HAETAE: Bridging Algebraic Number Theory to Post-Quantum Digital Signatures

Jung Hee Cheon^{1,2}, **Hyeongmin Choe**¹, Julien Devevey³, Tim Güneysu⁴, Dongyeon Hong², Markus Krausz⁴, Georg Land⁴, Junbum Shin². Damien Stehlé^{3,5}. MinJune Yi^{1,2}

¹Seoul National University, ²CryptoLab Inc., ³École Normale Supérieure de Lyon, ⁴Ruhr Universität Bochum, ⁵Institut Universitaire de France

2024 Algebra Camp February 5, 2024

Table of Contents

1. Post-Quantum Cryptography:

- What is Cryptography?
- Lattice hard problems

2. Digital Signatures:

- What is a digital signature?
- Lattice-based digital signatures
- Rejection sampling

3. HAETAE:

- Hyperball bimodal rejection sampling
- Comparison to SotA lattice signatures
- Current status

1. Post-Quantum Cryptography:

- What is Cryptography?
- Lattice hard problems

2. Digital Signatures

- What is a digital signature?
- Lattice-based digital signatures
- Rejection sampling

3 HAFTAF

- Hyperball bimodal rejection sampling
- Comparison to SotA lattice signatures
- Current status

Cryptosystem

Hard problems

- RSA Encryption/Signature
- Diffie-Hellman Key Exchange
- ECDSA/ECDH
 - :

- Integer Factorization
- Discrete Logarithm (DL)
- DL in Elliptic Curve over \mathbb{F}_p (ECDL)
 - NP!

Post-Quntum Cryptography

However, including the quantum algorithms...

Post-Quntum Cryptography

Post-Quantum Cryptography

- Lattice-based cryptography
- Code-based cryptography
 - :

Hard problems (even) against Quantum Algorithms

- Shortest/Closest Vector Problem (SVP/CVP)
- Syndrome Decoding Problem (SDP)
 - NP-hard!*

1. Post-Quantum Cryptography:

- What is Cryptography?
- Lattice hard problems

2. Digital Signatures:

- What is a digital signature?
- Lattice-based digital signatures
- Rejection sampling

3 HAFTAF

- Hyperball bimodal rejection sampling
- Comparison to SotA lattice signatures
- Current status

Lattice hard problems

Useful hard problems:

- LWE, Ring-LWE, and Module-LWE
- \bullet SIS, Ring-SIS, and Module-SIS

NP-hard problems

- Shortest Vector Problem (SVP)
- Closet Vector Problem (CVP)

SVP and CVP in dimension two.

Reductions

Schemes ← Useful hard problems ← NP-hard problems

Lattice hard problems

Useful hard problems:

- LWE, Ring-LWE, and Module-LWE
- SIS, Ring-SIS, and Module-SIS

NP-hard problems:

- Shortest Vector Problem (SVP)
- Closet Vector Problem (CVP)

SVP and CVP in dimension two.

Reductions

Schemes

Useful hard problems

NP-hard problems

Lattice hard problems

Useful hard problems:

- LWE, Ring-LWE, and Module-LWE
- SIS, Ring-SIS, and Module-SIS

NP-hard problems:

- Shortest Vector Problem (SVP)
- Closet Vector Problem (CVP)

SVP and CVP in dimension two.

Reductions:

Schemes ← Useful hard problems ← NP-hard problems

1. Post-Quantum Cryptography:

- What is Cryptography?
- Lattice hard problems

2. Digital Signatures:

- What is a digital signature?
- Lattice-based digital signatures
- Rejection sampling

3 HAFTAF

- Hyperball bimodal rejection sampling
- Comparison to SotA lattice signatures
- Current status

Conventional signatures work as:

Conventional signatures work as:

Digital signatures work as:

Digital signatures work as:

Necessary properties:

Correctness:

$$\mathsf{Verify}(\mathsf{vk}, m, \mathsf{Sign}(\mathsf{sk}, m)) = \mathsf{accept}$$

Unforgeability: No one else than Alice can make a new signature.
 More formally,

for a given verification key and some message-signature pairs, no adversary can forge a new valid signature.

Digital signatures work as:

Necessary properties:

Correctness:

$$Verify(vk, m, Sign(sk, m)) = accept$$

• Unforgeability: No one else than Alice can make a new signature.

More formally,

for a given verification key and some message-signature pairs, no adversary can forge a new valid signature.

