3k-4 THEOREM FOR ORDERED GROUPS

PREM PRAKASH PANDEY

ABSTRACT. Recently, G. A. Freiman, M. Herzog, P. Longobardi, M. Maj proved two 'structure theorems' for ordered groups [1]. We give elementary proof of these two theorems.

1. Introduction

For any group G (written multiplicatively) and a subset S of G we define $S^2 = \{ab : a, b \in S\}$. Then, the main theorem of [1] is

Theorem 1.1. [Theorem 1.3, [1]] Let G be an ordered group and S be a finite subset of G. If $|S^2| \leq 3|S| - 3$ then the subgroup generated by S is an abelian subgroup of G.

As a corollary to Theorem 1.1, they deduce a 3k-4 type theorem for ordered groups.

Theorem 1.2. [Corollary 1.4, [1]] Let G be an ordered group and S be a finite subset of G with $|S| = k \ge 3$. If $|S^2| \le 3|S| - 4$, then there exist two commuting elements x, y such that $S \subset \{yx^i : 0 \le i \le N\}$ for $N = |S^2| - |S|$.

We give elementary proofs of Theorem 1.1 and Theorem 1.2. We shall always assume that G is an ordered group and S is a finite subset of G with k elements. We shall write $S = \{x_1, \ldots, x_k\}$ and assume that $x_1 < \ldots < x_k$.

2. Proofs

As in the case of integers, the following inequality holds:

$$(1) |S^2| \ge 2|S| - 1.$$

In equation (1) equality holds only if S is a geometric progression $\{yx^i: 0 \le i \le k\}$, with x, y two commuting elements of G.

Lemma 1. If S is not a geometric progression then $|S^2| \ge 2|S|$.

Date: February 14, 2017.

2010 Mathematics Subject Classification. 11P70.

Key words and phrases. 3k-4 Theorem, ordered groups.

Proof. Let $S = \{x_1 < \ldots < x_k\}$. Certainly

$$x_1 x_1 < x_1 x_2 < \ldots < x_1 x_k < x_2 x_k < \ldots < x_k x_k$$

are 2|S|-1 distinct elements in S^2 . If $|S^2|<2|S|$ then

$$\{x_1x_1, x_1x_2, \dots, x_1x_k, x_2x_k, \dots, x_kx_k\} = S^2.$$

Now, consider the elements $x_2x_1 < x_2x_2 < \ldots < x_2x_k$. All these elements are in S^2 and $x_1x_1 < x_2x_1, \ldots, x_2x_{k-1} < x_2x_k$. Thus we must have

$$x_2x_1 = x_1x_2, x_2x_2 = x_1x_3, x_2x_3 = x_1x_4, \dots, x_2x_{k-1} = x_1x_k.$$

From the above relations it follows that x_1 and x_2 commute and for i > 2, x_i is contained in the subgroup generated by x_1, \ldots, x_{i-1} . Consequently we get that each x_i commutes with each x_j for $i, j = 1, \ldots, k$.

Put $y = x_1, x = x_2x_1^{-1}$, then x and y commute and $S = \{y, xy, x^2y, \dots, x^{k-1}y\}$. Thus, if S is not a geometric progression then $|S^2| \ge 2|S|$.

Proof of Theorem 1.2. We shall use induction on k. For k=3, we have $|S^2| \leq 5$. We have five distinct elements $x_1^2 < x_1x_2 < x_2^2 < x_2x_3 < x_3^2$ in S^2 . Since $x_1x_3 \in S^2$, so x_1x_3 must equal to one of these five elements. Using the order relation, we get $x_1x_3 = x_2^2$. Similarly, we get $x_1x_2 = x_2x_1$. Let $y = x_1$ and $x = x_2x_1^{-1}$. Then x and y commute and $S = \{y, yx, yx^2\}$.

Now we assume that $k \geq 4$ and the theorem is true for any subset T of G with $|T| \leq k - 1$. Put $T = \{x_1, \ldots, x_{k-1}\}$.

Case (1): $|T^2| \le 3|T| - 4$.

By induction hypothesis, there are commuting elements x, y such that $T \subset \{yx^j : j = 0, ..., M\}$ with $M = |T^2| - |T|$.

