Universidade Federal de Goiás Instituto de Matemática e Estatística

Data:22/05/2020 Profa:Marina (sala 206 - IME/UFG)

1 As Funções do tipo ax + b

Equação do primeiro grau: $ax + b = 0, a \neq 0$ cujo gráfico é uma reta.

Retas Paralelas e Perpendiculares:

- 1. Dadas as equações das retas $r: ax_1 + by_1 = c_1$ e $s: ax_2 + by_2 = c_2$, dizemos que as retas são paralelas se os seus coeficientes angulares forem iguais. Neste caso, os coeficientes são obtidos de $ax_1 + by_1 = c$ e $ax_2 + by_2 = c_2$ tal que $y_1 = \frac{c_1}{b_1} \frac{a_1}{b_1}x_1$ e $y_2 = \frac{c_2}{b_2} \frac{a_2}{b_2}x_2$. Logo, o coeficiente angular é o coeficiente que multiplica a variável x_1 para a primeira equação e x_2 para a segunda de maneira que as retas r e s serão paralelas se $\frac{a_1}{b_1} = \frac{a_2}{b_2}$. Por exemplo, as retas $r: y_1 = 2x_1 + 3$ e $s: -2x_2 + y_2 = 5$ são paralelas, pois temos $y_1 = 2x_1 + 3$ e $y_2 = 2x_2 + 5$ de maneira que os coeficientes angulares s!ão iguais. Agora, se $r: y_1 = 2x_1 + 3$ e $s: 2x_2 + y_2 = 5$ então as retas não são paralelas, pois $y_1 = 2x_1 + 3$ e $y_2 = -2x_2 + 5$ tendo coeficientes angulares 2 e -2.
- 2. Dadas as equações das retas $r: ax_1 + by_1 = c_1$ e $s: ax_2 + by_2 = c_2$, dizemos que as retas são perpendiculares se o produto dos seus coeficientes angulares for igual a -1(veja video em https://www.youtube.com/watch?v=qFTUaR1x7kQ. As retas r e s são perpendiculares se $\frac{a_1}{b_1} \frac{a_2}{b_2} = -1$. Por exemplo, as retas $r: y_1 = 2x_1 + 3$ e $s: -2x_2 + y_2 = 5$ não são perpendiculares, pois temos $y_1 = 2x_1 + 3$ e $y_2 = 2x_2 + 5$ de maneira que o produto dos coeficientes angulares é $2(2) = 4 \neq -1$. Mas, Por exemplo, as retas $r: y_1 = 2x_1 + 3$ e $s: x_2 + 2y_2 = 5$ são paralelas, pois temos $y_1 = 2x_1 + 3$ e $y_2 = -\frac{1}{2}x_2 + \frac{5}{2}$ de maneira que o produto dos coeficientes angulares é $2\frac{-1}{2} = -1$.

Função ax + b ou função polinomial de primeira ordem: De uma maneira informal, podemos dizer que uma função é uma regra(que se repete conforme ela é definida). Neste caso, temos "dado um valorx multiplique-o por a e some uma quantidade c". Por exemplo, o valor do sitpass é de R\$4, 80, se são necessários 40 passagens por mês para ir as aulas na UFG, qual é o custo mensal em transporte público? Neste caso, podemos considerar a função f(x) = ax, onde a = R\$4, 80 o valor fixo e neste caso x = 40, então f(40) = 4, 80 \times 20 = 96. O nome (a letra que utilizamos) que damos a regra pode variar. Em geral, substituimos f(x) por y por causa do gráfico que queremos esboçar. Neste caso, temos que observar dois conjuntos importantes:

- 1. Domínio: "o conjunto dos valores que podemos utilizar na regra que foi definida". Neste caso, o valor que varia em nossa regra, por exemplo, se f(x) = ax + c, quer dizer que x é o único valor que irá se modificar quando você está efetuando os seus cálculos, aqui f(2) = 2a + c. Se a lei é escrita como y(x) = ax + b, o valor que varia é ainda x e y(2) = 2a + c. O valor que pode variar nas regras é chamado de variável independente, determinando um conjunto, chamado domínio da função, em que podemos utilizar a regra. A pergunta é: quais são os números reais em que podemos multiplicar por a e somar c? Todos. Então neste caso escrevemos $Dom(f) = \{x \in \mathbb{R}\} = \mathbb{R}$. Em geral quando está claro, qual é a variável independente, costumamos escrever f em vez de f(x) e y em vez de y(x).
- 2. Imagem: "o conjunto de valores obtidos após aplicarmos todos os valores do domínio". Aqui, é importante calcular somente nos valores do domínio. Então, o conjunto imagem cuja regra nós chamamos de f é $Im(f) = \{y \in \mathbb{R} | x \in Dom(f(x))\}$. A pergun ta é por que, escrevemos Im(f) e depois, escrevemos os números reais y?? O que você acha?
- 3. O gráfico de uma função real é quando consideramos um par (x, y), onde a primeira coordenada é um elemento do domínio e o segundo o valor da imagem obtida através do valor do domínio aplicado na regra, isto é, o gráfico é $Gr(f) = \{(x, y) | x \in Dom(f)\}$. Aqui, y = f.

