

Auxiliar 1

Typst

Profesora: Ada Lovelace **Auxiliares:** Grace Hopper y Alan Turing

P1. Sumatorias

Resuelva:

- $1. \quad \sum_{k=1}^{n} k^3$
- 2. $\sum_{k=1}^{n} k2^k$
- 3. $\sum_{k=1}^{n} k2^k$

P2. Recurrencias

1. Resuelva la siguiente ecuación de recurrencia:

$$T_n = 2T_{n-1} + n,$$
 $T_0 = c.$

2. Sean a_n,b_n secuencias tal que $a_n\neq 0$ y $b_n\neq 0 \ \forall n\in \mathbb{N}.$ Sea T_n definida como:

$$a_nT_n=b_nT_{n-1}+f_n, \hspace{1cm} T_0=c.$$

Obtenga una fórmula no recursiva para T_n .

3. Usando el método visto en clases, resuelva:

$$T_n = \left(\frac{T_{n-1}}{T_{n-2}}\right)^4 \cdot 8^{n \cdot 2^n}, \qquad T_0 = 1, T_1 = 2.$$

P3. Funciones generadoras

1. Considere la recurrencia definida para $n \leq 0$:

$$a_{n+3} = 5a_{n+2} - 7a_{n+1} + 3a_n + 2^n, \\$$

con
$$a_0 = 0$$
, $a_1 = 2$ y $a_2 = 5$.

Utilizando funciones generadoras, resuelva la recurrencia.

2. Cuente el número de palabras en $\{0,1,2\}^n$ tal que cada subpalabra maximal de $\{0\}^*$ tiene largo par.