

More on Supervised Learning

Amir H. Payberah payberah@kth.se 21/11/2018

Let's Start with an Example

► Given the dataset of m people.

id	age	income	student	credit rating	buys computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middleage	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
:	:	:	:	:	:

► Given the dataset of m people.

	id	age	income	student	credit rating	buys computer
-	1	youth	high	no	fair	no
	2	youth	high	no	excellent	no
	3	middleage	high	no	fair	yes
	4	senior	medium	no	fair	yes
	5	senior	low	yes	fair	yes
	:	:	:	÷	÷	Ė

▶ Predict if a new person buys a computer?

▶ Given the dataset of m people.

id	age	income	student	credit rating	buys computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middleage	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
:	:	:	:	:	:
•			•	•	•

- ▶ Predict if a new person buys a computer?
- ▶ Given an instance $\mathbf{x}^{(i)}$, e.g., $\mathbf{x}_1^{(i)} = \text{senior}$, $\mathbf{x}_2^{(i)} = \text{medium}$, $\mathbf{x}_3^{(i)} = \text{no}$, and $\mathbf{x}_4^{(i)} = \text{fair}$, then $\mathbf{y}^{(i)} = ?$

id	age	income	student	credit rating	buys computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middleage	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
- 1	:	:	:	:	:

▶ Given an input instance $x^{(i)}$, for which the class label $y^{(i)}$ is unknown.

- ▶ Given an input instance $\mathbf{x}^{(i)}$, for which the class label $\mathbf{y}^{(i)}$ is unknown.
- ► The attribute values of the input (e.g., age or income) are tested.

- ▶ Given an input instance $\mathbf{x}^{(i)}$, for which the class label $\mathbf{y}^{(i)}$ is unknown.
- ► The attribute values of the input (e.g., age or income) are tested.
- ▶ A path is traced from the root to a leaf node, which holds the class prediction for that input.

- ▶ Given an input instance $x^{(i)}$, for which the class label $y^{(i)}$ is unknown.
- ► The attribute values of the input (e.g., age or income) are tested.
- ▶ A path is traced from the root to a leaf node, which holds the class prediction for that input.
- ▶ E.g., input $\mathbf{x}^{(i)}$ with $\mathbf{x}_1^{(i)} = \text{senior}$, $\mathbf{x}_2^{(i)} = \text{medium}$, $\mathbf{x}_3^{(i)} = \text{no}$, and $\mathbf{x}_4^{(i)} = \text{fair}$.

Decision Tree

Decision Tree

► A decision tree is a flowchart-like tree structure.

- ► A decision tree is a flowchart-like tree structure.
 - The topmost node: represents the root

- ► A decision tree is a flowchart-like tree structure.
 - The topmost node: represents the root
 - Each branch: represents an outcome of the test

- ► A decision tree is a flowchart-like tree structure.
 - The topmost node: represents the root
 - Each branch: represents an outcome of the test
 - Each internal node: denotes a test on an attribute

- ► A decision tree is a flowchart-like tree structure.
 - The topmost node: represents the root
 - Each branch: represents an outcome of the test
 - Each internal node: denotes a test on an attribute
 - Each leaf: holds a class label

▶ Decision trees are constructed in a top-down recursive divide-and-conquer manner.

- ▶ Decision trees are constructed in a top-down recursive divide-and-conquer manner.
- ▶ The algorithm is called with the following parameters.

- ▶ Decision trees are constructed in a top-down recursive divide-and-conquer manner.
- ▶ The algorithm is called with the following parameters.
 - Data partition D: initially the complete set of training data and labels D = (X, y).

- ▶ Decision trees are constructed in a top-down recursive divide-and-conquer manner.
- ▶ The algorithm is called with the following parameters.
 - Data partition D: initially the complete set of training data and labels D = (X, y).
 - Feature list: list of features $\{x_1^{(i)}, \dots, x_n^{(i)}\}$ of each data instance $x^{(i)}$.

- ▶ Decision trees are constructed in a top-down recursive divide-and-conquer manner.
- ▶ The algorithm is called with the following parameters.
 - Data partition D: initially the complete set of training data and labels D = (X, y).
 - Feature list: list of features $\{\mathbf{x}_1^{(i)},\cdots,\mathbf{x}_n^{(i)}\}$ of each data instance $\mathbf{x}^{(i)}$.
 - Feature selection method: determines the splitting criterion.

▶ 1. The tree starts as a single node, N, representing the training data instances D.

- ▶ 1. The tree starts as a single node, N, representing the training data instances D.
- ▶ 2. If all instances **x** in D are all of the same class, then node N becomes a leaf.

- ▶ 1. The tree starts as a single node, N, representing the training data instances D.
- 2. If all instances x in D are all of the same class, then node N becomes a leaf.
- ▶ 3. The algorithm calls feature selection method to determine the splitting criterion.

- ▶ 1. The tree starts as a single node, N, representing the training data instances D.
- ▶ 2. If all instances **x** in D are all of the same class, then node N becomes a leaf.
- ▶ 3. The algorithm calls feature selection method to determine the splitting criterion.
 - Indicates (i) the splitting feature x_k , and (ii) a split-point or a splitting subset.
 - The instances in D are partitioned accordingly.

