1	31	19	AAW42062	Human parathyroid
625	15	44.1	31	19	AAW42067	Human parathyroid
626	15	44.1	31	19	AAW42049	Human parathyroid
627	15	44.1	31	19	AAW42050	Human parathyroid
628	15	44.1	31	19	AAW42053	Human parathyroid
629	15	44.1	31	21	AAY96975	Parathyroid hormon
630	15	44.1	31	23	AAU73040	Parathyroid hormon
631	15	44.1	31	23	AAU82640	Analogue of human
632	15	44.1	32	22	AAB91088	Parathyroid hormon
633	15	44.1	32	22	AAB91090	Parathyroid hormon
634	15	44.1	32	22	AAB91091	Parathyroid hormon
635	15	44.1	32	23	AAE18403	Bovine PTH peptide
636	15 15	44.1	32	23	AAU73041	Parathyroid hormon
637	15 15	44.1	32	23 6	AAU73043	Parathyroid hormon
638	15	44.1	34	11	AAP50517	Sequence of methio Bovine parathyroid
639 640	15 15	$44.1 \\ 44.1$	34 34	11	AAR07924 AAR07925	Human parathyroid
641	15	44.1	34	11	AAR08305	Bovine parathyroid
642	15	44.1	34	11	AAR08305 AAR08306	Human parathyroid
643	15	44.1	34	13	AAR22298	Human parathyroid
644	15	44.1	34	13	AAR22299	Human parathyroid
645	15	44.1	34	14	AAR41554	[Thr27]hPTH (1-34)
646	15	44.1	34	14	AAR41555	[Asn27]hPTH (1-34)
647	15	44.1	34	14	AAR41558	[Ser27]hPTH (1-34)
648	15	44.1	34	14	AAR41559	[Gly27] hPTH (1-34)
649	15	44.1	34	14	AAR41560	[His27]hPTH (1-34)
650	15	44.1	34	15	AAR45528	Parathyroid hormon
651	15	44.1	34	16	AAR69055	PTH analogue with
652	15	44.1	34	17	AAR88829	Human parathyroid
653	15	44.1	34	17	AAR88834	Human parathyroid
654	15	44.1	34	18	AAW13352	Truncated parathyr
655	15	44.1	34	18	AAW12651	Parathyroid hormon
656	15	44.1	34	18	AAW08130	Human PTH derivati
657	15	44.1	34	18	AAW20004	Cyclised [Nle 8,18
658	15	44.1	34	18	AAW19997	Cyclised [Nle 8,18
659	15	44.1	34	18	AAW19998	Cyclised [Nle 8,18
660	15	44.1	34	18	AAW20003	Cyclised [Nle 8,18
661	15	44.1	34	18	AAW20009	Cyclised [Nle 8,18
662	15	44.1	34	18	AAW20010	Cyclised [Nle 8,18
663	15	44.1	34	18	AAW17940	Human PTH analogue
664	15	44.1	34	18	AAW17969	Human parathyroid
665	15	44.1	34	18	AAW17970	Human PTH analogue
666	15	44.1	34	18	AAW17964	Human PTH analogue
667	15	44.1	34	18	AAW17954	Human parathyroid
668	15 15	44.1	34	18	AAW17956	Human parathyroid
669	15 15	44.1	34	18	AAW17962	Human PTH analogue
670 671	15 15	$44.1 \\ 44.1$	34 34	19 19	AAW67275 AAW67292	Parathyroid hormon Parathyroid hormon
672	15 15	$44.1 \\ 44.1$	34 34	19	AAW67292 AAW67297	Parathyroid hormon
673	15 15	44.1	34	19	AAW61725	Parathyroid hormon
674	15	44.1	34	19	AAW66053	Parathyroid hormon
675	15	44.1	34	19	AAW42602	Parathyroid hormon
676	15	44.1	34	19	AAW42054	Human parathyroid
677	15	44.1	34	19	AAW42055	Human parathyroid
	-5,	- - · ••	J.			

678	15	44.1	34	19	AAW48395	Human PTH/PTHrP hy
679	15	44.1	34	20	AAW74396	Modified parathyro
680	15	44.1	34	20	AAW81945	Synthetic PTH and
681	15	44.1	34	21	ABJ10705	Human parathyroid
682	15	44.1	34	21	ABJ10707	Human parathyroid
683	15	44.1	34	21	ABJ10708	Human parathyroid
684	15	44.1	34	21	ABJ10709	Human parathyroid
685	15	44.1	34	21	ABJ10710	Human parathyroid
686	15	44.1	34	21	ABJ10711	Human parathyroid
687	15	44.1	34	21	ABJ10715	Human parathyroid
688	15	44.1	34	21	ABJ10716	Human parathyroid
689	15	44.1	34	21	ABJ10718	Human parathyroid
690	15	44.1	34	21	ABJ10720	Human parathyroid
691	15	44.1	34	21	ABJ10721	Human parathyroid
692	15	44.1	34	21	ABJ10723	Human parathyroid
693	15	44.1	34	21	ABJ10725	Human parathyroid
694	15	44.1	34	21	ABJ10726	Human parathyroid
695	15	44.1	34	21	ABJ10728	Human parathyroid
696	15	44.1	34	21	ABJ10731	Human parathyroid
697	15	44.1	34	21	ABJ10732	Human parathyroid
698	15	44.1	34	21	ABJ10734	Human parathyroid
699	15	44.1	34	21	ABJ10738	Human parathyroid
700	15	44.1	34	21	ABJ10741	Human parathyroid
701	15	44.1	34	21	ABJ10744	Human parathyroid
701			34	21		Human parathyroid
	15	44.1			ABJ10745	_
703	15	44.1	34	21	ABJ10746	Human parathyroid
704	15	44.1	34	21	ABJ10747	Human parathyroid
705	15	44.1	34	21	ABJ10748	Human parathyroid
706	15	44.1	34	21	ABJ10749	Human parathyroid
707	15	44.1	34	21	ABJ10750	Human parathyroid
708	15	44.1	34	21	ABJ10751	Human parathyroid
709	15	44.1	34	21	ABJ10752	Human parathyroid
710	15	44.1	34	21	ABJ10753	Human parathyroid
711	15	44.1	34	21	ABJ10754	Human parathyroid
712	15	44.1	34	21	ABJ10755	Human parathyroid
713	15	44.1	34	21	ABJ10756	Human parathyroid
714	15	44.1	34	21	ABJ10761	Human parathyroid
715	15	44.1	34	21	ABJ10762	Human parathyroid
716	15	44.1	34	21	ABJ10763	Human parathyroid
717	15	44.1	34	21	ABJ10764	Human parathyroid
717	15	44.1	. 34	21	ABJ10765	Human parathyroid
719	15 15	44.1	34	21	ABJ10766	Human parathyroid
720	15	44.1	34	21	ABJ10767	Human parathyroid
721	15	44.1	34	21	ABJ10768	Human parathyroid
722	15	44.1	34	21	ABJ10770	Human parathyroid
723	15	44.1	34	21	ABJ10771	Human parathyroid
724	15	44.1	34	21	ABJ10777	Human parathyroid
725	15	44.1	34	23	AAE18396	Bovine PTH peptide
726	15	44.1	34	23	AAE18397	Human PTH peptide
727	15	44.1	34	23	AAU73031	Parathyroid hormon
728	15	44.1	34	23	AAU73033	Parathyroid hormon
729	15	44.1	34	23	AAU73035	Parathyroid hormon
730	15	44.1	35	16	AAR74518	Parathyroid hormon
731	15	44.1	35	16	AAR74519	Parathyroid hormon
732	15	44.1	35	16	AAR74520	Parathyroid hormon
732	15	44.1	35	16	AAR74527	Human parathyroid
733 734	15	44.1 44.1	35 35	16	AAR74527 AAR74464	Parathyroid hormon
124	10	T	33	Τ.Ο	#04#\/AAA	ratachytota notmon

735	15	44.1	35	16	AAR74465	Parathyroid hormon
736	15	44.1	35	16	AAR74466	Parathyroid hormon
737	15	44.1	35	16	AAR74467	Parathyroid hormon
738	15	44.1	35	16	AAR74468	Parathyroid hormon
739	15	44.1	35	16	AAR74469	Parathyroid hormon
740	15	44.1	35	16	AAR74470	Parathyroid hormon
			35	16	AAR74471	Parathyroid hormon
741	15	44.1	35 35			Parathyroid hormon
742	15	44.1		16	AAR74472	
743	15	44.1	35	16	AAR74473	Parathyroid hormon
744	15	44.1	35	16	AAR74474	Parathyroid hormon
745	15	44.1	35	16	AAR74475	Parathyroid hormon
746	15	44.1	35	16	AAR74476	Parathyroid hormon
747	15	44.1	35	16	AAR74477	Parathyroid hormon
748	15	44.1	35	16	AAR74478	Parathyroid hormon
749	15	44.1	35	16	AAR74479	Parathyroid hormon
750	15	44.1	35	16	AAR74448	Parathyroid hormon
751	15	44.1	35	16	AAR74449	Parathyroid hormon
752	15	44.1	35	16	AAR74450	Parathyroid hormon
753	15	44.1	35	16	AAR74451	Parathyroid hormon
754	15	44.1	35	16	AAR74452	Parathyroid hormon
755	15	44.1	35	16	AAR74453	Parathyroid hormon
756	15	44.1	35	16	AAR74454	Parathyroid hormon
757	15	44.1	35	16	AAR74455	Parathyroid hormon
758	15	44.1	35	16	AAR74456	Parathyroid hormon
759	15	44.1	35	16	AAR74457	Parathyroid hormon
760	15	44.1	35	16	AAR74458	Parathyroid hormon
761	15	44.1	35	16	AAR74459	Parathyroid hormon
762	15	44.1	35	16	AAR74460	Parathyroid hormon
763	15	44.1	35	16	AAR74461	Parathyroid hormon
763 764	15	44.1	35	16	AAR74462	Parathyroid hormon
765	15	44.1	35	16	AAR74463	Parathyroid hormon
				16		Parathyroid hormon
766	15	44.1	35		AAR74432	
767	15	44.1	35	16	AAR74433	Parathyroid hormon
768	15	44.1	35	16	AAR74434	Parathyroid hormon
769	15	44.1	35	16	AAR74435	Parathyroid hormon
770	15	44.1	35	16	AAR74436	Parathyroid hormon
771	15	44.1	35	16	AAR74437	Parathyroid hormon
772	15	44.1	35	16	AAR74438	Parathyroid hormon
773	15	44.1	35	16	AAR74439	Parathyroid hormon
774	15	44.1	35	16	AAR74440	Parathyroid hormon
775	15	44.1	35	16	AAR74441	Parathyroid hormon
776	15	44.1	35	16	AAR74442	Parathyroid hormon
777	15	44.1	35	16	AAR74443	Parathyroid hormon
778	15	44.1	35	16	AAR74444	Parathyroid hormon
779	15	44.1	35	16	AAR74445	Parathyroid hormon
780	15	44.1	35	16	AAR74446	Parathyroid hormon
781	15 .	44.1	35	16	AAR74447	Parathyroid hormon
782	15	44.1	35	16	AAR74429	Parathyroid hormon
783	15	44.1	35	16	AAR74430	Parathyroid hormon
784	15	44.1	35	16	AAR74431	Parathyroid hormon
785	15	44.1	35	16	AAR74398	Parathyroid hormon
786	15	44.1	35	16	AAR74399	Parathyroid hormon
787	15	44.1	35	16	AAR74400	Parathyroid hormon
788	15	44.1	35	16	AAR74394	Parathyroid hormon
789	15	44.1	35	16	AAR74395	Parathyroid hormon
790	15	44.1	35	16	AAR74396	Parathyroid hormon
791	15	44.1	35	16	AAR74397	Parathyroid hormon
·	- =			-		

792	15	44.1	35	23	AAU73175	Parathyroid hormon
793	15	44.1	36	15	AAR58222	[His27]-hPTH(1-36)
794	15	44.1	36	15	AAR58223	[Phe27]-hPTH(1-36)
795	15	44.1	36	15	AAR58224	[Nle27]-hPTH(1-36)
796	15	44.1	36	15	AAR58225	[Asn27] -hPTH(1-36)
797	15	44.1	36	15	AAR58226	[Ala27] -hPTH(1-36)
798	15	44.1	36	15	AAR58214	[Ala19] -hPTH(1-36)
799	15	44.1	36	15	AAR58041	[L8,D10,K11,S14,I1
800	15	44.1	36	15	AAR58043	[L8,Q16,D17,L18,R1
801	15	44.1	36	15	AAR58046	[L8,A16,D17,L18,A1
802	15	44.1	36	15	AAR58047	[L8,D10,A16,D17,L1
803	15	44.1	36	15	AAR58050	[L8,A16,D17,Q18,A1
804	15	44.1	36	15	AAR58051	[L8,A16,A17,Q18,A1
805	15	44.1	36	15	AAR58052	[L8,A17,Q18,A19]-h
806	15	44.1	36	15	AAR58067	[L8,A16,A17,A18,A1
807	15	44.1	36	15	AAR58069	Isopropyl-[L8,K(Is
808	15	44.1	36	15	AAR58070	Isopropyl-[L8,K(Is
809	15	44.1	36	15	AAR55822	[L8,D10,K11,A16,Q1
810	15	44.1	36	15	AAR55825	[L8,A16,Q18,A19]-h
811	15	44.1	36	15	AAR58086	[1-amino-cyclopent
812	15	44.1	38	15	AAR58136	[Arg19] -hPTH(1-38)
813	15	44.1	38	15	AAR58154	[Val27]-hPTH(1-38)
814	15	44.1	38	15	AAR58155	[Ile27]-hPTH(1-38)
815	15	44.1	38	15	AAR58156	[Leu27] -hPTH(1-38)
816	15	44.1	38	15	AAR58157	[Arg27]-hPTH(1-38)
817	15	44.1	38	15	AAR58158	[Ala27] -hPTH(1-38)
818	15	44.1	38	15	AAR58123	[Ser19]-hPTH(1-38)
819	15	44.1	38	15	AAR58124	[Lys19]-hPTH(1-38)
820	15	44.1	38	15	AAR58125	[Leu19] -hPTH(1-38)
821	15	44.1	38	15	AAR58126	[Ala19] -hPTH(1-38)
822	15	44.1	38	15	AAR58127	[Tyr19]-hPTH(1-38)
823	15	44.1	38	15	AAR58128	[Met19]-hPTH(1-38)
824	15	44.1	38	15	AAR58129	[His19] -hPTH(1-38)
825	15	44.1	38	15	AAR58130	[Val19]-hPTH(1-38)
826	15	44.1	38	15	AAR58131	[Gly19]-hPTH(1-38)
827	15	44.1	38	15	AAR58132	[Pro19] -hPTH(1-38)
828	15	44.1	38	15	AAR58133	[Asp19] -hPTH(1-38)
829	15	44.1	38	15	AAR58134	[Ile19]-hPTH(1-38)
830	14	41.2	28	23	AAU73066	Parathyroid hormon
831	14	41.2	30	23	AAU73057	Parathyroid hormon
832	14	41.2	33	17	AAW15814	[Leu(8), Trp(10), Al
833	14	41.2	34	14	AAR41556	[Gln26,27]hPTH (1-
834	14	41.2	34	14	AAR41566	[Arg 26,27]hPTH (1
835	14	41.2	34	14	AAR41567	[Gln26]hPTH (1-34)
836	14	41.2	34	15	AAR55817	[L8,Q18,T33,A34]-h
837	14	41.2	34	15	AAR55819	[L8, A16, Q18, T33, A3
838	14	41.2	34	15	AAR55821	[L8,D10,K11,Q18,T3
839	14	41.2	34	15	AAR55823	[L8,D10,K11,A16,Q1
840	14	41.2	34	15	AAR58021	[L8,D10,A16,Q18,T3
841	14	41.2	34	15	AAR58034	Isopropyl-[L8,K(Is
842	14	41.2	34	17	AAW15813	[Leu(8), Trp(10), Al
843	14	41.2	34	17	AAW15815	[Leu(8), Trp(10), DL
844	14	41.2	34	17	AAW15828	N-alpha-acylated [
845	14	41.2	34	18	AAW08132	Human PTH derivati
846	14	41.2	34	18	AAW17960	Human PTH analogue
847	14	41.2	34	20	AAY02587	Parathyroid hormon
848	14	41.2	34	21	ABJ10757	Human parathyroid

849	14	41.2	35	16	AAR74515	Parathyroid hormon
850	14	41.2	35	16	AAR74516	Parathyroid hormon
851	14	41.2	35	16	AAR74517	Parathyroid hormon
852	14	41.2	35	16	AAR74480	Parathyroid hormon
853	14	41.2	35	16	AAR74401	Parathyroid hormon
854	14	41.2	35	16	AAR74409	Parathyroid hormon
855	14	41.2	35	16	AAR74412	Parathyroid hormon
856	14	41.2	36	15	AAR58290	[Ala26] -hPTH(1-36)
857	14	41.2	36	15	AAR58279	[Lys20]-hPTH(1-36)
858	14	41.2	36	15	AAR58218	[Gln26]-hPTH(1-36)
859	14	41.2	36	15	AAR58219	[Nle26] - hPTH(1-36)
860	14	41.2	38	15	AAR58137	[Phe20] - hPTH(1-38)
861	14	41.2	38	15	AAR58153	[Arg26] -hPTH(1-38)
862	13	38.2	32	22	AAB84835	Parathyroid hormon
863	13	38.2	32	22	AAB96906	Parathyroid hormon
864	13	38.2	34	13	AAR22297	Human parathyroid
865	13	38.2	34	14	AAR34456	Human parathyroid
866	13	38.2	34	14	AAR34457	Human parathyroid
867	13	38.2	34	14	AAR41557	[Gln25,26,27] hPTH
868	13	38.2	34	15	AAR58195	[S14,I15,Q16,D17,L
869	13	38.2	34	15	AAR58045	[L8,Q16,D17,L18,R1
870	13	38.2	34	15	AAR58049	[L8,D10,K11,Q16,D1
871	13	38.2	34	15	AAR58056	[L8,D10,K11,A16,Q1
872	13	38.2	34	15	AAR58058	[L8,D10,K11,A16,Q1
873	13	38.2	34	15	AAR55818	[L8,A16,Q18,A19,T3
874	13	38.2	34	18	AAW08131	Human PTH derivati
875	13	38.2	34	21	ABJ10758	Human parathyroid
876	13	38.2	34	22	AAB84828	Parathyroid hormon
877	13	38.2	34	22	AAB96921	Parathyroid hormon
878	13	38.2	35	16	AAR74512	Parathyroid hormon
879	13	38.2	35	16	AAR74513	Parathyroid hormon
880	13	38.2	35	16	AAR74514	Parathyroid hormon
881	13	38.2	35	16	AAR74511	Parathyroid hormon
882	13	38.2	35	16	AAR74481	Parathyroid hormon
883	13	38.2	35	16	AAR74482	Parathyroid hormon
884	13	38.2	35	16	AAR74483	Parathyroid hormon
885	13	38.2	35	16	AAR74408	Parathyroid hormon
886	13	38.2	36	15	AAR58287	[Phe25] -hPTH(1-36)
887	13	38.2	36	15	AAR58288	[Lys25] -hPTH(1-36)
888	13	38.2	36	15	AAR58289	[Ala25] -hPTH(1-36)
889	13	38.2	36	15	AAR58192	[Gln25] -hPTH(1-36)
890	13	38.2	36	15	AAR58216	[Ala21] -hPTH(1-36)
891	13	38.2	38	15	AAR58138	[Ala21] -hPTH(1-38)
892	13	38.2	38	15	AAR58139	[Gly21] -hPTH(1-38)
893	13	38.2	38	15	AAR58140	[Phe21] -hPTH(1-38)
894	13	38.2	38	15	AAR58141	[Leu21] -hPTH(1-38)
895	13	38.2	38	15	AAR58142	[Asn21] -hPTH(1-38)
896	13	38.2	38	15	AAR58143	[Gln21] -hPTH(1-38)
897	13	38.2	38	15	AAR58144	[Ser21] -hPTH(1-38)
898	12	35.3	28	23	AAU73065	Parathyroid hormon
899	12	35.3	28	23	AAU73067	Parathyroid hormon
900	12	35.3	29	13	AAR22070	Modified rPTH(7-34
901	12	35.3	30	23	AAU73056	Parathyroid hormon
902	12	35.3	30	23	AAU73058	Parathyroid hormon
903	12	35.3	30	23	AAU73059	Parathyroid hormon
904	12	35.3	34	11	AAR07917	Rat parathyroid ho
905	12	35.3	34	11	AAR08298	Rat parathyroid ho

906	10	35.3	34	16	AAR62432	Accelerator peptid
907	12 12	35.3	34	17	AAR99980	Rat parathyroid ho
908	12	35.3	34	18	AAW19996	Cyclised rat parat
909	12	35.3	34	18	AAW20002	Cyclised rat parat
910	12	35.3	34	18	AAW20002 AAW20008	Cyclised rat parat
911	12	35.3	34	18	AAW17949	Human parathyroid
912	12	35.3	34	18	AAW17945	Human parathyroid
913	12	35.3	· 34	18	AAW17950	Human PTH analogue
913	12	35.3	34	19	AAW17930 AAW67280	Parathyroid hormon
914	12	35.3	34	19	AAW67284	Parathyroid hormon
916	12	35.3	34	19	AAW67284 AAW67285	Parathyroid hormon
917	12	35.3	34	19	AAW67288	Parathyroid hormon
918	12	35.3	34	19	AAW67289	Parathyroid hormon
919	12	35.3	34	19	AAW67294	Parathyroid hormon
	12	35.3	34	19		Parathyroid hormon
920	12	35.3	34	19	AAW67295 AAW67296	Parathyroid hormon
921						Parathyroid hormon
922	12	35.3	34	19	AAW67303	_
923	12	35.3	34	19	AAW67304	Parathyroid hormon
924	12	35.3	34	19	AAW48396	Human PTH/PTHrP hy Human parathyroid
925	12	35.3	34	21	ABJ10759	Native human parat
926	12	35.3	34	22	AAB84777	
927	12	35.3	34	22 22	AAB96897	Rat parathyroid ho
928	12	35.3	34		AAB91100	Parathyroid hormon
929	12	35.3	34	23	AAU73037	Parathyroid hormon
930	12	35.3	34	24	ABP71499	Rat parathyroid ho
931	12	35.3	35 35	16	AAR74507	Parathyroid hormon
932	12	35.3	35	16	AAR74508	Parathyroid hormon
933	12	35.3	35 35	16	AAR74509	Parathyroid hormon
934	12	35.3	35	16	AAR74510	Parathyroid hormon
935	12	35.3	35	16	AAR74484	Parathyroid hormon
936	12	35.3	35	16	AAR74485	Parathyroid hormon Parathyroid hormon
937	12	35.3	35 36	16	AAR74486	[A13,Q26,F27,D-F34
938	12	35.3	36	15	AAR58208	
939	12	35.3	36	15	AAR58217 AAR58053	[Ala22]-hPTH(1-36) [L8,A17,Q18,A19,R2
940	12 12	35.3 35.3	36 36	15 15	AAR58060	
941 942	12	35.3	36 36	15	AAR58064	[L8,A16,Q18,A19,R2 [L8,S13,A16,Q18,A1
943	12	35.3	36	15	AAR58032	[L8,A16,D17,L18,R1
						Isopropyl-[L8,S13,
944	12	35.3	36	15	AAR58073	Rat parathyroid ho
945 946	12 12	35.3 35.3	37 38	22	AAB86231	[Gly22]-hPTH(1-38)
				15	AAR58145	[G1y22]-HPTH(1-38) [Leu22]-hPTH(1-38)
947 948	12 12	35.3 35.3	38	15	AAR58146	[His22]-HPTH(1-38)
949			38	15	AAR58147	[Ala22]-hPTH(1-38)
	12	35.3	38	15	AAR58148	
950 051	12 12	35.3	38 38	15	AAR58149 AAR58150	[Ile22]-hPTH(1-38) [Val22]-hPTH(1-38)
951 952	12	35.3	38 38	15 15		[Val22]-hPTH(1-38) [Ser22]-hPTH(1-38)
952 953	12	35.3 35.3	38 38	15	AAR58151	[Ser22]-hPTH(1-38) [Arg22]-hPTH(1-38)
953 954	11	32.4	36 28		AAR58152 AAP82184	Sequence of parath
95 4 955	11	32.4	28	9 13	AAR22071	Modified [Tyr 34]r
				13		
956 057	11	32.4	28	13	AAR22072	Modified [D-Trp_12 Modified [Nle 8, 1
957	11	32.4	28	13	AAR22073	
958	11	32.4	28	13	AAR22074	Modified [Nle_8,_1
959	11	32.4	28	23	AAU73105	Parathyroid hormon
960	11	32.4	28	23	AAU73106	Parathyroid hormon
961 962	11 11	$32.4 \\ 32.4$	30 30	22 22	AAB84834 AAB96905	Parathyroid hormon Parathyroid hormon

- , - - .

```
Parathyroid hormon
963
         11
             32.4
                     30 23 AAU73054
             32.4
                     30 23 AAU73136
                                                     Parathyroid hormon
964
         11
                                                     Parathyroid hormon
             32.4
                     30 23 AAU73137
965
         11
                     32 22 AAB91094
                                                     Parathyroid hormon
966
         11
             32.4
                     33 9 AAP82176
                                                     Sequence of parath
967
        11
             32.4
                     34 7 AAP61414
                                                      Peptide with parat
             32.4
968
        11
                     34 8 AAP71281
                                                     Parathyroid hormon
969
        11
             32.4
                                                      Rat parathyroid ho
                     34 11 AAR07920
970
        11
             32.4
                                                      Rat parathyroid ho
             32.4
                     34 11 AAR07923
971
        11
                     34 11 AAR08301
                                                      Rat parathyroid ho
972
             32.4
        11
                     34 11 AAR08304
                                                      Rat parathyroid ho
             32.4
973
        11
                     34 14 AAR34358
                                                      Human parathyroid
             32.4
974
         11
                     34 14 AAR34337
                                                      Bovine parathyroid
975
         11
             32.4
                     34 14 AAR34338
                                                      Bovine parathyroid
976
         11
             32.4
             32.4
                                                      Bovine parathyroid
                     34 14 AAR34339
977
        11
                                                      Bovine parathyroid
           32.4
                     34 14 AAR34340
978
        11
                     34 14 AAR34341
                                                      Bovine parathyroid
979
        11 32.4
        11 32.4
                     34 14 AAR34342
                                                     Bovine parathyroid
980
                     34 14 AAR34343
                                                     Bovine parathyroid
        11 32.4
981
            32.4
                     34 14 AAR34344
                                                      Bovine parathyroid
982
         11
                    34 14 AAR34345
            32.4
                                                      Bovine parathyroid
983
         11
                      34 14 AAR34346
            32.4
                                                      Bovine parathyroid
         11
984
                   34 14 AAR34346
34 14 AAR34347
            32.4
                                                       Bovine parathyroid
985
         11
                    34 14 AAR34348
                                                       Bovine parathyroid
         11
            32.4
986
                                                      Bovine parathyroid
            32.4
                    34 14 AAR34349
987
        11
                                                      Bovine parathyroid
988
        11
            32.4
                     34 14 AAR34350
                     34 14 AAR34351
                                                      Bovine parathyroid
989
        11
            32.4
            32.4
                     34 14 AAR34352
                                                      Bovine parathyroid
990
        11
                     34 14 AAR34353
                                                      Human parathyroid
991
        11
              32.4
                     34 14 AAR34354
992
         11
              32.4
                                                      Human parathyroid
                     34 14 AAR34355
993
         11
              32.4
                                                       Human parathyroid
994
         11
            32.4
                     34 14 AAR34356
                                                       Human parathyroid
995
         11
            32.4
                     34 14 AAR34357
                                                      Human parathyroid
996
         11 32.4
                     34 14 AAR34359
                                                      Human parathyroid
997
         11
              32.4
                     34 14 AAR34360
                                                      Human parathyroid
998
         11
              32.4
                     34 14 AAR34361
                                                     Human parathyroid
                     34 14 AAR34362
                                                      Human parathyroid
999
         11
              32.4
                     34 14 AAR34363
                                                       Human parathyroid
1000
         11
              32.4
```

ALIGNMENTS

```
RESULT 1
AAR22296
     AAR22296 standard; Peptide; 34 AA.
ID
XX
AC
     AAR22296;
XX
DT
                   (updated)
     25-MAR-2003
     03-AUG-1992 (first entry)
DT
XX
     Human parathyroid hormone 1-34 [Lys 11].
DE
XX
     hPTH; protease resistant; osteoporosis; hypoparathyroidism;
KW
KW
     hypertension.
XX
```

```
Synthetic.
OS
XX
     EP477885-A.
PN
XX
     01-APR-1992.
PD
XX
                    91EP-0116303.
     25-SEP-1991;
PF
XX
                    91JP-0227232.
     06-SEP-1991;
PR
                    90JP-0257490.
     28-SEP-1990;
PR
XX
     (TAKE ) TAKEDA CHEM IND LTD.
PΑ
XX
     Nakagawa S, Fukuda T, Kawase M, Yamazaki I;
PΙ
XX
     WPI; 1992-106285/14.
DR
XX
     New peptide(s) are parathyroid hormone derivs. - used in hormone
PT
     therapy, for treating osteoporosis hyperparathyroidism and
PT
     hypertension
PT
XX
     Claim 9; Page 14; 14pp; English.
PS
XX
     The peptide is an analogue of human parathyroid hormone fragment
CC
     1-34. The peptide modification defined increase resistance to
CC
     proteases and therefore persistance in the blood. The peptide is
CC
     used in therapy of osteoporosis, hypoparathyroidism and hypertension.
CC
     The peptide may be synthesised by the Merrifield solid phase
CC
     method in an automatic apparatus.
CC
      See also AAR22290-99.
CC
      (Updated on 25-MAR-2003 to correct PA field.)
CC
XX
      Sequence
                 34 AA;
SO
                           100.0%; Score 34; DB 13; Length 34;
   Query Match
                           100.0%; Pred. No. 6.4e-29;
  Best Local Similarity
                                                                               0;
                                 0; Mismatches
                                                    0; Indels
                                                                   0;
                                                                       Gaps
            34; Conservative
             1 SVSEIQLMHNKGKHLNSMERVEWLRKKLQDVHNF 34
 Qy
               11111111111111111111111111111111111111
             1 SVSEIQLMHNKGKHLNSMERVEWLRKKLQDVHNF 34
 Db
 RESULT 2
 AAU73030
      AAU73030 standard; Peptide; 34 AA.
 ID
 XX
 AC
      AAU73030;
 XX
      12-MAR-2002 (first entry)
 DT
 XX
      Parathyroid hormone PTH/PTHrP modulating domain #12.
 DΕ
 XX
      Human; parathyroid hormone; PTH; parathyroid hormone-related protein;
 KW
      PTHrP; bone resorption inhibitor; osteoprotegrin; OPG; OPG-L antibody;
 KW
      calcitonin; bisphosphonate; oestrogen; oestrogen receptor; tibolone;
 KW
      osteopenia; hyperthyroidism; hypercalcaemia; tumour metastasis; bone;
 KW
```

```
breast cancer; prostate cancer; cachexia; anorexia; osteoporosis;
KW
     Paget's disease; osteomyelitis; osteonecrosis; bone cell death;
KW
     Gaucher's disease; sickle cell anaemia; systemic lupus erythematosus;
KW
     rheumatoid arthritis; periodontal disease; alopecia; fracture repair;
KW
KW
     immunoglobulin G; IgG.
XX
OS
     Homo sapiens.
XX
ΡN
     WO200181415-A2.
XX
PD
     01-NOV-2001.
XX
PF
     27-APR-2001; 2001WO-US13528.
XX
     27-APR-2000; 2000US-200053P.
PR
     28-JUN-2000; 2000US-214860P.
PR
     06-FEB-2001; 2001US-266673P.
PR
PR
     26-APR-2001; 2001US-0843221.
XX
PΑ
     (AMGE-) AMGEN INC.
XX
_{
m PI}
     Kostenuik P, Liu C, Lacey DL;
XX
DR
     WPI; 2002-066435/09.
XX
     Composition, useful for treating osteopenia, comprises parathyroid
PT
     hormone and parathyroid hormone-related protein receptor modulators -
PΤ
XX
     Claim 39; Page 26; 107pp; English.
PS
XX
     The invention relates to a composition (I) comprising modulators of
CC
     parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP)
CC
     which comprise a PTH/PTHrP modulating domain and a vehicle. (I)
CC
     comprising PTH agonist optionally with a bone resorption inhibitor, such
CC
     as osteoprotegrin (OPG), OPG-L antibody, calcitonin, bisphosphonates,
CC
     oestrogens, oestrogen receptor modulators and tibolone is useful for
CC
     treating osteopenia. (I) is useful for therapeutic and prophylactic
CC
     purposes. Antagonists of PTH receptor are useful in treating primary and
CC
     secondary hyperthyroidism, hypercalcaemia, tumour metastases,
CC
CC
     particularly breast and prostate cancer, cachexia and anorexia,
     osteopenia, including various forms of osteoporosis, Paget's disease of
CC
     bone, osteomyelitis, osteonecrosis or bone cell death, associated with
CC
     traumatic injury or nontraumatic necrosis associated with Gaucher's
CC
CC
     disease, sickle cell anaemia, systemic lupus erythematosus, rheumatoid
     arthritis, periodontal disease and alopecia. PTH receptor agonists are
CC
     useful as therapeutic agents in conditions including fracture repair
CC
     (including healing of non-union fractures), osteopenia, including various
CC
     forms of osteoporosis. AAU73018-AAU73181 represent parathyroid hormone
CC
     and parathyroid hormone related protein (PTH/PTHrP) modulators and
CC
CC
     related amino acid sequences of the invention.
XX
SQ
     Sequence
                34 AA;
                           100.0%; Score 34; DB 23; Length 34;
  Query Match
                           100.0%; Pred. No. 6.4e-29;
  Best Local Similarity
```

0; Mismatches

34; Conservative

0; Gaps

0; Indels

0;

```
1 SVSEIOLMHNKGKHLNSMERVEWLRKKLQDVHNF 34
Qу
              1 SVSEIQLMHNKGKHLNSMERVEWLRKKLQDVHNF 34
Db
RESULT 3
AAU73053
    AAU73053 standard; Peptide; 30 AA.
ID
XX
AC
    AAU73053;
XX
     12-MAR-2002 (first entry)
DT.
XX
     Parathyroid hormone PTH/PTHrP modulating domain #35.
DE
XX
     Human; parathyroid hormone; PTH; parathyroid hormone-related protein;
KW
KW
     PTHrP; bone resorption inhibitor; osteoprotegrin; OPG; OPG-L antibody;
KW
     calcitonin; bisphosphonate; oestrogen; oestrogen receptor; tibolone;
KW
     osteopenia; hyperthyroidism; hypercalcaemia; tumour metastasis; bone;
     breast cancer; prostate cancer; cachexia; anorexia; osteoporosis;
KW
     Paget's disease; osteomyelitis; osteonecrosis; bone cell death;
KW
     Gaucher's disease; sickle cell anaemia; systemic lupus erythematosus;
KW
     rheumatoid arthritis; periodontal disease; alopecia; fracture repair;
KW
KW
     immunoglobulin G; IgG.
XX
     Homo sapiens.
OS
XX
PN
     WO200181415-A2.
XX
PD
     01-NOV-2001.
XX
PF
     27-APR-2001; 2001WO-US13528.
XX
     27-APR-2000; 2000US-200053P.
PR
     28-JUN-2000; 2000US-214860P.
PR
PR
     06-FEB-2001; 2001US-266673P.
PR
     26-APR-2001; 2001US-0843221.
XX
     (AMGE-) AMGEN INC.
PΑ
XX
PΙ
     Kostenuik P, Liu C, Lacey DL;
XX
DR
     WPI; 2002-066435/09.
XX
PT
     Composition, useful for treating osteopenia, comprises parathyroid
     hormone and parathyroid hormone-related protein receptor modulators -
PT
XX
PS
     Disclosure; Page 27; 107pp; English.
XX
     The invention relates to a composition (I) comprising modulators of
CC
     parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP)
CC
CC
     which comprise a PTH/PTHrP modulating domain and a vehicle. (I)
CC
     comprising PTH agonist optionally with a bone resorption inhibitor, such
CC
     as osteoprotegrin (OPG), OPG-L antibody, calcitonin, bisphosphonates,
     oestrogens, oestrogen receptor modulators and tibolone is useful for
CC
CC
     treating osteopenia. (I) is useful for therapeutic and prophylactic
```

purposes. Antagonists of PTH receptor are useful in treating primary and

CC

```
CC
     secondary hyperthyroidism, hypercalcaemia, tumour metastases,
CC
     particularly breast and prostate cancer, cachexia and anorexia,
     osteopenia, including various forms of osteoporosis, Paget's disease of
CC
     bone, osteomyelitis, osteonecrosis or bone cell death, associated with
CC
CC
     traumatic injury or nontraumatic necrosis associated with Gaucher's
     disease, sickle cell anaemia, systemic lupus erythematosus, rheumatoid
CC
     arthritis, periodontal disease and alopecia. PTH receptor agonists are
CC
CC
     useful as therapeutic agents in conditions including fracture repair
CC
     (including healing of non-union fractures), osteopenia, including various
CC
     forms of osteoporosis. AAU73018-AAU73181 represent parathyroid hormone
     and parathyroid hormone related protein (PTH/PTHrP) modulators and
CC
CC
     related amino acid sequences of the invention.
XX
SQ
     Sequence
                30 AA;
                                 Score 30; DB 23; Length 30;
                          88.2%;
  Query Match
                          100.0%; Pred. No. 1e-24;
  Best Local Similarity
  Matches
           30; Conservative
                                 0; Mismatches
                                                  0; Indels
                                                                 0;
                                                                     Gaps
                                                                             0;
            1 SVSEIQLMHNKGKHLNSMERVEWLRKKLQD 30
Qу
              Db
            1 SVSEIQLMHNKGKHLNSMERVEWLRKKLQD 30
RESULT 4
AAU73174
     AAU73174 standard; Peptide; 35 AA.
XX
AC
    AAU73174;
XX
DT
     12-MAR-2002 (first entry)
XX
DE
     Parathyroid hormone PTH/PTHrP modulating domain #156.
XX
KW
     Human; parathyroid hormone; PTH; parathyroid hormone-related protein;
KW
     PTHrP; bone resorption inhibitor; osteoprotegrin; OPG; OPG-L antibody;
     calcitonin; bisphosphonate; oestrogen; oestrogen receptor; tibolone;
     osteopenia; hyperthyroidism; hypercalcaemia; tumour metastasis; bone;
KW
KW
     breast cancer; prostate cancer; cachexia; anorexia; osteoporosis;
KW
     Paget's disease; osteomyelitis; osteonecrosis; bone cell death;
KW
     Gaucher's disease; sickle cell anaemia; systemic lupus erythematosus;
KW
     rheumatoid arthritis; periodontal disease; alopecia; fracture repair;
KW
     immunoglobulin G; IgG.
XX
OS
     Synthetic.
XX
PN
     WO200181415-A2.
XX
PD
     01-NOV-2001.
XX
PF
     27-APR-2001; 2001WO-US13528.
XX
PR
     27-APR-2000; 2000US-200053P.
     28-JUN-2000; 2000US-214860P.
PR
PR
     06-FEB-2001; 2001US-266673P.
     26-APR-2001; 2001US-0843221.
PR
XX
```

```
PΑ
     (AMGE-) AMGEN INC.
XX
     Kostenuik P, Liu C, Lacey DL;
PΙ
ХX
DR
     WPI; 2002-066435/09.
XX
     Composition, useful for treating osteopenia, comprises parathyroid
PT
PΤ
     hormone and parathyroid hormone-related protein receptor modulators -
XX
PS
     Disclosure; Page 63; 107pp; English.
XX
CC
     The invention relates to a composition (I) comprising modulators of
CC
     parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP)
CC
     which comprise a PTH/PTHrP modulating domain and a vehicle. (I)
CC
     comprising PTH agonist optionally with a bone resorption inhibitor, such
CC
     as osteoprotegrin (OPG), OPG-L antibody, calcitonin, bisphosphonates,
CC
     oestrogens, oestrogen receptor modulators and tibolone is useful for
CC
     treating osteopenia. (I) is useful for therapeutic and prophylactic
CC
     purposes. Antagonists of PTH receptor are useful in treating primary and
CC
     secondary hyperthyroidism, hypercalcaemia, tumour metastases,
CC
     particularly breast and prostate cancer, cachexia and anorexia,
CC
     osteopenia, including various forms of osteoporosis, Paget's disease of
CC
     bone, osteomyelitis, osteonecrosis or bone cell death, associated with
CC
     traumatic injury or nontraumatic necrosis associated with Gaucher's
CC
     disease, sickle cell anaemia, systemic lupus erythematosus, rheumatoid
CC
     arthritis, periodontal disease and alopecia. PTH receptor agonists are
CC
     useful as therapeutic agents in conditions including fracture repair
CC
     (including healing of non-union fractures), osteopenia, including various
CC
     forms of osteoporosis. AAU73018-AAU73181 represent parathyroid hormone
CC
     and parathyroid hormone related protein (PTH/PTHrP) modulators and
CC
     related amino acid sequences of the invention.
XX
SO
     Sequence
               35 AA;
  Query Match
                          88.2%; Score 30; DB 23; Length 35;
  Best Local Similarity
                         100.0%; Pred. No. 1.1e-24;
           30; Conservative
                               0; Mismatches
                                                  0; Indels
                                                                 0; Gaps
                                                                            0;
Qу
            1 SVSEIQLMHNKGKHLNSMERVEWLRKKLQD 30
              Db
            1 SVSEIQLMHNKGKHLNSMERVEWLRKKLQD 30
RESULT 5
AAW08108
     AAW08108 standard; peptide; 34 AA.
XX
AC
    AAW08108;
XX
DT
     10-OCT-1997 (first entry)
XX
DE
    Human parathyroid hormone derivative, [Asp10,Lys11]hPTH(1-34).
XX
     Human; parathyroid hormone; PTH; cAMP-producing activity;
KW
KW
     bone formation; osteoporosis; hypoparathyroidism; hypertension;
KW
     climacteric disturbance.
XX
```

```
OS
     Synthetic.
XX
PN
     EP748817-A2.
ХX
PD
     18-DEC-1996.
XX
PF
     13-JUN-1996;
                    96EP-0109475.
XX
PR
     15-JUN-1995;
                    95JP-0148652.
XX
PΑ
     (TAKE ) TAKEDA CHEM IND LTD.
XX
PΙ
     Fukuda T, Habashita J, Nakagawa S, Taketomi S;
XX
DR
     WPI; 1997-036114/04.
XX
PT
     New parathyroid hormone derivs. - useful in treatment of bone
PT
     diseases, hypoparathyroidism and hypertension
XX
PS
     Claim 27; Page 26; 42pp; English.
XX
CC
     The sequences given in AAW08108-32 represent derivatives of human
CC
     parathyroid hormone (PTH). These peptides are human PTH (1-34)
CC
     derivative peptides. They have potent cAMP-producing activity and
CC
     bone formation activity. They may be used in treatment of bone
CC
     diseases including osteoporosis, hypoparathyroidism, hypertension
CC
     and climacteric disturbance. The peptides are low in toxicity and
CC
     are safe.
XX
SQ
     Sequence
                34 AA;
  Query Match
                          70.6%; Score 24; DB 18; Length 34;
  Best Local Similarity
                         100.0%; Pred. No. 2.5e-18;
          24; Conservative
  Matches
                               0; Mismatches
                                                 0; Indels
                                                                    Gaps
                                                                            0;
Qу
           11 KGKHLNSMERVEWLRKKLODVHNF 34
              Db
           11 KGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 6
AAR22064
ID
    AAR22064 standard; Protein; 28 AA.
XX
AC
    AAR22064;
XX
DT
     14-JUL-1992 (first entry)
XX
DE
    Modified hPTH(7-34)NH2.
XX
KW
     Parathyroid hormone; analogue; osteoporosis; hyperthyroidism;
KW
     tumours; hypercalcaemia; renal failure; human.
XX
OS
     Synthetic.
XX
FΗ
     Key
                    Location/Qualifiers
FT
    Modified-site
                    7
```

```
/note= "OTHER = see comments"
FT
FT
     Modified-site
FT
                     /label= NH2
XX
     US5093233-A.
PN
XX
PD
     03-MAR-1992.
XX
PF
     25-APR-1990;
                    90US-0514394.
XX
PR
     25-APR-1990;
                    90US-0514394.
XX
PΑ
     (MERI ) MERCK & CO INC.
XX
PΙ
     Rosenblatt M, Roubini E, Chorev M, Nutt RF;
XX
DR
     WPI; 1992-096233/12.
XX
PT
     New parathyroid hormone analogues - useful for treatment and in
PT
     vitro diagnosis of PTH-dependent tumours, immune disorders,
PT
     osteoporosis and hyperparathyroidism.
XX
PS
     Claim 1; Column 10; 6pp; English.
XX
CC
     The peptide is modified at Lys13 (of the parent PTH) in the epsilon
CC
     amino acid gp. by N,N-diisobutyl or 3-phenylpropanoyl. The PTH
CC
     analogue binds with high affinity to the peptide hormone receptor
CC
     without activating the 2nd messenger mol. The modification of the
CC
     Lys residue stabilises the bioactive conformation of PTH to enhance
CC
     the activity. The peptide may be used in in vitro bioassays to
CC
     measure naturally occurring PTH and to diagnose the etiology of or
     to treat osteoporosis or hypercalcaemia. It may also be used to
CC
CC
     treat hyperthyroidism and diseases caused by abberrent prodn. of
CC
     hormone-like substances, such as tumours. It may also be used to
CC
     treat immune diseases such as inflammation. It is prepd. by solid
CC
     phase synthesis.
CC
     See also AAR22058-75.
XX
SQ
     Sequence
                28 AA;
  Query Match
                          67.6%; Score 23; DB 13; Length 28;
  Best Local Similarity
                         100.0%; Pred. No. 2.5e-17;
  Matches
           23; Conservative
                                0; Mismatches
                                                  0; Indels
                                                                 0; Gaps
                                                                            0;
           12 GKHLNSMERVEWLRKKLQDVHNF 34
Qу
              Db
            6 GKHLNSMERVEWLRKKLQDVHNF 28
RESULT 7
ABJ10776
ID
    ABJ10776 standard; Peptide; 28 AA.
XX
AC
    ABJ10776;
XX
DT
     02-DEC-2002 (first entry)
```

/label= OTHER

FT

```
DΕ
     Human parathyroid hormone analogue #72.
XX
KW
     Human; parathyroid hormone; parathyroid hormone-related protein;
     PTH; PTHrP; analogue; abnormal CNS function; pancreatic function;
KW
     mineral metabolism; male infertility; abnormal blood pressure;
KW
KW
     hypothalmic disease.
XX
OS
     Homo sapiens.
OS
     Synthetic.
XX
FΗ
    Key
                     Location/Qualifiers
FT
     Misc-difference 2
FT
                     /note= "D-form residue"
FT
     Modified-site
FT
                     /note= "C-terminal amide"
XX
PN
     WO9957139-A2.
XX
PD
     11-NOV-1999.
XX
PF
     03-MAY-1999;
                    99WO-US09521.
XX
PR
                    98US-0072956.
     05-MAY-1998;
XX
PΑ
     (SCRC ) SOC CONSEILS RECH & APPL SCI.
XX
PI
     Chorev M, Dong ZX, Rosenblatt M;
XX
DR
     WPI; 2000-038790/03.
XX
PΤ
     New parathyroid hormone analogs, used for treating e.g. abnormal CNS or
PT
     pancreatic functions, abnormal mineral metabolism and homeostasis, male
PT
     infertility, abnormal blood pressure or hypothalmic disease -
XX
PS
     Claim 11; Page 40; 49pp; English.
XX
CC
     The present invention provides a number of parathyroid hormone (PTH) or
CC
     parathyroid hormone-related protein (PTHrP) analogues. These act as PTH2
CC
     receptor agonists or antagonists and can be used in the treatment of
CC
     disorders resulting from altered or excessive action of the PTH2
CC
     receptor, e.g. abnormal CNS functions, abnormal pancreatic functions,
CC
     divergence from normal mineral metabolism and homeostasis, male
CC
     infertility, abnormal blood pressure or a hypothalmic disease. The
CC
     present sequence is a peptide analogue of the invention.
XX
SQ
     Sequence
                28 AA;
  Query Match
                          67.6%; Score 23; DB 21; Length 28;
                         100.0%; Pred. No. 2.5e-17;
 Best Local Similarity
           23; Conservative 0; Mismatches
                                                                 0;
                                                 0; Indels
                                                                     Gaps
                                                                             0;
           12 GKHLNSMERVEWLRKKLQDVHNF 34
Qу
              Db
           6 GKHLNSMERVEWLRKKLQDVHNF 28
```

XX

```
RESULT 8
AAE23734
     AAE23734 standard; peptide; 28 AA.
XX
AC
     AAE23734;
XX
DT
     10-SEP-2002 (first entry)
XX
DE
     Human parathyroid hormone (hPTH) peptide (7-34).
XX
KW
     Human parathyroid hormone; hPTH; PTH-related peptide; PTHrP; eczema;
KW
     hyperproliferative skin disorder; psoriasis; ichthyosis; skin cancer;
KW
     acne; actinic keratosis; alopecia; gene therapy.
XX
OS
     Homo sapiens.
XX
PN
     WO200228420-A2.
ХX
PD
     11-APR-2002.
XX
PF
     05-OCT-2001; 2001WO-US31082.
XX
PR
     06-OCT-2000; 2000US-238134P.
XX
PA
     (HOLI/) HOLICK M F.
XX
PI
     Holick MF;
XX
DR
     WPI; 2002-452304/48.
DR
     N-PSDB; AAD37995.
XX
PT
     Regulating mammalian skin or hair cell proliferation and
PT
     differentiation by administering nucleic acids encoding peptides
PT
     derived from N-terminal region of human parathyroid hormone (hPTH) or
PT
     hPTH-related protein
XX
PS
     Claim 35; Fig 38; 56pp; English.
XX
     The invention relates to a method for regulating proliferation or
CC
CC
     enhancing differentiation of mammalian skin or hair cell. The method
CC
     involves administering nucleic acids encoding peptides derived from
CC
     N-terminal region of human parathyroid hormone (hPTH) or hPTH-related
     peptide (PTHrP). The method is used for inhibiting hyperproliferative
CC
CC
     skin disorders such as psoriasis, ichthyosis, eczema, acne, actinic
CC
     keratosis, skin cancer, for inhibiting hair growth or preventing hair
CC
     regrowth. It is useful for stimulating cell growth, rejuvenating aged
CC .
     skin, preventing skin wrinkles, treating skin wrinkles, enhancing wound
CC
     healing, stimulating hair growth, maintaining hair growth, treating or
CC
     preventing female or male pattern baldness, for treating chemotherapy
CC
     induced alopecia and also for stimulating epidermal cell growth or
CC
     hair follicle cell growth. The method is also used in gene therapy.
CC
     The present sequence is hPTH peptide.
XX
SQ
     Sequence
                28 AA;
  Query Match
                          67.6%; Score 23; DB 23; Length 28;
```

Best Local Similarity 100.0%; Pred. No. 2.5e-17;

```
Matches
                                 0; Mismatches
            23; Conservative
                                                   0; Indels
                                                                 0;
                                                                     Gaps
                                                                             0;
Qу
           12 GKHLNSMERVEWLRKKLODVHNF 34
              6 GKHLNSMERVEWLRKKLQDVHNF 28
Db
RESULT 9
AAU73044
     AAU73044 standard; Peptide; 28 AA.
XX
AC
     AAU73044;
XX
DT
     12-MAR-2002 (first entry)
XX
DE
     Parathyroid hormone PTH/PTHrP modulating domain #26.
XX
KW
     Human; parathyroid hormone; PTH; parathyroid hormone-related protein;
KW
     PTHrP; bone resorption inhibitor; osteoprotegrin; OPG; OPG-L antibody;
KW
     calcitonin; bisphosphonate; oestrogen; oestrogen receptor; tibolone;
KW
     osteopenia; hyperthyroidism; hypercalcaemia; tumour metastasis; bone;
KW
     breast cancer; prostate cancer; cachexia; anorexia; osteoporosis;
KW
     Paget's disease; osteomyelitis; osteonecrosis; bone cell death;
KW
     Gaucher's disease; sickle cell anaemia; systemic lupus erythematosus;
KW
     rheumatoid arthritis; periodontal disease; alopecia; fracture repair;
KW
     immunoglobulin G; IgG.
XX
OS
     Homo sapiens.
XX
PN
     WO200181415-A2.
XX
PD
     01-NOV-2001.
XX
PF
     27-APR-2001; 2001WO-US13528.
XX
PR
     27-APR-2000; 2000US-200053P.
PR
     28-JUN-2000; 2000US-214860P.
PR
     06-FEB-2001; 2001US-266673P.
PR
     26-APR-2001; 2001US-0843221.
ΧX
PA
     (AMGE-) AMGEN INC.
XX
PΙ
     Kostenuik P, Liu C, Lacey DL;
XX
DR
    WPI; 2002-066435/09.
XX
PT
     Composition, useful for treating osteopenia, comprises parathyroid
PT
     hormone and parathyroid hormone-related protein receptor modulators -
XX
PS
     Disclosure; Page 27; 107pp; English.
XX
CC
     The invention relates to a composition (I) comprising modulators of
CC
    parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP)
     which comprise a PTH/PTHrP modulating domain and a vehicle. (I)
CC
CC
     comprising PTH agonist optionally with a bone resorption inhibitor, such
CC
    as osteoprotegrin (OPG), OPG-L antibody, calcitonin, bisphosphonates,
CC
    oestrogens, oestrogen receptor modulators and tibolone is useful for
```

```
CC
     purposes. Antagonists of PTH receptor are useful in treating primary and
CC
     secondary hyperthyroidism, hypercalcaemia, tumour metastases,
CC
     particularly breast and prostate cancer, cachexia and anorexia,
CC
     osteopenia, including various forms of osteoporosis, Paget's disease of
CC
     bone, osteomyelitis, osteonecrosis or bone cell death, associated with
CC
     traumatic injury or nontraumatic necrosis associated with Gaucher's
CC
     disease, sickle cell anaemia, systemic lupus erythematosus, rheumatoid
CC
     arthritis, periodontal disease and alopecia. PTH receptor agonists are
CC
     useful as therapeutic agents in conditions including fracture repair
     (including healing of non-union fractures), osteopenia, including various
CC
CC
     forms of osteoporosis. AAU73018-AAU73181 represent parathyroid hormone
CC
     and parathyroid hormone related protein (PTH/PTHrP) modulators and
CC
     related amino acid sequences of the invention.
XX
SQ
     Sequence
                28 AA;
  Query Match
                          67.6%; Score 23; DB 23; Length 28;
  Best Local Similarity
                          100.0%; Pred. No. 2.5e-17;
  Matches
            23; Conservative
                                0; Mismatches
                                                 0; Indels
                                                                 0;
                                                                     Gaps
                                                                             0;
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
            6 GKHLNSMERVEWLRKKLQDVHNF 28
RESULT 10
AAE23752
     AAE23752 standard; peptide; 30 AA.
XX
AC
     AAE23752;
XX
DT
     10-SEP-2002 (first entry)
XX
DΕ
     Human parathyroid hormone (hPTH) peptide (5-34).
XX
KW
     Human parathyroid hormone; hPTH; PTH-related peptide; PTHrP; eczema;
KW
     hyperproliferative skin disorder; psoriasis; ichthyosis; skin cancer;
KW
     acne; actinic keratosis; alopecia; gene therapy.
XX
OS
     Homo sapiens.
XX
ΡN
     WO200228420-A2.
XX
PD
     11-APR-2002.
XX
PF
     05-OCT-2001; 2001WO-US31082.
XX
PR
     06-OCT-2000; 2000US-238134P.
XX
PΑ
     (HOLI/) HOLICK M F.
XX
PΙ
     Holick MF;
XX
DR
     WPI; 2002-452304/48.
XX
PT
     Regulating mammalian skin or hair cell proliferation and
```

treating osteopenia. (I) is useful for therapeutic and prophylactic

CC

```
РΤ
     differentiation by administering nucleic acids encoding peptides
PТ
     derived from N-terminal region of human parathyroid hormone (hPTH) or
     hPTH-related protein -
PT
ХX
PS
     Claim 35; Fig 42; 56pp; English.
XX
     The invention relates to a method for regulating proliferation or
CC
CC
     enhancing differentiation of mammalian skin or hair cell. The method
CC
     involves administering nucleic acids encoding peptides derived from
CC
     N-terminal region of human parathyroid hormone (hPTH) or hPTH-related
CC
     peptide (PTHrP). The method is used for inhibiting hyperproliferative
     skin disorders such as psoriasis, ichthyosis, eczema, acne, actinic
CC
CC
     keratosis, skin cancer, for inhibiting hair growth or preventing hair
CC
     regrowth. It is useful for stimulating cell growth, rejuvenating aged
CC
     skin, preventing skin wrinkles, treating skin wrinkles, enhancing wound
CC
     healing, stimulating hair growth, maintaining hair growth, treating or
CC
     preventing female or male pattern baldness, for treating chemotherapy
CC
     induced alopecia and also for stimulating epidermal cell growth or
CC
     hair follicle cell growth. The method is also used in gene therapy.
CC
     The present sequence is hPTH peptide.
XX
SO
     Sequence
               30 AA;
                          67.6%; Score 23; DB 23; Length 30;
  Query Match
  Best Local Similarity
                         100.0%; Pred. No. 2.6e-17;
  Matches
           23; Conservative 0; Mismatches 0; Indels
                                                                            0;
Qy
           12 GKHLNSMERVEWLRKKLODVHNF 34
              Dh
            8 GKHLNSMERVEWLRKKLQDVHNF 30
RESULT 11
AAB07468
ID
    AAB07468 standard; protein; 32 AA.
XX
AC
    AAB07468;
XX
DT
     20-OCT-2000 (first entry)
XX
DE
     Antigenic peptide derived from human parathyroid hormone.
XX
KW
     Human; parathyroid hormone; PTH; hyperparathyroidism; bone disease.
XX
OS
     Homo sapiens.
XX
PN
    WO200042437-A1.
XX
PD
     20-JUL-2000.
XX
PF
     13-JAN-2000; 2000WO-US00855.
XX
PR
     14-JAN-1999;
                    99US-0231422.
PR
     26-JUN-1999;
                   99US-0344639.
XX
PA
     (SCAN-) SCANTIBODIES LAB INC.
```

XX

```
DR
     WPI; 2000-476147/41.
XX
PΤ
     Differentiating between normal parathyroid function and
PТ
     hyperparathyroidism comprises determining and comparing whole
PТ
     parathyroid hormone, parathyroid hormone inhibitory peptide fragment
PT
     and/or total parathyroid hormone levels -
XX
PS
     Disclosure; Page 6; 46pp; English.
XX
     The present sequence represents an antigenic fragment derived from
CC
CC
     human parathyroid hormone (PTH). It was used to raise antibodies.
     PTH peptide fragments can function as PTH antagonists. The
CC
CC
     specification describes a method for differentiating between a
CC
     person having substantially normal parathyroid function and having
     hyperparathyroidism. The method comprises determining and comparing
CC
CC
     at least two of the following parameters: whole parathyroid
CC
     hormone level, parathyroid hormone inhibitory peptide fragment level
CC
     and total parathyroid hormone level. The method is used for monitoring
CC
     (treatments of) parathyroid related bone disease and the effects of
CC
     therapeutic treatment for hyperparathyroidism.
XX
SO
     Sequence
                32 AA;
  Query Match
                          67.6%; Score 23; DB 21; Length 32;
  Best Local Similarity 100.0%; Pred. No. 2.8e-17;
  Matches
           23; Conservative 0; Mismatches
                                                0; Indels
           12 GKHLNSMERVEWLRKKLQDVHNF 34
Qy
              Db
            6 GKHLNSMERVEWLRKKLQDVHNF 28
RESULT 12
AAE23735
ID
    AAE23735 standard; peptide; 32 AA.
XX
AC
    AAE23735;
XX
DТ
     10-SEP-2002 (first entry)
XX
DE
     Human parathyroid hormone (hPTH) peptide (5-36).
XX
KW
     Human parathyroid hormone; hPTH; PTH-related peptide; PTHrP; eczema;
KW
     hyperproliferative skin disorder; psoriasis; ichthyosis; skin cancer;
KW
     acne; actinic keratosis; alopecia; gene therapy.
XX
OS
     Homo sapiens.
XX
PN
    WO200228420-A2.
XX
PD
    11-APR-2002.
XX
PF
     05-OCT-2001; 2001WO-US31082.
XX
PR
     06-OCT-2000; 2000US-238134P.
XX
PΑ
     (HOLI/) HOLICK M F.
```

```
ΡI
    Holick MF;
XX
     WPI: 2002-452304/48.
DR
DR
    N-PSDB; AAD37995.
ХХ
PT
     Regulating mammalian skin or hair cell proliferation and
PT
     differentiation by administering nucleic acids encoding peptides
PT
     derived from N-terminal region of human parathyroid hormone (hPTH) or
РΤ
     hPTH-related protein -
XX
PS
     Claim 35; Fig 40; 56pp; English.
XX
CC
     The invention relates to a method for regulating proliferation or
CC
     enhancing differentiation of mammalian skin or hair cell. The method
CC
     involves administering nucleic acids encoding peptides derived from
CC
     N-terminal region of human parathyroid hormone (hPTH) or hPTH-related
CC
     peptide (PTHrP). The method is used for inhibiting hyperproliferative
CC
     skin disorders such as psoriasis, ichthyosis, eczema, acne, actinic
CC
     keratosis, skin cancer, for inhibiting hair growth or preventing hair
CC
     regrowth. It is useful for stimulating cell growth, rejuvenating aged
CC
     skin, preventing skin wrinkles, treating skin wrinkles, enhancing wound
CC
     healing, stimulating hair growth, maintaining hair growth, treating or
CC
     preventing female or male pattern baldness, for treating chemotherapy
CC
     induced alopecia and also for stimulating epidermal cell growth or
CC
     hair follicle cell growth. The method is also used in gene therapy.
CC
     The present sequence is hPTH peptide.
XX
SO
     Sequence
                32 AA;
  Query Match
                          67.6%; Score 23; DB 23; Length 32;
                          100.0%; Pred. No. 2.8e-17;
  Best Local Similarity
  Matches
          23; Conservative
                                0; Mismatches
                                                 0; Indels
                                                                 0; Gaps
                                                                             0;
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
            8 GKHLNSMERVEWLRKKLQDVHNF 30
RESULT 13
AAP30022
ID
    AAP30022 standard; peptide; 34 AA.
XX
AC
    AAP30022;
ХX
DТ
     25-MAR-2003
                  (updated)
DT
     01-SEP-1992
                 (first entry)
XX
DE
    Human parathyroid-(1-34) amide.
XX
KW
     PTH; parathyroid gland; antibodies.
XX
OS
    Synthetic.
XX
FΗ
     Key
                    Location/Qualifiers
FT
    Modified-site
FT
                    /note= "amidated"
```

XX

```
XX
PN
     JP58096052-A.
XX
PD
     07-JUN-1983.
XX
PF
     30-NOV-1983;
                    83JP-0193212.
XX
PR
     31-MAR-1981;
                    81JP-0048887.
ХX
PΑ
     (TOXN ) TOYO JOZO KK.
XX
DR
     WPI; 1983-709291/28.
XX
PT
     High activity human parathyroid hormone amide prodn. - by
PT
     condensing protected aminoacid(s) and/or peptide(s) useful for
PТ
     lowering parathyroid gland function
XX
PS
     Claim 1; Page 1; 20pp; Japanese.
XX
CC
     The human parathyroid hormone, hPTH(1-34)-amide was prepd. by
CC
     the following steps: Firstly the carboxy gp. at the C-terminal
CC
     phenylalanine was converted into its amide form. The protected
CC
     individual amino acids were condensed, in order, by liquid phase
CC
     synthesis. The protecting groups were removed from the N-terminal
     amino gp. and other functional gps. by acidolysis, and the
CC
     resulting hPTH(1-34)-amide purified by gel filtration
CC
CC
     chromatography using a Sephadex G-25, G-50 or LH-20 column or by
CC
     column chromatography with carboxymethyl cellulose or ion exchange
CC
     resin. The peptide amide is useful in lowering the activity of the
     parathyroid gland and in the prepn. of antibodies for diagnosis of
CC
CC
     parathyroid gland function.
CC
     (Updated on 25-MAR-2003 to correct PR field.)
XX
SO
     Sequence
                34 AA;
  Query Match
                          67.6%; Score 23; DB 4; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 2.9e-17;
           23; Conservative
                                0; Mismatches
                                                 0; Indels
                                                                 0; Gaps
                                                                             0;
QУ
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 14
AAP50377
ID
    AAP50377 standard; peptide; 34 AA.
XX
AC
    AAP50377;
XX
DT
     25-MAR-2003
                  (updated)
DT
     08-MAR-1992
                 (first entry)
ХX
DE
     [Met(0)8,18]hPTH-(1-34).
XX
KW
    Human parathyroid hormone; calcium regulation.
XX
```

```
XX
FΗ
                     Location/Qualifiers
     Kev
FT
     Modified-site
FT
                     /label= oxidised methionine
FT
     Modified-site
FT
                     /label= oxidised methionine
XX
PN
     JP59204159-A.
XX
PD
     19-NOV-1984.
XX
PF
                    83JP-0075607.
     28-APR-1983;
XX
PR
     28-APR-1983;
                    83JP-0075607.
XX
PΑ
     (TOXN ) TOYO JOZO KK.
XX
DR
     WPI; 1985-003560/01.
XX
PT
     New (Met(0)8,18)hPTH-(1-34) peptide - increases calcium level in
PT
     blood and decreases level in urine.
XX
PS
     Claim 1; Page 1; 3pp; Japanese.
XX
CC
     Unmodified hPTH(1-34) increases Ca in blood, decreases P in blood,
CC
     decreases Ca in urine and increases P in urine by increasing cAMP in
CC
     urine and enhancing vitamin D hydroxylase activity in kidneys. The
CC
     modified derivative only has the effect of lowering Ca levels in
CC
     urine and can be used when only this particular effect is required.
CC
     (Updated on 25-MAR-2003 to correct PA field.)
CC
     (Updated on 25-MAR-2003 to correct DR field.)
XX
SQ
     Sequence
                34 AA;
  Query Match
                          67.6%; Score 23; DB 6; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 2.9e-17;
  Matches
           23; Conservative
                                0; Mismatches
                                                  0; Indels
                                                                 0; Gaps
                                                                             0;
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 15
AAP60031
ID
     AAP60031 standard; peptide; 34 AA.
XX
AC
     AAP60031;
XX
DT
     25-MAR-2003
                 (updated)
DT
     06-JUL-1991
                  (first entry)
XX
DE
     Sequence of the first 34 AA residues of a parathyroid hormone
DΕ
     obtainable from a human or animal.
XX
KW
     Osteoporosis therapy.
```

OS

Homo sapiens.

```
XX
OS
     Homo sapiens/animal.
XX
PN
     EP197514-A.
XX
PD
     15-OCT-1986.
XX
PF
     03-APR-1986;
                    86EP-0104562.
XX
PR
     04-APR-1985;
                     85US-0720018.
     05-DEC-1986;
PR
                     86US-0939308.
PR
     21-MAY-1987;
                     87US-0052383.
XX
     (GEHO ) GEN HOSPITAL CORP.
PA
XX
PΙ
     Potts JT, Neer RM, Slovik DM;
XX
     WPI; 1986-273437/42.
DR
XX
PT
     Compsn. and kits for increasing bone mass in osteoporosis -
РΤ
     contg. parathyroid hormone or fragment with hydroxylated
PT
     vitamin/D cpd. or calcium salt
XX
PS
     Claim 4; Page 24; 26pp; English.
XX
CC
     The peptide is used in a pharmaceutical compsn. together with a
CC
     hydroxylated vitamin D compound, or a non-toxic calcium salt, pref.
CC
     CaCO3. The compsn. pref. contains 100-700 (pref. 200-600, esp. 400-
CC
     500) units of the peptide. The vitamin D compound is pref. 1-alpha-
CC
     hydroxy vitamin D2 or 1-alpha, 25-dihydroxy vitamin D2.
CC
     (Updated on 25-MAR-2003 to correct PA field.)
XX
SO
     Sequence
                34 AA;
                          67.6%; Score 23; DB 7; Length 34; 100.0%; Pred. No. 2.9e-17;
  Query Match
  Best Local Similarity
           23; Conservative 0; Mismatches 0; Indels
Qу
           12 GKHLNSMERVEWLRKKLODVHNF 34
               1111111111111
Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 16
AAR07919
ID
     AAR07919 standard; protein; 34 AA.
XX
AC
     AAR07919;
XX
DT
     18-FEB-1991 (first entry)
XX
DE
     Human parathyroid hormone analogue, hPTH(7-34).
XX
KW
     Osteoporosis; hypercalcemia; hyperparathyroidism; hypertension.
XX
OS
     Homo sapiens.
XX
```

```
PN
     US4968669-A.
XX
PD
     06-NOV-1990.
XX
PF
     21-APR-1989;
                    89US-0341597.
XX
PR
     21-APR-1989;
                    89US-0341597.
PR
     09-MAY-1988;
                    88US-0191512.
ХX
PA
     (MERI ) MERCK & CO INC.
XX
PΙ
     Rosenblatt M, Chorev M;
XX
DR
     WPI; 1990-354642/47.
XX
PT
     New para: thyroid hormone analogues - which inhibit hormone
PT
     activity by binding receptors while not producing second
PT
     messenger molecules
XX
PS
     Claim 1; Column 8; 6pp; English.
XX
CC
     Peptide analogues have high affinity for PTH cell surface receptors,
CC
     but do not stimulate production of secondary messenger molecules.
CC
     They may be used in inhibition of PTH action, and in diagnosis and
CC
     treatment of osteoporosis, hypercalcemia and hyperparathyroidism.
CC
     Analogues may also be used in treatment of tumours and other cells
CC
     overproducing peptide hormone-like substances, and immune diseases
     eg. allergic inflammation and hyperactive lymphocytes.
CC
CC
     Naturally occuring PTH levels may also be measured in vitro.
XX
SO
     Sequence
                34 AA;
  Query Match
                          67.6%; Score 23; DB 11; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 2.9e-17;
  Matches
           23; Conservative
                                  0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0;
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              11111111111111111111111
Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 17
AAR22283
ID
     AAR22283 standard; peptide; 34 AA.
XX
AC
     AAR22283;
XX
DT
     29-JUL-1992 (first entry)
XX
DΕ
     Parathyroid hormone analogue N-terminus [1-34].
XX
KW
     Human; hPTH; wound healing; hair growth; hyperproliferation skin;
KW
     disorders; psoriasis; cancer; burns.
XX
OS
     Homo sapiens.
XX
PN
     WO9204039-A.
```

```
XX
PD
     19-MAR-1992.
XX
PF
     30-AUG-1991;
                    91WO-US06218.
XX
PR
     30-AUG-1990;
                    90US-0575219.
XX
PA
     (HOLI/) HOLICK M F.
XX
PI
     Holick MF;
XX
DR
     WPI; 1992-114063/14.
XX
PT
     Use of peptide having homology with parathyroid hormone - for
PT
     enhancement of cell proliferation for wound healing
XX
PS
     Disclosure; Fig 1; 34pp; English.
XX
CC
     The peptide can be easily synthesised by recombinant DNA or solid
CC
     phase peptide synthesis techniques. The peptide has > 50 percent
CC
     homology with the N-terminal 1-34 amino acids of human parathyriod
CC
     hormone or hypercalcaemic region. It is esp. PTH (7-34). The
     peptide may be used in a method for the treatment of hyperprolifer-
CC
CC
     ation skin disorders e.g. psoriasis, cancers, burns or skin
CC
     ulcerations by inhibition of cell proliferation and enhancement of
CC
     cell differentiation (agonist activity). They are also used to
CC
     enhance cell proliferation (antagonist activity) for wound healing.
CC
     They are also applicable in the promotion of new hair growth or
CC
     stimulation of the rate of hair growth e.g. following chemotherapy
CC
     or for treating alopecia e.g. male pattern baldness.
XX
SO
     Sequence
                34 AA;
  Query Match
                          67.6%; Score 23; DB 13; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 2.9e-17;
           23; Conservative
                                0; Mismatches
                                                  0;
                                                       Indels
                                                                 0; Gaps
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 18
AAR22292
ID
     AAR22292 standard; Peptide; 34 AA.
XX
AC
    AAR22292;
XX
DT
     25-MAR-2003
                  (updated)
DT
     03-AUG-1992
                  (first entry)
XX
DE
     Human parathyroid hormone 1-34 [Phe 11].
XX
    hPTH; protease resistant; osteoporosis; hypoparathyroidism;
KW
KW
    hypertension.
XX
OS
     Synthetic.
```

```
XX
PN
     EP477885-A.
XX
     01-APR-1992.
PD
XX
PF
     25-SEP-1991;
                    91EP-0116303.
XX
PR
     06-SEP-1991;
                    91JP-0227232.
PR
     28-SEP-1990;
                    90JP-0257490.
XX
PΑ
     (TAKE ) TAKEDA CHEM IND LTD.
XX
PI
     Nakagawa S, Fukuda T, Kawase M, Yamazaki I;
XX
DR
     WPI; 1992-106285/14.
XX
PT
     New peptide(s) are parathyroid hormone derivs. - used in hormone
PT
     therapy, for treating osteoporosis hyperparathyroidism and
PT
     hypertension
XX
PS
     Claim 9; Page 14; 14pp; English.
XX
CC
     The peptide is an analogue of human parathyroid hormone fragment
CC
     1-34. The peptide modification defined increase resistance to
CC
     proteases and therefore persistance in the blood. The peptide is
CC
     used in therapy of osteoporosis, hypoparathyroidism and hypertension.
CC
     The peptide may be synthesised by the Merrifield solid phase
CC
     method in an automatic apparatus.
CC
     See also AAR22290-99.
CC
     (Updated on 25-MAR-2003 to correct PA field.)
XX
SO
     Sequence
                34 AA;
  Query Match
                          67.6%; Score 23; DB 13; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 2.9e-17;
  Matches
           23; Conservative
                              0; Mismatches
                                                  0;
                                                      Indels
                                                                0; Gaps
                                                                            0:
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 19
AAR22293
ID
    AAR22293 standard; Peptide; 34 AA.
XX
AC
    AAR22293;
XX
DT
     25-MAR-2003
                  (updated)
DT
     03-AUG-1992
                 (first entry)
XX
DE
     Human parathyroid hormone 1-34 [Leu 8].
XX
KW
     hPTH; protease resistant; osteoporosis; hypoparathyroidism;
KW
     hypertension.
XX
OS
     Synthetic.
```

```
XX
PN
     EP477885-A.
XX
PD ·
    01-APR-1992.
XX
PF
     25-SEP-1991;
                   91EP-0116303.
XX
PR
     06-SEP-1991;
                   91JP-0227232.
PR
     28-SEP-1990;
                    90JP-0257490.
XX
PΑ
     (TAKE ) TAKEDA CHEM IND LTD.
XX
PΙ
     Nakagawa S, Fukuda T, Kawase M, Yamazaki I;
XX
DR
    WPI; 1992-106285/14.
XX
PT
     New peptide(s) are parathyroid hormone derivs. - used in hormone
PT
     therapy, for treating osteoporosis hyperparathyroidism and
PT
     hypertension
XX
PS
     Claim 9; Page 14; 14pp; English.
XX
CC
     The peptide is an analogue of human parathyroid hormone fragment
CC
           The peptide modification defined increase resistance to
     proteases and therefore persistance in the blood. The peptide is
CC
     used in therapy of osteoporosis, hypoparathyroidism and hypertension.
CC
CC
     The peptide may be synthesised by the Merrifield solid phase
CC
     method in an automatic apparatus.
CC
     See also AAR22290-99.
CC
     (Updated on 25-MAR-2003 to correct PA field.)
XX
SO
     Sequence
               34 AA;
  Query Match
                          67.6%; Score 23; DB 13; Length 34;
  Best Local Similarity
                         100.0%; Pred. No. 2.9e-17;
  Matches
           23; Conservative
                               0; Mismatches
                                                 0; Indels
                                                                0;
                                                                    Gaps
                                                                            0;
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 20
AAR22294
ID
    AAR22294 standard; Peptide; 34 AA.
XX
AC
    AAR22294;
XX
DT
     25-MAR-2003
                  (updated)
DΤ
     03-AUG-1992
                 (first entry)
XX
DE
     Human parathyroid hormone 1-34 [Ser 11].
XX
KW
    hPTH; protease resistant; osteoporosis; hypoparathyroidism;
KW
    hypertension.
XX
OS
     Synthetic.
```

```
XX
     EP477885-A.
PN
XX
PD
     01-APR-1992.
XX
     25-SEP-1991;
PF
                    91EP-0116303.
XX
PR
     06-SEP-1991;
                    91JP-0227232.
PR
     28-SEP-1990;
                    90JP-0257490.
XX
PΑ
     (TAKE ) TAKEDA CHEM IND LTD.
XX
PΙ
     Nakagawa S, Fukuda T, Kawase M, Yamazaki I;
XX
DR
     WPI; 1992-106285/14.
XX
PT
     New peptide(s) are parathyroid hormone derivs. - used in hormone
PT
     therapy, for treating osteoporosis hyperparathyroidism and
PT
     hypertension
XX
PS
     Claim 9; Page 14; 14pp; English.
XX
CC
     The peptide is an analogue of human parathyroid hormone fragment
CC
     1-34. The peptide modification defined increase resistance to
CC
     proteases and therefore persistance in the blood. The peptide is
CC
     used in therapy of osteoporosis, hypoparathyroidism and hypertension.
CC
     The peptide may be synthesised by the Merrifield solid phase
CC
     method in an automatic apparatus.
CC
     See also AAR22290-99.
CC
     (Updated on 25-MAR-2003 to correct PA field.)
XX
SO
     Sequence
                34 AA;
                          67.6%; Score 23; DB 13; Length 34;
  Query Match
                          100.0%; Pred. No. 2.9e-17;
  Best Local Similarity
  Matches
           23; Conservative
                                 0; Mismatches
                                                 0; Indels
                                                                 0; Gaps
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 21
AAR41549
ID
    AAR41549 standard; protein; 34 AA.
XX
AC
    AAR41549;
XX
DT
     25-MAR-2003
                  (updated)
DΤ
     11-APR-1994
                  (first entry)
XX
DE
     [D-Ser3]hPTH (1-34)NH2.
XX
KW
     PTH; parathyroid hormone; protease resistance; osteoporosis;
KW
    hypoparathyroidism; hypertension.
XX
OS
    Homo sapiens.
```

```
XX
FH
                    Location/Qualifiers
     Key
FT
     Misc-difference 3
                     /note = "D-form residue"
FT
FT
     Modified-site
                    /note = "C terminal is amidated"
FT
XX
PN
     EP561412-A1.
XX
     22-SEP-1993.
PD
XX
                   93EP-0104500.
PF
     18-MAR-1993;
XX
PR
     19-MAR-1992; 92JP-0063517.
     18-FEB-1993; 93JP-0029283.
PR
XX
     (TAKE ) TAKEDA CHEM IND LTD.
PΑ
XX
PΙ
     Fukuda T, Nakagawa S, Taketomi S;
XX
     WPI; 1993-296712/38.
DR
XX
     New parathyroid hormone derivs. - used for the treatment of
PT
     osteoporosis hypoparathyroidism and hypertension
PT
XX
PS
     Example 1; Page 17; 37pp; English.
XX
     Human parathyroid hormone (PTH) analogues (AAR41548 - generic sequence;
CC
     AAR41549-R41582 - specific examples) show increased resistance to
CC
     proteases and a greater persistency of activity within the blood is
CC
     obtained. The proteins can be used to treat a number of bone and blood
CC
     disorders. This analogue was used as a test compound.
CC
     (Updated on 25-MAR-2003 to correct PN field.)
CC
XX
SO
     Sequence
               34 AA;
                          67.6%; Score 23; DB 14; Length 34;
  Query Match
                         100.0%; Pred. No. 2.9e-17;
  Best Local Similarity
  Matches 23; Conservative 0; Mismatches 0; Indels
                                                                0; Gaps
                                                                            0;
           12 GKHLNSMERVEWLRKKLQDVHNF 34
QУ
              12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 22
AAR41550
     AAR41550 standard; protein; 34 AA.
ID
XX
AC
     AAR41550;
XX
DT
     25-MAR-2003 (updated)
DT
     11-APR-1994 (first entry)
XX
DE
     [D-Ala3]hPTH (1-34).
XX
     PTH; parathyroid hormone; protease resistance; osteoporosis;
KW
```

```
KW
     hypoparathyroidism; hypertension.
XX
OS
     Homo sapiens.
XX
FΗ
     Key
                     Location/Qualifiers
FT
     Misc-difference 3
FT
                     /note = "D-form residue"
XX
PN
     EP561412-A1.
XX
PD
     22-SEP-1993.
XX
PF
     18-MAR-1993;
                    93EP-0104500.
XX
PR
     19-MAR-1992;
                   92JP-0063517.
PR
     18-FEB-1993;
                   93JP-0029283.
XX
PA
     (TAKE ) TAKEDA CHEM IND LTD.
XX
PΙ
     Fukuda T, Nakagawa S, Taketomi S;
XX
DR
     WPI; 1993-296712/38.
XX
РΤ
     New parathyroid hormone derivs. - used for the treatment of
PT
     osteoporosis hypoparathyroidism and hypertension
XX
PS
     Example 1; Page 17; 37pp; English.
XX
CC
     Human parathyroid hormone (PTH) analogues (AAR41548 - generic sequence;
CC
     AAR41549-R41582 - specific examples) show increased resistance to
CC
     proteases and a greater persistency of activity within the blood is
CC
     obtained. The proteins can be used to treat a number of bone and blood
CC
     disorders. This analogue has a relative biological activity to hPTH(1-34)
CC
CC
     (Updated on 25-MAR-2003 to correct PN field.)
XX
SO
     Sequence 34 AA;
  Query Match
                         67.6%; Score 23; DB 14; Length 34;
  Best Local Similarity
                         100.0%; Pred. No. 2.9e-17;
          23; Conservative 0; Mismatches 0; Indels
                                                                    Gaps
                                                                            0;
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 23
AAR41570
ID
     AAR41570 standard; protein; 34 AA.
XX
AC
     AAR41570;
XX
DT
     25-MAR-2003 (updated)
DT
     11-APR-1994 (first entry)
XX
DE
     [Gln25]hPTH(1-34).
```

```
XX
KW
     PTH; parathyroid hormone; protease resistance; osteoporosis;
KW
     hypoparathyroidism; hypertension.
XX
OS
     Homo sapiens.
XX
PN
     EP561412-A1.
XX
PD
     22-SEP-1993.
XX
PF
     18-MAR-1993;
                   93EP-0104500.
XX
PR
     19-MAR-1992;
                   92JP-0063517.
PR
     18-FEB-1993;
                   93JP-0029283.
XX
PΑ
     (TAKE ) TAKEDA CHEM IND LTD.
XX
PΙ
     Fukuda T, Nakagawa S, Taketomi S;
XX
DR
     WPI; 1993-296712/38.
XX
     New parathyroid hormone derivs. - used for the treatment of
PT
PT
     osteoporosis hypoparathyroidism and hypertension
XX
PS
     Example 1; Page 27; 37pp; English.
XX
CC
     Human parathyroid hormone (PTH) analogues (AAR41548 - generic sequence;
CC
     AAR41549-R41582 - specific examples) show increased resistance to
CC
     proteases and a greater persistency of activity within the blood is
     obtained. The proteins can be used to treat a number of bone and blood
CC
CC
     disorders. This analogue was used as a test compound.
CC
     (Updated on 25-MAR-2003 to correct PN field.)
XX
SQ
     Sequence
               34 AA;
                         67.6%; Score 23; DB 14; Length 34;
  Query Match
  Best Local Similarity
                         100.0%; Pred. No. 2.9e-17;
          23; Conservative 0; Mismatches
  Matches
                                                 0;
                                                     Indels
                                                               0; Gaps
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 24
AAR49697
ΙD
     AAR49697 standard; Protein; 34 AA.
XX
AC
     AAR49697;
XX
DT
     14-SEP-1994 (first entry)
XX
DE
     Sequence of variant of human parathyroid hormone [Ala8]hPTH(1-34).
XX
KW
     Parathyroid hormone; bone-stimulating; non-vasoactive compound;
KW
     osteoporosis; therapy.
XX
```

```
OS
     Synthetic.
XX
PN
     CA2098639-A.
XX
PD
     20-DEC-1993.
XX
PF
     17-JUN-1993;
                    93CA-2098639.
XX
PR
     19-JUN-1992;
                    92US-0900680.
XX
PA
      (ALLX ) ALLELIX BIOPHARMACEUTICALS INC.
PA
      (GLAX ) GLAXO CANADA INC.
XX
PΙ
     Bozzato RP, Kronis KA;
XX
DR
     WPI; 1994-074853/10.
XX
PT
     New Met8-substd. variants of parathyroid hormone - stimulate bone
PT
     and are non-vasoactive, useful for treating, e.g. osteoporosis
XX
PS
     Claim 13; Fig 2; 31pp; English.
XX
     AAQ58564 is the sequence of wild-type human parathyroid hormone. In
CC
CC
     the cpds of the invention, Met 8 is replaced with Cys, Val or Ala.
     In addition, Met 18 may be replaced with Leu. Moreover truncated
CC
     variants of 34 AAs with Ala or Cys substituted for Met 8 are also
CC
     claimed. The variants have reduced vasoactivity relative to Met 8-
CC
CC
     contg. hPTH and are useful for the treatment of bone disorders, such
CC
     as oteoporosis. Dosage is 1 microgram - 100 milligram (pref. 1-
CC
     microgram - 1000 microgram)/kg.
XX
SO
     Sequence
                34 AA;
  Query Match
                          67.6%; Score 23; DB 15; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 2.9e-17;
  Matches
            23; Conservative
                                0; Mismatches
                                                   0;
                                                       Indels
                                                                  0:
                                                                     Gaps
                                                                              0;
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              11111111111
Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 25
AAR49698
ID
     AAR49698 standard; Protein; 34 AA.
XX
AC
     AAR49698;
XX
DŢ
     14-SEP-1994 (first entry)
XX
DE
     Sequence of variant of human parathyroid hormone [Cys8]hPTH(1-34).
XX
     Parathyroid hormone; bone-stimulating; non-vasoactive compound;
KW
KW
     osteoporosis; therapy.
XX
OS
     Synthetic.
XX
```

```
PN
     CA2098639-A.
XX
PD
     20-DEC-1993.
XX
PF
     17-JUN-1993;
                    93CA-2098639.
XX
PR
     19-JUN-1992;
                    92US-0900680.
XX
PΑ
     (ALLX ) ALLELIX BIOPHARMACEUTICALS INC.
PA
     (GLAX ) GLAXO CANADA INC.
XX
PΙ
     Bozzato RP, Kronis KA;
XX
DR
     WPI; 1994-074853/10.
XX
PT
     New Met8-substd. variants of parathyroid hormone - stimulate bone
PT
     and are non-vasoactive, useful for treating, e.g. osteoporosis
XX
PS
     Claim 14; Fig 2; 31pp; English.
XX
CC
     AAQ58564 is the sequence of wild-type human parathyroid hormone. In
CC
     the cpds of the invention, Met 8 is replaced with Cys, Val or Ala.
CC
     In addition, Met 18 may be replaced with Leu. Moreover truncated
CC
     variants of 34 AAs with Ala or Cys substituted for Met 8 are also
CC
     claimed. The variants have reduced vasoactivity relative to Met 8-
CC
     contg. hPTH and are useful for the treatment of bone disorders, such
CC
     as oteoporosis. Dosage is 1 microgram - 100 milligram (pref. 1-
CC
     microgram - 1000 microgram)/kg.
XX
SO
     Sequence
                34 AA;
  Query Match
                          67.6%; Score 23; DB 15; Length 34;
  Best Local Similarity 100.0%; Pred. No. 2.9e-17;
  Matches
           23; Conservative 0; Mismatches
                                                  0; Indels
                                                                 0; Gaps
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              111111111111
Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 26
AAR58291
ΙD
    AAR58291 standard; peptide; 34 AA.
XX
AC
    AAR58291;
XX
DT
     20-SEP-1994 (first entry)
XX
     [Lys(For)26, Lys(For)27]-hPTH(1-34)-NH2.
DE
XX
KW
     Human parathyroid hormone; hPTH; variant; analogue;
KW
     calcium; depletion; fixation; resorption; osteopathy; osteoporosis;
KW
    hypoparathyroidism.
XX
OS
    Synthetic.
XX
FΗ
     Key
                    Location/Qualifiers
```

```
FT
     Modified-site
FT
                     /label= Other
FT
                     /note= "Formyl-Lys."
FT
     Modified-site
FT
                     /label= Other
FT
                     /note= "Formyl-Lys."
FT
     Modified-site
FT
                     /note= "in amide form"
XX
PN
     GB2269176-A.
XX
PD
     02-FEB-1994.
XX
PF
     12-JUL-1993;
                    93GB-0014384.
XX
PR
     15-JUL-1992;
                    92GB-0015009.
PR
     18-DEC-1992;
                    92GB-0026415.
PR
     23-DEC-1992;
                    92GB-0026859.
     23-DEC-1992;
PR
                    92GB-0026861.
PR
     28-JAN-1993;
                    93GB-0001691.
PR
     28-JAN-1993;
                    93GB-0001692.
PR
     14-APR-1993;
                    93GB-0007673.
PR
     19-APR-1993;
                    93GB-0008033.
XX
PA
     (SANO ) SANDOZ LTD.
PΑ
     (BAUE/) BAUER W.
PΑ
     (SANO ) SANDOZ PATENT GMBH.
PΑ
     (SANO ) SANDOZ-ERFINDUNGEN VERW GES MBH.
XX
PΙ
     Albert R, Bauer W, Breckenridge R, Cardinaux F;
PΙ
     Gombert F, Gram H, Lewis I, Ramage P, Schneider H;
PΙ
     Waelchli R, Rainer A;
XX
DR
     WPI; 1994-018352/03.
XX
     New active para-thyroid hormone variants - used for treating or
PT
PT
     preventing osteoporosis etc.
XX
PS
     Example 289; Page 47; 92pp; English.
XX
CC
     This peptide is an example of a highly generic formula covering
CC
    parathyroid hormone variants useful for treating or preventing bone
CC
     conditions associated with calcium depletion/resorption, in cases
CC
     where calcium fixation is required (esp. osteoporosis) or to treat
CC
    hypoparathyroidism.
XX
SO
    Sequence
                34 AA;
  Query Match
                          67.6%; Score 23; DB 15; Length 34;
 Best Local Similarity
                         100.0%; Pred. No. 2.9e-17;
 Matches
          23; Conservative
                              0; Mismatches
                                                                 0; Gaps
                                                  0; Indels
Qу
           12 GKHLNSMERVEWLRKKLODVHNF 34
              11111111111
           12 GKHLNSMERVEWLRKKLQDVHNF 34
```

```
RESULT 27
AAR58228
     AAR58228 standard; peptide; 34 AA.
XX
AC
     AAR58228;
XX
DT
     20-SEP-1994
                  (first entry)
XX
DE
      [D-Asp30] - hPTH(1-34) - NH2.
XX
     Human parathyroid hormone; hPTH; variant; analogue;
KW
KW
     calcium; depletion; fixation; resorption; osteopathy; osteoporosis;
KW
     hypoparathyroidism.
XX
OS
     Synthetic.
XX
FH
     Key
                      Location/Qualifiers
FT
     Misc-difference 30
FT
                      /note= "D-form residue."
     Modified-site
FT
FT
                      /note= "in amide form"
XX
PN
     GB2269176-A.
XX
PD
     02-FEB-1994.
XX
PF
     12-JUL-1993;
                    93GB-0014384.
XX
PR
     15-JUL-1992;
                     92GB-0015009.
PR
     18-DEC-1992;
                     92GB-0026415.
PR
     23-DEC-1992;
                     92GB-0026859.
PR
     23-DEC-1992;
                     92GB-0026861.
PR
     28-JAN-1993;
                    93GB-0001691.
PR
     28-JAN-1993;
                     93GB-0001692.
PR
     14-APR-1993;
                     93GB-0007673.
PR
     19-APR-1993;
                    93GB-0008033.
XX
PA
     (SANO ) SANDOZ LTD.
PA
     (BAUE/) BAUER W.
PA
     (SANO ) SANDOZ PATENT GMBH.
PA
     (SANO ) SANDOZ-ERFINDUNGEN VERW GES MBH.
XX
PΙ
     Albert R, Bauer W, Breckenridge R, Cardinaux F;
     Gombert F, Gram H, Lewis I, Ramage P, Schneider H;
PΙ
PΙ
     Waelchli R, Rainer A;
XX
DR
     WPI; 1994-018352/03.
XX
PT
     New active para-thyroid hormone variants - used for treating or
PT
     preventing osteoporosis etc.
XX
PS
     Example 226; Page 45; 92pp; English.
XX
CC
     This peptide is an example of a highly generic formula covering
CC
     parathyroid hormone variants useful for treating or preventing bone
CC
     conditions associated with calcium depletion/resorption, in cases
CC
     where calcium fixation is required (esp. osteoporosis) or to treat
```

```
CC
     hypoparathyroidism.
 XX
 SQ
     Sequence
                 34 AA;
   Query Match
                           67.6%; Score 23; DB 15; Length 34;
   Best Local Similarity
                           100.0%; Pred. No. 2.9e-17;
            23; Conservative 0; Mismatches
                                                  0; Indels
                                                                  0; Gaps
                                                                              0;
            12 GKHLNSMERVEWLRKKLQDVHNF 34
 Qу
               11111111111
 Db
            12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 28
AAR58016
ID
     AAR58016 standard; peptide; 34 AA.
XX
AC
     AAR58016;
XX
DT
     20-SEP-1994 (first entry)
XX
DE
     N-alpha-Isopropyl-hPTH(1-34)-NH2 parathyroid hormone variant.
XX
KW
     Human parathyroid hormone; hPTH; variant; analogue;
KW
     calcium; depletion; fixation; resorption; osteopathy; osteoporosis;
KW
     hypoparathyroidism.
XX
OS
     Synthetic.
XX
FΗ
     Key
                     Location/Qualifiers
FT
     Modified-site
                     1
FT
                     /note= "N-alpha-isopropyl-Ser"
FT
     Modified-site
FT
                     /note= "in amide form"
XX
PN
     GB2269176-A.
XX
PD
     02-FEB-1994.
XX
ΡF
     12-JUL-1993;
                    93GB-0014384.
XX
PR
     15-JUL-1992;
                    92GB-0015009.
PR
     18-DEC-1992;
                    92GB-0026415.
PR
                    92GB-0026859.
     23-DEC-1992;
PR
     23-DEC-1992;
                    92GB-0026861.
     28-JAN-1993;
PR
                    93GB-0001691.
PR
     28-JAN-1993;
                    93GB-0001692.
PR
     14-APR-1993;
                    93GB-0007673.
PR
     19-APR-1993;
                    93GB-0008033.
XX
PA
     (SANO ) SANDOZ LTD.
PΑ
     (BAUE/) BAUER W.
PΑ
     (SANO ) SANDOZ PATENT GMBH.
     (SANO ) SANDOZ-ERFINDUNGEN VERW GES MBH.
PA
XX
PΙ
    Albert R, Bauer W, Breckenridge R, Cardinaux F;
PΙ
    Gombert F, Gram H, Lewis I, Ramage P, Schneider H;
```

```
Waelchli R, Rainer A;
XX
DR
     WPI; 1994-018352/03.
XX
     New active para-thyroid hormone variants - used for treating or
PT
PT
     preventing osteoporosis etc.
XX
PS
     Example 1; Page 30; 92pp; English.
XX
     This peptide is an example of a highly generic formula covering
CC
CC
     parathyroid hormone variants useful for treating or preventing bone
CC
     conditions associated with calcium depletion/resorption, in cases
CC
     where calcium fixation is required (esp. osteoporosis) or to treat
CC
     hypoparathyroidism.
XX
SO
     Sequence
                34 AA;
  Query Match
                          67.6%; Score 23; DB 15; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 2.9e-17;
           23; Conservative 0; Mismatches
                                                  0; Indels
                                                                 0; Gaps
                                                                             0;
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 29
AAR58017
ID
     AAR58017 standard; peptide; 34 AA.
XX
AC
     AAR58017;
XX
DT
     20-SEP-1994 (first entry)
XX
DE
     [Lys(N-epsilon-Isopropyl)26,27]-human parathyroid hormone(1-34)-NH2.
XX
KW
     Human parathyroid hormone; hPTH; variant; analogue;
KW
     calcium; depletion; fixation; resorption; osteopathy; osteoporosis;
KW
     hypoparathyroidism.
XX
OS
     Synthetic.
XX
FΗ
     Key
                     Location/Qualifiers
FT
     Modified-site
FΤ
                     /note= "N-epsilon-Isopropyl-Lys"
FT
     Modified-site
FT
                     /note= "N-epsilon-Isopropyl-Lys"
FT
     Modified-site
FT
                     /note= "in amide form"
XX
PN
    GB2269176-A.
XX
PD
     02-FEB-1994.
XX
PF
     12-JUL-1993;
                    93GB-0014384.
XX
PR
     15-JUL-1992;
                   92GB-0015009.
```

PΙ

```
PR
     18-DEC-1992;
                    92GB-0026415.
PR
     23-DEC-1992;
                    92GB-0026859.
PR
     23-DEC-1992;
                    92GB-0026861.
PR
     28-JAN-1993;
                    93GB-0001691.
PR
     28-JAN-1993;
                    93GB-0001692.
PR
     14-APR-1993;
                    93GB-0007673.
PR
     19-APR-1993; 93GB-0008033.
XX
PΑ
     (SANO ) SANDOZ LTD.
PΑ
     (BAUE/) BAUER W.
     (SANO ) SANDOZ PATENT GMBH.
PΑ
     (SANO ) SANDOZ-ERFINDUNGEN VERW GES MBH.
PA
XX
ΡĪ
     Albert R, Bauer W, Breckenridge R, Cardinaux F;
PΙ
     Gombert F, Gram H, Lewis I, Ramage P, Schneider H;
PΙ
     Waelchli R, Rainer A:
XX
DR
     WPI; 1994-018352/03.
XX
РΤ
     New active para-thyroid hormone variants - used for treating or
PT
     preventing osteoporosis etc.
XX
PS
     Example 2; Page 32; 92pp; English.
XX
     This peptide is an example of a highly generic formula covering
CC
     parathyroid hormone variants useful for treating or preventing bone
CC
     conditions associated with calcium depletion/resorption, in cases
CC
CC
     where calcium fixation is required (esp. osteoporosis) or to treat
CC
     hypoparathyroidism.
XX
SO
     Sequence
                34 AA;
  Query Match
                          67.6%; Score 23; DB 15; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 2.9e-17;
           23; Conservative
                               0; Mismatches
                                                 0;
                                                     Indels
                                                                            0;
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 30
AAR55724
     AAR55724 standard; peptide; 34 AA.
XX
AC
    AAR55724;
XX
DT
     25-MAR-2003 (updated)
DT
     16-NOV-1994 (first entry)
XX
DE
     Parathormone N-terminal sequence.
XX
KW
     Parathormone; parathyroid hormone; fatty acyl-peptide; conjugate;
KW
     antiproliferative; tumor; psoriasis; docosahexaenoic acid; DHA;
KW
     eicosapentaenoic acid; EPA; antitumor.
XX
OS
     Synthetic.
```

```
XX
     WO9412530-A1.
PN
XX
PD
     09-JUN-1994.
XX
PF
     29-NOV-1993;
                    93WO-HU00065.
XX
PR
     30-NOV-1992;
                    92US-0984293.
XX
     (BIOS-) BIOSIGNAL KUTATO FEJLESZTO KFT.
PΑ
PΑ
     (SYNT-) SYNTHETIC PEPTIDES INC.
XX
PΙ
     Balogh A, Cachia PJ, Hodges RS, Horvath A, Keri G;
PΙ
     Szederkenyi F, Vadasz Z;
XX
DR
     WPI; 1994-200194/24.
XX
     New fatty acyl-peptide conjugates for inhibiting cell
PT
PT
     proliferation - more active than free peptide, partic. for
PT
     treating tumours, virus-infected cells, psoriasis, etc.
XX
PS
     Disclosure; Fig. 1; 45pp; English.
XX
CC
     The peptides given in AAR55718-48 can each be conjugated through an
CC
     amide linkage with a polyunsaturated fatty acid moiety, such as
CC
     docosahexaenoic acid (DHA) or eicosapentanoic acid, to improve
     antiproliferative activity. The parathormone N-terminal fragment
CC
CC
     inhibits osteoblast proliferation.
CC
     (Updated on 25-MAR-2003 to correct PN field.)
XX
SO
     Sequence
                34 AA;
  Query Match
                          67.6%; Score 23; DB 15; Length 34;
  Best Local Similarity
                         100.0%; Pred. No. 2.9e-17;
  Matches
          23; Conservative
                               0; Mismatches
                                                 0; Indels
                                                                0; Gaps
                                                                            0;
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 31
AAR74521
ID
     AAR74521 standard; Peptide; 34 AA.
XX
    AAR74521;
AC
XX
DT
     25-MAR-2003
                  (updated)
DT
     04-DEC-1995 (first entry)
XX
DE
    Human parathyroid hormone (1-34).
XX
KW
    Analogue; truncated human parathyroid hormone; PTH; hPTH; substitution;
KW
    osteoporosis; hypercalcaemia; hyperparathroidism;
    metabolic bone disease; human; veterinary medicine;
KW
KW
     iontophoretic transdermal transport; recombinant E.coli.
XX
```

```
OS
     Homo sapiens.
XX
PN
     WO9511988-A1.
XX
PD
     04-MAY-1995.
XX
PF
     25-OCT-1994;
                    94WO-US12205.
XX
PR
     25-OCT-1993;
                    93US-0142551.
XX
PΑ
     (AFFY-) AFFYMAX TECHNOLOGIES NV.
XX
PΙ
     Oldenburg KR, Selick HE;
XX
DR
     WPI; 1995-178880/23.
XX
PT
     New active analogues of parathyroid hormone - with increased
PT
     activity, stability in serum etc., esp. for treating
PΤ
     osteoporosis, also related DNA and vectors
XX
PS
     Disclosure; Page 1; 109pp; English.
XX
CC
     This sequence represents residues 1-34 of human parathyroid hormone
CC
     (RPTH). This sequence was used in the production of analogues of the
     truncated form of PTH. These analogues have increased activity and
CC
CC
     longer serum half life than native PTH due to eg. substitution of Met
     residues with Leu residues and replacing the carboxy Phe with Tyr. The
CC
CC
     carboxy terminal may also be modified by the addition of a homoserine
CC
     residue or analogue, or by the addition of residues 35-84 of wild type
CC
     PTH (see AAR74410). These PTH analogues may be used in the treatment of
CC
     osteoporosis or hypercalcaemia, hyperparathroidism or other metabolic
CC
     bone diseases in human or veterinary medicine. These peptides may also
CC
     have increased iontophoretic transdermal transport compared to wild type
CC
     PTH and can be produced in high yield in recombinant E.coli.
CC
     (Updated on 25-MAR-2003 to correct PN field.)
XX
SQ
     Sequence
                34 AA;
  Query Match
                          67.6%; Score 23; DB 16; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 2.9e-17;
           23; Conservative
                                0; Mismatches
                                                  0; Indels
                                                                0;
                                                                    Gaps
                                                                             0;
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 32
AAW99449
ID
    AAW99449 standard; peptide; 34 AA.
XX
AC
    AAW99449;
XX
DT
     08-JUN-1999 (first entry)
XX
DE
    Human parathyroid hormone aal-34.
XX
```

```
KW
     Parathyroid hormone; PTH; parathormone; premature birth; pregnancy;
KW
     spontaneous abortion; uterine contraction; human.
XX
OS
     Homo sapiens.
XX
PN
     US5880093-A.
XX
PD
     09-MAR-1999.
XX
     05-APR-1995;
PF
                    95US-0411726.
XX
PR
     28-SEP-1992;
                    92IT-MI02331.
XX
PΑ
     (BAGN/) BAGNOLI F.
XX
PΙ
     Bagnoli F;
XX
DR
     WPI; 1996-162392/17.
XX
PT
     Use of composition containing parathormone or fragments - for
     preventing premature birth or spontaneous abortion or for treating
PT
PT
     unwanted uterine contractions
XX
PS
     Disclosure; Column 7-8; 11pp; English.
XX
     Peptides AAW99448-W99452 represent all or part of the parathyroid
CC
     hormone (PTH; parathormone) sequence or related peptide. The peptides
CC
CC
     are used for preventing premature birth, spontaneous abortion or unwanted
CC
     uterine contractions in a pregnant human patient.
     (Note: this patent is the first Major Country Equivalent to Italian
CC
CC
     Patent IT1255388).
XX
SO
     Sequence
                34 AA;
  Query Match
                          67.6%; Score 23; DB 17; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 2.9e-17;
  Matches 23; Conservative 0; Mismatches 0; Indels
                                                                     Gaps
                                                                             0;
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 33
AAW15812
ID
     AAW15812 standard; peptide; 34 AA.
XX
AC
    AAW15812;
XX
DT
     25-MAR-2003
                  (updated)
DT
     05-JUN-1997 (first entry)
XX
DE
     [Trp(10)] - hPTH(1-34) - OH.
XX
KW
    human parathyroid hormone; human parathyroid hormone related peptide;
KW
    hPTH; hPTHrP; antagonist; hyperparathyroidism; hypercalcaemia;
KW
     tumour; dermatological disorders; hair growth promoter.
```

```
XX
OS
     Synthetic.
XX
PN
     WO9603437-A1.
XX
PD
     08-FEB-1996.
XX
PF
     27-JUL-1995;
                    95WO-EP02993.
XX
PR
     28-JUL-1994;
                    94GB-0015255.
PR
                    94GB-0015254.
     28-JUL-1994;
XX
PA
     (SANO ) SANDOZ LTD.
PΑ
     (SANO ) SANDOZ PATENT GMBH.
PΑ
     (SANO ) SANDOZ-ERFINDUNGEN VERW GES MBH.
XX
PΙ
     Cardinaux F, Feyen JHM, Gamse R, Gombert FO;
XX
DR
     WPI; 1996-117003/12.
XX
PT
     New parathyroid hormone or parathyroid hormone related peptide cpds.
PT
     - useful for preventing or treating conditions associated with
     increased plasma calcium, tumour growth and dermatological disorders
PT
XX
PS
     Example 9; Page 9; 32pp; English.
XX
CC
     New parathyroid hormone (PTH) or parathyroid hormone related peptide
     (PTHrP) compounds are claimed in which (i) at least one of the amino
CC
CC
     acid residues naturally occurring in positions 2 and 10 is replaced
CC
     by tryptophan or another amino acid residue bearing an aromatic or
CC
     heteroaromatic group on its side chain, and (ii) optionally at least
CC
     one of the amino acid residues naturally occurring in positions 3 and 6
CC
     is further replaced by tryptophan or another amino acid residue bearing
CC
     an aromatic or heteroaromatic group on its side chain. The peptides are
     PTH or PTHrP antagonists useful for preventing or treating conditions
CC
CC
     associated with increased plasma calcium caused by excessive release of
CC
     PTH or PTHrP (e.g. hyperparathyroidism, or hypercalcemia associated with
CC
     malignancy); for preventing or treating tumour growth stimulated by
CC
     PTHrP; for treating dermatological disorders; and for promoting hair
CC
     growth. They may be used in combination with a further active agent,
CC
     e.g. a bone resorption inhibitor or cytostatic agent.
CC
     The present sequence is a specific example of the new peptides.
CC
     (Updated on 25-MAR-2003 to correct PA field.)
XX
SO
     Sequence
               34 AA;
  Query Match
                          67.6%; Score 23; DB 17; Length 34;
  Best Local Similarity
                         100.0%; Pred. No. 2.9e-17;
  Matches
           23; Conservative
                              0; Mismatches 0; Indels
                                                                 0; Gaps
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
           12 GKHLNSMERVEWLRKKLODVHNF 34
```

```
ID
     AAR99978 standard; peptide; 34 AA.
XX
AC
     AAR99978;
XX
     30-APR-1997 (first entry)
DT
XX
DE
     Human parathyroid hormone peptide fragment (1-34).
XX
     cyclic parathyroid hormone fragment; calcium-regulating activity;
KW
KW
     osteoporosis; inhibit proliferation; epidermal cell; psoriasis;
KW
     improved half life; calcium retention; bone.
XX
OS
     Synthetic.
XX
PN
     DE19508672-A1.
XX
PD
     12-SEP-1996.
XX
     10-MAR-1995;
PF
                    95DE-1008672.
XX
PR
     10-MAR-1995;
                    95DE-1008672.
XX
PΑ
     (BOEF ) BOEHRINGER MANNHEIM GMBH.
ХX
ΡI
     Dony C, Esswein A, Hoffmann E, Honold K, Schaefer W;
XX
DR
     WPI; 1996-413519/42.
XX
PT
     Cyclic parathyroid hormone fragments with lactam bridge - have good
     in vivo half life and are useful for treating osteoporosis and
PT
PT
     preventing epidermal cell proliferation
XX
PS
     Disclosure; Page 9; 14pp; German.
XX
CC
     New cyclic parathyroid hormone fragments (CPTH) have the amino acid
CC
     sequence of h, b, p, r or cPTH(1-34), opt. extended by up to 4 amino
CC
     acids (aa) at the C-terminus and opt. shortened by up to 3 amino acids at
CC
     the N-terminus, and are cyclised between positions 13 and 17. One of
CC
     these positions is occupied by L- or D- Orn or Lys, and the other by L-
CC
     or D- Glu or Asp. CPTH have calcium-regulating activity (esp. for
CC
     treating osteoporosis and inhibit proliferation of epidermal cells (for
CC
     treating psoriasis). The CPTH have an improved half life in vivo than
CC
     known PTH fragments, increased mitogenicity and DNA-synthesising
CC
     capacity, reduced catabolic, calcium-mobilising activity and increased
CC
     activity for calcium retention and incorporation into bone. The
CC
     present sequence is that of human PTH peptide fragment (1-34).
XX
SO
     Sequence
               34 AA;
  Query Match
                          67.6%; Score 23; DB 17; Length 34;
 Best Local Similarity
                         100.0%; Pred. No. 2.9e-17;
          23; Conservative
                                0; Mismatches
                                                  0; Indels
                                                                0; Gaps
                                                                             0;
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
          12 GKHLNSMERVEWLRKKLODVHNF 34
```

```
RESULT 35
AAR98951
ID
     AAR98951 standard; peptide; 34 AA.
XX
AC
     AAR98951;
XX
DT
     15-JAN-1997 (first entry)
XX
DE
     Target peptide (PTH(1-34)) used in fusion protein construct.
XX
KW
     Fusion protein construct; isolation; purification;
KW
     growth hormone releasing factor; glucagon-like peptide 1;
     parathyroid hormone; inclusion body; carbonic anhydrase.
KW
XX
OS
     Synthetic.
XX
PN
     WO9617942-A1.
XX
PD
     13-JUN-1996.
XX
PF
     07-DEC-1995;
                    95WO-US15800.
XX
PR
     07-DEC-1994;
                    94US-0350530.
XX
PΑ
     (BION-) BIONEBRASKA INC.
XX
     De LA MOTTE RS, Henriksen DB, Holmquist B, Manning SD;
PΤ
PΤ
     Partridge BE, Stout JS, Wagner FW;
XX
DR
     WPI; 1996-287186/29.
XX
PT
     Isolation and purificn of peptide(s) from fusion protein constructs
PТ
     - which include a carbonic anhydrase and a variable fused
PT
     polypeptide
XX
PS
     Claim 18; Page 48; 67pp; English.
XX
CC
     A new method for the isolation and/or purification of a recombinant
CC
     peptide employs a fusion protein construct (FPC) comprising a
CC
     carbonic anhydrase and a variable fused polypeptide containing a
CC
     target peptide. The method comprises precipitating either the FPC or
CC
     a fragment of the FPC including the carbonic anhydrase. An
CC
     alternative method of producing the peptide comprises expressing the
CC
     FPC as part of an inclusion body. The target peptides of the FPC are
CC
     derived from growth hormone releasing factor (GRF), glucagon-like
CC
     peptide 1 (GLP1) or parathyroid hormone (PTH). This sequence
CC
     corresponds to amino acids 1-34 of PTH.
XX
SO
     Sequence
                34 AA;
  Query Match
                          67.6%; Score 23; DB 17; Length 34;
 Best Local Similarity
                          100.0%; Pred. No. 2.9e-17;
            23; Conservative
                                0; Mismatches
                                                  0; Indels
                                                                             0;
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
```

```
RESULT 36
AAR98966
ID
     AAR98966 standard; Peptide; 34 AA.
ХX
AC
     AAR98966;
XX
     02-DEC-1996 (first entry)
DT
XX
DE.
     PTH(1-34).
XX
KW
     PTH; parathyroid hormone; parathormone; C-amide;
KW
     C-amidated peptide; alpha-carboxamide; recombinant protein;
KW
     fusion protein; transpeptidation.
XX
OS
     Not specified.
XX
ΡN
     W09617941-A2.
XX
PD
     13-JUN-1996.
XX
PF
     07-DEC-1995;
                    95WO-US15799.
XX
PR
     07-DEC-1994;
                    94US-0350528.
XX
PΑ
     (BION-) BIONEBRASKA INC.
ХX
ΡI
     Heriksen DB,
                   Holmquist B, Patridge BE, Stout JS;
PΙ
     Wagner FW;
XX
DR
     WPI; 1996-287185/29.
XX
PT
     Production of C-terminal alpha-carboxamidated peptide(s) - by
PT
     cleavage and transpeptidation of recombinant multicopy peptide(s) or
PT
     fusion constructs
XX
PS
     Claim 12; Page 70; 93pp; English.
XX
CC
     GLP1(7-35), GRF(1-44) and PTH(1-34) peptides (AAR98964-66) can be
CC
     produced as C-terminal amidated peptides utilising novel recombinant
CC
     protein constructs (see also AAR98967-72) in which single or multiple
CC
     copies of the peptide are linked by intraconnecting peptides that
CC
     permit the construct to be selectively reacted to produce product
CC
     peptides having a C-terminal alpha-carboxamide. Expression cassettes
CC
     (see also AAT34865-70) can be incorporated into vectors allowing prodn.
     of the recombinant proteins in transformed E. coli host cells.
CC
XX
SO
     Sequence
                34 AA;
 Query Match
                          67.6%; Score 23; DB 17; Length 34;
 Best Local Similarity
                          100.0%; Pred. No. 2.9e-17;
 Matches
            23; Conservative
                                0; Mismatches
                                                   0; Indels
                                                                  0;
                                                                      Gaps
                                                                              0;
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
```

```
RESULT 37
AAR88835
ID
     AAR88835 standard; peptide; 34 AA.
XX
AC
     AAR88835;
XX
DT
     07-OCT-1996 (first entry)
XX
DE
     Human parathyroid hormone analogue, cyclo-PTH(1-34)-NH2.
XX
KW
     Parathyroid hormone; PTH; analogue; osteoporosis; bone cell;
KW
     calcium regulation; reduced PKC activity; protein kinase C;
     increased adenylyl cyclase activity; cAMPase; cyclic; bone loss.
KW
XX
OS
     Synthetic.
XX
FH
     Key
                     Location/Qualifiers
FT
     Modified-site
FT
                      /note= "forms peptide bond with Lys at posn. 26"
FT
     Modified-site
FT
                     /note= "forms peptide bond with Asp at posn. 30"
FT
     Modified-site
FT
                     /note= "forms peptide bond with Asn at posn. 10"
FΤ
     Modified-site
FT
                     /note= "forms peptide bond with His at posn. 14"
FT
     Modified-site
FT
                     /note= "amidated"
XX
PN
     CA2126299-A.
XX
PD
     21-DEC-1995.
XX
PF
     20-JUN-1994;
                    94CA-2126299.
XX
PR
     20-JUN-1994;
                    94CA-2126299.
XX
     (WILL/) WILLICK G E.
PΑ
XX
ΡŢ
     Neugebauer W, Sung WL, Surewicz W, Whitfield JF;
PΙ
     Willick GE;
XX
DR
     WPI; 1996-151754/16.
XX
PT
     New human parathyroid hormone analogues - which have increased
PT
     adenylyl cyclase activating activity, used for treating osteoporosis
XX
PS
     Claim 3; Fig 8; 21pp; English.
XX
CC
     AAR88829-R88841 are human parathyroid hormone (hPTH) analogues. The
     analogues increase G-protein coupled adenylyl cyclase (cAMPase)
CC
CC
     activity and reduce protein kinase C (PKC) activity. The analogues
CC
     can reverse the loss of bone and increase bone mass and density
CC
     without undesirable effects. They are useful for the treatment of
CC
     osteoporosis and other bone related disorders and disorders
```

```
CC
     involving bone cell calcium regulation.
XX
SO
     Sequence
                34 AA;
  Query Match
                          67.6%; Score 23; DB 17; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 2.9e-17;
            23; Conservative 0; Mismatches
                                                0; Indels
                                                                 0; Gaps
                                                                             0;
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 38
AAW24273
ID
     AAW24273 standard; protein; 34 AA.
XX
AC
     AAW24273;
XX
DT
     17-OCT-1997 (first entry)
XX
DE
     Wild type parathyroid hormone.
XX
KW
     Analogue; parathyroid hormone; PTH; hirudin; hirulog;
KW
     electrotransportability; alpha-helix; beta-sheet.
XX
OS
     Homo sapiens.
XX
ΡN
     W09639423-A2.
XX
PD
     12-DEC-1996.
XX
PF
     06-JUN-1996;
                    96WO-US09647.
XX
PR
     06-JUN-1995;
                    95US-0468275.
XX
PA
     (ALZA ) ALZA CORP.
XX
PΙ
     Holladay LA, Oldenburg KR;
XX
DR
     WPI; 1997-043058/04.
XX
PT
     Prepn. of analogues of parent poly-peptide(s), esp. parathyroid
     hormone and hirulog - which exhibit better or enhanced
PT
PΤ
     electro-transportability through a body surface
XX
PS
     Claim 7; Fig 1A; 55pp; English.
XX
CC
     The sequences given in AAW24273-76 represent wildtype and analogues of
CC
     parathyroid hormone (PTH). The analogues exhibit better/enhanced
CC
     electrotransportability through a body surface, and are characterised
CC
    by substituting one or more amino acid residues of the parent
    polypeptide to disrupt one or more alpha-helical and/or beta-sheet
CC
CC
    segments of the parent polypeptide. An electrotransport device can
CC
    deliver the polypeptide analogue through a body surface by electro-
CC
    transport by including providing a therapeutically effective amount
CC
    of the polypeptide analogue in a donor reservoir of the electrotransport
```

```
device. The electrotransport flux of a polypeptide is increased by
     reducing the potential of the polypeptide for forming alpha-helix or
CC
CC
     beta-sheet segment.
XX
SQ
     Sequence
                34 AA;
  Query Match
                           67.6%; Score 23; DB 18; Length 34;
  Best Local Similarity
                           100.0%; Pred. No. 2.9e-17;
            23; Conservative
                                0; Mismatches 0; Indels
                                                                              0;
                                                                  0; Gaps
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
               1111111111111111111111
Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 39
AAW08120
     AAW08120 standard; peptide; 34 AA.
XX
AC
     AAW08120;
XX
     10-OCT-1997 (first entry)
DT
XX
DE
     Human PTH derivative, [Aad10]hPTH(1-34).
XX
     Human; parathyroid hormone; PTH; cAMP-producing activity;
KW
     bone formation; osteoporosis; hypoparathyroidism; hypertension;
KW
     climacteric disturbance.
KW
XX
OS
     Synthetic.
XX
FH
     Key
                     Location/Qualifiers
FT
     Modified-site
                     10
FT
                     /label= Aad
XX
PN
     EP748817-A2.
XX
PD
     18-DEC-1996.
XX
PF
     13-JUN-1996;
                    96EP-0109475.
XX
PR
     15-JUN-1995;
                    95JP-0148652.
XX
PA
     (TAKE ) TAKEDA CHEM IND LTD.
XX
PΙ
     Fukuda T, Habashita J, Nakagawa S, Taketomi S;
XX
DR
     WPI; 1997-036114/04.
XX
PT
     New parathyroid hormone derivs. - useful in treatment of bone
PT
     diseases, hypoparathyroidism and hypertension
XX
PS
     Example 1; Page 29; 42pp; English.
XX
CC
     The sequences given in AAW08108-32 represent derivatives of human
CC
    parathyroid hormone (PTH). These peptides are human PTH (1-34)
     derivative peptides. They have potent cAMP-producing activity and
CC
```

CC

```
bone formation activity. They may be used in treatment of bone
CC
     diseases including osteoporosis, hypoparathyroidism, hypertension
CC
     and climacteric disturbance. The peptides are low in toxicity and
CC
     are safe.
XX
SO
     Sequence
                34 AA;
  Query Match
                          67.6%; Score 23; DB 18; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 2.9e-17;
  Matches
           23; Conservative
                                0; Mismatches
                                                  0; Indels
                                                                 0; Gaps
                                                                             0;
Qу
           12 GKHLNSMERVEWLRKKLODVHNF 34
              Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 40
AAW08109
ID
     AAW08109 standard; peptide; 34 AA.
XX
AC
     AAW08109;
XX
DT
     10-OCT-1997 (first entry)
XX
     Human parathyroid hormone derivative, [Glu10]hPTH(1-34).
DE
XX
     Human; parathyroid hormone; PTH; cAMP-producing activity;
KW
     bone formation; osteoporosis; hypoparathyroidism; hypertension;
KW
     climacteric disturbance.
KW
XX
OS
     Synthetic.
XX
PN
     EP748817-A2.
XX
PD
     18-DEC-1996.
XX
PF
     13-JUN-1996;
                    96EP-0109475.
XX
PR
     15-JUN-1995;
                   95JP-0148652.
XX
PΑ
     (TAKE ) TAKEDA CHEM IND LTD.
XX
ΡI
     Fukuda T, Habashita J, Nakagawa S, Taketomi S;
XX
DR
     WPI; 1997-036114/04.
XX
PT
     New parathyroid hormone derivs. - useful in treatment of bone
PT
     diseases, hypoparathyroidism and hypertension
XX
PS
     Claim 28; Page 26; 42pp; English.
XX
CC
     The sequences given in AAW08108-32 represent derivatives of human
     parathyroid hormone (PTH). These peptides are human PTH (1-34)
CC
CC
     derivative peptides. They have potent cAMP-producing activity and
CC
     bone formation activity. They may be used in treatment of bone
CC
     diseases including osteoporosis, hypoparathyroidism, hypertension
     and climacteric disturbance. The peptides are low in toxicity and
CC
```

CC

CCare safe.

