Phase Retrieval

http://bicmr.pku.edu.cn/~wenzw/bigdata2020.html

Acknowledgement: this slides is based on Prof. Emmanuel Candès 's lecture notes

Outline

- Introduction
- Classical Phase Retrieval
- PhaseLift
- PhaseCut
- Wirtinger Flows
- Gauss-Newton Method

X-ray crystallography

Method for determining atomic structure within a crystal

principle

typical setup

10 Nobel Prizes in X-ray crystallography, and counting...

Missing phase problem

Detectors record intensities of diffracted rays \Longrightarrow phaseless data only!

Fraunhofer diffraction \Longrightarrow intensity of electrical \approx Fourier transform

$$|\hat{x}(f_1, f_2)|^2 = \left| \int x(t_1, t_2) e^{-i2\pi(f_1t_1 + f_2t_2)} dt_1 dt_2 \right|$$

Electrical field $\hat{x} = |\hat{x}|e^{i\phi}$ with intensity $|\hat{x}|^2$

Phase retrieval problem (inversion)

How can we recover the phase (or signal $x(t_1, t_2)$) from $|\hat{x}(f_1, f_2)|$

Phase and magnitude

Phase carries more information than magnitude

Other applications of phase retrieval

Hubble telescope

James Webb space telescope

Outline

- Introduction
- Classical Phase Retrieval
- PhaseLift
- PhaseCut
- Wirtinger Flows
- Gauss-Newton Method

Classical Phase Retrieval

Feasibility problem

find
$$x \in S \cap \mathcal{M}$$
 or find $x \in S_+ \cap \mathcal{M}$

given Fourier magnitudes:

$$\mathcal{M} := \{ x(r) \mid |\hat{x}(\omega)| = b(\omega) \}$$

where $\hat{x}(\omega) = \mathcal{F}(x(r))$, \mathcal{F} : Fourier transform

given support estimate:

$$S := \{x(r) \mid x(r) = 0 \text{ for } r \notin D\}$$

or

$$S_+ := \{x(r) \mid x(r) \ge 0 \text{ and } x(r) = 0 \text{ if } r \notin D\}$$

Error Reduction

Alternating projection:

$$x^{k+1} = \mathcal{P}_{\mathcal{S}} \mathcal{P}_{\mathcal{M}}(x^k)$$

projection to S:

$$\mathcal{P}_{\mathcal{S}}(x) = \left\{ egin{array}{ll} x(r), & \mbox{if } r \in D, \\ 0, & \mbox{otherwise}, \end{array}
ight.$$

projection to M:

$$\mathcal{P}_{\mathcal{M}}(x) = \mathcal{F}^*(\hat{y}), \text{ where } \hat{y} = \left\{ \begin{array}{ll} b(\omega) \frac{\hat{x}(\omega)}{|\hat{x}(\omega)|}, & \text{if } \hat{x}(\omega) \neq 0, \\ b(\omega), & \text{otherwise,} \end{array} \right.$$

Summary of projection algorithms

Basic input-output (BIO)

$$x^{k+1} = (\mathcal{P}_{\mathcal{S}}\mathcal{P}_{\mathcal{M}} + I - \mathcal{P}_{\mathcal{M}})(x^k)$$

Hybrid input-output (HIO)

$$x^{k+1} = ((1+\beta)\mathcal{P}_{\mathcal{S}}\mathcal{P}_{\mathcal{M}} + I - \mathcal{P}_{\mathcal{S}} - \beta\mathcal{P}_{\mathcal{M}})(x^k)$$

Hybrid projection reflection (HPR)

$$x^{k+1} = ((1+\beta)\mathcal{P}_{\mathcal{S}_{+}}\mathcal{P}_{\mathcal{M}} + I - \mathcal{P}_{\mathcal{S}_{+}} - \beta\mathcal{P}_{\mathcal{M}})(x^{k})$$

Relaxed averaged alternating reflection (RAAR)

$$x^{k+1} = \left(2\beta \mathcal{P}_{\mathcal{S}_{+}} \mathcal{P}_{\mathcal{M}} + \beta I - \beta \mathcal{P}_{\mathcal{S}_{+}} + (1 - 2\beta) \mathcal{P}_{\mathcal{M}}\right)(x^{k})$$

Difference map (DF)

$$\textbf{x}^{k+1} = \left(\textbf{I} + \beta (\mathcal{P}_{\mathcal{S}}((1-\gamma_2)\mathcal{P}_{\mathcal{M}} - \gamma_2 \textbf{I}) + \mathcal{P}_{\mathcal{M}}((1-\gamma_1)\mathcal{P}_{\mathcal{S}} - \gamma_1 \textbf{I}))\right)(\textbf{x}^k)$$

