

CÉSAR VALLEJO

CÉSAR VALLEJO

ÁLGEBRA

Ecuaciones polinomiales

Semana 02

Docente: Gustavo Poma Quiroz

Objetivos:

- ✓ Manejar las definiciones básicas sobre ecuaciones polinomiales.
- ✓ Resolver eficientemente las ecuaciones polinomiales más comunes.
- ✓ Desarrollar destrezas en la resolución de problemas tipo referidos al tema de ecuaciones.

INTENSIVO UNI

ECUACIÓN

Una ecuación es una igualdad entre dos expresiones matemáticas, donde esta presente al menos una variable ahora llamada incógnita.

Ejemplos:

•
$$x^2 = x + 12$$

•
$$x^2 = x + 12$$
 • $x^2 = |x - 2|$

$$\bullet \quad \log_3^2 x - 3\log_3 x = 2$$

1. Teorema

Si
$$AB = 0 \leftrightarrow A = 0 \lor B = 0$$

Ejemplo

Si
$$(x-5)(x+7) = 0$$

$$\rightarrow x - 5 = 0 \quad \forall \quad x + 7 = 0$$

$$\rightarrow x = 5 \quad \forall x = -7$$

2. Solución de una ecuación

Es el valor que al reemplazar por la incógnita verifica la ecuación.

3. Conjunto solución (CS)

Es el conjunto formado por las soluciones de una ecuación.

Ejemplo

Resuelva la ecuación $(x^2 + 8x)(x - 2) = 0$

RAÍZ DE UN POLINOMIO

1. Definición

 α es raíz del polinomio $P_{(x)} \leftrightarrow P_{(x)} = 0$

Ejemplos

• $P_{(x)} = 3x - 15$

5 es raíz del polinomio ya que : $P_{(5)} = 0$

•
$$F_{(x)} = x^2 + x - 2$$

Factorizando

$$F_{(x)} = x^2 + x - 2$$

$$x - 1$$

$$F_{(x)} = (x+2)(x-1)$$

-2 es raíz del polinomio ya que : $F_{(-2)} = 0$

1 es raíz del polinomio ya que : $F_{(1)} = 0$

2. Multiplicidad de una raíz

Es la cantidad de veces que se repite una raíz de un polinomio.

Ejemplo

En el polinomio

$$P_{(x)} = (x+5)^2 (x-2)^3$$

$$P_{(x)} = (x+5)(x+5)(x-2)(x-2)(x-2)$$

Sus raíces son: (-5, -5) , 2 , 2 , 2

Raíz de multiplicidad | Raíz de multiplicidad dos o raíz doble

tres o raíz triple

3. Teorema fundamental del álgebra

Todo polinomio de grado $n \ge 1$, posee al menos una raíz.

Corolario

Todo polinomio de grado $n \ge 1$, tiene exactamente n raíces (contadas con la multiplicidad).

Ejemplos

- $R(x) = x^2 + 2x 3$ tiene 2 raíces
- $Q(x) = 2x^3 11x + 9$ tiene 3 raíces

4. Teorema del factor

 α es raíz de $P_{(x)} \leftrightarrow (x - \alpha)$ es factor de $P_{(x)}$

Ejemplos:

- Si -2 es raíz de $P_{(x)}$
- \rightarrow (x -2) es factor de $P_{(x)}$
- \rightarrow existe q(x) tal que: $P_{(x)} = (x+2)q(x)$

Consecuencias

- Si α es raíz doble de $P_{(x)}$
 - $\rightarrow (x \alpha)^2$ es factor de $P_{(x)}$
- \rightarrow existe $Q_{(x)}$ tal que: $P_{(x)} = (x \alpha)^2 Q_{(x)}$
- Si α , β son raíces de $P_{(x)}$
- $\rightarrow (x \alpha)(x \beta)$ es factor de $P_{(x)}$

