PCT

世界知的所有権機関 国際事務局 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類7

C07D 233/54, 233/64, 233/68, 401/06, 405/10, 409/10, A61K 31/4174, 31/4178, A61P 3/10, 43/00

A1

(11) 国際公開番号

WO00/39097

(43) 国際公開日

2000年7月6日(06.07.00)

(21) 国際出願番号

PCT/JP99/07160

(22) 国際出願日

1999年12月20日(20.12.99)

(30) 優先権データ

特願平10/367362 特願平11/228838 1998年12月24日(24.12.98)

1999年8月12日(12.08.99)

(71) 出願人 (米国を除くすべての指定国について)

藤沢薬品工業株式会社

(FUJISAWA PHARMACEUTICAL CO., LTD.)[JP/JP]

〒541-8514 大阪府大阪市中央区道修町3丁目4番7号 Osaka, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

茅切 浩(KAYAKIRI, Hiroshi)[JP/JP]

〒565-0802 大阪府吹田市青葉丘南7-11 Osaka, (JP)

阿部義人(ABE, Yoshito)[JP/JP]

〒305-0035 茨城県つくば市松代4丁目21-2-1-501 Ibaraki, (JP)

濱島 仁(HAMASHIMA, Hitoshi)[JP/JP]

〒615-8084 京都府京都市西京区桂坤町26-20 Kyoto, (JP)

澤田 仁(SAWADA, Hitoshi)[JP/JP]

石橋直樹(ISHIBASHI, Naoki)[JP/JP]

〒305-0035 茨城県つくば市松代2丁目25-10 Ibaraki, (JP)

瀬戸井宏行(SETOI, Hiroyuki)[JP/JP]

〒305-0044 茨城県つくば市並木4-13-1 Ibaraki, (JP)

與 照夫(OKU, Teruo)[JP/JP]

〒569-1117 大阪府高槻市天神町2-4-1-504 Osaka, (JP)

山崎則次(YAMASAKI, Noritsugu)[JP/JP]

〒672-8071 兵庫県姫路市飾磨区構1049-32 Hyogo, (JP)

井本隆文(IMOTO, Takafumi)[JP/JP]

〒944-0041 新潟県新井市新井30-2-5 Niigata, (JP)

平邑隆弘(HIRAMURA, Takahiro)[JP/JP]

〒944-0013 新潟県新井市高柳687-1-207 Niigata, (JP)

(74) 代理人

高島 一(TAKASHIMA, Hajime)

〒541-0046 大阪府大阪市中央区平野町三丁目3番9号

(湯木ビル) Osaka, (JP)

(81) 指定国 AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特計 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG), ARIPO特許 (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM)

添付公開書類

国際調査報告書

(54)Title: IMIDAZOLE COMPOUNDS AND MEDICINAL USE THEREOF

(54)発明の名称 イミダゾール化合物およびその医薬用途

(57) Abstract

Imidazole compounds represented by general formula (I) and salts thereof and medicinal compositions containing the same. These compounds are useful in treating diseases which can be treated based on the hypoglycemic effect thereof, and diseases which can be treated based on the cGMP-PDE inhibitory effect, smooth muscular relaxant effect, bronchodilating effect, vasodilating effect, smooth muscle cell regulatory effect and allergy-inhibitory effects thereof, wherein each symbol is as defined in the description.

一般式(I):

(各記号は明細書中に定義の通り)で示される、血糖降下活性作用に基づいて治癒可能な疾病、および c GMP-PDE阻害作用、平滑筋弛緩作用、気管支拡張作用、血管拡張作用、平滑筋細胞抑制作用、アレルギー抑制作用に基づいて治癒可能な疾病に有用なイミダゾール化合物、その塩、およびこれらを含む医薬組成物。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報) アラブ首長国連邦 アアルバニア アルバニア アルメニア オーストリア オーストラリア アゼルバイジャン ボズニア・ヘルツェゴビナ ドアエスフフガボ ミルジトインラス マランン フラボロ アエスペインラス アエスプラス カザフトンシュリント ファンシュカ カントランカ リントランカ リンソトア ファング リントケン R U S D ロシア スーダン DM DZ LKRSTUV AL AM AT AU ES SG AZ BA BB リトアニア ルクセンブルグ ラトヴィア モンバア モナドヴァ マグゲガスア マケドコ マケドコ マケドコ SNZ TG TTM ボスニア・ヘルツ バルバドス ベルギー ブルギナ・ファソ ブルガリア MA MC MD グルジア ΒE BF トーコー タジキスタン トルクメニスタン ベナジルベラルーシャナダ B J B R B Y トルックー・・・トルックトルックトルンタッド・トバコグッド・トバゴタンザニアウクブライナウガラグ 共和国 マリーモンゴル ペノグ 中央アフリカ コンゴー MN モーランリール ニーウシン・リークシン・リークシン・リーク・ファイコール エーラン・リール エーテン・リール MR MW ワカンタ 大国 ウズペキスタン ヴェドナス ウェーゴースラヴィア 南アフバブエ ジンバブエ コンゴー スコートル カートル カートル カースタール カースタール カースタール カーススー フェスー MXX MZ NL NL NL NSTPEKKP KKR KKR YÜ Z A Z W ィールウェー ノールウェー ニュー・ジーランド ポーランド ポルトガル NZ PL PT チェッコ ドイツ デンマーク

明細書

イミダゾール化合物およびその医薬用途

技術分野

本発明は、新規なイミダゾール化合物に関し、さらに詳しくは血糖降下活性またはPDE-V阻害作用を有する新規なイミダゾール化合物およびそれらの塩に関する。また本発明は、前記イミダゾール化合物およびそれらの塩の製造方法に関する。さらに本発明は、前記イミダゾール化合物またはそれらの塩を有効成分として含有する医薬に関する。

発明の開示

本発明は、新規なイミダゾール化合物およびそれらの医薬として許容される塩、 ならびに前記イミダゾール化合物またはそれらの医薬として許容される塩を有効 成分として含有し、耐糖能障害、糖尿病(II型糖尿病など)、妊娠性糖尿病、 糖尿病性合併症(例えば糖尿病性壊そ、糖尿病性関節症、糖尿病性骨減少症、糖 尿病性糸球体硬化症、糖尿病性腎症、糖尿病性皮膚障害、糖尿病性神経障害、糖 尿病性白内障、糖尿病性網膜症など)、インスリン抵抗性症候群(インスリン受 容体異常症、Rabson-Mendenhall症候群、レブリコニズム、K obberling-Dunnigan症候群、Seip症候群、Lawren c e 症候群、C u s h i n g 症候群、先端巨大症など)、多嚢胞性卵巣症候群、 高脂質血症、アテローム性動脈硬化症、心臓血管疾患(狭心症、心不全など)、 高血糖症(例えば摂食障害などの異常糖代謝で特徴づけられるもの)、膵炎、骨 粗鬆症、高尿酸血症、高血圧症、炎症性腸疾患、もしくは表皮細胞の分化異常に 伴う皮膚疾患、さらにはcGMP-PDE(特にPDE-V)阻害作用、平滑筋 弛緩作用、気管支拡張作用、血管拡張作用、平滑筋細胞抑制作用、アレルギー抑 制作用などに基づき、狭心症、高血圧、肺高血圧、うっ血性心不全、糸球体疾患 (例えば糖尿病性糸球体硬化症など)、尿細管間質性疾患(例えばFK506、 シクロスポリンなどにより誘発された腎臓病など)、腎不全、アテローム性動脈 硬化、血管狭窄(例えば経皮性動脈形成術後のもの)、末梢血管疾患、脳卒中、

慢性可逆性閉塞性疾患(例えば気管支炎、喘息(慢性喘息、アレルギー性喘息))、自己免疫疾患、アレルギー性鼻炎、じんま疹、緑内障、腸運動性障害を特徴とする疾患(例えば過敏症腸症候群)、インポテンス(例えば器質的インポテンス、精神的インポテンスなど)、腎炎、癌悪液質、もしくはPTCA後の再狭窄、悪液質(例えば、癌・結核・内分泌性疾患およびエイズなどの慢性疾患における、脂肪分解・筋変性・貧血・浮腫・食欲不振などによる進行性の体重減少)などの予防・治療剤として用いられる医薬製剤を提供することを課題とする。本発明の新規化合物であるイミダゾール化合物は、一般式(I):

[式中、R¹はアリール基または複素環基であって、それぞれ(1)アリール基、

- (2) 複素環基、(3) ハロゲン、(4) ハロ(低級) アルキル基、(5) 低級 アルキルチオ基、(6) ニトロ基、(7) アリール基で置換されていてもよい低 級アルケニル基、(8) アリール基で置換されていてもよい低級アルキニル基、
- (9)シクロ(低級)アルキル基またはアリール基で置換されていてもよい低級アルコキシ基、(10)アリールオキシ基、および(11)保護されたカルボキシ基または低級アルキル基で置換されていてもよいアミノ基、からなる群より選ばれる置換基で置換されており、

R²は低級アルキル基であり、

R³は水素、ハロゲン、低級アルキル基またはニトロ基であり、

R⁴は(1)アリール基または複素環基で置換されていてもよい低級アルケニル基、

(2) 低級アルケニル基で置換されていてもよいアリール基、(3) 低級アルキル基、または(4) ハロゲンで置換されていてもよい複素環基であり、

Aは低級アルキレン基であり、

Lは単結合、アリール基または複素環基で置換されていてもよい低級アルケニレン基または低級アルキレン基、または $-X-CH_2-$ (式中、Xは-O-、 NR^5 (式中、 R^5 は水素または低級アルキル基である)、または-S-である)

である]で示されるイミダゾール化合物 [以下、目的化合物 (I) ともいう] である。

目的化合物(I)の好適な塩類は、無毒性で医薬として許容しうる慣用の塩であり、例えばナトリウム、カリウムなどのアルカリ金属塩、カルシウム、マグネシウムなどのアルカリ土類金属塩、アンモニウム塩などの無機塩基との塩、およびトリエチルアミン、ピリジン、ピコリン、エタノールアミン、トリエタノールアミンなどの有機アミン塩、および塩酸、臭化水素酸、硫酸、リン酸などの無機酸塩、およびギ酸、酢酸、トリフルオロ酢酸、マレイン酸、酒石酸などの有機カルボン酸塩、およびメタンスルホン酸、ベンゼンスルホン酸、pートルエンスルホン酸などのスルホン酸付加塩、およびアルギニン、アスパラギン酸、グルタミン酸などの塩基性もしくは酸性アミノ酸といった塩基との塩または酸付加塩が挙げられる。

本発明の目的化合物(I)およびその塩は、以下の反応式で表される方法によって製造することができる。

製造法1:

$$R^3$$
 R^2 $+$ R^4 - $S0_2NH_2$ (III) A R^1 またはその塩 (II)

またはそのカルボキシ基における反応性誘導体またはその塩

$$R^4$$
 S N R^3 N R^2 N R^2 N R^3 N R^2 N R^4 S N $R^$

(式中の各記号は前記と同義)

本明細書の前記および後記における種々の定義を以下に詳細に説明する。

「低級」なる語は、特に断りのない限り、炭素数1~6を意味する。

「アルキル基」および「アルキル部分」としては、直鎖または分岐状のアルキル基が好ましい。好適な具体例としては、例えばメチル、エチル、1ープロピル、iープロピル、1ーブチル、iーブチル、tーブチル、secーブチル、1ーペンチル、iーペンチル、secーベンチル、tーペンチル、メチルブチル、1,1ージメチルプロピル、1ーへキシル、1ーメチルペンチル、2ーメチルペンチル、3ーメチルペンチル、4ーメチルペンチル、1ーエチルブチル、2ーエチルブチル、3ーエチルブチル、1,1ージメチルブチル、2,2ージメチルブチル、3,3ージメチルブチル、1ーエチルフロピル、1ーヘプチル、1ーメチルへキシル、2ーメチルへキシル、3ーメチルへキシル、4ーメチルへキ

シル、5-メチルへキシル、1-エチルペンチル、2-エチルペンチル、3-エチルペンチル、4-エチルペンチル、1, 1-ジメチルペンチル、2, 2-ジメチルペンチル、3, 3-ジメチルペンチル、4, 4-ジメチルペンチル、1-プロピルブチル、1-オクチル、1-メチルヘプチル、2-メチルヘプチル、3-メチルヘプチル、4-メチルヘプチル、5-メチルヘプチル、6-メチルヘプチル、1-エチルヘキシル、2-エチルヘキシル、3-エチルヘキシル、4-エチルヘキシル、5-エチルヘキシル、1, 1-ジメチルヘキシル、2, 2-ジメチルヘキシル、3, 3-ジメチルヘキシル、4, 4-ジメチルヘキシル、5, 5-ジメチルヘキシル、1-プロピルペンチル、1-プロピルペンチルなどが挙げられる。

これらのうち特に好ましいものは炭素数1~6のアルキル基である。

「アルケニル基」および「アルケニル部分」の好適な例としては、直鎖または 分岐状のアルケニル基、例えばエテニル、1ープロペニル、2ープロペニル、1 ーブテニル、2ープテニル、3ープテニル、1,3ーブタジエニル、1ーペンテ ニル、2ーペンテニル、3ーペンテニル、4ーペンテニル、1ーヘキセニル、2 ーヘキセニル、3ーヘキセニル、4ーヘキセニル、5ーヘキセニルなどが挙げら れる。

これらのうち好ましいものは、炭素数2~6のアルケニル基であり、より好ま しくはエテニル基である。

「シクロ(低級)アルキル基」とは炭素数3~10、好ましくは炭素数3~7のシクロアルキル基であり、好適にはシクロプロピル基、シクロブチル基、シクロペンチル基、シクロペンチル基、およびシクロペプチル基などが挙げられ、より好適にはシクロプロピル基、シクロブチル基、シクロペンチル基、シクロペキシル基が挙げられる。

「低級アルキレン基」の好適な例として、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基などが挙げられ、特に好ましくは、炭素数4までのアルキレン基が挙げられる。これらのうち特に好ましいのは

メチレン基である。

「低級アルキニル基」の好適な例としては、直鎖または分岐状のアルキニル基、例えばエチニル、1-プロピニル、2-プロピニル、1-ブチニル、2-ブチニル、3-ベンチニル、3-ペンチニル、4-ペンチニル、2-メチルー3-ブチニル、1-ジメチルー2-ブチニル、1- ペキシニル、5-ヘキシニルなどが挙げられる。

これらのうち特に好ましいものは、炭素数2~6のアルキニル基であり、より 好ましくはエチニル基である。

「低級アルケニレン基」の好適な例としては、直鎖または分岐状のアルケニレン基、例えばエテニレン基、1ープロペニレン基、2ープロペニレン基、1ーブテニレン基、2ープテニレン基、3ープテニレン基、1ーペンテニレン基、2ーペンテニレン基、3ーペンテニレン基、4ーペンテニレン基、1ーへキセニレン基、2ーへキセニレン基、3ーへキセニレン基、4ーへキセニレン基、5ーへキセニレン基、メチルエテニレン基、エチルエテニレン基、1ーペンチルエテニレン基などが挙げられる。

これらのうち特に好ましくは、炭素数4までのアルケニレン基であり、より好ましくはエテニレン基である。

「低級アルコキシ基」とは炭素数6までの直鎖状および分岐状アルキルオキシ基である。好適な例として、例えばメトキシ基、エトキシ基、1ープロピルオキシ基、iープロピルオキシ基、1ープロピルオキシ基、1ープロピルオキシ基、1ープロピルオキシ基、1ープリルオキシ基、1ーペンチルオキシ基、iーペンチルオキシ基、1ーペンチルオキシ基、2ーメチルブトキシ基、5 e c ーペンチルオキシ基、1ーペンチルオキシ基、2ーメチルブトキシ基、1ーヘキシルオキシ基、iーヘキシルオキシ基、5 e c ーヘキシルオキシ基、2ーメチルペンチルオキシ基、3ーメチルペンチルオキシ基、1ーエチルブチルオキシ基、2ーエチルブチルオキシ基、1,1ージメチルブチルオキシ基、2,2ージメチルブチルオキシ基、3,3ージメチルプチルオキシ基、および1ーエチルー1ーメチルプロピルオキシ基などが挙げ

られる。

さらに好適には、炭素数 5 までのアルコキシ、例えば、メトキシ基、エトキシ 基、1-プロピルオキシ基、i-プロピルオキシ基、1-ブチルオキシ基、i-ブチルオキシ基、sec-ブチルオキシ基、t-ブチルオキシ基、1-ペンチル オキシ基などが挙げられる。

「ハロゲン」はフッ素原子、塩素原子、臭素原子およびヨウ素原子が挙げられる。

「ハロ(低級)アルキル基」は、フッ素原子、塩素原子、臭素原子、またはヨ ウ素原子が置換した炭素数6までの直鎖状または分岐状アルキル基であり、好適 にはフッ素原子、塩素原子、または臭素原子が置換した炭素数6までの直鎖状ま たは分岐状アルキル基である。例えば、フルオロメチル基、ジフルオロメチル基、 トリフルオロメチル基、クロロメチル基、ジクロロメチル基、トリクロロメチル 基、ブロモメチル基、ジブロモメチル基、トリブロモメチル基、1-フルオロエ チル基、1-クロロエチル基、1-ブロモエチル基、2-フルオロエチル基、2 ークロロエチル基、2ーブロモエチル基、1,2ージフルオロエチル基、1,2 ージクロロエチル基、1, 2ージブロモエチル基、2, 2, 2ートリフルオロエ チル基、ヘプタフルオロエチル基、1-フルオロプロピル基、1-クロロプロピ ル基、1-ブロモプロピル基、2-フルオロプロピル基、2-クロロプロピル基、 2-ブロモプロピル基、3-フルオロプロピル基、3-クロロプロピル基、3-ブロモプロピル基、1、2-ジフルオロプロピル基、1、2-ジクロロプロピル 基、1、2-ジブロモプロピル基、2、3-ジフルオロプロピル基、2,3-ジ クロロプロピル基、2, 3ージブロモプロピル基、3, 3, 3ートリフルオロプ ロピル基、2、2、3、3、3ーペンタフルオロプロピル基、2ーフルオロブチ ル基、2ークロロブチル基、2-ブロモブチル基、4-フルオロブチル基、4-クロロブチル基、4-ブロモブチル基、4、4、4-トリフルオロブチル基、2、 2, 3, 3, 4, 4, 4 ~ ヘプタフルオロブチル基、パーフルオロブチル基、 2 ーフルオロペンチル基、2ークロロペンチル基、2ーブロモペンチル基、5ーフ

ルオロペンチル基、5-クロロペンチル基、5-ブロモペンチル基、パーフルオロペンチル基、2-フルオロヘキシル基、2-クロロヘキシル基、2-ブロモヘキシル基、6-フルオロヘキシル基、6-グロロヘキシル基、6-ブロモヘキシル基、パーフルオロヘキシル基、などが挙げられる。

「低級アルキルチオ基」とは、炭素数6までの直鎖状および分岐状アルキルチオ基である。好適な例として、例えばメチルチオ基、エチルチオ基、nープロピルチオ基、iープロピルチオ基、nーブチルチオ基、iープチルチオ基、secーブチルチオ基、tーブチルチオ基、nーペンチルチオ基、iーペンチルチオ基、nーペンチルチオ基、nーペンチルチオ基、iーペンチルチオ基、nーペキシルチオ基、iーヘキシルチオ基、tーヘキシルチオ基、secーヘキシルチオ基、2ーメチルペンチルチオ基、3ーメチルペンチルチオ基、1ーエチルブチルチオ基、2ーエチルブチルチオ基、2ーエチルブチルチオ基、3・3ージメチルブチルチオ基、2・2ージメチルブチルチオ基、3・3ージメチルブチルチオ基、および1ーエチルー1ーメチルプロピルチオ基などが挙げられる。

さらに好適には、炭素数4までのアルキルチオ、例えば、メチルチオ基、エチルチオ基、n-プロピルチオ基、i-プロピルチオ基、n-ブチルチオ基、i-ブチルチオ基、sec-ブチルチオ基、t-ブチルチオ基などが挙げられる。

本明細書中で「アリール基」および「アリール部分」とは、非置換またはアルキル置換アリール基を意味する。「非置換アリール基」の好適な例としては、フェニル、ナフチル、ペンタレニルなどの $C_6 \sim C_{10}$ アリールが挙げられ、それらのうちで好ましいものはフェニルおよびナフチルである。

「アルキル置換アリール基」とは、少なくとも1つのアルキル基で置換された アリール基を意味する。アルキル基の置換数は、好ましくは1~4個である。「ア ルキル置換アリール基」のアリール部分は、先の非置換アリール基と同様であり、 「アルキル部分」は、先に規定した通りであり、好適には低級アルキル基である。 また、好適なアルキル置換アリールの具体例としてはトリル、キシリル、メシチ ル、エチルフェニル、プロピルフェニルなどが挙げられ、より好適には n - トリ

ル基が挙げられる。

「複素環基」とは、酸素原子、イオウ原子、窒素原子またはセレン原子のようなヘテロ原子を少なくとも1個を含む飽和または不飽和の単環式または多環式複素環基であり、なかでも不飽和の単環式複素環基が好ましい。より好ましくは後記(1)、(7)および(9)に記載の複素環基であり、さらに好ましくはピリジル、チエニル、フリル基が挙げられる。

単環式の複素環基としては、以下のものが挙げられる。

- (1) 1~4個の窒素原子を含有する不飽和3~8員(より好ましくは5、6員) 複素単環基、例えばピロリル、ピロリニル、イミダブリル、ピラブリル、ピリジル、ジヒドロピリジル、ピリミジル、ピラジニル、ピリダジニル、トリアブリル (例えば4H-1, 2, 4-トリアブリル、1H-1, 2, 3-トリアブリル、 2H-1, 2, 3-トリアブリルなど)、テトラブリル (例えば1H-テトラブ リル、2H-テトラブリルなど)など;
- (2) 1~4個の窒素原子を含有する飽和 3~8員(より好ましくは5、6員) 複素単環基、例えばピロリジニル、イミダゾリジニル、ピペリジル、ピペラジニ ルなど:
- (3) $1 \sim 2$ 個の酸素原子と $1 \sim 3$ 個の窒素原子とを含有する不飽和 $3 \sim 8$ 員(より好ましくは5、6 員)複素単環基、例えばオキサブリル、イソオキサブリル、オキサジアブリル (例えば1, 2, 4 ー オキサジアブリル、1, 3, 4 ー オキサジアブリル、1, 2, 5 ー オキサジアブリルなど)など;
- (4) 1~2個の酸素原子と1~3個の窒素原子とを含有する飽和3~8員(より好ましくは5、6員)複素単環基、例えばモルホリニル、シドノニルなど;
- (5) 1~2個の硫黄原子と1~3個の窒素原子とを含有する不飽和3~8員(より好ましくは5、6員)複素単環基、例えばチアゾリル、イソチアゾリル、チアジアゾリル (例えば1, 2, 3ーチアジアゾリル、1, 2, 4ーチアジアゾリル、1, 3, 4ーチアジアゾリル、1, 2, 5ーチアジアゾリルなど)、ジヒドロチアジニルなど;

(6) 1~2個の硫黄原子と1~3個の窒素原子とを含有する飽和3~8員(より好ましくは5、6員)複素単環基、例えばチアゾリジニルなど;

- (7) 1~2個の硫黄原子を含有する不飽和3~8員(より好ましくは5、6員) 複素単環基、例えばチエニル、ジヒドロジチイニル、ジヒドロジチオニルなど:
- (8) 1~2個の酸素原子を含有する飽和3~8員(より好ましくは5、6員) 複素単環基、例えばテトラヒドロフリル、テトラヒドロピラニルなど:
- (9) 1個の酸素原子を含有する不飽和3~8員(より好ましくは5、6員)複素単環基、例えばフリルなど;
- (10) $1 \sim 2$ 個の酸素原子を含有するスピロ複素環基、例えばジオキサスピロウンデカニル(例えば1, 5—ジオキサスピロ[5, 5]ウンデカニルなど)など:
- (11) 1個の酸素原子と1~2個の硫黄原子とを含有する不飽和3~8員(より好ましくは5、6員)複素単環基、例えばジヒドロオキサチイニルなど;などが挙げられる。

多環式の複素環基の例としては、以下のものが挙げられる。

(12) 窒素原子 $1\sim4$ 個を含む飽和または不飽和、 $7\sim12$ 員(さらに好ましくは $8\sim10$ 員) の多環式(さらに好ましくは二環式)複素環基。

その具体例として、ベンズイミダゾリル基、インドリル基、2,3ージヒドロベンズイミダゾリル基、例えばピラゾロ[1,5-a]ピリミジニルなどのピラゾロピリミジニル基、例えば4,5,6,7ーテトラヒドロピラゾロ[1,5-a]ピリミジニルなどのテトラヒドロピラゾロピリミジニル基、例えば4Hーイミダゾ[1,2-b]ピラゾリルなどのイミダゾピラゾリル基、例えば2,3ージヒドロイミダゾ[1,2-b]ピラゾリルなどのジヒドロイミダゾピラゾリル基、例えば2,3ージヒドロイミダゾ[1,5-a](または[1,2-a]、または[3,4-a])ピリジル、1H(または3H)ーイミダゾ[4,5-b](または[4,5-c])ピリジルなどのイミダゾピリジル基、例えば1Hーピロロ[3,2-b]ピリジルなどのピロロピリジル基、例えばピラゾロ[1,5-a](または

[2, 3-a] ピリジル、1H (または2H) -ピラゾロ [4, 3-b] ピリジ ルなどのピラゾロピリジル基、例えば1H (または2H) -ベンゾ [c] ピラゾ リルなどのベンゾピラゾリル基、ジヒドロベンズイミダゾリル基、例えばベンゾ [d][1H-1,2,3]トリアゾリルなどのベンゾトリアゾリル基、インド リジニル基、例えば1H-イソインドリルなどのイソインドリル基、例えば1H (または2H、または3H) -インダゾリルなどのインダゾリル基、インドリニ ル基、イソインドリニル基、プリニル基、例えば4H-キノリジニルなどのキノ リジニル基、イソキノリル基、キノリル基、フタラジニル基、例えば1.8-ナ フタリジニルなどのナフタリジニル基、キノキサリニル基、例えば1.2-ジヒ ドロキノキサリニルなどのジヒドロキノキサリニル基、例えば1,2,3,4-テトラヒドロキノキサリニルなどのテトラヒドロキノキサリニル基、キナゾリニ ル基、例えば1, 4 (または3, 4) - ジヒドロキナゾリニルなどのジヒドロキ ナゾリニル基、例えば1,2,3,4-テトラヒドロキナゾリニルなどのテトラ ヒドロキナゾリニル基、シンノリニル基、プテリジニル基、例えばピラジノ[2. 3-d] ピリダジニルなどのピラジノピリダジニル基、例えばイミダゾ [1, 2 -b] [1, 2, 4] トリアジニルなどのイミダゾトリアジニル基、例えば1H ーイミダゾ [4, 5 – b] ピラジニルなどのイミダゾピラジニル基、例えば 3 H ープリン、イミダゾ [1, 5-a] (または [3, 4-a]) ピリミジンなどの イミダゾピリミジン基、イミダゾ[2,3-b](または[3,4-b])ピリ ダジニルなどのイミダゾピリダジニル基、1H-1-(または2)ピリミジニル 基などが挙げられる。

(13)酸素原子1~3個を含む飽和または不飽和、7~12員(さらに好ましくは8~10員)の多環式(さらに好ましくは二環式)複素環基。

その具体例として、例えばベンゾ [b] (または [c]) フラニルなどのベン ゾフラニル基、イソベンゾフラニル基、フロピリジル基、例えば2H-クロメニ ルなどのクロメニル基、クロマニル基、イソクロマニル基、例えば3-ベンズオ キセピニルなどのベンズオキセピニル基、例えばシクロペンタ [b] ピラニルな どのシクロペンタピラニル基、例えば2H-フロ[3, 2-b] ピラニルなどのフロピラニル基、などが挙げられる。

(14) イオウ原子 $1\sim3$ 個を含む飽和または不飽和、 $7\sim1$ 2員(さらに好ましくは $8\sim1$ 0員)の多環式(さらに好ましくは二環式)複素環基。

その具体例として、例えばベンゾ [b] チオフェニルなどのベンゾチオフェニル基、例えば4H-1, 3-ジチアナフタレニルなどのジヒドロジチアナフタレニル基、例えば1, 4-ジチアナフタレニルなどのジチアナフタレニル基などが挙げられる。

(15) 窒素原子 $1 \sim 3$ 個および酸素原子 $1 \sim 2$ 個を含む飽和または不飽和、 $7 \sim 12$ 員(さらに好ましくは $8 \sim 10$ 員) の多環式(さらに好ましくは二環式)複素環基。

その具体例として、例えば4H-1,3-ジオキソロ[4,5-d]イミダゾリルなどのジオキソロイミダゾリル基、例えば4H-3,1-ベンズオキサジニルなどのベンズオキサジニル基、例えば5H-ピリド[2,3-d]オキサジニルなどのピリドオキサジニル基、例えば1H-ピラゾロ[4,3-d]オキサゾリルなどのピラゾロオキサゾリル基、フロピリジル基などが挙げられる。

(16)窒素原子 $1\sim3$ 個およびイオウ原子 $1\sim2$ 個を含む飽和または不飽和、 $7\sim12$ 員(さらに好ましくは $8\sim10$ 員)の多環式(さらに好ましくは二環式)複素環基。

その具体例として、例えばチエノ[2,3-d]イミダゾリルなどのチエノイミダゾリル基、チエノピリジル基、例えば2,3-ジチア-1,5-ジアザインダニルなどのジチアジアザインダニル基などが挙げられる。

(17)酸素原子 $1\sim3$ 個およびイオウ原子 $1\sim2$ 個を含む飽和または不飽和、 $7\sim12$ 員(さらに好ましくは $8\sim10$ 員)の多環式(さらに好ましくは二環式)複素環基。

その具体例としては、例えばチェノ[2,3-b]フラニルなどのチェノフラニル基などが挙げられる。

(18) 窒素原子1個、酸素原子1個およびイオウ原子1個を含む飽和または不飽和、 $7\sim12$ 員(さらに好ましくは $8\sim10$ 員) の多環式(さらに好ましくは二環式) 複素環基。

その具体例としては、例えば4H[1, 3]ーオキサチオロ[5, 4-b]ピロリルなどのオキサチオロピロリル基などが挙げられる。

(19) セレン原子1~2個を含む飽和または不飽和、 $7 \sim 12$ 員(さらに好ましくは $8 \sim 10$ 員) 多環式(さらに好ましくは二環式) 複素環。

好ましい具体例として、ベンゾ [b] (または [c]) セレノフェニルなどのベンゾセレノフェニル基などが挙げられる。

(20)セレン原子 $1\sim2$ 個および窒素原子 $1\sim3$ 個を含む飽和または不飽和、 $7\sim12$ 員(さらに好ましくは $8\sim10$ 員)の多環式(さらに好ましくは二環式)複素環。

その具体例としては、例えばセレノ[3, 2-b]ピリジルなどのセレノピリジル基などが挙げられる。

「アリールオキシ基」の好適な「アリール部分」としては、先に規定した「アリール部分」が挙げられ、より好適にはフェニル基が挙げられる。

「保護されたカルボキシ」としては、エステル化されたカルボキシ基が好適な ものとして挙げられる。

エステル化されたカルボキシ基のエステル部分の好適な例としては、例えばメチルエステル、エチルエステル、プロピルエステル、イソプロピルエステル、ブチルエステル、イソブチルエステル、tーブチルエステル、ペンチルエステル、ヘキシルエステルなどの低級アルキルエステル等が挙げられ、それらの基はさらに適当な置換基を少なくとも1個有していてもよく、その例として、例えば、アセトキシメチルエステル、プロピオニルオキシメチルエステル、ブチリルオキシメチルエステル、バレリルオキシメチルエステル、ピバロイルオキシメチルエステル、ヘキサノイルオキシメチルエステル、1 (または2) ーアセトキシエチルエステル、1 (または2または3) ーアセトキシプロピルエステル、1 (または2または3) ーアセトキシプロピルエステル、1 (または

2または3または4)ーアセトキシブチルエステル、1(または2)ープロピオ ニルオキシエチルエステル、1 (または2または3) -プロピオニルオキシプロ ピルエステル、1 (または2) ーブチリルオキシエチルエステル、1 (または2) ーイソブチリルオキシエチルエステル、1(または2)ーピバロイルオキシエチ ルエステル、1 (または2) - ヘキサノイルオキシエチルエステル、イソブチリ ルオキシメチルエステル、2-エチルブチリルオキシメチルエステル、3,3-ジメチルブチリルオキシメチルエステル、1 (または2) -ペンタノイルオキシ エチルエステルなどの低級アルカノイルオキシ(低級)アルキルエステル、例え ば2ーメシルエチルエステルなどの低級アルカンスルホニル (低級) アルキルエ ステル、例えば2ーヨードエチルエステル、2,2,2ートリクロロエチルエス テルなどのモノ(またはジまたはトリ)ハロ(低級)アルキルエステル、例えば メトキシカルボニルオキシメチルエステル、エトキシカルボニルオキシメチルエ ステル、2-メトキシカルボニルオキシエチルエステル、1-エトキシカルボニ ルオキシエチルエステル、1-イソプロポキシカルボニルオキシエチルエステル などの低級アルコキシカルボニルオキシ(低級)アルキルエステル、フタリジリ デン(低級)アルキルエステル、または例えば(5-メチル-2-オキソ-1, 3-ジオキソールー4-イル)メチルエステル、(5-エチルー2-オキソー1, **3-ジオキソール-4-イル)メチルエステル、(5-プロピル-2-オキソー** 1,3-ジオキソールー4-イル)エチルエステルなどの(5-低級アルキルー 2-オキソー1, 3-ジオキソールー4-イル) (低級) アルキルエステル;

例えばビニルエステル、アリルエステルなどの低級アルケニルエステル:

例えばエチニルエステル、プロピニルエステルなどの低級アルキニルエステル:

例えばベンジルエステル、4ーメトキシベンジルエステル、4ーニトロベンジルエステル、フェニルエチルエステル、トリチルエステル、ベンズヒドリルエステル、ビス (メトキシフェニル) メチルエステル、3,4ージメトキシベンジルエステル、4ーヒドロキシー3,5ージーtーブチルベンジルエステルなどの適

当な置換基少なくとも1個を有していてもよいモノ(またはジまたはトリ)フェニル(低級)アルキルエステルのような適当な置換基を少なくとも1個有していてもよいアリール(低級)アルキルエステル;

例えばフェニルエステル、4-クロロフェニルエステル、トリルエステル、 t ーブチルフェニルエステル、キシリルエステル、メシチルエステル、クメニルエステルなどの適当な置換基を少なくとも1個を有していてもよいアリールエステル;

例えばシクロヘキシルエステル等のシクロ(低級)アルキルエステル; フタリジルエステルなどのようなものが挙げられる。

上記置換基が置換されている場合、断らない限りその置換基の数は1~4個が 好ましい。

目的化合物 (I) の好ましいものとして、下記一般式 (IA):

$$R^4$$
 N R^2 R^6 CI R^6

(式中、R²はメチル基であり、

R³は塩素であり、

 R^4 は(1)アリール基で置換されていてもよい低級アルケニル基、(2)アリール基、(3)低級アルキル基、または(4)ハロゲンで置換されていてもよい複素環基であり、

