Návrh spoje v pásmu LF/MF (AM rozhlas)

Číslo pásma	Mezinárodní zkratka	Frekvence	Vlnová délka	Český ekvivalent	Metrické označení
3	ULF	300 Hz – 3 kHz	1000 km-100 km	EDV, extrémně dlouhé v.	hkm, hektokilometrické,
4	VLF	3 kHz – 30 kHz	100 km-10 km	VDV, velmi dlouhé vlny	Mam, myriametrové v.
5	LF	30 kHz – 300 kHz	10 km-1 km	DV, dlouhé vlny	km, kilometrové vlny
6	MF	300 kHz – 3 MHz	1 km-100 m	SV, střední vlny	Hm, hektometrové v.
7	HF	3 MHz – 30 MHz	100 m-10 m	KV, krátké vlny	Dm, dekametrové v.
8	VHF	30 MHz – 300 MHz	10 m-1 m	VKV, velmi krátké vlny	m, metrové vlny
9	UHF	300 MHz – 3 GHz	1 m-10 cm	UKV, ultra krátké vlny	dm, decimetrové vlny
10	SHF	3 GHz – 30 GHz	10 cm-1 cm	SKV, super krátké vlny	cm, centimetrové vlny
11	EHF	30 GHz- 300 GHz	1 cm-1 mm	EKV, extrémně krátké vlny	mm, milimetrové vlny

Označení frekvenčních pásem pro rádiový přenos dle ČSN IEC 60050-713 a ITU-R V.431

ČVUT v Praze, Pavel Pechač, elmag.org

Šíření přízemní povrchové vlny

- Přízemní povrchová vlna
 - Podmínky vybuzení
 - Činitel tlumení
 - Nortonovo řešení pro rovinnou zemi
 - Spádové křivky ITU-R P.368 (GRWAVE)
 - Šíření nad nehomogenním povrchem
 - Parametry zemského povrchu (ITU-R P.527 a P.832)

Povrchová vlna, pásmo LF a MF (DV a SV)

$$\varepsilon_1 = \varepsilon_0$$
, $\mu_1 = \mu_0$, $\sigma_1 = 0$ $Z_1 = \sqrt{(\mu_0 / \varepsilon_0)}$

$$E_2 > \varepsilon_0$$
, $\mu_2 = \mu_0$, σ_2 $E_2 = \sqrt{\left(\frac{\mu_0}{\varepsilon_0 \varepsilon_{kr}}\right)}$

$$\varepsilon_{kr} = \varepsilon_{r} - j\frac{\sigma}{\omega\varepsilon_{0}} = \varepsilon_{r} - j\frac{\sigma}{2\pi f\varepsilon_{0}} = \varepsilon_{r} - j60\lambda\sigma$$

$$E_{1z} = E_{1zm} e^{j\omega t}$$
 $H_{1y} = -\frac{E_{1z}}{Z_1} = -\sqrt{\left(\frac{\varepsilon_0}{\mu_0}\right)} E_{1z} = H_{2y}$

$$E_{1x} = E_{2x} = -H_{2y}Z_2 = -H_{2y}\sqrt{\left(\frac{\mu_0}{\varepsilon_0}\right)}\sqrt{\frac{1}{\left(\varepsilon_r - \mathbf{j} \cdot 60\lambda\sigma\right)}} = E_{1z}\sqrt{\frac{1}{\left(\varepsilon_r - \mathbf{j} \cdot 60\lambda\sigma\right)}}$$

$$\operatorname{tg} \psi = \frac{E_{1\text{zm}}}{E_{1\text{xm}}} = \sqrt{\left|\varepsilon_{r} - \mathbf{j} \cdot 60\lambda\sigma\right|} = \sqrt[4]{\varepsilon_{r}^{2} + \left(60\lambda\sigma\right)^{2}} = \sqrt{\left|\varepsilon_{kr}\right|}$$

PEL ČVUT v Praze, Pavel Pechač, elmag.o

Sklon čela vlny povrchové vlny

$$tg \psi = \frac{E_{1zm}}{E_{1xm}} = \sqrt{|\varepsilon_{r} - j \cdot 60\lambda\sigma|} = \sqrt[4]{\varepsilon_{r}^{2} + (60\lambda\sigma)^{2}} = \sqrt{|\varepsilon_{kr}|}$$

