A further list of the Specific Gravitys of bodys, being in proportion as the following numbers.

D Ump water.	1000,
1 Fir dry	5 46.
Elm dry	600
Cedar dry	613
Wallnut tree dry	63 I
Crab tree meanly dry	765
Ash meanly dry, and of the	out-
fide lax part of the tree	734
Ash more dry, but abou	t the
heart	845
Maple dry	755
Yew of a Knot or root 16	years
old .	760
Beech meanly dry	854
Oak very dry, almost worn	n ea-
ten	753
Oak of the outlide sappy	part,
felld a year fince	870
Oak dry, but of a very found	l close
texture	929
The same tryed another tin	ne932
Logwood	913
Claret	993
Moil cider not clear	1017
Sea-water fetled clear	1028
College plain Alethe same	1028
Urine	1030
Milk	1031
Box the same	1031
Redwood the fame	1031
Sack	1033
Beer Vinegar	1034
Pitch	1150
Pit-Coal of Staffordsh,	1240
Speckled wood of Virginia	1313

Lignum

P

L	928]
Lignum Vitæ	1327
Stone bottle	1777
Ivory	1826
Alabaster	1872
Brick	1979
Heddington stone,	the foft lax
kind	2020
Burford stone, as	n old dry
piece	2040
Paving stone a hard	fort from a-
bout Blaidon	2460
Flint	2542
Glass of a quart bott	
Black Italian marble	2704
White Italian ma	arble tryed
twice	270 7
White Italian marble another fort of a vif	e of \mathbf{r}
another fort of a vil	ibly 2718
closer texture	15 1
Block tin	7321
Copper	7321 8843
Lead	11345
Quickfilver	14019
Quickfilver	13593
_	- ,

F - 40 7

The last Experiment was tryd with another quantity of quicksilver, which had been used in water in the preceding experiment: however I rather trust the last, for that I found a small mistake (tho' here in the calculation allowed for,) in the weight of the glass containing the Quicksilver in the tryal before.

The solids here mentioned, were examined Hydrostatically by weighing them in air and water; but the sluids, by weighing an equal portion of each in a glass holding about a quart. The numbers shew the proportion of gravity of equal portions of these bodys: but if of these bodys we take portions equally heavy, their magnitudes

will be reciprocally proportional to their correspondent numbers. e. g. a cubic foot of water is to a cubic foot of Alabaster in gravity as 1000 to 1872; but a pound weight of water, is to a pound weight Alabaster in magnitude, as 1872 to 1000. So that knowing by the former table, the weight of a cubic foot of water, and by this, the proportion in gravity betwixt water and Alabaster; we may by the rule of 3 find the weight of a cubic foot of Alabaster, and so of any other of these bodys; or we may know their magnitude by knowing their gravity. So that an irregular piece or quantity of these bodys being offered, 'tis but weighing them, and we may know their just magnitude without farther trouble.