

Justificativas

- Altos índices de obesidade no Brasil (52% e 44%).
- Elevado preço de frutas secas (100g = R\$ 8,00).
- Poucas diferenças na tabela nutricional da fruta antes e depois do processo de secagem.
- Durabilidade das frutas em casa.

Análise Do Processo De Secagem Nas Frutas

Definição de Secagem:

Secagem é uma operação de transferência de massa envolvendo a remoção de umidade (água) ou outro solvente de um sistema sólido ou semi-sólido. Líquidos podem ser removidos de sólidos mecanicamente através de prensas ou centrífugas e por vaporização térmica.

Análise Do Processo De Secagem Nas Frutas

Método de Secagem:

- O método que será utilizado para a secagem das frutas nas receitas da máquina é uma mescla de informações retiradas dos relatórios de pesquisas da Embrapa mais os testes realizados em casa formando uma relação entre a quantidade de água nas frutas que sofrerão o processo de desidratação e secagem.
- ▶ Para todas as frutas a temperatura da estufa será sempre a mesma, a temperatura dentro do sistema aquecido sempre se manterá entre 110 e 135 °C, a diferença para cada desidratação específica estará no tempo.

Análise Do Processo De Secagem Nas Frutas

Vantagens da Secagem:

- ▶ 1- Aumenta a vida útil do produto
- ▶ 2- O alimento desidratado é nutritivo apesar das possíveis perdas de nutrientes, o valor alimentício do produto concentra-se na casa da perda de água.
- > 3- Facilidade no transporte e comercialização pois o alimento seco é leve compacto e suas qualidades permanecem inalterados por longos períodos de tempo.
- ▶ 4- O processo de secagem é econômico. Os secadores semi-industriais têm baixo custo, a mão de obra não necessita ser especializada e o produto desidratado tem baixo custo de armazenagem.
- ▶ 5- Redução das perdas pós colheita.

Testes em Casa

Frutas	Tempo
Abacaxi	3h e 10 min
Ameixa	2h e 20 min
Banana	2h e 10 min
Kiwi	2h e 20 min
Maçã	2h e 20 min
Tomate	3h e 10 min

Concepção Inicial

- Para ter uma ideia inicial, pesquisamos e fizemos o projeto da estrutura no software Google Sketchup.
- Houveram mudanças desde a concepção inicial enquanto a pesquisa era aprofundada.

Escolhendo os Materiais

Analisando as demandas, foram escolhidos os materiais adequados com assistência dos professores.

- Uma caixa de isopor com interior isolado com alumínio foi utilizada para adicionar uma lâmpada de 75W e uma grade, para secar os alimentos dentro da estrutura.
- ➤ O sensor de temperatura utilizado foi o LM35 (muito comum para usos nesta faixa de temperatura entre 2°C e 150°C).
- ▶ A placa Arduino MEGA foi escolhida pelo conhecimento de programação que possuímos em C++ e pelo maior número de pinos em relação a outros modelos disponíveis na escola.
- ▶ A placa ESP8266 foi escolhida para trocar dados pela internet, atuando como ponte entre o celular e a placa Arduino.

Escolhendo os Materiais

Analisando as demandas, foram escolhidos os materiais adequados com assistência dos professores.

- A placa RTC DS3231 foi utilizada para controlar o horário e fornecer informações para o Arduino.
- ► Um módulo relé de 250V/10A controla a lâmpada a partir de um sinal enviado da placa.
- ▶ Um módulo Shield LCD 16x2 (colunas x linhas) para arduino foi usado para exibir informações.
- Custo total estimado: R\$300,00

A LÂMPADA DE 75 WATTS (W) TEM O SUPORTE FIXADO NO FUNDO DA CAIXA COM UMA SAÍDA PARA LIGAÇÃO DE ENERGIZAÇÃO, EM PRIMEIRO TESTE A LÂMPADA FOI LIGADA DIRETAMENTE NA TOMADA 110V PARA COMPROVAR QUE SEU AQUECIMENTO É O SUFICIENTE PARA O PROJETO. COM UM PROGRAMA SIMPLES DE LEITURA DE TEMPERATURA PARA O SENSOR LM35 FOI POSSÍVEL DESENHAR UM GRÁFICO DA CURVA DE AQUECIMENTO DENTRO DA CAIXA.

