July 7

Af

induced immune dysfunctions selected from the group consisting of including porcine stress syndrome, bovine shipping fever, equine paroxysmal fibrillation, confinement dysfunction in chicken, sheering stress in sheep, and human animal interaction stress in dogs.

- 37. A pharmaceutical composition as claimed in claim 14 for treatment of fibromyalgia.
- 38. A pharmaceutical composition as claimed in claim 14 for treatment of anorexia or bulimia nervosa.

Spt. 7

- A pharmaceutical composition as claimed in claim 14 for treatment of cerebral ischemia, selected from the group consisting of cerebral hippocampal ischemia; excitotoxic neuronal damage.
- 40. A pharmaceutical composition as claimed in claim 14 for treatment of including social phobia, agoraphobia or specific phobias

REMARKS

A copy of claims 1, 2,, 3, 4, 13 and 14, showing the amendments thereto is attached as an Appendix.

A new paragraph has been inserted on page 1 to set out the applications from which benefit is claimed. This application was filed prior to November 29, 2000 so that no petition is required. In any case priority claims were made on the declaration filed on this application.

On the issue raised in paragraph 7 of the action, it is pointed out that Application Serial No 09/254387 is a U.S. national stage entry of International Patent Application PCT/IB95/00437 which was filed on June 6, 1995. Since 35 USC 363 provides that such International Application has, with one exception, "the effect of a national patent application" it is submitted that the declaration properly set out the date of June 6, 1995 as the filing date of Serial No 09/254387 and that no new declaration ids required.

The rejections under 35 USC 112 have been met. In most cases, the corrections made are self-evident. References to Z groups and Formulae I and III have been deleted as being irrelevant to what is now claimed. So far as the use of the terms "alkyl", alkylene", "cycloalkyl" and "cycloalkylene" including unsaturation is concerned, page 36 lines 3 to 5 make it clear that the use of these terms in the present application was in some cases intended to include unsaturated

groups. In an effort to meet the examiner's concerns, where appropriate, the term "hydrocarbyl" and its derivatives has been used to replace the terms questioned by the Examiner in those definitions where the original text makes it clear that the group in question is one where reference is made to the presence of possible double or triple bonds, namely the R_1 (alkyl, alkylene, cycloalkyl, cycloalkylene and heterocycloalkyl), R_2 (alkyl, alkylene, cycloalkyl, cycloalkylene and heterocycloalkyl), R_4 (alkyl and alkylene) R_5 alkyl and alkylene). New claim 29 is based on language that was included in claim 1 as filed as being "especial" possibilities as R_{24} and R_{25} .

The rejection under 35 USC 102 is respectfully traversed. As noted above, the present application claims the benefit of Application Serial No 09/254387 which has a filing date of June 6, 1995. This date is prior to the publication date of WO 95/33750. Furthermore, even if this were not the case, it is pointed out that the present applicant is the same person as the author of WO/9533750 so that it is simply not possible for this document to disclose the same invention as now claimed on a date prior to the present applicant's having made such invention.

In view of the foregoing it is believed that this application is now in order for allowance. An early action to this end is respectfully solicited. If the Examiner believes it would be useful to discuss this matter either personally or in a telephone interview, he is requested to let us know so that this can be arranged.

Respectfully submitted

JOHN RICHARDS c/o Ladas & Parry 26 West 61st Street

New York, NY 10023

Telephone No. 212-708-1915

Registration No. 31053

Appendix

1(Amended) A compound of the formula

$$R_3$$
 R_4
 ZR_5

I

or a pharmaceutically acceptable salt thereof, wherein

A is CR_7 ;

 $B \ is \ -NR_1R_2, \ -CR_1R_2R_{11}, \ -C(=CR_2R_{12})R_1, \ -NHCHR_1R_2, \ -OCHR_1R_2, \ -SCHR_1R_2, \\ -CHR_2OR_1, \ -CHR_1OR_2, \ -CHR_2SR_1, -C(S)R_2, \ -C(O)R_2, \ -CHR_2NR_1R_2, \ -CHR_1NHR_2, \ -CHR_1N(CH_3)R_2, \ or \ -NR_{12}NR_1R_2;$

Yis CH or N;

