ECON61001: **Econometric Methods**

Practice Questions

1. A researcher is interested in testing the null hypothesis $H_0: \beta_{0,2} = \beta_{0,3}$ versus the alternative $H_1: \beta_{0,2} \neq \beta_{0,3}$ in the model

$$y_i = x_i' \beta_0 + u_i, \qquad i = 1, 2, \dots, N$$

where x_i is 3×1 and $\beta_0 = (\beta_{0,1}, \beta_{0,2}, \beta_{0,3})'$. To do so, the researcher estimates the model via OLS and plans to test the hypothesis using the decision rule: reject H_0 if $S_N > \tau_{N-k}(1-\alpha/2)$ where $\tau_{N-k}(1-\alpha/2)$ is the $100(1-\alpha/2)^{th}$ percentile of the Student's t distribution,

$$S_N = \left| \frac{\hat{\beta}_{N,2} - \hat{\beta}_{N,3}}{d_N} \right|$$

and $\hat{\beta}_N = (\hat{\beta}_{N,1}, \hat{\beta}_{N,2}, \hat{\beta}_{N,3})'$ is the OLS estimator of β_0 . Let y be the $N \times 1$ vector with i^{th} element y_i , X be the $N \times 3$ matrix with i^{th} row x_i' , and assume that the regression model satisfies Assumptions SR1-SR6 given on pp.54-5 of the Lecture Notes (with N replacing T). Let $\hat{\sigma}_N^2$ be the OLS estimator of σ_0^2 given in Assumption SR6.

- (a) In order for the test above to have the probability of a Type I error implied by the Austral punction of the first state f(y, X, N).
- (b) Given that $\hat{\beta}_N = (1.136, 0.913, 0.952)', \hat{\sigma}_N^2 = 0.539, N = 30$ and $\begin{array}{c} \text{https://powco.ger_{0.GO}} \\ (X'X)^{-1} = \begin{bmatrix} -0.015 & 0.010 & -0.001 \\ 0.007 & -0.001 & 0.009 \end{bmatrix} \\ \text{perform that ddsin} \end{array}$

clearly.

2. Consider the linear regression model

$$y = X\beta_0 + u \tag{1}$$

where y is 25×1 vector of observations on the dependent variable, X is 25×5 data matrix of observations on the explanatory variables, β_0 is 5×1 vector of unknown regression coefficients and u is the 25 × 1 vector containing the error term. Suppose that $X = (\iota_{25}, X_2)$ where ι_{25} is a 25×1 vector of ones and X_2 is a 25×4 matrix, and $\beta_0 = (\beta_{0,1}, \beta'_{0,2})'$ where $\beta_{0,1}$ is a scalar and $\beta_{0,2}$ is a 4×1 vector. Let F be the F-statistic for testing $H_0: \beta_{0,2} = 0_4$ versus $H_0: \beta_{0,2} \neq 0_4$ where 0_4 is the 4×1 null vector. If the p-value for this test is 0.05 then what is the adjusted R^2 , \bar{R}^2 , for the estimated version of (1)? Be sure to justify your answer carefully. 3. A researcher estimates the unknown parameter vector γ_0 in the model

$$x = Z\gamma_0 + e$$

where x is a $N \times 1$ vector with i^{th} element x_i , Z is $N \times q$ matrix of observable explanatory variables with i^{th} row z'_i based on the population moment condition,

$$E[y_i(x_i - z_i'\gamma_0)] = 0, (2)$$

where y_i is $k \times 1$ vector. Assume that $\{z_i, y_i, e_i\}_{i=1}^N$ form a sequence of independently and identically distributed random variables with: (i) $E[z_i y_i'] = M_{zy}$, a matrix of constants with full row rank; (ii) $E[y_i y_i'] = M_{y,y}$, a nonsingular matrix of constants; (iii) $E[e_i | y_i] = 0$; (iv) $Var[e_i | y_i] = a(y_i)$.

