■ worksheet.md

CSE141L Lab 3 Caching Optimizations

Name:	Student ID:

Instructions

- Complete this worksheet while reading/working through the lab write up. The worksheet doesn't make sense without the lab.
- The point values are listed for each question. Altering the size of the cells will cost you 1 point. There are 75 points total for the write up portion of the lab.

Cache and dataset characteristics

P1 (4pt) Find out the dimensions (number of data elements) of the following tensors/vectors used in fc_layer_t::activate for the cifar100 dataset and fill the following table

Tensor/Vector	Number of Data Elements
in	
out	
weights	
activation_input	

P2 (4pt) Calculate the size (in Bytes) of the following tensors/vectors used in fc_layer_t::activate for the cifar100 dataset and fill the following table

Tensor/Vector	Size in Bytes
in	
out	
weights	
activation_input	

P3 (4pt) Refer to the lecture slides to find the cache sizes for the skylake processor we are using for this class.

Cache level	Size in Bytes
L1 Cache	
L2 Cache	
L3 Cache	

P4 (4pt) How much of each of these data structures used in fc_layer_t::activate() will fit in the L1 and L2 cache?

tensor	% that'll fit in L1	% that'll fit in L2
in		
out		
weights		
activation_input		

Understanding Tensor_t

Given tensor_t<double> foo(tdsize(4,3,5,7)), answer the following (double are 8 bytes):

P1 (1pt) How many elements are there in foo?

P2 (1pt) What's the linear index of element (1,1,1,1)?

P3 (1pt) How far apart are elements that differ by 1 in each dimension?

dim.	distance in bytes	distance in linear index
Х		
У		
Z		
b		

Tier 1: Reordering and Tiling loops in fc_layer_t::activate

Speedup after loop reordering : _____

P2 (4pt) Block the loop n in fc_layer_t::activate with the tile sizes 1, 2, 4, 8, 16 and fill out the table below.

Dataset	Step size	Blocked implementation time	Speedup vs step size == 1
cifar100	1		
cifar100	2		
cifar100	4		
cifar100	8		
cifar100	16		

P3 (4pt) In a single line graph, plot the speed up against the different block sizes for blocking the loop **n** in **fc_layer_t::activate**. Block size is the independent vairable.

Your graph here

localhost:6419 2/5

P4 (4pt) Cons	sider the bloc	ksize which gave maximum sp	eedup in the previous question F	4 and fill out	the following table	
1. Base impl	ementation tir	me :				
2. Implemen	tation time of	your optimized solution :				
3. Base impl	ementation L1	l misses :				
4. Your faste	st solution L1	misses:				
Tier 2: Op	timizing (calc_grads				
P1 (4pt) Chan report the spe	-	of loops from b i n to b n	i in the the triply-nested loop i	n fc_layer_	_t::calc_grads and	
Speedup after	loop reorderi	ng :				
P2 (4pt) Block following table		he the triply-nested loop in fo	c_layer_t::calc_grads with	different step	sizes and fill out the	
Function	Step size	Base implementation time	Blocked implementation time	Speedup		
calc_grads						
calc_grads						
calc_grads						
calc_grads						
calc_grads						
fc_layer_t			size for blocking the loop n in th gives maximum speedup. Block s			
Best block size Tier 3: Ap		ore Optimizations				
P1 (5pt) Give			ou tried blocking. Report the spe	eedup you ach	nieved for each one.	

localhost:6419 3/5

P2 (5pt) Give a brief description of an additional optimization you implemented to speedup training.

Your answer here

Lab Reflection

Follow this link 24 hours before or after the due date to fill out the reflection survey. It is worth 5% of your lab grade.

https://forms.gle/VUkpAdC6gUQC94Fd8

Addendum

```
(2pt) For your best version of each function, write out loop
```

The [2] means that the pixel_yy loop is broken into tiles of size 2.

Note There is not a correct answer, we just want to know what you did.

activate()

calc_grads()

fix_gradients()

localhost:6419 5/5