Section 2.2

The Inverse of a Matrix

Recall: The multiplicative inverse (or reciprocal) of a nonzero number a is

Recall: The multiplicative inverse (or reciprocal) of a nonzero number a is the number b such that ab=1.

Recall: The multiplicative inverse (or reciprocal) of a nonzero number a is the number b such that ab=1. We define the inverse of a matrix in almost the same way.

Recall: The multiplicative inverse (or reciprocal) of a nonzero number a is the number b such that ab=1. We define the inverse of a matrix in almost the same way.

Definition

Let A be an $n \times n$ square matrix. We say A is **invertible** (or **nonsingular**) if there is a matrix B of the same size, such that

identity matrix
$$AB = I_n \quad \text{and} \quad BA = I_n. \leftarrow \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

Recall: The multiplicative inverse (or reciprocal) of a nonzero number a is the number b such that ab=1. We define the inverse of a matrix in almost the same way.

Definition

Let A be an $n \times n$ square matrix. We say A is **invertible** (or **nonsingular**) if there is a matrix B of the same size, such that

In this case,
$$B$$
 is the **inverse** of A , and is written A^{-1} .
$$\begin{vmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{vmatrix}$$

Recall: The multiplicative inverse (or reciprocal) of a nonzero number a is the number b such that ab = 1 We define the inverse of a matrix in almost the same way.

Definition

Let A be an $n \times n$ square matrix. We say A is invertible (or nonsingular) if there is a matrix B of the same size, such that

$$AB = I_n$$
 and $BA = I_n$.

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}.$$

In this case,
$$B$$
 is the **inverse** of A , and is written A^{-1} .

$$\begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. The **determinant** of A is the number
$$\det(A) = \det\begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc.$$

Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. The **determinant** of A is the number
$$\det(A) = \det\begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc.$$

Facts:

1. If $\det(A) \neq 0$, then A is invertible and $A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. The **determinant** of A is the number
$$\det(A) = \det\begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc.$$

Facts:

1. If
$$\det(A) \neq 0$$
, then A is invertible and
$$A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

2. If det(A) = 0, then A is not invertible.

Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. The **determinant** of A is the number
$$\det(A) = \det\begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc.$$

Facts:

- 1. If $det(A) \neq 0$, then A is invertible and $A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.
- 2. If det(A) = 0, then A is not invertible.

Why 1?

Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. The **determinant** of A is the number
$$\det(A) = \det\begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc.$$

Facts:

1. If
$$\det(A) \neq 0$$
, then A is invertible and $A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

2. If det(A) = 0, then A is not invertible.

Why 1?

$$\det \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} =$$

Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. The **determinant** of A is the number
$$\det(A) = \det\begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc.$$

Facts:

- 1. If $\det(A) \neq 0$, then A is invertible and $A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.
- 2. If det(A) = 0, then A is not invertible.

Why 1?

$$\det\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}^{-1} =$$

Solving Linear Systems via Inverses

Solving Ax = b by "dividing by A"

Theorem

If A is invertible, then Ax = b has exactly one solution for every b, namely:

$$x=A^{-1}b.$$

Solving Linear Systems via Inverses

Solving Ax = b by "dividing by A"

Theorem

If A is invertible, then Ax = b has exactly one solution for every b, namely:

$$x=A^{-1}b.$$

Why? Divide by A!

Solving Linear Systems via Inverses

Solving Ax = b by "dividing by A"

Theorem

If A is invertible, then Ax = b has exactly one solution for every b, namely:

$$x=A^{-1}b.$$

Why? Divide by A!

Example

Solve the system

Answer:

Say A and B are invertible $n \times n$ matrices.

1. A^{-1} is invertible and its inverse is $(A^{-1})^{-1} =$ _.

Say A and B are invertible $n \times n$ matrices.

1. A^{-1} is invertible and its inverse is $(A^{-1})^{-1} = A$.

- 1. A^{-1} is invertible and its inverse is $(A^{-1})^{-1} = A$.
- 2. AB is invertible and its inverse is $(AB)^{-1}$ =

- 1. A^{-1} is invertible and its inverse is $(A^{-1})^{-1} = A$.
- 2. AB is invertible and its inverse is $(AB)^{-1} = A^{-1}B^{-1}$

- 1. A^{-1} is invertible and its inverse is $(A^{-1})^{-1} = A$.
- 2. AB is invertible and its inverse is $(AB)^{-1} = A^{-1}B^{-1}$ $B^{-1}A^{-1}$. Why?

- 1. A^{-1} is invertible and its inverse is $(A^{-1})^{-1} = A$.
- 2. AB is invertible and its inverse is $(AB)^{-1} = A^{-1}B^{-1}$ $B^{-1}A^{-1}$. Why?
- 3. A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$. Why?

Say A and B are invertible $n \times n$ matrices.

