Docket No. 216315US2S

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF: Toshihiro OOUCHI

GAU:

SERIAL NO: NEW APPLICATION

EXAMINER:

3-14-02

FILED:

HEREWITH/

FOR:

COST ESTIMATION METHOD, COST ESTIMATION APPARATUS, PRODUCT MANUFACTURING ESTIMATION METHOD AND PRODUCT MANUFACTURING ESTIMATION APPARATUS

REQUEST FOR PRIORITY

ASSISTANT COMMISSIONER FOR PATENTS WASHINGTON, D.C. 20231

WASHINGTON, D.C. 20231	. 99
SIR:	<u> </u>
☐ Full benefit of the filing date of U.S. Application Serial Number of 35 U.S.C. §120.	led , is claimed pursuant to the provisions
☐ Full benefit of the filing date of U.S. Provisional Application Serial Numb the provisions of 35 U.S.C. §119(e).	er , filed , is claimed pursuant to
Applicants claim any right to priority from any earlier filed applications to provisions of 35 U.S.C. §119, as noted below.	which they may be entitled pursuant to the

pre	ovisions of 35 U.S.C. §119, as noted below.				
In the 1	matter of the above-identified application for pa	atent, notice is hereby given t	that the applic	ants claim as p	riority:
COUN	<u>APPLICA</u>	TION NUMBER		DAY/YEAR	
Japan	2000-35323	34	November	20, 2000	
Certifi	ed copies of the corresponding Convention App	olication(s)			
⊠	are submitted herewith				
	will be submitted prior to payment of the Fina	ıl Fee			
	were filed in prior application Serial No.	filed			
	were submitted to the International Bureau in Receipt of the certified copies by the Internati acknowledged as evidenced by the attached Po	onal Bureau in a timely man	ner under PC	Γ Rule 17.1(a) l	has been
	(A) Application Serial No.(s) were filed in pri	or application Serial No.	filed	; and	

Respectfully Submitted,

OBLON, SPIVAK, McCLELLAND, MAIER & NEUSTADT, P.C.

Marvin J. Špivak

Registration No. 24,913

C. Irvin McClelland Registration Number 21,124

22850

☐ (B) Application Serial No.(s)
☐ are submitted herewith

will be submitted prior to payment of the Final Fee

Tel. (703) 413-3000 Fax. (703) 413-2220 (OSMMN 10/98)

日本国⁹特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日 Date of Application:

2000年11月20日

出 願 番 号 Application Number:

人

特願2000-353234

出 願 Applicant(s):

株式会社東芝

2001年 9月13日

特許庁長官 Commissioner, Japan Patent Office

特2000-353234

【書類名】

特許願

【整理番号】

A000005406

【提出日】

平成12年11月20日

【あて先】

特許庁長官 殿

【国際特許分類】

G06F 17/50

【発明の名称】

工数見積り方法及びその装置並びに記憶媒体

【請求項の数】

【発明者】

【住所又は居所】

神奈川県横浜市磯子区新磯子町33番地 株式会社東芝

生産技術センター内

【氏名】

大内 俊弘

【特許出願人】

【識別番号】

000003078

【氏名又は名称】

株式会社 東芝

【代理人】

【識別番号】

100058479

【弁理士】

【氏名又は名称】

鈴江 武彦

【電話番号】

03-3502-3181

【選任した代理人】

【識別番号】 100084618

【弁理士】

【氏名又は名称】 村松 貞男

【選任した代理人】

【識別番号】 100068814

【弁理士】

【氏名又は名称】 坪井 淳

【選任した代理人】

【識別番号】

100092196

【弁理士】

【氏名又は名称】 橋本 良郎

【選任した代理人】

【識別番号】 100091351

【弁理士】

【氏名又は名称】 河野 哲

【選任した代理人】

【識別番号】 100088683

【弁理士】

【氏名又は名称】 中村 誠

【選任した代理人】

【識別番号】 100070437

【弁理士】

【氏名又は名称】 河井 将次

【手数料の表示】

【予納台帳番号】 011567

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】 要

【書類名】

明細書

【発明の名称】

工数見積り方法及びその装置並びに記憶媒体

【特許請求の範囲】

【請求項1】 製造工程を決める際に必要とされる要素項目を記述した見積り要素と見積り計算時に参照する工数の原単位値を示した原単位表とを参照し、少なくとも四則演算ルールにより記述された見積り計算式を演算して工数の見積りを行う工数見積り方法において、

前記見積り計算式を予め実装されたプログラミングルールにより計算可能な書 式に自動変換することを特徴とする工数見積り方法。

【請求項2】 製造工程を決める際に必要とされる要素項目を記述した見積り要素と見積り計算時に参照する工数の原単位値を示した原単位表とを参照し、少なくとも四則演算ルールにより記述された見積り計算式を演算して工数の見積りを行う工数見積り方法において、

前記見積り計算式から前記見積り要素を抽出し、この見積り要素を所定のソースコードを参照して予め実装されたプログラミングルールで実行可能なソースプログラムに置換するステップと、

前記ステップで置換された前記見積り要素のうち前記原単位表を参照して原単 位値を得るために必要な前記見積り要素を付加し、前記見積り計算式のうち前記 原単位値を得るための要素を所定のソースコードを参照して前記プログラミング ルールで実行可能なソースプログラムに置換するステップと、

前記各ステップで置換された前記ソースプログラムに基づいて前記見積り計算式を前記プログラミングルールにより計算可能な書式に変換するステップと、 を有することを特徴とする工数見積り方法。

【請求項3】 関数を含んで記述された前記見積り計算式を前記プログラミングルールにより計算可能な書式に変換することを特徴とする請求項1又は2記載の工数見積り方法。

【請求項4】 製造工程を決める際に必要とされる要素項目を記述した見積り要素データベースと見積り計算時に参照する工数の原単位値を示した原単位表 データベースとを参照し、少なくとも四則演算ルールにより記述された見積り計 算式を演算して工数の見積りを行う工数見積り装置において、

前記見積り計算式を予め実装されたプログラミングルールにより計算可能な書式に自動変換するプログラム自動生成手段を備えたことを特徴とする工数見積り装置。

【請求項5】 製造工程を決める際に必要とされる要素項目を記述した見積り要素データベースと見積り計算時に参照する工数の原単位値を示した原単位表データベースとを参照し、少なくとも四則演算ルールにより記述された見積り計算式を演算して工数の見積りを行う工数見積り装置において、

前記見積り計算式から前記見積り要素を抽出し、この見積り要素を所定のソースコードを参照して予め実装されたプログラミングルールで実行可能なソースプログラムに置換する第1のソースプログラム生成手段と、

この第1のソースプログラム生成手段で置換された前記見積り要素のうち前記 原単位表データベースを参照して原単位値を得るために必要な前記見積り要素を 付加し、前記見積り計算式のうち前記原単位値を得るための要素を所定のソース コードを参照して前記プログラミングルールで実行可能なソースプログラムに置 換する第2のソースプログラム生成手段と、

