IV Praktikum 2022

Table of Contents

Aufgabe 1	2
Vorbereitungsteil:	2
1. Bestimmen Sie Pmax.	2
2. Bestimmen Sie S21(jω)	2
3. Bestimmen Sie $ S21(j\omega) ^2$ und $AdB(\omega)$	3
4. Zeichnen Sie AdB(ω) qualitativ	
5. Handelt es sich um ein Hochpass- oder ein Tiefpassfilter? Begründen Sie Ihre Antwort	4
6. Bestimmen Sie C in Abhängigkeit von der Durchlasskreisfrequenz und dem Rippel im	
Durchlassbereich . Nutzen Sie dazu den Ansatz .	4
7. Bestimmen Sie den Wert von C für und . Runden Sie Ihr Ergebnis auf den nächsten in der E6-	
Bauteilreihe1 verfugbaren Wert	
Praxisteil	5
Aufgabe 7 Machen Sie ein Kamerabild von Ihrem Aufbau auf dem Breadboard. Und fügen Sie es dem	
Bericht bei	
Aufgabe 8/9/11 Beschreiben Sie Ihre Vorgehensweise bei der Einstellung des Oszilloskop:	6
Aufgabe 10/12 Zeichnen Sie die abgelesene Amplitude und die Periodendauer gut sichtbar in Ihrer	
Abbildung ein.	
Berechnen Sie die Frequenz aus der Periodendauer	
Aufgabe 13 Messen Sie den Betrag von U2 für die in Tabelle 1 aufgelisteten Frequenzen	
Aufgabe 14 Rechnen Sie die gemessenen Beträge von in Werte der Transmittanz um	
Aufgabe 15 Rechnen Sie die Werte von in Werte der Betriebsdämpfung um.	
Aufgabe 16 Stellen Sie die Werte von in einem Diagramm über der Frequenz dar	
Aufgabe 17 Vergleichen Sie die Darstellung mit dem im Vorbereitungsteil skizzierten Verlauf von	
Aufgabe 2	
Vorbereitungsteil:	
1.Entwerfen Sie ein Cauer Tiefpassfilter 3.Ordnung: (s. Filtertabellen)	
2. Welche Filterkatalognummer und welches haben Sie gewählt, welches ?	
3. Zeichnen Sie den Schaltplan des gewählten Filters	
4. Nun sei weiterhin gegeben: . Berechnen Sie die erforderlichen Bauteilwerte des Filters	
5. Runden Sie die Bauteilwerte auf die nächsten in der E6-Bauteilreihe verfügbaren Werte.	
6. Rechnen Sie die normierte Unendlichkeitsstelle und Nullstelle in die zugehörigen Frequenzen und	
Praxisteil	12

Aufgabe 1

Vorbereitungsteil:

$$|E| = \frac{1}{\sqrt{2}} 1V$$
, $R_1 = R_2 = R = 50\Omega$

1. Bestimmen Sie Pmax.

$$P_{max} = \frac{|E|^2}{4R} \qquad |E|^2 = \left(\frac{1V}{\sqrt{2}}\right)^2 \implies |E|^2 = \frac{1}{2}V^2$$

$$P_{max} = \frac{\frac{1V^2}{2}}{4R} = \frac{1V^2}{8R} = \frac{1}{400} \frac{V^2}{\Omega} = 2,5 \text{ mW}$$

2. Bestimmen Sie S21(jω).

$$S_{21} = k \frac{U_2}{E} = 2 \sqrt{\frac{R_1}{R_2}} \frac{U_2}{U_1} \frac{U_1}{E} \implies S_{21} = 2 \frac{U_2}{E}$$

$$U_2 = I * \left(R_2 + \frac{1}{j\omega C}\right)^{-1}$$

$$\Rightarrow U_2 = \frac{E}{R_{ges}} * \left(R_2 + \frac{1}{j\omega C}\right)^{-1} \rightarrow S_{21} = 2\frac{\left(R_2 + \frac{1}{j\omega C}\right)^{-1}}{R_{ges}}$$

$$R_{ges} = R + C||R$$

$$C||R = \frac{1}{j\omega C + \frac{1}{R}} \quad \Rightarrow \quad R_{ges} = R + \frac{1}{j\omega C + \frac{1}{R}} \quad \to S_{21} = 2\frac{\left(\frac{1}{R} + j\omega C\right)^{-1}}{R + \frac{R}{j\omega CR + 1}}$$

```
syms R omega C real
R_ges = R + 1/(1i*omega*C+1/R);
S_21 = 2*((1/R+1i*omega*C)^-1)/(R+R/(1+1i*omega*C*R)) %2*R/R_ges
```

