

# **Edge Detection**

Role of edges & general approach of edge detection Image gradient

Edge detectors: Sobel, Prewitt, Canny detector

SOICT

1

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Chapter 4 - Content

- Edge
  - Edge Detection:
    - o Role of edges & general approach of edge detection
    - o Image gradient
    - o Edge detectors: Sobel, Prewitt, Canny detector
  - Edge Linking
- Feature extraction and matching
  - Global features
  - Local features
  - Matching and Applications



SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

2

# Role of edge & general approach of edge detection

What are edges/ contours?

- Local changes in the images
- Typically occur on the boundary between different regions in an image
   Surface
   orientation

Origins of edges:

Depth

of edges:

Surface colours
reflectance

illumination

SCHOOL OF INFORMATION AND COMM



A Experimental setup

B Stimulus orientation

Projected on screen

Record

Record

Record

School of information and communication technology

5





# Edge detection

 Goal: Identify sudden changes (discontinuities) in an image

 Intuitively, most semantic and shape information from the image can be encoded in the edges

- More compact than pixels

• Why?

- Extract information, recognize objects

- Recover geometry and viewpoint

Source: J. Hayes anishing point school of INFORMATION AND COMMUNICATION TECHNOLOGY —

9

# Image profile Attps://www.mathworks.com/help/images/intensity-profile-of-images.html school of information and communication rechnology 11

# How to find edges?

 Intensity profile of an image is the set of intensity values taken from regularly spaced points along a line segment or multi-line path in an image



10

#### How to find edges? General approach

- An edge is a place of rapid change in the continuous image intensity function
  - Extrema of 1st derivate
  - Zero-crossing of 2<sup>nd</sup> derivate



25 SOIC

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY



# Types of discrete derivatives in 1D

Backward  $\frac{df}{dx} = f(x) - f(x-1) = f'(x)$ 

Forward  $\frac{df}{dx} = f(x) - f(x+1) = f'(x)$ 

Central  $\frac{df}{dx} = f(x+1) - f(x-1) = f'(x)$ 



#### Derivatives in 1D continuous function

Derivative in 1D:

$$\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x) - f(x - \Delta x)}{\Delta x} = f'(x) = f_x$$

Discrete derivative in 1D

$$\frac{df}{dx} = \frac{f(x) - f(x-1)}{1} = f'(x)$$

$$\frac{df}{dx} = f(x) - f(x-1) = f'(x)$$

14

#### 1D discrete derivate filters

· Backward filter:

$$\frac{df}{dx} = f(x) - f(x-1) = f'(x)$$
 [0 1 -1]

Forward:

$$\frac{df}{dx} = f(x) - f(x+1) = f'(x)$$
 [-1 1 0]

• Central·
$$\frac{df}{dx} = f(x+1) - f(x-1) = f'(x) \quad [1 \quad 0 \quad -1]$$



#### 1D discrete derivate example

• Backward filter: [0 1 -1]

$$f(x) = 10$$
 15 10 10 25 20 20 20  $f'(x) = 0$  5 -5 0 15 -5 0 0

f(x): 0 0 0 0 0 50 50 50 50 50 f'(x): 0 0 0 0 0 50 0 0 0

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

17

Image I (9 x 8) M<sub>v</sub>: Derivative filter wrt x 0 0 0 -1 100 100 100 100 100 100 100 100 100 100 M<sub>v</sub>: Derivative filter wrt y 0 100 100 100 100 0 100 100 100 100 100 100 100 100 100 0 100 100



18



#### 3x3 image gradient filters

$$\frac{1}{3} \begin{bmatrix}
-1 & 0 & 1 \\
-1 & 0 & 1 \\
-1 & 0 & 1
\end{bmatrix}$$

$$\frac{1}{3} \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \qquad \qquad \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$$









SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGIC

21

## Gradient of an image

• The gradient of an image:  $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$ 







- · The gradient vector points in the direction of most rapid increase in intensity
- $\theta = \tan^{-1}\left(\frac{\partial f}{\partial u}/\frac{\partial f}{\partial x}\right)$ · The gradient direction is given by
  - · how does this relate to the direction of the edge?
- The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

#### Image gradients - Definition

Given function

Gradient vector

$$\nabla f(x,y) = \begin{bmatrix} \frac{\partial f(x,y)}{\partial x} \\ \frac{\partial f(x,y)}{\partial y} \end{bmatrix} = \begin{bmatrix} f_x \\ f_y \end{bmatrix}$$