In case $x_kT\cap T^2=\emptyset$, then, taking x_k^2 in account, we see that $|S^2|\geq |T^2|+(|T|+1)$. Since $|T^2|\geq 2|T|-1$, we immediately obtain $|S^2|\geq 3|S|-3$, which contradicts the hypothesis. Thus, we get $x_kT\cap T^2\neq\emptyset$. Consequently, there are $yx^i,yx^u,yx^v\in T$ such that $x_kyx^i=yx^uyx^v$. This gives $x_k=yx^{(u+v-i)}$ and $S\subset\{yx^j:j=0,\ldots,M'\}$ with $M'=\max\{M,u+v-i\}$. Clearly the map $yx^j\mapsto j$ gives a 2-isomorphism of S with a subset of $\mathbb Z$. From the Freiman's 3k-4-theorem for integers, it follows that $M'\leq N$, and the theorem is proved.

Case (2): $|T^2| \geq 3|T| - 3 = 3|S| - 6$. Using the order relation of G we see that the elements x_k^2 and $x_k x_{k-1}$ of S^2 are not in T^2 . Consider the element $x_{k-1} x_k$ of S^2 . If $x_{k-1} x_k \neq x_k x_{k-1}$ then we get $|S^2| \geq |T^2| + 3$, which contradicts the hypothesis. So, we obtain $x_{k-1} x_k = x_k x_{k-1}$. Next, we consider the element $x_{k-2} x_k$ of S^2 . If $x_{k-2} x_k \neq x_{k-1}^2$, then we already get $|S^2| \geq |T^2| + 3$, leading to a contradiction. Similarly it follows that $x_k x_{k-2} = x_{k-1}^2$. Thus we have

$$x_{k-1}x_k = x_k x_{k-1}, x_{k-2}x_k = x_k x_{k-2} = x_{k-1}^2.$$

Put $y = x_k, x = x_{k-1}x_k^{-1}$. Then x and y commute and $x_k = y, x_{k-1} = yx, x_{k-2} = yx^2$. Considering the elements $x_{k-3}x_k, x_{k-4}x_k, \dots, x_1x_k$ successively we see that each of

 x_i is of the form yx^{t_i} . Clearly S is 2-isomorphic to the subset $\{t_i: 1 \leq i \leq k\}$ of \mathbb{Z} . Now the theorem follows from the Freiman's 3k-4-theorem for integers. \square

Proof of Theorem 1.1. We shall use induction on k. For k = 1, 2, the theorem holds trivially. Now, let $k \geq 3$ and assume that the theorem is true for any set T with $|T| \leq k - 1$. Put $T = \{x_1, \ldots, x_{k-1}\}$.

Case (1): $|T^2| \le 3|T| - 3$.

By induction hypothesis, T generates a commutative subgroup. If $x_kT \cap T^2 \neq \emptyset$ or $Tx_k \cap T^2 \neq \emptyset$ then x_k lies in the subgroup generated by T. Consequently, S generates a commutative subgroup. So we assume that $x_kT \cap T^2 = \emptyset$ and $Tx_k \cap T^2 = \emptyset$. Using the order relation, we see that $x_k^2 \notin T^2 \cup x_kT$, so we obtain

$$|S^2| \ge |T^2| + |T| + 1.$$

If T is not a geometric progression then, using Lemma 1 in (2), we see that $|S^2| \ge 3|S|-2$, which contradicts the hypothesis. Thus, T must be a geometric progression. Next, observe that if $x_kT \ne Tx_k$ then we have an element in Tx_k which is not in $T^2 \cup x_kT \cup \{x_k^2\}$. This leads to

(3)
$$|S^2| \ge |T^2| + |T| + 1 + 1.$$

From this one obtains $|S^2| \ge 3|S| - 2$, which contradicts the hypothesis. Thus, we must have $x_kT = Tx_k$. Now using the order relation we see that x_k commutes with all the elements of T and consequently S generates an abelian group. Case (2): $|T^2| > 3|T| - 3$.

As in the proof of Theorem 1.2 (the arguments used in Case (2)) we see that either $|S^2| \geq |T^2| + 3$ or $S = \{yx^{t_i} : 1 \leq i \leq k\}$ with commuting elements x and y. The former leads to a contradiction and hence we get $S = \{yx^{t_i} : 1 \leq i \leq k\}$ with commuting elements x and y. This proves the theorem.

Remark 1. From the proof of Theorem 1.2 it is clear that the subgroup generated by S (with |S| > 2) is, in fact, generated by |S| - 1 or less elements.

REFERENCES

 G. A. Freiman, M. Herzog, P. Longobardi, M. Maj, Small doubling in ordered groups J. Aust. Math. Soc. 96 (2014), no. 3, 316-325.

(Prem Prakash Pandey) School of Mathematical Sciences, NISER Bhubaneswar (HBNI), Jatani, Khurda-650 052, India.

E-mail address: premshivaganga@gmail.com