NETS IN GROUPS, MINIMUM LENGTH g-ADIC REPRESENTATIONS, AND MINIMAL ADDITIVE COMPLEMENTS

MELVYN B. NATHANSON

ABSTRACT. The number theoretic analogue of a net in metric geometry suggests new problems and results in combinatorial and additive number theory. For example, for a fixed integer $g \geq 2$, the study of h-nets in the additive group of integers with respect to the generating set $A_g = \{0\} \cup \{\pm g^i : i = 0, 1, 2, \ldots\}$ requires a knowledge of the word lengths of integers with respect to A_g . A g-adic representation of an integer is described that algorithmically produces a representation of shortest length. Additive complements and additive asymptotic complements are also discussed, together with their associated minimality problems.

1. Nets in metric spaces

Let (X, d) be a metric space. For $z \in X$ and $r \ge 0$, the *sphere* with center z and radius r is the set

$$S_z(r) = \{x \in X : d(x, z) = r\}.$$

The open ball $B_z(r)$ of radius r and center z and the closed ball $\overline{B}_z(r)$ of radius r and center z are, respectively,

$$B_z(r) = \{x \in X : d(x, z) \le r\} = \bigcup_{r' < r} S_z(r')$$

and

$$\overline{B}_z(r) = \{x \in X : d(x, z) \le r\} = \bigcup_{r' \le r} S_z(r').$$

An r-net in (X, d) is a subset C of X such that, for all $x \in X$, there exists $z \in C$ with $d(x, z) \le r$. Equivalently, C is an r-net in X if and only if

$$X = \bigcup_{z \in C} \overline{B}_z(r).$$

Note that X is the unique 0-net in X. The set C is a *net* in X if C is an r-net for some $r \ge 0$.

The set C in X is called r-separated if $d(z, z') \ge r$ for all $z, z' \in C$ with $z \ne z'$. By Zorn's lemma, every metric space contains a maximal r-separated set, and a maximal r-separated set is an r-net in X. A minimal r-net in a metric space (X, d)

1

Date: December 2, 2008.

²⁰⁰⁰ Mathematics Subject Classification. 11A63, 11B13, 11B34, 11B75, 20F65, 51F99, 54E35. Key words and phrases. Additive complement, metric geometry, net, g-adic representation, Cayley graph, geometric group theory, additive number theory, combinatorial number theory.

This paper was supported in part by a PSC-CUNY Research Award, and was written while the author was a visiting fellow at Princeton University. I thank the Princeton math department for its hospitality.

is an r-net C such that no proper subset of C is an r-net in (X, d). For example, X is a minimal 0-net in (X, d).

Problem 1. In which metric spaces do there exist minimal r-nets for r > 0?

The metric spaces (X, d_X) and (Y, d_Y) are called *bi-Lipschitz equivalent* if there exists a function $f: X \to Y$ such that, for positive constants K_1 and K_2 , we have

$$K_1 d_X(x, x') \le d_Y(f(x), f(x')) \le K_2 d_X(x, x')$$

for all $x, x' \in X$. The metric spaces (X, d_X) and (Y, d_Y) are called *quasi-isometric* if there exist nets C_X in X and C_Y in Y that are bi-Lipschitz equivalent. These are fundamental concepts in metric geometry.

2. Nets in groups

Let G be a multiplicative group or semigroup with identity e. For subsets A and B of G, we define the *product set*

$$AB = \{ab : a \in A \text{ and } b \in B\}.$$

If $A = \emptyset$ or $B = \emptyset$, then $AB = \emptyset$. For $b \in G$, we write $Ab = A\{b\}$ and $bA = \{b\}A$. The set Ab is called the *right translation* of A by b, and the set bA is called the *left translation* of A by b.

For every nonnegative integer h, we define the product sets A^h inductively: $A^0 = \{e\}, A^1 = A$, and $A^h = A^{h-1}A$ for $h \ge 2$. Thus,

$$A^h = \{a_1 a_2 \cdots a_h : a_i \in A \text{ for } i = 1, 2, \dots, h\}.$$

If $e \in A$, then $A^{i-1} \subseteq A^i$ for all $i \ge 1$, and

$$A^h = \bigcup_{i=0}^h A^i.$$

Let A be a set of generators for a group G. Without loss of generality we can assume that A is symmetric, that is, $a \in A$ if and only if $a^{-1} \in A$. We define the word length function $\ell_A : G \to \mathbb{N}_0$ as follows: For $x \in G$ and $x \neq e$, let $\ell_A(x) = r$ if r is the smallest positive integer such that there exist $a_1, a_2, \ldots, a_r \in A$ with $x = a_1 a_2 \cdots a_r$. Let $\ell_A(e) = 0$. The integer $\ell_A(x)$ is called the word length of x with respect to A, or, simply, the length of x.

Let A be a symmetric generating set for G. The following properties follow immediately from the definition of the word length function:

- (i) $\ell_A(x) = 0$ if and only if x = e,
- (ii) $\ell_A(x^{-1}) = \ell_A(x)$ for all $x \in G$,
- (iii) $\ell_A(xy) \le \ell_A(x) + \ell_A(y)$ for all $x, y \in G$,
- (iv) $\ell_A(x) = 1$ if and only if $x \in A \setminus \{e\}$,
- (v) if $x = a_1 \cdots a_s$ with $a_i \in A$ for $i = 1, \dots, s$, then $\ell_A(x) \leq s$,
- (vi) If $A' = A \cup \{e\}$, then $\ell_{A'}(x) = \ell_A(x)$ for all $x \in G$.

Lemma 1. Let A be a symmetric generating set for a group G. Suppose that $\ell_A(x) = r$ and that the elements $a_1, a_2, \ldots, a_r \in A$ satisfy $x = a_1 a_2 \cdots a_r$. For $1 \le i \le j \le r$ we have

$$\ell_A(a_i a_{i+1} \cdots a_j) = j - i + 1.$$

Proof. By word length properties (iii) and (v) we have

$$r = \ell_A(x) = \ell_A(a_1 \cdots a_{i-1} a_i \cdots a_j a_{j+1} a_r)$$

$$\leq \ell_A(a_1 \cdots a_{i-1}) + \ell_A(a_i \cdots a_j) + \ell_A(a_{j+1} \cdots a_r)$$

$$\leq (i-1) + \ell_A(a_i \cdots a_j) + (r-j)$$

and so

$$j-i+1 \le \ell_A(a_i \cdots a_j) \le j-i+1.$$

This completes the proof.