Digital signatures work as:

Necessary properties:

Correctness:

$$Verify(vk, m, Sign(sk, m)) = accept$$

Unforgeability: No one else than Alice can make a new signature.
 More formally,

for a given verification key and some message-signature pairs, no adversary can forge a new valid signature.

1. Post-Quantum Cryptography:

- What is Cryptography?
- Lattice hard problems

2. Digital Signatures:

- What is a digital signature?
- Lattice-based digital signatures
- Rejection sampling

3 HAFTAF

- Hyperball bimodal rejection sampling
- Comparison to SotA lattice signatures
- Current status

Fiat-Shamir with abort

Hash-and-Sign

Fiat-Shamir with abort:

Key: (s: small secret, $\mathbf{t} = \mathbf{A}\mathbf{s} \bmod q$: public)

Sign: $(c = H(\mathbf{A}\mathbf{y} \bmod q, m), \mathbf{z} = \mathbf{y} + c\mathbf{s})$ for short \mathbf{y} , with rejection sampling

Verify: check whether $c = H(\mathbf{Az} - c\mathbf{t} \bmod q, m)$ and \mathbf{z} is short.

Correctness of FSwA:

- y, s: short, and $c = H(\cdot)$: binary $\Rightarrow cs$: short. $\Rightarrow z = y + cs$: short.
- $\mathbf{Az} c\mathbf{t} = \mathbf{A}(\mathbf{y} + c\mathbf{s}) c\mathbf{t} = \mathbf{Ay} + c(\mathbf{As} \mathbf{t}) = \mathbf{Ay} \mod q$.

Fiat-Shamir with abort:

Key: (s: small secret, $\mathbf{t} = \mathbf{A}\mathbf{s} \bmod q$: public)

Sign: $(c = H(\mathbf{A}\mathbf{y} \bmod q, m), \mathbf{z} = \mathbf{y} + c\mathbf{s})$ for short \mathbf{y} , with rejection sampling

Verify: check whether $c = H(\mathbf{Az} - c\mathbf{t} \mod q, m)$ and \mathbf{z} is short.

Correctness of FSwA:

- \mathbf{y} , \mathbf{s} : short, and $c = H(\cdot)$: binary $\Rightarrow c\mathbf{s}$: short. $\Rightarrow \mathbf{z} = \mathbf{y} + c\mathbf{s}$: short.
- $\mathbf{Az} c\mathbf{t} = \mathbf{A}(\mathbf{y} + c\mathbf{s}) c\mathbf{t} = \mathbf{Ay} + c(\mathbf{As} \mathbf{t}) = \mathbf{Ay} \mod q$.

Fiat-Shamir with abort:

Key: (s: small secret, $\mathbf{t} = \mathbf{A}\mathbf{s} \bmod q$: public)

Sign: $(c = H(\mathbf{A}\mathbf{y} \bmod q, m), \mathbf{z} = \mathbf{y} + c\mathbf{s})$ for short \mathbf{y} , with rejection sampling

Verify: check whether $c = H(\mathbf{Az} - c\mathbf{t} \mod q, m)$ and \mathbf{z} is short.

Correctness of FSwA:

- y, s: short, and $c = H(\cdot)$: binary $\Rightarrow c$ s: short. \Rightarrow z = y + cs: short.
- $\mathbf{Az} c\mathbf{t} = \mathbf{A}(\mathbf{y} + c\mathbf{s}) c\mathbf{t} = \mathbf{Ay} + c(\mathbf{As} \mathbf{t}) = \mathbf{Ay} \mod q$.

Fiat-Shamir with abort:

Key: (s: small secret, $\mathbf{t} = \mathbf{A}\mathbf{s} \bmod q$: public)

Sign: $(c = H(\mathbf{A}\mathbf{y} \bmod q, m), \mathbf{z} = \mathbf{y} + c\mathbf{s})$ for short \mathbf{y} , with rejection sampling

Verify: check whether $c = H(\mathbf{Az} - c\mathbf{t} \mod q, m)$ and \mathbf{z} is short.

Unforgeability of FSwA:

- key is secure ← Module-LWE,
- ullet signature (c, \mathbf{z}) do not leak the secret \mathbf{s} due to rejection sampling,
- no new signatures can be sampled without s

 Module-SIS,

even in the use of quantum algorithms.

