BSc (Hons) Computer Science

University of Portsmouth Third Year

Theoretical Computer Science

M21276 Semester 1

Hugh Baldwin

hugh.baldwin@myport.ac.uk

Contents

1	Lecture - Induction Lecture	2
2	Lecture - A1: Introduction to Languages	3
3	Lecture - A2: Grammars	7

Lecture - Induction Lecture

13:00 25/09/24 Janka Chlebikova

Contact Time

- Lectures
 - Delivered by Janka
 - Slides and videos from Covid times available weekly on Moodle
- Tutorials
 - Delivered by either Janka or Dr Paolo Serafino
 - Worksheets available with solutions weekly on Moodle
 - 5 Groups
 - Work through the worksheet solutions
 - Kahoot quiz for revision
 - 'Tutorial 0' available as revision of concepts from DMAFP needed for this module

Assessments

- 50%, 90 minute In-Class Test covering Part A November 20th, 2pm
- 50%, 90 minute Exam covering Part B (Only) TB1 Assessment Period (January)
- Deferred assessment covers both Part A & B, so will be harder than the two separate exams

There are two past papers (paper-based, but still relevant to the computer-based test) available for each of the assessments. As with DMAFP, the solutions are supplied in the form of a crowd-sourced document that Janka will check over before the exam.

Resources

Lecture slides, videos and tutorial papers are released every week. All of the books on the reading list are available online through the links on Moodle.

Hugh Baldwin **2** of 12 M21276

Lecture - A1: Introduction to Languages

13:00 03/10/24 Janka Chlebikova

Languages

In this context, a **language** is a set of symbols which can be combined to create a list of acceptable **strings**. There are then also rules which tell us how to combine these strings together, known as **grammars**. The combination of an alphabet, list of valid strings and grammars is known as a language. There will be a formal definition later on.

Definition

An **Alphabet** is a finite, non-empty set of symbols.

For example, in the English language we would define the alphabet, A, as $A = \{a, b, c, d, \dots, x, y, z\}$. These symbols can then be combined to create a **string**.

Definition

A **String** is a finite sequence of symbols from the alphabet of a language.

With the alphabet A, we could have strings such as 'cat', 'dog', 'antidisestablishmentarianism', etc over the alphabet. A string with no symbols, and therefore a length of zero, is known as the **empty string**, and is denoted by Λ (capital lambda).

Definition

A **Language** over an alphabet (e.g. English over A) is a set of strings – including Λ – made up of symbols from A which are considered 'valid'. They could be valid as per a set of rules, or could be arbitrary as in most spoken languages.

If we have an alphabet, Σ , then Σ^* denotes the infinite set of all strings made up of symbols in Σ – including Λ . Therefore, a language over Σ is any subset of Σ^* .

Example

```
If \Sigma = \{a, b\}, then \Sigma^* = \{\Lambda, a, b, aa, ab, ba, bb, \ldots\}
```

There are many languages which could be defined over this alphabet, but a few simple one are

- ∅ (The empty set)
- $\{\Lambda\}$ (The set containing an empty string)
- {a} (The set containing a)
- The infinite set $\Sigma^* = \{\Lambda, a, aa, aaa, \ldots\}$

Combining Languages

There are three common ways of combining two languages to create a new language – union, intersection and product.

Hugh Baldwin 3 of 12 M21276

Union and Intersection

Since languages are sets of strings, they can be combined as you usually would for any other set with the usual operations, union and intersection.

Example

If
$$L=\{aa,bb,cc\}$$
 and $M=\{cc,dd,ee\}$, then $L\cap M=\{cc\}$, and $L\cup M=\{aa,bb,cc,dd,ee\}$

Product

To combine two languages L and M, we form the set of all **concatenations** of strings in L with strings In M. This is known as the **product** of the two languages.

Definition

To **Concatenate** two strings is to juxtapose them such that a new string is made by appending the second string to the end of the first.

Example

If we concatenate the strings ab and ba, the result would be abba. This can be represented using the function cat, such as cat(ab,ba) = abba

With this definition of concatenation, we can say that the product of two languages, L and M would be $L \cdot M$, where $L \cdot M = \{cat(s,t) : s \in L \text{ and } t \in M\}$

Example

If $L = \{a, b, c\}$ and $M = \{c, d, e\}$, then the product of the two languages, $L \cdot M$, is the language $L \cdot M = \{ac, ad, ae, bc, bd, be, cc, cd, ce\}$