Entonces la división

$$\frac{P_{(x)}}{x^2 - (\alpha + \beta)x + \alpha\beta}$$
 es exacta

ECUACIÓN CUADRÁTICA

Su forma general es:

$$ax^2 + bx + c = 0$$
; $\{a, b, c\} \subset \mathbb{C}$, $a \neq 0$

Toda ecuación cuadrática tiene 2 raíces

1. Fórmula general

Las dos raíces de la ecuación

$$ax^{2} + bx + c = 0$$
: $a \neq 0$

son:

$$x_1 = \frac{-(b) + \sqrt{\Delta}}{2(a)}$$
 ; $x_2 = \frac{-(b) - \sqrt{\Delta}}{2(a)}$

Donde:

 $\Delta = b^2 - 4ac$ es llamado **Discriminante**

Ejercicio

Sea la ecuación

$$3x^{2} - 2ix - 1 = 0$$
; $i = \sqrt{-1}$
 $\Delta = (-2i)^{2} - 4(3)(-1)$
 $\Delta = 8$

Las dos raíces de la ecuación son

$$x_1 = \frac{-(-2i) + \sqrt{8}}{2(3)}$$
; $x_1 = \frac{-(-2i) - \sqrt{8}}{2(3)}$

$$x_1 = \frac{2i + 2\sqrt{2}}{2(3)}$$
 ; $x_1 = \frac{2i - 2\sqrt{2}}{2(3)}$

$$x_1 = \frac{i + \sqrt{2}}{3}$$
 ; $x_1 = \frac{i - \sqrt{2}}{3}$

$$CS = \left\{ \frac{i + \sqrt{2}}{3}, \frac{i - \sqrt{2}}{3} \right\}$$

2.- Naturaleza de las raíces

$$ax^2 + bx + c = 0$$
; $a \neq 0$

Considerando los coeficientes reales

$\Delta > 0$	Raíces reales diferentes
$\Delta = 0$	Raíces reales e iguales (única solución)
Δ < 0	Raíces imaginarias conjugadas

Ejemplo

Si las raíces de la ecuación $1x^2 - 6x - k = 0$ $(k \in \mathbb{R})$ son números imaginarios se cumple

$$\Delta < 0$$

$$(-6)^2 - 4(1)(-k) < 0$$

$$36 + 4k < 0$$

$$4k < -36$$

$$\rightarrow k < -9$$

3. Teoremas (Cardano - Viete)

Sean x_1 , x_2 las raíces de la ecuación

Se cumple:

$$\begin{vmatrix} x_1 + x_2 &= -\frac{b}{a} & x_1 \cdot x_2 &= \frac{c}{a} \\ (x_1 + x_2)^2 - (x_1 - x_2)^2 &= 4x_1 x_2 \end{vmatrix}$$

Ejemplo

Sean x_1 , x_2 las raíces de la ecuación

$$7x^2 - 5x + 4 = 0$$

$$x_1 + x_2 = -\frac{-5}{7} = \frac{5}{7}$$
, $x_1 \cdot x_2 = \frac{4}{7}$

INTENSIVO UNI							
	Ejercicio						
4. Definiciones	Si las ecuaciones de incógnita x						
4.1 Las raíces x_1 , x_2 serán llamadas:	$mx + \sqrt{3} = 5$ y $x^2 + ax + 2b = 0$						
• Raíces simétricas si $x_1 + x_2 = 0$	son equivalentes, halle la relación entre $a y b .$						
	Resolución						
• Raíces reciprocas si $x_1 \cdot x_2 = 1$							
4.2 Dos ecuaciones se dice que son							
equivalentes si tienen el mismo							
conjunto solución.							
Ejemplo							
Las ecuaciones							
• $(x-5)(x-7) = 0 \rightarrow CS = \{5,7\}$							
• $(x-5)^2(x-7) = 0 \rightarrow CS = \{5,7\}$							
tienen el mismo CS. entonces son							
equivalentes.	CÉSAR VALLEJO						

INT	ENSIVO UI	NI											
	Aplica												
				I									
	Si α y ecuacio	eta eta son los ón tiene ($CS = \{m\}$.	de n tal calcule (que la el valor								
	de (α)	β ; $\alpha > \beta$		A	ADEN	II A							
	A) 36	B) 64	C) 100	D) 81	E) 16								
	Resolu	ción:					1						
												CÉSA VA	AR LLEJO

