Фамилия
Имя
Отчество
Группа
Задача 1. Пусть регрессионная модель $Y_i = \alpha + \beta_1 \cdot x_{i1} + \beta_2 \cdot x_{i2} + \varepsilon_i$, $i = 1, \dots, n$, задана в
матричной форме при помощи уравнения $Y = X\beta + \varepsilon$, где $\beta = \begin{bmatrix} \alpha & \beta_1 & \beta_2 \end{bmatrix}^T$. Известно,
что $\mathbb{E}[\varepsilon] = 0$ и $V[\varepsilon] = \sigma^2 I$. Данные о наблюдениях переменных Y и X следующие:
$Y = \begin{bmatrix} 1\\2\\3\\4\\5\\6 \end{bmatrix}, \qquad X = \begin{bmatrix} 1&0&0\\1&0&0\\1&1&0\\1&1&1\\1&1&1 \end{bmatrix}.$ (a) Найдите $TSS = \sum_{i=1}^n (Y_i - \overline{Y})^2$.
(b) По формуле $\hat{\beta} = (X^T X)^{-1} X^T Y$ найдите МНК-оценку вектора β .
(c) Чему равно $\hat{\beta}_1$?

Контрольная	работа № 1	по эконометрике-2	[2015	-2016
IXOII I DOMBII an	Daoota ne i	IIO JROHOMCIDIRC Z	14015	4010

(d) Найдите $RSS = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$.	
(e) При помощи формулы $\hat{\sigma}^2 = \frac{RSS}{n-k-1}$ найдите оценку параметра σ^2 .	
(f) При помощи формулы $\hat{\mathbf{V}}[\hat{\boldsymbol{\beta}}] = \hat{\sigma}^2 (X^T X)^{-1}$ найдите оценку ковариационной	
матрицы вектора МНК-оценок коэффициентов.	
(g) Чему равно $\hat{\mathbf{D}}[\hat{eta}_{_{\! 1}}]$?	
(h) Найдите $\hat{\mathbf{D}}[\hat{eta}_1 - \hat{eta}_2]$.	

Задача 2. Оценивается зависимость количества продаваемых чебуреков — qch от цены на чебуреки — pch, цены на шаурму — psh и цены на мороженое — pmor в виде линейной регрессии:

$$qch_i = \alpha + \beta_1 pch_i + \beta_2 psh_i + \beta_3 pmor_i + \varepsilon_i$$
, $i = 1, ..., 21$.

В программе MS Excel оценена данная регрессия: вывод итогов

Регрессионная статистика	
Множественный R	0,92
R-квадрат	0,85
Нормированный R-квадрат	0,82
Стандартная ошибка	19,77
Наблюдения	21,00

Дисперсионный анализ

	df	SS	MS	F	Значимость F
Регрессия	3,00	37866,30	12622,10	32,28	0,00
Остаток	17,00	6647,51	391,03		
Итого	20,00	44513,81			

	Коэффициенты	Стандартная ошибка	t-статистика	Р-Значение	Нижние 95%	Верхние 95%
Ү-пересечение	405,15	101,68	3,98	0,00	190,62	619,67
pch	-6,12	0,70	-8,72	0,00	-7,59	-4,64
psh	4,14	0,72	5,76	0,00	2,63	5,66
pmor	-2,62	2,92	-0,90	0,38	-8,79	3,54

(a) На уровне значимости 5 % протестируйте гипотезу о незначимости переменной «цена на мороженое». Заполните следующую таблицу.

	«цена на мороженое». Заполните следующую таолицу.
0)	H_0 : H_1 :
1)	Тестовая статистика (формула):
,	
2)	Распределение тестовой статистики:
3)	Наблюдаемое значение тестовой статистики:
4)	Область, в которой H_0 не отвергается:

Статистический	вывод:			
	_			
	имости 5 % протес			
тем больше в ср H_0 :	реднем продается ч	ебуреков». Зап <i>H</i> ₁ :	олните следую	щую табли
H_0 .		n_1 .		
Тестовая статист	ика (формула):			
Распрелеление т	естовой статистики	т [.]		
т мотгр одогот т	•••••			
TI 6				
наолюдаемое зн	ачение тестовой ст	атистики:		
Область, в котор	ой H_0 не отвергае	гся:		
Статистический	БГ БОЛ.			
Статистический	вывод.			

Задача 3. Оценивается зависимость количество продаваемых чебуреков — qch в зависимости от цены на чебуреки — pch, цены на шаурму — psh, цены на мороженое — pmor и цены на пончики — ppon в виде линейной регрессии:

$$qch_i = \alpha + \beta_1 pch_i + \beta_2 psh_i + \beta_3 pmor_i + \beta_4 ppon_i + \varepsilon_i$$
, $i = 1, ..., 21$.

В программе MS Excel оценена данная регрессия, а также несколько вспомогательных регрессий:

вывод итогов

Регрессионная статистика	
Множественный R	0,92
R-квадрат	0,85
Нормированный R-квадрат	0,81
Стандартная ошибка	20,34
Наблюдения	21,00

Дисперсионный анализ

	df	SS	MS	F	Значимость F
Регрессия	4,00	37892,78	9473,19	22,89	0,00
Остаток	16,00	6621,03	413,81		
Итого	20,00	44513,81			

	Коэффициенты	Стандартная ошибка	t-статистика	Р-Значение	Нижние 95%	Верхние 95%
Ү-пересечение	386,84	127,19	3,04	0,01	117,21	656,47
pch	-6,10	0,73	-8,40	0,00	-7,63	-4,56
psh	4,05	0,84	4,84	0,00	2,27	5,82
pmor	-3,40	4,31	-0,79	0,44	-12,53	5,73
ppon	1,23	4,86	0,25	0,80	-9,08	11,54

