Curvas e Superfícies, FGV/EMAp 2021

Lista 6 #

Asla Medeiros e Sá (data de entrega: 26/05/2021 - quarta-feira)

Aluno: Rener de Souza Oliveira

Tópicos: Topologia, conjuntos abertos, fechados, compactos e conexos, continuidade e home-omorfismo.

1. Provar que toda bola aberta B(x;r) é um conjunto aberto.[1]

Solução: Seja $y \in B(r; x)$. Queremos provar que existe $\epsilon > 0$ tal que $B(y; \epsilon) \subseteq B(r; x)$. Definimos para isto $\epsilon := r - |y - x| > 0$. Logo, dado qualquer ponto $z \in B(y; \epsilon)$, temos que

$$|z - x| \le |z - y| + |y - x| < \epsilon + |y - x| = r - |y - x| + |y - x| = r.$$

Logo $z \in B(x;r)$. Isto é, $B(y;\epsilon) \subseteq B(x;r)$. Concluímos que B(x;r) é aberto.

2. Provar que $Z:=\{(x,y)\in\mathbb{R}^2: xy<0\}$ é aberto.

Dica: Seja (a,b) no conjunto Z. Seja $\epsilon:=\min\{|a|,|b|\}>0.$ Provar que $B((a,b);\epsilon)\subseteq Z.$

Solução:

Tome $(a, b) \in Z$ e faça $\delta = \min\{|a|, |b|\}$, vamos provar que $B((a, b), \delta) \in Z$.

Dado $(x, y) \in B((a, b), \delta)$ arbitrário, queremos provar que xy < 0. Podemos estabelecer duas desigualdades: $|x - a| < \delta$ e $|y - b| < \delta$; demonstração segue:

$$|x - a| = \sqrt{(x - a)^2}$$

 $\leq \sqrt{(x - a)^2 + (y - b)^2}$
 $= ||(x, y) - (a, b)||$
 $< \delta,$

e de forma análoga se conclui $|y-b| < \delta$. Tendo $|x-a| < \delta$, significa dizer que $a-\delta < x < a+\delta$. Suponha que a>0, como $\delta \leq |a|=a$ então $-\delta \geq a$, logo $x>a-\delta \Rightarrow x>a-a=0$. Supondo a<0, teremos $\delta \leq |a|=-a$ e $x<a+\delta \leq a-a=0$, ou seja x<0. O caso a=0 não se dá, pois ab<0. O que provamos é que o sinal de x é igual ao sinal de a, de forma análoga, prova-se que $\mathrm{sign}(y)=\mathrm{sign}(b)$. Como

¹Se $\lambda \in \mathbb{R}$, sign $(\lambda) = 1$ se $\lambda \ge 0$ e -1 se $\lambda < 0$

sign(ab) = -1, e a função sinal é tal que $sign(\alpha\beta) = sign(\alpha) sign(\beta)$, $\forall \alpha, \beta \in \mathbb{R}$, então

$$sign(xy) = sign(x) sign(y)$$

$$= sign(a) sign(b)$$

$$= sign(ab)$$

$$= -1,$$

ou seja xy < 0, como queríamos demonstrar.

3. Provar que união de conjuntos abertos é um conjunto aberto.

Solução: Seja $\{A_{\lambda} : \lambda \in \Lambda\}$ uma família de abertos, onde Λ é um conjunto de índices (possívelmente infinito, não enumerável). Consideremos a união:

$$A := \bigcup_{\lambda \in \Lambda} A_{\lambda}.$$

Seja $z \in A$. Logo $z \in A_{\lambda}$ para algum índice λ . Dado que A_{λ} é aberto, existe $\epsilon > 0$ tal que $B(z; \epsilon) \subseteq A_{\lambda}$. Logo $B(z; \epsilon) \subseteq A$. Concluímos que A é aberto.

