賽局論 HW5

許博翔

December 1, 2023

Problem 1 (9.8.12).

(a) Let $p = p_1, p_2 = 1 - p$.

$$p'_{1p_1=1}=0, p'_{2p_2=0}=0.$$

 \therefore (1,0) (that is, p=1) is always a rest point.

When $a \neq c$, for sufficiently small $\epsilon > 0$, for $p > 1 - \epsilon$, there is p(a - c) + (1 - p)(b - d) > 0 iff a - c > 0.

When a = c, there is p(a - c) + (1 - p)(b - d) > 0 iff b - d > 0.

 $\Rightarrow p_1'(p) > 0$ for any sufficiently small $\epsilon > 0$ iff a - c > 0 or (a = c and b - d > 0).

 $\Rightarrow 1 \in (1 - \epsilon, 1] \subseteq \operatorname{int}(\{p : \lim_{t \to \infty} p(t) = 1\}).$

Otherwise, if a-c < 0 or a=c and b-d < 0, then $p_1'(p) < 0$ for any sufficiently small $\epsilon > 0$, then $\lim_{t \to \infty} p \neq 1$.

Otherwise, if a=c and b=d, then $p_1'(p)=0$, and $\lim_{t\to\infty}p\neq 1$ if $p\neq 1$.

 \therefore it is an asymptotic attractor iff a-c>0 or (a=c and b-d>0).

- (d) Since if $p_1' = p_2' = 0$ but $p_1 \neq 0$ or 1, then $p_1 = \frac{d-b}{a-c+d-b}$. $\Rightarrow (\frac{d-b}{a-c+d-b}, 1 - \frac{d-b}{a-c+d-b}) \text{ is a rest point iff } \frac{d-b}{a-c+d-b} \in (0,1) \text{ iff } \frac{d-b}{a-c+d-b} > 0 \text{ and } \frac{a-c}{a-c+d-b} > 0 \text{ iff } (a-c)(d-b) \geq 0 \text{ iff } a \geq c \text{ and } d \geq b \text{ or } a \leq c \text{ and } d \leq b.$
- (e) Note that when $a=c,\,\tilde{p}_1=1,$ which is the case of (a).

When b = d, $\tilde{p}_1 = 0$, which is the case of (b).

 \therefore in this problem, we can assume that $a \neq c$, and $b \neq d$.

If (a > c and d < b) or (a < c and d > b), then by (d), $(\tilde{p}_1, 1 - \tilde{p}_1)$ will not be an asymptotic attractor.

Otherwise there are two cases: case 1: a < c and d < b; case 2: a > c and d > b.

$$p'_{1p_1=\tilde{p}_1+\epsilon} = p_1(1-p_1)\{\epsilon(a-c) - \epsilon(b-d)\} = p_1(1-p_1)(a+b-c-d)\epsilon.$$

If a-c-b+d<0 (which is case 1), then $p_1'<0$ for $\epsilon>0$, and $p_1'>0$ for $\epsilon<0$.

$$\Rightarrow (\tilde{p}_1 - \epsilon, \tilde{p}_1 + \epsilon) \subseteq \{p : \lim_{t \to \infty} p = \tilde{p}_1\} \text{ for some } \epsilon > 0.$$

 $\Rightarrow \tilde{p}_1$ is an asymptotic attractor in this case.

If a-c-b+d>0 (which is case 2), then $p'_1>0$ for $\epsilon>0$, and $p'_1<0$ for $\epsilon<0$.

- $\Rightarrow \lim_{t\to\infty} p \neq \tilde{p}_1 \text{ for } p \neq p_1.$
- $\therefore \tilde{p}_1$ is not an asymptotic attractor in this case.
- $\therefore \tilde{p}_1$ is an asymptotic attractor iff a < c and d < b.

Problem 2.

(a) (p^*, p^*) is NE.

$$\Rightarrow \forall p, \ p^T A p^* \leq p^{*T} A p^*. - (1)$$

Suppose that i is such that $(Ap^*)_i \ge (Ap^*)_j$ for all j.

Let e_i be the vector that is the *i*-th column of I.

