Final Project

組員: 611415102 林彦佑 407420041 劉季恆、408410002 林靖軒、408410098 蔡嘉祥、408410102 楊力行

方法:

使用 RestNet 架構來做為模型的訓練

Feature Extraction: 1D Convolution

之所以使用 convolution 的原因是因為資料為一個 1 dimension 3 channel 的時序訊號 (window size 沿用原始設置 32),而 1d convolution 可以拿來做訊號的處理,所以我們想用 1D convolution layers 來取代 Linear layers 當作我們的 Feature Extraction operator。

**由於 convoluton layers 會使參數增多 (每個 kernel 都要學),所以我們打算使用 Residual Network 的架構。

最終,我們參考 RestNet20 架構,把其中 2D convolution 改成 1D convolution

** 原本的架構當 out channel 數量提升之時,旁邊的 shortcut kernel size 是 1×1 ;我們這邊不小心誤用成 3×3 了

Feature Extraction model

Classifier: Vanilla Linear Layers with activation function

把使用 kernel 抓取特徵完的 features 送進 k 層的 Linear Layers 來作為 classifier。這邊我們選用了 2 層 Linear layers with activation function 在加最後 output layer 當作我們的分類器。

Entire Model:

超參數設定:

batch_size = 1024

window_size = 32(每次 Input 的總時序資料長度)

window_future = 8(取目標時間點後多少為 Input)

window_past = window_size - window_future(取目標時間點前多少為Input)

wx = 8(資料 padding 長度的參數)

num_epoch=50

classifier_layers=[1024, 1024]

分數:

	public	private
我們這組 score	0. 300666	0. 284011
Sample code score	0. 273919	0. 263645
改良率	11. 95%	7. 724%

^{**(}public 跟 private 的排名是不同 code, private 那次的 code 在 public 的 score 為 0.280748)

Public 排名(317):

Sample code score:

MAYUKH BHATTACHARYYA · COPIED FROM PRIVATE NOTEBOOK +334,-269 · 3MO AGO · 9,865 VIEWS

PyTorch FOG End-to-End Baseline [LB 0.254]

Python · Parkinson's Freezing of Gait Prediction, Copy Train Metadata

交叉驗證:

結果討論:

一開始試著新增層數來增加模型的深度,但效果有它的上限,後來經過觀察後發現資料屬於時序性資料,所以將架構由 DNN 改為 LSTM,但進步的幅度仍然有限,之後又想到因為 1D convolution 可以用來做訊號處理,所以將 1D convolution layers 來取代 Linear layers 當作 Feature Extraction operator,最後參考 RestNet20 的架構把 2D convolution 修改成 1D convolution,抓取完特徵後,再用 2 層 Linear layers with activation function 加上 output layer 當作我們的分類器。