Centrale M2 2021 - Corrigé - Relu

I. Généralités sur les formules de quadrature

I.A - Exemples élémentaires

1. • La formule de quadrature $I_0(f) = f(0)$ est :

— exacte sur $\mathbb{R}_0[X]$, car pour tout $P \in \mathbb{R}_0[X]$, on a P(t) = P(0) pour tout $t \in \mathbb{R}$, donc

$$\int_0^1 P(t)dt = \int_0^1 P(0)dt = P(0) = I_0(P);$$

— inexacte sur $\mathbb{R}_1[X]$ car, pour $P = X \in \mathbb{R}_1[X]$, on a

$$\int_0^1 P(t)dt = \int_0^1 tdt = \frac{1}{2} \neq 0 = P(0) = I_0(P).$$

La formule de quadrature $I_0(f) = f(0)$ est donc d'ordre 0.

• Dans la représentation graphique suivante, on a $I_0(f)$ = aire(\mathcal{D}_1) – aire(\mathcal{D}_2).

2. • La formule de quadrature $I_0(f) = f(1/2)$ est :

— exacte sur $\mathbb{R}_0[X]$, car pour tout $P \in \mathbb{R}_0[X]$, on a P(t) = P(1/2) pour tout $t \in \mathbb{R}$, donc

$$\int_0^1 P(t)dt = \int_0^1 P(1/2)dt = P(1/2) = I_0(P);$$

— exacte sur $\mathbb{R}_1[X]$ car, pour $P = aX + b \in \mathbb{R}_1[X]$, on a

$$\int_0^1 P(t)dt = \int_0^1 at + bdt = \left[\frac{a}{2}t^2 + bt\right]_0^1 = \frac{a}{2} + b = P(1/2) = I_0(P);$$

— inexacte sur $\mathbb{R}_2[X]$ car, pour $P = X^2 \in \mathbb{R}_2[X]$, on a

$$\int_0^1 P(t)dt = \int_0^1 t^2 dt = \frac{1}{3} \neq \frac{1}{4} = P(1/2) = I_0(P).$$

La formule de quadrature $I_0(f) = f(1/2)$ est donc d'ordre 1.

REMARQUE. Comme l'intégrale et I_0 sont linéaires, une formule de quadrature est exacte sur $\mathbb{R}_n[X]$ si et seulement si elle est exacte pour les polynômes $1, X, \ldots, X^n$.

En utilisant cette idée, on aurait pu rédiger ces deux premières questions autrement, en ne testant que les polynômes 1, X et X^2 .

3. $I_2(f)$ est exacte sur $\mathbb{R}_2[X]$ si et seulement si elle est exacte pour les polynômes 1, X et X^2 , c'est-à-dire si et seulement

$$\begin{cases} \int_{0}^{1} 1 dt = I_{0}(1) \\ \int_{0}^{1} t dt = I_{0}(X) \\ \int_{0}^{1} t^{2} dt = I_{0}(X^{2}) \end{cases}$$
 soit si et seulement si
$$\begin{cases} 1 = \lambda_{0} + \lambda_{1} + \lambda_{2} \\ 1/2 = 0 + \frac{1}{2}\lambda_{1} + \lambda_{2} \\ 1/3 = 0 + \frac{1}{4}\lambda_{1} + \lambda_{2} \end{cases}$$

Soit, après calcul, si et seulement si

$$\begin{cases} \lambda_0 = 1/6 \\ \lambda_1 = 2/3 \\ \lambda_2 = 1/6 \end{cases}$$

Pour $P = X^3$, on a

$$I_2(P) = 0 + (1/2)^3(2/3) + 1(1/6) = 1/4 = \int_0^1 t^3 dt = \int_0^1 P(t) dt,$$

donc cette formule de quadrature est encore valable sur $\mathbb{R}_3[X]$.

Pour $P = X^4$, on a

$$I_2(P) = 0 + (1/2)^4 (2/3) + 1(1/6) = 5/24 \neq 1/5 = \int_0^1 t^4 dt = \int_0^1 P(t) dt,$$

donc cette formule de quadrature n'est pas valable sur $\mathbb{R}_4[X]$.

La formule de quadrature I_2 est donc d'ordre 3.

I.B - Construction de formules d'ordre quelconque

- 4. L'application « valeur en un point » étant linéaire de $\mathbb{R}_n[X]$ dans \mathbb{R}, φ est linéaire.
 - On a que $\operatorname{Ker}(\varphi)$ est réduite à $\{0\}$, en effet tout élément du noyau admet n+1 racines $(x_0,...x_n)$ alors que son degré est au plus n. Donc φ est injective.
 - Mais comme $\mathbb{R}_n[X]$ et \mathbb{R}^{n+1} sont de même dimension n+1, d'après le théorème du rang, φ est un isomorphisme.
- 5. Soit $i \in [0,n]$. Comme Φ est un ISOmorphisme, il existe un et un seul élément de $\mathbb{R}[X]_n$ prenant en x_i la valeur 1 et la valeur 0 en x_j , pour tout élément j de $\{1,...,n\}$ distinct de i, c'est $\Phi^{-1}((\delta_{i,j})_{j=0..n})$.
- 6. $((\delta_{i,j})_{j=0..n})_{i=0..n}$ est une base de \mathbb{R}^{n+1} (c'est la base canonique), donc $(L_i)_{i=0..n}$ est une base de $\mathbb{R}_n[X]$ comme image d'une base de \mathbb{R}^{n+1} par l'isomorphisme (φ^{-1}) .
- 7. Comme $P \in \mathbb{R}_n[X] \mapsto \int_0^1 P(x)w(x)dx$ est linéaire (et bien définie car pour tout $k \in [0, n], x \mapsto x^k w(x)$ est intégrable sur I) et $I_n: P \in \mathbb{R}_n[X] \mapsto \sum_{j=0}^n \lambda_j f(x_j)$ est aussi linéaire, donc e est linéaire, donc I_n est exacte sur $\mathbb{R}_n[X]$ si et seulement si elle est exacte sur la BASE (L_0, \ldots, L_n) . Or, pour tout $j \in [0, n]$,

$$I_n(L_j) = \sum_{k=0}^n \lambda_k L_j(x_k) = \sum_{k=0}^n \lambda_k \delta_{k,j} = \lambda_j,$$

