Universidade do Estado do Rio de Janeiro

Disciplina: Aspectos Práticos em Ciência da Computação II → Sistemas Reativos

Mini Projeto Arduino - 2016.2

Alunos: Camila Eleutério Gusmão e Renato Domingues Carneiro Júnior

Projeto: Sistema de Controle de Acesso Manual - Fechadura Eletrônica

Introdução:

O sistema de controle de acesso consiste em uma trava eletrônica, representada por um micro servo motor, que é destravada quando o usuário digita a senha correta. O sistema conta ainda com sinais sonoros e visuais que indicam ao usuário se a senha digitada está correta ou não, bem como se o acesso está liberado ou bloqueado por meio dos leds.

Materiais Utilizados:

1 placa Arduino Uno R3;

1 cabo USB para Arduino (também pode ser usado um cabo para impressora);

1 Protoboard 830 pinos;

1 Display LCD 16x2 I2C Backlight Azul;

1 Teclado matricial de membrana 12 teclas;

4 Jumpers macho-fêmea;

1 Buzzer passivo;

1 Led vermelho:

1 Led verde:

3 Resistores 1K Ω ;

1 Micro Servo 9g SG90 TowerPro;

16 jumpers macho-macho.

Montagem:

A ideia original era recriar uma fechadura eletrônica, utilizando uma fechadura eletromagnética, porém fizemos uma adaptação utilizando o micro servo para simular uma trava eletrônica.

Observações Importantes:

- Para facilitar a montagem dos componentes, conecte as entradas +5V e GND do Arduino nas linhas + e - do protoboard. Desta forma, todo componente que tiver essa ligação ficará conectado nestas linhas correspondentes;
- Apenas o display utiliza jumpers macho-fêmea. Nas demais conexões serão usados jumpers do tipo macho-macho;
- Os resistores utilizados fazem a conexão do dispositivo com o GND no protoboard.

Display:

O nosso display vem com um módulo I2C acoplado. Isso facilita bastante a montagem, porque enquanto que um display comum possui 16 pinos de conexão, este módulo utiliza apenas 4 pinos. São eles respectivamente: GND, VCC, SDA, SCL.

Um display comum precisa de um potenciômetro para controle do contraste, porém o módulo já possui um potenciômetro incluso. Para utilização deste dispositivo, importamos a biblioteca LiquidCrystal_I2C.h, que necessita do código do módulo I2C do display para funcionar. Cada módulo possui um código de identificação próprio. Para descobrirmos este código, utilizamos a sketch I2CScanner.

Saiba mais em: http://playground.arduino.cc/Main/I2cScanner

Pino Display LCD	Função	Ligação
GND	GND	GND
VCC	VCC	+5V
SDA	controle	Pino Arduino SDA ou pino analógico 4
SCL	controle	Pino Arduino SCL ou pino analógico 5

Teclado:

Nosso teclado de 12 teclas possui 7 pinos, no qual os 4 pinos iniciais representam as linhas e os 3 últimos pinos representam as colunas. Para utilização deste dispositivo, importamos a biblioteca <**Keypad.h**>.

Pino Teclado	Função	Ligação
1°	controle linha 1	Pino Arduino 9
2°	controle linha 2	Pino Arduino 8
3°	controle linha 3	Pino Arduino 7
4°	controle linha 4	Pino Arduino 6
5°	controle coluna 1	Pino Arduino 5
6°	controle coluna 2	Pino Arduino 4
7°	controle coluna 3	Pino Arduino 3

Micro Servo Motor:

O servo possui 3 pinos com cores específicas, um para cada função:

Pino Servo	Função	Ligação	
Marrom	GND	GND	
Vermelho	VCC	+5V	
Laranja	controle	Pino Arduino 10	

Para utilização deste dispositivo, utilizamos a biblioteca **Servo.h>.**

Leds e Buzzer:

LEDS	Led Vermelho		Led Verde	
Pino Led	Função	Ligação	Função	Ligação
positivo	controle	Pino Arduino 12	controle	Pino Arduino 2
negativo	GND	resistor	GND	resistor

Pino Buzzer	Função	Ligação	
positivo	controle	Pino Arduino 11	
negativo	GND	resistor	

Circuito Montado:

Funcionamento:

O nosso sistema representa a fechadura eletrônica de uma porta. Vamos descrever como será o comportamento deste conjunto:

- O led vermelho indica trava ligada;
- O led verde indica trava desligada;
- O buzzer reproduz sons diferentes para senha correta e incorreta (Os sons foram criações próprias :D);
- O display exibe mensagens diferentes para senha correta e senha incorreta, além de uma mensagem de saudação inicial, quando o usuário ainda não tentou digitar uma senha;
- O usuário digita uma senha no teclado, clicando em '#' para submeter e '*' para apagar a senha digitada;
- O sistema valida a senha informada pelo usuário com a senha registrada no código do projeto;
- Se a senha estiver correta:
 - o servo gira 180°,
 - LED verde é ativado;
 - É exibida uma mensagem de boas vindas;
 - Buzzer reproduz som de confirmação;
- Para simular o uso da porta, quando é digitada a senha correta, a porta fica destravada por 5 segundos. Após este período, o servo retorna à sua posição original, e o led vermelho volta a ser ativado.
- Se a senha estiver incorreta:
 - o buzzer reproduz som que indica senha rejeitada;
 - É exibida uma mensagem informando que a senha está incorreta

Código Fonte:

O código fonte encontra-se disponível em:

https://github.com/camila-cg/reativos/tree/master/MiniProjeto_Arduinohttps://github.com/Renato95/reativos/tree/master/MiniProjeto_Arduino