## Sorting Algorithms - An Overview

Huynh Minh Tuan<sup>1</sup> and Bui Huy Thong<sup>2</sup>

1,2</sup>Ho Chi Minh University of Science

November 2021

#### Abstract

Sorting is nothing but alphabetizing, categorizing, arranging, or putting items in an ordered sequence. It is a key fundamental operation in the field of computer science. It is of extreme importance because it adds usefulness to data. In this report, I have compared eleven common sorting algorithms (Selection Sort, Insertion Sort, Bubble Sort, Shaker Sort, Shell Sort, Heap Sort, Merge Sort, Quick Sort, Counting Sort, Radix Sort, and Flash Sort). I have developed a program in C++, Python and experimented with several input sizes 10,000, 30,000, 50,000, 100,000, 300,000, and 500,000 elements. The performance and efficiency of these algorithms in terms of CPU time consumption as well as the number of comparisons that have been recorded and presented in tabular and graphical form.

## 1. Introduction

Sorting is not a leap but it has emerged in parallel with the development of the human mind. In computer science, alphabetizing, arranging, categorizing, or putting data items in an ordered sequence on the basis of similar properties is called sorting. Sorting is of key importance because it optimizes the usefulness of data. We can observe plenty of sorting examples in our daily life, e.g. we can easily find required items in a shopping mall or utility store because the items are kept categorically.

The items to be sorted may be in various forms i.e. random as a whole, already sorted, very small or extremely large in numer, sorted in reverse order etc. There is no algorithm that is best for sorting all types of data. We must be familiar with sorting algorithms in terms of their suitability in a particular situation.

In this paper, I am going to compare eleven common sorting algorithms (Selection Sort, Insertion Sort, Bubble Sort, Shaker Sort, Shell Sort, Heap Sort, Merge Sort, Quick Sort, Counting Sort, Radix Sort, and Flash Sort) for their CPU time consumption and number of compared operations on four different data arrangements (Sorted data (in ascending order), Nearly sorted data, Revherse sorted data, and Randomized data).

## 2. Algorithm presentation

#### 2.1. Selection Sort

#### Idea

The Selection Sort is based on the idea of finding the minimum element in an unsorted array and then putting it in its correct position in a sorted array.

#### Pseudo code

```
Algorithm 2.1: Selection Sort
  Input: a_1, a_2, ..., a_N
  Output: a_1, a_2, ..., a_N (in sorted)
1 for i \leftarrow 1 to N do
      minIndex \leftarrow i
      for j \leftarrow i + 1 to N do
3
          if a_{minIndex} > a_j then
4
              minIndex \leftarrow j
5
6
          end
7
      end
8
      swap(a_{minIndex}, a_i)
9 end
```

## Complexity

In each stage, the algorithm takes the smallest unsorted element. In initial stage, the data has N elements, so the algorithm needs n-1 steps and moves the current smallest number to the top of the data. After this stage, number of unsorted elements remains to n-1, and this number will be reduced until it equal to one. Conclusion, the number of comparisions:

$$(n-1) + (n-2) + \dots + 2 + 1 = \frac{n(n-1)}{2}$$

So the complexity of this algorithm is  $O(N^2)$ .

Best case time complexity:  $O(N^2)$ Average case time complexity:  $O(N^2)$ Worst case time complexity:  $O(N^2)$ Worst case space complexity: O(1)

#### 2.2. Insertion Sort

#### Idea

The main idea of insertion sort is that array is divided in two parts which left part is already sorted, and right part is unsorted. Values from the unsorted part are picked and placed at the correct position in the sorted part. So, at every iteration sorted part grows by one element which is called key. During an iteration, if compared element is greater than key then compared element has to shift to right to open a position for key.

## Pseudo code

### Algorithm 2.2: Insertion Sort

```
Input: a_1, a_2, ..., a_N
   Output: a_1, a_2, ..., a_N (in sorted)
1 for i \leftarrow 2 to N do
       k \leftarrow i - 1
        key \leftarrow a_i
3
        while a_k > key and k \ge 0 do
4
             a_{k+1} \leftarrow a_k
5
             k \leftarrow k - 1
6
7
        \mathbf{end}
8
       a_{k+1} \leftarrow key
9 end
```

## Complexity

To evaluate the complexity of Insertion Sort, the number of comparisions and assignments need to be calculated. At each stage, the algorithm find a suitable position for an unsorted element. The finding part requires at most O(N) comparisons and assignments, and the best case is O(1) if the unsorted element is at the end of sorted section.

```
Best case time complexity: O(N)
Average case time complexity: O(N^2)
Worst case time complexity: O(N^2)
Worst case space complexity: O(1)
```

#### 2.3. Bubble Sort

#### Idea

Bubble sort is based on the idea of repeatedly comparing pairs of adjacent elements and then swapping their positions if they exist in the wrong order.