XX

SQ Sequence 34 AA;

Query Match 67.6%; Score 23; DB 18; Length 34; Best Local Similarity 100.0%; Pred. No. 2.9e-17; Matches 23; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

12 GKHLNSMERVEWLRKKLQDVHNF 34 Qу

12 GKHLNSMERVEWLRKKLQDVHNF 34

Search completed: January 14, 2004, 10:34:21

Job time : 34.5171 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: January 14, 2004, 10:28:59; Search time 11.5452 Seconds

(without alignments)

124.604 Million cell updates/sec

Title: US-09-843-221A-163

Perfect score: 34

Sequence: 1 SVSEIQLMHNKGKHLNSMERVEWLRKKLQDVHNF 34

Scoring table: OLIGO

Gapop 60.0 , Gapext 60.0

Searched: 328717 seqs, 42310858 residues

Word size : (

Total number of hits satisfying chosen parameters: 25778

Minimum DB seq length: 28 Maximum DB seq length: 40

Post-processing: Listing first 1000 summaries

Database : Issued_Patents AA:*

1: /cgn2_6/ptodata/1/iaa/5A_COMB.pep:*
2: /cgn2_6/ptodata/1/iaa/5B_COMB.pep:*
3: /cgn2_6/ptodata/1/iaa/6A_COMB.pep:*
4: /cgn2_6/ptodata/1/iaa/6B_COMB.pep:*
5: /cgn2_6/ptodata/1/iaa/PCTUS_COMB.pep:*

6: /cgn2 6/ptodata/1/iaa/backfiles1.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

	ક				
	Query				
Score	Match	Length	DB	ID	Description
24	70.6	34	3	US-09-044-536A-8	Sequence 8, Appli
23	67.6	33	1	US-08-256-363-1	Sequence 1, Appli
23	67.6	34	1	US-07-765-373-1	Sequence 1, Appli
23	67.6	34	1	US-08-033-099 - 1	Sequence 1, Appli
23	67.6	34	1	US-08-262-495C-1	Sequence 1, Appli
23	67.6	34	1	US-07-915-247A-1	Sequence 1, Appli
23	67.6	34	1	US-08-443-863-1	Sequence 1, Appli
23	67.6	34	1	US-08-448-070-1	Sequence 1, Appli
23	67.6	34	1	US-08-488-105-7	Sequence 7, Appli
23	67.6	34	1	US-08-468-275-6	Sequence 6, Appli
23	67.6	34	1	US-08-256-363-2	Sequence 2, Appli
	24 23 23 23 23 23 23 23 23 23 23	Query Score Match 24 70.6 23 67.6 23 67.6 23 67.6 23 67.6 23 67.6 23 67.6 23 67.6 23 67.6 23 67.6 23 67.6	Query Score Match Length 24 70.6 34 23 67.6 33 23 67.6 34 23 67.6 34 23 67.6 34 23 67.6 34 23 67.6 34 23 67.6 34 23 67.6 34 23 67.6 34 23 67.6 34 23 67.6 34 23 67.6 34	Query Score Match Length DB 24 70.6 34 3 23 67.6 33 1 23 67.6 34 1 23 67.6 34 1 23 67.6 34 1 23 67.6 34 1 23 67.6 34 1 23 67.6 34 1 23 67.6 34 1 23 67.6 34 1 23 67.6 34 1 23 67.6 34 1 23 67.6 34 1	Query Score Match Length DB ID 24 70.6 34 3 US-09-044-536A-8 23 67.6 33 1 US-08-256-363-1 23 67.6 34 1 US-08-033-099-1 23 67.6 34 1 US-08-262-495C-1 23 67.6 34 1 US-07-915-247A-1 23 67.6 34 1 US-08-443-863-1 23 67.6 34 1 US-08-448-070-1 23 67.6 34 1 US-08-448-070-1 23 67.6 34 1 US-08-488-105-7 23 67.6 34 1 US-08-468-275-6

```
12
        23
              67.6
                       34
                              US-08-449-500-1
                                                           Sequence 1, Appli
13
        23
              67.6
                       34
                           1
                              US-08-449-317A-1
                                                           Sequence 1, Appli
14
        23
              67.6
                       34
                           2
                              US-08-142-551B-2
                                                           Sequence 2, Appli
15
        23
              67.6
                       34
                              US-08-477-022-1
                                                           Sequence 1, Appli
16
        23
              67.6
                       34
                           2
                              US-08-449-447-1
                                                           Sequence 1, Appli
17
        23
                       34
                           2
              67.6
                              US-08-835-231-13
                                                           Sequence 13, Appl
        23
18
                           2
              67.6
                       34
                              US-08-184-328-1
                                                           Sequence 1, Appli
              67.6
19
        23
                           2
                       34
                              US-08-411-726-2
                                                           Sequence 2, Appli
20
        23
              67.6
                       34
                           2
                              US-08-691-647C-5
                                                           Sequence 5, Appli
21
        23
              67.6
                       34
                           2
                              US-08-521-097-1
                                                           Sequence 1, Appli
22
        23
              67.6
                       34
                           3
                              US-09-044-536A-1
                                                           Sequence 1, Appli
23
        23
              67.6
                           3
                       34
                              US-09-044-536A-9
                                                           Sequence 9, Appli
24
        23
              67.6
                       34
                           3
                              US-09-044-536A-10
                                                           Sequence 10, Appl
25
        23
              67.6
                       34
                           3
                              US-09-044-536A-11
                                                           Sequence 11, Appl
26
        23
              67.6
                       34
                           3
                              US-09-044-536A-12
                                                           Sequence 12, Appl
27
        23
              67.6
                       34
                          3
                              US-09-044-536A-13
                                                           Sequence 13, Appl
28
        23
              67.6
                       34
                              US-09-044-536A-14
                                                           Sequence 14, Appl
29
        23
              67.6
                       34
                              US-09-044-536A-15
                                                           Sequence 15, Appl
30
        23
              67.6
                       34
                          3
                              US-08-904-760B-22
                                                           Sequence 22, Appl
31
        23
              67.6
                       34
                           3
                              US-09-108-661-13
                                                           Sequence 13, Appl
32
        23
              67.6
                       34
                           4
                              US-09-007-466-6
                                                           Sequence 6, Appli
33
        23
              67.6
                       34
                              US-09-406-813-1
                                                           Sequence 1, Appli
34
        23
              67.6
                       34
                           4
                              US-08-952-980B-6
                                                           Sequence 6, Appli
35
        23
              67.6
                       34
                              US-09-228-990-1
                                                           Sequence 1, Appli
36
        23
              67.6
                       34
                              US-09-447-800-1
                                                          Sequence 1, Appli
37
        23
              67.6
                       34
                           4
                              US-09-447-800-2
                                                          Sequence 2, Appli
38
        23
              67.6
                       34
                          4
                              US-09-447-800-5
                                                          Sequence 5, Appli
39
        23
              67.6
                       34 4
                              US-09-447-800-8
                                                          Sequence 8, Appli
40
        23
              67.6
                       34
                           4
                              US-09-536-785A-22
                                                          Sequence 22, Appl
41
        23
              67.6
                       34
                           4
                              US-09-442-989-26
                                                          Sequence 26, Appl
42
        23
              67.6
                       34
                           5
                              PCT-US95-15800-22
                                                          Sequence 22, Appl
43
        23
              67.6
                       35
                           1
                              US-08-256-363-3
                                                          Sequence 3, Appli
44
        23
              67.6
                       36
                           1
                              US-08-112-024-2
                                                          Sequence 2, Appli
45
        23
              67.6
                       36
                           1
                              US-08-256-363-4
                                                          Sequence 4, Appli
46
        23
              67.6
                       37
                           1
                              US-08-440-117-1
                                                          Sequence 1, Appli
47
        23
             67.6
                       37
                           3
                              US-09-068-738A-16
                                                          Sequence 16, Appl
             67.6
48
        23
                       38
                          1
                              US-08-112-024-1
                                                          Sequence 1, Appli
49
        23
             67.6
                       38
                          1
                              US-08-232-849-1
                                                          Sequence 1, Appli
50
        23
             67.6
                       38
                          2
                              US-08-625-586-1
                                                          Sequence 1, Appli
51
        23
             67.6
                       38
                          3
                              US-09-128-401-1
                                                          Sequence 1, Appli
52
        23
             67.6
                       38 5
                              PCT-US95-15800-29
                                                          Sequence 29, Appl
53
        22
             64.7
                       33
                          4
                              US-09-447-800-3
                                                          Sequence 3, Appli
54
        22
             64.7
                       33
                          4
                              US-09-447-800-6
                                                          Sequence 6, Appli
55
        22
             64.7
                       33
                          4
                              US-09-447-800-9
                                                          Sequence 9, Appli
56
        22
             64.7
                       34
                           3
                                                          Sequence 1, Appli
                              US-08-903-497A-1
57
        22
             64.7
                       34
                          4
                              US-09-635-076-1
                                                          Sequence 1, Appli
58
        21
             61.8
                       34
                           3
                              US-09-044-536A-26
                                                          Sequence 26, Appl
59
        21
             61.8
                       34
                          4
                              US-09-449-632-24
                                                          Sequence 24, Appl
60
        20
             58.8
                       31
                          1
                              US-08-262-495C-3
                                                          Sequence 3, Appli
61
        20
             58.8
                       31
                          2
                              US-08-691-647C-1
                                                          Sequence 1, Appli
62
        20
             58.8
                       31
                          2
                              US-08-691-647C-6
                                                          Sequence 6, Appli
63
        20
             58.8
                       31
                          3
                              US-08-904-760B-1
                                                          Sequence 1, Appli
64
        20
             58.8
                      31
                          3
                              US-08-904-760B-6
                                                          Sequence 6, Appli
65
        20
             58.8
                      31
                          3
                              US-08-904-760B-14
                                                          Sequence 14, Appl
66
        20
             58.8
                      31
                           3
                              US-08-904-760B-32
                                                          Sequence 32, Appl
67
        20
             58.8
                       31
                           4
                              US-09-406-813-2
                                                          Sequence 2, Appli
68
        20
             58.8
                              US-09-536-785A-1
                      31
                                                          Sequence 1, Appli
```

```
69
                               US-09-536-785A-6
         20
               58.8
                        31
                                                            Sequence 6, Appli
 70
               58.8
         20
                        31 4
                               US-09-536-785A-14
                                                            Sequence 14, Appl
 71
         20
               58.8
                        31
                               US-09-536-785A-32
                                                            Sequence 32, Appl
 72
         20
               58.8
                        34
                            3
                               US-09-044-536A-25
                                                            Sequence 25, Appl
 73
         19
               55.9
                        30
                            1
                               US-08-262-495C-5
                                                            Sequence 5, Appli
 74
         19
               55.9
                        34 3
                               US-08-903-497A-3
                                                            Sequence 3, Appli
 75
         19
               55.9
                        34 4
                               US-09-635-076-3
                                                            Sequence 3, Appli
 76
         18
               52.9
                        34 1
                               US-07-915-247A-2
                                                            Sequence 2, Appli
 77
         18
               52.9
                        34 1
                               US-08-443-863-2
                                                            Sequence 2, Appli
 78
         18
               52.9
                        34 1
                               US-08-448-070-2
                                                            Sequence 2, Appli
 79
                        34
         18
               52.9
                            1
                               US-08-488-105-2
                                                            Sequence 2, Appli
 80
         18
               52.9
                        34
                            1
                               US-08-488-105-8
                                                            Sequence 8, Appli
 81
         18
               52.9
                        34
                            1
                               US-08-449-500-2
                                                            Sequence 2, Appli
 82
         18
               52.9
                        34
                            1
                               US-08-449-317A-2
                                                            Sequence 2, Appli
 83
         18
               52.9
                        34
                            2
                               US-08-477-022-2
                                                            Sequence 2, Appli
 84
         18
               52.9
                        34
                           2
                               US-08-449-447-2
                                                            Sequence 2, Appli
 85
         18
               52.9
                        34
                               US-08-184-328-2
                                                            Sequence 2, Appli
 86
         18
               52.9
                        34
                            2
                               US-08-521-097-2
                                                            Sequence 2, Appli
               52.9
 87
         18
                                                            Sequence 18, Appl
                        34
                           3
                               US-09-044-536A-18
 88
         18
               52.9
                        34
                            3
                               US-09-044-536A-19
                                                            Sequence 19, Appl
 89
         17
               50.0
                        28
                               US-09-448-867-8
                                                            Sequence 8, Appli
 90
         17
               50.0
                        28
                            4
                               US-09-448-867-10
                                                            Sequence 10, Appl
 91
         17
               50.0
                        28
                           4
                               US-09-448-867-12
                                                            Sequence 12, Appl
 92
         17
               50.0
                        34 1
                               US-08-488-105-1
                                                            Sequence 1, Appli
 93
         17
               50.0
                        34
                               US-08-488-105-13
                                                            Sequence 13, Appl
 94
         17
               50.0
                        34
                           1
                               US-08-488-105-14
                                                            Sequence 14, Appl
 95
         17
               50.0
                        34
                            3
                                                            Sequence 16, Appl
                               US-09-044-536A-16
 96
         17
               50.0
                            3
                        34
                               US-09-044-536A-17
                                                            Sequence 17, Appl
 97
         16
               47.1
                        34
                            1
                               US-07-915-247A-3
                                                            Sequence 3, Appli
 98
         16
               47.1
                        34
                            1
                               US-08-443-863-3
                                                            Sequence 3, Appli
 99
         16
               47.1
                        34
                            1
                               US-08-448-070-3
                                                            Sequence 3, Appli
100
         16
               47.1
                        34
                            1
                               US-08-449-500-3
                                                            Sequence 3, Appli
101
         16
               47.1
                        34
                            1
                               US-08-449-317A-3
                                                           Sequence 3, Appli
102
         16
               47.1
                               US-08-477-022-3
                        34
                            2
                                                           Sequence 3, Appli
103
         16
              47.1
                        34
                            2
                               US-08-449-447-3
                                                           Sequence 3, Appli
104
         16
              47.1
                        34
                            2
                               US-08-184-328-3
                                                           Sequence 3, Appli
105
         16
              47.1
                        34
                            2
                               US-08-521-097-3
                                                           Sequence 3, Appli
106
         15
              44.1
                        28
                           4
                               US-09-406-813-3
                                                           Sequence 3, Appli
107
         15
              44.1
                        29
                           4
                               US-09-406-813-4
                                                           Sequence 4, Appli
108
         15
              44.1
                        30
                           1
                               US-08-262-495C-6
                                                           Sequence 6, Appli
109
         15
              44.1
                        30
                           3
                               US-08-904-760B-7
                                                           Sequence 7, Appli
110
         15
              44.1
                        30
                           4
                               US-09-536-785A-7
                                                           Sequence 7, Appli
111
         15
              44.1
                        31
                           1
                               US-08-262-495C-4
                                                           Sequence 4, Appli
112
         15
              44.1
                        31 2
                                                           Sequence 2, Appli
                               US-08-691-647C-2
113
         15
              44.1
                        31
                           2
                               US-08-691-647C-3
                                                           Sequence 3, Appli
114
         15
              44.1
                           2
                               US-08-691-647C-4
                        31
                                                           Sequence 4, Appli
115
         15
              44.1
                        31
                           3
                               US-08-904-760B-2
                                                           Sequence 2, Appli
116
         15
              44.1
                        31
                           3
                               US-08-904-760B-3
                                                           Sequence 3, Appli
117
         15
              44.1
                        31
                           3
                               US-08-904-760B-4
                                                           Sequence 4, Appli
118
         15
              44.1
                        31
                           3
                               US-08-904-760B-5
                                                           Sequence 5, Appli
119
         15
              44.1
                        31
                           3
                                                           Sequence 8, Appli
                               US-08-904-760B-8
120
         15
              44.1
                        31
                           3
                               US-08-904-760B-11
                                                           Sequence 11, Appl
121
         15
              44.1
                        31
                           3
                               US-08-904-760B-12
                                                           Sequence 12, Appl
122
         15
              44.1
                        31
                           3
                               US-08-904-760B-15
                                                           Sequence 15, Appl
123
         15
              44.1
                        31
                           3
                               US-08-904-760B-16
                                                           Sequence 16, Appl
124
         15
              44.1
                        31
                           3
                               US-08-904-760B-17
                                                           Sequence 17, Appl
125
         15
              44.1
                        31
                           4
                               US-09-536-785A-2
                                                           Sequence 2, Appli
```

```
126
          15
               44.1
                         31
                                 US-09-536-785A-3
                                                              Sequence 3, Appli
127
          15
               44.1
                         31
                                 US-09<sup>1</sup>536-785A-4
                                                              Sequence 4, Appli
128
          15
               44.1
                         31 4
                                 US-09-536-785A-5
                                                              Sequence 5, Appli
129
          15
               44.1
                         31
                             4
                                 US-09-536-785A-8
                                                              Sequence 8, Appli
130
          15
                         31
               44.1
                             4
                                 US-09-536-785A-11
                                                              Sequence 11, Appl
131
          15
               44.1
                         31
                             4
                                 US-09-536-785A-12
                                                              Sequence 12, Appl
132
          15
               44.1
                         31
                             4
                                US-09-536-785A-15
                                                              Sequence 15, Appl
133
          15
               44.1
                         31
                             4
                                 US-09-536-785A-16
                                                              Sequence 16, Appl
134
          15
               44.1
                         31
                             4
                                 US-09-536-785A-17
                                                              Sequence 17, Appl
135
          15
               44.1
                         34
                             1
                                 US-08-262-495C-2
                                                              Sequence 2, Appli
136
          15
               44.1
                         34
                             1
                                US-08-488-105-4
                                                              Sequence 4, Appli
137
          15
               44.1
                         34
                             1
                                US-08-488-105-6
                                                              Sequence 6, Appli
138
          15
               44.1
                         34
                             1
                                US-08-488-105-10
                                                              Sequence 10, Appl
139
          15
               44.1
                         34
                             1
                                US-08-488-105-11
                                                              Sequence 11, Appl
140
          15
               44.1
                         34
                             1
                                US-08-488-105-16
                                                              Sequence 16, Appl
141
          15
               44.1
                         34
                             1
                                US-08-488-105-18
                                                              Sequence 18, Appl
142
          15
               44.1
                         34
                             1
                                US-08-449-500-79
                                                              Sequence 79, Appl
143
          15
               44.1
                         34
                             1
                                US-08-449-317A-79
                                                              Sequence 79, Appl
144
          15
               44.1
                         34
                             2
                                US-08-142-551B-3
                                                              Sequence 3, Appli
145
          15
               44.1
                         34
                             2
                                                              Sequence 79, Appl
                                US-08-477-022-79
146
          15
               44.1
                         34
                             2
                                US-08-449-447-79
                                                              Sequence 79, Appl
147
          15
               44.1
                         34
                             2
                                US-08-184-328-79
                                                              Sequence 79, Appl
148
          15
               44.1
                         34
                             2
                                US-08-521-097-79
                                                              Sequence 79, Appl
149
          15
               44.1
                         34
                             3
                                US-09-044-536A-27
                                                              Sequence 27, Appl
150
          15
               44.1
                         34
                             3
                                US-08-904-760B-9
                                                              Sequence 9, Appli
151
          15
                                US-08-904-760B-10
               44.1
                         34
                                                              Sequence 10, Appl
152
          15
               44.1
                                US-08-903-497A-4
                         34
                             3
                                                              Sequence 4, Appli
153
          15
               44.1
                         34
                             4
                                US-09-635-076-4
                                                              Sequence 4, Appli
154
          15
               44.1
                         34
                             4
                                US-09-536-785A-9
                                                              Sequence 9, Appli
155
          15
               44.1
                         34
                             4
                                US-09-536-785A-10
                                                              Sequence 10, Appl
156
          15
               44.1
                         35
                             2
                                US-08-142-551B-4
                                                              Sequence 4, Appli
157
          15
               44.1
                         35
                             2
                                US-08-142-551B-5
                                                              Sequence 5, Appli
158
          15
               44.1
                         35
                             2
                                US-08-142-551B-7
                                                              Sequence 7, Appli
159
          15
               44.1
                         35
                                US-08-142-551B-11
                                                             Sequence 11, Appl
160
          15
               44.1
                         35
                             2
                                US-08-142-551B-12
                                                              Sequence 12, Appl
161
          15
               44.1
                         35
                             2
                                US-08-142-551B-13
                                                             Sequence 13, Appl
162
          15
               44.1
                         35
                             2
                                US-08-142-551B-14
                                                             Sequence 14, Appl
163
          15
               44.1
                         35
                             2
                                US-08-142-551B-15
                                                             Sequence 15, Appl
164
          15
               44.1
                         35
                             2
                                US-08-142-551B-16
                                                             Sequence 16, Appl
165
          15
               44.1
                         35
                             2
                                US-08-142-551B-17
                                                             Sequence 17, Appl
166
         15
               44.1
                         35
                            2
                                                             Sequence 18, Appl
                                US-08-142-551B-18
167
         15
               44.1
                         35
                            2
                                US-08-142-551B-19
                                                             Sequence 19, Appl
168
         15
               44.1
                         35
                            2
                                US-08-142-551B-20
                                                             Sequence 20, Appl
169
         15
               44.1
                         35
                             2
                                US-08-142-551B-21
                                                             Sequence 21, Appl
170
         15
               44.1
                         35
                             2
                                US-08-142-551B-22
                                                             Sequence 22, Appl
171
         15
               44.1
                         35
                             2
                                US-08-142-551B-23
                                                             Sequence 23, Appl
172
         15
               44.1
                         35
                             2
                                US-08-142-551B-24
                                                             Sequence 24, Appl
173
         15
               44.1
                         35
                             2
                                US-08-142-551B-25
                                                             Sequence 25, Appl
174
         15
               44.1
                         35
                             2
                                US-08-142-551B-26
                                                             Sequence 26, Appl
175
         15
               44.1
                        35
                             2
                                US-08-142-551B-27
                                                             Sequence 27, Appl
176
         15
               44.1
                        35
                             2
                                US-08-142-551B-28
                                                             Sequence 28, Appl
177
         15
               44.1
                        35
                                US-08-142-551B-29
                                                             Sequence 29, Appl
178
         15
               44.1
                        35
                             2
                                US-08-142-551B-30
                                                             Sequence 30, Appl
179
         15
               44.1
                        35
                             2
                                US-08-142-551B-31
                                                             Sequence 31, Appl
180
         15
               44.1
                        35
                             2
                                US-08-142-551B-32
                                                             Sequence 32, Appl
181
         15
               44.1
                        35
                             2
                                US-08-142-551B-33
                                                             Sequence 33, Appl
182
         15
               44.1
                        35
                                US-08-142-551B-34
                                                             Sequence 34, Appl
```

183	15	44.1	35	2	US-08-142-551B-35	Sequence 35, Appl
184	15	44.1	35	2	US-08-142-551B-36	Sequence 36, Appl
185	15	44.1	35	2	US-08-142-551B-37	Sequence 37, Appl
186	15	44.1	35	2	US-08-142-551B-38	Sequence 38, Appl
187	15	44.1	35	2	US-08-142-551B-39	Sequence 39, Appl
188	15	44.1	35	2	US-08-142-551B-40	Sequence 40, Appl
189	15	44.1	35	2	US-08-142-551B-41	Sequence 41, Appl
190	15	44.1	35	2	US-08-142-551B-42	Sequence 42, Appl
				2		-
191	15	44.1	35		US-08-142-551B-43	Sequence 43, Appl
192	15	44.1	35	2	US-08-142-551B-44	Sequence 44, Appl
193	15	44.1	35	2	US-08-142-551B-45	Sequence 45, Appl
194	15	44.1	35	2	US-08-142-551B-46	Sequence 46, Appl
195	15	44.1	35	2	US-08-142-551B-47	Sequence 47, Appl
196	15	44.1	35	2	US-08-142-551B-48	Sequence 48, Appl
197	15	44.1	35	2	US-08-142-551B-49	Sequence 49, Appl
198	15	44.1	35	2	US-08-142-551B-50	Sequence 50, Appl
199	15	44.1	35	2	US-08-142-551B-51	Sequence 51, Appl
200	15	44.1	35	2	US-08-142-551B-52	Sequence 52, Appl
201	15	44.1	35	2	US-08-142-551B-53	Sequence 53, Appl
202	15	44.1	35	2	US-08-142-551B-54	Sequence 54, Appl
203	15	44.1	35	2	US-08-142-551B-55	Sequence 55, Appl
204	15	44.1	35	2	US-08-142-551B-56	Sequence 56, Appl
			35	2		
205	15	44.1			US-08-142-551B-57	Sequence 57, Appl
206	15	44.1	35	2	US-08-142-551B-58	Sequence 58, Appl
207	15	44.1	35	2	US-08-142-551B-59	Sequence 59, Appl
208	15	44.1	35	2	US-08-142-551B-60	Sequence 60, Appl
209	15	44.1	35	2	US-08-142-551B-61	Sequence 61, Appl
210	15	44.1	35	2	US-08-142-551B-62	Sequence 62, Appl
211	15	44.1	35	2	US-08-142-551B-63	Sequence 63, Appl
212	15	44.1	35	2	US-08-142-551B-64	Sequence 64, Appl
213	15	44.1	35	2	US-08-142-551B-65	Sequence 65, Appl
214	15	44.1	35	2	US-08-142-551B-66	Sequence 66, Appl
215	15	44.1	35	2	US-08-142-551B-67	Sequence 67, Appl
216	15	44.1	35	2	US-08-142-551B-68	Sequence 68, Appl
217	15	44.1	35	2	US-08-142-551B-70	Sequence 70, Appl
218	15	44.1	35	2	US-08-142-551B-73	Sequence 73, Appl
219	15	44.1	35	2	US-08-142-551B-80	Sequence 80, Appl
220	15	44.1	35	2	US-08-142-551B-90	
221	15			2		Sequence 90, Appl
		44.1	35		US-08-142-551B-94	Sequence 94, Appl
222	14	41.2	31	3	US-08-904-760B-21	Sequence 21, Appl
223	14	41.2	31	4	US-09-536-785A-21	Sequence 21, Appl
224	14	41.2	34	3	US-09-044-536A-29	Sequence 29, Appl
225	14	41.2	35	2	US-08-142-551B-69	Sequence 69, Appl
226	14	41.2	35	2	US-08-142-551B-71	Sequence 71, Appl
227	14	41.2	35	2	US-08-142-551B-115	Sequence 115, App
228	14	41.2	35	2	US-08-142-551B-116	Sequence 116, App
229	14	41.2	35	2	US-08-142-551B-117	Sequence 117, App
230	14	41.2	35	2	US-08-142-551B-118	Sequence 118, App
231	13	38.2	34	1	US-07-773-098-5	Sequence 5, Appli
232	13	38.2	34	1	US-07-773-098-6	Sequence 6, Appli
233	13	38.2	34	3	US-09-044-536A-28	Sequence 28, Appl
234	13	38.2	35	2	US-08-142-551B-72	Sequence 72, Appl
235	13	38.2	35	2	US-08-142-551B-74	Sequence 74, Appl
236	13	38.2	35	2	US-08-142-551B-74	
					US-08-142-551B-75	Sequence 75, Appl
237	13	38.2	35	2		Sequence 111, App
238	13	38.2	35 35	2	US-08-142-551B-112	Sequence 112, App
239	13	38.2	35	2	US-08-142-551B-113	Sequence 113, App

240	13	38.2	35	2	US-08-142-551B-114	Sequence 114, App
241	12	35.3	34	1	US-08-488-105-3	Sequence 3, Appli
242	12	35.3	34	1	US-08-488-105-9	Sequence 9, Appli
243	12	35.3	34	1	US-08-488-105-15	Sequence 15, Appl
244	12	35.3	34	3	US-08-903-497A-5	Sequence 5, Appli
245	12	35.3	34	4	US-09-635-076-5	Sequence 5, Appli
246	12	35.3	35	2	US-08-142-551B-76	Sequence 76, Appl
247	12	35.3	35	2	US-08-142-551B-77	Sequence 77, Appl
248	12	35.3	35	2	US-08-142-551B-78	Sequence 78, Appl
249	12	35.3	35	2	US-08-142-551B-107	Sequence 107, App
250	12	35.3	35	2	US-08-142-551B-108	Sequence 108, App
251	12	35.3	35	2	US-08-142-551B-109	Sequence 109, App
252	12	35.3	35	2	US-08-142-551B-109	Sequence 100, App
252	11		34	1		
		32.4			US-08-488-105-5	Sequence 5, Appli
254	11	32.4	34	1	US-08-488-105-12	Sequence 12, Appl
255	11	32.4	34	1	US-08-488-105-17	Sequence 17, Appl
256	11	32.4	34	1	US-08-449-500-61	Sequence 61, Appl
257	11	32.4	34	1	US-08-449-317A-61	Sequence 61, Appl
258	11	32.4	34	2	US-08-477-022-61	Sequence 61, Appl
259	11	32.4	34	2	US-08-449-447-61	Sequence 61, Appl
260	11	32.4	34	2	US-08-184-328-61	Sequence 61, Appl
261	11	32.4	34	2	US-08-521-097-61	Sequence 61, Appl
262	11	32.4	34	4	US-09-449-632-22	Sequence 22, Appl
263	11	32.4	35	2	US-08-142-551B-79	Sequence 79, Appl
264	11	32.4	35	2	US-08-142-551B-81	Sequence 81, Appl
265	11	32.4	35	2	US-08-142-551B-104	Sequence 104, App
266	11	32.4	35	2	US-08-142-551B-105	Sequence 105, App
267	11	32.4	35	2	US-08-142-551B-106	Sequence 106, App
268	11	32.4	35	2	US-08-142-551B-121	Sequence 121, App
269	11	32.4	35	2	US-08-142-551B-122	Sequence 122, App
270	11	32.4	35	2	US-08-142-551B-123	Sequence 123, App
271	10	29.4	28	4	US-09-406-813-6	Sequence 6, Appli
272	10	29.4	28	4	US-09-448-867-6	Sequence 6, Appli
273	10	29.4	30	3	US-08-904-760B-33	
274	10	29.4	30	3		Sequence 33, Appl
275	10				US-08-904-760B-34	Sequence 34, Appl
276		29.4	30	3	US-08-904-760B-35	Sequence 35, Appl
	10	29.4	30	4	US-09-536-785A-33	Sequence 33, Appl
277	10	29.4	30	4	US-09-536-785A-34	Sequence 34, Appl
278	10	29.4	30	4	US-09-536-785A-35	Sequence 35, Appl
279	10	29.4	31			Sequence 18, Appl
280	10	29.4	31	3	US-08-904-760B-19	Sequence 19, Appl
281	10	29.4	31	3	US-08-904-760B-20	Sequence 20, Appl
282	10	29.4	31	4	US-09-406-813-5	Sequence 5, Appli
283	10	29.4	31	4	US-09-536-785A-18	Sequence 18, Appl
284	10	29.4	31	4	US-09-536-785A-19	Sequence 19, Appl
285	10	29.4	31	4	US-09-536-785A-20	Sequence 20, Appl
286	10	29.4	34	3	US-09-044-536A-20	Sequence 20, Appl
287	10	29.4	34	3	US-09-044-536A-21	Sequence 21, Appl
288	10	29.4	34	3	US-09-044-536A-22	Sequence 22, Appl
289	10	29.4	34	3	US-09-044-536A-24	Sequence 24, Appl
290	10	29.4	34	3	US-08-903-497A-6	Sequence 6, Appli
291	10	29.4	34	3	US-08-903-497A-7	Sequence 7, Appli
292	10	29.4	34	4	US-08-952-980B-9	Sequence 9, Appli
293	10	29.4	34	4	US-09-635-076-6	Sequence 6, Appli
294	10	29.4	34	4	US-09-635-076-7	Sequence 7, Appli
295	10	29.4	35	2	US-08-142-551B-82	Sequence 82, Appl
296	10	29.4	35	2	US-08-142-551B-83	Sequence 83, Appl
-		· -		_		Loquette 05, Appl

```
297
         10
               29.4
                        35
                                US-08-142-551B-84
                                                            Sequence 84, Appl
298
         10
               29.4
                        35
                                US-08-142-551B-101
                                                            Sequence 101, App
299
         10
               29.4
                        35
                                US-08-142-551B-102
                                                            Sequence 102, App
300
         10
               29.4
                        35
                            2
                                US-08-142-551B-103
                                                            Sequence 103, App
301
          10
               29.4
                        35
                                                            Sequence 120, App
                                US-08-142-551B-120
302
          9
               26.5
                        28
                            4
                                US-09-448-867-1
                                                            Sequence 1, Appli
303
           9
               26.5
                        28
                            4
                                US-09-448-867-2
                                                            Sequence 2, Appli
304
           9
               26.5
                        28
                            4
                                US-09-448-867-4
                                                            Sequence 4, Appli
           9
305
               26.5
                        34
                            3
                                US-09-044-536A-2
                                                            Sequence 2, Appli
           9
306
               26.5
                            3
                        34
                                US-09-044-536A-23
                                                            Sequence 23, Appl
307
           9
               26.5
                        35
                            2
                                US-08-142-551B-85
                                                            Sequence 85, Appl
308
           9
               26.5
                        35
                            2
                                                            Sequence 86, Appl
                                US-08-142-551B-86
309
           9
                            2
               26.5
                        35
                                                            Sequence 87, Appl
                                US-08-142-551B-87
310
           9
               26.5
                        35
                            2
                                US-08-142-551B-98
                                                            Sequence 98, Appl
311
           9
               26.5
                        35
                            2
                                US-08-142-551B-99
                                                            Sequence 99, Appl
312
           9
               26.5
                        35
                            2
                                US-08-142-551B-100
                                                            Sequence 100, App
           9
313
               26.5
                        35
                            3
                                US-09-044-536A-30
                                                            Sequence 30, Appl
           9
314
               26.5
                        36
                                US-09-044-536A-31
                                                            Sequence 31, Appl
315
           9
               26.5
                        37
                            3
                                US-09-044-536A-32
                                                            Sequence 32, Appl
316
           9
               26.5
                        38
                            3
                                US-09-044-536A-33
                                                            Sequence 33, Appl
317
           9
               26.5
                        39
                            3
                                US-09-044-536A-34
                                                            Sequence 34, Appl
318
           9
               26.5
                                US-09-044-536A-35
                        40
                            3
                                                            Sequence 35, Appl
319
          8
               23.5
                            3
                        31
                                US-08-904-760B-13
                                                            Sequence 13, Appl
320
          8
               23.5
                        31
                            4
                                US-09-228-990-50
                                                            Sequence 50, Appl
          8
321
               23.5
                           4
                        31
                                US-09-228-990-51
                                                            Sequence 51, Appl
          8
322
               23.5
                        31
                            4
                                US-09-228-990-66
                                                            Sequence 66, Appl
323
          8
               23.5
                        31
                            4
                                US-09-228-990-67
                                                            Sequence 67, Appl
324
          8
               23.5
                        31
                            4
                                US-09-228-990-76
                                                            Sequence 76, Appl
325
          8
               23.5
                        31
                            4
                                                            Sequence 13, Appl
                                US-09-536-785A-13
326
          8
               23.5
                        34
                            1
                                US-07-773-098-3
                                                            Sequence 3, Appli
327
          8
               23.5
                        34
                            1
                                US-07-773-098-4
                                                            Sequence 4, Appli
328
          8
               23.5
                        34
                            1
                                US-08-049-402-2
                                                            Sequence 2, Appli
329
          8
               23.5
                        34
                            1
                                US-08-526-987-2
                                                            Sequence 2, Appli
330
          8
              23.5
                        35
                            2
                                US-08-142-551B-88
                                                            Sequence 88, Appl
331
          8
               23.5
                        35
                            2
                                US-08-142-551B-89
                                                            Sequence 89, Appl
332
          8
               23.5
                        35
                            2
                                US-08-142-551B-95
                                                            Sequence 95, Appl
333
          8
               23.5
                        35
                            2
                                US-08-142-551B-96
                                                            Sequence 96, Appl
334
          8
              23.5
                        35
                            2
                                US-08-142-551B-97
                                                            Sequence 97, Appl
          7
335
               20.6
                        28
                            4
                                US-09-228-990-65
                                                            Sequence 65, Appl
          7
336
               20.6
                        28
                            4
                                US-09-228-990-78
                                                            Sequence 78, Appl
337
          7
              20.6
                        28
                           4
                               US-09-228-990-79
                                                            Sequence 79, Appl
338
          7
              20.6
                        28 4
                                US-09-442-989-22
                                                            Sequence 22, Appl
          7
339
              20.6
                        28
                           4
                                US-09-442-989-24
                                                            Sequence 24, Appl
          7
340
              20.6
                        28
                            4
                                US-09-442-989-25
                                                            Sequence 25, Appl
          7
341
              20.6
                        29
                            4
                               US-09-406-813-8
                                                            Sequence 8, Appli
          7
342
              20.6
                        31
                           4
                               US-09-406-813-9
                                                            Sequence 9, Appli
343
          7
              20.6
                        32
                            1
                               US-08-305-799A-1
                                                            Sequence 1, Appli
          7
344
              20.6
                        32
                            1
                               US-08-305-799A-2
                                                            Sequence 2, Appli
          7
345
              20.6
                        34
                            1
                               US-08-033-099-2
                                                            Sequence 2, Appli
          7
346
              20.6
                        34
                           1
                               US-08-468-275-7
                                                            Sequence 7, Appli
347
          7
              20.6
                        34
                           1
                               US-08-468-275-8
                                                            Sequence 8, Appli
348
          7
              20.6
                        34
                           1
                               US-08-449-500-37
                                                            Sequence 37, Appl
349
          7
              20.6
                        34
                               US-08-449-317A-37
                           1
                                                            Sequence 37, Appl
350
          7
              20.6
                        34
                           2
                               US-08-477-022-37
                                                            Sequence 37, Appl
351
          7
              20.6
                        34
                           2
                               US-08-449-447-37
                                                            Sequence 37, Appl
352
          7
              20.6
                        34
                            2
                               US-08-184-328-37
                                                            Sequence 37, Appl
          7
353
              20.6
                        34
                            2
                               US-08-521-097-37
                                                            Sequence 37, Appl
```

```
354
               20.6
                        34 4
                               US-09-007-466-7
                                                            Sequence 7, Appli
355
               20.6
                        34 4
                               US-09-007-466-8
                                                            Sequence 8, Appli
356
           7
               20.6
                        34 4
                               US-09-228-990-46
                                                           Sequence 46, Appl
357
           7
                        34 4
               20.6
                               US-09-228-990-75
                                                           Sequence 75, Appl
358
           7
               20.6
                        34 4
                               US-09-442-989-18
                                                           Sequence 18, Appl
359
           7
               20.6
                        34 4
                               US-09-442-989-19
                                                           Sequence 19, Appl
360
          7
               20.6
                        34 4
                               US-09-442-989-46
                                                           Sequence 46, Appl
          7
361
               20.6
                        35 2
                               US-08-142-551B-10
                                                           Sequence 10, Appl
          7
362
               20.6
                        35
                            2
                               US-08-142-551B-91
                                                           Sequence 91, Appl
363
          -7
               20.6
                        35
                            2
                               US-08-142-551B-92
                                                           Sequence 92, Appl
          7
364
               20.6
                        35
                            2
                               US-08-142-551B-93
                                                           Sequence 93, Appl
365
          7
               20.6
                        35
                            2
                               US-08-142-551B-124
                                                           Sequence 124, App
          7
366
              20.6
                        35
                            4
                               US-08-952-980B-7
                                                           Sequence 7, Appli
          7
367
              20.6
                        35
                            4
                               US-08-952-980B-8
                                                           Sequence 8, Appli
368
          6
              17.6
                        28
                            4
                               US-09-228-990-54
                                                           Sequence 54, Appl
369
          6
              17.6
                        28
                               US-09-228-990-62
                                                           Sequence 62, Appl
370
          6
              17.6
                        29
                               US-09-228-990-53
                                                           Sequence 53, Appl
371
          6
              17.6
                        29
                               US-09-228-990-63
                                                           Sequence 63, Appl
372
          6
              17.6
                        30
                           4
                               US-09-228-990-52
                                                           Sequence 52, Appl
373
          6
              17.6
                        30
                           4
                               US-09-228-990-64
                                                           Sequence 64, Appl
374
          6
              17.6
                        30
                           4
                               US-09-536-785A-23
                                                           Sequence 23, Appl
375
          6
              17.6
                        31
                               US-08-904-760B-23
                            3
                                                           Sequence 23, Appl
376
          6
              17.6
                        31
                           4
                               US-09-406-813-7
                                                           Sequence 7, Appli
377
          6
              17.6
                        31 4
                               US-09-228-990-3
                                                           Sequence 3, Appli
378
          6
              17.6
                        31 4
                               US-09-228-990-4
                                                           Sequence 4, Appli
379
          6
              17.6
                        31 4
                               US-09-228-990-5
                                                           Sequence 5, Appli
380
          6
              17.6
                        31 4
                               US-09-228-990-6
                                                           Sequence 6, Appli
381
          6
              17.6
                        31 4
                               US-09-228-990-7
                                                           Sequence 7, Appli
382
          6
              17.6
                        31
                            4
                               US-09-228-990-8
                                                           Sequence 8, Appli
383
          6
              17.6
                        31
                           4
                               US-09-228-990-9
                                                           Sequence 9, Appli
384
          6
              17.6
                        31
                            4
                               US-09-228-990-10
                                                           Sequence 10, Appl
385
          6
              17.6
                        31
                           4
                               US-09-228-990-11
                                                           Sequence 11, Appl
386
          6
              17.6
                        31
                            4
                               US-09-228-990-12
                                                           Sequence 12, Appl
387
          6
              17.6
                        31
                               US-09-228-990-13
                                                           Sequence 13, Appl
388
          6
              17.6
                        31
                            4
                               US-09-228-990-14
                                                           Sequence 14, Appl
389
          6
              17.6
                       31
                            4
                               US-09-228-990-15
                                                           Sequence 15, Appl
390
              17.6
          6
                       31
                            4
                               US-09-228-990-16
                                                           Sequence 16, Appl
391
          6
              17.6
                               US-09-228-990-17
                       31
                           4
                                                           Sequence 17, Appl
392
          6
              17.6
                       31
                               US-09-228-990-18
                           4
                                                           Sequence 18, Appl
393
          6
              17.6
                       31 4
                               US-09-228-990-19
                                                           Sequence 19, Appl
394
          6
              17.6
                       31 4
                               US-09-228-990-20
                                                           Sequence 20, Appl
395
          6
              17.6
                       31 4
                               US-09-228-990-21
                                                           Sequence 21, Appl
396
          6
              17.6
                       31 4
                               US-09-228-990-22
                                                           Sequence 22, Appl
397
          6
              17.6
                       31 4
                               US-09-228-990-23
                                                           Sequence 23, Appl
398
          6
              17.6
                       31 4
                               US-09-228-990-24
                                                           Sequence 24, Appl
399
          6
              17.6
                       31 4
                               US-09-228-990-25
                                                           Sequence 25, Appl
400
          6
              17.6
                       31
                           4
                               US-09-228-990-26
                                                           Sequence 26, Appl
401
          6
              17.6
                       31
                           4
                               US-09-228-990-27
                                                           Sequence 27, Appl
402
          6
              17.6
                           4
                       31
                               US-09-228-990-28
                                                           Sequence 28, Appl
403
          6
              17.6
                       31
                           4
                               US-09-228-990-29
                                                           Sequence 29, Appl
404
          6
              17.6
                       31
                               US-09-228-990-30
                                                           Sequence 30, Appl
405
          6
              17.6
                       31
                           4
                               US-09-228-990-31
                                                           Sequence 31, Appl
406
          6
              17.6
                       31
                           4
                              US-09-228-990-32
                                                           Sequence 32, Appl
407
          6
              17.6
                       31 4
                               US-09-228-990-33
                                                           Sequence 33, Appl
408
          6
              17.6
                       31
                           4
                               US-09-228-990-34
                                                           Sequence 34, Appl
409
          6
              17.6
                       31
                           4
                               US-09-228-990-35
                                                           Sequence 35, Appl
410
          6
              17.6
                       31
                               US-09-228-990-36
                                                           Sequence 36, Appl
```

411	6	17.6	31	4	US-09-228-990-37	Sequence 37, Appl
412	. 6	17.6	31	4	US-09-228-990-38	Sequence 38, Appl
413	6	17.6	31	4	US-09-228-990-39	Sequence 39, Appl
414	6	17.6	31	4	US-09-228-990-40	Sequence 40, Appl
415	6	17.6	31	4	US-09-228-990-41	Sequence 41, Appl
416	6	17.6	31	4	US-09-228-990-42	Sequence 42, Appl
417	6	17.6	31	4	US-09-228-990-43	Sequence 43, Appl
418	6	17.6	31	4	US-09-228-990-44	Sequence 44, Appl
419	6	17.6	31	4	US-09-228-990-45	Sequence 45, Appl
420	6	17.6	31	4	US-09-228-990-47	Sequence 47, Appl
421	6	17.6	31	4	US-09-228-990-48	Sequence 48, Appl
422	6	17.6	31	4	US-09-228-990-49	Sequence 49, Appl
423	6	17.6	31	4	US-09-228-990-68	Sequence 68, Appl
424	6	17.6	31	4	US-09-228-990-69	Sequence 69, Appl
425	6	17.6	31	4	US-09-228-990-70	Sequence 70, Appl
426	6	17.6	31	4	US-09-228-990-73	Sequence 73, Appl
427	6	17.6	31	4	US-09-228-990-74	Sequence 74, Appl
428	6	17.6	31	4	US-09-228-990-80	Sequence 80, Appl
						-
429	6	17.6	31	4	US-09-228-990-81	Sequence 81, Appl
430	6	17.6	31	4	US-09-228-990-82	Sequence 82, Appl
431	6	17.6	31	4	US-09-228-990-83	Sequence 83, Appl
432	6	17.6	31	4	US-09-228-990-84	Sequence 84, Appl
433	6	17.6	31	4	US-09-228-990-85	Sequence 85, Appl
434	6	17.6	31	4	US-09-228-990-86	Sequence 86, Appl
435	6	17.6	31	4	US-09-228-990-87	Sequence 87, Appl
436	6	17.6	31	4	US-09-228-990-88	Sequence 88, Appl
437	6	17.6	31	4	US-09-536-785A-36	Sequence 36, Appl
438	6	17.6	31	4	US-09-442-989-1	Sequence 1, Appli
439	6	17.6	31	4	US-09-442-989-2	Sequence 2, Appli
440	6	17.6	31	4	US-09-442-989-3	Sequence 3, Appli
441	6	17.6	31	4	US-09-442-989-4	Sequence 4, Appli
442	6	17.6	31	4	US-09-442-989-5	Sequence 5, Appli
443	6	17.6	31	4	US-09-442-989-6	Sequence 6, Appli
444	6	17.6	31	4	US-09-442-989-7	Sequence 7, Appli
445	6	17.6	31	4	US-09-442-989-8	Sequence 8, Appli
446	6	17.6	31	4	US-09-442-989-9	Sequence 9, Appli
447	6	17.6	31	4	US-09-442-989-10	Sequence 10, Appl
448	6	17.6	31	4	US-09-442-989-11	Sequence 11, Appl
449	6	17.6	31	4	US-09-442-989-12	Sequence 12, Appl
450	6		31			Sequence 13, Appl
451	6	17.6	31	4	US-09-442-989-14	Sequence 14, Appl
452	6	17.6	31	4	US-09-442-989-15	Sequence 15, Appl
453	6	17.6	31	4	US-09-442-989-16	Sequence 16, Appl
454	6	17.6	31	4	US-09-442-989-17	Sequence 17, Appl
455	6	17.6	31	4	US-09-442-989-32	Sequence 32, Appl
456	6	17.6	32	4	US-09-536-785A-37	
						Sequence 37, Appl
457	6	17.6	33	4	US-09-536-785A-38	Sequence 38, Appl
458	6	17.6	34	1	US-07-765-373-2	Sequence 2, Appli
459	6	17.6	34	1	US-08-049-402-1	Sequence 1, Appli
460	6	17.6	34	1	US-08-526-987-1	Sequence 1, Appli
461	6	17.6	34	4	US-09-536-785A-24	Sequence 24, Appl
462	6	17.6	35	4	US-09-536-785A-25	Sequence 25, Appl
463	6	17.6	36	4	US-09-536-785A-26	Sequence 26, Appl
464	6	17.6	37	4	US-09-536-785A-27	Sequence 27, Appl
465	5	14.7	29	1	US-07-778-926-6	Sequence 6, Appli
466	5	14.7	29	1	US-08-188-582-33	Sequence 33, Appl
467	5	14.7	29	1	US-08-646-715-33	Sequence 33, Appl

```
468
               14.7
                        30
                                US-07-778-926-10
                                                             Sequence 10, Appl
469
               14.7
                        30
                             1
                                US-08-305-799A-7
                                                             Sequence 7, Appli
470
           5
               14.7
                        30
                             1
                                US-08-305-799A-9
                                                             Sequence 9, Appli
471
           5
               14.7
                        30
                             1
                                US-08-305-799A-10
                                                             Sequence 10, Appl
472
           5
               14.7
                        30
                             1
                                US-08-305-799A-11
                                                             Sequence 11, Appl
           5
473
               14.7
                        30
                            1
                                US-08-305-799A-12
                                                             Sequence 12, Appl
           5
474
               14.7
                        31
                             1
                                US-07-778-926-14
                                                             Sequence 14, Appl
           5
475
               14.7
                        32
                             1
                                US-07-778-926-18
                                                             Sequence 18, Appl
476
           5
                                US-07-778-926-7
               14.7
                        33
                             1
                                                             Sequence 7, Appli
477
           5
               14.7
                        34
                             1
                                US-07-778-926-11
                                                             Sequence 11, Appl
478
           5
               14.7
                        34
                             1
                                US-07-915-247A-23
                                                             Sequence 23, Appl
479
           5
               14.7
                        34
                             1
                                US-07-915-247A-24
                                                             Sequence 24, Appl
480
           5
               14.7
                             1
                        34
                                US-08-443-863-23
                                                             Sequence 23, Appl
           5
481
               14.7
                        34
                             1
                                US-08-443-863-24
                                                             Sequence 24, Appl
482
           5
               14.7
                        34
                             1
                                US-08-448-070-23
                                                             Sequence 23, Appl
           5
483
               14.7
                        34
                             1
                                US-08-448-070-24
                                                             Sequence 24, Appl
           5
484
               14.7
                        34
                             1
                                US-08-449-500-23
                                                             Sequence 23, Appl
           5
485
               14.7
                        34
                             1
                                US-08-449-500-24
                                                             Sequence 24, Appl
486
           5
               14.7
                                                             Sequence 35, Appl
                        34
                             1
                                US-08-449-500-35
           5
487
               14.7
                        34
                             1
                                US-08-449-500-36
                                                             Sequence 36, Appl
           5
488
               14.7
                        34
                                US-08-449-317A-23
                                                             Sequence 23, Appl
489
           5
                                US-08-449-317A-24
               14.7
                        34
                            1
                                                             Sequence 24, Appl
           5
490
               14.7
                        34
                            1
                                US-08-449-317A-35
                                                             Sequence 35, Appl
           5
491
               14.7
                        34
                            1
                                US-08-449-317A-36
                                                             Sequence 36, Appl
           5
492
               14.7
                        34 2
                                US-08-477-022-23
                                                             Sequence 23, Appl
           5
493
               14.7
                        34
                            2
                                US-08-477-022-24
                                                             Sequence 24, Appl
           5
                                US-08-477-022-35
494
               14.7
                        34
                            2
                                                             Sequence 35, Appl
495
           5
               14.7
                        34
                            2
                                US-08-477-022-36
                                                             Sequence 36, Appl
496
           5
               14.7
                             2
                        34
                                US-08-449-447-23
                                                             Sequence 23, Appl
497
           5
               14.7
                        34
                            2
                                US-08-449-447-24
                                                             Sequence 24, Appl
498
           5
               14.7
                        34
                            2
                                US-08-449-447-35
                                                             Sequence 35, Appl
499
           5
               14.7
                        34
                            2
                                US-08-449-447-36
                                                             Sequence 36, Appl
500
           5
               14.7
                        34
                            2
                                US-08-184-328-23
                                                             Sequence 23, Appl
           5
501
               14.7
                        34
                            2
                                US-08-184-328-24
                                                             Sequence 24, Appl
502
           5
               14.7
                        34
                            2
                                US-08-184-328-35
                                                             Sequence 35, Appl
503
           5
               14.7
                        34
                            2
                                US-08-184-328-36
                                                             Sequence 36, Appl
504
          5
               14.7
                            2
                                                             Sequence 23, Appl
                        34
                                US-08-521-097-23
505
          5
               14.7
                        34
                            2
                                US-08-521-097-24
                                                             Sequence 24, Appl
506
          5
               14.7
                        34
                            2
                                US-08-521-097-35
                                                             Sequence 35, Appl
507
          5
               14.7
                        34
                            2
                                US-08-521-097-36
                                                             Sequence 36, Appl
508
          5
               14.7
                        35
                            1
                                US-07-778-926-15
                                                             Sequence 15, Appl
           5
509
               14.7
                        36
                            1
                                US-07-778-926-19
                                                             Sequence 19, Appl
510
          5
               14.7
                        37
                                US-07-778-926-8
                            1
                                                             Sequence 8, Appli
511
          5
               14.7
                        38
                            1
                                US-07-778-926-12
                                                             Sequence 12, Appl
512
          5
               14.7
                        39
                            1
                                US-07-778-926-16
                                                             Sequence 16, Appl
513
          5
               14.7
                        40
                            1
                                US-07-778-926-20
                                                             Sequence 20, Appl
514
           4
               11.8
                        28
                            1
                                US-07-778-926-2
                                                             Sequence 2, Appli
515
          4
               11.8
                        28
                            1
                                US-07-899-535A-4
                                                             Sequence 4, Appli
516
          4
               11.8
                        28
                            1
                                US-08-191-866D-76
                                                             Sequence 76, Appl
517
          4
               11.8
                        28
                            2
                                US-08-185-949B-76
                                                             Sequence 76, Appl
518
          4
               11.8
                        28
                            2
                                US-08-620-151-126
                                                             Sequence 126, App
519
               11.8
                        28
                            2
                                US-08-818-253-22
                                                             Sequence 22, Appl
520
          4
               11.8
                        28
                            3
                               US-08-641-873-8
                                                             Sequence 8, Appli
521
          4
               11.8
                        28
                            3
                               US-08-818-252-22
                                                             Sequence 22, Appl
522
          4
               11.8
                        28
                            4
                                US-08-842-322-16
                                                             Sequence 16, Appl
523
          4
               11.8
                        28
                            4
                                US-09-316-919-38
                                                             Sequence 38, Appl
524
               11.8
                        28
                            4
                               US-09-323-867A-153
                                                             Sequence 153, App
```

525	4	11.8	29	4	US-09-227-357-386	Sequence 386, App
526	4	11.8	29	4	US-09-227-357-480	Sequence 480, App
527	4	11.8	29	4	US-09 - 695-458-8	Sequence 8, Appli
528	4	11.8	29	4	US-09-205-258-1006	Sequence 1006, Ap
529	4	11.8	30	1	US-08-305-799A-3	Sequence 3, Appli
530	4	11.8	30	1	US-08-305-799A-4	Sequence 4, Appli
531	4	11.8	30	4	US-09-205-258-821	Sequence 821, App
532	4	11.8	31	1	US-07-829-462-3	Sequence 3, Appli
533	4	11.8	31	1	US-08-340-812-3	Sequence 3, Appli
534	4	11.8	31	1	US-08-248-021A-5	Sequence 5, Appli
535	4	11.8	31	1	US-08-323-531-44	Sequence 44, Appl
536	4	11.8	31	1	US-08-323-531-50	Sequence 50, Appl
537	4	11.8	31	1	US-08-323-531-62	Sequence 62, Appl
538	4	11.8	31	1	US-08-198-094-44	Sequence 44, Appl
539	4	11.8	31	1	US-08-198-094-50	Sequence 50, Appl
540	4	11.8	31	1	US-08-198-094-62	Sequence 62, Appl
541	4	11.8	31	1	US-08-459-064B-3	Sequence 3, Appli
542	4	11.8	31	2	US-08-460-421A-3	Sequence 3, Appli
543	4	11.8	31	2	US-08-663-566A-32	Sequence 32, Appl
544	4	11.8	31	2	US-08-023-610-32	Sequence 32, Appl
545	4	11.8	31	2	US-08-288-065A-32	Sequence 32, Appl
546	4	11.8	31	2	US-08-362-240A-32	Sequence 32, Appl
547	4	11.8	31	3	US-08-107-794A-44	Sequence 44, Appl
548	4	11.8	31	3	US-08-107-794A-50	
549	4	11.8	31	3	US-08-107-794A-62	Sequence 50, Appl
550	4	11.8	31	4	US-09-205-258-1001	Sequence 62, Appl
551	4	11.8	31	5	PCT-US93-00909-3	Sequence 1001, Ap
552	4	11.8	31	5	PCT-US93-00909-3	Sequence 3, Appli
553	4	11.8	31	5	PCT-US93-07424-44	Sequence 44, Appl
554	4	11.8	31	5	PCT-US93-07424-62	Sequence 50, Appl
555	4	11.8	31	5	PCT-US95-02087-44	Sequence 62, Appl
556	4	11.8	31	5	PCT-US95-02087-50	Sequence 44, Appl
557	4	11.8	31	5		Sequence 50, Appl
558	4	11.8	31	5	PCT-US95-02087-62	Sequence 62, Appl
559	4	11.8	32	1	PCT-US95-10245-32	Sequence 32, Appl
560	4	11.8			US-07-778-926-3	Sequence 3, Appli
561	4	11.8	32	1	US-08-190-802A-110	Sequence 110, App
562	4		32	1	US-08-190-802A-114	Sequence 114, App
563	4	11.8	32	1	US-08-190-802A-183	Sequence 183, App
564	4	11.8	32	1	US-08-190-802A-216	Sequence 216, App
565	_	11.8			US-08-477-346-110	Sequence 110, App
566	4	11.8	32	3	US-08-477-346-114	Sequence 114, App
567	4	11.8	32	3	US-08-477-346-183	Sequence 183, App
568	4	11.8	32	3	US-08-477-346-216	Sequence 216, App
568 569	4	11.8	32	4	US-08-473-089-110	Sequence 110, App
	4	11.8	32	4	US-08-473-089-114	Sequence 114, App
570 571	4	11.8	32	4	US-08-473-089-183	Sequence 183, App
571	4	11.8	32	4	US-08-473-089-216	Sequence 216, App
572	4	11.8	32	4	US-09-149-476-442	Sequence 442, App
573	4	11.8	32	4	US-08-487-072A-110	Sequence 110, App
574	4	11.8	32	4	US-08-487-072A-114	Sequence 114, App
575 576	4	11.8	32	4	US-08-487-072A-183	Sequence 183, App
576 577	4	11.8	32	4	US-08-487-072A-216	Sequence 216, App
577	4	11.8	33	1	US-08-781-020-10	Sequence 10, Appl
578	4	11.8	33	3	US-09-038-935-10	Sequence 10, Appl
579	4	11.8	33	3	US-09-023-731-16	Sequence 16, Appl
580	4	11.8	33	4	US-09-149-476 - 660	Sequence 660, App
581	4	11.8	33	4	US-09-122-144-4	Sequence 4, Appli
						

<u>t</u>

582	4	11.8	33	4	US-09-205-258-368	Sequence 368, App
583	4	11.8	34	1	US-08-007-775-1	Sequence 1, Appli
584	4	11.8	34	1	US-07-956-700B-7	Sequence 7, Appli
585	4	11.8	34	1	US-08-476-537-7	Sequence 7, Appli
586	4	11.8	34	1	US-08-485-607-7	Sequence 7, Appli
587	4	11.8	34	2	US-08-475-879-7	Sequence 7, Appli
588	4	11.8	34	4	US-09-433-043B-7	Sequence 7, Appli
589	4	11.8	35	4	US-09-227-357-486	Sequence 486, App
590	4	11.8	35	4	US-09-690-454-138	
591	4	11.8	36	1		Sequence 138, App
					US-07-778-926-4	Sequence 4, Appli
592	4	11.8	37	1	US-07-961-724C-17	Sequence 17, Appl
593	4	11.8	37	1	US-08-231-730A-45	Sequence 45, Appl
594	4	11.8	37	1	US-08-237-418-16	Sequence 16, Appl
595	4	11.8	37	2	US-08-283-917 - 12	Sequence 12, Appl
596	4	11.8	37	2	US-08-961-716-12	Sequence 12, Appl
597	4	11.8	37	2	US-08-505-486-50	Sequence 50, Appl
598	4	11.8	37	3	US-08-689-489C-45	Sequence 45, Appl
599	4	11.8	37	3	US-08-801-028-50	Sequence 50, Appl
600	4	11.8	37	3	US-09-340-154-50	Sequence 50, Appl
601	4	11.8	37	3	US-09-232-802A-45	Sequence 45, Appl
602	4	11.8	37	3	US-08-468-337-16	Sequence 16, Appl
603	4	11.8	37	4	US-09-482-611B-50	Sequence 50, Appl
604	4	11.8	37	4	US-09-758-318-16	
605	4	11.8	37	5		Sequence 16, Appl
606					PCT-US95-04718-45	Sequence 45, Appl
	4	11.8	37	5	PCT-US95-09338-50	Sequence 50, Appl
607	4	11.8	37	5	PCT-US95-09339-50	Sequence 50, Appl
608	4	11.8	38	1	US-07-781-254A-18	Sequence 18, Appl
609	4	11.8	38	2	US-08-378-548 -1 2	Sequence 12, Appl
610	4	11.8	39	4	US-09-227-357 - 384	Sequence 384, App
611	4	11.8	39	4	US-09-323-867A-25	Sequence 25, Appl
612	3	8.8	28	1	US-07-620-410-2	Sequence 2, Appli
613	3	8.8	28	1	US-07-690-300B-1	Sequence 1, Appli
614	3	8.8	28	1	US-07-690-300B-12	Sequence 12, Appl
615	3	8.8	28	1	US-07-690-300B-23	Sequence 23, Appl
616	3	8.8	28	1	US-07-690-300B-24	Sequence 24, Appl
617	3	8.8	28	1	US-07-690-300B-25	Sequence 25, Appl
618	3	8.8	28	1	US-07-690-300B-26	Sequence 26, Appl
619	3	8.8	28	1	US-07-690-300B-27	Sequence 27, Appl
620	3	8.8	28	1	US-07-690-300B-28	Sequence 28, Appl
621	3	8.8	28	1	US-07-690-300B-29	
622	3	8.8	28			Sequence 29, Appl
623	3		28	1	US-07-690-300B-30	Sequence 30, Appl
		8.8		1	US-07-690-300B-31	Sequence 31, Appl
624	3	8.8	28	1	US-07-690-300B-32	Sequence 32, Appl
625	3	8.8	28	1	US-07-690-300B-33	Sequence 33, Appl
626	3	8.8	28	1	US-07-690-300B-34	Sequence 34, Appl
627	3	8.8	28	1	US-07-690-300B-35	Sequence 35, Appl
628	3	8.8	28	1	US-07-690-300B-36	Sequence 36, Appl
629	3	8.8	28	1	US-07-690-300B-37	Sequence 37, Appl
630	3	8.8	28	1	US-07-690-300B-38	Sequence 38, Appl
631	3	8.8	28	1	US-07-690-300B-39	Sequence 39, Appl
632	3	8.8	28	1	US-07-690-300B-40	Sequence 40, Appl
633	3	8.8	28	1	US-07-690-300B-41	Sequence 41, Appl
634	3	8.8	28	1	US-07-690-300B-42	Sequence 42, Appl
635	3	8.8	28	1	US-07-690-300B-43	Sequence 43, Appl
636	3	8.8	28	1	US-07-690-300B-44	Sequence 44, Appl
637	3	8.8	28	1	US-07-690-300B-45	Sequence 45, Appl
638	3	8.8	28	1	US-07-690-300B-45	Sequence 45, Appl Sequence 46, Appl
	_	5.0	20	-	22 0, 000 300D-40	bequence 40, Appl

639	3	8.8	28	1	US-07-690-300B-47	Sequence 47, Appl
640	3	8.8	28	1	US-07-690-300B-48	Sequence 48, Appl
641	3	8.8	28	1	US-07-690-300B-49	Sequence 49, Appl
642	3	8.8	28	1	US-07-690-300B-50	Sequence 50, Appl
643	3	8.8	28	1	US-07-690-300B-51	Sequence 51, Appl
644	3	8.8	28	1	US-07-690-300B-52	Sequence 52, Appl
645	3	8.8	28	1	US-07-690-300B-53	Sequence 53, Appl
646	3	8.8	28	1	US-07-690-300B-54	Sequence 54, Appl
647	3	8.8	28	1	US-07-690-300B-55	Sequence 55, Appl
648	3	8.8	28	1	US-07-690-300B-56	Sequence 56, Appl
649	3	8.8	28	1	US-07-690-300B-63	Sequence 63, Appl
650	3	8.8	28	1	US-07-690-300B-64	Sequence 64, Appl
651	3	8.8	28	1	US-07-690-300B-68	Sequence 68, Appl
652	3	8.8	28	1	US-07-690-300B-71	Sequence 71, Appl
653	3	8.8	28	1	US-07-690-300B-78	Sequence 78, Appl
654	3	8.8	28	1	US-07-690-300B-79	Sequence 79, Appl
655	3	8.8	28	1	US-07-690-300B-82	Sequence 82, Appl
656	3	8.8	28	1	US-07-690-300B-88	Sequence 88, Appl
657	3	8.8	28	1	US-07-690-300B-91	Sequence 91, Appl
658	3	8.8	28	1	US-07-690-300B-93	Sequence 93, Appl
659	3	8.8	28	1	US-07-663-413-29	Sequence 29, Appl
660	3	8.8	28	1	US-07-676-987A-1	Sequence 1, Appli
661	3	8.8	28	1	US-07-676-987A-2	Sequence 2, Appli
662	3	8.8	28	1	US-07-833-468-1	Sequence 1, Appli
663	3	8.8	28	1	US-08-052-681-10	Sequence 10, Appl
664	3	8.8	28	1	US-07-789-344A-11	Sequence 11, Appl
665	3	8.8	28	1	US-07-868-906-1	Sequence 1, Appli
666	3	8.8	28	1	US-08-201-092-1	Sequence 1, Appli
667	3	8.8	28	1	US-08-201-092-2	Sequence 2, Appli
668	3	8.8	28	1	US-08-055-530-29	Sequence 29, Appl
669	3	8.8	28	1	US-08-122-578-1	Sequence 1, Appli
670	3	8.8	28	1	US-08-255-558B-6	Sequence 6, Appli
671	3	8.8	28	1	US-08-117-080-9	Sequence 9, Appli
672	3	8.8	28	1	US-07-924-054-11	Sequence 11, Appl
673	3	8.8	28	1	US-08-243-082-1	Sequence 1, Appli
674	3	8.8	28	1	US-08-246-572-4	Sequence 4, Appli
675	3	8.8	28	1	US-08-246-572-5	Sequence 5, Appli
676	3	8.8	28	1	US-08-190-802A-84	Sequence 84, Appl
677	3	8.8	28	1	US-08-361-443-1	Sequence 1, Appli
678	3	8.8	28			Sequence 12, Appl
679	3	8.8	28	1	US-08-311-611A-56	Sequence 56, Appl
680	3	8.8	28	1	US-08-311-611A-193	Sequence 193, App
681	3	8.8	28	1	US-08-311-611A-194	Sequence 194, App
682	3	8.8	28	1	US-08-311-611A-195	Sequence 195, App
683	3	8.8	28	1	US-08-311-611A-196	Sequence 196, App
684	3	8.8	28	1	US-08-152-488-2	Sequence 2, Appli
685	3	8.8	28	1	US-07-949-797B-1	Sequence 1, Appli
686	3	8.8	28	1	US-08-194-591-1	Sequence 1, Appli
687	3	8.8	28	1	US-08-194-591-2	Sequence 2, Appli
688	3	8.8	28	1	US-08-257-446-6	Sequence 6, Appli
689	3	8.8	28	1	US-08-372-783-12	Sequence 12, Appl
690	3	8.8	28	1	US-08-372-783-56	Sequence 56, Appl
691	3	8.8	28	1	US-08-372-783-193	Sequence 193, App
692	3	8.8	28	1	US-08-372-783-194	Sequence 194, App
693	3	8.8	28	1	US-08-372-783-195	Sequence 195, App
694	3	8.8	28	1	US-08-372-783-196	Sequence 196, App
695	3	8.8	28	1	US-07-977-630-42	Sequence 42, Appl

696	3	8.8	28	1	US-07-977-630-45	Sequence 45, Appl
697	3	8.8	28	1	US-07-977-630-47	Sequence 47, Appl
698	3	8.8	28	1	US-08-288-681A-1	Sequence 1, Appli
699	3	8.8	28	1	US-08-366-591-12	Sequence 12, Appl
700	3	8.8	28	1	US-07-776-272-26	Sequence 26, Appl
701	3	8.8	28	1	US-08-303-025-2	Sequence 2, Appli
702	3	8.8	28	1	US-08-372-105-12	Sequence 12, Appl
703	3	8.8	28	1	US-08-372-105-56	Sequence 56, Appl
704	3	8.8	28	1	US-08-372-105-193	Sequence 193, App
705	3	8.8	28	1	US-08-372-105-194	Sequence 194, App
706	3	8.8	28	1	US-08-372-105-195	Sequence 195, App
707	3	8.8	28	1	US-08-372-105-196	Sequence 196, App
708	3	8.8	28	1	US-08-306-473A-12	Sequence 12, Appl
709	3	8.8	28	1	US-08-306-473A-56	Sequence 56, Appl
710	3	8.8	28	1	US-08-306-473A-193	Sequence 193, App
711	3	8.8	28	1	US-08-306-473A-194	Sequence 194, App
712	3	8.8	28	1	US-08-306-473A-195	Sequence 195, App
713	3	8.8	28	1	US-08-306-473A-196	Sequence 196, App
714	3	8.8	28	1	US-08-331-394-19	Sequence 19, Appl
715	3	8.8	28	1	US-08-308-729-1	Sequence 1, Appli
716	3	8.8	28	1	US-08-308-729-2	Sequence 2, Appli
717	3	8.8	28	1	US-08-308-729-3	Sequence 3, Appli
718	3	8.8	28	1	US-08-308-729-4	Sequence 4, Appli
719	3	8.8	28	1	US-08-308-729-5	
						Sequence 5, Appli
720	3	8.8	28	1	US-08-308-729-6	Sequence 6, Appli
721	3	8.8	28	1	US-08-308-729-7	Sequence 7, Appli
722	3	8.8	28	1	US-08-308-729-8	Sequence 8, Appli
723	3	8.8	28	1	US-08-308-729-9	Sequence 9, Appli
724	3	8.8	28	1	US-08-308-729-10	Sequence 10, Appl
725	3	8.8	28	1	US-08-308-729-11	Sequence 11, Appl
726	3	8.8	28	1	US-08-308-729-12	Sequence 12, Appl
727	3	8.8	28	1	US-08-308-729-13	Sequence 13, Appl
728	3	8.8	28	1	US-08-308-729-14	Sequence 14, Appl
729	3	8.8	28	1	US-08-308-729-15	Sequence 15, Appl
730	3	8.8	28	1	US-08-308-729-16	Sequence 16, Appl
731	3	8.8	28	1		
					US-08-308-729-17	Sequence 17, Appl
732	3	8.8	28	1	US-08-308-729-18	Sequence 18, Appl
733	3	8.8	28	1	US-08-308-729-19	Sequence 19, Appl
734	3	8.8	28	1	US-08-308-729-20	Sequence 20, Appl
735	3	8.8	28	1	US-08-308-729-21	Sequence 21, Appl
736	3	8.8	28	1	US-08-308-729-22	Sequence 22, Appl
737	3	8.8	28	1	US-08-308-729-23	Sequence 23, Appl
738	3	8.8	28	1	US-08-308-729-24	Sequence 24, Appl
739	3	8.8	28	1	US-08-308-729-25	Sequence 25, Appl
740	3	8.8	28	1	US-08-308-729-26	Sequence 26, Appl
741	3	8.8	28	1	US-08-308-729-27	
						Sequence 27, Appl
742	3	8.8	28	1	US-08-308-729-28	Sequence 28, Appl
743	3	8.8	28	1	US-08-308-729-29	Sequence 29, Appl
744	3	8.8	28	1	US-08-308-729-31	Sequence 31, Appl
745	3	8.8	28	1	US-08-308-729-33	Sequence 33, Appl
746	3	8.8	28	1	US-08-308-729-34	Sequence 34, Appl
747	3	8.8	28	1	US-08-308-729-35	Sequence 35, Appl
748	3	8.8	28	1	US-08-308-729-36	Sequence 36, Appl
749	3	8.8	28	1	US-08-308-729-37	Sequence 37, Appl
750	3	8.8	28	1	US-08-308-729-38	Sequence 38, Appl
751	3	8.8	28	1	US-08-308-729-39	Sequence 39, Appl
752	3	8.8	28	1	US-08-308-729-40	Sequence 40, Appl
, _2	_	0.0	20	_	00 00 000 127-40	bedreiter 40, Whit

753	3	8.8	28	1	US-08-308-729-41	Sequence 41, Appl
754	3	8.8	28	1	US-08-308-729-44	Sequence 44, Appl
755	3	8.8	28	1	US-08-308-729-45	Sequence 45, Appl
756	3	8.8	28	1	US-08-308-729-46	Sequence 46, Appl
757	3	8.8	28	1	US-08-308-729-47	Sequence 47, Appl
758	3	8.8	28	1	US-08-308-729-48	Sequence 48, Appl
759	3	8.8	28	1	US-08-308-729-49	Sequence 49, Appl
760	3	8.8	28	1	US-08-308-729-50	Sequence 50, Appl
761	3	8.8	28	1	US-08-308-729-53	Sequence 53, Appl
762	3	8.8	28	1	US-08-308-729-54	Sequence 54, Appl
763	3	8.8	28	1	US-08-308-729 - 55	Sequence 55, Appl
764	3	8.8	28	1	US-08-308-729-56	Sequence 56, Appl
765	3	8.8	28	1	US-08-308-729-57	Sequence 57, Appl
766	3	8.8	28	1	US-08-308-729-58	Sequence 58, Appl
767	3	8.8	28	1	US-08-308-729-59	Sequence 59, Appl
768	3	8.8	28	1	US-08-308-729-60	Sequence 60, Appl
769	3	8.8	28	1	US-08-308-729-61	Sequence 61, Appl
770	3	8.8	28	1	US-08-308-729-62	Sequence 62, Appl
771	3	8.8	28	1	US-08-308-729-63	Sequence 63, Appl
772	3	8.8	28	1	US-08-308-729-64	Sequence 64, Appl
773	3	8.8	28	1	US-08-308-729-70	Sequence 70, Appl
774	3	8.8	28	1	US-08-308-729-71	Sequence 71, Appl
775	3	8.8	28	1	US-08-308-729-72	Sequence 72, Appl
776	3	8.8	28	1	US-08-308-729-73	Sequence 73, Appl
777	3	8.8	28	1	US-08-475-989-19	Sequence 19, Appl
778	3	8.8	28	1	US-08-471-329-9	Sequence 9, Appli
779	3	8.8	28	1	US-08-062-472B-40	Sequence 40, Appl
780	3	8.8	28	1	US-08-250-858-19	Sequence 19, Appl
781	3	8.8	28	1	US-08-171-701A-1	Sequence 1, Appli
782	3	8.8	28	1	US-08-171-701A-2	Sequence 2, Appli
783	3	8.8	28	1	US-08-677-304-2	Sequence 2, Appli
784	3	8.8	28	1	US-08-261-660A-19	Sequence 19, Appl
785	3	8.8	28	1	US-08-741-678-1	Sequence 1, Appli
786	3	8.8	28	1	US-08-209-762-12	Sequence 12, Appl
787	3	8.8	28	1	US-08-209-762-56	Sequence 56, Appl
788	3	8.8	28	1	US-08-446-915-19	Sequence 19, Appl
789	3	8.8	28	1	US-08-404-731A-8	Sequence 8, Appli
790	3	8.8	28	1	US-08-442-029-9	Sequence 9, Appli
791	3	8.8	28	1	US-08-446-692-3	Sequence 3, Appli
792	3	8.8	28	1	US-08-473-344-12	Sequence 12, Appl
793	3	8.8	28	1	US-08-473-344-56	Sequence 56, Appl
794	3	8.8	28	1	US-08-519-180-2	Sequence 2, Appli
795	3	8.8	28	1	US-08-427-072-11	Sequence 11, Appl
796	3	8.8	28	1	US-08-944-133-4	Sequence 4, Appli
797	3	8.8	28	1	US-08-944-133-8	Sequence 8, Appli
798	3	8.8	28	1	US-08-944-133-22	Sequence 22, Appl
799	3	8.8	28	1	US-08-944-133-27	Sequence 27, Appl
800	3	8.8	28	1	US-08-944-133-39	Sequence 39, Appl
801	3	8.8	28	1	US-08-944-133-43	Sequence 43, Appl
802	3	8.8	28	1	US-08-449-500-81	Sequence 43, Appl Sequence 81, Appl
803	3	8.8	28	1	US-08-615-279-16	Sequence 16, Appl
804	3	8.8	28	1	US-08-615-279-16 US-08-615-279-39	Sequence 39, Appl
804	3	8.8	28	1	US-08-449-317A-81	Sequence 81, Appl
805	3	8.8	28	2	US-08-449-317A-61 US-08-477-022-81	Sequence 81, Appl
807	3	8.8	28	2	US-08-449-447-81	Sequence 81, Appl
807	3	8.8	28	2	US-08-488-351A-3	Sequence 3, Appli
809	3	8.8	28	2	US-08-414-424-1	Sequence 1, Appli
	ر	0.0	20	2	05 00 414 454 1	reduction 1, what

810	
811 3 8.8 28 2 US-08-621-803-139 Sequence 139, App 812 3 8.8 28 2 US-08-621-803-140 Sequence 140, App 813 3 8.8 28 2 US-08-621-803-142 Sequence 142, App 814 3 8.8 28 2 US-08-621-803-143 Sequence 143, App 815 3 8.8 28 2 US-08-485-445A-12 Sequence 12, Appl 816 3 8.8 28 2 US-08-485-445A-56 Sequence 56, Appl 817 3 8.8 28 2 US-08-485-445A-193 Sequence 193, App 818 3 8.8 28 2 US-08-485-445A-194 Sequence 194, App 819 3 8.8 28 2 US-08-485-445A-195 Sequence 195, App 820 3 8.8 28 2 US-08-485-445A-196 Sequence 196, App 821 3 8.8 28 2 US-08-621-259A-5 Sequence 5, Appli 822 3 8.8 28 2 US-08-621-259A-110 Sequence 110, App 823 3 8.8 28 2 US-08-621-259A-111 Sequence 111, App 824 3 8.8 28 2 US-08-621-259A-113 Sequence 111, App	
812	
813	
814 3 8.8 28 2 US-08-621-803-143 Sequence 143, App 815 3 8.8 28 2 US-08-485-445A-12 Sequence 12, Appl 816 3 8.8 28 2 US-08-485-445A-56 Sequence 56, Appl 817 3 8.8 28 2 US-08-485-445A-193 Sequence 193, App 818 3 8.8 28 2 US-08-485-445A-194 Sequence 194, App 819 3 8.8 28 2 US-08-485-445A-195 Sequence 195, App 820 3 8.8 28 2 US-08-485-445A-196 Sequence 196, App 821 3 8.8 28 2 US-08-621-259A-5 Sequence 5, Appli 822 3 8.8 28 2 US-08-621-259A-110 Sequence 110, App 823 3 8.8 28 2 US-08-621-259A-111 Sequence 111, App 824 3 8.8 28 2 US-08-621-259A-113 Sequence 113, App	
815	
816 3 8.8 28 2 US-08-485-445A-56 Sequence 56, Appl 817 3 8.8 28 2 US-08-485-445A-193 Sequence 193, App 818 3 8.8 28 2 US-08-485-445A-194 Sequence 194, App 819 3 8.8 28 2 US-08-485-445A-195 Sequence 195, App 820 3 8.8 28 2 US-08-485-445A-196 Sequence 196, App 821 3 8.8 28 2 US-08-621-259A-5 Sequence 5, Appli 822 3 8.8 28 2 US-08-621-259A-110 Sequence 110, App 823 3 8.8 28 2 US-08-621-259A-111 Sequence 111, App 824 3 8.8 28 2 US-08-621-259A-113 Sequence 113, App	
817 3 8.8 28 2 US-08-485-445A-193 Sequence 193, App 818 3 8.8 28 2 US-08-485-445A-194 Sequence 194, App 819 3 8.8 28 2 US-08-485-445A-195 Sequence 195, App 820 3 8.8 28 2 US-08-485-445A-196 Sequence 196, App 821 3 8.8 28 2 US-08-621-259A-5 Sequence 5, Appli 822 3 8.8 28 2 US-08-621-259A-110 Sequence 110, App 823 3 8.8 28 2 US-08-621-259A-111 Sequence 111, App 824 3 8.8 28 2 US-08-621-259A-113 Sequence 113, App	
818	
819 3 8.8 28 2 US-08-485-445A-195 Sequence 195, App 820 3 8.8 28 2 US-08-485-445A-196 Sequence 196, App 821 3 8.8 28 2 US-08-621-259A-5 Sequence 5, Appli 822 3 8.8 28 2 US-08-621-259A-110 Sequence 110, App 823 3 8.8 28 2 US-08-621-259A-111 Sequence 111, App 824 3 8.8 28 2 US-08-621-259A-113 Sequence 113, App	
820 3 8.8 28 2 US-08-485-445A-196 Sequence 196, App 821 3 8.8 28 2 US-08-621-259A-5 Sequence 5, Appli 822 3 8.8 28 2 US-08-621-259A-110 Sequence 110, App 823 3 8.8 28 2 US-08-621-259A-111 Sequence 111, App 824 3 8.8 28 2 US-08-621-259A-113 Sequence 113, App	
821 3 8.8 28 2 US-08-621-259A-5 Sequence 5, Appli 822 3 8.8 28 2 US-08-621-259A-110 Sequence 110, App 823 3 8.8 28 2 US-08-621-259A-111 Sequence 111, App 824 3 8.8 28 2 US-08-621-259A-113 Sequence 113, App	
822 3 8.8 28 2 US-08-621-259A-110 Sequence 110, App 823 3 8.8 28 2 US-08-621-259A-111 Sequence 111, App 824 3 8.8 28 2 US-08-621-259A-113 Sequence 113, App	
823 3 8.8 28 2 US-08-621-259A-111 Sequence 111, App 824 3 8.8 28 2 US-08-621-259A-113 Sequence 113, App	
824 3 8.8 28 2 US-08-621-259A-113 Sequence 113, App	
4	
825 3 8.8 28 2 US-08-621-259A-114 Sequence 114, App	
826 3 8.8 28 2 US-08-449-933-9 Sequence 9, Appli	
827 3 8.8 28 2 US-08-744-139-19 Sequence 19, Appl	
828 3 8.8 28 2 US-08-503-226B-8 Sequence 8, Appli	
829 3 8.8 28 2 US-08-184-328-81 Sequence 81, Appl	
830 3 8.8 28 2 US-08-488-161-49 Sequence 49, Appl	
831 3 8.8 28 2 US-08-436-703B-7 Sequence 7, Appli	
832 3 8.8 28 2 US-08-598-873-43 Sequence 43, Appl	
833 3 8.8 28 2 US-08-620-151-66 Sequence 66, Appl	
834 3 8.8 28 2 US-08-620-151-129 Sequence 129, App	
835 3 8.8 28 2 US-08-398-590A-43 Sequence 43, Appl	
836 3 8.8 28 2 US-08-915-142-9 Sequence 9, Appli	
1 · · · · · · · · · · · · · · · · · · ·	
EF-	
The state of the s	
I The second sec	
Toffice to find the second of	
842 3 8.8 28 2 US-08-475-985-19 Sequence 19, Appl	
843 3 8.8 28 2 US-08-413-708B-1 Sequence 1, Appli	
844 3 8.8 28 2 US-08-413-708B-2 Sequence 2, Appli	
845 3 8.8 28 2 US-08-413-708B-8 Sequence 8, Appli	
846 3 8.8 28 2 US-08-563-892A-4 Sequence 4, Appli	
847 3 8.8 28 2 US-08-521-097-81 Sequence 81, Appl	
848 3 8.8 28 2 US-08-691-814B-73 Sequence 73, Appl	
849 3 8.8 28 2 US-08-818-253-37 Sequence 37, Appl	
850 3 8.8 28 2 US-08-897-624-1 Sequence 1, Appli	
851 3 8.8 28 2 US-08-897-624-2 Sequence 2, Appli	
852 3 8.8 28 3 US-09-110-953-8 Sequence 8, Appli	
853 3 8.8 28 3 US-08-930-845-1 Sequence 1, Appli	
854 3 8.8 28 3 US-08-486-099-84 Sequence 84, Appl	
855 3 8.8 28 3 US-08-486-099-136 Sequence 136, App	
856	
857 3 8.8 28 3 US-08-360-107A-94 Sequence 94, Appl	
858 3 8.8 28 3 US-08-256-839-19 Sequence 19, Appl	
859 3 8.8 28 3 US-08-788-231A-18 Sequence 18, Appl	
860 3 8.8 28 3 US-08-484-223B-84 Sequence 84, Appl	
861 3 8.8 28 3 US-08-484-223B-136 Sequence 136, App	
862 3 8.8 28 3 US-09-100-414B-38 Sequence 38, Appl	
863 3 8.8 28 3 US-08-921-887-23 Sequence 23, Appl	
864 3 8.8 28 3 US-08-921-887-24 Sequence 24, Appl	
865 3 8.8 28 3 US-08-921-887-25 Sequence 25, Appl	
866 3 8.8 28 3 US-08-921-887-26 Sequence 26, Appl	5
bequence 20, Appi	

867	3	8.8	28	3	US-08-921-887-27	Sequence 27, Appl
868	3	8.8	28	3	US-08-921-887-28	Sequence 28, Appl
869	3	8.8	28	3	US-08-921-887-29	Sequence 29, Appl
870	3	8.8	28	3	US-08-921-887-30	Sequence 30, Appl
871	3	8.8	28	3	US-08-921-887-31	Sequence 31, Appl
872	3	8.8	28	3	US-08-921-887-33	Sequence 33, Appl
873	3	8.8	28	3	US-08-952-568-1	Sequence 1, Appli
874	3	8.8	28	3	US-08-952-568-3	Sequence 3, Appli
875	3	8.8		3	US-08-952-568-4	Sequence 4, Appli
876	3	8.8		3	US-08-952-568-5	Sequence 5, Appli
877	3	8.8		3	US-08-952-568-6	Sequence 6, Appli
878	3	8.8		3	US-08-952-568-10	Sequence 10, Appl
879	3	8.8		3	US-08-952-568-11	Sequence 11, Appl
880	3	8.8		3	US-08-952-568-12	Sequence 12, Appl
881	3	8.8		3	US-08-952-568-13	Sequence 13, Appl
882	3	8.8		3	US-08-952-568-14	Sequence 14, Appl
883	3	8.8		3	US-08-919-597-84	
884	_	8.8		3	US-08-919-597-136	Sequence 84, Appl
885	· 3	8.8		ა 3		Sequence 136, App
886	3			ა 3	US-09-119-263-12	Sequence 12, Appl
	3	8.8			US-09-119-263-56	Sequence 56, Appl
887		8.8		3	US-09-119-263-193	Sequence 193, App
888	3	8.8		3	US-09-119-263-194	Sequence 194, App
889	3	8.8		3	US-09-119-263-195	Sequence 195, App
890	3	8.8		3	US-09-119-263-196	Sequence 196, App
891	3	8.8		3	US-08-475-668A-84	Sequence 84, Appl
892	3	8.8		3	US-08-475-668A-136	Sequence 136, App
893	3	8.8		3	US-09-192-048-21	Sequence 21, Appl
894	3	8.8		3	US-08-485-551A-84	Sequence 84, Appl
895	3	8.8		3	US-08-485-551A-136	Sequence 136, App
896	3	8.8		3	US-08-838-413A-6	Sequence 6, Appli
897	3	8.8		3	US-08-471-913A-84	Sequence 84, Appl
898	3	8.8		3	US-08-471-913A-136	Sequence 136, App
899	3	8.8		3	US-08-721-458B-8	Sequence 8, Appli
900	3	8.8		3	US-08-908-643C-43	Sequence 43, Appl
901	3	8.8	28	3	US-08-405-647B-39	Sequence 39, Appl
902	3	8.8		3	US-08-893-749-2	Sequence 2, Appli
903	3	8.8	28	3	US-08-893-749-3	Sequence 3, Appli
904	3	8.8	28	3	US-08-893-749-32	Sequence 32, Appl
905	3	8.8	28	3	US-09-388-890-12	Sequence 12, Appl
906	3	8.8	28	3	US-08-657-162-12	Sequence 12, Appl
907	3	8.8	28	3	US-08-657-162-56	Sequence 56, Appl
908	3	8.8	28	3	US-08-657-162-193	Sequence 193, App
909	3	8.8	28	3	US-08-657-162-194	Sequence 194, App
910	3	8.8	28	3	US-08-657-162-195	Sequence 195, App
911	3	8.8	28	3	US-08-657-162-196	Sequence 196, App
912	3	8.8	28	3	US-09-433-428D-62	Sequence 62, Appl
913	3	8.8	28	3	US-08-679-006-15	Sequence 15, Appl
914	3	8.8	28	3	US-09-224-480-12	Sequence 12, Appl
915	3	8.8		3	US-09-224-480-56	Sequence 56, Appl
916	3	8.8		3	US-09-224-480-193	Sequence 193, App
917	3	8.8		3	US-09-224-480-194	Sequence 194, App
918	3	8.8		3	US-09-224-480-195	Sequence 195, App
919	3	8.8		3	US-09-224-480-196	Sequence 196, App
920	3	8.8		3	US-08-796-899-30	Sequence 30, Appl
921	3	8.8		3	US-08-974-549A-166	Sequence 166, App
922	3	8.8		3	US-08-392-542-22	Sequence 22, Appl
923	3	8.8		3	US-08-819-286-29	Sequence 29, Appl
,,,	_	0.0	20	_	00 00 017 400 47	pedactice 5), whit

924	3	8.8	28	3	US-08-817-811 - 13	Sequence 13, Appl
925	3	8.8	28	3	US-08-817-811-14	Sequence 14, Appl
926	3	8.8	28	3	US-08-817-811-15	Sequence 15, Appl
927	3	8.8	28	3	US-08-817-811-66	Sequence 66, Appl
928	3	8.8	28	3	US-08-817-811-67	Sequence 67, Appl
929	3	8.8	28	3	US-08-379-580-7	Sequence 7, Appli
930	3	8.8	28	3	US-09-058-459-8	Sequence 8, Appli
931	3	8.8	28	3	US-09-058-459-17	Sequence 17, Appl
932	3	8.8	28	3	US-09-058-459-18	Sequence 18, Appl
933	3	8.8	28	3	US-09-058-459-19	Sequence 19, Appl
934	3	8.8	28	3	US-08-985-499-39	Sequence 39, Appl
935	3	8.8	28	3	US-08-818-252-37	Sequence 37, Appl
936	3	8.8	28	3	US-08-363-558-1	Sequence 1, Appli
937	3	8.8	28	3	US-09-066-046-19	Sequence 19, Appl
938	3	8.8	28	3	US-09-253-396A-223	Sequence 223, App
939	3	8.8	28	3	US-09-107-991-12	Sequence 12, Appl
940	3	8.8	28	3	US-09-093-539-12	Sequence 12, Appl
941	3	8.8	28	3	US-09-093-539-56	Sequence 56, Appl
942	3	8.8	28	3	US-08-485-264A-84	Sequence 84, Appl
943	3	8.8	28	3	US-08-485-264A-136	Sequence 136, App
944	3	8.8	28	3	US-09-303-323-38	Sequence 38, Appl
945	3	8.8	28	3	US-09-248-588-42	Sequence 42, Appl
946	3	8.8	28	3	US-09-041-886-36	Sequence 36, Appl
947	3	8.8	28	3	US-09-041-886-37	Sequence 37, Appl
948	3	8.8	28	3	US-09-041-886-38	Sequence 38, Appl
949	3	8.8	28	3	US-09-041-886-39	Sequence 39, Appl
950	3	8.8	28	3	US-09-041-886-40	Sequence 40, Appl
951	3	8.8	28	3	US-09-041-886-42	Sequence 42, Appl
952	3	8.8	28	3	US-09-041-886-47	Sequence 47, Appl
953	3	8.8	28	3	US-09-041-886-50	
954	3	8.8	28	3	US-09-041-886-53	Sequence 50, Appl
955	3	8.8	28	3	US-09-041-886-54	Sequence 53, Appl
956	3	8.8	28	3	US-09-041-886-56	Sequence 54, Appl
957	3	8.8	28	3	US-09-127-680-2	Sequence 56, Appl
958	3	8.8	28	3	US-07-966-049A-9	Sequence 2, Appli
959	3	8.8	28	3	US-08-995-369-1	Sequence 9, Appli
960	3	8.8	28	3	US-09-171-654-1	Sequence 1, Appli
961	3	8.8	28	3	US-08-605-430-43	Sequence 1, Appli
962	3	8.8	28	3	US-08-894-327-22	Sequence 43, Appl
963	3	8.8	28	3	US-09-082-279B-54	Sequence 22, Appl
964	3	8.8	28	3	US-09-082-279B-62	Sequence 54, Appl
965	3	8.8	28	3	US-09-082-279B-982	Sequence 62, Appl
966	3	8.8	28	3	US-09-082-279B-1279	Sequence 982, App
967	3	8.8	28	3		Sequence 1279, Ap
968	3				US-09-082-279B-1280	Sequence 1280, Ap
969	3	8.8	28	3	US-09-082-279B-1314	Sequence 1314, Ap
970	3	8.8	28	3	US-09-082-279B-1315	Sequence 1315, Ap
971	3	8.8	28	3	US-08-477-346-84	Sequence 84, Appl
972	3	8.8	28	3	US-09-127-926-8	Sequence 8, Appli
973	3	8.8	28	3	US-09-127-926-17	Sequence 17, Appl
974	3	8.8 8.8	28	3	US-09-127-926-18	Sequence 18, Appl
97 4 975	3		28	3	US-09-127-926-19	Sequence 19, Appl
	3	8.8	28	3	US-09-127-926-21	Sequence 21, Appl
976		8.8	28	3	US-09-127-926-22	Sequence 22, Appl
977 978	3 3	8.8	28	3	US-08-894-997-43	Sequence 43, Appl
		8.8	28	3	US-09-217-352-30	Sequence 30, Appl
979 980	3	8.8	28	3	US-09-217-352-139	Sequence 139, App
J60	ے	8.8	28	3	US-09-217-352-140	Sequence 140, App

981	3	8.8	28	3	US-09-217-352 - 142	Sequence 142, App
982	3	8.8	28	3	US-09-217-352-143	Sequence 143, App
983	3	8.8	28	3	US-09-019-095A-34	Sequence 34, Appl
984	3	8.8	28	4	US-09-406-781-10	Sequence 10, Appl
985	3	8.8	28	4	US-09-406-781-11	Sequence 11, Appl
986	3	8.8	28	4	US-09-260-846-16	Sequence 16, Appl
987	3	8.8	28	4	US-08-474-349A-84	Sequence 84, Appl
988	3	8.8	28	4	US-08-474-349A-136	Sequence 136, App
989	3	8.8	28	4	US-09-099-041A-23	Sequence 23, Appl
990	3	8.8	28	4	US-09-187-789-23	Sequence 23, Appl
991	3	8.8	28	4	US-08-473-089-84	Sequence 84, Appl
992	3	8.8	28	4	US-09-227-357-481	Sequence 481, App
993	3	8.8	28	4	US-09-227-357-531	Sequence 531, App
994	3	8.8	28	4	US-09-315-304B-54	Sequence 54, Appl
995	3	8.8	28	4	US-09-315-304B-62	Sequence 62, Appl
996	3	8.8	28	4	US-09-315-304B-982	Sequence 982, App
997	3	8.8	28	4	US-09-315-304B-1279	Sequence 1279, Ap
998	3	8.8	28	4	US-09-315-304B-1280	Sequence 1280, Ap
999	3	8.8	28	4	US-09-315-304B-1314	Sequence 1314, Ap
1000	3	8.8	28	4	US-09-315-304B-1315	Sequence 1315, Ap

