1 General Definitions and Tools

NOTATIONS AND CONVENTIONS 1.1

Metric etc.

: $\eta^{\mu\nu} = \text{diag}(+, -, -, -); \quad \epsilon_{\text{n123}}^{0123} := \pm 1$ Minkowski Metric

Coordinates

Gamma Matrices

Gamma Combinations : $1, \{\gamma^{\mu}\}, \{\sigma^{\mu\nu}\}, \{\gamma^{\mu}\gamma_5\}, \gamma_5; \quad \sigma^{\mu\nu} = \frac{\mathrm{i}}{2}[\gamma^{\mu}, \gamma^{\nu}] = 0 / \mathrm{i}\gamma^{\mu}\gamma^{\nu}$

1.1.2 Fields

Klein-Gordon Equation : $|\partial_{\mu}\phi|^2 - m^2|\phi|^2 = 0$

Klein-Gordon Field : $\phi(x) = \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \frac{1}{\sqrt{2E_p}} \left[a_p \mathrm{e}^{-\mathrm{i}px} + b_p^{\dagger} \mathrm{e}^{\mathrm{i}px} \right]$

Dirac Equation

: $\psi(x) = \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \frac{1}{\sqrt{2E_p}} \sum_{s,s} \left[a_p^s u^s(p) \mathrm{e}^{-\mathrm{i}px} + b_p^{s\dagger} v^s(p) \mathrm{e}^{\mathrm{i}px} \right]$ Dirac Field

: $(\partial^2 + m^2)A^\mu(x) = 0$ (Real Klein-Gordon Equation) Gauge Boson

: $A^{\mu}(x) = \int \frac{\mathrm{d}^{3}p}{(2\pi)^{3}} \frac{1}{\sqrt{2E_{p}}} \sum_{r=0,1,2,3} \left[a_{p}^{r} \epsilon^{r}(p) \mathrm{e}^{-\mathrm{i}px} + a_{p}^{r\dagger} \epsilon^{r*}(p) \mathrm{e}^{\mathrm{i}px} \right]$

南部-Goldstone Boson : TODO: .

Chiral Notation

Gamma Matrices: $\gamma^{\mu} = \begin{pmatrix} 0 & \sigma^{\mu} \\ \bar{\sigma}^{\mu} & 0 \end{pmatrix}; \quad \gamma_5 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$

 $\begin{aligned} &: \quad \psi = \begin{pmatrix} \psi_{\mathrm{L}} \\ \psi_{\mathrm{R}} \end{pmatrix}; \quad \bar{\psi} = \psi^{\dagger} \gamma^{0} = \begin{pmatrix} \psi_{\mathrm{R}}^{\dagger} & \psi_{\mathrm{L}}^{\dagger} \end{pmatrix} \\ &: \quad u^{s}(p) = \begin{pmatrix} \sqrt{p \cdot \sigma} \xi^{s} \\ \sqrt{p \cdot \bar{\sigma}} \xi^{s} \end{pmatrix}; \quad v^{s}(p) = \begin{pmatrix} \sqrt{p \cdot \sigma} \eta^{s} \\ -\sqrt{p \cdot \bar{\sigma}} \eta^{s} \end{pmatrix} \end{aligned}$

Weyl Equations : $i\bar{\sigma} \cdot \partial \psi_L = m\psi_R$; $i\sigma \cdot \partial \psi_L = m\psi_L$

: $P\psi(t, \boldsymbol{x})P = \eta \gamma^0 \psi(t, -\boldsymbol{x}) \quad (|\eta|^2 = 1)$

: $T\psi(t, \boldsymbol{x})T = \gamma^1 \gamma^3 \psi(-t, \boldsymbol{x})$ (ignoring intrinsic phase)

 $: C\psi(t, \boldsymbol{x})C = -\mathrm{i}\gamma^2\psi^*(t, \boldsymbol{x}) = -\mathrm{i}(\bar{\psi}\gamma^0\gamma^2)^{\mathrm{T}} \quad (\boldsymbol{u})$ $: \bar{\psi} \longrightarrow P : \eta^*\bar{\psi}\gamma^0 \quad T : -\bar{\psi}\gamma^1\gamma^3 \quad C : \mathrm{i}\bar{\psi}^*\gamma^2 = -\mathrm{i}(\gamma^0\gamma^2\psi)^{\mathrm{T}}$

Electromagnetic Fields: $A^{\mu} = (\phi, A)$ [We can invert the signs, but cannot lower the index.]

:
$$F_{\mu\nu} = \begin{pmatrix} 0 & \mathbf{E} \\ 0 & -B_3 & B_2 \\ -\mathbf{E} & B_3 & 0 & -B_1 \\ -B_2 & B_1 & 0 \end{pmatrix}$$
; $F_{\mu\nu}F^{\mu\nu} = -2\left(\|\mathbf{E}\|^2 - \|\mathbf{B}\|^2\right)$

1.1.3 CPT Table

	ϕ	A^{μ}	$\bar{\psi}\psi$	$\bar{\psi}\gamma^{\mu}\psi$	$ar{\psi}\sigma^{\mu u}\psi$	$\bar{\psi}\gamma^{\mu}\gamma_5\psi$	$\mathrm{i}\bar{\psi}\gamma_5\psi$	∂_{μ}
P	$\eta\phi$	$\eta-+++A^{\mu}$	+	+	(+)(+)	-+++	_	+
T	$\zeta \phi$	$\zeta + A^{\mu}$	+	+	-(+)(+)	+	_	-+++
C	$\xi \phi^*$	$\xi + A^{\mu *}$	+	_	_	+	+	+

 $(\eta\zeta\xi=1;$ especially, photon A^{μ} is $(\eta,\zeta,\xi)=(-,+,-).$)

1.2 FEYNMAN RULES

$$\psi|\mathbf{p},s\rangle =$$
 hoge

$$\psi|\mathbf{p},s\rangle = \mathbf{p}$$
 end

Initial state

$$\overline{\overline{\psi}} \hspace{0.1cm} | \overline{p}, s \rangle = \hspace{0.1cm} \longleftarrow \hspace{0.1cm} p \hspace{0.1cm} = \overline{v}^s(p)$$

Final state

$$\langle \boldsymbol{p}, s | \overline{\psi} =$$
 $\longrightarrow p$ $= \overline{u}^s(p)$

$$\langle \boldsymbol{p}, \boldsymbol{s} | \psi =$$
 $= v^s(p)$

Propagator

$$\sqrt[]{\psi(x)} \, \overline{\psi}(y) = \qquad \qquad \underbrace{\qquad \qquad p} \qquad \qquad \boxed{\qquad \qquad } = v^s(p)$$