4. Provar que a interseção de uma quantidade finita de abertos é um conjunto aberto.

Solução: Seja I um conjunto de índices finito de n elementos. Temos então um conjunto enumerável que pode ser representado por $I = \{1, 2, ..., n\}$. Queremos provar que se A_i é aberto $\forall i \in I$, então $\bigcap_{i=1}^n A_i$ é aberto.

Se cada A_i é aberto, dado $i \in I$ temos que $\forall x \in A_i, \exists \delta_i > 0; B(x, \delta_i) \subseteq A_i$.

Tome $x \in \bigcap_{i=1}^{n} A_i$, assim $x \in A_i, \forall i \in I$. Tome então um $\delta > 0$ tal que $\delta \leq \min_{i \in I} \{\delta_i\}$.

Assim $B(x, \delta) \subseteq B(x, \delta_i) \subseteq A_i$ para todo $i \in I$. Dessa forma $B(x, \delta) \subseteq \bigcap_{i=1}^n A_i$.

5. Provar que a interseção de conjuntos fechados é um conjunto fechado. Será que união de fechados é também fechado? Se não for certo, dar um contraexemplo.

Solução: Tome I um conjunto de índices qualquer. Queremos provar que se F_{λ} é fechado $\forall \lambda \in I$ então $\bigcap_{\lambda \in I} F_{\lambda}$ é fechado. Temos para cada λ : Se $(x_n)_{n \in \mathbb{N}} \in F_{\lambda}$ com $\lim_n x_n = x$ então $x \in F_{\lambda}$.

Tome
$$(y_n) \in \bigcap_{\lambda \in I} F_{\lambda}$$
 convergente com $\lim_n y_n = y$.

Se a sequência (y_n) está na interseção então $(y_n) \in F_\lambda, \forall \lambda \in I$. Assim como cada F_λ é fechado $\lim_n y_n \in F_\lambda, \forall \lambda \in I$. Portanto $\lim_n y_n = y \in \bigcap_{\lambda \in I} F_\lambda$, concluindo que $\bigcap_{\lambda \in I} F_\lambda$ é fechado.

Contraexemplo para união:

Tome $a, b \in \mathbb{R}$ com a < b, e |b - a| > 2 e $(F_n)_{n \in \mathbb{N}}$ família de fechados com $F_n := [a + 1/n, b - 1/n]$.

Afirmação: $\bigcup_{n\in\mathbb{N}} F_n = (a,b)$ que não é fechado.

Prova: Provemos primeiro que $\bigcup_{n\in\mathbb{N}} F_n \subseteq (a,b)$.

Se $x \in \bigcup F_n$ então $x \in F_{n_0}$ para algum $n_0 \in \mathbb{N}$, como $a + 1/n_0 > a$ e $b - 1/n_0$ então $F_{n_0} = [a + 1/n_0, b - 1/n_0] \subset (a, b)$, logo $x \in (a, b)^2$.

Agora provaremos que $(a,b) \subseteq \bigcup F_n$.

Dado $x \in (a, b)$ suponha que $x \le (b - a)/2$, omitirei o outro caso pois a demonstração é análoga.

Sabe-se que $\exists n_0 \in \mathbb{N}$ tal que $\frac{1}{n_0} < x - a$, assim $a + \frac{1}{n_0} < a + (x - a) = x$. Basta agora provar que $x < b - \frac{1}{n_0}$ e concluiremos que $x \in F_{n_0} \subseteq \bigcup F_n$.

$$x + 1/n_0 < x + (x - a)$$

$$= 2x - a$$

$$\leq 2(b - a)/2 - a$$

$$= b - a + b = b$$

Logo $x < b - 1/n_0$ como queríamos demonstrar. O fato de (a, b) não ser fechado segue por exemplo, da sequência $a_n = a + 1/n$ que converge para a porém $a \notin (a, b)$.

6. Dê exemplos de conjuntos que não são nem abertos nem fechados.

Solução: Tome $\mathbb{Q} \subset \mathbb{R}$.

