

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
30 August 2001 (30.08.2001)

PCT

(10) International Publication Number
WO 01/62924 A3

(51) International Patent Classification: **C12N 15/12.**
1/19. 1/21. 5/10. 15/63. 15/86. 15/11. C07K 14/705.
16/28. C12Q 1/68. G01N 33/68. A61K 31/7088. 38/17.
39/395. 48/00

(US). **WOOD, Linda S.** [US/US]: 10193 Fox Hollow,
Portage, MI 49024 (US). **PARODI, Luis A.** [SE/SE]:
Grevgafan-24. S-115 43 Stockholm (SE). **LIND, Peter**
[SE/SE]: Borjegatan 31C. S-751 29 Uppsala (SE).

(21) International Application Number: **PCT/US01/05989**

(74) Agents: **DELUCA, Mark et al.**: Woodcock Washburn
Kurtz Mackiewicz & Norris LLP. 46th Floor, One Liberty
Place, Philadelphia, PA 19103 (US).

(22) International Filing Date: 23 February 2001 (23.02.2001)

(25) Filing Language: English

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(26) Publication Language: English

(84) Designated States (*regional*): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(30) Priority Data:
60/184,715 24 February 2000 (24.02.2000) US
60/184,725 24 February 2000 (24.02.2000) US
60/184,712 24 February 2000 (24.02.2000) US
60/184,606 24 February 2000 (24.02.2000) US
60/184,602 24 February 2000 (24.02.2000) US
60/184,604 24 February 2000 (24.02.2000) US
60/184,822 24 February 2000 (24.02.2000) US
60/184,710 24 February 2000 (24.02.2000) US
60/184,689 24 February 2000 (24.02.2000) US
60/184,690 24 February 2000 (24.02.2000) US
60/184,716 24 February 2000 (24.02.2000) US

Published:
— with international search report

(71) Applicant (*for all designated States except US*): **PHARMACIA & UPJOHN COMPANY** [US/US]: 301 Henrietta Street, Kalamazoo, MI 49001 (US).

(88) Date of publication of the international search report:
11 April 2002

(72) Inventors; and
(75) Inventors/Applicants (*for US only*): **VOGELI, Gabriel**
[US/US]: 2576 9th Avenue West, Seattle, WA 98119

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/62924 A3

(54) Title: HUMAN G PROTEIN-COUPLED RECEPTORS

(57) Abstract: The present invention provides a gene encoding a G protein-coupled receptor termed nGPCR-x; constructs and recombinant host cells incorporating the genes; the nGPCR-x polypeptides encoded by the gene; antibodies to the nGPCR-x polypeptides; and methods of making and using all of the foregoing.

INTERNATIONAL SEARCH REPORT

International Application No	PCT/US 01/05989
------------------------------	-----------------

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7	C12N15/12	C12N1/19	C12N1/21	C12N5/10	C12N15/63
	C12N15/86	C12N15/11	C07K14/705	C07K16/28	C12Q1/68
	G01N33/68	A61K31/7088	A61K38/17	A61K39/395	A61K48/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C12N C07K C12Q G01N A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EMBL, SEQUENCE SEARCH, EPO-Internal, WPI Data, PAJ, BIOSIS, MEDLINE, CHEM ABS Dat

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DATABASE EMBL [Online] accession: AC022042, 26 January 2000 (2000-01-26) BIRREN B ET AL: "Homo sapiens clone RP11-6L15, WORKING DRAFT SEQUENCE, 18 unordered pieces." XP002180041 ---	1,3-22, 27,30, 32-34
X	DATABASE EMBL [Online] accession: AQ070364, 5 August 1998 (1998-08-05) MAHAIRAS G G ET AL: "HS_3035_B1_C08_MF_CIT Approved Human Genomic Sperm Library D Homo sapiens genomic clone Plate=3035 Col=15 Row=F, genomic survey sequence." XP002180042 ---	1,3,5-7, 9-22,27, 30,32-34
		-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

12 October 2001

Date of mailing of the international search report

16.01.02

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Devijver, K

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 01/05989

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
E	WO 01 62797 A (PARODI LUIS A ;LIND PETER (SE); UPJOHN CO (US); VOGELI GABRIEL (US) 30 August 2001 (2001-08-30) (L: Priority) claims 1-141; examples 1-15 SEQ ID NO: 23; SEQ ID NO: 83 ---	1,3,5-7, 9-30, 32-40, 42-48, 50-71, 74-78,80
A	SAKURAI T ET AL: "Orexins and orexin receptors: A family of hypothalamic neuropeptides and G Protein-coupled receptors that regulate feeding behaviour" CELL, CELL PRESS, CAMBRIDGE, MA, US, vol. 92, 20 February 1998 (1998-02-20), pages 573-585, XP002105412 ISSN: 0092-8674 cited in the application ---	
A	HERZOG H ET AL: "CLONED HUMAN NEUROPEPTIDE Y RECEPTOR COUPLES TO TWO DIFFERENT SECOND MESSENGER SYSTEMS" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES, vol. 89, no. 13, 1992, pages 5794-5798, XP002180040 1992 ISSN: 0027-8424 ---	
A	WO 99 55732 A (AHMAD SULTAN ;CAO JACK (CA); DONNELL DAJAN O (CA); WALKER PHILIPPE) 4 November 1999 (1999-11-04) -----	

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 01/05989

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Although claim 39 is directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. Claims Nos.: in part: 44,47,52,75
because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
see FURTHER INFORMATION sheet PCT/ISA/210

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Claims 1-81, partially, as far as is applicable.

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: in part: 44,47,52,75

Claims 44, 47 and 52 refer to a compound identified by the method of claims 40, 45 and 48 respectively, without giving a true technical characterization. The claims cover all compounds having this characteristic or property, whereas the application provides support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT for only a very limited number of such compounds, namely: antibodies which bind to an epitope on a polypeptide of claim 30 and antisense oligonucleotides. In consequence, the scope of said claims is ambiguous and vague, and their subject-matter is not sufficiently disclosed and supported (Art. 5 and 6 PCT). An attempt is made to define the compound by reference to a result to be achieved.

This lack of clarity in the present case is such as to render a meaningful search over the whole of the claimed scope impossible. Consequently, the search has been carried out for those parts of the claims which appear to be clear, supported and disclosed, namely those parts relating to: antibodies which bind to an epitope on a polypeptide of claim 30 and antisense oligonucleotides.

The above comment also applies for a binding partner of nGPCR-x as referred to in claim 75.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: Invention 1: claims: in part: 1-81; all as far as applicable

G protein-coupled receptor (nGPCR-x) polynucleotide and polypeptide relating to SEQ ID NOS 1 and 111, and fragments and variants thereof. Expression vector and host cell comprising such a polynucleotide. Antisense oligonucleotide directed to a region of such a polynucleotide. Method of producing such a polypeptide. Antibody which binds to an epitope on such a polypeptide. Composition comprising such a polynucleotide, such an expression vector, such a polypeptide or such an antibody. Method of inducing an immune response by using such a polypeptide. Method for identifying a compound which binds such a polypeptide or such a polynucleotide. Method for identifying a compound which modulates the activity of such a polypeptide. Method for identifying an animal homolog of such a polynucleotide or polypeptide. Method of screening to diagnose a disorder affecting the brain or genetic predisposition thereof. Method of screening for a nGPCR-x hereditary mental disorder genotype. Kit for carrying out the aforementioned screening. Method of identifying a nGPCR-x allelic variant that correlates with a mental disorder. Method to identify compounds useful for the treatment of a mental disorder. Method for identifying a compound useful as a modulator of binding between nGPCR-x and a binding partner of nGPCR-x. Method of purifying a G protein using such a polypeptide.

2. Claims: Inventions 2-110: claims: in part: 1-81; all as far as applicable

As invention 1, but limited to subject-matter relating to SEQ ID NOS 2-110 and 112-220, wherein:
invention 2 is limited to SEQ ID NOS 2 and 112,
invention 3 is limited to SEQ ID NOS 3 and 113,
...
invention 110 is limited to SEQ ID NOS 110 and 220.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/US 01/05989

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 0162797	A	30-08-2001	AU	4165801 A		03-09-2001
			AU	5787501 A		09-07-2001
			WO	0148015 A2		05-07-2001
			WO	0162797 A2		30-08-2001
			AU	4165501 A		03-09-2001
<hr/>						
WO 9955732	A	04-11-1999	AU	4298099 A		16-11-1999
			EP	1071714 A1		31-01-2001
			WO	9955732 A1		04-11-1999
<hr/>						

SEQUENCE LISTING

<110> Pharmacia & Upjohn Company
Vogeli, Gabriel
Wood, Linda S.
Parodi, Luis
Lind, Peter

<120> Novel G Protein-Coupled Receptors

<130> 00048.PCT1

<150> 60/184, 715
<151> 2000-02-24

<150> 60/184725
<151> 2000-02-24

<150> 60/184, 712
<151> 2000-02-24

<150> 60/184, 606
<151> 2000-02-24

<150> 60/184, 602
<151> 2000-02-24

<150> 60/184, 604
<151> 2000-02-24

<150> 60/184, 822
<151> 2000-02-24

<150> 60/184, 710
<151> 2000-02-24

<150> 60/184, 689
<151> 2000-02-24

<150> 60/184, 690
<151> 2000-02-24

<150> 60/184, 716
<151> 2000-02-24

<160> 220

<170> PatentIn version 3.0

<210> 1
<211> 636
<212> DNA
<213> Homo sapiens

<400> 1
ccaaatccca tctttctctc ctttgacaaa ctaggaattt ctattgttcc cttggtaaac 60
atagtaggaa tatgaaataa gacaatttaa tcctctaatt tatgacaatg ggagagatgt 120

tgctgaaaac cctgagctat cagtgc	ttt aattaaaaca acattagtaa tggtcactaa	180
aggaaaatat attccattgt aaatgtcaag atttacactg tctctgacaa tgacacaata		240
attatgctaa ggtgcagaaa gtaaacaccgc ctca	ctaattt ctcctgcaac acaaaatata	300
cagtgaaaat gacaaatgga ttaatttaca tatggatgaa catgatctgt tgctctccaa		360
ggtcccaaaa gatacataag agaaaaattt agtgatgtt cttggatgtg tctttttaaga		420
caacacaata caatatctga gtatgtaccc ttacgacata gagaagggat ttcaaaata		480
ttttaactt aatagattca ctAAAAGAAA tcaccttcca accactgttc ctgtctcg		540
gtcaattagg gtcataatat tgTTTTCATT gtattacaaa aggttagaat gtacactgtt		600
taaatgaata aataatatacg attactagat aagcag		636

<210> 2
<211> 740
<212> DNA
<213> Homo sapiens

<400> 2	
atgaattgaa aacagaaaaat gtatgtaaat atgtatgaaa atatgtatataaaaatgt	60
atTTTAAAG ttactttaa aagtcttca tattatataat tacacacaca cacacacaca	120
cacacacgt gtgaagatca cttctAACCA CCCAATAAA gattatattt ttaagaata	180
tagtgttcaa atattgttt atcccatata agagcaattt atggctgttt tatgggtttc	240
atcaggctat gtcactctaa accaactttg ctaacaaagg gtaaacacag taggaaatga	300
aatatcttt aacaaataag aaACCCAGCA acagcatgta tgtgatagga AAAATTAAAA	360
gttcctgagt aaatagtata catgaattga cttcaatctg aagtgcTTG ttatccctga	420
aaatttagtta aaattcattt aagattatta ggacccattt gaatgtttca tctacttgg	480
ttgggtgtct tttagtatac agaactgaac gatacctatt agattgaata ttttacactc	540
ataagaggtt taaaaaacta atcaacagaa gtagactgca tggtaactaa tcactaagt	600
actcttgate agaattgagc attgccaaga ggctctaaa cagaagagat catgccctt	660
ctttcttaag aggaccctgc tgcataactg tggtaacgtt tcttcagtga aggagaactc	720
taaagaaaaac cacactatga	740

<210> 3
<211> 666
<212> DNA
<213> Homo sapiens

<400> 3	
ctggTTTGTG attatagttg gttgttttat tattacattt tataatttgt actcattcag	60

tattacatat gttgctatat ctatgtcttt atatctacat cagtatcttt tgataatacat 120
 taaaaatcaag tttagccttc aaagatcaag aagacatcct ttaatatcac acattgacta 180
 ttggtttattg acttctaaact tatctccttg ttaatatgtg gccccccgtg aaatgtacac 240
 attgctatct cagtaagtta ttttaatatg tacagagtca tagttgacat ccttgaatt 300
 attagtggtc tcacattatt tatgaactaa attcaaacct taatagtatg atgtacagac 360
 ccttttagagc tggctctttt ttatcttcc aatcttacta taatatagtt tctatctatc 420
 ccaaacagca gccatttctg acttcttgca gttctgtaaa tcaaccaaatt ggcttgcgg 480
 ctctaattat gtcttcacctt accttcatct gcatagaatg ctatttctca tctgactttg 540
 tttctccgga gaagacctaa ttctcttga aggcaatgcc ttacataaaa actcttcctt 600
 ctctcctcaa aattaagaag tcctgacatt catctttgg gtcctcactc tcaatgtgca 660
 tactta 666

<210> 4
<211> 504
<212> DNA
<213> Homo sapiens

<400> 4
 acttcccctc gcagttatac ctatgcaaag catgtttatg aggttgttgg tggggacagt 60
 ataaaaagga aatgtaaaat ttcattttc ttgttatctt gagacatatac caagaaaata 120
 aaaggcattt tacagtttg gcataaagaa tgtaagtgtt attacattct tatatcttta 180
 gagagagggg gattcaatta agcaaaccag cagaagaatg aaaagagaaa cgtgagcagt 240
 atatgcagta accattgcag aattggcaca attgttagatt tataaaaggc agtgtgctct 300
 cttacttccc cccgagtgca agccttcacc tgcccttgac tgactatcca ggacattgtc 360
 aggcaactgag cattgatcta tcacaggtgt aatttgtatcg cgacttgatg caatgtgttt 420
 aactccaaaa tcagatttgtt tggaaaaaaa tgcttctcag aacggtatga ggatttcatac 480
 aacaaaagttt atgtgtaccc ggaa 504

<210> 5
<211> 659
<212> DNA
<213> Homo sapiens

<400> 5
 ctataaacta ggtggcttaa aacaacaaaa atttattctg ttcttagttct ggaggctaga 60
 agtctaaaga aatcaaggc gtcagcagaa tggaaaggccct agaatagtct agggaggaat 120

tcttcatttt	ttccttgctt	ctgggtggctc	ccagcaatct	tggtattcct	tggtttgtag	180
ctgcatca	ctaatttttg	catttcatctt	tccatgaact	tatccctgt	gtgtgtctct	240
gcacatctc	tcttttatg	gggtgccagt	tattagattt	aaggcccact	ctaaccagg	300
atgagctcat	cttaacttga	ttacatctgc	aaagacotta	tctccaaata	aggtcacctt	360
ctgaggttct	tggtagacat	acatttggg	gggatactat	tcaactcatt	acaccacaac	420
cccccaaact	agagagatag	gcaaatacag	agaatcacag	gttacaggga	gcagaagcc	480
ctaaatgcaa	tacctgatag	aaacacttaa	acaataattt	acacattgct	ggaggctgga	540
gtgtggacta	acttgagaca	taaaaactct	tgagggccta	gacttgtggg	gaggacaccc	600
actttcataa	gttttatctc	taggagcccc	accaggttct	catgataaag	tgctgagaa	659

<210> 6
<211> 676
<212> DNA
<213> Homo sapiens

<400> 6	gatgcattag	tgctgcatta	aatacttact	caaaaaggag	tagaagtctt	gcagaatggg	60
	taacaatgta	aaagtccaaa	aggaaaacct	aggaaggaa	tcaatatttc	caaggcctgt	120
	atctgcttcc	tggtaacttac	ccacacccctg	ccgcaattcc	caaccaagtt	aatagatgtg	180
	aactgaagaa	gattactaca	ttctactgca	tgatactgtg	atatatatct	aaaaatactt	240
	ttccactcct	gaaaatattt	agtcttatac	ctatatacat	ttagaaatga	caaataaaaa	300
	acagtatata	ttctcaaattt	caaaaactgca	aacagtttga	agaatggcct	aaacaaagaa	360
	tacacacaca	catacataaa	tatatatata	tatatacaca	cacacacaca	cacacacaag	420
	cacccacaca	cctgtgcctt	taaggcgctc	agagtctatt	ctgatagttt	tccacttaca	480
	caaaaatgta	cactaatagt	gatgagaaag	tagcagcaca	gaagaaggag	atgttgctct	540
	ggggtagaaaa	agaaagttt	caagtcctgg	atgcccagt	acttacgtt	tgttcaacca	600
	cctagtttaa	ttaccatcca	ttccacttagg	agttaaagaa	taaatatatt	cagtacaatg	660
	ccagtttact	atttat					676

<210> 7
<211> 733
<212> DNA
<213> Homo sapiens

<400> 7	ttttataatt	cctaattggta	ataatttat	cagtttgtaa	agttagcaat	attgataagc	60
	agcagtacaa	gtaaatacaa	taatcacagt	ttgtttgtct	ttgaaactta	aatctattta	120

acacacctcccc	ctgtctcttg	atcttcatgt	tcccagggga	tagggtcatt	gtcctgtaca	180
gaagggactg	tgtccctctc	atgcacaaac	tgctctacgt	caggaaggat	ggaaatctct	240
gccttctca	ttttcccttt	gccagaggag	ggagagctgg	gtttctcttt	ttctggatcg	300
gatgctgggg	attctggaga	tggAACCTTG	tcaGGAAGAC	cctctgagtt	gccagctgg	360
gtttcctgag	actctgagac	agtggaggt	tttttggta	tcatccatTT	ccatacacct	420
ttcaagcctt	ccctgaactc	ttccgacatc	acaagaaaaaa	tgagaggatt	tgctgaagag	480
atggaaaaca	tcaagacttg	agacagggct	atgaaacctt	gtgggtggggc	cgggcctgca	540
gccttcagat	gccataacca	cagccaagct	accattcgg	ggagccacaa	gagagcagag	600
atgatggcaa	tgctcagcag	catcactgtg	acttgctttg	gagcgtatct	ggtttctaag	660
atttttagtc	ttagttccctc	gtttttaca	ttggtcataa	gctctccaga	aataaaagct	720
ggcaaaaaat	aat					733

<210> 8
<211> 668
<212> DNA
<213> Homo sapiens

<400> 8	ctgttgcctt	atcctgggt	acacttattt	gcagagcctt	tgttgctagg	gctgagtc	60
	tgtctttctt	tgtggtcctt	ctccaacaga	ggcaggatgg	ctgcagatcc	cctaccacca	120
	gcata	gagac	gaaggaacag	gagaggagt	aaggctgtac	cagaccagat	180
	agacccc	aggcacagca	atgcaccagc	gtgcaggcag	ccccattcgc	cgagtcacc	240
	atgcccagcc	caacaggctg	cctttgttt	tatggtgatt	tttgcacgct	catccttaca	300
	cgatgcacga	atgggttgg	aatgggtctt	tggcagaaag	cagtggcatc	tgtcatctt	360
	gcttcaccac	gattccagct	cagcaccagg	cctctggtag	cgcatttcct	cctcatcaca	420
	tttggcctg	ttgactgacc	agattattga	tcgctctgtt	ctgcagcact	gggtgggtt	480
	agcttggtg	cctccaggcc	tctgctttgg	agtaaatctc	catgagccaa	actaaattcc	540
	tcagtagtac	aaaacagatt	ttaacatttg	caggagaaaa	ataaaatgac	acaaatagtc	600
	acacacccaa	accacacagt	gcaaagagta	aagtagata	ttgcagcagc	aagtcgttta	660
	gacatcac						668

<210> 9
<211> 643
<212> DNA
<213> Homo sapiens

<400> 9
 ccgaaaagtgt gcacgggagg ccatatgtac cagggactgg ttatgtcctg ggaaaacatt 60
 tgcataaggc tcaaaattgt cttagccatt catgaaagca tgaattctgg ggcagaggta 120
 atagagacaa caaagtccata acaatggaaa gcctacttag aaaatgaagg actgaitggg 180
 cttcagctt tattcactca tttatctgct cccaaacatg catcgagcat ctcgagtgg 240
 gccctgtgtg cattctggta agactggatg gatcaaggga tttcctgccc ttgagaagct 300
 tgcagaatcc tgggagagag atatttccac acatagttac agtatgcct cccgggaaac 360
 tcttgacctg gggaaaagag ccaggaaaga tgtgtttgag ctgtgcctgc ctagatgtca 420
 cttccagtgt gaggagccaa gagaaggtgg cacgatgcag gaggcaagtg gcaaggatcc 480
 tcttatttga gcctagtgtg atgagaaggc agatgtgtta agatgtacat ttcttatgtc 540
 ttttttagct ttttttttc aataagaatg tagtatttga ttgttaggaat aaggcttcaa 600
 taatcaagtt tgcttgtatg cttaatgaga gcatgtgatg cct 643

<210> 10
<211> 542
<212> DNA
<213> Homo sapiens

<400> 10
 agttcgccac tctcagggga cctgggttag tgagacactt acccattctc tccactcaca 60
 gtaaaccaat ctgtgcagtgc cagcagagt ggctcgggtg tgaggtgtcg gggatgtgac 120
 tgagacaccc cccaccccca ccaccactga cagagacaca cgtggacaca gcagataacc 180
 tggcgcttcc ataggtggtg gagcccagca ccagccctgg aaggaggagc agccatccca 240
 gactggggga gggcgtgcc aggtcatatg attcaggagc tgatccccctt ccaggtggag 300
 gggcaggtga gttgggggtg tggtgagtgc aatgggtgggg aggcccggagg agggtaaggt 360
 ggccagagca aagagggggcc ccagaggctg caggtggaat ggtgaatgtc ctgatttctg 420
 ctgtgcctcag cacacagcgg tggtagaaac agagacagag cccaagaata gaggcacacg 480
 gggaaagtaga caacatcgac actgccacag gggcaggcgg cccatctggt gttggccctg 540
 tg 542

<210> 11
<211> 735
<212> DNA
<213> Homo sapiens

<400> 11
 ttgtgtttta tgtttccat taaaaatatt cctctgtgaa gttgaacaaa atattcttaa 60

gtaatcagtt ctacagtcaa acaaaggaag aaaacctctg ctgttataaa ccaaaactgg	120
tgttggatt ggaatgagct tggggaaagca caggcacctc tgaattatat taagatattt	180
caaagtcttt cacttacctg tccacactca ttacagtcat gatggcacta caggcaaati	240
ggttacaagt atccaggat gtgatgatgg tgcagagagg ccccccaaac acccactctc	300
cccctcgggc ccattggta ataagaaaag gcattccaaac tatgtggacc aaatcagcca	360
cagccaggtt gcagatatacg atgtcaggga ctgtttttt cctggatctg aaagagatag	420
aggaaaactga ggattgacat tgaatgtata cagactattc gatatatgct acctcataca	480
aatttttaat tgacataatg cattttaaat gttaaaggaa aacctataca gatgcataga	540
ggaaatgcct agtcttgtgt gtatttaagc attttgaact atttatttga taacttactg	600
gggggggggt taaaaatatg tccacaaaat atttgatatt ccttcagta ggtggagcct	660
aattccctct gagtgctgac cttattaact tgcttctaac atgagaatat ggcagaagtg	720
cagtgtgtga ctttg	735

<210> 12
<211> 712
<212> DNA
<213> Homo sapiens

<400> 12	
ctgctaatttgcagccagtg gaagaagaag cagaggccat tgtggcttga gatgaattct	60
ctgcatggca gcaccaggtt gaggtaaga gggagccagc tgattgtgtt gacaagcacc	120
attgtcatca gcatcttcag ggtctcccttc ttctcccat gctgccagat ataggtgtgg	180
atgctgatgt catcaacagc attatggatc cacagctttt tggccacatg accataaaca	240
accactatgt ccattaatgg caagatgagg aagagaaaa acaattctca ggtcaaggta	300
tttccctgaa gattttgaag tatacggaa actggtagg cagacagttt cttcagctat	360
gtttcttaggt tataagacag acagaaagag aaacatcagc tttgtttttt ccctgagacc	420
tacagccagc tattttatgg aagttggcc gaaggaagat acatatttac tgtttgtgtc	480
tgcattaaatgc taaaatcta gagtaaaaaa tccggagac tttgggttca cctattccag	540
acctctcatg tgatatataa gaaattatg gcccccaaat gtgaagactt atttctaata	600
atcaaatgtc atgagagttt ttggaaaccg ttatggtaaa tcccaagtaa aagaaattta	660
tttttataacc tatatttggaa aatgtactat tccagccct actctgttaag tt	712

<210> 13
<211> 621

<212> DNA
 <213> Homo sapiens

<400> 13
 ttttattacgg cccaatagga agttgaaaca gcaccccaa ggattaaaat ttattatata 60
 aaaccgaatt aataaaagcg tgatttatcga caccacatct ccatttagca acccaaaaagt 120
 tcttcctgtt cccaaatctg aaaaaaaaaa aattcgtaaa aatgccttac gatggatgac 180
 tacagcagac gggctgttga gggctgcctc agctcttcag cccagaccag tgacagagct 240
 accaacactg cttcacctcc tgcagaggta gaggtacagg caatgagagg agggggtcag 300
 ggatatttt tagcccttgc tcattctacc ctcatgccag tcccagcttt atctaccctt 360
 gagtcatatt aagccattca aggatgagtg gatgaagttt ttaatcagga aaaaatactt 420
 ccatgccccca caatttgaga gtaagaaata gaaaatgagg ctattgtggg tgtcatttct 480
 aatttctgga ctcagcctg taccctgggg taagtggaaag tggaaaaaaaaa ctacaagaaa 540
 acagaaagga gtggtgggaa tttgttaaggc ttggatgaga tagtatatat taaagggaa 600
 aacttaatta cttaaccctt a 621

<210> 14
 <211> 586
 <212> DNA
 <213> Homo sapiens

<400> 14
 tttatgacct taaagcattt agcaaactta atatctgacc tacataattt agtctaaatg 60
 tttttatcaa tacttttga agctgtttt atttccaaa gattactaaa gttacataaa 120
 ctaaaaggta ttacagttt tatttgctt tcaagatatt taagtgttta tttttgttta 180
 agccaattaa ttacagccct tttacataaa cattaccac aatacatata tagctacaca 240
 gaaagacaga agaagattac tgcagtaatt gcaagattt ttatttgtca gtttttaagt 300
 ttcttaattt gattactggc ttttagggtgg agcccttggaa aagcagagc cagggaaagga 360
 gtctctggtg ctcctgttt ttcccaagga gctcaggctc taagagcttca aatactgct 420
 tttatataaa ctgatttttta accatagcac tcttaataaa aagttttttt agaatttctt 480
 atgccaatataa gccaatattt ctggtttttga actttatca aaggtaacct cccaggtgct 540
 tagagaagga aaatttaaga cagtccaaagg aggagaagag agtaga 586

<210> 15
 <211> 542
 <212> DNA
 <213> Homo sapiens

<400> 15
tagttgtgaa atcgctatgt aatttataca aatattcagt gttttgtcat attccctcatg 60
atcacatatac aattcagtagc atagcaatgt agggatgaag ttttagtactc taagctcact 120
catgtataca aggatttgt gagcacccat aataagaccc agcacaaaagg tagcactcaa 180
tgaatatttc aggatagatg aggagataga tggacagatg gatggaagga gggaaaggaa 240
aacagaaaagc aaatatgaat aaatgaatga ccacaaccca taaaagactg tatagaatga 300
aacagacatt ctggcctgcc agtactttg aaacctctta aattttaaaa ctcacaaaatg 360
catactgcac aaatgaccca ttcaaggttct gtgagcctga gctctcttga atacttgact 420
gtcttatgac aagtaagtgt agatgaagct ggccctccctc ttgaatgccc tgaggctcat 480
ctacccacat ttatacttgg ttttgcctt caaatccatt caggttaagcc ctataatgaa 540
at 542

<210> 16
<211> 275
<212> DNA
<213> Homo sapiens
<400> 16
aggagagtct gtggagagag gggaaagtggt tggcccagac aacattgagt gagttctaca 60
catcgttgtt gggatgtga tccccatttt atgtaatatt ttccaaggat agaaaagtac 120
ggaataattc tgcagctcat tgtgtggctc ataactcaa ggttactaca acctttatct 180
ccacaccaga caaggacagt aaaggaaaac aaaacaacca catgtcatgg aaatacacat 240
ttatacactt acattatctt taaaaattta gcaag 275

<210> 17
<211> 621
<212> DNA
<213> Homo sapiens
<400> 17
cttatctgga tttttgtgg ttttagtgtt aggtttacct actttgtcta aatgtatagg 60
attatattta tatttaacat ttttcatgtt atttccagga gtggtttggg tctttgttt 120
catccagctt ctgcaaaacc tttgtcatgg caacattcaa agattattca ggcattcatg 180
agtcaaggcg agcacagaca agccctcagg atatattcag acaatgaagc caacagtgtc 240
cagtggtac gatgttatcc ttcacctcac tgttttgctt tttaataggt aagtacatct 300
tttggaaacta taaagtcttt atcgtatctg ttaataaaaat ggaattgtatg agatagacag 360
tggcaatata caattggccg ttaagtcaagt aaagtcaagtc ctttgttatta gtgggttctg 420

catcaaattc agattgaaaa tacagtgttc atggatgtaa aacacctgcataatggagg 480
 tcagcttttc atatacatgg gctctgcagg accaactttg aaatttgagt atgtgtggat 540
 tttggtatcc atggggatcc tggaaaccagt ccccaaggg atactggagg gacaactgtaa 600
 taatatttta ctctgttgc a 621

<210> 18
 <211> 546
 <212> DNA
 <213> Homo sapiens

<400> 18
 cgatgaatac aagagataca gaaactggga gagggAACt tatttcaatc tgatggccc 60
 tggggaaaggc ctaaggagaa ggatggattt tgtggaggc tctaataattt ggcaaaattt 120
 gtagtagaaa gatgttgaa ggagagcatt cctaacatag gaaatagcat ggtcaaaagt 180
 atggaaaagg gaaaatatga gggacatcgaa aagtgaacag tgaatagttt ggcttcttga 240
 gcatacagta tccatgttt tataagcaag agatgaggac tttagtggaaatagatactg 300
 aaaaagtttgc acctataatac tggacagctt tggatatcag gctgaagagt tgtgttttac 360
 tggtgtgccc tgtgtgtttt taatgatttga atttggtcat agaaaacaga tggcaaaggc 420
 agatgaaag aggaagaact gaaagtcaag acaatgaatt aggaaactac tacaataatg 480
 acaggcaggc cgaggcaaag cagtggtgt gctctaataa aaggaaaaaa gtaagagtgtaa 540
 tagtct 546

<210> 19
 <211> 656
 <212> DNA
 <213> Homo sapiens

<400> 19
 acaggatgac attttctgga tatgcacaaa actgaaaaca tttcagatataat tttctataat 60
 tcattttagta taaaaattttt ctggactatg tactgtttca tcttatcaaa tccctcagac 120
 caaattttttagatacata tggcatttaccaccaat ttctttttttt ctttgctgtc 180
 tacagaagtt attagcaggc acatctgtgt acaatataact gtaaaaggat acattgacta 240
 ttcttccgc tccaaagcag ggcctggat gattaccatt ccaagagtat ttctactata 300
 tctatgttag acaacacaga actttatcaa aataatgctt actcattagc cctgtaaagg 360
 cctcccaactg aagttatctt tattcctgaa tacagtataa gatcttaag acctatggac 420
 aaaataagag atctactata tagtcacaa aattgtaaaa tttatatgtatatttttat 480
 acctttatac attacatgt ctgttggaaatactgtgaa cactgataat tttaaagagg 540

cctcatttag tttcattaat gaaaatgata tgcataagta ctgcacactt tcctctttac	600
atgctaaaac ttgaataatg acaaaaatat gctgtacact aagccagaca taattt	656

<210> 20
<211> 689
<212> DNA
<213> Homo sapiens

<400> 20	
taagcatgtg aaatattata aaggctgcct gaaattggtc acatgccagg cccttctccc	60
attactcaca aacctggcta accacatgca aaggaaaggg ccagggccca gctcaggatg	120
ctcatcacag cagaggtgtg ctttggcggt tggcagcacc aggtgggaca gaggacacac	180
agaaagctct caatattcat ggccaccagg agacagagac tcactgtgtc agagaaatag	240
gacacaggct ccagaaacat ggccacctgc aatgtcacct ggtgatacag catgaggatt	300
ttctccaaca ghatcacagt tacacaggag aggttgacca tatcagcagc ggccaggtta	360
aggacatagg tcacgttaggg gctgctcctg acctggaaagc agaaaagcca gcagaccaca	420
ccattgccc ccagcccaca gaaggccacc agcactgtca ghatgaaaac cacctgtttg	480
cccaccaacc actcgccctcc cgtatgactc atgttcaactt gtcctgggt ctctgtcctg	540
ttgtccccat ccagcttccc agagaacact gagagaaact gggccatggg gggctgcctt	600
ggctgcctgg gcacaccctg caaagacaaa gtttgtaac ttaccaggcc taggaaggag	660
agtcaagggtt gccttctgac ctgctggc	689

<210> 21
<211> 596
<212> DNA
<213> Homo sapiens

<400> 21	
agtgttcccg caggaaggcat caaggcctcg ggcgttacag ggcacaccccc agggctgagc	60
tcccagggag aaggaaaaat gtttacac tgactgtgg gcagcctggt acatagctct	120
agaacctact gctgtgtccc aagtttgcac atcttgaag gagtgcacac agcagggaga	180
ggggcccaat agcaagaggt acagaagaag gaaaggagaa cagagagaag atcatctggg	240
gtcgaggaaa aggaaaagtg tatagcttat aagctttatt ttccccataa aatctgcct	300
gattgagcac ataaacatgc aggataacca gtgaaatctg aatttcagat taacaacaca	360
tatggtttcc aggataagta tgccccaggc aatatctgag acataacttag actcaagaaa	420
aaaaaaaaatca gtgtctatcc agaattcaag tgtaactggg tttctgtat tttataggca	480

atcctatatccc cacatcttgc ccccccggct ataatggaaa ccctcaaagg ctgagactgt 540
ttctgccatg tccttcctgc atttccatgt gccactttgc tctgtaatgt agcaca 596

<210> 22
<211> 514
<212> DNA
<213> Homo sapiens

<400> 22
ggggagtggt gtttggttt tgaaaagaac agtaagagtt atcattggtt caaaaattgc 60
ttcttttatt gttttgtca tgattattta gaaggaattt ggaaatctga ttgagcaaaa 120
taaaggacag gcagcttcc atttaaggct atggataata tccccctgtg aatgaaaatg 180
tattcctgca tacagatttgc taggatggtg tttactcagt atcatacataa gcacttgtgc 240
aatgtgggtc aataaacatg tgcagaacac ttagctgac aggttttatg taaatccaaa 300
aagaaacact ggatgttctt atttcactta aaggaaatta aagcaactgt tttatatgcc 360
caaaaacttgt gtgtaattga tagactcaca atacaaatat ttccacttgg aatcaatgt 420
aaaattatgc aaaattgcaa taaaaacttt aaatgaatgc tacttggctt agttacacctt 480
aggctagtgca tttaagtttta attctgcact aact 514

<210> 23
<211> 487
<212> DNA
<213> Homo sapiens

<400> 23
ttatTTTtat tctacttttc cttaacctca aacatTTTtat gttttcttga agcaaattat 60
tttaagtgtt tctgtcatcc tcttcatatc ctTTTATTGAA aaATTTGATG agaggataaa 120
attagtaact ataatGCCAG atggatatttgc aatgtttgtt attctttcac cattctatTT 180
tctttatata tgaatattttt gattcagcat aaATTTTCa catttataac atggccgaga 240
aaatagTTG tattaaaATC atagctggtg cagattttga tttataataa aacatacata 300
atattttAAC caaatttAtta caataagttt tctatcaagt ttttataaa ggataattac 360
taattatCAA tcaaataAtAG taaatgacaa taaatagaaa aaagtataa agtagctcac 420
tttctgtgtt ttccTTTTGT ttttGTTTG ctTTGTTTG tttttgaga cgagTTTG 480
ctcttg 487

<210> 24
<211> 527
<212> DNA
<213> Homo sapiens

<400> 24
ctataaacta ggtggcttaa aacaacaaaa atttattctg ttcttagttct ggaggctagg 60
aagtctaaag gaaaatcaag gcgtcagcag atggaagccc tagatagtct agggaggaat 120
tcttcatttt ttccttgctt ctgggtggctc ccagcaatct tggtattcct tggtttgtag 180
ctgcacatcact ccaatttttg cttcatctt tccatgaact tatttcctgt gtgtgtctct 240
gcacatctcctc tcttttatg ggggccagt tattagattt aaggcccact ctaaccagg 300
atgagctcat cttaacttga ttacatctgc aaagacctta tctccaaata aggtcacctt 360
ctgaggttct tggtagacat acatttggg gggatactat tcaactcatt acaccacaac 420
tccccaaact agagagatag gcaaatacag agaatcacag gttacaggga gcagaagcct 480
cttaatgcaa tacctgatag aaacacttaa acaataattt acacatt 527

<210> 25
<211> 695
<212> DNA
<213> *Homo sapiens*

<400> 25
tcagcaagga tgaaaacaggg tataatccag gaattcaagg ataatataga aaactttaaa 60
gaaaaaaataa cgtaagttagg tgccaaaatg tcatttaaaa ctcatcctgg taaaaaaaaa 120
aaaagattac aagatttagaa atagactttc ttaccccaat gatgagcatg taatcatata 180
ttcaattaaa atatttatttgc agcatacatac cattttcctt gctagtaaaa attaggagca 240
ttcacattaa aatcagagat aggttaagga tgtctgctat tcagagtaat tactatttgg 300
aaggaggagg caatattata attatttcta tatggtatga ttatatact agaaaacgat 360
gagaatcaac tcaaattact cagaatttt aaaaagcgcaa cgaaattacc agatagaggt 420
aaatataaaa aaacccataa cttttctgta tattgataag aatttttagag ataaaaaagg 480
acagattcca ttctttgtca tcatcatcat accacagcaa aatgcaatta aataccatgt 540
atgaatctt acaaggaatg cagagaattt atatggaaaa taacaaaact tcactggcag 600
atgttaagcta tttgaataaaa cggttaataaa tgctatgttc ttagactgaa tgggtttgtt 660
gcttttttgc gatggagtct tgctctgtca tccag 95

