Analyse I Résumé: Séries entières.

Définitions et résultats.

1. (Série entière). L'expression

$$\sum_{k=0}^{\infty} a_k (x - x_0)^k$$

où $a_1, a_2, \ldots, x_0 \in \mathbb{R}$ et x est une variable réelle, est dite une série entière. L'ensemble $D := \{x \in \mathbb{R} : \sum_{k=0}^{\infty} a_k (x - x_0)^k \text{ converge} \}$ est son domaine de convergence.

2. Théorème (Rayon de convergence).

Soit $\sum_{k=0}^{\infty} a_k (x-x_0)^k$ une série entière. Alors il existe $r: 0 \le r \le \infty$ tel que

- la série converge absolument pour tout $x : |x x_0| < r$,
- la série diverge pour tout $x:|x-x_0|>r$.

Alors r est le rayon de convergence de la série entière $\sum_{k=0}^{\infty} a_k (x-x_0)^k$. La convergence de la série entière pour $x=x_0\pm r$ doit être analysée séparément.

3. (Calcul du rayon de convergence).

Soit $\sum_{k=0}^{\infty} a_k (x-x_0)^k$ une série entière de rayon de convergence r.

- (a) Supposons que $a_k \neq 0$ pour tout $k \in \mathbb{N}$, et que $\lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| = l$ tel que $0 \leq l \leq \infty$. Alors $r = \frac{1}{l}$.
- (b) Supposons que $\lim_{k\to\infty} |a_k|^{1/k} = l$ tel que $0 \le l \le \infty$. Alors $r = \frac{1}{l}$. (par convention on suppose que si l = 0, alors $r = +\infty$, et si $l = +\infty$, alors r = 0.)
- 4. (Série de Taylor).

Soit $f \in C^{\infty}(I, \mathbb{R})$ une fonction indéfiniment dérivable sur un intervalle ouvert I, et $x_0 \in I$. Alors

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

est la série de Taylor de f au point x_0 .

Si $x_0 = 0$, la série

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k$$

est dite la série de MacLaurin de f.

5. (Primitive d'une fonction définie par une série entière). Soit $f(x) = \sum_{k=0}^{\infty} b_k (x - x_0)^k$ une fonction définie par la série entière.

- (a) Les deux séries $\sum_{k=0}^{\infty} b_k (x-x_0)^k$ et $\sum_{k=0}^{\infty} \frac{b_k}{k+1} (x-x_0)^{k+1}$ ont le même rayon de convergence r.
- (b) Si r > 0, alors $f(x) = \sum_{k=0}^{\infty} b_k (x x_0)^k$ est continue sur $]x_0 r, x_0 + r[$.
- (c) Si r > 0, alors $F(x) = \sum_{k=0}^{\infty} \frac{b_k}{k+1} (x-x_0)^{k+1}$ est la primitive de f(x) sur $]x_0 r, x_0 + r[$, telle que $F(x_0) = 0$.
- 6. (Dérivée d'une fonction définie par une série entière) Les deux séries $\sum_{k=0}^{\infty} a_k (x-x_0)^k$ et $\sum_{k=1}^{\infty} k \, a_k (x-x_0)^{k-1}$ ont le même rayon de convergence r. Si r>0, alors $f(x)=\sum_{k=0}^{\infty} a_k (x-x_0)^k$ est continûment dérivable et $f'(x)=\sum_{k=1}^{\infty} k \, a_k (x-x_0)^{k-1}$ sur $]x_0-r,x_0+r[$.
- 7. Les séries entières $\sum_{k=0}^{\infty} a_k (x-x_0)^k$ et $\sum_{k=1}^{\infty} k \, a_k (x-x_0)^{k-1}$ ont le même rayon, mais pas forcément le même intervalle de convergence.

Séries de Taylor de quelques fonctions et leurs domaines de convergence.

1.
$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots$$
 pour tout $x \in \mathbb{R}$.

2.
$$\log(x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} (x-1)^k$$
 pour tout $x \in]0,2]$.

3.
$$\log(1+x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^k = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots \text{ pour tout } x \in]-1,1].$$

4.
$$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + x^3 + x^4 + \dots$$
 pour tout $x \in]-1,1[$.

5.
$$\sin(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$
 pour tout $x \in \mathbb{R}$.

6.
$$\cos(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$
 pour tout $x \in \mathbb{R}$.

7.
$$\operatorname{sh}(x) = \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} x^{2k+1} = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots \text{ pour tout } x \in \mathbb{R}.$$

8.
$$\operatorname{ch}(x) = \sum_{k=0}^{\infty} \frac{1}{(2k)!} x^{2k} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots \text{ pour tout } x \in \mathbb{R}.$$