Преподаватель: Курашова Светлана Александровна

Рабочий протокол и отчёт по лабораторной работе №3.10

Изучение электрических свойств сегнетоэлектриков

1. Ход работы

Параметры установки

$$R_1=47$$
 кОм $R_2=470$ кОм $C_1=1$ мкФ $s=500$ мм 2 $d=0.5$ мм

Прямые измерения

$$K=5rac{\mathrm{B}}{\mathrm{дел}}$$
 $E_s=2.7$ дел $D_s=2.8$ дел $D_r=1.0$ дел $E_c=0.6$ дел

А также столбцы 1-5 Таблицы 1.

Вычисленные величины

Напряжение на Конденсаторе C_1

$$U_{C_1} = D_s \cdot K = 14B$$

Напряжение на резисторе U_{R_1}

$$U_{R_1} = E_s \cdot K = 13.5 \mathrm{B}$$

Электрическая индукция в состоянии насыщенности

$$D_s = \frac{C_1}{s} \cdot U_{C_1} = 0.028 \frac{\mathrm{K} \mathrm{j}}{\mathrm{m}^2}$$

Напряженность электрического поля

$$E_s = \frac{R_1 + R_2}{R_1} \cdot \frac{U_{R_1}}{d} = 297 \cdot 10^3 \frac{\rm B}{\rm M}$$

Остаточная поляризация

$$P_r = D_r = \frac{C_1}{s} \cdot KD_r = 0.01$$

Площадь предельной петли Гистерезиса

По фотографии предельной петли Гистерезиса выбрали несколько точек на верхней и нижней кривой и аппроксимировали их полиномами методом наименьших квадратов. Нашли площадь петли как интеграл между кривыми. Проиллюстрировали это на Рис. 2

Полином верхней кривой

$$\begin{split} P_{\text{\tiny Bepx}}(x) &= 0.00188988931500665x^5 + \\ & 0.0155906127303955 \ x^4 - \\ & 0.0636066672849179 \ x^3 - \\ & 0.232457685031377 \ x^2 + \\ & 1.4001596709756 \ x + \\ & 0.879349855584172 \end{split}$$

Полином нижней кривой

$$\begin{split} P_{\text{\tiny HMWH}}(x) &= 0.00285311694940667x^5 - \\ &\quad 0.0225987345328868 \ x^4 - \\ &\quad 0.0740306050510353 \ x^3 + \\ &\quad 0.294835734778522 \ x^2 + \\ &\quad 1.42513958419297 \ x - \\ &\quad 0.952406704710386 \end{split}$$

Площадь петли Гистерезиса

$$S_0 = \int_{-E_s}^{E_s} P_{\text{верх}}(x) - P_{\text{нижн}}(x) \, \mathrm{d}x$$

$$S_0 = \int_{-2.7}^{2.7} P_{\text{верх}}(x) - P_{\text{нижн}}(x) \, \mathrm{d}x = 5.1642$$

Тангенс угла диэлектрических потерь

$$\tan \delta = \frac{1}{\pi} \cdot \frac{S_0}{D_s E_s} = 0.2174$$

Начальное значение диэлектрической проницаемости (См Рис. 4)

$$\varepsilon_{\rm hay}=3104.407$$

Ему соответсвует напряженность (См Рис. 4)

$$E_{\varepsilon_{\mathrm{max}}} = 231000$$

Максимальное значение диэлектрической проницаемости (См Рис. 4)

$$\varepsilon_{\rm max}=13200.885$$

Прочие результаты

- Столбцы 1-5 Таблицы 1 с измеренными величинами $U,\,K_x,\,K_y,\,X,\,Y$
- Столбцы 6-8 Таблицы 1 с вычисленными величинами $E,\,D,\,arepsilon$
- График зависимости D=D(E) (Рис. 3)
- График зависимости $\varepsilon=\varepsilon(E)$ (Рис. 4)
- фотография предельной петли Гистерезиса (Рис. 1)

2. Приложение

Рис. 1. фотография предельной петли Гистерезиса

Рис. 2. Аппроксимация кривых петли Гистерезиса

Рис. 3. График зависимости D=D(E)

Рис. 4. График зависимости $\varepsilon=\varepsilon(E)$

Таблица 1. Измеренные и вычисленные величины

No	U, B	K_x ,	K_y ,	X,	Υ,	E,	D,	arepsilon
		В/дел	В/дел	дел	дел	В/м	K л $/$ м 2	
1	15.000	5.00	5.00	2.4	2.8	264000.00	0.02800	11978.581
2	13.000	5.00	5.00	2.1	2.7	231000.00	0.02700	13200.885
3	11.000	5.00	5.00	1.8	2.3	198000.00	0.02300	13119.398
4	9.000	2.00	2.00	3.6	3.9	158400.00	0.01560	11122.968
5	7.000	2.00	2.00	2.8	2.8	123200.00	0.01120	10267.355
6	5.000	2.00	2.00	2.0	1.4	88000.00	0.00560	7187.149
7	4.400	1.00	1.00	3.6	2.2	79200.00	0.00440	6274.495
8	3.800	1.00	0.50	2.1	3.2	46200.00	0.00320	7822.747
9	3.200	1.00	0.50	2.6	2.3	57200.00	0.00230	4541.330
10	2.600	1.00	0.50	2.1	1.6	46200.00	0.00160	3911.373
11	2.000	0.50	0.20	3.2	2.7	35200.00	0.00108	3465.232
12	1.400	0.50	0.10	2.2	3.1	24200.00	0.00062	2893.527
13	0.400	0.20	0.05	3.1	3.0	13640.00	0.00030	2484.038
14	0.200	0.05	0.02	2.9	1.6	3190.00	0.00006	2265.899