donc I_n est exacte sur $\mathbb{R}_n[X]$ si et seulement si

$$\forall j \in [0, n], \quad \lambda_j = \int_I L_j(x) w(x) dx.$$

- 8. L_0 a pour racines 1/2 et 1, et est de degré auplus 2. donc $L_0 = a(X 1/2)(X 1)$, où $a \in \mathbb{R}$. Enfin, $L_0(0) = 1$, donc
 - L_0 a poin facines 1/2 et 1, et est de degre auplus 2. donc $L_0 = a(X 1/2)(X 1)$, où $a \in \mathbb{R}$. Emin, $L_0(0) = 1$, donc $a = \frac{1}{(0 1/2)(0 1)}$ et $L_0 = \frac{(X 1/2)(X 1)}{(0 1/2)(0 1)}$. De même, on montre que $L_1 = \frac{(X 0)(X 1)}{(1/2 0)(1/2 1)}$ et $L_2 = \frac{(X 0)(X 1/2)}{(1 0)(1 1/2)}$. D'après la question précédente, $I_2 : f \mapsto \lambda_0 f(0) + \lambda_1 f(1/2) + \lambda_2 f(1)$ est exacte sur $\mathbb{R}_2[X]$ si et seulement si

$$\lambda_0 = \int_0^1 L_0(x) dx, \qquad \lambda_1 = \int_0^1 L_1(x) dx \quad \text{et} \quad \lambda_2 = \int_0^1 L_2(x) dx.$$

Après calcul de ces intégrales, on retrouve bien

$$\lambda_0 = 1/6$$
, $\lambda_1 = 2/3$ et $\lambda_2 = 1/6$.

I.C - Noyau de Peano et évaluation de l'erreur

9. Comme f est de classe C^{m+1} sur [a,b], on a, d'après la formule de Taylor-reste intégral, pour tout $x \in [a,b]$,

$$R_{m}(x) = \frac{1}{m!} \int_{a}^{b} \varphi_{m}(x,t) f^{(m+1)}(t) dt = \frac{1}{m!} \int_{a}^{x} \underbrace{\varphi_{m}(x,t)}_{=(x-t)^{m}} f^{(m+1)}(t) dt + \frac{1}{m!} \int_{x}^{b} \underbrace{\varphi_{m}(x,t)}_{=0 \text{ pour } t \in]x,b]} f^{(m+1)}(t) dt$$

$$= \int_{a}^{x} \frac{(x-t)^{m}}{m!} f^{(m+1)}(t) dt$$

$$= f(x) - \sum_{k=0}^{m} \frac{f^{(k)}(a)}{k!} (x-a)^{k} \quad \text{(d'après Taylor-reste intégral)}.$$

donc, comme e est linéaire,

$$e(R_m) = e(f) - \sum_{k=0}^m \frac{f^{(k)}(a)}{k!} e(x \mapsto (x-a)^k).$$

Enfin, comme I_n est d'ordre m et $x \mapsto (x-a)^k$ est polynomiale de degré $k \le m$ (pour tout $k \in [[0,m]]$), on a $e(x \mapsto (x-a)^k) = 0$ et donc

$$e(R_m) = e(f).$$

10. Soit $m \ge 1$. D'après la question précédente,

$$e(f) = e(R_m) = \int_a^b R_m(x)w(x)dx - \sum_{j=0}^n \lambda_j R_m(x_j)$$

$$= \frac{1}{m!} \int_a^b \left(\int_a^b \varphi_m(x,t) f^{(m+1)}(t)dt \right) w(x)dx - \frac{1}{m!} \sum_{j=0}^n \lambda_j \int_a^b \varphi_m(x_j,t) f^{(m+1)}(t)dt$$

$$= \frac{1}{m!} \int_a^b \left(\int_a^b \varphi_m(x,t) f^{(m+1)}(t)w(x)dt \right) dx - \frac{1}{m!} \sum_{j=0}^n \lambda_j \int_a^b \varphi_m(x_j,t) f^{(m+1)}(t)dt.$$

Or $(x,t) \in [a,b]^2 \mapsto \varphi_m(x,t) f^{(m+1)}(t) w(x)$ est continue comme produit et composée de fonctions continues : $(x,t) \mapsto x$ ou t l'est car polynomiale, φ_m l'est d'après l'énoncé $(m \ge 1)$, et $f^{(m+1)}$ l'est car f est de classe \mathcal{C}^{m+1} et w l'est car c'est un poids), donc, d'après l'égalité fubinienne donnée dans l'énoncé,

$$e(f) = \frac{1}{m!} \int_{a}^{b} \left(\int_{a}^{b} \varphi_{m}(x,t) f^{(m+1)}(t) w(x) dx \right) dt - \frac{1}{m!} \sum_{j=0}^{n} \lambda_{j} \int_{a}^{b} \varphi_{m}(x_{j},t) f^{(m+1)}(t) dt$$

$$= \frac{1}{m!} \int_{a}^{b} \left(\int_{a}^{b} \varphi_{m}(x,t) f^{(m+1)}(t) w(x) dx - \sum_{j=0}^{n} \lambda_{j} \varphi_{m}(x_{j},t) f^{(m+1)}(t) \right) dt$$

$$= \frac{1}{m!} \int_{a}^{b} \left(f^{(m+1)}(t) \int_{a}^{b} \varphi_{m}(x,t) w(x) dx - f^{(m+1)}(t) \sum_{j=0}^{n} \lambda_{j} \varphi_{m}(x_{j},t) \right) dt$$

$$= \frac{1}{m!} \int_{a}^{b} K_{m}(t) f^{(m+1)}(t) dt,$$

où
$$K_m: t \in [a,b] \mapsto \int_a^b \varphi_m(x,t)w(x)dx - \sum_{i=0}^n \lambda_j \varphi_m(x_j,t) = e(x \mapsto \varphi_m(x,t)).$$

I.D - Exemple : méthode des trapèzes

11. Avec les notations de l'énoncé, on a

$$K_{1}: t \in [0,1] \mapsto \int_{0}^{1} \varphi_{1}(x,t) dx - \left(\frac{1}{2}\varphi_{1}(0,t) + \frac{1}{2}\varphi_{1}(1,t)\right)$$

$$= \int_{0}^{t} 0 dx + \int_{t}^{1} (x-t) dx - \left(\frac{1}{2} \times 0 + \frac{1}{2} \times (1-t)\right)$$

$$= \frac{(1-t)^{2}}{2} - \frac{1}{2}(1-t) = \frac{t(t-1)}{2}.$$

Par suite, si g est de classe C^2 sur [0,1], comme toutes les hypothèses de la partie I.C sont vérifiées (avec m=1), on a

$$e(g) = \frac{1}{1!} \int_0^1 K_1(t)g''(t)dt = \int_0^1 \frac{t(t-1)}{2}g''(t)dt.$$

