CLAIMS

1. Compound of formula (A):

$$R_{1}$$
 R_{2}
 R_{1}
 R_{2}
 R_{1}
 R_{2}
 R_{1}
 R_{2}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{1}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{1}
 R_{5}
 R_{7}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{7}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{7}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{1}
 R_{5}
 R_{7}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{7}
 R_{7

5 in which:

10

- all of the above entity, with the exception of the substituent X, is called $M6G-N(R_2)R_1-S-$
- R₁ represents a linear or branched C₁-C₁₀ alkyl group, unsubstituted or substituted by at least one substituent, the alkyl chain being optionally interrupted by one or more heteroatoms chosen from O, S and N;
- R_2 represents hydrogen, a linear or branched C_1 - C_5 alkyl group or an aryl, heteroaryl or (C_1 - C_5) alkylaryl group, unsubstituted or substituted by a C_1 - C_4 alkyl;
- X represents hydrogen, an M6G-N(R₂)R₁-S- residue or a polymer linked with the rest of the entity by a spacer arm;
 - the asymmetric carbons present in the formula (A) can have the R or S configuration,

as well as its pharmaceutically acceptable salts.

- 2. Compound according to claim 1, characterized in that
- $-R_1$ and R_2 are as defined in claim 1;
 - X represents an M6G-N(R_2) R_1 -S- residue, the two M6G-N(R_2) R_1 -S- residues constituting the compounds of formula (A) in dimer form being identical or different.
 - 3. Compound according to claim 1, characterized in that
- 25 R₁ is as defined in claim 1;

- R₂ represents hydrogen, and
- X represents hydrogen.
- 4. Compound according to claim 1 or 2, characterized in that
- R₁ is as defined in claim 1;
- R₂ represents hydrogen, and

5

10

15

- X represents an M6G-N(R_2) R_1 -S- residue in which R_1 and R_2 are as defined above.
- 5. Compound according to any one of claims 1 to 4, characterized in that R_1 represents an alkyl group substituted by one or more substituents chosen from: a C_1 - C_5 alkyl group; an amino group; a $COOR_3$ group; a $CONR_3R_4$ group, R_3 and R_4 in the $COOR_3$ or $CONR_3R_4$ groups independently representing hydrogen, an optionally substituted C_1 - C_{20} alkyl, an aryl, a heteroaryl or an alkylaryl group; a C_1 - C_{20} ketone and a C_1 - C_{20} aldehyde.
- 6. Compound according to claims 1 or 3, characterized in that R_1 represents -(CH_2)₂-, R_2 is hydrogen and X is hydrogen.
- 7. Compound according to any one of claims 1, 2 or 4, characterized in that R_1 represents -(CH₂)₂-, R_2 is hydrogen and X is an M6G-N(R_2)R₁-S-residue in which R_1 = -(CH₂)₂- and R_2 is hydrogen.
- 8. Compound according to any one of claims 1, 2 or 4, characterized in 20 that
 - R₁ represents a -CH(COOR₃)-CH₂- group in which R₃ represents hydrogen, methyl, ethyl, propyl or butyl,
 - R₂ represents hydrogen,
- X represents hydrogen or an M6G-N(R_2) R_1 -S- residue in which 25 R_1 = -CH(COOR₃)-CH₂- in which R_3 is as defined above and R_2 is hydrogen.
 - 9. Compound according to one of claims 1 or 5, characterized in that
 - R₁ represents a -CH(CONR₃R₄)-CH₂- group in which R₃ and R₄ represent hydrogen, methyl, ethyl, propyl or butyl,
 - R₂ represents hydrogen,
- X represents hydrogen or an M6G-N(R_2) R_1 -S- residue in which R_1 = -CH(CONR₃R₄)-CH₂- in which R_3 and R_4 are as defined above and R_2 is hydrogen.

- 10. Compound according to claims 1 or 5, characterized in that
- R_1 represents a -CH(COOR₃)-C(CH₃)₂- group in which R_3 represents hydrogen, methyl, ethyl, propyl or butyl,
 - R₂ represents hydrogen
- X represents hydrogen or an M6G-N(R_2) R_1 -S- residue in which R_1 = -CH(COOR₃)-C (CH₃)₂- in which R_3 is as defined above and R_2 is hydrogen.
 - 11. Compound according to claims 1 or 5, characterized in that
- R₁ represents a -CH(COOR₃)-(CH₂)₂-C(O)NHCH(R₅)-CH₂- group, in which R₃ represents hydrogen, methyl, ethyl, propyl or butyl and R₅ represents -C(O)-NH-CH₂-COOR₃,
 - R₂ represents hydrogen

15

20

25

30

- X represents hydrogen or an M6G-N(R_2) R_1 -S- residue in which R_1 = -CH(COOR₃)-(CH₂)₂-C(O)NHCH(R_5)-CH₂- in which R_3 and R_5 are as defined above and R_2 represents hydrogen.
 - 12. Compound according to claim 1, characterized in that
 - R₁ represents a -(CH₂)₂- group,
 - R₂ represents hydrogen
- X represents a polymer linked to the rest of the entity by a spacer arm of formula -S- $(CH_2)_n$ -NH-C(O)- in which n = 0 to 4 and said polymer is a polyethylene glycol of molecular weight (Mw) greater than or equal to 10000.
 - 13. Method for the preparation of a compound of formula (A) according to any one of claims 1 to 12, characterized in that it comprises the stages consisting of reacting morphine-6-glucuronide with a compound of formula (III) NHR₂-R₁-S-S-R₁-NHR₂, in which R₁ and R₂ are as defined in any one of claims 1 to 11, in the presence of a coupling agent, and reducing the disulphide bridge using a reducing agent if necessary.
- 14. Method for the preparation of a compound of formula (A) according to any one of claims 1 to 11, in which X = H, characterized in that it comprises the stages consisting of reacting morphine-6-glucuronide with a compound of formula (IV) NHR₂-R₁-SH, in which R₁ and R₂ are as defined in any one of claims 1 to 12, in the presence of a coupling agent and reducing *in situ* the oxidation by-products using a reducing agent.

15. Method according to one of claims 13 or 14, characterized in that the coupling agent is chosen from benzotriazol-1-yl-oxy-tris-pyrrolidino-phosphonium hexafluorophosphate (PyBOP), dicyclohexylcarbodiimide (DCC), DCC combined with hydroxybenzotriazole (DCC/HOBT) and diisopropylcarbodiimide combined with HOBT (DIPCDI/HOBT).

5

10

15

20

- 16. Method according to one of claims 13 or 14, characterized in that the reducing agent is chosen from tris(2-carboxyethyl)phosphine, triphenylphosphine, tris(hydroxymethyl)-phosphine and dithiothreitol.
- 17. Pharmaceutical composition, characterized in that it contains a compound of formula (A) according to any one of claims 1 to 12 and a pharmaceutically acceptable vehicle.
- 18. Pharmaceutical composition according to claim 17, characterized in that it is in a form which can be administered by parenteral route.
- 19. Pharmaceutical composition according to claim 17, characterized in that it is in the form of a preparation which can be injected by sub-cutaneous, intravenous or intramuscular route.
- 20. Pharmaceutical composition according to claim 19, characterized in that it is in a form which can be administered by oral route.
- 21. Pharmaceutical composition according to claim 20, characterized in that it has a sustained or controlled activity.
 - 22. Use of a compound according to any one of claims 1 to 12 or a pharmaceutical composition according to any one of claims 17 to 21, for the production of a medicament intended for the treatment of pain.