Sequential Logic Design

Register

By Prof. Sujata Wakchaure

Introduction

- Flip flop can store 1 bit of digital information
- It is also referred as 1 bit register
- To increase the storage capacity, we have to use group of flip flop. This group of ff is known as Register
- E.g. Intel's 8085 microprocessor chip contains:
 - − Seven 8 − bit registers = General Purpose Register
 - Five 1 bit registers = flags
- The data can be entered and retrieved in serial and parallel form
- Data in serial form is referred as Temporal Code (Time arrangement of bits)
- Data in parallel form is referred as Spacial Code

Introduction (contd..)

 Registers are classified depending upon the way in which data are entered and retrieved

- The 4 possible modes of operation are
- 1. Serial-in, Serial-out(SISO)
- 2. Serial—in, Parallel—out(SIPO)
- 3. Parallel-in, Serial-out(PISO)
- 4. Parallel—in, Parallel—out(PIPO)

Shift Registers

- Registers in which data are entered and/or taken out in serial form are referred to as Shift Registers
- Bits are shifted in flip flop with occurrence of clock pulses either in right direction (right shift register) or in the left direction (left shift register)
- In the bi-directional shift register, data can be shifted from left to right as well as in reverse direction, using the mode control. e.g IC 74295A is a bi-directional shift register
- A register is referred to as a **Universal register** if it can be operated in all 4 possible modes and also as a bi-directional register. E.g. 74194 is a universal register
- Shift registers are available in 54/74 TTL and CMOS logic families

Shift Registers (Contd..)

Shift Registers available in 54/74 TTL and CMOS families

IC Number	Description
7491, 7491A	8-bit Serial-in, serial-out
7494	4-bit Parallel-in, serial-out
7495	4-bit Serial/Parallel-in, Parallel-out (right-shift, left-shift)
7496	5-bit Parallel-in/Parallel-out, serial-in/serial-out
7499	4-bit bi-directional (Universal)
74164	8-bit Serial-in, Parallel-out
74165	8-bit Serial/Parallel-in, Serial-out
74166	8-bit Serial/Parallel-in, Serial-out
74178, 74179	4-bit bi-directional (Universal)
74194	4-bit bi-directional (Universal)

Basic Shift Registers

- 1. Serial—in, Serial—out(SISO)
- 2. Serial—in, Parallel—out(SIPO)
- 3. Parallel-in, Serial-out(PISO)
- 4. Parallel-in, Parallel-out(PIPO)

Serial-in, Serial-out(SISO)

Data at the input will be delayed by four clock periods from the input to the output of the shift register

Serial-in, Serial-out(SISO) (Contd..)

CLK	Q3	Q2	Q1	Q0
Initially	0	0	0	0
\	1	0	0	0
	1	1	0	0
	1	1	1	0
	1	1	1	1

TT for D Flip Flop

CLK	D	Qn+1
0	X	Qn
1	0	0
1	1	1

Serial-in, Serial-out(SISO) (Contd..)

Serial-in, Parallel-out(SIPO)

Serial-in, Parallel-out(SIPO) (Contd..)

Parallel-in, Parallel-out(PIPO)

Parallel—in, Parallel—out(PIPO) (Contd..)

Parallel-in, Serial-out(PISO)

Parallel-in, Serial-out(PISO) (Contd..)

