OGC® DOCUMENT: 23-049

External identifier of this OGC® document: http://www.opengis.net/doc/AS/temporal-conceptual-model/1.0

TOPIC 25 - ABSTRACT CONCEPTUAL MODEL FOR TIME

ABSTRACT SPECIFICATION TOPIC

CANDIDATE SWG DRAFT

Version: 1.0

Submission Date: 2023-05-23 Approval Date: 2023-05-23 Publication Date: 2023-11-16

Editor: Chris Little, Charles Heazel, Ronald Tse

Notice: This document is not an OGC Standard. This document is an OGC Abstract Specification Topic and is therefore not an official position of the OGC membership. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an OGC Standard.

Further, an OGC Abstract Specification Topic should not be referenced as required or mandatory technology in procurements.

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the terms set forth below, to any person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property without restriction (except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish, distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to do so, provided that all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above copyright notice, a notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS THAT MAY BE IN FORCE ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT THE USER'S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all copies in any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as provided in the following sentence, no such termination of this license shall require the termination of any third party end-user sublicense to the Intellectual Property which is in force as of the date of notice of such termination. In addition, should the Intellectual Property, or the operation of the Intellectual Property, infringe, or in LICENSOR's sole opinion be likely to infringe, any patent, copyright, trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may terminate this license without any compensation or liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or cause to be destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without prior written authorization of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may authorize you or any third party to use certification marks, trademarks or other special designations to indicate compliance with any LICENSOR standards or specifications. This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement of the United Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In the event any provision of this Agreement shall be deemed unenforceable, void or invalid, such provision shall be modified so as to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force and effect. No decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise exported or reexported in violation of U.S. export laws and regulations. In addition, you are responsible for complying with any local laws in your jurisdiction which may impact your right to import, export or use the Intellectual Property, and you represent that you have complied with any regulations or registration procedures required by applicable law to make this license enforceable.

Copyright notice

Copyright © 2023 Open Geospatial Consortium To obtain additional rights of use, visit http://www.ogc.org/legal/

Note

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any relevant patent claims or other intellectual property rights of which they may be aware that might be infringed by any implementation of the standard set forth in this document, and to provide supporting documentation.

CONTENTS

I.	ABSTRACT	۰۰۰۰۰۰۰۰۱
II.	KEYWORDS	۰۰۰۰۰۰۰۰ ۷
III.	PREFACE	V
IV.	SECURITY CONSIDERATIONS	vi
V.	SUBMITTING ORGANIZATIONS	vii
VI.	SUBMITTERS	vii
2.	CONFORMANCE	10
1.	SCOPE	2
3.	NORMATIVE REFERENCES	4
4.	TERMS, DEFINITIONS AND ABBREVIATED TERMS	<i>6</i>
5.	CONVENTIONS	11
6.	CHARACTERISTICS OF AN ABSTRACT CONCEPTUAL MODEL	13
7.	ABSTRACT CONCEPTUAL MODEL FOR TIME	15
8.	TEMPORAL REGIMES 8.1. General 8.2. Events and Operators 8.3. Simple Clocks and Discrete Timescales 8.4. CRS and Continuous Timescales 8.5. Calendars 8.6. Other Regimes	17 17 18 20
9.	9.1. Reference Systems	24 24 25
	9.4. Calendar Reference Systems	25

	9.5. Discrete and Continuous Time Scales	
	9.6. Supporting Classes	30
	10. NOTATION	32
	11. SYNCHRONIZATION OF CLOCKS	34
	12. TEMPORAL GEOMETRY	36
	ANNEX A (INFORMATIVE) CONFORMANCE TESTS	38
	ANNEX B (INFORMATIVE) GLOSSARY	40
	BIBLIOGRAPHY	47
LIST	OF FIGURES	
	Figure 1	15
	Figure 2	18

ABSTRACT

Traditionally, geospatial communities used 2D coordinates and the vertical (third dimension) and temporal aspects were considered attributes rather than valid components of coordinate systems. In an increasingly dynamic, faster and multidimensional world, much confusion and lack of interoperability has occurred because of inconsistent approaches to defining and expressing time. Various international bodies expended considerable effort to establish the Gregorian Calendar as a consistent timeline. The Gregorian Calendar suffices for low precision applications, such as to the nearest minute, but not so when second or sub-second accuracy is required. For example, there has been differing practices and no consensus on whether leap seconds should be part of the Gregorian timeline.

The fundamental concepts of events, clocks, timescales, coordinates and calendars have been long established, but there is no clear, straightforward defining document. This Abstract Specification provides clear consistent definitions of the fundamental concepts and terminology. The conceptual model enables advantages and disadvantages of adopting a particular technological approach to be identified so that the community can contribute to building better and more interoperable systems by defining more detailed documents such as logical and implementation standards that have an agreed common conceptual basis and terminology.

This document is consistent with ISO 19111 and W3C Time Ontology in OWL.

The primary goal of the Abstract Conceptual Model for Time is to establish clear concepts and terminology.

KEYWORDS

The following are keywords to be used by search engines and document catalogues.

ogcdoc, OGC document, abstract specification, conceptual model, time, temporal referencing, referencing by coordinates, calendar, clock, timescale

PREFACE

When OGC standards involve time, they generally refer to the ISO documents such as ISO 19108 (now largely superseded), ISO 19111, ISO 8601, and their freely available OGC equivalents, such as OGC 18-005r4 (the equivalent to ISO 19111).

Much effort over decades has gone into establishing complex structures to represent calendar based time, such as the ISO 8601 notation, and many date-time schemas. Because of this effort, many people use calendar based "coordinates", with the attendant ambiguities, imprecision and inappropriate scope.