Fiat-Shamir with abort:

Key: (s: small secret, $\mathbf{t} = \mathbf{A}\mathbf{s} \bmod q$: public)

Sign: $(c = H(\mathbf{A}\mathbf{y} \bmod q, m), \mathbf{z} = \mathbf{y} + c\mathbf{s})$ for short \mathbf{y} , with rejection sampling

Verify: check whether $c = H(\mathbf{Az} - c\mathbf{t} \mod q, m)$ and \mathbf{z} is short.

Unforgeability of FSwA:

- **key** is secure ← Module-LWE,
- \bullet signature (c,\mathbf{z}) do not leak the secret s due to rejection sampling,
- \bullet no new signatures can be sampled without $s \Leftarrow \mathsf{Module}\text{-SIS},$ even in the use of quantum algorithms.

Fiat-Shamir with abort:

```
Key: (s: small secret, \mathbf{t} = \mathbf{A}\mathbf{s} \bmod q: public)
```

Sign: $(c = H(\mathbf{A}\mathbf{y} \bmod q, m), \mathbf{z} = \mathbf{y} + c\mathbf{s})$ for short \mathbf{y} , with rejection sampling

Verify: check whether $c = H(\mathbf{Az} - c\mathbf{t} \mod q, m)$ and \mathbf{z} is short.

Unforgeability of FSwA:

- key is secure ← Module-LWE,
- ullet signature (c,\mathbf{z}) do not leak the secret s due to rejection sampling,
- $\bullet \ \ \text{no new signatures} \ \ \text{can be sampled without} \ \ s \leftarrow \ \ \text{Module-SIS},$

even in the use of quantum algorithms.

Fiat-Shamir with abort:

Key: (s: small secret, $\mathbf{t} = \mathbf{A}\mathbf{s} \bmod q$: public)

Sign: $(c = H(\mathbf{A}\mathbf{y} \bmod q, m), \mathbf{z} = \mathbf{y} + c\mathbf{s})$ for short \mathbf{y} , with rejection sampling

Verify: check whether $c = H(\mathbf{Az} - c\mathbf{t} \mod q, m)$ and \mathbf{z} is short.

Unforgeability of FSwA:

- key is secure ← Module-LWE,
- ullet signature (c,\mathbf{z}) do not leak the secret s due to rejection sampling,
- \bullet no new signatures can be sampled without $s \Leftarrow \mathsf{Module}\text{-SIS},$

even in the use of quantum algorithms.

1. Post-Quantum Cryptography:

- What is Cryptography?
- Lattice hard problems

2. Digital Signatures:

- What is a digital signature?
- Lattice-based digital signatures
- Rejection sampling

3 HAFTAF

- Hyperball bimodal rejection sampling
- Comparison to SotA lattice signatures
- Current status

Leakage from $(c, \mathbf{z} = \mathbf{y} + c\mathbf{s})$?

With ∞ pairs of $(c, \mathbf{z} = \mathbf{y} + c\mathbf{s})$, we can collect \mathbf{z} for the same c:

 \Rightarrow Recover s from cs.

Leakage from $(c, \mathbf{z} = \mathbf{y} + c\mathbf{s})$?

With ∞ pairs of $(c, \mathbf{z} = \mathbf{y} + c\mathbf{s})$, we can collect \mathbf{z} for the same c:

 \Rightarrow Recover ${f s}$ from $c{f s}$.

Leakage from $(c, \mathbf{z} = \mathbf{y} + c\mathbf{s})$?

With ∞ pairs of $(c, \mathbf{z} = \mathbf{y} + c\mathbf{s})$, we can collect \mathbf{z} for the same c:

 \Rightarrow Recover s from cs.

Rejection sampling

$$D_{ ext{source}} = \{(c, \mathbf{z})\}$$
 $\xrightarrow{ ext{reject with}}$ $D_{ ext{target}}$ distribution of (c, \mathbf{z}) , possibly leak \mathbf{z} independent of \mathbf{z} \mathbf{z}

Rejection sampling

$$D_{ ext{source}} = \{(c, \mathbf{z})\}$$
 $\xrightarrow{ ext{reject with}}$ $D_{ ext{target}}$ distribution of (c, \mathbf{z}) , possibly leak s independent of s independent of s $y \leftarrow \mathcal{N}(0, \sigma^2)$ $y \leftarrow U[-a, a]$

The **FSwA signatures** are commonly given as follows:

- 1 $\mathbf{y} \leftarrow D_0$
- $c \leftarrow H(\mathbf{A}\mathbf{y}, m)$
- $\mathbf{z} \leftarrow \mathbf{y} + c\mathbf{s}$
- 4 with probability $\frac{p_{\text{target}}(c,\mathbf{z})}{M \cdot p_{\text{source}}(c,\mathbf{z})}$, return $\sigma = (c,\mathbf{z})$, else go to step 1

M: bounding factor for the probability to be ≤ 1 .

