Goal: Menampilkan jumlah customer yang berhenti langganan (Churn Rate)

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Load Data

Data berasal dari file dummy/fake data yang di generate menggunakan Python dengan Faker library

```
df =
pd.read_csv('~/kode/python/mini_project/indosat_dashboard/data_pelangg
an_indosat.csv')
```

Tampilkan 5 baris data

Tampitkan 5 bans data						
<pre>df.head()</pre>						
		Nama	No_H	P Kota	Paket	
Tgl_beli						
0 Balid 10-08	in Dongo	ran, S.T.	8579923964	0 Surabaya	Freedom Combo	2024-
1 03 - 15	0kt	o Jailani	8147807444	3 Jakarta	Freedom Combo	2025 -
2 R.	Lantar	Anggraini	8146252681	7 Medan	Freedom Combo	2024-
07 - 22 3	Darimin	Pradipta	8144371379	6 Semarang	Unlimited 2GB	2025 -
01-11 4	Kanda N	apitupulu	8566930342	8 Surabaya	Yellow	2025 -
03-30						
Duras. 0 1	i_Bulan 9	Frekuensi ₋	_Topup Kuo 5	ta_Bulan_GB 16		
1 2 3	4 12		1 2	7 20		
3 4	2 12		3 1	5 1		

Exploratory Data Analysis (EDA)

Menampilkan Kota dengan jumlah pelanggan terbanyak

```
pelanggan_per_kota = df['Kota'].value_counts()
print('Jumlah pelanggan per kota: ')
print(pelanggan_per_kota)
```

```
Jumlah pelanggan per kota:
Kota
Yogyakarta
              37
Bandung
              33
              30
Semarang
              30
Makassar
              28
Surabaya
Medan
              21
Jakarta
              21
Name: count, dtype: int64
```

Tampilkan grafik kota dengan jumlah pelanggan

```
plt.figure(figsize=(8, 6))
sns.histplot(data=df, x=df['Kota'])
plt.show()
```


Menghitung Churn Rate Customer

Perhitungan customer yang berhenti menggunakan produk ditetapkan dengan menghitung Frekuensi_Topup kurang dari atau sama dengan 1 dalam waktu Durasi_Bulan minimal 3 bulan atau lebih

```
# mengetahui churn rate
# Frekuensi_Topup ≤ 1 dalam 3+ bulan → dianggap churn

df['Churn'] = ((df['Frekuensi_Topup'] <= 1) & (df['Durasi_Bulan'] >= 3))

# hitung churn
churn_rate = df['Churn'].sum() / len(df) * 100
print(f'Hasil Persentase Churn Rate Customer: {churn_rate:.2f}%')

Hasil Persentase Churn Rate Customer: 22.50%
```

Menampilkan Persentase churn rate dengan pie chart

```
# Buat pie chart churn vs aktif
churn_counts = df['Churn'].value_counts()
labels = ['Aktif', 'Churn']
sizes = [churn counts[0], churn counts[1]]
colors = ['#4CAF50', '#FF5733']
plt.figure(figsize=(6, 6))
plt.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=140,
colors=colors)
plt.title('Distribusi Churn vs Aktif')
plt.axis('equal')
/tmp/ipykernel 246776/2569498633.py:4: FutureWarning:
Series. getitem treating keys as positions is deprecated. In a
future version, integer keys will always be treated as labels
(consistent with DataFrame behavior). To access a value by position,
use `ser.iloc[posl`
  sizes = [churn counts[0], churn counts[1]]
(np.float64(-1.0999999375173872),
 np.float64(1.099999910848056),
 np.float64(-1.0999996168667543),
 np.float64(1.099994043164426))
```

