Thermal Physics

Thermal Physics	
Potential energy	The energy the particles of a substance have due to
	stretching of the bonds between them.
(Particle) kinetic	The energy the particles of a substance have due to their
energy	motion.
Internal energy	The sum of the potential and kinetic energy of the particles
	in a substance.
Temperature	Measure of average kinetic energy of the particles in a
	substance>
Absolute zero	Coldest temperature that can theoretically exist. Particles
	have zero kinetic energy. 0 K or -273(.15) °C
Thermal equilibrium	A state in which two objects are at the same temperature;
	the net flow of energy between them is zero.
Heat	Flow of energy from a substance at a higher temperature to
	a substance at lower temperature until thermal equilibrium
	is reached.
Specific heat capacity	The energy change required to change the temperature of
	1 kg of a substance by 1 K.
- water high specific	Amongst solids and liquids water has a notably high specific
heat capacity	heat capacity. This means that large changes in energy are
	needed for small changes in temperature.
Latent heat	The energy change required to change 1 kg of a substance
	from one state to another. The energy absorbed/released
	by a substance as it changes states.
Conduction	Transfer of energy through matter by passing energy from
	particle to particle by collisions, dominant energy transfer
	method in solids. Very weak in gases, very strong in metals.
Convection	Transfer of energy through matter by particles carrying
	energy, dominant energy transfer method in fluids.
- free convection	convection where the particle movement occurs naturally
	due to density/pressure gradients in the fluid e.g. hot air
	rising
- forced convection	convection where the particle movement occurs due to an
•	artificial driver e.g. fan-driven computer cooling
Radiation	Transfer of energy by emitted electromagnetic radiation,
	dominant energy transfer method in a vacuum.
-promoting radiation	Rough (high surface area), black surfaces are the best at
	absorbing and emitting radiation.
-minimising radiation	Smooth (low surface area), white/silver surfaces are the
3	worst at absorbing and emitting radiation.

-minimising	Insulation typically traps pockets of air. As a gas, the air is a
conduction/convection	very poor conductor and since it is trapped it cannot
	convect. E.g. jumper, ceiling batts, fur.
Conservation of	The total energy in a system cannot change, it can be
energy	transferred between objects and transformed into different
	forms.
Change of state	At a specific temperature, the substance does not gain
(melting, boiling,	kinetic energy, so temperature remains constant, it only
subliming)	gains potential energy as the bonds between particles are
	stretched and then broken as it changes states.
Change of state	At a specific temperature, the substance does not lose
(freezing, condensing,	kinetic energy, so temperature remains constant, it only
depositing)	loses potential energy as new bonds form between
	particles as it changes states.
Thermal expansion	As matter gains potential energy the particles stretch
	further apart, causing the substance to expand.
Thermal contraction	As matter loses potential energy the particles relax closer
	together, causing the substance to contract.

Electrical Physics

Charge	Fundamental property of some matter. Like charges repel,
	opposite charges attract.
Neutral	Object with equal amounts of positive and negative charge. Low
	energy, stable state.
Separation of	If negative charges are separated from positive charges, both
charge	gain electrostatic potential energy, unstable state.
Voltage/	Change in potential energy for charged particles between two
potential	points.
difference	
Static electricity	Stationary build-up of positive or negative charge. Stores large
	amount of electrostatic potential energy, unstable state.
Electromotive	Increase in potential energy for charged particles between two
force	points.
Potential drop	Decrease in potential energy for charged particles between two
	points.
Volts	Units for voltage, potential difference, electromotive force,
	potential drop. 1 V = 1 J C ⁻¹
Current	Flow of charged particles from high electrostatic potential energy
electricity	to low electrostatic potential energy. E.g. electrons flowing
	towards lone protons.
Current	Rate of flow of charge.
Amperes (Amps)	Units for current. 1 A = 1 C s ⁻¹
Resistance	Measure of how difficult it is for current to pass through a
	substance.
- decreasing	Lower temperature, increase diameter of wire, decrease length of
resistance	wire, change material e.g. Au <cu<fe.< td=""></cu<fe.<>
Ohms	Units for resistance. 1 Ω = 1 V A ⁻¹
Power	The rate that a circuit component transfers or transforms energy.
Watts	Units for power. 1 W = 1 J s ⁻¹
Series circuits	Circuits (or parts of a circuit) with only 1 path for current to flow
	through.
- voltage in	Each component in series add to/takes from the total voltage for
series	the circuit.
- current in	Current is constant in series.
series	
- resistance in	Each component in series adds to the total resistance for the
series	circuit.
Parallel circuits	Circuits (or parts of a circuit) with 2 or more paths for current to