ALIGNMENTS

```
RESULT 1
US-09-044-536A-8
; Sequence 8, Application US/09044536A
; Patent No. 6025467
  GENERAL INFORMATION:
    APPLICANT: FUKUDA, Tsunehiko
    APPLICANT: NAKAGAWA, Shizue
    APPLICANT: HABASHITA, Junko
    APPLICANT: TAKETOMI, Shigehisa
    TITLE OF INVENTION: PARATHYROID HORMONE DERIVATIVES AND THEIR USE
    NUMBER OF SEQUENCES: 36
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: DIKE, BRONSTEIN, ROBERTS & CUSHMAN
      STREET: 130 Water Street
      CITY: Boston
      STATE: Massachusetts
      COUNTRY: US
      ZIP: 02109
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
     APPLICATION NUMBER: US/09/044,536A
      FILING DATE: 19-MAR-1998
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: 08/662,871
      FILING DATE: 12-JUN-1996
    ATTORNEY/AGENT INFORMATION:
      NAME: CONLIN, David G
      REGISTRATION NUMBER: 27,026
```

```
REFERENCE/DOCKET NUMBER: 46509-DIV
    TELECOMMUNICATION INFORMATION:
ï
      TELEPHONE: (617) 523-3400
      TELEFAX: (617)523-6440
  INFORMATION FOR SEQ ID NO: 8:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      STRANDEDNESS:
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    FEATURE:
      NAME/KEY: partial peptide
      LOCATION: 1..34
US-09-044-536A-8
 Ouery Match
                         70.6%; Score 24; DB 3; Length 34;
 Best Local Similarity 100.0%; Pred. No. 3.5e-17;
                              0; Mismatches
 Matches
          24; Conservative
                                                0;
                                                    Indels
                                                               0; Gaps
                                                                          0;
          11 KGKHLNSMERVEWLRKKLQDVHNF 34
Qу
             Db
          11 KGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 2
US-08-256-363-1
; Sequence 1, Application US/08256363
 Patent No. 5783558
  GENERAL INFORMATION:
    APPLICANT: DUVOS, CHRISTIAN
    APPLICANT: MAYER, HUBERT
    APPLICANT: MUELLER-BECKMANN, BERND
    APPLICANT: STREIN, KLAUS
    APPLICANT: WINGENDER, EDGAR
    TITLE OF INVENTION: PARATHYROID HORMONE FRAGMENTS, THEIR
    TITLE OF INVENTION: PREPARATION AND MEDICAMENTS CONTAINING THE SAME
    NUMBER OF SEQUENCES: 4
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: NIKAIDO, MARMELSTEIN, MURRAY, AND ORAM
      STREET: 655 15th ST. N.W. SUITE 330- G ST. LOBBY
      CITY: WASHINGTON
      STATE: D.C.
      COUNTRY: U.S.A.
      ZIP: 2005 5701
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/256,363
      FILING DATE:
      CLASSIFICATION: 514
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: DE P 42 03 040.4
      FILING DATE: 04-FEB-1992
```

```
PRIOR APPLICATION DATA:
     APPLICATION NUMBER: PCT/EP93/00259
      FILING DATE: 04-FEB-1993
    ATTORNEY/AGENT INFORMATION:
     NAME: KLESNER, SHARON N.
      REGISTRATION NUMBER: 36,335
      REFERENCE/DOCKET NUMBER: P1614-4025
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (202) 638-5000
       TELEFAX: (202) 638-4810
  INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 33 amino acids
      TYPE: amino acid
      STRANDEDNESS: single
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
US-08-256-363-1
 Query Match 67.6%; Score 23; DB 1; Length 33; Best Local Similarity 100.0%; Pred. No. 3.3e-16;
 Matches 23; Conservative 0; Mismatches 0; Indels
                                                                0; Gaps
                                                                             0;
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
              11111111111111111111111
           10 GKHLNSMERVEWLRKKLQDVHNF 32
RESULT 3
US-07-765-373-1
; Sequence 1, Application US/07765373
; Patent No. 5393869
  GENERAL INFORMATION:
    APPLICANT: NAKAGAWA, Shizue
    APPLICANT: FUKUDA, Tsunehiko
    APPLICANT: KAWASE, Masahiro
    APPLICANT: YAMAZAKI, Iwao
    TITLE OF INVENTION: PARATHYROID HORMONE DERIVATIVES
    NUMBER OF SEQUENCES: 2
    CORRESPONDENCE ADDRESS:
     ADDRESSEE: DAVID G. CONLIN; DIKE, BRONSTEIN, ROBERTS &
     ADDRESSEE: CUSHMAN
      STREET: 130 Water Street
      CITY: Boston
      STATE: Massachusetts
      COUNTRY: US
      ZIP: 02109
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
     APPLICATION NUMBER: US/07/765,373
      FILING DATE: 19910925
      CLASSIFICATION: 530
    ATTORNEY/AGENT INFORMATION:
```

```
NAME: WILLIAMS, Gregory D.
       REGISTRATION NUMBER: 30901
       REFERENCE/DOCKET NUMBER: 41289
;
     TELECOMMUNICATION INFORMATION:
       TELEPHONE: (617) 523-3400
       TELEFAX: (617)523-6440
       TELEX: 20091 STRE UR
   INFORMATION FOR SEQ ID NO: 1:
     SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
       TYPE: AMINO ACID
      TOPOLOGY: linear
     MOLECULE TYPE: peptide
     FRAGMENT TYPE: N-terminal
US-07-765-373-1
  Query Match
                         67.6%; Score 23; DB 1; Length 34;
                         100.0%; Pred. No. 3.4e-16;
  Best Local Similarity
  Matches
          23; Conservative 0; Mismatches
                                                0; Indels
                                                               0; Gaps
                                                                           0;
QУ
          12 GKHLNSMERVEWLRKKLQDVHNF 34
             11111111111
Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 4
US-08-033-099-1
; Sequence 1, Application US/08033099
; Patent No. 5434246
  GENERAL INFORMATION:
    APPLICANT: FUKUDA, Tsunehiko
    APPLICANT: NAKAGAWA, Shizue
    APPLICANT: TAKETOMI, Shigehisa
    TITLE OF INVENTION: PARATHYROID HORMONE DERIVATIVES
    NUMBER OF SEQUENCES: 2
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: DAVID G.CONLIN; DIKE, BRONSTEIN, ROBERTS &
      ADDRESSEE: CUSHMAN
;
      STREET: 130 Water Street
      CITY: Boston
      STATE: Massachusetts
      COUNTRY: US
      ZIP: 02109
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
;
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/033,099
      FILING DATE: 19930316
      CLASSIFICATION: 530
    ATTORNEY/AGENT INFORMATION:
      NAME: WILLIAMS, Gregory D
      REGISTRATION NUMBER: 30901
      REFERENCE/DOCKET NUMBER: 42528
    TELECOMMUNICATION INFORMATION:
```

```
TELEPHONE: (617)523-3400
ï
       TELEFAX: (613)523-6440
       TELEX: 200291 STRE UR
ï
   INFORMATION FOR SEQ ID NO:
ï
     SEQUENCE CHARACTERISTICS:
ï
       LENGTH: 34 amino acids
       TYPE: AMINO ACID
       TOPOLOGY: linear
     MOLECULE TYPE: protein
     FRAGMENT TYPE: N-terminal
US-08-033-099-1
  Query Match
                          67.6%; Score 23; DB 1; Length 34;
  Best Local Similarity 100.0%; Pred. No. 3.4e-16;
  Matches 23; Conservative 0; Mismatches 0; Indels
                                                                0; Gaps
                                                                            0;
           12 GKHLNSMERVEWLRKKLODVHNF 34
Qу
              12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 5
US-08-262-495C-1
; Sequence 1, Application US/08262495C
; Patent No. 5556940
  GENERAL INFORMATION:
    APPLICANT: WILLICK, Gordon E.
    APPLICANT: WHITFIELD, James F.
    APPLICANT: SUREWICZ, Witold
    APPLICANT: SUNG, Wing L. APPLICANT: NEUGENBAUER, Witold
    TITLE OF INVENTION: PARATHYROID HORMONE ANALOGUES
    TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 6
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Kirby, Eades, Gale, Baker
      STREET: 112 Kent Street, Suite 770,
      CITY: Ottawa
      COUNTRY: Canada
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC Compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: Wordperfect 5.1
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/262,495C
      FILING DATE:
      CLASSIFICATION: 530
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER:
      FILING DATE:
;
      CLASSIFICATION: 530
    ATTORNEY/AGENT INFORMATION:
;
      NAME: EADES, No. 5556940ris M.
ï
      REGISTRATION NUMBER: 5,263
      REFERENCE/DOCKET NUMBER: 36210
    TELECOMMUNICATION INFORMATION:
```

```
TELEPHONE: (613) -237-6900
;
       TELEFAX: (613)-237-0045
   INFORMATION FOR SEQ ID NO:
   SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
       TYPE: amino acid
       TOPOLOGY: linear
    MOLECULE TYPE: protein
US-08-262-495C-1
  Query Match 67.6%; Score 23; DB 1; Length 34; Best Local Similarity 100.0%; Pred. No. 3.4e-16;
  Matches 23; Conservative 0; Mismatches 0; Indels 0; Gaps
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 6
US-07-915-247A-1
; Sequence 1, Application US/07915247A
; Patent No. 5589452
; GENERAL INFORMATION:
    APPLICANT: Krstenansky, John L.
    APPLICANT: Nestor Jr., John J.
    APPLICANT: Ho, Teresa H.
    APPLICANT: Vickery, Brian H.
    APPLICANT: Bach, Chinh T.
    TITLE OF INVENTION: ANALOGS OF PARATHYROID HORMONE AND
TITLE OF INVENTION: PARATHYROID HORMONE RELATED PEPTIDE: SYNTHESIS AND USE
    TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
   NUMBER OF SEQUENCES: 34
   CORRESPONDENCE ADDRESS:
    ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
     STREET: 3401 Hillview Ave.
     CITY: Palo Alto
     STATE: CA
     COUNTRY: USA
ï
      ZIP: 94303
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
    APPLICATION NUMBER: US/07/915,247A
     FILING DATE: 19920714
      CLASSIFICATION: 435
    ATTORNEY/AGENT INFORMATION:
    NAME: Schmonsees, William
      REGISTRATION NUMBER: 31,796
     REFERENCE/DOCKET NUMBER: 27610
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 415-855-6593
      TELEFAX: 415-496-3529
 INFORMATION FOR SEQ ID NO: 1:
```

```
SEQUENCE CHARACTERISTICS:
;
      LENGTH: 34 amino acids
       TYPE: amino acid
      TOPOLOGY: linear
     MOLECULE TYPE: peptide
     HYPOTHETICAL: NO
     FRAGMENT TYPE: N-terminal
US-07-915-247A-1
  Query Match
                         67.6%; Score 23; DB 1; Length 34;
  Best Local Similarity 100.0%; Pred. No. 3.4e-16;
 Matches
          23; Conservative 0; Mismatches
                                               0; Indels
                                                               0; Gaps
                                                                           0;
Qу
          12 GKHLNSMERVEWLRKKLODVHNF 34
              Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 7
US-08-443-863-1
; Sequence 1, Application US/08443863
; Patent No. 5693616
  GENERAL INFORMATION:
    APPLICANT: Krstenansky, John L.
    APPLICANT: Nestor Jr., John J.
    APPLICANT: Ho, Teresa H.
    APPLICANT: Vickery, Brian H.
    APPLICANT: Bach, Chinh T.
    TITLE OF INVENTION: ANALOGS OF PARATHYROID HORMONE AND
    TITLE OF INVENTION: PARATHYROID HORMONE RELATED PEPTIDE: SYNTHESIS AND USE
    TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 34
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
      STREET: 3401 Hillview Ave.
      CITY: Palo Alto
      STATE: CA
      COUNTRY: USA
      ZIP: 94303
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/443,863
      FILING DATE: 14-JUL-1992
      CLASSIFICATION: 514
    ATTORNEY/AGENT INFORMATION:
      NAME: Schmonsees, William
      REGISTRATION NUMBER: 31,796
      REFERENCE/DOCKET NUMBER: 27610
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 415-855-6593
      TELEFAX: 415-496-3529
 INFORMATION FOR SEQ ID NO:
    SEQUENCE CHARACTERISTICS:
```

```
LENGTH: 34 amino acids
       TYPE: amino acid
       TOPOLOGY: linear
     MOLECULE TYPE: peptide
     HYPOTHETICAL: NO
     FRAGMENT TYPE: N-terminal
US-08-443-863-1
  Query Match 67.6%; Score 23; DB 1; Length 34; Best Local Similarity 100.0%; Pred. No. 3.4e-16;
  Query Match
          23; Conservative 0; Mismatches 0; Indels
                                                                0; Gaps
Qу
           12 GKHLNSMERVEWLRKKLODVHNF 34
              11:11:11:11:11:11
Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 8
US-08-448-070-1
; Sequence 1, Application US/08448070
; Patent No. 5695955
; GENERAL INFORMATION:
    APPLICANT: Krstenansky, John L.
    APPLICANT: Nestor Jr., John J.
    APPLICANT: Ho, Teresa H.
    APPLICANT: Vickery, Brian H.
    APPLICANT: Bach, Chinh T.
    TITLE OF INVENTION: ANALOGS OF PARATHYROID HORMONE AND
    TITLE OF INVENTION: PARATHYROID HORMONE RELATED PEPTIDE: SYNTHESIS AND USE
    TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 34
    CORRESPONDENCE ADDRESS:
    ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
      STREET: 3401 Hillview Ave.
      CITY: Palo Alto
      STATE: CA
      COUNTRY: USA
      ZIP: 94303
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/448,070
      FILING DATE: 14-JUL-1992
      CLASSIFICATION: 435
    ATTORNEY/AGENT INFORMATION:
      NAME: Schmonsees, William
      REGISTRATION NUMBER: 31,796
      REFERENCE/DOCKET NUMBER: 27610
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 415-855-6593
      TELEFAX: 415-496-3529
 INFORMATION FOR SEQ ID NO: 1:
   SEQUENCE CHARACTERISTICS:
     LENGTH: 34 amino acids
```

```
TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    HYPOTHETICAL: NO
     FRAGMENT TYPE: N-terminal
US-08-448-070-1
  Query Match
                         67.6%; Score 23; DB 1; Length 34;
  Best Local Similarity 100.0%; Pred. No. 3.4e-16;
          23; Conservative 0; Mismatches 0; Indels
                                                             0; Gaps
                                                                          0;
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
              111111111111
          12 GKHLNSMERVEWLRKKLQDVHNF 34
Db
RESULT 9
US-08-488-105-7
; Sequence 7, Application US/08488105
; Patent No. 5717062
  GENERAL INFORMATION:
    APPLICANT: Chorev, Michael
    APPLICANT: Rosenblatt, Michael
    TITLE OF INVENTION: CYCLIC ANALOGS OF PTH AND PTHrP
;
    NUMBER OF SEQUENCES: 22
    CORRESPONDENCE ADDRESS:
     ADDRESSEE: Fish & Richardson P.C.
      STREET: 225 Franklin Street
      CITY: Boston
      STATE: MA
      COUNTRY: USA
      ZIP: 02110-2804
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/488,105
      FILING DATE: 07-JUN-1995
      CLASSIFICATION: 530
    ATTORNEY/AGENT INFORMATION:
      NAME: Tsao, Y. Rocky
      REGISTRATION NUMBER: 34,053
      REFERENCE/DOCKET NUMBER: 00537/112001
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 617/542-5070
      TELEFAX: 617/542-8906
      TELEX: 200154
  INFORMATION FOR SEQ ID NO: 7:
    SEQUENCE CHARACTERISTICS:
     LENGTH: 34 amino acids
     TYPE: amino acid
     STRANDEDNESS: not relevant
     TOPOLOGY: linear
   MOLECULE TYPE: protein
   FEATURE:
```

```
OTHER INFORMATION: The side chains of Lys at
       OTHER INFORMATION: position 26 and Asp at position 30 are linked by an
amide bond,
       OTHER INFORMATION: and this sequence has an amide C-terminus (i.e.,
CONH2), rather
      OTHER INFORMATION: than a carboxy C-terminus (i.e., COOH).
US-08-488-105-7
  Query Match
                         67.6%; Score 23; DB 1; Length 34;
  Best Local Similarity 100.0%; Pred. No. 3.4e-16;
  Matches 23; Conservative
                             0; Mismatches 0; Indels
                                                               0; Gaps
                                                                           0;
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 10
US-08-468-275-6
; Sequence 6, Application US/08468275
; Patent No. 5747453
  GENERAL INFORMATION:
    APPLICANT: HOLLADAY, LESLIE A.
    APPLICANT: OLDENBURG, KEVIN R.
    TITLE OF INVENTION: METHOD FOR INCREASING THE
    TITLE OF INVENTION: ELECTROTRANSPORT FLUX OF POLYPEPTIDES
    NUMBER OF SEQUENCES: 10
    CORRESPONDENCE ADDRESS:
     ADDRESSEE: ALZA CORPORATION
      STREET: 950 PAGE MILL ROAD
      CITY: PALO ALTO
      STATE: CALIFORNIA
      COUNTRY: USA
      ZIP: 94303-0802
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/468,275
      FILING DATE: 06-JUN-1995
      CLASSIFICATION: 514
    ATTORNEY/AGENT INFORMATION:
      NAME: MILLER, D. BYRON
      REGISTRATION NUMBER: 30,661
      REFERENCE/DOCKET NUMBER: 0360-0002; ARC-2349
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (415) 496-8150
      TELEFAX: (415) 496-8048
ï
  INFORMATION FOR SEQ ID NO: 6:
    SEQUENCE CHARACTERISTICS:
;
      LENGTH: 34 amino acids
      TYPE: amino acid
      STRANDEDNESS: single
     TOPOLOGY: linear
    MOLECULE TYPE: protein
```

TYPE: amino acid

```
Query Match
                         67.6%; Score 23; DB 1; Length 34;
  Best Local Similarity 100.0%; Pred. No. 3.4e-16;
  Matches 23; Conservative 0; Mismatches 0; Indels
                                                               0; Gaps
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
             1111111111111111111111111
Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 11
US-08-256-363-2
; Sequence 2, Application US/08256363
; Patent No. 5783558
  GENERAL INFORMATION:
    APPLICANT: DUVOS, CHRISTIAN
    APPLICANT: MAYER, HUBERT
    APPLICANT: MUELLER-BECKMANN, BERND
    APPLICANT: STREIN, KLAUS
;
    APPLICANT: WINGENDER, EDGAR
;
    TITLE OF INVENTION: PARATHYROID HORMONE FRAGMENTS, THEIR
    TITLE OF INVENTION: PREPARATION AND MEDICAMENTS CONTAINING THE SAME
   NUMBER OF SEQUENCES: 4
   CORRESPONDENCE ADDRESS:
      ADDRESSEE: NIKAIDO, MARMELSTEIN, MURRAY, AND ORAM
      STREET: 655 15th ST. N.W. SUITE 330- G ST. LOBBY
      CITY: WASHINGTON
     STATE: D.C.
      COUNTRY: U.S.A.
      ZIP: 2005 5701
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/256,363
      FILING DATE:
      CLASSIFICATION: 514
   PRIOR APPLICATION DATA:
      APPLICATION NUMBER: DE P 42 03 040.4
      FILING DATE: 04-FEB-1992
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: PCT/EP93/00259
      FILING DATE: 04-FEB-1993
    ATTORNEY/AGENT INFORMATION:
      NAME: KLESNER, SHARON N.
      REGISTRATION NUMBER: 36,335
      REFERENCE/DOCKET NUMBER: P1614-4025
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (202) 638-5000
      TELEFAX: (202) 638-4810
  INFORMATION FOR SEQ ID NO: 2:
   SEQUENCE CHARACTERISTICS:
     LENGTH: 34 amino acids
```

```
STRANDEDNESS: single
       TOPOLOGY: linear
     MOLECULE TYPE: peptide
US-08-256-363-2
  Query Match
                         67.6%; Score 23; DB 1; Length 34;
  Best Local Similarity
                         100.0%; Pred. No. 3.4e-16;
  Matches
          23; Conservative 0; Mismatches
                                                 0; Indels
                                                                0; Gaps
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              11111111111111111111111
Db
          10 GKHLNSMERVEWLRKKLQDVHNF 32
RESULT 12
US-08-449-500-1
; Sequence 1, Application US/08449500
; Patent No. 5798225
  GENERAL INFORMATION:
    APPLICANT: Krstenansky, John L.
    APPLICANT: Nestor Jr., John J.
    APPLICANT: Ho, Teresa H.
    APPLICANT: Vickery, Brian H.
    APPLICANT: Bach, Chinh T.
    TITLE OF INVENTION: ANALOGS OF PARATHYROID HORMONE AND
    TITLE OF INVENTION: PARATHYROID HORMONE RELATED PEPTIDE: SYNTHESIS AND USE
    TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 86
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
      STREET: 3401 Hillview Ave.
      CITY: Palo Alto
      STATE: CA
      COUNTRY: USA
      ZIP: 94303
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/449,500
      FILING DATE: 18-JAN-1994
      CLASSIFICATION: 435
    ATTORNEY/AGENT INFORMATION:
      NAME: Schmonsees, William
      REGISTRATION NUMBER: 31,796
      REFERENCE/DOCKET NUMBER: 27610-P1
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 415-855-6593
      TELEFAX: 415-496-3529
  INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
   MOLECULE TYPE: peptide
```

```
HYPOTHETICAL: NO
     FRAGMENT TYPE: N-terminal
 US-08-449-500-1
  Query Match
                          67.6%; Score 23; DB 1; Length 34;
  Best Local Similarity 100.0%; Pred. No. 3.4e-16;
           23; Conservative 0; Mismatches 0; Indels
                                                               0; Gaps
                                                                           0;
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              11111111111
Dh
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 13
US-08-449-317A-1
; Sequence 1, Application US/08449317A
; Patent No. 5807823
   GENERAL INFORMATION:
     APPLICANT: Vickery, Brian H.
     TITLE OF INVENTION: METHOD FOR TREATMENT OF CORTICOSTEROID
;
     TITLE OF INVENTION: INDUCED OSTEOPENIA
ï
     NUMBER OF SEQUENCES: 86
     CORRESPONDENCE ADDRESS:
       ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
;
       STREET: 3401 Hillview Ave.
      CITY: Palo Alto
      STATE: CA
      COUNTRY: USA
       ZIP: 94303
     COMPUTER READABLE FORM:
       MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.25
     CURRENT APPLICATION DATA:
     APPLICATION NUMBER: US/08/449,317A
       FILING DATE: 07-JUN-1995
      CLASSIFICATION: 435
    ATTORNEY/AGENT INFORMATION:
      NAME: Schmonsees, William
      REGISTRATION NUMBER: 31,796
      REFERENCE/DOCKET NUMBER: 27610-P2
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 415-855-6593
      TELEFAX: 415-496-3529
   INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    HYPOTHETICAL: NO
    FRAGMENT TYPE: N-terminal
US-08-449-317A-1
 Query Match
                         67.6%; Score 23; DB 1; Length 34;
```

Best Local Similarity 100.0%; Pred. No. 3.4e-16;

```
Matches 23; Conservative 0; Mismatches 0; Indels 0; Gaps
Qу
           12 GKHLNSMERVEWLRKKLODVHNF 34
              111111111111111111111111
Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 14
US-08-142-551B-2
; Sequence 2, Application US/08142551B
; Patent No. 5814603
  GENERAL INFORMATION:
    APPLICANT: Oldenburg, Kevin R.
    APPLICANT: Selick, Harold E.
    TITLE OF INVENTION: COMPOUNDS WITH PTH ACTIVITY AND TITLE OF INVENTION: RECOMBINANT DNA VECTORS ENCODING SAME
    NUMBER OF SEQUENCES: 132
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Burns, Doane, Swecker & Mathis
      STREET: 699 Prince Street
      CITY: Alexandria
      STATE: Virginia
      COUNTRY: US
      ZIP: 22313
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/142,551B
      FILING DATE: 25-OCT-1993
      CLASSIFICATION: 435
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: US 08/077,296
      FILING DATE: 14-JUN-1993
    PRIOR APPLICATION DATA:
     APPLICATION NUMBER: US 07/898,219
      FILING DATE: 12-JUN-1992
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: US 07/965,677
      FILING DATE: 22-OCT-1992
    ATTORNEY/AGENT INFORMATION:
      NAME: Swiss, Gerald F.
      REGISTRATION NUMBER: 30,113
      REFERENCE/DOCKET NUMBER: 000324-010
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (415) 854-7400
      TELEFAX: (415) 854-8275
  INFORMATION FOR SEQ ID NO: 2:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      TOPOLOGY: unknown
    MOLECULE TYPE: protein
    FEATURE:
```

NAME/KEY: Peptide

0;

```
LOCATION: 1..34
       OTHER INFORMATION: /note= "The sequence of the 34
       OTHER INFORMATION: amino acid truncated human PTH peptide,
       OTHER INFORMATION: designated: Human PTH."
US-08-142-551B-2
  Query Match
                          67.6%; Score 23; DB 2; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 3.4e-16;
           23; Conservative
                               0; Mismatches
                                                0; Indels
                                                                0; Gaps
                                                                            0;
           12 GKHLNSMERVEWLRKKLQDVHNF 34
Qу
              11111111111111111111
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 15
US-08-477-022-1
; Sequence 1, Application US/08477022
; Patent No. 5821225
   GENERAL INFORMATION:
     APPLICANT: Vickery, Brian H.
     TITLE OF INVENTION: METHOD FOR TREATMENT OF CORTICOSTEROID
     TITLE OF INVENTION: INDUCED OSTEOPENIA
     NUMBER OF SEQUENCES: 86
     CORRESPONDENCE ADDRESS:
       ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
       STREET: 3401 Hillview Ave.
       CITY: Palo Alto
       STATE: CA
       COUNTRY: USA
       ZIP: 94303
     COMPUTER READABLE FORM:
       MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.25
     CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/477,022
      FILING DATE: 07-JUN-1995
      CLASSIFICATION: 435
    ATTORNEY/AGENT INFORMATION:
      NAME: Schmonsees, William
       REGISTRATION NUMBER: 31,796
      REFERENCE/DOCKET NUMBER: 27610-P2
     TELECOMMUNICATION INFORMATION:
       TELEPHONE: 415-855-6593
       TELEFAX: 415-496-3529
   INFORMATION FOR SEQ ID NO: 1:
     SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
       TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    HYPOTHETICAL: NO
    FRAGMENT TYPE: N-terminal
US-08-477-022-1
```

```
Query Match
                         67.6%; Score 23; DB 2; Length 34;
  Best Local Similarity 100.0%; Pred. No. 3.4e-16;
           23; Conservative 0; Mismatches 0; Indels
                                                             0; Gaps
                                                                           0;
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              111111111111
Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 16
US-08-449-447-1
; Sequence 1, Application US/08449447
; Patent No. 5840837
  GENERAL INFORMATION:
     APPLICANT: Krstenansky, John L.
     APPLICANT: Nestor Jr., John J.
     APPLICANT: Ho, Teresa H.
     APPLICANT: Vickery, Brian H.
     APPLICANT: Bach, Chinh T.
     TITLE OF INVENTION: ANALOGS OF PARATHYROID HORMONE AND
     TITLE OF INVENTION: PARATHYROID HORMONE RELATED PEPTIDE: SYNTHESIS AND USE
     TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
     NUMBER OF SEQUENCES: 86
     CORRESPONDENCE ADDRESS:
       ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
       STREET: 3401 Hillview Ave.
      CITY: Palo Alto
      STATE: CA
       COUNTRY: USA
      ZIP: 94303
     COMPUTER READABLE FORM:
     MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
     OPERATING SYSTEM: PC-DOS/MS-DOS
     SOFTWARE: PatentIn Release #1.0, Version #1.25
     CURRENT APPLICATION DATA:
     APPLICATION NUMBER: US/08/449,447
     FILING DATE: 18-JAN-1994
      CLASSIFICATION: 530
    ATTORNEY/AGENT INFORMATION:
     NAME: Schmonsees, William
      REGISTRATION NUMBER: 31,796
      REFERENCE/DOCKET NUMBER: 27610-P1
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 415-855-6593
      TELEFAX: 415-496-3529
   INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    HYPOTHETICAL: NO
    FRAGMENT TYPE: N-terminal
US-08-449-447-1
```

67.6%; Score 23; DB 2; Length 34;

Query Match

```
Best Local Similarity 100.0%; Pred. No. 3.4e-16;
          23; Conservative 0; Mismatches 0; Indels 0; Gaps
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 17
US-08-835-231-13
; Sequence 13, Application US/08835231
; Patent No. 5861284
 GENERAL INFORMATION:
    APPLICANT: NISHIMURA, Osamu
APPLICANT: KURIYAMA, Masato
    APPLICANT: KOYAMA, No. 5861284uyuki
    APPLICANT: FUKUDA, Tsunehiko
    TITLE OF INVENTION: METHOD FOR PRODUCING A BIOLOGICALLY
    TITLE OF INVENTION: ACTIVE RECOMBINANT CYSTEINE-FREE
    NUMBER OF SEQUENCES: 37
   CORRESPONDENCE ADDRESS:
     ADDRESSEE: DIKE, BRONSTEIN, ROBERTS & CUSHMAN, LLP
      STREET: 130 WATER STREET
      CITY: BOSTON
      STATE: MA
      COUNTRY: USA
      ZIP: 02109
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Diskette
      COMPUTER: IBM Compatible
      OPERATING SYSTEM: DOS
     SOFTWARE: FastSEQ Version 1.5
    CURRENT APPLICATION DATA:
    APPLICATION NUMBER: US/08/835,231
    FILING DATE:
     CLASSIFICATION: 435
  PRIOR APPLICATION DATA:
    APPLICATION NUMBER: 08/350,709
    FILING DATE: 07-DEC-1994
    APPLICATION NUMBER: 07/838,857
     FILING DATE: 18-FEB-1992
     APPLICATION NUMBER: JP 024841
    FILING DATE: 19-FEB-1991
    APPLICATION NUMBER: JP 0271438
     FILING DATE: 18-OCT-1991
   ATTORNEY/AGENT INFORMATION:
     NAME: DAVID, RESNICK S
     REGISTRATION NUMBER: 34,235
     REFERENCE/DOCKET NUMBER: 41614-FWC
    TELECOMMUNICATION INFORMATION:
     TELEPHONE: 617-523-3400
      TELEFAX: 617-523-6440
     TELEX: 200291 STRE
  INFORMATION FOR SEQ ID NO: 13:
   SEQUENCE CHARACTERISTICS:
    LENGTH: 34 amino acids
```

TYPE: amino acid

```
STRANDEDNESS: single
       TOPOLOGY: linear
    MOLECULE TYPE: peptide
    HYPOTHETICAL: NO
    ANTI-SENSE: NO
    FRAGMENT TYPE: N-terminal
    ORIGINAL SOURCE:
US-08-835-231-13
  Query Match
                         67.6%; Score 23; DB 2; Length 34;
  Best Local Similarity 100.0%; Pred. No. 3.4e-16;
          23; Conservative 0; Mismatches 0; Indels
                                                              0; Gaps
                                                                           0;
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
             1111111111111111
Db
          12 GKHLNSMERVEWLRKKLODVHNF 34
RESULT 18
US-08-184-328-1
; Sequence 1, Application US/08184328
; Patent No. 5874086
  GENERAL INFORMATION:
    APPLICANT: Krstenansky, John L.
    APPLICANT: Nestor Jr., John J.
    APPLICANT: Ho, Teresa H.
    APPLICANT: Vickery, Brian H.
    APPLICANT: Bach, Chinh T.
    TITLE OF INVENTION: ANALOGS OF PARATHYROID HORMONE AND
    TITLE OF INVENTION: PARATHYROID HORMONE RELATED PEPTIDE: SYNTHESIS AND USE
    TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 86
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
      STREET: 3401 Hillview Ave.
     CITY: Palo Alto
      STATE: CA
      COUNTRY: USA
      ZIP: 94303
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/184,328
      FILING DATE: 18-JAN-1994
      CLASSIFICATION: 435
    ATTORNEY/AGENT INFORMATION:
      NAME: Schmonsees, William
      REGISTRATION NUMBER: 31,796
     REFERENCE/DOCKET NUMBER: 27610-P1
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 415-855-6593
      TELEFAX: 415-496-3529
 INFORMATION FOR SEQ ID NO: 1:
   SEQUENCE CHARACTERISTICS:
```

```
LENGTH: 34 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    HYPOTHETICAL: NO
    FRAGMENT TYPE: N-terminal
US-08-184-328-1
  Query Match
                         67.6%; Score 23; DB 2; Length 34;
  Best Local Similarity 100.0%; Pred. No. 3.4e-16;
          23; Conservative
                              0; Mismatches 0; Indels
                                                              0; Gaps
                                                                          0:
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 19
US-08-411-726-2
; Sequence 2, Application US/08411726
; Patent No. 5880093
  GENERAL INFORMATION:
    APPLICANT: BAGNOLI, Franco
    TITLE OF INVENTION: Use of Parathormone, Its Biologically
    TITLE OF INVENTION: Active Fragments and Correlated Peptides, for The
Preparation of
    TITLE OF INVENTION: Pharmaceutical Compositions Useful for The Treatment
of Pregnanc
    NUMBER OF SEQUENCES: 5
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Kenyon & Kenyon
      STREET: 1 Broadway
      CITY: New York
      STATE: NY
      COUNTRY: US
     ZIP: 10004
    COMPUTER READABLE FORM:
      MEDIUM TYPE: 3.5 Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS 6.2
      SOFTWARE: WordPerfect 6.1 for Windows
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/411,726
      FILING DATE: 05-APR-1995
      CLASSIFICATION: 514
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: PCT/EP93/02755
ï
      FILING DATE: 08-OCT-1993
;
      APPLICATION NUMBER: MI-92A002331
      FILING DATE: 09-OCT-1992
    ATTORNEY/AGENT INFORMATION:
     NAME: PALMESE, Maria Luisa
      REGISTRATION NUMBER: 34,402
     REFERENCE/DOCKET NUMBER: 2111/1300
    TELECOMMUNICATION INFORMATION:
     TELEPHONE: 212-425-7200
     TELEFAX: 212-425-5288
```

```
INFORMATION FOR SEQ ID NO: 2:
     SEQUENCE CHARACTERISTICS:
       LENGTH: 34 amino acids
       TYPE: amino acid
       STRANDEDNESS: single
       TOPOLOGY: linear
     MOLECULE TYPE: protein
US-08-411-726-2
  Query Match
                          67.6%; Score 23; DB 2; Length 34;
  Best Local Similarity 100.0%; Pred. No. 3.4e-16;
  Matches
           23; Conservative 0; Mismatches
                                                  0; Indels
                                                                  0; Gaps
                                                                              0;
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              111111111111
Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 20
US-08-691-647C-5
; Sequence 5, Application US/08691647C
; Patent No. 5955425
  GENERAL INFORMATION:
    APPLICANT: Barbier, Jean-Rene
    APPLICANT: Morley, Paul
    APPLICANT: Neugebauer, Witold
    APPLICANT: Ross, Virginia
    APPLICANT: Whitfield, James
    APPLICANT: Willick, Gordon E.
    TITLE OF INVENTION: CYCLIC PARATHYROID HORMONE ANALOGUES TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 6
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: NIXON & VANDERHYE, P.C.
      STREET: 1100 New York Avenue, 8th Floor
      CITY: Arlington
      STATE: Virginia
      COUNTRY: U.S.A.
      ZIP: 22201-4714
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: ASCII Text
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/691,647C
      FILING DATE: August 2, 1996
      CLASSIFICATION: 514
    ATTORNEY/AGENT INFORMATION:
      NAME: Crawford, Arthur R.
      REGISTRATION NUMBER: 25,327
      REFERENCE/DOCKET NUMBER: 1339-5
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (703) 816-4005
      TELEFAX: (703) 816-4100
      TELEX: N/A
  INFORMATION FOR SEQ ID NO: 5:
```

```
SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: protein
US-08-691-647C-5
  Query Match
                         67.6%; Score 23; DB 2; Length 34;
  Best Local Similarity 100.0%; Pred. No. 3.4e-16;
          23; Conservative
                              0; Mismatches
                                                0; Indels
                                                               0; Gaps
                                                                          0;
          12 GKHLNSMERVEWLRKKLQDVHNF 34
Qу
             12 GKHLNSMERVEWLRKKLQDVHNF 34
Db
RESULT 21
US-08-521-097-1
; Sequence 1, Application US/08521097
; Patent No. 5977070
  GENERAL INFORMATION:
    APPLICANT: Krstenansky, John L.
    APPLICANT: Nestor Jr., John J.
    APPLICANT: Ho, Teresa H.
    APPLICANT: Vickery, Brian H.
    APPLICANT: Bach, Chinh T.
    TITLE OF INVENTION: ANALOGS OF PARATHYROID HORMONE AND
    TITLE OF INVENTION: PARATHYROID HORMONE RELATED PEPTIDE: SYNTHESIS AND USE
    TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 86
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
      STREET: 3401 Hillview Ave.
      CITY: Palo Alto
      STATE: CA
      COUNTRY: USA
      ZIP: 94303
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/521,097
      FILING DATE: 29-AUG-1995
      CLASSIFICATION: 514
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: 08/184,328
      FILING DATE: 18-JAN-1994
    ATTORNEY/AGENT INFORMATION:
      NAME: Schmonsees, William
      REGISTRATION NUMBER: 31,796
      REFERENCE/DOCKET NUMBER: 27610-P1
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 415-855-6593
      TELEFAX: 415-496-3529
  INFORMATION FOR SEQ ID NO: 1:
```

```
SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    HYPOTHETICAL: NO
    FRAGMENT TYPE: N-terminal
US-08-521-097-1
  Query Match
                         67.6%; Score 23; DB 2; Length 34;
  Best Local Similarity
                         100.0%; Pred. No. 3.4e-16;
          23; Conservative
 Matches
                              0; Mismatches 0; Indels
                                                               0; Gaps
                                                                           0;
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
              111111111111
Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 22
US-09-044-536A-1
; Sequence 1, Application US/09044536A
; Patent No. 6025467
  GENERAL INFORMATION:
    APPLICANT: FUKUDA, Tsunehiko
    APPLICANT: NAKAGAWA, Shizue
    APPLICANT: HABASHITA, Junko
    APPLICANT: TAKETOMI, Shigehisa
    TITLE OF INVENTION: PARATHYROID HORMONE DERIVATIVES AND THEIR USE
    NUMBER OF SEQUENCES: 36
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: DIKE, BRONSTEIN, ROBERTS & CUSHMAN
      STREET: 130 Water Street
      CITY: Boston
      STATE: Massachusetts
      COUNTRY: US
      ZIP: 02109
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/09/044,536A
      FILING DATE: 19-MAR-1998
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: 08/662,871
      FILING DATE: 12-JUN-1996
    ATTORNEY/AGENT INFORMATION:
      NAME: CONLIN, David G
      REGISTRATION NUMBER: 27,026
      REFERENCE/DOCKET NUMBER: 46509-DIV
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (617)523-3400
      TELEFAX: (617)523-6440
  INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
```

```
TYPE: amino acid
      STRANDEDNESS:
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    FEATURE:
      NAME/KEY: partial peptide
      LOCATION: 1..34
US-09-044-536A-1
  Query Match
                         67.6%; Score 23; DB 3; Length 34;
 Best Local Similarity 100.0%; Pred. No. 3.4e-16;
 Matches
          23; Conservative 0; Mismatches 0; Indels
                                                              0: Gaps
                                                                          0;
Qу
          12 GKHLNSMERVEWLRKKLODVHNF 34
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 23
US-09-044-536A-9
; Sequence 9, Application US/09044536A
; Patent No. 6025467
  GENERAL INFORMATION:
    APPLICANT: FUKUDA, Tsunehiko
    APPLICANT: NAKAGAWA, Shizue
    APPLICANT: HABASHITA, Junko
    APPLICANT: TAKETOMI, Shigehisa
    TITLE OF INVENTION: PARATHYROID HORMONE DERIVATIVES AND THEIR USE
    NUMBER OF SEQUENCES: 36
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: DIKE, BRONSTEIN, ROBERTS & CUSHMAN
      STREET: 130 Water Street
      CITY: Boston
      STATE: Massachusetts
      COUNTRY: US
      ZIP: 02109
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/09/044,536A
      FILING DATE: 19-MAR-1998
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: 08/662,871
      FILING DATE: 12-JUN-1996
    ATTORNEY/AGENT INFORMATION:
      NAME: CONLIN, David G
      REGISTRATION NUMBER: 27,026
      REFERENCE/DOCKET NUMBER: 46509-DIV
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (617)523-3400
      TELEFAX: (617)523-6440
  INFORMATION FOR SEQ ID NO:
   SEQUENCE CHARACTERISTICS:
     LENGTH: 34 amino acids
```

```
TYPE: amino acid
ï
       STRANDEDNESS:
;
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    FEATURE:
      NAME/KEY: partial peptide
      LOCATION: 1..34
US-09-044-536A-9
 Query Match 67.6%; Score 23; DB 3; Length 34; Best Local Similarity 100.0%; Pred. No. 3.4e-16;
  Matches
          23; Conservative
                              0; Mismatches
                                                0; Indels
                                                                0; Gaps
                                                                            0;
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 24
US-09-044-536A-10
; Sequence 10, Application US/09044536A
; Patent No. 6025467
; GENERAL INFORMATION:
    APPLICANT: FUKUDA, Tsunehiko
    APPLICANT: NAKAGAWA, Shizue
    APPLICANT: HABASHITA, Junko
    APPLICANT: TAKETOMI, Shigehisa
    TITLE OF INVENTION: PARATHYROID HORMONE DERIVATIVES AND THEIR USE
    NUMBER OF SEQUENCES: 36
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: DIKE, BRONSTEIN, ROBERTS & CUSHMAN
      STREET: 130 Water Street
      CITY: Boston
      STATE: Massachusetts
      COUNTRY: US
      ZIP: 02109
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/09/044,536A
      FILING DATE: 19-MAR-1998
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: 08/662,871
      FILING DATE: 12-JUN-1996
    ATTORNEY/AGENT INFORMATION:
      NAME: CONLIN, David G
      REGISTRATION NUMBER: 27,026
      REFERENCE/DOCKET NUMBER: 46509-DIV
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (617)523-3400
      TELEFAX: (617)523-6440
  INFORMATION FOR SEQ ID NO: 10:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
```

```
TYPE: amino acid
      STRANDEDNESS:
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    FEATURE:
      NAME/KEY: partial peptide
      LOCATION: 1..34
US-09-044-536A-10
  Query Match 67.6%; Score 23; DB 3; Length 34; Best Local Similarity 100.0%; Pred. No. 3.4e-16;
  Matches
          23; Conservative 0; Mismatches
                                               0; Indels
                                                                0: Gaps
                                                                            0;
          12 GKHLNSMERVEWLRKKLODVHNF 34
Qу
              Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 25
US-09-044-536A-11
; Sequence 11, Application US/09044536A
; Patent No. 6025467
; GENERAL INFORMATION:
    APPLICANT: FUKUDA, Tsunehiko
    APPLICANT: NAKAGAWA, Shizue
     APPLICANT: HABASHITA, Junko
     APPLICANT: TAKETOMI, Shigehisa
     TITLE OF INVENTION: PARATHYROID HORMONE DERIVATIVES AND THEIR USE
    NUMBER OF SEQUENCES: 36
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: DIKE, BRONSTEIN, ROBERTS & CUSHMAN
      STREET: 130 Water Street
     CITY: Boston
      STATE: Massachusetts
      COUNTRY: US
      ZIP: 02109
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/09/044,536A
      FILING DATE: 19-MAR-1998
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: 08/662,871
      FILING DATE: 12-JUN-1996
    ATTORNEY/AGENT INFORMATION:
      NAME: CONLIN, David G
      REGISTRATION NUMBER: 27,026
      REFERENCE/DOCKET NUMBER: 46509-DIV
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (617)523-3400
      TELEFAX: (617)523-6440
  INFORMATION FOR SEQ ID NO: 11:
   SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
```

```
TYPE: amino acid
      STRANDEDNESS:
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    FEATURE:
      NAME/KEY: partial peptide
      LOCATION: 1..34
US-09-044-536A-11
 Query Match
                        67.6%; Score 23; DB 3; Length 34;
 Best Local Similarity 100.0%; Pred. No. 3.4e-16;
 Matches 23; Conservative 0; Mismatches 0; Indels
                                                              0; Gaps
                                                                          0;
Qу
          12 GKHLNSMERVEWLRKKLODVHNF 34
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 26
US-09-044-536A-12
; Sequence 12, Application US/09044536A
; Patent No. 6025467
; GENERAL INFORMATION:
    APPLICANT: FUKUDA, Tsunehiko
    APPLICANT: NAKAGAWA, Shizue
    APPLICANT: HABASHITA, Junko
    APPLICANT: TAKETOMI, Shigehisa
    TITLE OF INVENTION: PARATHYROID HORMONE DERIVATIVES AND THEIR USE
    NUMBER OF SEQUENCES: 36
    CORRESPONDENCE ADDRESS:
    ADDRESSEE: DIKE, BRONSTEIN, ROBERTS & CUSHMAN
      STREET: 130 Water Street
      CITY: Boston
     STATE: Massachusetts
      COUNTRY: US
      ZIP: 02109
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
   CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/09/044,536A
      FILING DATE: 19-MAR-1998
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: 08/662,871
      FILING DATE: 12-JUN-1996
    ATTORNEY/AGENT INFORMATION:
      NAME: CONLIN, David G
      REGISTRATION NUMBER: 27,026
      REFERENCE/DOCKET NUMBER: 46509-DIV
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (617)523-3400
      TELEFAX: (617)523-6440
  INFORMATION FOR SEQ ID NO: 12:
   SEQUENCE CHARACTERISTICS:
     LENGTH: 34 amino acids
```

```
TYPE: amino acid
      STRANDEDNESS:
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    FEATURE:
      NAME/KEY: partial peptide
      LOCATION: 1..34
    FEATURE:
      NAME/KEY: Modified-site
      LOCATION: 11
      OTHER INFORMATION: /product= "Xaa=Ala(2-Naph)"
US-09-044-536A-12
 Query Match
                         67.6%; Score 23; DB 3; Length 34;
 Best Local Similarity 100.0%; Pred. No. 3.4e-16;
 Matches
          23; Conservative 0; Mismatches
                                                0;
                                                    Indels
                                                               0; Gaps
                                                                          0;
QУ
          12 GKHLNSMERVEWLRKKLQDVHNF 34
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 27
US-09-044-536A-13
; Sequence 13, Application US/09044536A
; Patent No. 6025467
  GENERAL INFORMATION:
    APPLICANT: FUKUDA, Tsunehiko
    APPLICANT: NAKAGAWA, Shizue
    APPLICANT: HABASHITA, Junko
    APPLICANT: TAKETOMI, Shigehisa
    TITLE OF INVENTION: PARATHYROID HORMONE DERIVATIVES AND THEIR USE
    NUMBER OF SEQUENCES: 36
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: DIKE, BRONSTEIN, ROBERTS & CUSHMAN
      STREET: 130 Water Street
      CITY: Boston
      STATE: Massachusetts
      COUNTRY: US
      ZIP: 02109
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/09/044,536A
      FILING DATE: 19-MAR-1998
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: 08/662,871
      FILING DATE: 12-JUN-1996
    ATTORNEY/AGENT INFORMATION:
      NAME: CONLIN, David G
      REGISTRATION NUMBER: 27,026
      REFERENCE/DOCKET NUMBER: 46509-DIV
    TELECOMMUNICATION INFORMATION:
     TELEPHONE: (617)523-3400
```

```
TELEFAX: (617)523-6440
   INFORMATION FOR SEQ ID NO: 13:
     SEQUENCE CHARACTERISTICS:
ï
      LENGTH: 34 amino acids
ï
      TYPE: amino acid
ï
      STRANDEDNESS:
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    FEATURE:
      NAME/KEY: partial peptide
      LOCATION: 1..34
    FEATURE:
      NAME/KEY: Modified-site
      LOCATION: 10
      OTHER INFORMATION: /product= "Xaa=4-carboxyglutamic
      OTHER INFORMATION: acid"
US-09-044-536A-13
  Query Match
                         67.6%; Score 23; DB 3; Length 34;
  Best Local Similarity 100.0%; Pred. No. 3.4e-16;
 Matches 23; Conservative 0; Mismatches 0; Indels 0; Gaps
                                                                          0;
          12 GKHLNSMERVEWLRKKLQDVHNF 34
QУ
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 28
US-09-044-536A-14
; Sequence 14, Application US/09044536A
; Patent No. 6025467
  GENERAL INFORMATION:
    APPLICANT: FUKUDA, Tsunehiko
    APPLICANT: NAKAGAWA, Shizue
    APPLICANT: HABASHITA, Junko
    APPLICANT: TAKETOMI, Shigehisa
    TITLE OF INVENTION: PARATHYROID HORMONE DERIVATIVES AND THEIR USE
    NUMBER OF SEQUENCES: 36
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: DIKE, BRONSTEIN, ROBERTS & CUSHMAN
      STREET: 130 Water Street
      CITY: Boston
      STATE: Massachusetts
      COUNTRY: US
      ZIP: 02109
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
     APPLICATION NUMBER: US/09/044,536A
      FILING DATE: 19-MAR-1998
    PRIOR APPLICATION DATA:
     APPLICATION NUMBER: 08/662,871
      FILING DATE: 12-JUN-1996
    ATTORNEY/AGENT INFORMATION:
```

```
NAME: CONLIN, David G
      REGISTRATION NUMBER: 27,026
      REFERENCE/DOCKET NUMBER: 46509-DIV
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (617)523-3400
      TELEFAX: (617)523-6440
  INFORMATION FOR SEQ ID NO: 14:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      STRANDEDNESS:
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    FEATURE:
      NAME/KEY: partial peptide
      LOCATION: 1..34
    FEATURE:
      NAME/KEY: Modified-site
      LOCATION:
                 10
      OTHER INFORMATION: /product= "Xaa=2-aminosuberic acid"
US-09-044-536A-14
                         67.6%; Score 23; DB 3; Length 34;
 Query Match
 Best Local Similarity
                         100.0%; Pred. No. 3.4e-16;
 Matches
          23; Conservative
                              0; Mismatches
                                                0; Indels
                                                               0; Gaps
                                                                          0;
          12 GKHLNSMERVEWLRKKLQDVHNF 34
Qу
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 29
US-09-044-536A-15
; Sequence 15, Application US/09044536A
; Patent No. 6025467
  GENERAL INFORMATION:
    APPLICANT: FUKUDA, Tsunehiko
    APPLICANT: NAKAGAWA, Shizue
    APPLICANT: HABASHITA, Junko
    APPLICANT: TAKETOMI, Shigehisa
    TITLE OF INVENTION: PARATHYROID HORMONE DERIVATIVES AND THEIR USE
    NUMBER OF SEQUENCES: 36
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: DIKE, BRONSTEIN, ROBERTS & CUSHMAN
      STREET: 130 Water Street
      CITY: Boston
      STATE: Massachusetts
      COUNTRY: US
      ZIP: 02109
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/09/044,536A
      FILING DATE: 19-MAR-1998
```

```
APPLICATION NUMBER: 08/662,871
       FILING DATE: 12-JUN-1996
     ATTORNEY/AGENT INFORMATION:
       NAME: CONLIN, David G
       REGISTRATION NUMBER: 27,026
       REFERENCE/DOCKET NUMBER: 46509-DIV
     TELECOMMUNICATION INFORMATION:
       TELEPHONE: (617)523-3400
       TELEFAX: (617)523-6440
   INFORMATION FOR SEO ID NO: 15:
     SEQUENCE CHARACTERISTICS:
       LENGTH: 34 amino acids
       TYPE: amino acid
       STRANDEDNESS:
       TOPOLOGY: linear
    MOLECULE TYPE: peptide
    FEATURE:
       NAME/KEY: partial peptide
       LOCATION: 1..34
;
     FEATURE:
       NAME/KEY: Modified-site
       LOCATION: 10
       OTHER INFORMATION: /product= "2-aminoadipic acid"
US-09-044-536A-15
  Query Match
                          67.6%; Score 23; DB 3; Length 34;
  Best Local Similarity 100.0%; Pred. No. 3.4e-16;
  Matches
          23; Conservative
                               0; Mismatches
                                                0; Indels
                                                                 0; Gaps
                                                                             0;
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 30
US-08-904-760B-22
; Sequence 22, Application US/08904760B
; Patent No. 6110892
  GENERAL INFORMATION:
    APPLICANT: Jean-Rene, Barbier
    APPLICANT: Neugebauer, Witold
    APPLICANT: Ross, Virginia
    APPLICANT: Whitfield, James
    APPLICANT: Willick, Gordon E.
    TITLE OF INVENTION: PARATHYROID HORMONE ANALOGUES FOR THE TITLE OF INVENTION: TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 35
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: NIXON & VANDERHYE P.C.
      STREET: 1100 No. 6110892th Glebe Rd. 8th floor
      CITY: Arlington
      STATE: VA
      COUNTRY: USA
      ZIP: 22201-4741
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
```

PRIOR APPLICATION DATA:

```
COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.30
     CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/904,760B
       FILING DATE: 01-AUG-1997
       CLASSIFICATION: 514
     PRIOR APPLICATION DATA:
      APPLICATION NUMBER: 08/691,647
      FILING DATE: 02-AUG-1996
     ATTORNEY/AGENT INFORMATION:
       NAME: Crawford, Arthur R.
       REGISTRATION NUMBER: 25,327
       REFERENCE/DOCKET NUMBER: 1339-6
     TELECOMMUNICATION INFORMATION:
       TELEPHONE: 703-816-4000
       TELEFAX: 703-816-4100
   INFORMATION FOR SEQ ID NO:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
       TYPE: amino acid
      STRANDEDNESS:
      TOPOLOGY: linear
     MOLECULE TYPE: protein
US-08-904-760B-22
  Query Match 67.6%; Score 23; DB 3; Length 34; Best Local Similarity 100.0%; Pred. No. 3.4e-16;
  Matches
          23; Conservative
                               0; Mismatches
                                                0; Indels
                                                                0; Gaps
                                                                            0;
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 31
US-09-108-661-13
; Sequence 13, Application US/09108661
; Patent No. 6287806
; GENERAL INFORMATION:
    APPLICANT: NISHIMURA, Osamu
    APPLICANT: KURIYAMA, Masato
    APPLICANT: KOYAMA, No. 6287806uyuki
    APPLICANT: FUKUDA, Tsunehiko
     TITLE OF INVENTION: METHOD FOR PRODUCING A BIOLOGICALLY
    TITLE OF INVENTION: ACTIVE RECOMBINANT CYSTEINE-FREE
    NUMBER OF SEQUENCES: 37
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: DIKE, BRONSTEIN, ROBERTS & CUSHMAN, LLP
      STREET: 130 WATER STREET
      CITY: BOSTON
      STATE: MA
      COUNTRY: USA
      ZIP: 02109
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Diskette
      COMPUTER: IBM Compatible
```

```
OPERATING SYSTEM: DOS
      SOFTWARE: FastSEQ Version 1.5
     CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/09/108,661
      FILING DATE:
      CLASSIFICATION: 435
    PRIOR APPLICATION DATA:
     APPLICATION NUMBER: 08/350,709
     FILING DATE: 07-DEC-1994
     APPLICATION NUMBER: 07/838,857
     FILING DATE: 18-FEB-1992
      APPLICATION NUMBER: JP 024841
      FILING DATE: 19-FEB-1991
     APPLICATION NUMBER: JP 0271438
     FILING DATE: 18-OCT-1991
    ATTORNEY/AGENT INFORMATION:
      NAME: DAVID, RESNICK S
      REGISTRATION NUMBER: 34,235
      REFERENCE/DOCKET NUMBER: 41614-FWC
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 617-523-3400
      TELEFAX: 617-523-6440
      TELEX: 200291 STRE
   INFORMATION FOR SEQ ID NO: 13:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      STRANDEDNESS: single
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    HYPOTHETICAL: NO
    ANTI-SENSE: NO
    FRAGMENT TYPE: N-terminal
    ORIGINAL SOURCE:
US-09-108-661-13
 Query Match 67.6%; Score 23; DB 3; Length 34; Best Local Similarity 100.0%; Pred. No. 3.4e-16;
 Matches 23; Conservative 0; Mismatches 0; Indels
                                                                0; Gaps
                                                                           0;
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 32
US-09-007-466-6
; Sequence 6, Application US/09007466
; Patent No. 6313092
  GENERAL INFORMATION:
    APPLICANT: HOLLADAY, LESLIE A.
    APPLICANT: OLDENBURG, KEVIN R.
    TITLE OF INVENTION: METHOD FOR INCREASING THE
    TITLE OF INVENTION: ELECTROTRANSPORT FLUX OF POLYPEPTIDES
    NUMBER OF SEQUENCES: 10
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: ALZA CORPORATION
```

```
STREET: 950 PAGE MILL ROAD
      CITY: PALO ALTO
      STATE: CALIFORNIA
      COUNTRY: USA
      ZIP: 94303-0802
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
     SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
     APPLICATION NUMBER: US/09/007,466
      FILING DATE:
     CLASSIFICATION:
   PRIOR APPLICATION DATA:
    APPLICATION NUMBER: US 08/468,275
     FILING DATE: 06-JUN-1995
   ATTORNEY/AGENT INFORMATION:
      NAME: MILLER, D. BYRON
      REGISTRATION NUMBER: 30,661
      REFERENCE/DOCKET NUMBER: 0360-0002; ARC-2349
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (415) 496-8150
      TELEFAX: (415) 496-8048
  INFORMATION FOR SEQ ID NO: 6:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      STRANDEDNESS: single
      TOPOLOGY: linear
    MOLECULE TYPE: protein
US-09-007-466-6
 Query Match
                        67.6%; Score 23; DB 4; Length 34;
 Best Local Similarity 100.0%; Pred. No. 3.4e-16;
 Matches 23; Conservative 0; Mismatches
                                               0; Indels 0; Gaps
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 33
US-09-406-813-1
; Sequence 1, Application US/09406813
; Patent No. 6316410
; GENERAL INFORMATION:
; APPLICANT: Barbier, Jean-Rene
; APPLICANT: Morley, Paul
  APPLICANT: Whitfield, James
  APPLICANT: Willick, Gordon E.
  TITLE OF INVENTION: PARATHYROID HORMONE ANALOGUES FOR THE TREATMENT OF
  TITLE OF INVENTION: OSTEOPOROSIS
; FILE REFERENCE: 10688-1B
; CURRENT APPLICATION NUMBER: US/09/406,813
; CURRENT FILING DATE: 1999-09-22
; PRIOR APPLICATION NUMBER: 08/904,760
```

```
; PRIOR FILING DATE: 1997-08-01
; NUMBER OF SEQ ID NOS: 9
  SOFTWARE: PatentIn Ver. 2.0
; SEQ ID NO 1
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-406-813-1
 Query Match
                         67.6%; Score 23; DB 4; Length 34;
 Best Local Similarity 100.0%; Pred. No. 3.4e-16;
 Matches 23; Conservative 0; Mismatches 0; Indels
                                                            0; Gaps
                                                                          0;
QУ
          12 GKHLNSMERVEWLRKKLQDVHNF 34
             Db
          12 GKHLNSMERVEWLRKKLODVHNF 34
RESULT 34
US-08-952-980B-6
; Sequence 6, Application US/08952980B
; Patent No. 6333189
; GENERAL INFORMATION:
    APPLICANT: HOLLADAY, LESLIE A.
    APPLICANT: OLDENBURG, KEVIN R.
    TITLE OF INVENTION: METHOD FOR INCREASING THE
    TITLE OF INVENTION: ELECTROTRANSPORT FLUX OF POLYPEPTIDES
    NUMBER OF SEQUENCES: 12
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: ALZA CORPORATION
      STREET: 950 PAGE MILL ROAD
      CITY: PALO ALTO
      STATE: CALIFORNIA
     COUNTRY: USA
      ZIP: 94303-0802
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/952,980B
      FILING DATE: 20-NOV-1997
      CLASSIFICATION: 530
    ATTORNEY/AGENT INFORMATION:
      NAME: MILLER, D. BYRON
      REGISTRATION NUMBER: 30,661
      REFERENCE/DOCKET NUMBER: 2349 CIP 1
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (650) 496-8150
      TELEFAX: (650) 496-8048
  INFORMATION FOR SEQ ID NO: 6:
   SEQUENCE CHARACTERISTICS:
     LENGTH: 34 amino acids
      TYPE: amino acid
     STRANDEDNESS: single
     TOPOLOGY: linear
```

```
MOLECULE TYPE: protein
US-08-952-980B-6
 Query Match
                         67.6%; Score 23; DB 4; Length 34;
 Best Local Similarity 100.0%; Pred. No. 3.4e-16;
 Matches 23; Conservative 0; Mismatches
                                                0; Indels
                                                               0; Gaps
                                                                           0;
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 35
US-09-228-990-1
; Sequence 1, Application US/09228990
; Patent No. 6472505
  GENERAL INFORMATION:
    APPLICANT: Condon, Stephen M.
    APPLICANT: Morize, Isabelle
    TITLE OF INVENTION: PEPTIDE PARATHYROID HORMONE ANALOGS
    NUMBER OF SEQUENCES: 88
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Rhone-Poulenc Rorer Inc.
      STREET: 500 Arcola Road, Mailstop 3C43
      CITY: Collegeville
      STATE: PA
      COUNTRY: USA
      ZIP: 19426
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/09/228,990
      FILING DATE:
      CLASSIFICATION:
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: US 60/046,472
      FILING DATE: 14-MAY-1997
    ATTORNEY/AGENT INFORMATION:
      NAME: Martin Esq., Michael B.
      REGISTRATION NUMBER: 37,521
      REFERENCE/DOCKET NUMBER: A2678B-WO
     TELECOMMUNICATION INFORMATION:
      TELEPHONE: (610) 454-2793
      TELEFAX: (610) 454-3808
  INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      STRANDEDNESS:
      TOPOLOGY: not relevant
    MOLECULE TYPE: peptide
    FRAGMENT TYPE: N-terminal
```

US-09-228-990-1

```
Query Match
                        67.6%; Score 23; DB 4; Length 34;
 Best Local Similarity 100.0%; Pred. No. 3.4e-16;
         23; Conservative 0; Mismatches
                                               0;
                                                   Indels
                                                              0; Gaps
                                                                          0;
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 36
US-09-447-800-1
; Sequence 1, Application US/09447800
; Patent No. 6537965
; GENERAL INFORMATION:
; APPLICANT: BRINGHURST, F. RICHARD
; APPLICANT: TAKASU, HISASHI
; APPLICANT: GARDELLA, THOMAS J.
  TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
  TITLE OF INVENTION: ANALOGS
  FILE REFERENCE: 0609.4630001
  CURRENT APPLICATION NUMBER: US/09/447,800
; CURRENT FILING DATE: 1999-11-23
; EARLIER APPLICATION NUMBER: 60/110,152
  EARLIER FILING DATE: 1998-11-25
  NUMBER OF SEQ ID NOS: 10
; SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 1
  LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: UNSURE
   LOCATION: (1)
   OTHER INFORMATION: Can be desamino Ser, desamino Ala, or desamino Gly
US-09-447-800-1
 Query Match
                        67.6%; .Score 23; DB 4; Length 34;
 Best Local Similarity 100.0%; Pred. No. 3.4e-16;
         23; Conservative
                              0; Mismatches
                                               0; Indels
                                                              0; Gaps
                                                                         0;
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 37
US-09-447-800-2
; Sequence 2, Application US/09447800
; Patent No. 6537965
; GENERAL INFORMATION:
; APPLICANT: BRINGHURST, F. RICHARD
  APPLICANT: TAKASU, HISASHI
  APPLICANT: GARDELLA, THOMAS J.
  TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
; TITLE OF INVENTION: ANALOGS
; FILE REFERENCE: 0609.4630001
; CURRENT APPLICATION NUMBER: US/09/447,800
```

```
CURRENT FILING DATE: 1999-11-23
  EARLIER APPLICATION NUMBER: 60/110,152
  EARLIER FILING DATE: 1998-11-25
  NUMBER OF SEQ ID NOS: 10
  SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 2
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: MOD RES
   LOCATION: (1)
   OTHER INFORMATION: Desamino Gly
US-09-447-800-2
 Query Match
                         67.6%; Score 23; DB 4; Length 34;
  Best Local Similarity 100.0%; Pred. No. 3.4e-16;
          23; Conservative 0; Mismatches 0; Indels
                                                               0; Gaps
                                                                           0:
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 38
US-09-447-800-5
; Sequence 5, Application US/09447800
; Patent No. 6537965
; GENERAL INFORMATION:
  APPLICANT: BRINGHURST, F. RICHARD
  APPLICANT: TAKASU, HISASHI
  APPLICANT: GARDELLA, THOMAS J.
  TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
  TITLE OF INVENTION: ANALOGS
  FILE REFERENCE: 0609.4630001
  CURRENT APPLICATION NUMBER: US/09/447,800
  CURRENT FILING DATE: 1999-11-23
  EARLIER APPLICATION NUMBER: 60/110,152
  EARLIER FILING DATE: 1998-11-25
  NUMBER OF SEQ ID NOS: 10
  SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 5
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: MOD RES
   LOCATION: (1)
   OTHER INFORMATION: Desamino Ala
US-09-447-800-5
 Query Match
                         67.6%; Score 23; DB 4; Length 34;
 Best Local Similarity
                         100.0%; Pred. No. 3.4e-16;
          23; Conservative 0; Mismatches 0; Indels
 Matches
                                                               0; Gaps
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
             11111111111111111111111111
```

```
RESULT 39
US-09-447-800-8
; Sequence 8, Application US/09447800
; Patent No. 6537965
; GENERAL INFORMATION:
; APPLICANT: BRINGHURST, F. RICHARD
  APPLICANT: TAKASU, HISASHI
  APPLICANT: GARDELLA, THOMAS J.
  TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
  TITLE OF INVENTION: ANALOGS
  FILE REFERENCE: 0609.4630001
; CURRENT APPLICATION NUMBER: US/09/447,800
; CURRENT FILING DATE: 1999-11-23
; EARLIER APPLICATION NUMBER: 60/110,152
; EARLIER FILING DATE: 1998-11-25
  NUMBER OF SEQ ID NOS: 10
  SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 8
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: MOD RES
   LOCATION: (1)
   OTHER INFORMATION: Desamino Ser
US-09-447-800-8
  Query Match
                         67.6%; Score 23; DB 4; Length 34;
 Best Local Similarity 100.0%; Pred. No. 3.4e-16;
 Matches 23; Conservative 0; Mismatches 0; Indels
                                                               0; Gaps
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 40
US-09-536-785A-22
; Sequence 22, Application US/09536785A
; Patent No. 6541450
; GENERAL INFORMATION:
; APPLICANT: BARBIER, JEAN-RENE
  APPLICANT: MORLEY, PAUL
  APPLICANT: NEUGEBAUER, WITOLD
  APPLICANT: ROSS, VIRGINIA J.S.
  APPLICANT: WHITFIELD, JAMES F.
  APPLICANT: WILLICK, GORDON E.
  TITLE OF INVENTION: PARATHYROID HORMONE ANALOGUES FOR THE TREATMENT OF
  TITLE OF INVENTION: OSTEOPOROSIS
  FILE REFERENCE: 1339-9
  CURRENT APPLICATION NUMBER: US/09/536,785A
  CURRENT FILING DATE: 2000-03-28
; PRIOR APPLICATION NUMBER: 08/904,760
; PRIOR FILING DATE: 1997-08-01
```

```
; PRIOR APPLICATION NUMBER: 08/691,647
; PRIOR FILING DATE: 1996-08-02
; PRIOR APPLICATION NUMBER: 08/262,495
; PRIOR FILING DATE: 1994-06-20
; PRIOR APPLICATION NUMBER: 60/040,560
; PRIOR FILING DATE: 1997-03-14
; NUMBER OF SEQ ID NOS: 39
; SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 22
  LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-536-785A-22
                      67.6%; Score 23; DB 4; Length 34;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 3.4e-16;
                                                           0; Gaps
 Matches 23; Conservative 0; Mismatches 0; Indels
                                                                       0;
          12 GKHLNSMERVEWLRKKLQDVHNF 34
Qу
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
```

Search completed: January 14, 2004, 10:43:31

Job time : 13.5452 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on:

January 14, 2004, 10:28:19; Search time 10.0623 Seconds

(without alignments)

324.949 Million cell updates/sec

Title:

US-09-843-221A-163

Perfect score: 34

Sequence:

1 SVSEIQLMHNKGKHLNSMERVEWLRKKLQDVHNF 34

Scoring table: OLIGO

Gapop 60.0 , Gapext 60.0

Searched:

283308 seqs, 96168682 residues

Word size :

Total number of hits satisfying chosen parameters:

3709

Minimum DB seq length: 28 Maximum DB seq length: 40

Post-processing: Listing first 1000 summaries

Database :

PIR 76:*

1: pir1:*

2: pir2:*

3: pir3:*

4: pir4:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	% Query Match	Length	DB	ID	Description
1	5	14.7	34	2	A84241	hypothetical prote
2	5	14.7	34	2	B97032	transcription regu
3	5	14.7	35	2	E95098	hypothetical prote
4	4	11.8	28	2	T09594	gene LFY protein -
5	4	11.8	29	1	A55527	pyrroloquinoline q
6	4	11.8	29	2	S01614	dystrophin - rat (
7	4	11.8	29	2	I78537	copper transportin
8	4	11.8	29	2	S78412	ribosomal protein
9	4	11.8	30	2	S63531	hypothetical prote
10	4	11.8	31	2	S44471	glucagon G1 - Nort
11	4	11.8	31	2	S44472	glucagon G2 - Nort
12	4	11.8	31	2	D70236	hypothetical prote
13	4	11.8	32	2	F23454	ovalbumin phosphos

14 15 16 17 18	4 4 4 4 4	11.8 11.8 11.8 11.8 11.8	32 32 33 35 35 35	2 2 2 2 2 2	D31461 G84161 E81714 D23454 G23454 D82125
20	4	11.8	36	2	S70806
21	4	11.8	36	2	F95057
22 23	4 4	11.8 11.8	36 36	2	A84774 S46227
24	4	11.8	37	2	S46227 S71912
25	4	11.8	37	2	T12635
26	4	11.8	37	2	A43933
27	4	11.8	39	1	CKFHCS
28	4	11.8	39	2	S71913
29	4	11.8	39	2	S77164
30	3	8.8	28	2	A42272
31	3	8.8	28	2	C32416
32	3	8.8	28	2	B60071
33 34	3 3	8.8	28	2	A60304
35	3	8.8 8.8	28 28	2 2	S58386 S10052
36	3	8.8	28	2	A60752
37	3	8.8	28	2	S56121
38	3	8.8	28	2	S70894
39	3	8.8	28	2	S22469
40	3	8.8	28	2	C60683
41	3	8.8	28	2	S06668
42	3	8.8	28	2	S26254
43	3	8.8	28	2	159477
44	3 3	8.8	28	2	F46522
45 46	3	8.8 8.8	28 29	2	H85908
47	3	8.8	29	1 2	GCCB S39968
48	3	8.8	29	2	S17147
49	3	8.8	29	2	JH0699
50	3	8.8	29	2	T44245
51	3	8.8	29	2	A05272
52	3	8.8	29	2	B44101
53	3	8.8	29	2	S42642
54	3	8.8	29	2	A00774
55 5.6	3	8.8	29	2	I84189
56 57	3	8.8	29	2	S65747
58	3	8.8 8.8	29 29	2	S65748 B41476
59	3	8.8	29	2	T31443
60	3	8.8	29	2	F85570
61	3	8.8	29	2	I49732
62	3	8.8	30	2	S40309
63	3	8.8	30	2	C21897
64 .	3	8.8	30	2	A05315
65	3	8.8	30	2	A61333
66	3	8.8	30	2	S21815
67	3	8.8	30	2	A44912
68 69	3 3	8.8	30	2	B61125
70	3	8.8 8.8	30 30	2	C61125 F32502
, 0	ی	0.0	30	4	F34304

T-cell receptor de hypothetical prote hypothetical prote ovalbumin phosphos ovalbumin phosphos hypothetical prote hypothetical prote hypothetical prote hypothetical prote hypothetical prote hemoglobin, extrac homeotic protein H antigen 5 epitope sarcotoxin IC - fl hemoglobin, extrac ycf32 protein - Sy brain-type creatin phospholipase A2 (vasoactive intesti vasoactive intesti T-cell receptor be ribosomal protein outer membrane pro type I DNA methylt hypothetical prote hypothetical prote malate dehydrogena toxin-like protein rel protein - chic antigen, T-cell re T-cell receptor et hypothetical prote glucagon - Chinchi probable hydro-lya galanin - chicken omega-conotoxin MV ribosomal protein gelsolin, cytosoli calmodulin, vasoac probable rhicadhes 3-oxoadipate enolcyclic AMP recepto CDP-paratose synth CDP-paratose synth probable antigen 2 cytochrome bc chai hypothetical prote NADH2 dehydrogenas tyrosine 3-monooxy ornithine carbamoy pancreatic ribonuc trypsin (EC 3.4.21 H+-exporting ATPas cysteine proteinas glucagon-like pept glucagon-like pept T-cell receptor de

	_			2.0	_	DD0013	almp regresses elem
71		3	8.8	30	2	PD0013	cAMP response elem
72	3	3	8.8	30	2	S11617	ribosomal protein
73		3	8.8	30	2	S21195	spectrin beta chai
74		3	8.8	30	2	PC4172	profilin - rat (fr
75		3	8.8	30	2	A34461	heat shock protein
76		3	8.8	30	2	A22977	delta-endotoxin -
					2	S08565	ribulose-bisphosph
77		3	8.8	30			
78		3	8.8	30	2	S30333	N-carbamoyl-D-amin
79		3	8.8	30	2	PQ0444	hypothetical prote
80	;	3	8.8	30	2	B95020	hypothetical prote
81	,	3	8.8	30	2	H95021	hypothetical prote
82		3	8.8	30	2	D72276	hypothetical prote
83		3	8.8	30	2	D70253	conserved hypothet
84		3	8.8	30	2	B70165	hypothetical prote
					2		hypothetical prote
85		3	8.8	30		C81791	= = = = = = = = = = = = = = = = = = =
86		3	8.8	30	2	E82294	hypothetical prote
87		3	8.8	30	2	D82251	hypothetical prote
88		3	8.8	30	2	F82209	hypothetical prote
89		3	8.8	30	2	S72626	small-cell-variant
90		3	8.8	30	2	A35687	probable 39K inorg
91		3	8.8	30	2	A32946	trypsin-like serin
92		3	8.8	30	2	S65519	carcinoembryonic a
93		3	8.8	30	2	S34765	4-hydroxybutyryl-C
		3	8.8	30	2	D81532	hypothetical prote
94							retrovirus-related
95		3	8.8	30	2	A48923	
96		3	8.8	30	2	B56586	storage hexamer 2
97		3	8.8	30	2	F81360	very hypothetical
98		3	8.8	30	2	S15650	NADH2 dehydrogenas
99		3	8.8	30	2	н97596	hypothetical prote
100		3	8.8	30	4	I52605	hypothetical MLL/E
101		3	8.8	31	2	T44925	hypothetical prote
102		3	8.8	31	2	S39019	glucagon-like pept
103		3	8.8	31	2	A58793	relaxin chain B -
104		3	8.8	31	2	A58586	conotoxin MrVIA -
105		3	8.8	31	2	F30608	Ig kappa chain V-I
		3	8.8	31	2	D30608	Ig kappa chain V-I
106							
107		3	8.8	31	2	F31461	T-cell receptor de
108		3	8.8	31	2	S03295	Ig alpha chain C r
109		3	8.8	31	2	S03297	Ig alpha chain C r
110		3	8.8	31	2	I52232	tau protein - huma
111		3	8.8	31	2	A36162	neutrophil-activat
112		3	8.8	31	2	S04980	ferritin heavy cha
113		3	8.8	31	2	S32610	antiviral protein
114		3	8.8	31	2	S38881	inner membrane pro
115		3	8.8	31	2	G95018	hypothetical prote
		3	8.8	31	2	G95022	hypothetical prote
116							
117		3	8.8	31	2	A95085	hypothetical prote
118		3	8.8	31	2	H95093	hypothetical prote
119		3	8.8	31	2	E95151	hypothetical prote
120		3	8.8	31	2	E70202	hypothetical prote
121		3	8.8	31	2	E70223	hypothetical prote
122		3	8.8	31	2	H70225	hypothetical prote
123		3	8.8	31	2	C70240	hypothetical prote
124		3	8.8	31	2	H70252	hypothetical prote
125		3	8.8	31	2	S49191	hypothetical prote
126		3	8.8	31	2	H82353	hypothetical prote
		3	8.8	31	2	B82151	hypothetical prote
127		J	0.0	31	2	DOZIDI	nypochecical proce

128	3	8.8	31	2	A05051	hypothetical prote
129	3	8.8	31	2	B23605	histone H1.3 - whe
130	3	8.8	31	2	S78738	protein YOL038c-a
131	3	8.8	31	2	A36221	cecropin P1 - pig
132	3	8.8	31	2	S27112	sarcolipin - rabbi
133	3	8.8	31	2	C84082	hypothetical prote
134	3	8.8	31	2	D81591	hypothetical prote
135	3	8.8	31	2	G81558	hypothetical prote
136	3	8.8	31	2	G82816	hypothetical prote
137	3	8.8	31	2	F82565	hypothetical prote
138	3	8.8	31	2	C97398	hypothetical prote
139	3	8.8	32	1	TCEE	calcitonin - Japan
140	3	8.8	32	1	TCON2	calcitonin 2 - soc
141	3	8.8	32	1	TCON2C	calcitonin 2 - chu
142	3	8.8	32	1	TCON2P	calcitonin 2 - pin
143	3	8.8	32	1	TCON3	calcitonin 3 - coh
144	3	8.8	32	2	S20719	alcohol dehydrogen
145	3	8.8	32	2	A61143	trypsin (EC 3.4.21
146	3	8.8	32	2	D32502	T-cell receptor de
147	3	8.8	32	2	A32502	T-cell receptor de
148	3	8.8	32	2	B40186	ubiquitin / riboso
149	. 3	8.8	32	2	S57780	histone H3 - rice
150	3	8.8	32	2	A02687	
151	3	8.8	32	2		DNA-binding protei
152	3				S51524	anchorin CII - bov
	3	8.8	32	2	S36809	GTP-binding regula
153		8.8	32	2	A29743	translation initia
154	3	8.8	32	2	A03367	lectin - Macrotylo
155	3	8.8	32	2	A44900	fimbrin, SEF 21 -
156	3	8.8	32	2	S14300	zona pellucida-bin
157	3	8.8	32	2	S03273	photosystem II oxy
158	3	8.8	32	2	S08482	regulatory protein
159	3	8.8	32	2	E87694	hypothetical prote
160	3	8.8	32	2	D70222	hypothetical prote
161	3	8.8	32	2	E70225	hypothetical prote
162	3	8.8	32	2	B70241	hypothetical prote
163	3	8.8	32	2	B70257	hypothetical prote
164	3	8.8	32	2	D82353	hypothetical prote
165	3	8.8	32	2	E82279	hypothetical prote
166	3	8.8	32	2	E82089	hypothetical prote
167	3	8.8	32	2	H82416	hypothetical prote
168	3	8.8	32	2	T17394	vrlN protein - Dic
169	3	8.8	32	2	S23476	hypothetical prote
170	3	8.8	32	2	S22304	hypothetical prote
171	3	8.8	32	2	S78323	photosystem II pro
172	3	8.8	32	2	I38619	zinc finger protei
173	3	8.8	32	2	S28398	t-complex protein
174	3	8.8	32	2	T14569	hypothetical prote
175	3	8.8	32	2	H84081	hypothetical prote
176	3	8.8	32	2	F82833	hypothetical prote
177	3	8.8	32	2	JC5802	ovulation stimulat
178	3	8.8	32	2	E85588	hypothetical prote
179	3	8.8	33	2	S43312	2',3'-cyclic-nucle
180	3	8.8	33	2	S26859	chitinase (EC 3.2.
181	3	8.8	33	2	152219	c-ras-Ki-2 protein
182	3	8.8	33	2	153221	K-ras protein - hu
183	3	8.8	33	2	E32502	T-cell receptor de
184	3	8.8	33	2	A31461	T-cell receptor de
	-	=		_		- co receptor de

						•
185	3	8.8	33	2	B31461	T-cell receptor de
186	3	8.8	33	2	S22604	ribosomal protein
187	3	8.8	33	2	A03150	retinoic acid-bind
188	3	8.8	33	2	C46027	neurotransmitter t
189	3	8.8	33	2	PQ0150	dnaK-type molecula
190	3	8.8	33	2	B44906	L1 protein - human
191	3	8.8	33	2	PQ0418	matrix protein M1
192	3	8.8	33	2	S34505	hypothetical prote
193	3	8.8	33	2	G95006	hypothetical prote
194	3	8.8	33	2	C95200	hypothetical prote
195	3	8.8	33	2	F84163	hypothetical prote
196	3	8.8	33	2	H82475	hypothetical prote
197	3	8.8	33	2	S68096	lactate dehydrogen
198	3	8.8	33	2	E82526	hypothetical prote
199	3	8.8	33	2	G85600	hypothetical prote
200	3	8.8	33	2	H85651	hypothetical prote
201	3	8.8	33	2	AC1012	hypothetical prote
202	3	8.8	33	2	C97406	hypothetical prote
203	3	8.8	34	2	S57282	phospholipase A2 (
204	3	8.8	34	2	A40298	dermaseptin - Sauv
205	3	8.8	34	2	JS0426	big gastrin - goat
206	3	8.8	34	2	148887	cryptdin-4 - mouse
207	3	8.8	34	2	132502	T-cell receptor de
208	3	8.8	34	2	H31461	T-cell receptor de
209	3	8.8	34	2	A19197	class II histocomp
210	3	8.8	34	2	D48147	troponin I (altern
211	3	8.8	34	2	A43564	neurogenic protein
212	3	8.8	34	2	H95047	hypothetical prote
213	3	8.8	34	2	D95189	hypothetical prote
214	3	8.8	34	2	C90973	hypothetical prote
215	3	8.8	34	2	F70242	hypothetical prote
216	3	8.8	34	2	B70252	hypothetical prote
217	3	8.8	34	2	F81919	hypothetical prote
218	3	8.8	34	2	F81044	hypothetical prote
219	3	8.8	34	2	F82163	hypothetical prote
220	3	8.8	34	2	E82100	hypothetical prote
221	3	8.8	34	2	B82449	
222	3	8.8	34	2	S13662	hypothetical prote
223	3	8.8	34	2	A60110	cellulase (EC 3.2.
224	3	8.8	34	2	S44828	repetitive protein
225	3	8.8	34	2	S40662	F54F2.3 protein -
226	3	8.8	34	2	F84079	P-cadherin - mouse
227	3	8.8	34	2	H81600	hypothetical prote
228	3	8.8	34	2	H82820	hypothetical prote
229	3	8.8	34	2	C82819	hypothetical prote
230	3	8.8	34	2		hypothetical prote
231	3	8.8	34	2	C82764 B82679	hypothetical prote
232	3	8.8	34	2		hypothetical prote
232	3				G85820	unknown protein en
234	3	8.8	34	2	S12554	hydroxymethylgluta
234	3	8.8	35 25	2	JH0639	GTP-binding protei
235	3	8.8	35 35	2	S06667	toxin-like protein
237	3	8.8	35	2	E38601	Ig kappa chain V r
237	3	8.8	35	2	A05302	hemoglobin beta ch
238		8.8	35 35	2	S27154	ribosomal protein
239 240	3 3	8.8	35 35	2	S13435	lectin III - furze
240	3	8.8	35	2	S18224	filamentous hemagg
711	3	8.8	35	2	S18226	opacity protein op

242 243 244 245 246 247 248 249 250	3 3 3 3 3 3 3	8.8 8.8 8.8 8.8 8.8 8.8	35 35 35 35 35 35 35 35	2 2 2 2 2 2 2 2 2 2 2	T07870 B33770 PS0439 I48925 G95014 F87622 C96619 B84674 F84395	
251 252 253 254	3 3 3 3	8.8 8.8 8.8 8.8	35 35 35 35	2 2 2 2	B82012 H81948 A82151 F82051	
255 256 257 258	3 3 3 3	8.8 8.8 8.8	35 35 35 35	2 2 2 2	I64003 F69827 C69977 A05057	
259 260 261 262	3 3 3 3	8.8 8.8 8.8	35 35 35 35	2 2 2 2	S65772 G60529 S49309 C81560	
263 264 265 266	3 3 3 3	8.8 8.8 8.8	35 36 36 36	2 2 2 2	B85708 H32502 C32502 S08552	
267 268 269 270	3 3 3 3	8.8 8.8 8.8	36 36 36 36	2 2 2 2	S72299 I46593 B31872 S35572	
271 272 273 274	3 3 3 3	8.8 8.8 8.8	36 36 36 36	2 2 2 2	B41481 A38659 E84416 S17834	
275 276 277 278	3 3 3 3	8.8 8.8 8.8	36 36 36 36	2 2 2 2	E70220 F70237 E70238 F64604	
279 280 281 282	3 3 3	8.8 8.8 8.8	36 36 36	2 2 2	G81853 S16552 G82281	
283 284 285	3 3 3 3	8.8 8.8 8.8	36 36 36	2 2 2	A82163 C82111 A82092 B82093	
286 287 288 289	3 3 3	8.8 8.8 8.8	36 36 36	2 2 2	A82437 A69326 S67795 T22263	
290 291 292 293	3 3 3	8.8 8.8 8.8	36 36 36	2 2 2	A57443 D83682 F84074 A56634	
294 295 296 297 298	3 3 3 3	8.8 8.8 8.8 8.8	36 36 36 37 37	2 2 1 1	S77071 AF1015 AI1841 S32792 HSWT93	

major latex protei hypothetical prote potassium channel homeobox protein hypothetical prote hypothetical prote protein T30E16.7 [hypothetical prote early nodulin 40 hemocyanin M3' - c oncofetal protein hypothetical prote unknown protein en T-cell receptor de T-cell receptor de ribosomal protein ribosomal protein myosin - pig (frag retinoic acid-bind zona pellucida pro virulence-associat methanol dehydroge hypothetical prote acetyl-CoA carboxy hypothetical prote probable membrane hypothetical prote guanylate cyclase hypothetical prote hypothetical prote neuropeptide F - A probable plastoqui hypothetical prote hypothetical prote iberiotoxin - east histone H2A.3 - wh

299	3	8.	8 37	1	ZJBPF4	
300		8.			S48656	
301	3	8.	8 37	2	S03570	
302	3	8.	8 37	2	S39367	
303	3				S06217	
304	3				JH0735	
305	3	8.	8 37	2	A30607	
306	3	8.	8 37	2	I48405	
307	3				B32307	
308	3				S78257	
309	. 3	8.	8 37	2	AH1776	
310	3	3 8.	8 37	2	AI1400	
311	3	8.			E97282	
312		8.				
					F90019	
313	3				PC1121	
314	3	8.	8 37	2	G01887	
315	3	8.	8 37	2	S41509	
316	3				S07517	
317	3				E70241	
318	3	8.	8 37	2	D83199	
319	3	8.	8 37	2	H82304	
320	3				S21132	
321	3				F59103	
322	3		8 37	2	T36662	
323	3	8.	8 37	2	T11815	
324	3				A57127	
325	3					
					C32112	
326	3				G49050	
327	3	3 8.	8 37	2	S68261	
328	3	8.			S49982	
329	3					
					B39030	
330	3				PN0550	
331	3	8.	8 37	2	S70931	
332	, 3	8.	8 37	2	F81403	
333	. 3				R5EC36	
334	. 3					
					C34047	
335	3				T11763	
336	3	8.	8 38	2	S39034	
337	3	8.	8 38	2	PS0129	
338	3				S50764	
339	3				E72247	
340	3				H83113	
341	3	8.	8 38	2	AG0028	
342	3	8.	8 38	2	D91149	
343	3				AF1008	
344	3				PH1920	
345	3		8 38	2	S72344	
346	3	8.	8 38	2	JS0456	
347	3				A60216	
	3					
348					S65416	
349	3		8 38		H91111	
350	3	8.	8 38	2	D90631	
351	3				E72306	
352	3					
					E81873	
353	3				T14885	
354	3		8 38	2	A82478	
355	3				E82463	
	_	- •	30	_		

gene J protein - p fusicoccin recepto trypsin (EC 3.4.21 proteinase omega transforming prote Ig heavy chain V r Ig kappa chain V-I histone H2a - mous ribosomal protein ribosomal protein ribosomal protein ribosomal protein ribosomal protein 50S ribosomal prot antifungal 25K pro MEK kinase - human probable antimutat gene 6.3 protein hypothetical prote hypothetical prote hypothetical prote photosystem II cyt hypothetical prote small hypothetical hypothetical prote diuretic hormone 1 R15 gamma peptide T-cell surface gly hypothetical prote Tcell receptor alp androgen-binding p metabotropic gluta histone-like prote hypothetical prote ribosomal protein stylar glycoprotei acetyl-CoA carboxy lipid transfer pro H-2 class I histoc ribosomal protein ribosomal protein 50S ribosomal prot 50S ribosomal prot 50S ribosomal subu 50S ribosomal chai annexin-like 40K p pilE protein - Nei gene J protein - p hyperglycemic horm pyruvate synthase hypothetical prote hypothetical prote hypothetical prote hypothetical prote hypothetical prote hypothetical prote hypothetical prote

356	3	8.8	38	2	A82450
357	3	8.8	38	2	G64001
358	3	8.8	38	2	D37842
359	3	8.8	38		
360	3			2	B69492
	3	8.8	38	2	S23173
361		8.8	38	2	S58601
362	3	8.8	38	2	T01741
363	3	8.8	38	2	B39888
364	3	8.8	38	2	B49012
365	3	8.8	38	2	A83863
366	3	8.8	38	2	H81603
367	3	8.8	38	2	H81579
368	3	8.8	38	2	E82858
369	3	8.8	38	2	S71381
370	3	8.8	38	2	G71305
371	3	8.8	38	2	B97327
372	3	8.8	38	2	H85994
373	3	8.8	38	2	
374	3				T08652
		8.8	38	2	T14226
375	3	8.8	38	2	AH0774
376	3	8.8	39	1	CTDFAS
377	3	8.8	39	1	HWGH3Z
378	3	8.8	39	1	HWGH4G
379	3	8.8	39	2	B45946
380	3	8.8	39	2	S09645
381	3	8.8	39	2	A01458
382	3	8.8	39	2	PN0127
383	3	8.8	39	2	A61127
384	3	8.8	39	2	A01459
385	3	8.8	39	2	A01457
386	3	8.8	39	2	C55995
387	3	8.8	39	2	PH0878
388	3	8.8	39	2	S72459
389	3	8.8	39		
390	3			2	PQ0011
391	3	8.8	39	2	S63482
392		8.8	39	2	A45793
	3	8.8	39	2	AH2286
393	. 3	8.8	39	2	G64944
394	3	8.8	39	2	A85795
395	3	8.8	39	2	<i>S</i> 78008
396	3	8.8	39	2	H95146
397	3	8.8	39	2	D70239
398	. 3	8.8	- 39	2	C70254
399	3	8.8	39	2	G81899
400	3	8.8	39	2	B81912
401	3	8.8	39	2	B81954
402	3	8.8	39	2	F82329
403	3	8.8	39	2	A44918
404	3	8.8	39	2	S73118
405	3	8.8	39	2	PC4294
406	3	8.8	39	2	T15158
407	3	8.8	39	2	
408	3	8.8	39	2	I46466
409	3	8.8			B40984
410	3		39	2	T03365
411		8.8	39	2	F81587
	3	8.8	.39	2	E81540
412	3	8.8	39	2	C81745

hypothetical prote hypothetical prote hypothetical prote hypothetical prote photosystem I chai hypothetical prote hypothetical prote synapsin I - bovin orf 5' of meg1 - m hypothetical prote hypothetical prote hypothetical prote hypothetical prote lebetin 2 isoform probable ribosomal hypothetical prote 50S ribosomal subu hypothetical prote NADH2 dehydrogenas hypothetical prote corticotropin - sp exendin-3 - Mexica exendin-4 - Gila m gamma-glutamyltran hygromycin-B kinas corticotropin - fi corticotropin - se adrenocorticotropi corticotropin - os corticotropin - ra prostaglandin E2 r Ig kappa chain V r ribosomal protein tubulin beta chain tubulin beta chain actin - nematode (photosystem II pro yebJ protein - Esc hypothetical prote fucosyltransferase hypothetical prote hypothetical prote hypothetical prote hypothetical prote hypothetical prote very hypothetical hypothetical prote lactococcin G pept photosystem II pro high mobility grou hypothetical prote luteinizing hormon finger protein zfe gene e2 protein hypothetical prote hypothetical prote hypothetical prote

410	_			_		
413	3	8.8	39	2	T12905	hypothetical prote
414	3	8.8	39	2	D85739	hypothetical prote
415	3	8.8	39	2	AD0162	hypothetical prote
416	3	8.8	39	2	AE3109	
417	3	8.8	40	1	SWFGS	hypothetical prote
						sauvagine - Sauvag
418	3	8.8	40	2	B61320	plastocyanin - Aqu
419	3	8.8	40	2	S52343	hypothetical prote
420	3	8.8	40	2	S00264	creatine kinase (E
421	3	8.8	40	2	S34407	adenylate kinase (
422	3	8.8	40	2	S03688	type II site-speci
423	3	8.8	40	2	PQ0202	
424	3	8.8	40	2	S50021	endo-1,4-beta-xyla
425	3					trypsin-like prote
		8.8	40	2	B60908	beta-lactamase (EC
426	3	8.8	40	2	B41440	protein disulfide-
427	3	8.8	40	2	A19940	antithrombin III -
428	3	8.8	40	2	B59005	thymosin beta - sc
429	3	8.8	40	2	A59005	thymosin beta - se
430	3	8.8	40	2	B31791	sarcotoxin ID - fl
431	3	8.8	40	2	S07969	
432	3	8.8	40	2	I50012	T-cell receptor al
						MHC class I protei
433	3	8.8	40	2	I50013	MHC class I protei
434	3	8.8	40	2	S61539	ribosomal protein
435	3	8.8	40	2	A60171	proteoglycan core
436	3	8.8	40	2	A60645	tubulin beta chain
437	3	8.8	40	2	A29184	vitellogenin - tur
438	3	8.8	40	2	S65907	conglutin gamma -
439	3	8.8	40	2	S08656	
440	3	8.8	40	2	A53708	protein VI - human
441	3					indolepyruvate syn
		8.8	40	2	T08107	nonenzymatic prote
442	3	8.8	40	2	S71917	hemoglobin, extrac
443	3	8.8	40	2	S58853	homeotic protein u
444	3	8.8	40	2	H95063	hypothetical prote
445	3	8.8	40	2	H91281	hypothetical prote
446	3	8.8	40	2	A87642	hypothetical prote
447	3	8.8	40	2	F87419	hypothetical prote
448	3	8.8	40	2	C32338	
449	3	8.8	40	2		hypothetical 4K pr
450	3				C72398	hypothetical prote
		8.8	40	2	S44935	hypothetical prote
451	3	8.8	40	2	PC4218	hypothetical 40 pr
452	3	8.8	40	2	A82203	hypothetical prote
453	3	8.8	40	2	G82484	hypothetical prote
454	3	8.8	40	2	A82382	hypothetical prote
455	3	8.8	40	2	I39944	regulatory extrace
456	3	8.8	40	2	F69677	phosphatase (RapK)
457	3	8.8	40	2	I41476	probable antigen 9
458	3	8.8	40	2	S27709	
459	3					hypothetical prote
		8.8	40	2	T11811	hypothetical prote
460	3	8.8	40	2	T07472	hypothetical prote
461	3	8.8	40	2	T07516	hypothetical prote
462	3	8.8	40	2	T07523	hypothetical prote
463	3	8.8	40	2	T07560	hypothetical prote
464	3	8.8	40	2	T48629	hypothetical prote
465	3	8.8	40	2	S53001	mitotic-specific c
466	3	8.8	40	2	T03831	
467	3	8.8				hypothetical prote
468			40	2	S56768	capsid protein - L
	3	8.8	40	2	T07206	hypothetical prote
469	3	8.8	40	2	H81592	hypothetical prote

470	3	8.8	40	2	F81511	himothatical arota
471	3	8.8	40	2		hypothetical prote
472	3	8.8	40	2	A82590	hypothetical prote
473	3	8.8	40	2	A86123	hypothetical prote
474	3	8.8	40	2		hypothetical prote
475	2	5.9			B97413	hypothetical prote
			28	1	LFSEW	trp operon leader
476	2	5.9	28	1	LFEBLT	leu operon leader
477	2	5.9	28	1	LFECL	leu operon leader
478	2	5.9	28	1	G9BPSV	gene 9 protein - s
479	2	5.9	28	2	S41774	ubiquinol-cytochro
480	2	5.9	28	2	S71598	cytochrome P450 HP
481	2	5.9	28	2	S04341	cytochrome P450 PB
482	2	5.9	28	2	PX0033	cytochrome P450 te
483	2	5.9	28	2	S66436	allophycocyanin al
484	2	5.9	28	2	S47624	D-aspartate oxidas
485	2	5.9	28	2	T14210	
486	2	5.9	28	2	T14213	NADH2 dehydrogenas
487	2	5.9	28	2	T12301	NADH2 dehydrogenas
488	2	5.9	28			NADH2 dehydrogenas
489	2	5.9		2	PC1162	cytochrome-c oxida
490			28	2	S21278	glutathione transf
	2	5.9	28	2	C33948	glutathione transf
491	2	5.9	28	2	A34244	hexokinase (EC 2.7
492	2	5.9	28	2	D38578	protein kinase 4 (
493	2	5.9	28	2	B39116	epidermal growth f
494	, 2	5.9	28	2	A31859	deoxycytidine kina
495	2	5.9	28	2	B54257	deoxynucleoside ki
496	2	5.9	28	2	I55596	lysosomal acid lip
497	2	5.9	28	2	B35948	phospholipase A2 (
498	2	5.9	28	2	A35115	hypothetical prote
499	2	5.9	. 28	2	A61281	lysozyme homolog A
500	2	5.9	28	2	A61529	
501	2	5.9	28	2	A60291	chymotrypsin (EC 3
502	2	5.9	28	2	S08186	24K proteinase (EC
503	2	5.9	28	2	S55729	proteasome beta ch
504	2	5.9	28	2	I40034	orotidine-5'-monop
505	2	5.9	28	2		trpE protein - Bac
506	2	5.9			A32643	deoxyribodipyrimid
507			28	2	S77854	glutamate-tRNA lig
508	2	5.9	28	2	JX0059	serine proteinase
	2	5.9	28	2	S07156	trypsin inhibitor
509	2	5.9	28	2	JX0058	trypsin inhibitor
510	2	5.9	28	2	B45041	trypsin inhibitor
511	2	5.9	28	2	S20393	trypsin inhibitor
512	2	5.9	28	2	A25802	2S seed storage pr
513	2	5.9	28	2	T47196	RAS protein [impor
514	2	5.9	28	2	A61322	somatostatin-28 -
515	2	5.9	28	2	B60583	glycoprotein hormo
516	2	5.9	28	2	A38232	vasoactive intesti
517	2	5.9	28	2	A60303	
518	2	5.9	28	2	JT0412	vasoactive intesti
519	2	5.9	28	2	A56366	bombyxin-IV chain
520	2	5.9	28	2	C44180	intestinal trefoil
521	2	5.9	28	2	C39327	alpha-neurotoxin-l
522	2	5.9				long neurotoxin -
523	2		28	2	I32529	Ig lambda chain V
524	2	5.9	28	2	PC1001	Ig light chain V r
		5.9	28	2	B47719	T-cell receptor al
525 526	2	5.9	28	2	D47719	T-cell receptor al
526	2	5.9	28	2	S58389	T-cell receptor be
						_

527	2	5.9	28	2	PH0250	m 11
528	2	5.9	28			T-cell receptor Vb
529	2	5.9	28			T-cell receptor Vb
530	2					T-cell receptor va
531	2	5.9	28			T-cell receptor va
		5.9	28			T-cell receptor al
532	2	5.9	28			T-cell receptor be
533	2	5.9	28		G47719	house-dust-mite-re
534	2	5.9	28	2	E49533	T-cell receptor be
535	2	5.9	28	2	I46921	gene Bota protein
536	2	5.9	28	2	S11618	ribosomal protein
537	2	5.9	28	2	S51060	ribosomal protein
538	2	5.9	28	2	S51067	ribosomal protein
539	2	5.9	28	2	S72460	
540	2	5.9	28	2	S08569	ribosomal protein
541	2	5.9	28	2	S55442	ribosomal protein
542	. 2	5.9	28	2	A45626	beta A2 crystallin
543	2	5.9	28	2		beta 2-tubulin - n
544	2	5.9			S21231	calcium-binding pr
545			28	2	A23691	apolipoprotein C-I
	2	5.9	28	2	A05296	fibrinogen alpha c
546	2	5.9	28	2	A61113	cellular retinol-b
547	2	5.9	28	2	B35577	cell adhesion rece
548	2	5.9	28	2	I48349	fibronectin - mous
549	2	5.9	28	2	A61233	retinol-binding pr
550	2	5.9	28	2	I45911	dnaK-type molecula
551	2	5.9	28	2	PQ0263	dnaK-type molecula
552	2	5.9	28	2	A03356	omega-gliadin - ei
553	2	5.9	28	2	A60359	
554	2	5.9	28	2	PQ0691	pollen allergen DG
555	2	5.9	28	2	G32351	photosystem I 5.6K
556	2	5.9	28	2	S47614	34K class B flagel
557	2	5.9	28	2		zinc finger protei
558	2	5.9			S49924	stp protein (Baker
559	2	5.9	28	2	PN0047	signal transductio
560			28	2	B39227	calcium channel pr
	2	5.9	28	2	A36153	major allergen Ole
561	2	5.9	28	2	B54127	dolichyl-diphospho
562	2	5.9	28	2	S56746	alpha-synuclein, N
563	2	5.9	.28	2	I48178	orphan receptor -
564	2	5.9	28	2	S29135	aminopyrine N-deme
565	2	5.9	28	2	S29136	aminopyrine N-deme
566	2	5.9	28	2	PN0625	homeobox JRX prote
567	2	5.9	28	2	B56779	tetM 5'-region lea
568	2	5.9	28	2	JU0297	fruR-shl operon le
569	2	5.9	28	2	G90638	leu operon leader
570	2	5.9	28	2	C90639	
571	2	5.9	28	2	B47310	fruR leader peptid
572	2	5.9	28	2	E64656	MHVS28AA - murine
573	2	5.9	28	2		hypothetical prote
574	2	5.9		2	B64669	hypothetical prote
575	2		28		S15235	hypothetical prote
575 576	2	5.9	28	2	C56262	uvrB 3'-region hyp
576 577		5.9	28	2	E81239	hypothetical prote
	2	5.9	28	2	I60364	phosphorybosylpyro
578 570	2	5.9	28	2	B39191	hypothetical prote
579	2	5.9	28	2	T17391	hypothetical prote
580	2	5.9	28	2	A56499	brevicin-27 - Lact
581	2	5.9	28	2	A41476	probable antigen 1
582	2	5.9	28	2	S16228	aryl acylamidase -
583	2	5.9	28	2	T37143	hypothetical prote
					-	"Thornerical brock

584 585	2	5.9	28			2-ph
586	2	5.9	28			cons
587	2	5.9	28			һуро
588	2 2	5.9	28			hypo
589	2	5.9	28			rRNA
590	2	5.9 5.9	28			3-ox
591	2	5.9	28		~	calm
592	2	5.9	28 28	2		ribo
593	2	5.9	28	2		hypo
594	2	5.9	28	2		pero
595	2	5.9	28	2		hypot
596	2	5.9	28	2		fatty
597	2	5.9	28	2		carbo
598	2	5.9	28	2		hypot
599	2	5.9	28	2		simil
600	2	5.9	28	2		trich
601	2	5.9	28	2		prote
602	2	5.9	28	2	S07826	bdel]
603	2	5.9	28	2	C34923	venon
604	2	5.9	28	2	A44877	omega cell
605	2	5.9	28	2	JW0019	mast
606	2	5.9	28	2	A61273	inter
607	2	5.9	28	2	S68643	nicot
608	2	5.9	28	2	PC2162	angio
609	2	5.9	28	2	I54183	cell
610	2	5.9	28	2	S54338	cytoc
611	2	5.9	28	2	I52627	eryth
612	2	5.9	28	2	JQ1035	hypot
613 614	2	5.9	28	2	PH1335	Ig he
615	2	5.9	28	2	PH1363	Ig he
616	2	5.9	28	2	S37683	prote
617	2	5.9	28	2	S37686	prote
618	2 2	5.9	28	2	PH1911	T-cel:
619	2	5.9	28	2	139288	ZF3 do
620	2	5.9 5.9	28	2	PL0005	pepsi
621	2	5.9	28	2	A60692	proli
622	2	5.9	28	2	PC2239	heat :
623	2	5.9	28 28	2	PT0366	T-cel.
624	2	5.9	28		I58115	cystic
625	2	5.9	28	2 2	A46690 C83797	sialio
626	2	5.9	28	2	C83969	hypoth
627	2	5.9	28	2	S51593	hypoth
628	2	5.9	28	2	C85490	myrB r
629	2	5.9	28	2	C97078	fruR 1
630	2	5.9	28	2	F97000	hypoth
631	2	5.9	28	2	G85489	hypoth
632	2	5.9	28	2	AB1093	leu op
633	2	5.9		2	T06490	hypoth
634	2	5.9		2	AG0516	probab
635	2	5.9		4	I68614	leu op frame
636	2	5.9		4	JN0014	
637	2	5.9		1	TIPU	GABA (A
638	2	5.9		1	TIPU3	trypsi
639	2	5.9	29	1	TIPU2B	trypsi trypsi
640	2	5.9	29	1	GCOPV	glucag
						grucag

hosphinomethylm served hypothet othetical prote othetical prote A N-glycosidase xoacyl-[acyl-ca modulin antagon osomal protein othetical prote oxidase (EC 1.1 othetical 3K pr y-acid-binding ooxypeptidase 3 thetical prote larity to yeas chocyst protein einase inhibit lin B-3 - medi om protein - Am a-agatoxin IIA surface prote cell degranul rleukin-1 - st tinic acetylch otensin II rec adhesion regu chrome P450 CY hrocyte chemok thetical 3.2K eavy chain DJ eavy chain DJ ein IEF SSP 91 ein IEF SSP 92 ll receptor al domain - human in A (EC 3.4.2 ne-rich prote shock protein l receptor be c fibrosis tr .c acid-specif hetical prote hetical prote protein - Mic leader peptid hetical prote hetical prote peron leader hetical prote ble ribuloseperon leader shifted FMR1 A) receptor a in inhibitor in inhibitor in inhibitor glucagon - North A

641	2	5.9	29 1 GCDK	alugamen dud
642	2	5.9	29 1 A61583	glucagon - duck
643	2	5.9	" 	glucagon - ostrich
644	2	5.9	· —	glucagon - Europea
645	2		29 1 GCDF	glucagon - smaller
		5.9	29 1 GCEN	glucagon - elephan
646	2	5.9	29 1 GCTTS	glucagon - slider
647	2	5.9	29 1 TNLJBR	trans-activating t
648	2	5.9	29 1 Q1BP57	
649	2	5.9	29 2 A60558	gene 1.5 protein -
650	2	5.9	29 2 T17079	cytochrome P450 HL
651	2	5.9	· ·	NADH2 dehydrogenas
652	2	5.9	 	flavohemoglobin hm
653	2		29 2 A54234	cytochrome-c oxida
		5.9	29 2 S08201	peroxidase (EC 1.1
654	2	5.9	29 2 A26208	acetyl-CoA C-acety
655	2	5.9	29 2 A22018	phosphotransferase
656	2	5.9	29 2 S46211	kallikmin avo / u
657	2	5.9	29 2 S28174	kallikrein rK8 (pK
658	2	5.9	29 2 A32414	heat-shock protein
659	2	5.9		bothrolysin (EC 3.
660	2	5.9	· · · ·	H+-transporting tw
661			29 2 S02578	H+-transporting tw
	2	5.9	29 2 S23122	peptidylprolyl iso
662	2	5.9	29 2 JU0211	squash-type trypsi
663	2	5.9	29 2 T03653	phospholipid trans
664	2	5.9	29 2 C24536	phosphoripid trails
665	2	5.9	29 2 C25310	alpha-amylase/tryp
666	2	5.9	29 2 D55998	alpha-amylase/tryp
667	2	5.9		brevinin-2Ed - edi
668	2	5.9		brevinin-2Ee - edi
669			29 2 A61509	islet amyloid poly
	2	5.9	29 2 A91740	glucagon - turkey
670	2	5.9	29 2 A91741	glucagon - rabbit
671	2	5.9	29 2 A91742	glucagon - Arabian
672	2	5.9	29 2 S07211	glucagon - Alabian
673	2	5.9	29 2 A61135	glucagon - marbled
674	2	5.9	29 2 C39258	glucagon - bigeye
675	2	5.9	29 2 C60840	glucagon - common
676	2	5.9		glucagon I - Europ
677	2		29 2 S39018	glucagon - bowfin
678		5.9	29 2 A39462	cholestokinin - do
	2	5.9	29 2 A60791	toxin II.9 - scorp
679	2	5.9	29 2 A43620	omega-conotoxin GV
680	2	5.9	29 2 B43620	
681	2	5.9	29 2 A58537	omega-conotoxin GV
682	2	5.9	29 2 I52628	omega-conotoxin MV
683	2	5.9	29 2 C61233	low affinity nerve
684	2	5.9		conceptus protein
685	2		29 2 S10061	Ig heavy chain (cl
686		5.9	29 2 PH1328	Ig heavy chain DJ
	2	5.9	29 2 PH0239	T-cell receptor Vb
687	2	5.9	29 2 PH0251	T-cell receptor Vb
688	2	5.9	29 2 PH0254	T coll receptor vp
689	2	5.9	29 2 РН0233	T-cell receptor Vb
690	2	5.9	29 2 E31485	T-cell receptor Vb
691	2	5.9	29 2 H31485	Ig heavy chain V r
692	2	5.9	-	Ig kappa chain V r
693	2	5.9		T-cell receptor de
694			29 2 C47719	T-cell receptor al
	2	5.9	29 2 E47719	house-dust-mite-re
695	2	5.9	29 2 PS0134	H-2 class I histoc
696	2	5.9	29 2 PS0132	H-2 class I histoc
697	2	5.9	29 2 D32533	clace II bi
			- 	class II histocomp

698 699 700 701 702 703 704 705 706 707 708 709 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 749 749 749 749 749 749 749 749 749	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	99999999999999999999999999999999999999	25 25 25 25 25 25 25 25 25 25 25 25 25 2		137535 137536 137536 137536 137536 137301 137303 137306 150214 S07771 T04412 S51070 S08555 PC4231 S10050 S10049 S26229 A27561 S10725 E33208 C33208 D33208 D33208 D45474 G39690 A61166 152402 S00564 S57232 A43038 T12082 S70328 S29208 S07055 S05032 S32733 S70328 S29208 S07055 S05032 S32733 S70513 S14040 E64586 B64607 G83440 A49288 B81136
746 747 748	2 2 2	5.9 5.9 5.9	29 29 29 29 29 29 29	2 2 2 2 2 2 2 2 2	B64607 G83440 A49288

gene HLA-DRB prote gene HLA-DRB prote MHC class II histo MHC class II histo HLA-DR beta - huma HLA-DR beta - huma protein-tyrosine-p histone H2B.2, spe histone H3 - barle ribosomal protein ribosomal protein ribosomal protein ribosomal protein ribosomal protein ribosomal protein Meth A tumor-speci calmodulin-binding calreticulin, uter calreticulin, slow calreticulin, brai thrombospondin 2 neural cell adhesi endometrial proges alpha-fetoprotein enamel protein - r homeotic protein s auxin-binding prot proline-rich prote gamma35 secalin avenin gamma-3 - o photosystem I prot photosystem II pro gene VII protein finger protein (cl probable precorrin high conductance c hypothetical prote photosystem II 5K glycine reductase delta-conotoxin Gm homeotic protein labial protein (cl homeotic protein homeotic protein homeotic protein gene 5.1 protein hypothetical prote hypothetical prote hypothetical prote KdpF protein PA163 alcohol dehydrogen hypothetical prote hypothetical prote hypothetical prote repY protein - Esc aadB protein - Kle S-layer protein va

755 756 757 758 759 761 762 763 764 765 767 777 778 777 778 777 778 781 782 783 784 785 787 789 791 793 794 795 796 797 798 801 802 803 804 805 809 811	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	99999999999999999999999999999999999999	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	99 29 29 29 29 29 29 29 29 29 29 29 29 2	2 B48363 C40638 S05224 B56817 S74572 C60743 S67989 S14099 S77569 S21222 S03947 T34643
--	---	--	---------------------------------------	--	--

hypothetical prote 2-hydroxyglutarylorf 3' of cycl - R photosystem I 4.8K photosystem I chai hypothetical prote putrescine carbamo HA-19/HA-52 protei 12-alpha-hydroxyst plantaricin SA6 -48K protein - Euba hydrogen dehydroge hypothetical prote hypothetical prote probable small mem endo-1,4-beta-xyla hypothetical prote hypothetical prote hypothetical prote conserved hypothet hypothetical prote hypothetical prote hypothetical prote hypothetical prote hypothetical prote rRNA N-glycosidase translation elonga allantoinase (EC 3 globulin 2a - taro prolamin alpha-1 malate dehydrogena hypothetical 3K pr hypothetical prote alanine transamina protein YDR524w-a 2,3-dihydroxybenzo variant surface gl repetitive protein cuticle protein 36 E75 steroid recept ceratotoxin A - Me ceratotoxin B - Me lectin - namazu (f biotin-binding pro c-mil protein - ch non-collagenous al 70k thyroid autoan carcinoembryonic a CD44SP - human diazepam binding i hyaluronate recept splicing regulator T-cell receptor ga glutathione peroxi mammary-derived gr oviduct-specific s antigen WC1 [impor

