### The effect of aging on the current account

Nayeon Kim, Cheieun Im

January 12, 2024

### Table of Contents

- I) Introduction
- II) Mechanism
- III) Data and Methodology
- IV) Empirical Results
- V) Conclusion

### Introduction

### Motivation

#### **Aging Population**

- Both low- and high-income countries show an increasing trend of old-age dependency ratio for the last 40 years.
- High-income countries' old-age dependency ratio doubles.





### Motivation

#### The Current Account

 Low-income countries show an increasing trend in the current account, whereas high-income countries show a decreasing trend over the last 40 years.





#### Motivation

#### **Net Exports**

 Low-income countries show an increasing trend in net exports, whereas high-income countries show a decreasing trend over the last 40 years.





## Research Topic

#### Research Topic

Empirical research on the effect of aging on the current account

- Aging affects the current account through net exports
- Collect relevant data
- Two regression analysis
  - (1) The effect of aging on the current account
  - (2) The effect of aging on net exports

### Mechanism

### Mechanism



## Data and Methodology

#### Data

- Data source: World Bank database
- Annual data of 106 countries showed an increasing trend of old-age dependency ratio
- From 1980 to 2022
- Current Account, Net exports, Old-age dependency ratio, Real GDP, Consumer Price Index, Real effective exchange rate, Real interest rate, Government reserves

### Methodology

#### Arellano-Bond dynamic panel data estimation

$$NX_{i,t} = \alpha_i + \beta_3 * NX_{i,t-1} + \beta_4 * DC_{i,t} + \gamma_2 * \mathbf{Z}_{i,t} + \epsilon_{i,t}$$
 (1)

- NX<sub>i,t</sub>: Net exports
- Old-age dependency ratio (%): percentage of elderly  $\frac{age \ge 65}{15 \le age \le 64}$ \*  $15 \le age \le 64$ : working population
- $\alpha_i$ : Country-fixed effect
- $\mathbf{Z}_{i,t} = \{ \text{Real GDP, Consumer Price Index, Real effective exchange rate, Real interest rate, Government reserves} \}$

## Methodology,

#### Arellano-Bond dynamic panel data estimation

$$NX_{i,t} = \alpha_i + \beta_3 * NX_{i,t-1} + \beta_4 * DC_{i,t} + \gamma_2 * \mathbf{Z}_{i,t} + \epsilon_{i,t}$$
 (1)

- Net exports: Percentage of GDP (%)
- Real GDP: take log (InGDP)
- Consumer Price Index: take log (InCPI)
- Real effective exchange rate: take log (InREER)
- Real interest rate (%)
- Government reserves: Percentage of GDP (%)

## Methodology

#### Arellano-Bond dynamic panel data estimation

$$CA_{i,t} = \alpha_i + \beta_1 * CA_{i,t-1} + \beta_2 * DC_{i,t} + \gamma_1 * \mathbf{X}_{i,t} + \epsilon_{i,t}$$
 (2)

- Current account balance (% of GDP)
- $\alpha_i$ : Country-fixed effect
- $\mathbf{X}_{i,t} = \{ \text{Real GDP, Consumer Price Index, Real effective exchange rate, Real interest rate} \}$

### **Empirical Results**

## **Empirical Results**

$$NX_{i,t} = \alpha_i + \beta_3 * NX_{i,t-1} + \beta_4 * DC_{i,t} + \gamma_2 * \mathbf{Z}_{i,t} + \epsilon_{i,t}$$

Main regression estimation

$$CA_{i,t} = \alpha_i + \beta_1 * CA_{i,t-1} + \beta_2 * DC_{i,t} + \gamma_1 * \mathbf{X}_{i,t} + \epsilon_{i,t}$$

### Mechanism estimation

| Variables                       | Estimated Coefficient |
|---------------------------------|-----------------------|
| Net Exports t-1                 | 0.853***<br>(0.019)   |
| Old-age Dependency ratio        | -0.002**<br>(0.001)   |
| og Real GDP                     | 0.004*<br>(0.002)     |
| og Real Effective Exchange Rate | -0.002<br>(0.009)     |
| eal Interest Rate               | -0.001<br>(0.000)     |
| og Consumer Price Index         | -0.001<br>(0.003)     |
| overnment Reserves              | 0.029<br>(0.019)      |
| R(1)                            | 0.002                 |
| ₹(2)                            | 0.379                 |
| umber of Observations           | 1,270                 |

- An increase in a country's old-age dependency ratio by 1 percent point decreases net exports over GDP by 0.002 on average.
- Significant at a 5% significance level.

## Main regression estimation

| Variables                       | Estimated Coefficient |
|---------------------------------|-----------------------|
| Current Account t-1             | 0.716***<br>(0.029)   |
| Old-age Dependency ratio        | -0.138**<br>(0.068)   |
| og Real GDP                     | 0.510**<br>(0.248)    |
| og Real Effective Exchange Rate | -2.327***<br>(0.887)  |
| Real Interest Rate              | -0.058<br>(0.042)     |
| og Consumer Price Index         | 0.347<br>(0.337)      |
| AR(1)                           | 0.002                 |
| AR(2)                           | 0.406                 |
| lumber of Observations          | 1,270                 |

- An increase in a country's old-age dependency ratio by 1 percent point decreases the current account over GDP by 0.138 on average.
- Significant at a 5% significance level.

### Conclusion

### Conclusion

- As a country becomes old, the country's net exports decrease.
- As a country becomes old, the country's current account depreciates.
- A country's current account depreciates because of the negative effect of aging on the trade balance.
- Our regression results are not perfectly free from endogeneity concerns.

# Thank you