Benchmarking Substellar Evolutionary Models Using New Age Estimates for HD 4747 B and HD 19467 B

Charlotte Wood

December 7, 2018

2018 COSE-JAM at the University of Notre Dame

Submitted!

Benchmarking Substellar Evolutionary Models Using New Age Estimates for HD 4747 B and HD 19467 B

Charlotte M. Wood, ¹ Tabetha Boyajian, ² Kaspar von Braun, ³ John M. Brewer, ^{4,5} Justin R. Crepp, ¹ Gail Schaefer, ⁶ Arthur Adams, ⁴ and Timothy R. White⁷

¹University of Notre Dame, Department of Physics, 225 Nieuwland Science Hall, Notre Dame, IN 46556

²Louisiana State University, Department of Physics and Astronomy, 202 Nicholson Hall, Baton Rouge, LA 70803
³Lowell Observatory, 1400 W Mars Hill Rd. Flagstaff, AZ 86001

⁴ Yale University, Department of Astronomy, P.O. Box 208101, New Haven, CT 06520

 $^6\,The\ CHARA\ Array\ of\ Georgia\ State\ University,\ Mount\ Wilson,\ CA\ 91023$

⁷ Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark

Submitted to ApJ

Table of contents

1. Introduction and Motivation

2. Observations and Results

3. Conclusions

Introduction and Motivation

Not a Star and Not a Planet

- A brown dwarf is an object that does not sustain nuclear fusion
- Generally considered "failed stars"
- Mass $\sim 13-72~\mathrm{M_{Jup}}$

Credit: Wikipedia

• Larger mass \rightarrow hotter \rightarrow higher luminosity

- Larger mass \rightarrow hotter \rightarrow higher luminosity
- ullet Older age o lower luminosity

- $\bullet \ \ \mathsf{Larger} \ \mathsf{mass} \to \mathsf{hotter} \to \mathsf{higher} \\ \mathsf{luminosity}$
- ullet Older age o lower luminosity

- Larger mass \rightarrow hotter \rightarrow higher luminosity
- ullet Older age o lower luminosity
- Need three parameters: mass, age, and luminosity
- How do you determine if a brown dwarf is massive but old or light but young?

The Problem

Are the models actually any good?

Finding "Benchmark" Objects

 Directly imaged brown dwarfs in binary (or higher) systems have model-independent masses, ages, and luminosities

Credit: Crepp, J. 6

Finding "Benchmark" Objects

- Directly imaged brown dwarfs in binary (or higher) systems have model-independent masses, ages, and luminosities
- Use these "benchmark" brown dwarfs to test and calibrate models

Credit: Crepp, J. 6

Observations and Results

Study the Host Star Instead

Stellar models are more rigorously tested than brown dwarf models, but age results depend on method used.

Comparing the Luminosities

Comparing the Luminosities

HD 4747 B Might Have Clouds

Comparing the Masses

- Models come in form of a grid

 each (mass, age) pair has a
 corresponding luminosity
- Explore the parameter space in an unbiased way using a Markov Chain Monte Carlo simulation
- Returns a probability distribution for the explored parameter

Comparing the Masses

Conclusions

 Current brown dwarf models under-predict the luminosities of HD 4747 B and HD 19467 B by at least a factor of 3 and over-predict the masses by at least 15%

- Current brown dwarf models under-predict the luminosities of HD 4747 B and HD 19467 B by at least a factor of 3 and over-predict the masses by at least 15%
- Models may be missing physics
 no exploration of metallicity, clouds are complicated

- Current brown dwarf models under-predict the luminosities of HD 4747 B and HD 19467 B by at least a factor of 3 and over-predict the masses by at least 15%
- Models may be missing physics
 no exploration of metallicity, clouds are complicated
- Continue to observe these brown dwarfs for improved distances and better constraints on the orbits

- Current brown dwarf models under-predict the luminosities of HD 4747 B and HD 19467 B by at least a factor of 3 and over-predict the masses by at least 15%
- Models may be missing physics
 no exploration of metallicity, clouds are complicated
- Continue to observe these brown dwarfs for improved distances and better constraints on the orbits

Questions?

- Current brown dwarf models under-predict the luminosities of HD 4747 B and HD 19467 B by at least a factor of 3 and over-predict the masses by at least 15%
- Models may be missing physics
 no exploration of metallicity, clouds are complicated
- Continue to observe these brown dwarfs for improved distances and better constraints on the orbits