COMP40018.2 Logic Imperial College London

Boxuan Tang

Spring 2021

1 Propositional Logic

Definition 1.1 (Propositional Formula)

- Any propositional atom (p, q, r, etc.) is a formula
- ullet \top and \bot are formulas
- If ϕ is a formula, so is $(\neg \phi)$
- If ϕ and ψ are formulas, so are $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \to \psi)$ and $(\phi \leftrightarrow \psi)$

Aside 1.1 (Binding Convention)

$$(strongest) \neg, \land, \lor, \rightarrow, \leftrightarrow (weakest)$$

Aside 1.2 (Overall Logical Form) The connective at the root of the formation tree is the principal connective which gives rise to the overall logical form.

Aside 1.3 (Subformulas) The subformulas of a formula are the formulas built in the stages on the way to building the formula as in Definition 1.1. Subformulas are repeated if they appear more than once.

Definition 1.2 (Logical Forms)

- \top , \bot , p are called **atomic**
- $\neg \phi$ is a **negated formula** and $\neg \top$, $\neg \bot$ and $\neg p$ are called negated-atomic
- $\phi \wedge \psi$ is a **conjunction** of conjuncts
- $\phi \lor \psi$ is a **disjunction** of disjuncts
- $\phi \rightarrow \psi$ is an **implication** from antecedent to consequent
- $\phi \leftrightarrow \psi$ is a bidirectional implication

Definition 1.3 (Literal & Clauses)

- A formula that is either atomic or negated-atomic is a **literal**
- A clause is a disjunction (\vee) of one or more literals

Literals and clauses are repeated if they appear more than once.

Definition 1.4 (Atomic Evaluation Function) Let A be a set of propositional atoms. An atomic evaluation function $v:A \rightarrow \{tt,ff\}$ assigns truth-values to each atom in A.

Definition 1.5 (Evaluation Functions) Let A be a set of propositional atoms and v an atomic evaluation function for A. The evaluation function $|...|_v$ assigns the truth value (tt) or (ff) to the formulas as follows

$ p _v = tt$	iff	v(p)=tt	$ \phi \wedge \psi _v = tt$	iff	$ \phi _v = tt \ and \ \psi _v = tt$
$ \neg \phi _v = tt$	iff	$ \phi _v = ff$	$ \phi \vee \psi _v = tt$	iff	$ \phi _v = tt \ or \ \psi _v = tt$
$ \top _v = tt$			$ \phi \to \psi _v = tt$	iff	$ \phi _v = ff \ or \ \psi _v = tt$
$ \perp _v = tt$			$ \phi\leftrightarrow\psi _v=tt$	iff	$ \phi _v = \psi _v$

Definition 1.6 (Functional Completeness) A set of Boolean connectives C is functionally complete if any connection of any arity can be defined just in terms of connectives in C. Examples include $\{\uparrow\}$ and $\{\neg, \land\}$.

Aside 1.4 (Translation)

	p but q	$p \wedge q$	p unless q	$p \lor q$	p (strong) unless q	$p \leftrightarrow (\neg q)$
ſ	p only if q	$p \rightarrow q$	p necessary for q	$q \rightarrow p$	p sufficient for q	$p \rightarrow q$

Interjections, commands and questions cannot be translated. Time, permission and obligation are also poorly translated.

Definition 1.7 (Valid Argument) " $\phi_1, \phi_2, ..., \phi_n$ therefore ψ is valid if ϕ is true in every situation where $\phi_1, \phi_2, ..., \phi_n$ is true. We write $\phi_1, \phi_2, ..., \phi_n \models \psi$. \models reads logically entails/implies or semantically entails.

Definition 1.8 (Valid Formula) A propositional formula is logically valid if it is true in every situation

Definition 1.9 (Satisfiable Formula) A propositional formula is satisfiable if it is true in at least one situation

Definition 1.10 (Equivalent Formulas) Two propositional formulas are logically equivalent if they are true in exactly the same situations

Definition 1.11 (Corresponding Implication Formula) Let $\phi_1, \phi_2, ..., \phi_n \models \psi$ be an argument. $\phi_1, \phi_2, ..., \phi_n \rightarrow \psi$ is its corresponding implication formula.