前記第1及び第2のソースプログラム生成手段によりそれぞれで生成された前記各ソースプログラムに基づいて前記見積り計算式を前記プログラミングルールにより計算可能な書式に変換する第3のソースプログラム生成手段と、

を具備したことを特徴とする工数見積り装置。

【請求項6】 関数を含んで記述された前記見積り計算式を前記プログラミングルールにより計算可能な書式に変換することを特徴とする請求項4又は5記載の工数見積り装置。

【請求項7】 製造工程を決める際に必要とされる要素項目を記述した見積り要素と見積り計算時に参照する工数の原単位値を示した原単位表とを参照し、少なくとも四則演算ルールにより記述された見積り計算式を演算して工数の見積りを行うもので、

前記見積り計算式から前記見積り要素を抽出させ、この見積り要素を所定のソ ースコードを参照して予め実装されたプログラミングルールで実行可能なソース プログラムに置換させるプログラムと、

このプログラムで置換された前記見積り要素のうち前記原単位表を参照して原 単位値を得るために必要な前記見積り要素を付加させ、前記見積り計算式のうち 前記原単位値を得るための要素を所定のソースコードを参照して前記プログラミ ングルールで実行可能なソースプログラムに置換させるプログラムと、

前記各プログラムで置換された前記ソースプログラムに基づいて前記見積り計算式を前記プログラミングルールにより計算可能な書式に変換させるプログラムと、

を記憶したことを特徴とする記憶媒体。

【請求項8】 関数を含んで記述された前記見積り計算式を前記プログラミングルールにより計算可能な書式に変換させるプログラムを有することを特徴とする請求項7記載の記憶媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、製品の製造工程や加工、組立などにおける工数見積りを行う工数見積り方法及びその装置並びにそのプログラムを記憶したコンピュータにより読み取り可能な記憶媒体に関する。

[0002]

【従来の技術】

製品の製造工程や加工、組立などを行う場合には、例えば製造工程に設定された各工程に対して工数を見積ることが行われる。この工数見積りは、見積り要素値と工数原単位値を四則演算子により表記した工数計算式を用いて求めている。

[0003]

このうち見積り要素値は、製造工程を決める際に必要とされる要素項目を記述したもので、製品等の2次元図面を基にして、この図面から加工工程、例えば板金加工の場合には抜き、曲げ、溶接、塗装等を判断し、見積りに必要な要素、例えば溶接長さ、脚長、材質、仕上げ精度などの数値及びコメントからなる値を抽出するものである。

[0004]

工数原単位値は、見積り計算時に参照する工数の原単位値を示したもので、原単位表に表記されている。この工数原単位値は、見積り要素値(数値及びコメント)を原単位表に代入して取得している。

[0005]

しかるに、工数見積りは、見積り要素値と工数原単位値とを見積り計算式に代 入することにより計算して求めている。

[0006]

そして、この工数見積りの計算過程は、ソースプログラムとして予めシステム 内に実装されている。

[0007]

【発明が解決しようとする課題】

しかしながら、上記工数見積り方法では、その計算過程がソースプログラムと して予めシステム内に実装されているため、見積り計算式が変更させる毎にソー スプログラムそのものを変更する必要がある。

[0008]

製品の製造工程や加工、組立などは、頻繁に見直しされて変更されるものであり、このために頻繁に見直しされる見積り計算式に追従してソースプログラムそのものを変更することが困難となっている。

[0009]

そこで本発明は、見積り要素や原単位表、見積り計算式などの見積り基準の変 更に依存することなく工数見積りができる工数見積り方法及びその装置を提供することを目的とする。

[0010]

又、本発明は、見積り要素や原単位表、見積り計算式などの見積り基準の変更 に依存することなく工数見積りができるプログラムを記憶した記憶媒体を提供す ることを目的とする。

[0011]

【課題を解決するための手段】

請求項1記載による本発明は、製造工程を決める際に必要とされる要素項目を 記述した見積り要素と見積り計算時に参照する工数の原単位値を示した原単位表 とを参照し、少なくとも四則演算ルールにより記述された見積り計算式を演算し て工数の見積りを行う工数見積り方法において、前記見積り計算式を予め実装さ れたプログラミングルールにより計算可能な書式に自動変換することを特徴とす る工数見積り方法である。

[0012]

請求項2記載による本発明は、製造工程を決める際に必要とされる要素項目を 記述した見積り要素と見積り計算時に参照する工数の原単位値を示した原単位表 とを参照し、少なくとも四則演算ルールにより記述された見積り計算式を演算し て工数の見積りを行う工数見積り方法において、前記見積り計算式から前記見積 り要素を抽出し、この見積り要素を所定のソースコードを参照して予め実装され たプログラミングルールで実行可能なソースプログラムに置換するステップと、 前記ステップで置換された前記見積り要素のうち前記原単位表を参照して原単位 値を得るために必要な前記見積り要素を付加し、前記見積り計算式のうち前記原 単位値を得るための要素を所定のソースコードを参照して前記プログラミングル ールで実行可能なソースプログラムに置換するステップと、前記各ステップで置 換された前記ソースプログラムに置換するステップと、前記各ステップで置 換された前記ソースプログラムに基づいて前記見積り計算式を前記プログラミン グルールにより計算可能な書式に変換するステップとを有することを特徴とする 工数見積り方法である。

[0013]

請求項3記載による本発明は、請求項1又は2記載の工数見積り方法において、関数を含んで記述された前記見積り計算式を前記プログラミングルールにより 計算可能な書式に変換することを特徴とする。

[0014]

請求項4記載による本発明は、製造工程を決める際に必要とされる要素項目を 記述した見積り要素データベースと見積り計算時に参照する工数の原単位値を示 した原単位表データベースとを参照し、少なくとも四則演算ルールにより記述さ れた見積り計算式を演算して工数の見積りを行う工数見積り装置において、前記 見積り計算式を予め実装されたプログラミングルールにより計算可能な書式に自動変換するプログラム自動生成手段を備えたことを特徴とする工数見積り装置である。

[0015]

請求項5記載による本発明は、製造工程を決める際に必要とされる要素項目を記述した見積り要素データベースと見積り計算時に参照する工数の原単位値を示した原単位表データベースとを参照し、少なくとも四則演算ルールにより記述された見積り計算式を演算して工数の見積りを行う工数見積り装置において、前記見積り計算式から前記見積り要素を抽出し、この見積り要素を所定のソースコードを参照して予め実装されたプログラミングルールで実行可能なソースプログラムに置換する第1のソースプログラム生成手段と、この第1のソースプログラム生成手段で置換された前記見積り要素のうち前記原単位表データベースを参照して原単位値を得るために必要な前記見積り要素を付加し、前記見積り計算式のうち前記原単位値を得るために必要な前記見積り要素を付加し、前記見積り計算式のうち前記原単位値を得るための要素を所定のソースコードを参照して前記プログラミングルールで実行可能なソースプログラムに置換する第2のソースプログラム生成手段によりそれぞれで生成された前記各ソースプログラムに基づいて前記見積り計算式を前記プログラミングルールにより計算可能な書式に変換する第3のソースプログラム生成手段とを具備したことを特徴とする工数見積り装置である。

