Matemática Discreta I - MATA42 - II^a Unidade

Profa. Isamara Alves (DMAT/IME/UFBA)

AULA - 23/04/2019

Definição: (Matriz)

Uma MATRIZ de ordem $m \times n$ é uma tabela de m.n elementos, dispostos em m linhas e n colunas.

Notação: $A_{m \times n} = (a_{ij})_{1 \le i \le m; 1 \le j \le n}$; onde a_{ij} representa o elemento da i-ésima linha e j-ésima coluna de A.

Assim,
$$A_{m \times n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Exemplo: A tabela abaixo representa as informações sobre o número de horas/dia dedicadas por 5 alunos monitores do curso de Ciências da Computação.

Alunos	SEG	TER	QUA	QUIN	SEX	SÁB
Aluno.1	2	1	0	0	0	0
Aluno.2	1	2	0	0	0	0
Aluno.3	0	0	2	0	1	0
Aluno.4	0	0	0	2	0	1
Aluno.5	0	0	1	0	2	0

A matriz

Observe que a i-ésima linha da matriz representa as informações do i-ésimo Aluno; enquanto que, a j-ésima coluna representa o j-ésimo dia. Assim, por exemplo, o elemento $a_{35}=1$ representa o número de horas do Aluno.3 na sexta-feira(5°dia).

Observação: Se m = n, dizemos que A é uma MATRIZ QUADRADA.

Exemplo.1: "Matriz Identidade"

$$A_{n} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} = I_{n} = (a_{ij}) = \begin{cases} 1; & \text{se } i = j \\ 0; & \text{se } i \neq j \end{cases}$$

Exemplo.2: Seja a matriz, cujos elementos são obtidos do seguinte modo

Exemplo.2: Seja a matriz, cujos elementos são obtidos d

$$A_4 = (a_{ij}) = \begin{cases} i; & \text{se } i > j \\ i+j; & \text{se } i = j \\ j; & \text{se } i < j \end{cases}; \text{ então,}$$

$$A_4 = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} = \begin{bmatrix} 2 & 2 & 3 & 4 \\ 2 & 4 & 3 & 4 \\ 3 & 3 & 6 & 4 \\ 4 & 4 & 4 & 8 \end{bmatrix}$$

DEFINIÇÃO: (Transposta da Matriz)

Uma MATRIZ B de ordem $n \times m$ é denominada TRANSPOSTA DA MATRIZ A de ordem $m \times n$ se, e somente se, $B_{n \times m} = (b_{ji}) = (a_{ij}); \forall i = 1, \cdots, m;$ e, $\forall j = 1, \cdots, n$.

Notação: A^t ; assim, $B = A^t$.

DEFINIÇÃO: (Matriz Simétrica)

Seja A uma MATRIZ quadrada de ordem n. Dizemos que A é uma MATRIZ SIMÉTRICA se, e somente se, $A=A^t$; ou seja, $A_{m\times n}=(a_{ij})=(a_{ji})$; $\forall i=1,\cdots,m$; e, $\forall j=1,\cdots,n$.

Exemplo: Seja a matriz
$$A_4 = \begin{bmatrix} 2 & 2 & 3 & 4 \\ 2 & 4 & 3 & 4 \\ 3 & 3 & 6 & 4 \\ 4 & 4 & 4 & 8 \end{bmatrix} = A^t$$
.

Logo, A é uma matriz simétrica.

Definição: (PRODUTO ENTRE MATRIZES)

Sejam as matrizes $A_{m \times n} = (a_{ij})_{1 \le i \le m; 1 \le j \le n}$ e $B_{n \times p} = (b_{jk})_{1 \le j \le n; 1 \le k \le p}$. O PRODUTO entre as matrizes A e B é obtido do seguinte modo:

$$A_{m\times n}.B_{n\times p} = C_{m\times p} = (c_{ik})_{1\leq i\leq m; 1\leq k\leq p} = \sum_{j=1}^{n} (a_{ij}.b_{jk});$$

$$\forall i = 1, \cdots, m; \forall k = 1, \cdots, p.$$

EXEMPLO:

