Planilha1

#	Benckmark	Dominio	Minimo Global	Coef	Mathsat
1	Adjiman	-1≤xi≤1	f(0,0)=-2.02181	1000	f(2,0.1) = -2.02174
2	Alpine 1	0≤xi≤10	f(0,0) = 0	1000	f(-0,0) = 0
3	Bohachevsky 1	-50≤xi≤50	f(0,0) = 0	1000	f(0,0) = 0
4	Bohachevsky 3	-50≤xi≤50	f(0,0) = 0	1000	f(0,0) = 0
5	Branin RCOS 01	-5≤x1≤10 0≤x2≤15	$f\{(-\pi,12.275),(\pi,2.275),\\ (9.42478,2.475)\}$ = 0.39788735772973816	1000	f(9.42,2.47)=0.397998
6	Camel Six	-3≤x1≤3 -2≤x2≤2	f{(0,0898;-0,7126), (-0,0898;0,7126)} = -1,0316	1000	f(-0.09,0.71) = -1.03157
7	Camel Three	-5≤xi≤5	f(0,0) = 0	1000	f(0,0) = -6.8813e + 23
8	Cosine	-1≤xi≤1	f(0,0) = -0.2	1000	f(0,0) = -0.2
9	Egg Crate	-5≤xi≤5	f(0,0) = 0	1000	f(0,-0) = 0
10	Engvall	-10≤xi≤10	f(1,0) = 0	1000	f(1,0) = 0
11	Godstein Price	-2≤xi≤2	f(0,-1) = 3	1000	f(-0.379,0.99) = 3
12	MC Cormick	-2 <x1<4 -3<x2<4< td=""><td>f(-0,547,-1,547) = -1.913</td><td>1000</td><td>f(-0.55,-1.55) = -1.91321</td></x2<4<></x1<4 	f(-0,547,-1,547) = -1.913	1000	f(-0.55,-1.55) = -1.91321
13	Rotated Ellipse 01	-10≤xi≤10	f(0,0) = 0	1000	f(0,0) = 0
14	Scahffer 1	-10≤xi≤10	f(0,0) = 0	1000	f(0,0) = 0
15	Styblinski tang	-5≤xi≤5	F(-2,903534;-2.903534) =-78,33198	1000	f(-2.9,-2.9) = -78.3319
16	Trecanni	-5≤xi≤5	$f\{(-2,0),(0,0)\}=0$	1000	f(0,0) = 0
17	Tsoulos	-1≤xi≤1	f(0,0) = -2	1000	f(0,0) = -2
18	Ursem 1	-2.5≤x1≤3 -2≤x2≤2	f(1.7,0) = -4.8168	1000	f(1.7,0) = -4.8168
19	Wayburn Seader 2	-10≤xi≤10	f{(0.200138974728779,1), (0.424861025271221,1)} = 0	1000	4*
20	Zirilli	-10≤xi≤10	f(-1.046,0) = -0.352	1000	f(-1,0) = -0.35