Afirmação 1: Q não é aberto.

 $^{^2}$ A restrição do início |b-a|>2é para não termos problemas no caso $n_0=1,$ e garantir sempre que $a+\frac{1}{n_0}< b-\frac{1}{n_0}$

 $\forall q \in \mathbb{Q}, \forall \delta > 0; B(q, \delta) = (q - \delta, q + \delta)$ contém infinitos irracionais, pela densidade de $\mathbb{R} \setminus \mathbb{Q}$ em \mathbb{R} que não detalharei aqui. Sendo assim, nenhuma bola $B(q, \delta)$ está contida em \mathbb{Q} , logo \mathbb{Q} não é aberto.

Afirmação 2: Q não é fechado.

Pela densidade dos racionais nos reais, vamos construir uma sequência em $\mathbb Q$ cujo limite não é racional.

Seja
$$A_n = (\sqrt{2} - 1/n, \sqrt{2} + 1/n)$$
. Temos $A_n \setminus \{\sqrt{2}\}$ (i.e $A_n \supset A_{n+1} \in \bigcap_{n \in \mathbb{N}} A_n = \{\sqrt{2}\}$).

Para cada $n \in \mathbb{N}$ escolha $q_n^* \in A_n \cap \mathbb{Q}$ qualquer, pela densidade dos racionais isso é sempre possível para todo n. Como $A_n \setminus \{\sqrt{2}\}$, então $\lim q_n^* = \sqrt{2} \notin \mathbb{Q}$. Dessa forma \mathbb{Q} não é fechado.

7. Prove que

$$\{(x,y) \in \mathbb{R}^2 : y > 0\}$$

é aberto.

Solução: Seja $A = \{(x,y) \in \mathbb{R}^2 : y > 0\}$ e tome (x,y) com y > 0. Temos então $(x,y) \in A$.

Queremos provar que $\exists \delta > 0$ com $B((x, y), \delta) \subseteq A$.

Tome δ tal que $0 < \delta < y$. Tomemos $(a,b) \in B((x,y),\delta)$, queremos provar que $(a,b) \in A$, ou seja b > 0.

$$\sqrt{(y-b)^2} \le \sqrt{(x-a)^2 + (y-b)^2} = ||(x,y) - (a,b)|| < \delta < y$$

Assim $\sqrt{(y-b)^2} = |y-b| < y$. No caso $y-b \ge 0$, temos |y-b| = y-b, assim $|y-b| < y \Rightarrow y-b < y \Rightarrow b > 0$.

No caso y - b < 0, temos diretamente que b > y > 0.

provamos então que b > 0, logo $(a, b) \in A$, o que demonstra que $B((x, y), \delta) \subseteq A$, bastando tomar $\delta < y$.

- 8. Prove que um conjunto em \mathbb{R}^n é aberto se, e somente se, é união de bolas abertas.
 - **Solução:** (\Rightarrow) $A \subseteq \mathbb{R}^n$ aberto \Rightarrow A é união de bolas abertas.

Temos que $\forall x \in A, \exists \delta_x > 0; B(x, \delta_x) \subseteq A$. Tome $B = \bigcup_{x \in A} B(x, \delta_x)$. Afirmo que A = B, segue a demonstração:

- $(A \subseteq B)$ Tome $x \in A$ arbitrário, mas fixo, sabemos que $x \in B(x, \delta_x) \subseteq B$ pois B é a união das bolas sobre $x \in A$. Logo $x \in B$, provando que $A \subseteq B$.
- $(B \subseteq A)$ Tome $y \in B = \bigcup_{x \in A} B(x, \delta_x)$ arbitrário, mas fixo. Temos então que $\exists x \in A; y \in B(x, \delta_x)$, mas $B(x, \delta_x) \subseteq A$ por construção. Logo $y \in A$, implicando $B \subseteq A$.

$$(\Leftarrow)$$
 Se $A = \bigcup_{\lambda \in I} B(\lambda, \delta_{\lambda})$ então A é aberto.

