# Data Structures Binary Search Trees

Andres Mendez-Vazquez

November 12, 2016

## Outline

- Introduction
  - Basic Concepts
- 2 BST Representation
- Operations
  - Get
  - Put
  - Minimum and Maximum
  - Remove
  - Tree Delete
  - Examples of Deletion

# Why Linked Representation of Binary Trees?

# Complexity Of Search and Insert: They are used many operations

| Data Structure      | Worst             |                   | Expected          |                   |
|---------------------|-------------------|-------------------|-------------------|-------------------|
|                     | Search            | Insert            | Search            | Insert            |
| Sorted List (Array) | $O(\log n)$       | $O\left(n\right)$ | $O(\log n)$       | $O\left(n\right)$ |
| Sorted List (Chain) | $O\left(n\right)$ | $O\left(n\right)$ | $O\left(n\right)$ | $O\left(n\right)$ |

# Why Linked Representation of Binary Trees?

## Complexity Of Search and Insert: They are used many operations

| Data Structure      | Worst             |                   | Expected          |                   |
|---------------------|-------------------|-------------------|-------------------|-------------------|
|                     | Search            | Insert            | Search            | Insert            |
| Sorted List (Array) | $O(\log n)$       | $O\left(n\right)$ | $O(\log n)$       | $O\left(n\right)$ |
| Sorted List (Chain) | $O\left(n\right)$ | $O\left(n\right)$ | $O\left(n\right)$ | $O\left(n\right)$ |

## Challenge

Efficient implementations of get() and put() and ordered iteration.

## Outline

- Introduction
  - Basic Concepts
- 2 BST Representation
- Operations
  - Get
  - Put
  - Minimum and Maximum
  - Remove
  - Tree Delete
  - Examples of Deletion

## **Basic Concepts**

#### Def

A BINARY SEARCH TREE is a binary tree in symmetric order.

В

A binary tree is either

- Empty
- A key-value pair and two binary trees.

## **Basic Concepts**

#### Def

A BINARY SEARCH TREE is a binary tree in symmetric order.

## Basically

A binary tree is either:

- Empty
- A key-value pair and two binary trees.

# Example



# Symmetric Order

#### Meaning

- Every node has a key
- Every node's key
  - ▶ It is larger than all keys in its left subtree
  - ▶ It is smaller than all keys in its right subtree

# Symmetric Order

#### Meaning

- Every node has a key
- Every node's key
  - ▶ It is larger than all keys in its left subtree
  - ▶ It is smaller than all keys in its right subtree

# Thus **ROOT** (key, value) **SMALLER** LARGER

# **BST** Representation

#### A BST is a reference to a Node

A Node is comprised of four fields:

- A key and a value.
- A reference to the left and right subtree.

- Key and Value are generic types;
- Key is Comparable

## **BST** Representation

#### A BST is a reference to a Node

A Node is comprised of four fields:

- A key and a value.
- A reference to the left and right subtree.

### Code

```
private class Node{
  Key key;
  Value val;
  Node left , right;
}
```

Key and Value are generic types;

Key is Comparable

# **BST** Representation

#### A BST is a reference to a Node

A Node is comprised of four fields:

- A key and a value.
- A reference to the left and right subtree.

### Code

```
private class Node{
  Key key;
  Value val;
  Node left , right;
}
```

#### **Properties**

- Key and Value are generic types;
- Key is Comparable

# Example



#### Code For the Class

#### We have this

```
public class BST<Key extends Comparable<Key>, Value> {
   private BinaryTreeNode root;
   private class BinaryTreeNode
      Key key;
      Value val:
      BinaryTreeNode left, right;
      BinaryTreeNode(Key key, Value val)
       this.key = key;
       this.val = val;
   public void put (Key key, Value val)...
   public Val get (Key key)...
```

## Outline

- Introduction
  - Basic Concepts
- 2 BST Representation
- Operations
  - Get
  - Put
  - Minimum and Maximum
  - Remove
  - Tree Delete
  - Examples of Deletion

# Operations: Get



# Operations: Get



# Operations: Get

```
We have the following
```

```
public Value get(Key key)
 BinaryTreeNode x = root;
 while (x != null)
     int cmp = key.compareTo(x.key);
     if (cmp = 0)
           return x.val;
     else if (cmp < 0) x = x.left;
     else if (cmp > 0) x = x.right;
 return null;
```

# Complexity

## We have the following

Complexity is O(h) = O(n), where n is number of nodes/elements.

