Econ 272

Homework 6

Name: Gianluca Crescenzo

Question 1.

(a) Summarize the total number of workers (nototalworker) and total ouput (total_output) first without weighting by the multiplier (mult), and then after weighting using the multiplier.

Does the sample average change upon including the multiplier weights? Based on the two sample averages, what information can you gain about which type of firms are "over-sampled"?

Solution. Stata gave the following output:

. sum nototalworker total_output

Variable					Max
nototalwor~r				0	
total_output	6,898	121.1889	964.988	.0001354	37129.21

. sum nototalworker total_output [aw = mult]

Variable		0		Std. dev.		Max
nototalwor~r	6,898	15698	143.7318	510.0754	0	21853
total_output	6,898	15698	60.27405	642.4071	.0001354	37129.21

We can see that the sample average did change upon including the multiplier weights. Since the average total number of workers *decreased* after including the weights, larger firms were over-sampled.

(b) We will explore the hypothesis of whether firm profits are affected by the presence of banks. The population regression function is:

ShProfit_{id} =
$$\beta_0 + \beta_1$$
BranchPC_d + $\delta \mathbf{X}_{id} + \epsilon_{id}$.

ShProfit is the profits earned by firm i, divided by the total firm assets. BranchPC is bank branches per million population in the discrict in which firm i is located. \mathbf{X} denotes covariates. Include the following covariates: fixed assets (avg_nfa) , total workers (nototalworker), raw materials (avg_raw_mat) , a quadratic in age (age and $sq_age)$, whether the firm is publicly listed (listed), and whether the firm is an importer (importer). Report the sign and statistical significance of β_1 .

Solution. Here is my Stata output:

sh_proft	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
branch_pc		.0000911	-1.58	0.114	0003227	.0000344
avg_nfa	-5.39e-06	.0000264	-0.20	0.838	0000571	.0000464
nototalworker	4.26e-07	9.21e-06	0.05	0.963	0000176	.0000185
avg_raw_mat	9.18e-06	.0001936	0.05	0.962	0003704	.0003888
age	0017386	.0006052	-2.87	0.004	0029249	0005523
sq_age	.0000185	6.45e-06	2.87	0.004	5.85e-06	.0000311
listed	0296402	.0154571	-1.92	0.055	0599409	.0006604
importer	.0336938	.0107916	3.12	0.002	.012539	.0548487
_cons	.113839	.013368	8.52	0.000	.0876336	.1400444

We can see that $\hat{\beta}_0 = -0.0001441$. With a *p*-value of 0.114, our value is not statistically significant at the 5% level.

(c) Now re-run the specification in (b), but winsorize profits at the top and bottom 1%. How has the β_1 coefficient changes in terms of sign and statistical significant upon winsorizing?

Solution. Observe that:

```
. winsor sh_profit, p(0.01) generate(shprofit_w)
.
. reg shprofit_w branch_pc avg_nfa nototalworker avg_raw_mat age sq_age listed imp
> orter [aw = mult]
(sum of wgt is 15,665)
```

.

shprofit_w		Std. err.	t	P> t	[95% conf.	interval]
branch_pc	0000955	.0000505	-1.89	0.059	0001944	3.44e-06
avg_nfa	-3.16e-06	.0000146	-0.22	0.829	0000318	.0000255
nototalworker	2.45e-06	5.10e-06	0.48	0.631	-7.56e-06	.0000125
avg_raw_mat	-7.05e-06	.0001073	-0.07	0.948	0002173	.0002032
age	0010709	.0003353	-3.19	0.001	0017282	0004137
sq_age	.0000104	3.57e-06	2.91	0.004	3.39e-06	.0000174
listed	0276464	.0085633	-3.23	0.001	044433	0108597
importer	.0332783	.0059786	5.57	0.000	.0215585	.0449982
_cons	.0897713	.0074059	12.12	0.000	.0752534	.1042892

The sign has not changed. Although the coefficient is still not statistically significant, it is much closer than before.

(d) Would it be appropriate to use a natural log transformation of the ShProfit? How would the regression change if we apply a log transformation.

Solution. If we were to consider doing a log-transform, first note that the β_1 coefficient represents a percentage effect rather than an absolute-change effect. Since ShProfit is a ratio, it might be beneficial to consider it's log-transform, but only if all the values are strictly positive.

