Санкт-Петербургский государственный политехнический университет

# Лабораторная работа $N_{2}$ 2

по курсу «Стохастические модели»

«Оценка параметров модели случайного процесса нагрузки сервера, обрабатывающего заявки»

Студент: Руцкий В. В.

Группа: 5057/2

Преподаватель: Иванков А.А.

# Содержание

| 1 | Пос | гановка задачи                                                                             | 2 |
|---|-----|--------------------------------------------------------------------------------------------|---|
| 2 | Pen | ение в случае бесконечного времени обработки заявки                                        | 2 |
|   | 2.1 | Итеративный метод                                                                          | 2 |
|   |     | $2.1.1$ Идентификация моментов времени прихода заявок $T_c$                                | 2 |
|   |     | 2.1.2 Оценка интенсивности поступления заявок $\lambda$                                    | 3 |
|   |     | 2.1.3 Оценка параметров фоновой нагрузки $m$ и $\sigma$                                    | 3 |
|   |     | 2.1.4 Оценка параметров увеличения уровня загрузки ресурсов сервера от заявок              |   |
|   |     | $m_c$ и $\sigma_c$                                                                         | 3 |
|   | 2.2 | Оценивание ЕМ-алгоритмом                                                                   | 4 |
|   |     | 2.2.1 ЕМ-алгоритм                                                                          | 4 |
|   |     | 2.2.2 Вычисление $\theta_0$                                                                | 5 |
|   |     | 2.2.3 Получение искомых оценок                                                             | 5 |
| 3 | Pen | ение в случае конечного времени обработки заявки                                           | 5 |
|   | 3.1 | Идентификация времени прихода заявок                                                       | 6 |
|   | 3.2 | Оценка параметров увеличения уровня загрузки ресурсов сервера от заявок $m_c$ и $\sigma_c$ | 6 |
|   | 3.3 | Оценка параметров фоновой нагрузки $m$ и $\sigma$                                          | 7 |
| 4 | Рез | ультаты работы                                                                             | 7 |
|   | 4.1 | Случай бесконечного времени обработки заявки                                               | 7 |

## 1 Постановка задачи

В данной работе производится анализ лога использования ресурсов сервера при поступающих заявках на обработку.

В отсутствие заявок уровень использования ресурсов сервера представляет собой сумму некоторой постоянной величины загрузки m и случайных отклонений:

$$B(t) = m + \sigma \mathcal{W}(t),$$

где  $\mathcal{W}(t)$  — это винеровский процесс.

Заявки поступают в соответствии с законом распределения Пуассона  $\mathcal{P}(\lambda)$ .

При поступлении одной заявки использование ресурсов мгновенно возрастает, а затем экспоненциально снижается до прежнего уровня. Увеличение использования ресурсов сервера от одной заявки, поступившей в момент времени  $t_c$ , выражается следующим образом:

$$K_{t_c}(t) = \mathcal{N}(m_c, \sigma_c^2) \cdot I(t - t_c) \cdot e^{-\lambda_c(t - t_c)},$$

где I(x) — фунцкия Хевисайда. 1

В логе использования ресурсов сервера наблюдается общая загрузка сервера:

$$X(t) = B(t) + \sum_{t_c \in T_c} K_{t_c}(t),$$

где  $T_c$  — это моменты времени поступления заявок.

Необходимо по дискретным наблюдениям  $x_i$  случайного процесса X(t) в моменты времени  $t_i, \quad i=1,\dots,N$ 

- 1. идентифицировать моменты времени поступления заявок  $T_c$ ,
- 2. оценить параметры модели  $m, \sigma^2, \lambda, m_c, \sigma_c^2, \lambda_c$ .

Наблюдения производятся через равные промежутки времени  $\Delta t = t_{i+1} - t_i$ .

# 2 Решение в случае бесконечного времени обработки заявки

Рассмотрим случай, когда  $\lambda_c \to 0$ , т. е. при поступлении заявка увеличивает уровень загрузки сервера на постоянную величину и ресурсы, выделенные на обработку заявки никогда не освобождаются.