Z is NH, O, S, =N(C_1 - C_2 alkyl), -NC(O)CF₃, or -C(R_{13} R₁₄), -N(C_1 - C_2 alkyl)-, -NC(O)CF₃, or -C(R_{13} R₁₄)- wherein R₁₃ and R₁₄ are each, independently, hydrogen, trifluoromethyl or methyl, or one of R₁₃ and R₁₄ is cyano and the other is hydrogen or methyl, or -C(R_{13} R₁₄) is a cyclopropyl group, or Z is nitrogen or CH and forms a five or six membered heterocyclic ring fused with R₅, which ring optionally comprises two or three further hetero members selected independently from oxygen, nitrogen, NR₁₂, and S(O)_m, and optionally comprises from one to three double bonds, and is optionally substituted with halo, C₁- C₄ alkyl, -O(C₁-C₄ alkyl), NH₂, NHCH₃, N(CH₃)₂, CF₃, or OCF₃, with the proviso that said ring does not contain any -S-S-, -S-O-, -N-S-, or -O-O- bonds, and does not comprise more than two oxygen or S(O)_m heterologous members;

 R_1 is C(O)H, $C(O)(C_1-C_6$ alkyl hydrocarbyl), $C(O)(C_1-C_6$ alkylene hydrocarbylene)(C_3-C_8 cycloalkyl cyclohydrocarbyl), $C(O)(C_3-C_8$ cycloalkylene cyclohydrocarbylene)(C_3-C_8 cycloalkyl cyclohydrocarbyl), $C(O)(C_1-C_6$ alkylene hydrocarbylene)(C_4-C_8 heterocycloalkyl heterocyclohydrocarbyl), $C(O)(C_3-C_8$ cycloalkylene cyclohydrocarbylene)(C_4-C_8 heterocyclohydrocarbyl), C_1-C_6 alkyl hydrocarbyl, C_3-C_8 cycloalkyl cyclohydrocarbyl, C_4-C_8 heterocycloalkyl heterocyclohydrocarbyl, C_4-C_8 heterocycloalkyl heterocyclohydrocarbyl, C_3-C_8 cycloalkyl hydrocarbylene (C_3-C_8 cycloalkyl cyclohydrocarbyl), C_3-C_8 cycloalkylene cyclohydrocarbylene)(C_3-C_8 cycloalkyl cyclohydrocarbyl), C_3-C_8 cycloalkylene hydrocarbylene)(C_4-C_8 heterocycloalkyl heterocyclohydrocarbyl), C_3-C_8 cycloalkylene

cyclohydrocarbylene)(C₄-C₈ heterocycloalkyl heterocyclohydrocarbyl), or -O-aryl, or -O-(C₁-C₆ alkylene hydrocarbylene)-aryl; wherein said aryl, C4-C8 heterocycloalkyl heterocyclohydrocarbyl, $C_1 - C_6 - \underline{alkyl} \quad \underline{hydrocarbyl}, \quad C_3 - C_8 \quad \underline{cycloalkyl} - \underline{cyclohydrocarby}l \quad , \quad C_3 - C_8$ cyclohydrocarbylene, and C₁-C₆ alkylene hydrocarbylene groups may each independently be optionally substituted with from one to six fluoro and may each independently be optionally substituted with one or two substituents R₈ independently selected from the group consisting of C₁-C₄ alkyl hydrocarbyl, -C₃-C₈ cycloalkyl cyclohydrocarbyl, hydroxy, chloro, bromo, iodo, CF₃, -O-(C₁-C₆ alkyl hydrocarbyl), -O-(C₃-C₅ cycloalkyl cyclohydrocarbyl), -O-CO-(C₁-C₄ alkyl <u>hydrocarbyl</u>), -O-CO-NH(C_1 - C_4 <u>alkyl</u> <u>hydrocarbyl</u>), -O-CO-N(R_{24})(R_{25}), -N(R_{24})(R_{25}), -S(C_1 - C_4 $\underline{alkyl}\underline{hydrocarbyl}, -S(C_3-C_5\underline{cycloalkyl})\underline{cyclohydrocarbyl} --N(C_1-C_4\underline{alkyl}\underline{hydrocarbyl})CO(C_1-C_4\underline{alkyl}\underline{hydrocarbyl})$ alkyl hydrocarbyl), -NHCO(C1-C4 alkyl hydrocarbyl), -COO(C1-C4 alkyl hydrocarbyl), -CONH(C₁-C₄ alkyl hydrocarbyl), -CONC₁-C₄ alkyl hydrocarbyl)(C₁-C₂ alkyl hydrocarbyl), CN, NO₂, -OSO₂(C₁-C₄ alkyl hydrocarbyl), S⁺(C₁-C₆ alkyl hydrocarbyl)(C₁-C₂ alkyl hydrocarbyl), -SO(C₁-C₄ alkyl hydrocarbyl) and -SO₂(C₁-C₄ alkyl hydrocarbyl); and wherein the C₁-C₆ alkyl hydrocarbyl, C₁-C₆ alkylene hydrocarbylene, C₅-C₈ cycloalkyl cyclohydrocarbyl, $\underline{\text{cycloalkylene}}\,\underline{\text{cyclohydrocarbylene}}, \text{and } C_5\text{-}C_8\,\underline{\text{heterocycloalkyl}}\,\underline{\text{heterocyclohydrocarbyl}}\, \text{moieties}$ of R₁ may optionally independently contain from one to three double or triple bonds; and wherein the C₁-C₄ alkyl hydrocarbyl moieties and C₁-C₆-alkyl hydrocarbyl moieties of R₈ can optionally independently be substituted with hydroxy, amino, C₁-C₄ alkyl, aryl, -CH₂-aryl₁ C₃-C₅ cycloalkyl, or -O-(C₁-C₄ alkyl), and can optionally independently be substituted with from one to six fluoro, and can optionally contain one or two double or triple bonds; and wherein each heterocycloalkyl heterocyclohydrocarbyl group of R₁ contains from one to three heteromoieties selected from oxygen, S(O)_m, nitrogen, and NR₁₂;

