MATH3332 Quiz 1

- 1. Determine whether or not the set under the operations is a vector space. Give justification for your answer.
 - (a) (20 pts) Let $V = \mathbb{R}^2$, and let $u, v \in V$ such that $u = (u_1, u_2)$ and $v = (v_1, v_2)$. Define the addition and scalar multiplication for all $u, v \in V$ and $k \in \mathbb{R}$ as follows:

$$u + v = (u_1 + v_1, u_2 + v_2)$$

 $ku = (ku_1, 0)$

(b) (20 pts) Let $V = \mathbb{R}^2$, and let $u, v \in V$ such that $u = (u_1, u_2)$ and $v = (v_1, v_2)$. Define the addition and scalar multiplication for all $u, v \in V$ and $k \in \mathbb{R}$ as follows:

$$u + v = (u_1v_1, u_2v_2)$$
$$ku = (ku_1, ku_2 + 1)$$

- 2. Let $(V, \|\cdot\|)$ be a normed vector space.
 - (a) (10 pts) Prove that, for all $x, y \in V$,

$$|||x|| - ||y||| \le ||x - y||.$$

(b) (10 pts) Let $\{x^{(k)}\}_{k\in\mathbb{N}}$ be a convergent sequence in V with limit $x\in V$. Prove that

$$\lim_{k\to\infty}\|\boldsymbol{x}^{(k)}\|=\|\boldsymbol{x}\|.$$

(Hint: Use part (a).)

(c) (10 pts) Let $\{\boldsymbol{x}^{(k)}\}_{k\in\mathbb{N}}$ be a sequence in V and $\boldsymbol{x},\boldsymbol{y}\in V$. Prove that, if

$$oldsymbol{x}^{(k)}
ightarrow oldsymbol{x}, \quad ext{and} \quad oldsymbol{x}^{(k)}
ightarrow oldsymbol{y},$$

then x = y.

3. Let $x \in \mathbb{R}^n$ be an arbitrary vector. Recall the *p-norm* of x is defined to be:

$$||x||_p = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}$$

1

Prove the following results:

- (a) $(10 \text{ pts})\|x\|_1 \le \sqrt{n}\|x\|_2$
- (b) $(10 \text{ pts}) \|x\|_2 \le \sqrt{n} \|x\|_{\infty}$
- (c) $(10 \text{ } pts)||x||_p \ge ||x||_q$ whenever $1 \le p \le q < +\infty$