WHAT IS CLAIMED IS:

1. A compound of structural formula I:

5

15

a pharmaceutically acceptable salt or a stereoisomer thereof,

wherein:

a and b are each independently chosen from a double bond and a single bond;

X is hydrogen or halogen;

when a is a single bond, Y and Z are each independently chosen from hydrogen, C₁₋₄ alkyl, and halogen,

or Y and Z, together with the carbon atom to which they are attached, form a cyclopropyl group; when a is a double bond, Y is chosen from hydrogen, C₁₋₄ alkyl, and halogen;

n is 0, 1, 2, or 3;

U, V, W, and D are each independently chosen from CH, and N, provided that at least one of U, V, W,

and D is CH;

R¹ is chosen from hydrogen, CF₃, carbonyl(C₁₋₃ alkyl), hydroxyl, C₁₋₄ alkoxy, halogen, C₁₋₃ alkyl, hydroxymethyl, and (C₀₋₆ alkyl)₂amino, wherein said alkyl and alkoxy are each optionally substituted with one to seven fluorine atoms;

R² is chosen from:

20 halogen,

(carbonyl)0-1C1-10 alkyl,

(carbonyl)₀₋₁C2₋₁₀ alkenyl,

(carbonyl)0-1C2-10 alkynyl,

(carbonyl)0-1aryl C1-10 alkyl,

25 C₃₋₈ cycloalkyl C₀₋₁₀ alkyl,

(C₃₋₈)heterocyclyl C₀₋₁₀ alkyl, C₁-4acylamino C₀-10 alkyl, C₀₋₁₀ alkylamino C₀₋₁₀ alkyl, di-(C1-10 alkyl)amino C0-10 alkyl, 5 arylC₀₋₁₀ alkylamino C₀₋₁₀ alkyl, (arylC0-10 alkyl)2amino C0-10 alkyl, C₃₋₈ cycloalkyl C₀₋₁₀ alkylamino C₀₋₁₀ alkyl, C₃₋₈ heterocyclyl C₀₋₁₀ alkylamino C₀₋₁₀ alkyl, (C₃₋₈ cycloalkyl C₀₋₁₀ alkyl)₂amino C₀₋₁₀ alkyl, 10 (C3-8 heterocyclyl C0-10 alkyl)2amino C0-10 alkyl, C₃₋₈ cycloalkyl C₀₋₁₀ alkyl aminocarbonylamino, (C₁₋₁₀ alkyl)₂aminocarbonylamino, (aryl C₁₋₁₀ alkyl)₁₋₂ aminocarbonylamino, C₀₋₁₀ alkyl aminocarbonylamino, 15 C₃₋₈ heterocyclyl C₀₋₁₀ alkyl aminocarbonylamino, (C₁₋₁₀ alkyl)₂aminocarbonyl C₀₋₁₀ alkyl, (aryl C₁₋₁₀ alkyl)₁₋₂aminocarbonyl C₀₋₁₀ alkyl, C₀₋₁₀ alkyl aminocarbonyl C₀₋₁₀ alkyl, C₃₋₈ cycloalkyl C₀₋₁₀ alkyl aminocarbonyl C₀₋₁₀ alkyl, 20 C₃₋₈ heterocyclyl C₀₋₁₀ alkyl aminocarbonyl C₀₋₁₀ alkyl, aryl C₀₋₁₀ alkyl aminocarbonyl C₀₋₁₀ alkyl, (C₁₋₁₀ alkyl)₂aminocarbonyl, (aryl C₁₋₁₀ alkyl)₁₋₂ aminocarbonyl, C₁₋₁₀ alkoxy (carbonyl)₀₋₁C₀₋₁₀ alkyl, 25 carboxy C₀₋₁₀ alkylamino, carboxy C₀₋₁₀ alkyl, carboxy aryl, carboxy C3-8 cycloalkyl, carboxy C₃₋₈ heterocyclyl, 30 C₁₋₁₀ alkoxy, C₁₋₁₀alkyloxy C₀₋₁₀alkyl

C₁₋₁₀ alkylcarbonyloxy, C₃₋₈ heterocyclyl C₀₋₁₀ alkylcarbonyloxy, C₃₋₈ cycloalkyl C₀₋₁₀ alkylcarbonyloxy, aryl C₀₋₁₀ alkylcarbonyloxy, 5 C₁₋₁₀ alkylcarbonyloxy amino, C₃₋₈ heterocyclyl C₀₋₁₀ alkylcarbonyloxy amino, C₃₋₈ cycloalkyl C₀₋₁₀ alkylcarbonyloxy amino, aryl C₀₋₁₀ alkylcarbonyloxy amino, (C₁₋₁₀ alkyl)2aminocarbonyloxy, 10 (aryl C₀₋₁₀ alkyl)₁₋₂aminocarbonyloxy, (C₃₋₈ heterocyclyl C₀₋₁₀ alkyl)₁₋₂aminocarbonyloxy, (C3-8 cycloalkyl C0-10alkyl)1-2aminocarbonyloxy, hydroxy C₀₋₁₀alkyl, hydroxycarbonylC₀₋₁₀alkoxy, 15 hydroxycarbonylC0-10alkyloxy, C₁₋₁₀ alkylthio, C₁₋₁₀ alkylsulfinyl, aryl C₀₋₁₀ alkylsulfinyl, C3-8 heterocyclyl C0-10 alkylsulfinyl, 20 C₃₋₈ cycloalkyl C₀₋₁₀ alkylsulfinyl, C₁₋₁₀ alkylsulfonyl, aryl C₀₋₁₀ alkylsulfonyl, C₃₋₈ heterocyclyl C₀₋₁₀ alkylsulfonyl, C3-8 cycloalkyl C0-10 alkylsulfonyl, 25 C₁₋₁₀ alkylsulfonylamino, aryl C1-10 alkylsulfonylamino, C₃₋₈ heterocyclyl C₁₋₁₀ alkylsulfonylamino, C₃₋₈ cycloalkyl C₁₋₁₀ alkylsulfonylamino, cyano, 30 nitro, perfluoroC₁₋₆alkyl, and

