Identificação e Modelagem de Processos Estacionários

Jessé Peixoto de Freitas

03/07/2023

Contents

In	trodi	ução	2
1	Que	estão 1:	2
2	Que	estão 2:	2
	2.1	Fontes do dados:	2
	2.2	Carregando pacotes:	2
	2.3	Definindo as Séries temporais:	2
	2.4	Carregando pacotes:	2
	2.5	IBOVESPA	3
	2.6	Visualizando FAC e FACP:	4
	2.7	Diagnostico de residuos:	4
	2.8	Visualização, tabelas, AIC e Diagnostico Resíduos	5
	2.9	FAC e FACP	5
	2.10	IPCA	6
	2.11	Credito	7
	2.12	AÇÃO	8
		Retorno da AÇÃO	9
3	Que	estão 3:	10
	3.1	Definindo as séries temporais	10
	3.2	Série Q3.1	10
	3.3	Série Q3.2	11
	3.4	Série Q3.3	
	3.5	Série Q3.4	
	3.6	Série O3 5	

Introdução

O presente trabalho tem como objetivo estudar o comportamento de alguns indicadores econômicos, como IPCA, e financeiros e avaliar suas séries temporais. Os modelo de séries temporais considerados serão AR - Autoregressivos, MA - Média móvel e ARMA - Autoregressivos de Média móvel, assim como suas respectivas Funções de Autocorrelação - FAC (em inglês ACF - autocorrelation function) e Autocorrelação Parcial (em inglês PACF - Partial autocorrelation function). Serão usados alguns testes de validação como Ljung-Box que avalia a autocorrelação do resíduos como suas defasagens. O Objetivo é verificar se a série apresenta Estacionariedade e apartir disso determina modelo e suas estimativas. O software ultilizado será o R/RStudio e os pacotes utilizados seram apresentados ao longo do texto.

1 Questão 1:

Calcule as FAC e FACP (5 primeiros valores) para os processos estacionários a seguir:

```
a) Y_t = \varepsilon_t + \theta \varepsilon_{t-1}; \theta = -0, 5
```

```
b) (1 - \phi L)Y_t = \varepsilon_t; \phi = -0, 9
```

c)
$$(1 - \phi L)Y_t = \varepsilon_t + \theta \varepsilon_{t-1}; \phi = -0, 9; \theta = -0, 5$$

2 Questão 2:

2.1 Fontes do dados:

Obtenha as Séries do IPCA (IBGE - Instituto Brasileiro de Geografia e Estatística), Saldo de Crédito Total (BCB - Banco Central do Brasil), Retornos do Ibovespa e o preço de um ativo presente na B3 à sua escolha. (Todas mensais, de 01/2015 a 12/2022). Então, para cada série: Fontes utilizadas:

- Fonte IBGE: ibge.gov.br/
- Fonte BCB: bcb.gov.br/
- Fonte IBOVESPA: br.financas.yahoo.com/quote/%5EBVSP
- Fonte AAPL: br.financas.yahoo.com/quote/AAPL

2.2 Carregando pacotes:

```
require(kableExtra)
require(ggfortify)
require(forecast)
require(ggplot2)
require(lmtest)
require(readr)
require(knitr)
```

2.3 Definindo as Séries temporais:

2.4 Carregando pacotes:

```
##install.packages(c("kableExtra","ggfortify","forecast","ggplot2","lmtest","readr","knitr"))
require(kableExtra)
require(ggfortify)
require(forecast)
```

require(ggplot2)
require(lmtest)
require(readr)
require(knitr)

2.5 IBOVESPA

Serie temporal

Retorno IBOVESPA, mensal

Apartir da visualização da série podemos verificar indícios que o retornos são Estacionários. Para isso devemos realizar alguns testes, como analise das autocorrelações.

Table 1: FAC vs FACP, por defasagem

	1	2	3	4	5	6	7	8	9	10
FAC	0.0802	-0.1701	-0.1517	-0.0880	-0.0396	0.1479	0.0702	-0.1888	-0.1693	-0.0436
FACP	0.0802	-0.1777	-0.1262	-0.1005	-0.0792	0.1104	0.0099	-0.1870	-0.1233	-0.0723
Ljung-B	0x0.6303	3.4975	5.8039	6.5875	6.7478	9.0114	9.5270	13.3013	16.3713	16.5772
p-valor	0.4272	0.1740	0.1216	0.1594	0.2401	0.1729	0.2170	0.1019	0.0595	0.0843