R⁶は(1) アリール基、(2) 複素環基、(3) 臭素、(4) ハロ(低級) アルキル基、(5) 低級アルキルチオ基、(6) ニトロ基、(7) アリール基で置換

された低級アルケニル基、(8) アリール基で置換された低級アルキニル基、(9) シクロ(低級) アルキル基またはアリール基で置換されていてもよい低級アルコキシ基、(10) アリールオキシ基で置換されていてもよい低級アルキル基、または(11) 保護されたカルボキシ基または低級アルキル基で置換されていてもよいアミノ基であり、

Lはエテニレン基である)で示される化合物およびその塩が挙げられる。

上記化合物 (IA) のなかでも、R⁴はアリール基、またはアリール基で置換されていてもよい低級アルケニル基であり、

R⁶は臭素、アリール基で置換された低級アルケニル基、アリール基で置換された低級アルキニル基、またはシクロ(低級)アルキル基で置換されていてもよい低級アルコキシ基である化合物またはその塩が特に好ましい。

上記化合物(I)のなかでも、R¹は複素環基であって、(1)アリール基、(2)複素環基、(3)ハロゲン、(4)ハロ(低級)アルキル基、(5)低級アルキルチオ基、(6)ニトロ基、(7)アリール基で置換されていてもよい低級アルケニル基、(8)アリール基で置換されていてもよい低級アルキニル基、(9)シクロ(低級)アルキル基またはアリール基で置換されていてもよい低級アルコキシ基、(10)アリールオキシ基、および(11)保護されたカルボキシ基または低級アルキル基で置換されていてもよいアミノ基、からなる群より選ばれる置換基で置換されている化合物またはその塩がさらに好ましい。

なかでも特に好ましい基を具体的に以下に挙げる。

 $R^1: 2-\rho - q - q - (2-\gamma - y - v)$ $\gamma_1 = \gamma_2 + \gamma_3 + \gamma_4 - \gamma_5 + \gamma_5$

リフルオロメチル)フェニル、2-クロロ-4-(フェノキシメチル)フェニル、 <math>2-クロロ-4-(E)-2-フェニルエテニル)フェニル、<math>1-ブロモー2-ナフチル基、

R²:メチル基、

R³:塩素、

 $R^4: p-h$ リル、(E) -2-フェニルエテニル、ペンチル、フェニル、5-クロロ-2-チエニル、5-ブロモ-2-チエニル基、

 $R^6: 2-7$ リル、2-7エニル、7エニルエチニル、臭素、7エニル、1-7ロポキシ、1-4ンチルオキシ、(シクロペンチル)メチルオキシ、(シクロヘキシル)メチルオキシ、ベンジルオキシ、メチルチオ、トリフルオロメチル、7エノキシメチル、ニトロ、(E) -2-7エニルエテニル基、

A:メチレン基、

L:エテニレン基。

目的化合物(I)として好適な具体的化合物を以下に列挙する。

- (2) $(2E) 3 (4 \rho p p p 1 (2 \rho p p p 4 (2 \rho p p p p p) べ ンジル) 2 メチルイミダゾール 5 イル) N ((E) 2 フェニル アニル) スルホニル) 2 プロペン酸アミド、$
- (3) (E) $-3-(4-\rho p p p -1-(2-\rho p p p -4-(2-f x = n))$ ベンジル) -2-メチルイミダゾール-5-イル) -N-((4-メチルベンゼン) スルホニル) -2-プロペン酸アミド、
- (4) $(2E) 3 (4 \rho \mu \mu 1 (2 \rho \mu \mu 4 (2 f \mu \mu \mu + 2 f \mu + 2 f \mu \mu + 2$
 - (5) (E) -3-(4-2)-1-(2-2)-4-(7)

ベンジル) -2-メチルイミダゾール-5-イル) -N- ((4-メチルベンゼン) スルホニル) -2-プロペン酸アミド、

- (6) $(2E) 3 (4 \rho p p p 1 (2 \rho p p p 4 (7 x = n x f = n))$ ベンジル) 2 x f n + 1 = 0 フェニルエテニル) スルホニル) 2 x f n + 1 = 0 フェニルエテニル) スルホニル) 2 x f n + 1 = 0 スルホニル) スルホニル) 2 x f n + 1 = 0 スルホニル) 2 x f n + 1 = 0 スルホニル)
- (8) (E) -3-(1-(4-プロモー2-クロロベンジル) -4-クロロ-2-メチルイミダゾールー5-イル) -N-((E) -2-フェニルエテニル) スルホニル) -2-プロペン酸アミド、
- (9) (E) -3-[4-クロロ-1-(2-クロロ-4-フェニルベンジル) -2-メチルイミダゾール-5-イル]-N-(1-ペンタンスルホニル)-2 -プロペン酸アミド、
- (11) (E) -3-[4-クロロ-1-(2-クロロ-4-フェニルベンジル) -2-メチルイミダゾール-5-イル]-N-((4-メチルベンゼン) スルホニル) <math>-2-プロペン酸アミド、

- (14) (E) -N- ((5-ブロモ-2-チエニル) スルホニル) -3- (4

一クロロー1ー(2ークロロー4ーフェニルベンジル)ー2ーメチルイミダゾールー5ーイル)ー2ープロペン酸アミド、

- (15) (E) -3-((4-クロロ-1-(2-クロロ-4-(1-プロポキシ) ベンジル) -2-メチルイミダゾール-5-イル) -N-((4-メチルベンゼン) スルホニル) -2-プロペン酸アミド、
- (17) (E) $-3-(4-\rho p p p -1-(2-\rho p p p p -4-(1-ペンチルオ + シ) ベンジル) <math>-2-$ メチルイミダゾール-5-イル) -N- ((4-メチル ベンゼン) スルホニル) -2-プロペン酸アミド、
- (18) (E) $-3-(4-\rho pp-1-(2-\rho pp-4-(1-ペンチルオ + シ) ベンジル) -2-メチルイミダゾール-5-イル) -N-(((E) -2 -フェニルエテニル) スルホニル) -2-プロペン酸アミド、$

- (21) (2E) -3- (4-p-p-1- (2-p-p-4- ((<math>>p-p-v+v) メチルオキシ)ベンジル)<math>-2-メチルイミダゾール-5-イル)-N-(((E)-2-フェニルエテニル)スルホニル)-2-プロペン酸アミド、
- (22) (E) $-3-(4-\rho -1-(2-\rho -1-4-(9\rho -4-4-4))$ (シクロヘキシル) メチルオキシ) ベンジル) -2-メチルイミダゾール-5-イル) -N-((4-メチルベンゼン) スルホニル) -2-プロペン酸アミド、
 - (23) (2E) -3-(4-2)-1-(2-2)-4-((2)-2)-4-((2)-2)

シル) メチルオキシ) ベンジル) -2-メチルイミダゾール-5-イル) -N- (((E) -2-フェニルエテニル) スルホニル) -2-プロペン酸アミド、

- (24) (E) -3-(1-(4-ベンジルオキシー2-クロロベンジル) -4 -クロロ-2-メチルイミダゾール-5-イル) -N-((4-メチルベンゼン) スルホニル) -2-プロペン酸アミド、
- (25) (E) -3-(1-(4-ベンジルオキシ-2-クロロベンジル)-4 -クロロ-2-メチルイミダゾール-5-イル)-N-(((E)-2-フェニルエテニル)スルホニル)-2-プロペン酸アミド、
- (26) (E) $-3-(4-\rho -1-(2-\rho -1-4-(3+n+3))$ ベンジル) -2-メチルイミダゾール-5-イル) -N-(4-メチルベンゼン) スルホニル) -2-プロペン酸アミド、
- (27) (E) $-3-(4-\rho p p p -1-(2-\rho p p p p -4-(メチルチオ)$ ベンジル) -2-メチルイミダゾール-5-イル) -N-(((E) -2-フェニルエテニル) スルホニル) -2-プロペン酸アミド、
- (28) (E) $-3-(4-\rho -1-(2-\rho -1-4-(-1) -1) -1-4-(-1) -$
- (29) (E) -3-(4-クロロ-1-(2-クロロ-4-(トリフルオロメチル) ベンジル) <math>-2-メチルイミダゾール-5-イル) -N- ((E)-2 -フェニルエテニル) スルホニル) -2-プロペン酸アミド、
- (30) (E) -3-(4-0)-1-(2-0)-4-(7-1) (フェノキシメチル) ベンジル) -2-メチルイミダゾール-5-イル) -N-((4-メチルベンゼン) スルホニル) -2-プロペン酸アミド、
- (31) (E) $-3-(4-\rho p p p -1-(2-\rho p p p p -4-(7 x J + シ メ チ ル) ベンジル) <math>-2-$ メチルイミダゾール-5-イル) -N-((E) -2- フェニルエテニル) スルホニル) -2-プロペン酸アミド、
 - (32) (E) -3-(4-クロロ-1-(2-クロロ-4-=トロベンジル)

-2-メチルイミダゾール-5-イル)-N-((4-メチルベンゼン) スルホニル)-2-プロペン酸アミド、

- (36) (E) -3-(1-(1-) -2-1 -2-1 -2 -1 -2
- (38) (E) -3- (4-クロロ-1- (2-クロロ-4- (1-ペンチルオキシ) ベンジル)-2-メチルイミダゾール-5-イル) -N- (1-ペンタンスルホニル) -2-プロペン酸アミド、
- (39)(E)-3-(4-クロロ-1-(2-クロロ-4-(1-ペンチルオキシ)ベンジル)-2-メチルイミダゾール-5-イル)-N-((E)-1-ペンテン-1-イルスルホニル)-2-プロペン酸アミド、
- (40)(E) -N-(1-ブタンスルホニル) -3-(4-クロロ-1-(2-クロロ-4-(1-ペンチルオキシ) ベンジル) -2-メチルイミダゾール-5-イル) -2-プロペン酸アミド、(41)(E) -3-(4-クロロ-1-(2-クロロ-4-(E) -2-フェニルエテニル) ベンジル) -2-メチルイミダゾール-5-イル) -N-(1-ペンタンスルホニル) -2-プロ

ペン酸アミド、

- (42)(E)-(3-(4-クロロ-1-(2-クロロ-4-(E)-2-フェニルエテニル)ベンジル)-2-メチルイミダゾール-5-イル)-N-(E)-1-ペンテン-1-イルスルホニル)-2-プロペン酸アミド、
- (43)(E)-N-(1-ブタンスルホニル)-3-(4-クロロ-1-(2-クロロ-4-((E) -2-フェニルエテニル)ベンジル)-2-メチルイミダゾール-5-イル)-2-プロペン酸アミド、
- (44) (E) -3- (4-クロロ-1- (2-クロロ-4- (フェニルエチニル) ベンジル) -2-メチルイミダゾール-5-イル) -N- (1-ペンタンスルホニル) -2-プロペン酸アミド、
- (45) (E) -3- (4-クロロ-1- (2-クロロ-4- (フェニルエチニル) ベンジル) -2-メチルイミダゾール-5-イル) -N- ((E) -1-ペンテン- 1 -イルスルホニル) -2-プロペン酸アミド、
- (46)(E)-N-(1-ブタンスルホニル)-3-(4-クロロ-1-(2-クロロ-4-(2-フェニルエチニル)ベンジル)-2-メチルイミダゾール-5-イル)-2-プロペン酸アミド、
- (47) (E) -3- (4-クロロ-1- ((3-クロロ-5- (トリフルオロメチル) ピリジン-2-イル) メチル) -2-メチルイミダゾール-5-イル) -N- ((E) -2-フェニルエテニルスルホニル) -2-プロペン酸アミド、
- (48) (E) -3- (4-クロロ-1- ((3-クロロ-5- (トリフルオロメチル) ピリジン-2-イル) メチル) -2-メチルイミダゾール-5-イル) -N- ((4-メチルベンゼン) スルホニル) -2-プロペン酸アミド、
- (49) (E) -3- (1- (4- (tert-ブトキシカルボニルアミノ) -2-クロロベンジル) -4-クロロ-2-メチルイミダゾール-5-イル) -N- (1-ペンタンスルホニル) -2-プロペン酸アミド、
- (50) (E) -3- (1- (4- (tert-ブトキシカルボニルアミノ) -2-クロロベンジル) -4-クロロ-2-メチルイミダゾール-5-イル) -N- ((E) -1-ペンテン-1-イ

ルスルホニル)-2-プロペン酸アミド、

(51) (E) -3- (1- (4- (tert-ブトキシカルボニルアミノ) -2-クロロベンジル) -4-クロロ-2-メチルイミダゾール-5-イル) -N- ((E) -2-フェニルエテニル) スルホニル) -2-プロペン酸アミド、

(52) (E) $-3-(4-\rho p p p -1-(2-\rho p p p -4-(1-ペンチルオ + シ) ベンジル) -2-エチルイミダゾール-5-イル) -N-((E) -2-フェニルエテンスルホニル) -2-プロペン酸アミド、$

(53) (E) -3-(1-(4-) -2-) -2- -

(55) (E) $-3-(4-\rho -1-(2-\rho -1-4-(7 +1) +1)$ (55) (E) $-3-(4-\rho -1-1-(2-\rho -1-4-(7 +1) +1)$ (74-メチルベル) ベンジル) -2-x (4-クロロー1-(2-クロロー4-(7 +1) +1) -2-x (4-メチルベンゼン) スルホニル) -2-x (4-クロロー1-(2-クロロー4-(7 +1) +1) -2-x (5 +1) -2-x (6 +1) -2-x (7 +1) -2-x (8 +1) -2-x (9 +1) -

(56) (E) -N- (1-ブタンスルホニル) -3- (4-クロロ-1- (2-クロロ-4- (フェニルエチニル) ベンジル) -2-エチルイミダゾール-5-イル) -2-プロペン酸アミド、

(57) (E) -3- (4-クロロ-1- (2-クロロ-4- (フェニルエチニル) ベンジル) -2-エチルイミダゾール-5-イル) -N- (1-ペンタンスルホニル) -2-プロペン酸アミド、

(58) (E) -3- (4-クロロ-1- (2-クロロ-4- (フェニルエチニル) ベンジル) -2-エチルイミダゾール-5-イル) -N- ((E) -1-ペンテンー 1 ーイルスルホニル) -2-プロペン酸アミド、

(59) (E) $-3-(4-\rho -1-(2-\rho -1-4-(E)-2-7)$ エニルエテニル) ベンジル) -2-エチルイミダゾール-5-イル) -N-((E) -2-フェニルエテンスルホニル) -2-プロペン酸アミド、

- (61) (E) -N-(1-ブタンスルホニル) -3-(4-クロロ-1-(2-クロロ-4-(E) -2-フェニルエテニル) ベンジル) -2-エチルイミダゾール-5-イル) -2-プロペン酸アミド、
- (62) (E) -3- (4-クロロ-1- (2-クロロ-4- ((E) -2-フェニルエテニル) ベンジル) -2-エチルイミダゾール-5-イル) -N- (1-ペンタンスルホニル) -2-プロペン酸アミド、
- (63) (E) -3- (4-クロロ-1- (2-クロロ-4- ((E) -2-フェニルエテニル) ベンジル) -2-エチルイミダゾール-5-イル) -N- ((E) -1-ペンテン-1-イルスルホニル) -2-プロペン酸アミド、
- (65) (E) -3-(4-プロモ-1-(2-クロロ-4-(1-ペンチルオキシ) ベンジル) <math>-2-メチルイミダゾール-5-イル) -N- ((E) -2-フェニルエテンスルホニル) -2-プロペン酸アミド、
- (66) (E) $-3-(1-(2-\rho pp-4-(1-ペンチルオキシ) ベンジル) <math>-4-x$ チルー2-メチルイミダゾールー5-イル) -N-(E) -2-フェニルエテンスルホニル) -2-プロペン酸アミド、
- (67)(E)-2-ベンジル-3-(1-(2-クロロ-4-(1-ペンチルオキシ)ベンジル)-2-メチルイミダゾール-5-イル)-N-((E) -2-フェニルエテンスルホニル)-2-プロペン酸アミド、
- (68) (E) $-3-(1-(2-\rho pp-4-(1-ペンチルオキシ) ベンジル) <math>-2-$ メチルイミダゾール-5-イル) -2-(1-ペンチル) -N-((E)-2-アェニルエテンスルホニル) -2-プロペン酸アミド、

(69) (E) -3-(1-(2-クロロー4-(1ーペンチルオキシ)ベンジル)
 -2-メチルイミダゾール-5-イル)-2-(3-ピリジル)メチル-N-((E)
 -2-フェニルエテンスルホニル)-2-プロペン酸アミド、

- (70) (E) $-3-(1-(2-\rho pp-4-(1-ペンチルオキシ) ベンジル) <math>-2-$ メチルイミダゾール-5-イル) -2-メチル-N-((E) -2-フェニルエテンスルホニル) -2-プロペン酸アミド、
- (71) (E) -3-(4-0) (2-0) -4-(1-0) (E) -2-0 (E) (E) -2-0 (E) (E) -2-0 (E) -2-0 (E) -2-0 (E) -2-0 (E) -2-0 (E) -2-0 (E) (
- (72) 4-0ロロー1-(2-0ロロー4-(1-ペンチルオキシ) ベンジル) -2-メチルー<math>5-(E) -2-フェニルエテンスルホニルカルバモイル) -1H -イミダゾール、
- (73) N- (4-メチルベンゼンスルホニル) カルバミン酸 <math>(4-クロロ-1 (2-クロロ-4-(1-ペンチルオキシ) ベンジル) <math>- 2-メチル-1H-イミダゾール-5-イル) メチルエステル、

- (76) (E) $-3-(4-\rho uu-1-(2-\rho uu-4-(7x=nx+1)-1)$ ベンジル) -2-xチルイミダゾール-5-イル) -N- ((E) -1-ペンテン-1-イル) -1-イルスルホニル) -2-プロペン酸アミド、およびそのナトリウム塩。

以下、目的化合物(Ⅰ)の製造法を詳細に説明する。

製造法1:

目的化合物(I)またはその塩は、化合物(II)またはそのカルボキシ基における反応性誘導体あるいはそれらの塩を、化合物(III)またはその塩と反応させることにより製造できる。

化合物(II) またはそのカルボキシ基における反応性誘導体、および化合物 (III) の好適な塩としては、化合物(I) について例示したものと同じものを挙げることができる。

化合物(II)のカルボキシ基における好適な反応性誘導体としては、酸ハロ ゲン化物、分子内酸無水物、分子間酸無水物および混合酸無水物を含めての酸無 水物、活性アミド、活性エステルなどが挙げられる。該反応性誘導体の好適な例 としては、酸塩化物;酸アジド;置換燐酸 [例えばジアルキル燐酸、フェニル燐 酸、ジフェニル燐酸、ジベンジル燐酸、ハロゲン化燐酸など〕、ジアルキル亜燐 酸、亜硫酸、チオ硫酸、硫酸、スルホン酸 [例えばメタンスルホン酸など] 、脂 肪族カルボン酸[例えば酢酸、プロピオン酸、酪酸、イソ酪酸、ピバリン酸、ペ ンタン酸、イソペンタン酸、 2-エチル酪酸、トリクロロ酢酸など] 、芳香族カ ルボン酸[例えば安息香酸など]などの酸との混合酸無水物;対称酸無水物;イ ミダゾール、4-置換イミダゾール、ジメチルピラゾール、トリアゾールまたは テトラゾールとの活性アミド;活性エステル [例えばシアノメチルエステル、メ トキシメチルエステル、ジメチルイミノメチル $[(CH_3)_2N^{\dagger}=CH-]$ エステル、 ビニルエステル、プロパルギルエステル、p-ニトロフェニルエステル、2, 4 ージニトロフェニルエステル、トリクロロフェニルエステル、ペンタクロロフェ ニルエステル、メシルフェニルエステル、フェニルアゾフェニルエステル、フェ ニルチオエステル、p-ニトロフェニルチオエステル、p-クレジルチオエステ ル、カルボキシメチルチオエステル、ピラニルエステル、ピリジルエステル、ピ ペリジルエステル、8-キノリルチオエステルなど] またはN-ヒドロキシ化合 物 [例えばN, N-ジメチルヒドロキシルアミン、1-ヒドロキシー2-1H-ピリドン、N-ヒドロキシスクシンイミド、1-ヒドロキシ-1H-ベンゾトリ アゾールなど〕とのエステルなどが挙げられる。これらの反応性誘導体は使用す

る化合物(II)の種類に応じて、それらの中から適宜選択することができる。

反応は、通常、慣用の溶媒、例えば水、アルコール [例えばメタノール、エタノールなど]、アセトン、ジオキサン、アセトニトリル、クロロホルム、塩化メチレン、塩化エチレン、テトラヒドロフラン、酢酸エチル、N, Nージメチルホルムアミド、ピリジン、これらの混合物、反応に悪影響を及ぼさないその他の任意の溶媒の中で実施する。これらの慣用の溶媒は、単独で、あるいは混合物として用いてもよい。

この反応において、化合物(II)を遊離酸の形で、またはその塩の形で、使 用するときには、N. N'ージシクロヘキシルカルボジイミド、Nーシクロヘキ シルーN'ーモルホリノエチルカルボジイミド、 NーシクロヘキシルーN'ー(4 - ジエチルアミノシクロヘキシル) カルボジイミド、N, N'ージエチルカルボ ジイミド、N, N'ージイソプロピルカルボジイミド、NーエチルーN'ー(3 ージメチルアミノプロピル) カルボジイミド、N, N' ーカルボニルビス(2 ー メチルイミダゾール)、ペンタメチレンケテン-N-シクロヘキシルイミン、ジ フェニルケテン-N-シクロヘキシルイミン、エトキシアセチレン、1-アルコ キシー1-クロロエチレン、亜燐酸トリアルキル、ポリ燐酸エチル、ポリ燐酸イ ソプロピル、オキシ塩化燐(塩化ホスホリル)、三塩化燐、ジフェニルホスホリ ルアジド、クロロ燐酸ジフェニル、ジフェニルホスフィン酸クロリド、塩化チオ ニル、塩化オキサリル、ハロギ酸低級アルキル[例えばクロロギ酸エチル、クロ ロギ酸イロプロピルなど〕、トリフェニルホスフィン、2-エチルー7-ヒドロ キシベンゾイソオキサゾリウム塩、水酸化2-エチルー5-(m-スルホフェニ ル) イソオキサゾリウム分子内塩、1- (p-クロロベンゼンスルホニルオキシ) -6-0000-1H-ベンゾトリアゾール、いわゆるヴィルスマイヤー試薬(N, N-ジメチルホルムアミドと塩化チオニル、ホスゲン、クロロギ酸トリクロロメ チル、オキシ塩化燐などとの反応により調製される)などの慣用の縮合剤の存在 下に反応を実施するのが好ましい。

重炭酸アルカリ金属、トリ低級アルキルアミン、ピリジン、4-ジメチルアミ

ノピリジン、N-低級アルキルモルホリン、N, N-ジ低級アルキルアニリン (例えばN, N-ジメチルアニリンなど)、N, N-ジ低級アルキルベンジルアミンなどの無機または有機塩基の存在下に反応を実施することもできる。

反応温度はとくに限定されず、通常、冷却下ないし加熱下に反応を実施する。前記化合物は、いずれも必要に応じて通常の方法を使用して好適な塩類とすることができる。また、いずれも必要に応じて通常の有機化合物精製法、すなわち、再結晶、カラムクロマトグラフィー、薄層クロマトグラフィー、高速液体クロマトグラフィーなどの手段により精製することができる。また化合物の同定は、NMRスペクトル分析、マススペクトル分析、IRスペクトル分析、元素分析、融点測定などにより行うことができる。

本発明の化合物は、1か所以上の不斉中心を有することもあり、それゆえ、それらは鏡像体またはジアステレオマーとして存在しうる。さらにアルケニル基を含有する式の化合物の若干のものは、シスまたはトランス異性体として存在しうる。いずれの場合にも、本発明はそれらの混合物および各個の異性体をともに含有するものである。

本発明の化合物またはその塩は、溶媒和物の形をとることもありうるが、これ も本発明の範囲に含まれる。溶媒和物としては、好ましくは、水和物、エタノー ル和物などが挙げられる。

目的化合物 (I) の有用性を例証するために、化合物 (I) の薬理データを以下に示す。

試験例1

(db/dbマウスを用いた血糖降下作用)

試験化合物

化合物A:

(E) -3-[4-クロロ-1-(2-クロロ-4-フェニルベンジル)-2 ーメチルイミダゾール-5-イル]-N-((4-メチルベンゼン)スルホニル) -2-プロペン酸アミド(実施例11の化合物) WO 00/39097

使用動物:

C57BL/KsJ-dbm db+/db+, C57BL/KsJ-dbm +m/+m (Jackson Laboratory) の5週齢の雌性マウスを 購入し、2~3週間の馴化期間の後実験に用いた。

薬剤投与:

乳鉢を用いて検体を粉末餌(CE-2、日本クレア)に混合した。混合比は、100mg/kgで0.1%、30mg/kgで0.03%、10mg/kgで0.01%の割合とした。群毎に2回/週、新しい餌に交換し、給餌量と残餌量を記録してその差から摂餌量を算出した。

試験スケジュール:

雌性 d b / d b マウスを体重、血糖値、血漿中トリグリセライド濃度に基づいて群分けした後、14日間薬物の混餌投与を行なった(実験期間は8週齢~10週齢)。7日目と14日目の午前中に、ヘパリン処理を施したガラスキャピラリーチューブ(Chase Heparinized Capillary Tubes)を用いて眼窩静脈叢より採血し、遠心分離により血漿画分を得た。測定項目は0日目と14日目に血糖値、血漿中トリグリセライド濃度、血漿インスリン濃度、7日目に血糖値、血漿中トリグリセライド濃度とした。又、0、7、14日目に体重を測定した。最終採血後、CO。ガスにより屠殺した。

測定法:

血糖値の測定には $10\sim15\mu$ 1の血漿を用い、グルコース酸化酵素法(グルコースCIIーテストワコー、和光純薬)により測定した。血漿中トリグリセライド濃度の測定には $10\sim15\mu$ 1の血漿を用い、GPOーp-クロロフェノール法(トリグリセライドGーテストワコー)またはGPO-DAOS法(トリグリセライドEーテストワコー)により測定した。上記の測定は採血後速やかに行った。血漿インスリン濃度の測定には 20μ 1の血漿(-20Cで保存可能)を用い、抗体法(ファデセフインスリンRIAキット、カビファルマシア)により測定した。

結果:

d b / d b マウスの対照群と、+ / + マウスの血糖値、血漿中トリグリセライド濃度の差を100%として、被験薬剤投与群の血糖値、血漿中トリグリセライド濃度の降下率(%)を求めた。結果を表1に示す。

表 1

試験化合物	投与量	血糖低下作用
	(mg/kg)	(%)
化合物A	3. 2	63%

治療目的には、本発明の化合物 (I) を医薬製剤の形で使用できる。該医薬製剤は、経口投与、非経口投与または外用 (局所適用) に適した固体、半固体または液状の製薬上許容される有機もしくは無機賦形剤との混合物の形で該化合物のいずれかを活性成分として含有するものである。医薬製剤としては、カプセル剤、錠剤、糖衣錠、顆粒剤、座剤、液剤、ローション剤、懸濁剤、乳剤、軟膏、ゲル剤などが挙げられる。所望により、これらの製剤に、佐剤、補助物質、安定剤、湿潤剤または乳化剤、緩衝剤、その他の常用添加物を配合することができる。 化合物 (I) の用量は、患者の年齢および症状によっても異なるが、前記諸疾患の治療には、化合物 (I) の平均一回量として約0.1 mg、1 mg、10 mg、50 mg、100 mg、250 mg、50 0 mg および1000 mg が有効であろう。一般には、1日当たり0.1 mg/固体~約100 mg/固体の間の量を投与すればよい。

本発明を下記の製造例および実施例によってさらに詳細に説明する。 製造例1-1

4,5-ジブロモー2ーメチルイミダゾール(4.91g)をN,N-ジメチルホルムアミド(50ml)に溶解し、60%水素化ナトリウム(901mg)を氷冷下で徐々に加えた。室温で1時間撹拌した後、2-(トリメチルシリル)エトキシメチルクロリド(3.75g)を氷冷下で徐々に滴下し、室温で終夜撹拌した。溶媒を減圧下で留去した後、残渣に酢酸エチルを添加し、飽和炭酸水素

ナトリウム水溶液で洗浄し、続いて食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、溶媒を減圧下で留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=3/1)で精製し、4,5-ジブロモー2ーメチルー1-((2-(トリメチルシリル)エトキシ)メチル)イミダゾール(7.6g)を無色油状物として得た。

 1 H-NMR(CDCl₃): 0.00(9H, s), 0.92(2H, t, J=8Hz), 2.47(3H, s), 3.55(2H, t, J=8Hz), 5.24(2H, s).

製造例1-2

4, $5-\tilde{y}$ プロモー $2-\bar{y}$ チルー $1-((2-(h)\bar{y}$ チルシリル) エトキシ) メチル)イミダゾール(29.2g)をテトラヒドロフラン(250m1)に溶解し、1.63Nの $1-\tilde{y}$ チルリチウム/ヘキサン溶液(58.1m1)を-55 \mathbb{C} から $-60\mathbb{C}$ で20分かけて滴下した。 $-60\mathbb{C}$ で30分撹拌した後、N, N $-\tilde{y}$ チルホルムアミド(58g)を $-55\mathbb{C}$ から $-60\mathbb{C}$ で徐々に滴下し、室温で1時間撹拌した。飽和食塩水を添加し、酢酸エチルで抽出した後、有機層を無水硫酸ナトリウムで乾燥し、溶媒を減圧下で留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=3/1)で精製し、4 $-\tilde{y}$ ロモー2 $-\bar{y}$ チルー1 $-((2-(h)\bar{y}$ チルシリル)エトキシ)メチル)イミダゾール-5- カルバルデヒド(18.5g)を淡黄色油状物として得た。

 1 H-NMR(CDCl₃) : 0.00(9H, s), 0.91(2H, t, J=8Hz), 2.52(3H, s), 3.58(2H, t, J=8Hz), 5.70(2H, s), 9.71(1H, s).

製造例1-3

4ーブロモー2ーメチルー1ー((2ー(トリメチルシリル)エトキシ)メチル)イミダゾールー5ーカルバルデヒド(18.5g)をエタノール(80ml)に溶解し、6N塩酸(80ml)を添加して、1時間加熱還流した。溶媒を減圧下で留去し、氷冷下で飽和炭酸水素ナトリウム水溶液を弱アルカリ性になるまで添加した。析出した結晶を濾取し、結晶をメタノールで洗浄した後、減圧下で加熱乾燥し、5ーブロモー2ーメチルイミダゾールー4ーカルバルデヒド(9.1

7 g)を白色結晶として得た。

 $^{1}H-NMR(CDCl_{3})$: 2.45(3H, s), 9.53(1H, s).

製造例1-4

5ーブロモー2ーメチルイミダゾールー4ーカルバルデヒド(400mg)を 濃塩酸(6ml)に溶解し、24時間加熱還流した。氷冷下で飽和炭酸水素ナト リウム水溶液を弱アルカリ性になるまで添加し、酢酸エチルで2回抽出した。有 機層を飽和炭酸水素ナトリウム水溶液で洗浄し、続いて食塩水で洗浄した。有機 層を無水硫酸マグネシウムで乾燥し、溶媒を減圧下で留去した。残渣にヘキサン を添加し、結晶を濾取して、5ークロロー2ーメチルイミダゾールー4ーカルバ ルデヒド(222mg)を黄色結晶として得た。

 $^{1}H-NMR(CDCl_{3})$: 2.45(3H, s), 9.58(1H, s).

製造例2

2-クロロー4-ヨードトルエン(7.59g)の四塩化炭素(76m1)溶液に室温でN-プロモスクシンイミド(5.89g)、2,2'-アゾビス(4-メトキシー2,4-ジメチルバレロニトリル)(和光V-70、281mg)を加え55℃で3.5時間攪拌した。反応混合物を室温まで放冷した後、ヘキサン(76m1)を加え、不溶物を濾過して除いた。濾液を濃縮した後、残渣をヘキサンに再び溶かし、水、5%チオ硫酸ナトリウム水溶液、飽和重曹水、飽和食塩水で順に洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を留去して2-クロロー4-ヨードベンジルブロミド(8.45g)を油状物として得た。

 $^{1}H-NMR(CDCl_{3})$: 4.52(2H, s), 7.16(1H, d, J=8Hz), 7.59(1H, dd, J=8 and 2Hz), 7.76(1H, d, J=2Hz).

製造例 3-1

テトラキス (トリフェニルフォスフィン) パラジウム (213mg) のトルエン (7ml) 懸濁液に、室温下2ークロロー4ーヨードトルエン (2.33g) を加えた。室温下で30分攪拌後、この混合物にフェニルボロン酸 (1.35g) のEtOH (2ml) 溶液および2M炭酸ナトリウム水溶液 (9.25ml) を

加えて加熱還流した。3時間後反応液を冷却し、有機層を分取した。水層をヘキサン(4ml)で抽出した。有機層を合わせ、飽和重曹水(4ml)および飽和食塩水で(4ml)で洗浄後、無水硫酸マグネシウムで乾燥した。濾過後、濾液を濃縮し、残渣(2.11g)にヘキサン(10ml)およびシリカゲル(4g)を加えて室温下で1時間攪拌した。シリカゲルを濾去後、濾液を濃縮し、2-クロロ-4-フェニルトルエンを淡褐色油状物(1.86g、99.4%)として得た。

 $^{1}H-NMR(CDC1_{3})$: 2.40(3H, s), 7.2 3-7.60(8H, m).

製造例3-2

前記製造例2と同様にして、2ークロロー4ーフェニルトルエン(3.6g)から2ークロロー4ーフェニルベンジルブロマイドを無色結晶(3.22g)として得た。

 $^{1}H-NMR(CDCl_{3})$: 4.64(2H, s), 7.35-7.63(8H, m).

m. p. 73-74℃.

製造例4-1

2-クロロー4-ヨードトルエン(22.0g)をN, N-ジメチルホルムアミド(110m1)に溶解し、ヨウ化銅(I)(49.8g)、クロロジフルオロ酢酸エチル(37.8g)、フッ化カリウム(15.2g)を添加して、内温116 でで70 時間撹拌した。反応液をセライトを用いて濾過した後、濾液に氷冷下で水(11m1)、ジエチルエーテル(110m1)を添加し、セライトを用いて濾過した。濾液を分液し、水層をジエチルエーテル(110m1)で再度抽出した。 有機層を合わせて飽和食塩水(110m1)で洗浄し、無水硫酸マグネシウムで乾燥した後、減圧濃縮し、2-クロロー4-トリフルオロメチルトルエン(23.0g)を褐色油状物として得た。

 $^{1}H-NMR(CDCl_{3})$: 2.43(3H, s), 7.34(1H, d, J=8Hz), 7.42(1H, d, J=8Hz), 7.60(1H, s).