The aim of this Abstract Specification is to establish clear concepts and terminology, so that people are well aware of the advantages and disadvantages of adopting a particular technological approach and then perhaps contribute to building better interoperable systems.

SECURITY CONSIDERATIONS

This Abstract Specification does not place any constraints on application, platform, operating system level, or network security.

SUBMITTING ORGANIZATIONS

The following organizations submitted this Document to the Open Geospatial Consortium (OGC):

- U.K. Met Office
- HeazelTech
- Ribose Inc.

SUBMITTERS

All questions regarding this submission should be directed to the editor or the submitters:

NAME	ORGANIZATION	ROLE
Chris Little	U.K. Met Office	Editor
Chuck Heazel	HeazelTech	Contributor
Ronald Tse	Ribose Inc.	Contributor

CONFORMANCE

CONFORMANCE

Clause 7 of this Abstract Specification uses the Unified Modeling Language (UML) to present conceptual schemas for describing the higher level classes of time and temporal reference systems. These schemas define conceptual classes that:

- 1. may be considered to comprise a cross-domain application schema, or
- 2. may be used in application schemas, profiles and implementation specifications.

This flexibility is controlled by a set of UML types that can be implemented in a variety of manners. Use of alternative names that are more familiar in a particular application is acceptable, provided that there is a one- to-one mapping to classes and properties in this Abstract Specification.

The UML model in this Abstract Specification defines conceptual classes. Various software systems define implementations or data structures. All of these reference the same information content. The same name may be used in implementation classes as in the model, so that types defined in the UML model may be used directly in application schemas.

Annex A defines a set of conformance tests that will support applications whose requirements range from the minimum necessary to define data structures to full object implementation.

1 SCOPE

1 SCOPE

This document defines the major underlying concepts regarding time. It does not define any concrete temporal reference systems or give detailed guidance on implementations.

NORMATIVE REFERENCES

NORMATIVE REFERENCES

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

- G. Klyne, C. Newman: RFC 3339, *Date and Time on the Internet: Timestamps*. Internet Engineering Task Force (2002). https://raw.githubusercontent.com/relaton/relaton-data-ietf/master/data/reference.RFC.3339.xml
- ISO: ISO 8601:2004, Information interchange Representation of dates and times. International Organization for Standardization, Geneva (2004). https://www.iso.org/standard/40874.html.
- ISO: ISO 19111:2019, Geographic information Referencing by coordinates. International Organization for Standardization, Geneva (2019). https://www.iso.org/standard/74039.html.
- Allen, J. F. Maintaining Knowledge about Temporal Intervals Communications of the ACM, 1983, vol. 26 pp. 832-843.
- Roger Lott: OGC 18-005r4, *Topic 2 Referencing by coordinates*. Open Geospatial Consortium (2019). https://docs.ogc.org/as/18-005r4/18-005r4.html
- W3C Time Ontology in OWL, https://www.w3.org/TR/owl-time/

TERMS, DEFINITIONS AND ABBREVIATED TERMS

TERMS, DEFINITIONS AND ABBREVIATED TERMS

This document uses the terms defined in <u>OGC Policy Directive 49</u>, which is based on the ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards. In particular, the word "shall" (not "must") is the verb form used to indicate a requirement to be strictly followed to conform to this document and OGC documents do not use the equivalent phrases in the ISO/IEC Directives, Part 2.

This document also uses terms defined in the OGC Standard for Modular specifications (OGC 08-131r3), also known as the 'ModSpec'. The definitions of terms such as standard, specification, requirement, and conformance test are provided in the ModSpec.

For the purposes of this document, the following additional terms and definitions apply.

4.1. Terms and definitions

4.1.1. conceptual model

description of common concepts and their relationships, particularly in order to facilitate exchange of information between parties within a specific domain

Note 1 to entry: A conceptual model is explicitly chosen to be independent of design or implementation concerns.

4.1.2. coordinate

one of a sequence of numbers designating the position of a point

Note 1 to entry: In many coordinate reference systems, the coordinate numbers are qualified by units.

[**SOURCE**: ISO 19111]

4.1.3. coordinate reference system; CRS

coordinate system (Clause 4.1.4) that is related to an object by a datum (Clause 4.1.7)

Note 1 to entry: Geodetic and vertical datums are referred to as reference frames.

Note 2 to entry: For geodetic and vertical reference frames, the object will be the Earth. In planetary applications, geodetic and vertical reference frames may be applied to other celestial bodies.

[**SOURCE**: ISO 19111]

4.1.4. coordinate system

set of mathematical rules for specifying how coordinates are to be assigned to points

[**SOURCE**: ISO 19111]

4.1.5. datum

reference frame ADMITTED

parameter or set of parameters that realize the position of the origin, the scale, and the orientation of a *coordinate system* (Clause 4.1.4)

[**SOURCE**: ISO 19111]

4.1.6. epoch

<geodesy> point in time

Note 1 to entry: In ISO 19111, an epoch is expressed in the Gregorian calendar as a decimal year.

Example 2017-03-25 in the Gregorian calendar is epoch 2017.23. Other notations or reference systems are options.

[SOURCE: ISO 19111]

4.1.7. **reference frame**

parameter or set of parameters that realize the position of the origin, the scale, and the orientation of a *coordinate system* (Clause 4.1.4)

[**SOURCE**: ISO 19111]

4.1.8. temporal coordinate reference system; TRS

coordinate reference system (Clause 4.1.3) based on a temporal datum (Clause 4.1.10)

[**SOURCE**: ISO 19111]

4.1.9. temporal coordinate system

<geodesy> one-dimensional coordinate system (Clause 4.1.4) where the axis is time
[SOURCE: ISO 19111]

4.1.10. temporal datum

datum (Clause 4.1.7) describing the relationship of a temporal coordinate system (Clause 4.1.9) to an object

Note 1 to entry: The object is normally time on the Earth.