Let A be a symmetric generating set for a group G. The length function ℓ_A induces a metric d_A on G as follows:

$$d_A(x,y) = \ell_A(xy^{-1}).$$

The distance between distinct elements of G is always a positive integer, and so the metric space (G, d_A) is 1-separated. Moreover, $d_A(x, e) = \ell_A(x)$ for all $x \in G$, and so, for every nonnegative integer h, we have

$$S_e(h) = \{x \in G : \ell_A(x) = h\}.$$

Thus, the set of all group elements of length h is precisely the sphere with center e and radius h in the metric space (G, d_A) .

If $r \geq 0$ and h = [r] is the integer part of r, then for every $z \in G$ we have

$$\overline{B}_z(r) = \{x \in X : d_A(x, z) \le r\} = \{x \in X : d_A(x, z) \le h\} = \overline{B}_h(z)$$

and so the geometry of the group G is determined by closed balls with integer radii. If $e \in A$, then $A^h = \bigcup_{i=0}^h A^i$ and

$$\overline{B}_h(z) = \{x \in X : d_A(x, z) \le h\}$$

$$= \{x \in X : \ell_A(xz^{-1}) \le h\}$$

$$= \left\{x \in X : xz^{-1} \in \bigcup_{i=0}^h A^i\right\}$$

$$= \{x \in X : xz^{-1} \in A^h\}$$

$$= A^h z$$

Theorem 1. Let G be a group and let A be a symmetric generating set for G with $e \in A$. For every nonnegative integer h, the set C is an h-net in the metric space (G, d_A) if and only if $G = A^hC$. The set C is a net if and only if $G = A^hC$ for some nonnegative integer h.

Proof. The set C is an h-net in (G, d_A) if and only if, for each $x \in X$, there exists $z \in C$ with $d_A(x, z) = \ell_A(xz^{-1}) \le h$, that is, $x \in \overline{B}_z(h)$. Equivalently, C is an h-net if and only if

$$G = \bigcup_{z \in C} \overline{B}_z(h) = \bigcup_{z \in C} A^h z = A^h C.$$

Thus, C is a net if and only if $G = A^h C$ for some nonnegative integer h.

Here are two constructions of nets.

Theorem 2. Let G be a group and let A be a symmetric generating set for G with $e \in A$. For every nonnegative integer h, the set

$$C = \bigcup_{q=0}^{\infty} S_e((h+1)q)$$

is an h-net in the metric space (G, d_A) .

Note that C = G if h = 0.

Proof. By Theorem 1, it suffices to prove that $G = A^h C$. Let $x \in G$ with $n = \ell_A(x)$. By the division algorithm, there exist integers $q \ge 0$ and r such that

$$n = r + (h+1)q$$

and

$$0 \le r \le h$$
.

There exist elements $a_1, \ldots, a_n \in A$ such that

$$x = a_1 \cdots a_r a_{r+1} \cdots a_{r+(h+1)q}.$$

Since this is a shortest representation of x as a product of elements of A, it follows from Lemma 1 that

$$\ell_A(a_1\cdots a_r)=r$$

and

$$\ell_A(a_{r+1}\cdots a_{r+(h+1)q}) = (h+1)q.$$

Therefore, $a_1 \cdots a_r \in S_e(r) \subset A^r \subset A^h$ and

$$a_{r+1} \cdots a_{r+(h+1)q} \in S_e((h+1)q) \subseteq C$$

hence $x \in A^rC$. This completes the proof.

Theorem 3. Let G be a group and let A be a symmetric generating set for G with $e \in A$. Suppose that for every $x \in G$ there exists $a \in A$ with

(1)
$$\ell_A(ax) = 1 + \ell_A(x).$$

For every nonnegative integer h, the set

$$C = \bigcup_{q=0}^{\infty} S_e((2h+1)q)$$

is an h-net in the metric space (G, d_A) .

Proof. Let $x \in G$ with $n = \ell_A(x)$. By the division algorithm, there exist integers $q \ge 0$ and r such that

$$n = r + (2h + 1)q$$
 and $|r| \le h$.

If $r \geq 0$, then the argument in the proof of Theorem 2 shows that $x \in A^hC$.

Suppose that r < 0. Then n = (2h+1)q - |r| and there exist elements $a_{|r|+1}, \ldots, a_{(2h+1)q} \in A$ such that

$$x = a_{|r|+1} \cdots a_{(2h+1)q}.$$

Condition (1) implies that there exist elements $a_1, \ldots, a_{|r|} \in A$ such that

$$\ell_A(a_{|r|-i+1}\cdots a_{|r|}x) = \ell_A(a_{|r|-i+1}\cdots a_{|r|}a_{|r|+1}\cdots a_{(2h+1)q}) = (2h+1)q - |r| + i$$

for i = 1, 2, ..., |r|. In particular, $\ell_A(a_1 \cdots a_{|r|}x) = (2h+1)q$ and so

$$a_1 \cdots a_{|r|} x \in S_e((2h+1)q) \subseteq C.$$

Since $a_{|r|}^{-1} \cdots a_2^{-1} a_1^{-1} \in A^{|r|} \subseteq A^h$, it follows that

$$x = \left(a_{|r|}^{-1} \cdots a_2^{-1} a_1^{-1}\right) \left(a_1 \cdots a_{|r|} x\right) \in A^h C.$$

This completes the proof.

If C is an h-net in G and $C \subseteq C'$, then

$$G = A^h C \subseteq A^h C' \subseteq G$$

and so C' is an h-net in G. Similarly, if C is an h-net in G and $y \in G$, then

$$G = Gy = (A^hC)y = A^h(Cy)$$

and Cy is an h-net in G. Thus, the set of h-nets in the metric space (G, d_A) is closed with respect to supersets and right translations.