Final distribution $\sim D_{\rm target}$.

Run-time $\propto M$.

The **FSwA signatures** are commonly given as follows:

- 1 $\mathbf{y} \leftarrow D_0$
- $c \leftarrow H(\mathbf{A}\mathbf{y}, m)$
- $\mathbf{z} \leftarrow \mathbf{y} + c\mathbf{s}$
- 4 with probability $\frac{p_{\text{target}}(c,\mathbf{z})}{M \cdot p_{\text{source}}(c,\mathbf{z})}$, return $\sigma = (c,\mathbf{z})$, else go to step 1

M: bounding factor for the probability to be ≤ 1 .

Final distribution $\sim D_{\rm target}$

Run-time $\propto M$.

Rejection sampling

The **FSwA signatures** are commonly given as follows:

- 1 $\mathbf{y} \leftarrow D_0$
- $c \leftarrow H(\mathbf{A}\mathbf{y}, m)$
- $\mathbf{z} \leftarrow \mathbf{y} + c\mathbf{s}$
- 4 with probability $\frac{p_{\text{target}}(c,\mathbf{z})}{M \cdot p_{\text{source}}(c,\mathbf{z})}$, return $\sigma = (c,\mathbf{z})$, else go to step 1

M: bounding factor for the probability to be ≤ 1 .

Final distribution $\sim D_{\text{target}}$.

Run-time $\propto M$.

Bimodal rejection sampling

Run-time $\propto M$ (\approx green area / purple area).

To decrease M, [DDLL13] uses

$$\mathbf{z} = \mathbf{y} + (-1)^b c\mathbf{s} \bmod 2q$$

instead of $\mathbf{z} = \mathbf{y} + c\mathbf{s} \mod q$:

Note, no change for the uniform case.

Bimodal rejection sampling

Run-time $\propto M$ (\approx green area / purple area).

To decrease M, [DDLL13] uses

$$\mathbf{z} = \mathbf{y} + (-1)^b c\mathbf{s} \bmod 2q$$

instead of $\mathbf{z} = \mathbf{y} + c\mathbf{s} \mod q$:

Note, no change for the uniform case.

Bimodal rejection sampling

Run-time $\propto M$ (\approx green area / purple area).

To decrease M, [DDLL13] uses

$$\mathbf{z} = \mathbf{y} + (-1)^b c\mathbf{s} \bmod 2q$$

instead of $\mathbf{z} = \mathbf{y} + c\mathbf{s} \mod q$:

Note, no change for the uniform case.

1. Post-Quantum Cryptography:

- What is Cryptography?
- Lattice hard problems

2. Digital Signatures

- What is a digital signature?
- Lattice-based digital signatures
- Rejection sampling

3. HAETAE:

- Hyperball bimodal rejection sampling
- Comparison to SotA lattice signatures
- Current status

Previously, the randomness \mathbf{y} was chosen from either discrete Gaussian or uniform hypercube¹.

 $^{^1}$ The vectors y and z are high-dimensional vectors, so uniform in an interval is indeed a uniform hypercube.

We, instead, use $uniform\ hyperball\ distribution\ for\ sampling\ y\ [DFPS22];$

- ullet to exploit optimal M,
- to reduce signature and verification key sizes,

pased on the bimodal approach [DDLL13].

We, instead, use $uniform\ hyperball\ distribution\ for\ sampling\ y\ [DFPS22];$

- to exploit optimal M,
- to reduce signature and verification key sizes,

based on the bimodal approach [DDLL13].

