

Basi Dati

Il data model Relazionale e i vincoli per le basi di dati relazionali

> a.a. 2021/2022 Prof.ssa G. Tortora

Da schema concettuale a logico

Terminata la fase di analisi concettuale del database e creato un modello di alto livello (tipicamente un ER o un EER) che descrive il *miniworld*, passiamo alla definizione di uno schema logico, più vicino al DBMS ma meno comprensibile ai "non addetti ai lavori".

Il Data Model Relazionale

- Fu proposto da Codd nel 1970 per favorire l'indipendenza dei dati e reso disponibile come modello logico in DBMS reali nel 1981.
- È il modello più diffuso, sia a livello teorico che commerciale.
- La forza del modello relazionale è nella sua semplicità e nei solidi formalismi matematici su cui si poggia.

Il Data Model Relazionale (2)

• Si basa sul concetto matematico di Relazione.

- Le relazioni hanno una rappresentazione naturale per mezzo di tabelle:
 - Ciascuna riga rappresenta una collezione di valori di dati relati.

• Il database è rappresentato come una collezione di relazioni.

Il Data Model Relazionale - Esempio

EMPLOYEE	FNAME	MINIT	LNAME	<u>SSN</u>	BDATE	ADDRESS	SEX	SALARY	SUPERSSN	DNO
	John	В	Smith	123456789	09-JAN-55	731 Fondren, Houston, TX	М	30000	333445555	5
	Franklin	Т	Wong	333445555	08-DEC-45	638 Voss, Houston, TX	М	40000	888665555	5
	Alicia	J	Zelaya	999887777	19-JUL-58	3321 Castle, Spring, TX	F	25000	987654321	4
	Jennifer	S	Wallace	987654321	20-JUN-31	291 Berry, Bellaire, TX	F	43000	888665555	4
	Ramesh	K	Narayn	666884444	15-SEP-52	975 Fire Oak, Humble, TX	М	38000	333445555	5
	Joyce	Α	English	453453453	31-JUL-62	5631 Rice, Houston, TX	F	25000	333445555	5
	Ahmad	٧	Jabbar	987987987	29-MAR-59	980 Dallas, Houston, TX	М	25000	987654321	4
	James	Е	Borg	888665555	10-NOV-27	450 Stone, Houston, TX	М	55000	null	1

DEPARTMENT	DNAME	<u>DNUMBER</u>	MGRSSN	MGRSTARTDATE
	Research	5	333445555	22-MAY-78
	Administration	4	987654321	01-JAN-85
	Headquarters	1	888665555	19-JUN-71

DEPT_LOCATIONS	DNUMBER	DLOCATION
	1	Houston
STARTDATE	4	Stafford
2-MAY-78	5	Bellaire
01-JAN-85	5	Sugarland
9-JUN-71	5	Houston

Esempio di una parte del database "Company" nel data model Relazionale.

Concetti del modello Relazionale

Relazione dal punto di vista matematico

- Siano D_1 , D_2 , ..., D_n n insiemi.
- Il prodotto cartesiano $D_1 \times D_2 \times ... \times D_n$, è l'insieme di tutte le n-uple ordinate $(d_1, d_2, ..., d_n)$ tali che $d_1 \in D_1, d_2 \in D_2, ..., d_n \in D_n$.
- Una relazione matematica su D_1 , D_2 , ..., D_n è un sottoinsieme del prodotto cartesiano $D_1 \times D_2 \times ... \times D_n$.
- D_1 , D_2 , ..., D_n sono i domini della relazione. Una relazione su n domini ha grado n.
- Il numero di *n-uple* è la cardinalità della relazione. Nelle applicazioni reali, la cardinalità è sempre finita.

Relazione Matematica - Esempio

$$D_1 = \{a, b\}; D_2 = \{x, y, z\}$$

Prodotto cartesiano $D_1 \times D_2$

а	X
а	У
а	Z
b	Х
b	У
b	Z

Una relazione $r \subseteq D_1 \times D_2$

а	X
а	у
q	у
b	Z

Relazioni nel modello Relazionale

- A ogni dominio (attributo) è associato un nome, unico nella relazione, che "descrive" il ruolo del dominio.
- L'ordinamento fra gli attributi è irrilevante:
 - la struttura è non posizionale.
- Nella terminologia del modello relazionale, una riga è detta tupla:

Domini, attributi, tuple e relazioni

• Nel modello relazionale, un dominio D è un insieme di valori atomici, cioè indivisibili.