Or, pout tout $t \in [0,1]$,

$$\left| \frac{t(t-1)}{2} g''(t) \right| = \frac{t(1-t)}{2} |g''(t)| \le \frac{t-t^2}{2} ||g''||_{\infty}^{[0,1]},$$

donc, par positivité de l'intégrale $(0 \le 1)$, on a :

$$|e(g)| = \left| \int_0^1 \frac{t(t-1)}{2} g''(t) dt \right| \le \int_0^1 \left| \frac{t(t-1)}{2} g''(t) \right| dt \le \int_0^1 \frac{t-t^2}{2} \|g''\|_{\infty}^{[0,1]} dt = \|g''\|_{\infty}^{[0,1]} \left[\frac{t^2}{4} - \frac{t^3}{6} \right]_0^1 = \frac{1}{12} \|g''\|_{\infty}^{[0,1]}.$$

 $\|g''\|_{\infty}^{[0,1]}$ existe car g'' est continue sur le segment [0,1].

12. $T_n(f)$ est la somme des aires (algébriques) hachurées, i.e. l'aire (algébrique) située sous la ligne brisée.

13. Le graphique ci-dessus nous permet de voir que l'erreur totale est la somme des erreurs commise sur chaque intervalle $[a_i, a_{i+1}]$, ce qui nous incite à écrire ce qui suit :

On a

$$e_{n}(f) = \int_{a}^{b} f(x)dx - \frac{b-a}{n} \sum_{i=0}^{n-1} \frac{f(a_{i}) + f(a_{i+1})}{2}$$

$$= \sum_{i=0}^{n-1} \int_{a_{i}}^{a_{i+1}} f(x)dx - \frac{b-a}{n} \sum_{i=0}^{n-1} \frac{f(a_{i}) + f(a_{i+1})}{2} \quad \text{(relation de Chasles)}$$

$$= \sum_{i=1}^{n-1} \int_{0}^{1} f((a_{i+1} - a_{i})t + a_{i})(a_{i+1} - a_{i})dt - \frac{b-a}{n} \sum_{i=0}^{n-1} \frac{f(a_{i}) + f(a_{i+1})}{2} \quad \text{(chagement de variable affine } \leqslant t = \frac{x - a_{i}}{a_{i+1} - a_{i}} \gg)$$

$$= \frac{b-a}{n} \sum_{i=1}^{n-1} \int_{0}^{1} f((a_{i+1} - a_{i})t + a_{i})dt - \frac{b-a}{n} \sum_{i=0}^{n-1} \frac{f(a_{i}) + f(a_{i+1})}{2} \quad \text{(car } a_{i+1} - a_{i} = h = \frac{b-a}{n})$$

$$= \frac{b-a}{n} \sum_{i=0}^{n-1} \left(\int_{0}^{1} f((a_{i+1} - a_{i})t + a_{i})dt - \frac{f(a_{i}) + f(a_{i+1})}{2} \right)$$

$$= \frac{b-a}{n} \sum_{i=0}^{n-1} e(g_{i}),$$

en posant $g_i : t \in [0,1] \mapsto f((a_{i+1} - a_i)t + a_i)$, avec $g(0) = f(a_i)$ et $g(1) = f(a_{i+1})$.

14. Pour tout $i \in [[0, n-1]]$, g_i est de classe C^2 sur [0,1] comme composée de fonctions de classe C^2 , donc, d'après la question 11, on a

$$|e(g_i)| \le \frac{1}{12} \|g_i''\|_{\infty}^{[0,1]}.$$

Or, pour tout $t \in [0,1]$, $(a_{i+1} - a_i)t + a_i \in [a_i, a_{i+1}] \subset [a, b]$, donc

$$|g_i''(t)| = \left| (a_{i+1} - a_i)^2 f''((a_{i+1} - a_i)t + a_i) \right| = (a_{i+1} - a_i)^2 |f''((a_{i+1} - a_i)t + a_i)| \le \left(\frac{b - a}{n}\right)^2 ||f''||_{\infty}^{[a,b]},$$

donc $\|g_i''\|_{\infty}^{[0,1]} \le \left(\frac{b-a}{n}\right)^2 \|f''\|_{\infty}^{[a,b]}$, et, par suite,

$$|e(g_i)| \le \frac{1}{12} \|g_i''\|_{\infty}^{[0,1]} \le \frac{1}{12} \left(\frac{b-a}{n}\right)^2 \|f''\|_{\infty}^{[a,b]}.$$

Finalement, d'après l'inégalité triangulaire généralisé,

$$|e_n(f)| = \left| \frac{b-a}{n} \sum_{i=0}^{n-1} e(g_i) \right| \le \frac{b-a}{n} \sum_{i=0}^{n-1} |e(g_i)|$$

$$\le \frac{b-a}{n} \sum_{i=0}^{n-1} \left(\frac{1}{12} \left(\frac{b-a}{n} \right)^2 \|f''\|_{\infty}^{[a,b]} \right)$$

$$= \frac{b-a}{n} \times n \left(\frac{1}{12} \left(\frac{b-a}{n} \right)^2 \|f''\|_{\infty}^{[a,b]} \right)$$

$$\frac{(b-a)^3}{12n^2} \|f''\|_{\infty}^{[a,b]}.$$

II. Polynômes orthogonaux et applications

II.A - Etude d'un produit scalaire

15. • Pour tout $(a,b) \in \mathbb{R}^2_+$, l'inégalité $(a-b)^2 \ge 0$ donne

$$ab \le \frac{1}{2}(a^2 + b^2).$$

• Soient f et g deux fonctions de E. Pour tout $t \in I$,

$$0 \le |(fgw)(t)| = |f(t)g(t)| \cdot |w(t)| \le \frac{1}{2}(f^2(t) + g^2(t))|w(t)| = \frac{1}{2}|(f^2w)(t)| + \frac{1}{2}|(g^2w)(t)|.$$

Or f^2w et g^2w sont intégrables sur I (car $f, g \in E$), donc $t \mapsto \frac{1}{2}|(f^2w)(t)| + \frac{1}{2}|(g^2w)(t)|$ est intégrable sur I comme combinaison linéaire de fonctions intégrables sur I, et, finalement, par comparaison, fgw est intégrable sur I.