We reject $(c, \mathbf{z}) \sim D_{\rm s}$ (with p.d.f. $p_{\rm s}$) to a target distribution $D_{\rm t}$ (with p.d.f. $p_{\rm t}$), where

- ullet $p_{
 m s}$: uniform in hyperballs of radii B centered at $\pm c{
 m s}$
 - union of two large balls
- ullet p_t : uniform in a smaller hyperball of radii B' centered at zero
 - a smaller ball in the middle

We reject $(c, \mathbf{z}) \sim D_{\rm s}$ (with p.d.f. $p_{\rm s}$) to a target distribution $D_{\rm t}$ (with p.d.f. $p_{\rm t}$), where

- ullet $p_{
 m s}$: uniform in hyperballs of radii B centered at $\pm c{
 m s}$
 - union of two large balls
- ullet p_{t} : uniform in a smaller hyperball of radii B' centered at zero
 - a smaller ball in the middle

•
$$p_{\mathbf{s}}(\mathbf{x}) = \frac{1}{2 \cdot \text{vol}(\mathcal{B}(B))} \cdot \chi_{\parallel \mathbf{z} - c\mathbf{s} \parallel < B} + \frac{1}{2 \cdot \text{vol}(\mathcal{B}(B))} \cdot \chi_{\parallel \mathbf{z} + c\mathbf{s} \parallel < B}$$

• $p_{\mathbf{t}}(\mathbf{x}) = \frac{1}{\text{vol}(\mathcal{B}(B))} \cdot \chi_{\parallel \mathbf{z} \parallel < B'}$.

$$\Rightarrow p(\mathbf{x}) = \frac{p_{\mathsf{t}}(\mathbf{x})}{M \cdot p_{\mathsf{s}}(\mathbf{x})} = \frac{\chi_{\|\mathbf{z}\| < B'}}{\chi_{\|\mathbf{z} - c\mathbf{s}\| < B} + \chi_{\|\mathbf{z} + c\mathbf{s}\| < B}}$$

$$0 \quad \text{if } \mathbf{z} \notin \mathcal{B}(B'),$$

$$= 1/2 \quad \text{if } \mathbf{z} \in \mathcal{B}(B') \cap \mathcal{B}(B, c\mathbf{s}) \cap \mathcal{B}(B, -c\mathbf{s}),$$

$$1 \quad \text{if } \mathbf{z} \in \mathcal{B}(B') \setminus (\mathcal{B}(B, c\mathbf{s}) \cap \mathcal{B}(B, -c\mathbf{s}))$$

for some M > 0.

•
$$p_{s}(\mathbf{x}) = \frac{1}{2 \cdot \text{vol}(\mathcal{B}(B))} \cdot \chi_{\parallel \mathbf{z} - c\mathbf{s} \parallel < B} + \frac{1}{2 \cdot \text{vol}(\mathcal{B}(B))} \cdot \chi_{\parallel \mathbf{z} + c\mathbf{s} \parallel < B}$$

• $p_{t}(\mathbf{x}) = \frac{1}{\text{vol}(\mathcal{B}(B))} \cdot \chi_{\parallel \mathbf{z} \parallel < B'}$

$$\Rightarrow p(\mathbf{x}) = \frac{p_{\mathsf{t}}(\mathbf{x})}{M \cdot p_{\mathsf{s}}(\mathbf{x})} = \frac{\chi_{\parallel \mathbf{z} \parallel < B'}}{\chi_{\parallel \mathbf{z} - c\mathbf{s} \parallel < B} + \chi_{\parallel \mathbf{z} + c\mathbf{s} \parallel < B}}$$

$$\begin{array}{ll} 0 & \text{if } \mathbf{z} \notin \mathcal{B}(B'), \\ = & 1/2 & \text{if } \mathbf{z} \in \mathcal{B}(B') \cap \mathcal{B}(B,c\mathbf{s}) \cap \mathcal{B}(B,-c\mathbf{s}), \\ & 1 & \text{if } \mathbf{z} \in \mathcal{B}(B') \setminus (\mathcal{B}(B,c\mathbf{s}) \cap \mathcal{B}(B,-c\mathbf{s})), \end{array}$$

for some M>0.

That is, we return $\mathbf{x} = (c, \mathbf{z})$ with probability

- 0: if $\|\mathbf{z}\| \ge B'$,
- 1/2: else if $\|\mathbf{z} c\mathbf{s}\| < B$ and $\|\mathbf{z} + c\mathbf{s}\| < B$,
- 1: otherwise.

1. Post-Quantum Cryptography:

- What is Cryptography?
- Lattice hard problems

2. Digital Signatures:

- What is a digital signature?
- Lattice-based digital signatures
- Rejection sampling

3. HAETAE:

- Hyperball bimodal rejection sampling
- Comparison to SotA lattice signatures
- Current status

Comparison to SotA lattice signatures.

