Multi-Criteria Optimization

Exercise 1: Concepts in Multi-Criteria Optimization

We are given a multi-objective optimization problem where we want to minimize both objectives f_1 and f_2 :

$$f_1: \mathcal{X} \to \mathbb{R}, f_2: \mathcal{X} \to \mathbb{R},$$

where
$$\mathcal{X} = \{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)}, \mathbf{x}^{(4)}, \mathbf{x}^{(5)}, \mathbf{x}^{(6)}\}.$$

For each point in the domain, we know their objective function values:

$$\mathbf{x}^{(1)}$$
 with $\mathbf{f}^{(1)} = (10, 5)$
 $\mathbf{x}^{(2)}$ with $\mathbf{f}^{(2)} = (7, 8)$
 $\mathbf{x}^{(3)}$ with $\mathbf{f}^{(3)} = (4, 6)$
 $\mathbf{x}^{(4)}$ with $\mathbf{f}^{(4)} = (6, 4)$
 $\mathbf{x}^{(5)}$ with $\mathbf{f}^{(5)} = (9, 3)$

$$\mathbf{r} = (6) \quad \mathbf{r} = \mathbf{r} (6) \quad (2.7)$$

$$\mathbf{x}^{(6)}$$
 with $\mathbf{f}^{(6)} = (3,7)$

- (a) Determine which of these six points are Pareto optimal (find \mathcal{P}).
- (b) Sketch the objective space and visualize the Pareto front $\mathbf{f}(\mathcal{P})$.
- (c) Assume we are given a reference point R = (15, 15). Compute the dominated hypervolume of the Pareto optimal points.
- (d) Perform non-dominated sorting.
- (e) Compute the crowding distance of the point $\mathbf{x}^{(3)}$ with $\mathbf{f}^{(3)}$.
- (f) Compute the hypervolume contribution of the point $\mathbf{x}^{(5)}$ with $\mathbf{f}^{(5)}$. Again, assume a reference point R=(15, 15).