Électromagnétisme S07 Circulation et rotationnel d'un champ vectoriel II

Iannis Aliferis

Université Nice Sophia Antipolis

Le rotationnel du champ électrostatique	2
Champ électrostatique: circulation vers rotationnel	3
Lignes du champ électrostatique	
Pourquoi « rotationnel »?	5
Pourquoi « rotationnel »?	6
Formule du rotationnel en coordonnées cartésiennes	7
Circulation par surface	8
Décomposer la courbe fermée	9
Approximation surface élémentaire	
Composante x du rotationnel	
Composante x du rotationnel	
Composante y du rotationnel	
Composante y du rotationnel	14
Composante z du rotationnel	
Composante z du rotationnel	
Composantes du rotationnel	17
Formule du rotationnel en coordonnées cylindriques et sphériques	18
Par un développement similaire à celui en cartésiennes	
Théorème de Helmholtz	20
Sources et tourbillons	21
Théorème de la moyenne	22
Intégrale = valeur moyenne × intervalle	23
Intégrale = valeur moyenne × intervalle	

2

Le rotationnel du champ électrostatique

Champ électrostatique : circulation vers rotationnel

[circulation champ électrostatique] $\oint_{\Gamma} ec{m{E}}(ec{m{r}}) \cdot \hat{m{t}} \, \mathrm{d}l = 0$

lacktriangle La valeur moyenne de E_{tan} le long d'une courbe fermée est nulle

$$[\text{th\'eor\`eme rotationnel}] \quad \oint_{\Gamma} \vec{\boldsymbol{E}}(\vec{\boldsymbol{r}}) \cdot \hat{\boldsymbol{t}} \, \mathrm{d}l = \int_{S} \overrightarrow{\mathrm{rot}} \, \vec{\boldsymbol{E}}(\vec{\boldsymbol{r}}) \cdot \hat{\boldsymbol{n}} \, \mathrm{d}S$$

▼ Rotationnel du champ électrostatique :

$$\overrightarrow{\mathsf{rot}}\, \vec{E}(ec{r}) = ec{0}$$

lacktriangledown Circulation de $ec{E}(ec{r})=$ différence de [potentiel] départ—arrivée :

$$\vec{E}(\vec{r}\,) = -\overrightarrow{\mathsf{grad}}\,V(\vec{r}\,) \quad \text{[potential relations locales]}$$
 et $\ \overrightarrow{\mathsf{rot}}\,\vec{E}(\vec{r}\,) = \vec{0} \quad \text{sont liés}$

 $\blacktriangledown \ \, \overrightarrow{\mathsf{rot}}\, \vec{\boldsymbol{E}}(\vec{\boldsymbol{r}}) = \overrightarrow{\mathsf{rot}}(-\overrightarrow{\mathsf{grad}}\, V(\vec{\boldsymbol{r}}\,)) = -\overrightarrow{\mathsf{rot}}(\overrightarrow{\mathsf{grad}}\, V(\vec{\boldsymbol{r}}\,)) = \vec{\boldsymbol{0}}$

Lignes du champ électrostatique

$$\oint_{\Gamma} \vec{E}(\vec{r}\,) \cdot \hat{t} \, \mathrm{d}l = 0 : E_{\mathsf{tan moy}} \text{ nulle sur une courbe fermée}$$

$$\overrightarrow{\mathsf{rot}} \, \vec{E}(\vec{r}\,) = \vec{0} : \mathsf{pas} \mathsf{ de tourbillons}$$

5

Pourquoi « rotationnel »?

