

دانشگاه صنعتی اصفهان دانشکده مهندسی برق و کامپیوتر

ساخت پخش کننده صدا

گزارش درس زبان های توصیف سخت افزار و مدارات

دكتر احسان يزديان

دانشجويان:

عليرضا دايي جواد

سید محمد ملک محمد

امیرحسین کارگران

بهمن ماه 96

مقدمه و سخت افزار

هدف از انجام این پروژه زمینه سازی شرایط پردازش آرایه ای صوت می باشد.

لذا باید ارایه ساخته شده سیگنال صوتی میکروفون را با دقت بسیار بالایی به صورت دیجیتال برای پردازش به پردازنده ارسال کند.

در این پروژه از مدل های مختلف میکرفون های آنالوگ خازنی به منظور دریافت صدا استفاده شده است.

بدلیل امپدانس زیاد میکروفون های خازنی دامنه خروجی سیگنال ضعیف می باشد. لذا در ابتدا صدا با دامنه بسیار کم از میکروفون دریافت می شود و در مداری پیش تقویت کننده به سطح مطلوبی افزایش می یابد.

برای این که حجم و پیچیدگی مدار کم بشود از تراشه های تقویت کننده عملیاتی استفاده میکنیم.

به همین منظور از تراشه MAX4469 که دارای دو تقویت کننده عملیاتی می باشد استفاده شده و صدا را به حد مناسب تری برای ورود به آی سی دیجیتال کننده آماده می کنیم. پهنای باند بهره آن ۲۰۰ کیلوهرتز است و بدلیل ابعادکوچک آن حجم مدار کاهش می بابد. مدار ساخته شده از دیتاشیت مربوطه کپی شده است و از همان مقادیر مقرر شده استفاده شده است.

در این مدار توسط خازن متوسط خروجی سیگنال صوتی حذف و سپس با مقاومتی بزرگ سیگنال را به حوالی ۲.۵ولت منتقل می شود و با استفاده از فیلتر مرتبه ۲ سیگنال تقویت می شود . بهره این مدار ۱۰ در نظرگرفته شده است ک با تغییر مقاومت می توان بهره مدار را تعویض نمود. از آنجا که مدار پیش تقویت کننده داشته ایم نیازی به تقویت زیادی نداریم.

از آی سی CS5340 که یک مبدل آنالوگ به دیجیتال ۲۴ بیتی می باشد در این پروژه استفاده شده است. این تراشه از یک مدولاتور چند بیتی سیگما دلتا مرتبه ۵ استفاده میکند. پروتکل این مبدل 12S می باشد و سیگنال صوت تقویت شده ما در بازه ۰ تا ۵ ولت دارای تغییرات است.

مدار روی برد:

کد وریلاگ:

تعيين فركانس سيكنال MCLK

نرخ نمونهبرداری (kHz)	فركانس سيكنال MCLK		
77	791,3		
££.1	11,7498		
	7870,77		
47	17,71		
	74,076		
۶۴	791,A		
7,44	11,7495		
	70,079		
વક	17,71		
	74,076		
1ar	14,71		
197	74,075		

پروتکل 12S از جمله پروتکل های معروف انتقال صدا می باشد که ما در ابتدا این پروتکل را پیاده سازی کرده و آن را با سیمولینک مورد بررسی قرار دادیم .

در پروژه اصلی هم تست بنچ آن و هم فایل اصلی آن وجود دارد.

از این لینک منبع باز زیر نیز به منظور کمک برای نوشتن این کد استفاده شده است :

https://github.com/jackcarrozzo/cs_adcs

برای ارتباط با کامپیوتر از آی سی FT2232H استفاده شده است که آی سی پرکاربردی می باشد.

شماتیک top module طرح سخت افزاری سمت FPGA برنامه نمونه در این قسمت کشیده شده است.

ALDEC	(C)ALDEC. Inc 2260 Corporate Circle Henderson, NV 89074
Created:	12/12/2015
Title:	FT2232H Async FIFO Loopback teset
Revision:	1.0
Page:	1/1

در سخت افزار ما کانال A این آی سی جهت برنامه ریزی برد رزرو شده است.

و ما تنها از کانال B آن با سرعت ۱۰ مگابایت بر ثانیه(۸۰ مگابیت) استفاده میکنیم.

ابتدا این آی سی را به مد FIFO تغییر میدهیم.

```
first disconnect other programmer from PC.
Close ISE, Impact, and other Xilinx programs.
Press Enter to continue ...
Enter 1 for UART
Enter 2 for FIFO
Enter any for exit
```

برای شروع کار با این آی سی مستندات شرکت FTDI بررسی شده است. برای خیلی از نرم افزار ها کتابخانه و سورس کد و ... توسعه داده شده است.