We modify the definitions appropriately when G is an additive abelian group with identity element 0. For subsets A and B of G, we define the sumset

$$A + B = \{a + b : a \in A \text{ and } b \in B\}.$$

For $h \geq 1$, the h-fold sumset of A is

$$hA = \{a_1 + a_2 + \dots + a_h : a_i \in A \text{ for } i = 1, 2, \dots, h\}.$$

We define $0A = \{0\}$. For every $b \in G$, there is the translation $A + b = A + \{b\}$. Let A be a symmetric generating set for G with $0 \in A$. By Theorem 1, the set C is a net in G if and only if there is a nonnegative integer h such that

$$G = hA + C$$
.

Problem 2. Let A be a symmetric generating set for the group G with $e \in A$. Describe and classify all nets in G.

Problem 3. The net C in the metric space (G, d_A) is called minimal if no proper subset of C is a net. Determine if the metric space (G, d_A) contains minimal nets, and, if so, construct examples of minimal nets. Is it possible to classify the minimal nets in a metric space of the form (G, d_A) ?

Problem 4. Suppose that minimal nets exist in the metric space (G, d_A) . Does every net contain a minimal net?

Problem 5. For every integer $g \geq 2$, consider the additive group **Z** of integers with generating set

$$A_a = \{0\} \cup \{\pm q^i : i = 0, 1, 2, \ldots\}.$$

Let ℓ_g and d_g denote, respectively, the word length function and the metric induced on \mathbf{Z} . Classify the nets in the metric space (\mathbf{Z}, d_g) . Does this space contain minimal nets? The metrics d_2 and d_3 are particularly interesting.

3. An algorithm to compute g-adic length

Fix an integer $g \geq 2$, and consider the additive group ${\bf Z}$ with generating set $A_g = \{0\} \cup \{\pm g^i : i = 0, 1, 2, \ldots\}$. We denote by $\ell_g(n)$ the word length of an integer n with respect to A_g . A partition of an integer n as a sum of not necessarily distinct elements of A_g will be called a g-adic representation of n. In order to understand the metric geometry of the group ${\bf Z}$ with generating set A_g , it is useful to have an algorithm to compute the g-adic length $\ell_g(n)$ of an integer n in $({\bf Z}, d_g)$. In this section we construct a special g-adic representation that has shortest length with respect to the generating set A_g . Note that the shortest length representation of an integer with respect to the generating set A_g is not unique. For example, for even g we have

$$n = -\left(\frac{g}{2}\right)g^{i} + \left(1 - \frac{g}{2}\right)g^{i+1} + g^{i+2} = \left(\frac{g}{2}\right)g^{i} + \left(\frac{g}{2}\right)g^{i+1}.$$

These are g-adic representations of n of shortest length g. Similarly, for odd g,

$$\left(\frac{g+1}{2}\right)g^{i} = -\left(\frac{g-1}{2}\right)g^{i} + g^{i+1}$$

are g-adic representations of shortest length (g+1)/2.

We consider separately the representations of integers as sums and differences of powers of g for g even and for g odd.

Theorem 4. Let g be an even positive integer. Every integer n has a unique representation in the form

$$n = \sum_{i=0}^{\infty} \varepsilon_i g^i$$

such that

- (i) $\varepsilon_i \in \{0, \pm 1, \pm 2, \dots, \pm (g/2)\}\$ for all nonnegative integers i,
- (ii) $\varepsilon_i \neq 0$ for only finitely many nonnegative integers i,
- (iii) if $|\varepsilon_i| = g/2$, then $|\varepsilon_{i+1}| < g/2$ and $\varepsilon_i \varepsilon_{i+1} \ge 0$.

Moreover, n has length

$$\ell_g(n) = \sum_{i=0}^{\infty} |\varepsilon_i|$$

in the metric space (\mathbf{Z}, d_g) associated with the generating set $A_g = \{0\} \cup \{\pm g^i : i = 0, 1, 2, \ldots\}$.

A representation of the integer n that satisfies conditions (i), (ii), and (iii) will be called the *minimum length g-adic representation of* n.

Proof. We begin by describing a "standardizing and shortening" algorithm that, for every nonzero integer n, produces a g-adic representation that satisfies conditions (i), (ii), and (iii) and that has length $\ell_g(n)$. There are five operations that we can perform on an arbitrary representation of an integer as a sum of elements of the generating set A_g . Each of these operations produces a new representation with a strictly smaller number of summands.

- (a) If 0 occurs as a summand in the representation of a nonzero integer n, then delete it.
- (b) If g^i and $-g^i$ both appear as summands, then delete them.

- (c) If g^i (resp. $-g^i$) occurs $m \ge g$ times for some i, then apply the division algorithm to write m = qg + s with $0 \le s \le g 1$, and replace qg occurrences of g^i (resp. $-g^i$) with q summands g^{i+1} (resp. $-g^{i+1}$). This operation reduces the number of summands in the representation by q(g-1).
- (d) If g^i occurs m times for some i, where g/2 < m < g, then replace mg^i with $(g-m)(-g^i) + g^{i+1}$. Similarly, if $-g^i$ occurs m times for some i, where g/2 < m < g, then replace $m(-g^i)$ with $(g-m)g^i + (-g^{i+1})$. These substitutions reduce the number of summands in the representation of n by $m (g m + 1) = 2m g 1 \ge 1$.

We can iterate operations (a)–(d) only finitely many times, since the number of summands strictly decreases with each iteration. At the end of the process, we have a representation $n = \sum_{i=0}^{\infty} \varepsilon_i g^i$ with coefficients $\varepsilon_i \in \{0, \pm 1, \pm 2, \dots, \pm g/2\}$ for all i and $\varepsilon_i = 0$ for all sufficiently large i.

