Classificação de Mensagens como Spam ou Não-Spam

Palavras chave—modelo, regressão logística, classificação, spam, email (key words)

I. DATASET UTILIZADO PARA CLASSIFICAÇÃO

Neste trabalho, foram usados três datasets de emails rotulados, provenientes de diferentes fontes do Kaggle, combinados em um único dataset para realizar a classificação de emails como spam ou não-spam. Os datasets utilizados foram: Spam Emails Dataset [1], Spam Mails Dataset [2], e Email Spam Classification Dataset [3].

O uso de tais datasets é justificado pela sua aplicação prática no contexto de filtragem de emails, uma área crucial para empresas que oferecem serviços de email e proteção contra mensagens maliciosas ou indesejadas. O artigo de El Idrissi et al. [4] explora a aplicação desses tipos de datasets em sistemas de classificação de emails para aprimorar o desempenho dos filtros de spam, destacando a importância de melhorar a precisão e a eficiência desses modelos para reduzir o número de falsos positivos e negativos.

II. PIPELINE DE CLASSIFICAÇÃO

Foi implementada uma pipeline de pré-processamento para classificar emails como spam. O texto foi limpo, mantendo apenas letras, números e símbolos recorrentes em spam, como sinais de moeda e "!" ou "?".

Após isso, os emails foram vetorizados com foco em termos comuns a mensagens de spam, como palavras ligadas a promoções. Contudo, a frequência de palavras pode gerar falsos positivos, já que termos ambíguos, como "desconto", também aparecem em emails legítimos. Além disso, a ausência de análise semântica dificulta a interpretação de contextos, como frases negativas.

III. EXECUTANDO E AVALIANDO O MODELO

O classificador escolhido foi um modelo de regressão logística. A divisão do conjunto de dados foi realizada utilizando uma proporção de 80% para treino e 20% para teste, com o intuito de garantir uma amostra representativa para a avaliação do modelo. Essa divisão foi feita de forma aleatória em múltiplas execuções, assegurando que o modelo fosse testado em diferentes distribuições dos dados.

O modelo, após treinado, atingiu uma acurácia balanceada de 97,49%, uma métrica que ajusta o cálculo da acurácia para lidar com um possível desequilíbrio entre as classes. Esse resultado sugere que o classificador apresentou um desempenho robusto, conseguindo distinguir com precisão os emails de spam dos emails legítimos.

Para investigar a importância das palavras no processo de classificação, foram extraídos os coeficientes das palavras do modelo. Os coeficientes indicam a influência de cada termo na previsão, onde valores positivos indicam uma tendência de ser spam e valores negativos indicam uma tendência de ser não spam. As palavras com maior peso negativo, associadas à categoria não spam, incluem "enron", "ltgt" e "vince", que frequentemente aparecem em comunicações legítimas. Por outro lado, as palavras com maior peso positivo, associadas à categoria spam, incluem "adf", "attach", "medications" e

"mortgage", que comumente surgem em emails de propaganda ou fraudes financeiras.

Por fim, foi verificada a matriz de confusão para avaliar o desempenho do classificador em termos de erros de classificação. O modelo foi capaz de identificar corretamente a maioria das instâncias, com poucos falsos positivos e falsos negativos. Observe as figuras abaixo:

IV. AVALIANDO O CONJUNTO DE DADOS

Para avaliar o impacto do tamanho do conjunto de dados no desempenho do modelo, foi realizada uma curva de aprendizado variando a proporção dos dados de treino de 10% a 99%. A acurácia balanceada foi medida tanto nos dados de treino quanto nos de teste, conforme o tamanho do conjunto de treinamento foi aumentando.

Os resultados indicam que a acurácia nos dados de treino permaneceu alta e estável, próxima de 1.0, o que sugere que o modelo está memorizando os dados, levando a um possível overfitting. Isso é evidenciado pelo fato de que o desempenho nos dados de treino é significativamente maior do que nos dados de teste. Observe a curva de aprendizado abaixo:

Por outro lado, a acurácia nos dados de teste aumentou consistentemente à medida que mais dados de treino foram utilizados, passando de 94,47% para 97,45%. Isso mostra que o modelo está generalizando melhor com o aumento dos dados de treino, o que é um indicativo de que o uso de mais dados pode melhorar a performance.

V. MODELOS TÓPICOS PARA REFINAR RESULTADOS

A técnica de Latent Dirichlet Allocation (LDA) foi utilizada para identificar os principais tópicos no conjunto de dados. O modelo foi configurado para encontrar 5 tópicos, e as palavras mais representativas em cada um deles foram listadas. No Tópico 0, palavras como "source", "samba" e "http" se destacaram, enquanto o Tópico 1 apresentou termos como "is", "it" e "you". Os outros tópicos seguiram um padrão semelhante, refletindo diferentes áreas temáticas no conjunto de dados.

REFERENCES

- [1] A. Wagih, Spam Emails Dataset, Kaggle. Disponível em: https://www.kaggle.com/datasets/abdallahwagih/spam-emails
- [2] V. Shankaranarayana, Spam Mails Dataset, Kaggle. Disponível em: https://www.kaggle.com/datasets/venky73/spam-mails-dataset
- [3] P. Singhvi, Email Spam Classification Dataset, Kaggle. Disponível em: https://www.kaggle.com/datasets/purusinghvi/email-spam-classification-dataset
- [4] S. El Idrissi et al., "Spam Email Classification using Machine Learning," European Journal of Electrical and Computer Engineering, vol. 5, no. 4, pp. 12-19, 2021. Disponível em: https://ejece.org/index.php/ejece/article/view/409