<210> 26
<211> 640
<212> DNA
<213> *Homo sapiens*

<400> 26
gtcttaccctc ctctctcttt tctgacctgt cccctctgtc tcatttgtca aatactgagg 60

agctcaggat	agaatccagg	cccttggcgt	ttaccctccc	catttttcc	agcctccgt	120
ccgccttc	caatattccc	tgagcacacc	tggtccccac	aggactcagc	acccgtgtag	180
tactctgtct	ttcatgtata	atgttctct	ctgtttctt	tgcttggaa	actcctaaac	240
atctctcagg	acagagtct	aatatctcta	agaatgctt	ccttagcaac	tctcaatgtc	300
ccttagagcac	ttggttcata	cttatgtgaa	ataacttccc	ttacattaca	catatttatg	360
gatccatttt	ttctccta	ctgttggcgt	gacaaggga	ggcactacat	acatcttctt	420
catcttgga	tagccagagt	aggtgctcac	taaatgttc	ttctaaacgt	tttattttag	480
attcaggggag	cacatgtgca	ggtttggta	ataggtata	tatgtgatgc	tgaggtttgg	540
gcttcttggg	atctcatgc	ccaaactagtg	agcatagta	ctgagaggt	gttttcaac	600
cctggccctc	tcccttcaat	aaatatttct	tgagtgaccc			640

<210> 27

<211> 740

<212> DNA

<213> Homo sapiens

<400> 27

tatttattta	cacaaagatt	ttgagaaatt	aagcaatatt	gaacttgagg	tcactccccc	60
taatgagcct	ctattgcatt	tattctctga	tggtgcttaa	accagagcca	gataggattt	120
aatagactaa	gcaggggaga	gacataacag	ttctttatgt	gggggaagga	gagaaagaga	180
aaaacagagc	ggggaataag	acagaggaca	aaaatgatac	atacagaagg	gattaatgt	240
atagttctct	ttttctctgc	attgaggtag	gacacagaat	tacttaggcc	ctacggtttc	300
acaggaccat	agagaaagca	tatcatccaa	tgaatgaatc	cattaacagt	ggaagttgta	360
cagatctgta	gcaaaaatga	tggtaacaag	actattagcc	gagaaaatag	gtgcaaccca	420
tttaagcgtg	tatgtgtgt	tttatata	taaatatata	taaatatatt	catatatata	480
aatatatttt	tatataaata	tatttatata	aatatatttt	tatataaata	tatttatata	540
aatatattta	tataaatata	tttatatttt	tatatacata	tttatataaa	tatataaaaa	600
tatatttata	taaatatita	tataaatata	taaaaatata	tttatataaa	tatatttata	660
taaatacata	tttattttat	ataaatattt	gtatataaaat	atataaaaat	atttatataat	720
ttatatataaa	atatgttat					740

<210> 28

<211> 646

<212> DNA

<213> Homo sapiens

<400> 28
 ggtgttaacaa cactccaggc agaggaaagt agccatgtt gaaggctctg aagctggaaa 60
 gagcccagcc tggtaagaa actgaaataa ggccaatgcg gctgcagctc aatgaacatc
 gagaagaatg tcctgaaatg aagttggcca gatagggcag cagttagatc acgcaggatc
 ccgaaggtt tagaaagaat ttgggattgt accataagt caatggaaa caaatgaatt
 tcttaaatgg gaatggcata ataaacttta tatttttaag agctctctc aggaactgtg
 cgaagaatat attggacagc acaagaaaca aaacagaagt cctgtcaggt gtattccaga
 tggaagatgg tggtgccctt gattaaagta atggcagaac agatgatgag gagaccattt
 gaagtgaaat tgacacaact tgagtttat agtaagttt aatttagctt ctatccaa
 attcctcaaa gaggttaata cttaaatcc tgagctaaag ttaacctagg caggtctctt
 cataaaagct caagagctaa ctgactatga tgaaatatcg tttcacacccc actaggatac
 ttatattcaa aatatagttaa caatagttag tgtgggtgtg gagaaa 646

<210> 29
 <211> 398
 <212> DNA
 <213> Homo sapiens

<400> 29
 ttttcctggc tcatgctgac cttagtactt tcacccacat tctccccac ctccctgtac
 catcagggac ctaaggaaaa aatcctcccc accctggtgg ctcttgcctt agttccccac 60
 atggtccttc cttgtgcctt caaagtgcct tcattggccc tgaggagggg tggcatcctg
 gcccctgagct tctgtcacct gtgcattggaa acccaagtcc tcacatgcct tggcagggt
 tcccctgggaa ggcttgggtc cagtcctgct ctgggtgact cgggcacctg gctggcagct
 acccaagcac actggcccttc tggctctcat tcccaatccc ctccccaggt cccagctacc
 catgctcatt caagcagcct cccatccgc attgtctt 398

<210> 30
 <211> 626
 <212> DNA
 <213> Homo sapiens

<400> 30
 agtttatgtatatatgttga caggactaca tccaattgaa tagttaaatg cattgtagtc
 ctcaagtctt ggtagaagac ttgagaattt attttttta aatcaaactc gtattcactt
 atattcatgg cattaaacaa agaacaatgg agtgcaccaag tgagttttt ggtctgttt
 ccaaagtgtat cactttgtt tctaaacatc ttctctctac aaagccttct tcctctaagt 60
 120
 180
 240

tctttgatca	gaatgccctg	tacctgacac	agtactaccc	agataggctg	acatgcctac	300
tgtgtgcctt	tttcctccct	agattgagag	cttccatita	tggataataa	ttgttagctaa	360
tatttgttga	agattctcct	atctgccata	gatgcttac	atggattatt	tcattaactc	420
actaaacaat	ctttaaaga	ggtgctactg	tgtccagaat	tagttccttc	tggtgggttc	480
ttggtctcgc	tgacttcaag	aatgaagccg	tggaccctcg	cagtgagtgt	tacagttctt	540
aaagatggtg	tgtctggagt	ttgttccttc	agatgttcag	atgggtctgg	agtttcttcc	600
ttctggtggg	tttgtggct	cgctga				626

<210> 31
<211> 547
<212> DNA
<213> Homo sapiens

<400> 31	tatgcacatg	tgtctatcac	acttttgta	gtgttaagt	agaattcatt	cacatgcata	60
	cacactttca	ttgtaccatt	ctacgtctaa	aaaaaaaaatg	ttgcattcaa	gggtacaaat	120
	aattgaacgt	aatagttgtt	ctgaaaattgt	gctcaaaagc	atatacgata	agagaaagaa	180
	gccagtcaca	aaaggccaca	tattgtataa	ttccatgtat	atgaaatgtc	cagaattgat	240
	aacttcacag	tgttggaaaag	tagattaatg	gttgcctagg	gctgggggccc	agtgggagga	300
	gtgactgcta	atgagtgcgt	gtgtttttt	ggggtgatgg	ctgcacaact	ctctacatat	360
	actaaaaacc	atcaaaatgt	aaaacaaaaac	aagcaaacaa	actacattgc	tttgcaaaat	420
	caatttctga	atcttcgcgt	aaccctccca	tcaccttctc	taaggggagt	ttgtcccttc	480
	cacaggacag	cactgccttc	aaggcttac	caggggtggt	ctcccatgcc	ctcatactgc	540
	tggggct						547

<210> 32
<211> 568
<212> DNA
<213> Homo sapiens

<400> 32	atgaaacttc	ctcacggcac	cagggggtcc	ttatgtactg	gccctaatac	cagctaattcc	60
	tgatggcaac	aaaatcatga	aagtggcccc	cagtgacgtg	agtctccctg	cacagatgca	120
	gagggaaagga	acagtgcagg	agataaatga	ggccagcgtg	gtattcaccc	gaggccaggg	180
	agcctgcgtg	cgaaggtgga	gactcgcatt	gtcttctccc	ccatgtcggc	tcaagtggga	240
	ggccaatgaa	gagaggccca	ggctggataa	tggcaagaag	actgttcaga	gctgagaggt	300

gatgtcagcc ccacagaagg tgagagaagg aaactggggt taatgttatg caatgcctt 360
 agtgctgtga tggagagcct gccgtggaag cacttgggtt ttgttgttgt tggatgggtt 420
 ctttcgttt ctatttttt aatgaagact tcaggaggtt tcaactaagg ttgatgaaa 480
 cacgctgtgt tggttcctgg gttctgctgc ctgctgctgc tggagtgtgg cctctgagcc 540
 agcgccgcgtc cgtcatcaca cctctggg 568

<210> 33
 <211> 642
 <212> DNA
 <213> Homo sapiens

<400> 33
 aaacaaaata gcacttacca tgagtctata ctccaaatat gtgttcaata caaactgtaa 60
 atatcaacac aataatgatt attttaaaa atacaaccag gaagttagca ttccgaagtt 120
 ctggggagaa gccaagtgtc gaggtatatac tggcttgctg cacaatggtg tcaactctca 180
 tttttcttaa aaggggataa aagggAACCT ggtcttctta taaagaaaaac ccactgactt 240
 catgaaaaag tcacatctcc cttgggtatc tattttacct attcaaataa ttagcaagct 300
 tgctattgaa aatgctgaga aatattaata caaactctct caggttaaag atataaagtc 360
 tgtgaaaata catacagCCA tatgattaac acAAACAGTC cttttttta aaaaaaatgg 420
 cattttatt tggttatattg ggtaacaggc agaataaaaa gaaaataaag caatgcatac 480
 aatgaggaa actgcattct gtatttatata aagatttaat tttatcatga gctttgaaac 540
 attctatata gaaaaaaatt gtttagtttt ttttcattt tagtctctga aagaggatcc 600
 tgtatataatc taaaaaccta aatgcaaaact tgtaccagag tt 642

<210> 34
 <211> 512
 <212> DNA
 <213> Homo sapiens

<400> 34
 acagtcctgc aaaatgcaag caccaggga tccgattcta tttattcttg tgatacatag 60
 ttcagtttg gcaaactaat gtttggaa cagttagccaa tgaatttgc ttgtctttta 120
 tgaatataatc ttcaaaagaca aatatttagaa gcagtagtt tagaaagaat tagaagagca 180
 gtgaactcca acatccaaag tttcaaatgt cgtgactgtg tgctgcctat gctaactgtc 240
 tggcatttgc aatatggatg cttagcttaa gacaaaatgc tttccttagtc aaagccccag 300
 aaaattgtct gctatcacag tattgactgc tgtctgtcag caagtatTTT ttccttgctt 360
 agaaaacttca tcaaaatgcc ttctcaaaaaa tcagctgtca cctcccccttc tattcagcta 420

acctcacact gtatcctcct tgggatgcac acttactaat cctcttgagc caagttagac	460
cagggtttgtg gggacgtcag ctcttgccct ct	512

<210> 35
<211> 670
<212> DNA
<213> Homo sapiens

<400> 35	
ttacccttgg attacaggaa gggcatgtgc taaaagcctc ttggagacc cacatggccc	60
tcagatgagc aattgttcag attcctttc ttttctttt ccatggaaat aagctttcct	120
ctctccaaag tacatgtttt aggctttttt attttcttgc tactccaaag gacctggta	180
tattttctt taccatgcat taaacagaat ctgtgagtct ttctggaaa aaaaaaaggc	240
aggagggAAC atactagttt aaaaagttct gggtacacta ccaagatgtt cctattttt	300
gatatacaaa tggcataagt tattgaatgc ttgctataagg cattctctaa gaactttgtt	360
agaattgact tacatgagct acttcatacg agttcgatgtt tatacatgtt gttatttatca	420
ccactttaca gataaggaaa tagagacaga catactgaat gacatgctca acgccactcc	480
actagcaagt ggcagaacca agctgaaac agctggctg actccggagt ctgtgctctg	540
atctatatca cagctatttc tataatgtctt attctactaa tatataatttt ttgaaataca	600
tgaaaaagta attttaatag aatgagatac atattggcaa tattgaagtt ctcatacttt	660
ttgtcctctg	670

<210> 36
<211> 659
<212> DNA
<213> Homo sapiens

<400> 36	
tctcatccca aggaaagaga ggtatttctc cagcctgagt aaaagagcac cacaaggaa	60
caggatctga gacctggag gattaaatat ttccctacggg gagtcgaaaa taagattgtt	120
ataaaagaggt tctcctacta caggttaggag acagccttga gactgtgctg cttccaggaa	180
gagggaagat tcttagaaag gggggatcc cttgagggt tgaagatgaa aagaaagaaa	240
aacatgaccc ctccccacaa aatccctcaa acaaggagt atcaaagaat cagaaaaagt	300
cacattaaag ccctatttct taaagaattt ttctttctg tagcaacaaa agaaagagat	360
tttgaactta gaaccaagta agccactcaa acccattcct cctatctcta tgcttatctg	420
tttagaaaagt ccagctgaaa tagataataa taaacattaa aataacccaa catccaccca	480

aagtttagttt	aaaaagaaaa	tggaaaatga	gaatcaaaac	attacagcag	atgaaaacat	540
acacaaacaa	agacatgaca	cagggaaaact	ataacacaaa	attccaatag	gggcaaaaat	600
acttaaaaaaa	taaaatttag	atattaaaga	tcgacacttt	ctgacaagt	caaaactca	659

<210> 37
<211> 536
<212> DNA
<213> Homo sapiens

<400> 37						
atttacatat	gtataacatt	cccttacagt	gccatatagc	cccctccaaa	attnaatact	60
taaacttttt	gtgtttat	ttccccagtt	gtatacagtc	ccctgaaata	acaaaagctt	120
attnnaagga	tttagaaata	aattaaaatc	ggaaaagact	gtcttaata	aagacatata	180
acttacccac	aaagaagtca	gagatggcca	agttaagaa	aaaataacta	cttcgatgtc	240
taaggttttt	gtccaccaca	aaagctaaaa	tgaccaaagc	atttcctago	attatagcaa	300
aagctactaa	ggacataaaa	aatgctaaag	taacacgagt	gcttagtgat	aaattgattg	360
tgctattagt	atctggcatc	acatcaaatg	atgaagaagg	tcaaattagc	aaattaatcc	420
agccagacaa	ttctgacaag	tatgtttct	aatcacatac	ctaaaatgtg	tagtcttcca	480
ctcaaaacaa	cactggttt	atcta	atgt	catcgat	tacttcctga	536

<210> 38
<211> 543
<212> DNA
<213> Homo sapiens

<400> 38						
aaagtctaaa	atacaggata	atcatgacct	cccaccatcc	accaccctga	aagtcat	60
atgtctcctt	atattattga	acacaatgtc	tcaattcaat	gtcgatcaca	aagccatcca	120
taatttgaac	agcatcctt	ctctccattc	tcccacattt	agtttatgtc	ctggcccacg	180
ctacccttcc	ataagtctac	caacactcca	cattcttca	catccccata	gtttggatgt	240
gctatttaat	ttgtcttctc	caagcatttg	tacttcctgc	caaacacaca	tactttctc	300
tccagaataa	ctcatattca	ttcttgaaga	tttgattcaa	gtttttctc	ctctgggtgc	360
cttctataaa	ccttcttcc	tctgctccaa	tttgggaagt	gctgtccct	ctataactctc	420
atcaaccata	gcagcctagc	ctacgtctat	tatagatttg	tcgtaccttg	ttgtaattaa	480
ctgtatgttt	attaataatg	atagtaatga	taattttgtt	atctgttaggt	aattgaatata	540
aaa						543

<210> 39
<211> 380
<212> DNA
<213> Homo sapiens

<400> 39
tcatcqaaca agaattcctc ataaaagaga ggggatagag gcctgaaaat tttaaataaa 60
gttcaaacct tctaatttagt gattctaaaa ttttaggtgtg taaaacttgag taaagttta 120
gtgtcacctg ataagtgtga agtaaatgaa gaatcttggg ctgtactctc caagtgtctg 180
ggaagtttc aaaaacccat atcctggta aatgcatta atgtatggct gtgtgatatc 240
cattttaatg ttgttgacag ctttggcag agaattctag ctttcccctc tctatatatg 300
taccccttt cctccacaat aattaatttt tagttgaatc aatgactgcc catccaaaaa 360
acaaacaaac aaacaaataa 380

<210> 40
<211> 456
<212> DNA
<213> Homo sapiens

<400> 40
aaaaaaaaaa aaaaaaaaaa aaaggtaat aagtgggag taggAACAC caggtgctta 60
gtatatacta tggcttggtt tgcaaggaat ctgtcaacat ttaagcacaa gtcatctatt 120
aatactatcg tagtcacagt atGCCACAAA AAAACAAATA actcacaacc aacatggtgt 180
acattaaacc agttacataa tatatacaa catatataaa tagtgcaga tataaactaa 240
acattacact caaaaagagt tagaggcttc tgcagaatca tgtgctaaa gaatctatga 300
ctgaaagtac atgttaatg caatgcagga tatgtaaaag ttttaattat ttaaatgtta 360
tacatttgca tttgcagatg ttatTTATA ataagctact gtcctaaag aattttaaaat 420
catctcaatg aagagcaaag aggaaatgag aaaaaaa 456

<210> 41
<211> 399
<212> DNA
<213> Homo sapiens

<400> 41
ccgcctgccc ctgtggcagt gtcgatgttgc tctacttccc cggtgcctc tattcttggg 60
ctctgtctct gttctcaaca ccgctgtgtg ctgagcacag cagaaatcag gacattcacc 120
atcccacctg cagcctctgg ggcccccttt tgctctggcc accttaccct cctcgggcct 180
ccccaccatt gcactcacca caccccaac tcacctgccc ctccacctgg aagggatca 240
gtccctgaat catatgaccc gggcacgccc tccccagtc tggatggct gtcctcctt 300

ccagggctgg tgctgggctc caccacatat gaaagcgcca ggtttatctgc tgtgtccacg 360
 tgtgtctctg tcagtggtgg tgggggtggg gaggtgtct 399

<210> 42
 <211> 619
 <212> DNA
 <213> Homo sapiens

<400> 42
 aataaaaatgg caaacttttt tccttagtagt ttaaaggagt aaacttggtt acccaataag 60
 ataactgtaa gaaaatattc tccagtagcg aaacataaac gcagcaattg caaatgtcca 120
 catatagtagt agatgagtagt acgtatagtagt ttccctctttt agaatgtaaag ctcaggtcaa 180
 ccaatccccat cctctcttta ttccctccag tgcataaga aaaacaatgt ataaatata 240
 gatgctgaat aaataactact gacaaaagta cctttttga aataaagaga aattctacaa 300
 agagagttta ttttgagag tttcccaca caaacttctg gatcagcata ccaataaaaa 360
 acagcactgc atcttggaaat actcaggcaa aactgagtagt atggaaatct taaagtgcctt 420
 cattcatctt ctgaaatagg aaataagcag acattttttt cactgcttaa gatttcctaa 480
 attttttcta aggtaatagt ttagaaagta ccactttgtt tctcccaact ttttagttccc 540
 ttatttagacc aacccgagga ataattttc tactttaaaa gtttttcaa gtcaacatcc 600
 ctggatcta aaacttagt 619

<210> 43
 <211> 473
 <212> DNA
 <213> Homo sapiens

<400> 43
 ccacaactta atagtttagag tgttcagaat ataattcaaa atttcttgac atataaaaaaa 60
 atggaagaca tttcaatcaa aaacaaaatc aaacaagatc agtcccaaga tgaaagagat 120
 cttggaaacta gcaggcaatg attttaaaaa cagtccttat aattattctt aagaaagtaa 180
 aacaaaatat gcccgtgtat agtaaagaga tataaaatct tatcagacac agaaagtaaa 240
 atgaacaaaa tggcaattttt ataaactgaaa tatacattat tggaactaaa agtttcagag 300
 agtagactta atgacacaaaa tccagaagaa agagataaca gaggaaagaa taagtaaact 360
 taatatcagt taataaggat tatccattat acatttagagg gaaaagatgt ggtgaaaaca 420
 gaacagagac tcaggaccag ttaaatatca aatggtataa cagatataa att 473

<210> 44

<211> 588
<212> DNA
<213> Homo sapiens

<400> 44
cattgtatac ctatccitgc acagactgac ttctggcttc ccatttatca tccatttca 60
gttgtcttgg tcttagtggt tgctatctgt tgggccccgt tccacattga ccgactctc 120
ttcagctttg tggaggagtg gagtgaatcc ctggctgctg tgitcaacct cgccatgtg 180
gtgtcaggta aaaccttagc tggatttggt gcatgactag tattcaggta acagcacctt 240
cttcttcatac ttgcttagat gcctaagtac tccaatttat cacggggatc tgccatgcta 300
taatgaagac atttgattt tcttttattc agagattgat tatgtttgat actgttccaa 360
atacatatat accagatcac tatttcaag gctactttat ggaaaacctc aagtctaact 420
gtgatgatta cagaaggaaa atggtcaagg agtgattcct ttggttatcc tccaaatggc 480
catgcaatta aattggttct tatttagtaa acacccatgt ccctggaaat ctcataattgc 540
cttgggaag tattatatcc tcatgaagga aaactaaatg gtattcat 588

<210> 45
<211> 613
<212> DNA
<213> Homo sapiens

<400> 45
ctgaaagtgg gcctttgggc agcttccttt atcctggcat tgcctgtctg ggtctactcg 60
aaggcatca aatttaaaga cggtgtttag agttgtgctt ttgatttgac atcccctgac 120
gatgtactct ggttaagtgt gaaaacttaa gaaaaacgag ttgaattaag ttgtgaagaa 180
cttcattctc cttgtcaaca tgtgagcagc ctcaaagagt atccttatgg atcctcttct 240
cgccagtatc tccatttaggt ttctccacac atacaatcaa ggtgataagt ttgattttta 300
aggagagggt aacctttaga aaaagatttt gaattcaatc atgtaacctc agtggacaca 360
aatatattta aacatggatt ttaaacattc atagcagcca gacgcagtgg gaatgcagca 420
atcaagggag gtaaggaatt tccagagtca ctcagactcc acctcatcag tatgcaattg 480
cagtttgctt gaattatgtc ccctataaag acatgttcaa gtcctacacc agctccccat 540
acctgtgaat gtgatctt attgaaatag gttttttca gatgtaatca agctaagtta 600
agggcatgct gga 613

<210> 46
<211> 728
<212> DNA
<213> Homo sapiens

<400> 46
 ctcctggtt tatatatatt tctgagtctt gtttgttgc tagaatggac tctatttcag 60
 agcttctgct ttttgttct gtgtcacctt gtcatttct aaattgattt gggcaccctt 120
 gggggaaatg gtctgtgaag gacaagggtg caccaaggta ctctgttaggc agggcaggaa 180
 aggagtgagc cttggggcg agcacaagtc aaacacaagc tgggttcttc ctgtccctac 240
 ctccctggag aaatcaggac acttgctgc gggaaagcat gacctgtttt aaccctttgt 300
 ggtgggggtg ttttgttgcata atactgctgt gggaggcac cacccttct tgggttccac 360
 ataggactca tatattcata tttttatac ttattctgcc ctctaatttc tttctgcagc 420
 catctcattc attttcatcc caactaccat tccgtttgt acacttatac ctatattatt 480
 gcctctttat ctcacaagtt gtggtatgtt aaataagtga tgggttgcata ctgttttgc 540
 aaaaaagctc acagtgcattt ctgggggtat ctactaatta atctttacag aatccctatg 600
 agatagatag ggctggatag ggtattcagc acacaattca cttagaccatg ctgtctct 660
 attatgataa aggattatta ttatgttaaa atgtttatac actgaataaca taaatttgc 720
 gagatgt 726

<210> 47
 <211> 578
 <212> DNA
 <213> Homo sapiens

<400> 47
 cctctttaaa attatcagtg ttccacagtat cttccaaaag acatgttaat gtataaagg 60
 ataaaaaaaa tacatataaaa ttttacaatt ttgtgagcta tatagtagat ctcttatttt 120
 gtccataggt cttaaagatc ttatactgtt ttccaggata aagataactt cagtggagg 180
 ccttacagg gctaatttgcattt ttgataaagt tctgtgttgc ctacaataga 240
 tatagtagaa atactcttgg aatggtaatc atcccaggcc ctgctttggc gcggaaagaaa 300
 tagtcaatgt agaactttac agtataattgtt acacagatgt gcctgctaattt aacttctgt 360
 gacagcaaag tttaagagaa attaggtggt aaatgcaaca tatgtatcta aataaatttg 420
 gtctgaggaa tttgataaga tgaaacagta catagtccag aaaattttta tactcaaaga 480
 attatagaaa atatctgaaa tgggttgcata tccagaaaat gtcatcctgt 540
 gatctgctgg ttggcagccc agtggcagta ttagatgt 578

<210> 48
 <211> 469
 <212> DNA

<213> Homo sapiens

<400> 48
taaaaataat acaataaaat gcttgccaga taattctaac atctctgcca tgggggtgtt 60
tttggtctat tgattgcttt ttctcattta agttgattct tagcataatg agtgatttct 120
aattacataa tactttgggt attatgttct aaaactctgg atcttattta aatcctttgt 180
tttatgtgga ctttctgat actactctaa taggaatggg ggtgggggtc actgtgtcat 240
gactgccacg taggggggtgg aagtacagtt tccccacttg acctgtattg atcctggagt 300
gggagtgatc ctcactacaa ctcgggtggg taggagctac tgccccttgt tgggtcccc 360
catataaccac cctggctggg agtggcagga gtgcattgtc attgtgcccc atgtggcctc 420
cgctcacact gtggggagga gtatccttgc tgcccctgag tgggtgtga 469

<210> 49

<211> 637

<212> DNA

<213> Homo sapiens

<400> 49
aggatcagct tggacatgcc cattacaaag caaataagta catgacatgt cataaagcct 60
catgaaattg gtcacatgcc aagcacttct cccagtactc acagacctgg ctaactgcat 120
acaaagaaaag ggccagggcc cacccacca tggcagaggt gtgctctggg cggtggcagc 180
accagggtggg acagagggca cagagaaagc tctcaatact catggccacc aggagacaga 240
gaccactgt gtcggagaaaa taggagacag gatccagaaaa cacagccacc tgcaatgccc 300
cctggtgata cagcatgagg attttctcca gcaggatcac agttacacag gagaggttga 360
ccatatcaac agtggccagg ttaaggatgt aggtcacata gggctgctc cagacctgt 420
agtagagaag ccagcagatc acatcattgc ctaccagtcc acagagggcc accagcactg 480
tcagggagaa gaccacctgc ctgtccacca accactcacc tccctatgg ctcatgttca 540
catgtcctga ggtctcagtc tcattgtccc aatccagctt tccagagagg gttgcgagaa 600
gctaggctat ggtggctac ctggctgc ctgcgca 637

<210> 50

<211> 638

<212> DNA

<213> Homo sapiens

<400> 50
catttgaaat atttctttt taaaaattg ataaaataat gtaatagtat accatttga 60
taatataataa tttatattaa atttcaacaa aaaagcctgt ttgtactaa tatttttaat 120

taattatgg tcctttaaat atctgtcata tttaaaaact gatatcta at ccatctaaac	180
aaaatccact tcaaattcaa aataacctgg aagaaaagca aacaaaataa ccaactttaa	240
gttgtaaaga tgataactat tatcagggat gtgcctgtgt ctgcttctat ttactgtcac	300
attttaggca ttctttctta cttgacagtt cacttctgag tgactaggaa tgaagcttat	360
tttagcctac ttttcccat ttgttttgtt aaaagaagaa acacagagta ttcttgaaaa	420
tccagtggtgg aacattttga tgtttaccat cagcaatatt atgaaatatg tcacatata	480
tctacatctt ttggtaatt atttatgtac ctttcatttt gacactcaaa aatggccact	540
ttttttctg tggatgaaac ccatctatta catccgattt tattctattt caaaactatt	600
ccaatcatca ttcattggac aaacagattc tcaatatt	638

<210> 51
<211> 311
<212> DNA
<213> Homo sapiens

<400> 51	
gcaaaatggt aaggctattt atcacagcac tatctataat agcaaagtct aaaaggataa	60
aaatgtccat ccagtgttgg aagctgaata atctgttttta cattacaca atgaagaata	120
tacactgctt tggaaagtgtat caccaggata aatgaacaaa acaaggtaga aaaggatata	180
tgtataataata tataatcctt taaggaatgg ggaggggcaa atgttaattat atttgcttat	240
atttttaaaa tggaaagttt aacctaaaac taataaaaat gactttacta gtttaactga	300
ctcaaccatt g	311

<210> 52
<211> 570
<212> DNA
<213> Homo sapiens

<400> 52	
ctcctgggcc cggaaagacgg aagactcggt ggcccttaat aaggagtaga ggagtccggtt	60
taccaggtgt gggatgagag aactgccccg acgccccctt tccccacccc aggcaaggaa	120
gtccagctgg ttgggctggc ttagcctctc cctccctgtga aatggaaaac tctctctatg	180
cggagttctg gggactgact tgcctagaga cccctcctgg cccagactag tccccactcc	240
cctctctactg agcttctgag cgtccgacga ggcacagtcc ctcccgtcgt gcagcggaa	300
aacggactcc ccgagaggtt gaggaatttg ctcagagttt cacagtgggg aagacgcca	360
gccaggattt taacgcaagt tgtccagact ccaagggccca gattctcctc tgacattaac	420
gccgtgcccc aggaccatgg actgcttcc ctaacaccca gacagaaaac tgcgatgcct	480

tgggtatgat tgaaagaccc agataaggat cccccttccc aagtgggttg ggccggatgcg	540
gccgctgtcc ccgcgggcgg tgagcgacgc	570

<210> 53
<211> 600
<212> DNA
<213> Homo sapiens

<400> 53	
gcccccca ggaagctttt agaggacaaa aacttagttt ctgcattcat tgctctgtgt	60
aattaaaatt gggagtaatc cccctacaca cagtatgaag gggataacag tagtaaaaaa	120
cctcaaaattt ttctctgtaa attgaagtaa ttgacctggg tggcatctaa atttcgaacg	180
ctcaaaaagg tgagttgacc ttgctgtcta tcaattaccc actgtactct cagatccttg	240
gaaatttctc catatcctct ggaggccttt cagagcagaa atttgcttgg gggtttgtgg	300
gactgagcac tcaggctagt gtagaatgtg gcagagcatc agatcactgc tctgaagacc	360
atccctgtca tagctctggg gttttttt ggaagtggaa ccagagtcat tttccaggct	420
gggatgatga acttgtgagt taactggata cctcagaaca gtggaggcaa acaaggaagc	480
acaggaggct tctgaggtct cttacattgc cctggagcct gtaggcctca ctcatttgc	540
ctcttgtatc atagtttatt tgggtttaa attatttta cggttggatt taaaattttt	600

<210> 54
<211> 720
<212> DNA
<213> Homo sapiens

<400> 54	
aatagtccag actaaaaatt tgattaattt ccaaggtaag aaatatacag ttaattcctg	60
ctaacactaa cacagaaaaa gtgaataaag attatcaaaa acttttttaa taaaagaagc	120
atttctgtag taaaagtgtat taagaagaaa tgaggtaat gagaacaaac tttatgaatc	180
aggagaaaaa taatcatttg taaaaaaaaa tcctcaaattg cagtcattctt atgctaaact	240
ctgctcatat tttttcaat aaacaagcaa tattatatgc aaattattat gtagttaaca	300
tttttgaaaa ttaattata atgaaaagag tttggagttt tttgaaaga cataaattga	360
gtctttattc agataccaac tacatgattt taggcattgac atatgttcta gatcacggat	420
tttcattctgt aaattgggaa agctaatttcc ttttaagat tatgtcccag tacattatttgc	480
catattgtat atactttgc tattgccta attcattgttgc cctgagtttta ttgtataaat	540
tactgagggc caaaatgaag ttgttaaacca acattgaaaa aagaagcaca ctaaaatcaa	600

atagtaagct gaaaaataac tagttaaat ttcatccaga tgtatctgct catatgtcat 660
 tcaaaaatctt cggccaattt ttatttacat taaaaaaaaatg caaatgatat ctgcttagtac 720

<210> 55
 <211> 619
 <212> DNA
 <213> Homo sapiens

<400> 55
 caacatatgt tcccaaattt attcataata atgaatgtaa ctagatcaat ttcttgatgt 60
 acagtattag tccatcagat aactatgcta tatttatcca tcttttatca gtgtgtatTTT 120
 cagctgtttc ccatttgagg taaaggggta tacaaacaat actgctatga acactttca 180
 gcatgactgc aaatattcat gaccaagaat ttctcccaag cagtgtttt caaactgcag 240
 actgcaatct agtaatgggt cattaaatcg atttagttac aataagtggc atttttttaa 300
 acggattata atacaataga aaatatcaag gtaataggca cacattctt gcaatgaaac 360
 tacagttaaa ggaataaaact tataaaacag acatgcttca taaatttattt tctaaatttt 420
 tatcatgttt aagattttta ttgtatttaa atattagtaa attcacattt gatataaaaca 480
 ttttcatata ttaccttaa ttatatgttag taaaaataac ttatcgaaa cttaacttcat 540
 gtgtgtataa tgggtcatga agtaaaatgt acttcagcgt gggggatcat actaacaAAA 600
 gtttgaagaa cacttctct 619

<210> 56
 <211> 659
 <212> DNA
 <213> Homo sapiens

<400> 56
 atgttagattt cacagttagg aaataaattt gccaacattt actagttaat ctttattaag 60
 aacttactga gtgtcaggtt ctgtggtaac acattatgtg cattacgttt gtaaatccc 120
 acaatgaatt aagcagccctt atgattctca tctcacagaa tctagaggtt agtaacttgc 180
 ccaagttaca ctgctggtaa gaagccctac ttcatcaaca acaactacac ttgaaacaat 240
 agcaaaattt aagtgtgaca gtaaactgaa tgcaatatac attacagtat aatttatttt 300
 attacttaca catttcagca aagtgcagt ttctggagt atttatcttgc ttcccataga 360
 tgggtacag ggaattcaat aataagaata gtagccagaa aagaaaaagg cagaaaaactt 420
 aacagttata agaaaaatgaa aaattttagt actttttctt attcccatgc tatatatcat 480
 aatatacagg aaattnaaga aaaatatttt tgattacata acttttaaaa ataataattc 540
 tgggtgttgc aatatgtgtg ttatccatgc tatgagtgtat taatatgtca ttggaaagaaa 600

ggatgttacc cactctaaaa taatgttaga tgacatttat gcactaataa tatgaacca 659

<210> 57
<211> 640
<212> DNA
<213> Homo sapiens

<400> 57		
atagtctagt ggggaggacc cagccaccga ataagaaagc caattcatca atcccatcat	60	
tgcaagtgtt ggtaagtggc aagagggaca acagtataat ggtatgtca caaggactag	120	
aattggtggg ggagagctag tttatatttc atggccagca aaggcttctt tgagcagagg	180	
aattttatc tgagtccaaa cagggggggc acaaccatgc aaagatggc attcaaataa	240	
gagaaattag caaacacaaa agccaagggt ctgtcctaag aaggaaagg aagttgggt	300	
gaagaaaaga gaatcaaaaag tgtgcaggca ggacctcatg gtccagaaga agtctgaatt	360	
tcattctcaa gagactcgga ggcctctata gaatttgagc atggctgtgt agcattttt	420	
tctttttct ttaattttt aattttttt atttgaatac agacatcatt tcaagagact	480	
gaatagcatt ttctaaaggc tactctgacc actggttgtg gaatgactgt gaaggctgt	540	
gggaaagggg gaatgggtgc tcccacaccc tcacactcag cctgittggc atttgcttc	600	
attttgctca agtgcacacag ggcttagatt agagtatct	640	

<210> 58
<211> 637
<212> DNA
<213> Homo sapiens

<400> 58		
ttgcagggtt gtgatacaca tctttattcg aattctgagt atttaactgg ttattttca	60	
tgctaaccctt cattagacag ttctcatgtt caaaacatcc agtctattta agattggatt	120	
ccccaaagaaa atgtgctaca catgtaaaaa tgagtacagg ttgagcatcc caaatccaaa	180	
aatccaaaaa tacaaaatct gaaatgctcc aaaatccaaa agtctttgag tgtcaatgtg	240	
atactcatag gatatgctca atggagcatt ttggatttca gattccaga tttggatac	300	
tcgataagtg taatgtaaat attccaaat caaaacatat ctgaaacctg aaacacttct	360	
attcccaagc atttcagata aggaatactc aacctgtaat ttaaatcaat gccagaagaa	420	
ctattagggg aaaataaaat ttaataacca aagtttagatt ttacagctt aatggcaact	480	
ttagaacatt ttaatagcac aaaagaataa aacagacttt ataatatcat agcaagtaga	540	
aagcaaaata gtaactttat tctatgaatt aaaaagtcac agtatgacat agttcttagg	600	

tttacagcca ctataacaagg gacaaagcca gagccaa

637

<210> 59
<211> 640
<212> DNA
<213> Homo sapiens

<400> 59	
aatggataat gaaaactgagg catatccaca tacaaattat tcggccttaa aaaaaaaagaa	60
tttctgccat ttgtacaac actgaagaac ttggaggaca ttatgtggaa tgaaacaaac	120
cagatacaca caaaaaaacac tgcaggatct cacctgtaag ttaaatctaa agttgagttc	180
atagatgcag agagtagaaat ggcagttatc agggatggga aaatggggag atgctggtca	240
aaggatagaa agcttcagct gtgcaggatg aatacattct acaaatctcg ggtacagcgg	300
tggcctacag ttaacaatgc tgtactgtat atgtaatatt ccctaaggga gtagatctta	360
agtgccttgt cacaaaaaaa gaagaggtaa ctgtgtgaag agagggatgt gttagtcagc	420
taattcacat atagtcacgc tagatgataa caatcagctc actatatata tcaaaacgtc	480
acaccacata cttcagtagc gcaattgtaa tttcaaaaaa ttatggcaaa cattgtaa	540
gttttagtcaa attataaaat aattacatat ctactctgtg accagactgt gtttgatagg	600
gagatgatgt ttctaaaatg gaaagctatc tagtcacata	640

<210> 60
<211> 486
<212> DNA
<213> Homo sapiens

<400> 60	
ttcattttgt gactgtctct cctgcttagtg gctcagctcc acaggggcag gtgctttgtc	60
atcttatttc gtgtggtatac cctgtatcta ggatgcggtg ctggtaactga acaggtgcac	120
agtcagtagt taaggaacaa ttgaatgatg actgctgttc tggccttatg agcttttcc	180
tgtgccttat tgtcatccaa tatttgctat ttataagatg tcaatttttt tttaatgtat	240
aggggttgat gagctgttat ttgggtttat tgaggggtgt ttgggacat ttatctcagc	300
aaaccatggc cacgcctcca tataatgtcc aagagaaaga gcctctaaat gcaatgtgtt	360
ggatgttagc taagtgaaat caccacaaga agctcatgac tcaaattcaca gaggctcaca	420
aggccttagt agaacgggca cctctgggct tgccctgtggg tttcttggt atgtctgtat	480
cgctgt	486

