Questions de cours.

- **1.** Soit E un \mathbb{K} -espace vectoriel et $F \subset E$. Caractériser le fait que F soit un sous-espace vectoriel de E.
- **2.** Soit E un \mathbb{K} -espace vectoriel et F,G deux sous-espaces vectoriels. Caractériser le fait que F et G soient supplémentaires dans E.
- **3.** Soit E un \mathbb{K} -espace vectoriel et $(u_1, \ldots, u_n) \in E^n$. Caractériser le fait que la famille (u_1, \ldots, u_n) soit libre.

1 Espaces vectoriels

Exercice 1.1 (\star) . Montrer que les ensembles suivants sont des espaces vectoriels et en déterminer une base :

- 1. $\{(x,y,z)\in\mathbb{R}^3, x+2z=0\}.$
- **2.** $\{P \in \mathbb{R}[X], \ \widetilde{P}(1) = 0\}.$
- **3.** $\{u \in \mathbb{C}^{\mathbb{N}}, \exists n_0 \in \mathbb{N}, \forall n \geqslant n_0, u_n = 0\}.$

Exercice 1.2 (*). Soit E un \mathbb{K} -espace vectoriel muni d'une base $e = (e_1, \dots, e_n)$. Pour $i \in \{1, \dots, n\}$, on pose $\varepsilon_i = e_1 + \dots + e_i$.

- **1.** Montrer que $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n)$ est une base de E.
- **2.** Exprimer les composantes d'un vecteur dans la base ε en fonction de ses composantes dans e.

Exercice 1.3 (*). Soit $(P_n)_{n\in\mathbb{N}}$ une suite de polynôme de $\mathbb{K}[X]$ t.q. $\forall n\in\mathbb{N}$, $\deg P_n=n$.

- **1.** Montrer que pour tout $N \in \mathbb{N}$, (P_0, \ldots, P_N) est une base de $\mathbb{K}_N[X]$.
- **2.** Montrer que $(P_n)_{n\in\mathbb{N}}$ est une base de $\mathbb{K}[X]$.

Exercice 1.4 (*). On se place dans $E = \mathbb{R}^{\mathbb{R}}$. Soit $\lambda_1, \ldots, \lambda_r$ des réels deux à deux distincts. Pour $i \in \{1, \ldots, r\}$, on considère $f_i : t \in \mathbb{R} \longmapsto e^{\lambda_i t}$. Ainsi, $f_i \in E$. Montrer que f_1, \ldots, f_r sont libres.

Exercice 1.5 (*). Soit $\alpha_1, \ldots, \alpha_n$ des réels deux à deux distincts. Pour $k \in \{1, \ldots, n\}$, soit $f_k : x \mapsto |x - \alpha_k|$. Montrer que f_1, \ldots, f_n sont libres.

Exercice 1.6 (*). Soit $0 = a_0 < \cdots < a_{n+1} = 1$. On note V l'ensemble des fonctions $f : [0,1] \to \mathbb{R}$ continues t.q. pour tout $i \in \{0,\ldots,n\}$, $f_{|[a_i,a_{i+1}]}$ est affine.

- 1. Montrer que V est un espace vectoriel.
- **2.** Déterminer une base de V.

Exercice 1.7 (*). On se place dans $E = \mathcal{C}^0([0,1],\mathbb{R})$. On considère $\Phi : f \in E \longmapsto \int_0^1 f \in \mathbb{R}$. Donner un supplémentaire de Ker Φ dans E.

Exercice 1.8 (*). Si \mathfrak{P} dénote l'ensemble des nombres premiers, montrer que la famille $(\ln p)_{p \in \mathfrak{P}}$ est libre dans le \mathbb{Q} -espace vectoriel \mathbb{R} .

Exercice 1.9 (*). Soit E un \mathbb{K} -espace vectoriel. Soit $p, q : E \to E$ deux projecteurs de même image. Montrer que pour tout $\lambda \in \mathbb{K}$, $(1 - \lambda)p + \lambda q$ est un projecteur de même image que p et q.

Exercice 1.10 (ENSI '85, \star). Soit X un ensemble et $f: X \to \mathbb{R}$ une application t.q. f(X) est infini. Montrer que la famille $(f^n)_{n\in\mathbb{N}}$ est libre dans le \mathbb{R} -espace vectoriel \mathbb{R}^X .

Exercice 1.11 (*). *Soit* $\mathbb{K} = \mathbb{R}$ *ou* \mathbb{C} *et* E *un* \mathbb{K} -espace vectoriel.

- **1.** Si F_1 et F_2 sont des sous-espaces vectoriels stricts de E, montrer que $F_1 \cup F_2 \subsetneq E$.
- **2.** Plus généralement, si $n \in \mathbb{N}^*$ et F_1, \ldots, F_n sont des sous-espaces vectoriels stricts de E, montrer que $F_1 \cup \cdots \cup F_n \subsetneq E$.