

- · Tippen Sie: " chemische Formel" modernals project
 - also 2. B.: Nacl materials project

un ilme Such maschine

- http://jp-minerals.org/vesta/en/
- · Exportieren sie als CIF-file, offnen sie es un VESTA
- · VESTA bietet fest une schöpfliche Möglichkeiten rum Basteln und Visuali

ABLE OF CONTENTS

Summary

Crystal Structure

Properties

Thermodynamic Stability

Electronic Structure

Phonon Dispersion

Diffraction Patterns

Aqueous Stability

Magnetic Properties

Salcentins

Dielectric Constants

- Phonon = Quantum des Auslen eungspeldes, Quasi terlchen Energie trwp(k); knistellem puls trk
- E = $\sum_{k,p} (u_{k,p} + \frac{1}{2}) t_1 w_p(k)$ Phononen beselvungszahl · Gesamte Schwingungsenergie
- Knstall un pulserhaltung ber Stoßprozessen un Knstall · Energie - und

Euergiesah
$$\vec{E}_{\vec{k}} - \vec{E}_{\vec{k}'} = \pm \hbar \omega_{pho}$$
 + Ezengung | 1 cm stæll un pulssah $t_{\vec{k}} - t_{\vec{k}'} = \pm t_{\vec{k}} \omega_{pho} + t_{\vec{k}} - \nu_{emich}$

u clastische Neutrouenstrenung (Orei achsenspekhouseter)? Messung von Raman strenung (Stokes v. Auti-Stokes Livie)

6 Thermische Eigenschaften des Kristallgitters Beitrage der Gitterschwingungen zu: (i)

Beitrage der Gillerchwingungen zu: (i) Warme kopa zi teit
(ii) Warmeleil fahig keit

Für Meballe kouhuit noch ein elekhonischer Beitrag luinzu

6.1 Warmekapazitat

Warme kapazitat $C = \frac{\Delta G}{\Delta T} = \frac{\text{ungeführte Worme}}{\text{Temperaturanourung}}$

Eutsprechend 1. Hamptsah ist dU = dQ + pdV

Also $C_V = \frac{3Q}{3T}|_V = \frac{3U}{5T}|_V$

p = koust ru halten: Experimentell ist es ein lach er $C_{p} = \frac{\partial Q}{\partial T} |_{p}$ All genne en 1st $C_P - C_V = TV \lambda^2 B < B = (compressions modul$ Harmonische Näherung d=0 => Cp = Cv Tout sach lich: Ab weichung Cp von Cv = 1% =) hier vernach lassigt. Statistische Physik: ycder quadratischen Orts-oder Impuls koord un ale in gesautenergie ist withlere Energie 2 kg. T ruzu ord neu Also für 3 Ng Oszillatoren (Ng Atome)

$$\begin{bmatrix} E_{kin} = \frac{1}{2} m v^2 = \frac{1}{2m} (P_x + P_y + P_z) ; E_{pot} = \frac{1}{2} k t^2 = \frac{1}{2} k (x^2 + y^2 + z^2) \end{bmatrix}$$

$$Also ist \begin{bmatrix} C_v = \frac{\partial U}{\partial T} | v = \frac{\partial}{\partial T} (3NJ k_B T) = 3NJ k_B = 3vJ R \text{ band outeng-petit} \end{bmatrix}$$

Gesele von Dulong - Petit ist lur hohe Toft genz gut erfüllt, versagt aber unner dreumatisch für tiefe T

Eine augemessene Beschrenbung muss du Quant sierung der Griffenchurungungen berindssichtigen

Bei tief un T wird für viele Zweige p (optische Zweige) oder für große k un alenstischen zweigen to wp (k) << kBT Der Zweig oder che Mode ist aus geprosen, die Euergie pluktrationen sud un klem un en Phonon un eneugen. Klassisch dagegen kann kontinvierlich Energie ungeführt werden Quantitativ: Wievicle Phononen auf $w_p(\vec{k})$ bei T? [lu Folgenden cop(k) -> w und up(k) -> u]