	flow through.
- voltage in	Each parallel path receives the total voltage for the circuit.
parallel	
- current in	Each parallel path allows more current to flow, adding to the total
parallel	current for the circuit.
- resistance in	Each parallel path decreases the total resistance for the circuit.
parallel	
Advantages of	Each device can be turned on/off independently, if one breaks the
parallel over	others continue functioning. Each device receives the full voltage
series	from the power supply.
Disadvantage of	Each additional parallel path increases total current, can
parallel	eventually lead to dangerous levels of current.
Dangers of	Large current cause heating in wires which can start fires.
current	Exposure to high voltage wires can allow current to flow through
electricity	humans to the ground causing burns, stopping the heart and
	creating toxins in the body.
Direct current	Current electricity in which the direction of current remains
(DC)	constant.
Alternating	Current electricity in which the direction rapidly oscillates.
current (AC)	
Mains power in	Alternating current in Australia changes direction with a
Australia	frequency of 50 Hz.
Electron flow	The direction that negatively charged particles move in a circuit
	(negative to positive).
Conventional	The direction that positively charged particles move in a circuit
current	(positive to negative).
Short circuit	If the load in a circuit is bypassed the resistance will be too low,
	leading to dangerously high currents.
Fuse	Function as normal part of active wire during normal operation. If
	current becomes too high (e.g. short circuit) it rapidly breaks,
	cutting the circuit, preventing a fire.
Circuit breaker	If current in active wire becomes too high (e.g. short circuit) it
	rapidly turns off the circuit using an electromagnet, preventing a
	fire.
Residual current	Compares current in active and neutral wires, if there is a
device	difference (e.g. accidental grounding) it rapidly turns off the
	circuit using an electromagnet, preventing electrocution.
Double	Device where there is no way for active wire to come in contact
insulation	with case of device, no need for Earth wire.
· '	

Neutral wire	Completes circuit, grounded.
Earth wire	Not part of the circuit, connects metal case of device to ground to
	prevent electrocution.

Nuclear Physics

Atom	Particle made of protons, (neutrons) and electrons.
Element	Type of atom with a specific number of protons.
Nucleus	Core of an atom, consisting of protons and neutrons held
	together by the strong force.
Nucleon	Particle in the nucleus i.e. protons and neutrons.
Proton	Particle with 1 mass and 1 charge.
Neutron	Particle with 1 mass and 0 charge.
Electron	Particle with approximately 0 mass and -1 charge.
Atomic number	Z, number of protons in the nucleus of a specific atom.
Mass number	A, number of nucleons in the nucleus of a specific atom.
Isotope	Type of atom, with specific numbers of protons and
	neutrons. Isotopes of an element have the same chemical
	properties due to having the same number of protons but
	have different physical properties due to differing numbers
	of neutrons.
Nuclide	Specific nucleus, with certain numbers of protons and
	neutrons.
Nuclear reaction	Any process causing changes to a nucleus. Mass number
	and charge must be conserved.
Stable nuclide	Specific nucleus that will remain the same indefinitely.
	Strong force is enough to overcome electrostatic repulsion
	between protons. For light elements (Z<21), require 1:1
	ratio of protons to neutrons. For medium elements, require
	slightly more neutrons than protons. Heavy elements
	(Z>82) cannot be stable – size of nucleus is too great for the
	very short ranged strong force to hold it together.
Stable isotope	Specific atom with a nucleus that will remain the same
	indefinitely.
Unstable nuclide	Specific nucleus that will spontaneously change to become
	more stable.
Radioisotope/unstable	Specific atom with a nucleus that will spontaneously
isotope	change to become more stable.
Radioactive	Material containing unstable nuclei.
Nuclear decay	Emission of particles (or energy) from a nucleus to become
	more stable.
Activity	Number of decay events per second for a radioactive
	substance.
Half-life	Measure of exponential decay rate for a nuclide. Time for