ADMM

Consider problem

find x and y, such that x = y, $x \in \mathcal{X}$ and $y \in \mathcal{Y}$

- \mathcal{X} is either \mathcal{S} or \mathcal{S}_+ , and \mathcal{Y} is \mathcal{M} .
- Augmented Lagrangian function

$$\mathcal{L}(x, y, \lambda) := \lambda^{\top}(x - y) + \frac{1}{2}||x - y||^2$$

ADMM:

$$\begin{aligned} x^{k+1} &= \arg\min_{x \in \mathcal{X}} \ \mathcal{L}(x, y^k, \lambda^k), \\ y^{k+1} &= \arg\min_{y \in \mathcal{Y}} \mathcal{L}(x^{k+1}, y, \lambda^k), \\ \lambda^{k+1} &= \lambda^k + \beta(x^{k+1} - y^{k+1}), \end{aligned}$$

ADMM

ADMM

$$\begin{aligned} x^{k+1} &=& \mathcal{P}_{\mathcal{X}}(y^k - \lambda^k), \\ y^{k+1} &=& \mathcal{P}_{\mathcal{Y}}(x^{k+1} + \lambda^k), \\ \lambda^{k+1} &=& \lambda^k + \beta(x^{k+1} - y^{k+1}), \end{aligned}$$

- ADMM is equivalent to HIO or HPR
 - if $\mathcal{P}_{\mathcal{X}}(x+y) = \mathcal{P}_{\mathcal{X}}(x) + \mathcal{P}_{\mathcal{X}}(y)$

$$x^{k+2} + \lambda^{k+1} = [(1+\beta)\mathcal{P}_{\mathcal{X}}\mathcal{P}_{\mathcal{Y}} + (I-\mathcal{P}_{\mathcal{X}}) - \beta\mathcal{P}_{\mathcal{Y}}](x^{k+1} + \lambda^{k})$$

Hybrid input-output (HIO)

$$x^{k+1} = ((1+\beta)\mathcal{P}_{\mathcal{S}}\mathcal{P}_{\mathcal{M}} + I - \mathcal{P}_{\mathcal{S}} - \beta\mathcal{P}_{\mathcal{M}})(x^k)$$

• if $\beta = 1$

ADMM

ADMM: updating Lagrange Multiplier twice

$$\begin{aligned} x^{k+1} &:= \mathcal{P}_{\mathcal{X}}(y^k - \pi^k), \\ \pi^{k+1} &:= \pi^k + \beta(x^{k+1} - y^k) = -(I - \beta \mathcal{P}_{\mathcal{X}})(y^k - \pi^k), \\ y^{k+1} &:= \mathcal{P}_{\mathcal{Y}}(x^{k+1} + \lambda^k), \\ \lambda^{k+1} &:= \lambda^k + \nu(x^{k+1} - y^{k+1}) = (I - \nu \mathcal{P}_{\mathcal{Y}})(x^{k+1} + \lambda^k), \end{aligned}$$

• ADMM is equivalent to ER if $\beta = \nu = 1$

$$x^{k+1} := \mathcal{P}_{\mathcal{X}}(y^k) \text{ and } y^{k+1} := \mathcal{P}_{\mathcal{Y}}(x^{k+1}).$$

• ADMM is equivalent to BIO if $\beta = \nu = 1$

$$x^{k+1} + \lambda^k = (\mathcal{P}_{\mathcal{X}}\mathcal{P}_{\mathcal{Y}} + I - \mathcal{P}_{\mathcal{Y}})(x^k + \lambda^{k-1})$$

The parameter β in HPR and RAAR was updated dynamically with $\beta_0=0.95$. For ADMM, $\beta=0.5$.

The parameter β in HPR and RAAR was updated dynamically with $\beta_0=0.95$. For ADMM, $\beta=0.5$.

The parameter β was fixed at 0.6, 0.8 and 0.95 for the first, second and third rows respectively.

The parameter β was fixed at 0.6, 0.8 and 0.95 for the first, second and third rows respectively.