Tome $x \in A$ arbitrário, mas fixo; Queremos provar que $\exists \delta > 0$ tal que $B(x, \delta) \subseteq A$. Mas se $x \in A$, então $\exists \lambda^* \in I$ tal que $x \in B(\lambda^*, \delta_{\lambda^*}) \subseteq A$. Tome então $\delta = \lambda^*$ e temos os resultado.

9. Provar que $\mathbb{R} \times \{0\}$ é fechado em \mathbb{R}^2 .

Solução: Defina $A_n := \{(x, y) \in \mathbb{R}^2; x \in \mathbb{R}, -\frac{1}{n} \le y \le \frac{1}{n}\}$, ou ainda $A_n = \mathbb{R} \times [-\frac{1}{n}, \frac{1}{n}]$. Afirmações:

- (a) A_n é fechado $\forall n \in \mathbb{N}$
- (b) $\bigcap_{n\in\mathbb{N}} A_n = \mathbb{R} \times \{0\}$

As afirmações (a) e (b) juntas com o exercício anterior provam que $\mathbb{R} \times \{0\}$ é fechado. Prova de (a): \mathbb{R} e $[-\frac{1}{n}, \frac{1}{n}]$ são fechados, como o produto cartesiano de fechados é fechado[1] então $A_n = \mathbb{R} \times [-\frac{1}{n}, \frac{1}{n}]$ é fechado.

Prova de (b): primeiramente vamos provar que $\cap A_n \subseteq \mathbb{R} \times \{0\}$. Se $(x,y) \in \cap A_n$ então $(x,y) \in A_n, \forall n \in \mathbb{N}$. Precisamos provar que $x \in \mathbb{R}$ e $y \in \{0\}$ o primeiro é trivial da definição de A_n , e se $y \in [-\frac{1}{n}, \frac{1}{n}], \forall n \in \mathbb{N}$ então tem-se $y \in \{0\}$, pois caso contrário, se y pertencesse à $(-\varepsilon, 0) \cup (0, \varepsilon)$ para algum $\varepsilon > 0$ existiria n_0 grande suficiente tal que $y \notin [-\frac{1}{n_0}, \frac{1}{n_0}]$, bastando tomar $n_0 > \frac{1}{|y|}$ por exemplo, tal fato seria um absurdo.

10. Prove que as bolas fechadas são conjuntos fechados.

Solução: Definimos bola fechada de centro $c \in \mathbb{R}^n$ e raio r como $B[c,r] := \{x \in \mathbb{R}^n; ||x-c|| \le r\}.$

Tome uma sequência (x_k) convergente em B[c, r] com $\lim x_k = x$. Queremos provar que $||x - c|| \le r$, ou seja, que o limite também pertence a bola.

Temos que:

$$||x - c|| = ||x - x_k + x_k - c||, \forall k \in \mathbb{N}$$

$$\leq ||x_k - x|| + ||x_k - c||, \forall k \in \mathbb{N}$$

$$\leq ||x_k - x|| + r, \forall k \in \mathbb{N},$$

$$(1)$$

onde 1 segue da desigualdade triangular e 2 do fato de $(x_k) \in B[c, r]$. Como a desigualdade $||x - c|| \le ||x_k - x|| + r$ vale para todo elemento da sequência, podemos tomar o limite em k e teremos $||x - c|| \le r$ C.Q.D.

11. Seja $A \subset \mathbb{R}^n$ tal que existe d > 0 tal que $||x - y|| \ge d$ para todo par de pontos $x, y \in A$. Prove que A é fechado em \mathbb{R}^n .

Solução Tome (p_k) sequência de pontos em A, tal que $\lim p_k = a$.

Vamos provar que $a \in A$, ou seja que $\exists d^* > 0$ tal que qualquer par x, a satisfaz $||x - a|| \ge d^*$.