- 16. $E \subset \mathcal{C}^0(I, \mathbb{R})$ par définition de E.
 - La fonction nulle sur I est dans E, donc $E \neq \emptyset$.
 - Enfin, pour tout $(f,g) \in E^2$, pour tout $(\lambda,\mu) \in \mathbb{R}^2$, $\lambda f + \mu g \in E$ car
 - $\lambda f + \mu g$ est continue sur I
 - $(\lambda f + \mu g)^2 w = \lambda^2 f^2 w + 2\lambda \mu f g w + \mu^2 g^2 w$ donc $\lambda f + \mu g$ est intégrable sur I comme combinaison linéaire de fonctions intégrables sur I ($f^2 w$ et $g^2 w$ le sont par hypothèse et f g w d'après la question précédente).
 - E est donc bien un sous-espace vectoriel de $\mathcal{C}^0(I,\mathbb{R})$.
- 17. On a vu en exercice dans le cours que $\langle .,. \rangle$ est un produit scalaire sur E.

II.B - Polynômes orthogonaux associés à un poids

18. Supposons que p n'ait pas n racines distinctes dans a, b.

Alors le degré de q est strictement inférieur à n, (qu'une de ses racines ne soit pas dans a, b ou qu'une de ses racines qui y est, ait une multimplicité strictement supérieur au ε_i correspondant.)

Comme $(p_0, p_1, ..., p_{n-1})$ est une famille libre de $\mathbb{R}[X]_{n-1}$ car orthogonale (sans élément nuls) elle en est une base. L'orthogonalité de p_n avec $p_0, ..., p_{n-1}$ veut alors que ce polynôme soit orthogonal à $\mathbb{R}[X]_n$, donc en particulier à q. Ainsi a-t-on

$$0 = \langle p_n, q \rangle = \int_I p_n q w.$$

Mais par construction p_nq n'a que des racine de multiplicité paire dans]a,b[donc garde dans cette intervalle et par continuité dans I un signe constant, la possitivité de w veut qu'il en soit ainsi de p_nqw . Or cette application est de plus continue, donc la nullité de $\int_I p_nqw$ donne la nullité de p_nqw et puisque w ne s'annule pas, celle de p_nq . Voilà qui est absurde puisque ce polynôme est unitaire.

Dos no p_n possède n racines simples dans \mathring{I} .

II.C - Applications : méthodes de quadrature de Gauss

19. $Q_n = \prod_{i=0}^n (X - x_i)$ est un polynôme de degré exactement n+1.

En particulier, $Q_n \neq 0$, donc $\langle Q_n, Q_n \rangle = \int_I Q_n(x)^2 w(x) dx > 0$. Or $I_n(Q_n^2) = 0$, car pour tout $j \in [[0, n]], x_j$ est racine de Q_n^2 , donc

$$e(Q_n^2) = \int_I Q_n(x)^2 w(x) dx - I_n(Q_n^2) \neq 0.$$

La formule de quadrature I_n n'est donc pas exacte pour Q_n^2 de degré 2n+2, donc son ordre vaut au maximum 2n+1.

20. • Supposons que m = 2n + 1.

Le polynôme $Q_n = \prod_{i=0}^n (X - x_i)$ est unitaire de degré n+1 et, pour tout $i \in [[0, n]]$, le polynôme p_iQ_n est de degré au plus 2n+1, donc

$$0 = e_n(p_iQ_n) = \int_I p_i(x)Q_n(x)w(x)dx - \sum_{j=0}^n \lambda_j p_i(x_j) \underbrace{Q_n(x_j)}_{Q_n(x_j)} = \langle p_i, Q_n \rangle.$$

D'où, par unicité de la famille $(p_n)_{n\in\mathbb{N}}$, on a $p_{n+1}=Q_n=\prod_{i=0}^n(X-x_i)$, donc p_{n+1} a pour racines les $(x_i)_{i=0..n}$.

• Réciproquement, si les x_i sont les racines de p_{n+1} , alors, comme p_{n+1} est unitaire de degré n+1 et a pour racines $(x_i)_{i=0..n}$, on a $p_{n+1} = \prod_{i=0}^{n} (X - x_i)$.

Soit $P \in \mathbb{R}_{2n+1}[X]$. Par division euclidienne, on dispose de $Q, R \in \mathbb{R}[X]$ tels que

$$P = Qp_{n+1} + R$$
, où $\deg(R) < n+1$ et $\deg(Q) \le (2n+1) - (n+1) = n$.

On a alors, par linéarité de e,

$$e(P) = e(Qp_{n+1}) + e(R).$$

Or e est d'ordre au moins n d'après la question 7, donc e(R) = 0. De plus,

$$e(Qp_{n+1}) = \int_{I} Q(x)p_{n+1}(x)w(x)dx - \sum_{j=0}^{n} \lambda_{j}Q(x_{j})\underbrace{p_{n+1}(x_{j})}_{=0} = \langle Q, p_{n+1} \rangle = 0,$$

en décomposant Q dans la base (p_0, \ldots, p_n) de $\mathbb{R}_n[X]$ comme dans la question 18.

On a donc bien $e(P) = e(Qp_{n+1}) + e(R) = 0 + 0 = 0$, donc la formule de quadrature I_n est d'ordre au moins 2n + 1. Comme elle est d'ordre au plus 2n + 1 d'après la question précédente, elle est donc bien d'ordre exactement 2n + 1.

• On a donc bien l'équivalence demandée.

II.D - Exemple 1

21. • p_0 est unitaire de degré 0, donc $p_0 = 1$.

• p_1 est unitaire de degré 1, donc s'écrit sous la forme $p_1 = X + a$ où $a \in \mathbb{R}$. De plus, $\langle p_1, p_0 \rangle = 0$, donc

$$0 = \int_{-1}^{1} p_1(x)p_0(x)w(x)dx = \int_{-1}^{1} x + adx = 2a,$$

donc a = 0 et, par suite, $p_1 = X$.

• p_2 est unitaire de degré 2, donc s'écrit sous la forme $p_2 = X^2 + aX + b$ où $a, b \in \mathbb{R}$. De plus, $\langle p_2, p_0 \rangle = 0$, donc

$$0 = \int_{-1}^{1} p_2(x)p_0(x)w(x)dx = \int_{-1}^{1} x^2 + ax + bdx = \frac{2}{3} + 2b,$$

donc $b = -\frac{1}{3}$.