вывод итогов

Регрессионная статистика	
Множественный R	0,41
R-квадрат	0,17
Нормированный R-квадрат	0,07
Стандартная ошибка	45,39
Наблюдения	21,00

Дисперсионный анализ

	df	SS	MS	F	Значимость F
Регрессия	2,00	7436,17	3718,09	1,81	0,19
Остаток	18,00	37077,64	2059,87		
Итого	20,00	44513,81			

	Коэффициенты	Стандартная ошибка	t-статистика	Р-Значение	Нижние 95%	Верхние 95%
Ү-пересечение	-206,97	211,95	-0,98	0,34	-652,26	238,32
pmor	-2,16	9,48	-0,23	0,82	-22,08	17,75
ppon	9,53	9,57	1,00	0,33	-10,57	29,64

вывод итогов

Регрессионная статистика	
Множественный R	0,92
R-квадрат	0,84
Нормированный R-квадрат	0,83
Стандартная ошибка	19,67
Наблюдения	21,00

Дисперсионный анализ

	df	SS	MS	F	Значимость F
Регрессия	2,00	37551,33	18775,67	48,54	0,00
Остаток	18,00	6962,48	386,80		
Итого	20,00	44513,81			

	Коэффициенты	Стандартная ошибка	t-статистика	Р-Значение	Нижние 95%	Верхние 95%
Ү-пересечение	332,24	60,83	5,46	0,00	204,45	460,04
pch	-6,04	0,69	-8,72	0,00	-7,50	-4,59
psh	3,64	0,45	8,15	0,00	2,70	4,58

(a) На уровне значимости 5 % протестируйте на значимость регрессию $qch_i = \alpha + \beta_1 pch_i + \beta_2 psh_i + \beta_3 pmor_i + \beta_4 ppon_i + \varepsilon_i \,.$

Запо	олните следующую таблицу.
0)	H_0 : H_1 :
1)	Тестовая статистика (формула):
2)	Распределение тестовой статистики:
3)	Наблюдаемое значение тестовой статистики:
4)	Область, в которой H_0 не отвергается:
5)	Статистический вывод:

H_1 :	
ка (формула):	
товой статистики:	
ение тестовой статистики:	
й H_0 не отвергается:	
ывод:	
1	ка (формула): вение тестовой статистики: й H_0 не отвергается: Бівод:

Задача 4. Изучается зависимость уровня годового дохода (переменная $\Gamma \! \mathcal{I}$ в сотнях
тыс. руб.) финансового аналитика в зависимости от опыта работы <i>OP</i> (годы), пола
(переменная Пол равная 1 для мужчин и 0 для женщин), владения английским языком
(переменная FE равна 1, если аналитик свободно владеет английским языком и 0 в противном случае) и наличия сертификата CFA (переменная CFA равна 1, если
сертификат есть). Оцененная модель имеет вид
$\widehat{\varGamma \mathcal{I}} = 1200 + 200 \cdot OP - 10 \cdot OP^2 + 200 \cdot \varPi$ ол $+ 400 \cdot FE + 150 \cdot CFA$. Все параметры модели
значимы на 5%.
(а) Рассчитайте годовой доход мужчины, свободно владеющего английским, со
стажем работы 2 года без сертификата СҒА.
(b) При прочих равных условиях на сколько отличаются годовые доходы мужчин и женщин в отрасли?

Задача 5. На основе недельных данных с 4-го мая по 28-ое декабря оценивается уравнение спроса на мороженое

$$qmor_t = \alpha + \beta pmor_t + \varepsilon_t, \quad t = 1, ..., 35,$$

где $pmor_t$ — цена на мороженое, а $qmor_t$ — количество проданного мороженого.

(а) На уровне значимости 5 % протестируйте гипотезу о том, что с наступлением осени спрос на мороженое упал. Тестирование проведите с использованием трех регрессий:

$$qmor_t = \alpha' + \beta' pmor_t + \varepsilon_t$$
, $t = 1, ..., 18$,
 $qmor_t = \alpha'' + \beta'' pmor_t + \varepsilon_t$, $t = 19, ..., 35$,
 $qmor_t = \alpha + \beta pmor_t + \varepsilon_t$, $t = 1, ..., 35$.

	$qmor_t = \alpha + \beta pmor_t + \varepsilon_t, t = 1,, 35.$	
ЭΠ	ните следующую таблицу.	
	H_0 : H_1 :	
	Тестовая статистика (формула):	
	Распределение тестовой статистики:	
-	Наблюдаемое значение тестовой статистики:	
	Область, в которой H_0 не отвергается:	
(Статистический вывод:	

(b) На том же уровне значимости протестируйте ту же гипотезу, что и в пункте (a), с

 $qmor_t = \alpha + \beta pmor_t + \varepsilon_t, \quad t = 1, ..., 35,$

тем отличием, что в этот раз используйте регрессии:

	$qmor_{t} = \alpha + \beta pmor_{t} + \Delta \alpha \cdot d_{t} + \Delta \beta \cdot d_{t} pmor_{t} + \varepsilon_{t}, \qquad t = 1,, 35,$
	где $d_t = \begin{cases} 0 & \text{при } t \in \{1, \dots, 18\}, \\ 1 & \text{при } t \in \{19, \dots, 35\}. \end{cases}$
Запол	пните следующую таблицу.
0)	H_0 : H_1 :
1)	Тестовая статистика (формула):
2)	n
2)	Распределение тестовой статистики:
3)	Наблюдаемое значение тестовой статистики:
Í	
4)	Область, в которой H_0 не отвергается:
5)	Статистический вывод:

наблюдениям	t = 1,, 18, если известн	но, что издержки по	
пачки морож	еного составляют $c = 25$	руб.	