Joe Crandall's PHYS 3165 Electrodynamics Used Heavily Vector Derivatives Cartesian $d\vec{l} = dx\hat{x} + dy\hat{y} + dz\hat{z} \mathbf{I} d\tau = dxdydz \mathbf{I} Gradient : \nabla t = \frac{\partial t}{\partial z}\hat{x} + \frac{\partial t}{\partial z}\hat{y} + \frac{\partial t}{\partial z}\hat{z} \mathbf{I} Divergence : \nabla \cdot \vec{v} = \frac{\partial v_z}{\partial z} + \frac{\partial v_z}{\partial z} \mathbf{I} Curl : \nabla \times \vec{v} = (\frac{\partial v_z}{\partial z} - \frac{\partial v_z}{\partial z})\hat{x} + \frac{\partial v_z}{\partial z}\hat{z} \mathbf{I} Curl : \nabla \cdot \vec{v} = (\frac{\partial v_z}{\partial z} - \frac{\partial v_z}{\partial z})\hat{x} + \frac{\partial v_z}{\partial z}\hat{z} \mathbf{I} Curl : \nabla \cdot \vec{v} = (\frac{\partial v_z}{\partial z} - \frac{\partial v_z}{\partial z})\hat{x} + \frac{\partial v_z}{\partial z}\hat{z} \mathbf{I} Curl : \nabla \cdot \vec{v} = (\frac{\partial v_z}{\partial z} - \frac{\partial v_z}{\partial z})\hat{x} + \frac{\partial v_z}{\partial z}\hat{z} \mathbf{I} Curl : \nabla \cdot \vec{v} = (\frac{\partial v_z}{\partial z} - \frac{\partial v_z}{\partial z})\hat{x} + \frac{\partial v_z}{\partial z}\hat{z} \mathbf{I} Curl : \nabla \cdot \vec{v} = (\frac{\partial v_z}{\partial z} - \frac{\partial v_z}{\partial z})\hat{x} + \frac{\partial v_z}{\partial z}\hat{z} \mathbf{I} Curl : \nabla \cdot \vec{v} = (\frac{\partial v_z}{\partial z} - \frac{\partial v_z}{\partial z})\hat{x} + \frac{\partial v_z}{\partial z}\hat{z} \mathbf{I} Curl : \nabla \cdot \vec{v} = (\frac{\partial v_z}{\partial z} - \frac{\partial v_z}{\partial z})\hat{x} + \frac{\partial v_z}{\partial z}\hat{z} \mathbf{I} Curl : \nabla \cdot \vec{v} = (\frac{\partial v_z}{\partial z} - \frac{\partial v_z}{\partial z})\hat{x} + \frac{\partial v_z}{\partial z}\hat{z} \mathbf{I} Curl : \nabla \cdot \vec{v} = (\frac{\partial v_z}{\partial z} - \frac{\partial v_z}{\partial z})\hat{x} + \frac{\partial v_z}{\partial z}\hat{z} \mathbf{I} Curl : \nabla \cdot \vec{v} = (\frac{\partial v_z}{\partial z} - \frac{\partial v_z}{\partial z})\hat{z} + \frac{\partial v_z}{\partial z}\hat{z} \mathbf{I} Curl : \nabla \cdot \vec{v} = (\frac{\partial v_z}{\partial z} - \frac{\partial v_z}{\partial z})\hat{z} + \frac{\partial v_z}{\partial z}\hat{z} \mathbf{I} Curl : \nabla \cdot \vec{v} = (\frac{\partial v_z}{\partial z} - \frac{\partial v_z}{\partial z})\hat{z} + \frac{\partial v_z}{\partial z}\hat{z} \mathbf{I} Curl : \nabla \cdot \vec{v} = (\frac{\partial v_z}{\partial z} - \frac{\partial v_z}{\partial z})\hat{z} + \frac{\partial v_z}{\partial z}\hat{z} \mathbf{I} Curl : \nabla \cdot \vec{v} = (\frac{\partial v_z}{\partial z} - \frac{\partial v_z}{\partial z})\hat{z} + \frac{\partial v_z}{\partial z}\hat{z} \mathbf{I} Curl : \nabla \cdot \vec{v} = (\frac{\partial v_z}{\partial z} - \frac{\partial v_z}{\partial z})\hat{z} + \frac{\partial v_z}{\partial z}\hat{z} \mathbf{I} Curl : \nabla \cdot \vec{v} = (\frac{\partial v_z}{\partial z} - \frac{\partial v_z}{\partial z})\hat{z} + \frac{\partial v_z}{\partial z}\hat{z} \mathbf{I} Curl : \nabla \cdot \vec{v} = (\frac{\partial v_z}{\partial z} - \frac{\partial v_z}{\partial z})\hat{z} + \frac{\partial v_z}{\partial z}\hat{z} \mathbf{I} Curl : \nabla \cdot \vec{v} = (\frac{\partial v_z}{\partial z} - \frac{\partial v_z}{\partial z})\hat{z} + \frac{\partial v_z}{\partial z}\hat{z} \mathbf{I} Curl : \nabla \cdot \vec{v} = (\frac{\partial v_z}{\partial z} - \frac{\partial v_z}{\partial z})\hat{z} + \frac{\partial v_z}{\partial z}\hat{z} \mathbf{I} Curl : \nabla \cdot \vec{v} = (\frac{\partial v_z}{\partial z} - \frac{\partial v_z}{\partial z})\hat{z} + \frac{\partial v_z}{\partial z}\hat{z} \mathbf{I} Curl : \nabla \cdot \vec{v} = (\frac{\partial v_z}{\partial z} - \frac{\partial v_z}{\partial z})\hat{z} + \frac{\partial v_z}{\partial z}\hat{z} \mathbf{I} Curl : \nabla \cdot \vec{v} = (\frac{\partial v_z}{\partial z} - \frac{\partial v_z}{\partial z})\hat{z} + \frac{\partial v_z}{\partial z}\hat{z} \mathbf{I} Curl : \nabla \cdot$ KNOWTHISMATH $(\frac{\partial v_s}{\partial z} - \frac{\partial v_s}{\partial z}) + (\frac{\partial v_s}{\partial z} - \frac{\partial v_s}{\partial z} - \frac{\partial v_s}{\partial z}) + (\frac{\partial v_s}{\partial z} - \frac{\partial v_s}{\partial z} - \frac{\partial v_s}{\partial z}) + (\frac{\partial v_s}{\partial z} - \frac{\partial v_s}{\partial z} - \frac{\partial v_s}{\partial z} - \frac{\partial v_s}{\partial z}) + (\frac{\partial v_s}{\partial z} - \frac{\partial v_s}{\partial z} - \frac$ $\mu_0 = 4\pi \times 10^{-7} \text{ N/A}^2 \text{ I}$ $c = 3.00 \times 10^{-8} \text{ m/s}$ Charge of the electron $e = 1.60 \times 10^{-19} \text{ C}$ mass of the electron $y = r \sin \theta \sin \phi \, \textcolor{red}{1} \, z = r \cos \theta \, \textcolor{red}{1} \, \mathring{x} = \sin \theta \cos \phi \mathring{r} + \cos \theta \cos \phi \, \mathring{\theta} - \sin \phi \, \mathring{\phi} \, \textcolor{red}{1} \, \mathring{y} = \sin \theta \sin \phi \, \mathring{\theta} + \cos \phi \, \mathring{\theta} \, \textcolor{red}{1} \, \mathring{y} = \sin \theta \sin \phi \, \mathring{\theta} + \cos \phi \, \mathring{\phi} \, \textcolor{red}{1} \, \mathring{y} = \sin \theta \sin \phi \, \mathring{\phi} + \cos \phi \, \mathring{\phi} \, \textcolor{red}{1} \, \mathring{\psi} = \sin \theta \cos \phi \, \mathring{x} + \sin \theta \sin \phi \, \mathring{y} + \cos \theta \, \mathring{z} \, \textcolor{red}{1} \, \mathring{\theta} = \cos \theta \cos \phi \, \mathring{x} + \cos \phi \, \mathring{y} \, \textcolor{red}{1} \, \mathring{\psi} = \sin \theta \cos \phi \, \mathring{x} + \sin \theta \sin \phi \, \mathring{y} + \sin \theta \, \mathring{z} \, \textcolor{red}{1} \, \mathring{\psi} = \sin \phi \, \mathring{z} \, \textcolor{red}{1} \, \mathring{\psi} = \sin \phi \, \mathring{z} \, \textcolor{red}{1} \, \mathring{\psi} = \sin \phi \, \mathring{z} \, \textcolor{red}{1} \, \mathring{\psi} = \sin \phi \, \mathring{z} \, \textcolor{red}{1} \, \mathring{\psi} = \sin \phi \, \mathring{z} \, \textcolor{red}{1} \, \mathring{\psi} = \sin \phi \, \mathring{z} \, \textcolor{red}{1} \, \mathring{\psi} = \sin \phi \, \mathring{z} \, \textcolor{red}{1} \, \mathring{\psi} = \sin \phi \, \mathring{z} \, \textcolor{red}{1} \, \mathring{\psi} = \sin \phi \, \mathring{z} \, \textcolor{red}{1} \, \mathring{\psi} = \sin \phi \, \mathring{z} \, \textcolor{red}{1} \, \mathring{\psi} = \sin \phi \, \mathring{z} \, \textcolor{red}{1} \, \mathring{\psi} = \sin \phi \, \mathring{z} \, \textcolor{red}{1} \, \mathring{\psi} = \sin \phi \, \mathring{z} \, \textcolor{red}{1} \, \mathring{\psi} = \sin \phi \, \mathring{z} \, \textcolor{red}{1} \, \mathring{\psi} = \sin \phi \, \mathring{z} \, \textcolor{red}{1} \, \mathring{\psi} = \sin \phi \, \mathring{z} \, \textcolor{red}{1} \, \mathring{\psi} = \sin \phi \, \mathring{z} \, \textcolor{red}{1} \, \mathring{\psi} = \sin \phi \, \mathring{z} \, \textcolor{red}{1} \, \mathring{\psi} = \sin \phi \, \mathring{z} \, \textcolor{red}{1} \, \mathring{\psi} = \sin \phi \, \mathring{z} \, \textcolor{red}{1} \, \mathring{\psi} = \sin \phi \, \mathring{z} \, \textcolor{red}{1} \, \mathring{\psi} = \sin \phi \, \mathring{z} \, \textcolor{red}{1} \, \mathring{z} \, \mathring{z} \, \textcolor{red}{1} \, \mathring{z} \, \textcolor{red}{1} \, \mathring{z} \, \mathring{z} \, \mathring{z} \, \textcolor{red}{1} \, \mathring{z} \, \mathring{z}$ $\vec{r} \cdot \vec{s} = |\vec{r}| |\vec{s}| cos\theta = r_x s_x = r_y s_y + r_z s_z$ $\vec{F} = \frac{1}{1 + \epsilon_0} \frac{qQ}{(r^2 - \vec{r})} (\vec{r} - \vec{r}') \stackrel{!}{\mathbf{I}} \epsilon_0 = 8.85 \times 10^{-12} \frac{Q^2}{V_{\star 1}} \qquad \text{Principle of Superposition} \qquad \vec{F} = \vec{F}_1 + \vec{F}_2 + \dots \qquad \text{Electric Field} \qquad \vec{F} = \vec{Q} \stackrel{!}{\mathbf{I}} \stackrel{!}{\mathbf{I}} (r) \stackrel{!}{\mathbf{I}} \stackrel{!}{\mathbf{I}} = \vec{F}_1 = \vec{F}_1 + \vec{F}_2 + \vec{F}_3 = \vec{F}_1 + \vec{F}_2 + \vec{F}_3 = \vec{F$ Continuous Charge Distribution Electric field of a line charge: $\vec{E}(\vec{r}) = \frac{1}{1+\epsilon} \int \frac{\lambda(\vec{r})}{r^2} \hat{R} dl'$ Electric field of a surface charge: $\vec{E}(\vec{r}) = \frac{1}{1+6c} \int \frac{d\vec{r}}{dt^2} \hat{R} dx'$ Electric field of a volume charge: $\vec{E}(\vec{r}) = \frac{1}{1+6c} \int \frac{d\vec{r}}{dt^2} \hat{R} dx'$ Electric field of a volume charge: $\vec{E}(\vec{r}) = \frac{1}{1+6c} \int \frac{d\vec{r}}{dt^2} \hat{R} dx'$ Divergence and Curl of Electrostatic Fields Gauss's Law: $\oint \vec{E} \cdot d\vec{a} = \frac{1}{4c} Q_{enclosed} \mathbf{l} \nabla \cdot \vec{E} = \frac{1}{4c} Q_{enclos$ on which we have agreed beforehand \vec{l} $\vec{E} = -\nabla V$ \vec{l} $\vec{\nabla}^2 V = -\frac{\ell}{c}$ Electric potential of a volume charge: $\vec{E}(\vec{r}) = \frac{1}{c} \int \frac{\rho(\vec{r})}{r^2} d\tau'$ \vec{l} \vec{b} $\vec{E} \cdot d\vec{a} = \frac{1}{c} Q_{enclosed} = \frac{1}{c} \sigma A$ Work and Energy $W = \int_z^{\vec{k}} \vec{F} \cdot d\vec{a} = -Q[V(\vec{b}) - V(\vec{a})]$ volume charge density: $W = \frac{1}{a} \int \rho V d\tau'$ electric potential, electric field, charge density triangle $\textbf{Electric Field}(\textbf{N}/\textbf{C}) \leftrightarrow \textbf{Electric potential}(\textbf{Voltage})(\textbf{V}), (\textbf{J}/\textbf{C}) \rightarrow \textbf{find}(\textbf{S}/\textbf{C}) \leftrightarrow \textbf{charge density}(\textbf{C}/\textbf{m}^3) \ \vec{E} = \frac{1}{1.5} \int \frac{dz}{dz} \rho d\tau \ \textbf{I} \ \nabla \times \vec{E} = \vec{0} \ \textbf{Electric potential}(\textbf{Voltage})(\textbf{V}), (\textbf{J}/\textbf{C}) \leftrightarrow \textbf{charge density}(\textbf{C}/\textbf{m}^3) \ V = \frac{1}{1.5} \int \frac{dz}{dz} \rho d\tau \ \textbf{I} \ \nabla \times \vec{E} = \vec{0} \ \textbf{Electric potential}(\textbf{Voltage})(\textbf{V}), (\textbf{J}/\textbf{C}) \leftrightarrow \textbf{charge density}(\textbf{C}/\textbf{m}^3) \ V = \frac{1}{1.5} \int \frac{dz}{dz} \rho d\tau \ \textbf{I} \ \nabla \times \vec{E} = \vec{0} \ \textbf{Electric potential}(\textbf{Voltage})(\textbf{V}), (\textbf{J}/\textbf{C}) \leftrightarrow \textbf{charge density}(\textbf{C}/\textbf{m}^3) \ V = \frac{1}{1.5} \int \frac{dz}{dz} \rho d\tau \ \textbf{I} \ \nabla \times \vec{E} = \vec{0} \ \textbf{Electric potential}(\textbf{Voltage})(\textbf{V}), (\textbf{J}/\textbf{C}) \leftrightarrow \textbf{Charge density}(\textbf{C}/\textbf{m}^3) \ \textbf{V} = \frac{1}{1.5} \int \frac{dz}{dz} \rho d\tau \ \textbf{I} \ \nabla \times \vec{E} = \vec{0} \ \textbf{Electric potential}(\textbf{Voltage})(\textbf{V}), (\textbf{J}/\textbf{C}) \leftrightarrow \textbf{Charge density}(\textbf{C}/\textbf{m}^3) \ \textbf{V} = \frac{1}{1.5} \int \frac{dz}{dz} \rho d\tau \ \textbf{I} \ \nabla \times \vec{E} = \vec{0} \ \textbf{Electric potential}(\textbf{Voltage})(\textbf{V}), (\textbf{J}/\textbf{C}) \leftrightarrow \textbf{Charge density}(\textbf{C}/\textbf{m}^3) \ \textbf{V} = \frac{1}{1.5} \int \frac{dz}{dz} \rho d\tau \ \textbf{I} \ \nabla \times \vec{E} = \vec{0} \ \textbf{Electric potential}(\textbf{Voltage})(\textbf{V}), (\textbf{J}/\textbf{C}) \leftrightarrow \textbf{Charge density}(\textbf{C}/\textbf{m}^3) \ \textbf{V} = \frac{1}{1.5} \int \frac{dz}{dz} \rho d\tau \ \textbf{I} \ \nabla \times \vec{E} = \vec{0} \ \textbf{Electric potential}(\textbf{Voltage})(\textbf{V}), (\textbf{J}/\textbf{C}) \leftrightarrow \textbf{Charge density}(\textbf{C}/\textbf{m}^3) \ \textbf{V} = \frac{1}{1.5} \int \frac{dz}{dz} \rho d\tau \ \textbf{I} \ \textbf{V} = \vec{0} \ \textbf{I} \ \textbf{V} = \vec{0} \ \textbf{I} \ \textbf{V} = \vec{0} \ \textbf{I} \ \textbf{I} \ \textbf{V} = \vec{0} \ \textbf{I} \$ charge q Gravitational analogies mass m units coulomb C or ampere in one second As typical values 1.60 × 10⁻¹⁹ C (charge of an electron) 1.0 × 10⁻⁶ C (van der graaf static charge) general equation for getting \vec{E} from this quantity, point charge at origin $\vec{E}(\vec{r}) = \frac{1}{16\pi^2} \hat{r}$ general equation for getting this from \vec{E} , Gauss's law $\oint \vec{E} \cdot d\vec{a} = \frac{Q_{\rm notinut}}{2}$ Force Constant (Coulombs Constant): $k = \frac{1}{4c} = 8.987 \times 10^9 \, \mathrm{Nm}^2 \mathrm{C}^{-2}$ I gravitational analogies, $G = 6.674 \times 10^{-11} \, \mathrm{Nm}^2 \mathrm{kg}^{-2}$ Units, Newton metre squared per coulomb squared Nm^2/C^2 or meter per farad m/F, $F = s^4 A^2 \mathrm{m}^{-2} \mathrm{kg}^{-1}$ Force on q by Q (Coulombs law) $F = \frac{\log Q}{2}R$ (electric field $x \to -)$ Gravitational analogies $F = G^{m_1m_2}$ force due to gravity Lunits, Newton N or kilogram meter per second squared kgms⁻². typical values $F = \frac{k(1.0 \times 10^{-8})^2}{2} = 8.987 \times 10^{-7} \text{ N}$ (ping pong ball), general equation for getting \vec{E} from this quantity, $\vec{E} = \frac{\vec{E}}{2}$, general equation for getting this from \vec{E} $\vec{F} = Q\vec{E}$. long distance behavior of monopoles, $\frac{1}{z^2}$ long distance behavior of dipoles, $F = \frac{b2z}{(z^2+4(QP)^2)^{3/2}}$ $\hat{z} = \frac{1}{z^2}$. long distance behaviors of infinite planes $F = \frac{gQ}{R^2}$ [Electric field by \mathbf{Q} : $\vec{E} = \frac{b2z}{R^2}$ (gravitational field) Newton per coulomb N/C or Volts per meter V/m or kilogram meter per seconds cubed ampere kgm/s³A $\underline{\textbf{I}}$ $E = \frac{k(1.0 \times 10^{-4})}{(1 + (r/4/3)^{2})^{-1}} = 898.7\text{N/C}$ $\underline{\textbf{I}}$ monopoles $E = \frac{kq}{3\epsilon}$ Ulines $E = \frac{\lambda}{3\epsilon}$ Voltage (electric potential) $\underline{\textbf{Q}}$: $V = \frac{1}{4\pi\epsilon_0} \int \frac{\rho}{\mu} d\tau$ (potential energy per unit charge) $\underline{\textbf{I}}$ $\Phi = gh$ (gravitational potential) $\underline{\textbf{I}}$. Voltage (electric potential) $\underline{\textbf{Q}}$: $V = \frac{1}{4\pi\epsilon_0} \int \frac{\rho}{\mu} d\tau$ C = As $\frac{1}{2}$ 1.5 Alkaline battery, 12v typical car battery, 12v typical car battery $\frac{1}{2}\vec{E} = -\nabla V \frac{1}{2}V(\vec{r}) = \int_{r_c}^{r_c} \vec{E} \cdot d\vec{I} \frac{1}{2}$ Potential energy of Q and q when separated by r: $W = QV(\vec{r})$, $Q = \frac{v}{v(\vec{b}-V)} \frac{1}{2}U_E$ in joules J, U_E in Coulomb volt squared CV $\frac{1}{2}\vec{E} = -\frac{v}{2}\vec{V} \frac{1}{2}\vec{V} \cdot \vec{V} = \int_{r_c}^{r_c} \vec{I} \cdot \vec{E} \cdot d\vec{I} \frac{1}{2}\vec{V} \cdot \vec{V} \cdot \vec{V} = \int_{r_c}^{r_c} \vec{I} \cdot \vec{V} \cdot$ Gauss Law $\oint \vec{E} \cdot d\vec{a} = \frac{1}{2} Q_{enclosed}$ (should be double integral, cant do in latex right now) I integral around a closed path is evidently zero $\oint \vec{E} \cdot d\vec{l} = 0$ Pelectric Force (N) Coulombs law $\vec{F} = \frac{1}{2} \frac{q_0^2}{q_0^2} \hat{R}$ Electric Force (N) \leftrightarrow Elec $\vec{E}(\vec{r}) = \frac{1}{\sqrt{N}} \int \frac{\rho(r')}{\rho(r')} \hat{R}d\tau \hat{I}$ Electric Field(N/C) \leftrightarrow Electric potential(Voltage)(V), (J/C) $+ \frac{1}{N} \vec{E}(\vec{r}) = \frac{1}{\sqrt{N}} \int \frac{\rho(r')}{\rho(r')} \hat{R}d\tau \hat{I}$ Electric potential(Voltage)(V), (J/C) $+ \frac{1}{N} \vec{E}(\vec{r}) = \frac{1}{\sqrt{N}} \int \frac{\rho(r')}{\rho(r')} \hat{R}d\tau \hat{I}$ Electric potential(Voltage)(V), (J/C) $+ \frac{1}{N} \vec{E}(\vec{r}) = \frac{1}{\sqrt{N}} \int \frac{\rho(r')}{\rho(r')} \hat{R}d\tau \hat{I}$ Electric potential(Voltage)(V), (J/C) $+ \frac{1}{N} \vec{E}(\vec{r}) = \frac{1}{\sqrt{N}} \int \frac{\rho(r')}{\rho(r')} \hat{R}d\tau \hat{I}$ Electric potential(Voltage)(V), (J/C) $+ \frac{1}{N} \vec{E}(\vec{r}) = \frac{1}{\sqrt{N}} \int \frac{\rho(r')}{\rho(r')} \hat{R}d\tau \hat{I}$ joules potential energy (work done)(J), (N m), (W s), (C V) $U = \frac{kqQ}{2}$???? $V(b) - V(a) = \frac{W}{2}$ $I W = \frac{\epsilon_0}{2} \int_V E^2 d\tau = \oint_V V \vec{E} \cdot d\vec{a}$ Midterm II 5. Magnetostatics 5.1 The Lorentz Force Law $\vec{F}_{mag} = Q(\vec{v} \times \vec{B})$ \vec{I} $\vec{F} = Q(\vec{E} + (\vec{v} \times \vec{B}))$ \vec{I} cyclotron motion $QvB = m\frac{v^2}{c}$ or p = QBR where p = mv \vec{I} magnetic forces do no work $dW_{mag} = \vec{F_{mag}} \cdot d\vec{l} = Q(\vec{v} \times \vec{B}) \cdot \vec{v}dt0 \quad \text{I current } \vec{F_{mag}} = \int (d\vec{l} \times \vec{B}) \cdot \vec{v}dt0 \quad \text{I current density } \vec{K} \quad \vec{k} = \frac{d\vec{l}}{|\vec{k}|} \quad \vec{V} = \vec{V} \cdot \vec{B} \cdot \vec{B} \cdot \vec{A} = \vec{A} \cdot \vec{A} \cdot \vec{B} \cdot \vec{A} \cdot \vec{B} \cdot \vec{A} \cdot \vec{B} \cdot \vec{A} \cdot \vec{B} \cdot \vec{A} \cdot \vec{A}$ $QvB = m\frac{x^2}{v}$ or p = mv = QBR \mathbb{I} $\nabla \cdot = \frac{g_p}{2}$ 5.2 The Biot-Savart Law Stationary charges \cdot_k constant electric fields; electrostatics \mathbb{I} Steady currents \cdot_k constant magnetostatics \mathbb{I} One described in the regime $\frac{g_p}{g_p} = 