Seja a matriz
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$
. Então, a matriz $A^2 = A.A = \begin{bmatrix} (1.1) + (0.1) + (1.1) & (1.0) + (0.0) + (1.1) & (1.1) + (0.0) + (1.0) \\ (1.1) + (0.1) + (0.1) & (1.0) + (0.0) + (0.1) & (1.1) + (0.0) + (0.0) \\ (1.1) + (1.1) + (0.1) & (1.0) + (1.0) + (0.1) & (1.1) + (1.0) + (0.0) \end{bmatrix} = \begin{bmatrix} (1) + (0) + (1) & (0) + (0) & (1) + (0) + (0) \\ (1) + (0) + (0) & (0) + (0) + (0) & (1) + (0) + (0) \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 0 & 1 \\ 2 & 0 & 1 \end{bmatrix}$

Definição: (PRODUTO BOOLEANO)

Sejam as matrizes booleanas $A_{m \times n} = (a_{ij})$ e $B_{n \times p} = (b_{jk})$. O PRODUTO BOOLEANO entre A e B é obtido do seguinte modo: $A_{m \times n} \otimes B_{n \times p} = C_{m \times p} = (c_{ik}) = \bigvee_{i=1}^{n} (a_{ij} \wedge b_{jk}); \forall i = 1, \dots, m; \forall k = 1, \dots, m$

EXEMPLO:

 $1, \cdots, p$.

$$\begin{aligned} & \text{Seja a matriz booleana } A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}. \text{ Então, a matriz } A^2 = A \otimes A = \\ & \begin{bmatrix} (1 \wedge 1) \vee (0 \wedge 1) \vee (1 \wedge 1) & (1 \wedge 0) \vee (0 \wedge 0) \vee (1 \wedge 1) & (1 \wedge 1) \vee (0 \wedge 0) \vee (1 \wedge 0) \\ (1 \wedge 1) \vee (0 \wedge 1) \vee (0 \wedge 1) & (1 \wedge 0) \vee (0 \wedge 0) \vee (0 \wedge 1) & (1 \wedge 1) \vee (0 \wedge 0) \vee (0 \wedge 0) \\ (1 \wedge 1) \vee (1 \wedge 1) \vee (0 \wedge 1) & (1 \wedge 0) \vee (1 \wedge 0) \vee (0 \wedge 1) & (1 \wedge 1) \vee (1 \wedge 0) \vee (0 \wedge 0) \\ (1 \wedge 1) \vee (1 \wedge 1) \vee (0 \wedge 1) & (1 \wedge 0) \vee (1 \wedge 0) \vee (0 \wedge 1) & (1 \wedge 1) \vee (1 \wedge 0) \vee (0 \wedge 0) \\ & \begin{bmatrix} (1) \vee (0) \vee (1) & (0) \vee (0) \vee (1) & (1) \vee (0) \vee (0) \\ (1) \vee (0) \vee (0) & (0) \vee (0) \vee (0) & (1) \vee (0) \vee (0) \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \end{aligned}$$

DEFINIÇÃO: (Matriz de Adjacência)

Seja o conjunto $A = \{x_1, x_2, \cdots, x_n\}$, e $\mathcal R$ uma RELAÇÃO em A. Seja $\mathcal M_{\mathcal R}$ uma matriz quadrada de ordem n, cujos elementos $(m_{ij}), \forall i=1,\cdots,n; j=1,\cdots,n$ são obtidos do seguinte modo $(m_{ij}) = \left\{ \begin{array}{ll} 1; & \text{se } \langle x_i, x_j \rangle \in \mathcal R \\ 0; & \text{se } \langle x_i, x_j \rangle \notin \mathcal R \end{array} \right.$ A matriz $\mathcal M_{\mathcal R}$ é denominada "MATRIZ DE ADJACÊNCIA de $\mathcal R$ ".

Exemplo.1: Seja $A = \{1, 2, 3\}$ e $\mathcal{R} = \{\langle x, y \rangle \in A \times A \mid x > y\}$ em A então, $\mathcal{R} = \{\langle 2, 1 \rangle, \langle 3, 2 \rangle, \langle 3, 1 \rangle\}$. Assim.