(e) Suppose that $\varepsilon_i = -g/2$ and $\varepsilon_{i+1} \geq 1$ for some i. We replace $-(g/2)g^i + \varepsilon_{i+1}g^{i+1}$ with $(g/2)g^i + (\varepsilon_{i+1} - 1)g^{i+1}$. Similarly, if $\varepsilon_i = g/2$ and $\varepsilon_{i+1} \leq -1$ for some i, then we replace $(g/2)g^i + \varepsilon_{i+1}g^{i+1}$ with $-(g/2)g^i + (\varepsilon_{i+1} + 1)g^{i+1}$. Each of these operations reduces the number of summands by 1. We repeat this operation as often as possible. Again, at the end of the process, we have a representation $n = \sum_{i=0}^{\infty} \varepsilon_i g^i$, where $\varepsilon_i \in \{0, \pm 1, \pm 2, \dots, \pm g/2\}$ for all i and $\varepsilon_i = 0$ for all sufficiently large i. Moreover, if $\varepsilon_i = |g/2|$, then $\varepsilon_i \varepsilon_{i+1} \geq 0$.

The construction of a minimum length g-adic representation is almost complete. We must still eliminate consecutive coefficients of g/2 or -g/2. Suppose that $\varepsilon_i = \varepsilon_{i+1} = g/2$ for some nonnegative integer i. Choose the smallest such integer i and, for this i, the largest integer $k \geq 2$ such that

$$\varepsilon_i = \varepsilon_{i+1} = \dots = \varepsilon_{i+k-1} = \frac{g}{2}.$$

We apply the identity

$$\varepsilon_{i-1}g^{i-1} + \sum_{j=i}^{i+k-1} \left(\frac{g}{2}\right)g^j + \varepsilon_{i+k}g^{i+k}$$

$$= \varepsilon_{i-1}g^{i-1} + \left(-\frac{g}{2}\right)g^i - \sum_{j=i+1}^{i+k-1} \left(\frac{g}{2} - 1\right)g^j + (\varepsilon_{i+k} + 1)g^{i+k}$$

to eliminate the k successive digits of g/2. This reduces the number of summands by

$$\frac{gk}{2} - \left(\frac{g}{2} + (k-1)\left(\frac{g}{2} - 1\right) + 1\right) = k - 2 \ge 0.$$

Observe that $\varepsilon_{i-1} \neq \pm g/2$, and that $\varepsilon_{i+k} \leq g/2$. Similarly, the identity

$$\sum_{j=i}^{i+k-1} \left(-\frac{g}{2}\right) g^j = \left(\frac{g}{2}\right) g^i + \sum_{j=i+1}^{i+k-1} \left(\frac{g}{2}-1\right) g^j - g^{i+k}$$

allows us to eliminate k successive digits of -g/2 and reduce the number of summands by $k-2 \geq 0$. It may still happen that the representation of n contains consecutive digits of g/2 or -g/2. However, if ℓ is the least integer such that $\varepsilon_{\ell} = \varepsilon_{\ell+1} = \pm g/2$, then $\ell \geq i+k$. It follows that the process of replacing consecutive digits of g/2 or -g/2 must terminate, and we obtain a minimum length

g-adic representation of n. Moreover, if we initiate the standardizing and shortening algorithm with any g-adic representation of n of length $\ell_g(n)$, then we obtain a minimum length g-adic representation with exactly the same length.

We shall prove that the minimum length g-adic representation is unique. Let $n = \sum_{i=0}^{\infty} \varepsilon_i g^i$ be a minimum length g-adic representation, and let

$$r = \max\{i \in \mathbf{N}_0 : \varepsilon_i \neq 0\}.$$

We call $\varepsilon_r g^r$ the *leading term* of the representation. If $\varepsilon_i \in \{0, \pm 1, \pm 2, \dots, \pm (g/2)\}$ for $i = 0, 1, \dots, r-1$, then

$$\left| \sum_{i=0}^{r-1} \varepsilon_i g^i \right| \le \frac{g(g^r - 1)}{2(g - 1)} < g^r.$$

It follows that n is positive if the leading term of n is positive, and n is negative if the leading term of n is negative. Thus, $0 = \sum_{i=0}^{\infty} 0 \cdot g^i$ is the unique minimum length representation of 0.

We observe that if $n = \sum_{i=0}^{\infty} \varepsilon_i g^i$ is a minimum length g-adic representation of n with leading term $\varepsilon_r g^r$, then $-n = \sum_{i=0}^{\infty} (-\varepsilon_i) g^i$ is a minimum length g-adic representation of -n with leading term $(-\varepsilon_r)g^r$. Therefore, it suffices to prove the uniqueness of the minimum length g-adic representation for positive integers.

Let $n \geq 1$ have leading term $\varepsilon_r g^r$. If $1 \leq \varepsilon_r \leq (g/2) - 1$, then condition (iii) gives the upper bound

$$n = \varepsilon_r g^r + \sum_{i=0}^{r-1} \varepsilon_i g^i$$

$$\leq \varepsilon_r g^r + \frac{g}{2} \sum_{i=0}^{[(r-1)/2]} g^{r-2i-1} + \left(\frac{g}{2} - 1\right) \sum_{i=1}^{[r/2]} g^{r-2i}$$

$$= \varepsilon_r g^r + \frac{g}{2} \sum_{i=0}^{r-1} g^i - \sum_{i=1}^{[r/2]} g^{r-2i}.$$

If $\varepsilon_r = g/2$, then condition (iii) gives the upper bound

$$n = \left(\frac{g}{2}\right)g^r + \sum_{i=0}^{r-1} \varepsilon_i g^i$$

$$\leq \left(\frac{g}{2}\right)g^r + \left(\frac{g}{2} - 1\right) \sum_{i=0}^{[(r-1)/2]} g^{r-2i-1} + \frac{g}{2} \sum_{i=1}^{[r/2]} g^{r-2i}$$

$$= \frac{g}{2} \sum_{i=0}^r g^i - \sum_{i=1}^{[(r-1)/2]} g^{r-2i-1}.$$

Condition (iii) also gives a lower bound for n. Since $\varepsilon_r \geq 1$, we have $\varepsilon_{r-1} \neq -g/2$, and so

$$n = \varepsilon_r g^r + \sum_{i=0}^{r-1} \varepsilon_i g^i$$

$$\geq \varepsilon_r g^r - \left(\frac{g}{2} - 1\right) \sum_{i=0}^{[(r-1)/2]} g^{r-2i-1} - \frac{g}{2} \sum_{i=1}^{[r/2]} g^{r-2i}$$

$$= \varepsilon_r g^r - \frac{g}{2} \sum_{i=0}^{r-1} g^i + \sum_{i=0}^{[(r-1)/2]} g^{r-2i-1}.$$

