

(11)Publication number:

2003-025861

(43) Date of publication of application: 29.01.2003

(51)Int.CI.

B60K 17/35

(21)Application number: 2001-213666

(71)Applicant: NISSAN MOTOR CO LTD

(22)Date of filing:

13.07.2001

(72)Inventor: SUZUKI HIDETOSHI

(54) DRIVING FORCE CONTROL APPARATUS FOR 4-WHEEL-DRIVE VEHICLE

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a driving force control apparatus for a 4-wheel-drive vehicle for controlling distribution of driving force to front and rear wheels according to an amount of acceleration slip of a main driving wheel so as to continue a 4-wheel-drive state only when necessary.

SOLUTION: This apparatus is constructed in such a way that when a driver requires the driving force, driving force distribution is adjusted so that a driving force distribution ratio of a driven wheel is updated to be the maximum value, and when the driver does not require the driving force, the driving force distribution is adjusted according to an amount of actual acceleration slip of the main driving wheel.

LEGAL STATUS

[Date of request for examination]

24.04.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2. **** shows the word which can not be translated.

3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] The driving force control unit of the four-flower drive vehicles characterized by providing the following. On the other hand, an order ring comes out, and it is a certain main driving wheel. ****** which is another side of an order ring. A slip detection means to detect the amount of acceleration slips of the main driving wheel. In judging that the operator is demanding driving force with a driving force demand judgment means to judge whether the operator is demanding driving force, and the driving force demand judgment means A renewal means of ****** distribution maximum to compute the driving force distribution ratio of an order ring so that the rate of driving force distribution of ****** may be updated to maximum based on the amount of acceleration slips of the main driving wheel detected with the slip detection means, In judging that the operator is not demanding driving force with a driving force demand judgment means A slip correspondence driving force distribution calculation means to compute the driving force distribution ratio of a ring before and after responding to the amount of acceleration slips of the actual main driving wheel, A driving force adjustment means to adjust the driving force of a front wheel and a rear wheel to adjustable so that it may become the driving force distribution ratio of a ring before and after computing with the renewal means of ******* distribution maximum, or a slip correspondence driving force distribution calculation means.

[Claim 2] The above-mentioned renewal means of ****** distribution maximum is the driving force control unit of the four-flower drive vehicles indicated to the claim 1 characterized by carrying out renewal of maximum of the amount of acceleration slips of the main driving wheel. [Claim 3] The driving force control unit of the four-flower drive vehicles characterized by providing the following. On the other hand, an order ring comes out, and it is a certain main driving wheel. ****** which is another side of an order ring. A slip detection means to detect the amount of acceleration slips of the main driving wheel. In judging that the operator is demanding driving force with a driving force demand judgment means to judge whether the operator is demanding driving force, and the driving force demand judgment means A renewal means of ****** distribution maximum to compute the driving force distribution ratio of an order ring so that the rate of driving force distribution of ****** may be updated to maximum based on the amount of acceleration slips of the main driving wheel detected with the slip detection means, In judging that the operator is not demanding driving force with a driving force demand judgment means A ****** distribution reduction means to compute the driving force distribution ratio of an order ring so that it may become reduction or zero about the rate of driving force distribution of *******, A driving force adjustment means to adjust the driving force of a front wheel and a rear wheel to adjustable so that it may become the driving force distribution ratio of a ring before and after computing with the renewal means of ****** distribution maximum, or a ****** distribution reduction means. [Claim 4] It is the driving force control unit of the four-flower drive vehicles indicated to the claim 3 characterized by having a car-body-speed detection means to detect the degree of car body speed, and making the above-mentioned ******* distribution reduction means into the driving force

distribution ratio of a ring before and after reducing the rate of driving force distribution of ******* according to the fall of the degree of car body speed.

[Claim 5] It is the driving force control unit of the four-flower drive vehicles indicated to the claim 3 characterized by having a wheel speed detection means to detect the degree of wheel speed, and making the above-mentioned ******** distribution reduction means into the driving force distribution ratio of a ring before and after reducing the rate of driving force distribution of ******* according to the fall of the degree of wheel speed.

[Claim 6] The above-mentioned ******* distribution reduction means is the driving force control unit of the four-flower drive vehicles indicated to the claim 3 characterized by considering as the driving force distribution ratio of a ring before and after reducing the rate of driving force distribution of ******* according to the passage of time.

[Claim 7] It is the driving force control unit of the four-flower drive vehicles which were equipped with a wheel speed detection means to detect the degree of wheel speed, and were indicated to either to the claims 1-6 characterized by the above-mentioned slip detection means calculating the amount of acceleration slips from the speed difference of an order ring.

[Claim 8] It is the driving—force control unit of the four flower drive vehicles which were equipped with a main driving wheel torque calculation means compute the driving torque transmitted to the main driving wheel, and a road surface reaction—force marginal torque calculation means compute the road surface reaction—force marginal torque of the main driving wheel, and indicated to either to the claims 1–6 characterized by for the above—mentioned slip detection means to calculate the amount of acceleration slips from the difference of the driving torque and the road surface reaction—force marginal torque of the main driving wheel transmitted to the main driving wheel.

[Claim 9] It is the driving force control unit of the four-flower drive vehicles indicated to either of the claims 1-8 characterized by judging that the operator is demanding driving force when it had a brakes operation detection means to detect whether brakes operation is carried out, it judges that the operator is not demanding driving force when carrying out brakes operation of the above-mentioned driving force demand judgment means is detected, and having not carried out brakes operation is detected.

[Claim 10] It is the driving-force control unit of the four flower drive vehicles indicated judging that the operator is not demanding driving force when it had an accelerator operation detection means to have detected whether accelerator operation is carried out, it judges that the operator is demanding driving force when it is detected that the above-mentioned driving force demand judgment means is carrying out accelerator operation, and having not carried out accelerator operation is detected to either of the claims 1-9 carry out as the feature.

[Claim 11] It has a car-body-speed detection means to detect the degree of car body speed, and a load correspondence driving force distribution calculation means to compute the driving force distribution ratio of an order ring according to load distribution of an order ring. When it is below the predetermined vehicle speed and calculation processing of a driving force distribution ratio is being performed with the renewal means of ********* distribution maximum By the driving force distribution ratio computed with the renewal means of ********* distribution maximum, and the driving force distribution ratio which a load correspondence driving force distribution calculation means computes The driving force control unit of the four-flower drive vehicles which chose the driving force distribution ratio with the larger driving force of *********, and were indicated to either of the claims 1–10 characterized by adjusting the driving force of a front wheel and a rear wheel to adjustable so that it may become the driving force distribution ratio of a ring before and after choosing.

[Translation done.]

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.

2.**** shows the word which can not be translated.

3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]
[0001]

[The technical field to which invention belongs] this invention relates to the driving force control unit of four-flower drive vehicles.

[0002]

[Description of the Prior Art] As a driving force control unit of the conventional four-flower drive vehicles, technology which is indicated by JP,7-172204,A is known, for example.

[0003] According to the above-mentioned official report, by the degree sensor of wheel speed, the driving force control unit of four-flower drive vehicles detects the degree of wheel speed of each wheel, asks for the degree difference of wheel speed of a front wheel and a rear wheel (henceforth front rear wheel ****), and its rate of change, and sets up driving force distribution of an order ring according to the degree difference of wheel speed, and its rate of change. Namely, only when the rear wheel which is the main driving wheel carries out an acceleration slip and front rear wheel **** arises, it will be in a four-flower drive state.

[0004]

[Problem(s) to be Solved by the Invention] However, such a driving force control unit of the conventional four-flower drive vehicles had the problem that it was not made to continue and run a four-flower drive state, when running the low mu road surface and bad road on which it is easy to slide and securing run stability and running-the-whole-distance nature, since it will not be in a fourflower drive state if front rear wheel **** does not arise. Moreover, since the main driving wheel of the driving force control unit of the conventional four-flower drive vehicles is in a slip state in a four-flower drive state, if the main driving wheel does not have a margin in the grip force and vehicles stability is considered, it is not desirable. Furthermore, the driving force control unit of the conventional four-flower drive vehicles was considered when a two-flower drive state and a fourflower drive state were frequently repeated on a low mu road surface, and it also had a possibility of making an operator sensing sense of incongruity, in that case by change of the acceleration of vehicles, or speed by the mechanical loss and electric loss at the time of a four-flower drive state. [0005] this invention was made paying attention to such a conventional trouble, and only when required, it aims at offering the driving force control unit of the four-flower drive vehicles which can continue and run a four-flower drive state. [0006]

[Means for Solving the Problem] In order to solve the above-mentioned problem, the driving force control unit of the four-flower drive vehicles concerning a claim 1 A slip detection means for an order ring to come out on the other hand, and to detect the amount of acceleration slips of a certain main driving wheel, ******* which is another side of an order ring, and the main driving wheel, In judging that the operator is demanding driving force with a driving force demand judgment means to judge whether the operator is demanding driving force, and the driving force demand

judgment means A renewal means of ******** distribution maximum to compute the driving force distribution ratio of an order ring so that the rate of driving force distribution of ******* may be updated to maximum based on the amount of acceleration slips of the main driving wheel detected with the slip detection means, In judging that the operator is not demanding driving force with a driving force demand judgment means A slip correspondence driving force distribution calculation means to compute the driving force distribution ratio of a ring before and after responding to the amount of acceleration slips of the actual main driving wheel, It was characterized by having a driving force adjustment means to adjust the driving force of a front wheel and a rear wheel to adjustable so that it may become the driving force distribution ratio of a ring before and after computing with the renewal means of ********* distribution maximum, or a slip correspondence driving force distribution calculation means.

[0007] Moreover, in the driving force control unit of the four-flower drive vehicles which indicated the driving force control unit of the four-flower drive vehicles concerning a claim 2 to the claim 1, the renewal means of ******** distribution maximum was characterized by carrying out renewal of maximum of the amount of acceleration slips of the main driving wheel.

[0008] Moreover, the driving force control unit of the four-flower drive vehicles concerning a claim 3 A slip detection means for an order ring to come out on the other hand, and to detect the amount of acceleration slips of a certain main driving wheel, ****** which is another side of an order ring, and the main driving wheel, In judging that the operator is demanding driving force with a driving force demand judgment means to judge whether the operator is demanding driving force, and the driving force demand judgment means A renewal means of ****** distribution maximum to compute the driving force distribution ratio of an order ring so that the rate of driving force distribution of ****** may be updated to maximum based on the amount of acceleration slips of the main driving wheel detected with the slip detection means, In judging that the operator is not demanding driving force with a driving force demand judgment means A ****** distribution reduction means to compute the driving force distribution ratio of an order ring so that it may become reduction or zero about the rate of driving force distribution of *******, It was characterized by having a driving force adjustment means to adjust the driving force of a front wheel and a rear wheel to adjustable so that it may become the driving force distribution ratio of a ring before and after computing with the renewal means of ****** distribution maximum, or a ***** distribution reduction means.

[0009] Moreover, the driving force control unit of the four-flower drive vehicles concerning a claim 4 was equipped with a car-body-speed detection means to detect the degree of car body speed, in the driving force control unit of the four-flower drive vehicles indicated to the claim 3, and it was characterized by making a ******** distribution reduction means into the driving force distribution ratio of a ring before and after reducing the rate of driving force distribution of ******* according to the fall of the degree of car body speed.

