

Decentralized AI: Confidential Federated Learning With NVIDIA FLARE

Chester Chen

Senior Product & Engineering Manager
NVIDIA Federated Learning

Decentralization & Al Summit August 06, 2024

Agenda

- NVIDIA FLARE Overview
- Confidential Federated Learning: Use Cases and Processes
- Confidential Computing: Tech Stack
- Enabling Confidential Federated Learning with NVIDIA FLARE

Agenda

- NVIDIA FLARE Overview
- Confidential Federated Learning: Use Cases and Processes
- Confidential Computing: Tech Stack
- Enabling Confidential Federated Learning with NVIDIA FLARE

Agenda

- **NVIDIA FLARE Overview**
- Confidential Federated Learning: Use Cases and Processes
- Confidential Computing: Tech Stack
- **Enabling Confidential Federated Learning with NVIDIA** FLARE

NVIDIA FLARE Overview

Open-Source, Enterprise Federated Learning & Compute Framework

- Apache License 2.0 to catalyze FL research & development
- . Designed for production, not just for research
- Enables cross-internet, distributed, multi-party collaborative Learning
- Production scalability with high availability and multi-task execution
- Easy to convert existing ML/DL workflows to a Federated paradigm with few lines of code changes
- LLM streaming, LLM fine tuning
- · Framework, model, domain and task agnostic
- Privacy Preserving Technologies
 - Homomorphic Encryption (HE), Differential Privacy (DP)
 - Multi-party computing (Private Set intersection, PSI)
 - · Confidential Computing (CC)
- Confidential FL: end-to-end Federated Learning with Confidential Computing
- · Layered, pluggable, customizable federated compute architecture
- Secure Provisioning, Orchestration & Monitoring

GitHub: https://github.com/nvidia/nvFlare Web: https://nvidia.github.io/NVFlare/

Open-Source, Enterprise Federated Learning & Compute Framework

- Apache License 2.0 to catalyze FL research & development
- · Designed for production, not just for research
- Enables cross-internet, distributed, multi-party collaborative Learning
- Production scalability with high availability and multi-task execution
- Easy to convert existing ML/DL workflows to a Federated paradigm with few lines of code changes
- LLM streaming, LLM fine tuning
- Framework, model, domain and task agnostic
- Privacy Preserving Technologies
 - Homomorphic Encryption (HE), Differential Privacy (DP)
 - Multi-party computing (Private Set intersection, PSI)
 - Confidential Computing (CC)
- Confidential FL: end-to-end Federated Learning with Confidential Computing
- Layered, pluggable, customizable federated compute architecture
- Secure Provisioning, Orchestration & Monitoring

GitHub: https://github.com/nvidia/nvFlare Web: https://nvidia.github.io/NVFlare/

NVIDIA FLARE Architecture

Federated Computing Engine

· Each layer's component are composable and pluggable

Network: Communication & Messaging layer

- · Drivers → gRPC, http + websocket, TCP, any plugin driver
- · CellNet: logical end point-to-point (cell to cell) network
- Message: reliable streaming message

Federated Computing Layer

- Resource-based job scheduling, job monitoring, concurrent job lifecycle management, Highavailability management
- Plugin component management
- Configuration management
- Local event and federated event handling

Federated Workflow

SAG, Cyclic, Cross-site Evaluation, Swarm Learning, Federated Analytics

Federated Learning Algorithms

 FedAvg, FedOpt, FedProx, Scalffold, Ditto, XGBoost, GNN, PSI, LLM (p-tuning, SFT, PEFT), KM. Scikit-Learn

Pythonic Programming APIs

Client API, Controller API, Job Construction API, Job Monitoring API

Productivity & Deployment Tools:

Simulator, provision, POC, Cloud deployment, preflight check, more

Federated Learning Algorithms

FedAvg, FedOpt, FedProx, Scalfold, Ditto, XGhoost, LLM, ML GNN Statistics, PSI

Federated Workflows

scatter & gather cyclic, fed eval, pross-site. evaluation, swarm learning, fed analytics

Tools: dev

Job Simulator

POC CLI

Job CLI

ate fillering, security plugin, federated author. Illerential privacy, Homomorphic encryption

Federated Computing

Job lifecycle migrat, multi-job support, HA, resource migrat, local event & federated event, companent plugin mgmt, configuration mgmt.