- (a) Derive the condition for γ_0 to be identified by the population moment condition in (2).
- (b) Derive the formula for the IV estimator for γ_0 based on (2).
- (c) Show that the IV estimator of γ_0 based on (2) is consistent under the conditions above.
- (d) The researcher wishes to test the hypothesis $H_0: \beta(\gamma_0) = 0$ versus $H_1: \beta(\gamma_0) \neq 0$ where $\beta(\cdot)$ is a $c \times 1$ vector of continuous differentiable functions. Propose a test based on the IV estimator of γ_0 in part (b), being sure to: explain clearly how to calculate the test statistic from the data; to provide the decision rule; to state any additional conditions (beyond those above) that must be satisfied in order for your decision rule to be valid.
- 4. Sup Assignment Project Exam whelp and variance σ_0^2 .
 - (a) Derive the Wald, Likelihood Ratio (LR) and Lagrange Multiplier (LM) statistics for testing H_0 : A surface H_0 with H_0 wi
 - (b) Given a sample of size N=100, $\{v_i\}_{i=1}^N$, for which $\sum_{i=1}^N v_i=12.31$ and $\sum_{i=1}^N v_i^2=135.28$, what is the diverge of he Wald Wald Wald in part (a). Be sure to justify your conclusions carefully.
- 5. Consider the case where $y_i \in \{0, 1, 2\}$ and the value of y_i^* is latent variable generated via

$$y_i^* = x_i' \beta_0 + u_i$$

where x_i is vector of observable explanatory variables, β_0 is an unknown parameter vector, and $u_i \sim N(0, 1)$. Suppose that the outcome of y_i is determined as follows:

$$y_i = 0$$
, if $y_i^* < 0$,
= 1, if $0 \le y_i^* < 2$,
= 2, if $2 \ge y_i^*$.

Assume that $\{x_i, u_i\}_{i=1}^N$ is an independently and identically distributed sequence, and that y_i is observable.

- (a) Derive the probability distribution function for y_i conditional on x_i .
- (b) Write down $CLLF_N(\beta)$, the conditional log-likelihood function based on a sample $\{y_i, x_i\}_{i=1}^N$.
- 6. Suppose that y_t is generated via

$$y_t = \beta_0 y_{t-1} + u_t \tag{3}$$

where $\beta_0 = 0$,

$$u_t = \varepsilon_t + \phi \varepsilon_{t-1}, \tag{4}$$

 $\phi \neq 0$ and $\{\varepsilon_t\}$ is sequence of independently and identically distributed random variables with mean zero and variance σ^2 . Let $\hat{\beta}_T$ be the OLS estimator of β_0 based on (3) that is,

$$\hat{\beta}_T = \frac{\sum_{t=1}^T y_{t-1} y_t}{\sum_{t=1}^T y_{t-1}^2}.$$

- (a) Derive the probability limit of $\hat{\beta}_T$ and verify whether or not this estimator is consistent for β_0 .
- (b) Suppose that (3) is estimated via Instrumental Variables (IV) using y_{t-2} as instrument for y_{t-1} that is, estimation is based on the moment condition $E[y_{t-2}(y_t \beta_0 y_{t-1})] = 0$. Verify whether or not this choice of instrument satisfies the orthogonality and relevance conditions associated with IV estimation.
- conditions associated with IV estimation.
 (c) At Splegh Methods of β to ode Cte permanent entries in part (b). Show that $T^{1/2}(\tilde{\beta}_T \beta_0) \stackrel{d}{\to} N(0, H)$ where H is a matrix that you must specify as part of your answer.
- (d) Suppose https://powcover.come as $T \to \infty$? Justify your answer briefly.

Hint: y_t is a covariance stationary process and you may quote the generic form of: (i) the Weak Law of Land Munbers to Evantime station. While will rependent processes, $T^{-1}\sum_{t=1}^{T} w_t \stackrel{p}{\to} \mu_w$, but must verify the specific forms of the limits relevant to the quantities analyzed in your answer; (ii) the Central Limit Theorem, $T^{-1/2}\sum_{t=1}^{T} (w_t - \mu_w) \stackrel{d}{\to} N(0, V_w)$ but must verify the specific form of μ_w and V_w relevant to the quantities in your answer.