#### Pseudo code

12 end

# Algorithm 2.3: Bubble Sort Input: $a_1, a_2, ..., a_N$ Output: $a_1, a_2, ..., a_N$ (in sorted)

```
Output: a_1, a_2, ..., a_N (in sorted)
 1 for i \leftarrow N to 1 do
        isSwap \leftarrow False
 \mathbf{2}
        for j \leftarrow 1 to i - 1 do
 3
             if a_i > a_{i+1} then
 4
                  isSwap \leftarrow True
 \mathbf{5}
 6
                  \operatorname{swap}(a_j, a_{j+1})
             end
 7
 8
        if isSwap = False then
 9
             stop algorithm
10
        end
11
```

In this paper, I implemented bubble sort with a flag isSwap to stop the algorithm early when the array is sorted.

The number of comparisons is n-1 is first stage, and so on n-2, n-1, ..., 1. The number of swaps in the worst case is same as the number of comparisions and best case is 0 (sorted data). So on all best case and worst case the complexity of this algorithm is  $O(N^2)$ . But in reality, the algorithm runs faster in sorted array than in other data.

Best case time complexity:  $O(N^2)$ Average case time complexity:  $O(N^2)$ Worst case time complexity:  $O(N^2)$ Worst case space complexity: O(1)

#### 2.4. Shaker Sort

#### Idea

Shaker sort is a bidirectional version of bubble sort. The Bubble sort algorithm always traverses elements from left and moves the largest element to its correct position in first iteration and second largest in second iteration and so on. Shaker sort orders the array in both directions. Hence every iteration of the algorithm consists of two phases. In the first one, the lightest bubble ascends to the end of the array, in the second phase the heaviest bubble descends to the beginning of the array.

#### Pseudo code

## Complexity

The complexity of the Shaker sort algorithm is exactly the same as that of Bubble sort, the only difference is that the running time is faster because the number of steps is less. In general, when talking about the complexity, it's still  $O(N^2)$  in any case.

Best case time complexity:  $O(N^2)$ Average case time complexity:  $O(N^2)$ Worst case time complexity:  $O(N^2)$ Worst case space complexity: O(1)

#### 2.5. Shell Sort

## Idea

Shell sort is a generalized version of the insertion sort algorithm. It first sorts elements that are far apart from each other and successively reduces the interval between the elements to be sorted.

The interval between the elements is reduced based on the sequence used. Some of the optimal sequences that can be used in the shell sort algorithm are:

- Shell's original sequence
- Knuth's increments
- Sedgewick's increments
- Hibbard's increments
- •

In this paper, I only implemented the algorithm with optimal sequence based on Shell's original sequence.

## Algorithm 2.4: Shaker Sort

```
Input: a_1, a_2, ..., a_N
    Output: a_1, a_2, ..., a_N (in sorted)
 1 left \leftarrow 0
 2 right \leftarrow N-1
 \mathbf{3} \ k \leftarrow 0
 4 for i \leftarrow left to right do
        // phase 1
        isSwap \leftarrow False
 \mathbf{5}
        for j \leftarrow left to right - 1 do
 6
             if a_j > a_{j+1} then
 7
                  isSwap \leftarrow True
 8
                  swap(a_j, a_{j+1})
 9
                  k \leftarrow j
10
             \quad \text{end} \quad
11
12
        end
        if isSwap = False then
13
             stop algorithm
14
        end
15
        right \leftarrow k
16
        // phase 2
        isSwap \leftarrow False
17
        for j \leftarrow right \ to \ left + 1 \ do
18
             if a_j < a_{j-1} then
19
                  isSwap \leftarrow True
20
21
                  \operatorname{swap}(a_j, a_{j-1})
                  k \leftarrow j
22
             end
23
        end
\mathbf{24}
        if isSwap = False then
25
             stop algorithm
26
        end
27
        left \leftarrow k
28
29 end
```

#### Algorithm 2.5: Shell Sort

```
Input: a_1, a_2, ..., a_N
    Output: a_1, a_2, ..., a_N (in sorted)
 1 interval \leftarrow \frac{1}{2}
 2 while interval > 0 do
 3
         for i \leftarrow interval \ to \ N \ do
              temp \leftarrow a_i
 4
              j \leftarrow i
 \mathbf{5}
              while interval \leq j and a_{j-interval} > temp do
 6
 7
                   a_j \leftarrow a_{j-interval}
                   j \leftarrow j - interval
 8
              end
 9
         end
10
         a_j \leftarrow temp
11
         interval \leftarrow \frac{interval}{2}
12
13 end
```

#### Pseudo code

## Complexity

The complexity of this algorithm bases on M, which is length of the interval between the elements. The evaluation of the complexity of Shell Sort is still an open problem, with no solution.

