ФЕДЕРАЛЬНОЕ АГЕНСТВО ЖЕЛЕЗНОДОРОЖНОГО ТАРНСПОРТА

Федерально государственное бюджетное образовательное учреждение высшего образования

«Иркутский государственный университет путей и сообщения» (ФГБОУ ВО ИрГУПС)

Факультет «Управление на транспорте и информационнные технологии» Кафедра «Информационные системы и защита информации»

ОТЧЕТ ПО ПРАКТИКЕ

Производственная - по получению профессиональных умений и опыта профессиональной деятельности (технологическая)

 $\Pi\Pi.430200.090404.000.\Pi3$

Выполнил: студент группы ПИм.1-16-1, Арляпов С.В. Шифр: 1621345			Пр ст.				
u	»	20	Г	"	»	20	г

Содержание

Задание на практику						
Введение	4					
1 Теоретическая часть 1.1 Позитивно-образованные формулы	5 5					
2 Основная часть	7					
2.1 Упрощения	7					
2.2 Логическая модель	7					
2.2.1 Группа формул Ψ	8					
$2.2.2$ Группа формул Φ	9					
2.2.3 Итоги	9					
Заключение	10					
Литература	11					

Задание на практику

В результате прохождения практики необходимо построить математическую модель. Сделать описание основных её компонентов, разработать правила взаимодействия элементов модели.

В ходе практики должны быть освоены компетенции:

- способность анализировать профессиональную информацию, выделять в ней главное, структурировать, оформлять и представлять в виде аналитических обзоров с обоснованными выводами и рекомендациями
- способность проектировать вспомогательные и специализированные языки программирования и языки представления данных;
- способность проектировать распределенные информационные системы, их компоненты и протоколы их взаимодействия.

Введение

Автоматизированные системы управления активно приходят в повседневную жизнь человечества. Сначала, это были системы для управления производственным процессом на крупных предприятиях, теперь данные системы решают и бытовые задачи. Одной из таких задач является доставка человека с одного этажа на другой. Данная задача достаточно подробно описана в книге С.В. Васильева [1], там имеются абстрактная модель, логическая модель и логический вывод.

С предложенным логическим выводом справилась бы система автоматического доказательства теорем А.А. Ларионова [2], но реализация всей системы лифтов на позитивно образованных формулах требует больших трудозатрат и будет носить чисто исследовательский характер.

1 Теоретическая часть

1.1 Позитивно-образованные формулы

Позитивно-образованными формулами (ПО-формылами, ПОФ) называется вид формул, для записи которых используются только позитивные типовые кванторы \forall и \exists :

Пусть X — множество переменных, и А — конъюнкт.

- 1. $\exists_x A$ и $\forall_x A$ есть \exists -ПОФ и \forall -ПОФ соответственно.
- 2. Если $F = \{F_1, ..., F_n\}$ есть \forall -ПОФы, тогда F есть \exists -ПОФ.
- 3. Если $F = \{F_1, ..., F_n\}$ есть \exists -ПОФы, тогда F есть \forall -ПОФ.
- 4. Любая ∃-ПОФ или ∀-ПОФ есть ПОФ.

Данные формулы не содержат операторов отрицания. Также ПО-формула является особым видом записи классических формул языка предикатов, подобно КНФ, ДНФ и др., поскольку любая формула языка предикатов первого порядка представима как позитивно-образованная формула.

Канонический вид ПО-формулы начинается с $\forall \emptyset$. Очевидно, что любая ПОФ приводима к каноническому виду.

Типовые кванторы $\forall \emptyset$ и $\exists \emptyset$ называются фиктивными, поскольку не влияют на истинность формулы и не связывают никаких переменных, а только лишь служат конструкциями сохраняющими корректную запись ПО-формулы.

Для удобства ПО-формулы представляются в древовидной форме:

$$Q_x A : \{F_1, \dots, F_n\} \equiv Q_x A : \begin{cases} F_1 \\ \dots \\ F_n \end{cases},$$

где Fi – ПО-формула, A – набор атомарных формул, Q некоторый квантор, который отличен от кванторов в начале формул F.