	half of the remaining particles to decay.
Transmutation	Changing of one nuclide into another through nuclear
	decay.
Daughter	Product nucleus of nuclear decay.
nuclide/isotope	,
Decay series	A sequence of nuclear decays through multiple unstable
	nuclides to an eventual stable nuclide.
Nuclear radiation	Particle or energy emitted from a nucleus.
Alpha decay	Emission of an alpha particle from a nucleus that is too
, upria accay	large to be stable.
Beta (minus) decay	Emission of a beta (minus) particle from a nucleus that has
	too many neutrons as a neutron becomes a proton.
Beta plus decay	Emission of a beta plus particle from a nucleus that has too
beta plas accay	few neutrons as a proton becomes a neutron.
Gamma decay	Emission of a gamma ray from a nucleus that has too much
Garrina decay	energy to be stable. Commonly occurs after an alpha or
	beta decay.
Ionicing radiation	Radiation capable of adding electron to or removing
Ionising radiation	
	electrons from atoms, turning them into ions. Alpha, beta
A I I	and gamma radiation.
Alpha	He-4 nucleus (2 protons, 2 neutrons). 2+ charge, travels at
particle/radiation	0.1c, highly ionizing, weakly penetrating.
Beta (minus)	Electron1 charge, travels at 0.9c, moderately ionizing,
particle/radiation	moderately penetrating.
Beta plus	Antielectron/positron. +1 charge, travels at 0.9c,
particle/radiation	moderately ionizing, moderately penetrating. If it collides
	with an electron they will mutually annihilate emitting
	gamma radiation.
Gamma ray/radiation	High energy photon of light. 0 charge, travels at c, weakly
	ionizing, highly penetrating.
Neutron radiation	Neutron. Not ionizing but can be absorbed by a nucleus,
	potentially transforming it into an unstable nuclide.
Mass defect	The difference in mass between a number of free nucleons
	and that many nucleons as a nucleus. Mass of the binding
	energy.
Binding energy	The energy lost by free nucleons in order to bond together
	as a nucleus. The energy required to separate all the
	nucleons in a nucleus into free particles.
Binding energy per	The average energy lost by each nucleon in a nucleus.
nucleon	Measure of stability of the nucleus. Higher binding energy

	per nucleon – more stable nuclide. Peaks at Fe-56.
(Nuclear) fusion	Joining of light nuclei to form heavier nuclei. Releases
	energy if the binding energy per nucleon increases, i.e. if
	moving towards Fe-56.
Fusion reactor	Machine maintain stable fusion reaction to generate heat
	to generate electricity. Requires enormous temperatures
	and pressures to cause collisions between nuclei,
	overcoming the electrostatic repulsion. Currently
	consumes more energy than is produced – developing
	technology.
(Nuclear) fission	Splitting of heavy nuclei into multiple lighter nuclei (and
	free neutrons). Releases energy if the binding energy per
	nucleon increases, i.e. if moving towards Fe-56. Can be
	spontaneous or triggered by absorption of free neutron.
Fissile	Nuclides that will readily undergo fission reactions.
Fission reactor	Machine maintaining stable fission reaction, typically to
	generate heat to generate electricity. Relies on stable chain
	reaction, fission can be triggered by neutrons and it emits
	neutrons.
- fuel rods	Fuel must be enriched to contain a higher proportion of
	fissile material.
- control rods	Material that absorbs free neutrons to control reaction rate
	in reactor. Control rods inserted if reaction rate too high.
- moderator	Slows neutrons so that they can be more easily absorbed
	by nuclei to trigger further fission reactions.
- shielding	Fission reaction and radioactive fission products emit
	radiation dangerous to workers. Reaction chamber must
	be shielded by metres of lead and concrete to absorb
	radiation, protecting plant workers.
- waste	Fuel lasts a long time but produces waste that remains
	radioactive for extremely long timespans – must be stored
	safely.
Critical mass	The minimum mass of fuel required to sustain a fission
	chain reaction. Shape dependent, sphere is most efficient.
Absorbed dose	Measure of amount of radiation exposure, based on
	energy of radiation and mass of target.
Dose equivalent	Measure of amount of radiation exposure, based on
	absorbed dose and type of radiation.
Stochastic effects	Small doses of radiation have mild and random effects,
	nausea, burns, hair loss, anemia, increased risk of future