[0016]

請求項6記載による本発明は、請求項4又は5記載の工数見積り装置において、関数を含んで記述された前記見積り計算式を前記プログラミングルールにより 計算可能な書式に変換することを特徴とする。

[0017]

請求項7記載による本発明は、製造工程を決める際に必要とされる要素項目を 記述した見積り要素と見積り計算時に参照する工数の原単位値を示した原単位表 とを参照し、少なくとも四則演算ルールにより記述された見積り計算式を演算し て工数の見積りを行うもので、前記見積り計算式から前記見積り要素を抽出させ 、この見積り要素を所定のソースコードを参照して予め実装されたプログラミン グルールで実行可能なソースプログラムに置換させるプログラムと、このプログラムで置換された前記見積り要素のうち前記原単位表を参照して原単位値を得るために必要な前記見積り要素を付加させ、前記見積り計算式のうち前記原単位値を得るための要素を所定のソースコードを参照して前記プログラミングルールで実行可能なソースプログラムに置換させるプログラムと、前記各プログラムで置換された前記ソースプログラムに基づいて前記見積り計算式を前記プログラミングルールにより計算可能な書式に変換させるプログラムとを記憶したことを特徴とする記憶媒体である。

[0018]

請求項8記載による本発明は、請求項7記載の記憶媒体において、関数を含んで記述された前記見積り計算式を前記プログラミングルールにより計算可能な書式に変換させるプログラムを有することを特徴とする。

[0019]

【発明の実施の形態】

以下、本発明の一実施の形態について図面を参照して説明する。

[0020]

図1は本発明の工数見積り装置を適用した3次元CADを用いた製品製造の見積り装置の全体機能ブロック構成図である。先ず、製品製造の見積り装置の全体構成について説明する。

[0021]

3次元CAD(Computer Aided Design) 1は、市販されている3次元での製品の設計専用のプログラム(例えばPro/ENGINEERデータ2)を用いてオペレータQとの対話形式によって3次元CADモデルをモデリングしながら製品の設計を行う機能を有している。この設計中の製品の3次元CADモデルは、オペレータQとの対話とともにディスプレイ等のCAD表示部3に表示されるようになっている。この3次元CADモデルを表わす3次元CADモデルデータには、3次元CADモデル内の属性情報、例えば板金加工の場合であれば、形状上は穴にすぎない図形情報に対して丸穴、ダボ穴、タップ穴などの属性情報が付加される。この3次元CAD1は、見積り要素データベース4、工程設定基準データベ

-ス5、見積り基準データベース6及び加工レート材料費データベース7に対してアクセスできるようになっている。

[0022]

このうち見積り要素データベース4には、見積り要素抽出部8により3次元CAD1から抽出し取得された見積りに必要なパラメータ(見積り要素)が記憶されるようになっている。図2は見積り要素の一例を示す模式図である。この見積り要素には、例えば種別として切断、板物、角パイプなどが記憶され、見積りパラメータ(見積り要素)として材質、長さ、幅などが記憶され、さらにその取得値が記憶されている。

[0023]

又、図3はより具体的な見積り要素の一例を示す模式図である。この見積り要素の記述ルールは、単なる連番No(=1,2,3,…)と、見積り要素の名称で、全テーブル間で一意な見積り要素と、見積り要素の単位と、同一の見積り要素名が複数存在した場合にこれらをインデックスで管理するためにその見積り要素間のペアの関連を関係付けるインデックス(index)とからなっている。なお、インデックス(index)は、例えば「穴」は穴種、穴数、穴径、穴縦、穴横、穴角度の要素で構成されているので、これらをindex=1で関係付ける。又、備考は見積り要素の補足説明であり、択一は見積り要素値が予め分っている場合に複数の見積り要素値の中から選択できる値を設定しておくところである。

[0024]

工程設定基準データベース5には、予め工程設定の基準データ、例えば図4に示すような工程に対して材質、板厚、加工情報、穴数、曲げの情報が記憶されており、工程としてNP抜きであれば、材質がSEHC、板厚が3.2、加工情報が一般となっている。

[0025]

見積り基準データベース6には、図5に示すような例えば3種類の加工工程としてNP(抜き)、NP(穴あけ)及びPB(曲げ)ごとの見積り計算式が記憶されている。この見積り計算式は、例えばNP(穴あけ)工程の計算式として、

例えば、

SU(段取り時間)=0.04+上型種類×単位時間+下型種類×単位時間 TT(加工時間)=金型種類×単位時間+穴数×単位時間 が記憶されている。

[0026]

又、図6は見積り計算式のより具体的な一例を示す模式図である。この見積り計算式の記述のルールは次の通りである。工程/単位工程別にSU(段取り時間)とTT(加工時間)との見積り計算式を記述する。Noは単なる連番、工程名は一意に記述されている。記号は工程名の記号、単位工程は工程の小工程でこの単位で見積り計算式が存在する。分類は見積り計算式が複数の場合の分類単位、区分は工数の区分でSU(段取り時間)とTT(加工時間)とで別にそれぞれ見積り計算式を記述する。見積り計算式は、通常の四則演算ルール {+, -, ×, ÷, (,) } により記述する。

[0027]

見積り計算式の表記例を示すと、例えば、

SU(段取り時間) = $(P1+P2\times P3 \div P4)\times P5$

TT(加工時間) = ((P1-P2) ÷ P3×P4) + P5である。

[0028]

見積り計算式が長い場合の表記例を示すと、例えば、

- (A) A = P1
- (\square) B = P 2 × P 3 ÷ P 4

SU(段取り時間) = ((イ) A + (ロ) B) × P 5 である。

[0029]

なお、Pは見積り要素名、定数名、原単位表は原単位表 [P1, p2, …, Pn]であり、数値は整数で記述、例えば少数点は使用不可で、例えば1.2は6÷5により記述する。Pは式であっても、原単位表であっても構わない。原単位表A[P1,原単位表B[P2],P3×P4]である。

[0030]

さらに、見積り計算式は、関数を含んでもよい。

[0031]

(1) 総和:Σ

 Σ (WHERE_ (P), <式>)は、見積り要素 Pが複数の場合、<式>を計算し総和を計算する。

[0032]

 Σ (WHERE_ (P=V), \langle 式 \rangle) は、見積り要素 Pが複数有り値が原単位表 V [P1, P2, …] の場合に限り、 \langle 式 \rangle を計算し総和を計算する。

[0033]

 Σ (WHERE_ (P== $x \times x \times x$), <式>) は、見積り要素 Pの先頭 4 桁 が $x \times x \times x$ の、<式>を計算し総和を計算する。