Further on Products

It is simple to see that for any language, L, the following simple properties are true:

$$L \cdot \{\Lambda\} = \{\Lambda\} \cdot L = L$$

$$L \cdot \emptyset = \emptyset \cdot L = \emptyset$$

Commutativity

Aside from the above properties, the product of any two languages is **not** commutative, and therefore

$$L \cdot M \neq M \cdot L$$

4 of 12

If $L = \{a, b\}$ and $M = \{b, c\}$, then the product $L \cdot M$ is the language

$$L \cdot M = \{ab, ac, bb, bc\}$$

but the product $M \cdot L$ is the language

$$M \cdot L = \{ba, bb, ca, cb\}$$

which are clearly not the same language, as the only common string is bb

Associativity

However, the product of any two languages is associative. This means that if we had any three languages, L, M and N, then

$$L \cdot (M \cdot N) = (L \cdot M) \cdot N$$

Example

If we have the three languages $L=\{a,b\}$, $M=\{b,c\}$ and $N=\{c,d\}$, then

$$\begin{split} L \cdot (M \cdot N) &= L \cdot \{bc, bd, cc, cd\} \\ &= \{abc, abd, acc, acd, bbc, bbd, bcc, bcd\} \end{split}$$

which is the same as

$$(L \cdot M) \cdot N = \{ab, ac, bb, bc\} \cdot N$$
$$= \{abc, abd, acc, acd, bbc, bbd, bcc, bcd\}$$

Powers of Languages

If we have the language L, then the product $L \cdot L$ of the language is denoted by L^2 . The product L^n for every $n \in \mathbb{N}$ is defined as

$$L^{0} = \{\Lambda\}$$

$$L^{n} = L \cdot L^{n-1}, \text{if } n > 0$$

Example

If $L = \{a, b\}$ then the first few powers of L are

$$\begin{split} L^0 &= \{\Lambda\} \\ L^1 &= L = \{a,b\} \\ L^2 &= L \cdot L = \{aa,ab,ba,bb\} \\ L^3 &= L \cdot L^2 = \{aaa,aab,aba,abb,baa,bab,bba,bbb\} \end{split}$$

The Closure of a Language

If L is a language over Σ , then the **closure** of L is the language denoted by L^* , and the **positive closure** is language denoted by L^+ .

Definition

The **Closure** of the language L, L^* is defined as

$$L^* = L^0 \cup L^1 \cup L^2 \cup L^3 \cup \dots$$

and so, if $L = \{a\}$ then

$$L^* = \{\Lambda\} \cup \{a\} \cup \{aa\} \cup \{aaa\} \cup \dots$$
$$= \{\Lambda, a, aa, aaa, \dots\}$$

Definition

The **Positive Closure** the language L, L^+ is defined as

$$L^+ = L^1 \cup L^2 \cup L^3 \cup L^4 \cup \dots$$

and so, if $L = \{a\}$ then

$$L^{+} = \{a\} \cup \{aa\} \cup \{aaa\} \cup \{aaaa\} \cup \dots$$
$$= \{a, aa, aaa, aaa, \dots\}$$

It then follows that $L^* = L^+ \cup \{\Lambda\}$, but it's not necessarily true that $L^+ = L^* - \{\Lambda\}$.

Example

If our alphabet is $\Sigma = \{a\}$ and our language is $L = \{\Lambda, a\}$, then

$$L^+ = L^*$$

Properties of Closures

Based upon these definitions, you can derive some interesting properties of closures.

Example

If L and M are languages over the alphabet Σ , then

$$\{\Lambda\}^* = \emptyset^* = \{\Lambda\}$$

$$L^* = L^* \cdot L^* = (L^*)^*$$

$$\Lambda \in L \text{ if and only if } L^+ = L^*$$

$$(L^* \cdot M^*)^* = (L^* \cup M^*)^* = (L \cup M)^*$$

$$L \cdot (M \cdot L)^* = (L \cdot M)^* \cdot L$$

These will be explored more during the tutorial session for this week

The Closure of an Alphabet

Going back to the definition of Σ^* of the alphabet Σ , it lines up perfectly with the definition of a closure such that Σ^* is the set of all strings over Σ . This means that there is a nice way to represent Σ^* as follows

$$\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cup \dots$$

From this, we can also see that Σ^k denotes the set of all strings over Σ whose length is k.

Lecture - A2: Grammars

13:00 03/10/24 Janka Chlebikova

As discussed previously, you can define a language over an alphabet as a set of arbitrary strings that are considered 'valid', but you can also define a language using a **grammar**.

Definition

A **Grammar** is a set of rules used to define a language over an alphabet, by specifying the structure of valid strings in said language.

To describe the grammar of a language, two sets of symbols (alphabets) are required, terminals and non-terminals

Definition

Terminal symbols are those from which the actual strings which make up a language are derived, like the symbols discussed previously for a manually specified language. In the case of a spoken language, these would usually be lowercase letters, such as the latin alphabet used in English.