Numerical Results

Convergence behavior:

$$\mathrm{err}^k = \frac{\|\mathcal{P}_{\mathcal{X}}(\mathcal{P}_{\mathcal{Y}}(x^k)) - \mathcal{P}_{\mathcal{Y}}(x^k)\|_F}{\|m\|_F}$$

Outline

- Introduction
- Classical Phase Retrieval
- PhaseLift
- PhaseCut
- Wirtinger Flows
- Gauss-Newton Method

Discrete mathematical model

• Phaseless measurements about $x_0 \in C^n$

$$b_k = |\langle a_k, x_0 \rangle|^2, \quad k \in \{1, \dots, m\}$$

Phase retrieval is feasibility problem

find
$$x$$

s.t. $|\langle a_k, x_0 \rangle|^2 = b_k, k = 1, \dots, m$

Solving quadratic equations is NP-complete in general

NP-complete stone problem

Given weights $w_i \in \mathbb{R}$, i = 1, ..., n, is there an assignment $x_i = \pm 1$ such that

$$\sum_{i=1}^{n} w_i x_i = 0?$$

Formulation as a quadratic system

$$|x_i|^2 = 1, \quad i = 1, \dots, n$$

$$\left| \sum_{i=1}^n w_i x_i \right|^2 = 0$$

PhaseLift (C., Eldar, Strohmer, Voroninski, 2011)

Lifting: $X = xx^*$

$$b_k = |\langle a_k, x_0 \rangle|^2 = a_k^* x x^* a_k = \langle a_k a_k^*, X \rangle$$

Turns quadratic measurements into linear measurements $b = \mathcal{A}(X)$ about xx^*

Connections: relaxation of quadratically constrained QP's

- Shor (87) [Lower bounds on nonconvex quadratic optimization problems]
- Goemans and Williamson (95) [MAX-CUT]
- Chai, Moscoso, Papanicolaou (11)

Exact generalized phase retrieval via SDP

Phase retrieval problem

find x

$$\text{s.t.} \quad b_k = |\langle a_k, x_0 \rangle|^2$$

PhaseLift

find tr(X)

s.t.
$$A(X) = b$$
, $X \succeq 0$

Theorem (C. and Li ('12); C., Strohmer and Voroninski ('11))

- $ightharpoonup a_k$ independently and uniformly sampled on unit sphere
- $ightharpoonup m \gtrsim n$

Then with prob. $1 - O(e^{-\gamma m})$, only feasible point is xx^*

$${X : A(X) = b, \text{ and } X \succeq 0} = {xx^*}$$

Extensions to physical setups

Coded diffraction

Collect diffraction patterns of modulated samples

$$|\mathcal{F}(w[t]x[t])|^2$$
 $w \in \mathcal{W}$

Makes problem well-posed (for some choices of W)

Exact recovery

(a) Smooth signal (real part)

(b) Random signal (real part)

Figure: Recovery from 6 random binary masks

Numerical results: noiseless 2D images

Outline

- Introduction
- Classical Phase Retrieval
- PhaseLift
- PhaseCut
- Wirtinger Flows
- Gauss-Newton Method

PhaseCut

• Given $A \in \mathcal{C}^{m \times n}$ and $b \in \mathbb{R}^m$

find
$$x$$
, s.t. $|Ax| = b$.

(Candes et al. 2011b, Alexandre d'Aspremont 2013)

An equivalent model

$$\min_{x \in \mathcal{C}^n, y \in \mathbb{R}^m} \quad \frac{1}{2} ||Ax - y||_2^2$$
 s.t. $|y| = b$.

PhaseCut

Reformulation:

$$\min_{x \in \mathbb{C}^n, u \in \mathbb{C}^m} \frac{1}{2} ||Ax - \operatorname{diag}(b)u||_2^2$$
s.t. $|u_i| = 1, i = 1, \dots, m$.

• Given u, the signal variable is $x = A^{\dagger} \operatorname{diag}(b)u$. Then

$$\min_{u \in \mathbb{C}^m} \quad u^* M u$$

$$s.t. \quad |u_i| = 1, i = 1, \dots, m,$$

where $M = diag(b)(I - AA^{\dagger})diag(b)$ is positive semidefinite.

The MAXCUT problem

$$\min_{U \in S_m} Tr(UM)$$
s.t. $U_{ii} = 1, i = 1, \dots, m, U \succeq 0$.

Outline

- Introduction
- Classical Phase Retrieval
- PhaseLift
- PhaseCut
- Wirtinger Flows
- Gauss-Newton Method

Phase retrieval by non-convex optimization

Solve the equations: $y_r = |\langle a_r, x \rangle|^2$, r = 1, 2, ..., m.

