Statistics 5350/7110 Forecasting

Lecture 11 ARMA Models

Professor Robert Stine

Admin Issues

- Questions, comments
 - Fall Break, so no class on Thursday this week.
- Assignments
 - Next one handed out next week.
 - There will be questions regarding STL.
- Quick review
 - Decomposition of time series
 - Seasonally adjusted data
 - Methods
 - Median polish
 - Generalized additive model (a little)
 - STL (iterative loess fits for trend and seasonal)

		Seasons	
	Time		
	7		
Y			

Text, §4.1-4.2

Definition 4.8

Today's Topics

- Have seen simplest cases
 - First-order autoregression

$$X_t = \phi_1 X_{t-1} + w_t, \quad |\phi_1| < 1$$

• Moving average, centered in time

$$X_t = \frac{w_{t+1} + w_t + w_{t-1}}{3}$$

- Generalize
 - The notation varies from source to source (particularly choice of signs)

$$X_{t} = \phi_{1}X_{t-1} + \dots + \phi_{p}X_{t-p} + w_{t} + \theta_{1}w_{t-1} + \dots + \theta_{q}w_{t-q}$$

- Covariances are key: If Gaussian, mean plus autocovariances are sufficient statistics
- Issues
 - Stationarity, identifiability, constraints
 - Backshift notation and polynomials
 - Covariance and correlation functions

(causality and invertibility)

Properties of the AR(1) model

- Restriction on the coefficient needed for stationarity (assume mean is zero, or $X_t = (x_t - \mu)$)

$$X_t = \phi_1 X_{t-1} + w_t, \quad |\phi_1| < 1$$

Backshift polynomial form

$$(1 - \phi_1 B) X_t = w_t$$

• Back-substitution or polynomial trick yields the infinite moving average representation

Definition 4.4

$$X_{t} = w_{t} + \phi_{1} w_{t-1} + \phi_{1}^{2} w_{t-1} + \dots + \phi_{1}^{s} w_{t-s} + \dots = \sum_{s=0}^{\infty} \phi_{1}^{s} w_{t-s}$$
 Causal

Variance

- Derive from assumption of stationarity or from moving average representation
- Assuming stationarity, take variance of expression for X_t

$$Var(X_t) = \phi_1^2 Var(X_{t-1}) + \sigma_w^2 = \frac{\sigma_w^2}{1 - \phi_1^2}$$

Autocorrelations of AR(1)

Autocovariances

- Assuming stationarity, multiply through equation by lags and take expectations
- We'll find $\gamma(h)$ for h = 0,1,2,..., and find the others by symmetry $\gamma(h)=\gamma(-h)$
- Equation from multiplying by Xt is a little different

$$\gamma_x(0) = \phi_1 \gamma_x(1) + \sigma_w^2$$

Multiplying by lags X_{t-1} and so forth are simpler since uncorrelated with w_t

$$\gamma_x(1) = \phi_1 \gamma_x(0)$$
 $\gamma_x(j) = \phi_1 \gamma_x(j-1), \quad j = 2,3,...$

Text derives from the moving average expression

Autocorrelations

• Since we know $\gamma(0)$, we have

$$\gamma(j) = \phi_1^j \gamma(0)$$

Hence autocorrelations decay geometrically

$$\rho(j) = \phi_1^j$$

Background

- Before considering general AR(p) case...
- Fundamental Theorem of Algebra
 - Every polynomial equation of degree k with complex number coefficients has k roots $r_1,...,r_k$ in the complex numbers (roots a.k.a. zeros or solutions).
 - Hence every polynomial factors

$$A(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_k z^k = c(z - r_1)(z - r_2) \dots (z - r_k) = 0$$

Proved by Gauss and others, ~ 1800

Special case

- Coefficients are real numbers (no imaginary component)
- Roots must either be real numbers or complex conjugate pairs
- Complex conjugates: complex numbers of the form $z = x \pm i$ y so that $(x + i y)(x iy) = x^2 + y^2$ is a real number.