	cancer, increased risk of birth defects in future offspring.
Deterministic effects	Large doses of radiation have extreme and definite effects,
	burns, hair loss, sterility, cataracts, death.

Motion

Scalar	Quantity described fully by a magnitude.
Vector	Quantity described by both a magnitude and a direction.
Resultant	Sum of vectors of the same type, e.g. net force
Distance	Length of space travelled, scalar.
Displacement	Shortest length of space between two points, vector.
	Interchangeable with distance for motion in one direction.
Speed	Rate of change of distance, scalar.
Velocity	Rate of change of displacement, vector. Interchangeable with
	speed for motion in one direction.
Instantaneous	Rate of change of position in space at one instant in time, difficult
speed/velocity	to measure.
Average	Average rate of change of position in space over a whole journey,
speed/velocity	simple to measure.
Acceleration	Rate of change of velocity, vector.
Gravitational	All objects in a gravitational field accelerate towards the center of
acceleration	mass of the field at the same rate.
Vertical motion	velocity at the peak is zero, time up equals time down if distance up
	equals distance down.
Mass	Measure of amount of matter an object is made of.
Force	Push or pull, vector.
Free body	Diagram showing all forces acting on an object as arrows from
diagram	centre of mass.
Weight	Force exerted on an object because of its mass experiencing a
	gravitational acceleration. Force exerted by an object on an object
	below it.
Normal	Reaction force against weight, acts on an object resting on another
	object. Acts perpendicular to the surface.
Friction	Force acting against motion.
Thrust	Forwards force acting on a vehicle or launching (but not launched)
	projectile.
Lift	Upwards force acting on an aircraft.
Buoyancy	Vertical force acting on object due to density contrast.
Momentum	Abstract vector quantity that is conserved in all interactions.
Vector	Forces can be broken into parts acting in different directions,
component	typically used to consider horizontal and vertical effects of a force
	separately.
Conservation	Total momentum before an interaction must equal total

Impulse	Change in momentum.
- collision	For any given collision the impulse is fixed, so increasing the time it
safety	takes for an object to come to a stop reduces the average force it
	experiences. Crumple zones, airbags, padding, bending knees.
Energy	Abstract scalar quantity that is conserved in all interactions. Can be
	though of as measure of capacity to cause change.
Conservation	Total energy before an interaction must equal total energy after an
of energy	interaction, however it can change from one form to another.
Kinetic energy	Form of energy associated with moving mass.
Gravitational	Form of energy associated with mass raised against a gravitational
potential	field.
energy	
Work	Change in energy, quantity of energy transferred or transformed.
Power	Rate of work, rate of change of energy.
Elastic collision	Collision in which kinetic energy is conserved.
Inelastic	Collision in which kinetic energy is not conserved, some of the
collision	kinetic energy becomes other forms, typically sound and particle
	kinetic energy.
Efficiency	Percentage of input energy transformed to desired output energy
	in an energy transformation.
Newton's 1 st	Objects will maintain constant velocity unless they experience a net
law	force greater than zero.
Inertia	The tendency of matter to maintain constant velocity. Proportional
2.1.0.1.0.	to mass.
- collision	In a sudden stop, body will attempt to keep moving due to inertia.
safety	Seatbelt provide unbalanced force to restrain body and keep
3333	passenger in vehicle.
	In a sudden start, body pushed forwards by seat while head
	attempts to remain stationary due to inertia, causes neck injuries
	as head whips back relative to body. Headrest provides unbalanced
	force to push head forward with body preventing injuries.
Newton's 2 nd	Objects that experience a net force greater than zero will accelerate
law	in the direction of the net force, proportional to the force and
lavv	
Dalamaad	inversely proportional to the mass of the object.
Balanced	If the net force on an object is zero, the forces acting on it are said
forces	to be balanced.
Unbalanced	If the net force on an object is non-zero, the forces acting on it are
forces	said to be unbalanced.
Newton's 3 rd	If one object exerts a force on another, the second object will exert
law	a reaction force of the same size on the first object in the exact

