2010 EE PhD Quals: Solutions

Prof. Daniel Spielman

4. Device #2 is a low pass filter (equivalent to an LRC circuit). The frequency response would look something like (depending on the particular choices of A, L, and D):

In choosing A, L, and D, we want to avoid an underdamped system with a natural frequency in the range of ocean surface waves, typically on of the order of 0.1 Hz $(\omega_n = 1/\text{sqrt}(L_fC_f))$ where L_f is the inertance [fluid analog of electrical inductance] and C_f is the fluid capacitance). The damping ratio, ζ , equals $(R_f/2) \text{sqrt}(C_f/L_f)$, where R_f is the fluid resistance. We want surface wave fluctuations >> ω_n and tidal variations << ω_n .

5a. Increasing A increases the fluid capacitance, thereby decreasing the natural frequency ω_n .

5b. Increasing L increases the fluid inertance (thereby decreasing the natural frequency ω_n) and increases the fluid resistance (thereby increasing the damping ζ).

5c. Increasing D decreases the fluid inertance (thereby increasing the natural frequency ω_n) and decreases the fluid resistance (thereby decreasing the damping ζ).