TANK OF THE PARTY OF THE PARTY

Florida Atlantic University

College of Engineering

Project 1

Application of the Direct Integration Method or of Discontinuity (Singularity)

Functions to Statically Determinate Uniform or Stepped Beam Design

Serial Number: 02

Name: Pedro Almeida

Professor Name: Dr. Isaac Elishakoff

TA Name: Abhishek Ratanpara

Student Email: palmeida2016@fau.edu

Telephone Number: +1 (561) 480-5483

September 27, 2021

INTERMEDIATE STRENGTH OF MATERIALS

FALL 2021

Communication Project 1:

"Application of the Direct Integration Method or of Discontinuity (Singularity) Functions to Statically Determinate Uniform or Stepped Beam Design"

Requirements and Deliverables

(assigned: Friday, September 10, 2021; submission date: Friday, October 1, 2021; not later than 4:00 pm)

"You will be judged in industry not on [only] your work but how well you communicate your work," Charles R. Cluer "A Survey of Industrial Mathematics", page 277, Dover, 2012. The requirements that should be satisfied by the project are given in the document called FORMAT (see CANVAS).

Problem 1

For the beam that is depicted below is subjected to a distributed load w_0 , concentrated load P and concentrated moment M_0 . The length is specified L=2 meters. The cross section is represented by an I-beam. Material is aluminum; yield stress= 276 MPa; E=69.9 GPa; required safety factor is k=1.5. The allowable displacement v_{allow} L/500. Design the beam so that it satisfied strength condition, as well as stiffness condition. The moments of inertia of I-beams are given on pages 804-805 of the textbook, the number s is your serial number. Note: don't forget to depict FBD. Write equations to determine reactions. Use singularity functions, not the superposition principle. Please do not use SKYCIV software.

Problem 2

For the beam that is depicted is subjected to a distributed load w_0 , concentrated load P and concentrated moment M_0 . The length is specified L=2 m. The cross section is circular with radius c. Material is aluminum; yield stress= 276 MPa; E=69.9 GPa; required safety factor is k=1.5. The allowable displacement $v_{allow}=L/400$. The number s is your serial number. Use singularity functions, not the superposition principle. Please do not use SKYCIV software.

- (a) Design the beam—find minimum allowable radius of cross section—so that it satisfies strength condition, as well as stiffness condition.
- (b) Write resulting expression of $V_v(x)$ and $M_z(x)$.
- (c) Construct diagrams of the shear force $V_y(x)$ and bending moment $M_z(x)$ as well as for deflection v(x). Note: don't forget to depict FBD. Write equations to determine reactions

Problem 3

The beam is subjected to concentrated loads as shown in the figure. The number of loads equals 100-s, where s is your serial number. Find the maximum displacement of the beam. Note: don't forget to depict FBD. Write equations to determine reactions. Use singularity functions, not the superposition principle. Please do not use SKYCIV software.

Problem 4

For the beam that is depicted is subjected to a distributed load w_0 , concentrated load P and concentrated moment M_0 . The length is specified L=2 m. The cross section is represented by a rectangle who base is three times less than its height (or depth). Material is aluminum; yield stress= 276 MPa; E=69.9 GPa; required safety factor is k=2. The allowable displacement $v_{allow}=L/400$. The number s is your serial number. Use singularity functions, not the superposition principle. Please do not use SKYCIV software.

(d) Design the beam so that it satisfied strength condition, as well as stiffness condition, i. e. find minimum allowable value of the beam's hight (depth).

- (e) Write resulting expression of $V_v(x)$ and $M_z(x)$.
- (f) Construct diagrams of the shear force $V_y(x)$ and bending moment $M_z(x)$ as well as for deflection v(x). Note: don't forget to depict FBD. Write equations to determine reactions

Problems 5-6

Determine the maximum deflection in the beam subjected to following loading. The cross-section is given by American Standard Channel (p. 810). Make a choice of the material, as well as (nonzero) values of w_0 and M_0 . Determine the maximum deflection. Does it occur in the middle cross-section? Note: don't forget to depict FBD. Write equations to determine reactions. Use singularity functions, not the superposition principle. Please do not use SKYCIV software.

Problems 7

For the beam that is depicted below is subjected to a distributed load w_0 , concentrated load P and concentrated moment M_0 . The length is specified L=6 meters. The cross section of the first part and the third part are represented by identical circular beams with radius c. The cross-section in the second part is also circular but radius equals 2c. Material is aluminum; yield stress= 276 MPa; E=69.9 GPa; required safety factor is k=1.5. The allowable displacement $v_{allow}=L/400$. Design the beam so that it satisfied strength condition, as well as stiffness condition. The moments of inertia of I-beams are given on pages 804-805 of the textbook, the number s is your serial number. Note: don't forget to depict FBD. Write equations to determine reactions. Use equivalent beam method. Please do not use SKYCIV software.

The copy of these assignment page must be included beneath the title page of the project.

