Apuntes de Grafos

Paco Mora Manuel Franco

28 de octubre de 2021

CAPÍTULO 1

Tema 3. Árboles

Definición 1.0.1. Diremos que un grafo G = (V, E) es un árbol si es conexo y no tiene ciclos. Un árbol generador de un grafo G = (V, E) es un subgrafo parcial conexo y sin ciclos. Un bosque es un grafo G = (V, E) sin ciclos.

Definición 1.0.2. En un árbol, los nodos con grado de incidencia 1 se denominan hojas.

Teorema 1. Teorema de caracterización de árboles Sea G = (V, E). Son equivalentes:

- lacktriangledown G es conexo y sin ciclos
- Entre cada par de vértices distintos de V, existe una única cadena.
- \blacksquare G es conexo y m=n-1
- G no contiene ciclos y m = n 1
- lacksquare G está minimalmente conectado
- G no contiene ciclos y su añadimos una arista entre dos vértices no adyacentes cualesquiera de V, el grafo que se obtiene contiene un único ciclo.

Demostración

 $1 \implies 2$

G es conexo sin nodos $\implies \forall u \neq v \exists !$ cadena u v. Existe una cadena por ser conexo, la yuxtaposición de dos cadenas diferentes u v, Gcontendría al menos un ciclo. $2 \implies 3$

Suponemos que existe una única cadena entre cada par de vértices u, v. Como existe una cadena entre cada par de vértices, G es conexo. Veamos que m = n - 1. Recordemos una proposición que decía:

"Si G es conexo $m \geq n-1$ "

Veamos la igualdad ahora por inducción sobre el número de nodos, el caso n=1,2 es directo. Si n>2, eliminamos una arista cualquiera del grafo: e=(u,v). Dado que esa cadena (u,(u,v),v) era la única que conectaba u,v, ahora estos vértices están en componentes conexas distintas, con n_1,n_2 nodos y m_1,m_2 aristas respectivamente, que siguen cumpliendo la hipótesis de inducción, luego $m_1=n_1-1$

y
$$m_2 = n_2 - 1$$
. En G , $n = n_1 + n_2 = m_1 + 1 + m_2 + 1 = (m_1 + m_2 + 1) + 1 = m + 1$
3 \implies 4

G conexo y $m = n - 1 \implies G$ no contiene ciclos y m = n - 1

Supongamos que G contiene un ciclo y retiráramos una arista cualquiera e no desconectaría el grafo y tendría un grafo conexo con n nodos y (n-1)-1 aristas, por la proposición que hemos recordado antes, G no sería conexo, lo que contradice (3)

G no tiene ciclos y $m=n-1 \implies G$ está minimalmente conectado. Por la proposición que hemos recordado antes, basta demostrar que G es conexo.

Supongamos que G contiene s componentes conexas : $(V_1, E_1), ..., (V_s, E_s)$ con n_i nodos y m_i aristas, tengo ahora que G es acíclico, por lo que cada co es acíclica y conexa por lo que cumple 1, y por tanto 3, y por tanto cada $m_i = n_i - 1$

(3)
$$\implies m_i = ni - 1 \forall i \ n = \sum_{i=1}^s n_i = \sum_{i=1}^s (m_i + 1) = \sum_{i=1}^s m_i + s = m + s$$

Como partiamos de que n = m + 1 y tenemos n = m + s, entonces s = 1 y hay solo una c^3 .

 $5 \implies 6$

Teorema 2. Algoritmo de Kruskal

Paso 1

Ordenar las aristas de E en orden ascendente de su peso:

$$V = \{v_1, ..., v_n\}, T^* = (V, \emptyset)$$

$$E := \{e_1, ..., e_m\} : \ \updownarrow \leq \updownarrow (e_i + 1) \forall i < m$$

Paso 2

 $A\tilde{n}adir n-1$ aristas a T^* succesivamente (en el orden de sus pesos) sin que se formen ciclos.

Teorema 3. Algoritmo de Prim

Paso 1

Elegir un vértice $r \in V$ y hacer $V_1 = \{r\}$, $V_2 = V \setminus \{r\}$.

Paso 2

Añadir al árbol la arista de menor peso de $w(V_1)$, digamos (v_1, v_2) con $v_1 \in V_1$ y $v_2 \in V_2$. Añadir v_2 a V_1 y borrar v_2 de V_2 .

