bounded semigroup $(S(t))_{t\geq 0}$ given by $S(t)=T(z_0t)$ $(t\geq 0)$ (where again we denote by T the holomorphic extension of $(T(t))_{t\geq 0}$ on $S(\alpha)$).

As an application of Theorem 1.12. we prove the following.

Corollary 1.13. Let A be the generator of a bounded group. Then A^2 generates a bounded holomorphic semigroup of angle $\pi/2$.

<u>Proof.</u> Let $0 < \alpha_1 < \pi/2$; $\lambda \in S(\alpha_1 + \pi/2)$. There exist $r \ge 0$ and $\beta \in (-\beta_1, \beta_1)$, where $\beta_1 := (\alpha_1 + \pi/2)/2$, such that $\lambda = r^2 e^{i2\beta}$. Then $(\lambda - A^2) = (re^{i\beta} - A) (re^{i\beta} + A)$; so it follows that $\lambda \in \rho(A^2)$ and $(1.7) R(\lambda, A^2) = R(re^{i\beta}, A) R(re^{i\beta}, -A)$.

Since A generates a bounded group, there exists a constant $N \ge 0$ such that $\|R(\mu,A)\| \le N/\text{Re}\mu$, $\|R(\mu,-A)\| \le N/\text{Re}\mu$ for all $\mu \in S(\pi/2)$. Consequently, $\|R(\lambda,A^2)\| \le N^2/r^2(\cos\beta)^2 \le 1/r^2 \cdot [N/\cos\beta_1]^2 = M/|\lambda|$.

The corollary will be extended below. We first consider an example.

 $\begin{array}{llll} \underline{\text{Example}} & (\text{The Laplacian on } E = C_O(\mathbb{R}^n) & \text{or } L^p(\mathbb{R}^n) & (1 \leq p < \infty) \text{).} \\ a) & \text{Let } n = 1. & \text{Then } (U(t)\,f)\,(x) = f(x+t) & (t \in \mathbb{R}, \ x \in \mathbb{R}) & \text{defines an isometric group on } E. & \text{Its generator } A & \text{is given by } Af = f' & \text{with } D(A) = \{f \in C^1(\mathbb{R}) \cap C_O(\mathbb{R}) : f' \in C_O(\mathbb{R}) \} & \text{in the case } E = C_O(\mathbb{R}) & \text{and } D(A) = \{f \in E \cap AC(\mathbb{R}) : f' \in E\} & \text{in the case } E = L^p & \text{(see A-I,2.4).} \\ & \text{Thus } A^2 & \text{generates a bounded holomorphic semigroup by Cor.1.13.} \end{array}$

b) Let $E = C_0(\mathbb{R}^n)$ or $L^p(\mathbb{R}^n)$ $(1 \le p < \infty)$. For $i \in \{1, \ldots, n\}$ denote by $(U_i(t))_{t \in \mathbb{R}}$ the group given by $(U_i(t)f)(x) = f(x_1, \ldots, x_{i-1}, x_i^{+t}, \ldots, x_n)$ $(x \in \mathbb{R}^n, t \in \mathbb{R})$ and by A_i its generator. Since $U_i(t)U_j(s) = U_j(s)U_i(t)$ $(s, t \in \mathbb{R}, i, j \in \{1, \ldots, n\})$ it follows that the resolvents of A_i commute. So the same is true for the resolvents of A_i^2 (cf.(1.7) and A-I,3.8). Denote by $(T_i(t))_{t \ge 0}$ the semigroup generated by A_i^2 $(i=1,\ldots,n)$. Then for $z,z' \in S(\pi/2)$ one has $T_i(z)T_i(z') = T_i(z')T_i(z)$

Denote by $(T_i(t))_{t\geq 0}$ the semigroup generated by A_i^2 (i=1,...,n). Then for $z,z'\in S(\pi/2)$ one has $T_i(z)T_j(z')=T_j(z')T_i(z)$ (i,j=1,...,n). Consequently, $T(t):=T_1(t)\circ\ldots\circ T_n(t)$ (t\geq 0) defines a holomorphic semigroup of angle $\pi/2$. According to A-I,3.8 the domain of its generator A contains $D(A_1^2)\cap\ldots\cap D(A_n^2)$; in particular $D_0=\{f\in E\cap C^2(\mathbb{R}^n):D^\alpha f\in E \text{ for every multiindex }\alpha$ with $|\alpha|\leq 2\}\subset D(A)$ and the generator is given by

$$Af = (A_1^2 + \ldots + A_n^2) f = \sum_{i=1}^n \frac{\partial^2}{(\partial x_i)^2} f = \Delta f \quad \text{for all} \quad f \in D_0.$$