AMENDMENTS TO THE CLAIMS

	1. (Currently amended) A method for fabricating an integrated structure including a
	semiconductor device and connector structures for connecting the semiconductor device to a
;	motherboard, the method comprising the steps of:
	forming a first layer on a plate transparent to ablating radiation, the first layer having a
;	first set of conductors disposed therein, the first set of conductors connecting to bonding pads,
1	the bonding pads being spaced with a first spacing distance in accordance with a required
	spacing of connections to the motherboard;
	forming a second layer on the semiconductor device, the second layer having a second
;	set of conductors disposed therein connecting to the semiconductor device;
	forming studs on one of the first layer and the second layer and a third layer on the
,	other of the first layer and the second layer, the studs being spaced with a second spacing
(distance less than the first spacing distance;
	forming a third layer on the one of the first layer and the second layer not having studs
1	thereon;
	forming vias in the third layer, the vias being spaced in accordance with the second
1	spacing distance;
	aligning the studs to the vias;
	attaching the semiconductor device to the first layer, so that the first set of conductors
	and the second set of conductors are connected through the studs;
	attaching a support structure to the first layer, so that the support structure surrounds
	the semiconductor device, the support structure having an area corresponding to an area
	occupied by the bonding pads;
•	

ablating an interface between the first layer and the plate using ablating radiation transmitted through the plate, thereby detaching the plate; and

attaching the connector structures to the bonding pads.

2. (Cancelled)

9.

- 3. (Original) A method according to claim 1, wherein the connector structures form one of a pin grid array (PGA), a ball grid array (BGA), a C4 array and a land grid array (LGA).
- 4. (Currently amended) A method according to claim 1 [[2]], wherein said step of attaching the support structure is performed before said step of attaching the semiconductor device and before said ablating step.
- 5. (Currently amended) A method according to claim 1 [[2]], wherein said step of attaching the support structure is performed after said step of attaching the semiconductor device and before said ablating step.
- 6. (Currently amended) A method according to claim 1 [[2]], wherein the motherboard is characterized by a thermal coefficient of expansion (TCE), and the support structure is provided with a TCE approximately that of the motherboard.
 - 7. (Cancelled)
- 8. (Currently amended) A method according to claim 1 [[2]], further comprising the step of filling a gap between the semiconductor device and the surrounding support structure.
- 9. (Original) A method according to claim 1, further comprising the step of exposing the bonding pads, before said step of attaching the connector structures.
- 1 10. (Original) A method according to claim 1, wherein the studs are formed on the first layer, 2 and the first layer is provided with an adhesive layer for bonding to the third layer.
- 1 11. (Original) A method according to claim 1, wherein the second set of conductors is
 2 arranged in a plurality of metal layers, the number of said metal layers being less than a number
 3 of layers required for fanout to the bonding pads spaced with the first spacing distance.

4	12. (Currently amended) A method for fabricating an integrated structure including a
5	semiconductor device and connector structures for connecting the semiconductor device to a
6	motherboard, the method comprising the steps of:
7	forming a first layer on a plate transparent to ablating radiation, the first layer having a
8	first set of conductors disposed therein, the first set of conductors connecting to bonding pads
9	the bonding pads being spaced with a first spacing distance in accordance with a required
10	spacing of connections to the motherboard;
11	forming a second layer on the semiconductor device, the second layer having a second
12	set of conductors disposed therein connecting to the semiconductor device;
13	forming a plurality of C4 connectors on the second layer, the C4 connectors being
14.	spaced with a second spacing distance less than the first spacing distance;
15	aligning the C4 connectors to the first layer;
16	attaching the C4 connectors to the first layer, so that the first set of conductors and the
17	second set of conductors are connected;
18	attaching a support structure to the first layer, so that the support structure surrounds
19	the semiconductor device, the support structure having an area corresponding to an area
20	occupied by the bonding pads;
21	ablating an interface between the first layer and the plate using ablating radiation
22	transmitted through the plate, thereby detaching the plate; and
23	attaching the connector structures to the bonding pads.
	13. (Cancelled)
1	14. (Original) A method according to claim 12, wherein the connector structures form one of
2	a pin grid array (PGA), a ball grid array (BGA), a C4 array and a land grid array (LGA).
1	15. (Currently amended) A method according to claim 12 [[13]], wherein said step of
2	attaching the support structure is performed before said step of attaching the C4 connectors
3	semiconductor device and before said ablating step.

16. (Currently amended) A method according to claim 12 [[13]], wherein the motherboard is characterized by a thermal coefficient of expansion (TCE), and the support structure is provided with a TCE approximately that of the motherboard.

17. (Cancelled)

- 18. (Currently amended) A method according to claim 12 [[13]], further comprising the step of filling a gap between the semiconductor device and the support structure and a gap between the semiconductor device and the first layer surrounding the C4 connectors.
- 19. (Original) A method according to claim 12, further comprising the step of exposing the
 bonding pads, before said step of attaching the connector structures.
 - 20. (Original) A method according to claim 12, wherein the second set of conductors is arranged in a plurality of metal layers, the number of said metal layers being less than a number of layers required for fanout to the bonding pads spaced with the first spacing distance.
 - 21. (Withdrawn) An integrated structure including a semiconductor device and connector structures for connecting the semiconductor device to a motherboard, the integrated structure comprising:

a first layer having a first set of conductors disposed therein, the first layer having an upper surface and a lower surface, the first set of conductors connecting to bonding pads disposed on the lower surface, the bonding pads being spaced with respect to each other with a first spacing distance in accordance with a required spacing of connections to the motherboard;

the semiconductor device;

a second layer disposed on the semiconductor device and in contact therewith, the second layer having a second set of conductors disposed therein connecting to the semiconductor device, the second layer facing the first layer;

a plurality of connectors connecting the first set of conductors to the second set of
conductors, said connectors being one of (1) a set of stud/via connectors and (2) a set of C4
connectors, said connectors being spaced with respect to each other with a second spacing
distance less than the first spacing distance;
a support structure attached to the upper surface of the first layer and surrounding the
semiconductor device, a gap between said support structure and the semiconductor device
being filled with a fill material; and
connector structures connected to the bonding pads.
22. (Withdrawn) An integrated structure according to claim 21, wherein the connector
structures form one of a pin grid array (PGA), a ball grid array (BGA), a C4 array and a land
grid array (LGA).
23. (Withdrawn) An integrated structure according to claim 21, wherein the motherboard is
characterized by a thermal coefficient of expansion (TCE), and the support structure is
provided with a TCE approximately that of the motherboard.
24. (Withdrawn) An integrated structure according to claim 21, wherein the support structure
has an area corresponding to an area occupied by the bonding pads.
25. (Withdrawn) An integrated structure according to claim 21, wherein said plurality of
connectors are a set of C4 connectors, and the fill material fills a gap between the
semiconductor device and the first layer surrounding said C4 connectors.
26. (Withdrawn) An integrated structure according to claim 21, wherein said plurality of
connectors are a set of stud/via connectors, and said integrated structure further comprises a
third layer interposed between the first layer and the second layer and having vias formed

therein.

15 .

2 .