- 1. A^{-1} is invertible and its inverse is $(A^{-1})^{-1} = A$.
- 2. AB is invertible and its inverse is $(AB)^{-1} = A^{-1}B^{-1}$ $B^{-1}A^{-1}$. Why?
- 3. A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$. Why?

Poll

If A, B, C are invertible $n \times n$ matrices, what is the inverse of ABC?

i.
$$A^{-1}B^{-1}C^{-1}$$
 ii. $B^{-1}A^{-1}C^{-1}$ iii. $C^{-1}B^{-1}A^{-1}$ iv. $C^{-1}A^{-1}B^{-1}$

Say A and B are invertible $n \times n$ matrices.

- 1. A^{-1} is invertible and its inverse is $(A^{-1})^{-1} = A$.
- 2. AB is invertible and its inverse is $(AB)^{-1} = A^{-1}B^{-1}$ $B^{-1}A^{-1}$. Why?
- 3. A^{T} is invertible and $(A^{T})^{-1} = (A^{-1})^{T}$. Why?

Poll

If
$$A, B, C$$
 are invertible $n \times n$ matrices, what is the inverse of ABC ?

i. $A^{-1}B^{-1}C^{-1}$ ii. $B^{-1}A^{-1}C^{-1}$ iii. $C^{-1}B^{-1}A^{-1}$ iv. $C^{-1}A^{-1}B^{-1}$

It's (iii):

$$(ABC)(C^{-1}B^{-1}A^{-1}) = AB(CC^{-1})B^{-1}A^{-1} = A(BB^{-1})A^{-1}$$

$$= AA^{-1} = I_n.$$

Say A and B are invertible $n \times n$ matrices.

- 1. A^{-1} is invertible and its inverse is $(A^{-1})^{-1} = A$.
- 2. AB is invertible and its inverse is $(AB)^{-1} = A^{-1}B^{-1}$ $B^{-1}A^{-1}$.

Why?

3. A^{T} is invertible and $(A^{T})^{-1} = (A^{-1})^{T}$.

Why?

Poll

If
$$A, B, C$$
 are invertible $n \times n$ matrices, what is the inverse of ABC ?

i. $A^{-1}B^{-1}C^{-1}$ ii. $B^{-1}A^{-1}C^{-1}$ iii. $C^{-1}B^{-1}A^{-1}$ iv. $C^{-1}A^{-1}B^{-1}$

$$(ABC)(C^{-1}B^{-1}A^{-1}) = AB(CC^{-1})B^{-1}A^{-1} = A(BB^{-1})A^{-1}$$

= $AA^{-1} = I_n$.

In general, a product of invertible matrices is invertible, and the inverse is the product of the inverses, in the reverse order.

Let A be an $n \times n$ matrix. Here's how to compute A^{-1} .

$$A = \begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & -3 & -4 \end{pmatrix}$$

Let A be an $n \times n$ matrix. Here's how to compute A^{-1} .

1. Row reduce the augmented matrix ($A \mid I_n$).

$$A = \begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & -3 & -4 \end{pmatrix}$$

Let A be an $n \times n$ matrix. Here's how to compute A^{-1} .

- 1. Row reduce the augmented matrix $(A \mid I_n)$.
- 2. If the result has the form $(I_n \mid B)$, then A is invertible and $B = A^{-1}$.

$$A = \begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & -3 & -4 \end{pmatrix}$$

Let A be an $n \times n$ matrix. Here's how to compute A^{-1} .

- 1. Row reduce the augmented matrix $(A \mid I_n)$.
- 2. If the result has the form $(I_n \mid B)$, then A is invertible and $B = A^{-1}$.
- 3. Otherwise, A is not invertible.

$$A = \begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & -3 & -4 \end{pmatrix}$$

Computing A^{-1} Example

Check:

First answer: We can think of the algorithm as simultaneously solving the equations

$$Ax_{1} = \mathbf{e}_{1}: \qquad \begin{pmatrix} 1 & 0 & 4 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & -3 & -4 & 0 & 0 & 1 \end{pmatrix}$$

$$Ax_{2} = \mathbf{e}_{2}: \qquad \begin{pmatrix} 1 & 0 & 4 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & -3 & -4 & 0 & 0 & 1 \end{pmatrix}$$

$$Ax_{3} = \mathbf{e}_{3}: \qquad \begin{pmatrix} 1 & 0 & 4 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & -3 & -4 & 0 & 0 & 1 \end{pmatrix}$$

First answer: We can think of the algorithm as simultaneously solving the equations

$$Ax_{1} = e_{1}: \begin{pmatrix} 1 & 0 & 4 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & -3 & -4 & 0 & 0 & 1 \end{pmatrix}$$

$$Ax_{2} = e_{2}: \begin{pmatrix} 1 & 0 & 4 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & -3 & -4 & 0 & 0 & 1 \end{pmatrix}$$

$$Ax_{3} = e_{3}: \begin{pmatrix} 1 & 0 & 4 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & -3 & -4 & 0 & 0 & 1 \end{pmatrix}$$

Now note $A^{-1}e_i = A^{-1}(Ax_i) = x_i$, and x_i is the *i*th column in the augmented part.

