Algebra per Informatica

Foglio di esercizi 6

Esercizio 1. Sia $A = \{0, 1, 2, 3\}$ e sia $R \subseteq A \times A$ la seguente relazione:

$$R = \{(0,0), (0,1), (0,3), (1,1), (1,0), (2,3), (3,3)\}.$$

Stabilire se R è una relazione d'equivalenza oppure no.

Esercizio 2. Sia dato l'insieme $A = \{1, 2, 3\}$. Esibire un esempio di una relazione R su A tale che:

- 1. R è riflessiva e transitiva, ma non simmetrica;
- 2. R è simmetrica e transitiva, ma non riflessiva

Esercizio 3. Determinare se le seguenti sono relazioni d'equivalenza nell'insieme A:

- 1. $A = \mathbb{R}, x \sim y \iff x < y$;
- 2. $A = \mathbb{R}, x \sim y \iff x \leq y;$
- 3. $A = \mathbb{R}^2$, $(x, y) \sim (u, v) \iff xu > 0$ oppure xu = 0;
- 4. $A = \mathbb{Z}, x \sim y \iff \text{esiste } n \in \mathbb{N} \text{ tale che } x = y^n.$

Esercizio 4. In $\mathbb{C}^* := \mathbb{C} \setminus \{0\}$ poniamo $z \sim w \iff \frac{z}{w} \in \{+1, -1\}.$

- 1. Provare che \sim è una relazione d'equivalenza.
- 2. Determinare gli elementi della classe [-i].

Esercizio 5. In \mathbb{C} poniamo $z \sim w \iff z^4 = w^4$.

- 1. Provare che \sim è una relazione d'equivalenza.
- 2. Determinare la classe di 3.
- 3. Determinare se l'assegnazione $\varphi:\mathbb{C}/\sim \longrightarrow \mathbb{C}$ tale che $\varphi([x])=x^2$ definisce una funzione.
- 4. Determinare se l'assegnazione $\psi: \mathbb{C}/\sim \longrightarrow \mathbb{C}$ tale che $\psi([x])=x^8$ definisce una funzione.

Esercizio 6. Sia data la relazione d'equivalenza in \mathbb{R}^2 : $(x,y) \sim (u,v) \iff x=u$.

1. Determinare le classi [(0,0)], [(-1,-2)].

- 2. Stabilire se $f: \mathbb{R}^2/\sim \longrightarrow \mathbb{R}$ definita da $f([x,y])=2x^2$ è una funzione. 3. Stabilire se $g: \mathbb{R}^2/\sim \longrightarrow \mathbb{R}$ definita da $g([x,y])=x^2-y^2$ è una funzione.
- 4. Trovare una funzione bigettiva $\varphi: \mathbb{R}^2/\sim \to \mathbb{R}$.

Esercizio 7. Sia data in $\mathbb Z$ la relazione d'equivalenza $x \sim y \Longleftrightarrow |x| = |y|$. Provare che il quoziente \mathbb{Z}/\sim è in corrispondenza biunivoca con \mathbb{N} .

Esercizio 8. Sia data in $A = \mathbb{N} \times \mathbb{Z}$ la relazione d'equivalenza

$$(x,y) \sim (a,b) \Longleftrightarrow x = a e y - b$$
 è pari.

Provare che il quoziente A/\sim è in corrispondenza biunivoca con $\mathbb{N}\times\{0,1\}$. E con \mathbb{N} ?

¹Due insiemi A e B si dicono in corrispondenza biunivoca se esiste una funzione bigettiva $f:A\to B$.