Exploratory Data Analysis

BSDS 100, Spring 2021 Michael Ruddy

What is Exploratory Data Analysis?

r	name	aenus	vore	order	conservation	sleep total	sleep rem	sleep cycle	awake	
	chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>			
1 (hee	Acin	carni	Carn	1c	12.1	NA	NA	11.9	
		Aotus				17	1.8	NA.	7	
3 1	loun	Aplo	nerbi	Rode	nt	14.4		NA	9.6	
4 (rea	Blar	omnı	Sor1	lc	14.9		0.133	9.1	
		Bos	herbi	Arti	domesticated	4	0.7	0.667	20	
6 7	Thre	Brad	herbi	Pilo	<na></na>	14.4	2.2	0.767	9.6	
7 N	Nort	Call	carni	Carn	VU	8.7	1.4	0.383	15.3	
		Calo				7	NA	NA	17	
0 1)oa	Canic	carni	Carn	domesticated	10.1		0.333	13.9	
10 1	oog	Canis	banki	A met d	1.	3	NA.	NA NA	21	
10 1	, oe	Capr	HEIDI	A - t -	1-	5.3				
		Capri						NA	18.7	
					domesticated	9.4	0.8	0.217		
		Cerc				10	0.7	NA	14	
14 (Chin	Chin	herbi	Rode	domesticated	12.5	1.5	0.117	11.5	
15 9	Star	Cond	omni	Sori	lc	10.3	2.2	NA	13.7	
16 /	Afri	Cric	omni	Rode	<na></na>	8.3	2	NA	15.7	
		Cryp				9.1		0.15	14.9	
						17.4		0.383		
10 1	Long	Dasy	Carni	Cing	1-					
19	ree	Dend	nerbi	нуга	ıc	5.3	0.5	NA	18.7	
		Dide				18	4.9	0.333	6	
21 /	Asia	Elep	herbi	Prob	en	3.9	NA	NA	20.1	
22 E	3ig	Epte	inse	Chir	lc	19.7	3.9	0.117	4.3	
23 H	lorse	Equus	herbi	Peri	domesticated	2.9	0.6	1	21.1	
24 [lonk	Fauns	herhi	Peri	domesticated	3.1		NA	20.9	
		Erin				10.1	3.5	0.283		
25 1	2	E must	OIIIIII	Dada.	1-	10.9		NA NA		
		Eryt					1.1		13.1	
		Euta				14.9	NA _	NA	9.1	
					domesticated			0.417		
		Gala				9.8	1.1	0.55	14.2	
30 (Gira	Gira	herbi	Arti	cd	1.9	0.4	NA	22.1	
31 F	Pilo	Glob	carni	Ceta	cd	2.7	0.1	NA	21.4	
		Hali				2.7 6.2 6.3 8	1.5	NA	17.8	
		Hete				6.2	0.6	NA	17.7	
		Homo				0.5	1.9	1.5		
						9.5	1.9		16	
		Lemur				9.3	0.9	NA	14.5	
		Loxo				3.3	NA	NA	20.7	
		Lutr				19.4	6.6	NA	4.6	
38 N	1aca	Maca	omni	Prim	<na></na>	10.1	1.2	0.75	13.9	
39 N	long	Meri	herbi	Rode	lc	14.2	1.9	NA	9.8	
		Meso				14.3	3.1	0.2	9.7	
		Micr				12.8	NA.	NA NA	11.2	
	lous			Rode		12.5		0.183	11.5	
45 1	.111	Myot	inse	Cull	<na></na>	19.9		0.2	4.1	
44 F	Roun	Neof	nerbi	Rode	nt	14.6	NA	NA	9.4	
		Nyct				11	NA	NA	13	
46 I	Degu	Octo	herbi	Rode	lc	7.7	0.9	NA	16.3	
47 N	Nort	Onyc	carni	Rode	lc	14.5	NA	NA	9.5	
48 F	Rabb	Orvc	herbi	Lago	domesticated	8.4	0.9	0.417	15.6	
49 9	Sheen	Ovis	herhi	Arti	domesticated	3.8	0.6	NA	20.2	
50 (Chim	Dan	omni	Prim	~NA>	9.7	1.4	1.42	14.3	
50 0	Ti aaa	Doot	Omitiz	Comm	-IVA-		NA.			
		Pant				15.8		NA	8.2	
		Pant				10.4	NA	NA	13.6	
		Pant				13.5	NA	NA	10.5	
54 E	Babo	Papio	omni	Prim	<na></na>	9.4	1	0.667		
		Para				10.3	2.7	NA	13.7	
		Pero		Prim		11	NA	NA	13	
		Pero		Rode		11.5	NA	NA	12.5	
50 1	Dhal	Phal	-NIA>			13.7	1.8		10.3	
						13.7				
		Phoca				3.5	0.4	NA	20.5	
		Phoc				5.6	NA _	NA	18.4	
		Poto				11.1	1.5	NA	12.9	
62 (Gian	Prio	inse	Cing	en	18.1	6.1	NA	5.9	
63 F	Rock	Proc	<na></na>	Hyra	lc	5.4	0.5	NA	18.6	
64 I	_abo	Ratt	herbi	Rode	lc	13	2.4	0.183	11	

What is Exploratory Data Analysis?