 Un metodo per specificare un dominio è specificare un tipo di dato da cui sono presi i dati che formano il dominio.

Esempi di domini

- Usa_Phone_Numbers: insieme di numeri a 10 cifre che rappresentano numeri telefonici validi negli stati uniti.
- Social_Security_Number: insieme di SSN validi, di 9 cifre.
- Names: insieme di nomi di persone.
- Employee_Ages: possibile età dei dipendenti, da 16 a 80 anni.
- Academic_Department: insieme di dipartimenti universitari (matematica e informatica, economia, ecc...).

Domini

- Per ogni dominio viene specificato un tipo di dato (o formato).
 - **Esempio:** USA_PHONE_NUMBER può essere dichiarato come una stringa (**ddd**)**ddd-dddd**.
- Potrebbe essere necessario specificare l'unita di misura per interpretare i valori di un dominio.
 - *Esempio: peso_persona* è espresso con l'unità di peso **kg**.

Schemi di relazione

- Uno schema di relazione, denotato da $R(A_n, A_2, ..., A_n)$, descrive una relazione.
- Uno schema di relazione è formato da:
 - Un nome di relazione *R*;
 - Una lista di attributi $(A_n, A_2, ..., A_n)$.
- Ciascun A_i è il nome di un ruolo giocato da qualche dominio D nello schema R.
- D è detto dominio di A_i : D = Dom (A_i) .
- Il grado di una relazione è il numero di attributi, *n*, del suo schema di relazione.

Schemi di relazione - Esempio

Nome della relazione: Student

STUDE	NT					
Name	SSN	HomePhone	Address	OfficePhone	Age	GPA

- Grado 7
- Dom(Name)=Names
- Dom(SSN)=social_Security_Numbers

Istanze di Relazione

- Una relazione (o istanza di relazione) r dello schema $R(A_1, A_2,..., A_n)$, denotata r(R) è un insieme di tuple $r = \{t_1, t_2,..., t_n\}$.
- Ogni t_i è una lista ordinata di n valori $t = \langle v_1, v_2, ..., v_n \rangle$ dove ciascun $v_i \in \text{dom}(A_i) \cup \{\text{null}\}$
 - Intensione della relazione $\rightarrow R$ (schema)
 - Estensione della relazione $\rightarrow r(R)$ istanza di relazione

Schemi e istanze di Relazione - Esempio

STUDENT

Name	SSN	HomePhone	Address	OfficePhone	Age	GPA
------	-----	-----------	---------	-------------	-----	-----

Schema di relazione

Benjamin Bayer	305-61-2435	373-1616	2918 BlueBonnet Lane	null	19	3.21
Katherine Ashly	381-62-1245	375-4409	125 Kirby Road	null	18	2.89
Dick Davidson	422-11-2420	null	3452 Elgin Road	749-1253	25	3.53
Charles Cooper	489-22-1100	376-9821	265 Lark Lane	749-1253	28	3.93

Istanza di relazione

Caratteristiche di una Relazione

- L'ordinamento delle tuple di una relazione non è parte della definizione.
 - La definizione non specifica alcun ordine.
- Una definizione alternativa di relazione considera non significativo anche l'ordine degli attributi;
 In accordo a tale definizione una tupla può essere

considerata come un insieme di coppie (**<attributo>**, **<valore>**).