[**SOURCE**: ISO 19111]

4.2. Abbreviated terms

UML Unified Modelling Language

2D 2-dimensional

3D 3-dimensional

CONVENTIONS

CONVENTIONS

The normative provisions in this standard are denoted by the URI:

http://www.opengis.net/doc/AS/temporal-conceptual-model/1.0

All requirements and conformance tests that appear in this document are denoted by partial URIs which are relative to this base.

CHARACTERISTICS OF AN ABSTRACT CONCEPTUAL MODEL

CHARACTERISTICS OF AN ABSTRACT CONCEPTUAL MODEL

The terms and definitions clause in this Abstract Specification provides a short definition for "conceptual model". This clause provides additional information on the OGC use of "conceptual model".

A conceptual model organizes the vocabulary needed to communicate consistently and thoroughly about the know-how of a problem domain. The aim of a conceptual model is to express the meaning of terms and concepts used by domain experts to discuss the problem, and to find the correct relationships between different concepts.

A conceptual model:

- 1. is a representation of a system, made of the composition of concepts which are used to help people know, understand, or simulate a subject the model represents. A documented conceptual model represents 'concepts' (entities), the relationships between them, and a vocabulary;
- 2. is explicitly defined to be independent of design or implementation concerns;
- 3. organizes the vocabulary needed to communicate consistently and thoroughly about the know-how of a problem domain;
- 4. starts with a glossary of terms and definitions. There is a very high premium on high-quality, design-independent definitions, free of data or implementation biases; the model also emphasizes rich vocabulary; and
- 5. is always about identifying the correct choice of terms to use in communications, including statements of rules and requirements, especially where high precision and subtle distinctions need to be made. The core concepts of a temporal geospatial problem domain are typically quite stable over time.

ABSTRACT CONCEPTUAL MODEL FOR TIME

ABSTRACT CONCEPTUAL MODEL FOR TIME

This Temporal Abstract Conceptual Model follows ISO 19111, which is the ISO adoption of OGC 18-005r4.

The model is also informed by the W3C Time Ontology in OWL.

Figure 1

TEMPORAL REGIMES

TEMPORAL REGIMES

8.1. General

To more clearly think about time, this Abstract Specification adopts the term "Regime" to describe the fundamentally different types of time and its measurement. This is a pragmatic approach that allows the grouping of recommendations and best practices in a practical way, but without obscuring the connection to the underlying theoretical components.

The first three regimes, described below, have deep underlying physical and mathematical foundations which cannot be legislated away. The fourth regime, calendars, uses a seemingly random mixture of ad hoc algorithms, arithmetic, numerology and measurements. Paradoxically, the calendar regime has historically driven advances in mathematics and physics.

With due consideration, the regimes are applicable to other planets and outer space.

8.2. Events and Operators

The simplest way of relating entities in time is by events that can be ordered and established in a sequence, and this sequence is used as an approximate measure of the passage of time.

In this regime, no clocks or time measurements are defined, only events, that are ordered in relation to each other. Examples are geological layers, sediment or ice core layers, archaeological sequences, sequential entries in computer logs without coordinated time.

One set of events may be completely ordered with respect to each other, but another set of similar internally consistent ordered events cannot be cross-referenced to each other unless extra information is available. Even then, only partial orderings may be possible.

In this regime, the Allen Operators (see Figure 2) can be used. If A occurs before B and B occurs before C, then that A occurs before C can be correctly deduced. The full set of operators also covers pairs of intervals. So in our example, B occurs in the interval (A,C). However, arithmetic operations like (B-A) or (C-A) cannot be performed as any timescale or measurements are not defined. For example, in geology, 'subtracting' Ordovician from Jurassic is meaningless. In archeology, 'subtracting' a layer with a certain type of pottery remains from the layer containing burnt wood and bones is again not meaningful. Only the ordering can be deduced.

This regime constitutes an Ordinal Temporal Reference System, with discrete enumerated ordered events.

Figure 2: Thirteen elementary possible relations between 2 time intervals

Figure 2

8.3. Simple Clocks and Discrete Timescales

In this regime, a clock is defined as any regularly repeating physical phenomena, such as pendulum swings, earth's rotation about the sun, earth's rotation about its axis, heart beats, vibrations of electrically stimulated quartz crystals or the resonance of the unperturbed ground-state hyperfine transition frequency of the cesium-133 atom. In terms of the number of repetitions possible, some phenomena make better clocks than others, because of the consistency of each repetition and the precision of each 'tick'. A mechanism for counting, or possibly measuring, the ticks is desirable.

An assumption is that the ticks are regular and homogeneous.

There is no sub-division between two successive clock ticks. Measuring time consists of counting the complete number of repetitions of ticks since the clock started, or since some other event at a given clock count.

There is no time measurement before the clock starts, or after it stops.

It may seem that time can be measured between 'ticks' by interpolation, but this needs another clock, with faster ticks. This process of devising more precise clocks continues down to the atomic scale. At that scale the deterministic process of physically trying to interpolate between ticks is not possible.

The internationally agreed atomic time, TAI, is an example of a timescale with an integer count as the measure of time. However in practice, TAI is an arithmetic compromise across about two hundred separate atomic clocks, corrected for differing altitudes and temperatures.