R₂ is hydrogen, C_1 - C_{12} alkyl hydrocarbyl, C_3 - C_8 cycloalkyl cyclohydrocarbyl , C_4 - C_8 heterocycloalkyl-heterocyclohydrocarbyl, -(C_1 - C_6 alkylene hydrocarbylene)(C_3 - C_8 cycloalkyl cyclohydrocarbyl), -(C_3 - C_8 cycloalkylene cyclohydrocarbylene)(C_3 - C_8 heterocycloalkyl heterocyclohydrocarbyl), -(C_1 - C_6 alkylene hydrocarbylene)(C_4 - C_8 heterocycloalkyl heterocyclohydrocarbyl), aryl, -(C_1 - C_6 alkylene hydrocarbylene)aryl, or -(C_3 - C_8 cycloalkylene cyclohydrocarbylene)(aryl); wherein each of the foregoing R₂ groups may optionally be substituted with from one to three substituents independently selected from chloro, fluoro, and C_1 - C_6 alkyl, wherein one of said one to three substituents can further be selected from bromo, iodo, C_1 - C_6 alkoxy, -OH, -O-CO-(C_1 - C_6 alkyl), -O-CO-N(C_1 - C_4 alkyl)(C_1 - C_2 alkyl), -S(O)(C_1 - C_6 alkyl), -S(O)(C_1 - C_6

wherein the C_1 - C_{12} alkyl hydrocarbyl, -(C_1 - C_6 alkylene hydrocarbylene), -(C_5 - C_8 cycloalkyl), -(C_5 - C_8 cycloalkylene), and -(C_5 - C_8 heterocycloalkyl) and cyclohydrocarbyl gropups of 5 - 8 carbon atoms, cyclohydrocarbylene groups of 5 to 8 carbon atoms and heterocyclohydrocarbyl groiups of 5 to 8 atoms moieties of R_2 may optionally independently contain from one to three double or triple bonds, and wherein each heterocycloalkyl heterocyclohydrocarbyl group of R_2 contains from one to three heteromoieties selected from oxygen, $S(O)_m$, nitrogen, and NR_{12} ,

or when R₁ and R₂ are as in -NHCHR₁R₂, -OCHR₁R₂, -SCHR₁R₂, -CHR₁R₂ or -NR₁R₂, R₁ and R₂ of B may form a saturated 5- to 8-membered ring which may optionally contain one or two double bonds and in which one or two of the ring carbons may optionally be replaced by an oxygen, S(O)_m, nitrogen or NR₁₂, and which carbocyclic ring can optionally be substituted with from 1 to 3 substituents selected from the group consisting of hydroxy, C₁-C₄ alkyl, fluoro, chloro, bromo, iodo, CF₃, -O-(C₁-C₄ alkyl), -O-CO-(C₁-C₄ alkyl), -O-CO-NH(C₁-C₄ alkyl), -O-CO-NH(C₁-C₄ alkyl), -NH(C₁-C₄ alkyl), -N(C₁-C₂ alkyl)(C₁-C₄ alkyl), -S(C₁-C₄ alkyl), -N(C₁-C₄ alkyl), -N(C₁-C₄ alkyl), -CON(C₁-C₄ alkyl), -CON(C₁-C₄ alkyl), CN, NO₂, -OSO₂(C₁-C₄ alkyl), -SO(C₁-C₄ alkyl), and -SO(C₁-C₄ alkyl), wherein one of said one to three substituents can further be selected from phenyl;

