Departamento de Matemática

para todo $x \in A$.

Universidade do Minho

Álgebra

época especial - 21 julho 2021

Lic. em Ciências de Computação/Lic. em Matemática - 2º ano

duração: duas horas

V**X** F□

Nome

Curso _____ Número _

Responda no próprio enunciado, colocando uma cruz no quadrado correspondente. Cada questão está cotada com 0,8 valores numa escala de 0 a 20. Respostas erradas descontam 0,2 valores na mesma escala.

Em cada uma das questões seguintes, diga se é verdadeira (V) ou falsa (F) a proposição, assinalando a opção conveniente:

- 1. Se (S,*) é um grupóide e $a,b,c\in S$ são tais que a*(b*c)=(a*b)*c, então, (S,*) é um semigrupo. $V\Box$ FX
- 2. Seja $A = \{a, b\}$. Então, das 16 operações binárias que se pode definir em A, apenas duas atribuem a A a estrutura de grupo. $\bigvee F \Box$
- 3. $(\mathbb{N},+)$ é subgrupo de $(\mathbb{Z},+)$.
- 4. Se G é grupo, $H \triangleleft G$ e $G/H \simeq G$, então, $H = \{1_G\}$.
- 5. Seja G um grupo que admite dois subgrupos distintos de ordem 5. Então, 10 é um divisor da ordem de G. $V \square$ F
- 7. Se G é um grupo, então, existe um morfismo de grupos $f:G\times G\to G$ tal que $\operatorname{Nuc} f=\{1_G\}\times G.$
- 8. Sejam $n \geq 3$ e H um subgrupo normal do grupo simétrico S_n . Então, S_n/H é um grupo que não é cíclico. $V \square F$
- 9. Se $\alpha \in S_6$ é tal que $o(\alpha) = 4$, então, α é um ciclo de comprimento 4. $V \square F X$
- 10. No anel \mathbb{Z}_{12} , o elemento $4 \cdot [1]_{12} + [3]_{12}$ é um divisor de zero. $\mathsf{V} \square \mathsf{F} \mathsf{X}$
- 11. $A = \left\{ \begin{bmatrix} 0 & 0 \\ 0 & a \end{bmatrix} : a \in \mathbb{R} \right\}$ é um ideal do anel das matrizes quadradas reais de ordem 2. $V \square F$
- 12. Seja A um anel. Então, $B=\{x\in A: 4x=0_A\}$ é um subanel de A.
- 13. Se A é o anel da matrizes quadradas de ordem 2 e I é um ideal de A, então, A/I é um anel não comutativo. $V \square F$
- 14. Sejam A um anel comutativo com identidade, I um ideal primo e B um subanel de A.

 V \nearrow F \square
- 15. Se A é um anel comutativo com identidade de característica 4, então $(x+y)^4 = x^4 + 2x^2y^2 + y^4$
- 16. A aplicação $f: \mathbb{Z}_{10} \to \mathbb{Z}_{25}$, definida por $f([x]_{10}) = [5x]_{25}$, para todo $x \in \mathbb{Z}$, é um morfismo de anéis. $V \square F$
- 17. Seja $\varphi:A\to A'$ um morfismo não nulo de anéis. Se $\varphi(A)$ é um corpo então A é um corpo $V\Box$

Em cada uma das questões seguintes, assinale a opção correta:

18. O grupo \mathbb{Z}_{12} é gerado por \overline{x} se e só se	
$\square \ \overline{x} \in \{\overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{6}, \overline{12}\}$	$\square \ \overline{x} \in \{\overline{1}, \overline{3}, \overline{5}, \overline{7}, \overline{9}, \overline{11}\}$
	$\square \ \overline{x} \in \{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}, \overline{10}\}$
19. No grupo \mathbb{R}/\mathbb{Z} , o elemento \overline{x} é tal que $o(\overline{x})=4$. Então, podemos ter	
$\square \ \overline{x} = 4\mathbb{Z}$	$\square \ \overline{x} = 4 + \mathbb{Z}$
$\mathbf{x} \overline{x} = \frac{1}{4} + \mathbb{Z}$	$\Box \ \overline{x} = \frac{1}{4} \mathbb{Z}$
20. Sejam G um grupo comutativo e $H, K < G$ tais que $ H = 5$ e $ K = 7$. Então,	
$\square \; HK < G \; \mathrm{e} \; HK = 12$	\square $HK < G$ e $ HK = 11$
$ \nearrow\!$	\square HK pode não ser subgrupo de G .
21. Seja $\varphi: \mathbb{Z} \to \mathbb{Z}_8 \times \mathbb{Z}_4$ o morfismo de grupos definido por $\varphi(x) = ([4x]_8, [3x]_4)$, para todo o $x \in \mathbb{Z}$. Então,	
$\square \ \varphi$ é monomorfismo mas não é epimorfismo.	$\square \ \varphi$ não é monomorfismo mas é epimorfismo.
$\square \ \varphi$ é monomorfismo e epimorfismo.	$\mathbf{X}\!$
22. Em S_{10} , se $\beta = (1\ 2\ 3\ 4)(9\ 10)$ e $\alpha = (5\ 6\ 7\ 8)$, então	'
	$\Box \alpha^9 \beta^2 \alpha^{-1} = (1\ 3)(2\ 4)(5\ 7)(6\ 8)$
	$\Box \alpha^9 \beta^2 \alpha^{-1} = (1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10)$
23. A caraterística do anel $\mathbb{Z}_{12} \times \mathbb{Z}_8$ é $\square \ 96 \qquad $	$4 \Box \ 20 \Box \ 4$
24. Para $a\in\mathbb{Z}$, seja $f_a:\mathbb{Z}_6 o\mathbb{Z}_6$ a função definida por f de anéis se e só se	$G_a([x]_6)=[ax]_6$, para todo $x\in\mathbb{Z}$. Então, f_a é um morfismo
$\Box \ [a]_6 \in \{[0]_6, [1]_6\}$	$\square [a]_6 \in \{[0]_6, [1]_6, [3]_6\}$
	$\square [a]_6 \in \{[0]_6, [1]_6, [2]_6, [3]_6\}$
25. Relativamente aos anéis $A=\mathbb{R}\times\mathbb{Z}$ e $B=\{0\}\times\mathbb{Z}$, podemos afirmar que:	
$\nearrow\!$	$\hfill\Box$ B é um ideal primo mas não maximal de $A.$
\square B é um ideal não primo e não maximal de A .	\square B não é um ideal de A .