Návrh

Visualisation of Relations in Mathematics Michal Jaroš, Jakub Fraňo, Filip Kotoč, Eva Ivanusykova

1. Úvod	3
2. Použité technológie	4
3. Čítanie .mm súboru	5
4. Používateľské rozhranie	6
5. UML diagramy	7
6. Dátový model perzistentných údajov	8
7. Plán implementácie	9
8. Testovacie scenáre	10

1.Úvod

Účel dokumentu

Tento dokument vznikol v rámci predmetu Tvorba informačných systémov v školskom roku 2023/2024 a slúži ako kompletný a detailný návrh aplikácie pre vizualizáciu matematických vzťahov. Obsahuje všetky informácie potrebné pre vysvetlenie a pochopenie funkcionality ako aj spôsobu implementácie systému. Tento dokument je primárne určený pre vývojárov. Obsah v tomto dokumente zahŕňa všetky požiadavky z katalógu požiadaviek

Rozsah využitia systému

Pre prácu s týmto dokumentom je potrebné sa najprv oboznámiť s katalógom požiadaviek. Tento dokument špecifikuje všetky požiadavky z katalógu požiadaviek. Obsahuje celkový návrh používateľ ského prostredia vrátane vizualizácie. Nachádzajú sa tu aj diagramy, ktoré slúžia na bližší popis implementácie systému a celkový plán implementovania aplikácie.

Prehľad nasledujúcich kapitol

2. Použité technológie

V tomto projekte budú použité tieto technológie:

- Cytoscape.js vizualizácia grafu
- **metamath-py** práca s databázou, metódu parse(fpath)
- Flask backend server na python
- Bootstrap ui
- HTML/CSS vizuálna časť
- JavaScript logika aplikácie

Použité technológie z metamath-py:

- modified class Statement
- class Database
- modified function parse(fpath)

3. Používateľské rozhranie

4. UML diagramy

4.1 Use-case diagram

4.2 Class diagram

4.3 Statický diagram

5. Syntax .mm súboru

Súbor .mm v je textový súbor obsahujúci databázu formálneho matematického systému. Je štrukturovaný v jazyku Metamath a obsahuje informácie o axiómach, definíciách a teoremoch s ich dôkazmi.

Štruktúra tohto súboru je pekne opísaná na tejto stránke <u>Introduction to</u> <u>Metamath</u> alebo podrobne rozpísaná v metamath dokumentácii <u>metamath.pdf</u> v kapitole 4 na strane 111.

6. Špecifikácia import/export súborov

Používateľ má možnosť exportovať 3 typy súborov:

- 1. Exportovanie obrázku grafu v štandardnom PNG formáte.
- 2. Exportovanie grafu súbor bude v GraphML formáte (.graphml), viac info na <u>GraphML Format</u>
- 3. Exportovanie statementov textový súbor obsahujúci informácie o tom aké statementy sú v teóriach. Súbor obsahuje dva riadky, v prvom riadku sú id-čka statementov v teórii 1 oddelené medzerou, v druhom riadku obdobne ale statementy pochádzaju z teórie 2

Súbor ktorý používateľ môže importovať je textový súbor s rovnakou štruktúrou ako súbor opísaný v bode 3.

7. Plán implementácie

- Backend
 - DataHandler
 - ParseDatabase(file_path)
 - FindStatements(prompt)
- Frontend
 - BackendAdapter
 - Statement getStatement(id)
 - Statement[] getStatementsByPrompt(prompt)
 - parseDatabase(file)
 - Statement
 - Statement(json data)
 - id
 - name
 - description
 - **...**
 - type (axiom, definition, theorem)
 - TheoryHandler
 - Statement[] theory1, theory2
 - AddStatementToTheory(statement, theory)
 - Settings
 - int depth
 - bool showAllEdges
 - bool showEquivalentTheorems
 - SettingsUp : Settings
 - bool axiomsMustBeSpecified
 - bool showOnlyCommon
 - bool otherStartpoints
 - SettingsDown : Settings
 - bool showAxioms
 - bool showOnlyCommon
 - bool shortestPossibleDistance
 - GraphMaster
 - graph
 - CreateGraph(theory1, theory2)
 - GetInfo(id)
 - int[] CalculateIntersection(theory1, theory2)
 - ImportExportManager
 - Statement[] ImportTheory(file)
 - ExportTheory(theory)
 - ExportGraph(graph)
 - ExportPNG(graph)
 - ExportText(graph)

