ΕΞΕΤΑΣΕΙΣ ΦΕΒΡΟΥΑΡΙΟΥ 2009

Θέμα 1

- 1. Απλοποιείστε **αλγεθρικά** τη συνάρτηση F(X,Y,Z) = [(X⊕Y) X']' + (Y' ⊙ Z).
- 2. Δώστε λογικό διάγραμμα για την F χρησιμοποιώντας πύλες AND, OR, και NOT
- Δώστε λογικό διάγραμμα για την F χρησιμοποιώντας μόνο πύλες NAND, αφού πρώτα μετασχηματίσετε αλγεβρικά την απλοποιημένη συνάρτηση.
- 1. Eivat $F = [(X \oplus Y) \ X']' + (Y' \odot Z) = [(XY' + X'Y)X']' + Y'Z + YZ' = (X'Y)' + Y'Z + YZ' = X + Y' + Y'Z + YZ' + YZ' + YZ' = X + Y' + YZ' +$

2.

3. F(X, Y, Z) = X + Y' + Z' = (X'YZ)' = [(XX)'YZ]'

Θέμα 2

1. Στις εισόδους Α, Β και C του κυκλώματος που ακολουθεί εφαρμόζουμε τις κυματομορφές του σχήματος :

Ζητείται να σχεδιαστούν οι κυματομορφές των εξόδων Υ₁ και Υ₂.

- 2. Να σχεδιάσετε ισοδύναμο με το δοθέν κύκλωμα, χρησιμοποιώντας το δυνατόν μικρότερο αριθμό πυλών NOR δύο εισόδων.
- 1. Για B=0, $Y_1 = Y_2 = 0$. Για B=1, είναι $Y_1 = 0$, όταν A ή C στο 1, και $Y_2 = 0$ όταν A ≠ C.
- 2. Y₁(A,B,C) = (A+C) 'B = {[(A+C)']'+B'}' = {[(A+C)'+ (A+C)']' + (B+B)'}' Y₂(A,B,C) = (A'C'+AC) B = [(A'C'+AC)' + (B+B)']' = {[(A+C)'+ (A'+C')']' + (B+B)'}' Με αυτήν την απλοποίηση διαμοιράζουμε τον όρο (A+C)' και στις δύο συναρτήσεις.

Θέμα 3

- 1. Δώστε τον πίνακα αληθείας για τη συνάρτηση F(x,y,z), η οποία δέχεται ως είσοδο τον αριθμό $A=xyz_2$ και αν ο A είναι μικρότερος του 3_{10} , παράγει τον αντίθετό του σε κώδικα συμπληρώματος ως προς 2, αλλιώς παράγει τον A σε κώδικα A Gray.
- 2. Δώστε λογικό διάγραμμα για την F, χρησιμοποιώντας όσο το δυνατόν λιγότερες πύλες δύο εισόδων.
- 3. Δώστε λογικό διάγραμμα για την F χρησιμοποιώντας *μόνο* πολυπλέκτες 4 σε 1 και αντιστροφείς.

4. Υλοποιείστε τις F και $G(x,y) = \Pi(0,3)$ από κοινού, χρησιμοποιώντας έναν αποκωδικοποιητή από F σε F και πύλες F F ΝΟΝ.

1.

X	y	Z	$F(x,y,z)=f_2f_1f_0$
0	0	0	000
0	0	1	111
0	1	0	110
0	1	1	010
1	0	0	110
1	0	1	111
1	1	0	101
1	1	1	100

2. Απλοποιώντας με Karnaugh παίρνουμε:

 $f_2 = x + y'z + yz' = x + (y \oplus z)$ με προφανή υλοποίηση.

3.

4. $G(x,y) = \Pi(0,3) = \Sigma(1,2) \Rightarrow G(x,y,z) = \Sigma(2,3,4,5)$.

Θέμα 4

Δίνεται η συνάρτηση

$$F(A,B) = \begin{cases} 6A, & \alpha v \ B = 0 \\ 3A + 16, & \alpha v \ B = 1 \end{cases}$$

όπου Α ένας δυαδικός αριθμός των δύο δυαδικών ψηφίων ($A = \alpha_1 \alpha_0$) και B μεταβλητή του ενός δυαδικού ψηφίου. Έχετε στη διάθεσή σας S πολυπλέκτες S σε S και δύο ημιαθροιστές. Σχεδιάστε κύκλωμα για την υλοποίηση της S (Υπόδειξη : Χρησιμοποιείστε ότι το S αισοδυναμεί με αριστερή ολίσθηση του S κατά S θέσεις).

Έστω ότι Σ και Κ συμβολίζουν τις συναρτήσεις εξόδου αθροίσματος και κρατουμένου ενός ημιαθροιστή αντίστοιχα. Είναι $6A = 4A + 2A = \alpha_1\alpha_000 + 0\alpha_1\alpha_00 = K(\alpha_1+K(\alpha_1+\alpha_0))\Sigma(\alpha_1+K(\alpha_1+\alpha_0))\Sigma(\alpha_1+\alpha_0)\alpha_00$. Επίσης είναι $3A+16 = 2A+A+10000 = 00\alpha_1\alpha_00 + 000 \alpha_1\alpha_0 + 10000 = 1K(\alpha_1+K(\alpha_1+\alpha_0))\Sigma(\alpha_1+K(\alpha_1+\alpha_0))\Sigma(\alpha_1+\alpha_0)\alpha_0$. Παρατηρούμε συνεπώς ότι μπορούμε να πάρουμε τις απαιτούμενες συναρτήσεις μέσω 2 ημιαθροιστών με διάδοση κρατουμένου και να επιλέξουμε μεταξύ των δύο αποτελεσμάτων χρησιμοποιώντας 1 πολυπλέκτη 2 σε 1 για κάθε δυαδικό ψηφίο του αποτελέσματος με σήμα ελέγχου το B.