- ▶ 1. The tree starts as a single node, N, representing the training data instances D.
- ▶ 2. If all instances **x** in D are all of the same class, then node N becomes a leaf.
- ▶ 3. The algorithm calls feature selection method to determine the splitting criterion.
 - Indicates (i) the splitting feature x_k , and (ii) a split-point or a splitting subset.
 - The instances in D are partitioned accordingly.
- ▶ 4. The algorithm repeats the same process recursively to form a decision tree.

► The training algorithm stops only when any one of the following conditions is true.

- ► The training algorithm stops only when any one of the following conditions is true.
- ▶ 1. All the instances in partition D at a node N belong to the same class.
 - It is labeled with that class.

- ► The training algorithm stops only when any one of the following conditions is true.
- ▶ 1. All the instances in partition D at a node N belong to the same class.
 - It is labeled with that class.
- ▶ 2. No remaining features on which the instances may be further partitioned.

- ► The training algorithm stops only when any one of the following conditions is true.
- ▶ 1. All the instances in partition D at a node N belong to the same class.
 - It is labeled with that class.
- ▶ 2. No remaining features on which the instances may be further partitioned.
- \triangleright 3. There are no instances for a given branch, that is, a partition D_i is empty.

- ▶ The training algorithm stops only when any one of the following conditions is true.
- ▶ 1. All the instances in partition D at a node N belong to the same class.
 - It is labeled with that class.
- ▶ 2. No remaining features on which the instances may be further partitioned.
- \triangleright 3. There are no instances for a given branch, that is, a partition D_i is empty.
- ▶ In conditions 2 and 3:
 - Convert node N into a leaf.
 - Label it either with the most common class in D.
 - Or, the class distribution of the node tuples may be stored.

- ► Assume A is the splitting feature
- ▶ Three possibilities to partition instances in D based on the feature A.
- ▶ 1. A is discrete-valued

- ► Assume A is the splitting feature
- ▶ Three possibilities to partition instances in D based on the feature A.
- ▶ 1. A is discrete-valued
 - Assume A has v distinct values $\{a_1, a_2, \dots, a_v\}$

- ► Assume A is the splitting feature
- ▶ Three possibilities to partition instances in D based on the feature A.
- ▶ 1. A is discrete-valued
 - Assume A has v distinct values {a₁, a₂, · · · , a_v}
 - A branch is created for each known value a_i of A and labeled with that value.

- ► Assume A is the splitting feature
- ▶ Three possibilities to partition instances in D based on the feature A.
- ▶ 1. A is discrete-valued
 - Assume A has v distinct values {a₁, a₂, · · · , a_v}
 - A branch is created for each known value a_i of A and labeled with that value.
 - Partition D_j is the subset of tuples in D having value a_j of A.

▶ 2. A is discrete-valued

- ▶ 2. A is discrete-valued
 - A binary tree must be produced.

▶ 2. A is discrete-valued

- · A binary tree must be produced.
- The test at node N is of the form $A \in S_A$?, where S_A is the splitting subset for A.

▶ 2. A is discrete-valued

- · A binary tree must be produced.
- The test at node N is of the form $A \in S_A$?, where S_A is the splitting subset for A.
- The left branch out of N corresponds to the instances in D that satisfy the test.

▶ 2. A is discrete-valued

- A binary tree must be produced.
- The test at node N is of the form $A \in S_A$?, where S_A is the splitting subset for A.
- The left branch out of N corresponds to the instances in D that satisfy the test.
- The right branch out of N corresponds to the instances in D that do not satisfy the test.

▶ 3. A is continuous-valued

- ▶ 3. A is continuous-valued
 - A test at node N has two possible outcomes: corresponds to A \leq s or A > s, with s as the split point.

▶ 3. A is continuous-valued

- A test at node N has two possible outcomes: corresponds to A ≤ s or A > s, with s as the split point.
- The instances are partitioned such that D_1 holds the instances in D for which $A \leq s$, while D_2 holds the rest.

▶ 3. A is continuous-valued

- A test at node N has two possible outcomes: corresponds to A ≤ s or A > s, with s as the split point.
- The instances are partitioned such that D_1 holds the instances in D for which $A \leq s$, while D_2 holds the rest.
- Two branches are labeled according to the previous outcomes.

Training Algorithm - Feature Selection Measures (1/2)

▶ Feature selection measure: how to split instances at a node N.

Training Algorithm - Feature Selection Measures (1/2)

- ► Feature selection measure: how to split instances at a node N.
- ▶ Pure partition: if all instances in a partition belong to the same class.

Training Algorithm - Feature Selection Measures (1/2)

- ▶ Feature selection measure: how to split instances at a node N.
- ▶ Pure partition: if all instances in a partition belong to the same class.
- ▶ The best splitting criterion is the one that most closely results in a pure scenario.

Training Algorithm - Feature Selection Measures (2/2)

▶ It provides a ranking for each feature describing the given training instances.

Training Algorithm - Feature Selection Measures (2/2)

- ▶ It provides a ranking for each feature describing the given training instances.
- ► The feature having the best score for the measure is chosen as the splitting feature for the given instances.

Training Algorithm - Feature Selection Measures (2/2)

- ▶ It provides a ranking for each feature describing the given training instances.
- ► The feature having the best score for the measure is chosen as the splitting feature for the given instances.
- ► Two popular feature selection measures are:
 - Information gain (ID3 and C4.5)
 - Gini index (CART)

Information Gain (Entropy)

▶ ID3 (Iterative Dichotomiser 3) uses information gain as its feature selection measure.

