

UNIVERSIDADE FEDERAL DE VIÇOSA – UFV CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS – CCE DEPARTAMENTO DE ENGENHARIA ELÉTRICA - DEL

Medidas Elétricas e Magnéticas ELT210

AULA 07 – Medidor de Energia Elétrica Tipo Indução e Eletrônico

- Medidor de Demanda

Prof. Tarcísio Pizziolo

1. Considerações Iniciais

- A medição da energia elétrica é empregada, na prática, para possibilitar às concessionárias fornecedoras o faturamento adequado da quantidade de energia elétrica consumida por cada usuário, dentro de uma tarifa estabelecida.
- O medidor mais utilizado para realizar esta medição é do **tipo indução** que tem como características sua **simplicidade**, robustez, exatidão e desempenho ao longo dos anos.
- A concessionária fornecedora de energia elétrica, tem grande interesse no perfeito e correto desempenho deste medidor, pois dele depende o faturamento da empresa. A energia elétrica é uma mercadoria comercializada como outra qualquer, tendo entretanto a sua vendagem algumas implicações de ordem prática:
- 1. O consumidor somente paga após o término do período de consumo, em geral um mês.
- 2. O medidor fica instalado no consumidor, o que requer cuidados especiais por parte da concessionária.

2

2. Tipos de Energia Elétrica Medidas

Energia Ativa X Energia Reativa

Energia Ativa: é a energia que pode ser convertida em outra forma de energia. É a energia que efetivamente realiza trabalho gerando calor, luz, movimento, etc. A unidade mais usada é o quilowatt-hora(kWxh).

<u>Energia Reativa</u>: é a energia usada para criar e manter os campos eletromagnéticos das cargas indutivas (motores, transformadores, fornos de indução, lâmpadas de descarga, etc.). Ela não é usada para produzir trabalho. É medida em **kVAr**_x**h**.

- Apesar de necessária, a energia reativa deve ser minimizada, pois ela reduz o fator de potência elevando assim a potência total do

sistema.

ENERGIA ATIVA

ENERGIA

3. Sistemas de Medição de Consumidores

Instalação dos sistemas de medição é responsabilidade das distribuidoras.

- Decreto 41.019 de 1957
- Resolução 456 da ANEEL de 2000

Decreto 41.019 de 1957

"Art.128: Nas instalações de utilização de energia elétrica serão obedecidas as normas em vigor, da Associação Brasileira de Normas Técnicas (ABNT).

Parágrafo único: Nessas instalações deverão ser adotados aparelhos de medição, de propriedade da concessionária, e por ele instalados, à sua custa, salvo em casos especiais e de emergência, a juízo da Fiscalização, devendo ser aferidos e selados por ocasião de sua instalação."

4. Sistemas de Medição de Consumidores

A resolução 456/2000 estabelece:

- Responsabilidades pela instalação dos sistemas de medição para faturamento.
- Direitos e obrigações das concessionárias.
- Direitos e obrigações dos consumidores.

Obrigações das Concessionárias:

- Estabelecer o padrão dos seus equipamentos de medição (art.33, parágrafo 2º).
- Comunicar aos consumidores, fabricantes, distribuidores, comerciantes de materiais e equipamentos elétricos, técnicos e demais interessados, as alterações das suas normas e/ou padrões técnicos(art.96).
- •Estabelecer o padrão dos seus equipamentos de medição (art.33, parágrafo 2º).

Obrigações das Concessionárias:

- Comunicar aos consumidores, fabricantes, distribuidores, comerciantes de materiais e equipamentos elétricos, técnicos e demais interessados, as alterações das suas normas e/ou padrões técnicos(art.96).
- Informar ao consumidor da necessidade de construir caixas, quadros, painéis ou cubículos de medição (art.3, inc. I, alínea b).
- Não invocar a indisponibilidade dos equipamentos de medição para negar ou retardar a ligação e o início do fornecimento (art.33 parágrafo 4º).
- Instalar, às suas custas, os medidores e demais equipamentos de medição (art.33).

