Data Mining (Mining Knowledge from Data)

Combining Models

Marcel Jiřina, Pavel Kordík

The principle of combining models

- A group of models (e.g. decision trees) will learn the same (similar) task.
- Outputs of the learned models are combined.

Diversity of ensemble models

- What happens when all models will be the same?
 Degradation to one model.
- How do we ensure that all the models will be diverse?
 - Different sets of training data (initial conditions)
 - Different methods of construction of models
- How the diversity of models can be measured?
 - Deviations of outputs for each test data.
 - Structural differences

Does it work?

- We want to determine the conditions under which it pays to combine models.
- We are interested why ensembling works.

We need to analyze what caused the error of the models

Decomposition bias/variance

The error of a model consists of 3 components :

Noise

- Quantifies the deviation of output y from the optimal model
- Predicted value has a non-zero variance, and so it can never be predicted exactly
- This error can not be reduced

Bias

- An error of an average model with respect to the optimal one.
- Big for weak-learners, which are not complex enough to capture the pattern in data

Variance

- \circ How much differs prediction $\hat{y}(\underline{x})$ for different learning sets LS.
- While learning more models on subsets of the training data, the output of these models can differ significantly
- Big for over-learned models

Example (1)

 Find an algorithm that produces the best possible models for the following data:

Example (2)

- Optimal model:
 - Input x, random variable uniformly distributed in the interval
 [0,1]
 - $y=h(x)+\varepsilon$, where $\varepsilon \sim N(0,1)$ is Bayes model y and noise

Example – algorithm of linear regression

 The models have a low variance, but the large bias ⇒ under-learned (not sufficiently learned)

Example – algorithm RBFN with a number of neurons equal to the size of the dataset

Low bias, large variance of models ⇒ overlearning

Back to combining models

 What happens if I learn two simple models on different subsets of the learning set?

Ensembling reduces variance

Ensembling reduces bias

Thus:

Similarly for classification?

Pictures from TCD AI Course, 2005

Is bias or variance reduced?

What models can be combined?

 What happens when optimally learned models are combined?

- Simple models (i.e. Weak learners) can be favourably combined.
 Bias is reduced
- Models must be diverse! They must show different errors on individual training patterns.

Variance is reduced

model 1

model 2

ensemble model

Popular ensemble methods

- Bagging (<u>B</u>ootstrap <u>Aggregating</u>)
 - Models are learn independently and their outputs are combined easily
- Boosting
 - Models are learned sequentially, the training data are dependent on the mistakes (errors) of previous models
- Stacking
 - Models are learning independently, the outputs are combined by learning of a special model

Bagging

Bootstrap AGGregatING

Idea:

- More models are learned independently
- As a learning set for each model we use a subset of randomly (with replacement) selected instances from the original data
- We aggregate the output of multiple models in the final outcome

Example of bootstrap (Opitz, 1999)

- We use selection with replacement
 - in the selected subset an instance from the original dataset can occure more than once or not at all

Training instances	1	2	3	4	5	6	7	8
Sample 1	2	7	8	3	7	6	3	1
Sample 2	7	8	5	6	4	2	7	1
			•••					
Sample M	4	5	1	4	6	4	3	8

Combining of results (outputs)

- For regression:
 - Average value of $\hat{y}_1, \hat{y}_2, \dots, \hat{y}_T$
- For classification:
 - Majority class of $\hat{y}_1,...,\hat{y}_T$

Bagging (Bootstrap aggregating)

- By the <u>selection with replacement</u> create M training subsets with *n* samples (instead of a single original set with *n* samples).
- Create models for each training subset.

Bagging

 The diversity of individual models is caused by the random selection of a training subset

 Usually bagging substantially reduces the variance and preserves the bias of models.

Random forests

- To the bagging we still add a randomly selected subset of input attributes
- Thus:
 - Create a decision tree on a bootstrap subset
 - Find the best split among **k** attributes of a random subset (not among all attributes as obvious)
 - (= bagging, when **k** equals the number of attributes)
- Do we estimate the influence of k?
 - Lower k reduces variance and increases bias

Boosting

- Idea:
- Learning the models runs sequentially to learn the i-th model,
 we need to know the performance of the previous model
- For each model we selected the training set at random
 - The probability of selecting a new instance to the training set is not the same for all models
 - We select more likely instances on which the previous model has lower performance (higher error)
 - For the first model is the probability the same for all instances
- We aggregate the output of multiple models in the final outcome

Selection of training set

- At the beginning all models have the same weight
- After learning a model we will increase weights of poorly classified patterns and reduce weights of properly classified patterns

- Example: The pattern 4 is incorrectly classified
- Its weight is gradually increased and hence the probability of selecting the patter to the learning set

Original Data	1	2	3	4	5	6	7	8	9	10
Boosting (Round 1)	7	3	2	8	7	9	4	10	6	3
Boosting (Round 2)	5	4	9	4	2	5	1	7	4	2
Boosting (Round 3)	4	4	8	10	4	5	4	6	3	4

Combining of outcomes (results)

- For regression:
 - Average value of $\hat{y}_1, \hat{y}_2, \dots, \hat{y}_T$
- For classification:
 - Weighted majority of $\hat{y}_1, \hat{y}_2, \dots, \hat{y}_T$

Stacking

- A <u>meta model</u> for combination of outputs of more models is used (compared with a simple averaging or voting)
 - The outputs of ensemble models are used as training data for the meta model
- Ensemble models are usually learned by different algorithms
 - It causes a variety of models

Arguments against combining models?

- Occam's razor keep it simple
 - It is better to have a single optimal model than a combination of many models
 - o ... but how to find the optimal model?
 - Domingos, P. Occam's two Razors: the sharp and the blunt.
 KDD 1998.
- Combining models often camouflages imperfections of methods producing under-learned or over-learned models
- Combining models we get a model with poorer results on test data than have the combined models

Arguments for combining models

- Mostly I improve my results on test data
 - Algorithms are implicitly set, it is necessary to experiment with their configuration, to produce models optimized on concrete data
- I get awareness about the certainty of the model
 - When individual models vary a lot for a given input vector, we are probably outside the training data set
- Netflix prize

Questions

 What new information is obtained by using multiple models versus using only one model?

Can ensemble increate prediction? For what models?

What are disadvantages of the ensemble prediction?

Further improvement

- Hierarchical combining of models
- Meta-learning templates
- Breeding of ensemble topology on concrete data ... more in MI-MVI