7. Consider the model

$$y = X\beta_0 + u \tag{5}$$

where y is a $T \times 1$ observable random vector, X is a $T \times k$ observable matrix that is fixed in repeated samples and u is a $T \times 1$ vector of unobservable errors. It is assumed that the model satisfies Classical Assumptions CA1-CA6 given in the Lecture Notes pp.10-11. In addition, it is assumed that $R\beta_0 = r$ where R is a $n_r \times k$ matrix of constants with $rank(R) = n_r$, and r is a $n_r \times 1$ vector of constants. If (5) is estimated by least squares subject to $R\beta_0 = r$ then

the resulting RLS estimator of β_0 is denoted $\hat{\beta}_{R,T}$, and the RLS estimator of σ_0^2 is denoted $\hat{\sigma}_{R,T}^2$. Recall that

$$\hat{\beta}_{R,T} = \hat{\beta}_T + (X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}(r - R\hat{\beta}_T)$$
(6)

$$\hat{\sigma}_{R,T}^2 = e_R' e_R / (T - k + n_r) \tag{7}$$

where $\hat{\beta}_T$ is the OLS estimator of β_0 based on (5) and $e_R = y - X\hat{\beta}_{R,T}$.

- (a) Define $Q = I X(X'X)^{-1}X' + X(X'X)^{-1}R'[R(X'X)^{-1}R']^{-1}R(X'X)^{-1}X'$. Show that Q is an orthogonal projection matrix.
- (b) Show that $e'_R e_R = u'Qu$.
- (c) Show that $E[\hat{\sigma}_{R,T}^2] = \sigma_0^2$.
- (d) Show that $(T k + n_r)\hat{\sigma}_{R,T}^2/\sigma_0^2 \sim \chi_{T-k+n_r}^2$.
- (e) Show that $\hat{\sigma}_{R,T}^2$ is a more efficient estimator of σ_0^2 than the OLS estimator, $\hat{\sigma}_T^2$. Hint: If $v \sim \chi_n^2$ then E[v] = n and Var[v] = 2n.
- 8.(a) For conformable matrices, A, B and C show that: tr(ABC) = tr(BCA) = tr(CAB) where $tr(\cdot)$ denotes the trace operator.
- 8.(b) Consider f = x'Az where x is a $m \times 1$ vector, A is a $m \times n$ matrix and z is a $n \times 1$ vector.

 Derive and state the dimensions of $(i)\partial f/\partial x$; $(ii)\partial f/\partial z$.

 ASSIGNMENT Project Exam Help
 - 9. Consider the linear regression model

where $x_i = (1, x_{2,i}) \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{$

Add WeChat powcoder $S_N = \sum_{i=1}^{n} u_i x_i M_N \sum_{i=1}^{n} x_i u_i$

where M_N is a $k \times k$ random matrix.

- (a) Propose a choice of M_N such that $S_N \stackrel{d}{\to} \chi_k^2$ being sure to justify your answer carefully. Hint: you may quote the generic form of the Weak Law of Large Numbers, $N^{-1} \sum_{i=1}^{N} z_i \stackrel{p}{\to} \mu_z$, but must verify the specific forms of the limits relevant to the quantities analyzed in your answer; you may quote the generic forms of the Central Limit Theorem, $N^{-1/2} \sum_{i=1}^{N} (z_i \mu_z) \stackrel{d}{\to} N(0, V_z)$ but must verify the specific forms of μ_z and V_z limits relevant to the quantities analyzed in your answer.
- (b) Suppose now that $Var[u_i|x_i] = h(x_i)$. Is it still true that $S_N \xrightarrow{d} \chi_k^2$ for your choice of M_N in part (a)? Justify your answer briefly but formal derivations are not required.