perfluoroC₁₋₆alkoxy; and wherein R² is optionally substituted with at least one substituent, R⁴, chosen from: halogen, (carbonyl)0-1C1-10 alkyl, 5 (carbonyl)₀₋₁C₂₋₁₀ alkenyl, (carbonyl)0-1C2-10 alkynyl, (carbonyl)₀₋₁aryl C₀₋₁₀ alkyl, C3-8 cycloalkyl C0-10 alkyl, (C₃₋₈)heterocyclyl C₀₋₁₀ alkyl, 10 (C3-8)heterocycloalkyl C0-10 alkyl, C₁₋₄acylamino C₀₋₁₀ alkyl, C₀₋₁₀ alkylamino C₀₋₁₀ alkyl, di-(C1-10 alkyl)amino C0-10 alkyl, arylC₀₋₁₀ alkylamino C₀₋₁₀ alkyl, 15 (arylC₀₋₁₀ alkyl)2amino C₀₋₁₀ alkyl, C₃₋₈ cycloalkyl C₀₋₁₀ alkylamino C₀₋₁₀ alkyl, C₃₋₈ heterocyclyl C₀₋₁₀ alkylamino C₀₋₁₀ alkyl, C3-8 heterocycloalkyl C0-10 alkylamino C0-10 alkyl, C₀₋₁₀ alkyl carbimidoylC₀₋₁₀ alkyl, 20 (C₁₋₁₀ alkyl)₂aminocarbonyl, C₁₋₁₀ alkoxy (carbonyl)₀₋₁C₀₋₁₀ alkyl, C₁₋₁₀alkyloxy C₀₋₁₀alkyl, (C₁₋₁₀ alkyl)₂aminocarbonyloxy, hydroxycarbonylC0-10alkoxy, 25 (C₁₋₁₀ alkyl)₂aminocarbonyloxy, (aryl C₀₋₁₀ alkyl)₁₋₂aminocarbonyloxy, hydroxy C₀₋₁₀alkyl, C₁₋₁₀ alkylsulfonyl, C₁₋₁₀ alkylsulfonylamino,

aryl C1-10 alkylsulfonylamino,

C3-8 heterocyclyl C1-10 alkylsulfonylamino,

```
C<sub>3-8</sub> heterocycloalkyl C<sub>1-10</sub> alkylsulfonylamino,
                   C<sub>3-8</sub> cycloalkyl C<sub>1-10</sub> alkylsulfonylamino,
                   cyano,
                   nitro,
                   perfluoroC<sub>1-6</sub>alkyl, and
 5
                   perfluoroC<sub>1-6</sub>alkoxy,
        wherein R4 is optionally substituted with one or more groups chosen from: OH, (C1-6)alkoxy, halogen,
                   CO<sub>2</sub>H, CN, O(C=O)C<sub>1</sub>-C<sub>6</sub> alkyl, NO<sub>2</sub>, trifluoromethoxy, trifluoroethoxy, -O(0-1)(C<sub>1</sub>-
                    10)perfluoroalkyl, and NH2;
10
        R<sup>3</sup> is chosen from
                   halogen,
                    C<sub>1-10</sub> alkyl(carbonyl)<sub>0-1</sub>,
                    aryl C<sub>0-8</sub> alkyl,
                    amino C<sub>0-8</sub> alkyl,
15
                    C<sub>1-3</sub> acylamino C<sub>0-8</sub> alkyl,
                    C<sub>1-6</sub> alkylamino C<sub>0-8</sub> alkyl,
                    C<sub>1-6</sub> dialkylamino C<sub>0-8</sub> alkyl,
                    aryl C<sub>0-6</sub> alkylamino C<sub>0-6</sub> alkyl,
                    C<sub>1-4</sub> alkoxyamino C<sub>0-8</sub> alkyl,
20
                    hydroxy C<sub>1-6</sub> alkylamino C<sub>0-8</sub> alkyl,
                    C<sub>1-4</sub> alkoxy C<sub>0-6</sub> alkyl,
                    hydroxycarbonyl Co-6 alkyl,
                     C<sub>1-4</sub> alkoxycarbonyl C<sub>0-6</sub> alkyl,
                     hydroxycarbonyl Co-6 alkyloxy,
25
                     hydroxy C<sub>1-6</sub> alkylamino C<sub>0-6</sub> alkyl, or
                     hydroxy C<sub>0-6</sub> alkyl,
          wherein R<sup>3</sup> is optionally substituted with one or more groups chosen from hydrogen, OH, (C<sub>1</sub>-6)alkoxy,
                     halogen, CO<sub>2</sub>H, CN, O(C=O)C<sub>1</sub>-C<sub>6</sub> alkyl, NO<sub>2</sub>, trifluoromethoxy, trifluoroethoxy, -O(0-1)(C<sub>1</sub>-
                     10)perfluoroalkyl, and NH2.
 30
```

A compound according to Claim 1, wherein X is fluorine.

2.

- A compound according to Claim 1, wherein X is hydrogen.
- 4. A compound according to Claim 1, wherein a is a single bond and b is a double
- 5 bond.
- 5. A compound according to Claim 1 and of structural formula II, wherein:

$$R^3$$
 CH_3
 N
 $(R^2)_n$
 R^3
 $(R^2)_n$

a pharmaceutically acceptable salt or a stereoisomer thereof,

10 wherein:

a and b are each independently chosen from a double bond and a single bond;

X is hydrogen or halogen;

Y and Z are each independently chosen from hydrogen, C₁₋₄ alkyl, and halogen, or Y and Z, together with the carbon atom to which they are attached, form a cyclopropyl group;

15 n is 0, 1, 2, or 3;

R¹ is chosen from hydrogen, CF₃, carbonyl(C₁₋₃ alkyl), hydroxyl, C₁₋₄ alkoxy, halogen, C₁₋₃ alkyl, hydroxymethyl, and (C₀₋₆ alkyl)₂amino, wherein said alkyl and alkoxy are each optionally substituted with one to seven fluorine atoms;

R² is chosen from:

