APPM 4440 HW 6

Siraaj Sandhu

October 18, 2024

Problem	Self-Grade	Grade
#1	5	
#2	5	
#3	5	
#4	5	
#5	5	
#6	5	
#7	5	
#8	5	
#9	5	
#10	5	
Tot/50	50/50	

1. 3.4.3

Proof. Suppose that $f: D \to \mathbb{R}$ and $g: D \to \mathbb{R}$ are uniformly continuous. For any sequences $\{u_n\}, \{v_n\} \subset D$ s.t. $\lim_{n \to \infty} [u_n - v_n] = 0$, it is thus true that $\lim_{n \to \infty} [f(u_n) - f(v_n)] = 0$ and $\lim_{n \to \infty} [g(u_n) - g(v_n)] = 0$. In other words, the sequences $F_n = f(u_n) - f(v_n)$ and $G_n = g(u_n) - g(v_n)$ both converge to zero. The sum of a convergent sequence is also convergent: $\lim_{n \to \infty} [F_n + G_n] = 0 + 0 = 0$. If we substitute the formulae for F_n and G_n , we get

$$\lim_{n \to \infty} [(f(u_n) - f(v_n)) + g(u_n) - g(v_n)] = 0$$

$$\lim_{n \to \infty} [f(u_n) + g(u_n) - f(v_n) - g(v_n)] = 0$$

$$\lim_{n \to \infty} [f(u_n) + g(u_n) - f(v_n) - g(v_n)] = 0$$

$$\lim_{n \to \infty} [f(u_n) + g(u_n) - (f(v_n) + g(v_n))] = 0$$

$$\lim_{n \to \infty} [(f + g)(u_n) - (f + g)(v_n)] = 0$$

We know $\lim_{n\to\infty} [u_n - v_n] = 0$ and have just shown that $\lim_{n\to\infty} [(f+g)(u_n) - (f+g)(v_n)] = 0$. By definition, $f+g:D\to\mathbb{R}$ is uniformly continuous.

Used properties of convergent sequences (Sum rule) rather than providing a direct $\epsilon - N$ proof of convergence, but the Sum rule encapsulates the same reasoning. 5/5

2. 3.4.6

Proof. Suppose that $f:D\to\mathbb{R}$ $g:D\to\mathbb{R}$ are uniformly continuous. For any sequences $\{u_n\},\{v_n\}\subset D$ s.t. $\lim_{n\to\infty}[u_n-v_n]=0$, it is thus true that $\lim_{n\to\infty}[f(u_n)-f(v_n)]=0$ and $\lim_{n\to\infty}[g(u_n)-g(v_n)]=0$. We will show that the product $fg:D\to\mathbb{R}$ is not necesarily uniformly continuous. Suppose f(x)=x,g(x)=x, and $D=\mathbb{R}$. We can show that f and g are both uniformly continuous. Choose any $\{u_n\},\{v_n\}\subset D=\mathbb{R}$ s.t. $\lim_{n\to\infty}[u_n-v_n]=0$. Since f and g are the identity functions, it follows directly from this choice that $\lim_{n\to\infty}[f(u_n)-f(v_n)]=0$ and $\lim_{n\to\infty}[g(u_n)-g(v_n)]=0$, so both are uniformly continuous over \mathbb{R} . However, $fg(x)=x^2$. We can now choose $u_n=n$ and $v_n=n-\frac{1}{n}$. Clearly, $\lim_{n\to\infty}[u_n-v_n]=\lim_{n\to\infty}\frac{1}{n}=0$. However, $\lim_{n\to\infty}[fg(u_n)-fg(v_n)]=\lim_{n\to\infty}[n^2-(n^2-2+\frac{1}{n^2})]=\lim_{n\to\infty}[2-\frac{1}{n^2}]=2\neq 0$. So the product fg is not necessarily uniformly continuous. QED

Provided the same example as on the key with the same reasoning. 5/5

3. 3.4.10

Proof. Suppose $f:(a,b)\to\mathbb{R}$ is uniformly continuous. We claim f is bounded on (a,b). Suppose not. Then $\forall M>0$, $\exists x_0\in(a,b) \text{ s.t. } |f(x_0)|>M$. Since $\mathbb{N}\subset\mathbb{R}^+$, we can say $\forall n\in\mathbb{N},\exists x_n\in(a,b) \text{ s.t. } |f(x_n)|>n$.