Некоторые части канонической ПО-формулы имеют специальные названия:

- 1. Корневой узел ∀∅называется корнем ПО-формулы;
- 2. Дочерние узлы корня ПО-формулы имеют вид $\exists_x A$ и называются базами ПО-формулы, конъюнкт A называется базой фактов, а вся подформула начинающаяся с базового узла называется базовой подформулой;
- 3. Дочерние узлы баз имею вид $\forall_x B$ и называются вопросами к родительской базе. Если вопрос является листовым узлом $\forall_x B \equiv \forall_x B: false$, то он называется целевым вопросом.
- 4. Поддеревья вопросов называются консеквентами или следствиями. Следствием целевого вопроса является false.

1.2 Пример соответствия ПОВ и програмы на языке Prolog

Рассмотрим следующую программу на языке Пролог и запрос к ней:

```
in(a,b).
in(b,c).
it(X,Y):-in(X,Z),in(Z,Y).
?- it(a,X).
```

Соответствующая данной программе ПО-формула:

$$\forall \emptyset \colon \exists in(a,b), in(b,c) \colon \left\{ \begin{array}{l} \forall_{x,y,z} in(x,z), in(z,y) \colon \exists it(x,y) \\ \forall_x it(a,x) \end{array} \right..$$

Этот пример очень важен и будет упомянут далее.

2 Основная часть

Целью данного исследования является выявление принципиальной возможности и целесообразности построения и использования системы логического вывода в рассматриваемой задаче. Поэтому оправданы все упрощения, которые неизбежны при построении моделей и переходе к реальному приложению.

2.1 Упрощения

Первым основным упрощением является дискретность времени с заданной величиной интервала между соседними моментами времени (тактами), содержащее начальный момент и бесконечно продолжимое вправо. Высота этажей считается одинаковой, и скорость движения лифта с одного этажа на другой полагаем равной одному такту. Длительность остановки кабин для входа-выхода пассажиров равняется одному такту. Так же не рассматриваются случаи переполнения кабин.

Считается, что любой пассажир придерживается следующим правилам:

- 1) Для вызова лифта он нажимает на этаже кнопку вызова и ждёт кабину, без ложных и ошибочных вызовов;
- 2) Войдя в кабину, пассажир задаёт ей команду, для чего он нажимает кнопку нужного этажа, который вносится в маршрут данной кабины, без ложных и ошибочных команд.

Простейшим алгоритмом принятия решения является поиск ближайшей кабины к месту вызова. Однако, термин «ближайшая» требует уточнения и рассмотрения примера.

Допустим, есть система из k=2 кабин, способных перемещаться по n=5 этажам. Пусть кабины находятся на 1-м и 2-м этажах, первая пуста и находится в покои, а второй предстоят остановки на 3-м и 4-м этажах. Поступает вызов с пятого этажа, и первая кабина получается ближайшей, так как её требуется 4 такта, а второй кабине требуется 5 тактов. Получается дистанция — это количество тактов, которое необходимо кабине, чтобы добраться до этажа, выполняя уже сформированный маршрут (рисунок 1).

Есть и другой подход, который основывается на исключении худших альтернатив на основе логического вывода. И если после сокращения допустимых альтернатив их останется несколько, то выбор может быть случайным или основываться на каких-либо критериях. В этом и предыдущих подходах одним из основных критериев является средняя длительность ожиданий.

2.2 Логическая модель

Выстраивая логическую модель, получаем тройку (F, S, V), где F — это позитивно образованная формула ($\Pi O \Phi$), описывающая состояние лифта и принципы, по которым функционирует лифт, S — порядок ответов на запросы при логическом выводе, V — внешние воздействие, в данном случае имитация пассажиропотока. Так же следует отметить, что одними из основных

будут предикаты связанные со временем: T(t) – момент времени t и N(t, t') – следующий за t момент времени t'.