20 halogen,

(carbonyl)₀₋₁C₁₋₁₀ alkyl,

(carbonyl)₀₋₁C2₋₁₀ alkenyl,

(carbonyl)0-1C2-10 alkynyl,

(carbonyl)0-1aryl C1-10 alkyl,

25 C₃₋₈ cycloalkyl C₀₋₁₀ alkyl,

(C3_8)heterocyclyl C0_10 alkyl, C₁₋₄acylamino C₀₋₁₀ alkyl, C₀₋₁₀ alkylamino C₀₋₁₀ alkyl, di-(C₁₋₁₀ alkyl)amino C₀₋₁₀ alkyl, arylC₀₋₁₀ alkylamino C₀₋₁₀ alkyl, 5 (arylC₀₋₁₀ alkyl)2amino C₀₋₁₀ alkyl, C₃₋₈ cycloalkyl C₀₋₁₀ alkylamino C₀₋₁₀ alkyl, C₃₋₈ heterocyclyl C₀₋₁₀ alkylamino C₀₋₁₀ alkyl, (C3-8 cycloalkyl C0-10 alkyl)2amino C0-10 alkyl, (C3-8 heterocyclyl C0-10 alkyl)2amino C0-10 alkyl, 10 C₃₋₈ cycloalkyl C₀₋₁₀ alkyl aminocarbonylamino, (C1-10 alkyl)2aminocarbonylamino, (aryl C₁₋₁₀ alkyl)₁₋₂aminocarbonylamino, C₀₋₁₀ alkyl aminocarbonylamino, 15 C₃₋₈ heterocyclyl C₀₋₁₀ alkyl aminocarbonylamino, (C1-10 alkyl)2aminocarbonyl C0-10 alkyl, (aryl C₁₋₁₀ alkyl)₁₋₂aminocarbonyl C₀₋₁₀ alkyl, C₀₋₁₀ alkyl aminocarbonyl C₀₋₁₀ alkyl, C₃₋₈ cycloalkyl C₀₋₁₀ alkyl aminocarbonyl C₀₋₁₀ alkyl, C₃₋₈ heterocyclyl C₀₋₁₀ alkyl aminocarbonyl C₀₋₁₀ alkyl, 20 aryl C₀₋₁₀ alkyl aminocarbonyl C₀₋₁₀ alkyl, (C₁₋₁₀ alkyl)2aminocarbonyl, (aryl C₁₋₁₀ alkyl)₁₋₂aminocarbonyl, C₁₋₁₀ alkoxy (carbonyl)₀₋₁C₀₋₁₀ alkyl, 25 carboxy C₀₋₁₀ alkylamino, carboxy C₀₋₁₀ alkyl, carboxy aryl, carboxy C3-8 cycloalkyl, carboxy C₃₋₈ heterocyclyl, 30 C₁₋₁₀ alkoxy, C₁₋₁₀alkyloxy C₀₋₁₀alkyl

C₁₋₁₀ alkylcarbonyloxy, C₃₋₈ heterocyclyl C₀₋₁₀ alkylcarbonyloxy, C₃₋₈ cycloalkyl C₀₋₁₀ alkylcarbonyloxy, aryl C₀₋₁₀ alkylcarbonyloxy, 5 C₁₋₁₀ alkylcarbonyloxy amino, C₃₋₈ heterocyclyl C₀₋₁₀ alkylcarbonyloxy amino, C3-8 cycloalkyl C0-10 alkylcarbonyloxy amino, aryl C₀₋₁₀ alkylcarbonyloxy amino, (C₁₋₁₀ alkyl)₂aminocarbonyloxy, 10 (aryl C₀₋₁₀ alkyl)₁₋₂aminocarbonyloxy, (C3-8 heterocyclyl C0-10 alkyl)1-2aminocarbonyloxy, (C3-8 cycloalkyl C0-10alkyl)1-2aminocarbonyloxy, hydroxy C₀₋₁₀alkyl, hydroxycarbonylC0-10alkoxy, 15 hydroxycarbonylC₀₋₁₀alkyloxy, C₁₋₁₀ alkylthio, C₁₋₁₀ alkylsulfinyl, aryl C₀₋₁₀ alkylsulfinyl, C₃₋₈ heterocyclyl C₀₋₁₀ alkylsulfinyl, 20 C₃₋₈ cycloalkyl C₀₋₁₀ alkylsulfinyl, C₁₋₁₀ alkylsulfonyl, aryl C₀₋₁₀ alkylsulfonyl, C3_8 heterocyclyl C0_10 alkylsulfonyl, C3-8 cycloalkyl C0-10 alkylsulfonyl, 25 C₁₋₁₀ alkylsulfonylamino, aryl C1-10 alkylsulfonylamino, C₃₋₈ heterocyclyl C₁₋₁₀ alkylsulfonylamino, C3-8 cycloalkyl C1-10 alkylsulfonylamino, cyano, 30 nitro, perfluoroC1-6alkyl, and

perfluoroC1-6alkoxy; and

wherein R² is optionally substituted with at least one substituent, R⁴, chosen from:

halogen,

(carbonyl)0-1C1-10 alkyl,

5 (carbonyl)0-1C2-10 alkenyl,

(carbonyl)0-1C2-10 alkynyl,

(carbonyl)0-1aryl C0-10 alkyl,

C3-8 cycloalkyl C0-10 alkyl,

(C₃₋₈)heterocyclyl C₀₋₁₀ alkyl,

10 (C₃₋₈)heterocycloalkyl C₀₋₁₀ alkyl,

C₁-4acylamino C₀₋₁₀ alkyl,

C₀₋₁₀ alkylamino C₀₋₁₀ alkyl,

di-(C1-10 alkyl)amino C0-10 alkyl,

arylC0-10 alkylamino C0-10 alkyl,

15 (arylC₀₋₁₀ alkyl)₂amino C₀₋₁₀ alkyl,

C₃₋₈ cycloalkyl C₀₋₁₀ alkylamino C₀₋₁₀ alkyl,

C3-8 heterocyclyl C0-10 alkylamino C0-10 alkyl,

C3-8 heterocycloalkyl C0-10 alkylamino C0-10 alkyl,

C₀₋₁₀ alkyl carbimidoylC₀₋₁₀ alkyl,

20 (C₁₋₁₀ alkyl)₂aminocarbonyl,

C₁₋₁₀ alkoxy (carbonyl)₀₋₁C₀₋₁₀ alkyl,

C₁₋₁₀alkyloxy C₀₋₁₀alkyl,

(C1-10 alkyl)2aminocarbonyloxy,

hydroxycarbonylC0-10alkoxy,

25 (C₁₋₁₀ alkyl)₂aminocarbonyloxy,

(aryl C₀₋₁₀ alkyl)₁₋₂ aminocarbonyloxy,

hydroxy C₀₋₁₀alkyl,

C₁₋₁₀ alkylsulfonyl,

C₁₋₁₀ alkylsulfonylamino,

30 aryl C₁₋₁₀ alkylsulfonylamino,

C3-8 heterocyclyl C1-10 alkylsulfonylamino,

```
C<sub>3-8</sub> heterocycloalkyl C<sub>1-10</sub> alkylsulfonylamino,
                 C<sub>3-8</sub> cycloalkyl C<sub>1-10</sub> alkylsulfonylamino,
                  cyano,
                  nitro,
                  perfluoroC<sub>1-6</sub>alkyl, and
5
                  perfluoroC<sub>1-6</sub>alkoxy,
        wherein R4 is optionally substituted with one or more groups chosen from OH, (C1-6)alkoxy, halogen,
                  CO<sub>2</sub>H, CN, O(C=O)C<sub>1</sub>-C<sub>6</sub> alkyl, NO<sub>2</sub>, trifluoromethoxy, trifluoroethoxy, -O(0-1)(C<sub>1</sub>-
                   10)perfluoroalkyl, and NH2;
        R3 is chosen from
10
                   halogen,
                   C<sub>1-10</sub> alkyl(carbonyl)<sub>0-1</sub>,
                   aryl C<sub>0-8</sub> alkyl,
                    amino C<sub>0-8</sub> alkyl,
                    C<sub>1-3</sub> acylamino C<sub>0-8</sub> alkyl,
15
                    C<sub>1-6</sub> alkylamino C<sub>0-8</sub> alkyl,
                    C1-6 dialkylamino C0-8 alkyl,
                    aryl C<sub>0-6</sub> alkylamino C<sub>0-6</sub> alkyl,
                    C<sub>1-4</sub> alkoxyamino C<sub>0-8</sub> alkyl,
                    hydroxy C<sub>1-6</sub> alkylamino C<sub>0-8</sub> alkyl,
 20
                     C<sub>1-4</sub> alkoxy C<sub>0-6</sub> alkyl,
                     hydroxycarbonyl Co-6 alkyl,
                     C<sub>1-4</sub> alkoxycarbonyl C<sub>0-6</sub> alkyl,
                      hydroxycarbonyl Co-6 alkyloxy,
                      hydroxy C<sub>1-6</sub> alkylamino C<sub>0-6</sub> alkyl, or
  25
                      hydroxy C<sub>0-6</sub> alkyl,
           wherein R<sup>3</sup> is optionally substituted with one or more groups chosen from hydrogen, OH, (C<sub>1</sub>-6)alkoxy,
                      halogen, CO<sub>2</sub>H, CN, O(C=O)C<sub>1</sub>-C<sub>6</sub> alkyl, NO<sub>2</sub>, trifluoromethoxy, trifluoroethoxy, -O(0-1)(C<sub>1</sub>-
                      10)perfluoroalkyl, and NH2.
   30
```

6. A compound according to Claim 5, wherein R¹ is chosen from: hydrogen, CF₃, hydroxyl, and C₁₋₃ alkyl optionally substituted with one to seven fluorine atoms.

- A compound according to Claim 6, wherein R¹ is chosen from: hydrogen and
 C₁₋₃ alkyl.
 - 8. A compound according to Claim 7, wherein R¹ is methyl.
 - 9. A compound according to Claim 8, wherein R² is chosen from:
- 10 halogen,

(carbonyl)₀₋₁C₁₋₁₀ alkyl,

(carbonyl)₀₋₁C₂₋₁₀ alkenyl,

(carbonyl)₀₋₁C₂₋₁₀ alkynyl,

C₁₋₁₀ alkenylamino,

15 (carbonyl)₀₋₁aryl C₀₋₁₀ alkyl,

C₃₋₈ cycloalkyl C₀₋₁₀ alkyl,

(C3-8)heterocyclyl C0-10 alkyl,

C₃₋₈ heterocycloalkyl C₀₋₁₀ alkyl,

C₁₋₄ acylamino C₀₋₁₀ alkyl,

20 C₀₋₁₀ alkylamino C₀₋₁₀ alkyl,

di-(C1-10 alkyl)amino C0-10 alkyl,

arylC₀₋₁₀ alkylamino C₀₋₁₀ alkyl,

(arylC₀₋₁₀ alkyl)₂amino C₀₋₁₀ alkyl,

C₃₋₈ cycloalkyl C₀₋₁₀ alkylamino C₀₋₁₀ alkyl,

25 C₃₋₈ heterocyclyl C₀₋₁₀ alkylamino C₀₋₁₀ alkyl,

C₃₋₈ heterocycloalkyl C₀₋₁₀ alkylamino C₀₋₁₀ alkyl,

(C3-8 cycloalkyl C0-10 alkyl)2amino C0-10 alkyl,

(C3-8 heterocyclyl C0-10 alkyl)2amino C0-10 alkyl,

(C3-8 heterocycloalkyl C0-10 alkyl)2amino C0-10 alkyl,

30 C₃₋₈ cycloalkyl C₀₋₁₀ alkyl aminocarbonylamino,

(C₁₋₁₀ alkyl)2aminocarbonylamino,

(aryl C₁₋₁₀ alkyl)₁₋₂aminocarbonylamino,

```
C<sub>0-10</sub> alkyl aminocarbonylamino,
                  C<sub>3-8</sub> heterocyclyl C<sub>0-10</sub> alkyl aminocarbonylamino,
                  C<sub>3-8</sub> heterocycloalkyl C<sub>0-10</sub> alkyl aminocarbonylamino,
                  C<sub>0-10</sub> alkyl carbonylamino C<sub>0-10</sub> alkyl,
                  C<sub>3-8</sub> cycloalkyl C<sub>0-10</sub> alkyl carbonylamino C<sub>0-10</sub> alkyl,
5
                  C<sub>3-8</sub> heterocyclyl C<sub>0-10</sub> alkyl carbonylamino C<sub>0-10</sub> alkyl,
                  C3-8 heterocycloalkyl C0-10 alkyl carbonylamino C0-10 alkyl,
                   aryl C<sub>0-10</sub> alkyl carbonylamino C<sub>0-10</sub> alkyl,
                   amino C<sub>0-10</sub> alkyl carbimidoylC<sub>0-10</sub> alkylamino,
                   C<sub>0-10</sub> alkylcarboxy C<sub>0-10</sub> alkylamino,
10
                   C1-10 alkyl(carbonyl)0-10xyC0-10 alkylamino,
                   C<sub>3-8</sub> heterocyclyl C<sub>0-10</sub> alkyl(carbonyl)<sub>0-1</sub>oxyC<sub>0-10</sub> alkylamino,
                    C<sub>3-8</sub> heterocycloalkyl C<sub>0-10</sub> alkyl(carbonyl)<sub>0-1</sub>oxyC<sub>0-10</sub> alkylamino,
                    C3-8 cycloalkyl C0-10 alkyl(carbonyl)0-10xyC0-10 alkylamino,
                    aryl C<sub>0-10</sub> alkyl(carbonyl)<sub>0-1</sub> oxyC<sub>0-10</sub> alkylamino,
15
                    C<sub>1-10</sub> alkylsulfonylamino,
                     aryl C1-10 alkylsulfonylamino,
                     C<sub>3-8</sub> heterocyclyl C<sub>1-10</sub> alkylsulfonylamino,
                     C<sub>3-8</sub> heterocycloalkyl C<sub>1-10</sub> alkylsulfonylamino,
                     C3-8 cycloalkyl C1-10 alkylsulfonylamino,
 20
                     cyano,
                     nitro,
                     perfluoroC<sub>1-6</sub>alkyl, and
                     perfluoroC<sub>1-6</sub>alkoxy, and
           wherein R<sup>2</sup> is optionally substituted with at least one substituent R<sup>4</sup>.
  25
```

<u>-</u>

10. A compound according to Claim 9, wherein, R^2 is chosen from halogen, $(carbonyl)_{0-1}C_{1-10}$ alkyl, cyano, perfluoro C_{1-10} alkyl, and perfluoro C_{1-10} alkoxy, wherein R^2 is optionally substituted with at least one substituent, R^4 .

