Twierdzenie 1. (o lokalnej odwracalności)

Niech

$$f: E \to E, E - otwarty, E \subset \mathbb{R}^n, f \in \mathcal{C}^1(E),$$

 $\exists_{a,b \in E} : f(a) = b \ i \ f'(a) - odwracalna \ (det(f'(a)) \neq 0),$

to wtedy:

1.
$$\exists$$
 \exists U, V - otwarte, f - bijekcja między U, V
2. \exists \forall $f(g(x)) = x$,
3. $g \in \mathcal{C}^1(V)$.

Uwaga: dowód składa się z trzech części:

- \bullet Pokażemy, że $\mathop{\exists}_{UV}:f$ bijekcja na U,V
- \bullet Pokażemy, że U, V otwarte
- Pokażemy, że $\underset{g:V \to U}{\exists}, g$ różniczkowalna na Vi ciągła.

Przykład 1.
$$f(x,y) = \begin{bmatrix} e^x \cos y \\ e^x \sin y \end{bmatrix}, f'(x,y) = \begin{bmatrix} e^x \cos y & -e^x \sin y \\ e^x \sin y & e^x \cos y \end{bmatrix}$$

 $det(f'(x,y)) = e^{2x} \neq 0, \ ale \ f(x,y) = f(x,y+2\pi)$ (czyli funkcja jest okresowa

Dowód. Część I

Szukamy U, V : f - bijekcja miedzy U i V.

Skoro f'(a) - odwracalne, to znaczy, że $\exists (f'(a))^{-1}$, zatem

$$\exists : 2\lambda \| (f'(a))^{-1} \| = 1.$$

Wiemy, że f'(x) - ciągła w x = a, czyli

$$\forall .\exists .\forall .d(x,a) < \delta \implies ||f'(x) - f(a)|| < \varepsilon$$

Połóżmy $\varepsilon = \lambda$.

Oznacza to, że

$$\exists \forall x \in K(a, \delta_{\lambda}) \implies ||f'(x) - f'(a)|| < \lambda$$

Więc $U=K(a,\delta_{\lambda}),$ niech V=f(U). Chcemy pokazać, że f - bijekcja między U i V.

Wprowadźmy funkcję pomocniczą:

$$\varphi_{y}(x) = x + [f'(a)]^{-1}(y - f(x)), x, y \in E$$

Pytanie 1. Co by było gdyby $\varphi_y(x)$ posiadała punkt stały? (jakie własności x by z tego faktu wynikały)

 $dla \ x \in U, y \in V, (y \in f(a))?$

Z zasady Banacha wiemy, że odwzorowanie zwężające ma dokładnie jeden punkt stały, czyli

$$\forall \underset{y \in V}{\exists} : f(x) = y$$

Uwaga: o f - z taką własnością mówimy, że jest 1-1 na U. Policzmy $\varphi_y'(x)$

$$\varphi_y'(x) = \mathbb{I} + (f'(a))^{-1}(-f'(x)) = (f'(a))^{-1}(f'(a) - f'(x)),$$

więc

$$\|\varphi_y'(x)\| = \|f'(a)^{-1}(f'(a) - f'(x))\| \le$$

$$\le \|(f'(a)^{-1})\| \|f'(a) - f'(x)\| \le$$

$$\le \frac{1}{x \in U} \frac{1}{2\lambda} \lambda = \frac{1}{2}.$$

Pamiętamy, że jeżeli $\frac{\exists}{M}\|\varphi_y'(x)\|\leqslant M,$ to $\underset{x,y}{\forall}\|\varphi(x)-\varphi(y)\|< M\|x-y\|$

Zatem skoro $\|\varphi_u'(x)\| \leqslant \frac{1}{2}$, to

$$\forall _{x_1, x_2 \in U} \|\varphi_y(x_1) - \varphi_y(x_2)\| \leqslant \frac{1}{2} \|x_1 - x_2\|,$$

więc φ - zwężający na U, więc posiada dokładnie jeden punkt stały $\bigvee_{y \in V}$. Zatem f - bijekcja między U i V. \square

Część II

Zbiór U - otwarty (bo tak go zdefiniowaliśmy) $U = K(a, \delta_1)$, więc

$$\underset{x_0 \in U}{\exists} \quad \exists K(x_0, r) \subset U$$

lub równoważnie

$$||x - x_0|| \le r \land x \in U.$$

Chcemy pokazać, że dla $y_0 = f(x_0) \quad \exists \quad K(y_0, \lambda r) \subset V$, czyli że V - otwarty.

