Web Mining: Structure: Link Analysis

Alípio Jorge, DCC-FC, Universidade do Porto amjorge@fc.up.pt

Web Mining

Web Usage Mining

- discovery from user access patterns from logs or alike
- applications:
 - user segmentation, recommendation, personalization, adaptation, usability improvement

Web Structure Mining

- discovery of useful knowledge from hyperlinks
- applications:
 - discover important pages (information retrieval)
 - discover communities

Web Content Mining

- extracts information from Web pages
- applications
 - information extraction, summarization, topic extraction, discovering user emotions

Web structure mining

- Take advantage of the information in web hyperlinks
 - links are created locally
 - web structure, as a whole, is not planned.
- Take advantage of the information in social links
 - social networks

- To understand the structure of the web
 - Link analysis
 - Analysis of the topology of connections

Web graphs

- Internet can be seen as different interdependent graphs
 - pages and hyperlinks (web)
 - computers and communications between them (internet)

Web graph

- very large (2x10¹⁰?)
- dynamical (changes structure and content)
- has virtual parts (dynamic pages, harder to analyse)
- disconnected (has islands)
- sparse (relatively few connections)

How can we use web structure?

For finding

- prestigious web pages
- central links in social webs
- communities
 - web page clusters pointing to each other
 - groups of people who change emails

Studying web structure is related to

- social network analysis
 - e.g. package "sna" of R
- complex networks

Network analysis

- Interesting phenomena in a network
 - central nodes
 - are important to connect two parts of the network
 - are involved in many indirect connections

- prestigious nodes
 - tend to be referred to by many other nodes

Degree centrality of a node

- network has n nodes (actors)
- \rightarrow d(i) is the number of links of node i node degree
- the more links, the higher centrality
- range [0,1]
- Undirected graph

$$C_D(i) = \frac{d(i)}{n-1}$$

Degree centrality of a node

- network has n nodes (actors)
- $d_o(i)$ is the number of **out-links** of node i out-degree
- the more links, the higher centrality
- range [0,1]
- Directed graph

$$C'_D(i) = \frac{d_o(i)}{n-1}$$

Closeness centrality of a node

- a node is important if it is closer to all other nodes
- ▶ d(i,j) is the distance between nodes i and j e.g. number of edges
- range [0,1] (assuming a connected graph)
- Undirected graph

$$C_D(i) = \frac{n-1}{\sum_{j=1}^n d(i,j)}$$

Closeness centrality of a node

- a node is important if it is closer to all other nodes
- ▶ d(i,j) is the distance between nodes i and j e.g. number of edges
- range [0,1] (assuming a connected graph)
- ▶ Directed graph distance now considers direction

$$C_D(i) = \frac{n-1}{\sum_{j=1}^n d(i,j)}$$

Betweeness centrality of a node

- a node is important if it is between other nodes
- P_{ik} is the number of shortest paths between j and k
- ▶ $p_{jk}(i)$ is the number of shortest paths between j and k that go through i ($i \neq j$, $i \neq k$)
 - ▶ range [0, (n-1)(n-2)/2]
- Undirected graph

$$C_B(i) = \sum_{j < k, j \neq i, k \neq i} \frac{p_{jk}(i)}{p_{jk}}$$

- ▶ There is data about friendship requests in a social net
 - Who would you pick as a marketing mate: f or d?
 - Who would you pick for collecting information?
 - Who would you pick for distribution of goods?

Network analysis: prestige measures

- Degree prestige of a node
 - a node is prestigious if it is referred by other nodes
 - Directed graph
 - $d_i(i)$ is the number of **in-links** of node i in-degree

$$P_D(i) = \frac{d_i(i)}{n-1}$$

Network analysis: prestige measures

- node A is referred by n ordinary nodes
- node B is referred by n nodes, k of which prestigious
 - which node has higher prestige?
- we must take the prestige of pointing nodes into account
- HITS and PageRank do just that

Using web structure for information retrieval

Search

- Search a page about topic X
- Each page Y is relevant according to
 - similarity between the content of X and Y

Link analysis

- Each page Y is relevant according to
 - number of references to page Y
 - content of pages which refer to Y

HITS (hyperlink induced topic search) [Chakrabarti et al.]

