Chp. 6. Algorithmes de gradient

Avertissement! Dans tout ce chapître, Ω désigne un ouvert de \mathbb{R}^n , et f une fonction de classe $C^1 \operatorname{sur} \Omega$.

6.1 Algorithme de gradient à pas fixe

L'algorithme du gradient à pas fixe est une méthode de descente utilisant un pas fixe et la stratégie de Cauchy pour le choix de la direction de descente :

```
\begin{aligned} &\operatorname{GradFix}(f,x_0, \text{ pas, tolerance}) \\ &x \leftarrow x_0 \\ &\operatorname{Tant que} : \| \nabla f(x) \| > \text{ tolerance} \\ &x \leftarrow x - \operatorname{pas} \star \nabla f(x) \\ &\operatorname{Retourner} \ x \end{aligned}
```

6.2 Théorème de convergence

Théorème 6.1

Supposons vérifiées les hypothèses (H_1) à (H_3) suivantes :

 (H_1) $S_0 = \{ x \in A \mid f(x) \leq f(x_0) \}$ est un fermé de \mathbb{R}^n strictement contenu dans Ω .

 (H_2) f est \mathbb{C} [2] sur Ω et, pour tout x dans $S_0: 0 < cId \leq \nabla^2 f(x) \leq KId$

$$(H_3) \ 0 < \mathtt{pas} < 2/K$$

Alors l'algorithme GradFix converge vers un minimum local non dégénéré x^* de f dans Ω . On établit en outre les propriétés suivantes :

- La suite $f_k = f(x_k)$ des valeurs du critère aux points x_k calculés par l'algorithme est strictement décroissante.
- Pour tout indice $k \geq 0$, l'intervalle $[x_k, x_{k+1}]$ reste tout entier contenu dans l'ensemble : $S_k = \{x \in \Omega \mid f(x) \leq f(x_k)\}\ de$ niveau $f(x_k)$ de f.
- $||x_0 x^*|| \le c^{-1} ||\nabla f(x_0)||$

La dernière propriété garantit en particulier que le dernier point x_k calculé par l'algorithme vérifie :

$$||x_k - x^*|| \le c^{-1}$$
tolerance

La démonstration de ce théorème fait l'objet du paragraphe 6.4 suivant.

Corollaire 6.2 Si α est un niveau non critique de f tel que :

- (H_1') L'ensemble : $S_{\alpha} = \{ x \in \Omega \mid f(x) \leq \alpha \}$ est non vide et compact.
- (H_2') $\nabla^2 f(x)$ est D.P. en tout point x de l'intérieur $\overset{\circ}{S_{\alpha}} = \{x \in \Omega \mid f(x) < \alpha\}$ de S_{α} .

alors l'algorithme GradFix converge pour toute initialisation x_0 dans S_{α} et tout pas suffisamment petit vers un minimum local non dégénéré de f.

Preuve:

- Si $f(x_0) < \alpha$, $S_0 = \{x \in \Omega \mid f(x) \le f(x_0)\}$ est un fermé de \mathbb{R}^n contenu dans S_α . C'est donc un compact, et, par continuité du Hessien, il existe des constantes c et K telles qu'en tout point de $S_0 : 0 < c Id \le \nabla^2 f(x) \le K Id$. Ainsi les hypothèses (H_1) et (H_2) du théorème de convergence sont vérifiées.
- Si $f(x_0) = \alpha$, $u_0 = -\nabla f(x_0)$ est une direction de descente au point x_0 et le premier point x_1 calculé par l'algorithme vérifiera : $f(x_1) < \alpha$: on est alors ramené au cas précédent.

Les hypothèses (H'_1) et (H'_2) du corollaire 6.2 sont en particulier vérifiées dès que S_{α} est non vide et Ω est un bassin d'ellipticité de f.

