EEE205 – Digital Electronics (II) Lecture 12

Dr. Ming Xu

Dept of Electrical & Electronic Engineering

XJTLU

In This Session

- Moore and Mealy Sequential Circuits
- State Tables and Graphs
- Derivation of State Tables

1

General Form of A Sequential Circuit.

- Sequential circuits are called finite state machines (FSM).
- Combinational circuit 1 has inputs from the input W and the state Q of the flip-flops.
- The output Z always depends on the state Q of the flip-flops and possibly on the input W.

General Form of A Sequential Circuit.

- The sequential circuits whose outputs depend only on the state of the circuit are of **Moore type**.
- Those whose outputs depend on both the state and the inputs are of **Mealy type**.

2

State Tables and Graphs

• A **state table**, also called a *state transition table*, specifies the next state and output of a sequential circuit in terms of its present state and input

Present	Next	Output	
state	w = 0	w = 1	\overline{z}
Α	Α	В	0
В	Α	С	0
С	Α	С	1

State Tables and Graphs

• A state graph is a graphical representation of the state table, in which each *node* represents a state and the arc joining the nodes is labelled with the input causing the state change.

5

State Tables and Graphs

The method to construct the state table and graph from a given circuit:

A Moore sequential circuit

1. Determine the flip-flop input equations and the output equations from the circuit.

$$D_A = X \oplus B'$$
 $D_B = X + A$

$$D_{R} = X + A$$

$$Z = A \oplus B$$

State Tables and Graphs

D fli	p flop	D-CE	D-CE flip flop		T flip flop	
D 0 1	Q ⁺ 0 1	CE 0 1	D X 0	Q ⁺ Q 0	T 0 1	Q⁺ Q Q'
O+ =	= D) O+ =	_ '	+ O.CF'	O ⁺ =	TAO

8

State Tables and Graphs

S-R flip flop

J-K flip flop

S	R	Q ⁺
0	0	Q
1	0	1
0	1	0

$$Q^+ = S + R'Q$$

$$Q^+ = JQ' + K'Q$$

11

State Tables and Graphs

2. Derive the next-state equation for each flip-flop from its input equations, using one of the these:

$$Q^+ = D$$

$$Q^+ = D \cdot CE + Q \cdot CE'$$

$$Q^+ = T \oplus Q$$

S-R flip-flop
$$Q^+ = S + R'Q$$

$$Q^+ = JQ' + K'Q$$

The next-state equations for the flip-flops are:

$$A^+ = X \oplus B' \qquad B^+ = X + A$$

$$B^+ = X + A$$

State Tables and Graphs

3. Form the state table.

$$A^+ = X \oplus B'$$
 $B^+ = X + A$ $Z = A \oplus B$

$$B^+ = X + A$$

$$Z = A \oplus B$$

State Tables and Graphs

4. Replace each combination of states with a single symbol. Draw the state graph.

Replacing 00 with S_0 , 01 with S_1 , 11 with S_2 , and 10 with S_3 .

Present State	Next <i>X</i> = 0	State <i>X</i> = 1	Present Output (<i>Z</i>)
S_0	S_3	S_1	0
S_1	S ₀	S_2	1
S_2	S ₁	S_2	0
S_3	S_2	S_1	. 1

In a Moore state graph, the output is written with the state.

10

State Tables and Graphs

Another example for a Mealy sequential circuit:

$$J_A = XB$$
 $K_A = X$
 $Z = XB' + XA + X'A'B$

$$J_B = X$$

$$J_B = X$$
 $K_B = XA$

13

State Tables and Graphs

The next-state and output equations are:

$$A^{+} = J_{A}A' + K'_{A}A = XBA' + X'A$$

 $B^{+} = J_{B}B' + K'_{B}B = XB' + (AX)'B = XB' + X'B + A'B$
 $Z = X'A'B + XB' + XA$

Recall that Q+ = JQ' + K'Q for J-K flip flops

$$J_A = XB$$
 $K_A = X$ $J_B = X$ $K_B = XA$

$$J_{B} = X$$

$$K_R = XA$$

State Tables and Graphs

$$A^{+} = J_{A}A' + K'_{A}A = XBA' + X'A$$

 $B^{+} = J_{B}B' + K'_{B}B = XB' + (AX)'B = XB' + X'B + A'B$
 $Z = X'A'B + XB' + XA$

	A^+B^+		Z	
AB	X = 0	1	<i>X</i> = 0	1
00	00	01	0	1
01	01	11	1	0
11	11	00	0	1
10	10	01	0	1

Present	Next State			Outp	
State	X	$\zeta = 0$	1	X = 0	1
S ₀		S_0	S ₁	0	1
S_1		S_1	S_2	- 1	0
S_2		S_2	S_0	0	1
S ₃		S ₃	S ₁	0	1

State Tables and Graphs

	A^+B^+		Z	
AB	<i>X</i> = 0	1	<i>X</i> = 0	1
00	00	01	0	1
01	01	11	1	0
11	11	00	0	1
10	10	01	0	1

Present State	Next St X = 0	ate 1	Prese Outpu X = 0	
S_0	S ₀	S ₁	0	1
S ₁	S ₁	S_2	-1	0
S_2	S ₂	S_0	0	1
S ₃	S ₃	S ₁	0	1

- The labels on the arcs are X/Z, where X is the input and Z is the output.
- In a Mealy state graph, the output is written with the transition. 16