Therefore, if $1 \le \varepsilon_r \le (g/2) - 1$ and if n' and n are positive integers whose minimum length g-adic representations have leading terms $(\varepsilon_r + 1)g^r$ and $\varepsilon_r g^r$, respectively, then

$$n' - n \ge \left((\varepsilon_r + 1)g^r - \frac{g}{2} \sum_{i=0}^{r-1} g^i + \sum_{i=0}^{[(r-1)/2]} g^{r-2i-1} \right)$$
$$- \left(\varepsilon_r g^r + \frac{g}{2} \sum_{i=0}^{r-1} g^i - \sum_{i=1}^{[r/2]} g^{r-2i} \right)$$
$$= g^r - g \sum_{i=0}^{r-1} g^i + \sum_{i=0}^{r-1} g^i$$
$$= 1.$$

If n' and n are positive integers whose minimum length g-adic representations have leading terms g^{r+1} and $(g/2)g^r$, respectively, then

$$n' - n \ge \left(g^{r+1} - \frac{g}{2} \sum_{i=0}^{r} g^{i} + \sum_{i=0}^{[r/2]} g^{r-2i}\right) - \left(\frac{g}{2} \sum_{i=0}^{r} g^{i} - \sum_{i=0}^{[(r-1)/2]} g^{r-2i-1}\right)$$

$$= g^{r+1} - g \sum_{i=0}^{r} g^{i} + \sum_{i=0}^{r} g^{i}$$

Therefore, if $n=\sum_{i=0}^r \varepsilon_i g^i$ and $n=\sum_{i=0}^{r'} \varepsilon_i' g^i$ are two minimum length g-adic representations of the positive integer n with leading terms $\varepsilon_r g^r$ and $\varepsilon_{r'}' g^{r'}$, respectively, then these representations have the same leading terms, that is, r=r' and $\varepsilon_r=\varepsilon_{r'}'$ Since

$$n - \varepsilon_r g^r = \sum_{i=0}^{r-1} \varepsilon_i g^i$$

and

$$n - \varepsilon_r g^r = \sum_{i=0}^{r-1} \varepsilon_i' g^i$$

are also minimum length g-adic representations, their leading terms must be equal. Continuing inductively, we see that every integer has at most one minimum length

g-adic representation, and so every integer has exactly one minimum length g-adic representation. This completes the proof.

Theorem 5. Every integer n has a unique representation in the form

$$n = \sum_{i=0}^{\infty} \varepsilon_i 2^i$$

such that

- (i) $\varepsilon_i \in \{0, \pm 1\}$ for all nonnegative integers i,
- (ii) $\varepsilon_i \neq 0$ for only finitely many nonnegative integers i,
- (iii) if $\varepsilon_i = \pm 1$, then $\varepsilon_{i+1} = 0$.

For every integer n,

$$\ell_2(n) = \sum_{i=0}^{\infty} |\varepsilon_i|$$

in the metric space (\mathbf{Z}, d_2) associated with the generating set $A_2 = \{0\} \cup \{\pm 2^i : i = 0, 1, 2, \ldots\}$.

Proof. This is the case g = 2 of Theorem 4.

Theorem 6. Let g be an even positive integer. Consider the metric space (\mathbf{Z}, d_g) associated with the generating set $A_g = \{0\} \cup \{\pm g^i : i = 0, 1, 2, \ldots\}$. For every nonnegative integer h, the set

$$C = \bigcup_{q=0}^{\infty} S_e((2h+1)q)$$

is an h-net in the metric space (\mathbf{Z}, d_a) .

Proof. By Theorem 3, it suffices to prove that for every integer n there exists $g^k \in A_g$ such that $\ell_g(n+g^k) = \ell_g(n)+1$ or $\ell_g(n-g^k) = \ell_g(n)+1$. Let $\varepsilon_r g^r$ be the leading term in the minimum length g-adic representation of n. Let $k \geq r+2$. If $n \geq 0$, then the minimum length g-adic representation of $n+g^k$ satisfies $\ell_g(n+g^k) = \ell_g(n)+1$. Similarly, if n < 0, then the minimum length g-adic representation of $n-g^k$ satisfies $\ell_g(n-g^k) = \ell_g(n)+1$. This completes the proof.

Theorem 7. Let g be an odd integer, $g \ge 3$. Every nonzero integer n has a unique representation in the form

$$n = \sum_{i=0}^{\infty} \varepsilon_i g^i$$

where

- (i) $\varepsilon_i \in \{0, \pm 1, \pm 2, \dots, \pm (g-1)/2\}$ for all nonnegative integers i,
- (ii) $\varepsilon_i \neq 0$ for only finitely many nonnegative integers i.

Moreover, n has length

$$\ell_g(n) = \sum_{i=0}^{\infty} |\varepsilon_i|$$

in the metric space (\mathbf{Z}, d_g) associated with the generating set $A_g = \{0\} \cup \{\pm g^i : i = 0, 1, 2, \ldots\}$.

A representation of n that satisfies conditions (i) and (ii) will be called the minimum length g-adic representation of n.

Proof. Let $n = \sum_{i=0}^{\infty} \varepsilon_i g^i$ be a representation that satisfies conditions (i) and (ii). Since $-n = \sum_{i=0}^{\infty} (-\varepsilon_i) g^i$ is also a representation of -n that satisfies conditions (i) and (ii), we conclude that it suffices to prove that every nonnegative integer has a unique minimal length g-adic representation.

