Применение ЛП

Моделирование: основа применения ЛП

Виктор Васильевич Лепин

План

🕕 Задача о диете

В задаче о диете нужно приготовить блюдо из заданных продуктов (ингредиентов), которое должно удовлетворять ряду требований.

В задаче о диете нужно приготовить блюдо из заданных продуктов (ингредиентов), которое должно удовлетворять ряду требований.

Продемонстрируем это на конкретном примере.

• Диетолог в больнице разрабатывает молочный коктейль для послеоперационных больных.

В задаче о диете нужно приготовить блюдо из заданных продуктов (ингредиентов), которое должно удовлетворять ряду требований.

- Диетолог в больнице разрабатывает молочный коктейль для послеоперационных больных.
- Диетолог хочет, чтобы в коктейле количество
 - холестерина не превышала 175 единиц,

В задаче о диете нужно приготовить блюдо из заданных продуктов (ингредиентов), которое должно удовлетворять ряду требований.

- Диетолог в больнице разрабатывает молочный коктейль для послеоперационных больных.
- Диетолог хочет, чтобы в коктейле количество
 - холестерина не превышала 175 единиц,
 - насыщенных жиров было не больше 150 единиц,

В задаче о диете нужно приготовить блюдо из заданных продуктов (ингредиентов), которое должно удовлетворять ряду требований.

- Диетолог в больнице разрабатывает молочный коктейль для послеоперационных больных.
- Диетолог хочет, чтобы в коктейле количество
 - холестерина не превышала 175 единиц,
 - насыщенных жиров было не больше 150 единиц,
 - белков должно быть не меньше 200 единиц,

В задаче о диете нужно приготовить блюдо из заданных продуктов (ингредиентов), которое должно удовлетворять ряду требований.

- Диетолог в больнице разрабатывает молочный коктейль для послеоперационных больных.
- Диетолог хочет, чтобы в коктейле количество
 - холестерина не превышала 175 единиц,
 - насыщенных жиров было не больше 150 единиц,
 - белков должно быть не меньше 200 единиц,
 - калорий не меньше 100 единиц.

• Диетолог выбрал три возможных ингредиента для коктейля: куриные яйца, мороженое и фруктовый сироп.

- Диетолог выбрал три возможных ингредиента для коктейля: куриные яйца, мороженое и фруктовый сироп.
- Информация о стоимости и составе ингредиентов представлена в следующей таблице.

Продукт	Цена	К-во холест.	К-во жиров	К-во белков	К-во калорий
яйцо	\$0.15	50	0	70	30
мороженое	\$0.25	150	100	10	80
сироп	\$0.10	90	50	0	200

- Диетолог выбрал три возможных ингредиента для коктейля: куриные яйца, мороженое и фруктовый сироп.
- Информация о стоимости и составе ингредиентов представлена в следующей таблице.

Продукт	Цена	К-во холест.	К-во жиров	К-во белков	К-во калорий
яйцо	\$0.15	50	0	70	30
мороженое	\$0.25	150	100	10	80
сироп	\$0.10	90	50	0	200

• Нужно смешать ингредиенты в таких пропорциях, чтобы

- Диетолог выбрал три возможных ингредиента для коктейля: куриные яйца, мороженое и фруктовый сироп.
- Информация о стоимости и составе ингредиентов представлена в следующей таблице.

Продукт	Цена	К-во холест.	К-во жиров	К-во белков	К-во калорий
яйцо	\$0.15	50	0	70	30
мороженое	\$0.25	150	100	10	80
сироп	\$0.10	90	50	0	200

- Нужно смешать ингредиенты в таких пропорциях, чтобы
 - удовлетворялись вышеперечисленные требования

- Диетолог выбрал три возможных ингредиента для коктейля: куриные яйца, мороженое и фруктовый сироп.
- Информация о стоимости и составе ингредиентов представлена в следующей таблице.

Продукт	Цена	К-во холест.	К-во жиров	К-во белков	К-во калорий
яйцо	\$0.15	50	0	70	30
мороженое	\$0.25	150	100	10	80
сироп	\$0.10	90	50	0	200

- Нужно смешать ингредиенты в таких пропорциях, чтобы
 - удовлетворялись вышеперечисленные требования
 - и стоимость единицы коктейля была минимальной.

• Для формулировки данной задачи как задачи ЛП выберем следующие переменные:

- Для формулировки данной задачи как задачи ЛП выберем следующие переменные:
 - E количество яиц в единице коктейля;

- Для формулировки данной задачи как задачи ЛП выберем следующие переменные:
 - E количество яиц в единице коктейля;
 - ullet C количество единиц мороженого в единице коктейля;

- Для формулировки данной задачи как задачи ЛП выберем следующие переменные:
 - E количество яиц в единице коктейля;
 - ullet C количество единиц мороженого в единице коктейля;
 - ullet S количество единиц сиропа в единице коктейля.