(e) Set up and test the hypothesis of whether profits are significantly different for firms which are both small (less than 20 workers) and young (less than 10 years of age). These firms are classified by the binary variable *small_young*. Include all covariates from (b) except for *age* and *sq_age*, and also include BranchPC in the estimation. Do small and young firms report significantly different profits than small and old firms?

Solution. From the table:

sh_profit	1	Coefficient	Std.			t		ltl	 95%	conf.	inter	val]
branch_pc	i	0001615	.000			.78		076	 0003	398	.000	0167
avg_nfa	1	-4.30e-06	.000	0264	-0	.16	0.	871	 0000	561	.0000	0475
nototalworker	1	6.76e-07	9.17	e-06	0	.07	0.	941	 0000	173	.0000	0187
avg_raw_mat	1	2.96e-06	.000	1937	0	.02	0.	988	 0003	767	.0003	3826
listed	1	0321119	.0154	4248	-2	.08	0.	037	 0623	494	0018	8745
importer	1	.0333153	.010	7932	3	.09	0.	002	0121	572	.0544	4733
small_young	1	0341555	.0193	3569	-1	.76	0.	078	 0721	009	.00	0379
_cons	1	.0894562	.009	2007	9	.72	0.	000	 .07	142	. 1074	4924

We can see there is a -0.034 difference in ShProfit. This is not statistically significant at the 5% level.

(f) Now consider the following population regression function:

$$Output_{id} = \beta_0 + \beta_1 BranchPC_d + \delta \mathbf{X}_{id} + \epsilon_{id}.$$

Output refers to total manufacturing output ($total_output$). Report the sign of the estimated β_1 coefficient and its statistical significance. Use all of the controls specific in (b).

Solution. Running the regression gave the following table:

total_output		Std. err.	t	P> t	[95% conf.	interval]
branch_pc		.1098674	0.25	0.801	1876877	. 2430606
avg_nfa	.0136459	.0318454	0.43	0.668	0487809	.0760727
nototalworker	00101	.0111142	-0.09	0.928	0227972	.0207773
avg_raw_mat	16.09031	. 2335668	68.89	0.000	15.63245	16.54818
age	.6200993	.7299844	0.85	0.396	8108959	2.051095
sq_age	0044073	.0077835	-0.57	0.571	0196654	.0108508
listed	19.3078	18.64495	1.04	0.300	-17.24207	55.85768
importer	-19.76467	13.01727	-1.52	0.129	-45.28254	5.7532
_cons	-18.49531	16.12504	-1.15	0.251	-50.10538	13.11475

The sign of β_1 is positive, but it is not statistically significant at the 5% or 10% levels.

(g) Create a new variable woutput which is total output, but winsorized at the top 1%. Reestimate the population regression function in (f), but using the winsorized outcome variable woutput. How does the coefficient on β_1 change in terms of sign and statistical significance, relative to (f)?

Solution. Stata outputted:

woutput	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
branch_pc	1082417	.0280508	-3.86	0.000	16323	0532535
avg_nfa	101354	.0081306	-12.47	0.000	1172925	0854155
nototalworker	.0891258	.0028376	31.41	0.000	.0835632	.0946884
avg_raw_mat	1.785863	.0596331	29.95	0.000	1.668963	1.902762
age	.419517	.1863759	2.25	0.024	.0541625	.7848715
sq_age	0049028	.0019873	-2.47	0.014	0087984	0010072
listed	81.48681	4.760335	17.12	0.000	72.15508	90.81854
importer	51.66862	3.323503	15.55	0.000	45.15353	58.18372
_cons	12.30627	4.116964	2.99	0.003	4.235749	20.37679

After winsorizing, $\widehat{\beta}_1$ is now negative and statistically significant.

(h) Re-estimate the population regression function in (f) but using the natural log of total output as the outcome variable (take the natural log of the non-winsorized value of output). Based on the estimated β_1 , would you say bank branches have a large or small impact on manufacturing output?

