The H-function

This is code to accompany the book:

A Hitchhiker's Guide to Multiple Scattering

© 2016 Eugene d'Eon www.eugenedeon.com

Analytic Solution

H-function (Stibbs-Weir)

$$\begin{split} &\text{In[1331]:= Clear[H];} \\ &\text{H[α_-, u_-$] := Exp[$\frac{-u}{Pi}$ NIntegrate[$\frac{Log[1-\alpha\,t\,Cot[t]]}{Cos[t]^2+u^2\,Sin[t]^2}$, $\left\{t,\,0,\,\frac{Pi}{2}\right\}$]]$ \end{split}$$

Approximate H-function

Hapke approximation 1

H1[w_, u_] :=
$$\frac{1+2 u}{1+2 u \sqrt{1-w}}$$

Hapke approximation 2

Clear[H2];

$$H2[w_{-}, u_{-}] := \left(1 - (1 - y) u \left(n + \left(1 - \frac{n}{2} - n u\right) Log\left[\frac{1 + u}{u}\right]\right)\right)^{-1} / \cdot n \to \frac{1 - y}{1 + y} / \cdot y \to (1 - w)^{1/2}$$

$$V[s_{-}, c_{-}] := 1 - \frac{c}{2 s} Log \left[\frac{1+s}{1-s} \right]$$

 $vexact[c_?NumericQ] := FindRoot[V[s, c] == 0, {s, 10^-10, 1 - 10^-10}, Method <math>\rightarrow$ "Brent"][[1]][[2]]

Grosjean 1958b approximation

$$\begin{split} & \text{HGrosjean}\left[w_{_}, \; u_{_}\right] \; := \; 1 \; + \; \frac{w \; u}{2} \; \text{Log}\left[\; \frac{1 \; + \; u}{u} \; \right] \; + \; \frac{2 \; w^2 \; u}{\left(1 \; + \; K \; u\right) \; \left(\; \frac{13 \; - 5 \; w}{8} \; + \; \frac{2}{3} \; \left(2 \; - \; w\right) \; K\right)} \; \; - \\ & \frac{w^2 \; u}{\left(\; \frac{13 \; - 5 \; w}{8} \; + \; \frac{2}{3} \; \left(2 \; - \; w\right) \; K\right)} \; \left(\; \frac{17}{32} \; + \; \frac{15}{16} \; u \; - \; u \; \left(1 \; + \; \frac{15}{16} \; u\right) \; \text{Log}\left[\; \frac{1 \; + \; u}{u} \; \right] \right) \; / \; \cdot \; K \; \to \; \left(\; \frac{3 \; \left(1 \; - \; w\right)}{2 \; - \; w} \; \right)^{1/2} \end{split}$$

NSE 1976 vol 27, 607 - 608 (two more approximations are given)

$$\begin{split} &\text{H32}\left[\mathbf{c}_{-},\,\mathbf{u}_{-}\right] \,:=\, \left(1-\frac{\mathbf{c}}{2}\,\left(\left(1-\mathbf{A}\,\mathbf{u}+\mathbf{B}\,\mathbf{u}^{2}\right)\,\mathbf{u}\,\mathbf{Log}\left[\frac{1+\mathbf{u}}{\mathbf{u}}\right]+\mathbf{A}\,\mathbf{u}\,+\,\left(\frac{\mathbf{u}}{2}-\mathbf{u}^{2}\right)\,\mathbf{B}\right)\right)^{-1}\,//\,.\\ &\left\{\mathbf{A}\to\alpha-\frac{2}{3}\,\mathbf{B},\,\mathbf{B}\to\frac{\mathbf{K}\,\mathbf{Log}\left[1+\mathbf{K}\right]+\left(\mathbf{K}+\mathbf{Log}\left[1-\mathbf{K}\right]\right)\,\alpha}{\frac{\mathbf{K}}{\mathbf{b}}+\left(\frac{2}{3}-\frac{1}{\mathbf{K}}\right)\,\mathbf{Log}\left[1-\mathbf{K}\right]-1},\,\,\alpha\to\frac{4}{\mathbf{c}}\,\left(1-\sqrt{1-\mathbf{c}}\right)-2\,,\\ &\mathbf{b}\to\mathbf{1}\bigg/\left(\frac{\sqrt{1-\mathbf{c}}}{2\,\mathbf{K}}-\frac{\mathbf{c}}{4\,\mathbf{K}^{2}}\,\mathbf{Log}\left[1-\mathbf{K}^{2}\right]\right),\,\,\mathbf{K}\to\mathbf{vexact}\left[\mathbf{c}\right]\right\} \end{split}$$