	opposite direction.
Ticker timers	Device for measuring motion. 50 dots made on tape each second.
Displacement-	Gradient=velocity, horizontal lines=stationary
time graph	
Velocity-time	Gradient=acceleration, area under curve=displacement, horizontal
graph	lines=constant velocity
Acceleration-	Area under curve=Δv, all horizontal lines (at our level)
time graph	

Waves

Oscillation	Repeating variation of a quantity (e.g. displacement,
	pressure, density electric field strength, magnetic field
	strength) about a mean value. Often a repeated
	transformation between potential and kinetic energy.
Propagation	Movement of a wave.
Wave	A travelling oscillation that carries energy without
	carrying matter.
Transverse wave	A wave in which the direction of oscillation is
	perpendicular to the direction of propagation, e.g. light.
Longitudinal wave	A wave in which the direction of oscillation is parallel to
	the direction of propagation, e.g. sound.
Mechanical wave	A wave that require matter to propagate through, e.g.
	sound.
Medium	The substance that a wave is propagating through.
Electromagnetic wave	A wave that self-propagates, not requiring a medium,
	e.g. light.
Period	The time for one complete oscillation of a wave. Inverse
	of frequency.
Frequency	The number of complete oscillation in one second.
	Inverse of period.
Pitch	Human perception of frequency in sound, high pitch is
	high frequency.
Wavelength	Length of one complete oscillation at one point in time.
Colour	Human perception of frequency/wavelength in light, red
	end of the rainbow (ROYGBIV) is lower frequency, longer
	wavelength.
Amplitude	Magnitude of variation of the oscillating quantity
	(particle displacement, pressure, density, electric field
	strength, magnetic field strength).
Intensity	Energy density of a wave at a point in space, related to
	amplitude. Inversely proportional to the square of the
	distance from the wavesource.
Loudness	Human perception of amplitude of sound.
Brightness	Human perception of amplitude of light.
Medium boundary	When a wave strikes a boundary between media the
	wave will be transmitted, reflected and absorbed. The
	greater the difference in wavespeeds in the two media,
	the larger the percentage of energy that will be