Appendix C
Text reviews basic facts about complex numbers

Autoregression, General Case

- Properties of the AR(p) model
 - Restrictions on the coefficients that assure stationarity are "complex"

$$X_t = \phi_1 X_{t-1} + \dots + \phi_p X_{t-p} + w_t, \quad |\phi_1| < 1$$

 $E(X_t) = 0$ throughout

· Backshift polynomial form

$$(1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p) X_t = \phi(B) X_t = w_t$$

• Stationarity requires zeros of the polynomial $\phi(z)$ to lie outside unit circle

$$\phi(r_i) = 0 \iff |r_i| > 1$$

Regression model puts no such constraint on the coefficients

• Back-substitution or polynomial trick yields the causal moving average representation

$$X_{t} = w_{t} + \psi_{1} w_{t-1} + \psi_{2} w_{t-2} + \dots + \psi_{s} w_{t-s} + \dots = \sum_{s=0}^{\infty} \psi_{s} w_{t-s}$$

Example in RMD

- AR(1) case
 - Zero of polynomial easy to find: it's the reciprocal of the coefficient

$$\phi(z) = 1 - \phi_1 z = 0 \iff r_1 = 1/\phi_1$$

Autocovariance Function

- Yule-Walker equations
 - Multiply expression for X_t by lags X_{t-1} , X_{t-2} , ... X_{t-p} , then take expectations
 - Obtain a system of equations to solve for autocovariances

$$\gamma(1) = \phi_1 \gamma(0) + \phi_2 \gamma(1) + \dots + \phi_p \gamma(p-1)
\gamma(2) = \phi_1 \gamma(1) + \phi_2 \gamma(2) + \dots + \phi_p \gamma(p-2)
\vdots = \vdots
\gamma(p) = \phi_1 \gamma(p-1) + \phi_2 \gamma(2) + \dots + \phi_p \gamma(0)$$

(assume mean is zero)

$$\gamma = \Gamma \phi$$

- Solving for autocovariances
 - Further autocovariances follow recursion

$$\gamma(k) = \phi_1 \gamma(k-1) + \phi_2 \gamma(k-2) + \phi_p \gamma(k-p), \quad p \le k$$

• Add equation for $\gamma(0)$ to get p+1 equations in p+1 unknowns

$$\gamma(0) = \phi_1 \gamma(1) + \dots + \phi_p \gamma(p) + \sigma_w^2$$

• AR(2) special case

$$\gamma(0) = \frac{\sigma^2(1 - \phi_2)}{((\phi_2 - 1)^2 - \phi_1^2)(\phi_2 + 1)}$$

$$\begin{split} &\text{Solve} \big[\\ & \big\{ \gamma_0 = \phi_1 \, \gamma_1 + \phi_2 \, \gamma_2 + \sigma^2 \, \&\& \\ & \gamma_1 = \phi_1 \, \gamma_0 + \phi_2 \, \gamma_1 \, \&\& \\ & \gamma_2 = \phi_1 \, \gamma_1 + \phi_2 \, \gamma_0 \, \big\}, \, \big\{ \gamma_0 \, , \, \gamma_1 \, , \, \gamma_2 \big\} \big] \\ & \\ & \big\{ \Big\{ \gamma_0 \rightarrow - \frac{\sigma^2 \, \left(-1 + \phi_2 \right)}{\left(1 + \phi_2 \right) \, \left(1 - \phi_1^2 - 2 \, \phi_2 + \phi_2^2 \right)} \, , \\ & \gamma_1 \rightarrow \frac{\sigma^2 \, \phi_1}{\left(1 + \phi_2 \right) \, \left(1 - \phi_1^2 - 2 \, \phi_2 + \phi_2^2 \right)} \, , \, \gamma_2 \rightarrow \frac{\sigma^2 \, \left(\phi_1^2 + \phi_2 - \phi_2^2 \right)}{\left(1 + \phi_2 \right) \, \left(1 - \phi_1^2 - 2 \, \phi_2 + \phi_2^2 \right)} \, \big\} \Big\} \end{split}$$