Lemma 1. We claim $f(x_n)$ diverges. Suppose not. Then $\exists L \text{ s.t. } \forall \epsilon > 0, \exists N > 0 \text{ s.t. } | f(x_n) - L| < \epsilon \text{ for } n \geq N.$ It could be true that $f(x_n) > n$. Then $n - L < f(x_n) - L < \epsilon$. This requires $n < \epsilon + L$, but if $\epsilon + L \leq 0$, this is trivially false because $n \in \mathbb{N}$. Otherwise, if $\epsilon + L > 0$, the Archimedean property tells us $\exists N' \in \mathbb{N}$ s.t. $n > \epsilon + L$ for $n \geq N'$. Clearly, $[N', \infty) \cap [N, \infty) \neq \emptyset$, implying there is some n for which $n < \epsilon + L$ and $n > \epsilon + L$, which is a contradiction. If $f(x_n) \geqslant n$, it must be true that $-f(x_n) > n$. For convergence it suffices to show $-\epsilon < f(x_n) - L < -n - L$, requiring $-\epsilon < -n - L \implies n < \epsilon - L$. Similarly to the first case, if $\epsilon - L \leq 0$ this is trivially false because $n \in \mathbb{N}$. Otherwise, if $\epsilon - L > 0$, the Archimedean property tells us $\exists N' \in \mathbb{N}$ s.t. $n > \epsilon - L$ for $n \geq N'$. Clearly, $[N', \infty) \cap [N, \infty) \neq \emptyset$, implying there is some n for which $n < \epsilon - L$ and $n > \epsilon - L$, which is a contradiction. In either case, given $|f(x_n)| > n$, $f(x_n)$ diverges.

By Lemma 1, $f(x_n)$ diverges and all subsequences $f(x_{n_k})$ diverge because they conform to our original assumption: $|f(x_{n_k})| > n_k$. However, $x_n \subset (a,b)$ so $|x_n| \le \max\{|a|,|b|\}$, i.e. x_n is bounded. Thus x_n has a convergent subsequence x_{n_k} , which is equivalently Cauchy. Since f is uniformly continuous, $\forall x,y \in (a,b), \forall \epsilon > 0, \exists \delta > 0$ s.t. $|x-y| < \delta \implies |f(x)-f(y)| < \epsilon$. Since x_{n_k} is Cauchy, $\forall \delta > 0, \exists N > 0$ s.t. $\forall n_k, n_j \ge N, |x_{n_k}-x_{n_j}| < \delta$. It follows from uniform continuity that $|f(x_{n_k})-f(x_{n_j})| < \epsilon$ for $n_k, n_j \ge N$. In other words, $f(x_{n_k})$ is Cauchy and therefore convergent. But Lemma 1 tells us that $f(x_{n_k})$ must diverge. So the original assumption that f is not bounded is incorrect, i.e. f must be bounded.

QED

Employ similar reasoning but use a sequence s.t. $f(x_n) > n$ and claims that subsequences of $f(x_n)$ will diverge. Also uses the fact that x_n contains a convergent subsequence (i.e. contains a Cauchy subsequence) to establish a contradiction because uniformly continuous functions preserve Cauchy sequences (convergent sequences). 5/5

4. 3.4.11

Proof. Suppose $f: D \to \mathbb{R}$ is Lipschitz, i.e. $\exists C \geq 0$ s.t. $\forall u, v \in D, |f(u) - f(v)| \leq C|u - v|$. We claim f is uniformly continuous. If C = 0, we see that $|f(u) - f(v)| \leq 0$. Thus for any positive ϵ , we can choose any positive δ . If $u, v \in D$ and $|u - v| < \delta$, we can say that $|f(u) - f(v)| \leq 0 < \epsilon$. By definition f is thus uniformly continuous. If C > 0, we see that $|f(u) - f(v)| \leq C|u - v|$. For any positive ϵ , choose $\delta = \frac{\epsilon}{C} > 0$. Given $u, v \in D$ and $|u - v| < \delta$, we see that $|f(u) - f(v)| \leq C|u - v| < C\delta = \epsilon$. Since δ depends only on ϵ , f is uniformly continuous by definition. QED

Uses similar reasoning but proceeds using ϵ - δ proof instead. Believe the proof is still correct. 5/5