- ▶ ID3 (Iterative Dichotomiser 3) uses information gain as its feature selection measure.
- ► The feature with the highest information gain is chosen as the splitting feature for node N.

- ▶ ID3 (Iterative Dichotomiser 3) uses information gain as its feature selection measure.
- ► The feature with the highest information gain is chosen as the splitting feature for node N.
- ► The information gain is based on the decrease in entropy after a dataset is split on a feature.

► What's entropy?

- ► What's entropy?
- ▶ The average information needed to identify the class label of an instance in D.

- ► What's entropy?
- ▶ The average information needed to identify the class label of an instance in D.

$$\texttt{entropy}(\texttt{D}) = -\sum_{\texttt{i}=1}^{\texttt{m}} \texttt{p}_{\texttt{i}} \log_2(\texttt{p}_{\texttt{i}})$$

 \triangleright p_i is the probability that an instance in D belongs to class i, with m distinct classes.

- ► What's entropy?
- ▶ The average information needed to identify the class label of an instance in D.

$$\texttt{entropy}(\texttt{D}) = -\sum_{\texttt{i}=1}^{\texttt{m}} \texttt{p}_{\texttt{i}} \log_2(\texttt{p}_{\texttt{i}})$$

- \triangleright p_i is the probability that an instance in D belongs to class i, with m distinct classes.
- ▶ D's entropy is zero when it contains instances of only one class (pure partition).

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

$$\texttt{entropy(D)} = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

$$\texttt{entropy(D)} = -\sum_{\mathtt{i}=\mathtt{1}}^{\mathtt{m}} \mathtt{p_i} \, \mathsf{log_2}(\mathtt{p_i})$$

$$label = buys_computer \Rightarrow m = 2$$

$$\mathtt{entropy}(\mathtt{D}) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.94$$

Suppose we want to partition instances in D on some feature A with v distinct values, $\{a_1, a_2, \dots, a_v\}$.

KTH ID3 (4/8)

- Suppose we want to partition instances in D on some feature A with v distinct values, $\{a_1, a_2, \dots, a_v\}$.
- ▶ A can split D into v partitions $\{D_1, D_2, \dots, D_v\}$.

- Suppose we want to partition instances in D on some feature A with v distinct values, $\{a_1, a_2, \dots, a_v\}$.
- ▶ A can split D into v partitions $\{D_1, D_2, \dots, D_v\}$.
- ► The expected information required to classify an instance from D based on the partitioning by A is:

$$\mathtt{entropy}(\mathtt{A},\mathtt{D}) = \sum_{\mathtt{j}=1}^{\mathtt{v}} \frac{|\mathtt{D}_{\mathtt{j}}|}{|\mathtt{D}|} \mathtt{entropy}(\mathtt{D}_{\mathtt{j}})$$

- Suppose we want to partition instances in D on some feature A with v distinct values, $\{a_1, a_2, \dots, a_v\}$.
- ▶ A can split D into v partitions $\{D_1, D_2, \dots, D_v\}$.
- ► The expected information required to classify an instance from D based on the partitioning by A is:

$$\mathtt{entropy}(\mathtt{A},\mathtt{D}) = \sum_{\mathtt{j}=1}^{\mathtt{v}} \frac{|\mathtt{D}_{\mathtt{j}}|}{|\mathtt{D}|} \mathtt{entropy}(\mathtt{D}_{\mathtt{j}})$$

 $ightharpoonup \frac{|D_j|}{D}$ is the weight of the jth partition.

- Suppose we want to partition instances in D on some feature A with v distinct values, $\{a_1, a_2, \dots, a_v\}$.
- ▶ A can split D into v partitions $\{D_1, D_2, \dots, D_v\}$.
- ► The expected information required to classify an instance from D based on the partitioning by A is:

$$entropy(A,D) = \sum_{j=1}^{v} \frac{|D_j|}{|D|} entropy(D_j)$$

- $ightharpoonup \frac{|D_j|}{D}$ is the weight of the jth partition.
- ► The smaller the expected information required, the greater the purity of the partitions.

ID3 (5/8)

income	student	credit_rating	class	
high low medium high	no yes no yes	fair excellent excellent fair	yes yes yes yes	

$$\mathtt{entropy}(\mathtt{A},\mathtt{D}) = \sum_{\mathtt{j}=1}^{\mathtt{v}} \frac{|\mathtt{D}_{\mathtt{j}}|}{|\mathtt{D}|} \mathtt{entropy}(\mathtt{D}_{\mathtt{j}})$$

ID3 (5/8)

income	student	credit_rating	class	
high low medium high	no yes no yes	fair excellent excellent fair	yes yes yes yes	

$$\mathtt{entropy}(\mathtt{A},\mathtt{D}) = \sum_{\mathtt{j}=\mathtt{1}}^{\mathtt{v}} \frac{|\mathtt{D}_{\mathtt{j}}|}{|\mathtt{D}|} \mathtt{entropy}(\mathtt{D}_{\mathtt{j}})$$

$$\texttt{entropy}(\texttt{age}, \texttt{D}) = \frac{5}{14} \texttt{entropy}(\texttt{D}_{\texttt{youth}}) + \frac{4}{14} \texttt{entropy}(\texttt{D}_{\texttt{middle_aged}}) + \frac{5}{14} \texttt{entropy}(\texttt{D}_{\texttt{senior}})$$