#### 2.1 Итеративный метод

### ${f 2.1.1}$ Идентификация моментов времени прихода заявок $T_c$

Предположим, что в отрезке времени  $[t_k, t_{k+n}]$  не пришло ни одной заявки. Тогда n+1 наблюдений  $x_k, \ldots, x_{k+n}$  представляют собой наблюдения B(t). Оценим по этим наблюдениям параметры B(t).

Рассмотрим разности соседних наблюдений — они представляют собой наблюдения нормально распределённой случайной величины:

$$B(t_{i+1}) - B(t_i) = \sigma \mathcal{W}(t_{i+1}) - \sigma \mathcal{W}(t_i) = \sigma \mathcal{N}(0, \Delta t) = \mathcal{N}(0, \sigma^2 \Delta t).$$

Построим точечную оценку  $\hat{\sigma}^2$  методом максимального правдоподобия:

$$\widehat{\sigma}^2 = \frac{1}{\Delta t} \cdot \frac{1}{n-1} \sum_{i=1}^{n} ((x_{k+i} - x_{k+i-1}) - 0)^2.$$

 $<sup>^{2}</sup>$ См. § 3.5 пункт 1 в [1].

Обозначим гипотезу о том, что в промежутке времени  $[t_{k+n},t_{k+n+1}]$  не пришло ни одной заявки, как  $H_0$ . Тогда

$$(X(t_{k+n+1}) - X(t_{k+n})|H_0) = \mathcal{N}(0, \sigma^2 \Delta t).$$

В качестве критерия принятия гипотезы  $H_0$  с уровнем значимости  $\alpha$  возьмём условие, что разность значений наблюдений  $(x_{k+n+1}-x_{k+n})$  лежит в  $(1-\alpha)$  квантиле нормального распределения  $\mathcal{N}(0,\widehat{\sigma}^2\Delta t)$ , обозначенного как  $\mathcal{N}_{1-\alpha}$ :

$$H_0$$
 принимается  $\iff (x_{k+n+1} - x_{k+n}) < \mathcal{N}_{1-\alpha}$ 

(рассматривается только правый квантиль нормального распределения, т.к. заявка может дать только положительное увеличение уровня нагрузки сервера).

Алгоритм нахождения моментов времени поступления заявок  $T_c$  состоит в следующем:

- 1. В предположении, что в первые n+1 наблюдений не пришло ни одной заявки, оценим  $\hat{\sigma}$  и построим критерий для принятия  $H_0$ .
- 2. Будем добавлять к первым n+1 наблюдениям по одному наблюдению и проверять гипотезу  $H_0$ . Если  $H_0$  принимается, то  $\hat{\sigma}$  и критерий для принятия  $H_0$  пересчитываются для добавленного наблюдения.
- 3. Как только встретиться наблюдение n+1+l, для которого гипотеза  $H_0$  отвергается, то  $t_{n+1+l} \in \widehat{T}_c$ . Все наблюдения до  $t_{n+1+l+1}$  отбрасываются и алгоритм начинается с шага 1 для поиска следующего момента времени прихода заявки.

#### 2.1.2 Оценка интенсивности поступления заявок $\lambda$

Зная оценку времени прибытия заявок  $\widehat{T}_c$  интенсивность поступления заявок можно оценить методом максимального правдоподобия:

$$\widehat{\lambda} = \frac{1}{|\widehat{T}_c|} \sum_{i=1}^{|\widehat{T}_c|} (t_{c_{i+1}} - t_{c_i}).$$

#### 2.1.3 Оценка параметров фоновой нагрузки m и $\sigma$

Оценку m и  $\sigma$  произведём по наблюдениям уровня загруженности сервера до поступления первой заявки  $t_{c_1}$ , т. к. дальше изменение уровня фоновой нагрузки сервера сравнимо с дисперсией уровня увеличения нагрузки от прихода заявки:

$$\sigma \approx \sigma_c$$

Оценку произведём методом максимального правдоподобия для нормального распределения:<sup>4</sup>

$$\widehat{m} = \frac{1}{n} \sum_{i=1}^{K-1} x_i, \quad \widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{K-1} (x_i - \widehat{m})^2,$$

где  $K=t_{c_1}/\Delta t$  — номер наблюдения  $x_i$ , когда, согласно приведённой выше оценке, пришла первая заявка.