- lacktriangledown $\overrightarrow{{
 m rot}}\, \vec{A}(ec{r}) \propto$ circulation maximale sur une courbe élémentaire fermée autour du point $ec{r}$
- lacktriangledown [circulation] = valeur moyenne $A_{ an} imes ext{longueur courbe}$

$$\vec{A} \propto rac{
ho}{R_0^2}$$
, $ho < R_0$
 $\vec{A} \propto rac{1}{
ho}$, $ho > R_0$

 \overrightarrow{rot} : à un point

circulation : sur une courbe lien : [théorème rotationnel]

▼ Besoin d'une formule! [rotationnel en cartésiennes]

Formule du rotationnel en coordonnées cartésiennes

Circulation par surface

▼ [rotationnel]

$$\hat{m{n}}\cdot\overrightarrow{{f rot}}\, \vec{m{A}} = \lim_{\Delta S o 0} rac{{f circulation\ courbe\ \'el\'ementaire\ ferm\'ee}}{{f aire\ surface\ plane\ entour\'ee}}$$

- ▼ Système de coordonnées cartésiennes
- lacktriangle Courbes élémentaires autour de (x,y,z) :

Ö

Approximation surface élémentaire

- lacktriangledown Champ $ec{A}(ec{r})$ constant sur un côté, égal à $ec{A}(ec{r}_{ ext{centre}})$
- ▼ Circulation : $\int_{\Gamma_i} \vec{\boldsymbol{A}}(\vec{\boldsymbol{r}}) \cdot \hat{\boldsymbol{t}}_{\boldsymbol{i}} \, \mathrm{d}l = \int_{\Gamma_i} A_{\mathsf{tan}}(\vec{\boldsymbol{r}}) \, \mathrm{d}l \approx A_{\mathsf{tan}}(\vec{\boldsymbol{r}}_{\mathsf{centre}\ \boldsymbol{i}}) \times \mathsf{longueur}\ \Gamma_i$

Composante x du rotationnel

- lacklash Γ : le bord de S dont $\hat{m{n}} = \hat{m{e}}_{m{x}}$, aire : $\Delta y \Delta z$
- lackless $\Gamma_{12}: \hat{\boldsymbol{t}}_{12} = \hat{\boldsymbol{e}}_{\boldsymbol{y}}$, longueur Δy , $A_{\mathsf{tan}}(\vec{\boldsymbol{r}}_{\mathsf{centre}\ 12}) = A_{\boldsymbol{y}}(x,y,z-\frac{\Delta z}{2})$
- lackless $\Gamma_{23}: \hat{m{t}}_{23} = \hat{m{e}}_{m{z}}$, longueur Δz , $A_{\mathsf{tan}}(\vec{m{r}}_{\mathsf{centre}} \ {}_{23}) = A_z(x,y+\frac{\Delta y}{2},z)$
- lacklash $\Gamma_{34}:\hat{m{t}}_{34}=-\hat{m{e}}_{m{y}}$, longueur Δy , $A_{\mathrm{tan}}(\vec{m{r}}_{\mathrm{centre}~34})=-A_{m{y}}(x,y,z+\frac{\Delta z}{2})$
- $\label{eq:linear_tau_sign} \P \ \Gamma_{41}: \hat{\boldsymbol{t}}_{41} = -\hat{\boldsymbol{e}}_{\boldsymbol{z}}, \ \text{longueur} \ \Delta z, \ A_{\text{tan}}(\vec{\boldsymbol{r}}_{\text{centre 41}}) = -A_z(x,y-\frac{\Delta y}{2},z)$

11

Composante x du rotationnel

chemin ij	\hat{t}_{ij}	centre	longueur	circulation
12	\hat{e}_y	$(x,y,z-\frac{\Delta z}{2})$	Δy	$A_y(x, y, z - \frac{\Delta z}{2})\Delta y$
23	$\boldsymbol{\hat{e}_z}$	$(x, y + \frac{\Delta y}{2}, z)$	Δz	$A_z(x, y + \frac{\Delta y}{2}, z)\Delta z$
34	$-\hat{e}_y$	$(x,y,z+\frac{\Delta z}{2})$	Δy	$-A_y(x,y,z+\frac{\Delta z}{2})\Delta y$
41	$-\hat{m{e}}_{m{z}}$	$(x, y - \frac{\Delta y}{2}, z)$	Δz	$-A_z(x, y - \frac{\Delta y}{2}, z)\Delta z$

$$\begin{split} \hat{\boldsymbol{e}}_{\boldsymbol{x}} \cdot \overrightarrow{\mathsf{rot}} \, \vec{\boldsymbol{A}}(\vec{\boldsymbol{r}}) &= \lim_{\Delta y, \Delta z \to 0} \left[\frac{A_z(x,y + \frac{\Delta y}{2},z) - A_z(x,y - \frac{\Delta y}{2},z)}{\Delta y} \right. \\ &\left. - \frac{A_y(x,y,z + \frac{\Delta z}{2}) - A_y(x,y,z - \frac{\Delta z}{2})}{\Delta z} \right] \\ &= \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} = \left. \overrightarrow{\mathsf{rot}} \, \vec{\boldsymbol{A}}(\vec{\boldsymbol{r}}) \right|_x \end{split}$$