$$S_{21} = \frac{2}{\left(\frac{1}{R} + C \omega i\right) \left(R + \frac{R}{1 + C R \omega i}\right)}$$

ans =
$$\frac{2}{2 + C R \omega i}$$

3. Bestimmen Sie $|S21(j\omega)|^2$ und AdB(ω).

ans =

$$\frac{4 R^{2} |C R \omega - i|^{2}}{|C R \omega - 2 i|^{2} |1 + C R \omega i|^{2} |R|^{2}}$$

$$S21 = 4/(C^2*R^2*omega^2 + 4) - (2i*C*R*omega)/(C^2*R^2*omega^2 + 4)$$

S21 =

$$\frac{4}{C^2 R^2 \omega^2 + 4} - \frac{2 C R \omega i}{C^2 R^2 \omega^2 + 4}$$

$$simpS21_abs_quad = (4*C^2*R^2*omega^2)/(C^2*R^2*omega^2 + 4)^2 + 16/(C^2*R^2*omega^2 + 4)^2$$

simpS21_abs_quad =

$$\frac{16}{(C^2 R^2 \omega^2 + 4)^2} + \frac{4 C^2 R^2 \omega^2}{(C^2 R^2 \omega^2 + 4)^2}$$

$$A_db = 10*log10((C^2*R^2*omega^2 + 4)^2/(4*C^2*R^2*omega^2+16))$$

 $A_db =$

$$\frac{10 \log \left(\frac{(C^2 R^2 \omega^2 + 4)^2}{4 C^2 R^2 \omega^2 + 16}\right)}{\log(10)}$$

simA_db =

$$\frac{10\log\left(\frac{C^2R^2\omega^2}{4}+1\right)}{\log(10)}$$

4. Zeichnen Sie AdB(ω) qualitativ.

$$A_dB(C, R, omega) =$$

$$\frac{10\log\left(\frac{C^2R^2\omega^2}{4}+1\right)}{\log(10)}$$

```
f = [10 50 90 100 150 170 180 200 300 500 1000 2000]*10^3; %kHZ

%f = 1000:1000:2000000;
plot(f./10^3,A_dB(15*10^-9,50,2*pi*f)) %C-Wert aus letzte Aufgabe
xlabel ("f [kHz]")
ylabel("A_{dB}(\omega)")
grid("minor")
```


5. Handelt es sich um ein Hochpass- oder ein Tiefpassfilter? Begründen Sie Ihre Antwort. Tiefpass, da tiefe Frequ. eine geringe Dämpfung haben und hohe Freq. eine hohe Dämpfung.

6. Bestimmen Sie C in Abhängigkeit von der Durchlasskreisfrequenz ω_g und dem Rippel im Durchlassbereich A_D . Nutzen Sie dazu den Ansatz $A_{dB}(\omega_g)=A_D$.

ans =
$$\frac{2 \sqrt{10^{A_D/10} - 1}}{R \,\omega}$$

7. Bestimmen Sie den Wert von C für $f_g=100kHz$ und $A_D=0.28dB$. Runden Sie Ihr Ergebnis auf den nächsten in der E6-Bauteilreihe1 verfugbaren Wert.

ans = 16.4288

E-Normreihen

Gewünschter Wert: 16.42		
Normreihe Näherungswert Abweichung		
E6	15.00	-8.70%

C_value = 15 %nF

C_value = 15

Praxisteil

Aufgabe 7 Machen Sie ein Kamerabild von Ihrem Aufbau auf dem Breadboard. Und fügen Sie es dem Bericht bei.

Aufbau Bild:

Aufgabe 8/9/11 Beschreiben Sie Ihre Vorgehensweise bei der Einstellung des Oszilloskop:

Vorgehensweiße:

Zuerst muessen die Vorgegeben Werte auf dem Generator einigestellt werden. 100kHz und 1VPP:

Beim Anschalten des Ozsi. wird das Signal mit dem Auto-Detect Knopf detektiert. Fuer die Ablesung der Amplitude muss noch vertikal rein gezoomt werden.

Die Amplitude hatte ein Wert von 58.8 mW und eine Periodendauer von $10 \,\mu s$ (siehe Screenshot).

Periodendauer $10\mu s$

Amplitude: 58.8mW

Aufgabe 10/12 Zeichnen Sie die abgelesene Amplitude und die Periodendauer gut sichtbar in Ihrer Abbildung ein.

