Markov Chains

CS70 Summer 2016 - Lecture 6B

David Dinh 26 July 2016

UC Berkeley

Agenda

Quiz is out! Due: Friday at noon.

What are Markov Chains? State machine and matrix representations.

Hitting Time

Suppose we flip a coin until we get a three heads in a row. How many coin flips should we expect to do?

Suppose we flip a coin until we get a three heads in a row. How many coin flips should we expect to do?

Drunkard on an arbitrary graph (remember HW?). When does the drunkard come home?

Suppose we flip a coin until we get a three heads in a row. How many coin flips should we expect to do?

Drunkard on an arbitrary graph (remember HW?). When does the drunkard come home?

Try solving directly? Problem: conditioning gets really messy.

Suppose we flip a coin until we get a three heads in a row. How many coin flips should we expect to do?

Drunkard on an arbitrary graph (remember HW?). When does the drunkard come home?

Try solving directly? Problem: conditioning gets really messy.

Need some way to express **state**.

Suppose we flip a coin until we get a three heads in a row. How many coin flips should we expect to do?

Drunkard on an arbitrary graph (remember HW?). When does the drunkard come home?

Try solving directly? Problem: conditioning gets really messy.

Need some way to express **state**.

Solution: Markov chains!

A finite Markov chain consists of states, transition probabilities between states, and an *initial distribution*.

A finite Markov chain consists of states, transition probabilities between states, and an initial distribution.

State: where are you now?

A finite Markov chain consists of states, transition probabilities between states, and an initial distribution.

State: where are you now?

Transition probability: From where you are, where do you go next?

A finite Markov chain consists of states, transition probabilities between states, and an initial distribution.

State: where are you now?

Transition probability: From where you are, where do you go next?

Initial distribution: how do you start?

A finite Markov chain consists of states, transition probabilities between states, and an *initial distribution*.

State: where are you now?

Transition probability: From where you are, where do you go next?

Initial distribution: how do you start?

Markov chains are **memoryless** - they don't remember anything other than what state they are.

A finite set of states: $\mathcal{X} = \{1, 2, \dots, K\}$

- A finite set of states: $\mathcal{X} = \{1, 2, \dots, K\}$
- A initial probability distribution π_0 on ${\mathcal X}$:

- A finite set of states: $\mathcal{X} = \{1, 2, \dots, K\}$
- A initial probability distribution π_0 on $\mathcal{X}:\pi_0(i)\geq 0, \sum_i \pi_0(i)=1$

A finite set of states: $\mathcal{X} = \{1, 2, \dots, K\}$

A initial probability distribution π_0 on $\mathcal{X}:\pi_0(i)\geq 0, \sum_i \pi_0(i)=1$

Transition probabilities: P(i,j) for $i,j \in \mathcal{X}$

A finite set of states: $\mathcal{X} = \{1, 2, \dots, K\}$

A initial probability distribution π_0 on $\mathcal{X}:\pi_0(i)\geq 0, \sum_i \pi_0(i)=1$

Transition probabilities: P(i,j) for $i,j \in \mathcal{X}$

•
$$P(i,j) \geq 0, \forall i,j;$$

A finite set of states: $\mathcal{X} = \{1, 2, \dots, K\}$

A initial probability distribution π_0 on $\mathcal{X}:\pi_0(i)\geq 0, \sum_i \pi_0(i)=1$

Transition probabilities: P(i,j) for $i,j \in \mathcal{X}$

•
$$P(i,j) \ge 0, \forall i,j; \sum_{j} P(i,j) = 1, \forall i$$

A finite set of states: $\mathcal{X} = \{1, 2, \dots, K\}$

A initial probability distribution π_0 on $\mathcal{X}:\pi_0(i)\geq 0, \sum_i \pi_0(i)=1$

Transition probabilities: P(i,j) for $i,j \in \mathcal{X}$

•
$$P(i,j) \ge 0, \forall i,j; \sum_{j} P(i,j) = 1, \forall i$$

 $\{X_n, n \ge 0\}$ is defined so that:

A finite set of states: $\mathcal{X} = \{1, 2, \dots, K\}$

A initial probability distribution π_0 on $\mathcal{X}:\pi_0(i)\geq 0, \sum_i \pi_0(i)=1$

Transition probabilities: P(i,j) for $i,j \in \mathcal{X}$

•
$$P(i,j) \ge 0, \forall i,j; \sum_{j} P(i,j) = 1, \forall i$$

 $\{X_n, n \ge 0\}$ is defined so that:

•
$$Pr[X_0 = i] = \pi_0(i), i \in \mathcal{X}$$

A finite set of states: $\mathcal{X} = \{1, 2, \dots, K\}$

A initial probability distribution π_0 on $\mathcal{X}:\pi_0(i)\geq 0, \sum_i \pi_0(i)=1$

Transition probabilities: P(i,j) for $i,j \in \mathcal{X}$

•
$$P(i,j) \ge 0, \forall i,j; \sum_{j} P(i,j) = 1, \forall i$$

 $\{X_n, n \ge 0\}$ is defined so that:

•
$$Pr[X_0 = i] = \pi_0(i), i \in \mathcal{X}$$
 (initial distribution)

A finite set of states: $\mathcal{X} = \{1, 2, \dots, K\}$

A initial probability distribution π_0 on $\mathcal{X}: \pi_0(i) \geq 0, \sum_i \pi_0(i) = 1$

Transition probabilities: P(i,j) for $i,j \in \mathcal{X}$

•
$$P(i,j) \ge 0, \forall i,j; \sum_{j} P(i,j) = 1, \forall i$$

 $\{X_n, n \ge 0\}$ is defined so that:

•
$$Pr[X_0 = i] = \pi_0(i), i \in \mathcal{X}$$
 (initial distribution)

•
$$Pr[X_{n+1} = i \mid X_0, ..., X_n = i] = P(i, j), i, j \in \mathcal{X}.$$

At each timestep t we are in some state $X_t \in \mathcal{X}$.

At each timestep t we are in some state $X_t \in \mathcal{X}$. (random variable.)

At each timestep t we are in some state $X_t \in \mathcal{X}$. (random variable.)

Where do we go next?

$$Pr[X_{t+1} = j | X_t = i] = P_{i,j}$$

At each timestep t we are in some state $X_t \in \mathcal{X}$. (random variable.)

Where do we go next?

$$\Pr[X_{t+1} = j | X_t = i] = P_{i,j}$$

Probability depends on the previous state, but is independent of how it got to the previous state. (It's not independent of states before the previous state - but any dependence is captured in the previous state.)

At some point we might have a distribution for X_t - say, it's 1 w.p. 0.2, 2 w.p. 0.3, and 3 w.p. 0.5.

At some point we might have a distribution for X_t - say, it's 1 w.p. 0.2, 2 w.p. 0.3, and 3 w.p. 0.5. Distribution for X_{t+1} ?

At some point we might have a distribution for X_t - say, it's 1 w.p. 0.2, 2 w.p. 0.3, and 3 w.p. 0.5. Distribution for X_{t+1} ? Probability that it goes to 1?

At some point we might have a distribution for X_t - say, it's 1 w.p. 0.2, 2 w.p. 0.3, and 3 w.p. 0.5. Distribution for X_{t+1} ? Probability that it goes to 1?

$$Pr[X_{t+1} = 1] =$$

At some point we might have a distribution for X_t - say, it's 1 w.p. 0.2, 2 w.p. 0.3, and 3 w.p. 0.5. Distribution for X_{t+1} ? Probability that it goes to 1?

$$Pr[X_{t+1} = 1] = \sum_{i} Pr[X_{t+1} = 1 | X_t = i] Pr[X_t = i]$$

At some point we might have a distribution for X_t - say, it's 1 w.p. 0.2, 2 w.p. 0.3, and 3 w.p. 0.5. Distribution for X_{t+1} ? Probability that it goes to 1?

$$\Pr[X_{t+1} = 1] = \sum_{i} \Pr[X_{t+1} = 1 | X_t = i] \Pr[X_t = i] = \sum_{i} P_{i,1} \Pr[X_t = i]$$

At some point we might have a distribution for X_t - say, it's 1 w.p. 0.2, 2 w.p. 0.3, and 3 w.p. 0.5. Distribution for X_{t+1} ? Probability that it goes to 1?

$$Pr[X_{t+1} = 1] = \sum_{i} Pr[X_{t+1} = 1 | X_t = i] Pr[X_t = i] = \sum_{i} P_{i,1} Pr[X_t = i]$$

$$= 0.9 * 0.2 + 0 * 0.3 + 0.1 * 0.5$$

At some point we might have a distribution for X_t - say, it's 1 w.p. 0.2, 2 w.p. 0.3, and 3 w.p. 0.5. Distribution for X_{t+1} ? Probability that it goes to 1?

$$Pr[X_{t+1} = 1] = \sum_{i} Pr[X_{t+1} = 1 | X_t = i] Pr[X_t = i] = \sum_{i} P_{i,1} Pr[X_t = i]$$

$$= 0.9 * 0.2 + 0 * 0.3 + 0.1 * 0.5 = 0.23$$

Rest of distribution for X_{t+1} can be found similarly.

