

Modelling ultrafast magnetization dynamics in Fe, Ni, Co with the Microscopic Three Temperature model

Theodor Griepe Freie Universität Berlin

Midterm presentation for Master thesis

Introduction

The Microscopic Three temperature Model

Experimental Data

Implemented Model

Discussion of parameters

Introduction

The Microscopic Three temperature Mode

Experimental Data

Implemented Model

Discussion of parameters

Introduction

- ▶ Beaurepaire et al. 1996: UFD in Nickel
- optically excite sample with fs laser pulse
- measure magnetization by probing at different delays
- microscopic processes?

UFD in Nickel, captured by Beaurepaire et al. ¹

¹Beaurepaire et al., PRL 76, 1996

Introduction

The Microscopic Three temperature Model

Experimental Data

Implemented Model

Discussion of parameters

Dynamics of electronic, lattice and spin subsystems ²

$$C_{e} \frac{dT_{e}}{dt} = g_{e-p}(T_{p} - T_{e}) + S(z, t) + \nabla(\kappa \nabla T_{e})$$

$$C_{p} \frac{dT_{p}}{dt} = -g_{e-p}(T_{p} - T_{e})$$

$$\frac{dm}{dt} = Rm \frac{T_{p}}{T_{C}} \left(1 - \frac{m}{B_{1/2} \left(\frac{Jm}{k_{B}T_{e}} \right)} \right)$$

$$\mathsf{R} \, = \! \underset{sf}{\mathsf{a}_{sf}} 8 g_{ep} k_B T_C^2 V_{at} / (\mu_{at} E_D^2)$$

²Koopmans et al., NMat 2593, 2009

- ▶ fit parameters c_e , c_p , g_{ep} , S_0 , a_{sf}
- spin flip probability found by Koopmans very high
- Carva et al.³retrieved a_{sf} from DFT calculations

Sample	a _{sf}	Koopmans	
Nickel	0.04 - 0.09	0.17 - 0.2	
Cobalt	0.01 - 0.022	0.135 - 0.165	
Iron	0.04 - 0.07		

simulation fits for low fluences, reprinted from $^{\rm 3}$

³Carva et al., PRB 87, 2013

⁴Koopmans et al., NMat 2593, 2009

Introduction

The Microscopic Three temperature Mode

Experimental Data

Implemented Model

Discussion of parameters

- Ni, Fe, Co thin films (d = 15 nm) on glass wafers
- room temperature, fluence $0.5 15 \frac{\text{mJ}}{\text{cm}^2}$
- magnetization measured under same conditions for several pump fluences

Borchert et al., arXiv:2008.12612, 2020

Introduction

The Microscopic Three temperature Mode

Experimental Data

Implemented Model

Discussion of parameters

Dynamics of electronic, lattice and spin subsystems⁴

$$C_{e} \frac{dT_{e}}{dt} = g_{e-p}(T_{p} - T_{e}) + S(z, t) + \frac{dQ_{se}}{dt}$$

$$C_{p} \frac{dT_{p}}{dt} = -g_{e-p}(T_{p} - T_{e})$$

$$\frac{dm}{dt} = Rm \frac{T_{p}}{T_{C}} \left(1 - \frac{m}{B_{1/2} \left(\frac{Jm}{k_{B}T_{e}} \right)} \right)$$

$$\frac{\frac{dQ_{se}}{dt} = Jm \frac{dm}{dt}}{R = a_{sf}8g_{ep}k_BT_C^2V_{at}/(\mu_{at}E_D^2)}$$

*Ab initio parameters 5

⁴Koopmans et al., Nmat 2593, 2009

⁵Zahn et al., PRR 3, 2020

material	S _{eff} ⁶	
Nickel	0.5	
Iron	2	
Cobalt	1.5	

Arbitrary Spin Rate Equations 7

$$\begin{split} \frac{dm}{dt} &= -\frac{1}{S} \sum_{m_S = -S}^{m_S = +S} m_S \frac{df_{m_S}}{dt} \\ \frac{df_{m_S}}{dt} &= -(W_{m_S}^+ + W_{m_S}^-) f_{m_S} + W_{m_{S-1}}^+ f_{m_{S-1}} + W_{m_{S+1}}^- f_{m_{S+1}} \\ W_{m_S}^{\pm} &= R \frac{Jm}{4Sk_BT_c} \frac{T_p}{T_c} \frac{\mathrm{e}^{\mp \frac{Jm}{2Sk_BT_e}}}{\sinh(\frac{Jm}{2Sk_BT_e})} (S(S+1) - m_S(m_S \pm 1)) \end{split}$$