Si f est elliptique sur \mathbb{R}^n , elle atteint son minimum en un point unique x^* . L'intérieur de tout ensemble de niveau : $\alpha > f(x^*)$ est un bassin d'ellipticité de f, et l'algorithme converge, pour toute initialisation x_0 , vers x^* , pourvu que le pas soit choisi suffisamment petit :

Exemple 6.1 La matrice Hessienne de : $f = x^2 + 2y^2$ est la matrice diagonale constante : $Q = \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix}$ qui vérifie : $0 < 2Id \le Q \le 4Id$. L'algorithme GradFix converge donc, pour toute initialisation (x_0, y_0) dans \mathbb{R}^2 vers l'unique minimum (0, 0) de f sur \mathbb{R}^2 dès que le pas choisi est (strictement) inférieur à 0.5.

6.3 Choix du pas et vitesse de convergence

Lorsque $f = \frac{1}{2} x^T Q x + b^T x + c$ est une fonction quadratique elliptique, sa Hessienne Q est une matrice constante D.P.. La vitesse de convergence de l'algorithme **GradFix** est alors toujours linéaire, et le taux de convergence est optimal pour :

$$\bullet \quad \text{pas} = \frac{2}{c+K}$$

où c et K sont respectivement la plus petite et la plus grande des valeurs propres de Q.

Le taux de convergence optimal est :

$$\bullet \quad \frac{K-c}{K+c} = \frac{\chi - 1}{\chi + 1}$$

où : $\chi = K/c$ est le conditionnement de la matrice Q. Lorsque Q est mal conditionnée ($\chi \gg 1$) l'algorithme est lent. Lorsque : $\chi = 1$ au contraire (Q est un multiple de la matrice identité) l'algorithme calcule le minimum cherché en une seule itération.

Lorsque f n'est pas quadratique, mais satisfait les hypothèses (H_1) et (H_2) du théorème 6.1, la démonstration de ce théorème (voir paragraphe 6.4) montre que le taux de convergence reste inférieur à : $\frac{\chi - 1}{\chi + 1}$, où : χ est le conditionnement de la Hessienne de f, calculée au point x^* vers

lequel l'algorithme converge. Le cas quadratique montre que cette majoration du taux est optimale.

Attention! En pratique, on ignore le plus souvent même l'ordre de grandeur des valeurs de c et de K. Si le pas choisi est trop grand, l'algorithme peut diverger. S'il est trop petit, la convergence peut être extrêmement lente :

Exemple 6.2 Le tableau suivant donne le nombre d'itérations nécessaires pour approcher le minimum (0,0) de la forme quadratique elliptique : $f = x^2 + 2y^2$ sur \mathbb{R}^2 à 10^{-6} près, à partir de l'initialisation : $(x_0, y_0) = (1, 1)$, en fonction du pas choisi :

pas	0.5	0.45	0.4	0.33	0.1	0.01
	divergence	60	30	13	60	685

Le taux de convergence optimal 1/3 est obtenu pour un pas égal à 1/3.

Exemple 6.3 La Hessienne de la forme quadratique $f = x^2 + 100 y^2$ est mal conditionnée : $\chi = 100$. Le taux de convergence optimal est obtenu pour un pas égal à : $1/101 \simeq 0.0099$. Pour cette valeur du pas, il faut près de 700 itérations pour approcher le minimum (0,0) de f à 10^{-6} près. Si le pas est supérieur à 0.01, l'algorithme diverge.

6.4 Démonstration du théorème de convergence

Tout point critique de f contenu dans S_0 est nécessairement un minimum local non dégénéré de f. Il suffit donc d'établir qu'étant donné un point non critique x_k ($k \ge 0$) de S_0 , le point $x_{k+1} = x_k - \mathsf{pas} \star \nabla f(x_k)$ est tel que :

(1)
$$f_{k+1} < f_k$$
, et: $[x_k, x_{k+1}] \in S_k$

et, en supposant la suite x_k infinie, qu'elle converge toujours vers un point critique x^* de f. On commence par établir (1):

Posons $u_k = -\nabla f(x_k)$, et : $\varphi(t) = f(x_k + t u_k)$. Puisque, par hypothèse : $\varphi'(0) = -\|u_k\|^2 < 0$, $x_k + t u_k$ reste contenu dans S_k pour t > 0 suffisamment petit.