Sabemos que $\exists d > 0$ tal que $\forall k \in \mathbb{N}, ||p_k - x|| \ge d \forall x \in A$. Assim, para todo k natural e para todo ponto x em A vale:

$$d \le ||p_k - x||$$

$$= ||p_k - a + a - x||$$

$$\le ||p_k - a|| + ||x - a||$$

Temos então $||x-a|| \ge d - ||p_k-a||$. Tomando k suficientemente grande tem-se $d-||p_k-a|| > 0$. Sendo assim, fazendo $d^* = d-||p_k-a||$ para tal k suficientemente grande, temos que $||x-a|| \ge d^*, \forall x \in A$, ou seja $a \in A$, como queríamos demonstrar.

12. Seja $A\subset\mathbb{R}^2$ um conjunto não vazio contido numa reta de \mathbb{R}^2 . Prove que A não é aberto.

Solução: Suponha por absurdo que A é aberto, ou seja, $\forall x \in A, \exists \delta > 0; B(x, \delta) \subseteq A$. Seja $R_{p_0,v}$ a reta que passa por p_0 de vetor diretor v.

$$R_{p_0,v} := \{ p_0 + tv; t \in \mathbb{R} \}$$

Pelo enunciado, $A \subset R_{p_0,v}$ é não vazio. Tome então algum ponto p de A e expresse-o como $p = p_0 + tv$ com t apropriadamente escolhido. Considere a sequência $p_k = p + \frac{1}{k}u$ com $u \in \mathbb{R}^2$ um vetor qualquer tal que u,v sejam linearmente independentes. Por conta disso, para todo k, p_k não pertence à reta $R_{p_0,v}$, logo não pertence a A. Além disso, $\lim p_k = p$, ou seja $\forall \delta > 0, \exists k_0 \in \mathbb{N}$ tal que $\forall k > k_0, ||p_k - p|| < \delta$, ou seja, $p_k \in B(p, \delta)$. Mas como $p_k \notin A$, então $B(p, \delta) \notin A$.

Em resumo provamos que toda bola aberta ao redor de p contém pontos que não estão na reta, logo A não é aberto.

13. Seja $A \subseteq \mathbb{R}^n$. Prove que $\mathbb{R}^n \setminus int(A)$ é fechado.

Solução: Pelo Teorema 17 do Capítulo 1 de [1], um conjunto é fechado, se e só se, seu complemento é aberto. Como int(A) é aberto por definição, $\mathbb{R}^n \setminus int(A)$ é fechado. Para essa solução não ficar muito curta, vou demonstrar o Teorema (só a ida) já que o Elon não o faz.

Se $A \subseteq \mathbb{R}^n$ é aberto, então A^c é fechado

Prova: Temos que $\forall x \in A, \exists \delta_x > 0$ tal que $B(x, \delta_x) \subseteq A$. Tome $(y_k) \in A^c$ com $\lim y_k = y$. Afirmamos que $y \notin A$, pois se fosse o caso existiria $\delta_y > 0$ tal que $B(y, \delta_y) \subseteq A$, e como $\lim y_k = y$, para tal δ_y , existe $k_0 \in \mathbb{N}$ tal que $\forall k > k_0, y_k \in B(y, \delta_y) \subseteq A$, contradizendo $(y_k) \in A^c$. Portando se o limite $y \notin A$, temos $y \in A^c$, provando então que A^c é fechado.

14. Seja $A \subset B \subseteq \mathbb{R}^n$, e x ponto de acumulação de A. Será que x é também ponto de acumulação de B?

Solução: Se x é ponto de acumulação de A, então existe uma sequência (x_n) contida em A, com limite igual a x. Como $(x_n) \in A$ e $A \subset B$, então, em particular $(x_n) \in B$. Como x é agora o limite de um sequência de pontos em B, então x é ponto de acumulação de B.