On a aussi $\langle p_2, p_1 \rangle = 0$, donc

$$0 = \int_{-1}^{1} p_2(x)p_1(x)w(x)dx = \int_{-1}^{1} x^3 + ax^2 + bxdx = \frac{2}{3}a,$$

donc a = 0 et, par suite, $p_2 = X^2 - \frac{1}{3}$.

• p_3 est unitaire de degré 3, donc s'écrit sous la forme $p_3 = X^3 + aX^2 + bX + c$ où $a, b, c \in \mathbb{R}$. De plus, $\langle p_3, p_0 \rangle = 0$, donc

$$0 = \int_{-1}^{1} p_3(x) p_0(x) w(x) dx = \int_{-1}^{1} x^3 + ax^2 + bx + c dx = \frac{2}{3} a + 2c,$$

donc a = -3c.

On a aussi $\langle p_3, p_1 \rangle = 0$, donc

$$0 = \int_{-1}^{1} p_3(x) p_1(x) w(x) dx = \int_{-1}^{1} x^4 + ax^3 + bx^2 + cx dx = \frac{2}{5} + \frac{2}{3}b,$$

donc $b = -\frac{3}{5}$.

Enfin $\langle n_0 \rangle = 0$ done

$$0 = \int_{-1}^{1} p_3(x) p_2(x) w(x) dx = \int_{-1}^{1} x^5 + ax^4 + (b - 1/3)x^3 + (c - a/3)x^2 - \frac{b}{3}x - \frac{c}{3}dx = \frac{2}{5}a + \frac{2}{3}(c - a/3) - 2c/3 = \left(-\frac{6}{5} + \frac{4}{3} - \frac{2}{3}\right)c,$$

donc c = 0, puis a = -3c = 0 et, par suite, $p_3 = X^3 - \frac{3}{5}X$.

22. D'après la question 20, en prenant pour les x_i les racines de $p_3 = X(X^2 - 3/5)$, ie

$$x_0 = -\sqrt{3/5}$$
, $x_2 = 0$ et $x_3 = \sqrt{3/5}$,

et, pour tout $j \in [0, 2]$,

$$\lambda_j = \int_{-1}^1 L_j(x) w(x) dx,$$

on aura, en posant $I_2(f) = \sum_{i=0}^{2} \lambda_j f(x_j)$, une formule de quadrature d'ordre 5.

Calculons les λ_j : Les polynomes (L_0, L_1, L_2) forment la base de Lagrange associés aux points $(-\sqrt{3/5}, 0, \sqrt{3/5})$. On a donc, comme à la question 8

$$L_0 = \frac{(X-0)(X-\sqrt{3/5})}{(-\sqrt{3/5}-0)(-\sqrt{3/5}-\sqrt{3/5})} = \frac{5}{6}(X^2-\sqrt{3/5}X),$$

$$L_1 = \frac{(X+\sqrt{3/5})(X-\sqrt{3/5})}{(0+\sqrt{3/5})(0-\sqrt{3/5})} = -\frac{5}{3}(X^2-3/5)$$
et $L_2 = \frac{(X+\sqrt{3/5})(X-0)}{(\sqrt{3/5}+\sqrt{3/5})(\sqrt{3/5}-0)} = \frac{5}{6}(x^2+\sqrt{3/5}X),$

donc

$$\lambda_0 = \int_{-1}^1 L_0(x)w(x)dx = \int_{-1}^1 \frac{5}{6}(x^2 - \sqrt{3/5}x)dx = \frac{5}{9},$$

$$\lambda_1 = \int_{-1}^1 L_1(x)w(x)dx = \int_{-1}^1 -\frac{5}{3}(x^2 - 3/5)dx = -\frac{10}{9} + 2 = \frac{8}{9}$$
et $\lambda_2 = \int_{-1}^1 L_2(x)w(x)dx = \int_{-1}^1 \frac{5}{6}(x^2 + \sqrt{3/5}x)dx = \frac{5}{9}.$

La formule de quadrature recherchée est donc :

$$I_2: f \mapsto \frac{5}{9}f(-\sqrt{3/5}) + \frac{8}{9}f(0) + \frac{5}{9}f(\sqrt{3/5}).$$

II.E - Exemple 2

23. Soit $k \in \mathbb{N}$.

1/2 < 1), donc, par comparaison, $x \mapsto x^k w(x)$ est intégrable sur [0,1].

De plus, $x \mapsto x^k w(x)$ est paire ou impaire (selon la parité de k), donc $x \mapsto x^k w(x)$ est intégrable sur] – 1,1[= I.

 $Rq: on \ peut \ procéder \ autrement \ en \ remarquant \ que \ x^kw(x) = O\left(\frac{1}{\sqrt{1-x^2}}\right) où \ x \mapsto \frac{1}{\sqrt{1-x^2}} \ est \ intégrable \ sur \]-1,1[$ (car POSITIVE et sa primitive arcsin admets des limite en ± 1

24. $Q_0: x \in [-1, 1] \mapsto \cos(0\arccos(x)) = \cos(0) = 1$.

 $Q_1: x \in [-1,1] \mapsto \cos(1\arccos(x)) = x.$

Comme, pour tout $n \in \mathbb{N}$, pour tout $\theta \in \mathbb{R}$,

$$cos((n+2)\theta) + cos(n\theta) = 2cos(\theta)cos((n+1)\theta),$$

on a, pour tout $x \in [-1, 1]$,

$$Q_{n+2}(x) + Q_n(x) = 2\cos(\arccos(x))\cos((n+1)\arccos(x)) = 2xQ_{n+1}(x),$$

donc $Q_{n+2}(x) = 2xQ_{n+1}(x) - Q_n(x)$.

25. Montrons par récurrence double que, pour tout $n \in \mathbb{N}^*$, " Q_n et \mathbb{Q}_{n+1} sont polynomiales de degré n et de coefficients dominants 2^{n-1} . et 2^n

Initialisation : On a $Q_1: x \mapsto x$, et d'après la question précédente, $Q_2: x \mapsto 2xQ_1(x) - Q_0(x) = 2x^2 - 1$, donc HR_1

Hérédité: Soit $n \in \mathbb{N}^*$ et supposons HR_n vérifiée.