 R_3 is methyl, ethyl, fluoro, chloro, bromo, iodo, cyano, methoxy, OCF₃, NH₂, NH(C₁-C₂ alkyl), N(CH₃)₂, -NHCOCF₃, -NHCH₂CF₃, S(O)_m(C₁-C₄ alkyl), CONH₂, -CONHCH₃, CON(CH₃)₂, -CF₃, or CH₂OCH₃;

 R_4 is hydrogen, C_1 - C_4 alkyl hydrocarbyl, C_3 - C_5 cycloalkyl, $-(C_1$ - C_4 -alkylene hydrocarbylene)(C_3 - C_5 cycloalkyl), $-(C_3$ - C_5 cycloalkyl), $-(C_3$ - C_5 cycloalkylene)(C_3 - C_6 cycloalkyl), cyano, fluoro, chloro, bromo, iodo, $-OR_{24}$ C_1 - C_6 alkoxy, -O- cycloalkyl), -O- $(C_1$ - C_4 alkylene hydrocarbylene)(C_3 - C_5 cycloalkyl), -O- $(C_3$ - C_5 cycloalkylene)(C_3 - C_5 cycloalkyl), $-CH_2SC(S)O(C_1$ - C_4 alkyl), $-CH_2OF_3$ CH_2OF_3 , CF_3 , amino, nitro, $-NR_{24}R_{25}$, $-(C_1$ - C_4 alkylene hydrocarbylene)Cl, $-(C_1$ - C_4 alkylene hydrocarbylene)Cl, $-(C_1$ - C_4 alkylene hydrocarbylene)Cl, $-(C_1$ - C_4 alkylene hydrocarbylene)NR₂₄R₂₅, $-NHCOR_{24}$, $-NHCONR_{24}R_{25}$, $-COONR_{24}$, $-COONR_{24}$, $-COONNR_{24}R_{25}$, $-COONNNNR_{24}R_{25}$, and $-COOR_{24}$, wherein the alkyl hydrocarbyl and alkylene hydrocarbylene groups of R_4 may optionally independently contain one or two double or triple bonds and may optionally independently be substituted with one or two substituents R_{10} independently selected from hydroxy, amino, $-NHCOCH_3$, $-NHCOCH_2Cl$, $-NH(C_1$ - C_2 alkyl), $-N(C_1$ - C_2 alkyl)(C_1 - C_2 alkyl), $-COO(C_1$ - C_4 alkyl), $-COO(C_1$ - C_4

R₅ is aryl or heteroaryl and is substituted with from one to four substituents R₂₇