15. Se $A \subset \mathbb{R}^n$ é aberto, prove que sua fronteira tem interior vazio.

Solução: Defini-se fronteira de A como:

$$\partial A := \{x \in \mathbb{R}^n; \forall \delta > 0, B(x, \delta) \cap A \neq \emptyset \in B(x, \delta) \cap A^c \neq \emptyset \}$$

Queremos provar que $int(\partial A) = \varnothing$.

Suponha, por absurdo que $\operatorname{int}(\partial A) \neq \emptyset$, assim, $\exists y \in \mathbb{R}^n$ tal que $y \in \operatorname{int}(\partial A)$ i.e, para tal $y, \exists \delta_y > 0$ onde $B(y, \delta_y) \subseteq \partial A$.

Se toda a bola está em ∂A , então, em particular $y \in \partial A$, ou seja, temos $B(y, \delta_y) \cap A \neq \emptyset$. Tome então $x \in B(y, \delta_y) \cap A$. em particular $x \in A$ aberto, logo existe uma bola $B(x, \delta_x) \subseteq A$, e podemos tomar δ_x suficientemente pequeno de tal forma que $B(x, \delta_x)$ também pertença a $B(y, \delta_y)^3$. Com isso $B(x, \delta_x)$ pertencerá a fronteira ∂A , assim $B(y, \delta_y) \cap A^c \neq \emptyset$, o que contradiz o fato de $B(x, \delta_x)$ estar inteiramente contido em A.

- 16. Seja $A \subseteq \mathbb{R}^n$ com $n \ge 2$. Prove que, dado $a \in \mathbb{R}^n \setminus A$, o conjunto $A \cup \{a\}$ é aberto se, e somente se, a é um ponto isolado da fronteira de A.
- 17. Prove que se $F \subseteq \mathbb{R}^n$ é fechado então sua fronteira tem interior vazio.

Solução: Se F é fechado, F^c é aberto, e pelo exercício 15, $\operatorname{int}(\partial F^c) = \emptyset$. Afirmo que $\partial F = \partial F^c$ e o problema se encerra.

Prova da afirmação:

$$\partial F := \{ x \in \mathbb{R}^n; \forall \delta > 0, B(x, \delta) \cap F \neq \emptyset \in B(x, \delta) \cap F^c \neq \emptyset \}$$

$$\partial F^c := \{x \in \mathbb{R}^n; \forall \delta > 0, B(x, \delta) \cap F^c \neq \varnothing \text{ e } B(x, \delta) \cap (F^c)^c \neq \varnothing \}$$

Mas como $(F^c)^c = F$, segue que as duas definições são as mesmas, logo os conjuntos são iguais.

18. Sejam $F \in \mathbb{R}^n$ fechado e $f: F \to \mathbb{R}^m$ uma aplicação contínua. Mostre que f leva subconjuntos limitados de F em subconjuntos limitados de \mathbb{R}^m . Prove, exibindo um contra-exemplo, que não se conclui o mesmo removendo-se a hipótese de F ser fechado.

Solução: Se $f: F \to \mathbb{R}^n$ é contínua, então $\forall (x_n) \in F$ com $\lim x_n = c$, então $\lim f(x_n) = f(c)$.

Tome $A \subset F$ limitado, i.e, $\exists M > 0$ tal que A está contido numa bola aberta de centro na origem e raio M. Queremos provar que f(A) é limitado.

Seja B = f(A) e suponha, por contradição, B não limitado, ou seja, $\forall M > 0, \exists b \in B$ tal que b está fora de B(0, M), ou ||b|| > M.

Tome uma sequência $(b_n) \in B$ tal que $||b_n|| > n$. Crie $(a_n) \in A$ tal que $f(a_n) = b_n, \forall n \in \mathbb{N}$. Como A é limitado, (a_n) é limitada, e pelo Teorema de Bolzano-Weierstrass, existe

³já que $B(y, \delta_y)$ é aberto.

subsequência $(a_{n_k}) \in A$ convergente. Seja $a = \lim_k a_{n_k}$. Como $A \subset F$ fechado, então $a \in F$, pela definição de fechado.

