Almost Optimal Time Lower Bound for Approximating Parameterized Clique, CSP, and More, under ETH

Venkatesan Guruswami

Bingkai Lin

Xuandi Ren

UC Berkeley

Nanjing University

UC Berkeley

Yican Sun

Kewen Wu

Peking University

UC Berkeley

Outline

- Introduction
- Proof Sketch
- Conclusion

Algorithmic results:

Min-k-Cut[GLL18b, GLL18a, KL20, LSS20], k-Clustering[ABB+23], k-Means/k-Median[CGTS02, KMN+04, LS16, BPR+17, CGK+19, ANSW20], Vertex-Coloring[DHK05, Mar08], k-Path-Deletion[Lee19]

Hardness results:

k-SetCover[CHK13,CCK+17, CL19, KLM19, Lin19, KN21, LRSW23a], k-Clique[CHK13, CCK+17, Lin21, LRSW22, KK22, CFLL23, LRSW23b], k-Steiner Orientation[Wło20], Max-k-Coverage[Man20], k-Set-Intersection[Lin18, BKN21], k-Min-Distance-Code[Man20, BBE+21, BCGR23]

PCP Theorem for parameterized complexity?

Probabilistically Checkable Proof

PCP Theorem: Proof View

PCP Theorem: $3SAT \in PCP_{1,1-\varepsilon}[O(\log n),O(1)]_{\Sigma=O(1)}$

 $\phi \in 3SAT$ if there exists a satisfying assignment

If $\phi \in 3SAT$ then $\exists \text{ proof } \Pr[V'accept] = 1$ If $\phi \notin 3SAT$ then $\forall \text{ proof } \Pr[V'accept] \leq 1 - \epsilon$

Cryptocurrency

 Succinct Non-Interactive Argument of Knowledge

Meta-Complexity

NP-hardness of Partial MCSP

Hardness of Approximation

- Max 3-SAT
- Min Set Cover
- Vertex Cover
- Max Clique
- Min Distance Code
- Shortest Vector Problem

• ...

Property Testing

- Linearity Test
- Low Degree Test

Quantum Computation

- MIP*=RE
- Quantum PCP

Coding Theory

- Locally Testable Code
- Locally Decodable Code

PCP Theorem: Hardness of Approximation

If $\phi \in 3SAT$ then $\exists \text{ proof } \Pr[V'accept] = 1$

If $\phi \notin 3SAT$ then $\forall \text{ proof } \Pr[V'accept] \leq 1 - \epsilon$

Constraint Satisfaction Problem

Input: $\Pi = (X, \Sigma, \Phi)$

- X: variables
- Σ: alphabet
- Φ: const-arity constraints

Question:

• $\exists \sigma: X \to \Sigma$ satisfying all constraints?

 $val(\Pi)$:=max. fraction of constraints satisfied by some assignment

$(1 \text{ vs } \delta) \text{ gap CSP}$

Input: a CSP instance $\Pi = (X, \Sigma, \Phi)$

Goal: distinguish val(Π) = 1 vs val(Π) $\leq \delta$

PCP Theorem:

For $\Sigma = O(1)$ and |X| = n, there is no $n^{O(1)}$ time algorithm for (1 vs 0.9) gap CSP assuming $P \neq NP$.

Parameterized PCP: Hardness of Approximation

If $\phi \in 3SAT$ then $\exists \text{ proof } \Pr[V'accept] = 1$ If $\phi \notin 3SAT$ then $\forall \text{ proof } \Pr[V'accept] \leq 1 - \epsilon$

Constraint Satisfaction Problem

Input: $\Pi = (X, \Sigma, \Phi)$

- X: variables
- Σ: alphabet
- Φ: const-arity constraints

Question:

• $\exists \sigma: X \to \Sigma$ satisfying all constraints?

 $val(\Pi)$:=max. fraction of constraints satisfied by some assignment

$(1 \text{ vs } \delta) \text{ gap CSP}$

Input: a CSP instance $\Pi = (X, \Sigma, \Phi)$ Goal: distinguish val $(\Pi) = 1$ vs val $(\Pi) \le \delta$

PIH (Parameterized Inapproximability Hypothesis) [Lokshtanov-Ramanujan-Saurabh-Zehavi'20]: Let k = |X| and $n = |\Sigma|$, there is no $f(k) \cdot n^{O(1)}$ time algorithm for (1 vs 0.9) gap parameterized CSP.

[GLRSW24]: ETH \Rightarrow PIH

 $\phi \in 3SAT$ iff there exists a satisfying assignment

If $\phi \in 3SAT$ then $\exists \text{ proof } \Pr[V'accept] = 1$ If $\phi \notin 3SAT$ then $\forall \text{ proof } \Pr[V'accept] \leq 1 - \epsilon$

[This work]: short Parameterized PCP

 $\phi \in 3SAT$ iff there exists a satisfying assignment

```
If \phi \in 3SAT then \exists \text{ proof } \Pr[V'accept] = 1
If \phi \notin 3SAT then \forall \text{ proof } \Pr[V'accept] \leq 1 - \epsilon
```

Applications

Problem	Assumption	Lower Bound	Hardness Approximation Ratio
k-variable n-alphabet CSP	ETH	no $f(k) \cdot n^{k^{1-o(1)}}$	Some $\epsilon \in (0,1)$
k-Clique	ETH	no $f(k) \cdot n^{k^{1-o(1)}}$	Any constant
Max-k-Coverage	ETH	no $f(k) \cdot n^{k^{1-o(1)}}$	Some $\epsilon \in (0,1)$
k-Exact-Cover	ETH	no $f(k) \cdot n^{k^{1-o(1)}}$	Some $\rho > 1$

Improved to $n^{polylogk}$ by [Bafna, Karthik, Minzer STOC'25].