ID3 (5/8)

	income	student	credit_rating	class	
	high low medium high	no yes no yes	fair excellent excellent fair	yes yes yes yes	

$$ext{entropy}(\mathtt{A},\mathtt{D}) = \sum_{\mathtt{j}=\mathtt{1}}^{\mathtt{v}} \frac{|\mathtt{D}_{\mathtt{j}}|}{|\mathtt{D}|} ext{entropy}(\mathtt{D}_{\mathtt{j}})$$

$$\texttt{entropy}(\texttt{age}, \texttt{D}) = \frac{5}{14} \texttt{entropy}(\texttt{D}_{\texttt{youth}}) + \frac{4}{14} \texttt{entropy}(\texttt{D}_{\texttt{middle_aged}}) + \frac{5}{14} \texttt{entropy}(\texttt{D}_{\texttt{senior}})$$

$$\text{entropy}(\text{age}, \text{D}) = \frac{5}{14}(-\frac{2}{5}\log_2(\frac{2}{5}) - \frac{3}{5}\log_2(\frac{3}{5})) + \frac{4}{14}(-\frac{4}{4}\log_2(\frac{4}{4})) + \frac{5}{14}(-\frac{3}{5}\log_2(\frac{3}{5}) - \frac{2}{5}\log_2(\frac{2}{5})) = 0.694$$

► The information gain Gain(A, D) is defined as:

$${\tt Gain}({\tt A},{\tt D}) = {\tt entropy}({\tt D}) - {\tt entropy}({\tt A},{\tt D})$$

► The information gain Gain(A, D) is defined as:

$${\tt Gain}({\tt A},{\tt D}) = {\tt entropy}({\tt D}) - {\tt entropy}({\tt A},{\tt D})$$

▶ It shows how much would be gained by branching on A.

► The information gain Gain(A, D) is defined as:

$$Gain(A,D) = entropy(D) - entropy(A,D)$$

- ▶ It shows how much would be gained by branching on A.
- ► The feature A with the highest Gain(A,D) is chosen as the splitting feature at node N.

Now, we can compute the information gain Gain(A) for the feature A = age.

$$\texttt{Gain}(\texttt{age},\texttt{D}) = \texttt{entropy}(\texttt{D}) - \texttt{entropy}(\texttt{age},\texttt{D}) = 0.940 - 0.694 = 0.246$$

Now, we can compute the information gain Gain(A) for the feature A = age.

$$\texttt{Gain}(\texttt{age}, \texttt{D}) = \texttt{entropy}(\texttt{D}) - \texttt{entropy}(\texttt{age}, \texttt{D}) = 0.940 - 0.694 = 0.246$$

- Similarly we have:
 - Gain(income, D) = 0.029
 - Gain(student, D) = 0.151
 - Gain(credit_rating,D) = 0.048

Now, we can compute the information gain Gain(A) for the feature A = age.

$$Gain(age, D) = entropy(D) - entropy(age, D) = 0.940 - 0.694 = 0.246$$

- Similarly we have:
 - Gain(income, D) = 0.029
 - Gain(student, D) = 0.151
 - Gain(credit_rating, D) = 0.048
- ► The age has the highest information gain among the attributes, it is selected as the splitting feature.

► The bias problem: information gain prefers to select features having a large number of values.

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle.aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle.aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle.aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

- ► For example, a split on RID would result in a large number of partitions.
 - Each partition is pure.
 - Info product entropy(RID, D) = 0, thus, the information gained by partitioning on this feature is maximal.

► The bias problem: information gain prefers to select features having a large number of values.

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle.aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle.aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle.aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

- ► For example, a split on RID would result in a large number of partitions.
 - Each partition is pure.
 - Info product entropy(RID, D) = 0, thus, the information gained by partitioning on this
 feature is maximal.
- ► Clearly, such a partitioning is useless for classification.

- ▶ C4.5 is a successor of ID3 that overcomes its bias problem.
- ▶ It normalizes the information gain using a split information value:

$$\begin{split} \text{SplitInfo}(\texttt{A},\texttt{D}) &= -\sum_{\texttt{j}=1}^{\texttt{v}} \frac{|\texttt{D}_{\texttt{j}}|}{|\texttt{D}|} \log_2(\frac{|\texttt{D}_{\texttt{j}}|}{|\texttt{D}|}) \\ \text{GainRatio}(\texttt{A},\texttt{D}) &= \frac{\texttt{Gain}(\texttt{A},\texttt{D})}{\texttt{SplitInfo}(\texttt{A},\texttt{D})} \end{split}$$

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

$$\begin{split} \text{SplitInfo(A,D)} &= -\sum_{j=1}^{v} \frac{|D_{j}|}{|D|} \log_{2}(\frac{|D_{j}|}{|D|}) \\ \text{SplitInfo(income,D)} &= -\frac{4}{14} \log_{2}(\frac{4}{14}) - \frac{6}{14} \log_{2}(\frac{6}{14}) - \frac{4}{14} \log_{2}(\frac{4}{14}) = 1.557 \end{split}$$

▶ Gain(income, D) = 0.029, therefore $GainRatio(income, D) = \frac{0.029}{1.557} = 0.019$.