812	2	5.9	20 2 340470	
813	2	5.9	29 2 A49410	t-complex polypept
814	2		29 2 PS0125	H-2 class I histoc
815		5.9	29 2 S46929	teg169 protein - m
	2	5.9	29 2 S38749	vimentin homolog -
816	2	5.9	29 2 S42764	Ca2+/calmodulin-de
817	2	5.9	29 2 A49708	synaptosomal-assoc
818	2	5.9	29 2 н83777	hymothetical
819	2	5.9	29 2 C83833	hypothetical prote
820	. 2	5.9	29 2 F83870	hypothetical prote
821	2	5.9	29 2 B84144	hypothetical prote
822	2	5.9	29 2 PC4421	hypothetical prote
823	2	5.9	29 2 B85840	multactivase (EC 3
824	2	5.9	29 2 C85840	hypothetical prote
825	2	5.9	29 2 G86058	hypothetical prote
826	2	5.9	29 2 E89904	hypothetical prote
827	2	5.9		hypothetical prote
828	2	5.9		hypothetical prote
829	2	5.9		inorganic diphosph
830	2		29 2 PQ0782	NADH2 dehydrogenas
831		5.9	29 2 S34762	L-serine ammonia-l
	2	5.9	29 2 AB0717	hypothetical prote
832	2	5.9	29 2 AC0717	hypothetical prote
833	2	5.9	29 2 AH2338	PetN protein [impo
834	2	5.9	29 4 158970	hypothetical prote
835	2	5.9	30 1 AIBSAF	thormorphili-
836	2	5.9	30 1 TIPU1W	thermophilic amino
837	2	5.9	30 1 OEON2K	trypsin inhibitor
838	2	5.9	30 1 IRTRC3	beta-endorphin II
839	2	5.9	30 1 IRTRC2	protamine CIII, ma
840	2	5.9	30 1 IRTR78	protamine la - rai
841	2	5.9	30 1 IRTR4	protamine CIII, mi
842	2	5.9	30 1 CLHRY2	protamine pTP4 - r
843	2	5.9	30 1 CLHR12	protamine YII - Pa
844	2	5.9		protamine YII - At
845	2	5.9		sillucin - Rhizomu
846	2	5.9		ubiquinol-cytochro
847	2	5.9	30 2 152254	gene CYP11B2 prote
848	2	5.9	30 2 B56859	fatty acid omega-h
849	2		30 2 A27375	photosystem I iron
850	2	5.9	30 2 S11131	NADH2 dehydrogenas
851	2	5.9	30 2 S14214	NADH2 dehydrogenas
852		5.9	30 2 PQ0723	parvalbumin [impor
853	2	5.9	30 2 S08202	peroxidase (EC 1.1
854	2	5.9	30 2 S08204	peroxidase (EC 1.1
	2	5.9	30 2 S08203	peroxidase (EC 1.1
855	2	5.9	30 2 A39089	hydrogenase (EC 1.1
856	2	5.9	30 2 138066	nitric-oxide synth
857	2	5.9	30 2 139799	CAT-66 - Bacillus
858	2	5.9	30 2 A18780	dimothylallal
859	2	5.9	30 2 S03283	dimethylallyltrans
860	2	5.9	30 2 A28562	methionine adenosy
861	2	5.9	30 2 B27103	glutathione transf
862	2	5.9	30 2 A27103	aspartate transami
863	2	5.9	30 2 I55427	aspartate transami
864	2	5.9	30 2 A49955	aspartate transami
865	2	5.9		protein-tyrosine k
866	2	5.9		nigroxin A – black
867	2	5.9		nigroxin B - black
868	2	5.9	30 2 S15678	acetylcholinestera
-	-	ر. ر	30 2 A05004	pancreatic ribonuc

0.00				_		1
869	2	5.9	30	2	A44598	endo-1,4-beta-xyla
870	2	5.9	30	2	PC2361	alpha-glucosidase
871	2	5.9	30	2	PX0073	epoxide hydrolase
872	2	5.9	30	2	B60291	
873	2	5.9	30	2		30K serine protein
					A27634	major fecal allerg
874	2	5.9	30	2	B27634	major fecal allerg
875	2	5.9	30	2	I77411	renin-2 - mouse (f
876	2	5.9	30	2	PC2328	proteasome endopep
877	2	5.9	30	2	A34486	inorganic diphosph
878	2	5.9	30	2	S21816	
879	2	5.9	30	2		H+-exporting ATPas
880					S21814	H+-exporting ATPas
	2	5.9	30	2	S74121	fructose-bisphosph
881	2	5.9	30	2	S25666	phosphopyruvate hy
882	2	5.9	30	2	S69600	peptidylprolyl iso
883	2	5.9	30	2	A60517	alpha-1-antitrypsi
884	2	5.9	30	2	S24979	proteinase inhibit
885	2	5.9	30	2	JX0057	
886	2	5.9	30	2	JS0579	trypsin inhibitor
887	2					squash-type trypsi
		5.9	30	2	JQ1958	trypsin inhibitor
888	2	5.9	30	2	PC1113	proteinase inhibit
889	2	5.9	30	2	C42842	antifungal 2S stor
890	2	5.9	30	2	S70341	napin large chain
891	2	5.9	30	2	S70343	napin large chain
892	2	5.9	30	2	A33308	
893	2	5.9	30	2		thrombomodulin - r
894	2	5.9			S01657	atrial natriuretic
			30	2	A61130	somatotropin - Ame
895	2	5.9	30	2	\$444 73	glucagon-like pept
896	2	5.9	30	2	A59076	defensin alpha-1 -
897	2	5.9	30	2	B59076	defensin alpha-2 -
898	2	5.9	30	2	C59076	defensin alpha-3 -
899	2	5.9	30	2	B60791	toxin II.6 - scorp
900	2	5.9	30	2	A31187	
901	2	5.9	30	2		neurotoxin II.22.5
902	2				168109	interferon alpha-W
		5.9	30	2	C49533	T-cell receptor al
903	2	5.9	30	2	S20778	Ig heavy chain V r
904	2	5.9	30	2	PL0092	Ig heavy chain V r
905	2	5.9	30	2	PH0245	T-cell receptor Vb
906	2	5.9	30	2	PH0228	T-cell receptor Vb
907	2	5.9	30	2	PH0252	T goll regenter the
908	2	5.9	30	2	PH0882	T-cell receptor Vb
909	2	5.9				Ig kappa chain V r
910			30	2	E31461	T-cell receptor de
	2	5.9	30	2	PH0235	T-cell receptor Vb
911	2	5.9	30	2	A49533	T-cell receptor al
912	2	5.9	30	2	C27579	T-cell receptor be
913	2	5.9	30	2	I37626	Fc gamma (IgG) rec
914	2	5.9	30	2	PS0121	H-2 class I histoc
915	2	5.9	30	2	S74192	
916	2	5.9	30	2		crotoxin inhibitor
917	2				A05253	hemoglobin epsilon
		5.9	30	2	A21680	hemoglobin epsilon
918	2	5.9	30	2	A05254	hemoglobin epsilon
919	2	5.9	30	2	S68618	histone H2B - sea
920	2	5.9	30	2	PD0014	cAMP response elem
921	2	5.9	30	2	PN0651	restriction endonu
922	2	5.9	30	2	S11613	ribosomal protein
923	2	5.9	30	2	B29164	
924	2	5.9	30	2	A60511	cartilage proteogl
925	2	5.9				gamma-crystallin -
723	4	٥.۶	30	2	149412	gamma-crystallin-3

926	2	5.9	30	2	S12965
927	2	5.9	30	2 -	S69269
928	2	5.9	30	2	A61189
929	2	5.9	30	2	I52806
930	2	5.9	30	2	S21153
931	2	5.9	30	2	A26188
932	2	5.9	30	2	A56790
933	2	5.9	30	2	A34622
934	2	5.9	30	2	A03148
935	2	5.9	30	2	A48299
936	2		30	2	
		5.9			B61511
937	2	5.9	30	2	B39819
938	. 2	5.9	30	2	A38933
939	2	5.9	30	2	S57234
940	2	5.9	30	2	S69124
941	2	5.9	30	2	S69125
942	2	5.9	30	2	S07065
943		5.9		2	
	2		30		A31836
944	2	5.9	30	2	PQ0669
945	2	5.9	30	2	E45095
946	2	5.9	30	2	B45095
947	2	5.9	30	2	A44913
948	2	5.9	30	2	B24987
949	2	5.9	30	2	S30757
950	2	5.9	30	2	S30760
951	2	5.9	30	2	S30759
952	2	5.9	30	2	B44314
953	2	5.9	30	2	S13753
954	2	5.9	30	2	S26175
955	2	5.9	30	2	S69352
956	2	5.9	30	2	S68312
957	2	5.9	30	2	PH1228
958	2	5.9	30	2	S42364
959	2	5.9	30	2	S05223
960	2	5.9	30	2	S28991
961	2	5.9	30	2	PC2307
962	2	5.9	30	2	PQ0484
963	2	5.9	30	2	C43591
964	2	5.9	30	2	B43591
	2				
965	_	5.9	30	.2	S06411
966	2	5.9	30	2	B49292
967	2	5.9	30	2	A60914
968	2	5.9	30	2	PS0437
969	2	5.9	.30	2	PS0438
970	2	5.9	30	2	A47607
971	2	5.9	30	2	S02088
972	2	5.9	30	2	S29138
973	2	5.9	30	2	S57227
974	2	5.9	30	2	H95008
975	2	5.9	30	2	C95030
976	2	5.9	30	2	G95031
977	2	5.9	30	2	E95079
978	2	5.9	30	2	F95118
	2				
979		5.9	30	2	E95145
980	2	5.9	30	2	F89406
981	2	5.9	30	2	F87254
982	2	5.9	30	2	E84786
	_	J.J		_	_52.00

gamma-crystallin ezrin homolog - bo tubulin beta chain Duchenne muscular calcium-binding pr lipocortin I - pig annexin, isoform P fibrinogen beta ch retinol-binding pr taurine transporte serum albumin, mil neutrophil chemota vitronectin - bovi fushi tarazu segme rRNA N-glycosidase rRNA N-glycosidase rRNA N-glycosidase 17K antigen - Rick photosystem I 17.5 photosystem I ligh photosystem I ligh 34K core flagella regulatory protein genome polyprotein genome polyprotein genome polyprotein intracisternal A p replication initia tail tubular prote N-methylhydantoin glucuronosyltransf D-aminoacylase (EC aromatic-amino-aci photosystem I 6.5K antifungal protein X-Pro aminopeptida globulin 1b - taro 51K outer membrane 45K outer membrane killer plasmid 28K GDP dissociation i pheromone-binding potassium channel potassium channel immunogenic protei blood group Rh-rel aniline monooxygen proboscipedia prot hypothetical prote hypothetical prote hypothetical prote hypothetical prote hypothetical prote hypothetical prote protein R10E8.7 [i hypothetical prote hypothetical prote

hypothetical prote	C84481	2	30	5.9	2	983
cysteine-rich para	B47483	2	30	5.9	2	984
hypothetical prote	S15141	2	30	5.9	2	985
hypothetical prote	S13985	2	30	5.9	2	986
hypothetical prote	S14038	2	30	5.9	2	987
hypothetical prote	S13994	2	30	5.9	2	988
hypothetical prote	A72205	2	30	5.9	2	989
hypothetical prote	E72356	2	30	5.9	2	990
hypothetical prote	H72312	2	30	5.9	2	991
trimethylamine deh	S66448	2	30	5.9	2	992
conserved hypothet	A70105	2	30	5.9	2	993
hypothetical prote	F70118	2	30	5.9	2	994
hypothetical prote	D70144	2	30	5.9	2	995
hypothetical prote	H70152	2	30	5.9	2	996
hypothetical prote	A70209	2	30	5.9	2	997
hypothetical prote	E70246	2	30	5.9	2	998
hypothetical prote	F70253	2	30	5.9	2	999
hypothetical prote	F70254	2	30	5.9	2	1000

ALIGNMENTS

```
RESULT 1
A84241
hypothetical protein Vng0840h [imported] - Halobacterium sp. NRC-1
C; Species: Halobacterium sp. NRC-1
C;Date: 02-Feb-2001 #sequence_revision 02-Feb-2001 #text_change 02-Feb-2001
C; Accession: A84241
R; Ng, W.V.; Kennedy, S.P.; Mahairas, G.G.; Berquist, B.; Pan, M.; Shukla, H.D.;
Lasky, S.R.; Baliga, N.; Thorsson, V.; Sbrogna, J.; Swartzell, S.; Weir, D.;
Hall, J.; Dahl, T.A.; Welti, R.; Goo, Y.A.; Leithauser, B.; Keller, K.; Cruz,
R.; Danson, M.J.; Hough, D.W.; Maddocks, D.G.; Jablonski, P.E.; Krebs, M.P.;
Angevine, C.M.; Dale, H.; Isenbarger, T.A.; Peck, R.F.; Pohlschrod, M.; Spudich,
J.L.; Jung, K.H.; Alam, M.; Freitas, T.
Proc. Natl. Acad. Sci. U.S.A. 97, 12176-12181, 2000
A; Authors: Hou, S.; Daniels, C.J.; Dennis, P.P.; Omer, A.D.; Ebhardt, H.; Lowe,
T.M.; Liang, P.; Riley, M.; Hood, L.; DasSarma, S.
A; Title: Genome sequence of Halobacterium species NRC-1.
A; Reference number: A84160; MUID: 20504483; PMID: 11016950
A; Accession: A84241
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-34 <STO>
A; Cross-references: GB: AE004437; NID: g10580410; PIDN: AAG19293.1; GSPDB: GN00138
C; Genetics:
A;Gene: VNG0840H
  Query Match
                          14.7%; Score 5; DB 2; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 97;
  Matches
             5; Conservative 0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
Qу
           24 LRKKL 28
```

1111

26 LRKKL 30

Db

```
RESULT 2
B97032
transcription regulator, AcrR family [imported] - Clostridium acetobutylicum
C; Species: Clostridium acetobutylicum
C;Date: 14-Sep-2001 #sequence_revision 14-Sep-2001 #text change 14-Sep-2001
C; Accession: B97032
R; Nolling, J.; Breton, G.; Omelchenko, M.V.; Markarova, K.S.; Zeng, Q.; Gibson,
R.; Lee, H.M.; Dubois, J.; Qiu, D.; Hitti, J.; Wolf, Y.I.; Tatusov, R.L.;
Sabathe, F.; Doucette-Stamm, L.; Soucaille, P.; Daly, M.J.; Bennett, G.N.;
Koonin, E.V.; Smith, D.R.
J. Bacteriol. 183, 4823-4838, 2001
A; Title: Genome Sequence and Comparative Analysis of the Solvent-Producing
Bacterium Clostridium acetobutylicum.
A; Reference number: A96900; MUID: 21359325; PMID: 21359325
A; Accession: B97032
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-34 < KUR>
A; Cross-references: GB: AE001437; PIDN: AAK79045.1; PID: g15023984; GSPDB: GN00168
A; Experimental source: Clostridium acetobutylicum ATCC824
C; Genetics:
A;Gene: CAC1071
  Query Match
                          14.7%; Score 5; DB 2; Length 34;
  Best Local Similarity 100.0%; Pred. No. 97;
                                                    0; Indels
            5; Conservative 0; Mismatches
                                                                  0; Gaps
  Matches
            1 SVSEI 5
QУ
              30 SVSEI 34
Db
RESULT 3
hypothetical protein SP0853 [imported] - Streptococcus pneumoniae (strain TIGR4)
C; Species: Streptococcus pneumoniae
C;Date: 03-Aug-2001 #sequence revision 03-Aug-2001 #text_change 03-Aug-2001
C; Accession: E95098
R; Tettelin, H.; Nelson, K.E.; Paulsen, I.T.; Eisen, J.A.; Read, T.D.; Peterson,
S.; Heidelberg, J.; DeBoy, R.T.; Haft, D.H.; Dodson, R.J.; Durkin, A.S.; Gwinn,
M.; Kolonay, J.F.; Nelson, W.C.; Peterson, J.D.; Umayam, L.A.; White, O.;
Salzberg, S.L.; Lewis, M.R.; Radune, D.; Holtzapple, E.; Khouri, H.; Wolf, A.M.;
Utterback, T.R.; Hansen, C.L.; McDonald, L.A.; Feldblyum, T.V.; Angiuoli, S.;
Dickinson, T.; Hickey, E.K.; Holt, I.E.
Science 293, 498-506, 2001
A; Authors: Loftus, B.J.; Yang, F.; Smith, H.O.; Venter, J.C.; Dougherty, B.A.;
Morrison, D.A.; Hollingshead, S.K.; Fraser, C.M.
A; Title: Complete Genome Sequence of a virulent isolate of Streptococcus
pneumoniae.
A; Reference number: A95000; MUID: 21357209; PMID: 11463916
A; Accession: E95098
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-35 < KUR>
A;Cross-references: GB:AE005672; PIDN:AAK74982.1; PID:g14972326; GSPDB:GN00164;
TIGR:SP4SP0853
A; Experimental source: strain TIGR4
```

```
C; Genetics:
A;Gene: SP0853
  Query Match
                          14.7%; Score 5; DB 2; Length 35;
  Best Local Similarity 100.0%; Pred. No. 1e+02;
  Matches
            5; Conservative 0; Mismatches
                                                  0; Indels
                                                                  0; Gaps
                                                                              0;
           26 KKLQD 30
Qу
              11111
Db
           30 KKLQD 34
RESULT 4
T09594
gene LFY protein - Monterey pine (fragment)
C; Species: Pinus radiata (Monterey pine)
C;Date: 16-Jul-1999 #sequence revision 16-Jul-1999 #text change 16-Jul-1999
C; Accession: T09594
R; Izquierdo, L.Y.; Vergara, R.F.; Alvarez-Buylla, E.R.
submitted to the EMBL Data Library, August 1996
A; Description: Partial characterization of Pinus radiata meristem identity
homolog gene (LFY).
A; Reference number: Z16756
A; Accession: T09594
A; Status: preliminary; translated from GB/EMBL/DDBJ
A; Molecule type: DNA
A; Residues: 1-28 <IZQ>
A; Cross-references: EMBL: U66725; NID: g1513305; PID: g1513306
C; Genetics:
A; Gene: LFY
C; Function:
A; Description: controls meristem identity
  Query Match
                          11.8%; Score 4; DB 2; Length 28;
  Best Local Similarity
                          100.0%; Pred. No. 9.7e+02;
  Matches
             4; Conservative
                                0; Mismatches
                                                  0; Indels
                                                                  0; Gaps
                                                                              0;
           24 LRKK 27
Qу
              Db
           15 LRKK 18
RESULT 5
A55527
pyrroloquinoline quinone precursor pqqD - Methylobacterium extorquens
C; Species: Methylobacterium extorquens
C;Date: 18-Feb-2000 #sequence revision 18-Feb-2000 #text change 18-Feb-2000
C; Accession: A55527
R; Morris, C.J.; Biville, F.; Turlin, E.; Lee, E.; Ellermann, K.; Fan, W.H.;
Ramamoorthi, R.; Springer, A.L.; Lidstrom, M.E.
J. Bacteriol. 176, 1746-1755, 1994
A; Title: Isolation, phenotypic characterization, and complementation analysis of
mutants of Methylobacterium extorquens AM1 unable to synthesize pyrroloquinoline
quinone and sequences of pqqD, pqqG, and pqqC.
A; Reference number: A55527; MUID: 94179111; PMID: 8132470
A; Accession: A55527
```

A; Status: preliminary

```
A; Molecule type: DNA
 A; Residues: 1-29 < MOR>
A; Cross-references: GB:L25889; NID:g414589; PIDN:AAA17878.1; PID:g414590
 C; Genetics:
A;Gene: pqqD
 C; Superfamily: pyrroloquinoline quinone precursor pqqA
 C; Keywords: quinoprotein
 F;16,20/Product: pyrroloquinoline quinone #status predicted <MAT>
 F;16-20/Cross-link: pyrroloquinoline quinone (Glu, Tyr) #status predicted
  Query Match
                           11.8%; Score 4; DB 1; Length 29;
  Best Local Similarity
                          100.0%; Pred. No. 1e+03;
  Matches
            4; Conservative 0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
Qу
            2 VSEI 5
              Db
            8 VSEI 11
RESULT 6
S01614
dystrophin - rat (fragment)
C; Species: Rattus norvegicus (Norway rat)
C;Date: 07-Sep-1990 #sequence revision 07-Sep-1990 #text change 20-Jun-2000
C; Accession: S01614
R; Nudel, U.; Robzyk, K.; Yaffe, D.
Nature 331, 635-638, 1988
A; Title: Expression of the putative Duchenne muscular dystrophy gene in
differentiated myogenic cell cultures and in the brain.
A; Reference number: S01614; MUID: 88122671; PMID: 3340214
A; Accession: S01614
A; Status: translation not shown
A; Molecule type: DNA
A; Residues: 1-29 < NUD>
A; Cross-references: EMBL:X07000; NID:g56137; PIDN:CAA30057.1; PID:g1334214
C; Genetics:
A; Map position: X
C; Superfamily: dystrophin; alpha-actinin actin-binding domain homology;
spectrin/dystrophin repeat homology; WW repeat homology
C; Keywords: actin binding; cytoskeleton
  Query Match
                          11.8%; Score 4; DB 2; Length 29;
  Best Local Similarity
                         100.0%; Pred. No. 1e+03;
  Matches
             4; Conservative
                                0; Mismatches
                                                 0; Indels
                                                                  0; Gaps
                                                                              0;
Qу
           27 KLOD 30
              1111
Dh
           12 KLQD 15
RESULT 7
I78537
copper transporting P-type ATPase - human (fragment)
C; Species: Homo sapiens (man)
C;Date: 29-May-1998 #sequence revision 29-May-1998 #text_change 21-Jul-2000
C; Accession: 178537
R; Thomas, G.R.; Forbes, J.R.; Roberts, E.A.; Walshe, J.M.; Cox, D.W.
```

```
Nature Genet. 9, 210-217, 1995
A; Title: The Wilson disease gene: spectrum of mutations and their consequences.
A; Reference number: I58128; MUID: 95235569; PMID: 7626145
A; Accession: I78537
A; Status: preliminary; translated from GB/EMBL/DDBJ
A; Molecule type: DNA
A; Residues: 1-29 < RES>
A; Cross-references: GB:S77450; NID:g957354; PIDN:AAB34087.1; PID:g957355
C; Genetics:
A; Gene: GDB: ATP7B
A; Cross-references: GDB:120494; OMIM:277900
A; Map position: 13q14.3-13q21.1
                          11.8%; Score 4; DB 2; Length 29;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1e+03;
             4; Conservative
                                0; Mismatches
                                                   0;
                                                       Indels
                                                                  0; Gaps
                                                                              0;
            3 SEIQ 6
Qу
              Db
           14 SEIQ 17
RESULT 8
S78412
ribosomal protein RL22/RL24, mitochondrial [validated] - rat (tentative
sequence) (fragment)
C; Species: Rattus norvegicus (Norway rat)
C;Date: 25-Feb-1998 #sequence revision 13-Mar-1998 #text change 21-Jul-2000
C; Accession: S78412; S78413
R; Goldschmidt-Reisin, S.; Graack, H.R.
submitted to the Protein Sequence Database, February 1998
A; Reference number: S78411
A; Accession: S78412
A; Molecule type: protein
A; Residues: 1-29 <GOL>
A; Note: the protein is designated as mitochondrial ribosomal protein L22
A; Accession: S78413
A; Molecule type: protein
A; Residues: 1-10, 'XXP', 14-15, 'X', 17-24 <GO2>
A; Note: the protein is designated as mitochondrial ribosomal protein L24
C; Keywords: mitochondrion; protein biosynthesis; ribosome
  Query Match
                          11.8%; Score 4; DB 2; Length 29;
  Best Local Similarity
                          100.0%; Pred. No. 1e+03;
  Matches
             4; Conservative
                                0; Mismatches
                                                  0; Indels
           24 LRKK 27
Qу
              4 LRKK 7
Db
RESULT 9
S63531
hypothetical protein 1 - Sulfolobus solfataricus (fragment)
C; Species: Sulfolobus solfataricus
C;Date: 28-Oct-1996 #sequence revision 13-Mar-1997 #text change 17-Mar-1999
C; Accession: S63531
```

```
R; Jones, C.E.; Fleming, T.M.; Cowan, D.A.; Littlechild, J.A.; Piper, P.W.
Eur. J. Biochem. 233, 800-808, 1995
A; Title: The phosphoglycerate kinase and glyceraldehyde-3-phosphate
dehydrogenase genes from the thermophilic archaeon Sulfolobus solfataricus
overlap by 8-bp: isolation, sequencing of the genes and expression in
Escherichia coli.
A; Reference number: S63528; MUID: 96085144; PMID: 8521845
A; Accession: S63531
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-30 < JON>
A; Cross-references: EMBL: X80178
                          11.8%; Score 4; DB 2; Length 30;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 1e+03;
           4; Conservative
                                0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0;
           23 WLRK 26
Qу
              1111
Db
           11 WLRK 14
RESULT 10
S44471
glucagon G1 - North American paddlefish (Polyodon spathula)
C; Species: Polyodon spathula
C;Date: 18-Sep-1997 #sequence revision 18-Sep-1997 #text change 07-May-1999
C; Accession: S44471
R; Nguyen, T.M.; Mommsen, T.P.; Mims, S.M.; Conlon, J.M.
Biochem. J. 300, 339-345, 1994
A; Title: Characterization of insulins and proglucagon-derived peptides from a
phylogenetically ancient fish, the paddlefish (Polyodon spathula).
A; Reference number: S44467; MUID: 94271144; PMID: 8002937
A; Accession: S44471
A; Molecule type: protein
A; Residues: 1-31 <NGU>
A; Experimental source: pancreas
C; Superfamily: glucagon
C; Keywords: carbohydrate metabolism; duplication; hormone; pancreas
F;1-31/Product: glucagon G1 #status predicted <MAT>
  Query Match
                          11.8%; Score 4; DB 2; Length 31;
  Best Local Similarity
                          100.0%; Pred. No. 1.1e+03;
             4; Conservative
                                0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0;
           21 VEWL 24
Qу
              Db
           23 VEWL 26
RESULT 11
S44472
glucagon G2 - North American paddlefish (Polyodon spathula)
C; Species: Polyodon spathula
C;Date: 19-Mar-1997 #sequence_revision 12-Dec-1997 #text_change 07-May-1999
C; Accession: S44472
R; Nguyen, T.M.; Mommsen, T.P.; Mims, S.M.; Conlon, J.M.
```

```
Biochem. J. 300, 339-345, 1994
A; Title: Characterization of insulins and proglucagon-derived peptides from a
phylogenetically ancient fish, the paddlefish (Polyodon spathula).
A; Reference number: S44467; MUID: 94271144; PMID: 8002937
A; Accession: S44472
A; Molecule type: protein
A; Residues: 1-31 < NGU>
A; Note: the sequence from Fig. 3 is inconsistent with that from Fig. 5 in having
29-Glu
C; Superfamily: glucagon
C; Keywords: carbohydrate metabolism; duplication; hormone; pancreas
F;1-31/Product: glucagon G2 #status predicted <GCN>
  Query Match
                          11.8%; Score 4; DB 2; Length 31;
  Best Local Similarity
                          100.0%; Pred. No. 1.1e+03;
                                                    0; Indels
             4; Conservative
                                 0; Mismatches
                                                                  0; Gaps
                                                                              0;
           21 VEWL 24
Qу
              1111
Db
           23 VEWL 26
RESULT 12
D70236
hypothetical protein BBH11 - Lyme disease spirochete plasmid H/lp28-3
C; Species: Borrelia burgdorferi (Lyme disease spirochete)
C;Date: 13-Feb-1998 #sequence revision 13-Feb-1998 #text change 08-Oct-1999
C; Accession: D70236
R; Fraser, C.M.; Casjens, S.; Huang, W.M.; Sutton, G.G.; Clayton, R.; Lathigra,
R.; White, O.; Ketchum, K.A.; Dodson, R.; Hickey, E.K.; Gwinn, M.; Dougherty,
B.; Tomb, J.F.; Fleischmann, R.D.; Richardson, D.; Peterson, J.; Kerlavage,
A.R.; Quackenbush, J.; Salzberg, S.; Hanson, M.; Vugt, R.V.; Palmer, N.; Adams,
M.D.; Gocayne, J.; Weidman, J.; Utterback, T.; Watthey, L.; McDonald, L.;
Artiach, P.; Bowman, C.; Garland, S.; Fujii, C.; Cotton, M.D.; Horst, K.;
Roberts, K.; Hatch, B.
Nature 390, 580-586, 1997
A; Authors: Smith, H.O.; Venter, J.C.
A; Title: Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi.
A; Reference number: A70100; MUID: 98065943; PMID: 9403685
A; Accession: D70236
A; Status: preliminary; nucleic acid sequence not shown; translation not shown
A; Molecule type: DNA
A; Residues: 1-31 < KLE>
A; Cross-references: GB: AE000784; NID: q2690041; PIDN: AAC66002.1; PID: q2690058;
TIGR:BBH11
A; Experimental source: strain B31
C; Genetics:
A; Genome: plasmid
  Query Match
                          11.8%; Score 4; DB 2; Length 31;
  Best Local Similarity 100.0%; Pred. No. 1.1e+03;
  Matches
             4; Conservative
                               0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0;
Qу
           26 KKLQ 29
              1111
Db
           26 KKLQ 29
```

```
RESULT 13
F23454
ovalbumin phosphoserine peptide - fulvous whistling-duck (fragments)
C; Species: Dendrocygna bicolor (fulvous whistling-duck)
C;Date: 05-Jun-1987 #sequence revision 05-Jun-1987 #text change 13-Mar-1998
C; Accession: F23454
R; Henderson, J.Y.; Moir, A.J.G.; Fothergill, L.A.; Fothergill, J.E.
Eur. J. Biochem. 114, 439-450, 1981
A; Title: Sequences of sixteen phosphoserine peptides from ovalbumins of eight
species.
A; Reference number: A91106; MUID: 81164535; PMID: 6783411
A; Accession: F23454
A; Molecule type: protein
A; Residues: 1-32 < HEN>
C; Superfamily: antithrombin III
  Ouery Match
                          11.8%; Score 4; DB 2; Length 32;
  Best Local Similarity
                          100.0%; Pred. No. 1.1e+03;
          4; Conservative
                                0; Mismatches 0;
                                                      Indels
                                                                 0; Gaps
                                                                              0;
            1 SVSE 4
Qу
              1111
Dh
           26 SVSE 29
RESULT 14
D31461
T-cell receptor delta chain BDN7, thymus - mouse (fragment)
C; Species: Mus musculus (house mouse)
C;Date: 05-Oct-1989 #sequence revision 05-Oct-1989 #text change 30-May-1997
C; Accession: D31461
R; Lacy, M.J.; McNeil, L.K.; Roth, M.E.; Kranz, D.M.
Proc. Natl. Acad. Sci. U.S.A. 86, 1023-1026, 1989
A; Title: T-cell receptor delta-chain diversity in peripheral lymphocytes.
A; Reference number: A31461; MUID: 89128840; PMID: 2783779
A; Accession: D31461
A; Status: preliminary; not compared with conceptual translation
A; Molecule type: mRNA
A; Residues: 1-32 < LAC>
C; Superfamily: immunoglobulin V region; immunoglobulin homology
C; Keywords: T-cell receptor
  Query Match
                          11.8%; Score 4; DB 2; Length 32;
  Best Local Similarity 100.0%; Pred. No. 1.1e+03;
           4; Conservative
                                0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                              0;
Οv
           18 MERV 21
              1111
            8 MERV 11
Db
RESULT 15
G84161
hypothetical protein Vng0019h [imported] - Halobacterium sp. NRC-1
C; Species: Halobacterium sp. NRC-1
C;Date: 02-Feb-2001 #sequence revision 02-Feb-2001 #text change 02-Feb-2001
```

```
C; Accession: G84161
R;Ng, W.V.; Kennedy, S.P.; Mahairas, G.G.; Berquist, B.; Pan, M.; Shukla, H.D.;
Lasky, S.R.; Baliga, N.; Thorsson, V.; Sbrogna, J.; Swartzell, S.; Weir, D.;
Hall, J.; Dahl, T.A.; Welti, R.; Goo, Y.A.; Leithauser, B.; Keller, K.; Cruz,
R.; Danson, M.J.; Hough, D.W.; Maddocks, D.G.; Jablonski, P.E.; Krebs, M.P.;
Angevine, C.M.; Dale, H.; Isenbarger, T.A.; Peck, R.F.; Pohlschrod, M.; Spudich,
J.L.; Jung, K.H.; Alam, M.; Freitas, T.
Proc. Natl. Acad. Sci. U.S.A. 97, 12176-12181, 2000
A; Authors: Hou, S.; Daniels, C.J.; Dennis, P.P.; Omer, A.D.; Ebhardt, H.; Lowe,
T.M.; Liang, P.; Riley, M.; Hood, L.; DasSarma, S.
A; Title: Genome sequence of Halobacterium species NRC-1.
A; Reference number: A84160; MUID: 20504483; PMID: 11016950
A; Accession: G84161
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-32 <STO>
A; Cross-references: GB: AE004437; NID: g10579667; PIDN: AAG18659.1; GSPDB: GN00138
C; Genetics:
A; Gene: VNG0019H
  Query Match
                          11.8%; Score 4; DB 2; Length 32;
  Best Local Similarity 100.0%; Pred. No. 1.1e+03;
            4; Conservative 0; Mismatches 0; Indels
                                                                              0;
  Matches
                                                                  0; Gaps
           27 KLQD 30
Qу
              1111
Db
           13 KLQD 16
RESULT 16
E81714
hypothetical protein TC0337 [imported] - Chlamydia muridarum (strain Nigg)
C; Species: Chlamydia muridarum, Chlamydia trachomatis MoPn
C;Date: 31-Mar-2000 #sequence revision 31-Mar-2000 #text change 11-May-2000
C; Accession: E81714
R; Read, T.D.; Brunham, R.C.; Shen, C.; Gill, S.R.; Heidelberg, J.F.; White, O.;
Hickey, E.K.; Peterson, J.; Utterback, T.; Berry, K.; Bass, S.; Linher, K.;
Weidman, J.; Khouri, H.; Craven, B.; Bowman, C.; Dodson, R.; Gwinn, M.; Nelson,
W.; DeBoy, R.; Kolonay, J.; McClarty, G.; Salzberg, S.L.; Eisen, J.; Fraser,
C.M.
Nucleic Acids Res. 28, 1397-1406, 2000
A; Title: Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae
A; Reference number: A81500; MUID: 20150255; PMID: 10684935
A; Accession: E81714
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-33 <TET>
A; Cross-references: GB: AE002301; GB: AE002160; NID: g7190372; PIDN: AAF39200.1;
PID:g7190379; GSPDB:GN00121; TIGR:TC0337
A; Experimental source: strain Nigg (MoPn)
C:Genetics:
A;Gene: TC0337
  Query Match
                          11.8%; Score 4; DB 2; Length 33;
  Best Local Similarity 100.0%; Pred. No. 1.1e+03;
  Matches
             4; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
                                                                              0;
```

```
24 LRKK 27
Qу
              26 LRKK 29
Db
RESULT 17
D23454
ovalbumin phosphoserine peptide - golden pheasant (fragments)
C; Species: Chrysolophus pictus (golden pheasant)
C;Date: 05-Jun-1987 #sequence revision 05-Jun-1987 #text change 13-Mar-1998
C; Accession: D23454
R; Henderson, J.Y.; Moir, A.J.G.; Fothergill, L.A.; Fothergill, J.E.
Eur. J. Biochem. 114, 439-450, 1981
A; Title: Sequences of sixteen phosphoserine peptides from ovalbumins of eight
species.
A; Reference number: A91106; MUID: 81164535; PMID: 6783411
A; Accession: D23454
A; Molecule type: protein
A; Residues: 1-35 < HEN>
C; Superfamily: antithrombin III
  Query Match
                          11.8%; Score 4; DB 2; Length 35;
 Best Local Similarity
                          100.0%; Pred. No. 1.2e+03;
           4; Conservative
 Matches
                              0; Mismatches
                                                 0; Indels
                                                                 0;
                                                                     Gaps
            1 SVSE 4
QУ
              1111
           29 SVSE 32
Db
RESULT 18
G23454
ovalbumin phosphoserine peptide - magpie goose (fragments)
C; Species: Anseranas semipalmata (magpie goose)
C;Date: 05-Jun-1987 #sequence_revision 05-Jun-1987 #text_change 13-Mar-1998
C; Accession: G23454
R; Henderson, J.Y.; Moir, A.J.G.; Fothergill, L.A.; Fothergill, J.E.
Eur. J. Biochem. 114, 439-450, 1981
A; Title: Sequences of sixteen phosphoserine peptides from ovalbumins of eight
species.
A; Reference number: A91106; MUID: 81164535; PMID: 6783411
A; Accession: G23454
A; Molecule type: protein
A; Residues: 1-35 < HEN>
C; Superfamily: antithrombin III
  Query Match
                          11.8%; Score 4; DB 2; Length 35;
 Best Local Similarity
                          100.0%; Pred. No. 1.2e+03;
           4; Conservative
                                0; Mismatches
                                                   0;
                                                       Indels
                                                                 0; Gaps
                                                                              0;
            1 SVSE 4
Qу
              29 SVSE 32
```

```
D82125
hypothetical protein VC2034 [imported] - Vibrio cholerae (strain N16961
serogroup 01)
C; Species: Vibrio cholerae
C;Date: 18-Aug-2000 #sequence_revision 20-Aug-2000 #text change 02-Feb-2001
C; Accession: D82125
R; Heidelberg, J.F.; Eisen, J.A.; Nelson, W.C.; Clayton, R.A.; Gwinn, M.L.;
Dodson, R.J.; Haft, D.H.; Hickey, E.K.; Peterson, J.D.; Umayam, L.A.; Gill,
S.R.; Nelson, K.E.; Read, T.D.; Tettelin, H.; Richardson, D.; Ermolaeva, M.D.;
Vamathevan, J.; Bass, S.; Qin, H.; Dragoi, I.; Sellers, P.; McDonald, L.;
Utterback, T.; Fleishmann, R.D.; Nierman, W.C.; White, O.; Salzberg, S.L.;
Smith, H.O.; Colwell, R.R.; Mekalanos, J.J.; Venter, J.C.; Fraser, C.M.
Nature 406, 477-483, 2000
A; Title: DNA Sequence of both chromosomes of the cholera pathogen Vibrio
cholerae.
A; Reference number: A82035; MUID: 20406833; PMID: 10952301
A; Accession: D82125
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-35 <HEI>
A; Cross-references: GB: AE004278; GB: AE003852; NID: g9656579; PIDN: AAF95182.1;
GSPDB:GN00126; TIGR:VC2034
A; Experimental source: serogroup O1; strain N16961; biotype El Tor
C; Genetics:
A; Gene: VC2034
A; Map position: 1
                          11.8%; Score 4; DB 2; Length 35;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.2e+03;
           4; Conservative 0; Mismatches 0; Indels
                                                                0; Gaps
  Matches
           26 KKLQ 29
Qу
              24 KKLQ 27
RESULT 20
S70806
hypothetical protein 5 - Vibrio cholerae (fragment)
N; Alternate names: flagellar protein flaA homolog
C; Species: Vibrio cholerae
C;Date: 12-Feb-1998 #sequence revision 20-Feb-1998 #text change 26-Aug-1999
C; Accession: S70806
R; Camilli, A.; Mekalanos, J.J.
Mol. Microbiol. 18, 671-683, 1995
A; Title: Use of recombinase gene fusions to identify Vibrio cholerae genes
induced during infection.
A; Reference number: S70798; MUID: 96414469; PMID: 8817490
A; Accession: S70806
A; Status: preliminary; nucleic acid sequence not shown
A; Molecule type: DNA
A; Residues: 1-36 < CAM>
A; Cross-references: EMBL: U25820; NID: g1165195; PIDN: AAC43560.1; PID: g1165196
C; Superfamily: flagellin
  Query Match
                          11.8%; Score 4; DB 2; Length 36;
  Best Local Similarity 100.0%; Pred. No. 1.2e+03;
```

```
Matches
             4; Conservative
                                 0; Mismatches
                                                    0; Indels
                                                                  0; Gaps
                                                                              0;
           17 SMER 20
Qу
              14 SMER 17
Db
RESULT 21
F95057
hypothetical protein SP0497 [imported] - Streptococcus pneumoniae (strain TIGR4)
C; Species: Streptococcus pneumoniae
C;Date: 03-Aug-2001 #sequence revision 03-Aug-2001 #text change 03-Aug-2001
C; Accession: F95057
R; Tettelin, H.; Nelson, K.E.; Paulsen, I.T.; Eisen, J.A.; Read, T.D.; Peterson,
S.; Heidelberg, J.; DeBoy, R.T.; Haft, D.H.; Dodson, R.J.; Durkin, A.S.; Gwinn,
M.; Kolonay, J.F.; Nelson, W.C.; Peterson, J.D.; Umayam, L.A.; White, O.;
Salzberg, S.L.; Lewis, M.R.; Radune, D.; Holtzapple, E.; Khouri, H.; Wolf, A.M.;
Utterback, T.R.; Hansen, C.L.; McDonald, L.A.; Feldblyum, T.V.; Angiuoli, S.;
Dickinson, T.; Hickey, E.K.; Holt, I.E.
Science 293, 498-506, 2001
A; Authors: Loftus, B.J.; Yang, F.; Smith, H.O.; Venter, J.C.; Dougherty, B.A.;
Morrison, D.A.; Hollingshead, S.K.; Fraser, C.M.
A; Title: Complete Genome Sequence of a virulent isolate of Streptococcus
pneumoniae.
A; Reference number: A95000; MUID: 21357209; PMID: 11463916
A; Accession: F95057
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-36 < KUR>
A; Cross-references: GB: AE005672; PIDN: AAK74655.1; PID: g14971969; GSPDB: GN00164;
TIGR:SP4SP0497
A; Experimental source: strain TIGR4
C; Genetics:
A;Gene: SP0497
                          11.8%; Score 4; DB 2; Length 36;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 1.2e+03;
                                0; Mismatches
  Matches
             4; Conservative
                                                   0; Indels
                                                                  0; Gaps
           26 KKLQ 29
Qу
              1111
Db
           10 KKLQ 13
RESULT 22
A84774
hypothetical protein At2g35870 [imported] - Arabidopsis thaliana
C; Species: Arabidopsis thaliana (mouse-ear cress)
C;Date: 02-Feb-2001 #sequence revision 02-Feb-2001 #text change 02-Feb-2001
C; Accession: A84774
R; Lin, X.; Kaul, S.; Rounsley, S.D.; Shea, T.P.; Benito, M.I.; Town, C.D.;
Fujii, C.Y.; Mason, T.M.; Bowman, C.L.; Barnstead, M.E.; Feldblyum, T.V.; Buell,
C.R.; Ketchum, K.A.; Lee, J.J.; Ronning, C.M.; Koo, H.; Moffat, K.S.; Cronin,
L.A.; Shen, M.; VanAken, S.E.; Umayam, L.; Tallon, L.J.; Gill, J.E.; Adams,
M.D.; Carrera, A.J.; Creasy, T.H.; Goodman, H.M.; Somerville, C.R.; Copenhaver,
G.P.; Preuss, D.; Nierman, W.C.; White, O.; Eisen, J.A.; Salzberg, S.L.; Fraser,
C.M.; Venter, J.C.
```

```
A; Title: Sequence and analysis of chromosome 2 of the plant Arabidopsis
thaliana.
A; Reference number: A84420; MUID: 20083487; PMID: 10617197
A; Accession: A84774
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-36 <STO>
A; Cross-references: GB: AE002093; NID: g4510382; PIDN: AAD21470.1; GSPDB: GN00139
C; Genetics:
A; Gene: At2g35870
A; Map position: 2
                          11.8%; Score 4; DB 2; Length 36;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.2e+03;
             4; Conservative 0; Mismatches 0; Indels
                                                                              0;
                                                                  0; Gaps
Qу
           26 KKLQ 29
              1111
Db
            4 KKLQ 7
RESULT 23
S46227
hypothetical protein - Streptomyces chrysomallus (fragment)
C; Species: Streptomyces chrysomallus
C;Date: 19-Mar-1997 #sequence_revision 29-Aug-1997 #text change 28-May-1999
C; Accession: S46227
R; Pahl, A.; Keller, U.
EMBO J. 13, 3472-3480, 1994
A; Title: Streptomyces chrysomallus FKBP-33 is a novel immunophilin consisting of
two FK506 binding domains; its gene is transcriptionally coupled to the FKBP-12
gene.
A; Reference number: S46227; MUID: 94341259; PMID: 8062824
A; Accession: S46227
A; Molecule type: DNA
A; Residues: 1-36 < PAH>
A; Cross-references: GB:Z34523; NID:g535270; PIDN:CAA84281.1; PID:g633645
A; Experimental source: strain ATCC 11523
                          11.8%; Score 4; DB 2; Length 36;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.2e+03;
                               0; Mismatches 0; Indels
            4; Conservative
  Matches
           19 ERVE 22
Qу
              1111
           27 ERVE 30
Db
RESULT 24
S71912
hemoglobin, extracellular, chain A1 - polychaete (Perinereis aibuhitensis)
(fragment)
C; Species: Perinereis aibuhitensis
C;Date: 14-Apr-1998 #sequence_revision 08-May-1998 #text change 02-Jul-1998
C; Accession: S71912
```

Nature 402, 761-768, 1999

```
Ebina, S.
Biochim. Biophys. Acta 1290, 215-223, 1996
A; Title: Wheat germ agglutinin-reactive chains of giant hemoglobin from the
polychaete Perinereis aibuhitensis.
A: Reference number: S71912; MUID: 96350431; PMID: 8765123
A; Accession: S71912
A; Molecule type: protein
A; Residues: 1-37 < MAT>
C; Superfamily: globin; globin homology
C; Keywords: chromoprotein; heme; iron; oxygen carrier
                          11.8%; Score 4; DB 2; Length 37;
  Best Local Similarity
                          100.0%; Pred. No. 1.2e+03;
  Matches
                               0; Mismatches
                                                    0; Indels
             4; Conservative
                                                                  0; Gaps
                                                                               0;
           19 ERVE 22
Qу
              1111
Db
           25 ERVE 28
RESULT 25
T12635
homeotic protein HAHB-2 - common sunflower (fragment)
C; Species: Helianthus annuus (common sunflower)
C;Date: 13-Aug-1999 #sequence revision 13-Aug-1999 #text change 21-Jul-2000
C; Accession: T12635
R; Chan, R.L.; Gonzalez, D.H.
Plant Physiol. 106, 1687-1688, 1994
A; Title: A cDNA encoding an HD-zip protein from sunflower.
A; Reference number: Z17563; MUID: 95148747; PMID: 7846169
A; Accession: T12635
A; Status: preliminary; translated from GB/EMBL/DDBJ
A; Molecule type: mRNA
A; Residues: 1-37 < CHA>
A; Cross-references: EMBL: L22849; NID: q349258; PIDN: AAA63766.1; PID: q349259
C; Keywords: DNA binding; homeobox; transcription regulation
  Query Match
                          11.8%; Score 4; DB 2; Length 37;
  Best Local Similarity 100.0%; Pred. No. 1.2e+03;
                                                    0; Indels
             4; Conservative 0; Mismatches
                                                                  0; Gaps
                                                                               0;
  Matches
           25 RKKL 28
Qу
              | | | | |
Db
            6 RKKL 9
RESULT 26
antigen 5 epitope - tapeworm (Echinococcus granulosus) (fragment)
C; Species: Echinococcus granulosus
C;Date: 10-Mar-1993 #sequence revision 18-Nov-1994 #text change 18-Nov-1994
C; Accession: A43933
R; Chamekh, M.; Gras-Masse, H.; Bossus, M.; Facon, B.; Dissous, C.; Tartar, A.;
Capron, A.
J. Clin. Invest. 89, 458-464, 1992
```

R; Matsubara, K.; Yamaki, M.; Nagayama, K.; Imai, K.; Ishii, H.; Gotoh, T.;

```
granulosus recombinant protein.
A; Reference number: A43933; MUID: 92147859; PMID: 1737836
A; Accession: A43933
A; Status: preliminary; not compared with conceptual translation
A; Molecule type: mRNA
A; Residues: 1-37 < CHA>
A; Cross-references: GB: M74034
A; Note: sequence extracted from NCBI backbone (NCBIP:81239)
                          11.8%; Score 4; DB 2; Length 37;
  Ouery Match
                          100.0%; Pred. No. 1.2e+03;
  Best Local Similarity
            4; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0;
  Matches
           10 NKGK 13
Qу
              1111
Db
           10 NKGK 13
RESULT 27
CKFHCS
sarcotoxin IC - flesh fly (Sarcophaga peregrina)
C; Species: Sarcophaga peregrina
C;Date: 31-Mar-1988 #sequence_revision 31-Mar-1988 #text_change 08-Dec-1995
C; Accession: C22625
R;Okada, M.; Natori, S.
J. Biol. Chem. 260, 7174-7177, 1985
A; Title: Primary structure of sarcotoxin I, an antibacterial protein induced in
the hemolymph of Sarcophaga peregrina (flesh fly) larvae.
A; Reference number: A92536; MUID: 85207747; PMID: 3888997
A; Accession: C22625
A; Molecule type: protein
A; Residues: 1-39 < OKA>
C; Comment: Sarcotoxins, which are potent bactericidal proteins, are produced in
response to injury. They are cytotoxic to both Gram positive and Gram negative
bacteria.
C; Superfamily: cecropin
C; Keywords: amidated carboxyl end; antibacterial; hemolymph
F;39/Modified site: amidated carboxyl end (Arg) #status predicted
                          11.8%; Score 4; DB 1; Length 39;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.3e+03;
                                                                  0; Gaps
                                                                              0;
             4; Conservative 0; Mismatches 0; Indels
  Matches
           23 WLRK 26
Qу
              1111
            2 WLRK 5
Db
RESULT 28
S71913
hemoglobin, extracellular, chain A2 - polychaete (Perinereis aibuhitensis)
 (fragment)
C; Species: Perinereis aibuhitensis
C;Date: 14-Apr-1998 #sequence_revision 08-May-1998 #text_change 02-Jul-1998
C; Accession: S71913
```

A; Title: Diagnostic value of a synthetic peptide derived from Echinococcus

```
Ebina, S.
Biochim. Biophys. Acta 1290, 215-223, 1996
A; Title: Wheat germ agglutinin-reactive chains of giant hemoglobin from the
polychaete Perinereis aibuhitensis.
A; Reference number: S71912; MUID: 96350431; PMID: 8765123
A; Accession: S71913
A; Molecule type: protein
A: Residues: 1-39 <MAT>
C; Superfamily: globin; globin homology
C; Keywords: chromoprotein; heme; iron; oxygen carrier
                          11.8%; Score 4; DB 2; Length 39;
                          100.0%; Pred. No. 1.3e+03;
  Best Local Similarity
            4; Conservative 0; Mismatches
                                                  0; Indels
                                                                 0; Gaps
  Matches
           19 ERVE 22
Qу
              Db
           27 ERVE 30
RESULT 29
S77164
ycf32 protein - Synechocystis sp. (strain PCC 6803)
N; Alternate names: protein sml0007
C; Species: Synechocystis sp.
A; Variety: PCC 6803
C;Date: 25-Apr-1997 #sequence_revision 25-Apr-1997 #text_change 20-Jun-2000
C; Accession: S77164
R; Kaneko, T.; Sato, S.; Kotani, H.; Tanaka, A.; Asamizu, E.; Nakamura, Y.;
Miyajima, N.; Hirosawa, M.; Sugiura, M.; Sasamoto, S.; Kimura, T.; Hosouchi, T.;
Matsuno, A.; Muraki, A.; Nakazaki, N.; Naruo, K.; Okumura, S.; Shimpo, S.;
Takeuchi, C.; Wada, T.; Watanabe, A.; Yamada, M.; Yasuda, M.; Tabata, S.
DNA Res. 3, 109-136, 1996
A; Title: Sequence analysis of the genome of the unicellular cyanobacterium
Synechocystis sp. PCC6803. II. Sequence determination of the entire genome and
assignment of potential protein-coding regions.
A; Reference number: S74322; MUID: 97061201; PMID: 8905231
A; Accession: S77164
A; Status: nucleic acid sequence not shown; translation not shown
A; Molecule type: DNA
A; Residues: 1-39 < KAN>
A;Cross-references: EMBL:D90908; GB:AB001339; NID:g1652725; PIDN:BAA17722.1;
PID:q1652803
A; Note: the nucleotide sequence was submitted to the EMBL Data Library, June
1996
C; Genetics:
A;Gene: ycf32
C; Superfamily: hypothetical protein ycf32
                          11.8%; Score 4; DB 2; Length 39;
  Query Match
                          100.0%; Pred. No. 1.3e+03;
  Best Local Similarity
                                0; Mismatches 0; Indels
                                                                  0; Gaps
             4; Conservative
           28 LQDV 31
Qу
              Db
           31 LQDV 34
```

R; Matsubara, K.; Yamaki, M.; Nagayama, K.; Imai, K.; Ishii, H.; Gotoh, T.;

```
A42272
brain-type creatine kinase, peptide, B - spiny dogfish (fragment)
C: Species: Squalus acanthias (spiny dogfish)
C;Date: 04-Mar-1993 #sequence revision 18-Nov-1994 #text change 11-Apr-1997
C; Accession: A42272
R; Friedman, D.L.; Roberts, R.
J. Biol. Chem. 267, 4270-4276, 1992
A:Title: Purification and localization of brain-type creatine kinase in sodium
chloride transporting epithelia of the spiny dogfish, Squalus acanthias.
A; Reference number: A42272; MUID: 92156175; PMID: 1310991
A; Accession: A42272
A; Status: preliminary
A; Molecule type: protein
A; Residues: 1-28 <FRI>
A; Note: sequence extracted from NCBI backbone (NCBIP:82919)
C; Superfamily: creatine kinase; creatine kinase repeat homology
  Query Match
                           8.8%; Score 3; DB 2; Length 28;
                          100.0%; Pred. No. 1.1e+04;
  Best Local Similarity
                              0; Mismatches
                                                  0; Indels
                                                                 0; Gaps
                                                                              0;
             3; Conservative
           26 KKL 28
Qу
              10 KKL 12
Db
RESULT 31
C32416
phospholipase A2 (EC 3.1.1.4) pseudexin chain C - red-bellied black snake
(fragment)
C; Species: Pseudechis porphyriacus (red-bellied black snake)
C;Date: 05-Oct-1989 #sequence revision 05-Oct-1989 #text change 23-Jun-1993
C:Accession: C32416
R; Schmidt, J.J.; Middlebrook, J.L.
Toxicon 27, 805-818, 1989
A; Title: Purification, sequencing and characterization of pseudexin
phospholipases A-2 from Pseudechis porphyriacus (Australian red-bellied black
A; Reference number: A32416; MUID: 89388835; PMID: 2675391
A; Accession: C32416
A; Status: preliminary
A; Molecule type: protein
A; Residues: 1-28 < SCH>
C; Superfamily: phospholipase A2
C; Keywords: carboxylic ester hydrolase
                           8.8%; Score 3; DB 2; Length 28;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 1.1e+04;
  Matches
             3; Conservative
                               0; Mismatches
                                                  0; Indels
                                                                  0; Gaps
                                                                              0;
            5 IQL 7
Qу
              | | |
Db
            3 IQL 5
```

RESULT 30

```
RESULT 32
B60071
vasoactive intestinal peptide - rhesus macaque
C; Species: Macaca mulatta (rhesus macaque)
C;Date: 28-Apr-1993 #sequence_revision 28-Apr-1993 #text change 20-Mar-1998
C; Accession: B60071
R; Yu, J.; Xin, Y.; Eng, J.; Yalow, R.S.
Regul. Pept. 32, 39-45, 1991
A; Title: Rhesus monkey gastroenteropancreatic hormones: relationship to human
A; Reference number: A60071; MUID: 91164506; PMID: 2003150
A; Accession: B60071
A; Status: protein sequence not shown
A; Molecule type: protein
A; Residues: 1-28 < YUA>
A; Note: the sequence is identical with the human sequence
C; Superfamily: glucagon
C; Keywords: duplication; hormone; intestine; neuropeptide; vasodilator
                           8.8%; Score 3; DB 2; Length 28;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.1e+04;
                               0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0;
            3; Conservative
  Matches
           15 LNS 17
Оv
              23 LNS 25
Db
RESULT 33
A60304
vasoactive intestinal peptide - dog
N; Alternate names: VIP
C; Species: Canis lupus familiaris (dog)
C;Date: 15-Jan-1993 #sequence revision 15-Jan-1993 #text change 20-Mar-1998
C; Accession: A60304
R; Eng, J.; Pan, Y.C.E.; Raufman, J.P.; Yalow, R.S.
Regul. Pept. Suppl. 3, S14, 1985
A; Title: Purification and sequencing of dog and guinea pig VIP's.
A; Reference number: A60304
A; Accession: A60304
A; Molecule type: protein
A; Residues: 1-28 < ENG>
C; Superfamily: glucagon
C; Keywords: duplication; hormone; intestine; neuropeptide; vasodilator
                            8.8%; Score 3; DB 2; Length 28;
  Query Match
                          100.0%; Pred. No. 1.1e+04;
  Best Local Similarity
                               0; Mismatches 0; Indels
                                                                              0;
                                                                  0; Gaps
             3; Conservative
  Matches
           15 LNS 17
Qу
               23 LNS 25
Db
```

RESULT 34 S58386

```
T-cell receptor beta-chain Vb11-Jb2.4 - mouse (fragment)
C; Species: Mus musculus (house mouse)
C;Date: 29-Nov-1995 #sequence revision 01-Mar-1996 #text change 23-Jul-1999
C; Accession: S58386
R; Johnston, S.L.; Strausbauch, M.; Sarkar, G.; Wettstein, P.J.
Nucleic Acids Res. 23, 3074-3075, 1995
A; Title: A novel method for sequencing members of multi-gene families.
A; Reference number: S58384; MUID: 95388532; PMID: 7659534
A: Accession: S58386
A; Status: preliminary; nucleic acid sequence not shown
A; Molecule type: mRNA
A; Residues: 1-28 < JOH>
A; Cross-references: EMBL: U20300; NID: g663123; PIDN: AAA62247.1; PID: g663124
A; Note: the nucleotide sequence was submitted to the EMBL Data Library, January
A; Note: only a part of the coding sequence is given
C; Superfamily: immunoglobulin V region; immunoglobulin homology
C; Keywords: T-cell receptor
  Query Match
                           8.8%; Score 3; DB 2; Length 28;
                          100.0%; Pred. No. 1.1e+04;
  Best Local Similarity
                                                                              0;
  Matches
           3; Conservative 0; Mismatches 0;
                                                       Indels
                                                                  0; Gaps
           19 ERV 21
Qу
              | | |
           12 ERV 14
Db
RESULT 35
S10052
ribosomal protein L37.e - fission yeast (Schizosaccharomyces pombe) (fragment)
N; Alternate names: ribosomal protein SP-L27
C; Species: Schizosaccharomyces pombe
C;Date: 31-Dec-1990 #sequence_revision 31-Dec-1990 #text_change 30-Sep-1993
C; Accession: S10052
R;Otaka, E.; Higo, K.I.; Itoh, T.
Mol. Gen. Genet. 191, 519-524, 1983
A; Title: Yeast ribosomal proteins: VII. Cytoplasmic ribosomal proteins from
Schizosaccharomyces pombe.
A; Reference number: S07293; MUID: 84038947; PMID: 6355773
A; Accession: S10052
A; Molecule type: protein
A; Residues: 1-28 < OTA>
C; Superfamily: rat ribosomal protein L37
C; Keywords: protein biosynthesis; ribosome
  Query Match
                           8.8%; Score 3; DB 2; Length 28;
  Best Local Similarity
                          100.0%; Pred. No. 1.1e+04;
             3; Conservative
                                0; Mismatches
                                                  0; Indels
                                                                  0; Gaps
           11 KGK 13
Qу
              111
           21 KGK 23
Db
```

RESULT 36 A60752

```
outer membrane protein A - Yersinia pseudotuberculosis (fragment)
N; Alternate names: heat-modifiable protein; outer membrane protein II
C; Species: Yersinia pseudotuberculosis
C;Date: 14-May-1993 #sequence revision 14-May-1993 #text_change 17-Mar-1999
C; Accession: A60752
R; Zhang, J.J.; Hamachi, M.; Hamachi, T.; Zhao, Y.P.; Yu, D.T.Y.
J. Immunol. 143, 2955-2960, 1989
A; Title: The bacterial outer membrane protein that reacts with anti-HLA-B27
antibodies is the OmpA protein.
A; Reference number: A60752; MUID: 90038529; PMID: 2478630
A; Accession: A60752
A; Molecule type: protein
A; Residues: 1-28 < ZHA>
C; Genetics:
A; Gene: ompA
C; Superfamily: outer membrane protein A
C; Keywords: membrane protein
  Query Match
                           8.8%; Score 3; DB 2; Length 28;
  Best Local Similarity
                          100.0%; Pred. No. 1.1e+04;
             3; Conservative 0; Mismatches 0; Indels
  Matches
                                                                0; Gaps
Qу
           10 NKG 12
              Db
           26 NKG 28
RESULT 37
S56121
type I DNA methyltransferase M.EcoR124I chain HsdS - Escherichia coli
(fragments)
C; Species: Escherichia coli
C;Date: 27-Oct-1995 #sequence_revision 03-Nov-1995 #text change 03-Nov-1995
C; Accession: S56121
R; Webb, M.; Taylor, I.A.; Firman, K.; Kneale, G.G.
J. Mol. Biol. 250, 181-190, 1995
A; Title: Probing the domain structure of the type IC DNA methyltransferase
M.EcoR124I by limited proteolysis.
A; Reference number: S56121; MUID: 95333175; PMID: 7608969
A; Accession: S56121
A; Status: preliminary
A; Molecule type: protein
A; Residues: 1-28 <WEB>
  Query Match
                           8.8%; Score 3; DB 2; Length 28;
  Best Local Similarity 100.0%; Pred. No. 1.1e+04;
  Matches
             3; Conservative 0; Mismatches 0; Indels
Qу
           30 DVH 32
              Db
            8 DVH 10
RESULT 38
S70894
hypothetical protein 1 - Vibrio anguillarum (fragment)
C; Species: Vibrio anguillarum
```

```
C; Accession: S70894
R;O'Toole, R.; Milton, D.L.; Wolf-Watz, H.
Mol. Microbiol. 19, 625-637, 1996
A; Title: Chemotactic motility is required for invasion of the host by the fish
pathogen Vibrio anguillarum.
A; Reference number: S70894; MUID: 96228710; PMID: 8830252
A; Accession: S70894
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-28 <OTO>
A; Cross-references: GB: U36378; EMBL: L47344; NID: g1020321; PIDN: AAB38488.1;
PID:g1723992
  Query Match
                           8.8%; Score 3; DB 2; Length 28;
  Best Local Similarity 100.0%; Pred. No. 1.1e+04;
           3; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
           15 LNS 17
Qу
              Db
           18 LNS 20
RESULT 39
S22469
hypothetical protein 1 - Prochlorothrix hollandica
C; Species: Prochlorothrix hollandica
C;Date: 13-Jan-1995 #sequence_revision 13-Jan-1995 #text_change 15-Oct-1999
C; Accession: S22469; S16850
R; Greer, K.L.; Golden, S.S.
Plant Mol. Biol. 19, 355-365, 1992
A; Title: Conserved relationship between psbH and petBD genes: presence of a
shared upstream element in Prochlorothrix hollandica.
A; Reference number: S22469; MUID: 92322967; PMID: 1623188
A; Accession: S22469
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-28 <GRE>
A; Cross-references: EMBL:X60313; NID:g45528; PIDN:CAA42858.1; PID:g45529
Query Match
                           8.8%; Score 3; DB 2; Length 28;
  Best Local Similarity
                         100.0%; Pred. No. 1.1e+04;
  Matches
          3; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
Qу
            1 SVS 3
              Db
            4 SVS 6
RESULT 40
C60683
malate dehydrogenase (decarboxylating) (EC 1.1.1.39) - tampala (fragment)
N; Alternate names: NAD-malic enzyme
C; Species: Amaranthus tricolor (tampala)
C;Date: 30-Sep-1993 #sequence_revision 30-Sep-1993 #text_change 07-Feb-1997
C; Accession: C60683
R; Murata, T.; Ikeda, J.; Takano, M.; Ohsuqi, R.
```

C;Date: 19-Mar-1997 #sequence revision 25-Apr-1997 #text_change 08-Oct-1999

Plant Cell Physiol. 30, 429-437, 1989

A; Title: Comparative studies of NAD-malic enzyme from leaves of various C-4

plants.

A; Reference number: A60683

A; Accession: C60683

A; Molecule type: protein

A; Residues: 1-28 < MUR>

C; Keywords: NAD; oxidoreductase; photosynthesis

Query Match 8.8%; Score 3; DB 2; Length 28; Best Local Similarity 100.0%; Pred. No. 1.1e+04;

3; Conservative 0; Mismatches 0; Indels 0; Gaps 0;

10 NKG 12 Qу | | |

Db 25 NKG 27

Search completed: January 14, 2004, 10:37:23

Job time : 11.0623 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

January 14, 2004, 10:37:44; Search time 22.8785 Seconds Run on:

(without alignments)

303.882 Million cell updates/sec

US-09-843-221A-163 Title:

Perfect score: 34

1 SVSEIQLMHNKGKHLNSMERVEWLRKKLQDVHNF 34 Sequence:

OLIGO Scoring table:

Gapop 60.0 , Gapext 60.0

762491 seqs, 204481190 residues Searched:

Word size :

Total number of hits satisfying chosen parameters: 28045

Minimum DB seq length: 28 Maximum DB seq length: 40

Post-processing: Listing first 1000 summaries

Published_Applications_AA:* Database :

1: /cgn2 6/ptodata/1/pubpaa/US07 PUBCOMB.pep:*

/cgn2_6/ptodata/1/pubpaa/PCT_NEW_PUB.pep:*

3: /cgn2_6/ptodata/1/pubpaa/US06_NEW_PUB.pep:* 4: /cgn2_6/ptodata/1/pubpaa/US06_PUBCOMB.pep:*

5: /cgn2 6/ptodata/1/pubpaa/US07_NEW_PUB.pep:*

6: /cgn2_6/ptodata/1/pubpaa/PCTUS_PUBCOMB.pep:*

7: /cgn2_6/ptodata/1/pubpaa/US08_NEW_PUB.pep:*

8: /cgn2_6/ptodata/1/pubpaa/US08_PUBCOMB.pep:*

9: /cgn2 6/ptodata/1/pubpaa/US09A PUBCOMB.pep:*

10: /cgn2_6/ptodata/1/pubpaa/US09B_PUBCOMB.pep:*

/cgn2_6/ptodata/1/pubpaa/US09C_PUBCOMB.pep:* 11:

12: /cgn2_6/ptodata/1/pubpaa/US09_NEW_PUB.pep:* 13: /cgn2_6/ptodata/1/pubpaa/US10A_PUBCOMB.pep:*

14: /cgn2_6/ptodata/1/pubpaa/US10B PUBCOMB.pep:*

15: /cgn2_6/ptodata/1/pubpaa/US10C_PUBCOMB.pep:*

16: /cgn2_6/ptodata/1/pubpaa/US10 NEW PUB.pep:*

17: /cgn2_6/ptodata/1/pubpaa/US60_NEW_PUB.pep:*

/cgn2_6/ptodata/1/pubpaa/US60_PUBCOMB.pep:* 18:

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Query Result

> Score Match Length DB ID No.

Description

```
34 11 US-09-843-221A-18 Sequence 18, App.
34 11 US-09-843-221A-163 Sequence 163, App.
34 11 US-09-843-221A-41 Sequence 41, Appl.
36 11 US-09-843-221A-41 Sequence 32, Appl.
______
                34 100.0 34 11 US-09-843-221A-18
34 100.0 34 11 US-09-843-221A-163
30 88.2 30 11 US-09-843-221A-41
23 67.6 28 11 US-09-843-221A-32
23 67.6 34 9 US-09-169-786-3
23 67.6 34 10 US-09-928-047B-6
23 67.6 34 11 US-09-843-221A-16
23 67.6 34 11 US-09-843-221A-17
23 67.6 34 11 US-09-843-221A-17
23 67.6 34 11 US-09-843-221A-16
23 67.6 34 11 US-09-843-221A-161
23 67.6 34 11 US-09-843-221A-161
23 67.6 34 11 US-09-843-221A-162
23 67.6 34 12 US-09-928-048A-6
23 67.6 34 12 US-09-928-048A-6
      1
      2
      3
      4
                                                                                          Sequence 3, Appli
                                                                                       Sequence 3, Appli
Sequence 6, Appli
Sequence 16, Appl
Sequence 17, Appl
Sequence 20, Appl
Sequence 161, App
Sequence 162, App
Sequence 6, Appli
Sequence 1, Appli
Sequence 2, Appli
Sequence 5, Appli
Sequence 8, Appli
Sequence 15, Appl
Sequence 15, Appl
      5
      6
      7
      8
      9
    10
    11
    12
                                     34 12 US-10-361-928-1
                         67.6
    13
                 23
                                     34 12 US-10-361-928-2
    14
                 23
                         67.6
                                     34 12 US-10-361-928-5
    15
                 23
                         67.6
                                      34 12 US-10-361-928-8
     16
                 23
                         67.6
                                  34 12
34 12
34 14
34 14
                                      34 12 US-10-340-484-15
     17
                 23
                         67.6
                                                                                            Sequence 16, Appl
                                       34 12 US-10-340-484-16
     18
                 23
                         67.6
                                                                                            Sequence 5, Appli
                                                    US-10-016-403-5
     19
                 23
                         67.6
                                                                                          Sequence 6, Appli
Sequence 1, Appli
Sequence 15, Appl
Sequence 9, Appli
Sequence 4, Appli
                                                    US-10-016-403-6
     20
                 23
                         67.6
                                       34 14 US-10-097-079-1
     21
                 23
                         67.6
                                     37 11 US-09-843-221A-15
                          67.6
     22
                 23
                                      37 12 US-10-168-185-9
                 23
                          67.6
     23
                                      38 9 US-09-169-786-4
                                                                                       Sequence 4, Appli
Sequence 14, Appli
Sequence 1, Appli
Sequence 3, Appli
Sequence 6, Appli
Sequence 9, Appli
Sequence 24, Appl
Sequence 2, Appli
Sequence 27, Appl
Sequence 165, Appl
                         67.6
     24
                 23
                                  38 11 US-09-843-221A-14
38 12 US-10-245-707-1
33 12 US-10-361-928-3
33 12 US-10-361-928-6
33 12 US-10-361-928-9
                                      38 11 US-09-843-221A-14
                          67.6
     25
                  23
                                                    US-10-245-707-1
                  23
                          67.6
     26
                                                    US-10-361-928-3
     27
                  22
                          64.7
                                                   US-10-361-928-6
                          64.7
                  22
     28
                          64.7
     29
                  22
                                      34 12 US-10-372-095-24
     30
                  21
                          61.8
                                      31 9 US-09-169-786-2
                          58.8
     31
                  20
                                      31 11 US-09-843-221A-27
                  20
                          58.8
     32
                                                                                             Sequence 165, App
                                      31 11 US-09-843-221A-165
                          58.8
                  20
     33
                                  30 11 US-09-0-2

30 11 US-09-843-221A-40

30 11 US-09-843-221A-43

30 11 US-09-843-221A-166

28 11 US-09-843-221A-34

29 11 US-09-843-221A-51

115-09-843-221A-167
                                                                                             Sequence 39, Appl
Sequence 40, Appl
     34
                  19
                          55.9
                  19
                          55.9
     35
                                                                                                Sequence 43, Appl
                  19
                          55.9
     36
                                                                                                Sequence 166, App
                 19
                          55.9
     37
                                                                                             Sequence 34, Appl
                          52.9
     38
                  18
                                                                                                Sequence 51, Appl
                  18
                          52.9
     39
                                                                                                Sequence 167, App
                          52.9
                  18
     40
                                                                                                Sequence 30, Appl
                                      32 11 US-09-843-221A-30
                          52.9
                  18
      41
                                                                                                Sequence 22, Appl
                                      34 11 US-09-843-221A-22
                          52.9
                  18
      42
                                                                                                Sequence 18, Appl
                                      34 12 US-10-340-484-18
      43
                  18
                          52.9
                                       34 12 US-10-340-484-20
                                                                                                Sequence 20, Appl
                          52.9
      44
                  18
                                                                                                Sequence 111, App
                                      40 15 US-10-014-162-111
                          52.9
      45
                  18
                                                                                                Sequence 35, Appl
                                      28 11 US-09-843-221A-35
                          50.0
      46
                  17
                                                                                                Sequence 52, Appl
                                      28 11 US-09-843-221A-52
                          50.0
      47
                  17
                                                                                               Sequence 168, App
                                      28 11 US-09-843-221A-168
      48
                  17
                          50.0
                                                                                               Sequence 7, Appli
                                      34 14 US-10-016-403-7
      49
                  17
                          50.0
                                                                                                Sequence 24, Appl
                                       34 11 US-09-843-221A-24
      50
                  16
                          47.1
                                                                                                Sequence 17, Appl
                                      34 12 US-10-340-484-17
                          47.1
      51
                  16
                          47.1 34 12 US-10-340-484-17

47.1 34 12 US-10-340-484-19

44.1 28 11 US-09-843-221A-33

44.1 28 11 US-09-843-221A-36

44.1 30 11 US-09-843-221A-50

44.1 31 11 US-09-843-221A-28
                                                                                             Sequence 19, Appl
      52
                  16
                                                                                                Sequence 33, Appl
      53
                  15
                                                                                                Sequence 36, Appl
      54
                  15
                                                                                                Sequence 50, Appl
      55
                  15
                                                                                                Sequence 28, Appl
      56
                  15
```

```
Sequence 206, App
                                US-10-031-874A-206
              44.1
                        31
                            12
57
         15
                                US-09-843-221A-29
                                                              Sequence 29, Appl
58
         15
              44.1
                        32
                            11
                                                              Sequence 31, Appl
                                US-09-843-221A-31
59
         15
              44.1
                        32
                            11
                                                              Sequence 19, Appl
                                US-09-843-221A-19
         15
              44.1
                        34
                            11
60
                                                              Sequence 21, Appl
                            11
                                US-09-843-221A-21
              44.1
                        34
61
         15
                                                              Sequence 23, Appl
                            11
                                US-09-843-221A-23
62
         15
              44.1
                        34
                                                              Sequence 164, App
                                US-09-843-221A-164
63
         15
              44.1
                        34
                            11
                                                              Sequence 54, Appl
                        28
                            11
                                US-09-843-221A-54
64
         14
              41.2
                                                              Sequence 45, Appl
                                US-09-843-221A-45
                        30
                            11
65
         14
              41.2
                                                             Sequence 11, Appl
                               US-09-169-786-11
                            9
66
         14
              41.2
                        34
                                                              Sequence 53, Appl
                                US-09-843-221A-53
                            11
67
         12
              35.3
                        28
                                                              Sequence 55, Appl
                        28
                            11
                                 US-09-843-221A-55
68
         12
              35.3
                                                              Sequence 44, Appl
                                 US-09-843-221A-44
                        30
                            11
69
         12
              35.3
                                                              Sequence 46, Appl
                                 US-09-843-221A-46
                        30
                            11
70
         12
              35.3
                                                              Sequence 47, Appl
                                 US-09-843-221A-47
                            11
71
         12
              35.3
                        30
                                                              Sequence 25, Appl
                        34
                            11
                                 US-09-843-221A-25
72
         12
              35.3
                                                              Sequence 22, Appl
                                 US-10-340-484-22
                        34
                            12
73
         12
              35.3
                                                              Sequence 93, Appl
                                 US-09-843-221A-93
                        28
                            11
74
         11
              32.4
                                                              Sequence 94, Appl
                                 US-09-843-221A-94
75
         11
              32.4
                        28
                            11
                                                              Sequence 42, Appl
                                 US-09-843-221A-42
                        30
                            11
76
         11
              32.4
                                                              Sequence 124, App
              32.4
                            11
                                 US-09-843-221A-124
77
         11
                        30
                                                              Sequence 125, App
                        30
                            11
                                 US-09-843-221A-125
78
         11
              32.4
                                                              Sequence 26, Appl
                                 US-09-843-221A-26
                        34
                            11
79
         11
               32.4
                                                              Sequence 88, Appl
               32.4
                        34
                            11
                                 US-09-843-221A-88
80
         11
                                                              Sequence 89, Appl
               32.4
                        34
                            11
                                 US-09-843-221A-89
81
         11
                                                              Sequence 22, Appl
                        34
                            12
                                 US-10-372-095-22
82
         11
              32.4
                                 US-09-843-221A-95
                                                              Sequence 95, Appl
                        28
                            11
83
         10
               29.4
                                                              Sequence 96, Appl
                        28
                            11
                                 US-09-843-221A-96
84
         10
               29.4
                                                              Sequence 97, Appl
                        28
                             11
                                 US-09-843-221A-97
85
         10
               29.4
                                 US-09-843-221A-126
                                                              Sequence 126, App
                        30
                            11
         10
               29.4
86
                                                              Sequence 127, App
                            11
                                 US-09-843-221A-127
                        30
87
               29.4
         10
                                US-09-169-786-9
                                                             Sequence 9, Appli
                        31
                             9
 88
         10
               29.4
                                 US-09-843-221A-90
                                                              Sequence 90, Appl
               29.4
                        34
                            11
 89
         10
                                 US-09-843-221A-91
                                                              Sequence 91, Appl
               29.4
                        34
                            11
 90
         10
               29.4
                                 US-09-843-221A-92
                                                              Sequence 92, Appl
                        34
                            11
 91
         10
                                                              Sequence 128, App
                                 US-09-843-221A-128
                        34
                             11
 92
         10
               29.4
                                                              Sequence 48, Appl
                                 US-09-843-221A-48
          9
               26.5
                        30
                             11
 93
                                                              Sequence 23, Appl
                             12
                                 US-10-340-484-23
 94
          9
               26.5
                        34
                        30
                             11
                                 US-09-843-221A-49
                                                              Sequence 49, Appl
          8
               23.5
 95
                                                             Sequence 10, Appl
                        31
                            9
                                US-09-169-786-10
 96
          8
               23.5
                                                               Sequence 50, Appl
                            14
                                 US-10-097-079-50
 97
          8
               23.5
                        31
                                                               Sequence 51, Appl
98
                         31
                            14
                                 US-10-097-079-51
          8
               23.5
                                                               Sequence 66, Appl
               23.5
                         31
                             14
                                 US-10-097-079-66
 99
          8
                                                               Sequence 67, Appl
                         31
                             14
                                 US-10-097-079-67
          8
               23.5
100
                                 US-10-097-079-76
                                                               Sequence 76, Appl
          8
               23.5
                         31
                             14
101
                                                               Sequence 65, Appl
          7
               20.6
                         28
                             14
                                 US-10-097-079-65
102
                                                               Sequence 78, Appl
          7
               20.6
                         28
                             14
                                 US-10-097-079-78
103
                                                               Sequence 79, Appl
          7
               20.6
                         28
                             14
                                 US-10-097-079-79
104
                                                               Sequence 46, Appl
                         34
                            14
                                 US-10-097-079-46
105
          7
               20.6
                                                               Sequence 75, Appl
          7
               20.6
                         34
                            14
                                 US-10-097-079-75
106
                                                               Sequence 54, Appl
               17.6
                         28
                             14
                                 US-10-097-079-54
107
          6
                                                               Sequence 62, Appl
108
          6
               17.6
                         28
                             14
                                 US-10-097-079-62
                                                               Sequence 53, Appl
                                 US-10-097-079-53
109
          6
               17.6
                         29
                             14
                                                               Sequence 63, Appl
110
          6
               17.6
                         29
                             14
                                 US-10-097-079-63
                                                               Sequence 77, Appl
111
           6
               17.6
                         30
                             11
                                 US-09-843-221A-77
                                                               Sequence 158, App
                                 US-09-843-221A-158
112
           6
               17.6
                         30
                             11
                                                               Sequence 52, Appl
               17.6
                         30
                             14
                                 US-10-097-079-52
113
           6
```

```
Sequence 64, Appl
                                US-10-097-079-64
114
          6
              17.6
                        30
                            14
                                                             Sequence 3, Appli
              17.6
                        31
                            14
                                 US-10-097-079-3
115
          6
              17.6
                                                             Sequence 4, Appli
                        31
                            14
                                 US-10-097-079-4
116
          6
                                                              Sequence 5, Appli
                                 US-10-097-079-5
               17.6
                        31 14
117
          6
                                 US-10-097-079-6
                                                              Sequence 6, Appli
                           14
               17.6
                        31
118
          6
                                                              Sequence 7, Appli
                        31
                            14
                                 US-10-097-079-7
          6
               17.6
119
                                                              Sequence 8, Appli
                        31
                            14
                                 US-10-097-079-8
          6
               17.6
120
                            14
                                 US-10-097-079-9
                                                              Sequence 9, Appli
                        31
          6
               17.6
121
                                 US-10-097-079-10
                                                              Sequence 10, Appl
                        31
                            14
          6
               17.6
122
                                                              Sequence 11, Appl
                        31
                            14
                                 US-10-097-079-11
123
          6
               17.6
                                 US-10-097-079-12
                                                              Sequence 12, Appl
               17.6
                        31
                            14
124
          6
                        31
                            14
                                 US-10-097-079-13
                                                              Sequence 13, Appl
               17.6
125
          6
                            14
                                 US-10-097-079-14
                                                              Sequence 14, Appl
               17.6
                        31
126
          6
                                                              Sequence 15, Appl
               17.6
                        31
                            14
                                 US-10-097-079-15
127
          6
                            14
                                 US-10-097-079-16
                                                              Sequence 16, Appl
          6
               17.6
                        31
128
                        31
                            14
                                 US-10-097-079-17
                                                              Sequence 17, Appl
          6
               17.6
129
                                                              Sequence 18, Appl
                            14
                                 US-10-097-079-18
           6
               17.6
                        31
130
                                                              Sequence 19, Appl
           6
               17.6
                        31
                            14
                                 US-10-097-079-19
131
                                                              Sequence 20, Appl
                        31
                            14
                                 US-10-097-079-20
          6
               17.6
132
               17.6
                        31
                            14
                                 US-10-097-079-21
                                                              Sequence 21, Appl
133
           6
                                 US-10-097-079-22
                                                              Sequence 22, Appl
               17.6
                            14
                        31
134
           6
                                                              Sequence 23, Appl
               17.6
                                 US-10-097-079-23
135
           6
                        31
                            14
                                                              Sequence 24, Appl
                        31
                            14
                                 US-10-097-079-24
136
           6
               17.6
                                                              Sequence 25, Appl
           6
               17.6
                        31
                            14
                                 US-10-097-079-25
137
                                                              Sequence 26, Appl
                        31
                            14
                                 US-10-097-079-26
           6
               17.6
138
                                                              Sequence 27, Appl
                        31
                            14
                                 US-10-097-079-27
139
           6
               17.6
                                                              Sequence 28, Appl
           6
               17.6
                        31
                            14
                                 US-10-097-079-28
140
                                                              Sequence 29, Appl
           6
               17.6
                        31
                            14
                                 US-10-097-079-29
141
                                                              Sequence 30, Appl
               17.6
                        31
                            14
                                 US-10-097-079-30
142
           6
                                                              Sequence 31, Appl
143
           6
               17.6
                         31
                            14
                                 US-10-097-079-31
                                                              Sequence 32, Appl
144
           6
               17.6
                         31
                             14
                                 US-10-097-079-32
                                                              Sequence 33, Appl
145
           6
               17.6
                         31
                             14
                                 US-10-097-079-33
                                                              Sequence 34, Appl
146
           6
               17.6
                         31
                            14
                                 US-10-097-079-34
                                                              Sequence 35, Appl
147
           6
               17.6
                         31
                            14
                                 US-10-097-079-35
                                                              Sequence 36, Appl
148
           6
               17.6
                         31
                            14
                                 US-10-097-079-36
                         31
                            14
                                 US-10-097-079-37
                                                              Sequence 37, Appl
149
           6
               17.6
               17.6
                         31
                             14
                                 US-10-097-079-38
                                                              Sequence 38, Appl
150
           6
               17.6
                         31
                             14
                                 US-10-097-079-39
                                                              Sequence 39, Appl
151
           6
                                                              Sequence 40, Appl
                                 US-10-097-079-40
152
           6
               17.6
                         31
                             14
                                                              Sequence 41, Appl
           6
               17.6
                         31
                             14
                                 US-10-097-079-41
153
                                                              Sequence 42, Appl
           6
               17.6
                         31
                             14
                                 US-10-097-079-42
154
                                                              Sequence 43, Appl
           6
                            14
                                 US-10-097-079-43
               17.6
                         31
155
                                                              Sequence 44, Appl
           6
                            14
                                 US-10-097-079-44
               17.6
                         31
156
                                                              Sequence 45, Appl
157
           б
               17.6
                         31
                            14
                                 US-10-097-079-45
                                                              Sequence 47, Appl
                         31
                                 US-10-097-079-47
158
           6
               17.6
                                                              Sequence 48, Appl
           6
               17.6
                         31
                            14
                                 US-10-097-079-48
159
                                                              Sequence 49, Appl
           6
               17.6
                            14
                                 US-10-097-079-49
                         31
160
                                                              Sequence 68, Appl
161
           6
               17.6
                         31
                            14
                                 US-10-097-079-68
                                                              Sequence 69, Appl
               17.6
                         31
                             14
                                 US-10-097-079-69
162
           6
                                                              Sequence 70, Appl
           6
               17.6
                         31
                             14
                                 US-10-097-079-70
163
                            14
                                 US-10-097-079-73
                                                              Sequence 73, Appl
                         31
           6
164
               17.6
                                                              Sequence 74, Appl
           6
                         31
                            14
                                 US-10-097-079-74
165
               17.6
                                                              Sequence 80, Appl
           6
               17.6
                         31
                            14
                                 US-10-097-079-80
166
                         31
                                 US-10-097-079-81
                                                              Sequence 81, Appl
167
           6
               17.6
                             14
                                                              Sequence 82, Appl
           6
               17.6
                         31
                             14
                                 US-10-097-079-82
168
                                                              Sequence 83, Appl
               17.6
                             14
                                 US-10-097-079-83
           6
                         31
169
                                 US-10-097-079-84
                                                              Sequence 84, Appl
                            14
170
           6
               17.6
                         31
```

					,	
171	_	17.6	31	14	US-10-097-079-85	Sequence 85, Appl
171 172	6 6	17.6	31	14		Sequence 86, Appl
173	6	17.6	31	14		Sequence 87, Appl
174	6	17.6	31	14	US-10-097-079-88	Sequence 88, Appl
175	6	17.6	34	11	US-09-843-221A-122	Sequence 122, App
176	6	17.6	34	12	US-10-340-484-24	Sequence 24, Appl
177	6	17.6	36	11	US-09-843-221A-65	Sequence 65, Appl
178	5	14.7	28	12	US-10-105-232-191	Sequence 191, App
179	5	14.7	28	12	US-10-189-437-178	Sequence 178, App
180	5	14.7	30	11	US-09-843-221A-159	Sequence 159, App
181	5	14.7	34	9	US-09-864-761-38558	Sequence 38558, A
182	5	14.7	34	11		Sequence 123, App
183	5	14.7	34	12		Sequence 178, App
184	5	14.7	38	9	US-09-864-761-49110	Sequence 49110, A
185	4	11.8	28	9	US-09-864-761-37690	Sequence 37690, A
186	4	11.8	28	9	US-09-815-248-21	Sequence 21, Appl
187	4	11.8	28	9	US-09-929-818-122	Sequence 122, App Sequence 200, App
188	4	11.8	28	9	US-09-929-818-200	Sequence 153, App
189	4	11.8	28 28	10 10		Sequence 38, Appl
190 191	4	11.8 11.8	28 28	10		Sequence 22, Appl
192	4	11.8	28	11		Sequence 153, App
193	4	11.8	28	11		Sequence 104, App
194	4	11.8	28	12		Sequence 28289, A
195	4	11.8	28	15		Sequence 153, App
196	4	11.8	28	15		Sequence 153, App
197	4	11.8	29	9	US-09-730-379B-5	Sequence 5, Appli
198	4	11.8	29	9	US-09-815-248-18	Sequence 18, Appl
199	4	11.8	29	11	US-09-983-802-386	Sequence 386, App
200	4	11.8	29	11	US-09-983-802-480	Sequence 480, App
201	4	11.8	29	11	US-09-969-730-133	Sequence 133, App
202	4	11.8	29	11	US-09-095-478-24	Sequence 24, Appl
203	4	11.8	29	12	US-10-131-909A-4	Sequence 4, Appli
204	4	11.8	29	12	US-09-933-767-1006	Sequence 1006, Ap
205	4	11.8	29	15		Sequence 4, Appli
206	4	11.8	29	15		Sequence 1006, Ap
207	4	11.8	29	15		Sequence 5404, Ap
208	4	11.8	29	15		Sequence 111, App
209	4	11.8	30	9	US-09-864-761-41441	Sequence 41441, A
210	4	11.8	30	9	US-09-864-761-46868	Sequence 46868, A
211	4	11.8	30	10		Sequence 20, Appl Sequence 191, App
212	4	11.8	30	11 12		Sequence 191, Appl
213 214	4 4	11.8 11.8	30 30	12		Sequence 19, Appl
215	4	11.8	30	12		Sequence 821, App
216	4	11.8	30	12		Sequence 40, Appl
217	4	11.8	30	15		Sequence 11, Appl
218	4	11.8	30	15		Sequence 20, Appl
219	4	11.8	30	15		Sequence 821, App
220	4	11.8	30	15		Sequence 3, Appli
221	4	11.8	31	9	US-09-864-761-38725	Sequence 38725, A
222	4	11.8	31	9	US-09-864-761-40464	Sequence 40464, A
223	4	11.8	31	9	US-09-864-761-44182	Sequence 44182, A
224	4	11.8	31	9	US-09-815-248-33	Sequence 33, Appl
225	4	11.8	31	12		Sequence 20, Appl
226	4	11.8	31	12		Sequence 1001, Ap
227	4	11.8	31	12	US-10-029-386-32285	Sequence 32285, A

```
Sequence 3767, Ap
                                US-10-264-049-3767
228
              11.8
                        31
                            12
                                                             Sequence 1001, Ap
                                US-10-023-282-1001
              11.8
                            15
229
          4
                                                             Sequence 7956, Ap
                                US-10-106-698-7956
              11.8
                        31
                            15
          4
230
                                                            Sequence 48632, A
                               US-09-864-761-48632
                        32
                            9
              11.8
231
          4
                                                            Sequence 16, Appl
                               US-09-281-717-16
              11.8
                        32
                            9
232
          4
                                                             Sequence 442, App
                        32
                            11
                                US-09-809-391-442
          4
              11.8
233
                                                             Sequence 442, App
                        32
                            12
                                US-09-882-171-442
              11.8
          4
234
                                US-10-310-113-23
                                                             Sequence 23, Appl
                        32
                            12
235
              11.8
                                                             Sequence 134, App
                        32
                            12
                                US-10-310-113-134
              11.8
236
          4
                                                             Sequence 135, App
                        32
                            12
                                US-10-310-113-135
              11.8
237
          4
                                US-10-310-113-136
                                                             Sequence 136, App
                        32
                            12
              11.8
          4
238
                        32
                            12
                                US-10-164-279-39
                                                             Sequence 39, Appl
               11.8
239
          4
                                                             Sequence 43, Appl
                                US-10-164-279-43
                        32
                            12
          4
               11.8
240
                                                             Sequence 212, App
                        32
                            15
                                US-10-174-410-212
241
          4
               11.8
                                                            Sequence 35714, A
                            9
                               US-09-864-761-35714
               11.8
                        33
          4
242
                                                            Sequence 37722, A
                            9
                               US-09-864-761-37722
                        33
               11.8
243
                                                            Sequence 38816, A
                           9
                               US-09-864-761-38816
                        33
               11.8
244
                                                            Sequence 48253, A
                           9
                        33
                               US-09-864-761-48253
          4
               11.8
245
                                                            Sequence 1526, Ap
               11.8
                               US-09-925-299-1526
                        33
                            9
246
          4
                               US-09-815-248-30
                                                            Sequence 30, Appl
                        33
                            9
               11.8
247
          4
                                                             Sequence 16, Appl
                                US-09-911-969-16
                        33
          4
               11.8
                            10
248
                                                             Sequence 1526, Ap
                                US-09-925-299-1526
               11.8
                        33
                            11
249
          4
                                                             Sequence 660, App
                        33
                                US-09-809-391-660
          4
               11.8
                            11
250
                        33
                            12
                                US-09-882-171-660
                                                             Sequence 660, App
               11.8
251
          4
                                                             Sequence 368, App
                        33
                           12
                                US-09-933-767-368
               11.8
252
          4
                                                             Sequence 63, Appl
                        33
                           12
                                US-10-164-279-63
               11.8
253
                                                             Sequence 4, Appli
                        33
                           14
                                US-10-215-297-4
254
           4
               11.8
                                                             Sequence 4, Appli
                        33
                           15
                                US-10-215-298-4
255
           4
               11.8
                                                             Sequence 110, App
                        33
                           15
                                US-10-081-816-110
256
           4
               11.8
                                                             Sequence 368, App
           4
               11.8
                        33
                            15
                                US-10-023-282-368
257
                                                            Sequence 44185, A
258
           4
               11.8
                        34
                            9
                                US-09-864-761-44185
                                                            Sequence 45430, A
           4
               11.8
                        34
                            9
                                US-09-864-761-45430
259
                                                            Sequence 48511, A
           4
               11.8
                        34
                            9
                                US-09-864-761-48511
260
                                                             Sequence 538, App
261
               11.8
                        34
                            12
                                US-10-231-417-538
                                                             Sequence 27795, A
262
           4
               11.8
                        34
                            12
                                 US-10-029-386-27795
                        34
                                 US-10-106-698-8037
                                                             Sequence 8037, Ap
263
           4
               11.8
                        35
                            9
                                US-09-925-299-1258
                                                            Sequence 1258, Ap
264
           4
               11.8
                                                             Sequence 7, Appli
                        35
                                US-09-811-824-7
265
           4
               11.8
                            10
                                                             Sequence 486, App
                                 US-09-983-802-486
266
           4
               11.8
                        35
                            11
                                                             Sequence 106, App
                         35
                                 US-09-820-843A-106
267
           4
               11.8
                            11
                                                             Sequence 1258, Ap
               11.8
                         35
                            11
                                 US-09-925-299-1258
268
           4
                                                             Sequence 75, Appl
                         35
                            12
                                 US-10-289-660-75
269
           4
               11.8
                                                              Sequence 13, Appl
                         35
                            12
                                 US-10-340-484-13
270
           4
               11.8
                                                              Sequence 138, App
                         35 . 12
                                 US-10-062-599-138
271
           4
               11.8
                                                              Sequence 75, Appl
               11.8
                         35
                            15
                                 US-10-133-128-75
272
           4
                                                              Sequence 138, App
                                 US-10-062-831-138
               11.8
                         35
                            15
273
           4
                                                              Sequence 8307, Ap
                            15
                         35
                                 US-10-106-698-8307
274
           4
               11.8
                                                            Sequence 34257, A
           4
               11.8
                         36
                            9
                                US-09-864-761-34257
275
                                                            Sequence 36302, A
                         36
                             9
                                US-09-864-761-36302
           4
               11.8
276
                                                            Sequence 39771, A
                         36
                            9
                                US-09-864-761-39771
           4
               11.8
277
                                                            Sequence 46707, A
                            9
                         36
                                US-09-864-761-46707
           4
               11.8
278
                                                            Sequence 48628, A
                             9
                                US-09-864-761-48628
279
               11.8
                         36
                                                            Sequence 37, Appl
                         36
                             9
                                US-09-815-248-37
280
           4
               11.8
                                                              Sequence 12, Appl
                         36
                            12
                                US-10-340-484-12
           4
               11.8
281
                                                              Sequence 205, App
                                 US-10-002-344A-205
                         36
                             14
           4
               11.8
282
                                 US-10-050-704-192
                                                              Sequence 192, App
                         36
                             15
283
           4
               11.8
                                                            Sequence 16, Appl
               11.8
                         37
                             9 US-09-758-318-16
284
```

```
Sequence 38287, A
285
          4
              11.8
                        37
                               US-09-864-761-38287
                       37
                               US-09-864-761-41884
                                                            Sequence 41884, A
286
              11.8
          4
                       37
                           9
                               US-09-864-761-42087
                                                           Sequence 42087, A
              11.8
287
          4
                                                           Sequence 17, Appl
                        37 9
                               US-09-815-248-17
288
          4
              11.8
                                                             Sequence 347, App
                        37
                            11
                                US-09-764-872-347
289
          4
              11.8
                        37
                                US-10-340-783-16
                                                             Sequence 16, Appl
              11.8
                            12
290
          4
                        37
                            12
                                US-10-012-952A-209
                                                             Sequence 209, App
          4
              11.8
291
                        37
                           12
                                                             Sequence 265, App
                                US-10-339-740-265
292
          4
              11.8
                        37
                            12
                                US-10-283-403-9
                                                             Sequence 9, Appli
293
          4
              11.8
                                                             Sequence 10, Appl
                        37
                            12
                                US-10-370-570-10
294
              11.8
          4
                        37
                            15
                                                             Sequence 161, App
                                US-10-082-830-161
295
              11.8
          4
                                                             Sequence 6085, Ap
                            15
                        37
                                US-10-106-698-6085
296
          4
              11.8
                                                            Sequence 21, Appl
297
              11.8
                        38
                            9
                               US-09-250-883-21
          4
                        38
                            9
                               US-09-864-761-34617
                                                            Sequence 34617, A
298
          4
              11.8
                                                            Sequence 38489, A
                        38
                            9
                               US-09-864-761-38489
299
          4
              11.8
                        38 9
                                                            Sequence 42372, A
                               US-09-864-761-42372
          4
              11.8
300
                        38 9
                                                            Sequence 44123, A
301
              11.8
                               US-09-864-761-44123
                        38
                               US-09-864-761-44436
                                                            Sequence 44436, A
302
          4
              11.8
                        39
                               US-09-864-761-41089
                                                            Sequence 41089, A
              11.8
                            9
303
          4
                                                            Sequence 41410, A
                        39
                               US-09-864-761-41410
              11.8
                            9
304
          4
                                                             Sequence 25, Appl
305
          4
              11.8
                        39
                            10
                                US-09-003-869-25
                        39
                            11
                                US-09-983-802-384
                                                             Sequence 384, App
306
          4
              11.8
307
                                                             Sequence 25, Appl
          4
              11.8
                        39
                            11
                                US-09-756-690A-25
                        39
                                                             Sequence 25, Appl
                            15
                                US-10-157-224A-25
308
          4
              11.8
                                                             Sequence 25, Appl
                        39 15
                                US-10-187-051-25
309
          4
              11.8
                                                             Sequence 7822, Ap
          4
              11.8
                        39 15
                                US-10-106-698-7822
310
                                                             Sequence 2762, Ap
311
          4
              11.8
                        40
                                US-09-764-891-2762
                        40
                           12
                                US-10-058-053A-81
                                                             Sequence 81, Appl
312
          4
              11.8
                                                             Sequence 264, App
                                US-10-058-053A-264
313
          4
              11.8
                        40
                            12
314
          4
               11.8
                        40
                            12
                                US-10-029-386-31868
                                                             Sequence 31868, A
315
          4
               11.8
                        40
                            15
                                US-10-091-572-223
                                                             Sequence 223, App
316
          3
               8.8
                        28
                            8
                               US-08-908-884-7
                                                            Sequence 7, Appli
                                                            Sequence 16, Appl
317
          3
                8.8
                        28
                            9
                               US-09-799-983-16
318
          3
                8.8
                        28 9
                               US-09-799-983-18
                                                            Sequence 18, Appl
319
          3
                8.8
                        28
                               US-09-730-379B-10
                                                            Sequence 10, Appl
320
          3
                8.8
                        28
                           9
                               US-09-765-527-30
                                                            Sequence 30, Appl
                                                            Sequence 139, App
321
          3
                8.8
                        28
                            9
                               US-09-765-527-139
                                                            Sequence 140, App
322
          3
                8.8
                        28
                            9
                               US-09-765-527-140
323
          3
                8.8
                        28
                            9
                               US-09-765-527-142
                                                            Sequence 142, App
                            9
                                                            Sequence 143, App
324
          3
                8.8
                        28
                                US-09-765-527-143
          3
                        28
                            9
                                                            Sequence 27, Appl
325
                8.8
                               US-09-895-072-27
          3
                        28 9
                                                            Sequence 33837, A
326
                8.8
                               US-09-864-761-33837
          3
                            9
                                                            Sequence 34933, A
327
                8.8
                        28
                               US-09-864-761-34933
          3
                                                            Sequence 34971, A
328
                8.8
                        28
                                US-09-864-761-34971
          3
                            9
                               US-09-864-761-35640
                                                            Sequence 35640, A
329
                8.8
                        28
          3
                            9
                                US-09-864-761-35827
                                                            Sequence 35827, A
330
                8.8
                        28
                                                            Sequence 36085, A
          3
                            9
331
                8.8
                        28
                                US-09-864-761-36085
          3
                        28
                            9
                                US-09-864-761-36728
                                                            Sequence 36728, A
332
                8.8
                                                            Sequence 37296, A
                            9
333
          3
                8.8
                        28
                                US-09-864-761-37296
          3
                        28
                            9
                                                            Sequence 37297, A
                                US-09-864-761-37297
334
                8.8
          3
                        28 9
                                                            Sequence 37848, A
335
                                US-09-864-761-37848
                8.8
          3
                        28 9
                                                            Sequence 37919, A
336
                8.8
                                US-09-864-761-37919
          3
                        28
                                                            Sequence 37927, A
337
                8.8
                                US-09-864-761-37927
          3
                        28
                            9
                                US-09-864-761-39084
                                                            Sequence 39084, A
338
                8.8
          3
                        28
                            9
                                                            Sequence 39493, A
339
                                US-09-864-761-39493
                8.8
           3
                        28
                                                            Sequence 39762, A
340
                8.8
                            9
                                US-09-864-761-39762
                                US-09-864-761-39984
                8.8
                        28 9
                                                            Sequence 39984, A
341
```

```
Sequence 40300, A
                        28
                           9
                               US-09-864-761-40300
               8.8
          3
342
                                                            Sequence 40325, A
                        28
                           9
                               US-09-864-761-40325
          3
               8.8
343
                                                            Sequence 41015, A
                        28
                           9
                               US-09-864-761-41015
          3
               8.8
344
                                                            Sequence 42022, A
                        28
                               US-09-864-761-42022
          3
               8.8
345
                                                            Sequence 42177, A
                        28
                           9
                               US-09-864-761-42177
          3
               8.8
346
                                                            Sequence 42253, A
                        28
                            9
                               US-09-864-761-42253
347
          3
               8.8
                                                            Sequence 43275, A
                               US-09-864-761-43275
                        28
                            9
348
          3
               8.8
                                                            Sequence 43290, A
          3
               8.8
                        28
                            9
                               US-09-864-761-43290
349
                                                            Sequence 43834, A
                               US-09-864-761-43834
          3
               8.8
                        28
                            9
350
                                                            Sequence 43979, A
          3
               8.8
                        28
                           9
                               US-09-864-761-43979
351
                                                            Sequence 44041, A
          3
               8.8
                        28
                           9
                               US-09-864-761-44041
352
                                                            Sequence 44733, A
          3
               8.8
                        28
                            9
                               US-09-864-761-44733
353
                                                            Sequence 45427, A
          3
               8.8
                        28
                            9
                               US-09-864-761-45427
354
                            9
                               US-09-864-761-46128
                                                            Sequence 46128, A
          3
               8.8
                        28
355
                            9
                               US-09-864-761-47465
                                                            Sequence 47465, A
          3
               8.8
                        28
356
                                                            Sequence 47968, A
                            9
357
          3
               8.8
                        28
                               US-09-864-761-47968
                                                            Sequence 48171, A
                        28
                            9
                               US-09-864-761-48171
358
          3
                8.8
                                                            Sequence 48316, A
                            9
                        28
                               US-09-864-761-48316
359
          3
               8.8
                                                            Sequence 49082, A
                           9
                        28
                               US-09-864-761-49082
360
          3
                8.8
                                                            Sequence 26, Appl
                           9
361
          3
                8.8
                        28
                               US-09-962-055-26
                                                            Sequence 1524, Ap
                        28
                               US-09-925-301-1524
362
          3
                8.8
                                                            Sequence 1173, Ap
                        28
                            9
                               US-09-925-299-1173
          3
                8.8
363
                                                            Sequence 23, Appl
                        28
                            9
                               US-09-728-721-23
364
          3
                8.8
                                                            Sequence 7, Appli
                            9
                               US-09-908-323-7
365
          3
                8.8
                        28
                                                            Sequence 5, Appli
                        28
                            9
                               US-09-881-490-5
366
          3
                8.8
                            9
                                                            Sequence 110, App
          3
                        28
                               US-09-881-490-110
367
                8.8
                                                            Sequence 111, App
                        28
                           9
                               US-09-881-490-111
          3
368
                8.8
                                                            Sequence 113, App
                        28 9
          3
                               US-09-881-490-113
369
                8.8
                                                            Sequence 114, App
                        28 9
          3
                8.8
                               US-09-881-490-114
370
                                                            Sequence 4, Appli
                        28
                               US-09-879-666-4
          3
                8.8
371
                                                            Sequence 1, Appli
                        28
                            9
                               US-09-929-818-1
          3
372
                8.8
                                                            Sequence 2, Appli
                            9
                               US-09-929-818-2
          3
                        28
373
                8.8
                                                            Sequence 3, Appli
                            9
          3
                8.8
                        28
                               US-09-929-818-3
374
                                                            Sequence 4, Appli
          3
                        28
                            9
                                US-09-929-818-4
                8.8
375
                                                            Sequence 5, Appli
          3
                        28
                            9
                               US-09-929-818-5
                8.8
376
                                                            Sequence 6, Appli
                            9
          3
                        28
                               US-09-929-818-6
377
                8.8
                                                            Sequence 7, Appli
          3
                        28
                           9
                               US-09-929-818-7
378
                8.8
                                                            Sequence 8, Appli
          3
                        28
                            9
                               US-09-929-818-8
379
                8.8
                                                            Sequence 9, Appli
380
          3
                8.8
                        28
                            9
                                US-09-929-818-9
                                US-09-929-818-10
                                                            Sequence 10, Appl
           3
                        28
                            9
381
                8.8
                                                            Sequence 11, Appl
382
           3
                8.8
                        28
                            9
                                US-09-929-818-11
                                                            Sequence 12, Appl
           3
                        28
                            9
                                US-09-929-818-12
383
                8.8
                                                            Sequence 13, Appl
           3
                8.8
                        28
                            9
                                US-09-929-818-13
384
                           9
                                US-09-929-818-14
                                                            Sequence 14, Appl
           3
                        28
                8.8
385
           3
                        28 9
                                                            Sequence 15, Appl
                                US-09-929-818-15
386
                8.8
           3
                        28 9
                                                            Sequence 16, Appl
                8.8
                                US-09-929-818-16
387
           3
                        28
                            9
                                US-09-929-818-17
                                                            Sequence 17, Appl
                8.8
388
           3
                        28 9
                                US-09-929-818-18
                                                            Sequence 18, Appl
                8.8
389
           3
                        28 9
                                US-09-929-818-19
                                                            Sequence 19, Appl
390
                8.8
           3
                        28
                            9
                                US-09-929-818-20
                                                            Sequence 20, Appl
391
                8.8
                                                            Sequence 21, Appl
           3
                        28
                            9
                                US-09-929-818-21
392
                8.8
                                                            Sequence 22, Appl
           3
                8.8
                        28
                             9
                                US-09-929-818-22
393
                                                            Sequence 23, Appl
           3
                8.8
                        28
                            9
                                US-09-929-818-23
394
                                                            Sequence 24, Appl
           3
                        28
                            9
                                US-09-929-818-24
395
                8.8
                                                            Sequence 25, Appl
           3
                8.8
                        28
                            9
                                US-09-929-818-25
396
                                                            Sequence 26, Appl
397
           3
                8.8
                        28
                            9
                                US-09-929-818-26
                        28
                                                            Sequence 27, Appl
398
           3
                8.8
                            9
                                US-09-929-818-27
```