INTENSIVO UNI

Ecuación cúbica

Su forma general es:

$$ax^3 + bx^2 + cx + d = 0$$

$${a,b,c,d} \subset \mathbb{C}, a \neq 0$$

Toda ecuación cuadrática tiene 3 raíces

Teoremas (Cardano - Viete)

Sean x_1 , x_2 , x_3 las raíces de la ecuación

$$S_1: x_1 + x_2 + x_3 = -\frac{b}{a}$$

$$S_2$$
: $x_1x_2 + x_2x_3 + x_3x_1 = \frac{c}{a}$

$$S_3$$
: $x_1.x_2.x_3 = -\frac{c}{d}$

Ejercicio

Al resolver la ecuación

$$x^{3} - 4x^{2} + cx + 36 = 0$$

se obtiene CS= $\{-a, a, b\}$; $a > 0$

Halle
$$(a + b)$$
.

$$x_3x_1 = \frac{c}{a}$$

Ecuación bicuadrada

Su forma general es:

$$ax^4 + bx^2 + c = 0 \quad a \neq 0$$

Toda ecuación bicuadrada tiene 4 raíces de la forma :

$$\alpha$$
, β , $-\alpha$, $-\beta$

Ejemplo

Resuelva la ecuación $x^4 - 26x^2 + 25 = 0$

Teoremas

Si α , β , $-\alpha$, $-\beta$ son raíces de la ecuación $ax^4 + bx^2 + c = 0$; $a \neq 0$ se cumple que :

$$\alpha^2 + \beta^2 = -\frac{b}{a} \qquad \qquad \alpha^2 \cdot \beta^2 = \frac{c}{a}$$

Ejemplo

Si α , β , $-\alpha$, $-\beta$ son raíces de la ecuación $5x^4 + 3x^2 - 7 = 0$

$$\bullet \quad \alpha^2 + \beta^2 = -\frac{3}{5} \qquad \bullet \quad \alpha^2 \cdot \beta^2 = \frac{-7}{5}$$

Observación

Si sus raíces están en progresión aritmética estas tienen la forma siguiente:

$$-3\alpha$$
; $-\alpha$; α ; 3α ; razón = 2α

Teoremas de paridad de raíces

1. Sea una ecuación polinomial de coeficientes racionales, se cumple:

$$a + \sqrt{b}$$
 es raíz \leftrightarrow $a - \sqrt{b}$ es raíz

Donde
$$a, b \in \mathbb{Q}$$
 y $\sqrt{b} \in I$

2. Sea una ecuación polinomial de coeficientes reales, se cumple:

$$a + bi$$
 es raíz \leftrightarrow $a - bi$ es raíz

Donde
$$a, b \in \mathbb{R}$$
; $b \neq 0$ y $i = \sqrt{-1}$

3. Sea una ecuación polinomial de coeficientes reales, se cumple:

$$\sqrt{a} + \sqrt{b} \quad \leftrightarrow \quad \begin{bmatrix} \sqrt{a} - \sqrt{b} , -\sqrt{a} + \sqrt{b} \\ -\sqrt{a} - \sqrt{b} \end{bmatrix}$$

Donde:
$$a, b \in \mathbb{Q}$$
 $\sqrt{a}, \sqrt{b} \in I$

Ejercicio:

Sea la ecuación $2x^3 - 7x^2 + ax + b = 0$, donde 2 + i es raíz ; $a, b \in \mathbb{Q}$. Halle el valor de b.

Decele d'és

Resolución

INTENSIVO UNI	
Aplicación	
	uación bicuadrada $x^4 - 27x^2 + 50 = 0$
$de CS = \{a \}$ Determine	$a;b;m;n$ }, tal que $a>b>m>n$. Le el valor de $a^3+b^2+m^4-n$.
A) 130	B) 140 C) 78 D) 72 E) 136
Resolució	n:
	CÉSAR VALLEJO

- ACADEMIA -CÉSAR VALLEJO

GRACIAS

academiacesarvallejo.edu.pe