Las Proposiciones

Matemáticas

Cuada 7

Grado 7 2023

contenidos

1Para pensar...

2Metas

3 Proposiciones

Para pensar - problema 1 ...

Es posible conseguir medir 4 litros exactos con estos recipientes?

Para pensar - problema 2 ...

Son "lógicas" estas operaciones?

$$3+1 = 24$$

 $5+2 = 37$
 $7+2 = 59$
 $8+1 = 79$
 $7+5 = 212$
 $15+3 = 1218$

Metas periodo 2: Proposiciones

Propósitos

- Conocer características proposicional.
- Expresar matemáticamente las operaciones entre enunciados haciendo uso de la lógica proposiciones.

Desempeños

- las · Clasificaras enunciados en y proposiciones simples y propiedades de la lógica compuestas, determinando el valor de verdad.
 - Determinaras enunciados lógicos y utilizaras sus propiedades para resolver situaciones problema del de entorno.

Eencipiecha

Qué es una proposición?

Es un *enunciado* que puede ser evaluado de forma lógica. Clases

Simples: un enunciado.

Compuestas: más de un enunciado con conectores lógicos.

 Valor de las proposiciones

Sólo puede ser verdadero (V) o falso (F).

Lenguaje

Palabras clave: todos, algunos, ningún.

Notación de las proposiciones Se denotan con letras minusculas,

Proposiciones compuestas

Es la unión de dos o más proposiciones simples. Las palabras que permiten unirlas se llaman conectores lógicos:

"y" "o" "si, entonces" "si y solo si"

Valor de proposiciones compuestas

El valor depende de cada proposición simple y del conector usado. El manejo de posibilidades se hace en una *tabla de verdad*.

p	q	Valor conector
V	V	
V	F	
F	V	
F	F	

ra conjunción ("y")

La proposición compuesta es verdadera solo si cada proposición simple es verdadera; en cualquier otro caso es falsa.

p	q	$p \wedge q$
V	V	V
V	F	F
F	V	F
F	F	F

ra qianmaion (and)

La proposición compuesta formada por la disyunción siempre es verdadera, excepto cuando todas las proposiciones simples son falsas.

p	q	$p \bigvee q$
V	V	V
V	F	V
F	V	V
F	F	F

La condicional ("si o entonces")

El valor de la proposición compuesta por el condicional depende del valor que tenga la condición; sólo es falsa si el antecedente es verdadero y el consecuente falso.

p	q	$p \Rightarrow q$
V	V	V
\overline{V}	F	F
\overline{F}	V	V
F	F	V

p: antecedente, q: consecuente

La condicional ("ei o entonces")

Ejemplos de la condicional.

- Si 1+1 = 2, entonces el sol sale por el oriente.
- Si llueve, entonces llevo un paraguas.
- Si la luna es hecha de queso verde, entonces soy el Profesor de recreo.
- Si mi abuela tuviera ruedas, entonces ella sería un autobús.

La bicondicional: "si y sólo si"

El valor de la proposición compuesta con bicondicional sólo depende del valor de las proposiciones simples.

p	q	$p \Leftrightarrow q$
V	V	V
V	F	F
F	V	F
F	F	V

La bicondicional: "si y sólo si"

Ejemplos de la bicondicional.

- Enseño matemáticas si y solo si me pagan una suma de dinero.
- El Sol es una estrella si y sólo si 1+2=4.
- La Tierra es cúbica si y sólo si 2+2=4.
- 1+1=3 si y solo si Marte es una estrella.

Tablas de verdad

- Es la representación de los valores de proposiciones compuestas con uno o más conectores.
- La elaboración se inicia desde los conectores fundamentales hasta los complejos.

Ejemplo. Resolver:

$$\sim (p \land q)$$

Tablas de verdad

- Es la representación de los valores de proposiciones compuestas con uno o más conectores.
- La elaboración se inicia desde los conectores fundamentales hasta los complejos.

• **Ejemplo.** Resolver:

Tablas de verdad

• **Ejemplo.** Resolver y analizar el resultado. En electrónica F->0, V->1.

Aplicación de las Tablas de verdad

• **Ejemplo de aplicación.** En circuitos electrónicos las proposiciones se denominan compuertas lógicas.

A	В	Х=А∧В
1	1	1
1	0	1
0	1	1
0	0	0

Actividad XXX

1) Resolver $(p \land \sim q) \land q$ y analizar su resultado.

p	q	$\sim q$	$p \wedge \sim q$	$(p \land \sim q) \land q$
1	1			
1	0			
0	1			
0	0			

2) Dada los valores de cada letra hallar el valor en cada proposción

р	V
q	F
r	F
S	V

$$\bullet (p \land q) \Rightarrow (s \lor r)$$

$$(p \Leftrightarrow s) \lor (r \land q)$$

$$(r \lor s) \Leftrightarrow (p \Rightarrow q)$$

$$(s \Rightarrow r) \Rightarrow q$$

Referencius