In this regime, Allen Operators (see Figure 2) also can be used. If L occurs before M and M occurs before N, that L occurs before N can be correctly deduced. The full set of operators also covers pairs of intervals. So if M occurs in the interval (L,N), integer arithmetic operations such as (M-L) or (N-L) can be performed. This is because an integer timescale or measurement is defined.

This regime constitutes a Temporal Coordinate Reference System, with discrete integer units of measure which can be subject to integer arithmetic.

8.4. CRS and Continuous Timescales

This regime takes a clock from the previous regime and assumes that between any two adjacent ticks, it is possible to interpolate indefinitely to finer and finer precision, using ordinary arithmetic, rather than any physical device. Units of Measure may be defined that are different from the 'ticks'. For example, a second may be defined as 9,192,631,770 vibrations of the ground-state hyperfine transition of the cesium-133 atom. Alternatively and differently, a second may be defined as 1/86400th of the rotation of the earth on its axis with respect to the sun. The count of rotations is the 'ticks' of an earth-day clock. This latter definition is not precise enough for many uses, as the rotation of the earth on its axis varies from day to day.

Alternatively, it may be that the ticks are not counted but measured, and the precision of the clock is determined by the precision of the measurements, such as depth in an ice core, or angular position of an astronomical body, such as the sun, moon or a star.

It is also assumed that time can be extrapolated to before the time when the clock started and into the future, possibly past when the clock stops.

This gives us a continuous number line to perform theoretical measurements. This is a coordinate system. With a datum/origin/epoch, a unit of measure (a name for the 'tick marks' on the axis), positive and negative directions and the full range of normal arithmetic. This is a Coordinate Reference System (CRS).

In this regime, the Allen Operators (see Figure 2) also can be used. If A occurs before B and B occurs before C, that A occurs before C can be correctly deduced. The full set of operators also covers pairs of intervals. So if B occurs in the interval (A,C), real number arithmetic operations like (B-A) or (C-A) can be performed. This is because a timescale or measurement has been defined, and between any two instants, an infinite number of other instants can be found.

Example : Some examples are:

- Unix milliseconds since 1970-01-01T00:00:00.0Z
- Julian Days, and fractions of a day, since noon on 1st January, 4713 BCE.

This regime constitutes a Temporal Coordinate Reference System, with a continuous number line and units of measure, which can be subject to the full range of real or floating-point arithmetic.

8.5. Calendars

In this regime, counts and measures of time are related to the various combinations of the rotations of the earth, moon and sun or other astronomical bodies. There is no simple arithmetic. For example, the current civil year count of years in the Current Era (CE) and Before Current Era (BCE) is a very simple calendar, as there is no year zero. That is, Year 14CE – Year 12CE is a duration of 2 years, and Year 12BCE — Year 14BCE is also two years. However Year 1CE — Year 1BCE is one year, not two as there is no year 0CE or 0BCE.

In this regime, the use of the Allen Operators (see Figure 2) is not straightforward. If A occurs before B and B occurs before C, then correctly deducing that A occurs before C is not always easy. The full set of Allen Operators also covers pairs of intervals. So in the example, B occurs in the interval (A,C). However, simple arithmetic operations like (B-A) or (C-A) cannot usually be done simply because of the vagaries of the calendar algorithms, multiple timescales, and multiple Units of Measure.

Calendars are social constructs made by combining several clocks and their associated timescales.

This Abstract Specification only addresses the internationally agreed Gregorian calendar. Calendrical Calculations by Nachum Dershowitz and Edward M. Reingold provides overwhelming detail for conversion to numerous other calendars that have developed around the world and over the millennia and to meet the various social needs of communities, whether agricultural, religious or other. The reference is comprehensive but not exhaustive, as there are calendars that have been omitted.

A Calendar is a Temporal Reference System, but it is not a Temporal Coordinate Reference System nor an Ordinal Temporal Reference System.

8.6. Other Regimes

There are other regimes, which are out of scope of this Abstract Specification. This could include local solar time, which is useful, for example, for the calculation of illumination levels and the length of shadows on aerial photography, or relativistic time.

8.6.1. Local Solar Time

Local solar time may or may not correspond to the local statutory or legal time in a country. Local solar time can be construed as a clock and timescale, with an angular measure of the apparent position of the sun along the ecliptic (path through the sky) as the basic physical

principle. But the sun does not appear to progress evenly along the ecliptic throughout the days and year. There may be variations of up to 15 minutes compared to an even angular speed

8.6.2. Astronomical Time

Astronomers have traditionally measured the apparent locations of stars, planets and other heavenly bodies by measuring angular separations from reference points or lines and the timing of transits across a meridian. Generally astronomers use time determined by earth's motion relative to the distant stars rather than the sun. This is called sidereal time. Times are usually measured from an epoch in daylight, such as local midday, rather than midnight. Accurate measurements of positions of stars, planets and moons were and are essential for navigation on Earth. See Astronomical Algorithms by Jean Meeus for examples of the calculations involved.

8.6.3. Space-time

When dealing with moving objects, the location of the object in space depends on its location in time. That is to say, location is an event in space and time.

Originally developed by Hermann Minkowski to support work in Special Relativity, the concept of space-time is useful whenever the location of an object in space is dependent on its location in time.

Since the speed of light, c, in a vacuum is a measurable constant, space-time uses that constant to create a coordinate axis with spatial units of measure (meters per second * seconds = meters). The result is coordinate reference system with four orthogonal axes all with the same units of measure, that is, distance. However, the measure of distance in this 4D space is not the usual Pythagorean $d^2 = x^2 + y^2 + z^2 + (ct)^2$ but $d^2 = x^2 + y^2 + z^2 - (ct)^2$, so reality is constrained to lying within a double cone subset around the ct axis of the full space.