5. 3.5.3

Proof. Suppose $f: \mathbb{R} \to \mathbb{R}$ and $f(x) = x^3$. We will verify the ϵ - δ criterion for continuity at each point x_0 . We must show that $\forall x_0 \in \mathbb{R}, \forall \epsilon > 0, \exists \delta > 0$ s.t. $x \in D$ and $|x - x_0| < \delta \implies |f(x) - f(x_0)| < \epsilon$. Suppose $|x - x_0| < \delta$. By the triangle inequality we can say $|x| = |x - x_0 + x_0| \le |x - x_0| + |x_0| < \delta + |x_0|$. We know that

$$|f(x) - f(x_0)| = |x^3 - x_0^3|$$

$$= |(x - x_0)(x^2 + xx_0 + x_0^2)|$$

$$= |x - x_0||x^2 + xx_0 + x_0^2|$$

By the triangle inequality we can say $|x^2 + xx_0 + x_0^2| \le |x|^2 + |x||x_0| + |x_0|^2$. We know that $|x| < \delta + |x_0|$. By definition, $|x| \ge 0$. Suppose |x| = 0, then because $\delta > 0 \wedge |x_0| \ge 0 \implies \delta + |x_0| > 0$, it is true by positivity that $0^2 = 0 < (\delta + |x_0|)^2 \implies |x|^2 < (\delta + |x_0|)^2$. Otherwise, if |x| > 0, we can say directly that $|x|^2 < (\delta + |x_0|)^2$. If |x| = 0 and $|x_0| > 0$, then by positivity $|x||x_0| = 0 < (\delta + |x_0|)|x_0|$. If $|x_0| = 0$, we see trivially that $|x||x_0| = 0 = (\delta + |x_0|)|x_0|$. If |x| > 0, $|x_0| > 0$, then $|x| < \delta + |x_0| \implies |x||x_0| < (\delta + |x_0|)|x_0|$. Thus $|x||x_0| \le (\delta + |x_0|)|x_0|$. Summing these inequalities gives $|x|^2 + |x||x_0| + |x_0|^2 < (\delta + |x_0|)^2 + (\delta + |x_0|)|x_0| + |x_0|^2$. Suppose for the following that $0 < |x - x_0|$ (if $x = x_0$, we see trivially that $|x| < \delta > 0$, $|x - x_0| = 0 < \delta \implies |f(x) - f(x_0)| = 0 < \epsilon$). At this point, we could choose $\delta = \min\{1, \frac{\epsilon}{1+3|x_0|+3|x_0|^2}\} > 0$. Then

$$|f(x) - f(x_0)| = |x - x_0| ||x^2 + xx_0 + x_0^2|$$

$$\leq |x - x_0| (|x|^2 + |x||x_0| + |x_0|^2)$$

$$< |x - x_0| ((\delta + |x_0|)^2 + (\delta + |x_0|)|x_0| + |x_0|^2)$$

$$< \delta((\delta + |x_0|)^2 + (\delta + |x_0|)|x_0| + |x_0|^2)$$

$$= \delta(\delta^2 + 3\delta|x_0| + 3|x_0|^2)$$

$$\leq \delta(1 + 3|x_0| + 3|x_0|^2), \text{ because } \delta \leq 1$$

$$\leq \epsilon, \text{ because } \delta \leq \frac{\epsilon}{1 + 3|x_0| + 3|x_0|^2}$$

So $\forall x_0 \in \mathbb{R}, \forall \epsilon > 0, \exists \delta > 0 \text{ s.t. } x \in D \land |x - x_0| < \delta \implies |f(x) - f(x_0)| < \epsilon \text{ given we choose } \delta = \min\{1, \frac{\epsilon}{1 + 3|x_0| + 3|x_0|^2}\}.$ OED

The proof arrives at the same choice of δ (min $\{1, \frac{\epsilon}{1+3|x_0|+3|x_0|^2}\}$) for an ϵ - δ proof of uniformy continuity with same reasoning for choosing such a δ . 5/5