Paso 3

 $Si |V_1| = n \ parar. \ Si \ no, \ volver \ al \ Paso \ 2.$

1.1 - Problemas de optimización sobre grafos

Ejercicio 1. El problema del árbol generador del peso mínimo

 $x_e = 1$ si la arista e pertenece al árbol $\forall e \in E$

$$\min \sum_{e \in E} l_e x_e$$

$$\begin{cases} s.a. & x_e \in \{0, 1\} \forall e \in E \\ \sum_{e \in E} x_e = n - 1 \end{cases}$$

$$\sum_{e \in E(V^3)} x_e \le 2 \qquad \forall V^3 \subset V \qquad |V^3| = 3$$

$$\sum_{e \in E(V^4)} x_e \le 3 \qquad \forall V^4 \subset V \qquad |V^4| = 4$$

$$\vdots$$

$$\sum_{e \in E(S)} x_e \le |S| - 1 \qquad \forall S \subset V \qquad 3 \le |S| \le n - 1$$

Haremos ahora la llamada formulación MTZ, que utiliza "una especie de árbol dirigido" comenzamos definiendo las variables:

 $u_i = algo parecido al nivel del nodo i en la arborescencia$

$$x_{ij} = \begin{cases} 1 & \text{si } i \text{ es el predecesor inmediato de } j \text{ en el árbol con raíz en 1} \\ 0 & \text{oc} \end{cases}$$

$$\begin{cases} min & \sum_{i} \sum_{j=(i,j) \in E} l_{ij} x_{ij} \\ s.a. & x_{ij} \in \{0,1\} \\ & \sum_{i} x_{ij} = 1 \\ & x_{ij} + x_{ji} \le 1 \\ & u_i \in \mathbb{Z}^+ \\ & u_1 = 0 \\ & u_j \ge u_i + 1 - M(1 - x_{ij}) \quad \forall i, j : (i,j) \in E \end{cases}$$

Podemos cambiar la M por n-1 ya que $u_j \leq n-1$ $\forall j$, creando una mejor formulación del problema.

Ejercicio 2. El problema del camino más corto entre dos vértices s y j

Usaremos longitudes no negativas, y sea $x_{ij}=1$ si el camino atraviesa el nodo i y a continuación

$$\begin{cases} &Min \quad \sum\limits_{i \in V} \sum\limits_{j \in V: (i,j) \in E} l_{ij}x_{ij} \\ &s.a. \quad x_{ij} \in \{0,1\} \qquad \forall i,j: (i,j) \in E \end{cases} \\ &\sum\limits_{j: (j,s) \in E} x_{sj} = 1 \\ &x_{js} = 0 \qquad \forall j: (j,s) \in E \end{cases} \\ &\sum\limits_{j: (j,t) \in E} x_{jt} = 1 \\ &x_{tj} = 0 \qquad \forall j: (j,t) \in E \\ &\sum\limits_{i: (i,j) \in E} x_{ij} = \sum\limits_{i: (i,j) \in E} x_{ji} \qquad \forall j \neq s,t \quad \textit{Para todo nodo por el que entres, sales} \end{cases}$$

$$Podemos \ \textit{ver que la tercera y la cuarta restricción no son necesarias ya que se obtienen de las otro$$

Podemos ver que la tercera y la cuarta restricción no son necesarias ya que se obtienen de las otras.

Veamos ahora otra formulación, si tenemos la estructura de árbol con raíz en s que contiene los caminos más cortos, supongamos que tenemos que enviar canicas desde la raíz de forma que llegue una a cada nodo. Las variables serán las canicas que pasan por cada arista.

> $x_{ij} = n^{o}$ de items (canicas) que circulan desde i hasta $j \equiv$ $\equiv n^{\varrho}$ de caminos más cortos desde s=1 que contienen el subcamino i,(i,j),j

$$\begin{cases} min & \sum_{i} \sum_{j:(i,j) \in E} l_{ij} x_{ij} \\ s.a. & \sum_{j:(i,j) \in E} x_{1j} = n - 1 \\ & \sum_{j:(i,j)} x_{ij} = \sum_{j:(j,i) \in E} x_{ji} - 1 & \forall i \neq 1 \\ & x_{ij}, x_{ji} \in \mathbb{Z}^+ & \forall (i,j) \in Ei < j \end{cases}$$

Vamos a modificar esta formulación un poco para obtener otra equivalente que tendrá una matriz de restricciones totalmente unimodular.