[0034]

(2) 数を数える: COUNT

COUNT_(P)は、見積り要素名Pの数を数える。

[0035]

COUNT_(P=V)は、見積り要素名Pの値が原単位表Vの数を数える。

[0036]

COUNT_(P==xxxx)は、見積り要素名Pの先頭4文字がxxxxの数を数える。

[0037]

(3)種類を数える: TYPE

TYPE_(P)は、見積り要素名Pの種類を数える。

[0038]

TYPE_(P1=V, P2)は、見積り要素名P1の値が原単位表VのP2の種類を数える。

[0039]

(4) 最大値、最小値を得る: MAX, MIN

MAX_(P):見積り要素名Pが複数の場合、その中の最小値を得る。

[0040]

MIN_(P1, P2, …, Pn):見積り要素名P1, P2, …, Pnの最小値を得る。

[0041]

なお、見積り要素名Pは、<式>であっても、原単位表であっても構わない。

[0042]

MIN_(原単位表A[P1, P2]、原単位表B[P3, P4], P5+P6)

原単位表A [MIN_(p1, P2), MAX_(p3, P4)]

又、この見積り基準データベース6には、図7に示すような原単位表(原単位表)が記憶されている。この原単位表は、見積りの計算式で引用するもので、曲げ取扱時間[板厚、長さ、幅]、曲げ角度係数[角度]、ロット係数[ロット]及び型取付取外し[型長さ、長さ限定]の各情報が記憶されている。

[0043]

図8は原単位表のより具体的な一例を示す模式図である。この原単位表の記述のルールは次の通りである。例えば型や長さなどの複数 (n次元) の見積り要素名Pを指定し、そのn次元の見積り要素のテーブル (原単位表) から値を検索する。その表記法は、V [P1, P2, …] となる。Vがテーブル名、Piが見積り要素名となる。Noは連番であり、テーブル名は原単位表のテーブル名で、全テーブル間で一意でなければならない。単位はテーブルから取得する値である。pは検索要素群の連番である。検索要素は、検索要素の名称で、全テーブル間で一意でなければならない。この検索要素は、見積り要素名、見積り要素を用いた算術式、テーブル名を指定できる。検索要素が複数の場合はn行で表記する。F, TのうちFはFrom側、TはTo側で、比較する不等号を記述する。不等号は、=, <, >, <=, >=が使用できる。Noは検索要素値の連番。検索条件群は、検索条件群のFrom側とTo側との値を設定する。取得値群は、検索条件で取得される値を設定する。検索条件が2種類以上の場合、n番目は1行目にFrom側、2行目にTo側の検索要素値を設定する。

[0044]

加工レート材料費データベース 7 には、例えば予め材料単価、購入品単価、加 エレートが記憶されている。

[0045]

上記見積り要素抽出部8は、3次元CAD1において持っている製品の3次元CADモデルデータに付加されている属性情報を3次元CAD1から取得するもので、この属性情報を3次元CAD1内の拡張言語を用い、テキストデータとしてダウンロードし、上記図2に示すような見積りパラメータとして取得する機能を有している。

[0046]

工程設定部9は、見積り要素抽出部8により取得された見積りパラメータの値や有無で、図4に示すような予め用意された工程設計基準データベース5を検索し、工程を設定する機能を有している。この工程を製品製造の加工工程に合わせて入れ替えることにより、板金、切削、組立などの全ての製造工程に対応できるようになっている。

[0047]

工程見積り部10は、見積り基準データベース6に記憶されている図5又は図6に示すような見積り計算式を、本発明の工数見積り装置に予め実装されたプログラミングルールにより計算可能な書式に自動変換するプログラム自動生成手段11としての機能を有し、製造工程を決める際に必要とされる図2又は図3に示す見積り要素と図7又は図8に示す原単位表とを参照し、見積り計算式を演算して工数の見積りを行う機能を有している。

[0048]

このうちプログラム自動生成手段11は、第1乃至第3のソースプログラム生成手段12~14を有し、このうち第1のソースプログラム生成手段12は、図5又は図6に示すような見積り計算式から見積り要素を抽出し、この見積り要素を標準ソースコードを参照して本発明の工数見積り装置に予め実装されたプログラミングルールで実行可能なソースプログラムに置換する機能を有している。

[0049]

第2のソースプログラム生成手段13は、第1のソースプログラム生成手段1

2で置換された見積り要素のうち図7又は図8に示す原単位表のデータベースを 参照して原単位値を得るために必要な見積り要素を付加し、図5又は図6に示す 見積り計算式のうち原単位値を得るため要素を標準ソースコードを参照して本発 明の工数見積り装置のプログラミングルールで実行可能なソースプログラムに置 換する機能を有している。

[0050]

第3のソースプログラム生成手段14は、第1及び第2のソースプログラム生成手段12,13によりそれぞれで生成された各ソースプログラムに基づいて見積り計算式を本発明の工数見積り装置のプログラミングルールにより計算可能な書式に変換する機能を有している。

[0051]

又、プログラム自動生成手段11は、上記関数すなわち総和:Σ、数を数える:COUNT、種類を数える:TYPE、最大値、最小値を得る:MAX,MINなどの関数を含んで記述された見積り計算式を本発明の工数見積り装置のプログラミングルールにより計算可能な書式に変換する機能を有している。

[0052]

工数見積りプログラムメモリ10aには、工程見積り部10を実行するためのプログラム、すなわち見積り計算式から見積り要素を抽出させ、この見積り要素を所定のソースコードを参照して予め実装されたプログラミングルールで実行可能なソースプログラムに置換させるプログラムと、このプログラムで置換された見積り要素のうち原単位表を参照して原単位値を得るために必要な見積り要素を付加させ、見積り計算式のうち原単位値を得るため要素を所定のソースコードを参照してプログラミングルールで実行可能なソースプログラムに置換させるプログラムと、これらプログラムで置換されたソースプログラムに基づいて見積り計算式をプログラミングルールにより計算可能な書式に変換させるプログラムと、関数を含んで記述された見積り計算式をプログラミングルールにより計算可能な書式に変換させるプログラムとが記憶されている。

[0053]

コスト見積り部15は、工程見積り部10により見積もられた工数を受け、こ

の工数に対して加工レート材料費データベース7に記憶されている加工レートを 乗算し、材料単価及び購入品単価を加えてコストを見積もる機能を有している。

[0054]

コスト分析部16は、工数見積り部10により見積もられた工数及びコスト見積り部15により見積もられたコストに基づいて部品別コストの分析グラフや工程別コストの分析グラフ、チェックリストを用いて律速要因を分析し評価することで、コスト的にネックとなる要因や加工し易さの面での設計改善ポイントを指摘する機能を有している。

[0055]

コストシミュレーション部17は、設計諸元や製造方法、加工工程を変化させ てコストシミュレーションを実行することで、コストへの感度を分析し、最適製 法、最適工程設計を支援する機能を有している。