Theorem 1.12 $\phi_1, \phi_2, ..., \phi_n \models \psi$ is a valid formula iff its corresponding implication formula $\phi_1, \phi_2, ..., \phi_n \rightarrow \psi$ is a valid formula

Boxuan Tang Page 2

1.1 Truth Tables

1.2 Direct Argument

Valid Formula: Take any situation. To be a valid formula then it must be true in this situation. ... Since in any situation the formula is true, it is a valid formula.

Equivalence: Take any situation. ϕ is true if and only if This is so if and only if ψ is true. So ϕ and ψ have the same truth value in this situation. Since the situation was arbituary, they are logically equivalent.

OR So ϕ is true in exactly the same situation as ψ . Hence the two formulas are logically equivalent.

1.3 Equivalences

1.3.1 Equivalences involving \wedge

- 1. $\phi \wedge \psi \equiv \psi \wedge \phi$ (commutativity of \wedge)
- 2. $\phi \land \phi \equiv \phi$ (idempotence of \land)
- 3. $\phi \wedge \top \equiv \phi$ and $\top \wedge \phi \equiv \phi$
- 4. $\phi \land \bot \equiv \bot$, $\bot \land \phi \equiv \bot$, $\phi \land \neg \phi \equiv \bot$ and $\neg \phi \land \phi \equiv \bot$
- 5. $(\phi \wedge \psi) \wedge \rho \equiv \phi \wedge (\psi \wedge \rho)$ (associativity of \wedge)

1.3.2 Equivalences involving \lor

- 6. $\phi \lor \psi \equiv \psi \lor \phi$ (commutativity of \lor)
- 7. $\phi \lor \phi \equiv \phi$ (idempotence of \lor)
- 8. $\phi \lor \top \equiv \top$, $\top \lor \phi \equiv \top$, $\phi \lor \neg \phi \equiv \top$ and $\neg \phi \lor \phi \equiv \top$
- 9. $\phi \lor \bot \equiv \phi$ and $\bot \lor \phi \equiv \phi$
- 10. $(\phi \lor \psi) \lor \rho \equiv \phi \lor (\psi \lor \rho)$ (associativity of \lor)

1.3.3 Equivalences involving ¬

- 11. $\neg \top \equiv \bot$
- 12. $\neg \bot \equiv \top$
- 13. $\neg \neg \phi \equiv \phi$

1.3.4 Equivalences involving \rightarrow

- 14. $\phi \to \phi \equiv \top$
- 15. $\top \rightarrow \phi \equiv \phi$
- 16. $\phi \to \top \equiv \top$

Boxuan Tang

- 17. $\perp \rightarrow \phi \equiv \top$
- 18. $\phi \to \bot \equiv \neg \phi$
- 19. $\phi \to \psi \equiv \neg \phi \lor \psi \equiv \neg (\phi \land \neg \psi)$
- 20. $\neg(\phi \to \psi) \equiv \phi \land \neg \psi$

1.3.5 Equivalences involving \leftrightarrow

- 21. $\phi \leftrightarrow \psi \equiv$
 - $(\phi \to \psi) \land (\psi \to \phi)$
 - $(\phi \wedge \psi) \vee (\neg \phi \wedge \neg \psi)$
 - $\bullet \ \neg \phi \leftrightarrow \neg \psi$
- 22. $\neg(\phi \leftrightarrow \psi) \equiv$
 - $\bullet \ \phi \leftrightarrow \neg \psi$
 - $\neg \phi \leftrightarrow \psi$
 - $(\phi \land \neg \psi) \lor (\neg \phi \land \psi)$

1.3.6 De Morgan's Law

- 23. $\neg(\phi \land \psi) \equiv \neg \phi \lor \neg \psi$
- 24. $\neg(\phi \lor \psi) \equiv \neg\phi \land \neg\psi$

1.3.7 Distributivity of \land, \lor

25.
$$\phi \wedge (\psi \vee \rho) \equiv (\phi \wedge \psi) \vee (\phi \wedge \rho)$$
 and $(\psi \vee \rho) \wedge \phi \equiv (\psi \wedge \phi) \vee (\rho \wedge \psi)$

26.
$$\phi \lor (\psi \land \rho) \equiv (\phi \lor \psi) \land (\phi \lor \rho)$$
 and $(\psi \land \rho) \lor \phi \equiv (\psi \lor \phi) \land (\rho \lor \psi)$

1.3.8 Absorption

27.
$$\phi \wedge (\phi \vee \psi) \equiv \phi \vee (\phi \wedge \psi) \equiv \phi$$

