CONSTRUÇÃO DE TABELA-VERDADE DE PROPOSIÇÕES

CONSTRUÇÃO DA TABELA-VERDADE

A tabela-verdade possui colunas e linhas, como toda tabela.

Nas primeiras colunas, colocamos as proposições simples.

O número de linhas depende da quantidade de proposições simples.

O cálculo para determinarmos o número de linhas é simples:

Número de linhas = 2ⁿ linhas, onde n é o número de proposições simples.

Exemplo

- Se a proposição composta possui duas proposições simples p e q, então a tabelaverdade terá 2² = 4 linhas. Em cada linha, colocamos todas as combinações possíveis de V e F.
- Se a proposição composta possui três proposições simples p, q e r, então a tabelaverdade terá 2³ = 8 linhas. Em cada linha, colocamos todas as combinações possíveis de V e F.

Agora, entenderemos melhor a construção da tabela-verdade de uma proposição composta considerando 1, 2 e 3 proposições simples.

Proposição simples

Seja p uma proposição simples. Para construir a tabela-verdade dessa proposição, temos apenas duas possibilidades: a proposição **p** pode ser verdadeira ou falsa.

F

Proposição composta com duas proposições simples

Sejam duas proposições simples p e q. A tabela-verdade possui 2^2 = 4 linhas. Agora, vamos considerar todas as possibilidades de combinar V e F.

Note que podemos ter:

- As duas proposições p e q verdadeiras.
- A primeira proposição p verdadeira e a segunda proposição q falsa.
- A primeira proposição p falsa e a segunda proposição q verdadeira.

• As duas proposições p e q falsas.

Dica

Podemos construir a tabela-verdade colocando V e F em qualquer ordem, desde que as linhas referentes às proposições simples tenham todas as combinações possíveis. Uma maneira mais prática é colocar na coluna da primeira proposição simples dois (V) seguidos de dois (F). Em seguida, na coluna da próxima proposição simples, alterna-se V e F, começando com V.

Proposições compostas com três proposições simples

Sejam três proposições simples p, q e r. A tabela-verdade possui 8 linhas. Agora vamos considerar todas as possibilidades de combinar V e F.

Note que podemos ter:

- Todas as 3 proposições simples verdadeiras.
- Duas proposições simples verdadeiras e uma proposição simples falsa.
- Uma proposição simples verdadeira e duas proposições simples falsas.
- Todas as proposições simples falsas.

Dica

Uma maneira prática de construir a tabela-verdade com 8 linhas é colocar na coluna da primeira proposição simples quatro (V) seguidos de quatro (F). Na coluna da segunda proposição simples, alterna-se dois (V) e dois (F), começando com dois (V).

Por último, na coluna da terceira proposição simples, alterna-se V e F, começando por V. Assim, todas as combinações são verificadas.

TABELAS-VERDADE DOS CONECTIVOS LÓGICOS

Agora vamos verificar o valor lógico dos seguintes conectivos: negação, conjunção, disjunção inclusiva, disjunção exclusiva, condicional, bicondicional, NAND e NOR, e suas tabelas-verdade.

Negação (Não)

A negação da proposição p é a proposição representada por ~p. Ou seja:

O valor lógico da proposição ~p é oposto ao da proposição p.

Quando o valor lógico da proposição p for verdadeiro, o valor lógico da proposição ~p será falso, e vice-versa.

Exemplo

- p: Os juros bancários são altos.
- ~p: Os juros bancários não são altos.

Tabela-verdade da negação

Conjunção (E)

O valor lógico da conjunção ficará mais fácil de ser compreendido através da seguinte declaração:

"Carlos levará Paula ao cinema e comprará um presente para ela"

Note que Carlos prometeu a Paula que a levará ao cinema e comprará um presente para ela. Ou seja, os dois eventos devem ocorrer simultaneamente. Dessa forma, o valor lógico da conjunção só será verdadeiro quando as duas proposições forem verdadeiras. Nos demais casos, a conjunção é falsa.

