Eksamensoppgave 2 - INF5620

Henrik Andersen Sveinsson

December 16, 2013

1 Oppgavetekst

\mathbf{a}

Set up a wave equation problem in 2D with zero normal derivative as boundary condition. Assume a variable wave velocity.

Mention a physical problem where this mathematical model arises. Explain the physical interpretation of the unknown function.

b

Present a finite difference discretization. Explain in particular how the boundary conditions and the initial conditions are incorporated in the scheme.

\mathbf{c}

Explain (in princple) how the 2D discretization can be extended to 3D.

\mathbf{d}

Set up the stability condition in 3D. Also quote results on about accuracy of the method in 3D and define the accuracy measure(s) precisely.

\mathbf{e}

Explain how you can verify the implementation of the method.

\mathbf{f}

The scheme for the wave equation is perfect for parallel computing. Why? What are the principal ideas behind a parallel version of the scheme?

2 Bølgelikningen på grunt vann i 2D

$$u_{tt} = (qu_x)_x + (qu_y)_y \tag{1}$$

Denne likningen oppstår ved modellering av tsunamier. Jeg har antatt en konstant tetthet, slik at den kan inngå i funksjonen q. Den ukjente funksjonen u er vannivået relativt til gjennomsnittlig vannivå. $q(x,y) = v(x,y)^2$ der v er

bølgehastigheten. Grensebetingelsen som vi vil sette opp er $\frac{\partial u}{\partial n}=0$, som er en Neumannbetingelse.

3 Finite difference diskretisering

En finite difference diskretisering ser slik ut

$$[D_t D_t u = D_x q D_x u + D_y q D_y u]_{i,j}^n \tag{2}$$

Vi velger en sentert differanse i alle ledd, med $\Delta x = \Delta y = h$

$$\frac{u_{i,j}^{n+1} - 2u_{i,j}^n + u_{i,j}^{n-1}}{\Delta t^2} = c^2 \frac{u_{i+1,j}^n - 2u_{i,j}^n + u_{i-1,j}^n + u_{i,j+1}^n - 2u_{i,j}^n + u_{i,j-1}^n}{\Delta h^2}$$
(3)

$$u_{i,j}^{n+1} = 2u_{i,j}^n - u_{i,j}^{n-1} + \frac{c^2 \Delta t^2}{h^2} \left(u_{i+1,j}^n + u_{i-1,j}^n + u_{i,j+1}^n + u_{i,j-1}^n - 4u_{i,j}^n \right)$$
(4)

Dette git en metode for å finne tilstanden i et tidssteg, gitt alle funksjonsverdiene i de to forrige tidsstegene. Men vi ser at man kun finner funksjonsverdier for punkter (i, j), men for å finne disse trenger vi punktene rett utenfor randen. Her kommer randbetingelsene inn i bildet. Vi skal se på to typer grensebetingelser. For grunt vann-likninger er nok Neumannbetingelsen den mest relevante, men vi skal også se på Dirichletbetinglesen.

3.1 Dirichletbetingelsen

Den enkleste randbetingelsen man kan tenke seg:

$$u(\mathbf{x}) = f(\mathbf{x}) \forall \mathbf{x} \in \partial \Omega \tag{5}$$

Dette løser problemet vi hadde på randen. Dersom vi har en rand med kjente verdier trenger vi bare å regne ut verdiene strengt innenfor denne, og vi har dermed alltid tilgang til verdier som ligger ett hakk "utenfor" de verdiene vi regner ut.

3.2 Neumannbetingelsen

Neumannbetingelsen går på den deriverte på randen, og vi setter $\frac{\partial u}{\partial n} = V(\mathbf{x})$ på $\partial \Omega$. Dersom vi ser på områder som kun har normal i koordinatretningene, er det greit å takle disse randbetingelsene også, ved å gjøre en endelig differansetilnærming til randbetingelsen:

$$\frac{u_{i+1} - u_{i-1}}{2h} = V(u_i) \tag{6}$$

Dette gir

$$u_{i+1} = u_{i-1} + 2hV(u_i) (7)$$

For høyre og øvre grenseflate, og

$$u_{i-1} = u_{i+1} - 2hV(u_i) \tag{8}$$

For venste og nedre grenseflate. Her evaluerer man i prinsippet punkter som ligger utenfor domenet man jobber på, så dette legges inn før man regner funksjonsverdier på det indre av domenet.