Alors $Q_{n+2}: x \mapsto 2xQ_{n+1}(x) - Q_n(x)$ est polynomiale comme somme et produit de fonctions polynomiales. De plus, d'après HR_n , il existe R_{n+1} de degré n telle que $Q_{n+1}: x \mapsto 2^n x^{n+1} + R_n(x)$ et on a alors

$$Q_{n+2}: x \mapsto 2^{n+1}x^{n+2} + \underbrace{2xR_n(x)}_{\deg \le n+1} - \underbrace{Q_n(x)}_{\deg \le n},$$

donc on a bien HR_{n+1} .

Conclusion : D'où, par récurrence, pour tout $m \in \mathbb{N}^*$, Q_m est polynomiale de degré m et de coefficient dominant 2^{m-1} , et $Q_0: x \mapsto 1$ est polynomiale de degré 0 et a pour coefficient dominant 1.

- 26. D'après la question précédente, la suite $(R_n)_{n\in\mathbb{N}}$ définie par $R_0=Q_0$ et, pour tout $n\in\mathbb{N}^*$, $R_n=\frac{1}{2^{n-1}}Q_n$ vérifie
 - pour tout $n \in \mathbb{N}$, R_n est unitaire de degré n. Pour tout $(i,j) \in \mathbb{N}^2$ tels que $i \neq j$,

$$\langle R_i, R_j \rangle = \int_{-1}^1 R_i(x) R_j(x) w(x) dx = cte \int_{-1}^1 \cos(i \arccos(x)) \cos(j \arccos(x)) w(x) dx$$

$$= cte \int_{\pi}^0 \cos(i\theta) \cos(j\theta) (-d\theta)$$

$$= \frac{cte}{2} \int_0^{\pi} \cos((i+j)\theta) + \cos((i-j)\theta) d\theta = \frac{cte}{2} \left[\frac{\sin((i+j)\theta)}{(i+j)} + \frac{\sin((i-j)\theta)}{(i-j)} \right]_0^{\pi} \quad (\text{car } i+j \neq 0 \text{ et } i-j \neq 0)$$

$$= 0,$$

par changement de variable « $\theta = \arccos(x)$ », qui est \mathcal{C}^1 bijectif sur]-1,1[

Par unicité de la famille vérifiant les conditions a,b,c introduites au début de la partie II.B, on a bien $(p_n)_{n\in\mathbb{N}} = (R_n)_{n\in\mathbb{N}}$,

$$\begin{cases} p_0 = Q_0 \\ \forall n \in \mathbb{N}^*, \quad p_n = \frac{1}{2^{n-1}} Q_n. \end{cases}$$

27. D'après la question 20, la formule de quadrature $I_n(f) = \sum_{j=0}^n \lambda_j f(x_j)$ est d'ordre maximal Soient $n \in \mathbb{N}$. Pour tout élémnet x de] – 1,1[, $p_{n+1}(x) = 0$ si et seulement si $\cos((n+1)\arccos(x)) = 0$, soit si et seulement si,

$$\arccos(x) = \frac{\pi}{2(n+1)} \bmod \left(\frac{\pi}{n+1}\right)$$

Mais $\operatorname{arccos}(x) \in [0, \pi]$, donc l'ensemble des racines de p_{n+1} est $\left\{\cos\left(\frac{(2k+1)\pi}{2(n+1)}\right), k \in [[0, n]]\right\}$,

donc on a
$$(x_k)_{k=0..n} = \left(\cos\left(\frac{(2(n-k)+1)\pi}{2(n+1)}\right)\right)_{k=0..n}$$

III. Accélération de la méthode des trapèzes

III.A - Nombres b_m et polynômes B_m

28. Pour z = R/2, ce point est à l'intérieur du disque ouvert de convergence, on a $(|\alpha_n z^n|)_{n \in \mathbb{N}}$ qui est bornée, ce qui fournit d'un réel $M \ge 1$ tel que pour tout $n \in \mathbb{N}$, $|\alpha_n z^n| \le M$.

On a alors:

- pour tout $n \in \mathbb{N}^*$, $|\alpha_n| \le \frac{M}{|z|^n} \le \frac{M^n}{M \ge 1} = \left(\frac{M}{|z|}\right)^n$.
- pour n = 0, on a encore $|\alpha_0| = 1 \le \left(\frac{M}{|z|}\right)^0$.

En posant $q = \frac{2M}{R}$, on a bien, pour tout $n \in \mathbb{N}$, $|\alpha_n| \le q^n$.

- 29. Supposons que $\frac{1}{S}$ est développable en série entière sur $D = \{z \in \mathbb{C} : |z| < R'\}$ sous la forme $\frac{1}{S(z)} = \sum_{n=0}^{+\infty} \beta_n z^n$.
 - Alors, pour tout $z \in \mathbb{C}$ tel que $|z| < \min(R, R')$, $\sum_{n \ge 0} \alpha_n z^n$ et $\sum_{n \ge 0} \beta_n z^n$ convergent absolument, donc, par produit de Cauchy de séries absolument convergentes

$$1 = (S(z))(1/S(z)) = \left(\sum_{n=0}^{+\infty} \alpha_n z^n\right) \left(\sum_{n=0}^{+\infty} \beta_n z^n\right) = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} \alpha_k \beta_{n-k}\right) z^n.$$

Comme 1 est son propre développement en série entière, de rayon de convergence $+\infty$, on a, par unicité du développement en série entière de 1 sur $\{z \in \mathbb{C} : |z| < \min(R, R')\},\$

$$\alpha_0 \beta_0 = 1$$
 et $\forall n \in \mathbb{N}^*, \sum_{k=0}^n \alpha_k \beta_{n-k} = 0,$

i.e., comme $\alpha_0 = 1$,

$$\beta_0 = 1$$
 et $\forall n \in \mathbb{N}^*, \ \beta_n = -\sum_{k=1}^n \alpha_k \beta_{n-k}.$

• Montrons alors par récurrence forte que, pour tout $n \in \mathbb{N}$, " $|\beta_n| \le (2q)^n$ " (HR_n) . Initialisation: Comme $\beta_0 = 1$ et $(2q)^0 = 1$, on a bien HR_0 .