Worst case space complexity: O(M)

## 2.6. Heap Sort

#### Idea

Heap sort is a comparison-based sorting algorithm. Heap sort can be thought of as an improved selection sort: like selection sort, heap sort divides its input into a sorted and an unsorted region, and it iteratively shrinks the unsorted region by extracting the largest element from it and inserting it into the sorted region.

Unlike selection sort, heapsort does not waste time with a linear-time scan of the unsorted region; rather, heap sort maintains the unsorted region in a **heap data structure** to more quickly find the largest element in each step.

## Pseudo code

#### Complexity

In first stage, the complexity of the max-heap construction is O(N). In second stage, the complexity is  $O(N \log N)$  because the algorithm needs to take N heap adjustment, each adjustment takes at most  $O(\log N)$ .

Best case time complexity: O(N)

Average case time complexity:  $O(N \log N)$ Worst case time complexity:  $O(N \log N)$ 

Worst case space complexity: O(1)

```
Algorithm 2.6: Heap Sort
   Input: a_1, a_2, ..., a_N
   Output: a_1, a_2, ..., a_N (in sorted)
 1 Function HeapRebuild(a, pos, N):
       while 2 \cdot pos + 1 \le N do
            j = 2 \cdot pos + 1
 3
           if j < N then
 4
               if a_j < a_{j+1} then
 \mathbf{5}
                 j \leftarrow j+1
 6
                \mathbf{end}
 7
           \quad \text{end} \quad
 8
           if a_{pos} \geq a_j then
 9
             return
10
11
           end
           swap(a_{pos}, a_j)
12
           pos \leftarrow j
13
       end
14
15 Function HeapConstruct(a, N):
       for i \leftarrow N/2 to 0 do
16
           HEAPREBUILD(a, i, n)
17
       \quad \text{end} \quad
18
19 Function HeapSort(a, N):
       HeapConstruct(a, N)
20
       r \leftarrow N
21
       while r > 0 do
22
           swap(a_1, a_N)
23
            HEAPREBUILD(a, 1, r)
\mathbf{24}
           r \leftarrow r-1
25
       end
26
```

## 2.7. Merge Sort

#### Idea

Merge sort is a recursive sorting algorithm based on a "divide and conquer" approach. It divides the input array into two halves, calls itself for the two halves, and then merges the two sorted halves.

#### Pseudo code

```
Algorithm 2.7: Merge Sort
    Input: a_1, a_2, ..., a_N
    Output: a_1, a_2, ..., a_N (in sorted)
 1 Function Merge(a, first, mid, last):
        n_1 \leftarrow mid - first + 1
 \mathbf{2}
        n_2 \leftarrow last-mid
 3
 4
         L \leftarrow a_{first}, a_{first+1}, ..., a_{mid}
         R \leftarrow a_{mid+1}, a_{mid+2}, ..., a_{last}
         // merge
        i \leftarrow 0
 6
        j \leftarrow 0
 7
 8
        k \leftarrow first
 9
         while i < n_1 and j < n_2 do
             if L_i < R_j then
10
                  a_k \leftarrow L_i
11
                  i \leftarrow i+1
12
             else
13
                  a_k \leftarrow R_i
14
                 j \leftarrow j + 1
15
             \mathbf{end}
16
             k \leftarrow k + 1
17
        \quad \mathbf{end} \quad
18
         while j < n_2 do
19
             a_k \leftarrow R_j
20
             k \leftarrow k+1
\mathbf{21}
             j \leftarrow j + 1
22
         end
23
         while i < n_1 do
\mathbf{24}
             a_k \leftarrow L_i
25
             k \leftarrow k+1
26
             i \leftarrow i+1
27
        end
28
    Function MergeSort(a, first, last):
29
        if first < last then
30
             mid \leftarrow first + (last - first)/2
31
             MergeSort(a, first, mid)
32
33
             MergeSort(a, mid + 1, last)
             Merge(a, first, mid, last)
34
35
         end
```

Best case time complexity:  $O(N \log N)$ Average case time complexity:  $O(N \log N)$ Worst case time complexity:  $O(N \log N)$ Worst case space complexity: O(N)

## 2.8. Quick Sort

#### Idea

Like Merge Sort, Quick Sort is a Divide and Conquer algorithm. It picks an element as a pivot and partitions the given array around the picked pivot. There are many different versions of quickSort that pick pivot in different ways.

- Pick first element as pivot.
- Pick last element as pivot
- Pick a random element as pivot.
- Pick median as pivot.

In this paper, I implemented the algorithm with pivot is a median of array.

