Heisenberg categories, towers of algebras, and up/down transition functions

Henry Kvinge, Colorado State University

Workshop in rep. theory, combinatorics, and geometry UVA 2018

Borodin-Olshanski identified formalism for situation where there is a probability measure M_n on each subset G_n of a graded set $G = \bigcup_{n \ge 0} G_n \dots$

... and some down-transition function p_{\downarrow} giving a Markov transition kernel between different levels of this graph

The down transition function $p_{\downarrow}: G \times G \rightarrow [0,1]$ satisfies some properties:

- 2 For fixed $L \in G_n$, $\sum_{L' \in G_{n-1}} p_{\downarrow}(L, L') = 1$.

$$\rho_{\downarrow}(L,L_1') + \rho_{\downarrow}(L,L_2') + \rho_{\downarrow}(L,L_3') + \rho_{\downarrow}(L,L_4') + \rho_{\downarrow}(L,L_5') = 1$$

The collection $\{M_n\}_{n>0}$ is said to be *coherent* with respect to p_{\downarrow} if

$$\sum_{L\in G_n} M_n(L) p^{\downarrow}(L,L') = M_{n-1}(L').$$

In this case we can define an *up-transition function* $p_{\uparrow}: G \times G \rightarrow [0,1]$, with similar coherent properties.

A coherent system on \mathbb{Y}

Primary example: Take $L = \mathbb{Y}$, the set of Young diagrams, and $M_n = Pl_n$ the Plancherel measure on each level.

A coherent system on \mathbb{Y}

Primary example: Recall Plancherel measure for symmetric group S_n

$$extstyle{ extstyle Pl_n(\mu)} := rac{\dim(L^\mu)^2}{\dim(\mathbb{C}[S_n])} \qquad \mu \in \mathbb{Y}_n, \quad \left(\operatorname{Recall} \, \mathbb{C}[S_n] \cong \bigoplus_{\mu \in \mathbb{Y}_n} (L^\mu)^{\oplus \, \dim(L^\mu)}
ight)$$

 $\{Pl_n\}_{n\geq 0}$ is coherent with respect to down-transition function

$$p_{\downarrow}(\mu,\eta) = \frac{\dim(L^{\eta})}{\dim(\mathsf{Res}_{n-1}^{n}L^{\mu})} = \frac{\dim(L^{\eta})}{\dim(L^{\mu})} \qquad \text{if } L^{\eta} \subseteq \mathsf{Res}_{n-1}^{n}L^{\mu},$$

and up-transition function

$$p_{\uparrow}(\mu,\lambda) = \frac{\dim(L^{\lambda})}{\dim(\operatorname{Ind}_{n}^{n+1}L^{\mu})} = \frac{\dim(L^{\lambda})}{n\dim(L^{\mu})} \qquad \text{if } L^{\lambda} \subseteq \operatorname{Ind}_{n}^{n+1}L^{\mu},$$

A coherent system on $\ensuremath{\mathbb{Y}}$

By an observation of Biane, data associated to p_{\downarrow} and p_{\uparrow} is captured by a family of elements in the center of $Z(\mathbb{C}[S_n])$ constructed from Jucys-Murphy elements $\{J_n\}_{n\geq 0}$.

Set $E_{n+1,n}: \mathbb{C}[S_{n+1}] \to \mathbb{C}[S_n]$ to be the map so that for $g \in S_{n+1}$,

$$E_{n+1,n}(g) := egin{cases} g & ext{if } g \in S_n \\ 0 & ext{otherwise} \end{cases}$$

and

$$\bullet \sum_{g \in S_n/S_{n-1}} g J_n^k g^{-1} \in Z(\mathbb{C}[S_n]),$$

A coherent system on $\mathbb {Y}$

For $\mu \in \mathbb{Y}_{\it n}$, $\widetilde{\chi}^{\mu} := \frac{\chi^{\mu}}{\dim(L^{\mu})}$ the normalized character for L^{μ} ,

$$\widetilde{\chi}^{\mu}\Big(\sum_{g\in S_n/S_{n-1}}gJ_n^kg^{-1}\Big)=n\sum_{\eta\in\mathbb{Y}_{n-1}}p_{\downarrow}(\mu,\eta)(\alpha_{\eta}^{\mu})^k=:nm_k^{\downarrow}(\mu)$$

and

$$\widetilde{\chi}^{\mu}(E_{n+1,n}(J_{n+1}^k)) = \sum_{\eta \in \mathbb{Y}_{n+1}} p_{\uparrow}(\mu,\lambda) (\alpha_{\mu}^{\lambda})^k =: m_k^{\uparrow}(\mu).$$

Here α_{μ}^{λ} is the eigenvalue for J_{n+1} on $L^{\mu} \subseteq \operatorname{Res}_{n-1}^{n} L^{\lambda}$ (combinatorially, just content of cell we remove from λ to get μ).

