アルゴリズムとデータ構造II

講義4:

加重グラフ

https://elms.u-aizu.ac.jp

加重グラフ

AA 加重グラフ グラフです G (V、E) 実数値で 各エッジに割り当てられた重み。同様に、加重グラフは トリプルですG (V, E, W) 、どこ V 頂点のセットで す、*F*はエッジのセットであり、 *W*の要素をマッピン グする関数です E実数に。ザ・重量 エッジトも呼ばれ ます距離または費用。

距離行列

▲ 加重グラフ *G(V、E、W)*で表すことができます 距離行列

$$D_{n\times\times n}$$
, $n=/V/$

どこ

$$D/i$$
, $i/=0$,

と1のために \le $rac{A}{=}$ $j \le n$ 、エッジの場合 $(i, j) \in E$ その後D[i, j] (の重みですi, j)、さもないとD[i, j]無限です ∞ (実際には十分な数)。

グラフ 表現

$$\underline{a} | \longrightarrow \underline{b} | 9 \longrightarrow \underline{c} | 7 \longrightarrow \underline{d} | 6.3$$

最小全域木

▲ ルートツリーは、各頂点について κ フォームのパスは1つだけです ((r, x) (x, y)、。。。、 (z, ν)、ど 特別な頂点 こ rは木の根と呼ばれます。

サブグラフ、スパニングツリー

- A A Z パニングッリー グラフの <math>G(V, E) サブグラフです $F \cup E' \setminus E'$ そのような T根付いた木であり、 $V = V_o$
- Δ グラフのスパニングツリーは、次のようにして見つけることができます。 $\overline{\mathsf{DFS}}$ または $\overline{\mathsf{BFS}}_{\mathsf{o}}$

最小スパニングツリー

▲ しましょう *テレビ 、E*) 重み付きグラフのスパニングツリーである

$$G \in \mathcal{C}$$

$$W (T) = \qquad W (v, w)$$

のエッジの重みの合計になります T、 どこ W (v、w) エッジの重みを示します (v、w) o

A A 最小スパニングツリー(MST) の <math>Gスパニングです 木 T'の Gそのような

 $W(T) = \min \{W(T) \mid T$ のスパニングツリーです $G\}$ 。

加重グラフとそのMST

MSTの例

▲ 最小全域木問題には多くの問題があります 電力ネットワークや電話ネットワークの構築な どのアプリケーション。

MSTに関する注記

- ▲ 複数のMSTが存在する可能性があります(同じ重量);
- ▲ Gが接続されている場合、すべての頂点がMSTにあります。 それ以外の場合は、最小全域木があります。
- Aナイーブアプローチ:すべてのスパニングツリーをリストし(どのように?) 重みを計算します。次に、最小値を見つけます。 非効率的...

プリムのアルゴリズム

- 1.1。任意の頂点を選択します rの G (V、E) の最小全域木のルートとして G。部分解(スパニングツリー)を想定します T取得されました(最初は、 $T = \{r\}$)。
- 2.2。 エッジを選択します (v, w) そのような $v \in T, w \in V T,$ とエッジの重み (v, w) のノードからのエッジの最小値です Tのノードへ V T。
- 3.3。 ノードを追加します *w* に *T。*
- 4.4。 まで上記のプロセスを繰り返します $T = V_o$

プリムのアルゴリズムの重要なアイデア

- ▲ アルゴリズムの要点は、どのように決定するかです はしっこ (v、w) 最小重量で。
- Δ エッジの場合(v、w)、しましょう D[v、w](の重みであるv、w)。 各ノードに対してwin V-T、しましょう $d[w] = \min \{D[v, w]/v \in T\}$ 。
- Δ 場合 wのどのノードにも隣接していません T、 $d[w] = \infty$ 。 当初、 $T = \{r\}$ とのために w / = r、d[w] = D[r、w]。

プリムのアルゴリズムの重要なアイデア2

- Δ 新しい頂点のとき c に追加されます T、 にとって $w \in V T$ 、 d[w] の最小値に更新されます d[w] そして D[c, w]、 すなわち、 $d[w] = \min \{d[w], D[c, w]\}$ 。
- A 追加の配列adj [w] それぞれに使用されます $w \in V T$ ノードを示すため vに T そのような D[v, w] = d[w]。
- ▲ したがって、プリムのアルゴリズムは次のように実装できます。 続きます。