• Poradie implementácie

- ☑ Create empty classes
- ✓ Statement
- ☑ BackendAdapter
- ✓ HTML/CSS/JS files
- ✓ Settings
- ☑ GraphMaster

8. Testovacie scenáre

Scenár 1, Startup:

- Užívateľ spustil webovú aplikáciu cez index.html, a nahrá mm súbor.
 - o ak je súbor v zlom formáte systém vypíše error message
- Používateľ stlačí submit button.
 - o systém zobrazí ďalšiu "stránku" aplikácie s názvom search

Scenár 1 pokrýva kapitolu 3.1 Application startup na 100%

Scenár 2, Vytvorenie teórie:

- vykonáme Startup a v search bare vyhľadáme, tvrdenie.
 - o pokiaľ nastane v priebehu hľadania problém, dostaneme error message.
 - o inak nám zobrazí ponuku prvých 6 tvrdení s najlepšov zhodou.
- Takto si vyklikáme obe teórie a stlačíme tlačidlo Visualise.
 - systém spracuje dané teórie a vytvorí graf, zobrazí ďalšiu stránku aplikácie s názvom Statements supporting theory, kde následne zobrazí vytvorený graf. (prienik dvoch teórií je zvýraznený farebne)

Scenár 2 pokrýva kapitolu 3.2.1 Add statements na 100% (a ešte iné kapitoly z časti)

Scenár 3, Práca s grafom 1:

- Vykonáme Vytvorenie teórie, následne si zaklikneme checkboxy/radiobuttony
 - o graf sa podľa zakliknutých checkboxov interaktívne zmení.
- Môžeme približovať/vzdaľovať, hýbať sa po plátne a hýbať vrcholmi grafu
 - o interaktívne zobrazenie
- Prejdeme myšou nad vrchol
 - o zobrazí nám meno vrcholu
- Klikneme na daný vrchol
 - o zobrazí nám podrobné informácie o vrchole
- Prejdeme myšou nad iný vrchol
 - o zobrazí nám vzdialenosť od daného vrcholu

Scenár 3 pokrýva kapitolu 3.4 Manipulation with graph na 100% a zvyšok kapitoly 3.2 Search

Scenár 4, Práca s grafom 2:

- Vykonáme Vytvorenie teórie, následne si zaklikneme tlačidlo switch type
 - graf zmení zobrazenie z "Statements supporting theory" na "Statements supported by theory statements".
- Zaklikneme checkboxy/radiobuttony
 - o graf sa podľa zakliknutých checkboxov interaktívne zmení.
- Nastavíme hĺbku grafu
 - graf zmení svoju hĺbku (zobrazí iba vrcholy siahajúce do danej hĺbky od teórie)

Scenár 3 pokrýva kapitolu 3.3 Graph visualisation na 100%

Scenár 5, Import a export:

- Vykonáme Práca s grafom 1, a stlačíme tlačidlo export
 - o zrolujú sa nám možnosti exportu
- vyberieme postupne všetky 3 (Image, Graph, Statements)
 - downloadnú sa nám do počítača postupne png obrázok, graf v štandardnom graf formáte a dokument popisujúci všetky tvrdenia (nie na čítanie)
- Spravíme ďalšie zmeny (zmeníme hĺbku, zmeníme checkboxy)
 - graf zmení svoju hĺbku (zobrazí iba vrcholy siahajúce do danej hĺbky od teórie a prispôsobý svoj vzhľad)
- Importneme súbor Statements
 - o zobrazí nám pôvodny graf pred vykonaním zmien

Scenár 3 pokrýva kapitolu 3.5 Graph visualisation na 100%