Cryptography: cryptographic hash functions and MACs

Myrto Arapinis and Markulf Kohlweiss School of Informatics University of Edinburgh

Introduction

 ${\sf Encryption} \Rightarrow {\sf confidentiality} \ {\sf against} \ {\sf eavesdropping}$

Introduction

 ${\sf Encryption} \Rightarrow {\sf confidentiality} \ {\sf against} \ {\sf eavesdropping}$

What about authenticity and integrity against an active attacker?

- ---- cryptographic hash functions and Message authentication codes
- \longrightarrow this lecture

A OWF is a function that is easy to compute but hard to invert:

Definition (One-way)

A function f is a one-way function if for all y there is no efficient algorithm which can compute x such that f(x) = y

A OWF is a function that is easy to compute but hard to invert:

Definition (One-way)

A function f is a one-way function if for all y there is no efficient algorithm which can compute x such that f(x) = y

Constant functions ARE NOT OWFs any x is such that f(x) = c

A OWF is a function that is easy to compute but hard to invert:

Definition (One-way)

A function f is a one-way function if for all y there is no efficient algorithm which can compute x such that f(x) = y

Constant functions ARE NOT OWFs any x is such that f(x) = c

The successor function in $\mathbb N$ IS NOT a OWF given succ(n) it is easy to retrieve n = succ(n) - 1

A OWF is a function that is easy to compute but hard to invert:

Definition (One-way)

A function f is a one-way function if for all y there is no efficient algorithm which can compute x such that f(x) = y

Constant functions ARE NOT OWFs any x is such that f(x) = c

The successor function in $\mathbb N$ IS NOT a OWF given succ(n) it is easy to retrieve n=succ(n)-1

Multiplication of large primes IS a OWF: integer factorisation is a hard problem - given $p \times q$ (where p and q are primes) it is hard to retrieve p and q

A function is a CRF if it is hard to find two messages that get mapped to the same value threw this function

Definition (Collision resistance)

A function f is collision resistant if there is no efficient algorithm that can find two messages m_1 and m_2 such that $f(m_1) = f(m_2)$

A function is a CRF if it is hard to find two messages that get mapped to the same value threw this function

Definition (Collision resistance)

A function f is collision resistant if there is no efficient algorithm that can find two messages m_1 and m_2 such that $f(m_1) = f(m_2)$

Constant functions ARE NOT CRFs for all m_1 and m_2 , $f(m_1) = f(m_2)$

A function is a CRF if it is hard to find two messages that get mapped to the same value threw this function

Definition (Collision resistance)

A function f is collision resistant if there is no efficient algorithm that can find two messages m_1 and m_2 such that $f(m_1) = f(m_2)$

Constant functions ARE NOT CRFs for all m_1 and m_2 , $f(m_1) = f(m_2)$

The successor function in $\mathbb N$ IS a CRF the predecessor of a positive integer is unique

A function is a CRF if it is hard to find two messages that get mapped to the same value threw this function

Definition (Collision resistance)

A function f is collision resistant if there is no efficient algorithm that can find two messages m_1 and m_2 such that $f(m_1) = f(m_2)$

Constant functions ARE NOT CRFs for all m_1 and m_2 , $f(m_1) = f(m_2)$

The successor function in $\mathbb N$ IS a CRF the predecessor of a positive integer is unique

Multiplication of large primes IS a CRF: every positive integer has a unique prime factorisation

Cryptographic hash functions

A cryptographic hash function takes messages of arbitrary length and returns a fixed-size bit string such that any change to the data will (with very high probability) change the corresponding hash value.

Definition (Cryptographic hash function)

A cryptographic hash function $H: \mathcal{M} \to \mathcal{T}$ is a function that satisfies the following 4 properties:

- $ightharpoonup |\mathcal{M}| >> |\mathcal{T}|$
- ▶ it is easy to compute the hash value for any given message
- it is hard to retrieve a message from it hashed value (OWF)
- it is hard to find two different messages with the same hash value (CRF)

Examples: MD4, MD5, SHA-1, RIPEMD160, SHA-256, SHA-512, SHA-3...

→In new projects use SHA-256 or SHA-512 or SHA-3

Commitments - Allow a participant to commit to a value v by publishing the hash H(v) of this value, but revealing v only later. Ex: electronic voting protocols, digital signatures, . . .

