Утверждение 8.5. Носителем двумерного гауссовского вектора является либо вся плоскость \mathbb{R}^2 , либо прямая, либо точка.

Доказательство. Отметим, что если $\det(\Sigma) \neq 0$, то распределение вектора \vec{X} имеет плотность, равную

$$p_{\vec{X}}(\vec{u}) = \frac{1}{2\pi\sqrt{\det(\Sigma)}}e^{-\frac{1}{2}(\vec{u}-\vec{\mu})^{\top}\Sigma^{-1}(\vec{u}-\vec{\mu})},$$

и носителем вектора \vec{X} является всё пространство \mathbb{R}^2 . Если же $\det(\Sigma) = 0$, то $\det(\Sigma^{1/2}) = 0$. Отсюда следует, что система строчек матрицы $A = \Sigma^{1/2}$ зависима, то есть найдутся b_1, b_2 (не равные одновременно нулю), что

$$b_1 a_{11} + b_2 a_{21} = 0,$$
 $b_1 a_{12} + b_2 a_{22} = 0.$

Поэтому из представления $\vec{X} = A\vec{X}^{\circ} + \mu$ получаем, что

$$b_1 X_1 + b_2 X_2 = b_1 \left(a_{11} X_1^{\circ} + a_{12} X_2^{\circ} + \mu_1 \right) + b_2 \left(a_{21} X_1^{\circ} + a_{22} X_2^{\circ} + \mu_2 \right)$$

$$= \left(b_1 a_{11} + b_2 a_{21} \right) X_1^{\circ} + \left(b_1 a_{12} + b_2 a_{22} \right) X_2^{\circ} + \left(b_1 \mu_1 + b_2 \mu_2 \right)$$

$$= b_1 \mu_1 + b_2 \mu_2 =: c.$$

Значит, в этом случае носителем вектора (X_1, X_2) является либо прямая, либо точка.