<210> 61
<211> 607

<212> DNA

<213> Homo sapiens

<400> 61

agctctgtcc agagggctca ctaaaaaaac ttgggtttct attaaactag tttcagacca	60
ctgtgttttg ctctgttgaa gcataaaactt caataaaatt aacagtaagt aaacagcagc	120
tatgaagcta tcgggagggtt cgcttcaggg tttgtttcc tttiacattt gcttttaattc	180
aaaccataaaa ggaaaatatt ataccgttagc aagacttagc aataacttag ataaacaggg	240
cctaaacaga tatagataat atagataatt attttctca aatatataatt tcataattata	300
tataattttt tagaactgta tcaaaatgat tacataagta ttatataataa aaaaactatt	360
tttccccaaa tgacaataag cattaccaca gcgc当地t tttgtccacag gaaaaactat	420
cagaaagacc cctttacctt cccttaacca ttaatacaga acaaacacaa caccagcgag	480
tccctgcttg tgtggagtgc ctccataagag aaataagtat tagtaagaca gctgtttctg	540
gataatgggc tcctgtgtct gtgaaaactg ctacaaacca aacagtttag atttttgac	600
ctgacacct	607

<210> 62

<211> 546

<212> DNA

<213> Homo sapiens

<400> 62

aaaagcaaaa tcttgagtca gttgaagcca tgatattttt ttcccttcattt acctttagat	60
agcagtgtca aaaccatgggt ttgttacctat catatttttt tcttttattca atgatattat	120
tataactgggt aatattttgggt agtcaagaga gcatggccctt ggtttggAAC ttccatggat	180
gagttacataa gaatgattttt aatcagcata taatttatata gaatcatata tatataaggat	240
ctagatataat atctacttgc tgacttgccc attcacacat ctctgtgtcc catcagtcct	300
caacagaaaag aggatagcag atattccaga agaaggactt ggaaaaccat cttagagcaag	360
ttgcattttt gatttacaac ctaggaaaca gaattggggaa gccgatcaaa ggatcttgct	420
cctttgcccc agaaaacaaa actgggacac cagcaatgac tttttttttt accataggt	480
tgccttgcaa ttcaatccct tcccgctcc atctctgggg atctttttaagg accagggat	540
ttggga	546

<210> 63

<211> 550

<212> DNA

<213> Homo sapiens

<400> 63
tccctttctg cactctgttt tataactgca gggcctggaa gcctgtatac tccatitgcc 60
agaatccctt accgactggc ttcttagtcaa atttggccaa tgagagttac tggtgagagg 120
aaagacgcca ttctgatctg gcaccagtgg tggaggtgtc tcagtggcca attcggcact 180
ggccacatag ggcctttct gtgaaggttag agaatgggca ctggccacac cgtaacctcc 240
agcagcaaat gcagctagag ggctccagcc taagagtggt agcagctctc tcacatctcg 300
gcagccttcg ttcctttctc ccccagcctt tccaaatgcct ttgcaaccgt ttcccagaat 360
taaatccctt tgtgtttgaa tgatgtacag tgtttttgtt tttcctgatt gggactgact 420
ggctgattat agaccaaagt attcagaagc ttgggaaac caaggggtt ataagtcaaa 480
atagtgtaat gctttctgg aaaccagtct tccctccaaa ctgttatcag gcaaatttta 540
tgcagttctt 550

<210> 64
<211> 598
<212> DNA
<213> Homo sapiens

<400> 64
ttgaaaataaa ctcttctttt tgttttcatt ggaaaagtct cttccctcta ctcacactga 60
aggcttgact catatgagtt tttcccaatg acaccttga taattatttg ataaaaataa 120
tactgtttaa aaaaaaaaaac ctcgctttta ttcttaacca tagttcagtt ttactctgag 180
atatgataat gaagcctatc aaagaatgtt ctccggagt tagttccgtg agctctgggt 240
tccctgtgga aggccacctg tgtgctgctg ctgtggaga atgtaggct tgagtcatct 300
ctttccccctc aagctgccat ccatttctca ccaacttttgc accacctccc agaagtgagc 360
tacagtcatg caatgttttgc gtcaaagact aaccacttat acaatgggg tcccatgaga 420
ttataatact atatttttac tgggttcttt ccatgtttat atattttagat acacagatac 480
ttaccattgt gttacaatttgc cctacaatattccagcgtaa catgctgaat aggtttgttag 540
cctaggagcc ataggctattt ccctatagca tagatgtgca gttaggctcta ccatcatg 598

<210> 65
<211> 716
<212> DNA
<213> Homo sapiens

<400> 65
atctcggggc agcccctaag atgaatgctt ttgggtttgca cttagccttc attagacgtt 60
ccttccacag atacttactg cacactcattt ccaagtcttagt gtactcaggg tacatcagtg 120

aacaaaaccc atacattagt ccgggtccac tgagaagaag atgccatgat aggatgacgt 180
ttcctggaga aagagcaagg aaagacaagg agagcctcac actgtgatgc aggtctgatg 240
cctgcagaag gagacagggga agggaggagg ctggagtag aacagcccttg ggctgaagtg 300
caattccagg aatgctctgg ccccaccagc gggaaattct tgaaccaaag tcacccataa 360
gagagtcgg cattttgcca aatggatccg tgtaatgac cttgtgtgc tcaagctgctg 420
gctggaaaca gcccggtggga agtgtgaact caatatgaat gtgatggtgg gtcccaaggg 480
gtgagctgag acggtgagtc cattgtgctt ctcacagcag agatctgagc cttgcagttt 540
tcatggacac ccctaattgtt ttcatggagt gagagagaca gaaggcactc agtaagcata 600
agaaaatgaat gaataaaatag ataaaggat gatagaagcc tgtaagtatt atgaaaaacc 660
cgggtggca cggagaagga ttgggagtgca caggatgggg agggctgcaa ctgagg 716

<210> 66
<211> 408
<212> DNA
<213> *Homo sapiens*

```
<400> 66
cctggtttaa tggtataaaat ttataatcat aaaaatattt ttaataaaaag attataaacc 60
tttccttaat ggccaactat ttttgaattt ctgccttaat attttgatga tacttttatt 120
tcttcctcaa gacacattac catgtctatc atgtctccctt tcacagtgca gcaccatcat 180
atttccatta acatgtggct ctggacatac aatagatccca actgcacccc taaaaacaca 240
gcggcaatgt ggttagagaaa actgacttaa catagaaaa actatagcct gagctctgct 300
caccaagctg agtattacag agacattatc ctgtttccat ttgatagagt taaagtgtac 360
tcaatcagag agcaagatct aagcttaatg ggtaaaaatt cagagttg 408
```

<210> 67
<211> 576
<212> DNA
<213> *Homo sapiens*

```
<400> 67 ttctgaaact aagcaaaaat gagccttaaa ttgttcagtt ggtgagatag agcagagact 60  
ttggatgatg tagaacatga agatgtatgt atatattcat ttttggaggg gggtaacattc 120  
ctctctggct actataact cctagacaaa aaaatacagt catcaatcac tgattcagtt 180  
aaatatctgc ttggcaacgc gttcacaga taggctatta gaagaaacaa gcaaatgttt 240  
actgagttaca tactgtgttc cagacacagt gtttaggaact ggtggataaa acataaggag 300  
aaggacaaaag actgtccagt ggcagctaca gtcaatggca gggagttatga tcaagtaatt 360
```

ggctaatggc atcactgggt accacagcag tatagggag gaatattcca aactgggag	420
ggatgggag tttggtcagg gaagatttac catagaaaat gctaaatgt aacctgaaag	480
gctagaagca gtttagccaga ttcaaggta gggagaagac ttttttaggc agatgacacc	540
gcatccatgg aagcaagggg tggagggaac cagaag	576

<210> 68
<211> 613
<212> DNA
<213> Homo sapiens

<400> 68 acctcctcaa gacctcatag gattaagtga gatgttgaca cacctcactg cactgagtg	60
caaacattca tccccatccct cctcccacca gtggccaacc acagggcatac tctggttac	120
atgacctacg gcaactcgag gccattcaca gtaaaggcca ctccagatag tgatgtgac	180
actcaacttgc agaggcagga gggtccccgc acacccccc ccaaagggc acacacacag	240
atgaccaaata gcatcccatg aggagagcc acccaaagtc ccttagacta aaaatcgct	300
aacacacaca cacactgttg gagccagtc cgccggagtgg gtgagttt ccctgtccaa	360
ataggtggca gaaaaaaaata ccagggactg acttctctct ggcaaaccaa gacaaacttg	420
ccatagagca tctcagtgcc cagcagagga gagaggaggt catttgggac catttactca	480
tgcgagagtc actgccccat gctaagattt cccctaaaaaa taaaatgata agataataac	540
tcataatgct ctccccaaat cagtaccaca cagacccccc tcttctgttt gctcagaccc	600
ccgctctccaa gca	613

<210> 69
<211> 607
<212> DNA
<213> Homo sapiens

<400> 69 ataatccact ggccttttc tgtggatgc aggcgttcat tctccctcag tggctcaggg	60
aggctgagca gagccatata aacctaggaa gaagcccgta cttgaagcct catgttgtgt	120
ctgtcaagga agtttcaagg ctaggaccag cctccacggg gcagagaagt cgtgctttct	180
gctctgggg ggtgtatgg ctcagttgt catgcaggtg acccaggtga caccagtcag	240
gtggcctctt cctggcattt cagttaaat gtgccttgag ccacatgtca aggcaattga	300
gtgtttggag tcctcaacgt gcccccttcc agtcattctg ctccctgagga tgtgctgttg	360
cctgggttccg agcctgctgc agctccgcgg gcccggccctt ccctgttcac ccaggggagc	420

aggcggtgttc cctccgcagg ggctttagacat ctggcgtcct ttccccctggā ccctccctct 480
 cccccaagcc ctaacccaaat gccactcctt cctgaggctg atggtggctt tgctgtgaggt 540
 gggccctgtc gagcagcaga gaatttctta gaattttcat cgccagatgg ctctgggtta 600
 gggctga 607

<210> 70
 <211> 596
 <212> DNA
 <213> Homo sapiens

<400> 70
 ataaaacaaaaa cgttgatagt ttgaacaaaat gttaaaaaga aaataaaatag gatatgttat 60
 ggagaatgtat tggcagggtg cctatgttag atgaggaaga gtcagagata tagccttct 120
 gaaaaagtga cacttaagat gacaaaagaa gaaataagaa aagccacaag cccagcgtct 180
 caggaacagg attcagcaag tctgaagccc caacgcagaa aagtgtaatg cgtcttctag 240
 gggcatagtg agaaaggggg aacaaaatat gacaaagagg gttgggctgg agaccaaatt 300
 gtggagccgt cagcacaaat atggcattta acattgcagg gaaggaaaag atgaccaga 360
 ggaaaggtgt agatagatga ggcagaaatg agaagaccca gcacacagag gaacagcctg 420
 actttgaagt ctggccagac tttaaagagg aggctggaa ggagggcagt gatggacgag 480
 gaaacagaaa gtacaaccag acaaattgccaa agacaagaga ctgcttctag aatgttaggag 540
 cagccatcag ctgaattcag cttagtaggct gtggaaagggtg gtacaggcac aaacct 596

<210> 71
 <211> 711
 <212> DNA
 <213> Homo sapiens

<400> 71
 aggctgcctg cttcgtgtgg gagaagcaca ggactttctt aactgtgaat tgagcagcag 60
 cattgggtca cgggaaggac acagggacca gcagtcacag cccctgggtgc ctctctgagt 120
 ccctccatct cgaagtgcct gcctggccca cttgtggcct ctcacttggaa gcatgcagtg 180
 ctggaatctt cttagttca gtcttacttt gcccggcag gtatgtttc tctgcagctt 240
 cccttgccaa ggacatccta gagatgggtg atggaacttc caattgtctt taaacccttt 300
 ggataacttggaa aagcctgacc tgggacttgg tacttcagca gaaataaacac aggggagaac 360
 agagtcaagt ccggagttca gttcagtcat caggcagtg agccacaagg tggggcagtt 420
 ttcccagggtg tctcatagtg gctgacttga gccagtgacc tctaaagata gagcagagtc 480
 caaggaatga cctacaaaaga gtgaagggga caggcaagag ctgatagctt tggaccaaga 540

ccacgttccc tggctgggt ccatgatgct ccctcccccc tgttagagggc aggtgaggac	600
catgtggatc ttttgaaaa tacatgtgga tggttgcaaa tgcagaaccg actggtggaa	660
aggcgacaaca tgaacagatg atggaaagtc tggccctcat gggaccatat g	711

<210> 72
<211> 583
<212> DNA
<213> Homo sapiens

<400> 72	
ccacaagtcc ttccctttca cacaacaaac aatatttcta ctaaaataca taaaaggaac	60
agtatttcat ctgttaacag gaaaaaccaa actaaggctc ctttatattt ggcaaggaa	120
aacattctt ggggttaac cttggcttctt gacacttgac aacttcctac agaatgtcat	180
ccatgttagaa ggtgattgag ttaatttagtt gcaaaaagaa gggaaaatta aattaagcag	240
agttgaaata ttaatcaaag gtatactaaa aagttggtat gtttagtgtta tccactctat	300
atagatatgt tcaggtgatg ttttttcata taccattgac tttttttgtg tttgtttact	360
ctgccatgtt ccaggatgcc aggatgcaat attcttcag gcttcttgat aacactagtt	420
ctaattatttc agtaatctaa aaaattatcc atagtagaaag catatatgct ttatgggg	480
ttgaagggtt ggacatatac gcttttctg tggataatta tatttatttt gggtacattt	540
gaaagtattt aacacaaatt tagtggattt agtactagca agt	583

<210> 73
<211> 323
<212> DNA
<213> Homo sapiens

<400> 73	
cattgctgtg tgtgtataag tgaatgacag tgtgtgtgtg tgagagagag agagagagaa	60
tatatgcttt cttttaaagg tattgttcaa gtgaaaacct tcattttaaa atataaaatg	120
agtggctcat taagacccta gaggttctt taagaataca agaggatctc tcattttcat	180
ttcctagaat ttcacacacaca atacacatgc acagtagacaca cgtgcctgtg cgtgcacat	240
cacatacacc ccccacctct gctaataaag caaggccctt tctcactaac ataaggcaat	300
gataaaatca atattcatat tct	323

<210> 74
<211> 536
<212> DNA
<213> Homo sapiens

<400> 74
ttgtttcaaa ttgccagctg cttatgtcag actgactccc ttattatgcc tccagtaggc 60
ctgtcaatat gcccaaacag ctagataagt gcggggcagg acaaaggcct ctttgcacag
caggaggca atgttggtgg gggagggca ggaggttagga aaggcaagag gaggaggttc 120
tttccctgg gagattattc agtttggcat acaattaaag aaatcatttt tagttccac
tcaagcattt aatttttgcc aaccacatac tattaacccc aaatttgata catttcagaa 180
tatcttgtag ggatccattc tcgccaagga aaaataaaaa aataaataaa gctctgtata
ggtaaaaata aaataaaatcc cacactctgc accctcctag gtgcaagtca cctcccgagg 360
agaccgttc tagagctgaa ttctcattaa gaaatggaaa agaatactct atctgaataa
aaacacattt taatacataatg tgtttatttgc ggttgggatt ggacctgaac atgttag 420
536

<210> 75
<211> 674
<212> DNA
<213> Homo sapiens

<400> 75
tccctgggtgc caaaaagggttg cagactgctg ttgttagatga tgaagagaca cagccaagtt 60
aagtgacttg cccagaact gtacagctag gaagttccag agcctgcctt cttagctgct 120
tcactcaagc ttcctgctat gctagagtac catgctaaca gcaggactac agacacacat
gaaacaaaaaa gaatgtaaaaa tgtcacatct gttccaataa tgtgaaatgc caggagctga 180
gagactgcta tgaagggcaa gtctcatggg acattttttc caatgacttt tgtggctgg 240
gaactgtggc cctgcggatg tgccataaaaa aaggaaagca ttgttttctt cccgcagatc 300
atcttaagt tctcagagtt accatttgac ttgacaccat ttatacatgc catgaaatca
tttcattact tgctgctagt actttttggta gtaataacat gtataaattt ggtcataact 360
agagatacat caaatctat ctggcttcca tttcatctct taaaatccca gaagaccaaa 420
tgcttacttc ctggacttt tgtataaaaa acaattacaa aattgtgaag gttactatca
tttttcatca gcaccataaa atcagtaaca aagataagac attattcaga tctactataa 480
aaaactacat tgga 540
674

<210> 76
<211> 523
<212> DNA
<213> Homo sapiens

<400> 76
aaacattttc aagccccat ctagtcaggg ctatcaatta aaagtattttc tagggatgt 60

gtactaatat atgtctaaat ttccttaggc tgccttaagg accataggcc aggtaatctg	120
tcccctcatc cttgtcacta ggatcagagt tctgttacaa atatggaagg agaagttaga	180
tcactgtctg ctctattatt atcatccaaa tgtctacaga tgaggaaact gagggccaga	240
gtggtctaaa ccaagggcat atggtaata ggaggttagag ctgagccttg aagtcaggtc	300
tgcttgcct aaagcctgta ctttagccac tatattatcc tattgcatgc tctataaccac	360
ctttctctgt ctctgtctct gtatttctat ctgtctctca caagaagtat ttttttgct	420
aataattaaa taatgtggat tttttgtgt tgtcattctt cttaaagaac tgtcttgctg	480
ggttcagttt gctctaaccg tggcttctct actccgagag cct	523

<210> 77
<211> 661
<212> DNA
<213> Homo sapiens

<400> 77	
tttgttgtaa agatataaaaa cagtaaaatc ccattgctta aatgggattt tatatgtata	60
taaatggagg aaaagtaacc acgatacaca caaaaatatg aataaagtga tttgagccta	120
ggtagtagaa atatggattt tctttttgt attttatatg tttcctaaat gttctataaa	180
aaacaaatct tacatttacg taagaaaaat aagaaataaa aattattcac aattgagact	240
tttgggttca aaaatacttg aacattacta agaatggta ctatgcagaa acaatttgc	300
attagcagat tacatatgtct ccttggagt gatttctctg tgactttca cactattca	360
caattctgtc ctaggcttta tcaaaatcca tggacatctg atcgaaacaa aaattaacag	420
caatctgcaa aagagctatt agggacatta ctcttgtaa tagatagtca gcactctgg	480
gacagacact gtgttatctt tctcatctt aatttcactg ctgggcttaa cggtgctttg	540
tgcctaccag tgttcaatca ttggattcaa tggtgaatga ctgttaaact cttgtatgtc	600
agagctaatt gctgacaaca ccctacaggg tttgctatga gatgtatata aattgcaatc	660
t	661

<210> 78
<211> 722
<212> DNA
<213> Homo sapiens

<400> 78	
actctttctg tccatctgga gctggcgagc agctggataa aatcagggga gttgatatac	60
ttcggttctct aagtagctca ccaccttaac actccagccc agccaggagc tgttccctg	120
gatgtacgct ggtctgtgtc atctcatctt ctccattatt cttcagcctt ctggctgggg	180

gcttggatt ttcacccct atgaaacaag tgcgtgagaa ttcatgagaa gagactgcca	240
cactaggca gagcaccctc aatagtcaga gactgaaatt aaccataacc agacagcctg	300
catgcctgca gtcaaattat tcattttata gaggaaacac aacagcaatt ttgtgactga	360
aaaagattgc ttagatcagc cctggcaaa accataaaca agaatttagga acaaacaaaa	420
aacaaaacaa aacaaacaca gtgcgttta tagccctcag gatgttcagc tggtggtggc	480
tcacatctgg actgtatgcc accaagaaac attgaaatga gtcttgcta gaggctct	540
ctgagagcca aaagatgaac tagtaacttc ggaaatgtgc aaatgtgtat ctaatgtgag	600
cattctaaag ctgtctgag gaaaagtact taaattggat acctatgttgc tcccaagggt	660
ttataatata cagttgactc ctgaaataatg tgaagataat gggtgcagat ctgccacaca	720
gg	722

<210> 79
<211> 776
<212> DNA
<213> Homo sapiens

<400> 79	
atgatgctta ttaatcattt gtataacttc ttgggagaaa tgtctaacac tttaccatt	60
ttaatgggtt atttgttata ttgtcatttga atttgtatac ttatgtatc tggatacaag	120
ttcccttatca gatatgtggt ttgataacat tttatttcat tgtgtggatt cttttaactt	180
cctgatgtta ttattcatac cacaatgttt cacttgaat gaagttcaat ttatctttt	240
tttttccttt gggtgctgt acttctggta ttaaatctaa aaagtcaatc ataaagacta	300
actcctaagt cttctaagag tggatgtttt ttatcttctt acatttgggt tcaattttat	360
tgttttgcata atttaacacg tataagccaa tacattaatt ctaagccaaat gaatacatgt	420
tcatttagaga aaaatcagaa aatatgtaca tgaaaaaaaaaa taaaacaaaa tacattata	480
attctattta ttcaaaaaca actacttcta gcctgctgg ttagcttcc aaaccattt	540
ttctgtgaat gtattctaat tttgtgtat atatgtatag gtatgcattt atacatttt	600
gtgggattac ataatgcaca tagttgtta gacaggtttt ttctttgtat atattgtaaa	660
catatttgca gatcaatttt ttggacttgg ctttctgaa cttcaagtgt ttcagctgca	720
taagagcaag tacttgcata caatcaaattt aaataatgtt ataaatgcac ttgtta	776

<210> 80
<211> 642
<212> DNA
<213> Homo sapiens

<400> 80
 ctgtggtctt tgttttgtcc atcttcctt ctttaggaaat taaaataaat acttgtccac 60
 attgaccgta tctgcttcac tatggccctt agacataact ttttatttga tgagtgacaga
 aatttaggtct tcctctaact tttctgtgtt gttattcaaa ttttattatct tctaaattca 120
 tatctatgct attccccctt tctatcctac agcatttgca tattctgctc tttgctcttc
 tcaacacaaa agtacatagt gatttcttc tcattctatc tgtgctctgt ttctgatttag 180
 ctcttgagt agggccctt ctgactatca atattttc aatatcttct cactatttac 360
 atttattaaa tctcacattna tattccactg ccatttgata ttttcttgag ttgttaataa
 gtagaacctt ttgatattta tatattttaa atacagtgtt ttttcaaga gcatggaaga 420
 aaaaagtaag cttaaattcaa gttgttaata ttcaatcacc caacaaatgt ttattaagca
 ctgattacat acccagcact cctgttaggat cttagacatgt gagaaatgaa taagcaatca 540
 aaatctctac actcacagag atcaaattct agtcaggaga aa 600
 642

<210> 81
 <211> 657
 <212> DNA
 <213> Homo sapiens

<400> 81
 aactctgtct taaaataata ataataaaaat aaaatataata ttttatataatg gtatataaat 60
 ttgatacatt ttgctttatt tcaggactaa tgtaatgcta cagaaaagga atgactctaa
 actcgcttaa tttctcctga ctataaatag cccttgacca ctttcaactt tcccactgat 120
 aactctataa catagggcaa gttacttgac ctcactgagc ctatttgcc atctataaat
 cagctaatac gacctaactt ataggtttgc tgagaggat aagtaagaca atagagtcta 180
 gcatatggtg gggctcaaca aatatttagta cattacttac acttttttt tcaccctgct
 atgcctttca gtttatttct actaaactct aagttattaa aatacaggct gaagtattat 240
 taatttccct ctgtgttctc cccgggttccct atcacagtgc cagggacaca caggccccat
 aatccttcat ggtcaattga actgacagtg aactatgtct tcgtccattt gggatgctac 300
 aacaaaatac catagaccgg gtgacttata aaccacagaa atgtgtttct ttcgttctg
 gaggtggaa agtccaagat cacggcatttgc tcagatttgc tgcgttgc aggcctg 360
 420
 480
 540
 600
 657

<210> 82
 <211> 625
 <212> DNA
 <213> Homo sapiens

<400> 82
cagcccaactg ctgagtttc ataataatgg aggaacaatg gtcittgaag ttacagataa 60
tccccagtc tcattgttgt catcttttc tgtccaatct ttctctggaa caactagcaa 120
ggatgcaaaa ttgactgtatg atcttctccc ttccccctgct tgaccctgca tacacaccgc 180
ctctcgtaga agtgccaagg agcagtgaaa tgaccaaaag gcagggagta ggagggagag 240
gaaagaaaaaa caaaccaagt gatcaacccc aaatgactga gtgttggctg ttttcttatta 300
tttactcctt tgagctttct cagatgtgtt tttctgagaa gactttcatg ttgtctttc 360
tttcctctct gatagttaac caccaatttc cctgcaatgg gctaagggtg cagagccctt 420
aatgagggtc caggttaggct gccagattct caagacacta aagcacaaca tttccatccc 480
cattctttg aaaacagggct tttaaattgt gcatgaagcc atgtcaatga tgaacaaaaaa 540
tgaaagtcac aaagtagtga gtgaaaattc aaaagcagtt catccatcct cggtatttac 600
atacagcttt aaatatggta gattt 625

<210> 83
<211> 648
<212> DNA
<213> Homo sapiens

<400> 83
ttttctctgc agcttccctt gccaaggaca tcctagagat gggtgatggaa acttccaattt 60
gtctttaaac cctttggata ctggaaagcc tgacctggaa ctgggtactt cagcagaaat 120
aacacagggg agaacagagt caagtccgga ggtcagttca gtcatcaggc agtggagcc 180
caaggtgggg cagtttccc aggtgtctca tagtggctga cttgagccag tgacctctaa 240
agatagagca gagtccaagg aatgacctac aaagagtgaa gggcacaggc aagagctgat 300
agctttggac caagaccacg ttccctgttc tgggtccatg atgctccctt cccctgttag 360
agggcaggtg aggaccatgt ggatctttt ggaaatacat gtggatgttt gcaaatgcag 420
aaccgactgg tggaaaggc gaacatgaac agatgatggaa agtctggccc tcatggacca 480
tatgtgtttg gtggatattt gaccaatatt tggagaagaa ctttgcagat actttctctc 540
attagacatt ctactctctg attctgaatt tgactactt atgtacctga tatcagtgaa 600
ttccagagtg aatcagagtg tagaatagta gtttccagga gctgggat 648

<210> 84
<211> 555
<212> DNA
<213> Homo sapiens

<400> 84

atccagcaga	agcggcgccc	ccaccgcgccc	accaggaaga	ttggcatatgc	tattgcgacc	60	
ttcctcatct	gttttgc	cccc	gtatgtcatg	accagggtgg	tcctggcagt	ccggctcctg	120
ttgtggaaac	agctgggtgg	gcttggc	cctc	agttgagtag	gcctctgagg	tttcccagca	180
agataatctgg	agggcggcca	ccaccagagg	accctcctcc	acacctgacg	ggctcagg	ggc	240
tgtgcttcag	ctcctggaa	agatcctggg	agggagg	tggtggctcc	cattcctgtcc	300	
tataaatgag	gagactctcc	ttgtccaggc	acaggcagat	atggggtctg	tgaatcagca	360	
cctggctctt	taaaccta	aagcttcaa	aatcaggca	cctggacta	actcaggcct	420	
cagactccgc	atctcctggg	cgtggagttg	ggaatctggg	tggaaagctcc	agctggagcc	480	
tcggggcagt	aacactgcca	ggtgagtg	ttt	ctcttttcc	tggagac	ttt	540
ggcctgagtg	tttgt						555

<210> 85

<211> 435

<212> DNA

<213> Homo sapiens

<400> 85

gctaatgctg	tgctcatgtt	agagaaccgg	aatacaagcc	ctgctaagcc	cgttgcaacc	60
acattaagct	tctgcttgga	tgcagaaaagg	gcatatgtcc	tctcattcca	ttggccaaag	120
tccaaagtca	atgcgtcaga	caggatcatc	tactcctcct	gtagaagcac	aggaaagtta	180
tggaaaaatc	gcaaaggatg	tagaaacaaa	ctacagagag	tgaatgagga	aacacaagca	240
agaacccagc	ctcagaaact	ttgcctaaat	acttatgcat	tagaattaca	tcagctatat	300
gtgtcagaaa	gaccaagaga	aaatggctta	aaacaaaggg	agaagtttat	gtctccctca	360
cccaaatgaa	tggtccatgc	tcagtataga	ctttcacaac	gttcaggact	gaagctctt	420
ctacgctgtt	tctca					435

<210> 86

<211> 630

<212> PRT

<213> Homo sapiens

<400> 86

Thr	Ala	Thr	Thr	Thr	Ala	Cys	Thr	Ala	Ala	Ala	Cys	Cys	Ala	Ala	Thr
1					5				10				15		
Cys	Ala	Thr	Ala	Ala	Thr	Thr	Thr	Cys	Ala	Ala	Ala	Thr	Cys	Cys	Cys
					20			25				30			
Thr	Gly	Ala	Ala	Ala	Cys	Ala	Gly	Gly	Gly	Ala	Thr	Cys	Thr	Thr	Thr
					35		40			45					

Gly Gly Cys Thr Ala Cys Thr Thr Thr Cys Thr Ala Thr Thr Ala Ala
50 55 60

Ala Gly Gly Ala Thr Ala Ala Cys Ala Ala Ala Gly Cys Ala
65 70 75 80

Cys Cys Thr Thr Cys Thr Cys Cys Ala Ala Thr Thr Cys Thr Thr Ala
85 90 95

Thr Cys Ala Thr Thr Thr Ala Gly Thr Thr Thr Cys Thr
100 105 110

Thr Thr Thr Thr Ala Cys Thr Thr Cys Thr Ala Thr Cys Cys
115 120 125

Thr Thr Thr Thr Ala Ala Cys Ala Thr Gly Thr Ala Ala Thr
130 135 140

Thr Thr Cys Ala Gly Thr Gly Cys Cys Ala Ala Ala Cys Ala Gly
145 150 155 160

Ala Cys Thr Thr Gly Cys Cys Ala Thr Thr Gly Thr Gly Cys
165 170 175

Thr Cys Ala Cys Cys Ala Gly Cys Ala Gly Cys Thr Thr Cys Cys
180 185 190

Cys Ala Thr Ala Gly Ala Gly Ala Thr Gly Ala Ala Gly Ala Thr Ala
195 200 205

Ala Gly Cys Thr Gly Cys Cys Ala Gly Cys Ala Ala Thr Thr Cys Thr
210 215 220

Thr Ala Ala Cys Thr Ala Thr Gly Gly Thr Cys Thr Cys Ala Ala Thr
225 230 235 240

Gly Gly Gly Cys Cys Ala Thr Cys Ala Thr Thr Ala Gly Ala Gly
245 250 255

Cys Ala Ala Cys Ala Cys Gly Thr Gly Cys Ala Thr Gly Cys Thr Gly
260 265 270

Ala Ala Gly Ala Gly Thr Ala Thr Thr Gly Thr Thr Ala Ala Cys
275 280 285

Cys Thr Thr Ala Ala Cys Thr Thr Gly Ala Ala Thr Thr Gly Ala
290 295 300

Cys Ala Ala Gly Cys Ala Ala Gly Cys Cys Cys Thr Thr Ala Ala Cys
305 310 315 320

Ala Ala Ala Ala Ala Gly Thr Cys Ala Thr Cys Thr Ala Cys Ala Cys
325 330 335

Ala Gly Ala Thr Thr Thr Cys Thr Thr Cys Cys Thr Ala Ala Ala
340 345 350

Thr Gly Cys Cys Thr Gly Ala Gly Thr Thr Thr Ala Thr Thr Thr

355	360	365
Thr Thr Ala Ala Gly Ala Thr	Thr Thr Thr Ala Ala Ala Ala Gly Ala	
370	375	380
Ala Thr Ala Gly Cys Thr Cys Cys Ala Cys Cys	Thr Ala Gly Cys Cys	
385	390	395
400		
Cys Thr Thr Cys Ala Thr Thr Thr Gly Cys Ala Thr Ala Thr Thr		
405	410	415
Thr Ala Thr Thr Thr Ala Cys Thr Thr Ala Gly Ala Cys Thr Gly		
420	425	430
Cys Thr Thr Ala Cys Thr Thr Ala Cys Ala Thr Cys Thr Thr Thr		
435	440	445
Cys Cys Cys Ala Thr Thr Cys Thr Ala Gly Cys Thr Cys Ala Gly		
450	455	460
Ala Ala Thr Thr Thr Thr Ala Thr Gly Ala Gly Gly Ala Ala Ala		
465	470	475
480		
Ala Thr Thr Thr Gly Ala Gly Ala Ala Thr Ala Ala Cys Ala Gly Cys		
485	490	495
Cys Cys Thr Ala Gly Thr .Thr Ala Cys Cys Thr Gly Thr Thr Gly Gly		
500	505	510
Ala Gly Thr Gly Gly Thr Cys Ala Cys Cys Ala Thr Gly Cys Ala Thr		
515	520	525
Thr Cys Thr Thr Thr Ala Thr Ala Thr Gly Gly Cys Ala Gly Cys Thr		
530	535	540
Gly Ala Thr Thr Cys Ala Ala Thr Cys Cys Cys Thr Cys Thr Thr Cys		
545	550	555
560		
Cys Ala Cys Ala Ala Cys Ala Ala Gly Thr Cys Thr Gly Ala Thr Cys		
565	570	575
Thr Ala Gly Ala Gly Ala Gly Thr Cys Ala Ala Ala Gly Gly Ala Ala		
580	585	590
Gly Ala Ala Gly Ala Ala Gly Thr Thr Gly Ala Gly Ala Ala Cys Cys		
595	600	605
Thr Gly Cys Thr Gly Gly Ala Ala Thr Cys Thr Cys Cys Thr Gly		
610	615	620
Thr Thr Ala Gly Cys Thr		
625	630	
<210> 87		
<211> 357		
<212> DNA		
<213> Homo sapiens		
<400> 87		

atttttttt ttaaaagcta gtaacacaca cacacacgag ttctgcaagg cacactatga 60
 aaacagtgc tcctgtccac ttcagtcctc tagttccag aggcaattat tttctttga 120
 ttgtttctt ttggattttt tctccatacc tctaaagctt atattgccac ttcttgattt 180
 tccagtttc aacattgatt tttcaatttt tccatgctgg aagaagagga tttaactact 240
 ttctactatc tttccccgtc actcaatatc acacacacac tccatctctc acccccaccc 300
 tctcaaatatt ttcacttaaa tcaataatca atatttacat cattataatg tgccgtg 357

<210> 88
 <211> 679
 <212> DNA
 <213> Homo sapiens

<400> 88
 ggcctgttcc agacacctta gaaggcaggg ctggcctgg cagtcacac agaactgccc 60
 ttctttccc cagaactctc tccaaagccgc tcccttcctt ggcttctcaa catctctggg 120
 aatatgtggg tgctgttgc cacatgtgtc atcgagacac ccctggccat ggagcttaga 180
 taacttgccc gaaactcatac agctaagagg agacaaaggc agggtgtgac cctgggaggt 240
 tgagctcctt accccactct tccccactgc cctccatggc acccgagtg gttttcttat 300
 tttggtgctg agttcatcct gtcttgggtt acagcttgggt gcttgagttat ctgtcttcct 360
 cgtgatttcc tgagggtctc ttatttacaa gaaaccatgc cacaattga ggaaccacag 420
 aattcaagaa tgaattgaaa aagccctcac cctcaggaag tgtgcactgc tgtgttagcta 480
 tgtgtgagtt tataaatagg tacaatagag gatagagggt gaggagccct cactgggtggt 540
 acagggagaa ctggtgagtt cccacaagag aatggcgccc gcccaggaat gggggagcat 600
 cagctacacc tccttagatca aggactgtgt cccttgacca caccgttat cctgcaagac 660
 actgatttt acaggtgcc 679

<210> 89
 <211> 626
 <212> DNA
 <213> Homo sapiens

<400> 89
 caaaaacagct gaatgctgtg tgaaggctct tgtataaagt tcttaatccc atttaggagg 60
 gaggaacctt cgtgaccta tcacccctt aaaggccca cctctttaat actgatgcac 120
 tggagacgtt tcaacatgaa ttttggagag acagaaacac ccaaaccata acagaaatga 180
 aaagggaaagg gagtgatagg ttgcagaaaa gggagaggtt aaggataaat gagatgtgag 240
 taatgaaaata agagaaccag atgattatta agaatatggt ataccatagt ctgacttcac 300

tactggagta tttctggatg atgcagagta cagacgaagg ggcagggtggc taaaatgtaaag	360
tagagatgag ggtccattgt agttgacagg tcaactaatt gggatacgca tgaaaaatggaga	420
tagtgatcta cctggacatt gaaaatgatc caggataagg gtgcattttt atacgaagaa	480
ggtgactccc tatTTAAGA tgctgtcaac agataattgg tccacaaaaat gggcagaaga	540
ggaaggggagt agacaaagga ctgaatatgt tatctttatc ccctactaca cccgtggttg	600
aaatttgtata aacgaggaat agtaaa	626

<210> 90
<211> 604
<212> DNA
<213> Homo sapiens

<400> 90 agtgcatttgc ttatTTTCT ttcgtctttt ctctgtcatt ttctgttcat ttttggaga	60
agaatgctaa gttactaata taagtagcct tataaatgtt aactcataat tgtcaggaaa	120
tgttacataa gcgaatgtct tctgcgtctt tcaactttttt ggtgcctta tgctggcccc	180
tgctgtccag tgtccacact tactgaaaat tgtccaaac ttccaacctt ttctacttct	240
ctttactccg ccatcaaaac ttacctggca agagaccagg actgttggag tttccctcca	300
caatgccaat gggtaacag acaaataaaa gaaagaagta gttctcttatttatccc	360
ttcatcattt tctggcaatt gacgcaagca tttgaactgg tgctctgtgg gcaatgcctg	420
atttctaggt tccccagctt gggattccaa accctccctg tgtagtcca agctactctc	480
atggacctgt ctctcccagt gtctaaccctc tgcacatcat agcctactct ctagccgcac	540
tggcttctag ctgtgtttcc cacagccacg tggatcttc catcttgcc tggccacaca	600
ctgc	604