Communication & Messaging

Protool drivers (grpc, tcp, https, ...), CellNet, Object Streaming API

ML/DL to FL transition Job mamt APIs

Privacy & Security

Programming APIs

Tools: prod

provision deployment orchestration monitoring

NVIDIA FLARE Architecture

Federated Computing Engine

· Each layer's component are composable and pluggable

Network: Communication & Messaging layer

- · Drivers → gRPC, http + websocket, TCP, any plugin driver
- · CellNet: logical end point-to-point (cell to cell) network
- Message: reliable streaming message

Federated Computing Layer

- Resource-based job scheduling, job monitoring, concurrent job lifecycle management, Highavailability management
- Plugin component management
- Configuration management
- Local event and federated event handling

Federated Workflow

· SAG, Cyclic, Cross-site Evaluation, Swarm Learning, Federated Analytics

Federated Learning Algorithms

 FedAvg, FedOpt, FedProx, Scalffold, Ditto, XGBoost, GNN, PSI, LLM (p-tuning, SFT, PEFT), KM. Scikit-Learn

Pythonic Programming APIs

Client API, Controller API, Job Construction API, Job Monitoring API

Productivity & Deployment Tools:

· Simulator, provision, POC, Cloud deployment, preflight check, more

Federated Learning Algorithms

FadAvg, FedDpt, FedProx, Scaffold, Ditto, XGboost, LLM, ML, GNN, Statistics, PSI

Tools: dev

lob Simulator

POC CLI

Job CLI

Federated Workflows Privacy

scatter & gather cyclic, fed eval, cross-eits data filtering, evaluation, swarm learning, fed analytics differential p

Federated Computing

Job lifecycle mgmt, multi-job support, HA, resource mgmt, local event & teidented event, component plugin mgmt, configuration mgmt

Communication & Messaging

Protool drivers (grpc, top, https, ...), CellNet, Object Streaming API

Programming APIs

ML/DL to FL transition
Job mgmt APts

Privacy & Security

data filtering, security plugin, federated author differential privacy. Homomorphic encryption

provision

deployment orchestration monitoring

NVIDIA FLARE Architecture

Federated Computing Engine

· Each layer's component are composable and pluggable

Network: Communication & Messaging layer

- Drivers → gRPC, http + websocket, TCP, any plugin driver
- · CellNet: logical end point-to-point (cell to cell) network
- Message: reliable streaming message

Federated Computing Layer

- Resource-based job scheduling, job monitoring, concurrent job lifecycle management, Highavailability management
- Plugin component management
- Configuration management
- Local event and federated event handling

Federated Workflow

SAG, Cyclic, Cross-site Evaluation, Swarm Learning, Federated Analytics

Federated Learning Algorithms

 FedAvg, FedOpt, FedProx, Scalffold, Ditto, XGBoost, GNN, PSI, LLM (p-tuning, SFT, PEFT), KM. Scikit-Learn

Pythonic Programming APIs

Client API, Controller API, Job Construction API, Job Monitoring API

Productivity & Deployment Tools:

· Simulator, provision, POC, Cloud deployment, preflight check, more

Federated Learning Algorithms

FedAvg, FedOpt, FedProx, Scaffold, Ditto, XGboost, LLM, ML GNN, Statistics, PSI

Tools: dev

Job Simulator

POC CLI

Job CLI

Privacy & Security **Federated Workflows**

scatter & gather, cyclic, fed eval, cross-site fifterential privacy, Homomorphic encryption evaluation, swarm learning, fed analytics

