Introduction a la programmation

David Wiedemann

Table des matières

1	Info	on, Calcul et Communication	2		
	1.1 Introduction			2	
	1.2 A quoi ca		i ca sert?	2	
		1.2.1	Calcul scientifique	2	
		1.2.2	La conduite de processus	2	
		1.2.3	La gestion d'information	3	
2	Pla	Plan du cours			
3	Alg	gorithmes			
	3.1	Formalisation d'algorithmes			
		3.1.1	Methodologie	4	
		3.1.2	Qu'est-ce qu'un algorithme?	4	
\mathbf{L}	ist	of Th	neorems		
	1	Definit	tion (Algorithme)	4	
	2	Definit	tion (Algorithme)	4	

Lecture 1: Partie theorie

Fri 18 Sep

1 Information, Calcul et Communication

1.1 Introduction

- Vous convaincre de l'importance de ce cours
- insister sur le role de l'informatique

Presenter l'info en tant que discipline scientifique.

Fonde sur 3 grands principes fondamentaux :

- representation discrete du monde
- representation entachee d'erreurs, mais controlee
- variabilite de la difficulte des problemes et des solutions

1.2 A quoi ca sert?

- la simulation/l'optimisation
- l'automatisation
- Gestions de donnees

1.2.1 Calcul scientifique

- Utilisation : simulation de systemes complexes
- Exigences : grande puissance de calcul.

1.2.2 La conduite de processus

- Utilisation : tres nombreuses applications : pilotage/surveillance de processus industriels
- Exigences : necessite d'un faible encombrement, consommation reduite,
 d un cout minimum et d'une grande fiabilite

1.2.3 La gestion d'information

- Utilisation : gestion de systemes bancaires ou boursiers, commerce electronique, fichiers de police
- Exigences : importantes de capacite, traitement efficace, controle de processus

2 Plan du cours

- 1. Fondement du calcul
- 2. Calcul et algorithme
- 3. Strategies de calcul
- 4. theorie du calcul
- 1. Information et communication
- 2. Echantillonage
- 3. Reconstruction
- 4. Entropie et information
- 5. Compression des messages/donnees
- 1. Fondements des systems
- 2. Architecture des ordinateurs
- 3. Stockage et reseaux
- 1. Secureite informatique
- 2. RSA
- 3. Problemes sociaux

Lecture 2: Calcul et Algorithmes I

Fri 18 Sep

3 Algorithmes

3.1 Formalisation d'algorithmes

Definition 1 (Algorithme)

Un algorithme est une description abstraite des etapes conduisant a la solution d'un probleme

Exemple 1

Probleme:

Trouver la valeur maximale dans une liste

Une liste c'est un element du produit cartesien de E^n , n taille de la liste.

On pourrait ordonner la liste et retourner le dernier element.

- comparer les elements de la liste entre eux
- a chaque fois prendre le plus gd.
- au fur et a mesure

3.1.1 Methodologie

But : Pour un probleme, trouver une sequence d'actions permettant de produire une solution acceptable en un temps raisonnable.

- Bien identifier le probleme
 - Quelle question?
 - Quelles entrees?
 - Quelles sorties?
- Trouver un algorithme correct? verifier qu'il est effectivement correct, qu'il se termine dans tous les cas.
- trouver l'algorithme le plus efficace possible

3.1.2 Qu'est-ce qu'un algorithme?

Moyen pour un humain de representer la resolution d'un probleme donne

Definition 2 (Algorithme)

Composition d'un ensemble fini d'operations elementaires bien definies operant sur un nombre fini de donnees et effectuant un traitement bien defini :

- $\ suite \ finie \ de \ regles \ a \ appliquer$
- dans un ordre determine
- a un nombre fini de donnees

Un algorithme peut etre

- $-- sequentiel: operations\ s'executent\ en\ sequence$
- parallele : certaines de ses operations s' executent en parallele : simultanement
- reparti : certaines de ses operations s executent sur plusieurs machines.