Gaussian model:

$$a_r \in \mathbb{C}^n \overset{i.i.d.}{\sim} \mathcal{N}(0, I/2) + i\mathcal{N}(0, I/2).$$

Coded Diffraction model:

$$y_r = \left| \sum_{t=0}^{n-1} x[t] \bar{d}_l(t) e^{-i2\pi kt/n} \right|^2, \quad r = (l,k), \quad 0 \le k \le n-1, \quad 1 \le l \le L.$$

Nonlinear least square problem:

$$\min_{z \in \mathbb{C}^n} \quad f(z) = \frac{1}{4m} \sum_{k=1}^m (y_k - |\langle a_k, z \rangle|^2)^2$$

- Pro: operates over vectors and not matrices
- ullet Con: f is nonconvex, many local minima

Wirtinger flow: C., Li and Soltanolkotabi ('14)

Strategies:

- Start from a sufficiently accurate initialization
- Make use of Wirtinger derivative

$$f(z) = \frac{1}{4m} \sum_{k=1}^{m} (y_k - |\langle a_k, z \rangle|^2)^2$$

$$\nabla f(z) = \frac{1}{m} \sum_{k=1}^{m} (|\langle a_k, z \rangle|^2 - y_k) (a_k a_k^*) z$$

Careful iterations to avoid local minima

Algorithm: Gaussian model

Spectral Initialization:

- **1** Input measurements $\{a_r\}$ and observation $\{y_r\}(r=1,2,...,m)$.
- **2** Calculate z_0 to be the leading eigenvector of $Y = \frac{1}{m} \sum_{r=1}^{m} y_r a_r a_r^*$.
- **3** Normalize z_0 such that $||z_0||^2 = n \frac{\sum_r y_r}{\sum_r ||a_r||^2}$.
- Iteration via Wirtinger derivatives: for $\tau = 0, 1, ...$

$$z_{\tau+1} = z_{\tau} - \frac{\mu_{\tau+1}}{\|z_0\|^2} \nabla f(z_{\tau})$$

Convergence property: Gaussian model

distance (up to global phase)

$$\mathbf{dist}(z, \mathbf{x}) = \arg\min_{\pi \in [0, 2\pi]} \|z - e^{i\phi} \mathbf{x}\|$$

Theorem

Convergence for Gaussian model (C. Li and Soltanolkotabi ('14))

- number of samples $m \gtrsim n \log n$
- Step size $\mu \leq c/n(c>0)$

Then with probability at least $1 - 10e^{-\gamma n} - 8/n^2 - me^{-1.5n}$, we have $dist(z_0, x) \le \frac{1}{8} ||x||$ and after τ iteration

$$\mathbf{dist}(z_{\tau}, \mathbf{x}) \leq \frac{1}{8} (1 - \frac{\mu}{4})^{\tau/2} ||\mathbf{x}||.$$

Here γ is a positive constant.

Numerical results: 1D signals

Consider the following two kinds of signals:

Random low-pass signals:

$$x[t] = \sum_{k=-(M/2-1)}^{M/2} (X_k + iY_k)e^{2\pi i(k-1)(t-1)/n},$$

with M=n/8 and X_k and Y_k are i.i.d. $\mathcal{N}(0,1)$.

• Random Guassian signals: where $x \in \mathbb{C}^n$ is a random complex Gaussian vector with i.i.d. entries of the form

$$X[t] = X + iY,$$

with X and Y distributed as $\mathcal{N}(0, 1/2)$.

Success rate

- Set n = 128.
- Apply 50 iterations of the power method as initialization.
- Set $\mu_{\tau} = \min(1 e^{-\tau/\tau_0}, 0.2)$, where $\tau_0 \approx 330$.
- Stop after 2500 iterations, and declare a trial successful if the relative error of the reconstruction $dist(\hat{x}, x)/||x||$ falls below 10^{-5} .
- The empirical probability of success is an average over 100 trials.

7/63

Numerical results: natural images

- View RGB image as $n_1 \times n_2 \times 3$ array, and run the WF algorithm separately on each color band.
- Apply 50 iterations of the power method as initialization.
- Set the step length parameter $\mu_{\tau} = min(1 exp(-\tau/\tau_0), 0.4)$, where $\tau_0 \approx 330$. Stop after 300 iterations.
- One FFT unit is the amount of time it takes to perform a single FFT on an image of the same size.

Numerical results: natural images

Figure: Milky way Galaxy. Image size is 1080×1920 pixels; timing is 1318.1 sec or 41900 FFT units. The relative error is 9.3×10^{-16} .

Recall the main theorems

Theorem

Convergence for Gaussian model (C. Li and Soltanolkotabi ('14))

- number of samples $m \gtrsim n \log n$
- Step size $\mu \le c/n(c>0)$

Then with probability at least $1-10e^{-\gamma n}-8/n^2-me^{-1.5n}$, we have $dist(z_0,x)\leq \frac{1}{8}\|x\|$ and after τ iteration

$$\mathbf{dist}(z_{\tau}, \mathbf{x}) \leq \frac{1}{8} (1 - \frac{\mu}{4})^{\tau/2} ||\mathbf{x}||.$$

Here γ is a positive constant.