製造例4-2

前記製造例2と同様にして、2-クロロー4-トリフルオロメチルトルエン(10.0g)から2-クロロー4-(トリフルオロメチル)ベンジルブロミド(6.20g)を淡黄色油状物として得た。

 1 H-NMR (CDCl₃): 4.59(2H, s), 7.52(1H, d, J=8Hz), 7.57(1H, d, J=8Hz), 7.67(1H, s).

製造例 5-1

3ークロロー4ーメチルフェノール(2.00g)をN, Nージメチルホルムアミド(10.0ml)に溶解し、炭酸カリウム(2.91g)とヨウ化1ープロピル(2.62g)を添加した。室温で20時間撹拌した後、反応液を減圧濃縮し、水を添加してAcOEtで抽出した。有機層を水、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥した後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン:酢酸エチル=5:1で溶出し、目的物の画分を減圧濃縮して、2ークロロー4ー(1ープロポキシ)トルエン(2.18g)を無色油状物として得た。

¹H-NMR (CDCl₃): 1.02(3H, t, J=7Hz), 1.72-1.85(2H, m), 2.29(3H, s), 3.88(2H, t, J=7Hz), 6.71(1H, dd, J=8, 2Hz), 6.90(1H, d, J=2Hz), 7.09(1H, d, J=8Hz). 製造例 5-2

前記製造例 2 と同様にして、2-クロロ-4-(1-プロポキシ)トルエン(2. 14g)から、2-クロロ-4-(1-プロポキシ)ベンジルブロミド(2. 26g)を淡黄色油状物として得た。

¹H-NMR(CDCl₃): 1.03(3H, t, J=7Hz), 1.75-1.87(2H, m), 3.90(2H, t, J=7Hz), 4.59(2H, s), 6.78(1H, dd, J=8, 2Hz), 6.93(1H, d, J=2Hz), 7.32(1H, d, J=8Hz). 製造例 6-1

前記製造例5-1と同様にして、2-クロロー4-メチルフェノール(10.0g)から2-クロロー4-(1-ペンチルオキシ)トルエン(16.3g)を 淡褐色油状物質として得た。

 $^{1}H-NMR(CDCl_{3}): 0.93(3H, t, J=6Hz), 1.40(4H, m), 1.76(2H, m), 2.29(2H, s),$

3. 90 (2H, t, J=6Hz), 6. 70 (1H, dd, J=8, 2Hz), 6. 90 (1H, d, J=2Hz), 7. 10 (1H, d, J=8Hz).

製造例6-2

前記製造例 2 と同様にして、2-クロロ-4-(1-ペンチルオキシ)トルエン (16.2g)から2-クロロ-4-(1-ペンチルオキシ)ベンジルブロミド (21.9g)を淡黄色固体として得た。

 1 H-NMR (CDC1₃): 0.93 (3H, t, J=6Hz), 1.40 (4H, m), 1.76 (2H, m), 3.93 (2H, t, J=6Hz), 4.58 (2H, s), 6.77 (1H, dd, J=8, 2Hz), 6.92 (1H, d, J=2Hz), 7.32 (1H, d, J=8Hz).

製造例 7-1

3 ークロロー4 ーメチルフェノール(1.00g)のN, Nージメチルホルムアミド(8 m 1)溶液に粉末炭酸カリウム(1.44g)を加え80℃に加熱した。ここにメタンスルホン酸シクロペンチルメチルエステル(1.57g)を加え120℃で3時間攪拌した。反応混合物を室温まで放冷し、水を加えヘキサンで3回抽出した。有機層をまとめて1N水酸化ナトリウム水溶液、水、飽和食塩水で順に洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を留去し、残渣をカラムクロマトグラフィー(シリカゲル、ヘキサン)で精製して2ークロロー4ー((シクロペンチル)メチルオキシ)トルエン(1.46g)を無色油状物として得た。 1 H-NMR(CDCl $_{3}$): 1.22-1.93(8H, m), 2.29(3H, s), 2.34(1H, sept, J=7Hz), 3.78(2H, d, J=7Hz), 6.71(1H, dd, J=8 and 2Hz), 6.91(1H, d, J=2Hz), 7.09(1H, d, J=8Hz). 製造例 7-2

前記製造例2と同様にして、2-クロロ-4-((シクロペンチル)メチルオキシ)トルエン(1.45g)から2-クロロ-4-((シクロペンチル)メチルオキシ)ベンジルブロミド(2.06g)を油状物として得た。

 1 H-NMR (CDC1₃): 1.23-1.92 (8H, m), 2.34 (1H, sept, J=7Hz), 3.81 (2H, d, J=7Hz), 4.59 (2H, s), 6.78 (1H, dd, J=9 and 2Hz), 6.93 (1H, d, J=2Hz), 7.32 (1H, d, J=9Hz).

製造例8-1

前記製造例5-1と同様にして、3-0ロロ-4-メチルフェノール (926 mg) から2-0ロロ-4- ((シ00 (シ00) メチルオキシ) トルエン (1.41g) を無色結晶として得た。

 1 H-NMR (CDCl₃): 0. 95-1. 40 (5H), 1. 64-1. 90 (6H), 2. 29 (3H, s), 3. 70 (2H, d, J=6Hz), 6. 70 (1H, dd, J=8, 2Hz), 6. 89 (1H, d, J=2Hz), 7. 08 (1H, d, J=8Hz).

製造例8-2

前記製造例 2 と同様にして、2-クロロー4-((シクロヘキシル)メチルオキシ)トルエン(1.00g)から2-クロロー4-((シクロヘキシル)メチルオキシ)ベンジルブロミド(1.35g)を淡黄色固体として得た。

 1 H-NMR (CDCl₃) : 0.94-1.40 (5H), 1.63-1.94 (6H), 3.73 (2H, d, J=6Hz), 4.59 (2H, s), 6.79 (1H, dd, J=8, 2Hz), 6.93 (1H, d, J=2Hz), 7.32 (1H, d, J=8Hz).

製造例9

4ーブロモー2ークロロベンジルアルコール (3.56g)、無水トリエチルアミン (3ml)の無水ジクロロメタン (36ml)溶液に窒素気流中、氷冷下メタンスルホニルクロリド (1.4ml)を滴下した。そのまま1時間攪拌後、反応液を水、飽和重曹水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。濾液を濃縮し、4ーブロモー2ークロロー1ー ((メタンスルホニルオキシ)メチル)ベンゼンを淡褐色固体 (4.77g)として得た。

 $^{1}H-NMR(CDCl_{3})$: 3.03(3H, s), 5.29(2H, s), 7.37(1H, d, J=8Hz), 7.47(1H, dd, J=8, 1Hz), 7.60(1H, d, J=1Hz).

Mass (ESI) : m/z 298 (M-1).

製造例10-1

4ーブロモー2ークロロ安息香酸メチルエステル(1.25g)のN, Nージメチルホルムアミド(10ml)溶液に、氷冷下ナトリウムチオメトキシド(459mg)を加えそのまま2時間攪拌した。反応液に1N塩酸を加え生成物をジエチルエーテルで3回抽出した。有機層をまとめて水、飽和食塩水で順に洗浄し、

無水硫酸マグネシウムで乾燥した。溶媒を留去した後、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=10/1)により2-クロロ-4-(メチルチオ)安息香酸メチルエステル(835mg)を無色油状物として得た。 1 H-NMR(CDCl $_{3}$): 2.49(3H, s), 3.90(3H, s), 7.11(1H, d, J=8Hz), 7.23(1H, s), 7.78(1H, d, J=8Hz).

製造例10-2

氷冷下、水素化リチウムアルミニウム(139mg)のテトラヒドロフラン(8ml)懸濁液に2-クロロー4-(メチルチオ)安息香酸メチルエステル(806mg)を滴下し、そのまま1時間攪拌した。反応液をジエチルエーテルで希釈した後、1N塩酸(10ml)を滴下し、生成物をジエチルエーテルで3回抽出した。有機層をまとめて飽和重曹水、飽和食塩水で順に洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を留去し、2-クロロー4-(メチルチオ)ベンジルアルコール(725mg)を無色油状物として得た。

 1 H-NMR (CDCl₃): 1.92(1H, br t, J=7Hz), 2.48(3H, s), 4.73(2H, d, J=7Hz), 7.15(1H, d, J=8Hz), 7.23(1H, s), 7.37(1H, d, J=8Hz).

製造例10-3

前記製造例 9 と同様にして、2-クロロ-4-(メチルチオ)ベンジルアルコール(6 8 7 m g)から2-クロロ-1-((メタンスルホニルオキシ)メチル)-4-(メチルチオ)ベンゼン(1. 0 2 g)を無色油状物として得た。

 1 H-NMR (CDCl₃) : 2.48 (3H, s), 3.00 (3H, s), 5.30 (2H, s), 7.15 (1H, dd, J=8 and 2Hz), 7.26 (1H, d, J=2Hz), 7.38 (1H, d, J=8Hz).

製造例11

前記製造例 9 と同様にして、2-クロロ-4 -ニトロベンジルアルコール(2. 5 g)から 2-クロロ-1 - ((メタンスルホニルオキシ)メチル)-4 -ニトロベンゼン(3. 5 6 g)を褐色結晶として得た。

 $^{1}H-NMR(CDCl_{3})$: 3. 12(3H, s), 5. 40(2H, s), 7. 73(1H, d, J=8Hz), 8. 18(1H, dd, J=2,8Hz), 8. 79(1H, d, J=2Hz).

製造例12-1

4-アミノー2-クロロ安息香酸(10.01g)を12.5%硫酸(400 ml)に70℃に加熱して均一に溶かした後、氷冷した。この懸濁液に8℃以下で亜硝酸ナトリウム水溶液(4.24g/水12ml)を5分間かけて滴下した。5分後この溶液を80℃の水(500ml)中に徐々に注ぐと激しく発泡して赤色溶液になった。反応溶液をさらに80℃で1時間攪拌した。放冷した後、生成物をジエチルエーテルで3回抽出した。有機層をまとめて希塩酸、水、飽和食塩水で順に洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を留去した後、残渣に少量のジイソプロピルエーテルを加えて結晶化させ、2-クロロー4ーヒドロキシ安息香酸(6.32g)を橙色粉末として得た。

 $^{1}H-NMR(DMSO-d_{6})$: 6.79(1H, dd, J=8 and 2Hz), 6.88(1H, d, J=2Hz), 7.77(1H, d, J=8Hz).

Mass (ESI) : m/e 171 (M-H) -.

製造例12-2

2-クロロー4ーヒドロキシ安息香酸(695mg)のN, Nージメチルホルムアミド(3.5ml)溶液に炭酸カリウム(1.67g)および臭化ベンジル(1.73g)を加え室温で14時間攪拌した。反応液に1N塩酸を加え生成物をジエチルエーテルで3回抽出した。有機層をまとめて水、飽和重曹水、飽和食塩水で順に洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を留去した後、ジイソプロピルエーテル/ヘキサンから再結晶し、4ーベンジルオキシー2ークロロ安息香酸ベンジルエステル(1.13g)を淡黄色粉末として得た。

 1 H-NMR (CDCl₃): 5.09(2H, s), 5.32(2H, s), 6.87(1H, dd, J=8 and 2Hz), 7.05(1H, d, J=2Hz), 7.29-7.50(10H, m), 7.91(1H, d, J=8Hz).

Mass (ESI) : m/e 353 (M+H) +.

製造例12-3

4-ベンジルオキシー2-クロロ安息香酸ベンジルエステル (1.12g) にエタノール (8.8ml) 、1,4-ジオキサン (2.2ml) 、1N水酸化ナ

トリウム水溶液 (4.7 ml) を加え70℃で1.5時間攪拌した。溶媒を留去した後、残渣に水を加えて溶かし、ジエチルエーテルで洗浄した。この水層を1 N塩酸で酸性にし、析出した沈殿を濾取して4-ベンジルオキシー2-クロロ安 息香酸 (810 mg) を淡黄色粉末として得た。

 1 H-NMR (DMSO- 1 d₆): 5. 20 (2H, s), 7. 06 (1H, dd, J=8 and 2Hz), 7. 18 (1H, d, J=2Hz), 7. 29-7. 50 (5H, m), 7. 82 (1H, d, J=8Hz).

Mass (ESI) : m/e 261 (M-H) -.

製造例12-4

窒素雰囲気下で4ーベンジルオキシー2ークロロ安息香酸(788mg)のテトラヒドロフラン(7.9ml)溶液に、室温でボラン・ジメチルスルフィド錯体(10.0M、0.6ml)を滴下し、2.5時間加熱還流した。反応液を室温まで放冷した後、1N塩酸(1.5ml)を注意深く滴下し、30分間攪拌した。反応液に水を加え生成物を酢酸エチルで3回抽出した。有機層をまとめて飽和重曹水、飽和食塩水で順に洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を留去し、4ーベンジルオキシー2ークロロベンジルアルコール(778mg)を白色粉末として得た。

 1 H-NMR(CDCl₃): 1.83(1H, br t, J=7Hz), 4.70(2H, d, J=7Hz), 5.05(2H, s), 6.88(1H, dd, J=8 and 2Hz), 7.01(1H, d, J=2Hz), 7.28-7.46(6H, m).

製造例12-5

前記製造例 9 と同様にして、4 ーベンジルオキシー2 ークロロベンジルアルコール(5 2 3 m g)から4 ーベンジルオキシー2 ークロロベンジルクロリド(6 3 9 m g)を無色油状物として得た。

 $^{1}H-NMR(CDCl_{3}): 4.67(2H, s), 5.05(2H, s), 6.87(1H, dd, J=8 and 2Hz), 7.02(1H, d, J= 2Hz), 7.28-7.44(6H, m).$

製造例13-1

4-ブロモー2-クロロベンジルアルコール(14.48g)のN, N-ジメ チルホルムアミド(72ml)溶液に、氷冷下イミダゾール(5.34g)およ

びtertーブチルクロロジフェニルシラン(19.8g)を加え1時間攪拌した。反応液に水を加え生成物をヘキサンで2回抽出した。有機層をまとめて水、飽和重曹水、飽和食塩水の順で洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を留去した後、シリカゲルカラムクロマトグラフィー(ヘキサン)により4ーブロモー1ー((tertーブチルジフェニルシロキシ)メチル)-2-クロロベンゼン(29.22g)を無色油状物として得た。

¹H-NMR(CDCl₃): 1.10(9H, s), 4.75(2H, s), 7.32-7.50(8H, m), 7.55-7.72(5H, m). 製造例 1 3 - 2

窒素気流中、4- プロモー1-((tert- プチルジフェニルシロキシ) メチル) -2- クロロベンゼン (8.65g) のテトラヒドロフラン (22m1) 溶液に-75 $\mathbb C$ で1- ブチルリチウム/ヘキサン溶液 (1.54M、13.5m 1) を加え 15 分間攪拌した。反応溶液をいったん 10 $\mathbb C$ まで昇温した後、再び-75 $\mathbb C$ に冷却し、1- ホルミルピペリジン (2.55g) を 10 分間かけて滴下した。その後反応溶液を室温まで 3 時間かけて昇温した。反応溶液に塩化アンモニウム水溶液を加え、生成物をヘキサンで 2 回抽出した。有機層をまとめて希塩酸、飽和重曹水、飽和食塩水で順に洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を留去した後、シリカゲルカラムクロマトグラフィー (ヘキサン/酢酸エチル=40/1) により 4-((tert- ブチルジフェニルシロキシ) メチル) -3- クロロベンズアルデヒド (3.26g) を淡黄色油状物として得た。 1 $^$

製造例13-3

4-((tert-ブチルジフェニルシロキシ)メチル)-3-クロロベンズアルデヒド(3.24g)のエタノール(32ml)懸濁液に、氷冷下で水素化ホウ素ナトリウム(149mg)を加え室温で3時間攪拌した。反応混合物を約半量まで濃縮した後、水を加え生成物をジイソプロピルエーテルで2回抽出した。

有機層をまとめて飽和重曹水、飽和食塩水で順に洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を留去した後、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=5/1)で精製し、4-((tert-ブチルジフェニルシロキシ)メチル)-3-クロロベンジルアルコール(3.08g)を無色油状物として得た。

¹H-NMR (CDCl₃): 1.12 (9H, s), 1.70 (1H, br t, J=5Hz), 4.69 (2H, d, J=5Hz), 4.83 (2H, s), 7.27-7.50 (8H, m), 7.65-7.78 (5H, m).

製造例13-4

¹H-NMR (CDCl₃): 1.12(9H, s), 2.97(3H, s), 4.83(2H, s), 5.21(2H, s), 7.33-7.50(8H, m), 7.63-7.75(4H, m), 7.77-7.83(1H, m).

製造例13-5

フェノール(969mg)のN, Nージメチルホルムアミド(27ml)溶液に粉末炭酸カリウム(1.92g)を加え5分間室温で攪拌した後、1-((tertーブチルジフェニルシロキシ)メチル)-2-クロロー4-((xタンスルホニルオキシ)メチル)ベンゼン(3.39g)を加え100℃で3時間攪拌した。反応混合物を室温まで放冷し、水を加えヘキサンで2回抽出した。有機層をまとめて水、飽和食塩水で順に洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を留去し、残渣をカラムクロマトグラフィー(シリカゲル,ヘキサン/酢酸エチル=50/1)で精製して1-((xert-ブチルジフェニルシロキシ)メチル)-2-クロローx4-(x0) を無色油状物として得た。

¹H-NMR (CDCl₃): 1.12(9H, s), 4.83(2H, s), 5.04(2H, s), 6.93-7.04(3H, m), 7.25-7.50(10H, m), 7.65-7.73(4H, m), 7.73-7.80(1H, m).

製造例13-6

水冷下1-((tert-ブチルジフェニルシロキシ)メチル)-2-クロロー4-(フェノキシメチル)ベンゼン(2.84g)のテトラヒドロフラン(14ml)溶液に、フッ化テトラブチルアンモニウム/テトラヒドロフラン溶液(1.0 M、7.0ml)を加え1.5時間攪拌した。反応液に水を加え生成物を酢酸エチルで2回抽出した。有機層をまとめて1N塩酸、飽和重曹水、飽和食塩水で順に洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を留去した後、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=5/1)で精製し、2-クロロー4-(フェノキシメチル)ベンジルアルコール(1.38g)を白色粉末として得た。

¹H-NMR (CDCl₃): 1.92 (1H, br t, J=6Hz), 4.79 (2H, d, J=6Hz), 5.05 (2H, s), 6.8 8-7.06 (3H, m), 7.23-7.40 (3H, m), 7.42-7.57 (2H, m).

製造例13-7

前記製造例9と同様にして、2-クロロ-4-(フェノキシメチル)ベンジルアルコール(1.36g)から2-クロロ-1-((メタンスルホニルオキシ)メチル)-4-(フェノキシメチル)ベンゼン(1.83g)を油状物として得た。

¹H-NMR (CDCl₃): 3.03(3H, s), 5.07(2H, s), 5.35(2H, s), 6.91-7.04(3H, m), 7. 25-7.42(3H, m), 7.44-7.67(2H, m).

製造例14-1

前記製造例12-4と同様にして、3-クロロー4-メチル安息香酸(25.0g)から3-クロロー4-メチルベンジルアルコール(23.0g)を無色油 状物質として得た。

 1 H-NMR (CDCl₃) : 2. 36(3H, s), 4. 65(2H, s), 7. 14(1H, d, J=8Hz), 7. 23(1H, d, J=8Hz), 7. 36(1H, s).

製造例14-2

3-クロロ-4-メチルベンジルアルコール (2.00g) とトリエチルアミ

ン(8.9ml)のジメチルスルホキサイド(10ml)溶液に、水冷下で三酸化硫黄ーピリジン錯体(4.47g)を加え、室温で3時間攪拌した。反応混合物を氷水にあけてジエチルエーテルで抽出した。有機層を1N塩酸、飽和食塩水、炭酸水素ナトリウム飽和水溶液で洗浄し、硫酸マグネシウムで乾燥した後、減圧下に濃縮乾固して3-クロロー4-メチルベンズアルデヒド(1.40g)を淡黄色油状物質として得た。

 1 H-NMR (CDCl₃) : 2.46 (3H, s), 4.65 (2H, s), 7.40 (1H, d, J=8Hz), 7.68 (1H, d, J=8Hz), 9.92 (1H, s).

製造例14-3

後記製造例15-2と同様にして、3-2ロロー4-メチルベンズアルデヒド (1.40g) とベンジルホスホン酸ジエチルエステル (2.27g) から (E) -2-20ロロー4- (2-フェニルエテニル) トルエン (1.55g) を白色粉末として得た。

 $^{1}H-NMR(CDCl_{3})$: 2.38(3H, s), 7.00(1H, d, J=16Hz), 7.08(1H, d, J=1 6Hz), 7.18-7.53(8H).

製造例14-4

前記製造例2と同様にして、(E) -2-クロロ-4-(2-フェニルエテニル)トルエン(1.35g)から(E) -2-クロロ-4-(2-フェニルエテニル)ベンジルブロミド(309mg)を白色粉末として得た。

 1 H-NMR (CDCl₃): 4.61 (2H, s), 7.01 (1H, d, J=16Hz), 7.14 (1H, d, J=16Hz), 7.24-7.57 (8H).

製造例15-1

5-クロロー2ーメチルイミダゾールー4ーカルバルデヒド(433mg)のN,N-ジメチルホルムアミド(4.3ml)溶液に、氷冷下で粉末炭酸カリウム(616mg)および2-クロロー4ーヨードベンジルブロミド(1.2当量)を加え室温で2.5時間攪拌した。この反応混合物に水、飽和食塩水を加え生成物を酢酸エチルで2回抽出した。有機層をまとめて飽和食塩水で洗浄し、無水硫

酸マグネシウムで乾燥した。溶媒を留去した後、シリカゲルカラムクロマトグラフィー (ヘキサン/酢酸エチル=5/1) で精製して4-クロロ-1-(2-クロロ-4-ヨードベンジル)-2-メチルイミダゾール-5-カルバルデヒド(1.01g) を白色粉末として得た。

 $^{1}H-NMR(CDC1_{3})$: 2.33(3H, s), 5.56(2H, s), 6.21(1H, d, J=8Hz), 7.50(1H, dd, J=8 and 2Hz), 7.78(1H, d, J=2Hz), 9.75(1H, s).

Mass(ESI) : m/e 395(M+H)+.

製造例15-2

 $4-\rho$ ロロー $1-(2-\rho$ ロロー4-ヨードベンジル)-2-メチルイミダゾールー5-カルバルデヒド(1.01g)のテトラヒドロフラン(10m1)溶液に、(トリフェニルホスホラニリデン)酢酸メチル(1.27g)を加え4時間加熱還流した。溶媒を留去した後、シリカゲルカラムクロマトグラフィー(2+ キサン/酢酸エチル=3/1)で精製して(2-3-(4-0ロロ-1-2-2-7ロペン酸メチルエステル(2+3-1のペン酸メチルエステル(2+3-1のペン酸メチルエステル(2+3-1のペン酸メチルエステル(2+3-1のペン酸メチルエステル(2+3-1のペン酸メチルエステル(2+3-1のペン酸メチルエステル(2+3-1のペン酸メチルエステル(2+3-1のペン酸メチルエステル(2+3-1のペン酸メチルエステル(2+3-1のペン酸メチルエステル(2+3-1のペン酸メチルエステル(2+3-1のペン酸メチルエステル(2+3-1のペン酸メチルエステル(2+3-1のペン酸メチルエステル(2+3-1のペン酸メチルエステル(2+3-1のように対して2+3-1のよ

 1 H-NMR(CDCl₃): 2.33(3H, s), 3.75(3H, s), 5.15(2H, s), 6.17(1H, d, J=8Hz), 6.49(1H, d, J=16Hz), 7.28(1H, d, J=16Hz), 7.53(1H, dd, J=8 and 2Hz), 7.81(1H, d, J=2Hz).

Mass (ESI) : m/e 451 (M+H) +.

製造例15-3

窒素雰囲気下でテトラキス(トリフェニルホスフィン)パラジウム(0)(8 9 m g)、(E) $-3-(4-\rho -1-(2-\rho -1-(2-\rho -4-3-) -1-(2-\rho -4-3-)$

ムで乾燥した。溶媒を留去した後、シリカゲルカラムクロマトグラフィー(クロロホルム/酢酸エチル=10/1)で精製して(E)-3-(4-クロロ-1-(2-クロロ-4-(2-フリル)ベンジル)-2-メチルイミダゾール-5-イル)-2-プロペン酸メチルエステル(336mg)を淡黄色粉末として得た。 1 H-NMR(CDCl $_3$): 2. 36(3H, s), 3. 74(3H, s), 5. 22(2H, s), 6. 44-6. 50(2H, m), 6. 50(1H, d, J=16Hz), 6. 68(1H, d, J=3Hz), 7. 34(1H, d, J=16Hz), 7. 43-7. 50(2H, m), 7. 76(1H, d, J=2Hz).

Mass (ESI) : m/e 391 (M+H) +.

製造例15-4

(E) -3-(4-クロロ-1-(2-クロロ-4-(2-フリル) ベンジル) -2-メチルイミダゾール-5-イル) -2-プロペン酸メチルエステル (319mg) の1, 4-ジオキサン (1.6ml) 懸濁液に1N水酸化ナトリウム水溶液 (1.2ml) を加え50℃で1時間攪拌した。反応混合物を氷冷した後、1N塩酸 (1.2ml) を滴下して中和し、生成物をクロロホルムーメタノール (4/1) で3回抽出した。有機層をまとめて飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。溶媒を留去して (E) -3-(4-クロロ-1-(2-クロロ-4-(2-フリル) ベンジル) -2-メチルイミダゾールー5-イル) -2-プロペン酸 (310mg) を灰白色粉末として得た。

 1 H-NMR (DMS0- 1 d₆): 2.34(3H, s), 5.41(2H, s), 6.26(1H, d, J=16Hz), 6.58(1H, d, J=8Hz), 6.62(1H, dd, J=3 and 2Hz), 7.09(1H, d, J=3Hz), 7.22(1H, d, J=16Hz), 7.62(1H, dd, J=8 and 2Hz), 7.79(1H, d, J=2Hz), 7.88(1H, d, J=2Hz).

Mass (ESI) : m/e 375 (M-H)-.

製造例16-1

ル) -2 ープロペン酸メチルエステルを黄色油状物(3 3 1 m g)として得た。 1 H-NMR(CDCl₃): 2.36(3H, s), 3.74(3H, s), 5.23(2H, s), 6.47(1H, d, J=8Hz), 6.51(1H, d, J=16Hz), 7.07-7.11(1H, m), 7.29-7.38(3H, m), 7.41(1H, dd, J=2, 8Hz), 7.69(1H, d, J=2Hz).

Mass (ESI) : m/z 407 (M+1).

製造例16-2

前記製造例 15-4と同様にして、(E)-3-(4-0)ロロ-1-(2-0)ロロ-4-(2-0)エニル)ベンジル)-2-メチルイミダゾール-5-イル)-2-プロペン酸メチルエステル(281 mg)から(E)-3-(4-0)ロロ-1-(2-0)ロロ-4-(2-0)エニル)ベンジル)-2-メチルイミダゾール-5-イル)-2-プロペン酸を薄黄色結晶(231 mg)として得た。 1 H-NMR (DMSO-d $_{6}$): 2.34(3H $_{5}$ H $_{5}$ H $_{5}$ H $_{6}$ H $_{7}$ H

Mass (ESI) : m/z 391 (M-1).

製造例17-1

(E) -3-(4-クロロー1-(2-クロロー4-ヨードベンジル) -2-メチルイミダゾール-5-イル) -2-プロペン酸メチルエステル(360mg)、ジクロロビス(トリフェニルホスフィン)パラジウム(II) (28mg)、ヨウ化銅(7.6mg)の混合物に、窒素気流中、フェニルアセチレン(326mg)のジイソプロピルアミン(20ml)溶液を加え、5時間加熱還流した。反応液を放冷後、水を加えクロロホルムで二回抽出し、合わせた有機層を飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧濾過し、濾液を濃縮して得られた粗生成物を、フラッシュシリカゲルカラムクロマトグラフィー(シリカゲル10g)に付し、ヘキサン/酢酸エチル=5/1~1-1の溶出画分から(E) -3-(4-クロロ-1-(2-クロロー4-(フェニルエチニル)ベンジル) -2-メチルイミダゾール-5-イル)

-2-プロペン酸メチルエステルを褐色アモルファス(3 3 1 m g)として得た。 1 H-NMR(CDCl₃): 2.35(3H, s), 3.75(3H, s), 5.23(2H, s), 6.45(1H, d, J=8Hz), 6.50(1H, d, J=16Hz), 7.27-7.40(5H, m), 7.48-7.56(2H, m), 7.63(1H, s). Mass(ESI): m/z 425(M+1).

製造例17-2

 1 H-NMR(CDCl₃): 2.36(3H, s), 5.23(2H, s), 6.45(1H, d, J=8Hz), 6.48(1H, d, J=16Hz), 7.32-7.41(5H, m), 7.48-7.55(2H, m), 7.64(1H, d, J=2Hz).

Mass (ESI) : m/z 409 (M-1).

製造例18-1

前記製造例15-1と同様にして、4-クロロー2ーメチルイミダゾール-5-カルバルデヒド(200mg)と4-ブロモー2ークロロー1ー((メダンスルホニルオキシ)メチル)ベンゼン(456mg)から、1-(4-ブロモー2ークロロベンジル)-4-クロロー2ーメチルイミダゾールー5ーカルバルデヒド(430mg)を淡黄色結晶として得た。

 $^{1}H-NMR(CDCl_{3}): 2.33(3H, s), 5.56(2H, s), 6.38(1H, d, J=8Hz), 7.31(1H, dd, J=8, 2Hz), 7.60(1H, d, J=2Hz), 9.75(1H, s).$

製造例18-2

前記製造例15-2と同様にして、1-(4-7)ロモー2-0ロロベンジル) -4-0ロロー2-メチルイミダゾールー5-カルバルデヒド (394 mg) と (トリフェニルホスホラニリデン)酢酸メチル (606 mg) から、(E)-3-0 -(1-(4-7)ロモー2-00 ロロベンジル)-4-00 ロロー2-メチルイミダ

ゾールー5ーイル) -2-プロペン酸メチルエステル (372mg) を無色結晶 として得た。

¹H-NMR(CDCl₃): 2.33(3H, s), 3.75(3H, s), 5.16(2H, s), 6.33(1H, d, J=8Hz), 6.50(1H, d, J=15Hz), 7.26(1H, d, J=2Hz), 7.34(1H, dd, J=8, 2Hz), 7.63(1H, d, J=2Hz).

製造例18-3

前記製造例15-4と同様にして、(E) -3-(1-(4-))ロロベンジル) -4-クロロ-2-メチルイミダゾール-5-イル) -2-プロペン酸メチルエステル (355 m g) から、(E) -3-(1-(4-))ロロベンジル) -4-クロロ-2-メチルイミダゾール-5-イル) -2-プロペン酸 (338 m g) を淡黄色結晶として得た。

¹H-NMR (DMSO-d₆) : 2.31 (3H, s), 5.38 (2H, s), 6.26 (1H, d, J=15Hz), 6.45 (1H, d, J=8Hz), 7.21 (1H, d, J=15Hz), 7.53 (1H, dd, J=8, 2Hz), 7.87 (1H, d, J=2Hz). 製造例19-1

前記製造例 15-1 と同様にして、5-0 ロロー 2- メチルイミダゾールー 4 ーカルバルデヒド(600 m g)と 2- クロロー 4- フェニルベンジルブロミド(1.4 g)から 4- クロロー 1- (2- クロロー 4- フェニルベンジル) -2 ーメチルイミダゾールー 5- カルバルデヒド(1.23 g)を無色油状物質として得た。

 1 H-NMR (CDCl₃) : 2. 36 (3H, s), 5. 67 (2H, s), 6. 56 (1H, d, J=8Hz), 7. 35-7. 55 (6H), 7. 65 (1H, s), 9. 80 (1H, s).

製造例19-2

前記製造例 15-2と同様にして、4-2ロロー1-(2-2)ロロー4-7ェニルベンジル) -2ニメチルイミダゾールー5ニカルバルデヒド(1.23g)から(E) -3ー〔4-2ロロー1-(2-2ロロー4-2エニルベンジル) -2-メチルイミダゾールー5-イル〕 -2-プロペン酸メチルエステル(1.13g)を白色粉末として得た。

 1 H-NMR (CDC1₃) : 2.37 (3H, s), 3.74 (3H, s), 5.25 (2H, s), 6.46-6.57 (2H), 7.30-7.55 (7H), 7.68 (1H, s).

製造例19-3

前記製造例15-4と同様にして、(E) $-3-[4-\rho uu-1-(2-\rho uu-4-\eta uu-1-(2-\eta uu-4-\eta uu-4-\eta$

 1 H-NMR(DMSO- 1 G₆): 2.35(3H, s), 5.45(2H, s), 6.30(1H, d, J=16Hz), 6.58(1H, d, J=8Hz), 7.25(1H, d, J=16Hz), 7.36-7.52(3H), 7.62(1H, d, J=8Hz), 7.69(2H, d, J=8Hz), 7.86(1H, s).

製造例20-1

前記製造例 15-1と同様にして、4-クロロー2-メチルイミダゾールー5-カルバルデヒド(200mg)と2-クロロー4-(1-プロポキシ)ベンジルブロミド(474mg)から、4-クロロー1-(2-クロロー4-(1-プロポキシ)ベンジル)-2-メチルイミダゾールー5-カルバルデヒド(376mg)を淡黄色結晶として得た。

¹H-NMR (CDCl₃): 1.02(3H, t, J=7Hz), 1.73-1.85(2H, m), 2.32(3H, s), 3.87(2H, t, J=7Hz), 5.57(2H, s), 6.46(1H, d, J=8Hz), 6.70(1H, dd, J=8, 2Hz), 6.96(1H, d, J=2Hz), 9.77(1H, s).

製造例20-2

前記製造例15-2と同様にして、4-0ロロ-1-(2-0ロロ-4-(1-0)ロポキシ)ベンジル)-2-メチルイミダゾール-5-カルバルデヒド(356 mg)と(トリフェニルホスホラニリデン)酢酸メチル(546 mg)から、(E) -3-(4-01ロー1-(2-0)1ロー4-(1-0)1ロポキシ)ベンジル)-2-メチルイミダゾール-5-イル)-2-0プロペン酸メチルエステル(34 mg)を無色結晶として得た。

¹H-NMR (CDCl₃): 1.02(3H, t, J=7Hz), 1.74-1.85(2H, m), 2.34(3H, s), 3.75(3H, s), 3.89(2H, t, J=7Hz), 5.15(2H, s), 6.37(1H, d, J=8Hz), 6.49(1H, d, J=15Hz), 6.71(1H, dd, J=8, 2Hz), 6.99(1H, d, J=2Hz), 7.34(1H, d, J=15Hz).

製造例20-3

前記製造例 15-4と同様にして、(E)-3-(4-0)ロロー1-(2-0)ロロー4-(1-0)ロポキシ)ベンジル)-2-メチルイミダゾールー5-イル)-2-プロペン酸メチルエステル(332mg)から、(E)-3-(4-0)ロー1-(2-0)ロロー4-(1-0)ロー1-(2-0)ロロー4-(1-0)ロポキシ)ベンジル)-2-メチルイミダゾールー1-(2-0)ロー1-(2

製造例21-1

前記製造例 1 5 - 1 と同様にして、5 - クロロー 2 - メチルイミダゾールー 4 - カルバルデヒド (200 mg) と 2 - クロロー 4 - (1 - ペンチルオキシ) ベンジルブロミド (378 mg) から 4 - クロロー 1 - [2 - クロロー 4 - (1 - ペンチルオキシ) ベンジル] - 2 - メチルイミダゾールー 5 - カルバルデヒド (460 mg) を淡黄色油状物質として得た。

 1 H-NMR(CDCl₃): 0.93(3H, t, J=6Hz), 1.40(4H, m), 1.76(2H, m), 2.32(3H, s), 3.90(2H, t, J=6Hz), 5.57(2H, s), 6.45(1H, d, J=8Hz), 6.70(1H, dd, J=8, 2Hz), 6.95(1H, d, J=2Hz), 9.76(1H, s).