[0056]

次に、上記の如く構成された装置の作用と共に、特に工数見積りの作用について図9に示す工数見積り時のソースプログラム生成方法を示す図に従って説明する。

[0057]

3次元CAD10は、3次元での製品の設計専用のプログラム(例えばPro/ENGINEER)を用いてオペレータとの対話形式によって3次元CADモデルをモデリングしながら親部品、例えば板金の設計を行う。この3次元CADモデルは、オペレータとの対話とともにディスプレイ等のCAD表示部11に表示される。又、3次元CADモデルを表わす3次元CADモデルデータには、3次元CADモデル内の属性情報、例えば板金加工の場合であれば、形状上は穴にすぎない図形情報に対して丸穴、ダボ穴、タップ穴などの属性情報が付加される。

[0058]

次に、見積り要素抽出部8は、3次元CAD10において3次元CADモデルを作成する段階で、3次元CADモデルデータに付加して事前に標準部品として登録されている属性情報を見積りパラメータとして取得し、これらを図2又は図3に示すように見積り要素データベース4に記憶する。

[0059]

なお、見積り要素抽出部8は、3次元CADモデルデータから抽出した見積り パラメータだけでは工程を特定するのに不十分であるので、人間系で不足してい るパラメータを補足する。

[0060]

次に、工程設定部9は、見積り要素抽出部8により取得された見積りパラメータの値や有無で、図4に示す予め用意された工程設計基準データベース5を検索し、工程を設定する。この工程を製品製造の加工工程に合わせて入れ替えることにより、板金、切削、組立などの全ての製造工程に対応できる。

[0061]

次に、工程見積り部10は、見積り基準データベース6に記憶されている図5 又は図6に示すような見積り計算式を予め実装されたプログラミングルールにより計算可能な書式に自動変換する。すなわち、第1のソースプログラム生成手段12は、図5又は図6に示すような見積り計算式から見積り要素を抽出し、この見積り要素を所定のソースコードを参照して予め実装されたプログラミングルールで実行可能なソースプログラムに置換する。例えば、図9に示すように見積り計算式が

工数=型取付け取外し [型長さ、長さ限定] + (回数 - 1) ×型替え単位時間であれば、この見積り計算式から見積り要素(型長さ、長さ限定、回数、型替え単位時間)を抽出し、これら見積り要素を標準ソースコードSを参照して予め実装されたプログラミングルールで実行可能なソースプログラムに置換する。ここでは、型長さ()、長さ限定()、回数()、型替え単位時間()の書式に置換するソースプログラムを生成する。このとき見積り計算式から見積り要素の抽出は、四則演算子で記述された見積り計算式における識別子としての[]及び()や見積り要素名により判断して抽出する。

[0062]

第2のソースプログラム生成手段13は、第1のソースプログラム生成手段1 2で置換された見積り要素のうち図7又は図8に示す原単位表のデータベースを 参照して原単位値を得るために必要な見積り要素を付加し、図5又は図6に示す 見積り計算式のうち原単位値を得るため要素を標準ソースコードを参照してプログラミングルールで実行可能なソースプログラムに置換する。例えば、見積り計算式における型取付け取外し [型長さ,長さ限定]について型取付け取外し()、型長さ(),長さ限定()の書式に置換し、この型取付け取外し()の原単位値を型長さ(),長さ限定()の各見積り要素を用いて図7又は図8に示す原単位表を切り出すことにより取得するプログラムを生成する。この場合、型取付け取外しのソースプログラムが、型長さ,長さ限定の見積り要素取得ソースプログラムをコールする形で生成される。

[0063]

第3のソースプログラム生成手段14は、第1及び第2のソースプログラム生成手段12,13によりそれぞれで生成された各ソースプログラムに基づいて見積り計算式をプログラミングルールにより計算可能な書式に変換する。例えば、上記図9に示す見積り計算式は、プログラミングルールで実行可能な見積り計算式として、

工数=型取付け取外し()+(回数()-1)×型替え単位時間()に置換される。

[0064]

なお、プログラム自動生成手段11は、上記関数すなわち総和:Σ、数を数える:COUNT、種類を数える:TYPE、最大値、最小値を得る:MAX,MINなどの関数を含んで記述された見積り計算式をプログラミングルールにより計算可能な書式に変換する。

[0065]

しかるに、工程見積り部10は、製造工程を決める際に必要とされる図2又は図3に示す見積り要素と図7又は図8に示す原単位表とを参照し、上記プログラミングルールで実行可能に置換された見積り計算式を演算して工数の見積りを行う。

[0066]

次に、コスト見積り部15は、工程見積り部10により見積られた工数を受け、この工数に対して加工レート材料費データベース7に記憶されている加工レー

トを乗算し、材料単価及び購入品単価を加えてコストを見積る。

[0067]

次に、コスト分析部16は、工数見積り部10により見積られた工数及びコスト見積り部15により見積られたコストに基づいて部品別コストの分析グラフや工程別コストの分析グラフ、チェックリストを用いて律速要因を分析し評価することで、コスト的にネックとなる要因や加工し易さの面での設計改善ポイントを指摘する。

[0068]

次に、コストシミュレーション部17は、設計諸元や製造方法、加工工程を変化させてコストシミュレーションを実行することで、コストへの感度を分析し、 最適製法、最適工程設計を支援する。

[0069]

このように上記一実施の形態においては、見積り要素と原単位表とを参照し、少なくとも四則演算ルールにより記述された見積り計算式を演算して工数の見積りを行うに際し、この見積り計算式から見積り要素を抽出し、この見積り要素を標準ソースコードを参照して予め実装されたプログラミングルールで実行可能なソースプログラムに置換し、この置換された見積り要素のうち原単位表を参照して原単位値を得るために必要な見積り要素を付加し、見積り計算式のうち原単位値を得るため要素を標準ソースコードを参照してプログラミングルールで実行可能なソースプログラムに置換し、これら置換されたソースプログラムに基づいて見積り計算式をプログラミングルールにより計算可能な書式に変換するようにしたので、製品の製造工程や加工、組立などは、頻繁に見直しされて変更されるものであり、これに伴って見積り要素、工数原単位、見積り計算式が頻繁に見直しされて変更されるものであり、これに伴って見積り要素、工数原単位、見積り計算式が変更になる毎に工数見積りシステムのソースプログラムの変更が不要となり、これによって工数見積りシステムのソースプログラムが見積り基準に依存しないものとなり、見積り基準を変更するだけで工数見積りが実現可能となる。

[0070]

なお、本発明は、上記一実施の形態に限定されるものでなく、実施段階ではそ

の要旨を逸脱しない範囲で種々に変形することが可能である。

[0071]

さらに、上記実施形態には、種々の段階の発明が含まれており、開示されている複数の構成要件における適宜な組み合わせにより種々の発明が抽出できる。例えば、実施形態に示されている全構成要件から幾つかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出できる。

