Selected Problems Chapter 3 Linear Algebra Done Right, Sheldon Axler, 3rd Edition

Mustaf Ahmed

January 4, 2021

Problem Integration. Define $T \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathbb{R})$ by

$$Tp = \int_0^1 p(x)dx.$$

Show that T is a linear map.

Proof.

Additivity

Given $p, q \in \mathcal{P}(\mathbb{R})$, we want the additivity propriety to hold for T. Applying T to the sum of p and q, we have

$$T(p+q) = \int_0^1 p(x) + q(x)dx$$

= $\int_0^1 p(x)dx + \int_0^1 q(x)dx$
= $T(p) + T(q)$,

since integration of a sum is equal to the sum of the integrated parts.

Homogeneity

Given $p \in \mathcal{P}(\mathbb{R})$ and $a \in F$, we want the homogeneity property to hold. Applying T to the scalar multiple of p, we have

$$T(a * p) = \int_0^1 a * p(x)dx$$
$$= a * \int_0^1 p(x)dx$$
$$= a * T(p),$$

since constants can be separated in integration.

Problem Theorem 3.5. Suppose v_1, \ldots, v_n is a basis of V and $w_1, \ldots, w_m \in W$. Show that there exists a unique linear map $T: V \to W$ such that

$$T(v_j) = w_j$$

for each $j = 1, \ldots, n$.

Proof.