Semaine 4 : Arithmétique et nombres complexes

Questions de cours

Ouestion de cours 1 : Théorème de Gauss

Enoncer et prouver le théorème de Gauss en arithmétique

Question de cours 2 : Inversibles de $\mathbb{Z}/n\mathbb{Z}$

Déterminer les inversibles de $\mathbb{Z}/n\mathbb{Z}$.

Question de cours 3 : Un peu de trigonométrie

Simplifier $\cos p + \cos q$ et $\sin p + \sin q$.

Exercices

(*) Exercice 1: Le dernier chiffre

Trouver le dernier chiffre de 5467⁴²⁹¹⁵⁵²³.

(*) Exercice 2: Les nombres premiers sont rares

Trouver 1000 entiers naturels consécutifs non premiers.

(*) Exercice 3 : Des équations dans $\mathbb C$

Résoudre dans \mathbb{C} :

$$(z+i)^n = (z-i)^n$$
 (on supposer $n \in \mathbb{N}$, $n \ge 2$)

$$z^3 - i = 6(z+i)$$

$$z^2 = \frac{1+i}{\sqrt{2}}$$
 et en déduire les valeurs de $\cos \frac{\pi}{8}$ et $\sin \frac{\pi}{8}$.

(*) Exercice 4 : Des racines dans $\mathbb C$

- 1. Déterminer les racines carrées complexes de i, 3 + 4i, 8 6i.
- 2. Déterminer les racines cubiques complexes de i, 2-2i, 11+2i.

(*) Exercice 5 : Un peu de géométrie

Montrer (et interpréter géométriquement) que pour tout $(u, v) \in \mathbb{C}^2$, on a

$$|u + v|^2 + |u - v|^2 = 2(|u|^2 + |v|^2)$$

(*) Exercice 6: Un produit de conjugués

Soit $z = \rho e^{i\theta}$ un nombre complexe. Calculer $(z + \bar{z})(z^2 + \bar{z}^2)...(z^n + \bar{z}^n)$ en fonction de ρ et θ .

(**) Exercice 1 : Des factorielles !

Soit $n \in \mathbb{N}^*$. Montrer que n! + 1 et (n + 1)! + 1 sont premiers entre eux.

(**) Exercice 2: Un reste

Quel est le reste dans la division euclidienne de (2222)³³³³ par (3333)²²²²?

(**) Exercice 3: Des combinaisons

Montrer que si $(k, n) \in \mathbb{N}^2$, alors :

$$k \wedge n = 1 \implies n \begin{vmatrix} n \\ k \end{vmatrix}$$

(**) Exercice 4: Des divisions

Montrer que, pour tout $n \in \mathbb{N}$:

- 1. 9 divise $2^{2n} + 15n 1$
- 2. 17 divise $3 \times 5^{2n-1} + 2^{3n-2}$
- 3. 9 divise $n^3 + (n+1)^3 + (n+2)^3$
- 4. n^2 divise $(n+1)^n 1$

(**) Exercice 5: Une division par 30

Montrer que pour tout $(m, n) \in \mathbb{Z}^2$, 30 divise $mn(m^4 - n^4)$.

(**) Exercice 6: Les nombres de Fermat

On pose, pour $n \in \mathbb{N}$, $F_n = 2^{2^n} + 1$. Montrer que si $n \neq p$, F_n et F_p sont premiers entre eux.

(**) Exercice 7: Une histoire de module

Déterminer tous les nombres complexes z tels que z, $\frac{1}{z}$ et z-1 aient le même module.

(**) Exercice 8: Regarder le nom du chapitre

Soit $n \in \mathbb{N}$, $(a, b) \in \mathbb{R}^2$. Calculer:

$$\sum_{k=0}^{n} \cos(a + kb)$$

$$\sum_{k=0}^{n} \sin(a+kb)$$

(**) Exercice 9: Une racine 7-ième?

On pose $\omega_7 = e^{\frac{2i\pi}{7}}$. Calculer $\omega_7 + \omega_7^2 + \omega_7^4$ et $\omega_7^3 + \omega_7^5 + \omega_7^6$.

(**) Exercice 10 : Un peu de trigonométrie

Montrer que:

$$\forall x > 0$$
, Arctan (x) + Arctan $\left(\frac{1}{x}\right) = \frac{\pi}{2}$

$$\frac{\pi}{4} = 4 \operatorname{Arctan}\left(\frac{1}{5}\right) - \operatorname{Arctan}\left(\frac{1}{239}\right)$$
 (formule de Machin)

(**) Exercice 11: Des réels positifs

Déterminer l'ensemble des entiers $n \in \mathbb{N}$ tels que $(1 + i\sqrt{3})^n$ soit un réel positif.

(***) Exercice 1 : Le carré d'un entier

- 1. Soit $(a, b) \in (\mathbb{N}^*)^2$. On suppose que a et b sont premiers entre eux et que ab est le carré d'un entier. Montrer que a et b sont des carrés d'entiers.
- 2. Montrer que le produit de trois entiers naturels non nuls consécutifs n'est jamais le carré d'un entier.

(***) Exercice 2 : Un peu de probabilités

1. Soit N un entier positif à 100 chiffres. Déterminer la probabilité que N^3 se termine par 11.

- 2. Déterminer tous les entiers positifs à 100 chiffres dont le cube se termine par 11.
- 3. Montrer que le résultat persiste pour un entier à p chiffres, où $p \ge 3$.

(***) Exercice 3 : Les morphismes de $\ensuremath{\mathbb{C}}$

Déterminer l'ensemble des fonctions $f:\mathbb{C}\mapsto\mathbb{C}$ vérifiant :

- $\forall z \in \mathbb{R}, f(z) = z$
- $\forall (z, z') \in \mathbb{C}^2$, f(z + z') = f(z) + f(z')
- $\forall (z, z') \in \mathbb{C}^2$, $f(z \times z') = f(z) \times f(z')$
- $\longrightarrow f(z) = \bar{z} \text{ ou } f(z) = -\bar{z}$