In the Claims:

Kindly add Claim 69.

Please amend the claims as indicated.

1. (Currently Amended) A cryptosystem private key recovery device, comprising in combination:

a processor;

a nonvolatile memory space operatively coupled to said processor; and

a set of private key parameters stored in said nonvolatile memory space utilizing less storage space than the full parameter set $\{p, q, d_p, d_q, v\}$ and providing better computational efficiency than the minimal parameter set $\{p, q\}$, wherein the

wherein said set of private key parameters comprises a parameter k_p , said parameter k_p is derived from k_p (p-1) mod e=1, p is a prime factor of a public modulus, and e is a given public exponent.

private key can be recovered from said set of stored private key parameters,

- 2. (Currently Amended) The cryptosystem private key recovery device of claim 1 further comprising said set of private key parameters defined by the parameters $\{p, q, k_p, k_q, v\}$ wherein p and q are is a given prime factors of a public modulus, k_p and k_q are is derived from k_p (p-1) mod e=1 and k_q (q-1) mod e=1, e is a given public exponent and v is derived from pv mod q=1.
- 3. (Original) The cryptosystem private key recovery device of claim 2 further comprising:

a d_p calculator in active cooperation with said processor and configured to calculate d_p from $d_p=[1+(p-1)(e-k_p)]u \mod 2^b$;

a d_q calculator in active cooperation with said processor and configured to calculate d_q from d_q =[1+(q-1)(e- k_q)]u mod 2^b ; and

wherein b is an integer such that p is less than 2^b and q is less than 2^b , and ue mod $2^b = 1$.

- 4. (Original) The cryptosystem private key recovery device of claim 3 further comprising a private key parameter assembler for assembling the private key parameters $\{p, q, d_p, d_q, v\}$ from said stored and calculated values.
- 5. (Original) The cryptosystem private key recovery device of claim 2 further comprising:

a d_p calculator in active cooperation with said processor and configured to calculate d_p from $d_p=[1+(p-1)(e-k_p)]/e$; and

a d_q calculator in active cooperation with said processor and configured to calculate d_q from d_q =[1+(q-1)(e- k_q)]/e.

- 6. (Original) The cryptosystem private key recovery device of claim 5 further comprising a private key parameter assembler for assembling the private key parameters $\{p, q, d_p, d_q, v\}$ from said stored and calculated values.
- 7. (Currently Amended) The cryptosystem private key recovery device of claim 1 further comprising said set of private key parameters defined by the parameters $\{p, q, k_p, k_q\}$ wherein p and q are is a given prime factors of a public modulus

and, k_p and k_q are is derived from k_p (p-1) mod e=1 and k_q (q-1) mod e=1, and e is a given public exponent.

- 8. (Original) The cryptosystem private key recovery device of claim 7 further comprising a v calculator in active cooperation with said processor and configured to calculate v from pv mod q=1.
- 9. (Original) The cryptosystem private key recovery device of claim 8 further comprising:

a d_p calculator in active cooperation with said processor and configured to calculate d_p from $d_p=[1+(p-1)(e-k_p)]u \mod 2^b$;

a d_q calculator in active cooperation with said processor and configured to calculate d_q from d_q =[1+(q-1)(e- k_q)]u mod 2^b; and

wherein b is an integer such that p is less than 2^b and q is less than 2^b , and ue mod $2^b = 1$.

- 10. (Original) The cryptosystem private key recovery device of claim 9 further comprising a private key parameter assembler for assembling the private key parameters $\{p, q, d_p, d_q, v\}$ from said stored and calculated values.
- 11. (Original) The cryptosystem private key recovery device of claim 8 further comprising:

a d_p calculator in active cooperation with said processor and configured to calculate d_p from $d_p=[1+(p-1)(e-k_p)]/e$; and

a d_q calculator in active cooperation with said processor and configured to calculate d_q from d_q =[1+(q-1)(e- k_q)]/e.

- 12. (Original) The cryptosystem private key recovery device of claim 10 further comprising a private key parameter assembler for assembling the private key parameters $\{p, q, d_p, d_q, v\}$ from said stored and calculated values.
- 13. (Currently Amended) The cryptosystem private key recovery device of claim 1 further comprising said set of private key parameters defined by the parameters {seed, k_p , k_q , v} wherein k_p and k_q are is derived from k_p (p-1) mod e=1 and k_q (q-1) mod e=1, e is a given public exponent, v is derived from pv mod q=1, and seed is a value derived from a random number generator.
- 14. (Original) The cryptosystem private key recovery device of claim 13 further comprising:

a p calculator in active cooperation with said processor and configured to calculate p from said seed; and

a q calculator in active cooperation with said processor and configured to calculate q from said seed.