$$\mathcal{M}_{\mathcal{R}} = \left[\begin{array}{cccc} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{array} \right] \quad \frac{1}{2}$$

```
Exemplo.1:(Relações: Complementar e Inversa)
 Seja A = \{1, 2, 3\} e \mathcal{R} = \{\langle x, y \rangle \in A \times A \mid x > y\} = \{\langle 2, 1 \rangle, \langle 3, 2 \rangle, \langle 3, 1 \rangle\}.
 Então, a Relação Inversa é dada por;
 \mathcal{R}^{-1} = \{ \langle x, y \rangle \in A \times A \mid x < y \} = \{ \langle 1, 2 \rangle, \langle 2, 3 \rangle, \langle 1, 3 \rangle \};
 e, a Relação Complementar;
\mathcal{R} = \{ \left\langle x,y \right\rangle \in A \times A \ | \ x \leq y \} = \{ \left\langle 1,1 \right\rangle, \left\langle 2,2 \right\rangle, \left\langle 3,3 \right\rangle, \left\langle 1,2 \right\rangle, \left\langle 2,3 \right\rangle, \left\langle 1,3 \right\rangle \}.
 Agora, construindo as matrizes que representam as relações, temos,
\mathcal{M}_{\mathcal{R}} = \left[ \begin{array}{ccc} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{array} \right];
\mathcal{M}_{\mathcal{R}^{-1}} = \left[ egin{array}{ccc|c} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} 
ight] = \mathcal{M}_{\mathcal{R}}^t; \ \mathsf{e},
\mathcal{M}_{\overline{\mathcal{R}}} = \left[ \begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array} \right].
```

Propriedades: (Relação - Matriz de Adjacência)

Seja o conjunto $A = \{x_1, x_2, \cdots, x_n\}$, e $\mathcal R$ uma RELAÇÃO em A; e, seja a "MATRIZ DE ADJACÊNCIA" $\mathcal M_{\mathcal R} = (m_{ij}) = \left\{ \begin{array}{l} 1; \ \text{se} \ \langle x_i, x_j \rangle \in \mathcal R \\ 0; \ \text{se} \ \langle x_i, x_j \rangle \notin \mathcal R \end{array} \right. ; \ \forall i = 1, \cdots, n \ \text{e} \ \forall j = 1, \cdots, n \ \text{então},$

- "Matriz de Adjacência" da RELAÇÃO COMPLEMENTAR $\overline{\mathcal{R}}$ $\mathcal{M}_{\overline{\mathcal{R}}} = (m_{ij}) = \begin{cases} 0; \text{ se } \langle x_i, x_j \rangle \in \mathcal{R} \\ 1; \text{ se } \langle x_i, x_j \rangle \notin \mathcal{R} \end{cases}$
- "Matriz de Adjacência" da RELAÇÃO INVERSA \mathcal{R}^{-1} $\mathcal{M}_{\mathcal{R}^{-1}}=\mathcal{M}_{\mathcal{R}}^t$

Exemplo.2: Seja \mathcal{R} uma relação em $A = \{1, 2, 3\}$ e seja a sua Matriz de Adjacência $\mathcal{M}_{\mathcal{R}}=\left[\begin{array}{ccc|c}0&1&1\\1&1&0\\1&0&1\end{array}\right]$; então; $\mathcal{R} = \{\langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 2, 1 \rangle, \langle 2, 2 \rangle, \langle 3, 1 \rangle, \langle 3, 3 \rangle\}$ Note que: $\mathcal{M}_{\overline{\mathcal{R}}} = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right]$; e, $\mathcal{M}_{\mathcal{R}^{-1}} = \left| egin{array}{ccc} 0 & 1 & 1 \ 1 & 1 & 0 \ 1 & 0 & 1 \end{array}
ight| = \mathcal{M}_{\mathcal{R}};$ ou seja, $\mathcal{R}^{-1} = \mathcal{R}$; e, $\mathcal{M}_{\mathcal{R}} = \mathcal{M}_{\mathcal{R}}^{-1} = \mathcal{M}_{\mathcal{R}}^t \Rightarrow \mathcal{M}_{\mathcal{R}}$ é matriz simétrica.

Matriz de Adjacência de uma RELAÇÃO REFLEXIVA,

$$\mathcal{M}_{\mathcal{R}} = (m_{ij}) = \begin{cases} 1; & \text{se } i = j \\ 0 \text{ ou } 1; & \text{se } i \neq j \end{cases}$$

• Matriz de Adjacência de uma RELAÇÃO IRREFLEXIVA.

$$\mathcal{M}_{\mathcal{R}} = (m_{ij}) = \left\{ egin{array}{ll} 0; & \mbox{se } i = j \\ 0 & \mbox{ou 1}; & \mbox{se } i
eq j \end{array}
ight.$$

• Matriz de Adjacência de uma RELAÇÃO SIMÉTRICA.

$$\mathcal{M}_{\mathcal{R}} = (m_{ij}) = \left\{ egin{array}{ll} 0 \ ext{ou 1}; & ext{se } i = j \ (m_{ji}); & ext{se } i
eq j \end{array}
ight.;$$
 ou seja, $\mathcal{M}_{\mathcal{R}}$ é uma "Matriz Simétrica" $\Rightarrow \mathcal{M}_{\mathcal{R}} = \mathcal{M}_{\mathcal{D}}^t$.