First answer: We can think of the algorithm as simultaneously solving the equations

$$Ax_{1} = \mathbf{e}_{1}: \qquad \begin{pmatrix} 1 & 0 & 4 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & -3 & -4 & 0 & 0 & 1 \end{pmatrix}$$

$$Ax_{2} = \mathbf{e}_{2}: \qquad \begin{pmatrix} 1 & 0 & 4 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & -3 & -4 & 0 & 0 & 1 \end{pmatrix}$$

$$Ax_{3} = \mathbf{e}_{3}: \qquad \begin{pmatrix} 1 & 0 & 4 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & -3 & -4 & 0 & 0 & 1 \end{pmatrix}$$

Now note $A^{-1}e_i = A^{-1}(Ax_i) = x_i$, and x_i is the *i*th column in the augmented part. Also $A^{-1}e_i$ is the *i*th column of A^{-1} .

First answer: We can think of the algorithm as simultaneously solving the equations

$$Ax_{1} = \mathbf{e}_{1}: \qquad \begin{pmatrix} 1 & 0 & 4 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & -3 & -4 & 0 & 0 & 1 \end{pmatrix}$$

$$Ax_{2} = \mathbf{e}_{2}: \qquad \begin{pmatrix} 1 & 0 & 4 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & -3 & -4 & 0 & 0 & 1 \end{pmatrix}$$

$$Ax_{3} = \mathbf{e}_{3}: \qquad \begin{pmatrix} 1 & 0 & 4 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & -3 & -4 & 0 & 0 & 1 \end{pmatrix}$$

Now note $A^{-1}e_i = A^{-1}(Ax_i) = x_i$, and x_i is the *i*th column in the augmented part. Also $A^{-1}e_i$ is the *i*th column of A^{-1} .

Second answer: Elementary matrices.

Definition

An **elementary matrix** is a square matrix E which differs from I_n by one row operation.

Definition

An **elementary matrix** is a square matrix E which differs from I_n by one row operation.

There are three kinds, corresponding to the three elementary row operations:

Definition

An **elementary matrix** is a square matrix E which differs from I_n by one row operation.

There are three kinds, corresponding to the three elementary row operations:

Fact: if E is the elementary matrix for a row operation, then EA differs from A by the same row operation.

Definition

An **elementary matrix** is a square matrix E which differs from I_n by one row operation.

There are three kinds, corresponding to the three elementary row operations:

Fact: if E is the elementary matrix for a row operation, then EA differs from A by the same row operation.

$$\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & -3 & -4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 4 \\ 2 & 1 & 10 \\ 0 & -3 & -4 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & -3 & -4 \end{pmatrix} \xrightarrow{R_2 = R_2 + 2R_1} \begin{pmatrix} 1 & 0 & 4 \\ 2 & 1 & 10 \\ 0 & -3 & -4 \end{pmatrix}$$

Elementary Matrices Continued

Fact: if E is the elementary matrix for a row operation, then EA differs from A by the same row operation.

Elementary Matrices Continued

Fact: if E is the elementary matrix for a row operation, then EA differs from A by the same row operation.

Consequence Elementary matrices are invertible, and the inverse is the elementary matrix which un-does the row operation.

Why Does The Inversion Algorithm Work? Second answer

Theorem

An $n \times n$ matrix A is invertible if and only if it is row equivalent to I_n .

Theorem

An $n \times n$ matrix A is invertible if and only if it is row equivalent to I_n . In this case, the sequence of row operations taking A to I_n also takes I_n to A^{-1} .

Theorem

An $n \times n$ matrix A is invertible if and only if it is row equivalent to I_n . In this case, the sequence of row operations taking A to I_n also takes I_n to A^{-1} .

Why? Say the row operations taking A to I_n have elementary matrices E_1, E_2, \ldots, E_k .

Theorem

An $n \times n$ matrix A is invertible if and only if it is row equivalent to I_n . In this case, the sequence of row operations taking A to I_n also takes I_n to A^{-1} .

Why? Say the row operations taking A to I_n have elementary matrices E_1, E_2, \ldots, E_k .

This means if you do these same row operations to A and to I_n , you'll end up with I_n and A^{-1} .

Second answer

Theorem

An $n \times n$ matrix A is invertible if and only if it is row equivalent to I_n . In this case, the sequence of row operations taking A to I_n also takes I_n to A^{-1} .

Why? Say the row operations taking A to I_n have elementary matrices E_1, E_2, \ldots, E_k .

This means if you do these same row operations to A and to I_n , you'll end up with I_n and A^{-1} . This is what you do when you row reduce the augmented matrix:

$$(A \mid I_n) \rightsquigarrow (I_n \mid A^{-1})$$