15. (Original) The cryptosystem private key recovery device of claim 14 further comprising:

a d_p calculator in active cooperation with said processor and configured to calculate d_p from $d_p=[1+(p-1)(e-k_p)]u \mod 2^b$;

a d_q calculator in active cooperation with said processor and configured to calculate d_a from $d_a=[1+(q-1)(e-k_a)]u \mod 2^b$; and

wherein b is an integer such that p is less than 2^b and q is less than 2^b , and ue mod $2^b = 1$.

- 16. (Original) The cryptosystem private key recovery device of claim 15 further comprising a private key parameter assembler for assembling the private key parameters $\{p, q, d_p, d_q, v\}$ from said stored and calculated values.
- 17. (Original) The cryptosystem private key recovery device of claim 14 further comprising:

a d_p calculator in active cooperation with said processor and configured to calculate d_p from $d_p=[1+(p-1)(e-k_p)]/e$; and

a d_q calculator in active cooperation with said processor and configured to calculate d_q from d_q =[1+(q-1)(e- k_q)]/e.

- 18. (Original) The cryptosystem private key recovery device of claim 17 further comprising a private key parameter assembler for assembling the private key parameters $\{p, q, d_p, d_q, v\}$ from said stored and calculated values.
- 19. (Currently Amended) The cryptosystem private key recovery device of claim 1 further comprising said set of private key parameters defined by the parameters {seed, k_p , k_q } wherein k_p and k_q are is derived from k_p (p-1) mod e=1 and k_q (q-1) mod e=1, e is a given public exponent, and seed is a value derived from a random number generator.

20. (Original) The cryptosystem private key recovery device of claim 19 further comprising:

a p calculator in active cooperation with said processor and capable of calculating p from said seed; and

a q calculator in active cooperation with said processor and capable of calculating q from said seed.

- 21. (Original) The cryptosystem private key recovery device of claim 20 further comprising a v calculator in active cooperation with said processor and configured to calculate v from pv mod q=1.
- 22. (Original) The cryptosystem private key recovery device of claim 21 further comprising:

a d_p calculator in active cooperation with said processor and configured to calculate d_p from $d_p=[1+(p-1)(e-k_p)]u \mod 2^b$;

a d_q calculator in active cooperation with said processor and configured to calculate d_q from d_q =[1+(q-1)(e- k_q)]u mod 2^b; and

wherein b is an integer such that p is less than 2^b and q is less than 2^b , and ue mod $2^b = 1$.

23. (Original) The cryptosystem private key recovery device of claim 22 further comprising a private key parameter assembler for assembling the private key parameters $\{p,q,d_p,d_q,v\}$ from said stored and calculated values.

24. (Original) The cryptosystem private key recovery device of claim 21 further comprising:

a d_p calculator in active cooperation with said processor and configured to calculate d_p from $d_p=[1+(p-1)(e-k_p)]/e$; and

a d_q calculator in active cooperation with said processor and configured to calculate d_q from $d_q=[1+(q-1)(e-k_q)]/e$.

- 25. (Original) The cryptosystem private key recovery device of claim 24 further comprising a private key parameter assembler for assembling the private key parameters $\{p, q, d_p, d_q, v\}$ from said stored and calculated values.
- 26. (Currently Amended) The A cryptosystem private key recovery device of claim 1 further comprising said set of private key parameters defined by the parameters {p,q,v} wherein p and q are given prime factors of a public modulus, and v is derived from pv mod q=1 comprising in combination:

a processor;

a nonvolatile memory space operatively coupled to said processor; and

a set of private key parameters stored in said nonvolatile memory space

utilizing less storage space than the full parameter set {p,q,dq,v} and providing

better computational efficiency than the minimal parameter set {p,q},

wherein said private key recovery device is configured to recover a private key from said set of stored private key parameters utilizing equation k_p (p-1) mod e=1, wherein k_p is a private key parameter, p is a prime factor of a public modulus, and e is a given public exponent.

