

FORCE-MEDIATED RASTERIZATION

ABSTRACT OF THE DISCLOSURE

5 A rendering system models a glyph as a continuous mass, upon which forces act. Each
pixel has the ability to exert a force on the glyph. If the pixel is entirely covered by a glyph, it is
'stable', and exerts no force. If the pixel is partially covered by a glyph, it exerts a force on the
glyph, in an attempt to move the glyph until the pixel is completely covered. The strength of the
force is dependent upon the amount of coverage of the pixel, and the direction of the force is
10 dependent upon the location of the coverage of the pixel. Because all of the partially covered
pixels exert a force on the glyph to maximize their coverage by the glyph, the glyph will move in
the direction corresponding to a vector sum of the individual forces, until an equilibrium point is
reached. Assuming that the amount of partial coverage of a pixel corresponds to the degree of
distortion that will be produced when the pixel is rendered, the balancing of the forces of all the
15 pixels on the glyph results in a minimization of this distortion. Additionally, glyphs are modeled
to effect a force on adjacent glyphs, based on a preferred spacing between the glyphs.