Parametric Families of Discrete Distributions

Name	pdf	Parameter Space	Mean	Variance	Moment Generating Function = $E[e^{tX}]$
Uniform	$\frac{1}{n+1}I_{\{0,1,\dots,n\}}(x)$	$n=1,2,\ldots$	n/2	n(n+2)/12	$\sum_{j=0}^{n} \frac{1}{n+1} e^{jt} = \frac{1 - e^{(n+1)t}}{(n+1)(1 - e^t)}$
Bernoulli	$p^x(1-p)^{1-x}I_{\{0,1\}}(x)$	$0 \le p \le 1$	p	p(1 - p)	$(1-p) + pe^t$
Binomial	$\binom{n}{x} p^x (1-p)^{n-x} I_{\{0,1,\dots,n\}}(x)$	$0 \le p \le 1$ $n = 1, 2, \dots$	np	np(1-p)	$[(1-p)+pe^t]^n$
Hyper- geometric	$ \frac{\binom{K}{x}\binom{M-K}{n-x}}{\binom{M}{n}}I_{\{0,1,\dots,n\}}(x) $	$M = 1, 2, \dots$ $K = 0, \dots, M$ $n = 1, \dots, M$	$n\frac{K}{M}$	$n_{\overline{M}}^{\underline{K}}(1-\frac{K}{M})_{\overline{M-1}}^{\underline{M-n}}$	not useful
Poisson	$\frac{e^{-\lambda \lambda^x}}{x!} I_{\{0,1,\ldots\}}(x)$	$\lambda > 0$	λ	λ	$exp[\lambda(e^t-1)]$
Geometric	$p(1-p)^x I_{\{0,1,\ldots\}}(x)$	0	(1-p)/p	$(1-p)/p^2$	
Geometric	$p(1-p)^{x-1}I_{\{1,2,\ldots\}}(x)$	0	1/p	$(1-p)/p^2$	$ \frac{pe^t}{1-(1-p)e^t} $ for $t < -ln(1-p)$
Negative Binomial	$\left(\begin{array}{c} r+x-1 \\ x \end{array}\right) p^r (1-p)^x I_{\{0,1,\ldots\}}(x)$	0 and $r > 0$	r(1-p)/p	$r(1-p)/p^2$	$ \begin{bmatrix} \frac{p}{1-(1-p)e^t} \end{bmatrix}^r $ for $t < -ln(1-p)$
Negative Binomial	$ \left(\begin{array}{c} x-1 \\ r-1 \end{array} \right) p^r (1-p)^{x-r} I_{\{r,r+1,\dots\}}(x) $	0 and $r > 0$	r/p	$r(1-p)/p^2$	$ \begin{bmatrix} \frac{pe^t}{1-(1-p)e^t} \end{bmatrix}^r $ for $t < -ln(1-p)$
Beta- binomial	$ \begin{pmatrix} n \\ x \end{pmatrix} \frac{\mathcal{B}(x+a,n-x+b)}{\mathcal{B}(a,b)} I_{\{0,\dots,n\}}(x) $	a > 0, b > 0 $n = 1, 2, \dots$	$\frac{na}{a+b}$	$\frac{nab(n+a+b)}{(a+b)^2(a+b+1)}$	not useful
Logarithmic	$\frac{(1-p)^x}{(-xlnp)}I_{\{1,2,\ldots\}}(x)$	0	$\frac{(1-p)}{(-p\ lnp)}$	$\frac{(1-p)(1-p+lnp)}{-(p\ lnp)^2}$	$ \frac{\frac{ln[1-(1-p)e^t]}{lnp}}{for \ t < -ln(1-p)} $
Discrete Pareto	$\frac{\frac{(1/x^{\gamma+1})}{\sum_{j=1}^{\infty} (1/j^{\gamma+1})} I_{\{1,2,\ldots\}}(x)$	$\gamma > 0$	$\frac{\sum_{1}^{\infty} (1/j)^{\gamma}}{\sum_{1}^{\infty} (1/j)^{\gamma+1}}$ for $\gamma > 1$		does not exist

