

subnetting

Cisco | Networking Academy® | Mind Wide Open™

Segmentation of networks

- Purpose of network segmentation are:-
 - Increase Network performance
 - Increase Network Security
 - Increase Network Management

Increase Network performance

All devices in this network are connected in one broadcast domain when the switch is set to the factory default settings. Since switches forward broadcasts by default, broadcasts are processed by all devices in this network.

Replacing the middle switch with a router creates 2 IP subnets, hence, 2 distinct broadcast domains. All devices are connected but local broadcasts are contained.

Increase Network Security

Increase Network manageability

Hosts do not know how to deliver data to devices in a remote network - this is the role of the gateway.

IP Address Classes (Classful IP Addressing)

```
Class A 1 to 126
                        Mask
                                 255.0.0.0
Class B
           128 to 191
                        Mask
                                 255.255.0.0
Class C 192 to 223
                        Mask
                                 255.255.255.0
            ---- 224 to 239 ---- Multicast
  Class D
        Class E ----- For Research
            . Network
                          Host
                                    Host
                                              Host
            Network . Network .
                                    Host
                                              Host
  Class B ...
  Class C ... . Network . Network . Network
                                              Host
```


Because the fast deployment of internet, the IP addresses become not enough

- Subnetting a network means to use the subnet mask to divide the network and break a large network up into smaller, more efficient and manageable segments, or subnets.
- Subnetting is done by taking part of host bits then add it to the network part

Divide network 192.168.1.0/24 into 2 subnets

2 subnets need 1 bit

Borrowing Bits for Subnets

Increase the network portion of the address

Borrowing Bits for Subnets

Addressing Scheme: Example of 2 networks

Subnet	Network address	Host range	Broadcast address
0	192.168.1.0/25	192.168.1.1 - 192.168.1.126	192.168.1.127
1	192.168.1.128/25	192.168.1.129 - 192.168.1.254	192.168.1.255

Divide network 192.168.1.0/24 into 4 subnets

4 subnets need 2 bits

Borrowing Bits for Subnets

2	255.255.255.192	Mask:	11111111 . 11111111 . 11111111 . 11	
_				
3	192.168.1.192 (/26) 255.255.255.192	Address: Mask:	11000000.10101000.00000001.11 1111111.11111111	
	192.168.1.192 (/26)	Address:	11000000.10101000.00000001.11	000000
2	192.168.1.128 (/26)	Address:	11000000.10101000.00000001.10	
1	255.255.255.192	Mask:	11111111.11111111.111111111.11	000000
4	192.168.1.64 (/26)	Address:	11000000.10101000.00000001.01	000000
0	255.255.255.192	Mask:	11111111.11111111.111111111.11	000000
_	192.168.1.0 (/26)	Address:	11000000.10101000.00000001.00	000000
•	255.255.255.0	Mask:	11111111.111111111.11111111.00	
	192.168.1.0 (/24)	Address:	11000000.10101000.00000001.00	000000

Two bits are borrowed to provide four subnets.

Unused address in this example.

A 1 in these positions in the mask means that these values are part of the network address.

More subnets are available, but fewer addresses are available per subnet.

Borrowing Bits for Subnets

Addressing Scheme: Example of 4 networks

Subnet	Network address	Host range	Broadcast address
0	192.168.1.0/26	192.168.1.1 - 192.168.1.62	192.168.1.63
1	192.168.1.64/26	192.168.1.65 - 192.168.1.126	192.168.1.127
2	192.168.1.128/26	192.168.1.129 - 192.168.1.190	192.168.1.191
3	192.168.1.192/26	192.168.1.193 - 192.168.1.254	192.168.1.255