Caratteristiche di una Relazione (2)

 Relazioni equivalenti, con diversi ordinamenti di righe e colonne:

STUDENT

Name	SSN	Home- Phone	Address	Office- Phone	Age	GPA
Benjamin Bayer	305-61-2435	373-1616	2918 BlueBonnet Lane	null	19	3.21
Katherine Ashly	381-62-1245	375-4409	125 Kirby Road	null	18	2.89
Dick Davidson	422-11-2420	null	3452 Elgin Road	749-1253	25	3.53
Charles Cooper	489-22-1100	376-9821	265 Lark Lane	749-1253	28	3.93

STUDENT

Name	Home- Phone	SSN	Age	Address	Office- Phone	GPA
Charles Cooper	376-9821	489-22-1100	28	265 Lark Lane	749-1253	3.93
Katherine Ashly	375-4409	381-62-1245	18	125 Kirby Road	null	2.89
Dick Davidson	null	422-11-2420	25	3452 Elgin Road	749-1253	3.53
Benjamin Bayer	373-1616	305-61-2435	19	2918 BlueBonnet Lane	null	3.21

Schema di database relazionale

 Uno schema di database relazionale è un insieme di schemi di relazione:

$$S_{o}\{R_{1}, R_{2}, ..., R_{n}\}$$

• Una istanza di database relazionale DB di S è un insieme di istanze di relazione

DB = $\{r_1, r_2, ..., r_m\}$ tale che r_i è una istanza di R_i .

Schema di database relazionale (2)

FNAME MINIT LNAME SSN BDATE ADDRESS SEX SALARY SUPERSSN DNO DEPARTMENT DNAME DNUMBER MGRSSN MGRSTARTDATE

DEPT_LOCATION				
DNUMBER	DLOCATION			

WORKS_ON					
ESSN	PNO	HOURS			

DEPENDENT

ESSN DEPARTMENT NAME	SEX	BDATE	RELATIONSHIP
----------------------	-----	-------	--------------

Lo schema del database 'Company'

1stanza di database relazionale

EMPLOYEE	FNAME	MINIT	LNAME	SSN	BDATE	ADDRESS	SEX	SALARY	SUPERSSN	DNO
	Lakes							30000		
	John	N /	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	M	30000	333445555	5
	Franklin		Wong	333445655	1955-12-08	638 Voss, Houston, TX	M	40000	888665555	5
	Alicia		Zelaya	999687777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
	Jennifer		Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
	Ramesh		Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	M	38000	333445555	5
	Joyce		English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
	Ahmad		Jabber	987987987	1969-03-29	980 Dallas, Houston, TX	M	25000	987654321	4
	James		Borg	888665555	1937-11-10	450 Stone, Houston, TX	M	55000	null	1

				DEPT_LOCATIONS	DNUMBER	DLOCATION
					1	Houston
			8			Stafford
DEPARTMENT	DNAME	DNUMBER	MGRSSN	MGRSTARTDATE		Bellaire
	Research	5	333445555	1988-05-22		Sugarland
	Administration	4	987654321	1995-01-01		
	Headquarters.	1	888665555	1981-06-19		

WORKS_ON	ESSN	PNO	HOURS
· 1	123456789	1	32.5
	123456789	2	7.5
	666884444	3	40.0
	453453453	1	20.0
	453453453	2	20.0
	333445555	2	10.0
	333445555	3	10.0
	333445555	10	10.0
	333445555	20	10.0
	999887777	30	30.0
	999887777	10	10.0
	987987987	10	35.0
	987987987	30	5.0
	987654321	30	20.0
	987654321	20	15.0
	888665555	20	null

PROJECT	PNAME	PNUMBER.	PLOCATION	DNUM
	ProductX	1	Bellaire	5
[ProductY	2	Sugarland	5
	ProductZ.	3	Houston	5
[Computerization	10	Stafford	4
[Reorganization	20	Houston	1
[Newbenefits	30	Stafford	4

DEPENDENT	ESSN	DEPENDENT_NAME	SEX	BDATE	RELATIONSHIP
	333445555	Alice	F	1986-04-05	DAUGHTER
	333445655	Theodore	M	1983-10-25	SON
	333445555	Jay	F	1958-05-03	SPOUSE
	987654321	Abner	M	1942-02-28	SPOUSE
	123456789	Michael	M	1988-01-04	SON
	123456789	Alice	F	1988-12-30	DAUGHTER
ananu"	123456789	Elizabeth	F	1967-05-05	SPOUSE

Un'istanza del database "Company"