• Matriz de Adjacência de uma RELAÇÃO ASSIMÉTRICA Para que a matriz $\mathcal{M}_{\mathcal{R}}$ seja de uma relação assimétrica, temos que $\exists (m_{ji}) \neq (m_{ji})$; para $i \neq j$. ou seja,

 $\mathcal{M}_{\mathcal{R}}$ não é uma "Matriz Simétrica".

• Matriz de Adjacência de uma RELAÇÃO ANTI-SIMÉTRICA

$$\mathcal{M}_{\mathcal{R}} = (m_{ij}) = \left\{ egin{array}{ll} 0 ext{ ou } 1; & ext{se } i = j \ 0 ext{ ou } 1; & ext{se } (m_{ji} = 0) \land (i
eq j) \ 0; & ext{se } (m_{ji} = 1) \land (i
eq j) \end{array}
ight.$$

• Matriz de Adjacência de uma RELAÇÃO TRANSITIVA

$$\mathcal{M}_{\mathcal{R}} = (m_{ik}) = \begin{cases} 1; & \text{se } (m_{ij}) = (m_{jk}) = 1; \forall i, j, k \\ 0; & \text{se } (m_{ij}) = (m_{jk}) = 0; \forall (i = j) \lor (j = k) \\ 0 \text{ ou } 1; & \text{se } (m_{ij}) = (m_{jk}) = 0; \forall (i \neq j) \land (j \neq k) \\ 0 \text{ ou } 1; & \text{se } (m_{ij}) \neq (m_{jk}); & \forall i, j, k \end{cases}$$
 ou seja,
$$\mathcal{M}_{\mathcal{R}} = \mathcal{M}_{\mathcal{R}} \otimes \mathcal{M}_{\mathcal{R}} = \mathcal{M}_{\mathcal{R}^2}$$

 $\mathcal{M}_{\mathcal{R}} = \mathcal{M}_{\mathcal{R}} \otimes \mathcal{M}_{\mathcal{R}} = \mathcal{M}_{\mathcal{R}^2}$

• Matriz de Adjacência de uma RELAÇÃO DE EQUIVALÊNCIA,

$$\mathcal{M}_{\mathcal{R}} = (m_{ik}) = \left\{ egin{array}{ll} 1; & ext{se } i = k \ m_{ki}; & ext{se } i
eq k \ 1; & ext{se } (m_{ij}) = (m_{jk}) = 1; orall i, j, k \end{array}
ight.$$

Operações entre Relações - Representação Matricial

Representação Matricial: (Operações entre Relações)

- Matriz de Adjacência da Relação intersecção $\mathcal{R} \cap \mathcal{S}$, $\mathcal{M}_{\mathcal{R} \cap \mathcal{S}} = \mathcal{M}_{\mathcal{R}} \wedge \mathcal{M}_{\mathcal{S}}$
- Matriz de Adjacência da RELAÇÃO UNIÃO $\mathcal{R} \cup \mathcal{S}$, $\mathcal{M}_{\mathcal{R} \cup \mathcal{S}} = \mathcal{M}_{\mathcal{R}} \vee \mathcal{M}_{\mathcal{S}}$
- Matriz de Adjacência da RELAÇÃO COMPOSTA RoS,
 M_{RoS} = M_S ⊗ M_R
- "Matriz de Adjacência" da RELAÇÃO POTÊNCIA \mathcal{R}^n ; $n \ge 2$ $\mathcal{M}_{\mathcal{R}^n} = \underbrace{\mathcal{M}_{\mathcal{R}} \otimes \mathcal{M}_{\mathcal{R}} \otimes \cdots \otimes \mathcal{M}_{\mathcal{R}}}_{n-fatores}$