Divide network 192.168.1.0/24 into 6 subnets

6 subnets need 3 bits

Borrowing Bits for Subnets

Start with this address	-	192.168.1.0 (/24) 255.255.255.0	Address: Mask:	11000000.10101000.00000001.000 11111111.11111111	
Make 8 subnets	0	192.168.1.0 (/27) 255.255.255.224	Address: Mask:	11000000.10101000.00000001.000 11111111.11111111	
	1	192.168.1.32 (/27) 255.255.255.224	Address: Mask:	11000000.10101000.00000001.000 11111111.11111111	
	2	192.168.1.64 (/27) 255.255.255.224	Address: Mask:	11000000.10101000.00000001.010111111111	
0	3	192.168.1.96 (/27) 255.255.255.224	Address: Mask:	11000000.10101000.00000001.01: 11111111.11111111.11111111.111	
RouterA	4	192.168.1.128 (/27) 255.255.255.224	Address: Mask:	11000000.10101000.00000001.100	
5	5	192.168.1.160 (/27) 255.255.255.224	Address: Mask:	11000000.10101000.00000001.10:	
4 RouterB	6	192.168.1.192 (/27) 255.255.255.224	Address: Mask:	11000000.10101000.00000001.11 11111111.11111111	
	7	192.168.1.224 (/27) 255.255.255.224	Address: Mask:	11000000.10101000.00000001.11 11111111.11111111	

Three bits are borrowed to provide eight subnets.

Borrowing Bits for Subnets

Addressing Scheme: Example of 6 networks

	Network address		Broadcast address
0	192.168.1.0/27	192.168.1.1 - 192.168.1.30	192.168.1.31
1	192.168.1.32/27	192.168.1.33 - 192.168.1.62	192.168.1.63
2	192.168.1.64/27	192.168.1.65 - 192.168.1.94	192.168.1.95
3	192.168.1.96/27	192.168.1.97 - 192.168.1.126	192.168.1.127
4	192.168.1.128/27	192.168.1.129 - 192.168.1.158	192.168.1.159
5	192.168.1.160/27	192.168.1.161 - 192.168.1.190	192.168.1.191
6	192.168.1.192/27	192.168.1.193 - 192.168.1.222	192.168.1.223
7	192.168.1.224/27	192.168.1.225 - 192.168.1.254	192.168.1.255

Divide network 172.168.0.0/16 into 8 subnets

Solution:

- 8 subnets need 3 bits
- subnet mask = 255.255.224.0
- interesting octet is 224
- hop count = 256 224 = 32

- The first subnet is

- The second subnet is

172.16.32.0/19 172.16.32.1 -172.16.63.254

- The third subnet is

172.16.64.0/19 172.16.64.1-172.16.127.254

-The 8th subnet is

Divide network 10.0.0.0/10 into 4 subnets

Solution:

- 4subnets need 2 bits
- subnet mask = 255.240.0. 0
- interesting octet is 240
- hop count = 256 240 = 16
- The first subnet is
- The second subnet is
- The third subnet is
- The fourth subnet is

- 10.16.0.0/12 ----- 10.16.0.1-10.31.255.254
- **10.32.0.0/12** 10.32.0.1-10.47.255.254
- 10.48.0.0/12 ------ 10.48.0.1-172.65.255.254

192.168.5.0/24 5 Subnet, 30 Host

First note 192.168.5.0 class C

Default mask = 255.255.255.0

No of network = $2^n >= 5 \dots n=3$

No of host = $2^5 - 2 = 30$

The subnet mask is 255.255.255.11100000 255.255.255.224

192.168.5.0	192	168	5	0000000	
255.255.255.224	255	255	255	111 <mark>00000</mark>	Mask
192.168.5.0	192	168	5	000	Subnet
192.168.5.31	192	168	5	000 11111	Broadcast
192.168.5.32	192	168	5	00100000	
255.255.255.224	255	255	255	11100000	Mask
192.168.5.32	192	168	5	001 <mark>00000</mark>	Subnet
192.168.5.63	192	168	5	001 <mark>11111</mark>	Broadcast
192.168.5.64	192	168	5	0100000	
192.168.5.95	192	168	5	010 <mark>1</mark> 1111	Broadcast
192.168.5.96	192	168	5	01100000	Subnet
192.168.5.127	192	168	5	011 11111	Broadcast

Network	
---------	--

000		0
001		32
010		64
011		96
100		128
101		160
110		192
111	© 20	07 Oleco Systems, Inc. All rights reserved.