6. 3.5.7

(a) Proof. We claim $f:[0,1]\to\mathbb{R}$, $f(x)=\sqrt{x}$ is continuous. We will show first that f is continuous at each $x_0\in(0,1]$ and second that f is continuous at 0. For the former claim, it suffices to show $\forall x_0\in(0,1], \forall \epsilon>0, \forall \delta>0, |x-x_0|<\delta \implies |f(x)-f(x_0)|<\epsilon$. Suppose $|x-x_0|<\delta$. By assumption $x_0>0$, so we can say that $\sqrt{x_0}>0$. Since $\sqrt{x}\geq 0$, it follows that $\sqrt{x}+\sqrt{x_0}>0$. Also, $\sqrt{x}\geq 0 \implies \sqrt{x}+\sqrt{x_0}\geq \sqrt{x_0} \implies \frac{1}{\sqrt{x_0}}\geq \frac{1}{\sqrt{x}+\sqrt{x_0}}$. With this in mind, let us choose $\delta=\epsilon\sqrt{x_0}$. Then

$$|f(x) - f(x_0)| = |\sqrt{x} - \sqrt{x_0}|$$

$$= \left| \frac{(\sqrt{x} - \sqrt{x_0})(\sqrt{x} + \sqrt{x_0})}{(\sqrt{x_n} + \sqrt{x_0})} \right|$$

$$= \frac{|x - x_0|}{\sqrt{x} + \sqrt{x_0}}$$

$$\leq \frac{|x - x_0|}{\sqrt{x_0}}$$

$$< \frac{\delta}{\sqrt{x_0}}$$

$$= \epsilon, \text{ after substituting for } \delta$$

(0.1) At 0 --- --- at the three that V > 0.75 >

So $|f(x) - f(x_0)| < \epsilon \implies f$ is continuous on (0,1]. At 0, we need to show that $\forall \epsilon > 0, \exists \delta > 0$ s.t. $|x - 0| < \delta \implies |\sqrt{x} - 0| < \epsilon$. For any positive ϵ , choose $\delta = \epsilon^2$. Then $|x| < \delta \implies x < \delta \implies \sqrt{x} < \sqrt{\delta} = \sqrt{\epsilon^2} = \epsilon$. So $|f(x) - f(0)| < \epsilon \implies f$ is continuous at 0. Thus f is continuous at each $x_0 \in [0,1]$.

- (b) Proof. We claim $f:[0,1] \to \mathbb{R}$, $f(x) = \sqrt{x}$ is uniformly continuous. We know from (a) that f is continuous on [0,1]. The interval [0,1] is closed and bounded so by Theorem 3.17 f is uniformly continuous. QED
- (c) Proof. We claim $f:[0,1]\to\mathbb{R},\ f(x)=\sqrt{x}$ is not a Lipschitz function. Suppose not, i.e. f is a Lipschitz function. Then by definition, $\exists C\geq 0$ s.t. $\forall u,v\in[0,1], |f(u)-f(v)|\leq C|u-v|$. So $|\sqrt{u}-\sqrt{v}|\leq C|u-v|$. We could then choose $u=\frac{1}{n^2}$ and v=0 and expect that $|\frac{1}{n}-0|\leq C|\frac{1}{n^2}-0|$. Restrict n to $n\in\mathbb{N}$ and we get $\frac{1}{n}\leq C\frac{1}{n^2}\Longrightarrow \forall n\in\mathbb{N}, n\leq C$. By definition n will diverge (converge to infinity) and thus a finite bound C does not exist, which is a contradiction. Thus f is not a Lipschitz function.

Uses nearly identical ϵ - δ proof for (a) with same choice of δ . Uses same theorem for (b). Uses similar reasoning as key to show that no finite C satisfies criterion for uniform continuity. 5/5

7. 3.5.8

Proof. We claim that if a continuous function $f: \mathbb{R} \to \mathbb{R}$ is periodic, then it is uniformly continuous. By periodic we mean $\exists p > 0$ s.t. $\forall x, f(x+p) = f(x)$. We know that f is continuous so f is uniformly continuous on the compact interval [0, p]. That is, $\forall x, x_0 \in [0, p], \forall \epsilon > 0, \exists \delta > 0$ s.t. $|x - x_0| < \delta \Longrightarrow |f(x) - f(x_0)| < \epsilon$.

