POKHARA UNIVERSITY

Level: Bachelor

Semester Spring

Year : 2024

Programme BE Course Numerical Methods Full Marks: 100 Pass Marks: 45 Time: : 3 hrs.

Condidates are required to give their answers in their own words as far as practicable.

The figures in the margin indicate full marks.

Attempt all the questions

- 1. 3) Find the root of the equation $cosx + e^x + x^2 = 3$ correct to three decimal places by using Newton Raphson method.
 - Find the root of the equation $f(x) = x^2-4x-10$ correct to three decimal places by using False Position method.
- a) The following table gives the displacement, x(cms.) of an object at various time, t(seconds). Find the displacement of this object at t=1.3 second and t=1.5 second, using any suitable interpolation formula.

1	1.0	1.2	1.4	1.7	
x	9.0	9.5	10.2	11.0	

The growth of bacteria(N) in a culture after t hours is given by the following table:

Time ((hr)	0	1	2	13	4
Bacteris(N)	32	47	65	92	132

If the relationship between bacteria N and time t is of the form N-ub. Using least square approximation estimate the N at t=5 hr.

- a) Find $\int_0^3 \frac{e^x}{1+x} dx$ by using:
 - i. Trapezoidal rule
 - ii. Simpson's 1/3 rule
 - in. Simpson's 3/X rule
- Use the Romberg integration to find the solution correct upto three decimal places.

$$I = \int_0^1 \frac{1}{1 \cdot x^2} \mathrm{d}x$$

a) Find the inverse of the square matrix, $A = \begin{bmatrix} 4 & 1 & 2 \\ 2 & 3 & -1 \\ 1 & -2 & 2 \end{bmatrix}$ by using

Gauss-Jordan elimination method.

b) Find the solution of the given simultaneous linear equation using Gauss Seidel method.

$$6x - 2y + z = 11$$

$$-2x + 7y + 2z = 5$$

$$x + 2y - 5z = -1$$

- a) solve the following differential equation within 0≤x≤0.5 using Rk 4th order method 10d² y/dx²+2dy/dx-3y=5, y(0)=0.y'(0)=0.
 - Using the Euler's (R-K 1 " order method) find an approximate value of y corresponding to x=1, given that dy/dx = X+Y and y= 1. When x=0, h = 0.1.
- 6. a) Torsion on a square bar of size 15cm × 15cm. If two of the sides are held at 100°C and the other two sides are held at 0°C. Calculate the steady state temperature at interior points. Assume a grid size of 5cm × 5cm.
 - Solve the Poisson equation $\nabla^2 f = 2x^2 + y$, over the square domain $1 \le x \le 4$, $1 \le y \le 4$, with f = 0 on the boundary. Take step size in x and y, h = k = 1.

Write short notes on: (Any two)

- a) Applications of Numerical Methods in Engineering
- b) Error in Numerical Method
- e) Ill condition and well-conditioned system