Tant que l'intervalle $[x_k, x_k + t u_k]$ reste contenu dans S_k , et donc, a fortiori, dans S_0 , on déduit de la formule de Taylor-Lagrange appliquée à : $\varphi(t) = f(x_k + t u_k)$ sur l'intervalle [0, t]:

$$\varphi(t) = \varphi(0) + t\,\varphi'(0) + \frac{t^2}{2}\,\varphi''(\theta)$$

où : $\theta \in]0,1[$, soit :

$$f(x_k + T u_k) = f(x_k) - t \| u_k \|^2 + \frac{t^2}{2} u_k \nabla^2 f(x + \theta u_k) u_k$$

$$\leq f(x_k) - t \| u_k \|^2 + \frac{t^2}{2} K \| u_k \|^2$$

mais le second membre reste strictement inférieur à $f(x_k)$ pour : 0 < t < 2/K. L' assertion (1) est donc une conséquence directe de l'hypothèse (H_3) .

Il reste à montrer, en supposant la suite des points x_k calculés par l'algorithme infinie, qu'elle converge vers un point critique x^* de f. Pour cela, on commence par établir les deux lemmes suivants :

Lemme 6.1 Pour toute $n \times n$ matrice symétrique S vérifiant : $\alpha Id \leq S \leq \beta Id$, et tout vecteur u de \mathbb{R}^n : $||Su|| \leq \max(|\alpha|, |\beta|) ||u||$.

Preuve: Par hypothèse, les valeurs propres de S^2 , qui sont les carrés des valeurs propres de S, sont toutes contenues dans l'intervalle $[0, \gamma^2]$, où : $\gamma = \max(|\alpha|, |\beta|)$.

On en déduit : $\|Su\|^2 = u^T S^T S u \le \gamma^2 \|u\|^2$, d'où le lemme.

Lemme 6.2 Soient g une fonction de classe C^2 sur un ouvert Ω , et [x,y] un intervalle contenu dans Ω . Si, en tout point z de [x,y]: $\alpha Id \leq \nabla^2 g(z) \leq \beta Id$, alors:

$$\|\nabla g(x) - \nabla g(y)\| \le \max(|\alpha|, |\beta|) \|x - y\|$$

Preuve : Posons u = y - x et : $\varphi(t) = \|\nabla g(x + t u) - \nabla g(x)\|^2$. On vérifie que φ est dérivable en tout point de [0, 1], et :

$$\varphi'(t) = 2 \left[\nabla g(x + t u) - \nabla g(x) \right]^T \nabla^2 g(x + t u) u$$

De l'inégalité de Cauchy-Schwarz, on déduit alors :

$$\forall t \in [0,1] \quad \varphi'(t) \le 2\sqrt{\varphi(t)} \parallel \nabla^2 g(x+t u) u \parallel$$

Puisque $\nabla^2 g(x+t\,u)$ est une matrice symétrique vérifiant, par hypothèse : $\alpha\,Id \leq \nabla^2 g(x+t\,u) \leq \beta\,Id$, le lemme 6.1 implique :

$$\forall t \in [0,1] \quad \varphi(t) \neq 0 \ \Rightarrow \ \frac{\varphi'(t)}{2\sqrt{\varphi(t)}} \leq \max(|\alpha|, |\beta|) \|u\|$$

d'où, en intégrant de 0 à 1 :

$$\|\nabla g(y) - \nabla g(x)\| = \sqrt{\varphi(1)} - \sqrt{\varphi(0)} \le \max(|\alpha|, |\beta|) \|y - x\|$$