The project ought to be presented in the reader-friendly format: For each problem, if the diagrams are not strictly below each other in the same scale as the Include sections of **Abstract** and **Conclusion**: Summarize what you learned from this personal communication project; provide also recommendation(s) to the lecturer on the project assignment and management.

P.S: Entire work must be neatly hand-written or typed. A grade "zero" will be assigned if not doing the project by yourself. Bonus of 5% for typed project but not computer-generated plots; 5% additional credit points for typed project and computer-generated plots. Students must submit the project via CANVAS (the submission methodology will be communicated later on). Each project submitted later than October 1, 2021, leads to 10 credits less, for each work day (this does not include weekends, Saturday and Sunday).

With wishes of success,

Isaac Elishakoff

Prof. Isaac Elishakoff and TA Abhishek Ratanpara

The report will apply the Direct Integration Method of Singularity Functions to statically determine uniform or stepped beam designs to determine the load's effect on the beam's deflection. The resulting functions following the integration will be plotted using MATLAB software to produce simplified renderings of the beam's shape post loading.

Contents

1	Introduction	9
2	Background Theory	9
3	Problem Definition	12
	3.1 Problem 1	12
	3.2 Problem 2	15
	3.3 Problem 3	17
	3.4 Problem 4	19
	3.5 Problem 5	21
	3.6 Problem 6	23
	3.7 Problem 7	27
4	Results and Discussion	28
	4.1 Problem 1	28
	4.2 Problem 2	28
	4.3 Problem 3	29
	4.4 Problem 4	29
	4.5 Problem 5	29
	4.6 Problem 6	30
	4.7 Problem 7	30
5	Conclusions	30
6	Appendix	31
\mathbf{R}	eferences	31

1 Introduction

One of the most important processes in designing beams is the structural analysis of the part under realistic loading conditions. A proper, realistic, theoretical model allows the engineer or designer to understand the expected stresses and deflections of a beam under expected loading conditions, thus removing the need to conduct experiments for each attempted revision. To properly construct the theoretical models, engineers often rely on extensive sets of equations.

The standard method to solve for beam deflection for beams with continuous cross sectional areas relies on partitions; the designer splits the beam into multiple subsections where loads are applied. The resulting cross sections are then each modeled separately. The singularity equations for beam deflection, by contrast, allow for the reduction of the multiple deflection equations into a single continuous equation. The method will be discussed thoroughly in the Background Theory section.

The report will comprise of the Background Theory section discussing the required equations and methods to solve the problems, the Problem Definition section discussing each of the problems presented in the project, the Results and Discussion containing the important plots for each of the problems given, and the Conclusions section to summarize findings and discuss improvements.

2 Background Theory

To find the deflection equation for a statically determinate beam under loading, there are two principal ways to approach the problem, both of which lead to the same result. The first method, shown in Eq. 1, uses the loading function w(x) to reach the deflection. The form is especially useful for beams under non-linear loading functions. However, due to the required quadruple integration to reach v(x), engineers commonly use a second form.

$$EI\frac{\delta^4 v}{\delta x^4} = w(x) \tag{1}$$

The second form of the deflection equation can be given by Eq. 2. The function utilizes the moment function W(x) and a double integration to model the deflection, generating 2 constants of integration rather than 4. As such, if possible, the second form is preferred. With the form of integration determined, the engineering must then determine the moment function applied

onto the beam as a function of the loads, which begins by statically solving the problem.

$$EI\frac{\delta^2 v}{\delta x^2} = M(x) \tag{2}$$

The first step to find the static forces acting on a beam includes the decomposition of the applied and reaction forces onto a Free Body Diagram (FBD). To define the FBD, the report must first determine the type of supports acting on the beam. For a simply supported beam, the pin support creates a reaction x and y directions, while the roller support only creates a reaction in the y direction. For a wall support, the beam must have a reaction in the x and y directions in addition to a moment reaction. Fig. 1 shows an example of a FBD decomposition.

Figure 1: Example Free Body Diagram

With the FBD drawn, the report uses the set of equations shown in Eq. 3 to solve for the reaction forces. In most scenarios, the horizontal force F_x , and therefore the horizontal reaction, will be equal to zero, leaving 2 main equations to be used to solve for the vertical reactions at each of the supports.

$$\uparrow \sum F_y = 0$$

$$\rightarrow \sum F_x = 0$$

$$\circlearrowleft \sum M_A = 0$$
(3)

Once the support reactions have been found, the engineer proceeds by selecting Eq. 1 or Eq. 2 to apply. For the purposes of the example, Eq. 2 will be used. For that form, the report

sets an x-y coordinate system on the left side of the beam such that the x axis extends along the beam and the y axis extends perpendicular to the length of the beam. With the coordinate system established, the report constructs the Moment equation based on Eq. 4 where the moment M can be found as the product of the force F and the radius of the arm r given as the distance between the force to the axis of rotation.

$$M = F * r \tag{4}$$

For the given example, the moment equation is as shown in Eq. 5. In the equation, any term found containing $\langle x - x_0 \rangle^n$ conveys the force represented only acts starting from point x_0 ; that is, if the beam were to be segmented prior to x_0 such that $x < x_0$, the moment generated would be equal to zero. As such, $\langle x - x_0 \rangle^n$ evaluates to $(x - x_0)^n$ if $x >= x_0$ or 0 if $x < x_0$.