Temos uma proposição composta, onde:

- p: Carlos levará Paula ao cinema.
- q: Comprará um presente para ela.
- p \(q: Carlos levará Paula ao cinema e comprará um presente para ela.

Agora vamos analisar declaração através da tabela-verdade:

р	q	рΛq
V Carlos levou Paula ao cinema.	V Comprou um presente para ela.	V
V Carlos levou Paula ao cinema.	F Não comprou um presente para ela.	F
F Carlos não levou Paula ao cinema.	V Comprou um presente para ela.	F
F Carlos não levou Paula ao cinema.	F Não comprou um presente para ela.	F

Tabela-verdade da conjunção

Disjunção inclusiva (OU inclusivo)

Considere a seguinte declaração:

"Carlos levará Paula ao cinema ou comprará um presente para ela"

Nessa declaração, Carlos prometeu a Paula que a levará ao cinema ou comprará um presente para ela. Nesse caso, basta ele realizar os dois eventos ou apenas um dos eventos para a declaração ser verdadeira.

Temos uma proposição composta, onde:

- p: Carlos levará Paula ao cinema.
- q: Comprará um presente para ela.
- p v q: Carlos levará Paula ao cinema **ou** comprará um presente para ela.

Agora, vamos analisar declaração através da tabela-verdade:

р	q	p V q
V Carlos levou Paula ao cinema.	V Comprou um presente para ela.	V
V Carlos levou Paula ao cinema.	F Não comprou um presente para ela.	V
F Carlos não levou Paula ao cinema.	V Comprou um presente para ela.	V
F Carlos não levou Paula ao cinema.	F Não comprou um presente para ela.	F

Tabela-verdade da disjunção (inclusiva)

Dessa forma, a disjunção inclusiva será falsa somente quando as duas proposições forem falsas. Nos demais casos, a disjunção é verdadeira.

Disjunção exclusiva (OU exclusivo)

Considere a seguinte declaração:

"Paulo é carioca ou paulista"

Nessa declaração, Paulo não pode ser simultaneamente carioca e paulista.

Temos uma proposição composta, onde:

- p: Paulo é carioca.
- q: Paulo é paulista.
- p y q: Paulo é carioca ou paulista.

Agora vamos analisar declaração através da tabela-verdade.

р	q	p⊻ q
V Paulo é carioca.	V Paulo é paulista.	F
V Paulo é carioca.	F Paulo não é paulista.	V
F Paulo não é carioca.	V Paulo é paulista.	V
F Paulo não é carioca.	F Paulo não é paulista.	F

Tabela-verdade da disjunção (exclusiva)

Veja que a disjunção exclusiva será falsa somente quando as duas proposições forem falsas ou quando as duas proposições forem verdadeiras. Nos demais casos, a disjunção é verdadeira.

Condicional (Se... então)

Considere a seguinte declaração:

"Se Paula passar em cálculo, então Carlos comprará um presente para ela" Temos uma proposição composta, onde:

- p: Paula passar em cálculo.
- q: Carlos comprará um presente para ela.

• p \rightarrow q: Se Paula passar em cálculo, então Carlos comprará um presente pra ela.

Atenção

Não se esqueça que, na condicional:

Se ocorre um determinado evento, então um fato acontecerá.

Na declaração dada, temos:

• Evento: Paula passar em cálculo.

• Fato: Carlos comprará um presente para a Paula.

Agora, vamos analisar declaração através da tabela-verdade.

р	q	$p \rightarrow q$
V Paula passou em cálculo.	V Carlos comprou um presente pra ela.	V
V Paula passou em cálculo.	F Carlos não comprou um presente pra ela.	V
F Paula não passou em cálculo.	V Carlos comprou um presente pra ela.	V
F Paula não passou em cálculo.	F Carlos não comprou um presente pra ela.	V

Tabela-verdade da condicional

Conclusão: A condicional será falsa somente quando o antecedente é verdadeiro e o consequente é falso. Nos demais casos, a condicional é verdadeira.

Bicondicional (Se e somente se)

Considere a seguinte declaração:

"Carlos comprará um presente para Paula se e somente se Paula passar em cálculo"

Temos uma proposição composta, onde:

- p: Carlos comprará um presente para Paula.
- q: Paula passar em cálculo.
- p ↔ q: Carlos comprará um presente para Paula se e somente se Paula passar em cálculo.