1.3.9 Normal Forms

Definition 1.13 (DNF) A formula is in disjunctive normal form if it is a disjunction (\lor) of literals and is not further simplifiable without leaving this form

- From truth table, take the disjunction of conjunctive formulas where the formula evaluates to tt
- A DNF is unsatisfiable iff each of its conjunctions contains some literal and its negation

Boxuan Tang

Definition 1.14 (CNF) A formula is in conjunctive normal form if it is a conjunction (\land) of literals and is not further simplifiable without leaving this form

- From truth table, take the conjunction of clauses where the formula eval-
- A CNF is valid iff each of its conjunctions contains some literal and its negation

1.4 Proof Systems

In the sequent $\phi_1,...,\phi_n \vdash \psi, \phi_1,...,\phi_n$ are premises, and ψ is the conclusion.

\land introduction		∧ elimination	
1. ϕ		1. $\phi \wedge \psi$	
$2. \psi$		$2. \phi$	$\wedge E(1)$
3. $\phi \wedge \psi$	$\wedge I(1,2)$	$3. \psi$	$\wedge E(1)$
		∨ elimination	
		1. $\phi \lor \psi$	
∨ introduction			4 1
$1. \phi$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$2. \phi \lor \psi$	$\vee I(1)$	3. ρ	5. ρ
		6. p	$\vee E(1, 2-3, 4-5)$
\rightarrow introduction			
		\rightarrow elimination	
1. φ	ass	1. $\phi \to \psi$	
$2. \psi$		$2. \phi$	
		$3. \psi$	$\rightarrow E(1,2)$
3. $\phi \to \psi$ \neg introduction	$\rightarrow I(1,2)$,	(, ,
¬ introduction	-	1	
		¬ elimination	
$ $ 1. ϕ	ass	1. $\neg \phi$	
2. ⊥		$2. \phi$	
		3. ⊥	$\neg E(2,1)$
3. $\neg \phi$	$\neg I(1,2)$		
		¬¬ elimination	
$1. \phi$		$1. \neg \neg \phi$	
$2. \neg \neg \phi$	$\neg \neg I(1)$	2. ϕ	E(1)

Boxuan Tang Page 5

\leftrightarrow introduction		\leftrightarrow elimination	
1. $\phi \rightarrow \psi$		1. $\phi \leftrightarrow \psi$	
$2. \ \psi \to \phi$		$2. \phi$	
3. $\psi \leftrightarrow \psi$	$\leftrightarrow I(1,2)$	$3. \psi$	$\leftrightarrow E(1,2)$
\perp introduction		\perp elimination	
$1. \phi$		1. \(\perp\)	
$2. \neg \phi$			
3. ⊥	$\perp I(1,2)$	$2. \phi$	$\perp E(1)$
M 1 77 11		Proof by Contradiction	
Modus Tollens		_	
1. $\phi \to \psi$		$1. \neg \phi$	ass
$2. \neg \psi$		2. ⊥	
$3. \neg \phi$	MT(1,2)		
,	($3. \phi$	PC(1,2)

Definition 1.15 (Natural Deduction Proof) $\phi_1, ..., \phi_n \vdash \psi$ means there is a (natural deduction) proof of ψ starting with $\phi_1, ..., \phi_n$ as premises.

• ϕ is a theorem if $\vdash \phi$

Definition 1.16 (Soundness and Completeness) A proof system is sound if every theorem is valid and complete if every valid formula is a theorem

Theorem 1.17 (Soundness of Natural Deduction) If $\phi_1, ..., \phi_n \vdash \psi$, then $\phi_1, ..., \phi_n \models \psi$

Theorem 1.18 (Completeness of Natural Deduction) If $\phi_1,...,\phi_n \models \psi$, then $\phi_1,...,\phi_n \vdash \psi$

Definition 1.19 (Consistency) A formula ϕ is consistent if $\not\vdash \neg \phi$. A collection $\phi_1, ..., \phi_n$ is consistent if $\not\vdash \bigwedge_{1 \leq i \leq n} \phi$

Theorem 1.20 A formula is consistent iff it is satisfiable

Definition 1.21 (Provable Equivalence) Two formulas ϕ and ψ are probably equivalent if $\phi \vdash \psi$ and $\psi \vdash \phi$, denoted $\phi \dashv \vdash \psi$

Theorem 1.22 Two formulas are provably equivalent iff they are semantically equivalent

Boxuan Tang Page 6