DATA ANALYSIS - TELECOM COMPANY

Introduction:

Telecom is a fictional telecommunication company that provides internet and phone services to 7043 customers in California. Churn data is provided by the 'Maven Analytics'.

Problem Statement:

Company want to improve retention by identifying high value customers and churn risk. Stakeholders want a report showing trends and looking for some recommendations for increasing the revenue.

Data collection:

Data was provided by 'Maven Analytics' for a fictional company. Data includes 3 files with details about customer demographics, locations, service and current status. Csv file with 7043 rows and 38 columns was used for this EDA. It is Third party data.

Data Cleaning:

Data cleaning includes finding and removing blanks or any duplicate entries. Also verifying the data to be consistent. Before starting, required libraries were imported. Then data was imported and called up for doing further analysis. Data analysis was done by using 'Python' for this case study.

```
In [2]: # importing the required Libraries
import pandas as pd

In [3]: import numpy as np

In [4]: # import & export CSV files
CustomerData = pd.read_csv('~/telecom_customer_churn.csv')
```

Table used for this analysis

```
In [5]: #Printing the exported CSV
CustomerData
```

•		Customer ID	Gender	Age	Married	Number of Dependents	City	Zip Code	Latitude	Longitude
	0	0002- ORFBO	Female	37	Yes	0	Frazier Park	93225	34.827662	-118.999073
	1	0003- MKNFE	Male	46	No	0	Glendale	91206	34.162515	-118.203869
	2	0004- TLHLJ	Male	50	No	0	Costa Mesa	92627	33.645672	-117.922613
	3	0011- IGKFF	Male	78	Yes	0	Martinez	94553	38.014457	-122.115432
	4	0013- EXCHZ	Female	75	Yes	0	Camarillo	93010	34.227846	-119.079903
	•••									
•	7038	9987- LUTYD	Female	20	No	0	La Mesa	91941	32.759327	-116.997260
•	7039	9992- RRAMN	Male	40	Yes	0	Riverbank	95367	37.734971	-120.954271
•	7040	9992- UJOEL	Male	22	No	0	Elk	95432	39.108252	-123.645121
•	7041	9993- LHIEB	Male	21	Yes	0	Solana Beach	92075	33.001813	-117.263628
•	7042	9995- HOTOH	Male	36	Yes	0	Sierra City	96125	39.600599	-120.636358
7	7043 rows × 38 columns									

Exploring the data by using info() function, it shows us total rows and columns in dataframe

In [6]: CustomerData.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 7043 entries, 0 to 7042 Data columns (total 38 columns):

Daca	cordinis (cocar so cordinis).		
#	Column	Non-Null Count	Dtype
0	Customer ID	7043 non-null	object
1	Gender	7043 non-null	object
2	Age	7043 non-null	int64
3	Married	7043 non-null	object
4	Number of Dependents	7043 non-null	int64
5	City	7043 non-null	object
6	Zip Code	7043 non-null	int64
7	Latitude	7043 non-null	float64
8	Longitude	7043 non-null	float64
9	Number of Referrals	7043 non-null	int64
10	Tenure in Months	7043 non-null	int64
11	Offer	7043 non-null	object
12	Phone Service	7043 non-null	object
13	Avg Monthly Long Distance Charges	6361 non-null	float64
14	Multiple Lines	6361 non-null	object
15	Internet Service	7043 non-null	object
16	Internet Type	5517 non-null	object
17	Avg Monthly GB Download	5517 non-null	float64
18	Online Security	5517 non-null	object
19	Online Backup	5517 non-null	object
20	Device Protection Plan	5517 non-null	object
21	Premium Tech Support	5517 non-null	object
22	Streaming TV	5517 non-null	object
23	Streaming Movies	5517 non-null	object
24	Streaming Music	5517 non-null	object
25	Unlimited Data	5517 non-null	object
26	Contract	7043 non-null	object
27	Paperless Billing	7043 non-null	object
28	Payment Method	7043 non-null	object
29	Monthly Charge	7043 non-null	float64
30	Total Charges	7043 non-null	float64
31	Total Refunds	7043 non-null	float64
32	Total Extra Data Charges	7043 non-null	int64
33	Total Long Distance Charges	7043 non-null	float64
34	Total Revenue	7043 non-null	float64
35	Customer Status	7043 non-null	object
36	Churn Category	1869 non-null	-
37	Churn Reason	1869 non-null	object
dtype	es: float64(9), int64(6), object(23		,

dtypes: float64(9), int64(6), object(23)

memory usage: 2.0+ MB

To check Mean, standard deviation, min and max values, we can use describe() function. It helps to know more about data and get an idea about all statistics of the data frame