Na bicondicional p \leftrightarrow q, temos duas condicionais que ocorrem simultaneamente, na ida e na volta: p \rightarrow q e q \rightarrow p.

- $p \rightarrow q$: Se Carlos comprar um presente para Paula, então Paula passará em cálculo.
- $q \rightarrow p$: Se Paula passar em cálculo, então Carlos comprará um presente para ela.

Dessa forma a bicondicional também pode ser escrita da seguinte forma:

$$(p \rightarrow q) \land (q \rightarrow p)$$

Agora, vamos analisar declaração através da tabela-verdade.

р	q	$p \leftrightarrow q$
V Carlos comprou um presente para Paula.	V Paula passou em cálculo.	V
V Carlos comprou um presente para Paula.	F Paula não passou em cálculo.	F
F Carlos não comprou um presente para Paula.	V Paula passou em cálculo.	F
F Carlos não comprou um presente para Paula.	F Paula não passou em cálculo.	V

Tabela-verdade da bicondicional

Veja que a bicondicional será verdadeira somente quando as proposições p e q forem ambas verdadeiras ou falsas. Nos demais casos, a bicondicional é falsa.

NAND(个)

Como vimos, o conectivo NAND surge a partir da combinação do conectivo "não" com o conectivo "e".

Vamos considerar duas proposições simples:

- p: Carlos vai ao cinema.
- q: Carlos vai assistir à televisão.
- p ↑ q: Não é verdade que Carlos vai ao cinema e vai assistir à televisão.

Veja que podemos escrever:

Não é verdade que (Carlos vai ao cinema e vai assistir à televisão).

Linguagem simbólica: \sim (p \land q)

Tabela-verdade do conectivo NAND

p	q	pΛq	~ (p ∧ q)	р个q
٧	٧	V	F	F
٧	F	F	V	V
F	٧	F	V	V
F	F	F	V	V

$NOR(\downarrow)$

Como vimos, o conectivo NOR surge a partir da combinação do conectivo "não" com o conectivo "ou".

Vamos considerar duas proposições simples:

- p: Carlos vai ao cinema.
- q: Carlos vai assistir à televisão.
- p | q: Não é verdade que Carlos vai ao cinema ou vai assistir à televisão.

Veja que podemos escrever:

Não é verdade que (Carlos vai ao cinema ou vai assistir à televisão)

Linguagem simbólica: \sim (p \vee q)

Tabela-verdade do conectivo NOR

р	q	p∨q	~ (p V q)	p∤d
٧	٧	V	F	F
٧	F	V	F	F
F	V	V	F	F
F	F	F	V	V

ORDEM DE PRECEDÊNCIA DOS CONECTIVOS

Agora, que conhecemos a tabela-verdade de cada conectivo, podemos construir a tabela-verdade de qualquer proposição composta. Devemos ficar atentos, porém, à ordem das proposições nas colunas da tabela.

Atenção

É importante obedecer a ordem de procedência dos conectivos da mesma forma que fazemos na matemática quando resolvemos uma expressão.

Por exemplo, se, na proposição composta, temos a presença de parênteses, então, devemos começar por eles e, depois, verificar o que está fora deles.

Ordem de precedência para os conectivos

- 1. 1º: Negação (~).
- 2. 2° : Conjunção ou disjunção (\wedge) e (\vee), na ordem em que aparecem.
- 3. 3° : Condicional (\rightarrow).
- 4. 4° : Bicondicional (\leftrightarrow) .

Exemplo

Construa a tabela-verdade da seguinte proposição: (p $\vee \neg q$) \rightarrow ($\neg p \land q$).

Solução:

Passo 1:

Verificar a quantidade de proposições simples existentes.

Neste exemplo, temos duas proposições: p e q.

Vamos, então, construir uma tabela-verdade com 4 linhas. Inicialmente, colocaremos nas duas primeiras colunas as proposições p e q. Em seguida, colocaremos nas linhas, conforme estudamos anteriormente, todas as combinações possíveis de V e F.

