MACM 201 Homework 5 (Quiz Oct. 16)

- 1. Find the unique solution to each recurrence
 - (a) $a_n = 5a_{n-1} + 6a_{n-2}$ for $n \ge 2$. $a_0 = 4$, $a_1 = 10$.
 - (b) $a_n = a_{n-1} + 20a_{n-2}$ for $n \ge 2$. $a_0 = 5$, $a_1 = -2$.
 - (c) $a_n = 4a_{n-1} 4a_{n-2}$ for $n \ge 2$. $a_0 = 3$, $a_1 = 4$.
 - (d) $a_n = 2a_{n-1} 2a_{n-2}$ for $n \ge 2$. $a_0 = 2$, $a_1 = 2$.
- 2. Find a particular solution to each nonhomogeneous recurrence
 - (a) $a_n 5a_{n-1} 6a_{n-2} = 2^n$ (for $n \ge 2$)
 - (b) $a_n a_{n-1} 6a_{n-2} = 5 \cdot 3^n$ (for $n \ge 2$)
 - (c) $a_n a_{n-1} 6a_{n-2} = n$ (for $n \ge 2$)
- 3. Find the general solution to each nonhomogeneous recurrence
 - (a) $a_n a_{n-1} 6a_{n-2} = 5 \cdot 3^n$ (for $n \ge 2$)
 - (b) $a_n 3a_{n-1} + 2a_{n-2} = n \text{ (for } n \ge 2)$
- 4. Find the unique solution to the recurrence

$$a_0 = 7$$
 $a_1 = 5$

$$a_n - a_{n-1} - 6a_{n-2} = 5 \cdot 3^n \text{ (for } n \ge 2)$$