製造例21-2

前記製造例15-2と同様にして、4-クロロ-1-(2-クロロ-4-(1-ペンチルオキシ)ベンジル)-2-メチルイミダゾール-5-カルバルデヒド(439mg)から(E)-3-(4-クロロ-1-(2-クロロ-4-(1-ペンチルオキシ)ベンジル)-2-メチルイミダゾール-5-イル)-2-プロペン酸メチルエステルを乳白色固体(427mg)として得た。

 1 H-NMR (CDCl₃): 0.93 (3H, t, J=7Hz), 1.32-1.49 (4H, m), 1.71-1.83 (2H, m), 2.34 (3H, s), 3.75 (3H, s), 3.92 (2H, t, J=7Hz), 5.15 (2H, s), 6.37 (1H, d, J=8Hz), 6.49 (1H, d, J=16Hz), 6.70 (1H, dd, J=2, 8Hz), 6.99 (1H, d, J=2Hz), 7.34 (1H, d, J=16Hz).

Mass (ESI) : m/z 411 (M+1).

製造例21-3

前記製造例15-4と同様にして、(E)-3-(4-2)ロロ-1-(2-2)ロロ-4-(1-2)ペンチルオキシ)ベンジル)-2-3 チルイミダゾール-5-4 イル)-2-3ロペン酸メチルエステル(403 mg)から(E)-3-(4-2)0ロロ-1-(2-2)1ロロ-4-(1-2)1ルオキシ)ベンジル)-2-31ルイミダゾール-5-41ル)-2-32の酸を薄黄色結晶(370 mg)として得た。

 1 H-NMR (CDCl₃) : 0.92(3H, t, J=7Hz), 1.30-1.50(4H, m), 1.70-1.83(2H, m), 2.36(3H, s), 3.92(2H, t, J=7Hz), 5.16(2H, s), 6.38(1H, d, J=8Hz), 6.47(1H, d, J=16Hz), 6.71(1 H, dd, J=2, 8Hz), 6.99(1H, d, J=2Hz), 7.40(1H, d, J=16Hz). Mass(ESI) : m/z 395(M-1).

製造例22-1

前記製造例15-1と同様にして、5-クロロー2-メチルイミダゾール-4-カルバルデヒド(300mg)と2-クロロー4-((シクロペンチル)メチルオキシ)ベンジルブロミド(764mg)から4-クロロー1-(2-クロロー4-((シクロペンチル)メチルオキシ)ベンジル)-2-メチルイミダゾールー5-カルバルデヒド(608mg)を無色油状物として得た。

¹H-NMR(CDCl₃): 1.22-1.92(8H, m), 2.32(3H, s), 2.33(1H, sept, J=7Hz), 3.78(2H, d, J=7Hz), 5.57(2H, s), 6.45(1H, d, J=8Hz), 6.70(1H, dd, J=9 and 2Hz), 6.96(1H, d, J=2Hz), 9.77(1H, s).

Mass (ESI) : m/e 367 (M+H) +.

製造例22-2

前記製造例 15-2と同様にして、4-2000-1-(2-2000-4-((シクロペンチル)メチルオキシ)ベンジル)-2-メチルイミダゾール-5-カルバルデヒド(577mg)と(トリフェニルホスホラニリデン)酢酸メチル(788mg)から(E)-3-(4-2000-1-(2-2000-4-((シクロペンチル)メチルオキシ)ベンジル)-2-メチルイミダゾール-5-4ル)-2ープロペン酸メチルエステル(563mg)を白色粉末として得た。「H-NMR(CDCl₃): 1.24-1.92(8H, m), 2.34(3H, s), 2.34(1H, sept, J=7Hz), 3.74(3H, s), 3.79(2H, d, J=7Hz), 5.15(2H, s), 6.37(1H, d, J=8Hz), 6.49(1H, d, J=16Hz), 6.71(1H, dd, J=8 and 3Hz), 6.99(1H, d, J=3Hz), 7.34(1H, d, J=16Hz). Mass(ESI): m/e 423(M+H)+.

製造例22-3

前記製造例15-4と同様にして、(E) $-3-(4-\rho uu-1-(2-\rho uu-4-(0)\rho uu))$ メチルオキシ) ベンジル) -2-メチルイミダ ゾール-5-イル) -2-プロペン酸メチルエステル (535mg) から (E) $-3-(4-\rho uu-1-(2-\rho uu-4-(0)\rho uu))$ メチルオキシ) ベンジル) -2-メチルイミダゾール-5-イル) -2-プロペン酸 (532mg) を白色粉末として得た。

 1 H-NMR(CDCl₃): 1.23-1.92(8H, m), 2.33(1H, sept, J=7Hz), 2.35(3H, s), 3.79(2H, d, J=7Hz), 5.15(2H, s), 6.37(1H, d, J=8Hz), 6.46(1H, d, J=16Hz), 6.71(1H, dd, J=8 and 2Hz), 6.99(1H, d, J=2Hz), 7.40(1H, d, J=16Hz).

Mass(ESI) : m/e 407(M-H) -.

製造例23-1

前記製造例15-1と同様にして、5-クロロ-2-メチルイミダゾール-4-カルバルデヒド(200 m g)と2-クロロ-4-((シクロヘキシル)メチルオキシ)ベンジルブロミド(659 m g)から4-クロロ-1-(2-クロロ-4-((シクロヘキシル)メチルオキシ)ベンジル)-2-メチルイミダゾール-5-カルバルデヒドを黄色油状物(410 m g)として得た。 1 H-NMR (CDC 1_3):

0.95-1.10(2H, m), 1.15-1.39(4H, m), 1.62-1.89(5H, m), 2.32(3H, s), 3.70(2H, d, J=7Hz), 5.57(2H, s), 6.45(1H, d, J=8Hz), 6.69(1H, dd, J=2, 8Hz), 6.95(1H, d, J=2Hz), 9.76(1H, s).

Mass (ESI) : m/z 381 (M+1).

製造例23-2

前記製造例15-2と同様にして、4-クロロ-1-(2-クロロ-4-((シクロヘキシル)メチルオキシ)ベンジル)-2-メチルイミダゾール-5-カルバルデヒド(405 m g)から(E)-3-(4-クロロ-1-(2-クロロ-4-((シクロヘキシル)メチルオキシ)ベンジル)-2-メチルイミダゾール-5-イル)-2-プロペン酸メチルエステルを黄色油状物(419 m g)として得た。

¹H- NMR (CDCl₃): 0.95-1.11 (2H, m), 1.15-1.38 (4H, m), 1.63-1.89 (5H, m), 2.34 (3H, s), 3.71 (2H, d, J=7Hz), 3.74 (3H, s), 5.15 (2H, s), 6.36 (1H, d, J=8Hz), 6.49 (1H, d, J=16Hz), 6.70 (1H, dd, J=2, 8Hz), 6.98 (1H, d, J=2Hz), 7.34 (1H, d, J=16Hz).

Mass(ESI) : m/z 437(M+1).

製造例23-3

 1 H-NMR(CDCl₃): 0.95-1.10(2H, m), 1.15-1.38(4H, m), 1.64-1.89(5H, m), 2.35(3H, s), 3.71(2H, d, J=7Hz), 5.16(2H, s), 6.33(1H, d, J=8Hz), 6.46(1H, d, J=16Hz), 6.70(1H, dd, J=2, 8Hz), 7.00(1H, d, J=2Hz), 7.40(1H, d, J=16Hz). Mass(ESI): m/z 421(M-1).

製造例24-1

前記製造例15-1と同様にして、5-0ロロ-2-メチルイミダゾール-4-カルバルデヒド(200mg)と4-ベンジルオキシー2-0ロロベンジルクロリド(480mg)から1-(4-ベンジルオキシー2-0ロロベンジル)-4-0ロロ-2-メチルイミダゾール-5-カルバルデヒドを黄色油状物(410mg)として得た。

 1 H-NMR(CDCl₃) : 2.32(3H, s), 5.02(2H, s), 5.57(2H, s), 6.47(1H, d, J=8Hz), 6.78(1H, dd, J=2, 8Hz), 7.05(1H, d, J=2Hz), 7.30-7.45(5H, m), 9.76(1H, s). Mass(ESI) : m/z 375(M+1).

製造例24-2

前記製造例15-2と同様にして、1-(4-ベンジルオキシ-2-クロロベンジル) -4-クロロー2-メチルイミダゾールー5-カルバルデヒド(389 mg)から(E) <math>-3-(1-(4-ベンジルオキシ-2-クロロベンジル)-4-クロロー2-メチルイミダゾールー5-イル) -2-プロペン酸メチルエステルを無色油状物(384mg)として得た。

¹H-NMR (CDCl₃): 2.33(3H, s), 3.75(3H, s), 5.03(2H, s), 5.15(2H, s), 6.38(1H, d, J=8Hz), 6.50(1H, d, J=16Hz), 6.79(1H, dd, J=2, 8Hz), 7.08(1H, d, J=2Hz), 7.33(1H, d, J=16Hz), 7.31-7.43(5H, m).

Mass (ESI) : m/z 431 (M+1).

製造例24-3

前記製造例15-4と同様にして、(E) -3-(1-(4-ベンジルオキシ-2-クロロベンジル) -4-クロロ-2-メチルイミダゾール-5-イル) -2-プロペン酸メチルエステル(<math>375mg)から(E) -3-(1-(4-ベンジルオキシ-2-クロロベンジル) -4-クロロ-2-メチルイミダゾール-5-イル) -2-プロペン酸を黄色結晶(<math>296mg)として得た。

 1 H-NMR (CDC1₃): 2.35(3H, s), 5.03(2H, s), 5.16(2H, s), 6.40(1H, d, J=8Hz), 6.47(1H, d, J=16Hz), 6.80(1H, dd, J=2, 8Hz), 7.09(1H, d, J=2Hz), 7.30-7.45(6H,

m).

Mass (ESI) : m/z 415 (M-1).

製造例 2 5 - 1

前記製造例15-1と同様にして、5-クロロ-2-メチルイミダゾール-4-カルバルデヒド(200mg)と2-クロロ-1-((メタンスルホニルオキシ)メチル)-4-(メチルチオ)ベンゼン(379mg)から4-クロロ-1-(2-クロロ-4-(メチルチオ)ベンジル)-2-メチルイミダゾール-5-カルバルデヒドを無色油状物(344mg)として得た。

 1 H-NMR(CDCl₃): 2.32(3H, s), 2.46(3H, s), 5.58(2H, s), 6.43(1H, d, J=8Hz), 7.03(1H, dd, J=2, 8Hz), 7.26(1H, overlapped with CDCl₃), 9.76(1H, s). Mass(ESI): m/z 315(M+1).

製造例25-2

前記製造例 15-2 と同様にして、4-2 ロロー 1-(2-2) ロロー 4-(x+2) ボンジル) -2-x+2 ボンジールー 5-x ボンジル) -2-x+2 ボンジールー 5-x+2 で 2-x+2 ボンジル) -2-x+2 ボンジールー 2-x+2 ボンジール 2-x+2 ボンジー 2-x+2 ボンジール 2-x+2 ボンジー 2-x+2 ボンジール 2-x+2 ボンジール 2-x+2 ボンジール 2-x+2 ボンジール 2-x+2 ボンジール 2-x+2 ボンジール

 1 H-NMR (CDCl₃) : 2.34(3H, s), 2.47(3H, s), 3.75(3H, s), 5.17(2H, s), 6.36(1H, d, J=8Hz), 6.49(1H, d, J=16Hz), 7.04(1H, dd, J=2, 8Hz), 7.30(1H, d, J=2Hz), 7.32(1H, d, J=16Hz).

Mass(ESI) : m/z 371(M+1).

製造例 2 5 - 3

前記製造例 15-4 と同様にして、(E)-3-(4-0) ロロー 1-(2-0) ロロー 4-(3) ベンジル)-2-3 チルイミダゾールー 5-4 ル)-2-3 ロペン酸メチルエステル(374 mg)から(E)-3-(4-0) ロロー 1-(2-0) ロロー 4-(3) ベンジル)-2-3 チルイミダゾールー 5-4 ル)-2-3 ロペン酸を薄黄色結晶(305 mg)として得た。

 1 H-NMR (CDCl₃) : 2. 35 (3H, s), 2. 47 (3H, s), 5. 18 (2H, s), 6. 38 (1H, d, J=8Hz), 6. 47 (1H, d, J=16Hz), 7. 05 (1H, dd, J=2, 8Hz), 7. 30 (1H, d, J=2Hz), 7. 37 (1H, d, J=16Hz).

Mass(ESI) : m/z 357(M+1).

製造例26-1

前記製造例15-1と同様にして、5-クロロー2-メチルイミダゾールー4-カルバルデヒド(100mg)と2-クロロー4-(トリフルオロメチル)ベンジルブロミド(378mg)から4-クロロー1-(2-クロロー4-(トリフルオロメチル)ベンジル)-2-メチルイミダゾール-5-カルバルデヒド(189mg)を淡黄色固体として得た。

 1 H-NMR (CDCl₃) : 2.35(3H, s), 5.65(2H, s), 6.60(1H, d, J=8Hz), 7.45(1H, d, J=8Hz), 7.71(1H, s), 9.76(1H, s).

Mass(ESI) : m/e 337(M)+.

製造例26-2

前記製造例15-2と同様にして、4-2ロロ-1-(2-2)ロロ-4-(トリフルオロメチル)ベンジル)-2-メチルイミダゾール-5-カルバルデヒド (185 m g) から (E) -3-[4-20ロロ-1-(2-2)1ロロー4-(トリフルオロメチル)ベンジル)-2-メチルイミダゾール-5-イル〕-2-プロペン酸エチルエステル(207 m g)を無色油状物質として得た。

 1 H-NMR (CDCl₃): 1. 30 (3H, t, J=6Hz), 2. 35 (3H, s), 4. 20 (2H, q, J=6Hz), 5. 36 (2H, s), 6. 54 (1H, d, J=16Hz), 6. 59 (1H, d, J=8Hz), 7. 26 (1H, d, J=16Hz), 7. 48 (1H, d, J=8Hz), 7. 75 (1H, s).

Mass (ESI) : m/e 408 (M+H) +.

製造例26-3

前記製造例15-4と同様にして、(E) $-3-(4-\rho uu-1-(2-\rho uu-4-(-1))$ でンジル)-2-メチルイミダゾール-5-イル)-2-プロペン酸エチルエステル (203mg)から (E)-3-(4-

クロロー1-(2-)ロロー4-(トリフルオロメチル)ベンジル)-2-メチルイミダゾール-5-イル)-2-プロペン酸を無色結晶(144 mg)として得た。

 1 H-NMR (CDCl₃) : 2.36 (3H, s), 5.26 (2H, s), 6.49 (1H, d, J=16Hz), 6.60 (1H, d, J=8Hz), 7.33 (1H, d, J=16Hz), 7.49 (1H, d, J=8Hz), 7.75 (1H, s).

Mass(ESI) : m/z 379(M+1).

製造例27-1

前記製造例 15-1 と同様にして、5-0 ロロー 2-メチルイミダゾールー4ーカルバルデヒド(216 m g)と 2-0 ロロー 1-((メタンスルホニルオキシ)メチル)ー4ー(フェノキシメチル)ベンゼン(605 m g)から 4-0 ロー 1-(2-0 ロロー 4-(フェノキシメチル)ベンジル)-2-メチルイミダゾールー5-カルバルデヒド(482 m g)を無色油状物として得た。 1 H-NMR(CDCl $_{3}$): 2.33(3H, s), 5.01(2H, s), 5.63(2H, s), 6.51(1H, d, J=8Hz), 6.90-7.03(3H, m), 7.20-7.35(3H, m), 7.53(1H, d, J=2Hz), 9.77(1H, s).

Mass(ESI): m/e 375(M+H)+.

製造例27-2

前記製造例 15-2 と同様にして、4-2 ロロー 1-(2-2) ロロー 4-(7-2) エノキシメチル)ベンジル)-2-3 チルイミダゾールー 5-3 ルバルデヒド(4-2 で 4-2 で 4

 1 H-NMR(CDCl₃): 2.34(3H, s), 3.74(3H, s), 5.03(2H, s), 5.22(2H, s), 6.47(1H, d, J=8Hz), 6.50(1H, d, J=16Hz), 6.91-7.04(3H, m), 7.21-7.34(3H, m), 7.22(1H, d, J=16Hz), 7.57(1H, d, J=2Hz).

Mass(ESI) : m/e 431(M+H) +.

製造例27-3

前記製造例 15-4 と同様にして、(E)-3-(4-0) ロロー1-(2-0) ロロー4-(7) エノキシメチル)ベンジル)-2-メチルイミダゾール-5-イル)-2-プロペン酸メチルエステル(404 mg)から(E)-3-(4-0) ロロー1-(2-0) ロロー4-(7) エノキシメチル)ベンジル)-2-メチルイミダゾール-5-イル)-2-プロペン酸(391 mg)を白色粉末として得た。 1 H-NMR(CDCl $_{3}$): 2.34(3H, s), 5.01(2H, s), 5.21(2H, s), 6.46(1H, d, J=16Hz), 6.47(1H, d, J=9Hz), 6.89<math>-7.02(3H, m), 7.20-7.34(3H, m), 7.34(1H, d, J=16Hz), 7.55(1H, d, J=2Hz).

Mass(ESI) : m/e 415(M-H)-.

製造例28-1

前記製造例15-1と同様にして、4-クロロー2-メチルイミダゾール-5-カルバルデヒド(200mg)と2-クロロー1-((メタンスルホニルオキシ)メチル)-4-ニトロベンゼン(404mg)から、4-クロロー1-(2-クロロー4-ニトロベンジル)-2-メチルイミダゾールー5-カルバルデヒド(304mg)を淡黄色結晶として得た。

 1 H-NMR (CDCl₃) : 2. 37 (3H, s), 5. 67 (2H, s), 6. 67 (1H, d, J=8Hz), 8. 06 (1H, dd, J=8, 2Hz), 8. 34 (1H, d, J=2Hz), 9. 75 (1H, s).

製造例28-2

前記製造例15-2と同様にして、4-2000-1-(2-2)00-4-2トロベンジル) -2-メチルイミダゾール-5-カルバルデヒド(285mg) と(トリフェニルホスホラニリデン) 酢酸メチル(546mg) から、(E) -3-(4-2000-1-(2-2000-4-2)00-2-メチルイミダゾール-5-イル) -2-プロペン酸メチルエステル(297mg) を淡黄色結晶として得た。

 1 H-NMR (CDCl₃) : 2. 35 (3H, s), 3. 74 (3H, s), 5. 29 (2H, s), 6. 52 (1H, d, J=15Hz), 6. 65 (1H, d, J=8Hz), 7. 27 (1H, d, J=2Hz), 8. 08 (1H, d, J=8, 2Hz), 8. 36 (1H, d, J=2Hz).

製造例28-3

¹H-NMR (DMSO-d₆) : 2.32(3H, s), 5.56(2H, s), 6.28(1H, d, J=15Hz), 6.77(1H, d, J=8Hz), 7.22(1H, d, J=15Hz), 8.16(1H, dd, J=8, 2Hz), 8.41(1H, d, J=2Hz). 製造例 2 9 - 1

前記製造例 15-1 と同様にして、5-0 ロロー 2- メチルイミダゾールー 4 ーカルバルデヒド(209mg)と(E) -2-0 ロロー 4-(2- フェニルエテニル)ベンジルブロミド(489mg)から(E) -4-0 ロロー 1-(2- 0 ロロー 1 (2- フェニルエテニル)ベンジル) -2- メチルイミダゾールー 1 5 ーカルバルデヒドを橙色結晶(471mg)として得た。

 1 H-NMR (CDC1₃): 2.34(3H, s), 5.64(2H, s), 6.50(1H, d, J=8Hz), 6.99(1H, d, J=16Hz), 7.10(1H, d, J=16Hz), 7.25-7.42(4H, m), 7.50(2H, d, J=8Hz), 7.58(2H, s), 9.78(1H, s).

Mass(ESI) : m/z 371(M+1).

製造例29-2

前記製造例15-2と同様にして、(E)-4-0ロロー1-(2-0)ロロー4-(2-0)エニルエテニル)ベンジル)-2-メチルイミダゾールー5-カルバルデヒド(390mg)から(2E)-3-(4-0)ロロー1-(2-0)ロロー4-(E)-2-フェニルエテニル)ベンジル)-2-メチルイミダゾールー5-イル)-2-プロペン酸メチルエステルを黄色アモルファス(433mg)として得た。

 1 H-NMR (CDCl₃): 2.36(3H, s), 3.74(3H, s), 5.22(2H, s), 6.45(1H, d, J=8Hz), 6.51(1H, d, J=16Hz), 6.99(1H, d, J=16Hz), 7.12(1H, d, J=16Hz), 7.26-7.41(5H,

m), 7.50(2H, d, J=8Hz), 7.60(1H, s).

Mass (ESI) : m/z 427 (M+1).

製造例29-3

 1 H-NMR (DMSO- d_{6}) : 2. 34 (3H, s), 5. 41 (2H, s), 6. 26 (1H, d, J=16Hz), 6. 53 (1H, d, J=8Hz), 7. 18-7. 44 (6H, m), 7. 51 (1H, d, J=8Hz), 7. 60 (2H, d, J=8Hz), 7. 84 (1H, s).

製造例30-1

前記製造例15-1と同様にして、4-0ロロ-2-メチルイミダゾール-5-カルバルデヒド(200mg)と1-ブロモ-2-(ブロモメチル)ナフタレン(457mg)から、1-(1-ブロモ-2-ナフチル)-4-0ロロ-2-メチルイミダゾール-5-カルバルデヒド(379mg)を淡黄色結晶として得た。

 1 H-NMR (CDCl₃) : 2.32(3H, s), 5.88(2H, s), 6.58(1H, d, J=8Hz), 7.56(1H, t, J=8Hz), 7.65(1H, t, J=8Hz), 7.73(1H, d, J=8Hz), 7.82(1H, d, J=8Hz), 8.35(1H, d, J=8Hz), 9.82(1H, s).

製造例30-2

前記製造例15-2と同様にして、 $1-(1-70\pi-2-77\pi)-4-70\pi-2-7\pi$ クロロー $2-7\pi$ イル) -4π クロロー $2-7\pi$ チルイミダゾールー $5-7\pi$ がいだと (386mg) と (5π) フェニルホスホラニリデン)酢酸メチル(603mg)から、 (5π) がら、 (5π) (5π)

 1 H-NMR(CDCl₃): 2.36(3H, s), 3.70(3H, s), 5.44(2H, s), 6.50(1H, d, J=8Hz), 6.53(1H, d, J=2Hz), 7.37(1H, d, J=15Hz), 7.57(1H, t, J=8Hz), 7.67(1H, t, J=8Hz), 7.75(1H, d, J=8Hz), 7.83(1H, d, J=8Hz), 8.35(1H, d, J=8Hz).

前記製造例15-4と同様にして、(E)-3-(1-(1-))ロモー2-ナフチル)-4-クロロー2-メチルイミダゾールー5-イル)-2-プロペン酸メチルエステル(393mg)から、(E)-3-(1-(1-))ロモー2-ナフチル)-4-クロロー2-メチルイミダゾールー5-イル)-2-プロペン酸(389mg)を無色結晶として得た。

 1 H-NMR (DMSO- d_{6}) : 2.37 (3H, s), 5.61 (2H, s), 6.24 (1H, d, J=15Hz), 6.58 (1H, d, J=8Hz), 7.24 (1H, d, J=15Hz), 7.65 (1H, t, J=8Hz), 7.76 (1H, t, J=8Hz), 7.97 (2H, t, J=8Hz), 8.29 (1H, d, J=8Hz).

製造例31-1

製造例30-3

製造例 1 5 - 1 と同様にして、5-クロロ-2-メチルイミダゾール-4-カルバルデヒド (271mg)と3-クロロ-2-クロロメチル-5- (トリフルオロメチル) ピリジン (474mg) から4-クロロ-1- ((3-クロロ-5-(トリフルオロメチル) ピリジン-2-イル) メチル) -2-メチルイミダゾール-5-カルバルデヒドを黄色油状物 (440mg) として得た。

 1 H-NMR (CDCl₃) : 2.38(3H, s), 5.76(2H, s), 7.97(1H, s), 8.58(1H, s), 9.66(1H, s).

MS(ESI) : m/z 336(M-1).

製造例31-2

製造例 1 5 - 2 と同様にして、4-クロロ-1- ((3-クロロ-5- (トリフルオロメチル) ピリジン-2-イル) メチル) -2-メチルイミダゾール-5-カルバルデヒド (430mg) から (E) -3- (4-クロロ-1- ((3-クロロ-5- (トリフルオロメチル) ピリジン-2-イル) メチル) -2-メチルイミダゾール-5-イル) -2-プロペン酸メチルエステルを黄色油状物 (342mg) として得た。

 1 H-NMR (CDC1₃) : 2.38(3H, s), 2.75(3H, s), 5.39(2H, s), 6.54(1H, d, J=16Hz), 7.34(1H, d, J=16Hz), 8.00(1H, s), 8.66(1H, s).

MS(ESI) : m/z 392(M-1).

製造例31-3

製造例 1 5 - 4 と同様にして、 (E) -3- (4-クロロ-1- ((3-クロロ-5- (トリフルオロメチル)) ピリジン-2-イル) メチル) -2-メチルイミダゾール-5-イル) -2-プロペン酸メチルエステル (335mg) から (E) -3- (4-クロロ-1- ((3-クロロ-5- (トリフルオロメチル)) ピリジン-2-イル) メチル) -2-メチルイミダゾール-5-イル) -2-プロペン酸 (240mg) を得た。

 1 H-NMR (DMSO- d_{6}) : 2.28(3H, s), 5. 68(2H, s), 6.28(1H, d, J=16Hz), 7.26(1H, d, J=16Hz), 8.60(1H, s), 8.89(1H, s).

MS(ESI) : m/z 380(M+1).

製造例32-1

5-クロロ-2-メチルイミダゾール-4-カルバルデヒド (340mg) と4- (N, N-ビス- (tert-ブトキシカルボニル) アミノ) -2-クロロベンジルブロミド (1.19 g) から3- (4- (N, N-ビス- (tert-ブトキシカルボニル) アミノ) -2-クロロベンジル) -5-クロロ-2-メチルイミダゾール-4-カルバルデヒド (844mg) を白色アモルファスとして得た。

 1 H-NMR (CDCl₃): 1.42(18H, s), 2.30(3H, s), 5.65(2H, s), 6.52(1H, d, J=8Hz), 6.99(1H, dd, J=8, 2Hz), 7.26(1H, d, J=2Hz), 9.76(1H, s).

製造例32-2

3- (4- (N, N-ビス- (tert-ブトキシカルボニル) アミノ) -2-クロロベンジル) -5-クロロ-2-メチルイミダゾール-4-カルバルデヒド (834mg) から(E)-3- (1- (4- (N, N-ビス- (tert-ブトキシカルボニル) アミノ) -2-クロロベンジル) -4-クロロー2-メチルイミダゾールー5-イル) -2-プロペン酸メチルエステル (902mg) を白色アモルファスとして得た。

 $^{1}H-NMR(CDCl_{3}): 1.42(18H, s), 2.34(3H, s), 3.72(3H, s), 5.23(2H, s), 6.45(1H, s)$

d, J=16Hz), 6.48(1H, d, J=8Hz), 7.01(1H, dd, J=8, 2Hz), 7.30(1H, d, J=2Hz), 7.33(1H, d, J=16Hz).

MS(ESI) : m/z 541(M+1)

製造例32-3

(E)-3- (1- (4- (N, N-ビス- (tert-ブトキシカルボニル) アミノ) -2-クロロベンジル) -4-クロロ-2-メチルイミダゾール-5-イル) -2-プロペン酸メチルエステル (882mg) をジオキサン (8.8ml) に溶解し、1 N水酸化ナトリウム水溶液 (5.0ml) を加えて80℃で5.5時間攪拌した。反応混合物に1 N水酸化ナトリウム水溶液 (3.0ml) を加えて80℃で18時間攪拌し、再度1 N水酸化ナトリウム水溶液 (1.0ml) を加えた。反応混合物を80℃で2時間、還流下に3時間攪拌した後、水冷下で中和した。析出した沈殿を濾取、水洗することによって(E)-3-(1-(4-(tert-ブトキシカルボニル) アミノ) -2-クロロベンジル) -4-クロロ-2-メチルイミダゾール-5-イル) -2-プロペン酸 (452mg) を白色粉末として得た。

 1 H-NMR (DMSO- 1 d₆): 1.45 (18H, s), 2.31 (3H, s), 5.28 (2H, s), 6.22 (1H, d, J=16Hz), 6.46 (1H, d, J=8Hz), 7.18 (1H, d, J=16Hz), 7.28 (1H, dd, J=8, 2Hz), 7.71 (1H, d, J=2Hz), 9.64 (1H, s).

MS(ESI) : m/z 427(M+1)

製造例33-1

2-エチルイミダゾール (1.0 g) を乾燥エタノール (10ml) に溶解し、氷冷下に臭素 (1.2ml) を滴下した。反応混合物を同温で 3 時間、室温で 3 時間攪拌した後、一夜室温で放置した。5N 水酸化ナトリウム水溶液で中和後、亜硫酸ナトリウム (1.4 g) と水 (10ml) を加え 10 時間加熱還流した。反応液をクロロホルムと水に分配し、水層をクロロホルムで 2 回抽出した。有機層を合して硫酸マグネシウム上で乾燥し、減圧下に濃縮乾固した。残渣をシリカゲルカラムクロマトグラフィー (クロロホルム/メタノール=98:2) で精製し、4-ブロモ-2-エチルイミダゾール (1.02 g) を淡黄色固体として得た。

 $^{1}H-NMR(CDCl_{3})$: 1.32(3H, t, J=6Hz), 2.75(2H, q, J=6Hz), 6.89(1H, s).

MS(ESI) : m/z 176(M+1)

製造例33-2

4-ブロモ-2-エチルイミダゾール (24.4 g) をエタノール (244ml) に溶解し、1N 水酸化ナトリウム水溶液 (105ml) と 37% ホルマリン (15.6ml) を加えて室温で 15 時間攪拌した。反応混合物を氷冷下に中和し、減圧下に濃縮乾固した。残渣をクロロホルムーメタノール (4/1) で抽出し不溶物を濾別した後、減圧下に濃縮乾固した。残渣をシリカゲルカラムクロマトグラフィー (クロロホルム/メタノール=49:1-19:1) で精製し、4-ブロモ-2-エチル-5- (ヒドロキシメチル)イミダゾール (18.9 g) を黄色粉末として得た。

 $^{1}H-NMR$ (DMSO- d_{6}) : 1.16(3H, t, J=6Hz), 2.55(2H, q, J=6Hz), 4.30(2H, d, J=4Hz), 5.14(1H, t, J=4Hz).

製造例33-3

4-ブロモ-2-エチル-5-(ヒドロキシメチル)イミダゾール(18.9 g)を乾燥ジメチルホルムアミド(189ml)に溶解し、二酸化マンガン(80.1 g)を加えて室温で 5 時間攪拌後一夜放置した。反応混合物をセライト濾過し不溶物をクロロホルムで洗浄した。濾液と洗液を合して減圧下に濃縮乾固した後、残渣を水洗して 5-ブロモ-2-エチルイミダゾール-4-カルバルデヒド(12.9 g)を褐色粉末として得た。

¹H-NMR(CDCl₃): 1.37(3H, t, J=6Hz), 2.86(2H, q, J=6Hz), 9.58(1H, s). 製造例33-4

製造例1-4と同様にして、5-プロモ-2-エチルイミダゾール-4-カルバルデヒド(12g)から5-クロロ-2-エチルイミダゾール-4-カルバルデヒドを燈色結晶(6.6g)として得た。

 $^{1}H-NMR (DMSO-d_{6})$: 1.20(3H, t, J=7Hz), 2.66(2H, q, J=7Hz), 9.59(1H, s). MASS(ESI): m/z 157(M-1).

製造例33-5

製造例15-1と同様にして、5-クロロ-2-エチルイミダゾール-4-カ

ルバルデヒド(130mg)と2-クロロー4-(1-ペンチルオキシ)ベンジルブロミド(335mg)から4-クロロー1-(2-クロロー4-(n-ペンチルオキシ)ベンジル)-2-エチルイミダゾール-5-カルバルデヒドを淡黄色油状物(260mg)として得た。

¹H-NMR (CDCl₃): 0.92 (3H, t, J=7Hz), 1.25 (3H, t, J=7Hz), 1.30-1.49 (4H, m), 1.70-1.83 (2H, m), 2.59 (2H, q, J=7Hz), 3.90 (2H, t, J=7Hz), 5.57 (2H, s), 6.43 (1H, d, J=8Hz), 6.68 (1H, dd, J=8, 2Hz), 6.95 (1H, d, J=2Hz), 9.77 (1H, s).

MASS(ESI) : m/z 369(M-1).

製造例33-6

製造例 15-2 と同様にして、4-0 ロロー 1-(2-0 ロロー 4-(1-0) ンチルオキシ)ベンジル)-2-x チルイミダゾール-5-x カルバルデヒド (254mg) と (トリフェニルホスソラニリデン) 酢酸メチル (354mg) から (E) -3-(4-0 ロロー 1-(2-0 ロロー 4-(1-0) ベンジル)-2-x チルイミダゾール-5-1 ル)-2-x で数メチルを黄色固体 (265mg) として得た。

 1 H-NMR (CDCl₃) : 0.93 (3H, t, J=7Hz), 1.27 (3H, t, J=7Hz), 1.31-1.49 (4H, m), 1.71-1.83 (2H, m), 2.61 (2H, q, J=7Hz), 3.74 (3H, s), 3.90 (2H, q, J=7Hz), 5.16 (2H, s), 6.35 (1H, d, J=8Hz), 6.49 (1H, d, J=15Hz), 6.70 (1H, dd, J=8, 2Hz), 6.98 (1H, d, J=2Hz), 7.34 (1H, d, J=15Hz).

MASS (ESI) : m/z 427 (M+1).

製造例33-7

製造例15-4と同様にして、(E) $-3-(4-\rho uu-1-(2-\rho uu-4-(1-ペンチルオキシ) ベンジル) <math>-2-x$ チルイミダゾール-5-イル) -2-プロペン酸メチル(254mg)から (E) $-3-(4-\rho uu-1-(2-\rho uu-4-(1-ペンチルオキシ) ベンジル) <math>-2-x$ チルイミダゾール-5-イル) -2-プロペン酸を無色結晶(178mg)として得た。

 1 H-NMR (DMSO- 1 d_e): 0.88 (3H, t, J=7Hz), 1.14 (3H, t, J=7Hz), 1.25-1.44 (4H, m), 1.63-1.75 (2H, m), 2.65 (2H, q, J=7Hz), 3.95 (2H, q, J=7Hz), 5.31 (2H, s), 6.27 (1H, d, J=15Hz), 6.40 (1H, d, J=8Hz), 6.67 (1H, dd, J=8, 2Hz), 7.13 (1H, d, J=2Hz), 7.23 (1H, d, J=15Hz).