8.6.4. Relativistic

A regime may be needed for 'space-time', off the planet Earth, such as for recording and predicting space weather approaching from the sun, where the speed of light and relativistic effects such as gravity may be relevant.

Once off planet Earth, distances and velocities can become very large. The speed of light becomes a limiting factor in measuring both where and when an event takes place. Special Relativity deals with the accurate measurement of space-time events as measured between two moving objects. The core concepts are the Lorentz Transforms. These transforms allow one to calculate the degree of "contraction" a measurement undergoes due to the relative velocity between the observing and observed object.

The key to this approach is to ensure each moving feature of interest has its own local clock and time, known as its 'proper time'. This example can be construed as a fitting into the clock and timescale regime. The relativistic effects are addressed through the relationships between the separate clocks, positions and velocities of the features.

Relativistic effects may need to be considered for satellites and other spacecraft because of their relative speed and position in Earth's gravity well.

The presence of gravitational effects requires special relativity to be replaced by general relativity, and it can no longer be assumed that space (or space-time) is Euclidean. That is, Pythagoras' Theorem does not hold except locally over small areas. This is somewhat familiar territory for geospatial experts.

8.6.5. Accountancy

The financial and administrative domains often use weeks, quarters, and other calendrical measures. These may be convenient (though often not!) for the requisite tasks, but are usually inappropriate for scientific or technical purposes.

ATTRIBUTES OF THE CLASSES

ATTRIBUTES OF THE CLASSES

9.1. Reference Systems

The top level 'ReferenceSystem' is an abstract super-class and does not have many attributes or properties. Only the total dimension of the reference system and the Location, Time or Domain of Applicability have been identified as essential.

The 'ReferenceSystem' has two abstract sub-classes: 'SpatialReferenceSystem', which is defined in ISO 19111, and 'TemporalReferenceSystem', each with the attributes of Dimension and Domains of Applicability.

The value for Dimension is one for time, or a vertical reference system, but may be as high as 6 for spatial location with orientation as in the GeoPose Implementation Standard.

Besides the conventional space and time, there may be other reference systems, such as wavelength or frequency, that could be addressed by future additions to this Abstract Conceptual Model.

9.2. Ordinal Temporal Reference Systems

An OrdinalTemporal Reference System has a well-ordered finite sequence of events against which other events can be compared.

An Ordinal Temporal Reference System is a type of temporal reference system. Therefore, it inherits the following attributes from the TemporalReferenceSystem class:

- 1. applicableLocationTimeOrDomain: the location, time or domain of applicability;
- 2. dimension: the number of dimensions in this reference system. For Ordinal Temporal Reference Systems this value is fixed at 1.

An Ordinal Temporal Reference System does not have any attributes of its own. However, it does use associations with other classes to fully describe itself.

- 1. Epoch: An Ordinal Temporal Reference System 'has a' one optional Epoch
- 2. Notation: An Ordinal Temporal Reference System 'can use' one or more Notations to represent itself.

3. Event: An Ordinal Temporal Reference System 'consists of' an ordered set of Events. These events are identifiable temporal instances.

Example: Ancient annals of a country may give a sequence of emperors which could be used to 'date' another event such as "Emperor Xi built a canal", or may be used to date a particular reign. For example: "In the reign of Emperor Yi, a comet was sighted" and later research identifies this as an appearance of Halley's Comet.

9.2.1. Events

The Events class is an ordered list of temporal events. The events can be instances, such as the ascension of a King to a throne, or intervals, such as the complete reign of each king.

Other documents may enable two such 'king lists' to be related, though not completely.

9.3. Temporal Coordinate Reference Systems

A Temporal Coordinate Reference System is a type of temporal reference system. Therefore, it inherits the following attributes from the TemporalReferenceSystem class:

- 1. applicableLocationTimeOrDomain: the location, time or domain of applicability;
- 2. dimension: the number of dimensions in this reference system. For Temporal Coordinate Reference Systems this value is fixed at 1.

A Temporal Coordinate Reference System does not have any attributes of its own. However, it does use associations with other classes to fully describe itself.

- 1. Epoch: A Temporal CRS 'has a' one optional Epochs
- 2. Notation: A Temporal CRS 'can use' one or more Notations to represent itself.
- 3. Timescale: A Temporal CRS 'has a' one Timescale which is used to represent the values along its single axis. This Timescale can be either discrete or continuous.

9.4. Calendar Reference Systems

Calendars combine different timescales and their clocks and units of measure, and other events, to make a complex timeline against which events can be compared. Calculated algorithms are used to determine which instants of intervals on the compound timeline are identified and labeled.

A Calendar is a type of temporal reference system. Therefore, it inherits the following attributes from the TemporalReferenceSystem class:

- 1. applicableLocationTimeOrDomain: the location, time or domain of applicability
- 2. dimension: the number of dimensions in this reference system. For Calendars this value is fixed at 1.

A Calendar does not have any attributes of its own. However, it does use associations with other classes to fully describe itself.

- 1. Algorithm: A Calendar 'has a' one or more Algorithms. These Algorithms specify how the multiple Time Scales are aggregated into a single Timeline.
- 2. Epoch: A calendar 'has a' one optional Epoch
- 3. Notation: A calendar 'can use' one or more Notations to represent itself.
- 4. Timeline: A Calendar 'has a' one Timeline which serves to aggregate a number of Timescales into a single coherent measure of date and time.
- 5. Timescale: A Calendar 'has a' two or more Timescales which are used to construct a Timeline.