Typ povrchu	Frekvence (kHz) / ε_{kr}								
	200 (LF)	1000 (MF)							
Moře (σ =5 S/m, ε_r = 70)	70 – j 450000	70 – j 90000							
Dobře vodivá země (σ =10 ⁻² S/m, ε_r = 10)	10 – j 900	10 – j 180							
Špatně vodivá země (σ =10 ⁻³ S/m, ε_r = 4)	4 – j 90	4 – j 18							

$$\varepsilon_{kr} = \varepsilon_{r} - \mathbf{j} \cdot 60\lambda\sigma = \varepsilon_{r} - \mathbf{j} \frac{\sigma}{\omega \varepsilon_{0}}$$

$$\sigma / \omega \varepsilon_o = \frac{1.8 \times 10^4 \sigma}{f_{\text{MHz}}}$$

Šíření povrchové vlny – činitel tlumení

$$|E| = \frac{\sqrt{30P_VG}}{d}|F| \qquad G = 3 \text{ (4,8 dB), } E \text{ v mV/m, } d \text{ v km, } P_V \text{ v kW} \Rightarrow \qquad |E| = \frac{300\sqrt{P_V}}{d}|F|$$

$$|E| = \frac{\sqrt{30P_VG}}{d}|F| \qquad \qquad \text{volný prostor}$$

$$|E| = \frac{300\sqrt{P_V}}{d}|F|$$

$$|E| = \frac{300\sqrt{$$

$$|F| = 1$$

|F| úměrná 1/d

|F| klesá exponenciálně

$$d_{km} = \frac{80}{\sqrt[-3]{f_{MHz}}}$$

PEL ČVUT v Praze, Pavel Pechač, elmag.or

Nortonovo řešení pro rovinnou zemi

$$|F(p,b)| = |1 + j\sqrt{\pi p_1}e^{-p_1}erfc(-j\sqrt{p_1})|$$

$$p_1 = pe^{jb}$$

$$erfc\left(-j\sqrt{p_1}\right) = \frac{2}{\sqrt{\pi}} \int_{-j\sqrt{p_1}}^{\infty} e^{-x^2} dx$$

vertikální polarizace

$$p = \pi \frac{d}{\lambda} \frac{\cos^2 b''}{x \cos b'} = \frac{\pi d}{\lambda \sqrt{\varepsilon_r^2 + \left(\frac{\sigma}{\omega \varepsilon_0}\right)^2}} = \frac{\pi d}{\lambda |\varepsilon_{kr}|} \qquad x = \frac{\sigma}{2\pi f \varepsilon_0}$$

$$b' = \operatorname{arctg} \frac{\varepsilon_r - 1}{x}$$

$$b'' = \operatorname{arctg} \frac{\varepsilon_r}{x}$$

$$b = 2b'' - b' = \operatorname{arctg} \frac{\mathcal{E}_r \mathcal{E}_0 \omega}{\sigma}$$

$$x = \frac{\sigma}{2\pi f \varepsilon_0}$$

$$b' = \arctan \frac{\varepsilon_r - 1}{x}$$

$$b'' = \operatorname{arctg} \frac{\mathcal{E}_r}{x}$$

horizontální polarizace

$$p = \pi \frac{d}{\lambda} \frac{x}{\cos b'}$$

$$b = 180^{\circ} - b'$$

 σ , ε_r – elektrické parametry povrchu

p (-) – tzv. numerická vzdálenost (numerical distance)

b (°) – závisí pouze na elektrických parametrech zemského povrchu

Pro dokonale vodivý povrch $b = 180^{\circ}$

$$|F(p,180^{\circ})| = |1 - \sqrt{\pi p}e^{p(1-erf\sqrt{p})}|$$

Nortonovy aproximace

$$b < 5^{\circ} \qquad |F(p)| \approx \frac{2 + 0.3p}{2 + p + 0.6p^{2}}$$
$$|F(p)| \approx \frac{1}{2p} \qquad p \ge 20$$

