Spanning Tree - short intro

- Spanning tree of an undirected graph is
 - A tree that contains all nodes of the graph, but not necessarily all edges.
 - No cycles (since it's a tree ⊕)

 - Think of it as an acyclic sub graph of the original graph.
 - And its "spanning" since it spans all the vertices.
 - A given graph may have multiple spanning trees.

- Now, a graph can have multiple spanning trees, since u can start at any vertex.
 - This starting vertex will then be the root of the spanning tree.
 - If a graph has N vertices, its spanning tree will have N-1 edges.

- Now, a graph can have multiple spanning trees, since u can start at any vertex.
 - This starting vertex will then be the root of the spanning tree.
 - If a graph has N vertices, its spanning tree will have N-1 edges.

- Now, what we said is that a graph with N vertices will have a spanning tree with N-1 edges.
- If this graph is a weighted graph, then the different spanning trees (all with N-1 edges) may have different total weight (sum of weights of all the edges in the spanning tree).
 - Minimum spanning tree is the one with the lowest cost
- If the graph is unweighted, then all the spanning trees will have the same cost (since they all have N-1 edges and each edge cost can be assumed to be the same).
 - Hence, the MST for an unweighted graph is not unique.

- Minimum spanning tree (aka MST) is a spanning tree with the least cost(cost refers to the edge cost in the MST).
 - This is the shortest path for visiting all nodes from a starting node.
 - Uses:
 - Laying telecom cables.
 - Routing for mail or packages delivery.
 - e.g.: UPS or FedEx.
 - Just an example, not making any statement about either of these companies.

MST algorithms that u can look up:

Prim's algorithm

Kruskal's algorithm