CS4495/6495 Introduction to Computer Vision

2C-L3 Aliasing

Recall: Fourier Pairs (from Szeliski)

Name	Signal		Transform			
impulse		$\delta(x)$	⇔	1		
shifted impulse		$\delta(x-u)$	⇔	$e^{-j\omega u}$		
box filter		box(x/a)	\Leftrightarrow	$a\mathrm{sinc}(a\omega)$	→	
tent		tent(x/a)	⇔	$a\mathrm{sinc}^2(a\omega)$	<u> </u>	
Gaussian		$G(x;\sigma)$	⇔	$\tfrac{\sqrt{2\pi}}{\sigma}G(\omega;\sigma^{-1})$		
Laplacian of Gaussian	-	$(\frac{x^2}{\sigma^4} - \frac{1}{\sigma^2})G(x;\sigma)$	⇔	$-\tfrac{\sqrt{2\pi}}{\sigma}\omega^2G(\omega;\sigma^{-1})$		
Gabor		$\cos(\omega_0 x)G(x;\sigma)$	⇔	$\frac{\sqrt{2\pi}}{\sigma}G(\omega \pm \omega_0; \sigma^{-1})$		
unsharp mask		$(1+\gamma)\delta(x) - \gamma G(x;\sigma)$	⇔	$\frac{(1+\gamma)-}{\frac{\sqrt{2\pi}\gamma}{\sigma}G(\omega;\sigma^{-1})}$		
windowed sinc		$\frac{\operatorname{rcos}(x/(aW))}{\operatorname{sinc}(x/a)}$	⇔	(see Figure 3.29)		

Fourier Transform Sampling Pairs

FT of an "impulse train" is an impulse train

Sampling and Aliasing

Sampling and Reconstruction

Sampled representations

- How to store and compute with continuous functions?
- Common scheme for representation: samples

Reconstruction

- Making samples back into a continuous function
 - for output (need realizable method)
 - for analysis or processing (need mathematical method)
- Amounts to "guessing" what the function did in between

1D Example: Audio

high frequencies

Sampling in digital audio

- Recording: sound to analog to samples to disc
- Playback: disc to samples to analog to sound again

Sampling and Reconstruction

Simple example: a sign wave

• What if we "missed" things between the samples?

- Simple example: undersampling a sine wave
 - unsurprising result: information is lost

- Simple example: undersampling a sine wave
 - unsurprising result: information is lost
 - surprising result: indistinguishable from lower frequency

- Simple example: undersampling a sine wave
 - Low frequency also was always indistinguishable from higher frequencies

 <u>Aliasing:</u> signals "traveling in disguise" as other frequencies

Aliasing in video

Imagine a spoked wheel moving to the right (rotating clockwise). Mark wheel with dot so we can see what's happening.

If camera shutter is only open for a fraction of a frame time (frame time = 1/30 sec. for video, 1/24 sec. for film):

Without dot, wheel appears to be rotating slowly backwards! (counterclockwise)

Aliasing in images

What's happening?

Input signal:

Plot as image:

 $x = 0:.05:5; imagesc(sin((2.^x) *x))$

Alias!

Not enough samples

Antialiasing

- Sample more often
 - Join the Mega-Pixel craze of the photo industry
 - But this can't go on forever
- Make the signal less "wiggly"
 - Get rid of some high frequencies
 - Will loose information
 - But it's better than aliasing

Preventing aliasing

- Introduce *lowpass* filters:
 - remove high frequencies leaving only safe, low frequencies to be reconstructed

(Anti)Aliasing in the Frequency Domain

Impulse Train

Define a *comb* function (impulse train) in 1D as follows

$$comb_{M}[x] = \sum_{k=-\infty} \delta[x-kM]$$

where M is an integer

$$comb_2[x]$$

$$x$$

FT of Impulse Train in 1D

B.K. Gunturk

Impulse Train in 2D (bed of nails)

$$com b_{M,N}(x,y) \equiv \sum_{k=-\infty} \sum_{l=-\infty} \delta(x-kM,y-lN)$$

FT of Impulse Train in 2D (bed of nails)

 Fourier Transform of an impulse train is also an impulse train:

$$\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \delta(x - kM, y - lN) \Leftrightarrow \frac{1}{MN} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \delta\left(u - \frac{k}{M}, v - \frac{l}{N}\right)$$

$$com b_{M,N}(x, y)$$

$$com b_{\frac{1}{M}, \frac{1}{N}}(u, v)$$

As the comb samples get further apart, the spectrum samples get closer together!

FT Impulse Train in 1D

Remember:

Scaling
$$f(ax)$$

$$\frac{1}{|a|}F\left(\frac{u}{a}\right)$$

B.K. Gunturk

Sampling low frequency signal

B.K. Gunturk

No "problem" if the maximum frequency of the signal is "small enough"

B.K. Gunturk

Sampling low frequency signal

If there is no overlap, $W < \frac{1}{2M}$, the original signal can be recovered from its samples by low-pass filtering.

Sampling high frequency signal

Sampling high frequency signal

Sampling high frequency signal

Without anti-aliasing filter:

$$f(x)comb_{M}(x)$$
With anti-aliasing filter:
$$[f(x)*h(x)]comb_{M}(x)$$

$$\frac{1}{M}$$

Aliasing in Images

Image half-sizing

Suppose this image is too big to fit on the screen.

 How can we reduce it e.g. generate a half-sized version?

Image sub-sampling

Throw away every other row and column to create a 1/2 size image called *image sub*sampling

1/2

S. Seitz

Image sub-sampling

Aliasing! What do we do?

Gaussian (lowpass) pre-filtering

Solution: *filter* the image, *then* subsample

Gaussian 1/2

G 1/4

G 1/8

Subsampling with Gaussian pre-filtering

Compare with...

Original

Subsample 1/8 (4x zoom)

Campbell-Robson contrast sensitivity curve

The higher the frequency the less sensitive human visual system is...

Lossy Image Compression (JPEG)

Block-based Discrete Cosine Transform (DCT) on 8x8

Using DCT in JPEG

- The first coefficient B(0,0) is the DC component, the average intensity
- The top-left coeffs represent low frequencies, the bottom right – high frequencies

Image compression using DCT

 DCT enables image compression by concentrating most image information in the low frequencies

Quantization Table

3	5	7	9	11	13	15	17
5	7	9	11	13	15	17	19
7	9	11	13	15	17	19	21
9	11	13	15	17	19	21	23
11	13	15	17	19	21	23	25
13	15	17	19	21	23	25	27
15	17	19	21	23	25	27	29
17	19	21	23	25	27	29	31

Image compression using DCT

- Lose unimportant image info (high frequencies) by cutting B(u,v) at bottom right
- The decoder computes the inverse DCT IDCT

Quantization Table

3	5	7	9	11	13	15	17
5	7	9	11	13	15	17	19
7	9	11	13	15	17	19	21
9	11	13	15	17	19	21	23
11	13	15	17	19	21	23	25
13	15	17	19	21	23	25	27
15	17	19	21	23	25	27	29
17	19	21	23	25	27	29	31

JPEG compression comparison

89k 12k