0$ and $\frac{g_p}{g_p} = 0$ and I surface current $\vec{B}(\vec{r}) = \frac{\mu_1}{L} \int \vec{k}(\vec{r}) \times \vec{k} d\vec{l}$ volume current $\vec{B}(\vec{r}) = \frac{\mu_1}{L} \int \vec{k}(\vec{r}) \times \vec{k} d\vec{l}$ volume current $\vec{B}(\vec{r}) = \frac{\mu_1}{L} \int \vec{k}(\vec{r}) \times \vec{k} d\vec{l}$ volume current $\vec{B}(\vec{r}) = \frac{\mu_1}{L} \int \vec{k}(\vec{r}) \times \vec{k} d\vec{l}$ volume current $\vec{B}(\vec{r}) = \frac{\mu_1}{L} \int \vec{k}(\vec{r}) \times \vec{k} d\vec{l}$ volume current $\vec{B}(\vec{r}) = \frac{\mu_1}{L} \int \vec{k}(\vec{r}) \times \vec{k} d\vec{l}$ volume current $\vec{B}(\vec{r}) = \frac{\mu_1}{L} \int \vec{k}(\vec{r}) \times \vec{k} d\vec{l}$ volume current $\vec{B}(\vec{r}) = \frac{\mu_1}{L} \int \vec{k}(\vec{r}) \times \vec{k} d\vec{l}$ volume current $\vec{B}(\vec{r}) = \frac{\mu_1}{L} \int \vec{k}(\vec{r}) \times \vec{k} d\vec{l}$ volume current $\vec{B}(\vec{r}) = \frac{\mu_1}{L} \int \vec{k}(\vec{r}) \times \vec{k} d\vec{l}$ volume current $\vec{B}(\vec{r}) = \frac{\mu_1}{L} \int \vec{k}(\vec{r}) \times \vec{k} d\vec{l}$ volume current $\vec{B}(\vec{r}) = \frac{\mu_1}{L} \int \vec{k}(\vec{r}) \times \vec{k} d\vec{l}$ volume current $\vec{B}(\vec{r}) = \frac{\mu_1}{L} \int \vec{k}(\vec{r}) \times \vec{k} d\vec{l}$ volume current $\vec{B}(\vec{r}) = \frac{\mu_1}{L} \int \vec{k}(\vec{r}) \times \vec{k} d\vec{l}$ volume current $\vec{B}(\vec{r}) = \frac{\mu_1}{L} \int \vec{k}(\vec{r}) \times \vec{k} d\vec{l}$ volume current $\vec{B}(\vec{r}) = \frac{\mu_1}{L} \int \vec{k}(\vec{r}) \times \vec{k} d\vec{l}$ volume current $\vec{B}(\vec{r}) = \frac{\mu_1}{L} \int \vec{k}(\vec{r}) \times \vec{k} d\vec{l}$ volume current $\vec{B}(\vec{r}) = \frac{\mu_1}{L} \int \vec{k}(\vec{r}) \times \vec{k} d\vec{l}$ volume current $\vec{B}(\vec{r}) = \frac{\mu_1}{L} \int \vec{k}(\vec{r}) \times \vec{k} d\vec{l}$ volume current $\vec{B}(\vec{r}) = \frac{\mu_1}{L} \int \vec{k}(\vec{r}) \times \vec{k} d\vec{l}$ volume current $\vec{B}(\vec{r}) = \frac{\mu_1}{L} \int \vec{k}(\vec{r}) \times \vec{k} d\vec{l}$ Ampere's Law \vec{l} $\nabla \times \vec{B} = \mu_0 \vec{J} \vec{l}$ \vec{f} $\vec{B} \cdot d\vec{l} = \mu_0 I_{enc}$ \vec{l} Electrostatics: Coulomb \rightarrow Gauss, Magnetostatics: Biot-Savart \rightarrow Ampered Solenoid \vec{f} \vec{B} \vec{l} \vec{I} \vec{B} \vec{b} \vec{l} \vec{l} \vec{b} \vec{l} \vec B field for Toroid $\vec{B}(\vec{r}) = \frac{mu_0NL}{\hat{r}}$ of for points inside the toroid = 0 for points outside the coil Maxwell's equations for electrostatics $\nabla \cdot \vec{E} = \frac{1}{\epsilon} \rho(\text{Gauss's law}) \nabla \times \vec{E} = \vec{0}(\text{no name}) \nabla \times \vec{B} = \mu_0 \vec{J}(\text{Ampere's law})$ Maxwell's equations and the force law $\vec{F} = Q(\vec{E} + \vec{v} \times \vec{B})$ 5.4 Magnetic Vector Potential just as $\nabla \times \vec{E} = \vec{0}$ permits the introduction of a scalar potential V in electrostatics $\vec{E} = \nabla V$ so $\nabla \cdot \vec{B} = 0$ invites the introduction of a vector potential A in magnetostatics $\vec{E} = \nabla V \times \vec{A}$ $\vec{1}$ $\vec{V} \cdot \vec{A} = 0$ $\vec{1}$ $\vec{1}$ $\vec{A}(\vec{r}) = \frac{\mu_0}{4\pi} \int_0^{\pi} \vec{dr'} \vec{A}(\vec{r}) = \frac{\mu_0}{4\pi} \int_0^{\pi} \vec{dr'} \vec{A}(\vec{r}) = \frac{\mu_0}{4\pi} \int_0^{\pi} \vec{A}(\vec{r}) = \frac{\mu_0}{4\pi$ Vector potential for surface current $\vec{A} = \frac{m_0}{4} \int \frac{\vec{k}(\vec{r})}{\vec{r}} d\alpha'$ Magnetic Vector Potential, current density, and Magnetic field triangle relationships $\vec{A} = \frac{m_0}{4} \int \frac{\vec{J}_2 \cdot \vec{k}}{4} d\tau$ V $\times \vec{B} = \mu_0 \vec{J}$; $\nabla \cdot \vec{B} = \mu_0 \vec{J}$ is the magnetic dipole moment \vec{I} , $\vec{m} = I \int d\vec{a} = I \vec{a}$ where \vec{a} is 6.1 Magnetization Torque $\vec{N} = \vec{m} \times \vec{B}$ where m = Iab (square) is the magnetic dipole moment of the loop I in particular, the torque is again in such direction as to line the dipole up parallel to the field. It is this torque that accounts for paramagnetism. Since every electron constitutes a magnetic dipole you might expect paramagnetism to be a universal phenomenon. Actually, quantum mechanics tends to lock the electrons within a given atom together in pairs with opposite spin. For an infinitesimal loop $\vec{F} = \nabla(\vec{m} \cdot \vec{B})$ In the presence of a magnetic field, each atom picks up a little "extra dipole moment, and these increments are all antiparallel to the field. This is the mechanism for diamagnetism, \vec{I} \vec{M} is call the magnetization, it plays a role analogous to the polarization \vec{P} in electrostatics 6.2 The field of a Magnetized Object $\vec{I}_k = \vec{N} \times \vec{n}$ 6.3 The Auxiliary Field H .4 Linear and Non-Linear Media Ferromagnetism In a linear medium, the alignment of atomic dipoles is maintained by a magnetic field imposed from the outside. Ferromagnets - which are emphatically not linear - require no external fields to sustain the magnetization; the alignment is frozen in. In Ferromagnets each dipole likes to point in the same direction as its neighbors. The reason is quantum mechanical. Alignment occurs in relatively small patches called domains. The net effect of the magnetic field is to move the domain boundaries. If the B field is strong enough one domain takes over entirely, and the iron is said to be saturated Shifting domain boundaries is not entirely reversible. The path is traced out in the hysteresis loop. Chapter 7 7.1 Ohm's Law \vec{J} the current density is proportional to the