Composante y du rotationnel

- lacklash Γ : le bord de S dont $\hat{\boldsymbol{n}} = \hat{\boldsymbol{e}}_{\boldsymbol{y}}$, aire : $\Delta x \Delta z$
- lackless $\Gamma_{12}: \hat{\boldsymbol{t}}_{12} = -\hat{\boldsymbol{e}}_{\boldsymbol{x}}$, longueur Δx , $A_{\mathsf{tan}}(\vec{\boldsymbol{r}}_{\mathsf{centre}\ 12}) = -A_{\boldsymbol{x}}(x,y,z-\frac{\Delta z}{2})$
- $\blacktriangledown \ \Gamma_{23}: \hat{\boldsymbol{t}}_{23} = \hat{\boldsymbol{e}}_{\boldsymbol{z}}, \ \text{longueur} \ \Delta z, \ A_{\text{tan}}(\vec{\boldsymbol{r}}_{\text{centre 23}}) = A_{\boldsymbol{z}}(x \frac{\Delta x}{2}, y, z)$
- ▼ $\Gamma_{34}: \hat{\boldsymbol{t}}_{34} = \hat{\boldsymbol{e}}_{\boldsymbol{x}}$, longueur Δx , $A_{\text{tan}}(\vec{\boldsymbol{r}}_{\text{centre 34}}) = A_x(x,y,z+\frac{\Delta z}{2})$ ▼ $\Gamma_{41}: \hat{\boldsymbol{t}}_{41} = -\hat{\boldsymbol{e}}_{\boldsymbol{z}}$, longueur Δz , $A_{\text{tan}}(\vec{\boldsymbol{r}}_{\text{centre 41}}) = -A_z(x+\frac{\Delta x}{2},y,z)$

Composante y du rotationnel

chemin ij	\hat{t}_{ij}	centre	longueur	circulation
12	$-\hat{m{e}}_{m{x}}$	$(x,y,z-\frac{\Delta z}{2})$	Δx	$-A_x(x,y,z-\frac{\Delta z}{2})\Delta x$
23	\hat{e}_{z}	$(x - \frac{\Delta x}{2}, y, z)$	Δz	$A_z(x-\frac{\Delta x}{2},y,z)\Delta z$
34	$\boldsymbol{\hat{e}_x}$	$(x,y,z+\frac{\Delta z}{2})$	Δx	$A_x(x,y,z+\frac{\Delta z}{2})\Delta x$
41	$-\hat{e}_z$	$(x + \frac{\Delta x}{2}, y, z)$	Δz	$-A_z(x+\frac{\Delta x}{2},y,z)\Delta z$

$$\hat{e}_{\boldsymbol{y}} \cdot \overrightarrow{\text{rot}} \, \vec{\boldsymbol{A}}(\vec{\boldsymbol{r}}) = \lim_{\Delta x, \Delta z \to 0} \left[\frac{A_x(x, y, z + \frac{\Delta z}{2}) - A_x(x, y, z - \frac{\Delta z}{2})}{\Delta z} - \frac{A_z(x + \frac{\Delta x}{2}, y, z) - A_z(x - \frac{\Delta x}{2}, y, z)}{\Delta x} \right]$$

$$= \frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} = \overrightarrow{\text{rot}} \, \vec{\boldsymbol{A}}(\vec{\boldsymbol{r}}) \Big|_{y}$$

