Exercises in Machine Learning Playing with Kernels

Zdeněk Žabokrtský, Ondřej Bojar Institute of Formal and Applied Linguistics Faculty of Mathematics and Physics Charles University, Prague

Tue Mar 31, 2015

Outline

- ▶ Linear Kernel: $k(\mathbf{x}, \mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$
- ▶ Polynomial Kernel: $k(\mathbf{x}, \mathbf{y}) = (\gamma * \mathbf{x} \cdot \mathbf{y} + \text{coeff0})^{\text{degree}}$
- ▶ RBF Kernel: $k(\mathbf{x}, \mathbf{y}) = exp(-\gamma ||\mathbf{x} \mathbf{y}||^2)$; $\gamma > 0$. . . including their parameters
- Cross-validation Heatmap
- Multi-class SVM
 - For the PAMAP-easy dataset.
 - Regularization parameters.
 - Inseparable classes.

Based on http://scikit-learn.org/stable/modules/svm.html and other scikit-demos.

Regularization (C) in linear SVM

$$k(\mathbf{x},\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$$
 (Linear kernel = no kernel)

The parameter C in (linear) SVM:

- sets the weight of the sum of slack variables.
- serves as a regularization parameter.
- controls the number of support vectors.

	Penalty	Number of		
C	for Errors	points considered	Bias	Variance
Low	Low	Many	High	Low
High	High	Few	Low	High
		Think <i>C</i> for Varian <i>C</i> e.		

Polynomial Kernel

$$k(\mathbf{x}, \mathbf{y}) = (\gamma * \mathbf{x} \cdot \mathbf{y} + \mathsf{coeff0})^{\mathsf{degree}}$$

SVM Poly (degree 1)

SVM Poly (degree 2)

SVM Poly (degree 3)

SVM Poly (degree 4)

SVM Poly (degree 5)

SVM Poly (degree 6)

SVM Poly (degree 7)

SVM Poly (degree 8)

SVM Poly (degree 9)

SVM Poly (degree 3, gamma 0.05)

SVM Poly (degree 3, gamma 0.1)

SVM Poly (degree 3, gamma 0.2)

SVM Poly (degree 3, gamma 0.5)

SVM Poly (degree 3, gamma 0.7)

SVM Poly (degree 3, gamma 1)

SVM Poly (degree 3, gamma 2)

SVM Poly (d=3, g=0.5, coef=-2.0)

SVM Poly (d=3, g=0.5, coef=-1.0)

SVM Poly (d=3, g=0.5, coef=-0.50)

SVM Poly (d=3, g=0.5, coef=0)

SVM Poly (d=3, g=0.5, coef=0.5)

SVM Poly (d=3, g=0.5, coef=1)

SVM Poly (d=3, g=0.5, coef=2)

RBF Kernels

$$k(\mathbf{x}, \mathbf{y}) = exp(-\gamma || \mathbf{x} - \mathbf{y} ||^{2}); \gamma > 0$$

Each training point creates its bell.

-10

- Overall shape is the sum of the bells.
- Kind of "all nearest neighbours".

RBF Kernel Parameters

C	Decision Surface	Model	Bias	Variance
Low	Smooth	Simple	High	Low
High	Peaked	Complex	Low	High

gamma	Affected Points
Low	can be far from training examples
High	must be close to training examples

- Does higher gamma lead to higher variance?
- Choice critical for SVM performance.
- ▶ Advised to use GridSearchCV for *C* and gamma:
 - exponentially spaced probes
 - wide range

SVM RBF (C=0.05, gamma=2)

SVM RBF (C=0.1, gamma=2)

SVM RBF (C=0.2, gamma=2)

SVM RBF (C=0.5, gamma=2)

SVM RBF (C=0.6, gamma=2)

SVM RBF (C=0.7, gamma=2)

SVM RBF (C=1, gamma=2)

SVM RBF (C=2, gamma=2)

SVM RBF (C=0.5, gamma=0.05)

SVM RBF (C=0.5, gamma=0.1)

SVM RBF (C=0.5, gamma=0.2)

SVM RBF (C=0.5, gamma=0.5)

SVM RBF (C=0.5, gamma=0.7)

SVM RBF (C=0.5, gamma=1)

SVM RBF (C=0.5, gamma=2)

SVM RBF (C=0.5, gamma=5)