Federated Computing

Job lifecycle regmt, multi-job support, HA, resource regmt, local event & federated event, component plugin mgmt, configuration mgmt

Communication & Messaging

Protool drivers (grpc, top, https, ...), CellNet, Object Streaming API

Programming APIs

ML/DL to FL transition Job mgmt APIs

ata filtering, security plugin, federated author. Tools: prod

> provision deployment orchestration monitoring

NVIDIA FLARE: Summary

A domain-agnostic, open-source, extensible FL framework

- Federated Computing -- a federated computing framework at core
- · Built for productivity -- designed for maximum productivity, providing a range of tools to enhance user experience
- Built for security & privacy -- prioritizes robust security and privacy preservation
- Built for concurrency & scalability -- designed for concurrency, supporting resource-based multi-job execution
- Built for customization -- structured in layers, with each layer composed of customizable components
- Built for integration -- multiple integration options with third-party system
- Built for production -- robust, production-scale deployment in real-world federated learning and computing scenarios
- · Rich examples repository -- wealth of built-in implementations, tutorials and examples
- Growing application categories -- medical imaging, medical devices, edge device application, financial services, HPC and autonomous
 driving vehicles

GitHub: https://github.com/NVIDIA/NVFlare

Web: https://nvidia.github.io/NVFlare/

NVIDIA FLARE: Summary

A domain-agnostic, open-source, extensible FL framework

- · Federated Computing -- a federated computing framework at core
- . Built for productivity -- designed for maximum productivity, providing a range of tools to enhance user experience
- Built for security & privacy -- prioritizes robust security and privacy preservation
- Built for concurrency & scalability -- designed for concurrency, supporting resource-based multi-job execution
- · Built for customization -- structured in layers, with each layer composed of customizable components
- Built for integration -- multiple integration options with third-party system
- Built for production -- robust, production-scale deployment in real-world federated learning and computing scenarios
- · Rich examples repository -- wealth of built-in implementations, tutorials and examples
- Growing application categories -- medical imaging, medical devices, edge device application, financial services, HPC and autonomous
 driving vehicles

GitHub: https://github.com/NVIDIA/NVFlare

Web: https://nvidia.github.io/NVFlare/

NVIDIA FLARE: Summary

A domain-agnostic, open-source, extensible FL framework

- Federated Computing -- a federated computing framework at core
- · Built for productivity -- designed for maximum productivity, providing a range of tools to enhance user experience
- . Built for security & privacy -- prioritizes robust security and privacy preservation
- Built for concurrency & scalability -- designed for concurrency, supporting resource-based multi-job execution
- Built for customization -- structured in layers, with each layer composed of customizable components
- · Built for integration -- multiple integration options with third-party system
- Built for production -- robust, production-scale deployment in real-world federated learning and computing scenarios
- · Rich examples repository -- wealth of built-in implementations, tutorials and examples
- Growing application categories -- medical imaging, medical devices, edge device application, financial services, HPC and autonomous
 driving vehicles

GitHub: https://qithub.com/NVIDIA/NVFlare

Web: https://nvidia.github.io/NVFlare/

Edit. View Window Hel

Confidential Federated Learning: Use Cases and Processes

Confidential Computing: Use Cases

CC Use Cases across industries

Government

Security Risk

cross-agency, or cross-country multiparty collaboration

Healthcare

Patient Data Privacy

cross hospitals and corss-institutional research. Federated Al and multi-party collaboration is needed

Financial Services

Fraud Detection, AML

Multi-Party PSi, Collaborate data sharing, Federated Al training and Inference

Manufacturing

Supply Chain Analysis

Enforce Quality Control Procedures requires federated Al and multi-party collaboration