- **Commitments** Allow a participant to commit to a value v by publishing the hash H(v) of this value, but revealing v only later. Ex: electronic voting protocols, digital signatures, . . .
- ► File integrity Hashes are sometimes posted along with files on "read-only" spaces to allow verification of integrity of the files. Ex: SHA-256 is used to authenticate Debian GNU/Linux software packages

- **Commitments** Allow a participant to commit to a value v by publishing the hash H(v) of this value, but revealing v only later. Ex: electronic voting protocols, digital signatures, . . .
- ▶ File integrity Hashes are sometimes posted along with files on "read-only" spaces to allow verification of integrity of the files. Ex: SHA-256 is used to authenticate Debian GNU/Linux software packages
- ▶ Password verification Instead of storing passwords in cleartext, only the hash digest of each password is stored. To authenticate a user, the password presented by the user is hashed and compared with the stored hash.

- **Commitments** Allow a participant to commit to a value v by publishing the hash H(v) of this value, but revealing v only later. Ex: electronic voting protocols, digital signatures, . . .
- ▶ File integrity Hashes are sometimes posted along with files on "read-only" spaces to allow verification of integrity of the files. Ex: SHA-256 is used to authenticate Debian GNU/Linux software packages
- ▶ Password verification Instead of storing passwords in cleartext, only the hash digest of each password is stored. To authenticate a user, the password presented by the user is hashed and compared with the stored hash.
- ► **Key derivation** Derive new keys or passwords from a single, secure key or password.

- **Commitments** Allow a participant to commit to a value v by publishing the hash H(v) of this value, but revealing v only later. Ex: electronic voting protocols, digital signatures, . . .
- ▶ File integrity Hashes are sometimes posted along with files on "read-only" spaces to allow verification of integrity of the files. Ex: SHA-256 is used to authenticate Debian GNU/Linux software packages
- ▶ Password verification Instead of storing passwords in cleartext, only the hash digest of each password is stored. To authenticate a user, the password presented by the user is hashed and compared with the stored hash.
- Key derivation Derive new keys or passwords from a single, secure key or password.
- **▶ Building block of other crypto primitives** Used to build MACs, block ciphers, PRG, . . .

Collisions are unavoidable

The domain being much larger than the range, collisions necessarily exist

The birthday attack - attack on all schemes

The birthday attack - attack on all schemes

Theorem

Let $H: \mathcal{M} \to \{0,1\}^n$ be a cryptographic hash function $(|\mathcal{M}| >> 2^n)$ Generic algorithm to find a collision in time $O(2^{n/2})$ hashes:

- 1. Choose $2^{n/2}$ random messages in \mathcal{M} : $m_1, \ldots, m_{2^{n/2}}$
- 2. For $i = 1, ..., 2^{n/2}$ compute $t_i = H(m_i)$
- 3. If there exists a collision $(\exists i, j. \ t_i = t_j)$ then return (m_i, m_j) else go back to 1

Birthday paradox Let $r_1, \ldots, r_n \in \{1, \ldots, N\}$ be independent variables.

For
$$n = 1.2 \times \sqrt{N}$$
, $Pr(\exists i \neq j. \ r_i = r_j) \geq \frac{1}{2}$

- \Rightarrow the expected number of iteration is 2
- \Rightarrow running time $O(2^{n/2})$
- \Rightarrow Cryptographic function used in new projects should have an output size $n \ge 256!$

The Merkle-Damgard construction

- ▶ Compression function: $h: \mathcal{T} \times \mathcal{X} \to \mathcal{T}$
- ▶ PB: 1000...0||mes-len (add extra block if needed)

Theorem

Let H be built using the MD construction to the compression function h. If H admits a collision, so does h.

Example of MD constructions: MD5, SHA-1, SHA-2, ...

Compression functions from block ciphers

Let $E:~\mathcal{K} imes \{0,1\}^n o \{0,1\}^n$ be a block cipher

Compression functions from block ciphers

Let $E:~\mathcal{K} \times \{0,1\}^n \to \{0,1\}^n$ be a block cipher

Davies-Meyer

Source: https://en.wikipedia.org/wiki/One-way_compression_function

Compression functions from block ciphers

Let $E:~\mathcal{K} \times \{0,1\}^n \to \{0,1\}^n$ be a block cipher

 $Source: \ https://en.wikipedia.org/wiki/One-way_compression_function$

Example of cryptographic hash function: SHA-256

► Structure: Merkle-Damgard

► Compression function: Davies-Meyer

▶ Bloc cipher: SHACAL-2

Message Authentication Codes (MACs)

 $\underbrace{e{=}E(K_E,\mathsf{Transfer}\ 100 € \mathsf{on}\ \mathsf{Bob's}\ \mathsf{account})}_{\mathsf{AC}} \Rightarrow \mathsf{Royal}\,\mathsf{Bank}$

 $e=E(K_E, Transfer 100 \in on Bob's account)$

What if the encryption scheme E is the OTP - $e = K_E \oplus \text{Transfer } 100 \in \text{on Bob's account}$?