# 2.1.4 Оценка параметров увеличения уровня загрузки ресурсов сервера от заявок $m_c$ и $\sigma_c$

Рассмотрим ненормированный разностный аналог производной случайного процесса X(t):

$$dX(t) = X(t) - X(t - \Delta t).$$

 $<sup>^3</sup>$ http://en.wikipedia.org/wiki/Poisson\_distribution#Maximum\_likelihood или в общем случае в  $\S 3.5$  пункт 1 в [1].  $^4$ http://en.wikipedia.org/wiki/Normal\_distribution#Estimation\_of\_parameters.

dX(t) в момент времени прихода заявки  $t_c$  выражается следующим образом:

$$dX(t_c) = X(t_c) - X(t_c - \Delta t) = B(t_c) + K_{t_c}(t_c) - B(t_c - \Delta t) =$$

$$= \sigma \mathcal{W}(t_c) - \sigma \mathcal{W}(t_c - \Delta t) + \mathcal{N}(m_c, \sigma_c^2) =$$

$$= \sigma \mathcal{N}(0, \Delta t) + \mathcal{N}(m_c, \sigma_c^2) = \mathcal{N}(m_c, \sigma^2 \Delta t + \sigma_c^2),$$

предполагая, что в момент времени  $t_c - \Delta t$  заявки не было.

Наблюдения dX(t) в моменты времени  $T_c$  соответствуют наблюдениям нормально распределённой случайной величины  $\mathcal{N}(m_c, \sigma^2 \Delta t + \sigma_c^2)$  — оценим по этим наблюдениям параметры  $m_c$  и  $\sigma_c^2$  методом максимального правдоподобия аналогично оценкам в пункте 2.1.3.

### 2.2 Оценивание ЕМ-алгоритмом

В пункте 2.1.4 было показано, что dX(t) в момент времени прихода заявки  $t_c$  выражается как:

$$dX(t_c) = \mathcal{N}(m_c, \sigma^2 \Delta t + \sigma_c^2),$$

предполагая, что в момент времени  $t_c - \Delta t$  заявки не было.

Во время отсутствия заявок dX(t) выражается как:

$$dX(t) = X(t) - X(t - \Delta t) = B(t) - B(t - \Delta t) = \mathcal{N}(0, \sigma^2 \Delta t).$$

Значит в каждый отдельно взятый момент времени t случайная величина dX(t) представляет собой смесь двух нормально распределённых случайных величин, причем параметры случайных величин со временем не меняются. Оценим их параметры EM-алгоритмом (на основе примера из [2]).

Введём скрытые случайные величины  $Z_i, \quad i=1,\ldots,N,$  принимающие значения 1 или 2, в зависимости от того, пришла ли заявка в момент времени  $t_i$  или нет соответственно, а  $z_i$  — наблюдения  $Z_i$  в момент времени  $t_i$ .

$$\mathrm{d}X(t_i)|(Z_i=1)\sim \mathcal{N}(\mu_1,\sigma_1^2)=\mathcal{N}(m_c,\sigma^2\Delta t+\sigma_c^2),$$
 (случай  $t_i\in T_c),$   $\mathrm{d}X(t_i)|(Z_i=2)\sim \mathcal{N}(\mu_2,\sigma_2^2)=\mathcal{N}(0,\sigma^2\Delta t),$  (случай  $t_i\notin T_c).$ 

Случайная величина  $Z_i$  распределена по закону Пуассона  $\mathcal{P}(\lambda)$ , её можно аппроксимировать Биномиальным законом  $\mathcal{B}(N,p)$ :

$$\mathcal{P}(\lambda) = \mathcal{P}(Np) = \mathcal{B}(N, p),$$

т. к. N велико,  $\lambda = Np$  невелико, а значит p мало (см. §1.1 пункт 3 в [1]).

Пусть  $\mathbf{P}(Z_i = 1) = \tau_1$  и  $\mathbf{P}(Z_i = 2) = \tau_2 = 1 - \tau_1$ .

