触发器

刘鹏

浙江大学信息与电子工程学院 liupeng@zju.edu.cn

锁存器NOR门构造

(a) NOR锁存器

Set	Reset	Output
0	0	No change
1	0	Q = 1
0	1	Q = 0
1	1	Invalid*

*Produces $Q = \overline{Q} = 0$. (b)

(b) 功能表

(c) 简化模块图

锁存器NAND构造

Set	Reset	Output
1	1	No change
0	1	Q = 1
1	0	Q = 0
0	0	Invalid*

^{*}Produces $Q = \overline{Q} = 1$.

(b)

(a) NAND锁存器

(b) 功能表

脉冲触发的触发器

主从SR触发器

- (1) clk=1时, "主"按S,R翻转, "从"保持
- (2) clk下降沿到达时, "主"保持, "从"根据"主"的状态翻转

所以每个clk周期,输出状态只可能改变一次

Set	Reset		Output
1	1		No change
0	1		Q = 1
1	0		Q = 0
0	0		Invalid*
		_	

*Produces $Q = \overline{Q} = 1$.

(b)

主从JK触发器

为解除约束,即使出现S=R=1的情况下,Q*也是确定的

主从JK触发器分析

(1)若J = 1, K = 0, clk = 1时

Q*=1, 主保持1; Q*=0, 主=1; 当clk↓后, 从=1

(2)若J = 0, K = 1, clk = 1时

Q*=1, 主=0; Q*=0, 主保持0; 当clk↓后, 从=0

(3)若J = K = 0, clk = 1时

Q*=1, 主保持; Q*=0, 主保持; 当clk↓后, 从保持

(4)J = K = 1, clk = 1时

若Q*=1,则主置0;若Q*=0,则主置1;当clk↓后,从=(Q*)′

Set	Reset		Output	
1	1		No change	
0	1		Q = 1	
1	0		Q = 0	
0	0		Invalid*	
*Produces $Q = \overline{Q} = 1$.				
	(b)			

列出真值表

CLK	S	R	Q	$\overline{arrho^*}$
X	Χ	X	Χ	Q^*
7	0	0	0	0
7	0	0	1	1
7	1	0	0	1
Ţ	1	0	1	1
7	0	1	0	0
Ţ	0	1	1	0
Ţ	1	1	0	1*
J₹	1	1	1	1*

脉冲触发的触发器

□ 脉冲触发方式的动作特点

- 分两步动作:
 - 第一步clk=1时,主接收信号,从保持
 - 第二步clk下降沿到达后,从按主状态翻转
 - 输出状态只能改变一次
- **主从SR**, 主为同步SR, clk=1的全部时间里输入信号对主都起控制作用; 但 **主从JK**在clk高电平期间, 主只可能翻转一次
- 在clk=1期间里输入发生变化时,要找出clk下降沿前Q'最后的状态,决定 Q*的状态

Q=0时,只允许J=1的信号进入主触发器 Q=1时,只允许K=1的信号进入主触发器

边沿触发的触发器

□ 有效的解决方案: 只有6个门

■ 只对接近时钟信号边缘的输入敏感(高信号时不敏感)

负边沿触发 D触发器 (DFF)

4-5 门延时

需要保证建立时间和保持时间 以便捕获输入

特性方程 Q(t+1) = D

□ 循序渐进分析

- □ 正边沿触发的触发器
 - 上升沿采样的输入,上升沿后输出变化
- □ 负边沿触发的触发器
 - 下降沿采样的输入,下降沿后输出变化

时序方法

□术语定义

时钟:周期性事件,导致存储单元状态改变,可以是上升沿或下降沿,或高电平或低电平

■ 建立时间: 在时钟事件之前输入必须稳定的最小时间(Tsu)

■ 保持时间: 在时钟事件后输入必须保持稳定的最小时间(Th)

在时钟事件周围有一个 **定时"窗口"**,在此期间 输入必须保持稳定和不变, 以便被识别

术语

传播延迟

级联触发器

18

数字系统设计 ZDMC Lect 9

时钟脉冲相位差

□时钟锁存

CLK0 clocks 首先锁存 CLK1 clocks 接着锁存 CLK1 应该与CLK0对齐, 但是由于时钟脉冲 相位差的原因导致滞后

原状态: IN = 0, Q0 = 1, Q1 = 1

次状态: Q0 = 0, Q1 = 0 (应该 Q1 = 1)

时钟脉冲相位差

- □高速系统
 - 时钟延迟(线,缓冲)
 - 逻辑门延迟
- $T_p > T_h \rightarrow T_p > T_{skew} + T_h$ $T_{skew} < 0, T_{period} + T_{skew} > T_p + T_{su}$

处理异步输入

□ 从不扇出异步输入

- 在电路的边界同步
- 扇出同步信号

触发器Flip-Flop分类

- □逻辑功能分类
 - RS锁存器
 - JK触发器
 - T触发器
 - D触发器
- □ 逻辑功能指按触发器的次态和现态及输入信号之间的逻辑关系
 - 特性表
 - 特性方程
 - 状态转换图

RS 锁存器

- □ 特性方程Qn+1=S+R'Qn
- □ RS Latch的状态转换图
- □ 特性表/真值表

JK 触发器

- □ 特性方程:Qn+1=JQn'+K'Qn
- □ JK FF的状态转换图
- □ 特性表/真值表

D触发器

- □ 特性方程:Qn+1=D
- □ D FF的状态转换图
- □特性表/真值表

D	Q^n	Q^{n+}	·1
0	0	0	
0	1	0	复位
1	0	1	置位
1	1	1	

T触发器

- □ 特性方程:Qn+1=TQn'+T'Qn
- □ TFF的状态转换图
- □ 特性表/真值表

T	Q^n	Q	n+1
0	0	0	`
0	1	1	保持
1	0	1	亚汀七十
1	1	0	翻转

□ T′触发器: T=1, Qⁿ⁺¹=Qⁿ′

JK触发器的两个输入端连在一起作为T端,可以构成T Flip-flop