The Stokes wave solution. MEK4320

Geir Pedersen

Department of Mathematics, University of Oslo

April 16, 2018

Background

A first step from this...

Typical figure from the net.

Surface gravity waves in elementary coarses and popular dissemination

- Linear periodic solution
- Smooth, rounded, regular.
- Real waves seldom look like this.

to this...

and this...

Stokes waves

- Nonlinear periodic surface gravity waves of permanent shape
- First presented in 1847
- Stability and modulation still an active field of research
- Here: basic solution in infinite depth.

Described by two parameters:

- Amplitude a*
- Wavelength $\lambda^* = 2\pi/k^*$

Wave celerity, c^* , surface elevation, ζ^* and velocity potential, ϕ^* , must be found.

* marks dimensional coordinates.

Basic equations

Full potential theory in deep water

Surface elevation ζ^* , potential ϕ^* , infinite depth.

* marks dimensional quantities.

$$\zeta^*_{t^*} + \phi^*_{x^*} \zeta^*_{x^*} = \zeta^*_{z^*}, \quad z^* = \zeta^*;$$
 (1)

$$\phi^*_{t^*} + \frac{1}{2} (\nabla^* \phi^*)^2 + g \zeta^* = 0, \quad z^* = \zeta^*;$$
 (2)

$$(\nabla^*)^2 \phi^* = 0, \quad z^* < \zeta^*;$$
 (3)

$$abla^* \phi^* \to 0, \quad z^* \to -\infty;$$
 (4)

Surface conditions (1,2), Laplace equation (3), vanishing motion in depth (4).

Linear harmonic mode

Deletion of nonlinear terms

$$\zeta^*_{t^*} = \zeta^*_{z^*}, \quad z^* = 0;$$
 $\phi^*_{t^*} + g\zeta^* = 0, \quad z^* = 0;$
 $(\nabla^*)^2 \phi^* = 0, \quad z^* < 0;$
 $\nabla^* \phi^* \to 0, \quad z^* \to -\infty;$

Solution

$$\begin{split} \zeta^* &= a^* \cos(k^* (x^* - c_f^* t^*)), \\ \phi^* &= a^* c_f^* e^{k^* z^*} \sin(k^* (x^* - c_f^* t^*)) \quad c_f^* = \sqrt{\frac{g}{k^*}} \end{split}$$

Goal: find nonlinear correction to this

Preparation for perturbation method:

Parameters, scaling, expansion parameter (ϵ) and eigenvalue (c)

Dimension analysis

Parameters

- **1** λ^* wavelength. Represented by $k^* = 2\pi/\lambda^*$.
- 2 a* a measure of amplitude. will be made unique later.
- 3 g. These are gravity waves.
- $oldsymbol{0}$ c^* The wave celerity. Must be found. In the linear approximation $c^*=c_f^*=\sqrt{rac{g}{k^*}}$

The Pi theorem

Two dimensionless numbers

- $\epsilon = a^*k^*$; wave steepness. Assumed small.
- The other is c^*/c_f^* .

$$c^* = c_f^* f(\epsilon), \tag{5}$$

where the function f must be found.

Scaling

Dimensionless variables

$$z = k^* z^*, \qquad x = k^* x^*, t = k^* c_f^* t^*, \qquad \zeta^* = a^* \zeta, \phi^* = c_f^* a^* \phi, \qquad c^* = c_f^* c.$$

Waves of permanent form

composite phase variable: $\theta = x - ct$

Fields : $\zeta = \zeta(\theta), \ \phi = \phi(\theta, z)$

Only two free variables instead of three.

Introduction of wave celerity, c, as independent unknown is crucial.

Dimensionless equations

Boundary conditions at $z = \epsilon \zeta$:

$$-c\phi_{,\theta} + \frac{1}{2}\epsilon(\phi_{,\theta}^2 + \phi_{,z}^2) + \zeta = 0$$
 (6)

$$-c\zeta_{,\theta} + \epsilon\zeta_{,\theta}\phi_{,\theta} = \phi_{,z} \tag{7}$$

Indices after comma: partial derivation.