Outline

- Introduction
- Proof Sketch
- Conclusion

Proof Overview

 $\phi \in 3$ SAT iff there exists a satisfying assignment

```
If \phi \in 3SAT then val(\Pi) = 1
If \phi \notin 3SAT then val(\Pi) < 1
```

If $\phi \in 3$ SAT then \exists proof $\Pr[V'accept] = 1$ If $\phi \notin 3$ SAT then \forall proof $\Pr[V'accept] \leq 1 - \epsilon$

Vector-valued CSP

Vector-valued CSP

• Alphabet : vector space \mathbb{F}^d

• Constraints: divided into parallel part and linear part

3-SAT→VecCSP

Goal: Given an n-variable O(n)-clauses 3-CNF, construct an equivalent VecCSP

[GLRSW24]: $O(k^2)$ -variable (n/k)-dimension VecCSP

[This work]: use results in [Mar10,KMPS23,CDNW25] to get O(k)-variable $(\frac{n \cdot \log k}{k})$ -dimension VecCSP

Can You Beat Treewidth?*

Dániel Marx†

Conditional lower bounds for sparse parameterized 2-CSP:
A streamlined proof

Karthik C. S. Dániel Marx Marcin Pilipczuk Uéverton Souza

Can You Link Up With Treewidth?

Radu Curticapean, Simon Döring, Daniel Neuen, Jiaheng Wang

Proof Overview

 $\phi \in 3SAT$ iff there exists a satisfying assignment

If $\phi \in 3SAT$ then $val(\Pi) = 1$ If $\phi \notin 3SAT$ then $val(\Pi) < 1$ If $\phi \in 3SAT$ then $\exists \text{ proof } \Pr[V'accept] = 1$ If $\phi \notin 3SAT$ then $\forall \text{ proof } \Pr[V'accept] \leq 1 - \epsilon$

PCP of Proximity

- Suppose Alice wants to convince you that a **VecCSP** instance Γ is satisfiable.
- She could give you a proof that the parallel part is satisfiable, and a proof that the linear part is satisfiable.
- Wait! How to ensure the two parts share the same solution?
- We need **PCP of proximity**! The statement to prove is not "Γ is satisfiable", but

"x is (the encoding of) a solution to Γ "!

Parallel Encoding

Given a vector-valued CSP with variables $\{x_1, ..., x_k\}$:

	Code	Parameter blow-up:
[GLRSW24]:	Hadamard Code: $\mathbb{F}^k o \mathbb{F}^{ \mathbb{F} ^k}$	$k \to \mathbb{F} ^k$
[This work]:	Reed Muler Code: $\mathbb{F}^{\left \binom{m+d}{d}\right } \to \mathbb{F}^{\left \mathbb{F}\right ^{m}}$ $m = \sqrt{\log k}, d = \sqrt{\log k} 2^{O(\sqrt{\log k})}, \binom{m+d}{d} = k, \mathbb{F} = O(md)$	$\binom{m+d}{d} = k \to \mathbb{F} ^m = k2^{O(\log \log k \sqrt{\log k})}$

PCPP for the Parallel Part

PCPP for the Linear Part

Linear Constraints

$$y_1 = M_1 x_1$$

$$y_2 = M_2 x_2$$

$$\vdots$$

$$y_k = M_k x_k$$

degree-d RM: $\mathbb{F}^k \to \mathbb{F}^{|\mathbb{F}|^m}$, where $\mathbf{k} = \binom{m+d}{d}$

Systematic part

$$RM(y_{1} ..., y_{k}) = (y_{1} ..., y_{k}, y_{k+1} ..., y_{|\mathbb{F}}|^{m})$$

$$RM(x_{1} ..., x_{k}) = (x_{1} ..., x_{k}, x_{k+1} ..., x_{|\mathbb{F}}|^{m})$$

$$RM(M_{1} ..., M_{k}) = (M_{1} ..., M_{k}, M_{k+1} ..., M_{|\mathbb{F}}|^{m})$$

$$\mathbf{z} = (y_{1} ..., y_{|\mathbb{F}}|^{m}) - (M_{1}x_{1}, ..., M_{|\mathbb{F}}|^{m}x_{|\mathbb{F}}|^{m})$$

Fact I. z is a codeword of degree-2d RM and $z = (0 ..., 0, z_{k+1} ..., z_{|\mathbb{F}|^m})$ if the linear constraints are satisfied.

Fact II. If \hat{z} and z are truth-tables of degree-2d polynomials and $\hat{z} \neq z$, then

$$\Pr_{\xi \in \mathbb{F}^m}[\hat{\mathbf{z}}[\xi] \neq \mathbf{z}[\xi]] \ge 1 - O(d/|\mathbb{F}|).$$

Linear Constraints are satisfied if

- 1) \hat{y} , \hat{x} , \hat{z} are close to some RM codes.
- 2) the first k entries of the RM code \hat{z} close to are zeros
- 3) the RM code \hat{z} close to is z.

Same as parallel constraints

 \rightarrow Can be checked by randomly picking $\xi \in \mathbb{F}^m$

Outline

- Introduction
- Proof Sketch
- Conclusion

[This work]: short Parameterized PCP

 $\phi \in 3SAT$ iff there exists a satisfying assignment

```
If \phi \in 3SAT then \exists \text{ proof } \Pr[V'accept] = 1
If \phi \notin 3SAT then \forall \text{ proof } \Pr[V'accept] \leq 1 - \epsilon
```

Open Question: $W[1] \neq FPT \Rightarrow PIH$

If
$$\operatorname{val}(\Pi) = 1$$
 then $\operatorname{val}(\Pi') = 1$
If $\operatorname{val}(\Pi) < 1$ then $\operatorname{val}(\Pi') \le 1 - \epsilon$

Thank you