ORACLE Academy

Oracle Academy Java for AP Computer Science A

2-3

Introduction to Object-Oriented Programming Concepts

Objectives

- This lesson covers the following objectives:
 - Differentiate between procedural and object-oriented programming
 - -Understand a class as a blueprint for an object
 - -Understand a class is used to create instances of an object
 - Model objects as a combination of ...
 - Properties (data fields)
 - Behaviors (methods)

Review

- So far, we've taken ...
 - -Decades of computer science innovation
 - -Gigabytes of modern computing power
- And much like the Internet ...
 - -We've made a cat!

Java Can Do More!

- Procedural languages ...
 - -Read one line at a time
 - -The C language is procedural
- Object-oriented languages...
 - -Read one line at a time
 - Model objects through code
 - -Emphasize object interaction
 - Allow interaction without a prescribed order
 - Java and C++ are object-oriented languages

Object-Oriented Programming

- Interaction of objects
- No prescribed sequence

Exercise 1

- Go to https://objectstorage.ca-toronto-

 1.oraclecloud.com/n/yzr73ksbiwdp/b/Games/o/JavaPuzzleBall/index.html
- Play Basic Puzzles 1 through 5
 - -Your Goal: Design a solution that deflects the ball to Duke
- Consider the following:
 - -What objects do you find on the field of play?
 - -What happens when you put a triangle wall or simple wall icon on the blue wheel?

About Java Puzzle Ball

- Play a set of puzzles
- Become familiar with the game mechanics
- Consider questions as you play
- Listen to the lesson's debriefing on what you've observed
- Apply your observations to understand Java concepts

8

Object Types

• What objects did you find on the field of play?

LevelGeometry

RedBumper

Object Interaction

Interaction of objects

No prescribed sequence

Let's take a closer look at this object

BlueBumper Objects

- What happens when you put a triangle wall or simple wall icon on a blue wheel?
- A wall appears on every instance of a blue bumper object
- Walls give bumpers behaviors that deflect and interact with the ball
- All blue bumper instances share these same behaviors

Describing a BlueBumper

JavaAPCSA 2-3

- Properties:
 - -Color
 - -Shape
 - -x-position
 - -y-position

- Behaviors:
 - -Make ping sound
 - -Flash
 - Deflect ball (via Simple Wall)
 - -Deflect ball (via Triangle Wall)

Describing a Ball

- Properties:
 - -Direction
 - -x-position
 - -y-position

Behaviors:

- -Make ping sound
- -Change direction
- Change x-position
- -Change y-position

BlueBumper and Ball Interaction

- Interaction occurs when the BlueBumper deflects the Ball. When this happens ...
- The Ball's properties change:
 - The Ball travels in a different direction
 - The Ball's future x-position and y-position change
- The BlueBumper performs behaviors:
 - -Makes ping sound
 - -Flashes

Why Does This Matter?

- We've observed important aspects of object-oriented programming
- Remember these observations as lessons and exercises become increasingly technical
 - Objects can be described as a combination of properties and behaviors
 - -There may be many instances of the same object type
 - -All instances of an object share the same behaviors
 - Objects may interact with each other, possibly affecting each other's properties and triggering other behaviors

A Different Example

- Properties:
 - -Name
 - -Age
 - -Breed
 - -Favorite Food

Behaviors:

- -Make meow sound
- -Play
- -Wash
- -Eat
- -Hunt

Classes and Instances

- The combination of properties and behaviors is ...
 - -Called a class
 - -A blueprint or recipe for an object
 - Used to create object instances

-Properties -Behaviors

Object instances

Creating New Instances from a Blueprint

All cat instances share the ability to meow, play, and eat

Object-Oriented Strategy

- How do you write programs that achieve this level of flexibility?
- When you have an idea or requirement for a program
 - -Consider what type of objects may exist in this program
 - Consider the properties and behaviors of these object types
 - Consider how objects interact

Duke's Choice Online Shopping

Academy

Characteristics of Objects

- Objects are physical or conceptual
- Objects have properties:
 - -Size
 - -Price
 - -Color
- Objects have behaviors:
 - -Shop
 - -Put item in cart
 - -Pay

Physical: Shirt

Conceptual:
Online
Account

Color property value is red

21

Classes and Instances

- Remember, a class ...
 - Is a blueprint or recipe for an object
 - Describes an object's properties and behaviors
 - Is used to create Object instances

Exercise 2, Part 1

- Given the following scenario, what objects could you potentially model to complete your program?
 - -Design a program for a coin-sorting machine
 - This machine should measure, count, and sort coins based on their size or value
 - -It should also print a receipt
- List at least 3 objects you would need to model for this example:

_

Exercise 2, Part 2

- Chose an object from Part 1
- What properties and behaviors of this object could you include in your program?
- Properties:
 - _
 - _
 - _

- Behaviors:
 - _
 - _
 - _

Customer Properties and Behaviors

• Properties:

- -Name
- -Address
- -Age
- -Order number
- -Customer number

Behaviors:

- -Shop
- -Set address
- Add item to cart
- Ask for a discount
- -Display customer details

Translating into Java Syntax

```
public class Customer {
    Properties
    Behaviors
    Behaviors
```


Java Terminology

Class declaration

```
1 public class Customer {
       public String name = "Junior Duke";
                                                           Fields
 3
       public int
                      custID = 1205;
                                                           (Properties)
       public String address;
                                                           (Attributes)
 5
       public int
                      orderNum;
       public int
                    age;
       public void displayCustomer(){
                                                           Methods
           System.out.println("Customer: "+name);
                                                           (Behaviors)
       }//end method displayCustomer
10
11 }//end class Customer
```


Modeling Properties and Behaviors

Data Fields

- Fields or Data Fields are the official Java terminology
- They're also called:
 - -Properties
 - Attributes
 - -Data Members
- Java has particular ways of representing data
 - -Section 3 will take a closer look at data
 - -We'll use the main method for this investigation
 - For now, it's alright to include a lot of code in the main method
 - -BUT a large main method is strongly discouraged
 - -Section 4 explores how to avoid this scenario

Summary

- In this lesson, you should have learned how to:
 - Differentiate between procedural and object-oriented programming
 - -Understand a class as a blueprint for an object
 - -Understand a class is used to create instances of an object
 - Model objects as a combination of ...
 - Properties (data fields)
 - Behaviors (methods)

ORACLE Academy