For 120-bit classical security. Sizes are in bytes.

Scheme	sig	vk	KeyGen	Sign	
				sampling	rejection
Dilithium-2	2420	1312	fast	Hypercube	$\ \cdot\ _{\infty} < B$
Bliss-1024 ²	1700	1792	fast	dGaussian at 0	reject with prob. $f(sk,Sig)$
HAETAE120	1468	1056	fast	dHyperball at 0	$\ \cdot\ _2 < B$
Mitaka-512 ³	713	896	slow	dGaussian at 0 & intGaussian at $H(m)$	none
Falcon-512	666	897	slow	dGaussian at $H(m)$	none

Table: Comparison between different lattice-based signature schemes.

 $^{^{2}}$ modified Bliss (to ≥ 120 bit-security) in Dilithium paper.

³Mitaka-512 has 102 bits of security

1. Post-Quantum Cryptography:

- What is Cryptography?
- Lattice hard problems

2. Digital Signatures:

- What is a digital signature?
- Lattice-based digital signatures
- Rejection sampling

3. HAETAE:

- Hyperball bimodal rejection sampling
- Comparison to SotA lattice signatures
- Current status

HAETAE: Current status H. Choe

Current Status

NIST PQC

- Competition for USA standard PQC schemes.
- HAETAE is one of the candidates in *Additional Signatures* track.

KPQC

- Competition for Korean standard PQC schemes.
- HAETAE is advanced to Round 2, one of four candidates in *Digital Signatures* track.

Thank you!

Any question?

References I

- [BG14] Shi Bai and Steven D Galbraith. An improved compression technique for signatures based on learning with errors. In Cryptographers' Track at the RSA Conference, pages 28–47. Springer, 2014.
- [DDLL13] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice signatures and bimodal gaussians. In Annual Cryptology Conference, pages 40–56. Springer, 2013.
- [DFPS22] Julien Devevey, Omar Fawzi, Alain Passelègue, and Damien Stehlé. On rejection sampling in lyubashevsky's signature scheme. Cryptology ePrint Archive, Number 2022/1249, 2022. To be appeared in Asiacrypt, 2022. https://eprint.iacr.org/2022/1249.
- [DKL+18] Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler, and Damien Stehlé.
 Crystals-dilithium: A lattice-based digital signature scheme.
 IACR Transactions on Cryptographic Hardware and Embedded Systems, pages 238–268, 2018.
- [DLP14] Léo Ducas, Vadim Lyubashevsky, and Thomas Prest. Efficient identity-based encryption over ntru lattices. In International Conference on the Theory and Application of Cryptology and Information Security, pages 22–41. Springer, 2014.

References II

[DP16] Léo Ducas and Thomas Prest.

Fast fourier orthogonalization.

In Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation, pages 191–198, 2016.

[Duc14] Léo Ducas.

Accelerating bliss: the geometry of ternary polynomials.

Cryptology ePrint Archive, Paper 2014/874, 2014. https://eprint.iacr.org/2014/874.

[EFG⁺22] Thomas Espitau, Pierre-Alain Fouque, François Gérard, Mélissa Rossi, Akira Takahashi, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu.

Mitaka: A simpler, parallelizable, maskable variant of.

In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages 222–253. Springer, 2022.

[ETWY22] Thomas Espitau, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu. Shorter hash-and-sign lattice-based signatures.

In Yevgeniy Dodis and Thomas Shrimpton, editors, <u>Advances in Cryptology – CRYPTO</u>, 2022.

References III

[FHK+18] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei Zhang.

> Falcon: Fast-fourier lattice-based compact signatures over ntru. Submission to the NIST's post-quantum cryptography standardization process, 36(5), 2018.

[GLP12] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann.
Practical lattice-based cryptography: A signature scheme for embedded systems.
In International Workshop on Cryptographic Hardware and Embedded Systems,
pages 530–547. Springer, 2012.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions. In Proceedings of the fortieth annual ACM symposium on Theory of computing, pages 197–206, 2008.

 $[{\rm HHGP}^+03]$ Jeffrey Hoffstein, Nick Howgrave-Graham, Jill Pipher, Joseph H Silverman, and William Whyte.

Ntrusign: Digital signatures using the ntru lattice.

In Cryptographers' track at the RSA conference, pages 122–140. Springer, 2003.