399	3	8.8	28	9	US-09-929-818-28	Sequence 28, Appl
400	3	8.8	28	9	US-09-929-818-29	Sequence 29, Appl
401	3	8.8	28	9	US-09-929-818-30	Sequence 30, Appl
402	3	8.8	28	9	US-09-929-818-31	Sequence 31, Appl
403	3	8.8	28	9	US-09-929-818-32	Sequence 32, Appl
404	3	8.8	28	9	US-09-929-818-33	Sequence 33, Appl
405	3	8.8	28	9	US-09-929-818-34	Sequence 34, Appl
406	3	8.8	28	9	US-09-929-818-35	Sequence 35, Appl
407	3	8.8	28	9	US-09-929-818-36	Sequence 36, Appl
408	3	8.8	28	9	US-09-929-818-37	Sequence 37, Appl
409	3	8.8	28	9	US-09-929-818-38	Sequence 38, Appl
410	3	8.8	28	9	US-09-929-818-39	Sequence 39, Appl
411	3	8.8	28	9	US-09-929-818-40	Sequence 40, Appl
412	3	8.8	28	9	US-09-929-818-41	Sequence 41, Appl
413	3	8.8	28	9	US-09-929-818-42	Sequence 42, Appl
414	3	8.8	28	9	US-09-929-818-43	Sequence 43, Appl
415	3	8.8	28	9	US-09-929-818-44	Sequence 44, Appl
416	3	8.8	28	9	US-09-929-818-45	Sequence 45, Appl
417	3	8.8	28	9	US-09-929-818-46	Sequence 46, Appl
418	3	8.8	28	9	US-09-929-818-47	Sequence 47, Appl
419	3	8.8	28	9	US-09-929-818-48	Sequence 48, Appl
420	3	8.8	28	9	US-09-929-818-49	Sequence 49, Appl
421	3	8.8	28	9	US-09-929-818-50	Sequence 50, Appl
422	3	8.8	28	9	US-09-929-818-51	Sequence 51, Appl
423	3	8.8	28	9	US-09-929-818-52	Sequence 52, Appl
424	3	8.8	28	9	US-09-929-818-53	Sequence 53, Appl
425	3	8.8	28	9	US-09-929-818-54	Sequence 54, Appl
426	3	8.8	28	9	US-09-929-818-61	Sequence 61, Appl
427	3	8.8	28	9	US-09-929-818-62	Sequence 62, Appl
428	3	8.8	28	9	US-09-929-818-66	Sequence 66, Appl
429	3	8.8	28	9	US-09-929-818-69	Sequence 69, Appl
430	3	8.8	28	9	US-09-929-818-76	Sequence 76, Appl
431	3	8.8	28	9	US-09-929-818- 7 7	Sequence 77, Appl
432	3	8.8	28	9	US-09-929-818-80	Sequence 80, Appl
433	3	8.8	28	9	US-09-929-818-87	Sequence 87, Appl
434	3	8.8	28	9	US-09-929-818-94	Sequence 94, Appl
435	3	8.8	28	9	US-09-929-818-95	Sequence 95, Appl
436	3	8.8	28	9	US-09-929-818-97	Sequence 97, Appl
437	3	8.8	28	9	US-09-929-818-99	Sequence 99, Appl
438	3	8.8	28	9		Sequence 100, App
439	3	8.8	28	9	US-09-929-818-101	Sequence 101, App
440	3	8.8	28	9	US-09-929-818-102	Sequence 102, App
441	3	8.8	28	9	US-09-929-818-103	Sequence 103, App
442	3	8.8	28	9	US-09-929-818-104	Sequence 104, App
443	3	8.8	28	9	US-09-929-818-105	Sequence 105, App
444	3	8.8	28	9	US-09-929-818 - 106	Sequence 106, App
445	3	8.8	28	9	US-09-929-818-107	Sequence 107, App
446	3	8.8	28	9	US-09-929-818-108	Sequence 108, App
447	3	8.8	28	9	US-09-929-818-109	Sequence 109, App
448	3	8.8	28	9	US-09-929-818-110	Sequence 110, App
449	3	8.8	28	9	US-09-929-818-111	Sequence 111, App
450	3	8.8	28	9	US-09-929-818-112	Sequence 112, App
451	3	8.8	28	9	US-09-929-818-113	Sequence 113, App
452	3	8.8	28	9	US-09-929-818-114	Sequence 114, App
453	3	8.8	28	9	US-09-929-818-115	Sequence 115, App
454	3	8.8	28	9	US-09-929-818-116	Sequence 116, App
455	3	8.8	28	9	US-09-929-818-117	Sequence 117, App

456	3	8.8	28	9	US-09-929-818-118	Sequence 118, App
457	3	8.8	28	9	US-09-929-818-119	Sequence 119, App
458	3	8.8	28	9	US-09-929-818-120	Sequence 120, App
459	3	8.8	28	9	US-09-929-818 - 121	Sequence 121, App
460	3	8.8	28	9	US-09-929-818-123	Sequence 123, App
461	3	8.8	28	9	US-09-929-818-124	Sequence 124, App
462	3	8.8	28	9	US-09-929-818-125	Sequence 125, App
463	3	8.8	28	9	US-09-929-818-126	Sequence 126, App
464	3	8.8	28	9	US-09-929-818-127	Sequence 127, App
465	3	8.8	28	9	US-09-929-818-128	Sequence 128, App
466	3	8.8	28	9	US-09-929-818-129	Sequence 129, App
467	3	8.8	28	9	US-09-929-818-130	Sequence 130, App
468	3	8.8	28	9	US-09-929-818-131	Sequence 131, App
469	3	8.8	28	9	US-09-929-818-132	
470	3	8.8	28	9	US-09-929-818-133	Sequence 132, App
471	3	8.8	28	9	US-09-929-818-134	Sequence 133, App
472	3	8.8	28	9	US-09-929-818-135	Sequence 134, App
473	3	8.8	28	9		Sequence 135, App
474	3	8.8	28	9	US-09-929-818-136	Sequence 136, App
475	3	8.8			US-09-929-818-137	Sequence 137, App
476	3	8.8	-28	9	US-09-929-818-138	Sequence 138, App
			28	9	US-09-929-818-139	Sequence 139, App
477	3	8.8	28	9	US-09-929-818-140	Sequence 140, App
478	3	8.8	28	9	US-09-929-818-141	Sequence 141, App
479	3	8.8	28	9	US-09-929-818-142	Sequence 142, App
480	3	8.8	28	9	US-09-929-818-143	Sequence 143, App
481	3	8.8	28	9	US-09-929-818-144	Sequence 144, App
482	3	8.8	28	9	US-09-929-818-145	Sequence 145, App
483	3	8.8	28	9	US-09-929-818-146	Sequence 146, App
484	3	8.8	28	9	US-09-929-818-147	Sequence 147, App
485	3	8.8	28	9	US-09-929-818-148	Sequence 148, App
486	3	8.8	28	9	US-09-929-818-149	Sequence 149, App
487	3	8.8	28	9	US-09-929-818-150	Sequence 150, App
488	3	8.8	28	9	US-09-929-818-151	Sequence 151, App
489	3	8.8	28	9	US-09-929-818-152	Sequence 152, App
490	3	8.8	28	9	US-09-929-818-153	Sequence 153, App
491	3	8.8	28	9	US-09-929-818-154	Sequence 154, App
492	3	8.8	28	9	US-09-929-818 - 155	Sequence 155, App
493	3	8.8	28	9	US-09-929-818-156	Sequence 156, App
494	3	8.8	28	9	US-09-929-818-157	Sequence 157, App
495	3	8.8	28	9	US-09-929-818-158	Sequence 158, App
496	3	8.8	28	9	US-09-929-818-159	Sequence 159, App
497	3	8.8	28	9	US-09-929-818-160	Sequence 160, App
498	3	8.8	28	9	US-09-929-818-161	Sequence 161, App
499	3	8.8	28	9	US-09-929-818-162	Sequence 162, App
500	3	8.8	28	9	US-09-929-818-163	Sequence 163, App
501	3	8.8	28	9	US-09-929-818-164	Sequence 164, App
502	3	8.8	28	9	US-09-929-818-165	Sequence 165, App
503	3	8.8	28	9	US-09-929-818-166	Sequence 166, App
504	3	8.8	28	9	US-09-929-818-167	Sequence 167, App
505	3	8.8	28	9	US-09-929-818-168	Sequence 168, App
506	3	8.8	28	9	US-09-929-818-169	Sequence 169, App
507	3	8.8	28	9	US-09-929-818-170	Sequence 170, App
508	3	8.8	28	9	US-09-929-818-171	Sequence 171, App
509	3	8.8	28	9	US-09-929-818-172	Sequence 171, App
510	3	8.8	28	9	US-09-929-818-173	Sequence 173, App
511	3	8.8	28	9	US-09-929-818-174	Sequence 173, App
512	3	8.8	28	9	US-09-929-818-175	Sequence 174, App
	*	-		-	0, ,-, 010 1,5	pedactice 112, whh

513	3	8.8	28	9	US-09-929-818-176	Sequence 176, App
514	3	8.8	28	9	US-09-929-818-177	Sequence 177, App
515	3	8.8	28	9	US-09-929-818-178	Sequence 178, App
516	3	8.8	28	9	US-09-929-818 - 179	Sequence 179, App
517	3	8.8	28	9	US-09-929-818-180	Sequence 180, App
518	3	8.8	28	9	US-09-929-818-181	Sequence 181, App
519	3	8.8	28	9	US-09-929-818-182	Sequence 182, App
520	3	8.8	28	9	US-09-929-818-183	Sequence 183, App
521	3	8.8	28	9	US-09-929-818-184	Sequence 184, App
522	3	8.8	28	9	US-09-929-818 - 185	Sequence 185, App
523	3	8.8	28	9	US-09-929 - 818-186	Sequence 186, App
524	3	8.8	28	9	US-09-929-818-187	Sequence 187, App
525	3	8.8	28	9	US-09-929-818-188	Sequence 188, App
526	3	8.8	28	9	US-09-929-818-189	Sequence 189, App
527	3	8.8	28	9	US-09-929-818-190	Sequence 190, App
528	3	8.8	28	9	US-09-929-818-191	Sequence 191, App
529	3	8.8	28	9	US-09-929-818-192	Sequence 192, App
530	3	8.8	28	9	US-09-929-818-193	Sequence 193, App
531	3	8.8	28	9	US-09-929-818-194	Sequence 194, App
532	3	8.8	28	9	US-09-929-818-195	Sequence 195, App
533	3	8.8	28	9	US-09-929-818-196	Sequence 196, App
	3	8.8	28	9	US-09-929-818-197	Sequence 197, App
534		8.8		9		
535	3		28		US-09-929-818-198	Sequence 198, App
536	3	8.8	28	9	US-09-929-818-199	Sequence 199, App
537	3	8.8	28	9	US-09-929-818-201	Sequence 201, App
538	3	8.8	28	9	US-09-929-818-202	Sequence 202, App
539	3	8.8	28	9	US-09-929-818-207	Sequence 207, App
540	3	8.8	28	10		Sequence 4, Appli
541	3	8.8	28	10		Sequence 40, Appl
542	3	8.8	28	10		Sequence 90, Appl
543	3	8.8	28	10		Sequence 91, Appl
544	3	8.8	28	10	US-09-003-869-92	Sequence 92, Appl
545	3	8.8	28	10	US-09-003-869-95	Sequence 95, Appl
546	3	8.8	28	10	US-09-003-869-104	Sequence 104, App
547	3	8.8	28	10	US-09-003-869-105	Sequence 105, App
548	3	8.8	28	10	US-09-003-869-106	Sequence 106, App
549	3	8.8	28	10	US-09-003-869-107	Sequence 107, App
550	3	8.8	28	10	US-09-003-869-108	Sequence 108, App
551	3	8.8	28	10		Sequence 109, App
552	3	8.8	28	10	US-09-003-869-111	Sequence 111, App
553	3	8.8	28	10		Sequence 113, App
554	3	8.8	28	10		Sequence 115, App
555	3	8.8	28	10		Sequence 117, App
556	3	8.8	28	10		Sequence 119, App
557	3	8.8	28	10		Sequence 121, App
558	3	8.8	28	10		Sequence 123, App
559	3	8.8	28	10		Sequence 125, App
560	3	8.8	28	10		Sequence 127, App
561	3		28	10		Sequence 129, App
		8.8				
562	3	8.8	28	10		Sequence 131, App Sequence 133, App
563	3	8.8	28	10		
564	3	8.8	28	10		Sequence 135, App
565	3	8.8	28	10		Sequence 137, App
566	3	8.8	28	10		Sequence 139, App
567	3	8.8	28	10		Sequence 141, App
568	3	8.8	28	10		Sequence 143, App
569	3	8.8	28	10	US-09-003-869-145	Sequence 145, App

```
Sequence 147, App
                             10
                                 US-09-003-869-147
570
          3
                8.8
                        28
                                 US-09-003-869-149
                                                              Sequence 149, App
571
          3
                8.8
                        28
                             10
572
          3
                8.8
                        28
                             10
                                 US-09-003-869-151
                                                              Sequence 151, App
                        28
          3
                8.8
                             10
                                 US-09-003-869-155
                                                              Sequence 155, App
573
574
          3
                        28
                             10
                                 US-09-003-869-163
                                                              Sequence 163, App
                8.8
                                                              Sequence 165, App
575
          3
                8.8
                        28
                             10
                                 US-09-003-869-165
          3
                        28
                             10
                                 US-09-903-456-116
                                                              Sequence 116, App
576
                8.8
          3
                8.8
                        28
                             10
                                 US-09-989-903-23
                                                              Sequence 23, Appl
577
          3
                                                              Sequence 10, Appl
                        28
                             10
                                 US-09-880-149-10
578
                8.8
          3
                             10
                                                              Sequence 11, Appl
579
                8.8
                        28
                                 US-09-880-149-11
          3
                8.8
                        28
                             10
                                 US-09-986-552-27
                                                              Sequence 27, Appl
580
                                                               Sequence 53, Appl
581
          3
                8.8
                        28
                             10
                                 US-09-999-745-53
          3
                                                               Sequence 241, App
                8.8
                        28
                             10
                                 US-09-981-876-241
582
                                                              Sequence 1, Appli
          3
                         28
                             10
583
                8.8
                                 US-09-880-498-1
                                                              Sequence 37, Appl
584
          3
                8.8
                         28
                             10
                                 US-09-554-000-37
                                                               Sequence 10, Appl
585
          3
                8.8
                         28
                             10
                                 US-09-880-132-10
          3
                         28
                             10
                                                               Sequence 11, Appl
                8.8
                                 US-09-880-132-11
586
          3
                                                               Sequence 3, Appli
                         28
                             10
587
                8.8
                                 US-09-848-967-3
588
          3
                8.8
                         28
                             10
                                 US-09-848-967-4
                                                               Sequence 4, Appli
                         28
                                                               Sequence 26, Appl
589
          3
                8.8
                             10
                                 US-09-976-740-26
          3
                         28
                             11
                                 US-09-983-802-481
                                                               Sequence 481, App
590
                8.8
          3
                                                               Sequence 531, App
591
                         28
                             11
                                 US-09-983-802-531
                8.8
          3
                                                               Sequence 28, Appl
592
                8.8
                         28
                             11
                                 US-09-999-724-28
          3
                         28
                             11
                                 US-09-148-545-241
                                                               Sequence 241, App
593
                8.8
594
          3
                8.8
                         28
                             11
                                 US-09-974-879-269
                                                               Sequence 269, App
                                                               Sequence 520, App
          3
                8.8
                         28
                             11
                                 US-09-974-879-520
595
          3
                         28
                             11
                                                               Sequence 546, App
596
                8.8
                                 US-09-974-879-546
597
          3
                8.8
                         28
                             11
                                 US-09-756-690A-40
                                                               Sequence 40, Appl
598
          3
                8.8
                         28
                             11
                                 US-09-756-690A-90
                                                               Sequence 90, Appl
599
          3
                         28
                             11
                                 US-09-756-690A-91
                                                               Sequence 91, Appl
                8.8
600
          3
                8.8
                         28
                             11
                                 US-09-756-690A-92
                                                               Sequence 92, Appl
                                                               Sequence 95, Appl
601
          3
                8.8
                         28
                             11
                                 US-09-756-690A-95
602
          3
                8.8
                         28
                             11
                                 US-09-756-690A-104
                                                               Sequence 104, App
603
          3
                8.8
                         28
                             11
                                 US-09-756-690A-105
                                                               Sequence 105, App
           3
604
                8.8
                         28
                             11
                                 US-09-756-690A-106
                                                               Sequence 106, App
                                                               Sequence 107, App
605
           3
                8.8
                         28
                             11
                                 US-09-756-690A-107
606
           3
                         28
                             11
                                                               Sequence 108, App
                8.8
                                 US-09-756-690A-108
                                                               Sequence 109, App
607
           3
                         28
                             11
                                 US-09-756-690A-109
                8.8
608
           3
                8.8
                         28
                             11
                                 US-09-756-690A-111
                                                               Sequence 111, App
           3
609
                8.8
                         28
                             11
                                 US-09-756-690A-113
                                                               Sequence 113, App
           3
610
                         28
                             11
                                                               Sequence 115, App
                8.8
                                 US-09-756-690A-115
           3
611
                8.8
                         28
                             11
                                 US-09-756-690A-117
                                                               Sequence 117, App
           3
612
                8.8
                         28
                             11
                                 US-09-756-690A-119
                                                               Sequence 119, App
           3
                         28
                             11
                                                               Sequence 121, App
613
                8.8
                                 US-09-756-690A-121
           3
614
                8.8
                         28
                             11
                                 US-09-756-690A-123
                                                               Sequence 123, App
           3
                             11
615
                8.8
                         28
                                 US-09-756-690A-125
                                                               Sequence 125, App
           3
                                 US-09-756-690A-127
616
                         28
                             11
                                                               Sequence 127, App
                8.8
           3
                                                               Sequence 129, App
617
                8.8
                         28
                             11
                                 US-09-756-690A-129
           3
618
                8.8
                         28
                             11
                                 US-09-756-690A-131
                                                               Sequence 131, App
                                                               Sequence 133, App
           3
                         28
                             11
619
                8.8
                                 US-09-756-690A-133
           3
620
                8.8
                         28
                             11
                                 US-09-756-690A-135
                                                               Sequence 135, App
           3
621
                8.8
                         28
                             11
                                                               Sequence 137, App
                                 US-09-756-690A-137
           3
                                                               Sequence 139, App
622
                         28
                             11
                8.8
                                 US-09-756-690A-139
           3
623
                8.8
                         28
                             11
                                 US-09-756-690A-141
                                                               Sequence 141, App
           3
624
                8.8
                         28
                             11
                                 US-09-756-690A-143
                                                               Sequence 143, App
                                                               Sequence 145, App
625
           3
                                 US-09-756-690A-145
                8.8
                         28
                             11
           3
626
                                 US-09-756-690A-147
                                                               Sequence 147, App
                8.8
                         28
                             11
```

```
627
           3
                8.8
                         28
                             11
                                  US-09-756-690A-149
                                                               Sequence 149, App
628
           3
                8.8
                         28
                             11
                                  US-09-756-690A-151
                                                               Sequence 151, App
629
           3
                8.8
                         28
                             11
                                  US-09-756-690A-155
                                                               Sequence 155, App
630
           3
                8.8
                         28
                             11
                                  US-09-756-690A-163
                                                               Sequence 163, App
631
           3
                8.8
                         28
                             11
                                  US-09-756-690A-165
                                                               Sequence 165, App
632
           3
                8.8
                         28
                             11
                                  US-09-843-221A-68
                                                               Sequence 68, Appl
633
           3
                8.8
                         28
                             11
                                  US-09-843-221A-70
                                                               Sequence 70, Appl
634
           3
                8.8
                         28
                             11
                                  US-09-843-221A-103
                                                               Sequence 103, App
635
           3
                8.8
                         28
                             11
                                  US-09-843-221A-104
                                                               Sequence 104, App
636
           3
                8.8
                             11
                         28
                                  US-09-843-221A-105
                                                               Sequence 105, App
637
           3
                             11
                8.8
                         28
                                  US-09-843-221A-106
                                                               Sequence 106, App
638
           3
                8.8
                         28
                             11
                                  US-09-843-221A-107
                                                               Sequence 107, App
639
           3
                8.8
                         28
                             11
                                  US-09-925-299-1173
                                                               Sequence 1173, Ap
640
           3
                8.8
                             11
                         28
                                  US-09-945-917-23
                                                               Sequence 23, Appl
           3
641
                                                               Sequence 220, App
                8.8
                         28
                             11
                                  US-09-813-153-220
642
           3
                8.8
                         28
                             11
                                  US-09-776-724A-198
                                                               Sequence 198, App
643
           3
                8.8
                         28
                             11
                                  US-09-876-904A-230
                                                               Sequence 230, App
644
           3
                8.8
                         28
                             11
                                  US-09-892-877-335
                                                               Sequence 335, App
           3
645
                8.8
                         28
                             11
                                  US-09-910-180-19
                                                               Sequence 19, Appl
646
           3
                8.8
                         28
                             11
                                  US-09-305-736-285
                                                               Sequence 285, App
647
           3
                8.8
                         28
                             11
                                  US-09-305-736-522
                                                               Sequence 522, App
648
           3
                8.8
                         28
                             11
                                  US-09-305-736-548
                                                               Sequence 548, App
649
           3
                8.8
                         28
                                                               Sequence 348, App
                             11
                                  US-09-948-783-348
650
           3
                8.8
                         28
                             11
                                                               Sequence 31, Appl
                                  US-09-866-066-31
651
           3
                8.8
                         28
                             12
                                  US-10-195-730-307
                                                               Sequence 307, App
652
           3
                8.8
                         28
                             12
                                  US-10-195-730-354
                                                               Sequence 354, App
653
           3
                8.8
                         28
                             12
                                                               Sequence 57, Appl
                                  US-10-293-086-57
654
           3
                8.8
                         28
                             12
                                  US-10-309-422-4
                                                               Sequence 4, Appli
655
           3
                8.8
                         28
                             12
                                  US-10-334-405-4
                                                               Sequence 4, Appli
656
           3
                8.8
                         28
                             12
                                  US-10-251-703-21
                                                               Sequence 21, Appl
                8.8
657
           3
                         28
                             12
                                  US-10-306-686-27
                                                               Sequence 27, Appl
658
           3
                8.8
                         28
                             12
                                  US-09-991-225-35
                                                               Sequence 35, Appl
659
           3
                8.8
                         28
                             12
                                  US-10-100-256B-1
                                                               Sequence 1, Appli
660
           3
                8.8
                         28
                             12
                                  US-10-345-281-10
                                                               Sequence 10, Appl
661
           3
                8.8
                         28
                             12
                                  US-10-345-281-11
                                                               Sequence 11, Appl
662
           3
                8.8
                         28
                             12
                                  US-10-254-569A-1
                                                               Sequence 1, Appli
663
           3
                8.8
                         28
                             12
                                  US-10-254-569A-2
                                                               Sequence 2, Appli
664
           3
                8.8
                         28
                             12
                                  US-10-254-569A-3
                                                               Sequence 3, Appli
665
           3
                8.8
                         28
                             12
                                 US-10-254-569A-4
                                                               Sequence 4, Appli
666
           3
                8.8
                         28
                             12
                                 US-10-254-569A-5
                                                               Sequence 5, Appli
667
           3
                8.8
                         28
                             12
                                  US-10-254-569A-6
                                                               Sequence 6, Appli
668
           3
                8.8
                         28
                                  US-10-254-569A-7
                             12
                                                               Sequence 7, Appli
669
           3
                8.8
                         28
                             12
                                 US-10-254-569A-8
                                                               Sequence 8, Appli
670
           3
                8.8
                             12
                         28
                                 US-10-254-569A-9
                                                               Sequence 9, Appli
671
           3
                8.8
                             12
                         28
                                 US-10-254-569A-10
                                                               Sequence 10, Appl
672
           3
                8.8
                         28
                             12
                                 US-10-254-569A-11
                                                               Sequence 11, Appl
673
           3
                8.8
                         28
                             12
                                 US-10-254-569A-12
                                                               Sequence 12, Appl
674
           3
                8.8
                         28
                             12
                                 US-10-156-911-116
                                                               Sequence 116, App
675
          3
                8.8
                         28
                             12
                                 US-09-845-917A-23
                                                               Sequence 23, Appl
676
          3
                8.8
                         28
                             12
                                 US-10-322-746-7
                                                               Sequence 7, Appli
677
           3
                8.8
                         28
                             12
                                 US-10-411-224-108
                                                               Sequence 108, App
678
          3
                8.8
                         28
                             12
                                 US-09-829-922-22
                                                               Sequence 22, Appl
679
          3
                8.8
                         28
                             12
                                                               Sequence 591, App
                                 US-10-231-417-591
680
          3
                8.8
                         28
                             12
                                 US-10-312-691-2
                                                               Sequence 2, Appli
681
          3
                8.8
                         28
                             12
                                 US-10-314-506-16
                                                               Sequence 16, Appl
682
          3
                8.8
                         28
                             12
                                 US-10-314-506-17
                                                               Sequence 17, Appl
683
          3
                8.8
                         28
                             12
                                 US-10-408-736-81
                                                               Sequence 81, Appl
```

604	2		0.0		110 00 000 000	606 7
684	3	8.8		12	US-09-933-767-626	Sequence 626, App
685	3	8.8		12	US-09-933-767 - 638	Sequence 638, App
686	3	8.8		L2	US-09-933 - 767-1089	Sequence 1089, Ap
687	3	8.8		12	US-10-105 - 232-329	Sequence 329, App
688	3	8.8	28	12	US-10-131-686A-19	Sequence 19, Appl
689	3	8.8	28	12	US-10-289-135A-36	Sequence 36, Appl
690	3	8.8	28	12	US-10-082-014-39	Sequence 39, Appl
691	3	8.8	28	12	US-10-276 - 392-1	Sequence 1, Appli
692	3	8.8		12	US-10-276-392-7	Sequence 7, Appli
693	3	8.8		12	US-10-276-392-8	Sequence 8, Appli
694	3	8.8		12	US-10-276-392-9	Sequence 9, Appli
695	3	8.8		12	US-10-276-392-10	Sequence 10, Appl
696	3	8.8		12	US-10-276-392-11	
697				12		Sequence 11, Appl
	3	8.8			US-10-276-392-12	Sequence 12, Appl
698	3	8.8		12	US-10-276-392-13	Sequence 13, Appl
699	3	8.8		12	US-10-276-392-14	Sequence 14, Appl
700	3	8.8		12	US-10-276-392-15	Sequence 15, Appl
701	3	8.8		12	US-10-276-392-16	Sequence 16, Appl
702	3	8.8		12	US-10-276-392-17	Sequence 17, Appl
703	3	8.8	28	12	US-10-276-392-18	Sequence 18, Appl
704	3	8.8	28	12	US-10-276-392-19	Sequence 19, Appl
705	3	8.8	28	12	US-10-276-392-20	Sequence 20, Appl
706	3	8.8	28	12	US-10-276-392-21	Sequence 21, Appl
707	3	8.8		12	US-10-330-872-9	Sequence 9, Appli
708	3	8.8		12	US-10-351-641-54	Sequence 54, Appl
709	3	8.8		12	US-10-351-641-62	Sequence 62, Appl
710	3	8.8		12	US-10-351-641-982	Sequence 982, App
711	3	8.8		12	US-10-351-641-1279	Sequence 1279, Ap
712	3	8.8		12	US-10-351-641-1280	Sequence 1280, Ap
713	3	8.8		12	US-10-351-641-1314	Sequence 1314, Ap
714	3	8.8		12	US-10-351-641-1315	Sequence 1315, Ap
715	3	8.8		12	US-10-351-641-1689	Sequence 1689, Ap
716	3	8.8		12	US-10-029-386-27629	Sequence 27629, A
717	3	8.8		12	US-10-029-386-27986	Sequence 27986, A
718	3	8.8		12	US-10-029-386-28154	Sequence 28154, A
719	3	8.8	28	12	US-10-029-386-28548	Sequence 28548, A
720	3	8.8	28	12	US-10-029-386-31090	Sequence 31090, A
721	3	8.8	28	12	US-10-029-386-31267	Sequence 31267, A
722	3	8.8	28	12	US-10-029-386-31429	Sequence 31429, A
723	3	8.8	28	12	US-10-029-386-33289	Sequence 33289, A
724	3	8.8	28	12	US-10-029-386-33582	Sequence 33582, A
725	3	8.8		12	US-10-189-437-316	Sequence 316, App
726	3	8.8		12	US-10-189-437-669	Sequence 669, App
727	3	8.8		12	US-10-080-254-100	Sequence 100, App
728	3	8.8		12	US-10-080-608A-1	Sequence 1, Appli
729	3	8.8		12	US-10-372-076-40	
						Sequence 40, Appl
730 731	3	8.8		12	US-09-818-683-285	Sequence 285, App
731	3	8.8		12	US-09-818-683-522	Sequence 522, App
732	3	8.8		12	US-09-818-683-548	Sequence 548, App
733	3	8.8		12	US-10-370-685-90	Sequence 90, Appl
734	3	8.8		12	US-09-873-155-43	Sequence 43, Appl
735	3	8.8		12	US-10-366-493-24	Sequence 24, Appl
736	3	8.8		12	US-10-391-399-86	Sequence 86, Appl
737	3	8.8	28	L2	US-10-211-689-8	Sequence 8, Appli
738	3	8.8	28	12	US-10-324-143-148	Sequence 148, App
739	3	8.8	28	12	US-10-397-160-30	Sequence 30, Appl
740	3	8.8	28	L2	US-10-242-355-646	Sequence 646, App

741	3	8.8	28	12	US-10-245-871-32	Sequence 32, Appl
742	3	8.8	28	12	US-10-264-049-2573	Sequence 2573, Ap
743	3	8.8	28	14	US-10-014-269-16	Sequence 16, Appl
744	3	8.8	28	14	US-10-014-269-17	Sequence 17, Appl
745	3	8.8	28	14	US-10-023-529-26	Sequence 26, Appl
746	3	8.8	28	14	US-10-097-079-77	Sequence 77, Appl
747	3	8.8	28	14	US-10-105-931-23	Sequence 23, Appl
748	3	8.8	28	14	US-10-090-109A-1	Sequence 1, Appli
749	3	8.8	28	14	US-10-023-523-26	Sequence 26, Appl
750	3	8.8	28	14	US-10-044-359-23	Sequence 23, Appl
751	3	8.8	28	14	US-10-044-722-8	Sequence 8, Appli
752	3	8.8	28	14	US-10-002-974-16	Sequence 16, Appl
753	3	8.8	28	14	US-10-002-974-17	Sequence 17, Appl
754	3	8.8	28	14	US-10-118-984-23	Sequence 23, Appl
755	3	8.8	28	15	US-10-014-162-48	Sequence 48, Appl
756	3	8.8	28	15	US-10-000-256A-219	Sequence 219, App
757	3	8.8	28	15	US-10-068-564-23	Sequence 23, Appl
757 758	3	8.8	28	15	US-10-078-090-126	Sequence 126, App
759	3	8.8	28	15	US-10-004-530A-17	Sequence 17, Appl
760	3	8.8	28	15	US-10-131-433-6	Sequence 6, Appli
	3			15	US-10-131-433-6 US-10-097-065-486	
761		8.8	28	15		Sequence 486, App
762	3	8.8	28		US-10-097-065-598	Sequence 598, App
763	3	8.8	28	15	US-10-059-261-324	Sequence 324, App
764	3	8.8	28	15	US-10-150-111-131	Sequence 131, App
765	3	8.8	28	15	US-10-211-994-1	Sequence 1, Appli
766	3	8.8	28	15	US-10-157-224A-40	Sequence 40, Appl
767	3	8.8	28	15	US-10-157-224A-90	Sequence 90, Appl
768	3	8.8	28	15	US-10-157-224A-91	Sequence 91, Appl
769	3	8.8	28	15	US-10-157-224A-92	Sequence 92, Appl
770	3	8.8	28	15	US-10-157-224A-95	Sequence 95, Appl
771	3	8.8	28	15	US-10-157-224A-104	Sequence 104, App
772	3	8.8	28	15	US-10-157-224A-105	Sequence 105, App
773	3	8.8	28	15	US-10-157-224A-106	Sequence 106, App
774	3	8.8	28	15	US-10-157-224A-107	Sequence 107, App
775	3	8.8	28	15	US-10-157-224A-108	Sequence 108, App
776	3	8.8	28	15	US-10-157-224A-109	Sequence 109, App
777	3	8.8	28	15	US-10-157-224A-111	Sequence 111, App
778	3	8.8	28	15	US-10-157-224A-113	Sequence 113, App
779 ·	3	8.8	28	15	US-10-157-224A-115	Sequence 115, App
780	3	8.8	28	15	US-10-157-224A-117	Sequence 117, App
781	3	8.8	28	15	US-10-157-224A-119	Sequence 119, App
782	3	8.8	28	15	US-10-157-224A-121	Sequence 121, App
783	3	8.8	28	15	US-10-157-224A-123	Sequence 123, App
784	3	8.8	28	15	US-10-157-224A-125	Sequence 125, App
785	3	8.8	28	15	US-10-157-224A-127	Sequence 127, App
786	3	8.8	28	15	US-10-157-224A-129	Sequence 129, App
787	3	8.8	28	15	US-10-157-224A-131	Sequence 131, App
788	3	8.8	28	15	US-10-157-224A-133	Sequence 133, App
789	3	8.8	28	15	US-10-157-224A-135	Sequence 135, App
790	3	8.8	28	15	US-10-157-224A-137	Sequence 137, App
791	3	8.8	28	15	US-10-157-224A-139	Sequence 139, App
792	3	8.8	28	15	US-10-157-224A-141	Sequence 141, App
793	3	8.8	28	15	US-10-157-224A-143	Sequence 143, App
794	3	8.8	28	15	US-10-157-224A-145	Sequence 145, App
795	3	8.8	28	15	US-10-157-224A-147	Sequence 147, App
796	3	8.8	28	15	US-10-157-224A-149	Sequence 147, App Sequence 149, App
797	3	8.8	28	15	US-10-157-224A-151	Sequence 151, App
, , ,	J	0.0	20	10	OD IO ID!-224A-IDI	pedactice 191, Whh

798	3	8.8	28	15	US-10-157-224A-155	Sequence 155, App
799	3	8.8	28	15	US-10-157-224A-163	Sequence 163, App
800	3	8.8	`28	15	US-10-157-224A-165	Sequence 165, App
801	3	8.8	28	15	US-10-187-051-40	Sequence 40, Appl
802	3	8.8	28	15	US-10-187-051-90	Sequence 90, Appl
803	3	8.8	28	15	US-10-187-051-91	Sequence 91, Appl
804	3	8.8	28	15	US-10-187-051-92	Sequence 92, Appl
805	3	8.8	28	15	US-10-187-051 - 95	Sequence 95, Appl
806	3	8.8	28	15	US-10-187-051-104	Sequence 104, App
807	3	8.8	28	15	US-10-187-051-105	Sequence 105, App
808	3	8.8	28	15	US-10-187-051-106	Sequence 106, App
809	3	8.8	28	15	US-10-187-051-107	Sequence 107, App
810	3	8.8	28	15	US-10-187-051-108	Sequence 108, App
811	3	8.8	28	15	US-10-187-051-109	Sequence 109, App
812	3	8.8	28	15	US-10-187-051-111	Sequence 111, App
813	3	8.8	28	15	US-10-187-051-113	Sequence 113, App
814	3	8.8	28	15	US-10-187-051-115	Sequence 115, App
815	3	8.8	28	15	US-10-187-051-117	Sequence 117, App
816	3	8.8	28	15	US-10-187-051-119	Sequence 119, App
817	3	8.8	28	15	US-10-187-051-121	Sequence 121, App
818	3	8.8	28	15	US-10-187-051-123	Sequence 123, App
819	3	8.8	28	15	US-10-187-051-125	Sequence 125, App
820	3	8.8	28	15	US-10-187-051-127	Sequence 127, App
821	3	8.8	28	15	US-10-187-051-129	Sequence 129, App
822	3	8.8	28	15	US-10-187-051-131	Sequence 131, App
823	3	8.8	28	15	US-10-187-051 - 133	Sequence 133, App
824	3	8.8	28	15	US-10-187-051-135	Sequence 135, App
825	3	8.8	28	15	US-10-187-051-137	Sequence 137, App
826	3	8.8	28	15	US-10-187-051-139	Sequence 139, App
827	3	8.8	28	15	US-10-187-051-141	Sequence 141, App
828	3	8.8	28	15	US-10-187-051-143	Sequence 143, App
829	3	8.8	28	15	US-10-187-051 - 145	Sequence 145, App
830	3	8.8	28	15	US-10-187-051-147	Sequence 147, App
831	3	8.8	28	15	US-10-187-051-149	Sequence 149, App
832	3	8.8	28	15	US-10-187-051-151	Sequence 151, App
833	3	8.8	28	15	US-10-187-051-155	Sequence 155, App
834	3	8.8	28	15	US-10-187-05 1-1 63	Sequence 163, App
835	3	8.8	28	15	US-10-187-051-165	Sequence 165, App
836	3	8.8	28	15	US-10-023-282-626	Sequence 626, App
837	3	8.8	28	15	US-10-023-282-638	Sequence 638, App
838	3	8.8	28	15	US-10-023-282 - 1089	Sequence 1089, Ap
839	3	8.8	28	15	US-10-255-532-6	Sequence 6, Appli
840	3	8.8	28	15	US-10-075-869-24	Sequence 24, Appl
841	3	8.8	28	15	US-10-202-724-3	Sequence 3, Appli
842	3	8.8	28	15	US-10-262-017-3	Sequence 3, Appli
843	3	8.8	28	15	US-10-106-698-5608	Sequence 5608, Ap
844	3	8.8	28	15	US-10-106-698-6764	Sequence 6764, Ap
845	3	8.8	28	15	US-10-106-698-7736	Sequence 7736, Ap
846	3	8.8	28	15	US-10-106-698-7875	Sequence 7875, Ap
847	3	8.8	28	15	US-10-106-698-8447	Sequence 8447, Ap
848	3	8.8	28	15	US-10-295-809-20	Sequence 20, Appl
849	3	8.8	28	15	US-10-322-579-2	Sequence 2, Appli
850	3	8.8	28	15	US-10-192-283A-12	Sequence 12, Appl
851	3	8.8	28	15	US-10-197-954-62	Sequence 62, Appl
852	3	8.8	28	15	US-10-197-954-145	Sequence 145, App
853	3	8.8	28	15	US-10-283-500-19	Sequence 19, Appl
854	3	8.8	28	15	US-10-295-981-23	Sequence 23, Appl

```
855
          3
                8.8
                         28
                             15
                                 US-10-160-290-22
                                                               Sequence 22, Appl
856
          3
                8.8
                         29
                             9
                                                              Sequence 4, Appli
                                US-09-730-379B-4
          3
857
                8.8
                         29
                             9
                                US-09-765-527-13
                                                              Sequence 13, Appl
858
          3
                8.8
                         29
                             9
                                US-09-765-527-64
                                                              Sequence 64, Appl
          3
                8.8
                         29
859
                             9
                                US-09-005-243-73
                                                              Sequence 73, Appl
860
          3
                         29
                8.8
                             9
                                US-09-904-380-23
                                                              Sequence 23, Appl
861
           3
                8.8
                         29
                             9
                                US-09-224-683-73
                                                              Sequence 73, Appl
862
           3
                8.8
                         29
                             9
                                US-09-932-161-1
                                                              Sequence 1, Appli
863
          3
                8.8
                         29
                             9
                                US-09-864-761-33834
                                                              Sequence 33834, A
           3
                             9
864
                8.8
                         29
                                US-09-864-761-34011
                                                              Sequence 34011, A
          3
                             9
865
                8.8
                         29
                                US-09-864-761-34337
                                                              Sequence 34337, A
866
          3
                         29
                             9
                8.8
                                US-09-864-761-35314
                                                              Sequence 35314, A
867
          3
                8.8
                         29
                             9
                                US-09-864-761-36235
                                                              Sequence 36235, A
868
          3
                         29
                             9
                8.8
                                US-09-864-761-37068
                                                              Sequence 37068, A
          3
                             9
869
                8.8
                         29
                                US-09-864-761-37579
                                                              Sequence 37579, A
870
           3
                8.8
                         29
                             9
                                US-09-864-761-37814
                                                              Sequence 37814, A
871
          3
                8.8
                         29
                             9
                                US-09-864-761-37955
                                                              Sequence 37955, A
872
          3
                8.8
                         29
                             9
                                US-09-864-761-38222
                                                              Sequence 38222, A
873
          3
                8.8
                         29
                             9
                                US-09-864-761-38638
                                                              Sequence 38638, A
874
          3
                8.8
                         29
                                US-09-864-761-38968
                                                              Sequence 38968, A
875
          3
                8.8
                         29
                                US-09-864-761-40067
                                                              Sequence 40067, A
876
          3
                8.8
                         29
                             9
                                US-09-864-761-40393
                                                              Sequence 40393, A
877
          3
                         29
                8.8
                             9
                                US-09-864-761-40727
                                                              Sequence 40727, A
878
          3
                8.8
                         29
                             9
                                US-09-864-761-40944
                                                              Sequence 40944, A
879
          3
                8.8
                         29
                             9
                                US-09-864-761-41199
                                                              Sequence 41199, A
880
          3
                8.8
                         29
                             9
                                US-09-864-761-41596
                                                              Sequence 41596, A
          3
881
                8.8
                         29
                             9
                                US-09-864-761-42035
                                                              Sequence 42035, A
          3
882
                8.8
                        29
                             9
                                US-09-864-761-42321
                                                              Sequence 42321, A
883
          3
                8.8
                         29
                             9
                                US-09-864-761-42342
                                                              Sequence 42342, A
          3
884
                8.8
                         29
                             9
                                US-09-864-761-42467
                                                              Sequence 42467, A
885
          3
                8.8
                        29
                             9
                                US-09-864-761-42832
                                                              Sequence 42832, A
          3
886
                8.8
                        29
                             9
                                US-09-864-761-42924
                                                              Sequence 42924, A
          3
887
                8.8
                         29
                             9
                                US-09-864-761-43064
                                                              Sequence 43064, A
888
          3
                8.8
                         29
                             9
                                US-09-864-761-43487
                                                              Sequence 43487, A
889
          3
                        29
                             9
                8.8
                                US-09-864-761-43635
                                                              Sequence 43635, A
890
          3
                8.8
                         29
                             9
                                US-09-864-761-44716
                                                              Sequence 44716, A
891
          3
                8.8
                         29
                                US-09-864-761-44947
                                                             Sequence 44947, A
892
          3
                8.8
                         29
                             9
                                US-09-864-761-45036
                                                             Sequence 45036, A
                8.8
893
          3
                        29
                             9
                                US-09-864-761-45207
                                                             Sequence 45207, A
894
          3
                        29
                8.8
                             9
                                US-09-864-761-45777
                                                             Sequence 45777, A
895
          3
                8.8
                         29
                             9
                                US-09-864-761-45815
                                                             Sequence 45815, A
896
          3
                8.8
                         29
                             9
                                US-09-864-761-46618
                                                             Sequence 46618, A
897
          3
                8.8
                        29
                             9
                                US-09-864-761-47028
                                                             Sequence 47028, A
898
          3
                8.8
                        29
                             9
                                US-09-864-761-47383
                                                             Sequence 47383, A
          3
899
                             9
                8.8
                        29
                                US-09-864-761-47524
                                                             Sequence 47524, A
          3
900
                8.8
                        29
                                US-09-864-761-48176
                                                             Sequence 48176, A
901
          3
                8.8
                        29
                             9
                                US-09-864-761-48505
                                                             Sequence 48505, A
902
          3
                8.8
                        29
                             9
                                                             Sequence 48518, A
                                US-09-864-761-48518
903
          3
                8.8
                        29
                             9
                                US-09-864-761-48746
                                                             Sequence 48746, A
          3
904
                8.8
                        29
                             9
                                US-09-876-388-22
                                                             Sequence 22, Appl
905
          3
                8.8
                        29
                             9
                                US-09-925-299-1270
                                                             Sequence 1270, Ap
906
          3
                8.8
                        29
                             9
                                US-09-764-869-638
                                                             Sequence 638, App
907
          3
                8.8
                        29
                             9
                                US-09-881-490-3
                                                             Sequence 3, Appli
908
          3
                8.8
                        29
                             9
                                US-09-789-836-13
                                                             Sequence 13, Appl
          3
909
                8.8
                        29
                             10
                                 US-09-927-112-5
                                                              Sequence 5, Appli
910
          3
                8.8
                        29
                             10
                                 US-09-927-112-6
                                                              Sequence 6, Appli
911
          3
                8.8
                        29
                             10
                                 US-09-872-864-17
                                                              Sequence 17, Appl
```

	_					
912	3	8.8	29	10	US-09-872-864-18	Sequence 18, Appl
913	3	8.8	29	10	US-09-872-864-19	Sequence 19, Appl
914	3	8.8	29	10	US-09-872-864-20	Sequence 20, Appl
. 915	3	8.8	29	10	US-09-922-261-258	Sequence 258, App
916	3	8.8	29	10	US-09-908-664-8	Sequence 8, Appli
917	3	8.8	29	10	US-09-908-66 4 -9	Sequence 9, Appli
918	3	8.8	29	10	US-09-908-664-18	Sequence 18, Appl
919	3	8.8	29	10	US-09-905-831-12	Sequence 12, Appl
920	3	8.8	29	10	US-09-905-831-15	Sequence 15, Appl
921	3	8.8	29	10	US-09-003-869-79	Sequence 79, Appl
922	3	8.8	29	10	US-09-003-869-98	Sequence 98, Appl
923	3	8.8	29	10	US-09-911-969-7	Sequence 7, Appli
924	3	8.8	29	10	US-09-880-149-52	Sequence 52, Appl
925	3	8.8	29	10	US-09-880-149-55	Sequence 55, Appl
926	3	8.8	29	10	US-09-764-877-1395	Sequence 1395, Ap
927	3	8.8	29	10	US-09-071-838-189	Sequence 189, App
928	3	8.8	29	10	US-09-071-838-242	Sequence 242, App
929	3	8.8	29	10	US-09-956-206A-1	Sequence 1, Appli
930	3	8.8	29	10	US-09-984-245-227	Sequence 227, App
931	3	8.8	29	10	US-09-880-132-52	Sequence 52, Appl
932	3	8.8	29	10	US-09-880-132-55	Sequence 55, Appl
933	3	8.8	29	11	US-09-983-802-620	Sequence 620, App
934	3	8.8	29	11	US-09-956-940-38	Sequence 38, Appl
935	3	8.8	29	11	US-09-974-879-406	Sequence 406, App
936	3	8.8	29	11	US-09-974-879-511	Sequence 511, App
937	3	8.8	29	11	US-09-974-879-527	Sequence 527, App
938	3	8.8	29	11	US-09-259-658-15	Sequence 15, Appl
939	3	8.8	29	11	US-09-756-690A-79	
940	3	8.8	29	11	US-09-756-690A-98	Sequence 79, Appl
941	3	8.8	29	11		Sequence 98, Appl
942	3	8.8	29	11	US-09-843-221A-152	Sequence 152, App
943	3				US-09-925-299-1270	Sequence 1270, Ap
944		8.8	29	11	US-09-847-102A-80	Sequence 80, Appl
	3	8.8	29	11	US-09-813-153-218	Sequence 218, App
945	3	8.8	29	11	US-09-966-262-227	Sequence 227, App
946	3	8.8	29	11	US-09-969-730-196	Sequence 196, App
947	3	8.8	29	11	US-09-281-495-51	Sequence 51, Appl
948	3	8.8	29	11	US-09-983-966-227	Sequence 227, App
949	3	8.8	29	11	US-09-876-904A-28	Sequence 28, Appl
950	, 3	8.8	29	11	US-09-764-891-4191	Sequence 4191, Ap
951	3	8.8	29	11	US-09-764-891-4851	Sequence 4851, Ap
952	3	8.8	29	11	US-09-892 - 877-436	Sequence 436, App
953	3	8.8	29	11	US-09-847-208-125	Sequence 125, App
954	3	8.8	29	11	US-09-305-736-406	Sequence 406, App
955	3	8.8	29	11	US-09-305-736-512	Sequence 512, App
956	3	8.8	29	11	US-09-305-736-529	Sequence 529, App
957	3	8.8	29	11	US-09-095 - 478-25	Sequence 25, Appl
958	3	8.8	29	11	US-09-908-139-19	Sequence 19, Appl
959	3	8.8	29	11	US-09-908-139-21	Sequence 21, Appl
960	3	8.8	29	11	US-09-491-614-14	Sequence 14, Appl
961	3	8.8	29	11	US-09-491-614-15	Sequence 15, Appl
962	3	8.8	29	11	US-09-948-783-438	Sequence 438, App
963	3	8.8	29	11	US-09-910-082A-158	Sequence 158, App
964	3	8.8	29	11	US-09-910-082A-368	Sequence 368, App
965	3	8.8	29	12	US-10-153-604A-72	Sequence 72, Appl
966	3	8.8	29	12	US-10-231-894-44	Sequence 44, Appl
967	3	8.8	29	12	US-10-345-281-52	Sequence 52, Appl
968	3	8.8	29	12	US-10-345-281-55	Sequence 55, Appl
	_	-				zoquence 55, Appi

969	3 ,	8.8	29	12	US-10-234-816-95	Sequence	95, Appl
970	3	8.8	29	12	US-09-789-831-13	Sequence	13, Appl
971	3	8.8	29	12	US-09-935-384-757	Sequence	757, App
972	3	8.8	29	12	US-09-935-384-758	Sequence	758, App
973	3	8.8	29	12	US-10-131-909A-7	Sequence	7, Appli
974	3	8.8	29	12	US-10-160-162-232		232, App
975	3	8.8	29	12	US-10-096-777-1	Sequence	1, Appli
976	3	8.8	29	12	US-10-008-524A-123	Sequence	123, App
977	3	8.8	29	12	US-10-340-458-4	Sequence	4, Appli
978	3	8.8	29	12	US-10-340-458-21	Sequence	21, Appl
979	3	8.8	29	12	US-09-933 - 767-660	Sequence	660, App
980	3	8.8	29	12	US-09-933-767-1182	Sequence	1182, Ap
981	3	8.8	29	12	US-10-105-232-304	Sequence	304, App
982	3	8.8	29	12	US-10-105-232-319	Sequence	319, App
983	3	8.8	29	12	US-10-105-232-343	Sequence	343, App
984	3	8.8	29	12	US-10-105-232-512	Sequence	512, App
985	3	8.8	29	12	US-10-280-066-334	Sequence	334, App
986	3	8.8	29	12	US-10-289-135A-25	Sequence	25, Appl
987	3	8.8	29	12	US-10-029-386-27545	Sequence	27545, A
988	3	8.8	29	12	US-10-029-386-27995	Sequence	27995, A
989	3	8.8	29	12	US-10-029-386-29238	Sequence	29238, A
990	3	8.8	29	12	US-10-029-386-30063	Sequence	30063, A
991	3	8.8	29	12	US-10-029-386-31071	Sequence	31071, A
992	3	8.8	29	12	US-10-029-386-31232	Sequence	31232, A
993	3	8.8	29	12	US-10-029-386-31577	Sequence	31577, A
994	3	8.8	29	12	US-10-029-386-32473	Sequence	32473, A
995	3	8.8	29	12	US-10-029-386-32650	Sequence	32650, A
996	3	8.8	29	12	US-10-029-386-33620	Sequence	33620, A
997	3	8.8	29	12	US-10-189-437 - 291	Sequence	291, App
998	3	8.8	29	12	US-10-189-437-306	Sequence	306, App
999	3	8.8	29	12	US-10-189-437-330	Sequence	330, App
1000	3	8.8	29	12	US-10-189-437-499	Sequence	499, App

ALIGNMENTS

RESULT 1

US-09-843-221A-18

- ; Sequence 18, Application US/09843221A
- ; Publication No. US20030039654A1
- ; GENERAL INFORMATION:
- ; APPLICANT: KOSTENUIK, PAUL
- ; APPLICANT: LIU, CHUAN-FA
- ; APPLICANT: LACEY, DAVID LEE
- ; TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND PARATHYROID HORMONE-
- ; TITLE OF INVENTION: RELATED PROTEIN
- ; FILE REFERENCE: A-665B
- ; CURRENT APPLICATION NUMBER: US/09/843,221A
- ; CURRENT FILING DATE: 2001-04-26
- ; PRIOR APPLICATION NUMBER: 60/266,673
- ; PRIOR FILING DATE: 2001-02-06
- ; PRIOR APPLICATION NUMBER: 60/214,860
- ; PRIOR FILING DATE: 2000-06-28
- ; PRIOR APPLICATION NUMBER: 60/200,053
- ; PRIOR FILING DATE: 2000-04-27

```
; NUMBER OF SEQ ID NOS: 170
; SOFTWARE: PatentIn version 3.1
; SEQ ID NO 18
  LENGTH: 34
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: modified human PTH
US-09-843-221A-18
 Query Match
                        100.0%; Score 34; DB 11; Length 34;
 Best Local Similarity 100.0%; Pred. No. 6e-28;
          34; Conservative 0; Mismatches
                                              0; Indels
                                                              0; Gaps
                                                                         0;
           1 SVSEIQLMHNKGKHLNSMERVEWLRKKLQDVHNF 34
Qу
             Db
           1 SVSEIQLMHNKGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 2
US-09-843-221A-163
; Sequence 163, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
; APPLICANT: LIU, CHUAN-FA
; APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
; PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
; NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 163
  LENGTH: 34
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Preferred embodiments - PTH
   NAME/KEY: misc feature
   LOCATION: (34)..(34)
   OTHER INFORMATION: Optional linker and Fc domain attached at the C-terminus
US-09-843-221A-163
 Query Match
                        100.0%; Score 34; DB 11; Length 34;
 Best Local Similarity 100.0%; Pred. No. 6e-28;
 Matches 34; Conservative
                             0; Mismatches
                                              0; Indels 0; Gaps
                                                                         0;
```

```
Db
```

```
RESULT 3
US-09-843-221A-41
; Sequence 41, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
; APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
   TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
; TITLE OF INVENTION: RELATED PROTEIN
   FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
; PRIOR FILING DATE: 2001-02-06
; PRIOR APPLICATION NUMBER: 60/214,860
; PRIOR FILING DATE: 2000-06-28
; PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
; NUMBER OF SEO ID NOS: 170
; SOFTWARE: PatentIn version 3.1
; SEQ ID NO 41
   LENGTH: 30
    TYPE: PRT
    ORGANISM: Artificial Sequence
    FEATURE:
    OTHER INFORMATION: modified human PTH
US-09-843-221A-41
  Query Match
                         88.2%; Score 30; DB 11; Length 30;
  Best Local Similarity 100.0%; Pred. No. 6.9e-24;
  Matches
          30; Conservative 0; Mismatches 0; Indels
                                                                0; Gaps
                                                                            0;
QУ
            1 SVSEIQLMHNKGKHLNSMERVEWLRKKLQD 30
              Db
            1 SVSEIQLMHNKGKHLNSMERVEWLRKKLQD 30
RESULT 4
US-09-843-221A-32
; Sequence 32, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
; TITLE OF INVENTION: RELATED PROTEIN
 FILE REFERENCE: A-665B
; CURRENT APPLICATION NUMBER: US/09/843,221A
; CURRENT FILING DATE: 2001-04-26
```

```
PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 32
   LENGTH: 28
   TYPE: PRT
    ORGANISM: Homo sapiens
US-09-843-221A-32
  Query Match 67.6%; Score 23; DB 11; Length 28; Best Local Similarity 100.0%; Pred. No. 9.8e-17;
          23; Conservative 0; Mismatches 0; Indels
                                                               0; Gaps
                                                                           0;
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
             Db
           6 GKHLNSMERVEWLRKKLQDVHNF 28
RESULT 5
US-09-169-786-3
; Sequence 3, Application US/09169786B
; Patent No. US20020025929A1
; GENERAL INFORMATION:
; APPLICANT: Sato, Masahiko
; TITLE OF INVENTION: METHOD OF BUILDING AND MAINTAINING BONE
; FILE REFERENCE: X-11480
  CURRENT APPLICATION NUMBER: US/09/169,786B
  CURRENT FILING DATE: 1998-10-09
   EARLIER APPLICATION NUMBER: US 60/061,800
  EARLIER FILING DATE: 1997-10-14
; NUMBER OF SEQ ID NOS: 12
 SOFTWARE: PatentIn Ver. 2.0
; SEQ ID NO 3
   LENGTH: 34
    TYPE: PRT
    ORGANISM: Homo sapiens
US-09-169-786-3
                         67.6%; Score 23; DB 9; Length 34;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.1e-16;
  Matches 23; Conservative 0; Mismatches 0; Indels 0; Gaps
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 6
US-09-928-047B-6
; Sequence 6, Application US/09928047B
; Patent No. US20020160945A1
; GENERAL INFORMATION:
```

```
; APPLICANT: Cantor, Thomas
  TITLE OF INVENTION: CYCLASE INHIBITING PARATHYROID HORMONE
  TITLE OF INVENTION: ANTAGONIST OR MODULATORS AND OSTEOPOROSIS
; FILE REFERENCE: 53221-20002.00
  CURRENT APPLICATION NUMBER: US/09/928,047B
; CURRENT FILING DATE: 2001-08-10
; PRIOR APPLICATION NUMBER: US 60/224,446
; PRIOR FILING DATE: 2000-08-10
; NUMBER OF SEQ ID NOS: 8
; SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 6
  LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-928-047B-6
 Query Match
                67.6%; Score 23; DB 10; Length 34;
 Best Local Similarity 100.0%; Pred. No. 1.1e-16;
 Matches 23; Conservative 0; Mismatches 0; Indels 0; Gaps
Qy
         12 GKHLNSMERVEWLRKKLODVHNF 34
           Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 7
US-09-843-221A-16
; Sequence 16, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
; APPLICANT: LIU, CHUAN-FA
; APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
; TITLE OF INVENTION: RELATED PROTEIN
 FILE REFERENCE: A-665B
; CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
; PRIOR FILING DATE: 2001-02-06
; PRIOR APPLICATION NUMBER: 60/214,860
; PRIOR FILING DATE: 2000-06-28
; PRIOR APPLICATION NUMBER: 60/200,053
; PRIOR FILING DATE: 2000-04-27
; NUMBER OF SEQ ID NOS: 170
; SOFTWARE: PatentIn version 3.1
; SEQ ID NO 16
  LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-843-221A-16
 Query Match
                       67.6%; Score 23; DB 11; Length 34;
 Best Local Similarity 100.0%; Pred. No. 1.1e-16;
 Matches 23; Conservative 0; Mismatches 0; Indels 0; Gaps
```

```
12 GKHLNSMERVEWLRKKLQDVHNF 34
Qу
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 8
US-09-843-221A-17
; Sequence 17, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
; APPLICANT: LIU, CHUAN-FA
 APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
; TITLE OF INVENTION: RELATED PROTEIN
; FILE REFERENCE: A-665B
; CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
; PRIOR APPLICATION NUMBER: 60/200,053
; PRIOR FILING DATE: 2000-04-27
; NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEO ID NO 17
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Artificial Sequence
    FEATURE:
   OTHER INFORMATION: modified human PTH
US-09-843-221A-17
  Query Match
                         67.6%; Score 23; DB 11; Length 34;
  Best Local Similarity 100.0%; Pred. No. 1.1e-16;
          23; Conservative
                               0; Mismatches
                                              0; Indels
                                                              0; Gaps
                                                                          0;
          12 GKHLNSMERVEWLRKKLQDVHNF 34
Qу
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 9
US-09-843-221A-20
; Sequence 20, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
 APPLICANT: KOSTENUIK, PAUL
; APPLICANT: LIU, CHUAN-FA
; APPLICANT: LACEY, DAVID LEE
; TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
; TITLE OF INVENTION: RELATED PROTEIN
; FILE REFERENCE: A-665B
; CURRENT APPLICATION NUMBER: US/09/843,221A
```

```
; CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
; NUMBER OF SEQ ID NOS: 170
; SOFTWARE: PatentIn version 3.1
; SEQ ID NO 20
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: modified human PTH
US-09-843-221A-20
 Query Match
                         67.6%; Score 23; DB 11; Length 34;
 Best Local Similarity 100.0%; Pred. No. 1.1e-16;
 Matches 23; Conservative 0; Mismatches 0; Indels
                                                               0; Gaps
                                                                           0;
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 10
US-09-843-221A-161
; Sequence 161, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
; APPLICANT: LACEY, DAVID LEE
; TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 161
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Preferred embodiments - PTH
   NAME/KEY: misc feature
   LOCATION: (34)..(34)
   OTHER INFORMATION: Optional linker and Fc domain attached at the C-terminus
```

```
Query Match
                       67.6%; Score 23; DB 11; Length 34;
 Best Local Similarity 100.0%; Pred. No. 1.1e-16;
 Matches 23; Conservative 0; Mismatches 0; Indels 0; Gaps
                                                                        0;
          12 GKHLNSMERVEWLRKKLQDVHNF 34
Qу
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 11
US-09-843-221A-162
; Sequence 162, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
; APPLICANT: LIU, CHUAN-FA
; APPLICANT: LACEY, DAVID LEE
; TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
; TITLE OF INVENTION: RELATED PROTEIN
; FILE REFERENCE: A-665B
; CURRENT APPLICATION NUMBER: US/09/843,221A
; CURRENT FILING DATE: 2001-04-26
; PRIOR APPLICATION NUMBER: 60/266,673
; PRIOR FILING DATE: 2001-02-06
; PRIOR APPLICATION NUMBER: 60/214,860
; PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 162
  LENGTH: 34
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Preferred embodiments - PTH
   NAME/KEY: misc feature
   LOCATION: (34)..(34)
   OTHER INFORMATION: Optional linker and Fc domain attached at the C-terminus
US-09-843-221A-162
 Query Match
                        67.6%; Score 23; DB 11; Length 34;
 Best Local Similarity 100.0%; Pred. No. 1.1e-16;
 Matches 23; Conservative 0; Mismatches 0; Indels 0; Gaps
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 12
US-09-928-048A-6
```

; Sequence 6, Application US/09928048A; Publication No. US20030138858A1

```
; GENERAL INFORMATION:
; APPLICANT: Scantibodies Laboratory, Inc.
  APPLICANT: Cantor, Thomas L.
  TITLE OF INVENTION: METHODS AND DEVICES FOR DIRECT
  TITLE OF INVENTION: DETERMINATION OF CYCLASE INHIBITING PARATHYROID HORMONE
; FILE REFERENCE: 53221-20015.00
  CURRENT APPLICATION NUMBER: US/09/928,048A
; CURRENT FILING DATE: 2000-08-10
; NUMBER OF SEQ ID NOS: 8
; SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 6
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-928-048A-6
  Query Match
                       67.6%; Score 23; DB 12; Length 34;
  Best Local Similarity 100.0%; Pred. No. 1.1e-16;
 Matches 23; Conservative 0; Mismatches 0; Indels 0; Gaps
                                                                          0:
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 13
US-10-361-928-1
; Sequence 1, Application US/10361928
; Publication No. US20030144209A1
; GENERAL INFORMATION:
; APPLICANT: BRINGHURST, F. RICHARD
  APPLICANT: TAKASU, HISASHI
  APPLICANT: GARDELLA, THOMAS J.
  TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
  TITLE OF INVENTION: ANALOGS
  FILE REFERENCE: 0609.4630002
  CURRENT APPLICATION NUMBER: US/10/361,928
  CURRENT FILING DATE: 2003-02-11
  PRIOR APPLICATION NUMBER: 09/447,800
  PRIOR FILING DATE: 1999-11-23
  PRIOR APPLICATION NUMBER: 60/110,152
  PRIOR FILING DATE: 1998-11-25
; NUMBER OF SEQ ID NOS: 10
; SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 1
  LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: UNSURE
   LOCATION: (1)
   OTHER INFORMATION: Can be desamino Ser, desamino Ala, or desamino Gly
US-10-361-928-1
 Query Match
                        67.6%; Score 23; DB 12; Length 34;
 Best Local Similarity 100.0%; Pred. No. 1.1e-16;
 Matches 23; Conservative 0; Mismatches 0; Indels 0; Gaps
```

```
12 GKHLNSMERVEWLRKKLQDVHNF 34
Qу
             Db
          12 GKHLNSMERVEWLRKKLODVHNF 34
RESULT 14
US-10-361-928-2
; Sequence 2, Application US/10361928
; Publication No. US20030144209A1
; GENERAL INFORMATION:
; APPLICANT: BRINGHURST, F. RICHARD
 APPLICANT: TAKASU, HISASHI
  APPLICANT: GARDELLA, THOMAS J.
  TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
  TITLE OF INVENTION: ANALOGS
; FILE REFERENCE: 0609.4630002
; CURRENT APPLICATION NUMBER: US/10/361,928
; CURRENT FILING DATE: 2003-02-11
; PRIOR APPLICATION NUMBER: 09/447,800
; PRIOR FILING DATE: 1999-11-23
; PRIOR APPLICATION NUMBER: 60/110,152
  PRIOR FILING DATE: 1998-11-25
; NUMBER OF SEQ ID NOS: 10
; SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 2
; LENGTH: 34
  TYPE: PRT
  ORGANISM: Homo sapiens
  FEATURE:
  NAME/KEY: MOD RES
   LOCATION: (1)
   OTHER INFORMATION: Desamino Gly
US-10-361-928-2
                       67.6%; Score 23; DB 12; Length 34;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 1.1e-16;
 Matches 23; Conservative 0; Mismatches 0; Indels
                                                           0; Gaps
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
           Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 15
US-10-361-928-5
; Sequence 5, Application US/10361928
; Publication No. US20030144209A1
; GENERAL INFORMATION:
; APPLICANT: BRINGHURST, F. RICHARD
; APPLICANT: TAKASU, HISASHI
; APPLICANT: GARDELLA, THOMAS J.
; TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
; TITLE OF INVENTION: ANALOGS
; FILE REFERENCE: 0609.4630002
; CURRENT APPLICATION NUMBER: US/10/361,928
```

; CURRENT FILING DATE: 2003-02-11

```
; PRIOR APPLICATION NUMBER: 09/447,800
; PRIOR FILING DATE: 1999-11-23
; PRIOR APPLICATION NUMBER: 60/110,152
; PRIOR FILING DATE: 1998-11-25
; NUMBER OF SEQ ID NOS: 10
  SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 5
  LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: MOD RES
   LOCATION: (1)
   OTHER INFORMATION: Desamino Ala
US-10-361-928-5
 Query Match
                        67.6%; Score 23; DB 12; Length 34;
 Best Local Similarity 100.0%; Pred. No. 1.1e-16;
 Matches 23; Conservative 0; Mismatches 0; Indels 0; Gaps
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
             12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 16
US-10-361-928-8
; Sequence 8, Application US/10361928
; Publication No. US20030144209A1
: GENERAL INFORMATION:
; APPLICANT: BRINGHURST, F. RICHARD
  APPLICANT: TAKASU, HISASHI
  APPLICANT: GARDELLA, THOMAS J.
  TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
  TITLE OF INVENTION: ANALOGS
; FILE REFERENCE: 0609.4630002
  CURRENT APPLICATION NUMBER: US/10/361,928
  CURRENT FILING DATE: 2003-02-11
; PRIOR APPLICATION NUMBER: 09/447,800
; PRIOR FILING DATE: 1999-11-23
  PRIOR APPLICATION NUMBER: 60/110,152
  PRIOR FILING DATE: 1998-11-25
; NUMBER OF SEQ ID NOS: 10
; SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 8
  LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: MOD RES
   LOCATION: (1)
   OTHER INFORMATION: Desamino Ser
US-10-361-928-8
 Query Match
                        67.6%; Score 23; DB 12; Length 34;
 Best Local Similarity 100.0%; Pred. No. 1.1e-16;
 Matches 23; Conservative 0; Mismatches 0; Indels 0; Gaps
```

```
12 GKHLNSMERVEWLRKKLQDVHNF 34
QУ
              Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 17
US-10-340-484-15
; Sequence 15, Application US/10340484
; Publication No. US20030171288A1
; GENERAL INFORMATION:
  APPLICANT: Stewart, Andrew F.
  TITLE OF INVENTION: Treatment of Bone Disorders with Skelatal Anabolic
  TITLE OF INVENTION: Drugs
  FILE REFERENCE: 25200-501
  CURRENT APPLICATION NUMBER: US/10/340,484
  CURRENT FILING DATE: 2003-01-10
  PRIOR APPLICATION NUMBER: 60/347,215
  PRIOR FILING DATE: 2002-01-10
  PRIOR APPLICATION NUMBER: 60/353,296
  PRIOR FILING DATE: 2002-02-01
  PRIOR APPLICATION NUMBER: 60/368,955
  PRIOR FILING DATE: 2002-03-28
  PRIOR APPLICATION NUMBER: 60/379,125
; PRIOR FILING DATE: 2002-05-08
; NUMBER OF SEQ ID NOS: 27
; SOFTWARE: PatentIn Ver. 2.1
; SEO ID NO 15
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
US-10-340-484-15
 Query Match 67.6%; Score 23; DB 12; Length 34; Best Local Similarity 100.0%; Pred. No. 1.1e-16;
 Matches 23; Conservative 0; Mismatches 0; Indels
                                                                0; Gaps
Qу
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 18
US-10-340-484-16
; Sequence 16, Application US/10340484
; Publication No. US20030171288A1
; GENERAL INFORMATION:
; APPLICANT: Stewart, Andrew F.
  TITLE OF INVENTION: Treatment of Bone Disorders with Skelatal Anabolic
  TITLE OF INVENTION: Drugs
  FILE REFERENCE: 25200-501
  CURRENT APPLICATION NUMBER: US/10/340,484
  CURRENT FILING DATE: 2003-01-10
  PRIOR APPLICATION NUMBER: 60/347,215
; PRIOR FILING DATE: 2002-01-10
; PRIOR APPLICATION NUMBER: 60/353,296
```

; PRIOR FILING DATE: 2002-02-01

```
; PRIOR APPLICATION NUMBER: 60/368,955
; PRIOR FILING DATE: 2002-03-28
; PRIOR APPLICATION NUMBER: 60/379,125
; PRIOR FILING DATE: 2002-05-08
; NUMBER OF SEQ ID NOS: 27
  SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 16
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Macaca fascicularis
US-10-340-484-16
  Query Match
                         67.6%; Score 23; DB 12; Length 34;
 Best Local Similarity 100.0%; Pred. No. 1.1e-16;
 Matches 23; Conservative 0; Mismatches 0; Indels
                                                               0; Gaps
                                                                           0;
          12 GKHLNSMERVEWLRKKLQDVHNF 34
Qу
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 19
US-10-016-403-5
; Sequence 5, Application US/10016403
; Publication No. US20020107505A1
   GENERAL INFORMATION:
        APPLICANT: Holladay, Leslie A.
        TITLE OF INVENTION: MODIFICATION OF POLYPEPTIDE DRUGS TO
                            INCREASE ELECTROTRANSPORT FLUX
        NUMBER OF SEQUENCES: 10
        CORRESPONDENCE ADDRESS:
             ADDRESSEE: Stroud, Stroud, Willink, Thompson & Howard
             STREET: 25 West Main Street
             CITY: Madison
             STATE: WI
             COUNTRY: USA
             ZIP: 53701-2236
        COMPUTER READABLE FORM:
             MEDIUM TYPE: Floppy disk
              COMPUTER: IBM PC compatible
             OPERATING SYSTEM: PC-DOS/MS-DOS
             SOFTWARE: PatentIn Release #1.0, Version #1.25
        CURRENT APPLICATION DATA:
             APPLICATION NUMBER: US/10/016,403
             FILING DATE: 10-Dec-2001
             CLASSIFICATION: <Unknown>
        PRIOR APPLICATION DATA:
             APPLICATION NUMBER: 08/466,610
             FILING DATE: 1995-JUN-06
        ATTORNEY/AGENT INFORMATION:
             NAME: Frenchick, Grady J.
             REGISTRATION NUMBER: 29,018
             REFERENCE/DOCKET NUMBER: 8734.28
        TELECOMMUNICATION INFORMATION:
             TELEPHONE: 608-257-2281
             TELEFAX: 608-257-7643
   INFORMATION FOR SEQ ID NO: 5:
```

```
SEQUENCE CHARACTERISTICS:
             LENGTH: 34 amino acids
             TYPE: amino acid
             TOPOLOGY: linear
        FEATURE:
             NAME/KEY: Peptide
             LOCATION: 1..34
             OTHER INFORMATION: /note= "parathyroid hormone"
        SEQUENCE DESCRIPTION: SEQ ID NO: 5:
US-10-016-403-5
                         67.6%; Score 23; DB 14; Length 34;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 1.1e-16;
                              0; Mismatches
                                                 0; Indels
           23; Conservative
                                                                0; Gaps
 Matches
                                                                            0;
          12 GKHLNSMERVEWLRKKLQDVHNF 34
Qу
              Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 20
US-10-016-403-6
; Sequence 6, Application US/10016403
; Publication No. US20020107505A1
   GENERAL INFORMATION:
        APPLICANT: Holladay, Leslie A.
        TITLE OF INVENTION: MODIFICATION OF POLYPEPTIDE DRUGS TO
                            INCREASE ELECTROTRANSPORT FLUX
        NUMBER OF SEQUENCES: 10
         CORRESPONDENCE ADDRESS:
             ADDRESSEE: Stroud, Stroud, Willink, Thompson & Howard
              STREET: 25 West Main Street
             CITY: Madison
             STATE: WI
             COUNTRY: USA
             ZIP: 53701-2236
         COMPUTER READABLE FORM:
             MEDIUM TYPE: Floppy disk
              COMPUTER: IBM PC compatible
              OPERATING SYSTEM: PC-DOS/MS-DOS
              SOFTWARE: PatentIn Release #1.0, Version #1.25
         CURRENT APPLICATION DATA:
             APPLICATION NUMBER: US/10/016,403
              FILING DATE: 10-Dec-2001
              CLASSIFICATION: <Unknown>
         PRIOR APPLICATION DATA:
             APPLICATION NUMBER: 08/466,610
              FILING DATE: 1995-JUN-06
         ATTORNEY/AGENT INFORMATION:
             NAME: Frenchick, Grady J.
              REGISTRATION NUMBER: 29,018
             REFERENCE/DOCKET NUMBER: 8734.28
         TELECOMMUNICATION INFORMATION:
             TELEPHONE: 608-257-2281
              TELEFAX: 608-257-7643
   INFORMATION FOR SEQ ID NO: 6:
         SEQUENCE CHARACTERISTICS:
```

```
LENGTH: 34 amino acids
             TYPE: amino acid
             TOPOLOGY: linear
        FEATURE:
             NAME/KEY: Peptide
             LOCATION: 1..34
             OTHER INFORMATION: /note= "modified parathyroid
             hormone"
        SEQUENCE DESCRIPTION: SEQ ID NO: 6:
US-10-016-403-6
  Query Match
                         67.6%; Score 23; DB 14; Length 34;
 Best Local Similarity 100.0%; Pred. No. 1.1e-16;
                              0; Mismatches 0; Indels
 Matches
           23; Conservative
                                                                0; Gaps
          12 GKHLNSMERVEWLRKKLQDVHNF 34
Qу
              Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 21
US-10-097-079-1
; Sequence 1, Application US/10097079
; Publication No. US20020132973A1
   GENERAL INFORMATION:
        APPLICANT: Condon, Stephen M.
                   Morize, Isabelle
        TITLE OF INVENTION: PEPTIDE PARATHYROID HORMONE ANALOGS
        NUMBER OF SEQUENCES: 88
        CORRESPONDENCE ADDRESS:
             ADDRESSEE: Rhone-Poulenc Rorer Inc.
             STREET: 500 Arcola Road, Mailstop 3C43
             CITY: Collegeville
             STATE: PA
             COUNTRY: USA
             ZIP: 19426
        COMPUTER READABLE FORM:
             MEDIUM TYPE: Floppy disk
             COMPUTER: IBM PC compatible
             OPERATING SYSTEM: PC-DOS/MS-DOS
             SOFTWARE: PatentIn Release #1.0, Version #1.30
        CURRENT APPLICATION DATA:
             APPLICATION NUMBER: US/10/097,079
             FILING DATE: 13-Mar-2002
             CLASSIFICATION: <Unknown>
        PRIOR APPLICATION DATA:
             APPLICATION NUMBER: 09/228,990
             FILING DATE: <Unknown>
             APPLICATION NUMBER: US 60/046,472
             FILING DATE: 14-MAY-1997
        ATTORNEY/AGENT INFORMATION:
             NAME: Martin Esq., Michael B.
             REGISTRATION NUMBER: 37,521
             REFERENCE/DOCKET NUMBER: A2678B-WO
        TELECOMMUNICATION INFORMATION:
             TELEPHONE: (610) 454-2793
             TELEFAX: (610) 454-3808
```

```
INFORMATION FOR SEQ ID NO: 1:
        SEQUENCE CHARACTERISTICS:
             LENGTH: 34 amino acids
             TYPE: amino acid
             STRANDEDNESS: <Unknown>
             TOPOLOGY: No. US20020132973A1 Relevant
        MOLECULE TYPE: peptide
        FRAGMENT TYPE: N-terminal
        SEQUENCE DESCRIPTION: SEQ ID NO: 1:
US-10-097-079-1
                         67.6%; Score 23; DB 14; Length 34;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 1.1e-16;
 Matches 23; Conservative 0; Mismatches 0; Indels
                                                              0; Gaps
                                                                           0;
          12 GKHLNSMERVEWLRKKLQDVHNF 34
Qу
             12 GKHLNSMERVEWLRKKLQDVHNF 34
Db
RESULT 22
US-09-843-221A-15
; Sequence 15, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
; APPLICANT: LIU, CHUAN-FA
; APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
; TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
; PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
; PRIOR FILING DATE: 2000-04-27
; NUMBER OF SEQ ID NOS: 170
; SOFTWARE: PatentIn version 3.1
; SEQ ID NO 15
   LENGTH: 37
   TYPE: PRT
    ORGANISM: Homo sapiens
US-09-843-221A-15
  Query Match 67.6%; Score 23; DB 11; Length 37; Best Local Similarity 100.0%; Pred. No. 1.2e-16;
  Matches 23; Conservative 0; Mismatches 0; Indels 0; Gaps
           12 GKHLNSMERVEWLRKKLQDVHNF 34
Qу
              11 GKHLNSMERVEWLRKKLODVHNF 33
Db
```

```
US-10-168-185-9
; Sequence 9, Application US/10168185
; Publication No. US20030175802A1
; GENERAL INFORMATION:
   APPLICANT: Armbruster, Franz Paul
   APPLICANT: Missbichler, Albert
; APPLICANT: Schmidt-Gayk, Heinrich
; APPLICANT: Roth, Heinz-Jurgen
   TITLE OF INVENTION: Method for Determining Parathormone
   TITLE OF INVENTION: Activity in a Human Sample
   FILE REFERENCE: HLZ-004US
   CURRENT APPLICATION NUMBER: US/10/168,185
   CURRENT FILING DATE: 2002-06-17
   PRIOR APPLICATION NUMBER: PCT/EP00/12911
   PRIOR FILING DATE: 2000-12-18
   PRIOR APPLICATION NUMBER: DE 19961350
   PRIOR FILING DATE: 1999-12-17
; NUMBER OF SEQ ID NOS: 11
   SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 9
   LENGTH: 37
    TYPE: PRT
    ORGANISM: Homo sapiens
US-10-168-185-9
                         67.6%; Score 23; DB 12; Length 37;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.2e-16;
  Matches
          23; Conservative
                              0; Mismatches
                                                 0; Indels
                                                                0; Gaps
                                                                            0;
QУ
           12 GKHLNSMERVEWLRKKLQDVHNF 34
              11111111111
Db
           12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 24
US-09-169-786-4
; Sequence 4, Application US/09169786B
; Patent No. US20020025929A1
; GENERAL INFORMATION:
; APPLICANT: Sato, Masahiko
  TITLE OF INVENTION: METHOD OF BUILDING AND MAINTAINING BONE
; FILE REFERENCE: X-11480
; CURRENT APPLICATION NUMBER: US/09/169,786B
; CURRENT FILING DATE: 1998-10-09
; EARLIER APPLICATION NUMBER: US 60/061,800
; EARLIER FILING DATE: 1997-10-14
 NUMBER OF SEQ ID NOS: 12
  SOFTWARE: PatentIn Ver. 2.0
; SEQ ID NO 4
   LENGTH: 38
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-169-786-4
 Query Match
                         67.6%; Score 23; DB 9; Length 38;
 Best Local Similarity 100.0%; Pred. No. 1.2e-16;
```

RESULT 23

```
Matches 23; Conservative 0; Mismatches
                                                 0; Indels
                                                               0; Gaps
                                                                           0;
          12 GKHLNSMERVEWLRKKLQDVHNF 34
Qу
              Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 25
US-09-843-221A-14
; Sequence 14, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
; APPLICANT: LIU, CHUAN-FA ; APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
; TITLE OF INVENTION: RELATED PROTEIN
; FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
; PRIOR FILING DATE: 2001-02-06
; PRIOR APPLICATION NUMBER: 60/214,860
; PRIOR FILING DATE: 2000-06-28
; PRIOR APPLICATION NUMBER: 60/200,053
; PRIOR FILING DATE: 2000-04-27
; NUMBER OF SEQ ID NOS: 170
; SOFTWARE: PatentIn version 3.1
; SEQ ID NO 14
   LENGTH: 38
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-843-221A-14
  Query Match
                         67.6%; Score 23; DB 11; Length 38;
  Best Local Similarity 100.0%; Pred. No. 1.2e-16;
  Matches 23; Conservative 0; Mismatches 0; Indels 0; Gaps
Qу
          12 GKHLNSMERVEWLRKKLQDVHNF 34
             Db
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 26
US-10-245-707-1
; Sequence 1, Application US/10245707
; Publication No. US20030171282A1
; GENERAL INFORMATION:
; APPLICANT: Patton, John S.
; TITLE OF INVENTION: Pulmonary Delivery of Active Fragments of Parathyroid
Hormone
; FILE REFERENCE: 032055-047
; CURRENT APPLICATION NUMBER: US/10/245,707
; CURRENT FILING DATE: 2003-03-11
; PRIOR APPLICATION NUMBER: US 09/577,264
; PRIOR FILING DATE: 2000-05-22
```

```
; PRIOR APPLICATION NUMBER: US 09/128,401
  PRIOR FILING DATE: 1998-08-03
  PRIOR APPLICATION NUMBER: US 08/625,586
  PRIOR FILING DATE: 1996-03-28
  PRIOR APPLICATION NUMBER: US 08/232,849
  PRIOR FILING DATE: 1994-04-25
  PRIOR APPLICATION NUMBER: US 07/953,397
  PRIOR FILING DATE: 1992-09-29
  NUMBER OF SEQ ID NOS: 1
  SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 1
  LENGTH: 38
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: parathyroid hormone (PTH) fragment molecues
US-10-245-707-1
                         67.6%; Score 23; DB 12; Length 38;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 1.2e-16;
 Matches 23; Conservative 0; Mismatches
                                               0; Indels 0; Gaps
          12 GKHLNSMERVEWLRKKLQDVHNF 34
Qу
             Dh
          12 GKHLNSMERVEWLRKKLQDVHNF 34
RESULT 27
US-10-361-928-3
; Sequence 3, Application US/10361928
; Publication No. US20030144209A1
; GENERAL INFORMATION:
; APPLICANT: BRINGHURST, F. RICHARD
  APPLICANT: TAKASU, HISASHI
; APPLICANT: GARDELLA, THOMAS J.
  TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
  TITLE OF INVENTION: ANALOGS
; FILE REFERENCE: 0609.4630002
; CURRENT APPLICATION NUMBER: US/10/361,928
; CURRENT FILING DATE: 2003-02-11
  PRIOR APPLICATION NUMBER: 09/447,800
  PRIOR FILING DATE: 1999-11-23
; PRIOR APPLICATION NUMBER: 60/110,152
  PRIOR FILING DATE: 1998-11-25
  NUMBER OF SEQ ID NOS: 10
  SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 3
   LENGTH: 33
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: MOD RES
   LOCATION: (1)
   OTHER INFORMATION: Desamino Gly
US-10-361-928-3
                        64.7%; Score 22; DB 12; Length 33;
  Query Match
```

```
Best Local Similarity 100.0%; Pred. No. 1.2e-15;
          22; Conservative 0; Mismatches 0; Indels 0; Gaps
                                                                         0;
          12 GKHLNSMERVEWLRKKLQDVHN 33
Qу
             Db
          12 GKHLNSMERVEWLRKKLODVHN 33
RESULT 28
US-10-361-928-6
; Sequence 6, Application US/10361928
; Publication No. US20030144209A1
; GENERAL INFORMATION:
  APPLICANT: BRINGHURST, F. RICHARD
  APPLICANT: TAKASU, HISASHI
  APPLICANT: GARDELLA, THOMAS J.
  TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
  TITLE OF INVENTION: ANALOGS
; FILE REFERENCE: 0609.4630002
  CURRENT APPLICATION NUMBER: US/10/361,928
  CURRENT FILING DATE: 2003-02-11
  PRIOR APPLICATION NUMBER: 09/447,800
  PRIOR FILING DATE: 1999-11-23
  PRIOR APPLICATION NUMBER: 60/110,152
  PRIOR FILING DATE: 1998-11-25
; NUMBER OF SEQ ID NOS: 10
  SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 6
   LENGTH: 33
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: MOD RES
   LOCATION: (1)
   OTHER INFORMATION: Desamino Ala
US-10-361-928-6
                        64.7%; Score 22; DB 12; Length 33;
 Query Match
                        100.0%; Pred. No. 1.2e-15;
 Best Local Similarity
          22; Conservative 0; Mismatches 0; Indels
 Matches
                                                           0; Gaps
                                                                         0:
Qу
          12 GKHLNSMERVEWLRKKLQDVHN 33
             Dh
          12 GKHLNSMERVEWLRKKLQDVHN 33
RESULT 29
US-10-361-928-9
; Sequence 9, Application US/10361928
; Publication No. US20030144209A1
; GENERAL INFORMATION:
; APPLICANT: BRINGHURST, F. RICHARD
 APPLICANT: TAKASU, HISASHI
 APPLICANT: GARDELLA, THOMAS J.
  TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
  TITLE OF INVENTION: ANALOGS
; FILE REFERENCE: 0609.4630002
```

```
CURRENT APPLICATION NUMBER: US/10/361,928
  CURRENT FILING DATE: 2003-02-11
  PRIOR APPLICATION NUMBER: 09/447,800
  PRIOR FILING DATE: 1999-11-23
  PRIOR APPLICATION NUMBER: 60/110,152
  PRIOR FILING DATE: 1998-11-25
  NUMBER OF SEQ ID NOS: 10
  SOFTWARE: PatentIn Ver. 2.1
 SEQ ID NO 9
   LENGTH: 33
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: MOD RES
   LOCATION: (1)
   OTHER INFORMATION: Desamino Ser
US-10-361-928-9
                        64.7%; Score 22; DB 12; Length 33;
  Query Match
 Best Local Similarity 100.0%; Pred. No. 1.2e-15;
          22: Conservative 0: Mismatches 0: Indels
                                                              0; Gaps
 Matches
          12 GKHLNSMERVEWLRKKLQDVHN 33
Qу
             Db
          12 GKHLNSMERVEWLRKKLQDVHN 33
RESULT 30
US-10-372-095-24
; Sequence 24, Application US/10372095
; Publication No. US20030162256A1
; GENERAL INFORMATION:
  APPLICANT: Juppner, Harald
  APPLICANT: Rubin, David A.
  TITLE OF INVENTION: PTH1R and PTH3R Receptors, Methods and Uses Thereof
  FILE REFERENCE: 0609.4740002
  CURRENT APPLICATION NUMBER: US/10/372,095
  CURRENT FILING DATE: 2003-02-25
  PRIOR APPLICATION NUMBER: 09/449,632
  PRIOR FILING DATE: 1999-11-30
  PRIOR APPLICATION NUMBER: US 60/110,467
  PRIOR FILING DATE: 1998-11-30
  NUMBER OF SEQ ID NOS: 25
  SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 24
   LENGTH: 34
   TYPE: PRT
    ORGANISM: Homo sapiens
US-10-372-095-24
                         61.8%; Score 21; DB 12; Length 34;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.3e-14;
  Matches
          21; Conservative
                              0; Mismatches
                                               0; Indels
                                                              0; Gaps
Qу
          12 GKHLNSMERVEWLRKKLQDVH 32
             Db
          12 GKHLNSMERVEWLRKKLQDVH 32
```

```
US-09-169-786-2
; Sequence 2, Application US/09169786B
; Patent No. US20020025929A1
; GENERAL INFORMATION:
  APPLICANT: Sato, Masahiko
  TITLE OF INVENTION: METHOD OF BUILDING AND MAINTAINING BONE
  FILE REFERENCE: X-11480
   CURRENT APPLICATION NUMBER: US/09/169,786B
  CURRENT FILING DATE: 1998-10-09
  EARLIER APPLICATION NUMBER: US 60/061,800
  EARLIER FILING DATE: 1997-10-14
  NUMBER OF SEQ ID NOS: 12
  SOFTWARE: PatentIn Ver. 2.0
; SEQ ID NO 2
   LENGTH: 31
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-169-786-2
  Query Match
                         58.8%; Score 20; DB 9; Length 31;
  Best Local Similarity 100.0%; Pred. No. 1.3e-13;
  Matches 20; Conservative 0; Mismatches 0; Indels
                                                                0; Gaps
                                                                            0;
          12 GKHLNSMERVEWLRKKLQDV 31
QУ
             12 GKHLNSMERVEWLRKKLQDV 31
RESULT 32
US-09-843-221A-27
; Sequence 27, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
; TITLE OF INVENTION: RELATED PROTEIN
 FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 27
   LENGTH: 31
   TYPE: PRT
   ORGANISM: Homo sapiens
```

RESULT 31

; Publication No. US20030039654A1

```
Query Match
                        58.8%; Score 20; DB 11; Length 31;
 Best Local Similarity 100.0%; Pred. No. 1.3e-13;
 Matches 20; Conservative 0; Mismatches 0; Indels
                                                              0; Gaps
                                                                          0;
Qу
          12 GKHLNSMERVEWLRKKLQDV 31
             Db
          12 GKHLNSMERVEWLRKKLQDV 31
RESULT 33
US-09-843-221A-165
; Sequence 165, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
 APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
; TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
; PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 165
  LENGTH: 31
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Preferred embodiments - PTH
   NAME/KEY: misc feature
   LOCATION: (31)..(31)
   OTHER INFORMATION: Optional linker and Fc domain attached at the C-terminus
US-09-843-221A-165
 Query Match
                         58.8%; Score 20; DB 11; Length 31;
 Best Local Similarity 100.0%; Pred. No. 1.3e-13;
 Matches 20; Conservative 0; Mismatches 0; Indels
                                                             0; Gaps
Qу
          12 GKHLNSMERVEWLRKKLQDV 31
             111111111111111111
Db
          12 GKHLNSMERVEWLRKKLQDV 31
RESULT 34
US-09-843-221A-39
; Sequence 39, Application US/09843221A
```

```
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
 APPLICANT: LIU, CHUAN-FA
; APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
; TITLE OF INVENTION: RELATED PROTEIN
; FILE REFERENCE: A-665B
 CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
 PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
; NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 39
   LENGTH: 30
   TYPE: PRT
    ORGANISM: Homo sapiens
US-09-843-221A-39
                         55.9%; Score 19; DB 11; Length 30;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.3e-12;
          19; Conservative 0; Mismatches 0; Indels 0; Gaps
          12 GKHLNSMERVEWLRKKLQD 30
Qу
              111111111111111111111
Db
          12 GKHLNSMERVEWLRKKLQD 30
RESULT 35
US-09-843-221A-40
; Sequence 40, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
; APPLICANT: LIU, CHUAN-FA
; APPLICANT: LACEY, DAVID LEE
   TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
; TITLE OF INVENTION: RELATED PROTEIN
; FILE REFERENCE: A-665B
                                                                  )
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
; PRIOR FILING DATE: 2000-04-27
; NUMBER OF SEQ ID NOS: 170
; SOFTWARE: PatentIn version 3.1
; SEQ ID NO 40
  LENGTH: 30
```

```
TYPE: PRT
   ORGANISM: Artificial Sequence
   OTHER INFORMATION: modified human PTH
US-09-843-221A-40
 Query Match
                        55.9%; Score 19; DB 11; Length 30;
 Best Local Similarity 100.0%; Pred. No. 1.3e-12;
 Matches 19; Conservative 0; Mismatches 0; Indels
                                                              0; Gaps
                                                                         0;
          12 GKHLNSMERVEWLRKKLQD 30
Qу
             Db
          12 GKHLNSMERVEWLRKKLQD 30
RESULT 36
US-09-843-221A-43
; Sequence 43, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
; APPLICANT: LIU, CHUAN-FA
; APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
; TITLE OF INVENTION: RELATED PROTEIN
; FILE REFERENCE: A-665B
; CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 43
   LENGTH: 30
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: modified human PTH
US-09-843-221A-43
 Query Match
                         55.9%; Score 19; DB 11; Length 30;
 Best Local Similarity 100.0%; Pred. No. 1.3e-12;
 Matches 19; Conservative 0; Mismatches
                                              0; Indels 0; Gaps
Qу
          12 GKHLNSMERVEWLRKKLQD 30
             Db
          12 GKHLNSMERVEWLRKKLQD 30
RESULT 37
US-09-843-221A-166
; Sequence 166, Application US/09843221A
```

```
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
 FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 166
   LENGTH: 30
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Preferred embodiments - PTH
   NAME/KEY: misc feature
   LOCATION: (30)..(30)
    OTHER INFORMATION: Optional linker and Fc domain attached at the C-terminus
US-09-843-221A-166
                         55.9%; Score 19; DB 11; Length 30;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.3e-12;
  Matches 19; Conservative 0; Mismatches 0; Indels
                                                                0; Gaps
                                                                            0;
           12 GKHLNSMERVEWLRKKLQD 30
Qу
              1111111111111111111
Db
           12 GKHLNSMERVEWLRKKLQD 30
RESULT 38
US-09-843-221A-34
; Sequence 34, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
   TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
; PRIOR FILING DATE: 2001-02-06
; PRIOR APPLICATION NUMBER: 60/214,860
; PRIOR FILING DATE: 2000-06-28
```

```
; PRIOR APPLICATION NUMBER: 60/200,053
; PRIOR FILING DATE: 2000-04-27
; NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 34
; LENGTH: 28
  TYPE: PRT
   ORGANISM: Artificial Sequence
   OTHER INFORMATION: bovine PTH
US-09-843-221A-34
                        52.9%; Score 18; DB 11; Length 28;
  Query Match
 Best Local Similarity 100.0%; Pred. No. 1.3e-11;
 Matches 18; Conservative 0; Mismatches 0; Indels
         17 SMERVEWLRKKLODVHNF 34
Qу
             11 SMERVEWLRKKLODVHNF 28
RESULT 39
US-09-843-221A-51
; Sequence 51, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
; APPLICANT: LIU, CHUAN-FA
; APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
; TITLE OF INVENTION: RELATED PROTEIN
; FILE REFERENCE: A-665B
; CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
; PRIOR FILING DATE: 2001-02-06
; PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
; PRIOR APPLICATION NUMBER: 60/200,053
; PRIOR FILING DATE: 2000-04-27
; NUMBER OF SEQ ID NOS: 170
; SOFTWARE: PatentIn version 3.1
; SEQ ID NO 51
   LENGTH: 29
    TYPE: PRT
   ORGANISM: Homo sapiens
US-09-843-221A-51
  Query Match 52.9%; Score 18; DB 11; Length 29; Best Local Similarity 100.0%; Pred. No. 1.3e-11;
  Matches 18; Conservative 0; Mismatches 0; Indels 0; Gaps
                                                                          0;
         12 GKHLNSMERVEWLRKKLQ 29
Qу
            12 GKHLNSMERVEWLRKKLQ 29
```

```
RESULT 40
US-09-843-221A-167
; Sequence 167, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
; APPLICANT: LIU, CHUAN-FA
; APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
; TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
; CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
; PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
; NUMBER OF SEQ ID NOS: 170
; SOFTWARE: PatentIn version 3.1
; SEQ ID NO 167
   LENGTH: 29
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Preferred embodiments - PTH
   NAME/KEY: misc_feature
   LOCATION: (1)..(1)
    OTHER INFORMATION: Fc domain attached at the N-terminus through optional
linker
US-09-843-221A-167
  Query Match
                         52.9%; Score 18; DB 11; Length 29;
  Best Local Similarity 100.0%; Pred. No. 1.3e-11;
  Matches 18; Conservative 0; Mismatches 0; Indels 0; Gaps
Qу
           12 GKHLNSMERVEWLRKKLQ 29
             Db
           12 GKHLNSMERVEWLRKKLQ 29
```

Search completed: January 14, 2004, 11:15:04 Job time: 23.8785 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: January 14, 2004, 10:28:19; Search time 25.4206 Seconds

(without alignments)

345.145 Million cell updates/sec

13497

Title: US-09-843-221A-163

Perfect score: 34

Sequence: 1 SVSEIQLMHNKGKHLNSMERVEWLRKKLQDVHNF 34

Scoring table: OLIGO

Gapop 60.0 , Gapext 60.0

Searched: 830525 seqs, 258052604 residues

Word size : 0

Total number of hits satisfying chosen parameters:

Minimum DB seq length: 28 Maximum DB seq length: 40

Post-processing: Listing first 1000 summaries

Database : SPTREMBL 23:*

1: sp_archea:*
2: sp_bacteria:*

3: sp_fungi:*
4: sp human:*

5: sp_invertebrate:*

6: sp_mammal:*
7: sp_mhc:*

8: sp_organelle:*

9: sp_phage:*

10: sp_plant:*

11: sp_rodent:*

12: sp virus:*

13: sp_vertebrate:*

14: sp unclassified:*

15: sp_rvirus:*

16: sp_bacteriap:*

17: sp_archeap:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result Query

왕

No. Score Match Length DB ID Description

1	9	26.5	31 11 Q91Y90	Q91y90 peromyscus
2	9	26.5	31 11 Q91Y91	Q91y91 peromyscus
3	5	14.7	34 5 017148	017148 echinococcu
4	5	14.7	34 16 Q97K50	Q97k50 clostridium
5	5	14.7	34 17 Q9HR65	Q9hr65 halobacteri
6	5	14.7	35 11 Q8BTB9	Q8btb9 mus musculu
7	5	14.7	35 16 Q97RG6	Q97rg6 streptococc
8	4	11.8	28 10 024285	O24285 pinus radia
9	4	11.8	29 2 Q49148	Q49148 methylobact
. 10	4	11.8	29 4 Q9UCL2	Q9ucl2 homo sapien
11	4	11.8	29 5 Q25603	Q25603 onchocerca
12	4	11.8	29 8 Q9TI61	Q9ti61 allosyncarp
13	4	11.8	29 13 013043	013043 scyliorhinu
14	4	11.8	30 4 Q9UBV5	Q9ubv5 homo sapien
15	4	11.8	30 16 Q8DZP7	Q8dzp7 streptococc
16	4	11.8	31 1 Q55314	Q55314 sulfolobus
17	4	11.8	31 4 Q8NEI8	Q8nei8 homo sapien
18	4	11.8	31 16 050669	050669 borrelia bu
19	4	11.8	31 16 Q8EIW8	Q8eiw8 shewanella
20	4	11.8	32 11 Q9QZQ2	Q9qzq2 mus musculu
21 22	4 4	11.8	32 17 Q9HSZ0	Q9hsz0 halobacteri
23	4	11.8 11.8	33 5 Q95SD4	Q95sd4 drosophila
24	4	11.8	33 16 Q9PKX3 34 2 Q9ZG81	Q9pkx3 chlamydia m
25	4	11.8	34 2 Q9ZG81 34 2 Q8GFK2	Q9zg81 chlamydia t
26	4	11.8	34 2 Q8GFK2 34 11 Q8C4P4	Q8gfk2 staphylococ
27	4	11.8	34 13 Q90ZJ4	Q8c4p4 mus musculu Q90zj4 gallus gall
28	4	11.8	34 16 Q98FK5	Q902j4 gallus gall Q98fk5 rhizobium l
29	4	11.8	35 4 Q15421	Q15421 homo sapien
30	4	11.8	35 12 Q8V6J8	Q8v6j8 halovirus h
31	4	11.8	35 16 Q9KQG4	Q9kqg4 vibrio chol
32	4	11.8	35 16 Q8F102	Q8f102 leptospira
33	4	11.8	36 2 Q53920	Q53920 streptomyce
34	4	11.8	36 2 068941	O68941 rhodospiril
35	4	11.8	36 4 Q8WXW8	Q8wxw8 homo sapien
36	4	11.8	36 10 Q9SJ63	Q9sj63 arabidopsis
37	4	11.8	36 12 Q9PXD1	Q9pxd1 hepatitis c
38	4	11.8	36 12 Q91D77	Q91d77 ttv-like mi
39	4	11.8	36 13 Q9YHT9	Q9yht9 brachydanio
40	4	11.8	36 16 Q97S91	Q97s91 streptococc
41	4	11.8	37 2 Q8KYJ0	Q8kyj0 bacillus an
42	4	11.8	37 5 Q9N2L2	Q9n2l2 caenorhabdi
43	4	11.8	37 10 Q39942	Q39942 helianthus
44	4	11.8	37 13 Q8AWW8	Q8aww8 oncorhynchu
45	4	11.8	37 16 Q8F6U2	Q8f6u2 leptospira
46	4	11.8	37 16 Q8F5H3	Q8f5h3 leptospira
47	4	11.8	37 16 Q8F419	Q8f419 leptospira
48	4	11.8	37 16 Q8EXV9	Q8exv9 leptospira
49 50	4	11.8	38 2 Q8KWH7	Q8kwh7 lactobacil1
51	4 4	11.8	38 5 Q9NBE3	Q9nbe3 chironomus
52	4	11.8 11.8	38 5 Q9NBE5 38 5 Q9NBE8	Q9nbe5 chironomus
53	4	11.8		Q9nbe8 chironomus
54	4	11.8	38 5 Q9NBE4 38 5 Q9NBE7	Q9nbe4 chironomus
5 4 55	4	11.8	38 11 035918	Q9nbe7 chironomus O35918 rattus norv
56	4	11.8	38 11 Q91VC8	Q91vc8 mus musculu
57	4	11.8	38 13 Q8AWW9	Q8aww9 oncorhynchu
<u> </u>	-		20 20 20221113	Quanto oncornynena
			-	

58	4	11.8	38	16 Q8E0D2	Q8e0d2 streptococc
59	4	11.8	39	2 Q8GPQ8	Q8gpq8 pseudomonas
60	4	11.8	39	12 Q68847	Q68847 hepatitis c
61	4	11.8	39	12 Q68845	Q68845 hepatitis c
62	4	11.8	39	12 Q68846	Q68846 hepatitis c
63	4	11.8	39	13 Q90776	Q90776 gallus gall
64	4	11.8	39	16 Q9KYH4	Q9kyh4 streptomyce
65	4	11.8	39	16 Q8F0C7	Q8f0c7 leptospira
66 67	4	11.8	40	2 Q8GCS7	Q8gcs7 eubacterium
	4	11.8	40	4 Q9UE56	Q9ue56 homo sapien
68 69	4 4	11.8 11.8	40 40	5 Q9NFH5 6 O9N1X0	Q9nfh5 plasmodium
70	4	11.8	40	6 Q9N1X0 6 Q29283	Q9n1x0 equus cabal Q29283 sus scrofa
71	4	11.8	40	12 Q91JZ7	Q29283 Sus Sciola Q91jz7 hepatitis c
72	3	8.8	28	2 Q01303	Q01303 treponema p
73	3	8.8	28	2 Q05574	Q05574 prochloroth
74	3	8.8	28	2 Q9ZB83	Q9zb83 vibrio angu
75	3	8.8	28	3 Q8TGN3	Q8tgn3 saccharomyc
76	3	8.8	28	3 Q8TGT8	Q8tgt8 saccharomyc
77	3	8.8	28	4 Q96SD9	Q96sd9 homo sapien
78	3	8.8	28	4 Q16326	Q16326 homo sapien
79	3	8.8	28	4 Q96EU0	Q96eu0 homo sapien
80	3	8.8	28	4 075980	075980 homo sapien
81	3	8.8	28	4 095737	095737 homo sapien
82	3	8.8	28	5 Q8MUW0	Q8muw0 schistosoma
83	3	8.8	28	5 Q8MPY2	Q8mpy2 caenorhabdi
84	3	8.8	28	5 Q9BJE4	Q9bje4 pauropus sp
85	. 3	8.8	28	6 062821	O62821 bubalus bub
86	3	8.8	28	6 Q9XS89	Q9xs89 equus cabal
87	3	8.8	28	8 Q8WBC8	Q8wbc8 cucurbita e
88	3	8.8	28	8 Q9TIE9	Q9tie9 centella er
89	3	8.8	28	8 Q9TIE8	Q9tie8 centella as
90	3	8.8	28	8 Q9MR96	Q9mr96 crocodylus
91	3	8.8	28	8 Q9TIE6	Q9tie6 centella hi
92	3	8.8	28	8 Q9ZYS4	Q9zys4 leishmania
93	3	8.8	28	8 Q9MR94	Q9mr94 chelonia my
94	3	8.8	28	8 Q9TIE7	Q9tie7 centella tr
95 06	3	8.8	28	8 Q8HS23	Q8hs23 pisum sativ
96 07	3	8.8	28	8 Q8HS11	Q8hs11 spathiphyll
9 7 98	3	8.8	28	8 Q8HS07	Q8hs07 welwitschia
98 99	3	8.8	28	8 Q8HKF0	Q8hkf0 rhipicephal
100	3 3	8.8 8.8	28 28	9 Q9AZJ9 9 Q38269	Q9azj9 bacteriopha Q38269 bacteriopha
101	3	8.8	28	10 Q8S526	Q88526 ipomoea bat
102	3	8.8	28	10 Q8W232	Q8w232 zea mays (m
103	3	8.8	28	10 Q9LMD6	Q91md6 arabidopsis
104	3	8.8	28	11 Q9ESI4	Q9esi4 petromus ty
105	3	8.8	28	11 Q9ESI5	Q9esi5 thryonomys
106	3	8.8	28	11 Q9ESI6	Q9esi6 hystrix afr
107	3	8.8	28	11 Q99PL9	Q99p19 mus musculu
108	3	8.8	28	11 Q9ESI2	Q9esi2 cryptomys h
109	3	8.8	28	11 Q9EP60	Q9ep60 heliophobiu
110	3	8.8	28	11 Q9ESI0	Q9esi0 cryptomys s
111	3	8.8	28	11 Q91XP0	Q91xp0 rattus norv
112	3	8.8	28	11 P70651	P70651 mus sp. bet
113	3	8.8	28	11 Q9EP59	Q9ep59 georychus c
114	3	8.8	28	11 Q9ESI1	Q9esil cryptomys d
				•	

115	3	8.8	28 11	P97914	P97914	rattus norv
116	3	8.8	28 11			heterocepha
117	3	8.8	28 11			bathyergus
118	3	8.8	28 11			bathyergus
119	3	8.8	28 11			mus musculu
120	3	8.8	28 11			
121	3	8.8	28 12			cryptomys h
121	3					hepatitis c
		8.8	28 12			human adeno
123	3	8.8	28 12			hepatitis c
124	3	8.8	28 12			hepatitis c
125	3	8.8	28 12			hepatitis c
126	3	8.8	28 12			hepatitis c
127	3	8.8	28 12		Q68093	hepatitis c
128	3	8.8	28 12	~	Q68099	hepatitis c
129	3	8.8	28 12		Q68096	hepatitis c
130	3	8.8	28 12	Q68098	Q68098	hepatitis c
131	3	8.8	28 12	2 Q83181	Q83181	cauliflower
132	3	8.8	28 12	Q68086		hepatitis c
133	3	8.8	28 12	Q68552		hepatitis c
134	3	8.8	28 12	Q68094		hepatitis c
135	3	8.8	28 12			tt virus. o
136	3	8.8	28 13			oryzias lat
137	3	8.8	28 13			amia calva
138	3	8.8	28 13			carassius a
139	3	8.8	28 15			human endog
140	3	8.8	28 15			human immun
141	3	8.8	28 16			escherichia
142	3	8.8	28 16			staphylococ
143	3	8.8	28 16			oceanobacil
144	3	8.8	28 16			
145	3	8.8	29 2	Q9ZGG4		yersinia pe
146	3	8.8	29 2	Q54200		heliobacill
147	3	8.8	29 2	Q9X3E3		streptomyce
148	3	8.8	29 2			prochloroco
149	3			Q9X3J9		prochloroco
150		8.8	29 2	Q47650		escherichia
151	3	8.8	29 2	Q9AKV1		neisseria g
152	3 3	8.8	29 2	Q9R511		bacillus su
		8.8	29 2	Q8GL27		borrelia bu
153	3	8.8	29 3	P78747		saccharomyc
154	3	8.8	29 3	Q8TGQ5		saccharomyc
155	3	8.8	29 4	Q9Y3G1		nomo sapien
156	3	8.8	29 4	Q9H2A1		nomo sapien
157	3	8.8	29 4	Q9UN87		nomo sapien
158	3	8.8	29 4	Q9UDJ9		nomo sapien
159	3	8.8	29 4	Q9H465		nomo sapien
160	3	8.8	29 4	Q8NEF6	Q8nef6	nomo sapien
161	3	8.8	29 4	Q8TDW8	Q8tdw8]	nomo sapien
162	3	8.8	29 4	Q96IR5	Q96ir5 1	nomo sapien
163	3	8.8	29 4	Q9BSQ3		nomo sapien
164	3	8.8	29 5	Q95VB2		spirometra
165	3	8.8	29 5	Q95NF4		drosophila
166	3	8.8	29 5	Q24683		dugesia tig
167	3	8.8	29 6	Q95MD3		oos taurus
168	3	8.8	29 6	Q9TRG5		sus scrofa
169	3	8.8	29 8	Q8WBB9		Cucurbita f
170	3	8.8	29 8	Q9TI57		corymbia pa
171	3	8.8	29 8	Q8W7W7		Cucurbita p
		-		<u> · · · · · · · · · · · · · · · · · · </u>	Z0/W/	-acarbica p

172	3	8.8	29	8	Q9GF70	Q9gf70 trochodendr
173	3	8.8	29	8	Q8W7W4	Q8w7w4 cucurbita a
174	3	8.8	29	8	Q8W7W6	Q8w7w6 cucurbita p
175	3	8.8	29	8	Q8WBC1	Q8wbc1 cucurbita o
176	3	8.8	29	8	Q9B5Z6	Q9b5z6 pseudostylo
1 7 7	3	8.8	29	8	Q8W7W5	Q8w7w5 cucurbita p
178	3	8.8	29	8	Q9B938	Q9b938 eupristina
179	3	8.8	29	8	Q9G370	Q9g370 draco blanf
180	3	8.8	29	8	Q8WBD0	Q8wbd0 cucurbita a
181	3	8.8	29	8	Q8WBB6	Q8wbb6 citrullus l
182	3	8.8	29	8	Q8W7W9	Q8w7w9 cucurbita f
183	3	8.8	29	8		
184	3	8.8	29	8	Q8W7W8	Q8w7w8 cucurbita m
					Q8HS21	Q8hs21 rheum x cul
185	3	8.8	29	9	Q9FZX6	Q9fzx6 bacteriopha
186	3	8.8	29	10	~	Q9sc62 picea abies
187	3	8.8	29	10	Q9SC58	Q9sc58 picea abies
188	3	8.8	29	10	Q9FUS3	Q9fus3 physcomitre
189	3	8.8	29	10	Q9SC57	Q9sc57 picea abies
190	3	8.8	29	10	P82196	P82196 spinacia ol
191	3	8.8	29	11	Q9JK05	Q9jk05 mus musculu
192	3	8.8	29	11	Q9Z2C0	Q9z2c0 mus musculu
193	3	8.8	29	11	Q921Z6	Q921z6 mus musculu
194	3	8.8	29	11	Q9Z2C1	Q9z2c1 mus musculu
195	3	8.8	29	11	070564	070564 mus musculu
196	3	8.8	29	11	Q9QY65	Q9qy65 mus musculu
197	3	8.8	29	11	Q62300	Q62300 mus musculu
198	3	8.8	29	11	008980	008980 mus musculu
199	3	8.8	29	11	Q8CGM8	Q8cgm8 mus musculu
200	3	8.8	29	12	Q91HB1	Q91hb1 porcine cir
201	3	8.8	29	12	092646	092646 hepatitis e
202	3	8.8	29	12	Q919A5	Q919a5 porcine rep
203	3	8.8	29	12	Q919A7	Q919a7 porcine rep
204	3	8.8	29	12	Q86872	Q86872 cauliflower
205	3	8.8	29	12	092648	092648 hepatitis e
206	3	8.8	29	12	056835	056835 vibrio chol
207	3	8.8	29	13	Q8AYR0	Q8ayr0 oryzias lat
208	3	8.8	29	13		Q8awc2 gallus gall
209	3	8.8	29	15	072001	O72001 human endog
210	3	8.8	29	15	071342	071342 human endog
211	3	8.8	29	15	071332	071342 human endog
212	3	8.8	29	15	071337	071339 Human endog
213	3	8.8	29	15	071347	
214	3	8.8	29	15	071340	071340 human endog
215	3	8.8	29			071343 human endog
216	3	8.8	29	15	Q9IQJ8	Q9iqj8 human immun
217	3			15	071991	071991 human endog
		8.8	29	15	Q9IQJ1	Q9iqj1 human immun
218	3	8.8	29	15	071994	071994 human endog
219	3	8.8	29	15	071341	071341 human endog
220	3	8.8	29	15	071345	071345 human endog
221	3	8.8	29	15	071336	071336 human endog
222	3	8.8	29	15	071344	071344 human endog
223	3	8.8	29	15	071338	071338 human endog
224	3	8.8	29	15	071992	071992 human endog
225	3	8.8	29	15	071337	071337 human endog
226	3	8.8	29	15	Q9IQJ9	Q9iqj9 human immun
227	3	8.8	29	15	071997	071997 human endog
228	3	8.8	29	15	071335	071335 human endog