Discovery of two kinds of pages

Authorities

pages referred to by many other in a specific topic

▶ Hubs

- pages that refer to many others
- In a first stage we use text similarity then we use link structure

Hubs e Authorities

- Relevance of an Authority
 - if a page is referred to by many others, then it must be relevant
 - it enables search more robust to variation in terms
 - example "data mining" and "machine learning"
- Quality of a Hub
 - If a hub refers to many important authorities then it is a good hub
- The relevance of an Authority and the quality of a Hub are interdependent

Link analysis with HITS

- Community discovery about a topic by computing hubs and authorities to that topic
 - given a query (topic) Q, collect a set of seed pages S = {s1, s2, ..., sn } (root set)
 - 2. S is expanded to $T = S \cup \{d \mid s \rightarrow d \text{ or } d \rightarrow s, s \in S \}$
 - initially, each page $r \in T$ has authority weight a(r) = I, hub weight h(r) = I

$$a(r) = \sum_{d \to r} h(d)$$

For each page we update the values of a and h

$$h(r) = \sum_{r \to d} a(d)$$

Normalize **a** and **h** and repeat step 3 until convergence (typically 10 it.)

4. The community corresponds to the k top pages with highest **a** and **h**

Link analysis

$x1 \rightarrow s1$ $a(s1)=1, h($	s1)=1
$x2 \rightarrow s1$ $a(s2)=1, h($	
$s1 \rightarrow y1$ $a(s3)=1, h($	
$s2 \rightarrow x1$ $a(x1)=1, h($	
$x2 \rightarrow s3$ $a(x2)=1, h($	
$s3 \rightarrow y1$ $a(y1)=1, h(y1)=1$	

iteração 1

a1(s1)=2, h1(s1)=1a1(s2)=0, h1(s2)=1a1(s3)=1, h1(s3)=1a1(x1)=1, h1(x1)=1a1(x2)=0, h1(x2)=2a1(y1)=2, h1(y1)=0

iteração 2

a2(s1)=1.5 h2(s1)=1a2(s2)=0 h2(s2)=0.5a2(s3)=1 h2(s3)=1a2(x1)=0.5, h2(x1)=1a2(x2)=0, h2(x2)=1.5a2(v1)=1 h2(v1)=0

iteração 3

a2(s1)=1,66 h2(s1)=0,66 a2(s1)=1a2(s2)=0h2(s2)=0.33 | a2(s2)=0a2(s3)=1a2(x1)=0.33 h2(x1)=1a2(x2)=0h2(x2)=1.66 a2(x2)=0a2(y1)=1.33 h2(y1)=0

iteração 1 (norm.)

a2(s1)=1h2(s1)=0.5a2(s2)=0, h2(s2)=0.5a2(s3)=0.5, h2(s3)=0.5a2(x1)=0.5, h2(x1)=0.5a2(x2)=0, h2(x2)=1a2(v1)=1h2(y1)=0

iteração 2 (norm.)

a2(s1)=1 h2(s1)=0.66a2(s2)=0h2(s2)=0.33a2(s3)=0.66 h2(s3)=0.66a2(x1)=0.33 h2(x1)=0.66a2(x2)=0, h2(x2)=1a2(v1)=0.66 h2(v1)=0

iteração 3 (norm.)

h2(s1)=0.4h2(s2)=0,2h2(s3)=0.66 a2(s3)=0.6 h2(s3)=0.4a2(x1)=0.2h2(x1)=0.6h2(x2)=1a2(v1)=0.8h2(y1)=0

topo authority: **s1** (1), **y1** (0,8), **s3** (0,6)

20 x1(0,6), s1(0,4)topo hub: x2(1)

HITS with an adjacency matrix

- The graph of connections / links can be represented by an adjacency matrix A
- Where
 - a not normalized (ann) is

ann =
$$A^{T}h$$

a normalized (a) is

$$a = ann/max(ann)$$

hnn = A.a; h = hnn / max(hnn)

	[s1]	[s2]	[s3]	[x1]	[x 2]	[y1]
[s1]	0	0	0	0	0	1
[s2]	0	0	0	1	0	0
[s3]	0	0	0	0	0	1
[x1]	1	0	0	0	0	0
[x2]	1	0	1	0	0	0
[y1]	0	0	0	0	0	0

HITS in pseudo-code

- Graph of connections given as an adjacency matrix
- Given a number o f iterations

```
hits-iterate(A)

a<sub>0</sub>←h<sub>0</sub>←(1,1,...,1)

k←1

Repeat
```

```
\begin{array}{c} & \operatorname{hnn_k} \leftarrow \operatorname{A} \cdot \operatorname{a_{k-1}} \\ & \operatorname{a_k} \leftarrow \operatorname{ann_k} / \operatorname{max} (\operatorname{ann_k}) \\ & \operatorname{h_k} \leftarrow \operatorname{hnn_k} / \operatorname{max} (\operatorname{hnn_k}) \\ & |\operatorname{a_k} - \operatorname{a_{k-1}}| < \operatorname{ea} \ \operatorname{and} \ |\operatorname{h_k} - \operatorname{h_{k-1}}| < \underline{\operatorname{eh}} \end{array}
```