independently selected from halo, C₁-C₁₀ alkyl hydrocarbyl, -(C₁-C₄ hydrocarbylene)(C₃-C₈ cycloalkyl), -(C₁-C₄ alkylene hydrocarbylene)(C₄-C₈ heterocycloalkyl), -(C₃-C₈ cycloalkyl), -(C₄-C₈ heterocycloalkyl), -(C₃-C₈ cycloalkylene)(C₃-C₈ cycloalkyl), -(C₃-C₈ cycloalkylene)(C₄-C₈ heterocycloalkyl), C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, nitro, cyano, $-NR_{24}R_{25}, \quad -NR_{24}COR_{25}, \quad -NR_{24}CO_{2}R_{26}, \quad -COR_{24}, \quad -OR_{25}, \quad -CONR_{24}R_{25}, \quad -\frac{CO(NOR_{22})R_{25}}{25}$ $-CON(OR_{22})R_{23}$, $-CO_2R_{26}$, $-C=N(OR_{22})R_{23}$, and $-S(O)_mR_{23}$; wherein said C_1-C_{10} alkyl, C_3-C_8 cycloalkyl, (C₁-C₄ alkylene hydrocarbylene), (C₃-C₈ cycloalkyl), (C₃-C₈ cycloalkylene), and (C₄-C₈ heterocycloalkyl) groups can be optionally substituted with from one to three substituents independently selected form C₁-C₄ alkyl, C₃-C₈ cycloalkyl, (C₁-C₄ alkylene hydrocarbylene)(C₃-C₈ cycloalkyl), -(C₃-C₈ cycloalkylene)(C₃-C₈ cycloalkyl), C₁-C₄ haloalkyl, hydroxy, C₁-C₆ alkoxy, nitro, halo, cyano, -NR₂₄R₂₅, -NR₂₄COR₂₅, NR₂₄CO₂R₂₆, -COR₂₄, -OR₂₅, -CONR₂₄R₂₅, CO₂R₂₆, -CO(NOR₂₂)R₂₅, and -S(O)_mR₂₃; and wherein two adjacent substituents of the R₅ group can optionally form a 5-7 membered ring, saturated or unsaturated, fused to-R⁵ R₅, which ring optionally can contain one, two, or three heterologous members independently selected from O, S(O)_m, and N, but not any -S-S-, -O-O-, -S-O-, or -N-S- bonds, and which ring is optionally substituted with C₁-C₄ alkyl, C₃-C₈ cycloalkyl, -(C₁-C₄ alkylene)(C₃-C₈ cycloalkyl), -(C₃-C₈ cyloalkylene)(C₃-C₈ cycloalkyl), C₁-C₄ haloalkyl, nitro, halo, cyano -NR₂₄R₂₅, NR₂₄COR₂₅, $NR_{24}CO_{2}R_{26}$, $-COR_{24}$, $-OR_{25}$, $-CONR_{24}R_{25}$, $CO_{2}R_{26}$, $-CO(NOR_{26})R_{25}$, or $-S(O)_{m}R_{23}$, wherein one of said one to four optional substituents R₂₇, can further be selected from -SO₂NH(C₁-C₄ alkyl), -SO₂NH(C₁-C₄ alkylene)(C₃-C₈ cycloalkyl), SO₂NH(C₃-C₈ cycloalkyl), -SO₂NH(C₃-C₈ $cycloalkylene) (C_3-C_8 \ cycloalkyl), \ -SO_2N(C_1-C_4 \ alkyl) (C_1-C_2 \ alkyl), \ -SO_2NH_2, \ -NHSO_2(C_1-C_4 \$ alkyl), -NHSO₂(C₃-C₈ cycloalkyl), -NHSO₂(C₁-C₄ alkylene)(C₃-C₈ cycloalkyl), and -NHSO₂(C₃-C₈ cycloalkylene)(C₃-C₈ cycloalkyl); and wherein the alkyl hydrocarbyl, and alkylene hydrocarbylene groups of R₅ may independently optionally contain one double or triple bond;

 R_7 is hydrogen, methyl, fluoro, chloro, bromo, iodo, cyano, hydroxy, $-O(C_1 - C_2)$ alkyl), -O(cyclopropyl), $-COO(C_1 - C_2)$ alkyl), $-COO(C_3 - C_8)$ cycloalkyl), $-OCF_3$, $-CF_3$, $-CF_3$, $-CH_2OH$ or $-CH_2OCH_3$,

R₁₁ is hydrogen, hydroxy, fluoro, ethoxy, or methoxy;

R₁₂ is hydrogen or C₁-C₄ alkyl;

 R_{22} is independently at each occurrence selected from hydrogen, C_1 - C_4 alkyl, C_5 - C_6 alkenyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, C_3 - C_8 cycloalkyl, $(C_3$ - C_8 cycloalkylene)(C_3 - C_8 cycloalkyl); and $(C_1$ - C_4 alkylene)(C_3 - C_8 cycloalkyl);

 R_{22} is independently at each occurrence selected from hydrogen, $C_1.C_{14}$ alkyl, $C_1.C_{14}$ haloalkyl, C_3-C_6 alkenyl, $C_3.C_6$ alkynyl, $C_3.C_8$ cycloalkyl, $(C_3-C_8$ cycloalkylene)(C_3-C_8 cycloalkyl), and $(C_1.C_4)$ alkylene)($C_3.C_8$ cycloalkyl);

 R_{23} is independently at each occurrence selected from C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_2 - C_8 alkoxyalkyl, C_3 - C_8 cycloalkyl, -(C_1 - C_4 alkylene)(C_3 - C_8 cycloalkyl), -(C_3 - C_8 cycloalkyl), aryl, -(C_1 - C_4 alkylene)aryl, piperidine, pyrrolidine, piperazine, N-methylpiperazine, morpholine, and thiomorpholine;