Hérédité: Soit $n \in \mathbb{N}$ et supposons HR_k vérifiée pour tout $k \in [0, n]$. Alors, d'après le premier point,

$$|\beta_{n+1}| = \left| -\sum_{k=1}^{n+1} \alpha_k \beta_{n+1-k} \right|$$

$$\leq \sum_{k=1}^{n+1} |\alpha_k| . |\beta_{n+1-k}| \quad \text{(inégalité triangulaire)}$$

$$\leq \sum_{k=1}^{n+1} q^k (2q)^{n+1-k} \quad (HR_{n+1-k}, \text{ où } n+1-k \in [[0,n]], \text{ et question précédente)}$$

$$= (2q)^{n+1} \sum_{k=1}^{n+1} (1/2)^k = (2q)^{n+1} \frac{1}{2} \frac{1 - (1/2)^{n+1}}{1 - (1/2)} \quad \text{(somme finie géométrique de raison } 1/2 \neq 1)$$

$$= (2q)^{n+1} (1 - (1/2)^{n+1}) \leq (2q)^{n+1}. \quad \text{On a bien } HR_{n+1}.$$

Conclusion : D'où, par récurrence, pour tout $n \in \mathbb{N}$, $|\beta_n| \leq (2q)^n$.

30. **Analyse**: Si 1/S est développable en série entière au voisinage de 0 sous la forme $1/S(z) = \sum_{n=0}^{+\infty} \beta_n z^n$, alors, d'après la question précédente, on a

$$\beta_0 = 1$$
 et $\forall n \in \mathbb{N}^*, \ \beta_n = -\sum_{k=1}^n \alpha_k \beta_{n-k}.$

Synthèse: Réciproquement, pour la suite (β_n) ainsi définie, la série entière $\sum_{n\geq 0} \beta_n z^n$ a un rayon de convergence $R' \geq \frac{1}{2q} > 0$ (car $(|\beta_n(1/(2q))^n|)_n$ est bornée d'après la question précédente), et, d'après les calculs menés dans l'analyse, pour tout $z \in \mathbb{C}$ tel que $|z| < \min(R, R')$,

$$\left(\sum_{n=0}^{+\infty} \alpha_n z^n\right) \left(\sum_{n=0}^{+\infty} \beta_n z^n\right) = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} \alpha_k \beta_{n-k}\right) z^n = 1,$$

donc
$$\sum_{n=0}^{+\infty} \beta_n z^n = \frac{1}{\sum_{n=0}^{+\infty} \alpha_n z^n} = \frac{1}{S(z)}.$$

Conclusion: 1/S est donc développable en série entière au moins sur $\{z \in \mathbb{C} : |z| < \min(R, R')\}$.

31. Soit $S: z \in \mathbb{C} \mapsto \begin{cases} \frac{e^z - 1}{z} & \text{si } z \neq 0 \\ 1 & \text{si } z = 0 \end{cases}$.

Pour tout $z \in \mathbb{C}^*$, comme $e^z = \sum_{n=0}^{+\infty} \frac{z^n}{n!}$, on a

$$S(z) = \frac{e^z - 1}{z} = \frac{1}{z} \sum_{n=1}^{+\infty} \frac{z^n}{n!} = \sum_{n=1}^{+\infty} \frac{z^{n-1}}{n!} = \sum_{n=0}^{+\infty} \frac{z^n}{(n+1)!}$$

et, comme S(0)=1, cette égalité est encore valable pour z=0, donc valable pour tout $z\in\mathbb{C}$.

S est donc développable en série entière sur $\mathbb C$ sous la forme $S(z) = \sum_{n=0}^{+\infty} \alpha_n z^n$ où $\alpha_n = \frac{1}{(n+1)!}$, donc $\alpha_0 = 1$.

D'après la question précédente, $z \mapsto \frac{1}{S(z)}$ est développable en série entière au voisinage de 0, ce qui assure l'existence d'une unique suite complexe $(\beta_n)_{n\in\mathbb{N}}$ et d'un réel r>0 tels que, pour tout $z\in\mathbb{C}$,

$$|z| < r \Rightarrow \frac{1}{S(z)} = \sum_{n=0}^{+\infty} \beta_n z^n.$$

En posant $(b_n) = (n!\beta_n)$, on a bien le résultat souhaité pour tout $z \neq 0$ (pour que le dénominateur ne s'annule pas, mais l'écriture 1/S, plus agréable, évite ce cas particulier).

Enfin, l'unicité de (b_n) vient de l'unicité de β_n et donc de l'unicité du développement en série entière de 1/S au voisinage de 0.

32. De plus, d'après les calculs faits à la question 29, on a

$$\beta_0 = 1$$
, donc $b_0 = 0!\beta_0 = 1$

et, pour tout $n \in \mathbb{N}^*$,

$$\sum_{k=0}^{n} \alpha_{n-k} \beta_k = 0, \quad \text{donc} \quad \sum_{k=0}^{n} \frac{1}{(n+1-k)!} \frac{b_k}{k!} = 0,$$

donc, en multipliant cette dernière égalité par (n+1)!, on a $\sum_{k=0}^{n} {n+1 \choose k} b_k = 0$.

Ceci étant valable pour tout $n \ge 1$, en changeant d'indice, on a bien, pour tout $n \ge 2$,

$$\sum_{k=0}^{n-1} \binom{n}{k} b_k = 0.$$

- 33. D'après la question précédente,
 - pour n = 2, on obtient $b_0 + 2b_1 = 0$, donc $b_1 = -1/2$
 - pour n = 3, on obtient $b_0 + 3b_1 + 3b_2 = 0$, donc $b_2 = -\frac{1}{3}(b_0 + 3b_1) = \frac{1}{6}$
 - pour n = 4, on obtient $b_0 + 4b_1 + 6b_2 + 4b_3 = 0$, donc $b_3 = -\frac{1}{4}(b_0 + 4b_1 + 6b_2) = 0$
 - pour n = 5, on obtient $b_0 + 5b_1 + 10b_2 + 10b_3 + 5b_4 = 0$, donc $b_4 = -\frac{1}{5}(b_0 + 5b_1 + 10b_2 + 10b_3) = -\frac{1}{30}(b_0 + 10b_3 + 10b_4 + 10b_4$
- 34. L'idée, suggérée par l'énoncé, est ici de trouver une fonction développable en série entière, très "proche" de $\sum_{n=0}^{+\infty} b_n z^n$,

qui soit paire, ce qui donnerait la nullité des b_{2n+1} . Afin de simplifier les calculs, l'idée est d'ajouter qqchose à 1/S(z) afin de rendre cette fonction impaire, et ce qqchose doit être développable en série entière (et son développement le plus simple possible). On s'intéresse donc $f: x \mapsto 1/S(x) + g(x)$, où g est à déterminer, de telle sorte que f(x) - f(-x) = 0 (ce qui donnera la parité). Après calcul, cela revient à trouver g telle que $x-xe^x+(g(x)-g(-x))e^x-(g(x)-g(-x))=0$, et on voit que $g: x \mapsto x/2$ convient.