$$M(x) = -P \langle x - L \rangle^{1} - M_{I} \langle x - L \rangle^{0} + C_{y} \langle x - 2L \rangle^{1} - \frac{w}{2} \langle x - 2L \rangle^{2}$$

$$(5)$$

With the moment equation found, the report will integrate it twice as given per Eq. 2 to find v(x), which can be shown in Eq. 6.

$$EI\frac{\delta^{2}v}{\delta x^{2}} = -P\langle x - L\rangle^{1} - M_{I}\langle x - L\rangle^{0} + C_{y}\langle x - 2L\rangle^{1} - \frac{w}{2}\langle x - 2L\rangle^{2}$$

$$EI\frac{\delta v}{\delta x} = \frac{-P}{2}\langle x - L\rangle^{2} - M_{I}\langle x - L\rangle^{1} + \frac{C_{y}}{2}\langle x - 2L\rangle^{2} - \frac{w}{6}\langle x - 2L\rangle^{3} + C_{1}$$

$$EIv(x) = \frac{-P}{6}\langle x - L\rangle^{3} - \frac{M_{I}}{2}\langle x - L\rangle^{2} + \frac{C_{y}}{6}\langle x - 2L\rangle^{3} - \frac{w}{24}\langle x - 2L\rangle^{4} + C_{1}x + C_{2}$$

$$(6)$$

The last step in finding the displacement equation is to apply the boundary conditions to find the coefficients of integration C_1 and C_2 , which use the properties of the supports. As given in Fig. 1, there are two supports that provide vertical reactions to the beam's displacement. In other words, at the point of contact with each of the supports, the vertical displacement must be equal to zero. As such, we can use the conditions shown in Eqs. 7 and 8 to solve for C_1 and C_2 .

$$v(x = 0) = 0$$

$$\Rightarrow \frac{-P}{6} \langle (0) - L \rangle^3 - \frac{M_I}{2} \langle (0) - L \rangle^2 + \frac{C_y}{6} \langle (0) - 2L \rangle^3 - \frac{w}{24} \langle (0) - 2L \rangle^4 + C_1(0) + C_2 \qquad (7)$$

$$\Rightarrow C_2 = 0$$

$$v(x = 2L) = 0$$

$$\Rightarrow \frac{-P}{6} \langle (2L) - L \rangle^3 - \frac{M_I}{2} \langle (2L) - L \rangle^2 + \frac{C_y}{6} \langle (2L) - 2L \rangle^3 - \frac{w}{24} \langle (2L) - 2L \rangle^4 + C_1(2L) + C_2$$

$$\Rightarrow C_1 = \frac{\frac{PL^3}{6} + \frac{M_I L^2}{2}}{2L} = \frac{PL^2}{12} + \frac{M_I L}{4}$$
(8)

Therefore, the final equation for the deflection of the beam can be found as shown in Eq. 9 where the unknown coefficients have been solved for.

$$EIv(x) = \frac{-P}{6} \langle x - L \rangle^3 - \frac{M_I}{2} \langle x - L \rangle^2 + \frac{C_y}{6} \langle x - 2L \rangle^3 - \frac{w}{24} \langle x - 2L \rangle^4 + \left(\frac{PL^2}{12} + \frac{M_I L}{4}\right) x$$
 (9)

3 Problem Definition

3.1 Problem 1

As given by the project assignment, the first project constitutes of a simply supported beam subject to a series of area loads. By substituting the equivalent reaction forces, the report generates the FBD shown in Fig. 2.

With the Free-Body Diagram completed, the report employs the static equations to find the reaction forces at each of the supports as shown in Eq. 10.

$$\uparrow \sum F_y = R_a - 2(1) + 2(1) - 2(1) + 2(1) - 2(1) + 2(1) - 2(1) + 2(1) - 2(1) + R_b = 0$$

$$\to \sum F_x = 0$$

$$\circlearrowleft \sum M_A = -2(1) \left(\frac{1}{2}\right) + 2(1) \left(\frac{3}{2}\right) - 2(1) \left(\frac{5}{2}\right) + 2(1) \left(\frac{7}{2}\right) - 2(1) \left(\frac{9}{2}\right) + 2(1) \left(\frac{11}{2}\right)$$

$$-2(1) \left(\frac{13}{2}\right) + 2(1) \left(\frac{15}{2}\right) - 2(1) \left(\frac{17}{2}\right) + R_b(10) = 0$$

$$(10)$$

Figure 2: Free Body Diagram for Problem 1

Given the problem is statically determinate, the static equations are sufficient to find the reaction forces for the supports, which are shown in Eq. 11. Since there are no horizontal forces applied, the only non-zero reactionary forces are those in the vertical direction, which will be named R_a and R_b henceforth.

$$R_b = \frac{9}{10} R_a = \frac{11}{10}$$
 (11)

