

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика, искусственный интеллект и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЁТ

по лабораторной работе № 1 по курсу «Математические основы верификации ПО» «Знакомство с языком Promela»

Студент: Керимов А. Ш.

Группа: ИУ7-42М

Преподаватель: Кузнецова О. В.

Москва. 2024 г.

Задание

Для небольшого фрагмента программы необходимо описать модель этой программы на Promela и изучить её (SPIN).

Фрагмент кода

```
#include <condition variable>
#include <cstddef>
#include <iostream>
#include <mutex>
#include <thread>
std::mutex m;
std::condition variable cv;
int name;
bool send = false;
void worker thread() {
  for (int j = 0; j < 4; ++j) {
    // wait until main() sends data
    std::unique lock lk(m);
    cv.wait(lk, []{ return send; });
    // after the wait, we own the lock
    std::cout << "receive: " << name << '\n';</pre>
    // processed
    send = false;
    lk.unlock();
    cv.notify_one();
  }
}
int main() {
  std::thread worker(worker thread);
```

```
for (int i = 0; i < 4; ++i) {
    // send data to the worker thread
    name = i % 2 == 0 ? 4 : 1;
    {
        std::lock_guard lk(m);
        send = true;
    }
        cv.notify_one();

    // wait for the worker
    {
        std::unique_lock lk(m);
        cv.wait(lk, []{ return !send; });
    }
}
worker.join();
}</pre>
```

Описание модели

```
#define msgtype 1
chan name = [0] of { byte, byte };

active proctype A() {
  int i = 0;
  do
  :: i < 2 ->
    name ! msgtype(4);
    name ! msgtype(1);
    i++;
    :: i == 2 ->
    break;
  od
}

active proctype B() {
```

```
byte state;
int j = 0;
do
:: j < 4 ->
    name ? msgtype(state);
    printf("receive: %d\n", state);
    j++;
:: j == 4 ->
    break;
od
}
```

Перечисление множества состояний

— Процесс А:

- А начальное состояние,
- S0 терминальное состояние,
- S2 счётчик меньше 2,
- S3 состояние после посылки байта 4,
- S4 состояние после посылки байта 1,
- S7 проверка счётчика,
- S10 счётчик равен двум.

— Процесс В:

- B начальное состояние,
- S0 терминальное состояние,
- S2 счётчик меньше 4,
- S3 состояние после получение байта,
- S7 проверка счётчика,
- S10 счётчик равен 4.

Граф переходов между состояниями модели

На рисунке 1 представлен граф переходов между состояниями процессов A и B.

Рисунок 1 — Графы переходов между состояниями процессов А и В

Выводы

В результате выполнения лабораторной работы № 1 были освоены:

- базовые возможности языка Promela, на котором была описана модель небольшого фрагмента программы;
- базовые возможности верификатора SPIN, с помощью которого были получены графы переходов между состояниями процессов программы, которые представляют собой детерминированные конечные автоматы с выделенными начальными и терминальными состояниями.