- Для формулировки данной задачи как задачи ЛП выберем следующие переменные:
 - E количество яиц в единице коктейля;
 - \bullet C количество единиц мороженого в единице коктейля;
 - ullet S количество единиц сиропа в единице коктейля.
- В этих переменных задача формулируется следующим образом:

```
0.15E + 0.25C + 0.1S 	o \min, 50E + 150C + 90S \le 175, (холестерин) 100C + 50S \le 150, (жир) 70E + 10C 	o 200, (белки) 30E + 80C + 200S \ge 100, (калории) E, C, S \ge 0.
```

Метод DEA

• Метод DEA (Data Envelopment Analysis) применяется для сравнения эффективности работы ряда аналогичных сервисных подразделений:

Метод DEA

- Метод DEA (Data Envelopment Analysis) применяется для сравнения эффективности работы ряда аналогичных сервисных подразделений:
- отделений банка, ресторанов, учреждений образования, здравоохранения, станций технического обслуживания автомобилей и многих других.

Метод DEA

- Метод DEA (Data Envelopment Analysis) применяется для сравнения эффективности работы ряда аналогичных сервисных подразделений:
- отделений банка, ресторанов, учреждений образования, здравоохранения, станций технического обслуживания автомобилей и многих других.
- Метод DEA не требует стоимостной оценки предоставляемых услуг.

• Предположим, что имеется n подразделений, которые занумерованы числами $1,\ldots,n$.

- Предположим, что имеется n подразделений, которые занумерованы числами $1,\ldots,n$.
- За тестовый период подразделение $i \ (i=1,\ldots,n)$ использовало r_{ij} единиц ресурса $j \ (j=1,\ldots,m)$

- Предположим, что имеется n подразделений, которые занумерованы числами $1,\ldots,n$.
- ullet За тестовый период подразделение $i \ (i=1,\dots,n)$ использовало r_{ij} единиц ресурса $j \ (j=1,\dots,m)$
- ullet и оказало s_{ik} услуг вида $k\;(k=1,\ldots,l).$

- Предположим, что имеется n подразделений, которые занумерованы числами $1,\ldots,n$.
- За тестовый период подразделение $i \ (i=1,\dots,n)$ использовало r_{ij} единиц ресурса $j \ (j=1,\dots,m)$
- ullet и оказало s_{ik} услуг вида $k \ (k=1,\ldots,l).$
- ullet Эффективность работы подразделения i оценивается отношением

$$E_{i}(u,v) = \frac{\sum_{k=1}^{l} s_{ik} u_{k}}{\sum_{j=1}^{m} r_{ij} v_{j}}$$

- Предположим, что имеется n подразделений, которые занумерованы числами $1,\ldots,n$.
- ullet За тестовый период подразделение $i\ (i=1,\ldots,n)$ использовало r_{ij} единиц ресурса $j\ (j=1,\ldots,m)$
- ullet и оказало s_{ik} услуг вида $k \ (k=1,\ldots,l).$
- ullet Эффективность работы подразделения i оценивается отношением

$$E_{i}(u,v) = \frac{\sum_{k=1}^{l} s_{ik} u_{k}}{\sum_{j=1}^{m} r_{ij} v_{j}}$$

 взвешенной суммы оказанных услуг к взвешенной сумме использованных ресурсов,

- Предположим, что имеется n подразделений, которые занумерованы числами $1,\ldots,n$.
- За тестовый период подразделение $i \ (i=1,\dots,n)$ использовало r_{ij} единиц ресурса $j \ (j=1,\dots,m)$
- ullet и оказало s_{ik} услуг вида $k \ (k=1,\ldots,l).$
- ullet Эффективность работы подразделения i оценивается отношением

$$E_{i}(u,v) = \frac{\sum_{k=1}^{l} s_{ik} u_{k}}{\sum_{j=1}^{m} r_{ij} v_{j}}$$

- взвешенной суммы оказанных услуг к взвешенной сумме использованных ресурсов,
- ullet где u_k и v_j есть весовые множители, которые нужно определить.

• Чтобы вычислить рейтинг подразделения i_0 , нужно решить задачу дробно-линейного программирования

$$E_{i_0}(u,v) \to \max,$$

$$E_i(u,v) \le 1, \quad i \in \{1,\dots,n\} \setminus \{i_0\},$$

$$u \in \mathbb{R}^l_+, \quad v \in \mathbb{R}^m_+.$$

• Чтобы вычислить рейтинг подразделения i_0 , нужно решить задачу дробно-линейного программирования

$$E_{i_0}(u, v) \to \max,$$

$$E_i(u, v) \le 1, \quad i \in \{1, \dots, n\} \setminus \{i_0\},$$

$$u \in \mathbb{R}^l_+, \quad v \in \mathbb{R}^m_+.$$

ullet в которой нужно найти наилучшие для подразделения i_0 весовые множители u_k и $v_j.$

• Чтобы вычислить рейтинг подразделения i_0 , нужно решить задачу дробно-линейного программирования

$$E_{i_0}(u, v) \to \max,$$

$$E_i(u, v) \le 1, \quad i \in \{1, \dots, n\} \setminus \{i_0\},$$

$$u \in \mathbb{R}^l_+, \quad v \in \mathbb{R}^m_+.$$

- ullet в которой нужно найти наилучшие для подразделения i_0 весовые множители u_k и $v_j.$
- Пусть пара (u^*, v^*) есть оптимальное решение данной задачи.