A coherent system on $\mathbb Y$

Example:

$$m_k^{\uparrow}(4,2) = \frac{\dim(L^{(4,2,1)})}{7\dim(L^{(4,2)})} (-2)^k + \frac{\dim(L^{(4,3)})}{7\dim(L^{(4,2)})} (1)^k + \frac{\dim(L^{(5,2)})}{7\dim(L^{(4,2)})} (4)^k$$

$$= p_{\uparrow}(L^{(4,2)}, L^{(4,2,1)}) (-2)^k + p_{\uparrow}(L^{(4,2)}, L^{(4,3)}) (1)^k + p_{\uparrow}(L^{(4,2)}, L^{(5,2)}) (4)^k$$

A coherent system on strict partitions

Due to work of Borodin, Petrov, and collaborators a similar story holds when:

- $\mathbb{C}[S_n] \to \mathsf{Sergeev} \mathsf{ algebra} \ \mathbb{S}_n$,
- *L* = set of strict partitions,
- M_n = Plancherel measure on \mathbb{S}_n ,
- For $y \in \mathbb{S}_{n+1}$, $E_{n+1,n}(y) = \begin{cases} y & \text{if } x \in \mathbb{S}_n \\ 0 & \text{otherwise,} \end{cases}$
- J_n = the analogue of Jucys-Murphy elements in \mathbb{S}_n .

This phenomenon exists in some generality?

Heisenberg categories

Heisenberg categories are diagrammatically defined monoidal categories which (conjecturally) categorify infinite dimensional Heisenberg algebras.

- Usually a categorical action of $\mathcal H$ on some $\bigoplus_{n\geq 0} A_n$ -mod.
- This action gives a surjective map from $Z(\mathcal{H})$ to $Z(A_n)$ for any $n \geq 0$.

Heisenberg categories

By definition the <u>center</u> $Z(\mathcal{H})$ of \mathcal{H} is graphically the commutative \mathbb{C} -algebra of all closed diagrams.

 ${\cal H}$ is **rich** in representation-theoretic data (morphism spaces contain all symmetric groups, affine degenerate Hecke algebras).

Heisenberg categories

By definition the <u>center</u> $Z(\mathcal{H})$ of \mathcal{H} is graphically the commutative \mathbb{C} -algebra of all closed diagrams.

 ${\cal H}$ is **rich** in representation-theoretic data (morphism spaces contain all symmetric groups, affine degenerate Hecke algebras).

 $Z(\mathcal{H})$ should contain interesting information.

Center of \mathcal{H} associated with $\{\mathbb{C}[S_n]\}_{n\geq 0}$

Theorem (Khovanov)

$$Z(\mathcal{H}) \cong \mathbb{C}[c_0, c_1, \dots] \cong \mathbb{C}[\tilde{c}_2, \tilde{c}_3, \dots]$$

where

In our notation for \mathcal{H} a dot labelled with a k is k right-twisted curls.

Then

Describing ${\mathcal H}$

How general is this phenomenon?

Heisenberg category	Tower of algebras	bubbles $\stackrel{?}{\leftrightarrow} m_k^{\downarrow}, m_k^{\uparrow}$
Khovanov's Heisenberg category	symmetric groups $\{S_n\}$	Yes, (KLicata-Mitchell)
spin Heisenberg category (Cautis-Sussan)	Sergeev algebras $\{\mathbb{S}_n\}$	Yes (KOğuz-Reeks)
$\mathcal{H}_{ extsf{F}}$ (Rosso-Savage)	Frobenius wreath product algebra $\{F^{\otimes n} \rtimes S_n\}$	ras in progress
higher Heisenberg categories (Mackaay-Savage)	degenerate cyclotomic Hecke algebras $\{H_n^{\lambda}\}$	in progress

First question: How broad is this connection between "bubbles" in a Heisenberg category and up/down-transition functions on representations of the associated tower of algebras $\{A_n\}_{n\geq 0}$.