In the bulk of the fluid $z < \epsilon \zeta$:

$$\phi_{,\theta\theta} + \phi_{,zz} = 0 \tag{8}$$

At infinite depth $z \to -\infty$:

$$\phi_{,\theta}, \ \phi_{,z} \to 0$$
 (9)

c is an explicit unknown (eigenvalue)

Form of solutions; normalization condition

Form of periodic solution

Periodic solution (period 2π due to scaling with k^*) \Rightarrow Fourier series for η

$$\zeta = b_0 + \sum_{j=1}^{\infty} b_j \cos(j\theta) + \sum_{j=1}^{\infty} e_j \sin(j\theta)$$

Averaged surface $\Rightarrow b_0 = 0$. Crest of the lowest harmonic at $\theta = 0$ $\Rightarrow e_1 = 0$.

Unique definitions of a^* and $\epsilon \Rightarrow normalization$ condition

$$b_1 = 1$$

It will turn out that all e_i are zero.

Series for ϕ

$$\phi = U_0\theta + \sum_{j=1}^{\infty} F_j(z)\sin(j\theta) + \sum_{j=1}^{\infty} G_j(z)\cos(j\theta).$$

Each term must fulfill the Laplace equations independently \Rightarrow F and G functions are exponentials.

Vanishing velocity for $z \to \infty \Rightarrow U_0 = 0$.

$$\phi = \sum_{j=1}^{\infty} e^{jz} \{ B_j \sin(j\theta) + E_j \cos(j\theta) \}.$$
 (10)

It will turn out that all E_j are zero.

The perturbation solution

Series expansion

Simultaneous expansion of ζ , ϕ and c; The Poincare-Lindstedt method.

$$\zeta = \zeta_0(\theta) + \epsilon \zeta_1(\theta) + \epsilon^2 \zeta_2(\theta) + \cdots$$
 (11)

$$\phi = \phi_0(\theta, z) + \epsilon \phi_1(\theta, z) + \epsilon^2 \phi_2(\theta, z) + \cdots$$
 (12)

$$c = c_0 + \epsilon c_1 + \epsilon^2 c_2 + \cdots \tag{13}$$

Requirement: ϕ_i and ζ_i periodic in θ . Period must equal 2π . Since the equations for z < 0 are linear

$$\phi_{j,\theta\theta} + \phi_{j,zz} = 0$$

 $\phi_{i,\theta}, \phi_{i,z} \to 0$ for $z \to -\infty$

For all j. Taken care of by each ϕ_j conforming to (10)

The expansion and geometrical nonlinearity

Challenges

- With expansion of *c* and nonlinearities: quite some book keeping.
- ② Surface conditions apply at unknown position $z = \epsilon \zeta$.

Point 2: terms in surface conditions must be expanded to express the surface conditions in terms of field variables at z=0. Example

$$\phi_{,\theta}(\theta,\epsilon\zeta) = \phi_{,\theta}(\theta,0) + \epsilon\phi_{,\theta z}(\theta,0)\zeta + \frac{1}{2}\epsilon^2\phi_{,\theta zz}(\theta,0)\zeta^2 + \dots$$

$$= \phi_{0,\theta} + \epsilon\left(\phi_{0,\theta z}\zeta_0 + \phi_{1,\theta}\right)$$

$$+\epsilon^2\left(\frac{1}{2}\phi_{,\theta zz}\zeta_0^2 + \phi_{1,\theta z}\zeta_0 + \phi_{0,\theta z}\zeta_1 + \phi_{2,\theta}\right) + \dots$$

where the argument $(\theta, 0)$ is implicit in the lower two lines.

