Lab # 12
SYSTEM DESIGN USING SISOTOOL

Fall 2024 CSE-310L Control Systems Lab

Submitted by: **Name: Didar Ali**

Registration No: 21PWCSE2007

Section: C

"On my honor, as the students of the University of Engineering and Technology, I have neither given nor received unauthorized assistance on this academic work."

Students Signature: <u>Didar Ali</u>

Submitted to:

Dr. Muniba Ashfaq

Department of Computer Systems Engineering

University of Engineering and Technology, Peshawar

Lab # 12: System Design using Sisotool

Introduction

Percent overshoot:

Systems may be stable system, unstable system and marginally stable system. A stable system may overshoot for some values at the start before coming to the stable level. Similarly in this lab a system is designed whose percent overshoot is <50.

Damping ratio:

Damping ratio is a parameter that indicates that whether system is over damped (ς >1), under damped (ς = 0.2).

Stable system:

Third condition which the system must satisfy is it must be stable for K=2.

Task

For K<2, design a system (second order) with the following characteristics:

- Percent overshoot < 50
- Damping ratio > 0.2
- Stable system

Code:

```
clear all; clc; close all
num=[0 0 -1];
den=[1 3 2];
sys = tf(num,den)
sisotool(sys)
```

Output:

Root Locus Widows of The System

Value for % overshoot is set to less than 50

Value for damping ratio is set to greater than 0.2

After that stability of system is checked for different values of K. System is stable for all K=2. So, this system fulfills all the conditions.