Passo 2:

Na proposição dada, temos dois parênteses. Comece pelo primeiro parêntese da esquerda para a direita.

$$(p \lor \sim q) \rightarrow (\sim p \land q)$$

Abriremos uma coluna para colocarmos a negação ~q. Veja que ~q é a negação de q. Complete a coluna ~q com V e F.

Passo 3:

Abriremos uma coluna para colocarmos a proposição **p** V ~**q**. Em seguida, completaremos a coluna com V e F de acordo com a análise da coluna p com a coluna ~**q** e o conectivo "ou" (V).

P	q	~q	p∨~q
٧	٧	F	V
٧	F	V	V
F	٧	F	F

Lembre-se de que, de acordo com a tabela-verdade da disjunção (V), ela é falsa quando as duas proposições são falsas. Nos demais casos, a disjunção é verdadeira.

Passo 4:

Verificar o outro parêntese.

$$(p \lor \sim q) \rightarrow (\sim p \land q)$$

Abriremos uma coluna para colocarmos a negação ~p. Veja que ~p é a negação de p. Complete a coluna ~p com V e F.

Ρ	q	~q	p∨~q	~p
٧	٧	F	V	F
٧	F	٧	V	F
F	٧	F	F	V
F	F	٧	V	V

Passo 5:

Abriremos uma coluna para colocarmos a proposição $\sim p \land q$. Em seguida, completaremos a coluna com V e F de acordo com a análise da coluna $\sim p$ com a coluna q e o conectivo "e" (\land).

p	q	~q	p∨~q	~p	~p
٧	٧	F	V	F	F
٧	F	V	V	F	F
F	٧	F	F	٧	V
F	F	V	V	V	F

Lembre-se de que, de acordo com a tabela-verdade da conjunção (\land), ela é verdadeira quando as duas proposições são verdadeiras. Nos demais casos, a conjunção é falsa.

Passo 6:

Agora que já analisamos os dois parênteses, vamos verificar a condicional que une os parênteses.

$$(p \lor \sim q) \rightarrow (\sim p \land q)$$

Abra uma coluna e coloque a proposição (p $\lor \sim q$) \to ($\sim p \land q$). Em seguida, complete a coluna com V e F de acordo com a análise da coluna (p $\lor \sim q$) com a coluna ($\sim p \land q$) e o conectivo "se... então" (\to).

p	q	~q	p V ~q	~p	~p ∧ q	$(p \lor ^{\sim}q) \rightarrow (^{\sim}p \land q)$
٧	٧	F	V	F	F	F
٧	F	٧	V	F	F	F
F	٧	F	F	٧	V	V
F	F	٧	V	٧	F	F

Lembre-se de que, de acordo com a tabela-verdade da condicional (\rightarrow) , ela é falsa quando o antecedente é verdadeiro e o consequente é falso. Nos demais casos, a condicional é verdadeira.

$$\underbrace{(p ee {\scriptstyle \sim} q)}_{antecedente}
ightarrow \underbrace{({\scriptstyle \sim} p \wedge q)}_{consequente}$$

Agora, você pode construir a tabela-verdade de qualquer proposição composta.

Análise do valor lógico de uma proposição composta sem a construção da tabela-verdade

Considere a proposição $(\mathbf{q} \wedge \mathbf{p}) \rightarrow (\sim \mathbf{q} \rightarrow \mathbf{p})$ e a informação $V(\mathbf{p} \wedge \mathbf{q}) = V$.

A partir dessa informação é possível verificar se a proposição dada é verdadeira ou falsa.

Solução:

Devemos determinar se o valor lógico do enunciado é falso ou verdadeiro. De acordo com a informação dada $V(p \land q) = V$, podemos determinar o valor lógico de p e q.

 $V(p \land q) = V$, onde o conectivo é a conjunção.

De acordo com a tabela-verdade da conjunção, ela **só** é verdadeira quando as duas proposições são verdadeiras. Logo, podemos concluir que V(p) = V e V(q) = V.