Wahrschem lichkeut P Oszillator unt Frequenz w un einem

Zustand unt Energin En ist dunck Boltzmanntenn gegeben P(En) = e-En/ket

E Boltz mann pullet

P(En) = En/ket

Norminung auf 1 Mit $k_B T = \frac{1}{B}$ and $E_H = t_1 \omega \left(u + \frac{1}{2} \right)$ ist $P(n) = \frac{e - hw(u + \frac{1}{2}) \cdot \beta}{\sum_{e} e^{-hw}(e + \frac{1}{2}) \cdot \beta} = \frac{-hwn\beta}{\sum_{e} e^{-hw}}$ E e-hweß Here Beschungszahl in zu w ist damit $\bar{x} = \sum_{n} n P(n) = \sum_{n} n e^{-\frac{1}{2}n} u e^{-\frac{1}{2}n} u e^{-\frac{1}{2}n}$ Die willer Besetrungszahl in

 $\Pi_{i} + e^{-\frac{1}{2} \ln \beta} = x \quad \text{wind} \quad \bar{u} = \frac{\sum_{i} u_{i} x_{i}^{i}}{\sum_{i} x_{i}^{i}}$ Die geometrische Reche hat den Wert $\underset{e=0}{\overset{\infty}{\sum}} \times \overset{e}{=} \frac{1}{1-x}$ Weight ist $\frac{\infty}{2}$ $u \times u = x + \frac{\infty}{2}$ $u \times u - 1 = x + \frac{\infty}{2}$ $\frac{d}{dx}(x u) = x + \frac{d}{dx}(\frac{\infty}{2} \times u)$ $= \times \frac{d}{dx} \left(\frac{1}{1-x} \right) = \frac{x}{(1-x)^2}$ HISO ist $u = \frac{x}{1-x} = \frac{e^{-\frac{1}{4}\omega\beta}}{1-e^{-\frac{1}{4}\omega\beta}}$ oder $\frac{1}{e^{\frac{1}{4}\omega\beta}-1} = u$ Dies ist Bose - Einstein Vertailung ohne Tellchenzahlerhaltung

7

$$\overline{U}_{th} = \sum_{\vec{k},p} \left(\overline{u}_{p}(\vec{k}) + \frac{1}{2} \right) h w_{p}(\vec{k}) = U_{0} + \sum_{\vec{k},p} \overline{u}_{p}(\vec{k}) h w_{p}(\vec{k})$$

Und
$$C_{v}$$
 ist
$$C_{v} = \frac{\partial \overline{U}}{\partial T} |_{v} = \frac{\partial}{\partial T} \left(\sum_{\vec{k}, p} \frac{t_{n} \omega_{p}(\vec{k})}{e^{t_{n}} \omega_{p}(\vec{k}) \beta_{n}} \right)$$

•
$$\vec{k}$$
 liegen dicht im \vec{k} - Rou un => ω liegen dicht im ω - Rou un => \lesssim -> \lesssim • Berechnung für Zweige separat $\vec{U} = \lesssim \vec{U}_p$: $\vec{U}_p = \int \frac{\hbar \omega}{e^{\hbar \omega \beta} - 1} \Omega_p(\omega) d\omega$

 $O_{\rho}(\omega) = 2 \text{ uslands didle un Frequent ran un} \omega(\vec{k}) + d\omega(\vec{k})$

$$D_{r}(\omega)d\omega = \frac{U}{(2n)^{3}}$$

k-Raum Ensternas dichte

K-Ranun Volumen wirschen w

Octore Waherung: emodernige Basis, w = v·k

$$D_{\xi,i}(\omega) d\omega = \frac{\sqrt{2n}}{2}$$

$$D_e(\omega) d\omega = D_{\xi_{A,2}}(\omega) d\omega = \frac{V}{(2n)^3} 4n k dk = \frac{V}{2n^2} \frac{\omega^2}{v^2} \frac{d\omega}{v}$$

$$D(\omega) = D_{e}(\omega) + D_{L_{1}}(\omega) + D_{L_{2}}(\omega) = 3 \frac{V}{2\pi^{2}} \frac{\omega^{2}}{V^{3}}$$
Die wari male oder Debye Frequent orgibt sich aus
$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen frequence}$$