Enterprise

Multinational HR Analysis

Protect sensitive data while perform analytics. Require federated Al

Any Industry

Data Clean

securely share data for data cleaning, training and analytics

Federated Learning Use Cases

Requirements

- Prevent Personal Information Leak
- Prevent data Leak
- Protect Model IP

FL Use Cases that requires CC

- Build Explicit Trust
- Prevent code, model, data tampering
- Secure Aggregation at Server Node
 - Secure aggregation node
 - Aggregation code protection
- Secure Training at Client Node
 - Training node protection with TEE
 - · Model IP protection with TEE
 - Prevent data leak
- Federated Inference Protection
 - Input data protection
 - Model protection

Federated Learning Use Cases

Requirements

- Prevent Personal Information Leak
- Prevent data Leak
- Protect Model IP

FL Use Cases that requires CC

- Build Explicit Trust
- Prevent code, model, data tampering
- Secure Aggregation at Server Node
 - Secure aggregation node
 - Aggregation code protection
- Secure Training at Client Node
 - Training node protection with TEE
 - Model IP protection with TEE
 - Prevent data leak
- Federated Inference Protection
 - Input data protection
 - Model protection

Federated Learning Use Cases

Requirements

- Prevent Personal Information Leak
- Prevent data Leak
- Protect Model IP

FL Use Cases that requires CC

- Build Explicit Trust
- Prevent code, model, data tampering
- Secure Aggregation at Server Node
 - Secure aggregation node
 - Aggregation code protection
- Secure Training at Client Node
 - Training node protection with TEE
 - Model IP protection with TEE
 - Prevent data leak
- Federated Inference Protection
 - Input data protection
 - Model protection

Confidential Federated Learning: Processes

Attestations

- Federated Learning Requests multi-SDK attestation
- FL Servers needs to verify all client's trustworthiness
- Attestation at different points, self and cross verifications via attestation service

CC Policies:

- Bootup policy provided by hardware vendor
- Self-verification CC policy user defined
- Cross-verification CC policy user defined

Protected Assets

- Code: Training code (client), aggregation code (server)
- Data: input data
- · Model: initial model, intermediate model, output model
- Workspace: check points, logs, temp data, output directory

Key Broker Service

 Key management depends on user case, global model ownership, key release management process

Bootstrap:

 Need a process to generate the keys, policies and input them into key-vault to avoid tempering

Confidential Federated Learning: Processes

Attestations

- Federated Learning Requests multi-SDK attestation
- FL Servers needs to verify all client's trustworthiness
- Attestation at different points, self and cross verifications via attestation service

CC Policies:

- Bootup policy provided by hardware vendor
- Self-verification CC policy user defined
- · Cross-verification CC policy -- user defined

Protected Assets

- Code: Training code (client), aggregation code (server)
- Data: input data
- . Model: initial model, intermediate model, output model
- Workspace: check points, logs, temp data, output directory

Key Broker Service

 Key management depends on user case, global model ownership, key release management process

Bootstrap:

 Need a process to generate the keys, policies and input them into key-vault to avoid tempering

NVIDIA Confidential Computing Introduction

Protecting Data and Code from Hypervisor and Physical Attacks

Prerequisites:

- CPU with support for a Virtualized-based TEE ("Confidential VM")
- Supported variants are AMD Milan or later, or Intel SPR and later.

Capabilities:

- Trusted Execution Environment
 Isolated environment providing confidentiality & integrity
- Virtualization-based
 Applications can run unchanged and do not have to be partitioned
- Secure Transfers
 High performance HW acceleration for encrypted CPU/GPU transfers
- Hardware Root of Trust
 Authenticated firmware; measurement & attestation for the GPU

Platform	Pipeline Mgmt S	ecurity Mgmt Project Mgmt	User Mgmt Data Mgmt	
Orchestration	Cluster Mgmt.	Storage Mgmt.	Monitoring Service	
AI/ML Runtime	NVFLARE			
Key Broker Service	Vendor Key Broker Services	CoCo Trustee	more	
Attestation SDK	CPU Attestation SDKs	GPU Attestation Services	Cloud CSP or Vendor Attestation Services	
Virtualization	Confidential VM Confi	dential Container (CoCo) K8s Confiden	ntial Container Other Approaches	
Operating System	Ubuntu 22.04			
Hardware	CPU Confidential Computing Technology		NVIDIA Hopper, Blackwell	