27. (Currently Amended) The cryptosystem private key recovery device of claim 26 further comprising:

a k_p -calculator in active cooperation with said processor and configured to calculate k_p from k_p (p-1) mod e=1;

a k_q calculator in active cooperation with said processor and configured to calculate k_q from k_q (q-1) mod e=1; and

wherein e is a given public exponent said set of private key parameters defined by the parameters $\{p,q,v\}$ wherein q is a given prime factor of a public modulus and v is derived from pv mod q=1.

28. (Currently Amended) The cryptosystem private key recovery device of claim 27 further comprising:

a d_p calculator in active cooperation with said processor and configured to calculate d_p from $d_p=[1+(p-1)(e-k_p)]u \mod 2^b$;

a d_q calculator in active cooperation with said processor and configured to calculate d_q from $d_q = [1+(q-1)(e-k_q)]u \mod 2^b$; and

wherein b is an integer such that p is less than 2^b and q is less than 2^b , and ue mod $2^b = 1$

a k_p calculator in active cooperation with said processor and configured to calculate k_p from k_p (p-1) mod e=1; and

 $\frac{a\;k_q\;calculator\;in\;active\;cooperation\;with\;said\;processor\;and\;configured\;to}{calculate\;k_q\;from\;k_q\;(q\text{-}1)\;mod\;e\text{=}1}.$

29. (Currently Amended) The cryptosystem private key recovery device of claim 28 further comprising: a private key parameter assembler for assembling the private key parameters $\{p, q, d_p, d_q, v\}$ from said stored and calculated values

a d_p calculator in active cooperation with said processor and configured to calculate d_p from $d_p=[1+(p-1)(e-k_p)]u \mod 2^b$;

a d_q calculator in active cooperation with said processor and configured to calculate d_q from $d_q = [1+(q-1)(e-k_q)]u \mod 2^b$; and

wherein b is an integer such that p is less than 2^b and q is less than 2^b , and ue mod $2^b = 1$.

30. (Currently Amended) The cryptosystem private key recovery device of claim 2729 further comprising:

a d_p calculator in active cooperation with said processor and configured to calculate d_p from d_p =[1+(p-1)(e- k_p)]/e; and

a d_q calculator in active cooperation with said processor and configured to calculate d_q from d_q =[1+(q-1)(e- k_q)]/e a private key parameter assembler for assembling the private key parameters {p,q,d_q,d_q, v} from said stored and calculated values.

31. (Currently Amended) The cryptosystem private key recovery device of claim 3028 further comprising: a private key parameter assembler for assembling the private key parameters $\{p, q, d_p, d_q, v\}$ from said stored and calculated values

a d_p calculator in active cooperation with said processor and configured to calculate d_p from $d_p=[1+(p-1)(e-k_p)]/e$; and

a d_q calculator in active cooperation with said processor and configured to calculate d_q from $d_q = [1+(q-1)(e-k_q)]/e$.

32. (Currently Amended) The cryptosystem private key recovery device of claim 426 further comprising said set of private key parameters defined by the parameters {p,q} wherein p and q are is a given prime factors of a public modulus.

33. (Currently Amended) The cryptosystem private key recovery device of claim 32 further comprising:

a k_p calculator in active cooperation with said processor and configured to calculate k_p from k_p (p-1) mod e=1; and

a k_q calculator in active cooperation with said processor and configured to calculate k_q from k_q (q-1) mod e=1; and

wherein e is a given public exponent.

- 34. (Original) The cryptosystem private key recovery device of claim 33 further comprising a v calculator in active cooperation with said processor and configured to calculate v from pv mod q=1.
- 35. (Original) The cryptosystem private key recovery device of claim 34 further comprising:

a d_p calculator in active cooperation with said processor and configured to calculate d_p from $d_p=[1+(p-1)(e-k_p)]u \mod 2^b$;

a d_q calculator in active cooperation with said processor and configured to calculate d_q from d_q =[1+(q-1)(e- k_q)]u mod 2^b; and

wherein b is an integer such that p is less than 2^b and q is less than 2^b , and ue mod $2^b = 1$.

36. (Original) The cryptosystem private key recovery device of claim 35 further comprising a private key parameter assembler for assembling the private key parameters $\{p, q, d_p, d_q, v\}$ from said stored and calculated values.

- 37. (Original) The cryptosystem private key recovery device of claim 34 further comprising:
- a d_p calculator in active cooperation with said processor and configured to calculate d_p from $d_p=[1+(p-1)(e-k_p)]/e$; and

a d_q calculator in active cooperation with said processor and configured to calculate d_q from d_q =[1+(q-1)(e- k_q)]/e.