9.4.1. Timeline

The timeline is usually a set of instants from the past to the future and is compounded from multiple timescales, with multiple units of measures, and complicated arithmetic determined by the calendar algorithm(s). The timeline is usually not even continuous, having gaps or even multiple simultaneous representations.

A Timeline does not have any attributes of its own. Nor does it inherit any attributes from a parent class. However, it does use associations with other classes to fully describe itself.

- 1. Algorithm: A Timeline 'has a' one or more Algorithms. These Algorithms specify how the multiple Time Scales are aggregated into a single Timeline.
- 2. Timescale: A Timeline 'has a' two or more Timescales which are used to construct the Timeline.

9.4.2. Algorithm

An Algorithm specifies the logic used to construct a Timeline from its constituent Timescales. An Algorithm does not have any attributes of its own. Nor does it make use of any other classes from this Temporal model.

9.4.3. Calendar Examples

Example 1: The modern Gregorian calendar is a calculated solar calendar, with various epochs from 1588 CE through to 1922 CE depending on location or country.

The constituent timescales are days (earth's rotations), months (moon's orbit around the earth), years (earth's orbit around the sun) and seconds determined by atomic clocks. To accommodate discrepancies, leap days and leap seconds are intercalated in some years. The commonest notations for the Gregorian calendar are ISO 8601 and its various restrictive profiles.

Example 2: The timeline in a country may have gaps when clocks 'spring forward' for enacting daylight-saving time. There may not be any time corresponding to the times between 01:00 and 02:00. When the daylight-saving time is revoked, and clocks 'fall back', the times between 01:00 and 02:00 occur twice.

Example 3: The modern Islamic calendar is an observed lunar calendar, and the major religious dates progress throughout the year, year on year. The important months are determined by the observation of new moons from Mecca.

Example 4: The modern Jewish calendar is a calculated lunisolar calendar, and discrepancies in the solar year are addressed by adding 'leap months' every few years.

Example 5: The Ba'hai calendar is a calculated solar calendar, but without any other astronomical aspects. The year consists of 19 months of 19 days each, with 4 or 5 intercalated days for a new year holiday.

Example 6: The West African Yoruba traditional calendar is a solar calendar with months, but rather than subdividing a nominal month of 28 days into 4 weeks, 7 weeks of 4 days are used. This perhaps gave rise to the fortnightly (every 8 days) markets in many villages in the grasslands of north-west Cameroon.

Example 7: Teams controlling remote vehicles on Mars use a solar calendar, with Martian years and Martian days (called sols). Months are not used because there are two moons, with different, rather short, orbital periods.

9.5. Discrete and Continuous Time Scales

A clock may be a regular, repeating, physical event, or 'tick', that can be counted. The sequence of tick counts form a discrete (counted) timescale.

Some clocks allow the measurement of intervals between ticks, such as the movement of the sun across the sky. Alternatively, the ticks may not be completely distinguishable, but are still stable enough over the time of applicability to allow measurements rather than counting to determine the passage of time. These clocks generate a continuous (measured) timescale.

The duration of a tick is a constant. The length of a tick is specified using a Unit Of Measure.

9.5.1. Timescale

A Timescale is a linear measurement (one dimension) used to measure or count monotonic events. Timescale has three attributes:

- 1. Arithmetic: an indicator of whether this Timescale contains counted integers or measured real/floating point numbers.
- 2. StartCount: the lowest value in a Timescale. The data type of this attribute is specified by the 'arithmetic' attribute.
- 3. EndCount: the greatest value in a Timescale. The data type of this attribute is specified by the 'arithmetic' attribute.

In addition to the attributes, the Timescale class maintains associations with two other classes to complete its definition.

- 1. Clock: A Timescale 'has a' one clock. This is the process which generates the 'tick' which is counted or measured for the Timescale.
- 2. UnitOfMeasure: A timescale 'has a' one UnitOfMeasure. This class specifies the units of the clock measurement as well as the direction of increase of that measurement.

9.5.2. Clock

A Clock represents the process which generates the 'tick' which is counted or measured for a Timescale. Clock has one attribute:

1. Tick definition: a description of the process which is being used to generate monotonic events.

Example 1: An atomic clock may be calibrated to be valid only for a given temperature range and altitude.

Example 2: A pendulum clock may have each tick or swing of the pendulum adjusted to be an exact fraction or multiple of a second. The famous London "Big Ben" clock's pendulum is 4.4m long and ticks every two seconds.

9.5.3. UnitOfMeasure

The Direction attribute indicates whether counts or measures increase in the positive (future) or negative (past) direction. The attribute could be part of 'Timescale' or 'TemporalCoordinateReferenceSystem' rather than a separate class 'UnitOfMeasure', but on balance, it seems better here, as the names often imply directionality, such as fathoms increasing

downwards, MYA (Millions of Years Ago) increasing earlier, Atmospheric Pressure in hPa (Hectopascals) decreasing upwards, and FL (FlightLevel) increasing upwards.

1. Direction: indicates the direction in which a timescale progresses as new 'ticks' are counted or measured.

Example : The number of the years before the Current Era (BCE, previously known as BC) increase further back in time, whereas the number of the years in the Current Era (CE, previously known as AD) increase further into the future. This is an example of two timescales, adjacent but with no overlap. If there was a year zero defined, they could be replaced with one continuous timescale.

9.5.4. Time Scale Examples

Example 1: A long, deep ice core is retrieved from a stable ice sheet. From long term meteorological observations, the rate of accumulation of ice is known, so linear length can be equated to time (assuming a stable climate too). This enables the dates of some previously unknown large scale volcanic eruptions to be identified and timed. Identifiable nuclear fallout from specific atmospheric atomic bomb tests detected in the ice core increases confidence in the timing accuracy.