Composante z du rotationnel

- $\mathbf{\nabla} \Gamma$: le bord de S dont $\hat{\boldsymbol{n}} = \hat{\boldsymbol{e}}_{\boldsymbol{z}}$, aire : $\Delta x \Delta y$
- ightharpoonup $\Gamma_{12}: \hat{\boldsymbol{t}}_{12} = \hat{\boldsymbol{e}}_{\boldsymbol{y}}$, longueur Δy , $A_{\mathsf{tan}}(\vec{\boldsymbol{r}}_{\mathsf{centre}\ 12}) = A_{\boldsymbol{y}}(x + \frac{\Delta x}{2}, y, z)$
- ▼ $\Gamma_{23}: \hat{\boldsymbol{t}}_{23} = -\hat{\boldsymbol{e}}_{\boldsymbol{x}}$, longueur Δx , $A_{\text{tan}}(\vec{\boldsymbol{r}}_{\text{centre 23}}) = -A_x(x, y + \frac{\Delta y}{2}, z)$ ▼ $\Gamma_{34}: \hat{\boldsymbol{t}}_{34} = -\hat{\boldsymbol{e}}_{\boldsymbol{y}}$, longueur Δy , $A_{\text{tan}}(\vec{\boldsymbol{r}}_{\text{centre 34}}) = -A_y(x \frac{\Delta x}{2}, y, z)$
- lackless $\Gamma_{41}: \hat{\boldsymbol{t}}_{41} = \hat{\boldsymbol{e}}_{\boldsymbol{x}}$, longueur Δx , $A_{\text{tan}}(\vec{r}_{\text{centre 41}}) = A_{\boldsymbol{x}}(x, y \frac{\Delta y}{2}, z)$

Composante z du rotationnel

chemin ij	\hat{t}_{ij}	centre	longueur	circulation
12	\hat{e}_y	$(x + \frac{\Delta x}{2}, y, z)$	Δy	$A_y(x + \frac{\Delta x}{2}, y, z)\Delta y$ $-A_x(x, y + \frac{\Delta x}{2}, z)\Delta x$ $-A_y(x - \frac{\Delta x}{2}, y, z)\Delta y$
23	$-\hat{m{e}}_{m{x}}$	$(x, y + \frac{\Delta y}{2}, z)$	Δx	$-A_x(x, y + \frac{\Delta x}{2}, z)\Delta x$
34	$-\hat{m{e}}_{m{y}}$	$(x - \frac{\Delta x}{2}, y, z)$	Δy	$-A_y(x-\frac{\Delta x}{2},y,z)\Delta y$
41	\hat{e}_x	$(x, y - \frac{\Delta y}{2}, z)$	Δx	$A_x(x,y-\frac{\Delta y}{2},z)\Delta x$

$$\begin{split} \hat{\boldsymbol{e}}_{\boldsymbol{z}} \cdot \overrightarrow{\mathbf{rot}} \, \vec{\boldsymbol{A}}(\vec{\boldsymbol{r}}) &= \lim_{\Delta x, \Delta y \to 0} \left[\frac{A_y(x + \frac{\Delta x}{2}, y, z) - A_y(x - \frac{\Delta x}{2}, y, z)}{\Delta x} \right. \\ &\left. - \frac{A_x(x, y + \frac{\Delta y}{2}, z) - A_x(x, y - \frac{\Delta y}{2}, z)}{\Delta y} \right] \\ &= \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} = \left. \overrightarrow{\mathbf{rot}} \, \vec{\boldsymbol{A}}(\vec{\boldsymbol{r}}) \right|_z \end{split}$$

Composantes du rotationnel

$$\overrightarrow{rot} \vec{A} \Big|_{x} = \frac{\partial A_{z}}{\partial y} - \frac{\partial A_{y}}{\partial z}$$

$$\overrightarrow{rot} \vec{A} \Big|_{y} = \frac{\partial A_{x}}{\partial z} - \frac{\partial A_{z}}{\partial x}$$

$$\overrightarrow{rot} \vec{A} \Big|_{z} = \frac{\partial A_{y}}{\partial x} - \frac{\partial A_{x}}{\partial y}$$

$$\overrightarrow{rot} \vec{A} = \begin{vmatrix} \hat{e}_{x} & \hat{e}_{y} & \hat{e}_{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_{x} & A_{y} & A_{z} \end{vmatrix}$$
(2)

▼ Développer selon la première ligne

17

18

Formule du rotationnel en coordonnées cylindriques et sphériques

Par un développement similaire à celui en cartésiennes...