	reflected. The rougher and more flexilble the boundary, the larger the percentage of energy that will be
	absorbed.
Reflection	A wave bouncing off a boundary. Changing direction but
	not anything else.
Normal	Imaginary line perpendicular to a boundary between
	media.
Ray	Arrow showing direction of propagation of wave.
Wavefront	Lines in 2D showing parts of wave that are in phase.
Incident ray	Ray striking the boundary.
Reflected ray	Ray reflected from boundary.
Angle of incidence	Angle between incident ray and the normal.
Angle of reflection	Angle between reflected ray and the normal.
Law of reflection	The angle of reflection is equal to the angle of incidence.
Echo	If a reflection of a sound wave reaches an observer 0.1 s
	after the original sound wave was observed, it will be
	heard as a distinct sound, an echo.
Ultrasound	Sound too high frequency for humans to hear >20 kHz.
Infrasound	Sound too low frequency for humans to hear <20 Hz.
Echolocation/ultrasound	Sound waves can be used to form an image by
imaging/seismic imaging	measuring time for reflected waves to return and
	calculating distance. Multiple layers in an object will
	produce multiple reflections, more distant boundaries
	will have longer times. Used by bats/dolphins to 'see',
	used in medical imaging and geophysics. Wavelength of
	wave used should be roughly the same as scale of detail
	needed in image.
Transmission	Transfer of wave from one medium to another at a
	boundary, wavelength will change if there is a difference
	in wavespeeds in the two media, but frequency will be
	unchanged.
Wavespeed (mechanical)	Speed of mechanical waves is greatest in rigid, hot
	substances. E.g. V _{steel} >V _{water} >V _{air} , V _{hot air} >V _{cold air} .
Wavespeed	Speed of electromagnetic waves is greatest in vacuum,
(electromagnetic wave)	decreases with increasing (optical) density of medium.
	E.g. V _{vacuum} >V _{air} >V _{water} >V _{glass} .
Refraction	Change in direction of a transmitted wave when it strikes
	at an angle of incidence greater than 0. If the wave
	speeds up it bends away from the normal, if it slows
	down, it bends towards the normal.

Angle of incidence at which the transmitted ray would be
refracted to pass along the boundary.
At angles of incidence greater than the critical angle (if
passing from slow medium to fast medium), there will
be literally no transmission, all of the wave will be
reflected.
Change in direction of a wave as it passes through a
speed gradient. It bends towards slow end of gradient.
Conversion of the wave energy to other forms, typically
random particle kinetic energy (heat).
When two waves are in the same place at the same time,
the result is the vector sum of both waves.
Points in waves that are in the same stage of an
oscillation. E.g. two peaks.
Points in waves that are in different stages of an
oscillation. E.g. a peak and a trough.
When two in phase waves interfere, the result is
increased amplitude.
When two out of phase waves interfere, the result is
decreased amplitude. If the two waves are exactly the
same amplitude and are exactly half a wavelength out of
phase, the cancel to zero amplitude.
If two separate speakers play the same frequency at
similar amplitudes, they will interfere creating persistent
zones of constructive and destructive interference.
If a wave interferes with an identical wave travelling in
the opposite direction (often its own reflection), it will
create a standing wave, a wave that appears not to
move.
Points in a standing wave where there is no particle
movement. Always half a wavelength apart.
Points in a standing wave where there is maximum
particle movement. Always half a wavelength apart.
Points in a longitudinal standing wave where there is no
variation in pressure. Always half a wavelength apart.
Points in a longitudinal standing wave where there is
1 cm to me to regression of the regression of
maximum variation in pressure. Always half a

- open pipes	Displacement antinodes/pressure nodes at each end.
- closed pipes	Displacement node/pressure antinode at closed end,
	displacement antinode/pressure node at open end.
Harmonic/resonant	Frequencies that an object is efficient at vibrating at.
frequencies	Determined by objects physical properties. When
	disturbed, an object will naturally vibrate at a resonant
	frequency.
- harmonics in	In strings and open pipes the frequency of each
strings/open pipes	harmonic is an integer multiple of the fundamental
	frequency. Each relates to a standing wave in the
	string/pipe.
- harmonics in closed	In closed pipes the frequency of each harmonic is an
pipes	odd integer multiple of the fundamental frequency. Each
	relates to a standing wave in the pipe.
Resonance	When driven to vibrate at a resonant frequency an
	object will vibrate with increasing amplitude.
Forced vibrations	A vibrating object touching another object can force the
	second object to vibrate at the same frequency even if it
	is not a resonant frequency.
Noise	Unwanted sound is noise. Persistent noise can cause
	psychological and physiological damage.
Noise management	Ensure vibrating objects are rigidly fixed in place, e.g.
	welded rather than bolted. Include soft furnishings (e.g.
	carpet, curtains) in rooms to increase absorption of
	sound. Noise-cancelling headphones can use
	interference to locally cancel out noise.