Gradient magnitude

$$\left|\nabla f(x,y)\right| = \sqrt{f_x^2 + f_y^2}$$

Gradient direction

$$\theta = \tan^{-1} \frac{f_x}{f_y}$$



SOICT SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

22

## Image gradient

- Derivative of image wrt. x + Derivative wrt. y
  - → Image gradient: magnitude and direction
- · Gradient magnitude: gradient intensity for each pixel (mostly used)

$$|G| = \sqrt{(G_x^2 + G_y^2)} \approx |G_x| + |G_y|$$

· Gradient Direction: main direction of each pixel

$$\theta = \tan^{-1} G_{\nu}/G_{x}$$











#### Effects of noise

Solution: smoothing the image



Where is the edge?

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOG

29

#### Derivative theorem of convolution

• This theorem gives us a very useful property:

$$\frac{d}{dx}(f*g) = \frac{df}{dx}*g = f*\frac{dg}{dx}$$

• This saves us one operation:



Source: S. Seitz

Solution: smooth first



SOICT school of INFORMATION AND COMMUNICATION TECHNOLOGY

30

#### Derivative theorem of convolution

• This theorem gives us a very useful property:

$$\frac{d}{dx}(f*g) = \frac{df}{dx}*g = f*\frac{dg}{dx}$$

• This saves us one operation:



Source: S. Seitz

# Discrete derivate in 2D image filters wrt. x and y

• Robert filter (the first approximation filter for image derivative - 1965)



Prewitt filter

|       | 1 | 0  | -1 |       | 1  | 1  | 1  |
|-------|---|----|----|-------|----|----|----|
| 1/3 x | 1 | 0  | -1 | 1/3 x | 0  | 0  | 0  |
|       | 1 | -0 | -1 |       | -1 | -1 | -1 |

Sobel filter

|       | 1 | 0  | -1 |  |
|-------|---|----|----|--|
| 1/4 x | 2 | 0  | -2 |  |
|       | 1 | -0 | -1 |  |



SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

#### 33

#### **Prewitt Operator**

Mean smoothing + differentiation

$$Gx = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$$

$$Gy = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

#### → Less sensible to noise



SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

# **Sobel Operator**

· Gaussian Smoothing + differentiation

Gaussian smoothing

$$G_{x} = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$$

differentiation

$$G_{y} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$$

→ Less sensible to noise



34

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

#### Simple edge detector with 1st derivative

Convolve the original image with 2 kernels to calculate approximations

of the derivatives





Compute the gradient magnitude



 Thesholding: choose edges to be the pixel above a threshold T



SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY



37



**Problems** 

- · Poor localization (multiple adjacent pixels)
- Thresholding value favors certain directions over others
  - Can miss oblique edges more than horizontal or vertical edges → False negatives



38

# Edge detector with 2<sup>nd</sup> derivative

- 2nd derivative with Laplacian filter:
  - convolution the image with one of 2 filters

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad \text{or} \qquad \begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

- Edge detection
  - Compute the 2<sup>nd</sup> derivative of the images
  - Find the zero-crossing pixels → edges



40

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

## Edge detector with 2<sup>nd</sup> derivative

#### **Image**





- Single response
- Sensible to noise



SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

1

41

#### Canny detector

- This is probably the most widely used edge detector in computer vision
- Theoretical model: step-edges corrupted by additive Gaussian noise
- Canny has shown that the first derivative of the Gaussian closely approximates the operator that optimizes the product of signal-to-noise ratio and localization
- Optimal:
  - Detection: weak edges detected
  - Good location: close to the real edges
  - Unique response: edge thickness = 1

SOICT

J. Canny, <u>A Computational Approach To Edge Detection</u>, IEEE Trans. PAMI, 8:679-714, 1986.

OOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

# "Optimal" edge detector

- Criteria:
  - Good detection: the optimal detector must minimize the probability
    of false positives (detecting spurious edges caused by noise), as well
    as that of false negatives (missing real edges)
  - Good localization: the edges detected must be as close as possible to the true edges
  - Single response: the detector must return one point only for each true edge point; that is, minimize the number of local maxima around the true edge