#### Pseudo code

```
Algorithm 2.8: Quick Sort
   Input: a_1, a_2, ..., a_N
    Output: a_1, a_2, ..., a_N (in sorted)
 1 Function Partition(a, l, r):
 \mathbf{2}
        pivot \leftarrow a_{(l+r)/2}
 3
        while l \le r do
             while a_l < pivot do
 4
              l \leftarrow l + 1
 \mathbf{5}
            end
 6
            while a_r > pivot do
 7
             r \leftarrow r - 1
 8
            end
            if l \leq r then
10
                \operatorname{swap}(a_l, a_r)
11
                 l \leftarrow l + 1
12
                r \leftarrow r - 1
13
            end
14
15
        end
        return l
16
   Function QuickSort (a, l, r):
17
        if l < r then
18
            mid \leftarrow \text{Partition}(a, l, r)
19
             QuickSort(a, l, mid - 1)
20
            QuickSort(a, mid, r)
\mathbf{21}
22
        end
```

Best case time complexity: O(N)Average case time complexity:  $O(N \log N)$ Worst case time complexity:  $O(N^2)$ Worst case space complexity:  $O(\log N)$ 

## 2.9. Counting Sort

#### Idea

Counting sort is a sorting algorithm that sorts the elements of an array by counting the number of occurrences of each unique element in the array. The count is stored in an auxiliary array and the sorting is done by mapping the count as an index of the auxiliary array.

#### Pseudo code

## Algorithm 2.9: Counting Sort

```
Input: a_1, a_2, ..., a_N
   Output: a_1, a_2, ..., a_N (in sorted)
 1 maxVal \leftarrow a_0
 2 for i \leftarrow 1 to N do
       if a_i > maxVal then
         maxVal \leftarrow a_i
       end
 5
 7 count \leftarrow [0] * (maxVal + 1) // initialize 0-value counting array
 s foreach u \in a do
       count_u \leftarrow count_u + 1
10 end
   // restore the elements to array
11 idx \leftarrow 0
12 for i \leftarrow 0 to maxVal do
       while count_i > 0 do
13
           a_{idx} \leftarrow i
14
           idx \leftarrow idx + 1
15
16
           count_i \leftarrow count_i - 1
       end
17
18 end
```

### Complexity

The complexity of Counting Sort depends on the difference of the largest and smallest element of the input array.

Best case time complexity: O(N + K)Average case time complexity: O(N + K)Worst case time complexity: O(N + K)Worst case space complexity: O(K)

where K is the difference of the largest and smallest element of the input array.

### 2.10. Radix Sort

#### Idea

The idea of Radix Sort is to do digit by digit sort starting from least significant digit to most significant digit. Radix sort uses counting sort as a subroutine to sort.

#### Pseudo code

```
Algorithm 2.10: Radix Sort
   Input: a_1, a_2, ..., a_N
   Output: a_1, a_2, ..., a_N (in sorted)
 1 \ maxVal \leftarrow a_0
 2 for i \leftarrow 1 to N do
       if a_i > maxVal then
           maxVal \leftarrow a_i
 4
       end
 5
 6 end
 7 \ exp \leftarrow 1
 8 while \frac{maxVal}{exp} > 0 do
       digit \leftarrow array  with of N elements
       for i \leftarrow 1 to N do
10
            // get corresponding digit
           digit_i \leftarrow \frac{a_i}{exp} \mod 10
11
12
       end
       // do counting sort of a[] according to the digit represented by exp
13
       CountingSort(a, n, digit)
       exp \leftarrow exp \cdot 10
14
15 end
```

#### Complexity

In this paper, the algorithm is implemented in base 10. So the complexity is  $O(N \log_{10} M)$ , where Max is maximum value of input array.

```
Best case time complexity: O(N \cdot d)
Average case time complexity: O(N \cdot d)
Worst case time complexity: O(N \cdot d)
Worst case space complexity: O(N)
where d is the maximum number of digits, equal to (\log_{10} M).
```

#### 2.11. Flash Sort

#### Idea

The main idea of Flash Sort is to assign each of the n input elements to one of m partitions, efficiently rearranges the input to place the partitions in the correct order, then sorts each partition.

The algorithm can be represented as four stages:

- 1. The number of partitions is calculated.
- 2. Set clear boundaries in our original array for every partitions.

- 3. Rearrange the elements in the original array so that each of them was in its place, in its partition.
- 4. Do Insertion Sort for sorting locally.