Subnetting Example 6 (another solution)

192.168.5.0/24 5 Subnet, 30 Host

- ≥5 subnets need 3 bits
- >subnet mask = 255.255.255.224 or /27
- \rightarrow hop count = 32

192.168.5.0 F 192.168.5.1 L 192.168.5.30
NET ID 192.168.5.0 Broad Cast 192.168.5.31
192.168.5.32 F 192.168.5.33 L 192.168.5.62
NET ID 192.168.5.32 Broad Cast 192.168.5.63
192.168.5.64 F 192.168.5.65 L 192.168.5.94
NET ID 192.168.5.64 Broad Cast 192.168.5.95
192.168.5.96 F 192.168.5.97 L 192.168.5.126
NET ID 192.168.5.96 Broad Cast 192.168.127
192.168.5.128 F 192.168.5.129 L 192.168.5.158
NET ID 192.168.5.128 Broad Cast 192.168.5.159
192.168.5.160 F 192.168.5.161 L 192.168.5.190
NET ID 192.168.5.160 Broad Cast 192.168.5.191
192.168.5.192 F 192.168.5.193 L 192.168.5.222
NET ID 192.168.5.192 Broad Cast 192.168.5.223
192.168.5.224 F 192.168.5.225 L 192.168.5.254
NET ID 192.168.5.224 Broad Cast 192.168.5.255

- CIDR Block: (Classless Inter-domain Routing)
- **200.1.1.0/24**
- Required 2 networks

Network: 200.1.1.0/25
 Broadcast: 200.1.1.127

HostMin: 200.1.1.1

HostMax: 200.1.1.126

Network: 200.1.1.128/25
 Broadcast: 200.1.1.255
 HostMin: 200.1.1.129
 HostMax: 200.1.1.254

192.168.5.0/24 30 Subnet

- > 30 subnets need 5 bits
- \triangleright subnet mask = 255.255.255.248 (or /29)
- > hop count = 8

```
192.168.5.0 ----- F 192.168.5.1 ------ L 192.168.5. 6
----- NET ID 192.168.5.0 ------ Broad Cast 192.168.5. 7
192.168.5.8 ----- F 192.168.5. 9 ------ L 192.168.5. 14
----- NET ID 192.168.5.8 ------ Broad Cast 192.168.5. 15
```

192.168.5.0/24 12 Subnet

```
➤ 12 subnets need 4 bits
```

- \triangleright subnet mask = 255.255.255.240 (or /28)
- ➤ hop count = 16
- \triangleright No of host=2^4 -2 =14

```
192.168.5.0 ----- F 192.168.5.1 ------ L 192.168.5.14
----- NET ID 192.168.5.0 ------ Broad Cast 192.168.5.15
192.168.5.16 ----- F 192.168.5.17 ------ L 192.168.5. 30
----- NET ID 192.168.5.16 ------ Broad Cast 192.168.5. 31
```


170.1.0.0 / 16 5 Subnet

```
Class B 17 18 19 20 21 22 23 24
128 64 32 16 8 4 2 1
128 192 224 240 248 252 254 255
```

- ≥5 subnets need 3 bits
- \triangleright subnet mask = 255.255.224.0 (or /19)
- \triangleright hop count = 32
- ➤ No of host=2^13 -2

NET ID	F	L	Broad Cast
170.1.0.0	170.1.0.1	170.1.31.254	170.1.31.255
170.1.32.0	170.1.32.1	170.1.63.254	170.1.63.255
170.1.64.0	170.1.64.1	170.1.95.254	170.1.95.255
170.1.96.0	170.1.96.1	170.1.127.254	170.1.127.255
170.1.128.0	170.1.128.1	170.1.159.254	170.1.159.255
170.1.160.0	170.1.160.1	170.1.191.254	170.1.191.255
170.1.192.0	170.1.192.1	170.1.223.254	170.1.223.255
170.1.224.0	170.1.224.1	170.1.255.254	170.1.255.255

10.0.0.0 / 8 5 Subnet

- ≥5 subnets need 3 bits
- \triangleright subnet mask = 255.224.0.0 (or /11)
- \triangleright hop count = 32
- ➤ No of host=2^21 -2

10.0.0.0
10.32.0.0
10.64.0.0
10.96.0.0
10.128.0.0
10.160.0.0
10.192.0.0
10.224.0.0