A concessionária fica dispensada de instalar medidores quando:

- O fornecimento for destinado a iluminação pública, semáforos ou assemelhados, bem como iluminação de ruas ou avenidas internas de condomínios fechados horizontais;
- A instalação do medidor não puder ser feita em razão de dificuldade transitória, encontrada pelo consumidor;
- O fornecimento de energia elétrica for provisório; e
- A critério da concessionária, no caso do consumo mensal previsto da unidade consumidora do Grupo "B" ser inferior ao consumo mínimo faturável:
- 30 kWh para ligação monofásica ou bifásica a 2 condutores.
- 50 kWh para ligação bifásica a 3 condutores.
- 100 kWh para ligação trifásica.
- No caso de fornecimento destinado à iluminação pública, efetuado a partir de circuito exclusivo, a concessionária deverá instalar equipamentos de medição sempre que julgar necessário ou quando solicitado pelo consumidor (parágrafo único, art.32).

Responsabilidades dos Consumidores

- Construir caixas, quadros, painéis ou cubículos destinados à instalação de medidores, transformadores de medição e outros aparelhos necessários à medição(Art.3º, inc.I, alínea b).
- Realizar as adaptações das instalações da unidade consumidora, necessárias ao recebimento dos equipamentos de medição, em decorrência de mudança de Grupo tarifário ou exercício de opção de faturamento (art. 103).
- É responsável por danos causados aos equipamentos de medição decorrentes de qualquer procedimento irregular ou deficiência técnica das instalações elétricas da unidade consumidora (art. 104).

Responsabilidades dos Consumidores

- O consumidor é responsável pela custódia dos equipamentos de medição quando (art. 105):
- Instalados no interior da unidade consumidora.
- Instalados em área externa à unidade consumidora por solicitação do próprio consumidor.
- Quando da violação de lacres ou de danos nos equipamentos que decorram em registros inferiores aos corretos (art. 105, parágrafo único).
- Não se aplicam as disposições pertinentes ao depositário no caso de furto ou danos provocados por terceiros.

5. Grupos de Consumidores Grupo A:

- Subgrupo A1- tensão de fornecimento igual ou superior a 230kV;
- Subgrupo A2 tensão de fornecimento de 88 kV a 138 kV;
- Subgrupo A3 tensão de fornecimento de 69kV;
- Subgrupo A3a tensão de fornecimento de 30 kV a 44 kV;
- Subgrupo A4 tensão de fornecimento de 2,3 kV a 25 kV;
- Subgrupo A5 tensão de fornecimento inferior a 2,3 kV, atendidas a partir de sistema subterrâneo de distribuição e faturadas neste Grupo em caráter opcional.

Grupo B:

Grupamento composto de unidades consumidoras com fornecimento em tensão inferior a 2,3 kV

- Subgrupo B1 residencial;
- Subgrupo B2 rural;
- Subgrupo B3 demais classes;
- •Subgrupo B4 iluminação pública;.

6. Medição por Tipo de Consumidor

- Para consumidores do Grupo A (art. 49):
- Energia ativa (kWh)
- Demanda de potência ativa (kW)
- Fator de potência (art. 34, inc. I)
- Consumo de energia elétrica e demanda de potência reativa excedente, quando o fator de potência for inferior a 0,92.
- Para consumidores do Grupo B (art. 48):
- Energia ativa (kWh)
- Fator de potência de forma facultativa (art. 34, inc. II)

7. Medidor de Energia Elétrica tipo Indução

Esquema Construtivo

Registradores

7. Medidor de Energia Elétrica tipo Indução

Partes componentes:

- Bp, altamente indutiva, com grande número de espiras de fio fino de cobre, para ser ligada em paralelo com a carga. 2 -Bobina de corrente Bc, com poucas espiras de fio grosso de cobre, para ser ligada em série com a carga; é dividia em duas meias bobinas enroladas em sentidos contrários.
- 3 **Núcleo de lâminas** de material ferromagnético (normalmente ferro silício), justapostas, mas isoladas umas das outras para reduzir as perdas por correntes de Foucault.