[0010] Moreover, the driving force control unit of the four-flower drive vehicles concerning a claim 5 was equipped with a wheel speed detection means to detect the degree of wheel speed, in the driving force control unit of the four-flower drive vehicles indicated to the claim 3, and it was characterized by making a ******* distribution reduction means into the driving force distribution ratio of a ring before and after reducing the rate of driving force distribution of ****** according to the fall of the degree of wheel speed.

[0011] Moreover, in the driving force control unit of the four-flower drive vehicles which indicated the driving force control unit of the four-flower drive vehicles concerning a claim 6 to the claim 3, the ******* distribution reduction means was characterized by considering as the driving force distribution ratio of a ring before and after reducing the rate of driving force distribution of ******* according to the passage of time.

[0012] Moreover, the driving force control unit of the four-flower drive vehicles concerning a claim 7 was equipped with a wheel speed detection means to detect the degree of wheel speed, in the

driving force control unit of the four-flower drive vehicles indicated to either to claims 1-6, and the slip detection means was characterized by calculating the amount of acceleration slips from the speed difference of an order ring.

[0013] Moreover, the driving force control unit of the four-flower drive vehicles concerning a claim 8 In the driving force control unit of the four-flower drive vehicles indicated to either to claims 1-6 A main driving wheel torque calculation means to compute the driving torque transmitted to the main driving wheel, It had a road surface reaction force marginal torque calculation means to compute the road surface reaction force marginal torque of the main driving wheel, and the above-mentioned slip detection means was characterized by calculating the amount of acceleration slips from the difference of the driving torque and the road surface reaction force marginal torque of the main driving wheel which are transmitted to the main driving wheel.

[0014] Moreover, the driving force control unit of the four-flower drive vehicles concerning a claim 9 It has a brakes operation detection means to detect whether brakes operation is carried out in the driving force control unit of the four-flower drive vehicles indicated to either of the claims 1–8. a driving force demand judgment means When it judged that the operator is not demanding driving force when carrying out brakes operation is detected, and having not carried out brakes operation was detected, it was characterized by judging that the operator is demanding driving force.
[0015] Moreover, the driving force control unit of the four-flower drive vehicles concerning a claim 10 It has an accelerator operation detection means to detect whether accelerator operation is carried out in the driving force control unit of the four-flower drive vehicles indicated to either of the claims 1–9. a driving force demand judgment means When it judged that the operator is demanding driving force when carrying out accelerator operation is detected, and having not carried out accelerator operation was detected, it was characterized by judging that the operator is not demanding driving force.

[0016] Moreover, the driving force control unit of the four-flower drive vehicles concerning a claim 11 In the driving force control unit of the four-flower drive vehicles indicated to either of the claims 1–10 It has a car-body-speed detection means to detect the degree of car body speed, and a load correspondence driving force distribution calculation means to compute the driving force distribution ratio of an order ring according to load distribution of an order ring. When it is below the predetermined vehicle speed and calculation processing of a driving force distribution ratio is being performed with the renewal means of ******** distribution maximum By the driving force distribution ratio computed with the renewal means of ********* distribution maximum, and the driving force distribution ratio which a load correspondence driving force distribution calculation means computes The driving force distribution ratio with the larger driving force of ******** was chosen, and it was characterized by adjusting the driving force of a front wheel and a rear wheel to adjustable so that it may become the driving force distribution ratio of a ring before and after choosing.

[0017]

[Effect of the Invention] In judging that the operator is demanding driving force according to invention concerning a claim 1 In judging that the driving force distribution ratio of an order ring is computed so that the rate of driving force distribution of ******** may be updated to maximum based on the amount of acceleration slips of the main driving wheel, and the operator is not demanding driving force Since adjustable setting of the driving force of a front wheel and a rear wheel is carried out so that the driving force distribution ratio of a ring before and after responding to the amount of acceleration slips of the actual main driving wheel may be computed and it may become the driving force distribution ratio of a ring before and after computing Even if the acceleration slip generated in the main driving wheel converges, while judging that the operator is demanding driving force, in order to continue a four-flower drive state, the effect that the running-the-whole-distance nature in reservation and bad road of the stability of the vehicles in a low mu road surface is securable is acquired. Moreover, by continuing a four-flower drive state, a leeway is

given in the grip force of the main driving wheel, it becomes advantageous to vehicles stability, and repeating a two-flower drive state and a four-flower drive state frequently on a low mu road surface can prevent being avoided and making an operator sense the sense of incongruity by change of the acceleration of vehicles, or speed by things. Furthermore, in order to consider as the driving force distribution ratio of a ring when judging that the operator was not demanding driving force, before and after responding to the amount of acceleration slips of the actual main driving wheel, the effect of not continuing a four-flower drive state more than required is acquired.

[0018] Moreover, since renewal of maximum of the amount of acceleration slips of the main driving wheel is carried out according to invention concerning a claim 2 According to the amount of acceleration slips of the main driving wheel updated by maximum, the driving force distribution ratio of an order ring is computed. It becomes the same as computing the driving force distribution ratio of an order ring so that the rate of driving force distribution of ******* may be updated to maximum as a result, and the effect that the rate of driving force distribution of ****** can be certainly updated to maximum is acquired.

[0019] moreover, in judging that the operator is demanding driving force according to invention concerning a claim 3 In judging that the driving force distribution ratio of an order ring is computed so that the rate of driving force distribution of ****** may be updated to maximum based on the amount of acceleration slips of the main driving wheel, and the operator is not demanding driving force Compute the driving force distribution ratio of an order ring, and since adjustable setting of the driving force of a front wheel and a rear wheel is carried out so that it may become the driving force distribution ratio of a ring before and after computing, so that it may become reduction or zero about the rate of driving force distribution of ******* In order to continue a four-flower drive state until it judges that the demand of an operator's driving force was lost, even if the acceleration slip generated in the main driving wheel converges, the effect that the running-the-whole-distance nature in reservation and bad road of the stability of the vehicles in a low mu road surface is securable is acquired. Moreover, by continuing a four-flower drive state, a leeway is given in the grip force of the main driving wheel, it becomes advantageous to vehicles stability, and repeating a twoflower drive state and a four-flower drive state frequently on a low mu road surface can prevent being avoided and making an operator sense the sense of incongruity by change of the acceleration of vehicles, or speed by things. Furthermore, the effect of not continuing a four-flower drive state more than required is acquired by making the rate of driving force distribution of preventing applying the driving force of ****** by reducing the rate of driving force distribution of ***** more than required ****, or ******* into zero, i.e., a two-flower drive state, if it judges that the operator is not demanding driving force.

[0020] Moreover, since the rate of driving force distribution of ******* is reduced according to the fall of the degree of car body speed when judging that the operator is not demanding driving force according to invention concerning a claim 4, the effect that aggravation of the vehicles stability by rapid driving force change of the main driving wheel can be prevented by changing into a two-flower drive state gradually is acquired.

[0021] Moreover, since the rate of driving force distribution of ******** is reduced according to the fall of the degree of wheel speed when judging that the operator is not demanding driving force according to invention concerning a claim 5, the effect that aggravation of the vehicles stability by rapid driving force change of the main driving wheel can be prevented by changing into a two-flower drive state gradually is acquired.

[0022] Moreover, when judging that the operator is not demanding driving force according to invention concerning a claim 6, in order to reduce the rate of driving force distribution of ******** according to the passage of time, the effect that aggravation of the vehicles stability by rapid driving force change of the main driving wheel can be gradually prevented by the bird clapper in the two-flower drive state is acquired.

[0023] Moreover, according to invention concerning a claim 7, since the amount of acceleration slips

is calculated from the speed difference of an order ring, the effect that the amount of acceleration slips is calculated certainly is acquired.

[0024] Moreover, since the amount of acceleration slips is calculated from the difference of the driving torque and the road surface reaction force marginal torque of the main driving wheel which are transmitted to the main driving wheel according to invention concerning a claim 8, even if the speed difference of an order ring is very small ** zero, the effect that the amount of acceleration slips is calculated is acquired.

[0025] Moreover, since it judges that the operator is demanding driving force when it judges that the operator is not demanding driving force when carrying out brakes operation is detected according to invention concerning a claim 9, and having not carried out brakes operation is detected, the effect that it is detectable whether the operator is demanding driving force certainly is acquired. Moreover, since it judges that the operator is not demanding driving force when it judges that the operator is demanding driving force when carrying out accelerator operation is detected according to invention concerning a claim 10, and having not carried out accelerator operation is detected, the effect that it is detectable whether the operator is demanding driving force certainly is acquired. [0026] moreover, when according to invention concerning a claim 11 it is below the predetermined vehicle speed and calculation processing of a driving force distribution ratio is being performed with the renewal means of ******* distribution maximum By the driving force distribution ratio computed with the renewal means of ******* distribution maximum, and the driving force distribution ratio which a load correspondence driving force distribution calculation means computes Choose a driving force distribution ratio with the larger driving force of ******, and since the driving force of a front wheel and a rear wheel is adjusted to adjustable so that it may become the driving force distribution ratio of a ring before and after choosing By the driving force distribution by

when the acceleration slip before start has not arisen, at the time of the start which especially an acceleration slip tends to generate After an acceleration slip is generated, it excels in the acceleration nature at the time of start, or the stability of vehicles, and the effect of not continuing a four-flower drive state more than required is acquired rather than it changes into a four-flower drive state.

the order load being chosen, and considering as a four-flower drive state from the beginning, even

[0027]

[Embodiments of the Invention] First, the gestalt of operation of the first of this invention is explained based on a drawing. <u>Drawing 1</u> is drawing showing the whole gestalt composition of operation of this invention. Moreover, the gestalt of this operation explains the vehicles in which a four-flower drive is possible on the basis of the two-flower drive which usually drives a rear wheel. [0028] Among drawing, the output of the engine 1 of four-flower drive vehicles performs driving force distribution of an order ring with the driving force proportioning-control actuator 3 through transmission 2, and transmits it to the front driveshaft 4 and the rear driveshaft 5. The driving force transmitted to the front driveshaft 4 is transmitted to forward right ring 10FR and forward left ring 10floor line through the front differential gear 6 and the last shaft 7. Similarly, the driving force transmitted to the rear driveshaft 5 is transmitted to right rear ring 10RR and left rear ring 10RL through the rear differential gear 8 and the back shaft 9.

[0029] vehicles — each — wheel 10FR, 10floor line, 10RR, and 10 — RL is equipped with degree sensor of wheel speed 12FR, 12floor line, 12RR, and 12RL, and each detection value is outputted to the driving force proportioning—control controller 11 Moreover, the driving force proportioning—control actuator 3 minds the hydraulic clutch between transmission 2 and the front driveshaft 4. In addition, you may be an electromagnetic clutch instead of a hydraulic clutch.

[0030] Moreover, a driving force demand of an operator is detected, namely, the accelerator switch 13 for detecting the existence of accelerator operation and the brake switch 14 which detects the existence of brakes operation output each detection value to the driving force proportioning-control controller 11. In addition, the accelerator opening sensor for detecting the state of accelerator

opening instead of the accelerator switch 13 may be used, and the brake stroke sensor for detecting the amount of brake-pedal strokes instead of the brake switch 14 may be used.