return ann_k , a_k , hnn_k , h_k

```
> A
      [,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0 0 0 0 0 0 1
[2,] 0 0 0 1 0 0
[3,] 0 0 0 0 0 0 1
[4,] 1 0 0 0 0 0 0
[5,] 1 0 1 0 0 0
[6,] 0 0 0 0 0 0
```

```
> hits(A,4)
        [,1] [,2] [,3] [,4]
[1,] 1.6 0.8 1.000 0.500
[2,] 0.0 0.2 0.000 0.125
[3,] 1.0 0.8 0.625 0.500
[4,] 0.2 1.0 0.125 0.625
[5,] 0.0 1.6 0.000 1.000
[6,] 0.8 0.0 0.500 0.000
```

22 amjorge@fc.up.pt

HITS by eigenvectors

$$a = A^{T}h \qquad h = Aa$$

$$a = A^{T}Aa \qquad h = AA^{T}h$$

$$a = A^{T}.k_{1}h \qquad h = A.k_{2}a$$

$$a = A^{T}A.k_{2}a \qquad h = AA^{T}.k_{1}h$$

 \triangleright a is the largest eigenvector of A^TA

with normalization

- ▶ h is the largest eigenvector of A.A^T
 - x eigenvector of M if Mx=k.x, where k is a scalar

And on R we get

```
> t(eigen(t(A)%*%A)$vectors[,1])

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.8506508 0 0.5257311 0 0 0
```

i.e., authorities are s1 and s3

```
> t(eigen(A%*%t(A))$vectors[,1])

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0 0 0.5257311 0.8506508 0
```

- hubs are x2 and x1
- Function eigen computes eigenvectors (among other things)

Comments on eigenvectors

- Iterative algorithm finds the principal eigenvectors
 - Major communities
- Other eigenvectors
 - Alternative communities
 - E.g. query "classification" or "football"
- Convergence
 - HITS always converges
 - Different initializations may give different results
 - If there are repeated principal eigenvalues
 - If A^TA is reducible
 - ☐ the graph is not strongly connected

Notes

- Search in HITS starts by CONTENT relevance
 - root set
- then content is ignored
 - only links are exploited

Example:

- look for pages of "japanese car manufacturers"
 - the page of Honda will not have this page
- software companies...
- pages are not typically self descriptive

How to identify inlinks

- google.com
 - Query "link: <url>"
 - no space after :
- results are a sample of the actual set of links

Activity

- Determine the most interesting hub
- Determine the most important authority
- Suppose we are looking for information about a car model X and page A contains that model, how would that change your previous results?
- Think of way for enhancing recommendation using hits

PageRank

- HITS was proposed in January 1998
 - Kleinberg
- PageRank was proposed in April 1998 and is used by Google
 - Sergey Brin and Larry Page
- ▶ HITS and PageRank have many similarities
- but they have very important differences
 - computational
 - robustness of results
- The idea of PageRank
 - rank pages according to their prestige
 - prestige is (mainly) determined by inlinks and their prestige

PageRank: The idea

- We consider a random robot
 - prob(página B → página A) = I/n
 - > n is the number of outlinks from B

- prob(A) =
 prob(B)/Out(B) + prob(B2)/Out(B2) + prob(B3)/Out(B3)
- Most important pages will have higher probability
- What about loops and direct accesses?

PageRank Mathematics

- R(i) = R(j1) / Oj1 + R(j2) / Oj2 + ...
- \blacktriangleright How can we determine R(i)?
 - system of n equations and n unknowns
- $R = \langle R(1), R(2),...,R(n) \rangle$
- ▶ Aij = 1/Oi OR zero
- Arr $R = A^T.R$
- ▶ This could be enough, but...

PageRank – some problems

- Arr R = A^T.R
- For the above to have a unique solution A must be
 - stochastic (all rows must sum 1)
 - often it is not: there are nodes with no outlinks
 - solution I: remove nodes without outlinks
 - solution 2: artificially insert equal weights into a row with zeros

PageRank – some problems

- Arr $R = A^T R$
- ...A must be
 - **irreducible** (in the graph there is a path from any node to any other node)
 - often it is not the case (there is no path from \$1 to \$2)
 - aperiodic (the greatest common divisor of all cycles for each node is 1)
 - \rightarrow A \rightarrow B, B \rightarrow C, C \rightarrow A: the cycle has period 3
 - No loop traps

- add a link to every two pages
 - in fact, if one is in one page can go directly to any other by typing its **URL**
 - the probability of transition is controlled by a parameter d