Lemma 2. We claim for any real number y that $\exists k \in \mathbb{Z}$ s.t. $y \in [k, k+1)$. Suppose y > 0. The Archimedean principle tells us that $\exists n \in \mathbb{N}$ s.t. y < n. That is, the set $A = \{x \in \mathbb{N} | y < x\}$ is nonempty and bounded below by construction. So $\exists n' = \inf A$ and we claim $n' \in A$. Suppose not. Then the next greatest number that could belong to A is n' + 1, i.e. $\forall a \in A, n' + 1 \leq a$, but this implies that n' is not the greatest lower bound, because n' < n' + 1. Thus $n' \in A$. So given $n' = \min A$, we know $n' - 1 \not\in A \implies n' - 1 \leq y \implies n' - 1 \leq y < n'$. Choose $k = n' - 1 \in \mathbb{Z}$. We see that $y \in [k, k+1)$. Now suppose y = 0. Choose k = 0 and we see that $y \in [k, k+1) = [0,1)$. Now suppose y < 0. Since $0 \in \mathbb{Z}$, we know the set $A = \{x \in \mathbb{Z} | y < x\}$ is nonempty (it at least contains 0) and bounded below by construction. Using the same logic we applied in the y > 0 case, we know $\exists n' \in A$ s.t. $n' = \min A$. Thus $n' - 1 \not\in A \implies n' - 1 \leq y$. Again, we can choose $k = n' - 1 \implies k \leq y < k + 1 \implies y \in [k, k+1)$.

By Lemma 2, we can choose any $x \in \mathbb{R}$ and say that $\exists k \in \mathbb{Z}$ s.t. $\frac{x}{p} \in [k, k+1)$. So $k \leq \frac{x}{p} < k+1 \implies kp \leq x < (k+1)p \implies 0 \leq x - kp < p$. Now, choose any $x', x'_0 \in \mathbb{R}$. We know $\exists j, k \in \mathbb{Z}$ s.t. $x' - jp \in [0, p]$ and $x'_0 - kp \in [0, p]$. Observe that if j, k = 0, then $x, x_0 \in [0, p]$ and f is uniformly continuous at x_0 . Otherwise, if j < 0 we see that

$$f(x'-jp) = f(x'-(j+1)p+p) = f(x'-(j+1)p)$$

$$= f(x'-(j+2)p+p) = f(x'-(j+2)p)$$

$$= \cdots$$

$$= f(x'-(j+n)p+p) = f(x'-(j+n)p), \text{ where } n \in \mathbb{N}$$

$$= \cdots$$

$$= f(x'), \text{ because eventually } n = -j$$

The same logic demonstrates that $f(x'_0 - kp) = f(x'_0)$ if k < 0. Observe also that $x = x - p + p \implies f(x - p + p) = f(x - p) = f(x)$. Then, if j > 0,

$$f(x'-jp) = f(x'-(j-1)p-p) = f(x'-(j-1)p)$$

$$= f(x'-(j-2)p-p) = f(x'-(j-2)p)$$

$$= \cdots$$

$$= f(x'-(j-n)p-p) = f(x'-(j-n)p), \text{ where } n \in \mathbb{N}$$

$$= \cdots$$

$$= f(x'), \text{ because eventually } n = -j$$

The same logic demostrates that $f(x'_0-kp)=f(x'_0)$ if k>0. Now suppose $x=x'-jp\in[0,p], x_0=x'_0-kp\in[0,p]$. We want to show that $\forall x', x'_0\in\mathbb{R}, \forall \epsilon>0, \exists \delta>0$ s.t. $|x'-x'_0|<\delta\Longrightarrow|f(x')-f(x'_0)|<\epsilon$. Let us restrict j=k, then $|x'-x'_0|<\delta$ whenever $|x-x_0|<\delta$, because $|x-x_0|=|x'-jp-(x'_0-kp)|=|x'-x'_0+kp-jp|=|x'-x'_0|$. Since f is uniformly continous on [0,p], we can say that $\forall \epsilon>0, \exists \delta(\epsilon)>0$ s.t. $|x-x_0|=|x'-x'_0|<\delta\Longrightarrow|f(x)-f(x_0)|=|f(x'-jp)-f(x'_0-kp)|=|f(x')-f(x'_0)|<\epsilon$. By definition, f is therefore uniformly continuous for all reals.