[0031] Moreover, it has the engine speed sensor 15 which detects the rotational frequency of an engine 1, and an engine speed sensor 15 outputs the detected detection value to the driving force proportioning-control controller 11. Moreover, the throttle valve of the inlet-pipe way of an engine 1 is equipped with the throttle opening sensor 16 which detects the opening of a throttle valve, and the throttle opening sensor 16 outputs the detected detection value to the driving force proportioning-control controller 11.

[0032] Moreover, the driving force proportioning-control controller 11 inputs the detection value of each sensor, and computes the amount of acceleration slips of the main driving wheel. First, the detection value of degree sensor of wheel speed 12FR, 12floor line, 12RR, and 12RL, the detection value of an engine speed sensor 15, and the detection value of the throttle opening sensor 16 are inputted, the transfer torque of the main driving wheel and the acceleration torque of the main driving wheel are searched for, and the road surface reaction force torque which is the amount of acceleration slips is computed from them. And from the state where the driving force distribution ratio of an order ring is usually 100% of 0% [of front wheels] : rear wheels, for example, driving force distribution is computed according to road surface reaction force torque, an instruction value is outputted to the driving force proportioning-control actuator 3, and the driving force proportioning-control actuator 3 is controlling the conclusion force of a hydraulic clutch, and controls driving force distribution of an order ring.

[0033] Next, based on <u>drawing 2</u>, control processing of the driving force proportioning-control controller 11 is explained. <u>Drawing 2</u> is the flow chart view showing the outline of control processing of the form of operation of the first of this invention. This data processing is performed every predetermined—time 10msec.

[0034] First, at Step S1, the driving force proportioning-control controller 11 inputs each detection value of degree sensor of wheel speed 12FR, 12floor line, 12RR, and 12RL, the detection value of an engine speed sensor 15, and the detection value of the throttle opening sensor 16, and shifts to Step S2. At Step S2, it asks for the wheel acceleration of the main driving wheel based on each detection value of inputted degree sensor of wheel speed 12RR, and 12RL, the average of a right-and-left ring is computed as wheel acceleration Af of the main driving wheel, and it shifts to Step S3.

[0036] At Step S7, it judges whether the detection value of the brake switch 14 is inputted and brakes operation is carried out. When the brake switch 14 judges that OFF, i.e., brakes operation, is not carried out, it shifts to Step S8, and when the brake switch 14 judges that ON, i.e., brakes operation, is carried out, it shifts to Step S10. At Step S8, it judges whether the detection value of the accelerator switch 13 is inputted and accelerator operation is carried out. When it is judged that the accelerator switch 13 turns on namely, operates [accelerator] it, it shifts to Step S9, and when

[0037] In addition, processing of Step S6 is available also as processing which computes surplus reaction force from surplus torque and the radius of gyration of a wheel, and computes the driving force distribution D according to surplus reaction force, although the driving force distribution D is computed according to surplus torque.

[0038] Furthermore, it explains based on <u>drawing 3</u>. <u>Drawing 3</u> is the timing diagram view of the form of operation of the first of this invention. here — <u>drawing 3</u> a — each aging of the degree Vf of wheel speed of a front wheel, and the degree Vr of wheel speed of a rear wheel — this drawing b — aging of the transfer torque of a rear wheel — this drawing c — aging of the rate of driving force distribution of a front wheel — aging of an accelerator switch detection value is shown in this drawing e, and aging of the detection value of a brake switch is shown for aging of coefficient of friction of a tire and a road surface in this drawing f in this drawing d

[0039] First, the degree Vr of wheel speed of a rear wheel becomes [as opposed to / the degree Vf of wheel speed of a front wheel / as a rear wheel will generate an acceleration slip when road surface reaction force / of the rear wheel which the transfer torque of a rear wheel goes up as the point in time of T1 to an operator steps on an accelerator, vehicles depart and it is shown in the solid line of drawing 3 b, and is shown in a dashed line / marginal torque is exceeded, and shown in drawing 3 a] large. Moreover, for OFF, as for the brake switch on which the accelerator switch shown in drawing 3 e is shown in ON and drawing 3 f, processing is performed, as for driving force distribution so that the rate of distribution to a front wheel may be updated by maximum. Then, if the time of T2 is exceeded, although the difference of the rear wheel transfer torque and road surface reaction force marginal torque which are shown in drawing 3 b becomes small, as for the rate of driving force distribution of a front wheel, maximum continues being continued as a maximum update process shows to drawing 3 c between the accelerator switch ON and the brake switch OFF. Then, although an acceleration slip of a rear wheel converges and the difference of rear wheel transfer torque and road surface reaction force marginal torque is lost at the time of T3, because of the state of the accelerator switch ON and the brake switch OFF, driving force distribution is continued by a maximum update process being continued as it is, as shown in drawing 3 c, maximum continues being continued and the rate of driving force distribution of a front wheel can continue a four-flower drive state. Then, although vehicles shift to the lower state of road surface coefficient of friction at the time of T4 and the road surface reaction force marginal torque of a rear wheel falls, since the four-flower drive state is continued, the transfer torque of a rear wheel does not exceed road surface reaction force marginal torque, and a rear wheel does not generate an acceleration slip again.

[0040] Then, an operator stops accelerator operation at the time of T5, and it is with OFF and a bird clapper, and an accelerator switch judges that the driving force demand was lost, stops a maximum update process, and performs processing made into the value of the driving force distribution computed according to the difference of actual rear wheel transfer torque and road surface force marginal torque. However, since the difference of rear wheel transfer torque and road surface

reaction force marginal torque has not arisen in fact in this case and the rate of driving force distribution of a front wheel serves as driving force distribution used as zero, it will be in a twoflower drive state as a result. Then, although it becomes the brake switch ON because an operator does brakes operation at the time of T6, since it has judged that the driving force demand was already lost by Accelerator OFF at the time of T5, the processing made into the value of the driving force distribution computed according to the difference of actual rear wheel transfer torque and road surface reaction force marginal torque is continued. in addition, when it is judged that there is no driving force demand By not carrying out a maximum update process, i.e., considering as the value of the driving force distribution for which it asks from the difference of actual rear wheel transfer torque and road surface reaction force marginal torque, For example, an acceleration slip of a rear wheel is large by superfluous accelerator-on operation. Since a four-flower drive state is continued according to the difference of actual rear wheel transfer torque and road surface reaction force marginal torque when not being completed by the difference of rear wheel transfer torque and road surface reaction force marginal torque by inertia yet after it is judged that there is no driving force demand, It does not change to a two-flower drive state rapidly, and excels in reservation of the stability of vehicles.

[0041] Next, the form of operation of the second of this invention is explained. Although whole composition is the same as that of drawing 1 of the form of the first operation, the composition for the amount of acceleration slips of the main driving wheel performed by the driving force proportioning-control controller 11 computing, the composition for processing so that renewal of maximum of the rate of driving force distribution of ****** may be carried out, the composition of processing in case there is no driving force demand of an operator, and the composition for computing driving force distribution, when it is below the predetermined vehicle speed differ. [0042] The composition for the amount of acceleration slips of the main driving wheel computing inputs the detection value of degree sensor of wheel speed 12FR, 12floor line, 12RR, and 12RL. calculates each average of a right-and-left front wheel and a right-and-left rear wheel, and computes a ring rotational-speed difference (front rear wheel ****) before and after being the difference of the front-wheel average and the rear wheel average as an amount of acceleration slips. Moreover, the composition for processing so that renewal of maximum of the rate of driving force distribution of ****** may be carried out carries out renewal of maximum of the front rear wheel **** computed as an amount of acceleration slips, and computes driving force distribution according to the front rear wheel **** which carried out renewal of maximum. Moreover, when there is no driving force demand of an operator, the composition of processing in case there is no driving force demand of an operator computes driving force distribution so that the rate of driving force distribution of ****** may decrease according to the fall of the degree of car body speed. Moreover, in below the predetermined vehicle speed, the composition for computing driving force distribution in below the predetermined vehicle speed compares the value of the driving force distribution which does simultaneously and establishes another driving force distribution calculation means, then is computed with the value of the driving force distribution computed based on the amount of acceleration slips, and chooses the value of the driving force distribution with the larger rate of driving force distribution of *******. Moreover, the driving force proportioning-control controller 11 is computing the degree of car body speed based on the inputted degree of wheel

[0043] Next, based on <u>drawing 4</u>, control processing of the driving force proportioning—control controller 11 is explained. <u>Drawing 4</u> is the flow chart view showing the outline of control processing of the form of operation of the second of this invention. This data processing is performed every same predetermined—time 10msec like data processing of <u>drawing 2</u>.

[0044] First, at Step S21, the driving force proportioning-control controller 11 inputs each detection value of degree sensor of wheel speed 12FR, 12floor line, 12RR, and 12RL, asks for the degree Vcarn of car body speed based on the degree of wheel speed, and shifts to Step S22. At Step S22,

after calculating the average of a right-and-left front wheel, and the average of a right-and-left rear wheel based on each degree of wheel speed inputted at Step S21, the average of the front wheel which is ****** is subtracted from the average of the rear wheel which is the main driving wheel, rear wheel **** **Vn is computed a front, and it shifts to Step S23. At Step S23, it judges whether the detection value of the brake switch 14 is inputted and brakes operation is carried out. When the brake switch 14 judges that OFF, i.e., brakes operation, is not carried out, it shifts to Step S24, and when the brake switch 14 judges that ON, i.e., brakes operation, is carried out, it shifts to Step S26. At Step S24, it judges whether the detection value of the accelerator switch 13 is inputted and accelerator operation is carried out. When it is judged that the accelerator switch 13 turns on namely, operates [accelerator] it, it shifts to Step S25, and when it is judged that the accelerator switch 13 does not turn off namely, accelerator operate it, it shifts to Step S26. And before computing at Step S25 at the time of the last calculation period and computing rather than rear wheel **** **Vn-1 at the time of this calculation period, when rear wheel **** **Vn is large, it updates to this value (maximum). in order to carry out processing which makes the last value (maximum) the value used for this calculation period when the last value is larger, namely, to compute driving force distribution -- front -- it processes so that the value of rear wheel **** **Vn may be made into the value updated by maximum, and a flag is set to 1, and it shifts to Step S27 At Step S26, to value **Vn-1 [moreover,] of front rear wheel **** used for calculation of driving force distribution at the time of the last calculation period Carry out processing set to value **Vn of front rear wheel **** used for calculation of driving force distribution of the value which multiplied by the value which **(ed) the degree Vcarn of car body speed called for this calculation period by degree Vcarn-of car body speed 1 which was able to be calculated the last calculation period, and the predetermined coefficient 0.7. That is, processing which reduces the value of front rear wheel **** for computing driving force distribution according to the degree of car body speed is carried out, a flag is set to 0, and it shifts to Step S27. at Step S27, as shown in the view 8 of JP,1-94025,A, the amount of acceleration slips increases, for example, -- be alike and hang -- it was processed at Step S25 or Step S26 from the operation expression and the map used as the property that the rate of driving force distribution of ****** becomes large -- front -- according to the value of rear wheel **** **Vn, the driving force distribution D1 of an order ring is computed, and it shifts to Step S28