[0072]

本発明は、製品や工程に限定されず、加工、組立などの製造の全分野に適用可能である。

[0073]

【発明の効果】

以上詳記したように本発明によれば、見積り要素や原単位表、見積り計算式などの見積り基準の変更に依存することなく工数見積りができる工数見積り方法及びその装置を提供できる。

[0074]

又、本発明によれば、見積り要素や原単位表、見積り計算式などの見積り基準の変更に依存することなく工数見積りができるプログラムを記憶した記憶媒体を提供できる。

【図面の簡単な説明】

【図1】

本発明に係わる工数見積り装置の一実施の形態を適用した3次元CADを用いた製品製造の見積り装置の全体機能ブロック構成図。

【図2】

本発明に係わる工数見積り装置の一実施の形態における見積り要素の一例を示す模式図。

【図3】

本発明に係わる工数見積り装置の一実施の形態における見積り要素の具体的な

一例を示す模式図。

【図4】

本発明に係わる工数見積り装置の一実施の形態における工程設定基準データベースの模式図。

【図5】

本発明に係わる工数見積り装置の一実施の形態における見積り基準データベースの模式図。

【図6】

本発明に係わる工数見積り装置の一実施の形態における見積り基準データベースに記憶された見積り計算式の具体的な一例を示す模式図。

【図7】

本発明に係わる工数見積り装置の一実施の形態における原単位表の模式図。

【図8】

本発明に係わる工数見積り装置の一実施の形態における原単位表のより具体的な一例を示す模式図。

【図9】

本発明に係わる工数見積り装置の一実施の形態における工数見積り時のソースプログラム生成方法を示す図。

【符号の説明】

1:3次元CAD

3: CAD表示部

4:見積り要素データベース

5:工程設定基準データベース

6:見積り基準データベース

7:加工レート材料費データベース

8:見積り要素抽出部

9:工程設定部

10:工程見積り部

11:プログラム自動生成手段

特2000-353234

12:第1のソースプログラム生成手段

13:第2のソースプログラム生成手段

14:第3のソースプログラム生成手段

10a:工数見積りプログラムメモリ

15:コスト見積り部

16:コスト分析部

17:コストシミュレーション部

2 0

【書類名】

図面

【図1】

【図2】

見積り要素

		· · · · · · · · · · · · · · · · · · ·	
No	種別	見積りパラメータ	取得值
1		材質	SEHC-P
2	切断	長さ	160
3	切断	幅	25
4	切断	角数	
5	板物	長さ	160
6	板物	幅	25
7		面取り数	0
8		板厚	3.2
9		ロット	
10		材質	SEHC-P
11		全周長さ	
12		切削有無	
13		重量	0.0988
14		仕上げ面	
15	角パイプ	板厚	3.2
16	角パイプ	幅	25
17	角パイプ	高さ	20
18	角パイプ	長さ	160
19		角度係数	
20	曲げ	長さ	160
21	曲げ	幅	25
22		FR to PRI sta	

【図3】

択一(この中から一つ選択する) コンケ形 角内侧 標準、田粉、 丸内倒、 有、 0以外:Indexあり 切断面の角を落す箇所数 定尺村の板厚 溶断後の切削加工の有無 0:Indexなし 取扱い時間に影響 溶断時間に影響 切断断面の長さ 溶散時間に影響 切断断面の幅 倉入図番の組 倉入図番の組 パイプの厚さ 切断する幅 正味質量 JIS配号 Index 備表 * Index 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 単位 E E E Eω E ᇤ E E mm m E E ₽ 角パイプ長さ 角パイプ角度区分 6 溶断面切削有 治断仕上げ面 角パイプ高さ 4 切断面取り数 角パイプ板厚 8 親立体長さ 平鋼切断幅 色ペイン語 9 親立体高さ No 見積り要素 [見積り要素] 1 材質記号 2 切断長さ 3 切断幅 10 親立体幅 溶断形状 5 板厚 重量 4 15 16 8 13

【図4】

	I	程設定	基準			_
工程	材質	板厚	加工情報	穴数	曲げ	
NP抜き	SEHC	3.2	一般	1		
NP穴あけ	SEHC-P	3.2	一般	0	1	1
PB曲げ		 	*	 	0	
				:	:1	,

【図5】

	見積り基準	6
工程	計算式	
NP(抜き)	- SU=0.0	
	· IT=	
NP(穴あけ)	・SU=0.4+上型種類×単位時間	
	+上型種類×単位時間	
	·TT=金型種類×単位時間	
	+穴数×単位時間	
PB曲げ	・SU=型取扱い[型長さ、長さ限定]	
	+(回数-1)×スライド時間	
	・TT=(単位時間[板厚、長さ、材質])	1
	×係数[角度]×	
	×ハンドリング係数	j

【図6】

	「原籍り計算法」						
5		-	記号				
2	工程名	18	新	単位工程	分類	区分	が禁む
-	切断	SR	SR			ns	SU=切断段取時間 [材質 [材質記号]]
						F	①切断時間=SR切前時間 [幻断長さ、切断幅] ②面取時間=切断面取り数×切断面取り単位時間 ③板厚條數=切断板厚條數 [板厚] ④材質係數=切断材質係數 [材度 [材質配号]] [11-(①切断時間+②面取時間) ×③板厚係數×④材質係數×6÷5
12	2 海断後仕上げ	FS	WTFS	の直径		S	SU=海断後仕上げ段取時間
				图本	•	F	①仕上時間=(Σ(WHERE_(直線長さ)、直線長さ)+Σ (WHERE_(周長②取扱時間=溶断仕上げ取扱時間[重量] ③運搬時間=溶断仕上げ運搬時間[重量] TT=①仕上時間+②取扱時間+③運搬時間
				北次		F	TT= 2 (WHERE_(穴種=丸)、π×穴径×穴数)×溶断後仕上げ時間 [板厚
				角穴		F	TT=Σ (WHERE_(穴種=角)、穴模×4×穴数)×溶断後仕上げ時間 [板厚.
				長角穴		E	TT= 2 (WHERE_(穴種=長角)、(穴縦+穴横)×2×穴数)×溶断後仕上げ時
				最穴		E	TT= I (WHERE_(穴種=長丸)、(穴径+穴横)×2×穴敷)×溶断後仕上げ時
4	监统	₹	W	段取り		ജ	SU=海路段段時間 [海野形状]
				外周	-	F	①治断長さ=(Σ (WHERE_(直線長さ)、直線長さ)+Σ (WHERE_(周長) ②変動時間=接等治所変動時間[板厚] TT=①治断長さ×②参動語間×2
1						$-\!\!\!/$	

【図7】

曲げ取扱時間[板厚、長さ、幅]