Введём обозначения:  $\theta = (\tau_1, \tau_2, \mu_1, \mu_2, \sigma_1^2, \sigma_2^2)$ ,  $\mathbf{x} = (x_1, \dots, x_N)$ ,  $\mathbf{z} = (z_1, \dots, z_N)$ .

Построим функцию правдоподобия:

$$L(\theta; \mathbf{x}, \mathbf{z}) = \mathbf{P}(\mathbf{x}, \mathbf{z} | \theta) = \prod_{i=1}^{N} \sum_{j=1}^{2} \mathbb{I}(z_i = j) \, \tau_j \, f(x_i, \mu_j, \sigma_j^2),$$

где  $\mathbb{I}(\exp r)$  — функция индикатор,<sup>5</sup> а  $f(x,\mu,\sigma^2)$  — это функция плотности распределения, в данном случае нормального:

$$f(x, \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

Перепишем функцию правдоподобия в экспоненциальной форме:

$$L(\theta; \mathbf{x}, \mathbf{z}) = \exp \left\{ \sum_{i=1}^{N} \sum_{j=1}^{2} \mathbb{I}(z_i = j) \left[ \log \tau_j - \frac{1}{2} \log(2\pi) - \log(\sigma_j) - \frac{(x_i - \mu_j)^2}{2\sigma_j^2} \right] \right\}.$$

#### 2.2.1 ЕМ-алгоритм

Пусть имеется начальная оценка параметров  $\theta$ :  $\theta^{(0)}$  (использованный способ вычисления  $\theta^{(0)}$  описан в пункте 2.2.2). Последовательно выполняя Е- и М-шаги будем уточнять оценку  $\theta^{(k)}$ , пока она не сойдётся:  $\theta^{(k)} \xrightarrow[k \to \infty]{} \widehat{\theta}$ . Вектор  $\widehat{\theta}$  примем за результат оценки.

$$^5$$
Функция индикатор:  $\mathbb{I}(\exp r) = \begin{cases} 0, & \exp r = \text{False} \\ 1, & \exp r = \text{True} \end{cases}$ .

**Е-шаг** Имея текущую оценку параметров  $\theta^{(k)}$ , вычислим по теореме Байеса условную вероятность принадлежности i-го наблюдения j-му нормальному распределению:

$$T_{j,i}^{(k)} = \mathbf{P}(Z_i = j | dX(t_i) = x_i; \theta^{(k)}) = \frac{\tau_j^{(k)} f(x_i; \mu_j^{(k)}, \sigma_j^{(k)})}{\tau_1^{(k)} f(x_i; \mu_1^{(k)}, \sigma_1^{(k)}) + \tau_2^{(k)} f(x_i; \mu_2^{(k)}, \sigma_2^{(k)})}.$$

Построим функцию — математическое ожидание логарифма функции правдоподобия:

$$Q\left(\theta | \theta^{(k)}\right) = \mathbf{E}\left[\log L(\theta; \mathbf{x}, \mathbf{z})\right] = \sum_{i=1}^{N} \sum_{j=1}^{2} T_{j,i}^{(k)} \left[\log \tau_{j} - \frac{1}{2} \log(2\pi) - \log(\sigma_{j}) - \frac{(x_{i} - \mu_{j})^{2}}{2\sigma_{j}^{2}}\right].$$

**М-шаг** Теперь найдём параметры  $\theta^{(k+1)}$  максимизирующие  $Q\left(\theta|\theta^{(k)}\right)$ :

$$\theta^{(k+1)} = \operatorname*{argmax}_{\theta} Q\left(\theta | \theta^{(k)}\right).$$

В соответствии с вычислениями в [2]:

$$\tau_j^{(k+1)} = \frac{1}{n} \sum_{i=1}^N T_{j,i}^{(k)}, \quad \mu_j^{(k+1)} = \frac{\sum\limits_{i=1}^N T_{j,i}^{(k)} x_i}{\sum\limits_{i=1}^N T_{j,i}^{(k)}}, \quad \sigma_j^{(k+1)} = \frac{\sum\limits_{i=1}^N T_{j,i}^{(k)} (x_i - \mu_j^{(k+1)})^2}{\sum\limits_{i=1}^N T_{j,i}^{(k)}}.$$