On pose alors : $g(x) = \frac{1}{2} ||x||^2 - pas \star f(x)$, de sorte que : $\nabla g(x) = Id - pas \star \nabla f(x)$, et on remarque que g satisfait les hypothèses du lemme 6.2 sur tout intervalle [x, y] contenu dans S_0 avec :

$$\alpha = 1 - pas \star K$$
, et: $\beta = 1 - pas \star c$

En appliquant le lemme 6.2 sur $[x_k, x_{k+1}]$, on déduit :

$$||x_{k+2} - x_{k+1}|| = ||\nabla g(x_{k+1}) - \nabla g(x_k)|| \le \gamma ||x_{k+1} - x_k||$$

où : $\gamma = \max(|1 - \mathsf{pas} \star K|, |1 - \mathsf{pas} \star c|)$, et, par récurrence : $||x_{k+1} - x_k|| \le \gamma^k ||x_1 - x_0||$ pour tout indice $k \ge 0$.

Mais l'hypothèse (H_3) du théorème 6.1 implique : $\gamma < 1$ (le vérifier). En sommant, il vient :

$$k < l \implies ||x_l - x_k|| \le \sum_{m=k}^{l-1} \gamma^m ||x_1 - x_0|| \le \frac{\gamma^k}{1 - \gamma} ||x_1 - x_0||$$

qui montre que x_k est une suite de Cauchy de points de S_0 , donc converge vers un point x^* de S_0 .

Finalement : $||x_{k+1} - x_k|| = \text{pas} \star ||\nabla f(x_k)||$ implique, par continuité du gradient : $\nabla f(x^*) = 0$, et, lorsque : $\text{pas} = \frac{2}{K+c}$, alors : $\gamma = \frac{K-c}{K+c}$, et :

$$\parallel x_0 - x \!\! \uparrow \!\! \mid \leq \frac{1}{1 - \gamma} \parallel x_1 - x_0 \parallel = \frac{\mathtt{pas}}{1 - \gamma} \parallel \! \nabla f(x_0) \parallel = c^{-1} \parallel \! \nabla f(x_0) \parallel$$

ce qui achève la démonstration.

6.5 Algorithme de gradient à pas optimal

L'algorithme du gradient à pas optimal combine la stratégie de Cauchy pour la détermination de la direction de descente avec, à chaque étape, une recherche du pas optimal minimisant : $\varphi(t) = f(x+t\,u)$, où : $u = -\nabla f(x)$ est la direction de descente au point x:

```
\begin{aligned} &\operatorname{GradOpt}(f,\ x_0,\ \operatorname{pas,\ tolerance})\\ &x \leftarrow x_0\\ &\operatorname{Tant\ que}\ :\ \|\nabla f(x)\|>\ \operatorname{tolerance}\\ &u=-\nabla f(x)\\ &\operatorname{Calculer\ le\ pas\ optimal}\ t^\star\\ &x \leftarrow x+t^\star\!\!\star u\\ &\operatorname{Retourner}\ x \end{aligned}
```

La recherche du pas optimal minimise $\varphi(t)$ en deux étapes. La première est la phase de « bracketing » : elle détermine un intervalle [0,T] contenant le pas optimal t^* :

```
\begin{aligned} & \texttt{StepBracket}(\varphi) \\ & T \leftarrow 1 \\ & \texttt{Tant que} \ : \ \varphi(T) < \varphi(0) \\ & T \leftarrow 2\,T \\ & \texttt{Retourner} \ T \end{aligned}
```

Les conditions : $\varphi(T) \ge \varphi(0)$ et : $\varphi'(0) = \nabla f(x)^T u = -\|u\|^2 < 0$ garantissent alors que φ atteint son minimum en un point t^* de l'intervalle [0, T].

La seconde étape est la phase de recherche linéaire: elle utilise une procédure de minimisation unidimensionnelle (Goldensearch, Quadsearch, ou Newtonsearch par exemple) pour déterminer une valeur approchée de t^* (chp. 4).