With the reactions determined, the moment and deflection equations can be constructed as shown in Eq. 12.

$$EI\frac{\delta^{2}v}{\delta x^{2}} = \frac{11}{10} \langle x - 0 \rangle^{1} - \langle x - 0 \rangle^{2} + 2 \langle x - 1 \rangle^{2} - 2 \langle x - 2 \rangle^{2} + 2 \langle x - 3 \rangle^{2} - 2 \langle x - 4 \rangle^{2}$$
$$+ 2 \langle x - 5 \rangle^{2} - 2 \langle x - 6 \rangle^{2} + 2 \langle x - 7 \rangle^{2} - 2 \langle x - 8 \rangle^{2} + \langle x - 9 \rangle^{2}$$

$$EI\frac{\delta v}{\delta x} = \frac{11}{20} \langle x - 0 \rangle^2 - \frac{1}{3} \langle x - 0 \rangle^3 + \frac{2}{3} \langle x - 1 \rangle^3 - \frac{2}{3} \langle x - 2 \rangle^3 + \frac{2}{3} \langle x - 3 \rangle^3 - \frac{2}{3} \langle x - 4 \rangle^3 + \frac{2}{3} \langle x - 5 \rangle^3 - \frac{2}{3} \langle x - 6 \rangle^3 + \frac{2}{3} \langle x - 7 \rangle^3 - \frac{2}{3} \langle x - 8 \rangle^3 + \frac{1}{3} \langle x - 9 \rangle^3 + C_1$$
(12)

$$EIv(x) = \frac{11}{60} \langle x - 0 \rangle^3 - \frac{1}{12} \langle x - 0 \rangle^4 + \frac{1}{6} \langle x - 1 \rangle^4 - \frac{1}{6} \langle x - 2 \rangle^4 + \frac{1}{6} \langle x - 3 \rangle^4 - \frac{1}{6} \langle x - 4 \rangle^4 + \frac{1}{6} \langle x - 5 \rangle^4 - \frac{1}{6} \langle x - 6 \rangle^4 + \frac{1}{6} \langle x - 7 \rangle^4 - \frac{1}{6} \langle x - 8 \rangle^4 + \frac{1}{12} \langle x - 9 \rangle^4 + C_1 x + C_2$$

Following the integration of the singularity moment equation, the report solves for the two constants of integration through the use of boundary conditions. As given in the problem description, the two vertical supports at A and B guarantee the deflection at these points is equal to zero, as shown in Eq. 13

$$v(0) = 0$$

$$v(10) = 0$$
(13)

Using the boundary conditions shown above, the report finds the constants of integration to the values shown in Eq. 14.

$$C_2 = 0$$

$$C_1 = \frac{209}{240} \tag{14}$$

After plugging in the boundary conditions, the report finds the deflection equation shown in Eq. 15.

$$EIv(x) = \frac{11}{60} \langle x - 0 \rangle^3 - \frac{1}{12} \langle x - 0 \rangle^4 + \frac{1}{6} \langle x - 1 \rangle^4 - \frac{1}{6} \langle x - 2 \rangle^4 + \frac{1}{6} \langle x - 3 \rangle^4 - \frac{1}{6} \langle x - 4 \rangle^4 + \frac{1}{6} \langle x - 6 \rangle^4 - \frac{1}{6} \langle x - 6 \rangle^4 + \frac{1}{6} \langle x - 7 \rangle^4 - \frac{1}{6} \langle x - 8 \rangle^4 + \frac{1}{12} \langle x - 9 \rangle^4 + \frac{209}{240} x$$
(15)

3.2 Problem 2

As given by the project assignment, the first project constitutes of a simply supported beam subject to a series of area loads. By substituting the equivalent reaction forces, the report generates the FBD shown in Fig. 3.

Figure 3: Free Body Diagram for Problem 2

With the Free-Body Diagram completed, the report employs the static equations to find the reaction forces at each of the supports as shown in Eq. 16.

$$\uparrow \sum F_y = R_{ay} = 0$$

$$\to \sum F_x = R_{ax} = 0$$

$$\circlearrowleft \sum M_A = 50 + 2 + 4 + 6 + 8 - 8 - 6 - 4 - 2 - M_a = 0$$
(16)

Given the problem is statically determinate, the static equations are sufficient to find the reaction forces for the supports, which are shown in Eq. 17. Since there are no horizontal forces applied, the only non-zero reaction is the reactionary moment, which will be named M_a henceforth.

$$M_a = -50$$

$$R_{ax} = 0$$

$$R_{ay} = 0$$
(17)

With the reactions determined, the moment and deflection equations can be constructed as

shown in Eq. 18.

