Gaining Steam: Incumbent Lock-in and Entrant Leapfrogging

Richard Hornbeck, Shanon Hsuan-Ming Hsu, Anders Humlum, Martin Rotemberg

Discussant: Jane Olmstead-Rumsey, LSE

Adoption of Steam Power Was Slow

Adoption of Steam Power Was Slow

1. Is slow adoption a generic feature of new general purpose technologies?

Adoption of Steam Power Was Slow

- 1. Is slow adoption a generic feature of new general purpose technologies?
- 2. Should we do anything about it?

- ▶ Paper's view: no. Depends on cost structure of new technology
 - Water: high marginal cost, low fixed cost
 - \blacksquare Steam: low marginal cost, high fixed cost

- ▶ Paper's view: no. Depends on cost structure of new technology
 - Water: high marginal cost, low fixed cost
 - Steam: low marginal cost, high fixed cost
 - \blacksquare \Rightarrow entrants enter with old technology even in 1880

- ▶ Paper's view: no. Depends on cost structure of new technology
 - Water: high marginal cost, low fixed cost
 - Steam: low marginal cost, high fixed cost
 - \Rightarrow entrants enter with old technology even in 1880
 - Helps distinguish vintage capital vs. cost structure theories

David (1990); Atkeson & Kehoe (2007) vs. Melitz (2003); Reichardt (2024)

- ▶ Paper's view: no. Depends on cost structure of new technology
 - Water: high marginal cost, low fixed cost
 - Steam: low marginal cost, high fixed cost
 - \Rightarrow entrants enter with old technology even in 1880
 - Helps distinguish vintage capital vs. cost structure theories

 David (1990); Atkeson & Kehoe (2007) vs. Melitz (2003); Reichardt (2024)

▶ My view: yes. Seems to be a generic feature

- ▶ Paper's view: no. Depends on cost structure of new technology
 - Water: high marginal cost, low fixed cost
 - Steam: low marginal cost, high fixed cost
 - \Rightarrow entrants enter with old technology even in 1880
 - Helps distinguish vintage capital vs. cost structure theories David (1990); Atkeson & Kehoe (2007) vs. Melitz (2003); Reichardt (2024)
- ▶ My view: yes. Seems to be a generic feature
 - ICT revolution, green transition Brynjolfsson et al. (2021); Hsieh & Rossi-Hansberg (2023);

De Ridder (2024); Acemoglu et al. (2012); Aghion et al. (2024); Kwon et al. (2023); . . .

- ▶ Paper's view: no. Depends on cost structure of new technology
 - Water: high marginal cost, low fixed cost
 - Steam: low marginal cost, high fixed cost
 - \Rightarrow entrants enter with old technology even in 1880
 - Helps distinguish vintage capital vs. cost structure theories David (1990); Atkeson & Kehoe (2007) vs. Melitz (2003); Reichardt (2024)
- ▶ My view: yes. Seems to be a generic feature
 - ICT revolution, green transition Brynjolfsson et al. (2021); Hsieh & Rossi-Hansberg (2023); De Ridder (2024); Acemoglu et al. (2012); Aghion et al. (2024); Kwon et al. (2023); . . .
 - Low fixed cost technologies: electric motor, artificial intelligence diffuse slowly

2. Should We Do Something to Speed Up Adoption?

 \blacktriangleright Paper's view: yes in this case. Positive agglomeration effects \Rightarrow role for policy

2. Should We Do Something to Speed Up Adoption?

- \blacktriangleright Paper's view: yes in this case. Positive agglomeration effects \Rightarrow role for policy
- ▶ My view: possibly. Need to understand agglomeration effects clearly
 - Estimated agglomeration forces are small and local

Entrants Do Not Always Embody New Technology

		%	Target
	Adoption cost	18	E vs. I size + hand vs. water capital
Water	Operating cost	10	Exit rate, water
	Switching cost to S	1.4	Incumbent vs. entrant water share
	Adoption cost, 1850	42	Steam adoption rate 1850
Ctoom	Adoption cost, 1880	9	Steam adoption rate 1880
Steam	Operating cost	30	Exit rate, steam
	Switching cost to W	5.8	Incumbent vs. entrant steam share

		%	Target
Water	Adoption cost Operating cost Switching cost to S	10	E vs. I size + hand vs. water capital Exit rate, water Incumbent vs. entrant water share
Steam	Adoption cost, 1850 Adoption cost, 1880 Operating cost Switching cost to W	9 30	Steam adoption rate 1850 Steam adoption rate 1880 Exit rate, steam Incumbent vs. entrant steam share

		%	Target
Water	Adoption cost Operating cost Switching cost to S	10	E vs. I size + hand vs. water capital Exit rate, water Incumbent vs. entrant water share
Steam	Adoption cost, 1850 Adoption cost, 1880 Operating cost Switching cost to W	9 30	Steam adoption rate 1850 Steam adoption rate 1880 Exit rate, steam Incumbent vs. entrant steam share

		%	Target
Water	Adoption cost Operating cost Switching cost to S	10	E vs. I size + hand vs. water capital Exit rate, water Incumbent vs. entrant water share
Steam	Adoption cost, 1850 Adoption cost, 1880 Operating cost Switching cost to W	$\frac{9}{30}$	Steam adoption rate 1850 Steam adoption rate 1880 Exit rate, steam Incumbent vs. entrant steam share

Adoption Cost of Steam Declines Slowly

$$y_{jct} = exp(\varphi_{jct} + \mathbb{1}(R_{jct} = S)(\gamma + \alpha s_{ct}))x_{jct}$$

1. Direct: γ

2. Agglomeration: α from local share of adopters s_{ct}

$$y_{jct} = exp(\varphi_{jct} + \mathbb{1}(R_{jct} = S)(\gamma + \alpha s_{ct}))x_{jct}$$

- 1. Direct: γ : 9% lower marginal cost
 - target: sales differential, water vs. steam, 1850-1880
- 2. Agglomeration: α from local share of adopters s_{ct} : 2.5% lower marginal cost

$$y_{jct} = exp(\varphi_{jct} + \mathbb{1}(R_{jct} = S)(\gamma + \alpha s_{ct}))x_{jct}$$

- 1. Direct: γ : 9% lower marginal cost
 - target: sales differential, water vs. steam, 1850-1880
- 2. Agglomeration: α from local share of adopters s_{ct} : 2.5% lower marginal cost
 - target: revenue growth 1850-1880 diff., high vs. low waterpower counties

$$y_{jct} = exp(\varphi_{jct} + \mathbb{1}(R_{jct} = S)(\gamma + \alpha s_{ct}))x_{jct}$$

- 1. Direct: γ : 9% lower marginal cost
 - target: sales differential, water vs. steam, 1850-1880
- 2. Agglomeration: α from local share of adopters s_{ct} : 2.5% lower marginal cost
 - target: revenue growth 1850-1880 diff., high vs. low waterpower counties
- \triangleright α : residual differences in rev. growth by waterpower potential after controls:
 - county-industry FE, industry-year FE, water/coal/market access

$$y_{jct} = exp(\varphi_{jct} + \mathbb{1}(R_{jct} = S)(\gamma + \alpha s_{ct}))x_{jct}$$

- 1. Direct: γ : 9% lower marginal cost
 - target: sales differential, water vs. steam, 1850-1880
- 2. Agglomeration: α from local share of adopters s_{ct} : 2.5% lower marginal cost
 - target: revenue growth 1850-1880 diff., high vs. low waterpower counties
- \triangleright α : residual differences in rev. growth by waterpower potential after controls:
 - county-industry FE, industry-year FE, water/coal/market access
- \blacktriangleright What if instead γ changes over time?

Should Policy Speed Up The Transition?

- ▶ Policy: buy sunk capital of water incumbents
 - More entrants enter with water (option value of switching)
 - Relies on measuring agglomeration effects right

Should Policy Speed Up The Transition?

- ▶ Policy: buy sunk capital of water incumbents
 - More entrants enter with water (option value of switching)
 - Relies on measuring agglomeration effects right
- ▶ Alternative: where does fall in steam cost come from, why is it slow? Bresnahan and Trajtenberg (1995); Liu & Ma (2024)

Electric Motors (Low Fixed Cost) Also Diffused Slowly

FIGURE 3: Capacity of primary power by type in horsepower per 100 employees in manufacturing in the United States

Source: Reichardt (2024).

AI (Low Fixed Cost?) Diffusing Slowly For All Firms

Reasons for Not Planning to Use AI	Share resp. $(\%)$
AI is not applicable to this business	80.9
Lack of knowledge on the capabilities of AI	7.3
Concerns about privacy/security	6.6
AI is not a mature enough technology yet	6.1
Other	4.5
Too expensive	4.1
Lack of skilled workforce	2.9
Concerns about bias	2.8
Lack of required data	2.2
Laws and regulations prevent or restrict use of AI	1.2
Previous or current use of AI did not meet expectations	0.9

Reasons for Not Planning to Use AI	Share resp. $(\%)$
AI is not applicable to this business	80.9
Lack of knowledge on the capabilities of AI	7.3
Concerns about privacy/security	6.6
AI is not a mature enough technology yet	6.1
Other	4.5
Too expensive	4.1
Lack of skilled workforce	2.9
Concerns about bias	2.8
Lack of required data	2.2
Laws and regulations prevent or restrict use of AI	1.2
Previous or current use of AI did not meet expectations	0.9

Reasons for Not Planning to Use AI	Share resp. $(\%)$
AI is not applicable to this business	80.9
Lack of knowledge on the capabilities of AI	7.3
Concerns about privacy/security	6.6
AI is not a mature enough technology yet	6.1
Other	4.5
Too expensive	4.1
Lack of skilled workforce	2.9
Concerns about bias	2.8
Lack of required data	2.2
Laws and regulations prevent or restrict use of AI	1.2
Previous or current use of AI did not meet expectations	0.9

Reasons for Not Planning to Use AI	Share resp. $(\%)$
AI is not applicable to this business	80.9
Lack of knowledge on the capabilities of AI	7.3
Concerns about privacy/security	6.6
AI is not a mature enough technology yet	6.1
Other	4.5
Too expensive	4.1
Lack of skilled workforce	2.9
Concerns about bias	2.8
Lack of required data	2.2
Laws and regulations prevent or restrict use of AI	1.2
Previous or current use of AI did not meet expectations	0.9

Conclusion

- ▶ Interesting paper, immense data collection effort
- ▶ Spotlights key feature of slow adoption: entrants also slow to adopt
- ► Most GPTs diffuse slowly
- ▶ Open question: can/should policy speed up transition? If so, how?