R₂₄ and R₂₅ are independently at each occurrence selected from hydrogen, -C₁-C₄ alkyl, C₁-C₄ haloalkyl, especially CF₅, -CHF₂, CF₂CF₅, or CH₂CF₅, -(C₁-C₄ alkylene)OH, -(C₁-C₄ alkylene)-O-(C₁-C₄ alkylene)-O-(C₃-C₅ cycloalkyl), C₃-C₈ cycloalkyl, -(C₁-C₄ alkylene)(C₃-C₈ cycloalkyl), -(C₃-C₈ cycloalkylene)(C₃-C₈ cycloalkyl), -(C₄-C₈ heterocycloalkylene)(C₄-C₈ heterocycloalkylene)(C₄-C₈ heterocycloalkylene)(C₄-C₈ heterocycloalkylene)(C₄-C₈ heterocycloalkylene)(C₄-C₈ heterocycloalkylene)(aryl), wherein the -C₄-C₈ heterocycloalkylene)(by aryl, and -(C₁-C₄ alkylene)(aryl), wherein the -C₄-C₈ heterocycloalkylene)(by aryl, and can optionally contain one or two double or triple bonds; or, when R₂₄ and R₂₅ are as NR₂₄R₂₅, -C(O)NR₂₄R₂₅, -(C₁-C₄ alkylene)NR₂₄R₂₅, or -NHCONR₂₄R₂₅, then NR₂₄R₂₅ may further optionally form a 4 to 8 membered heterocyclic ring optionally containing one or two further hetero members independently selected from S(O)_m, oxygen, nitrogen, and NR₁₂, and optionally containing from one to three double bonds;

 R_{26} is independently at each occurrence selected from C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_3 - C_8 cycloalkyl, -(C_1 - C_4 alkylene)(C_3 - C_8 cycloalkyl), -(C_3 - C_8 cycloalkylene)(C_3 - C_8 cycloalkyl), aryl, and -(C_1 - C_4 alkylene)(aryl); and

wherein each m is independently zero, one, or two,

with the proviso that heterocycloalkyl heterocyclohydrocarbylene groups of the compound of formula-I,-H, or HH do not comprise any -S-S-, -S-O-, -N-S-, or -O-O- bonds, and do not comprise more than two oxygen or $S(O)_m$ heterologous members.

2. A compound according to claim 1 of the formula

$$R_3$$
 R_4
 ZR_5

or a pharmaceutically acceptable salt thereof, wherein

A isCR₇;

 $B is -NR_1R_2, -CR_1R_2R_{11}, -C(=CR_2R_{12})R_1, -NHCHR_1R_2, -OCHR_1R_2, -SCHR_1R_2, -CHR_2OR_{12}, -CHR_2SR_{12}, -C(S)R_2 or -C(O)R_2;$

Z is -NH, O, S, N(C_1 - C_2 alkyl) or C($R_{13}R_{14}$) wherein R_{13} and R_{14} are each independently, hydrogen, trifluoromethyl or methyl or one of R_{13} and R_{14} is cyano and the other is hydrogen or methyl;

 R_1 is C_1 - C_6 alkyl-hydrocarbyl which may optionally be substituted with one or two substituents R_8 independently selected from the group consisting of hydroxy, fluoro, chloro, bromo, iodo, CF_3 , C_1 - C_4 alkoxy, -O-CO-(C_1 - C_4 a alkyl-hydrocarbyl), -O-CO-NH(C_1 - C_4 alkyl-hydrocarbyl), -O-CO-N(C_1 - C_4 alkyl-hydrocarbyl)(C_1 - C_2 alkyl-hydrocarbyl), -N(C_1 - C_4 alkyl-hydrocarbyl), -S(C_1 - C_4 alkyl), -N(C_1 - C_4)CO(C_1 - C_4 alkyl-hydrocarbyl), -COO(C_1 - C_4 alkyl-hydrocarbyl) alkyl-hydrocarbyl, -COO(C_1 - C_4 alkyl-hydrocarbyl), -CON(C_1 - C_4 alkyl-hydrocarbyl), -CON(C_1 - C_4 alkyl-hydrocarbyl), and wherein said C_1 - C_6 alkyl-hydrocarbyl and the (C_1 - C_4)alkyl-hydrocarbyl moieties in the foregoing R_1 groups may optionally contain one carbon-carbon double or triple bond,