Notazioni del modello Relazionale

- Uno schema di relazione R, di grado n, è denotato da $R(A_1, A_2, ..., A_n)$.
- Una tupla t in una relazione r(R) è denotata da $t = \langle v_1, v_2, ..., v_n \rangle$ dove v_i è il valore per l'attributo A_i
 - $t[A_i]$ si riferisce al valore v_i per l'attributo A_i ;
 - $t[A_u, A_w, ..., A_z]$ dove $A_u, A_w, ..., A_z$ è una lista di attributi di R e riferisce alle sottotuple di valori $v_u, v_w, ..., v_z$.
- Le lettere **Q**, **R**, **S** denotano nomi di relazioni.
- Le lettere **q**, **r**, **s** denotano stati di relazioni.
- Le lettere t, u, v denotano tuple.

Vincoli nel modello Relazionale

Vincoli del modello Relazionale

- Nel modello relazionale, i valori presenti in un'istanza di relazione devono soddisfare una serie di vincoli:
 - 1. Vincoli di dominio
 - 2. Vincoli di chiave
 - 3. Vincoli di integrità di entità
 - 4. Vincoli di integrità referenziale

Vincoli di dominio

• Il valore di ciascun attributo di *A* deve essere un valore atomico

```
{carattere, stringa a lunghezza fissa e variabile, data, ora, valuta, ecc...} appartenente a dom(A).
```

Vincoli di chiave – definizione di superchiave

- Una relazione è definita come un insieme di tuple.
 Per definizione tutti gli elementi di un insieme sono distinti, quindi tutte le tuple devono essere distinte.
- Devono allora esistere dei sottoinsiemi di attributi con la proprietà di non avere la stessa combinazione di valori in più tuple.
 Sia sk un tale sottoinsieme di attributi di R: t₁[sk] ≠ t₂[sk]
- L'insieme di attributi *sk* è detto superchiave di R.

Vincoli di chiave – definizione di chiave

- Formalmente, una chiave k di uno schema di relazione R è una superchiave tale che, rimovendo uno dei suoi attributi, non è più una superchiave.
 - **k** è detta anche superchiave minimale.
- Informalmente, una chiave **k** è un insieme di attributi minimale che permette di identificare univocamente una tupla.

Vincoli di chiave – definizione di chiave (2)

- In una relazione possono esistere più chiavi, dette chiavi candidate:
 - in tal caso se ne sceglie una, detta chiave primaria.
- Una chiave deve godere anche delle proprietà di invarianza nel tempo.
- *Esempio* di chiave:

Name	SSN	HomePhone	Address	OfficePhone	Age	GPA
Benjamin Bayer	305-61-2435	373-1616	2918 BlueBonnet Lane	null	19	3.21
Katherine Ashly	381-62-1245	375-4409	125 Kirby Road	null	18	2.89
Dick Davidson	422-11-2420	null	3452 Elgin Road	749-1253	25	3.53
Charles Cooper	489-22-1100	376-9821	265 Lark Lane	749-1253	28	3.93
Barbara Benson	533-69-1238	839-8461	7384 Fontana Lane	null	19	3.25

 {SSN} è una chiave. Ogni insieme di attributi che include SSN è una superchiave.

Vincoli di chiave

• In una relazione R, non possono esistere valori duplicati per attributi chiave **k**.

Vincoli di integrità di entità

• Nessun valore di chiave primaria può essere "null".

- Questo perché:
 - Se ciò fosse permesso, non si avrebbe modo di identificare l'entità descritta nella tupla.
 - Non si vogliono memorizzare informazioni su entità non identificabili.

Vincoli di integrità referenziale

- Specificati tra due relazioni, sono usati per mantenere consistenza tra tuple delle due relazioni.
- Informalmente: una tupla di una relazione, che riferisce ad una tupla di un'altra relazione, deve riferire ad una tupla esistente.
 - È il concetto portante del modello relazionale!

Vincoli di integrità referenziale - Esempio

- L'attributo *DNO* di Employee deve riferire ad un *DNUMBER* esistente nella relazione Department.
- La relazione Employee è detta essere relata a Departement tramite l'attributo *DNO*.