Definition

Non-Terminal symbols are 'temporary' symbols (fully disjoint from the set of terminal symbols) used to define the grammar's replacement rules. These must all be replaced by terminals before a production can be considered a valid string in the language. These are usually represented by uppercase letters, or letters from an alphabet other than that of the language.

Productions

Further to this, a grammar for the language L over Σ would typically consist of a set of productions (grammar rules) which allow you to produce the set of strings which make up L.

Definition

A **Production** is a rule which allows you to produce a string for a language. They are typically in the form

$$\alpha \to \beta$$

where α is a string of symbols from the set of terminals (Σ) and β is a string of symbols from the set of non-terminals.

You can read these rules in several ways – $\alpha \rightarrow \beta$ could be read as;

- replace α by β
- α produces β
- α rewrites as β
- α reduces to β

Hugh Baldwin **7** of 12 M21276

A Formal Definition

Formally, a grammar is defined by the following properties

- 1. An alphabet T of terminal symbols (This is the same as the alphabet of the language defined by this grammar)
- 2. An alphabet N of non-terminal symbols
- 3. A specific non-terminal symbol known as the **start symbol**, which is often S
- 4. A finite set of productions in the form $\alpha \to \beta$ where α and β are strings over the alphabet $N \cup T$

Every grammar must have the special non-terminal symbol known as a start symbol, and it must also have at least one production in which the left side consists of only the start symbol.

Example

Let G be a grammar defined by

- The set of terminals $T = \{a, b\}$
- ullet A single non-terminal being the start symbol S
- · The set of productions

$$S \to \Lambda$$
, $S \to aSb$

or for shorthand,

$$S \to \Lambda \mid aSb$$

To get the full set of strings which are valid for this grammar, we need to perform a **derivation**

Derivations

Starting from any production where the left side consists of only the start symbol, we can go through a step by step process to generate all strings belonging to the language described by a grammar.

Example

Using the grammar G from the previous example, we could start with either of the two productions, since they both have only the start symbol S on the left-hand side. This means that the first step of our process would give us Λ and aSb.

In this example, the string aSb is a **sentential form** of the terminals $\{a,b\}$ and non-terminal S. From this point, to extend or generate any other strings, we need to perform a derivation.

Definition

If x and y are sentential forms, and $\alpha \to \beta$ is a production, then to replace α by β in $x\alpha y$ is to **Derive** a new string. This is denoted by writing

$$x\alpha y \Rightarrow x\beta y$$

Hugh Baldwin 8 of 12 M21276

Going back to the grammar G again, since it contains the production $S \to aSb$, we could take our first step to generate the string aSb, then we can go another step further and derive aaSbb from aSb, which means

$$aSb \Rightarrow aaSbb$$

Since we can use this production again and again, we could derive that

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow \dots$$

To represent this multi-step process, we have the following symbols to show how the derivation was constructed

- ⇒ derives in a single step
- ⇒⁺ derives in one or more steps
- ⇒* derives in zero or more steps

Example

Using the grammar G, we can show multiple derivations using these new symbols

$$S \Rightarrow \Lambda, S \Rightarrow aSb, \therefore S \Rightarrow^* ab$$

 $S \Rightarrow^* aaabbb$
 $S \Rightarrow^* aaaaaaSbbbbbb$

What is L(G)?

Definition

If G is a grammar with the start symbol S and the set of terminals T, then the language generated by G is the set

$$L(G) = \{ s \mid s \in T^* \text{ and } S \Rightarrow^+ s \}$$

That is to say that it's the set of all strings containing only terminal symbols which can be derived from the start symbol with one or more steps.

Example

With the grammar G,

$$L(G) = \{\Lambda, ab, aabb, aaabbb, aaaabbb, \ldots\}$$

Infinite Languages

Within an infinite language, there is no limit on the length of strings, and therefore also no limit on the number of steps needed to derive a string. If the grammar of a language has n productions, then any derivation with >n+1 steps must use at least one production twice. Therefore, if a language is infinite, then a production or sequence of productions must be used repeatedly to construct the derivations of the grammar.

The infinite language $\{a^nb \mid n \geq 0\}$ can be described by a grammar with the production $S \to b \mid aS$. To derive the string a^nb , you would apply the production $S \to aS$ n times over and then finish the derivation with the production $S \to b$.

With the production $S \to aS$, we can also say that "If S derives w, then it also derives aw"

Recursion and Indirect Recursion

Definition

A production is **Recursive** if its entire left side is contained within the right side.

Example

The production $S \to aSb$ is recursive, since the sentential form it produces contains itself.