$$EI\frac{\delta^{2}v}{\delta x^{2}} = 50 \langle x - 0 \rangle^{0} + 2 \langle x - 1 \rangle^{0} + 4 \langle x - 2 \rangle^{0} + 6 \langle x - 3 \rangle^{0} + 8 \langle x - 4 \rangle^{0} - 8 \langle x - 5 \rangle^{0}$$
$$-6 \langle x - 6 \rangle^{0} - 4 \langle x - 7 \rangle^{0} - 2 \langle x - 8 \rangle^{0}$$

$$EI\frac{\delta v}{\delta x} = 50 \langle x - 0 \rangle^{1} + 2 \langle x - 1 \rangle^{1} + 4 \langle x - 2 \rangle^{1} + 6 \langle x - 3 \rangle^{1} + 8 \langle x - 4 \rangle^{1} - 8 \langle x - 5 \rangle^{1}$$

$$-6 \langle x - 6 \rangle^{1} - 4 \langle x - 7 \rangle^{1} - 2 \langle x - 8 \rangle^{1} + C_{1}$$
(18)

$$EIv(x) = 25 \langle x - 0 \rangle^{2} + \langle x - 1 \rangle^{2} + 2 \langle x - 2 \rangle^{2} + 3 \langle x - 3 \rangle^{2} + 4 \langle x - 4 \rangle^{2} - 4 \langle x - 5 \rangle^{2}$$
$$-3 \langle x - 6 \rangle^{2} - 2 \langle x - 7 \rangle^{2} - \langle x - 8 \rangle^{2} + C_{1}x + C_{2}$$

Following the integration of the singularity moment equation, the report solves for the two constants of integration through the use of boundary conditions. As given in the problem description, the fixed at A guarantees the deflection and slope at A is equal to zero, as shown in Eq. 19.

$$v(10) = 0$$

$$\frac{\delta v(10)}{\delta x} = 0$$
(19)

Using the boundary conditions shown above, the report finds the constants of integration to the values shown in Eq. 20.

$$C_2 = 2770$$
 (20)
 $C_1 = -560$

After plugging in the boundary conditions, the report finds the deflection equation shown in Eq. 21.

$$EIv(x) = 25 \langle x - 0 \rangle^2 + \langle x - 1 \rangle^2 + 2 \langle x - 2 \rangle^2 + 3 \langle x - 3 \rangle^2 + 4 \langle x - 4 \rangle^2 - 4 \langle x - 5 \rangle^2 - 3 \langle x - 6 \rangle^2 - 2 \langle x - 7 \rangle^2 - \langle x - 8 \rangle^2 - 560x + 2770$$
(21)

3.3 Problem 3

As given by the project assignment, the first project constitutes of a simply supported beam subject to a series of area loads. By substituting the equivalent reaction forces, the report generates the FBD shown in Fig. 4.

Figure 4: Free Body Diagram for Problem 3

With the Free-Body Diagram completed, the report employs the static equations to find the reaction forces at each of the supports as shown in Eq. 22.

$$\uparrow \sum F_y = R_a - 2 + 2 - 2 + 2 - 70(2) - 2(1) \left(\frac{1}{2}\right) + R_b = 0$$

$$\to \sum F_x = R_{ax} = 0$$

$$\circlearrowleft \sum M_A = -2(1) + 2(2) - 2(3) + 2(4) - 12 - 70(2)(7) - 2(1) \left(\frac{29}{6}\right) + R_{by}(10) = 0$$
(22)

Given the problem is statically determinate, the static equations are sufficient to find the reaction forces for the supports, which are shown in Eq. 23. Since there are no horizontal forces applied, the only non-zero reactionary forces are those in the vertical direction, which will be named R_a and R_b henceforth.

$$R_b = \frac{2993}{30}$$

$$R_a = \frac{1237}{30}$$
(23)

With the reactions determined, the moment and deflection equations can be constructed as shown in Eq. 24.

$$EI\frac{\delta^{2}v}{\delta x^{2}} = \frac{1237}{30} \langle x - 0 \rangle^{1} - 2 \langle x - 1 \rangle^{1} + 2 \langle x - 2 \rangle^{1} - 2 \langle x - 3 \rangle^{1} + 2 \langle x - 4 \rangle^{1} + 12 \langle x - 5 \rangle^{0} - 35 \langle x - 6 \rangle^{2} + 35 \langle x - 8 \rangle^{2} - \frac{1}{3} \langle x - 9 \rangle^{3}$$

$$EI\frac{\delta v}{\delta x} = \frac{1237}{60} \langle x - 0 \rangle^2 - \langle x - 1 \rangle^2 + \langle x - 2 \rangle^2 - \langle x - 3 \rangle^2 + \langle x - 4 \rangle^2 + 12 \langle x - 5 \rangle^1 - \frac{35}{3} \langle x - 6 \rangle^3 + \frac{35}{3} \langle x - 8 \rangle^3 - \frac{1}{12} \langle x - 9 \rangle^4 + C_1$$
(24)

$$EIv(x) = \frac{1237}{180} \langle x - 0 \rangle^3 - \frac{1}{3} \langle x - 1 \rangle^3 + \frac{1}{3} \langle x - 2 \rangle^3 - \frac{1}{3} \langle x - 3 \rangle^3 + \frac{1}{3} \langle x - 4 \rangle^3 + 6 \langle x - 5 \rangle^2 - \frac{35}{12} \langle x - 6 \rangle^4 + \frac{35}{12} \langle x - 8 \rangle^4 - \frac{1}{60} \langle x - 9 \rangle^5 + C_1 x + C_2$$