プリムのアルゴリズム

```
X = \emptyset: T = \{r\} / *r  \mathbb{N} - \mathbb{N} = \mathbb{N
  すべてのために w \in V - T) \{d[w] = D[r, w]: adi[w] = r:\}
  にとって (i = 1; i </ V /; i ++) {
                                            検索 v ∈ V − T そのような d [v] = min {d [x] / バツ∈ V − T};
                                          /*追加 (adj [v]、v) 木までの距離を調整します*/
                                            X = X \cup \{ (adj [v], v) \}; T = T \cup \{v\};
                                            for (すべてのノード w \in V - Tに隣接 v) f
                                                                                       if (D/v, w) < d/w)
                                                                                                                                  d[w] = D[v, w]; adi[w] = v;
```

プリムのアルゴリズム

プリムのアルゴリズムの複雑さ

- グラフが隣接する(距離)で表される場合行列、プリムのアルゴリズムの時間計算量はO (/V/2)。
- Aプリムのアルゴリズムは、次の方法でより効率的に作成できます。 隣接リストを使用してグラフを維持し、ノードの優先キューを維持します。 T_o この実装では、プリムのアルゴリズムの時間計算量は次のようになります。 O ((V/+/E/) ログ|V/) o

クラスカルのアルゴリズム

- ▲ クラスカルのアルゴリズムは、 グラフの最小全域木。
- ▲ アルゴリズムは、次のようにして最小全域木を見つけます。
 を選択する エッジ 重みが小さい順に、エッジがサイクルを引き起こさない場合は、エッジをツリーに含めます。
- Λ アルゴリズムでは、 Qは優先キュー(ヒープ)です。

クラスカルのアルゴリズム

```
X = \{\{v\} \mid v \in V\}; T = \emptyset;
   のエッジを構築します E最小ヒープに O:
 一方(0/=0){
                                               エッジを削除します (\nu, w) からの最小重量の Q
                                                                                                 ヒープ状態を復元します:
                                               if (v \in V_{\mathbb{A}} \in V_{\mathbb{A}}) \in V_{\mathbb{A}} = V_{\mathbb{A}} = V_{\mathbb{A}} \in V_{\mathbb{A}} = 
                                                                                              交換 V私そして Viに バツ沿って V私 U Vi:
                                                                                               T = T \cup \{ (v, w) \}:
```

クラスカルのプロセス

縁	アクション	
		{{ゼットグ}ン(V)*シ(V)療続は大きのとはデーネント)
((N, N)	追加	{{V1, V7}, {V2}, {V3}, {V4}, {V5}, {V6}
((v3, v4)	追加	{{V1, V7}, {V2}, {{V3, V4}, {V5}, {V6}
((N, N)	追加	{{V1, V2, V7}, {{V3, V4}, {V5}, {V6}
((v3, v7)	追加	{{V1, V2, V3, V4, V7}, {V5}, {V6}
((N2' N3)	拒否する	5
((1/4, 1/7)	拒否する	5
((v4、v5)	追加	{{V1、 V2、 V3、 V4、 V5、 V7}、{V6}
((N' N)	拒否する	5
((N' Nº)	追加	{{V1, V2, V3, V4, V5, V7, V6}

クラスカルのアルゴリズムの複雑さ

▲ クラスカルのアルゴリズムの時間計算量は

O(|E|ログ|E|)隣接リストとプライオリティキューが使用されている場合。

Boruvkaのアルゴリズム

▲ Boruvkaのアルゴリズム (1926) : おそらくコンピューター実装のため の3つの古典的なアルゴリズムの中で最も簡単なものです(複雑なデータ構造は必要ありません)。プリムのアルゴリズムと同様の手順を実 行しますが、グラフ全体で並行して実行されます。

▲ 同時候@のアルゴリズム:

- 1.1。 リストを作る L の n 木、それぞれが単一の頂点。
- 2.2。 一方(*L* 複数の木があります)
 - 2.1 それぞれについて Tに L、 接続する最小のエッジを見つける T に G- T;
 - 2.2 これらすべてのエッジをMSTに追加します(マージ)。
- ▲ 時間計算量: O (/E/ログ|V/)
- Δ BoruvkaとPrimのハイブリッド: O (|E|ログログ|V|)

Maggs & Plotkin Algorithm (1994)

▲ 加重グラフ G (V、E、W) 、 / V /= n 初期化:d[i, j] (0) = d[i, j], $1 \le i, j \le n$; にとって k=1に n行う にとって *i =*1 に *n* 行う にとって *j =*1 に *n* 行う d[i, j] (k) = min {d[i, j] (k-1) max (d/i, k) (k-1) d/k i (k-1) i: **▲** エッジ *d [i、j] (n) = d [i、j] (*0) MSTからです

▲ 複雑さは *O (|V|*₃)