Berechnen Sie die Frequenzfaus der Periodendauer

$$f = \frac{1}{T} \text{ mit } T = 10\mu s$$

$$f = 1/(10^{-5})/1000 \text{ %kHz}$$

f = 100.0000

Aufgabe 13 Messen Sie den Betrag von U2 für die in Tabelle 1 aufgelisteten Frequenzen f.

```
f = [10 50 90 100 150 170 180 200 300 500 1000 2000]; %kHZ --Tabelle
Periodendauer = f.^-1*1000; %Mikrosekundend
Amplidtude = [502 498 484 482 462 445.9 440.02 430.22 374.36 273.42 174.44 92.12]; %mW
plot(f,Amplidtude)
xlabel("f [kHz]")
ylabel("Amplitude [mV]")
grid("minor")
legend("Measurement")
```


Mit steigender Frequenz sinkt die Amplitdue. (Tiefpass verhalten)

Aufgabe 14 Rechnen Sie die gemessenen Beträge von U_2 in Werte der Transmittanz $|S_{21}(j\omega)|$ um.

Aufgabe 15 Rechnen Sie die Werte von $|S_{21}(j\omega)|$ in Werte der Betriebsdämpfung $A_{dB}(\omega)$ um.

```
clf
A_dB_value = double(10*log10(S21_value.^-2))

A_dB_value = 1×12
    -0.0347    0.0348    0.2825    0.3185    0.6866    0.9947    1.1100    1.3056 ...
```

Aufgabe 16 Stellen Sie die Werte von $A_{dB}(\omega)$ in einem Diagramm über der Frequenz dar.

```
plot(f,A_dB_value)
grid("minor")
xlabel("f [kHz]}")
ylabel("A_{dB}(\omega)")
legend("Measurement")
```


Aufgabe 17 Vergleichen Sie die Darstellung mit dem im Vorbereitungsteil skizzierten Verlauf von $A_{dB}(\omega)$.

```
clf
plot(f,A_dB(15*10^-9,50,2*pi*f*10^3)) %C-Wert aus letzte Aufgabe
xlabel ("f [kHz]")
ylabel("A_{dB}(\omega)")
grid("minor")
hold on
plot(f,A_dB_value)
legend("Ideal", "Measure")
hold off
```


Die Abweichungen lassen sich unter anderem durch Messrauschen und nicht Idealen Komponenten (Abweichungsnormen) erklären.

Aufgabe 2

Vorbereitungsteil:

1.Entwerfen Sie ein Cauer Tiefpassfilter 3.Ordnung: $\Omega_S \le 2~a_S \ge 28dB~R_1 = R_2 = 50\Omega$ (s. Filtertabellen)

 $\Omega_s \le 2$, n = 3 --> C0325 (siehe Filtertabelle)

2. Welche Filterkatalognummer und welches Θ haben Sie gewählt, welches r_1, r_2 ?

$$\Theta = 30^{\circ} \ r_1 = r_2 = 1$$

3. Zeichnen Sie den Schaltplan des gewählten Filters.

4. Nun sei weiterhin gegeben: $f_S = 200kHz$. Berechnen Sie die erforderlichen Bauteilwerte des Filters.

$$\Omega_s = \frac{f_s}{f_g} \longrightarrow f_g = \frac{f_s}{\Omega_s}$$

$$f_g = 200/2 \text{ %kHz}$$

$$f_g = 100$$

 $f_g = 100kHz$

 $L_2 = 0.0766$

5. Runden Sie die Bauteilwerte auf die nächsten in der E6-Bauteilreihe verfügbaren Werte.

E6 Bauteil: $L_2 = 0.068mH$

E6 Bauteil: $C_1 = 33nF$ $C_2 = 6.8nF$ $C_3 = 33nF$

6. Rechnen Sie die normierte Unendlichkeitsstelle $\Omega_{\infty 2}$ und Nullstelle Ω_{02} in die zugehörigen

Frequenzen $f_{\infty 2}$ und f_{02}

$$\Omega_{\infty 2} = 2.270068086$$
 $\Omega_{02} = 0.8810308431$

$$\Omega_{\infty 2} = \frac{f_{\infty 2}}{f_g}$$
 \Rightarrow $f_{\infty 2} = \Omega_{\infty 2} \cdot f_g = 227.0068kHz$

$$\Omega_{02} = \frac{f_{02}}{f_g}$$
 \Rightarrow
 $f_{02} = \Omega_{02} \cdot f_g = 88.1030kHz$

$$Omega_inf2 = 2.270068086*f_g$$

Omega_inf2 = 227.0068

$$Omgea_02 = 0.88103008431*f_g$$

Omgea_02 = 88.1030

Praxisteil