<210> 91
<211> 637
<212> DNA
<213> Homo sapiens

<400> 91 tccaccagggt gccaccgctg ctccgtacca tggccagggtc cattttggag gcaccagacc	60
catgataaaag cccaaagctgt gaggaaggag aaaaatttag tgctctcctc tttcttgtag	120
tctgaaagat ggatgtgtgt aaccttgagt cttagaaaa ccttaataaa atggttttta	180
ctcatggtcc ttctctccct aagaaccctt agagctgggg tggaaatgaa tttatgtgac	240
atctactagg catactcaga atcatttgctt tcctccaaaga atgtggtaa actggagcct	300

gtcttttcc tttcttccs ggaagacctc aggaaatctc agtgaagttg taccaagttt	360
tcttgctta ttaacagatc tccagctatc tcaacatgat tttggcttaa attatatata	420
tttacttatac ataatgactg ttagttaat gacttcctgt catatcagct tttagaaagc	480
tataccactt ttagggcaac tgtttcttt ttactatttc tctattggat tttggtacaa	540
ttttctcacc caaaaacact catggcatag tataatataa tataacctat gcacatcctc	600
tcataactt caaatcatct cttagatttata tataata	637

<210> 92
<211> 526
<212> DNA
<213> Homo sapiens

caaagacata ccaagtactt ctcatcttc ttgcttgaa agcctatttc ctgaaatgga	60
tttcagagcc cttcacccct aacttcattt ttcttgagc ctgtatctt atggtaatag	120
ctacagcctc aattcccaat cacctatgaa aggcagacac tttatggaca ttttcttatg	180
aaatcctctg tacttatgaa cttcataga tgtgatgttc agtcccattt tacagatgac	240
gtttcccaga gtttcagtaa gttgccagt ttctaatttt aaaatactca atgtgtgtgt	300
gtgtgtgtgt gtgttgggtt agaatgcagt gctcagagaa ccttaacttt aatgctaaat	360
atgtggcaaa agaatcttga gatattattt ttctcttgat aatttctgtg atttcttttc	420
aactctatcc ccaatcagaa aaggcccttc tgggccaaaa atgaagaggt agatttatgc	480
cagtttaaggt gtggatcatg gaagaggacc catgggtatg actagt	526

<210> 93
<211> 557
<212> DNA
<213> Homo sapiens

aataagtcta gcaaggaaa tatttttagg tgttttatt atttttattt ttttattttt	60
ttgctctgga aactgttagt ccaaactgca ccattttgta accccccagc catttcgcag	120
acctcggtca aagtgaaaca ttccacaggg gttcggctg tgacaaacag cctgccaac	180
cgcttgactc tcttattata ttctgctgga agaaagtgtt aggaacctca cactgcactg	240
gaacaggcac caaactgcct aatcatggga acatgttatac aacattttcc caggcagcag	300
gccatgcccc ctgttccaga cccctccac ctagcctata attgccccag cctgtaagtg	360
gcatggcca ttggcattaa gtcgaggc ttatgctgga cataaagccg gcatttgctg	420
taaagccacc actctctctc tttgtgtctt tcttaaccc tagccttccc ttcaaaaccc	480

aacaaaaact atttataaga caatfffftct tcatacctcca gtaagaacct aattttttgt	540
ttgtttgttt tggtttg	557

<210> 94
<211> 572
<212> DNA
<213> Homo sapiens

<400> 94	
ctgctttatc ttgggattcc agtatatcg cagggattc catgcattca ctccctggcat	60
atcctttgt ggtgagtctg ctaatgcct gtgtcatttt gaaggagaag acgtctgc当地	120
ggccatgatg tgatatgtac tcagtcagc tgggtttgt cagccacagg ccccgccgct	180
ccactaagct tccattccctc ctgttcctcc tgggttcaag aatgtggagc ctggctccct	240
ctgggctcca aaaatgcttc aggctggtc ctgtaaaatc ttaacatttc ctcccacccc	300
tattccctta gcattgccac cttttcata aaataattta tacaactgga aaggaagaaa	360
aaaaatccag tgcaaaaata ccatacgtag aacaacatta tggaaatctcc ttaatgtc当地	420
gaaagctgca ccaggccatt tggaaagatgc attagctaga taagtattaa cagaagggcc	480
tatcacagaa acgttaccca aactaccacc tttttattaag ccccccaggag aactaaaaac	540
cagccattta ctctgatgtc tgagacgggc ct	572

<210> 95
<211> 706
<212> DNA
<213> Homo sapiens

<400> 95	
cttcaaaatt gtaagcttat ttttatataa accctccctaa agataattgc agaagttcaa	60
gtaaaatacc tgacatgaag ttggcaattt catttcatttt ctatcgacac aataacatag	120
tatgacagac ttagtagttc taaacaatac aaatttatta tctcagagtt cttagatca	180
aaagttcaac ataggctcct gagctaaaat caagggtctg taggcctgtg cttcttactg	240
aagggtcttag ggaagaatcc actttcaggt tcatgcatac tgggttctga attctattcc	300
atgcagctat agaatttaaa tccctgtttt ctgtgtggct aaagggtctga atcattttt	360
acctttagag attgtctgct ttccttatct tatggccctt ttatcttcaa agtcagccat	420
catgattcaa gtccttccat aattcatctc ttctgtcatc tattctgaca tgtcttctct	480
gccaaagtctt cactgactga ctcttcttcc ttcttcttatt tgtaaaggcc cacataactaa	540
tccagaataa tccctcttatt taaaatcaa cttattagaa ccttaattcc atcttcaaaa	600

ttgtgtttcc atatatacata acatataccac aggcatitgg cacaagaggg tgacaattat	660
ggcttgtgtt agccataaga taacagcacc taacaggtaa ataacc	706

<210> 96
<211> 733
<212> DNA
<213> Homo sapiens

<400> 96	
atgtgccctg gtgcttccag gaacttaggtg gccccccacc caccgggg ctggcacct	60
tacccagggg agagaataag ctgtgaagct ggctctaggg tgcgaggatg gctggccggg	120
gttgggctgg gaaggagagg ctggccaggc ttcttgctcc tgccccaca ctttcagcct	180
cttccccaac ccttttagcca ctgcttaccc agcaaaggcc accagggcca cagcggata	240
gggagcccag gagagcacga agaggaggat gaccagcagc atgatcttgg ccatttttgc	300
ctcgctctgc agccgctgcc gctgccacag ggactcgcca ttgccttgc aggccccgaa	360
ggtctggaga gccctaggaa ggacgcatacg tccaggtctg accctagtcg ggtggcagtc	420
agcaccaggg tcacggctgc tgttggggag cttctctgga ctatccttgc agggcactcg	480
tgagagtgtc attccttcca gtgcaggcag ccctgacttc cagaaagttt tctgtgacat	540
gaggtctcag ctgcccccta ctcccttgc attctgtgtg cttctctcc tccctctgcc	600
atgccgaaaa gcccggccca gaagcccttg tctcttgagg ctcccttaga cactgtgcc	660
ccataagcac ttgctcagct tgccttcacc cactggtcat gctctggtag gctggtgcaa	720
gtgtgagtgg tgg	733

<210> 97
<211> 475
<212> DNA
<213> Homo sapiens

<400> 97	
acatcgatc ttttaaaagg ctttttaaag ctgataacaa gttacctttg attgcataata	60
aaactctata ttttcctcc tctaactcat cttatgttgc tgatgtcaca atttactact	120
tttatattgc atatgcctt acaaattatt gaatctatta ttattttaa tagtttgg	180
tttcaacctt catactaaag atataagtaa ttgacatatac accattacaa tattaaagtg	240
ttctgaattt gactatgcat ttactttgc ttataagctt tataactctt acgtttatgt	300
gttagtaatt agcatcctt tcttcaggt ttttccaat ataaagaact ctattagcat	360
ttcttgtaag acaggtatgg ttttactgaa ctctctcagc ttttttttgg gaaaacccctt	420
atctctttt ttatcttgcaggcaggctt tgccatgtac agtattcttt tttgg	475

<210> 98
<211> 552
<212> DNA
<213> Homo sapiens

<400> 98
atacatacca tgaaatggtt atgggaggga gataagggat ttaagaattt ctccaggttc 60
ttcagagaga actgagcctc tgggtcttt actcaagaag ttgatctcta gtttagagaat 120
ggcattcatt catactttca ttcattcagt tattcattcc ttcaacaact tttggaaggt 180
actttctgtg tgacaaaacac atcacaaaaca actgtaatat aggctgcaga tacgaaaaca 240
tatttgctgc catgatgttag aaaaaatcac tgcaaacatt ttaaaagttt ggaaaatata 300
gctcagattt aatttttgc ctaagataaa aaaaatcatt gggagataaa agcaatatat 360
gaacatggag ttaatagatt tttcccttt taacatagat aacagtacat agtgattcat 420
ttgtcctctg tcatttggtc ttgaggaaca ctaatgccct aatatgtgt aatgttca 480
acaaatgcta aataaaaaata caggaataaa aatccattaa gcatgtat aatactgtgt 540
aacacttact gt 552

<210> 99
<211> 514
<212> DNA
<213> Homo sapiens

<400> 99
cctgctggcc ggagcagcgg cagggaaagg agacgactgc aaggcattgg aaacggcccc 60
tctgcatcag gaggacaccc tgggtgcagg aggaggcttc gctgaaaagc attgcaacag 120
cattatcaca tacgtggaaa taagaattgc atctcaaccc ttcccttgcc ctccacccat 180
ctaacatgcc tcagccctcc tgtggccata gtaacctgaa cagtaactac agcagcagggc 240
tgcttaggtg ccaggtgtaa gaagagaaat ttcatgaaaa cagggaaaata tagcctgctt 300
ttctccccag ctctaaccctt tcaacctata actactccct actgtat tttgtggatt 360
tgctgatatt gaaggaagat gattgaaaat ctgcttaaga tttcgctttt atttcccgt 420
tgacaggcct agggccccac tgaggaagtg tttctctctg cagagccctc agccacccca 480
tatgtccca ggtatgtgctc aagtacacgag gacc 514

<210> 100
<211> 526
<212> DNA
<213> Homo sapiens

<400> 100
caaagacata ccaagtactt ctcatcttcc ttgccttgaa agcctatttc ctgaaaatggaa 60
tttcagagcc cttcacccct aacttcattt ttccttgagc ctgtatctt atggtaatag 120
ctacagccctc aattcccaat cacctatgaa aggccagacac tttatggaca ttttcttatg 180
aaatccctcg tacttatgaa ctticataga tgtgatgtc agtcccattt tacagatgac 240
gtttcccaaga gtttcagtaa gttgccagt ttctaatttt aaaatactca atgtgtgtgt 300
gtgtgtgtgt ggittgggtt agaatgcagt gctcagagaa ccttaacttt aatgctaaat 360
atgtggcaaa agaatcttga gatattattt ttctcttgat aatttctgtg atttctttc 420
aactctatcc ccaatcagaa aaggcccttc tggccaaaa atgaagaggt agatttatgc 480
cagtttaaggt gtggatcatg gaagaggacc catgggtatg actagt 526

<210> 101
<211> 647
<212> DNA
<213> Homo sapiens

<400> 101
agcacataag gatTTTTTC catGCCCTA tgatttcatt tccaaccaat cagcagcatt 60
caCTGCTAG CCTCCTACCC atgaaattgt acataaaaac CCTGAGCTCA aAGCCTTGG 120
gaagactgat ttgagtaaaa tgcctgattc tcctgtgtgg ccagtctcggt gtcaattaaa 180
ctctctacta caSTGCCATG GTGTCAATGC atcttgcgtc tgcaGTGCGC agaaagaacc 240
caCTGGCAAT tacattacca gtagctatcg ctcttgcgtc cttcaaacag gaaataacttc 300
aacCCCTGGTA agtcaattag ggTTTCTCAT tcatttgcgg agctcctgggt ggcctggcct 360
gagactctct ctgcggctcc tgtaactcag tggccctttt cattctcaga aacattttc 420
ctgaacctgt gtgtccctg CCTCAATCTG tattggctaa tttctaggcc tggtaaataaa 480
ctgtcaatct tgacccccatc ataattacca tctagaaatg ccatttgcgtc ctcattttc 540
tcataatctcc tgcttcctgg attctggaa gtttatgttt tgggtgacaa atatccatct 600
gagaaaaaaaa atacatgaaa cttctttaaa ttctttactc cataata 647

<210> 102
<211> 491
<212> DNA
<213> Homo sapiens

<400> 102
tttattgaaa taacttatac gaaatgactt aagtaatata aaacacatca cacattttat 60
ctgtatgttg aatatcaaaa ttgagattcc tagaaaattc ttatTTCAA aagtatatac 120

ccagattact tgtaaggcatt ggaaagacaa tggctaatca ctcacatTTT ggaaatgaaa 180
 gaaattacct caatcaggac aagtcttag tgtcactcat ttagtggtag atccatgata 240
 gagaatgcaa ttctcagacc aaagattatg gttggccct taactatgcc ttgaataaac 300
 taaacaacctt cccatTTTC agctggagaa cttaaatgt tataggagtg gtcatggc 360
 taagaaaatg tttacagaga gtttatata tttttagaa agctgtttat caggccatga 420
 atgtgctatc cacagagaaa ctatgttttggatatggg aaggaaagga gtaaataagg 480
 caaatgcatt g 491

<210> 103
 <211> 604
 <212> DNA
 <213> Homo sapiens

<400> 103
 acatgttcag tcaattttaa aatgtAACAA aagaaaatga attattatta aattactaac 60
 tactttgttt taggcactga gctaagttagt tgctttgtt taaattcctt taaaaggc 120
 gcactagcct tggctaaat actaagcttc aaagactgaa tggaaatact attgagtaca 180
 tgcatactgt tctcagtatc ttcttccttt ctgatcctt agcaggtcca gaccaagcaa 240
 gtctggtggg gaggagcctg ttctagatct ggagagtccc tgcatccaaat tccaaattggg 300
 tactaagttc actattaggg tgacaggttc aatagaaacc caaacgtcag catcacataa 360
 tataatccatg taacaaacct gcacatgtgc cctagaatct aaaattaaat aaataaataa 420
 ataaataaag cagtggacact gggataggcc atgaatatct actatTTTatg aggatt 480
 aggacagtcc atggatacag tgctttctta aatagaccct caaaattctg catcataaaa 540
 tcctgataact caggagcaat ttgaaggact ccattggta ctggagtgtt tttgagttgc 600
 ttttg 604

<210> 104
 <211> 232
 <212> DNA
 <213> Homo sapiens

<400> 104
 atgatTTTgg gatttaaata ttaccacgga tcccttcttc cttcttgagt ttttctaagg 60
 agtgatagac tggaaacagt aaccatactg aaagtggaaat ttctggatcc atgagggttt 120
 ggcacaaccc aatggagaaa tctggaaaaa gctgaattgg aaaagtggtg tgagactggg 180
 aggttccggg taggctttgg ctcttacttc taagtctgag tcgataggtg tg 232

<210> 105
<211> 524
<212> PRT
<213> Homo sapiens

<400> 105

Thr Thr Ala Gly Gly Ala Thr Ala Cys Ala Gly Cys Cys Ala Thr
1 5 10 15

Thr Cys Ala Thr Gly Gly Thr Gly Thr Thr Cys Ala Thr Gly
20 25 30

Ala Ala Cys Thr Thr Ala Thr Cys Cys Thr Thr Ala Thr Gly Ala
35 40 45

Ala Thr Gly Cys Ala Thr Ala Thr Gly Ala Thr Ala Thr Gly Thr Thr
50 55 60

Cys Ala Thr Thr Cys Ala Cys Cys Thr Cys Thr Thr Thr Gly Thr Ala
65 70 75 80

Gly Ala Ala Ala Gly Cys Thr Thr Gly Ala Thr Cys Gly Thr Thr
85 90 95

Thr Thr Gly Cys Ala Cys Ala Ala Ala Cys Ala Gly Gly Gly Ala
100 105 110

Ala Gly Thr Ala Gly Thr Ala Gly Thr Gly Gly Cys Ala
115 120 125

Gly Thr Ala Thr Gly Gly Ala Thr Thr Thr Gly Gly Gly Ala Gly Gly
130 135 140

Gly Thr Gly Ala Ala Gly Thr Thr Ala Gly Cys Thr Thr Thr Gly Gly
145 150 155 160

Cys Cys Ala Gly Gly Thr Gly Ala Thr Cys Thr Cys Thr Gly Cys Ala
165 170 175

Thr Ala Thr Cys Ala Gly Ala Cys Thr Ala Thr Thr Ala Ala Gly
180 185 190

Gly Cys Ala Gly Cys Gly Cys Cys Thr Thr Ala Cys Ala Gly Ala
195 200 205

Ala Thr Gly Thr Thr Gly Gly Cys Thr Gly Gly Cys Thr Gly Thr
210 215 220

Gly Ala Cys Thr Cys Ala Thr Gly Cys Thr Thr Thr Gly Cys Thr Thr
225 230 235 240

Thr Gly Cys Ala Cys Thr Cys Cys Cys Thr Ala Ala Ala Gly Ala Gly
245 250 255

Gly Cys Thr Thr Thr Ala Thr Gly Thr Ala Thr Cys Gly Cys Cys Thr
260 265 270

Cys Thr Thr Thr Gly Thr Cys Cys Thr Thr Cys Cys Cys Ala Ala

275	280	285
Gly Thr Cys Ala Thr Thr	Gly Ala Ala Ala	Thr Ala Ala Ala
290	295	300
Thr Ala Gly Ala Ala	Gly Ala Gly Ala	Ala Thr Ala Ala
305	310	315
320		
Gly Thr Gly Ala Thr Cys Ala Gly Gly	Gly Cys Thr Cys Thr Ala	
325	330	335
Ala Thr Thr Gly Thr Ala Thr Thr	Thr Ala Thr Thr Gly Cys Thr Thr	
340	345	350
Ala Thr Gly Thr Ala Gly Gly	Gly Thr Thr Gly Thr Ala Gly Thr Ala	
355	360	365
Gly Ala Thr Ala Cys Ala Gly	Gly Ala Thr Gly Thr Thr Cys	
370	375	380
Cys Thr Thr Ala Thr Thr	Cys Thr Thr Ala Thr Gly Thr Cys Thr	
385	390	395
400		
Thr Gly Cys Ala Cys Ala Thr Cys Thr	Gly Ala Ala Ala Thr Gly Thr	
405	410	415
Gly Thr Cys Ala Thr Ala Ala	Ala Ala Ala Thr Gly Ala Thr Ala	
420	425	430
Thr Thr Thr Ala Ala Ala	Ala Ala Cys Thr Ala Ala Ala Cys	
435	440	445
Ala Gly Ala Ala Cys Ala Ala	Cys Thr Ala Gly Thr Thr Thr Gly	
450	455	460
Gly Gly Ala Ala Thr Thr	Gly Thr Cys Thr Ala Cys Ala Thr	
465	470	475
480		
Ala Gly Thr Cys Ala Thr Ala Thr	Gly Ala Cys Thr Cys Ala Thr Cys	
485	490	495
Thr Gly Cys Ala Thr Ala Gly Ala	Thr Cys Cys Thr Ala Ala Thr Ala	
500	505	510
Thr Gly Ala Thr Cys Ala Thr Ala	Gly Cys Thr Thr	
515	520	
<210> 106		
<211> 346		
<212> DNA		
<213> Homo sapiens		
<400> 106		
tcttccttg ttatctta tatcaaactc tataaggaat aggatcacac agtcctaat		60
aaggaggagc ataaggtaaa atcatgcaca gcattttagt tagaaaatat taatctttat		120
gttttcattt ctttagtcttt taaataataa aaatgcatcg aatgtttaa aactttaat		180

attgtaaaag ttatagtaaag acacgttgcc aactagatcc atgcatactaa tttccctgaat 240
 tatagttaat agtttcataat tataaactct tgataaaaagt aataaaataca tggcagatac 300
 acacatgcac atttgttata tataatagta gtccagtgaa cgcttc 346

<210> 107
 <211> 578
 <212> DNA
 <213> Homo sapiens

<400> 107
 ctcacatatt accttcaaag aaacctgtcc taataaaaagc cattcctact ctacttggcc 60
 tccaggattt aaccacttcc tacattcaac catcctggga cctagcttta ctagacttca 120
 attttgacct tatttatctt gccttttgcataaattgctt ctgcgtttcg tgctccattta 180
 aacactaagg ttttgagag caggaactca aaacacttta aattcctctc tcttcataatg 240
 cagttgcttt tgcacagtca atacacagta aatgctgatt gaattgaaag gatctcactc 300
 tttagaatgca attctctcag agtctccaac tagtctagta gcttaaagac caatcctact 360
 taaaaattaa cttgaattgt aagtacaaca aaatcactcc aagttattaa cctaaccatt 420
 gaagtgttta tttcctact tggaaaacca ggtcaaccac agggaccaac ctaccctgga 480
 taggtgactc taaaagtaat gaggtattt ccttcaaaaa tgacaaagct ttcaggattc 540
 tctggaatgc atacccattta atgtgtcacc attaatca 578

<210> 108
 <211> 692
 <212> DNA
 <213> Homo sapiens

<400> 108
 gggcaagggt gatggagggt tgaggagaca ggagaaagtggaaaaagtag ttcgaatcaa 60
 tgaattcatt tttggaatac agtaggatta ccaggtttgt gctcataatt taaagtgaga 120
 ccagtcaaca gtgttgcata ttccttataccatccatc tactcaagcc catgtgtgga 180
 ataaacagac agtctgattc aactaggac ggagtttgcc cgagggcata accactaaac 240
 agaagaaaaa aggagaaagg gaggggtgac tgcactcaaa aaatacaata agtaggtatt 300
 tacctggctt acgttctaaa agctgctgta aatgaaacac tgcttgcata tagtcttgc 360
 ttctgaacat gagatcagcc atcatctata aagataaaaatggttctaa aaatattgccc 420
 atgtatttttca cacaacatgt tcttccatc aagatttagc actagaaaaa tatagatgat 480
 aaacatgagg agggggcagc attttataaa aaggaggcat ttaagattca agcccacctt 540
 gtgcagaata acttgcagat cagtgtaaaca gaagataatc aaggatgtga aacagattgc 600

tctgcttgca aaattgttatt ttttagcaaaaa aatatgttcc tagcaattgt tttaaaaaca 660
 gaaatttcaa ggaattgcac actctatgtg ct 692

<210> 109
 <211> 674
 <212> DNA
 <213> Homo sapiens

<400> 109
 actttgtcct atgcatctt tcccttggtt aatctgtgtc tgtatcctct ccctgtaata 60
 aactgtaatc gcaagtgagc tgctttcagt gagtttttg agtgttccta gtaaatttac 120
 aaacctgaag gggatttggg gaactccttg aatttgcatt tgggtttagg agtgaagaca 180
 atcttgggtg taccgtgttc tctctaactt tatggggttt aggcatggtg ggtggtagag 240
 aatgaagtag gtgtgtaaaa ttaactgtga tctgattctt acctaaaaaa aaactttccc 300
 catagcaggg ctgatataaaa gaagccacaa cttagggttt tcctactttg cacacaaaat 360
 tccaacagtg gaacttctga atgatttact taggaattt catatggaga aatgtttga 420
 aactacaat tctcaccaaa gatttcctaa aatactccaa taaggtgata gactgtaatc 480
 agaactcaca ttacccaaaa aggagatggt attctatttt gaaagtaatt atattactgg 540
 gaaaacaatg ttaccagtt ttaattataa tactggaaac aacagttttt ataaatgttt 600
 ctgaatgaat ttacaatttta aatgaataaa tccttatgcc taaaatgaac actggcaca 660
 ttttaagca ctac 674

<210> 110
 <211> 579
 <212> DNA
 <213> Homo sapiens

<400> 110
 tatacttaag attatttctt tggacactgt tctgttatag taatgtgtct gatcctacag 60
 aagtaccata gtattttaat cattataatt tccaatataa gttatacgtg atagatcaag 120
 ttctttataa tttttcttc ttccagagttt tatctggaaat ttattctggt gtttgatatg 180
 acataaaat ctaatttgc tcccaaacag agtcaagatg attcctgtaa tgttactaat 240
 ttgtgttctg agaaggaaga aaagtggcag cactatggca ctggaaattc tgcataaacc 300
 catgaaagca gtcacccctt tgaacgtgtt tttggtgaa acaagtgttg agaaccattg 360
 ttgtataata gtgctgtcca gtagaactta ctctggtgat gggaaatactc tatacgatgt 420
 ctttccaata tggatttacac tgaccacatg tggctatcaa gtacttgaaa tggcttagg 480

tgactgagga accgaaat~~t~~ tt~~a~~gtcttat ttaat~~t~~gtaa tcagttaaa tttatacaac 540
 tgcatatttt attgaataga gcactttcta gagcatagc 579

<210> 111
 <211> 199
 <212> PRT
 <213> Homo sapiens

<400> 111

Gln Ile Pro Ser Phe Ser Pro Leu Thr Asn Glu Leu Leu Leu Phe Pro
 1 5 10 15

Trp Thr Gly Tyr Glu Ile Arg Gln Phe Asn Pro Leu Ile Tyr Asp Asn
 20 25 30

Gly Arg Asp Val Ala Glu Asn Pro Glu Leu Ser Val Leu Leu Ile Lys
 35 40 45

Thr Thr Leu Val Met Val Thr Lys Gly Lys Tyr Ile Pro Leu Met Ser
 50 55 60

Arg Phe Thr Leu Ser Leu Thr Met Thr Gln Leu Cys Gly Ala Glu Ser
 65 70 75 80

Asn Thr Ala Ser Leu Ile Leu Leu Gln His Lys Ile Tyr Ser Glu Ser
 85 90 95

Asp Lys Trp Ile Asn Leu His Met Asp Glu His Asp Leu Leu Ser
 100 105 110

Lys Val Pro Lys Asp Thr Glu Lys Asn Leu Val Met Leu Leu Asp Asp
 115 120 125

Val Phe Asp Asn Thr Ile Gln Tyr Leu Ser Met Tyr Pro Tyr Asp Ile
 130 135 140

Glu Lys Gly Phe Ser Lys Tyr Phe Asn Leu Asn Arg Phe Thr Lys Arg
 145 150 155 160

Asn His Leu Pro Thr Thr Val Pro Cys Leu Trp Ser Ile Arg Val Ile
 165 170 175

Ile Leu Phe Ser Leu Tyr Tyr Lys Arg Glu Cys Thr Leu Phe Lys Ile
 180 185 190

Asn Asn Ile Asp Tyr Ile Ser
 195

<210> 112
 <211> 231
 <212> PRT
 <213> Homo sapiens

<400> 112

Glu Leu Lys Thr Glu Asn Val Cys Lys Tyr Val Lys Tyr Val Tyr Lys

1	5	10	15
Asn Met Tyr Phe Ser Tyr Phe Lys Ser Phe Ile Leu Tyr Ile Thr His			
20	25	30	
Thr His Thr His Thr His Thr Met Arg Ser Leu Leu Thr Thr Gln Tyr			
35	40	45	
Lys Ile Ile Phe Leu Arg Asn Ile Val Phe Lys Tyr Cys Phe Ile Pro			
50	55	60	
Tyr Lys Ser Asn Leu Trp Leu Phe Tyr Gly Phe His Gln Ala Met Ser			
65	70	75	80
Leu Thr Asn Phe Ala Asn Lys Gly Thr Gln Gly Met Lys Tyr Leu Leu			
85	90	95	
Thr Asn Lys Lys Pro Ser Asn Ser Met Tyr Val Ile Gly Lys Ile Lys			
100	105	110	
Ser Ser Val Asn Ser Ile His Glu Leu Thr Ser Ile Ser Ala Leu Leu			
115	120	125	
Ser Leu Lys Ile Ser Asn Ser Leu Lys Ile Ile Arg Thr His Leu Asn			
130	135	140	
Val Ser Ser Thr Trp Ile Gly Cys Leu Phe Ser Ile Arg Thr Glu Arg			
145	150	155	160
Tyr Leu Leu Asp Ile Phe Tyr Thr His Lys Arg Phe Lys Lys Leu Ile			
165	170	175	
Asn Arg Ser Arg Leu His Val Asn Ser Leu Ser Asp Ser Ser Glu Leu			
180	185	190	
Ser Ile Ala Lys Arg Leu Ser Asn Arg Arg Asp His Ala Leu Ser Phe			
195	200	205	
Leu Arg Gly Pro Cys Cys Ile Thr Val Leu Gln Phe Leu Gln Arg Arg			
210	215	220	
Thr Leu Lys Lys Thr Thr Leu			
225	230		
<210> 113			
<211> 211			
<212> PRT			
<213> Homo sapiens			
<400> 113			
Trp Phe Val Ile Ile Val Gly Cys Phe Ile Ile Thr Phe Tyr Asn Leu			
1	5	10	15
Tyr Ser Phe Ser Ile Thr Tyr Val Ala Ile Ser Met Ser Leu Tyr Leu			
20	25	30	
His Gln Tyr Leu Leu Ile Tyr Ile Glu Ile Lys Phe Ser Leu Gln Arg			
35	40	45	

Ser Arg Arg His Pro Leu Ile Ser His Ile Asp Tyr Trp Leu Leu Thr
 50 55 60

Ser Asn Leu Ser Pro Cys Tyr Val Ala Pro Arg Glu Met Tyr Thr Leu
 65 70 75 80

Leu Ser Gln Val Ile Leu Ile Cys Thr Glu Ser Leu Thr Ser Leu Lys
 85 90 95

Leu Leu Val Val Ser His Tyr Leu Thr Lys Phe Lys Pro Tyr Asp Val
 100 105 110

Gln Thr Leu Ser Trp Leu Phe Phe Pro Ile Leu Leu Tyr Ser
 115 120 125

Phe Tyr Leu Ser Gln Thr Ala Ala Ile Ser Asp Phe Leu Gln Phe Cys
 130 135 140

Lys Ser Thr Lys Trp Leu Cys Arg Ser Asn Tyr Val Phe Thr Tyr Leu
 145 150 155 160

His Leu His Arg Met Leu Phe Leu Ile Leu Cys Phe Ser Gly Glu Asp
 165 170 175

Leu Ile Leu Phe Glu Gly Asn Ala Leu His Lys Asn Ser Ser Phe Ser
 180 185 190

Pro Gln Asn Glu Val Leu Thr Phe Ile Phe Trp Val Leu Thr Leu Asn
 195 200 205

Val His Thr
 210

<210> 114

<211> 159

<212> PRT

<213> Homo sapiens

<400> 114

Ser Arg Tyr Thr Thr Leu Leu Met Lys Ser Ser Tyr Arg Ser Glu Lys
 1 5 10 15

His Phe Phe Pro Thr Asn Leu Ile Leu Glu Leu Asn Thr Leu His Gln
 20 25 30

Val Asp His Lys Leu His Leu Ile Asn Ala Gln Cys Leu Thr Met Ser
 35 40 45

Trp Ile Val Ser Gln Gly Gln Val Lys Ala Cys Thr Arg Gly Glu Val
 50 55 60

Arg Glu His Thr Ala Phe Tyr Lys Ser Thr Ile Val Pro Ile Leu Gln
 65 70 75 80

Trp Leu Leu His Ile Leu Leu Thr Phe Leu Phe Ser Phe Phe Cys Trp
 85 90 95

Phe Ala Leu Asn Pro Pro Leu Ser Lys Asp Ile Arg Met Tyr His Leu
 100 105 110

His Ser Leu Cys Gln Asn Cys Lys Met Pro Phe Ile Phe Leu Asp Met
 115 120 125

Ser Gln Ile Ala Lys Lys Met Lys Ile Leu His Phe Leu Phe Ile Leu
 130 135 140

Ser Pro Gln Thr Ser Ser Thr Cys Phe Ala Val Leu Arg Gly Glu
 145 150 155

<210> 115

<211> 205

<212> PRT

<213> Homo sapiens

<400> 115

Ile Asn Val Ala Asn Asn Lys Asn Leu Phe Cys Ser Ser Ser Gly Gly
 1 5 10 15

Lys Ser Lys Glu Asn Gln Gly Val Ser Arg Met Glu Ala Leu Glu Ser
 20 25 30

Arg Glu Glu Phe Phe Ile Phe Ser Leu Leu Leu Val Ala Pro Ser Asn
 35 40 45

Leu Gly Ile Pro Trp Phe Val Ala Ala Ser Leu Gln Phe Leu Pro Ser
 50 55 60

Ser Phe His Glu Leu Ile Ser Cys Val Cys Leu Cys Ile Ser Ser Leu
 65 70 75 80

Phe Met Gly Cys Gln Leu Leu Asp Leu Arg Pro Thr Leu Thr Gln Tyr
 85 90 95

Glu Leu Ile Leu Thr Leu His Leu Gln Arg Pro Tyr Leu Gln Ile Arg
 100 105 110

Ser Pro Ser Glu Val Leu Gly Arg His Thr Phe Trp Gly Asp Thr Ile
 115 120 125

Gln Leu Ile Thr Pro Gln Pro Pro Lys Leu Glu Arg Ala Asn Thr Glu
 130 135 140

Asn His Arg Leu Gln Gly Ala Glu Ala Ser Lys Cys Asn Thr Lys His
 145 150 155 160

Leu Asn Asn Asn His Ile Ala Gly Gly Trp Ser Val Asp Leu Glu Thr
 165 170 175

Lys Leu Leu Arg Ala Thr Cys Gly Glu Asp Thr His Phe His Lys Phe
 180 185 190

Tyr Leu Glu Pro His Gln Val Leu Met Ile Lys Cys Glu
 195 200 205

<210> 116

<211> 216
<212> PRT
<213> Homo sapiens

<400> 116

Lys Thr Gly Ile Val Leu Asn Ile Phe Ile Leu Leu Leu Val Glu Trp
1 5 10 15

Met Val Ile Lys Leu Gly Gly Thr Lys Arg Lys Ser Leu Gly Ile Gln
20 25 30

Asp Leu Gln Thr Phe Phe Ser Thr Pro Glu Gln His Leu Leu Leu
35 40 45

Cys Cys Tyr Phe Leu Ile Thr Ile Ser Val His Phe Cys Val Ser Gly
50 55 60

Leu Ser Glu Thr Leu Ser Ala Leu Arg Ala Gln Val Cys Gly Cys Leu
65 70 75 80

Cys Val Cys Val Cys Val Cys Ile Tyr Ile Tyr Ile Phe Met Tyr Val
85 90 95

Cys Val Tyr Ser Leu Phe Arg Pro Phe Phe Lys Leu Phe Ala Val Leu
100 105 110

His Leu Arg Ile Tyr Thr Val Phe Tyr Leu Ser Phe Leu Asn Val Tyr
115 120 125

Arg Tyr Lys Thr Glu Tyr Phe Gln Glu Trp Lys Ser Ile Phe Arg Tyr
130 135 140

Ile Ser Gln Tyr His Ala Val Glu Cys Ser Asn Leu Leu Gln Phe Thr
145 150 155 160

Ser Ile Asn Leu Val Gly Asn Cys Gly Lys Val Trp Val Ser Thr Arg
165 170 175

Lys Gln Ile Gln Ala Leu Glu Ile Leu Ile Pro Phe Leu Gly Phe Pro
180 185 190

Phe Gly Leu Leu His Cys Tyr Pro Phe Cys Lys Thr Ser Thr Pro Phe
195 200 205

Val Ser Ile Cys Ser Thr Asn Ala
210 215

<210> 117

<211> 237

<212> PRT

<213> Homo sapiens

<400> 117

Tyr Phe Leu Pro Ala Phe Ile Ser Gly Glu Leu Met Thr Asn Val Lys
1 5 10 15

Asn Glu Glu Leu Arg Leu Lys Ile Leu Glu Thr Arg Tyr Ala Pro Lys

20

25

30

Gln Val Thr Val Met Leu Leu Ser Ile Ala Ile Ile Ser Ala Leu Leu
 35 40 45

Trp Leu Pro Glu Trp Val Ala Trp Leu Trp Val Trp His Leu Lys Ala
 50 55 60

Ala Gly Pro Ala Pro Pro Gln Gly Phe Ile Ala Leu Ser Gln Val Leu
 65 70 75 80

Met Phe Ser Ile Ser Ser Ala Asn Pro Leu Ile Phe Leu Val Met Ser
 85 90 95

Glu Glu Phe Arg Glu Gly Leu Lys Gly Val Trp Lys Trp Met Ile Thr
 100 105 110

Lys Lys Pro Pro Thr Val Ser Glu Ser Gln Glu Thr Pro Ala Gly Asn
 115 120 125

Ser Glu Gly Leu Pro Asp Lys Val Pro Ser Pro Glu Ser Pro Ala Ser
 130 135 140

Ile Pro Glu Lys Glu Lys Pro Ser Ser Pro Ser Ser Gly Lys Gly Lys
 145 150 155 160

Thr Glu Lys Ala Glu Ile Pro Ile Leu Pro Asp Val Glu Gln Phe Trp
 165 170 175

His Glu Arg Asp Thr Val Pro Ser Val Gln Asp Asn Asp Pro Ile Pro
 180 185 190

Trp Glu His Glu Asp Gln Glu Thr Gly Glu Gly Val Lys Ile Val Ser
 195 200 205

Lys Gln Asn Lys Leu Leu Tyr Leu Leu Val Leu Leu Leu Ile Asn
 210 215 220

Ile Ala Asp Phe Thr Asn Tyr Asn Tyr Tyr His Glu Leu
 225 230 235

<210> 118

<211> 216

<212> PRT

<213> Homo sapiens

<400> 118

Leu Leu Pro Tyr Pro Gly Val His Leu Phe Ala Glu Pro Leu Leu Leu
 1 5 10 15

Gly Leu Ser Pro Cys Ser Ser Leu Trp Ser Phe Ser Asn Arg Gly Arg
 20 25 30

Met Ala Ala Asp Pro Leu Pro Pro Ala Arg Arg Arg Asn Arg Arg Gly
 35 40 45

Val Lys Val Pro Asp Gln Ile Gly His Pro Arg Pro Gln Gln Ala Gln
 50 55 60

Gln Cys Thr Ser Val Gln Ala Ala Pro Phe Ala Gly Val Thr Met Pro
 65 70 75 80
 Ser Pro Thr Gly Cys Leu Cys Phe Tyr Gly Asp Phe Cys Thr Leu Ile
 85 90 95
 Leu Thr Arg Cys Thr Asn Gly Val Gly Met Gly Leu Trp Gln Lys Ala
 100 105 110
 Val Ala Ser Val Ile Phe Ala Ser Pro Arg Phe Gln Leu Ser Thr Arg
 115 120 125
 Pro Leu Val Ala His Phe Leu Leu Ile Thr Phe Val Pro Val Asp Pro
 130 135 140
 Asp Tyr Ser Leu Cys Ser Ala Ala Leu Gly Gly Leu Ser Leu Val Ala
 145 150 155 160
 Ser Arg Pro Leu Leu Trp Ser Lys Ser Pro Ala Lys Leu Asn Ser Ser
 165 170 175
 Val Val Gln Asn Arg Phe His Leu Gln Glu Lys Asn Lys Met Thr Gln
 180 185 190
 Ile Val Thr His Pro Asn His Thr Val Gln Arg Val Lys Val Asp Ile
 195 200 205
 Ala Ala Ala Ser Arg Leu Asp Ile
 210 215
 <210> 119
 <211> 208
 <212> PRT
 <213> Homo sapiens
 <400> 119
 Glu Ser Val His Gly Arg Pro Tyr Val Pro Gly Thr Gly Tyr Val Leu
 1 5 10 15
 Gly Lys His Leu His Lys Ala Gln Asn Cys Leu Ser His Ser Lys His
 20 25 30
 Glu Phe Trp Gly Arg Gly Asn Arg Asp Asn Lys Val Ile Thr Met Glu
 35 40 45
 Ser Leu Leu Arg Lys Arg Thr Asp Trp Ala Ser Ala Phe Ile His Ser
 50 55 60
 Phe Ile Cys Ser Gln Thr Cys Ile Glu His Leu Glu Trp Ser Pro Val
 65 70 75 80
 Cys Ile Leu Val Arg Leu Asp Gly Ser Arg Asp Phe Leu Pro Leu Arg
 85 90 95
 Ser Leu Gln Asn Pro Gly Arg Glu Ile Phe Pro His Ile Val Thr Val
 100 105 110

