Examen

[Durée deux heures. Aucun document n'est autorisé. Tous les exercices sont independants. Seule les reponses soigneusement justifiées seront prise en compte.]

Exercice 1. Soit $(X_n)_{n\geqslant 0}$ une chaîne de Markov homogène sur l'espace d'états $M=\mathbb{N}$ de matrice de transition

$$P(0,1) = 1$$
, $P(x,x+1) = 1 - P(x,x-1) = p$ pour $x \ge 1$

avec $p \in]0,1[$. On pose q=1-p.

- a) Calculer $\mathbb{P}_0(X_4=2)$.
- b) Montrer que la chaîne est irréductible.
- c) Est-elle fortement irréductible?
- d) Est-elle apériodique?
- e) Montrer qu'une mesure invariante pour P est donnée par

$$\mu(0) = 1,$$
 $\mu(x) = \frac{1}{p} \left(\frac{p}{q}\right)^x$ pour tout $x \ge 1$.

- f) Déterminer les valeurs de p pour lesquels la chaîne admet une probabilité invariante π et montrer que dans ce cas P est réversible par rapport à π et que π est la seule probabilité invariante.
- g) Soit $T_0 = \inf\{n > 0: X_n = 0\}$. En supposant que la chaîne est récurrente positive calculer le temps moyen de retour à l'état 0 (c-à-d $\mathbb{E}_0[T_0]$) en fonction de p. En déduire que si $p \ge 1/2$ alors la chaîne n'est pas récurrente positive.
- h) Soit $S_x = \inf\{n \ge 0 : X_n = x\}$ et $u_N(x) = \mathbb{P}_x(S_0 < S_N)$ pour $0 \le x \le N$. Trouver l'équation satisfaite par $u_N(x)$ et montrer que u_N est donnée par

$$u_N(0) = 1,$$
 $u_N(x) = 1 - \frac{\sum_{k=0}^{x-1} (q/p)^k}{\sum_{k=0}^{N-1} (q/p)^k},$ $0 < x \le N.$

i) Montrer que $\mathbb{P}_0(T_0 < +\infty) \geqslant u_N(1)$ pour tout $N \geqslant 1$. Calculer $\limsup_N u_N(1)$ et en déduire que si $p \leqslant 1/2$ alors la chaîne est recurrente.

Exercice 2. Soient définies des v.a. indépendantes X, ξ_1 , ξ_2 , ... telles que $X \sim \mathcal{N}(0, 1)$ et $\xi_n \sim \mathcal{N}(0, \varepsilon_n^2)$ avec $\varepsilon_n > 0$ pour tout $n \ge 1$. Soit $Y_n = X + \xi_n$ et

$$X_n = \mathbb{E}[X | \mathcal{F}_n], \qquad n \geqslant 1$$

avec $\mathcal{F}_n = \sigma(Y_1, ..., Y_n)$. On peut voir X comme une quantité inconnue qu'on cherche à estimer. La v.a. Y_n est le résultat obtenu en mesurant X au temps n, la mesure étant brouillée par une erreur aléatoire. On suppose que les erreurs commises en temps différents sont indépendantes. Au temps n, notre meilleure estimation L^2 de X est donnée par X_n . On se pose la question de savoir si X_n converge vers X quand $n \to \infty$.

- a) Montrer que le processus $(X_n)_{n\geqslant 1}$ est une martingale uniformement bornée dans L^2 (c-à-d $\sup_n \mathbb{E}[X_n^2] < +\infty$)
- b) Montrer que la suite $(X_n)_{n\geqslant 1}$ converge presque sûrement vers une variable X_∞ et que $X_\infty \in L^2$. La v.a. X_∞ représente notre meilleure prévision de X (au sens L^2) donnée par l'observation de toutes les v.a. $(Y_n)_{n\geqslant 1}$.
- c) Montrer que pour tout $n \ge 1$ et tout $1 \le i \le n$ on a $\mathbb{E}[Z_n Y_i] = 0$ où la v.a. Z_n est définie par

$$Z_n = X - \frac{1}{1 + \sum_{k=1}^n \varepsilon_k^{-2}} \sum_{k=1}^n \varepsilon_k^{-2} Y_k.$$

- d) En déduire que pour tout $n \ge 1$ la v.a. Z_n est indépendante du vecteur $(Y_1, ..., Y_n)$ puis que $X_n = X Z_n$.
- e) Calculer $\mathbb{E}[(X-X_n)^2]$ et en deduire que $X_n \to X$ presque surement si et seulement si

$$\sum_{n=1}^{\infty} \varepsilon_n^{-2} = +\infty.$$

Donc si $\sum_{n=1}^{\infty} \varepsilon_n^{-2} < +\infty$ il est impossible de déterminer la quantité inconnue X même avec un nombre infini d'observations.