6.6 Convergence de l'algorithme de gradient à pas optimal

Théorème 6.3 Si Ω est un bassin d'ellipticité de f, l'algorithme GradOpt converge, pour toute initialisation x_0 dans Ω vers l'unique minimum local x^* de f dans Ω , qui minimise f sur Ω . On a en outre les propriétés suivantes :

- La suite des valeurs : $f_k = f(x_k)$ du critère aux points x_k construits par l'algorithme est strictement décroissante.
- Pour tout indice $k \geq 0$: $||x_k x^*|| \leq c^{-1} ||\nabla f(x_k)||$, où c est une constante d'ellipticité de f sur l'ensemble $S_k = \{x \in \Omega \mid f(x) \leq f(x_k)\}$ de niveau f_k de f dans Ω .

Preuve: Par construction, la suite f_k est strictement décroissante. La suite infinie des points x_k éventuellement construite par l'algorithme reste donc, à partir de tout rang k, contenue dans l'ensemble convexe compact S_k . Puisque f est, par hypothèse, elliptique sur S_k , il existe des constantes c et K telles qu'en tout point x de S_k : $c Id \leq \nabla^2 f(x) \leq K Id$. Les hypothèses (H_1) et (H_2) du théorème 6.1 sont donc satisfaites. On en déduit, pour tout indice $k \geq 0$:

(2)
$$||x_k - x^*|| \le c^{-1} ||\nabla f(x_k)||$$
 et: $0 < t < 2/K \Rightarrow [x_k, x_k - t \nabla f(x_k)] \subset S_0$

Mais en appliquant alors la formule de Taylor-Lagrange à : $\varphi(t) = f[x_k - t \nabla f(x_k)]$ sur l'intervalle [0, 1/K], il vient :

$$f\left[x_{k} - \frac{1}{K}\nabla f(x_{k})\right] \le f(x_{k}) - \frac{1}{K} \|\nabla f(x_{k})\|^{2} + \frac{1}{2K} \|\nabla f(x_{k})\|^{2}$$

d'où, par définition du pas optimal:

(3)
$$f_{k+1} \le f_k - \frac{1}{2K} \|\nabla f(x_k)\|^2$$

Finalement, la suite f_k est décroissante et minorée par $f(x^*)$, donc convergente, et (3) implique alors la convergence de $\nabla f(x_k)$ vers 0, d'où, d'après (2), la convergence de x_k vers x^* .

Fig. 6.7-1: Zig-zags caractéristiques de l'algorithme GradOpt

6.7 Comportement de l'algorithme de gradient à pas optimal

A la $k+1^{\grave{e}me}$ itération, l'algorithme <code>GradOpt</code> minimise la fonction : $\varphi(t)=f(x_k+t\,u_k)$, où : $u_k=-\nabla f(x_k)$. Si t_k est le pas optimal calculé, on a donc :

$$\varphi'(t_k) = \nabla f(x_k + t_k u_k)^T u_k = -\nabla f(x_k + t_k u_k)^T \nabla f(x_k) = 0$$

et le point x_{k+1} vérifie : $\nabla f(x_{k+1})^T \nabla f(x_k) = 0$.

Deux directions de descente successives calculées par l'algorithme sont ainsi *orthogonales* . La figure 6.7-1 illustre les zig-zags caractéristiques correspondants de l'algorithme <code>GradOpt</code>.

6.8 Comparaison avec l'algorithme de gradient à pas fixe

En pratique, l'algorithme de gradient à pas optimal s'avère souvent plus efficace que l'algorithme de gradient à pas fixe :

Exemple 6.4 Le paramètre tolerance de la procedure GoldenSearch, utilisée pour la phase de rechereche linéaire, étant fixé à 10^{-8} , il ne faut que 6 itérations à l'algorithme GradOpt, initialisé avec : $(x_0, y_0) = (1, 1)$, pour approcher le minimum (0, 0) de : $f = x^2 + 100$ y^2 à 10^{-6} près (comparer avec l'utilisation catastrophique de GradFix dans l'exemple 6.3).