#### **2.2.2** Вычисление $\theta_0$

В качестве начальных значений au возьмём равные вероятности:

$$\tau_1^{(0)} = \tau_2^{(0)} = 0.5.$$

Для вычисления  $\mu_i^{(0)}$  построим полигон частот  $\mathrm{d} x_i$ : в качестве  $\mu_1^{(0)}$  возьмём последний локальный максимум частот, а в качестве  $\mu_2^{(0)}$  — первый (т. к.  $\mathbf{E}\left[B(t)-B(t-\Delta t)\right]=0,$  а  $\mathbf{E}\left[B(t_c)+K_{t_c}(t_c)-B(t-\Delta t)
ight]=m_c>0).$  В качестве  $\sigma_j^{(0)}$  возьмём  $\frac{1}{3}(\mu_1^{(0)}-\mu_2^{(0)}),\quad j=1,2.$ 

#### 2.2.3 Получение искомых оценок

Из оценки  $\theta$  несложно найти искомые оценки  $\sigma^2$ ,  $m_c$ ,  $\sigma_c$ :

$$\widehat{m}_c = \mu_1, \quad \widehat{\sigma}^2 = \frac{\sigma_2^2}{\Delta t}, \quad \widehat{\sigma}_c^2 = \sigma_1^2 - \sigma_2^2.$$

Из  $T_{j,i}^{(k)}$ , полученного на последнем шаге EM-алгоритма, можно идентифицировать моменты времени прихода заявок:

$$\widehat{T}_c = \left\{ t_i \quad i = 1, \dots, N | T_{1,i}^{(k)} > T_{2,i}^{(k)} \right\}.$$

Оценку m можно провести по наблюдениям X(t) до момента времени прихода первой заявки аналогично тому, как это было сделано в пункте 2.1.3.

Оценку  $\lambda$  можно получить так же, как было сделано в пункте 2.1.2.

#### 3 Решение в случае конечного времени обработки заявки

Рассмотрим случай, когда интенсивность освобождения ресурсов  $\lambda_c$  существенно больше нуля и, сервер успевает обрабатывать заявки:  $\exists \sup \{X(t)\}.$ 

<sup>&</sup>lt;sup>6</sup>См. § 2.1 пункт 4 в [1].

 $\mathrm{d}\,X(t)$  в момент времени, когда не пришло ни одной заявки  $t\notin T_c$ , выражается следующим образом:

$$dX(t) = X(t) - X(t - \Delta t) =$$

$$= \left(B(t) + \sum_{t_c \in T_c, \ t_c \leqslant t} K_{t_c}(t)\right) - \left(B(t - \Delta t) + \sum_{t_c \in T_c, \ t_c \leqslant (t - \Delta t)} K_{t_c}(t - \Delta t)\right).$$

Будем считать приход заявок достаточно редким: таким, что на уровень загруженности ресурсов сервера существенно влияет лишь последняя пришедшая заявка в момент времени  $t_c < t$ :

$$\begin{split} \mathrm{d}X(t) &= X(t) - X(t - \Delta t) = \\ &= \left(B(t) + K_{t_c}(t)\right) - \left(B(t - \Delta t) + K_{t_c}(t - \Delta t)\right) = \\ &= \left(\sigma \mathcal{W}(t) - \sigma \mathcal{W}(t - \Delta t)\right) + \left(\mathcal{N}(m_c, \sigma_c^2) \cdot e^{-\lambda_c(t - t_c)} - \mathcal{N}(m_c, \sigma_c^2) \cdot e^{-\lambda_c(t - \Delta t - t_c)}\right) = \\ &= \mathcal{N}(0, \sigma^2 \Delta t) + \mathcal{N}(m_c, \sigma_c^2) \cdot \left(e^{-\lambda_c(t - t_c)} - e^{-\lambda_c(t - \Delta t - t_c)}\right). \end{split}$$