Q93wy2 oryza sativ	G93WY2	οτ	30	8.8	3	282
Q8rudl zea mays (m	бавильт	Oτ	30	8.8	ε	78₹
Q9fusl physcomitre	Q9FUS1	οτ	30	8.8	ε	283
O23933 flaveria tr	023933	0τ	30	8.8	ε	282
Q9s8t2 cicer ariet	Q9S8T2	0 T	30	8.8	ε	281
Q8w674 enterobacte	₱८9M8Õ	6	30	8.8	ε	280
бару крубат крубручт	бвнкат	8	30	8.8	3	672
Q9ti56 eucalyptus	98IT6Q	8	30	8.8	ε	872
Q8W710 cucurbita p	Ğ8MJT0	8	3.0	8.8	3	LLZ
Q8wbc0 cucurbita f	Õ8MBC0	8	3.0	8.8	3	972
Q8w7h7 cucurbita e	CH7W8Q	8	3.0	8.8	3	275
209328 meloidogyne	Ø3328	8	3.0	8.8	5	7.7¢
Q8wbb7 sechium edu	Õ8MBBJ	8	30	8.8	3	273
Qwbc6 cucurbita a	Õ8MBG6	8	3.0	8.8	3	272
Q8wbc4 cucurbita p Q8w7l2 cucurbita a	Õ8MJITS Õ8MBC∉	8	30 30	8.8 8.8	5 3	271 271
Q8w7h6 cucurbita m	O8MPCA O8M7H6	8	30	8.8	£	697
Q8w7k8 cucurbita p	O8MJK8	8	30	8.8	5	892
Q8wbc2 cucurbita o	O8M2K8	8	30	8.8	5	49Z
Q8w7h8 cucurbita a	SH7W8Q	8	30	8.8	5	997
Q8W7k9 cucurbita p	ОВМДПВ	8	30	8.8	5	265
Q8w7ll cucurbita m	Q8W7L1	8	30	8.8	3	₹9Z
zlad salais 91116Q	Q9TTF9	9	3.0	8.8	3	263
Q9bdkl bos taurus	ОЗВДИЛ ОЗВРКІ	9	3.0	8.8	3	797
P82214 bombyx mori	P82214	Ś	30	8.8	ε	761
Q968nl tritrichomo	TN8960	5	3.0	8.8	ε	760
басму висуловнома	CHMT60	5	30	8.8	ε	529
P78542 homo aspien	₽78542	₽	30	8.8	3	258
Gaptus owou zuzqağ	бэвzиs	₽	30	8.8	3	752
баррат убруба варієп	бэнвсѕ	₽	30	8.8	3	726
gsu2es owou gsu2es	б 8и2ез	₽	30	8.8	ε	222
nəiqsa omod 034879	£18₫00	₽	3.0	8.8	3	72₹
nəiqsa omod 262260	969960	₽	30	8.8	ε	253
Qəncəs Domou Səbien	eadueg	Ð	30	8.8	3	252
nəiqsa omod 08631Q	026310	₹	3.0	8.8	3	251
Q8j171 hypocrea li	ITIU8Q	ε	3.0	8.8	ε	250
Q8J172 trichoderma	271U8Q	ε	3.0	8.8	ε	249
Q9urb0 candida alb	овяиед	ε	3.0	8.8	3	8₽2
Q9p817 candida alb	Ø9₽817	5	3.0	8.8	3	747
бален	бовеке	Z	3.0	8.8	5	977
Q9r4a8 clostridium	8A4A6Q	7	3.0	8.8	3	5 † Z
Q9r4i6 mycoplasma	Ø9R4I6	7	3.0	8.8 8.8	3	24 <i>4</i> 243
Q9r5c4 comamonas. Q9s014 borrelia bu	₹1056Õ	Z Z	9.E 9.E	8.8 8.8	5	242
	б∂ <i>в</i> гс∉ б∉г∂ее	2	30	8.8	£ £	7 7 7 7 4 T
Q9r5q3 leuconostoc Q45966 coxiella bu	Олевее	2	30	8.8	ξ	240
Q9r4a9 clostridium	Q9R4A9	7	30	8.8	5	239
Q9r4i5 mycoplasma	ODBVID OBBVIE	2	3.0	8.8	3	852
Q8vuw9 staphylococ	9WUV8Q	Z	30	8.8	5	752
Q9r4j2 helicobacte	Q9R4J2	2	30	8.8	5	236
Q9rei5 acidiphiliu	OOBVIS OOBEI2	7	30	8.8	ξ -	235
Q9r4z6 clostridium	9Z#¥6Ö	7	3.0	8.8	ε	234
Q918x1 streptomyce	Öərexi	Z	3.0	8.8	٤	233
Q918w9 streptomyce	ОЭГОМЭ ОЭГ8МЭ	Z	3.0	8.8	٤	232
silanomiss 27p7Q	S74L6Q	7	30	8.8	ε	231
Оваоига шесучись	б8бонг	LΤ	62	8.8	ε	230
Q8x419 escherichia	Õ8X∉I∂	9 T	52	8.8	3	229
•						

Q9ude5 homo sapien	₹ Õ∂NDE2	τε 8.8	3 8	342
n∍iqsa omod ≯mxdeQ	₹ Õ∂BXW₹	1 ε 8.8		341
nəiqsa omod £xZn8Q	4	£ 8.8		3₫0
π∍iqss omod ∂lγw8Ω	₹ Õ8MXE2	ĽΕ 8.8		339
nəiqsa omod esəueQ	4 ÕƏNEYƏ	IE 8.8	3 &	338
n9iqss omod ∂≯s∂6Q	4	IE 8.8	3 8	755
O94120 saccharomyc	3 094120	1.E 8.8	3 8	336
293pel yersinia pa	S ÕƏ3bet	£ε 8.8	3 8	332
Q813d3 colwellia m	S Õ8F3D3	IE 8.8		334
Q8rts5 uncultured	2 Q8RTS5	τ ε 8.8		555
ŏ8kyi9 bacillus an	7	IE 8.8		332
Q9rhf9 acinetobact	2 бэкнгэ	IE 8.8		337
Q47323 escherichia	2 Q47323	IE 8.8		330
бакров грекшив sdn	5 бэкнов	1.8 8.8		379
O68825 pseudomonas	2 068825	1.8 8.8		328
Q9x3c3 prochloroco	7	1.8 3.1		725
Q9jmv2 escherichia	SVMLQÒ S	1.8 3.1		928
ŏ8kyko pacillus an	S	1.8 3.1		325
Q9s619 prochloroco	6T9S6Õ Z	IE 8.8		32₹
ŏ8z∧J0 bλιopscnjnш	IJ Õ8ZAPO	0£ 8.8		525
ŏ8zzĮo bλropacnjnw	17 Õ8ZZF0	0ε 8.8		322
Q8cn88 staphylococ	TE Õ8GN88	0ε 8.8		351
ŏ8£zx∂ pxncejjs an	16 Q8FZX9	0ε 8.8		320
ŏgdırı prucella su	те баеткт	0.5 8.4		615
Q8ke55 chlorobium	10 Ö8KE22	0.5 8.1		318
Q8n566 agrobacteri	Je Ö8N2ee	0£ 8.1		377
б∂кјм∆ срјаш∕dia р	10 ÕƏKIMJ	0ε 8.		316
220201qəx12 Zx276Q	SXSL6Ö 9T	0ε 8.		312
297ay9 atreptococc	6XSL6 Ŏ 9T	9.		31₹
m sirsesisn õpsį60	9 Ö SL6 Ö 9T	0ε 8.		313
Q9ksa7 vibrio chol	IE ÕƏKZYJ	0ε 8.		312
∑9kt75 vibrio chol	16 Ø9KT75	0ε 8.		317
ŏ∂kn22 ∧iprio chol	TE ÕƏKNEE	0ε 8.		310
Q9pp53 campylobact	16 Ø9PP53	0ε 8.		309
бахома грекшогодз	76 ÖƏX0MƏ	0ε 8.		308
O50822 borrelia bu	16 O50822	0ε 8.		708
nummi nemuh Zq1660	TE ÕAATE	0ε 8.		908
Q86599 human endog	57 086599	0ε 8.		305
Қ∂Б¢00 оисоҳуλисµп	13 Q9PT00	0ε 8.		30₹
29prw0 struthio ca	<i>1</i> 3 бъ <i>в</i> мо			303
Q98ue7 xenopus lae	I3 ĞƏRNEJ	0ε 8.		302
O42551 brachydanio	13 042551	0ε 8.		301
Q91hc0 tt virus. o	тѕ ботнсо	0ε 8.		300
ŏ∂wJk3 hepatitia e	тѕ бамгкз	0ε 8.		299
Q91hc3 tt virus. o	ту ботнсэ	0ε 8.		862
086870 cauliflower	75 <u>0</u> 86870	0ε 8.		792
Q9ijv5 norwalk vir	ZVL16Q SI	0ε 8.		967
Q91hc4 tt virus. o	IS ÕõihG4	0ε 8.		295
Oglypy ff virns o	ту ботнву	0ε 8.		767
Q8br32 mus musculu	II Q8BR32	0.5 8.		293
Q10753 rattus norv	εςνοτδ ττ	0.5 8.		262
.ge gyle rattus sp.	TI ĞƏĞATƏ	0ε 8.		291
Q9qv14 mus sp. col	11 Q9QV14	0.5 8.		290
.gs suttas sp.	II ÕõÕAI8	0.5 8.		585
Q8vdll mus musculu	II Õ8ADFI	0ε 8.		887
088549 mesocricetu	6#88O TI	0ε 8.		782
Q63885 mus sp. cys	11 Õe3882	0ε 8.	8 E	286

Q919fl human papil	31 IS Q919F1	8.8 E	668
liqeq namud S1919Q	31 12 Q919F2	8.8 E	868
5 sijijagod 68680	31 12 029989	8.8 E	<u> ۲</u> 6٤
Liged nemuh #10100	31 IS Õ313E¢	8.8 E	968
OS6709 hepatitis c	31 12 026709	8.8 E	368
Liqeq nemun 01919Q	31 15 Ø319F0	8.8 E	₹68
O Sébaritas c	15 O26697	8.8 E	565
O56703 hepatitis c	31 IS O26703	8.8 E	392
o sijijeqəd 207020	31 12 O26702	8.8 £	165
o sijijagen 869920	8699SO ZI IE	8.8 £	390
o sijiseqəd 266620	31 15 026695	8.8 ε	68£
o sititagen 0566960	31 12 026696	8.8 E	88£
o sijijag94 888820	31 12 056688	8.8 E	785
o sijijepat 017020	31 12 056710	8.8 E	386
Liqaq namud 89919Q	31 IS Õ313E8	8.8 E	385
OS6712 hepatitis c	31 12 026712	8.8 €	₽8£
Liqeq namun 19616Q	31 IS Õ313E3	8.8 E	383
Liqeq namun 31616Q	31 12 Q919F6	8.8 E	382
Liqeq namud 95016Q	31 15 Ø313D3	8.8 8	381
o sijijaeqan 10,000	31 15 O20004	8.8 E	380
Q919el human papil O5670l hepatitis c	31 IS 026401 31 IS Õ313EI	8.8 E 8.8 E	6LE
o sititseq 169560 Ligan namud 198180	31 IS Õ313EI 31 IS O20031	8.8 E	77£ 87£
liqaq namud 81919Q	31 12 Q919F8	8.8 E	975
5 sizizse 78950	71 12 O56687	8.8 E	57.E
OS6707 hepatitis c	31 12 O2930	8.8 E	₽ 7£
liqeq namun 23019Q	31 12 Q919F3	8.8 E	575
OS6692 hepatitis c	2699SO 21 18	8.8 E	372
Lideq namun 29199	31 IS Ö313E6	8.8 ε	175
Liqeq nemud 71919Q	31 12 Q919F7	8.8 ε	370
OS6713 hepatitis c	31 12 056713	8.8 E	698
C919e4 human papil	37 IS Õ313E4	8.8 E	898
Liqaq namud 29919Q	31 IS ĞƏ1ƏE2	8.8 E	49٤
Q8cgm7 musculu	3I II Õ8CGWL	8.8 £	998
Q922z6 mus musculu	31 II ĞƏSSSE	8.8 £	398
баакке шиз шизсији	31 II Õ33KKE	8.8 E	₹98
Qadxpe musculu	зт тт бәбхве	8.8 ε	595
Q9xit0 glycine max	31 10 Q9XIT0	8.8 E	362
Q38499 bacteriopha	3I 6 Ğ38466	8.8 ε	198
Mommila correntophr	зі в бамигз	8.8 €	098
muse susedq 87em6Q	872M6Q 8 IE	8.8 ε	326
ŏ∂mul2 torrentophr	31 8 ÕƏWNI'S	8.8 E	358
Демоу съдести учения Демоу съдести демои	31 8 Q8M9Y3	8.8 E	725
∑8vej4 gnetum gnem	31 8 Õ8ME14	8.8 E	326
Log sulumil S269£Q	31 8 034922	8.8 E 8.8 E	32€ 32 4
A SMANN STAN SAN SAN SAN SAN SAN SAN SAN SAN SAN S	31 8 O80011 31 8 ÕƏWNWS	8.8 E 8.8 E	353
Q29868 home sapien QmrmS bulo americ	31 7 Q29868	8.8 E	352
O97800 bos taurus	008760 5 15	8.8 E	321
Qyxsb9 ateles belz	31 6 Q9XSB9	8.8 E	320
Q9nlc8 aries	31 6 Q9VCB8	8.8 E	6⊅€
Q951c0 sus scrofa	31 6 Q95LC0	8.8 E	8⊅€
O77625 bos taurus	37 6 077625	8.8 E	∠ ₹€
Q8mih5 canis famil	31 6 Q8MIH5	8.8 E	978
Q9gld6 sus scrofa	31 6 Q9GLD6	8.8 E	345
Q8iey3 trypanosoma	31 2 Ö81EX3	8.8 E	344
Qsiqv3 drosophila	3T 2 0810V3	8.8 E	343

					÷	
				,	_	
Q8kyn3 bacillus an	О 8КХИЗ	7	32	8.8	5	99¥
Ø38629 prochloroco	629S6Õ 644466	Z Z	32 32	8.8 8.8	ج 3	997 797
бяята шусобјагшэ Фянта шусобјагшэ	04408	2	32	8.8	5	vsv €9₹
Q00491 streptomyce	000300	2	32	8.8	£	79 <i>V</i>
Q9aj4l buchnera ap	14LA6Q	2	32	8.8	5	TS#
Q8cta2 staphylococ		9 T	31	8.8	3	057
Q8ctw3 staphylococ		9T	15	8.8	3	6 1 1
Q8e8gl shewanella		91	īε	8.8	3	844
Q8e9y5 shewanella		91	3.1	8.8	3	$L \overline{\nu} \overline{\nu}$
Q8eg38 shewanella		9 T	3.7	8.8	3	9##
Q8ei77 shewanella	Й 8ЕІ ЛЛ	9 T	3.7	8.8	ε	SÞÐ
ŏ8крj8 сµјокорiπш	баквла	91	3.1	8.8	3	
Q8kcd4 chlorobium	Ŏ8KCD₹	9T	3.1	8.8	ε	443
ŏ8kcd0 сµјохорiлш	Õ8KGÕ0	9 T	3.1	8.8	ε	442
Т 8укеля сујокорілш	Õ8KEA8	9 T	3.1	8.8	ε	TÞÐ
Q8p9wl xanthomonas	Q8P9W1	9 T	3.7	8.8	ε	077
Q8n5m9 agrobacteri	<u>о</u> ви5мэ	9 T	3.1	8.8	3	439
Q9k236 chlamydia p	б 3кsзе	9T	31	8.8	3	438
Ç9k2a0 chlamydia p	Q9K2A0	9 T	31	8.8	3	75£
Ø97cv6 atreptococc	Ø3.4Ω	9 T	3.7	8.8 8.8	3	9E#
Ø97db7 streptococc	ZBZ16D	9T 9T	3.1 3.1	8.8	£ £	5€₽ ₹3₹
Q97sw8 streptococc Q97sw8 streptococc	8MSL6Õ 6ZSL6Õ	91 91	15	8.8	5	654 433
Q9k7a8 bacillus ha	Q9K7A8	9 I	15	8.8	5	432
Q9krl7 vibrio chol	ОВКИУВ ОВКИТЛ	9T	15	8.8	5	154
Q9kvf3 vibrio chol	ООКИЬЗ ОВКИЬЗ	9 T	16	8.8	5	430
Q9paw4 xylella fas	Q9PAW4	9T	15	8.8	ε	6ZÞ
Q9pgf2 xylella fas	Q9PGF2	91	18	8.8	ε	428
O51007 borrelia bu	LOOTSO	9T	3.1	8.8	٤	45 <i>\</i>
O20828 porrelia bu	858050	91	3.7	8.8	ε	97₹
O20818 porrelia bu	818050	91	3.7	8.8	ε	425
OS0709 porrelia bu	607020	9T	3.7	8.8	ε	424
Q91816 xenopus lae	918160	13	3.1	8.8	ε	₹23
9s1 suqonəx İusqQQ	TNS46Ö	13	3.1	8.8	ε	ZZ₽
est suqonex 88716Q	£9716Q	13	3.1	8.8	ε	421
O42540 brachydanio	042540	13	3.1	8.8	3	420
osijijepa pepatitis c	669990	12	3.1	8.8	3	6I#
sudoloilus em416Q	6W#T6Õ	12	3.1	8.8	3	8T#
Liqeq namud 79619Q	ŎЭ1ЭЕ∆	77	3.1	8.8 8.8	E E	∠ፒ₽ 9 ፒ₽
o Sélva Manan vocteg	O26705 Õ313E0	75 75	31 31	8.8 g g	£	SIF
o sijijapad 806700 Q919ed naman papil	804990	ZI	1 E	8.8	ξ.	ÞΤÞ
o sititaged 805220	S899SO	72	T E	8.8	£.	613
o sidiaeqed 869800	£69950	72	15	8.8	ξ	412
Liged namud 23616Q	Q919F5	12	18	8.8	ξ.	ŢŢÐ
liqsq nsmud 7beleQ	Ø919D7	72	3.1	8.8	5	OTF
OS6704 hepatita	₹0 <i>L</i> 9 S O	12	3.1	8.8	ε	60₺
O56700 hepatitis c	004990	12	15	8.8	ε	80₺
o sididage hepatitus	907920	IS	3.1	8.8	ε	∠0 ₹
Liqaq namud eeleg	б әтәе	IS	3.1	8.8	3	90₺
O2000 pepatitis c	069990	75	3.7	8.8	3	90₹
Фэмшх2 улшчи всуол	SXWM6Ŏ	IS	3.1	8.8	3	₹0 <i>₹</i>
o sititaeqen 686860	989990	75	3.1	8.8	3	€0₽
Liqaq namud 8beleQ	Ø919D8	75	3.1	8.8	3	405
Liqaq namud SəeleQ	Õ919ES	12	3.1	8.8	5	T0₽
o sijiapeqel IITaao	117920	12	3.1	8.8	ε	00₽

om-bas-1001 \$6895@	35 IS	8.8 E	213	
Q8qyt7 grapevine v	32 IS	8.8 ε	ZIS	
Q8qyt4 grapevine v	32 IS	8.8 ε	IIS	
snqolojius 61416Q	35 IS ÕƏ14EƏ	8.8 E	OTS	
o .eurir tt čimweQ	3S IS ÕƏMNIE	8.8 £	605	
d sijiseqən SvxqeQ	35 IS Õ∂ b XAS	8.8 E	809	
Q8c2n8 mus musculu	35 II ОВС5И8	8.8 E	۷05	
Macnjn wns wnscnjn	35 II ÖƏÖXXI	8.8 E	905	
.ge suttas sdwp9Q	3S II ÖƏĞMBS	8.8 E	202	
Maculu mus musculu	35 II ÖƏĞMWS	8.8 E	₽0⊆	· j
Q9r0e3 mus musculu	35 II бәкоез	8.8 E	203	
vaon suttea luiteQ	3S II ÕƏDINI	8.8 £	205	
Vijas szyzo 7270AQ	35 IO Q40727	8.8 £	TOS	
Q8rxq5 arabidopais	3S IO Õ8KKÕ2	8.8 E	200	
Jad səomoqi 72228Q	35 IO Õ822S7	8.8 E	66₹	
Q9mbu5 chlamydia p	32 6 Q9MBUS	8.8 E	86₽	
Q9df72 saururus ce	3S 8 Õ3GEJS	8.8 ε	∠6 ₹	
Q951q4 renilla ren	35 8 ĞƏ21Ğ 4	8.8 ε	96₹	
etanab olud OlumeQ	35 8 ЙӘМИГО	8.8 E	96₹	
Weamna OmnameQ	эх в бәмимо	8.8 E	₽6₽	
Q31735 beta vulgar	SELTEÖ 8 ZE	8.8 ε	€6₽	
V8sl87 euglena vir	25 8 Õ82F8J	8.8 £	Z6₽	
Ø31736 beta vulgar	95715 <u>0</u> 8 25	8.8 ε	T6₽	
ζ∂αξ∂2 cercidiphyl	3S 8 Õ3GE32	8.8 E	06₺	
93s englens 88ss	35 8 Ğ8ZF83	8.8 E	68₽	
Q36494 farfantepen	35 8 Č 3 C 464	8.8 E	88₽	
naigas omod SST910	32 7 019722	8.8 ε	78£	
m opsnillsp llna8Q	35 J ÖBRNET	8.8 E	98₹	
alum səsəsm 19jm8Q	32 6 Q8MJ91	8.8 £	98₽	
Q9tse6 oryctolagus	35 6 Q9TSE6	8.8 £	₽8₽	
Q9tr69 sus scrofa	32 6 Q9TR69	8.8 E	€8₽	
Q9tr67 sus scrofa	32 6 Q9TR67	8.8 E	482	
Q86757 branchiosto	32 S Q8T757	8.8 E	18₽	
O18606 branchiosto	32 S O18606	8.8 E	084	
Q9twr8 procambarus	32 S Q9TWR8	8.8 E	6 L T	
096634 trypanosoma	₹89960 S ZE	8.8 E	87£	
ainamhaial 288382	38 5 Q8T382	8.8 E	LL₹	
69gpd9 drosophila	3S 2 Q3GbD3	8.8 E	9 <i>L</i> Ŧ	
raiqsa omod lvpuQQ	32 4 Q9UQV1	8.8 E	SLÐ	
naigas omod eanueg	32 4 Q9UN69	8.8 E	サムサ	
nəiqsa omod 0Si36Q	32 4 Q96120	8.8 £	£7£	
Q8tbq3 homo sapten	32 4 Q8TBQ3	8.8 E	27£	
Q96gm7 homo aspien	32 4 Q96GM7	8.8 E	TLÐ	
Q8tc25 homo sapien	32 4 Q8TC25	8.8 €	0 L T	
Goden odeve	35 4 ÖƏNEBO	8.8 £	69ħ	
Q12900 homo sapten	35 4 ÕIS300	8.8 E	89ħ	
беган жени бер	32 3 Q8TGT3	8.8 €	∠9 ₹	
001028 kluyveromy	35 3 Õ01028	8.8 E	99 1	
Q89158 zymomonas m	32 2 Q8GF58	8.8 €	99 <i>†</i>	
I muidozidz 87816Q	32 2 Q9L373	8.8 €	₹9₹	
балисе сисекораске	32 2 Q8VNT6	8.8 E	€9₺	
O32493 bacteroides	32 2 032493	8.8 E	Z9 <i>†</i>	
Q8kym4 bacillus an	35 5 Ö8KXW¢	8.8 E	T9#	
Öərəd vəroworsa p	32 2 Q9R5Q7	8.8 €	09ħ	
Ø8vn2l kluyvera ci	32 2 Q8VN21	8.8 £	69 7	
Q45534 bacillus su	35 2 Q45534	8.8 £	8S 7	
Q44509 azotobacter	3S S 044209	8.8 E	LS₹	

naiqas omod etanaQ	6℃£N8Q	₽	55	8.8	3	072
nəiqsz omod LibuQQ	gandii	₽	33	8.8	3	695
naiqas omod 28221Q	ÕT2S82	Ð	33	8.8	ε	895
naiqss omod asqueQ	Q9UP36	₽	EE	8.8	ε	495
neigas omod Etaueg	<u> ೯೯೨೧6</u> ರ	₹	5.5	8.8	ε	999
nəiqsa omod 02696Q	09666Ö	₽	5.5	8.8	ε	S9S
Қағды, авссувкош <i></i> үс	Q8TGR1	3	33	8.8	ε	₹ 99
Q8gll5 borrelia bu	Ŏ8GFJ2	2	33	8.8	ε	293
P82583 streptococc	P82583	2	33	8.8	ε	295
Q9flf4 enterococcu	ŏэьть∉	Z	5.5	8.8	ε	199
Q9k2v1 rhizobium l	бәкѕлт	Z	33	8.8	ε	095
638622 prochloroco	ZZ9S6Ŏ	7	5.5	8.8	ε	699
Q56414 escherichia	ŏ2 € ₹1₹	7	33	8.8	ε	855
Ø8kd80 vibrio chol	Õ8KÕ80	7	εε	8.8	ε	LSS
Q9f2c4 salmonella	ÕƏESC 1	7	33	8.8	3	999
Ŏ∂K370 rhizobium l	бакз10	7	33	8.8	3	222
ŎЭК233 Ţiaferia mo	б ∂к233	7	33	8.8	ε	₽ 99
Q9s651 streptococc	TS9S6Õ	7	33	8.8	ε	223
Ğ∂x3w2 brocyjoroco	б6х3иг	7	33	8.8	3	295
бакушз ргосијогосо	бэкгиз	7	33	8.8	3	τςς
Ğəaçşə brochloroco	₹29S6Õ	7	33	8.8	3	099
Q8kh96 pseudomonas	б8кнәе	7	EΕ	8.8	3	615
Q8zzf7 pyrobaculum	Q8ZZF7	LΤ	32	8.8	ε	875
Q8cre7 staphylococ	Ö 8CKEJ	9T	32	8.8	ε	८ ₹9
Q8ctr7 staphylococ	Q8CTR7	91	32	8.8	ε	975
Q8cn60 staphylococ	Ø8CNe0	9 T	32	8.8	3	945
Q8ead5 shewanella	Õ8EVD2	9T	32	8.8	ε	₽₽S
Q8ee22 shewanella	Õ8EESS	9 T	32	8.8	ε	243
Q8ej44 shewanella	Ŏ8E1₹₹	91	32	8.8	ε	242
Q9k4g0 streptomyce	Õ∂K4G0	9 T	32	8.8	ε	TÐS
Q8kcv3 chlorobium	ОВКСЛЗ	9 T	32	8.8	ε	079
Q8kez9 chlorobium	Õ8KEZ3	9 T	32	8.8	ε	689
Q8kg49 chlorobium	Õ8KG₹6	9 T	32	8.8	ε	852
Q8p382 xanthomonas	Q8P382	9 T	32	8.8	ε	752 752
бахзуб евспетіслів	9V£X8Q	9 T	32	8.8	ε	989
I muidozidr ada86Q	Q98AB6	9 T	32	8.8	ε	232
Q9a2h0 caulobacter	QHSA6Q	9T	32	8.8	ε	₹8S
Q9k7b0 bacillus ha	бэклво	9 T	32	8.8	ε	523
Q9k1f0 vibrio chol	ÖƏKTE0	91	32	8.8	ε	282
Q9kpn9 vibrio chol	бакьиа бакьиа	91	32	8.8	ε	189
Q9ktv2 vibrio chol	О ВКТИЗ	9 T	32	8.8	ε	230
Q9kvf7 vibrio chol	ОЭКЛЬЛ	9 T	32	8.8	ε	629
Q9pgt0 xylella fas	Q9PGT0	91	32	8.8	ε	828
OS1003 borrelia bu	OZIOO3	9 T	32	8.8	ε	722
O50865 borrelia bu	98090	91	32	8.8	ε	979
OS0851 borrelia bu	TS80SO	91	32	8.8	ξ	225
OS0706 borrelia bu	904050	9T	32	8.8	ε	₽ 2 5
Q8qg70 salvelinus	Q8QG70	T3	32	8.8	ε	523
бадаву опсохуулы	Ø8ØG82	13	32	8.8	ε	222
бадава опсохругания	Ø8ØG83	13	32	8.8	ε	125
бадава опсохругания	Ŏ8ŎG8₹	13	32	8.8	ε	220
Q9ps2l carassius a	Q9PS21	EI	32	8.8	3	615
Q8dg7l oncorhynchu	Q8QG71	13	32	8.8	5	815
Vales omiss Stage (App80)	Q8QG71	13	32	8.8	3	. <i>L</i> TS
Q8ddy3 oncorhynchu	Q8QG73	13	32	8.8	3	919
Ozdii 9qo4s 469qQ	₽£5060 060634	75	32	8.8	٤	SIS
	Q8QYU0	12	. S.E.	8.8	5	7TS
V 9rapevine v	OILVORO	CL	CC	0 0	C	<i>V</i> L J

0						
Q8v5g8 hepatitis c	Õ8Λ2G8	12	33	8.8	ε	LZ9
Q91j13 tt virus. o	gətatə	15	33	8.8	ε	979
Q8v5h0 hepatitis c	б8л≥н0	IS	5.5	8.8	ε	925
O72994 hepatitis c	₽66270	12	33	8.8	3	₽29
O91111 ff virus o	ԾծյՂֈֈ	15	33	8.8	ε	623
o zijijag98 hepatitis c	866270	15	33	8.8	ε	229
Q91j16 tt virus. o	91 1 160	12	33	8.8	3	621
onsititaeqe hepatitis c	072999	12	33	8.8	ξ	620
Q91j06 tt virus. o	90L16Q	12	33	8.8	ε	619
ullni naiva £89£80	£96£8Õ	12	33	8.8	ξ	819
O72997 hepatitis c	766270	7.2	5.5	8.8	3	LT9
Q91j08 tt virus. o	800160	ZI	55	8.8	5	919
Q8v5g7 hepatitis c	Q8V5G7	75	55	8.8	5	919
Seititaged 21698Q	Z33N8O	7.5	55	8.8		
Q91j09 tt virus. o	Q91709				3	₹T9
O72995 hepatitis c		77	33	8.8	3	613
	966740	12	33	8.8	3	612
Q91j07 tt'virus. o	70L16Q	12	33	8, 8	3	119
Q91j15 tt virus. o	SILIQ	IS	33	8.8	3	019
Q91j12 tt virus. o	ZILIEQ	IS	5.5	8.8	3	609
Q91j14 tt virus. o	₹1716Q	IS	33	8.8	ε	809
o aijijaged 966270	966270	12	5.5	8.8	3	L09
Q91j04 tt virus. o	₽0₽16Q	IS	33	8.8	ε	909
Liqaq namud 2800eQ	∑8006Ō	15	33	8.8	ε	909
m) eyam səs 2v8eQ	G08805	OΤ	33	8.8	ε	₹09
siaqobidara 277940	SLL6#0	OΤ	33	8.8	ε	٤09
Ğ38221 pecteriobye	бзвеет	6	33	8.8	ε	209
Д38588 рассетіорла	Ğ 38288	6	33	8.8	ε	T09
Q8hs33 hydrastis c	EESH8Õ	8	33	8.8	ξ	009
барирз суташудошол	бвнинз	8	33	8.8	٤	669
Q8wej5 ginkgo bilo	Ŏ8ME12	8	33	8.8	ξ	869
Q9bac4 euglena mut	Q9BAC4	8	55	8.8	3	Z69
Q9t2nl nicotiana t	Q9T2N1	8	55	8.8	£ .	969
O78857 phytophthor	728870	8	55		5	
m sulinqood £qnx9Q	Q98870	_		8.8		969
Q9bacl euglena ste		8	33	8.8	5	₹69
942 ena loua (2e480	бавуст бавуст	8	33	8.8	3	865
Agyaco euglena gra	056M8Q	8	33	8.8	3	265
	Õ9BAC6	8	33	8.8	3	169
m openiliep Olne%	Õ82NE0	L	33	8.8	3	069
Q8mgu2 bos taurus	Q8MGU2	L	5.5	8.8	ε	685
Q95m05 bos taurus	баемог	9	33	8.8	3	882
Q9tsx7 sus scrofa	CX2T6Q	9	5.5	8.8	ε	782
Ol8916 sus acrofa	916810	9	33	8.8	ε	989
Q9vhd7 drosophila	балнру	9	33	8.8	ε	282
vod sieeds SatgeQ	SATĐ6 <u>Q</u>	ς	5.5	8.8	3	₽85
699595 cryptospori	G9GT95	S	33	8.8	3	583
Q9gta9 sarcocystis	Q9GTA9	ς	33	8.8	ε	282
Q27310 paramecium	Q27310	S	33	8.8	ε	185
ĞIJSƏ3 cencer ente	Q17293	S	33	8.8	ε	085
vod sisədsal babesia bov	LATD 60	S	33	8.8	5	645
Q9gta6 sarcocystis	Q9GTA6	5	33	8.8	ε	872
Q9gtb3 eimeria ten	Q9GTB3	S	55	8.8	5	<i>LL</i> S
Q99tc2 plasmodium	Q9GTC2	S	55	8.8	5	925
Q26672 tethya aura	Q26672	3 S	55	8.8	£	9 <i>L</i> 9
Q26673 tethya aura						
Q9dc93 cryptospori	£75659	S	55	8.8	3	₹ ८९
	£6T96Q	9	55	8.8	£ 3	573
March Court Con	69GTB2	9	33	8.8	3	272
батов ошоч 899260	899260	₽	5.5	8.8	ξ	TLS

gl5251 homo sapien	ĞI2S2I	₽	₹	8.8	3	₹ 89
nəiqsa omod Epən8Q	О́ 8ИЕО́3	₽	₽€	8.8	ε	883
nəiqss omod 81446Q	Õ∂H∉Г8	₹	₹8	8.8	ε	289
naiqsa omod YqadeQ	Zasas	₽	₽£	8.8	3	T89
naiqss omod lgddeg	бәнвет	Ð	₽€	8.8	3	089
naiqsa omod 12ww8Q	Ğ8MM2T	₽	₽€	8.8	ε	649
nəiqsa omod £3iu9Q	₱9IN6Q	₹	∌€	8.8	ε	875
Q9h3r8 homo sapien	бэнзкв	Þ	₹€	8.8	3	<i>LL</i> 9
nəiqsa omod enpueQ	6NQU6Q	₽	₹€	8.8	ε .	9 <i>L</i> 9
neiges omod 019990	016660	₽	₹€	8.8	3	S <i>L</i> 9
Q00377 coccidioide	Ø00377	5	₽€	8.8	3	₹ <i>L</i> 9
7888cs baengowousa	08 68 C 3	7	₹E	8.8	ε ε	2 <i>L</i> 9
Ø881cs csmbylopscr	0861C8	7	₹E	8.8 8.8	£	7 <i>L</i> 9
Q9r8a2 chlamydia t	Q9R8A2	7	₽£	8 8	5	049
031061 butyrivibri	031001 031001	Z Z	∌£ 3∉	8.8	£	699
senomobused 017x60	917780	2	₹ 7€	8.8	5	899
App. Canacian page 2008	02000 026234	2	7E	8.8	5	L99
Ö∂ε2ηf τμετωns sdn Ö∂ε2ηf τμοτωns sdn	Q9R5U1	2	₹E	8.8	ε	999
Ø8x316 prochloroco	Obring Obx3re	2	₹E	8.8	3	S99
QS4427 apiroplasma	Q54427	2	₽£	8.8	5	1 99
Q8u2x8 pyrococcus	Q8U2X8	LΙ	5.5	8.8	5	£99
Q9hax6 halobacteri	9XSH6Ö	2 T	33	8.8	ε	799
Q8cqy7 staphylococ	Q8CQY7	9 T	55	8.8	ε	199
Q8dww3 streptococc	Õ8DMM3	9 T	33	8.8	ε	099
Q8ely5 streptococc	Õ8ETA2	9 T	33	8.8	ε	69
Q8e8w4 shewanella	Ö8E8M₫	91	5.5	8.8	ε	89
Q8ee42 shewanella	Õ8EE¶S	91	33	8.8	ε	L S9
Q8ee59 shewanella	бяеега	9 T	33	8.8	ε	959
Q8ega9 shewanella	Õ8 EGY 3	9 T	33	8.8	ε	99
Q8ej76 shewanella	08EJ76	9T	33	8.8	ε	₽ ⊆9
Q8ejh6 shewanella	бя елне	9T	εε	8.8	3	859
Q8fy86 brucella su	0 86486	9 T	5.5	8.8	ε	259
Q8fyr6 brucella su	бветкб	9T	EΕ	8.8	ε	TS9
Q8fz67 brucella su	Q8FZ67	9 T	EΕ	8.8	ε	09
ŏ8kej√ сµјокортиш	О 8КЕЛЈ	91	εε	8.8	3	6₹9
Қақдаа сујокорі <i>п</i> ш	<u> </u> Овксв в	91	5.5	8.8	3	8₹9
Sgrnll staphylococ	ўвилгт	91	5.5	8.8	3	L 1 9
Q8u5m4 agrobacteri	<u> ұ</u> ви≤м4	9 T	5.5	8.8	3	919
Q8xaj9 escherichia	erax8Q	91	33	8.8	3	S#9
Ellanomiss 4viz8Q	₽V1Z8Q	9T	33	8.8	3	779 CT-0
Q8zkl2 salmonella	Õ8ZKTS	91	££	8.8	3	£\$9
Q932n2 staphylococ	Q932N2	91	£ E	8.8	3	Z 7 9
Q97pcl streptococc	Õ345GT	9T	£ E	8.8	5	T#9
Ø97t91 streptococc	16T76Q	9T	33	8.8	5	0 1 9 689
Q9kmll vibrio chol	ÕƏKWLI Qərasə	9T	5.E 5.E	8.8 8.8	٤ 5	829
sel allelva SeqeQ	Q86107 Q86107	91 S1	5.5	8.8	٤	LE9
orange and a control of the control	P82236	13 T3	5.5	8.8	5	989
P82236 rana tempor	D83336	2 T	5.5	8.8	5	569
P82740 rana tempor	Ø85240	ZI	5.5	8.8	5	₹E9
O73004 hepatitis c Q99138 avian influ	\$61600	7.5	5.5	8.8	ε	883
Sv5g9 hepatitis c	08A2G	21	5.5	8.8	5	289
Qe9461 human herpe	T9#69Ö	12	5.5	8.8	ε	189
o .suriy 17 tt virus. o	ZILIQQ	21	33	8.8	ε	089
Q91510 tt virus. o	Q1116Q	12	33	8.8	3	629
O73007 hepatitis c	700570	12	5.5	8.8	ε	829
= =			-			

chlorobium	б 8кд∈ғ	Õ8KDE¢	9T	₹8	8.8	3	ΙÐΔ
cyjoxopinw	Ğ8ke15	б 8кегг	9T	₹	8.8	ξ	0 7 L
cyjoxopinw	ζ8keq8	О 8КЕОЗ	91	₹	8.8	ξ	687
arsbyλjococ	01vn8Q	ОВИЛТО	9T	₹	8.8	ξ	857
агяБуЛуосос		Õ8MME8	9T	₽€	8.8	5	137
асяруулосос		Q8NWX3	91	₹ €	8.8	5	
fusobacteri		Q8RIC7	9T	ν c 1 E			987
mycobacteri		Q8VIY1			8.8	3	735
agrobacteri			9T	₽ €	8.8	5	73₫
евсрекісрія		Ž8NSV2	9 T	₹8	8.8	ε	557
		ĭΛŧX8Ŏ	91	₽Ε	8.8	ε	732
cyjswigis b		бэкѕвэ	91	₽€	8.8	ε	TEL,
streptococc		Q97P16	9 I	₽€	8.8	ε	730
streptococc		CASL6Õ	91	₽Ε	8.8	ε	67 <i>L</i>
neisseria m		Q9JVP3	9 T	₹8	8.8	ε	82 <i>L</i>
neisseria m		ტეკაჭ	91	₹8	8.8	3	LZL
pacillus ha	79×19	бэклсе	9 T	₹8	8.8	ε	97 <i>L</i>
vibrio chol	бэм43 Сэмиез	бэкмез	91	₹8	8.8	ξ	725
vibrio chol	бакри бакри	бәкьмә	91	₹8	8.8	ε	₽2 <i>L</i>
vibrio chol		Q9KRA8	91	₹Ε	8.8	5	723
xylella fas		ÕABDDO	9T	₹E	8.8	5	22 <i>L</i>
xylella fas		Q9PFA5	9 T	7€			
xylella fas		Q9PGF8			8.8	3	721
xylella fas			9 I	₹E	8.8	3	720
		бэрснз	9T	₹5	8.8	5	6T <i>L</i>
porrelia bu		LL8050	91	₽€	8.8	3	817
borrelia bu		050812	91	₹5	8.8	3	LTL
chimpanzee		C9W8Y1	ST	₽€	8.8	ε	9T <i>L</i>
ոստու ռետսհ		Q9WR32	SI	3₹	8.8	ε	STL
nummi nemuh		S##0#O	ST	₹	8.8	ε	ÐT∠
оисохуλисуп		Q8QGF7	13	₹E	8.8	ε	LIS
оисохуλисул		Ŏ8Õccт	ΣŢ	₹E	8.8	ε .	ZIL
oryzias lat	Ŏ∂bĸeJ	баькел	13	₹E	8.8	ε	TTL
acXJioxpinn	042526	042526	13	₹	8.8	ξ	017
оисохуλисуп		Q8QFM9	EΙ	₹E	8.8	5	607
оисохулисуп		Ö8ÖGGS	13	₹E	8.8	3	807
ambystoma m		013101	ΣĮ	₹E	8.8	5	
acyliorhinu		042501	13		8.8		L0L
rat cytomeg				₹E		3	90 <i>L</i>
rattus norv		Õ3DMe8	12	₹8	8.8	3	90 <i>L</i>
		Q8VHL4	II	₹5	8.8	3	₹0 <i>L</i>
rac sp. b-r		0LT#90	ΙΙ	₹8	8.8	3	807
wns wnscnjn		<u> </u> ТЭЭКХА	ττ	₹5	8.8	ε	705
wns wnscnjn		баэкма	ΤŢ	₽€	8.8	ε	TOL
wna wnacnjn		ÕƏELLS	ΤŢ	₹8	8.8	ε	00L
wna wnacnjn		Q8R557	ΤŢ	₹8	8.8	3	669
wna wnacnjn		TZEZ6Õ	ΤŢ	₹8	8.8	ε .	869
JAcoberaico	бувся д	бэгс ү з	οτ	3₫	8.8	ε	L 69
baspalum no	Q8vwl0	Ğ8AMPO	OΤ	₹	8.8	ε	969
paspalum no		Q8W2H0	OT	₹E	8.8	5	969
киірісерия1		ОВНКЕ Т	8	₹E	8.8	3	₹69
bysaeojna s		Q8MCA2	8	₹E	8.8	3	٤69
enallagma v		920640	8	₹E	8.8	5	269
pos taurus	006703						
capra hircu		P82908	9	₹£	8.8	3	T69
		P79429	9	₹8	8.8	3	069
schistosoma		Q8ITD9	9	₹5	8.8	5	689
muibomasIq		б8и0ез	S	34	8.8	3	889
branchiosto		бэсбег	5	₽€	8.8	ε	L89
cooperia pu		ÕƏBIBJ	5	₽€	8.8	ε	989
nəiqsa omod	6Xbu6ð	бэибхэ	₽	34	8.8	ε	589

Q95n74 equus cabal	124189
Q8if2l trypanosoma	
m sulinqood 187ueg	
m aulidood \$87u9Q	
m aulidqood £87u6Q	£87UQQ
m aulidood rivjeg	7LVT6Q 2 2E 8.8 E E67
m zulidqood 287u9Q	287U6Q 2 35 8.8 £ 267
Q9bnll mesobuthus	71 3 8.8 35 5 Q9BNII
Q26372 tribolium c	790 3 8.8 35 5 Q26372
s sulidqood 087u9Q	087UGQ 2 2E 8.8 E 987
nəiqss omod 77µi8Q	TTUI8Q 4 28 8.8 E 88T
uəides omod 60nd60	787 3 8.8 35 4 Q9BU09
nəiqsa omod £83Y6Q	46876 <u>Q</u> 4 25 8.8 £ 387
Q13264 homo sapien	785 3.8 8.8 4 Q13264
Q13828 homo sapien	82851Q 4 Q13828
G96fg7 homo sapien	793 3 8.8 4 Q96G7
naiges omod 231210	782 3 8.8 35 4 Q13165
Q13380 homo aspien	781 3 8.8 E 187
Q9bvr9 homo aspien	780 3 8 8 35 4 Q9BVR9
Q96ut3 saccharomyc	ETU36Q
Q8gkz7 borrelia bu	778 3 8.8 35 2 Q8GKZ7
	724184 2 25 8.8 E 777
P81927 lactobacill	776 3 8.8 35 2 Q9R626
Q9r626 bacillus su	775 3 8.8 35 2 Q8RIW2
Q8riw2 clostridium	
Q8rkg3 clostridium	
Q9r4āl klebaiella	
Q9rhg5 bacillus ce	
Jeinyals Chlamydia t	3 8 8 8 TLL
Q46537 bacteroides	770 3 8.8 35 2 Q46537
Q53564 neisseria g	\$ 8.8 \$ 2 Q53564
ŏ∂xpko pacillus ce	168 35 2 Q9XBKO
Q9fcx4 clostridium	767 3 8.8 35 2 Q9FCX4
Q9r5i3 thermoanaer	766 3 8 8 5 Q9R5I3
ŏ∂x3qe brocµjoroco	765 3 8.8 35 2 Q9X3D6
Õõkese pacillus su	764 3 8.8 2 Q9R625
ф 8118аган ш	763 3 8.8 2 Q9TPG9
Q9r624 bacillus su	762 3 8.8 35 2 Q9R624
Q8ulil pyrococcus	111U8Q 71 4E 8.8 E 187
Q8cry3 staphylococ	760 3 8.8 34 16 Q8CRY3
Q8el73 streptococc	759 3 8.8 34 16 Q8E173
Q8e8w3 shewanella	758 3 8.8 34 16 Q8E8W3
Q8e8y3 shewanella	121 3 8.8 34 16 Q8E8Y3
	756 3 8.8 34 16 Q8EHUS
Q8ehu5 shewanella	122 3 8 8 34 16 Q8E145
Q8ei45 shewanella	
Q8ej65 shewanella	
Sexa8 leptospira	
gezhe leptospira	2
Q8eyg6 leptospira	127 3 8'8 34 16 Q8EYG6
Q8eyw8 leptospira	750 3 8.8 34 16 Q8EYW8
Q8ez37 leptospira	749 3 8.8 34 16 Q8EZ37
Q8ezr6 leptospira	748 3 8.8 34 16 Q8EZR6
Q8f0v9 leptospira	747 3 8.8 34 16 Q8F0V9
Q8f5y7 leptospira	746 3.8 34 16 Q8F5Y7
Q8f827 leptospira	745 3.8 34 16 Q8F827
Q8f830 leptospira	744 3 8.8 34 16 Q8F830
Q81897 leptospira	743 3 8.8 34 16 Q8F897
Q8g2q2 brucella su	742 3 8.8 34 16 Q8G2Q2

nummi namuń 020170	056170	ST	32	8.8	ε	822
nummi namud SatieQ	ĞƏ132S	SI	32	8.8	ε	₹ 98
nummi namud 18827Q	T8651Õ	Sτ	35	8.8	ε	853
P83226 oxyuranus s	P83226	13	32	8.8	ε	825
P83229 oxyuranus s	P83229	13	32	8.8	ε	158
P83228 oxyuranus s	P83228	13	35	8.8	ε	058
P83227 oxyuranus m	P83227	13	35	8.8	ε	648
P83225 oxyuranus s	P83225	13	35	8.8	3	878
P83224 oxyuranus m	₽83224	13	32	8.8	3	∠ ₹8
690xp2 xerrobra 13e	Õ30XB2	13	35	8.8	3	978
Liqeq memun 02dd8Q	Ø8BB20	75	3.5	8.8	3	948
Adam on this coccay	679990	7.T	35	8.8	3	₽₽8
Q83333 murine hepa	Ŏ83333 Ŏ€2380	7.7	35 35	8.8 8.8	£ 5	248 843
Trow Against 1979, 2007		77	35			
Q90121 pombyx mori	TST06Õ	15		8.8	3	T#8
Ö8ρK8∂ wna wnacnŢn Ö∂∂Ĵī2 wna wnacnŢn	ОВВКВ Э	II	3E 3E	8 8 8 8	3	0#8 6£8
ulusamm sum ZiieeO	G922HS Ø931E	II II	35	8.8	٤ 3	858
Ogguns mus ap. rho	G9QUUS	TT	35	8.8	3	758
Q9qv30 rattus sp.	0901II13	TT	35	8.8	3	988
us suffex 060000	060A30	TT	35	8.8	5	983
Ulusaum aum 403030	₽ÆJU€Q 903030	TT	35	8.8	3	₹ 83
Q63397 rattus norv	Z623307	TT	35	8.8	3	833
Q8gux4 picea maria	Q8GUX4	OT	35	8.8	3	258
gitagopidara 48f189	Q9FJ84	OT	35	8.8	5	158
Q8rvj7 populus eur	Q8RVJ7	01	35	8.8	ε	830
Q39297 brassica na	Z171400	OT	35	8.8	ε	628
siaqobidara 400000	₱9 0 760	0 T	35	8.8	ε	828
Q9lv08 arabidopais	Q9LV08	01	35	8.8	ε	728
P92971 arabidopsis	E92971	OT	35	8.8	3	928
Q9s9g9 lycopersico	696S6Ö	01	35	8.8	ε	828
siaqobidata SwuseQ	ZMUZ6Q	01	35	8.8	ε	₽28
sisqobidasa IdamQQ	Q9MAB1	OT	35	8.8	ε	823
sisqobidara SugaeQ	ZD4260	OΤ	35	8.8	ε	822
Q951r5 corallium s	багиг		35	8.8	ε	821
Q951s4 paragorgia	₱STS60		32	8.8	3	820
Ğə2Idə narella sp.	6 01960		32	8.8	ε	618
Q8wiil scytosiphon	TIIM8Č		35	8.8	3	818
Ğə218ə brotodendro	681960	8 (32	8.8	ε	LT8
бамірг рудгосіать	SHIM8Č	8 (32	8.8	3	918
Q8wih9 scytosiphon	бнімас	8	32	8.8	ε	818
Q951r3 anthomurice	วิจอาหร	8 (32	8.8	3	₽ Т8
Q8wii3 colpomenia	SIIM8Č	8	32	8.8	3	813
Q95lsl corallium k	TST960	8	32	8.8	ε	812
Q951rl narella nut	เมเร6ซี	8	35	8.8	ε	118
Q951s7 anthothela	LSTS60	8	35	8.8	ε	810
Q8wej7 cycas circi	58мел л	8	35	8.8	ε	608
Q94p82 corallium r	∑94₽8∑		35	8.8	ε	808
Q9gf98 ceratophyll	29GF98	8	35	8.8	ε	L08
Q8w7s7 scytosiphon	LSLM8Č		35	8.8	ε	908
Q8we70 miliaria ca	58ME 10		35	8.8	ε	802
l sinolateq 827w8Q	857W8 <u>C</u>		35	8.8	3	₽ 08
Q8w7t0 petalonia b	OT7W8Ç		35	8.8	ε	803
Q9gf85 ginkgo bilo	29GF85		35	8.8	3	802
Q8w7a9 colpomenia	657W8Ç		35	8.8	3	108
mulijqojorq 6p13eQ	901560		35	8.8	3	008
Q9mza7 sus scrofa	7.4.ZMQÇ	9	35	8.8	ε	66 <i>L</i>

Қ∂ж3дЅ brochloroco	ÕƏX3GS	7	98	8.8	ε	216
Q9r4x9 azotobacter	бэк4хэ	7	98	8.8	5	116
Q26028 salmonella	Ő26028	7	98	8.8	ε	016
Q8kywl uncultured	õbkamt	7	36	8.8	ε	606
Q8vtsO listeria mo	Q8VTS0	Z	36	8.8	ε	806
Vavtr8 listeria iv	Q8VTR8	Z	98	8.8	ε	۷06
Ğəae35 prochloroco	SE956Ö	2	98	8.8	ε	906
allenomiss 4009Q	₱6066Ō	2	98	8.8	ε	506
Q48507 lactococus	Z058£Q	Z	98	8.8	3	₹06
Q91b55 helicobacte	ĞƏLBSS	Z	98	8.8	3	506
Ø44437 agrobacteri	754437	2	98	8.8	ε	206
Ø8vts5 listeria we	Q8VTS5	2	98	8.8	3	106
Mary Care Coccus	бэкнез	2	98	8.8	3	006
Ø92979 chlamydia t	6 <i>L</i> 5Z6Õ	, Z	98	8.8	3	668
Q8vts7 listeria in	72TV8Q	2	98	8.8	3	868
allanomias 42000	₱\$6900	7	98	8.8	5	468
Qəhmpl halobacteri Q8zxxə pyrobaculum	6XXZ8Ŏ	LT	35	8.8	3	968
Q8qnyl streptococc	ÕƏHWbI	LI	35	8.8	3	968
Q8e9zl shewanella	Ğ8DNXI	9T	35	8.8	3	₹68
Q8eep3 shewanella	Й8ЕВ БЗ О 8ЕЕЬЗ	9T 9T	32 32	8.8	3	868
Q8eg97 shewanella	Q8EG97	9T	35	8.8 8.8	3	892
Q8egc0 shewanella	OSECC0	9 T	35	8.8	£ £	168 168
Q8egt2 shewanella	Q8EGT2	9T	35	8.8	5	688
Q8eyh6 leptospira	ОВЕСИЗ ОВЕХНО	9T	35	8.8	5	888
Q8flw8 leptospira	OSETM8	9T	35	8.8	5	788
Q8f8d4 leptospira	Ö8E3M0	9T	35	8.8	5	988
Q8f9h5 leptospira	Q8F9H5	9 T	35	8.8	5	588
Q8g2d4 brucella su	Ŏ8GSD₹	9T	35	8.8	5	₽88
Q8kca6 chlorobium	Õ8KCP6	9 T	35	8.8	5	883
Q8x4f4 escherichia	Q8X4F4	9 T	35	8.8	٤	288
Q8xzb7 ralstonia s	Q8XZB7	9 T	35	8.8	ε	T88
Ŏəksəl cylamydia p	Õ∂KS¶J	9 T	35	8.8	ξ.	088
Ø97t30 streptococc	05TT30	9 T	35	8.8	3	648
Ğəstl canlopacter	CS446Q	9 T	35	8.8	3	878
Meisseria m	Q9 1 V38	9 T	35	8.8	ε	<i>LL</i> 8
Meisseria m	SXML6Q	9 T	35	8.8	ε	948
Mayor Copol	бакипт	9T	32	8.8	3	S
Q9kr18 vibrio chol	б әккт8	9 T	ŞE	8.8	3	₽ 78
us sullised £62700	£65700	9 T	35	8.8	3	873
aummi asmud AyqieQ	Ö∂Ib⊼∉	SI	35	8.8	ε	872
nummi nemud 29my9Q	бахмаг	SI	35	8.8	ε	I78
nummi nemud 22927Q	9969LÕ	ST	35	8.8	ε	078
nummi namun OZSTTQ	<u> </u>	9 T	35	8.8	ε	698
nummi nemud 70m79Q	79мхед	Sī	35	8.8	3	898
nummi namud 8887Q	686SLÕ	Sī	35	8.8	3	L98
nummi namud 00027Q	06657 <u>0</u>	Sī	32	8.8	3	998
nummi namud SZmyeQ	ĞƏXWSS	SI	35	8.8	5	98
nummi namud ðemyeğ	96MX6Q	SI	35	8.8	ε	₹98
rummi remud 07627Q	07627Q	SI	32	8.8	3	863
nummi nemud 04b980	Õ8ÕDX0	SI	32	8.8	3	798
nummi namud 08myeQ	09MX6Q	SI	35	8.8	3	198
nummi namun osapeg	Q9QFA0	SI	35	8.8	3	098
nummi namun 2000g	Õ8ÕDXe	SI	35	8.8	3	698
nummi namud 10008Q	T0908Õ	SI	35	8.8	3	828
nummi nemuń 17208Q	71.116 71.116 71.116	ST	35	8.8	5	728 728
nummi nsmuń SygięQ	Q91PY2	Sī	35	8.8	ε	958

nrnognu gou	, c.c.o. ×					_	
mrs wrscrjn		75609Q	ΤŢ	98	8.8	3	696
) rattus norv		Q9JMC0	ΤŢ	98	8.8	3	896
aradobidara /		Q42097	0 T	98	8.8	ε	<i>L</i> 96
aradobidara .		Q8VY71	0Τ	98	8.8	3	996
aradobidars ?		ტ38977	0τ	98	8.8	ε	S96
psemaphysal		б внксе	8	98	8.8	ε	₱96
rhipicephal	⊊≢⋊प8Ŏ	б 8нкь≥	8	98	8.8	3	٤96
sagittaria	81 s 48Q	81SH8Õ	8	98	8.8	ε	796
as siloapem	72248Д	Ŏ8H2S1	8	98	8.8	ε	196
əqua muilil	т є в ц в з т	т є ѕн в б	8	98	8.8	ε	096
сутоквисипа	ZħSY8Ŏ	Ŏ8H2₫S	8	98	8.8	3.	696
austrobaile		9 † SH8Õ	8	98	8.8	ε	856
ascarina lu		OSSH8Ö	8	98	8.8	ξ	LS6
acorus cala		Q9GFA9	8	98	8.8	3	996
xanthosia a		ŎOZIES	8	98	8.8	5	996
phqxocochje		ÖðTIE3	8	98	8.8		
emberiza sc						3	₱ 9 6
ulaul eimez		099890	8	98	8.8	3	823
		Õ9MSR0	8	36	8.8	3	256
drimys wint		Q9GF89	8	98	8.8	Ε 3	196
azorella tr		Q9TIF2	8	98	8.8	ε	096
aralia chin		ÕƏLIES	8	98	8.8	5	6₹6
liriodendro		Q9GF74	8	98	8.8	ε	8 7 6
ехешосучтв		Q9TIF3	8	98	8.8	ε	L₹6
иλшБрзез oq		G9MSP9	8	98	8.8	ε	9₹6
lactoris fe		Q9GF76	8	98	8.8	3	9 7 6
aslmo aslar	ςλu _₹ 6ŏ	бофике	8	98	8.8	3	5 56
klotzschia	Ø9E1E0	Q9TIF0	8	98	8.8	ε	£ ₽ 6
musa schizo	T36303	<u> </u>	8	98	8.8	ε	2₱6
salmo trutt	₹ <u>7</u> 4†6Ŏ	0947L4	8	98	8.8	ε	T ₹6
ceratophyll		ĞƏGE97	8	98	8.8	ε	076
cspowps csr		£A456Q	8	98	8.8	3	626
ројзх дишит		Q9TIF1	8	98	8.8	٤	886
улдхосослув		Õ∂LIE∉	8	98	8.8	ξ	LE6
aretum grem		Q9GF81	8	98	8.8	3	986
emberiza pu		549890	8	98	8.8	3	986
capra hircu		P79428	9	98	8.8	5	₹6 726
ban troglod		068795	9	98	8.8	5	556
pos taurus		ÖBAGE ÖBNIGE	9	98	8.8		256
poudo pygma		Q9XT44	9	9£		3	
sus scrofa			-		8.8	3	186
pongo pygma		ÕS 30 2 3	9	98	8.8	3	930
		688760	9	98	8.8	3	626 .
spodoptera		Q81SR7	S	98	8.8	3	826
plasmodium		Q25781	S	98	8.8	3	726
csenorhabdi		001333	S	98	8.8	3	926
csenorhabdi	= ==	бубирз	S	98	8.8	3	926
muibomasIq		Q27730	9	98	8.8	3	₽26
arxondyloce		ÕƏNGNT	9	9٤	8.8	3	923
carcinus ma		GSGSX9	9	98	8.8	ε	226
nomo sapien		О́8ИЕ ₹Ј	Þ	98	8.8	3	126
homo sapien		б∂лиг∉	Þ	98	8.8	3	920
nəiqsa omod	7dqu9Q	ДЭЛБВУ	₽	98	8.8	3	616
homo sapien	691q6Q	бъте	Þ	98	8.8	ε	816
nəiqsa omod	7vmeQ	CVNU6Q	₽.	98	8.8	3	L T6
ophiostoma	9£M96Ŏ	98M96Ö	3	98	8.8	3	916
Decropacter	б 8дхру	б 8СВНТ	7	98	8.8	3	ST6
sphingomona		б 98836	2	98	8.8	ε	₽ 16
аремзиејјз		980980	2	98	8.8	3	813
			-				

.

salmonella	₽J[Z8 <u>Q</u>	₽TIZ8Q	9T	98	8.8	5	000T
neisseria m	£w3 [6Q	ewtleo	9 T	9٤	8.8	ε	666
pscillus ha	бэклаз	бэклаз	9T	98	8.8	5	866
vibrio chol	бэктмә	б актма	9 T	98	8.8	3	L66
vibrio chol	бакраз	бәкьбз	9T	98	8.8	3	966
vibrio chol	б _Э кbr2	бэкьвѕ	9 T	98	8.8	ε	966
vibrio chol	б <u>ә</u> кдзғ	б∂кб3 <i>ŧ</i>	9 T	98	8.8	3	7 66
vibrio chol	баккр3	бэкквз	9T	98	8.8	ε	566
vibrio chol	бэкг∧г	бэктиб	9 T	98	8.8	ε	266
porrelia bu		696090	9 T	98	8.8	ε	166
porrelia bu	989090	989050	9 T	98	8.8	ε	066
porrelia bu	649050	6490SO	91	98	8.8	ε	686
helicobacte		688380	9T	98	8.8	ε	886
սոտաւ ռետոհ	₹99 <i>LL</i> Ŏ	₱99८८Õ	S T	98	8.8	ε	L86
nummi nemuh		857070	SI	38	8.8	ε	986
unwwi uewny	Č 80223	0 80223	SI	98	8.8	ε	986
nummi namun	Ŏ80220	0 80220	SI	98	8.8	ε	₽ 86
unwwi uewny	булхэ	бэхихэ	SŢ	98	8.8	ε	883
nummi namuh	TSS08Õ	б 80221	SI	98	8.8	ε	286
unwwi uewny	L859LÕ	Ø16587	ST	98	8.8	ε	186
gallus gall	78das0	Õ8ÕGR0	13	98	8.8	ε	086
gallus gall		G69M6Q	13	98	8.8	ε	646
xeropus 1ae		042264	13	.98	8.8	ε	876
uiv naimia	Zzpp8Q	ZZŎŎ8Ŏ	IS	98	8.8	ε	LL6
c virus o		бәтскз	12	9٤	8.8	ε	9L6
wyxoma viru		609E8Õ	IS	9٤	8.8	ε	9 7 6
calicivirus		227060	12	98	8.8	ε	₽ ∠6
hepatitis b		Q91X82	IS	98	8.8	ε	573
tanapox vir		9 S ÕÕ6Õ	75	98	8.8	ε	272
hepatitis b		Q91X80	12	98	8.8	ε	TL6
rattus norv		B65764	ττ	98	8.8	3	046

YPIGNMENTS

```
DВ
                                      InterPro; IPR003625; Pthyrhorm_sub.
                                      InterPro; IPR001415; Parathyrd_hrm.
                                                                                   DK
                                            EMBL; AF382953; AAK63072.1; -.
                                                                                    DК
             Submitted (MAY-2001) to the EMBL/GenBank/DDBJ databases.
                                                   Prince K.L., Dewey M.J.;
                                                           SEĞNENCE EKOM N.A.
                                                                                    КЪ
                                                                                    КИ
                                                                            [I]
                                                           NCBI_TaxID=10042;
                                                                                    XO
                                                                   Peromyscus.
                                                                                    OG
Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Sigmodontinae;
                                                                                    OC
  Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
                                                                                    OG
                                     Peromyscus maniculatus (Deer mouse).
                                                                                    SO
                                           Parathyroid hormone (Fragment).
                                                                                    DE
                   01-OCT-2001 (TYEMBLYel. 19, Last annotation update) 01-DEC-2001 (TYEMBLYel. 19, Last annotation update) 01-DEC-2001 (TYEMBLYel. 19, Last annotation update)
                                                                                    DL
                                                                                    DL
                                                                                    DL
                                                                        631X90
                                                                                    DΑ
                                                                         061160
                                                  PRELIMINARY;
                                                                                    ΙD
                            .AA IE
                                       PRT;
                                                                               06XI6Ō
                                                                             RESULT 1
```

```
:81TTO
                                                                               ЭA
                              .AA ₽£
                                                                      871710
                                                                               ID
                                         ;TA9
                                                   PRELIMINARY;
                                                                           8FTLTO
                                                                         RESULT 3
                                                      1₹ Λ≳ΕΙΘ̈́Γ₩ΗΝ SS
                                                                               DР
                                                          11111111
                                                                               ζŊ
                                                      S AZEIĞTWHM 10
                                0; Mismatches
                                                   9; Conservative
                                                                        Матсћев
:0
     Gsps
           :0
                 sləbni
                          :0
                             100.0%; Pred. No. 0.013;
                                                        Best Local Similarity
                 reudry 31:
                            Score 9; DB 11;
                                               : %5.92
                                                          ; AA IE
                                                                               ŎS
                      A208B0E772B9B55B CRC64;
                                               3461 MM;
                                                                    ZEĞNENCE
                                                     33
                                                            3.1
                                                                     NON LEK
                                                                               FT
                                                                     NON LEK
                                                            τ
                                                                               ĿТ
                                          PROSITE; PS00335; PARATHYROID; 1.
                                                                             DK 🔻
                                        ProDom; PD010687; Pthyrhorm_sub; 1.
                                                                               DK
                                             Pfam; PF01279; Parathyroid; 1.
                                                                               DВ
                                        InterPro; IPR003625; Pthyrhorm_sub.
                                                                               DВ
                                        InterPro; IPR001415; Parathyrd_hrm.
                                                                               DВ
                                             EMBL; AF382952; AAK63071.1; -.
                                                                               DВ
                  Submitted (MAY-2001) to the EMBL/GenBank/DDBJ databases.
                                                                               B\Gamma
                                                   Prince K.L., Dewey M.J.;
                                                                               AЯ
                                                          SEQUENCE FROM N.A.
                                                                               КЪ
                                                                         [T]
                                                                               КИ
                                                           NCBI TaxID=42413;
                                                                               XO
                                                                 Peromyscus.
                                                                               OC
       Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Sigmodontinae;
                                                                               OC
        Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
                                    Peromyscus polionotus (Oldfield mouse).
                                                                               SO
                                                                               СИ
                                            Parathyroid hormone (Fragment).
                                                                               DE
                       01-OCT-2002 (TremBLrel. 22, Last annotation update)
                                                                               DL
                          01-DEC-2001 (TrEMBLrel. 19, Last sequence update)
                                                                               DL
                                       01-DEC-S001 (TremBLrel. 19, Created)
                                                                               DL
                                                                               ЭA
                                                                     '16x160'
                                                   PRELIMINARY;
                                                                      T6XT6Ŏ
                                                                               ID
                               .AA IE
                                         PRT;
                                                                           T6X160
                                                                         RESULT 2
                                                       J∉ AZEIÕTWHN SS
                                                                               DΡ
                                                          őλ
                                                       S AZEIĞIWHN 10
                                                   9; Conservative
                          :0
                                 0; Mismatches
! 0
      gsba
           :0
                  Indels
                             100.0%; Pred. No. 0.013;
                                                         Best Local Similarity
                                               :%S:9Z
                                                                    блехх марсу
                 Score 9; DB 11; Length 31;
                                                3461 MM;
                                                          ; AA IE
                                                                    ZEĞNENCE
                                                                                ÕS
                       A208B0E772B9B55B CRC64;
                                                             3.1
                                                                     NON TER
                                                                                _{\mathrm{LL}}
                                                      3.1
                                                             τ
                                                                     NON TER
                                                                                ĿТ
                                                      Τ
                                           PROSITE; PS00335; PARATHYROID; 1.
                                                                                DВ
                                        ProDom; PD010687; Pthyrorm_sub; 1.
                                                                                DВ
                                              Pfam; PF01279; Parathyroid; 1.
                                                                                DВ
```

```
bacterium Clostridium acetobutylicum.";
                                                                               TA
       "Genome sequence and comparative analysis of the solvent-producing
                                     Bennett G.N., Koonin E.V., Smith D.R.;
                                                                               AЯ
     Tatusov R.L., Sabathe F., Doucette-Stamm L., Soucaille P., Daly M.J.,
                                                                               AЯ
              Gibson R., Lee H.M., Dubois J., Qiu D., Hitti J., Wolf Y.I.,
                                                                               AЯ
          Noelling J., Breton G., Omelchenko M.V., Makarova K.S., Zeng Q.,
                                                                               AЯ
                                         WEDFINE=51328352: bnpWeg=11466286;
                                                                               КX
                                    STRAIN=ATCC 824 / DSM 792 / VKM B-1787;
                                                                               _{\rm KC}
                                                          SEQUENCE FROM N.A.
                                                                               ВЪ
                                                                               ВИ
                                                            NCBI_TaxID=1488;
                                                                               XO
                                                                Clostridium.
                                                                               20
          Bacceria; Firmicutes; Clostridia; Clostridiales; Clostridiaceae;
                                                                               OC
                                                Clostridium acetobutylicum.
                                                                               SO
                                                                               СИ
                                    Transcriptional regulator, AcrR family.
                                                                               DE
                       01-OCT-2001 (TrEMBLrel. 18, Last annotation update)
                                                                               DL
                         01-OCT-2001 (TrEMBLrel. 18, Last sequence update)
                                                                               DL
                                       01-OCT-2001 (TrEMBLrel. 18, Created)
                                                                               DL
                                                                     ĞƏJK20;
                                                                               ЭA
                               .AA AE
                                                   PRELIMINARY;
                                                                      Ŏ∂∆K20
                                         PRT;
                                                                               ID
                                                                           ОЭУКБО
                                                                         RESULT 4
                                                          12 PEKKT 13
                                                                               DΡ
                                                              | | | | | |
                                                                               ζX
                                                          ST PEKKT S8
:0
      ggen.
           :0
                  o: Indels
                              0; Mismatches
                                                 5; Conservative
                                                                        Matches
                          100.0%; Pred. No. 2.9e+02;
                                                        Best Local Similarity
                  14.7%; Score 5; DB 5; Length 34;
                                                                   Query Match
                                                          ; AA ₽E
                      3BE894E179CF84F3 CRC64;
                                                :MM #968
                                                                   ZEÕNENCE
                                                                               ÕS
                                                     ₹
                                                            ₹
                                                                    NON LEK
                                                                               TA
                                                     τ
                                                                     NON LEE
                                                                               TA
                                             EMBL; AF024665; AAB81611.1; -.
                  Submitted (SEP-1997) to the EMBL/GenBank/DDBJ databases.
                                                                               ВГ
                                        "E. vogeli AgB/l coding sequence.";
                                                                               RT
                                         Haag K.L., Zaha A., Gottstein B.;
                                                                               AЯ
                                                         SEQUENCE FROM N.A.
                                                                               ЯЪ
                                                                         [2]
                                                                               ВИ
                                 Mol. Biochem. Parasitol. 64:171-175(1994).
                                                                               ИL
                  "Sequence heterogeneity of the echinococcal antigen B.";
                                                                               ТЯ
                       Frosch P., Hartmann M., Muhlschlegel F., Frosch M.;
                                          WEDFINE=84328233: bnpW6q=8018250:
                                                          SEQUENCE FROM N.A.
                                                                               КБ
                                                                               КИ
                                                                         [I]
                                                            NCBI_TaxID=6213;
                                                                               XO
                                   Cyclophyllidea; Taeniidae; Echinococcus.
                  Eukaryota; Metazoa; Platyhelminthes; Cestoda; Eucestoda;
                                                                               20
                                                        Echinococcus vogeli.
                                                                               SO
                                                                      YGB\I:
                                                                               СИ
                                                    Antigen B/l (Fragment).
                                                                               DE
                       01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
                                                                               DL
                         01-14M-1898 (Tremblrel. 05, Last sequence update)
                                                                               DL
                                       01-JAN-1998 (TremBLrel. 05, Created)
                                                                               DL
```

```
Ç8BTB9;
                                                                                 DΑ
                                                    PRELIMINARY;
                                                                        CATES
                                                                                 ID
                               .AA ZE
                                          PRT;
                                                                             Q8BTB9
                                                                           RESULT 6
                                                            30 PEKKT 30
                                                                                 DΡ
                                                                | \cdot | \cdot | \cdot |
                                                                                 ζX
                                                            S4 PKKKT S8
                                                   5; Conservative
                          :0
                                0; Mismatches
                                                                         Matches
      Gaps
            :0
                  Indels
:0
                           Best Local Similarity 100.0%; Pred. No. 2.9e+02;
                 14.7%; Score 5; DB 17; Length 34;
                                                                     Query Match
                                                WM IETE ; AA 4E
                                                                                 ŎS
                       BA957904338DCD45 CRC64;
                                                                      ZEÕNENCE
                                                           Complete proteome.
                                                                                 KM
                                              EMBL; AE005025; AAG19293.1; -.
                                                                                 DВ
                        Proc. Natl. Acad. Sci. U.S.A. 97:12176-12181(2000).
                                                                                 ВГ
                         "Genome sequence of Halobacterium species NRC-1.";
                                                                                 RT
          Ebhardt H., Lowe T.M., Liang P., Riley M., Hood L., DasSarma S.;
                                                                                 AЯ
        Alam M., Freitas T., How S., Daniels C.J., Dennis P.P., Omer A.D.,
                                                                                 AЯ
    Isenbarger T.A., Peck R.F., Pohlschroder M., Spudich J.L., Jung K.-H.,
                                                                                 AЯ
        Maddocks D.G., Jablonski P.E., Krebs M.P., Angevine C.M., Dale H.,
                                                                                 ĀЯ
                Leithauser B., Keller K., Cruz R., Danson M.J., Hough D.W.,
                                                                                 AЯ
            Shukla H.D., Lasky S.R., Baliga N.S., Thorsson V., Sbrogna J., Swartzell S., Weir D., Hall J., Dahl T.A., Welti R., Goo Y.A.,
                                                                                 AЯ
                                                                                 AЯ
                 ".V.W WW., Kennedy S.P., Mahairas G.G., Berquist B., Pan M.
                                          WEDFINE=50204483: bnpWeg=11016920:
                                                                                 КX
                                                           SEQUENCE FROM N.A.
                                                                                 ВЪ
                                                                                 ВИ
                                                            NCBI_TaxID=64091;
                                                                                 XO
                                            Halobacteriaceae; Halobacterium.
                                                                                  20
                     Archaea; Euryarchaeota; Halobacteria; Halobacteriales;
                                                                                  OG
                                           Halobacterium sp. (strain NRC-1).
                                                                                 SO
                                                                     VNG0840H.
                                                                                 СИ
                                                                     .40180paV
                                                                                 DE
                        01-MAR-2001 (TrEMBLrel. 16, Last annotation update)
                                                                                  DL
                           01-WAR-2001 (Trembirel. 16, Last sequence update)
                                                                                  DL
                                                                                  DL
                                         01-WAR-2001 (TremBLrel: 16, Created)
                                                                       бэнкег:
                                                                                  DΑ
                                                     PRELIMINARY;
                                                                        СЭНКСБ
                                                                                 ID
                                .AA 12E
                                           PRT;
                                                                              МЭНК6
                                                                           RESULT 5
                                                             30 RAZEI 34
                                                                                  DР
                                                                11111
                                                                                  ζX
                                                              I RAREI P
                                 0; Mismatches
                                                   5; Conservative
      o: caps
                   sləbni
                           :0
:0
                            100.0%; Pred. No. 2.9e+02;
                                                          Best Local Similarity
                                                                      биехх марсу
                  14.7%; Score 5; DB 16; Length 34;
                                                 WM IEOP ; AA PE
                                                                                  ŎS
                                                                      ZEĞNENCE
                       38DIA2A7C2F86E90 CRC64;
                                                            Complete proteome.
                                                                                  KM
                                               EMBL; AE007622; AAK79045.1; -.
                                                                                  DВ
                                           J. Bacteriol. 183:4823-4838(2001).
                                                                                  ИL
```

```
Science 293:498-506(2001).
                                                                              ИL
                                                              fuermoniae.";
                                                                               RΤ
          "Complete genome sequence of a virulent isolate of Streptococcus
                                                                               RT
            Dougherty B.A., Morrison D.A., Hollingshead S.K., Fraser C.M.;
                                                                               AЯ
                 Holt I.E., Loftus B.J., Yang F., Smith H.O., Venter J.C.,
                                                                               AЯ
    McDonald L.A., Feldblyum T.V., Angiuoli S., Dickinson T., Hickey E.K.,
                                                                              AЯ
         Holtzapple E., Khouri H., Wolf A.M., Utterback T.R., Hansen C.L.,
                                                                               AЯ
              Umayam L.A., White O., Salzberg S.L., Lewis M.R., Radune D.,
                                                                               ΑЯ
          Durkin A.S., Gwinn M., Kolonay J.F., Welson W.C., Peterson J.D.,
                                                                               AЯ
           Peterson S., Heidelberg J., DeBoy R.T., Haft D.H., Dodson R.J.,
                                                                               ĄЯ
            Tettelin H., Welson K.E., Paulsen I.T., Eisen J.A., Read T.D.,
                                                                               AЯ
                                         WEDPINE=51321506: bnpW6q=11463616:
                                                                               КX
                                                              STRAIN=TIGR4;
                                                                               ВC
                                                         SEQUENCE FROM N.A.
                                                                               КЪ
                                                                               KIN
                                                           NCBI_TaxID=1313;
                                                                               XO
                                                             streptococcus.
                                                                               OG
                  pscceris; Firmicutes; Lactobacillales; Streptococcaceae;
                                                                               OC
                                                  Streptococcus pneumoniae.
                                                                               SO
                                                                     :ES804S
                                                                               СИ
                                               Hypothetical protein SP0853.
                                                                               DE
                       01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
                                                                               DL
                         01-OCT-2001 (TrEMBLrel. 18, Last sequence update)
                                                                               DL
                                       01-OCT-2001 (TrEMBLrel. 18, Created)
                                                                               DL
                                                                    697RG6;
                                                                               DΑ
                               .AA ZE
                                         PRT;
                                                   PRELIMINARY;
                                                                     997RG6
                                                                               ID
                                                                           097RG6
                                                                        RESULT 7
                                                           S ZAZEI e
                                                                               DР
                                                             | | | | | | |
                                                                              őλ
                                                           I ZAZEI 2
                               0; Mismatches
:0
      ggba
           :0
                                                5; Conservative
                  Indels
                         :0
                            Best Local Similarity 100.0%; Pred. No. 3e+02;
                 14.7%; Score 5; DB 11; Length 35;
                                                                   Query Match
                      32 AA; 3967 MW; F81156686390ECD8 CRC64;
                                                                   ZEÕNENCE
                                                                               ŎS
                                             EMBL; AKOII220; BAC25325.1; -.
                                                                               DВ
                                                  Nature 420:563-573(2002).
                                                                               ВГ
                                                60,770 full-length cDNAs.";
                                                                               TA
   "Analysis of the mouse transcriptome based on functional annotation of
                                                                               RT
            FUG KIKEN GEDOWE Exploration Research Group Phase I & II Team;
                                                                               AЯ
                                                     The FANTOM Consortium,
                                                                               AЯ
                                         WEDFINE=55324683: bnpw6q=15466821:
                                                                               КX
                                              ZLBAIN=C57BL/61; TISSUE=Body;
                                                                               ВG
                                                         SEQUENCE FROM N.A.
                                                                               ВЪ
                                                                               КИ
                                                                         [1]
                                                          NCBI_TaxID=10090;
                                                                               XO
        Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
                                                                               OC
        Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
                                                                               OG
                                                      Mus musculus (Mouse).
                                                                               SO
                                                                   Translin.
                                                                               DE
                       01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
                                                                               DL
                         01-MAR-2003 (TrembLrel. 23, Last sequence update)
                                                                               DL
                                       01-MAR-2003 (TrEMBLrel. 23, Created)
                                                                               DL
```

```
PQQD.
                                                                              СИ
                                              PQQ biosynthesis polypeptide.
                                                                              DE
                       01-NOV-1998 (TrEMBLrel. 08, Last annotation update)
                                                                              DL
                          01-NOV-1996 (Tremblrel. 01, Last sequence update)
                                       01-NOV-1996 (Tremblrel. 01, Created)
                                                                              DL
                                                                    $$16$Õ
                                                                              DΑ
                               .AA es
                                         PRT;
                                                   PRELIMINARY;
                                                                     841640
                                                                              ID
                                                                          8#16#0
                                                                        RESULT 9
                                                           12 PEKK 18
                                                                              DΡ
                                                              IIII
                                                           54 PKKK 51
                                                                              δX
:0
      o: esba
                  Indels
                                4; Conservative 0; Mismatches
                             Best Local Similarity 100.0%; Pred. No. 3e+03;
                 11.8%; Score 4; DB 10; Length 28;
                      3316 MW; 1736738622B4EE74 CRC64;
                                                         ; AA 82
                                                                              ŎS
                                                                   SEÕNENCE
                                                     82
                                                           82
                                                                    NON LEK
                                                                              FT
                                                     τ
                                                            τ
                                                                    NON LEK
                                                                              FT
                                               EWBL; U66725; AAB06792.1; -.
                                                                              DK
                  Submitted (AUG-1996) to the EMBL/GenBank/DDBJ databases.
                                                                              Иľ
                                                              gene (LFY).";
                                                                              RT
      "Partial characterization of Pinus radiata meristem identity homolog
                                                                              FT
                        Izquierdo L.Y., Vergara R.F., Alvarez-Buylla E.R.;
                                                                              AЯ
                                                         TISSUE=Vegetative;
                                                                              BC
                                                         SEQUENCE FROM N.A.
                                                                              КЪ
                                                                              КИ
                                                           NCBI_TaxID=3347;
                                                                              XO
               Spermatophyta; Coniferopaida; Coniferales; Pinaceae; Pinus.
                                                                              OC
        Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
                                                                              OC
                                             Pinus radiata (Monterey pine).
                                                                              SO
                                                                              СИ
                                                    LFY protein (Fragment).
                                                                              DE
                       Ol-DEC-2001 (TrEMBLrel. 19, Last annotation update)
                                                                              DL
                         01-JAN-1998 (Tremblrel. 05, Last sequence update)
                                                                              DL
                                       OJ-JAN-1998 (TrembLrel. 05, Created)
                                                                    . 582 $ ZO
                                                                              DΑ
                              .AA 8S
                                                   PRELIMINARY;
                                        PRT;
                                                                     024285
                                                                              ID
                                                                          024285
                                                                        RESULT 8
                                                          30 KKTÕD 34
                                                                              DΡ
                                                             1111
                                                          SE KKTŐD 30
                                                                              ζX
:0
      o; Gaps
                  Indels
                         :0
                               5; Conservative 0; Mismatches
                            Best Local Similarity 100.0%; Pred. No. 3e+02;
                 14.7%; Score 5; DB 16; Length 35;
                                                                  блекХ Масср
                      32 AA; 4276 MW; 6B8813CC028D6C7B CRC64;
                                                                  ZEÕNENCE
                                                                              ŎS
                                  Hypothetical protein; Complete proteome.
                                                                              KM
                                                           TICK; SP0853; -.
                                                                              DВ
                                             EMBL; AE007391; AAK74982.1; -.
                                                                              DВ
```

```
| \cdot | \cdot |
                                                                                 ζX
                                                             56 KKTŐ 29
:0
      Ggba
                           :0
                                 0; Mismatches
            :0
                  Indels
                                                   4; Conservative
                           100.0%; Pred. No. 3.1e+03;
                                                         Beat Local Similarity
                   11.8%; Score 4; DB 4; Length 29;
                                                                     Query Match
                       SO AA; 3250 MW; 30501BB7BEEAD8D0 CRC64;
                                                                     ZEÕNENCE
                                                                                 ÕS
                                         ProDom; PD001868; Alk_phosphtse; 1.
                                                                                 DВ
                                         InterPro; IPR001952; Alk_phosphtse.
                                                                                 DВ
                                             Clin. Chem. 38:2539-2542(1992).
                                                                                 ВГ
                                                                    kidney.";
                                                                                 RT
        "Chemical nature of intestinal-type alkaline phosphatase in human
                                                                                 ТЯ
                                                                   Hirano K.;
                                                                                 ĄЯ
             Wishihara Y., Hayashi Y., Adachi T., Koyama I., Stigbrand T.,
                                                                                 AЯ
                                           WEDPINE=63065312: bnpW6q=1428262:
                                                                                 КX
                                                                     ZEĞNENCE:
                                                                                 ВЪ
                                                                           [[]
                                                                                 ВИ
                                                             NCBI_TaxID=9606;
                                                                                 XO
                Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
                                                                                 OC
         Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
                                                                                 OG
                                                        .(namuH) ansigas omoH
                                                                                 SO
                     Renal intestinal-type alkaline phosphatase (Fragment).
                                                                                 DE
                        01-MAY-2000 (TrEMBLrel. 13, Last sequence update) 01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
                                                                                 DL
                                                                                 DL
                                        01-MAY-2000 (TrEMBLrel. 13, Created)
                                                                                 DL
                                                                       GOUCLZ;
                                                                                 DA
                                                    PRELIMINARY;
                                                                        Ø30CPS
                               .AA es
                                          PRT;
                                                                                 ID
                                                                             TONGO
                                                                          RESULT 10
                                                             8 AREI II
                                                                                 DР
                                                                |||||
                                                                                 ζŎ
                                                              S AREI 2
:0
      o capa
                           : 0
                                 0; Mismatches
                                                   4; Conservative
                   Indels
                           100.0%; Pred. No. 3.1e+03;
                                                         Best Local Similarity
                   11.8%; Score 4; DB 2; Length 29;
                                                                     Query Match
                       S6 VY; 3552 WM; B4831262CF76973C CRC64;
                                                                     ZEÕNENCE
                                                                                 ŎS
                                                 EMBL; L25889; AAA17878.1; -.
                                                                                 DK
                                          J. Bacteriol. 176:1746-1755(1994).
                                                                                 ВP
         pyrroloquinoline quinone and sequences of pqqD, pqqG, and pqqC.";
                                                                                 ТЯ
        of mutants of Methylobacterium extorquens AM1 unable to synthesize
                                                                                 RT
     "Isolation, phenotypic characterization, and complementation analysis
                                                                                 RT
                              Ramamoorthi R., Springer A.L., Lidstrom M.E.;
                                                                                 AЯ
       Morris C.J., Biville F., Turlin E., Lee E., Ellermann K., Fan W.H.,
                                                                                 AЯ
                                           WEDFINE=84179111; Pubmed=8132470;
                                                                                 КX
                                                                  :IMA=NIAATS
                                                                                 ВC
                                                           SEQUENCE FROM N.A.
                                                                                 ВЪ
                                                                                 КИ
                                                                           [I]
                                                              NCBI_TaxID=408;
                                                                                 XO
                                      Methylobacteriaceae; Methylobacterium.
                                                                                 OC
               Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales;
                                                                                 OG
                                                Methylobacterium extorquens.
                                                                                 SO
```

33 KKTŐ 56

DΡ

```
3JAD8ECECAEID833 CKCC4:
                                                           ; AA es
                                                                    SEĞNENCE
                                                                                ÕS
                                                SEOT WM:
                                                                     NON_TER
                                                                                EL
                                                      τ
                                                             τ
                                                                Chloroplast.
                                                                                ΚM
                                             EMBL; AF190370; AAF15265.1; -.
                                                                                DВ
                  Submitted (SEP-1999) to the EMBL/GenBank/DDBJ databases.
                                                                                _{\rm K\Gamma}
              phylogeny of the eucalypts and related genera (Myrtaceae).";
                                                                                ТЯ
          "Informativeness of nuclear and chloroplast DNA regions and the
                                                                                ΤЯ
                                                  Udovicic F., Ladiges P.Y.;
                                                                                AЯ
                                                          SEQUENCE FROM N.A.
                                                                                ВЪ
                                                                                КИ
                                                           NCBI_TaxID=34307;
                                                                                XO
                           eurosids II; Myrtales; Myrtaceae; Allosyncarpia.
                                                                                OG
    Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots; Rosidae;
                                                                                OG
        Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
                                                                                OC
                                                                 Chloroplast.
                                                                                DO.
                                                      Allosyncarpia ternata.
                                                                                SO
                                                                        . AAS4
                                                                                GN
                                       Photosystem Q(B) protein (Fragment).
                                                                                DE
                        01-MAY-2000 (TrEMBLrel. 13, Last annotation update)
                                                                                DL
                         01-WAY-2000 (TremBLrel. 13, Last sequence update)
                                                                                DL
                                       01-MAY-2000 (TrEMBLrel. 13, Created)
                                                                                DL
                                                                      ;19ITeg
                                                                                ЭA
                                                    PRELIMINARY;
                                                                      191T6<u>0</u>
                                                                                ID
                               .AA 6S
                                         PRT;
                                                                            191T6Q
                                                                         RESULT 12
                                                             ₫ AZEI J
                                                                                DР
                                                               | | | |
                                                                                ζX
                                                             S AREI 2
           :0
                                 0; Mismatches
                                                   4; Conservative
:0
      eaps
                  stebni
                          :0
                                                        Best Local Similarity
                           100.0%; Pred. No. 3.1e+03;
                                                                    Query Match
                  II.8%; Score 4; DB 5; Length 29;
                       S9 AA; 3539 MW; B917126A923EF884 CRC64;
                                                                    ZEŐNENCE
                                                                                ÕS
                                                EMBL; U15095; AAA50364.1; -.
                                                                                DВ
                  Submitted (SEP-1994) to the EMBL/GenBank/DDBJ databases.
                                                                                Иľ
                                          "Onchocerca volvulus cDNA clone.";
                                                                                RT
                                  Chandrashekar R., Curtis K.C., Weil G.J.;
                                                                                AЯ
                                                          SEQUENCE FROM N.A.
                                                                                ВЪ
                                                                                ВИ
                                                                          [1]
                                                            NCBI_TaxID=6282;
                                                                                XO
                                                  Onchocercidae; Onchocerca.
                                                                                OC
        Enkaryota; Metazoa; Nematoda; Chromadorea; Spirurida; Filarioidea;
                                                                                OG
                                                        Onchocerca volvulus.
                                                                                SO
                                                                     .utluduT
                                                                                DE
                        01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
                                                                                DL
                          01-NOV-1996 (TrembLrel. 01, Last sequence update)
                                                                                DL
                                        OI-NOA-188e (Tremblrel. 01, Created)
                                                                                DL
                                                                      Q25603;
                                                                                DΑ
                                                                       022603
                                                                                ID
                                                    PRELIMINARY;
                               .AA 6S
                                          PRT;
                                                                            Q25603
                                                                         RESULT 11
```

```
Enkaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
                                                                              20
                                                      . (namuH) snaiges omoH
                                                                              SO
                               Intestinal alkaline phosphatase (Fragment).
                                                                              DE
                       01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
                         01-WAY-2000 (TrEMBLrel. 13, Last sequence update)
                                      01-WAX-2000 (TrembLrel. 13, Created)
                                                                              DL
                                                                    GOUBVS;
                                                                              ЭA
                                                  PRELIMINARY;
                                                                     GOUBV5
                                                                              ID
                              .AA 0E
                                                                          GOUBVS
                                                                       RESULT 14
                                                           IL AREI 50
                                                                              DΡ
                                                              \|\cdot\|
                                                                              ζŏ
                                                            S AREI 2
          : 0
                                                4; Conservative
:0
                  o! Indels
                              0; Mismatches
      Gaps
                          100.0%; Pred. No. 3.1e+03;
                                                       Best Local Similarity
                 11.8%; Score 4; DB 13; Length 29;
                                                                   Query Match
                                                          ; AA es
                                                                              ÕS
                      CSYESIESBE7311E2 CRC64;
                                               3243 MM;
                                                                   ZEÕNENCE
                                                                    NON_TER
                                                                              FT
                                                     57
                                                            67
                                                                    NON LEK
                                                                              ĿТ
                                                     τ
                                                           Τ
                                         ProDom; PD000425; TF_Fork_head; 1.
                                                                              DK
                                              Pfam; PF00250; Fork_head; 1.
                                                                              DБ
                                         InterPro; IPR001766; TF_Fork_head.
                                                                              DВ
                                               EMBL; Y11539; CAA72302.1; -.
                                                                              DВ
                         Proc. Watl. Acad. Sci. U.S.A. 94:3842-3847(1997).
                                                                              _{\rm FL}
          homologs in organisms that lack an anticipatory immune system.";
                                                                              FT
       "The nude gene encodes a sequence-specific DNA binding protein with
                                                                              RT
                                Schlake T., Schorpp M., Nehls M., Boehm T.;
                                                                              AЯ
                                          WEDFINE=31268658; PubMed=9108066;
                                                                              КX
                                                         SEQUENCE FROM N.A.
                                                                              ВЪ
                                                                              КИ
                                                           NCBI_TaxID=7830;
                                                                              XO
                                              Scyliorhinidae; Scyliorhinus.
                                                                              OG
               Elasmobranchii; Galeomorphii; Galeoidea; Carcharhiniformes;
                                                                              OG
       Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Chondrichthyes;
                                                                              OC
                Scyliorhinus canicula (Spotted dogfish) (Spotted catshark).
                                                                              SO
                                                                              СИ
                                       Whn transcription factor (Fragment).
                                                                              DE
                        01-JUN-2002 (TremBLrel. 21, Last annotation update)
                                                                              DΙ
                          01-JUL-1997 (TrEMBLrel. 04, Last sequence update)
                                                                              DL
                                       01-101 (Tremblrel: 04, Created)
                                                                               DL
                                                                    ₹80€10
                                                                               DΑ
                                                                      O13043
                                                                              ID
                                                   PRELIMINARY;
                                         PRT;
                               .AA 6S
                                                                           013043
                                                                       RESULT 13
                                                           J AHME IO
                                                                               DΡ
                                                               ζX
                                                           31 NHNE 34
                                                  4; Conservative
            :0
                                 0; Mismatches
                          :0
                  Indels
: 0
      gaba
                                                         Best Local Similarity
                           100.0%; Pred. No. 3.1e+03;
                   11.8%; Score 4; DB 8; Length 29;
                                                                   ўлехх матср
```

```
SEQUENCE 30 AA; 3492 MW; 8BC8F7525007AE91 CRC64;
                                                                              ÕS
                                   Hypothetical protein; Complete proteome.
                                                                              KM
                                                          .- ;E3015AS ;ADIT
                                                                              DК
                                             EMBL; AE014240; AAM99934.1; -.
                                                                              DВ
                       Proc. Watl. Acad. Sci. U.S.A. 99:12391-12396(2002).
                                                                              ВГ
           emerging human pathogen, serotype V Streptococcus agalactiae.";
                                                                              RТ
          "Complete genome sequence and comparative genomic analysis of an
                                                                              RT
                                                                              AЯ
                                                               Fraser C.M.;
            Rinaudo D., Rappuoli R., Telford J.L., Kasper D.L., Grandi G.,
                                                                              AЯ
    lacobini E.T., Brettoni C., Galli G., Mariani M., Vegni F., Maione D.,
                                                                              AЯ
    Carty H.A., Cline R.T., Van Aken S.E., Gill J., Scarselli M., Mora M.,
                                                                              AЯ
             Radune D., Fedorova M.B., Scanlan D., Khouri H., Mulligan S.,
                                                                              AЯ
             DeBoy R.T., Durkin A.S., Kolonay J.F., Madupu R., Lewis M.R.,
                                                                              AЯ
        Madoff L.C., Wolf A.M., Beanan M.J., Brinkac L.M., Daugherty S.C.,
                                                                              AЯ
          Wessels M.R., Paulsen I.T., Welson K.E., Margarit I., Read T.D.,
                                                                              ΑЯ
      Tettelin H., Masignani V., Cieslewicz M.J., Eisen J.A., Peterson S.,
                                                                               AЯ
                                         WEDFINE=ZZZZZZ88; Pubmed=12200547;
                                                                              КX
                                              STRAIN=2603 V/R / Serotype V;
                                                                              ВC
                                                         SEQUENCE FROM N.A.
                                                                              ďЯ
                                                                        []
                                                                              КИ
                                                         NCBI LaxID=216466;
                                                                              ΧO
                                                             Streptococcus.
                                                                              20
                  Bacteria; Firmicutes; Lactobacillales; Streptococcaceae;
                                                                              OG
                                     Streptococcus agalactiae (serotype V).
                                                                              SO
                                                                   .£2019A2
                                                                              СИ
                                                      Hypothetical protein.
                                                                              DE
                       01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
                                                                              DT
                         01-MAR-2003 (TremBLrel. 23, Last sequence update)
                                                                              DL
                                       01-MAR-2003 (TrEMBLrel. 23, Created)
                                                                              DL
                                                                    Q8DZP7;
                                                                              DA
                               .AA 0£
                                         PRT;
                                                   PRELIMINARY;
                                                                     Q8DZP7
                                                                              ID
                                                                          Q8DZP7
                                                                       RESULT 15
                                                           S₹ KKTŐ SJ
                                                                              DР
                                                              | | | | |
                                                           52 KKTŐ 53
                                                                              ζX
:0
      o: Gaps
                  slebni ;0
                               0; Mismatches
                                                 4; Conservative
                          Best Local Similarity 100.0%; Pred. No. 3.1e+03;
                  11.8%; Score 4; DB 4; Length 30;
                                                                   биеку Матсћ
                      30 PF: 3349 WM: 3020IBBJBEBBBDEC CKCC4;
                                                                   ZEÕNENCE
                                                                              ŎS
                                        ProDom; PD001868; Alk_phosphtse; 1.
                                                                              DВ
                                        InterPro; IPR001952; Alk_phosphtse.
                                                                              DВ
                                            Clin. Chem. 38:2539-2542(1992).
                                                                              ВГ
                                                                  kīqneV.";
                                                                              ΤЯ
        "Chemical nature of intestinal-type alkaline phosphatase in human
                                                                              ТЯ
                                                                              AЯ
             "Ishihara Y., Hayashi Y., Adachi T., Koyama I., Stigbrand T.,
                                                                              AЯ
                                          WEDFINE=33035312: bnpWeq=1428232:
                                                                              КX
                                                                  SEÕNENCE:
                                                                              ВЪ
                                                                        [I]
                                                                              КИ
                                                           NCBI_TaxID=9606;
                                                                              XO
                Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
                                                                              OC
```

```
01-OCT-2002 (TrEMBLrel. 22, Created)
                                                                                 DL
                                                                                 DΑ
                                                                       Ö8ME18:
                                                                       Ö8NEI8
                               .AA IE
                                                    PRELIMINARY;
                                                                                 ID
                                          ;TA9
                                                                             Õ8NEI8
                                                                          RESULT 17
                                                             II MUKK IT
                                                                                 DР
                                                                1111
                                                             S3 MPKK S6
                                                                                 ζŊ
           :0
                  Indels
                                0; Mismatches
                                                  4; Conservative
                           100.0%; Pred. No. 3.2e+03;
                                                         Best Local Similarity
                  11.8%; Score 4; DB 1; Length 31;
                                                 ; WM +228 ; AA IE
                                                                                 ŎS
                       9A2538F911C7309A CRC64;
                                                                     ZEÕNENCE
                                                              3.1
                                                                      NON LEK
                                                                                 ΤŦ
                                                EMBL; X80178; CAA56461.1; -.
                                                                                 DK
                                           Biochem. Genet. 31:241-251(1993).
                                                                                 ИĽ
                                 archaebacterium Sulfolobus solfataricus.";
                                                                                 TA
         Alyceraldehyde-3-phosphate dehydrogenase in the thermoacidophilic
                                                                                 ТЯ
      "Nucleotide sequence and molecular evolution of the gene coding for
                                                                                 RT
             Arcari P., Russo A.D., Ianniciello G., Gallo M., Bocchini V.;
                                                                                 AЯ
                                           WEDFINE=8408519; bnpweq=8528851;
                                                                                 КX
                                                           SEĞNENCE EROM N.A.
                                                                                 ВЪ
                                                                           [7]
                                                                                 КИ
                                         Eur. J. Biochem. 233:800-808(1995).
                                                                                 \mathsf{K}\mathsf{\Gamma}
                                           exbression on Escherichia coli.";
                                                                                 ТЯ
      solfataricus overlap by 8bp. Isolation, sequencing of the genes and
                                                                                 RT
             dehydrogenase genes from the thermophilic archaeon Sulfolobus
                                                                                 RT
               "The phosphoglycerate kinase and glyceraldehyde-3-phosphate
                                                                                 ТЯ
       Jones C.E., Fleming T.M., Cowan D.A., Littlechild J.A., Piper P.W.;
                                                                                 AЯ
                                           WEDFINE=80082144: bnpweq=8251842:
                                                                                 КX
                                                           SEQUENCE FROM N.A.
                                                                                 ВЪ
                                                                                 КИ
                                                                           []]
                                                             NCBI_TaxID=2287;
                                                                                 XO
                                                                   ·snqoloilu2
                                                                                 OC
        Archaea; Crenarchaeota; Thermoprotei; Sulfolobales; Sulfolobaceae;
                                                                                 OC
                                                     Sulfolobus solfataricus.
                                                                                 SO
                                                                         URF2.
                                                                                 СИ
                                                     Urfl protein (Fragment).
                                                                                 DE
                        01-DEC-2001 (Tremblrel. 01, Last annotation update) 01-NOV-1996 (Tremblrel. 01, Last sequence update)
                                                                                 DL
                                                                                 DL
                                                                                 DL
                                                                       ₹₹£99Ŏ
                                                                                 DΑ
                                                                        ₹ESSŎ
                                                                                 ID
                                                     PRELIMINARY;
                                .AA IE
                                          ;TA9
                                                                             TESSÖ
                                                                          RESULT 16
                                                             33 KKTŐ 56
                                                                                 DР
                                                                 ζŽ
                                                             SE KKTÖ 5
                                                   4; Conservative
                                 0; Mismatches
! 0
      Gaps
           :0
                  Iuqeja
                           100.0%; Pred. No. 3.1e+03;
                                                           Best Local Similarity
                  11.8%; Score 4; DB 16; Length 30;
                                                                      Query Match
```

```
Hypothetical protein; Plasmid; Complete proteome.
                                                                               KM
                                                            TIGE: BBHIT: -:
                                                                               DK
                                             EMBL; AE000784; AAC66002.1; -.
                                                                               DK
                                                  Nature 390:580-586(1997).
                                                                               ВĽ
                                                              pnrdqorferi.";
                                                                               RT
                 "Genomic sequence of a Lyme disease spirochaete, Borrelia
                                                                               RT
                                                   Smith H.O., Venter J.C.;
                                                                               AЯ
        Garland S., Fujii C., Cotton M.D., Horst K., Roberts K., Hatch B.,
                                                                               AЯ
             Utterback T., Watthey L., McDonald L., Artiach P., Bowman C.,
                                                                               ĄЯ
             van Vugt R., Palmer N., Adams M.D., Gocayne J.D., Weidman J.,
                                                                               AЯ
      Peterson J., Kerlavage A.R., Quackenbush J., Salzberg S., Hanson M.,
                                                                               AЯ
                Dougherty B., Tomb J.-F., Fleischmann R.D., Richardson D.,
                                                                               AЯ
    Lathigra R., White O., Ketchum K.A., Dodson R., Hickey E.K., Gwinn M.,
                                                                               AЯ
           Fraser C.M., Casjens S., Huang W.M., Sutton G.G., Clayton R.A.,
                                                                               AЯ
                                          WEDFINE=88065943; Pubmed=9403685;
                                                                               КX
                                                   STRAIN=ATCC 35210 / B31;
                                                                               ВG
                                                          SEQUENCE FROM N.A.
                                                                               ВЪ
                                                                               КИ
                                                                         [I]
                                                            NCBI_TaxID=139;
                                                                               XO
        Bacteria; Spirochaetes; Spirochaetales; Spirochaetaceae; Borrelia.
                                                                               OG
                                                            Plasmid lp28-3.
                                                                               DO
                            Borrelia burgdorferi (Lyme disease spirochete).
                                                                               SO
                                                                      BBHII:
                                                                               СИ
                                                Hypothetical protein BBHll.
                                                                               DE
                       01-MAR-2002 (TrEMBLrel. 20, Last annotation update)
                                                                               DL
                         01-JUN-1998 (TrembLrel. 06, Last sequence update)
                                                                               DT
                                       01-JUN-1998 (TremBLrel. 06, Created)
                                                                               DL
                                                                     :699050
                                                                               DΑ
                               .AA IE
                                         :TA4
                                                   PRELIMINARY;
                                                                     699050
                                                                              ID
                                                                           699050
                                                                        RESULT 18
                                                           I8 AREI SI
                                                                               DΡ
                                                              δλ
                                                            S AREI P
           :0
:0
      gsba
                               0; Mismatches
                  stabai
                          :0
                                                  4; Conservative
                                                       Best Local Similarity
                          100.0%; Pred. No. 3.2e+03;
                  11.8%; Score 4; DB 4; Length 31;
                                                                   блекх массу
                      JSDCD0Je1839F7F7 CRC64;
                                                : MM LEFE
                                                         ; AA IE
                                                                               ÕS
                                                                   ZEĞNENCE
                                                           Т
                                                                    NON LEE
                                                                               ĿТ
                                                      Hypothetical protein.
                                                                               KM
                                             EMBL; BC03099; AAH30993.1; -.
                                                                               DВ
                  Submitted (JUN-2002) to the EMBL/GenBank/DDBJ databases.
                                                                               ИL
                                                              granaberg R.;
                                                                               AЯ
                                                             LISSNE=KIQUGX:
                                                                               _{\rm FC}
                                                         ZEĞNENCE EKOW N.A.
                                                                               ЯЯ
                                                                               КИ
                                                                         [I]
                                                           NCBI_TaxID=9606;
                                                                               XO
                Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
                                                                               20
         Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
                                                                               20
                                                      . (namuH) ansigas omoH
                                                                               SO
                                           Hypothetical protein (Fragment).
                                                                               DE
                       01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
                                                                               DL
                         01-OCT-2002 (TrembLrel. 22, Last sequence update)
                                                                               DL
```

```
AA SE
                                        ;TA9
                                                  PRELIMINARY;
                                                                    ZŎZŎ6Ŏ
                                                                             ΠI
                                                                          ZŎZŎ6Ŏ
                                                                       KEZNIL SO
                                                           J WHNK ₹
                                                                              DР
                                                              8 WHNK II
                                                                             ζX
:0
      Gaps
           :0
                 sləbul
                         : 0
                               0; Mismatches
                                                 4; Conservative
                          Best Local Similarity 100.0%; Pred. No. 3.2e+03;
                 11.8%; Score 4; DB 16; Length 31;
                      7C6C5D55CFF9 CRC64;
                                              WM 7628 :AA IE
                                                                              ÕS
                                                                  ZEÕNENCE
                                  Hypothetical protein; Complete proteome.
                                                                             ΚM
                                                          TIGE; SOUTL; -.
                                                                              DВ
                                            EMBL; AE015517; AAN53789.1; -.
                                                                              DВ
                                      Nat. Biotechnol. 20:1118-1123(2002).
                                                                             ВГ
                                                  Shewanella oneidensis.";
                                                                              ТЯ
       "Genome sequence of the dissimilatory metal ion-reducing bacterium
                                                                              ТЯ
       Feldblyum T.V., Smith H.O., Venter J.C., Mealson K.H., Fraser C.M.;
                                                                              ΑЯ
            Mueller J., Khouri H., Gill J., Utterback T.R., McDonald L.A.,
                                                                             AЯ
          Vamathevan J., Weidman J., Impraim M., Lee K., Berry K., Lee C.,
                                                                             ΑЯ
               Madupu R., Peterson J.D., Umayam L.A., White O., Wolf A.M.,
                                                                             AЯ
            DeBoy R.T., Dodson R.J., Durkin A.S., Haft D.H., Kolonay J.F.,
                                                                             AЯ
      Meyer T., Tsapin A., Scott J., Beanan M., Brinkac L., Daugherty S.,
                                                                             AЯ
      Read T.D., Eisen J.A., Seshadri R., Ward W., Methe B., Clayton R.A.,
                                                                              ΑЯ
     Heidelberg J.F., Paulsen I.T., Nelson K.E., Gaidos E.J., Nelson W.C.,
                                                                              AЯ
                                        WEDFINE=55534686; brpw6q=15368813;
                                                                              КX
                                                               STRAIN=MR-1;
                                                                              ВG
                                                         SEQUENCE FROM N.A.
                                                                             ВЪ
                                                                             КИ
                                                                        [[]
                                                         NCBI_TaxID=70863;
                                                                              XO
                                             Alteromonadaceae; Shewanella.
                                                                              OC
           Bacceria; Proteobacteria; Gammaproteobacteria; Alteromonadales;
                                                                              20
                                                    Shewanella oneidensis.
                                                                              SO
                                                                    .IILOOS
                                                                             СИ
                                                     Hypothetical protein.
                                                                             DE
                       01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
                                                                              DL
                         01-MAR-2003 (TrEMBLrel. 23, Last sequence update)
                                                                              DL
                                       01-WAR-2003 (TremBLrel. 23, Created)
                                                                              DL
                                                                    Ő8EIM8'
                                                                              DΑ
                              AA IE
                                        PRT;
                                                  PRELIMINARY;
                                                                     Ö8EIM8
                                                                              ID
                                                                          Ö8EIM8
                                                                       RESULT 19
                                                          58 KKTŐ 59
                                                                              DР
                                                              1111
                                                          38 KKTŐ 38
                                                                             ζX
:0
      gsba
           :0
                  Indels
                         :0
                              0; Mismatches
                                                 4; Conservative
                          100.0%; Pred. No. 3.2e+03;
                                                        Best Local Similarity
                 11.8%; Score 4; DB 16; Length 31;
                                                                  Query Match
                      31 AA; 3892 MW; 8C9F6B9E72D10FBA CRC64;
                                                                  SEĞNENCE
                                                                              ŎS
```