If $p_j^* \neq 0$, then $p^{*T}Ap^* \leq e_i^TAp^*$, the equation holds only if $(Ap^*)_i = (Ap^*)_j$.

But by (1), $e_i^T A p^* \leq p^{*T} A p^*$, and the equation should hold.

$$\Rightarrow (Ap^*)_j = (Ap^*)_i, \ \forall j \text{ s.t. } p_i^* \neq 0.$$

$$\Rightarrow \forall j \text{ s.t. } p_j^* \neq 0, f_j(p^*) = (Ap^*)_j = (Ap^*)_i = \sum_{k, p_k^* \neq 0} p_k (Ap^*)_i = \sum_{k, p_k^* \neq 0} p_k (Ap^*)_k =$$

 $\bar{f}(p^*).$

$$\therefore \forall j$$
. either $p_j^* = 0$ or $f_j(p^*) - \bar{f}(p^*) = 0$.

$$\Rightarrow p'_j = 0, \ \forall j.$$

 $\therefore p^*$ is a rest point.

(b) (e_1, e_1) is an asymptotic attractor.

 \Rightarrow for sufficiently small $\epsilon > 0$, there is $p'_1 \geq 0$ for $p = e_1(1 - \epsilon) + e_i \epsilon$ for all $i \neq 1$.

$$p_1' = p_1(f_1(e_1) - \bar{f}(e_1)) = p_1(f_1(e_1) - (1 - \epsilon)f_1(e_1) - \epsilon f_i(e_1)) \ge 0.$$

$$p_1 = 1 - \epsilon > 0$$
, there is $f_1(e_1) - (1 - \epsilon)f_1(e_1) - \epsilon f_i(e_1) \ge 0$.

$$\Rightarrow \epsilon(f_1(e_1) - f_i(e_1)) \ge 0.$$

$$\Rightarrow f_1(e_1) \ge f_i(e_1), \ \forall i.$$

$$\therefore e_1^T A e_1 = f_1(e_1) = \sum_{i=1}^n q_i f_1(e_1) \ge \sum_{i=1}^n q_i f_i(e_1) = q^T A e_1, \ \forall q.$$

And
$$e_1^T A^T e_1 = \sum_{i=1}^n (e_1^T A^T)_1 q_i = \sum_{i=1}^n f_1(e_1) q_i \ge \sum_{i=1}^n f_i(e_1) q_i = \sum_{i=1}^n (e_1^T A^T)_i q_i = e_1^T A^t q$$
, $\forall q$.

 $\therefore (e_1, e_1)$ is a NE.

Problem 3.

(a) Let
$$A = \begin{pmatrix} 0 & 6 & -4 \\ -3 & 0 & 5 \\ -1 & 3 & 0 \end{pmatrix}$$
.

One can see that $(Aq)_1 \le (Aq)_2 \iff 6q_2 - 4q_3 \le -3q_1 + 5q_3 \iff 3q_1 + 6q_2 \le 9 - 9q_1 - 9q_2 \iff 4q_1 + 5q_2 \le 3.$

$$(Aq)_2 \le (Aq)_3 \iff -3q_1 + 5q_3 \le -1q_1 + 3q_2 \iff 2q_1 + 3q_2 \ge 5 - 5q_1 - 5q_2 \iff 7q_1 + 8q_2 \ge 5.$$

$$(Aq)_3 \le (Aq)_1 \iff -1q_1 + 3q_2 \le 6q_2 - 4q_3 \iff 3q_2 + q_1 \ge 4 - 4q_1 - 4q_2 \iff 5q_1 + 7q_2 \ge 4.$$

When
$$(Aq)_1 = (Aq)_2$$
, $(Aq)_2 = (Aq)_3$, there is $q_1 = q_2 = \frac{1}{3}$.

.. for NE that the row player does not play pure strategy, the column player plays $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$.

Similarly, for NE that the column player does not play pure strategy, the row player plays $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$.

 \therefore $((\frac{1}{3}, \frac{1}{3}, \frac{1}{3}), (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}))$ is the only NE that some player does not play pure strategy.

When playing pure strategy, one can see that only (s_1, s_1) is NE because if a player plays s_3 , then it will switch to s_2 if another plays s_3 , switch to s_1 is another plays s_1, s_2 .