Cys Pro Pro Gly Glu Leu Leu Thr Trp Gly Lys Glu Pro Gly Lys Met
 115 120 125

Cys Leu Ser Cys Ala Cys Leu Asp Val Thr Ser Ser Val Arg Ser Gin
 130 135 140

Glu Lys Val Ala Arg Cys Arg Arg Gln Val Ala Arg Ile Leu Leu Phe
 145 150 155 160

Glu Pro Ser Val Met Arg Arg Gln Met Cys Asp Val His Phe Leu Cys
 165 170 175

Leu Phe Leu Phe Phe Phe Asn Lys Asn Val Val Phe Asp Cys Arg Asn
 180 185 190

Lys Ala Ser Ile Ile Lys Phe Ala Cys Met Leu Asn Glu Ser Met Cys
 195 200 205

<210> 120

<211> 179

<212> PRT

<213> Homo sapiens

<400> 120

Thr Gly Pro Thr Pro Asp Gly Pro Pro Ala Pro Val Ala Val Ser Met
 1 5 10 15

Leu Ser Thr Ser Pro Cys Ala Ser Ile Leu Gly Leu Cys Leu Cys Ser
 20 25 30

Gln His Arg Cys Val Leu Ser Thr Ala Glu Ile Arg Thr Phe Thr Ile
 35 40 45

Pro Pro Ala Ala Ser Gly Ala Pro Leu Cys Ser Gly His Leu Thr Leu
 50 55 60

Leu Gly Pro Pro His His Cys Thr His His Thr Pro Asn Ser Pro Ala
 65 70 75 80

Pro Pro Pro Gly Arg Gly Ser Val Pro Glu Ser Tyr Asp Leu Gly Thr
 85 90 95

Pro Ser Pro Ser Leu Gly Trp Leu Leu Leu Pro Gly Leu Val Leu
 100 105 110

Gly Ser Thr Thr Tyr Glu Ser Ala Arg Leu Ser Ala Val Ser Thr Cys
 115 120 125

Val Ser Val Ser Gly Gly Gly Gly Arg Cys Leu Ser His Ile Pro
 130 135 140

Ser Thr Ser His Pro Ser His Ser Ala Ala Thr Ala Gln Ile Gly Leu
 145 150 155 160

Leu Val Glu Arg Met Gly Lys Cys Leu Thr His Pro Gly Pro Leu Arg
 165 170 175

Val Ala Asn

<210> 121
<211> 233
<212> PRT
<213> Homo sapiens

<400> 121

Lys Ser His Thr Ala Leu Leu Pro Tyr Ser His Val Arg Ser Lys Leu
1 5 10 15

Ile Arg Ser Ala Leu Arg Gly Asn Ala Pro Pro Thr Glu Arg Asn Ile
20 25 30

Lys Tyr Phe Val Asp Ile Phe Leu Thr Pro Pro Val Ser Tyr Gln
35 40 45

Ile Asn Ser Ser Lys Cys Leu Asn Thr His Lys Thr Arg His Phe Leu
50 55 60

Tyr Ala Ser Val Val Phe Leu His Leu Lys Cys Ile Met Ser Ile Lys
65 70 75 80

Asn Leu Tyr Glu Val Ala Tyr Ile Glu Ser Val Tyr Ile Gln Cys Gln
85 90 95

Ser Ser Val Ser Ser Ile Ser Phe Arg Ser Arg Lys Lys Thr Val Pro
100 105 110

Asp Ile Tyr Ile Cys Asn Leu Ala Val Ala Asp Leu Val His Ile Val
115 120 125

Gly Met Pro Phe Leu Ile His Gln Trp Ala Arg Gly Glu Trp Val
130 135 140

Phe Gly Gly Pro Leu Cys Thr Ile Ile Thr Ser Leu Asp Thr Cys Asn
145 150 155 160

Gln Phe Ala Cys Ser Ala Ile Met Thr Val Met Ser Val Asp Arg Val
165 170 175

Lys Asp Phe Glu Ile Ser Tyr Asn Ser Glu Val Pro Val Leu Pro Gln
180 185 190

Ala His Ser Asn Ser Asn Thr Ser Phe Gly Leu Gln Gln Arg Phe Ser
195 200 205

Ser Phe Val Ser Leu Asn Leu Leu Lys Asn Ile Leu Phe Asn Phe Thr
210 215 220

Glu Glu Tyr Phe Trp Lys Thr Asn Thr
225 230

<210> 122
<211> 223
<212> PRT
<213> Homo sapiens

<400> 122

Leu Thr Glu Gly Leu Glu Tyr Ile Ser Lys Tyr Arg Tyr Lys Asn Lys
 1 5 10 15

Phe Leu Leu Leu Gly Ile Tyr His Asn Gly Phe Gln Leu Ser His Leu
 20 25 30

Ile Ile Arg Asn Lys Ser Ser His Leu Gly Ala Ile Ile Ser Leu Tyr
 35 40 45

Ile Thr Glu Val Trp Asn Arg Thr Gln Ser Leu Pro Asp Phe Leu Ile
 50 55 60

Leu Ser Leu Met Gln Thr Gln Thr Val Asn Met Tyr Leu Pro Ser Ala
 65 70 75 80

Lys Leu Pro Asn Ser Trp Leu Val Ser Gly Lys Arg Gln Ser Cys Phe
 85 90 95

Ser Phe Cys Leu Ser Tyr Asn Leu Glu Thr Leu Lys Lys Leu Ser Ala
 100 105 110

Tyr Pro Val Ser Arg Ile Leu Gln Asn Leu Gln Gly Asn Thr Leu Thr
 115 120 125

Glu Leu Phe Leu Leu Phe Leu Ile Leu Pro Leu Met Ala Leu Val Val
 130 135 140

Val Tyr Gly His Val Ala Lys Lys Leu Trp Ile His Asn Ala Val Asp
 145 150 155 160

Asp Ile Ser Ile His Thr Tyr Ile Trp Gln His Gly Glu Lys Lys Glu
 165 170 175

Thr Leu Lys Met Leu Met Thr Met Val Leu Val Tyr Thr Ile Ser Trp
 180 185 190

Leu Pro Leu Asn Leu Tyr Leu Val Leu Pro Cys Arg Glu Phe Ile Ser
 195 200 205

Ser His Asn Gly Leu Cys Phe Phe His Trp Leu Ala Ile Ser
 210 215 220

<210> 123

<211> 195

<212> PRT

<213> Homo sapiens

<400> 123

Phe Ile Thr Ala Gln Glu Val Glu Thr Ala Pro Ser Arg Ile Lys Ile
 1 5 10 15

Tyr Tyr Ile Lys Pro Asn Lys Arg Asp Tyr Arg His His Ile Ser Ile
 20 25 30

Gln Pro Lys Ser Ser Ser Cys Ser Gln Ile Lys Lys Lys Asn Ser Lys
 35 40 45

Cys Leu Thr Met Asp Asp Tyr Ser Arg Arg Ala Val Glu Gly Cys Leu
 50 55 60
 Ser Ser Ser Ala Gln Thr Ser Asp Arg Ala Thr Asn Thr Ala Ser Pro
 65 70 75 80
 Pro Ala Glu Val Glu Val Gln Ala Met Arg Gly Gly Gly Gln Gly Tyr
 85 90 95
 Phe Leu Ala Leu Ser His Pro Thr Leu Met Pro Val Pro Ala Leu Ser
 100 105 110
 Thr Leu Glu Ser Tyr Ala Ile Gln Gly Val Asp Glu Val Phe Asn Gln
 115 120 125
 Glu Lys Ile Leu Pro Cys Pro Pro Ile Glu Glu Ile Glu Asn Glu Ala
 130 135 140
 Ile Val Gly Val Ile Ser Asn Phe Trp Thr Ser Ala Cys Thr Leu Gly
 145 150 155 160
 Val Glu Val Glu Lys Asn Tyr Lys Lys Thr Glu Arg Ser Gly Gly Asp
 165 170 175
 Leu Gly Leu Asp Glu Ile Val Tyr Ile Lys Gly Glu Asn Leu Ile Thr
 180 185 190
 Leu Pro Leu
 195
 <210> 124
 <211> 188
 <212> PRT
 <213> Homo sapiens
 <400> 124
 Phe Met Thr Leu Lys His Leu Ala Asn Leu Ile Ser Asp Leu His Asn
 1 5 10 15
 Leu Val Met Phe Leu Ser Ile Leu Phe Glu Ala Val Phe Ile Ser Gln
 20 25 30
 Arg Leu Leu Lys Leu His Lys Leu Lys Gly Ile Thr Val Phe Ile Leu
 35 40 45
 Leu Ser Arg Tyr Leu Ser Val Tyr Phe Cys Leu Ser Gln Leu Ile Thr
 50 55 60
 Ala Leu Leu His Lys His Tyr Pro Gln Tyr Ile Tyr Ser Tyr Thr Glu
 65 70 75 80
 Arg Gln Lys Lys Ile Thr Ala Val Ile Ala Arg Phe Phe Ile Cys Gln
 85 90 95
 Phe Leu Ser Phe Leu Ile Gly Leu Leu Ala Leu Gly Trp Ser Pro Trp
 100 105 110

Lys Ser Arg Ala Arg Lys Gly Val Ser Gly Ala Ser Cys Phe Ser Gln
 115 120 125

Gly Ala Gln Ala Leu Arg Ala Ser Ile Ser Ala Phe Asn Thr Asp Phe
 130 135 140

Pro His Ser Leu Ile Lys Val Leu Leu Glu Phe Leu Met Pro Asn Ser
 145 150 155 160

Gln Tyr Phe Trp Phe Leu Asn Phe Ile Lys Gly Asn Leu Pro Gly Ala
 165 170 175

Arg Arg Lys Ile Asp Ser Pro Arg Arg Arg Glu
 180 185

<210> 125

<211> 172

<212> PRT

<213> Homo sapiens

<400> 125

Phe His Tyr Arg Ala Tyr Leu Asn Gly Phe Glu Gly Gln Asn Gln Val
 1 5 10 15

Met Trp Val Asp Glu Pro Gln Gly Ile Gln Glu Glu Gly Gln Leu His
 20 25 30

Leu His Leu Leu Val Ile Arg Gln Ser Ser Ile Gln Glu Ser Ser Gly
 35 40 45

Ser Gln Asn Leu Asn Gly Ser Phe Val Gln Tyr Ala Phe Val Ser Phe
 50 55 60

Lys Ile Glu Val Ser Lys Val Leu Ala Gly Gln Asn Val Cys Phe Ile
 65 70 75 80

Leu Tyr Ser Leu Leu Trp Val Val Val Ile His Leu Phe Ile Phe Ala
 85 90 95

Phe Cys Ser Ser Phe Pro Pro Ser Ile His Leu Ser Ile Tyr Leu Leu
 100 105 110

Ile Tyr Pro Glu Ile Phe Ile Glu Cys Tyr Leu Cys Ala Gly Ser Tyr
 115 120 125

Ser Arg Cys Ser Leu Asn Pro Cys Ile Asn Glu Ala Ser Thr Lys Leu
 130 135 140

His Pro Tyr Ile Ala Met Tyr Ile Asp Met Ser Gly Ile Gln Asn Thr
 145 150 155 160

Glu Tyr Leu Tyr Lys Leu His Ser Asp Phe Thr Thr
 165 170

<210> 126

<211> 89

<212> PRT

<213> Homo sapiens

<400> 126

Arg Arg Val Cys Gly Glu Arg Gly Ser Gly Trp Pro Arg Gln His Val
 1 5 10 15

Ser Ser Thr His Arg Leu Trp Asp Asp Asp Pro His Phe Met Tyr Phe
 20 25 30

Pro Arg Ile Glu Lys Tyr Gly Ile Ile Leu Gln Leu Ile Val Trp Leu
 35 40 45

Ile Thr Gln Arg Leu Leu Gln Pro Leu Ser Pro His Gln Thr Arg Thr
 50 55 60

Val Lys Glu Asn Lys Thr Thr Cys His Gly Asn Thr His Leu Tyr
 65 70 75 80

Thr Tyr Ile Ile Phe Lys Asn Leu Ala
 85

<210> 127

<211> 201
 <212> PRT
 <213> Homo sapiens

<400> 127

Leu Ser Gly Phe Leu Trp Phe Leu Val Leu Gly Leu Pro Thr Leu Ser
 1 5 10 15

Lys Cys Ile Gly Leu Tyr Leu Tyr Leu Thr Phe Phe Met Leu Phe Pro
 20 25 30

Gly Val Val Trp Ile Phe Cys Phe Ile Gln Leu Leu Gln Asn Leu Cys
 35 40 45

His Gly Asn Ile Gln Arg Leu Phe Arg His Ser Val Arg Ala Ser Thr
 50 55 60

Asp Lys Pro Ser Gly Tyr Ile Gln Thr Met Lys Pro Thr Val Ser Ser
 65 70 75 80

Gly Ser Asp Val Ile Leu His Leu Thr Val Leu Leu Phe Asn Arg Val
 85 90 95

His Leu Leu Lys Leu Ser Leu Tyr Arg Ile Cys Asn Gly Ile Asp Glu
 100 105 110

Ile Asp Ser Gly Asn Ile Gln Leu Ala Val Lys Ser Val Lys Ser Val
 115 120 125

Leu Cys Ile Ser Gly Phe Cys Ile Lys Phe Arg Leu Lys Ile Gln Cys
 130 135 140

Ser Trp Asp Val Lys Pro Ala Tyr Met Glu Gly Gln Leu Phe Ile Tyr
 145 150 155 160

Met Gly Ser Ala Gly Pro Thr Leu Lys Phe Glu Tyr Val Trp Ile Leu

165	170	175
-----	-----	-----

Val Ser Met Gly Ile Leu Glu Pro Val Pro Gln Gly Ile Leu Glu Gly	180	185	190
---	-----	-----	-----

Gin Leu Tyr Asn Ile Leu Leu Leu	195	200
---------------------------------	-----	-----

<210> 128

<211> 177

<212> PRT

<213> Homo sapiens

<400> 128

Asp Tyr His Ser Tyr Phe Phe Pro Tyr Ile Arg Ala Gln Pro Leu Leu	1	10	15
---	---	----	----

Cys Leu Gly Leu Pro Val Ile Ile Val Val Val Ser Phe Ile Val Leu	20	25	30
---	----	----	----

Thr Phe Ser Ser Ser Ser Phe Ile Leu Pro Leu Pro Ser Val Phe Tyr	35	40	45
---	----	----	----

Asp Gln Ile Gln Ser Leu Lys Thr His Arg Ala His Gln Asn Thr Thr	50	55	60
---	----	----	----

Leu Gln Pro Asp Ile Gln Ser Cys Pro Val Tyr Arg Ser Asn Phe Phe	65	70	75	80
---	----	----	----	----

Ser Ile Tyr Leu Ser Leu Ser Pro His Leu Leu Leu Ile Asn Thr Trp	85	90	95
---	----	----	----

Ile Leu Tyr Ala Gln Glu Ala Lys Leu Phe Thr Val His Phe Arg Cys	100	105	110
---	-----	-----	-----

Pro Ser Tyr Phe Pro Phe Ser Ile Leu Leu Thr Met Leu Phe Pro Met	115	120	125
---	-----	-----	-----

Leu Gly Met Leu Ser Phe Gln His Leu Ser Thr Thr Asn Phe Ala Lys	130	135	140
---	-----	-----	-----

Tyr Arg Pro Pro Gln Asn Pro Ser Phe Ser Leu Gly Leu Pro Gln Gly	145	150	155	160
---	-----	-----	-----	-----

Pro Ser Asp Asn Asn Val Pro Ser Pro Ser Phe Cys Ile Ser Cys Ile	165	170	175
---	-----	-----	-----

His

<210> 129

<211> 206

<212> PRT

<213> Homo sapiens

<400> 129

Met Thr Phe Ser Gly Tyr Ala Gln Asn Lys His Phe Arg Tyr Phe Leu

1	5	10	15
Phe Phe Glu Tyr Lys Asn Phe Leu Asp Tyr Val Leu Phe His Leu Ile			
20	25		30
Lys Ser Leu Arg Pro Asn Leu Phe Arg Tyr Ile Cys Cys Ile Tyr His			
35	40	45	
Leu Ile Ser Leu Lys Leu Cys Cys Leu Gln Lys Leu Leu Ala Gly Thr			
50	55	60	
Ser Val Tyr Asn Ile Leu Ser Ser Thr Leu Thr Ile Ser Ser Ala Pro			
65	70	75	80
Lys Gln Gly Leu Gly Leu Pro Phe Gln Glu Tyr Phe Tyr Tyr Ile Tyr			
85	90	95	
Cys Arg Gln His Arg Thr Leu Ser Lys Cys Leu Leu Ile Ser Pro Val			
100	105	110	
Lys Ala Ser His Ser Tyr Leu Tyr Ser Ile Gln Tyr Lys Ile Phe Lys			
115	120	125	
Thr Tyr Gly Gln Asn Lys Arg Ser Thr Ile Leu Thr Lys Leu Asn Leu			
130	135	140	
Tyr Val Tyr Phe Leu Tyr Leu Tyr Thr Phe Thr Cys Leu Leu Glu Asp			
145	150	155	160
Thr Val Asn Thr Asp Asn Phe Lys Glu Ala Ser Phe Ser Phe Ile Asn			
165	170	175	
Glu Asn Asp Met His Lys Tyr Cys Thr Leu Ser Ser Leu His Ala Lys			
180	185	190	
Thr Ile Met Thr Lys Ile Cys Cys Thr Leu Ser Gln Thr Phe			
195	200	205	
<210> 130			
<211> 225			
<212> PRT			
<213> Homo sapiens			
<400> 130			
Ala Gln Gln Val Arg Arg Gln Pro Leu Ser Phe Leu Gly Leu Val Ser			
1	5	10	15
Tyr Gln Pro Leu Ser Leu Gln Gly Val Pro Arg Gln Pro Arg Gln Pro			
20	25	30	
Thr Met Ala Gln Phe Leu Ser Val Phe Ser Gly Lys Leu Asp Trp Asp			
35	40	45	
Asn Arg Thr Glu Thr Pro Gly Gln Val Asn Met Ser His Thr Gly Gly			
50	55	60	
Glu Trp Leu Val Gly Lys Gln Val Val Phe Ile Leu Thr Val Leu Val			
65	70	75	80

Ala Phe Cys Gly Leu Val Gly Asn Gly Val Val Cys Trp Leu Phe Cys
85 90 95

Phe Gln Val Arg Ser Ser Pro Tyr Val Thr Tyr Val Leu Asn Leu Ala
100 105 110

Ala Ala Asp Met Val Asn Leu Ser Cys Val Thr Val Ile Leu Leu Glu
115 120 125

Lys Ile Leu Met Leu Tyr His Gln Val Thr Leu Gln Val Ala Met Phe
130 135 140

Leu Glu Pro Val Ser Tyr Phe Ser Asp Thr Val Ser Leu Cys Leu Leu
145 150 155 160

Val Ala Met Asn Ile Glu Ser Phe Leu Cys Val Leu Cys Pro Thr Trp
165 170 175

Cys Cys His Arg Pro Lys His Thr Ser Ala Val Met Ser Ile Leu Ser
180 185 190

Trp Ala Leu Ala Leu Ser Phe Ala Cys Gly Pro Gly Leu Val Met Gly
195 200 205

Glu Gly Pro Gly Met Pro Ile Ser Gly Arg Leu Tyr Asn Ile Ser His
210 215 220

Ala
225

<210> 131
<211> 194
<212> PRT
<213> Homo sapiens

<400> 131

Cys Tyr Ile Thr Glu Gln Ser Gly Thr Trp Lys Cys Arg Lys Asp Met
1 5 10 15

Ala Glu Thr Val Ser Ala Phe Glu Gly Phe His Tyr Ser Pro Gly Gly
20 25 30

Lys Met Trp Gly Asp Cys Leu Asn Thr Glu His Pro Val Thr Leu Glu
35 40 45

Phe Trp Ile Asp Thr Asp Phe Phe Phe Leu Glu Ser Lys Tyr Val Ser
50 55 60

Asp Ile Ala Trp Gly Ile Leu Ile Leu Lys Thr Ile Cys Val Val Asn
65 70 75 80

Leu Lys Phe Arg Phe His Trp Val Ser Cys Met Phe Met Cys Ser Ile
85 90 95

Arg Gln Asp Phe Met Gly Lys Ile Lys Leu Ile Ser Tyr Thr Leu Phe
100 105 110

Leu Phe Leu Asp Pro Arg Ser Ser Leu Cys Ser Pro Phe Leu Leu Leu
115 120 125

Tyr Leu Leu Leu Leu Gly Pro Ser Pro Cys Cys Val His Ser Phe Gln
130 135 140

Asp Met Gln Thr Trp Asp Thr Ala Val Gly Ser Arg Ala Met Tyr Gln
145 150 155 160

Ala Ala Gln Gln Ser Val Lys His Phe Pro Phe Ser Leu Gly Ala Gln
165 170 175

Pro Trp Gly Val Pro Cys Asn Ala Arg Gly Leu Asp Ala Ser Cys Gly
180 185 190

Asn Thr

<210> 132

<211> 163

<212> PRT

<213> Homo sapiens

<400> 132

Gly Glu Trp Cys Leu Val Phe Glu Lys Asn Ser Lys Ser Tyr His Trp
1 5 10 15

Phe Lys Asn Cys Phe Phe Tyr Cys Phe Val His Asp Tyr Leu Glu Gly
20 25 30

Ile Trp Lys Ser Asp Ala Lys Arg Thr Gly Ser Phe Pro Phe Lys Ala
35 40 45

Met Asp Asn Ile Pro Leu Met Lys Met Tyr Ser Cys Ile Gln Ile Cys
50 55 60

Arg Met Val Phe Thr Gln Tyr His Thr Lys His Leu Cys Asn Val Gly
65 70 75 80

Gln Thr Cys Ala Glu His Leu Ala Gln Val Leu Cys Lys Ser Lys Lys
85 90 95

Lys His Trp Met Phe Leu Phe His Leu Lys Glu Ile Lys Ala Thr Val
100 105 110

Leu Tyr Ala Gln Asn Leu Cys Val Ile Asp Arg Leu Thr Ile Gln Ile
115 120 125

Phe Pro Leu Gly Ile Asn Val Lys Ile Met Gln Asn Cys Asn Lys Asn
130 135 140

Phe Lys Met Leu Leu Gly Leu Val Tyr Leu Arg Leu Val Leu Val Phe
145 150 155 160

Cys Thr Asn

<210> 133

<211> 152
<212> PRT
<213> Homo sapiens

<400> 133

Leu Phe Leu Phe Tyr Phe Ser Phe Thr Ser Asn Ile Leu Cys Phe Leu
1 5 10 15

Glu Ala Asn Tyr Phe Lys Cys Phe Cys His Pro Leu His Ile Leu Tyr
20 25 30

Lys Ile Glu Asp Lys Ile Ser Asn Tyr Asn Ala Arg Trp Ile Leu Asn
35 40 45

Val Cys Tyr Ser Phe Thr Ile Leu Phe Ser Leu Tyr Met Asn Ile Leu
50 55 60

Ile Gln His Lys Phe Phe Thr Phe Ile Thr Trp Pro Arg Lys Phe Val
65 70 75 80

Leu Lys Ser Leu Val Gln Ile Leu Ile Tyr Asn Lys Thr Tyr Ile Ile
85 90 95

Phe Pro Asn Tyr Tyr Asn Lys Phe Ser Ile Lys Phe Leu Tyr Lys Asp
100 105 110

Asn Tyr Leu Ser Ile Lys Tyr Ser Lys Gln Ile Glu Lys Ser Tyr Lys
115 120 125

Val Ala His Phe Leu Cys Phe Pro Phe Val Phe Val Leu Leu Cys Phe
130 135 140

Val Phe Asp Gly Val Leu Leu Leu
145 150

<210> 134
<211> 165
<212> PRT
<213> Homo sapiens

<400> 134

Ile Asn Val Ala Asn Asn Lys Asn Leu Phe Cys Ser Ser Ser Gly Gly
1 5 10 15

Glu Val Arg Lys Ile Lys Ala Ser Ala Asp Gly Ser Pro Arg Ser Arg
20 25 30

Glu Glu Phe Phe Ile Phe Ser Leu Leu Leu Val Ala Pro Ser Asn Leu
35 40 45

Gly Ile Pro Trp Phe Val Ala Ala Ser Leu Gln Phe Leu Pro Ser Ser
50 55 60

Phe His Glu Leu Ile Ser Cys Val Cys Leu Cys Ile Ser Ser Leu Phe
65 70 75 80

Met Gly Cys Gln Leu Leu Asp Leu Arg Pro Thr Leu Thr Gln Tyr Glu

85

90

95

Leu Ile Leu Thr Leu His Leu Gln Arg Pro Tyr Leu Gln Ile Arg Ser
 100 105 110

Pro Ser Glu Val Leu Gly Arg His Thr Phe Trp Gly Asp Thr Ile Gln
 115 120 125

Leu Ile Thr Pro Gln Leu Pro Lys Leu Glu Arg Ala Asn Thr Glu Asn
 130 135 140

His Arg Leu Gln Gly Ala Glu Ala Ser Lys Cys Asn Thr Lys His Leu
 145 150 155 160

Asn Asn Asn His Ile
 165

<210> 135

<211> 215

<212> PRT

<213> Homo sapiens

<400> 135

Gly Gln Ser Lys Thr Pro Ser Gln Asn Ser Asn Lys Pro Ile Gln Ser
 1 5 10 15

Lys Asn Ile Ala Phe Ile Thr Val Tyr Ser Asn Ser Leu His Leu Pro
 20 25 30

Val Lys Phe Cys Tyr Phe Pro Tyr Lys Phe Ser Ala Phe Leu Val Lys
 35 40 45

Ile His His Arg Tyr Leu Ile Ala Phe Cys Cys Gly Met Met Met Met
 50 55 60

Thr Lys Asn Gly Ile Cys Ser Phe Leu Ser Leu Lys Phe Leu Ser Ile
 65 70 75 80

Tyr Arg Lys Val Met Gly Phe Phe Ile Phe Thr Ser Ile Trp Phe Arg
 85 90 95

Cys Ala Phe Ile Asn Ser Glu Phe Glu Leu Ile Leu Ile Val Phe Tyr
 100 105 110

Asn His Thr Ile Lys Leu Tyr Cys Leu Leu Leu Ser Asn Ser Asn Tyr
 115 120 125

Ser Glu Gln Thr Ser Leu Thr Tyr Leu Phe Cys Glu Cys Ser Phe Leu
 130 135 140

Leu Ala Arg Lys Met Asp Val Cys Ser Ile Asn Ile Leu Ile Glu Tyr
 145 150 155 160

Met Ile Thr Cys Ser Ser Leu Gly Glu Ser Leu Phe Leu Ile Leu Ser
 165 170 175

Phe Phe Phe Phe Thr Arg Met Ser Phe Lys His Phe Gly Thr Tyr Leu
 180 185 190

Arg Tyr Phe Phe Lys Val Phe Tyr Ile Ile Leu Glu Phe Leu Asp
 195 200 205

Tyr Thr Leu Phe His Pro Cys
 210 215

<210> 136

<211> 206

<212> PRT

<213> Homo sapiens

<400> 136

Val Tyr Leu Pro Leu Ser Phe Leu Thr Cys Pro Leu Cys Leu Ile Val
 1 5 10 15

Gln Ile Leu Arg Ser Ser Gly Asn Pro Gly Pro Trp Arg Leu Pro Ser
 20 25 30

Pro Phe Phe Pro Ala Ser Cys Pro Pro Leu Pro Ile Phe Pro Glu His
 35 40 45

Thr Trp Ser Pro Gln Asp Ser Ala Pro Val Tyr Ser Val Phe His Val
 50 55 60

Cys Ser Pro Leu Phe Ser Leu Leu Gly Lys Leu Leu Asn Ile Ser Gln
 65 70 75 80

Asp Arg Val Leu Ile Ser Leu Arg Met Leu Ser Leu Ala Thr Leu Asn
 85 90 95

Val Leu Arg Ala Leu Gly Ser Tyr Leu Cys Glu Ile Thr Ser Leu Thr
 100 105 110

Leu His Ile Phe Met Asp Pro Phe Leu Leu Ile Cys Trp Leu Asp
 115 120 125

Lys Gly Arg His Tyr Ile His Leu Leu His Leu Trp Ile Ala Arg Val
 130 135 140

Gly Ala His Met Phe Leu Leu Asn Val Leu Phe Ile Gln Gly Ala His
 145 150 155 160

Val Gln Val Cys Tyr Ile Gly Ile Leu Cys Asp Ala Glu Val Trp Ala
 165 170 175

Ser Trp Asp Leu Ile Ala Gln Leu Val Ser Ile Val Pro Glu Arg Phe
 180 185 190

Phe Asn Pro Gly Pro Leu Pro Ser Ile Asn Ile Ser Val Thr
 195 200 205

<210> 137

<211> 234

<212> PRT

<213> Homo sapiens

<400> 137

Tyr Thr Tyr Leu Tyr Ile Asn Ile Ile Phe Ile Tyr Ile Tyr Ile Gln
 1 5 10 15

Ile Phe Ile Asn Lys Tyr Val Phe Ile Ile Tyr Leu Tyr Lys Tyr Ile
 20 25 30

Phe Ile Tyr Leu Tyr Lys Tyr Leu Tyr Lys Tyr Ile Phe Ile Tyr Leu
 35 40 45

Tyr Lys Tyr Val Tyr Lys Asn Ile Asn Ile Phe Ile Ile Tyr Leu Tyr
 50 55 60

Lys Tyr Ile Tyr Ile Lys Ile Tyr Leu Tyr Lys Tyr Ile Tyr Ile Lys
 65 70 75 80

Ile Tyr Leu Tyr Ile Ile Tyr Leu Tyr Ile Phe Ile Tyr Ile Asn Thr
 85 90 95

His Ile His Ala Met Gly Cys Thr Tyr Phe Leu Gly Ser Cys Tyr His
 100 105 110

His Phe Cys Tyr Arg Ser Val Gln Leu Pro Leu Leu Met Asp Ser Phe
 115 120 125

Ile Gly Tyr Ala Phe Ser Met Val Leu Leu Lys Pro Gly Leu Ser Asn
 130 135 140

Ser Val Ser Tyr Leu Asn Ala Glu Lys Lys Arg Thr Ile Thr Leu Ile
 145 150 155 160

Pro Ser Val Cys Ile Ile Phe Val Leu Cys Leu Ile Pro Arg Ser Val
 165 170 175

Phe Leu Phe Leu Ser Phe Pro His Ile Lys Asn Cys Tyr Val Ser Pro
 180 185 190

Leu Leu Ser Leu Leu Asn Pro Ile Trp Leu Trp Phe Lys His His Gln
 195 200 205

Arg Ile His Ala Ile Glu Ala His Gly Glu Pro Gln Val Gln Tyr Cys
 210 215 220

Leu Ile Ser Gln Asn Leu Cys Val Asn Lys
 225 230

<210> 138
 <211> 203
 <212> PRT
 <213> Homo sapiens

<400> 138

Phe Ser Thr Pro Thr Leu Thr Ile Val Thr Ile Phe Ile Val Ser Trp
 1 5 10 15

Val Asn Asp Ile Ser Ser Ser Val Ser Ser Ala Phe Met Lys Arg Pro
 20 25 30

Ala Val Asn Phe Ser Ser Gly Phe Val Leu Thr Ser Leu Arg Asn Leu
 35 40 45
 Glu Ile Glu Ala Lys Phe Lys Leu Thr Ile Lys Leu Lys Leu Cys Gln
 50 55 60
 Phe His Phe Lys Trp Ser Pro His His Leu Phe Cys His Tyr Phe Asn
 65 70 75 80
 Leu Ser His His His Leu Pro Ser Gly Ile His Leu Thr Gly Leu Leu
 85 90 95
 Phe Cys Phe Leu Cys Cys Pro Ile Tyr Ser Ser His Ser Ser Arg Glu
 100 105 110
 Leu Leu Lys Ile Ser Leu Leu Cys His Ser His Leu Arg Asn Ser Phe
 115 120 125
 Val Ser His Cys Thr Tyr Gly Thr Ile Pro Asn Ser Phe Tyr Asn Leu
 130 135 140
 Arg Asp Pro Ala Ser His Cys Cys Pro Ile Trp Pro Thr Ser Phe Gln
 145 150 155 160
 Asp Ile Leu Leu His Val His Ala Ala Ala Leu Ala Leu Phe Gln
 165 170 175
 Phe Leu Lys Gln Ala Gly Leu Phe Pro Ala Ser Glu Pro Ser Asn Met
 180 185 190
 Ala Thr Phe Leu Cys Leu Glu Cys Cys Tyr Thr
 195 200
 <210> 139
 <211> 132
 <212> PRT
 <213> Homo sapiens
 <400> 139
 Phe Ser Trp Leu Met Leu Thr Leu Val Leu Ser Pro Thr Phe Phe Pro
 1 5 10 15
 Thr Ser Cys Ser His Gln Gly Pro Lys Glu Lys Ile Leu Pro Thr Leu
 20 25 30
 Val Ala Leu Val Leu Val Pro His Met Val Leu Pro Cys Ala Phe Lys
 35 40 45
 Val Pro Ser Leu Ala Leu Arg Arg Asp Gly Ile Leu Ala Leu Ser Phe
 50 55 60
 Cys His Leu Cys Met Glu Thr Gln Val Leu Thr Cys Leu Gly Arg Val
 65 70 75 80
 Ser Pro Gly Arg Leu Gly Ser Ser Pro Ala Leu Gly Asp Ser Gly Thr
 85 90 95
 Trp Leu Ala Ala Thr Gln Ala His Trp Pro Ser Gly Ser His Ser Gln

	100	105	110
Ser Pro Ser Gln Val Pro Ala Thr His Ala His Ser Ser Ser Leu Pro			
115	120	125	
Phe Cys Ile Val			
130			
<210> 140			
<211> 203			
<212> PRT			
<213> Homo sapiens			
<400> 140			
Ala Arg Pro Gln Thr His Gln Lys Glu Glu Thr Pro Asp Pro Ser Glu			
1	5	10	15
His Leu Lys Glu Gln Thr Pro Asp Thr Pro Ser Leu Arg Thr Val Thr			
20	25	30	
Leu Thr Ala Arg Val His Gly Phe Ile Leu Glu Val Ser Glu Thr Lys			
35	40	45	
Asn Pro Pro Glu Gly Thr Asn Ser Gly His Ser Ser Thr Ser Leu Lys			
50	55	60	
Asp Cys Leu Val Ser Asn Asn Pro Cys Lys Ala Ser Met Ala Asp Arg			
65	70	75	80
Arg Ile Phe Asn Lys Tyr Leu Gln Leu Leu Ser Ile Asn Gly Ser Ser			
85	90	95	
Gln Ser Arg Glu Glu Lys Gly Thr Gln Ala Cys Gln Pro Ile Trp Val			
100	105	110	
Val Leu Cys Gln Val Gln Gly Ile Leu Ile Lys Glu Leu Arg Gly Arg			
115	120	125	
Arg Leu Cys Arg Glu Lys Met Phe Arg Asn Lys Ser Asp His Phe Gly			
130	135	140	
Lys Gln Thr Lys Lys Leu Thr Trp Ala Leu His Cys Ser Leu Phe Asn			
145	150	155	160
Ala Met Asn Ile Ser Glu Tyr Glu Phe Asp Leu Lys Lys Ile Asn Ser			
165	170	175	
Gln Val Phe Tyr Gln Asp Leu Arg Thr Thr Met His Leu Thr Ile Gln			
180	185	190	
Leu Asp Val Val Leu Ser Thr Tyr Ile His Lys			
195	200		
<210> 141			
<211> 176			
<212> PRT			
<213> Homo sapiens			