Following the integration of the singularity moment equation, the report solves for the two constants of integration through the use of boundary conditions. As given in the problem description, the two vertical supports at A and B guarantee the deflection at these points is equal to zero, as shown in Eq. 25.

$$v(0) = 0$$
 (25) $v(10) = 0$

Using the boundary conditions shown above, the report finds the constants of integration to the values shown in Eq. 26.

$$C_2 = 0$$

$$C_1 = \frac{-1117357}{1800} \tag{26}$$

After plugging in the boundary conditions, the report finds the deflection equation shown in Eq. 27.

$$EIv(x) = \frac{1237}{180} \langle x - 0 \rangle^3 - \frac{1}{3} \langle x - 1 \rangle^3 + \frac{1}{3} \langle x - 2 \rangle^3 - \frac{1}{3} \langle x - 3 \rangle^3 + \frac{1}{3} \langle x - 4 \rangle^3 + \frac{1}{3} \langle x - 4 \rangle^3 + \frac{1}{3} \langle x - 6 \rangle^4 + \frac{35}{12} \langle x - 8 \rangle^4 - \frac{1}{60} \langle x - 9 \rangle^5 + \frac{-1117357}{1800} x$$
(27)

3.4 Problem 4

As given by the project assignment, the first project constitutes of a simply supported beam subject to a series of area loads. By substituting the equivalent reaction forces, the report generates the FBD shown in Fig. 5.

Figure 5: Free Body Diagram for Problem 4

With the Free-Body Diagram completed, the report employs the static equations to find the reaction forces at each of the supports as shown in Eq. 28.

$$\uparrow \sum F_y = R_{ay} - 2 - 4 - 6 - 8 - 10 - 8 - 6 - 4 - 2 = 0$$

$$\to \sum F_x = R_{ax} = 0$$

$$\circlearrowleft \sum M_A = M_a - 2(1) - 4(2) - 6(3) - 8(4) - 10(5) - 8(6) - 6(7) - 4(8) - 2(9) = 0$$
(28)

Given the problem is statically determinate, the static equations are sufficient to find the reaction forces for the supports, which are shown in Eq. 29. Since there are no horizontal forces applied, the only non-zero reactions are the reactionary moment and vertical reaction, which will be named M_a and R_a henceforth.

$$M_a = -250$$

$$R_{ax} = 0$$

$$R_{ay} = 50$$
(29)

With the reactions determined, the moment and deflection equations can be constructed as shown in Eq. 30.

$$EI\frac{\delta^{2}v}{\delta x^{2}} = 50 \langle x - 0 \rangle^{1} - 250 \langle x - 0 \rangle^{0} - 2 \langle x - 1 \rangle^{1} - 4 \langle x - 2 \rangle^{1} - 6 \langle x - 3 \rangle^{1} - 8 \langle x - 4 \rangle^{1}$$
$$-10 \langle x - 5 \rangle^{1} - 8 \langle x - 6 \rangle^{1} - 6 \langle x - 7 \rangle^{1} - 4 \langle x - 8 \rangle^{1} - 2 \langle x - 9 \rangle^{1}$$

$$EI\frac{\delta v}{\delta x} = 25 \langle x - 0 \rangle^2 - 250 \langle x - 0 \rangle^1 - \langle x - 1 \rangle^2 - 2 \langle x - 2 \rangle^2 - 3 \langle x - 3 \rangle^2 - 4 \langle x - 4 \rangle^2$$

$$-5 \langle x - 5 \rangle^2 - 4 \langle x - 6 \rangle^2 - 3 \langle x - 7 \rangle^2 - 2 \langle x - 8 \rangle^2 - \langle x - 9 \rangle^2 + C_1$$
(30)

$$EIv(x) = \frac{25}{6} \langle x - 0 \rangle^3 - 125 \langle x - 0 \rangle^2 - \frac{1}{3} \langle x - 1 \rangle^3 - \frac{2}{3} \langle x - 2 \rangle^3 - \langle x - 3 \rangle^3 - \frac{4}{3} \langle x - 4 \rangle^3 - \frac{5}{3} \langle x - 5 \rangle^3 - \frac{4}{3} \langle x - 6 \rangle^3 - \langle x - 7 \rangle^3 - \frac{2}{3} \langle x - 8 \rangle^3 - \frac{1}{3} \langle x - 9 \rangle^3 + C_1 x + C_2$$

Following the integration of the singularity moment equation, the report solves for the two constants of integration through the use of boundary conditions. As given in the problem description, the fixed at A guarantees the deflection and slope at A is equal to zero, as shown in Eq. 31.

$$v(0) = 0$$

$$\frac{\delta v(0)}{\delta x} = 0$$
(31)

Using the boundary conditions shown above, the report finds the constants of integration to the values shown in Eq. 32.

$$C_2 = 0$$

$$C_1 = 0$$
(32)

After plugging in the boundary conditions, the report finds the deflection equation shown in Eq. 33.