QED

Uses slightly more involved reasoning than key but main points of the proof are nearly identical with the key. 5/5

8. 3.6.2

- (a) Observe that 2x-1 and x^2-x are continuous on (0,1) because they are both polynomials. Since $x^2-x=x(x-1)\neq 0$ on the interval (0,1), the function $f(x)=\frac{2x-1}{x(x-1)}$ is continuous on (0,1). Now consider the interval $\left[\frac{1}{2n},1-\frac{1}{2n}\right]$. Observe that $f\left(\frac{1}{2n}\right)=\frac{1-n}{1-2n}4n$, and that $f\left(\frac{1}{2n}\right)-(n-1)=\frac{-((n-1)^2+n(n+1)-2)}{1-2n}$. Since $n\in\mathbb{N}$, $n\geq 1$, and thus the numerator and denominator will always be negative (since $(n-1)^2\geq 0$ and $n(n+1)-2\geq 0$), indicating that this quantity is positive, i.e. $f\left(\frac{1}{2n}\right)\geq n-1$. It is clear that n-1 is unbounded above, so it follows that $f\left(\frac{1}{2n}\right)$ is unbounded above as $n\to\infty$. Similarly, we see that $f\left(1-\frac{1}{2n}\right)=-\frac{1-n}{1-2n}4n\implies f\left(1-\frac{1}{2n}\right)\leq 1-n$, using the logic from above. Clearly 1-n is unbounded below, so it follows that $f\left(1-\frac{1}{2n}\right)$ is unbounded below as $n\to\infty$. So $f\left(1-\frac{1}{2n}\right)\leq f\left(\frac{1}{2n}\right)$. They are only equal when n=1, so let us consider f on intervals $\left[\frac{1}{2n},1-\frac{1}{2n}\right]$ where n>1. We can choose any $c\in\mathbb{R}$ and we know, because $f\left(\frac{1}{2n}\right)$ is not bounded above and $f\left(1-\frac{1}{2n}\right)$ is not bounded below, that there will exist an n large enough s.t. $f\left(1-\frac{1}{2n}\right)< c< f\left(\frac{1}{2n}\right)$. IVT tells us there must be an $x_0\in\bigcup_{n=1}^\infty \left[\frac{1}{2n},1-\frac{1}{2n}\right]=(0,1)$ s.t. $f\left(x_0\right)=c$, i.e. the image of f is \mathbb{R} .
- (b) We know $\sin x$ is continuous and bounded: $|\sin x| \le 1$. So, $-1 \le \sin x \le +1 \implies 0 \le \sin x + 1 \le 2 \implies 0 \le \frac{1}{2}(\sin x + 1) \le 1$. If we introduce some scaling factor $k = 2\pi$, then we see that $f(x) = \frac{1}{2}(\sin 2\pi x + 1)$ will map from (0,1) to [0,1]. For $x = \frac{1}{4}$, f(x) = 1, and for $x = \frac{3}{4}$, f(x) = 0. IVT tells us for any number c s.t. $c \in (f(\frac{3}{4}), f(\frac{1}{4})) = (0,1), \exists x_0 \in (\frac{1}{4}, \frac{3}{4}) \subset (0,1)$ s.t. $f(x_0) = c$. So we can say f maps from (0,1) to [0,1], as $0 \le f(x) \le 1$ and IVT showed us that the image is an interval. Moreover, f is continuous because it was defined via compositions, sums, and products of continuous functions.
- (c) We suggest the inverse of the function $f:(-1,1)\to\mathbb{R}, f(x)=\frac{x}{\sqrt{1-x^2}}$. We suggest f is continuous because $1-x^2>0$ on the interval (-1,1) and thus the composition $\sqrt{1-x^2}$ will be continuous, and thus the quotient $\frac{x}{\sqrt{1-x^2}}$ will be continuous. We can show that f is strictly increasing. Suppose u>v. Then