7. Medidor tipo Indução (Continuação)

4 – Conjunto móvel, ou rotor, constituído de **disco alumínio**, de alta condutibilidade, que gira em torno do seu eixo de suspensão **M** que aciona um sistema mecânico de engrenagens que registra, num mostrador, a energia elétrica consumida.

5 – **Imã permanente** para produzir **conjugado frenador** ou de amortecimento sobre o disco.

Determinação do sentido da corrente I criada num condutor mergulhado num campo magnético de indução B e em movimento por ação de uma força F.

Determinação da força F a que fica sujeito um condutor mergulhado num campo magnético de indução B, quando é percorrido pela corrente I.

8. Princípio Físico de Funcionamento

Quando um condutor de comprimento *L* é percorrido por uma corrente *i*, na presença de um campo magnético *B*, este fica submetido a uma força *F* cujo sentido é dado pela **regra dos três** dedos da mão direita.

$$\overrightarrow{F} = (\overrightarrow{B} \times \overrightarrow{i}).L$$

$$|\overrightarrow{F}| = |\overrightarrow{B}|.|\overrightarrow{i}|.L.sen(\alpha)$$

Onde α é o ângulo relativo entre o condutor e as linhas do campo magnético B.

Este fenômeno é conhecido como fenômeno da interação eletromagnética. O medidor tipo indução tem o conjugado motor originado no disco devido o fenômeno da interação eletromagnética.

8. Princípio Físico de Funcionamento

- O fluxo alternado φ_V da bobina de potencial ao atravessar o disco de alumínio, nele induz correntes de Foucault \mathbf{i}_V . A interação entre estas correntes \mathbf{i}_V e o fluxo da bobina φ_I de corrente dá origem a uma força e, consequentemente, a um conjugado em relação a \mathbf{M} , fazendo girar o disco.
- Simultaneamente, o fluxo alternado ϕ_I da bobina de corrente induz correntes de Foucault i_I no disco. A interação entre estas correntes i_i e o fluxo ϕ_V dá origem a outra força e, consequentemente, a um conjugado em relação a M, fazendo girar o disco.

8.1 Constante do disco (Kd)

A constante de disco (Kd), indica qual a energia consumida durante uma volta no disco do medidor de energia do tipo indução. A Equação abaixo é utilizada para o cálculo desta constante.

$$K_d = \frac{P(Watts)\Delta t(horas)}{Rotações}(Wh/rot)$$

A constante de disco (Kd) é também utilizada para aferir o medidor por meio de um medidor padrão, projetado e construído especialmente para aferição.

O Kd vem indicado na placa de identificação do medidor. No medidor padrão, a constante do disco é chamada de Ks.

9. Fotografia de um Medidor tipo Indução

9.1. Fotografia das Bobinas de um Medidor tipo Indução

9.2. Fotografia do Disco de um Medidor tipo Indução

9.3. Fotografia das Engrenagens e do Registrador de um Medidor tipo Indução

10. Medidor Eletrônico

Seu funcionamento se baseia na amostragem da tensão e da corrente que é fornecida à carga e transferida a um sistema **microprocessado** que, de forma digital, calcula a potência e a energia consumida pela carga.

10. Medidor Eletrônico

O uso dos medidores eletrônicos traz novas tecnologias na forma de medir energia.

Dentre elas podemos citar:

- Além da medição da energia ativa, o medidor eletrônico efetua a medição de energia reativa, fator de potência, tensão, corrente, etc...
- É possível implantar a tarifa branca, ou seja, diferenciada por horário.
- Não há necessidade de medição "in loco" (leiturista).
- Viabiliza a implantação de rede de energia inteligente (Smart Grid).
- Possibilita a cobrança de energia pré-paga.