1202060

ЭA

```
Ebhardt H., Lowe T.M., Liang P., Riley M., Hood L., DasSarma S.;
                                                                               AЯ
        Alam M., Freitas T., Hou S., Daniels C.J., Dennis P.P., Omer A.D.,
                                                                               AЯ
    Isenbarger T.A., Peck R.F., Pohlschroder M., Spudich J.L., Jung K.-H.,
                                                                               AЯ
        Waddocks D.G., Jablonski P.E., Krebs M.P., Angevine C.M., Dale H.,
                                                                               AЯ
               Deithauser B., Keller K., Cruz R., Danson M.J., Hough D.W.,
                                                                               AЯ
            Swartzell S., Weir D., Hall J., Dahl T.A., Welti R., Goo Y.A.,
                                                                               AЯ
            Shukla H.D., Lasky S.R., Baliga N.S., Thorsson V., Sbrogna J.,
                                                                               AЯ
                Mg W.V., Kennedy S.P., Mahairas G.G., Berquist B., Pan M.,
                                                                               AЯ
                                         WEDFINE=50204483: bnpW6q=11016920:
                                                                               КX
                                                         SEQUENCE FROM N.A.
                                                                               КЪ
                                                                         [1]
                                                                               КИ
                                                          NCBI TaxID=64091;
                                                                               XO
                                           Halobacteriaceae; Halobacterium.
                                                                               OG
                    Archaea; Euryarchaeota; Halobacteria; Halobacteriales;
                                                                               20
                                          Halobacterium sp. (strain NRC-1).
                                                                               SO
                                                                   VNG0019H.
                                                                               СИ
                                                                   .46100pav
                                                                               DE
                       01-MAR-2001 (TrEMBLrel. 16, Last annotation update)
                                                                               DL
                         01-MAR-2001 (TrEMBLrel. 16, Last sequence update)
                                                                               DL
                                       01-MAR-2001 (TrEMBLrel. 16, Created)
                                                                               DL
                                                                     :0ZSH6Ŏ
                                                                               DΑ
                               .AA SE
                                         ;TA9
                                                   PRELIMINARY;
                                                                      0ZSH6Õ
                                                                               ID
                                                                           0ZSH6Ö
                                                                        RESULT 21
                                                            S HINZ 2
                                                                               DΡ
                                                               ζŊ
                                                           LI SNTH VI
:0
      gsba
           :0
                                0; Mismatches
                                                  4; Conservative
                  Indels
                           100.0%; Pred. No. 3.3e+03;
                                                        Beat Local Similarity
                 Score 4; DB 11; Length 32;
                                               :88.II
                                                                   блеку Матср
                                                ; WM TAAE ; AA SE
                      JEZEP4FA2CCF2EFB CRC64;
                                                                   ZEÕNENCE
                                                                               ÕS
                                                                     NON JEK
                                                                               LJ
                                                            32
                                                                   Receptor.
                                                                               KM
                                                      MGD; MGI:97386; Ntsr.
                                                                               DK
                                             EMBL; AF172326; AAD51806.1; -.
                                                                               DK
                                      J. Biol. Chem. 274:30066-30079(1999).
                                                                               ИL
                                                                    cells.";
                                                                               TA
       expression during neuronal differentiation of NIE-115 neuroblastoma
                                                                               ТЯ
            "Sequences required for induction of neurotensin receptor gene
                                                                               RT
                                         Tavares D., Tully K., Dobner P.R.;
                                                                               AЯ
                                         WEDPINE=66442267; Pubmed=10514493;
                                                                               КX
                                                                 ; 621=NIAATZ
                                                                               ВC
                                                          SEQUENCE FROM N.A.
                                                                               ВЪ
                                                                               ВИ
                                                                         [I]
                                                          NCBI L9XID=10000;
                                                                               XO
        Mammalia, Eutheria, Rodentia, Sciurognathi, Muridae, Murinae, Mus.
                                                                               OG
        Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
                                                                               OC
                                                       Mus musculus (Mouse).
                                                                               SO
                                                               NTSR OR NTRI
                                                                               СИ
                                           Neurotensin receptor (Fragment).
                                                                               DE
                        01-OCT-2002 (TremBLrel. 22, Last annotation update)
                                                                               DL
                         01-MAY-2000 (TremBLrel. 13, Last sequence update)
                                                                               DL
                                       01-MAY-2000 (TrEMBLrel. 13, Created)
                                                                               DL
```

```
01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
                                                                               DL
                         01-OCT-2000 (TremBLrel. 15, Last sequence update)
                                                                               DТ
                                       01-OCT-2000 (TremBLrel. 15, Created)
                                                                               DL
                                                                     бэькхз:
                                                                               DΑ
                               AA EE
                                                   PRELIMINARY;
                                         ;TA9
                                                                      бэькхз
                                                                               ID
                                                                           бэькхз
                                                                        KEZULT 23
                                                           SI KKTŐ SŦ
                                                                               ВΡ
                                                               1111
                                                           SE KKTŐ SB
                                                                              ζX
:0
      o; Gaps
                  Indels
                          :0
                                0; Mismatches
                                                  4; Conservative
                           100.0%; Pred. No. 3.4e+03;
                                                       Best Local Similarity
                  11.8%; Score 4; DB 5; Length 33;
                                                                   блекх масср
                      9C3FC1AEC9FBE4A7 CRC64;
                                               ; WM OSTE ; AA EE
                                                                   SEĞNENCE
                                                                               ÕS
                                       LIYBase; FBgn0047288; BcDNA:GM02640.
                                                                               DK
                                             EMBL; AY060847; AAL28395.1; -.
                                                                               DВ
                  Submitted (OCT-2001) to the EMBL/GenBank/DDBJ databases.
                                                                              _{\rm KP}
                               Yu C., Lewis S.E., Rubin G.M., Celniker S.;
                                                                               AЯ
       Nunoo J., Pacleb J., Paragas V., Park S., Phouanenavong S., Wan K.,
                                                                               AЯ
         Gonzalez M., Guarin H., Li P., Liao G., Miranda A., Mungall C.J.,
                                                                               AЯ
         Champe M., Chavez C., Dorsett V., Farfan D., Frise E., George R.,
                                                                               AЯ
             Stapleton M., Brokstein P., Hong L., Agbayani A., Carlson J.,
                                                                               AЯ
                                                         SEQUENCE FROM N.A.
                                                                               ВЪ
                                                                               КИ
                                                           NCBI TaxID=7227;
                                                                               XO
                                    Ephydroidea; Drosophilidae; Drosophila.
                                                                               OC
                Meoptera; Endopterygota; Diptera; Brachycera; Muscomorpha;
                                                                               OG
             Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
                                                                               OC
                                      Drosophila melanogaster (Fruit fly).
                                                                               SO
                                                             BCDNA: GM02640.
                                                                              СИ
                                                                   GM02640p.
                                                                              DE
                       01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
                                                                              DL
                         OI-DEC-2001 (TremBLrel. 19, Last sequence update)
                                                                               DL
                                       01-DEC-2001 (TremBLrel. 19, Created)
                                                                               DL
                                                                    ₹dSS6ð
                               .AA EE
                                         PRT;
                                                   PRELIMINARY;
                                                                      ₹0828₽₹
                                                                              ΙD
                                                                           ŏ∂22D4
                                                                       KEROUL 22
                                                           13 KTŐD 16
                                                                              DР
                                                              1111
                                                                              ζX
                                                           SJ KTÕD 30
:0
      ggba
           :0
                  sləbni
                         :0
                               0; Mismatches
                                                  4; Conservative
                          100.0%; Pred. No. 3.3e+03;
                                                       Best Local Similarity
                 gcoxe 4; DB 17; rendrh 32;
                                               ; %8. II
                                                                   Grery Match
                      SSD669246C97A817 CRC64;
                                               WM 827E ; AA SE
                                                                   ZEÕNENCE
                                                                              ŎS
                                                         Complete proteome.
                                                                              KM
                                             EWBL: AE004971; AAG18659.1; -.
                                                                              DК
                       Proc. Natl. Acad. Sci. U.S.A. 97:12176-12181(2000).
                                                                              ВГ
                        "Genome sequence of Halobacterium species NRC-1.";
                                                                              RT
```

```
:0
      o: esps
                  Indels
                          :0
                                0; Mismatches
                                                  4; Conservative
                           Best Local Similarity 100.0%; Pred. No. 3.5e+03;
                  2coxe 4: DB 7: rendry 34:
                                               . 88. II
                                                                    Query Match
                                                                               ÕS
                      3B38196393258A53 CRC64;
                                                'MW 981₺
                                                          ; AA FE
                                                                   ZEĞNENCE
                                                     ₹
                                                            ₽€
                                                                    NON LEK
                                                                               ΤŦ
                                                     Τ
                                                            Т
                                                                    NON LEK
                                                                               FT
                                             EMBL; AF087260; AAD04038.1; -.
                                                                               DК
                  Submitted (AUG-1998) to the EMBL/GenBank/DDBJ databases.
                                                                               _{\rm KP}
                                                              sedneucrud: ";
                                                                               ΤЯ
               "Gene identification of Chlamydia trachomatis by random DNA
                                                                               RT
                            Wang L., Steenburg S.D., Zheng Y., Larsen S.H.;
                                                                               AЯ
                                                            STRAIN=L2 434B;
                                                                               ВC
                                                         SEQUENCE FROM N.A.
                                                                               КЪ
                                                                         [1]
                                                                               КИ
                                                             NCBI_TaxID=813;
                                                                               XO
             Bacceria; Chlamydiae; Chlamydiales; Chlamydiaceae; Chlamydia.
                                                                               20
                                                     Chlamydia trachomatis.
                                                                               SO
                                         .(Tragment) - Gragment) .
                                                                               DE
                        01-MAY-1999 (TrEMBLrel. 10, Last annotation update)
                                                                               DL
                          01-MAY-1999 (TrembLrel. 10, Last sequence update)
                                                                               DL
                                       01-MAY-1999 (TremBLrel. 10, Created)
                                                                               DL
                                                                     785Z69
                                                                               DA
                                                   PRELIMINARY;
                                                                      T85Z6Õ
                               .AA 1E
                                         PRT;
                                                                               ID
                                                                           Õ9ZG8I
                                                                        KEROUL 24
                                                           SE LRKK 29
                                                                               DΡ
                                                               | | | | |
                                                                               ζX
                                                            S# PKKK SJ
                                                  4; Conservative
:0
      Gaps
           : 0
                  Indels
                                0; Mismatches
                           100.0%; Pred. No. 3.4e+03;
                                                        Best Local Similarity
                 11.8%; Score 4; DB 16; Length 33;
                                                                   блеку Матсh
                      IEJC2VD3BV23JIEC CKC64;
                                               WM 3704 ; AA EE
                                                                               ŎS
                                                                   ZEÕNENCE
                                   Hypothetical protein; Complete proteome.
                                                                               KM
                                                            TIGE; TC0337; -.
                                                                               DK
                                             EMBL; AE002301; AAF39200.1; -.
                                                                               DK
                                     Mucleic Acids Res. 28:1397-1406(2000).
                                                                               ИL
                                                          ;".eEAA əsinomuənq
                                                                               ΤЯ
             "Genome sequences of Chlamydia trachomatis MoPn and Chlamydia
                                                                               ТЯ
                                                      Eisen J., Fraser C.M.;
                                                                               AЯ
    Gwinn M., Welson W., DeBoy R., Kolonay J., McClarty G., Salzberg S.L.,
                                                                               AЯ
        Linher K., Weidman J., Khouri H., Craven B., Bowman C., Dodson R.,
                                                                               AЯ
      White O., Hickey E.K., Peterson J., Utterback T., Berry K., Bass S.,
                                                                               AЯ
             Read T.D., Brunham R.C., Shen C., Gill S.R., Heidelberg J.F.,
                                                                               AЯ
                                         WEDPINE=50120522: bnpW6q=10684932:
                                                                               КX
                                                         STRAIN=MoPn / Nigg;
                                                                               ВC
                                                          SEQUENCE FROM N.A.
                                                                               КЪ
                                                                               КИ
                                                                         [I]
                                                           NCBI_TaxID=83260;
                                                                               XO
             Bacteria; Chlamydiae; Chlamydiales; Chlamydiaceae; Chlamydia.
                                                                               OC
                                                        Chlamydia muridarum.
                                                                               SO
                                                                      TC0337
                                                                               СИ
                                               Hypothetical protein TC0337.
                                                                               DE
```

```
"Analysis of the mouse transcriptome based on functional annotation of
                                                                               ΤЯ
            the RIKEN Genome Exploration Research Group Phase I & II Team;
                                                                               AЯ
                                                     The FANTOM Consortium,
                                                                               AЯ
                                         WEDFINE=55324683; PubMed=12466851;
                                                                               КX
                                              STRAIN-C57BL/61; TISSUE=Head;
                                                                               ВC
                                                          SEQUENCE FROM N.A.
                                                                               ВЪ
                                                                         [1]
                                                                               КИ
                                                          NCBI TaxID=10090;
                                                                               XO
        Mammalia, Eutheria, Rodentia, Sciurognathi, Muridae, Murinae, Mus.
                                                                               OG
         Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
                                                                               OC
                                                       .(AsuoM) suluseum suM
                                                                               SO
                                      Zinc finger homeodomain 4 (Fragment).
                                                                               DE
                        01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
                                                                               DL
                          01-MAR-2003 (TrembLrel. 23, Last sequence update)
                                                                               DL
                                       01-MAR-2003 (TrEMBLrel. 23, Created)
                                                                               DL
                                                                     Ö8C$B$
                                                                               DΑ
                               .AA 48
                                         ;TA9
                                                   PRELIMINARY;
                                                                      08C4P4
                                                                               ID
                                                                           Õ8C&b&
                                                                        RESULT 26
                                                            9 KKTŐ 3
                                                                               DР
                                                               | \cdot |
                                                                               ζX
                                                           52 KKTŐ 53
:0
      Gaps
           indels 0;
                         :0
                               0; Mismatches
                                                  4; Conservative
                                                                        Матслея
                          Best Local Similarity 100.0%; Pred. No. 3.5e+03;
                  11.8%; Score 4; DB 2; Length 34;
                                                                   Gnery Match
                      88EBD173858BC6EE CRC64;
                                                ;WM 8514 ;AA 45
                                                                               ŎS
                                                                    SEĞNENCE
                                                                    Plasmid.
                                                                               KM
                                             EMBL; AP003089; BAC54529.1; -.
                                                                               DK
                  Submitted (JAN-2001) to the EMBL/GenBank/DDBJ databases.
                                                                               ИL
                                                                  ;".bimzsiq
                                                                               RT
          "Complete nucleotide sequence of Staphylococcus aureus E-1 EDINA
                                                                               RT
               Sugai M., Yamaguchi T., Hayashi T., Nakasone K., Takami H.;
                                                                               AЯ
                                                                 STRAIN=E-1;
                                                                               ВG
                                                          SEQUENCE FROM N.A.
                                                                               ВЪ
                                                                         [I]
                                                                               КИ
                                                           NCBI_TaxID=1280;
                                                                               XO
                         Bacteria; Firmicutes; Bacillales; Staphylococcus.
                                                                               OG
                                                     Plasmid EDINA plasmid.
                                                                               OG
                                                      Staphylococcus aureus.
                                                                               SO
                                                                      ORF37.
                                                                               DE
                       01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
                                                                               DL
                         01-MAR-2003 (TrEMBLrel. 23, Last sequence update)
                                                                               DL
                                       01-MAR-2003 (TrEMBLrel. 23, Created)
                                                                               DL
                                                                     Ö8GEKS:
                                                                               DΑ
                               .AA ₽£
                                         ;TA9
                                                   PRELIMINARY;
                                                                      Ö8GEKS
                                                                               ID
                                                                           Ö8GEKS
                                                                        RESULT 25
                                                            SP PEKK S8
                                                                               ДΩ
                                                               1111
                                                           ST PEKK SJ
                                                                               ζX
```

```
Hypothetical protein mar3733.
                                                                               DE
                       01-MAR-2002 (TrEMBLrel. 20, Last annotation update)
                                                                               DL
                         01-OCT-2001 (TrembLrel. 18, Last sequence update)
                                                                               DT
                                       01-OCT-2001 (TrEMBLrel. 18, Created)
                                                                               DI
                                                                     Q98FK5;
                                                                               DΑ
                               .AA A£
                                         ;TA4
                                                   PRELIMINARY;
                                                                     Й386 №
                                                                               ΠT
                                                                           Õ38EK2
                                                                        RESULT 28
                                                           38 KKKT 31
                                                                               ВΡ
                                                              S2 KKKT S8
                                                                              ζX
:0
      o: caps
                  0; Mismatches 0; Indels
                                                 4; Conservative
                          100.0%; Pred. No. 3.5e+03;
                                                       Best Local Similarity
                 11.8%; Score 4; DB 13; Length 34;
                                                                   Query Match
                      FEF02F8A45B27DA5 CRC64;
                                               ;WM £86£ ;AA ₽£
                                                                   SEĞNENCE
                                                                               ŎS
                                                                    NON LEK
                                                     Τ
                                                           Τ
                                                                               FT
                                             EMBL; AB031024; BAB62544.1; -.
                                                                              DВ
                                                    Gene 272:181-190(2001).
                                                                              _{\rm K\Gamma}
                         chicken platelet-derived growth factor-A chain.";
                                                                              RT
          "Characterization and expression of three forms of cDNA encoding
                                                                              ΤЯ
                           Horiuchi H., Inoue T., Furusawa S., Matsuda H.;
                                                                              AЯ
                                        WEDFINE=51363439; PubMed=11470524;
                                                                              КX
                                                         SEQUENCE FROM N.A.
                                                                               ВЪ
                                                                       [T]
                                                                              КИ
                                                           NCBI_TaxID=0031;
                                                                              ΧO
                                                                     Gallus.
                                                                              OC
     Archosauria; Aves; Neognathae; Galliformes; Phasianidae; Phasianinae;
                                                                               20
         Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
                                                                              20
                                                   Gallus gallus (Chicken).
                                                                              SO
                                                                              СИ
              Platelet-derived growth factor A chain long form (Fragment).
                                                                              DE
                       01-DEC-2001 (TremBLrel. 19, Last annotation update)
                                                                              DL
                         01-DEC-2001 (TrEMBLrel. 19, Last sequence update)
                                                                              DL
                                       01-DEC-2001 (TrEMBLrel. 19, Created)
                                                                              DL
                                                                    '₽LZ06Q
                                                                              ЭA
                               .AA ₽£
                                                   PRELIMINARY;
                                         PRT;
                                                                     ₽LZ06Q
                                                                              ID
                                                                          ₽UZ06Ŏ
                                                                       RESULT 27
                                                            S KTŐD 2
                                                                              DР
                                                              \nabla \lambda
                                                           SJ KTŐD 30
:0
           : 0
      gyba
                         0; Mismatches 0;
                  Indels
                                                 4; Conservative
                          100.0%; Pred. No. 3.5e+03;
                                                       Best Local Similarity
                 11.8%; Score 4; DB 11; Length 34;
                                                                   Query Match
                                               34 AA ; 3755 MW;
                      EL4IDCYE348467B0 CRC64;
                                                                              ŎS
                                                                  ZEÕNENCE
                                                                    NON TER
                                                                              ЪЪ
                                             EWBL; AK081561; BAC38260.1; -:
                                                                              DK
                                                  Nature 420:563-573(2002).
                                                                              КГ
                                                60,770 full-length cDNAs.";
                                                                              RT
```

```
0; Mismatches
:0
      gsba
           :0
                          :0
                  Indels
                                                 4; Conservative
                                                                      Матслев
                          100.0%; Pred. No. 3.6e+03;
                                                        Best Local Similarity
                  11.8%; Score 4; DB 4; Length 35;
                                                                   блеку Матср
                      SETOBOZEEOBC86DF CRC64;
                                               WM SPTE : AA BE
                                                                   SEÕNENCE
                                                                              ÕS
                                                     32
                                                           35
                                                                    NON LEK
                                                                              FT
                                                                    NON_LEB
                                                                              FT
                                                            Τ
                                               EMBL; M14911; AAA36592.1; -.
                                                                              DK
                                               Virology 155:666-677(1986).
                                                                              КГ
       "Isolation of an SSAV-related endogenous sequence from Human DNA.";
                                                                              RT
                Leib-Mosch C., Brack R., Werner T., Erfle V., Hehlmann R.;
                                                                              AЯ
                                          WEDFINE=87071681; PubMed=2431542;
                                                                              КX
                                                         SEQUENCE FROM N.A.
                                                                              ВЪ
                                                                              КИ
                                                                        [I]
                                                           NCBI_TaxID=9606;
                                                                              XO
                Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
                                                                              OG
         Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
                                                                              20
                                                      .(namuH) ansigas omoH
                                                                              SO
                                                                (Fragment).
                                                                              DE
             Simian sarcoma associated virus (SSAV) -related pol region DNA
                                                                              DE
                       01-NOV-1998 (TremBLrel. 08, Last annotation update)
                                                                              DL
                         01-NOV-1996 (Tremblrel. 01, Last sequence update)
                                                                              DL
                                       01-NOV-1996 (TremBLrel. 01, Created)
                                                                              DL
                                                                    CI2#SIÕ
                                                                              ЭA
                               .AA 2£
                                         ;TA4
                                                   PRELIMINARY;
                                                                     OT24ST
                                                                              ID
                                                                          ŎI2₹SI
                                                                       RESULT 29
                                                           S8 KTÕD 3I
                                                                              DΡ
                                                              1111
                                                                              δX
                                                           S1 KTÕD 30
:0
      Gaps
           :0
                  Indels
                         0; Mismatches 0;
                                                 4; Conservative
                          100.0%; Pred. No. 3.5e+03;
                                                       Best Local Similarity
                 11.8%; Score 4; DB 16; Length 34;
                                                                   Query Match
                      ZEOnence 34 AA; 3804 MM; Deaph8zeche90413 CRC64;
                                                                              ÕS
                                   Hypothetical protein; Complete proteome.
                                                                              KM
                                             EWBI': YF003002; BAB50562.1; -.
                                                                              DВ
                                                   DNA Res. 7:331-338(2000)
                                                                              ВГ
                                                      Mesorhizobium loti.";
                                                                              ТЯ
     "Complete genome structure of the nitrogen-fixing symbiotic bacterium
                                                                              RT
                                         Takeuchi C., Yamada M., Tabata S.;
                                                                              AЯ
           Mochizuki Y., Nakayama S., Nakazaki N., Shimpo S., Sugimoto M.,
                                                                              AЯ
              Kishida Y., Kiyokawa C., Kohara M., Matsumoto M., Matsuno A.,
                                                                              AЯ
            Watanabe A., Idesawa K., Ishikawa A., Kawashima K., Kimura T.,
                                                                              ΑЯ
        Kaneko T., Nakamura Y., Sato S., Asamizu E., Kato T., Sasamoto S.,
                                                                              AЯ
                                         WEDFINE=51085330; bnpWeg=11514368;
                                                                              ВX
                                                         STRAIN=MAFF303099;
                                                                              ВC
                                                         SEQUENCE FROM N.A.
                                                                              ВЪ
                                                                              КИ
                                                                        [I]
                                                            NCBI_TaxID=381;
                                                                              XO
                                         Phyllobacteriaceae; Mesorhizobium.
                                                                              OC
               Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales;
                                                                              OC
                                       Rhizobium loti (Mesorhizobium loti).
                                                                              SO
                                                                   MSR3733.
                                                                              СИ
```

```
McDonald L., Utterback T., Fleischmann R.D., Nierman W.C., White O.,
                                                                           AЯ
Ermolaeva M.D., Vamathevan J., Bass S., Qin H., Dragoi I., Sellers P.,
                                                                           AЯ
        Gill S.R., Welson K.E., Read T.D., Tettelin H., Richardson D.,
                                                                           AЯ
      Dodson R.J., Haft D.H., Hickey E.K., Peterson J.D., Umayam L.A.,
                                                                           AЯ
   Heidelberg J.F., Eisen J.A., Melson W.C., Clayton R.A., Gwinn M.L.,
                                                                           AЯ
                                    WEDFINE=50406833; PubMed=10952301;
                                                                           КX
                                    STRAIN=El Tor N16961 / Serotype Ol;
                                                                           KC
                                                      ZEĞNENCE EKOW N.A.
                                                                           КЪ
                                                                           ВИ
                                                                    [T]
                                                        NCBI_TaxID=666;
                                                                           XO
                                                  Vibrionaceae; Vibrio.
                                                                           OG
           Bacteria; Proteobacteria; Gammaproteobacteria; Vibrionales;
                                                                           20
                                                       Vibrio cholerae.
                                                                           SO
                                                                 ACS034.
                                                                           СИ
                                           Hypothetical protein VC2034.
                                                                           DE
                   01-DEC-2000 (TYEMBLYel. 15, Last sequence update)
                                                                           DL
                                                                           DL
                                   01-OCT-2000 (TremBLrel. 15, Created)
                                                                           DL
                                                                 Ő∂KŐG₫:
                                                                           DΑ
                          .AA 28
                                     PRT;
                                               PRELIMINARY;
                                                                 Ő∂KŐG₹
                                                                           ID
                                                                       ОЭКОСФ
                                                                    RESULT 31
                                                       IO RASE I3
                                                                           DΡ
                                                          | | | | |
                                                                           ζX
                                                        J SASE 4
      : 0
 Gaps
                      :0
             sləbal
                            0; Mismatches
                                             4; Conservative
                      100.0%; Pred. No. 3.6e+03;
                                                   Best Local Similarity
             11.8%; Score 4; DB 12; Length 35;
                                                               Query Match
                  Sesscalesseedet CRCet;
                                           :WM SIIP ;AA SE
                                                                           ŎS
                                                  Hypothetical protein.
                                                                           KM
                                         EWBL; AF222060; AAL55025.1; -.
                                                                           DВ
              Submitted (JAM-2000) to the EMBL/GenBank/DDBJ databases.
                                                                           ИL
                       "Sequence and transcription of halovirus HF2.";
                                                                           RT
      Tang S.-L., Fisher C., Ngui K., Nuttall S.D., Dyall-Smith M.L.;
                                                                           AЯ
                                                     SEQUENCE FROM N.A.
                                                                           ВЪ
                                                                     [I]
                                                                           ВИ
                                                      NCBI_TaxID=33771;
                                                                           XO
      Viruses; dsDNA viruses, no RNA stage; Caudovirales; Myoviridae.
                                                                           OG
                                                         Halovirus HF2.
                                                                           SO
                                          Hypothetical 4.1 kDa protein.
                                                                          DE
                   01-MAR-2002 (TrembLrel. 20, Last annotation update)
                                                                           DL
                     01-MAR-2002 (TrEMBLrel. 20, Last sequence update)
                                                                           DL
                                  01-MAR-2002 (TrEMBLrel. 20, Created)
                                                                          DL
                                                                 $19A80
                                                                           DΑ
                          .AA 2£
                                    PRT;
                                               PRELIMINARY;
                                                                 8L9V8Q
                                                                          ID
                                                                       819189
                                                                   RESULT 30
                                                        6 VQQ1 9
                                                                           DΡ
                                                          | | | | |
```

S8 PÕDA 31

ζX

:0

```
OrfA protein (Fragment).
                                                                              DE
                       01-JUM-2002 (TrEMBLrel. 21, Last annotation update)
                                                                              DL
                         01-NOV-1996 (Tremblrel. 01, Last sequence update)
                                                                              DL
                                      01-MOV-1996 (Tremblred. 01, Created)
                                                                             DL
                                                                   .026850
                                                                              DΑ
                              .AA 3E
                                        PRT;
                                                  PRELIMINARY;
                                                                    026ESÕ
                                                                             ID
                                                                          026850
                                                                       RESULT 33
                                                           9 SNTH E
                                                                             DΡ
                                                              1111
                                                          LT SNTH TT
                                                                             ζX
:0
      eaps
           :0
                 4; Conservative 0; Mismatches 0; Indels
                          Best Local Similarity 100.0%; Pred. No. 3.6e+03;
                 11.8%; Score 4; DB 16; Length 35;
                                                                  Query Match
                      ZEĞNENCE 32 YY: 4523 WM: ODDEEDELB35E380B CKC64:
                                                                             ŎS
                                  Hypothetical protein; Complete proteome.
                                                                             ΚM
                                            EMBL; AE011494; AAN50536.1; -.
                                                                             DВ
                  Submitted (MAR-2002) to the EMBL/GenBank/DDBJ databases.
                                                                             ИĽ
                                                                   Ken S.;
                                                                             AЯ
              STRAIN=56601 / Serogroup Icterohaemorrhagiae / Serovar lai;
                                                                             ВG
                                                        SEQUENCE FROM N.A.
                                                                             КЪ
                                                                       [[]
                                                                             КИ
                                                           NCBI L9XID=173;
                                                                             XO
       Bacteria; Spirochaetes; Spirochaetales; Leptospiraceae; Leptospira.
                                                                             20
                                                   reptospira interrogans.
                                                                             SO
                                                                             СИ
                                                     Hypothetical protein.
                                                                             DE
                       01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
                                                                             DL
                         01-MAR-2003 (TrEMBLrel. 23, Last sequence update)
                                                                             DL
                                                                             DТ
                                                                   Q8F102;
                                                                             DΑ
                              .AA ZE
                                                  PRELIMINARY;
                                        ;TA9
                                                                    Ö8EI0S
                                                                             ID
                                                                         Ø8ŁI0S
                                                                      RESULT 32
                                                          S# KKTŐ SJ
                                                                             Qα
                                                             1111
                                                                             ζX
                                                          32 KKTŐ 33
      o: caps
:0
                 sləbni
                         : 0
                               0; Mismatches
                                                 4; Conservative
                          Best Local Similarity 100.0%; Pred. No. 3.6e+03;
                 11.8%; Score 4; DB 16; Length 35;
                                                                  Query Match
                      32 PF: 4181 WM: DI82Be333PJIID24 CEC64:
                                                                             ŎS
                                                                  ZEÕNENGE
                                  Hypothetical protein; Complete proteome.
                                                                             ΚM
                                                          TIGE; VC2034; -.
                                                                             DВ
                                            EMBL; AE004278; AAF95182.1; -.
                                                                             DВ
                                                 Mature 406:477-483(2000).
                                                                             ЧY
                                                               cholerae.";
                                                                             ТЯ
         "DNA sequence of both chromosomes of the cholera pathogen Vibrio
                                                                             ТЯ
                                                              Fraser C.M.;
                                                                             AЯ
     Salzberg S.L., Smith H.O., Colwell R.R., Mekalanos J.J., Venter J.C.,
                                                                             AЯ
```

```
:0
      gsba
           :0
                  o: Indels
                               0; Mismatches
                                                  4; Conservative
                           100.0%; Préd. No. 3.7e+03;
                                                         Best Local Similarity
                  11.8%; Score 4; DB 2; Length 36;
                                                                    Query Match
                       36 AA; 3957 MW; D94F46BCFD437D97 CRC64;
                                                                    SEĞNENCE
                                                                               ÕS
                                                      36
                                                            36
                                                                     NON LEK
                                                                               ĿL
                                          Pfam; PF00148; oxidored_nitro; 1.
                                                                               DВ
                                     InterPro; IPR000510; Oxred_nitrognsel.
                                                                               DB
                                              EMBL; AF058778; AAC14327.1; -.
                                                                               DK
                  Submitted (APR-1998) to the EMBL/GenBank/DDBJ databases.
                                                                               ИL
                                                   in Diverse Diazotrophs.";
                                                                               RT
     "Identification of Genes Unique to Mo-Independent Nitrogenase Systems
                                                                               RT
                                                Loveless T.M., Bishop P.E.;
                                                                               AЯ
                                                          SEĞNENCE ŁKOW N.Y.
                                                                               ďИ
                                                                               КИ
                                                                         [[]
                                                            NCBI_TaxID=1085;
                                                                               XO
                                         Rhodospirillaceae; Rhodospirillum.
                                                                               20
          Bacteria; Proteobacteria; Alphaproteobacteria; Rhodospirillales;
                                                                               OC
                                                      Rhodospirillum rubrum.
                                                                               SO
                                                                       ANFK.
                                                                               СИ
                                   Dinitrogenase 3 beta subunit (Fragment).
                                                                               DE
                        01-MAR-2002 (TrembLrel. 20, Last annotation update)
                                                                               DL
                          01-AUG-1998 (TrEMBLrel. 07, Last sequence update)
                                       01-AUG-1998 (TremBLrel. 07, Created)
                                                                               D.L.
                                                                     'I76890
                                                                               ЭA
                               .AA 9E
                                         PRT;
                                                   PRELIMINARY;
                                                                      T#6890
                                                                               ID
                                                                           T#6890
                                                                        RESULT 34
                                                            SJ EKAE 30
                                                                               DР
                                                               | | | | |
                                                                               ζX
                                                            10 EKAE SS
                               0; Mismatches
:0
      ot eabs
                                                  4; Conservative
                  sləbal
                          :0
                           100.0%; Pred. No. 3.7e+03;
                                                         Best Local Similarity
                  11.8%; Score 4; DB 2; Length 36;
                                                                    Диеку Матсh
                      EBD470AAF99A728E CRC64;
                                                36 AA; 4121 MW;
                                                                               ŎS
                                                                    ZEĞNENCE
                                                                     NON_TER
                                                                               TA
                                                  Pfam; PF03136; DUF245; 1.
                                                                               DВ
                                               Interpro; IPR004347; DUF245.
                                                                               DК
                                               EMBL; Z34523; CAA84281.1; -.
                                                                               DВ
                                                EMBO J. 13:3472-3480(1994).
                                                                               ВГ
                                                     to the FKBP-12 gene.";
                                                                               RT
      of two PK506-binding domains with its gene transcriptionally coupled
                                                                               TA
     "Streptomyces chrysomallus FKBP-33 is a novel immunophilin consisting
                                                                               ТЯ
                                                         Pahl A., Keller U.;
                                                                               AЯ
                                          WEDFINE=84341528: bnpWeq=8062824:
                                                                               КX
                                                          SEQUENCE FROM N.A.
                                                                               ВЪ
                                                                               ВИ
                                                                         [[]
                                                            NCBI_TaxID=1899;
                                                                               XO
                          Streptomycineae; Streptomycetaceae; Streptomyces.
                                                                               OG
              Bacteria; Actinobacteria; Actinobacteridae; Actinomycetales;
                                                                               OG
                                                 Streptomyces chrysomallus.
                                                                               SO
                                                                       ORFA.
                                                                               \mathbf{G}\mathbf{N}
```

```
WEDFINE=50083481; bnpWed=10617197;
                                                                               КX
                                                        STRAIM=cv. Columbia;
                                                                               ВC
                                                          SEQUENCE FROM N.A.
                                                                               ВЪ
                                                                         [I]
                                                                               КИ
                                                            NCBI L9XID=3702;
                                                                               XO
                      eurosids II; Brassicales; Brassicaceae; Arabidopsis.
                                                                               OC
     Sbermacophyta; Magnoliophyta; eudicotyledons; core eudicots; Rosidae;
                                                                               OC
        Enkaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
                                                                               20
                                    Arabidopsis thaliana (Mouse-ear cress).
                                                                               SO
                                                                  AT2G35870.
                                                                               СИ
                                                          At2g35870 protein.
                                                                               DE
                        01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
                                                                               DL
                          01-MAY-2000 (TremBLrel. 13, Last sequence update)
                                                                               DL
                                       01-MAY-2000 (TremBLrel. 13, Created)
                                                                               DL
                                                                               DA
                                                                     : £9LS60
                                                   PRELIMINARY;
                                                                      £9L269
                               .AA 3£
                                         PRT;
                                                                               ID
                                                                           £9L26Q
                                                                        RESULT 36
                                                            OI WSNI L
                                                                               DΡ
                                                               |||||
                                                                               ζX
                                                            12 PRZW 18
:0
      0; Gaps
                          :0
                                0; Mismatches
                                                  4; Conservative
                  sləbni
                           Best Local Similarity 100.0%; Pred. No. 3.7e+03;
                  11.8%; Score 4; DB 4; Length 36;
                                                                   Query Match
                                               : MM 686E
                                                         ; AA 9£
                      C3A6A964C2F41007 CRC64;
                                                                    ZEÕNENCE
                                                                               ÕS
                                                                     NON LEK
                                                                               FT
                                                      Pfam; PF03253; UT; 1.
                                                                               DВ
                                     InterPro; IPR004937; Urea_transporter.
                                                                               DK
                                             EMBL; AF328890; AAL37474.1; -.
                                                                               DK
                                              Br. J. Haematol. 0:0-0(2001).
                                                                               КГ
                                                                Pedigrees.";
                                                                               ГЯ
        "Molecular Basis of the Jk (a-b-) Phenotype in Mon-Finnish European
                                                                               RT
                                                                               AЯ
             Olsson M.L., Irshaid M.M., Eicher W.I., Poole J., Hustinx H.;
                                                          SEQUENCE FROM N.A.
                                                                               ВЪ
                                                                         [1]
                                                                               ВИ
                                                            NCBI TaxID=9606;
                                                                               XO
                                                                               OC
                Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
         Enkaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
                                                                               OG
                                                       . (namuH) ansigas omoH
                                                                               SO
                                                                               СИ
                               Urea transporter JK glycoprotein (Fragment).
                                                                               DE
                        01-JUN-2002 (TremBLrel. 21, Last annotation update)
                                                                               DL
                          01-MAR-2002 (TremBLrel. 20, Last sequence update)
                                                                               DL
                                       01-MAR-2002 (TremBLrel. 20, Created)
                                                                               DL
                                                                     Q8WXW8;
                                                                               DΑ
                               .AA 9E
                                         PRT;
                                                   PRELIMINARY;
                                                                      Q8WXW8
                                                                               ΙD
                                                                           Q8WXW8
                                                                        RESULT 35
                                                             2 PEKK 8
                                                                               DР
```

1111

54 PEKK 51

δX

```
2BB1935A55048D34 CRC64;
                                                ; WM 342E ; AA 3E
                                                                              ŎS
                                                                   ZEÕNENCE
                                                Polyprotein; Transmembrane.
                                                                              ΚM
      Cost brotein; Envelope protein; Glycoprotein; Monstructural protein;
                                                                              KM
                                                 Pfam; PF01560; HCV_NS1; 1.
                                                                              DВ
                                              INTERPRO; IPRO02531; HCV_NS1.
                                                                              DВ
                                              . (3991) £3:648-653 (1995).
                                                                              _{\rm K\Gamma}
                                                chronic hepatitis type C.";
                                                                              RT
     indicative of poor response to interferon treatment in patients with
                                                                              RT
      and high degree of sequence variability of hypervariable region are
                                                                              RT
      "Genotype, slow decrease in virus titer during interferon treatment
                                                                               RT
                        Hashimoto M., Kobayashi M., Kanda M., Morinaga T.;
                                                                              AЯ
      Chayama K., Tsubota A., Arase Y., Saitoh S., Ikeda K., Matsumoto T.,
                                                                              AЯ
                                          WEDFINE=86343151; bnpw6q=8120165;
                                                                              КX
                                                         SEQUENCE FROM N.A.
                                                                               ВЪ
                                                                              КИ
                                                          NCBI_TaxID=11103;
                                                                              XO
                                                               Hepacivirus.
                                                                               OG
       Viruses; ssRNA positive-strand viruses, no DNA stage; Flaviviridae;
                                                                               OC
                                                         Hepatitis C virus.
                                                                               SO
                                                                 .(Tragment).
                                                                              DE
       Genome polyprotein [Contains: envelope glycoprotein E2/NS1 (GP68)]
                                                                              DE
                       01-DEC-2001 (TrembLrel. 19, Last annotation update)
                                                                              DL
                         01-MAY-2000 (TremBLrel. 13, Created)
                                                                               DL
                                                                               DL
                                                                    ÕðbXDJ:
                                                                               DА
                                                   PRELIMINARY;
                                                                     бэьхрт
                               .AA 3£
                                         ;TA9
                                                                              ΠI
                                                                           бэьхрт
                                                                       RESULT 37
                                                            ₹ KKTŐ J
                                                                               DР
                                                               | | | |
                                                           50 KKTŐ 53
                                                                              ζX
           :0
                          :0
                                                  4; Conservative
:0
      ggba
                  Indels
                                0; Mismatches
                          Best Local Similarity 100.0%; Pred. No. 3.7e+03;
                 11.8%; Score 4; DB 10; Length 36;
                                                                   Query Match
                      36 AA; 4358 MW; DC966779BBD6B834 CRC64;
                                                                               ŎS
                                                                  ZEÕNENCE
                                             EMBL; AC007017; AAD21470.1; -.
                                                                               DВ
                  Submitted (MAR-2000) to the EMBL/GenBank/DDBJ databases.
                                                                               ВГ
                                                                    .X nid
                                                                               AЯ
                                                                               ВG
                                                       STRAIM=cv. Columbia;
                                                         SEQUENCE FROM N.A.
                                                                               КЪ
                                                                               КИ
                                                  . (9991)837-167:50₽ 97u36N
                                                                               ВГ
                                                                 ;".snailana
                                                                               ТЯ
           "Sequence and analysis of chromosome 2 of the plant Arabidopsis
                                                                               \mathbf{r}
                                   Salzberg S.L., Fraser C.M., Venter J.C.;
                                                                               AЯ
           Copenhaver G.P., Preuss D., Nierman W.C., White O., Eisen J.A.,
                                                                               AЯ
     Adams M.D., Carrera A.J., Creasy T.H., Goodman H.M., Somerville C.R.,
                                                                               AЯ
    Cronin L.A., Shen M., VanAken S.E., Umayam L., Tallon L.J., Gill J.E.,
                                                                               AЯ
    Buell C.R., Ketchum K.A., Lee J.J., Ronning C.M., Koo H., Moffat K.S.,
                                                                               ΑЯ
      Fujii C.Y., Mason T.M., Bowman C.L., Barnstead M.E., Feldblyum T.V.,
                                                                               AЯ
      Lin X., Kaul S., Rounsley S.D., Shea T.P., Benito M.-I., Town C.D.,
                                                                               AЯ
```

Score 4; DB 12; Length 36;

; %8.II

биеху масси

```
NCBI LGXID=1955;
                                                                              XO
                                                         Cyprinidae; Danio.
                                                                              OG
      Actinopterygii; Neopterygii; Teleostei; Ostariophysi; Cypriniformes;
                                                                              20
         Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
                                                                              20
                              Brachydanio rerio (Zebrafish) (Danio rerio).
                                                                              SO
                                                           . GANZ SO BESGANZ
                                                                              CM
                           Synaptosome-associated protein 25.2 (Fragment).
                                                                              DE
                       01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
                                                                              DL
                         01-MAY-1999 (TrEMBLrel. 10, Last sequence update)
                                                                              DL
                                      01-MAY-1999 (TrembLrel. 10, Created)
                                                                              DL
                                                                    49YHY9
                                                                              ЭA
                              .AA 9£
                                                  PRELIMINARY;
                                                                    Q9YHT9
                                                                              ID
                                                                          О9ҮНТ9
                                                                       RESULT 39
                                                          T₹ KKTÖ IL
                                                                              DР
                                                              ζX
                                                          Se kktő S6
                                                 4; Conservative
:0
      0 caps
                  Indels
                         : 0
                               0; Mismatches
                          Best Local Similarity 100.0%; Pred. No. 3.7e+03;
                 II.8%; Score 4; DB 12; Length 36;
                                                                  биеху Масср
                                               36 AA ; 4291 MV;
                      92145F475EA841F1 CRC64;
                                                                  ZEÕNENCE
                                                                              ŎS
                                                           9ε
                                                                   NON LEK
                                                                              FT
                                                      Hypothetical protein.
                                                                              KM
                                                Pfam; PF02957; TT_ORF2; 1.
                                                                              DК
                                             InterPro; IPR004118; TT ORF2.
                                                                              DK
                                            EMBL; AB059561; BAB69654.1; -.
                                                                              DK
                  Submitted (APR-2001) to the EMBL/GenBank/DDBJ databases.
                                                                              ВΓ
                                                                   ;".boold
                                                                              RT
    "Existence of TT virus DNA and TTV-like mini virus DNA in infant cord
                                                                              RT
                                                                   ; .M iţnO
                                                                              AЯ
      Michitaka K., Matsubara H., Horiike N., Kihana T., Yano M., Mori T.,
                                                                              AЯ
                                                             :01E0MH=NIAAT2
                                                                              ВG
                                                         SEQUENCE FROM N.A.
                                                                              ВЪ
                                                                        []]
                                                                              ВИ
                                                          NCBI L9XID=33678;
                                                                              XO
                                     Viruses; saDNA viruses; Circoviridae.
                                                                              OG
                                                       TTV-like mini virus.
                                                                              SO
                     ORF2 hypothetical protein, isolate:HM0319 (Fragment).
                                                                              DE
                       01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
                                                                              DL
                         01-DEC-2001 (TrEMBLrel. 19, Last sequence update)
                                                                              DL
                                       01-DEC-2001 (TremBLrel. 19, Created)
                                                                              DL
                                                                              DA
                                                                    ĞƏJDJ1:
                                                  PRELIMINARY;
                                                                     Q91D77
                                                                              ID
                              .AA 3E
                                        PRT;
                                                                          ĞƏJD11
                                                                       KEZULT 38
                                                           33 IÕIW 36
                                                                              DΡ
                                                              2 IÕIW 8
                                                                              ζX
:0
           :0
                              0; Mismatches
                                                 4; Conservative
                  o; Indels
      Gaps
                          Best Local Similarity 100.0%; Pred. No. 3.7e+03;
```

```
36 AA; 4282 MW; 749D427D078ACA76 CRC64;
                                                                               ÕS
                                                                 ZEÕNENCE
                                   Hypothetical protein; Complete proteome.
                                                                               KM
                                                           TIGK; SP0497; -:
                                                                               DВ
                                             EWBL; AE007361; AAK74655.1; -.
                                                                               DВ
                                                 Science 293:498-506(2001).
                                                                               ИГ
                                                              pneumoniae.";
                                                                               RT
          "Complete genome sequence of a virulent isolate of Streptococcus
                                                                               RT
            Dougherty B.A., Morrison D.A., Hollingshead S.K., Fraser C.M.;
                                                                               AЯ
                 Holt I.E., Loftus B.J., Yang F., Smith H.O., Venter J.C.,
                                                                               ΑЯ
    McDonald L.A., Feldblyum T.V., Angiuoli S., Dickinson T., Hickey E.K.,
                                                                               AЯ
         Holtzapple E., Khouri H., Wolf A.M., Utterback T.R., Hansen C.L.,
                                                                               AЯ
              Umayam L.A., White O., Salzberg S.L., Lewis M.R., Radune D.,
                                                                               AЯ
          Durkin A.S., Gwinn M., Kolonay J.F., Nelson W.C., Peterson J.D.,
                                                                               AЯ
           Peterson S., Heidelberg J., DeBoy R.T., Haft D.H., Dodson R.J.,
                                                                               AЯ
            Tettelin H., Welson K.E., Paulsen I.T., Eisen J.A., Read T.D.,
                                                                               AЯ
                                         WEDFINE=51321506: brpWeq=11463616:
                                                                               КX
                                                               STRAIN=TIGR4;
                                                                               ВG
                                                         SEQUENCE FROM N.A.
                                                                               ВЪ
                                                                         [1]
                                                                               КИ
                                                           NCBI_TaxID=1313;
                                                                               XO
                                                              Streptococcus.
                                                                               OG
                  Bacteria; Firmicutes; Lactobacillales; Streptococcaceae;
                                                                               OG
                                                  Streptococcus pneumoniae.
                                                                               SO
                                                                     . 76 £042
                                                                               СИ
                                               Hypothetical protein SP0497.
                                                                               DE
                       01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
                                                                               DL
                         01-OCT-2001 (TrEMBLrel. 18, Last sequence update)
                                                                               DL
                                       01-OCT-2001 (TremBLrel: 18, Created)
                                                                               DL
                                                                    '165460
                                                                               ЭA
                               .AA 3E
                                         PRT;
                                                   PRELIMINARY;
                                                                      T6SL6Ŏ
                                                                               ID
                                                                           T6SL60
                                                                        RESULT 40
                                                            S EKAE 2
                                                                               DΡ
                                                              1111
                                                                               ζX
                                                           10 EKAE 35
:0
      Gaps
           :0
                  stabni
                          : 0
                                о; Міятасрея
                                                 4; Conservative
                          Best Local Similarity 100.0%; Pred. No. 3.7e+03;
                 11.8%; Score 4; DB 13; Length 36;
                                                                   Query Match
                      E3434822EJEECOSE CKC64:
                                               'MW 9707
                                                         ; AA 9E
                                                                   ZEÖNENCE
                                                                               ŎS
                                                     9٤
                                                            9ε
                                                                    NON_TER
                                                                               \mathbf{EL}
                                                                    NON LER
                                                            Ţ
                                                                               FT
                                        ZEIN: ZDB-GENE-980276-397; auspZ2p.
                                                                               DВ
                                             EMBL; AF091596; AAC73006.1; -.
                                                                               DВ
                                        J. Meurosci. Res. 54:563-573(1998).
                                                                               ВĽ
                                                   the mammalian lineage.";
                                                                               TA
     comparison of paralogous linkage groups suggests loss of one locus in
                                                                               RT
             "Cloning of two loci for synapse protein Snap25 in zebrafish:
                                                                               ΤЯ
                                                              Larhammar D.;
                                                                               AЯ
      Risinger C., Salaneck E., Soderberg C., Gates M., Postlethwait J.H.,
                                                                               AЯ
                                          WEDFINE=8802781; PubMed=9843147;
                                                                               КX
                                                         SEQUENCE FROM N.A.
                                                                               ВЪ
                                                                         [T]
                                                                               ВИ
```

Query Match 4; Conservative 0; Mismatches 0; Indels 0; Gaps 0; Matches 4; DB 16; Length 36;

[N.O. NOOS N. Wasurast . betelamos desco?

Search completed: January 14, 2004, 10:41:52 Job time : 27.4206 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: January 14, 2004, 10:28:19; Search time 5.61371 Seconds

(without alignments)
284.822 Million cell updates/sec

Title: US-09-843-221A-163

Perfect score: 34

Zedneuce: I ZAZEIÕTWHNKGKHTNZWEKAEMTBKKTÕDAHNE 34

Scoring table: OLIGO

0.03 daped , 0.03 goded

Searched: 127863 seqs, 47026705 residues

, T

Mord size : 0

Total number of hits satisfying chosen parameters: 1319

Minimum DB seq length: 28 Maximum DB seq length: 40

Post-processing: Listing first 1000 summaries

Database : SwissProt_41:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

alligator m	D47215	IMJJA_AJAĐ	τ	52	8.8	ε	LT
couns wadna		CXOC_CONMA	τ	52	8.8	ε	91
ovis aries	595₹04	Λ Ib $^-$ ZHEEb	τ	28	8.8	3	SI
rana ridibu	P81016	IANAA_qIV	τ	28	8.8	ε	ÐΤ
alligator m	P48142	IMLLA_qIV	τ	28	8.8	ε	13
leiurus qui	B80 863	arbī reiõn	τ	28	8.8	ε	12
buis sundud	P15230	SCX2_BUTSI	τ	28	8.8	ε	ττ
psendechis	P20260	PARC_PSEPO	τ	28	8.8	3	0 T
yersinia ps	_538333	OMPA_YERPS	τ	28	8.8	ε	6
acyizobyyll		CON_SCHCO	τ	28	8.8	ε	8
solanum tub		COXB_SOLTU	τ	82	8.8	ε	L
mycobacteri		CH60_MYCSM	τ	82	8.8	3	9
sarcophaga		SKIC SYKBE	τ	36	8.11	₽	S
akuecpockar	973676	PSBY_SYNY3	τ	36	8.11	₽	₽
bscylcondyl	585416	PCG3_PACGO	τ	30	8.11	₽	3
rattus norv	DII230	TAA_QMQ	τ	52	8.11	₽	7
rhamdia sap	D8II12	FABI_RHASA	τ	5.5	Z.₽I	9	τ
noit	Descri	ID	DB	геидұр		Score	. oM
					δлекλ		Result
					웅 .		

		_					
pacteriopha		XICO_BPT4	τ	32	8.8	ε	ÐΔ
euglena vir	78128Q	PSBZ_EUGVI	τ	32	8.8	ε	٤٢
endjeus are	681 s 80	PSBZ_EUGST	Ţ	32	8.8	ε	7 L
odontella s	91S67d	PSBT_ODOSI	Τ	32	8.8	3	TL
pisum sativ		bzbő_bey	τ	32	8.8	3	07
desulfovibr		PHSS_DESBN	Ţ	32	8.8	ε	69
guillardia		PETM_GUITH	ī	32	8.8	ε.	89
dolichos ax		PEC DOLAX	τ	32	8.8	ε.	<i>L</i> 9
cucurbita m		ITR4_CUCMA	τ	32	8.8	5	99
cucurbita p		ITR3 CUCPE	ī	32	8.8	5	S9
salmonella		LESI SYPEN	ī.				
akuecyockac		_		32	8.8	3	₹9
		DBH ZXNXI	Ţ	32	8.8	3	£9
desulfuromo		CX31_DE2VC	Ţ	32	8.8	3	79
pacteriopha		COAZ BPIF1	τ	32	8.8	ε	19
sį sīliupas		$ALDNA_AD$	τ	32	8.8	3	09
оисокуХисул		CAL3_ONCKI	Ţ	32	8.8	3	69
оисохуλисуп		CAL2_ONCKE	Ţ	32	8.8	ε	89
drosophila	P28487	ADHR_DROYA	τ	32	8.8	3	LS
porrelia bu	Z9LTSO	Y822_BORBU	τ	3.1	8.8	ε	99
oxiccojedna	₽42532	TIBAA_JAAS	τ	3.1	8.8	ε	99
wns wnscnjn	ğəcdqe	SARL MOUSE	τ	3.1	8.8	ε	₽S
uebykosejwi	бағкұз	bell nepol	τ	3.1	8.8	3	23
мевовсідта		BELT WESAI	ī	3.1	8.8	3	22
marchantia		PETL MARPO	Ţ	15	8.8	ε	TS
lotus japon		PETL_LOTJA	T.	15	8.8	ξ	09
homo sapien		MAMUH PAAN	ī	15	8.8	5	6 ↑
pomocapajon		MALK_PHOLU	Ţ	15	8.8		
		_				5	8ħ
propuers ap		LPL BUCRP	Ţ	3.1	8.8	3	∠ ₱
Teuconostoc		TCCB TENME	τ	3.1	8.8	3	9₹
triticum ae		HI3 WHEAT	τ	3.7	8.8	5	St
diploptera		UTG_XUIG	τ	3.1	8.8	3	₽₽
cours marmo		CXMA_COUMR	Ţ	31	8.8	3	43
sus scrofa		CECT_PIG	τ	3.1	8.8	ε	42
drosophila		A98A_DROME	τ	3.1	8.8	ε	Τħ
borrelia bu		Y523_BORBU	Ţ	30	8.8	ε	01
equisetum a		VAA2_EQUAR	Ţ	30	8.8	ε	39
uperoleia i		NBEZ NBEIN	τ	30	8.8	ε	38
uperoleia i	P82037	NBET NEEIN	τ	30	8.8	ε	4 £
thrixopelma	₽83476	TX2_THRPR	τ	30	8.8	ε	98
bscylcougly	P82415	PCG2_PACGO	τ	30	8.8	٤	32
seromonas p		OTCC_AERPU	τ	30	8.8	ε	₽ £
anguilla an		GLUM_ANGAN	τ	30	8.8	3	55
pacteroides		FTW_BACFR	t	30	8.8	ε	32
byXJJowegna		DMS3_PHYSA	ī	30	8.8	ε	Tε
desulfuromo		CX32 DESYC	T.	30	8.8	ξ	30
spinacia ol		TLI6_SPIOL	Ī	29	8.8	3	62
olea europa		ZODC OFEEN	τ	29	8.8	3	82
methanosarc		RS7 METTE	T	62	8.8		72
		PCG4 PACGO	_			5	
bachycondyl			Ţ	57	8.8	3	97
solanum tub		UTJOS_TOUN	I T	67	8.8	3	SZ
desulfovibr		IBXK_DERAH	Ţ -	52	8.8	5	5₹
chinchilla		GLUC_CHIBR	τ	52	8.8	3	23
ovis aries		GALA_SHEEP	τ	52	8.8	ε	22
rana ridibu		IANAA_A.IAÐ	τ	52	8.8	ε	2.1
оисохуλисул		GALA ONCMY	τ	52	8.8	ε	20
gallus gall		GALA_CHICK	τ	52	8.8	3	6T
amia calva	P47214	GALA_AMICA	τ	52	8.8	ε	18

		_					
escherichia	₱\$113 ₫	ECOPI	τ	3.8	8.8	ε	131
cyloxopinm	δ8 κα 1 4	RL36_CHLTE	τ	38	8.8	ε	130
methanosarc	TZS084	PYSA_METBA	τ	38	8.8	ε	129
płaczix czi	P81648	OBP2_HYSCR	τ	38	8.8	3	128
vitis ap. (XSTIV_STIN	τ	38	8.8	3	ISZ
vitis ap. (NLT1 VITSX	ī	8£	8.8	3	921
csucer pagu	10100	CPRP CANPG	ī	8.5	8.8	5	125
растетіорла		Xe3_BbT3	ī	7£	8.8		
pacteriopha		_				3	124
		VGJ_BPPHX	I	75	8.8	3	123
шеворисуив		SCKI_MESTA	I	75	8.8	3	122
асаруудосос		MAATZ_8 EJR	τ	75	8.8	3	ISI
pasteurella		NEAT_8 ELS	Ţ	75	8.8	3	120
listeria mo		Kr36_riswo	Ţ	75	8.8	ε	6TT
clostridium	г ⋊ ∋∠6Ŏ	RL36_CLOAB	τ	٤٤	8.8	ε	118
pacillus su	P20278	RL36_BACSU	τ	٤٢	8.8	٤	LTT
oqoutella s	8926₹d	KK30 ODOZI	τ	٤2	8.8	ε	911
pos taurus	TL9TZd	PIP7_BOVIN	τ	£٤	8.8	ε	SII
Jactococcus	P83002	LCUM_LACLA	τ	٤2	8.8	3	₽II
tenebrio mo		DINT_LENWO	τ	75	8.8	ε	113
эхсрэеодјор		Y609_ARCFU	τ	98	8.8	ε	112
bacillus ha		XS60_BACHD	Ţ	98	8.8	5	TTT
halobacteri		RL6_HALCU	ī	98	8.8	5	OTT
gallus gall		RET4 CHICK	τ	98	8.8	5	60T
pos taurus			-	98			
		RISA_BOVIN	Ţ		8.8	5	108
akuecpockar		belw_sxnx3	Ţ ~	9٤	8.8	3	L0T
гассракошус		$OSTS_{TSAST}$	τ	98	8.8	3	90T
artioposthi		ATTAA_4qu	τ	98	8.8	3	TOP
ryexowyzon		ELH THETS	τ	98	8.8	3	70₹
bacillus su		YRKM_BACSU	τ	35	8.8	ε	103
haemophilus	₽43964	XS10 HYEIN	τ	35	8.8	٤	IOS
methanobact	P80908	NOKB_METTM	τ	35	8.8	ε	τοτ
axammostola	D26853	TX2_CXASP	τ	32	8.8	ε	001
thrixopelma	P83480	$\mathtt{TX1}$ \mathtt{THRPR}	τ	35	8.8	3	66
grammostola		TX1_GRASP	τ	35	8.8	ε	86
шеворисуив		TMTX_MESTA	τ	35	8.8	ξ	<i>L</i> 6
buis suddud		SCX1_BUTSI	ī	35	8.8	ε	96
cicyus serr		SCKK LILZE	ī	35	8.8	ε	96
аупеслососс		RLIS SYNP7	ī	35	8.8	3	₹ 6
marchantia		PSBT_MARPO	ī	35	8.8	5	٤6
cyanidium c			ī	35	8.8	5	
orgyia pseu		PETG_CYACA	-				76 T.C
		PBP ORGPS	Ţ	35	8.8	3	16
njex entope		rec3_oreeo	Ţ	35	8.8	3	06
cytisus ses		rect_cxtse	τ	35	8.8	3	68
субках девс		HCXA_CHEDE	τ	35	8.8	3	88
pscteriopha		GP58_BPSP1	τ	35	8.8	ε	78
ana acrofa	P80736	CPI2_PIG	τ	35	8.8	ε	98
canis famil	5₹01€2	COPA_CANFA	τ	35	8.8	ε	8 2
aedes albop	LT#T84	CECA_AEDAL	τ	35	8.8	3	₹8
acogra gris	5289S4	TXI_SCOGR	τ	₽Ε	8.8	ε	83
scjerotinia	P21833	CONT CCPSC	τ	₽€	8.8	ε	28
capra hircu		GAST_CAPHI	τ	₹	8.8	3	18
byllowedus		DMS2_PHYSA	ī	₹8	8.8	ξ	08
ЪуХјјошеqna		ASYH4_ISMG	ī	₽€	8.8	ε	64
endjeus dra		XCIS ENGGE	ī	55	8.8	٤	87
рахатестит		TIF PARTE	I T	5.5	8.8	5	6 <i>L</i> LL
охеосухошта		GLUZ ORENI	Ī	££	8.8	3	9 <i>L</i>
			_				
mastigoclad	7579Cd	YCPG_MASLA	I	32	8.8	3	97

	triticum ae	b39082	NLT2_WHEAT	τ	82	6.8	7	881
	шедарошриз		WCDP WEGPE	ī	82	6.2	2	781
	rattus norv		TAR IAAM	ī	82	6.8	2	98T
	serratia ma		LPW_SERMA	ī	28	6.2	2	98T
	salmonella		YTJAS_JGJ	Ι				
	salmonella			-	28	6.8	7	₽81
	escherichia		ITUAS_191	Ţ	28	6.8	7	183
			rbr Ecori	Ţ	28	6.8	7	182
	escherichia		LPFS_ECOLI	Ţ	28	6.8	7	181
	iris hollan		LECA_IRIHO	Ţ	82	6.2	2	180
	momordica c		ITRA_MOMCH	τ	28	6.8	2	6LT
	luffa cylin		ITR3_LUFCY	τ	82	6.8	Z	87.I
	momordica c		ITR2_MOMCH	τ	82	6.2	2	LLT
	methanobact		IORB_METTM	τ	28	6.8	7	9LT
	momordica c		IETT_WOWCH	τ	28	6.8	2	SLT
	vipera lebe		ICBB_AIBPE	τ	28	6.8	7	Ð∠T
	pordeum spo		HORC_HORSP	τ	28	6.8	7	113
	oscillatori		GVPC_OSCAG	τ	28	6.8	7	ILS
	dallus gall		GLZ2_CHICK	Ţ	28	6.8	2	TLT
	alligator m	P31886	GRP_ALLMI	τ	28	6.8	2	OLT
	triticum mo		GDO_TRIMO	τ	28	6.8	٠ 5	69T
	freponema p	P21988	FLA1_TREPH	τ	28	6.8	7	89T
	canis famil	P02673	FIBA_CANFA	τ	28	6.8	2	L9T
	pscillus ce	89908đ	ETX2_BACCE	τ	28	6.8	7	99T
	rattus norv		CLQC_RAT	τ	28	6.8	7	59 T
	nocardia gl	P80008	ARYC_NOCGL	τ	28	6.8	2	₹91
	oxAccojadna		APC1_RABIT	ī	82	6.8	2	163
	candida alb		ACON_CANAL	ī	28	6.2	Z	162
	arreptomyce		YDRB STRPE	τ	0 b	8.8	3	191
	wejesdria d		AIT MELGA	Ī	0 1	8.8	٤	091
	asrcophaga		SKID SARPE	ī	0 1	8.8	3	69 T
	byllomedus		ASYHQ_VUAS	ī	0 1	8.8	ξ.	89T
	lily sympto		RRPO_LSV	ī	0 1	8.8	3	LST
	pisum sativ		EK33 PEA	ī	0 <i>1</i> ∙	8.8	5	9ST
	bacillus li		PRE_BACLI	ī	0 <i>1</i> ∙	8.8	5	SST
	bacillus su		PHRK BACSU	ī	0 t	8.8		∌9T
	araphylococ		KAD STACA	ι Τ		8.8	3	EST
	oxAccojadna		TIBAR A62H	L T	0 b	8.8	£ £	
	trachemys s		DEAST_IBLA	T.	0 b		£	125
	canis famil		_	-	0 1	8.8		TST
	borphyra pu		SC62_CANFA	Ţ T	39	8.8	3	OST
			PSBX_PORPU	Ţ	39	8.8	ξ.	6 † I
	Jactococcus		LCGA_LACLA	Ţ	39	8.8	3	8 † T
	polud olud		DATUE_ASH	T -	39	8.8	3	147
	spirulina s		GVPC_SPICC	Ţ	36	8.8	5	9 † T
	rattus norv		TAA_EDUA	τ	36	8.8	3	S₹Į
	heloderma h		ехез_негно	τ	36	8.8	ε	₽₽I
	struthio ca		COLI_STRCA	τ	36	8.8	ε	143
	adnalus aca		COLI_SQUAC	τ	36	8.8	ε	142
	oxAccojadus		COLI_RABIT	τ	36	8.8	3	141
	palaenopter		COLI BALPH	τ	36	8.8	ε	O₽T
	om saissole		CEC GLOMR	τ	36	8.8	ε	139
	archaeoglob		VJ39_ARCFU	τ	38	8.8	ε	138
	haemophilus		XJJ4_HYEIN	τ	8.5	8.8	ε	131
,	leiurus qui		CCX8_reion	τ	38	8.8	3	981
	pinus conto		KKIS PINCO	τ	38	8.8	£	332
	Yersinia pe	16 Çz8Q	игзе ⁻ лекье	T.	38	8.8	3	13₫
	грекшогодз		RL36_THEMA	τ	38	8.8	ε	133
	pseudomonasq	9ЈмЦ6Ŏ	KL36_PSEAE	τ	38	8.8	ε	135

189	2	5.9	28	1	NXL1_BOUAN		boulengerin
190	2	5.9	28	1	OBP1_HYSCR	P81647	hystrix cri
191	2	5.9	28	1	ORND_PLAOR	P25513	placobdella
192	2	5.9	28	1	OST1 CHICK	P80896	gallus gall
193	2	5.9	28	1	PA22 MICNI		micrurus ni
194	2	5.9	28	1	PA23 TRIST		trimeresuru
195	2	5.9	28	1	PETL CYAPA		cyanophora
196	2	5.9	28	1	PHR METTM		methanobact
197	2	5.9	28	1	PHYB ASPFI		
	2						aspergillus
198		5.9	28	1	PP71_HCMVT		human cytom
199	2	5.9	28	1	PPOX_BOVIN		bos taurus
200	2	5.9	28	1	RL5_HALCU		halobacteri
201	2	5.9	28	1	RS19_PHYS1		phytoplasma
202	2	5.9	28	1	SCK2_ORTSC		orthochirus
203	2	5.9	28	1	SMS2_ORENI	P81029	oreochromis
204	2	5.9	28	1	TXO2 AGEAP	P15971	agelenopsis
205	2	5.9	28	1	VG9 SPV4		spiroplasma
206	2	5.9	28	1	VIP DIDMA		didelphis m
207	2	5.9	28	1	VIP SCYCA		scyliorhinu
208	2	5.9	28	1	Y073 ARCFU		archaeoglob
209	2	5.9	28	1	Y16P BPT4		bacteriopha
210	2	5.9	28	1	YA79 ARCFU		
							archaeoglob
211	2	5.9	29	1	12AH_CLOS4		clostridium
212	2	5.9	29	1	AL21_HORSE		equus cabal
213	2	5.9	29	1	AMEL_RABIT		oryctolagus
214	2	5.9	29	1	ATP9_PICPJ		pichia pijp
215	2	5.9	29	1	ATPA_BRYMA		bryopsis ma
216	2	5.9	29	1	BR2D_RANES	P40840	rana escule
217	2	5.9	29	1	BREE RANES	P40841	rana escule
218	2	5.9	29	1	CERB CERCA	P36191	ceratitis c
219	2	5.9	29	1	COA1 BPI22		bacteriopha
220	2	5.9	29	1	COXJ CANFA		canis famil
221	2	5.9	29	1	COXK SHEEP		ovis aries
222	2	5.9	29	1	CU36 LOCMI		locusta mig
223	2	5.9	29	1	CXD6 CONGL		
224	2	5.9		1			conus glori
			29		CXO7_CONGE		conus geogr
225	2	5.9	29	1	CXOD_CONMA		conus magus
226	2	5.9	29	1	CXST_CONGE		conus geogr
227	2	5.9	29	1	CYO4_VIOOD		viola odora
228	2	5.9	29	1	DMS5_PHYSA		phyllomedus
229	2	5.9	29	1	GLUC_ANAPL	P01276	anas platyr
230	2	5.9	29	1	GLUC CALMI	P13189	callorhynch
231	2	5.9	29	1	GLUC_DIDMA	P18108	didelphis m
232	2	5.9	29	1	GLUC LAMFL		lampetra fl
233	2	5.9	29	1	GLUC PLAFE		platichthys
234	2	5.9	29	1	GLUC RABIT		oryctolagus
235	2	5.9	29	1	GLUC TORMA		torpedo mar
236	2	5.9	29	1	H2B2 ECHES		
237	2				_		echinus esc
		5.9	29	1	HOXY_RHOOP		rhodococcus
238	2	5.9	29	1	HRJ_BOTJA		bothrops ja
239	2	5.9	29	1	HS98_NEUCR		neurospora
240	2	5.9	29	1	ITH3_BOVIN		bos taurus
241	2	5.9	29	1	ITR1_CUCMA		cucurbita m
242	2	5.9	29	1	ITR1_LUFCY		luffa cylin
243	2	5.9	29	1	ITR1_MOMRE	P17680	momordica r
244	2	5.9	29	1	ITR2_BRYDI	P11968	bryonia dio
245	2	5.9	29	1	ITR3_CYCPE	P83394	cyclanthera

246	2	5.9	29	1	ITR4_CYCPE	P83395	cyclanthera
247	2	5.9	29	1	ITR5_CYCPE	P83396	cyclanthera
248	2	5.9	29	1	MDH_BURPS	P80536	burkholderi
249	2	5.9	29	1	MULR ECHML	P81798	echis multi
250	2	5.9	29	1	PETN_ANASP	0913p6	anabaena sp
251	2	5.9	29	1	PETN ARATH		arabidopsis
252	2	5.9	29	1	PETN CHAGL		chaetosphae
253	2	5.9	29	1	PETN CYAPA		cyanophora
254	2	5.9	29	1	PETN GUITH		guillardia
255	2	5.9	29	1	PETN_GOTTN PETN MAIZE		zea mays (m
256	2	5.9		1	-		
			29		PETN_MARPO		marchantia
257	2	5.9	29	1	PETN_MESVI		mesostigma
258	_	5.9	29	1	PETN_ODOSI		odontella s
259	2	5.9	29	1	PETN_PINTH		pinus thunb
260	2	5.9	29	1	PETN_PORPU		porphyra pu
261	2	5.9	29	1	PETN_PSINU		psilotum nu
262	2	5.9	29	1	PETN_SYNEL		synechococc
263	2	5.9	29	1	PETN_SYNY3	P72717	synechocyst
264	2	5.9	29	1	PK4 DICDI	P34103	dictyosteli
265	2	5.9	29	1	PRO1 DACGL	P18689	dactylis gl
266	2	5.9	29	1	PSAF SYNP6		synechococc
267	2	5.9	29	1	PSAK SPIOL		spinacia ol
268	2	5.9	29	1	PSAX SYNVU		synechococc
269	2	5.9	29	1	PSBI SYNVU		synechococc
270	2	5.9	29	1	RL15 HALCU		halobacteri
271	2	5.9	29	1	RL15_HADCO		streptomyce
271	2				_		
		5.9	29	1	RP54_CLOKL		clostridium
273	2	5.9	29	1	SCX1_ANDMA		androctonus
274	2	5.9	29	1	SDHB_CLOPR		clostridium
275	2	5.9	29	1	SLP2_LEIQH		leiurus qui
276	2	5.9	29	1	SLP3_LEIQH		leiurus qui
277	2	5.9	29	1	TAT_HV1Z3	P12510	human immun
278	2	5.9	29	1	TLP_ACTDE	P81370	actinidia d
279	2	5.9	29	1	UN23_CLOPA	P81356	clostridium
280	2	5.9	29	1	Y15 BPT7	P03792	bacteriopha
281	2	5.9	29	1	Y51 BPT3	P20326	bacteriopha
282	2	5.9	29	1	YCX4 ODOSI		odontella s
283	2	5.9	29	1	YCXC ODOSI	P49838	odontella s
284	2	5.9	30	1	2ENR CLOTY	P11887	clostridium
285	2	5.9	30		A1AT CHIVI		chinchilla
286	2	5.9	30	1	AATC RABIT		oryctolagus
287	2	5.9	30	1	AATM RABIT		oryctolagus
288	2	5.9	30	1	ACB1 DIGLA		digitalis 1
289	, 2	5.9	30	1	AMPT BACST		bacillus st
290	2						
		5.9	30	1	ANF_RANRI		rana ridibu
291	2	5.9	30	1	CALM_LYTPI		lytechinus
292	2	5.9	30	1	CBAL_BACST		bacillus st
293	2	5.9	30	1	CH60_CLOPA		clostridium
294	2	5.9	30	1	CIRA_CHAPA		chassalia p
295	2	5.9	30	1	CLPA_PINPS		pinus pinas
296	2	5.9	30	1	COAE_CORAM		corynebacte
297	2	5.9	30	1	COXC_SOLTU		solanum tub
298	2	5.9	30	1	CRG2_SCOWA	P19865	scoliodon w
299	2	5.9	30	1	CX2A_CONBE	P58625	conus betul
300	2	5.9	30	1	CX7A_CONTU		conus tulip
301	2	5.9	30	1	CXEX CONCN		conus conso
302	2	5.9	30	1	CXK4_CONST		conus stria
					_		

303	2	5.9	30	1	CXOB_CONPE	P56713	conus penna
304	2	5.9	30	1	CXVB CONER	P58783	conus ermin
305	2	5.9	30	1	CYO1 VIOOD	P82230	viola odora
306	2	5.9	30	1	CYO5 VIOOD	P58437	viola odora
307	2	5.9	30	1	CAO8_AIOOD		viola odora
308	2	5.9	30	1	DEF2 MACMU		macaca mula
309	2	5.9	30	1	DIDH COMTE		comamonas t
	2	5.9	30	1	DIU2 HYLLI		hyles linea
310							manduca sex
311	2	5.9	30	1	DIU2_MANSE		
312	2	5.9	30	1	END2_ONCKE		oncorhynchu
313	2	5.9	30	1	FIBR_PANIN		panulirus i
314	2	5.9	30	1	FMBB_BACNO		bacteroides
315	2	5.9	30	1	HCY2_HOMAM		homarus ame
316	2	5.9	30	1	HYPA_HYBPA		hybanthus p
317	2	5.9	30	1	IHFB_RHILE	P80606	rhizobium l
318	2	5.9	30	1	ITI1_LAGLE	P26771	lagenaria l
319	2	5.9	30	1	ITR1 CITLA	P11969	citrullus l
320	2	5.9	30	1	ITR1 MOMCH	P10294	momordica c
321	2	5.9	30	1	ITR2 ECBEL		ecballium e
322	2	5.9	30	1	ITR2 LUFCY		luffa cylin
323	2	5.9	30	1	ITR3 CUCMC		cucumis mel
324	2	5.9	30	1	ITR3_COCMC		momordica c
	2						cucumis sat
325		5.9	30	1	ITR4_CUCSA		
326	2	5.9	30	1	ITR6_CYCPE		cyclanthera
327	2	5.9	30	1	ITR7_CYCPE		cyclanthera
328	2	5.9	30	1	KAB5_OLDAF		oldenlandia
329	2	5.9	30	1	LAS1_PIG		sus scrofa
330	2	5.9	30	1	LEAH_PHAVU		phaseolus v
331	2	5.9	30	1	MDH_HELGE		heliobacter
332	2	5.9	30	1	MMAL_DERMI		dermatophag
333	2	5.9	30	1	NU5M_PISOC	P24999	pisaster oc
334	2	5.9	30	1	NUO2 SOLTU	P80268	solanum tub
335	2	5.9	30	1	P2CO ARTSP	P37365	arthrobacte
336	2	5.9	30	1	PCCA MYXXA	P81185	myxococcus
337	2	5.9	30	1	PCG1 PACGO		pachycondyl
338	2	5.9	30	1	PCG5 PACGO		pachycondyl
339	2	5.9	30	1	PETN NEPOL		nephroselmi
340	2	5.9	30	1	PLF4 RABIT		oryctolagus
341	2	5.9	30	1	PLMS SQUAC		squalus aca
							candida alb
342	2	5.9	30	1			
343	2	5.9	30	1	PRT1_CLUPA		clupea pall
344	2	5.9	30	1	PRT2_ONCMY		oncorhynchu
345	2	5.9	30	1	PRT3_ONCMY		oncorhynchu
346	2	5.9	30	1	PRT4_ONCMY		oncorhynchu
347	2	5.9	30	1	PRTB_ONCMY		oncorhynchu
348	2	5.9	30	1	PSAM_CYACA	· -	cyanidium c
349	2	5.9	30	1	PSAM_MESVI	Q9mus2	mesostigma
350	2	5.9	30	1	PSAM_ODOSI	P49487	odontella s
351	2	5.9	30	1	PSAM PINTH	P41601	pinus thunb
352	2	5.9	30	1	PSAM_PORPU	P51395	porphyra pu
353	2	5.9	30	1	PYSD METBA	P80524	methanosarc
354	2	5.9	30	1	RIPS MOMCO		momordica c
355	2	5.9	30	1	RKGG LEPKE		lepidochely
356	2	5.9	30	1	RNP ODOVI		odocoileus
357	2	5.9 59	30	1	SCK2_TITSE		tityus serr
358	2	5.9	30	1	SCX2 CENLI		centruroide
	2			1	SILU RHIPU		rhizomucor
359	2	5.9	30	Т	PITO_KUIDO	FU2003	TITZOMUCOL

260	2	- 0	2.0		m>m 11111111	D10510 learner deserve
360	2	5.9	30	1	TAT_HV1ZH	P12512 human immun
361	2	5.9	30	1	TL1X_SPIOL	P82537 spinacia ol
362	2	5.9	30	1	TL29_SPIOL	P81833 spinacia ol
363	2	5.9	30	1	TX2_HETVE	P58426 heteropoda
364	2	5.9	30	1	UC35_MAIZE	P80641 zea mays (m
365	2	5.9	30	1	UDDP_SULAC	P80143 sulfolobus
366	2	5.9	30	1	URE1_ECOLI	Q03284 escherichia
367	2	5.9	30	1	VAA1_EQUAR	Q04236 equisetum a
368	2	5.9	30	1	VAA1_PSINU	Q04237 psilotum nu
369	2	5.9	30	1	VAA2_PSINU	Q04239 psilotum nu
370	2	5.9	30	1	VATN_BOVIN	P81134 bos taurus
371	2	5.9	30	1	VG03 BPPF1	P25137 bacteriopha
372	2	5.9	30	1	VPU HV1SC	P05948 human immun
373	2	5.9	30	1	VTTA BPT3	P20837 bacteriopha
374	2	5.9	30	1	Y161 TREPA	083196 treponema p
375	2	5.9	30	1	Y357 BORBU	051332 borrelia bu
376	2	5.9	30	1	Y425 BORBU	O51386 borrelia bu
377	2	5.9	30	1	Y573 TREPA	O83583 treponema p
378	2	5.9	30	1	Y932 TREPA	083902 treponema p
379	2	5.9	30	1	YCCB ECOLI	P24244 escherichia
380	2	5.9	31	1	BCAM PIG	019098 sus scrofa
381	2	5.9	31	1	CIRB CHAPA	P56879 chassalia p
382	. 2	5.9	31	1	COG5 BOVIN	P83437 bos taurus
383	2	5.9		1		
			31		COX4_NEUCR	P06809 neurospora
384	2	5.9	31	1	CTRP_PENMO	P35002 penaeus mon
385	2	5.9	31	1	CXD6_CONNI	P56710 conus nigro
386	2	5.9	31	1	CXG6_CONTE	P58922 conus texti
387	2	5.9	31	1	DEJP_DROME	P81160 drosophila
388	2	5.9	31	1	EFTU_STRLU	P52390 streptomyce
389	2	5.9	31	1	ENDB_CAMDR	P01203 camelus dro
390	2	5.9	31	1	ER29_BOVIN	P81623 bos taurus
391	2	5.9	31	1	ETFD_PARDE	P55932 paracoccus
392	2	5.9	31	1	FIBB_CANFA	P02677 canis famil
393	2	5.9	31	1	GP37_BPSP1	048393 bacteriopha
394	2	5.9	31	1	GT_SERMA	P22416 serratia ma
395	2	5.9	31	1	HBA_MACEU	P81043 macropus eu
396	2	5.9	31	1	HCY1_HOMAM	P82296 homarus ame
397	2	5.9	31	1	HCY2 MAISQ	P82303 maia squina
398	2	5.9	31	1	HEM2_PHAGO	P27687 phascolopsi
399	2	5.9	31	1	LC70 LACPA	P80959 lactobacill
400	2	5.9	31	1	LPRM ECOLI	P10739 escherichia
401	2	5.9	. 31	1	MDH STRAR	P19982 streptomyce
402	2	5.9	31	1	PETL_ANASP	Q8yvq2 anabaena sp
403	2	5.9	31	1	PETL ARATH	P56776 arabidopsis
404	2	5.9	31	1	PETL BETVU	P46612 beta vulgar
405	2	5.9	31	1	PETL CHLVU	P56306 chlorella v
406	2	5.9	31	1	PETL GUITH	078468 guillardia
407	2	5.9	31	1	PETL MAIZE	P19445 zea mays (m
408	2	5.9	31	1	PETL ODOSI	P49524 odontella s
409	2	5.9	31	1	PETL_OENHO	Q9mtk4 oenothera h
410	2	5.9	31	1	PETL ORYSA	P12180 oryza sativ
411	2	5.9	31	1		
412	2				PETL_PORPU	P51221 porphyra pu
		5.9	31	1	PETL_PSINU	Q8wi03 psilotum nu
413	2	5.9	31	1	PETL_SPIOL	Q9m310 spinacia ol
414	2	5.9	31	1	PETL_WHEAT	P58247 triticum ae
415	2	5.9	31	1	PETM_CYACA	Q9tlr5 cyanidium c
416	2	5.9	31	1	PETN_CYACA	Q9tlr6 cyanidium c

417	2		5.9	31	1	PRT2_CLUPA		clupea pall
418	2		5.9	31	1	PSAK_ANAVA		anabaena va
419	2	2	5.9	31	1	PSAM_CYAPA		cyanophora
420	2	}	5.9	31	1	PSAM_EUGGR		euglena gra
421	2	?	5.9	31	1	PSBK_SYNVU		synechococc
422	2	2	5.9	31	1	PSBM MESVI	Q9muq7	mesostigma
423	2	2	5.9	31	1	PSBT_CHLRE		chlamydomon
424	2	2	5.9	31	1	PSBT CHLVU	P56327	chlorella v
425	2		5.9	31	1	PSBT CYAPA	P48109	cyanophora
426	2		5.9	31	1	PSBT EUGGR	P20176	euglena gra
427	2		5.9	31	1	PSBT MESVI		mesostigma
428	2		5.9	31	1	PSBT PORPU		porphyra pu
429	2		5.9	31	1	PYSG METBA		methanosarc
430	2		5.9	31	1	RECX METCL		methylomona
431	2		5.9	31	1	RL21 STRTR		streptococc
432	2		5.9	31	1	SARL HUMAN		homo sapien
433	2		5.9	31	1	SC37 MESMA		mesobuthus
	2		5.9	31	1	SCK5 ANDMA		androctonus
434					1	SCKL LEIQH		leiurus qui
435	2		5.9	31				striga herm
436	2		5.9	31	1	SODC_STRHE		_
437	2		5.9	31	1	TX3_HETVE		heteropoda
438	2		5.9	31	1	TXA3_PARAC		parasicyoni
439	2		5.9	31	1	Y191_BORBU		borrelia bu
440	2		5.9	31	1	Y3KD_BPCHP		bacteriopha
441	2		5.9	31	1	Y603_ARCFU		archaeoglob
442	2		5.9	32	1	A2M_PACLE		pacifastacu
443		2	5.9	32	1	APL3_DIAGR		diatraea gr
444		2	5.9	32	1	ATPO_PIG		sus scrofa
445		2	5.9	32	1	ATP7_SPIOL		spinacia ol
446	2	2	5.9	32	1	ATPO_SPIOL	P80087	spinacia ol
447	2	2	5.9	32	1	B4G1_RAT	P80225	r beta-1,4-
448	2	2	5.9	32	1	CAAP MICEC	P21162	micromonosp
449	. 2	2	5.9	32	1	CALO BOVIN	P01260	bos taurus
450	2	2	5.9	32	1	CALO PIG	P01259	sus scrofa
451		2	5.9	32	1	CAR1 ECHCA	Q9prp9	echis carin
452		2	5.9	32	1	CEC ÖIKKI	P83420	oiketicus k
453		2	5.9	32	1	COA1 BPIF1	080295	bacteriopha
454		2	5.9	32	1	COA1 BPIKE		bacteriopha
455		2	5.9	32	1	COA2 BPFD		bacteriopha
456		2	5.9	32				pleuronecte
457		2	5.9	32	1	CXG7 CONPE		conus penna
458		2	5.9	32	1	CYBL RHOGR		rhodotorula
459		2	5.9	32	1	ER29 CHICK		gallus gall
460		2	5.9	32	1	ER29_TRIVU		trichosurus
		2	5.9	32	1	ERH PIG		sus scrofa
461		2		32	1	FER PORCR		porphyridiu
462			5.9			-		anas platyr
463		2	5.9	32	1	FRIH_ANAPL		
464		2	5.9	32	1	GHR4_RAT		rattus norv
465		2	5.9	32	1	GLB4_LAMSP		lamellibrac
466		2	5.9	32	1	GT82_DICLA		dicentrarch
467		2	5.9	32	1	H2AZ_ONCMY		oncorhynchu
468		2	5.9	32	1	HCYC_CHEDE		cherax dest
469		2	5.9	32	1	IAPP_BOVIN		bos taurus
470		2	5.9	32	1	IAPP_PIG		sus scrofa
471		2	5.9	32	1	IAPP_SAGOE		saguinus oe
472		2	5.9	32	1	IAPP_SHEEP		ovis aries
473	- 2	2	5.9	32	1	ILVB_ENTAE	Q09129	enterobacte

474	2	5.9	32	1	ITR2_CUCSA		cucumis sat
475	2	5.9	32	1	LPID_ECOLI	P03060	escherichia
476	2	5.9	32	1	LPID_EDWTA	P08140	edwardsiell
477	2	5.9	32	1	LPIV_ECOLI	P03061	escherichia
478	2	5.9	32	1	MDH NITAL	P10887	nitzschia a
4 79	2	5.9	32	1	MIFH TRITR	P81748	trichuris t
480	2	5.9	32	1	NEUB PIG		sus scrofa
481	2	5.9	32	1	OVOS ANAPL		anas platyr
482	2	5.9	32	1	P1SM LOXIN		loxosceles
483	2	5.9	32	1	PA22 AGKHP		agkistrodon
484	2	5.9	32	1	PA2_RHONO		rhopilema n
485	2	5.9	32	1	PETL CHLRE		-
	2	5.9	32	1	_		chlamydomon
486					PETM_PORPU		porphyra pu
487	2	5.9	32	1	PHNS_DESMU		desulfovibr
488	2	5.9	32	1	PRI3_ONCMY		oncorhynchu
489	2	5.9	32	1	PRT1_ONCKE		oncorhynchu
490	2	5.9	32	1	PRT4_SCYCA		scyliorhinu
491	2	5.9	32	1	PRT5_ONCMY		oncorhynchu
492	2	5.9	32	1	PRT6_ONCMY	P08145	oncorhynchu
493	2	5.9	32	1	PRT7_ONCMY	P08146	oncorhynchu
494	2	5.9	32	1	PRT8 ONCMY	P12817	oncorhynchu
495	2	5.9	32	1	PRT9_ONCMY		oncorhynchu
496	2	5.9	32	1	PRTA ONCMY		oncorhynchu
497	2	5.9	32	1	PRTE HALME		halobacteri
498	2	5.9	32	1	PRT ORYLA		oryzias lat
499	2	5.9	32	1	PSAM MARPO		marchantia
500	2	5.9	32	1	PSBT CYACA		cyanidium c
501	2	5.9	32	1			
	2				PSBT_GUITH		guillardia
502	2	5.9	32	1	PSBZ_EUGAN		euglena ana
503		5.9	32	1	PSBZ_EUGGA		euglena gra
504	2	5.9	32	1	PSBZ_EUGMY		euglena myx
505	2	5.9	. 32	1	RIP2_PHYDI		phytolacca
506	2	5.9	32	1	RK1_RABIT		oryctolagus
507	2	5.9	32	1	RS19_YEREN	Q56847	yersinia en
508	2	5.9	32	1	SCK2_CENNO	P58504	centruroide
509	2	5.9	32	1	TAT_SIVM2	P05912	simian immu
510	2	5.9	32	1	TRYP_PENMO	P35050	penaeus mon
511	2	5.9	32	1	TX29 PHONI		phoneutria
512	2	5.9	32	1	TXP7 APTSC		aptostichus
513	2	5.9	32	1	UC09 MAIZE		zea mays (m
514	2	5.9	32	1	Y169 TREPA		treponema p
515	2	5.9	32	1	Y433 BORBU		borrelia bu
516	2	5.9	32	1	YH17 HAEIN		haemophilus
517	2	5.9	32	1	YSCA YEREN		yersinia en
518	2	5.9	32	1	YTK3 ILTVT		infectious
519	2	5.9	33	1	ACT DICVI		
	2						dictyocaulu
520		5.9	33	1	ANP3_MYOSC		myoxocephal
521	2	5.9	33	1	ANP5_MYOAE		myoxocephal
522	2	5.9	33	1	ATP7_SOLTU		solanum tub
523	2	5.9	33	1	BR2A_RANES		rana escule
524	2	5.9	33	1	BR2B_RANES		rana escule
525	2	5.9	33	1	BR2E_RANES		rana escule
526	2	5.9	33	1	BR2_RANBP		rana brevip
527	2	5.9	33	1	CECB_HELVI	P83414	heliothis v
528	2	5.9	33	1	CECC_HELVI	P83415	heliothis v
529	2	5.9	33	1	COA1_BPFD	P03675	bacteriopha
530	2	5.9	33	1	COA2_BPI22		bacteriopha

531	2	5.9	33	1	COXL ONCMY	PROSS	0 oncorhynchu	
532	2	5.9	33	1	CU89 HUMAN		2 homo sapien	
533	2	5.9	33	1	CXBW_CONRA		4 conus radia	
534	2	5.9	33	1	CXO CONVE		1 conus ventr	
535	2	5.9	33	1	DBB2 DOLAU		6 dolabella a	
. 536	2	5.9	33	1	DEF1 MESAU		5 mesocricetu	
537	2	5.9	33	1	DEF3 MESAU		7 mesocricetu	
538	2	5.9	33	1	DHE3_NEG		4 sus scrofa	
539	2	5.9	33	1	FER PORAE		0 porphyridiu	
540	2	5.9	33	1	GAST CAVPO		5 cavia porce	
541	2	5.9	33	1	GAST_CAVPO		4 chinchilla	
542	2	5.9	33	1	GAST_CHIBR GAST_DIDMA		3 didelphis m	
543	2	5.9	33	1	GGN1 RANRU		5 rana rugosa	
	2				_			
544		5.9	33	1	GGN2_RANRU		6 rana rugosa	
545	2	5.9	33	1	GGN3_RANRU		7 rana rugosa	
546	2	5.9	33	1	HF40_MAIZE		5 zea mays (m	
547	2	5.9	33	1	HOXU_RHOOP		9 rhodococcus	
548	2	5.9	33	1	LPPY_SALTY		2 salmonella	
549	2	5.9	33	1	LPRH_ECOLI		4 escherichia	
550	2	5.9	33	1	LYC2_HORSE		0 equus cabal	
551	2	5.9	33	1	MBP1_MAIZE		4 zea mays (m	
552	,2	5.9	33	1	MHAA_STRCH		5 streptomyce	
553	2	5.9	33	1	MYMY_MYTED		4 mytilus edu	
554	2	5.9	33	1	OTCC_PSEPU		7 pseudomonas	
555	2	5.9	33	1	PBAN_LYMDI		.1 lymantria d	
556	2	5.9	33	1	PEN3_ADECU	P3598	7 canine aden	
557	2	5.9	33	1	PETM_CYAPA	P4836	6 cyanophora	
558	2	5.9	33	1	PETM_SYNEL	Q8 d j:	.5 synechococc	
559	2	5.9	33	1	PK1_DICDI		1 dictyosteli	
560	2	5.9	33	1	PK5_DICDI	P3410	4 dictyosteli	
561	2	5.9	33	1	PRI1_ONCMY	P0232	6 oncorhynchu	
562	2	5.9	33	1	PRI2_ONCMY	P0232	8 oncorhynchu	
563	2	5.9	33	1	PRTB MUGCE	P0813	0 mugil cepha	
564	2	5.9	33	1	PRTL ECOLI	P0233	8 escherichia	
565	2	5.9	33	1	PSAI SPIOL	P1722	8 spinacia ol	
566	2	5.9	33	1		P4205	1 cucumis sat	
567	2	5.9	33	1	PSBT ARATH	P3725	9 arabidopsis	
568	2	5.9	33	1	PSBT MAIZE	P3725	7 zea mays (m	
569	. 2	5.9	33	1	RL21 XENLA	P4962	8 xenopus lae	
570	2	5.9	33	1	RL26 XENLA		29 xenopus lae	
571	2	5.9	33	1	RL28 XENLA		0 xenopus lae	
572	2	5.9	33	1	RL4 HALCU		7 halobacteri	
573	2	5.9	33	1	RPOC HETCA		1 heterosigma	
574	2	5.9	33	1	RRPO BPBZ1		4 bacteriopha	
575	2	5.9	33	1	RS4 XENLA		1 xenopus lae	
576	2	5.9	33	1	RT25 BOVIN		9 bos taurus	
577	2	5.9	33	1	RUGA RANRU		34 rana rugosa	
578	2	5.9	33	1	RUGB RANRU		55 rana rugosa	
579	2	5.9	33	1	SCX9_BUTOC		99 buthus occi	
580	2	5.9	33	1	THIO CLOST		9 clostridium	
581	2	5.9	33	1	TX1 HETVE		25 heteropoda	
582	2	5.9	33	1	TXH1 SELHU		76 selenocosmi	
583	2	5.9	33	1	TXN3 SELHA		54 selenocosmi	
584	2	5.9	33	1	VT1B_RAT		00 rattus norv	
585	2	5.9	33	1	Y474_BORBU		30 borrelia bu	
586 587	2	5.9	33	1	Y50A_MYCTU		66 mycobacteri	
587	2	5.9	33	1	Y656_TREPA	08366	52 treponema p	

= 0.0	_			_	Wala Babbu	051500	1
588	2	5.9	33	1	Y849_BORBU		borrelia bu
589	2	5.9	33	1	YC12_CHLRE		chlamydomon
590	2	5.9	33	1	YC12_MARPO		marchantia
591	2	5.9	33	1	YC12_MESVI		mesostigma
592	2	5.9	33	1	YC12_NEPOL		nephroselmi
593	2	5.9	33	1	YC12_PINTH		pinus thunb
594	2	5.9	33	1	YL74_ARCFU	028108	archaeoglob
595	2	5.9	33	1	YLCH_BP82	Q37869	bacteriopha
596	2	5.9	33	1	YLCH_ECOLI	Q47268	escherichia
597	2	5.9	34	1	AMP2 CHICK	P80390	gallus gall
598	2	5.9	34	1	ASPG PIG	P30918	sus scrofa
599	2	5.9	34	1	BR2C RANES	P40839	rana escule
600	2	5.9	34	1	COL CHICK	P11148	gallus gall
601	2	5.9	34	1	COXA THETH		thermus the
602	2	5.9	34	1	COXG THUOB		thunnus obe
603	2	5.9	34	1	CXGS CONGE		conus geogr
604	2	5.9	34	1	DEF2 RABIT		oryctolagus
605	2	5.9	34	1	DEF7 RABIT		oryctolagus
606	2	5.9	34	1	ECAB ECTTU		ectatomma t
607	2	5.9	34	1	EF2 RABIT		oryctolagus
608	2	5.9	34	1	EGGR APLCA		aplysia cal
609	2	5.9	34	1	H1S STRPU		strongyloce
610	2	5.9	34	1	HS7S CUCMA		cucurbita m
	2			1	_		momordica c
611 612	2	5.9	34	1	ITR1_MOMCO		momordica c
		5.9	34		ITR2_MOMCO		
613	2	5.9	34	1	LPTN_PROVU		proteus vul
614	2	5.9	34	1	M44E_HUMAN		homo sapien
615	2	5.9	34	1	MYTA_MYTED		mytilus edu
616	2	5.9	34	1	MYTB_MYTED		mytilus edu
617	2	5.9	34	1	PETM_ANASP		anabaena sp
618	2	5.9	34	1	PRT1_SAROR		sarda orien
619	2	5.9	34	1	PRT1_SCOSC		scomber sco
620	2	5.9	34	1	PRT1_THUTH		thunnus thy
621	2	5.9	34	1	PRT2_SCOSC		scomber sco
622	2	5.9	34	1	PRT2_THUTH		thunnus thy
623	2	5.9	34	1	PRT_DICLA		dicentrarch
624	2	5.9	34	1	PRT_PERFV		perca flave
625	2	5.9	34	1	PSAI_LOTJA		lotus japon
626	2	5.9	34	1	PSAI_OENHO		oenothera h
627	2	5.9	34	1	PSAI_SOYBN		glycine max
628	2	5.9	34	1	PSBM_ARATH		arabidopsis
629	2	5.9	34	1	PSBM_CHAGL		chaetosphae
630	2	5.9	34	1	PSBM_CHLRE		chlamydomon
631	2	5.9	34	1	PSBM_MAIZE		zea mays (m
632	2	5.9	34	1	PSBM_MARPO		marchantia
633	2	5.9	34	1	PSBM_NEPOL		nephroselmi
634	2	5.9	34	1	PSBM_OENHO		oenothera h
635	2	5.9	34	1	PSBM_PEA		pisum sativ
636	2	5.9	34	1	PSBM_PSINU		psilotum nu
637	2	5.9	34	1	PSBM_WHEAT		triticum ae
638	2	5.9	34	1	PSBT_TOBAC		nicotiana t
639	2	5.9	34	1	PSPC_BOVIN		bos taurus
640	2	5.9	34	1	PSPC_CANFA		canis famil
641	2	5.9	34	1	PTU1_PEITU		peirates tu
642	2	5.9	34	1	PYSB_METBA		methanosarc
643	2	5.9	3 4	1	RNL1_PIG		sus scrofa
644	2	5.9	34	1	RR2_OCHNE	Q40606	ochrosphaer

645	2	5.9	34	1	SCXM SCOMA	P80719	scorpio mau
646	2	5.9	34	1	SMS MYXGL	P19209	myxine glut
647	2	5.9	34	1	-		malbranchea
					THEM_MALSU		
648	2	5.9	34	1	TX33_PHONI		phoneutria
649	2	5.9	34	1	TXP5_BRASM	P49266	brachypelma
650	2	5.9	34	1	VLYS BPM1	P08229	bacteriopha
651	2	5.9	34	1	VPU HV1W2		human immun
652	2	5.9	34	1	Y05J BPT4		
					_		bacteriopha
653	2	5.9	34	1	Y224_TREPA		treponema p
654	2	5.9	34	1	Y848_BORBU	051788	borrelia bu
655	2	5.9	34	1	Y870 HAEIN	P44065	haemophilus
656	2	5.9	34	1	Y967 HAEIN		haemophilus
657	2	5.9	34	1	YC12 GUITH		guillardia
					_		
658	2	5.9	34	1	YC12_ODOSI		odontella s
659	2	5.9	34	1	YC12_PORPU	P51385	porphyra pu
660	2	5.9	34	1	YC12 SKECO	096797	skeletonema
661	2	5.9	34	1	YMIA AGRTU		agrobacteri
662	2	5.9	34	1	Z33B HUMAN		homo sapien
					_		
663	2	5.9	35	1	ADO1_AGRDO		agriosphodr
664	2	5.9	35	1	C550_BACHA	P80091	bacillus ha
665	2	5.9	35	1	CEC4 BOMMO	P14666	bombyx mori
666	2	5.9	35	1	CECA HELVI		heliothis v
667	2	5.9	35	1	_		
					CECB_ANTPE		antheraea p
668	2	5.9	35	1	CHI1_CASSA		castanea sa
669	2	5.9	35	1	D3HI_RABIT	P32185	oryctolagus
670	2	5.9	35	1	DEFB MYTED	P81611	mytilus edu
671	2	5.9	35	1	END4 YEREN		yersinia en
672	2	5.9	35	1	ERFK KLEAE		klebsiella
673	2	5.9	35	1	EXE2_HELSU		heloderma s
674	2	5.9	35	1	FAS_CAPHI	P08757	capra hircu
675	2	5.9	35	1	FLAV NOSSM	P35707	nostoc sp.
676	2	5.9	35	1	GBGU MOUSE	061017	mus musculu
677	2	5.9	35	1	GRDB CLOPU		clostridium
678							
	2	5.9	35	1	GUR_GYMSY		gymnema syl
679	2	5.9	35	1	HMWC_DESGI		desulfovibr
680	2	5.9	35	1	IAAC_HORVU	P34951	hordeum vul
681	2	5.9	35	1	KPPR PINPS	P81664	pinus pinas
682	2	5.9	35	1	LCGB LACLA		lactococcus
683	2	5.9	35	1	NEF HV1H3		human immun
684	2	5.9	35	1	PBP1_LYMDI		lymantria d
685	2	5.9	35	1	PBP2_LYMDI		lymantria d
686	2	5.9	35	1	PBP HYACE	P34175	hyalophora
687	2	5.9	35	1	PHIT MYTCA	P35422	mytilus cal
688	2	5.9	35	1	PSAI CYAPA		cyanophora
	2						
689		5.9	35	1	PSBM_SYNY3		synechocyst
690	2	5.9	35	1	PSBT_OENHO		oenothera h
691	2	5.9	35	1	PSBT_ORYSA	P12183	oryza sativ
692	2	5.9	35	1	PSBT PINTH	P41625	pinus thunb
693	2	5.9	35	1	PSPC PIG		sus scrofa
694	2	5.9	35	1	RL32_HALCU		halobacteri
							,
695	2	5.9	35	1	SCKB_PANIM		pandinus im
696	2	5.9	35	1	SCKG_PANIM		pandinus im
697	2	5.9	35	1	SCX5_BUTEU	P15222	buthus eupe
698	2	5.9	35	1	SCXP ANDMA		androctonus
699	2	5.9	35	1	SMS LAMFL		lampetra fl
700	2	5.9	35	1	-		
					SPRC_PIG		sus scrofa
701	2	5.9	35	1	THPA_THADA	P21381	thaumatococ

							_
	702	2	5.9	35	1	TXAG_AGEOP	P31328 agelena opu
	703	2	5.9	35	1	TXH4_SELHU	P83303 selenocosmi
	704	2	5.9	35	1	TXKS STOHE	P29187 stoichactis
	705	2	5.9	35	1	TXN4 SELHA	P83471 selenocosmi
	706	2	5.9	35	1	VL3 PAPVD	P06919 deer papill
·	707	2	5.9	35	1	VSPA CERVI	P18692 cerastes vi
	708	2	5.9	35	1	WSP7 PINPS	P81086 pinus pinas
	709	2	5.9	35	1	Y320 BORBU	051299 borrelia bu
	710	2	5.9	35	1	Y37_BPT3	P20325 bacteriopha
	711	2	5.9	35	1	Y644_ARCFU	029613 archaeoglob
	712	2	5.9	35	1	Y845_BORBU	051785 borrelia bu
	713	2	5.9	35	1	Y847_BORBU	051787 borrelia bu
	714	2	5.9	35	1	YC12_CYACA	Q9tlx0 cyanidium c
	715	2	5.9	35	1	YC69_ARCFU	028999 archaeoglob
	716	2	5.9	35	1	YQB5 CAEEL	Q09258 caenorhabdi
	717	2	5.9	36	1	AMPL PIG	P28839 sus scrofa
	718	2	5.9	36	1	ANFV ANGJA	P22642 anguilla ja
	719	2	5.9	36	1	C3L1 BOVIN	P30922 bos taurus
	720	2	5.9	36	1	CBBA NITVU	P37102 nitrobacter
		2	5.9	36	1	CECD ANTPE	P01511 antheraea p
	721						
	722	2	5.9	36	1	CYC7_GEOME	P81894 geobacter m
	723	2	5.9	36	1	DESR_DESGI	P00273 desulfovibr
	724	2	5.9	36	1	F4RE_METOG	P80951 methanogeni
	725	2	5.9	36	1	GLU1_ORENI	P81026 oreochromis
	726	2	5.9	36	1	GLUC_HYDCO	P09682 hydrolagus
	727	2	5.9	36	1	H1L5_ENSMI	P27203 ensis minor
	728	2	5.9	36	1	HBB PONPY	Q9tt34 pongo pygma
	729	2	5.9	36	1	IAA STRAU	P04082 streptomyce
	730	2	5.9	36	1	IOB1 ISYOB	P58609 isyndus obs
	731	2	5.9	36	1	KAD STRGR	P53398 streptomyce
	732	2	5.9	36	1	LHG RHOVI	P04126 rhodopseudo
	733	2	5.9	36	1	LYOX PIG	P45845 sus scrofa
	734	2	5.9	36	1	MFA1_YEAST	P34165 saccharomyc
	735	2	5.9	36	1	MPG2_DACGL	Q41183 dactylis gl
	736	2	5.9	36	1	MYPC_RAT	P56741 rattus norv
	737	2	5.9	36	1	NEUH_CARCA	P11975 cardisoma c
	738	2	5.9	36	1	NEUY_GADMO	P80167 gadus morhu
	739	2	5.9	36	1	NEUY_ONCMY	P29071 oncorhynchu
	740	2	5.9	36	1	NEUY RABIT	P09640 oryctolagus
	741	2	5.9	36	1	NEUY RANRI	P29949 rana ridibu
	742	2	5.9	36	1	NIFH ENTAG	P26249 enterobacte
	743	2	5.9	36	1	NLTP PINPI	P26912 pinus pinea
	744	2	5.9	36	1	NUCM SOLTU	P80264 solanum tub
	745	2	5.9	36	1	OST2 CHICK	P80897 gallus gall
						_	
	746	2	5.9	36	1	PAHO_ALLMI	P06305 alligator m
	747	2	5.9	36	1	PAHO_ANSAN	P06304 anser anser
	748	2	5.9	36	1	PAHO_CERSI	P37999 ceratotheri
	749	2	5.9	36	1	PAHO_DIDMA	P18107 didelphis m
	750	2	5.9	36	1	PAHO_EQUZE	P38000 equus zebra
	751	2	5.9	36	1	PAHO_ERIEU	P41335 erinaceus e
	752	2	5.9	36	1	PAHO_LARAR	P41337 larus argen
	753	2	5.9	36	1	PAHO MACMU	P33684 macaca mula
	754	2	5.9	36	1	PAHO RABIT	P41336 oryctolagus
	755	2	5.9	36	1	PAHO RANCA	P15427 rana catesb
	756	2	5.9	36	1	PAHO RANTE	P31229 rana tempor
	750 757	2	5.9	36	1	PAHO STRCA	P11967 struthio ca
						_	
	758	2	5.9	36	1	PAHO_TAPPI	P39659 tapirus pin

759	2	5.9	36	1	PGKH_CHLFU		chlorella f
760	2	5.9	36	1	PSAD_PEA	P20117	pisum sativ
761	2	5.9	36	1	PSAH PEA	P20121	pisum sativ
762	2	5.9	36	1	PSAI ANGLY	P28251	angiopteris
763	2	5.9	36	1	PSAI BRAOL		brassica ol
764	2	5.9	36	1	PSAI CARCL	~	carpobrotus
						_	_
765	2	5.9	36	1	PSAI_CHAGL		chaetosphae
766	2	5.9	36	1	PSAI_CHLVU		chlorella v
767	2	5.9	36	1	PSAI_CYACA		cyanidium c
768	2	5.9	36	1	PSAI_GUITH	078462	guillardia
769	2	5.9	36	1	PSAI HORVU	P13165	hordeum vul
770	2	5.9	36	1	PSAI MAIZE	P30980	zea mays (m
771	2	5.9	36	1	PSAI MARPO		marchantia
772	2	5.9	36	1	PSAI MESVI		mesostigma
773	2	5.9	36	1	PSAI NEPOL		nephroselmi
				1			
774	2	5.9	36		PSAI_ORYSA		oryza sativ
775	2	5.9	36	1	PSAI_PICAB		picea abies
776	2	5.9	36	1	PSAI_PORPU		porphyra pu
777	2	5.9	36	1	PSAI_PSINU	Q8wi10	psilotum nu
778	2	5.9	36	1	PSAI_SKECO	096813	skeletonema
779	2	5.9	36	1	PSAI TOBAC	P12187	nicotiana t
780	2	5.9	36	1	PSAI WHEAT	P25410	triticum ae
781	2	5.9	36	1	PSBI ARATH		arabidopsis
782	2	5.9	36	1	PSBI HORVU		hordeum vul
783	2	5.9	36	1	PSBI MARPO		marchantia
784	2	5.9	36		-		
				1	PSBI_ORYSA		oryza sativ
785	2	5.9	36	1	PSBI_PINTH		pinus thunb
786	2	5.9	36	1	PSBI_PSEMZ		pseudotsuga
787	2	5.9	36	1	PSBM_CHLVU		chlorella v
788	2	5.9	36	1	PSBM_SYNEL		synechococc
789	2	5.9	36	1	PSBY_ODOSI		odontella s
790	2	5.9	36	1	PSBY_PORPU	P51206	porphyra pu
791	2	5.9	36	1	PYY AMICA	P29205	amia calva
792	2	5.9	36	1	PYY LEPSP	P09473	lepisosteus
793	2	5.9	36	1	PYYONCKI		oncorhynchu
794	2	5.9	36	1	PYY PIG		sus scrofa
795	2	5.9	36	1	PYY RAJRH		raja rhina
796	2	5.9	36	1	PYY RANRI		rana ridibu
797	2	5.9	36	1	SCK2_CENLL		centruroide
798	2	5.9	36	1	SCK3_LEIQH		leiurus qui
799	2	5.9	36	1	SCX1_BUTEU		buthus eupe
800	2	5.9	36	1	SCXL_LEIQU	P45639	leiurus qui
801	2	5.9	36	1	SPYY_PHYBI	P80952	phyllomedus
802	2	5.9	36	1	TAEK ACTEQ	P81897	actinia equ
803	2	5.9	36	1	TERN PSEUS	P82321	pseudacanth
804	2	5.9	36	1	TLN1 CHICK		gallus gall
805	2	5.9	36	1	TX1B AGEAP		agelenopsis
806	2	5.9	36	1	TX35 PHONI		phoneutria
807	2	5.9	36	1	TXAM METSE		metridium s
808	2	5.9	36	1	TXD3_PARLU		paracoelote
	2						-
809		5.9	36	1	TXJA_HADVE		hadronyche
810	2	5.9	36	1	TXJB_HADVE		hadronyche
811	2	5.9	36	1	Y16L_BPT4		bacteriopha
812	2	5.9	36	1	Y297_ARCFU		archaeoglob
813	2	5.9	36	1	Y4KD_BPCHP		bacteriopha
814	2	5.9	36	1	Y609_BORBU		borrelia bu
815	2	5.9	36	1	Y619_ARCFU	029636	archaeoglob