force per unit charge $\vec{i} \parallel \vec{J} = \sigma \vec{i}$ where σ is the proportionality factor called the conductivity of the material $\parallel \rho = \frac{1}{2}$ where ρ is the resistivity of the material $\vec{J} = \sigma(\vec{E} + \vec{n} \times \vec{B}) \parallel \vec{J} = \sigma(\vec{E} + \vec{A}) \parallel \vec{J} = \sigma(\vec{A}) \parallel \vec{J}$ serves to motth out the flow and communicate the influence of the source to distance parts of the circuit \vec{l} $\vec{f} = \vec{f}_i + \vec{E}$ The flux rule for motional emf $\varepsilon = \frac{-db}{L}$ whenever the magnetic flux through a loop changes, an emf will appear in the loop 7.2 Electromagnetic Induction a changing magnetic field induces an electric field $\varepsilon = \oint \vec{E} \cdot d\vec{l} = -\frac{d\theta}{dt} = -\int \frac{\theta}{dt} \cdot \theta \vec{l}$ we can convert Faradays law from integral form into differential from by applying Stokes theorem $\vec{l} \nabla \times \vec{E} = -\frac{\theta}{dt} \vec{l}$. The work does on a unit charge against the back emf, in one trip around the circuit is $-\varepsilon \vec{l} \cdot \frac{dW}{dt} = -\varepsilon I = LI \frac{dI}{dt} \vec{l}$. If we start with zero current abd build it up to a final value I, the work done $W=\frac{1}{2}LI^2$ [$W=\frac{1}{2\pi}$] I_0 [I_0 [Iin the air, $\vec{F} = q\vec{E}$, and volume charge $\vec{E}(\vec{r}) = \frac{1}{4\pi c} \int \frac{\rho(r')}{iR} \dot{R} d\tau'$ magnetic dipole moment \vec{m} in NmT⁻¹ or Am² or JT⁻¹ 1 amp (2.1 amp in high power led) (9 amp in toster) 1 meter circumference so r=.5 so $m = .5^2 \pi(1) = .25 \pi$, $\vec{m} = I \int d\vec{a} = I \vec{a}$, \vec{a} is the area vector of the loop, if the loop is flat, \vec{a} is the ordinary area enclosed magnetic force constant $K_a = \frac{\mu_0}{r} = 1 \times 10^{-7} \text{ NA}^{-2} \text{ or kgms}^{-2} \text{A}^{-2}$ I Current I in A, 5 amp on one typical 12 volt motor vehicle headlight, used in ampere's law $\nabla \times \vec{B} = \mu_0 \vec{J}$ or $\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{enclosed}$ where \vec{J} is volume current density \vec{I} Magnetic Flux Φ_B in V s or kgm²s⁻³A⁻¹ if the magnetic field is perpendicular to the area and B field is 1 Tesla and the area had a radius 1. The magnetic flux through a closed surface Φ_B = (f), $\vec{B} \cdot d\vec{a} = 0$ sometimes faradays law is useful Φ_B = cos θAB where theta is the angle off of perpendicular to the surface, A is the area and B is the magnetic flux through a closed surface Φ_B = (f), $\vec{B} \cdot d\vec{a} = 0$ sometimes faradays law is useful Φ_B = cos θAB where theta is the angle off of perpendicular to the surface, A is the area and B is the magnetic flux through a closed surface Φ_B = (f), $\vec{B} \cdot d\vec{a} = 0$ sometimes faradays law is useful Φ_B = cos θAB where theta is the angle off of perpendicular to the surface, A is the area and B is the magnetic flux through a closed surface Φ_B = (f), $\vec{B} \cdot d\vec{a} = 0$ sometimes faradays law is useful Φ_B = cos θAB where the angle off of perpendicular to the surface, A is the area and B is the magnetic flux through a closed surface Φ_B = (f), $\vec{B} \cdot d\vec{a} = 0$ sometimes faradays law is useful Φ_B = cos θAB where the angle off of perpendicular to the surface $\vec{B} \cdot d\vec{a} = 0$ sometimes faradays law is useful Φ_B = cos θAB where the angle off of perpendicular to the surface $\vec{B} \cdot d\vec{a} = 0$ sometimes $\vec{B} \cdot d\vec{a} = 0$ in ohms O or kgm²s⁻³A⁻² or VA⁻¹ 1.5 volt alkaline battery and 2.7 high power led current you get 1.5/2.7 = 0.55 ohms. V = IR and $P = VI = \frac{V^2}{2} = I^2R$ Power in watts W or kgm²s¬3 or Js¬¹ 1 Volume current density \vec{J} in $\frac{\Delta}{4}$, used in $\nabla \times \vec{B} = \mu_0 \vec{J}$, $\vec{J} \cdot d\vec{a}$, $\vec{\nabla}^2 \vec{A} = -\mu_0 \vec{J}$ 2.7 amps in high power led is passing through a area of 1 meter by 1 meter you get $\vec{J} = 2.7 \, \text{Am}^{-2}$ Torone \vec{N} in J or N m or kgm²s⁻². $\vec{N} = \vec{v} \times \vec{E}$ where dipole $\vec{v} = a\vec{d}$ in a uniform field \vec{E} Magnetic field in units of Tesla T flows from North to South, typical refrigerator magnet $5 \times 10^{-3} \, \text{T}$ earths magnetic field flows from the geographic south pole to the geographic north pole, magnetic fields in the same direction = attraction, magnetic fields in opposite directions = repulsion | magnetic vector potential | \vec{A} in Vsm⁻¹ or kgms⁻²A⁻¹ or NA⁻¹, $\vec{B} = \nabla \times \vec{A}$, $\vec{A} = \frac{\mu_b}{2} \int \frac{\vec{L}}{2} d\tau$ | Farad unit of electrical capacitance in s⁴A²m⁻²kg⁻¹ | Midterm II test corrections | Biot-Savart Law | $\vec{B}(\vec{r}) = \frac{\mu_b}{2} \int \frac{\vec{L} \times \vec{R}}{2} dt' = \frac{\mu_b}{2} \int \frac{\vec{L} \times \vec{R}}{2} dt'$ | Amperian Loop $\nabla \times \vec{B} = \mu_0 \vec{J}$ use stokes theorem to convert from differential form to integral form $\int (\nabla \times \vec{B}) \cdot d\vec{a} = \oint \vec{B} \cdot d\vec{l} = \mu_0 \int \vec{J} \cdot d\vec{a}$, therefore the current enclosed by the amperian loop $\oint \vec{B} \cdot d\vec{l} = \mu_0 \int \vec{J} \cdot d\vec{a}$, therefore the current enclosed by the amperian loop $\oint \vec{B} \cdot d\vec{l} = \mu_0 \vec{J}$ use stokes theorem to convert from differential form to integral form $\int (\nabla \times \vec{B}) \cdot d\vec{a} = \oint \vec{B} \cdot d\vec{l} = \mu_0 \int \vec{J} \cdot d\vec{a}$, therefore the current enclosed by the amperian loop $\oint \vec{B} \cdot d\vec{l} = \mu_0 \vec{J}$ use stokes theorem to convert from differential