[0045] At Step S28, it judges whether it is 15 or less km/h of predetermined vehicle speed, and, in below the predetermined vehicle speed, shifts to Step S29, and the degree Vcarn of car body speed shifts to Step S30, when larger than the predetermined vehicle speed. At Step S29, the rate of change of acceleration and deceleration of the degree of car body speed, i.e., the degree, is computed, and it shifts to Step S31. At Step S31, the basic-load distribution ratio of a ring before and after being able to find from a vehicles item in advance is amended according to the degree of acceleration and deceleration of vehicles, and it shifts to Step S32. namely, -- since load distribution of a rear wheel increases at the time of acceleration and load distribution for a front wheel increases at Step S31 at the time of a slowdown -- the variation of load distribution -- an amendment -- things are performed At Step S32, for example, it computes the driving force distribution D2 according to load distribution, when the vehicles of 50% of 50% [of front wheels]: rear wheels carry out load movement by acceleration and have become 60% of 40% [of front wheels] : rear wheels, they use driving force distribution as 60% of 40% [of front wheels] : rear wheels, and a basic-load distribution ratio shifts to Step S33. Here, driving force distribution is computed by the calculation method that Step S27 and Step S32 are separate respectively. At Step S33, it judges whether a flag is 1, if a flag is 1, it will shift to Step S34, and if a flag is not 1, it will shift to Step S35. At Step S34, the driving force distribution D1 computed at Step S27 is compared with the driving force distribution D2 computed at Step S32, driving force distribution of the direction where the rate of driving force distribution of ***** becomes large is chosen, and it shifts to Step S36. Moreover, at Step S35, processing which makes driving force distribution the

value D1 computed at Step S27 is carried out, and it shifts to Step S36. The instruction value which controls the conclusion force of the hydraulic clutch of the driving force proportioning-control actuator 3 which is satisfied [with Step S36] of the driving force distribution processed at Step S34 or Step S35 is computed, and it outputs to the driving force proportioning-control actuator 3, and results in a return.

[0046] In addition, you may carry out processing which makes the value of front rear wheel **** zero (**Vn=0) compulsorily instead of processing of Step S26. Moreover, you may carry out processing which computes front rear wheel **** instead of processing of Step S26 so that the rate of driving force distribution of ******** may be reduced according to the fall of the degree of wheel speed like invention according to claim 5 (for example, **Vn=**Vn-1x(Vfn/Vfn-1) x predetermined coefficient 0.7). Moreover, you may carry out processing which subtracts a predetermined value from the value of front rear wheel **** used for the last calculation period like invention according to claim 6 instead of processing of Step S26 (for example, **Vn=**Vn-predetermined value 1 km/h).

[0047] Furthermore, it explains based on <u>drawing 5</u>. <u>Drawing 5</u> is the timing diagram view of the form of operation of the second of this invention. The conditions of illustration are the same as that of aforementioned <u>drawing 3</u> except b. Aging of front rear wheel **** which subtracted the degree Vf of wheel speed of a front wheel from the degree Vr of wheel speed of a rear wheel is shown in <u>drawing 5</u> b.

[0048] First, it is running in the state of a four-flower drive by the driving force distribution according to the load distribution which amended basic-load distribution of an order ring according to acceleration until an operator steps on an accelerator from the time of T11, vehicles depart and the vehicle speed reaches 15 km/h. Then, if the vehicle speed exceeds 15 km/h at the time of T12, although it will come to carry out processing considered as the driving force distribution according to front rear wheel ****, since front rear wheel **** has not arisen in fact as shown in drawing 5 a and b, it will be in a two-flower drive state. Then, if vehicles shift to the lower state of road surface coefficient of friction, the road surface reaction force limitation of a rear wheel falls and the driving force of a rear wheel exceeds the road surface reaction force limitation of a rear wheel at the time of T13, a rear wheel will generate an acceleration slip. Since the degree Vr of wheel speed of a rear wheel becomes large to the degree Vf of wheel speed of a front wheel at this time as shown in drawing 5 a, front rear wheel **** arises between the degree Vf of wheel speed of a front wheel, and the degree Vr of wheel speed of a rear wheel. Moreover, it is continued by updating the rate of driving force distribution of a front wheel maximum according to the value of front rear wheel **** by which renewal of maximum of the brake switch on which the accelerator switch shown in drawing $\underline{5}$ e is shown in ON and <u>drawing 5</u> f was carried out as processing which updates front rear wheel **** to maximum was performed for OFF as shown in drawing 5 b, and shown in drawing 5 c because it is controlled by driving force distribution of an order ring. Then, for the state of the accelerator switch ON and the brake switch OFF, although front rear wheel **** of the practice shown in drawing 5 a by reduction of the driving force of a rear wheel decreases, an acceleration slip of a rear wheel converges at the time of T14 and front rear wheel **** of practice is lost, as the value of front rear wheel **** used for the operation of driving force by maximum update process is shown in drawing 5 b, maximum continues being continued. Consequently, since the rate of driving force distribution of a front wheel is continued after having been updated by maximum, as shown in drawing 5 c, the rate of driving force distribution of a front wheel does not serve as zero. but can continue a four-flower drive state.

[0049] Then, an operator stops accelerator operation at the time of T15, and an accelerator switch is with OFF and a bird clapper. In order to judge that the driving force demand was lost, and to perform processing which reduces the value according to the vehicle speed based on the value of front rear wheel **** of the last data processing instead of being a maximum update process of front rear wheel ****, the fall of the vehicle speed -- ** -- the value of front rear wheel **** used

for both data processing becomes small, and approaches a two-flower drive state gradually Then, although it becomes the brake switch ON because an operator does brakes operation at the time of T16, since it has judged that the driving force demand was already lost by Accelerator OFF at the time of T15, the processing which reduces the value according to the vehicle speed based on the value of front rear wheel **** of the last data processing is continued.

[0050] Then, although the vehicle speed becomes 15 or less km/h again Since processing computed by carrying out [processing] renewal of maximum is not performed in order to judge that there is no driving force demand from the state of an accelerator switch and a brake switch Processing which chooses the driving force distribution with the larger driving force of ****** by the driving force distribution ratio computed according to the driving force distribution and load distribution which are computed by renewal of maximum being carried out is not performed, either. Processing only by the calculation value of the driving force distribution according to front rear wheel **** is continued, and it will be in a two-flower drive state gradually according to the vehicle speed. [0051] As explained above, in four-flower drive vehicles equipped with a driving force proportioningcontrol means, on the low mu road surface and bad road where an acceleration slip tends to occur frequently, the running-the-whole-distance nature in reservation and bad road of the stability of vehicles is securable, and only when required, a four-flower drive state can be continued by carrying out this invention. Moreover, by continuing a four-flower drive state, a leeway is given in the grip force of the main driving wheel, it becomes advantageous to vehicles stability, and repeating a twoflower drive state and a four-flower drive state frequently on a low mu road surface can prevent being avoided and making an operator sense the sense of incongruity by change of the acceleration of vehicles, or speed by things.

[0052] Moreover, Step S1 of data processing of <u>drawing 2</u> – Step S5 and Step S21 of data processing of <u>drawing 4</u> – Step S22 constitute the acceleration slip detection means of this invention. Moreover, Step S7 of data processing of <u>drawing 2</u> – Step S8 and Step S23 of data processing of <u>drawing 4</u> – Step S24 constitute the driving force demand judgment means of this invention. Moreover, Step S25 of step S9 of data processing of <u>drawing 2</u> and data processing of <u>drawing 4</u> constitutes the renewal means of ********* distribution maximum of this invention. Moreover, Step S10 of data processing of <u>drawing 2</u> constitutes the slip correspondence driving force distribution calculation means of this invention. Moreover, Step S3 of data processing of <u>drawing 2</u> constitutes the main driving wheel torque calculation means of this invention, and step S4 constitutes the road surface reaction force marginal torque calculation means of this invention. Moreover, Step S26 of data processing of <u>drawing 4</u> constitutes the ******** distribution reduction means of this invention. Moreover, Step S29 of data processing of <u>drawing 4</u> – Step S32 constitute the load correspondence driving force distribution calculation means of this invention. Moreover, the driving force proportioning—control actuator 3 of <u>drawing 1</u> constitutes the driving force adjustment means of this invention.

[0053] In addition, although it is made to compute the driving force distribution ratio of an order ring with the gestalt of the above-mentioned implementation, it is the same even if it computes the driving force transmitted to a road surface from the driving torque transmitted to ******** instead of or *******. [calculation of a driving force distribution ratio]

[0054] In addition, with the gestalt of the above-mentioned implementation, although the load correspondence driving force distribution calculation means explained the case where an order load distribution ratio was made into a driving force distribution ratio, you may process it so that it may consider as fixed driving force distribution (50% of for example, 50% [of front wheels] : rear wheels) according to load distribution, before and after being also alike other than this.

[0055] In addition, although the gestalt of the above-mentioned implementation explained the case where accelerator operation and brakes operation were combined, as a driving force demand judgment means, either [one] accelerator operation or brakes operation are sufficient. Since it is detectable whether there is any demand of an operator's driving force to have combined them more

[0056] In addition, although the gestalt of the above-mentioned implementation explained the vehicles in which a four-flower drive is possible on the basis of the two-flower drive which usually drives a rear wheel, it is applicable, even if it is other gestalten, if it is the vehicles which can control driving force distribution and in which a four-flower drive is possible. Moreover, it is applicable also to the vehicles which drive one side of an order ring with an internal combustion engine, for example, and drive another side of an order ring with a motor also except the vehicles which distribute the output of an internal combustion engine like the gestalt of the above-mentioned implementation forward and backward, and in which a four-flower drive is possible and in which a four-flower drive is possible, and the vehicles which are driven with an internal combustion engine or a motor with separate front wheel and rear wheel and in which a four-flower drive is possible [0057] In addition, although not explained, driving force distribution is not further cared about with the form of the above-mentioned implementation as for a method of an amendment combining well-known technology (for example, well-known technology for preventing a tight braking phenomenon) etc. based on this invention.

[Translation done.]

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

- [Drawing 1] It is drawing showing the whole gestalt composition of operation of this invention.
- [Drawing 2] It is the control flow chart view of the gestalt of operation of the first of this invention.
- [Drawing 3] It is the timing diagram view of the gestalt of operation of the first of this invention.
- [Drawing 4] It is the control flow chart view of the gestalt of operation of the second of this invention.

[Drawing 5] It is the timing diagram view of the gestalt of operation of the second of this invention. [Description of Notations]

- 1: Engine
- 3: Driving force proportioning-control actuator
- 11: Driving force proportioning-control controller
- 12FR(s), 12floor line, 12RR, 12RL: The degree sensor of wheel speed
- 13: Accelerator switch
- 14: Brake switch

[Translation done.]

