Coursework 1 – Transient Conduction

Adam Duncan

October 22, 2021

1 Part A: Using lumped capacitance

1.1 Assumptions

- Internal temperature of the steel ball is uniform at any time t.
- No change in water temperature
- No heat transfer by radiation
- Material is standard carbon steel
- Material properties constant (taken at average temperature $T=469^{\circ}C$)

1.2 Properties

Table 1: Properties from problem

Property	Value	Unit
Characteristic length, L	5	cm
Diameter, D	10	cm
Temperature of the water, T_w	38	^{o}C
Initial temperature of steel ball, $T_{s,1}$	900	^{o}C
Final temperature of steel ball, $T_{s,2}$	200	^{o}C
Heat transfer coefficient, h	600	W/m^2K

Property	Value at $T_{avg}(469 ^{o}C)$	Unit	Source
Specific heat capacity, Cp	552	J/kgK	
Density	7.8×10^3	kg/m^3	
Conductivity	40	W/mK	

1.3 Schematic

Figure 1: Part A schematic at initial and final state.

1.4 Analysis

Energy balance for closed system gives the following equation.

$$\dot{Q} = hA(T_s - T_f) = C_p \rho V \frac{dT_c}{dt} \tag{1}$$

Where \dot{Q} is energy flow [W], h is the heat transfer coefficient $[W/m^2K]$, A is the surface area between the ball and water $[m^2]$, T_s is the temperature of the steel ball $[{}^oC]$, T_f is the temperature of the water $[{}^oC]$, C_p is the specific heat capacity [J/mK], ρ is the density of the steel ball $[kg/m^3]$, V is the volume of the steel ball $[m^3]$ and t is the time [s].

Rearranging (1) to separate the variables gives.

$$\frac{1}{T_s - T_f} dT_c = \frac{hA}{C_p \rho V} dt \tag{2}$$

Which integrates to give.

$$\ln\left(\frac{T_{s1} - T_f}{T_{s2} - T_f}\right) = \frac{hA}{C_p \rho V} (t_2 - t_1) \tag{3}$$

Where t_i and T_{si} are the time [s] and temperature $[{}^{o}C]$ receptively at state i.

Rearranging (3) to make t_2 the subject gives.

$$t_2 = \frac{C_p \rho V}{hA} \left(\ln \left(\frac{T_{s1} - T_f}{T_{s2} - T_f} \right) \right) \tag{4}$$

Substituting in the values for the variables given in Figure 1 gives the final value.

$$t_2 = 205s \tag{5}$$

Where t_2 is the time for the steel ball to reach a temperature of $200^{o}C$ under given assumptions.

2 Part B: Lumped capacitance justification

$$Bi = \frac{hL_c}{k} \tag{6}$$

Where h is conductivity [W/mK]

$$t = \frac{f_0 \rho C_p R^2}{k} \tag{7}$$

- 3 Part C: Transient conduction
- 4 Part D: Non-infinite water bath
- 5 Part E: Equilibrium temperature