If $\varepsilon_i \neq 0$ for some i and $r = \max\{i : \varepsilon_i \neq 0\}$, then

$$n = \varepsilon_r g^r + n'$$

where

$$|n'| = \left| \sum_{i=0}^{r-1} \varepsilon_i g^i \right| \le \left(\frac{g-1}{2} \right) \sum_{i=0}^{r-1} g^i = \frac{g^r - 1}{2}.$$

Therefore,

(2)
$$\left(\varepsilon_r - \frac{1}{2}\right)g^r + \frac{1}{2} \le n \le \left(\varepsilon_r + \frac{1}{2}\right)g^r - \frac{1}{2}.$$

It follows that $\varepsilon_r \geq 1$ if $n \geq 1$ and $\varepsilon_r \leq -1$ if $n \leq -1$. In particular, $0 = \sum_{i=0}^{\infty} 0 \cdot g^i$ is the unique minimum length g-adic representation of 0.

If $n \geq 1$, then $\varepsilon_r \in \{1, 2, \dots, (g-1)/2\}$ and inequality (2) implies that

(3)
$$\frac{g^r + 1}{2} \le n \le \frac{g^{r+1} - 1}{2}.$$

Suppose that

$$n = \sum_{j=0}^{\infty} \varepsilon_j' g^j$$

is another representation of n that satisfies conditions (i) and (ii), with $r' = \max\{i : \varepsilon_i' \neq 0\}$. Inequalities (2) and (3) imply that r = r' and $\varepsilon_r = \varepsilon_{r'}'$. It follows inductively that $\varepsilon_i = \varepsilon_i'$ for all nonnegative integers i. Thus, a minimal length g-adic representation is unique.

Next we prove that every positive integer has a minimal length g-adic representation. For every $\varepsilon \in \{1, 2, \dots, (g-1)/2\}$, the number of integers n that can be represented in the form $n = \sum_{i=0}^{\infty} \varepsilon_i g^i$ with $r = \max\{i : \varepsilon_i \neq 0\}$, $\varepsilon_r = \varepsilon$, and $\varepsilon_i \in \{0, \pm 1, \pm 2, \dots, \pm (g-1)/2\}$ for $i = 0, 1, \dots, r-1$ is exactly g^r . Each of these integers satisfies inequality (2). Since the number of integers that satisfy this inequality is exactly g^r , it follows from the pigeonhole principle and from the uniqueness of a minimal length g-adic representation that every integer satisfying inequality (2) has a minimal length g-adic representation. Therefore, every integer satisfying inequality (3) must have a minimal length g-adic representation for every $r \geq 0$, and so every integer has such a representation.

Finally, we prove that the minimal length g-adic representation of n has length $\ell_g(n)$. Given any representation of an integer n as a sum of elements of the generating set A_g , we can obtain another representation with an equal or smaller number of summands as follows:

- (a) Delete all occurrences of 0.
- (b) If g^i and $-g^i$ both occur, delete them.
- (c) If g^i (resp. $-g^i$) occurs g times, replace these g summands with the one summand g^{i+1} (resp. $-g^{i+1}$).

(d) After applying the first three operations as often as possible, we obtain $n = \sum_{i=0}^{\infty} \varepsilon_i g^i$ with $\varepsilon_i \in \{0, \pm 1, \dots, \pm (g-1)\}$ for all i. If $(g+1)/2 \le \varepsilon_i \le g-1$ for some i, then we choose the smallest such i and apply the identity

$$\varepsilon_i g^i = -(g - \varepsilon_i)g^i + g^{i+1}$$

to replace these ε_i summands with $g - \varepsilon_i + 1 \le \varepsilon_i$ summands. Similarly, if $-(g-1) \le \varepsilon_i \le -(g+1)/2$ for some i, then we apply the identity

$$\varepsilon_i g^i = (g + \varepsilon_i)g^i - g^{i+1}$$

to replace $|\varepsilon_i|$ summands with $g + \varepsilon_i + 1 \le |\varepsilon_i|$ summands. Iterating this process, we obtain a minimum length g-adic representation of n.

If we apply this algorithm to a representation of n of length $\ell_g(n)$, then we obtain a minimum length g-adic representation of n of length at most $\ell_g(n)$, hence of length exactly $\ell_g(n)$. This completes the proof.

Theorem 8. Every integer n has a unique representation in the form

$$n = \sum_{i=0}^{\infty} \varepsilon_i 3^i$$

such that

- (i) $\varepsilon_i \in \{0, \pm 1\}$ for all nonnegative integers i,
- (ii) $\varepsilon_i \neq 0$ for only finitely many nonnegative integers i.

For every integer n,

$$\ell_3(n) = \sum_{i=0}^{\infty} |\varepsilon_i|$$

in the metric space (\mathbf{Z}, d_3) associated with generating set $A_3 = \{0\} \cup \{\pm 3^i : i = 0, 1, 2, \ldots\}$.

Proof. This is Theorem 7 in the case q = 3.

Let (\mathbf{Z}, d_2) and (\mathbf{Z}, d_3) be the metric spaces on the additive group of integers associated with the generating sets $A_2 = \{0\} \cup \{\pm 2^i : i = 0, 1, 2, \ldots\}$ and $A_3 = \{0\} \cup \{\pm 3^i : i = 0, 1, 2, \ldots\}$, respectively. There is a canonical length-preserving function from (\mathbf{Z}, d_2) onto (\mathbf{Z}, d_3) constructed as follows.

Every integer n has length $\ell_2(n) = h$ for some $h \ge 0$, and so $n \in S_e^{(2)}(h)$. By Theorem 5, every $n \in S_e^{(2)}(h)$ has a unique representation in the form

$$n = \sum_{i=0}^{h-1} \varepsilon_{k_i} 2^{k_i}$$

where $k_0, k_1, \ldots, k_{h-1}$ is a sequence of nonnegative integers such that

$$k_i - k_{i-1} \ge 2$$

for i = 1, 2, ..., h-1 and $\varepsilon_{k_i} = \pm 1$ for i = 0, 1, 2, ..., h-1. For i = 0, 1, 2, ..., h-1, we define

$$\tilde{k}_i = k_i - i$$

Then $\tilde{k}_0 = k_0$ and

$$\tilde{k}_i = k_i - i \ge k_{i-1} + 2 - i = \tilde{k}_{i-1} + 1$$

for $i=1,2,\ldots,h-1$. Therefore, $\tilde{k}_0,\tilde{k}_1,\ldots,\tilde{k}_{h-1}$ is a strictly increasing sequence of nonnegative integers.

