Teorema 1: Se uma matriz $A: n \times n$ é definida positiva, então A é inversível e sua inversa é também definida positiva.

Demonstração: Suponha, por absurdo, que a tese não é verdadeira, isto é, A é singular (não inversível). Assim, existe $x \in \mathbb{R}^n$, $x \neq 0$ tal que:

$$Ax = 0 \Rightarrow x^t Ax = 0$$

o que contradiz A ser definida positiva. Portanto, A é não singular (inversível). Vamos verificar que A^{-1} é também definida positiva. Como A é não singular, para todo $y \in \mathbb{R}^n$ existe $x \in \mathbb{R}^n$ tal que y = Ax e, se $y \neq 0$ então $x \neq 0$. Então, tomando $y \in \mathbb{R}^n$, $y \neq 0$, teremos:

$$y^t A^{-1} y = (Ax)^t A^{-1} (Ax) = x^t A^t (A^{-1}A) x = x^t A^t x = (x^t Ax)^t = x^t Ax > 0$$

A quinta igualdade segue do fato que x^tAx é uma matriz 1×1 e, portanto, igual a sua transposta, e a última desigualdade se verifica pois A é definida positiva e $x \neq 0$. Portanto, A^{-1} é definida positiva.

Teorema 2: Se $A: n \times n$ é não singular, então A^tA é simétrica definida positiva.

Demonstração: De fato, temos que:

$$(A^t A)^t = A^t (A^t)^t = A^t A$$

o que mostra a simetria. Agora, dado $x \in \mathbb{R}^n$, $x \neq 0$, temos:

$$x^t(A^tA)x = (Ax)^t(Ax) = y^ty > 0$$

a última relação se verifica pois A é não singular e, portanto, para $x \in \mathbb{R}^n$, $x \neq 0$ teremos $y = Ax \neq 0$ e assim, $y^t y > 0$. Portanto, $A^t A$ é simétrica definida positiva.

Teorema 3: Sejam $B: n \times m$ uma matriz com $m \leq n$ e posto(B) = m, e $A: n \times n$ uma matriz definida positiva. Então, B^tAB é definida positiva.

Demonstração: Dado $y \in \mathbb{R}^n$, $y \neq 0$, temos que:

$$y^t(B^tAB)y = (By)^tA(By) = w^tAw > 0$$

a última desigualdade se verifica pois A é definida positiva e $w \neq 0$, uma vez que w = By com $y \neq 0$, B tem posto completo e, consequentemente, B é não singular. Portanto, a matriz B^tAB é definida positiva.

Teorema 4: Se $A: n \times n$ é uma matriz definida positiva, então suas submatrizes principais A_k , k = 1, ..., n, são definidas positivas.

Demonstração: Construímos as matrizes $B_k: n \times k$ formadas pelas k primeiras colunas da matriz identidade de ordem n. É claro que B_k tem posto completo igual a k, pois as k colunas da matriz identidade são todas linearmente independentes. A matriz $B_k^t A B_k$ é a submatriz principal A_k de A, uma vez que $C = A B_k$ é formada pelas k primeiras colunas de A e a matriz $B_k^t C$ é formada pelas k primeiras linhas de C. Como A é definida positiva e B_k tem posto completo, pelo teorema 3 segue que $A_k = B_k^t A B_k$ é definida positiva.

Teorema 5: Se $A: n \times n$ é uma matriz definida positiva, então os elementos da diagonal de A são estritamente positivos, ou seja, $a_{ii} > 0$, i = 1, ..., n.

Demonstração: Como A é definida positiva, então para todo $x \in \mathbb{R}^n$, $x \neq 0$ temos que $x^t A x > 0$. Em particular, para $x = e_i$ onde e_i é o vetor canônico (a *i*-ésima coluna da matriz identidade de ordem n), teremos $e_i^t A e_i > 0$. Mas, $e_i^t A e_i = a_{ii}$, uma vez que a matriz $B = A e_i$ é formada pela i-ésima linha de A e a matriz $e_i^t B$ é formada pela i-ésima coluna de B. Portanto, $a_{ii} > 0$ para i = 1, ..., n.

Teorema 6 (Fatoração de Cholesky): Seja $A: n \times n$ uma matriz simétrica. A é definida positiva se, e somente se, existe uma única matriz $G: n \times n$ triangular inferior com elementos da diagonal estritamente positivos, tal que $A = GG^t$.

Demonstração: (\Rightarrow) Se A é definida positiva, pelo Teorema 4 temos que suas submatrizes A_k , k=1,...,n, também são definidas positivas e, pelo Teorema 1 temos que elas são não singulares. Dessa forma, as hipóteses do Teorema sobre a existência e unicidade da fatoração LU se verificam para a matriz A e, portanto, existem e são únicos os fatores L e U tais que A = LU, com U triangular superior e L triangular inferior com diagonal unitária.

Temos que det(A) = det(LU) = det(L)det(U). Como A é definida positiva ela é não singular e, portanto, $det(A) \neq 0$. Consequentemente, $det(U) \neq 0$ e daí que $u_{ii} \neq 0$, i = 1, ..., n, uma vez que U é triangular superior e seu determinante é o produto dos elementos da diagonal. Dessa forma, é possível separar o fator U em $U = D\bar{U}$, escrevendo a fatoração:

$$A = LU = LD\bar{U}$$

onde D é uma matriz diagonal com elementos da diagonal iguais a $d_{ii} = u_{ii}$ e \bar{U} tem entradas $\bar{u}_{ij} = \frac{u_{ij}}{u_{ii}}$. Como A é simétrica então $LD\bar{U}$ é simétrica e, como D é diagonal ela também é simétrica, assim temos:

$$(LD\bar{U})^t = LD\bar{U} \Leftrightarrow \bar{U}^tD^tL^t = LD\bar{U} \Leftrightarrow \bar{U}^tDL^t = LD\bar{U}$$

Como a fatoração LU é única, segue que $\bar{U}=L^t$. A matriz L^t é triangular superior com diagonal unitária e assim possui posto completo e é não singular. Então, para cada $y \in \mathbb{R}^n$ existe $x \in \mathbb{R}^n$ tal que $y=L^tx$ e se $y \neq 0$ então $x \neq 0$. Portanto, dado $y \in \mathbb{R}^n$, $y \neq 0$, temos:

$$y^{t}Dy = (L^{t}x)^{t}D(L^{t}x) = x^{t}(LDL^{t})x = x^{t}Ax > 0$$

A última desigualdade segue do fato que A é definida positiva. Portanto, a matriz D é também definida positiva e, pelo Teorema 5 os elementos da diagonal de D são estritamente positivos. Então, podemos escrever D como $D = \hat{D}\hat{D}$ onde \hat{D} é diagonal com entradas da diagonal: $\hat{d}_{ii} = \sqrt{d_{ii}}$. Observe que podemos também, por exemplo, tomar a raiz quadrada negativa, mas para manter a unicidade, na fatoração de Cholesky convencionamos tomar a raiz quadrada positiva. Chamando $G = L\hat{D}$, temos:

$$A = LDL^t = L\hat{D}\hat{D}L^t = GG^t$$

Obtendo assim a fatoração de Cholesky: $A = GG^t$, onde o fator G é triangular inferior com diagonal estritamente positiva, denominado **fator de Cholesky** da matriz A.

(\Leftarrow) Supondo agora que existe o fator G triangular inferior com diagonal estritamente positiva, tal que $A = GG^t$, observe que G^t é triangular superior com diagonal estritamente positiva e, portanto, é não singular. Pelo Teorema 2 segue que $(G^t)^tG^t = GG^t = A$ é simétrica definida positiva.