$$EIv(x) = \frac{25}{6} \langle x - 0 \rangle^3 - 125 \langle x - 0 \rangle^2 - \frac{1}{3} \langle x - 1 \rangle^3 - \frac{2}{3} \langle x - 2 \rangle^3 - \langle x - 3 \rangle^3 - \frac{4}{3} \langle x - 4 \rangle^3 - \frac{5}{3} \langle x - 5 \rangle^3 - \frac{4}{3} \langle x - 6 \rangle^3 - \langle x - 7 \rangle^3 - \frac{2}{3} \langle x - 8 \rangle^3 - \frac{1}{3} \langle x - 9 \rangle^3$$
(33)

3.5 Problem 5

As given by the project assignment, the first project constitutes of a simply supported beam subject to a series of area loads. By substituting the equivalent reaction forces, the report generates the FBD shown in Fig. 6.

Figure 6: Free Body Diagram for Problem 5

With the Free-Body Diagram completed, the report employs the static equations to find the reaction forces at each of the supports as shown in Eq. 34.

$$\uparrow \sum F_y = R_a - 2 - 4 - 100(4) - 4 - 2 + R_b = 0$$

$$\to \sum F_x = R_{ax} = 0$$

$$\circlearrowleft \sum M_A = -2(1) - 4(2) - 100(4)(5) - 4(8) - 2(9) + R_{by}(10) = 0$$
(34)

Given the problem is statically determinate, the static equations are sufficient to find the reaction forces for the supports, which are shown in Eq. 35. Since there are no horizontal forces applied, the only non-zero reactionary forces are those in the vertical direction, which will be named R_a and R_b henceforth.

$$R_b = 206$$

$$R_a = 206$$
(35)

With the reactions determined, the moment and deflection equations can be constructed as shown in Eq. 36.

$$EI\frac{\delta^{2}v}{\delta x^{2}} = 206 \langle x - 0 \rangle^{1} - 2 \langle x - 1 \rangle^{1} - 4 \langle x - 2 \rangle^{2} - 50 \langle x - 3 \rangle^{2} + 50 \langle x - 7 \rangle^{1}$$
$$-2 \langle x - 8 \rangle^{1} - 4 \langle x - 9 \rangle^{1}$$

$$EI\frac{\delta v}{\delta x} = 103 \langle x - 0 \rangle^2 - \langle x - 1 \rangle^2 - 2 \langle x - 2 \rangle^2 - \frac{50}{3} \langle x - 3 \rangle^3 + \frac{50}{3} \langle x - 7 \rangle^3$$
$$- \langle x - 8 \rangle^2 - 2 \langle x - 9 \rangle^2 + C_1$$
(36)

$$EIv(x) = \frac{103}{3} \langle x - 0 \rangle^3 - \frac{1}{3} \langle x - 1 \rangle^3 - \frac{2}{3} \langle x - 2 \rangle^3 - \frac{25}{6} \langle x - 3 \rangle^4 + \frac{25}{6} \langle x - 7 \rangle^4 - \frac{1}{3} \langle x - 8 \rangle^3 - \frac{2}{3} \langle x - 9 \rangle^3 + C_1 x + C_2$$

Following the integration of the singularity moment equation, the report solves for the two constants of integration through the use of boundary conditions. As given in the problem description, the two vertical supports at A and B guarantee the deflection at these points is equal to zero, as shown in Eq. 37.

$$v(0) = 0$$

 $v(10) = 0$ (37)

Using the boundary conditions shown above, the report finds the constants of integration to the values shown in Eq. 38.

$$C_2 = 0$$

$$C_1 = \frac{-7223}{3} \tag{38}$$

After plugging in the boundary conditions, the report finds the deflection equation shown in Eq. 39.

$$EIv(x) = \frac{103}{3} \langle x - 0 \rangle^3 - \frac{1}{3} \langle x - 1 \rangle^3 - \frac{2}{3} \langle x - 2 \rangle^3 - \frac{25}{6} \langle x - 3 \rangle^4 + \frac{25}{6} \langle x - 7 \rangle^4 - \frac{1}{3} \langle x - 8 \rangle^3 - \frac{2}{3} \langle x - 9 \rangle^3 - \frac{-7223}{3} x$$
(39)

3.6 Problem 6

As given by the project assignment, the first project constitutes of a simply supported beam subject to a series of area loads. By substituting the equivalent reaction forces, the report generates the FBD shown in Fig. 7.

Figure 7: Free Body Diagram for Problem 6

With the Free-Body Diagram completed, the report employs the static equations to find the reaction forces at each of the supports as shown in Eq. 40.

$$\uparrow \sum F_y = R_a - 100 - 2 - 100 - 2 + 100 + 200 + 300 + R_b = 0$$

$$\rightarrow \sum F_x = R_{ax} = 0$$

$$\circlearrowleft \sum M_A = -100(1) - 2(2) - 100(3) - 2(4) + 100(6) + 200(7) + 300(8) + R_{by}(10) = 0$$
(40)

Given the problem is statically determinate, the static equations are sufficient to find the reaction forces for the supports, which are shown in Eq. 41. Since there are no horizontal forces applied, the only non-zero reactionary forces are those in the vertical direction, which will be named R_a and R_b henceforth.

$$R_b = -\frac{1994}{5}$$

$$R_a = \frac{14}{5}$$
(41)

Unlike previous problem, the beam's Modulus of Elasticity E and Area Moment of Inertia I vary throughout the beam. As such, prior to writing the moment and deflection equations, we must first construct an equivalent Free Body Diagram by adding forces and moments. The original shear force and moment diagrams are shown in Fig. 8.