MASS (ESI) : m/z 409 (M-1).

製造例34-1

製造例 15-1と同様にして、5-クロロー2-エチルイミダゾールー4-カルバルデヒド(1.5g)と4-ブロモー2-クロロベンジルブロミド(3.77g)から1-(4-ブロモー2-クロロベンジル)-4-クロロー2-エチルイミダゾールー5-カルバルデヒドを淡黄色固体(2.86g)として得た。

 1 H-NMR (CDCl₃): 1.28(3H, t, J=7Hz), 2. 58(2H, q, J=7Hz), 5.56(2H, s), 6.35(1H, d, J=8Hz), 7.31(1H, dd, J=8, 1Hz), 7.60(1H, d, J=1Hz), 9.76(1H, s).

MASS (ESI) : m/z 363 (M+1).

製造例34-2

製造例15-2と同様にして、1-(4-7)ロモー2-2ロロベンジル)-4ークロロー2-xチルイミダゾールー5-カルバルデヒド(1.0g)と(トリフェニルホスソラニリデン)酢酸メチル(1.39g)から(E)-3-(1-(4-7)ロモー2-クロロベンジル)-4-クロロー2-xチルイミダゾールー5-イル)-2ープロペン酸メチルを無色固体(1.06g)として得た。

 1 H-NMR (CDCl₃): 1.28 (3H, t, J=7Hz), 2.59 (2H, q, J=7Hz), 3.75 (3H, s), 5.16 (2H, s), 6.32 (1H, d, J=8Hz), 6.50 (1H, d, J=15Hz), 7.29 (1H, d, J=15Hz), 7.34 (1H, dd, J=8, 1Hz), 7.63 (1H, d, J=1Hz).

MASS (ESI) : m/z 419 (M+1).

製造例34-3

製造例15-4と同様にして、(E) -3-(1-(4-)ロモー2-0ロロベンジル) -4-0ロロー2-エチルイミダゾールー5-イル) -2-プロペン酸メチル(260mg)から (E) -3-(1-(4-) ロモー2-0 ロロベンジル) -4

ークロロー 2 ーエチルイミダゾールー 5 ーイル) ー 2 ープロペン酸を無色固体 (228mg) として得た。

 1 H-NMR (DMSO- 1 d₆): 1. 14 (3H, t, J=7Hz), 2. 65 (2H, q, J=7Hz), 5. 38 (2H, s), 6. 36 (1H, d, J=15Hz), 6. 43 (1H, d, J=8Hz), 7. 20 (1H, d, J=15Hz), 7. 52 (1H, dd, J=8, 1Hz), 7. 87 (1H, d, J=1Hz).

MASS (ESI) : m/z 403 (M+1).

製造例35-1

製造例15-1と同様にして、5-0ロロ-2-xチルイミダゾール-4-カルバルデヒド(1.2g)と2-0ロロ-4-ヨードベンジルブロミド(3.76g)から4-0ロロ-1-(2-0ロロ-4-ヨードベンジル)-2-xチルイミダゾール-4-カルバルデヒドを淡黄色ガム(2.68g)として得た。

 1 H-NMR(CDC1₃): 1.28(3H, t, J=7Hz), 2.58(2H, q, J=7Hz), 5.56(2H, s), 6.20(1H, d, J=8Hz), 7.50(1H, dd, J=8, 1Hz), 7.78(1H, d, J=1Hz), 9.75(1H, s).

MASS(ESI) : m/z 409(M+1).

製造例35-2

製造例 15-2 と同様にして、4-2 ロロー 1-(2-2) ロロー 4-3 ードベンジル) -2-x チルイミダゾール -5-x カルバルデヒド (2.65g) と(トリフェニルホスホラニリデン)酢酸メチル (3.25g) から(E) -3-(4-2) ロロー 1-(2-2) ークロロー 4-3 ードベンジル) -2-x チルイミダゾール -5-x ルークロロー 1-x プロペン酸メチルを淡黄色結晶 (2.53g) として得た。

 1 H-NMR (CDC1₃) : 1.28 (3H, t, J=7Hz), 2.59 (2H, q, J=7Hz), 3.75 (3H, s), 5.15 (2 H, s), 6.16 (1H, d, J=8Hz), 6.49 (1H, d, J=15Hz), 7.27 (1H, d, J=15Hz), 7.51 (1H, dd, J=8, 1Hz), 7.81 (1H, d, J=1Hz).

MASS(ESI) : m/z 465(M+1).

製造例35-3

製造例17-1と同様にして、(E) -3-(4-クロロ-1-(2-クロロー4-ヨードベンジル) -2-エチルイミダゾール-5-イル) -2-プロペン酸

メチル(600mg)とフェニルアセチレン(439mg)から(E)-3-(4-2)00mg)とフェニルアセチレン(439mg)から(E)-3-(4-2)00mg)とフェニルアセチレン(439mg)から(E)-3-(4-2)00mg)としてインロー1-(2-2)00mg)として得た。

 1 H-NMR (CDCl₃): 1.28(3H, t, J=7Hz), 2.62(2H, q, J=7Hz), 3.75(3H, s), 5.23(2H, s), 6.44(1H, d, J=8Hz), 6.50(1H, d, J=15Hz), 7.28-7.40(4H, m), 7.47-7.55(2H, m), 7.63(1H, d, J=1Hz).

MASS (ESI) : m/z 439 (M+1).

製造例35-4

¹H-NMR (DMSO-d₆): 1.15(3H, t, J=7Hz), 2.67(2H, q, J=7Hz), 5.46(2H, s), 6.27(1H, d, J=15Hz), 6.54(1H, d, J=8Hz), 7.23(1H, d, J=15Hz), 7.40-7.60(6H, m), 7.79(1H, d, J=1Hz).

MASS (ESI) : m/z 423 (M-1).

製造例36-1

(E) -3-(4-0)ロロー1-(2-0)ロロー4-ヨードベンジル) -2-エチルイミダゾールー5ーイル) -2-プロペン酸メチル(600mg)、酢酸パラジウム(600mg)、トリーo-トリルホスフィン(39mg)の無水トリエチルアミン(5.4ml)懸濁液を窒素気流、室温下で攪拌した。10分後、スチレン(672mg)を加え、反応液を100°Cに加熱した。2時間加熱後、混合物を氷冷し、水を加えてクロロホルムで抽出した。有機層を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥、濾過した。濾液を濃縮し、残渣をフラッシュシリカゲルクロマトグラフィー(シリカゲル、150ml)に付した。ヘキサン:酢酸エチル=10:1~7:1~5:1~4:1で溶出し、淡黄色ガム(435mg)を得た。これをイソプロピルエーテルで結晶化して、

(E) -3-(4-クロロ-1-(2-クロロ-4-((E) -2-フェニルエテニル) ベンジル) -2-エチルイミダゾール-5-イル) -2-プロペン酸メチルを淡黄色結晶(405mg)として得た。

 1 H-NMR (CDCl₃): 1.29 (3H, t, J=7Hz), 2.63 (2H, q, J=7Hz), 3.74 (3H, s), 5.23 (2H, s), 6.43 (1H, d, J=8Hz), 6.51 (1H, d, J=15Hz), 6.99 (1 H, d, J=15Hz), 7.21 (1H, d, J=15Hz), 7.24-7.41 (5H, m), 7.51 (2H, d, J=8Hz), 7.60 (1H, s).

MASS (ESI) : m/z 441 (M+1).

製造例36-2

製造例 15-4 と同様にして、(E) -3-(4-0) ロロー 1-(2-0) ロロー 4-(E) ー 2-0 エテール)ベンジル) ー 2-1 エテールイミダゾールー 5-1 イル) ー 2-1 ロペン酸メチル (400 mg) から (E) -3-(4-0) ロロー 1-(2-0) ロロー 1-(2-0) ロロー 1-(2-0) ロロー 1-(2-0) ロロー 1-(2-0) ロロー 1-(2-0) アンジル) ー 1-(2-0) アンジル)

MASS (ESI) : m/z 425 (M-1).

製造例37-1

製造例33-2と同様にして、2, 4-ジメチルイミダゾール(2.6g)から2, 4-ジメチル-5-(ヒドロキシメチル) イミダゾール(4.74g)を淡黄色油状物として得た。

 $^{1}H-NMR (DMSO-d_{6}) : 2.20 (3H, s), 2.50 (3H, s), 4.41 (2H, s)$

製造例37-2

製造例33-3と同様にして、2, 4-ジメチル-5-(ヒドロキシメチル)イミダゾール(4.10g)から2, 4-ジメチルイミダゾール-5-カルバルデヒド<math>(3.00g)の粗精製物を黄色固形物として得た。

Mass (ESI) : $m/z 123 (M-H)^{-}$

製造例37-3

製造例1.5-1と同様にして、2, 4-ジメチルイミダゾール-5-カルバルデヒド(587mg)と4-ブロモ-2-クロロベンジルメタンスルホネート(1.70g)から1-(4-ブロモ-2-クロロベンジル)-2, 4-ジメチル-1H-イミダゾール-5-カルバルデヒド(481mg)を淡黄色結晶として、1-(4-ブロモ-2-クロロベンジル)-2, 5-ジメチル-1H-イミダゾール-4-カルバルデヒド(587mg)を淡黄色油状物として得た。

1-(4-) ロモー 2- クロロベンジル) -2, 4- ジメチルー 1 H - イミダゾール- 5- カルバルデヒド

 1 H-NMR(CDCl₃) : 2.31(3H, s), 2.52(3H, s), 5.54(2H, s), 6.31(1H, d, J=8Hz), 7.27(1H, dd, J=8, 2Hz), 7.58(1H, d, J=2Hz), 9.75(1H, s)

1- (4-ブロモー2-クロロベンジル) -2, 5-ジメチルー1H-イミダゾール-4-カルバルデヒド

 1 H-NMR (CDCl₃) : 2.33(3H, s), 2.43(3H, s), 5.07(2H, s), 6.23(1H, d, J=8Hz), 7.34(1H, dd, J=8, 2Hz), 7.63(1H, d, J=2Hz), 9.75(1H, s)

製造例37-4

製造例15-2と同様にして、1-(4-)でロモー2-クロロベンジル)-2、4-ジメチルー1Hーイミダゾールー5-カルバルデヒド(453mg)と (トリフェニルホスホラニリデン) 酢酸メチル(1.25g)から (E)-3-(1-(4-)でロークロロベンジル)-2、4-ジメチルイミダゾールー5-イル)-2-プロペン酸メチルエステル(554mg)の粗精製物を無色結晶として得た。

 1 H-NMR(CDCl $_{3}$): 2.32(3H, s), 2.42(3H, s), 3.73(3H, s), 5.12(2H, s), 5.89(1H, d, J=16Hz), 6.29(1H, d, J=8Hz), 7.30(1H, dd, J=8, 2Hz), 7.37-7.70(2H, m) 製造例 3 7 - 5

製造例15-4と同様にして、(E)-3-(1-(4-)ロモー2-0ロロベンジル)-2, 4-ジメチルイミダゾール-5-イル)-2-プロペン酸メチルエステル(554mg)から(E)-3-(1-(4-)ロモー2-0ロロベンジル)

-2, 4-ジメチルイミダゾール-5-イル) -2-プロペン酸(158mg)を無色結晶として得た。

 1 H-NMR (DMSO- 1 d₆) : 2. 26 (3H, s), 2. 28 (3H, s), 5. 28 (2H, s), 5. 75 (1H, d, J=14Hz), 6. 3 2 (1H, d, J=8Hz), 7. 27 (1H, d, J=14Hz), 7. 52 (1H, dd, J=8, 2Hz), 7. 85 (1H, d, J=2Hz)

製造例38-1

製造例 15-1 と同様にして、4-プロモー2-メチルイミダゾールー5-カルバルデヒド(5.00g)と2-クロロー4-(1-ペンチルオキシ)ベンジルブロミド(9.26g)から4-プロモー1-(2-クロロー4-(1-ペンチルオキシ)ベンジル)- 2-メチルー1H-イミダゾールー5-カルバルデヒド(9.11g)を淡黄色油状物として得た。

 1 H-NMR (CDCl₃) : 0. 92 (3H, t, J=7Hz), 1. 30-1. 45 (4H, m), 1. 70-1. 80 (2H, m), 2. 33 (3H, s), 3. 90 (2H, t, J=7Hz), 5. 58 (2H, s), 6. 44 (1H, d, J=8Hz), 6. 70 (1H, dd, J=8, 2Hz), 6. 95 (1H, d, J=2Hz), 9. 71 (1H, s)

製造例38-2

製造例15-2と同様にして、4-プロモ-1-(2-クロロ-4-(1-ペンチルオキシ)ベンジル)-2-メチル-1H-イミダゾール-5-カルバルデヒド (479mg)と(トリフェニルホスホラニリデン)酢酸メチル(481mg)から(E)-3-(4-プロモ-1-(2-クロロ-4-(1-ペンチルオキシ)ベンジル)-2-メチルイミダゾール-5-イル)-2-プロペン酸メチルエステル(488mg)を無色結晶として得た。

 1 H-NMR (CDCl₃) : 0. 93 (3H, t, J=7Hz), 1. 33-1. 45 (4H, m), 1. 72-1. 80 (2H, m), 2. 35 (3H, s), 3. 75 (3H, s), 3. 92 (2H, t, J=7Hz), 5. 17 (2H, s), 6. 36 (1H, d, J=8Hz), 6. 52 (1H, d, J=15Hz), 6. 71 (1H, dd, J=8, 2Hz), 6. 99 (1H, d, J=2Hz), 7. 35 (1H, d, J=15Hz)

製造例38-3

製造例15-4と同様にして、(E)-3-(4-プロモ-1-(2-クロロ

−4−(1−ペンチルオキシ)ベンジル)−2−メチルイミダゾール−5−イル)

- -2-プロペン酸メチルエステル(462mg)から(E)-3-(4-ブロモ-1-(2
- *-クロロ-4-(1-ペンチルオキシ)ベンジル) -2-メチルイミダゾール-5*
- ーイル) -2-プロペン酸(447mg)を無色粉末として得た。

¹H-NMR (DMSO-d₆) : 0.88 (3H, t, J=7Hz), 1.25-1.42 (4H, m), 1.62-1.72 (2H, m), 2.33 (3H, s), 3.96 (2H, t, J=7Hz), 5.31 (2H, s), 6.29 (1H, d, J=15Hz), 6.42 (1H, d, J=8Hz), 6.88 (1H, dd, J=8, 2Hz), 7.13 (1H, d, J=2Hz), 7.22 (1H, d, J=15Hz) 製造例 3 9 - 1

塩化リチウム(180mg)を1,4ージオキサン(10ml)に懸濁し、4ーブロモー1ー(2ークロロー4ー(1ーペンチルオキシ)ベンジル)ー2ーメチルー1Hーイミダゾールー5ーカルバルデヒド(707mg)、ビニルトリブチルスズ(617mg)、テトラキス(トリフェニルフォスフィン)パラジウム(0)(102mg)を添加し、12時間加熱還流した。反応液に水を添加して酢酸エチルで抽出し、有機層を飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥し、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン/酢酸エチル=5/1で溶出し、目的物の画分を減圧濃縮して、1ー(2ークロロー4ー(1ーペンチルオキシ)ベンジル)ー4ーエテニルー2ーメチルー1Hーイミダゾールー5ーカルバルデヒド(538mg)を淡黄色ガム状物として得た。

 1 H-NMR (CDC1₃) : 0.92 (3H, t, J=7Hz), 1.30-1.47 (4H, m), 1.70-1.80 (2H, m), 2.34 (3H, s), 3.90 (2H, t, J=7Hz), 5.54 (1H, dd, J=8, 2Hz), 5.56 (2H, s), 6.26 (1H, dd, J=15, 2Hz), 6.40 (1H, d, J=8Hz), 6.67 (1H, dd, J=8, 2Hz), 6.95-7.05 (2H, m), 9.90 (1H, s)

製造例39-2

1-(2-クロロー4-(1-ペンチルオキシ) ベンジル) -4-エテニル-2 ーメチルー1H-イミダゾール-5-カルバルデヒド(575mg)を1, 4-ジオキサン (6 ml)に溶解し、パラジウム炭素(50mg)を添加し、水素雰囲気下で1.5時間撹拌した。セライトを用いて濾過し、濾液に水を添加して酢酸エチルで抽出した。有機

層を食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィーに付し、クロロホルム/酢酸エチル=2/1で溶出し、目的物の画分を減圧濃縮して、1-(2-クロロ-4-(1-ペンチルオキシ)ベンジル)-4-エチル-2-メチルー1H-イミダゾール-5-カルバルデヒド(283mg)を黒褐色油状物として得た。

 1 H-NMR (CDCl₃) : 0.92(3H, t, J=7Hz), 1.35(3H, t, J=7Hz), 1.33-1.48(4H, m), 1.72-1.80(2H, m), 2.31(3H, s), 2.87(2H, q, J=7Hz), 3.90(2H, t, J=7Hz), 5.55(2H, s), 6.38(1H, d, J=8Hz), 6.67(1H, dd, J=8, 2Hz), 6.94(1H, d, J=2Hz), 9.77(1H, s)

製造例39-3

製造例15-2と同様にして、1-(2-0)ロロー4-(1-2)のボンチルオキシ)ベンジル)-4-xチルー2-xチルー1Hーイミダゾールー5-xカルバルデヒド (265mg)と(トリフェニルホスホラニリデン)酢酸メチル(940mg)から(E)-3-(1-(2-0)1ロー4-(1-2)1ルオキシ)ベンジル)-4-x1・2 ーメチルイミダゾールー5-41ル)-2-21つペン酸メチルエステル(273mg)を淡黄色結晶として得た。

 1 H-NMR (CDCl₃) : 0.93 (3H, t, J=7Hz), 1.31 (3H, t, J=7Hz), 1.32-1.47 (4H, m), 1.70-1.81 (2H, m), 2.34 (3H, s), 2.75 (2H, q, J=7Hz), 3.73 (3H, s), 3.91 (2H, t, J=7Hz), 5.14 (2H, s), 5.86 (1H, d, J=15Hz), 6.32 (1H, d, J=8Hz), 6.68 (1H, dd, J=8, 2Hz), 6.98 (1H, d, J=2Hz), 7.45 (1H, d, J=15Hz)

製造例39-4

製造例15-4と同様にして、(E) -3-(1-(2-0)-4-(1-0)-4-(1-0)ンチルオキシ)ベンジル) -4-xチルー2-xチルイミダゾールー5-4ル) -2-x つの (2-x) で (2-x) で

 $^{1}H-NMR (DMSO-d_{e})$: 0.88(3H, t, J=7Hz), 1.19(3H, t, J=7Hz), 1.28-1.42(4H, m),

1.63-1.73(2H, m), 2.28(3H, s), 2.62(2H, q, J=7Hz), 3.95(2H, t, J=7Hz), 5.21(2H, s), 5.72(1H, d, J=15Hz), 6.28(1H, d, J=8Hz), 6.87(1H, dd, J=8, 2Hz), 7.12(1H, d, J=2Hz), 7.29(1H, d, J=15Hz)

製造例40-1

4ーブロモー1ー(2ークロロー4ー(1ーペンチルオキシ)ベンジル)-2ーメチルー1Hーイミダゾールー5ーカルバルデヒド(4.00g)をメタノール(20m1)、1,4ージオキサン(20m1)の混合溶媒に溶解し、パラジウム炭素(400mg)、酢酸カリウム(1.08g)を添加した。反応液を水素雰囲気下で3時間撹拌した後、セライトを用いて濾過し、濾液を減圧濃縮した。残渣に水を添加して酢酸エチルで抽出し、有機層を飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン/酢酸エチル=1/2で溶出した。目的物の画分を減圧濃縮して1ー(2ークロロー4ー(1ーペンチルオキシ)ベンジル)-2ーメチルー1Hーイミダゾールー5ーカルバルデヒド(3.10g)を淡黄色油状物として得た。

 1 H-NMR (CDCl₃) : 0.92(3H, t, J=7Hz), 1.33-1.47(4H, m), 1.72-1.82(2H, m), 2.35(3H, s), 3.90(2H, t, J=7Hz), 5.59(2H, s), 6.37(1H, d, J=8Hz), 6.67(1H, dd, J=8, 2Hz), 6.95(1H, d, J=2Hz), 7.78(1H, s), 9.68(1H, s)

製造例40-2

後述の製造例 42-1 と同様にして、 $1-(2-\rho pp-4-(1-2))$ (100mg) キシ) ベンジル) -2- メチルー1Hーイミダゾールー5- カルバルデヒド(500mg) と 3- フェニルプロピオン酸エチルエステル(361mg) から 2- ベンジルー $3-(1-(2-\rho pp-4-(1-2))$ ベンジル) -2- メチルイミダゾールー5- イル) -3- ヒドロキシプロパン酸エチルエステルの粗精製物を褐色油状物として得た。

製造例40-3

後述の製造例42-2と同様にして、2-ベンジル-3-(1-(2-クロロ -4-(1-ペンチルオキシ)ベンジル)-2-メチルイミダゾール-5-イル)

-3-ビドロキシプロパン酸エチルエステルの粗精製物から(E)-2-ベンジル-3-(1-(2-クロロ-4-(1-ペンチルオキシ)ベンジル)-2-メチルイミダゾール-5-イル)-2-プロペン酸エチルエステル(405mg)を淡黄色油状物として得た。

 1 H-NMR (CDCl₃) : 0. 93 (3H, t, J=7Hz), 1. 19 (3H, t, J=7Hz), 1. 32-1. 47 (4H, m), 1. 70-1. 82 (2H, m), 2. 36 (3H, s), 3. 92 (2H, t, J=7Hz), 3. 97 (2H, s), 4. 14 (2H, q, J=7Hz), 5. 17 (2H, s), 6. 32 (1H, d, J=8Hz), 6. 69 (1H, dd, J=8, 2Hz), 6. 98 (1H, d, J=2Hz), 7. 13-7. 28 (6H, m), 7. 46 (1H, s)

製造例40-4

製造例 15-4 と同様にして、(E) -2 ーベンジル-3 ー (1 ー (2 ー 2 ー 2 ー 4 ー (1 ー 4 ー 4 ー (1 ー 4

 1 H-NMR (DMSO-d₆) : 0.88(3H, t, J=7Hz), 1.27-1.43(4H, m), 1.65-1.74(2H, m), 2.29(3H, s), 3.86(2H, s), 3.96(2H, t, J=7Hz), 5.26(2H, s), 6.31(1H, d, J=8Hz), 6.85(1H, dd, J=8, 2Hz), 7.07-7.30(7H, m), 7.43(1H, s)

製造例41-1

製造例 42-1 と同様にして、 $1-(2-\rho -4-(1-\alpha -$

製造例41-2

-(1-ペンチル) プロパン酸エチルエステルの粗精製物から (E) -3-(1-(2-2)) -2-2 -4-(1-2) -2-2 -4-(1-2) -2-2 -4-2

¹H-NMR(CDCl₃): 0.87-0.94(6H, m), 1. 27(3H, t, J=7Hz), 1.32-1.55(10H, m), 1.72-1.82(2H, m), 2.37(3H, s), 2.54(2H, t, J=7Hz), 3.90(2H, t, J=7Hz), 4.18(2H, q, J=7Hz), 5.14(2H, s), 6.31(1H, d, J=8Hz), 6.67(1H, dd, J=8, 2Hz), 6.96(1H, d, J=2Hz), 7.19(1H, s), 7.31(1H, s)

製造例41-3

製造例 15-4 と同様にして、(E) $-3-(1-(2-\rho pp-4-(1-ペンチルオキシ) ベンジル) <math>-2-$ メチルイミダゾール-5-イル) -2-(1-ペンチル) -2-(1-ペンチル) -2-プロペン酸エチルエステル(405mg) から(E) $-3-(1-(2-\rho pp-4-(1-ペンチルオキシ) ベンジル) <math>-2-$ メチルイミダゾール-5-イル) -2-(1-ペンチルオキシ) ベンジル) <math>-2-メチルイミダゾール-5-イル) -2-(1-ペンチル) -2-プロペン酸(305mg) を淡黄色粉末として得た。 1 H $-NMR(DMSO-d_6): 0.85-0.87(6H, m), 1.20-1.38(10H, m), 1.62-1.72(2H, m), 2.30(3H, s), 2.42(2H, t, J=7Hz), 3.94(2H, t, J=7Hz), 5.21(2H, s), 6.28(1H, d, J=8Hz), 6.85(1H, dd, J=8, 2Hz), 7.10(1H, d, J=2Hz), 7.13(1H, s), 7.22(1H, s)$

製造例42-1

ジイソプロピルアミン(237mg)をテトラヒドロフラン(3m1)に溶解し、ドライアイスーアセトン浴上で冷却しながら窒素雰囲気下で1.53M nーブチルリチウムへキサン溶液(1.53ml)を添加した。氷水浴上で30分間撹拌した後、ドライアイスーアセトン浴上で冷却しながら3ー(3ーピリジル)プロピオン酸メチルエステル(335mg)のテトラヒドロフラン(1ml)溶液を添加した。ドライアイスーアセトン浴上で1時間撹拌した後、1ー(2ークロロー4ー(1ーペンチルオキシ)ベンジル)ー2ーメチルー1Hーイミダゾールー5ーカルバルデヒド(500mg)のテトラヒドロフラン(1ml)溶液を添加した。ドライアイスーアセトン浴上で1時間撹拌した後、

飽和塩化アンモニウム水溶液を添加した。酢酸エチルで抽出し、有機層を飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムを添加して乾燥した後、減圧濃縮し、3-(1-(2-クロロ-4-(1-ペンチルオキシ)ベンジル)-2-メチルイミダゾール-5-イル)-3-ヒドロキシ-2-(3-ピリジルメチル)プロパン酸メチルエステルの粗精製物を褐色油状物として得た。

製造例 4 2 - 2

3- (1- (2-クロロー4- (1-ペンチルオキシ) ベンジル) -2-メチルイミダゾール-5-イル) -3-ヒドロキシ-2- (3-ピリジルメチル) プロパン酸メチルエステルの粗精製物をジクロロメタン(8ml)に溶解し、酢酸無水物(0.88ml)と4-ジメチルアミノピリジン(76mg)を添加した。室温で14時間撹拌した後、飽和炭酸水素ナトリウム水溶液を添加して15分間撹拌した。酢酸エチルで抽出し、有機層を飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、減圧濃縮した。残渣をトルエン(8ml)に溶解し、1,8-ジアザビシクロ[5,4,0]ウンデック-7-エン(0.58ml)を添加した。100℃油浴上で4時間加熱した後、飽和塩化アンモニウム水溶液を添加し、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥し、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィーに付し、クロロホルム/メタノール=100/1で溶出し、目的物の画分を減圧濃縮し、(E)-3-(1-(2-クロロー4-(1-ペンチルオキシ)ベンジル)-2-メチルイミダゾール-5-イル)-2-(3-ピリジルメチル)-2-プロペン酸メチルエステル(713mg)を淡黄色油状物として得た。

 1 H-NMR (CDCl₃) : 0.93 (3H, t, J=7Hz), 1.32-1.48 (4H, m), 1.72-1.82 (2 H, m), 2.36 (3H, s), 3.70 (3H, s), 3.92 (2H, t, J=7Hz), 3.98 (2H, s), 5.18 (2H, s), 6.30 (1H, d, J=8Hz), 6.69 (1H, dd, J=8, 2Hz), 6.98 (1H, d, J=2Hz), 7.18 (1H, dd, J=8, 5Hz), 7.24 (1H, s), 7.44 (1H, d, J=8Hz), 7.51 (1H, s), 8.44-8.46 (2H, m) 製造例 42-3

製造例15-4と同様にして、(E)-3-(1-(2-クロロ-4-(1-ペ

ンチルオキシ)ベンジル)-2-メチルイミダゾール-5-イル)-2-(3-ピリジルメチル)-2-プロペン酸メチルエステル(695mg)から (E) -3-(1- (2-クロロ-4- (1-ペンチルオキシ)ベンジル) -2-メチルイミダゾールー5-イル)-2-(3-ピリジルメチル) -2-プロペン酸(502mg)を褐色粉末として得た。

 $^{1}H-NMR (DMSO-d_{6}) : 0.88 (3H, t, J=7Hz), 1.27-1.44 (4H, m), 1.65-1.74 (2H, m), \\ 2.31 (3H, s), 3.87 (2H, s), 3.96 (2H, t, J=7Hz), 5.27 (2H, s), 6.32 (1H, d, J=8Hz), \\ 6.34 (1H, dd, J=8, 2Hz), 7.12 (1H, d, J=2Hz), 7.19 (1H, s), 7.27 (1H, dd, J=8, 5Hz), 7.41-7.44 (2H, m), 8.36-8.40 (2H, m)$

製造例43-1

製造例 42-2 と同様にして、 $3-(1-(2-\rho pp-4-(1-ペンチルオ + 2) ベンジル) -2-メチルイミダゾール-5-イル) -3-ヒドロキシ-2-メチルプロパン酸エチルエステルの粗精製物から(E) <math>-3-(1-(2-\rho pp-4-(1-ペンチルオキシ) ベンジル) -2-メチルイミダゾール-5-イル) -2-メチル-2-プロペン酸エチルエステル(449mg) を淡黄色油状物として得た。$

 1 H-NMR (CDCl₃) : 0. 92 (3H, t, J=7Hz), 1. 28 (3H, t, J=7Hz), 1. 33-1. 47 (4H, m), 1. 72-1. 81 (2H, m), 2. 12 (3H, s), 2. 38 (3H, s), 3. 90 (2H, t, J=7Hz), 4. 18 (2H, q, J=7Hz), 5. 15 (2H, s), 6. 30 (1H, d, J=2Hz), 6. 67 (1H, dd, J=8, 2Hz), 6. 96 (1H, d, J=2Hz), 7. 26 (1H, s), 7. 34 (1H, s)

製造例43-3

製造例 15-4 と同様にして、(E) $-3-(1-(2-\rho uu-4-(1-ペンチルオキシ) ベンジル) <math>-2-$ メチルイミダゾール-5-イル)-2-メチルー 2-プロペン酸エチルエステル(432mg)から(E) $-3-(1-(2-\rho uu-4-(1-ペンチルオキシ) ベンジル) <math>-2-$ メチルイミダゾール-5-イル)-2-メチルー 2-プロペン酸(253mg)を無色結晶として得た。

¹H-NMR (DMSO-d₆) : 1.09 (3H, t, J=7Hz), 1.47-1.64 (4H, m), 1.85-1.95 (2H, m), 2.21 (3H, s), 2.52 (3H, s), 4.16 (2H, t, J=7Hz), 5.44 (2H, s), 6.48 (1H, d, J=8Hz), 7.06 (1H, dd, J=8, 2Hz), 7.32 (1H, d, J=2Hz), 7.41 (1H, s), 7.53 (1H, s) 製造例 4 4 - 1

製造例 4 2 - 1 と同様にして、4 - クロロー 1 - (2 - クロロー4 - (1 - ペンチルオキシ) ベンジル) - 2 - メチルー1H - イミダゾールー5 - カルバルデヒド (441mg)と n - プロピオン酸エチルエステル(400mg)から3 - (4 - クロロー1 - (2 - クロロー4 - (1 - ペンチルオキシ) ベンジル) - 2 - メチルイミダゾールー5 - イル) - 3 - ヒドロキシー2 - メチルプロパン酸エチルエステルの粗精製物を褐色油状物として得た。

製造例 4 4 - 2

製造例 42-2 と同様にして、3-(4-2)-1-(2-2)-1-4-(1-2) の -2 が -2 が

 1 H-NMR (CDCl₃) : 0.92 (3H, t, J=7Hz), 1.30 (3H, t, J=7Hz), 1.32-1.47 (4H, m), 1.70-1.80 (2H, m), 1.97 (3H, s), 2.31 (3H, s), 3.92 (2H, t, J=7Hz), 4.21 (2H, q, J=7Hz), 5.02 (2H, s), 6.42 (1H, d, J=8Hz), 6.72 (1H, dd, J=8, 2Hz), 6.95 (1H, d, J=2Hz), 7.06 (1H, s)

製造例44-3

製造例 15-4 と同様にして、(E) -3-(4-0) ロロー 1-(2-0) ロー -4-(1-ペンチルオキシ) ベンジル) -2- メチルイミダゾールー5- イル) -2- メチルー2- プロペン酸エチルエステル(250mg) から(E) -3-(4-0) ロー 1-(2-0) ロロー 4-(1-ペンチルオキシ) ベンジル) -2- メチルイミダゾールー5- イル) -2- メチルー2- プロペン酸(140mg) を無色結晶として得た。 1 H-NMR (10MSO-1Ge) : 100.88 (103H, t, 105Hz), 105Hz), 107Hz), 109Hz), 109

4-0ロロー1ー(2-0ロロー4ー(1-ペンチルオキシ)ベンジル)-2-メチルー<math>1Hーイミダゾールー5-カルバルデヒド(400mg)をt-ブタノール(8ml)に溶解し、2-メチルー2-ブテン(355mg)とリン酸二水素ナトリウム(135mg)水溶液(2ml)を添加した。この反応液に亜塩素酸ナトリウム(356mg)を2分かけて添加し、室温で24時間撹拌した。氷冷下1N塩酸を添加して20ml)を添加して析出した結晶を濾取した。結晶を加熱下減圧乾燥し、4-0ロロー1-(2-0ロロー4ー(1-ペンチルオキシ)ベンジル)-2-メチルー1Hーイミダゾールー20のルボン酸(20ml)を無色結晶として得た。

 1 H-NMR (DMSO- d_{6}) : 0.88 (3H, t, J=7Hz), 1.27-1.42 (4H, m), 1.65-1.75 (2H, m), 2.25 (3H, s), 3.95 (2H, t, J=7Hz), 5. 51 (2H, s), 6.32 (1H, d, J=8Hz), 6.86 (1H, dd, J=8, 2Hz), 7.09 (1H, d, J=2Hz)

製造例46

4ークロロー1ー(2ークロロー4ー(1ーペンチルオキシ)ベンジル)-2ーメチルー1Hーイミダゾール-5ーカルバルデヒド(1.05g)をエタノール(10ml)に溶解し、水素化ホウ素ナトリウム(168mg)を氷冷下で添加し、室温で3時間撹拌した。反応液に水を添加して酢酸エチルで抽出し、有機層を飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥し、減圧濃縮した。残渣にヘキサン(10ml)を添加し、析出した結晶を濾取し、加熱下減圧乾燥することにより、4ークロロー1

-(2-)クロロー4-(1-ペンチルオキシ) ベンジル) -5-ヒドロキシメチル -2-メチル-1H-イミダゾール(786mg) を無色結晶として得た。

 1 H-NMR (CDC1₃) : 0.93 (3H, t, J=7Hz), 1.30-1.48 (4H, m), 1.72-1.85 (2H, m), 2.26 (3H, s), 3.91 (2H, t, J=7Hz), 4.50 (2H, s), 5.18 (2H, s), 6.40 (1H, d, J=8Hz), 6.70 (1H, dd, J=8, 2Hz), 6.96 (1H, d, J=2Hz)

