

Cross-Attention Between Satellite and Ground Views for Enhanced Fine-Grained Robot Geo-Localization

Dong Yuan¹, Frederic Marine¹, Feras Dayoub^{2,3}

¹QUT Centre for Robotics, ²Australian Institute for Machine Learning, ³University of Adelaide

Fine-Grained Cross-View Geo-Localization

- > Cross-view image pairs: a satellite image covers more than one street-view image, and the street-view images are located far away from the center of the satellite image.
- > Fine-grained location prediction: given a street-view image, predict satellite image pixel coordinates corresponding to this street-view image.

Our Contributions

- Leverage the cross-attention mechanism to compute the crosscorrelation between aerial and street views.
- 2. Combine classification prediction and regression prediction to address the cross-view fine-grained localization problem.
- 3. Outperforms the SOTA method (MCC) [2] in fine-grained location prediction on the VIGOR benchmark [3].

Cross-Attention Between Ground-Satellite Views

- \triangleright Features $f_{S'}$, and $f_{Q'}$ are from satellite and ground views separately.
- Feature $f_{S'}$ is projected to Key (K_S) and Value (V_S) , and feature $f_{g'}$ is projected to Query (Q_g) .
- Compute cross-attention score: = Softmax($Q_a^T \times K_s$)
- > Obtain the new ground-view feature: $f_{a'}' = AttentionScore \times V_S$
- \triangleright Feature $f'_{a'}$, fuses relevant information from both the satellite and ground views.

Cross-Attention Block

Location Prediction

- > A classification header predicts the current street-view image is in which cell of the $N \times N$ grid.
- > A regression header predicts the pixel coordinate offset based on classification results.

Proposed Architecture

> Three components: local feature extractors, cross-view feature fusion network and prediction headers.

Experiment Results

Results on VIGOR Dataset

	Same-Area				Cross-Area			
Model	Positives		Pos+Semi-Pos		Positives		Pos+Semi-Pos	
	Mean	Median	Mean	Median	Mean	Median	Mean	Median
VIGOR	10.55	9.31	16.64	13.82	11.26	10.02	18.66	16.73
MCC	9.86	4.58	13.45	5.39	13.06	6.31	17.13	7.78
Ours	6.72	2.68	9.32	3.11	7.28	2.83	9.78	3.89

Results on Oxford RobotCar Dataset [1]

Model	Mean	Median		
VIGOR	2.29 ± 0.31	1.72 ± 0.21		
MCC	1.77 ± 0.25	1.24 ± 0.10		
Ours	$1.77{\pm}0.20$	1.32 ± 0.08		

Model Error	Test 1	Test 2	Test 3	Average
MCC mean	1.42	1.95	1.94	1.77 ± 0.25
Ours mean	1.50	1.97	1.83	1.77 ± 0.20
MCC median	1.10	1.33	1.29	1.24 ± 0.10
Ours median	1.22	1.42	1.33	1.32 ± 0.08

- > The cross-attention mechanism can establish better relations between ground and aerial views.
- > The combination of classification and regression prediction achieves more accurate fine-grained localization.
- > Our approach reduces the median localization distance error by 43% and 50% respectively in the same area and unseen areas on the VIGOR benchmark
- Will Maddern, Geoff Pascoe, Chris Linegar, and Paul Newman. 1 Year, 1000km: The Oxford RobotCar Dataset. The International Journal of Robotics Research (IJRR),
- Zimin Xia, Olaf Booij, Marco Manfredi, and Julian FP Kooij. Visual cross-view metric localization with dense uncertainty estimates. In ECCV, pages 90–106. Springer, 2022. Sijie Zhu, Taojiannan Yang, and Chen Chen. Vigor: Cross-view image geo-localization beyond one-to-one retrieval. In CVPR, pages 3640-3649, 2021.