幅→

3.2 300 0.004 0.004 0.006 0.007 0.008 3.2 600 0.007 0.007 0.007 0.009 0.017 3.2 1500 0.008 0.013 0.018 0.025 3.2 2000 0.010 0.020 0.020 0.026 0.032 4.0 300 0.006 0.007 0.008 0.013 0.013 0.026 0.032 4.0 600 0.007 0.007 0.013 0.013 0.014 0.014 0.017 0.019 0.018 0.022 0.029 0.029 0.030 0.030 0.030 0.030 0.030 0.030 0.031 0.022 0.029 0.030 0.030 0.031 0.022 0.029 0.030 0.030 0.031 0.032 0.035 0.049 0.030 0.031 0.032 0.035 0.049 0.030 0.030 0.032 0.035 0.049 0.034 0.034 0.035 0.035 0.035											
3.2 600 0.005 0.006 0.007 0.008 3.2 1000 0.007 0.007 0.009 0.017 3.2 1500 0.008 0.013 0.018 0.025 3.2 2000 0.010 0.020 0.020 0.026 0.032 4.0 300 0.006 0.007 0.008 0.013 0.013 0.013 0.013 0.013 0.014 0.009 0.013 0.017 0.019 0.029 0.029 0.029 0.030 0.030 0.009 0.009 0.018 0.022 0.029 0.029 0.030 0.049 0.049 0.031 0.032 0.035 0.049 0.049 0.031 0.032 0.035 0.049 0.049 0.031 0.032 0.035 0.049 0.049 0.031 0.032 0.035 0.049 0.031 0.032 0.035 0.049 0.049 0.031 0.032 0.035 0.049 0.049 0.049 0.049 0.049 <th>板厚</th> <th>長さ</th> <th>100</th> <th>200</th> <th>300</th> <th>400</th> <th>500</th> <th>700</th> <th>1000</th> <th>1300</th> <th>1500</th>	板厚	長さ	100	200	300	400	500	700	1000	1300	1500
3.2 1000 0.007 0.007 0.009 0.017 3.2 1500 0.008 0.013 0.018 0.025 3.2 2000 0.010 0.020 0.026 0.032 4.0 300 0.006 0.007 0.008 0.013 4.0 1000 0.008 0.012 0.017 0.019 4.0 1500 0.009 0.018 0.022 0.029 0.029 0.030 4.0 2000 0.014 0.020 0.031 0.032 0.035 0.049 6.0 300 0.008 0.009 0.009 0.020 0.031 0.032 0.035 0.049 6.0 600 0.010 0.011 0.020 0.020 0.035 0.049 6.0 1500 0.012 0.021 0.025 0.036 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 <td< td=""><td>3.2</td><td>300</td><td></td><td>0.004</td><td></td><td>•</td><td>0.004</td><td>0.005</td><td></td><td></td><td></td></td<>	3.2	300		0.004		•	0.004	0.005			
3.2 1500 0.008 0.013 0.018 0.025 3.2 2000 0.010 0.020 0.026 0.032 4.0 300 0.006 0.007 0.008 0.013 4.0 600 0.007 0.007 0.013 4.0 1000 0.008 0.012 0.017 0.019 4.0 1500 0.009 0.018 0.022 0.029 0.029 0.030 4.0 2000 0.014 0.020 0.031 0.032 0.035 0.049 6.0 300 0.008 0.009 0.009 0.020 0.031 0.032 0.035 0.049 6.0 300 0.010 0.011 0.020 0.020 0.035 0.049 6.0 1000 0.010 0.011 0.020 0.020 0.035 0.035 6.0 1500 0.012 0.022 0.025 0.036 0.041 0.075 0.036 0.041 0.041 </td <td>3.2</td> <td>600</td> <td></td> <td>0.005</td> <td></td> <td></td> <td>0.006</td> <td>0.007</td> <td>0.008</td> <td></td> <td></td>	3.2	600		0.005			0.006	0.007	0.008		
3.2 2000 0.010 0.020 0.020 0.026 0.032 4.0 300 0.006 0.007 0.008 0.012 0.013 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.020 0.021 0.029 0.029 0.029 0.029 0.029 0.031 0.032 0.035 0.049 0.049 0.020 0.031 0.032 0.035 0.049 0.049 0.020 0.031 0.032 0.035 0.049	3.2	1000		0.007			0.007	0.009	0.017		
4.0 300 0.006 0.007 0.008 0.013 4.0 600 0.008 0.012 0.017 0.019 4.0 1000 0.008 0.012 0.017 0.019 4.0 1500 0.009 0.018 0.022 0.029 0.029 0.030 4.0 2000 0.014 0.020 0.031 0.032 0.035 0.049 6.0 300 0.008 0.009 0.009 0.020 0.031 0.032 0.035 0.049 6.0 600 0.010 0.011 0.020 0.020 0.035 0.035 0.035 6.0 1500 0.012 0.021 0.025 0.036 0.031 0.035 0.041 6.0 2000 0.022 0.025 0.036 0.036 0.041 0.075 0.036 0.041 0.036 0.042 0.035 0.036 0.042 0.035 0.042 0.036 0.042 0.036 0.042 0.036 0.042 0.036 0.042 0.036 0.042 0.036 0.04	3.2	1500		0.008			0.013	0.018	0.018		0.025
4.0 600 0.007 0.007 0.013 0.019 4.0 1000 0.008 0.012 0.017 0.019 4.0 1500 0.009 0.018 0.022 0.029 0.029 0.030 4.0 2000 0.014 0.020 0.031 0.032 0.035 0.049 6.0 300 0.008 0.009 0.009 0.020 0.020 0.020 0.020 6.0 600 0.010 0.010 0.011 0.025 0.033 0.035 0.035 0.035 0.041 6.0 1500 0.012 0.022 0.025 0.036 0.036 0.041 0.040 0.045 0.075 9.0 300 0.009 0.009 0.009 0.009 0.024 0.035 0.075 9.0 1000 0.010 0.014 0.021 0.024 0.035 0.042 9.0 1500 0.023 0.026 0.038 0.038 0.050 0.090	3.2	2000		0.010			0.020	0.020	0.026		0.032
4.0 1000 0.008 0.012 0.017 0.019 4.0 1500 0.009 0.018 0.022 0.029 0.029 0.030 4.0 2000 0.014 0.020 0.031 0.032 0.035 0.049 6.0 300 0.008 0.009 0.009 0.020 0.020 0.036 0.036 0.036 6.0 1000 0.010 0.019 0.021 0.025 0.033 0.035 0.036 0.036 0.041 6.0 1500 0.012 0.022 0.025 0.036 0.036 0.041 0.040 0.045 0.075 9.0 300 0.009 0.009 0.009 0.024 0.035 0.042 9.0 1000 0.010 0.014 0.026 0.034 0.036 0.042 9.0 1500 0.023 0.025 0.038 0.038 0.050 0.090	4.0	300		0.006		0.007		0.008			