11. A compound according to Claim 1 and of structural formula III,

$$R^3$$
 CH_3
 N
 R^3
 N
 R^2
 N
 R^2
 N
 R^2
 N
 R^2

a pharmaceutically acceptable salt or a stereoisomer thereof, wherein:

5 X is hydrogen or halogen;

Y and Z are each independently chosen from hydrogen, C₁₋₄ alkyl, and halogen, or Y and Z, together with the carbon atom to which they are attached, form a cyclopropyl group;

Ш

n is 0, 1, 2, or 3;

10

U, V, W, and D are each independently chosen from CH, and N, provided that at least two of U, V, W, and D are each CH;

R² is chosen from:

halogen,

(carbonyl)₀₋₁C₁₋₁₀ alkyl,

(carbonyl)0-1C2-10 alkenyl,

15 (carbonyl)₀₋₁C₂₋₁₀ alkynyl,

(carbonyl)₀₋₁aryl C₁₋₁₀ alkyl,

C₃₋₈ cycloalkyl C₀₋₁₀ alkyl,

(C3-8)heterocyclyl C0-10 alkyl,

C₁₋₄acylamino C₀₋₁₀ alkyl,

20 C₀₋₁₀ alkylamino C₀₋₁₀ alkyl,

di-(C1-10 alkyl)amino C0-10 alkyl,

arylC0-10 alkylamino C0-10 alkyl,

(arylC0-10 alkyl)2amino C0-10 alkyl,

C₃₋₈ cycloalkyl C₀₋₁₀ alkylamino C₀₋₁₀ alkyl,

C₃₋₈ heterocyclyl C₀₋₁₀ alkylamino C₀₋₁₀ alkyl, (C3-8 cycloalkyl C0-10 alkyl)2amino C0-10 alkyl, (C3-8 heterocyclyl C0-10 alkyl)2amino C0-10 alkyl, C₃₋₈ cycloalkyl C₀₋₁₀ alkyl aminocarbonylamino, (C₁₋₁₀ alkyl)2aminocarbonylamino, 5 (aryl C₁₋₁₀ alkyl)₁₋₂aminocarbonylamino, C₀₋₁₀ alkyl aminocarbonylamino, C₃₋₈ heterocyclyl C₀₋₁₀ alkyl aminocarbonylamino, (C₁₋₁₀ alkyl)₂ aminocarbonyl C₀₋₁₀ alkyl, (aryl C₁₋₁₀ alkyl)₁₋₂aminocarbonyl C₀₋₁₀ alkyl, 10 C₀₋₁₀ alkyl aminocarbonyl C₀₋₁₀ alkyl, C₃₋₈ cycloalkyl C₀₋₁₀ alkyl aminocarbonyl C₀₋₁₀ alkyl, C₃₋₈ heterocyclyl C₀₋₁₀ alkyl aminocarbonyl C₀₋₁₀ alkyl, aryl C₀₋₁₀ alkyl aminocarbonyl C₀₋₁₀ alkyl, (C₁₋₁₀ alkyl)2aminocarbonyl, 15 (aryl C₁₋₁₀ alkyl)₁₋₂aminocarbonyl, C₁₋₁₀ alkoxy (carbonyl)₀₋₁C₀₋₁₀ alkyl, carboxy C₀₋₁₀ alkylamino, carboxy C₀₋₁₀ alkyl, 20 carboxy aryl, carboxy C3-8 cycloalkyl, carboxy C3-8 heterocyclyl, C₁₋₁₀ alkoxy, C₁₋₁₀alkyloxy C₀₋₁₀alkyl C₁₋₁₀ alkylcarbonyloxy, 25 C3_8 heterocyclyl C0_10 alkylcarbonyloxy, C3-8 cycloalkyl C0-10 alkylcarbonyloxy, aryl C₀₋₁₀ alkylcarbonyloxy, C₁₋₁₀ alkylcarbonyloxy amino, C₃₋₈ heterocyclyl C₀₋₁₀ alkylcarbonyloxy amino, 30 C₃₋₈ cycloalkyl C₀₋₁₀ alkylcarbonyloxy amino,

```
aryl C<sub>0-10</sub> alkylcarbonyloxy amino,
                  (C<sub>1-10</sub> alkyl)2aminocarbonyloxy,
                   (aryl C<sub>0-10</sub> alkyl)<sub>1-2</sub> aminocarbonyloxy,
                   (C3_8 heterocyclyl C0_10 alkyl)1_2aminocarbonyloxy,
                   (C3-8 cycloalkyl C0-10alkyl)1-2aminocarbonyloxy,
 5
                  hydroxy C<sub>0-10</sub>alkyl,
                   hydroxycarbonylC0-10alkoxy,
                   hydroxycarbonylC0-10alkyloxy,
                   C<sub>1-10</sub> alkylthio,
                   C<sub>1-10</sub> alkylsulfinyl,
10
                   aryl C<sub>0-10</sub> alkylsulfinyl,
                   C<sub>3-8</sub> heterocyclyl C<sub>0-10</sub> alkylsulfinyl,
                   C<sub>3-8</sub> cycloalkyl C<sub>0-10</sub> alkylsulfinyl,
                   C<sub>1-10</sub> alkylsulfonyl,
15
                   aryl C<sub>0-10</sub> alkylsulfonyl,
                   C<sub>3-8</sub> heterocyclyl C<sub>0-10</sub> alkylsulfonyl,
                   C<sub>3-8</sub> cycloalkyl C<sub>0-10</sub> alkylsulfonyl,
                   C<sub>1-10</sub> alkylsulfonylamino,
                   aryl C<sub>1-10</sub> alkylsulfonylamino,
20
                   C3-8 heterocyclyl C1-10 alkylsulfonylamino,
                   C<sub>3-8</sub> cycloalkyl C<sub>1-10</sub> alkylsulfonylamino,
                   cyano,
                   nitro,
                    perfluoroC<sub>1-6</sub>alkyl, and
                    perfluoroC<sub>1-6</sub>alkoxy; and
25
         wherein R<sup>2</sup> is optionally substituted with at least one substituent, R<sup>4</sup>, chosen from:
                    halogen,
                    (carbonyl)0-1C1-10 alkyl,
                    (carbonyl)0-1C2-10 alkenyl,
 30
                    (carbonyl)<sub>0-1</sub>C<sub>2-10</sub> alkynyl,
                    (carbonyl)<sub>0-1</sub>aryl C<sub>0-10</sub> alkyl,
```