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出意公問番号 特開2003-25861

(P2003-25861A) (43)公開日 平成15年1月29日(2003.1.29)

(51) Int.CL'

超別配号

FΙ

テーマコード(参考)

B60K 17/35

B60K 17/35

B 3D043

密査部求 未請求 語求項の録!! OL (全 !! 頁)

(21)出贷番号

(22)出頭日

特章2001-213666(P2001-213666)

平成13年7月13日(2001.7.13)

(71)出旗人 000003997

日盛自勁阜族式会社

神奈川県横浜市神奈川区宝町2番地

(72) 発明者 鈴木 英俊

神奈川県横浜市神奈川区宝叮2番地 日産

自動車株式会社内

Fターム(参考) 3D043 AA01 AB17 EA02 EA18 EA34

EA42 EB13 EE06 EE07 EE09

EF14 EF19 EF24 EF27

(54) 【発明の名称】 4 蛤駆励車両の駆動力制御装置

(57)【要約】

【目的】 主駆動輪の加速スリップ量に応じて前後輪への駆動力配分を制御する4輪駆動車両の駆動力制御装置において、必要な時のみに4輪駆動状態を継続できる4輪駆動車両の駆動力制御装置を提供すること。

【構成】 選転者が駆動力の要求をしている場合は、従駆動輪の駆動力配分率が最大値更新される値に駆動力配分を調整し、選転者が駆動力の要求をしていない場合は、実際の主駆動輪の加速スリップ量に応じて駆動力配分を調整する構成とした。

【特許請求の範囲】

【請求項1】 前後輪の一方である主駆動輪と、前後輪 の他方である従駆動輪と、主駆動輪の加速スリップ量を 検出するスリップ検出手段と、運転者が駆動力の要求を しているか否かを判断する駆動力要求判断手段と、駆動 力要求判断手段で運転者が駆動力の要求をしていると判 断する場合には、スリップ倹出手段で検出した主駆動輪 の加速スリップ量に基づき従駆動輪の駆動力配分率を最 大値に更新するように前後輪の駆動力配分比を算出する 従駆動力配分最大値更新手段と、駆動力要求判断手段で **運転者が駆動力の要求をしていないと判断する場合に** は、実際の主駆動輪の加速スリップ量に応じた前後輪の 駆動力配分比を算出するスリップ対応駆動力配分算出手 段と、従駆動力配分最大値更新手段またはスリップ対応 駆動力配分算出手段で算出された前後輪の駆動力配分比 になるように前輪と後輪との駆動力を可変に調整する駆 動力調整手段とを備えたことを特徴とする4輪駆動車両 の駆動力制御装置。

【請求項2】 上記従駆動力配分最大値更新手段は、主 駆動輪の加速スリップ量を最大値更新することを特徴と する論求項1に記載した4輪駆動車両の駆動力制御装

【請求項3】 前後輪の一方である主駆動輪と、前後輪 の他方である従駆動輪と、主駆動輪の加速スリップ量を 検出するスリップ検出手段と、運転者が駆動力の要求を しているか否かを判断する駆動力要求判断手段と、駆動 力要求判断手段で運転者が駆動力の要求をしていると判 断する場合には、スリップ倹出手段で検出した主駆動輪 の加速スリップ量に基づき従駆動輪の駆動力配分率を最 大値に更新するように前後輪の駆動力配分比を算出する 従駆動力配分最大値更新手段と、駆動力要求判断手段で **逼転者が驱動力の要求をしていないと判断する場合に** は、従駆動輪の駆動力配分率を低減またはゼロとなるよ うに前後輪の駆動力配分比を算出する従駆動力配分低減 手段と、従駆動力配分最大値更新手段または従駆動力配 分低減手段で算出された前後輪の駆動力配分比になるよ うに前輪と後輪との駆動力を可変に調整する駆動力調整 手段とを備えたことを特徴とする4輪駆動車両の駆動力 制御装置。

【請求項4】 車体速度を検出する車体速検出手段を備 え、上記従駆動力配分低減手段は、車体速度の低下に応 じて、従駆動輪の駆動力配分率が低減される前後輪の駆 動力配分比とすることを特徴とする請求項3に記載した 4輪駆動車両の駆動力制御装置。

【請求項5】 車輪速度を検出する車輪速検出手段を備 え、上記従駆動力配分低減手段は、車輪速度の低下に応 じて、従駆動輪の駆動力配分率が低減される前後輪の駆 動力配分比とすることを特徴とする請求項3に記載した 4輪駆動車両の駆動力制御装置。

【請求項6】 上記従駆動力配分低減手段は、時間の経 50

過に応じて、従駆動輪の駆動力配分率が低減される前後 輪の駆動力配分比とすることを特徴とする請求項3に記 裁した4輪駆動車両の駆動力制御装置。

【請求項7】 車輪速度を検出する車輪速検出手段を値 え、上記スリップ検出手段は、前後輪の速度差から加速 スリップ量を求めることを特徴とする請求項1から6ま でのいずれかに記載した4輪駆動車両の駆動力制御装

【請求項8】 主駆動輪に伝達される駆動トルクを算出 する主駆動輪トルク算出手段と、主駆動輪の路面反力限 界トルクを算出する路面反力限界トルク算出手段とを値 え、上記スリップ検出手段は、主駆動輪に伝達される駆 動トルクと主駆動輪の路面反力限界トルクとの差から加 速スリップ量を求めることを特徴とする請求項1から6 までのいずれかに記試した4輪駆動車両の駆動力制御装 置。

【論求項9】 プレーキ操作をしているか否かを検出す るプレーキ操作領出手段を備え、上記駆動力要求判断手 段は、ブレーキ操作していることを検出した場合には運 転者が駆動力の要求をしていないと判断し、ブレーキ操 作していないことを検出した場合には運転者が駆動力の 要求をしていると判断することを特徴とする請求項1か ち8のいずれかに記載した4輪駆動車両の駆動力制御装

【請求項10】 アクセル操作をしているか否かを検出 するアクセル操作検出手段を備え、上記駆動力要求判断 手段は、アクセル操作していることを検出した場合には **運転者が駆動力の要求をしていると判断し、アクセル操** 作していないことを検出した場合には運転者が駆動力の 要求をしていないと判断することを特徴とする請求項1 から9のいずれかに記載した4輪駆動車両の駆動力制御 装置。

【請求項11】 車体速度を検出する車体速検出手段 と、前後輪の荷重配分に応じて前後輪の駆動力配分比を 算出する荷重対応駆動力配分算出手段とを備え、所定の 車連以下でかつ従駆動力配分最大値更新手段で駆動力配 分比の算出処理を行なっている場合には、従駆動力配分 最大値更新手段で算出した駆動力配分比と、荷重対応駆 動力配分算出手段が算出する驱動力配分比とで、従駆動 輪の駆動力が大きい方の駆動力配分比を選択し、選択さ れた前後輪の駆動力配分比になるように前輪と後輪との 駆動力を可変に調整することを特徴とする請求項1から 10のいずれかに記載した4輪駆動車両の駆動力制御装 晋.

【発明の詳細な説明】

[0001]

【発明の周する技術分野】本発明は、4輪駆動車両の駆 動力制御装置に関する。

[0002]

【従来の技術】従来の4輪駆動車両の駆動力制御装置と

...

しては、例えば、特別平7-172204号公報に記載されているような技術が知られている。

【0003】上記公報によれば、4輪駆動車両の駆動力制御装置は、車輪速度センサによって各車輪の車輪速度を検出し、前輪と後輪との車輪速度差(以下、前後輪速差ともいう)。およびその変化率を求め、車輪速度差およびその変化率に応じて前後輪の駆動力配分を設定するようになっていた。すなわち、主駆動輪である後輪が加速スリップし、前後輪速差が生じる時にのみ、4輪駆動状態になるようになっていた。

[0004]

【発明が解決しようとする課題】しかしながら、このような従来の4輪駆動車両の駆動力制御装置は、前後輪速差が生じなければ4輪駆動状態にならないため、滑りやすい低μ器面や悪路を走行する場合は、走行安定性や走破性を確保する上で4輪駆動状態を継続して走行したい時に、それができないという問題があった。また、従来の4輪駆動車両の駆動力制御装置は、4輪駆動状態の時には主駆動輪はスリップ状態であるため、主駆動輪はグリップ力に余裕がなく車両安定性を考えると好ましくなり。またさらには、従来の4輪駆動車両の駆動力制御装置は、低μ器面で頻繁に2輪駆動状態と4輪駆動状態と6繰り返す場合も考えられ、その場合、4輪駆動状態時のメカニカルロスや電気的ロスによる車両の加速度や速度の変動により、運転者に違和感を感じさせる関もあった。

【0005】本発明は、このような従来の問題点に着目してなされたもので、必要な時のみに4輪駆動状態を継続して走行できる4輪駆動車両の駆動力制御装置を提供することを目的としている。

[0006]

【課題を解決するための手段】上記問題を解決するため に、請求項1に係る4輪駆動車両の駆動力制御装置は、 前後輪の一方である主駆動輪と、前後輪の他方である従 駆動輪と、主駆動輪の加速スリップ量を検出するスリッ ブ倹出手段と、道転者が駆動力の要求をしているか否か を判断する駆動力要求判断手段と、駆動力要求判断手段 で運転者が駆動力の要求をしていると判断する場合に は、スリップ検出手段で検出した主駆動輪の加速スリッ プ量に基づき従駆動輪の駆動力配分率を最大値に更新す るように前後輪の駆動力配分比を算出する従駆動力配分 最大値更新手段と、駆動力要求判断手段で運転者が駆動 力の要求をしていないと判断する場合には、実際の主駆 動輪の加速スリップ量に応じた前後輪の駆動力配分比を 算出するスリップ対応駆動力配分算出手段と、従駆動力 配分最大値更新手段またはスリップ対応駆動力配分算出 手段で算出された前後輪の駆動力配分比になるように前 輪と後輪との駆動力を可変に調整する駆動力調整手段と を備えたことを特徴とした。

【りりり7】また、請求項2に係る4輪駆動車両の駆動

力制御装置は、請求項1 に記載した4輪駆動車両の駆動力制御装置において、従駆動力配分最大値更新手段は、主駆動輪の加速スリップ量を最大値更新することを特徴とした。

【0008】また、請求項3に係る4輪駆動車両の駆動 力制御装置は、前後輪の一方である主駆動輪と、前後輪 の他方である従駆動輪と、主駆動輪の加速スリップ量を 検出するスリップ検出手段と、運転者が駆動力の要求を しているか否かを判断する駆動力要求判断手段と、駆動 力要求判断手段で運転者が駆動力の要求をしていると判 断する場合には、スリップ検出手段で検出した主駆動輪 の加速スリップ量に基づき従駆動輪の駆動力配分率を最 大値に更新するように前後輪の駆動力配分比を算出する 従駆助力配分最大値更新手段と、駆動力要求判断手段で **逼転者が駆動力の要求をしていないと判断する場合に** は、従駆動輪の駆動力配分率を低減またはゼロとなるよ うに前後輪の駆動力配分比を算出する従駆動力配分低減 手段と、従駆動力配分最大値更新手段または従駆動力配 分低減手段で算出された前後輪の駆動力配分比になるよ うに前輪と後輪との駆動力を可変に調整する駆動力調整 手段とを備えたことを特徴とした。

【0009】また、請求項4に係る4輪駆動車両の駆動力制御装置は、請求項3に記載した4輪駆動車両の駆動力制御装置において、車体速度を検出する車体連検出手段を備え、従駆動力配分低減手段は、車体速度の低下に応じて、従駆動輪の駆動力配分率が低減される前後輪の駆動力配分比とすることを特徴とした。