Regularity condition

Definition

Definition We say that the function f satisfies the regularity condition or $RC(\alpha,\beta,\epsilon)$ if for all vectors $z\in E(\epsilon)$ we have

$$Re\left(\langle \nabla f(z), z - xe^{i\phi(z)}\rangle\right) \ge \frac{1}{\alpha}dist^2(z, x) + \frac{1}{\beta}\|\nabla f(z)\|^2.$$

- $\phi(z) := \arg\min_{\phi \in [0,2\pi]} \|z e^{i\phi}x\|.$
- $dist(z, x) := ||z e^{i\phi(z)}x||$.
- $E(\epsilon) := \{ z \in \mathbb{C}^n : dist(z, x) \le \epsilon \}.$

Proof of convergence

Lemma 1

Assume that f obeys $RC((\alpha,\beta,\epsilon))$ for all $z\in E(\epsilon)$. Furthermore, suppose $z_0\in E(\epsilon)$, and assume $0<\mu\leq 2/\beta$. Consider the following update

$$z_{\tau+1} = z_{\tau} - \mu \nabla f(z_{\tau}).$$

Then for all τ we have $z_{\tau} \in E(\epsilon)$ and

$$dist^2(z_{\tau}, x) \leq \left(1 - \frac{2\mu}{\alpha}\right)^{\tau} dist^2(z_0, x).$$

Proof of convergence

Proof.

We prove that if $z \in E(\epsilon)$ then for all $0 < \mu \le 2/\beta$

$$z_+ = z - \mu \nabla f(z)$$

obeys

$$dist^2(z_+,x) \le \left(1 - \frac{2\mu}{\alpha}\right) dist^2(z,x).$$

Then the lemma holds by inductively applying the equation above.

Proof of convergence

Simple algebraic manipulations together with the regularity condition give

$$\begin{split} & \left\| z_{+} - x e^{i\phi(z)} \right\|^{2} \\ &= \left\| z - x e^{i\phi(z)} - \mu \nabla f(z) \right\|^{2} \\ &= \left\| z - x e^{i\phi(z)} \right\|^{2} - 2\mu Re \left(\left\langle \nabla f(z), z - x e^{i\phi(z)} \right\rangle \right) + \mu^{2} \left\| \nabla f(z) \right\|^{2} \\ &\leq \left\| z - x e^{i\phi(z)} \right\|^{2} - 2\mu \left(\frac{1}{\alpha} \left\| z - x e^{i\phi(z)} \right\|^{2} + \frac{1}{\beta} \left\| \nabla f(z) \right\|^{2} \right) \\ &\quad + \mu^{2} \left\| \nabla f(z) \right\|^{2} \\ &= \left(1 - \frac{2\mu}{\alpha} \right) \left\| z - x e^{i\phi(z)} \right\|^{2} + \mu \left(\mu - \frac{2}{\beta} \right) \left\| \nabla f(z) \right\|^{2} \\ &\leq \left(1 - \frac{2\mu}{\alpha} \right) \left\| z - x e^{i\phi(z)} \right\|^{2}, \end{split}$$

which concludes the proof.

We will make use of the following lemma:

Lemma 2

- x is a solution obeying ||x|| = 1, and is independent from the sampling vectors;
- ② $m \ge c(\delta) n \log n$ in Gaussian model or $L \ge c(\delta) \log^3 n$ in CD model. Then,

$$\|\nabla^2 f(x) - \mathbb{E}\nabla^2 f(x)\| \le \delta$$

holds with pabability at least $1-10e^{-\gamma n}-8/n^2$ and $1-(2L+1)/n^3$ for the Gaussian and CD model, respectively.

The concentration of the Hessian matrix at the optimizers.

Based on the lemma above with $\delta=0.01$, we prove the regularity condition by establishing the local curvature condition and the local smoothness condition.

Local curvature condition

We say that the function f satisfies the local curvature condition or $LCC(\alpha, \epsilon, \delta)$ if for all vectors $z \in E(\epsilon)$,

$$Re\left(\langle \nabla f(z), z - xe^{i\phi(z)}\rangle\right) \ge \left(\frac{1}{\alpha} + \frac{1-\delta}{4}\right) dist^2(z,x) + \frac{1}{10m} \sum_{r=1}^m \left|a_r^*(z - xe^{i\phi(z)})\right|$$

The *LCC* condition states that the function curves sufficiently upwards along most directions near the curve of global optimizers.

For the CD model, *LCC* holds with $\alpha \geq 30$ and $\epsilon = \frac{1}{8\sqrt{n}}$;

For the Gaussian model, *LCC* holds with $\alpha \geq 8$ and $\epsilon = \frac{1}{8}$.