Leading order; linear solution

Keeping O(1) terms:

$$-c_{0}\phi_{0,\theta} + \zeta_{0} = 0, \qquad \text{for } z = 0,$$

$$c_{0}\zeta_{0,\theta} + \phi_{0,z} = 0, \qquad \text{for } z = 0,$$

$$\phi_{0,\theta\theta} + \phi_{0,zz} = 0, \qquad \text{for } z < 0,$$

$$\phi_{0,\theta}, \phi_{0,z} \to 0, \qquad \text{for } z \to -\infty.$$

$$(14)$$

Linear harmonic wave mode is reproduced in dimensionless form

$$\zeta_0 = \cos \theta, \quad \phi_0 = e^z \sin \theta, \quad c_0 = 1, \tag{15}$$

where the normalization condition has been applied.

Order ϵ^1

At z = 0:

$$\begin{aligned} -c_0\phi_{1,\theta} + \zeta_1 &= c_1\phi_{0,\theta} - \frac{1}{2}(\phi_{0,\theta}^2 + \phi_{0,z}^2) + c_0\phi_{0,\theta z}\zeta_0, \\ c_0\zeta_{1,\theta} + \phi_{1,z} &= -c_1\zeta_{0,\theta} + \zeta_{0,\theta}\phi_{0,\theta} - \phi_{0,\theta zz}\zeta_0. \end{aligned}$$

Elimination of $\zeta_1 \Rightarrow$

$$\phi_{1,\theta\theta} + \phi_{1,z} = 2c_1 \sin \theta \quad \text{for } z = 0$$
 (16)

Solution of type (10) \Rightarrow

$$c_1 = 0$$
.

Normalization condition \Rightarrow

$$\zeta_1 = \frac{1}{2}\cos 2\theta, \quad \ \phi_1 = 0.$$

Order ϵ^2

Same structure as for $O(\epsilon^1)$. Longer expressions, but $c_1=0$ and $\phi_1=0$ help.

Details omitted.

$$\zeta_2 = \frac{3}{8}\cos 3\theta, \quad \phi_2 = 0, \quad c_2 = \frac{1}{2}.$$

To this order: modification of celerity !

With dimensions restored

$$c^* = \sqrt{\frac{g}{k^*}} \left(1 + \frac{1}{2} (a^* k^*)^2 + \cdots \right)$$

Wave shape; $\epsilon = 0.3$

True aspect ratio; $\epsilon = 0.3$

- Narrower crests, wider troughs.
- Total wave height increased by ζ_2 .
- Quite large ϵ . Still looks far from extreme.

Comments

Some properties and remarks

Stokes-drift:

$$Q^* = rac{1}{T^*} \int\limits_0^{T^*} \int\limits_{-\infty}^{\zeta^*} u^* dz^* dt^* = rac{1}{2k^*} \sqrt{rac{g}{k^*}} \epsilon^2 + O(\epsilon^3) > 0.$$

There is net volume transport in the direction of wave advance.

Instabilities

- Benjamin & Feir (1967): The Stokes wave is always unstable in infinite depth.
- Combination of shorter and longer wavelength grow ⇒ modulations.
- Instability slow for small amplitudes.
- $\epsilon > 0.2$, say, span-wise instability \Rightarrow three dimensional motion.
- Stokes waves may be stable on finite depth.
- Much, much more.

Narrow band approximation. Modulation equations*

$$2\zeta = A(x,t)e^{i(kx-\omega t)} + \epsilon A_2(x,t)e^{2i(kx-\omega t)} + \cdots + c.c.$$

where A, A_1 etc. display only slow variation with respect to x and t.

Some algebra⇒

$$i\frac{\partial A}{\partial \tau} + \frac{\partial^2 A}{\partial \xi^2} + \frac{1}{2}|A^2|A = 0 \tag{17}$$

where $\tau = \epsilon t$ and $\xi = \epsilon (x - c_g t)$. Here c_g is the linear group velocity for wave number k.

The cubic Schrödinger equation.