【0010】また、請求項5に係る4輪駆動車両の駆動力制御装置は、請求項3に記載した4輪駆動車両の駆動力制御装置において、車輪速度を検出する車輪速検出手段を備え、従駆動力配分低減手段は、車輪速度の低下に応じて、従駆動輪の駆動力配分率が低減される前後輪の駆動力配分比とすることを特徴とした。

【0011】また、請求項6に係る4輪駆動車両の駆動力制御装置は、請求項3に記載した4輪駆動車両の駆動力制御装置において、従駆助力配分低減手段は、時間の経過に応じて、従駆動輪の駆動力配分率が低減される前後輪の駆動力配分比とすることを特徴とした。

[0012]また、請求項7に係る4輪駆動車両の駆動力制御装置は、請求項1から6までのいずれかに記載した4輪駆動車両の駆動力制御装置において、車輪速度を検出する車輪速検出手段を備え、スリップ検出手段は、前後輪の速度差から加速スリップ量を求めることを特徴とした。

【0013】また、請求項8に係る4輪駆動車両の駆動力制御装置は、請求項1から6までのいずれかに記載した4輪駆動車両の駆動力制御装置において、主駆動輪に伝達される駆動トルクを算出する主駆動輪トルク算出手段と、主駆動輪の路面反力限界トルクを算出する路面反力限界トルク算出手段とを備え、上記スリップ後出手段

4

は、主駆動輪に伝達される駆動トルクと主駆動輪の路面 反力限界トルクとの差から加速スリップ母を求めること を特徴とした。

【0014】また、諸求項9に係る4輪駆動車両の駆動力制御装置は、請求項1から8のいずれかに記載した4輪駆動車両の駆動力制御装置において、ブレーキ操作をしているか否かを検出するブレーキ操作検出手段を値え、駆動力要求判断手段は、ブレーキ操作していることを検出した場合には運転者が駆動力の要求をしていないと判断し、ブレーキ操作していないことを検出した場合には運転者が駆動力の要求をしていると判断することを特徴とした。

【①①15】また、請求項10に係る4輪駆動車両の駆動力制御装置は、請求項1から9のいずれかに記載した4輪駆動車両の駆動力制御装置において、アクセル操作をしているか否かを検出するアクセル操作検出手段を備え、駆動力要求判断手段は、アクセル操作していることを検出した場合には運転者が駆動力の要求をしていると判断し、アクセル操作していないことを検出した場合には運転者が駆動力の要求をしているとも関係していないと判断することを20特徴とした。

【0016】また、請求項11に係る4輪駆動車両の駆動力制御装置は、請求項1から10のいずれかに記載した4輪駆動車両の駆動力制御装置において、車体速度を検出する車体速検出手段と、前後輪の勘章配分に応じて前後輪の駆動力配分比を算出する荷重対応駆動力配分詳出手段とを備え、所定の車速以下でかつ従駆動力配分异出手段で駆動力配分最大値更新手段で駆動力配分比の算出処理を行なっている場合には、従駆動力配分最大値更新手段で算出した駆動力配分比と、荷重対応駆動力配分算出手段が算出する駆動力配分比とで、従駆動輪の駆動力が大きい方の駆動力配分比を選択し、選択された前後輪の駆動力配分比になるように前輪と後輪との駆動力を可変に調整することを特徴とした。

[0017]

【発明の効果】論求項1に係る発明によれば、遵転者が駆動力の要求をしていると判断する場合には、主駆動論の加速スリップ量に基づき従駆動論の駆動力配分率を最大値に更新するように前後輪の駆動力配分比を算出し、運転者が駆動力の要求をしていないと判断する場合には、実際の主駆動論の加速スリップ量に応じた前後輪の駆動力配分比を算出し、算出された前後輪の駆動力配分比になるように前輪と後輪との駆動力を可変調整するので、主駆動輪に発生した加速スリップが収束しても、運転者が駆動力の要求をしていると判断する間は4輪駆動状態を維続するため、低μ路面での車両の安定性の確保や悪路での走破性の確保をすることができるという効果が得られる。また、4輪駆動状態を継続することによって、主駆動輪のグリップ力に余裕ができて車両安定性に有利となるし、低μ路面で頻繁に2輪駆動状態と4輪駆50

動状態とを繰り返すことが選けられことで、車両の加速 度や速度の変動による追和感を運転者に感じさせること を防ぐことができる。更に、運転者が駆動力の要求をし ていないと判断したら実際の主駆動輪の加速スリップ量 に応じた前後輪の駆動力配分比とするため、必要以上に 4輪駆動状態を継続することがないという効果が得られ る。

[0018]また、請求項2に係る発明によれば、主駆動輪の加速スリップ量を最大値更新するので、最大値に更新された主駆動輪の加速スリップ量に応じて前後輪の駆動力配分比を算出され、結果的に従駆動輪の駆動力配分率を最大値に更新するように前後輪の駆動力配分比を算出することと同じとなり、確実に従駆動輪の駆動力配分率を最大値に更新することができるという効果が得られる。

【0019】また、請求項3に係る発明によれば、運転 者が駆動力の要求をしていると判断する場合には、主駆 動輪の加速スリップ量に基づき従駆動輪の駆動力配分率 を最大値に更新するように前後輪の駆動力配分比を算出 し、道転者が駆動力の要求をしていないと判断する場合 には、従駆動輪の駆動力配分率を低減またはゼロとなる ように前後輪の駆動力配分比を算出し、算出された前後 輪の駆動力配分比になるように前輪と後輪との駆動力を 可変調整するので、主駆動輪に発生した加速スリップが 収束しても、道転者の駆動力の要求が無くなったと判断 するまでは4輪駆動状態を継続するため、低μ路面での 車両の安定性の確保や悪路での走破性の確保をすること ができるという効果が得られる。また、4輪駆動状態を 継続することによって、主駆動輪のグリップ力に余裕が できて車両安定性に有利となるし、低 μ 路面で頻繁に 2 輪駆動状態と4輪駆動状態とを繰り返すことが避けられ ことで、車両の加速度や速度の変動による追和感を運転 者に感じさせることを防ぐことができる。更に、運転者 が駆動力の要求をしていないと判断したら従駆動輪の駆 動力配分率を低減することで必要以上に従駆動輪の駆動 力をかけることを防いだり、または従駆動輪の駆動力配 分率をゼロすなわち2輪駆動状態にすることで、必要以 上に4輪駆動状態を継続することがないという効果が得 られる。

) 【① 0 2 0 】また、請求項4 に係る発明によれば、選転者が駆動力の要求をしていないと判断する場合、車体速度の低下に応じて、従駆動輪の駆動力配分率を低減するので、徐々に2 輪駆動状態にすることで、急激な主駆動輪の駆動力変化による車両安定性の悪化を防ぐことができるという効果が得られる。

【0021】また、請求項5に係る発明によれば、運転者が駆動力の要求をしていないと判断する場合。車輪速度の低下に応じて、従駆動輪の駆動力配分率を低減するので、徐ヶに2輪駆動状態にすることで、急激な主駆動輪の駆動力変化による車両安定性の悪化を防ぐことがで

きるという効果が得られる。

【0022】また、請求項6に係る発明によれば、運転 者が駆動力の要求をしていないと判断する場合、時間の 経過に応じて、従駆動輪の駆動力配分率を低減するた め、徐々に2輪駆動状態になることで、急激な主駆動輪 の駆動力変化による車両安定性の悪化を防ぐことができ るという効果が得られる。

【10023】また、請求項7に係る発明によれば、前後 輪の速度差から加速スリップ量を求めるので、確実に加 速スリップ量が求められるという効果が得られる。

【0024】また、請求項8に係る発明によれば、主駆 動輪に伝達される駆動トルクと主駆動輪の路面反力限界 トルクとの差から加速スリップ量を求めるので、前後輪 の速度差が微少やゼロであっても、加速スリップ量が求 められるという効果が得られる。

【0025】また、請求項9に係る発明によれば、ブレ ーキ操作していることを検出した場合には運転者が駆動 力の要求をしていないと判断し、プレーキ操作していな いことを検出した場合には道転者が駆動力の要求をして いると判断するので、確実に運転者が駆動力の要求をし 20 ているか否かを検出できるという効果が得られる。ま た。 請求項10に係る発明によれば、アクセル操作して いることを検出した場合には運転者が駆動力の要求をし ていると判断し、アクセル操作していないことを検出し た場合には運転者が駆動力の要求をしていないと判断す るので、確実に運転者が駆動力の要求をしているか否か を検出できるという効果が得られる。

【0026】また、請求項11に係る発明によれば、所 定の車速以下でかつ従駆動力配分最大値更新手段で駆動 力配分比の算出処理を行なっている場合には、従駆動力 30 配分最大値更新手段で算出した駆動力配分比と、荷重対 応駆動力配分算出手段が算出する駆動力配分比とで、従 駆動輪の駆動力が大きい方の駆動力配分比を選択し、選 択された前後輪の駆動力配分比になるように前輪と後輪 との駆動力を可変に調整するので、発進前の加速スリッ プが生じていない時でも前後荷重による駆動力配分が選 択され最初から4輪駆動状態とすることで、特に加速ス リップの発生しやすい発進時には、加速スリップが発生 してから4輪駆動状態にするよりも、発進時の加速性や 車両の安定性に優れ、かつ必要以上に4輪駆動状態を継 続しないという効果が得られる。

[0027]

【発明の実施の形態】まず、本発明の第一の実施の形態 を図面に基づいて説明する。図1は本発明の実施の形態 の全体構成を示す図である。また、本実施の形態は、通 **富は役輪を駆動する2輪駆動を基本に4輪駆動可能な車** 両について説明する。

【0028】図中、4輪駆動車両のエンジン1の出力 は、トランスミッション2を介して駆動力配分制御アク チュエータ3で前後輪の駆動力配分を行い、フロントプ 50

ロベラシャフト4とリヤブロペラシャフト5に伝達す る。フロントプロペラシャフト4に伝達された駆動力は フロントデフ6と前約7とを介して右前輪10FR, 左 前輪10FLに伝達される。同様に、リヤプロペラシャ フト5に伝達された駆動力はリヤデフ8と後勤9とを介 して右後輪10尺尺,左後輪10尺上に伝達される。 【0029】車両の各車輪10FR、10FL、10R R、10RLには車輪速度センサ12FR、12FL、 12RR、12RLが備えられ、それぞれの検出値を駆 10 動力配分制御コントローラ11へ出力する。また、駆動 力配分制御アクチュエータ3は、例えばトランスミッシ ョン2とフロントプロペラシャフト4との間に油圧クラ ッチを介している。なお、油圧クラッチの替りに電磁ク ラッチであっても構わない。

【0030】また、運転者の駆動力要求を検出する、す なわちアクセル操作の有無を検出するためのアクセルス イッチ13と、ブレーキ操作の有無を検出するプレーキ スイッチ14とは、それぞれの検出値を駆動力配分制御 コントローラ11へ出力する。なお、アクセルスイッチ 13の替りにアクセル開度の状態を検出するためのアク セル開度センサを用いても構わないし、ブレーキスイッ チ14の替りにプレーキペダルストローク量を検出する ためのブレーキストロークセンサを用いても構わない。 【0031】また、エンジン1の回転数を検出するエン ジン回転数センサ15を備え、エンジン回転数センサ1 5は検出した検出値を駆動力配分制御コントローラ11 へ出力する。また、エンジン1の吸気管路のスロットル バルブには、スロットルバルブの開度を検出するスロッ トル開度センサ16を備え、スロットル開度センサ16 は検出した検出値を駆動力配分制御コントローラ 11へ 出力する。

