Systemdokumentasjon for Heisprosjektet

av Martin Hals Magne Halvorsen

Gruppe 33

5. februar 2014

Innhold

Innholdsfortegnelse		1
1	Innledning	2
2	Funksjonsbeskrivelse	2
3	Overordnet systemarkitektur	5
4	Moduler og grensesnitt	5
5	Detaljert Scenarioanalyse	8
	5.1 UseCase Bestille Heis, Hovedscenario	8

1 Innledning

Dette dokumentet beskriver systemdokumentasjon for prosjektet Heisstyring i faget TTK4115 Datastyring. Systemspesifikasjonen dette designet er basert på er hentet fra dokumentet "heisprosjekt oppgavetekst rev.2014" på www.itslearning.com. Selve beskrivelsen er basert på UML i henhold til UML Desitlled Third Edition av Martin Fowler. Systemdokumentasjonen er delt i fire deler:

- Use case-beskrivelse for funksjonalitet
- Kommunikasjonsdiagram for overordnet systemarkitektur
- Klassediagram og tilstandsmaskin for modulgrensesnitt
- En detaljert scenarieanalyse med kommunikajsonsmønster

2 Funksjonsbeskrivelse

Systemets funkjsonalitet blir listet opp ved de ulike use case-modellene funksjonsbeskrivelsen kan deles inn i. Disse er beskrevet i figur 1.

Aktører

Passasjer - personen som benytter seg av heisen

Sensor - systemets ulike sensorer som gir informasjon om tilstander og handlinger

Use cases

Vi fant det hensiktsmessig å dele funksjonsbeskrivelsen inn i fire use cases som her skal beskrives næremere.

Use case 1: Bestill heis

Precondition:

Heis tilkoblet strøm. Stoppknapp ikke trykket og ingen obstruksjon detektert.

Trigger:

OPP/NED-knapp aktivert i vilkårlig etasje.

Hovedsceenario:

1. Heis starter å kjøre opp/ned avhengig av hvilken etg. bestillinger kom fra.

Figur 1: Use Case Diagram

- 2. Heis stanser i bestillingsetasje.
- 3. Dør åpnes i tre sek og lukkes igjen. "Dør åpen-lys" tennes i tre sek og slukkes igjen (samtidig).
- 4. Heise er "idle" og avventer ny ordre.

Utvidelser:

1.a: Heis er allerede i bestillingsetasje.

.1 Returner til hovesscenarioets trinn 3

Garanti:

Precondition for use case Bestill heis og Velg etasje er oppfylt.

Use case 2: Velg etasje

Precondition:

Heis tilkoblet strøm. Stoppknapp ikke trykket og ingen obstruksjon detektert.

Trigger:

Vilkårlig bestillingsknapp inne i heisen aktivert.

Hovedsceenario:

- 1. Heis starter å kjøre opp/ned avhengig av hvilken etg. bestillingen var til.
- 2. Heis stanser i etasjen bestillingen var til.
- 3. Dør åpnes i tre sek og lukkes igjen. "Dør åpen-lys" tennes i tre sek og slukkes igjen (samtidig).
- 4. Heise er "idle" og avventer ny ordre.

Utvidelser:

- 1.a: Heis er allerede i bestillingsetasje.
 - .1 Returner til hovesscenarioets trinn 3

Garanti:

Precondition for use case Bestill heis og Velg etasje er oppfylt.

Use case 3: Stopp

Precondition:

Heis tilkoblet strøm.

Trigger:

STOPP-knapp trykkes.

Hovedscenario:

- 1. Heisen stanser momentant, uavhengig av hvor den er.
- 2. Stopplys tennes, alle bestillinger slettes.
- 3. Når stoppknapp igjen trykkes skal stopplys slutte å lyse og heis er klar til å motta bestilling (bare fra heispanel!)

Garanti:

Precondition for use case Velg etasje er oppfylt.

Use case 4: Obstruksjon

Precondition:

Heis tilkoblet strøm.

Trigger:

Obstruksjon oppdages.

Hovesscenario:

- 1. Heis stanser momentant, uavhengig av hvor den er.
- 2. Når obstruksjon forsninner: Fortsett gammel arbeidoppgave.

Utvidelser:

- 1.a: Heisen er i en etasje med døren åpen.
 - .1 Døren blir stående åpen til obstruksjon er borte.
- 1.b: Stopp-knapp trykkes
 - .1 Gå til use case Stopp.

3 Overordnet systemarkitektur

Vi har delt systemet inn i fem moduler som kan sees i Figur 2. Heltrukne linjer mellom modulenene sier noe om hvilke moduler som utveksler informasjon seg imellom. Event Manager vil kontinuerlig lese informasjonen fra I/O og Timer slik at den kan videreformidle bestillinger og posisjon til Kømodul og nye "eventer" til Heisstyring, slik at den igjen har mulighet til å endre tilstand. Hver modul vil bli beskrevet i næremere i detalj i neste avnsitt.

Figur 2: Kommunikasjonsdiagram

4 Moduler og grensesnitt

Klassediagram

I figur 3 kan man se et klassediagram med modulenes grensesnitt og de viktisgte tilhørende funksjonene og variablene. De stiplede linjene viser avhengigheten mellom modulene.

Figur 3: Klassemodell

Modulen Event Manager

Denne modulen poller hele tiden etter informasjon fra de andre modulene og sender informasjon videre i form av funksjonskall hos de andre modulene. Når systemet ikke prosesserer et funksjonskall, vil modulen polle etter ny informasjon.

Kømodulen

Kømodulen holder for det meste styr på hvilke bestillinger som er gjort av heisen og hvor heisen skal på neste tur. Den inneholder datastrukturer og kall for å aksessere innholdet som er lagret.

Modulen I/O

Denne modulen er driveren til grensesnittet, alle knappene og lysene, og er gitt ferdig implementert med oppgaven.

Modulen Timer

Dette er systemets tidtagerfunkjson. Den skal starte tidtaging fra Heisstyring når døren åpnes og vil bli kontinuerlig lest av eventmanager for å se om vi har fått en timerOut (etter 3 sek).

Modulen Heisstyring

Modulen Heisstyring er relativt kompleks og kan sees i Figur 4. Som vi kan se av tilstandsmaskinen vil heisen aller først sørge for at den står i en gyldig etasje før den starter med å prossesere eventuelle bestillinger. Deretter er det en universell event, evInput, som blir kalt fra EventManager ved en hvilken som helst endring i inputverdier. Denne vil få tilstandsmaskinen til å reagere på forskjellige måter avhengig av hvilken tilstand den er i og ved å sammenligne den forrige etasjen heisen var i med den bestillingen som ligger først i køen. Legg spesielt merke til at systemet kan i hvilken som helst tilstand gå over i Obstruktion ved eventen evObstrOn, med unntak fra tilstanden AtFloor. Derfra vil den ved evObstrOn gå inn i tilstanden DoorObstr som holder døren åpen.

5 Detaljert Scenarioanalyse

5.1 UseCase Bestille Heis, Hovedscenario

Heis står Idle i 1. etg, OPP-knapp på etasjepanel trykkes i 2. etg

Figur 4: Heisstyring (Tilstandsmaskin)