In particular, there are Heisenberg categories associated to towers $\{A_n\}_{n\geq 0}$ where A_n is **not semisimple**.

Next question: What is the analogue of this "Plancherel" type coherent system when algebras $\{A_n\}_{n\geq 0}$ are not semisimple?

Strategy: Follow the algebra...

While for a semisimple \mathbb{C} -algebra A_n with simple representations $\{L^{\lambda}\}_{{\lambda}\in\Gamma_n}$, as a left A_n -mod

$$A_n \cong \bigoplus_{\lambda \in \Gamma_n} (L^{\lambda})^{\oplus \dim(L^{\lambda})} \quad \Longleftrightarrow \quad \textit{Pl}_n(\lambda) = \frac{\dim(L^{\lambda})^2}{\dim(A_n)}.$$

When A_n is not semisimple we instead have

$$A_n \cong \bigoplus_{\lambda \in \Gamma_n} (P^{\lambda})^{\oplus \dim(L^{\lambda})} \quad \Longleftrightarrow \quad \widetilde{Pl}_n(\lambda) = \frac{\dim(L^{\lambda})\dim(P^{\lambda})}{\dim(A_n)}.$$

For P^{λ} the projective cover of L^{λ} .

In the non-semisimple case we see a hidden duality between simple modules and indecomposable projective modules.

What are the natural up/down-transition functions associated to this "new" Plancherel measure?

We should pass to Grothendieck groups and see what induction and restriction tells us in world of simples and projectives,

$$K_0(A) = \bigoplus_{n \geq 0} K_0(A_n \operatorname{-Pmod}).$$

and

$$G_0(A) = \bigoplus_{n \geq 0} G_0(A_n \operatorname{-mod}).$$

Functors $\operatorname{Ind}_{n}^{n+1}$ and $\operatorname{Res}_{n}^{n+1}$ descend to linear operators:

$$\begin{split} &\operatorname{Ind}_{n}^{n+1}[P^{\mu}] = \sum_{\lambda \in \Gamma_{n+1}} \kappa(\mu, \lambda)[P^{\lambda}], \\ &\operatorname{Ind}_{n}^{n+1}[L^{\mu}] = \sum_{\lambda \in \Gamma_{n+1}} \kappa^{*}(\mu, \lambda)[L^{\lambda}], \\ &\operatorname{Res}_{n}^{n+1}[P^{\lambda}] = \sum_{\mu \in \Gamma_{n}} \bar{\kappa}(\lambda, \mu)[P^{\mu}], \\ &\operatorname{Res}_{n}^{n+1}[L^{\lambda}] = \sum_{\bar{\kappa}^{*}} \bar{\kappa}^{*}(\lambda, \mu)[L^{\mu}]. \end{split}$$

 $\mu \in \Gamma_n$

If $\kappa(\mu, \lambda)$, $\kappa^*(\mu, \lambda)$, $\bar{\kappa}(\lambda, \mu)$, $\bar{\kappa}^*(\lambda, \mu)$ are all different this is a mess...

But if $\operatorname{Ind}_n^{n+1}$ and $\operatorname{Res}_n^{n+1}$ are biadjoint

 $\{A_n\}_{n\geq 0}$ is a tower of Frobenius extensions (a *Frobenius tower*) and A_{n+1} is a free (A_n, A_n) -bimodule (a *Frobenius tower*),

then things are simpler... $\left(\kappa(\mu,\lambda)=\bar{\kappa}^*(\lambda,\mu) \text{ and } \kappa^*(\mu,\lambda)=\bar{\kappa}(\lambda,\mu)\right)$.

If $\kappa(\mu, \lambda)$, $\kappa^*(\mu, \lambda)$, $\bar{\kappa}(\lambda, \mu)$, $\bar{\kappa}^*(\lambda, \mu)$ are all different this is a mess...

But if $\operatorname{Ind}_n^{n+1}$ and $\operatorname{Res}_n^{n+1}$ are biadjoint

 $\{A_n\}_{n\geq 0}$ is a tower of Frobenius extensions (a *Frobenius tower*) and A_{n+1} is a free (A_n, A_n) -bimodule (a *Frobenius tower*),

then things are simpler... $\left(\kappa(\mu,\lambda)=\bar{\kappa}^*(\lambda,\mu) \text{ and } \kappa^*(\mu,\lambda)=\bar{\kappa}(\lambda,\mu)\right)$.

Take away: free Frobenius towers are a good place to look for generalizations.