## ${\bf Pseudo~code}$

46 end

## Algorithm 2.11: Flash Sort

```
Input: a_1, a_2, ..., a_N
    Output: a_1, a_2, ..., a_N (in sorted)
    // stage 1
    // d should be in range [0.4, 0.6]
 1 m \leftarrow d \cdot n
    // stage 2
 2 minVal \leftarrow a_1
 \mathbf{3} \ maxIndex \leftarrow 1
 4 for i \leftarrow 1 to N do
        if a_i < minVal then
           minVal \leftarrow a_i
 6
        end
 7
        if a_{maxIndex} < a_i then
 8
         | maxIndex \leftarrow i
 9
        end
10
11 end
12 if a_{maxIndex} == minVal then
stop algorithm
14 end
    // classify elements into corresponding partition
         a_{maxIndex} - minVal
16 for i \leftarrow 1 to N do
        cls \leftarrow c \cdot (a_i - minVal)
18
        L_{cls} \leftarrow L_{cls} + 1
19 end
20 for i \leftarrow 1 to m do
21 	 L_i \leftarrow L_i + L_{i-1}
22 end
    // stage 3
23 swap(a_{maxIndex}, a_1) nmove \leftarrow 0
24 j \leftarrow 0
25 k \leftarrow m - 1
26 t \leftarrow 0
27 while nmove < N do
        while j > L_k - 1 do
            j \leftarrow j + 1
29
            k \leftarrow c \cdot (a_j - minVal)
30
31
        \mathbf{end}
        flash \leftarrow a_j
32
        if k \neq 0 then
33
         break
34
35
        end
        while j \neq L_k do
36
            k \leftarrow c \cdot (flash - minVal)
37
             L_k \leftarrow L_k - 1
38
            t \leftarrow L_k
39
             hold \leftarrow a_t
40
            a_t \leftarrow flash
41
             flash \leftarrow hold
\mathbf{42}
            nmove \leftarrow nmove + 1
\mathbf{43}
        end
44
        // stage 4
        InsertionSort(a, n)
\mathbf{45}
```

The time complexity of Flash Sort base on choosing value m. On average, there are  $\frac{N}{m}$  elements in each partition, so the complexity for sorting each partition is  $O(\frac{N^2}{m^2})$ . The total time complexity is  $O(\frac{N^2}{m^2} \cdot m)$  for m partitions. For example, if m is chosen proportional to  $\sqrt{N}$ , the time complexity is  $O(N^{3/2})$ . In this paper, I chose 0.43 for m, the average complexity will be approximately O(N).

Space complexity: O(m)

## 3. Experimental results

All the eleven sorting algorithms were implemented in C++ programming language and tested on six input of lenght 10000, 30000, 50000, 100000, 300000, and 500000 of four data orders (Sorted data, Nearly sorted data, Reverse sorted data and Randomized data). All experiments were executed on machine Operating System having Intel(R) Core(TM) i5-10210U CPU @ 1.60Ghz (8 CPUs) and installed memory (RAM) 8GB. The results were calculated after tabulation and their graphical represention was developed using Python programming language.

|           |           | Data        | a Order: Sorted | l data      |            |              |
|-----------|-----------|-------------|-----------------|-------------|------------|--------------|
| Data size | 10,000    |             | 30,000          |             | 50,000     |              |
| Result    | Time (ms) | Comparision | Time (ms)       | Comparision | Time (ms)  | Comparision  |
| Selection | 112.733   | 50005001    | 993.92          | 450015001   | 2661.613   | 1250025001   |
| Insertion | 0.052     | 19999       | 0.119           | 59999       | 0.177      | 99999        |
| Bubble    | 0.029     | 20001       | 0.067           | 60001       | 0.114      | 100001       |
| Shaker    | 0.026     | 20001       | 0.073           | 60001       | 0.129      | 100001       |
| Shell     | 0.558     | 240024      | 1.762000        | 780029      | 3.423000   | 1400028      |
| Heap      | 2.333     | 518705      | 5.418           | 1739633     | 9.129000   | 3056481      |
| Merge     | 1.694     | 406234      | 3.632           | 1332186     | 6.21       | 2320874      |
| Quick     | 0.598     | 193611      | 1.327           | 627227      | 2.218      | 1084459      |
| Counting  | 0.162     | 60003       | 0.369           | 180003      | 0.572      | 300003       |
| Radix     | 1.489     | 170106      | 3.738           | 630132      | 7.198      | 1050132      |
| Flash     | 0.597     | 103496      | 1.118           | 310496      | 2.359      | 517496       |
| Data size | 100,000   |             | 300,000         |             | 500,000    |              |
| Result    | Time (ms) | Comparision | Time (ms)       | Comparision | Time (ms)  | Comparision  |
| Selection | 11578.892 | 5000050001  | 101293.857      | 45000150001 | 281740.886 | 125000250001 |
| Insertion | 0.411     | 199999      | 1.044           | 599999      | 1.829      | 999999       |
| Bubble    | 0.282     | 200001      | 0.765           | 600001      | 1.303      | 1000001      |
| Shaker    | 0.245     | 200001      | 0.778           | 600001      | 1.272      | 1000001      |
| Shell     | 7.336     | 3000029     | 25.944          | 10200035    | 41.04      | 17000033     |
| Heap      | 19.542    | 6519813     | 60.3            | 21431637    | 102.634    | 37116275     |
| Merge     | 1.694     | 406234      | 3.632           | 1332186     | 6.21       | 2320874      |
| Quick     | 13.286    | 4891754     | 43.119          | 15848682    | 71.659     | 27234634     |
| Counting  | 1.267     | 600003      | 3.35            | 1800003     | 5.708      | 3000003      |
| Radix     | 13        | 2100132     | 44.787          | 7500158     | 76.2       | 12500158     |
| Flash     | 4.02      | 1034996     | 11.634          | 3104996     | 19.422     | 5174996      |