Gini Impurity

► CART (Classification And Regression Tree) considers a binary split for each feature.

- ► CART (Classification And Regression Tree) considers a binary split for each feature.
- ▶ It uses the Gini index to measure the misclassification (impurity of D).

$$ext{Gini}(D) = 1 - \sum_{i=1}^{m} p_i^2$$

- ► CART (Classification And Regression Tree) considers a binary split for each feature.
- ▶ It uses the Gini index to measure the misclassification (impurity of D).

$$Gini(D) = 1 - \sum_{i=1}^{m} p_i^2$$

 \triangleright p_i is the probability that an instance in D belongs to class i, with m distinct classes.

- ► CART (Classification And Regression Tree) considers a binary split for each feature.
- ▶ It uses the Gini index to measure the misclassification (impurity of D).

$$ext{Gini}(D) = 1 - \sum_{i=1}^{m} p_i^2$$

- \triangleright p_i is the probability that an instance in D belongs to class i, with m distinct classes.
- ▶ It will be zero if all partitions are pure. Why?

- ► CART (Classification And Regression Tree) considers a binary split for each feature.
- ▶ It uses the Gini index to measure the misclassification (impurity of D).

$$\texttt{Gini}(\texttt{D}) = 1 - \sum_{\texttt{i}=1}^{\texttt{m}} p_{\texttt{i}}^2$$

- \triangleright p_i is the probability that an instance in D belongs to class i, with m distinct classes.
- ▶ It will be zero if all partitions are pure. Why?
- ▶ We need to determine the splitting criterion: splitting feature + splitting subset.

CART (2/8)

Assume A is a discrete-valued feature with v distinct values, $\{a_1, a_2, \cdots, a_v\}$, occurring in D.

- ► Assume A is a discrete-valued feature with v distinct values, {a₁, a₂, ···, a_v}, occurring in D.
- $ightharpoonup S_A$ will be all possible subsets of A.

- ► Assume A is a discrete-valued feature with v distinct values, {a₁, a₂, ···, a_v}, occurring in D.
- ► S_A will be all possible subsets of A.
 - E.g., A = income = {low, medium, high}
 - $S_A = \{\{\text{low}, \text{medium}, \text{high}\}, \{\text{low}, \text{medium}\}, \{\text{medium}, \text{high}\}, \{\text{low}, \text{high}\}, \{\{\text{low}\}, \{\text{medium}\}, \{\text{high}\}, \{\}\}$

- Assume A is a discrete-valued feature with v distinct values, $\{a_1, a_2, \dots, a_v\}$, occurring in D.
- ► S_A will be all possible subsets of A.
 - E.g., A = income = {low, medium, high}
 - $S_A = \{\{\text{low}, \text{medium}, \text{high}\}, \{\text{low}, \text{medium}\}, \{\text{medium}, \text{high}\}, \{\text{low}, \text{high}\}, \{\text{low}\}, \{\text{medium}\}, \{\text{high}\}, \{\}\}$
 - The test is of the form $D_1 \in s_A$?, where s_A is a subset of S_A , e.g., $s_A = \{low, high\}$.

CART (3/8)

RID	age	income	student	$credit_rating$	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

$$\texttt{Gini(D)} = 1 - \sum_{i=1}^m p_i^2$$

CART (3/8)

RID	age	income	student	$credit_rating$	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

$$Gini(D) = 1 - \sum_{i=1}^{m} p_i^2$$

 $label = buys_computer \Rightarrow m = 2$

$$\mathtt{Gini}(\mathtt{D}) = 1 - (\frac{9}{14})^2 - (\frac{5}{14})^2 = 0.459$$

▶ If a binary split on A partitions D into D₁ and D₂, the Gini index of D given that partitioning is:

$$\mathtt{Gini}(\mathtt{A},\mathtt{D}) = \frac{|\mathtt{D}_1|}{\mathtt{D}}\mathtt{Gini}(\mathtt{D}_1) + \frac{|\mathtt{D}_2|}{\mathtt{D}}\mathtt{Gini}(\mathtt{D}_2)$$

▶ If a binary split on A partitions D into D_1 and D_2 , the Gini index of D given that partitioning is:

$$\mathtt{Gini}(\mathtt{A},\mathtt{D}) = \frac{|\mathtt{D}_1|}{\mathtt{D}}\mathtt{Gini}(\mathtt{D}_1) + \frac{|\mathtt{D}_2|}{\mathtt{D}}\mathtt{Gini}(\mathtt{D}_2)$$

► The subset that gives the minimum Gini index is selected as its splitting subset.

CART (5/8)

► For a feature A = income, we consider each of the possible splitting subsets.

CART (5/8)

- \blacktriangleright For a feature A = income, we consider each of the possible splitting subsets.
 - $S_A = \{\{\text{low}, \text{medium}, \text{high}\}, \{\text{low}, \text{medium}\}, \{\text{medium}, \text{high}\}, \{\{\text{low}, \text{high}\}, \{\{\text{low}\}, \{\text{medium}\}, \{\}\}\}$

CART (5/8)

- \blacktriangleright For a feature A = income, we consider each of the possible splitting subsets.
 - $S_A = \{\{\text{low}, \text{medium}, \text{high}\}, \{\text{low}, \text{medium}\}, \{\text{medium}, \text{high}\}, \{\text{low}, \text{high}\}, \{\text{low}\}, \{\text{medium}\}, \{\text{high}\}, \{\}\}$
- ▶ Assume, we choose the splitting subset $s_A = \{low, medium\}$.