form to integral form \vec{J} , plane of charge constant \parallel integration trig substitution $\int (x^2+z^2)^{-3/2} \parallel x = z \tan(u) \parallel dx = z \sec^2(u) du \parallel$ plug into $(x^2+z^2)^{-3/2} \parallel z^2 \tan^2(u) + 2^2 \parallel z^2 \tan^2(u)$ directions, repulsive I B field \(\frac{1}{2}\) forawire I field approximately \(\frac{2K_u}{2}\) where \(K_m = 1 \times 10^{-7}\) NA\(^2\) I Q4 Two very long wires different current if current changed to 10 amp out of page, magnetic field at A now zero I the torque is in the direction perpendicular to the one of motion \(\frac{Q5}{Q5}\) Long cylinder perpendicular across the equator of the control of the co m mass. b radius, q charge, distance D $\vec{\nabla}_0 = v_0(-z)$ \vec{I} $F_{total} = F_a + F_{storontalic angle magnetic field}$ is parallel to the velocity vector of the particle, has no effect on velocity \vec{I} $\vec{B}(\vec{\tau}) = \frac{m_b}{L} \int \frac{f_1 \vec{R}_1}{L} dt$ DO NOT USE \mathbf{I}_{0}^{f} $\hat{B}d\hat{\mathbf{I}} = \mu_{0} \int \vec{J} \cdot d\vec{a} \cdot \vec{\mathbf{I}} \cdot \vec{V} = -v\hat{z}$, $\vec{B} = -B\hat{\phi}$, $\vec{F}_{0} = -F\hat{z}$, \vec{F} current is dipole magnetic field in magnetostatics $\frac{1}{4}$ like note $\vec{J} = \rho \vec{v}$ volume current density equals volume charge density times velocity, also true for $\vec{K} = \sigma \vec{v}$ sigma in this case is charge density NOT conductivity, and $\vec{I} = \lambda \vec{v}$ the phonograph record is best described by the current density proportional to radius \vec{I} the u tape is not described well by wither the constant magnitude current density of proportional to radius. Modeled well as the limit as constant and proportional approach each other, also has a depth element I the single wire wrapped in eye of a stove is modeled by a current density with constant magnitude, current in a wire is same velocity. where ever you are $\[\] \langle \hat{s}, \hat{\phi}, \hat{z} \rangle \] \[\] \vec{B}(\vec{r}) = \frac{m_s}{4} \\ \[\] \langle \hat{s}, \hat{\phi}, \hat{z} \rangle \] \[\] \vec{B}(\vec{r}) = \frac{m_s}{4} \\ \[\] \langle \hat{s}, \hat{\phi}, \hat{z} \rangle \] \[\] \vec{B}(\vec{r}) = \frac{m_s}{4} \\ \[\] \langle \hat{s}, \hat{\phi}, \hat{z} \rangle \] \[\] \vec{B}(\vec{r}) = \frac{m_s}{4} \\ \[\] \langle \hat{s}, \hat{\phi}, \hat{z} \rangle \] \[\] \vec{B}(\vec{r}) = \frac{m_s}{4} \\ \[\] \langle \hat{s}, \hat{z}, \hat{z} \rangle \] \vec{B}(\vec{r}) = \frac{m_s}{4} \\ \[\] \langle \hat{s}, \hat{z}, \hat{z} \rangle \] \vec{B}(\vec{r}) = \frac{m_s}{4} \\ \[\] \langle \hat{s}, \hat{z}, \hat{z} \rangle \] \vec{B}(\vec{r}) = \frac{m_s}{4} \\ \[\] \langle \hat{s}, \hat{z}, \hat{z} \rangle \] \vec{B}(\vec{r}) = \frac{m_s}{4} \\ \[\] \langle \hat{s}, \hat{z}, \hat{z} \rangle \] \vec{B}(\vec{r}) = \frac{m_s}{4} \\ \[\] \langle \hat{s}, \hat{z}, \hat{z} \rangle \] \vec{B}(\vec{r}) = \frac{m_s}{4} \\ \[\] \langle \hat{s}, \hat{z}, \hat{z} \rangle \] \vec{B}(\vec{r}) = \frac{m_s}{4} \\ \[\] \langle \hat{s}, \hat{z}, \hat{z} \rangle \] \vec{B}(\vec{r}) = \frac{m_s}{4} \\ \[\] \langle \hat{s}, \hat{z}, \hat{z} \rangle \] \vec{B}(\vec{r}) = \frac{m_s}{4} \\ \[\] \langle \hat{s}, \hat{z}, \hat{z} \rangle \] \vec{B}(\vec{r}) = \frac{m_s}{4} \\ \[\] \langle \hat{s}, \hat{z}, \hat{z} \rangle \] \vec{B}(\vec{r}) = \frac{m_s}{4} \\ \[\] \langle \hat{s}, \hat{z}, \hat{z} \rangle \] \vec{B}(\vec{r}) = \frac{m_s}{4} \\ \[\] \langle \hat{s}, \hat{z}, \hat{z} \rangle \] \vec{B}(\vec{r}) = \frac{m_s}{4} \\ \[\] \langle \hat{s}, \hat{z}, \hat{z} \rangle \] \vec{B}(\vec{r}) = \frac{m_s}{4} \\ \[\] \langle \hat{s}, \hat{z}, \hat{z} \rangle \] \vec{B}(\vec{r}) = \frac{m_s}{4} \\ \[\] \langle \hat{s}, \hat{z} \rangle \] \vec{B}(\vec{r}) = \frac{m_s}{4} \\ \[\] \langle \hat{s}, \hat{z} \rangle \] \vec{B}(\vec{r}) = \frac{m_s}{4} \\ \[\] \langle \hat{s}, \hat{z} \rangle \] \vec{B}(\vec{r}) = \frac{m_s}{4} \\ \[\] \langle \hat{s}, \hat{z} \rangle \] \vec{B}(\vec{r}) = \frac{m_s}{4} \\ \[\] \langle \hat{s}, \hat{z} \rangle \] \vec{B}(\vec{r}) = \frac{m_s}{4} \\ \[\] \langle \hat{s}, \hat{z} \rangle \] \vec{B}(\vec{r}) = \frac{m_s}{4} \\ \[\] \langle \hat{s}, \hat{z} \rangle \] \vec{B}(\vec{r}) = \frac{m_s}{4} \\ \[\] \langle \hat{s}, \hat{z} \rangle \] \vec{B}(\vec{r}) = \frac{m_s}{4} \\ \[\] \vec$ s' > a I \(\frac{1}{2}\) wire of charge relationship for E field generated, and \(\frac{1}{2}\) wire of charge relationship for E field generated and \(\frac{1}{2}\) wire of charge relationship for E field generated \(\frac{1}{2}\) (Asset I \(\frac{1}{2}\) of \(\frac{1}{2}\) of \(\frac{1}{2}\) of \(\frac{1}{2}\) and \(\frac{1}{2}\) = \(\frac{1}{2}\) of \(\frac{1}\) of \(\frac{1}{2}\) of \(\frac{1}{2}\) of \(\frac{1}{2}\) of \(\ $\frac{1}{2} \prod_{\beta}^{2\pi} B \hat{\phi} \cdot s d\theta \hat{\phi} = \mu_0 \int_0^{2\pi} \int_0^{R} \frac{R}{c_0} \left(\frac{r}{c_0} \right) ds s' d\theta \prod_{\beta} B 2\pi s = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac{2I_{\text{pip}}}{c_0} \text{ for } s > R \text{ and } = \frac$ centripetal acceleration $\[\[F = ma \] \[\[F_g = F_g(-\hat{s}), \[\vec{I} = I\hat{\phi}, \[\vec{a} = a(-\hat{s}), \[\vec{B} = B(\hat{z}), \[\vec{F} F \hat{s} \] \[\[Magnetic field acts in the opposite direction to the gravitational field <math>\[\[B = \frac{k_m M}{m \text{ is magnetic dipole moment}} \] \[\[\[\frac{G_0}{a(c)} = \frac{R^2}{k^2} \] \] \[\[\[\frac{G_0}{a(c)} = \frac{R^2}{k^2} \] \]$ is Radius not Source field point vector minus source vector $\frac{-mv^2}{cont} = qv \frac{g_0R_{sent}^2}{cont}$ convert with period $T = \frac{d}{2} = \frac{2\pi R}{cont}$ therefore $v = \frac{2\pi R}{cont}$ $R^3 = \frac{-q^2\pi T_{sent}^2}{cont} + \frac{mg_0T^2R_s^2}{cont}$ Maxwells Equation Gauss's Law Differential $\vec{\nabla} \cdot \vec{E} = \frac{\rho}{L}$ and Integral $\vec{E} = \frac{\rho}{L}$ $\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{enclosed} + \mu_0 \epsilon_0 \int \frac{\partial \vec{E}}{\partial t} \cdot d\vec{a}$ Symbols and Units and Common Equations Electric field \vec{E} in NC⁻¹ or Vm⁻¹ or $\vec{E} = -\nabla V$ I Voltage V in Nor NmC⁻¹ or NmS⁻² I Energy E in Nor kgms⁻² I Electric Charge Q in C or As I Gravitational field g in Nkg⁻¹ or ms⁻² 1.0 Nkg⁻¹ is small, about 1/10 as big as g on earths surface, Weight = mg I Magnetic Field B in T or NA⁻¹m⁻¹ or