Examples of AR(2) Covariances

- $\phi(B)$ has real roots
 - $X_t = 1.7 X_{t-1} 0.72 X_{t-2} + w_t$
 - MA weights ψ_j decay slowly

- $\phi(B)$ has complex pair of roots
 - Textbook (p 70)
 - $X_t = 1.5 X_{t-1} 0.75 X_{t-2} + w_t$
 - MA weights oscillate
 - "Quasi-periodic" with period ≈ 12

Moving Average Processes

• MA(1) process

$$X_t = W_t + \theta_1 W_{t-1}$$
 E(X_t) = 0 throughout

Always stationary with covariances (symmetric around 0)

$$\gamma(0) = \sigma_w^2 (1 + \theta_1^2)$$

$$\gamma(1) = \sigma_w^2 \theta_1$$

$$\gamma(h) = 0, \quad h = 2,3,...$$

• Hence autocorrelation is

$$\rho(1) = \frac{\theta_1}{1 + \theta_1^2}, \quad \rho(h) = 0, h = 2,3,...$$

- Interesting property: $|\rho(1)| \le 0.5$
- In comparison to AR models, ACF "cuts off" after 1 term

Identifiability

- Model as described cannot be identified from autocovariances
 - Processes with different coefficients and variances have the same autocovariances
 - Ambiguity between white noise variance and MA coefficient
 - Example

$$\sigma_w^2 = 25$$
 $\theta_1 = 1/5$ and $\sigma_w^2 = 1$ $\theta_1 = 5$

In both cases

$$\gamma(0) = 25(1 + 1/25) = 1(1 + 25)$$

 $\gamma(1) = 25(1/5) = 1(5)$

- Invertibility condition
 - Require that any moving average process be expressible as a stationary, causal autoregression
 - Implies that the polynomial $\theta(z)=1+\theta_1z$ has zeros outside the unit circle
 - In the case of the prior MA(1), we choose the representation with the larger noise variance.

Moving Average Processes

General form, MA(q)

More like a moving sum rather than a moving average

$$X_t = w_t + \theta_1 w_{t-1} + \theta_2 w_{t-2} + \dots + \theta_q w_{t-q} = \theta(B) w_t$$

where invertibility implies that zeros r_1 , r_2 , ..., r_q of $\theta(z)$ lie outside the unit circle

$$\theta(r_k) = 0 \iff |r_k| > 1$$

- Autocovariances are more easily found than for AR(p) model
 - Variance is

$$Var(X_t) = \sigma_w^2 (1 + \theta_1^2 + \dots + \theta_q^2)$$

First autocovariances

$$\gamma(1) = \sigma_w^2 (\theta_1 + \theta_1 \theta_2 + \dots + \theta_{q-1} \theta_q)$$

$$\gamma(2) = \sigma_w^2 (\theta_2 + \theta_1 \theta_3 + \dots + \theta_{q-2} \theta_q)$$

Zero after q lags

$$\gamma(h) = 0, \quad h = q + 1, q + 2, \dots$$

Autoregressive Moving Average

Combine AR(p) with MA(q), ARMA(p,q)

lpha is not the mean!

$$X_t = \alpha + \phi_1 X_{t-1} + \dots + \phi_p X_{t-p} + w_t + \theta_1 w_{t-1} + \theta_2 w_{t-2} + \dots + \theta_q w_{t-q}$$
 where w_t is a white-noise process

Compact expression

$$\phi(B) X_t = \theta(B) w_t$$

- Conditions on the coefficients
 - For stationarity, the zeros of $\phi(B)$ lie outside the unit circle (causal)
 - For identifiability, the zeros of $\theta(B)$ lie outside the unit circle (invertible)
 - For identifiability, $\phi(B)$ and $\theta(B)$ have no common zeros (see examples 4.9-4.11)
- Add non-zero mean
 - · Taking expectations of the definition shows that

$$E(X_t) = \mu = \alpha + \phi_1 \mu + \dots + \phi_p \mu \qquad \text{or} \qquad \alpha = \mu (1 - \phi_1 - \dots - \phi_p)$$

Why these models?

