

9. MANOVA Multivariate analysis of variance

Albulene Grajcevci

Agenda

- An introduction to MANOVA
- MANOVA assumptions
 - Testing for the assumptions
- Conducting a MANOVA (one-way)
- Reporting MANOVAs

> But first let us talk about

> ANOVA

- The Multivariate Analysis of Variance (MANOVA) is an extension of the ANOVA
- The ANOVA test allows us to select one Dependent Variable, but MANOVA enables us to use multiple Dependent Variables in our model
- By omitting repeated testing on the same variables: No Type 1 Error
 - Wait! But what was the Type 1 Error?
- Similar to ANOVA, the MANOVA test make use of the mean score to test for group differences. It is suitable to test DVs that are linked to one another either in the model you develop or in literature – e.g., testing motivation, interest, and curiosity across different groups

- Similar to ANOVAs, there are between and within subjects MANOVAs
- If you use one Independent variable to test for differences across several
 Dependent variables then you are conducing a one-way between/within subjects
 MANOVA; if there are two IVs, it is a two-way between/within MANOVA
- A test that mixes both between AND within IVs is <u>called mixed MANOVA</u>

This semester we will focus on 'one-way MANOVA'

- 1. Normality (Shapiro Wilk)
- 2. Univariate Outliers (Boxplots)
- 3. Multivariate Outliers (Mahalanobis Distances)
- 4. Multicollinearity (Correlation)
- 5. Linearity (Scatterplot)
- 6. Homogeneity of variance-covariance matrices (Box's M)

1. Normality testing

Go Analyze -> Descriptive Statistics -> Explore

1. Normality testing

Select the variables

1. Normality testing

GOOD NEWS:

MANOVA is generally robust to a moderate violation of normality, we will continue to do the analysis for now.

2.Univariate Outliers

The assumption of univariate outliers can be tested via inspecting

boxplots

Analyze -> Descriptive Statistics -> Explore

2.Univariate Outliers

Place your variables

2.Univariate Outliers

Look at the boxplots to identify possible outliers. In the slide below there is one outlier

3. Multivariate outliers

This assumption can be tested via the Mahalanobis Distances

Analyze - Regression - Linear

3. Multivariate outliers

Under <u>Residuals Statistics</u>, **Maximum** Malal. Distance = 9.653

Residuals Statistics^a

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	3.2186	3.3821	3.3601	.04555	249
Std. Predicted Value	-3.107	.483	.000	1.000	249
Standard Error of Predicted Value	.042	.122	.049	.019	249
Adjusted Predicted Value	3.1835	3.3940	3.3602	.04577	249
Residual	-2.38211	.78143	.00000	.58993	249
Std. Residual	-4.030	1.322	.000	.998	249
Stud. Residual	-4.040	1.351	.000	1.002	249
Deleted Residual	-2.39398	.81649	00008	.59455	249
Stud. Deleted Residual	-4.172	1.354	002	1.009	249
Mahal. Distance	.233	9.653	.996	2.185	249
Cook's Distance	.000	.053	.004	.008	249
Centered Leverage Value	.001	.039	.004	.009	249

a. Dependent Variable: AwareofLearningDifficulties

4. Multicollinearity

> In order to test for multicollinearity you need to conduct a correlation analysis

. Go to Analyze -Correlate - Bivariate

4. Multicollinearity

- Correlation tells you what happens to the other variable as variable increases or decreases in value
- Correlation values

- 0.3-05 low correlation
- 05-0-7 moderate
- 0.7 and above is considered as a high value
- Covariance

5. Linearity

This assumption can be tested using *scatterplots*

Graphs -Legacy Dialogs -Scatter/Dot - Simple

Scatter - Define

tatistics Data Editor								
<u>G</u>	raphs	<u>U</u> tilities	E <u>x</u> tensions	<u>W</u> indow	<u>H</u> elp			
ni Chart Builder					A	•		
<u>Graphboard Template Chooser</u>			14					
-	Weibu	ıll Plot			ar .			
Compare Subgroups			var	var				
	<u>L</u> ega	cy Dialogs		١	<u>B</u> ar			
6		5			11 3-D Bar			
7		5			<u>L</u> ine			
8		5			🔼 Area			
6		5			— – ☑ Pi <u>e</u>			
7 5 6		5			High-Low			
5		8						
		5			■ Boxplot			
7		6			Error Bar			
8		5			Population Pyramid			
6		6			Scatter/Dot			
5		5			Histogram.			
0		7			jotogram.			

5. Linearity

Go Graphs - Legacy Dialogs - Scatter/Dot - Simple

Scatter - Define

5. Linearity

Once an output file is produced for you then please double clic on the SCATTERPLOT which will then open a new window- THE CHART EDITOR.

Step 1: Click on Elements - Fit Line at Subgroups
Step 2: Make sure that 'Linear' is selected as the Fit Method
Final step: If the lines are strait, it can be concluded that the
assumption has been satisfied

Analyze -> General Linear Model -> Multivariate

Place your variables

- Look at literature
- In order to satisfy this assumption, the Box's M value should be non-significant at $\alpha = .001$

•

Box's Test of Equality of Covariance Matrices ^a							
Box's M 10.130							
F .786							
df1 12							
df2 4271.499							
Sig666							
Tests the null hypothesis that the observed covariance matrices of the dependent variables are equal across groups.							
a. Design: Intercept + GPA							

Output shows Levene's Test of Equality of Error Variances, where a non-significant Levene Statistic at α = .05 would indicate equality of variances

	evene's Test of Equality	Levene Statistic	df1	df2	Sig.
Teachers are enthusiastic	Based on Mean	.125	2	232	.882
about teaching	Based on Median	.013	2	232	.987
	Based on Median and with adjusted df	.013	2	229.228	.987
	Based on trimmed mean	.035	2	232	.966
Teachers are dynamic and energetic when teaching	Based on Mean	1.556	2	232	.213
	Based on Median	.408	2	232	.665
	Based on Median and with adjusted df	.408	2	228.471	.665
	Based on trimmed mean	1.548	2	232	.215
AwareofLearningDifficultie s	Based on Mean	.082	2	232	.921
	Based on Median	.012	2	232	.988
	Based on Median and with adjusted df	.012	2	223.390	.988
	Based on trimmed mean	.083	2	232	.920

7. Before you conduct a MANOVA

Based on your data please select the `right`test

Robustness

Multivariate Test	Sample Size	Levels of IVs	Uneven Cell Sizes	Unequal variance	Non-normal Data	Collinearity
Pillai's Trace	Small	> 2	Υ	Υ	Υ	Low to medium
Wilk's Lambda	Medium to large	> 2	N	N	N	Low to medium
Hotelling's Trace	Medium to large	= 2	N	N	N	Low to medium
Roy's Largest Root	Medium to large	> 2	N	N	N	Medium to high

8. Conducting a one-way MANOVA

How would you report MANOVA results?