C₃₋₈ cycloalkyl C₀₋₁₀ alkyl, (C3-8)heterocyclyl C0-10 alkyl, (C3-8)heterocycloalkyl C0-10 alkyl, C₁₋₄acylamino C₀₋₁₀ alkyl, C₀₋₁₀ alkylamino C₀₋₁₀ alkyl, 5 di-(C1-10 alkyl)amino C0-10 alkyl, arylC₀₋₁₀ alkylamino C₀₋₁₀ alkyl, (arylC0-10 alkyl)2amino C0-10 alkyl, C₃₋₈ cycloalkyl C₀₋₁₀ alkylamino C₀₋₁₀ alkyl, C₃₋₈ heterocyclyl C₀₋₁₀ alkylamino C₀₋₁₀ alkyl, 10 C₃₋₈ heterocycloalkyl C₀₋₁₀ alkylamino C₀₋₁₀ alkyl, C₀₋₁₀ alkyl carbimidoylC₀₋₁₀ alkyl, (C₁₋₁₀ alkyl)₂aminocarbonyl, C₁₋₁₀ alkoxy (carbonyl)₀₋₁C₀₋₁₀ alkyl, C₁₋₁₀alkyloxy C₀₋₁₀alkyl, 15 (C₁₋₁₀ alkyl)2aminocarbonyloxy, hydroxycarbonylC0-10alkoxy, (C₁₋₁₀ alkyl)2aminocarbonyloxy, (aryl C₀₋₁₀ alkyl)₁₋₂aminocarbonyloxy, hydroxy C₀₋₁₀alkyl, 20 C₁₋₁₀ alkylsulfonyl, C₁₋₁₀ alkylsulfonylamino, aryl C1-10 alkylsulfonylamino, C₃₋₈ heterocyclyl C₁₋₁₀ alkylsulfonylamino, C₃₋₈ heterocycloalkyl C₁₋₁₀ alkylsulfonylamino, 25 C₃₋₈ cycloalkyl C₁₋₁₀ alkylsulfonylamino, cyano, nitro, perfluoroC₁₋₆alkyl, and perfluoroC₁₋₆alkoxy, 30

wherein R⁴ is optionally substituted with one or more groups chosen from OH, (C₁-6)alkoxy, halogen, CO₂H, CN, O(C=O)C₁-C₆ alkyl, NO₂, trifluoromethoxy, trifluoroethoxy, -O(0-1)(C₁-10)perfluoroalkyl, and NH₂;

R³ is chosen from

5 halogen,

C₁₋₁₀ alkyl(carbonyl)₀₋₁,

aryl C₀₋₈ alkyl,

amino C₀₋₈ alkyl,

C₁₋₃ acylamino C₀₋₈ alkyl,

10 C₁₋₆ alkylamino C₀₋₈ alkyl,

C₁₋₆ dialkylamino C₀₋₈ alkyl,

aryl C₀₋₆ alkylamino C₀₋₆ alkyl,

C₁₋₄ alkoxyamino C₀₋₈ alkyl,

hydroxy C₁₋₆ alkylamino C₀₋₈ alkyl,

15 C₁₋₄ alkoxy C₀₋₆ alkyl,

hydroxycarbonyl Co-6 alkyl,

C₁₋₄ alkoxycarbonyl C₀₋₆ alkyl,

hydroxycarbonyl Co-6 alkyloxy,

hydroxy C₁₋₆ alkylamino C₀₋₆ alkyl, or

20 hydroxy C₀₋₆ alkyl,

25

wherein R³ is optionally substituted with one or more groups chosen from hydrogen, OH, (C₁-6)alkoxy, halogen, CO₂H, CN, O(C=O)C₁-C₆ alkyl, NO₂, trifluoromethoxy, trifluoroethoxy, -O(0-1)(C₁-10)perfluoroalkyl, and NH₂.

- 12. A compound according to Claim 11, wherein X is hydrogen.
- 13. A compound according to Claim 12, wherein R² is chosen from:

halogen,

(carbonyl)0-1C1-10 alkyl,

30 (carbonyl)₀₋₁C₂₋₁₀ alkenyl,

(carbonyl)0-1aryl C0-10 alkyl,

C₃₋₈ cycloalkyl C₀₋₁₀ alkyl, (C₃₋₈)heterocyclyl C₀₋₁₀ alkyl, C₃₋₈ heterocycloalkyl C₀₋₁₀ alkyl, C₀₋₁₀ alkylamino C₀₋₁₀ alkyl, 5 arylC₀₋₁₀ alkylamino C₀₋₁₀ alkyl, C₃₋₈ cycloalkyl C₀₋₁₀ alkylamino C₀₋₁₀ alkyl, C₃₋₈ heterocyclyl C₀₋₁₀ alkylamino C₀₋₁₀ alkyl, C₃₋₈ heterocycloalkyl C₀₋₁₀ alkylamino C₀₋₁₀ alkyl, C₃₋₈ cycloalkyl C₀₋₁₀ alkyl aminocarbonylamino, 10 (aryl C₁₋₁₀ alkyl)₁₋₂aminocarbonylamino, C₀₋₁₀ alkyl aminocarbonylamino, C₃₋₈ heterocyclyl C₀₋₁₀ alkyl aminocarbonylamino, C₃₋₈ heterocycloalkyl C₀₋₁₀ alkyl aminocarbonylamino, C₀₋₁₀ alkyl carbonylamino C₀₋₁₀ alkyl, 15 C₃₋₈ cycloalkyl C₀₋₁₀ alkyl carbonylamino C₀₋₁₀ alkyl, C₃₋₈ heterocyclyl C₀₋₁₀ alkyl carbonylamino C₀₋₁₀ alkyl, C₃₋₈ heterocycloalkyl C₀₋₁₀ alkyl carbonylamino C₀₋₁₀ alkyl, aryl C₀₋₁₀ alkyl carbonylamino C₀₋₁₀ alkyl, C₀₋₁₀ alkylcarboxy C₀₋₁₀ alkylamino, 20 C₁₋₁₀ alkoxy, C₁₋₁₀alkyloxy C₀₋₁₀alkyl, aryloxy, C₃₋₈ cycloalkyloxy, C₃₋₈ heterocyclyloxy, 25 C₃₋₈ heterocycloalkyloxy, C₁₋₁₀ alkyl(carbonyl)₀₋₁ oxyC₀₋₁₀ alkylamino, C₃₋₈ heterocyclyl C₀₋₁₀ alkyl(carbonyl)₀₋₁oxyC₀₋₁₀ alkylamino, C₃₋₈ heterocycloalkyl C₀₋₁₀ alkyl(carbonyl)₀₋₁ oxyC₀₋₁₀ alkylamino, C₃₋₈ cycloalkyl C₀₋₁₀ alkyl(carbonyl)₀₋₁ oxyC₀₋₁₀ alkylamino, 30 aryl C₀₋₁₀ alkyl(carbonyl)₀₋₁ oxyC₀₋₁₀ alkylamino, hydroxy C₀₋₁₀alkyl,

C₁₋₁₀ alkylthio, C₁₋₁₀ alkylsulfonyl, aryl C₀₋₁₀ alkylsulfonyl, C3-8 heterocyclyl C0-10 alkylsulfonyl, C3-8 heterocycloalkyl C0-10 alkylsulfonyl, 5 C3-8 cycloalkyl C0-10 alkylsulfonyl, C₁₋₁₀ alkylsulfonylamino, aryl C1-10 alkylsulfonylamino, C3-8 heterocyclyl C1-10 alkylsulfonylamino, C₃₋₈ heterocycloalkyl C₁₋₁₀ alkylsulfonylamino, 10 C3-8 cycloalkyl C1-10 alkylsulfonylamino, cyano, nitro, perfluoroC₁-6alkyl, and perfluoroC₁₋₆alkoxy, and 15

wherein R² is optionally substituted with at least one substituent R⁴.

