Cálculo IV MAT 525212/529202

Listado Integrales III

P1 Encuentre todas las posibles series de Laurent alrededor del z_0 indicado para las siguientes funciones. *Hint: Se recomienda expandir en Taylor para algunas*.

1.
$$f(z) = 1/(1-z) \cos z_0 = 0$$

2.
$$f(z) = 1/[(z+1)(z+2)^2] \cos z_0 = 1$$

3.
$$f(z) = 1/(z^2 - 1) \cos z_0 = 1$$

4.
$$f(z) = 1/(z^2 - iz)$$
 con $z_0 = 1$

5.
$$f(z) = \frac{e^z}{z+1} \operatorname{con} z_0 = -1$$

6.
$$f(z) = \frac{z}{(z+i)(z-i)^2} \text{ con } z_0 = 0$$

7.
$$f(z) = \frac{Log(1+2z)}{z}$$
 con $z_0 = 0$

8.
$$f(z) = \frac{\sin(z^2)}{z}$$
 con $z_0 = 0$

9.
$$f(z) = \sin(\frac{1}{z}) \text{ con } z_0 = 0$$

P2 Considere la serie de Laurent $f(z) = \sum_{n=-\infty}^{\infty} C_n z^n$ para una función f(z) analítica en una región regular $r_1 < |z| < r_2$. Si $|z| = r_0$ es una circumferencia dentro de este anillo muestre que f(z) tiene una expansión en serie de Fourier:

$$f(r_0e^{i\theta}) = \sum_{n=-\infty}^{\infty} A_n e^{in\theta}, \qquad A_n = \frac{1}{2\pi} \int_0^{2\pi} e^{-in\theta} f(r_0e^{i\theta}) d\theta$$

P3 Verifique las siguientes integrales de contorno

1. (a)
$$\int_0^{2\pi} \sin^{2n}(x) dx = \frac{\pi(2n)!}{2^{2n-1}(n!)^2}$$

2. (b)
$$\int_0^{2\pi} \frac{dx}{a^2 sin^2(x) + b^2 cos^2(x)} dx = \frac{2\pi}{ab}$$

P4 Calcule

1. (a)

$$\int_0^{2\pi} \frac{dx}{2 + \cos(x)}$$

$$\int_0^\infty \frac{dx}{1 + x^3}$$

2. (b)

$$\int_0^\infty \frac{dx}{1+x^3}$$

3. (c)

$$\int_{-\infty}^{\infty} \frac{\cos(x)}{1+x^2}$$