Al Benchmark:

Model: Task3 Inception ResNet v1 (Face Recognition)

1.Special Operation: 1x1 conv

Detail: Fuse the channels, decrease the number of channels

(btw, 1x1 convolution layers make perfect sense)

2. Special Operation: 1x3 conv or 3x1 conv

Detail: Guessing this kind of conv is doing gradient for each channel, where 1x3 is for x direction and 3x1 is for y direction gradient for each channel. Instead of using 3x3, this method can save computation time.

3. Special Operation: 1x7 conv or 7x1 conv

Detail: Guessing this kind of conv is doing gradient for each channel, where 1x7 is for x direction and 7x1 is for y direction gradient for each channel. Instead of using 7x7, this method can save computation time.

Model: Task 6 ICNet

1.Special Operation: Upsampling2D

Detail: padding zero in between and use bilinear interpolation way to calculate value to replace the inbetween zero.

[[1 2] [3 4]]

Bilinear x 4

[[1.	1.25	1.5	1.75	2.	2.	2.	2.]
[1.5	1.75	2.	2.25	2.5	2.5	2.5	2.5]
[2.	2.25	2.5	2.75	3.	3.	3.	3.]
[2.5	2.75	3.	3.25	3.5	3.5	3.5	3.5]
[3.	3.25	3.5	3.75	4.	4.	4.	4.]
[3.	3.25	3.5	3.75	4.	4.	4.	4.]
[3.	3.25	3.5	3.75	4.	4.	4.	4.]
[3.	3.25	3.5	3.75	4.	4.	4.	4.]]

2. Special Operation: Dilated convolution

Detail: the kernel size will increase by inserting zeros as the dilated rate getting larger.

Model: Task SRGAN

1. Special Operation: (Input Image Normalization)

Detail: Image / 255

2. Special Operation: (Output Image DeNormalization)

Detail: (Image + 1) * 127.5

3. Special Operation: tf.Depth_to_Space(factor)

Detail: 1. Apply factor on conv filter first to enlarge channel

2. Use this Depth_to_Space function to do upsampling

Segmentation:

Model: PSPNet

Special Operation: tf.image.resize

Detail: Use resize (bilinear interpolation) here in order to make sure each pooling level has the same output feature shape before concatenating them.

Model: Deeplabv3_plus

Special Operation: Dilated convolution

Detail: the kernel size will increase by inserting zeros as the dilated rate getting larger.

Super Resolution:

Model: EDSR

1. Special Operation: (Input Image Normalization)

Detail: (Image - RGB_MEAN)/127.5

2. Special Operation: (Output Image DeNormalization)

Detail: Image * 127.5 + RGB_MEAN

3. Special Operation: tf.Depth_to_Space(factor)

Detail: 1. Apply factor on conv filter first to enlarge channel

2. Use this Depth_to_Space function to do upsampling

Object Detection:

Model: Detectron Head

Special Operation: Transposed Convolution

Detail: Pad input (blue rectangle) with zeros first, and then do regular convolution.