As given in Fig. 7, at the interval 0 < x < 5, the beam has the term 2EI compared to the interval 5 < x < 10. To construct the equivalent diagram, the report will multiply all the forces acting on the right side (x > 5) by two such that the EI terms match, creating Fig. 9 with constant EI.

With the equivalent Shear Force and Moment Diagrams, the report constructs a new FBD with an equivalent stiffness 2EI shown in Fig. 10. The FBD will be used to generate the displacement equations shown in Eq. 42.

Figure 8: Shear Force and Moment Diagrams assuming EI for non-constant EI.

$$2EI\frac{\delta^{2}v}{\delta x^{2}} = \frac{14}{5} \langle x - 0 \rangle^{1} - 100 \langle x - 1 \rangle^{1} - 2 \langle x - 2 \rangle^{1} - 100 \langle x - 3 \rangle^{1} - 2 \langle x - 4 \rangle^{1}$$
$$-\frac{1006}{5} \langle x - 5 \rangle^{1} - 594 \langle x - 5 \rangle^{0} + 200 \langle x - 6 \rangle^{1} + 400 \langle x - 7 \rangle^{1} + 600 \langle x - 8 \rangle^{1}$$

$$2EI\frac{\delta v}{\delta x} = \frac{7}{5} \langle x - 0 \rangle^2 - 50 \langle x - 1 \rangle^2 - 1 \langle x - 2 \rangle^2 - 50 \langle x - 3 \rangle^2 - \langle x - 4 \rangle^2 - \frac{503}{5} \langle x - 5 \rangle^2 - 594 \langle x - 5 \rangle^1 + 100 \langle x - 6 \rangle^2 + 200 \langle x - 7 \rangle^2 + 300 \langle x - 8 \rangle^2 + C_1$$
(42)

$$2EIv(x) = \frac{7}{15} \langle x - 0 \rangle^3 - \frac{50}{3} \langle x - 1 \rangle^3 - \frac{1}{3} \langle x - 2 \rangle^3 - \frac{50}{3} \langle x - 3 \rangle^3 - \frac{1}{3} \langle x - 4 \rangle^3 - \frac{503}{15} \langle x - 5 \rangle^3 - 297 \langle x - 5 \rangle^2 + \frac{100}{3} \langle x - 6 \rangle^3 + \frac{200}{3} \langle x - 7 \rangle^2 + 100 \langle x - 8 \rangle^3 + C_1 x + C_2$$

Following the integration of the singularity moment equation, the report solves for the two constants of integration through the use of boundary conditions. As given in the problem description, the two vertical supports at A and B guarantee the deflection at these points is

Figure 9: Shear Force and Moment Diagrams for constant EI

equal to zero, as shown in Eq. 43.

$$v(0) = 0$$

 $v(10) = 0$ (43)

Using the boundary conditions shown above, the report finds the constants of integration to the values shown in Eq. 44.

$$C_2 = 0$$

$$C_1 = \frac{12263}{5} \tag{44}$$

After plugging in the boundary conditions, the report finds the deflection equation shown in Eq. 45.

Figure 10: Free Body Diagram for Problem 6 with Equivalent Stiffness

$$2EIv(x) = \frac{7}{15} \langle x - 0 \rangle^3 - \frac{50}{3} \langle x - 1 \rangle^3 - \frac{1}{3} \langle x - 2 \rangle^3 - \frac{50}{3} \langle x - 3 \rangle^3 - \frac{1}{3} \langle x - 4 \rangle^3 - \frac{503}{15} \langle x - 5 \rangle^3 - 297 \langle x - 5 \rangle^2 + \frac{100}{3} \langle x - 6 \rangle^3 + \frac{200}{3} \langle x - 7 \rangle^2 + 100 \langle x - 8 \rangle^3 + \frac{12263}{5} x$$

$$(45)$$

3.7 Problem 7

Figure 11: Free Body Diagram for Problem 7

Figure 12: Shear Force, Moment, and Displacement Diagram for Problem 1

4 Results and Discussion

4.1 Problem 1

4.2 Problem 2

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

4.3 Problem 3

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

4.4 Problem 4

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

4.5 Problem 5

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra

ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

4.6 Problem 6

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

4.7 Problem 7

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

5 Conclusions

testing [1]

6 Appendix

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

References

[1] F. P. Beer, J. T. DeWolf, E. R. Johnston, and D. F. Mazurek, *Mechanics of materials*. McGraw-Hill Education, 2020.