1

kgA^-1s^-2. 5 × 10^-3 T is the strength of a typical refrigerator magnet. 1 T is therefor large. Magnetic Forces $\vec{F}_{mag} = Q(\vec{v} \times \vec{B})$ Lorentz Force Law $\vec{F} = Q[\vec{E} + (\vec{v} \times \vec{B})]$ Biot-Savart law $B(\vec{v}) = \frac{u_0}{4\pi} \int \frac{d\vec{r}_c R}{\hbar R} \frac{\mathbf{I}}{dt}$ Electric Potential V_E in V or JC ⁻¹ or kgm ² A ⁻¹ C ⁻³ . 1.5 V in an alkaline battery. Therefor 1.0 V is of average
size. Poisson's equation $\nabla^2 V = -\frac{\mu}{\epsilon_0}$, Laplace's equation $\nabla^2 V = 0$, Voltage for volume change density $V(\vec{r}) = \frac{1}{4\epsilon_0} \int \frac{\rho(\vec{r})}{R} d\tau'$, $V = -\int_0^{\vec{r}} \vec{E} \cdot d\vec{l}$ (reference point for zero potential is at infinity) Magnetic Constant k_A in Nm ⁻¹ or kgs ⁻² , Where $K_A = 1 \times 10^{-7} \mathrm{Nm}^{-1} = \frac{\mu}{4\epsilon_0}$ where $(\mu_0 = 4\pi \times 10^{-7} \mathrm{Nm}^{-2})$ is the magnetic constant,
or vacuum permeability. I Current I in Cs ⁻¹ or A. 2.0 × 10 ⁻¹ A A constant current in a common light emitting diode. 1 A is on larger side but still reasonable. $\vec{F}_{mag} = \int [\vec{I} \times \vec{B}] dl$, $\vec{I} = \lambda \vec{v}$, Surface current density $\vec{K} \equiv \frac{dl}{dl}$ where $\vec{K} = \sigma \vec{v}$. $\vec{F}_{mag} = \int [\vec{v} \times \vec{B}] da$, volume current density $\vec{J} \equiv \frac{dl}{dl}$ where
$J= ho \overline{v}$ $F_{mag}=\int (\overline{v} imes B) ho da=\int (J imes B) ho da=\int (J imes B) ho da=\int (J imes B) ho da$. $I=\int Jda.$ $V=IR.$ $P=VI=I^2R$ $I=I^2R$ $I=$
$force)_{\mathcal{E}} \equiv \oint f \cdot d\vec{l}$, megnetic flux through a loop changes $\mathcal{E} = -\frac{42}{40}$. Also Faradays law in integral form \vec{l} Resistance \vec{l} in Ω or VA^{-1} or S^{-1} (Siemens unit of conductivity) or or $kgm^2s^{-3}A^{-2}$. Small light bulbs or 50Ω or resistance of small copper wire $1 \times 10^{-1}\Omega$. Therefore or 1Ω is on the small size but about average. $V = IR$ and
$P=VI=I^2R$. resistivity $ ho=rac{1}{2}$ where σ is conductivity. Resistivity or copper $rho=1.68 imes 10^{-8} \Omega \mathrm{m}$. Current density $\vec{J}=\sigma \vec{E}$ the force per unit charge. $\vec{J}=\sigma (\vec{E}+\vec{v} imes \vec{E})=\sigma \vec{E}$ in N or kgms ⁻² . With 1A and area of 1 m ² creates a magnetic dipole moment m of 1Am ² crossed
with 1 T results with 1 Am 2 kgA $^{-1}$ s $^{-2}$ or 1 J. $\vec{N} = \vec{m} \times \vec{B}$ and magnetic dipole moment $m = Iab$ \parallel electric dipole moment \vec{p} in C m or A s m. Two ping pong balls of $q = 1 \times 10^{-8}$ C separated by a distance of 1×10^{-2} m which results in a electric dipole moment of 1×10^{-10} As m. Therefore 1 A s m is large. $\vec{r}\vec{h}\vec{o} \equiv \vec{r}'\rho(\vec{r}')d\tau'$. The dipole
contribution to the potential $V_{dipole}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \frac{\vec{r} \cdot \vec{r}}{r^2}$. For a physical dipole $\vec{p} = qr'_+ - q\vec{r}' = q(\vec{r}^a_+ ndr - \vec{r}')q\vec{d}$. $\vec{r} = \sum_{i=1}^n q_i\vec{r}'_i$. $\vec{E}_{dip}(r, \theta) = \frac{p}{4\pi\epsilon_0 r^2} (2\cos\theta \hat{r} + \sin\theta \hat{\theta})$ Magnetic vector potential \vec{A} in Vsm^{-1} or $kgmA^{-1}s^{-3}sm^{-1}$ or $kgmA^{-1}s^{-3}sm^{-1}sm$
line and surface currents) I visitate a square loop of wire $< s, \phi, z > 1$ $\vec{F}_T = -F\hat{s}, \vec{F}_B = F\hat{s}, \vec{F}_L = F\hat{s}, $
$0 = mg(\hat{s}) + \frac{\mu_s}{2\pi(s - \frac{s}{2})}(-\hat{s}) + \frac{\mu_b I^2}{2\pi(s + \frac{s}{2})}(\hat{s}) \stackrel{\blacksquare}{\blacksquare} : I = \sqrt{\frac{mg}{(\frac{s}{2\pi(s - \frac{s}{2})} - \frac{s}{2\pi(s + \frac{s}{2})}}} \text{ wire with current density } < s, \phi, z > \stackrel{\blacksquare}{\blacksquare} \vec{J}(s) = Ae^{-ax^2} \stackrel{\blacksquare}{\blacksquare} ds = m^{-2} \text{ and } A = A^1m^{-2} \stackrel{\blacksquare}{\blacksquare} J = \frac{\Delta\pi}{a} (1 - e^{-aR^2}) \hat{s} \stackrel{\blacksquare}{\blacksquare} \text{ for a light bulb 100 watt, 120V, 144 ohm, 0.8333 amps} \stackrel{\blacksquare}{\blacksquare} Amperes law (assume E = 0) \int_0^{2\pi} Bd\phi s = \mu_0 \frac{A\pi}{a} (1 - e^{-aR^2}) \stackrel{\blacksquare}{\blacksquare} ds = m^{-2} \text{ and } A = A^1m^{-2} \stackrel{\blacksquare}{\blacksquare} J = \frac{\Delta\pi}{a} (1 - e^{-aR^2}) \hat{s} \stackrel{\blacksquare}{\blacksquare} \text{ for a light bulb 100 watt, 120V, 144 ohm, 0.8333 amps} \stackrel{\blacksquare}{\blacksquare} Amperes law (assume E = 0) \int_0^{2\pi} Bd\phi s = \mu_0 \frac{A\pi}{a} (1 - e^{-aR^2}) \stackrel{\blacksquare}{\blacksquare} ds \stackrel{\blacksquare}{\blacksquare} J \stackrel{\blacksquare}{\blacksquare} \frac{J}{A} (1 - e^{-aR^2}) \hat{s} \stackrel{\blacksquare}{\blacksquare} ds \stackrel{\blacksquare}{\blacksquare} J \stackrel{\blacksquare}{\blacksquare} \frac{J}{A} (1 - e^{-aR^2}) \hat{s} \stackrel{\blacksquare}{\blacksquare} J \blacksquare J \stackrel{\blacksquare}{\blacksquare} J \blacksquare J \square J \square$