<400> 141

Ala Pro Ala Val Gly His Gly Arg Pro Pro Leu Val Arg Pro Arg Gln
 1 5 10 15

Cys Cys Pro Val Glu Gly Thr Asn Ser Pro Arg Arg Trp Glu Gly Ser
 20 25 30

Ala Lys Ile Gln Lys Leu Ile Leu Gln Ser Asn Val Val Cys Leu Leu
 35 40 45

Val Leu Phe Tyr Ile Leu Met Val Phe Ser Ile Cys Arg Glu Leu Cys
 50 55 60

Ser His His Pro Lys Lys Thr Pro Ala Leu Ile Ser Ser His Ser Ser
 65 70 75 80

His Trp Pro Pro Ala Leu Gly Asn His Ser Thr Phe Gln His Cys Glu
 85 90 95

Val Ile Asn Ser Gly His Phe Ile Tyr Met Glu Leu Tyr Asn Met Trp
 100 105 110

Pro Phe Val Thr Gly Phe Leu Leu Cys Tyr Met Leu Leu Ser Thr
 115 120 125

Ile Ser Glu Gln Leu Leu Arg Ser Ile Ile Cys Thr Leu Glu Cys Asn
 130 135 140

Ile Phe Leu Leu Asp Val Glu Trp Tyr Asn Glu Ser Val Tyr Ala Cys
 145 150 155 160

Glu Ile Leu Leu Lys His Ser Gln Lys Cys Asp Arg His Met Cys Ile
 165 170 175

<210> 142

<211> 183

<212> PRT

<213> Homo sapiens

<400> 142

Glu Thr Ser Ser Arg His Gln Gly Val Leu Met Tyr Trp Pro Leu Ile
 1 5 10 15

Gln Leu Ile Leu Met Ala Thr Lys Ser Lys Trp Pro Pro Val Thr Val
 20 25 30

Ser Leu His Arg Cys Arg Gly Lys Glu Gln Cys Arg Arg Met Arg Pro
 35 40 45

Ala Trp Tyr Ser Pro Glu Ala Arg Glu Pro Ala Cys Glu Gly Gly Asp
 50 55 60

Ser His Cys Leu Leu Pro His Val Gly Ser Ser Gly Arg Pro Met Lys
 65 70 75 80

Arg Gly Pro Gly Trp Ile Met Ala Arg Arg Leu Phe Arg Ala Glu Arg
 85 90 95

Cys Gln Pro His Arg Ser Glu Lys Glu Thr Gly Val Asn Val Met Gin
 100 105 110

Cys Leu Glu Cys Cys Asp Gly Glu Pro Ala Val Glu Ala Leu Gly Phe
 115 120 125

Cys Cys Cys Cys Trp Val Ser Phe Cys Phe Tyr Phe Phe Asn Glu Asp
 130 135 140

Phe Arg Arg Phe Gln Leu Ser Leu Met Lys Thr Arg Cys Val Gly Ser
 145 150 155 160

Trp Val Leu Leu Pro Ala Ala Ala Gly Val Trp Pro Leu Ser Gln Arg
 165 170 175

Ala Leu Val Ile Thr Pro Leu
 180

<210> 143

<211> 207

<212> PRT

<213> Homo sapiens

<400> 143

Leu Trp Tyr Lys Phe Ala Phe Arg Phe Leu Asp Tyr Arg Ile Leu Phe
 1 5 10 15

Gln Arg Leu Lys Met Lys Lys Lys Leu Thr Ile Phe Ser Tyr Ile Glu
 20 25 30

Cys Ser Lys Ala His Asp Lys Ile Lys Ser Leu Tyr Asn Thr Glu Cys
 35 40 45

Ser Phe Leu Ile Cys Met His Cys Phe Ile Phe Phe Leu Phe Cys Leu
 50 55 60

Leu Pro Asn Ile Thr Asn Lys Asn Ala Ile Phe Phe Lys Lys Lys Asp
 65 70 75 80

Cys Leu Cys Ser Tyr Gly Cys Met Tyr Phe His Arg Leu Tyr Ile Phe
 85 90 95

Asn Leu Arg Glu Phe Val Leu Ile Phe Leu Ser Ile Phe Asn Ser Lys
 100 105 110

Leu Ala Ser His Leu Asn Arg Asn Arg Tyr Pro Arg Glu Met Leu Phe
 115 120 125

His Glu Val Ser Gly Phe Ser Leu Glu Asp Gln Val Pro Phe Tyr Pro
 130 135 140

Leu Leu Arg Lys Met Arg Val Asp Thr Ile Val Gln Gln Ala Arg Tyr
 145 150 155 160

Thr Ser Ala Leu Gly Phe Ser Pro Glu Leu Arg Asn Ala His Phe Leu
 165 170 175

Val Val Phe Leu Lys Ile Ile Ile Val Leu Ile Phe Thr Val Cys
 180 185 190

Ile Glu His Ile Phe Gly Val Thr His Gly Lys Cys Tyr Phe Val
 195 200 205

<210> 144

<211> 160

<212> PRT

<213> Homo sapiens

<400> 144

Arg Gly Gln Glu Leu Thr Ser Pro Gln Thr Trp Ser Asn Leu Ala Gln
 1 5 10 15

Glu Asp Val Cys Ile Pro Arg Arg Ile Gln Cys Glu Val Ser Ile Glu
 20 25 30

Gly Glu Val Thr Ala Asp Phe Glu Gly Ile Leu Met Lys Phe Leu Ser
 35 40 45

Lys Glu Lys Ile Leu Ala Asp Arg Gln Gln Ser Ile Leu Gln Thr Ile
 50 55 60

Phe Trp Gly Phe Asp Glu Ser Ile Leu Ser Ala Lys His Pro Tyr Cys
 65 70 75 80

Lys Cys Gln Thr Val Ser Ile Gly Ser Thr Gln Ser Arg His Leu Lys
 85 90 95

Leu Trp Met Leu Glu Phe Thr Ala Leu Ile Leu Ser Lys His Thr
 100 105 110

Ala Ser Asn Ile Cys Leu Arg Leu Tyr His Lys Arg Gln Asp Lys Phe
 115 120 125

Ile Gly His Cys Ser Gln Asn Ile Ser Leu Pro Lys Leu Asn Tyr Val
 130 135 140

Ser Gln Glu Ile Glu Ser Asp Pro Leu Val Leu Ala Phe Cys Arg Thr
 145 150 155 160

<210> 145

<211> 215

<212> PRT

<213> Homo sapiens

<400> 145

Glu Asp Lys Lys Tyr Glu Asn Phe Asn Ile Ala Asn Met Tyr Leu Ile
 1 5 10 15

Leu Leu Lys Leu Leu Phe His Val Phe Gln Lys Ile Tyr Ile Ser Arg
 20 25 30

Ile Ala His Ile Glu Ile Ala Val Ile Ile Arg Ala Gln Thr Pro Glu
 35 40 45

Ser Asp Gln Leu Phe Gln Ala Trp Phe Cys His Leu Leu Val Glu Trp
 50 55 60

Arg Ala Cys His Ser Val Cys Leu Ser Leu Phe Pro Tyr Leu Ser Gly
 65 70 75 80

Asp Asn Asn Asn Met Tyr Ile Ile Glu Leu Leu Ser Ser Ser Cys Lys
 85 90 95

Ser Ile Leu Thr Lys Phe Leu Glu Asn Ala Tyr Ser Lys His Ser Ile
 100 105 110

Thr Tyr Ala Ile Cys Ile Ser Ile Asn Arg Tyr Ile Leu Val Val Tyr
 115 120 125

Pro Glu Thr Phe Leu Val Cys Ser Leu Leu Pro Phe Phe Pro Glu
 130 135 140

Lys Thr His Arg Phe Cys Leu Met His Gly Lys Glu Lys Tyr His Gln
 145 150 155 160

Val Leu Gly Ser Ser Lys Lys Ile Lys Lys Pro Lys Thr Cys Thr Leu
 165 170 175

Glu Arg Gly Lys Leu Ile Pro Met Glu Lys Lys Lys Arg Asn Leu
 180 185 190

Asn Asn Cys Ser Ser Glu Gly His Val Gly Leu Gln Arg Gly Phe His
 195 200 205

Met Pro Phe Leu Ser Arg Gly
 210 215

<210> 146

<211> 210

<212> PRT

<213> Homo sapiens

<400> 146

Glu Phe Thr Cys Gln Lys Val Ser Ile Phe Asn Ile Ile Leu Phe Phe
 1 5 10 15

Lys Tyr Phe Cys Pro Tyr Trp Asn Phe Val Leu Phe Ser Cys Val Met
 20 25 30

Ser Leu Phe Val Tyr Val Phe Ile Cys Cys Asn Val Leu Ile Leu Ile
 35 40 45

Phe His Phe Leu Phe Lys Leu Thr Leu Gly Gly Cys Trp Val Ile Leu
 50 55 60

Met Phe Ile Ile Ile Tyr Phe Ser Trp Thr Phe Leu Thr Asp Lys His
 65 70 75 80

Arg Asp Arg Arg Asn Gly Phe Glu Trp Leu Thr Trp Phe Val Gln Asn
 85 90 95

Leu Phe Leu Leu Leu Gln Lys Arg Thr Ile Leu Glu Ile Gly Leu

	100	105	110
Cys Asp Phe Phe Phe Asp Thr Pro Leu Phe Glu Gly Phe Cys Gly			
115 120 125			
Glu Gly Ser Cys Phe Ser Phe Phe Ser Ser Ser Pro Gln Gly Ile			
130 135 140			
Pro Pro Phe Leu Arg Ile Phe Pro Leu Pro Gly Ser Ser Thr Val Ser			
145 150 155 160			
Arg Leu Ser Pro Thr Cys Ser Arg Arg Thr Ser Leu Gln Ser Tyr Phe			
165 170 175			
Arg Leu Pro Val Gly Asn Ile Ser Ser Gln Val Ser Asp Pro Val Pro			
180 185 190			
Leu Trp Cys Ser Phe Thr Gln Ala Gly Glu Ile Pro Leu Phe Pro Trp			
195 200 205			
Asp Glu			
210			
<210> 147			
<211> 168			
<212> PRT			
<213> Homo sapiens			
<400> 147			
Lys Asn Gln Glu Val Leu Asp Gln His Ile Lys Pro Val Leu Phe Val			
1 5 10 15			
Glu Asp Tyr Thr Phe Val Cys Asp Lys Thr Tyr Leu Ser Glu Leu Ser			
20 25 30			
Gly Trp Ile Asn Leu Leu Ile Pro Ser Ser Ser Phe Asp Val Met Pro			
35 40 45			
Asp Thr Asn Ser Thr Ile Asn Leu Ser Leu Ser Thr Arg Val Thr Leu			
50 55 60			
Ala Phe Phe Met Ser Leu Val Ala Phe Ala Ile Met Leu Gly Asn Ala			
65 70 75 80			
Leu Val Ile Leu Ala Phe Val Val Asp Lys Asn Leu Arg His Arg Ser			
85 90 95			
Ser Tyr Phe Phe Leu Asn Leu Ala Ile Ser Asp Phe Phe Val Gly Lys			
100 105 110			
Leu Tyr Val Phe Ile Asp Ser Leu Phe Arg Phe Phe Ile Ser Lys Ser			
115 120 125			
Leu Lys Ala Phe Val Ile Ser Gly Asp Cys Ile Gln Leu Gly Lys Asn			
130 135 140			
Lys His Lys Lys Phe Lys Tyr Ile Leu Glu Gly Ala Ile Trp His Cys			
145 150 155 160			

Lys Gly Met Leu Tyr Ile Cys Lys
165

<210> 148

<211> 177

<212> PRT

<213> Homo sapiens

<400> 148

Lys Ser Lys Ile Gln Asp Asn His Asp Leu Pro Pro Ser Thr Thr Leu
1 5 10 15

Lys Val Ile Leu Cys Leu Leu Ile Leu Leu Asn Thr Met Ser Gln Phe
20 25 30

Asn Val Val His Lys Ala Ile His Asn Leu Asn Ser Ile Leu Ser Leu
35 40 45

His Ser Pro Thr Phe Arg Leu Cys Pro Gly Pro Arg Tyr Pro Phe Ile
50 55 60

Ser Leu Pro Thr Leu His Ile Leu Ser His Pro His Ser Leu Asp Val
65 70 75 80

Leu Phe Asn Leu Ser Ser Pro Ser Ile Cys Thr Ser Cys Gln Thr His
85 90 95

Ile Leu Ser Ser Pro Glu Leu Ile Phe Ile Leu Glu Asp Leu Ile Gln
100 105 110

Val Phe Ser Pro Leu Gly Ala Phe Tyr Lys Pro Ser Phe Leu Cys Ser
115 120 125

Asn Leu Gly Ser Ala Val Pro Ser Ile Leu Ser Ser Thr Ile Ala Ala
130 135 140

Pro Thr Ser Ile Ile Asp Leu Ser Tyr Leu Val Val Ile Asn Cys Met
145 150 155 160

Phe Ile Asn Asn Asp Ser Asn Asp Asn Phe Gly Ile Cys Arg Leu Asn
165 170 175

Ile

<210> 149

<211> 122

<212> PRT

<213> Homo sapiens

<400> 149

Ser Ser Asn Lys Asn Ser Ser Lys Arg Gly Asp Arg Gly Leu Lys Ile
1 5 10 15

Leu Asn Lys Val Gln Thr Leu Leu Val Ile Leu Lys Phe Arg Cys Val
20 25 30

Asn Leu Ser Lys Val Leu Val Ser Pro Asp Lys Cys Glu Val Asn Glu
 35 40 45

Glu Ser Trp Ala Val Leu Ser Lys Cys Leu Gly Ser Phe Gln Lys Pro
 50 55 60

Ile Ser Trp Val Lys Cys Ile Asn Val Trp Leu Cys Asp Ile His Phe
 65 70 75 80

Asn Val Val Asp Ser Phe Gly Gln Arg Ile Leu Ala Phe Pro Ser Leu
 85 90 95

Tyr Met Tyr Pro Leu Ser Ser Thr Ile Ile Asn Phe Leu Asn Gln Leu
 100 105 110

Pro Ile Gln Lys Thr Asn Lys Gln Thr Asn
 115 120

<210> 150

<211> 144

<212> PRT

<213> Homo sapiens

<400> 150

Phe Phe Ser Phe Pro Leu Cys Ser Ser Leu Arg Phe Ile Leu Gly Gln
 1 5 10 15

Leu Ile Ile Lys His Leu Gln Met Gln Met Tyr Asn Ile Ile Ile Asn
 20 25 30

Thr Phe Thr Tyr Pro Ala Leu His Leu Thr Cys Thr Phe Ser His Arg
 35 40 45

Phe Phe Glu His Met Ile Leu Gln Arg Pro Leu Thr Leu Phe Glu Cys
 50 55 60

Asn Val Phe Ile Ser Asp Thr Ile Tyr Ile Cys Leu Tyr Ile Leu Cys
 65 70 75 80

Asn Trp Phe Asn Val His His Val Gly Cys Glu Leu Phe Val Phe Leu
 85 90 95

Trp His Thr Val Thr Thr Ile Val Leu Ile Asp Asp Leu Cys Leu Asn
 100 105 110

Val Asp Arg Phe Leu Ala Asn Gln Ala Ile Val Tyr Thr Lys His Leu
 115 120 125

Val Phe Pro Thr Pro His Leu Leu Pro Phe Phe Phe Phe Phe Phe
 130 135 140

<210> 151

<211> 133

<212> PRT

<213> Homo sapiens

<400> 151

Pro Pro Ala Pro Val Ala Val Ser Met Leu Ser Thr Ser Pro Cys Ala
 1 5 10 15
 Ser Ile Leu Gly Leu Cys Leu Cys Ser Gln His Arg Cys Val Leu Ser
 20 25 30
 Thr Ala Glu Ile Arg Thr Phe Thr Ile Pro Pro Ala Ala Ser Gly Ala
 35 40 45
 Pro Leu Cys Ser Gly His Leu Thr Leu Leu Gly Pro Pro His His Cys
 50 55 60
 Thr His His Thr Pro Asn Ser Pro Ala Pro Pro Pro Gly Arg Gly Ser
 65 70 75 80
 Val Pro Glu Ser Tyr Asp Leu Gly Thr Pro Ser Pro Ser Leu Gly Trp
 85 90 95
 Leu Leu Leu Pro Gly Leu Val Leu Gly Ser Thr Thr Tyr Glu Ser
 100 105 110
 Ala Arg Leu Ser Ala Val Ser Thr Cys Val Ser Val Ser Gly Gly Gly
 115 120 125
 Gly Gly Glu Val Ser
 130
 <210> 152
 <211> 196
 <212> PRT
 <213> Homo sapiens
 <400> 152
 Thr Lys Phe Ile Pro Gly Met Leu Thr Lys Asn Phe Ser Arg Lys Ile
 1 5 10 15
 Ile Pro Arg Val Gly Leu Ile Arg Glu Leu Lys Val Gly Arg Asn Lys
 20 25 30
 Val Val Leu Ser Lys Leu Leu Pro Lys Lys Phe Arg Lys Ser Ala Val
 35 40 45
 Lys Gln Met Ser Ala Tyr Phe Leu Phe Gln Lys Met Asn Glu Ala Leu
 50 55 60
 Asp Ser His Ile Leu Ser Phe Ala Val Phe Gln Asp Ala Val Leu Phe
 65 70 75 80
 Phe Ile Gly Met Leu Ile Gln Lys Phe Val Trp Glu Asn Ser Gln Lys
 85 90 95
 Thr Leu Phe Val Glu Phe Leu Phe Ile Ser Lys Lys Val Leu Leu Ser
 100 105 110
 Val Val Phe Ile Gln His Leu Ile Phe Ile His Cys Phe Ser Cys Thr
 115 120 125

Gly Gly Asn Lys Glu Arg Met Gly Leu Val Asp Leu Ser Leu His Ser
 130 135 140

Lys Arg Gly Asn Thr Ile Arg Tyr Ser Ser Ile Leu Tyr Val Asp Ile
 145 150 155 160

Cys Asn Cys Cys Val Tyr Val Ser Leu Leu Glu Asn Ile Phe Leu Gln
 165 170 175

Leu Ser Tyr Trp Val Thr Lys Phe Thr Pro Leu Asn Tyr Glu Lys Ser
 180 185 190

Leu Pro Phe Tyr
 195

<210> 153

<211> 150

<212> PRT

<213> Homo sapiens

<400> 153

Ile Ile Tyr Leu Leu Tyr His Leu Ile Phe Asn Trp Ser Val Ser Val
 1 5 10 15

Leu Phe Ser Pro His Leu Phe Pro Leu Met Tyr Asn Gly Ser Leu Leu
 20 25 30

Thr Asp Ile Lys Phe Thr Tyr Ser Phe Leu Cys Tyr Leu Phe Leu Leu
 35 40 45

Asp Leu Cys His Val Tyr Ser Leu Lys Leu Leu Val Pro Ile Met Tyr
 50 55 60

Ile Ser Val Ile Lys Leu Pro Phe Cys Ser Phe Tyr Phe Leu Cys Leu
 65 70 75 80

Ile Arg Phe Tyr Ile Ser Leu Leu Ile Thr Gly Ile Phe Cys Phe Thr
 85 90 95

Phe Phe Arg Ile Ile Gly Ala Val Phe Lys Ile Ile Ala Cys Phe
 100 105 110

Gln Asp Leu Phe His Leu Gly Thr Asp Leu Val Phe Cys Phe Leu Lys
 115 120 125

Cys Leu Pro Phe Phe Tyr Met Ser Arg Asn Phe Glu Leu Tyr Ser Glu
 130 135 140

His Ser Asn Tyr Val Val
 145 150

<210> 154

<211> 188

<212> PRT

<213> Homo sapiens

<400> 154

His Cys Ile Pro Ile Leu Ala Gln Thr Val Phe Trp Ser Pro Ile Tyr
 1 5 10 15

His Pro Phe Ser Val Val Leu Val Leu Val Phe Ala Ile Cys Trp Ala
 20 25 30

Pro Phe His Ile Asp Arg Leu Phe Phe Ser Phe Val Glu Glu Trp Ser
 35 40 45

Glu Ser Leu Ala Ala Val Phe Asn Leu Val His Val Val Ser Gly Lys
 50 55 60

Thr Leu Ala Gly Phe Gly Ala Leu Val Phe Arg Gln His Leu Leu Leu
 65 70 75 80

His Leu Ala Met Pro Lys Tyr Ser Asn Leu Ser Arg Gly Ser Ala Met
 85 90 95

Leu Arg His Leu Ile Phe Leu Leu Phe Arg Asp Leu Cys Leu Ile Leu
 100 105 110

Phe Gln Ile His Ile Tyr Gln Ile Thr Ile Phe Lys Ala Thr Leu Trp
 115 120 125

Lys Thr Ser Ser Leu Thr Val Met Ile Thr Glu Gly Lys Trp Ser Arg
 130 135 140

Ser Asp Ser Phe Gly Tyr Pro Pro Asn Gly His Ala Ile Lys Leu Val
 145 150 155 160

Leu Ile Thr Pro Met Ser Leu Glu Ile Ser Tyr Cys Leu Trp Glu Val
 165 170 175

Leu Tyr Pro His Glu Gly Lys Leu Asn Gly Ile His
 180 185

<210> 155
 <211> 194
 <212> PRT
 <213> Homo sapiens

<400> 155

Leu Glu Val Gly Leu Trp Ala Ala Ser Phe Ile Leu Ala Leu Pro Val
 1 5 10 15

Trp Val Tyr Ser Lys Val Ile Lys Phe Lys Asp Gly Val Glu Ser Cys
 20 25 30

Ala Phe Asp Leu Thr Ser Pro Asp Asp Val Leu Trp Val Val Lys Thr
 35 40 45

Glu Lys Arg Val Glu Leu Ser Cys Glu Glu Leu His Ser Pro Cys Gln
 50 55 60

His Val Ser Ser Leu Lys Glu Tyr Pro Tyr Gly Ser Ser Ser Arg Gln
 65 70 75 80

Tyr Leu His Val Ser Pro His Ile Gln Ser Arg Val Phe Leu Arg Arg

85	90	95
----	----	----

Gly Pro Leu Glu Lys Asp Phe Glu Phe Asn His Val Thr Ser Val Asp
 100 105 110

Thr Asn Ile Phe Lys His Gly Phe Thr Phe Ile Ala Ala Arg Arg Ser
 115 120 125

Gly Asn Ala Ala Ile Lys Gly Gly Lys Glu Phe Pro Glu Ser Leu Arg
 130 135 140

Leu His Leu Ile Ser Met Gln Leu Gln Phe Ala Ile Met Ser Pro Ile
 145 150 155 160

Lys Thr Cys Ser Ser Pro Thr Pro Ala Pro His Thr Cys Glu Cys Asp
 165 170 175

Leu Ile Trp Lys Gly Phe Phe Arg Cys Asn Gln Ala Lys Leu Arg Ala
 180 185 190

Cys Trp

<210> 156

<211> 234

<212> PRT

<213> Homo sapiens

<400> 156

Leu Leu Gly Leu Tyr Ile Phe Leu Ser Leu Val Cys Leu Glu Trp Thr
 1 5 10 15

Leu Phe Gln Ser Phe Cys Phe Leu Phe Leu Cys His Leu Val Ile Phe
 20 25 30

Ile Asp Trp Gly Thr Leu Gly Gly Ser Gly Leu Arg Thr Ser Val His
 35 40 45

Gln Gly Thr Leu Ala Gly Gln Glu Arg Ser Glu Pro Trp Gly Arg Ala
 50 55 60

Gln Val Lys His Lys Leu Gly Ser Ser Cys Pro His Leu Pro Gly Glu
 65 70 75 80

Ile Arg Thr Leu Cys Cys Gly Lys Ala Pro Val Leu Thr Leu Cys Gly
 85 90 95

Gly Gly Val Leu Leu Gln Tyr Cys Cys Gly Lys Ala Pro Pro Phe Leu
 100 105 110

Val Phe His Ile Gly Leu Ile Tyr Ser Tyr Phe Leu Tyr Leu Phe Cys
 115 120 125

Pro Leu Ile Ser Phe Cys Ser His Leu Ile His Phe His Pro Asn Tyr
 130 135 140

His Ser Val Leu Tyr Thr Tyr Ser Tyr Ile Ile Ala Ser Leu Ser His
 145 150 155 160

Lys Leu Trp Tyr Asp Lys Val Met Phe Val His Cys Phe Cys Lys Lys
 165 170 175

Ala His Ser Ala Phe Trp Gly Tyr Leu Leu Ile Asn Leu Tyr Arg Ile
 180 185 190

Pro Met Arg Ile Gly Leu Asp Arg Val Phe Ser Thr Gln Phe Thr Arg
 195 200 205

Pro Cys Cys Leu Ser Ile Met Ile Lys Asp Tyr Tyr Val Lys Met
 210 215 220

Phe Ile His Ile His Lys Phe Val Glu Ile
 225 230

<210> 157

<211> 183

<212> PRT

<213> Homo sapiens

<400> 157

His Leu Ile Leu Pro Leu Gly Cys Gln Pro Ala Asp His Arg Met Thr
 1 5 10 15

Phe Ser Gly Tyr Ala Gln Asn Lys His Phe Arg Tyr Phe Leu Phe Phe
 20 25 30

Glu Tyr Lys Asn Phe Leu Asp Tyr Val Leu Phe His Leu Ile Lys Ser
 35 40 45

Leu Arg Pro Asn Leu Phe Arg Tyr Ile Cys Cys Ile Tyr His Leu Ile
 50 55 60

Ser Leu Lys Leu Cys Cys Leu Gln Lys Leu Leu Ala Gly Thr Ser Val
 65 70 75 80

Tyr Asn Ile Leu Ser Ser Thr Leu Thr Ile Ser Ser Ala Pro Lys Gln
 85 90 95

Gly Leu Gly Leu Pro Phe Gln Glu Tyr Phe Tyr Tyr Ile Tyr Cys Arg
 100 105 110

Gln His Arg Thr Leu Ser Lys Cys Leu Leu Ile Ser Pro Val Lys Ala
 115 120 125

Ser His Ser Tyr Leu Tyr Ser Ile Gln Tyr Lys Ile Phe Lys Thr Tyr
 130 135 140

Gly Gln Asn Lys Arg Ser Thr Ile Leu Thr Lys Leu Asn Leu Tyr Val
 145 150 155 160

Tyr Phe Leu Tyr Leu Tyr Thr Phe Thr Cys Leu Leu Glu Asp Thr Val
 165 170 175

Asn Thr Asp Asn Phe Lys Glu
 180

<210> 158
<211> 149
<212> PRT
<213> Homo sapiens

<400> 158

Lys Ile Ile Gln Asn Ala Cys Gln Ile Ile Leu Thr Ser Leu Pro Cys
1 5 10 15

Trp Cys Phe Trp Ser Ile Asp Cys Phe Phe Ser Phe Lys Leu Ile Leu
20 25 30

Ser Ile Met Ser Asp Phe Leu His Asn Thr Leu Gly Ile Met Phe Asn
35 40 45

Ser Gly Ser Tyr Leu Asn Pro Leu Phe Tyr Val Asp Phe Ser Asp Thr
50 55 60

Thr Leu Ile Gly Val Gly Val Gly Val Thr Val Ser Leu Pro Arg Arg
65 70 75 80

Gly Trp Lys Tyr Ser Phe Pro Thr Pro Val Leu Ile Leu Glu Trp Glu
85 90 95

Ser Ser Leu Gln Leu Gly Gly Ile Gly Ala Thr Ala Pro Cys Trp Val
100 105 110

Pro Thr Tyr Thr Thr Leu Ala Gly Ser Gly Arg Ser Ala Leu Ser Leu
115 120 125

Cys Pro Met Trp Pro Pro Leu Thr Leu Trp Gly Gly Val Ser Leu Leu
130 135 140

Pro Leu Ser Gly Gly
145

<210> 159
<211> 207
<212> PRT
<213> Homo sapiens

<400> 159

Cys Ala Gly Ser Lys Arg Pro Thr Ile Ala Leu Leu Ala Thr Leu Ser
1 5 10 15

Gly Lys Leu Asp Trp Asp Asn Glu Thr Glu Thr Ser Gly His Val Asn
20 25 30

Met Ser His Thr Gly Gly Glu Trp Leu Val Asp Arg Gln Val Val Phe
35 40 45

Ser Leu Thr Val Leu Val Ala Leu Cys Gly Leu Val Gly Asn Asp Val
50 55 60

Ile Cys Trp Leu Leu Tyr Ser Gln Val Trp Ser Ser Pro Tyr Val Thr
65 70 75 80

Tyr Ile Leu Asn Leu Ala Thr Val Asp Met Val Asn Leu Ser Cys Val
 85 90 95
 Thr Val Ile Leu Leu Glu Lys Ile Leu Met Leu Tyr His Gln Ala Ala
 100 105 110
 Leu Gln Val Ala Val Phe Leu Asp Pro Val Ser Tyr Phe Ser Asp Thr
 115 120 125
 Val Gly Leu Cys Leu Leu Val Ala Met Ser Ile Glu Ser Phe Leu Cys
 130 135 140
 Ala Leu Cys Pro Thr Trp Cys Cys His Arg Pro Glu His Thr Ser Ala
 145 150 155 160
 Met Val Arg Trp Ala Leu Ala Leu Ser Leu Tyr Ala Val Ser Gln Val
 165 170 175
 Cys Glu Tyr Trp Glu Lys Cys Leu Ala Cys Asp Gln Phe His Glu Ala
 180 185 190
 Leu His Val Met Tyr Leu Phe Ala Leu Trp Ala Cys Pro Ser Ser
 195 200 205
 <210> 160
 <211> 198
 <212> PRT
 <213> Homo sapiens
 <400> 160
 Ile Asn Ile Ser Phe Phe Lys Asn Asn Asn Val Ile Val Tyr His Phe
 1 5 10 15
 Asp Asn Ile Phe Ile Leu Asn Phe Asn Lys Lys Ala Cys Leu Leu Ile
 20 25 30
 Phe Leu Ile Asn Tyr Leu Val Phe Lys Tyr Leu Ser Tyr Leu Lys Thr
 35 40 45
 Asp Ile Ser Ile Thr Lys Ser Thr Ser Asn Ser Lys Pro Gly Arg Lys
 50 55 60
 Ala Asn Lys Ile Thr Asn Phe Lys Leu Arg Leu Leu Ser Gly Met Cys
 65 70 75 80
 Leu Cys Leu Leu Leu Phe Thr Val Thr Phe Ala Phe Phe Ser Thr Gln
 85 90 95
 Phe Thr Ser Glu Leu Gly Met Lys Leu Ile Leu Ala Tyr Phe Phe Pro
 100 105 110
 Phe Val Phe Val Lys Glu Glu Thr Gln Ser Ile Leu Glu Asn Pro Val
 115 120 125
 Trp Asn Ile Leu Met Phe Thr Ile Ser Asn Ile Met Lys Tyr Val Thr
 130 135 140
 Tyr His Leu His Leu Phe Gly Asn Tyr Leu Cys Thr Phe His Phe Asp

145	150	155	160
Thr Gln Lys Trp Pro Leu Phe Phe Leu Cys Met Lys Pro Ile Tyr Tyr			
165	170	175	
Ile Arg Phe Tyr Ser Ile Ser Lys Leu Phe Gln Ser Ser Phe Ile Gly			
180	185	190	
Gln Thr Asp Ser Gln Tyr			
195			
<210> 161			
<211> 98			
<212> PRT			
<213> Homo sapiens			
<400> 161			
Met Val Glu Ser Val Lys Leu Val Lys Ser Phe Leu Leu Val Leu Gly			
1	5	10	15
Thr Phe His Phe Lys Asn Ile Ser Lys Tyr Asn Tyr Ile Cys Pro Ser			
20	25	30	
Pro Phe Leu Lys Gly Leu Tyr Ile Ile Thr Tyr Ile Leu Phe Tyr Leu			
35	40	45	
Val Leu Phe Ile Tyr Pro Gly Asp His Phe Gln Ser Ser Val Tyr Ser			
50	55	60	
Ser Leu Cys Lys Cys Lys Thr Asp Tyr Ser Ala Ser Asn Thr Gly Trp			
65	70	75	80
Thr Phe Leu Ser Phe Thr Leu Leu Ile Val Leu Ile Ala Leu Pro			
85	90	95	
Phe Cys			
<210> 162			
<211> 185			
<212> PRT			
<213> Homo sapiens			
<400> 162			
Arg Arg Ser Pro Pro Ala Gly Thr Ala Ala Ala Ser Ala Gln Pro Thr			
1	5	10	15
Trp Glu Gly Gly Ser Leu Ser Gly Ser Phe Asn His Thr Gln Gly Ile			
20	25	30	
Ala Val Phe Cys Leu Gly Val Arg Glu Ser Ser Pro Trp Ser Trp Gly			
35	40	45	
Thr Ala Leu Met Ser Glu Glu Asn Leu Ala Leu Gly Val Trp Thr Thr			
50	55	60	
Cys Val Lys Ile Leu Ala Trp Arg Leu Pro His Cys Val Thr Leu Ser			

65	70	75	80
Lys Phe Leu Asn Leu Ser Gly Ser Pro Phe Ser Arg Cys Thr Thr Gly			
85		90	95
Gly Thr Val Pro Arg Arg Thr Leu Arg Ser Ser Val Gly Gly Glu Trp			
100		105	110
Gly Leu Val Trp Ala Arg Arg Gly Leu Ala Ser Gln Ser Pro Glu Leu			
115		120	125
Arg Ile Glu Arg Val Phe His Phe Thr Gly Gly Arg Gly Ala Ser Pro			
130		135	140
Thr Ser Trp Thr Ser Leu Pro Gly Val Gly Lys Gly Gly Val Gly Ala			
145		150	155
Val Leu Ser Ser His Thr Trp Thr Asp Ser Ser Thr Pro Tyr Ala Pro			
165		170	175
Pro Ser Leu Pro Ser Ser Gly Pro Arg			
180		185	
<210> 163			
<211> 189			
<212> PRT			
<213> Homo sapiens			
<400> 163			
Pro Ser Pro Gly Ser Phe Arg Thr Lys Thr Phe Leu His Ser Leu Leu			
1	5	10	15
Cys Val Ile Lys Ile Gly Ser Asn Pro Pro Thr His Ser Met Lys Gly			
20	25	30	
Asn Thr Val Val Lys Asn Leu Lys Phe Phe Ser Val Asn Ser Asn Pro			
35	40	45	
Gly Trp His Leu Asn Phe Glu Arg Ser Lys Arg Val Asp Leu Ala Val			
50	55	60	
Tyr Gln Leu Pro Thr Val Leu Ser Asp Pro Trp Lys Phe Leu His Ile			
65	70	75	80
Leu Trp Arg Pro Phe Arg Ala Glu Ile Cys Leu Gly Val Cys Gly Thr			
85	90	95	
Glu His Ser Gly Cys Arg Met Trp Gln Ser Ile Arg Ser Leu Leu Arg			
100	105	110	
Pro Ser Leu Ser Leu Trp Gly Ser Phe Leu Glu Val Glu Pro Glu Ser			
115	120	125	
Phe Ser Arg Leu Gly Thr Cys Glu Leu Thr Gly Tyr Leu Arg Thr Val			
130	135	140	
Glu Ala Asn Lys Glu Ala Gln Glu Ala Ser Glu Val Ser Tyr Ile Ala			
145	150	155	160

MISSING AT THE TIME OF PUBLICATION

Val Leu Asn Arg Cys Thr Val Ser Ser Gly Thr Ile Glu Leu Leu Phe
35 40 45

Trp Ala Tyr Glu Leu Phe Pro Val Pro Tyr Cys His Pro Ile Phe Ala
50 55 60

Ile Tyr Lys Met Ser Ile Phe Phe Met Gly Val Asp Glu Leu Leu Phe
65 70 75 80

Gly Phe Ile Glu Gly Cys Phe Gly Thr Phe Ile Ser Ala Asn His Gly
85 90 95

His Ala Ser Ile Cys Pro Arg Glu Arg Ala Ser Lys Cys Asn Val Leu
100 105 110

Asp Val Ser Val Lys Ser Pro Gln Glu Ala His Asp Ser Asn His Arg
115 120 125

Gly Ser Gln Gly Pro Ser Arg Thr Gly Thr Ser Gly Leu Ala Cys Gly
130 135 140

Phe Ser Trp Tyr Val Cys Ile Ala
145 150

<210> 171
<211> 197
<212> PRT
<213> Homo sapiens

<400> 171

Gly Gln Val Lys Lys Ser Lys Leu Phe Gly Leu Gln Phe Ser Gln Thr
1 5 10 15

Gln Glu Pro Ile Ile Gln Lys Gln Leu Ser Tyr Tyr Leu Phe Leu Leu
20 25 30

Gly Gly Thr Pro His Lys Gln Gly Leu Ala Gly Val Val Phe Val Leu
35 40 45

Tyr Trp Leu Arg Glu Gly Lys Gly Val Phe Leu Ile Val Phe Pro Val
50 55 60

Ala Gln Ile Leu Arg Cys Gly Asn Ala Tyr Cys His Phe Gly Lys Asn
65 70 75 80

Ser Phe Phe Ile Tyr Asn Thr Tyr Val Ile Ile Leu Ile Gln Phe Tyr
85 90 95

Lys Ile Ile Tyr Asn Met Lys Tyr Ile Phe Glu Lys Asn Asn Tyr Leu
100 105 110

Tyr Tyr Leu Tyr Leu Phe Arg Pro Cys Leu Ser Lys Val Leu Leu Ser
115 120 125

Leu Ala Thr Val Tyr Phe Pro Leu Trp Phe Glu Leu Lys Gln Met Leu
130 135 140

Lys Glu Asn Lys Pro Ser Glu Pro Pro Asp Ser Phe Ile Ala Ala Val
 145 150 155 160

Tyr Leu Leu Leu Ile Leu Leu Lys Phe Met Leu Gln Gln Ser Lys Thr
 165 170 175

Gln Trp Ser Glu Thr Ser Leu Ile Glu Thr Gln Val Phe Leu Val Ser
 180 185 190

Pro Leu Asp Arg Ala
 195

<210> 172

<211> 174

<212> PRT

<213> Homo sapiens

<400> 172

Lys Gln Asn Leu Glu Ser Val Glu Ala Met Ile Phe Tyr Ser Phe Met
 1 5 10 15

Thr Leu Arg Gln Cys Asn His Gly Leu Tyr Leu Ser Tyr Phe Phe Leu
 20 25 30

Tyr Ser Met Ile Leu Leu Tyr Trp Val Ile Phe Gly Ser Gln Glu Ser
 35 40 45

Met Ala Leu Val Trp Asn Phe His Gly Val His Lys Asn Asp Phe Asn
 50 55 60

Gln His Ile Ile Ile Asn His Ile Tyr Ile Gly Ser Arg Tyr Arg Ser
 65 70 75 80

Thr Cys Leu Ala His Ser His Ile Ser Val Ser His Gln Ser Ser Thr
 85 90 95

Glu Arg Gly Gln Ile Phe Gln Lys Lys Gly Leu Glu Asn His Leu Glu
 100 105 110

Gln Val Ala Ser Leu Ile Tyr Asn Leu Gly Asn Arg Ile Gly Glu Pro
 115 120 125

Ile Lys Gly Ser Cys Ser Phe Ala Pro Glu Asn Lys Thr Gly Thr Pro
 130 135 140

Ala Met Thr Val Lys Tyr His Arg Leu Pro Cys Asn Ser Asp Pro Ser
 145 150 155 160

Arg Leu His Leu Trp Gly Ser Leu Arg Thr Arg Gly Phe Gly
 165 170

<210> 173

<211> 175

<212> PRT

<213> Homo sapiens

<400> 173

Lys Asn Cys Ile Lys Phe Ala Gln Phe Gly Gly Lys Thr Gly Phe Gln
 1 5 10 15

Lys Ser Ile Thr Leu Phe Leu Ile Asn Pro Leu Val Ser Gln Ser Phe
 20 25 30

Ile Leu Trp Ser Ile Ile Ser Gln Ser Val Pro Ile Arg Lys Thr Lys
 35 40 45

Asn Thr Val His His Ser Asn Thr Lys Gly Phe Asn Ser Gly Lys Arg
 50 55 60

Leu Gln Arg His Trp Lys Gly Trp Gly Arg Lys Glu Arg Arg Leu Pro
 65 70 75 80

Arg Asp Glu Arg Ala Ala Thr Thr Leu Arg Leu Glu Pro Ser Ser Cys
 85 90 95

Ile Cys Cys Trp Arg Leu Arg Cys Gly Gln Cys Pro Phe Ser Thr Phe
 100 105 110

Thr Glu Glu Ala Leu Cys Gly Gln Cys Arg Ile Gly His Asp Thr Ser
 115 120 125

Thr Thr Gly Ala Arg Ser Glu Trp Arg Leu Ser Ser His Gln Leu Ser
 130 135 140

Leu Ala Lys Phe Asp Lys Pro Val Gly Lys Gly Phe Trp Gln Met Glu
 145 150 155 160

Tyr Thr Gly Phe Gln Ala Leu Gln Leu Asn Arg Val Gln Lys Gly
 165 170 175

<210> 174
 <211> 193
 <212> PRT
 <213> Homo sapiens

<400> 174

His Asp Gly Arg Ala Tyr Cys Thr Ser Met Leu Gly Ile Ala Tyr Gly.
 1 5 10 15

Ser Ala Thr Asn Leu Phe Ser Met Leu Leu Leu Asp Ile Val Gly Asn
 20 25 30

Cys Asn Thr Met Val Ser Ile Cys Val Ser Lys Tyr Ile Asn Met Glu
 35 40 45

Arg Thr Gln Lys Tyr Ser Ile Ile Ser Trp Asp His His Cys Ile
 50 55 60

Ser Gly Ser Leu Thr Lys Thr Leu His Asp Cys Ser Ser Leu Leu Gly
 65 70 75 80

Gly Gly Gln Lys Leu Val Arg Asn Gly Trp Gln Leu Glu Gly Lys Glu
 85 90 95

Met Thr Gln Ala Leu His Ser Pro Thr Ala Ala Ala His Arg Trp Pro

100	105	110
Ser Thr Gly Lys Pro Glu Leu Thr Glu Leu Thr Pro Gly Glu His Ser		
115	120	125
Leu Ile Gly Phe Ile Ile Ser Gln Ser Lys Thr Glu Leu Trp Leu		
130	135	140
Arg Ile Lys Ala Arg Phe Phe Leu Asn Ser Ile Ile Phe Ile Lys		
145	150	155
Leu Ser Lys Val Ser Leu Gly Lys Thr His Met Ser Gln Ala Phe Ser		
165	170	175
Val Ser Arg Gly Lys Arg Leu Phe Gln Lys Gln Lys Glu Glu Phe Ile		
180	185	190