Definition

A production is **Indirectly Recursive** if it is possible to derive a sentential form in two or more steps which contains the entire left side of the production.

Example

If a grammar contains the rules $S \to b \mid aA$ and $A \to c \mid bS$, then both productions are indirectly recursive, since

$$S \Rightarrow aA \Rightarrow abS$$

$$A \Rightarrow bS \Rightarrow baA$$

Recursive Grammars

Definition

A grammar is **Recursive** if it contains either a recursive or indirectly recursive production. *In order* for a grammar to be infinite, it must first be recursive.

Constructing Grammars

We've seen previously how to derive a language from the definition of a grammar, but we also need to be able to construct a grammar to produce a language. It is often very difficult and sometimes impossible to write down a grammar for a given language, and there are often multiple grammars which form the exact same language.

Finite Languages

In the case of a finite language, it is always possible to find a grammar which produces the language. This is because it is possible to simply make a grammar which contains a production for every string of the language, where $S \to w$ for every string w in the language.

The finite language $\{a, b, c, abc\}$ over the alphabet $\{a, b, c\}$ can be described by the grammar

$$S \to a|b|c|abc$$

Infinite Languages

However, in the case of an infinite language, there is no universal method that will always produce a valid grammar. This means it is much harder to find a valid grammar, and often requires **combining grammars**.

Example

A simple example of an infinite language would be $\{\Lambda, a, aa, aaa, \ldots\}$ which we can also write in the form $\{a^n : n \in \mathbb{N}\}$. We can then see that one grammar which describes this language is as follows;

- The set of terminals, $T = \{a\}$
- The non-terminal start symbol, S
- The productions $S \to \Lambda, S \to aS$

Combining Grammars

Suppose we have two languages, L and M for which there are known grammars. There are a few simple rules we can use to create the grammars which describe the languages $L \cup M$, $L \cdot M$ and L^* .

To create this 'composite' grammar, we can describe L and M with disjoint sets of non-terminals. If we have the start symbols of L and M as A and B respectively, i.e. $L:A\to\ldots$, $M:B\to\ldots$, we can then combine these as productions in another grammar to create the language.

Unions

If we need to produce the union of two languages, $L \cup M$, we start with the two productions $S \to A \mid B$, followed by the productions which make up L and M, using A and B as their respective start symbols.

Example

If we wanted to write the grammar that produces the language

$$K = \{\Lambda, a, b, aa, bb, aaa, bbb, \dots, a^n, b^n\}$$

we can realise that K is the union of two different languages,

$$L = \{a^n \mid n \in \mathbb{N}\}$$
$$M = \{b^n \mid n \in \mathbb{N}\}$$

and so we can write a grammar for K as

- $S \rightarrow A \mid B$ (Union rule)
- $A \rightarrow \Lambda \mid aA$ (Ls grammar)
- $B \rightarrow \Lambda \mid bB$ (Ms grammar)

Products

Similarly, if we need to produce the the product of two languages, $L \cdot M$, we start with the production $S \to AB$, followed by the productions which make up L and M, using A and B as their respective start symbols.

If we wanted to write the grammar that produces the language

$$K = \{\Lambda, a, b, aa, ab, aaa, bb, \ldots\}$$

we can realise that K is the product of the two languages,

$$L = \{a^n \mid n \in \mathbb{N}\}$$

$$M = \{b^n \mid n \in \mathbb{N}\}$$

and so we can write a grammar for K as

- $S \rightarrow AB$ (Product rule)
- $A \rightarrow \Lambda \mid aA$ (Ls grammar)
- $B \rightarrow \Lambda \mid bB$ (Ms grammar)

Closures

And finally, if we need to produce the closure of a language, L^* , we start with the production $S \to AS \mid \Lambda$ followed by the productions which make up L, using A as its start symbol.

Example

If we wanted to write the grammar that produces the language L^* where

$$L = \{aa, bb\}$$

and so

$$L^* = \{\Lambda, aa, bb, aaaa, aabb, bbbb, bbaa, \ldots\}$$

we can write the grammar for L^* as

- $S \rightarrow AS \mid \Lambda$ (Closure rule)
- $A \rightarrow aa \mid bb$ (Ls grammar)

Equivalent Grammars

Any given language could have many different grammars which produce the exact same thing. This means that grammars are not unique. We can also use this to simplify grammars.

Example

Take the grammar from the previous example,

$$S \to AS \mid \Lambda$$

$$A \to aa \mid bb$$

If we replace A in S with the right side of A, aa, we get the production $S \to aaS$. We can then do the same with the other production to get $S \to bbS$. Therefore, we can write this grammar in a simplified form as

$$S \rightarrow aaS \mid bbS \mid \Lambda$$