## Outline

- Introduction
  - Basic Concepts
- 2 BST Representation
- Operations
  - Get
    - Put
    - Minimum and Maximum
    - Remove
    - Tree Delete
    - Examples of Deletion

# What about the operation put?



# What about the operation put?



# What about the operation put?



## Operations: Put

#### Code

```
public void put (Key key, Value val)
  BinaryTreeNode x = this.root;
  BinaryTreeNode temp;
  int cmp:
  while (x != null)
    temp = x:
    cmp = key.compareTo(x.key);
     if (cmp = = 0)
           break:
     else if (cmp < 0) \times = x.left;
     else if (cmp > 0) x = x.right;
  if (x = = null)
     this.root = new BinaryTreeNode(Key key, Value val);
  else
      if (cmp==0)
        x.val = val:
      else if (temp.key<key)
              temp.right = new BinaryTreeNode(Key key, Value val);
           else
              temp.left = new BinaryTreeNode(Key key, Value val);
```

# Complexity: Tree Shape

## Something Notable

- Many BSTs correspond to same input data.
- Cost of search/insert is proportional to depth of node.

# Complexity: Tree Shape

#### Something Notable

- Many BSTs correspond to same input data.
- Cost of search/insert is proportional to depth of node.



# Other Examples



# Other Examples



# Then, we want self-balancing trees

## We depend on the height of the tree

Important, we want well balanced trees or near to the full tree structure... because going down the tree cost  $O\left(h\right)$ 

#### We will look Next (

- At a way to keep the binary trees well balanced.
- Examples of these techniques:
  - 2-3 trees
  - ► AA trees
  - 7 17 1 11 11 11 11 11
  - AVL trees
  - Red-Black Trees
  - Splay Trees

# Then, we want self-balancing trees

## We depend on the height of the tree

Important, we want well balanced trees or near to the full tree structure... because going down the tree cost  $O\left(h\right)$ 

#### We will look Next Class

- At a way to keep the binary trees well balanced...
- Examples of these techniques:
  - ▶ 2-3 trees
  - AA trees
  - AVL trees
  - Red-Black Trees
  - Splay Trees

## Outline

- Introduction
  - Basic Concepts
- 2 BST Representation
- Operations
  - Get
  - Put
  - Minimum and Maximum
  - Remove
  - Tree Delete
  - Examples of Deletion

## Operations: Minimum

#### Minimum

#### Minimum(x)

- while  $x.left \neq NIL$
- 2 x = x.left
- $\odot$  return x

omplexity

$$(1)$$

## Operations: Minimum

#### Minimum

Minimum(x)

- while  $x.left \neq NIL$
- x = x.left
- $\odot$  return x

## Complexity

$$O(h)$$
 (1)

# Operations: Maximum

#### Maximum

Maximum(x)

• while  $x.right \neq NIL$ 

x = x.right

 $\odot$  return x

$$(2) (h)$$

## Operations: Maximum

#### Maximum

Maximum(x)

- while  $x.right \neq NIL$
- x = x.right
- $\odot$  return x

## Complexity

$$O(h)$$
 (2)

## Outline

- Introduction
  - Basic Concepts
- 2 BST Representation
- Operations
  - Get
  - Put
  - Minimum and Maximum
  - Remove
  - Tree Delete
  - Examples of Deletion

## Operation: Remove

### We have the following cases

- Element is in a leaf.
- Element is in a degree 1 node.
- Element is in a degree 2 node.



