$B = \frac{\mu_0}{\varepsilon} \frac{\frac{\delta \omega}{1} \left(1 - e^{-kt^2}\right)}{2\pi s} \prod_{\text{units}} \frac{\frac{R}{s^2} \left(\frac{1}{s^2} \left(\frac{1}{s^2}\right)\right)}{m} = \frac{kg}{s^2} = T \text{ values } B = \frac{4\pi \times 10^{-1} \frac{2186}{10} \left(1 - e^{-1(1 \times 10^{-1})^2}\right)}{2\pi s} = 1.7 \times 10^{-12} \text{ T makes sense since we are very far away with respect to the wire} $ which of Maxwell's equations electric field for charge distribution that increases from the origin to radius R and zero outside (s, θ, ϕ) [Gauss's law, Gaussian Park of the Company of the
surface on the left hand side $\int_0^{2\pi} \int_0^{\pi} E\delta \cdot r d\theta r \sin\theta = \frac{Q(t)}{c_0} = \frac{qr}{R_0}$ for $r < R$ Magnetic field of wire current 1 surrounded by cylindrical shell with opposite current 41 amperes law in cylindrical coordinates $\int_0^{2\pi} Br d\phi = \mu_0 I$ for $r < R$ Magnetic field of wire current 42 amperes law in cylindrical coordinates $I_0^{2\pi} Br d\phi = \mu_0 I$ for $r < R$ Magnetic field of wire current 43 amperes law in cylindrical coordinates $I_0^{2\pi} Br d\phi = \mu_0 I$ for $I_0^{2\pi} Br d\phi = \mu_0 I$ f
no maxwell equation $\lambda \vec{v} = \vec{I}$ and $\vec{k} = \sigma \vec{v}$ and $\vec{J} = \rho \vec{v}$ \mathbf{I} $\omega = \frac{v}{R}$ \mathbf{I} $\vec{v} = \omega R \hat{\phi}$ \mathbf{I} \vec{I} $V = \frac{1}{4\pi} \int_{0}^{2\pi} \frac{\lambda(r')}{R^2} dt$ (R in this case is curly R) \mathbf{I} $r = z\hat{z}$ and $r' = R\hat{s}$ (R radius, not curly R), $\vec{R} = z\hat{z} - R\hat{s}$ (first curly R, second Radius R) \mathbf{I} $V = \frac{1}{4\pi} \int_{0}^{2\pi} \frac{\lambda}{\sqrt{z+R^2}} r d\phi$ Voltage of a point charge Q centered with in a metal sphere with charge -3Q
$< s, \phi, \theta > ext{use Gauss law to get E then solve for potential } egin{array}{c} \mathcal{G} & \vec{E} & \vec{G} & = & \frac{-2Q}{4\pi r^2 \epsilon_0} & & \\ \hline & \vec{E} & \vec{G} & = & \frac{-2Q}{4\pi r^2 \epsilon_0} & & \\ \hline & \vec{E} & \vec{G} & = & \frac{-2Q}{4\pi r^2 \epsilon_0} & & \\ \hline & \vec{E} & \vec{G} & = & \\ \hline & \vec{G}$
$r>R$ (no R is curly) Electric field of a point charge a distance D from an infinite metal sheet no maxwell equation $< s, \theta, \phi > \vec{E} = \frac{q}{4s_{10}} \frac{q}{R} \hat{R}$ (R is curly) and $\vec{E} = 0$ where $s < 0$ [$r = s\hat{s} + \theta\hat{\theta} + \phi\hat{\phi}$ [Electric field of a point charge located a distance D from an infinite metal sheet
no maxwell equation $V(x,y,z)=\frac{1}{4\pi\epsilon_0}[\frac{q}{\sqrt{z^2+y^2+(z-d)^2}}-\frac{q}{\sqrt{z^2+y^2+(z-d)^2}}]$ (d for +Q and +d for -Q) \vec{L} when v=0 and z=0 \vec{L} $\vec{E}=-\nabla V=-(\frac{dV}{dx}+\frac{dV}{dy}+\frac{dV}{dz})$)however only true for $z\geq0$ but that is all we care about for classic image problem \vec{L}
(pillbox) _[X,Y,Z,L] $\notin \vec{E} \cdot d\vec{a} = \frac{q_{rec}}{\epsilon_0}$ I $\int_0^L \int_0^L E dx dy + \int_0^L \int_0^L E dx dy = int_0^L \int_0^L E dx d$
solve for potential working from the outside in $\frac{1}{4}$ remembering that $E = \frac{-\lambda}{2\pi s_{0}}$ for $R_{\tilde{k}}\tilde{s}$, $\frac{1}{4}V = -\int_{\infty}^{R} \vec{E} \cdot d\vec{l} - \int_{\Gamma}^{r} \vec{E} \cdot d\vec{l}$
$\textbf{long solid metal cylinder along the equator} < r, \theta, \phi > \textbf{J}. \textbf{Lorentz force law } \vec{F} = Q[\vec{E} + (\vec{v} \times B)] \ \vec{F}_{gg} = F \hat{s} \ \textbf{I}. \vec{F}_{mag} = F \hat{s} \ $
acceleration of particle after released $F_t = F_g + F_{magearth} + F_{magpipe}$ $\frac{1}{2}$ $ma = -mg + qvB_s + qv \frac{m_{glave}}{2\pi(R+D)}$ (no B for pipe) parameters so different forces dominate $q - > \infty$ and $a - > \infty$
charge distributions i) plane, line, dipole, proton for E field, $C, \frac{1}{r}, \frac{1}{r^2}, \frac{1}{r^2}$ and for potential V $r, \ln(r), \frac{1}{r^2}, \frac{1}{r}$ ii) force a distance $\vec{F} = q(\vec{E} \cdot \vec{v} \times \vec{B})$ is $F = qE$ therefor for plane, line, dipole, and proton $qC, \frac{q}{r}, \frac{q}{r^2}, \frac{q}{r^2}$
A through M placed on a line $E=\frac{1}{r^2}$ $\frac{1}{4}E=\frac{1}{4\pi\epsilon_0}\int \frac{\rho(\vec{r})}{R^2}Rd\tau'$ $\frac{1}{4}$ e field $x-\dot{c}-\frac{1}{2}$ $\frac{\vec{E}}{B}=k4q(\frac{1}{1^2})\dot{x}+\frac{1}{2^2}\dot{y}$ $\frac{1}{4}$ $\stackrel{\cdot}{C}$ $E_s=kq[(\frac{-143}{36})\dot{x}+\frac{5}{4}\dot{y}]$ $\frac{1}{4}$ same process for potential only with $\frac{1}{r}$ expression for plane wave electric field $\frac{\vec{E}}{R^2}$ $\stackrel{\cdot}{C}$ C
wave number vector is in direction of propagation \vec{l} \vec{k} $=$ \hat{k} \hat{x} and angular frequency $\omega = 2\pi f$ and $k = \frac{2\pi f}{a}$ and $c = f\lambda$ \vec{l} If you only look at the real term $E(r,t) = E_0 \cos(\vec{k} \cdot \vec{r} - \omega t)\hat{n}$ \vec{l} $$
wave number vector is in direction of propagation $\ \vec{E}\vec{k} = k\hat{x}$ and angular frequency $\omega = 2\pi f$ and $k = \frac{2\pi f}{\varepsilon}$ and $c = f\lambda$ $\ \vec{E}(\vec{r}, t) = L_0\cos(\vec{k} \cdot \vec{r} - \omega t)\hat{n}$ $\ \vec{E}(\vec{r}, t) = 100\cos(\frac{2\pi t(1.02 \times 10^8)}{\varepsilon})\hat{x} \cdot \vec{r} - (s\pi(1.02 \times 10^8)t)]\hat{z}$ $\ \vec{E}\vec{r}\ $ propagation direction \hat{z} polarization direction \hat{z} polarization direction \hat{z} propagation $\ \vec{E}\vec{r}\ $ \hat{z} $$
Sphere with Uniform Density, Poisson compared to Gauss
distance behavior of point charge and conducting metal sheet

separation of variables