

Module : Architecture des microcontrôleurs

Projet: Smart Garden

Classes: 2A

Année Universitaire : 2021-2022

Description du projet:

Nous souhaitons, dans ce projet, établir un système qui permet d'automatiser l'arrosage dans les jardins afin d'économiser la ressource précieuse qu'est l'eau et cela en fonction des conditions météorologiques locales.

Le système se compose de :

- Un microcontrôleur PIC16F877 qui fonctionne à une fréquence oscillateur égale à 4 MHz.
- Un capteur d'humidité de sol analogique.
- Un capteur de pluie connecté au pin RB0.
- Un Interrupteur connecté au pin RB4 (ouvert = 1/ fermé = 0) et qui sert à activer/désactiver manuellement le système d'arrosage.
- Un bouton « Consulter » connecté au pin RB5.
- Un système d'arrosage connecté permettant d'activer la pompe (activé = 1/ désactivé = 0)
- Un Bipeur.
- Un écran LCD série.
- Une mémoire EEPROM

Fonctionnement:

- Au démarrage tous les actionneurs de ce système sont inactifs et l'écran LCD affiche le message « SMART GARDEN ».
- Une fois activé, Cet arroseur fournit aux plantes la quantité d'eau nécessaire comme suit :
 - ✓ Il lit en temps réel l'humidité du sol à travers le capteur d'humidité de sol en assurant les fonctions suivantes :
 - Si la valeur lue est inférieure ou égale à 30% H.r, le système d'arrosage s'active et l'écran LCD affiche le message « arrosage gazon» jusqu'à ce que la valeur de l'humidité atteigne 50% H.r.
 - Une fois l'arrosage est fini, l'écran LCD affiche le message « fin arrosage gazon»
 - Dans le cas où le système d'arrosage est en panne, un système d'alarme sera implémenté grâce à un Bipeur qui fonctionnera comme suit : Si la valeur d'humidité est inférieure à 29 % H.r, le Bipeur s'active pendant 5 minutes et l'écran LCD affiche le message « système en panne».
 - A chaque fois où il y'a une panne, le nombre de panne stocké déjà dans la mémoire EEPROM sera incrémenté. Ce nombre est initialement initialisé à 0.

Module : Architecture des microcontrôleurs

Projet: Smart Garden

Classes: 2A

Année Universitaire : 2021-2022

- ✓ Dès que l'interrupteur est ouvert on doit activer immédiatement le système d'arrosage et l'écran LCD affiche le message « arrosage gazon». le système d'arrosage restera actif jusqu'à ce que l'interrupteur soit fermé. Dans ce cas l'écran LCD affiche le message « fin arrosage gazon»
- ✓ Dès que le capteur de pluie détecte de la pluie on doit arrêter immédiatement le système d'arrosage. Le système d'arrosage restera fermé jusqu'à ce qu'il ne y'a plus de pluie.
- ✓ Pour consulter le nombre de pannes, l'utilisateur appui sur le bouton « Consulter » et ce nombre sera affiché sur l'écran pendant 1 minute.

Travail demandé

Séance N°1:

Travail a validé lors de séance

- 1. Etude de l'architecture du PIC16F877
 - De combien de PORTS se compose le pic16F877 ?
 - Quels sont les différents composants du pic16F877 ? quel est le rôle de chacun?
 - Quels sont les sources d'interruptions du pic16F877 ?
 - Faites un tableau comparatif entre le pic16F844 et le pic16F877
- 2. Utilisation d'un Ecran LCD avec le PIC16F877

Dans notre projet, nous allons utiliser un écran LCD afin de pouvoir afficher certaines informations :

- Réaliser un montage ISIS comprenant le microcontrôleur PIC16F877, un afficheur LCD, éviter d'utiliser le PORTB.
- Décrire l'état de démarrage de notre système via un code C en affichant toutes les informations nécessaires sur l'écran LCD.
- Tester le fonctionnement de votre système à ce stade.

Travail à valider lors de la séance suivante :

- Pour chacune des entrées identifiées, de quel type de capteur aurez-vous besoin, analogique ou logique ? Justifiez vos choix.
- Choisissez les broches sur lesquelles vous brancherez vos différentes entrées et sorties.
- Réalisez le schéma complet du montage de votre système sur logiciel de simulation.
- Donnez l'organigramme du fonctionnement du système.
- Ecrire le code C qui permet d'afficher le message de démarrage de votre système.

Module : Architecture des microcontrôleurs

Projet: Smart Garden

Classes: 2A

Année Universitaire : 2021-2022

Séance N°2:

Validation du travail demandé

Travail a faire lors de séance (validation la semaine prochaine)

- Quels sont les sources d'interruptions utilisées dans votre système ?
- Ecrivez le code C permettant de réaliser les scénarios liés au capteur de pluie et à l'interrupteur.

Séance N°3:

Validation du travail demandé

Travail a faire lors de séance (validation la semaine prochaine)

- Définir un convertisseur ADC (Analog to Digital Converter).
- Quels sont la ou les pin(s) du PIC16f877 qu'on doit utiliser pour utiliser l'ADC?
- Ecrivez le code C permettant de réaliser les scénarios liés au capteur d'humidité.

Séance N°4:

Validation du travail demandé

Travail a faire lors de séance (validation la semaine prochaine)

Le nombre de pannes seront sauvegardés dans la mémoire EEPROM interne du microcontrôleur

- Développez les fonctions qui écrivent/lisent dans/de la mémoire EEPROM.
- Mettrez à jour votre code C pour réaliser le fonctionnement du bouton « Consulter ».

Séance N°5:

Validation du travail demandé

Travail a faire lors de séance (validation la semaine prochaine)

• Mettrez à jour votre code C en utilisant le « Timer0 » pour activer le Bipeur pendant 5 minutes

Séance N°6:

Validation du travail complet