	Age	Number of Dependents	Zip Code	Latitude	Longitude	Number of Referrals	Tenure i Monti
count	7043.000000	7043.000000	7043.000000	7043.000000	7043.000000	7043.000000	7043.00000
mean	46.509726	0.468692	93486.070567	36.197455	-119.756684	1.951867	32.38676
std	16.750352	0.962802	1856.767505	2.468929	2.154425	3.001199	24.54206
min	19.000000	0.000000	90001.000000	32.555828	-124.301372	0.000000	1.00000
25%	32.000000	0.000000	92101.000000	33.990646	-121.788090	0.000000	9.00000
50%	46.000000	0.000000	93518.000000	36.205465	-119.595293	0.000000	29.00000
75%	60.000000	0.000000	95329.000000	38.161321	-117.969795	3.000000	55.00000
max	80.000000	9.000000	96150.000000	41.962127	-114.192901	11.000000	72.00000

Checking for Null Values

In [16]: # Lets check null values and try to clean it #replacing NaN with 0 CustomerData.fillna(0)

	Customer ID	Gender	Age	Married	Number of Dependents	City	Zip Code	Latitude	Longitude
0	0002- ORFBO	Female	37	Yes	0	Frazier Park	93225	34.827662	-118.999073
1	0003- MKNFE	Male	46	No	0	Glendale	91206	34.162515	-118.203869
2	0004- TLHLJ	Male	50	No	0	Costa Mesa	92627	33.645672	-117.922613
3	0011- IGKFF	Male	78	Yes	0	Martinez	94553	38.014457	-122.115432
4	0013- EXCHZ	Female	75	Yes	0	Camarillo	93010	34.227846	-119.079903
•••									
7038	9987- LUTYD	Female	20	No	0	La Mesa	91941	32.759327	-116.997260
7039	9992- RRAMN	Male	40	Yes	0	Riverbank	95367	37.734971	-120.954271
7040	9992- UJOEL	Male	22	No	0	Elk	95432	39.108252	-123.645121
7041	9993- LHIEB	Male	21	Yes	0	Solana Beach	92075	33.001813	-117.263628
7042	9995- HOTOH	Male	36	Yes	0	Sierra City	96125	39.600599	-120.636358
7043 r	ows × 38 c	olumns							

Dropping the blank values , Result showed 1586 rows left afte removing empty cells

In [17]: CustomerData.dropna()

Out[17]:

	Customer ID	Gender	Age	Married	Number of Dependents	City	Zip Code	Latitude	Longitude
	2 0004- TLHLJ	Male	50	No	0	Costa Mesa	92627	33.645672	-117.922613
	3 0011- IGKFF	Male	78	Yes	0	Martinez	94553	38.014457	-122.115432
	0013- EXCHZ	Female	75	Yes	0	Camarillo	93010	34.227846	-119.079903
1	8 0022- TCJCI	Male	79	No	0	Daly City	94015	37.680844	-122.481310
2	0023- XUOPT	Female	26	Yes	0	Carnelian Bay	96140	39.227434	-120.091806
701	9948- YPTDG	Male	44	Yes	0	San Rafael	94903	38.018065	-122.546024
702	9961- JBNMK	Male	79	No	0	Desert Center	92239	33.889605	-115.257009
702	9965- YOKZB	Male	73	No	0	Grizzly Flats	95636	38.636102	-120.522149
703	9985- MWVIX	Female	53	No	0	Hume	93628	36.807595	-118.901544
703	9992- RRAMN	Male	40	Yes	0	Riverbank	95367	37.734971	-120.954271

1586 rows × 38 columns

Sorting and filtering

```
In [8]: #Result of dropping shows that many rows have been removed as those were empty.
# Now for sorting on the basic of Total revenue from customers

TopCustomer = CustomerData.sort_values(by= ['Total Revenue'],ascending=False)
In [13]: TopCustomer
```

\cap	4-	[12]	
U	uч	[T2]	

	Customer ID	Gender	Age	Married	Number of Dependents	City	Zip Code	Latitude	Longitude
	95 0164- APGRB	Female	56	No	0	Calistoga	94515	38.629618	-122.593216
58	79 8263- QMNTJ	Male	46	Yes	0	San Francisco	94104	37.791222	-122.402241
38	79 5451- YHYPW	Female	75	Yes	0	San Francisco	94129	37.797526	-122.464531
26	3810- DVDQQ	Female	28	Yes	1	Shasta Lake	96019	40.692523	-122.369876
53	7569- NMZYQ	Female	33	Yes	3	Middletown	95461	38.787446	-122.586750
	•••								
35	5088- QZLRL	Male	50	No	0	Corona	92881	33.833686	-117.513063
27	3976- NLDEZ	Male	55	No	0	Mira Loma	91752	33.999992	-117.535395
46	90 6615- ZGEDR	Male	42	No	0	Smith River	95567	41.950683	-124.097094
47	26 6654- QGBZZ	Female	21	No	0	Nevada City	95959	39.333737	-120.858667
55	7853- WNZSY	Male	58	No	0	El Nido	95317	37.127386	-120.506422
7043 rows × 38 columns									
									>

Changing Data type for field required for analysis

```
In [30]: TopCustomer['Number of Referrals'] = TopCustomer['Number of Referrals'].astype(int)
In [50]: type(TopCustomer['Number of Referrals'])
Out[50]: pandas.core.series.Series
```

Data Analysis:

This is mainly about discovering some useful insights so that company can make data-driven decision for its growth. So, follwoing steps were taken for analysis.

Creating pivot table quickly help to summarize the important numerical field. Here, as my focus is on churn, created pivot table for Customer status(chruned/joined/stayed) to know the effect on Total revenue.

```
In [12]:
         StatusVsRevenue = TopCustomer.pivot_table(index='Customer Status', values='Total Re
         StatusVsRevenue
Out[12]:
                        Total Revenue
         Customer Status
               Churned
                          3684459.82
                 Joined
                            54279.75
                 Stayed
                         17632392.12
In [30]: StatusVsRevenue.info()
         <class 'pandas.core.frame.DataFrame'>
         Index: 3 entries, Churned to Stayed
         Data columns (total 1 columns):
          # Column Non-Null Count Dtype
          0 Total Revenue 3 non-null
                                            float64
         dtypes: float64(1)
         memory usage: 48.0+ bytes
```

Another pivot table for checking number of referral by Churned Customers

```
# Also considering 'Referral' provided by each type of customer status
         ReferralsVsRevenue = pd.pivot_table( CustomerData, index=["Customer Status"], value
In [97]:
         ReferralsVsRevenue
Out[97]:
                         Number of Referrals Total Revenue
         Customer Status
                Churned
                                      974
                                             3684459.82
                 Joined
                                      431
                                               54279.75
                 Stayed
                                    12342
                                            17632392.12
         a=(ReferralsVsRevenue['Total Revenue'])
In [13]:
         print(a)
         Customer Status
         Churned 3684459.82
         Joined
                     54279.75
         Stayed 17632392.12
         Name: Total Revenue, dtype: float64
```

Customers who left the company. This will help us to know how much risk company can face from these customers.

```
In [106... # finidng difference in revenue from stayed and churned customers
    loss=(a[2]-a[0])
    print(loss)

13947932.3

In [109... Grand_Revenue= (a[0]+a[1]+a[2])
    print(Grand_Revenue)

21371131.69

In [129... # Showing Loss in percentage,17% is occupied by customers who churned at the end of percentage=(a[0]/Grand_Revenue)*100
    print(percentage*round(2))

17.24
```

Also checking how many referrals were given by Churned customers

```
In [6]: #Checking referrals by churned customers (in percentage)
         b=(ReferralsVsRevenue['Number of Referrals'])
         print(b)
         total_ref=(b[0]+b[1]+b[2])
         print(total_ref)
         Customer Status
         Churned 974
                    431
         Joined
         Stayed 12342
         Name: Number of Referrals, dtype: int64
         13747
         ref_perc=(b[0]/total_ref)*100
In [11]:
         print((ref perc).round(2))
         7.09
```