Circuito Final

Esquemático final do projeto

Fluxograma de Funcionamento

Projeto do Menu

- Queríamos um menu simples e intuitivo, então fizemos o projeto e colocamos em prática.
- Para utilizar o projeto, basta o usuário apertar os botões LEFT e RIGHT (esquerda e direita, em português) para mudar a informação exibida na linha 2, e quando apertar a tecla SELECT a opção desejada aparece na linha 1.

Projeto do Menu

Projeto de menu feito em computador

TEMP:

EXIBIR

Projeto de Código

O código precisava realizar principalmente as funções de:

- Controlar um menu e exibir informações em uma pequena tela;
- Realizar a leitura de sensores (tempo e temperatura);
- Organizar informações;
- Ligar e desligar a resistência de aquecimento;
- Controlar um aplicativo para celular simples e fácil de usar;

Projeto de Código

Para implementar as funções desejadas:

- O código foi dividido em duas partes, uma para a placa Arduino e uma para o nodeMCU.
- O código da arduino MEGA ultrapassou 900 linhas.
- O código para o ESP foi construído com base em projetos de automação residencial pesquisados.
- Ambos foram divididos em diversas funções. Algumas foram usadas para estabelecer uma comunicação entre as placas por meio do envio de Strings.

Montagem Final

Primeiro Teste

Ajustes no Tempo

Ao terminar a montagem da caixa com o forro de alumínio e a preparação da caixa com o circuito, foi possível fazer testes definitivos do tempo necessário para o processo de secagem de cada fruta, assim conseguindo definir no código a tempo que demora para ficar pronto.

Frutas	Tempo
Abacaxi	2h e 45 min
Ameixa	2h e 30 min
Banana	2h e 10 min
Kiwi	2h e 15 min
Maçã	2h e 15 min
Tomate	3h e 00 min

Barreiras no Desenvolvimento

Durante os testes e desenvolvimento do código, foram encontrados inúmeros problemas, com destaque para:

- ▶ Integração e comunicação do ESP com a placa Arduíno.
- Escolha de uma forma de comunicação entre o aplicativo para celular e o ESP8266, escolhendo o padrão MQTT ao final.
- Utilização do RTC com determinadas bibliotecas e cálculo de tempo com o mesmo.
- ► Encontrar tamanho ideal para desidratar algumas frutas.
- Biblioteca com erros na última semana de testes.

O Protocolo MQTT

Aplicativo para Celular

- O aplicativo para celular foi criado utilizando um aplicativo da Play Store (loja de aplicativos de celulares com sistema Android).
- O "MQTT Dash" tem funcionamento simples, com adição de blocos e controlando opções de "tópicos"

O Que Faltou?

- Problemas na comunicação entre Arduino e ESP impediram de finalizar o desenvolvimento do aplicativo para celular.
- Desenvolvimento de perfis para mais frutas.
- Projeto de PCB.

Referências

- COMISSÃO NACIONAL DE NORMAS E PADRÕES PARA ALIMENTOS. Resolução 9/78. In: ABIA. Compêndio da legislação de alimentos. São Paulo. E. Blucher, 1973. v.1.
- CORNEJO, F. E. P.; PARK, K. J.; NOGUEIRA, R. I.; MAIA, M. L. L., PONTES, S. M.; SILVA, C. S. Manual para construção de um secador de frutas a nível do produtor rural. Rio de Janeiro: EMBRAPA CTAA, 1991. 18 p. (EMBRAPA. CTAA. Documentos, 6).
- ► EMBRAPA. Princípios de Secagem de Alimentos. Planaltina, Embrapa Cerrados, 2010.

Referências

- NOGUEIRA, R. I.; CORNEJO, F. E. P.; PARK, K. J.; VILLAÇA, A. C. Manual para construção de um secador de frutas. 2 ed. rev. Rio de Janeiro: EMBRAPA-CTAA, 1997 (EMBRAPA. CTAA. Documentos, 10).
- Secagem como Método de Conservação de Frutas, Felix Emilio Prado Cornejo. Regina Isabel Nogueira. Viktor Christian Wilberg, Rio de Janeiro, RJ 2003.

Perguntas?