Very quick linear algebra intro:

Very quick linear algebra intro:

Matrices: two-dimensional collection of numbers. $n \times m$ matrix has n rows, m columns. Element at ith row, jth column denoted A_{ij} .

Very quick linear algebra intro:

Matrices: two-dimensional collection of numbers. $n \times m$ matrix has n rows, m columns. Element at ith row, jth column denoted A_{ij} .

Very quick linear algebra intro:

Matrices: two-dimensional collection of numbers. $n \times m$ matrix has n rows, m columns. Element at ith row, jth column denoted A_{ij} .

Vector: one-dimensional collection of numbers. We deal with **row vectors** - $n \times 1$ matrices.

Very quick linear algebra intro:

Matrices: two-dimensional collection of numbers. $n \times m$ matrix has n rows, m columns. Element at ith row, jth column denoted A_{ij} .

Vector: one-dimensional collection of numbers. We deal with **row vectors** - $n \times 1$ matrices.

$$\begin{bmatrix} 5 & 9 & 3 & 0 \end{bmatrix}$$

Matrix Multplication

For $n \times m$ matrix A and $m \times p$ matrix B:

$$(AB)_{ij} = \sum_{k} A_{ik} B_{kj}$$

Matrix Multplication

For $n \times m$ matrix A and $m \times p$ matrix B:

$$(AB)_{ij} = \sum_{k} A_{ik} B_{kj}$$

Or for vector x:

$$(xA)_i = \sum_k x_k A_{ki}$$

$$\begin{bmatrix} 5 & 9 & 3 & 0 \end{bmatrix} \begin{bmatrix} 1 & 6 & 7 & 2 \\ 6 & 5 & 6 & 3 \\ 8 & 6 & 2 & 2 \\ 2 & 5 & 3 & 8 \end{bmatrix} = \begin{bmatrix} 1*5+6*9+8*3+2*0 \\ 6*5+5*9+6*3+5*0 \\ 7*5+6*9+2*3+3*0 \\ 2*5+3*9+2*3+8*0 \end{bmatrix}^{T}$$

Matrix Multplication

For $n \times m$ matrix A and $m \times p$ matrix B:

$$(AB)_{ij} = \sum_{k} A_{ik} B_{kj}$$

Or for vector x:

$$(xA)_i = \sum_k x_k A_{ki}$$

$$\begin{bmatrix} 5 & 9 & 3 & 0 \end{bmatrix} \begin{bmatrix} 1 & 6 & 7 & 2 \\ 6 & 5 & 6 & 3 \\ 8 & 6 & 2 & 2 \\ 2 & 5 & 3 & 8 \end{bmatrix} = \begin{bmatrix} 1*5+6*9+8*3+2*0 \\ 6*5+5*9+6*3+5*0 \\ 7*5+6*9+2*3+3*0 \\ 2*5+3*9+2*3+8*0 \end{bmatrix}^{T}$$

Matrix Markov

Markov chains have a very nice translation to matrices! Transition probabilities form an *transition matrix* P whose i, jth entry is $P_{i,j}$.

$$P = \begin{bmatrix} 0.9 & 0.1 & 0 \\ 0 & 0.4 & 0.6 \\ 0.1 & 0.4 & 0.5 \end{bmatrix}$$

Probabilities from a state sum to 1...

Matrix Markov

Markov chains have a very nice translation to matrices! Transition probabilities form an *transition matrix* P whose i, jth entry is $P_{i,j}$.

$$P = \begin{bmatrix} 0.9 & 0.1 & 0 \\ 0 & 0.4 & 0.6 \\ 0.1 & 0.4 & 0.5 \end{bmatrix}$$

Probabilities from a state sum to 1...rows sum to 1...

Matrix Markov

Markov chains have a very nice translation to matrices! Transition probabilities form an *transition matrix* P whose i, jth entry is $P_{i,j}$.

$$P = \begin{bmatrix} 0.9 & 0.1 & 0 \\ 0 & 0.4 & 0.6 \\ 0.1 & 0.4 & 0.5 \end{bmatrix}$$

Probabilities from a state sum to 1...rows sum to 1... (right) stochastic matrix.

$$P = \begin{bmatrix} 0.9 & 0.1 & 0 \\ 0 & 0.4 & 0.6 \\ 0.1 & 0.4 & 0.5 \end{bmatrix}$$

$$P = \begin{bmatrix} 0.9 & 0.1 & 0 \\ 0 & 0.4 & 0.6 \\ 0.1 & 0.4 & 0.5 \end{bmatrix}$$