Local smoothness condition

We say that the function f satisfies the local smoothness condition or $LSC(\beta,\epsilon,\delta)$ if for all vectors $z\in E(\epsilon)$ we have

$$\|\nabla f(z)\|^2 \le \beta \left(\frac{(1-\delta)}{4} dist^2(z,x) + \frac{1}{10m} \sum_{r=1}^m \left| a_r^*(z-xe^{i\phi(z)}) \right|^4 \right).$$

The *LSC* condition states that the gradient of the function is well behaved near the curve of global optimizers. Using $\delta=0.01$, *LSC* holds with $\beta \geq 550+3n$

$$\beta \ge 550 \quad for \quad \epsilon = 1/(8\sqrt{n}),$$

 $\beta \ge 550 + 3n \quad for \quad \epsilon = 1/8.$

In conclusion, when $\delta=0.01$, for the Gaussian model, the regularity condition holds with

$$\alpha \ge 8, \beta \ge 550 + 3n, \ and \ \epsilon = 1/8.$$

while for the CD model, the regularity condition holds with

$$\alpha \geq 30, \beta \geq 550, \text{ and } \epsilon = 1/(8\sqrt{n}),$$

Therefore, for the Gaussian model, linear convergence holds if the initial points satisfies $dist(z_0, x) \le 1/8$; for the CD model, linear convergence holds if $dist(z_0, x) \le 1/(8\sqrt{n})$.

Recall the initialization algorithm:

- 1 Input measurements $\{a_r\}$ and observation $\{y_r\}(r=1,2,...,m)$.
- **2** Calculate z_0 to be the leading eigenvector of $Y = \frac{1}{m} \sum_{r=1}^{m} y_r a_r a_r^*$.
- **3** Normalize z_0 such that $||z_0||^2 = n \frac{\sum_r y_r}{\sum_r ||a_r||^2}$.

Ideas:

$$\mathbb{E}\left[\frac{1}{m}\sum_{r=1}^{m}y_{r}a_{r}a_{r}^{*}\right] = I + 2xx^{*},$$

and any leading eigenvector of $I + 2xx^*$ is of the form λx . Therefore, by the strong law of large number, the initialization step would recover the direction of x perfectly as long as there are enough samples.

In the detailed proof, we will use the following lemma:

Lemma 3

In the setup of Lemma 2,

$$\left\|I - \frac{1}{m} \sum_{r=1}^{m} a_r a_r^*\right\| \le \delta,$$

holds with probability at least $1-2e^{-\gamma m}$ for the Gaussian model and $1-1/n^2$ for the CD model. On this event,

$$(1 - \delta) \|h\|^2 \le \frac{1}{m} \sum_{r=1}^{m} |a_r^* h|^2 \le (1 + \delta) \|h\|^2$$

holds for all $h \in \mathbb{C}^n$.

Detailed proof:

Lemma 2 gives

$$||Y - (xx^* + ||x||^2 I)|| \le \epsilon := 0.001.$$

Let \tilde{z}_0 be the unit eigenvector corresponding to the top eigenvalue λ_0 of Y, then

$$|\lambda_0 - (|\tilde{z}_0 x|^2 + 1)| = |\tilde{z}_0^* (Y - (xx^* + I))\tilde{z}_0| \le ||Y - (xx^* + I)|| \le \epsilon.$$

Therefore, $|\tilde{z}_0^*x|^2 \ge \lambda_0 - 1 - \epsilon$. Meanwhile, since λ_0 is the top eigenvalue of Y, and ||x|| = 1, we have

$$\lambda_0 \ge x^* Y x = x^* (Y - (I + x^* x)) x + 2 \ge 2 - \epsilon.$$

Combining the above two inequalities together, we have

$$|\tilde{z}_0^*x|^2 \ge 1 - 2\epsilon \implies dist^2(\tilde{z}_0, x) \le 2 - 2\sqrt{1 - 2\epsilon} \le \frac{1}{256} \implies dist(\tilde{z}_0, x) \le \frac{1}{16}.$$

Now consider the normalization. Recall that $z_0 = \left(\sqrt{\frac{1}{m}}\sum_{r=1}^m |a_r^*x|^2\right)\tilde{z}_0$. By Lemma 3, with high probability we have

$$|||z_0|| - 1| \le |||z_0||^2 - 1| = \left| \frac{1}{m} \sum_{r=1}^m |a_r^* x|^2 - 1 \right| \le \delta < \frac{1}{16}.$$

Therefore, we have

$$dist(z_0, x) \le ||z_0 - \tilde{z}_0|| + dist(\tilde{z}_0, x) \le ||z_0|| - 1| + dist(\tilde{z}_0, x) \le \frac{1}{8}.$$

52/63

Outline

- Introduction
- Classical Phase Retrieval
- PhaseLift
- PhaseCut
- Wirtinger Flows
- Gauss-Newton Method