Parametric Families of Continuous Distributions

Name	pdf = f(x) $cdf = F(x)$	Parameter Space	Mean	Variance	Moment Generating Function = $E[e^{tX}]$
Uniform	$f(x) = \frac{1}{\beta} I_{(\alpha,\alpha+\beta)}(x)$	$-\infty < \alpha < \infty$ $\beta > 0$	$\alpha + \frac{\beta}{2}$	$\frac{\beta^2}{12}$	$\frac{e^{(\alpha+\beta)t}-e^{\alpha t}}{\beta t}$
Normal	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$	$-\infty < \mu < \infty$ $\sigma > 0$	μ	σ^2	$\exp[\mu t + \frac{1}{2}\sigma^2 t^2]$
Exponential (rate λ)	$f(x) = \lambda e^{-\lambda x} I_{(0,\infty)}(x)$	$0 < \lambda < \infty$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$ \frac{\frac{\lambda}{\lambda - t}}{\text{for } t < \lambda} $
Bilateral exponential	$f(x) = \frac{1}{2}\beta e^{-\beta x-\alpha }$	$-\infty < \alpha < \infty$ $0 < \beta < \infty$	α	$rac{2}{eta^2}$	$e^{t\alpha}/(1 - t^2/\beta^2)$ for $ t < \beta$
Gamma	$f(x) = \frac{1}{\Gamma(\alpha)} \beta^{\alpha} x^{\alpha - 1} e^{-(\beta x)} I_{(0, \infty)}(x)$	$\begin{array}{c} \alpha > 0 \\ \beta > 0 \end{array}$	$rac{lpha}{eta}$	$rac{lpha}{eta^2}$	$\left(\frac{\beta}{\beta - t}\right)^{\alpha}$ for $t < \beta$
Weibull	$f(x) = \frac{\gamma}{\beta} \left(\frac{x - \alpha}{\beta} \right)^{\gamma - 1} e^{-\left(\frac{x - \alpha}{\beta} \right)^{\gamma}} I_{(\alpha, \infty)}(x)$	$-\infty < \alpha < \infty$ $\beta > 0, \ \gamma > 0$	$\alpha + \beta \Gamma \Big(1 + \frac{1}{\gamma} \Big)$	$\beta^2 \left[\Gamma \left(1 + \frac{2}{\gamma} \right) - \Gamma^2 \left(1 + \frac{1}{\gamma} \right) \right]$	not useful $E[(X-\alpha)^k] = \beta^k \Gamma\left(1 + \frac{k}{\gamma}\right)$
Beta	$f(x) = \frac{1}{\mathcal{B}(a,b)} x^{a-1} (1-x)^{b-1} I_{(0,1)}(x)$	a > 0 $b > 0$	$\frac{a}{a+b}$	$\frac{ab}{(a+b)^2(a+b+1)}$	not useful $ E[X^k] = \\ \frac{\mathcal{B}(a+k,b)}{\mathcal{B}(a,b)} $
Pareto	$f(x) = \frac{\gamma}{(1+x)^{\gamma+1}} I_{(0,\infty)}(x)$	$\gamma > 0$	$1/(\gamma - 1)$ for $\gamma > 1$	$\gamma/[(\gamma-2)(\gamma-1)^2]$ for $\gamma > 2$	does not exist
Cauchy	$f(x) = \frac{1}{\beta\pi} \frac{1}{1 + \left(\frac{x - \alpha}{\beta}\right)^2}$	$-\infty < \alpha < \infty$ $\beta > 0$	does not exist	does not exist	does not exist
Logistic	$F(x) = \left[1 + e^{-\left(\frac{x-\alpha}{\beta}\right)}\right]^{-1}$	$-\infty < \alpha < \infty$ $\beta > 0$	α	$\beta^2\pi^2/3$	$e^{\alpha t} \beta \pi t \csc(\beta \pi t)$
Gumbel (Extreme value)	$F(x) = \exp\left[-e^{-\left(\frac{x-\alpha}{\beta}\right)}\right]$	$-\infty < \alpha < \infty$ $\beta > 0$	$\alpha + \beta \gamma$ where $\gamma \approx 0.577216$	$eta^2\pi^2/6$	$e^{\alpha t} \Gamma(1 - \beta t)$ for $t < 1/\beta$
Log normal	$F(x) = \Phi\left(\frac{\ln x - \mu}{\sigma}\right) I_{(0,\infty)}(x)$	$-\infty < \mu < \infty$ $\sigma > 0$	$\exp[\mu + \frac{1}{2}\sigma^2]$	$\exp[2\mu + 2\sigma^2] - \exp[2\mu + \sigma^2]$	does not exist $E[X^k] = \\ \exp[k\mu + \frac{1}{2}k^2\sigma^2]$