Distributions are vectors. Suppose that X_t is distributed 1 w.p. 0.2, 2 w.p. 0.3, and 3 w.p. 0.5. Write distribution as vector!

$$P = \begin{bmatrix} 0.9 & 0.1 & 0 \\ 0 & 0.4 & 0.6 \\ 0.1 & 0.4 & 0.5 \end{bmatrix}$$

Distributions are vectors. Suppose that X_t is distributed 1 w.p. 0.2, 2 w.p. 0.3, and 3 w.p. 0.5. Write distribution as vector!

$$\pi_t = \begin{bmatrix} 0.2 & 0.3 & 0.5 \end{bmatrix}$$

$$P = \begin{bmatrix} 0.9 & 0.1 & 0 \\ 0 & 0.4 & 0.6 \\ 0.1 & 0.4 & 0.5 \end{bmatrix}$$

Distributions are vectors. Suppose that X_t is distributed 1 w.p. 0.2, 2 w.p. 0.3, and 3 w.p. 0.5. Write distribution as vector!

$$\pi_t = \begin{bmatrix} 0.2 & 0.3 & 0.5 \end{bmatrix}$$

What's the product of π_t and P?

$$P = \begin{bmatrix} 0.9 & 0.1 & 0 \\ 0 & 0.4 & 0.6 \\ 0.1 & 0.4 & 0.5 \end{bmatrix}$$

Distributions are vectors. Suppose that X_t is distributed 1 w.p. 0.2, 2 w.p. 0.3, and 3 w.p. 0.5. Write distribution as vector!

$$\pi_t = \begin{bmatrix} 0.2 & 0.3 & 0.5 \end{bmatrix}$$

What's the product of π_t and P?

$$\begin{bmatrix} 0.2*0.9 + 0.3*0 + 0.5*0.1 \\ 0.2*0.1 + 0.3*0.4 + 0.5*0.4 \\ 0.2*0 + 0.3*0.6 + 0.5*0.5 \end{bmatrix}^{T}$$

$$P = \begin{bmatrix} 0.9 & 0.1 & 0 \\ 0 & 0.4 & 0.6 \\ 0.1 & 0.4 & 0.5 \end{bmatrix}$$

Distributions are vectors. Suppose that X_t is distributed 1 w.p. 0.2, 2 w.p. 0.3, and 3 w.p. 0.5. Write distribution as vector!

$$\pi_t = \begin{bmatrix} 0.2 & 0.3 & 0.5 \end{bmatrix}$$

What's the product of π_t and P?

$$\begin{bmatrix} 0.2 * 0.9 + 0.3 * 0 + 0.5 * 0.1 \\ 0.2 * 0.1 + 0.3 * 0.4 + 0.5 * 0.4 \\ 0.2 * 0 + 0.3 * 0.6 + 0.5 * 0.5 \end{bmatrix}^{T} = \begin{bmatrix} 0.23 & 0.34 & 0.43 \end{bmatrix}$$

$$P = \begin{bmatrix} 0.9 & 0.1 & 0 \\ 0 & 0.4 & 0.6 \\ 0.1 & 0.4 & 0.5 \end{bmatrix}$$

Distributions are vectors. Suppose that X_t is distributed 1 w.p. 0.2, 2 w.p. 0.3, and 3 w.p. 0.5. Write distribution as vector!

$$\pi_t = \begin{bmatrix} 0.2 & 0.3 & 0.5 \end{bmatrix}$$

What's the product of π_t and P?

$$\begin{bmatrix} 0.2 * 0.9 + 0.3 * 0 + 0.5 * 0.1 \\ 0.2 * 0.1 + 0.3 * 0.4 + 0.5 * 0.4 \\ 0.2 * 0 + 0.3 * 0.6 + 0.5 * 0.5 \end{bmatrix}^{T} = \begin{bmatrix} 0.23 & 0.34 & 0.43 \end{bmatrix}$$

This is the distribution of X_{t+1} .

One step: $\pi_t \to \pi_t P$

One step: $\pi_t \to \pi_t P$

What if we take two steps? What's the distribution?

One step: $\pi_t \to \pi_t P$

What if we take two steps? What's the distribution?

$$\pi_t \rightarrow (\pi_t P) P$$

One step: $\pi_t \to \pi_t P$

What if we take two steps? What's the distribution?

$$\pi_t \rightarrow (\pi_t P)P = \pi_t P^2$$

One step: $\pi_t \to \pi_t P$

What if we take two steps? What's the distribution?

 $\pi_t \to (\pi_t P)P = \pi_t P^2$

n steps? $\pi_t P^n$.

One step: $\pi_t \to \pi_t P$

What if we take two steps? What's the distribution?

$$\pi_t \rightarrow (\pi_t P)P = \pi_t P^2$$

n steps? $\pi_t P^n$.