Основными объектами в данной модели являются кабина Cab и человек Man. В момент времени t кабина имеет вид Cab(i, e, S, t), где i – идентификатор кабины, е – этаж, а S - маршрут кабины, список этажей. Человек имеет вид Man(e, d, τ , t), где e – этаж, d – целевой этаж, который добавляется в маршрут S в момент входа человека в кабину и d \neq e, τ – длительность ожидания человеком кабины. Дистанцией же будет Dist(e, S, i, t, α), где α – это дистанция от кабины i на этаже e с маршрутом S, где произошёл вызов. И связь i кабины с вызовом с e этажа Conn(i, e).

В каждый момент времени t_0 принятия решения формула F имеет вид:

$$\exists A(t_0) \begin{cases} \forall T(t) \exists T(t'), N(t, t'), \\ \Phi \\ \Psi \end{cases}$$

 $A(t_0)$ – коньюнкт, описывающий состояние системы в момент времени t_0 . Если $A(t_0)$ содержит Мап, то появление человека необходимо связать с вызовом определённой кабины. И группа формул Фпорождает все варианты связи и имитирует движение кабин совместно с формулой времени $\forall T(t) \exists T(t'), N(t,t')$ для некоторого количества тактов. А за счёт формул Ψ происходит фильтрация некоторых вариантов.

Оставшиеся варианты оцениваются оцениваются и выбирается один из самых наилучших.

2.2.1. Группа формул Ψ

$$\forall Man(e, d, t), N(t, t') \exists Dist(e, S_1, 1, t, \alpha_1), \dots$$

$$Dist(e, S_k, k, t, \alpha_k) \begin{cases} \exists Conn(1, e) \\ \dots \\ \exists Conn(k, e), \\ \exists Man(e, d, +1, t') \end{cases}$$

формула вычисляющая дистанцию до каждой кабины при новом появлении человека

ний человека
$$\forall Cab(i,e,S,t), Conn(i,e'), N(t,t') \begin{cases} \forall e' < e \exists Cab(i,e-1,S/e',t') \\ \forall e < e' \exists Cab(i,e+1,S/e',t') \end{cases}$$

$$\forall Cab(i,e,S,t), S = S(e',S_1), N(t,t') \begin{cases} \forall e = e' \exists Cab(i,e-1,S_1,t') \\ \forall e' < e \exists Cab(i,e-1,S,t') \\ \forall e < e' \exists Cab(i,e+1,S,t') \end{cases}$$

$$\forall Cab(i,e,null,t), N(t,t') \exists Cab(i,e,null,t')$$

— формулы реализующие движение, где S/e является операцией вставки этажа в маршрут.

2.2.2. Группа формул Φ

Формулы из группы Фреализуют дополнительные ограничения, которые следует учитывать при построении логического вывода. В дальнейших работах они использоваться не будут. Но упомянуть о них крайне необходимо, так как они дают возможность данной модели быть более гибкой к различным ситуациям. А также их добавление в разрабатываемую систему не будет сложной задачей.

Например, вот формула, которая запрещает откладывать связывание вызова лифта человеком белее, чем на 4 такта:

$$\forall Man(e,d,4,t) \exists False$$

Это правили необходимо, в том случае если в модели будет возможна отсрочка принятия решения на вызов лифта.

2.2.3. Итоги

Таким образом определяется функция F. Её реализация будет выполнена на языке Prolog. Перевод из приведённых выше формул возможен по примеру из теоретической части.

Заключение

В результате прохождения практики была разработана математическая модель управления группой лифтов с необходимым перечнем правил взаимодействия. Следует отметить тот факт, предложенная концепция модели будет использована в реализации программной модели.

А также получены практические навыки в системах с параллельной обработкой данных и высокопроизводительные системы, и их компоненты.

Литература

- [1] С. Н. Васильев. Интеллектуальное управление динамическими системами / С. Н. Васильев, А. К. Жерлов, Е. А. Федосов, Б. Е. Федунов М.. Физикоматематическая литература, 2000. 352 с.
- [2] А. А. Ларионов. Программные технологии для эффективного поиска логического вывода в исчислении позитивно-образованных формул / А. А. Ларионов, Е. А. Черкашин Иркутск : Изд-во ИГУ, 2013. 104 с.