Constructive Negation for Prolog

A Real Implementation

Susana Muñoz

Juan José Moreno

Facultad de Informática
Universidad Politécnica de Madrid
28660 Madrid, Spain

susana@fi.upm.es
jjmoreno@fi.upm.es

Motivation

- Negation role at Logic Programming
- Problems of the proposals:
 - Complexity
 - Expressiveness
 - Semantics
- Limited implementations:
 - Negation as failure
 - Delay technique

Negation as failure

• SLDNF resolution
$$\begin{cases} naf(G): - call(G), !, \\ naf(G). \end{cases}$$

• Execution:

```
?- naf(even(s(s(0)))).
                                    ?- naf(even(X)).
no
                                   no
?- naf(even(s(0))).
                                    ?- naf(even(s(Y))).
yes
                                   no
```

Problem: naf is not sound and complete.

Interpretation of Quantifications

$$\operatorname{naf}(p(\overline{X})) \equiv \neg \exists \overline{X}. \ p(\overline{X})$$

• $naf(p(\overline{X})$ checks if $p(\overline{X})$ is "true" or "false" \Rightarrow No variable instantiation

$$\operatorname{cneg}(p(\overline{X})) \equiv \exists \overline{X}. \neg p(\overline{X})$$

• $cneg(p(\overline{X}))$ provides the values of \overline{X} that make false $p(\overline{X}) \Rightarrow$ Constructive answer

Constructive Answers

```
?- cneg(even(X)). ?- cneg(even(X)).
X = s(0) ?;
                     X=/=0, X=/=s(s(fA(Y))) ?;
                     X=s(s(Y)),
X = s(s(s(0))) ?;
                     Y=/=0, Y=/=s(s(fA(Z))) ?;
?- cneg(null(X)).
                     ?- cneg(null(X)).
X = s(0) ?;
                     X = /= 0 ?;
X = s(s(0)) ?;
                     no
X = s(s(s(0))) ?;
```

Constructive Negation

- Papers about Semantical aspects
- Practical Chan's proposal (coroutining)
- Implementation problems (Eclipse)
- We provide:
 - A complete theoretical algorithm (refining and extending to the constructive negation method)
 - A discussion about implementation issues
 - A preliminary implementation

Semantics

Adequate for Prolog:

- Declarative Semantics: Clark's completion, CWA & CET [Clark78].
- Denotational Semantics: Kunen's 3-valued interpretation ($\{\underline{t}, \underline{f}, \underline{u}\}$) [Kun87].
- Procedural Semantics: Stuckey's Immediate consequence (Φ_P^A) in an admissible constraint structure, \mathcal{A} [Stu95].

Frontier

```
even(0).
                                           ?- cneg(even(Y)).
even(s(s(X))):-even(X).
Frontier(even(Y)) = C_1 \vee C_2 =
           (Y=0) \lor (\exists X \ Y=s(s(X)) \land even(X))
\neg Frontier(even(Y)) = \neg C_1 \land \neg C_2 = [Y \neq 0] \land
[(\forall X1.\ Y \neq s(s(X1))) \lor ((\exists X2.\ Y = s(s(X2)) \land \neg even(X2))]
```

Preparation

- Simplification of the conjunction
- Organization of the conjunction

$$C_i \equiv \overline{I} \wedge \overline{D} \wedge \overline{R}$$

- Normalization of the conjunction (GoalVars - RelVars - ImpVars)
 - Elimination of redundant variables and equalities
 - Elimination of irrelevant disequalities

Negation of subformulas(I)

• Negation of \overline{I}

$$\overline{I} \equiv I_1 \wedge \ldots \wedge I_{NI} \equiv$$

$$\underbrace{\exists \overline{Z}_1 X_1 = t_1}_{I_1} \wedge \ldots \wedge \underbrace{\exists \overline{Z}_{NI} X_{NI} = t_{NI}}_{I_{NI}}$$

$$\neg C_{i} \equiv \neg \overline{I} \equiv \bigvee_{i=1}^{NI} \forall \overline{Z}_{i} X_{i} \neq t_{i} \equiv$$

$$\forall \overline{Z}_{1} X_{1} \neq t_{1} \lor \dots \lor \forall \overline{Z}_{NI} X_{NI} \neq t_{NI}$$

$$\neg I_{1} \qquad \neg I_{NI}$$

Negation of subformulas(II)

• Negation of \overline{D}_{imp}

$$\overline{D}_{imp} \equiv D_1 \wedge \ldots \wedge D_{N_{D_{imp}}}$$

$$D_i \equiv \forall \overline{W}_i \exists \overline{Z}_i Y_i \neq s_i$$

$$\neg D_i \equiv \exists \overline{W}_i Y_i = s_i$$

$$\neg C_i \equiv \overline{I} \wedge \neg D_1 \vee \overline{I} \wedge D_1 \wedge \neg D_2 \vee \overline{I} \wedge D_1 \wedge \neg D_2 \vee \overline{I} \wedge D_1 \wedge \neg D_2 \wedge \overline{I} \wedge D_1 \wedge \cdots \wedge D_{N_{D_{imp}}-1} \wedge \neg D_{N_{D_{imp}}}$$

