PP9 13			yes by high managers
- Cari basis u	intuk ruang baris d	an rugna k	olom dari
Example. 6	7 -6 9 -1 8	97	17 (7 (1) 4 (V) (8)
<i>f</i>	7= 2-69-19	7	
Mar Islam John	9= 2-69-19	4)	Alle Williams of the
Karena opera	asi baris elementer	tidak meng	ubah ruang baris
	ks, kita dapat mene		
mencari bas	sis ruang baris sembo	arang bentuk	eselon baris A.
Dengan mer	edules i A menjadi be [1 -3 9 -2 5 9 7 0 0 0 0 0 1 5	ntule eselon	baris, diperoleh
Million of I Such i	[0 0 1 3 -2 -6]	and the solid	I'M TOOL BEEL TO
R =	000015		
	[000000]		
Vektor bar	is buken not dari R	membertok	basis untuk

Vektor baris bukan not dari R membentuk basis untuk ruang baris R, dan karenanya membentuk basis untuk ruang baris A. Vektor basis ini adalah

$$G = [0, -3A - 259]$$

 $G = [0013 - 2 - 6]$
 $G = [00013 - 2 - 6]$

Mengingat A dan k mungkin mempunyai ruang kolom yang berbeda, kita tidak dapat mencari basis untuk ruang kolom A langsung dari Vektor kolom k. Mamun, berdasar kan teorema 5.5.5b, jika kita dapat mencari himpunan kolom Vektor? Ryang menjadi basis ruang kolom R. maka Vektor kolom A yang bersesuaian akan menjadi basis ruang kolom A.

Kolom pertama, ketiga, dan kelima dari R mengandung 1
pertama dari vektor baris, maka

$$C_{1}' = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad C_{3}' = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad C_{5}' = \begin{bmatrix} 5 \\ -2 \\ 1 \\ 0 \end{bmatrix}$$

membentuk basis rvang kolom R; sehingga vektor kolom yang bersesualan dari A, yaitu,

$$C_1 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}, C_3 = \begin{bmatrix} 9 \\ 9 \\ 9 \end{bmatrix}, C_5 = \begin{bmatrix} 8 \\ 7 \\ 9 \\ -5 \end{bmatrix}$$

membentuk basis ruang kolom A.

Example 7.

- Cari basis untuk rvang yang direntung oleh vektor 2 $V_{1}=(1,-2,0,0,3), V_{2}=(2,-5,-3,-2,6), V_{3}=(0,5,15,10,0),$ $V_{4}=(2,6,18,8,6)$

Kecuali variasi notasi, ruang yang direntang oleh vektor tersebut adalah ruang baris matriks.

Reduksi matriks ini be bentuk eselon baris didapatkan

Vektor baris bukan not dalam matriles ini adalah W1=(1,-2,0,0,3), w2=(0,1,3,2,0), w3=(0,0,1,1,0)

Date

PPT 13

Vektor ini membentuk basis untuk ruang baris danakibatnya membentuk basis untuk subruang Ks yang direntang oleh U. Vz. Vz. dan Vq.

- Cari basis	untol	29	ruc	ing	bai	ris	Example	8
	1	77	-2	8	0	37		
	A=	2	-5	-3	-2	6		
	,		5	15	10	0		

yang terdiri dari vektor baris yang ada di A

Kita akan transpose A, sehingga mengubah rueng baris A menjadi ruang kolom AT; kemudian keunakan metode contoh E untuk meneari basis ruang kolom AT; lalu transpose lagi untuk mengubah vektor kolom kembali menjadi vektor baris. Hasil transpose A:

$$A^{7} = \begin{bmatrix} 1 & 2 & 0 & 2 & -2 & -2 & 5 & 6 \\ -2 & -5 & 5 & 6 & 6 & -2 & 6 & 8 \\ 0 & -2 & 10 & 8 & 6 & 6 & 6 \\ -2 & -2 & -2 & 0 & 6 & 6 & 6 \\ 0 & -2 & -2 & -2 & -2 & 6 & 6 & 6 \\ 0 & -2 & -2 & -2 & -2 & 6 & 6 & 6 \\ 0 & -2 & -2 & -2 & -2 & 6 & 6 & 6 \\ 0 & -2 & -2 & -2 & -2 & 6 & 6 & 6 \\ 0 & -2 & -2 & -2 & -2 & 6 & 6 & 6 \\ 0 & -2 & -2 & -2 & -2 & 6 & 6 & 6 \\ 0 & -2 & -2 & -2 & -2 & 6 & 6 & 6 \\ 0 & -2 & -2 & -2 & -2 & 6 & 6 & 6 \\ 0 & -2 & -2 & -2 & -2 & 6 & 6 \\ 0 & -2 & -2 & -2 & -2 & 6 & 6 \\ 0 & -2 & -2 & -2 & -2 & 6 & 6 \\ 0 & -2 & -2 & -2 & -2 & 6 & 6 \\ 0 & -2 & -2 & -2 & -2 & 6 & 6 \\ 0 & -2 & -2 & -2 & -2 & 6 & 6 \\ 0 & -2 & -2 & -2 & -2 & 6 & 6 \\ 0 & -2 & -2 & -2 & -2 & -2 & 6 \\ 0 & -2 & -2 & -2 & -2 & -2 & 6 \\ 0 & -2 & -2 & -2 & -2 & -2 & 6 \\ 0 & -2 & -2 & -2 & -2 & -2 & 6 \\ 0 & -2 & -2 & -2 & -2 & -2 & 6 \\ 0 & -2 & -2 & -2 & -2 & -2 & -2 \\ 0 & -2 & -2 & -2 & -2 & -2 & -2 \\ 0 & -2 & -2 & -2 & -2 & -2 & -2 \\ 0 & -2 & -2 & -2 & -2 & -2 & -2 \\ 0 & -2 & -2 & -2 & -2 & -2 & -2 \\ 0 & -2 & -2 & -2 & -2 \\ 0 & -2 & -2 & -2 & -2 \\ 0 & -2 & -2 & -2 & -2 \\ 0 & -2 & -2 & -2 & -2 \\ 0 & -2 & -2 & -2 & -2 \\ 0 & -2 & -2 & -2 & -2 \\ 0 & -2 & -2 & -2 & -2 \\ 0 & -2 & -2 & -2 & -2 \\ 0 & -2 & -2 & -2 & -2 \\ 0 & -2 & -2 & -2 & -2 \\ 0 & -2 & -2 & -2 & -2 \\ 0 & -2 & -2 & -2 & -2 \\ 0 & -2 & -2 & -2 & -2 \\ 0 & -2 & -2 & -2 \\ 0 & -2 & -2 & -2 & -2 \\ 0 & -2 & -2 & -2 \\ 0 & -2 & -2 & -2$$

Reduksi matriks ke bentuk eselon baris

Kolom gertama, kedua, keempat mengandung I pertama, sehingga vektor kolom yang bersesuaian di AT membentuk basis untuk ruang kolom AT, yang adalah

$$C_{12} = \begin{bmatrix} 1 \\ 7 \\ 0 \\ 0 \end{bmatrix}, C_{2} = \begin{bmatrix} 2 \\ -5 \\ -3 \\ 6 \end{bmatrix}, C_{4} = \begin{bmatrix} 2 \\ 6 \\ 8 \\ 6 \end{bmatrix}$$

Transpose lagi dan sesvaikan notasi dengan tepat, dihasilkan vektor basis (=[1-2003], [2=[2-5-3-26], dan [4=[261886]

untule many baris A.

No. 6