Como f é contínua, $\lim_{k} f(a_{n_k})$ existe e é igual a f(a), mas por construção, $b_{n_k} = f(a_{n_k})$ diverge, ABSURDO.

O contraexemplo removendo a hipótese de domínio fechado é $f:(0,1)\to\mathbb{R}$ com $f(x)=\ln x.$ (0,1) é limitado mas $f((0,1))=(-\infty,0)$ não é.

19. Prove que duas bolas abertas de \mathbb{R}^n são homeomorfas.

Solução: Dados $a \in \mathbb{R}^n$ e r > 0, consideremos a aplicação:

$$f: B(0,1) \to B(a,r)$$

 $x \to rx + a$

A aplicação f é bijetiva e contínua. Sua inversa, $f^{-1}: B(a,r) \to B(0,1)$, é dada por $f^{-1}(y) = \frac{1}{r}(y-a)$, donde se vê que f^{-1} é contínua, portanto f é um homeomorfismo. Pela transitividade da relação de homeomorfismo, conclui-se que duas bolas bertas quaisquer de \mathbb{R}^n são homeomorfas. Um argumento análogo prova que vale o mesmo para duas bolas, ambas, fechadas.

20. Verifique que a aplicação:

$$f: B(0,1) \to \mathbb{R}^n$$
$$x \to \frac{x}{1 - ||x||}$$

é um homeomorfismo entre a bola aberta unitária B(0,1) e \mathbb{R}^n . Conclua que qualquer bola aberta de \mathbb{R}^n é homeomorfa a todo o espaço \mathbb{R}^n .

Solução: precisamos provar que f é bijetiva (injetiva e sobrejetiva) e contínua com inversa contínua.

(Injetividade) Tome $x, y \in (0, 1)$, com f(x) = f(y). iremos provar que isso implica x = y.

Como $\frac{x}{1-||x||} = \frac{y}{1-||y||}$, se x for zero, y será zero e vice versa. Tomando o caso não trivial $x, y \neq 0$, temos uma equação tipo⁴ $\alpha x = \beta y$, com $\alpha, \beta \neq 0$ (pois $||x||, ||y|| \neq 1$) sendo assim, os vetores x e y são linearmente dependentes. Vamos provar a seguir que eles

 $^{^{4}\}alpha = \frac{1}{1-||x||} \in \beta = \frac{1}{1-||y||}$

tem a mesma norma, e tendo a mesma norma e mesma direção, prova-se que eles são iguais, através de $x = \frac{\beta}{\alpha}y$, pois norma igual implica $\alpha = \beta$

$$\begin{split} ||f(x)|| &= ||f(y)|| \Rightarrow \frac{||x||}{1 - ||x||} = \frac{||y||}{1 - ||y||} \\ &\Rightarrow ||x||(1 - ||y||) = ||y||(1 - ||x||) \\ &\Rightarrow ||x|| - \|x\| \|y\| = ||y|| - \|y\| \|x\| \\ &\Rightarrow ||x|| = ||y|| \end{split}$$

(Sobrejetividade) Queremos provar que $\forall y \in \mathbb{R}^n, \exists x \in (0,1); f(x) = y.$