PageRank: Teleportation

- When on a page B, there is a certain probability (ex: 0.1) of teleporting to a page A which has no direct connection to B
 - ▶ prob(getting to A) = 0.1/(number of nodes) + 0.9 * prob(direct access)
- ▶ R(A) is proportional to this probability

PageRank

http://www-db.stanford.edu/~backrub/google.html

http://www.iprcom.com/papers/pagerank/

$$R(A) = (I-d) + d*(R(TI)/Out(TI) + ... + R(Tn)/Out(Tn))$$

- R(X) page rank of page X
- d damp factor (solves connectivity problems and models direct accesses)
- Out(X) number of outlinks of X

PageRank additional criteria*

- (improving the user model)
- Visibility of a link
- Position of a link within a document
- Distance between web pages
 - same server, same domain, same region
- Importance of a linking page
- Up-to-dateness of a linking page

Algorithm

- We can solve a system of equations
- We can calculate R iteratively
 - assign initial R values to pages
 - calculate new values for R
 - iterate (number of iterations depends on the size of the network)

PageRank and HITS

- PageRank can be computed offline
 - it is query independent
 - which can be a disadvantage: a page can be an authority in a topic but not in general
 - □ comparar www.publico.pt ou www.oftalmologia.pt
- PageRank is more robust to SPAM
 - importance of a page depends on inlinks not outlinks
- PageRank does not consider time
- PageRank is more robust to perturbations in the input than HITS

Web Spamming

- Artificially increasing the rank of a page without increasing its specific information value
 - Search Engine Optimization can be spam or not
 - debateable (http://www.webworkshop.net/ethical-search-engine-optimization.html)

Content Spamming

- insert popular words (even if unrelated)
- repeating important terms
- dumping many unrelated terms

Link Spamming

- outlink spamming: directory cloning
- inlink spamming
 - honey-pot
 - submit URLs to Web Directories
 - Posting links to forums or the like
 - link exchange schemes
 - spam farms

Activity

- Assume damp factor of 0.9
- Suppose the PageRank of A is 1, what is the PR of B?
- and of C?
- Determine the PageRank of the pages of the graph

Community Discovery

- Community: group of entities (people, organizations) sharing common interests.
 - Users who like metal music
 - Treckies

What for?

- Source of resources for users with similar interests
- Sociology of the web: we know better, we can exploit better
- Target advertising

Community Discovery

- Given a set of entities S
 - Of the same type
- A community is
 - ▶ A pair C = (Theme ,Group)
- Example
 - Users who like metal music

Communities

Web pages

- Users in the same community are usually interconnected through hyperlinks
- Pages contain words that reveal the theme

Emails

- Members of a community exchange emails (links)
- Emails contain words revealing the theme

Documents

- Members of a community are more likely to appear together in the same sentences or documents (this is the link)
- Words indicate the community theme

Algorithm: Bipartite Core Communities

Bipartite graph of Fans and Centers

Music fans and band pages

Identifying (i,j) cores

- i fans and j centers
- ▶ Fans ~ Hubs, Centers ~Authorities

We could use HITS

- But computing eigenvalues is relatively inefficient
- We will describe an algorithm by R. Kumar

Bipartite graph

Algorithm: Bipartite Core Communities

Pruning

- Delete pages that are too highly referenced
 - ▶ Inlink > 500
- Prune fans and centers
 - ▶ Fans with outdegree < j</p>
 - Centers with indegree < i</p>
 - ► Example for (i=3,j=2)

After pruning

Algorithm: Generating all (i,j) cores

After Pruning

- Fix j, start with all (1,j) cores
 - Set of fans with outdegree at least j
- Look for (2,j) cores by checking every fan that points to a center in a (1,j) core
- ▶ Similarly for (3,j) in a APRIORI fashion

Note

This algorithm finds cores of communities, not the whole community

Suppose this was the result of pruning

Algorithm: Generating all (i,j) cores

Example

- Find all (3,2) cores
 - ▶ Identify (1,2) cores
 - ☐ Fans with 2 outlinks (min)
 - ▶ Identify (2,2) cores
 - □ Combine pairs of fans to find larger cores
 - ▶ Identify (3,2) cores
- Find all (3,3) cores

Suppose this was the result of pruning

Resources

Books

- Web Data Mining, Bing Liu, Springer, 2007
- Mining the World Wide Web, Chang, G., Healey, M., McHugh, J., Wang, J., Kluwer Academic Press, 2001.

Article

Google's PageRank Explained and how to make the most of it, Phil Craven, http://www.webworkshop.net/pagerank.html