	Bit Rate =	Coding Rate *	Baud Rate
Channel Bandwidth	V		V
Pulse Shape	v	V	~
SNR	V	V	
Transmission power distance	max Bit rate (AWGV)		151; distortion nax Band rate = Number Rate
noise	- Shannon capacity		= Mygnist Rate

2 signal formats:
$$\begin{cases} +\frac{A}{2} \\ -\frac{A}{2} \end{cases}$$

What is Line Coding?

- One method to convert a binary information sequence into signals that enter the communication channel
 - ▶ E.g., "1" maps to +A square pulse; "0" to -A square pulse
- Design considerations:
 - Timing recovery * boundries between signals/bits
 - Low complexity and implementation cost
 - ▶ Low power and energy efficient
 - ▶ Better immunity to noise and interference
 - Built-in error detecting capability

Cpr E 489 -- D.Q.

Unipolar & Polar Non-Return-to-Zero (NRZ) Coding

Unipolar NRZ

- "1" maps to +A pulse
- "0" maps to no pulse
- Average Power: High $0.5*A^2 + 0.5*0^2 = A^2/2$
- Long string of "1"s or "0"s
 - Poor timing
- Simple

Polar NRZ

- # "1" maps to +A/2 pulse
- ◆ "0" maps to −A/2 pulse
- Average Power: Lower $0.5*(A/2)^2 + 0.5*(-A/2)^2 = A^2/4$
- Long string of "1"s or "0"s
 - Poor timing
- Simple

Cpr E 489 -- D.Q.

Bipolar Coding

- Three signal formats: {-A/2, 0, +A/2}
- "1" maps to +A/2 or –A/2 in alternation
- "0" maps to no pulse
 - ▶ Every + pulse matched by pulse
- String of "1"s produces a square wave
 - ◆ Spectrum centered at 1/(2T)
- Long string of "0"s causes receiver to lose synch
- Zero-substitution codes

"Bipolar Violation"

- error detection

- "Zero substitution"

B8Z5

(Bipolar with

B
Zeros

Substitution

North American

T1 system

(1.544 mbps)

bit rate = coding rate * Bond rate

$$\frac{1}{2}$$
20 MHZ

=) used in bandwidth-rich system such as Ethernet

Coding Rate =
$$\frac{m}{n} = 1$$

$$2^m \le 2^n =) m \le n$$

Manchester Coding & mBnB Coding

Manchester

- "1" maps to A/2 first T/2, -A/2 last T/2
- "0" maps to -A/2 first T/2, A/2 last T/2
- Every interval has transition in middle
 - Easy timing recovery
 - Double the minimum bandwidth
- Simple to implement
- Used in 10 Mbps Ethernet & other LAN systems

mBnB

- Maps block of m information bits into n pulses
- Manchester code is 1B2B code
- 4B5B code is used in 100 Mbps Ethernet
- 8B10B code is used in Gigabit Ethernet
- 64B66B code is used in 10 Gbps Ethernet

2B1Q Coding* & mBnL Coding

*2*B*1*Q

	Previous level: positive	Previous level: negative
Next bits	Next level	Next level
"00"	+A/2	-A/2
"01"	+3A/2	-3A/2
"10"	-A/2	+A/2
"11"	-3A/2	+3A/2

mBnL

- Maps block of *m* information bits into *n* pulses
- There is a total of L different levels of pulses

^{*} This version of 2B1Q coding is based on "Data Communications and Networking" by Behrouz A. Forouzan.