

Deep Learning을 활용한 YouTube 동영상 추천 서비스 구현

Team MaruBro

김승주, 황윤지

Mento

이찬우

Q Contents

- 1. About Us
- 2. Idea Review
 - Why & How
- 3. System Structure
 - Server-side
 - Consumer-side
 - Producer-side
- 4. Prototype
 - web service

Deep Learning Production

Idea Review

Why & How

dea

- ✓ Content-based Recommendation System
- ✓ Deep Learning Video/image data

✓ Servitization production/deploy

About Our System Structure

System Structure

productivity

System Structure

1. Server System

: Deep Learning Model

2. Consumer-side System

Consumer-side

System

3. Producer-side System

Producer-side

System

Prototype

Service Prototype

Consumer web service

추천된 영상 리스트 다운로드 기능 📵 mukbang-39 (1).webm 🔷 A 검색하려면 여기에 입력하십시오.

AWS 추천 시스템

Endpoint

/recommend?userid=[

Team MaruBro

Service Prototype

Producer web service

예시) Python

Completed Status on Shell

감사합니다

Q & A

Appendix

COLLABORATIVE FILTERING

CONTENT-BASED FILTERING

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer		
conv1	112×112	7×7, 64, stride 2						
		3×3 max pool, stride 2						
conv2_x	56×56	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$		
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$		
conv4_x	14×14	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$		
conv5_x	7×7	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$		
	1×1	average pool, 1000-d fc, softmax Feature extraction						
FLOPs		1.8×10^{9}	3.6×10^{9}	3.8×10^{9}	7.6×10^9	11.3×10 ⁹		

tures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of block

1과 2의 시안은 Event Driven으로 중심이 되는 Lambda의 역할이 부각되지 않는다.

3번 시안의 경우 중심이 되는 Lambda를 잘 보여 주지만 비디오 용량을 수용할 수 있는 한계가 있다. 즉, 부하분산 구조를 구현하고자 하였다.

사용 메뉴얼

Authorized URL for Video Upload

내용	비디오를 업로드할 수 있는 권한이 주어진 url을 조회할 수 있습니다.
형식	https://ynx9aa5u3j.execute-api.ap-northeast-2.amazonaws.com/presigned_for_upload/upload/youtubepj-v3

Parameters

항목명 (영문)	항목명 (국문)	입력형 태	항목설명	부가설명
Filename	파일이름	String	동영상 파일의 이름과 확장자명	사용가능한 확장자 : webm

Response

PresignedURL: 저장소에 PUT 권한이 부여된 주소

사용 예시

https://ynx9aa5u3j.execute-api.apnortheast-2.amazonaws.com/presigned_for_uplo ad/upload/youtubepjv3?filename=Tteokbokki.webm

