Project Performance Phase Model Performance Test

Date	6 November 2023
Team ID	Team-593012
Project Name	Alzheimer Disease Prediction

Model Performance Testing:

S.No.	Parameter	Values	Screenshot
1.	Model Summary	The model used here is a customized version of the Transfer Learning Technique called Xception. It is a deep learning model which uses CNN layers to train its model effectively.	<pre>xception_model = Xception(input_shape=(150, 150, 3), include_top=False, weights="imagenet") for layer in xception_model.layers: layer.trainable = False custom_xception_model = Sequential([xception_model, Dropout(0.5), GlobalAveragePooling2D(), Flatten(), BatchNormalization(), Dense(512, activation='relu'), BatchNormalization(), Dropout(0.5), Dense(256, activation='relu'), BatchNormalization(), Dropout(0.5), Dense(128, activation='relu'), BatchNormalization(), Dropout(0.5), Dense(4.5), BatchNormalization(), Dropout(0.5), BatchNormalization(), Dense(6.4, activation='relu'), Dropout(0.5), BatchNormalization(), Dense(6.4, activation='softmax')], name="xception_cnn_model") METRICS = [tf.keras.metrics.BinaryAccuracy(name='accuracy'), tf.keras.metrics.Recall(name='precision'), tf.keras.metrics.Recall(name='recall'), tf.keras.metrics.Recall(name='recall'), tf.keras.metrics.Recall(name='recall'), tf.keras.metrics.AUC(name='auc')] custom_xception_model.compile(optimizer='adam', loss=tf.losses.CategoricalCrossentropy(), metrics=METRICS)</pre>

2.	Accuracy	Training Accuracy - 90.75	● EPOCHS = 20 history = custom_xception_model.fit(train_data, train_labels, validation_data=(val_data, val_labels), epochs=EPOCHS)
		Validation Accuracy – 90.63	\$\frac{1}{2} \$\fr
			47 - accuracy: 0.8867 - precision: 0.8077 - recall: 0.7178 - auc: 0.9457 - val_loss: 0.4612 - val_accuracy: 0.9019 - v 90 - accuracy: 0.8965 - precision: 0.8268 - recall: 0.7416 - auc: 0.9523 - val_loss: 0.4730 - val_accuracy: 0.8973 - v 37 - accuracy: 0.8978 - precision: 0.8259 - recall: 0.7493 - auc: 0.9533 - val_loss: 0.4607 - val_accuracy: 0.9016 - v 44 - accuracy: 0.9023 - precision: 0.8337 - recall: 0.7609 - auc: 0.9566 - val_loss: 0.4282 - val_accuracy: 0.9093 - v 91 - accuracy: 0.9055 - precision: 0.8383 - recall: 0.7706 - auc: 0.9596 - val_loss: 0.4393 - val_accuracy: 0.9037 - v 48 - accuracy: 0.9075 - precision: 0.8416 - recall: 0.7759 - auc: 0.9616 - val_loss: 0.4322 - val_accuracy: 0.9091 - v
			# Evaluating the model on the data test_scores = custom_xception_model.evaluate(test_data, test_labels) print("Testing Accuracy: %.2f%%" % (test_scores[1] * 100)) 80/80 [====================================