816	2	5.9	36	1	Y699_TREPA		treponema p
817	2	5.9	36	1	YC12_CYAPA	P48256	cyanophora
818	2	5.9	36	1	YG50 HAEIN	P44281	haemophilus
819	2	5.9	36	1	YRKG BACSU	P54434	bacillus su
820	2	5.9	37	1	24KD PLACH	P14592	plasmodium
821	2	5.9	37	1	AFP4 MALPA		malva parvi
822	2	5.9	37	1	ANP3 PSEAM		pseudopleur
823	2	5.9	37	1	ATPO SOLTU		solanum tub
824	2	5.9	37	1	B2MG ORENI		oreochromis
825	2	5.9	37	1	CAL1 PIG		sus scrofa
826	2	5.9	37	1	CAL1 SHEEP		ovis aries
827	2	5.9	37	1	CALR RANRI		rana ridibu
	2	5.9					
828			37	1	CEC2_MANSE		manduca sex
829	2	5.9	37	1	CEC3_MANSE		manduca sex
830	2	5.9	37	1	CEC4_MANSE		manduca sex
831	2	5.9	37	1	CG2S_LUPAN		lupinus ang
832	2	5.9	37	1	CHCD_ANTPO		antheraea p
833	2	5.9	37	1	CS40_STAAU		staphylococ
834	2	5.9	37	1	CUP4_SARBU		sarcophaga
835	2	5.9	37	1	DEFA_MYTED		mytilus edu
836	2	5.9	37	1	ECAA_ECTTU		ectatomma t
837	2	5.9	37	1	ES2A_RANES	P40845	rana escule
838	2	5.9	37	1	ES2B_RANES	P40846	rana escule
839	2	5.9	37	1	F13A_BOVIN	P12260	bos taurus
840	2	5.9	37	1	GHR3_RAT	P33580	rattus norv
841	2	5.9	37	1	HCYB_CANPG	P83175	cancer pagu
842	2	5.9	37	1	HOXF_RHOOP	P22658	rhodococcus
843	2	5.9	37	1	IAPP_CRIGR	P19890	cricetulus
844	2	5.9	37	1	LPPY_SERMA	P19937	serratia ma
845	2	5.9	37	1	MAUR_PARVE	Q56462	paracoccus
846	2	5.9	37	1	ME20 EUPRA	P26888	euplotes ra
847	2	5.9	37	1	ME22_EUPRA	P58548	euplotes ra
848	2	5.9	37	1	MIBP PSESP	P04576	pseudomonas
849	2	5.9	37	1	NLT3 VITSX	P80273	vitis sp. (
850	2	5.9	37	1	NLT4 VITSX		vitis sp. (
851	2	5.9	37	1	NUFM SOLTU		solanum tub
852	2	5.9	37	1	OGT1 RABIT	P81436	oryctolagus
853	2	5.9	37	1	OP2A OXYKI		oxyopes kit
854	2	5.9	37	1	OP2B OXYKI		oxyopes kit
855	2	5.9	37	1	OP2C OXYKI		oxyopes kit
856	2	5.9	37	1	OP2D OXYKI		oxyopes kit
857	2	5.9	37	1	PETG ANASP		anabaena sp
858	2	5.9	37	1	PETG ANAVA		anabaena va
859	2	5.9	37	1	PETG_ARATH		arabidopsis
860	2	5.9	37	1	PETG CHAGL		chaetosphae
861	2	5.9	37	1	PETG CHLEU	_	chlamydomon
862	2	5.9	37	1	PETG CHLRE		chlamydomon
863	2	5.9	37	1	PETG_CHLVU		chlorella v
864	2	5.9	37	1	PETG CUSRE		cuscuta ref
865	2	5.9	37	1	PETG CYAPA		cyanophora
866	2	5.9	37	1	PETG_CTAFA PETG EUGGR		euglena gra
867	2	5.9	37	1	PETG_EUGGK PETG GUITH		guillardia
868	2	5.9	37	1	PETG_GOTTM PETG MARPO		marchantia
869	2	5.9	37	1	PETG_MARFO PETG MESVI		mesostigma
870	2	5.9	37	1	PETG_MESVI PETG_NEPOL		nephroselmi
871	2	5.9	37	1	PETG_NEFOL PETG ODOSI		odontella s
872	2	5.9	37	1	PETG_ODOST PETG_ORYSA		oryza sativ
0/2	4	٠. ر	J /	T	rara_okraw	EIZIZI	Oryza Saciv

873	2	5.9	37 1	PETG PINTH	P41614 pinus thunb
874	2	5.9	37 1	PETG PORPU	P51318 porphyra pu
875	2	5.9	37 1	_	Q8wi02 psilotum nu
876	2	5.9	37 1	PETG SKECO	096811 skeletonema
	2	5.9	37 1	PETG SYNEL	Q8dki2 synechococc
877					
878	2	5.9	37 1	PETG_SYNP7	Q9z3g1 synechococc
879	2	5.9	37 1	PIIL_ACHLY	P81720 achromobact
880	2	5.9	37 1	POLN_WEEV	P13896 western equ
881	2	5.9	37 1	PRF1_RAT	P18889 rattus norv
882	2	5.9	37 1	PSAI ARATH	P56768 arabidopsis
883	2	5.9	37 1	PSAJ EUGGR	P30394 euglena gra
884	2	5.9	37 1	PSBL ARATH	P29301 arabidopsis
885	2	5.9	37 1	PSBL ORYSA	
	2	5.9		PSBM PINTH	
886					
887	2	5.9	37 1	_	O19893 cyanidium c
888	2	5.9	37 1	_	078433 guillardia
889	2	5.9	37 1	PYY_CHICK	P29203 gallus gall
890	2	5.9	37 1	REV_SIVM2	P08809 simian immu
891	2	5.9	37 1	RK36 ARATH	P12144 arabidopsis
892	2	5.9	37 1	_	P24355 astasia lon
893	2	5.9	37 1		Q8m9v5 chaetosphae
	2	5.9	37 1		P56360 chlorella v
894					
895	2	5.9	37 1	_	Q9tlu9 cyanidium c
896	2	5.9	37 1	_	P48131 cyanophora
897	2	5.9	37 1	RK36_EPIVI	P30069 epifagus vi
898	2	5.9	37 1	RK36_EUGGR	P21532 euglena gra
899	2	5.9	37 1	RK36 LOTJA	Q9bbq2 lotus japon
900	2	5.9	37 1	RK36 MARPO	P12142 marchantia
901	2	5.9	37 1	-	Q9tl26 nephroselmi
902	2	5.9	37 1	_	Q9mtj1 oenothera h
903	2	5.9	37 1		P12143 oryza sativ
				_	
904	2	5.9	37 1		P07815 pisum sativ
905	2	5.9	37 1		P41631 pinus thunb
906	2	5.9	37 1	_	P51296 porphyra pu
907	2	5.9	37 1	_	Q8why9 psilotum nu
908	2	5.9	37 1	RK36_SPIOL	P12230 spinacia ol
909	2	5.9	37 1	RL36_ANASP	Q8ypk0 anabaena sp
910	2	5.9	37 1	RL36 AQUAE	O66487 aquifex aeo
911	2	5.9	37 1	RL36 BACHD	O50631 bacillus ha
912	2	5.9	37 1	_	P07841 bacillus st
913	2	5.9	37 1		O51452 borrelia bu
914	2	5.9	37 1	.—	Q9pm84 campylobact
915	2	5.9	37 1	_	Q8xhu7 clostridium
					
916	2	5.9	37 1	_	Q9rsk0 deinococcus
917	2	5.9	37 1	_	P46361 haemophilus
918	2	5.9	37 1		Q9zjt1 helicobacte
919	2	5.9	37 1	_	P56058 helicobacte
920	2	5.9	37 1	RL36_LEPIN	Q9xd13 leptospira
921	2	5.9	37 1	RL36 MYCGA	Q9rdv9 mycoplasma
922	2	5.9	37 1		P47420 mycoplasma
923	2	5.9	37 1		Q9x7a2 mycobacteri
924	2	5.9	37 1		P52864 mycoplasma
	2	5.9			Q98q05 mycoplasma
925					
926	2	5.9	37 1		P38015 mycoplasma
927	2	5.9	37 1	_	P45810 mycobacteri
928	2	5.9	37 1		Q9jrb2 neisseria m
929	2	5.9	37 1	RL36_STRCO	O86772 streptomyce

930	2	5.9	37	1	RL36 SYNP6	024707 synechococc
931	2	5.9	37	1	RL36 THETH	P80256 thermus the
932	2	5.9	37	1	RL36 THETN	Q8r7x8 thermoanaer
933	2	5.9	37	1	RL36_TREPA	O83239 treponema p
934	2	5.9	37	1	RL36_IRBIA	Q9pqn7 ureaplasma
				1		P78001 vibrio chol
935	2	5.9	37		RL36_VIBCH	
936	2	5.9	37	1	RL7_CLOPA	P05393 clostridium
937	2	5.9	37	1	RS15_HELLU	P52820 helix lucor
938	2	5.9	37	1	RUGC_RANRU	P80956 rana rugosa
939	2	5.9	37	1	SCIT_MESTA	P81761 mesobuthus
940	2	5.9	37	1	SCK2_LEIQH	P45628 leiurus qui
941	2	5.9	37	1	SCK3_BUTOC	P59290 buthus occi
942	2	5.9	37	1	SCK3 PARTR	P83112 parabuthus
943	2	5.9	37	1	SCKA TITSE	P46114 tityus serr
944	2	5.9	37	1	SCKC LEIQH	P13487 leiurus qui
945	2	5.9	37	1	SMS PETMA	P21779 petromyzon
946	2	5.9	37	1	TCTP TRYBB	P35758 trypanosoma
947	2	5.9	37	1	THHS HORVU	P33045 hordeum vul
948	2	5.9	37	1	TX21_SELHU	P82959 selenocosmi
	2	5.9	37	1		
949					TX22_SELHU	P82960 selenocosmi
950	2	5.9	37	1	TXD1_PARLU	P83256 paracoelote
951	2	5.9	37	1	TXD2_PARLU	P83257 paracoelote
952	2	5.9	37	1	TXD4_PARLU	P83259 paracoelote
953	2	5.9	37	1	TXJC_HADVE	P82228 hadronyche
954	2	5.9	37	1	TXM2_AGEAP	P11058 agelenopsis
955	2	5.9	37	1	TXM5_AGEAP	P11061 agelenopsis
956	2	5.9	37	1	TXOF_HADVE	P81599 hadronyche
957	2	5.9	37	1	TXP3 APTSC	P49268 aptostichus
958	2	5.9	37	1	VA1 BPBF2	P19347 bacteriopha
959	2	5.9	37	1	VG40 BPML5	Q05250 mycobacteri
960	2	5.9	37	1	VG65 BPPH2	P16515 bacteriopha
961	2	5.9	37	1	VG65 BPPZA	P08384 bacteriopha
962	2	5.9	37	1	VP64 NPVBM	P41722 bombyx mori
963	2	5.9	37	1	VPU HV1Z8	P08807 human immun
964	2	5.9	37	1	Y268 ARCFU	O29971 archaeoglob
965	2	5.9	37	1	Y63 BPT7	P03799 bacteriopha
966	2	5.9	37	1	Y692_BORBU	051635 borrelia bu
967	2	5.9	37	1	Y700_BORBU	O51643 borrelia bu
968	2	5.9	37	1	Y762_BORBU	O51703 borrelia bu
969	2	5.9	37	1	Y846_BORBU	O51786 borrelia bu
970	2	5.9	37	1	YBGT_ECOLI	P56100 escherichia
971	2	5.9	37	1	YC12_CHLVU	P56328 chlorella v
972	2	5.9	37	1	YDA3_SCHPO	Q10345 schizosacch
973	2	5.9	37	1	YIM4_BPPH1	P10428 bacteriopha
974	2	5.9	37	1	YQGE BACCA	P28753 bacillus ca
975	2	5.9	37	1	YRYL CAEEL	Q19177 caenorhabdi
976	2	5.9	38	1	A2M HOMAM	P20737 homarus ame
977	2	5.9	38	1	AFP5 MALPA	P83139 malva parvi
978	2	5.9	38	1	BD01 BOVIN	P46159 bos taurus
979	2	5.9	38	1	BD08 BOVIN	P46166 bos taurus
980	2	5.9	38	1	COA3 XANCP	Q07484 xanthomonas
981	2	5.9	38	1	CRS3 NOTGO	P15534 nototodarus
982	2		38			
		5.9		1	CU47_LACCU	P80323 lactobacill
983	2	5.9	38	1	DCHS_MICSP	P00863 micrococcus
984	2	5.9	38	1	DEF4_LEIQH	P41965 leiurus qui
985	2	5.9	38	1	DEF7_SPIOL	P81573 spinacia ol
986	2	5.9	38	1	DEFI_AESCY	P80154 aeschna cya

987	2	5.9	38	1	DEFI MYTGA	P80571 mytilus gal
988	2	5.9	38	1	DLP3 ORNAN	P82141 ornithorhyn
989	2	5.9	38	1	DNP_DENAN	P28374 dendroaspis
990	2	5.9	38	1	DPOB_BOVIN	Q27958 bos taurus
991	2	5.9	38	1	E2F1_RAT	009139 rattus norv
992	2	5.9	38	1	EST5_DROMO	P10095 drosophila
993	2	5.9	38	1	EXE1_HELSU	P04203 heloderma s
994	2	5.9	[`] 38	1	FER_METPR	P81542 metallospha
995	2	5.9	38	1	GLUM_HYDCO	P23063 hydrolagus
996	2	5.9	38	1	GME1_RAT	Q9quz8 rattus norv
997	2	5.9	38	1	H5_COLLI	P02260 columba liv
998	2	5.9	38	1	HIS1_MACFA	P34084 macaca fasc
999	2	5.9	38	1	HMG2_BOVIN	P40673 bos taurus
1000	2	5.9	38	1	HOXH RHOOP	P22661 rhodococcus

ALIGNMENTS

RESULT 1

```
FABI RHASA
     FABI RHASA
ID
                    STANDARD;
                                   PRT;
                                           33 AA.
AC
     P81175;
DT
     15-JUL-1998 (Rel. 36, Created)
DT
     15-JUL-1998 (Rel. 36, Last sequence update)
DT
     15-JUL-1998 (Rel. 36, Last annotation update)
DE
     Fatty acid-binding protein, intestinal (I-FABP) (FABPI) (Fragments).
OS
     Rhamdia sapo.
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
     Actinopterygii; Neopterygii; Teleostei; Ostariophysi; Siluriformes;
OC.
OC.
     Pimelodidae; Rhamdia.
OX
     NCBI TaxID=55673;
RN
     [1]
RP
     SEQUENCE.
RC
     TISSUE=Intestine;
RX
     MEDLINE=98036128; PubMed=9370361;
RA
     Di Pietro S.M., Dell'Angelica E.C., Veerkamp J.H., Sterin-Speziale N.,
RA
     Santome J.A.;
     "Amino acid sequence, binding properties and evolutionary
RT
RT
     relationships of the basic liver fatty-acid-binding protein from the
RT
     catfish Rhamdia sapo.";
RL
     Eur. J. Biochem. 249:510-517(1997).
CC
     -!- FUNCTION: FABP ARE THOUGHT TO PLAY A ROLE IN THE INTRACELLULAR
CC
         TRANSPORT OF LONG-CHAIN FATTY ACIDS AND THEIR ACYL-COA ESTERS.
CC
     -!- SUBCELLULAR LOCATION: Cytoplasmic.
CC
     -!- TISSUE SPECIFICITY: INTESTINE.
CC
     -!- SIMILARITY: BELONGS TO THE FABP/P2/CRBP/CRABP FAMILY OF
CC
         TRANSPORTERS.
DR
     InterPro; IPR000463; Fatty acid BP.
DR
     PROSITE; PS00214; FABP; PARTIAL.
KW
     Transport; Lipid-binding.
FT
     NON TER
                  1
                         1
FT
     NON CONS
                  12
                         13
     NON CONS
                  20
FT
                         21
FT
     NON CONS
                  28
                         29
     NON TER
FT
                  33
                         33
                33 AA; 3660 MW; 5BA16CC2880B7819 CRC64;
SO
     SEOUENCE
```

```
Query Match
                         14.7%; Score 5; DB 1; Length 33;
  Best Local Similarity 100.0%; Pred. No. 40;
           5; Conservative 0; Mismatches 0; Indels
                                                             0; Gaps
           1 SVSEI 5
Qy
             11111
          13 SVSEI 17
Db
RESULT 2
DMD RAT
    DMD RAT
                   STANDARD;
                                 PRT;
                                        29 AA.
AC
     P11530;
DT
     01-OCT-1989 (Rel. 12, Created)
    01-OCT-1989 (Rel. 12, Last sequence update) 28-FEB-2003 (Rel. 41, Last annotation update)
DT
DT
DE
    Dystrophin (Fragment).
GN
    DMD.
OS
    Rattus norvegicus (Rat).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
    Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Rattus.
OX
    NCBI TaxID=10116;
RN
     [1]
RΡ
     SEQUENCE FROM N.A.
    MEDLINE=88122671; PubMed=3340214;
RX
RA
    Nudel U., Robzyk K., Yaffe D.;
RT
    "Expression of the putative Duchenne muscular dystrophy gene in
RT
     differentiated myogenic cell cultures and in the brain.";
RL
    Nature 331:635-638(1988).
     -!- FUNCTION: May play a role in anchoring the cytoskeleton to the
CC
CC
        plasma membrane.
CC
     -!- SUBUNIT: Interacts with the syntrophins SNTA1, SNTB1, SNTB2, SNTG1
CC
        and SNTG2 (By similarity).
     _____
CC
CC
     This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
    between the Swiss Institute of Bioinformatics and the EMBL outstation -
     the European Bioinformatics Institute. There are no restrictions on its
CC
CC
    use by non-profit institutions as long as its content is in no way
CC
    modified and this statement is not removed. Usage by and for commercial
CC
     entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
     or send an email to license@isb-sib.ch).
CC
DR
     EMBL; X07000; CAA30057.1; -.
DR
     PIR; S01614; S01614.
DR
     InterPro; IPR001589; Actbind actnin.
DR
     InterPro; IPR001202; WW Rsp5 WWP.
     PROSITE; PS00019; ACTININ 1; PARTIAL.
    PROSITE; PS00020; ACTININ_2; PARTIAL.
DR
     PROSITE; PS01159; WW DOMAIN 1; PARTIAL.
DR
     PROSITE; PS50020; WW DOMAIN 2; PARTIAL.
DR
KW
    Structural protein; Actin-binding; Calcium-binding; Cytoskeleton;
KW
    Repeat.
FT
    NON TER
                 1
                         1
FT
    NON TER
                 29
                        29
SQ
     SEQUENCE
               29 AA; 3289 MW; 8ECFB28A1A7ACAF0 CRC64;
```

```
11.8%; Score 4; DB 1; Length 29;
 Ouery Match
  Best Local Similarity 100.0%; Pred. No. 4.2e+02;
                              0; Mismatches 0; Indels
          4; Conservative
                                                               0; Gaps
                                                                         0;
          27 KLOD 30
Qу
              Db
          12 KLQD 15
RESULT 3
PCG3 PACGO
     PCG3 PACGO
                   STANDARD;
                                  PRT;
                                          30 AA.
     P82416;
DТ
     16-OCT-2001 (Rel. 40, Created)
     16-OCT-2001 (Rel. 40, Last sequence update)
DT
     15-SEP-2003 (Rel. 42, Last annotation update)
DT
DE
     Ponericin G3.
OS
     Pachycondyla goeldii (Ponerine ant).
OC
     Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
OC
    Neoptera; Endopterygota; Hymenoptera; Apocrita; Aculeata; Formicidae;
OC
     Ponerinae; Pachycondyla.
     NCBI TaxID=118888;
OX
RN
     [1]
     SEQUENCE, AND FUNCTION.
RΡ
RC
     TISSUE=Venom;
RX
    MEDLINE=21264562; PubMed=11279030;
RA
    Orivel J., Redeker V., Le Caer J.-P., Krier F., Revol-Junelles A.-M.,
RA
     Longeon A., Chafotte A., Dejean A., Rossier J.;
RT
     "Ponericins, new antibacterial and insecticidal peptides from the
    venom of the ant Pachycondyla goeldii.";
RL
     J. Biol. Chem. 276:17823-17829(2001).
CC
     -!- FUNCTION: BROAD SPECTRUM OF ACTIVITY AGAINST BOTH GRAM-POSITIVE
CC
         AND GRAM-NEGATIVE BACTERIA AND S.CEREVISIAE. HAS INSECTICIDAL
CC
         AND NON-HEMOLYTIC ACTIVITIES.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- MASS SPECTROMETRY: MW=3381.36; METHOD=MALDI.
KW
     Antibiotic; Insect immunity; Fungicide.
     SEQUENCE 30 AA; 3383 MW; BC0463D0AF140B53 CRC64;
SO
  Query Match
                         11.8%; Score 4; DB 1; Length 30;
                         100.0%; Pred. No. 4.3e+02;
  Best Local Similarity
  Matches
            4; Conservative
                               0; Mismatches
                                                 0; Indels 0; Gaps
          10 NKGK 13
Qу
              1111
Dh
           7 NKGK 10
RESULT 4
PSBY SYNY3
     PSBY SYNY3
                                  PRT;
ID
                   STANDARD;
                                          39 AA.
     P73676;
AC
DT
     15-DEC-1998 (Rel. 37, Created)
DT
     15-DEC-1998 (Rel. 37, Last sequence update)
DT
     16-OCT-2001 (Rel. 40, Last annotation update)
DE
     Photosystem II protein Y.
GN
    PSBY OR SML0007.
```

```
Synechocystis sp. (strain PCC 6803).
OS
    Bacteria; Cyanobacteria; Chroococcales; Synechocystis.
OC.
OX
    NCBI TaxID=1148;
RN
    [1]
    SEQUENCE FROM N.A.
RΡ
    MEDLINE=97061201; PubMed=8905231;
RX
RA
    Kaneko T., Sato S., Kotani H., Tanaka A., Asamizu E., Nakamura Y.,
RA
    Miyajima N., Hirosawa M., Sugiura M., Sasamoto S., Kimura T.,
    Hosouchi T., Matsuno A., Muraki A., Nakazaki N., Naruo K., Okumura S.,
RA
    Shimpo S., Takeuchi C., Wada T., Watanabe A., Yamada M., Yasuda M.,
RA
RA
    Tabata S.;
RT
    "Sequence analysis of the genome of the unicellular cyanobacterium
RT
    Synechocystis sp. strain PCC6803. II. Sequence determination of the
RT
    entire genome and assignment of potential protein-coding regions.";
RL
    DNA Res. 3:109-136(1996).
CC
    -!- FUNCTION: MANGANESE-BINDING POLYPEPTIDE WITH L-ARGININE
CC
        METABOLIZING ENZYME ACTIVITY. COMPONENT OF THE CORE OF PHOTOSYSTEM
CC
        II (BY SIMILARITY).
CC
    -!- SUBCELLULAR LOCATION: CELLULAR THYLAKOID MEMBRANE.
CC
    -!- SIMILARITY: BELONGS TO THE PSBY FAMILY.
CC
    ______
CC
    This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
    between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
    the European Bioinformatics Institute. There are no restrictions on its
CC
    use by non-profit institutions as long as its content is in no way
CC
    modified and this statement is not removed. Usage by and for commercial
CC
    entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
    or send an email to license@isb-sib.ch).
CC
    ______
DR
    EMBL; D90908; BAA17722.1; -.
DR
    PIR; S77164; S77164.
KW
    Photosystem II; Transmembrane; Thylakoid; Complete proteome.
FT
    TRANSMEM
             5
                     25 POTENTIAL.
SO
    SEQUENCE 39 AA; 4202 MW; 3EA176ABAA79F6DF CRC64;
 Query Match
                        11.8%; Score 4; DB 1; Length 39;
 Best Local Similarity 100.0%; Pred. No. 5.5e+02;
           4; Conservative 0; Mismatches 0; Indels 0; Gaps
          28 LQDV 31
Qу
             Db
          31 LQDV 34
RESULT 5
SR1C SARPE
    SR1C SARPE
                                PRT;
                  STANDARD;
                                        39 AA.
AC
    P08377;
DT
    01-AUG-1988 (Rel. 08, Created)
    01-AUG-1988 (Rel. 08, Last sequence update)
DT
    28-FEB-2003 (Rel. 41, Last annotation update)
DT
DE
    Sarcotoxin IC.
OS
    Sarcophaga peregrina (Flesh fly) (Boettcherisca peregrina).
OC
    Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
OC
    Neoptera; Endopterygota; Diptera; Brachycera; Muscomorpha; Oestroidea;
OC
    Sarcophagidae; Sarcophaga.
OX
    NCBI TaxID=7386;
```

```
RP
     SEOUENCE.
    MEDLINE=85207747; PubMed=3888997;
RX
     Okada M., Natori S.;
RA
     "Primary structure of sarcotoxin I, an antibacterial protein induced
RT
     in the hemolymph of Sarcophaga peregrina (flesh fly) larvae.";
RT
RL
     J. Biol. Chem. 260:7174-7177(1985).
     -!- FUNCTION: SARCOTOXINS, WHICH ARE POTENT BACTERICIDAL PROTEINS,
CC
CC
         ARE PRODUCED IN RESPONSE TO INJURY. THEY ARE CYTOTOXIC TO BOTH
CC
         GRAM-POSITIVE AND GRAM-NEGATIVE BACTERIA.
     -!- SUBCELLULAR LOCATION: Secreted.
CC
CC
     -!- SIMILARITY: BELONGS TO THE CECROPIN FAMILY.
DR
     PIR; C22625; CKFHCS.
DR
     InterPro; IPR000875; Cecropin.
DR
     InterPro; IPR003253; Sarctxn cecrpn.
DR
     Pfam; PF00272; cecropin; 1.
DR
     ProDom; PD001670; Sarctxn_cecrpn; 1.
DR
     PROSITE; PS00268; CECROPIN; 1.
KW
     Insect immunity; Antibiotic; Hemolymph; Amidation; Multigene family.
FΤ
     MOD RES
                  39
                        39
                                  AMIDATION.
SQ
     SEQUENCE
                39 AA; 4227 MW; 11E79F4F405E855A CRC64;
  Query Match
                          11.8%; Score 4; DB 1; Length 39;
                          100.0%; Pred. No. 5.5e+02;
  Best Local Similarity
 Matches
             4; Conservative 0; Mismatches 0; Indels 0; Gaps
                                                                              0;
           23 WLRK 26
Qу
              1111
            2 WLRK 5
Db
RESULT 6
CH60 MYCSM
     CH60 MYCSM
                                   PRT:
ID
                    STANDARD;
                                           28 AA.
AC
     P80673;
DT
     01-OCT-1996 (Rel. 34, Created)
DT
     01-OCT-1996 (Rel. 34, Last sequence update)
\mathbf{DT}
     28-FEB-2003 (Rel. 41, Last annotation update)
     60 kDa chaperonin (Protein Cpn60) (groEL protein) (Fragment).
_{
m DE}
GN
     GROL OR GROEL OR MOPA.
OS
     Mycobacterium smeqmatis.
     Bacteria; Actinobacteria; Actinobacteridae; Actinomycetales;
OC
OC
     Corynebacterineae; Mycobacteriaceae; Mycobacterium.
OX
     NCBI TaxID=1772;
RN
     [1]
RΡ
     SEQUENCE.
RC
     STRAIN=ATCC 607 / mc(2)6 / NRRL B-692;
RX
     MEDLINE=97387814; PubMed=9243799;
     Lundrigan M.D., Arceneaux J.E.L., Zhu W., Byers B.R.;
RA
RT
     "Enhanced hydrogen peroxide sensitivity and altered stress protein
RT
     expression in iron-starved Mycobacterium smegmatis.";
RL
     BioMetals 10:215-225(1997).
CC
     -!- FUNCTION: Prevents misfolding and promotes the refolding and
CC
         proper assembly of unfolded polypeptides generated under stress
CC
         conditions.
CC
     -!- SUBUNIT: Oligomer of 14 subunits composed of two stacked rings of
CC
       7 subunits (By similarity).
```

RN

[1]

```
-!- SUBCELLULAR LOCATION: Cytoplasmic.
CC
     -!- SIMILARITY: Belongs to the chaperonin (HSP60) family.
CC
DR
     HAMAP; MF 00600; -; 1.
DR
     InterPro; IPR001844; Chaprnin_Cpn60.
     PROSITE; PS00296; CHAPERONINS CPN60; PARTIAL.
DR
KW
     Chaperone; ATP-binding.
FT
     NON TER
                 28
SO
     SEQUENCE
                28 AA; 3047 MW; 2F40F27B94EF8720 CRC64;
  Query Match
                           8.8%; Score 3; DB 1; Length 28;
  Best Local Similarity 100.0%; Pred. No. 4.8e+03;
 Matches
            3; Conservative
                               0; Mismatches
                                                  0; Indels
                                                                 0; Gaps
                                                                              0;
           15 LNS 17
Qу
              18 LNS 20
Db
RESULT 7
COXB SOLTU
     COXB SOLTU
                    STANDARD;
                                   PRT;
                                           28 AA.
TD
AC
     P80499;
     01-FEB-1996 (Rel. 33, Created)
DT
DT
     01-FEB-1996 (Rel. 33, Last sequence update)
DT
     15-JUL-1999 (Rel. 38, Last annotation update)
DE
     Cytochrome c oxidase polypeptide Vb (EC 1.9.3.1) (Fragment).
OS
     Solanum tuberosum (Potato).
OC
     Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
OC
     Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots;
OC
     Asteridae; lamiids; Solanales; Solanaceae; Solanum.
OX
     NCBI TaxID=4113;
RN
     [1]
     SEQUENCE.
RP
RC
     TISSUE=Tuber;
RX
     MEDLINE=97077345; PubMed=8919912;
     Jansch L., Kruft V., Schmitz U.K., Braun H.P.;
RA
RT
     "New insights into the composition, molecular mass and stoichiometry
RT
     of the protein complexes of plant mitochondria.";
     Plant J. 9:357-368(1996).
RL
CC
     -!- CATALYTIC ACTIVITY: 4 ferrocytochrome c + O(2) = 4 ferricytochrome
CC
         c + 2 H(2)0.
CC
     -!- SUBCELLULAR LOCATION: Mitochondrial inner membrane.
CC
     -!- SIMILARITY: BELONGS TO THE CYTOCHROME C OXIDASE VB FAMILY.
DR
     InterPro; IPR002124; COX5B.
DR
     PROSITE; PS00848; COX5B; PARTIAL.
KW
     Oxidoreductase; Inner membrane; Mitochondrion.
FT
     NON TER
                  28
                         28
                28 AA; 3101 MW; 1EAFA79E2682849C CRC64;
SQ
     SEQUENCE
  Query Match
                           8.8%; Score 3; DB 1; Length 28;
  Best Local Similarity 100.0%; Pred. No. 4.8e+03;
  Matches
           3; Conservative
                               0; Mismatches
                                                   0; Indels
                                                                 0; Gaps
                                                                              0;
            2 VSE 4
Qy
              111
Db
            2 VSE 4
```

```
RESULT 8
GUN SCHCO
     GUN SCHCO
                    STANDARD;
                                    PRT;
                                             28 AA.
ID
AC
     P81190;
     15-JUL-1998 (Rel. 36, Created)
DT
     15-JUL-1998 (Rel. 36, Last sequence update) 28-FEB-2003 (Rel. 41, Last annotation update)
DT
DT
     Endoglucanase (EC 3.2.1.4) (Endo-1,4-beta-glucanase) (Cellulase)
DE
DE
     (Fragment).
     Schizophyllum commune (Bracket fungus).
OS
     Eukaryota; Fungi; Basidiomycota; Hymenomycetes; Homobasidiomycetes;
OC
     Agaricales; Schizophyllaceae; Schizophyllum.
OC
OX
     NCBI TaxID=5334;
RN
     [1]
RP
     SEQUENCE.
RX
     MEDLINE=97459758; PubMed=9315718;
     Clarke A.J., Drummelsmith J., Yaguchi M.;
RA
     "Identification of the catalytic nucleophile in the cellulase from
RT
     Schizophyllum commune and assignment of the enzyme to Family 5,
RT
RT
     subtype 5 of the glycosidases.";
RL
     FEBS Lett. 414:359-361(1997).
     -!- CATALYTIC ACTIVITY: Endohydrolysis of 1,4-beta-D-glucosidic
CC
         linkages in cellulose, lichenin and cereal beta-D-glucans.
CC
CC
     -!- SUBCELLULAR LOCATION: Attached to the membrane by a lipid anchor
CC
         (Probable).
     -!- SIMILARITY: BELONGS TO CELLULASE FAMILY A (FAMILY 5 OF GLYCOSYL
CC
CC
         HYDROLASES).
DR
     InterPro; IPR001547; Glyco hydro 5.
DR
     PROSITE; PS00659; GLYCOSYL HYDROL F5; PARTIAL.
KW
     Cellulose degradation; Hydrolase; Glycosidase; Zymogen; Membrane;
KW
     Lipoprotein.
FT
     ACT_SITE
                   20
                          20
                                   NUCLEOPHILE.
FТ
     NON TER
                   28
                          28
SQ
     SEQUENCE
                 28 AA; 2937 MW; B3F1C0C99C9950BE CRC64;
                            8.8%; Score 3; DB 1; Length 28;
  Query Match
  Best Local Similarity
                           100.0%; Pred. No. 4.8e+03;
  Matches
                                 0; Mismatches
                                                    0; Indels
                                                                    0; Gaps
                                                                                 0;
             3; Conservative
           22 EWL 24
Qу
               ||\cdot||
Dh
            7 EWL 9
RESULT 9
OMPA YERPS
     OMPA YERPS
                     STANDARD;
ID
                                    PRT;
                                             28 AA.
AC
     P38399;
DT
     01-OCT-1994 (Rel. 30, Created)
DT
     01-OCT-1994 (Rel. 30, Last sequence update)
     15-SEP-2003 (Rel. 42, Last annotation update)
DT
     Outer membrane protein A (Outer membrane protein II) (Fragment).
DE
GN
     OMPA.
     Yersinia pseudotuberculosis.
OS
OC
     Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales;
     Enterobacteriaceae; Yersinia.
OC
```

```
NCBI TaxID=633;
OX
RN
RP
     SEQUENCE.
RX
     MEDLINE=90038529; PubMed=2478630;
     Zhang J.J., Hamachi M., Hamachi T., Zhao Y.P., Yu D.T.Y.;
RA
     "The bacterial outer membrane protein that reacts with anti-HLA-B27
RT
RT
     antibodies is the OmpA protein.";
RL
     J. Immunol. 143:2955-2960(1989).
CC
     -!- FUNCTION: REQUIRED FOR THE ACTION OF COLICINS K AND L AND FOR THE
         STABILIZATION OF MATING AGGREGATES IN CONJUGATION. SERVES AS A
CC
         RECEPTOR FOR A NUMBER OF T-EVEN LIKE PHAGES. ALSO ACTS AS A PORIN
CC
CC
         WITH LOW PERMEABILITY THAT ALLOWS SLOW PENETRATION OF SMALL
CC
         SOLUTES (BY SIMILARITY).
CC
     -!- SUBUNIT: Monomer (Probable).
     -!- SUBCELLULAR LOCATION: Integral membrane protein. Outer membrane.
CC
CC
     -!- SIMILARITY: BELONGS TO THE OMPA FAMILY.
DR
     PIR; A60752; A60752.
DR
     HSSP; P02934; 1QJP.
     InterPro; IPR006690; OMPA LIKE.
DR
DR
     InterPro; IPR000498; OmpA tmem.
     Pfam; PF01389; OmpA membrane; 1.
DR
DR
     PROSITE; PS01068; OMPA; PARTIAL.
     Conjugation; Outer membrane; Transmembrane; Phage recognition; Porin.
KW
FT
     NON TER
                  28
                          28
SO
     SEOUENCE
                28 AA; 3281 MW; E89F7526254B1E0E CRC64;
  Query Match
                            8.8%; Score 3; DB 1; Length 28;
  Best Local Similarity
                           100.0%; Pred. No. 4.8e+03;
             3: Conservative
                                 0; Mismatches
                                                     0; Indels
                                                                       Gaps
Qу
           10 NKG 12
               Db
           26 NKG 28
RESULT 10
PA2C PSEPO
ID
     PA2C PSEPO
                     STANDARD;
                                    PRT;
                                            28 AA.
AC
     P20260;
DT
     01-FEB-1991 (Rel. 17, Created)
     01-FEB-1991 (Rel. 17, Last sequence update) 28-FEB-2003 (Rel. 41, Last annotation update)
DT
DT
     Phospholipase A2 (EC 3.1.1.4) (Pseudexin C chain) (Phosphatidylcholine
DE
DE
     2-acylhydrolase) (Fragment).
     Pseudechis porphyriacus (Red-bellied black snake).
OS
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Lepidosauria; Squamata; Scleroglossa; Serpentes; Colubroidea;
OC
     Elapidae; Acanthophiinae; Pseudechis.
     NCBI TaxID=8671;
OX
RN
     [1]
RP
     SEQUENCE.
RC
     TISSUE=Venom;
     MEDLINE=89388835; PubMed=2675391;
RX
     Schmidt J.J., Middlebrook J.L.;
RA
     "Purification, sequencing and characterization of pseudexin
RT
     phospholipases A2 from Pseudechis porphyriacus (Australian
RT
     red-bellied black snake).";
RT
```

```
RL
     Toxicon 27:805-818(1989).
     -!- FUNCTION: PA2 catalyzes the calcium-dependent hydrolysis of the 2-
CC
         acyl groups in 3-sn-phosphoglycerides.
CC
CC
     -!- CATALYTIC ACTIVITY: Phosphatidylcholine + H(2)0 = 1-
        acylglycerophosphocholine + a fatty acid anion.
CC
CC
     -!- COFACTOR: Binds 1 calcium ion per subunit (By similarity).
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- SIMILARITY: BELONGS TO THE PHOSPHOLIPASE A2 FAMILY. GROUP I
CC
CC
         SUBFAMILY.
DR
     PIR; C32416; C32416.
     HSSP; P00592; 2PHI.
DR
     InterPro; IPR001211; PhospholipaseA2.
DR
DR
     Pfam; PF00068; phoslip; 1.
DR
     ProDom; PD000303; PhospholipaseA2; 1.
     PROSITE; PS00119; PA2_ASP; PARTIAL.
DR
DR
     PROSITE; PS00118; PA2 HIS; PARTIAL.
KW
     Hydrolase; Lipid degradation; Calcium; Multigene family.
FT
     NON TER
                  28
                         28
SQ
     SEQUENCE
                28 AA; 3210 MW; 5089A7E85CAAE0D5 CRC64;
                           8.8%; Score 3; DB 1; Length 28;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 4.8e+03;
           3; Conservative 0; Mismatches 0; Indels
  Matches
                                                                 0; Gaps
            5 IQL 7
Qу
             111
Db
            3 IQL 5
RESULT 11
SCX2_BUTSI
ID
     SCX2 BUTSI
                    STANDARD;
                                   PRT;
                                           28 AA.
AC
     P15230;
DT
     01-APR-1990 (Rel. 14, Created)
DT
     01-APR-1990 (Rel. 14, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DE
     Peptide II.
OS
     Buthus sindicus (Scorpion).
     Eukaryota; Metazoa; Arthropoda; Chelicerata; Arachnida; Scorpiones;
OC
OC
     Buthoidea; Buthidae; Mesobuthus.
OX
     NCBI TaxID=42519;
RN
     [1]
RP
     SEQUENCE.
RC
     TISSUE=Venom;
     MEDLINE=90060332; PubMed=2583272;
RA
     Fazal A., Beg O.U., Shafqat J., Zaidi Z.H., Joernvall H.;
     "Characterization of two different peptides from the venom of the
RT
RT
     scorpion Buthus sindicus.";
     FEBS Lett. 257:260-262(1989).
RL
     -!- SUBCELLULAR LOCATION: Secreted.
CC
CC
     -!- TISSUE SPECIFICITY: Expressed by the venom gland.
DR
     PIR; S06668; S06668.
DR
     HSSP; Q9NJP7; 1DU9.
SO
               28 AA; 2968 MW; 2EA9AD78BD39A3B8 CRC64;
     SEQUENCE
  Query Match
                          8.8%; Score 3; DB 1; Length 28;
  Best Local Similarity 100.0%; Pred. No. 4.8e+03;
```

```
0;
 Matches
             3; Conservative 0; Mismatches
                                                   0; Indels
                                                                 0; Gaps
           11 KGK 13
Qу
Db
           11 KGK 13
RESULT 12
SLP1 LEIQH
     SLP1 LEIQH
                    STANDARD;
                                   PRT;
                                           28 AA.
AC
     P80669;
     01-OCT-1996 (Rel. 34, Created)
DT
     01-OCT-1996 (Rel. 34, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
DE
     Leiuropeptide I.
     Leiurus quinquestriatus hebraeus (Yellow scorpion).
OS
     Eukaryota; Metazoa; Arthropoda; Chelicerata; Arachnida; Scorpiones;
OC
     Buthoidea; Buthidae; Leiurus.
OC
OX
     NCBI TaxID=6884;
RN
     [1]
     SEQUENCE, AND STRUCTURE BY NMR.
RP
RC
     TISSUE=Venom;
     MEDLINE=97411504; PubMed=9266482;
RX
     Buisine E., Wieruszeski J.-M., Lippens G., Wouters D., Tartar A.,
RA
RA
     Sautiere P.;
     "Characterization of a new family of toxin-like peptides from the
RT
     venom of the scorpion Leiurus quinquestriatus hebraeus. 1H-NMR
RT
     structure of leiuropeptide II.";
RL
     J. Pept. Res. 49:545-555(1997).
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- TISSUE SPECIFICITY: Expressed by the venom gland.
CC
     -!- SIMILARITY: BELONGS TO THE SCORPION LEIUROTOXIN FAMILY.
DR
     HSSP; Q9NJP7; 1DU9.
KW
     Toxin.
FT
     DISULFID
                   3
                         19
FT
     DISULFID
                   6
                         24
FT
     DISULFID
                  10
                         26
                28 AA; 2954 MW; 5F72AD78BD39BE1B CRC64;
SQ
     SEQUENCE
  Query Match
                           8.8%; Score 3; DB 1; Length 28;
                          100.0%; Pred. No. 4.8e+03;
  Best Local Similarity
           3; Conservative 0; Mismatches 0; Indels 0; Gaps
                                                                              0;
  Matches
Qу
           11 KGK 13
              111
           11 KGK 13
Dh
RESULT 13
VIP_ALLMI
                                   PRT;
     VIP ALLMI
                    STANDARD;
                                           28 AA.
ID
     P48142; P01285;
AC
DT
     21-JUL-1986 (Rel. 01, Created)
     21-JUL-1986 (Rel. 01, Last sequence update)
DT
     01-OCT-1996 (Rel. 34, Last annotation update)
DT
     Vasoactive intestinal peptide (VIP).
DE
GN
     VIP.
```

```
Alligator mississippiensis (American alligator).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
OC
     Archosauria; Crocodylidae; Alligatorinae; Alligator.
OX
     NCBI TaxID=8496;
RN
     [1]
RΡ
     SEOUENCE.
RC
     TISSUE=Stomach;
RX
     MEDLINE=93324451; PubMed=8101369;
     Wang Y., Conlon J.M.;
RA
     "Neuroendocrine peptides (NPY, GRP, VIP, somatostatin) from the brain
RT
RT
     and stomach of the alligator.";
RL
     Peptides 14:573-579(1993).
CC
     -!- FUNCTION: VIP CAUSES VASODILATION, LOWERS ARTERIAL BLOOD
         PRESSURE, STIMULATES MYOCARDIAL CONTRACTILITY, INCREASES
CC
         GLYCOGENOLYSIS AND RELAXES THE SMOOTH MUSCLE OF TRACHEA, STOMACH
CC
         AND GALL BLADDER.
CC
CC
     -!- SIMILARITY: BELONGS TO THE GLUCAGON FAMILY.
     InterPro; IPR000532; Glucagon.
DR
DR
     Pfam; PF00123; hormone2; 1.
     PRINTS; PR00275; GLUCAGON.
DR
     SMART; SM00070; GLUCA; 1.
DR
     PROSITE; PS00260; GLUCAGON; 1.
DR
     Glucagon family; Amidation; Hormone.
KW
FT
     MOD RES
              28
                      28
                                 AMIDATION.
SO
     SEOUENCE
              28 AA; 3320 MW; 17B42D7573FF6F37 CRC64;
                          8.8%; Score 3; DB 1; Length 28;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 4.8e+03;
           3; Conservative 0; Mismatches 0; Indels 0; Gaps
  Matches
Qу
           15 LNS 17
              Db
           23 LNS 25
RESULT 14
VIP RANRI
ID
     VIP RANRI
                    STANDARD;
                                   PRT;
                                           28 AA.
AC
     P81016;
     01-NOV-1997 (Rel. 35, Created)
DT
     01-NOV-1997 (Rel. 35, Last sequence update)
DT
     01-NOV-1997 (Rel. 35, Last annotation update)
DT
     Vasoactive intestinal peptide (VIP).
DE
     Rana ridibunda (Laughing frog) (Marsh frog).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
OC
     Amphibia; Batrachia; Anura; Neobatrachia; Ranoidea; Ranidae; Rana.
OX
     NCBI TaxID=8406;
RN
     [1]
RP
     SEQUENCE.
     MEDLINE=95309202; PubMed=7540547;
RX
     Chartrel N., Wang Y., Fournier A., Vaudry H., Conlon J.M.;
RA
     "Frog vasoactive intestinal polypeptide and galanin: primary
RT
     structures and effects on pituitary adenylate cyclase.";
RT
RL
     Endocrinology 136:3079-3086(1995).
     -!- FUNCTION: VIP CAUSES VASODILATION, LOWERS ARTERIAL BLOOD
CC
         PRESSURE, STIMULATES MYOCARDIAL CONTRACTILITY, INCREASES
CC
         GLYCOGENOLYSIS AND RELAXES THE SMOOTH MUSCLE OF TRACHEA, STOMACH
CC
```

```
CC
        AND GALL BLADDER.
     -!- SIMILARITY: BELONGS TO THE GLUCAGON FAMILY.
CC
DR
     InterPro; IPR000532; Glucagon.
DR
     Pfam; PF00123; hormone2; 1.
     PRINTS; PR00275; GLUCAGON.
DR
     PROSITE; PS00260; GLUCAGON; 1.
DR
    Glucagon family; Amidation; Hormone.
KW
FT
    MOD RES
                 28
                        28
                                  AMIDATION.
     SEQUENCE
                28 AA; 3320 MW; 17B42D7573FF6F37 CRC64;
SQ
  Query Match
                           8.8%; Score 3; DB 1; Length 28;
 Best Local Similarity 100.0%; Pred. No. 4.8e+03;
           3; Conservative 0; Mismatches
                                                 0; Indels
                                                                     Gaps
                                                                              0;
  Matches
           15 LNS 17
Qу
              Db
           23 LNS 25
RESULT 15
VIP SHEEP
     VIP SHEEP
                                           28 AA.
ID
                    STANDARD;
                                   PRT;
AC
     P04565;
     13-AUG-1987 (Rel. 05, Created)
DT
     13-AUG-1987 (Rel. 05, Last sequence update)
DT
DΤ
     01-OCT-1996 (Rel. 34, Last annotation update)
DE
     Vasoactive intestinal peptide (VIP).
GN
OS
     Ovis aries (Sheep),
OS
     Capra hircus (Goat), and
OS
     Canis familiaris (Dog).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Cetartiodactyla; Ruminantia; Pecora; Bovoidea;
OC
     Bovidae; Caprinae; Ovis.
     NCBI TaxID=9940, 9925, 9615;
OX
RN
     [1]
RP
     SEQUENCE.
RC
     SPECIES=Sheep; TISSUE=Brain;
RX
     MEDLINE=91045331; PubMed=2235680;
RA
     Gafvelin G.;
RT
     "Isolation and primary structure of VIP from sheep brain.";
     Peptides 11:703-706(1990).
RL
RN
     [2]
RP
     SEQUENCE.
RC
     SPECIES=Sheep; TISSUE=Small intestine;
RX
     MEDLINE=91239834; PubMed=2034821;
RA
     Bounjoua Y., Vandermeers A., Robberecht P., Vandermeers-Piret M.C.,
RA
     Christophe J.;
RT
     "Purification and amino acid sequence of vasoactive intestinal
RT
     peptide, peptide histidine isoleucinamide and secretin from the ovine
RT
     small intestine.";
RL
     Regul. Pept. 32:169-179(1991).
RN
     [3]
RP
     SEQUENCE.
     SPECIES=C.hircus, and C.familiaris;
RC
RX
     MEDLINE=86313167; PubMed=3748846;
     Eng J., Du B.-H., Raufman J.-P., Yalow R.S.;
RA
```

```
"Purification and amino acid sequences of dog, goat and guinea pig
RT
RT
     Peptides 7 Suppl. 1:17-20(1986).
RL
     -!- FUNCTION: VIP CAUSES VASODILATION, LOWERS ARTERIAL BLOOD
CC
         PRESSURE, STIMULATES MYOCARDIAL CONTRACTILITY, INCREASES
CC
         GLYCOGENOLYSIS AND RELAXES THE SMOOTH MUSCLE OF TRACHEA, STOMACH
CC
         AND GALL BLADDER.
CC
     -!- SIMILARITY: BELONGS TO THE GLUCAGON FAMILY.
CC
     PIR; A60304; A60304.
     PIR; B60072; VRSH.
DR
     InterPro; IPR000532; Glucagon.
DR
     Pfam; PF00123; hormone2; 1.
DR
     PRINTS; PR00275; GLUCAGON.
DR
     SMART; SM00070; GLUCA; 1.
DR
     PROSITE; PS00260; GLUCAGON; 1.
DR
     Glucagon family; Amidation; Hormone.
KW
                  28
                                  AMIDATION.
FT
                         28
     MOD RES
                28 AA; 3327 MW; EF313FB573FF6F3F CRC64;
     SEQUENCE
SQ
                           8.8%; Score 3; DB 1; Length 28;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 4.8e+03;
                                0; Mismatches 0; Indels
                                                                  0; Gaps
                                                                              0;
           3; Conservative
  Matches
           15 LNS 17
Qу
              111
           23 LNS 25
Db
RESULT 16
CXOC CONMA
ID
     CXOC CONMA
                    STANDARD;
                                   PRT;
                                            29 AA.
AC
     P37300;
DT
     01-OCT-1994 (Rel. 30, Created)
DT
     01-OCT-1994 (Rel. 30, Last sequence update)
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
DE
     Omega-conotoxin MVIIc precursor (SNX-230) (Fragment).
     Conus magus (Magus cone).
OS
OC
     Eukaryota; Metazoa; Mollusca; Gastropoda; Orthogastropoda;
OC
     Apogastropoda; Caenogastropoda; Sorbeoconcha; Hypsogastropoda;
     Neogastropoda; Conoidea; Conidae; Conus.
OC
OX
     NCBI TaxID=6492;
RN
     [1]
RP
     SEQUENCE FROM N.A., AND SYNTHESIS.
     MEDLINE=92337922; PubMed=1352986;
RX
     Hillyard D.R., Monje V.D., Mintz I.M., Bean B.P., Nadasdi L.,
RA
     Ramachandran J., Miljanich G.P., Azimi-Zoonooz A., McIntosh J.M.,
RA
     Cruz L.J., Imperial J.S., Olivera B.M.;
RΑ
     "A new Conus peptide ligand for mammalian presynaptic Ca2+ channels.";
RT
RL
     Neuron 9:69-77(1992).
RN
     [2]
RP
     STRUCTURE BY NMR.
RX
     MEDLINE=95248539; PubMed=7731037;
     Farr-Jones S., Miljanich G.P., Nadasdi L., Ramachandran J.,
RA
RA
     Basus V.J.:
     "Solution structure of omega-conotoxin MVIIC, a high affinity ligand
RT
     of P-type calcium channels, using 1H NMR spectroscopy and complete
RT
     relaxation matrix analysis.";
RT
```

```
J. Mol. Biol. 248:106-124(1995).
RL
RN
RP
    STRUCTURE BY NMR.
RX
    MEDLINE=99303703; PubMed=10373375;
    Nielsen K.J., Adams D., Thomas L., Bond T., Alewood P.F., Craik D.J.,
RΑ
RA
    Lewis R.J.;
RT
    "Structure-activity relationships of omega-conotoxins MVIIA, MVIIC and
RT
    14 loop splice hybrids at N and P/Q-type calcium channels.";
    J. Mol. Biol. 289:1405-1421(1999).
RL
RN
    [4]
RP
    MUTAGENESIS OF TYR-15.
    MEDLINE=95408251; PubMed=7677735;
    Kim J.I., Takahashi M., Martin-Moutot N., Seagar M.J., Ohtake A.,
RA
RA
    Sato K.;
    "Tyr13 is essential for the binding of omega-conotoxin MVIIC to the
RT
RT
    P/Q-type calcium channel.";
RL
    Biochem. Biophys. Res. Commun. 214:305-309(1995).
CC
    -!- FUNCTION: Omega-conotoxins act at presynaptic membranes, they bind
CC
        and block voltage-sensitive calcium channels (VSCC). This toxin
CC
        blocks N-type calcium channels as well as types of high-threshold
CC
        voltage-gated calcium channels resistant to both dihydropyridines
CC
        and omega-conotoxin GVIA.
CC
    -!- SUBCELLULAR LOCATION: Secreted.
CC
    -!- TISSUE SPECIFICITY: Expressed by the venom duct.
CC
    -!- SIMILARITY: BELONGS TO THE O-SUPERFAMILY OF CONOTOXINS. OMEGA-TYPE
CC
       FAMILY.
    -----
CC
CC
    This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
    between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
    the European Bioinformatics Institute. There are no restrictions on its
CC
    use by non-profit institutions as long as its content is in no way
    modified and this statement is not removed. Usage by and for commercial
CC
CC
    entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
    or send an email to license@isb-sib.ch).
CC
    _____
DR
    EMBL; S40826; AAB22674.1; -.
DR
    PIR; JH0699; JH0699.
    PDB; 10MN; 01-DEC-95.
DR
    PDB; 1CNN; 31-MAY-00.
KW
    Toxin; Neurotoxin; Presynaptic neurotoxin; Ionic channel inhibitor;
KW
    Calcium channel inhibitor; Hydroxylation; Amidation; 3D-structure.
FT
    NON_TER
                1
                       1
FT
    PROPEP
                <1
                       2
FT
    PEPTIDE
                3
                       28
                               OMEGA-CONOTOXIN MVIIC.
FT
    BINDING
                15
                      15
                               ESSENTIAL FOR CALCIUM CHANNEL BINDING.
FT
    DISULFID
                3
                      18
FT
    DISULFID
               10
                       22
FT
    DISULFID
                17
                       28
FT
    MOD RES
                9
                      9
                              HYDROXYLATION (PROBABLE).
                28
                     28
FT
    MOD RES
                               AMIDATION (G-29 PROVIDE AMIDE GROUP).
FT
    MUTAGEN
               15
                       15
                              Y->A: HIGH DECREASE IN BINDING.
               6
                       7
FT
    TURN
FT
                9
    STRAND
                       9
FT
               12
    HELIX
                      14
FT
    TURN
               24
                      25
    STRAND
               27
FT
                      27
```

SEQUENCE 29 AA; 3071 MW; AC7A68948474728A CRC64;

SO

```
8.8%; Score 3; DB 1; Length 29;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 4.9e+03;
           3; Conservative 0; Mismatches 0; Indels 0; Gaps
 Matches
          11 KGK 13
Qу
             4 KGK 6
Db
RESULT 17
GALA ALLMI
                             PRT;
                                        29 AA.
    GALA ALLMI
                   STANDARD;
ID
    P47215;
AC
    01-FEB-1996 (Rel. 33, Created)
DT
    01-FEB-1996 (Rel. 33, Last sequence update)
DT
    28-FEB-2003 (Rel. 41, Last annotation update)
DT
DE
    Galanin.
    Alligator mississippiensis (American alligator).
OS
    Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
    Archosauria; Crocodylidae; Alligatorinae; Alligator.
OC
OX
    NCBI TaxID=8496;
RN
    [1]
RP
    SEQUENCE.
RC
    TISSUE=Stomach;
    MEDLINE=95023390; PubMed=7524049;
RX
     Wang Y., Conlon J.M.;
RA
     "Purification and primary structure of galanin from the alligator
RT
RT
     stomach.";
     Peptides 15:603-606(1994).
RL
CC
     -!- FUNCTION: CONTRACTS SMOOTH MUSCLE OF THE GASTROINTESTINAL AND
        GENITOURINARY TRACT, REGULATES GROWTH HORMONE RELEASE, MODULATES
CC
        INSULIN RELEASE, AND MAY BE INVOLVED IN THE CONTROL OF ADRENAL
CC
CC
        SECRETION.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- SIMILARITY: BELONGS TO THE GALANIN FAMILY.
DR
     InterPro; IPR001600; Galanin.
DR
     Pfam; PF01296; Galanin; 1.
DR
     ProDom; PD005962; Galanin; 1.
     PROSITE; PS00861; GALANIN; 1.
DR
KW
     Hormone; Neuropeptide; Amidation.
              29
                             AMIDATION.
FT
     MOD RES
                      29
     SEQUENCE 29 AA; 3216 MW; E02F019B2D3E0529 CRC64;
SQ
                          8.8%; Score 3; DB 1; Length 29;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 4.9e+03;
          3; Conservative 0; Mismatches 0; Indels
                                                               0; Gaps
                                                                           0;
  Matches
          15 LNS 17
Qу
             111
Db
           4 LNS 6
RESULT 18
GALA AMICA
                                PRT;
ID GALA AMICA
                   STANDARD;
                                         29 AA.
AC
    P47214;
```

```
DT
     01-FEB-1996 (Rel. 33, Created)
DT
     01-FEB-1996 (Rel. 33, Last sequence update)
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
DE
     Galanin.
OS
     Amia calva (Bowfin).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Actinopterygii; Neopterygii; Amiiformes; Amiidae; Amia.
OC
OX
     NCBI TaxID=7924;
RN
     [1]
RP
     SEQUENCE.
RC
     TISSUE=Stomach;
     MEDLINE=95083480; PubMed=7527531;
RX
RA
     Wang Y., Conlon J.M.;
     "Purification and characterization of galanin from the
RT
     phylogenetically ancient fish, the bowfin (Amia calva) and dogfish
RT
RT
     (Scyliorhinus canicula).";
     Peptides 15:981-986(1994).
RL
     -!- FUNCTION: CONTRACTS SMOOTH MUSCLE OF THE GASTROINTESTINAL AND
CC
         GENITOURINARY TRACT, REGULATES GROWTH HORMONE RELEASE, MODULATES
CC
         INSULIN RELEASE, AND MAY BE INVOLVED IN THE CONTROL OF ADRENAL
CC
         SECRETION.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
CC
     -!- SIMILARITY: BELONGS TO THE GALANIN FAMILY.
     InterPro; IPR001600; Galanin.
DR
DR
     Pfam; PF01296; Galanin; 1.
     ProDom; PD005962; Galanin; 1.
DR
DR
     PROSITE; PS00861; GALANIN; 1.
KW
     Hormone; Neuropeptide; Amidation.
FT
                  29
                         29
     MOD RES
                                  AMIDATION.
                29 AA; 3114 MW; 7518719B2D271627 CRC64;
SO
     SEQUENCE
  Ouery Match
                           8.8%; Score 3; DB 1; Length 29;
  Best Local Similarity 100.0%; Pred. No. 4.9e+03;
           3; Conservative 0; Mismatches 0; Indels
  Matches
                                                                  0; Gaps
                                                                              0:
Qу
           15 LNS 17
              4 LNS 6
Db
RESULT 19
GALA CHICK
     GALA CHICK
                                   PRT;
                                           29 AA.
ID
                    STANDARD;
AC
     P30802;
     01-JUL-1993 (Rel. 26, Created)
     01-JUL-1993 (Rel. 26, Last sequence update)
DΤ
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
DE
     Galanin.
     GAL OR GALN.
GN
     Gallus gallus (Chicken).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Archosauria; Aves; Neoqnathae; Galliformes; Phasianidae; Phasianinae;
OC
OC
     Gallus.
     NCBI TaxID=9031;
OX
RN
     [1]
RP
     SEQUENCE.
RC
     TISSUE=Intestine;
```

```
MEDLINE=91348254; PubMed=1715289;
RX
     Norberg A., Sillard R., Carlquist M., Joernvall H., Mutt V.;
RA
     "Chemical detection of natural peptides by specific structures.
RT
RT
     Isolation of chicken galanin by monitoring for its N-terminal
     dipeptide, and determination of the amino acid sequence.";
RT
     FEBS Lett. 288:151-153(1991).
RL
     -!- FUNCTION: CONTRACTS SMOOTH MUSCLE OF THE GASTROINTESTINAL AND
CC
CC
         GENITOURINARY TRACT, REGULATES GROWTH HORMONE RELEASE, MODULATES
         INSULIN RELEASE, AND MAY BE INVOLVED IN THE CONTROL OF ADRENAL
CC
CC
         SECRETION.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
     -!- SIMILARITY: BELONGS TO THE GALANIN FAMILY.
CC
DR
     PIR; S17147; S17147.
     InterPro; IPR001600; Galanin.
DR
DR
     Pfam; PF01296; Galanin; 1.
     PRINTS; PR00273; GALANIN.
DR
     ProDom; PD005962; Galanin; 1.
DR
DR
     PROSITE; PS00861; GALANIN; 1.
KW
     Hormone; Neuropeptide; Amidation.
     MOD RES
FT
                  29
                        29
                                 AMIDATION.
SQ
     SEQUENCE
                29 AA; 3212 MW; EB66919B2D271629 CRC64;
                           8.8%; Score 3; DB 1; Length 29;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 4.9e+03;
  Matches
           3; Conservative 0; Mismatches 0; Indels
                                                               0; Gaps
                                                                              0;
           15 LNS 17
QУ
              111
Db
            4 LNS 6
RESULT 20
GALA ONCMY
TD
     GALA ONCMY
                    STANDARD;
                                   PRT;
                                           29 AA.
     P47213;
AC
DT
     01-FEB-1996 (Rel. 33, Created)
     01-FEB-1996 (Rel. 33, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DΕ
     Galanin.
     Oncorhynchus mykiss (Rainbow trout) (Salmo gairdneri).
OS
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
     Actinopterygii; Neopterygii; Teleostei; Euteleostei;
OC
OC
     Protacanthopterygii; Salmoniformes; Salmonidae; Oncorhynchus.
OX
     NCBI TaxID=8022;
RN
     SEQUENCE.
RP
RC
     TISSUE=Stomach;
     MEDLINE=95164756; PubMed=7532194;
RX
     Anglade I., Wang Y., Jensen J., Tramu G., Kah O., Conlon J.M.;
RA
RT
     "Characterization of trout galanin and its distribution in trout
RT
     brain and pituitary.";
RL
     J. Comp. Neurol. 350:63-74(1994).
     -!- FUNCTION: CONTRACTS SMOOTH MUSCLE OF THE GASTROINTESTINAL AND
CC
         GENITOURINARY TRACT, REGULATES GROWTH HORMONE RELEASE, MODULATES
CC
CC
         INSULIN RELEASE, AND MAY BE INVOLVED IN THE CONTROL OF ADRENAL
CC
         SECRETION.
     -!- SUBCELLULAR LOCATION: Secreted.
CC
```

```
-!- SIMILARITY: BELONGS TO THE GALANIN FAMILY.
CC
     InterPro; IPR001600; Galanin.
DR
DR
     Pfam; PF01296; Galanin; 1.
DR
     ProDom; PD005962; Galanin; 1.
     PROSITE; PS00861; GALANIN; 1.
DR
     Hormone; Neuropeptide; Amidation.
KW
FT
     MOD RES
               29
                        29
                                 AMIDATION.
                29 AA; 3044 MW; 73C37190403FA349 CRC64;
SO
     SEOUENCE
                           8.8%; Score 3; DB 1; Length 29;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 4.9e+03;
            3; Conservative
                                0; Mismatches
                                                   0; Indels
                                                                 0; Gaps
                                                                             0;
           15 LNS 17
Qу
              Db
            4 LNS 6
RESULT 21
GALA RANRI
     GALA RANRI
ID
                    STANDARD;
                                   PRT;
                                           29 AA.
AC
     P47216;
     01-FEB-1996 (Rel. 33, Created)
DT
     01-FEB-1996 (Rel. 33, Last sequence update)
DT
DТ
     28-FEB-2003 (Rel. 41, Last annotation update)
DE
     Galanin.
OS
     Rana ridibunda (Laughing frog) (Marsh frog).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Amphibia; Batrachia; Anura; Neobatrachia; Ranoidea; Ranidae; Rana.
OX
     NCBI TaxID=8406;
RN
     [1]
RP
     SEQUENCE.
     MEDLINE=95309202; PubMed=7540547;
RX
     Chartrel N., Wang Y., Fournier A., Vaudry H., Conlon J.M.;
RA
RT
     "Frog vasoactive intestinal polypeptide and galanin: primary
RT
     structures and effects on pituitary adenylate cyclase.";
RL
     Endocrinology 136:3079-3086(1995).
CC
     -!- FUNCTION: CONTRACTS SMOOTH MUSCLE OF THE GASTROINTESTINAL AND
CC
         GENITOURINARY TRACT, REGULATES GROWTH HORMONE RELEASE, MODULATES
CC
         INSULIN RELEASE, AND MAY BE INVOLVED IN THE CONTROL OF ADRENAL
CC
         SECRETION.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- SIMILARITY: BELONGS TO THE GALANIN FAMILY.
DR
     InterPro; IPR001600; Galanin.
DR
     Pfam; PF01296; Galanin; 1.
DR
     ProDom; PD005962; Galanin; 1.
DR
     PROSITE; PS00861; GALANIN; 1.
KW
     Hormone; Neuropeptide; Amidation.
FT
     MOD RES
                  29
                        29
                                  AMIDATION.
                29 AA; 3162 MW; F718719B2D3FB529 CRC64;
SO
     SEQUENCE
  Query Match
                           8.8%; Score 3; DB 1; Length 29;
  Best Local Similarity 100.0%; Pred. No. 4.9e+03;
           3; Conservative 0; Mismatches 0; Indels
           15 LNS 17
Qу
```

| | |

```
RESULT 22
GALA SHEEP
     GALA SHEEP
                    STANDARD;
                                   PRT;
                                           29 AA.
TD
AC
     P31234;
     01-JUL-1993 (Rel. 26, Created)
DT
     01-JUL-1993 (Rel. 26, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DΤ
DE
GN
     GAL OR GALN OR GLNN.
     Ovis aries (Sheep).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Cetartiodactyla; Ruminantia; Pecora; Bovoidea;
OC
OC
     Bovidae; Caprinae; Ovis.
     NCBI TaxID=9940;
OX
RN
     [1]
RΡ
     SEQUENCE.
RC
     TISSUE=Brain;
     MEDLINE=92158824; PubMed=1724081;
RX
     Sillard R., Langel U., Joernvall H.;
RA
     "Isolation and characterization of galanin from sheep brain.";
RT
     Peptides 12:855-859(1991).
RL
     -!- FUNCTION: CONTRACTS SMOOTH MUSCLE OF THE GASTROINTESTINAL AND
CC
CC
         GENITOURINARY TRACT, REGULATES GROWTH HORMONE RELEASE, MODULATES
CC
         INSULIN RELEASE, AND MAY BE INVOLVED IN THE CONTROL OF ADRENAL
CC
CC
     -!- SUBCELLULAR LOCATION: Secreted.
     -!- SIMILARITY: BELONGS TO THE GALANIN FAMILY.
CC
DR
     InterPro; IPR001600; Galanin.
DR
     Pfam; PF01296; Galanin; 1.
DR
     PRINTS; PR00273; GALANIN.
DR
     ProDom; PD005962; Galanin; 1.
DR
     PROSITE; PS00861; GALANIN; 1.
KW
     Hormone; Neuropeptide; Amidation.
FT
     MOD RES
                  29
                        29
                                  AMIDATION.
                29 AA; 3185 MW; F718719B2D3FB089 CRC64;
SQ
     SEQUENCE
                           8.8%; Score 3; DB 1; Length 29;
  Query Match
                          100.0%; Pred. No. 4.9e+03;
  Best Local Similarity
             3; Conservative 0; Mismatches 0; Indels 0; Gaps
  Matches
                                                                              0;
           15 LNS 17
Qу
              4 LNS 6
RESULT 23
GLUC CHIBR
     GLUC CHIBR
                                   PRT;
ID
                    STANDARD;
                                           29 AA.
     P31297;
AC
     01-JUL-1993 (Rel. 26, Created)
DT
DT
     01-JUL-1993 (Rel. 26, Last sequence update)
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
DE
     Glucagon.
GN
     GCG.
```

```
OS
     Chinchilla brevicaudata (Chinchilla).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Rodentia; Hystricognathi; Chinchillidae;
OC
OC
     Chinchilla.
     NCBI TaxID=10152;
OX
RN
     [1]
RP
     SEQUENCE.
RX
     MEDLINE=91045327; PubMed=2235678;
RA
     Eng J., Kleinman W.A., Chu L.S.;
RT
     "Purification of peptide hormones from chinchilla pancreas by
RT
     chemical assay.";
RL
     Peptides 11:683-685(1990).
CC
     -!- FUNCTION: PROMOTES HYDROLYSIS OF GLYCOGEN AND LIPIDS, AND RAISES
         THE BLOOD SUGAR LEVEL.
CC
     -!- INDUCTION: PRODUCED IN THE A CELLS OF THE ISLETS OF LANGERHANS
CC
CC
         IN RESPONSE TO A DROP IN BLOOD SUGAR CONCENTRATION.
CC
     -!- SIMILARITY: BELONGS TO THE GLUCAGON FAMILY.
DR
     PIR; A60413; GCCB.
DR
     HSSP; P01275; 1BH0.
DR
     InterPro; IPR000532; Glucagon.
DR
     Pfam; PF00123; hormone2; 1.
DR
     PRINTS; PR00275; GLUCAGON.
     SMART; SM00070; GLUCA; 1.
DR
DR
     PROSITE; PS00260; GLUCAGON; 1.
KW
     Glucagon family; Hormone.
     SEQUENCE 29 AA; 3478 MW; 19ECF4DABB752B27 CRC64;
SQ
  Query Match
                           8.8%; Score 3; DB 1; Length 29;
  Best Local Similarity 100.0%; Pred. No. 4.9e+03;
            3; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                              0:
Qу
           13 KHL 15
              Db
           12 KHL 14
RESULT 24
IPYR DESVH
     IPYR DESVH
                    STANDARD;
                                   PRT;
                                           29 AA.
AC.
     P19371;
DT
     01-NOV-1990 (Rel. 16, Created)
DT
     01-NOV-1990 (Rel. 16, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DE
     Inorganic pyrophosphatase (EC 3.6.1.1) (Pyrophosphate phospho-
DE
     hydrolase) (PPase) (Fragment).
OS
     Desulfovibrio vulgaris (strain Hildenborough).
OC
     Bacteria; Proteobacteria; Deltaproteobacteria; Desulfovibrionales;
     Desulfovibrionaceae; Desulfovibrio.
OX
     NCBI TaxID=882;
RN
     [1]
RΡ
     SEQUENCE.
RX
     MEDLINE=90365722; PubMed=2168174;
RA
     Liu M.-Y., le Gall J.;
RT
     "Purification and characterization of two proteins with inorganic
RT
     pyrophosphatase activity from Desulfovibrio vulgaris: rubrerythrin
RT
     and a new, highly active, enzyme.";
\mathtt{RL}
     Biochem. Biophys. Res. Commun. 171:313-318(1990).
```

```
ACTIVATION OF SULFATE BY SULFATE REDUCING BACTERIA. THIS IS A HIGH
CC
CC
         ACTIVITY PYROPHOSPHATASE.
     -!- CATALYTIC ACTIVITY: Diphosphate + H(2)0 = 2 phosphate.
CC
CC
     -!- SUBCELLULAR LOCATION: Periplasmic (Potential).
     PIR; A35687; A35687.
DR
     HAMAP; MF_00209; -; 1.
DR
     InterPro; IPR001596; Pyrophosphatase.
DR
     PROSITE; PS00387; PPASE; PARTIAL.
DR
     Hydrolase; Periplasmic.
KW
FT
     NON TER
                  29
                29 AA; 3201 MW; 3FC5792360F2227B CRC64;
SO
     SEQUENCE
                           8.8%; Score 3; DB 1; Length 29;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 4.9e+03;
             3; Conservative
                                0; Mismatches
                                                  0; Indels
                                                                  0; Gaps
                                                                              0;
            3 SEI 5
Qу
              111
Db
           15 SEI 17
RESULT 25
NUO1 SOLTU
ID
     NUO1 SOLTU
                    STANDARD;
                                   PRT;
                                           29 AA.
AC
     P80267;
DT
     01-FEB-1994 (Rel. 28, Created)
DT
     01-FEB-1994 (Rel. 28, Last sequence update)
     28-FEB-2003 (Rel. 41, Last annotation update)
DE
     NADH-ubiquinone oxidoreductase 14 kDa subunit (EC 1.6.5.3)
     (EC 1.6.99.3) (Complex I-14KD) (CI-14KD) (Fragment).
DE
OS
     Solanum tuberosum (Potato).
OC
     Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
OC
     Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots;
     Asteridae; lamiids; Solanales; Solanaceae; Solanum.
OC
     NCBI_TaxID=4113;
OX
RN
     [1]
RΡ
     SEQUENCE.
RC
     STRAIN=cv. Bintje; TISSUE=Tuber;
     MEDLINE=94124587; PubMed=8294484;
RX
     Herz U., Schroeder W., Liddell A., Leaver C.J., Brennicke A.,
RA
RA
     Grohmann L.;
RT
     "Purification of the NADH: ubiquinone oxidoreductase (complex I) of
RT
     the respiratory chain from the inner mitochondrial membrane of
RT
     Solanum tuberosum.";
     J. Biol. Chem. 269:2263-2269(1994).
RL
CC
     -!- FUNCTION: TRANSFER OF ELECTRONS FROM NADH TO THE RESPIRATORY
CC
         CHAIN. THE IMMEDIATE ELECTRON ACCEPTOR FOR THE ENZYME IS BELIEVED
CC
         TO BE UBIQUINONE.
CC
     -!- CATALYTIC ACTIVITY: NADH + ubiquinone = NAD(+) + ubiquinol.
CC
     -!- CATALYTIC ACTIVITY: NADH + acceptor = NAD(+) + reduced acceptor.
CC
     -!- SUBUNIT: COMPLEX I IS COMPOSED OF ABOUT 30 DIFFERENT SUBUNITS.
     -!- SUBCELLULAR LOCATION: MATRIX SIDE OF THE MITOCHONDRIAL INNER
CC
CC
         MEMBRANE.
     PIR; I49732; I49732.
DR
KW
     Oxidoreductase; NAD; Ubiquinone; Mitochondrion.
FT
     NON TER
                  29
                         29
```

-!- FUNCTION: INORGANIC PYROPHOSPHATASE IS AN ESSENTIAL ENZYME FOR THE

CC

```
SQ
    SEQUENCE 29 AA; 3269 MW; E2B4DFB558D423D4 CRC64;
                          8.8%; Score 3; DB 1; Length 29;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 4.9e+03;
           3; Conservative 0; Mismatches 0; Indels
                                                                0; Gaps
                                                                            0;
          25 RKK 27
Qу
             Db
           2 RKK 4
RESULT 26
PCG4 PACGO
     PCG4 PACGO
                   STANDARD;
                              PRT;
                                          29 AA.
ID
AC
     P82417;
DT
     16-OCT-2001 (Rel. 40, Created)
DT
     16-OCT-2001 (Rel. 40, Last sequence update)
     15-SEP-2003 (Rel. 42, Last annotation update)
DT
DE
     Ponericin G4.
OS
     Pachycondyla goeldii (Ponerine ant).
     Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
OC
    Neoptera; Endopterygota; Hymenoptera; Apocrita; Aculeata; Formicidae;
OC
OC
     Ponerinae; Pachycondyla.
OX
    NCBI TaxID=118888;
RN
     [1]
RP
     SEQUENCE, AND FUNCTION.
RC
     TISSUE=Venom;
    MEDLINE=21264562; PubMed=11279030;
RX
     Orivel J., Redeker V., Le Caer J.-P., Krier F., Revol-Junelles A.-M.,
RA
     Longeon A., Chafotte A., Dejean A., Rossier J.;
RA
RT
     "Ponericins, new antibacterial and insecticidal peptides from the
RT
     venom of the ant Pachycondyla goeldii.";
RL
     J. Biol. Chem. 276:17823-17829(2001).
CC
     -!- FUNCTION: HAS ACTIVITY AGAINST SOME GRAM-POSITIVE BACTERIA
CC
        AND S.CEREVISIAE. HAS A NON-HEMOLYTIC ACTIVITY.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- MASS SPECTROMETRY: MW=3163.87; METHOD=MALDI.
KW
     Antibiotic; Insect immunity; Fungicide.
SQ
     SEQUENCE 29 AA; 3165 MW; 7037D0B855072AF8 CRC64;
  Query Match
                          8.8%; Score 3; DB 1; Length 29;
  Best Local Similarity 100.0%; Pred. No. 4.9e+03;
  Matches
           3; Conservative 0; Mismatches 0;
                                                      Indels
                                                                0;
                                                                    Gaps
                                                                            0;
           22 EWL 24
Qу
              11 EWL 13
Db
RESULT 27
RS7 METTE
    RS7 METTE
ID
                   STANDARD;
                                  PRT;
                                          29 AA.
AC
     093639;
     30-MAY-2000 (Rel. 39, Created)
DT
     30-MAY-2000 (Rel. 39, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
     30S ribosomal protein S7P (Fragment).
DE
```

```
GN
    RPS7P OR S7.
OS
    Methanosarcina thermophila.
    Archaea; Euryarchaeota; Euryarchaeota orders incertae sedis;
OC
OC
    Methanosarcinales; Methanosarcinaceae; Methanosarcina.
OX
    NCBI TaxID=2210;
RN
     SEQUENCE FROM N.A.
RP
RC
    STRAIN=DSM 1825 / TM-1;
    MEDLINE=99059471; PubMed=9845338;
RX
RA
    Thomas T., Cavicchioli R.;
RT
     "Archaeal cold-adapted proteins: structural and evolutionary analysis
RT
    of the elongation factor 2 proteins from psychrophilic, mesophilic and
RT
     thermophilic methanogens.";
    FEBS Lett. 439:281-287(1998).
RL
CC
     -!- FUNCTION: One of the primary rRNA binding proteins, it binds
CC
        directly to 16S rRNA where it nucleates assembly of the head
CC
        domain of the 30S subunit. Is located at the subunit interface
CC
        close to the decoding center (By similarity).
CC
     -!- SUBUNIT: Part of the 30S ribosomal subunit.
CC
     -!- SIMILARITY: BELONGS TO THE S7P FAMILY OF RIBOSOMAL PROTEINS.
CC
     CC
    This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
    between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
     the European Bioinformatics Institute. There are no restrictions on its
CC
    use by non-profit institutions as long as its content is in no way
CC
    modified and this statement is not removed. Usage by and for commercial
CC
    entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
    or send an email to license@isb-sib.ch).
CC
     -----
    EMBL; AF026165; AAC79199.1; -.
DR
DR
    PIR; T44245; T44245.
DR
    HAMAP; MF 00480; -; 1.
     InterPro; IPR000235; Ribosomal S7.
DR
DR
    PROSITE; PS00052; RIBOSOMAL S7; PARTIAL.
    Ribosomal protein; RNA-binding; rRNA-binding.
KW
FT
    NON TER
SQ
    SEQUENCE
             29 AA; 3217 MW; 1602B8A2E6C50C2B CRC64;
  Query Match
                         8.8%; Score 3; DB 1; Length 29;
  Best Local Similarity 100.0%; Pred. No. 4.9e+03;
           3; Conservative 0; Mismatches 0; Indels
                                                             0; Gaps
                                                                         0;
          19 ERV 21
Qу
             111
Db
          22 ERV 24
RESULT 28
SODC OLEEU
    SODC OLEEU
ID
                   STANDARD;
                                 PRT;
                                        29 AA.
AC
    P80740;
DT
    01-NOV-1997 (Rel. 35, Created)
DT
    01-NOV-1997 (Rel. 35, Last sequence update)
DT
    15-SEP-2003 (Rel. 42, Last annotation update)
DE
    Superoxide dismutase [Cu-Zn] (EC 1.15.1.1) (Allergen Ole e 5) (Ole e
DE
    V) (Fragment).
    Olea europaea (Common olive).
OS
```

```
OC
     Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
OC
     Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots:
OC
     Asteridae; lamiids; Lamiales; Oleaceae; Olea.
OX
     NCBI TaxID=4146;
RN
     [1]
RP
     SEQUENCE.
RC
     TISSUE=Pollen;
ВX
     MEDLINE=98160390; PubMed=9500754;
RΑ
     Boluda L., Alonso C., Fernandez-Caldas E.;
RT
     "Purification, characterization, and partial sequencing of two new
RT
     allergens of Olea europaea.";
RL
     J. Allergy Clin. Immunol. 101:210-216(1998).
CC
     -!- FUNCTION: Destroys radicals which are normally produced within the
CC
         cells and which are toxic to biological systems (By similarity).
CC
     -!- CATALYTIC ACTIVITY: 2 superoxide + 2 H(+) = O(2) + H(2)O(2).
CC
     -!- COFACTOR: Binds 1 copper ion and 1 zinc ion per subunit (By
CC
         similarity).
CC
     -!- SIMILARITY: BELONGS TO THE CU-ZN SUPEROXIDE DISMUTASE FAMILY.
DR
     InterPro; IPR001424; SOD CU ZN.
DR
     Pfam; PF00080; sodcu; 1.
DR
     PROSITE; PS00087; SOD CU ZN 1; PARTIAL.
DR
     PROSITE; PS00332; SOD CU ZN 2; PARTIAL.
KW
     Antioxidant; Oxidoreductase; Metal-binding; Copper; Zinc; Allergen.
FT
     NON TER
                  29
                         29
SQ
     SEQUENCE
                29 AA; 2973 MW; 836C7A193EDAD71E CRC64;
  Query Match
                           8.8%; Score 3; DB 1; Length 29;
  Best Local Similarity
                          100.0%; Pred. No. 4.9e+03;
             3; Conservative
                                0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0;
           15 LNS 17
Qу
Db
            7 LNS 9
RESULT 29
TL16 SPIOL
     TL16 SPIOL
                    STANDARD;
                                   PRT;
                                           29 AA.
AC
     P81834;
DТ
     30-MAY-2000 (Rel. 39, Created)
DT
     30-MAY-2000 (Rel. 39, Last sequence update)
DT
     16-OCT-2001 (Rel. 40, Last annotation update)
DE
     Thylakoid lumenal 16.5 kDa protein (P16.5) (Fragment).
OS
     Spinacia oleracea (Spinach).
     Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
OC
     Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots;
OC
OC
     Caryophyllidae; Caryophyllales; Chenopodiaceae; Spinacia.
OX
     NCBI_TaxID=3562;
RN
     [1]
     SEQUENCE.
RP
RC
     TISSUE=Leaf;
RX
     MEDLINE=98175931; PubMed=9506969;
RA
     Kieselbach T., Hagman A., Andersson B., Schroeder W.P.;
RT
     "The thylakoid lumen of chloroplasts. Isolation and
     characterization.";
RT
RL
     J. Biol. Chem. 273:6710-6716(1998).
CC
     -!- SUBCELLULAR LOCATION: Chloroplast; within the thylakoid lumen.
```

```
KW
     Chloroplast; Thylakoid.
FT
     NON TER
                  29
                         2.9
     SEOUENCE
                29 AA; 3464 MW; 58B785764E2623E3 CRC64;
SO
  Query Match
                           8.8%; Score 3; DB 1; Length 29;
  Best Local Similarity 100.0%; Pred. No. 4.9e+03;
           3; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0;
           25 RKK 27
Qу
              Db
           19 RKK 21
RESULT 30
CY35 DESAC
ID
     CY35 DESAC
                    STANDARD;
                                   PRT;
                                           30 AA.
AC
     P81079;
     01-NOV-1997 (Rel. 35, Created)
DT
DT
     01-NOV-1997 (Rel. 35, Last sequence update)
DT
     16-OCT-2001 (Rel. 40, Last annotation update)
     Cytochrome c3, 50 kDa (Fragment).
DE
OS
     Desulfuromonas acetoxidans (Chloropseudomonas ethylica).
OC
     Bacteria; Proteobacteria; Deltaproteobacteria; Desulfuromonadales;
OC
     Desulfuromonadaceae; Desulfuromonas.
OX
     NCBI TaxID=891;
RN
     [1]
RP
     SEQUENCE.
RX
     MEDLINE=97419123; PubMed=9271490;
     Bruschi M., Woudstra M., Guigliarelli B., Asso M., Lojou E.,
RA
RA
     Petillot Y., Abergel C.;
RT
     "Biochemical and spectroscopic characterization of two new
RT
     cytochromes isolated from Desulfuromonas acetoxidans.";
RL
     Biochemistry 36:10601-10608(1997).
     -!- FUNCTION: PARTICIPATES IN SULFATE RESPIRATION COUPLED WITH
CC
CC
         PHOSPHORYLATION BY TRANSFERRING ELECTRONS FROM THE ENZYME
CC
         DEHYDROGENASE TO FERREDOXIN. THE REDOX POTENTIALS OF THIS
CC
         CYTOCHROME ARE -140 MV, -210 MV AND -240 MV.
CC
     -!- SUBUNIT: Monomer.
     -!- SUBCELLULAR LOCATION: Periplasmic.
CC
CC
     -!- PTM: BINDS 4 HEMES.
CC
     -!- SIMILARITY: TO OTHER C3-TYPE CYTOCHROMES.
DR
     InterPro; IPR000345; CytC heme bind.
DR
     PROSITE; PS00190; CYTOCHROME C; PARTIAL.
KW
     Electron transport; Sulfate respiration; Heme; Periplasmic.
FT
    NON TER
                  30
                        30
SQ
     SEQUENCE
               30 AA; 3018 MW; B0D52603DD5069B8 CRC64;
 Query Match
                           8.8%; Score 3; DB 1; Length 30;
 Best Local Similarity 100.0%; Pred. No. 5.1e+03;
 Matches
            3; Conservative
                              0; Mismatches
                                                0; Indels
                                                                 0; Gaps
                                                                             0;
Qу
           11 KGK 13
```

15 KGK 17

Db

```
DMS3 PHYSA
     DMS3 PHYSA
ID
                    STANDARD;
                                   PRT;
                                           30 AA.
AC
     P80279;
DT
     01-FEB-1994 (Rel. 28, Created)
     01-FEB-1994 (Rel. 28, Last sequence update)
DT
     15-SEP-2003 (Rel. 42, Last annotation update)
DT
DE
     Dermaseptin 3 (DS III).
OS
     Phyllomedusa sauvagei (Sauvage's leaf frog).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Amphibia; Batrachia; Anura; Neobatrachia; Bufonoidea; Hylidae;
OC
     Phyllomedusinae; Phyllomedusa.
OX
     NCBI TaxID=8395;
RN
     [1]
RP
     SEQUENCE.
RC
     TISSUE=Skin secretion;
RX
     MEDLINE=94139686; PubMed=8306981;
RA
     Mor A., Nicolas P.;
RT
     "Isolation and structure of novel defensive peptides from frog skin.";
RL
     Eur. J. Biochem. 219:145-154(1994).
CC
     -!- FUNCTION: POSSESSES A POTENT ANTIMICROBIAL ACTIVITY AGAINST
CC
         BACTERIA FUNGI AND PROTOZOA. PROBABLY ACTS BY DISTURBING MEMBRANE
CC
         FUNCTIONS WITH ITS AMPHIPATIC STRUCTURE.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- TISSUE SPECIFICITY: Skin.
     -!- SIMILARITY: Belongs to the frog skin active peptide (FSAP) family.
CC
CC
         Dermaseptin subfamily.
KW
     Amphibian defense peptide; Antibiotic; Fungicide; Multigene family.
SO
     SEQUENCE 30 AA; 3024 MW; FD5F190C3DCBB0D7 CRC64;
  Ouery Match
                           8.8%; Score 3; DB 1; Length 30;
  Best Local Similarity 100.0%; Pred. No. 5.1e+03;
  Matches
           3; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                              0;
Qу
           26 KKL 28
              Dh
           23 KKL 25
RESULT 32
FTN BACFR
     FTN BACFR
TD
                    STANDARD;
                                   PRT;
                                           30 AA.
AC
     P28733;
     01-DEC-1992 (Rel. 24, Created)
DT
DТ
     01-DEC-1992 (Rel. 24, Last sequence update)
DΨ
     15-SEP-2003 (Rel. 42, Last annotation update)
DE
     Ferritin like protein (Fragment).
OS
     Bacteroides fragilis.
     Bacteria; Bacteroidetes; Bacteroides (class); Bacteroidales;
OC
OC
     Bacteroidaceae; Bacteroides.
OX
     NCBI_TaxID=817;
RN
     [1]
RР
     SEQUENCE.
RC
     STRAIN=20656-2-1;
RX
     MEDLINE=92406001; PubMed=1526453;
     Rocha E.R., Andrews S.C., Keen J.N., Brock J.H.;
RA
RT
     "Isolation of a ferritin from Bacteroides fragilis.";
RL
     FEMS Microbiol. Lett. 74:207-212(1992).
```

```
-!- FUNCTION: MAY ALLEVIATE IRON TOXICITY IN THE PRESENCE OF
CC
CC
     -!- COFACTOR: BINDS ABOUT THREE IRON ATOMS PER MOLECULE.
CC
     -!- SUBUNIT: FORMS OLIGOMERS OF ABOUT 400 kDa (THE MONOMER IS ABOUT
CC
CC
        17 kDa).
     -!- SIMILARITY: BELONGS TO THE FERRITIN FAMILY. PROKARYOTIC SUBFAMILY.
CC
     -!- SIMILARITY: Contains 1 ferritin-like diiron domain.
CC
     InterPro; IPR001519; Ferritin.
DR
     Pfam; PF00210; ferritin; 1.
DR
     PROSITE; PS50905; FERRITIN LIKE; 1.
DR
     Iron storage; Iron; Metal-binding.
KW
                        >30
                                  FERRITIN-LIKE DIIRON.
FT
     DOMAIN
                   1
                                  IRON (BY SIMILARITY).
                  17
FT
    METAL
                         17
    NON TER
                  30
                         30
FT
                30 AA; 3529 MW; C70505B5696EFC4F CRC64;
     SEQUENCE
SO
                           8.8%; Score 3; DB 1; Length 30;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 5.1e+03;
                                0; Mismatches 0; Indels
                                                                0; Gaps
            3; Conservative
  Matches
           27 KLO 29
Qу
              111
            5 KLQ 7
Db
RESULT 33
GLUM ANGAN
ID
     GLUM ANGAN
                    STANDARD;
                                   PRT;
                                           30 AA.
AC
     P41521;
DT
     01-NOV-1995 (Rel. 32, Created)
     01-NOV-1995 (Rel. 32, Last sequence update)
DT
DT
     15-SEP-2003 (Rel. 42, Last annotation update)
DE
     Glucagon-like peptide (GLP).
     Anguilla anguilla (European freshwater eel), and
OS
OS
     Anguilla rostrata (American eel).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Actinopterygii; Neopterygii; Teleostei; Anguilliformes; Anguillidae;
OC
     Anguilla.
OX
     NCBI TaxID=7936, 7938;
RN
     [1]
RΡ
     SEQUENCE.
     SPECIES=A.anguilla, and A.rostrata;
RC
RC
     TISSUE=Pancreas;
RX
     MEDLINE=91340068; PubMed=1874385;
RΑ
     Conlon J.M., Andrews P.C., Thim L., Moon T.W.;
     "The primary structure of glucagon-like peptide but not insulin has
RT
     been conserved between the American eel, Anguilla rostrata and the
RT
RT
     European eel, Anguilla anguilla.";
     Gen. Comp. Endocrinol. 82:23-32(1991).
RL
CC
     -!- SIMILARITY: BELONGS TO THE GLUCAGON FAMILY.
DR
     PIR; B61125; B61125.
DR
     PIR; C61125; C61125.
     HSSP; P01275; 1BH0.
DR
     InterPro; IPR000532; Glucagon.
DR
     Pfam; PF00123; hormone2; 1.
DR
     SMART; SM00070; GLUCA; 1.
DR
DR
     PROSITE; PS00260; GLUCAGON; 1.
```

```
KW
    Glucagon family; Amidation.
                                 AMIDATION.
FT
    MOD RES
                 30
                        30
               30 AA; 3376 MW; 592DA5EABD6E49D0 CRC64;
SO
    SEQUENCE
                          8.8%; Score 3; DB 1; Length 30;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 5.1e+03;
            3; Conservative 0; Mismatches 0; Indels
                                                                    Gaps
                                                                             0;
          28 LQD 30
Qу
              111
Db
           14 LQD 16
RESULT 34
OTCC AERPU
                                   PRT;
     OTCC AERPU
                    STANDARD;
                                           30 AA.
TD
AC
     P11726;
     01-OCT-1989 (Rel. 12, Created)
DT
     01-OCT-1989 (Rel. 12, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
     Ornithine carbamoyltransferase, catabolic (EC 2.1.3.3) (OTCase)
DE
DE
     (Fragment).
OS
     Aeromonas punctata (Aeromonas caviae).
     Bacteria; Proteobacteria; Gammaproteobacteria; Aeromonadales;
OC
    Aeromonadaceae; Aeromonas.
OC
OX
     NCBI TaxID=648;
RN
     [1]
RP
     SEOUENCE.
RC
     STRAIN=NCIB 9232;
     MEDLINE=85104799; PubMed=3968036;
RX
RA
     Falmagne P., Portetelle D., Stalon V.;
RT
     "Immunological and structural relatedness of catabolic ornithine
RT
     carbamoyltransferases and the anabolic enzymes of enterobacteria.";
RL
     J. Bacteriol. 161:714-719(1985).
CC
     -!- CATALYTIC ACTIVITY: Carbamoyl phosphate + L-ornithine = phosphate
CC
         + L-citrulline.
CC
     -!- PATHWAY: Arginine degradation via arginine deiminase; second step.
CC
     -!- SUBCELLULAR LOCATION: Cytoplasmic.
CC
     -!- SIMILARITY: BELONGS TO THE ATCASES/OTCASES FAMILY.
DR
     InterPro; IPR006130; Asp/Orn COtranf.
DR
     InterPro; IPR006132; OTCace P.
DR
     Pfam; PF02729; OTCace_N; 1.
DR
     PROSITE; PS00097; CARBAMOYLTRANSFERASE; PARTIAL.
KW
     Transferase; Arginine metabolism.
FT
     NON TER
                  30
                         30
                30 AA; 3654 MW; 673CB989FE72F9C1 CRC64;
SQ
     SEQUENCE
  Query Match
                           8.8%; Score 3; DB 1; Length 30;
  Best Local Similarity 100.0%; Pred. No. 5.1e+03;
                              0; Mismatches
                                                                0; Gaps
                                                                             0;
             3; Conservative
                                                0;
                                                      Indels
            4 EIQ 6
Qу
```

19 EIQ 21

```
PCG2 PACGO
     PCG2 PACGO
                                   PRT;
                    STANDARD;
                                           30 AA.
AC
     P82415;
DT
     16-OCT-2001 (Rel. 40, Created)
     16-OCT-2001 (Rel. 40, Last sequence update)
DT
     15-SEP-2003 (Rel. 42, Last annotation update)
DT
     Ponericin G2.
DE
     Pachycondyla goeldii (Ponerine ant).
OS
     Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
OC
     Neoptera; Endopterygota; Hymenoptera; Apocrita; Aculeata; Formicidae;
OC
OC
     Ponerinae; Pachycondyla.
OX
     NCBI TaxID=118888;
RN
     [1]
     SEQUENCE, AND FUNCTION.
RP
RC
     TISSUE=Venom;
RX
     MEDLINE=21264562; PubMed=11279030;
RA
     Orivel J., Redeker V., Le Caer J.-P., Krier F., Revol-Junelles A.-M.,
RA
     Longeon A., Chafotte A., Dejean A., Rossier J.;
RT
     "Ponericins, new antibacterial and insecticidal peptides from the
     venom of the ant Pachycondyla goeldii.";
RT
RL
     J. Biol. Chem. 276:17823-17829(2001).
CC
     -!- FUNCTION: BROAD SPECTRUM OF ACTIVITY AGAINST BOTH GRAM-POSITIVE
CC
         AND GRAM-NEGATIVE BACTERIA AND S.CEREVISIAE. HAS INSECTICIDAL
CC
         AND NON-HEMOLYTIC ACTIVITIES.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- MASS SPECTROMETRY: MW=3306.56; METHOD=MALDI.
KW
     Antibiotic; Insect immunity; Fungicide.
SO
     SEQUENCE 30 AA; 3308 MW; A12CD4D0BAF40B5D CRC64;
                           8.8%; Score 3; DB 1; Length 30;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 5.1e+03;
  Matches
           3; Conservative 0; Mismatches 0; Indels
Qу
           11 KGK 13
              Db
            8 KGK 10
RESULT 36
TX2 THRPR
     TX2 THRPR
                    STANDARD;
                                   PRT;
                                           30 AA.
AC
     P83476;
DT
     28-FEB-2003 (Rel. 41, Created)
DT
     28-FEB-2003 (Rel. 41, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
     Toxin ProTx-II.
OS
     Thrixopelma pruriens (Green velvet).
OC
     Eukaryota; Metazoa; Arthropoda; Chelicerata; Arachnida; Araneae;
OC
     Mygalomorphae; Theraphosidae; Thrixopelma.
OX
     NCBI TaxID=213387;
RN
RP
     SEQUENCE, FUNCTION, SUBCELLULAR LOCATION, TISSUE SPECIFICITY, MASS
RP
     SPECTROMETRY, AND DISULFIDE BONDS.
RC
     TISSUE=Venom;
RX
     MEDLINE=22363233; PubMed=12475222;
RA
     Middleton R.E., Warren V.A., Kraus R.L., Hwang J.C., Liu C.J., Dai G.,
RA
     Brochu R.M., Kohler M.G., Gao Y.-D., Garsky V.M., Boqusky M.J.,
```

```
RA
     Mehl J.T., Cohen C.J., Smith M.M.;
     "Two tarantula peptides inhibit activation of multiple sodium
RT
RT
     channels.";
RL
     Biochemistry 41:14734-14747(2002).
     -!- FUNCTION: Inhibits voltage-gated calcium and sodium channels.
CC
CC
         Shifts the voltage-dependence of channel activation to more
CC
         positive potentials.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
     -!- TISSUE SPECIFICITY: Expressed by the venom gland.
CC
CC
     -!- MASS SPECTROMETRY: MW=3827; METHOD=Electrospray.
CC
     -!- MASS SPECTROMETRY: MW=3827; METHOD=MALDI.
     -!- SIMILARITY: BELONGS TO THE SPIDER POTASSIUM CHANNEL INHIBITORY
CC
CC
         TOXIN FAMILY.
KW
     Toxin; Neurotoxin; Ionic channel inhibitor; Calcium channel inhibitor;
KW
     Sodium channel inhibitor.
FT
     DISULFID
FT
     DISULFID
                   9
                         21
FT
     DISULFID
                  15
                         25
SQ
     SEQUENCE
                30 AA; 3833 MW; 5B8CF4C6338C1B9B CRC64;
                           8.8%; Score 3; DB 1; Length 30;
  Query Match
                          100.0%; Pred. No. 5.1e+03;
  Best Local Similarity
  Matches
                                0; Mismatches 0; Indels
            3; Conservative
                                                                0; Gaps
                                                                             0;
Qу
           26 KKL 28
              Db
           27 KKL 29
RESULT 37
UP61 UPEIN
     UP61 UPEIN
TD
                    STANDARD;
                                   PRT;
AC
     P82037;
DT
     30-MAY-2000 (Rel. 39, Created)
DT
     30-MAY-2000 (Rel. 39, Last sequence update)
DT
     15-SEP-2003 (Rel. 42, Last annotation update)
DΕ
     Uperin 6.1.
     Uperoleia inundata (Floodplain toadlet).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
OC
     Amphibia; Batrachia; Anura; Neobatrachia; Bufonoidea; Myobatrachidae;
OC
     Myobatrachinae; Uperoleia.
OX
     NCBI_TaxID=104953;
RN
     [1]
RP
     SEQUENCE, AND MASS SPECTROMETRY.
RC
     TISSUE=Skin secretion;
     Bradford A.M., Raftery M.J., Bowie J.H., Tyler M.J., Wallace J.C.,
RA
     Adams G.W., Severini C.;
RT
     "Novel uperin peptides from the dorsal glands of the australian
RT
     floodplain toadlet Uperoleia inundata.";
RL
     Aust. J. Chem. 49:475-484(1996).
CC
     -!- FUNCTION: UNKNOWN.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- TISSUE SPECIFICITY: Expressed by the skin dorsal glands.
CC
     -!- MASS SPECTROMETRY: MW=3233.85; METHOD=MALDI.
KW
    Amphibian defense peptide.
SO
     SEQUENCE
              30 AA; 3233 MW; 4EE15B9EB110F68E CRC64;
```

```
Query Match
                           8.8%; Score 3; DB 1; Length 30;
  Best Local Similarity 100.0%; Pred. No. 5.1e+03;
           3; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0;
           26 KKL 28
Qу
              \mathbf{H}
           24 KKL 26
Db
RESULT 38
UP62 UPEIN
     UP62 UPEIN
                                   PRT;
TD
                    STANDARD;
                                           30 AA.
AC
     P82038;
DT
     30-MAY-2000 (Rel. 39, Created)
     30-MAY-2000 (Rel. 39, Last sequence update)
DT
DT
     15-SEP-2003 (Rel. 42, Last annotation update)
DE
     Uperin 6.2.
OS
     Uperoleia inundata (Floodplain toadlet).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
OC
     Amphibia; Batrachia; Anura; Neobatrachia; Bufonoidea; Myobatrachidae;
OC
     Myobatrachinae; Uperoleia.
     NCBI TaxID=104953;
OX
RN
RP
     SEQUENCE, AND MASS SPECTROMETRY.
RC
     TISSUE=Skin secretion;
RA
     Bradford A.M., Raftery M.J., Bowie J.H., Tyler M.J., Wallace J.C.,
RA
     Adams G.W., Severini C.;
     "Novel uperin peptides from the dorsal glands of the australian
RT
RT
     floodplain toadlet Uperoleia inundata.";
RL
     Aust. J. Chem. 49:475-484(1996).
CC
     -!- FUNCTION: UNKNOWN.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- TISSUE SPECIFICITY: Expressed by the skin dorsal glands.
CC
     -!- MASS SPECTROMETRY: MW=3261.85; METHOD=MALDI.
KW
     Amphibian defense peptide.
SO
     SEQUENCE
               30 AA; 3261 MW; 4EE15B9EB10841DE CRC64;
  Query Match
                          8.8%; Score 3; DB 1; Length 30;
  Best Local Similarity 100.0%; Pred. No. 5.1e+03;
            3; Conservative 0; Mismatches 0; Indels 0; Gaps
  Matches
                                                                             0;
           26 KKL 28
Qу
              Dh
           24 KKL 26
RESULT 39
VAA2 EQUAR
                                  PRT;
ID
     VAA2 EQUAR
                    STANDARD;
                                           30 AA.
AC
     Q04238;
     01-OCT-1996 (Rel. 34, Created)
DT
DT
     01-OCT-1996 (Rel. 34, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DE
    Vacuolar ATP synthase catalytic subunit A, isoform 2 (EC 3.6.3.14)
DE
     (Fragment).
OS
    Equisetum arvense (Field horsetail) (Common horsetail).
OC
    Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
```

```
OC
     Equisetophyta; Sphenopsida; Equisetales; Equisetaceae; Equisetum.
 OX
     NCBI TaxID=3258;
 RN
     [1]
 RP
     SEQUENCE FROM N.A.
 RX
     MEDLINE=93138084; PubMed=8422915;
 RA
     Starke T., Gogarten J.P.;
 RT
     "A conserved intron in the V-ATPase A subunit genes of plants and
 RT
     algae.";
 RL
     FEBS Lett. 315:252-258(1993).
 CC
     -!- FUNCTION: CATALYTIC SUBUNIT OF THE PERIPHERAL V1 COMPLEX OF
 CC
         VACUOLAR ATPASE. V-ATPASE VACUOLAR ATPASE IS RESPONSIBLE FOR
         ACIDIFYING A VARIETY OF INTRACELLULAR COMPARTMENTS IN EUKARYOTIC
 CC
CC
CC
     -!- CATALYTIC ACTIVITY: ATP + H(2)O + H(+)(In) = ADP + phosphate +
CC
        H(+)(Out).
     -!- SUBUNIT: V-ATPASE IS AN HETEROMULTIMERIC ENZYME COMPOSED OF A
CC
CC
         PERIPHERAL CATALYTIC V1 COMPLEX (MAIN COMPONENTS: SUBUNITS A, B,
CC
         C, D, E, AND F) ATTACHED TO AN INTEGRAL MEMBRANE VO PROTON PORE
CC
         COMPLEX (MAIN COMPONENT: THE PROTEOLIPID PROTEIN).
CC
     -!- MISCELLANEOUS: TWO SEPARATE GENES ENCODE THE CATALYTIC 70 kDa
CC
         V-ATPASE SUBUNIT IN PSILOTUM AND EQUISETUM.
     -!- SIMILARITY: Belongs to the ATPase alpha/beta chains family.
CC
CC
     ______
CC
     This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
     between the Swiss Institute of Bioinformatics and the EMBL outstation -
     the European Bioinformatics Institute. There are no restrictions on its
CC
     use by non-profit institutions as long as its content is in no way
CC
     modified and this statement is not removed. Usage by and for commercial
CC
CC
     entities requires a license agreement (See http://www.isb-sib.ch/announce/
     or send an email to license@isb-sib.ch).
CC-
     ______
CC
     EMBL; X56984; CAA40302.1; -.
DR
     PIR; S21815; S21815.
     InterPro; IPR000194; ATPase_a/bcentre.
DR
DR
     PROSITE; PS00152; ATPASE ALPHA BETA; PARTIAL.
     ATP synthesis; Hydrogen ion transport; Hydrolase; ATP-binding;
KW
KW
     Multigene family.
FT
     NON TER
                 1
                        1
FT
     NON TER
                 30
                       30
     SEQUENCE 30 AA; 3372 MW; 51CCA4A3DA9E5D84 CRC64;
SO
  Query Match
                         8.8%; Score 3; DB 1; Length 30;
  Best Local Similarity 100.0%; Pred. No. 5.1e+03;
           3; Conservative 0; Mismatches 0; Indels 0; Gaps
Qу
          18 MER 20
             111
Db
          23 MER 25
RESULT 40
Y523_BORBU
ID
    Y523 BORBU
                  STANDARD;
                               PRT; 30 AA.
    051473;
AC
DT
    15-DEC-1998 (Rel. 37, Created)
DT
    15-DEC-1998 (Rel. 37, Last sequence update)
DT
    16-OCT-2001 (Rel. 40, Last annotation update)
```

```
Hypothetical protein BB0523.
DΕ
GN
    BB0523.
    Borrelia burgdorferi (Lyme disease spirochete).
OS
    Bacteria; Spirochaetes; Spirochaetales; Spirochaetaceae; Borrelia.
OC
    NCBI TaxID=139;
OX
RN
    [1]
    SEQUENCE FROM N.A.
RP
    STRAIN=ATCC 35210 / B31;
RC
    MEDLINE=98065943; PubMed=9403685;
RX
    Fraser C.M., Casjens S., Huang W.M., Sutton G.G., Clayton R.A.,
RA
    Lathigra R., White O., Ketchum K.A., Dodson R., Hickey E.K., Gwinn M.,
RA
    Dougherty B., Tomb J.-F., Fleischmann R.D., Richardson D.,
RA
     Peterson J., Kerlavage A.R., Quackenbush J., Salzberg S., Hanson M.,
RA
    van Vugt R., Palmer N., Adams M.D., Gocayne J.D., Weidman J.,
RA
    Utterback T., Watthey L., McDonald L., Artiach P., Bowman C.,
RA
    Garland S., Fujii C., Cotton M.D., Horst K., Roberts K., Hatch B.,
RA
     Smith H.O., Venter J.C.;
RA
     "Genomic sequence of a Lyme disease spirochaete, Borrelia
RT
RT
    burgdorferi.";
     Nature 390:580-586(1997).
RL
     ______
CC
     This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
     between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
     the European Bioinformatics Institute. There are no restrictions on its
CC
     use by non-profit institutions as long as its content is in no way
CC
     modified and this statement is not removed. Usage by and for commercial
CC
     entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
     or send an email to license@isb-sib.ch).
CC
     ______
CC
     EMBL; AE001154; AAC66894.1; -.
DR
     PIR; B70165; B70165.
DR
     TIGR; BB0523; -.
DR
     Hypothetical protein; Complete proteome.
KW
     SEOUENCE 30 AA; 3431 MW; DE437B15D2A48AA8 CRC64;
SO
                         8.8%; Score 3; DB 1; Length 30;
  Query Match
                        100.0%; Pred. No. 5.1e+03;
  Best Local Similarity
          3; Conservative 0; Mismatches 0; Indels 0; Gaps
                                                                       0;
  Matches
Qу
          19 ERV 21
             26 ERV 28
Db
```

Search completed: January 14, 2004, 10:35:33 Job time: 7.61371 secs