La restricción 1 la podemos intercambiar por $\sum_j x_{1j} - x_{j_1} = n - 1$, entonces esta restricción

 $R_1 = -\sum_{i=2}^n R_i$, con lo que la podemos eliminar. Ahora, por un razonamiento análogo al visto en teoría para la matriz de incidencia del grafo bipartito, A es TU y, como b es entero, podemos eliminar la restricción de integridad. Es equivalente solucionar su problema dual:

$$\begin{cases}
Max & \sum_{j \neq 1} d_j \\
s.a. & d_j \leq l_{1j} & \forall j : (1,j) \in E \\
d_j - d_i \leq l_{ij} & \forall i, \forall j \neq 1 : (i,j) \in E
\end{cases}$$

CAPÍTULO 2

Caminos más cortos. Recorridos por artistas y vértices

Demostración

Si hubiera un camino más corto P_1 entre v_i y v_j que el subcamino P_2 entre v_i, v_j , reemplazando P_2 por P_1 obtenemos o bien 1. o 2.:

- 1. Un camino más corto que el camino más corto con lo que tenemos una contradicción.
- 2. Un paseo que contiene ciclos, la eliminación de estos ciclos nos deja un camino más corto que el camino más corto, de nuevo una contradicción.

Demostración

 \leftarrow

Supongamos $d_j > d_i + l_{ij}$, entonces, podemos crear un camino más corto a j yuxtaponiendo el camino a i y la arista que une i con j si no se forman ciclos, si se formaran, basta con quitarlo y aún así tendríamos un camino más corto a j. En ambos casos tenemos una contradicción.

 \Longrightarrow

Sea $j \in V$ cualquiera, sea P un camino cualquiera de s a j, ¿se cumple que $l(p) \ge d_j$? Si $P = (s = i_0, i_1, ..., i_q = j)$ tenemos que:

$$d_{i_1} - d_{i_0} \le l_{i_0 i_1} \quad d_{i_2} - d_{i_1} \le l_{i_1 i_2} \quad \dots$$

Sumando todo obtenemos que $d_j - \underbrace{d_s}_0 = d_{i_q} - d_{i_0} \le \sum_k l_{i_k i_{k+1}} = l(P)$

Demostración

Sea P camino entre s y j, l, $l(p) \ge d_j$? De este camino $(v_s, v_a, v_b, ..., v_j)$ sabemos que:

- $\begin{array}{ll} \bullet & v_s \not\in V' \\ \bullet & v_j \in V' \end{array}$

Si P_2 es el subcamino desde s hasta el primer nodo de V' con último coste $(v_{i_1}, v_{i_2}) \in w(V')$, entonces:

$$l(P) \geq l(P_2) = \underbrace{l(P_1)}_{\text{longitud del subcamino que une } s \text{ y } v_{ij}} + l_{i_1i_2} \geq d_{i_1} + l_{i_1}l_{i_2} \geq_{(c)} d_{i_2} \geq d_{j_1}$$

Demostración

Como G es conexo, $|g(v)| \ge 1 \forall v$, el paseo no repite aristas y atraviesa cada nodo añadiéndole grado 2 hasta cerrarse por lo que todos los nodos tienen grado par.

Iniciamos un tour en $v_1, (v_1, v_2)$ (la arista existe porque el grafo tiene que ser conexo). Como $g(v_2) = \dot{2}, \ \exists v_3, \ (v_2, v_3) \in E,$ así podemos construir la sucesión $(v_1, v_2), (v_2, v_3), (v_3, v_4), ..., (v_i, v_k)$. Solo se detiene el proceso si se encuentra la arista v_t, v_1 y no existen más aristas incidentes en v_1 que no estén en el paseo. En este caso pueden haber pasado dos cosas:

- 1. Si ya hemos recorrido todas las aristas hemos terminado.
- 2. No hemos recorrido todas las aristas. Como G es conexo, \exists arista que no está en el paseo (v_s, v_x) con v_s en el paseo. En este caso, podemos empezar un nuevo paseo empezando en v_s formado por la concatenación del que hemos formado antes reordenado para que empiece y acabe en el v_s y el que se genera de la misma forma que antes pero comenzando en (v_s, v_x) . Iteramos hasta agotar las aristas