Energy transport- cfd lab

Shulin Gao Tagliabue Andrea Teng Wang

Our topic

- Energy Transport
 - 2D Navier-Stokes equations
 - Boussinesq approximation
 - Specific heat, viscosity etc.. are constant
 - Boundary condition
 - Specific domain

What to consider?

- Because of the Boussinesq equation we have, the maximal variation of temperature has to be controlled
- The dt is also influenced from the Prandtl nummer
 - This is a characteristic property of every fluid
 - If it is smaller than one, we have to reduce our dt

How to begin?

- We can start with a very easy example with some kind of boundary condition
- We can obtain, only introducing some kind of obstacle cells, complex geometries like this

Test cases

Natural Convection with Heated Lateral Wall

• Change of the Rayleigh number.

What we will see??

- How evolves the temperature depending from the sun
- How does the temperature change in the house because of the fridg, the oven....
- What about if the temperature of the wall changes..

Neumann or Dirichlet???

- We will take the both condition
- Dirichlet for the temperature of the wall in which the sun doesn't shine
- We will calculate how much heat is transferred to from the sun to the house with radiation subtracted with the convenction

What 's else?

- We decide to optimize the code with the modify of the sor file
 - With the conjugate gradient
 - Multigrid