Resolvendo f(x)=y para x temos o candidato $x=\frac{y}{1+||y||}$. Precisamos provar que $x\in B(0,1)$ e que de fato f(x)=y. O primeiro fato é trivial pois o módulo do denominador é sempre maior que a norma do numerador. Segue a confirmação do segundo fato:

$$f(x) = \frac{y/(1+||y||)}{1-||y||/(1+||y||)}$$

$$= \frac{y/(1+||y||)}{(1+||y||-||y||)/(1+||y||)}$$

$$= \frac{y}{1+||y||-||y||}$$

$$= y$$

(Continuidade) Tome $(x_k) \in B(0,1)$ com $\lim x_k = x$ queremos provar que $f(x_k) \xrightarrow[k \to \infty]{k \to \infty} f(x)$. Usando a continuidade de normas em espaços vetoriais normados, temos $||x_k|| \xrightarrow[k \to \infty]{k \to \infty} ||x||$. Assim, como $1 - ||x_k|| \neq 0$ podemos aplicar a propriedade do limite da divisão de análise real[2], afirmar que $\alpha_k \xrightarrow[k \to \infty]{k \to \infty} \alpha$, onde $\alpha_k = 1/(1 - ||x_k||)$ e $\alpha = 1/(1 - ||x||)$. Sendo α_k um sequência real e com limite α e x_k a sequência em \mathbb{R}^n com limite x, temos por [1] que o limite desse produto é o produto dos limites, assim:

$$f(x_k) = \alpha_k x_k \xrightarrow[k \to \infty]{} \alpha x = \frac{x}{1 - ||x||}$$
. como queríamos demonstrar.

(Continuidade da inversa) Na demonstração da sobrejetividade, foi proposta a fórmula $f^{-1}(y) = \frac{y}{1+||y||}$. Queremos provar que dada uma sequência $(y_k) \in \mathbb{R}^n$ convergindo pra $y \in \mathbb{R}^n$ então $f^{-1}(y_k)$ converge para f(y). Novamente podemos argumentar de forma análoga à demonstração da continuidade de f, escrevendo y_k como

 $\alpha_k y_k$ sendo agora $\alpha_k = \frac{1}{1+||y_k||}$. Pela continuidade da norma e pela propriedade do limite do produto de sequência escalar por sequência vetorial, temos que

$$f^{-1}(y_k) = \alpha_k y_k \xrightarrow[k \to \infty]{} \frac{y}{1 + ||y||},$$

como queríamos demonstrar.

Usando o exercício 19 e composição homeomorfismos, concluímos que qualquer bola aberta é homeomorfa ao espaço \mathbb{R}^n .

21. Mostre que o cone $C=\{(x,y,z)\in\mathbb{R}^3; z=\sqrt{x^2+y^2}\}$ e \mathbb{R}^2 são homeomorfos.

Solução: Tome $f: \mathbb{R}^2 \to C$ dada por $f((x,y)) = (x,y,\sqrt{x^2+y^2})$, e $f^{-1}(x,y,z) = (x,y)$. É fácil ver que $f(\mathbb{R}^2) = C$ (f sobrejetiva) pela própria definição de C. A injetividade também segue trivialmente pois se dois pontos do cone tem as mesmas coordenadas, em particular, tem as mesmas coordenadas x e y, o que prova que $f(p_1) = f(p_2) \Rightarrow p_1 = p_2$ com $p_1, p_2 \in \mathbb{R}^2$.

A continuidade de f segue da composição da continuidade da norma euclidiana pois $f(p), p \in \mathbb{R}^2$ nada mais é do que $(x_p, y_p, ||p||)$.

A continuidade de f^{-1} é trivial pois se $(x_k, y_k, ||(x_k, y_k)||)$ converge para (x, y, ||(x, y)||), em particular $(x_k, y_k) \xrightarrow[k \to \infty]{} (x, y)$, e como $f^{-1}(x_k, y_k, ||(x_k, y_k)||) = (x_k, y_k)$, o resultado segue.

References

- [1] E.L. Lima. Curso de Análise Vol. 2, $1^{\underline{a}}$ ed. Instituto de Matemática Pura e Aplicada, IMPA, 2014.
- [2] E.L. Lima. Curso de Análise Vol. 1, $15^{\underline{a}}$ ed., page 185. Instituto de Matemática Pura e Aplicada, IMPA, 2019.