ГУАП

КАФЕДРА № 44

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ		
ПРЕПОДАВАТЕЛЬ		
доцент, канд. техн. наук, доцент		А. А. Востриков
должность, уч. степень, звание	подпись, дата	инициалы, фамилия
ОТЧЕТ С	О ЛАБОРАТОРНОЙ РАБОТЕ	E № 1
Лаб	бораторная работа №1	
по курсу: Проектирова	ние систем обработки и пере	едачи информации
РАБОТУ ВЫПОЛНИЛ		
СТУДЕНТ ГР. № 4143		А. М. Гридин
	подпись, дата	инициалы, фамилия

Санкт-Петербург 2025

- 1. Цель работы: обоснованный выбор комплектующих для проектирования аппаратной части системы, включая выбор программно-управляемого вычислителя, выполнение расчета номиналов пассивных компонентов и составление схемы электрической принципиальной.
- 2. Задание: разработать схему электрическую принципиальную и спецификацию (перечень элементов) электронного модуля системы (устройства) в соответствии с индивидуальным заданием. Привести обоснование выбора конкретного наименования вычислителя и других комплектующих, а также номиналы пассивных компонентов, присутствующих в спецификации.

3. Вариант задания:

Вариант №5, показан на рисунке 1.

№	Напряжение	Тактирование *	Цифровые	Аналогово-	Цифро-аналоговое	Вход для	Доп. требования
	питания		интерфейсы	цифровое	преобразование	детектирования уровня	
	устройства, В			преобразование		компаратором **	
1	12 ± 10%	Встроенный генератор	I ² C, RS-232		0 B ÷ 3 B	1	Два семисегментных
							индикатора
2	5 ± 10%	Встроенный генератор	SPI, I2C, RS-232	0 B ÷ 5 B	0 B ÷ 3 B		Встроенные часы реального
		с внешним КР					времени (на кристалле)
3	2.5 ÷ 3.0	Встроенный генератор	I ² C, RS-485	0 B ÷ 10 B			Цифровая клавиатура (10
							кнопок), один семисегментный
							индикатор
4	5 ± 10%	Встроенный генератор	SPI, I2C, RS-232		0 B ÷ 3 B		Один семисегментный
		с внешним КР					индикатор
5	9 ± 10%	Встроенный генератор	SPI, RS-232	0 B ÷ 10 B	0 B ÷ 5 B		Два двухцветных светодиода
		с внешним КР					
-	0 - 100/	T. U	12G 20G 20G	0.00			

Рисунок 1 – Вариант задания

4. Определение перечня необходимых комплектующих по типам со ссылками на документацию производителей

- 4.1. Микроконтроллер STM32F103RCT6 [1]
- 4.2. Кварцевый резонатор с частотой 8 МГц [2]
- 4.3. Светодиодная сборка 5х9мм, двухцветная красный & зеленый [3]
- 4.4. Линейный регулятор AMS1117-3.3 [4]
- 4.5. Разъём DB9 RS232 (порт мама)
- 4.6. Пассивные компоненты (резисторы и конденсаторы)
- 4.7. Преобразователь интерфейсов ST3232C [5]
- 5. Обоснование выбора комплектующих и расчет номиналов со ссылками на документацию производителей, если применимо

5.1. Среди рынка микроконтроллеров был выбран STM32F103RCT6 по причине доступности, наличию нужного интерфейса SPI и UART, который нужен для работы с RS232, наличию встроенных АЦП и ЦАП и встроенного генератора с возможностью использовать внешний кварцевый резонатор.

Для работы с АЦП используется пин РАО. Для работы с ЦАП используется пин РА4. Для кварцевого резонатора используются пины РD0_OSC_IN и PD1_OSC_OUT. Для работы с SPI интерфейсом используются пины РА5-РА7. Для работы с UART интерфейсом, который взаимодействует с RS232 разъёмом, используются пины PC10-PC11, PA14-PA15. Для работы с светодиодами используются PA11, PA8, PB12, PB15. Все эти пины выбираются разработчиком в IDE для STM32 (STM32CubeIDE). Также разработчику прошивки микроконтроллера надо будет настроить работу АЦП, ЦАП, работу с интерфейсами SPI и UART.