- \blacktriangleright For a feature A = income, we consider each of the possible splitting subsets.
 - $S_A = \{\{low, medium, high\}, \{low, medium\}, \{medium, high\}, \{low, high\}, \{low\}, \{medium\}, \{high\}, \{\}\}$
- ▶ Assume, we choose the splitting subset $s_A = \{low, medium\}$.
- ▶ Consider partition D_1 satisfies the condition $D_1 \in s_A$, and D_2 does not.

$$\begin{split} & \text{Gini}_{\text{income} \in \{\text{low}, \text{medium}\}}(A, D) = \frac{10}{14} \text{Gini}(D_1) + \frac{4}{14} \text{Gini}(D_2) \\ &= \frac{10}{14} \text{Gini}(1 - (\frac{7}{10})^2 - (\frac{3}{10})^2) + \frac{4}{14} (1 - (\frac{2}{4})^2 - (\frac{2}{4})^2) = 0.443 \end{split}$$

► Similarly, we calculate the Gini index values for splits on the remaining subsets.

$$\begin{split} & \texttt{Gini}_{\texttt{income} \in \{\texttt{low}, \texttt{medium}\}}(\texttt{A}, \texttt{D}) = \texttt{Gini}_{\texttt{income} \in \{\texttt{high}\}}(\texttt{A}, \texttt{D}) = 0.443 \\ & \texttt{Gini}_{\texttt{income} \in \{\texttt{low}, \texttt{high}\}}(\texttt{A}, \texttt{D}) = \texttt{Gini}_{\texttt{income} \in \{\texttt{medium}\}}(\texttt{A}, \texttt{D}) = 0.458 \\ & \texttt{Gini}_{\texttt{income} \in \{\texttt{medium}, \texttt{high}\}}(\texttt{A}, \texttt{D}) = \texttt{Gini}_{\texttt{income} \in \{\texttt{low}\}}(\texttt{A}, \texttt{D}) = 0.450 \end{split}$$

► Similarly, we calculate the Gini index values for splits on the remaining subsets.

$$\begin{split} & \text{Gini}_{\text{income} \in \{\text{low}, \text{medium}\}}(A, D) = \text{Gini}_{\text{income} \in \{\text{high}\}}(A, D) = 0.443 \\ & \text{Gini}_{\text{income} \in \{\text{low}, \text{high}\}}(A, D) = \text{Gini}_{\text{income} \in \{\text{medium}\}}(A, D) = 0.458 \\ & \text{Gini}_{\text{income} \in \{\text{medium}, \text{high}\}}(A, D) = \text{Gini}_{\text{income} \in \{\text{low}\}}(A, D) = 0.450 \end{split}$$

▶ The best binary split for attribute A = income is on $s_A = \{low, medium\}$ because it minimizes the Gini index.

► But, which feature?

- ► But, which feature?
- ▶ The reduction in impurity that would be incurred by a binary split on feature A is:

$$\Delta \texttt{Gini}(\texttt{A}) = \texttt{Gini}(\texttt{D}) - \texttt{Gini}(\texttt{A},\texttt{D})$$

- ► But, which feature?
- ▶ The reduction in impurity that would be incurred by a binary split on feature A is:

$$\Delta \texttt{Gini}(\texttt{A}) = \texttt{Gini}(\texttt{D}) - \texttt{Gini}(\texttt{A},\texttt{D})$$

► The feature that maximizes the reduction in impurity (has the minimum Gini index) is selected as the splitting feature.

- ▶ Now, we can compute the information gain Gain(A) for different features.
 - $\Delta Gini(income) = 0.459 0.443 = 0.016$
 - $\Delta Gini(age) = 0.459 0.357 = 0.102$
 - $\Delta Gini(student) = 0.459 0.367 = 0.092$
 - $\Delta Gini(credit_rating) = 0.459 0.429 = 0.03$

- ▶ Now, we can compute the information gain Gain(A) for different features.
 - $\Delta Gini(income) = 0.459 0.443 = 0.016$
 - $\Delta Gini(age) = 0.459 0.357 = 0.102$
 - $\Delta Gini(student) = 0.459 0.367 = 0.092$
 - $\Delta Gini(credit_rating) = 0.459 0.429 = 0.03$
- ▶ The feature A = age and splitting subset $s_A = \{youth, senior\}$ gives the minimum Gini index overall.

Decision Tree in Spark (1/4)

- ► Two classes in spark.ml.
- ► Regression: DecisionTreeRegressor

```
val dt_regressor = new DecisionTreeRegressor().setLabelCol("label").setFeaturesCol("features")
val model = dt_regressor.fit(trainingData)
val predictions = model.transform(testData)
predictions.select("prediction", "rawPrediction", "probability", "label", "features").show(5)
```


Decision Tree in Spark (1/4)

- ► Two classes in spark.ml.
- ► Regression: DecisionTreeRegressor

```
val dt_regressor = new DecisionTreeRegressor().setLabelCol("label").setFeaturesCol("features")
val model = dt_regressor.fit(trainingData)
val predictions = model.transform(testData)
predictions.select("prediction", "rawPrediction", "probability", "label", "features").show(5)
```

► Classifier: DecisionTreeClassifier

```
val dt_classifier = new DecisionTreeClassifier().setLabelCol("label").setFeaturesCol("features")
val model = dt_classifier.fit(trainingData)
val predictions = model.transform(testData)
predictions.select("prediction", "rawPrediction", "probability", "label", "features").show(5)
```


► Input and output columns

- ► Input and output columns
- ▶ labelCol and featuresCol identify label and features column's names.