Analysing the reasons behind leaving Telecom. So it shows 20 reasons, company need to work on this for improving retention.

```
In [31]: List_of_reasons=(CustomerData['Churn Reason'].unique())
print(List_of_reasons)

[nan 'Competitor had better devices' 'Product dissatisfaction'
    'Network reliability' 'Limited range of services'
    'Competitor made better offer' "Don't know" 'Long distance charges'
    'Attitude of service provider' 'Attitude of support person'
    'Competitor offered higher download speeds'
    'Competitor offered more data' 'Lack of affordable download/upload speed'
    'Deceased' 'Moved' 'Service dissatisfaction' 'Price too high'
    'Lack of self-service on Website' 'Poor expertise of online support'
    'Extra data charges' 'Poor expertise of phone support']
```

```
In [33]: Reason_for_churn = CustomerData.groupby('Churn Reason')['Churn Reason'].count()
         print(Reason_for_churn)
         Churn Reason
         Attitude of service provider
                                                        94
         Attitude of support person
                                                       220
         Competitor had better devices
                                                       313
         Competitor made better offer
                                                       311
         Competitor offered higher download speeds
                                                       100
         Competitor offered more data
                                                       117
         Deceased
                                                         6
         Don't know
                                                       130
         Extra data charges
                                                       39
         Lack of affordable download/upload speed
                                                       30
         Lack of self-service on Website
                                                       29
         Limited range of services
                                                       37
                                                       64
         Long distance charges
         Moved
                                                       46
         Network reliability
                                                       72
         Poor expertise of online support
                                                        31
         Poor expertise of phone support
                                                        12
                                                        78
         Price too high
         Product dissatisfaction
                                                       77
         Service dissatisfaction
                                                        63
         Name: Churn Reason, dtype: int64
```

So, three most common reasons that most customer gave while leaving are:

- 1. Competitor having better devices
- 2. Better offers from competitor company
- 3. Support person attitude issues.

Data Visualization:

First we need to import 'matplotlib' for creating visuals.

1. Scatter plot for Age and revenue: Scatter plot shows no relation between two and also the ages of customer is from all age groups.

```
import matplotlib.pyplot as plt

#Age Vs Revenue
x = TopCustomer['Age']
y = TopCustomer['Total Revenue']
plt.scatter(x, y)

plt.show()
```


2. Plot showing the trend for three categories of 'Customer status'

```
In [31]: # Creating a plot to see realation of Customer status with Revenue generated
plt.plot(StatusVsRevenue["Total Revenue"])

# Title to the plot
plt.title("Customer Status Vs Revenue")
plt.show()
```


3. Bar chart showing how much churned categort contributes to total revenue. Joined plays negligible role as per the data.

4. Pie Chart highlighting the part of revenue from Churned customer

```
In [17]: y = np.array([a[0],a[1],a[2]])
  mylabels = ["Churned", "Joined", "Stayed"]
  myexplode = [0.1, 0, 0, ]
  mycolors = ["red", "yellow", "green"]
  plt.pie(y, labels = mylabels, explode = myexplode, colors = mycolors)
  plt.show()
```


5. Line graph showing both 'Total Revenue' and 'Referrals' from all Customers

```
In [65]: ReferralsVsRevenue.plot(kind ="line",title="Referrals Vs Revenue")
# Number of Referrals don't play any critical role for revenue

Out[65]: <a href="https://documents.com/AxesSubplot:title={'center':'Referrals Vs Revenue'}, xlabel='Customer Status'></a>
```


6. Bar graph showing the reason behind leaving company. Bar graph clearly shows 3 most common reason that many customer talked about while leaving company.

```
In [13]: Reason_for_churn.plot(kind ="bar",title="Reasons for churn" ,color='purple')
Out[13]: <AxesSubplot:title={'center':'Reasons for churn'}, xlabel='Churn Reason'>
```


Sharing the insights from data

- 1. 17% of the total revenue is generated by the customer who left the company which is great risk for company.
- 2. 7% of total referral are from churned Customer
- 3. Age of customer is not a factor that effecting revenue
- 4. Top 3 most common reasons that customer are leaving and joining competitor are showing that Support people are not good, Telecom offers and amount of data given by telecom is less compared to competitor company.

Act (Recommendations)

- 1. To improve the situation, training to 'support persons' on monthly basis focusing on 'assurance' and 'empthy' with customers. Also survey can be created for employees to know why attitude is one of the reason for customer leaving.
- 2. Rechecking of the offers given to customers and providing better offers to those who are loyal with company for many years.
- 3. Company can launch of scheme of 'gift hampers' after some time interval to improve customer-company relationship