製造例47-1

製造例9と同様にして、4-クロロ-1-(2-クロロ-4-(1-ペンチルオキシ)ベンジル) -5-ヒドロキシメチル-2-メチル-1H-イミダゾール (611mg)から <math>4-クロロ-5-クロロメチル-1-(2-クロロ-4-(1-ペンチルオキシ)ベンジル) -2-メチル-1H-イミダゾール(707mg)を褐色油状物として得た。

 1 H-NMR (CDC1₃) : 0.93 (3H, t, J=7Hz), 1.32-1.48 (4H, m), 1.73-1.82 (2H, m), 2.33 (3H, s), 3.92 (2H, t, J=7Hz), 4.48 (2H, s), 5.17 (2H, s), 6.46 (1H, d, J=8Hz), 6.73 (1H, dd, J=8, 2Hz), 6.97 (1H, d, J=2Hz)

造例47-2

28%アンモニア水(6m1)、アセトニトリル(6m1)の混合溶媒に4ークロロー5ークロロメチルー1ー(2ークロロー4ー(1ーペンチルオキシ)ベンジル)ー2ーメチルー1Hーイミダゾール(340mg)のアセトニトリル(3m1)溶液を氷冷下で徐々に添加した。反応液を室温で1時間撹拌した後、飽和炭酸水素ナトリウム水溶液を添加し酢酸エチルで抽出した。有機層を飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥し、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィーに付し、クロロホルム/メタノール=100/1で溶出し、目的物の画分を減圧濃縮して、5ーアミノメチルー4ークロロー1ー(2ークロロー4ー(1ーペンチルオキシ)ベンジル)ー2ーメチルー1Hーイミダゾール(82mg)を淡褐色油状物として得た。
'H-NMR(CDC1₃): 0.93(3H, t, J=7Hz), 1.32-1.48(4H, m), 1.73-1.83(2H, m), 2.26(3H, s), 3.70(2H, s), 3.91(2H, t, J=7Hz), 5.19(2H, s), 6.37(1H, d, J=8Hz), 6.70(1H, dd, J=8, 2Hz), 6.96(1H, d, J=2Hz)

製造例48

製造例 47-2 と同様にして、4-0 ロロー5-0 ロロメチルー1-(2-0) ロロー4-(1-ペンチルオキシ) ベンジル) -2- メチルー1 Hーイミダゾール (340mg) から 5-(N- メチルアミノ) メチルー4-0 ロロー1-(2-0) ロロー4-(1-ペンチルオキシ) ベンジル) -2- メチルー1 Hーイミダゾール(85 mg) を 淡褐色油状物として得た。

¹H-NMR (CDCl₃) : 0.93 (3H, t, J=7Hz), 1.30-1.45 (4H, m), 1.72-1.82 (2H, m), 2.25 (3H, s), 2.36 (3H, s), 3.56 (2H, s), 3.91 (2 H, t, J=7Hz), 5.19 (2H, s), 6.36 (1H, d, J=8Hz), 6.69 (1H, dd, J=8, 2Hz), 6.95 (1H, d, J=2Hz) 製造例 4 9 - 1

4,5-ジブロモー2ーエチルイミダゾール(451.3g)をN,N-ジメチルホルムアミド(2.25L)に溶解し、炭酸カリウム(368g)を添加した後、(クロロメチル)メチルエーテル(200g)を氷冷下で徐々に滴下した。室温で2時間撹拌した後、氷冷した食塩水に反応液を注ぎ、酢酸エチルで抽出した。有機層を水、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥した後、溶媒を減圧下で留去した。残渣にヘキサンを添加して加熱、放冷し、析出した結晶を濾取して減圧下で加熱乾燥し、4,5-ジブロモー2ーエチルー1ー(メトキシメチル)イミダゾール(461.7g)を褐色結晶として得た。

¹H-NMR (CDCl₃): 1.33(3H, t, J=7Hz), 2.77(2 H, q, J=7Hz), 3.34(3H, s), 5.23(2H, s)

製造例49-2

4,5-ジブロモー2-エチルー1-(メトキシメチル)イミダゾール(461.1g)をテトラヒドロフラン(2.3L)に溶解し、1.57M n-ブチルリチウム/ヘキサン溶液(1.084L)を-60℃で徐々に滴下した。反応液を-60℃で30分撹拌した後、N,N-ジメチルホルムアミド(599ml)を-60℃で滴下した。室温で2時間撹拌した後、氷水に反応液を注いで酢酸エチルで抽出し、有機層を水、飽和食塩水で順次洗浄した後、無水硫酸マグネシウムで乾

燥した。溶媒を減圧下で留去し、4-ブロモ-2-エチル-1- (メトキシメチル) イミダゾール-5-カルボキシアルデヒド(366.2g) を褐色油状物として得た。

¹H-NMR (CDCl₃): 1.37 (3H, t, J=7Hz), 2.80 (2 H, q, J=7Hz), 3.35 (3H, s), 5.69 (2H, s), 9.72 (1H, s)

製造例49-3

4ーブロモー2ーエチルー1ー(メトキシメチル)イミダゾールー5ーカルバルデヒド(365g)を35%濃塩酸(1.8L)に溶解し、90℃で20時間加熱した。溶媒を減圧下で留去し、残渣に氷冷下で炭酸水素ナトリウムを弱アルカリ性になるまで添加した。クロロホルムを添加して抽出し、有機層を無水硫酸マグネシウムで乾燥した後、溶媒を減圧下で留去した。残渣にジイソプロピルエーテルを添加して加熱、放冷し、析出した結晶を濾取して減圧下で加熱乾燥し、4ークロロー2ーエチルイミダゾールー5ーカルバルデヒド(211.5g)を褐色結晶として得た。

¹H-NMR(CDCl₃): 1.37(3H, t, J=7Hz), 2.85(2H, q, J=7Hz), 9.63(1H, s), 11.30(1H, brs)

実施例1

(E) -3-(4-0)ロロー1ー(2ー0ロロー4ー(2ーフリル)ベンジル) -2-メチルイミダゾールー5ーイル)-2-プロペン酸(155 mg)のN, Nージメチルホルムアミド(0.8 m l)懸濁液に、室温で1,1'ーカルボニ ルジイミダゾール(101 mg)を加え1時間攪拌した。ここに(4ーメチルベ ンゼン)スルホンアミド(106 mg)、1,8ージアザビシクロ〔5.4.0〕 -7-ウンデセン(96 mg)を加え50℃で5時間攪拌した。反応混合物を氷 冷した後、1 N塩酸(1.7 m l)を滴下して中和し、さらに水(4 m l)を加 えて析出した沈殿を濾取した。この粗生成物をアセトン一水から再結晶して(E) -3-(4-クロロー1ー(2-クロロー4ー(2-フリル)ベンジル)-2-メチルイミダゾール-5-イル)-N-((4-メチルベンゼン)スルホニル)

-2-プロペン酸アミド(152mg)を淡黄色粉末として得た。

 1 H-NMR (CDCl₃) : 2.34 (3H, s), 2.40 (3H, s), 5.17 (2H, s), 6.38 (1H, d, J=8Hz), 6.49 (1H, dd, J=3 and 2Hz), 6.53 (1H, d, J=16Hz), 6.68 (1H, d, J=3Hz), 7.31 (2H, d, J=8Hz), 7.35 (1H, d, J=16Hz), 7.43 (1H, dd, J=8 and 2Hz), 7.49 (1H, d, J=2Hz), 7.74 (1H, d, J=2Hz), 7.92 (2H, d, J=8Hz).

Mass (ESI) : m/e 528 (M-H)-.

m. p. 242-243℃.

実施例2

実施例1と同様にして、(E) -3 - (4 - 0

 1 H-NMR (DMSO- d_{6}): 2.31 (3H, s), 5.39 (2H, s), 6.55 (1H, d, J=8Hz), 6.61 (1H, dd, J=3 and 2Hz), 6.69 (1H, d, J=16Hz), 7.06 (1H, d, J=3Hz), 7.26 (1H, d, J=16Hz), 7.35-7.50 (4H, m), 7.56 (1H, d, J=16Hz), 7.59 (1H, dd, J=8 and 2Hz), 7.67-7.77 (2H, m), 7.78 (1H, d, J=2Hz), 7.86 (1H, d, J=2Hz), 12.07 (1H, br s).

Mass (ESI) : m/e 540 (M-H)-.

m. p. 227-228℃.

実施例3

ルホニル) -2 ープロペン酸アミドを無色結晶(80 mg)として得た。 1 H-NMR(CDCl₃): 2.34(3H, s), 2.40(3H, s), 5.16(2H, s), 6.37(1H, d, J=8Hz), 6.54(1H, d, J=16Hz), 7.06-7.11(1H, m), 7.26-7.40(6H, m), 7.65(1H, d, J=2Hz), 7.92(2H, d, J=8Hz).

Mass (ESI) : m/z 544 (M-1).

m. p. 235-237℃.

実施例4

実施例1と同様にして、(E) $-3-(4-\rho uu-1-(2-\rho uu-4-(2-fun))$ (2ーチエニル)ベンジル)-2-メチルイミダゾールー5ーイル)-2-プロペン酸(100mg)と(E)-(2-フェニルエテン)スルホンアミド(70mg)から(2E) $-3-(4-\rho uu-1-(2-\rho uu-4-(2-fun))$ (2ーチエニル)ベンジル)-2-メチルイミダゾールー5ーイル)-N-(((E)-2-フェニルエテニル)スルホニル)-2-プロペン酸アミドを無色結晶(105mg)として得た。

 1 H-NMR (DMSO- d_{6}) : 2. 32 (3H, s), 5. 39 (2H, s), 6. 52 (1H, d, J=8Hz), 6. 69 (1H, d, J=16Hz), 7. 11-7. 17 (1H, m), 7. 26 (1H, d, J=16Hz), 7. 36-7. 49 (4H, m), 7. 50-7. 63 (4H, m), 7. 72 (2H, dd, J=2, 8Hz), 7. 84 (1H, d, J=2Hz).

Mass (ESI) : m/z 556 (M-1).

m. p. 246-248°C.

実施例5

実施例1と同様にして、(E) $-3-(4-\rho pp-1-(2-\rho pp-4-(7 pp-4-(8 pp-4-(8 pp-4-(8 pp-4-(8 pp-4-(8 pp-4-(8 pp-4-(9 pp-4-(7 pp-4-(9 pp$

 1 H-NMR (CDCl₃): 2.32(3H, s), 2.41(3H, s), 5.17(2H, s), 6.34(1H, d, J=8Hz), 6.56(1H, d, J=16Hz), 7.27-7.40(7H, m), 7.48-7.55(2H, m), 7.60(1H, d, J=2Hz), 7.93(2H, d, J=8Hz).

Mass (ESI) : m/z 562 (M-1).

m. p. 239-241℃.

実施例6

実施例1と同様にして、(E) $-3-(4-\rho pp-1-(2-\rho pp-4-(2-\rho pp-4-(2-pp-4-(2$

 1 H-NMR (CDCl₃): 2.34(3H, s), 5.20(2H, s), 6.39(1H, d, J=8Hz), 6.61(1H, d, J=16Hz), 7.05(1H, d, J=16Hz), 7.30(1H, dd, J=2, 8Hz), 7.33-7.44(7H, m), 7.46-7.55(4H, m), 7.60(1H, d, J=2Hz), 7.71(1H, d, J=16Hz).

Mass (ESI) : m/z 574 (M-1).

m. p. 220-222°C.

実施例7

実施例 1 と同様にして、(E) -3 - (1 - (4 - ブロモー2 - クロロベンジル) -4 - クロロー2 - メチルイミダゾールー5 - イル) -2 - プロペン酸(1 5 0 m g)と(4 - メチルベンゼン)スルホンアミド(9 9 m g)から、(E) -3 - (1 - (4 - ブロモー2 - クロロベンジル) -4 - クロロー2 - メチルイミダゾールー5 - イル) -N - ((4 - メチルベンゼン)スルホニル) -2 - プロペン酸アミド(1 6 2 m g)を無色結晶として得た。

 1 H-NMR (CDCl₃): 2.31 (3H, s), 2.43 (3H, s), 5.10 (2H, s), 6.23 (1H, d, J=8Hz), 6.58 (1H, d, J=15Hz), 7.25-7.33 (4H, m), 7.58 (1H, d, J=2Hz), 7.92 (2H, d,

J=8Hz).

Mass (ESI) : m/z 542 (M-H)-.

m. p. 233-235℃.

実施例8

実施例1と同様にして、(E) $-3-(1-(4-)\pi E-2-)\pi E-2)$ ル) $-4-(2-)\pi E-2$ (1 $-2-)\pi E-2$ (2 $-2-)\pi E-2$ (2 $-2-)\pi E-2$ (2 $-2-)\pi E-2$ (3 $-2-)\pi E-2$ (1 $-2-)\pi E-2$ (2 $-2-)\pi E-2$ (2 $-2-)\pi E-2$ (2 $-2-)\pi E-2$ (3 $-2-)\pi E-2$ (4 $-2-)\pi E-2$ (5 $-2-)\pi E-2$ (7 $-2-)\pi E-2$ (7 $-2-)\pi E-2$ (7 $-2-)\pi E-2$ (8 $-2-)\pi E-2$ (9 $-2-)\pi E-2$ (1 $-2-)\pi E-2$ (1 $-2-)\pi E-2$ (1 $-2-)\pi E-2$ (1 $-2-)\pi E-2$ (1 -

Mass (ESI) : m/z 554 (M-H)-.

m. p. 250-251℃.

実施例9

m. p. 203-204℃.

実施例10

 1 H-NMR (CDCl₃) : 2.36 (3H, s), 5.20 (2H, s), 6.43 (1H, d, J=8Hz), 6.57 (1H, d, J=15Hz), 7.31-7.55 (9H, m), 7.59 (1H, d, J=8Hz), 7.64 (1H, d, J=2Hz), 8.05 (2H, d, J=8Hz), 8.54 (1H, br s).

Mass (ESI) : m/z 526 (M+1).

m. p. 245-247℃.

実施例11

Mass(ESI) : m/z 540(M+1).

m. p. 229-232℃.

実施例12

実施例1と同様にして、(E) $-3-(4-\rho pp-1-(2-\rho pp-4-2 pp-4-2 pp-4-3 pp-4-3 pp-4-3 pp-4-4 pp-4-4$

スルホニル) -2 ープロペン酸アミド(1 3 2 m g)を無色結晶として得た。 1 H-NMR(CDCl $_{3}$): 2.37(3H, s), 5.22(2H, s), 6.47(1H, d, J=8Hz), 6.57(1H, d, J=15Hz), 7.03(1H, d, J=15Hz), 7.37-7.54(12H, m), 7.65(1H, s), 7.71(1H, d, J=15Hz).

Mass(ESI) : m/z 554(M+H)+.

m. p. 240-241℃.

実施例13

m. p. 229-23 3℃.

実施例14

実施例1と同様にして、(E) -3-(4-2)-1-(2-2)-1-4-2 フェニルベンジル) -2-3 デルイミダゾールー5ーイル) -2-3 で (150 mg) と5ーブロモチオフェンー2ースルホンアミド(141 mg)から、(E) -N-(5-3)-1-2 で (14-2) スルホニル) -3-(4-2)-1-1-(2-2) で (15-3) で (155 mg)を無色結晶として得た。 -1-(2-2) で (155 mg)を無色結晶として得た。 -1-(2-2) で (155 mg)を無色結晶として得た。 -1-(2-2) で (155 mg)を (155 mg)を (155 mg) (15 mg

Mass(ESI) : m/z 612(M+H)+.

m. p. 234-235℃.

実施例15

Mass (ESI) : m/z 520 (M-H)-.

m. p. 226-228℃.

実施例16

実施例1と同様にして、(E) $-3-(4-\rho pp-1-(2-\rho pp-4-(1-r) pp-4-(1-r) pp-2-r) (1-r) pp-2-r) (1-r) pp-2-r) pp-2-r)$

 1 H-NMR (CDCl₃ - CD₃ OD) : 1.02 (3H, t, J=7Hz), 1.73-1.85 (2H, m), 2.32 (3H, s), 3.88 (2H, t, J=7Hz), 5.15 (2H, s), 6.33 (1H, d, J=8Hz), 6.69 (1H, d, J=15Hz), 6.70 (1H, dd, J=8, 2Hz), 6.98 (1H, d, J=2Hz), 7.09 (1H, d, J=15Hz), 7.35-7.42 (4H, m), 7.50-7.54 (2H, m), 7.68 (1H, d, J=15Hz).

Mass(ESI) : m/z 532(M-H)-.

m. p. 199-201℃.

実施例17

¹H-NMR(CDCl₃): 0.93(3H, t, J=7Hz), 1.3 0-1.50(4H, m), 1.70-1.84(2H, m), 2.32(3H, s), 2.42(3H, s), 3.90(2H, t, J=7Hz), 5.09(2H, s), 6.27(1H, d, J=8Hz), 6.53(1H, d, J=16Hz), 6.67(1H, dd, J=2, 8Hz), 6.96(1H, d, J=2Hz), 7.28-7.39(3H, m), 7.93(2H, d, J=8Hz).

Mass (ESI) : m/z 548 (M-1).

m. p. 195-197℃.

実施例18

実施例1と同様にして、(E) $-3-(4-\rho pp-1-(2-\rho pp-4-(1-ペンチルオキシ)$ ベンジル)-2-メチルイミダゾール-5-イル)-2-プロペン酸(100mg)と(E)-(2-フェニルエテン)スルホンアミド(69mg)から(E) $-3-(4-\rho pp-1-(2-\rho pp-4-(1-ペンチルオキシ)$ ベンジル)-2-メチルイミダゾール-5-イル)-N-(((E)-2-フェニルエテニル)スルホニル)-2-プロペン酸アミドを無色結晶(84mg)として得た。

 1 H-NMR (CDCl₃) : 0.92 (3H, t, J=7Hz), 1.30-1.49 (4H, m), 1.69-1.72 (2H, m), 2.34 (3H, s), 3.90 (2H, t, J=7Hz), 5.13 (2H, s), 6.32 (1H, d, J=8Hz), 6.56 (1H, d, J=16Hz), 6.68 (1H, dd, J=2, 8Hz), 6.96 (1H, d, J=2Hz), 7.06 (1H, d, J=16Hz),

7. 35-7.56 (6H, m), 7. 72 (1H, d, J=16Hz).

Mas s(ESI) : m/z 560(M-1).

m. p. 196-199℃.

実施例19

 1 H-NMR (CDCl₃): 0.90(3H, t, J=7Hz), 1.25-1.92(14H, m), 2.34(1H, sept, J=7Hz), 2.37(3H, s), 3.38-3.50(2H, m), 3.80(2H, d, J=7Hz), 5.16(2H, s), 6.34(1H, d, J=8Hz), 6.51(1H, d, J=15Hz), 6.72(1H, dd, J=8 and 2Hz), 7.00(1H, d, J=2Hz), 7.44(1H, d, J=16Hz).

Mass(ESI) : m/e 54 0 (M-H)-.

m. p. 177-178℃.

実施例20

実施例 1 と同様にして、(E) -3 - (4 - 0 - 1 - (2 - 0 - 4 - (2 - 0 - 4 - (2 - 0 - 1 - 1 - (2 - 0 - 1 - (2 - 0 - 1 - (2 - 0 - 1 - (2 - 0 - 1 - (2 - 0 - 1 - (2 - 0 - 1 - (2 - 0 - 1 - (2 - 0 - 1 - (2 - 0 - 1 - (2 - 0 - 1 - (2 - 0 - 1 - 1 - (2 - 0 - 1 -

 1 H- NMR (CDCl₃): 1.25-1.92(8H, m), 2.32(3H, s), 2.33(1H, sept, J=7Hz), 2.42(3H, s), 3.78(2H, d, J=7Hz), 5.09(2H, s), 6.27(1H, d, J=8Hz), 6.52(1H, d, J=16Hz),

6.68(1H, dd, J=8 and 2Hz), 6.97(1H, d, J=2Hz), 7.32(2H, d, J=8Hz), 7.34(1H, d, J=16Hz), 7.94(2H, d, J=8Hz).

Mass(ESI) : m/e 560(M-H)-.

m. p. 217-218℃.

実施例21

実施例1と同様にして、(E) -3-(4-2)-1-(2-2)-1-4-(2-2)-

 1 H-NMR(CDCl₃): 1.23-1.92(8H, m), 2.32(1H, sept, J=7Hz), 2.33(3H, s), 3.77(2H, d, J=7Hz), 5.12(2H, s), 6.32(1H, d, J=8Hz), 6.60(1H, d, J=16Hz), 6.68(1H, dd, J=8 and 2Hz), 6.96(1H, d, J=2Hz), 7.08(1H, d, J=16Hz), 7.33-7.56(5H, m), 7.40(1H, d, J=16Hz), 7.70(1H, d, J=16Hz).

Mass(ESI) : m/e 572(M-H)-.

m. p. 200-201°C.

実施例22

 $^{1}H-NMR(CDC1_{3}): 0.95-1.89(11H, m), 2.32(3H, s), 2.42(3H, s), 3.70(2H, d, m)$

J=7Hz), 5. 10(2H, s), 6. 22(1H, d, J=8Hz), 6. 50(1H, d, J=16Hz), 6. 67(1H, dd, J=2, 8Hz), 6. 97(1H, d, J=2Hz), 7. 30-7. 38(3H, m), 7. 94(2H, d, J=8Hz). Mass(ESI) : m/z 574(M-1).

m. p. 214-216℃.

実施例23

¹H-NMR (CDCl₃): 0.95-1.37 (6H, m), 1.65-1.88 (5H, m), 2.35 (3H, s), 3.70 (2H, d, J=7Hz), 5.13 (2H, s), 6.31 (1H, d, J=8Hz), 6.54 (1H, d, J=16Hz), 6.68 (1H, dd, J=2, 8Hz), 6.98 (1H, d, J=2Hz), 7.06 (1H, d, J=16Hz), 7.37-7.45 (4H, m), 7.49-7.54 (2H, m), 7.72 (1H, d, J=16Hz).

Mass (ESI) : m/z 586 (M-1).

m. p. 210-212°C.

実施例24

実施例1と同様にして、(E) -3-(1-(4-ベンジルオキシ-2-クロロベンジル) -4-クロロ-2-メチルイミダゾール-5-イル) -2-プロペン酸 (90 m g) と (4-メチルベンゼン) スルホンアミド (55 m g) から (E) <math>-3-(1-(4-ベンジルオキシ-2-クロロベンジル) -4-クロロ-2-メチルイミダゾール-5-イル) -N-((4-メチルベンゼン) スルホニル) -2-プロペン酸アミドを無色結晶 (83 m g) として得た。

 1 H-NMR (CDCl₃): 2. 32 (3H, s), 2. 42 (3H, s), 5. 03 (2H, s), 5. 10 (2H, s), 6. 29 (1H, d, J=8Hz), 6. 51 (1H, d, J=16Hz), 6. 75 (1H, dd, J=2, 8Hz), 7. 06 (1H, d, J=2Hz).

7. 29-7.44(8H, m), 7. 95(2 H, d, J=8Hz).

Mass(ESI) : m/z 568(M-1).

m. p. 226-228°C.

実施例25

実施例1と同様にして、(E)-3-(1-(4-ベンジルオキシ-2-クロロベンジル) -4-クロロ-2-メチルイミダゾール-5-イル) -2-プロペン酸 (90 mg) と(E)-(2-フェニルエテン) スルホンアミド(59 mg)から(E)-3-(1-(4-ベンジルオキシ-2-クロロベンジル) -4-クロロ-2-メチルイミダゾール-5-イル) -N-((E)-2-フェニルエテニル) スルホニル)-2-プロペン酸アミドを無色結晶(73 mg)として得た。

¹H-NMR(CDCl₃): 2.34(3H, s), 5.02(2H, s), 5.14(2H, s), 6.34(1H, d, J=8Hz), 6.56(1H, d, J=16Hz), 6.77(1H, dd, J=2, 8Hz), 7.02-7.10(2H, m), 7.31-7.55(11H, m), 7.73(1H, d, J=16Hz).

Mass (ESI) : m/z 580 (M-1).

m. p. 225-227℃.

実施例26

実施例1と同様にして、(E) $-3-(4-\rho pp-1-(2-\rho pp-4-(2-\rho pp-4-4-(2-\rho pp-4-4-4-4))$ ベンジル)-2-メチルイミダゾール-5-イル)-2-プロペン酸(90mg)と(4-メチルベンゼン)スルホンアミド(65mg)から(E) $-3-(4-\rho pp-1-(2-\rho pp-4-(2-\rho pp-4-(2-\rho pp-4-(2-\rho pp-4-(2-\rho pp-4-(2-\rho pp-4-(2-\rho pp-4-4-4-4-4))))$ スルホニル)-2- メチルイミダゾール-5-イル)-N-((4-メチルベンゼン)スルホニル)-2-プロペン酸アミドを無色結晶(83mg)として得た。

 1 H-NMR(CDCl₃): 2.32(3H, s), 2.42(3H, s), 2.47(3H, s), 5.11(2H, s), 6.26(1H, d, J=8Hz), 6.52(1H, d, J=16Hz), 7.00(1H, dd, J=2, 8Hz), 7.26-7.36(4H, m), 7.94(2H, d, J=8Hz).

Mass(ESI) : m/z 508(M-1).

m. p. 228-230℃.

実施例27

 1 H-NMR (CDCl₃): 2.34 (3H, s), 2.46 (3H, s), 5.15 (2H, s), 6.31 (1H, d, J=8Hz), 6.57 (1H, d, J=16H z), 7.00 (1H, d, J=2Hz), 7.05 (1H, d, J=16Hz), 7.29 (1H, d, J=2Hz), 7.35-7.45 (4H, m), 7.49-7.55 (2H, m), 7.72 (1H, d, J=16Hz).

Mass(ESI) : m/z 520(M-1).

m. p. 237-238℃.

実施例28

実施例 1 と同様にして、(E) -3-(4-2)-1-(2-2)-1-4-(1) (トリフルオロメチル)ベンジル)-2-メチルイミダゾール-5-イル)-2-プロペン酸(3 0 m g)と(4-メチルベンゼン)スルホンアミド(2 0 m g)から(E) -3-(4-2)-1-(2-2)-1-4-(1) (トリフルオロメチル)ベンジル)-2-メチルイミダゾール-5-イル)-1Nー((4-メチルベンゼン)スルホニル)-2-プロペン酸アミドを薄黄色結晶(14 m g)として得た。1H-NMR(CDC1 $_3$): 2. 33 (3H, s), 2. 42 (3H, s), 5. 20 (2H, s), 6. 48 (1H, d, J=8Hz), 7. 92 (2H, d, J=8Hz).

Mass (ESI) : m/z 530 (M-1).

m. p. 223-225°C.

実施例29

 1 H-NMR (DMSO- 1 d₆) : 2.30 (3H, s), 5.48 (2H, s), 6.63-6.75 (2H, m), 7.24 (1H, d, J=16Hz), 7.37-7.51 (4H, m), 7.57 (1H, d, J=16Hz), 7.66 (1H, d, J=8Hz), 7.73 (2H, d, J=8Hz), 7.99 (1H, s).

Mass (ESI) : m/z 542 (M-1).

m. p. 261-263°C.

実施例30

¹H-NMR (CDCl₃): 2.32(3H, s), 2.42(3H, s), 5.02(2H, s), 5.16(2H, s), 6.38(1H, d, J=8Hz), 6.54(1H, d, J=15Hz), 6.89-7.04(3H, m), 7.18-7.38(6H, m), 7.54(1H, d, J=2Hz), 7.93(2H, d, J=8Hz).

Mass (ESI) : m/e 568 (M-H) -.

m. p. 236-237℃.

実施例31

実施例1と同様にして、(E)-3-(4-クロロ-1-(2-クロロ-4-

 1 H-NMR (CDCl₃): 2.30(3H, s), 5.07(2H, s), 5.39(2H, s), 6.50(1H, d, J=8Hz), 6.70(1H, d, J=16Hz), 6.88-7.02(3H, m), 7.22(1H, d, J=16Hz), 7.26-7.48(7H, m), 7.56(1H, d, J=16Hz), 7.62(1H, d, J=2Hz), 7.68-7.80(2H, m), 12.08(1H, br s).

Mass(ESI) : m/e 580(M-H)-.

m. p. 202-20 3℃.

実施例32

実施例1と同様にして、(E) -3-(4-011-1-(2-011-4-1)) とにないでは、(E) -3-(4-011-1-(2-011-4-1)) によっては、(E) -2-2 にないでは、(E) -2 にないでは、(E) に

 1 H-NMR (CDCl₃ - CD₃ 0D) : 2.32 (3 H, s), 2.41 (3H, s), 5.24 (2H, s), 6.55 (1H, d, J=8Hz), 6.68 (1H, d, J=15Hz), 7.22 (1H, d, J=15Hz), 7.30 (2H, d, J=8Hz), 7.90 (2H, d, J=8Hz), 8.03 (1H, dd, J=8, 2Hz), 8.33 (1H, d, J=2Hz).

Mass(ESI) : m/z 507(M-H)-.

m. p. 241-243℃.

実施例33

実施例1と同様にして、(E) -3-(4-クロロ-1-(2-クロロ-4-ニトロベンジル) -2-メチルイミダゾール-5-イル) -2-プロペン酸(1

 $0.5 \, \mathrm{mg}$)と(E) $-(2-7 \, \mathrm{ms}) \, \mathrm{ms}$ スルホンアミド($8.1 \, \mathrm{mg}$)から、(E) $-3-(4-7 \, \mathrm{ms}) \, \mathrm{ms}$ ($2-7 \, \mathrm{ms}$ $-4-1 \, \mathrm{ms}$) $-2-1 \, \mathrm{ms}$ チルイミダゾールー $5-1 \, \mathrm{ms}$) $-1 \, \mathrm{ms}$ $-1 \, \mathrm{ms}$) $-1 \, \mathrm{ms}$ $-1 \, \mathrm{ms}$ $-1 \, \mathrm{ms}$)を淡黄色結晶として得た。

 1 H-NMR (CDCl₃-CD₃ OD) : 2.34(3H, s), 5.29(2H, s), 6.59(1H, d, J=8Hz), 6.73(1H, d, J=15Hz), 7.06(1H, d, J=15Hz), 7.30(1H, t, J=8Hz), 7.37-7.45(3H, m), 7.50-7.52(2H, m), 7.68(1H, d, J=15Hz), 8.05(1H, dd, J=8, 2Hz), 8.34(1H, d, J=2Hz).

Mass(ESI) : m/z 519(M-H)-.

m.p. 199-201℃.

実施例34

実施例 1 と同様にして、(E) -3 - (4 - 0 - 1 - (2 - 0 - 4 - (E) - 1

 1 H-NMR (CDCl₃) : 2.33 (3H, s), 2.39 (3H, s), 5.15 (2 H, s), 6.35 (1H, d, J=8Hz), 6.54 (1H, d, J=16Hz), 6.97 (1H, d, J=16Hz), 7.08 (1H, d, J=16Hz), 7.21-7.41 (7H, m), 7.50 (2H, d, J=8Hz), 7.55 (1H, d, J=2Hz), 7.92 (1H, d, J=8Hz).

Mass(ESI) : m/z 564(M-1).

m. p. 237-239℃.

実施例35

実施例 1 と同様にして、(E)-3-(4-クロロ-1-(2-クロロ-4((E)-2-フェニルエテニル)ベンジル)-2-メチルイミダゾール-5-イル)-2-プロペン酸(150mg)と(E)-(2-フェニルエテン)スル

ホンアミド(100mg)から(E)-3-(4-)2pp-1-(2-)2pp-4-(E)-2-)2pp-1-(E)-2-2pp-1-(E)-2

 1 H-NMR (CDCl₃): 2.36 (3H, s), 5.20 (2H, s), 6.40 (1H, d, J=8Hz), 6.58 (1H, d, J=16Hz), 6.96 (1H, d, J=16Hz), 7.04 (1H, d, J=16Hz), 7.08 (1H, d, J=16Hz), 7.26-7.54 (12H, m), 7.58 (1H, d, J=2Hz), 7.70 (1H, d, J=16Hz).

Mass (ESI) : m/z 576 (M-1).

m. p. 230-232°C.

実施例36

 1 H-NMR (CDCl₃) : 2.30 (3H, s), 2.38 (3H, s), 5.33 (2H, s), 6.42 (1H, d, J=8Hz), 6.52 (1H, d, J=15Hz), 7.23-7.26 (2H, m), 7.37 (1H, d, J=15Hz), 7.57 (1H, t, J=8Hz), 7.65 (1H, d, J=8Hz), 7.70 (1H, d, J=8Hz), 7.80 (1H, d, J=8Hz), 7.88 (2H, d, J=8Hz), 8.31 (1H, d, J=8Hz), 8.69 (1H, br s).

Mass (ESI) : m/z 558 (M-H) -.

m. p. 260-262℃.

実施例37

実施例1と同様にして、(E)-3-(1-(1-プロモ-2-ナフチル)-4-クロロ-2-メチルイミダゾール-5-イル)-2-プロペン酸(175mg)と(E)-(2-フェニルエテン)スルホンアミド(119mg)から、(E)-3-(1-(1-プロモ-2-ナフチル)-4-クロロ-2-メチルイミダゾ

 1 H-NMR (DMSO- d_{6}): 2.33 (3H, s), 5.59 (2H, s), 6.56 (1H, d, J=8Hz), 6.70 (1H, d, J=15Hz), 7.27 (1H, d, J=15Hz), 7.37-7.48 (4H, m), 7.53 (1H, d, J=15Hz), 7.64 (1H, t, J=8Hz), 7.69-7.75 (3H, m), 7.94 (2H, t, J=8Hz), 8.26 (1H, d, J=8Hz).

Mass(ESI) : m/z 570(M-H)-.

m. p. 264-265°C.

実施例38

実施例 1 と同様にして (E) -3- (4-クロロ-1- (2-クロロ-4- (1-ペンチルオキシ) ベンジル) -2-メチルイミダゾール-5-イル) -2-プロペン酸 (150mg) と1-ペンタンスルホンアミド (86mg) から (E) -3- (4-クロロ-1- (2-クロロ-4- (1-ペンチルオキシ) ベンジル) -2-メチルイミダゾール-5-イル) -N- (1-ペンタンスルホニル) -2-プロペン酸アミド (135mg) を無色結晶として得た。

m. p. 175-176℃

 1 H-NMR (CDCl₃) : 0.89 (3H, t, J=6Hz), 0.93 (3H, t, J=6Hz), 1.25-1.48 (8H), 1.70-1.88 (4H), 2.36 (3H, s), 3.45 (2H, t, J=6Hz), 3.92 (2H, t, J=6Hz), 5.15 (2H, s), 6.35 (1H, d, J=8Hz), 6.52 (1H, d, J=16Hz), 6.71 (dd, J=8, 2Hz), 6.99 (1H, d, J=2Hz), 7.44 (1H, d, J=16Hz), 8.03 (1H, br. s).

MS(ESI) : m/z 529(M-1).