References IV

[Lyu09] Vadim Lyubashevsky.

Fiat-shamir with aborts: Applications to lattice and factoring-based signatures. In International Conference on the Theory and Application of Cryptology and Information Security, pages 598–616. Springer, 2009.

[Lyu12] Vadim Lyubashevsky.

Lattice signatures without trapdoors.

In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages 738–755. Springer, 2012.

HAETAE description (high-level)

```
\mathsf{KeyGen}(1^{\lambda})
```

- 1: $\mathbf{A}_{\text{gen}} \leftarrow \mathcal{R}_q^{k \times (\ell-1)}$ and $(\mathbf{s}_{\text{gen}}, \mathbf{e}_{\text{gen}}) \leftarrow S_\eta^{\ell-1} \times S_\eta^k$ 2: $\mathbf{b} = \mathbf{A}_{\text{gen}} \cdot \mathbf{s}_{\text{gen}} + \mathbf{e}_{\text{gen}} \in \mathcal{R}_n^k$
 - 3: $\mathbf{A} = (-2\mathbf{b} + q\mathbf{j} \mid 2\mathbf{A}_{gen} \mid 2\mathbf{Id}_k) \mod 2q$ and write $\mathbf{A} = (\mathbf{A}_1 \mid 2\mathbf{Id}_k)$
 - 4: $\mathbf{s} = (1, \mathbf{s}_{gen}, \mathbf{e}_{gen})$
 - 5: **if** $\sigma_{\text{max}}(\text{rot}(\mathbf{s}_{\text{gen}})) > \gamma$, then restart
 - 6: Return sk=s, vk=A

$\mathsf{Sign}(\mathsf{sk}, M)$

- 1: $\mathbf{y} \leftarrow U(\mathcal{B}_{(1/N)\mathcal{R},(k+\ell)}(B))$
- 2: $c=H(\mathsf{HighBits}_{2a}^{\mathsf{hint}}(\mathbf{A}[\mathbf{y}],\alpha),\mathsf{LSB}([y_0]),M)\in\mathcal{R}_2$
- 3: $\mathbf{z} = (\mathbf{z}_1, \mathbf{z}_2) = \mathbf{y} + (-1)^b c \cdot \mathbf{s}$ for $b \leftarrow U(\{0,1\})$
- 4: $\mathbf{h} = \mathsf{HighBits}_{2q}^{\mathsf{hint}}(\mathbf{A} \lfloor \mathbf{z} \rceil qc\mathbf{j}, \alpha) \mathsf{HighBits}_{2q}^{\mathsf{hint}}(\mathbf{A}_1 \lfloor \mathbf{z}_1 \rceil qc\mathbf{j}, \alpha) \mod^+ \frac{2(q-1)}{\alpha}$
- 5: **if** $\|\mathbf{z}\|_2 \ge B'$, then restart
- 6: if $\|2\mathbf{z} \mathbf{y}\|_2 < B$, then restart with probability 1/2
- 7: Return $\sigma = (\text{Encode}(\text{HighBits}(|\mathbf{z}_1|, a)), \text{LowBits}(|\mathbf{z}_1|, a), \text{Encode}(\mathbf{h}), c)$

Verify(vk, $M, \sigma = (x, \mathbf{v}, h, c)$)

- 1: $\tilde{\mathbf{z}}_1 = \mathsf{Decode}(x) \cdot a + \mathbf{v}$ and $\tilde{\mathbf{h}} = \mathsf{Decode}(h)$
- 2: $\mathbf{w} = \tilde{\mathbf{h}} + \text{HighBits}_{2a}^{\text{hint}} (\mathbf{A}_1 \tilde{\mathbf{z}}_1 qc\mathbf{j}, \alpha) \text{ mod}^+ \frac{2(q-1)}{q}$
- 3: $w' = LSB(\tilde{z}_0 c)$
 - 4: $\tilde{\mathbf{z}}_2 = [\mathbf{w} \cdot \alpha + w' \mathbf{j} (\mathbf{A}_1 \tilde{z}_1 q \mathbf{c} \mathbf{j})]/2 \mod^{\pm} q$
- 5: $\tilde{\mathbf{z}} = (\tilde{\mathbf{z}}_1, \tilde{\mathbf{z}}_2)$
- 6: Return $(c=H(\mathbf{w},w',M)) \land (\|\tilde{\mathbf{z}}\| < B'')$