14. A compound according to Claim 11, wherein X is F.

A compound according to Claim 1, selected from: 15. 20 17β-(1H-imidazo[4,5-b]pyridin-2-yl)-4-methyl-4-aza-5α-androst-1-en-3-one; 17β -(1*H*-benzimidazol-2-yl)-4-methyl-4-aza-5α-androst-1-en-3-one; 17β -(7-methyl-1*H*-benzimidazol-2-yl)-4-methyl-4-aza-5α-androst-1-en-3-one; 17β-(5,6-dichloro-1H-benzimidazol-2-yl)-4-methyl-4-aza-5α-androst-1-en-3-one; 17β-(6-chloro-1H-benzimidazol-2-yl)-4-methyl-4-aza-5α-androst-1-en-3-one; 25 17β -(6-trifluoromethyl-1*H*-benzimidazol-2-yl)-4-methyl-4-aza-5 α -androst-1-en-3-one; $17\beta\text{-}(6\text{-methyl-1}\text{H-benzimidazol-2-yl)-4-methyl-4-aza-5}\alpha\text{-androst-1-en-3-one};$ 17β -(5,6-dimethyl-1*H*-benzimidazol-2-yl)-4-methyl-4-aza-5α-androst-1-en-3-one; 17β-(6-cyano-1*H*-benzimidazol-2-yl)-4-methyl-4-aza-5α-androst-1-en-3-one; $17\beta\text{-}(6\text{-methoxy-}1\text{-}H\text{-benzimidazol-2-yl})\text{-}4\text{-methyl-4-aza-}5\alpha\text{-androst-1-en-3-one};$ 30 17β-(9*H*-purin-8-yl)-4-methyl-4-aza-5α-androst-1-en-3-one; 17β-(1H-imidazo[4,5-c]pyridin-2-yl)-4-methyl-4-aza-5α-androst-1-en-3-one; 17β -(1-methyl-1*H*-imidazo[4,5-*b*]pyridin-2-yl)-4-methyl-4-aza-5α-androst-1-en-3-one;

17β-(1-methyl-1*H*-6-chloro-benzimidazol-2-yl)-4-methyl-4-aza-5α-androst-1-en-3-one; 17β-(1-acetyl-1*H*-imidazo[4,5-*b*]pyridin-2-yl)-4-methyl-4-aza-5α-androst-1-en-3-one; 17β-(3-acetyl-3*H*-imidazo[4,5-*b*]pyridin-2-yl)-4-methyl-4-aza-5α-androst-1-en-3-one; 17β-(1*H*-imidazo[4,5-*b*]pyridin-2-yl)-2-fluoro-4-methyl-4-aza-5α-androst-1-en-3-one; and pharmaceutically acceptable salts and stereoisomers thereof.

5

10

20

25

- 16. A method for modulating a function mediated by the androgen receptor in a mammal in need of such modulation comprising administering a therapeutically effective amount of a compound of Claim 1 or a pharmaceutically acceptable salt or a stereoisomer thereof.
- 17. A method of activating the function of the androgen receptor in a mammal in need of such activation comprising administering a therapeutically effective amount of a compound of Claim 1 or a pharmaceutically acceptable salt or a stereoisomer thereof.
- 15 18. A method of Claim 16, wherein said function mediated by the androgen receptor is activated in bone or muscle tissue and blocked in the prostate or the uterus.
 - deficiency, which can be ameliorated by androgen replacement, or which can be increased by androgen replacement, which condition is selected from weakened muscle tone, osteoporosis, osteopenia, glucocorticoid-induced osteoporosis, periodontal disease, bone fracture, bone damage following bone reconstructive surgery, sarcopenia, frailty, aging skin, male hypogonadism, postmenopausal symptoms in women, atherosclerosis, hypercholesterolemia, hyperlipidemia, obesity, aplastic anemia and other hematopoietic disorders, inflammatory arthritis and joint repair, HIV-wasting, prostate cancer, benign prostatic hyperplasia (BPH), abdominal adiposity, metabolic syndrome, type II diabetes, cancer cachexia, Alzheimer's disease, muscular dystrophies, cognitive decline, sexual dysfunction, sleep apnea, depression, premature ovarian failure, and autoimmune disease, comprising administering to the mammal in need of such treatment, a therapeutically effective amount of a compound according to Claim 1or a pharmaceutically acceptable salt or a stereoisomer thereof.
 - 20. A method according to Claim 19, wherein said condition is osteoporosis.

21. A method of treating osteoporosis in a mammal in need thereof, comprising administering a therapeutically effective amount of a compound according to Claim 1 or a pharmaceutically acceptable salt or a stereoisomer thereof.

- 22. A method of Claim 21, further comprising the administration of an agent selected from:
 - an estrogen or an estrogen derivative, alone or in combination with a progestin or progestin derivative,
 - 2) a bisphosphonate,

- 10 3) an antiestrogen or a selective estrogen receptor modulator,
 - 4) an ανβ3 integrin receptor antagonist,
 - 5) a cathepsin K inhibitor,
 - 6) an HMG-CoA reductase inhibitor,
 - 7) an osteoclast vacuolar ATPase inhibitor,
- 15 8) an antagonist of VEGF binding to osteoclast receptors,
 - 9) an activator of peroxisome proliferator-activated receptor γ ,
 - 10) calcitonin,
 - 11) a calcium receptor antagonist,
 - 12) parathyroid hormone or analog thereof,
- 20 13) a growth hormone secretagogue,
 - 14) human growth hormone,
 - 15) insulin-like growth factor,
 - 16) a p38 protein kinase inhibitor,
 - 17) bone morphogenetic protein,
- 25 18) an inhibitor of BMP antagonism,
 - 19) a prostaglandin derivative,
 - 20) vitamin D or vitamin D derivative,
 - 21) vitamin K or vitamin K derivative,
 - 22) ipriflavone,
- 30 23) fluoride salts,
 - 24) dietary calcium supplement, and
 - 25) osteoprotegerin.

