LEFT-ORDERABLE GROUPS

JAMES ROE

FEBRUARY 19, 2019

OVERVIEW

- 1. What is a Left-Orderable Group?
- 2. The Positive Cone
- 3. An Example: \mathbb{Z}^2
- 4. Free Groups
- 5. Why do we care?

ľ

WHAT IS A LEFT-ORDERABLE GROUP?

Strict Orderings

Let G be a group. < is a strict, total ordering on G if it is:

- i) Transitive $(q < h, q < h \Rightarrow q < h)$
- ii) $\forall g, h \in G$, exactly one of g < h, h < g or g = h holds.

WHAT IS A LEFT-ORDERABLE GROUP?

Strict Orderings

Let G be a group. < is a strict, total ordering on G if it is:

- i) Transitive $(g < h, g < h \Rightarrow g < h)$
- ii) $\forall g, h \in G$, exactly one of g < h, h < g or g = h holds.

Invariant Orderings

G is left-ordered if < is left-invariant, i.e.

$$\forall g, h, f \in G, g < h \Rightarrow fg < fh$$

THE POSITIVE CONE

■ $P \subset G$ characterizes the ordering on G.

$$g \in P \iff 1 < g$$

THE POSITIVE CONE

■ $P \subset G$ characterizes the ordering on G.

$$g \in P \iff 1 < g$$

- P must satisfy:
 - i) P is a subsemigroup (i.e. $q, h \in P \Rightarrow qh \in P$)
 - ii) $P \cup P^{-1} = P \setminus \{1\}$
 - iii) $P \cap P^{-1} = \emptyset$

AN EXAMPLE: \mathbb{Z}^2

- \blacksquare v a vector in \mathbb{R}^2 with irrational gradient.
- $\blacksquare \ \underline{x} < y \iff \underline{x} \cdot \mathbf{v} < y \cdot \mathbf{v}$

AN EXAMPLE: \mathbb{Z}^2

 \blacksquare v a vector in \mathbb{R}^2 with irrational gradient.

$$\blacksquare \ \underline{x} < y \iff \underline{x} \cdot v < y \cdot v$$

■ *P* is one side of $l' \perp l$.

This slide has an empty title and is aligned to top.

No Slide Numbering

This slide is not numbered and is citing reference [?].

Typesetting and Math

The packages inputenc and FiraSans^{1,2} are used to properly set the main fonts.

This theme provides styling commands to typeset *emphasized*, **alerted**, **bold**, example text, ...

FiraSans also provides support for mathematical symbols:

$$e^{i\pi} + 1 = 0.$$

https://fonts.google.com/specimen/Fira+Sans

²http://mozilla.github.io/Fira/

SECTION 2

BLOCKS

These blocks are part of 1 slide, to be displayed consecutively.

Block

Text.

8 | 11

BLOCKS

These blocks are part of 1 slide, to be displayed consecutively.

Block

Text.

Alert block

Alert text.

BLOCKS

These blocks are part of 1 slide, to be displayed consecutively.

Block

Text.

Alert block

Alert text.

Example block

Example text.

8 | 1

COLUMNS

This text appears in the left column and wraps neatly with a margin between columns.

Placeholder

Image

9 | 1

LISTS

Items:

- Item 1
 - ► Subitem 1.1
 - ► Subitem 1.2
- Item 2
- Item 3

Enumerations:

- 1. First
- 2. Second
 - 2.1 Sub-first
 - 2.2 Sub-second
- 3. Third

Descriptions:

First Yes.

Second No.

TABLE

Average for All Disciplines	\$58,114
Communications	\$51,448
Agriculture and Natural Resources	\$53,565
Humanities & Social Sciences	\$56,669
Business	\$56,720
Mathematics and Sciences	\$61,867
Computer Sciences	\$60,005
Engineering	\$66,521
Discipline	Avg. Salary

Table: Table caption

Thanks for using **Focus**!

REFERENCES

BACKUP SLIDE

This is a backup slide, useful to include additional materials to answer questions from the audience.

The package appendix number beamer is used to refrain from numbering appendix slides.