【0032】また、駆動力配分制御コントローラ11 は、各センサの検出値を入力し、主駆動輪の加速スリッ プ量を算出する。まず、車輪速度センサ12FR、12 FL、12RR、12RLの検出値とエンジン回転数セ ンサ15の検出値とスロットル開度センサ16の検出値 を入力し、主駆動輪の伝達トルクと主駆動輪の加速トル クとを求め、それらから加速スリップ量である路面反力 トルクを算出する。そして、例えば通常は前後輪の駆動 力配分比率が前輪()%:後輪1()()%の状態から、路面 反カトルクに応じて駆動力配分を算出し駆動力配分制御 アクチュエータ3へ指令値を出力し、駆動力配分制御ア クチュエータ3は油圧クラッチの締結力を制御すること で前後輪の駆動力配分を制御する。

【0033】次に、図2に基づいて駆動力配分制御コン トローラ11の制御処理について説明する。図2は本発 明の第一の実施の形態の制御処理の概要を示すフローチ ャート図である。この演算処理は、例えば所定時間1() msec毎に実行される。

【()()34】まず、ステップS1にて駆動力配分制御コ

10

ントローラ11は、車輪速度センサ12FR,12FL、12RR、12RLの各検出値とエンジン回転数センサ15の検出値とスロットル閉度センサ16の検出値とを入力しステップS2では、入力した車輪速度センサ12RR、12RLの各検出値を基に主駆動輪の車輪加速度を求め、左右輪の平均値を主駆動輪の車輪加速度Afとして算出し、ステップS3へ移行する。

【0035】ステップS3では、エンジン回転数センサ 15の検出値とスロットル開度センサ16の検出値とか ちエンジン出力トルクTe を求め、エンジン出力トルク Teとトルクコンバータの増幅比を含めた変速機のギヤ 比Gと主駆動輪の駆動力配分率Kfとを乗じて主駆動輪 の伝達トルクTェを算出し、ステップS4へ移行する。 ステップS4では、主駆動輪の駆動系イナーシャ(ギヤ 比含む)と主駆動輪の車輪加速度Afとを乗じて主駆動 輪の加速トルクT」『すなわち路面反力限界トルクを算 出し、ステップS5へ移行する。ステップS5では、主 駆動輪の伝達トルクTェから主駆動輪の加速トルクTェ fを減じて余剰トルクTLを算出し、ステップS6へ移 20 行する。ステップ6では、余別トルクTLが大きいほど 従駆動輪の駆動力配分率が大きくなるように、余剰トル クTLに応じて駆動力配分Dを算出し、ステップS7へ 移行する。

【0036】ステップS7では、ブレーキスイッチ14 の検出値を入力してブレーキ操作がされているか否かを 判断する。ブレーキスイッチ14がOFFすなわちブレ ーキ操作がされていないと判断した場合には、ステップ S8へ移行し、プレーキスイッチ14がONすなわちブ レーキ操作がされていると判断した場合には、ステップ S10へ移行する。ステップS8では、アクセルスイッ チ13の検出値を入力してアクセル操作しているか否か を判断する。アクセルスイッチ13が0Nすなわちアク セル操作していると判断した場合には、ステップS9へ 移行し、アクセルスイッチ13がOFFすなわちアクセ ル操作していないと判断した場合には、ステップ510 へ移行する。そして、ステップ S 9 にて、前回の計算周 期時に算出した駆動力配分より今回の計算周期時に算出 した駆動力配分の方が、従駆動輪の駆動力配分率が大き い場合は今回の値(最大値)に更新し、前回の値の方が 大きい場合は前回の値(最大値)を今回の計算周期に用 いる値とする最大値更新処理を行い、ステップS11へ 移行する。また、ステップS10では、今回の計算周期 時に算出した駆動力配分の値をそのまま用いるように設 定して、ステップS11へ移行する。ステップS11で は、ステップS9またはステップS10で処理した駆動 力配分の値を満足する駆動力配分制御アクチュエータ3 の油圧クラッチの締結力を制御する指令値を算出し、駆 動力配分制御アクチュエータ3へ出力し、リターンに至

【0037】なお、ステップS6の処理では、余剰トルクに応じて駆動力配分Dを算出しているが、余剰トルクと車輪の回転半径とから余剰反力を算出し、余剰反力に応じて駆動力配分Dを算出する処理としても構わない。【0038】更に図3に基づいて説明する。図3は本発明の第一の実施の形態のタイムチャート図である。ここで、図38には前輪の車輪速度Vf、後輪の車輪速度Vrの各程時変化を、同図cには前輪の駆動力配分率の程時変化を、同図はにはタイヤと路面との摩擦係数の経時変化を、同図とにはアクセルスイッチ後出値の経時変化を示している。

【りり39】まず、T1の時点から運転者がアクセルを 踏み車両が発進し、図3bの実根に示すように後輪の伝 達トルクが上昇し、破線に示す後輪の路面反力限界トル クを越えると役輪は加速スリップを発生することとな り、図3aに示すように役輪の車輪速度Vrは前輪の車 輪速度Vfに対し大きくなる。また、図3 e に示すアク セルスイッチはON、図3fに示すプレーキスイッチは OFFのため、駆動力配分は前輪への配分率が最大値に 更新されるように処理が行われる。その後、T2の時点 を越えると、図3トに示す後輪伝達トルクと路面反力限 界トルクとの差が小さくなっていくが、アクセルスイッ チONかつブレーキスイッチOFFの間は最大値更新処 理によって図3cに示すように前輪の駆動力配分率は最 大値が継続され続ける。その後、T3の時点で、後輪の 加速スリップが収束して、役輪伝達トルクと路面反力限 界トルクとの差がなくなるが、アクセルスイッチ〇Nか つブレーキスイッチOFFの状態のため、そのまま最大 値更新処理を継続されることで駆動力配分が継続され、 図3 cに示すように前輪の駆動力配分率は最大値が継続 され続け、4輪駆動状態を継続することができる。その 後、T4の時点で路面摩擦係数のより低い状態に車両が 移行し、後輪の路面反力限界トルクが低下するが4輪駆 動状態を継続しているので後輪の伝達トルクは路面反力 限界トルクを超えず、後輪が再び加速スリップを発生す ることはない。

【0040】その後、T5の時点で、運転者がアクセル 操作を止め、アクセルスイッチはOFFとなることで、 駆動力要求がなくなったと判断し、最大値更新処理を止め、実際の後輪伝達トルクと路面反力限界トルクとの差 に応じて算出した駆動力配分の値とする処理を行う。しかし、この場合は実際には後輪伝達トルクと路面反力限 界トルクとの差が生じていないので前輪の駆動力配分率 がゼロとなる駆動力配分となるため、結果的には2輪驱動状態となる。その後、T6の時点で、運転者がプレー キ操作することで、ブレーキスイッチONとなるが、す でにT5の時点でアクセルOFFによって駆動力要求が なくなったと判断しているため、実際の後輪伝達トルク

11

と略面反力限界トルクとの差に応じて算出した駆動力配分の値とする処理を継続する。なお、駆動力要求がないと判断した場合には、最大値更新処理をしないことで、すなわち実際の後輪伝達トルクと路面反力限界トルクとの差から求める駆動力配分の値とすることで、例えば過到なアクセル〇N操作により後輪の加速スリップが大きく、駆動力要求がないと判断された後に求だ倍性によって後輪伝達トルクと路面反力限界トルクとの差に応じて4輪駆動状態が継続されるため、急激に2輪駆動状態に切り替わることがなく、車両の安定性の確保に優れる。

【0041】次に、本発明の第二の実施の形態について 説明する。全体構成は第一の実施の形態の図1と同様で あるが、駆動力配分制御コントローラ11で実行する主 駆動輪の加速スリップ量の算出するための構成と、従駆 動輪の駆動力配分率が最大値更新されるように処理する ための構成と、運転者の駆動力要求がない場合の処理の 構成と、所定の車速以下の場合に駆動力配分を算出する ための構成が異なる。

【10042】主駆動輪の加速スリップ量の算出するため の構成は、車輪速度センサ12FR、12FL、12R R. 12 R Lの検出値を入力し、左右前輪と左右後輪と のそれぞれの平均値を求め、前輪平均値と後輪平均値と の差である前役輪回転速度差(前後輪速差)を加速スリ ップ量として算出するようになっている。また、従駆動 輪の駆動力配分率が最大値更新されるように処理するた めの構成は、加速スリップ量として算出した前後輪速差 を最大値更新し、その最大値更新した前後輪速差に応じ て駆動力配分を算出するようになっている。また、運転 者の駆動力要求がない場合の処理の構成は、運転者の駆 動力要求がない場合は、車体速度の低下に応じて従駆動 輪の駆動力配分率が低減するように駆動力配分を算出す るようになっている。また、所定の車連以下の場合に駆 動力配分を算出するための構成は、所定の車速以下の場 台は別の駆動力配分算出手段を併行して設け、それで算 出する駆動力配分の値と加速スリップ量に基づいて算出 する駆動力配分の値とを比較し、従駆動輪の駆動力配分 率が大きい方の駆動力配分の値を選択するようになって いる。また、駆動力配分制御コントローラ11は、入力 した車輪速度に基づいて車体速度を算出している。

【0043】次に、図4に基づいて駆動力配分制御コントローラ11の制御処理について説明する。図4は本発明の第二の実施の形態の制御処理の概要を示すフローチャート図である。この演算処理は、図2の演算処理と同様に同じ所定時間10msec毎に実行される。

【0044】まず、ステップS21にて駆動力配分制御コントローラ11は、車輪速度センサ12FR、12FL、12RR、12RLの各検出値を入力し、車輪速度を基に車体速度Vcarnを求め、ステップS22へ移行