Example 2: A long, deep, sediment core is extracted from the bottom of a lake with a long geological history. Two layers in the core are dated using radiocarbon dating. Assuming steady rates of sediment deposition, a continuous timescale can be interpolated between the dated layers, and extrapolated before and after the dated layers.

Example 3: A well preserved fossilized log is recovered and the tree rings establish an annual 'tick'. The start and end times may be known accurately by comparison and matching with other known tree ring sequences, or perhaps only dated imprecisely via Carbon Dating, or its archaeological or geological context.

Example 4: A clock is started, but undergoes a calibration process against some standard clock, so the initial, reliable Start Time does not start at Count Zero. The clock is accidentally knocked so that it is no longer correctly calibrated, but is still working. The End Time is not the last time that the clock ticks.

Example 5: TAI (International Atomic Time, Temps Atomique International) is coordinated by the BIPM (International Bureau of Weights and Measures, Bureau International de Poids et Measures) in Paris, France. TAI is based on the average of hundreds of separate atomic clocks around the world, all corrected to be at mean sea level and standard pressure and temperature. The epoch is defined by Julian Date 2443144.5003725 (1 January 1977 00:00:32.184).

Example 6: The Julian Day is the continuous count of days (rotations of the Earth with respect to the Sun) since the beginning of the year 4173 BCE and will terminate at the end of the year 3267 CE. The count then starts again as "Period 2". Many computer based timescales, such as Unix Time, are based on the Julian Day timescale, but with different epochs, to fit the numbers into the limited computer words.

9.6. Supporting Classes

9.6.1. Epoch

The Epoch class provides a origin or datum for a Temporal Reference System.

9.6.2. Notation

The Notation class identifies a widely agreed, commonly accepted, notation for representing values in accordance with a temporal reference system.

NOTATION

10 NOTATION

There are often widely agreed, commonly accepted, notations used for temporal reference systems, but few have been standardized. Any particular notation may be capable of expressing a wider range of times than are valid for the reference system.

Example : The RFC 3339 timestamp notation, a restrictive profile of ISO 8601, can express times before 1588CE, when the Gregorian calendar was first introduced in some parts of the world.

SYNCHRONIZATION OF CLOCKS

SYNCHRONIZATION OF CLOCKS

If there are two or more clocks, stationary with respect to each other, and a practical method of communicating their times to each other, the clocks can be perfectly synchronized.

However, if the clocks are moving with respect to each other, they cannot be precisely coordinated (unless the communication is instantaneous). As communication speed is limited by the finite constant speed of light, perfect synchronization is not possible, though repetitive protocols can be used to reduce the synchronization error to any practical desired level.

See A Brief History of Timekeeping, pages 187-191.

12

TEMPORAL GEOMETRY

TEMPORAL GEOMETRY

The geospatial community has often used analogies between space and time to construct 'temporal-geometry'. This analogy is useful but can be misleading and must not be taken too far. For example, taken from A Treatise on Time and Space by J R Lucas, and assuming a thing has classical rather than quantum properties:

- 1.1 A thing cannot be in two places at one time;
- 1.2 A thing can be in one place at two times;
- 2.1 Two things cannot be in the same place at the same time;
- 2.2 Two things can be in the same place at different times.

These are not symmetrical in space and time.

Temporal constructs such as instants, durations or intervals, multi-instants (a set of instants), and multi-intervals are not included in this conceptual model. These do have strongly analogous equivalents in space, such as points and multi-points, especially in a single dimension, such as vertical. The temporal constructs are well described in Maintaining Knowledge about Temporal Intervals by J. F. Allen (see Figure 2) and apply across all of the regimes, so do not need to be in this Abstract Conceptual Model.

ANNEX A (INFORMATIVE) CONFORMANCE TESTS

A

ANNEX A (INFORMATIVE) CONFORMANCE TESTS

В

ANNEX B (INFORMATIVE) GLOSSARY

В

ANNEX B (INFORMATIVE) GLOSSARY

B.1. compound coordinate reference system

coordinate reference system using at least two independent coordinate reference systems

Note 1 to entry: Coordinate reference systems are independent of each other if coordinate values in one cannot be converted or transformed into coordinate values in the other.

[**SOURCE**: ISO 19111]

B.2. coordinate epoch

epoch to which coordinates in a dynamic coordinate reference system are referenced

[**SOURCE**: ISO 19111]

B.3. derived coordinate reference system

coordinate reference system that is defined through the application of a specified coordinate conversion to the coordinates within a previously established coordinate reference system

Note 1 to entry: The previously established coordinate reference system is referred to as the base coordinate reference system.

Note 2 to entry: A derived coordinate reference system inherits its datum or reference frame from its base coordinate reference system.

Note 3 to entry: The coordinate conversion between the base and derived coordinate reference system is implemented using the parameters and formula(s) specified in the definition of the coordinate conversion.

[**SOURCE**: ISO 19111]

B.4. dynamic coordinate reference system

coordinate reference system that has a dynamic reference frame

Note 1 to entry: Coordinates of points on or near the crust of the Earth that are referenced to a dynamic coordinate reference system may change with time, usually due to crustal deformations such as tectonic motion and glacial isostatic adjustment.

Note 2 to entry: Metadata for a dataset referenced to a dynamic coordinate reference system should include coordinate epoch information.

[**SOURCE**: ISO 19111]

B.5. **dynamic reference frame** dynamic datum ADMITTED

reference frame in which the defining parameters include time evolution

Note 1 to entry: The defining parameters that have time evolution are usually a coordinate set.

