X-Calibration

X-CAL: Explicit Calibration for Survival Analysis

Mark Goldstein *

Courant Institute New York University New York, NY 10011 goldstein@nyu.edu

Xintian Han*

Center for Data Science New York University New York, NY 10011 xintian.han@nyu.edu

Aahlad M. Puli*

Courant Institute New York University New York, NY 10011 aahlad@nyu.edu

Adler J. Perotte

Biomedical Informatics Columbia University Medical Center New York, NY 10032 adler.perotte@columbia.edu

Rajesh Ranganath

Courant Institute
Center for Data Science
New York University
New York, NY 10011
rajeshr@cims.nyu.edu

Survival Analysis

- predict time until event
- time t drawn conditional on covariates x.
- could be time until admission to hospital based on health records

Censoring

- for some data, we don't observe t
- ullet only observe right-censoring time ${f c} < {f t}$
- assume censoring-at-random

• e.g. someone leaves a heart study before they develop a heart condition

Calibration

- want accurate survival models, also want calibration
- predicted number of events within any time interval similar to observed number
- means probabilities can be interpreted as risk
- can be used for decisions

Intuition: Binary Classification

- covariates x and binary outcome d.
- modeled risk $P_{\theta}(d=1|x)$ denoted by $risk_{\theta}(x)$.
- calibration: $P_{true}(\mathbf{d} = 1 | \text{risk}_{\theta}(\mathbf{x}) = r) \approx r$
- frequency of events is *r* among subjects whose modeled risks are *r*.

Evaluating Calibration

- usually evaluated post-hoc
- instead of checking all $r \in \mathbb{R}$, check some intervals of risk levels
- see tests like Lemeshow-Hosmer
- not differentiable due to checking set membership of data to risk groups

Calibration in Regression / Survival Analysis

- $(x, t) \sim P$ with conditional CDF F
- definition of risk needs to use t
- define $risk_{\theta}(t,x) = F_{\theta}(t|x)$
- For all sub-intervals C = [a, b] of [0, 1], calibration means

$$\mathbb{E}_{t,x\sim P}\Big[\mathbb{1}[\mathrm{risk}_{\theta}(t,x)\in C]\Big] = \mathbb{E}_{t,x\sim P}\Big[\mathbb{1}[F_{\theta}(t|x)\in C]\Big] = |C|.$$

• Holds when $F_{\theta}(t|x) = F(t|x)$ or when $F_{\theta}(t|x) = F(t)$

D-Calibration: a way to measure

Count proportion of points in set C

$$\Phi_{\theta}(C) := \mathbb{E}_{t,x \sim P(t,x)} \mathbb{1} [F_{\theta}(t|x=x) \in C]$$

• Pick disjoint sets $C \in \mathcal{C}$ that cover [0, 1] and measure:

$$\mathcal{R}(\theta) = \sum_{C \in \mathcal{C}} (\phi_{\theta}(C) - |C|)^{2}$$

Obtaining D-Calibration

- like binary classification, uses set membership
- also has some difficult expectations
- could we minimize this error in training?

Obtaining D-Calibration

- like binary classification, uses set membership
- also has some difficult expectations
- could we minimize this error in training?
- yes

X-Calibration

- use approximation of D-calibration as an objective alongside MLE
- improves calibration without sacrificing much likelihood/concordance,
- allows modeler to balance
- does this during training!

X-Calibration

- two main challenges
- relax indicator function with soft membership
- upper-bound square of expectation to derive stochastic estimator

Soft Membership

• Soft membership with temperature γ for set C = [a, b]:

$$\zeta(u; C, \gamma) = \operatorname{Sigmoid}(\gamma(u-a)(b-u))$$

- Inexact for finite γ but has gradients
- Exact when $\gamma \to \infty$ but can't optimize

Soft Membership

Approximately check CDF value in C

$$\mathcal{R}(\theta) = \sum_{C \in \mathcal{C}} \left(\phi_{\theta}(C) - |C| \right)^{2}$$

$$\mathcal{R}(\theta) = \sum_{C \in \mathcal{C}} \left(\mathbb{E}_{t,x} \mathbb{1} \left[F_{\theta}(t | \mathbf{x} = x) \in C \right] - |C| \right)^{2}$$

with

$$\hat{\mathcal{R}}_{\gamma}(\theta) = \sum_{C \in \mathcal{C}} \left(\mathbb{E}_{t,x} \zeta(F_{\theta}(t|\boldsymbol{x} = x); C, \gamma) - |C| \right)^{2}.$$

Bad Square

- gradient is product of two expectations (bad)
- move square into each term of expectation

$$\hat{\mathcal{R}}_{\gamma}(\theta) = \sum_{\boldsymbol{C} \in \mathcal{C}} \left(\mathbb{E}_{t,x} \zeta(\boldsymbol{F}_{\theta}(t|\boldsymbol{x} = x); \boldsymbol{C}, \gamma) - |\boldsymbol{C}| \right)^{2}.$$

less than

$$\hat{\mathcal{R}}_{\gamma}^{+}(\theta) = \mathbb{E}_{S \sim P(t, \boldsymbol{x})^{M}} \sum_{C \in \mathcal{C}} \frac{1}{M^{2}} \sum_{t, x \in \mathcal{S}} \left[\zeta(F_{\theta}(t | \boldsymbol{x} = x); C, \gamma) - |C| \right]^{2}$$

for batch *S* of size *M* by Jensen's

Example Objective: MLE + XCAL

$$\min_{\boldsymbol{\theta}} \quad \mathbb{E}_{t, x \sim P} - \log P_{\boldsymbol{\theta}}(t | \boldsymbol{x} = x) + \lambda \hat{\mathcal{R}}_{\gamma}^{+}(\boldsymbol{\theta})$$

Gamma Simulation

For the gamma simulation, we draw x from a D=32 multivariate Normal with 0 mean and diagonal covariance with $\sigma^2=10.0$. We draw failure times t conditionally on x from a gamma distribution with mean μ log-linear in x. The weights of the linear function are drawn uniformly. The gamma distribution has constant variance 1e-3. This is achieved by setting $\alpha=\mu_i^2/1e-3$ and $\beta=\mu_i/1e-3$.

$$\mathbf{x}_i \sim \mathcal{N}(0, \sigma^2 \mathbf{I}), \quad \mathbf{w}_d \sim \mathtt{Unif}(-0.1, 0.1), \quad \boldsymbol{\mu}_i = \exp[\mathbf{w}^\top \mathbf{x}_i], \quad \mathbf{t}_i \sim \mathtt{Gamma}(\alpha, \beta).$$

Censoring times are drawn like failure times but with a different set of weights for the linear function. This means $\mathbf{t} \perp \mathbf{c} \mid \mathbf{x}$.

Results

Table 1: Gamma simulation, censored

	λ	0.0	1.0	10.0	100.0	500.0	1000.0
Log-Norm NLL	Test NLL Test D-CAL Test Conc.	-0.059 0.0292 0.981	-0.049 0.0195 0.969	0.004 0.0045 0.942	0.138 0.0002 0.916	0.191 6e-5 0.914	0.215 7e-5 0.897
Log-Norm S-CRPS	Test NLL Test D-CAL Test Conc.	0.038 0.0174 0.982	0.084 0.0071 0.978	0.143 0.0014 0.963	0.201 0.0001 0.950	0.343 5e-5 0.850	0.436 8e-5 0.855
Cat-NI	Test NLL Test D-CAL Test Conc.	0.797 0.0091 0.987	0.799 0.0064 0.987	0.822 0.0015 0.987	1.149 0.0002 0.976	1.665 6e-5 0.922	1.920 6e-5 0.861