A*pex: Efficient Approximate Multi-Objective Search on Graphs

Han Zhang (zhan645@usc.edu),¹ Oren Salzman,² T. K. Satish Kumar,¹ Ariel Felner,³ Carlos Hernández Ulloa,⁴ Sven Koenig¹¹ University of Southern California, ² Technion - Israel Institute of Technology, ³ Ben-Gurion University, ⁴ Universidad San Sebastian

1 Background

Figure: An example search instance. Blue and red arrows show the two paths in the Pareto-optimal frontier.

Definition (Multi-objective search).

A multi-objective search instance contains a graph, s start state, and a goal state. A cost function \mathbf{c} maps an edge in the graph to a cost vector of length N. A solution path π is a path from the start state to the goal state. The cost of path π , denoted as $\mathbf{c}(\pi)$, is the accumulated costs of its edges.

Definition (Weak dominance and ε -dominance).

Path π weakly dominates path π' iff $\mathbf{c}(\pi) \leq \mathbf{c}(\pi')$. For a non-negative real number ε , path π ε -dominates path π' iff $\mathbf{c}(\pi) \leq (1 + \varepsilon)\mathbf{c}(\pi')$.

Definition (Pareto-optimal frontier).

A set of solution paths Π is a *Pareto-optimal frontier* iff (1) every solution path for the problem instance is weakly dominated by at least one solution path in Π and (2) solution paths in Π do not weakly dominate each other.

Definition (Approximate Pareto-optimal frontier)

Given an ε -value, a set of solution paths Π_{ε} is an ε -approximate frontier iff (1) every solution path for the problem instance is ε -dominated by at least one solution path in Π_{ε} and (2) solution paths in Π_{ε} do not weakly dominate each other.

2 Motivation

- The Pareto-optimal frontier can be **exponential** in the size of the graph being searched, which makes multi-objective search time-consuming.
- The ε -approximate frontiers are typically much smaller than the Pareto-optimal frontiers even for small ε -values and hence easier to compute.
- The existing algorithm **PP-A*** [1] finds ε -approximate frontiers for bi-objective search instances efficiently. However, it is unclear how to generalize PP-A* to search instances with more than two objectives.

3 Contributions

We proposed an approximate multi-objective search algorithm **A*pex**, which:

- \blacktriangleright finds an ε -approximate frontier for a user-provided ε -value,
- builds on PP-A* and also makes it **more efficient** for bi-objective search, and
- can solve problem instances with **more than two** objectives while PP-A* cannot.

4 ε -Approximate Frontier: An Example

The left figure shows the Pareto-optimal frontier and an ε (=0.01)-approximate frontier for a road-network problem instance with two objectives. The right figure shows the corresponding paths of the ε -approximate frontier.

In this example, the Pareto-optimal frontier has many (=2253) solution paths with many of them being very similar. The ε -approximate frontier contains only five diverse solution paths and takes a much smaller amount of time (~5%) to compute.

5 A*pex

In A*pex, each search node is an *apex-path pair*, which contains a *representative path* π and a cost vector **A** called *apex*. An apex-path pair is ε -bounded iff $\mathbf{c}(\pi) \leq (1 + \varepsilon)\mathbf{A}$.

Figure: An apex-path pair

A*pex runs an A*-like search with apex-path pairs as search nodes and merges apex-path pairs whenever the resulted apex-path pairs are ε -bounded. The solution set returned by A*pex contains the representative path of each solution apex-path pair.

Summary: By using ε -bounded apex-path pairs to approximate the Pareto-optimal frontier, A*pex finds an ε -approximate frontier with fewer node expansions than existing algorithms.

(b) Merging two apex-path pairs

Figure: Operations on apex-path pairs

6 Experimental Results

(b) tri-objective problem instances

The figures show the runtime of A*pex and baseline algorithms for different numbers of objectives, problem instances, and ε -values. The **y-coordinate** of each point is the runtime of A*pex, and the **x-coordinate** of each point is the runtime of the respective baseline algorithm.

Summary: A*pex runs faster than the respective baseline algorithm in most problem instances for both two and three objectives. In some instances, the speedups are more than 5× and 25×, respectively.

(a) bi-objective problem instances