Solution. From the table:

ln_total_ou~t	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
	H					
branch_pc	0024923	.0004974	-5.01	0.000	0034673	0015172
avg_nfa	0016166	.0001442	-11.21	0.000	0018992	001334
nototalworker	.0011478	.0000503	22.81	0.000	.0010492	.0012464
avg_raw_mat	.0122164	.0010574	11.55	0.000	.0101436	.0142892
age	0151372	.0033047	-4.58	0.000	0216155	0086589
sq_age	.0001422	.0000352	4.04	0.000	.0000732	.0002113
listed	1.541427	.0844081	18.26	0.000	1.375961	1.706893
importer	1.702065	.0589308	28.88	0.000	1.586542	1.817588
_cons	1.635389	.0730001	22.40	0.000	1.492286	1.778492

we can see that bank branches have a small and negative impact on manufacturing output based on the estimated coefficient. A 1-unit increase in BranchPC; i.e., one additional bank branch per million population, results in a change of -0.24923% to total output.

(i) Based on the estimates of β_1 in (g) and (h), how different are your results from winsorizing, as opposed to taking the natural log of the outcome variable? When comparing the estimate of β_1 between (f), (g), and (h), what do you think winsorizing does to the regression estimates? (Consider both the estimated value of β_1 and the standard error of the β_1 coefficient.)

Solution. Both (g) and (h) resulted in β_1 coefficients which were statistically significant, whereas the coefficient in (f) was not statistically significant. Comparing winsorizing and taking the natural log of the outcome variable, there was a large change in the standard error.

Question 2.

(a) Consider the following population regression function to test whether capital investment responds to bank branches. Remember to weight all of your regressions using *mult*.

$$P(\text{Capex} = 1)_i d = \beta_0 + \beta_1 \text{BranchPC}_d + \delta \mathbf{X}_d + \epsilon_{id}.$$

P(Capex = 1) is a binary equaling to 1 if the firm undertook any capital investment (pcapex). In **X**, include the binary variables *listed*, small, young, and importer. Does bank branches have a large or small impact on capital investment?

Solution. From the table:

pcapex		Std. err.	t	P> t	[95% conf.	interval]
branch_pc	.0001537	.0001338	1.15	0.251	0001086	.000416
listed	0586969	.0226346	-2.59	0.010	1030678	0143261
small	1291336	.0120588	-10.71	0.000	1527726	1054945
young	0320557	.0205018	-1.56	0.118	0722455	.0081341
importer	.0769497	.0160723	4.79	0.000	.0454431	.1084563
_cons	.3688157	.0148515	24.83	0.000	.3397022	.3979293

we can see that bank branches has a small impact on capital investment.

(b) Test whether the impact of bank branches on the likelihood of making any capital investment differs from across small and alree firms. Estimate the following regression specification:

$$P(\text{Capex} = 1)_i d = \beta_0 + \beta_1 \text{BranchPC}_d + \beta_2 (\text{BranchPC}_d \cdot \text{Small}_{id}) + \delta \mathbf{X}_d + \epsilon_{id}.$$

Interpret the β_1 and β_2 coefficients. Can you reject the null hypothesis $H_0: \beta_1 + \beta_2 = 0$? What information is provided by $\beta_1 + \beta_2$.

Solution. Stata gave the following table:

pcapex	•	Std. err.	t	P> t		interval]
branch_pc	.0003948	.0001919	2.06	0.040	.0000187	.0007709
branch_small	0004689	.0002674	-1.75	0.080	0009931	.0000553
listed	0596855	.0226382	-2.64	0.008	1040634	0153076
small	0875657	.0265934	-3.29	0.001	1396971	0354344
young	0323447	.0204993	-1.58	0.115	0725298	.0078403
importer	.0771489	.0160702	4.80	0.000	.0456462	.1086515
_cons	.3479739	.0190196	18.30	0.000	.3106897	.3852581

 β_1 is the effect of BranchPC on the probability of capital investment for large firms. β_2 tells us how the effect of BranchPC differs for small firms, relative to large firms. Running the test command in Stata outputted:

(1) branch_pc + branch_small = 0

$$F(1, 6874) = 0.16$$

 $Prob > F = 0.6912$

So we cannot reject the null-hypothesis. $\beta_1 + \beta_2$ is the total effect for small firms.

Question 3.

- (a)
- (b)