Modelagem e Simulação de Processos Químicos — IQD0016 Semestre 2024/1 — Turma T01 — Prof. Alexandre Umpierre

Estudo Dirigido 2

CSTR Não-Isotérmico

&

Splitter e Aquecedor de Ar Úmido

- 1) Modelar um CSTR não-isotérmico para conduzir a reação $A + B \rightarrow C$, com taxa de consumo de A dada por $kc_A{}^nc_B{}^m$ em que c_A e c_B são as concentrações molares de A e de B, respectivamente e k é a constante cinética. A constante cinética segue o modelo de Arrhenius e a troca térmica é promovida por uma camisa que envolve as paredes e o fundo do tanque. A capacidade térmica, a densidade do meio e a entalpia de reação podem ser consideradas independentes da temperatura.
- 2) Uma corrente de F_{in} = 100 kmol/h com 0,6 mol% de água em ar a 1,7 atm e 440 K é separada em duas partes. Uma das partes recebe 35 kW em um trocador de calor, gerando uma corrente de ar úmido a 1,6 atm e 500 K. A Figura 1 ilustra o processo. Modele o regime estacionário do processo.

Figura 1. Ilustração do processo descrito no enunciado.