What are the transition functions for free Frobenius tower $\{A_n\}_{n\geq 0}$? There are at least two choices:

$$p_{\downarrow}(\lambda,\mu) = \frac{\kappa(\mu,\lambda)\dim(L^{\mu})}{\dim(L^{\lambda})} \quad \text{and} \quad p_{\uparrow}(\mu,\lambda) = \frac{\dim(A_{n})}{\dim(A_{n+1})} \frac{\kappa(\mu,\lambda)\dim(P^{\lambda})}{\dim(P^{\mu})}.$$

and

$$p_{\downarrow}^*(\lambda,\mu) = \frac{\kappa^*(\mu,\lambda)\dim(P^{\mu})}{\dim(P^{\lambda})} \quad \text{and} \quad p_{\uparrow}^*(\mu,\lambda) = \frac{\dim(A_n)}{\dim(A_{n+1})} \frac{\kappa^*(\mu,\lambda)\dim(L^{\lambda})}{\dim(L^{\mu})}.$$

Do the centers $\{Z(A_n)\}_{n\geq 0}$ prefer one choice? Possibly...

The Frobenius tower structure on $\{A_n\}_{n\geq 0}$ gives *Frobenius homomorphism*, (A_k, A_k) -bimodule homomorphism for k < n:

$$E_{n,k}:A_n\to A_k$$

and dual bases $B_{n,k}$, $B_{n,k}^{\vee}$,

$$\left(a = \sum_{b \in B_{n,k}} E_{n,k}(ab^{\vee})b = \sum_{b \in B_{n,k}} b^{\vee} E_{n,k}(ba).\right)$$

In the case of $\{\mathbb{C}[S_n]\}_{n\geq 0}$ and $\{\mathbb{S}_n\}_{n\geq 0}$. We captured data for p_{\downarrow} and p_{\uparrow} using central elements involving some version of Jucys-Murphy elements.

Assume then that $\{A_n\}_{n\geq 0}$ has a sequence of "Jucys-Murphy"-type elements $\{x_n\}_{n\geq 0}$, with

- $x_n \in A_n$,
- x_n commutes with A_{n-1} ,
- constant generalized eigenvalue α^{μ}_{η} on $P^{\eta} \subseteq \operatorname{Res}_{n-1}^{n} P^{\mu}$,
- and several other technical conditions...

The miracle is that up/down-transition data for p_{\downarrow}^* and p_{\uparrow}^* is encoded by elements in $\{Z(A_n)\}_{n\geq 0}$. Set

$$\sum_{b\in B_{n+1,0}}b^{\vee}x_n^kb\in Z(A_n)$$

and

$$E_{n+1,n}\Big(\sum_{b\in B_{n+1,0}}b^{\vee}b\,x_{n+1}^k\Big)\in Z(A_n).$$

Generalizing, for $\mu \in \Gamma_n$,

$$\widetilde{\chi}^{\mu}(\cdot):A_n \to \mathbb{C} \quad \Longrightarrow \quad E_{n,0}\Big(rac{e_{\mu}}{\dim(P^{\mu})}\cdot\Big):A_n \to \mathbb{C}$$

we have

$$E_{n,0}\left(\frac{e_{\mu}}{\dim(P^{\mu})}\sum_{b\in\mathcal{B}_{n+1,0}}b^{\vee}x_{n}^{k}b\right)=\frac{\dim(A_{n+1})}{\dim(A_{n})}\sum_{\eta\in\Gamma_{n-1}}p_{\downarrow}^{*}(\mu,\eta)(\alpha_{\eta}^{\mu})^{k}.$$

and

$$E_{n,0}\Big(\frac{e_\mu}{\dim(P^\mu)}E_{n+1,n}(\sum_{b\in B_{n+1,0}}b^\vee b\,x_{n+1}^k)\Big)=\sum_{\lambda\in\Gamma_{n+1}}p_\uparrow^*(\mu,\lambda)(\alpha_\mu^\lambda)^k.$$

Future directions

Towers that would interesting to study:

- wreath product algebras $\{(F^{\otimes n} \times S_n)\}_{n\geq 0}$ with F a Frobenius graded superalgebra (interesting examples: zig-zag algebra).
- 2 cyclotomic affine degenerate Hecke algebras $\{H_n^{\lambda}\}_{n\geq 0}$.

Hope: We may be able to prove things in these more exotic towers where combinatorics is difficult by working with central elements/Heisenberg category diagrammatics?

Thank you!