Table 2: FAC vs FACP dos Resíduos, por defasagem

	1	2	3	4	5	6	7	8	9	10
FAC	0.0802	-0.1701	-0.1517	-0.0880	-0.0396	0.1479	0.0702	-0.1888	-0.1693	-0.0436
FACP	0.0802	-0.1777	-0.1262	-0.1005	-0.0792	0.1104	0.0099	-0.1870	-0.1233	-0.0723
Ljung-B	0x0.6303	3.4975	5.8039	6.5875	6.7478	9.0114	9.5270	13.3013	16.3713	16.5772
p-valor	0.4272	0.1740	0.1216	0.1594	0.2401	0.1729	0.2170	0.1019	0.0595	0.0843

2.6 Visualizando FAC e FACP:

2.7 Diagnostico de residuos:

Testes TS

- 1. Teste de Normalidade do resíduos:
 - 1.1 Kernel(ê)

Se: e ~ Ruído Branco (ê: Padronizado)

2. Teste de Normalidade dos momentos:

2.1 Jarque-Bera

```
Se: Assimetria = 0 Se: Excesso de Cortose = 0
##
                    Dados
## nobs
                95.000000
## NAs
                 0.000000
## Minimum
                -0.299044
## Maximum
                 0.169673
## 1. Quartile -0.029127
## 3. Quartile 0.061086
## Mean
                 0.011400
## Median
                 0.007026
## Sum
                 1.082956
## SE Mean
                 0.006984
## LCL Mean
                -0.002467
## UCL Mean
                 0.025266
## Variance
                 0.004634
## Stdev
                 0.068071
## Skewness
                -0.791663
## Kurtosis
                 3.152422
##
## Title:
##
    Jarque - Bera Normalality Test
##
## Test Results:
##
     STATISTIC:
##
       X-squared: 52.9331
##
     P VALUE:
##
       Asymptotic p Value: 3.204e-12
  3. Teste da Autocorrelação dos Resíduos: 3.1 LM (Breusch-Godgrey) Se: Resíduos são idependentes
  4. Teste de heterocedasticidade Condicional: 4.1 ARCH-LM Se: Resíduos são idênticamente dist.
##
##
    Box-Ljung test
##
## data: y^2
```

5. Teste de Linearidade da Série: 5.1 RESET Se: Regresão é Linear

X-squared = 0.54876, df = 2, p-value = 0.76
alternative hypothesis: y is heteroscedastic

a. Realize os testes de identificação, assim como os de Critério de Informação e Diagnóstico de Resíduos.

2.8 Visualização, tabelas, AIC e Diagnostico Resíduos

b. Plote os gráficos de FAC e FACP.

2.9 FAC e FACP

c. Estime os coeficientes e apresente os modelos. (Utilize software apropriado)

2.10 IPCA

Série temporal, IPCA

- a. Realize os testes de identificação, assim como os de Critério de Informação e Diagnóstico de Resíduos.
- b. Plote os gráficos de FAC e FACP.
- c. Estime os coeficientes e apresente os modelos. (Utilize software apropriado)

2.11 Credito

Série temporal, Saldo da carteira de Crédito – R\$ (em bilhões)

- a. Realize os testes de identificação, assim como os de Critério de Informação e Diagnóstico de Resíduos.
- b. Plote os gráficos de FAC e FACP.
- c. Estime os coeficientes e apresente os modelos. (Utilize software apropriado)

2.12 AÇÃO

Ação AAPL na B3, R\$ (em milhões)

- a. Realize os testes de identificação, assim como os de Critério de Informação e Diagnóstico de Resíduos.
- b. Plote os gráficos de FAC e FACP.
- c. Estime os coeficientes e apresente os modelos. (Utilize software apropriado)

2.13 Retorno da AÇÃO

Retorno da ação AAPL na B3, R\$ (em milhões)

- a. Realize os testes de identificação, assim como os de Critério de Informação e Diagnóstico de Resíduos.
- b. Plote os gráficos de FAC e FACP.
- c. Estime os coeficientes e apresente os modelos. (Utilize software apropriado)
- d. O preço do ativo pode ser modelado por um processo estacionário? Se não, justifique e verifique se o retorno desse ativo é um processo estacionário.

3 Questão 3:

Utilizando as séries disponibilizadas no arquivo "AP2.xlsx", faça para cada uma das séries o que se pede:

3.1 Definindo as séries temporais

Visualizando as Séries:

3.2 Série Q3.1

3.3 Série Q3.2

3.4 Série Q3.3

3.5 Série Q3.4

3.6 Série Q3.5

- a. Realize os testes de identificação, assim como os de Critério de Informação e Diagnóstico de Resíduos. arima; AIC; tsdiag(arima)
 - b. Plote os gráficos de FAC e FACP. ggtsdisplay;
 - c. Estime os coeficientes e apresente os modelos. (Utilize software apropriado) arima\$coef; coeftest;