Physikalisches Praktikum

Name 1: Cádric Renda

Datum: 08 10.21

Name 2: Fritz Kurz

Platz Nr: 2

Absoluter Nullpunkt

Eichung des Drucksensors

Eichpunkt beim Luftdruck:

Barometerablesung (unkorrigiert)		Korrigian		
	p _L = 420, 5 mm Hg (t _L)	Lufttemp. t _L = 23.1	p _L = 7 17,91 Torr	
	PL= 95 711, 7/12 Pa	U _L = 132,21 mV		

Eichpunkt bei sehr tiefem Druck: 2 Messuns

pt= 0,1±0,1	mbar	-3,72
p _t =10±10	Pa	$U_t = -3,45$ mV

Sensorcharakterisik $p = p_0 + C U$:

Bestimmung des absoluten Nullpunktes

Bei der Temperatur von kochendem Wasser:

Bei der Temperatur von Eiswasser:

Bei der Temperatur von Eiswasser:
$$96.86 \text{ mV}$$

$$t_{\text{E}} = 96.48 \text{ mV}$$

$$p_{\text{E}} = 96.48 \text{ mV}$$

Näherungswert für die Temperatur des absoluten Nullpunkts

Vol. des schädlichen Raums / Vol. des Glaskolbens:

Platz 1 & 2: $V_s/V = \varepsilon = 0.001$

Kubischer Ausdehnungskoeffizient vom Glaskolben = γ = 1,0×10⁻⁵ °C⁻¹

 $t_0 = 269, 6$ Temperatur des absoluten Nullpunkts

Bestimmung der Temperatur von flüssigem Stickstoff

A =

$$U_N = 24,63$$
 $p_N = 1.7973,48$

Näherungswert für die Temperatur des flüssigen Stickstoffs

Temperatur des flüssigen Stickstoffs