Développer les déterminants selon la première ligne

▼ Le rotationnel en coordonnées cylindriques

$$\overrightarrow{\mathrm{rot}}\, ec{A} = rac{1}{
ho} egin{array}{cccc} \hat{m{e}}_{m{
ho}} &
ho\hat{m{e}}_{m{\phi}} & \hat{m{e}}_{m{z}} \ rac{\partial}{\partial
ho} & rac{\partial}{\partial \phi} & rac{\partial}{\partial z} \ A_{
ho} &
ho A_{\phi} & A_{z} \end{array}$$

▼ Le rotationnel en coordonnées sphériques

$$\overrightarrow{rot} \, \overrightarrow{A} = \frac{1}{r^2 \sin \theta} \begin{vmatrix} \hat{e}_{r} & r \hat{e}_{\theta} & r \sin \theta \hat{e}_{\phi} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\ A_{r} & r A_{\theta} & r \sin \theta A_{\phi} \end{vmatrix}$$

Théorème de Helmholtz

e de Helmholtz

Sources et tourbillons

- ▼ Pourquoi étudier la divergence et le rotationnel?
- ▼ Pourquoi les équations « parlent » de div et de rot?
- ▼ Théorème de Helmholtz (1821-1894) : la divergence et le rotationnel déterminent le champ vectoriel
 - ► Dans l'espace à trois dimensions
 - ightharpoonup si on connaît les champs $\Phi(\vec{r})$ et $\vec{A}(\vec{r})$ partout
 - $lackbox{ iny et div } ec{m{F}}(ec{m{r}}) = \Phi(ec{m{r}}), \ \overrightarrow{\mathsf{rot}} \ ec{m{F}}(ec{m{r}}) = ec{m{A}}(ec{m{r}})$
 - ightharpoonup alors le champ $\vec{F}(\vec{r})$ est unique
 - ightharpoonup à condition que $\lim_{r\to\infty}F=0$
- ▼ Le théorème fondamental de l'analyse vectorielle
- ▼ [Divergence] : les sources du champ
- ▼ [Rotationnel] : les tourbillons du champ
- ▼ Un champ vectoriel « physique » est déterminé par ses sources et ses tourbillons

2

Théorème de la moyenne

22

Intégrale = valeur moyenne \times intervalle

lacktriangle À une dimension, fonction f(x) à valeurs réelles, continue sur [a,b]

il existe
$$c \in]a,b[$$
 tel que $\int_a^b f(x) \, \mathrm{d}x = f(c)(b-a)$

▼ Exemple : $f(x) = x^3 - 2x^2 + 1.75$, a = 1, b = 2

$$f(c) = 0.83$$

$Int\'egrale = valeur\ moyenne \times intervalle$

- ▼ À plusieurs dimensions (quand les fonctions « se comportent bien »)
- ▼ [Circulation] (1D, curviligne)

$$\int_{\Gamma} \vec{\boldsymbol{A}}(\vec{\boldsymbol{r}}) \cdot \hat{\boldsymbol{t}} \, \mathrm{d}l = \int_{\Gamma} A_{\mathsf{tan}}(\vec{\boldsymbol{r}}) \, \mathrm{d}l = A_{\mathsf{tan moy}} \times \mathsf{longueur} \; \mathsf{de} \; \Gamma$$

▼ [Flux] (2D)

$$\int_S \vec{\boldsymbol{A}}(\vec{\boldsymbol{r}}) \cdot \hat{\boldsymbol{n}} \; \mathrm{d}S = \int_S A_{\mathsf{nor}}(\vec{\boldsymbol{r}}) \, \mathrm{d}S = A_{\mathsf{nor moy}} \times \mathsf{aire de} \; S$$

▼ Intégrale de volume (3D)

$$\int_{\mathcal{V}} \rho(\vec{\boldsymbol{r}}\,)\,\mathrm{d}\mathcal{V} = \rho_{\mathsf{moy}} \times \mathsf{volume}\;\mathsf{de}\;\mathcal{V}$$