 R_2 is C_1 - C_{12} alkyl-hydrocarbyl, aryl or -(C_1 - C_4 alkylene hydrocarbylene) aryl wherein said aryl is phenyl, naphthyl, thienyl, benzothienyl, pyridyl, quinolyl, pyrazinyl, pyrimidyl, imidazolyl, furanyl, benzofuranyl, benzothiazolyl, isothiazolyl, benzisothiazolyl, benzisoxazolyl, benzimidazolyl, indolyl, or benzoxazolyl; 3- to 8-membered cycloalkyl or -(C_1 - C_6 alkylene)cycloalkyl, wherein one or two of the ring carbons of said cycloalkyl having at least 4 ring members and the cycloalkyl moiety of said -(C_1 - C_6 alkylene)cycloalkyl having at least 4 ring members may optionally be replaced by an oxygen or sulfur atom or by N- R_9 wherein R_9 is hydrogen or C_1 - C_4 alkyl, and wherein each of the foregoing R_2 groups may optionally be substituted with from one to three substituents independently selected from chloro, fluoro and C_1 - C_4 alkyl, or with one substitutent selected from bromo, iodo, C_1 - C_6 alkoxy, -O-CO-(C_1 - C_6 alkyl), -O-CO-N(C_1 - C_4 alkyl)(C_1 - C_2 alkyl), -S(C_1 - C_6 alkyl), CN, NO₂, -SO(C_1 - C_4 alkyl), and -SO₂(C_1 - C_4 alkyl), and wherein said C_1 - C_{12} alkyl hydrocarbyland the C_1 - C_4 alkylene hydrocarboylene moiety of said -(C_1 - C_4 alkylene hydrocarbylene)aryl may optionally contain one carbon-carbon double or triple bond;

or $-NR_1R_2$ or $-CR_1R_2R_{11}$ may form a saturated 5- to 8-membered carbocyclic ring which may optionally contain one or two carbon-carbon double bonds and in which one or two of the ring carbons may optionally be replaced by an oxygen or sulfur atom;

R₃ is methyl, ethyl, fluoro, chloro, bromo, iodo, cyano, methoxy, OCF₃, methylthio, methylsulfonyl, CH₂OH, or CH₂OCH₃,

R₄ is hydrogen, C₁-C₄ alkyl hydrocarbyl, fluoro, chloro, bromo, iodo, C₁-C₄ alkoxy, trifluoromethoxy, -CH₂OCH₃, -CH₂OCH₂CH₃, -CH₂CH₂OCH₃, -CH₂OF₃, CF₃, amino, nitro, -NH(C₁-C₄ alkyl), -N(CH₃)₂, -NHCOCH₃, -NHCONHCH₃, -SO_n(C₁-C₄ alkyl hydrocarbyl) wherein n is 0, 1 or 2, cyano, hydroxy, -CO(C₁-C₄ alkyl hydrocarbyl hydrocarbyl), -CHO, cyano or -COO(C₁-C₄ alkyl) wherein said C₁-C₄ alkyl hydrocarbyl may optionally contain one double or triple bond and may optionally be substituted with one substitutent selected from hydroxy, amino, -NHCOCH₃, -NH(C₁-C₂ alkyl), -N(C₁-C₂ alkyl)₂, -COO(C₁-C₄ alkyl), -CO(C₁-,C₄ alkyl), C₁-C₃ alkoxy, C₁-C₃ thioalkyl, fluoro, chloro, cyano and nitro;

 R_5 is phenyl, naphthyl, thienyl, benzothienyl, pyridyl, quinolyl, pyrazinyl, pyrimidyl, furanyl, benzofuranyl, benzothiazolyl, or indolyl, wherein each of the above groups R_5 is substituted with from one to three substituents independently selected from fluoro, chloro, C_1 - C_6 alkyl, and C_1 - C_6 alkoxy, or with one substitutent selected from hydroxy, iodo, bromo, formyl, cyano, nitro, trifluoromethyl, amino, -(C_1 - C_6 alkyl)O(C_1 - C_6)alkyl, -NHCH₃, -N(CH₃)₂, -COOH, -COO(C_1 - C_4 alkyl), -CO(C_1 - C_4 alkyl), -SO₂NH(C_1 - C_4 alkyl), -SO₂NH(C_1 - C_4 alkyl), and wherein the C_1 - C_4 alkyl and C_1 - C_6 alkyl moieties of the foregoing R_5 groups may optionally be substituted with one or two fluoro groups or with one substitutent selected from hydroxy, amino, methylamino, dimethylamino and acetyl;

R₁₁ is hydrogen, hydroxy, fluoro, or methoxy;

R₁₂ is hydrogen or C₁-C₄ alkyl; and

or a pharmaceutically acceptable salt of such compound.