Platform	Pipeline Mgmt S	Security Mgmt Project	Mgmt User Mg	mt Data Mgmt	
Orchestration	Cluster Mgmt.	Storage Mgmt.		Monitoring Service	
AI/ML Runtime	NVFLARE				
Key Broker Service	Vendor Key Broker Services	CoCo Trustee		more	
Attestation SDK	CPU Attestation SDKs	GPU Attestation Services	Cloud CSP or	r Vendor Attestation Services	
Virtualization	Confidential VM Conf	idential Container (CoCo) K8s	onfidential Container	Other Approaches	
Operating System	Ubuntu 22.04				
Hardware	CPU Confidential Computing Technology		NVIDIA Hopp	NVIDIA Hopper, Blackwell	

Powered by Zoom

Enab Platform Confidence Mgmt For Security Mgmt Confedence Mgmt Data Mgmt						
Learn Orchestration	Cluster Mgmt. FLA	Storage Mgmt.	Monitoring Service			
AI/ML Runtime	NVFLARE					
Key Broker Service	Vendor Key Broker Services	CoCo Trustee	more			
Attestation SDK	CPU Attestation SDKs	GPU Attestation Services	Cloud CSP or Vendor Attestation Services			
Virtualization	Confidential VM	fidential Container (CoCo) K8s Confident	tial Container Other Approaches			
Operating System	Ubuntu 22.04					
Hardware	CPU Confidential Computing Technology NVIDIA Hopper, Blackwell		NVIDIA Hopper, Blackwell			

View Window Hale

Enabling Confidential Federated Learning with NVIDIA FLARE

NVIDIA FLARE + Confidential Computing Integration

CC Enables the "Lift & Shift" Capability

 Existing application don't need to be modified to shift from non-TEE to TEE env with new hardware-based protection

Build Explicit Trust

- Attestation Service Integration
 - Different CPU/GPU attestations SDKs
- Design to verify the trust worthiness with CC attestation service
 - · Self-Test at start
 - · Cross-verification at client registration
 - Repeat attestation tests periodically
- Confidential VM
 - Bare Metal CVM, CSP CVM
- Confidential Containers (CoCo) on K8s
 - SSH lockdown
 - Require additional Trustee services features

Secure Aggregation: NVIDIA FLARE with CC

NVIDIA FLARE + Azure Confidential Computing

Infrastructure setup: Hybrid deployment

- FL Server: Azure Confidential Container on ACI
 AMD CPU
- FL Client 1: Azure Confidential VM
 - AMD CPU + NVIDIA H100
- · FL Client 2: On-Prem Confidential VM
 - AMD CPU + NVIDIA H100
- . FL Client 3: Azure Non-CC instance (CPU)

CC Summit SF

Medical Imaging: Spleen 3D CT segmentation with MONAI bundle

User Benefits:

- · Available on Azure Cloud
- Any FL application written in FLARE could executed without any change
- End-to-end security enforcement and secure aggregation for all federated learning applications
- · No one can SSH into FL server
- Failure of attestation verification will cause the job to fail or system shutdown

Note:

This is part of the join presentation with Azure Team at CC Summit at SF, 2024. We also had a similar presentation at using XGBoost model at GTC 2024

Get Involved: Upcoming Events

Just us at

NVIDIA FLARE DAY 2024:

Exploring Real-world Examples of Federated Learning

Online Event

September 18, 2024

NVIDIA FLARE DAY 2024 : https://nvidiaflareday.splashthat.com/

NVLARE Github: https://github.com/NVIDIA/NVFlare

Web Page: https://nvidia.github.io/NVFlare/

RFP: NVIDIA Academic Grant Program Federated Learning with FLARE

Topic available in Fall

Keynote Speaker

Building an Open, Responsible AI Economy

Professor UC Berkeley

