

Gated Recurrent Convolution Neural Network for OCR

主讲人: 杜臣

2018.06.31

Figure 1: Illustration of using RCL with T=2 for OCR.

- 1. Recurrent Convolution Layer (RCL)在卷积层中添加了循环卷积来扩大单层 卷积层的感受野以及融合高底层信息。
- 2. 在RCNN中,如果增加迭代次数(T),每个卷积层的有效感受野将急剧增加,(与所基于的生物学事实不符),所以需要引入一个控制机制来限制有效感受野的增长。

Recurrent Convolution Neural Network

Figure 3. The overall architecture of RCNN. Left: An RCL is unfolded for T=3 time steps, leading to a feed-forward subnetwork with the largest depth of 4 and the smallest depth of 1. At t=0 only feed-forward computation takes place. Right: The RCNN used in this paper contains one convolutional layer, four RCLs, three max pooling layers and one softmax layer.

Gated Recurrent Convolution Layer and GRCNN

Figure 2: Illustration of GRCL with T=2. The convolutional kernels in the same color use the same weights.

1x1 kernels the recurrent weights for the gate

门控信号的计算:

1x1 kernels the recurrent weights for the gate

$$G(t) = \begin{cases} 0 & t = 0\\ sigmoid(BN(w_g^f * u(t)) + BN(w_g^r * x(t-1))) & t > 0 \end{cases}$$

每一时刻输出状态的计算:

$$x(t) = \begin{cases} ReLU(BN(w^f * u(t))) & t = 0 \\ ReLU(BN(w^f * u(t)) + BN(BN(w^r * x(t-1)) \odot G(t))) & t > 0 \end{cases}$$

Overall Architecture GRCNN-BLSTM Model

Figure 3: Overall pipeline of the architecture.

使用GRCNN做特征提取,然后接入BLSTM和CTC进行识别。

使用的特征提取GRCNN结构如下:

Table 1: The GRCNN configuration

22.2. 2 22									
Conv	MaxPool	GRCL	MaxPool	GRCL	MaxPool	GRCL	MaxPool	Conv	
3×3	2×2	2×2							
num: 64		num: 64		num: 128		num: 256		num: 512	
sh:1 sw:1	sh:2 sw:2	sh:1 sw:1	sh:2 sw:2	sh:1 sw:1	sh:2 sw:1	sh:1 sw:1	sh:2 sw:1	sh:1 sw:1	
ph:1 pw:1	ph:0 pw:0	ph:1 pw:1	ph:0 pw:0	ph:1 pw:1	ph:0 pw:1	ph:1 pw:1	ph:0 pw:1	ph:0 pw:0	

num: denotes the number of feature maps

sh: denotes the stride of the kernel along the height;

sw: denotes the stride along the width;

"ph" and "pw" denote the padding value of height and width respectively;

Experiments

实验1、迭代次数(T)对性能的影响,加入gate后对性能的影响实验2、不同的lstm结构对性能的影响

Table 2: Model analysis over the IIIT5K and SVT (%). Mean and standard deviation of the results are reported.

(a) GRCNN analysis

Model	IIIT5K	SVT
Plain CNN	77.21 ± 0.54	77.69 ± 0.59
RCNN(1 iter)	77.64 ± 0.58	78.23 ± 0.56
RCNN(2 iters)	78.17 ± 0.56	79.11 ± 0.63
RCNN(3 iters)	78.94 ± 0.61	79.76 ± 0.59
GRCNN(1 iter)	77.92 ± 0.57	78.67 ± 0.53
GRCNN(2 iters)	79.42 ± 0.63	79.89 ± 0.64
GRCNN(3 iters)	80.21 ± 0.57	80.98 ± 0.60

(b) LSTM's variants analysis

LSTM variants	IIIT5K	SVT
[/1-0, /2-0, /3-0]	77.92 ± 0.57	
LSTM- $F_{\{\gamma_1=0,\gamma_2=1,\gamma_3=0\}}$	77.26 ± 0.61	78.23 ± 0.53
LSTM- $I_{\{\gamma_1=1,\gamma_2=0,\gamma_3=0\}}$	76.84 ± 0.58	76.89 ± 0.63
$LSTM-O_{\{\gamma_1=0,\gamma_2=0,\gamma_3=1\}}$		78.65 ± 0.56
LSTM-A $\{\gamma_1=1, \gamma_2=1, \gamma_3=1\}$	76.52 ± 0.66	77.88 ± 0.59

Experiments

实验3、:整体的GRCNN-BLSTM Model性能与已有的方法的比较

Table 3: The text recognition accuracies in natural images. "50","1k" and "Full" denote the lexicon size used for lexicon-based recognition task. The dataset without lexicon size means the unconstrained text recognition

Method	SVT-50	SVT	IIIT5K-50	IIIT5K-1k	IIIT5K	IC03-50	IC03-Full	IC03
ABBYY [36]	35.0%	-	24.3%	-	-	56.0%	55.0%	-
wang et al. [36]	57.0%	-	-	-	-	76.0%	62.0%	-
Mishra et al. [25]	73.2%	-	-	-	-	81.8%	67.8%	-
Novikova et al. [27]	72.9%	-	64.1%	57.5%	-	82.8%	-	-
wang et al. [38]	70.0%	-	-	-	-	90.0%	84.0%	-
Bissacco et al. [3]	90.4%	78.0%	-	-	-	-	-	-
Goel et al. [6]	77.3%	-	-	-	-	89.7%	-	-
Alsharif [2]	74.3%	-	-	-	-	93.1%	88.6%	-
Almazan et al. [1]	89.2%	-	91.2%	82.1%	-	-	-	-
Lee et al. [20]	80.0%	-	-	-	-	88.0%	76.0%	-
Yao et al. [40]	75.9%	-	80.2%	69.3%	-	88.5%	80.3%	-
Rodriguez et al. [28]	70.0%	-	76.1%	57.4%	-	-	-	-
Jaderberg et al. [16]	86.1%	-	-	-	-	96.2%	91.5%	-
Su and Lu et al. [33]	83.0%	-	-	-	-	92.0%	82.0%	-
Gordo [7]	90.7%	-	93.3%	86.6%	-	-	-	-
Jaderberg et al. [14]	93.2%	71.1%	95.5%	89.6%	-	97.8%	97.0%	89.6%
Baoguang et al. [30]	96.4%	80.8%	97.6%	94.4%	78.2%	98.7%	97.6%	89.4%
Chen-Yu et al. [21]	96.3%	80.7%	96.8%	94.4%	78.4%	97.9%	97.0%	88.7%
ResNet-BLSTM	96.0%	80.2%	97.5%	94.9%	79.2%	98.1%	97.3%	89.9%
Ours	96.3%	81.5%	98.0%	95.6%	80.8%	98.8%	97.8%	91.2%

Success Failure

References

- [1] Recurrent Convolutional Neural Network for Object Recognition
- [2] Gated Recurrent Convolution Neural Network for OCR