

Indian Institute of Information Technology, Sri City, Chittoor

(An Institute of National Importance under an Act of Parliament)

Computer Communication Networks

Introduction, Communication link, Multiplexing

Dr. Raja Vara Prasad Assistant Professor IIIT Sri City

Delays in Packet Switched Networks

- Packets travel from source to destination via intermediate routers/switches.
 - Processing delay
 - Queueing delay
 - Transmission delay
 - Propagation delay
- Nodal delay = Processing delay + Queuing delay +
 Transmission delay + Propagation delay

Processing Delay

- Time required to examine the packets header
 - Determines where to direct the packet
 - Check for errors
- Order of microseconds

Queuing Delay

- If a router is busy in processing and transmitting a packet, a freshly arrived packet has to wait in queue (buffer) for its turn.
- No queuing delay if the router is idle.
- Queuing delay varies with time and location. In general, it is a random variable.
- Order of microseconds to milliseconds.

Transmission Delay

- Time required to push the packet into the link
- If the length of the packet is L bits and transmission rate of the link is R bps, then

Transmission delay =
$$\frac{L}{R}$$

Order of microseconds to milliseconds

Propagation Delay

- Time required to propagate from one end of the link to the other end
- The propagation speed depends on the physical link between the routers
- In general, propagation speed s, is in the order of $2 \times 10^8 3 \times 10^8 m/s$.
- Propagation speed depends on the distance bewteen the routers, d
- Propagation delay = $\frac{d}{s}$

Traffic Intensity

- Queuing delays are random in nature
- Arrivals to a queue are also random in nature
- Traffic intensity is an indication of queuing delay
- Let a be the average number of packets arriving at a queue
- Each packet is of length L bits adn transmission rate is R bps
- Traffic intensity = $\frac{La}{R}$

Traffic Intensity

- ullet If traffic intensity >1, the *queuelength* increases to ∞
- It is desirable to have traffic intensity < 1.
- If traffic intensity close to 1, there will be a significant queuing delay

Dependence of average queuing delay on traffic intensity