

IIC1253 — Matemáticas Discretas — 1' 2020

## PAUTA CONTROL 2

# Pregunta 1

Una posible solución es...

Sea R:

1. Si 
$$(a,b) \notin R$$
 y  $(b,a) \notin R \rightarrow a = b$ 

2. Si 
$$(a,b) \notin R$$
 y  $(b,c) \notin R \rightarrow (a,c) \notin R$ 

3. 
$$\forall a.(a,a) \notin R$$

P.d  $(A \times A \backslash R)^{-1}$  es refleja, antisimétrica y transitiva.

Vemos que  $(A \times A \backslash R)^{-1} = (R^c)^{-1}$ 

### 1. Refleja

Sea  $a \in A$ , ya que R es irrefleja:

$$(a, a) \notin R$$
  
 $\Rightarrow (a, a) \in R^c$   
 $\Rightarrow (a, a) \in (R^c)^{-1}$ 

Por tanto,  $(R^c)^{-1}$  es refleja.

### 2. Antisimétrica

P.d  $(R^c)^{-1}$  es antisimétrico.

Sea 
$$(a,b) \in (R^c)^{-1}$$
 y  $(b,a) \in (R^c)^{-1}$ 

$$\Rightarrow (b, a) \in R^c \land (a, b) \in R^c$$
$$\Rightarrow (b, a) \notin R \land (a, b) \notin R$$

Entonces, por antiasimetría de R, a = b.

#### 3. Transitiva

P.d  $(R^c)^{-1}$  es transitivo.

Sean 
$$(a, b) \in (R^c)^{-1}$$
 y  $(b, c) \in (R^c)^{-1}$ 

$$\Rightarrow (b, a) \in (R^c) \land (c, b) \in (R^c)$$
$$\Rightarrow (b, a) \notin R \land (c, b) \notin R$$

Por atransitividad,

$$\Rightarrow (c, a) \notin R$$
$$\Rightarrow (c, a) \in R^{c}$$
$$\Rightarrow (a, c) \in (R^{c})^{-1}$$

Dado lo anterior el puntaje asignado es el siguiente:

- (1 Punto) Por demostrar que la relación es refleja
- (2 Puntos) Por demostrar que la relación es antisimétrica. (1 punto por aplicar la definición de inversa y 1 punto por aplicar la definición de antisimetría)
- (3 Puntos) Por demostrar que la relación es transitiva. (1 punto por usar la definición de atransitividad, los otros 2 puntos se evalúan en cuanto al uso del inverso y del complemento)

## Pregunta 2

#### Pregunta 2.1

Para demostrar lo pedido bastaba con demostrar las siguientes afirmaciones:

- 1. Si R es transitiva, entonces  $R \circ R \subseteq R$
- 2. Si R es refleja, entonces  $R \subseteq R \circ R$

La primera afirmación se demostró en clases, por lo que vamos a dar una solución propuesta para la segunda. Sea R refleja y  $(a,b) \in R$ , como sabemos que  $(b,b) \in R$ , entonces por definición de composición es claro que  $(a,b) \in R \circ R$  y por ende  $R \subseteq R \circ R$ . Luego con esto se demuestra, dado que R es transitiva y refleja, que  $R = R \circ R$  y p = 1.

Dado lo anterior el puntaje asignado es el siguiente:

- (0.5 Puntos) Por definir que se debe demostrar  $R = R \circ R$
- (0.5 Puntos) Por demostrar  $R \circ R \subseteq R$
- (1 Puntos) Por demostrar  $R \subseteq R \circ R$

#### Pregunta 2.2

Sea  $A = \{a_1, a_2, \dots, a_n\}, p \le n$  y una relación  $R \subseteq A \times A$  definida de la siguiente manera:

$$R = \{(a_i, a_{i+1}) | 1 \le i < p\} \cup \{(a_n, a_1)\}\$$

Por la construcción de R podemos ver con  $R^i$  estaremos conectando por una arista los caminos de largo i de la relación original. Por esto mismo, cuando conectemos los de largo p nos quedará una relación en donde cada elemento se relaciona solo consigo mismo. Luego al componer con la R original pasará que:

$$(a,a) \in R^p \land (a,b) \in R \implies (a,b) \in R^{p+1} = R^1 = R$$

Y por ende el periodo de R es p.

Dado lo anterior el puntaje asignado es el siguiente:

- (1 Punto) Por mencionar la idea de hacer un ciclo.
- (1 Punto) Por hacer la construcción general.

#### Pregunta 2.3

Lo primero que debemos demostrar es lo siguiente:

$$R \subseteq A \times A$$
 y  $S \subseteq A \times A$  son reflejas  $\implies R \circ S$  es refleja

Se puede ver que si  $a \in A \implies (a, a) \in S \land (a, a) \in R$  y por definición de composición  $(a, a) \in R \circ S$ . Luego como el R propuesto es una relación refleja se da que  $R \circ R$  también lo es. Más aún, por la Pregunta 2.1 sabemos que  $R \subseteq R \circ R$ , por lo que se cumple lo siguiente:

$$R \subseteq R^2 \subseteq R^3 \subseteq \dots$$

Luego si consideramos que R tiene un periodo p en particular se cumple que  $\exists k. \forall i \geq k. R^{i+p} \subseteq R^i$ . Luego tenemos que:

$$R \subseteq R^2 \subseteq \dots \subseteq R^i \subseteq \dots \subseteq R^{i+p} \subseteq R^i$$

Como sabemos que la relación  $\subseteq$  es antisimetrica y A es finito:

$$R^i = R^{i+1} = \dots = R^{i+p}$$

Finalmente como p es el mínimo se da que p=1.

Dado lo anterior el puntaje asignado es el siguiente:

- (1 Punto) Por demostrar que si R es refleja entonces  $R^i \subseteq R^{i+1}$
- (1 Punto) Por demostrar que  $R^i = R^{i+1} = \cdots = R^{i+p}$  por finitud de A.