- 38. (Original) The cryptosystem private key recovery device of claim 37 further comprising a private key parameter assembler for assembling the private key parameters $\{p, q, d_p, d_q, v\}$ from said stored and calculated values.
- 39. (Currently Amended) The cryptosystem private key recovery device of claim 126 further comprising said set of private key parameters defined by the parameters {seed, v} wherein v is derived from pv mod q=1, and seed is a value derived from a random number generator.
- 40. (Original) The cryptosystem private key recovery device of claim 39 further comprising:

a p calculator in active cooperation with said processor and configured to calculate p from said seed; and

a q calculator in active cooperation with said processor and configured to calculate q from said seed.

41. (Currently Amended) The cryptosystem private key recovery device of claim 40 further comprising:

a k_p calculator in active cooperation with said processor and configured to calculate k_p from k_p (p-1) mod e=1; and

a k_q calculator in active cooperation with said processor and configured to calculate k_q from k_q (q-1) mod e=1; and

wherein e is a given public exponent.

42. (Original) The cryptosystem private key recovery device of claim 41 further comprising:

a d_p calculator in active cooperation with said processor and configured to calculate d_p from $d_p=[1+(p-1)(e-k_p)]u \mod 2^b$;

a d_q calculator in active cooperation with said processor and configured to calculate d_q from $d_q=[1+(q-1)(e-k_q)]u \mod 2^b$; and

wherein b is an integer such that p is less than 2^b and q is less than 2^b , and ue mod $2^b = 1$.

43. (Original) The cryptosystem private key recovery device of claim 42 further comprising a private key parameter assembler for assembling the private key parameters $\{p, q, d_p, d_q, v\}$ from said stored and calculated values.

44. (Original) The cryptosystem private key recovery device of claim 41 further comprising:

a d_p calculator in active cooperation with said processor and configured to calculate d_p from $d_p=[1+(p-1)(e-k_p)]/e$; and

a d_q calculator in active cooperation with said processor and configured to calculate d_q from d_q =[1+(q-1)(e- k_q)]/e.

- 45. (Original) The cryptosystem private key recovery device of claim 44 further comprising a private key parameter assembler for assembling the private key parameters $\{p, q, d_p, d_q, v\}$ from said stored and calculated values.
- 46. (Currently Amended) The cryptosystem private key recovery device of claim 126 further comprising said set of private key parameters defined by the parameters {seed,} wherein seed is a value derived from a random number generator.
- 47. (Original) The cryptosystem private key recovery device of claim 46 further comprising:

a p calculator in active cooperation with said processor and capable of calculating p from said seed; and

a q calculator in active cooperation with said processor and capable of calculating q from said seed.

48. (Currently Amended) The cryptosystem private key recovery device of claim 47 further comprising:

a k_p calculator in active cooperation with said processor and configured to calculate k_p from k_p (p-1) mod e=1; and

a k_q calculator in active cooperation with said processor and configured to calculate k_q from k_q (q-1) mod e=1; and

wherein e is a given public exponent.

- 49. (Original) The cryptosystem private key recovery device of claim 48 further comprising a v calculator in active cooperation with said processor and configured to calculate v from pv mod q=1.
- 50. (Original) The cryptosystem private key recovery device of claim 49 further comprising:

a d_p calculator in active cooperation with said processor and configured to calculate d_p from d_p =[1+(p-1)(e- k_p)]u mod 2^b ;

a d_q calculator in active cooperation with said processor and configured to calculate d_q from d_q =[1+(q-1)(e- k_q)]u mod 2^b; and

wherein b is an integer such that p is less than 2^b and q is less than 2^b , and ue mod $2^b = 1$.

- 51. (Original) The cryptosystem private key recovery device of claim 50 further comprising a private key parameter assembler for assembling the private key parameters $\{p, q, d_p, d_q, v\}$ from said stored and calculated values.
- 52. (Original) The cryptosystem private key recovery device of claim 49 further comprising:

a d_p calculator in active cooperation with said processor and configured to calculate d_p from $d_p=[1+(p-1)(e-k_p)]/e$; and

a d_q calculator in active cooperation with said processor and configured to calculate d_q from d_q =[1+(q-1)(e- k_q)]/e.