What is Exploratory Data Analysis?

- Informal exploration of your data
- Summarize and visualize properties of your dataset
- Iterative Procedure:
 - 1. Generate questions, hypotheses
 - 2. Visualize, transform, model your data
 - 3. Refine your questions, repeat

Terms

- Variable: a quantity, quality, or property that you can measure
- Value: the state of a variable when you measure it
- Observation: set of a measurements under similar conditions (time, object, etc.); several values for different variables
- **Tabular Data**: Set of values, each associated with a variable and an observation. (Hopefully its *tidy*).

Terms

Tabular Data

Variables → name	genus	vore	order	conservation	sleep_total	sleep_rem	sleep_cycle	awake (brainwt	bodywt
Cheetah	Acinonyx	carni	Carnivora	lc	12.1	NA	NA	11.9	NA	50.000
Owl monkey	Aotus	omni	Primates	NA	17.0	1.8	NA	7.0	0.01550	0.480
Mountain beaver	Aplodontia	herbi	Rodentia	nt	14.4	2.4	✓ NA	9.6	NA	1.350
Greater short-tailed shrew	Blarina	omni	Soricomorpha	lc	14.9	2,8	0.1333333	9.1	0.00029	0.019
Observation → Cow	Bos	herbi	Artiodactyla	domesticated	4.0	0.7	0.6666667	20.0	0.42300	600.000
Three-toed sloth	Bradypus	herbi	Pilosa	NA	14.4	2.2	0.7666667	9.6	NA	3.850
Values										

Types of Variables (non-exhaustive)

- **Quantitative**: variables representing numerical values you can perform arithmetic operations with.
 - Discrete: integer numbers (nothing "in-between")
 - Continuous: real numbers
- Qualitative (categorical): variables representing non-numeric properties
 - Nominal: No rank or ordering
 - Ordered: Clear rank or ordering

Types of Variables (non exhaustive)

Amy 1975

Amy 1975

29

29

6 34.0 -74.8

12 33.8 -73.8

17	Types of variables (non-exhaustive)											
<u>lomina</u>	<u>ominal</u> <u>Discrete</u>			<u>Ordered</u>				<u>Continuous</u>				
name	year	month	day	hour	lat	long	status	category	wind	pressure	ts_diameter	hu_diameter
Amy	1975	6	27	0	27.5	-79.0	tropical depression	-1	25	1013	NA	NA
Amy	1975	6	27	6	28.5	-79.0	tropical depression	-1	25	1013	NA	NA
Amy	1975	6	27	12	29.5	-79.0	tropical depression	-1	25	1013	NA	NA
Amy	1975	6	27	18	30.5	-79.0	tropical depression	-1	25	1013	NA	NA
Amy	1975	6	28	0	31.5	-78.8	tropical depression	-1	25	1012	NA	NA
Amy	1975	6	28	6	32.4	-78.7	tropical depression	-1	25	1012	NA	NA
Amy	1975	6	28	12	33.3	-78.0	tropical depression	-1	25	1011	NA	NA
Amy	1975	6	28	18	34.0	-77.0	tropical depression	-1	30	1006	NA	NA
Amy	1975	6	29	0	34.4	-75.8	tropical storm	0	35	1004	NA	NA

tropical storm

tropical storm

0

0

40

45

1002

1000

NA

NA

NA

NA

Basic framework for questions

- What type of variation occurs within a variable?
 - Typical, unusual, or missing values
 - Numeric: mean, standard deviation, interquartile range, etc.
- What type of covariation occurs between the variables?
 - How are two or more variables related?
 - Correlation coefficient, covariance matrices, etc.