- 23. The method according to Claim 22, wherein:
- the estrogen or estrogen derivative, alone or in combination with a progestin or progestin
 derivative, is selected from conjugated estrogen, equine estrogen, 17β-estradiol, estrone,
 17β-ethynyl estradiol, 17β-ethynyl estradiol with at least one agent selected from
 norethindrone and medroxyprogesterone acetate;
- the bisphosphonate is selected from alendronate, clodronate, etidronate, ibandronate, incadronate, minodronate, neridronate, olpadronate, pamidronate, piridronate, risedronate, tiludronate, and zoledronate;
- 3) the antiestrogen or selective estrogen receptor modulator is selected from raloxifene, clomiphene, zuclomiphene, enclomiphene, nafoxidene, CI-680, CI-628, CN-55,945-27, Mer-25, U-11,555A, U-100A, tamoxifen, lasofoxifene, toremifene, azorxifene, EM-800, EM-652, TSE 424, droloxifene, idoxifene, and levormeloxifene;
- 4) the HMG-CoA reductase inhibitor is selected from lovastatin, simvastatin, dihydroxy-open acid simvastatin, pravastatin, fluvastatin, atorvastatin, cerivastatin, rosuvastatin, pitavastatin, and nisvastatin;
- . 5) calcitonin is salmon calcitonin administered as a nasal spray;
- 6) bone morphogenetic protein is selected from BMP 2, BMP 3, BMP 5, BMP 6, BMP 7, TGF beta, and GDF5:
- 7) insulin-like growth factor is selected from IGF I and IGF II alone or in combination with IGF binding protein 3;
- 8) the prostaglandin derivative is selected from agonists of prostaglandin receptors EP₁, EP₂, EP₄, FP, and IP;
- 9) the fibroblast growth factor is selected from aFGF and bFGF;
- 10) parathyroid hormone (PTH) or PTH analog is selected from PTH subcutaneous injection, human PTH (1-84), human PTH (1-34), and other partial sequences, native or with substitutions;
- 11) vitamin D or vitamin D derivative is selected from natural vitamin D, 25-OH-vitamin D3, 1α,25(OH)₂ vitamin D3, 1α-OH-vitamin D3, 1α-OH-vitamin D2, dihydrotachysterol, 26,27-F6-1α,25(OH)₂ vitamin D3, 19-nor-1α,25(OH)₂vitamin D3, 22-oxacalcitriol, calcipotriol, 1α,25(OH)₂-16-ene-23-yne-vitamin D3(Ro 23-7553), EB1089, 20-epi-1α,25(OH)₂ vitamin D3, KH1060, ED71, 1α,24(S)-(OH)₂ vitamin D3, and 1α,24(R)-(OH)₂ vitamin D3;

5

15

20

25

12) the dietary calcium supplement is selected from calcium carbonate, calciumcitrate, and natural calcium salts; and

13) the fluoride salts are chosen from sodium fluoride and monosodium fluorophosphate (MFP); and pharmaceutically acceptable salts or stereoisomers thereof.

5

- 24. The method according to Claim 23, wherein the bisphosphonate is alendronate monosodium trihydrate or alendronate monosodium monohydrate.
 - 25. The method of Claim 22, wherein said agent is selected from:

10

- an estrogen or an estrogen derivative, alone or in combination with a progestin or progestin derivative,
- 2) a bisphosphonate,
- 3) an antiestrogen or a selective estrogen receptor modulator,
- 4) an ανβ3 integrin receptor antagonist,

15

- 5) a cathepsin K inhibitor,
- 6) an osteoclast vacuolar ATPase inhibitor,
- 7) calcitonin,
- 8) osteoprotegrin, and
- 9) parathyroid hormone or analog thereof.

20

- 26. A pharmaceutical composition comprising a therapeutically effective amount of a compound of Claim 1 and a pharmaceutically acceptable carrier.
 - 27. A composition of Claim 26, further comprising an active ingredient selected
- 25 from:
- 1) an estrogen or an estrogen derivative, alone or in combination with a progestin or progestin derivative,
- 2) a bisphosphonate,
- 3) an antiestrogen or a selective estrogen receptor modulator,

- 4) an ανβ3 integrin receptor antagonist,
- 5) a cathepsin K inhibitor,
- 6) an HMG-CoA reductase inhibitor,
- 7) an osteoclast vacuolar ATPase inhibitor,
- 8) an antagonist of VEGF binding to osteoclast receptors,

9) an activator of peroxisome proliferator-activated receptor γ,

- 10) calcitonin,
- 11) a calcium receptor antagonist,
- 12) parathyroid hormone or analog thereof,
- 13) a growth hormone secretagogue,
- 14) human growth hormone,
- 15) insulin-like growth factor,
- 16) a p38 protein kinase inhibitor,
- 17) bone morphogenetic protein,
- 10 18) an inhibitor of BMP antagonism,
 - 19) a prostaglandin derivative,
 - 20) vitamin D or vitamin D derivative,
 - 21) vitamin K or vitamin K derivative,
 - 22) ipriflavone,
- 15 23) fluoride salts,
 - 24) dietary calcium supplement, and
 - 25) osteoprotegerin.
 - 28. A composition of Claim 27, wherein said bisphosphonate is alendronate.

20

- 29. A method of inhibiting bone resorption in a mammal in need thereof, comprising administering a therapeutically effective amount of a compound according to Claim 1 or a pharmaceutically acceptable salt or a stereoisomer thereof.
- 25 30. A method of increasing Bone Mineral Density in a mammal in need thereof, comprising administering a therapeutically effective amount of a compound according to Claim 1 or a pharmaceutically acceptable salt or a stereoisomer thereof.
- 31. A method of reducing the risk of vertebral or non-verterbral fractures in a mammal in need thereof, comprising administering a therapeutically effective amount of a compound according to Claim 1 or a pharmaceutically acceptable salt or a stereoisomer thereof.
 - 32. A method of effecting a bone turnover marker in a mammal in need thereof, comprising administering a therapeutically effective amount of a compound according to Claim 1 or a

pharmaceutically acceptable salt or a stereoisomer thereof, wherein said bone turnover marker is selected from urinary C-telopeptide degradation products of type I collagen (CTX), urinary N-telopeptide crosslinks of type I collagen (NTX), DXA, and DPD.

- 5 33. A pharmaceutical composition made by combining a compound according to Claim 1 and a pharmaceutically acceptable carrier.
 - 34. A process for making a pharmaceutical composition comprising combining a compound according to Claim 1 and a pharmaceutically acceptable carrier.
 - 35. A method of treating or preventing an arthritic condition in a mammal in need thereof, comprising adminsitering a therapeutically effective amount of a compound according to Claim 1 or a pharmaceutically acceptable salt or a stereoisomer thereof.
- 15 36. A method of Claim 35, wherein the arthritic condition is selected from rheumatoid arthritis and osteoarthritis.