$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen frequence}$$

$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen frequence}$$

$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen frequence}$$

$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen frequence}$$

$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen frequence}$$

$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen frequence}$$

$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen frequence}$$

$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen frequence}$$

$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen frequence}$$

$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen frequence}$$

$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen frequence}$$

$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen frequence}$$

$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen frequence}$$

$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen frequence}$$

$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen frequence}$$

$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen frequence}$$

$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen frequence}$$

$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen frequence}$$

$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen frequence}$$

$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen frequence}$$

$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen frequence}$$

$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen frequence}$$

$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen frequence}$$

$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen frequence}$$

$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen frequence}$$

$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen frequence}$$

$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen frequence}$$

$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen frequence}$$

$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen frequence}$$

$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen frequence}$$

$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen frequence}$$

$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen frequence}$$

$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen frequence}$$

$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen frequence}$$

$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen frequence}$$

$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen frequence}$$

$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen frequence}$$

$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen frequence}$$

$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen frequence}$$

$$\int_{0}^{\omega} D(\omega) d\omega = 3N \# \text{ Eigen$$

$$C_{V} = \frac{\delta \overline{U}}{\delta T} |_{T} = \frac{9 \, \text{NkB}}{W_{0}^{3}} \int_{0}^{\omega} \frac{\left(\frac{h \, \text{w}}{k_{B} T}\right)^{2} e^{\frac{h \, \text{w}}{k_{B} T}}}{\left(e^{\frac{h \, \text{w}}{k_{B} T}} - 1\right)^{2}} \, w^{2} \, dw$$

$$|\text{lukepral ualierung pweise analytisch losloar für T >> 0}_{D} \, \text{oder T} \ll 0_{D} \, \text{unit}$$

$$|\text{th} \, w_{D} = k_{B} \cdot \frac{\theta_{D}}{\rho_{D}} - 0 \, \text{eloye} \, \text{Temp practur}$$

$$|\text{T >> 0}_{D} = \frac{h \, w_{D}}{k_{B} T} \ll 1 \quad \text{für alli } w \ll w_{D} = \frac{h \, w_{D}}{k_{B} T} \ll 1$$

$$|\text{th} \, w/k_{B} T| \approx 1 \quad \text{fur alli } w \ll w_{D} = \frac{h \, w_{D}}{k_{B} T} \ll 1$$

$$|\text{th} \, w/k_{B} T| \approx 1 \quad \text{fur alli } w^{2} \, dw = 3 \, \text{ln} \, k_{B} = \frac{h \, w_{D}}{k_{B} T} = \frac{h \, w$$

$$C_{V} = \frac{\delta \overline{U}}{\delta T}|_{T} = \frac{9Nk_{B}}{\omega_{0}^{3}} \int \frac{\left(\frac{\hbar\omega}{k_{B}T}\right)^{2} e^{\frac{\hbar\omega}{k_{B}T}} e^{\frac{\hbar\omega}{k_{B}T}}}{\left(e^{\frac{\hbar\omega}{k_{B}T}}\right)^{2} e^{\frac{\hbar\omega}{k_{B}T}}} \omega^{2} d\omega$$
2.) $T \ll \theta_{0} \Rightarrow \frac{\hbar\omega_{0}}{k_{B}T} \Rightarrow 1 \Rightarrow \overline{\tau}Ur \quad \omega \geq \omega_{0} : \overline{u} \approx 0$

$$\Rightarrow \text{ vendriebse luterproductus greate } \omega_{0} \Rightarrow \infty \quad \omega_{0} = \frac{k_{B}}{\hbar} \cdot \theta_{0}$$

$$\text{substitute } x = \frac{\hbar\omega}{k_{B}T} \quad dx = \frac{\hbar}{k_{B}T} \cdot d\omega \quad d\omega = \frac{k_{B}T}{\hbar} \cdot dx$$

$$\Rightarrow C_{V} \simeq 9Nk_{B} \cdot \frac{\hbar^{3}}{k_{B}^{3}\theta_{0}^{3}} \int \frac{x^{2}e^{x}}{\left(e^{x}-1\right)^{2}} \omega^{2} \cdot \frac{k_{B}T}{\hbar} \cdot dx = 9Nk_{B} \left(\frac{T}{\theta_{0}}\right) \int \frac{x^{4}e^{x}}{\left(e^{x}-1\right)^{2}} dx$$

$$\omega^{2} = \left(\frac{\hbar\omega}{k_{B}T}\right)^{2} \left(\frac{k_{B}T}{\hbar}\right)^{2} \cdot \frac{4\pi^{4}/15}{12}$$