В условиях предположения о влиянии только последней заявки, в момент прихода заявки t.:

$$dX(t_c) = X(t_c) - X(t_c - \Delta t) =$$

$$= (B(t_c) + K_{t_c}(t_c)) - (B(t_c - \Delta t) + 0) =$$

$$= \mathcal{N}(0, \sigma^2 \Delta t) + \mathcal{N}(m_c, \sigma_c^2) =$$

$$= \mathcal{N}(m_c, \sigma^2 \Delta t + \sigma_c^2).$$

## 3.1 Идентификация времени прихода заявок

Построим вариационный ряд наблюдений  $\mathrm{d}X(t_i)$ :

$$dx_{(1)} \leqslant dx_{(2)} \leqslant \ldots \leqslant dx_{(N)}.$$

Приходящие заявки вносят существенно большее изменение уровня загруженности ресурсов сервера, чем фоновая нагрузка, поэтому в правой части этого ряда будут находиться наблюдения  $\mathrm{d}X(t_c)$ . Воспользуемся итеративным методом из пункта 2.1.1 для выделения наблюдений прихода заявок из вариационного ряда — получим оценку множества моментов времени прихода заявок  $\widehat{T}_c$ .

# 3.2 Оценка параметров увеличения уровня загрузки ресурсов сервера от заявок $m_c$ и $\sigma_c$

Рассмотрим промежуток времени между приходами заявок  $[t_k, t_{k+n}]$ . На нём  $\mathrm{d}X(t)$  выражается следующим образом:

$$\begin{split} \mathrm{d}X(t) &= \mathcal{N}(0,\sigma^2\Delta t) + \mathcal{N}(m_c,\sigma_c^2) \cdot \left(e^{-\lambda_c(t-t_c)} - e^{-\lambda_c(t-\Delta t - t_c)}\right) \\ &= \left(\mathcal{N}(0,\sigma^2\Delta t) + \mathcal{N}(0,\sigma_c^2) \cdot \left(e^{-\lambda_c(t-t_c)} - e^{-\lambda_c(t-\Delta t - t_c)}\right)\right) + m_c \cdot \left(e^{-\lambda_c(t-t_c)} - e^{-\lambda_c(t-\Delta t - t_c)}\right). \end{split}$$

Оценим  $m_c$  и  $\lambda_c$  методом наименьших квадратов. Для этого необходимо минимизировать сумму квадратов отклонений:

$$(m_c, \lambda_c) = \underset{m_c, \lambda_c}{\operatorname{argmin}} S(m_c, \lambda_c) =$$

$$= \underset{m_c, \lambda_c}{\operatorname{argmin}} \sum_{i=1}^n \left( dx_i - m_c \cdot \left( e^{-\lambda_c(t_i - t_k)} - e^{-\lambda_c(t_i - \Delta t - t_k)} \right) \right)^2.$$

 $S(m_c, \lambda_c)$  выпукла вниз на интересущей для анализа области, поэтому для нахождения аргументов, обращающих её в минимум, можно воспользоваться численными методами минимизации, в данной работе был использован метод покоординатного спуска.



(a) Зависимость относительной погрешности оценивания  $|T_c|$  от  $\sigma.$ 

(b) Зависимость относительной погрешности оценивания  $|T_c|$  от  $\sigma_c$ .

Рис. 1: Погрешности оценивания итеративным методом и ЕМ-алгоритмом.

## 3.3 Оценка параметров фоновой нагрузки m и $\sigma$

Оценку m и  $\sigma$ , при найденной оценке  $\widehat{T}_c$ , можно получить так же, как было сделано в пункте 2.1.3.

## 4 Результаты работы

## 4.1 Случай бесконечного времени обработки заявки

Графики зависимости относительной погрешности полученных оценок числа заявок  $|T_c|$  в пунктах 2.1 и 2.2 от среднеквадратичных отклонений данных  $\sigma$  и  $\sigma_c$  приведёны на рис. 1.

# Список литературы

- [1] Г.И. Ивченко and Ю.И. Медведев. Введение в математическую статистику. М: Издательство ЛКИ, 2010.
- [2] Wikipedia: Expectation-maximization algorithm. http://en.wikipedia.org/w/index.php?title=Expectation-maximization\_algorithm&oldid=423422317.