実施例39

(E) -3- (4-クロロ-1- (2-クロロ-4- (1-ペンチルオキシ) ベンジル) -2-メチルイミダゾール-5-イル) -2-プロペン酸 (150mg) をN, Nージメチルホルムアミド(1.5ml)に溶解しカルボニルジイミダゾールを加えて室温で3時間攪拌した。反応液に(E)-1-ペンテンー1ーイルスルホンアミドナトリウム塩 (97mg) を加えて室温で3時間攪拌した後、一日放置した。反応液を水(1.5ml)で希釈した後1N塩酸で氷冷下にpH4とし、析出した粉末を濾取、水洗した。得られた白色粉末をエタノール(0.75ml)中に懸濁して加熱後、30分間室温で攪拌した。沈殿を濾取

してエタノールで洗浄し、N, N-ジメチルホルムアミド(0.75ml)に80℃で溶解して同温で水(0.25ml)を加えた後、室温で1時間攪拌した。析出した結晶を濾取し、N, N-ジメチルホルムアミドー水(1:1)で洗浄後、さらに水洗して(E)-3-(4-クロロ-1-(2-クロロ-4-(1-ペンチルオキシ) ベンジル) -2-メチルイミダゾール-5-イル) -N-((E) -1-ペンテン-1-イルスルホニル) -2-プロペン酸アミド(160mg) を無色結晶として得た。

 1 H-NMR (CDCl₃) : 0.92 (3H, t, J=6Hz) , 0.94 (3H, t, J=6Hz) , 1.30-1.60 (6H) , 1.78 (2H, m) , 2.25 (2H, q, J=6Hz) , 2.35 (3H, s) , 3.92 (2H, t, J=6Hz) , 5.15 (2H, s) , 6.33 (1H, d, J=8Hz) , 6.49 (1H, d, J=16Hz) , 6.54 (1H, d, J=16Hz) , 6.70 (dd, J=8, 2Hz) , 6.99 (1H, d, J=2Hz) , 7.04 (1H, dt, J=16, 6Hz) , 7.41 (1H, d, J=16Hz) , 8.00 (1H, br. s) .

MS(ESI) : m/z 528(M-1).

実施例40

実施例1と同様にして(E) -3-(4-クロロ-1-(2-クロロ-4-(1-ペンチルオキシ)ベンジル) -2-メチルイミダゾール-5-イル) -2-プロペン酸 (150mg) と1-ブタンスルホンアミド (78mg) から(E) -N-(1-ブタンスルホニル) -3-(4-クロロ-1-(2-クロロ-4-(1-ペンチルオキシ) ベンジル) -2-メチルイミダゾール-5-イル) -2-プロペン酸アミド (132mg) を無色結晶として得た。

m. p. 182-183℃

 1 H-NMR (CDCl₃) : 0.93 (3 H, t, J=6Hz), 0.94 (3H, t, J=6Hz), 1.30-1.53 (6H), 1.70-1.87 (4H), 2.36 (3H, s), 3.45 (2H, t, J=6Hz), 3.92 (2H, t, J=6Hz), 5.15 (2H, s), 6.35 (1H, d, J=8Hz), 6.54 (1H, d, J=16Hz), 6.71 (1H, dd, J=8, 2Hz), 6.99 (1H, d, J=2Hz), 7.44 (1H, d, J=16Hz), 8.17 (1H, br. s).

MS(E SI) : m/z 515(M-1).

実施例41

実施例1と同様にして、(E)-3-(4-クロロ-1-(2-クロロ-4-((E)-2-フェニルエテニル)ベンジル)-2-メチルイミダゾール-5-イル)-2-プロペン酸(140mg)

と1-ペンタンスルホンアミド (77mg) から (E) -3- (4-クロロ-1- (2-クロロ-4- ((E) -2-フェニルエテニル) ベンジル) -2-メチルイミダゾール-5-イル) -N- (1-ペンタンスルホニル) -2-プロペン酸アミドを無色結晶 (116mg) として得た。

 1 H-NMR (CDCl₃) : 0.8 7 (3H, t, J=7Hz), 1.24-1.45 (4H, m), 1.75-1.88 (2H, m), 2.38 (3H, s), 3.39-3.46 (2H, m), 5.22 (2H, s), 6.42 (1H, d, J=8Hz), 6.54 (1H, d, J=16Hz), 7.00 (1H, d, J=16Hz), 7.12 (1H, d, J=16Hz), 7.27-7.54 (7H, m), 7.60 (1H, d, J=1Hz).

MS(ESI) : m/z 544(M-1).

m. p. 215-216 ℃.

実施例42

 1 H-NMR (CDCl₃) : 0.92(3H, t, J=7Hz), 1.43-1.57(2H, m), 2.14-2.30(2H, m), 2.37(3H, s), 5.21(2H, s), 6.40(1H, d, J=8Hz), 6.48(1H, d, J=16Hz), 6.57(1H, d, J=16Hz), 6.95-7.15(3H, m), 7.26-7.55(7H, m), 7.60(1H, d, J=1Hz).

MS(ESI) : m/z 542(M-1).

m. p. 226-228℃.

実施例43

実施例 1 と同様にして(E) -3- (4-クロロ-1- (2-クロロ-4- ((E) -2-フェニル エテニル) ベンジル) -2-メチルイミダゾール-5-イル) -2-プロペン酸 (150 mg) と1-ブタンスルホンアミド (75 mg) から(E) -N- (1-ブタンスルホニル) -3- (4-クロロ-1- (2-クロロ-4- ((E) -2-フェニルエテニル) ベンジル) -2-メチルイミダゾール-5-イル) -2-プロペン酸アミド (148 mg) を無色結晶として得た。

m.p. 213-214℃

 1 H-NMR (CDC1₃) : 0.92 (3H, t, J=6Hz), 1.44 (2H, m), 1.80 (2H, m), 2.48 (3H, s), 3.44 (2H, t, J=6Hz), 5.22 (2H, s), 6.42 (1H, d, J=8Hz), 6.59 (1H, d, J=16Hz), 7.00 (1H, d, J=16Hz), 7.11 (1H, d, J=16Hz), 7.25-7.55 (7H), 7.60 (1H, d, J=2Hz), 8.40 (1H, br. s).

MS(ESI) : m/z 531(M-1).

実施例44

実施例 1 と同様にして、 (E) -3- (4-クロロ-1- (2-クロロ-4- (フェニルエチニル) ベンジル) -2-メチルイミダゾール-5-イル) -2-プロペン酸 <math>(135mg) と 1-ペンタンスルホンアミド (74mg) から (E) -3- (4-クロロ-1- (2-クロロ-4- (フェニルエチニル) ベンジル) -2-メチルイミダゾール-5-イル) -N- <math>(1-ペンタンスルホニル) -2-プロペン酸アミドを無色結晶 (100mg) として得た。

 1 H-NMR (CDCl₃) : 0.89 (3H, t, J=7H z), 1.25-1.47 (4H, m), 1.75-1.90 (2H, m), 2.38 (3H, s), 3.40-3.47 (2H, m), 5.23 (2H, s), 6.42 (1H, d, J=8Hz), 6.55 (1H, d, J=16Hz), 7.31-7.40 (3H, m), 7.42 (1H, d, J=16Hz), 7.48-7.55 (2H, m), 7.63 (1H, d, J=1Hz), 7.87 (1H, s).

MS(ESI) : m/z 542(M-1).

m. p. 207-209℃.

実施例45

実施例 1 と同様にして、 (E) -3- (4-クロロ-1- (2-クロロ-4- (フェニルエチ = -1- (2-) -2- -1- (2-) -1-

 1 H-NMR (CDCl₃) : 0.93 (3H, t, J=7Hz), 1.45-1.57 (2H, m), 2.20-2.30 (2H, m), 2.36 (3H, s), 5.22 (2H, s), 6.40 (1H, d, J=8Hz), 6.48 (1H, d, J=16Hz), 6.57 (1H,

d, J=16Hz), 6.98-7.10(1H, m), 7.30-7.43(4H, m), 7.48-7.55(2H, m), 7.63(1H, d, J=1Hz), 7.87(1H, s).

MS(ESI) : m/z 540(M-1).

m. p. 207-21 0℃.

実施例46

実施例1と同様にして(E) -3- (4-クロロ-1- (2-クロロ-4- (2-フェニルエチニル) ベンジル) -2-メチルイミダゾール-5-イル) -2-プロペン酸 (87mg) と1-ブタンスルホンアミド (44mg) から(E) -N- (1-ブタンスルホニル) -3- (4-クロロ-1- (2-クロロ-4- (2-フェニルエチニル) ベンジル) -2-メチルイミダゾール-5-イル) -2-プロペン酸アミド (79mg) を無色結晶として得た。

m. p. 217-218℃

 3 H-NMR (CDCl₃) : 0.94 (3H, t, J=6Hz), 1.45 (2H, m), 1.80 (2H, m), 2.47 (3H, s), 3.44 (2H, t, J=6Hz), 5.23 (2H, s), 6.42 (1H, d, J=8Hz), 6.56 (1H, d, J=16Hz), 7.30-7.55 (7H), 7.62 (1H, d, J=2Hz), 8.14 (1H, br. s).

MS(ESI) : m/z 529(M-1).

実施例47

実施例1と同様にして、(E) -3-(4-クロロ-1-((3-クロロ-5-(トリフルオロメチル)ピリジン-2-イル)メチル)-2-メチルイミダゾール-5-イル)-2-プロペン酸(120mg)と(E)-(2-フェニルエテン)スルホンアミド(87mg)から(E)-3-(4-クロロ-1-((3-クロロ-5-(トリフルオロメチル)ピリジン-2-イル)メチル)-2-メチルイミダゾール-5-イル)-N-((E)-2-フェニルエテニルスルホニル)-2-プロペン酸アミドを淡黄色結晶(60mg)として得た。

 1 H-NMR (DMSO- 1 d₆) : 2. 26 (3H, s), 5. 65 (2H, s), 6. 66 (1H, d, J=16Hz), 7. 27 (1H, d, J=16Hz), 7. 38-7. 48 (4H, m), 7. 57 (1H, d, J=16Hz), 7. 70-7. 78 (2H, m), 8. 56 (1H, d, J=1Hz), 8. 85 (1H, s).

MS(ESI) : m/z 545(M+1).

m. p. 249-252℃.

実施例48

実施例 1 と同様にして、 (E) -3- (4-クロロ-1- ((3-クロロ-5- (トリフルオロメチル) ピリジン-2-イル) メチル) - 2-メチルイミダゾール-5-イル) -2-プロペン酸 (100mg) と (4-メチルベンゼン) スルホンアミド (68mg) から (E) -3- (4-クロロ-1- ((3-クロロ-5- (トリフルオロメチル) ピリジン-2-イル) メチル) - 2-メチルイミダゾール-5-イル) -N- ((4-メチルベンゼン) スルホニル) -2-プロペン酸アミドを淡黄色結晶 (38mg) として得た。

 1 H-NMR (CDC1₃) : 2.34(3H, s), 2.42(3H, s), 5.33(2H, s), 5.62(1H, d, J=16Hz), 7. 26-7.36(3H, m), 7.94(2H, d, J=8Hz), 8.60(2H, s).

MS(ESI) : m/z 533(M+1).

m. p. 239-241°C.

実施例49

実施例 1 と同様にして、(E) -3-(1-(4-(tert-ブトキシカルボニルアミノ) -2-クロロベンジル) -4-クロロ-2-メチルイミダゾール-5-イル) -2-プロペン酸 (150mg) と1-ペンタンスルホンアミド(80mg) から(E) -3-(1-(4-(tert-ブトキシカルボニルアミノ) -2-クロロベンジル) -4-クロロ-2-メチルイミダゾール-5-イル) -N-(1-ペンタンスルホニル) -2-プロペン酸アミドを無色結晶(64mg) として得た。

 1 H-NMR (CDCl₃) : 0.89 (3H, t, J=7Hz), 1.28-1.46 (4H, m), 1.51 (9H, s), 1.75-1.89 (2H, m), 2.36 (3H, s), 3.40-3.48 (2H, m), 5.16 (2H, s), 6.35 (1H, d, J=8Hz), 6.50 (1H, d, J=16Hz), 6.55 (1H, s), 7.03 (1H, dd, J=1, 8Hz), 7.43 (1H, d, J=16Hz). MS (ESI) : m/z 557 (M-1).

m. p. 202-204℃.

実施例50

実施例 1 と同様にして、 (E) -3- (1- (4- (tert-ブトキシカルボニルアミノ) -2-クロロベンジル) -4-クロロ-2-メチルイミダゾール-5-イル) -2-プロペン酸 (130mg) と (E) -1-ペンテンー 1 -イルスルホンアミド (68mg) から (E) -3- (1-

(4- (tert-ブトキシカルボニルアミノ) -2-クロロベンジル) -4-クロロ-2-メチルイミダゾール-5-イル) -N- ((E) -1-ペンテン-1-イルスルホニル) -2-プロペン酸アミドを無色結晶(59mg)として得た。

 1 H-NMR (DMS0- 1 G) : 0.84 (3H, t, J=7Hz), 1.35-1.49 (2H, m), 1.46 (9H, s), 2.15-2.25 (2H, m), 2.31 (3H, s), 5.30 (2H, s), 6.47 (1H, d, J=8Hz), 6.65 (1H, d, J=16Hz), 6.67 (1H, d, J=16Hz), 6.75-6.86 (1H, m), 7.24 (1H, d, J=16Hz), 7.29 (1H, dd, J=1, 8Hz), 7.71 (1H, s).

MS(ESI) : m/z 555(M-1).

m. p. 209-210°C.

実施例51

実施例1と同様にして、(E) -3-(1-(4-(tert-ブトキシカルボニルアミノ) -2-クロロベンジル) -4-クロロ-2-メチルイミダゾール-5-イル) -2-プロペン酸 (200mg) と(E) - (2-フェニルエテン) スルホンアミド(129mg) から(E) -3-(1-(4-(tert-ブトキシカルボニルアミノ) -2-クロロベンジル) -4-クロロ-2-メチルイミダゾール-5-イル) -N-(((E) -2-フェニルエテニル) スルホニル) -2-プロペン酸アミドを淡黄色粉末(81mg) として得た。

 1 H-NMR (DMS0- 1 d₆) : 1. 46 (9H, s), 2. 29 (3H, s), 5. 29 (2H, s), 6. 46 (1H, d, J=8Hz), 6. 68 (1H, d, J=16Hz), 7. 20-7. 30 (2H, m), 7. 39-7. 50 (4H, m), 7. 58 (1H, d, J=16Hz), 7. 67-7. 80 (2H, m).

MS(ESI) : m/z 589(M-1).

実施例52

m. p. 174-175℃

¹H-NMR (CDCl₃) : 0.92 (3H, t, J=7Hz), 1.26 (3H, t, J=7Hz), 1.31-1.48 (4H, m), 1.69-1.82 (2H, m), 2.61 (2H, q, J=7Hz), 3.90 (2H, q, J=7Hz), 5.14 (2H, s), 6.30 (1H, d, J=8Hz), 6.56 (1H, d, J=15Hz), 6.67 (1H, d d, J=8, 2Hz), 6.97 (1H, d, J=2Hz), 7.06 (1H, d, J=15Hz), 7.36-7.55 (6H, m), 7.72 (1H, d, J=15Hz).

実施例53

実施例1と同様にして、(E) $-3-(1-(4-)\pi -2-2-)\pi -2-2-2\pi -2-2\pi -$

m. p. 209-210℃

 1 H-NMR (CDCl₃) : 1. 27 (3H, t, J=7Hz), 2. 59 (2H, q, J=7Hz), 5. 14 (2H, s), 6. 28 (1H, d, J=8Hz), 6. 62 (1H, d, J=15Hz), 7. 05 (1H, d, J=15Hz), 7. 24-7. 55 (6H, m), 7. 60 (1H, d, J=1Hz), 7. 72 (1H, d, J=15Hz), 8. 34 (1H, s).

MASS (ESI) : m/z 568 (M-1).

実施例54

m. p. 233-234℃

 1 H-NMR (CDCl₃) : 1.27 (3H, t, J=7Hz), 2.61 (2H, q, J=7Hz), 5.21 (2H, s), 6.38 (1H, d, J=8Hz), 6.60 (1H, d, J=15Hz), 7.05 (1H, d, J=15Hz), 7.30 (1H, dd, J=8, 1Hz),

7. 43-7.55(11H, m), 7. 59(1H, d, J=1Hz), 7. 71(1H, d, J=15Hz).

MASS (ESI) : m/z 588 (M-1).

実施例55

m. p. 250-252℃

 1 H-NMR(CDCl₃): 1.26(3H, t, J=7Hz), 2.58(2H, q, J=7Hz), 5.17(2H, s), 6.33(1H, d, J=8Hz), 6.56(1H, d, J=15Hz), 7.25-7.40(7H, m), 7.48-7.55(2H, m), 7.58(1H, d, J=1Hz), 7.92(1H, d, J=8Hz), 8.41(1H, br s).

MASS (ESI) : m/z 576 (M-1).

実施例56

実施例 1 と同様にして、 (E) -3- (4-クロロ-1- (2-クロロ-4- (フェニルエチニル) ベンジル) -2-エチルイミダゾール-5-イル) -2-プロペン酸 (130mg) と1-ブタンスルホンアミド (63mg) から (E) -N- (1-ブタンスルホニル) -3- (4-クロロ-1- (2-クロロ-4- (フェニルエチニル) ベンジル) -2-エチルイミダゾール-5-イル) -2-プロペン酸アミドを無色結晶 (107mg) として得た。

 1 H-NMR (CDCl₃) : 0.93 (3H, t, J=7H z), 1.29 (3H, t, J=7Hz), 1.38-1.53 (2H, m), 1.75-1.86 (2H, m), 2.63 (2H, d, J=7Hz), 3.40-3.49 (2H, m), 5.24 (2H, s), 6.41 (1H, d, J=8Hz), 6.56 (1H, d, J=16Hz), 7.30-7.40 (4H, m), 7.43 (1H, d, J=16Hz), 7.47-7.55 (2H, m), 7.63 (1H, d, J=1Hz).

MS(ESI) : m/z 542(M-1).

m.p. 165-167℃.

実施例57

実施例 1 と同様にして、 (E) -3- (4-クロロ-1- (2-クロロ-4- (フェニルエチニル) ベンジル)-2-エチルイミダゾール-5-イル)-2-プロペン酸(130mg)と1-ペンタンスルホンアミド(69mg)から (E) -3- (4-クロロ-1- (2-クロロ-4- (フェニルエチニル)ベンジル)<math>-2-エチルイミダゾール-5-イル)-N- (1-ペンタンスルホニル)-2-プロペン酸アミドを無色結晶(93mg)として得た。

 1 H-NMR (CDCl₃) : 0.88 (3H, t, J = 7Hz), 1.29 (3H, t, J=7Hz), 1.24-1.46 (4H, m), 1.75-1.88 (2H, m), 2.63 (2H, d, J=7Hz), 3.38-3.47 (2H, m), 5.24 (2H, s), 6.40 (1H, d, J=8Hz), 6.56 (1H, d, J=16Hz), 7.30-7.40 (4H, m), 7.43 (1H, d, J=16Hz), 7.48-7.55 (2H, m), 7.62 (1H, d, J=1Hz).

MS(ESI) : m/z 556(M-1).

m. p. 161-163℃.

実施例58

実施例39と同様にして、(E) -3-(4-クロロ-1-(2-クロロ-4-(フェニルエチニル)ベンジル)-2-エチルイミダゾール-5-イル)-2-プロペン酸(130mg)と(E)-1-ペンテン-1ーイルスルホンアミドナトリウム塩(78mg)から(E)-3-(4-クロロ-1-(2-クロロ-4-(フェニルエチニル)ベンジル)-2-エチルイミダゾール-5-イル)-N-((E)-1-ペンテン-1ーイルスルホニル)-2-プロペン酸アミドを無色結晶(106mg)として得た。

 1 H-NMR (CDCl₃) : 0.93 (3H, t, J=7Hz), 1.28 (3H, t, J=7Hz), 1.45-1.55 (2H, m), 2.19-2.30 (2H, m), 2.62 (2H, d, J=7Hz), 5.22 (2H, s), 6.40 (1H, d, J=8Hz), 6.48 (1H, d, J=16Hz), 6.58 (1H, d, J=16Hz), 6.98-7.10 (1H, m), 7.29-7.45 (5H, m), 7.47-7.56 (2H, m), 7.62 (1H, d, J=1Hz).

MS(ESI) : m/z 554(M-1).

m. p. 173-175℃.

実施例59

2-プロペン酸(170mg)と(E)-2-フェニルエテンスルホンアミド(109mg)から(E)-3-(4-クロロ-1-(2-クロロ-4-(E)-2-フェニルエテニル)ベンジル)<math>-2-エチルイミダゾール-5-イル)-N-(E)-2-フェニルエテンスルホニル)-2-プロペン酸アミドを無色結晶(180mg)として得た。

m.p. 218-220℃

 1 H-NMR (CDC1₃-CD₃0D) : 1.25 (3H, t, J=7Hz), 2.62 (2H, q, J=7Hz), 5.22 (2H, s), 6.38 (1H, d, J=8Hz), 6.90 (1H, d, J=15Hz), 6.98 (1H, d, J=15Hz), 7.04-7.14 (2H, m), 7.24-7.44 (7H, m), 7.46-7.53 (4H, m), 7.58 (1H, d, J=1Hz), 7.68 (1H, d, J=15Hz).

MASS (ESI) : m/z 425 (M-1).

実施例60

実施例 1 と同様にして、(E) -3 -(4 - 0 - 1 -

m. p. 250-252℃

 1 H-NMR (CDCl₃): 1.24(3H, t, J=7Hz), 2.60(2H, q, J=7Hz), 5.16(2H, s), 6.34(1H, d, J=8Hz), 6.54(1H, d, J=15Hz), 6.96(1H, d, J=15Hz), 7.19(1H, d, J=15Hz), 7.21-7.41(7H, m), 7.50(2H, d, J=8Hz), 7.56(1H, s), 7.92(2H, d, J=8Hz), 8.47(1H, br s).

MASS(ESI) : m/z 580 (M-1).

実施例61

実施例1と同様にして、(E) -3-(4-クロロ-1-(2-クロロ-4-((E) -2-フェニルエテニル) ベンジル) -2-エチルイミダゾール-5-イル) -2-プロペン酸(150mg)

と1-ブタンスルホンアミド (72mg) から (E) -N- (1-ブタンスルホニル) -3- (4-クロロ-1- (2-クロロ-4- ((E) -2-フェニルエテニル) ベンジル) -2-エチルイミダゾール-5-イル) -2-プロペン酸アミドを無色結晶 (146mg) として得た。

 $^{1}\text{H-NMR}(\text{CDC1}_{3})$: 0.92(3H, t, J=7Hz), 1.30(3H, t, J=7Hz), 1.35-1.55(2H, m), 1.74-1.85(2H, m), 2.65(2H, d, J=7Hz), 3.39-3.48(2H, m), 5.23(2H, s), 6.41(1H, d, J=8Hz), 6.55(1H, d, J=16Hz), 6.99(1H, d, J=16Hz), 7.11(1H, d, J=16Hz), 7.27-7.62(8H, m).

MS(ES I) : m/z 544(M-1).

m. p. 210-213℃.

実施例62

実施例 1 と同様にして、 (E) -3- (4-クロロ-1- (2-クロロ-4- ((E) -2-フェニルエテニル) ベンジル) -2-エチルイミダゾール-5-イル) -2-プロペン酸 (150mg) と1-ペンタンスルホンアミド (80mg) から (E) -3- (4-クロロ-1- (2-クロロ-4- ((E) -2-フェニルエテニル) ベンジル) -2-エチルイミダゾール-5-イル) -N- (1-ペンタンスルホニル) -2-プロペン酸アミドを無色結晶 (138mg) として得た。 「H-NMR (CDC1₃) : 0.87 (3H, t, J=7Hz), 1.23-1.45 (4H, m), 1.30 (3H, t, J=7Hz), 1.75-1.88 (2H, m), 2.65 (2H, d, J=7Hz), 3.38-3.46 (2H, m), 5.23 (2H, s), 6.40 (1H, d, J=8Hz), 6.55 (1H, d, J=16Hz), 6.98 (1H, d, J=16Hz), 7.11 (1H, d, J=16Hz), 7.26-7.66 (8H, m).

MS(ESI) : m/z 558(M-1).

m. p. 197-200℃.

実施例63

実施例1と同様にして、(E) -3- (4-クロロ-1- (2-クロロ-4- ((E) -2-フェニルエテニル) ベンジル) -2-エチルイミダゾール-5-イル) -2-プロペン酸 (150mg) と (E) -1-ペンテン-1ーイルスルホンアミド (79mg) から (E) -3- (4-クロロー1- (2-クロロー4- ((E) -2-フェニルエテニル) ベンジル) -2-エチルイミダゾール-5-イル) -N- ((E) -1-ペンテン-1ーイルスルホニル) -2-プロペン酸アミド

を無色結晶(109mg)として得た。

 1 H-NMR (CDCl₃) : 0. 92 (3H, t, J=7Hz), 1. 29 (3H, t, J=7Hz), 1. 43-1. 56 (2H, m), 2. 18-2. 28 (2H, m), 2. 63 (2H, d, J=7Hz), 5. 21 (2H, s), 6. 40 (1H, d, J=8Hz), 6. 48 (1H, d, J=16Hz), 6. 57 (1H, d, J=16Hz), 6. 95-7. 15 (3H, m), 7. 25-7. 61 (8H, m). MS (ESI) : m/z 556 (M-1).

m.p. 197-200℃.

実施例64

実施例1と同様にして、(E) $-3-(1-(4-)70\pi-2-2-)70\pi$ ル) -2, 4-3 メチルイミダゾールー5- イル) -2- プロペン酸(140mg)と(E) -2- フェニルエテンスルホンアミド(104mg)から(E) $-3-(1-(4-)70\pi-2-70\pi)$ (E) -2- クロロベンジル) -2, 4- ジメチルイミダゾールー5- イル) - N- ((E) -2- フェニルエテンスルホニル) -2- プロペン酸アミド(150mg)を無色粉末として得た。

 1 H-NMR (CDC1₃-CD₃OD) : 2. 29 (3H, s), 2. 40 (3H, s), 5. 12 (2H, s), 6. 04 (1H, d, J=15Hz), 6. 23 (1H, d, J=8Hz), 7. 08 (1H, d, J=15Hz), 7. 28 (1H, dd, J=8, 2Hz), 7. 45-7. 53 (6H, m), 7. 61 (1H, d, J=2Hz), 7. 67 (1H, d, J=16Hz)

Mass (ESI) : m/z 534 (M-H)

m. p. 251-253℃

実施例65

実施例1と同様にして、(E) -3-(4-プロモー1-(2-クロロー4-(1-2)) (E) -3-(4-) (2 - クロロー4-(1-2) (2 - クロロー4-(1-2)) (2 - クロロー4-(1)) (2 - クロロー4-(1)) (2 - クロロー4-(1)) (2 - クロロー4-(1-2)) (2 - クロロー4-2) (3 - クロロー4-2) (4 - プロペン酸アミド(218mg) を無色結晶として得た。

 1 H-NMR (CDCl₃) : 0. 92 (3H, t, J = 7Hz), 1. 32-1. 47 (4H, m), 1. 72-1. 81 (2H, m), 2. 35 (3H, s), 3. 90 (2H, t, J=7Hz), 5. 14 (2H, s), 6. 32 (1H, d, J=8Hz), 6. 63 (1H,

d, J=15Hz), 6.68(1H, dd, J=8, 2Hz), 6.97(1H, d, J=2Hz), 7.06(1H, d, J=15Hz), 7.42-7.45(4H, m), 7.50-7.53(2H, m), 7.72(1H, d, J=15Hz)

Mass (ESI) : m/z 606 (M-H)

m. p. 208-209℃

実施例66

実施例 1 と同様にして、(E) -3-(1-(2-2)-2) (1 -(2-2) (1 -(2-2) (2 -(2-2) (1 -(2-2) (2 -(2-2) (2 -(2-2) (2 -(2-2) (2 -(2-2) (2 -(2-2) (2 -(2-2) (2 -(2-2) (2 -(2-2) (2 -(2-2) (3 -(2-2) (4 -(2-2) (4 -(2-2) (5 -(2-2) (6 -(2-2) (6 -(2-2) (7 -(2-2) (7 -(2-2) (8 -(2-2) (9 -(2-2) (9 -(2-2) (1 -(2-2) (1 -(2-2) (1 -(2-2) (1 -(2-2) (1 -(2-2) (2 -(2-2) (2 -(2-2) (2 -(2-2) (3 -(2-2) (4 -(2-2) (4 -(2-2) (5 -(2-2) (5 -(2-2) (6 -(2-2) (7 -(2-2) (7 -(2-2) (8 -(2-2) (9 -(2-2) (9 -(2-2) (9 -(2-2) (9 -(2-2) (9 -(2-2) (1 -(2-2) (1 -(2-2) (2 -(2-2) (2 -(2-2) (2 -(2-2) (3 -(2-2) (2 -(2-2) (3 -(2-2) (3 -(2-2) (3 -(2-2) (3 -(2-2) (3 -(2-2) (3 -(2-2) (3 -(2-2) (3 -(2-2) (3 -(2-2) (5 -(2-2) (5 -(2-2) (5 -(2-2) (6 -(2-2) (7 -(2-2) (7 -(2-2) (8 -(2-2) (9 -

6.96(1H, d, J=2Hz), 7.06(1H, d, J=15Hz), 7.36-7.44(3H, m), 7.46-7.59(3H, m), 7.68(1H, d, J=15Hz)

Mass (ESI) : m/z 554 (M-H)

実施例67

実施例1と同様にして、(E) -2-ベンジル-3-(1-(2-クロロ-4-(1-ペンチルオキシ) ベンジル) -2-メチルイミダゾール-5-イル) -2-プロペン酸(200mg)と(E) -2-フェニルエテンスルホンアミド(121mg)から(E) -2-ベンジル-3-(1-(2-クロロ-4-(1-ペンチルオキシ) ベンジル) -2-メチルイミダゾール-5-イル) -N-((E) -2-フェニルエテンスルホニル) -2-プロペン酸アミド(138mg)を無色結晶として得た。

¹H-NMR (CDCl₃): 0.93 (3H, t, J=7Hz), 1.32-1.47 (4H, m), 1.72-1.82 (2H, m), 2.35 (3H, s), 3.90 (2H, t, J=7Hz), 3.96 (2H, s), 5.15 (2H, s), 6.30 (1H, d, J=8Hz), 6.67 (1H, dd, J=8, 2Hz), 6.92-6.98 (2H, m), 7.12 (2H, d, J=8Hz), 7.20-7.32 (5H, m), 7.20-7.32

m), 7.35-7.45(5H, m), 7.58(1H, d, J=8Hz)

Mass (ESI) : m/z 616 (M-H)

m. p. 171-172℃

実施例68

実施例 1 と同様にして、(E) $-3-(1-(2-\rho pp-4-(1-ペンチルオキシ) ベンジル) -2-メチルイミダゾール-5-イル) -2-(1-ペンチル) -2-プロペン酸(200mg) と(E) <math>-2-フェニルエテンスルホンアミド(127mg)$ から(E) $-3-(1-(2-\rho pp-4-(1-ペンチルオキシ) ベンジル) -2- メチルイミダゾール-5-イル) -2-(1-ペンチル) -N-((E)-2-フェニルエテンスルホニル) -2-プロペン酸アミド(123mg) を無色結晶として得た。 <math>^{1}$ H-NMR(CDC1 $_3$): 0.88(3H, t, J=7Hz), 0.92(3H, t, J=7Hz), 1.25-1.55(10H, m), 1.70-1.80(2H, m), 2.37(3H, s), 2.48(2H, t, J=7Hz), 3.89(2H, t, J=7Hz), 5.12(2H, s), 6.32(1H, d, J=8Hz), 6.67(1H, dd, J=8, 2Hz), 6.95-6.97(2H, m), 7.12(1H, d, J=15Hz), 7.27(1H, d, J=9Hz), 7.37-7.47(3H, m), 7.50-7.53(2H, m), 7.72(1H, d, J=15Hz)

Mass (ESI) : m/z 596 (M-H)

m. p. 168-169℃

実施例69

実施例1と同様にして、(E) $-3-(1-(2-\rho pp-4-(1-ペンチルオキシ)$ ベンジル)-2-メチルイミダゾール-5-イル)-2-(3-ピリジル)メチル-2-プロペン酸 (230mg)と(E) -2-フェニルエテンスルホンアミド (139mg)から(E) $-3-(1-(2-\rho pp-4-(1-ペンチルオキシ)$ ベンジル)-2-メチルイミダゾール-5-イル)-2-((3-ピリジル)メチル)-N -((E)-2-フェニルエテンスルホニル)-2-プロペン酸アミド(139mg)を無色結晶として得た。

 1 H-NMR (CDCl₃) : 0.94 (3H, t, J=7Hz), 1.32-1.48 (4H, m), 1.72-1.82 (2H, m), 2.38 (3H, s), 3.86 (2H, t, J=7Hz), 3.97 (2H, s), 5.00 (2H, s), 6.37 (1H, d, J=8Hz),

6.61(1H, d, J=8, 2Hz), 6.92(1H, d, J=2Hz), 6.95(1H, s), 6.98(1H, d, J=15Hz), 7.18-7.27(2H, m), 7.32-7.45(5H, m), 7.56-7.63(2H, m), 8.09(1H, s), 8.48(1H, d, J=5Hz)

Mass (ESI) : m/z 617 (M-H)

m. p. 156-158℃

実施例70

実施例1と同様にして、(E) $-3-(1-(2-\rho n n - 4-(1-ペンチル オキシ) ベンジル) -2-メチルイミダゾール-5-イル) -2-メチル-2-プロペン酸(200mg)と(E) -2-フェニルエテンスルホンアミド(146mg)から(E) <math>-3-(1-(2-\rho n n - 4-(1-ペンチルオキシ) ベンジル) -2-メチルイミダゾール-5-イル) -2-メチル-N-((E) -2-フェニルエテンスルホニル) -2-プロペン酸アミド(183mg)を無色結晶として得た。$

¹H-NMR (CDCl₃): 0.92 (3H, t, J=7Hz), 1.30-1.47 (4H, m), 1.71-1.80 (2H, m), 2.12 (3H, s), 2.36 (3H, s), 3.89 (2H, t, J=7Hz), 5.13 (2H, s), 6.29 (1H, d, J=8Hz), 6.66 (1H, dd, J=8, 2Hz), 7.08-7.15 (2H, m), 7.33 (1H, s), 7.36-7.47 (3H, m), 7.49-7.53 (2H, m), 7.70 (1H, d, J=15Hz)

Mass (ESI) : m/z 540 (M-H)

m. p. 143-145℃

実施例71

 $^{1}H-NMR$ (CDCl₃) : 0.93(3H, t, J=7Hz), 1.32-1.48(4H, m), 1.72-1.82(2H, m),

1. 99 (3H, s), 2. 31 (3H, s), 3. 91 (2H, t, J=7Hz), 5. 00 (2H, s), 6. 40 (1H, d, J=2Hz), 6. 70 (1H, dd, J=8, 2Hz), 6. 92-6. 94 (2H, m), 7. 11 (1H, d, J=15Hz), 7. 38-7. 45 (3H, m), 7. 52-7. 55 (2H, m), 7. 73 (1H, d, J=15Hz), 8. 32 (1H, br s)