Define $f: \mathbf{Z} \to \mathbf{Z}$ by

$$f\left(\sum_{i=0}^{h-1} \varepsilon_{k_i} 2^{k_i}\right) = \sum_{i=0}^{h-1} \varepsilon_{k_i} 3^{\tilde{k}_i} = \sum_{i=0}^{h-1} \varepsilon_{k_i} 3^{k_i-i}.$$

Theorems 5 and 8 imply that the function $f: \mathbf{Z} \to \mathbf{Z}$ is one-to-one and onto, and that f is length-preserving, that is, $\ell_2(n) = \ell_3(f(n))$ for all integers n. In particular, the function f maps the sphere $S_e^{(2)}(h)$ onto the sphere $S_e^{(3)}(h)$ for all $h \geq 0$.

For any positive integer r, define the integers

$$m = \sum_{i=0}^{r} 2^{3i}$$

and

$$n = \sum_{i=0}^{r-1} 2^{3(i+1)}.$$

Then m - n = 1 and so

$$d_2(m,n) = \ell_2(m-n) = \ell_2(1) = 1.$$

However,

$$f(m) = \sum_{i=0}^{r} 3^{3i-i} = 1 + \sum_{i=1}^{r} 3^{2i}$$

and

$$f(n) = \sum_{i=0}^{r-1} 3^{3(i+1)-i} = \sum_{i=0}^{r-1} 3^{2i+3}.$$

Therefore,

$$f(m) - f(n) = 1 + \sum_{i=1}^{r} 3^{2i} - \sum_{i=0}^{r-1} 3^{2i+3} = 1 + \sum_{i=2}^{2r+1} (-1)^{i} 3^{i}$$

and so

$$d_3(f(m), f(n)) = \ell_3(f(m) - f(n)) = 2r + 1.$$

It follows that

$$\frac{d_3(f(m), f(n))}{d_2(m, n)} = 2r + 1$$

and so

$$\lim \sup \left\{ \frac{d_3(f(m), f(n))}{d_2(m, n)} : m, n \in \mathbf{Z} \text{ and } m \neq n \right\} = \infty$$

Therefore, the function f is not a bi-Libschitz equivalence.

Problem 6. Richard E. Schwartz [3] asked the following beautiful question: Are the metric spaces (\mathbf{Z}, d_2) and (\mathbf{Z}, d_3) quasi-isometric? It is not even known if they are bi-Lipschitz equivalent. This is one reason why it is important to classify the nets in the metric spaces (\mathbf{Z}, d_g) .

Problem 7. John H. Conway [1] suggested combining the generating sets A_2 and A_3 . Consider the additive group **Z** of integers with generating set

$$A_{2,3} = \{0\} \cup \{\pm 2^i : i = 0, 1, 2, \ldots\} \cup \{\pm 3^i : i = 0, 1, 2, \ldots\}.$$

Let $\ell_{2,3}$ and $d_{2,3}$ denote, respectively, the corresponding word length function and metric induced on \mathbf{Z} . Conway asked: Is the diameter of this metric space infinite?

If the diameter of the metric space $(\mathbf{Z}, A_{2,3})$ is infinite, then a theorem of Nathanson [2, Theorem 1] implies that for every positive integer h there are infinitely many integers of length exactly h. Equivalently, the sphere $S_e(h)$ is infinite. For every positive integer h, let $\lambda_{2,3}(h)$ denote the smallest positive integer of length h, that is, the smallest positive integer that can be represented as the sum or difference of exactly h powers of 2 and powers of 3, but that cannot be represented as the sum or difference of fewer than h powers of 2 and powers of 3. We have $\lambda_{2,3}(1) = 1$, $\lambda_{2,3}(2) = 5$, and $\lambda_{2,3}(3) = 21$. A short calculation shows that $\lambda_{2,3}(4) \geq 150$, but the exact value of $\lambda_{2,3}(4)$ has not yet been determined.

Problem 8. Find all solutions in positive integers of the exponential diophantine equations $2^a - 3^b = 149$ and $2^c - 3^d = 151$. These equations have no solutions if and only if $\lambda_{2,3}(4) = 150$.

Problem 9. Let P be a finite or infinite set of prime numbers and consider the additive group \mathbf{Z} of integers with generating set

$$A_P = \{0\} \cup \{\pm p^i : p \in P \text{ and } i = 0, 1, 2, \ldots\}.$$

Let ℓ_P and d_P denote, respectively, the corresponding word length function and metric induced on \mathbf{Z} . For every positive integer h, let $\lambda_P(h)$ denote the smallest positive integer of length h, that is, the smallest positive integer that can be represented as the sum or difference of exactly h elements of A_P , but that cannot be represented as the sum or difference of fewer than h elements of A_P . Compute the function $\lambda_P(h)$.

Problem 10. Let P be a finite or infinite set of prime numbers, and let S_P be the semigroup of positive integers generated by P. Consider the additive group \mathbf{Z} of integers with generating set

$$A_{S(P)} = \{0\} \cup \{\pm s : s \in S(P)\}.$$

Let $\ell_{S(P)}$ and $d_{S(P)}$ denote, respectively, the corresponding word length function and metric induced on \mathbb{Z} . For every positive integer h, let $\lambda_{S(P)}(h)$ denote the smallest positive integer of length h, that is, the smallest positive integer that can be represented as the sum or difference of exactly h elements of the set S(P), but that cannot be represented as the sum or difference of fewer than h elements of the S(P). Compute the function $\lambda_{S(P)}(h)$.