Nonlinear least square problem

$$\min_{z \in \mathbb{C}^n} f(z) = \frac{1}{4m} \sum_{k=1}^m (y_k - |\langle a_k, z \rangle|^2)^2$$

Using Wirtinger derivative:

$$\mathbf{z} := \begin{bmatrix} z \\ \overline{z} \end{bmatrix};$$

$$g(z) := \nabla_{c}f(z) = \frac{1}{m} \sum_{r=1}^{m} (|a_{r}^{\mathsf{T}}z|^{2} - y_{r}) \begin{bmatrix} (a_{r}a_{r}^{\mathsf{T}})z \\ (\bar{a_{r}}a_{r}^{\mathsf{T}})\bar{z} \end{bmatrix};$$

$$J(z) := \frac{1}{\sqrt{m}} \sum_{r=1}^{m} \begin{bmatrix} |a_{1}^{*}z|a_{1}, & |a_{2}^{*}z|a_{2}, & \cdots, & |a_{m}^{*}z|a_{m} \\ |a_{1}^{*}z|\bar{a}_{1}, & |a_{2}^{*}z|\bar{a}_{2}, & \cdots, & |a_{m}^{*}z|\bar{a}_{m} \end{bmatrix}^{\mathsf{T}};$$

$$\Psi(z) := J(z)^{\mathsf{T}}J(z) = \frac{1}{m} \sum_{r=1}^{m} \begin{bmatrix} |a_{r}^{\mathsf{T}}z|^{2}a_{r}a_{r}^{\mathsf{T}} & (a_{r}^{\mathsf{T}}z)^{2}a_{r}a_{r}^{\mathsf{T}} \\ (a_{r}^{\mathsf{T}}z)^{2}\bar{a_{r}}a_{r}^{\mathsf{T}} & |a_{r}^{\mathsf{T}}z|^{2}\bar{a_{r}}a_{r}^{\mathsf{T}} \end{bmatrix}.$$

54/63

The Modified LM method for Phase Retrieval

Levenberg-Marquardt Iteration:

$$\mathbf{z}_{k+1} = \mathbf{z}_k - (\Psi(z_k) + \mu_k I)^{-1} g(z_k)$$

Algorithm

- **1 Input:** Measurements $\{a_r\}$, observations $\{y_r\}$. Set $\epsilon \geq 0$.
- **2** Construct z_0 using the spectral initialization algorithms.
- **3** While $||g(z_k)|| \ge \epsilon$ do
 - Compute s_k by solving equation

$$\Psi_{z_k}^{\mu_k} s_k = (\Psi(z_k) + \mu_k I) \, s_k = -g(z_k).$$

until

$$\|\Psi_{z_k}^{\mu_k} s_k + g(z_k)\| \le \eta_k \|g(z_k)\|.$$

- Set $\mathbf{z}_{k+1} = \mathbf{z}_k + s_k$ and k := k + 1.
- **3** Output: z_k .

Convergence of the Gaussian Model

Theorem

If the measurements follow the Gaussian model, the LM equation is solved accurately ($\eta_k = 0$ for all k), and the following conditions hold:

- $m \ge cn \log n$, where c is sufficiently large;
- If $f(z_k) \ge \frac{\|z_k\|^2}{900n}$, let $\mu_k = 70000n\sqrt{nf(z_k)}$; if else, let $\mu_k = \sqrt{f(z_k)}$.

Then, with probability at least $1 - 15e^{-\gamma n} - 8/n^2 - me^{-1.5n}$, we have $dist(z_0, x) \le (1/8)||x||$, and

$$\mathbf{dist}(z_{k+1},x) \leq c_1 dist(z_k,x),$$

Meanwhile, once $f(z_s) < \frac{\|z_s\|^2}{900n}$, for any $k \ge s$ we have

$$dist(z_{k+1},x) < c_2 dist(z_k,x)^2$$
.

Convergence of the Gaussian Model

In the theorem above,

$$c_1 := \begin{cases} \left(1 - \frac{||x||}{4\mu_k}\right), & \text{if } f(z_k) \ge \frac{1}{900n} ||z_k||^2; \\ \frac{4.28 + 5.56\sqrt{n}}{9.89\sqrt{n}}, & \text{otherwise.} \end{cases}$$

and

$$c_2 = \frac{4.28 + 5.56\sqrt{n}}{\|x\|}.$$

Key to proof

Lower bound of GN matrix's second smallest eigenvalue

For any $y, z \in \mathbb{C}^n$, $Im(y^*z) = 0$, we have:

$$\mathbf{y}^* \Psi(z) \mathbf{y} \ge \|y\|^2 \|z\|^2$$
,

holds with high probability.

$$Im(y^*z) = 0 \implies \|(\Psi_z^{\mu})^{-1}\mathbf{y}\| \le \frac{2}{\|z\|^2 + \mu}\|\mathbf{y}\|.$$

Key to proof

Local error bound property

$$\frac{1}{4} {\bf dist}(z,x)^2 \leq f(z) \leq 8.04 {\bf dist}(z,x)^2 + 6.06 n {\bf dist}(z,x)^4,$$

holds for any z satisfying $\operatorname{dist}(z,x) \leq \frac{1}{8}$.