SOICT

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOG

42

#### Canny detector: Steps

- 1) Apply a gaussian filter on the image
  - Lowpass filter to remove noise
- 2) Compute the gradient intensity in the image
  - Sobel filter in X and Y
  - Compute the magnitude |G| = |Gx| + |Gy|
- 3) Compute image gradient direction
  - Gradient direction  $\theta$  = arctan (Gy / Gx)
  - Round directions using multiples of 45°





SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

43

# Canny detector: Steps 4) Non-maxima suppression - If the gradient magnitude of a pixel (x,y) is inferior to the one of its 2 neighbors along the gradient direction → set this magnitude for (x,y) to zero

SOICT SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Canny detector: Steps

- 5) Edge thresholding (hysteresis)
- · Using two thresholds: a theshold high (Sh) and a threshold low (Sb)
- For each pixel in the gradient magnitude:
  - IF magnitude(x,y) < Sb, THEN set the pixel to zero (non-edge)
  - IF magnitude(x,y) > Sh, THEN the edge is an edge
  - IF Sb ≤ magnitude(x,y) ≤ Sh, THEN the pixel is an edge IF it  $|G(\mathbf{x}',\mathbf{y}')| < \mathbf{Sb}$ is connected to another edge pixel











#### **Hough transform**

- The Hough transform (HT)
  - can be used to detect lines
  - was introduced in 1962 (Hough 1962) and first used to find lines in images a decade later (Duda 1972)
  - Goal: to find the location of lines in images.
- Caveat: Hough transform can detect lines, circles and other structures ONLY if their parametric equation is known
- It can give robust detection under noise and partial occlusion



# Edge linking

Hough Transform **RANSAC** Edge closing



SOICT SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOG

50

#### Hough transform

- Global approach to detect continuous edges
  - From the x-y plane to the parametric plane a-b
- x-y plane
  - $y_i = a x_i + b$
  - an infinity of lines going though one (x<sub>i</sub>, y<sub>i</sub>) pair
  - one sole line for the (a,b) pair
- a-b parametric plane
  - $b = -x_i a + y_i$
  - one sole line for the  $(x_i, y_i)$  pair
  - an infinity of lines going through one (a,b) pair





Line vs Points

All the points (x,y) on a line in the x-y plane are going through one sole point (a', b') in the a-b parametric plane

x-y plane

a-b parametric plane  $(x_i, y_i)$  a'  $b = -x_i a + y_i$   $b = -x_i a + y_i$ School of information and communication technology

53

Main idea for the Hough transform

- Accumulation cells Matrix (a,b)
- Build an voting image
  - each point is voting for a particular line
- The lines receiving more votes are kept



54

#### Computing the Hough transform

- We compute the gradient of the input image
  - Sobel, Prewitt, Canny, ...
- For each gradient point, we compute a line (a,b)
  - Result is one line in the a-b plane for each pixel (x,y)
- The maximum peaks in the a-b parametric plane show the lines with the maximum of points in the x-y plane
  - The points indicating line crossing in the a-b plane show the real lines existing in the x-y plane



SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

56



Example with 5 points

Image containing 5 points

Source: Gonzalez and Woods. Digital Image Processing 3ed. Prentice-Hall, 2008.

School of Information and Communication Technology 58

57



59

Hough transform (straight line)

The transform for aligned points result in a line detection

Output

Description School of Information and Communication Technology

60



61

# **Example: Line Fitting**

- Why fit lines?
  - Many objects characterized by presence of straight lines



SOICT

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

**RANSAC** 

(RANdom SAmple Consensus)

- · A model fitting method:
  - A learning technique to estimate parameters of a model by random sampling of observed data
  - -Used for:
    - Line detection
    - Corespondance problem (matching between 2 sets of features)
    - ...



SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

62

62

#### Fitting as search in parametric space

- Choose a parametric model to represent a set of features
- Membership criterion is not local
  - Can't tell whether a point belongs to a given model just by looking at that point.
- Three main questions:
  - What model represents this set of features best?
  - Which of several model instances gets which feature?
  - How many model instances are there?
- Computational complexity is important
  - It is infeasible to examine every possible set of parameters and every possible combination of features



SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Source: L. Lazebnik

#### RANSAC [Fischler & Bolles 1981]

- RANdom SAmple Consensus
- Approach: we want to avoid the impact of outliers, so let's look for "inliers", and use only those
- Intuition: if an outlier is chosen to compute the current fit, then the resulting line won't have much support from rest of the points.



SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY -

Slide credit: Kristen Grauman

65

# Difficulty of Line Fitting

- Extra edge points (clutter), multiple models:
  - Which points go with which line, if any?
- Only some parts of each line detected, and some parts are missing:
  - How to find a line that bridges missing evidence?
- Noise in measured edge points, orientations:
  - How to detect true underlying parameters?



CHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY



Slide credit: Kristen Grauman

#### RANSAC [Fischler & Bolles 1981]

#### RANSAC loop:

- Randomly select a seed group of points on which to base transformation estimate (e.g., a group of matches)
- 2. Compute transformation from seed group
- 3. Find *inliers* to this transformation
- 4. If the number of inliers is sufficiently large, re-compute least-squares estimate of transformation on all of the inliers
- Keep the transformation with the largest number of inliers

SOICT SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOG

Slide credit: Kristen Grauman

66

#### Voting

- It's not feasible to check all combinations of features by fitting a model to each possible subset.
- Voting is a general technique where we let the features vote for all models that are compatible with it.
  - Cycle through features, cast votes for model parameters.
  - Look for model parameters that receive a lot of votes.
- Noise & clutter features will cast votes too, but typically their votes should be inconsistent with the majority of "good" features.
- Ok if some features not observed, as model can span multiple fragments.



SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Slide credit: Kristen Grauman

67



RANSAC Line Fitting Example

• Task: Estimate the best line

Sample two points

Slide credit: Kristen Grauman

70

69

RANSAC Line Fitting Example

• Task: Estimate the best line

Fit a line to them

Slide credit: Kristen Grauman

RANSAC Line Fitting Example

• Task: Estimate the best line

Total number of points within a threshold of line.

Slide credit: Kristen Grauman

# RANSAC Line Fitting Example • Task: Estimate the best line "7 inlier points" "7 inlier points within a threshold of line. Slide credit: Kristen Grauman

73

# RANSAC Line Fitting Example • Task: Estimate the best line "11 inlier points" Repeat, until we get a good result. Slide credit: Kristen Grauman



74



## RANSAC: How many samples?

- · How many samples are needed?
  - Suppose w is fraction of inliers (points from line).
  - n points needed to define hypothesis (2 for lines)
  - k samples chosen.
- Prob. that a single sample of n points is correct:  $w^n$
- Prob. that all *k* samples fail is:  $(1-w^n)^k$
- $\Rightarrow$  Choose  $\kappa$  high enough to keep this below desired failure rate.



SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Slide credit: David Lowe

77

#### After RANSAC

- RANSAC divides data into inliers and outliers and yields estimate computed from minimal set of inliers.
- Improve this initial estimate with estimation over all inliers (e.g. with standard least-squares minimization).
- But this may change inliers, so alternate fitting with reclassification as inlier/outlier.





SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Slide credit: David Lowe

## RANSAC: Computed k (p=0.99)

| Sample<br>size | Proportion of outliers |     |     |     |     |     |      |  |  |
|----------------|------------------------|-----|-----|-----|-----|-----|------|--|--|
| n              | 5%                     | 10% | 20% | 25% | 30% | 40% | 50%  |  |  |
| 2              | 2                      | 3   | 5   | 6   | 7   | 11  | 17   |  |  |
| 3              | 3                      | 4   | 7   | 9   | 11  | 19  | 35   |  |  |
| 4              | 3                      | 5   | 9   | 13  | 17  | 34  | 72   |  |  |
| 5              | 4                      | 6   | 12  | 17  | 26  | 57  | 146  |  |  |
| 6              | 4                      | 7   | 16  | 24  | 37  | 97  | 293  |  |  |
| 7              | 4                      | 8   | 20  | 33  | 54  | 163 | 588  |  |  |
| 8              | 5                      | 9   | 26  | 44  | 78  | 272 | 1177 |  |  |

SOICT SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLO

Slide credit: David Lowe

78

#### **RANSAC: Pros and Cons**

#### Pros:

- General method suited for a wide range of model fitting problems
- Easy to implement and easy to calculate its failure rate

#### · Cons:

- Only handles a moderate percentage of outliers without cost blowing up
- Many real problems have high rate of outliers (but sometimes selective choice of random subsets can help)
- A voting strategy, the Hough transform can handle high percentage of outliers



SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY