Debapriyo Majumdar

debapriyo@isical.ac.in

Attention: Motivation

- Neural Machine Translation (NMT) is the flagship task for NLP deep learning
- Basic architecture: an encoder RNN (or LSTM/GRU) producing an encoding of the sentence, followed by a decoder RNN (or LSTM/GRU)

Debapriyo Majumdar

Computing attention scores

- Given: encoder hidden states $a^{< i>} \in \mathbb{R}^{d_1}$ and decoder hidden state $s^{< j>} \in \mathbb{R}^{d_2}$
 - Learn the attention scores (called *alignment model* by the original authors) using a neural network with $a^{< i>}$ and $s^{< j>}$ forming the input layer
 - $e^{\langle j,i\rangle} = v^T \tanh(W_1 a^{\langle i\rangle} + W_2 s^{\langle j\rangle})$
 - where $W_1 \in \mathbb{R}^{d_3 \times d_1}$ and $W_2 \in \mathbb{R}^{d_3 \times d_2}$ are weight matrices, $v \in \mathbb{R}^{d_3 \times 1}$ is a weight vector and d_3 is the attention dimension (a hyperparameter)
 - Simplified versions
 - Dot product: $e^{\langle j,i\rangle} = a^{\langle i\rangle^T} s^{\langle j\rangle}$ (in this case we require $d_1 = d_2$)
 - Multiplication with a weight matrix: $e^{\langle i,j\rangle}=a^{\langle i\rangle^T}Ws^{\langle j\rangle}$ where W is a matrix that is learnt
- The next steps: computing $\alpha^{< j,i>}$ from $e^{< j,i>}$ by **softmax**
 - Attention output (context vector) $c^{< j>} = \sum_{i=1}^{T_x} \alpha^{< j,i>} a^{< i>}$
- In general: attention is a way to compute weighted sum of a given set of vector values w.r.t. a query

Attention: Generalization

(Keys, values, queries are all vectors)

Attention: discussion

- Attention allows the decoder to focus on certain parts of the input
 - Improves performances for several NLP tasks
- Solves the information bottleneck problem
- Helps with the vanishing gradient problem as well
- Attention is interpretable
 - The attention matrix shows what the decoder focussed on
 - Automatically trained soft alignment

References

- Chris Manning, Abigail See and other TAs. *Natural Language Processing with Deep Learning*. Stanford University Course (CS224n), Winter 2019. web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/, Lecture 8 (Abigail See): www.youtube.com/watch?v=XXtpJxZBa2c
- Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning to align and translate." *arXiv preprint arXiv:1409.0473* (2014).