$$&\mathbf{H32}\left[\mathbf{0.5},\,\mathbf{1}\right]\\ &\mathbf{1.24997} \end{split}$$

Compare various approximations

```
u = 0.02;
Plot[
  H[c, u],
  H1[c, u],
  H2[c, u],
  HGrosjean[c, u]
    \{c, 0, 1\}, PlotStyle \rightarrow \{Thick, Dashed, Red, DotDashed\}
1.07
1 06
1.05
1.04
1.03
1.02
1.01
                  0.2
                                                                                     1.0
                                                    0.6
```

H-function moments

Hmoment1[c_] :=
$$\left(1 - \sqrt{1 - c}\right) \frac{2}{c}$$

HmomentApprox[c_, j_] := $\frac{1}{j+1} \frac{2}{1+y} \left(1 + \frac{j}{2(j+2)} \frac{1-y}{1+y}\right) / \cdot y \rightarrow \sqrt{1-c}$

```
Plot[{
   NIntegrate[ H2[c, u], {u, 0, 1}],
  Hmoment1[c]
 }, {c, 0.01, .99}]
1.8
1.6
1.4
1.2
             0.2
                                                              1.0
                         0.4
                                      0.6
                                                  0.8
j = 5;
Plot[{
   NIntegrate \left[ u^{j} H2[c, u], \left\{ u, 0, 1 \right\} \right],
   HmomentApprox[c, j]
  }, {c, 0.01, .99}]
0.35
0.30
0.25
0.20
                          0.4
                                                              1.0
                                      0.6
```

Benchmark H-function data

```
Hfuncdata = Table[H[c, u],
   {c, {0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.8, 0.9, 0.95, 0.98, 0.99,
      0.995,\, 0.999,\, 0.9999,\, 0.999999,\, 0.999999\}\},\, \{u,\, \{0.01,\, 0.1,\, 0.2,\, 0.5,\, 1\}\}];
Transpose[Join[
   {Table[c, {c, {0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.8, 0.9, 0.95, 0.98,
        0.99, 0.995, 0.999, 0.9999, 0.99999, 0.999999}}]], Transpose[Hfuncdata]]];
```

Grid[%]

0.001	1.00002	1.00012	1.00018	1.00027	1.00035
0.01	1.00023	1.0012	1.0018	1.00276	1.00349
0.05	1.00116	1.00609	1.00914	1.01409	1.01785
0.1	1.00235	1.01238	1.01864	1.02892	1.03682
0.2	1.00478	1.02562	1.03892	1.06118	1.07865
0.3	1.0073	1.03987	1.06115	1.09756	1.12684
0.5	1.01272	1.07237	1.11346	1.18774	1.25126
0.7	1.01887	1.11303	1.18252	1.31795	1.44475
0.8	1.02242	1.13881	1.22864	1.41326	1.59822
0.9	1.0266	1.17214	1.29143	1.55603	1.8501
0.95	1.02923	1.19523	1.33734	1.67179	2.07712
0.98	1.03131	1.21513	1.37876	1.78629	2.32579
0.99	1.03226	1.22488	1.39977	1.8486	2.47279
0.995	1.03289	1.23162	1.41463	1.89463	2.58735
0.999	1.03367	1.24042	1.43442	1.95869	2.75607
0.9999	1.03408	1.24518	1.44532	1.99545	2.85822
0.99999	1.03421	1.24667	1.44876	2.00728	2.89196
0.999999	1.03424	1.24713	1.44985	2.01104	2.90278