This will be very useful when we start talking about limiting distributions (next lecture).

An Example

California driving test: you get 3 retakes before you have to start the application process all over again. Suppose someone passes a driving test w.p. 0.6, unless it's their final retake, in which case they're more careful and pass w.p. 0.8.

An Example

California driving test: you get 3 retakes before you have to start the application process all over again. Suppose someone passes a driving test w.p. 0.6, unless it's their final retake, in which case they're more careful and pass w.p. 0.8.

An Example

Initial distribution? $\pi_0 = [1 \ 0 \ 0 \ 0]$ Transition matrix?

$$T = \begin{bmatrix} 0 & .4 & 0 & .6 \\ 0 & 0 & .4 & .6 \\ .2 & 0 & 0 & .8 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Hitting Time

Motivation

How long does it take to get a driver's license, in expectation?

Motivation

How long does it take to get a driver's license, in expectation?

Generally: given a Markov chain and an initial distribution, how many timesteps do we expect to take before reaching a particular state?

Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?

Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?

Let $\beta(S)$ be the average time until E, starting from S.

Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?

Let $\beta(S)$ be the average time until E, starting from S. Then,

$$\beta(S) = 1 + q\beta(S) + p0.$$

Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?

Let $\beta(S)$ be the average time until E, starting from S. Then,

$$\beta(S) = 1 + q\beta(S) + p0.$$

Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?

Let $\beta(S)$ be the average time until E, starting from S. Then,

$$\beta(S) = 1 + q\beta(S) + p0.$$

Hence,

$$p\beta(S)=1,$$

Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?

Let $\beta(S)$ be the average time until E, starting from S. Then,

$$\beta(S) = 1 + q\beta(S) + p0.$$

Hence,

$$p\beta(S) = 1$$
, so that $\beta(S) = 1/p$.

A Simple Example

Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?

Let $\beta(S)$ be the average time until E, starting from S. Then,

$$\beta(S) = 1 + q\beta(S) + p0.$$

Hence,

$$p\beta(S) = 1$$
, so that $\beta(S) = 1/p$.

Note: Time until E is G(p).

A Simple Example

Let's flip a coin with Pr[H] = p until we get H. How many flips, on average?

Let $\beta(S)$ be the average time until E, starting from S. Then,

$$\beta(S) = 1 + q\beta(S) + p0.$$

Hence,

$$p\beta(S) = 1$$
, so that $\beta(S) = 1/p$.

Note: Time until E is G(p). We have rediscovered that the mean of G(p) is 1/p.

Let $\beta(S)$ denote expected time to get a driver's license from S.

Let $\beta(S)$ denote expected time to get a driver's license from S.

$$\beta(1) = 1 + 0.6 * 0 + 0.4 * \beta(2)$$

$$\beta(2) = 1 + 0.6 * 0 + 0.4 * \beta(3)$$

$$\beta(3) = 1 + 0.8 * 0 + 0.2 * \beta(1)$$

Let $\beta(S)$ denote expected time to get a driver's license from S.

$$\beta(1) = 1 + 0.6 * 0 + 0.4 * \beta(2)$$

$$\beta(2) = 1 + 0.6 * 0 + 0.4 * \beta(3)$$

$$\beta(3) = 1 + 0.8 * 0 + 0.2 * \beta(1)$$

Solves to $\beta(1) \approx 1.61$.

A driving test consists of 20 maneuvers that must be done properly.

A driving test consists of 20 maneuvers that must be done properly. The examinee succeeds w.p. p=0.9 for each maneuver.

A driving test consists of 20 maneuvers that must be done properly. The examinee succeeds w.p. p=0.9 for each maneuver. Otherwise, he fails the driving test and has to start all over again.

$$\beta(n) = 1 + p\beta(n+1) + q\beta(0), 0 \le n < 19$$

$$\beta(n) = 1 + p\beta(n+1) + q\beta(0), 0 \le n < 19$$

$$\beta(19) = 1 + p0 + q\beta(0)$$

A driving test consists of 20 maneuvers that must be done properly. The examinee succeeds w.p. p=0.9 for each maneuver. Otherwise, he fails the driving test and has to start all over again. How many maneuvers does it take to pass the test?

$$\beta(n) = 1 + p\beta(n+1) + q\beta(0), 0 \le n < 19$$

$$\beta(19) = 1 + p0 + q\beta(0)$$

$$\Rightarrow \beta(0) = \frac{p^{-20} - 1}{1 - p} \approx 72.$$

See Lecture Note 24 for algebra.

Gig: Random names, random headlines