- ► Input and output columns
- ▶ labelCol and featuresCol identify label and features column's names.
- predictionCol indicates the predicted label.

- ► Input and output columns
- ▶ labelCol and featuresCol identify label and features column's names.
- predictionCol indicates the predicted label.
- ► rawPredictionCol is a vector of length of number of classes, with the counts of training instance labels at the tree node which makes the prediction.

- Input and output columns
- ▶ labelCol and featuresCol identify label and features column's names.
- predictionCol indicates the predicted label.
- ► rawPredictionCol is a vector of length of number of classes, with the counts of training instance labels at the tree node which makes the prediction.
- probabilityCol is a vector of length of number of classes equal to rawPrediction normalized to a multinomial distribution.

► Tunable parameters

- ► Tunable parameters
- ▶ maxBins: number of bins used when discretizing continuous features.

- ► Tunable parameters
- ▶ maxBins: number of bins used when discretizing continuous features.
- ▶ impurity: impurity measure used to choose between candidate splits, e.g., entropy and gini.

```
val maxBins = ...
val dt_classifier = new DecisionTreeClassifier().setMaxBins(maxBins).setImpurity("gini")
```


▶ Stopping criteria that determines when the tree stops building.

- ▶ Stopping criteria that determines when the tree stops building.
- ▶ maxDepth: maximum depth of a tree.

- ▶ Stopping criteria that determines when the tree stops building.
- maxDepth: maximum depth of a tree.
- ▶ minInstancesPerNode: for a node to be split further, each of its children must receive at least this number of training instances.

- Stopping criteria that determines when the tree stops building.
- maxDepth: maximum depth of a tree.
- ▶ minInstancesPerNode: for a node to be split further, each of its children must receive at least this number of training instances.
- ▶ minInfoGain: for a node to be split further, the split must improve at least this much (in terms of information gain).

Ensemble Methods

- ► Ask a complex question to thousands of random people, then aggregate their answers.
- ▶ In many cases, this aggregated answer is better than an expert's answer.

- ► Ask a complex question to thousands of random people, then aggregate their answers.
- ▶ In many cases, this aggregated answer is better than an expert's answer.
- ► This is called the wisdom of the crowd.

- Ask a complex question to thousands of random people, then aggregate their answers.
- ▶ In many cases, this aggregated answer is better than an expert's answer.
- ▶ This is called the wisdom of the crowd.
- ▶ Similarly, the aggregated estimations of a group of estimators (e.g., classifiers or regressors), often gets better estimations than with the best individual estimator.
- ▶ A group of estimators is an ensemble, and this technique is called Ensemble Learning.

Ensemble Learning

► Two main categories of ensemble learning algorithms.

- ▶ Two main categories of ensemble learning algorithms.
- Bagging
 - Use the same training algorithm for every estimator, but to train them on different random subsets of the training set.
 - E.g., random forest

▶ Two main categories of ensemble learning algorithms.

Bagging

- Use the same training algorithm for every estimator, but to train them on different random subsets of the training set.
- E.g., random forest

Boosting

- Train estimators sequentially, each trying to correct its predecessor.
- E.g., adaboost and gradient boosting

- ► Random forest builds multiple decision trees that are most of the time trained with the bagging method.
- ▶ It, then, merges the trees together to get a more accurate and stable prediction.

Random Forest in Spark (1/2)

- ► Two classes in spark.ml.
- ► Regression: RandomForestRegressor

Random Forest in Spark (1/2)

- ► Two classes in spark.ml.
- ► Regression: RandomForestRegressor

► Classifier: RandomForestClassifier

Random Forest in Spark (2/2)

▶ numTrees: number of trees in the forest.

Random Forest in Spark (2/2)

- ▶ numTrees: number of trees in the forest.
- ▶ subsamplingRate: specifies the size of the dataset used for training each tree in the forest, as a fraction of the size of the original dataset.
 - Default is 1.0 and decreasing it can speed up training.

Random Forest in Spark (2/2)

- ▶ numTrees: number of trees in the forest.
- ▶ subsamplingRate: specifies the size of the dataset used for training each tree in the forest, as a fraction of the size of the original dataset.
 - Default is 1.0 and decreasing it can speed up training.
- ► featureSubsetStrategy: number of features to use as candidates for splitting at each tree node, as a fraction of the total number of features.
 - Possible values: auto, all, onethird, sqrt, log2, n

KTH AdaBoost (1/3)

► AdaBoost: train a new estimator by paying more attention to the training instances that the predecessor underfitted.

AdaBoost (1/3)

- ► AdaBoost: train a new estimator by paying more attention to the training instances that the predecessor underfitted.
- ► Each estimator is trained on a random subset of the total training set.