する。ステップS22では、ステップS21で入力した 各車輪速度を基に左右前輪の平均値と左右後輪の平均値 とを求めてから、主駆動輪である後輪の平均値から従駆 動輪である前輪の平均値を減算して前後輪速差△Ⅴnを 算出し、ステップS23へ移行する。ステップS23で は、プレーキスイッチ14の検出値を入力してプレーキ 操作がされているか否かを判断する。プレーキスイッチ 14がOFF すなわちブレーキ操作がされていないと判 断した場合には、ステップS24へ移行し、ブレーキス イッチ14がONすなわちブレーキ操作がされていると 判断した場合には、ステップS26へ移行する。ステッ プS24では、アクセルスイッチ13の検出値を入力し てアクセル操作しているか否かを判断する。アクセルス イッチ13がONすなわちアクセル操作していると判断 した場合には、ステップS25へ移行し、アクセルスイ ッチ13がOFFすなわちアクセル操作していないと判 断した場合には、ステップS26へ移行する。そして、 ステップS25にて、前回の計算周期時に算出した前後 輪速差△Vn-1よりも今回の計算周期時に算出した前後 輪速差△Vnが大きい場合は今回の値(最大値)に更新 し、前回の値の方が大きい場合は前回の値(最大値)を 今回の計算周期に用いる値とする処理をする、すなわち 駆動力配分を算出するための前後輪速差△Vnの値を最 大値に更新処理された値とするように処理をし、フラグ を1にセットして、ステップS27へ移行する。また、 ステップS26では、前回の計算周期の時に駆動力配分 の算出に用いた前後輸速差の値△Vn-1に、今回の計算 周期で求められた車体速度 V carn を前回の計算周期で 求められた車体速度Vcarn-1で除した値と所定の係数 0.7とを乗じた値を駆動力配分の算出に用いる前後輪 速差の値AVnとする処理をする、すなわら駆動力配分 を算出するための前後輪速差の値を車体速度に応じて低 減する処理をし、フラグをりにセットして、ステップS 27へ移行する。ステップS27では、例えば特開平1 -94025号公報の第8図のように加速スリップ量が 増加するにつれ従駆動輪の駆動力配分率が大きくなるよ うな特性となる演算式やマップから、ステップS25や ステップS26で処理された前後輪速差△Vnの値に応 じて前後輪の駆動力配分D1を算出し、ステップS28 へ移行する。

【0045】ステップS28では、車体速度Vcarnが所定の車速15km/h以下であるか否かを判断し、所定の車速以下の場合はステップS29へ移行し、所定の車速より大きい場合はステップS30へ移行する。ステップS29では、車体速度の変化率すなわち加減速度を算出し、ステップS31へ移行する。ステップS31では、事前に車両諸元から求まる前後輪の基本荷重配分比を車両の加減速度に応じて補正し、ステップS32へ移行する。すなわちステップS31では、加速時は後輪の50荷量配分が増加し、減速時は前輪への荷量配分が増加す

るので、荷重配分の変化量を補正することを行ってい る。ステップS32では、荷重配分に応じて駆動力配分 D2を算出する。例えば、基本荷重配分比が前輪50 %: 後輪50%の車両が加速により荷重移動し、前輪4 0%:後輪60%になっている場合。駆動力配分を前輪 40%: 後輪60%とし、ステップ533へ移行する。 ここで、ステップS27とステップS32とは、それぞ れ別々の算出方法により駆動力配分を算出している。ス テップS33では、フラグが1であるか否かを判断し、 フラグが1であればステップS34へ移行し、フラグが 1でなければステップS35へ移行する。ステップS3 4では、ステップS27で算出した駆動力配分D1と、 ステップS32で算出した駆動力配分D2とを比較し、 従駆動輪の駆動力配分率が大きくなる方の駆動力配分を 選択し、ステップS36へ移行する。また、ステップS 35では、駆動力配分をステップS27で算出した値D 1とする処理をし、ステップS36へ移行する。ステッ プS36では、ステップS34またはステップS35で 処理した駆動力配分を満足する駆動力配分制御アクチュ エータ3の袖圧クラッチの締結力を制御する指令値を算 20 出し、駆動力配分制御アクチュエータ3へ出力し、リタ

【1)1)46】なお、ステップS26の処理の替りに、前 後輪速差の値を強制的にゼロ (AVn=()) とする処理 をしても構わない。また、ステップS26の処理の替り に、請求項5に記載の発明のように車輪速度の低下に応 じて従駆動輪の駆動力配分率が低減されるように前後輪 速差を算出(例えば、△Vn=△Vn-1×(Vfn/V f n-1) ×所定係数(). 7) する処理をしても構わな い。また、ステップS26の処理の替りに、請求項6に 記哉の発明のように前回の計算周期に用いた前後輪速差 の値から所定値を減算(例えば、△Vn=△Vn-所定 値lkm/h)する処理をしても構わない。

【10047】更に図5に基づいて説明する。図5は本発 明の第二の実施の形態のタイムチャート図である。図示 の条件は10以外は前記図3と同様である。図51には後 輪の車輪速度Vェから前輪の車輪速度Vェを減じた前後 輪速差の経時変化を示している。

【0048】まず、T11の時点から運転者がアクセル を踏み車両が発進し車速が15km/hに達するまで は、前後輪の基本荷重配分を加速度に応じて補正した荷 **堂配分に応じた駆動力配分にて4輪駆動状態で走行して** いる。その後、T12の時点で車速が15km/hを越 えると、前後輪速差に応じた駆動力配分とする処理をす るようになるが、図5aおよびりに示すように実際には 前役輪速差が生じていないので、2輪駆動状態となる。 その後、T13の時点で、路面摩擦係数のより低い状態 に車両が移行し、後輪の路面反力限界が低下して後輪の 駆動力が後輪の路面反力限界を越えると後輪は加速スリ ップを発生する。この時、図5gに示すように後輪の車 50

輪速度Vrは前輪の車輪速度Vfに対し大きくなるた め、前輪の車輪速度Vኖと後輪の車輪速度Vァとの間に 前後輪速差が生じる。また、図5eに示すアクセルスイ ッチはON、かつ図5fに示すブレーキスイッチはOF Fのため、図5 bに示すように前後輪速差を最大値に更 新する処理が行われ、図5 cに示すように最大値更新さ れた前後輪速差の値に応じて、前後輪の駆動力配分が制 御されることで前輪の駆動力配分率も最大値に更新され 続ける。その後、後輪の駆動力の低減により図5 a に示 す実際の前後輪速差は減少してゆき、T14の時点で、 後輪の加速スリップが収束して、実際の前後輪速差がな くなるが、アクセルスイッチONかつブレーキスイッチ OFFの状態のため、最大値更新処理によって駆動力の 演算に用いられる前後輪速差の値は図5 りに示すように 最大値が推続され続ける。その結果、前輪の駆動力配分 **率は最大値に更新された状態で継続するため、図5c**に 示すように前輪の駆動力配分率はゼロとならず4輪駆動 状態を継続することができる。

【0049】その後、T15の時点で、運転者がアクセ ル操作を止め、アクセルスイッチはOFFとなること で、駆動力要求がなくなったと判断し、前後輸速差の最 大値更新処理の替りに前回の演算処理の前後輪速差の値 を基に重速に応じてその値を低減する処理を行うため、 車速の低下ととともに演算処理に用いられる前後輪速差 の値は小さくなり、徐々に2輪駆動状態に近づく。その 後、T16の時点で、運転者がプレーキ操作すること で、プレーキスイッチONとなるが、すでにT15の時 点でアクセルOFFによって駆動力要求がなくなったと 判断しているため、前回の演算処理の前後輪速差の値を 30 基に車速に応じてその値を低減する処理を継続する。 【0050】その後、車速が再び15km/h以下とな るが、アクセルスイッチとブレーキスイッチの状態から 駆動力要求がないと判断するため、最大値更新して算出 する処理が行われないので、最大値更新されて算出する 駆動力配分と荷重配分に応じて算出する駆動力配分比と で従駆動輪の駆動力が大きい方の駆動力配分を選択する 処理も行われず、前後輪速差に応じた駆動力配分の算出 値のみによる処理が継続され、車速に応じて徐々に2輪

【0051】以上説明したように、本発明を実施するこ とで、駆動力配分制御手段を備える4輪駆動車両におい て、頻繁に加速スリップが起きやすい低μ路面や悪路に おいて、車両の安定性の確保や悪路での走破性の確保を することができ、かつ必要な時だけ4輪駆動状態を継続 することができる。また、4輪駆動状態を継続すること によって、主駆動輪のグリップ力に余裕ができて車両安 定性に有利となるし、低μ路面で頻繁に2輪駆動状態と 4輪駆動状態とを繰り返すことが避けられことで、車両 の加速度や速度の変動による追和感を運転者に感じさせ ることを防ぐことができる。

駆動状態となってゆく。

16 かを検出できるので好ましい。

【1)052】また、図2の海算処理のステップS1~ス テップS5および図4の演算処理のステップS21~ス テップS22が、本発明の加速スリップ検出手段を構成 している。また、図2の演算処理のステップS7~ステ ップS8および図4の演算処理のステップS23~ステ ップS24が 本発明の駆動力要求判断手段を構成して いる。また、図2の演算処理のステップS9および図4 の適算処理のステップS25が、本発明の従駆動力配分 最大値更新手段を構成している。また、図2の演算処理 のステップS10が、本発明のスリップ対応駆動力配分 10 算出手段を構成している。また、図2の演算処理のステ ップS3が本発明の主駆動論トルク算出手段を、ステッ プS4が本発明の路面反力限界トルク算出手段を構成し ている。また、図4の演算処理のステップS26が、本 発明の従駆動力配分低減手段を構成している。また、図 4の演算処理のステップS29~ステップS32が、本 発明の荷草対応駆動力配分算出手段を構成している。ま た。図1の駆動力配分制御アクチュエータ3が、本発明 の駆励力調整手段を構成している。

【1)053】なお、上記実施の形態では、前後輪の駆動 20 力配分比を算出するようにしているが、駆動力配分比の 算出の替りに従駆動輪へ伝達する駆動トルクまたは従駆 動輪から路面へ伝達する駆動力を算出するようにしても 同じことである。

【1)1)54】なお、上記実施の形態では、荷重対応駆動 力配分算出手段は前後荷重配分比を駆動力配分比とした 場合について説明したが、それ以外にも前後の荷重配分 に応じて一定の駆動力配分(例えば、前輪50%:後輪 50%) とするように処理しても構わない。

【0055】なお、上記実施の形態では、駆動力要求判 30 断手段として、アクセル操作とブレーキ操作とを組合せ た場合について説明したが、アクセル操作・ブレーキ操 作のどちらか1つでも構わない。が、アクセルとブレー キとを同時操作する場合も考えられるので、それらを組 台せた方がより適切に運転者の駆動力の要求があるか否

【10056】なお、上記実施の形態では、通常は後輪を 駆動する2輪駆動を基本に4輪駆動可能な車両について 説明したが、駆動力配分を制御できる4輪駆動可能な車 両であれば他の形態であっても適用可能である。また、 上記実施の形態のような内燃機関の出力を前後に配分す る4輪駆動可能な車両以外でも、例えば前後輪の一方を 内燃機関で駆動し前後輪の他方を電動機で駆動する4輪 駆動可能な車両や、前輪と後輪とが別々の内燃機関また は電助機で駆動される4輪駆動可能な車両にも適用可能 である。

【りり57】なお、上記実施の形態では説明していない が、本発明を基に公知技術(例えばタイトブレーキング 現象を防止するための公知技術)などを組合せて、駆動 力配分をさらに補正するようにしても備わない。

(図面の簡単な説明)

【図1】本発明の実施の形態の全体構成を示す図であ

【図2】本発明の第一の実施の形態の制御フローチャー ト図である。

【図3】 本発明の第一の実施の形態のタイムチャート図 である。

【図4】 本発明の第二の実施の形態の制御フローチャー ト図である。

【図5】 本発明の第二の実施の形態のタイムチャート図 である。

【符号の説明】

1:エンジン

3:駆動力配分制御アクチュエータ

11:駆動力配分制御コントローラ

12FR, 12FL, 12RR, 12RL: 車輪速度セ ンサ

13:アクセルスイッチ 14: ブレーキスイッチ

[図5]

[図4]