Table 1: Experimental results on sorted data

|           |           | Data Oı     | der: Nearly So | rted data   |            |              |
|-----------|-----------|-------------|----------------|-------------|------------|--------------|
| Data size | 10,000    |             | 30,000         |             | 50,000     |              |
| Result    | Time (ms) | Comparision | Time (ms)      | Comparision | Time (ms)  | Comparision  |
| Selection | 114.804   | 50005001    | 892.508        | 450015001   | 2815.055   | 1250025001   |
| Insertion | 0.272     | 186007      | 0.533          | 421299      | 1.59       | 792443       |
| Bubble    | 138.364   | 95109345    | 825.406        | 773520000   | 2760.609   | 2463630480   |
| Shaker    | 0.538     | 195793      | 1.251          | 470236      | 2.147      | 833872       |
| Shell     | 0.675     | 288983      | 2.146          | 907030      | 4.659      | 1684266      |
| Heap      | 1.407     | 518491      | 5.226          | 1739623     | 11.406     | 3056352      |
| Merge     | 1.052     | 421044      | 3.477          | 1381719     | 5.788      | 2407406      |
| Quick     | 0.422     | 193651      | 1.343          | 627279      | 2.527      | 1084495      |
| Counting  | 0.122     | 60003       | 0.364          | 180003      | 0.519      | 300003       |
| Radix     | 1.026     | 170106      | 3.725          | 630132      | 6.265      | 1050132      |
| Flash     | 0.455     | 103470      | 1.063          | 310464      | 1.951      | 517470       |
| Data size | 100,000   |             | 300,000        |             | 500,000    |              |
| Result    | Time (ms) | Comparision | Time (ms)      | Comparision | Time (ms)  | Comparision  |
| Selection | 10517.345 | 5000050001  | 98131.833      | 45000150001 | 268308.098 | 125000250001 |
| Insertion | 2.862     | 2143771     | 3.917          | 2784471     | 9.615      | 7687035      |
| Bubble    | 10614.255 | 9835488445  | 91618.611      | 80529222960 | 244003.655 | 214177110017 |
| Shaker    | 6.193     | 2239517     | 9.282          | 3358098     | 21.366     | 8256564      |
| Shell     | 9.193     | 3710600     | 28.038         | 11204764    | 39.989     | 19115054     |
| Heap      | 18.311    | 6519703     | 57.692         | 21431472    | 90.107     | 37116054     |
| Merge     | 13.929    | 5052616     | 40.513         | 16239347    | 63.774     | 27981864     |
| Quick     | 4.53      | 2268955     | 15.264         | 7275735     | 22.691     | 12475755     |
| Counting  | 0.962     | 600003      | 3.102          | 1800003     | 4.906      | 3000003      |
| Radix     | 12.661    | 2100132     | 46.058         | 7500158     | 65.558     | 12500158     |
| Flash     | 3.757     | 1034972     | 10.606         | 3104966     | 17.504     | 5174966      |