- 5.2. Кварцевый резонатор был подобран с частотой 8 МГц для настройки на максимальную производительность системы в 72 МГц с помощью блока умножения частоты PLL. Согласно схеме прохождения тактовых сигналов (рисунок 2) разработчиками должны быть выставлены следующие параметры в IDE для STM32 (STM32CubeIDE):
 - PLLXTPRE: без деления
 - PLLSRC: HSE генератор
 - PLLMUL = 9
 - SW = PLLCLK
 - AHB Prescaler = 1
 - APB1 Prescaler = 2
 - APB2 Prescaler = 1

Рисунок 2 – Схема прохождения тактового сигнала

5.3. Линейный регулятор был выбран исходя из своей дешевизны и простоты, возможности работать с током до 1A и напряжением до 18 В (рисунок 3), когда микроконтроллер использует максимум 150 мА (рисунок 4).

Absolute Maximum Ratings

Symbol	Description	Max	Units
VIN	Input Voltage	18	V
lout	DC Output Current	PD/(VIN-VOUT)	mA
TJ	Operating Junction Temperature Range	-40 to 125	℃
θ ЈА	Thermal Resistance (SOT-223)	150	°C/W
θ ЈА	Thermal Resistance (TO-252)	125	°C/W
θ ЈА	Thermal Resistance (SOT89)	225	°C/W
PD	Maximum Power Dissipation (SOT-223)	600	mW
PD	Maximum Power Dissipation (TO-252)	900	mW
PD	Maximum Power Dissipation (SOT89)	400	mW

Рисунок 3 — Максимальные значения регулятора

Tubic o. Guirent enuiuetenstics Symbol Unit Ratings Max. Total current into V_{DD}/V_{DDA} power lines (source)⁽¹⁾ 150 I_{VDD} Total current out of V_{SS} ground lines (sink)⁽¹⁾ 150 Ivss Output current sunk by any I/O and control pin 25 IIO Output current source by any I/Os and control pin -25 mΑ Injected current on five volt tolerant pins(3) -5/+0 I_{INJ(PIN)}⁽²⁾ Injected current on any other pin(4) ± 5 Total injected current (sum of all I/O and control pins)(5) ± 25 $\Sigma I_{INJ(PIN)}$

Рисунок 4 — Максимальные значения микроконтроллера

5.4. Конденсаторы для резонатора были выбраны ёмкостью в 26 пФ исходя из того, что нагрузочная ёмкость резонатора равна 16 пФ (рисунок 5) с запасом на паразитную емкость.

INVITO 7

andard Specifications	Compliant
Type	6B Series Crystal
Frequency Range	3.2768~100MHz
Frequency Tolerance (at 25°C)	±10ppm, or specify
Frequency Stability Over Temperature	±10ppm, or specify
Operating Temperature Range	-20~+70°C, or specify
Shunt Capacitance (C₀)	7pF Max.
Drive Level	1~500μW (300μW Typ.)
Load Capacitance	_16pF, 20pF, or specify
Aging (at 25°C)	±3ppm / year Max.
Storage Temperature Range	-55~+125°C
Packing Unit	200pcs.

Рисунок 5 – Нагрузочная ёмкость резонатора

5.5. Конденсаторы для линейного регулятора были выбраны в 10 и 22 мкФ исходя из рекомендаций в документации (рисунок 6).

Рисунок 6 – Пример использования линейного регулятора

5.6. Сопротивление резисторов для светодиодов было вычислено из формулы $R = (U\pi u T - UF)/I$ где,

UF – прямое напряжение на светодиодах (примерно 2.3B) (рисунок 7),

Uпит – питающее напряжение (3.3B),

I – ток через светодиод (20мA) (рисунок 7).

Forward Voltage I_F = 20mA $V_F^{[2]}$	High Efficiency Red Green	2 2.2	2.5 2.5	v
--	------------------------------	----------	------------	---

Рисунок 7 – Характеристики светодиодной группы

Расчётное значение равно 50 Ом, для подбора компонента была использована серия E24, итого R=51 Ом.

