ROTATION DRIFT BENCHMARK

Reference No / Version	B-RD-0.01
Authors	Gal Gorjup
Institution	University of Auckland
Contact Information	ggor290@aucklanduni.ac.nz
Adopted Protocol	Any protocol that involves periodic object rotation (P-IHR-0.01, P-GT-0.01, P-GR-0.01).
Scoring	Assessment is based on the length of rotation drift vectors d obtained through the following steps. For each recorded periodic manipulation motion: 1) Isolate motion end points. 2) Compute offset vectors between subsequent endpoints. 3) Compute the mean offset (drift) vector d of the above offset vectors. 4) Compute the length of the mean drift vector $\ \mathbf{d}\ ^2$. The resulting length corresponds to an average drift angle for a specific manipulation motion. If different objects are used, the steps are repeated for each instance.
Details of Setup	To assist with data processing and drift vector computation, code samples are provided.
Results to Submit	For each sensorized object and manipulation motion: • Assessed hand model and control details. • Computed drift vector lengths $\ \boldsymbol{d}\ ^2$. • Plots of recorded point clouds with highlighted end points. • Comments on obtained results with respect to the hand model and control.