In Exercises 15–17 \overline{AT} is a tangent.

15. If $\widehat{mCT} = 110$ and $\widehat{mBT} = 50$, then $m \angle A = \frac{?}{}$.

16. If $m \angle A = 28$ and $\widehat{mBT} = 46$, then $\widehat{mCT} = \frac{?}{}$.

17. If $m \angle A = 35$ and $\widehat{mCT} = 110$, then $\widehat{mBT} = \frac{?}{}$.

In Exercises 18-21 \overline{PX} and \overline{PY} are tangents.

18. If mXZY = 250, then $m \angle P = \frac{?}{}$

19. If $\widehat{mXY} = 90$, then $m \angle P = \frac{?}{}$.

20. If $m\widehat{XY} = t$, then $m\widehat{XZY} = \frac{?}{}$ and $m \angle P = \frac{?}{}$ in terms of t.

21. If $m \angle P = 65$, then $m\widehat{XY} = \frac{?}{}$.

- **B** 22. A secant and a tangent to a circle intersect in a 42° angle. The two arcs of the circle intercepted by the secant and tangent have measures in a 7:3 ratio. Find the measure of the third arc.
 - 23. A quadrilateral circumscribed about a circle has angles of 80°, 90°, 94°, and 96°. Find the measures of the four nonoverlapping arcs determined by the points of tangency.
 - 24. In the inscribed quadrilateral ABCD, the sides AB, BC, and CD are congruent. \overrightarrow{AB} and \overrightarrow{DC} meet at a 32° angle. Find the measures of the angles of ABCD.
 - 25. Prove Case II of Theorem 9-10. (Hint: See Classroom Exercise 10. Draw a figure like the second one shown below the theorem on page 358. Label your figure, and draw the chord joining the points of tangency.)
 - 26. Prove Case III of Theorem 9-10.
 - 27. Write an equation involving a, b, and c. 28. Find the ratio x:y.

- 29. Isosceles $\triangle ABC$ with base \overline{BC} is inscribed in a circle. P is a point on \overrightarrow{AC} and \overrightarrow{AP} and \overrightarrow{BC} meet at O. Prove that $\angle ABP \cong \angle O$.
- **C** 30. \overline{PT} is a tangent. It is known that $80 < m\widehat{RS} < m\widehat{ST} < 90$. State as much as you can about the measure of $\angle P$.