⁶Köbler et al., Condensed matter, 2003 ⁷Beens et al., Phys. Rev. B. 2019

FU Berlin, Midterm presentation, 30.04.2021

Introduction

The Microscopic Three temperature Mode

Experimental Data

Implemented Model

Discussion of parameters

fixed $\frac{R}{g_{ep}}$, c_e , c_p vary g_{ep}

Phononic specific heat c_p

fixed R, c_e , g_{ep} , vary c_p

Electronic specific heat c_e

 $c_{\rm e} = \gamma T_{\rm e}$

fixed R, c_p , g_{ep} , decrease c_e

Electronic specific heat ce

fixed R, g_{ep} $\approx 2c_p$

Electronic specific heat ce

 $c_e = \gamma T_e$

fixed g_{ep} $\approx 0.4R$

$$\frac{dQ_{es}}{dt} = Jm \frac{dm}{dt} \tag{1}$$

Introduction

The Microscopic Three temperature Mode

Experimental Data

Implemented Model

Discussion of parameters

Thank you for your attention

fluence $\left[\frac{mJ}{cm^2}\right]$	$P_0 [10^{21} \frac{W}{m^3}]$ Nickel	$P_0 [10^{21} \frac{W}{m^3}]$ Iron	$P_0 [10^{21} \frac{W}{m^3}]$ Cobalt
0.5	1.68	1.33	1.33
3	10.08	8	8
5	16.8	13.3	13.3
6	20.3	16	16
7	23.7	18.6	18.6
9	30.5	23.9	23.9
11	38.5	29	29
13		34.2	34.2
15		39.4	39.4

Three temperature model

$$C_{e} \partial_{t} T_{e} = -g_{ep}(T_{e} - T_{p}) - g_{es}(T_{e} - T_{s}) + S(t)$$

$$C_{p} \partial_{t} T_{p} = g_{ep}(T_{e} - T_{p}) - g_{ps}(T_{p} - T_{s})$$

$$C_{s} \partial_{t} T_{s} = g_{es}(T_{e} - T_{s}) + g_{ps}(T_{p} - T_{s})$$
(2)

- ► C_i heat capacity of subsystem i
- ▶ g_{ij} coupling constant of systems i,j
- $ightharpoonup g_{ps} \ll g_{es}$
- $ightharpoonup C_S \ll C_D$
- spin system not in internal equilibrium 8
- energy redistribution within sample
- microscopic processes behind spin flip events?

$$\partial_t \mathbf{n} = \gamma [\mathbf{n} \times \mathbf{H}_{eff}] - \frac{\gamma \alpha_{\perp}}{n^2} [\mathbf{n} \times [\mathbf{n} \times \mathbf{H}_{eff}]] + \frac{\gamma \alpha_{\parallel}}{n^2} [\mathbf{n} \cdot \mathbf{H}_{eff}] \mathbf{n}^9$$
 (3)

γ gyromagnetic ratio

$$m{n} = rac{\langle m{s}
angle}{m_e(T_e)}$$

$$\alpha_{\perp} = \frac{\lambda}{m_e} \left[\frac{\tanh(q_s)}{q_s} - \frac{T}{3T_C} \right]$$

$$\alpha_{\parallel} = \frac{2\lambda T}{3m_eT_C} \frac{2q_s}{\sinh(2q_s)}$$

 λ dissipation constant

$$\boldsymbol{H}_{\mathrm{eff}} = \boldsymbol{H}_{\mathrm{int}} + \frac{m_{\mathrm{e}}(T)}{2\chi_{\parallel}} (1 - n^2) \boldsymbol{n}$$

⁹Atxitia et al., PRB 84, 2011

e-m scattering, Carpene et al., PRB 78, 2008

low energy magnon excitations

Coulomb-scattering, Krauß et al., PRB 80, 2009

 angular momentum not explicitly considered

e-p scattering, Koopmans et al., Nmat 2593, 2009

lattice = sink for angular momentum

► SOC couples majority and minority bands, thus ¹⁰

$$\left|\Psi_{k,n}^{\uparrow}\right\rangle = a_{k,n}^{\uparrow}\left|\uparrow\right\rangle + b_{k,n}^{\uparrow}\left|\downarrow\right\rangle$$

▶ spin transitions upon spin-diagonal interactions yield finite

$$\left\langle \Psi_{k,n}^{\uparrow} \middle| \mathcal{H}_{\mathsf{int}} \middle| \Psi_{k',n}^{\downarrow} \right\rangle$$

Proposed mechanisms include

- electron-magnon-scattering
- Coulomb scattering
- electron phonon-scattering

¹⁰Elliott[†]. PR 96, 1954