Weźmy $y \in K(y_0, \lambda r)$. Zauważmy, że $\varphi_{y_1}(x_1)$ - zwężające, jeżeli $y_1 \in V, x_1 \in U$ Jeżeli pokażemy, że dla $\|y - y_0\| < \lambda r, \varphi_y(x)$ - zwężająca na $K(x_0, r) \subset U$, to będziemy wiedzieli, że $\|y - y_0\| < \lambda r$ oraz $y \in V \iff K(y_0, \lambda r) \subset V$

Žeby pokazać, że $\varphi_y(x)$ - zwężające na $K(x_0,r)$, zbadamy tę wielkośc dla $x \in K(x_0,r)$. $\|\varphi_y(x) - x_0\|$, chcielibyśmy, aby $\|\varphi_y(x) - x_0\| \le r$ i $\|y - y_0\| < \lambda r$, ale z drugiej strony

$$\|\varphi_{u}(x) - x_{0}\| = \|\varphi_{u}(x) - \varphi_{u}(x_{0}) + \varphi_{u}(x_{0}) - x_{0}\| \le \|\varphi_{u}(x) - \varphi_{u}(x_{0})\| + \|\varphi y(x_{0} - x_{0})\|.$$

Ale

$$\|\varphi_y(x_0) - x_0\| \le \|(f'(a))^{-1}\| \|y - y_0\| \le \frac{1}{2\lambda} \lambda r = \frac{r}{2},$$

więc

$$\|\varphi_y(x) - x_0\| \leqslant r,$$

jeżeli

$$||y - y_0|| < \lambda r, ||x - x_0|| \le r.$$

"../img/"fig_18.png

Rysunek 1: Trochę jak listy do św. Mikołaja (??)

Stąd wiemy , że punkt stały dla $\varphi_y(x):x\in K(x_0,r)$ należy do $K(x_0,r)$ i $\|y-y_0\|<\lambda r$, zatem y=f(x), czyli V - otwarty.

Część III

Szukamy $g: V \to U$

Skoro f - bijekcja między U i V, to znaczy, że $\underset{g:V\to U}{\exists} f(g(x)) = x \ \forall x \in V$.

Chcemy pokazać, że g(x) - różniczkowalne. Wiemy, że f - różniczkowalna w $x \in U,$ czyli

$$\frac{f(x+h) - f(x) - f'(x)h}{\|h\|} \stackrel{h \to 0}{\to} 0, x, x+h \in V$$

Jeżeli pokażemy, że

$$\frac{g(y+k) - g(y) - [f'(x)]^{-1}k}{\|k\|} \stackrel{k \to 0}{\to} 0$$
 (1)

to będziemy wiedzieli, że:

1. g - różniczkowalne dla $y \in V$

2. $g'(y) = [f'(x)]^{-1}$.

W tym celu pokażemy, że:

"../img/"fig_19.png

Rysunek 2: Nie ok.

1. $(||k|| \to 0) \implies (||h|| \to 0)$

2.
$$[f'(x)]^{-1}$$
 istnieje dla $x \in U$. (na razie wiemy, że $(f'(a))^{-1}$ istnieje) $Ad\ 1$. Zauważmy, że

$$\varphi_y(x+h) - \varphi_y(x) = x+h + [f'(a)]^{-1}(y-f(x+h)) - x - [f'(a)]^{-1}(y-f(x)) =$$

$$= h + [f'(a)]^{-1}(y-f(x+h) - y + f(x)) = h - (f'(a))^{-1}(f(x+h) - f(x)),$$

$$czyli\|\varphi_y(x+h) - \varphi_y(x)\| = \|h - (f'(a))^{-1}(k)\| \le \frac{1}{2}\|h\|,$$

zatem
$$||h - (f'(a))^{-1}k|| \le \frac{1}{2}||h|| \implies ||k|| \ge ||h||, k = f(x+h) - f(x)$$

Stad ostatecznie mamy: $\frac{g(y+k)-g(y)-[f'(x)]^{-1}k}{\|k\|} = [f'(x)]^{-1} \frac{hf'(x)-f(x+h)+f(x)}{\|k\|} \leqslant \frac{[f'(x)]^{-1}}{\lambda} \frac{hf'(x)-f(x+h)+f(x)}{\|k\|} = \frac{1}{\lambda}$ 0, o ile $\frac{\exists}{\|f'(x)\|^{-1}}$

Pytanie 2. skąd wiadomo, że $(f'(x))^{-1}$?

Wiemy, że f'(a) jest odwracalna, więc $(f'(a))^{-1}$ istnieje, $a \in U$. Chcemy pokazać, że f'(x) jest odwracalna dla $x \in U$. Oznacza to, że

$$0 < ||f'(x)y||$$
dla $y \neq 0, x \in U$.

Pamiętamy, że $2\lambda \| (f'(a))^{-1} = 1$ oraz U - taka, że

$$\bigvee_{x \in U} ||f'(x) - f'(a)|| < \lambda.$$

"../img/"fig_20.png

Rysunek 3

Zatem

$$0 \leqslant \frac{1}{\|(f'(a))^{-1}\|} \|y\| = \|(f'(x) + f'(a) - f'(x))y\| \leqslant \|f'(a) - f'(x)\| \|y\| + \|f'(x)\| \|y\|.$$

Dalej
$$2\lambda\|y\|\leqslant \lambda\|y\|+\|f'(x)y\|$$
dla $x\in U$ 0 $\leqslant \lambda\|y\|\leqslant \|f'(x)y\|$ dla $y=0$ Czyli

$$\underset{x \in U}{\forall} \|f'(x)y\| > 0.$$