4.0 1500 0.009 0.018 0.022 0.029 0.029 0.030 4.0 2000 0.014 0.020 0.031 0.032 0.035 0.049 6.0 300 0.008 0.009 0.009 0.020 0.035 0.049 6.0 600 0.010 0.011 0.020 0.020 0.035 0.035 0.035 6.0 1500 0.012 0.022 0.025 0.036 0.036 0.041 0.041 0.040 0.041 0.075 0.075 0.036 0.041 0.075 0.024 0.035 0.036 0.042 0.035 0.042 0.035 0.036 0.042 0.035 0.036 0.042 0.036 0.042 0.036 0.042 0.036 0.042 0.036 0.042 0.036 0.042 0.036 0.036 0.042 0.036 0.042 0.036 0.036 0.042 0.036 0.042 0.036 0.036 0.042 0.036 0.042 0.036 0.042 0.036 0.042 0.036 0.042 0.036 0.0	4.0	600		0.007		0.007		0.013			
4.0 2000 0.014 0.020 0.031 0.032 0.035 0.049 6.0 300 0.008 0.009 0.020 0.035 0.035 0.035 0.035 0.035 0.036 0.041 0.041 0.040 0.045 0.075 0.075 0.024 0.035 0.036 0.042 0.035 0.036 0.042 0.035 0.036 0.042 0.036 0.042 0.036 0.042 0.036 0.042 0.036 0.042 0.036 0.042 0.036 0.042 0.036 0.036 0.042 0.036 0.036 0.042 0.036 0.036 0.042 0.036 0.036 0.036 0.042 0.036 0.042 0.036 0.042 0.036 0.036 0.042 0.036 0.036 0.042 0.036 0.036 <td>4.0</td> <td>1000</td> <td></td> <td>0.008</td> <td></td> <td>0.012</td> <td></td> <td>0.017</td> <td>0.019</td> <td></td> <td></td>	4.0	1000		0.008		0.012		0.017	0.019		
6.0 300 0.008 0.009 0.009 0.020 0.020 6.0 600 0.010 0.011 0.020 0.020 0.035 6.0 1000 0.012 0.021 0.025 0.033 0.035 6.0 1500 0.012 0.022 0.025 0.036 0.041 6.0 2000 0.025 0.025 0.040 0.040 0.045 0.075 9.0 300 0.009 0.009 0.009 0.024 0.035 9.0 1000 0.010 0.014 0.026 0.034 0.036 0.042 9.0 1500 0.023 0.026 0.038 0.038 0.050 0.090	4.0	1500		0.009		0.018		0.022	0.029	0.029	0.030
6.0 600 0.010 0.010 0.011 0.020 0.020 6.0 1000 0.010 0.019 0.021 0.025 0.033 0.035 6.0 1500 0.012 0.022 0.025 0.036 0.041 6.0 2000 0.025 0.025 0.040 0.040 0.045 0.075 9.0 300 0.009 0.009 0.009 0.024 0.035 9.0 1000 0.010 0.014 0.026 0.034 0.036 0.042 9.0 1500 0.023 0.026 0.038 0.038 0.050 0.090	4.0	2000		0.014		0.020		0.031	0.032	0.035	0.049
6.0 1000 0.010 0.019 0.021 0.025 0.033 0.035 6.0 1500 0.012 0.022 0.025 0.036 0.041 6.0 2000 0.025 0.025 0.040 0.040 0.045 0.075 9.0 300 0.009 0.009 0.009 0.024 0.035 9.0 1000 0.010 0.014 0.026 0.034 0.036 0.042 9.0 1500 0.023 0.026 0.038 0.050 0.090	6.0	300	0.008	0.009	0.009						
6.0 1500 0.012 0.022 0.025 0.036 0.041 6.0 2000 0.025 0.025 0.040 0.040 0.045 0.075 9.0 300 0.009 0.009 0.009 0.024 0.035 9.0 1000 0.010 0.014 0.026 0.034 0.036 0.042 9.0 1500 0.023 0.026 0.038 0.038 0.050 0.090	6.0	600	0.010	0.010	0.011		0.020	0.020			
6.0 2000 0.025 0.025 0.040 0.040 0.045 0.075 9.0 300 0.009 0.009 0.009 0.024 0.035 9.0 1000 0.010 0.014 0.026 0.034 0.036 0.042 9.0 1500 0.023 0.026 0.038 0.038 0.050 0.090	6.0	1000	0.010	0.019	0.021		0.025	0.033	0.035		
9.0 300 0.009 0.009 0.009 9.0 600 0.010 0.014 0.021 0.024 0.035 9.0 1000 0.014 0.026 0.034 0.036 0.042 9.0 1500 0.023 0.026 0.038 0.050 0.090	6.0	1500	0.012	0.022	0.025		0.036	0.036	0.041		
9.0 600 0.010 0.014 0.021 0.024 0.035 9.0 1000 0.010 0.014 0.026 0.034 0.036 0.042 9.0 1500 0.023 0.026 0.038 0.038 0.050 0.090	6.0	2000	0.025	0.025	0.040		0.040	0.045	0.075		
9.0 1000 0.010 0.014 0.026 0.034 0.036 0.042 9.0 1500 0.023 0.026 0.038 0.038 0.050 0.090	9.0	300	0.009	0.009	0.009						
9.0 1500 0.023 0.026 0.038 0.038 0.050 0.090	9.0	600	0.010	0.014	0.021		0.024	0.035			
	9.0						0.034	0.036	0.042		
0.0 12000 0.020 0.020 0.000 0.000 0.000 0.000	9.0	1500	0.023	0.026	0.038		0.038	0.050	0.090		
9.0 2000 0.026 0.042 0.040 0.050 0.092 0.169	9.0	2000	0.026	0.042	0.040		0.050	0.092	0.169		

【図8】

[図9]

【書類名】

要約書

【要約】

【課題】見積り要素や原単位表、見積り計算式などの見積り基準の変更に依存することなく工数見積りを行う。

【解決手段】見積り要素と原単位表とを参照し、少なくとも四則演算ルールにより記述された見積り計算式を演算して工数の見積りを行うに際し、この見積り計算式から見積り要素を抽出し、この見積り要素を標準ソースコードを参照して予め実装されたプログラミングルールで実行可能なソースプログラムに置換し、この置換された見積り要素のうち原単位表を参照して原単位値を得るために必要な見積り要素を付加し、見積り計算式のうち原単位値を得るため要素を標準ソースコードを参照してプログラミングルールで実行可能なソースプログラムに置換し、これら置換されたソースプログラムに基づいて見積り計算式をプログラミングルールにより計算可能な書式に変換する。

【選択図】 図1

出願人履歴情報

識別番号

[000003078]

1. 変更年月日 1990年 8月22日

[変更理由] 新規登録

住 所 神奈川県川崎市幸区堀川町72番地

氏 名 株式会社東芝

2. 変更年月日 2001年 7月 2日

[変更理由] 住所変更

住 所 東京都港区芝浦一丁目1番1号

氏 名 株式会社東芝