Il est cependant difficile de comparer objectivement les deux algorithmes, et le contre-exemple suivant montre l'impossibilité d'établir théoriquement, et pour *toute* initialisation donnée, la supériorité de l'algorithme du gradient à pas optimal, même lorque le critère est une forme quadratique elliptique simple :

Contre-exemple 6.5 Si l'on cherche à minimise : $f = x^2 + 2y^2$ à partir de toute initialisation (x_0, y_0) située sur la droite d'équation : x = 2y, en utilisant l'algorithme GradOpt, le pas optimal effectué à chaque étape est constant égal à 1/3, et la vitesse de convergence linéaire de taux : 1/3.

Contrairement à l'algorithme du gradient à pas fixe, cependant, l'algorithme du gradient à pas optimal ne requiert aucun encadrement $a\ priori$, jamais disponible en pratique, des valeurs propres de la Hessienne du critère, et garantit, par nature, la décroissance du critère. C'est donc un algorithme à la fois simple à mettre en oeuvre et robuste.

6.9 Règle d'Armijo

Lorsque l'évaluation du critère en un point est compliquée, la procédure de recherche linéaire utilisée par l'algorithme de gradient à pas optimal peut se révéler coûteuse. L'idée suggérée par Armijo consiste à chercher un pas qui permette simplement de faire décroître suffisamment la valeur du critère. On se donne un réel α strictement compris entre 0 et 1, et on cherche un pas t vérifiant :

$$f(x+tu) < f(x) + \alpha t \nabla f(x)^T u$$

Théorème 6.4 $Si: \nabla f(x)^T u < 0$, il existe un t^* tel que :

$$0 < t < t^{\star} \Rightarrow f(x + t u) < f(x) + \alpha t \nabla f(x)^{T} u$$

Preuve : Posons : $\psi(t) = f(x + tu) - f(x) - \alpha t \nabla f(x)^T u$, de sorte que : $\psi(0) = 0$, et :

$$\psi'(0) = (1 - \alpha) \nabla f(x)^T u < 0$$

Pour t > 0 suffisamment petit, on a donc : $\psi(t) < 0$, d'où le résultat.

6.10 Recherche linéaire rapide

La procédure LinearSearch implémente la règle d'Armijo :

 $\begin{aligned} & \text{LinearSearch}(f,\ x,\ u,\ \alpha) \\ & t \leftarrow 1 \\ & \text{Tant que}\ :\ f(x+t\,u) \geq f(x) + \alpha\,\nabla f(x)^T u \\ & \quad t \leftarrow \frac{-t\,\nabla f(x)^T u}{2\,[f(x+t\,u) - f(x) - t\,\nabla f(x)^T u]} \end{aligned}$ Retourner $x+t\,u$

Théorème 6.5 $Si: \alpha < 1/2$, LinearSearch retourne toujours un pas vérifiant la règle d'Armijo.

gmi1.opti. G.L. cours -02/05

p. 34

Preuve : Si : $f(x+tu) < f(x) + \alpha t \nabla f(x)^T u$, on accepte le pas : t=1. Sinon, on interpole $\varphi(t)=f(x+tu)$ par la parabole passant par les deux points (0,f(x)) et (t,f(x+tu)) dont le coefficient directeur de la tangente en (0,f(x)) est : $\varphi'(0)=\nabla f(x)^T u$, et on actualise t à la valeur de l'abscisse du minimum de cette parabole. On vérifie que, si : $\nabla f(x)^T u < 0$, cette stratégie d'actualisation de t conduit, à chaque étape, à remplacer t par un réel de l'intervalle : $]0,\frac{1}{2}\frac{t}{1-\alpha}[$. Pour : $\alpha < 1/2$, on réduit strictement la taille de l'intervalle]0,t[à chaque étape. Le résultat est donc conséquence du théorème 6.4.