- ► AdaBoost: train a new estimator by paying more attention to the training instances that the predecessor underfitted.
- ► Each estimator is trained on a random subset of the total training set.
- AdaBoost assigns a weight to each training instance, which determines the probability that each instance should appear in the training set.

AdaBoost (2/3)

► Each instance weight $h^{(i)}$ is initially set to $\frac{1}{m}$ for m instances.

- ▶ Each instance weight $h^{(i)}$ is initially set to $\frac{1}{m}$ for m instances.
- \blacktriangleright An estimator j is trained and its weighted error rate \mathbf{r}_i is computed as follows:

$$\mathtt{r_{j}} = \frac{\sum_{i=1, y_{j}^{(i)} \neq y_{j}^{(i)}}^{\mathtt{m}} h^{(i)}}{\sum_{i=1}^{\mathtt{m}} h^{(i)}}$$

- ▶ Each instance weight $h^{(i)}$ is initially set to $\frac{1}{m}$ for m instances.
- \blacktriangleright An estimator j is trained and its weighted error rate r_j is computed as follows:

$$\mathtt{r_{j}} = \frac{\sum_{i=1, \mathfrak{F}_{j}^{(i)} \neq \mathtt{Y}_{j}^{(i)}}^{\mathtt{m}} h^{(i)}}{\sum_{i=1}^{\mathtt{m}} h^{(i)}}$$

▶ The jth estimator's weight α_j is then computed as follows:

$$\alpha_{j} = \eta \frac{1 - r_{j}}{r_{j}}$$

► Next the instance weights are updated:

$$\mathbf{h^{(i)}} = \left\{ \begin{array}{ll} \mathbf{h^{(i)}} & \text{if} \quad \mathbf{\hat{y}_{j}^{(i)}} = \mathbf{y_{j}^{(i)}} \\ \mathbf{h^{(i)}} \mathbf{e}^{\alpha_{j}} & \text{if} \quad \mathbf{\hat{y}_{j}^{(i)}} \neq \mathbf{y_{j}^{(i)}} \end{array} \right.$$

▶ Next the instance weights are updated:

$$\mathbf{h^{(i)}} = \left\{ \begin{array}{ll} \mathbf{h^{(i)}} & \text{if} \quad \mathbf{\hat{y}_{j}^{(i)}} = \mathbf{y_{j}^{(i)}} \\ \mathbf{h^{(i)}} \mathbf{e}^{\alpha_{j}} & \text{if} \quad \mathbf{\hat{y}_{j}^{(i)}} \neq \mathbf{y_{j}^{(i)}} \end{array} \right.$$

► Then, a new estimator is trained using the updated weights, and the whole process is repeated.

▶ Next the instance weights are updated:

$$\mathbf{h^{(i)}} = \left\{ \begin{array}{ll} \mathbf{h^{(i)}} & \text{if} \quad \mathbf{\hat{y}_{j}^{(i)}} = \mathbf{y_{j}^{(i)}} \\ \mathbf{h^{(i)}} \mathbf{e}^{\alpha_{j}} & \text{if} \quad \mathbf{\hat{y}_{j}^{(i)}} \neq \mathbf{y_{j}^{(i)}} \end{array} \right.$$

- ► Then, a new estimator is trained using the updated weights, and the whole process is repeated.
- ▶ To make predictions, AdaBoost computes the predictions of all the estimators and weighs them using the estimator weights α_j .

- ► Just like AdaBoost, Gradient Boosting works by sequentially adding estimators to an ensemble, each one correcting its predecessor.
- ► However, instead of tweaking the instance weights at every iteration, this method tries to fit the new estimator to the residual errors made by the previous estimator.

Gradient Boosting (2/3)

- ▶ Let's go through a regression example using Gradient Boosted Regression Trees.
- ► Fit the first estimator on the training set.

```
tree_reg1 = DecisionTreeRegressor(max_depth=2)
tree_reg1.fit(X, y)
```

▶ Now train the second estimator on the residual errors made by the first estimator.

```
y2 = y - tree_reg1.predict(X)
tree_reg2 = DecisionTreeRegressor(max_depth=2)
tree_reg2.fit(X, y2)
```


Gradient Boosting (3/3)

Then we train the third estimator on the residual errors made by the second estimator.

```
y3 = y2 - tree_reg2.predict(X)
tree_reg3 = DecisionTreeRegressor(max_depth=2)
tree_reg3.fit(X, y3)
```

- ▶ Now we have an ensemble containing three trees.
- ▶ It can make predictions on a new instance simply by adding up the predictions of all the trees.

```
y_pred = sum(tree.predict(X_new) for tree in (tree_reg1, tree_reg2, tree_reg3))
```


Gradient Boosting in Spark (1/2)

- ► Two classes in spark.ml.
- ► Regression: GBTRegressor

Gradient Boosting in Spark (1/2)

- ► Two classes in spark.ml.
- ► Regression: GBTRegressor

► Classifier: GBTClassifier

Summary

Summary

- Decision tree
 - Top-down training algorithm
 - Termination condition
 - Feature selection: entropy, gini
- ► Ensemble models
 - Bagging: random forest
 - Boosting: AdaBoost, Gradient Boosting

Reference

- ► Aurélien Géron, Hands-On Machine Learning (Ch. 5, 6, 7)
- ▶ Matei Zaharia et al., Spark The Definitive Guide (Ch. 27)

Questions?