

Radboud University Nijmegen

Grafentheorie

Figure 2.1: An example of a graph with eight vertices and 18 edges.

van Steen, M. (2010). Graph Theory and Complex Networks. An Introduction. Retrieved from: http://www.distributedsystems.net/

Graph Theory: Compositions of edges and vertices

Complexe network: Many vertices and edges

Statistical netwerk models

Adjacency matrix

Formal

Graph

	v1	v2	v3	v4	v5	v6	v7	v8
v1	0	1	0	0	1	1	1	0
v2	1	0	1	0	1	0	0	1
v3	0	1	0	1	1	0	0	0
v4	0	0	1	0	1	0	1	1
v5	1	1	1	1	0	1	1	1
v6	1	0	0	0	1	0	1	1
v7	1	0	0	1	1	1	0	1
v8	0	1	0	1	1	1	1	0

Grafentheorie

- Graph Theory: Compositions of edges and vertices
- Complexe network: Many vertices and edges
- Statistical netwerk models

Formal

$$V(G) = \{v_1, \dots, v_8\}$$

$$E(G) = \{e_1, \dots, e_{18}\}$$

$$e_1 = \langle v_1, v_2 \rangle \quad e_{10} = \langle v_6, v_7 \rangle$$

$$e_2 = \langle v_1, v_5 \rangle \quad e_{11} = \langle v_5, v_7 \rangle$$

$$e_3 = \langle v_2, v_8 \rangle \quad e_{12} = \langle v_6, v_8 \rangle$$

$$e_4 = \langle v_3, v_5 \rangle \quad e_{13} = \langle v_4, v_7 \rangle$$

$$e_5 = \langle v_3, v_4 \rangle \quad e_{14} = \langle v_7, v_8 \rangle$$

$$e_6 = \langle v_4, v_5 \rangle \quad e_{15} = \langle v_4, v_8 \rangle$$

$$e_7 = \langle v_5, v_6 \rangle \quad e_{16} = \langle v_2, v_3 \rangle$$

$$e_8 = \langle v_2, v_5 \rangle \quad e_{17} = \langle v_1, v_7 \rangle$$

$$e_9 = \langle v_1, v_6 \rangle \quad e_{18} = \langle v_5, v_8 \rangle$$

Figure 2.1: An example of a graph with eight vertices and 18 edges.

Adjacency matrix

	v1	v2	v3	v4	v5	v6	v7	v8	
v1	0	1	0	0	1	1	1	0	
v2	1	0	1	0	1	0	0	1	
v3	0	1	0	1	1	0	0	0	
v4	0	0	1	0	1	0	1	1	
v5	1	1	1	1	0	1	1	1	
v6	1	0	0	0	1	0	1	1	
v7	1	0	0	1	1	1	0	1	
v8	0	1	0	1	1	1	1	0	

Graph theory

undirected graph

Figure 2.1: An example of a graph with eight vertices and 18 edges.

Adjacency Matrix

	Vertex 1	Vertex 2	Vertex 3	Vertex 4	Vertex 5	Vertex 6	Vertex 7	Vertex 8	Vertex 9
Vertex 1	0	1	0	0	0	0	0	0	0
Vertex 2	1	0	0	1	1	0	0	1	0
Vertex 3	0	0	0	1	0	0	0	0	0
Vertex 4	0	1	1	0	0	0	0	0	0
Vertex 5	0	1	0	0	0	1	1	0	1
Vertex 6	0	0	0	0	1	0	0	0	0
Vertex 7	0	0	0	0	1	0	0	0	0
Vertex 8	0	1	0	0	0	0	0	0	0
Vertex 9	0	0	0	0	1	0	0	0	0

http://theoryofprogramming.com/tag/adjacency-matrix/