Planilha1

	Z3		Boolector		
70m45,724s	f(2,0.1) = -2.02174	246m10.379s	f(2,0.1) = -2.02174	29m6.030s	
7m22,821s	f(-0,0) = 0	4m49,531s	f(-0,0) = 0	10m57,313s	
29m19,257s	f(0,0) = 0	74m29.659s	f(0,0) = 0	41m6.222s	
58m7.546s	f(0,0) = 0	374m34.955s	f(0,0) = 0	98m11.076s	
4125m40.384s	f(3.14,2.28)=0.397913	1646m29.295s	f(3.14,2.28) = 0.397913	783m54.745s	
668m53.360s	f(0.09,-0.71) = -1.03157	546m12.292s	f(-0.09,0.71) = -1.03157	61m48.328s	
1m32.412s	f(0,0) = 0	2m16.150s	f(0,0) = 0	2m14.101s	
4m52.842s	f(0,0) = -0.2	8m33.652s	f(0,0) = -0.2	9m37.403s	
15m59,374s	f(0,-0) = 0	15m10,268s	f(0,-0) = 0	9m37,702s	
0m24,872s	f(1,0) = 0	0m35,669s	f(1,0) = 0	0m57,640s	
35m26,930s	f(-0.649,0.882) = 3	45m8,111	f(-0.756,0.883) = -17.753	47m30,111s	
2285m55.597s	f(-0.55,-1.55)=-1.91321	timeout	f(-0.55,-1.55) = -1.91321	44m24.354s	
1m14.772s	f(0,0) = 0	0m49.657s	f(0,0) = 0	1m0.306s	
108m35.148s	f(0,0) = 0	20m25.419s	f(0,0) = 0	8m30.493s	
2m23.259s	f(-2.9,-2.9) = -78.3319	22m6.737s	f(-2.9,-2.9) = -78.3319	3m43.10s	
0m4.187s	f(0,0) = 0	0m6.389s	f(0,0) = 0	0m10.710s	
3m19.756s	f(0,0) = -2	3m26.212s	f(0,0) = -2	4m17.859s	
86m19.487s	f(1.7,0) = -4.8168	578m54.286s	f(1.7,0) = -4.8168	33m34.542s	
20m14,576s	F(0.2,1) = 0	17m38,814s	F(0.2,1) = 0	12m1,563s	
6m56.59s	f(-1,0) = -0.35	6m1.91s	f(-1,0) = -0.35	3m13.0s	

Minioot					
Minisat					
f(2,0.1) = -2.02174	60m26,928s				
f(-0,0) = 0	76m54,359s				
f(0,0)=0	35m52,716s				
f(0,0) = -0	1159m53.470s				
f(9.421,2.469) = 0.397964	197m9,507s				
f(0.09,-0.71) = -1.03157	12m16,242s				
f(-0,0) = 0	219m34,466s				
f(-0,-0) = -0.2	17m41,826s				
f(0,-0) = 0	58m58,560s				
f(1,0) = -0	27m25,640s				
f(0,-1) = 3	33m39,149s				
f(-0.55,-1.55) = -1.91321	1654m29.415s				
f(-0,-0) = 0	0m7.371s				
f(0,0)=0	1708m35.910s				
f(-2.9,-2.9) = -78.3319	3m25.353s				
f(-0,0) = 0	0m22.407s				
f(0,-0) = -2	15m14.983s				
f(1.7,-0) = -4.8168	133m9.277s				
F(0.2,1) = 0	0m13,349s				
f(-1,0) = -0.35	17m1.763s				

Planilha1

http://benchmarkfcns.xyz/benchmarkfcns/adjimanfcn.html http://benchmarkfcns.xyz/benchmarkfcns/alpinen1fcn.html https://al-roomi.org/benchmarks/unconstrained/2-dimensions/10-bohachevsky-s-function-no-1 https://al-roomi.org/benchmarks/unconstrained/2-dimensions/12-bohachevsky-s-function-no-3

https://al-roomi.org/benchmarks/unconstrained/2-dimensions/13-branin-s-rcos-function-no-1

https://www.sfu.ca/~ssurjano/camel6.html

https://www.sfu.ca/~ssurjano/camel3.html https://arxiv.org/pdf/1308.4008.pdf

http://benchmarkfcns.xyz/benchmarkfcns/eggcratefcn.html

https://al-roomi.org/benchmarks/unconstrained/2-dimensions/116-engvall-s-function

http://benchmarkfcns.xyz/benchmarkfcns/goldsteinpricefcn.html

https://www.sfu.ca/~ssurjano/mccorm.html https://al-roomi.org/benchmarks/unconstrained/2-dimensions/126-rotated-ellipse-function-no-1 https://arxiv.org/pdf/1308.4008.pdf

https://www.sfu.ca/~ssurjano/stybtang.html https://al-roomi.org/benchmarks/unconstrained/2-dimensions/70-treccani-s-function https://al-roomi.org/benchmarks/unconstrained/2-dimensions/106-tsoulos-function

https://al-roomi.org/benchmarks/unconstrained/2-dimensions/107-ursem-function-no-1

https://al-roomi.org/benchmarks/unconstrained/2-dimensions/278-wayburn-seader-s-function-no https://al-roomi.org/benchmarks/unconstrained/2-dimensions/26-aluffi-pentini-s-or-zirilli-s-functio

ı-02 ın