• Чтобы вычислить рейтинг подразделения i_0 , нужно решить задачу дробно-линейного программирования

$$E_{i_0}(u, v) \to \max,$$

$$E_i(u, v) \le 1, \quad i \in \{1, \dots, n\} \setminus \{i_0\},$$

$$u \in \mathbb{R}^l_+, \quad v \in \mathbb{R}^m_+.$$

- ullet в которой нужно найти наилучшие для подразделения i_0 весовые множители u_k и $v_i.$
- Пусть пара (u^*, v^*) есть оптимальное решение данной задачи.
- Если $E_{i_0}(u^*,v^*)<1$, то подразделение i_0 работало неэффективно, и его работу можно улучшить,

ullet Чтобы вычислить рейтинг подразделения i_0 , нужно решить задачу дробно-линейного программирования

$$E_{i_0}(u, v) \to \max,$$

$$E_i(u, v) \le 1, \quad i \in \{1, \dots, n\} \setminus \{i_0\},$$

$$u \in \mathbb{R}^l_+, \quad v \in \mathbb{R}^m_+.$$

- ullet в которой нужно найти наилучшие для подразделения i_0 весовые множители u_k и v_i .
- Пусть пара (u^*, v^*) есть оптимальное решение данной задачи.
- Если $E_{i_0}(u^*, v^*) < 1$, то подразделение i_0 работало неэффективно, и его работу можно улучшить,
- если перенять опыт работы у более эффективных подразделений i, для которых $E_i(u^*,v^*)=1.$

• Задачу дробно-линейного программирования

$$E_{i_0}(u, v) \to \max,$$

$$E_i(u, v) \le 1, \quad i \in \{1, \dots, n\} \setminus \{i_0\},$$

$$u \in \mathbb{R}^l_+, \quad v \in \mathbb{R}^m_+.$$

• Задачу дробно-линейного программирования

$$E_{i_0}(u, v) \to \max,$$

$$E_i(u, v) \le 1, \quad i \in \{1, \dots, n\} \setminus \{i_0\},$$

$$u \in \mathbb{R}^l_+, \quad v \in \mathbb{R}^m_+.$$

• можно переформулировать как следующую задачу ЛП:

$$\sum_{k=1}^{n} s_{i_0k} u_k \to \max,$$

$$\sum_{j=1}^{m} r_{i_0j} v_j = 1,$$

$$\sum_{k=1}^{l} s_{ik} u_k \le \sum_{j=1}^{m} r_{ij} v_j, \quad i \in \{1, \dots, n\} \setminus \{i_0\},$$

$$u_k \ge 0, \quad k = 1, \dots, l,$$

$$v_j \ge 0, \quad j = 1, \dots, m.$$

Пример

 Фирма быстрого питания имеет шесть подразделений, каждое из которых размещено в одном из торговых центров с большой парковкой.

Пример

- Фирма быстрого питания имеет шесть подразделений, каждое из которых размещено в одном из торговых центров с большой парковкой.
- Фирма предлагает клиентам только один стандартный набор, включающий бургергер, картофель фри и напиток.

Пример

- Фирма быстрого питания имеет шесть подразделений, каждое из которых размещено в одном из торговых центров с большой парковкой.
- Фирма предлагает клиентам только один стандартный набор, включающий бургергер, картофель фри и напиток.
- Менеджеры фирмы решили использовать DEA, чтобы выявить те подраздения, которые используют свои ресурсы наиболее эффективно.

Данные для DEA анализа

Подраз- деление	Труд (часов)	Материалы (долларов)	Наборов продано
1	32	3200	1600
2	16	600	400
3	24	600	600
4	24	400	400
5	16	160	200
6	8	40	80

$\mathsf{3}$ адача ЛП для вычисления рейтинга подразделения 1

Подраз- деление	Труд (часов)	Материалы (долларов)	Наборов продано
1	32	3200	1600
2	16	600	400
3	24	600	600
4	24	400	400
5	16	160	200
6	8	40	80

$$E_1 = 1600u_1 \to \max,$$

$$32v_1 + 3200v_2 = 1,$$

$$400u_1 - 16v_1 - 600v_2 \le 0,$$

$$600u_1 - 24v_1 - 600v_2 \le 0,$$

$$400u_1 - 24v_1 - 400v_2 \le 0,$$

$$200u_1 - 16v_1 - 160v_2 \le 0,$$

$$80u_1 - 8v_1 - 40v_2 \le 0,$$

$$u_1, v_1, v_2 > 0.$$