Přesnější:

p	b	$ F(p,b) \approx$
> 4,5	< 5°	$\frac{1}{2p-3,7}$
≤ 4,5	< 5°	$e^{-0.43p+0.01p^2}$
≤ 4,5	≥ 5°	$e^{-0.43p+0.01p^2} - \sqrt{\frac{p}{2}}e^{-5p/8}\sin b$
> 4,5	≥ 5°	$\frac{1}{2p-3.7} - \sqrt{\frac{p}{2}} e^{-5p/8} \sin b$

©	Excess		 		4.0								‡:: 							9
©	Propag -40	=									::::						-6	Ò	bo	
©	jation l					 										Ò	À			
© b=90° b=180	SSO-		ļ		110 110 110)))				1	Á					
b=90° b=180°	(d) <u>L</u> -20	= : : : : : :				 					`. ::::	`.,	`\	/		L	0	1/	(2	p)
	(dB)					 			,	,		`,			 		· - · -			

ITU-R P.368; 10 kHz – 30 MHz

- Rotheram
- Kombinace tří výpočetních numerických metod
- Včetně prostorové vlny
- GRWAVE
- Spádové křivky pro referenční spoj
 - ◆ EIRP = 1 kW
 - vysílací anténa elementární monopól umístěný na vodivé rovinně; zisk $G = 3 \sim 4.8$ dB (ve vzdálenosti 1 km E = 300 mV/m)
 - přijímací anténa monopól v nulové výšce nad povrchem
 - hladký homogenní kulový povrch země
 - standardní atmosféra
 - výsledek E (d) v dB(μV/m)
- Přepočet na ztráty v dB (f je v MHz):

$$L = 142,0 + 20 \log f - E$$

$EIRP = 1 \text{ kW}, \ \sigma = 3.10^{-2} \text{ S/m}, \ \varepsilon_r = 40$

E/RP = 1 kW, f = 300 kHz

LČVUT v Praze, Pavel Pechač, elmag.or

Šíření povrchové vlny nad nehomogenním povrchem

Změna spádové křivky

Břehový lom

Millingtonova metoda

'EL ČVUT v Praze, Pavel Pechač, elmag.org

Millingtonova metoda - příklad

$$E_P = E_1(d_1) + E_2(d_1 + d_2) - E_2(d_1) + E_3(d_1 + d_2 + d_3) - E_3(d_1 + d_2)$$

$$E_V = E_3(d_3) + E_2(d_3 + d_2) - E_2(d_3) + E_1(d_3 + d_2 + d_1) - E_1(d_3 + d_2)$$

$$E = \frac{E_P + E_V}{2}$$

PEL ČVUT v Praze, Pavel Pechač, elma

Frekvenční závislost rel. permitivity různých povrchů
A – mořská voda, B – vlhká zem, C – voda, D – středně suchá půda,
E – velmi suchá půda, F – dest. voda, G – led (podle ITU-R P.527)

Frekvenční závislost vodivosti různých povrchů

A – mořská voda, B – vlhká zem, C – voda, D – středně suchá půda, E – velmi suchá půda, F – dest. voda, G – led (podle ITU-R P.527)

Frekvenční závislost hloubky vniku různých povrchů
A – mořská voda, B – vlhká zem, C – voda, D – středně suchá půda,
E – velmi suchá půda, G – led (podle ITU-R P.527)

Hloubka vniku udává vzdálenost, ve které je vlna utlumena na 1/e (37%)

PEL ČVUT v Praze, Pavel Pechač, elmaga

Světový atlas vodivostí země (ITU-R P.832)

efektivní vodivost země v mS/m; VLF (do 30 kHz), MF (1 MHz)

Rádiový spoj v pásmu cca 150 kHz – 2 MHz (LF/MF)

- Mechanizmus přenosu
 - Přízemní povrchová vlna
 - stále
 - Ionosférická vlna
 - v noci po vymizení tlumící vrstvy D odrazem od vrstvy E
- Příklad aplikací
 - Radionavigace
 - Rozhlasové vysílání (AM, DRM)
 - Datové služby např. přenos času
 - **♦** ...