MEDIDOR DE DEMANDA TIPO MECÂNICO

- (1) ponteiro de arrasto (preso ao disco 03);
- (2) ponteiro indicador de demanda máxima (preso ao mesmo eixo do disco D3);
- (3) parafuso sem fim;
- (4) disco;
- (5), (6) molas;
- (7) alavanca.

11. Medidor de Demanda

DEMANDA:

É a potência média (kW) durante um intervalo de tempo qualquer medida por aparelho integrador (medidor de demanda).

No Brasil este intervalo de tempo = 15 minutos.

A demanda é expressa em quilowatt (kW) na conta de energia.

Exemplo:

Consideremos uma indústria na qual durante **15 minutos**, ou fração dele, estiveram em funcionamento os seguintes equipamentos:

- 1 motor de 12 (kW) durante 10 minutos;
- 1 motor de 15 (kW) durante 6 minutos;
- 1 motor de 20 (kW) durante 15 minutos;
- 1 forno de 30 (kW) durante 12 minutos;
- Iluminação de 50 (kW) durante 15 minutos;
- Ar condicionado de 10 (kW) durante 15 minutos.

Nestes 15 minutos a indústria teve um consumo de energia elétrica dado por:

Consumo[kWh]=
$$12.\frac{10}{60} + 15.\frac{6}{60} + 20.\frac{15}{60} + 30.\frac{12}{60} + 50.\frac{15}{60} + 10.\frac{15}{60}$$

A demanda nestes 15 minutos será dada por:

Demanda
$$[kW] = \frac{\text{Consumo}[kWh]}{\text{Intervalo de tempo}[h]}$$
 Demanda $= \frac{29.4}{0.25} = 118[kW]$

DEMANDA MÁXIMA e MÉDIA

Demanda Máxima é a demanda de maior valor verificada durante um certo período.

Assim, se tivermos, por exemplo, os seguintes valores para as demandas durante 15 minutos:

 $D_1 = 30 \text{ kW}$; $D_2 = 20 \text{ kW}$; $D_3 = 35 \text{ kW}$ e $D_4 = 20 \text{ kW}$ **Demanda máxima:** $D_3 = 35 \text{ kW}$

Demanda Média é a relação entre a quantidade de energia elétrica consumida durante um certo período de tempo, em kWh, e o número de horas do mesmo período.

No exemplo anterior temos para um período de 1 hora o seguinte valor para a demanda média:

Demanda Média=
$$\frac{(30.0,25)+(20.0,25)+(35.0,25)+(20.0,25)}{0,25+0,25+0,25+0,25} = 26,25 \text{ kW}$$

DEMANDA REGISTRADA e CONTRATADA

Durante o ano temos **7 meses de 31 dias**, **4 meses de 30 dias** e **1 mês de 28 dias**. Calculando o número de horas destes meses e dividindo o resultado por **12**, encontraremos o **número de horas de um mês médio**:

Mês Médio =
$$\frac{7 \times 31 \times 24 + 4 \times 30 \times 24 + 1 \times 28 \times 24}{12} = 730 \text{ horas}$$

Assim, em um mês de 730 horas temos 730 x 4, ou seja, 2.920 intervalos de 15 minutos. Em cada um destes intervalos teremos um valor para a demanda.

A máxima destas demandas, durante este período considerado para o faturamento pela concessionária de energia elétrica, será a Demanda Registrada.

Demanda Contratada: é o valor de demanda pela qual a concessionária se compromete, por meio de um contrato, colocar à disposição do consumidor pelo tempo que vigorar o mesmo. Por outro lado, o consumidor tem que pagar esta demanda, mesmo que não a use em sua totalidade.

Tarifa Binômia = Tarifa de Demanda + Tarifa de Consumo

A fatura de energia de um consumidor do **grupo A** é composta, na sua totalidade, dos seguintes elementos:

- Demanda (kW);
- Consumo (kWh);
- O empréstimo compulsório ou imposto único;
- Ajuste, se houver, por baixo fator de potência.