3.3 Initialbetingelse

For å løse bølgelinkningen trenger man to initialbetingelser i hvert punkt: Funksjonsverdien og den første deriverte. Da kan man lage et "Ghost timestep" for tidssteg -1.

Vi kjører en differansemetode på den deriverte av initialbetingelsen:

$$\frac{u_{i,j}^{n+1} - u_{i,j}^{n-1}}{2\Delta t} = V_{i,j} \tag{9}$$

$$u_{i,j}^{-1} = u_{i,j}^{1} - 2\Delta t V_{i,j}$$
(10)

Vi kan sette dette inn i finite difference-skjemaet og løse for første tidssteg.

4 Utvidelse til 3D

Utvidelsen til 3D er nærmest triviell. Man legger på et ledd i z-retning. Da kan vi bruke ∇ -operatoren.

$$u_{tt} = \nabla \cdot (q\nabla u) \tag{11}$$

Dette diskretiserer vi som:

$$[D_t D_t u = D_x q D_x u + D_y q D_y u + D_z q D_z u]_{i,j,k}^n$$
(12)

5 Stabilitet i 3D

Nå skal vi se på stabiliteten til den numeriske skjemaet, og da kommer jeg til å anta at q er konstant: $q(x, y, z) = c^2$. Det er 3 ting jeg vil nevne her:

- Trunkeringsfeil
- Fasefeil
- Stabilitet

Vi ta kjapt trunkeringsfeilen. Den finner man som residualen i den diskrete likningen når man setter inn taylorutviklingen av den eksakte løsningen for alle kompoenentene i diskretiseringen. Her vil vi stå igjen med feil i orden 2 for alle meshoppløsninger.

For å se på stabilitet, antar vi at løsningen må være bygget opp av bølgekomponenter som i den analytiske løsningen:

$$u(x, y, z, t) = e^{i(k_x x + k_y y + k_z z - \tilde{\omega}t)}$$
(13)

Vi vet at med sentert dobbel differanse får vi

$$D_t D_t u = -\frac{4}{\Delta t^2} \sin^2(\frac{\tilde{\omega} \Delta t}{2}) u \tag{14}$$

Stabilitetskriteriet i 3d er:

$$\Delta t \le \frac{1}{c\sqrt{\frac{1}{\Delta x^2} + \frac{1}{\Delta y^2} + \frac{1}{\Delta z^2}}} \tag{15}$$

Dersom vi antar at $\Delta x = \Delta y = \Delta z$, er stabilitetskriteret

$$C \le \frac{1}{\sqrt{3}} \tag{16}$$

der $C = \frac{c\Delta t}{\Delta x}$. Dette kriteriet kommer fra å kreve at $\tilde{\omega}$ skal være reell for at bølgekomponentene ikke skal endre amplitude.

6 Verifikasjon

Det finnes flere gode måter å verifisere implementasjonen på:

6.1 Manufactured solution

Vi bestemmer en løsning, og ser så hvilket kildeledd vi må legge på for å få denne løsningen.

6.2 Plug wave solution

Plug-bølge med couranttall 1 løses eksakt.

6.3 Stående bølger

Her kan man sjekke at feilen konvergerer på riktig måte.

7 Parallellisering

Skjemaet er perfekt for parallellisering, fordi man vet alt man trenger for neste tidssteg direkte i et tidssteg, og fordi man kun trenger informasjon for noder i nærheten for å regne oppførsel i neste tidssteg. Generelt sett, bør man se etter deler av en rutine som kan gjøres samtidig.