[**SOURCE**: ISO 19111]

B.6. engineering coordinate reference system

coordinate reference system based on an engineering datum

Example 1 System for identifying relative positions within a few kilometres of the reference point, such as a building or construction site.

Example 2 Coordinate reference system local to a moving object such as a ship or an orbiting spacecraft.

Example 3 Internal coordinate reference system for an image. This has continuous axes. It may be the foundation for a grid.

B.7. engineering datum

local datum ADMITTED

datum describing the relationship of a coordinate system to a local reference

Note 1 to entry: Engineering datum excludes both geodetic and vertical reference frames.

[**SOURCE**: ISO 19111]

B.8. frame reference epoch

epoch of coordinates that define a dynamic reference frame

[**SOURCE**: ISO 19111]

B.9. linear coordinate system

one-dimensional coordinate system in which a linear feature forms the axis

Example 1 Distances along a pipeline.

Example 2 Depths down a deviated oil well bore.

[**SOURCE**: ISO 19111]

B.10. parameter reference epoch

epoch at which the parameter values of a time-dependent coordinate transformation are valid

Note 1 to entry: The transformation parameter values first need to be propagated to the epoch of the coordinates before the coordinate transformation can be applied.

[**SOURCE**: ISO 19111]

B.11. parametric coordinate reference system

coordinate reference system based on a parametric datum

[**SOURCE**: ISO 19111]

B.12. parametric coordinate system

one-dimensional coordinate system where the axis units are parameter values which are not inherently spatial

[**SOURCE**: ISO 19111]

B.13. parametric datum

datum describing the relationship of a parametric coordinate system to an object

Note 1 to entry: The object is normally the Earth.

[SOURCE: ISO 19111]

B.14. point motion operation

coordinate operation that changes coordinates within one coordinate reference system due to the motion of the point

Note 1 to entry: The change of coordinates is from those at an initial epoch to those at another epoch.

Note 2 to entry: In this document the point motion is due to tectonic motion or crustal deformation.

[**SOURCE**: ISO 19111]

B.15. spatio-parametric coordinate reference system

compound coordinate reference system in which one constituent coordinate reference system is a spatial coordinate reference system and one is a parametric coordinate reference system

Note 1 to entry: Normally the spatial component is "horizontal" and the parametric component is "vertical".

[**SOURCE**: ISO 19111]

B.16.spatio-parametric-temporal coordinate reference system

compound coordinate reference system comprised of spatial, parametric and temporal coordinate reference systems

[**SOURCE**: ISO 19111]

B.17. spatio-temporal coordinate reference system

compound coordinate reference system in which one constituent coordinate reference system is a spatial coordinate reference system and one is a temporal coordinate reference system

[**SOURCE**: ISO 19111]

B.18. static coordinate reference system

coordinate reference system that has a static reference frame

Note 1 to entry: Coordinates of points on or near the crust of the Earth that are referenced to a static coordinate reference system do not change with time.

Note 2 to entry: Metadata for a dataset referenced to a static coordinate reference system does not require coordinate epoch information.

[**SOURCE**: ISO 19111]

B.19. static reference frame

static datum

reference frame in which the defining parameters exclude time evolution

[**SOURCE**: ISO 19111]

B.20. terrestrial reference system

TRS ADMITTED

set of conventions defining the origin, scale, orientation and time evolution of a spatial reference system co-rotating with the Earth in its diurnal motion in space

Note 1 to entry: The abstract concept of a TRS is realised through a terrestrial reference frame that usually consists of a set of physical points with precisely determined coordinates and optionally their rates of change. In this document terrestrial reference frame is included within the geodetic reference frame element of the data model

[**SOURCE**: ISO 19111]

BIBLIOGRAPHY

- 1. Jean Meeus. *Astronomical Algorithms*. https://www.agopax.it/Libri_astronomia/pdf/Astronomical%20Algorithms.pdf
- 2. Bureau International des Poids et Mesures (BIPM). Establishment of International Atomic Time and Coordinated Universal Time. https://www.bipm.org/documents/20126/59466374/6_establishment_TAR20.pdf/5b18b648-0d5a-ee02-643d-a60ed6c148fc
- 3. Nachum Dershowitz, Edward M. Reingold. *Calendrical Calculations The Ultimate Edition*. Cambridge University Press. 2018. ISBN-13: 978-1107683167. http://emr.cs.iit.edu/home/reingold/calendar-book/third-edition [last accessed 2023-01]
- 4. Chad Orzell. A *Brief History of Timekeeping*. Oneworld Publications. 2022. ISBN-13: 978-0-86154-321-2.
- 5. ISO/TC 211: ISO 19108:2002 Geographic information Temporal schema, 2021, https://www.iso.org/standard/26013.html
- 6. Carl Stephen Smyth: OGC 21-056r10, OGC GeoPose 1.0 Data Exchange Draft Standard. Open Geospatial Consortium (2022). https://docs.ogc.org/dis/21-056r10/21-056r10.html
- 7. Lorentz Transform. Wolfram MathWorld. https://mathworld.wolfram.com/ LorentzTransformation.html
- 8. H. Minkowski. *Space and Time*, *Minkowski's Papers on Relativity* Minkowski Institute Press, Montreal 2012. https://minkowskiinstitute.org/ebookstore
- 9. Allen, J. F. *Maintaining Knowledge about Temporal Intervals*Communications of the ACM, 1983, vol. 26 pp. 832-843.
- 10. J R Lucas. A *Treatise on Time and Space*. Methuen and Co. Ltd. 1973. ISBN 0-416-84190-2.
- 11. The Open Group. *UNIX Time*. https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_16 [last accessed 2023-01]