Negation of subformulas(III)

• Negation of \overline{R}_{imp}

$$\overline{R}_{imp} \equiv R_1 \wedge \ldots \wedge R_{N_{R_{imp}}}$$

$$\neg C_{i} \equiv \overline{I} \wedge \overline{D}_{imp} \wedge \neg R_{1} \vee \\ \overline{I} \wedge \overline{D}_{imp} \wedge R_{1} \wedge \neg R_{2} \vee \\ \vdots \\ \overline{I} \wedge \overline{D}_{imp} \wedge R_{1} \wedge \dots \wedge R_{N_{R_{imp}}-1} \wedge \neg R_{N_{R_{imp}}}$$

Negation of subformulas(IV)

• Negation of $\overline{D}_{exp} \wedge \overline{R}_{exp}$

$$\neg (\exists \overline{V}_{exp} \overline{D}_{exp} \land \overline{R}_{exp}) \equiv \forall \overline{V}_{exp} \neg (\overline{D}_{exp} \land \overline{R}_{exp})$$

$$\neg C_i \equiv \overline{I} \wedge \overline{D}_{imp} \wedge \overline{R}_{imp} \wedge \forall \overline{V}_{exp} \neg (\overline{D}_{exp} \wedge \overline{R}_{exp})$$

Implementation Issues (I)

Code expansion

```
:- module(mod1,[even/1,not_even/1],[cneg]).
even(0).
even(s(s(X))) := even(X).
not_even(X) := cneg(even(X)).
stored clause(even(0),[]).
stored_clause(even(s(s(X))),[even(X)]).
```

Implementation Issues (II)

Disequality constraints (Attributed variables)
 Constraints Normal Form

$$\bigwedge_{i}(X_{i}=t_{i})$$
 \land positive information

$$\left(\bigwedge_{j} \forall \overline{Z}_{j}^{1} \left(Y_{j}^{1} \neq s_{j}^{1}\right) \vee \ldots \vee \bigwedge_{l} \forall \overline{Z}_{l}^{n} \left(Y_{l}^{n} \neq s_{l}^{n}\right)\right)$$

negative information

Optimizations

 Compact information (disjunction of conjunction of disequalities)

$$(X \neq 0 \lor \exists Y \ X \neq Y) \land (\forall Z \ X \neq s(Z)) \Rightarrow$$

 $[[X/0, X/Y], [X/s(fA(Z))]]$

- Pruning subgoals (equivalent to true / false)
- Constraint simplification

$$F \equiv \bigvee_{i} \bigwedge_{j} \forall \, \overline{Z}_{j}^{i} \, (Y_{j}^{i} \neq s_{j}^{i})$$

Examples (I)

```
?- cneg(boole(X)).
boole(0).
                        [[X/1,X/0]]?;
boole(1).
                        no
                        ?- cneg(positive(X)).
                        [[X/s(fA(_A)),X/0]] ?;
positive(0).
                        X = s(\underline{A}),
positive(s(X)):-
                        [[\_A/s(fA(\_B)),\_A/0]] ?;
       positive(X).
                        X = s(s(\underline{A})),
                        [[\_A/s(fA(\_B)),\_A/0]]?
```

yes

Examples (II)

```
?- cneg(greater(X,Y)).
                        [[Y/0,Y/s(fA(\_A))]]?;
number(0).
                        [[Y/s(fA(_A))]],
number(s(X)):-
                        [[X/s(fA(_B))]] ?;
       number(X).
                        X = s(\underline{A}), Y = 0,
greater(s(X), 0):-
                        [[_A/s(fA(_B)),_A/0]] ?;
       number(X).
greater(s(X), s(Y)):-
       greater(X,Y). X = s(s(A)), Y = 0,
                        [[\_A/s(fA(\_B)),\_A/0]]?
                        yes
```

Experimental results

goals	Goal	naf(Goal)	cneg(Goal)	ratio
boole(1)	2049	2099	2069	0.98
positive(s(s(s(s(s(0))))))	2079	1600	2159	1.3
greater(s(s(s(0))),s(0))	2110	2099	2100	1.00
average				1.06
positive(s ⁵⁰⁰⁰⁰⁰ (0))	2930	2949	41929	14.21
positive(s ¹⁰⁰⁰⁰⁰⁰ (0))	3820	3689	81840	22.18
greater(s ⁵⁰⁰⁰⁰⁰ (0),s ⁵⁰⁰⁰⁰⁰ (0))	3200	3339	22370	7.70
average				14.69
positive(X)	2020	-	7189	
greater(s(s(s(0))),X)	2099	-	6990	
queens(s(s(0)),Qs)	6939	-	9119	

Conclusion and Future Work

- Detailed description of the modified algorithm
- Complete and consistent implementation
- Efficiency problem
 - WAM level (future work)
 - Negation System for Prolog

Negation System for Prolog

Static phase + Dynamic phase

Constructive Negation for Prolog

A Real Implementation

Susana Muñoz

Juan José Moreno

Facultad de Informática
Universidad Politécnica de Madrid
28660 Madrid, Spain

susana@fi.upm.es
jjmoreno@fi.upm.es