Exercice 1/ 1°)

Espèce chimique	Nbre de protons, Z	Nbr de neutrons, A-Z	Nbre d'électrons
¹⁶ 80 ²⁻	8	8	10
²³ ₁₁ Na ⁺	11	12	10
²⁵ ₁₂ Mg	12	13	12
$^{24}_{12}Mg^{2+}$	12	12	10
⁸⁰ ₃₅ Br	35	45	35
²³⁵ ₉₂ U	92	143	92

- **2°)** Il y a deux isotopes de Mg $\binom{25}{12}Mg$, $\binom{24}{12}Mg^{2+}$
- **3°)** a- ^{28}Si est l'isotope le plus abondant, X_1 = 92,23 %

b- Calcul de l'abondance de ²⁹Si et ³⁰Si

Soit X₁, X₂ et X₃ les abondances relatives des trois isotopes, tel que :

 $(2) \Rightarrow X_2 = 100 - (X_1 + X_3)$, en remplaçant l'expression de X_2 dans l'équation (1) on aboutit aux valeurs de X_2 et X_3 .

$$X_2 = 7,04\%$$
 (²⁹Si) et $X_3 = 0,73\%$ (³⁰Si)

Exercice N° 2 /

- a) Masse du noyau : $m_{noyau} = Zm_P + (A Z)m_n$ $m_{noyau} = 30 \times 1,0073 + (65 30) \times 1,0087 = 65,5235 \ uma$ Masse de l'atome : $m_{atome} = m_{noyau} + Zm_e = 65,5235 + 30 \times \frac{9,108.10^{-3}}{1,66.10^{-27}} = 65,5399 \ uma$
- b) $m_{noyau} \gg Zm_e$, donc la masse de l'atome est localisée dans le noyau
- c) La masse atomique molaire : $M_{Zn} = m_{Zn} \times N_A = 65,5399 \times 1,66. \ 10^{-24} \times 6,022. \ 10^{23} = \textbf{65,52} \ \textbf{g/mol}$
- d) Défaut de masse : $\Delta m = 65,52 65,37 = 0,15 g$

Dr, TIR. M

Exercice N° 3 /

1) La masse théorique du noyau d'azote : $m_{noyau} = Zm_P + (A - Z)m_n$

$$m_{novau} = 7 \times 1,0073 + (14 - 7) \times 1,0087 = 14,112 \, uma$$

La masse théorique de l'azote est supérieure à la masse réelle,

$$\Delta m = masse th\'{e}orique - masse r\'{e}elle = 14,112 - 14,0075 = 0,1045 uma$$

- Calcul de l'énergie de cohésion du noyau d'azote : $E = \Delta m. C^2$

$$E_{(N)} = 0.1045 \times 1.66.10^{-27} \times (3.10^8)^2 = 1.561.10^{-11}J = 97.58 \,\text{MeV}$$

2) a) Calcul de la masse du noyau d'oxygène :

$$E_{(O)} = \Delta m. C^{2} = \left[Zm_{P} + (A - Z)m_{n} - m_{(O)} \right] \times c^{2}$$

$$\frac{E_{(O)}}{c^{2}} = Zm_{P} + (A - Z)m_{n} - m_{(O)} \Rightarrow \frac{m_{(O)} = Zm_{P} + (A - Z)m_{n} - \frac{E_{(O)}}{c^{2}}}{c^{2}}$$

$$m_{(O)} = \left[8 \times 1,0073 + (16 - 8) \times 1,0087 \right] \times 1,66. \cdot 10^{-27} - \frac{126 \times 1,6. \cdot 10^{-13}}{(3. \cdot 10^{8})^{2}}$$

$$= 26,548. \cdot 10^{-27} Kg = 15,993 uma$$

b)
$$E_{(N)/A} = 6,97 \, MeV/nucléons$$
 et $E_{(O)/A} = 7,87 \, MeV/nucléons$

 $E_{(O)/A} > E_{(N)/A} \Rightarrow$ Le noyau d'oxygène est le plus stable

Exercice N° 4 /

$${}^{A}_{7}N\left\{^{A_{1}}_{7}N^{+}\atop{A_{2}}_{7}N^{+}\right.$$
 Avec ${}^{A_{1}}_{7}N^{+}\to{}^{14}_{7}N^{+}$, $q=+e,v=400\frac{km}{s}$, $B=0,2$ Tesla et $d=4,15$ cm

a) On cherche La masse atomique de l'isotope ${}^{A_2}_{7}N^+$

$$2^{\circ}$$
 Loi de newton: $\sum \overrightarrow{F_{ext}} = m\vec{a} \Rightarrow \vec{F_m} = m\vec{a}_N$

$$\vec{F_m} = q\vec{v} \wedge \vec{B} \Rightarrow F_m = qvB\sin\frac{\pi}{2} = qvB$$

$$qvB = m\frac{v^2}{R} \Rightarrow \frac{q}{m} = \frac{v}{BR} \text{ et } m_i = \frac{eB}{v} \times R_i$$

$$\begin{cases} m_1 = \frac{eB}{v} \times R_1 \Rightarrow M_1 = \frac{eBN_A}{v} \times R_1 \\ m_2 = \frac{eB}{v} \times R_2 \Rightarrow M_2 = \frac{eBN_A}{v} \times R_2 \end{cases} \Rightarrow \begin{cases} d = 2(R_2 - R_1) \\ d = \frac{2v}{eBN_A} (M_2 - M_1) \Rightarrow M_2 = \frac{eBN_A d}{2v} + M_1 \end{cases}$$

Dr, TIR. M

U.Y. Médéa/Corrigé de la série d'exercices N° II/ CHIMIE I / 1ère Année L.M.D ST (2021/2022)

$$\text{A.N}: M_2 = \frac{^{1,6.10^{-19} \times 0,2 \times 6,022.10^{23} \times 4,15.10^{-2}}}{^{2\times 400.10^3}} + 14.10^{-3} = 14,999.10^{-3} Kg. mol^{-1} \cong \frac{15g. mol^{-1}}{^{12}}$$

b) calcul de l'abondance relative de chaque isotope

Soit X₁ et X₂ les abondances relatives des deux isotopes, tel que :

 $(2) \Rightarrow X_2 = 100 - X_1$, en remplaçant l'expression de X_2 dans l'équation (1) on aboutit aux valeurs de X_1 .

$$X_1 = \frac{(M_N - M_2)}{M_1 - M_2} \times 100 = 99,33\%$$

$$X_1({}^{14}_7N^+) = 99,33\%$$
 et $X_2({}^{15}_7N^+) = 0,67\%$

Dr, TIR. M