Temos:

Nesse enunciado, temos dois parênteses. Não esqueça que começamos sempre com os parênteses.

- O valor lógico de V(q ∧ p) = V no primeiro parêntese.
- No segundo parêntese, temos uma condicional

$$\underbrace{\stackrel{ ilde{}_{}}{\overset{}_{}}}_{F} o \underbrace{\stackrel{p}{\underset{V}}}$$

De acordo com a tabela-verdade da condicional, quando o antecedente é verdadeiro e o consequente é falso, o valor lógico da proposição é falso. Nos demais casos, a condicional é verdadeira. Logo,

$$V\Bigl(\underbrace{\ ilde{\ }_{F}}
ightarrow \underbrace{\ p}_{V}\Bigr)=V.$$

Temos, então:

Por último, vamos analisar outra condicional que une $(q \land p)$ e $(\sim q \rightarrow p)$.

Considerando o mesmo raciocínio, podemos concluir que o valor lógico da proposição é **verdadeiro**.

Conclusão: O valor lógico do enunciado é verdadeiro.

Exemplo

Determine o valor lógico das seguintes proposições:

a. 2+6=5e4+4=8

b. Se 1 + 3 = 5 então 6 + 6 = 12

c. 2 + 4 = 7 se e somente se $4^2 = 16$

d. 2+6=8 ou 4+4=7

Solução:

Nesse exemplo, vamos trabalhar com a tabela-verdade dos conectivos lógicos.

• a) 2 + 6 = 5 e 4 + 4 = 8

• Conectivo: Conjunção.

A conjunção é verdadeira sempre que as duas proposições envolvidas são verdadeiras. Nos demais casos, ela é falsa.

$$\underbrace{2+6=5}_{F} \underbrace{e}_{V} \underbrace{4+4=8}_{V}$$

Logo, o valor lógico da proposição é falso.

• b) Se 1 + 3 = 5 então 6 + 6 = 12

Conectivo: Condicional.

A condicional é falsa sempre que o antecedente for verdadeiro e o consequente for falso. Nos demais casos, ela é verdadeira.

$$\underbrace{Se\ \underbrace{1+3=5}_{F}\ ent\~ao\ \underbrace{6+6=12}_{V}}$$

Logo, o valor lógico da proposição é verdadeiro.

- c) 2 + 4 = 7 se e somente se 4² = 16
- Conectivo: Bicondicional.

A bicondicional é verdadeira sempre que as duas proposições envolvidas são **ambas** verdadeiras ou **ambas** falsas. Nos demais casos, ela é falsa.

$$\underbrace{2+4=7}_{F} Se \ e \ somente \ se \ \underbrace{4^2=16}_{V}$$

Logo, o valor lógico da proposição é falso.

- d) 2 + 6 = 8 ou 4 + 4 = 7
- Conectivo: Disjunção.

A disjunção é falsa apenas se as duas proposições envolvidas são falsas. Nos demais casos, ela é verdadeira.

$$\underbrace{2+6=8}_{V} \underbrace{ou} \underbrace{4+4=7}_{F}$$

Logo, o valor lógico da proposição é verdadeiro.

Observação sobre a ordem de precedência dos conectivos:

Quando nos deparamos com uma proposição composta sem parênteses, fica muito complicado saber que termos da expressão devemos considerar primeiro.

Para colocarmos os parênteses, devemos seguir a ordem de precedência dada neste módulo, seguindo o critério do conectivo mais forte para o mais fraco. Veja como é simples:

Seja a proposição composta:

$$s \mathrel{\Lambda} q \mathrel{\leftrightarrow} r \mathrel{\rightarrow} q$$

Veja que o conectivo mais forte nessa proposição é a **bicondicional**. Com os parênteses ela fica do seguinte modo:

$$(s \land q) \leftrightarrow (r \rightarrow q)$$

Agora, considere a proposição $\mathbf{r} \rightarrow \mathbf{p} \wedge \mathbf{q}$.

Nessa proposição, o conectivo mais forte é a **condicional**. Colocando o parêntese, temos:

$$r \to (p \land q)$$