Regularity condition

$$\mu(z)\mathbf{h}^* \left(\Psi_z^{\mu}\right)^{-1} g(\mathbf{z}) \ge \frac{1}{16} \|\mathbf{h}\|^2 + \frac{1}{64100n\|h\|} \|g(\mathbf{z})\|^2$$

holds for any z = x + h, $||h|| \leq \frac{1}{8}$, and $f(z) \geq \frac{||z||^2}{900n}$.

Convergence for the inexact LM method

Theorem

Convergence of the inexact LM method for the Gaussian model:

- $m \gtrsim n \log n$;
- μ_k takes the same value as in the exact LM method for the Gaussian model;
- $\bullet \ \ \eta_k \leq \tfrac{(1-c_1)\mu_k}{25.55n\|z_k\|} \ \textit{if} f(z_k) \geq \tfrac{\|z_k\|^2}{900n} \ ; \ \textit{otherwise} \ \eta_k \leq \tfrac{(4.33\sqrt{n}-4.28)\mu_k\|g_k\|}{372.54n^2\|z_k\|^3} \ .$

Then, with probability at least $1 - 15e^{-\gamma n} - 8/n^2 - me^{-1.5n}$, we have $dist(z_0, x) \le \frac{1}{8}||x||$, and

$$dist(z_{k+1}, x) \le \frac{1+c_1}{2} dist(z_k, x), \quad \text{for all } k = 0, 1, ...$$
$$dist(z_{k+1}, x) \le \frac{9.89\sqrt{n} + c_2 ||x||}{2||x||} dist(z_k, x)^2, \quad \text{for all } f(z_k) < \frac{||z_k||^2}{900n}.$$

Here c_1 and c_2 take the same values as in the exact algorithm for the Gaussian model.

Solving the LM Equation: PCG

Solve

$$(\Psi_k + \mu_k I)u = g_k$$

by Pre-conditioned Conjugate Gradient Method:

$$M^{-1}(\Psi_k + \mu_k I)u = M^{-1}g_k, \quad M = \Phi_k + \mu_k I.$$

$$\Phi(z) := \begin{bmatrix} zz^* & 2zz^T \\ 2\bar{z}z^* & \bar{z}z^T \end{bmatrix} + ||z||^2 I_{2n}$$

- small condition number
- Easy to inverse: $M = (\mu_k + ||z_k||^2)I + M_1$, where M_1 is rank-2 matrix.

Solving the LM Equation: PCG

small condition number.

Lemma

Consider solving the equation $(\Phi_z^\mu)^{-1}\Psi_z^\mu s = (\Phi_z^\mu)^{-1}g(\mathbf{z})$ by the CG method from $s_0 := -(\Phi_z^\mu)^{-1}g(\mathbf{z})$. Let s_* be the solution of the system. Define $V := \{\times : \times = [\mathbf{x}^*, \mathbf{x}^T]^*, \mathbf{x} \in \mathbb{C}^n\}$. Then, V is an invariant subspace of $(\Phi_z^\mu)^{-1}\Psi_z^\mu$, and $s_0, s_* \in V$. Meanwhile, choosing $\mu_k = Kn\sqrt{f(z)}$, then the eigenvalues of $(\Phi_z^\mu)^{-1}\Psi_z^\mu$ on V satisfy:

$$1 - \frac{57}{K\sqrt{n}} \le \lambda \le 1 + \frac{57}{K\sqrt{n}}.$$

62/63

Solving the LM Equation: PCG

• Easy to inverse.

Calculate by Sherman-Morrison-Woodbury theorem:

$$(\Phi_z^{\mu})^{-1} = aI_{2n} + b \begin{bmatrix} z \\ \overline{z} \end{bmatrix} [z^*, z^T] + c \begin{bmatrix} z \\ -\overline{z} \end{bmatrix} [z^*, -z^T]$$

where

$$a = \frac{1}{\|z\|^2 + \mu}, \ b = -\frac{3}{2(\|z\|^2 + \mu)(4\|z\|^2 + \mu)}, \ c = \frac{1}{2(\|z\|^2 + \mu)\mu}.$$

63/63