EMPLOYEE	FNAME	MINIT	LNAME	<u>SSN</u>	BDATE	ADDRESS	SEX	SALARY	SUPERSSN	DNO
	John	В	Smith	123456789	09-JAN-55	731 Fondren, Houston, TX	М	30000	333445555	5
	Franklin	Т	Wong	333445555	08-DEC-45	638 Voss, Houston, TX	M	40000	888665555	5
	Alicia	J	Zelaya	999887777	19-JUL-58	3321 Castle, Spring, TX	F	25000	987654321	4
	Jennifer	S	Wallace	987654321	20-JUN-31	291 Berry, Bellaire, TX	щ	43000	888665555	4
	Ramesh	К	Narayn	666884444	15-SEP-52	975 Fire Oak, Humble, TX	М	38000	333445555	5
	Joyce	Α	English	453453453	31-JUL-62	5631 Rice, Houston, TX	F	25000	333445555	5
	Ahmad	٧	Jabbar	987987987	29-MAR-59	980 Dallas, Houston, TX	М	25000	987054321	4
	James	Е	Borg	888665555	10-NOV-27	450 Stone, Houston, TX	М	55000	null	1

DEPARTMENT	DNAME	DNUMBER	MGRSSN	MGRSTARTDATE
	Research	5	33445555	22-MAY-78
	Administration	4	987654321	01-JAN-85
	Headquarters	1	388665555	19-JUN-71

Vincoli di integrità referenziale – definizione di chiave esterna

- Formalmente: un insieme di attributi FK in uno schema di relazione R_i è una chiave esterna se vale:
 - 1. gli attributi in FK hanno lo stesso dominio degli attributi della chiave primaria PK di un altro schema di relazione R_j (gli attributi in FK riferiscono alla relazione R_j)
 - 2. Un valore di FK in una tupla t_i di R_i o occorre come un valore di PK per qualche tupla t_j di R_j o è **null**. $t_i[FK] = t_i[PK]$ oppure $t_i[FK] = null$

Vincoli di integrità referenziale (2)

- Le chiavi esterne sono simili al concetto dei "puntatori" in C, che o riferiscono ad una variabile allocata o sono null.
- L'attributo *DNO* di Employee è una chiave esterna, poiché rispetta le condizioni appena elencate.
- Una tupla t_i di una relazione R_i è detta referenziare una tupla t_j di una relazione R_j se vale $t_i[FK] = t_i[PK]$.

Vincoli di integrità referenziale - Esempio

• Un vincolo di integrità referenziale può essere mostrato in uno schema relazionale come un arco diretto da R_i . FK a R_i .

Vincoli e operazioni di aggiornamento su relazioni (Insert)

- Insert può violare tutti e quattro i tipi di vincoli:
 - Dominio
 - Un valore di un attributo può non apparire nel corrispondente dominio.
 - Chiave
 - Il valore della chiave nella nuova tupla già esistente nella relazione r(R).
 - Integrità di entità
 - La chiave primaria è inserita a null.
 - Integrità referenziale
 - Il valore di una chiave esterna riferisce ad una tupla che non esiste nella relazione referenziata.

Vincoli e operazioni di aggiornamento su relazioni (Insert) (2)

- Come gestire la violazione?
 - Forzare l'inserimento completo (della relazione riferita);
 - Rifiutare l'inserimento.

 Nel primo caso la violazione può riguardare in cascata l'inserimento su altre relazioni.

Vincoli e operazioni di aggiornamento su relazioni (Delete)

- La delete può violare solo l'integrità referenziale.
- Gestione violazione:
 - Rigettare la cancellazione.
 - Tentare di propagare la cancellazione.
 - Modificare i valori dell'attributo referenziante (posto a *null*).
 - Combinazioni delle tre (ed il DBMS dovrebbe permettere all'utente di specificare la gestione).

Vincoli e operazioni di aggiornamento su relazioni (Modify)

- Nessun problema per attributi che non sono né chiave primaria né chiave esterna.
- Modifica chiave primaria:
 - Analogo a cancellare una tupla e inserirne un'altra.
- Modifica chiave esterna:
 - Il dbms deve verificare che riferisca ad una tupla esistente.