## Outline

- Introduction
  - Basic Concepts
- 2 BST Representation
- Operations
  - Get
  - Put
  - Minimum and Maximum
  - Remove
  - Tree Delete
  - Examples of Deletion

### TREE-DELETE(z)

- 2 Transplant(z, z.right)
- 4 Transplant(z, z.left)
- Transplant(z, z.tej t
- else
- o if  $y.p \neq z$
- 8 Transplant(y, y.right)
- y.right = z.right
- g.r tgree = z.r tgree
- y.right.p = y
- y.left = z.left
- y.left.p = y

#### Case 1

 Basically if the element z to be deleted has a NIL left child simply replace z with that child!!!

### TREE-DELETE(z)

- $\bullet$  if z.left == NIL
- $\mathsf{Transplant}(z, z.right)$
- elseif z.right == NIL
- Transplant(z, z.left)
- else
- 6
- y=Tree-minimum(z.right)
- 7 if  $y.p \neq z$
- 8  $\mathsf{Transplant}(y, y.right)$
- 9 y.right = z.right
- 10 y.right.p = y
- $\mathsf{Transplant}(z,y)$
- 1 y.left = z.left
- B y.left.p = y

#### Case 2

 Basically if the element z to be deleted has a NIL right child simply replace z with that child!!!

### TREE-DELETE(z)

- $\bullet$  if z.left == NIL
- 2 Transplant(z, z.right)
- 3 elseif z.right == NIL
- else
- **6**
- y=Tree-minimum(z.right)
- o if  $y.p \neq z$
- $y.p \neq z$
- $\textbf{3} \hspace{1cm} \mathsf{Transplant}(y,y.right)$
- y.right = z.right
- y.right.p = y
- y.left = z.left
- y.left.p = y

#### Case 3

• The z element has not empty children you need to find the successor of it.

### $\overline{\mathsf{TREE}}$ -DELETE $\overline{(z)}$

- $\bullet$  if z.left == NIL
- 2 Transplant(z, z.right)
- lacktriangledown Transplant(z, z.left)
- 6 else
- eise

- $\mathbf{3}$  Transplant(y, y.right)
- y.right = z.right
- y.right.p = y
- y.left = z.left
- y.left.p = y

#### Case 4

- if  $y.p \neq z$  then y.right takes the position of y after all y.left == NIL
  - ► take z.right and make it the new right of y
  - $\begin{tabular}{ll} \bf make the \\ (y.right == z.right).p \ {\tt equal} \\ to \ y \end{tabular}$

### TREE-DELETE(z)

- 2 Transplant(z, z.right)

- 6 else
- 6
- y=Tree-minimum(z.right)
- 9.5 7 2
- $\qquad \qquad \mathsf{Transplant}(y,y.right)$
- y.right = z.right
- y.right.p = y
- $\qquad \qquad \mathsf{Transplant}(z,y)$
- y.left = z.left
- y.left.p = y

#### Case 4

- ullet put y in the position of z
- ullet make y.left equal to z.left
- make the (y.left == z.left).p equal to y

#### $\mathsf{Transplant}(u,v)$

- 2 root = v
- $\bullet$  elseif u == u.p.left
- u.p.left = v
- $oldsymbol{0}$  if  $v \neq NIL$
- v.p = u.p

#### Case 1

• If u is the root then make the root equal to v

#### $\mathsf{Transplant}(u,v)$

- 2 root = v

- v.p = u.p

### Case 2

• if u is the left child make the left child of the parent of u equal to v

### $\mathsf{Transplant}(u,v)$

- 2 root = v
- u.p.left = v

- v.p = u.p

### Case 3

 Similar to the second case, but for right child

### $\overline{\mathsf{Transplant}(u,v)}$

- 2 root = v
- u.p.left = v

- v.p = u.p

#### Case 4

• If  $v \neq \text{NIL}$  then make the parent of v the parent of u

# Complexity

### Height of the BT

 $O\left(height\right)$ 

## Outline

- Introduction
  - Basic Concepts
- 2 BST Representation
- Operations
  - Get
  - Put
  - Minimum and Maximum
  - Remove
  - Tree Delete
  - Examples of Deletion

## Example: Deletion in BST



## Example: Deletion in BST



## Example: Deletion in BST