 \Rightarrow no player will play s_3 in NE.

And (s_2, s_2) will be switch to (s_1, s_2) by the row player, $(s_1, s_2), (s_2, s_1)$ will be switch to (s_1, s_1) by the column player, row player, respectively.

: all NE are:
$$((1,0,0),(1,0,0)),((\frac{1}{3},\frac{1}{3},\frac{1}{3}),(\frac{1}{3},\frac{1}{3},\frac{1}{3})).$$

(b) Let $e_1 = (1, 0, 0)$.

One can see that $Ae_1 = (0, -3, -1)$.

$$\therefore \forall p \neq e_1, \ p^T A e_1 < e_1^T A e_1.$$

 (e_1, e_1) is an evolutionarily stable strategy.

Let
$$u = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}).$$

One can see that $Au = (\frac{2}{3}, \frac{2}{3}, \frac{2}{3})$.

$$\Rightarrow \forall p \neq u, \ p^T A u = 2 = u^T A u.$$

However, consider $p = (0, \frac{1}{2}, \frac{1}{2})$.

$$\Rightarrow p^T A p = 4 > u^T A p.$$

(u, u) is not an evolutionarily stable strategy. (u, u) the only evolutionarily stable strategy is (e_1, e_1) .

Problem 4.

(a) (p_1, p_2, p_3) is a rest point.

$$\Rightarrow p_1' = p_2' = p_3' = 0.$$

If $p_1 = p_2 = p_3$, then $p'_1 = p'_2 = p'_3 = 0$, which is a rest point.

Suppose that $p_1 = p_2 = p_3$ does not hold.

Without loss of generality, suppose that $p_1 \neq p_2$.

$$p_3(p_1 - p_2) = p_3' = 0 \Rightarrow p_3 = 0.$$

$$\Rightarrow p_1p_2 = p'_1 = 0, p_2(-p_1) = p'_2 = 0.$$

$$\Rightarrow p_1 = 0 \text{ or } p_2 = 0.$$

 $(p_1, 0, 0), (0, p_2, 0), (0, 0, p_3)$ are also rest points.

: all rest points are (p, p, p), (p, 0, 0), (0, p, 0), (0, 0, p).

(b)
$$\frac{d(p_1p_2p_3)}{dt} = p_1'p_2p_3 + p_1p_2'p_3 + p_1p_2p_3' = (p_1p_2p_3)\left(\frac{p_1'}{p_1} + \frac{p_2'}{p_2} + \frac{p_3'}{p_3}\right) = (p_1p_2p_3)(p_2 - p_3)(p_2 - p_3)(p_3 - p_3) = (p_1p_2p_3)(p_3 - p_3)(p_3 - p_3)(p$$

(c) Since
$$\frac{d(p_1p_2p_3)}{dt} = 0$$
, $\lim_{t \to \infty} (p_1(t), p_2(t), p_3(t)) = (\sqrt[3]{p_1p_2p_3}, \sqrt[3]{p_1p_2p_3}, \sqrt[3]{p_1p_2p_3})$ for $p_1p_2p_3 \neq 0$ (where $p_i := p_i(0)$ for convenience).

 $\lim_{t\to\infty}(p_1(t)+\epsilon,p_2(t),p_3(t))\neq (\sqrt[3]{p_1p_2p_3},\sqrt[3]{p_1p_2p_3},\sqrt[3]{p_1p_2p_3}) \text{ for any sufficiently small } \epsilon.$

$$\therefore$$
 int $((p, p, p)$'s BoA $) = \emptyset$ for $p \neq 0$.

Since $\forall p_1, p_2, p_3$ s.t. $p_1p_2p_3 = 0$, for any sufficiently small ϵ , $(p_1 + \epsilon)(p_2 + \epsilon)(p_3 + \epsilon) \neq 0$.

 $\therefore \operatorname{int}((p,0,0)\text{'s BoA}) = \operatorname{int}((0,p,0)\text{'s BoA}) = \operatorname{int}((0,0,p)\text{'s BoA}) = \emptyset.$

 \therefore there is no asymptotic attractor.