DEEPSMILES

Noel O'Boyle

Andrew Dalke

SMILES input

c1cccc1

ENCODER Neural Network

CONTINUOUS MOLECULAR REPRESENTATION (Latent Space)

Gómez-Bombarelli et al. Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules. *ACS Central Science* **2018**, *4*, 268–276.

DECODER Neural Network

SMILES output

c1ccccc1

DEEPSMILES

Noel O'Boyle

Andrew Dalke

SMILES input

c1ccccc1

ENCODER Neural Network

CONTINUOUS MOLECULAR REPRESENTATION (Latent Space)

Gómez-Bombarelli et al. Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules. ACS Central Science 2018, 4, 268–276.

DECODER Neural Network

Invalid syntax

SMILES output

c1ccccc1 c1ccccc1(C)C c1ccc(cc1 c1ccccc2

RING CLOSURE NOTATION

SMILES ...c1ccccc1c2ccccc2c3ccccc3

RING CLOSURE NOTATION

SMILES ...c1ccccc1c2ccccc2c3ccccc3

DeepSMILES

...cccccc**6**

BRANCH NOTATION

SMILES

c1ccc(C(=O)Cl)cc1

DeepSMILES

c1cccC=O)Cl))cc1

$\overrightarrow{\Box}$		
= O	CI ^[]	c1
=0 C	С	С
С	С	С
С	С	С
С	С	С
c1	c1	c1

SH Eisman. A Polish-type notation for chemical structures. *J. Chem. Doc.* **1964**, *4*, 186. H Hiz. A linearization of chemical graphs. *J. Chem. Doc.* **1964**, *4*, 173.

Noel O'Boyle

Andrew Dalke

See preprint on ChemRxiv for more info

https://github.com/nextmovesoftware/deepsmiles

```
>>> import deepsmiles as ds
>>> converter = ds.Converter(rings=True,
... branches=True)
>>> converter.encode("c1ccccc1")
'cccccc6'
>>> converter.decode("ccccc6")
'c1ccccc1'
```