Definição: Uma função f(x) é uma regra que associa a cada elemento do conjunto domínio um único elemento do conjunto denominado contradomínio. Então, dado $x \in Dom(f)$ existe um único y = f(x) que podemos associar através da função f.

observação: Neste caso, matematicamente escrevemos $f:A\subseteq\mathbb{R}\to B\subseteq\mathbb{R}$, onde A=Dom(f) e B o contradomínio. Se conseguirmos descrever com exatidão todos os elementos de B podemos trocar o conjunto B pelo da imagem. Em geral, dado $x\in Dom(f)$ existe um único y=f(x) na imagem, isto é, se $y_1=f(x_1)\neq y_2=f(x_2)$ então $x_1\neq x_2$. Por exemplo, f(x)=c onde c é um número real é função pois dado qualquer número real, o valor da imagem é único, isto é, $Im(f)=\{c\}$. Mas, x=c não é pois para um único valor do domínio temos infinitos valores diferentes para a imagem, isto é, $y_1\neq y_2$ para o mesmo valor de x e aqui temos que x=c é uma equação cujo gráfico é uma reta.

Considerando, os conceitos anteriores, para f(x) = ax + b, temos:

- 1. se b = 0 e f(x) for trocado por uma constante, temos somente uma equação cujo gráfico é uma reta e não uma função;
- 2. se $f(x) \neq \text{constante}$, então para b = 0 temos que o gráfico ou é uma reta passando na origem (para x = 0, o valor da imagem é y = f(0) = 0) com **inclinação para a direita** (a constante que multiplica o valor da variável x, neste caso a, é positiva) ou uma reta passando na origem com inclinação para a esquerda (a constante que multiplica o valor da variável x, neste caso a, é negativa). Por exemplo, f(x) = 2x o gráfico é uma reta com inclinação para a direita enquanto f(x) = -2x é uma reta com inclinação para a

esquerda.

3. se $f(x) \neq \text{constante}$, então para $b \neq 0$ temos que o gráfico ou é uma reta que não passa na origem, pois $f(0) = b \neq 0$, com inclinação para a direita (a constante que multiplica o valor da variável x, neste caso a, é positiva) ou uma reta não passando na origem com inclinação para a esquerda (a constante que multiplica o valor da variável x, neste caso a, é negativa). Por exemplo, f(x) = x + 1 o gráfico é uma reta com inclinação para a direita enquanto f(x) = -x + 1 é uma reta com inclinação para a esquerda.

Exercícios

1. Dada os pontos A e B, obtenha uma equação da reta que passa por esses dois pontos.

(a) A(1,2) e B(3,2). Resposta:y = 2;

(b) A(-3, -4) e B(1, 2). Resposta: $y = \frac{3}{2}(x + 3) - 4$. (c) A(0, -2) e B(-5, 1). Resposta: $y = -\frac{3}{5}x - 2$.

2. Obtenha a equação da reta que passa pelo ponto A(1,5) e seja paralela a reta r:2x+4y=-1. Resposta: $y = -\frac{1}{2}(x-1) + 5..$

3. Obtenha a equação da reta perpendicular a reta s: y = 7x - 13.

4. Dada as funções da forma ax + b obtenha o conjunto domínio, o conjunto imagem e esboce o gráfico.

(a)
$$f(x) = 3x - 1$$
 (b) $y = -\sqrt{2}x - 7$; (c) $y = \pi$; (d) $f(x) = \frac{4}{3}x$.

Observemos que:

1. Quando estamos calculando os valores na regra da função ax + b onde a > 0, se aumentarmos o valor da variável x aumentamos também o valor da imagem, neste caso, escrevemos: dados dois valores no domínio $x_1 < x_2$ temos $y_1 = f(x_1) < f(x_2) = y_2$, então a função f é crescente.

2. Quando estamos calculando os valores na regra da função ax + b onde a < 0, se aumentarmos o valor da variável x diminuímos o valor da imagem, neste caso, escrevemos: dados dois valores no domínio $x_1 < x_2$ temos $y_1 = f(x_1) > f(x_2) = y_2$, então a função f é decrescente.

3. Se para todo $x_1 \neq x_2$ no domínio da função temos $y_1 = f(x_1) \neq f(x_2) = y_2$, então dizemos que a função injetora. Note que se $x_1 \neq x_2$, então $ax_1 \neq ax_2$ e $ax_1 + b \neq ax_2 + b$, isto é, f(x) = ax + b é uma função injetora. Mas y=3 não é pois para qualquer valor de x, y não muda de valor.

- 4. a função $f:A\to B$ é sobrejetora se para todo $y\in Im(f)$, existe $x\in A=Dom(f)$ tal que y=f(x). A função $f:\mathbb{R}\to\mathbb{R}$ definida por f(x)=ax+b é sobrejetora, pois $Dom(f)=\mathbb{R}$ e $Im(f)=\mathbb{R}$.
- 5. Se a função for injetora e sobrejetora, dizemos que a função admite invresa, ou ainda, que é inversível.