- Substantive motivation
 - Hard to come by outside special physical systems
- An answer
 - They work!
 - Analogous to use of polynomials in regression
 - ARMA models can predict anything (within reason, especially once paired with differencing!)
- Deeper answer
 - Parsimonious way to achieve promise of the Wold Representation Theorem Every second-order stationary time series $\{X_t\}$ has a causal moving average representation

$$X_t = \mu + \sum_{j=0}^{\infty} \psi_j w_{t-j}$$

• The few AR and MA coefficients determine the infinite series $\{\psi_j\}$

ARMA(1,1) Autocovariances

Illustrates the general properties of ARMA processes

Example 4.16, p 78

• Process is (zero mean)

$$X_{t} = \phi_{1} X_{t-1} + w_{t} + \theta_{1} w_{t-1}$$

- Conditions require that $\phi \neq -\theta_1$ else would just be complicated way to define white noise.
- Find the variance
 - Approach used previously, multiplying and taking expectations, is harder

$$\begin{split} \gamma(0) &= \phi_1 \gamma(1) + \sigma_w^2 + \theta_1 \mathrm{Cov}(X_t, w_{t-1}) = \phi_1 \gamma(1) + \sigma_w^2 + \sigma_w^2 \theta_1 (\phi_1 + \theta_1) \\ \gamma(1) &= \phi_1 \gamma(0) + \theta_1 \sigma_w^2 \\ \gamma(2) &= \phi_1 \gamma(1) \\ \gamma(3) &= \phi_1 \gamma(2) \end{split} \qquad \text{Leading terms are different}$$
 It's the eventual pattern that's imporant: Recursion as found for an AR(1) process

• Solve as would any system of equations. e.g., plugging second equation into first gives

$$\gamma(0) = \sigma_w^2 \frac{1 + \theta_1^2 + 2\phi_1 \theta_1}{1 - \phi^2}$$

The denominator resembles divisor in the expression for the variance of an AR(1) process.

ARMA Autocorrelation

- Similar to that of the associated AR(1) process
 - So similar that it is hard to distinguish the processes
- Example
 - Process is $X_t = 0.8 X_{t-1} + w_t + \theta_1 \overline{w_{t-1}}$,

ACF falls off geometrically in every case, with the starting correlations determined by θ_1

One Motivation for ARMA Processes

- ARMA(1,1) processes appear frequently in analysis
- One explanation: add noise to an AR(1) process

• AR(1) process
$$Y_t = \phi Y_{t-1} + w_t$$

- Independent noise u_r
- Observe sum $X_t = Y_t + u_t$
- Autocovariances
 - Generalized difference of data $X_t \phi X_{t-1} = w_t + u_t \phi \, u_{t-1}$
 - Define $\epsilon_t = w_t + u_t$. Then have two process with the same autocovariances

$$w_t + u_t - \phi u_{t-1} \stackrel{D}{=} \epsilon_t + \xi \epsilon_{t-1}, \quad \xi = -\phi \sqrt{\frac{\sigma_w^2}{\sigma_w^2 + \sigma_u^2}}$$

• Hence, adding independent noise to an AR(1) process produces a process whose autocovariances are those of an ARMA(1,1) process

What's next?

- The identification problem
 - Choosing p and q from an estimated ACF
 - Model selection criteria (AIC, BIC)
- Partial autocorrelations
 - Autocorrelations of the ARMA(1,1) process fall off roughly geometrically, but for the first
 - Hence, hard to distinguish from an AR(1) process
 - Partial autocorrelations offer big help to identify the model.

Enjoy Fall Break!