5.7. Напряжение, которое принимает микроконтроллер – 3.3 В, а максимально допустимое – 4 В (рисунок 8). Для того чтобы исходные 10 В не вывели микроконтроллер из строя, используется делитель напряжения, состоящий из двух конденсаторов. Сопротивление этих резисторов вычисляется по формулам: R2 = напряжение микроконтроллера (3.3 В) / ток микроконтроллера (0.005 A) = 660 Ом. R1 = верхняя граница для работы с АЦП (10 В) / ток микроконтроллера (0.005 A) – R2 = 1340 Ом. Для надёжности был выбран резистор на 1.5 кОм.

Ratings	Min	Max	Unit
External main supply voltage (including V_{DDA} and V_{DD}) ⁽¹⁾	-0.3	4.0	.,
Input voltage on five volt tolerant pin	V _{SS} -0.3	V _{DD} + 4.0	V
Input voltage on any other pin	V _{SS} -0.3	4.0	
	External main supply voltage (including V _{DDA} and V _{DD}) ⁽¹⁾ Input voltage on five volt tolerant pin	External main supply voltage (including V_{DDA} and V_{DD}) ⁽¹⁾ Input voltage on five volt tolerant pin V_{SS} –0.3	External main supply voltage (including V_{DDA} and V_{DD}) ⁽¹⁾ V_{SS} -0.3 -0.3 4.0 Input voltage on five volt tolerant pin V_{SS} -0.3 V_{DD} + 4.0

Рисунок 8 – Максимальное значение входного напряжения микроконтроллера

- 5.8. Никакие дополнительные элементы для ЦАП не нужны, т.к. максимальное выходное напряжение микроконтроллера равно 5.5 В [1]
- 5.9. Пин RxD порта RS232 был подключен к TxD пину микроконтроллера, а пин TxD порта RS232 был подключен к RxD пину микроконтроллера через преобразователь интерфейсов. Для подключения использовалась схема типичного подключения из готового варианта устройства [6]. Остальные пины порта могут назначаться разработчиком в IDE для STM32 (STM32CubeIDE) согласно схеме или к любому незанятому GPIO пину.

Рисунок 9 – Примерное подключение преобразователя интерфейсов

5.10. Светодиоды также могут назначаться разработчиком в IDE для STM32 (STM32CubeIDE) согласно схеме или к любому незанятому GPIO пину.

6. Схема электрическая принципиальная

Рисунок 10 – Схема электрическая принципиальная

7. Спецификация

Поз. обозначение	Наименование	Количество
C1	Конденсатор 10	1
	мкФ	
C2	Конденсатор 22	1
	мкФ	
C3C4	Конденсатор 26	2
	пΦ	
C5C8	Конденсатор 0.1	4
	мкФ	
R1	Резистор 1.5 кОм	1
R2	Резистор 660 Ом	1
R3R6	Резистор 51 Ом	4
R7R8	Резистор 1 кОм	2
X1	Кварцевый	1
	резонатор SJK-	
	6В, 8 МГц	
LED1LED2	Светодиодная	2
	сборка (красный и	
	зеленый)	

U1	Разъём DB9	1
	RS232 (порт	
	мама)	
U2	Микроконтроллер	1
	STM32F103RCT6	
U3	Линейный	1
	регулятор	
	AMS1117-3.3	
U4	Преобразователь	1
	интерфейсов	
	ST3232C	

8. Вывод: в результате выполнения лабораторной работы был проведён обоснованный выбор комплектующих для проектирования аппаратной части системы, включая выбор программно-управляемого вычислителя, выполнение расчета номиналов пассивных компонентов и составление схемы электрической принципиальной.

9. Список источников:

- 1. Datasheet микроконтроллера STM32F103RCT6 static.chipdip.ru/lib/583/DOC001583197.pdf
- 2. Datasheet кварцевого резонатора с частотой 8 МГц static.chipdip.ru/lib/086/DOC053086622.pdf
- 3. Datasheet светодиодной сборки 5х9мм, двухцветная красный&зеленый static.chipdip.ru/lib/671/DOC053671283.pdf
- 4. Datasheet линейного регулятора AMS1117-3.3 static.chipdip.ru/lib/392/DOC041392995.pdf
- 5. Преобразователь интерфейса ST3232C static.chipdip.ru/lib/038/DOC012038974.pdf
- 6. MAX3232 Board, Периферийный модуль для подключения через RS232-интерфейс static.chipdip.ru/lib/426/DOC011426139.pdf