4. Additive complements

In this section we consider a natural additive number theoretic generalization of the metric concept of h-nets in groups. Let W be a nonempty subset of a group or semigroup G. The set C in G will be called a *complement to* W if G = WC. If A is a symmetric generating set for a group G with $e \in A$, then an h-net in the metric space (G, d_A) is a complement to the product set A^h . Let $\mathcal{C}(W)$ denote the set of all complements to W. Then

- (i) $C(W) \neq \emptyset$ since $G \in C(W)$,
- (ii) If $C \in \mathcal{C}(W)$ and $C \subseteq C'$, then $C' \in \mathcal{C}(W)$,
- (iii) If $C \in \mathcal{C}(W)$ and $x \in G$, then $Cx \in \mathcal{C}(W)$.

A complement C to W is minimal if no proper subset of C is a complement to W. If C is a minimal complement, then the right translation Cx is also a minimal complement for all $x \in G$.

Suppose that W is a subset of a group and that C is a complement to W that does not contain a minimal complement to W. If D is any subset of C such that $C \setminus D$ is a complement to W, then there exists $c \in C \setminus D$ such that $C \setminus (D \cup \{c\})$ is a complement to W.

If G is an additive group and W is a subset of G, then the subset C of G is a complement to W if W + C = G.

Theorem 9. Let W be a nonempty, finite set of integers. In the additive group \mathbb{Z} , every complement to W contains a minimal complement to W.

Proof. Let C be a complement to W. Then C is infinite since W is finite. Let $w' = \min(W)$ and $w'' = \max(W)$. For every integer n, there exists $w \in W$ and $c \in C$ such that n = w + c. It follows that

$$n - w'' \le c = n - w \le n - w'.$$

Write $C = \{c_i\}_{i=0}^{\infty}$. We construct a decreasing sequence of sets $\{C_i\}_{i=0}^{\infty}$ as follows: Let $C_0 = C$. For $i \geq 0$, define

$$C_{i+1} = \begin{cases} C_i \setminus \{c_i\} & \text{if } C_i \setminus \{c_i\} \text{ is a complement to } W \\ C_i & \text{otherwise.} \end{cases}$$

Then $\{C_i\}_{i=0}^{\infty}$ is a sequence of complements to W and $C_{i+1} \subseteq C_i$ for all $i \ge 0$. Let

$$C^* = \bigcap_{i=0}^{\infty} C_i.$$

For every integer n and nonnegative integer i, there exist integers $w_{i,n} \in W$ and $c_{i,n} \in C_i$ such that $n = w_{i,n} + c_{i,n}$, and $n - w'' \le c_{i,n} \le n - w'$. The pigeonhole principle implies that there is an integer c such that $n - w'' \le c \le n - w'$ and $c = c_{i,n}$ for infinitely many i. If $c = c_{i,n}$, then $n - c = n - c_{i,n} = w_{i,n} \in W$. Therefore, $c \in C_i$ for all $i \ge 0$, that is, $c \in C^*$, and $n - c \in W$, hence $n \in W + C$. Therefore, C^* is a complement to W.

Suppose that there exists an integer $c_j \in C^*$ such that $C^* \setminus \{c_j\}$ is a complement to W. Since $C^* \subseteq C_j$, it would follow that $C_j \setminus \{c_j\}$ is also a complement to W. In this case, however, at step j in our inductive construction, we would have defined $C_{j+1} = C_j \setminus \{c_j\}$, and so $c_j \notin C^*$, which is absurd. Therefore, the removal of any element from C^* results in a set that is no longer a complement to W, and so C^* is minimal. This completes the proof.

Problem 11. Let W be an infinite set of integers. Does there exist a minimal complement to W? Does there exist a complement to W that does not contain a minimal complement?

Problem 12. Let G be an infinite group, and let W be a finite subset of G. Does there exist a minimal complement to W? Does there exist a complement to W that does not contain a minimal complement?

Problem 13. Let G be an infinite group, and let W be an infinite subset of G. Does there exist a minimal complement to W? Does there exist a complement to W that does not contain a minimal complement?

5. Asymptotic complements

Let W be a nonempty subset of a group or semigroup G. The set C in G will be called an asymptotic complement to W if all but at most finitely many elements of G belong to the product set WC, that is, $|G \setminus WC| < \infty$. Let $\mathcal{AC}(W)$ denote the set of all asymptotic complements to W. Then

- (i) $\mathcal{AC}(W) \neq \emptyset$ since $G \in \mathcal{AC}(W)$,
- (ii) If $C \in \mathcal{AC}(W)$ and $C \subseteq C'$, then $C' \in \mathcal{AC}(W)$,
- (iii) If $C \in \mathcal{AC}(W)$ and $x \in G$, then $Cx \in \mathcal{AC}(W)$.

An asymptotic complement C to W is *minimal* if no proper subset of C is an asymptotic complement to W. If C is a minimal asymptotic complement, then Cx is also a minimal asymptotic complement for all $x \in G$.

Problem 14. Let W be a finite or infinite set of integers. Does there exist a minimal asymptotic complement to W? Does there exist a complement to W that does not contain a minimal complement?

Problem 15. Consider the additive semigroup \mathbf{N}_0 of nonnegative integers. Let W be a finite or infinite subset of \mathbf{N}_0 . Does there exist a minimal asymptotic complement to W? Does there exist an asymptotic complement to W that does not contain a minimal asymptotic complement?

Problem 16. Let G be an infinite group, and let W be a finite or infinite subset of G. Does there exist a minimal asymptotic complement to W? Does there exist an asymptotic complement to W that does not contain a minimal asymptotic complement?

References

- [1] J. H. Conway, personal communication, 2008.
- [2] M. B. Nathanson, Phase transitions in infinitely generated groups, and related problems in additive number theory, arXiv: 0811.3990.
- [3] R. E. Schwartz, personal communication, 2008.

CUNY (LEHMAN COLLEGE AND THE GRADUATE CENTER)
E-mail address: melvyn.nathanson@lehman.cuny.edu

Current address: Princeton University E-mail address: melvyn@princeton.edu