MANOVELLISMO ORDINATO DEVIATO

SEMPLICE MA COMPLETO

CONOSCO DIBIC, d, &, &, &, B, CM, S, M, M, h

CALCOLA VG, DG, VC, DC, M APPLICANDO PLV, VTMA CORSOID E TERRA

1 COONDINATA LIBERA

GRADI DI LIBENTA

CONOSCENDO & (MUTONE) POSSO SAPERE TUTTE LE ALTRE

CHIUSURA

_		1.1	_				
	Q	COST	& (t)				
	Ь	COST	B(&)				
_	С	८(४)	COST				
•	٦,	CUST	COST	VETTONE	DI	CHIVSURA	(COMODA

CHIUSURA
$$(B-A)+(C-B)=(D-A)+(C-D)$$

POS1210NE

$$\partial \cos \alpha + b \cos \beta = c$$

$$\partial \sin \alpha + b \sin \beta = d$$

$$c = \cdots$$

VELOCITA

$$-3 \stackrel{?}{\sim} SIN \stackrel{?}{\sim} -6 \stackrel{?}{\sim} SIN \stackrel{?}{\sim} = \stackrel{?}{\sim} \frac{3 \stackrel{?}{\sim} COS \stackrel{?}{\sim}}{\sim} = \stackrel{?}{\sim} \stackrel{?}{\sim} \stackrel{?}{\sim} \frac{3 \stackrel{?}{\sim} COS \stackrel{?}{\sim}}{\sim} = \stackrel{?}{\sim} \stackrel{?}{\sim} \stackrel{?}{\sim} \frac{3 \stackrel{?}{\sim} COS \stackrel{?}{\sim}}{\sim} = \stackrel{?}{\sim} \stackrel{?}$$

SACOBIANI

SAPENDO CHE
$$C = C(\mathcal{X}(t))$$
 $\dot{C} = \frac{\partial \mathcal{B}}{\partial \mathcal{X}} \frac{\partial \mathcal{A}}{\partial t}$ $\frac{\partial \mathcal{B}}{\partial \mathcal{A}} = \frac{\dot{\mathcal{B}}}{\dot{\mathcal{A}}}$

SAPENDO CHE $C = C(\mathcal{X}(t))$ $\dot{C} = \frac{\partial \mathcal{C}}{\partial \mathcal{A}}$ $\dot{\mathcal{A}}$ $\frac{\partial \mathcal{C}}{\partial \mathcal{A}} = \frac{\dot{\mathcal{C}}}{\dot{\mathcal{A}}}$

PRINCIPI DEI LAVORI VIRTUALI

$$\delta c = \frac{\dot{c}}{\dot{u}} \delta v$$

ACCELERAZIONI

$$-3\ddot{c} \sin d - 3\dot{d}^{2} \cos d - b\dot{\beta} \sin d - b\dot{\beta}^{2} \cos \beta = \ddot{c}$$

$$3\ddot{c} \cos \theta - 3\dot{c}^{2} \sin \theta + b\ddot{\beta} \cos \beta - b\dot{\beta}^{2} \sin \beta = 0$$

$$RICAVO \ddot{\beta} DALLA SECONDA E POI \dot{c}$$

VG = & R × (G-A) =

VELOCITÀ IN G
$$|(G-A)| = \frac{3}{2} \quad \text{OMOGENEA}$$

$$= -\frac{3}{2} i (sind - cos d s)$$

$$= -0.11 + 0.06 s$$

ACCELERAZIONE IN G
$$\partial_G = \overset{\sim}{\vee} \tilde{R} \times (G-A) - \overset{\sim}{\vee}^2 (G-A) =$$

ACCELERAZIONE IN C

CALCOLA LA MASSA M

Vc = c↑ = -0,21 m/s

SOSTITUISCO I LEGAMI CINEMATICI

 $(00\pi A)$

 $\left[C_{M} - M_{Q}\left(\frac{\dot{y}_{G}}{\ddot{z}}\right) - M_{G}\left(\frac{\dot{x}_{G}}{\ddot{z}}\right) - \delta_{G} - M_{G}\left(\frac{\dot{c}}{\ddot{z}}\right)\right] \delta_{Q} = 0$

REAZIONI VINCOLARI TRA CORSOLO E TERRA

VINCULO IMPEDISCE RUTAZIONE E TRASCAZIONE SU Y

$$\sum_{i} F_{y} = 0 \qquad N = Nc \sin \beta + M_{y}$$

$$\sum_{i} F_{x} = 0 \qquad N_{c} = M \times c$$

No= Mxc $\sum |F_{x}| = 0$ NEL CASO POTASI RICAVARE NC A RITHOSO