ما از visual studio و زبان ++C به خاطر راحتی استفاده کردیم. بسیار جامع و کامل تمامی دستورات در این مستندات ارائه شده است.

برنامه نوشته شده سرعت و نرخ تبادل اطلاعات را به کاربر نشان داده و صفحه را flush کرده و مرتبا بروزرسانی می شود. و کاربر از نرخ تبادل و تغییرات آن و حجم داده دریافت شده تاکنون از صحت کارکرد برنامه مطلع می شود.

همزمان داده ها دریافت شده و به صورت قرار داد شده بازگشایی و تحت عنوان ۲ داده با فرمت long در فایل example.txt

پس از پایان برنامه سیستم متوقف شده و فایل تکست بسته می شود و از کاربر در خواست فشردن کلید را می کند.

در ایتدا برای این که مطمئن شویم سیستم به درستی کار می دهد سیگنالی سینوسی بسیار ضعیف (در حد خروجی میکروفون) را به برد میدهیم.

قطعا هم مطمئن هستیم چرا که خروجی تقویت کننده اصلی برش نداشته و سیگنال همچنان سینوسی می ماند. همچنین وقتی در میکروفون صحبت میکنیم و خروجی را میبینیم هم برش نداشته و معلوم است که گین تقویت کننده و مقادیر تعیین کننده آن دقیقا به درستی انتخاب شده است.

همانگونه که روی شکل مشخص است روی کمترین دامنه فانکشن ژنراتور تنظیم شده است.

و با اندازه گیری سیگنال مشخص است که پیک تو پیک آن بعد از پیش تقویت کننده در حد ۰.۵ ولت است. خود شکل موج ورودی دقیق سینوسی با دامنه ثابت نمی باشد.

پس از تقویت این گونه می شود:

و پیک تو پیک در حد ۱.۷۵ شده است .

اجرای برنامه:

Opened Device Successfully 17235968 Bytes | 8654.77 kB/s | 0 errors

خروجی example.txt

حلقه for را بر روی ۱۰۰۰۰۰ تنظیم کرده ایم و در نتیجه به همین تعداد عدد دریافت میشود

این اعداد در متلب ایمپورت می کنیم.

ما تنها به یکی از کانال ها ولتاژ سینوسی را اعمال کرده ایم.

99972	11717542,129216	1	4132886,15481188
99973	11772538,156010	2	4152978,15453336
99974	11795074,134132	3	3995598,15474374
99975	11841056,170012	4	4192268,15462154
99976	11893694,162882	5	4153144,15497802
99977	11888540,109480	6	4216388,15468602
99978	11986670,170010	7	4160948,15481852
99979	12036976,188054	8	4219304,15475378
99980	12080008,170760	9	4219586,15483298
99981	12081712,99160	10	4237922,15475182
99982	12167486,140496	11	4267558,15495638
99983	12230028,133886	12	4267372,15483370
99984	12291544,105582	13	4295316,15498372
99985	12378304,136212	14	4322450,15498476
99986	12446962,135658	15	4304812,15501534
99987	12542574,180936	16	4275710,15484988
99988	12594788,130348	17	4350926,15536376
99989	12681082,173996	18	4294738,15512010
99990	12746304,121676	19	4314216,15522114
99991	12830364,129980	20	4288552,15508050
99992	12882264,103148	21	4312396,15546256
99993	13008856,124384	22	4239162,15550872
99994	13109420,123018	23	4244522,15527574
99995	13156030,135776	24	4167486,15549356
99996	13247884,77836	25	4245988,15572388
99997	13367958,112694	26	4240504,15509482
99998	13450202,99468	27	4071296,15541460
99999	13570180,120410	28	4144098,15519208
00000	13649966,87980	29	4029964,15550380
00001		30	4069418,15547316

شكل خروجى :

پس از اعمال کد متلب زیر:

```
CIC;
       E=zeros(100000,1);
     = for i = 1 : 100000
       if(A(i)<7500608)</pre>
       E(i) = A(i) + 16777216;
 5 –
       else
       E(i) = A(i);
 8 –
       end
      end
 9 –
       hold on
10 -
       plot(E(1:3000));
11 -
```

شكل خروجي:

بلات همه باهم

دستورالعمل اجرا:

ابتدا fpga را به مد FIFO برده! أي سي ft2232h برنامه ريزي خواهد شد.

فایل . bit را روی برد پروگرام نمایئد همچنین prom آن نیز ساخته شده که بتوانید برنامه را در SPI flash هم ذخیره نمایئد.

برنامه .exe در زیر پوشه debug درپوشه visual studio را اجرا نمایئد.

Current folder متلب را همان جا قرار داده و كد متلب را اجرا نمائيد!