Lista de Exercícios 0.6

Igor Lacerda Faria

¹Departamento de Ciência da Computação - Universidade Federal de Minas Gerais (UFMG) - Belo Horizonte - MG - Brasil

igorlfs@ufmg.br

Exercícios

- 1. (a) São iguais, possuem os mesmos elementos
 - (b) São distintos, $\{1, \{1\}\}$ tem 1 como elemento e $\{\{1\}\}$ não.
 - (c) São distintos, \emptyset não contém nenhum elemento, enquanto que $\{\emptyset\}$ contém um elemento.
- 2. (a) Falsa. Ninguém pertence ao vazio.
 - (b) Falsa. Vazio não é elemento de {0}.
 - (c) Falsa. O único subconjunto do vazio é o próprio vazio.
 - (d) Verdadeiro. O vazio é subconjunto de todo conjunto.
 - (e) Falso. O único elemento de $\{0\}$ é 0.
 - (f) Falso. Nenhum conjunto é subconjunto próprio de si mesmo.
 - (g) Verdadeiro. Todo conjunto têm a si mesmo como subconjunto.
- 3. (a) Verdadeiro. Ora, $x \in o$ único elemento de $\{x\}$.
 - (b) Verdadeiro. Todo conjunto têm a si mesmo como subconjunto.
 - (c) Falso. O conjunto que contém dos elementos de um conjunto não (necessariamente) pertence a si mesmo.
 - (d) Verdadeiro. Um elemento de um conjunto é sempre subconjunto desse tal conjunto.
 - (e) Verdadeiro. Vazio é subconjunto de todos os conjuntos.
 - (f) Falso. {x} não tem o vazio como um de seus elementos.
- 4. (a) $\mathcal{P}(\{a\}) = \{\emptyset, \{a\}\}\$
 - (b) $\mathcal{P}(\{a,b\}) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}\$
 - (c) $\mathcal{P}(\{\emptyset, \{\emptyset\}\}) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}$

- 5. (a) $2^3 = 8$ é a cardinalidade do conjunto potência, pois o número de elementos é 3.
 - (b) $2^4 = 8$ é a cardinalidade do conjunto potência, pois o número de elementos é 4.
 - (c) O conjunto $\mathcal{P}(\emptyset)$ possui um elemento ($2^0=1$), então a cardinalidade de $\mathcal{P}(\mathcal{P}(\emptyset))$ é $2^1=2$.
- 6. (a) $A \times B = \{(a, x), (a, y), (b, x), (b, y), (c, x), (c, y), (d, x), (d, y)\}$
 - (b) $B \times A = \{(x, a), (x, b), (x, c), (x, d), (y, a), (y, b), (y, c), (y, d)\}$
- 7. Pode-se concluir que alguns dos conjuntos A ou B é o conjunto vazio. A cardinalidade do produto cartesiano é 0, então o produto das cardinalidades de A e B é também 0. E como um produto só é nulo se um de seus fatores é também nulo, A ou B tem 0 elementos.
- 8. $A \times B \times C$ é uma tripla ordeanda, cujo primeira "coordenada" é um elemento de A, a 2^a é um elemento de B e a terceira é um elemento de C. Por outro lado, $(A \times B) \times C$ é um par ordenado: a 1^a coordenada é um par ordenado do conjunto $A \times B$ e a 2^a coordenada é um elemento de C.
- 9. $\models \overline{A \cup B} = \overline{A} \cap \overline{B}$
 - (a) Se $x \in \overline{A \cup B}$, então x não pertence nem a A e nem a B, ou seja, x está fora de A e fora de B. Desse modo, x pertence à interseção do complemento de A com o complemento de B. Similarmente, se $x \in \overline{A} \cap \overline{B}$, x não pertence nem a A e nem a B, simultaneamente, então não pode pertencer a A ou B, desse modo, $x \in \overline{A \cup B}$.
 - (b) Temos a seguinte tabela:

A	B	$A \cup B$	$\overline{A \cup B}$	\overline{A}	\overline{B}	$\overline{A}\cap \overline{B}$
1	1	1	0	0	0	0
1	0	1	0	0	1	0
0	1	1	0	1	0	0
0	0	0	1	1	1	1

A quarta coluna é igual à última, portanto os conjuntos são iguais.

- 10. (a) Se x pertence à união de A e B então x pertecence à união $A \cup B \cup C$. Logo, $\forall x : (x \in (A \cup B) \rightarrow x \in (A \cup B \cup C))$.
 - (b) Se x pertence à diferença $(A \setminus B) \setminus C$, então $x \notin B \land x \notin C \land x \in A$. Por outro lado, se $x \in A \setminus C$, $x \in A \land x \notin C$. Assim, na segunda diferença, elementos de B são permitidos desde que atendam às outras regras. Desse modo, todo elemento da primeira diferença pertence à segunda.
 - (c) Se $x \in (B \setminus A) \cup (C \setminus A)$, então $(x \in B \land x \not\in A) \lor (x \in C \land x \not\in A)$. Assim, temos: $(x \in B \lor x \in C) \land x \not\in A$. Aplicando as definições de união e diferença, concluímos que $x \in (B \cup C) \setminus A$.

- 11. (a) $B \subset A$
 - (b) $A \subset B$
 - (c) $A \cap B = \emptyset$
 - (d) Não se pode afirmar nada.
 - (e) A = B
- 12. (a) União: \mathbb{N} , Interseção: \emptyset . A união é \mathbb{N} pois A_0 é \mathbb{N} e todos os outros conjuntos estão contidos em A_0 . A interseção é vazia porque para todo k existe um conjunto A_{k+1} que não contém k.
 - (b) União: N, pois todo conjunto possui o elemento 0 e outro natural, e a família percorre todos os naturais. Interseção: 0, pois todo conjunto possui 0 como elemento, e o segundo elemento é sempre distinto.
 - (c) União: \mathbb{R}^+ , pois podemos tomar i arbitrariamente grande de modo a conter todos os outros intervalos para j < i, assim contendo todos os positivos até i. Interseção: A_1 , pois todo outro conjunto contém o intervalo (0,1).
 - (d) União: A_1 , pois todo outro conjunto é subconjunto deste. Interseção: \emptyset , pois como em (a), é possível tomar valores arbitrariamente grandes de k para os quais A_{k+1} não contém k.