Encryption is not always enough

 $e=E(K_E, Transfer 100 \in on Bob's account)$

What if the encryption scheme E is the OTP - $e = K_E \oplus \text{Transfer } 100 \in \text{on Bob's account?}$

 $\stackrel{e}{\rightarrow}$

 $\xrightarrow{e \oplus 0...0Bob0...0 \oplus 0...0Eve0...0}$ = $E(K_E, Transfer\ 100 \notin on\ Eve's\ account)$

Goal: message integrity

Goal: message integrity

A MAC is a pair of algorithms (S, V) defined over (K, M, T):

- \triangleright $S: \mathcal{K} \times \mathcal{M} \rightarrow \mathcal{T}$
- $ightharpoonup V: \mathcal{K} \times \mathcal{M} \times \mathcal{T} \rightarrow \{\top, \bot\}$
- ▶ Consistency: V(k, m, S(k, m)) = T

Unforgeability

It is hard to computer a valid pair (m, S(k, m)) without knowing k

File system protection

► At installation time

k derived from user password

- ► To check for virus file tampering/alteration:
 - reboot to clean OS
 - supply password
 - any file modification will be detected

Let (E, D) be a block cipher. We build a MAC (S, V) using (E, D) as follows:

```
\triangleright S(k, m) = E(k, m)
```

$$V(k, m, t) = \text{ if } m = D(k, t)$$

then return \top
else return \bot

Let (E, D) be a block cipher. We build a MAC (S, V) using (E, D) as follows:

- V(k, m, t) = if m = D(k, t)then return \top else return \bot

But: block ciphers can usually process only 128 or 256 bits

Let (E, D) be a block cipher. We build a MAC (S, V) using (E, D) as follows:

- \triangleright S(k, m) = E(k, m)
- V(k, m, t) = if m = D(k, t)then return \top else return \bot

But: block ciphers can usually process only 128 or 256 bits

Our goal now: construct MACs for long messages

ECBC-MAC

- $ightharpoonup E: \mathcal{K} imes \{0,1\}^n o \{0,1\}^n$ a block cipher
- ▶ ECBC- $MAC : \mathcal{K}^2 \times \{0,1\}^* \rightarrow \{0,1\}^n$
- → the last encryption is crucial to avoid forgeries!! Ex: 802.11i uses AFS based FCBC-MAC

17 / 23

PMAC

- $ightharpoonup E: \mathcal{K} \times \{0,1\}^n \to \{0,1\}^n$ a block cipher
- ▶ $P: \mathcal{K} \times \mathbb{N} \to \{0,1\}^n$ any easy to compute function
- ▶ *PMAC* : $K^2 \times \{0,1\}^* \to \{0,1\}^n$

HMAC

MAC built from cryptographic hash functions

$$HMAC(k, m) = H(k \oplus OP||H(k \oplus IP||m))$$

IP, OP: publicly known padding constants

Ex: SSL, IPsec, SSH, ...

Authenticated encryption

Plain encryption is malleable

- ► The decryption algorithm never fails
- ► Changing one bit of the *i*th block of the ciphertext
 - ► CBC decryption: will affect last blocks after the *i*th of the plaintext
 - ightharpoonup ECB decryption: will only the i^{th} block of the plaintext
 - ► CTR decryption: will only affect one bit of the *i*th block of the plaintext

Decryption should fail if a ciphertext was not computed using the key

Goal

Simultaneously provide data confidentiality, integrity and authenticity decryption combined with integrity verification in one step

Encrypt-then-MAC

- 1. Always compute the MACs on the ciphertext, never on the plaintext
- 2. Use two different keys, one for encryption (K_E) and one for the MAC (K_M)

Encryption

- 1. $C \leftarrow E_{AES}(K_E, M)$
- 2. $T \leftarrow HMAC\text{-}SHA(K_M, C)$
- 3. return C||T

Decryption

- 1. if $T = HMAC-SHA(K_M, C)$
- 2. then return $D_{AES}(K_E, C)$
- 3. else return ⊥

Do not:

- ► Encrypt-and-MAC: $E_{AES}(K_E, M)||HMAC-SHA(K_M, M)|$
- ► MAC-then-Encrypt: $E_{AES}(K_E, M||HMAC-SHA(K_M, M))$

AES GCM

Galois Counter Mode

Combines

- 1. Galois field based One-time MAC for authentication
- 2. AES based Counter Mode for encryption
- ► Trick: One-time MAC is encrypted too
 - ⇒ secure for many messages
- ► Widely adopted for its performance
- ► Many good implementations of this mode