AE2ADS: Algorithms Data Structures and Efficiency

Lecturer: Heshan Du

Email: <u>Heshan.Du@nottingham.edu.cn</u>

University of Nottingham Ningbo China

Big-Oh

Let f(n) and g(n) be functions mapping positive integers to positive real numbers.

We say that f(n) is O(g(n)), if there exist a real constant c>0 and an integer constant $n_0\geq 1$ such that for every $n\geq n_0$,

$$f(n) \le cg(n).$$

Prove that:

- $n^2 + 1$ is $O(n^2)$
 - $c = 2, n_0 = 1$
- $(n-3)^2$ is $O(n^2)$
 - $c = 10, n_0 = 1$

Given that f(n) = n + 3, if n is even; $f(n) = n^2 + 5$, if n is odd, state the Big-Oh behaviour of f(n), and prove it.

Hint: f(n) is $O(n^2)$. Let c = 6, $n_0 = 1$.

Big-Omega

Let f(n) and g(n) be functions mapping positive integers to positive real numbers.

We say that f(n) is $\Omega(g(n))$, if there exist a real constant c>0 and an integer constant $n_0\geq 1$ such that for every $n\geq n_0$,

$$f(n) \ge cg(n)$$
.

Big-Theta

Let f(n) and g(n) be functions mapping positive integers to positive real numbers.

We say that f(n) is $\Theta(g(n))$, if there are real constants c' > 0, c'' > 0, and an integer constant $n_0 \ge 1$ such that for every $n \ge n_0$, $c'g(n) \le f(n) \le c''g(n)$.

Little-Oh

Let f(n) and g(n) be functions mapping positive integers to positive real numbers.

We say that f(n) is o(g(n)), if for every real constant c > 0, there exists an integer constant $n_0 \ge 1$ such that for every $n \ge n_0$, f(n) < cg(n).

- Prove or disprove that:
 - 1. 5 is $\Omega(1)$
 - 2. 2n+1 is $\Omega(n)$
 - 3. 5 is o(1)
 - **4.** 5 is o(n)
 - 5. $n^2 5n$ is $\Theta(n^2)$
 - 6. n^2 is $\Omega(n)$
 - 7. 1 is $o(\log n)$
 - 8. $n \log n$ is $o(n^2)$

Prove or disprove that:

- 1. 5 is $\Omega(1)$ [hint: yes, $c = 1, n_0 = 1$]
- 2. 2n + 1 is $\Omega(n)$ [hint: yes, $c = 1, n_0 = 1$]
- 3. 5 is o(1) [hint: no, e.g., when c = 1]
- 4. 5 is o(n) [hint: yes, n_0 is an integer greater than $\frac{5}{c}$]
- 5. $n^2 5n$ is $\Theta(n^2)$ [hint: yes, c'' = 1, c' = 0.5, $n_0 = 10$]
- **6.** n^2 is $\Omega(n)$ [hint: yes, $c = 1, n_0 = 1$]
- 7. 1 is $o(\log n)$ [hint: yes, n_0 is an integer greater than $2^{\frac{1}{c}}$]
- 8. $n \log n$ is $o(n^2)$ [hint: yes]

Exercise 3.7

Prove 1 is $o(\log n)$.

Proof: In order to show 1 is $o(\log n)$, by the definition of little o, take an arbitrary positive real constant c, we need to show that there exists an integer constant $n_0 \geq 1$ such that for every $n \geq n_0$, $1 < c(\log n)$, this is, $\frac{1}{c} < \log n$, $2^{\frac{1}{c}} < n$. Let n_0 be the smallest integer that is ≥ 1 and $>2^{\frac{1}{c}}$. Then it is clear that, for every $n \geq n_0 > 2^{\frac{1}{c}}$, $1 < c(\log n)$ is true. Hence, 1 is $o(\log n)$.

Exercise 3.8

Prove $n \log n$ is $o(n^2)$

Proof: In order to show $n \log n$ is $o(n^2)$, by the definition of little o, take an arbitrary positive real constant c, we need to show that there exists an integer constant $n_0 \geq 1$ such that for every $n \geq n_0$, $n \log n < c(n^2)$, this is, $c > (\log n)/n$. As $n \to +\infty$, $(\log n)/n \to 0$. This means that it eventually will be smaller than c. Hence there exists an integer constant $n_0 \geq 1$ such that for every $n \geq n_0$, $n \log n < c(n^2)$. Hence, 1 is $o(\log n)$.

Given $f(n) = n^2$ if n is even, f(n) = n if n is odd. Find the big-Oh and big-Omega behaviors of f(n).

Hint: $f(n) \in O(n^2)$; $f(n) \in \Omega(n)$

More Exercises

M. T. Goodrich, R. Tamassia and M. H. Goldwasser, Data Structures and Algorithms in Java, 6th Edition, 2014.

Chapter 4. Analysis Tools