Title line 1 Title line 2

Your name

University/institution name
The date

Contents

1	My first chapter			
	1.1	The Riemann hypothesis		
		1.1.1	Preliminaries	3
		1.1.2	Zeroes of the Riemann zeta function: the hypothesis	3

§1 My first chapter

Here is some introductory statement.

§1.1 The Riemann hypothesis

In this section, we give a long-awaited proof of the Riemann hypothesis.

§1.1.1 Preliminaries

Definition 1.1.1. The function $\zeta: \{s \in \mathbb{C}: \Re(s) > 1\} \to \mathbb{C}$ such that

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}}.$$

is called the Riemann zeta function.

Considering the analytic continuation of ζ , Riemann showed that ζ satisfied a particular meromorphic functional equation:

Theorem 1.1.1. For all $s \in \mathbb{C}$, ζ satisfies

$$\zeta(s) = 2^{s} \pi^{s-1} \sin\left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s).$$

§1.1.2 Zeroes of the Riemann zeta function: the hypothesis

A consequence of Theorem 1.1.1 is that every negative, even integer is a zero of ζ . (The same is *not* true of the positive, even integers: why?) Each of these zeroes is called a *trivial zero*. A natural question for one to ask is where, if any, the *nontrivial zeroes* of ζ lie. Some of these have been found, and curiously they all lay on the strip $\Re(s) = \frac{1}{2}$. This curiosity led Riemann, in 1859, to conjecture that

Conjecture 1.1.1 (Riemann, 1859). All nontrivial zeroes of the Riemann zeta function lie on the strip $Re(s) = \frac{1}{2}$.

We can now prove this conjecture holds, turning it into a theorem:

Proof. Obvious. \Box