$$u^{2} > v^{2}$$

$$u^{2} - u^{2}v^{2} > v^{2} - u^{2}v^{2}$$

$$u^{2}(1 - v^{2}) > v^{2}(1 - u^{2})$$

$$u\sqrt{1 - v^{2}} > v\sqrt{1 - u^{2}}$$

$$\frac{u}{\sqrt{1 - u^{2}}} > \frac{v}{\sqrt{1 - v^{2}}}$$

$$f(u) > f(v)$$

We can show that $f((-1,1)) = \mathbb{R}$. Consider the interval $[-1 + \frac{1}{n+1/2}, 1 - \frac{1}{n+1/2}]$. We see that $f(1 - \frac{1}{n+1/2}) = \frac{n-1/2}{\sqrt{2n}} = \sqrt{n/2} - \frac{1}{2\sqrt{2n}}$. The second term converges to zero but we see that the first term is unbounded above, thus $f(1 - \frac{1}{n+1/2})$ is unbounded above as $n \to \infty$. We also see that $f(-1 + \frac{1}{n+1/2}) = \frac{1/2-n}{\sqrt{2n}} = \frac{1}{2\sqrt{2n}} - \sqrt{n/2}$. The first term converges to zero but we see that the second term is unbounded below, thus $f(-1 + \frac{1}{n+1/2})$ is unbounded below as $n \to \infty$. So we can choose any $c \in \mathbb{R}$ and say that there exists n large enough s.t. $f(-1 + \frac{1}{n+1/2}) < c < f(1 - \frac{1}{n+1/2})$. IVT tells us there must be an $x_0 \in \bigcup_{n=1}^{\infty} [-1 + \frac{1}{n+1/2}, 1 - \frac{1}{n+1/2}] = (-1, 1)$ s.t. $f(x_0) = c$, i.e. the image of f is \mathbb{R} . Theorem 3.29 tells us that since f is strictly increasing over the interval

(-1,1), its inverse $f^{-1}: \mathbb{R} \to (-1,1)$ is continuous, strictly increasing (shown in class), and maps \mathbb{R} to (-1,1). We see that $f^{-1}(x) = \frac{x}{\sqrt{1+x^2}}$.

Uses different examples than key but I believe an adequate justification is provided for each. 5/5

9. 3.6.4

Proof. Define

$$f(x) = \begin{cases} x - 1 & x < 0 \\ x + 1 & x \ge 0 \end{cases}$$

We will show that f is strictly increasing. We must show that given $u, v \in \mathbb{R}$ s.t. u > v, f(u) > f(v). If we restrict both u, v < 0 or both $u, v \ge 0$, it follows directly that f(u) > f(v) because $u > v \implies u - 1 > v - 1$ and $u > v \implies u + 1 > v + 1$. Now suppose $u \ge 0$ and v < 0. Then f(u) = u + 1 and f(v) = v - 1. Clearly v - 1 < v < u < u + 1, so f(u) > f(v). Note that u < 0 and $v \ge 0$ is not possible because it contradicts our assumption that u > v. Since f is strictly increasing and maps \mathbb{R} , an interval, to \mathbb{R} , we know by Theorem 3.29 that $f^{-1}: f(\mathbb{R}) \to \mathbb{R}$ is continuous. We see that $f(\mathbb{R}) = (-\infty, -1) \cap [1, \infty)$. Since $1 \in [1, \infty)$, i.e. 1 is in the image of f (its preimage is $x = 0 \implies f(x) = f(0) = 0 + 1 = 1$), we can say that f^{-1} is continuous at 1.

We use similar reasoning as key to prove strictly increasing property. Uses Theorem 3.29 instead of directly proof of continuity to establish continuity of the inverse, but I believe the reasoning is still valid. 5/5

10. 3.6.13

Proof. Let $f:[a,b] \to \mathbb{R}$ be continuous and one-to-one s.t. f(a) < f(b). Let c be a point in the open interval (a,b). We will show that f(a) < f(c) < f(b). Suppose this is not the case, i.e. $f(c) \le f(a)$ or $f(c) \ge f(b)$. Since f is one-to-one, $f(c) = f(a) \implies c = a$, which is a contradiction, since $c \in (a,b)$. The same follows for f(b), and thus $f(c) \ne f(a)$ and $f(c) \ne f(b)$. So it must be true that f(c) < f(a) or f(c) > f(b). Consider the case where f(c) < f(a). Choose any d s.t. f(c) < d < f(a). Then it is also true that f(c) < d < f(b). By IVT, we know $\exists x_0, x'_0 \text{ s.t. } x_0 \in (a,c)$ and $f(x_0) = d$, and $x'_0 \in (c,b)$ and $f(x'_0) = d$. Therefore $f(x_0) = f(x'_0) \implies x_0 = x'_0$ because f is one-to-one. But f(c) < f(c) < f(c). QED

Uses nearly identical proof by contradiction with same cases as key, and arrives at same conclusion. 5/5