3 (Amended) A compound according to claim 2 wherein B is -NR, R_2 , -NHCHR₁R₂, -SCHR₁R₂ or -OCHR₁R₂, R_1 is C_1 - C_6 alkyl hydrocarbyl, which may optionally be substituted with one hydroxy, fluoro, CF_3 , or C_1 - C_2 alkoxy group and may optionally contain one double or triple bond; and R_2 is benzyl or C_1 - C_6 alkyl hydrocarbyl which may optionally contain one carbon-carbon double or triple bond, wherein said C_1 - C_6 alkyl or the phenyl moiety of said benzyl may optionally be substituted with fluoro, CF_3 , C_1 - C_2 alkyl, or C_1 - C_2 alkoxy

4. (Amended) A compound according to claim 2 wherein R_1 is C_1 - C_6 alkyl hydrocarbyl which may be substituted by fluoro, CF_3 , hydroxy, C_1 - C_2 alkyl or C_1 - C_2 alkoxy and which may optionally contain one carbon-carbon double or triple bond.

A pharmaceutical composition for the treatment of (a) a disorder or condition 13. (Amended) the treatment of which can be effected or facilitated by antagonizing CRF, including but not limited to disorders induced or facilitated by CRF, or (b) a disorder or condition selected from inflammatory disorders such as rheumatoid arthritis and osteoarthritis, pain, asthma, psoriasis and allergies; generalized anxiety disorder; panic; phobias, including social phobia, agoraphobia, and specific phobias; obsessive-compulsive disorder; post-traumatic stress disorder; sleep disorders induced by stress; pain perception such as fibromyalgia; mood disorders such as depression, including major depression, single episode depression, recurrent depression, child abuse induced depression, mood disorders associated with premenstrual syndrome, and postpartum depression; dysthemia; bipolar disorders; cyclothymia; chronic fatigue syndrome; stress-induced headache; cancer; irritable bowel syndrome, Crohn's disease; spastic colon; post operative ileus; ulcer; diarrhea; stress-induced fever; human immunodeficiency virus infections; neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease; gastrointestinal diseases; eating disorders such as anorexia and bulimia nervosa; hemorrhagic stress; chemical dependencies or addictions, including dependencies or addictions to alcohol, cocaine, heroin, benzodiazapines, or other drugs; drug or alcohol withdrawal symptoms; stress-induced psychotic episodes; euthyroid sick syndrome; syndrome of inappropriate antidiuretic hormone; obesity; infertility; head trauma; spinal cord trauma; ischemic neuronal damage, including cerebral ischemia, for example cerebral hippocampal ischemia; excitotoxic neuronal damage; epilepsy; stroke; immune dysfunctions including stress induced immune dysfunctions, including porcine stress syndrome, bovine shipping fever, equine paroxysmal fibrillation, confinement dysfunction in chicken, sheering stress in sheep, and human animal interaction stress in dogs; muscular spasms; urinary incontinence; senile dementia of the Alzheimer's type; multi infarct dementia; amyotrophic lateral sclerosis; hypertension; tachycardia; congestive heart failure; osteoporosis; premature birth; hypoglycemia, and Syndrome X in a mammal or bird, comprising an amount of a compound according to claim 1 that is effective in the treatment of such disorder or condition, and a pharmaceutically acceptable carrier.

14. A pharmaceutical composition according to claim 13 for the treatment of a disorder selected from inflammatory disorders such as rheumatoid arthritis and osteoarthritis, pain, asthma, psoriasis and allergies; generalized anxiety disorder; panic; phobias; obsessive compulsive disorder; post-traumatic stress disorder; sleep disorders induced by stress; pain perception such as fibromyalgia; mood disorders such as depression, including major depression, single episode depression, recurrent depression, child abuse induced depression, and postpartum depression; dysthemia; bipolar disorders; cyclothymia; fatigue syndrome; stress induced headache; cancer;

irritable bowel syndrome, Crohn's disease; spastic colon, human immunodeficiency virus (HIV) infections; neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease; gastrointestinal diseases; eating disorders such as anorexia and bulimia nervosa; hemorrhagic stress; chemical dependencies and addictions; obesity; infertility; head traumas; spinal cord trauma; ischemic neuronal damage; excitotoxic neuronal damage; epilepsy; stroke; immune dysfunctions including stress induced immune dysfunctions; muscular spasms; urinary incontinence; senile dementia of the Alzheimer's type; multi infarct dementia; amyotrophic lateral sclerosis; and hypoglycemia in a mammal, including a human.