SVM RBF (C=0.5, gamma=10)

Cross-validation Heatmap

http://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html

Multi-class SVM

Two implementations in scikit-learn:

- ▶ SVC: one-against-one
 - n(n-1)/2 classifiers constructed
 - supports various kernels, incl. custom ones
- LinearSVC: one-vs-the-rest
 - n classifiers trained

PAMAP-easy Training Data

Default View (every 200)

SVC with linear kernel

SVC with RBF kernel (gamma 0.7)

SVC with polynomial (degree 3) kernel LinearSVC (linear kernel)

regularization: C=1.0

Default View (every 300)

SVC with linear kernel

SVC with RBF kernel (gamma 0.7)

SVC with polynomial (degree 3) kernel LinearSVC (linear kernel)

regularization: C=1.0

Default View (every 400)

SVC with linear kernel

SVC with RBF kernel (gamma 0.7)

SVC with polynomial (degree 3) kernel LinearSVC (linear kernel)

regularization: C=1.0

SVC with linear kernel

SVC with RBF kernel (gamma 0.7)

SVC with polynomial (degree 3) kernel LinearSVC (linear kernel)

regularization: C=0.5

SVC with linear kernel

SVC with RBF kernel (gamma 0.7)

SVC with polynomial (degree 3) kernel LinearSVC (linear kernel)

regularization: C=1.0

SVC with linear kernel

SVC with RBF kernel (gamma 0.7)

SVC with polynomial (degree 3) kernel LinearSVC (linear kernel)

regularization: C=5.0

SVC with linear kernel

SVC with RBF kernel (gamma 0.7)

SVC with polynomial (degree 3) kernel LinearSVC (linear kernel)

regularization: C=10.0

SVC with linear kernel

SVC with RBF kernel (gamma 0.7)

SVC with polynomial (degree 3) kernel LinearSVC (linear kernel)

regularization: C=20.0

SVC with linear kernel

SVC with RBF kernel (gamma 0.7)

SVC with polynomial (degree 3) kernel

SVC with polynomial (degree 3) kernel LinearSVC (linear kernel)

regularization: C=50.0

SVC with linear kernel

SVC with RBF kernel (gamma 0.7)

SVC with polynomial (degree 3) kernel LinearSVC (linear kernel)

regularization: C=500.0

SVC with linear kernel

SVC with RBF kernel (gamma 0.7)

SVC with polynomial (degree 3) kernel LinearSVC (linear kernel)

regularization: C=5000.0

Inseparable classes 12,13 (every 200)

SVC with linear kernel

SVC with RBF kernel (gamma 0.7)

SVC with polynomial (degree 3) kernel LinearSVC (linear kernel)

regularization: C=1.0

Inseparable classes 12,13 (every 100)

SVC with RBF kernel (gamma 0.7) SVC with linear kernel SVC with polynomial (degree 3) kernel LinearSVC (linear kernel)

regularization: C=1.0

Inseparable classes 12,13 (every 80)

SVC with linear kernel

SVC with RBF kernel (gamma 0.7)

SVC with polynomial (degree 3) kernel LinearSVC (linear kernel)

ූ රාත ද රාත_ර

regularization: C=1.0

Inseparable classes 12,13 (every 60)

SVC with linear kernel

SVC with RBF kernel (gamma 0.7)

SVC with polynomial (degree 3) kernel LinearSVC (linear kernel)

regularization: C=1.0

Inseparable classes 12,13 (every 55)

SVC with linear kernel

SVC with RBF kernel (gamma 0.7)

SVC with polynomial (degree 3) kernel LinearSVC (linear kernel)

regularization: C=1.0

Task and Homework

- Required minimum: For PAMAP-Easy:
 - Cross-validate to choose between linear, poly and RBF.
 - Create the heatmap for RBF.
 - ▶ Use the GridSearchCV to find the best *C* and gamma.
- Optional: n-fold cross-validation for GridSearchCV:
 - Use just the training data, perhaps subsampled.
 - ▶ Run GridSearchCV n times, using each 1/n as the test set and the remaining 9/n as the training data.
 - ► Report min, max, average and standard deviation of achieved *C*, gamma and test error.
- Try to implement it as a generic command-line utility.
- Just call it from the Makefile.

Due: 2 weeks from now, i.e. April 14.