- How many of each category? Proportion of total?
- Which values are typical? Uncommon? Missing?
 - Why? Is this expected?
- Summarize: count, proportion, percentage
- Visualize: bar graph

```
In [31]: diamonds %>%
    count(cut) %>%  # create a dataset with each value of "cut" variable and the count
    mutate(proportion = n / nrow(diamonds)) %>%  # add a column for proportion
    mutate(percent = proportion * 100)  # add a column for percent
```

cut	n	proportion	percent
Fair	1610	0.02984798	2.984798
Good	4906	0.09095291	9.095291
Very Good	12082	0.22398962	22.398962
Premium	13791	0.25567297	25.567297
Ideal	21551	0.39953652	39.953652


```
In [54]: # create data with count of each cut
         # create a bar graph with one bar, filled by cut (width 1, outline white to look nice)
         # make it a polar chart
         # remove axes and background
         diamonds %>%
           count(cut) %>% # create data with count of each cut
          ggplot(aes(x = "", y = n, fill = cut)) +
           geom_bar(stat = "identity", width = 1, color = "white") +
           coord_polar("y") +
           theme(axis.line=element blank().axis.text.x=element blank().
                   axis.text.y=element_blank(),axis.ticks=element_blank(),
                   axis.title.x=element_blank(),
                   axis.title.v=element blank().
                   panel.background=element_blank(),
                   panel.grid.major=element_blank(),
                   panel.grid.minor=element blank())
```


Variation with one variable: Numeric

- Sometimes integer variables can be treated as categorical
- What is the distribution of values?
- Which values are typical? Uncommon? Missing?
 - Why? Is this expected?
- Summarize: mean, std. Dev, ...
- Visualize: histogram, box plot

Variation with one variable: Numeric

```
In [60]: diamonds %>%
    summarize(mean = mean(carat), standard_dev = sd(carat)) %>% # compute statistics
    mutate(name = "carat") %>% # add the name column
    select(name, mean, standard_dev) # rearrange order
```

name	mean	standard_dev
carat	0.7979397	0.4740112

Computed variables

width

width of boxplot

ymin

lower whisker = smallest observation greater than or equal to lower hinge - 1.5 * IQR

lower

lower hinge, 25% quantile

middle

median, 50% quantile

upper

upper hinge, 75% quantile

ymax

upper whisker = largest observation less than or equal to upper hinge + 1.5 * IQR

Covariation

- How are different variables related?
- Numeric vs. Numeric
 - Visualize: 2D scatter plot
 - Vs. Categorical: facets, scatter plot aesthetics
- Numeric vs. Categorical
 - Numeric variation tools by category
- Categorical vs. Categorical
 - Summarize: counts by category
 - Visualize: fancy bar graph, cross tables

Numeric vs. Numeric

```
In [87]: storms %>%
    ggplot(aes(x = wind, y = pressure)) +
    geom_point() +
    geom_jitter() # jitter b/c of integer rounding of data
```


Numeric vs. Numeric

```
In [88]: storms %>%
    ggplot(aes(x = wind, y = pressure)) +
    geom_bin2d()
```

2D Histogram (heatmap)

Numeric vs. Numeric vs. Categorical

In [90]: storms %>%
 ggplot(aes(x = wind, y = pressure)) +
 geom_point() +
 geom_jitter() +
 facet_wrap(~ year)

Year (discrete) can be treated as numeric or categorical

Numeric vs. Numeric vs. Categorical

```
ggplot(aes(x = wind, y = pressure, color = status)) +
geom point() +
geom_jitter()
                                                                      status
                                                                       hurricane
                                                                          tropical depression

    tropical storm

  920 -
                                                120
                                  wind
```

```
In [94]: diamonds %>%
    group_by(cut) %>%
    summarize(mean = mean(carat), standard_dev = sd(carat))
```

cut	mean	standard_dev
Fair	1.0461366	0.5164043
Good	0.8491847	0.4540544
Very Good	0.8063814	0.4594354
Premium	0.8919549	0.5152616
Ideal	0.7028370	0.4328763

Multiple histograms

```
In [99]: diamonds %>%
    ggplot(aes(x = cut, y = carat)) +
    geom_boxplot()
                                                      Good
                                                                         Very Good
                                                                                                Premium
                                                                                                                       Ideal
                                                                            cut
```

```
3 -
      carat
                                        Ideal
                  Good
                         Very Good
                                Premium
```

Categorical vs. Categorical

Categorical vs. Categorical

Categorical vs. Categorical

Missing and Uncommon values

- Questions:
 - What? Why?
- Strategies
 - Inspect outliers more closely
 - Remove outliers
 - Turn outliers into Missing Values
 - Do nothing
- Advanced
 - Replace missing values with the mean/mode/median
 - Replace missing values with predictions based on other variables

Summary

- One variable analysis
 - Numeric: Histogram, boxplot, mean, variation
 - Categorical: Counts, bar graph
 - Observe typical vs. uncommon values
- Multivariate analysis
 - Numeric vs. Numeric: scatter plot, heatmap (put into bins and treat as categorical or add aesthetics for other categorical variables)
 - Numeric vs. Categorical: numeric analysis by group
 - Categorical vs. Categorical: cross table, fancy bar graphs