Ser

<210> 175
<211> 236
<212> PRT
<213> Homo sapiens

<400> 175

Leu Ser Cys Ser Pro Pro His Pro Gly Thr Pro Asn Pro Ser Pro Cys			
1	5	10	15
His Leu Gly Phe Cys Ile Ile Leu Thr Gly Phe Tyr His Thr Phe Ile			
20	25	30	
Tyr Leu Phe Ile His Phe Leu Cys Leu Leu Ser Ala Phe Cys Leu Ser			
35	40	45	
His Ser Met Lys Thr Leu Gly Val Ser Met Lys Thr Ala Arg Leu Arg			
50	55	60	
Ser Leu Leu Glu Ala Gln Trp Thr His Arg Leu Ser Ser Pro Leu Gly			
65	70	75	80
Thr His His His Ile His Ile Glu Phe Thr Leu Pro Thr Gly Cys Phe			
85	90	95	
Gln Pro Ala Ala Glu His Ser Lys Val Ile Asn Thr Asp Pro Phe Gly			
100	105	110	
Lys Met Gln Asp Ser Leu Met Gly Asp Phe Gly Ser Arg Ile Pro Arg			
115	120	125	
Trp Trp Gly Gln Ser Ile Pro Gly Ile Ala Leu Gln Pro Lys Ala Val			
130	135	140	
Leu Leu Gln Ala Ser Ser Leu Pro Cys Leu Leu Leu Gln Ala Ser Asp			
145	150	155	160
Leu His His Ser Val Arg Leu Ser Leu Ser Phe Leu Ala Leu Ser Pro			
165	170	175	

Gly Asn Val Ile Leu Ser Trp His Leu Leu Leu Ser Gly Thr Gly Leu
 180 185 190

Met Tyr Gly Phe Cys Ser Leu Met Tyr Pro Glu Tyr Leu Asp Leu Glu
 195 200 205

Val Cys Ser Lys Tyr Leu Trp Lys Glu Arg Leu Met Lys Ala Lys Cys
 210 215 220

Lys Pro Ile Ala Phe Ile Leu Gly Ala Ala Pro Arg
 225 230 235

<210> 176

<211> 129

<212> PRT

<213> Homo sapiens

<400> 176

Gln Leu Ile Phe Thr His Ala Ile Leu Leu Ser Asp Asp His Phe Asn
 1 5 10 15

Ser Ile Lys Trp Lys Gln Asp Asn Val Ser Val Ile Leu Ser Leu Val
 20 25 30

Ser Arg Ala Gln Ala Ile Val Phe Thr Met Leu Ser Gln Phe Ser Leu
 35 40 45

Pro His Cys Arg Cys Val Leu Arg Gly Ala Val Gly Ser Ile Val Cys
 50 55 60

Pro Glu Pro His Val Asn Gly Asn Met Met Val Leu His Cys Glu Arg
 65 70 75 80

Arg His Asp Arg His Gly Asn Val Ser Gly Arg Asn Lys Ser Ile Ile
 85 90 95

Lys Ile Leu Arg Gln Lys Phe Lys Asn Ser Trp Pro Leu Gly Glu Gly
 100 105 110

Leu Ser Phe Ile Lys Asn Ile Phe Met Ile Ile Asn Leu Tyr His Thr
 115 120 125

Arg

<210> 177

<211> 185

<212> PRT

<213> Homo sapiens

<400> 177

Leu Leu Val Pro Ser Thr Pro Cys Phe His Gly Cys Gly Val Ile Cys
 1 5 10 15

Leu Lys Lys Ser Ser Pro Tyr Pro Ile Trp Leu Thr Ala Ser Ser Leu
 20 25 30

Ser Gly Phe Ile Leu Ala Phe Ser Met Val Asn Leu Pro Pro Asn Ser
 35 40 45
 Pro Ser Leu Pro Ser Leu Glu Tyr Ser Ser Pro Ile Leu Leu Trp Tyr
 50 55 60
 Pro Val Met Pro Leu Ala Asn Tyr Leu Ile Ile Leu Pro Ala Ile Asp
 65 70 75 80
 Cys Ser Cys His Trp Thr Val Phe Val Leu Leu Leu Met Phe Tyr Pro
 85 90 95
 Pro Val Pro Asn Thr Val Ser Gly Thr Gln Tyr Val Leu Ser Lys His
 100 105 110
 Leu Leu Val Ser Ser Asn Ser Leu Ser Val Lys Arg Val Ala Lys Gln
 115 120 125
 Ile Phe Asn Ile Ser Asp Leu Tyr Phe Phe Val Glu Tyr Ile Val Ala
 130 135 140
 Arg Glu Glu Cys Thr Pro Leu Gln Lys Ile Tyr Thr Tyr Ile Phe Met
 145 150 155 160
 Phe Tyr Ile Ile Gln Ser Leu Cys Ser Ile Ser Pro Thr Glu Gln Phe
 165 170 175
 Lys Ala His Phe Cys Leu Val Ser Glu
 180 185
 <210> 178
 <211> 196
 <212> PRT
 <213> Homo sapiens
 <400> 178
 Ala Gly Glu Arg Gly Ser Glu Gln Thr Glu Glu Gly Gly Leu Cys Gly
 1 5 10 15
 Thr Asp Leu Gly Arg Ala Leu Val Ile Ile Leu Ser Phe Tyr Phe Gly
 20 25 30
 Lys Ser His Gly Ala Val Thr Leu Ala Val Asn Gly Pro Lys Pro Pro
 35 40 45
 Leu Ser Ser Ala Gly His Asp Ala Leu Trp Gln Val Cys Leu Gly Leu
 50 55 60
 Pro Glu Arg Ser Gln Ser Leu Val Phe Phe Ser Ala Thr Tyr Leu Asp
 65 70 75 80
 Arg Glu Ile Leu Thr His Ser Ala Asp Trp Ala Pro Thr Val Cys Val
 85 90 95
 Cys Val Arg Arg Phe Leu Val Gly Thr Leu Gly Gly Ser Ala Ser Trp
 100 105 110

Asp Ala Phe Gly His Leu Cys Val Cys Pro Phe Gly Gly Gly Cys Ala
 115 120 125

Gly Thr Leu Leu Pro Leu Gln Val Ser Val Ile Ile Thr Ile Trp Ser
 130 135 140

Gly Leu Tyr Cys Glu Trp Pro Arg Val Ala Val Gly His Val Asn Gln
 145 150 155 160

Arg Cys Pro Val Val Gly His Trp Trp Glu Glu Gly Trp Asp Glu Cys
 165 170 175

Leu Pro Leu Ser Ala Val Arg Cys Val Asn Ile Ser Leu Asn Pro Met
 180 185 190

Arg Ser Gly Gly
 195

<210> 179

<211> 197

<212> PRT

<213> Homo sapiens

<400> 179

Ser Ala Leu Thr Gln Ser His Leu Ala Met Lys Ile Leu Arg Asn Ser
 1 5 10 15

Leu Leu Leu Ser Arg Ala His Leu Thr Gln Ser His His Gln Pro Gln
 20 25 30

Glu Gly Val Ala Leu Gly Gly Leu Gly Glu Arg Glu Gly Pro Gly Glu
 35 40 45

Arg Thr Ala Gly Leu Lys Pro Leu Arg Arg Glu His Ala Cys Ser Pro
 50 55 60

Gly Thr Gly Arg Gly Arg Pro Ala Glu Leu Gln Gln Ala Arg Asn Gln
 65 70 75 80

Ala Thr Ala His Pro Gln Glu Gln Asp Asp Trp Lys Gly Ala Arg Gly
 85 90 95

Leu Gln Thr Leu Asn Cys Leu Asp Met Trp Leu Lys Ala His Ser Asn
 100 105 110

Cys Asn Ala Arg Lys Arg Pro Pro Asp Trp Cys His Leu Gly His Leu
 115 120 125

His Asp Lys Leu Ser His His Thr Pro Pro Glu Gln Lys Ala Arg Leu
 130 135 140

Leu Cys Pro Val Glu Ala Gly Pro Ser Leu Glu Thr Ser Leu Thr Asp
 145 150 155 160

Thr Thr Gly Phe Lys His Gly Leu Leu Pro Arg Phe Ile Trp Leu Cys
 165 170 175

Ser Ala Ser Leu Ser His Gly Arg Met Asn Ala Cys Ile Pro Gln Lys

180

185

190

Glu Ala Ser Gly Leu
195

<210> 180
<211> 194
<212> PRT
<213> Homo sapiens

<400> 180

Gly Leu Cys Leu Tyr His Leu Pro Gln Pro Thr Ser Ile Gln Leu Met
1 5 10 15

Ala Ala Pro Thr Phe Lys Gln Ser Leu Val Leu Ala Phe Val Trp Leu
20 25 30

Tyr Phe Leu Phe Pro Arg Pro Ser Leu Pro Ser Phe Pro Ala Ser Ser
35 40 45

Leu Lys Ser Gly Gln Thr Ser Lys Ser Gly Cys Ser Ser Val Cys Trp
50 55 60

Val Phe Ser Phe Leu Pro His Leu Ser Thr Pro Phe Leu Trp Val Ile
65 70 75 80

Phe Ser Phe Pro Ala Met Leu Asn Ala Ile Phe Val Leu Thr Ala Pro
85 90 95

Gln Phe Gly Leu Gln Pro Asn Pro Leu Cys His Ile Leu Phe Pro Leu
100 105 110

Ser His Tyr Ala Pro Arg Arg Arg Ile Thr Leu Phe Cys Val Gly Ala
115 120 125

Ser Asp Leu Leu Asn Pro Val Pro Glu Thr Leu Gly Leu Trp Leu Phe
130 135 140

Leu Phe Leu Leu Ser Ser Val Ser Leu Phe Gln Lys Gly Tyr Ile
145 150 155 160

Ser Asp Ser Ser Ser Asn Ile Gly Thr Leu Pro Ile Ile Leu His
165 170 175

His Ile Ser Tyr Leu Phe Ser Phe His Leu Phe Lys Leu Ser Thr Phe
180 185 190

Cys Leu

<210> 181
<211> 230
<212> PRT
<213> Homo sapiens

<400> 181

Tyr Gly Pro Met Arg Ala Arg Leu Pro Ile Ile Cys Ser Cys Ser Pro

1	5	10	15
Phe Pro Pro Val Gly Ser Ala Phe Ala Asn Ile His Met Tyr Phe Gln			
20	25		30
Lys Asp Pro His Gly Pro His Leu Pro Ser Thr Gly Gly Arg Glu His			
35	40		45
His Gly Pro Arg Thr Gly Asn Val Val Leu Val Gln Ser Tyr Gln Leu			
50	55		60
Leu Pro Val Pro Phe Thr Leu Cys Arg Ser Phe Leu Gly Leu Cys Ser			
65	70	75	80
Ile Phe Arg Gly His Trp Leu Lys Ser Ala Thr Met Arg His Leu Gly			
85	90		95
Lys Leu Pro His Leu Val Ala Pro Leu Pro Asp Asp Thr Glu Leu Arg			
100	105		110
Thr Leu Cys Ser Pro Leu Cys Tyr Phe Cys Ser Thr Gln Ser Gln Val			
115	120		125
Arg Leu Ser Ser Ile Gln Arg Val Arg Gln Leu Glu Val Pro Ser Pro			
130	135		140
Ile Ser Arg Met Ser Leu Ala Arg Glu Ala Ala Glu Lys Thr Tyr Leu			
145	150	155	160
Gly Arg Gln Ser Lys Thr Glu Thr Lys Lys Ile Pro Ala Leu His Ala			
165	170		175
Pro Ser Glu Asp His Lys Val Gly Gln Ala Gly Thr Ser Arg Trp Arg			
180	185		190
Asp Ser Glu Arg His Gln Gly Leu Leu Leu Val Pro Val Ser Phe Pro			
195	200		205
Pro Asn Ala Ala Ala Gln Phe Thr Val Lys Lys Val Leu Cys Phe Ser			
210	215		220
His Thr Lys Gln Ala Ala			
225	230		
<210> 182			
<211> 180			
<212> PRT			
<213> Homo sapiens			
<400> 182			
Thr Ser Pro Ser Ser Ser His Asn Lys Gln Tyr Phe Tyr Asn Thr Lys			
1	5	10	15
Glu Gln Tyr Phe Ile Cys Gln Glu Lys Pro Asn Gly Leu Leu Ile Phe			
20	25		30
Gly Lys Gly Lys His Ser Leu Gly Val Asn Leu Gly Ser His Leu Thr			
35	40		45

Thr Ser Tyr Arg Met Ser Ser Met Lys Val Ile Glu Leu Ile Ser Cys
50 55 60

Lys Lys Lys Gly Lys Leu Asn Ala Glu Leu Lys Tyr Ser Lys Val Tyr
65 70 75 80

Lys Val Gly Met Leu Val Leu Ser Thr Leu Tyr Arg Tyr Val Gln Val
85 90 95

Met Phe Phe His Ile Pro Leu Thr Phe Phe Val Phe Val Tyr Ser Ala
100 105 110

Met Phe Gln Asp Ala Arg Met Gln Tyr Ser Phe Arg Leu Leu Asp Asn
115 120 125

Thr Ser Ser Asn Tyr Ser Val Ile Lys Ile Ile His Ser Arg Ser Ile
130 135 140

Tyr Ala Leu Phe Gly Val Glu Gly Leu Asp Ile Tyr Ala Phe Ser Val
145 150 155 160

Asp Asn Tyr Ile Tyr Phe Gly Tyr Ile Gly Lys Tyr Leu Thr Gln Ile
165 170 175

Trp Tyr Tyr Gln
180

<210> 183

<211> 104

<212> PRT

<213> Homo sapiens

<400> 183

Glu Tyr Glu Tyr Phe Tyr His Cys Leu Met Leu Val Arg Lys Gly Leu
1 5 10 15

Ala Leu Leu Ala Glu Val Gly Gly Val Cys Val His Ala Arg Thr Gly
20 25 30

Thr Cys Val Leu Cys Met Cys Ile Val Cys Glu Ile Leu Gly Asn Glu
35 40 45

Asn Glu Arg Ser Ser Cys Ile Leu Lys Arg Thr Ser Arg Val Leu Met
50 55 60

Ser His Ser Phe Tyr Ile Leu Lys Arg Phe Ser Leu Glu Gln Tyr Leu
65 70 75 80

Lys Lys Ala Tyr Ile Leu Ser Leu Ser Leu Ser His Thr His Thr Val
85 90 95

Ile His Leu Tyr Thr His Ser Asn
100

<210> 184

<211> 173

<212> PRT

<213> Homo sapiens

<400> 184

Tyr Met Phe Arg Ser Asn Pro Asn Pro Asn Lys His Ile Val Leu Gln
1 5 10 15

Cys Val Phe Ile Gln Ile Glu Tyr Ser Phe Pro Phe Leu Asn Glu Asn
20 25 30

Ser Ala Leu Glu Arg Val Ser Ser Gly Gly Asp Leu His Leu Gly Gly
35 40 45

Cys Arg Val Trp Asp Leu Phe Tyr Phe Asn Leu Tyr Arg Ala Leu Phe
50 55 60

Ile Phe Leu Phe Phe Leu Gly Glu Asn Gly Ser Leu Gln Asp Ile Leu
65 70 75 80

Lys Cys Ile Lys Phe Gly Val Asn Ser Met Trp Leu Ala Lys Ile Gln
85 90 95

Cys Leu Ser Gly Asn Lys Phe Leu Leu Tyr Ala Lys Leu Asn Asn Leu
100 105 110

Pro Gly Lys Arg Thr Ser Ser Cys Leu Ser Tyr Leu Leu Pro Leu
115 120 125

Pro His Gln His Cys Leu Pro Ala Val Gln Arg Ala Leu Cys Pro Ala
130 135 140

Pro His Leu Ser Ser Cys Leu Ala Ile Leu Thr Gly Leu Leu Glu Ala
145 150 155 160

Gly Ser Gln Ser Asp Ile Ser Ser Trp Gln Phe Glu Thr
165 170

<210> 185

<211> 215

<212> PRT

<213> Homo sapiens

<400> 185

Ser Leu Val Pro Lys Gly Cys Arg Leu Leu Leu Met Met Lys Arg His
1 5 10 15

Ser Gln Val Lys Leu Ala Gln Glu Leu Tyr Ser Glu Val Pro Glu Pro
20 25 30

Ala Leu Leu Ala Ala Ser Leu Lys Leu Pro Ala Met Leu Glu Tyr His
35 40 45

Ala Asn Ser Arg Thr Thr Asp Thr His Glu Thr Lys Arg Met Asn Val
50 55 60

Thr Ser Val Pro Ile Met Asn Ala Arg Ser Glu Thr Ala Met Lys Gly
65 70 75 80

Lys Ser His Gly Thr Phe Phe Pro Met Thr Phe Val Ala Gly Glu Leu
 85 90 95
 Trp Ser Cys Gly Cys Ala Ile Lys Lys Glu Ser Ile Val Phe Phe Pro
 100 105 110
 Gln Ile Ile Phe Lys Phe Ser Glu Leu Pro Phe Asp Leu Thr Pro Phe
 115 120 125
 Ile His Ala Met Lys Ser Phe His Tyr Leu Leu Val Leu Phe Gly
 130 135 140
 Val Ile Thr Cys Ile Asn Leu Val Ile Thr Arg Asp Thr Ser Lys Ser
 145 150 155 160
 Ile Trp Leu Pro Phe His Leu Leu Lys Tyr Gln Lys Thr Lys Cys Leu
 165 170 175
 Leu Pro Gly Thr Phe Val Lys Thr Ile Thr Lys Leu Arg Leu Leu Ser
 180 185 190
 Phe Phe Ile Ser Thr Ile Lys Ser Val Thr Lys Ile Arg His Tyr Ser
 195 200 205
 Asp Leu Leu Lys Thr Thr Leu
 210 215
 <210> 186
 <211> 167
 <212> PRT
 <213> Homo sapiens
 <400> 186
 Asn Ile Phe Lys Pro Leu Ser Ser Gln Gly Tyr Gln Leu Lys Val Phe
 1 5 10 15
 Ile Gly Asn Val Tyr Tyr Met Ser Lys Phe Pro Ala Ala Leu Arg Thr
 20 25 30
 Ile Gly Gln Val Ile Cys Pro Leu Ile Leu Val Thr Arg Ile Arg Val
 35 40 45
 Leu Leu Gln Ile Trp Lys Glu Lys Leu Asp His Cys Leu Leu Tyr Tyr
 50 55 60
 Tyr His Pro Asn Val Tyr Arg Gly Asn Gly Pro Glu Trp Ser Lys Pro
 65 70 75 80
 Arg Ala Tyr Gly Glu Val Glu Leu Ser Leu Glu Val Arg Ser Ala Cys
 85 90 95
 Pro Lys Ala Cys Thr Leu Ala Thr Ile Leu Ser Tyr Cys Met Leu Tyr
 100 105 110
 Thr Thr Phe Leu Cys Leu Cys Leu Cys Ile Ser Ile Cys Leu Ser Gln
 115 120 125
 Glu Val Phe Phe Leu Leu Ile Ile Lys Cys Gly Phe Phe Val Val Val

130	135	140
-----	-----	-----

Ile Leu Leu Lys Glu Leu Ser Cys Trp Val Gln Leu Ala Leu Thr Val	150	155
	145	160

Ala Ser Leu Leu Arg Glu Pro	165	
-----------------------------	-----	--

<210> 187

<211> 209

<212> PRT

<213> Homo sapiens

<400> 187

Ile Ala Ile Tyr Ile His Leu Ile Ala Asn Pro Val Gly Cys Cys Gln	10	15
	5	15

Gln Leu Ala Leu Thr Ser Arg Ser Leu Thr Val Ile Gln His Ile Gln	25	30
	20	30

Leu Asn Thr Gly Arg His Lys Ala Pro Leu Ser Pro Ala Val Lys Phe	40	45
	35	45

Lys Met Arg Lys Ile Thr Gln Cys Leu Ser Pro Glu Cys Leu Ser Ile	55	60
	50	60

His Lys Ser Asn Val Pro Asn Ser Ser Phe Ala Asp Cys Cys Phe Leu	75	80
	65	80

Phe Arg Ser Asp Val His Gly Phe Ser Leu Gly Gln Asn Cys Glu Ile	90	95
	85	95

Val Lys Val Thr Glu Lys Ser Leu Gln Arg Ser Ile Gly Asn Leu Leu	105	110
	100	110

Met Thr Asn Cys Phe Cys Ile Val Pro Ile Leu Ser Asn Val Gln Val	120	125
	115	125

Phe Thr Pro Lys Val Ser Ile Val Asn Asn Phe Tyr Phe Leu Phe Phe	135	140
	130	140

Leu Arg Lys Cys Lys Ile Cys Phe Leu Asn Ile Glu Thr Tyr Lys Ile	155	160
	145	160

Gln Lys Arg Lys Ser Ile Phe Leu Leu Pro Arg Leu Lys Ser Leu Tyr	170	175
	165	175

Ser Tyr Phe Cys Val Tyr Arg Gly Tyr Phe Ser Ser Ile Tyr Ile His	185	190
	180	190

Ile Lys Ser His Leu Ser Asn Gly Ile Leu Leu Phe Tyr Ile Phe Thr	200	205
	195	205

Thr

<210> 188

<211> 233

<212> PRT
<213> Homo sapiens

<400> 186

Leu Cys Gly Arg Ser Ala Pro Ile Ile Phe Thr Leu Phe Arg Ser Gln
1 5 10 15

Leu Tyr Ile Ile Asn Pro Trp Asp Asn Ile Gly Ile Gln Phe Lys Tyr
20 25 30

Phe Ser Ser Asp Lys Leu Asn Ala His Ile Arg Tyr Thr Phe Ala His
35 40 45

Phe Arg Ser Tyr Phe Ile Phe Trp Leu Ser Glu Arg Ala Ser Ser Lys
50 55 60

Asp Ser Phe Gln Cys Phe Leu Val Ala Tyr Ser Pro Asp Val Ser His
65 70 75 80

His Gln Leu Asn Ile Leu Arg Ala Ile Lys Arg Thr Val Phe Val Leu
85 90 95

Phe Cys Phe Leu Phe Val Pro Asn Ser Cys Leu Trp Phe Cys Gln Gly
100 105 110

Val Ile Ala Ile Phe Phe Ser His Lys Ile Ala Val Val Phe Pro Leu
115 120 125

Tyr Glu Phe Asp Cys Arg His Ala Gly Cys Leu Val Met Val Asn Phe
130 135 140

Ser Leu Leu Leu Lys Val Leu Cys Pro Ser Val Ala Val Ser Ser His
145 150 155 160

Glu Phe Ser Asp Thr Cys Phe Ile Gly Gly Glu Asn Ser Lys Pro Pro
165 170 175

Ala Arg Arg Leu Lys Asn Asn Gly Glu Asp Glu Met Thr Gln Thr Ser
180 185 190

Val His Pro Gly Lys Gln Leu Leu Ala Gly Leu Glu Cys Gly Gly Glu
195 200 205

Leu Leu Arg Glu Arg Ser Ile Ser Thr Pro Leu Ile Leu Ser Ser Cys
210 215 220

Ser Pro Ala Pro Asp Gly Gln Lys Glu
225 230

<210> 189

<211> 247

<212> PRT

<213> Homo sapiens

<400> 189

Met Met Leu Ile Asn His Leu Tyr Asn Phe Leu Gly Glu Met Ser Asn
1 5 10 15

Thr Leu Pro Ile Leu Met Gly Tyr Leu Leu Tyr Cys His Ile Val Ile
 20 25 30
 Leu Met Ser Gly Tyr Lys Phe Leu Ile Arg Tyr Val Val His Phe Ile
 35 40 45
 Ser Leu Cys Gly Phe Phe Leu Pro Asp Val Ile Ile His Thr Thr Met
 50 55 60
 Phe His Phe Glu Ser Ser Ile Tyr Leu Phe Phe Leu Trp Leu Leu
 65 70 75 80
 Val Leu Leu Val Leu Asn Leu Lys Ser Gln Ser Arg Leu Thr Pro Lys
 85 90 95
 Ser Ser Lys Ser Val Ile Val Leu Ser Ser Tyr Ile Trp Val Gln Phe
 100 105 110
 Tyr Cys Phe Val Asn Leu Thr Arg Ile Ser Gln Tyr Ile Asn Ser Lys
 115 120 125
 Pro Met Asn Thr Cys Ser Leu Glu Lys Asn Gln Lys Ile Cys Thr Lys
 130 135 140
 Lys Ile Lys Gln Asn Thr Phe Ile Ile Leu Phe Ile Gln Lys Gln Leu
 145 150 155 160
 Leu Leu Ala Cys Trp Phe Met Leu Pro Asn Pro Ile Phe Cys Glu Cys
 165 170 175
 Ile Leu Ile Phe Val Tyr Ile Cys Ile Gly Met His Val Tyr Ile Leu
 180 185 190
 Val Gly Leu His Asn Ala His Ser Cys Val Asp Arg Phe Phe Ser Leu
 195 200 205
 Ile Tyr Cys Lys His Ile Cys Arg Ser Val Phe Trp Thr Trp Leu Phe
 210 215 220
 Thr Ser Ser Val Ser Ala Ala Glu Gln Val Leu Val Asp Asn Gln Met
 225 230 235 240
 Lys Cys Tyr Lys Cys Thr Leu
 245

<210> 190
 <211> 202
 <212> PRT
 <213> Homo sapiens

<400> 190

Val Val Phe Val Leu Ser Ile Phe Pro Ser Glu Ile Lys Ile Asn Thr
 1 5 10 15
 Cys Pro His Pro Tyr Leu Leu His Tyr Gly Pro Thr Leu Phe Ile Val
 20 25 30