Table 2: Experimental results on nearly sorted data

|           |           | Data Or     | der: Reverse So | orted data  |            |              |
|-----------|-----------|-------------|-----------------|-------------|------------|--------------|
| Data size | 10,000    |             | 30,000          |             | 50,000     |              |
| Result    | Time (ms) | Comparision | Time (ms)       | Comparision | Time (ms)  | Comparision  |
| Selection | 114.984   | 50005001    | 1031.539        | 450015001   | 2892.041   | 1250025001   |
| Insertion | 130.475   | 100009999   | 1284.959        | 900029999   | 3295.286   | 2500049999   |
| Bubble    | 313.577   | 100020000   | 2865.468        | 900060000   | 7252.795   | 2500100000   |
| Shaker    | 315.843   | 100015000   | 3064.203        | 900045000   | 8452.464   | 2500075000   |
| Shell     | 0.796     | 355157      | 2.491           | 1164030     | 6.851      | 2144607      |
| Heap      | 1.503     | 476739      | 5.202           | 1622791     | 10.956     | 2848016      |
| Merge     | 1.118     | 411833      | 3.672           | 1353961     | 6.06       | 2351433      |
| Quick     | 0.586     | 203608      | 1.744           | 657224      | 2.843      | 1134456      |
| Counting  | 0.098     | 60003       | 0.307           | 180003      | 0.602      | 300003       |
| Radix     | 1.44      | 170106      | 5.409           | 630132      | 7.315      | 1050132      |
| Flash     | 0.384     | 86006       | 1.197           | 258006      | 1.951      | 430006       |
| Data size | 100,000   |             | 300,000         |             | 500,000    |              |
| Result    | Time (ms) | Comparision | Time (ms)       | Comparision | Time (ms)  | Comparision  |
| Selection | 10639.041 | 5000050001  | 94140.473       | 45000150001 | 254863.245 | 125000250001 |
| Insertion | 12228.275 | 10000099999 | 104455.571      | 90000299999 | 288450.598 | 250000499999 |
| Bubble    | 29184.735 | 10000200000 | 245922.443      | 90000600000 | 678899.144 | 250001000000 |
| Shaker    | 30121.16  | 10000150000 | 261173.905      | 90000450000 | 745604.906 | 250000750000 |
| Shell     | 9.091     | 4589168     | 31.2            | 14901826    | 49.912     | 25357556     |
| Heap      | 18.817    | 6087452     | 58.036          | 20187386    | 95.207     | 35135730     |
| Merge     | 13.076    | 4952873     | 40.821          | 16029865    | 71.813     | 27643913     |
| Quick     | 4.969     | 2368920     | 15.282          | 7575704     | 27.513     | 12975704     |
| Counting  | 0.984     | 600003      | 3.02            | 1800003     | 5.921      | 3000003      |
| Radix     | 12.885    | 2100132     | 40.176          | 7500158     | 70.372     | 12500158     |
| Flash     | 3.859     | 860006      | 11.693          | 2580006     | 19.106     | 4300006      |

Table 3: Experimental results on reverse sorted data

|           |           | Data O      | rder: Randomi | zed data    |            |              |
|-----------|-----------|-------------|---------------|-------------|------------|--------------|
| Data size | 10,000    |             | 30,000        |             | 50,000     |              |
| Result    | Time (ms) | Comparision | Time (ms)     | Comparision | Time (ms)  | Comparision  |
| Selection | 105.579   | 50005001    | 939.037       | 450015001   | 2628.237   | 1250025001   |
| Insertion | 58.019    | 50154899    | 527.028       | 450626857   | 1472.483   | 1252137825   |
| Bubble    | 313.057   | 100014960   | 2911.841      | 900031101   | 8322.806   | 2499993072   |
| Shaker    | 228.12    | 66809284    | 2131.684      | 600367899   | 6039.776   | 1666554000   |
| Shell     | 1.773     | 509398      | 6.287         | 1854582     | 11.558     | 3789217      |
| Heap      | 1.746     | 497238      | 5.839         | 1681366     | 13.595     | 2951638      |
| Merge     | 1.593     | 463289      | 5.421         | 1528817     | 9.442      | 2664667      |
| Quick     | 1.345     | 286986      | 4.395         | 933275      | 8.178      | 1611537      |
| Counting  | 0.172     | 60001       | 0.549         | 180003      | 0.895      | 300001       |
| Radix     | 0.919     | 170106      | 3.41          | 630132      | 6.978      | 1050132      |
| Flash     | 1.746     | 497238      | 5.839         | 1681366     | 13.595     | 2951638      |
| Data size | 100,000   |             | 300,000       |             | 500,000    |              |
| Result    | Time (ms) | Comparision | Time (ms)     | Comparision | Time (ms)  | Comparision  |
| Selection | 10471.188 | 5000050001  | 96069.631     | 45000150001 | 263963.237 | 125000250001 |
| Insertion | 5785.636  | 4977810633  | 53194.09      | 44944423565 | 147202.734 | 125106226143 |
| Bubble    | 33661.256 | 9999933745  | 308169.164    | 89998878657 | 846705.019 | 250000620545 |
| Shaker    | 24580.249 | 6650493563  | 228078.787    | 59935751830 | 620102.489 | 166715416590 |
| Shell     | 27.963    | 8398740     | 86.959        | 29933626    | 172.871    | 58608607     |
| Heap      | 22.234    | 6305394     | 77.598        | 20798645    | 149.053    | 36121064     |
| Merge     | 18.848    | 5629341     | 61.769        | 18297818    | 106.604    | 31545308     |
| Quick     | 16.023    | 3507410     | 50.365        | 11317513    | 87.032     | 19597319     |
| Counting  | 1.88      | 600003      | 5.649         | 1800001     | 18.419     | 3000003      |
| Radix     | 10.899    | 2100132     | 42.148        | 7500158     | 65.644     | 12500158     |
| Flash     | 4.737     | 726414      | 16.351        | 2174658     | 57.569     | 3681221      |

Table 4: Experimental results on randomized data



Note: Running sorting algorithms on sorted input data, almost all algorithms recognized that the data had been sorted except Selection Sort. So in the figure, the line of Selection Sort is significantly higher than the others.

