

Pruebas de acceso a enseñanzas universitarias oficiales de grado

Castilla y León

MATEMÁTICAS II

EJERCICIO

Nº Páginas: 3

El alumno deberá escoger libremente CINCO problemas completos de los DIEZ propuestos. Se expresará claramente los elegidos. Si se resolvieran más, sólo se corregirán los 5 primeros que estén resueltos (según el orden de numeración de pliegos y hojas de cada pliego) y que no aparezcan totalmente tachados.

2.- CALCULADORA: Se permitirá el uso de **calculadoras no programables** (que no admitan memoria para texto ni representaciones gráficas).

CRITERIOS GENERALES DE EVALUACIÓN: Los 5 ejercicios se puntuarán sobre un máximo de 2 puntos. Se observarán fundamentalmente los siguientes aspectos: Correcta utilización de los conceptos, definiciones y propiedades relacionadas con la naturaleza de la situación que se trata de resolver. Justificaciones teóricas que se aporten para el desarrollo de las respuestas. Claridad y coherencia en la exposición. Precisión en los cálculos y en las notaciones. Deben figurar explícitamente las operaciones no triviales, de modo que puedan reconstruirse la argumentación lógica y los cálculos.

E1.- (Álgebra)

Se considera el sistema de ecuaciones lineales: $\begin{cases} x - y + az = 0 \\ x - z = 0 \\ 2x + ay - 2z = 0 \end{cases}$

- a) Estudie la existencia y número de soluciones según los valores del parámetro real a. (1,2 puntos)
- **b)** Resuélvalo, si es posible, para el valor del parámetro a = -1. (0,8 puntos)

E2.- (Álgebra)

Sea la matriz $A = \begin{pmatrix} a+1 & 1 \\ a-3 & a-3 \end{pmatrix}$.

- a) Indique para qué valores de a existe la matriz inversa A^{-1} . (0,5 puntos)
- **b)** Si a = 4, $B = \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$,

encuentre la matriz X que verifica que B + XA = C. (1,5 puntos)

E3.- (Geometría)

Sea el plano $\pi \equiv x - 2y + 2z + 1 = 0$, la recta $r \equiv \begin{cases} x - y = 0 \\ z + 1 = 0 \end{cases}$ y el punto A=(1, 3, -1).

Hallar la ecuación del plano que pasa por A, es paralelo a r y perpendicular a π .

(2 puntos)

E4.- (Geometría)

Dados el punto A(1,2,4) y la recta $r = \frac{x-1}{2} = \frac{y-1}{1} = \frac{z-1}{2}$,

- a) Hallar un punto B de la recta r de forma que el vector \overrightarrow{AB} sea paralelo al plano $\pi \equiv x + 2z = 0$. (1,5 puntos)
- b) Hallar un vector (a, b, c) perpendicular a (1,0,-1) y (2,1,0). (0,5 puntos)

E5.- (Análisis)

Representar gráficamente la función $f(x) = xe^x$, calculando previamente sus extremos relativos, intervalos de crecimiento y decrecimiento, concavidad y convexidad y sus asíntotas.

(2 puntos)

E6.- (Análisis)

Demuestre que la ecuación $x^3 - 12x = -2$ tiene una solución en el intervalo [-2,2] y

pruebe además que esa solución es única.

(2 puntos)

E7.- (Análisis)

a) Calcular
$$\lim_{x\to 0} \frac{e^x - \cos x - x}{e^x + sen x - 1}$$
. (1 punto)

b) Calcular
$$\int_0^{\frac{\pi}{2}} (sen \ x + \cos x) dx$$
 (1 punto)

E8.- (Análisis)

- a) Calcule los puntos de corte de las gráficas de las funciones $f(x) = \frac{2}{x}$ y g(x) = 3 x.
- b) Sabiendo que en el intervalo [1,2] se verifica que $g(x) \ge f(x)$ calcular el área del recinto limitado por la gráfica de ambas funciones en dicho intervalo.

(1,5 puntos)

E9.- (Probabilidad y estadística)

El peso de los alumnos de 2º de bachillerato de un instituto de León, sigue una distribución normal, de media 75 kg y de desviación típica 5. Si se elige al azar un alumno, calcular la probabilidad de que:

a) Tenga un peso entre 70 y 80 kg.

(1 punto)

b) Tenga un peso superior a 85 kg.

(1 punto)

E10.- (Probabilidad v estadística)

La probabilidad de que a un puerto llegue un barco de tonelaje bajo, medio o alto es 0,6, 0,3 y 0,1, respectivamente. La probabilidad de que necesite mantenimiento en el puerto es 0,25 para los barcos de bajo tonelaje, 0,4 para los de tonelaje medio y 0,6 para los de tonelaje alto.

a) Si llega un barco a puerto, calcule la probabilidad de que necesite mantenimiento.

(1 punto)

b) Si un barco ha necesitado mantenimiento, calcule la probabilidad de que sea de tonelaje medio. (1 punto)

Distribución Normal

$$F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}t^2} dt$$

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9014
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9318
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999