Gln Lys Leu Gly Leu Pro Leu Thr Phe Leu Cys Cys Tyr Ser Asn Leu
 35 40 45

Leu Ser Ser Lys Phe Ile Ser Met Leu Phe Pro Leu Ser Ile Leu Gln
 50 55 60

His Leu His Ile Leu Leu Phe Ala Leu Leu Asn Thr Lys Val His Ser
 65 70 75 80

Asp Phe Phe Leu Ile Leu Ser Val Leu Cys Phe Leu Ala Leu Val Gly
 85 90 95

Pro Phe Leu Thr Ile Asn Ile Phe Ser Ile Ser Ser His Tyr Leu His
 100 105 110

Leu Leu Asn Leu Thr Leu Tyr Ser Thr Ala Ile Tyr Phe Leu Glu Leu
 115 120 125

Leu Ile Ser Arg Thr Phe Leu Ile Leu Tyr Ile Leu Asn Thr Val Tyr
 130 135 140

Phe Ser Arg Ala Trp Lys Lys Lys Val Ser Leu Ile Gln Val Val Asn
 145 150 155 160

Ile Gln Ser Pro Asn Lys Cys Leu Leu Ser Thr Asp Tyr Ile Pro Ser
 165 170 175

Thr Pro Val Gly Ser Arg His Val Arg Asn Glu Ala Ile Lys Ile Ser
 180 185 190

Thr Leu Thr Glu Ile Lys Phe Ser Gly Glu
 195 200

<210> 191
 <211> 205
 <212> PRT
 <213> Homo sapiens

<400> 191

Leu Cys Leu Lys Ile Ile Ile Ile Lys Asn Ile Tyr Leu Tyr Met Val
 1 5 10 15

Tyr Glu Phe Asp Thr Phe Cys Phe Ile Ser Gly Leu Met Cys Tyr Arg
 20 25 30

Lys Gly Met Thr Leu Asn Ser Leu Asn Phe Ser Leu Ile Ala Leu Asp
 35 40 45

His Phe Gln Leu Ser His Leu Tyr Asn Ile Gly Gln Val Thr Pro His
 50 55 60

Ala Tyr Phe Ala Ile Tyr Lys Ser Ala Asn Arg Thr Leu Ile Gly Leu
 65 70 75 80

Leu Arg Gly Ile Ser Lys Thr Ile Glu Ser Ser Ile Trp Trp Gly Ser
 85 90 95

Thr Asn Ile Ser Thr Leu Leu Thr Leu Phe Phe Ser Pro Cys Tyr Ala

100

105

110

Phe Gln Phe Ile Ser Thr Lys Leu Val Ile Lys Ile Gln Ala Glu Val
 115 120 125

Leu Leu Ile Ser Leu Cys Val Leu Pro Gly Ser Tyr His Ser Ala Arg
 130 135 140

Asp Thr Gln Ala Pro Ser Phe Met Val Asn Thr Asp Ser Glu Leu Cys
 145 150 155 160

Leu Arg Pro Phe Gly Met Leu Gln Gln Asn Thr Ile Asp Arg Val Thr
 165 170 175

Tyr Lys Pro Gln Lys Cys Val Ser Tyr Arg Ser Gly Gly Trp Glu Val
 180 185 190

Gln Asp His Gly Ile Val Arg Phe Ser Val Trp Arg Pro
 195 200 205

<210> 192

<211> 197

<212> PRT

<213> Homo sapiens

<400> 192

Ala His Cys Val Phe Ile Ile Met Glu Glu Gln Trp Ser Leu Lys Leu
 1 5 10 15

Gln Ile Ile Pro Ser Pro His Cys Gly His Leu Phe Leu Ser Asn Leu
 20 25 30

Ser Leu Glu Gln Leu Ala Arg Met Gln Asn Leu Met Ile Phe Ser Leu
 35 40 45

Pro Leu Leu Asp Pro Ala Tyr Thr Pro Pro Leu Val Glu Val Pro Arg
 50 55 60

Ser Ser Glu Met Thr Lys Arg Gln Gly Val Gly Gly Arg Gly Lys Lys
 65 70 75 80

Asn Lys Pro Ser Asp Gln Pro Gln Met Thr Glu Cys Trp Leu Phe Ser
 85 90 95

Ile Ile Tyr Ser Phe Glu Leu Ser Gln Met Cys Phe Ser Glu Lys Thr
 100 105 110

Phe Met Leu Ser Phe Leu Ser Ser Leu Ile Val Asn His Gln Phe Pro
 115 120 125

Cys Asn Gly Leu Arg Val Gln Ser Pro Met Arg Ser Arg Ala Ala Arg
 130 135 140

Phe Ser Arg His Ser Thr Thr Phe Pro Ser Pro Phe Phe Lys Gln Ala
 145 150 155 160

Phe Lys Leu Cys Met Lys Pro Cys Gln Thr Lys Met Lys Val Thr Lys
 165 170 175

Val Lys Ile Gin Lys Gln Phe Ile His Pro Arg Tyr Leu His Thr Ala
 180 185 190

Leu Asn Met Val Asp
 195

<210> 193
 <211> 207
 <212> PRT
 <213> Homo sapiens

<400> 193

Pro Ser Ser Trp Lys Leu Leu Phe Tyr Thr Leu Ile His Ser Gly Ile
 1 5 10 15

His Tyr Gln Val His Arg Val Val Lys Phe Arg Ile Arg Glu Asn Val
 20 25 30

Glu Lys Val Ser Ala Arg Leu Leu Pro Lys Tyr Trp Ser Asn Ile His
 35 40 45

Gln Thr His Met Val His Glu Gly Gln Thr Ser Ile Ile Cys Ser Cys
 50 55 60

Ser Pro Phe Pro Pro Val Gly Ser Ala Phe Ala Asn Ile His Met Tyr
 65 70 75 80

Phe Gln Lys Asp Pro His Gly Pro His Leu Pro Ser Thr Gly Arg
 85 90 95

Glu His His Gly Pro Arg Thr Gly Asn Val Val Leu Val Gln Ser Tyr
 100 105 110

Gln Leu Leu Pro Val Pro Phe Thr Leu Cys Arg Ser Phe Leu Gly Leu
 115 120 125

Cys Ser Ile Phe Arg Gly His Trp Leu Lys Ser Ala Thr Met Arg His
 130 135 140

Leu Gly Lys Leu Pro His Leu Val Ala Pro Leu Pro Asp Asp Thr Asp
 145 150 155 160

Leu Arg Thr Leu Cys Ser Pro Leu Cys Tyr Phe Cys Ser Thr Gln Ser
 165 170 175

Gln Val Arg Leu Ser Ser Ile Gln Arg Val Arg Gln Leu Glu Val Pro
 180 185 190

Ser Pro Ile Ser Arg Met Ser Leu Ala Arg Glu Ala Ala Glu Lys
 195 200 205

<210> 194
 <211> 179
 <212> PRT
 <213> Homo sapiens

<400> 194

Ile Gln Gin Lys Arg Arg Arg His Arg Ala Thr Arg Lys Ile Gly Ile
 1 5 10 15

Ala Ile Ala Thr Phe Leu Ile Cys Phe Ala Pro Tyr Val Met Thr Arg
 20 25 30

Trp Val Leu Ala Val Arg Leu Leu Leu Trp Glu Gln Leu Gly Gly Leu
 35 40 45

Gly Leu Ser Val Gly Leu Gly Phe Pro Ala Arg Tyr Leu Glu Gly Gly
 50 55 60

His His Gln Arg Thr Leu Leu His Thr Arg Ala Gln Gly Cys Ala Ser
 65 70 75 80

Ala Pro Gly Lys Asp Pro Gly Arg Glu Val Ala Leu Ala Pro Ile Leu
 85 90 95

Ser Tyr Lys Gly Asp Ser Pro Cys Pro Gly Thr Gly Arg Tyr Gly Val
 100 105 110

Cys Glu Ser Ala Pro Gly Ser Leu Asn Leu Glu Ser Phe Gln Asn Gln
 115 120 125

Ala Thr Trp Asp Leu Arg Pro Gln Thr Pro His Leu Leu Gly Val Glu
 130 135 140

Leu Gly Ile Trp Val Glu Ala Pro Ala Gly Ala Ser Gly Gln His Cys
 145 150 155 160

Gln Val Ser Val Leu Phe Ala Ser Leu Phe Pro Gly Asp Leu Gly Leu
 165 170 175

Ser Ala Cys

<210> 195
 <211> 138
 <212> PRT
 <213> Homo sapiens

<400> 195

Arg Asn Ser Val Glu Arg Ala Ser Val Leu Asn Val Val Lys Val Tyr
 1 5 10 15

Thr Glu His Gly Pro Phe Ile Trp Val Arg Glu Thr Thr Ser Pro Phe
 20 25 30

Val Leu Ser His Phe Leu Leu Val Phe Leu Thr His Ile Ala Asp Val
 35 40 45

Ile Leu Met His Lys Tyr Leu Gly Lys Val Ser Glu Ala Gly Phe Leu
 50 55 60

Leu Val Phe Pro His Ser Leu Ser Val Val Cys Phe Tyr Ile Leu Cys
 65 70 75 80

Asp Phe Pro Ile Thr Phe Leu Cys Phe Tyr Arg Arg Ser Arg Ser Cys
 85 90 95

Leu Thr His Leu Trp Thr Leu Ala Asn Gly Met Arg Gly His Met Pro
 100 105 110

Phe Leu His Pro Ser Arg Ser Leu Met Trp Leu Gln Arg Ala Gln Gly
 113 120 125

Leu Tyr Ser Gly Ser Leu Pro Ala Gln His
 130 135

<210> 196

<211> 196

<212> PRT

<213> Homo sapiens

<400> 196

Phe Thr Lys Pro Ile Ile Ile Ser Asn Pro Asn Arg Asp Leu Trp Leu
 1 5 10 15

Leu Ser Ile Lys Gly Asn Lys Ala Pro Ser Pro Ile Leu Ile Ile Phe
 20 25 30

Ser Phe Leu Phe Tyr Phe Leu Ser Phe Phe Asn Met Phe Gln Cys Gln
 35 40 45

Asn Arg Leu Ala His Leu Cys Ser Pro Ala Ala Phe Pro Arg Arg Ala
 50 55 60

Ala Ser Asn Ser Leu Trp Ser Gln Trp Ala Ile Ile Arg Gly Asn Thr
 65 70 75 80

Cys Met Leu Lys Ser Ile Cys Pro Leu Thr Ile Asp Lys Gln Ala Leu
 85 90 95

Asn Lys Lys Ser Ser Thr Gln Ile Ser Phe Leu Asn Ala Val Leu Phe
 100 105 110

Leu Arg Phe Lys Asn Ser Ser Thr Pro Phe Ile Leu His Ile Tyr Phe
 115 120 125

Thr Thr Ala Leu Leu Thr Ser Phe Pro Ile Leu Ala Gln Asn Phe Tyr
 130 135 140

Glu Glu Asn Leu Arg Ile Thr Ala Leu Val Thr Cys Trp Ser Gly His
 145 150 155 160

His Ala Phe Phe Ile Trp Gln Leu Ile Gln Ser Leu Phe His Asn Lys
 165 170 175

Ser Asp Leu Glu Ser Gln Arg Lys Lys Lys Leu Arg Thr Cys Trp Glu
 180 185 190

Ser Pro Val Ser
 195

<210> 197

<211> 116
<212> PRT
<213> Homo sapiens

<400> 197

Phe Val Phe Lys Leu Val Thr His Thr His Thr Ser Ser Ala Arg His
1 5 10 15

Thr Met Lys Thr Val Ala Pro Val His Phe Ser Leu Leu Val Pro Arg
20 25 30

Gly Asn Tyr Phe Leu Leu Ile Val Phe Phe Trp Tyr Leu Ser Pro Tyr
35 40 45

Leu Ser Leu Tyr Cys His Phe Leu Ile Phe Gln Phe Ser Thr Leu Ile
50 55 60

Phe Gln Phe Phe His Ala Gly Arg Arg Gly Phe Asn Tyr Phe Leu Leu
65 70 75 80

Ser Phe Pro Val Thr Gln Tyr His Thr His Thr Pro Ser Leu Thr Pro
85 90 95

Thr Leu Ser Ile Phe Ser Leu Lys Ser Ile Ile Asn Ile Tyr Ile Ile
100 105 110

Ile Met Cys Arg
115

<210> 198

<211> 220
<212> PRT
<213> Homo sapiens

<400> 198

Ala Pro Val Lys Ile Ser Val Leu Gln Asp Lys Arg Cys Gly Gln Gly
1 5 10 15

Thr Gln Ser Leu Ile Glu Val Leu Met Leu Pro His Ser Trp Ala Asp
20 25 30

Ala Ile Leu Leu Trp Glu Leu Thr Ser Ser Pro Cys Thr Thr Ser Glu
35 40 45

Gly Ser Ser Pro Ser Ile Leu Tyr Cys Thr Tyr Leu Thr His Thr Leu
50 55 60

His Ser Ser Ala His Phe Leu Arg Val Arg Ala Phe Ser Ile His Ser
65 70 75 80

Ile Leu Trp Phe Leu Asn Leu Trp His Gly Phe Leu Ile Arg Asp Pro
85 90 95

Gln Glu Ile Thr Arg Lys Thr Asp Thr Gln Ala Pro Ser Cys Asn Pro
100 105 110

Arg Gln Asp Glu Leu Ser Thr Lys Ile Glu Lys Pro Leu Arg Val Pro

115

120

125

Trp Arg Ala Val Gly Lys Ser Gly Val Arg Ser Ser Thr Ser Gln Gly
 130 135 140

His Thr Leu Pro Leu Ser Pro Leu Ser Cys Met Ser Ser Gly Lys Leu
 145 150 155 160

Ser Lys Leu His Gly Gln Gly Cys Leu Asp Asp Thr Cys Gly Gln Gln
 165 170 175

His Pro His Ile Pro Arg Asp Val Glu Lys Pro Lys Lys Gly Ala Ala
 180 185 190

Trp Arg Glu Phe Trp Gly Lys Glu Arg Gln Phe Cys Val Asp Cys Gln
 195 200 205

Asp Gln Pro Cys Leu Leu Arg Cys Leu Glu Gln Ala
 210 215 220

<210> 199

<211> 200

<212> PRT

<213> Homo sapiens

<400> 199

Leu Leu Phe Leu Val Tyr Thr Ile Ser Thr Thr Gly Val Val Gly Asp
 1 5 10 15

Lys Asp Asn Ile Phe Ser Pro Leu Ser Thr Pro Phe Leu Phe Cys Pro
 20 25 30

Phe Cys Gly Pro Ile Ile Cys Gln His Leu Lys Ile Gly Ser His Leu
 35 40 45

Leu Arg Ile Lys Met His Pro Tyr Pro Gly Ser Phe Ser Met Ser Arg
 50 55 60

Ile Thr Ile Ser Lys His Ala Tyr Pro Asn Leu Thr Cys Gln Leu Gln
 65 70 75 80

Trp Thr Leu Ile Ser Thr Ser Leu Pro Pro Ala Pro Ser Ser Val Leu
 85 90 95

Cys Ile Ile Gln Lys Tyr Ser Ser Ser Glu Val Arg Leu Trp Tyr Thr
 100 105 110

Ile Phe Leu Ile Ile Ile Trp Phe Ser Tyr Phe Ile Thr His Ile Ser
 115 120 125

Phe Ile Leu Asn Leu Ser Leu Phe Cys Asn Leu Ser Leu Pro Ser Leu
 130 135 140

Phe Ile Ser Val Met Val Trp Val Phe Leu Ser Leu Gln Asn Ser Cys
 145 150 155 160

Asn Val Ser Ser Ala Ser Val Leu Lys Arg Trp Gly Leu Gly Gly Asp
 165 170 175

Val Thr Lys Val Prc Pro Ser Met Gly Leu Arg Thr Leu Tyr Lys Arg
 180 185 190

Leu His Thr Ala Phe Ser Cys Phe
 195 200

<210> 200
 <211> 198
 <212> PRT
 <213> Homo sapiens

<400> 200

Ser Ala Ile Val Ile Phe Leu Ser Ser Phe Leu Cys His Phe Leu Phe
 1 5 10 15

Ile Phe Gly Arg Arg Met Leu Ser Tyr Tyr Lys Pro Tyr Lys Cys Lys
 20 25 30

Leu Ile Ile Val Arg Lys Cys Tyr Ile Ser Glu Cys Leu Leu Arg Leu
 35 40 45

Ser Thr Phe Trp Cys Pro Tyr Ala Ala Pro Cys Cys Pro Val Ser Thr
 50 55 60

Leu Thr Glu Asn Cys Pro Lys Leu Pro Thr Phe Ser Thr Ser Leu Tyr
 65 70 75 80

Ser Ala Ile Lys Thr Tyr Leu Ala Arg Asp Pro Asp Cys Trp Ser Phe
 85 90 95

Pro Pro Gln Cys Gln Trp Val Asn Arg Gln Ile Lys Glu Arg Ser Ser
 100 105 110

Ser Leu Phe Ile Tyr Pro Phe Ile Ile Phe Trp Gln Leu Thr Gln Ala
 115 120 125

Phe Glu Leu Val Leu Cys Gly Gln Cys Leu Ile Ser Arg Phe Pro Ser
 130 135 140

Leu Gly Phe Gln Thr Leu Pro Val Leu Val Gln Ala Thr Leu Met Asp
 145 150 155 160

Leu Ser Leu Pro Val Ser Asn Leu Cys Thr Ser Pro Thr Leu Tyr Pro
 165 170 175

His Trp Leu Leu Ala Val Phe Pro Thr Ala Thr Cys Val Leu Pro Ser
 180 185 190

Leu Pro Val Pro Thr Leu
 195

<210> 201
 <211> 206
 <212> PRT
 <213> Homo sapiens

<400> 201

Ser Thr Arg Cys His Arg Cys Ser Val Pro Trp Pro Gly Pro Phe Trp
 1 5 10 15
 Arg His Gln Thr His Asp Lys Ala Gln Ala Val Arg Lys Glu Lys Asn
 20 25 30
 Leu Val Leu Ser Ser Phe Leu Gln Ser Glu Arg Trp Met Cys Val Thr
 35 40 45
 Leu Ser Leu Leu Glu Thr Leu Ile Lys Trp Phe Leu Leu Met Val Leu
 50 55 60
 Leu Ser Leu Arg Thr Leu Arg Ala Gly Val Gly Met Asn Leu Cys Asp
 65 70 75 80
 Ile Tyr Ala Tyr Ser Glu Ser Leu Leu Ser Ser Lys Asn Val Val Lys
 85 90 95
 Leu Glu Pro Val Phe Phe Leu Ser Ser Gln Glu Asp Leu Arg Lys Ser
 100 105 110
 Gln Ser Cys Thr Lys Phe Ser Cys Phe Ile Asn Arg Ser Pro Ala Ile
 115 120 125
 Ser Thr Phe Trp Leu Lys Leu Tyr Ile Phe Thr Tyr His Asn Asp Cys
 130 135 140
 Leu Val Asn Asp Phe Leu Ser Tyr Gln Leu Leu Glu Ser Tyr Thr Thr
 145 150 155 160
 Phe Arg Ala Thr Val Ser Phe Leu Leu Phe Leu Tyr Trp Ile Leu Val
 165 170 175
 Gln Phe Ser His Pro Lys Thr Leu Met Ala Tyr Asn Ile Ile Pro Met
 180 185 190
 His Ile Leu Ser Tyr Thr Ser Asn His Leu Ile Ile Tyr Asn
 195 200 205
 <210> 202
 <211> 167
 <212> PRT
 <213> Homo sapiens
 <400> 202
 Thr Ser His Thr His Gly Ser Ser Ser Met Ile His Thr Leu Thr Gly
 1 5 10 15
 Ile Asn Leu Pro Leu His Phe Trp Pro Arg Arg Thr Phe Ser Asp Trp
 20 25 30
 Gly Ser Lys Glu Ile Thr Glu Ile Ile Lys Arg Lys Ile Ile Ser Gln
 35 40 45
 Asp Ser Phe Ala Thr Tyr Leu Ala Leu Lys Leu Arg Phe Ser Glu His
 50 55 60

Cys Ile Leu Pro Gin Thr Thr His Thr His Thr His Ile Glu Tyr Phe
 65 . 70 75 80

Lys Ile Arg Asn Trp Ala Thr Tyr Asn Ser Gly Lys Arg His Leu Asn
 85 90 95

Gly Thr Glu His His Ile Tyr Glu Ser Ser Val Gln Arg Ile Ser Glu
 100 105 110

Asn Val His Lys Val Ser Ala Phe His Arg Leu Gly Ile Glu Ala Val
 115 120 125

Ala Ile Thr Ile Lys Ile Gln Ala Gln Gly Lys Met Lys Leu Gly Val
 130 135 140

Lys Gly Ser Glu Ile His Phe Arg Lys Ala Phe Lys Ala Arg Lys Met
 145 150 155 160

Arg Ser Thr Trp Tyr Val Phe
 165

<210> 203
 <211> 181
 <212> PRT
 <213> Homo sapiens

<400> 203

Asn Lys Ser Ser Lys Gly Asn Ile Phe Arg Cys Phe Tyr Tyr Phe Leu
 1 5 10 15

Phe Phe Ile Phe Leu Leu Trp Lys Leu Leu Val Gln Thr Ala Pro Phe
 20 25 30

Cys Asn Pro Pro Ala Ile Ser Gln Thr Ser Val Lys Val Lys His Ser
 35 40 45

Thr Gly Val Arg Ala Val Thr Asn Ser Leu Pro Asn Arg Leu Thr Leu
 50 55 60

Leu Leu Tyr Ser Ala Gly Arg Lys Cys Lys Glu Pro His Thr Ala Leu
 65 70 75 80

Glu Gln Ala Pro Asn Cys Leu Ile Met Gly Thr Cys Tyr Gln His Phe
 85 90 95

Pro Arg Gln Gln Ala Met Pro Pro Val Pro Asp Pro Ser His Leu Ala
 100 105 110

Tyr Asn Cys Pro Ser Leu Val Ala Met Ala Ile Gly Ile Lys Leu Gln
 115 120 125

Val Leu Cys Trp Thr Ser Arg His Leu Leu Ser His His Ser Leu Ser
 130 135 140

Leu Cys Leu Ser Leu Thr Leu Ala Phe Pro Ser Lys Pro Asn Lys Asn
 145 150 155 160

Tyr Leu Asp Asn Phe Ser Ser Ser Ser Lys Asn Leu Ile Phe Cys

165

170

175

Leu Phe Val Leu Val
180

<210> 204
<211> 186
<212> PRT
<213> Homo sapiens

<400> 204

Ala Arg Leu Arg His Gln Ser Asn Gly Leu Val Leu Ser Ser Pro Gly
1 5 10 15

Gly Leu Ile Lys Gly Gly Ser Leu Gly Asn Val Ser Val Ile Gly Pro
20 25 30

Ser Val Asn Thr Tyr Leu Ala Asn Ala Ser Ser Lys Trp Pro Gly Ala
35 40 45

Ala Phe Arg Thr Leu Arg Arg Phe His Asn Val Val Leu Arg Met Val
50 55 60

Phe Leu His Trp Ile Phe Phe Leu Pro Phe Gln Leu Tyr Lys Leu Phe
65 70 75 80

Tyr Glu Lys Gly Gly Asn Ala Lys Gly Ile Gly Val Gly Gly Asn Val
85 90 95

Lys Ile Leu Gln Asp Pro Ala Ser Ile Phe Gly Ala Gln Arg Glu Pro
100 105 110

Gly Ser Thr Phe Leu Asn Thr Gly Gly Thr Gly Gly Met Glu Ala Trp
115 120 125

Ser Gly Gly Ala Cys Gly Gln Thr Pro Ala Ala Leu Ser Thr Tyr His
130 135 140

Ile Met Ala Trp Gln Thr Ser Ser Pro Ser Lys His Arg Leu Leu Ala
145 150 155 160

Asp Ser Pro Gln Lys Asp Met Pro Gly Val Asp Ala Trp Asn Ser Leu
165 170 175

Leu Ile Tyr Trp Asn Pro Lys Ile Lys Gln
180 185

<210> 205
<211> 249
<212> PRT
<213> Homo sapiens

<400> 205

Phe Lys Ile Val Ser Leu Phe Leu Tyr Lys Pro Ser Arg Leu Gln Lys
1 5 10 15

Phe Lys Asn Thr His Glu Val Gly Asn Cys Ile His Phe Leu Ser Thr

20

25

30

Gln His Ser Met Thr Asp Leu Val Val Leu Asn Asn Thr Asn Leu Leu
 35 40 45

Ser Gln Ser Ser Leu Asp Gln Lys Phe Asn Ile Gly Ser Ala Lys Ile
 50 55 60

Lys Gly Leu Ala Cys Ala Ser Tyr Arg Phe Gly Arg Ile His Phe Gln
 65 70 75 80

Val His Ala Tyr Cys Trp Leu Asn Ser Ile Pro Cys Ser Tyr Arg Ile
 85 90 95

Ile Pro Val Phe Leu Leu Ala Lys Gly Leu Asn His Phe Leu Pro Leu
 100 105 110

Glu Ile Val Cys Phe Pro Tyr Leu Met Ala Leu Leu Ser Ser Lys Ser
 115 120 125

Ala Ile Met Ile Gln Val Leu Pro Phe Ile Ser Ser Val Ile Tyr Ser
 130 135 140

Asp Met Ser Ser Leu Pro Ser Leu His Leu Thr Leu Leu Pro Ser Ser
 145 150 155 160

Ile Cys Lys Gly Pro His Thr Asn Pro Glu Ser Leu Tyr Phe Lys Ile
 165 170 175

Asn Leu Leu Glu Pro Phe His Leu Gln Asn Cys Val Ser Ile Tyr His
 180 185 190

Asn Ile Ser Thr Gly Ile Trp His Lys Arg Val Thr Ile Met Ala Cys
 195 200 205

Val Ser His Lys Ile Thr Ala Pro Asn Arg Ile Thr Ser Lys Leu Ala
 210 215 220

Tyr Phe Tyr Ile Asn Pro Pro Lys Asp Asn Cys Arg Ser Ser Ser Lys
 225 230 235 240

Ile Pro Asp Met Lys Leu Ala Ile Ala
 245

<210> 206

<211> 240

<212> PRT

<213> Homo sapiens

<400> 206

His His Ser His Leu His Gln Pro Thr Arg Ala Pro Val Gly Glu Gly
 1 5 10 15

Lys Leu Ser Lys Cys Leu Trp Gly Ser Ser Val Gly Ser Leu Arg Arg
 20 25 30

Gln Gly Leu Leu Gly Arg Ala Phe Arg His Gly Arg Gly Arg Arg Glu
 35 40 45

Gly Thr Gln Asn Gln Glu Gly Val Gly Gly Ser Asp Leu Met Ser Gln
 50 55 60
 Lys Thr Phe Trp Lys Ser Gly Leu Pro Ala Leu Glu Gly Met Thr Leu
 65 70 75 80
 Ser Arg Val Pro Cys Lys Asp Ser Pro Glu Arg Leu Pro Asn Ser Ser
 85 90 95
 Arg Asp Pro Gly Ala Asp Cys His Pro Thr Arg Val Arg Pro Gly Arg
 100 105 110
 Cys Val Leu Pro Arg Ala Leu Gln Thr Phe Gly Ala Cys Lys Gly Asn
 115 120 125
 Gly Glu Ser Leu Trp Gln Arg Gln Arg Leu Gln Ser Glu Cys Lys Met
 130 135 140
 Ala Lys Ile Met Leu Leu Val Ile Leu Leu Phe Val Leu Ser Trp Ala
 145 150 155 160
 Pro Tyr Ser Ala Val Ala Leu Val Ala Phe Ala Gly Ala Val Ala Lys
 165 170 175
 Gly Leu Gly Lys Arg Leu Lys Val Trp Gly Gln Glu Gln Glu Ala Trp
 180 185 190
 Pro Ala Ser Pro Ser Gln Pro Asn Pro Gly Gln Pro Ser Ser His Pro
 195 200 205
 Arg Thr Ser Phe Thr Ala Tyr Ser Leu Pro Trp Val Arg Cys Pro Ala
 210 215 220
 Pro Gly Trp Val Gly Gly His Leu Val Pro Gly Ser Thr Arg Ala His
 225 230 235 240
 <210> 207
 <211> 170
 <212> PRT
 <213> Homo sapiens
 <400> 207
 His Arg Ile Phe Lys Ala Phe Ser Gln Val Thr Phe Asp Cys Ile Asn
 1 5 10 15
 Ser Ile Phe Phe Leu Leu Ile Leu Cys Phe Cys His Asn Leu Leu
 20 25 30
 Leu Leu Tyr Cys Ile Cys Leu Asn Lys Leu Leu Asn Leu Leu Phe
 35 40 45
 Leu Ile Val Leu Phe Phe Asn Leu His Thr Lys Asp Ile Ser Asn His
 50 55 60
 Ile Thr Ile Thr Ile Leu Lys Cys Ser Glu Phe Asp Tyr Ala Phe Thr
 65 70 75 80

Phe Ala Tyr Lys Cys Ile Cys Leu Asn Lys Leu Leu Asn Leu Leu
85 90 95

Phe Leu Ile Val Leu Phe Phe Asn Leu Tyr Thr Leu Tyr Val Tyr Val
100 105 110

Leu Val Ile Ser Ile Leu Phe Phe Gln Val Phe Ser Asn Ile Lys Asn
115 120 125

Ser Ile Ser Ile Ser Cys Lys Thr Gly Met Val Leu Leu Asn Ser Leu
130 135 140

Ser Phe Phe Leu Gly Lys Pro Leu Ser Leu Phe Leu Phe Leu Lys Asp
145 150 155 160

Ser Phe Ala Met Tyr Ser Ile Leu Phe Trp
165 170

<210> 208

<211> 174

<212> PRT

<213> Homo sapiens

<400> 208

Thr Val Ser Val Thr Gln Tyr Ile His Ala Trp Ile Phe Ile Pro Val
1 5 10 15

Phe Leu Phe Ser Ile Cys Tyr Thr Leu His Ile Leu Gly His Cys Ser
20 25 30

Ser Arg Pro Asn Asp Arg Gly Gln Met Asn His Tyr Val Leu Leu Ser
35 40 45

Met Leu Lys Gly Lys Lys Ser Ile Asn Ser Met Phe Ile Tyr Cys Phe
50 55 60

Tyr Leu Pro Met Ile Phe Phe Ile Leu Gly Gln Lys Phe Asn Leu Ser
65 70 75 80

Tyr Ile Phe Gln Thr Phe Lys Met Phe Ala Val Ile Phe Ser Thr Ser
85 90 95

Trp Gln Gln Ile Cys Phe Arg Ile Cys Ser Leu Tyr Tyr Ser Cys Leu
100 105 110

Cys Val Cys His Thr Glu Ser Thr Phe Gln Lys Leu Leu Lys Glu Ile
115 120 125

Thr Glu Met Lys Val Met Asn Ala Ile Leu Leu Glu Ile Asn Phe Leu
130 135 140

Ser Lys Asp Asn Arg Gly Ser Val Leu Ser Glu Glu Pro Gly Ala Ile
145 150 155 160

Leu Lys Ser Leu Ile Ser Leu Pro Pro Phe His Gly Met Tyr
165 170

<210> 209

<211> 165
 <212> PRT
 <213> Homo sapiens
 <400> 209
 Gly Pro Arg Asp Leu Ser Thr Ser Leu Gly His Met Gly Trp Leu Arg
 1 5 10 15
 Ala Leu Gln Arg Glu Thr Leu Pro Gln Trp Gly Pro Arg Pro Val Lys
 20 25 30
 Arg Glu Ile Lys Thr Lys Ser Ala Asp Phe Gln Ser Ser Ser Phe Asn
 35 40 45
 Ile Ser Lys Ser His Lys Asn Tyr Ser Arg Glu Leu Val Glu Arg Leu
 50 55 60
 Glu Leu Gly Arg Lys Ala Gly Tyr Ile Phe Leu Phe Ser Asn Phe Ser
 65 70 75 80
 Ser Tyr Thr Trp His Leu Ser Ser Leu Leu Leu Leu Phe Arg Leu
 85 90 95
 Leu Trp Pro Gln Glu Gly Gly Met Leu Asp Gly Trp Arg Ala Arg Glu
 100 105 110
 Gly Leu Arg Cys Asn Ser Tyr Phe His Val Cys Asp Asn Ala Val Ala
 115 120 125
 Met Leu Phe Ser Glu Ala Ser Ser Cys Thr Gin Gly Val Leu Leu Met
 130 135 140
 Gln Arg Gly Arg Phe Gln Cys Leu Ala Val Val Tyr Leu Pro Cys Arg
 145 150 155 160
 Cys Ser Gly Gln Gln
 165
 <210> 210
 <211> 167
 <212> PRT
 <213> Homo sapiens
 <400> 210
 Thr Ser His Thr His Gly Ser Ser Ser Met Ile His Thr Leu Thr Gly
 1 5 10 15
 Ile Asn Leu Pro Leu His Phe Trp Pro Arg Arg Thr Phe Ser Asp Trp
 20 25 30
 Gly Ser Lys Glu Ile Thr Glu Ile Ile Lys Arg Lys Ile Ile Ser Gln
 35 40 45
 Asp Ser Phe Ala Thr Tyr Leu Ala Leu Lys Leu Arg Phe Ser Glu His
 50 55 60
 Cys Ile Leu Pro Gln Thr Thr His Thr His Ile Glu Tyr Phe

65	70	75	80
Lys Ile Arg Asn Trp Ala Thr Tyr Asn Ser Gly Lys Arg His Leu Asn.			
85	90		95
Gly Thr Glu His His Ile Tyr Glu Ser Ser Val Gln Arg Ile Ser Glu			
100	105		110
Asn Val His Lys Val Ser Ala Phe His Arg Leu Gly Ile Glu Ala Val			
115	120		125
Ala Ile Thr Ile Lys Ile Gln Ala Gln Gly Lys Met Lys Leu Gly Val			
130	135		140
Lys Gly Ser Glu Ile His Phe Arg Lys Ala Phe Lys Ala Arg Lys Met			
145	150		155
Arg Ser Thr Trp Tyr Val Phe			
165			
<210> 211			
<211> 202			
<212> PRT			
<213> Homo sapiens			
<400> 211			
Ser Thr Gly Phe Phe Ser Met Pro Leu Phe His Phe Gln Pro Ile Ser			
1	5	10	15
Ser Ile His Cys Leu Ala Ser Tyr Pro Asn Cys Thr Lys Pro Ala Gln			
20	25		30
Ser Leu Trp Glu Asp Phe Glu Asn Ala Phe Ser Cys Val Ala Ser Leu			
35	40	45	
Val Ser Ile Lys Leu Ser Thr Thr Met Pro Trp Cys Gln Cys Ile Leu			
50	55	60	
Ser Val Gln Cys Ala Glu Arg Thr His Trp Gln Leu His Tyr Gln Leu			
65	70	75	80
Ser Leu Phe Cys Pro Ser Asn Arg Lys Tyr Phe Asn Pro Gly Lys Ser			
85	90		95
Ile Arg Val Ser His Ser Phe Ala Glu Leu Leu Val Ala Trp Pro Glu			
100	105	110	
Thr Leu Ser Ala Ala Pro Val Thr Gln Trp Pro Phe Ser Phe Ser Glu			
115	120	125	
Thr Phe Phe Leu Asn Leu Cys Val Pro Cys Leu Asn Leu Tyr Trp Leu			
130	135	140	
Ile Ser Arg Pro Val Lys Leu Ser Ile Leu Thr Pro Ser Leu Pro Ser			
145	150	155	160
Arg Asn Ala Ile Cys Leu Ser Phe Leu Ser Tyr Leu Leu Leu Pro Gly			
165	170	175	

Phe Trp Glu Val Tyr Ala Leu Gly Asp Lys Tyr Pro Ser Glu Lys Lys
 180 185 190

Asn Thr Asn Phe Phe Lys Phe Thr Pro
 195 200

<210> 212
 <211> 155
 <212> PRT
 <213> Homo sapiens

<400> 212

Met His Leu Pro Tyr Leu Leu Ser Phe Pro Tyr Pro Gln Asn Ile
 1 5 10 15

Val Ser Leu Trp Ile Ala His Ser Trp Pro Asp Lys Gln Leu Ser Asn
 20 25 30

Thr Ile Tyr Asn Leu Ser Val Asn Ile Phe Leu Ser Pro Pro Leu Leu
 35 40 45

His Cys Lys Phe Ser Ser Met Gly Ser Cys Leu Val Tyr Ser Arg His
 50 55 60

Ser Gly Thr Asn His Asn Leu Trp Ser Glu Asn Cys Ile Leu Tyr His
 65 70 75 80

Gly Ser Thr Thr Lys Val Thr Leu Arg Thr Cys Pro Asp Gly Asn Phe
 85 90 95

Phe His Phe Gln Asn Val Ser Asp Pro Leu Ser Phe Gln Cys Leu Gln
 100 105 110

Val Ile Trp Val Tyr Thr Phe Glu Asn Lys Asn Phe Leu Gly Ile Ser
 115 120 125

Ile Leu Ile Phe Asn Ile Gln Ile Lys Cys Val Met Cys Phe Ile Leu
 130 135 140

Leu Lys Ser Phe Pro Ile Ser Tyr Phe Asn Lys
 145 150 155

<210> 213
 <211> 190
 <212> PRT
 <213> Homo sapiens

<400> 213

Lys Ala Thr Gln Lys His Ser Ser Thr Lys Trp Ser Ala Ser Asn Cys
 1 5 10 15

Ser Val Ser Gly Phe Tyr Asp Ala Glu Phe Gly Ser Ile Glu Ser Thr
 20 25 30

Val Ser Met Asp Cys Pro Asn Pro Ser Ser Lys Ile Val Asp Ile His
 35 40 45

Gly Leu Ser Gln Val His Cys Phe Ile Tyr Leu Phe Ile Tyr Leu Ile
 50 55 60

Leu Asp Ser Arg Ala His Val Gln Val Cys Tyr Met Asp Ile Leu Cys
 65 70 75 80

Asp Ala Asp Val Trp Val Ser Ile Glu Pro Val Thr Leu Ile Val Asn
 85 90 95

Leu Val Pro Asn Trp Asn Trp Met Gln Gly Leu Ser Arg Ser Arg Thr
 100 105 110

Gly Ser Ser Pro Pro Asp Leu Leu Gly Leu Asp Leu Leu Lys Asp Gln
 115 120 125

Lys Gly Arg Arg Tyr Glu Leu Asp Ala Cys Thr Gln Tyr Ser His Ser
 130 135 140

Val Phe Glu Ala Tyr Leu Asp Gln Gly Cys Asp Leu Leu Lys Gly Ile
 145 150 155 160

Thr Lys Ala Thr Thr Leu Ser Ala Asn Lys Val Val Ser Asn Leu Ile
 165 170 175

Ile Ile His Phe Leu Leu Leu His Phe Lys Ile Asp Thr Cys
 180 185 190

<210> 214

<211> 76

<212> PRT

<213> Homo sapiens

<400> 214

Thr Pro Ile Asp Ser Asp Leu Glu Val Arg Ala Lys Ala Tyr Pro Glu
 1 5 10 15

Pro Pro Ser Leu Thr Pro Leu Phe Gln Phe Ser Phe Ser Gln Ile Ser
 20 25 30

Pro Leu Gly Cys Ala Lys Pro Ser Trp Ile Gln Lys Phe His Phe Gln
 35 40 45

Tyr Gly Tyr Cys Phe Gln Ser Ile Thr Pro Lys Asn Ser Arg Arg Lys
 50 55 60

Lys Gly Ser Val Val Ile Phe Lys Ser Gln Asn His
 65 70 75

<210> 215

<211> 169

<212> PRT

<213> Homo sapiens

<400> 215

Arg Asp Thr Ala Ile His Gly Val Phe Met Asn Leu Ser Leu Met Asn
 1 5 10 15

Ala Tyr Asp Met Phe Ile His Leu Phe Val Glu Ser Phe Asp Arg Phe
 20 25 30

Ala Gln Asn Arg Glu Val Val Val Ala Val Trp Ile Trp Glu Gly
 35 40 45

Glu Val Ser Phe Gly Gln Val Ile Ser Ala Tyr Gln Thr Ile Lys Gly
 50 55 60

Ser Ala Phe Thr Glu Cys Trp Leu Gly Cys Asp Ser Cys Phe Ala Leu
 65 70 75 80

His Ser Leu Lys Arg Leu Tyr Val Ser Pro Leu Cys Pro Phe Pro Ser
 85 90 95

His Leu Lys Ile Asn Arg Arg Glu Asn Asn Val Ile Arg Gly Ser Asn
 100 105 110

Cys Ile Tyr Cys Leu Cys Arg Val Val Val Asp Thr Gly Met Phe Pro
 115 120 125

Tyr Ser Leu Cys Leu Ala His Leu Lys Cys Val Ile Ile Asn Asp Ile
 130 135 140

Leu Lys Asn Thr Glu Gln Leu Val Leu Gly Ile Cys Pro Thr Ser Tyr
 145 150 155 160

Asp Ser Ser Ala Ile Leu Ile Ser Leu
 165

<210> 216

<211> 111

<212> PRT

<213> Homo sapiens

<400> 216

Lys Arg Ser Leu Asp Tyr Tyr Ile Ile Gln Met Cys Met Cys Val
 1 5 10 15

Ser Ala Met Tyr Leu Leu Leu Ser Arg Val Tyr Asn Met Lys Leu
 20 25 30

Leu Thr Ile Ile Gln Glu Ile Arg Cys Met Asn Leu Val Gly Asn Val
 35 40 45

Ser Tyr Tyr Asn Phe Tyr Asn Ile Ser Phe Lys His Phe Asp Ala Phe
 50 55 60

Leu Leu Phe Lys Arg Leu Arg Asn Glu Asn Ile Lys Ile Asn Ile Phe
 65 70 75 80

Leu Lys Cys Cys Ala Phe Tyr Leu Met Leu Leu Leu Ile Arg Ser Cys
 85 90 95

Val Ile Leu Phe Leu Ile Glu Phe Asp Ile Arg Asn Lys Gly Arg
 100 105 110

<210> 217
<211> 180
<212> PRT
<213> Homo sapiens

<400> 217

Leu Thr Tyr Tyr Leu Gin Arg Asn Leu Ser Lys Pro Phe Leu Leu Tyr
1 5 10 15

Leu Ala Ser Arg Ile Pro Leu Pro Thr Phe Asn His Pro Gly Thr Leu
20 25 30

Tyr Thr Ser Ile Leu Thr Leu Phe Ile Leu Pro Phe Val Ile Ile Ala
35 40 45

Ser Cys Phe Arg Ala Pro Leu Asn Thr Lys Val Phe Glu Ser Arg Asn
50 55 60

Ser Lys His Phe Lys Phe Leu Ser Leu His Met Gln Leu Leu Leu His
65 70 75 80

Ser Gln Tyr Thr Val Asn Ala Asp Ile Glu Arg Ile Ser Leu Leu Glu
85 90 95

Cys Asn Ser Leu Arg Val Ser Asn Ser Ser Leu Lys Thr Asn Pro
100 105 110

Thr Lys Leu Thr Ile Val Ser Thr Thr Lys Ser Leu Gln Val Ile Asn
115 120 125

Leu Thr Ile Glu Val Phe Ile Phe Leu Leu Gly Lys Pro Gly Gln Pro
130 135 140

Gln Gly Pro Thr Tyr Pro Gly Val Thr Leu Lys Val Met Arg Phe Pro
145 150 155 160

Ser Lys Met Thr Lys Leu Ser Gly Phe Ser Gly Met His Thr His Cys
165 170 175

Val Thr Ile Asn
180

<210> 218
<211> 219
<212> PRT
<213> Homo sapiens

<400> 218

His Ile Glu Cys Ala Ile Pro Ser Asn Phe Cys Phe Asn Asn Cys Lys
1 5 10 15

His Ile Phe Cys Lys Tyr Asn Phe Ala Ser Arg Ala Ile Cys Phe Thr
20 25 30

Ser Leu Ile Ile Phe Cys Tyr Thr Asp Leu Gln Val Ile Leu His Lys
35 40 45

5

Val Gly Leu Asn Leu Lys Cys Leu Leu Phe Ile Lys Cys Cys Pro Leu
 50 55 60

Leu Met Phe Ile Ile Tyr Ile Phe Leu Val Leu Asn Leu Asp Trp Lys
 65 70 75 80

Asn Met Leu Cys Lys Ile His Gly Asn Ile Phe Arg Thr Asn Phe Tyr
 85 90 95

Leu Tyr Arg Trp Leu Ile Ser Cys Ser Glu Asn Lys Thr Met Asn Lys
 100 105 110

Gln Cys Phe Ile Tyr Ser Ser Phe Asn Val Ser Gln Val Asn Thr Tyr
 115 120 125

Leu Leu Tyr Phe Leu Ser Ala Val Thr Pro Pro Phe Leu Leu Phe Ser
 130 135 140

Ser Val Trp Leu Cys Pro Arg Ala Asn Ser Val Pro Ser Ile Arg Leu
 145 150 155 160

Ser Val Tyr Ser Thr His Gly Leu Glu Leu Lys Trp Leu Gly Asn Cys
 165 170 175

Asn Thr Val Asp Trp Ser His Phe Lys Leu Ala Gln Thr Trp Ser Tyr
 180 185 190

Cys Ile Pro Lys Met Asn Ser Leu Ile Arg Thr Thr Phe Pro Thr Phe
 195 200 205

Ser Cys Leu Leu Lys Pro Pro Ser Pro Leu Pro
 210 215

<210> 219

<211> 211

<212> PRT

<213> Homo sapiens

<400> 219

Phe Val Leu Cys Ile Phe Ser Leu Gly Ser Val Ser Val Ser Ser Pro
 1 5 10 15

Cys Asn Lys Leu Ser Gln Val Ser Cys Phe Gln Val Phe Val Phe Leu
 20 25 30

Val Asn Tyr Gln Thr Arg Gly Phe Gly Glu Leu Leu Glu Phe Ala Ile
 35 40 45

Gly Val Arg Ser Glu Asp Asn Leu Val Cys Thr Val Phe Ser Leu Thr
 50 55 60

Leu Trp Gly Leu Gly Met Val Gly Gly Arg Glu Ser Arg Cys Val Lys
 65 70 75 80

Leu Thr Val Ile Phe Leu Pro Lys Lys Lys Leu Ser Pro Gln Gly Tyr
 85 90 95

Lys Glu Ala Thr Thr Val Phe Pro Thr Leu His Thr Lys Phe Gln Gln

100	105	110
Trp Asn Phe Met Ile Tyr Leu Gly Asn Tyr Ile Trp Arg Asn Val Leu		
115	120	125
Lys Leu Gln Ile Leu Thr Lys Asp Phe Leu Lys Tyr Ser Asn Lys Val		
130	135	140
Ile Asp Cys Asn Gln Asn Ser His Leu Pro Lys Arg Arg Trp Tyr Ser		
145	150	155
Ile Leu Lys Val Ile Ile Leu Gly Lys Gln Cys Leu Pro Val Leu		
165	170	175
Ile Ile Ile Leu Glu Thr Thr Val Phe Ile Asn Val Ser Glu Ile Tyr		
180	185	190
Asn Leu Asn Glu Ile Leu Met Pro Lys Met Asn Thr Gly His Ile Phe		
195	200	205
Lys His Tyr		
210		
<210> 220		
<211> 177		
<212> PRT		
<213> Homo sapiens		
<400> 220		
Ile Leu Lys Ile Ile Ser Leu Asp Thr Val Leu Leu Cys Val Ser Tyr		
1	5	10
Arg Ser Thr Ile Val Phe Ser Leu Phe Pro Ile Val Ile Arg Asp Arg		
20	25	30
Ser Ser Ser Leu Phe Phe Leu Leu Gln Ser Phe Ile Trp Asn Leu Phe		
35	40	45
Trp Cys Leu Ile His Lys Tyr Leu Ile Cys Leu Pro Asn Arg Val Lys		
50	55	60
Met Ile Pro Val Met Leu Leu Ile Cys Val Leu Arg Arg Lys Lys Ser		
65	70	75
Gly Ser Thr Met Ala Leu Gly Ile Leu His Lys Pro Met Lys Ala Val		
85	90	95
Thr Phe Val Asn Val Phe Leu Val Glu Thr Ser Val Glu Asn His Cys		
100	105	110
Cys Ile Ile Val Leu Ser Ser Arg Thr Tyr Ser Gly Asp Gly Asn Thr		
115	120	125
Leu Leu Tyr Phe Pro Ile Trp Tyr Ser Leu Thr Thr Cys Gly Tyr Gln		
130	135	140
Val Leu Glu Met Trp Leu Gly Asp Gly Thr Glu Ile Phe Ser Leu Ile		
145	150	155
		160

Leu Ser Val Ile Tyr Thr Thr Ala Tyr Phe Ile Glu Ser Thr Phe Ser
165 170 175

Ile