Operações entre Relações - Representação Matricial

EXEMPLO:

$$\mathcal{M}_{\mathcal{R}} = \left[egin{array}{ccc} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{array}
ight] \ \ \ \ \ \ \mathcal{M}_{\mathcal{S}} = \left[egin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{array}
ight]$$

então;

$$\bullet \ \mathcal{M}_{\mathcal{R} \cap \mathcal{S}} = \left[\begin{array}{ccc} 0 \land 1 & 0 \land 1 & 0 \land 0 \\ 1 \land 0 & 0 \land 1 & 0 \land 1 \\ 1 \land 0 & 1 \land 1 & 0 \land 0 \end{array} \right] = \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right]$$

$$\bullet \ \mathcal{M}_{\mathcal{R} \cup \mathcal{S}} = \left[\begin{array}{ccc} 0 \lor 1 & 0 \lor 1 & 0 \lor 0 \\ 1 \lor 0 & 0 \lor 1 & 0 \lor 1 \\ 1 \lor 0 & 1 \lor 1 & 0 \lor 0 \end{array} \right] = \left[\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{array} \right]$$

$$\bullet \ \ \mathcal{M}_{\mathcal{R}oS} = \mathcal{M}_{\mathcal{S}} \otimes \mathcal{M}_{\mathcal{R}} = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{array} \right]$$

$$\bullet \ \mathcal{M}_{\mathcal{S} \circ \mathcal{R}} = \mathcal{M}_{\mathcal{R}} \otimes \mathcal{M}_{\mathcal{S}} = \left[\begin{array}{ccc} 0 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{array} \right]$$

Operações entre Relações - Representação Matricial

① Observação: Na RELAÇÃO COMPOSTA temos a propriedade associativa $\mathcal{T}o(\mathcal{R}o\mathcal{S}) = (\mathcal{T}o\mathcal{R})o\mathcal{S}$ então, $\mathcal{M}_{\mathcal{T}o(\mathcal{R}o\mathcal{S})} = \mathcal{M}_{(\mathcal{R}o\mathcal{S})} \otimes \mathcal{M}_{\mathcal{T}} = (\mathcal{M}_{\mathcal{S}} \otimes \mathcal{M}_{\mathcal{R}}) \otimes \mathcal{M}_{\mathcal{T}} = \mathcal{M}_{\mathcal{S}} \otimes (\mathcal{M}_{\mathcal{R}} \otimes \mathcal{M}_{\mathcal{T}}) = \mathcal{M}_{\mathcal{S}} \otimes \mathcal{M}_{(\mathcal{T}o\mathcal{R})} = \mathcal{M}_{(\mathcal{T}o\mathcal{R})o\mathcal{S}}.$

② Observação: Na inversa da RELAÇÃO COMPOSTA temos
$$(\mathcal{R}o\mathcal{S})^{-1} = \mathcal{S}^{-1}o\mathcal{R}^{-1}$$
 então, $\mathcal{M}_{(\mathcal{R}o\mathcal{S})^{-1}} = (\mathcal{M}_{(\mathcal{R}o\mathcal{S})})^t = (\mathcal{M}_{\mathcal{S}}\otimes\mathcal{M}_{\mathcal{R}})^t = (\mathcal{M}_{\mathcal{R}})^t\otimes(\mathcal{M}_{\mathcal{S}})^t = \mathcal{M}_{\mathcal{R}^{-1}}\otimes\mathcal{M}_{\mathcal{S}^{-1}} = \mathcal{M}_{\mathcal{S}^{-1}o\mathcal{R}^{-1}}$

Relações - Exercícios

Seja $A = \{3,4,6,7\}$ e seja uma relação $\mathcal R$ em A definida em cada item abaixo.

- (i) $\mathcal{R} = \{ \langle x, y \rangle \in A \times A \mid x \leq y \}$
- (ii) $\mathcal{R} = \{ \langle x, y \rangle \in A \times A \mid x + y = 10 \}$
- (iii) $\mathcal{R} = \{ \langle x, y \rangle \in A \times A \mid x + y \ge 10 \}$
- (iv) $\mathcal{R} = \{ \langle x, y \rangle \in A \times A \mid x = y + 1 \}$
- (a) Classifique cada relação em reflexiva, irreflexiva, assimétrica, simétrica, anti-simétrica, transitiva, conectada, equivalência.
- (b) Determine para cada relação; os fechos $ref(\mathcal{R})$, $sim(\mathcal{R})$, e $tra(\mathcal{R})$.
- (c) Determine para cada relação; as relações \mathcal{R}^{-1} , $\overline{\mathcal{R}}$, $\mathcal{R} \circ \mathcal{R}^{-1}$, e $\mathcal{R} \circ \overline{\mathcal{R}}$.
- (d) Ache, se possível, uma partição de A determinada por cada relação.
- (e) Represente cada relação dos itens (i),(ii),(iii),(iv),(b) e (c) por matriz de adjacência.