1 nalen

צונזר

2 nalen

צונזרה

3 nalen

. $\varphi_1 \not\models \varphi_3$ -שלילה ש- נכון. נניח בשלילה . .

. $J[\varphi_3] = \mathrm{F}$ ו -ו $J[\varphi_1] = \mathrm{T}$ כך ש- לכך היימת אינטרפרטציה, קיימת גרירה טאוטולוגית, קיימת אינטרפרטציה

, \vee יחד עם לוח האמת של , $J[arphi_3]$ = F מכך מכך

. $J[B \rightarrow (C \land D)] = F$ וגם $J[A \rightarrow (C \land D)] = F$ נובע ש-

כעת, מלוח האמת של ייחץיי,

פסוק ייחץיי הוא שקרי רק כאשר הייהנחהיי אמיתית והיימסקנהיי שקרית.

. $J[C \wedge D] = F$, J[B] = T , J[A] = T לכן

. בסתירה להנחתנו , $J[\varphi_1] = J[(A \lor B) \to (C \land D)] = F$ בסתירה להנחתנו

. $arphi_1 \models arphi_3$ לכן ההנחה היתה שגויה, כלומר

J[B]=J[C]=J[D]=F -ו J[A]=T ו- ב. לא נכון. למשל באינטרפרטציה שבה $J[\phi_1]=$ F -ו $J[\phi_2]=$ F -ו $J[\phi_3]=$ T נקבל

(*) $(\psi \to C) \land (\psi \to D) \equiv \psi \to (C \land D)$ ש יותר ש- ג. נכון. נוכיח מעט כללית יותר ש-

(בהצבת המקרה עלבו). ע פסוק כלשהו (בהצבת בהצבת עלבו). ע פסוק פסוק לשהו (בהצבת את המקרה שלנו).

(**) $\alpha \rightarrow \beta \equiv (\sim \alpha) \lor \beta$ הפעם נדגים הוכחה בעזרת זהויות. ניעזר בשקילות

 α במקום ($\sim lpha$) במקום . ($\sim lpha$) במקום מוכחה של שקילות זו: בעמי 28 מוכח מוכחה של

וניעזר ב- 22 מוכחת טאוטולוגיה בשאלה ב- 1.12 הוכחה הוכחה הוכחה . $\sim (\sim \alpha) \equiv \alpha$

מסוימת, שהקשר המרכזי בה הוא \leftrightarrow . לפי משפט 2.26 נוכל לקבל מכך שקילות טאוטולוגית בין שני אגפי ה- \leftrightarrow . זו בדיוק השקילות המבוקשת).

לענייננו: בביטוי (*) נחליף את כל החצים בעזרת השקילות (**).

, $((\sim \psi) \lor C) \land ((\sim \psi) \lor D)$ ל- יקבל שאגף שמאל שקול ל-

. $(\sim \psi) \lor (C \land D)$ -בעוד שאגף ימין שקול ל

שני פסוקים אלה שקולים טאוטולוגית זה לזה לפי שאלה 1.28 סעיף ו בעמי 29 בספר הלימוד.

- ד. לא נכון. באינטרפרטציה J שהבאנו בתשובה לסעיף ב מתקיים
- . לכן שני הפסוקים אינם שקולים טאוטולוגית , $J[\varphi_2]$ = F
- : Contrapositive -ה. נכון. בשאלה 1.12 בעמי 22 בספר מוכח איקרון ה- $(\alpha \to \beta) \leftrightarrow ((\sim \beta) \to (\sim \alpha))$ הפסוק הפסוק ($(\alpha \to \beta) \leftrightarrow ((\sim \beta) \to (\sim \alpha))$

. $\alpha \to \beta \equiv (\sim \beta) \to (\sim \alpha)$: את היא לומר אחרת דרך אחרת לומר לפי משפט 2.26.

(שאלה 1.28 א, ב) ניישם זאת על , $\varphi_{\scriptscriptstyle 1}$, נפעיל את חוקי דה-מורגן

 $. \varphi_{\scriptscriptstyle A}$ אכן שקול טאוטולוגית ל- $\varphi_{\scriptscriptstyle L}$ אכן ונקבל כי

4 22167

- א. כן. קיימת אינטרפרטציה (למעשה אחת ויחידה) שבה כל הפסוקים היסודיים מקבלים T.
 - ב. לא. קבוצת כל הפסוקים מכילה פסוקים שהם סתירה כגון , $A_1 \wedge \sim A_1$, ולכן אינה עקבית. , $\sim A_1$ אחר: קבוצת כל הפסוקים מכילה את הפסוק ואת הפסוק , אחר: קבוצת כל הפסוקים מכילה את הפסוק . T . T
 - ג. נכון. מכיוון ש- Γ עקבית, תהי Jאינטרפרטציה בה כל פסוקי Γ אמיתיים. J מהגדרת גרירה טאוטולוגית, כל פסוק הנובע טאוטולוגית מ- Γ אמיתיים ב- Jאמיתיים ב- Γ עקבית. לכן כל פסוקי $\Gamma^\#$ עקבית.
 - . $\Gamma \, = \, \{A_{\!_{\rm I}} \, , \sim A_{\!_{\rm I}} \} \, :$ ד. לא נכון. דוגמא נגדית . $\,$

איתי הראבן