Figure 1: Visualizing the algorithms' running times on sorted data



Note: In the figure, the lines of Selection Sort and Bubble Sort are higher than the others. With this data, Selection Sort worked better than Bubble Sort.

Figure 2: Visualizing the algorithms' running times on nearly sorted data



Note: Shaker and Bubble Sort have the line quite higher when Insertion Sort and Selection Sort are lower. Those show that Insertion and Selection Sort worked better than Shaker and Bubble Sort on reverse sorted data but not good enough when comparing with other algorithms.

Figure 3: Visualizing the algorithms' running times on reverse sorted data



Note: Bubble and Shaker Sort have the worst running time on randomized data. Selection Sort is a little higher than Insertion Sort. Insertion Sort had proofed that it is the most stable algorithm of all simple sorting algorithm. In other that, those advanced sorting algorithms always work well.

Figure 4: Visualizing the algorithms' running times on randomized data



Note: Selection Sort has the most number of comparisons. Bubble, Shaker and Insertion Sort have the smallest comparisions since those algorithms can recognize the input data is sorted or not.

Figure 5: Visualizing the algorithms' numbers of comparisons on sorted data



Note: Counting Sort has the least and Bubble Sort has the most number of comparisons. Counting Sort sorts elements by counting the number of occurrences of each unique element in the array, so the number of comparisons is not affected if the order of data changed. Opposite that, Selection, Bubble, Insertion Sort ... do have affected if the order changed, easy to recognize if comparing this figure to the above one.

Figure 6: Visualizing the algorithms' numbers of comparisons on nearly sorted data



Note: In reverse sorted data, Counting Sort still kept it as the least number of comparisions. When Bubble, Selection, Shaker and Insertion Sort have the most number of comparisions. This behavior can be explained that those above algorithms are simple, those are not implemented to be able to recognize if the data is reverse sorted or not.

Figure 7: Visualizing the algorithms' numbers of comparisons on reverse sorted data



Note: The behavior of algorithms is the same as reverse sorted data.

Figure 8: Visualizing the algorithms' numbers of comparisons on randomized data

## 4. Conclusions

- Overall, the fastest algorithm is Counting Sort, the slowest is Bubble Sort and Selection Sort (Bubble Sort can recognize sorted data but the overall Selection Sort has the average time complexity better than Bubble Sort).
- For sorted data, Bubble Sort and Shaker Sort have fastest running time because the time complexity to know this is a sorted data of the two algorithms above is O(N).
- For nearly sorted data, not consider Counting Sort, Insertion Sort is the best choice due to the small number of comparisions to be performed.
- Selection Sort always gives bad performance (slow running time), so this algorithm should ony be used for cases where the number of elements to be ordered is small.
- Shell Sort, Heap Sort, Merge Sort and Quick Sort have stable performances on all of data types.
- Counting Sort is the fastest, however there is a trade-off by using more memory.
- Flash Sort is not better than Counting Sort, but it is a fast algorithm and consumes very little memory.

## 4.1. Stable algorithms

In my implementation, the stable algorithms include: Insertion Sort, Bubble Sort, Shaker Sort, Merge Sort, Counting Sort. In these algorithms, Counting Sort has the lowest running time as well as complexity.

## 4.2. Unstable Algorithms

In my implementation, the unstable algorithms include: Selection Sort, Shell Sort, Heap Sort, Quick Sort, Radix Sort, Flash Sort. Of these algorithms, the fastest running algorithm is still Flash Sort.

## 5. Project organization

C++ programming language was used in sorting algorithms' implementation. Python programming language and open libraries (Pandas, Matplotlib, Seaborn) were used in processing data and graphical visualizing.

Source code: https://github.com/huynhtuan17ti/Sorting-Overview

## 6. References

- 1. https://www.geeksforgeeks.org/ (Explanations and source code of several sorting algorithms)
- 2. https://www.wikipedia.org/ (Scientific explanations of all sorting algorithms)
- 3. https://www.researchgate.net/publication/315662067\_Sorting\_Algorithms\_-\_A\_Comparative\_Study
- 4. https://www.researchgate.net/publication/259911982\_Review\_on\_Sorting\_Algorithms\_A\_Comparative\_Study
- 5. Introduction to Algorithms (Third edition)