Листок 9

Тема 9 (2.5). Тригонометрические суммы. Уравнения над конечными полями

Упражнения и задачи

- 1. Пусть $F_1(x_1,\ldots,x_n),\ldots,F_m(x_1,\ldots,x_n)$ многочлены с целыми коэффициентами степеней r_1, \ldots, r_m . Докажите, что если $r_1 + \cdots + r_m < n$, то число решений системы сравнений $F_i(x_1,\ldots,x_n)\equiv 0$ $(p),1\leqslant i\leqslant m$, делится на p.
- 2. Пусть p простое, $F(x_1,\ldots,x_n)\in\mathbb{Z}[x_1,\ldots,x_n]$ многочлен с целыми коэффициентами, $\deg F = r < n(p-1)$. Докажите, что $p^a \mid \sum' F(x_1, \ldots, x_n)$, где в сумме x_i пробегают независимо друг от друга полную систему вычетов $\operatorname{mod} p$, и a = n - [r/(p-1)].
- 3. Пусть m натуральное, $f(x) \in \mathbb{Z}[x],$ $S_a = \sum_{x \bmod m} e^{2\pi i \frac{af(x)}{m}}$. Докажите, что

$$\sum_{a \bmod m} |S_a|^2 = m \sum_{c \bmod m} N(c)^2,$$

где $N(c)=N_m\left(f(x)\equiv c\ (m)\right)$ — число решений сравнения $f(x)\equiv c\ (m).$

- 4. Пусть p простое, $S_a = \sum_{r \in \mathbb{R}} e^{2\pi i \frac{ax^r}{p}}, d = (r, p-1)$. Докажите, что
 - $\sum_{a \in \mathbb{F}_{+}^{*}} |S_a|^2 = p(p-1)(d-1);$

 - $|S_a| < d\sqrt{p}$, при $a \neq 0$; и более точная оценка: $|S_a| \leqslant (d-1)\sqrt{p}$, при $a \neq 0$.
- 5. Пусть χ, λ неглавные мультипликативные характеры \mathbb{F}_p, ϵ главный, $\tau(\chi)$ сумма Гаусса. Докажите свойства сумм Якоби:
 - $J(\epsilon, \epsilon) = p$:
 - $J(\epsilon, \chi) = 0$;
 - $J(\chi, \chi^{-1}) = -\chi(-1)$:
 - $J(\chi, \lambda) = \tau(\chi)\tau(\lambda)/\tau(\chi\lambda)$ при $\chi\lambda \neq \epsilon$.
- 6. Пусть χ, ρ мультипликативные характеры \mathbb{F}_p^*, χ неглавный, ρ порядка 2. Докажите следующие утверждения:
 - $\sum_{t} \chi(1-t^2) = J(\chi,\rho);$
 - $\sum_{t} \chi(t(k-t)) = \chi(k^2/4)J(\chi,\rho), k \in \mathbb{F}_n^*$
 - $G(\chi)^2 = \chi(2)^{-2} J(\chi, \rho) G(\chi^2)$ если χ^2 неглавный;
 - $J(\chi,\chi) = \chi(2)^{-2}J(\chi,\rho)$;
 - ullet если $p\equiv 1\,(4),\,\chi$ порядка 4, то $\chi^2=\rho$ и $J(\chi,\chi)=\chi(-1)^{-2}J(\chi,\rho);$
 - $\sum_t \chi(1-t^m) = \sum_{\lambda^m=\epsilon} J(\chi,\lambda);$
 - $|\sum_{t} \chi(1-t^m)| \leq (m-1)\sqrt{p}$.
- 7. Пусть $\chi_1,\chi_2,\ldots,\chi_l$ мультипликативные характеры, ε главный характер $\operatorname{mod} p,$ $J=J(\chi_1,\chi_2,\dots,\chi_l)=\sum\limits_{t_1+\dots+t_l=1}\chi_1(t_1)\dots\chi_l(t_l)$ — обобщенная сумма Якоби, $J_0=J_0(\chi_1,\chi_2,\dots,\chi_l)=\sum\limits_{t_1+\dots+t_l=0}\chi_1(t_1)\dots\chi_l(t_l)$. Докажите следующие свойства J и J_0 :