- 53. (Original) The cryptosystem private key recovery device of claim 52 further comprising a private key parameter assembler for assembling the private key parameters $\{p, q, d_p, d_q, v\}$ from said stored and calculated values.
- 54. (Currently Amended) A cryptosystem private key recovery device, comprising in combination:

a processor;

a nonvolatile memory space operatively coupled to said processor; and a set of private key parameters stored in said nonvolatile memory space and utilizing less storage space than the full parameter set {n, d} and providing better computational efficiency than the minimal parameter set {p, q},

wherein said set of private key parameters comprises a parameter k, said parameter k is derived from k(p-1)(q-1) mod e=1, p and q are given prime factors of a public modulus, and e is a given public exponent.

55. (Currently Amended) The cryptosystem private key recovery device of claim 54 further comprising said set of private key parameters defined by the parameters $\{p, q, k\}$ -wherein p and q are given prime factors of a public modulus, k is derived from k(p-1)(q-1) mod e=1, and e is a given public exponent.

56. (Original) The cryptosystem private key recovery device of claim 55 further comprising a n calculator in active cooperation with said processor and configured to calculate n from n=pq.

- 57. (Original) The cryptosystem private key recovery device of claim 56 further comprising a d calculator in active cooperation with said processor and configured to calculate d from $d=[1+(p-1)(q-1)]t \mod 2^{2b}$, wherein te mod $2^{2b}=1$ and b is an integer such that p is less than 2^b and q is less than 2^b .
- 58. (Original) The cryptosystem private key recovery device of claim 57 further comprising a private key parameter assembler for assembling the private key parameters {n, d} from said stored and calculated values.
- 59. (Original) The cryptosystem private key recovery device of claim 56 further comprising a d calculator in active cooperation with said processor and configured to calculate d from d=[1+(p-1)(q-1)]/e.
- 60. (Original) The cryptosystem private key recovery device of claim 59 further comprising a private key parameter assembler for assembling the private key parameters {n, d} from said stored and calculated values.
- 61. (Original) The cryptosystem private key recovery device of claim 57 further comprising:

a d_p calculator in active cooperation with said processor and configured to calculate d_p from d_p =d mod (p-1); and

a d_q calculator in active cooperation with said processor and configured to calculate d_q from d_q =d mod (q-1).

- 62. (Original) The cryptosystem private key recovery device of claim 61 further comprising a v calculator in active cooperation with said processor and configured to calculate v from pv mod q=1.
- 63. (Original) The cryptosystem private key recovery device of claim 62 further comprising a private key parameter assembler for assembling the private key parameters $\{p, q, d_p, d_q, v\}$ from said stored and calculated values.
- 64. (Original) The cryptosystem private key recovery device of claim 59 further comprising:

a d_p calculator in active cooperation with said processor and configured to calculate d_p from d_p =d mod (p-1); and

 $a \; d_q \; calculator \; in \; active \; cooperation \; with \; said \; processor \; and \; configured \; to \\$ $calculate \; d_q \; from \; d_q = d \; mod \; (q\text{-}1).$

- 65. (Original) The cryptosystem private key recovery device of claim 64 further comprising a v calculator in active cooperation with said processor and configured to calculate v from pv mod q=1.
- 66. (Original) The cryptosystem private key recovery device of claim 65 further comprising a private key parameter assembler for assembling the private key parameters $\{p, q, d_p, d_q, v\}$ from said stored and calculated values.

67. (CurrentlyAmended) A method for recovering a private key, comprising in combination:

storing private key parameters in a memory space;

utilizing less storage space for said private key parameters than the full parameter set $\{p\,,\!q\,,\!d_p\,,\!d_q\,,\,v\};$ and

providing better computational efficiency than the minimal parameter set $\{p,q\}$,

wherein said set of private key parameters comprises a parameter k_p , said parameter k_p is derived from k_p (p-1) mod e=1, p is a prime factor of a public modulus, and e is a given public exponent.

68. (CurrentlyAmended) A method for recovering a private key, comprising in combination:

storing private key parameters in a memory space;

utilizing less storage space for said private key parameters than the full parameter set $\{n, d\}$; and

providing better computational efficiency than the minimal parameter set $\{p,q\}$,

wherein said set of private key parameters comprises a parameter k, said parameter k is derived from k(p-1)(q-1) mod e=1, p and q are given prime factors of a public modulus, and e is a given public exponent.

69. (New) The cryptosystem private key recovery device of claim 31 further comprising a private key parameter assembler for assembling the private key parameters $\{p, q, d_p, d_q, v\}$ from said stored and calculated values.