Министерство образования и науки РФ Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и кибербезопасности Высшая школа программной инженерии

Лабораторная работа №6 "Сборка ядра Linux"

Работу выполнил студент

Железняков Марк Викторович

Группа: 5130904/30005

Руководитель: Петров Александр Владимирович

Содержание

Содержание	1
···· Аппаратная платформа	
Программная платформа	
Подготовка к выполнению работы	
Подготовка к сборке ядра	
Сборка ядра	
Выполнение работы	4

Аппаратная платформа

Honor MagicBook BOHK-WAX9X M1010

CPU: AMD Ryzen 5 3500U with Radeon Vega Mobile Gfx

Программная платформа

NAME="Arch Linux"

PRETTY NAME="Arch Linux"

ID=arch

BUILD_ID=rolling

ANSI COLOR="38;2;23;147;209"

HOME_URL="https://archlinux.org/"

DOCUMENTATION URL="https://wiki.archlinux.org/"

SUPPORT URL="https://bbs.archlinux.org/"

BUG_REPORT_URL="https://bugs.archlinux.org/"

 $PRIVACY_POLICY_URL = "https://terms.archlinux.org/docs/privacy-policy/"$

LOGO=archlinux-logo

Залание

- 1. Установить исходный код ядра, предоставляемый вашим дистрибутивом (ванильная версия не рекомендуется).
- 2. Сконфигурировать и собрать ядро из установленных исходных файлов. 3. Протестировать систему с новым ядром.
- 3. Разработать сценарий, который запускает сборку ядра в цикле для -jN со значениями от 1 до 2N+1, где N- число ядер в системе, включая виртуальные.
- 4. Число ядер можно узнать по cat /proc/cpuinfo. Сценарий возвращает только время работы сборки на процессоре (используйте time, а все сообщения make-kpkg перенаправляйте в /dev/null). На каждой итерации очищайте дерево исходного кода (например, make-kpkg clean).
- 5. Предоставить отчет о проделанной работе. Дополнительно необходимо предоставить файл конфигурации ядра.

- 6. Отчет и файл конфигурации необходимо представить в виде архива, названного в соответствии со следующим шаблоном: <первая буква имени студента><фамилия студента><номер группы студента>.
- 7. После согласования с преподавателем предоставить отчёт.

Цели

- 1. Сконфигурированное и собранное ядро Linux.
- 2. Время сборки ядра при различном числе потоков сборки.
- 3. Нахождение оптимального числа потоков для сборки ядра.
- 4. Выполнение индивидуального задания.

Задачи

- 1. Подготовка системы.
- 2. Установка исходного кода ядра.
- 3. Конфигурация ядра.
- 4. Сборка ядра.
- 5. Установка ядра.
- 6. Очищение дерева сборки.
- 7. Проверка работоспособности.
- 8. Написание сценария, собирающего ядро на потоках от 1 до 2N+1 и выводящего время.
- 9. Поиск оптимального числа потоков для сборки ядра.
- 10. Замер времени сборки ядра без символьной информации (для ИЗ).
- 11. Замер времени сборки ядра без символьной информации с использованием ссасhе без очищения дерева сборки (для ИЗ).
- 12. Подведение итогов.

Подготовка к выполнению работы

Подготовка к сборке ядра

- 1. Установил пакеты:
 - a. devtools набор программ для работы с пакетной базой Arch Linux. Необходим для pkgctl
 - b. base-devel группа пакет с нужными для сборки зависимостей:
 - i. GNU Compiler Collection;
 - ii. Flex + Bison инструментарий для создания программ со структурированным вводом;
 - iii. Fakeroot инструмент для имитации прав владения суперпользователя
- 2. Получил исходники ядра посредством исполнения pkgctl repo clone -- protocol=https linux
- 3. Внес изменения в сценарий сборки PKGBUILD:
 - а. Отключил генерацию документации (make htmldocs)
 - b. Указал количество потоков при сборке
 - с. Добавил опцию открытия nconfig перед началом сборки
 - d. Изменил название пакета ядра во избежание конфликтов

Сборка ядра

Выполнил команду makepkg -s. После успешной сборки в репозитории появились пакеты ядра linux-mrqiz-6.7.4.arch1-1-x86_64.pkg.tar.zst и linux-mrqiz-headers-6.7.4.arch1-1-x86_64.pkg.tar.zst

Установка ядра

- 1. Выполнил команду для установки пакетов ядра: sudo pacman –U linux-mrqiz-6.7.4.arch1-1-x86_64.pkg.tar.zst linux-mrqiz-headers-6.7.4.arch1-1-x86_64.pkg.tar.zst
- 2. Обновил конфигурацию загрузчика GRUB: sudo grub-mkconfig –o /boot/grub/grub.cfg

Загрузка ядра

Для загрузки собранного ядра в меню GRUB выбрал Advanced options for Arch Linux, после этого выбираю необходимое ядро.

После этого в командной строке была выполнена команда uname –r, отображающая версию ядра:

```
linux on / main [!?]
> uname -r
6.7.4-arch1-1-mrqiz
```

Выполнение работы

- 1. Был написан сценарий итеративной сборки BuildBench. Сценарий изолирует каждую итерацию сборки на N потоках в своей директории, сохраняя логи сборки в отдельный файл. Получить сценарий можно по ссылке shell.inkling.su/buildbench.sh, документация доступна на Gist.
- 2. PKGBUILD был модифицирован: make –j8 заменен make –j\$GCC_J
- 3. Сценарий был запущен со следующим набором опций: BUILDBENCH_SOURCEDIR=~/linux BUILDBENCH_TARGETDIR=~/buildbench-linux-sandbox BUILDBENCH_TIDY=true BUILDBENCH_CMD='GCC_J=\$JOBS makepkg -s' BUILDBENCH JOBS=8

График соотношения количества потоков ко времени сборки:

Содержимое общего журнала сборки:

BuildBench @ 03/03/24 08:51:28

Source directory: /home/mrqiz/linux-abs

Target directory: /home/mrqiz/buildbench-linux-sandbox

Max processing units: 8

Using 1 cores - 20649.384s

Using 2 cores - 11366.213s

Using 3 cores - 8176.932s

Using 4 cores - 6605.947s

Using 5 cores - 6246.528s

Using 6 cores - 6009.113s

Using 7 cores - 6865.210s

Using 8 cores - 6482.969s

Finished at 03/04/24 04:58:13 (took 72405.296s).

Заключение

- 1. В результате выполнения данной работы была достигнута цель поиска наиболее подходящего количества потоков при сборке ядра. Была выполнено 8 итераций сборки ядра.
- 2. Проделанные действия в ходе выполнения работы:
 - а. Установка зависимостей для сборки;
 - b. Скачивание исходного кода для ядра, поддерживаемого дистрибутивом;
 - с. Внесение изменений в сценарий сборки PKGBUILD;
 - d. Сборка ядра;
 - е. Установка собранного ядра;
 - f. Загрузка ядра;
 - g. Написание сценария BuildBench;
 - h. Поиск оптимального количества потоков для сборки.

3.	Самым оптимальным в 6.	количеством	потоков на	аппаратной	платформе явл	яется