- $J_0(\varepsilon,\ldots,\varepsilon) = J(\varepsilon,\ldots,\varepsilon) = p^{l-1};$
- ullet если некоторые, но не все, среди характеров χ_i являются главными, то $J_0=0,$
- ullet пусть $\chi_l \neq \varepsilon$, тогда если $\chi_1 \chi_2 \cdots \chi_l \neq \varepsilon$, то $J_0 = 0$, а если $\chi_1 \chi_2 \cdots \chi_l = \varepsilon$, то $J_0(\chi_1, \chi_2, \dots, \chi_l) = \chi_l(-1(p-1))J(\chi_1, \chi_2, \dots, \chi_{l-1}).$
- 8. Пусть $\chi_1,\chi_2,\ldots,\chi_l$ неглавные характеры $\operatorname{mod} p$ такие что $\chi_1\chi_2\cdots\chi_l$ тоже неглавный, au — сумма Гаусса, J — обобщенная сумма Якоби. Докажите, что
 - $\tau(\chi_1)\cdots\tau(\chi_l) = J(\chi_1,\ldots,\chi_l)\tau(\chi_1\cdots\chi_l);$ $|J(\chi_1,\ldots,\chi_l)| = p^{(l-1)/2}.$
- 9. Путь m>1 целое, $K(a,b;m)=\sum_{xy\equiv 1(m)}' e^{2\pi i \frac{ax+by}{m}}$, где x пробегает приведеную систему вычетов $\operatorname{mod} m. \ K(a,b;m)$ называется суммой Клоостермана, удобно также использовать запись $K(a,b;m) = \sum_{x \bmod m}' e^{2\pi i \frac{ax+bx^*}{m}}$, где x^* обозначает вычет обратный к х. Докажите следующие свойства сумм Клоостермана:
 - K(a, b; m) = K(b, a; m);
 - если (m,c)=1, то K(ac,b;m)=K(a,bc;m);
 - если $m = m_1 m_2$, $(m_1, m_2) = 1$, то $K(a, b; m) = K(n_2 a, n_2 b; m_1) K(n_1 a, n_1 b; m_2)$, где n_1, n_2 определены из $m_1 n_1 \equiv 1 \ (m_2), m_2 n_2 \equiv 1 \ (m_1);$
 - если $m=p^{2\alpha},\ (m,2a)=1,\ {\rm To}\ K(a,a;m)=\sqrt{m}(e^{2\pi i\frac{2a}{m}}+e^{-2\pi i\frac{2a}{m}}).$
- 10. Пусть p простое, $(k,p)=1,\ S=\sum_x'\sum_y'\left(\frac{xy+k}{p}\right)$, где x,y пробегают возрастающие последовательности из X и Y вычетов полной системы вычетов mod p. Докажите, что $|S| < \sqrt{XYp}$.
- 11. Пусть m>1 целое, $(a,m)=1,\ S=\sum\limits_{x\bmod m}\sum\limits_{y\bmod m}\xi(x)\eta(y)e^{2\pi i\frac{axy}{m}},$ где ξ,η такие, что $\sum\limits_{x\bmod m}|\xi(x)|^2=X,\ \sum\limits_{y\bmod m}|\eta(x)|^2=Y.$ Докажите, что $|S|<\sqrt{XYm}.$
- 12. Пусть p простое, (a,p)=(b,p)=1, n целое 0 < n < p, $S=\sum_{x \in \mathbb{F}_n^*} e^{2\pi i \frac{ax^n+bx}{p}}$. Докажите, что $|S| < \frac{3}{2}n^{1/4}p^{3/4}$.
- 13. Пусть p>60 простое, M,Q целые, $0< M< M+Q\leqslant p,$ χ неглавный характер $\mod p,$ $S=\sum_{x=M}^{M+Q-1}\chi(x)$. Докажите, что $|S|<\sqrt{p}$ $(\log p-1).$

SageMath

• Сопроводите оценки тригонометрических сумм полученные в лекции и упраждениях экспериментальными оценками с помощью SageMath.

Темы для самостоятельного изучения

- Вывод числа решений уравнения $a_1 x_1^{l_1} + \cdots + a_r x_r^{l_r} = b$ через суммы Якоби. [IR], глава
- Теорема Бёрджесса. [Степ], §II.1.