Mass(ESI) : m/z 574(M-H)

m. p. 156-157℃

実施例72

実施例1と同様にして、4-0ロロー1ー(2-0ロロー4ー(1-ペンチルオキシ)ベンジル)-2-メチルー1Hーイミダゾール-5-カルボン酸(200mg)と(E)-2-フェニルエテンスルホンアミド(148mg) から4-0ロロー1-(2-0ロロー4ー(1-ペンチルオキシ)ベンジル)-2-メチルー5-((E)-2-フェニルエテンスルホニルカルバモイル)-1Hーイミダゾール(108mg)を無色結晶として得た。

 1 H-NMR (CDCl₃) : 0.91 (3H, t, J=7Hz), 1. 28-1.37 (4H, m), 1.60-1.70 (2H, m), 2.02 (3H, s), 3.62 (2H, t, J=7Hz), 5.32 (2H, s), 6.32 (1H, d, J=8Hz), 6.44 (1H, d, J=8Hz), 6.58-6.64 (2H, m), 7.05-7.20 (6H, m)

Mass(ESI) : m/z 534(M-H)

m. p. 107-110℃

実施例73

4-0ロロー1ー(2-0ロロー4ー(1ーペンチルオキシ)ベンジル)-5-ヒドロキシメチルー2ーメチルー1Hーイミダゾール(150mg)を1, 4ージオキサン (1.5ml)に溶解し、室温でpートルエンスルホニルイソシアナート(99mg)を添加した。反応液を室温で1時間撹拌した後、減圧濃縮し、残渣にエタノール(5ml)を添加して析出した結晶を濾取した。結晶を酢酸エチル(2ml)に溶解し、70℃油浴上でヘキサン(13ml)を添加し、放冷して析出した結晶を濾取した。結晶を加熱下減圧乾燥することにより、N-(4-メチルベンゼンスルホニル)カルバミン酸(4-クロロー1ー(2-クロロー4ー(1-ペンチルオキシ)ベンジル)-2-メチルー1Hーイミダゾール-5-イル)メチルエステル(176mg)を無色結晶として得た。

 1 H-NMR (CDCl₃) : 0.93 (3H, t, J=7Hz), 1.32-1.50 (4H, m), 1.73-1.83 (2H, m), 2.29 (3H, s), 2.45 (3H, s), 3.93 (2H, t, J=7Hz), 4.93 (2H, s), 5.02 (2H, s), 6.31 (1H, d, J=8Hz), 6.68 (1H, dd, J=8, 2Hz), 6.94 (1H, d, J=2Hz), 7.32 (2H, d, J=8Hz), 7.95 (2H, d, J=8Hz)

Mass(ESI) : m/z 552 (M-H)

m. p. 109-111℃

実施例74

実施例 73 と同様にして、5-アミノメチルー4-クロロー1-(2-クロロー4-(1-ペンチルオキシ) ベンジル) <math>-2-メチルー1H-イミダゾール(70mg) と p-トルエンスルホニルイソシアナート(43mg) から 4-クロロー1-(2-クロロー4-(1-ペンチルオキシ) ベンジル) -5-((3-(4-メチルベンゼンスルホニル) ウレイドメチル) -2-メチルー1H-イミダゾール(41mg) を無色結晶として得た。

 1 H-NMR (CDCl₃) : 0. 92 (3H, t, J=7Hz), 1. 30-1. 47 (4H, m), 1. 70-1. 80 (2H, m), 2. 34 (3H, s), 2. 43 (3H, s), 3. 90 (2H, t, J=7Hz), 4. 24 (2H, d, J=7Hz), 5. 06 (2H, s), 6. 25 (1H, d, J=8Hz), 6. 65-6. 68 (2H, m), 6. 93 (1H, d, J=2Hz), 7. 28 (2H, d, J=8Hz), 7. 68 (2H, d, J=8Hz)

Mass (ESI) : m/z 551 (M-H)

m. p. 165-166°C

実施例75

実施例 73 と同様にして、5-(N-メチルアミノ) メチルー4-クロロー1-(2-クロロー4-(1-ペンチルオキシ) ベンジル) -2-メチルー1H-イミダゾール(70mg) とp-トルエンスルホニルイソシアナート(41mg) から4-クロロー1-(2-クロロー4-(1-ペンチルオキシ) ベンジル) -5-((3-(4-メチルベンゼンスルホニル) -1-メチルウレイド) メチル) <math>-2-メチル-1H-イミダゾール(60mg) を無色粉末として得た。

 $^{1}H-NMR(CDCl_{3})$: 0.93(3H, t, J=7Hz), 1.30-1.48(4H, m), 1.72-1.82(2H, m),

2. 09 (3H, s), 2. 38 (3H, s), 2. 72 (3H, s), 3. 88 (2H, t, J=7Hz), 4. 41 (2H, s), 4. 99 (2H, s), 6. 15 (1H, d, J=8Hz), 6. 61 (1H, dd, J=8, 2Hz), 6. 82 (1H, d, J=2Hz), 7. 13 (2H, d, J=8Hz), 7. 70 (2H, d, J=8Hz)

 $Mass(ESI) : m/z 565(M-H)^{-}$

実施例 76

IR (KBr): 2958, 2227, 2202, 1635, 1552, 1498, 1460, 1383, 1335, 1296, 1263, 1238, 1101, 1066, 1049, 966, 866, 839 cm⁻¹

 $^{1}H-NMR \, (DESO-d_{6}): \ 0.85 \, (3H, \ t, \ J=7Hz) \, , \ 1.13 \, (3H, \ t, \ J=7Hz) \, , \ 1.30-1.43 \, (2H, \ m) \, ,$ $2.02 \, (2H, \ q, \ J=7Hz) \, , \ 2.57 \, (2H, \ q, \ J=7Hz) \, , \ 5.34 \, (2H, \ s) \, , \ 6.20-6.30 \, (2H, \ m) \, ,$ $6.47 \, (1H, \ d, \ J=7Hz) \, , \ 6.55 \, (1H, \ d, \ J=15Hz) \, , \ 6.93 \, (1H, \ d, \ J=15Hz) \, , \ 7.41-7.45 \, (3H, \ m) \, , \ 7.48 \, (1H, \ dd, \ J=8, \ 2Hz) \, , \ 7.54-7.58 \, (2H, \ m) \, , \ 7.78 \, (1H, \ d, \ J=2Hz)$

Mass (ESI) : m/z 554 (M-H)

産業上の利用可能性

以上に述べた本発明のイミダゾール化合物およびそれらの医薬として許容される塩は、血糖降下活性に基づき、例えば、耐糖能障害、糖尿病 (II型糖尿病など)、妊娠性糖尿病、糖尿病性合併症(例えば糖尿病性壊そ、糖尿病性関節症、糖

尿病性骨減少症、糖尿病性糸球体硬化症、糖尿病性腎症、糖尿病性皮膚障害、糖 尿病性神経障害、糖尿病性白内障、糖尿病性網膜症など)、インスリン抵抗性症候 群(インスリン受容体異常症、Rabson-Mendenhall症候群、レ ブリコニズム、Kobberling-Dunnigan症候群、Seip症候 群、Lawrence症候群、Cushing症候群、先端巨大症など)、多嚢胞 性卵巣症候群、高脂質血症、アテローム性動脈硬化症、心臓血管疾患(狭心症、 心不全など)、高血糖症(例えば摂食障害などの異常糖代謝で特徴づけられるもの)、 膵炎、骨粗鬆症、高尿酸血症、高血圧症、炎症性腸疾患、もしくは表皮細胞の分 化異常に伴う皮膚疾患、さらにはcGMP-PDE (特にPDE-V) 阻害作用、 平滑筋弛緩作用、気管支拡張作用、血管拡張作用、平滑筋細胞抑制作用、アレル ギー抑制作用などに基づき、狭心症、高血圧、肺高血圧、うっ血性心不全、糸球 体疾患(例えば糖尿病性糸球体硬化症など)、尿細管間質性疾患(例えばFK50 6、シクロスポリンなどにより誘発された腎臓病など)、腎不全、アテローム性動 脈硬化症、血管狭窄(例えば経皮性動脈形成術後のもの)、末梢血管疾患、脳卒中、 慢性可逆性閉塞性疾患(例えば気管支炎、喘息(慢性喘息、アレルギー性喘息))、 自己免疫疾患、アレルギー性鼻炎、じんま疹、緑内障、腸運動性障害を特徴とす る疾患(例えば過敏症腸症候群)、インポテンス(例えば器質的インポテンス、精 神的インポテンスなど)、腎炎、癌悪液質、もしくはPTCA後の再狭窄、悪液質 (例えば、癌・結核・内分泌性疾患およびエイズなどの慢性疾患における、脂肪 分解・筋変性・貧血・浮腫・食欲不振などによる進行性の体重減少) などの予防・ 治療剤として用いられる医薬製剤として有用である。さらに、レチノイドと組み 合わせることにより、癌、再狭窄、アテローム性動脈硬化症を含む細胞増殖異常 に伴う疾患の治療に有用である。

本出願は、1998 年 12 月 24 日および 1999 年 8 月 12 日に日本で出願された特願 平 10-367362 号および特願平 11-228838 号を基礎としており、その内容は本明 細書に全て包含されるものである。

請求の範囲

1. 一般式(I):

[式中、R¹はアリール基または複素環基であって、それぞれ(1)アリール基、(2)複素環基、(3)ハロゲン、(4)ハロ(低級)アルキル基、(5)低級アルキルチオ基、(6)ニトロ基、(7)アリール基で置換されていてもよい低級アルケニル基、(8)アリール基で置換されていてもよい低級アルキニル基、(9)シクロ(低級)アルキル基またはアリール基で置換されていてもよい低級アルコキシ基、(10)アリールオキシ基、および(11)保護されたカルボキシ基または低級アルキル基で置換されていてもよいアミノ基、からなる群より選ばれる置換基で置換されており、

R²は低級アルキル基であり、

R³は水素、ハロゲン、低級アルキル基またはニトロ基であり、

R⁴は(1)アリール基または複素環基で置換されていてもよい低級アルケニル基、

(2)低級アルケニル基で置換されていてもよいアリール基、(3)低級アルキル基、または(4)ハロゲンで置換されていてもよい複素環基であり、

Aは低級アルキレン基であり、

Lは単結合、アリール基または複素環基で置換されていてもよい低級アルケニレン基または低級アルキレン基、または $-X-CH_2-$ (式中、Xは-O-、N R^5 (式中、 R^5 は水素または低級アルキル基である)、または-S-である]で示されるイミダゾール化合物またはその塩。

2. 一般式(IA):

$$R^4$$
 R^5 R^6 R^6

(式中、R²はメチル基であり、

R³は塩素であり、

 R^4 は(1)アリール基で置換されていてもよい低級アルケニル基、(2)アリール基、(3)低級アルキル基、または(4)ハロゲンで置換されていてもよい複素環基であり、

R⁶は(1)アリール基、(2)複素環基、(3)臭素、(4)ハロ(低級)アルキル基、(5)低級アルキルチオ基、(6)ニトロ基、(7)アリール基で置換された低級アルケニル基、(8)アリール基で置換された低級アルキニル基、(9)シクロ(低級)アルキル基またはアリール基で置換されていてもよい低級アルコキシ基、(10)アリールオキシ基で置換されていてもよい低級アルキル基、または(11)保護されたカルボキシ基または低級アルキル基で置換されていてもよいに級アルキル基、または(11)保護されたカルボキシ基または低級アルキル基で置換されていてもよいアミノ基であり、

Lはエテニレン基である)で示される請求項1記載のイミダゾール化合物または その塩。

3. R⁴はアリール基、またはアリール基で置換されていてもよい低級アルケニール基であり、

R⁶は臭素、アリール基で置換された低級アルケニル基、アリール基で置換された低級アルキニル基、またはシクロ(低級)アルキル基で置換されていてもよい低級アルコキシ基である請求項2記載のイミダゾール化合物またはその塩。

【請求項4】 R¹は複素環基であって、(1)アリール基、(2)複素環基、

- (3) ハロゲン、(4) ハロ(低級) アルキル基、(5) 低級アルキルチオ基、
- (6) ニトロ基、(7) アリール基で置換されていてもよい低級アルケニル基、
- (8) アリール基で置換されていてもよい低級アルキニル基、(9) シクロ(低級) アルキル基またはアリール基で置換されていてもよい低級アルコキシ基、(1
- 0) アリールオキシ基、および(11) 保護されたカルボキシ基または低級アルキル基で置換されていてもよいアミノ基、からなる群より選ばれる置換基で置換されている請求項1記載のイミダゾール化合物またはその塩。
- 5. (1) (E) -3-(4-2)-1-(2-2)-1-(2-2) (2ーフリル) ベンジル) -2-メチルイミダゾール-5-イル) -N-((4-メチルベンゼン) スルホニル) -2-プロペン酸アミド、
- (3) (E) $-3-(4-\rho p p p -1-(2-\rho p p p -4-(2-f p p p p +5))$ ベンジル) -2-メチルイミダゾール-5-イル) -N-((4-メチルベンゼン) スルホニル) -2-プpペン酸アミド、
- (4) $(2E) 3 (4 \rho p p p 1 (2 \rho p p p 4 (2 チェニル)$ ベンジル) $-2 \varkappa$ チルイミダゾール-5 4ル) $-N ((E) 2 7 z \varkappa$ ニルエテニル) スルホニル) $-2 \varkappa$ つのできず、
- (5) (E) $-3-(4-\rho -1-(2-\rho -1-4-(7 +1) + 1)$ ベンジル) -2-メチルイミダゾール-5-イル) -N-(4-メチルベンゼン) スルホニル) -2-プロペン酸アミド、

(7) (E) -3-(1-(4-) -2-) -2-) -2-) -3-(1-(4-) -2-) -3-(1-

- (8) (E) -3-(1-(4-) -2-) -2-) -2-) -3-(1-(4-) -2-) -2-) -3-(1-(4-) -2-) -2-) -3-(1-(4-) -2-) -2-) -3-(1-(4-
- (9) (E) $-3-[4-\rho pp-1-(2-\rho pp-4-7 pp-4-7$
- (10) (E) -N-ベンゼンスルホニル-3-[4- ρ ロロ-1-(2- ρ ロロ-4-7ェニルベンジル) -2-yチルイミダゾール-5-イル]-2-プロペン酸アミド、
- (11) (E) -3-[4-クロロ-1-(2-クロロ-4-フェニルベンジル) -2-メチルイミダゾール-5-イル]-N-((4-メチルベンゼン) スルホニル) <math>-2-プロペン酸アミド、
- (12) (E) $-3-(4-\rho -1-(2-\rho -1-4-\gamma -1-\lambda -1))$ -2-メチルイミダゾール-5-イル) -N-(((E) -2-フェニルエテニル) スルホニル) -2-プロペン酸アミド、
- (13) (E) -3-(4-0) -1-(2-0)
- (14) (E) -N-((5-プロモ-2-チェニル) スルホニル) -3-(4 -クロロ-1-(2-クロロ-4-フェニルベンジル) <math>-2-メチルイミダゾール-5-イル) -2-プロペン酸アミド、
- (15) (E) -3-((4-クロロ-1-(2-クロロ-4-(1-プロポキシ) ベンジル) -2-メチルイミダゾール-5-イル) -N-((4-メチルベンゼン) スルホニル) -2-プロペン酸アミド、

- (17) (E) -3-(4-021-1-(2-021-4-(1-ペンチルオ + シ) ベンジル) <math>-2-メチルイミダゾール-5-イル) -N- ((4-メチル ベンゼン) スルホニル) -2-プロペン酸アミド、

- (21) (2E) -3- (4-クロロ-1-(2-クロロ-4-((シクロペンチル) メチルオキシ) ベンジル) -2-メチルイミダゾール-5-イル) -N- ((E)-2-フェニルエテニル) スルホニル) -2-プロペン酸アミド、
- (22) (E) $-3-(4-\rho pp-1-(2-\rho pp-4-((シ \rho pp-4-) N) メチルオキシ) ベンジル) <math>-2-$ メチルイミダゾール-5-イル) -N-((4-タチルベンゼン) スルホニル) -2-プロペン酸アミド、
- (24) (E) -3-(1-(4-ベンジルオキシー2-クロロベンジル)-4 -クロロ-2-メチルイミダゾールー5-イル)-N-((4-メチルベンゼン) スルホニル)-2-プロペン酸アミド、

- (25) (E) -3-(1-(4-ベンジルオキシ-2-クロロベンジル)-4 -クロロ-2-メチルイミダゾール-5-イル)-N-(((E)-2-フェニルエテニル)スルホニル)-2-プロペン酸アミド、
- (26) (E) $-3-(4-\rho p p p -1-(2-\rho p p p -4-(メチルチオ) ベンジル) -2-メチルイミダゾール-5-イル) -N-((4-メチルベンゼン) スルホニル) -2-プロペン酸アミド、$
- (27) (E) $-3-(4-\rho pp-1-(2-\rho pp-4-(メチルチオ))$ ベンジル) -2-メチルイミダゾール-5-イル) -N-(((E) -2-フェニルエテニル) スルホニル) -2-プロペン酸アミド、
- (28) (E) $-3-(4-\rho -1-(2-\rho -1-4-(-1) -1) -1-4-(-1) -1-$
- (29) (E) $-3-(4-\rho -1-(2-\rho -1-4-(-1) -1) -1-4-(-1) -1-$
- (30) (E) $-3-(4-\rho p p p -1-(2-\rho p p p -4-(7 x / 4 + 2 x) x / 4 x /$

- (33) (E) -3-(4-クロロ-1-(2-クロロ-4-ニトロベンジル)-2-メチルイミダゾール-5-イル) -N-(((E) -2-フェニルエテニル)スルホニル) -2-プロペン酸アミド、

(34) (E) $-3-(4-\rho uu-1-(2-\rho uu-4-(E)-2-\sigma uu-4-(E)-2-\sigma uu-4-(E)-2-\sigma uu-5-4 uu-5-4 uu-6 (4-\phi uu-4-uu-4-(4-2-\phi uu-4-uu-4-(E)-2-0 uu-4-(E)-2-0 uu-4$

- (36) (E) -3-(1-(1-プロモ-2-ナフチル) -4-クロロ-2-メチルイミダゾール-5-イル) -N-((4-メチルベンゼン) スルホニル) -2-プロペン酸アミド、
- (38) (E) -3- (4-クロロ-1- (2-クロロ-4- (1-ペンチルオキシ) ベンジル) -2-メチルイミダゾール-5-イル) -N- (1-ペンタンスルホニル) -2-プロペン酸アミド、
- (39)(E)-3-(4-クロロ-1-(2-クロロ-4-(1-ペンチルオキシ)ベンジル)-2-メチルイミダゾール-5-イル)-N-((E)-1-ペンテン-1-イルスルホニル)-2-プロペン酸アミド、
- (40)(E)-N-(1-ブタンスルホニル)-3-(4-クロロ-1-(2-クロロ-4-(1-ペンチルオキシ)ベンジル)-2-メチルイミダゾール-5-イル)-2-プロペン酸アミド、(41)(E)-3-(4-クロロ-1-(2-クロロ-4-(E)-2-フェニルエテニル)ベンジル)-2-メチルイミダゾール-5-イル)-N-(1-ペンタンスルホニル)-2-プロペ
- (42)(E)-3-(4-クロロ-1-(2-クロロ-4-(E)-2-フェニルエテニル)ベンジル)-2-メチルイミダゾール-5-イル)-N-((E)-1-ペンテン-1-イルスルホニル)-2-プロペン酸アミド、

ン酸アミド、

(43)(E)-N-(1-ブタンスルホニル)-3-(4-クロロ-1-(2-クロロ-4-((E)

-2-フェニルエテニル)ベンジル)-2-メチルイミダゾール-5-イル)-2-プロペン 酸アミド、

- (44) (E) -3- (4-クロロ-1- (2-クロロ-4- (フェニルエチニル) ベンジル) -2-メチルイミダゾール-5-イル) -N- (1-ペンタンスルホニル) -2-プロペン酸アミド、
- (45) (E) -3- (4-クロロ-1- (2-クロロ-4- (フェニルエチニル) ベンジル) -2-メチルイミダゾール-5-イル) -N- ((E) -1-ペンテン-1-イルスルホニル) -2-プロペン酸アミド、
- (46)(E)-N-(1-ブタンスルホニル)-3-(4-クロロ-1-(2-クロロ-4-(2-フ エニルエチニル)ベンジル)-2-メチルイミダゾール-5-イル)-2-プロペン酸アミ ド、
- (47) (E) -3- (4-クロロ-1- ((3-クロロ-5- (トリフルオロメチル) ピリジン-2-イル) メチル) -2-メチルイミダゾール-5-イル) -N- ((E) -2-フェニルエテニルスルホニル) -2-プロペン酸アミド、
- (48) (E) -3- (4-クロロ-1- ((3-クロ·ロ-5- (トリフルオロメチル) ピリジン-2-イル) メチル) -2-メチルイミダゾール-5-イル) -N- ((4-メチルベンゼン) スルホニル) -2-プロペン酸アミド、
- (49) (E) -3- (1- (4- (tert-プトキシカルボニルアミノ) -2-クロロベンジル) -4-クロロ-2-メチルイミダゾール-5-イル) -N- (1-ペンタンスルホニル) -2-プロペン酸アミド、
- (50) (E) -3- (1- (4- (tert-ブトキシカルボニルアミノ) -2-クロロベンジル) -4-クロロ-2-メチルイミダゾール-5-イル) -N- ((E) -1-ペンテン-1-イルスルホニル) -2-プロペン酸アミド、
- (51) (E) -3- (1- (4- (tert-ブトキシカルボニルアミノ) -2-クロロベンジル) -4-クロロ-2-メチルイミダゾール-5-イル) -N- (((E) -2-フェニルエテニル) スルホニル) -2-プロペン酸アミド、
 - (52) (E) -3-(4-2) (2 2 2 2 4 (1 ペンチルオ

- キシ) ベンジル) -2-xチルイミダゾール-5-イル) -N- ((E) -2-フェニルエテンスルホニル) -2-プロペン酸アミド、
- (53) (E) -3-(1-(4-) ロモー 2- クロロベンジル) -4- クロロー 2- エチルイミダゾールー 5- イル) -N- ((E) -2- フェニルエテンスルホニル) -2- プロペン酸アミド、
- (54) (E) $-3-(4-\rho -1-(2-\rho -4-(7-2-\mu +5-\mu))$ (E) $-2-\pi + (2-\rho -4-(7-2-\mu +5-\mu))$ (E) $-2-\pi + (2-\rho -4-(7-2-\mu +5-\mu))$ (E) $-2-\pi + (2-\rho -4-\mu)$ (E) $-2-\mu + (2-\rho -4-\mu)$ (E) -2
- (56) (E) -N- (1-ブタンスルホニル) -3- (4-クロロ-1- (2-クロロ-4- (フェ ニルエチニル) ベンジル) -2-エチルイミダゾール-5-イル) -2-プロペン酸アミド、
- (57) (E) -3- (4-クロロ-1- (2-クロロ-4- (フェニルエチニル) ベンジル) -2-エチルイミダゾール-5-イル) -N- (1-ペンタンスルホニル) -2-プロペン酸アミド、
- (58) (E) -3- (4-クロロ-1- (2-クロロ-4- (フェニルエチニル) ベンジル) -2-エチルイミダゾール-5-イル) -N- ((E) -1-ペンテン-1-イルスルホニル) -2-プロペン酸アミド、

- (61) (E) -N- (1-ブタンスルホニル) -3- (4-クロロ-1- (2-クロロ-4- (E) -2-フェニルエテニル) ベンジル) -2-エチルイミダゾール-5-イル) -2-プロペン

酸アミド、

(62) (E) -3- (4-クロロ-1- (2-クロロ-4- ((E) -2-フェニルエテニル) ベンジル) -2-エチルイミダゾール-5-イル) -N- (1-ペンタンスルホニル) -2-プロペン酸アミド、

- (63) (E) -3- (4-クロロ-1- (2-クロロ-4- ((E) -2-フェニルエテニル) ベンジル) -2-エチルイミダゾール-5-イル) -N- ((E) -1-ペンテン-1ーイルスルホニル) -2-プロペン酸アミド、
- (65) (E) -3-(4-70+1-(2-20+4-(1-3)+1) 3-(4-70+1-1-(2-20+4-(1-3)+1) 3-(4-70+1-1-(2-20+4-(1-3)+1) 3-(4-70+1-1-(2-20+4-(1-3)+1) 3-(4-70+1-1-(2-20+4-(1-3)+1) 3-(4-70+1-1-(2-20+4-(1-3)+1) 3-(4-70+1-1-(2-20+4-(1-3)+1) 3-(4-70+1-1-(2-20+4-(1-3)+1) 3-(4-70+1-1-(2-20+4-(1-3)+1) 3-(4-70+1-1-(2-20+4-(1-3)+1) 3-(4-70+1-1-1-(1-3)+1)
- (66) (E) $-3-(1-(2-\rho pp-4-(1-ペンチルオキシ) ベンジル) <math>-4-x$ チルー2-メチルイミダゾールー5-イル) -N-(E) -2-フェニルエテンスルホニル) -2-プロペン酸アミド、
- (68) (E) $-3-(1-(2-\rho pp-4-(1-ペンチルオキシ) ベンジル)$ -2- メチルイミダゾール-5- イル) -2-(1-ペンチル)-N-(E)-2 フェニルエテンスルホニル) -2- プロペン酸アミド、
- (69) (E) $-3-(1-(2-\rho pp-4-(1-ペンチルオキシ) ベンジル)$ -2-メチルイミダゾール-5-イル)-2-(3-ピリジル) メチル-N-((E)-2-フェニルエテンスルホニル) -2-プロペン酸アミド、

ルエテンスルホニル) -2-プロペン酸アミド、

(71) (E) $-3-(4-\rho -1-(2-\rho -1-4-(1-ペンチルオキ シ) ベンジル) <math>-2-$ メチルイミダゾール-5-イル) -2-メチル-N- (E) -2-フェニルエテンスルホニル) -2-プロペン酸アミド、

(73)N-(4-メチルベンゼンスルホニル)カルバミン酸(4-クロロ-1-(2-クロロ-4-(1-ペンチルオキシ)ベンジル)-2-メチル-1H-イミダゾール-5-イル)メチルエステル、

(74) 4-p-p-1- (2-p-p-4-(1-x-x+x+x-x

- 6. (E) $-3-(4-\rho p p p -1-(2-\rho p p p -4-(7 x = n x f = n))$ ベンジル) -2-メチルイミダゾール-5-イル) -N-((4-メチルベンゼン) スルホニル) -2-プp パン酸アミド、
- (E) -3-(4-0ロロー1-(2-0ロロー4-(1-ペンチルオキシ) ベンジル) -2-メチルイミダゾール-5-イル) -N-((E) -2-フェニル エテニル) スルホニル) <math>-2-プロパン酸アミド、

- (E) -3- (4-クロロ-1- (2-クロロ-4- (フェニルエチニル) ベンジル) -2-エチルイミダゾール-5-イル) -N- (1-ペンタンスルホニル) -2-プロペン酸アミド、または
- (E) -3-(4-0ロロー1-(2-0 ロロー4-(フェニルエチニル)ベンジル) -2-エチルイミダゾール-5-イル) -N-((E) -1-ペンテン-1 ーイル)スルホニル) -2-プロペン酸アミドである請求項1記載のイミダゾール化合物またはその塩。
- 7. 請求項1記載のイミダゾール化合物または医薬として許容されるその塩を 含有する医薬組成物。
- 8. 請求項1記載のイミダゾール化合物または医薬として許容されるその塩を含有し、耐糖能障害、糖尿病、妊娠性糖尿病、糖尿病性合併症、インスリン抵抗性症候群、多嚢胞性卵巣症候群、高脂質血症、アテローム性動脈硬化症、心臓血管疾患、高血糖症、膵炎、骨粗鬆症、高尿酸血症、高血圧症、炎症性腸疾患、表皮細胞の分化異常に伴う皮膚疾患、狭心症、肺高血圧、うっ血性心不全、糸球体疾患、尿細管間質性疾患、腎不全、血管狭窄、末梢血管疾患、脳卒中、慢性可逆性閉塞性疾患、自己免疫疾患、アレルギー性鼻炎、じんま疹、緑内障、腸運動性障害を特徴とする疾患、インポテンス、腎炎、癌悪液質、PTCA後の再狭窄、または悪液質の予防および/または治療剤として用いられる医薬製剤。
- 9. 耐糖能障害、糖尿病、妊娠性糖尿病、糖尿病性合併症、インスリン抵抗性症候群、多嚢胞性卵巣症候群、高脂質血症、アテローム性動脈硬化症、心臓血管疾患、高血糖症、膵炎、骨粗鬆症、高尿酸血症、高血圧症、炎症性腸疾患、表皮

細胞の分化異常に伴う皮膚疾患、狭心症、肺高血圧、うっ血性心不全、糸球体疾患、尿細管間質性疾患、腎不全、血管狭窄、末梢血管疾患、脳卒中、慢性可逆性閉塞性疾患、自己免疫疾患、アレルギー性鼻炎、じんま疹、緑内障、腸運動性障害を特徴とする疾患、インポテンス、腎炎、癌悪液質、PTCA後の再狭窄、または悪液質の予防および/または治療剤の製造のための請求項1記載のイミダゾール化合物または医薬として許容されるその塩の使用。

10. 請求項1記載のイミダゾール化合物または医薬として許容されるその塩を投与することからなる、耐糖能障害、糖尿病、妊娠性糖尿病、糖尿病性合併症、インスリン抵抗性症候群、多嚢胞性卵巣症候群、高脂質血症、アテローム性動脈硬化症、心臓血管疾患、高血糖症、膵炎、骨粗鬆症、高尿酸血症、高血圧症、炎症性腸疾患、表皮細胞の分化異常に伴う皮膚疾患、狭心症、肺高血圧、うっ血性心不全、糸球体疾患、尿細管間質性疾患、腎不全、血管狭窄、末梢血管疾患、脳卒中、慢性可逆性閉塞性疾患、自己免疫疾患、アレルギー性鼻炎、じんま疹、緑内障、腸運動性障害を特徴とする疾患、インポテンス、腎炎、癌悪液質、PTCA後の再狭窄、または悪液質を予防および/または治療する方法。

ntern al application No.
PCT/JP99/07160

A. CLASS	IFICATION OF SUBJECT MATTER C1 CO7D233/54, 233/64, 233/68, 31/4178, A61P3/10, 43/00	, 401/06, 405/10, 409/10), A61K31/4174,			
According to International Patent Classification (IPC) or to both national classification and IPC						
	SEARCHED					
Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ C07D233/54, 233/64, 233/68, 401/06, 405/10, 409/10, A61K31/4174, 31/4178						
	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched					
CAPL	Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CAPLUS (STN) REGISTRY (STN)					
C. DOCU	MENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.			
A	Coates, W. J., et al., Phosphodiesterase Inhibition Analogues of Sulnazole and Isomaz CGMP Specific Phosphodiester-ase 1387-92(1993)	ole as Inhibitors of the	i-9			
A	Lee, S. J., et al., "Discovery of Potent Cyclic GMP Phosphodiesterase Inhibitors. 2-Pyridyl- and 2-Imidazolylquinazolines Possessing Cyclic GMP Phosphodiesterase and Thromboxane Synthesis Inhibitory Activities", J. Med. Chem., 38(18), 3547-57 (1995)					
PX PA	WO, 99/359, A1 (Fujisawa Pharma 07 January, 1999 (07.01.99), Claims (Family: none)	ceutical Co., Ltd.),	1-5,7-9 6			
Furthe	er documents are listed in the continuation of Box C.	See patent family annex.				
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search 17 March, 2000 (17.03.00) See patent family annex. "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot considered novel or cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family Date of the actual completion of the international search 17 March, 2000 (17.03.00) Date of mailing of the international search report 28 March, 2000 (28.03.00)			ne application but cited to erlying the invention claimed invention cannot be ered to involve an inventive claimed invention cannot be p when the document is a documents, such a skilled in the art family rch report			
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer				
Facsimile No.		Telephone No.				

PCT/JP99/07160

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet) This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: Claims Nos.: 10 because they relate to subject matter not required to be searched by this Authority, namely: The subject matter of claim 10 relates to a method for treatment of the human body by operation or by therapy stipulated in PCT Rule 39.1(iv). Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a). Observations where unity of invention is lacking (Continuation of item 2 of first sheet) This International Searching Authority found multiple inventions in this international application, as follows: As all required additional search fees were timely paid by the applicant, this international search report covers all searchable As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.: No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: The additional search fees were accompanied by the applicant's protest. Remark on Protest No protest accompanied the payment of additional search fees.

国際調査報告

国際出願番号 PCT/JP99/07160

発明の属する分野の分類(国際特許分類(IPC))

Int. C1'C07D233/54, 233/64, 233/68, 401/06, 405/10, 409/10, A61K31/4174, 31/4178, A61P3/10, 43/00

調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. C1'C07D233/54, 233/64, 233/68, 401/06, 405/10, 409/10, A61K31/4174, 31/4178

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) CAPLUS (STN) REGISTRY (STN)

C. 関連すると認められる文献			
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号	
A	Coates, W. J., et al., "Cyclic Nucleotide Phosphodiesterase Inhibition by Imidazopyridines: Analogues of Sulnazole and Isomazole as Inhibitors of the cGMP Specific Phosphodiesterase", J. Med. Chem., 36(10), 1387-92(1993)	1 - 9	
A	Lee, S. J., et al., "Discovery of Potent Cyclic GMP Phosphodiesterase Inhibitors. 2-Pyridyl- and 2-Imidazolylquinazolines Possessing Cyclic GMP Phosphodiesterase and Thromboxane Synthesis Inhibitory Activities", J. Med. Chem., 38(18), 3547-57(1995)	1 – 9	

区欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの

国際調査を完了した日	17.03.00	国際調査報告の発送日 28.03.2000
国際調査機関の名称及びあて先 日本国特許庁(ISA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号		特許庁審査官 (権限のある職員) 4 P 8 2 1 7
		電話番号 03-3581-1101 内線 3491

国際調査報告

国際出願番号 PCT/JP99/07160

C(続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
PΧ	WO, 99/359, A1 (藤沢薬品工業株式会社), 7. 1月. 99 (07. 01. 99), 特許請求の範囲 (ファミリーなし)	1 - 5, 7 - 9
PA		6
•		
	-	
:		
•		
	L	

国際出願番号 PCT/JP99/07160

第Ⅰ欄	請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)	
法第8条第3項 (PCT17条(2)(a)) の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。		
1. X	請求の範囲は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、	
	PCT規則39.1(iv)に規定される「手術又は治療による人体の処置方法」に該当する。	
2.	請求の範囲 は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、	
3. 🗌	請求の範囲は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。	
第Ⅱ欄	発明の単一性が欠如しているときの意見 (第1ページの3の続き)	
次に対	述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。	
	·	
	•	
1.	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。	
2.	追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追 加調査手数料の納付を求めなかった。	
з. 🗌	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。	
4.	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。	
追加調査	E手数料の異議の申立てに関する注意] 追加調査手数料の納付と共に出願人から異議申立てがあった。	
Ē	追加調査手数料の納付と共に出願人から異議申立てがなかった。	

