Radial Coordinate Assignment for Level Graphs

Christian Bachmaier University of Konstanz, Germany

Florian Fischer
Projective Software GmbH, Germany

Michael Forster
IMAGEN Program, National ICT Australia

UML-Diagram

- Vertices
 - Classes
 - Interfaces
- Edges
 - Inheritance
 - Implementations

Sugiyama Framework

Sugiyama: Leveling

Sugiyama: Crossing Reduction

Sugiyama: Coordinate Assignment

Coordinate Assignment

- Assigning x-coordinates
- Common esthetic criteria
 - Small area
 - Good separation of vertices on the same level
 - Slope of edges
 - Balancing of edges incident to the same vertex
 - **-** ...
 - Straightness of long edges

Radial Level Drawings

- Idea
 - Bend level lines to concentric circles
 - Draw edges as spirals
- Advantages of radial level lines
 - Fewer edge crossings (experimentally 30%)
 - More planar level graphs
 - Good resolution for graphs with more vertices on higher levels

Example Applications

- Social networks
 - Vertices are actors
 - Edges are relations
 - Importance expressed by closeness to concentric center
 - Structural centrality measure
 - Mapping to geometric centrality
- Web structures
- Centralized network views
- Citation/recommendation networks

Overview

- Motivation
- Preliminaries
- Horizontal coordinate assignment
- Radial coordinate assignment
 - Differences to horizontal case
 - Algorithm

Preliminaries

Definition, Previous Work

Level Graph

- k-level graph
 - $\blacksquare G = (V_1 \cup V_2 \cup ... \cup V_k, E)$
 - Vertex partitioning into k disjoint levels
 - No horizontal edges
- G is proper
 - Edges between adjacent levels
- Edge routing must be known
 - Consider only proper graphs
 - Dummy vertices splitting long edges
 - Segments
 - Inner segment ⇔ between two dummies
 - Outer segment ⇔ incident to one dummy

Level Embedding

- Vertex ordering on the levels given
 - From crossing reduction
 - From level planarity test
 - Fix

Previous Work

- Several algorithms for horizontal coordinate assignment
 - [Buchheim, Jünger, Leipert 00]
 - [Eades, Lin, Tamassia 96]
 - [Eades, Feng, Lin, Nagamochi 05]
 - [Eades, Sugiyama 90]
 - [Sugiyama, Tagawa, Toda 81]
 - **...**
- Most interesting [Brandes, Köpf 01]
 - Max. two bends per edge
 - Dummy vertices of an edge aligned vertically
 - Good results for other esthetics
 - O(N) time

Horizontal

Concepts

- Vertical alignment of dummy vertices in any case
 - Each inner segment vertical
- Conflicts
 - Two segments cannot be vertically aligned at the same time
 - Crossing
 - Common end vertex
- Type 1 conflict
 - Inner segment and non-inner segment
 - Solved in favor for the inner segment
- Type 2 conflict
 - Two inner segments
 - Input embedding must not contain type 2 conflicts
 - Many crossing reduction algorithms guarantee their absence

- Level-embedding
- Candidates

- Level-embedding
- Candidates

- Level-embedding
- Candidates
- Blocks

- Level-embedding
- Candidates
- Blocks
- Block graph

Level-embedding

Classes

- Candidates
- Blocks
- Block graph

- Level-embedding
- Candidates
- Blocks
- Block graph

- Classes
- Layout
 - Four exemplars

- Level-embedding
- Candidates
- Blocks
- Block graph

- Classes
- Layout
 - Four exemplars
- Balanced layout

Radial

Concentrical Alignment, Max. two Bends per Edge

Edge Offset

- Cut edge/segment
 - Crossing the ray
- Offset of an edge/segment
 - Number of crossings between edge and ray
 - Number of windings around center
 - Sign determines direction
 - From inner to outer level

 - Negative ⇔ clockwise
- Offsets are given with the embedding as input

Long Edges With Inner Cut Segments

- Type 3 conflicts
 - Inner cut segments
- Elimination necessary
 - Otherwise more than 2 bends
 - Without introducing new crossings

Unwinding

- Segments between medium levels have offset
- Offsets of inner segments entering a common level always differ at most by 1
 - Otherwise type 2 conflicts

Unwinding

- Segments between medium levels have offset +1
- Offsets of inner segments entering a common level always differ at most by 1
 - Otherwise type 2 conflicts
- Rotate outer half of the graph
 - Minimum of inner offsets times
 - Multiples of 360°
 - Clockwise since positive

Unwinding

- Segments between medium levels have offset +1
- Offsets of inner segments entering a common level always differ at most by 1
 - Otherwise type 2 conflicts
- Rotate outer half of the graph
 - Minimum of inner offsets times
 - Multiples of 360°
 - Clockwise since positive
- Afterwards inner segments have offset 0 or +1
- For each level

Problem

- Unwinding may leave inner offsets of +1
- Rotating by multiples of 360° does not solve the problem
- Only between dummies
 - At the end of inner level
 - At the beginning of outer level
- Elimination by rotation
 - Of single levels
 - Individual angles
 - Moving single vertices

Rotation

- Rotation of a level
- Clockwise
 - Offset updates of adjacent segments
- Counter-clockwise symmetrically
 - Here not needed
- No new crossings
- For each level outwards
- No more type 3 conflicts

Algorithm

- Eliminate type 3 conflicts
 - Unwind
 - Rotate
- Split at the ray's position
- Apply [Brandes, Köpf 01]
- Transform coordinates of vertices to get a radial drawing
 - Reinterpret the "horizontal" coordinates as polar coordinates
 - Transform ther back to eartesian coordinates

 - normalizes the length to the circumference of the level
 - z is the largest width of a single horizontal level

Overlap

Normalization in dependency to z realizes the necessary overlap of the lefth bout right

Drawing Edges

- Also transform each (interpolation) point of the edges
 - $(x, y) = (1 t)(x_1, y_1) + t(x_2, y_2)$
 - Segment of a spiral
- For cut edges e
 - |offset(e)| many drawings side by side in a row
 - Clockwise direction
 - Draw e from the left to the right drawing
 - Counter-clockwise symmetric
 - $(x, y) = (1 t)(x_1, y_1) + t(x_2 + z \cdot offset(e), y_2)$

Refinement

- Special case $|V_1| = 1$
 - Place vertex into concentric center
 - Draw adjacent edges straight line

Refinement

- Special case $|V_1| = 1$
 - Place vertex into concentric center
 - Draw adjacent edges straight line
- Harmonic picture [Eades 92]
 - Diameter of first level equals radial distance of level lines
 - Using 0.5, 1.5, 2.5, ..., k 0.5 as level numbers

Conclusion

Past and Future Work

Implementation

- Running time
 - O(N)
 - Competitive in practice
- Prototype
 - Java
 - Gravisto [B., Brandenburg, Forster, Raitner, Holleis 03]
 - N = 50.000 needs 50 sec. on 1.8 GHz PC

Moving Forward

- Vertices with arbitrary size
- Radial crossing reduction
 - Use additional freedom to reduce number of crossings
 - Avoid type 3 conflicts
 - Unwinding and rotation may raise the offsets of non-inner segments
 - Minimize absolute values of edge offsets

The End

Thanks for your attention!