HW2

Yiting Zhang

2022-04-10

Linear Regression

For this lab, we will be working with a data set from the UCI (University of California, Irvine) Machine Learning repository (see website here). The full data set consists of 4,177 observations of abalone in Tasmania. (Fun fact: Tasmania supplies about 25% of the yearly world abalone harvest.)

The age of an abalone is typically determined by cutting the shell open and counting the number of rings with a microscope. The purpose of this data set is to determine whether abalone age (**number of rings** + **1.5**) can be accurately predicted using other, easier-to-obtain information about the abalone.

The full abalone data set is located in the \data subdirectory. Read it into R using read_csv(). Take a moment to read through the codebook (abalone_codebook.txt) and familiarize yourself with the variable definitions.

Make sure you load the tidyverse and tidymodels!

```
library(tidyverse)
library(dplyr)
library(tidymodels)
library(ISLR)
library(yardstick)
tidymodels_prefer()
```

```
abalone <- read.csv("abalone.csv")
```

Question 1

Your goal is to predict abalone age, which is calculated as the number of rings plus 1.5. Notice there currently is no age variable in the data set. Add age to the data set.

Assess and describe the distribution of age.

```
abalone <- abalone%>%
  mutate(age = abalone$rings + 1.5)

ggplot(data=abalone, aes(age)) + geom_histogram()
```


By plotting a histogram, it seems like the abalone age data follows a normal distribution which skewed to the right a little bit with center around 10.

Question 2

Split the abalone data into a training set and a testing set. Use stratified sampling. You should decide on appropriate percentages for splitting the data.

Remember that you'll need to set a seed at the beginning of the document to reproduce your results.

```
set.seed(100)
abalone_split <- initial_split(abalone, prop = 0.80, strata = age)
abalone_train <- training(abalone_split)
abalone_test <- testing(abalone_split)</pre>
```

Question 3

Using the **training** data, create a recipe predicting the outcome variable, **age**, with all other predictor variables. Note that you should not include **rings** to predict **age**. Explain why you shouldn't use **rings** to predict **age**.

Steps for your recipe:

- 1. dummy code any categorical predictors
- 2. create interactions between

- type and shucked_weight,
- longest_shell and diameter,
- shucked_weight and shell_weight
- 3. center all predictors, and
- 4. scale all predictors.

You'll need to investigate the tidymodels documentation to find the appropriate step functions to use.

```
## Recipe
##
## Inputs:
##
##
         role #variables
##
      outcome
##
  predictor
##
## Operations:
## Dummy variables from all_nominal_predictors()
## Interactions with type:shucked_weight
## Interactions with longest_shell:diameter
## Interactions with shucked_weight:shell_weight
## Centering for all_predictors()
## Centering and scaling for <none>
## Scaling for <none>
```

Rings cannot be used to predict age because it is used in the formula for the age variable. If it is used, then the prediction will be 100% correct.

Question 4

Create and store a linear regression object using the "lm" engine.

```
lm_model <- linear_reg() %>%
set_engine("lm")
```

Question 5

Now:

- 1. set up an empty workflow,
- 2. add the model you created in Question 4, and
- 3. add the recipe that you created in Question 3.

```
lm_wflow <- workflow() %>%
  add_model(lm_model) %>%
  add_recipe(abalone_recipe)
```

Question 6

Use your fit() object to predict the age of a hypothetical female abalone with longest_shell = 0.50, diameter = 0.10, height = 0.30, whole_weight = 4, shucked_weight = 1, viscera_weight = 2, shell_weight = 1.

```
## # A tibble: 1 x 1
## .pred
## <dbl>
## 1 19.8
```

19.84488 years old by prediction.

Question 7

Now you want to assess your model's performance. To do this, use the yardstick package:

- 1. Create a metric set that includes \mathbb{R}^2 , RMSE (root mean squared error), and MAE (mean absolute error).
- 2. Use predict() and bind_cols() to create a tibble of your model's predicted values from the training data along with the actual observed ages (these are needed to assess your model's performance).
- 3. Finally, apply your metric set to the tibble, report the results, and interpret the \mathbb{R}^2 value.

The \mathbb{R}^2 value is 0.5498393, which means that the linear regression model we made explains 54.98393% of the variation in age variable.