On peut aussi trouver ce g en se disant qu'on veut que les coefficient b_{2p+1} soient nuls pour $p \ge 1$. Quid de b_1 ? Et bien justement, on va considérer $1/S(x) - b_1x = 1/S(x) + x/2$, ce qui annulera b_1 (et on n'aura donc pas d'information sur lui), mais pas les autres.

lui), mais pas les autres.
Soit
$$f: x \in \mathbb{R} \mapsto \frac{1}{S(x)} + \frac{x}{2}$$
.

Pour tout $x \in \mathbb{R}$, $-x \in \mathbb{R}$ et

 $--\sin x \neq 0$,

$$f(-x) = \frac{-x}{e^{-x} - 1} - \frac{x}{2} = \frac{-xe^x}{1 - e^x} - x + \frac{x}{2} = \frac{xe^x - xe^x + x}{e^x - 1} + \frac{x}{2} = f(x)$$

— si
$$x = 0$$
, $f(-0) = f(0)$.

La fonction f est donc paire.

De plus, pour tout $x \in]-r, r[$, comme |x| < r, on a

$$f(x) = \sum_{n=0}^{+\infty} \frac{b_n}{n!} x^n + \frac{x}{2} = 1 + \sum_{n=2}^{+\infty} \frac{b_n}{n!} x^n$$
 (car $b_0 = 1$ et $b_1 = -1/2$),

donc f est développable en série entière sur]-r,r[, et, comme f est impaire, les coefficients des termes de degré impaire de son développement asymptotique son nuls, donc $b_{2p+1}=0$ pour tout entier $p \ge 1$.

35. Comme on connait déjà b_0 , b_1 , b_2 et b_3 (question 32 et 33), on a immédiatement

$$B_0 = b_0 = 1$$

$$B_1 = b_0 X + b_1 = x - 1/2$$

$$B_2 = b_0 X^2 + 2b_1 X + b_2 = X^2 - X + 1/6$$

$$B_3 = b_0 X^3 + 3b_1 X^2 + 3b_2 X + b_3 = X^3 - (3/2)X^2 + (1/2)X.$$

36. Pour tout $m \ge 2$,

$$B_m(1) = \sum_{k=0}^{m} {m \choose k} b_k = b_m + \sum_{k=0}^{m-1} {m \choose k} b_k = b_m.$$
=0 d'après Q32, car $m \ge 2$

Pour tout $m \ge 1$,

$$B'_m(X) = 0 + \sum_{k=0}^{m-1} {m \choose k} b_k(m-k) X^{m-k-1} = \sum_{k=0}^{m-1} m {m-1 \choose k} b_k X^{(m-1)-k} = m B_{m-1}(X).$$

III.B - Développement asymptotique de l'erreur dans la méthode des trapèzes

37. On a $B_1(t) = t - 1/2$ d'après la question 35. D'où, pour tout $k \in [0, n-1]$,

$$\int_{k}^{k+1} B_{1}(x - \lfloor x \rfloor) g'(x) dx = \int_{k}^{k+1} B_{1}(x - k) g'(x) dx$$

$$(\operatorname{car} \lfloor x \rfloor = k \text{ pour tout } x \in [k, k+1[\text{ et l'intégrale ne dépend pas de la valeur en un point})$$

$$= [B_{1}(x - k)g(x)]_{k}^{k+1} - \int_{k}^{k+1} B'_{1}(x - k)g(x) dx$$

$$(\operatorname{par intégration par parties avec } x \mapsto B_{1}(x - k) \text{ et } g \text{ de classe } \mathcal{C}^{1} \text{ sur } [k, k+1])$$

$$= \frac{g(k+1)}{2} + \frac{g(k)}{2} - \int_{k}^{k+1} g(x) dx.$$

D'où, d'après la relation de Chasles,

$$\int_0^n B_1(x - \lfloor x \rfloor) g'(x) dx = \sum_{k=0}^{n-1} \int_k^{k+1} B_1(x - \lfloor x \rfloor) g'(x) dx$$

$$= \sum_{k=0}^{n-1} \left(\frac{g(k+1) + g(k)}{2} - \int_k^{k+1} g(x) dx \right)$$

$$= \sum_{k=0}^{n-1} \frac{g(k+1) + g(k)}{2} - \int_0^n g(x) dx. \quad \text{cqfd.}$$

38. • Notons, pour tout $p \in \mathbb{N}^*$, $I_p = \frac{1}{p!} \int_0^n B_p(x - \lfloor x \rfloor) g^{(p)}(x) dx$.

Pour tout $k \in [[0, n-1]]$

$$\int_{k}^{k+1} B_{p}(x-\lfloor x \rfloor) g^{(p)}(x) dx = \int_{k}^{k+1} B_{p}(x-k) g^{(p)}(x) dx.$$

Posons $u(x) = \frac{B_{p+1}(x-k)}{p+1}$, $u'(x) = B_p(x-k)$ (d'après la question 36), $v(x) = g^{(p)}(x)$, $v'(x) = g^{(p+1)}(x)$.

Comme u et v sont de classe C^1 sur [k, k+1], on peut intégrer par parties et on a :

$$\int_{k}^{k+1} B_{p}(x - \lfloor x \rfloor) g^{(p)}(x) dx = \int_{k}^{k+1} B_{p}(x - k) g^{(p)}(x) dx = \left[\frac{B_{p+1}(x - k)}{p+1} g^{(p)}(x) \right]_{k}^{k+1} - \int_{k}^{k+1} \frac{B_{p+1}(x - k)}{p+1} g^{(p+1)}(x) dx$$

$$= \frac{B_{p+1}(1) g^{(p)}(k+1) - B_{p+1}(0) g^{(p)}(k)}{p+1} - \frac{1}{p+1} \int_{k}^{k+1} B_{p+1}(x - \lfloor x \rfloor) g^{(p+1)}(x) dx$$

$$= \frac{b_{p+1}}{p+1} (g^{(p)}(k+1) - g^{(p)}(k)) - \frac{1}{p+1} \int_{k}^{k+1} B_{p+1}(x - \lfloor x \rfloor) g^{(p+1)}(x) dx$$

$$(\operatorname{car} B_{p+1}(0) = B_{p+1}(1) = b_{p+1} \text{ d'après 36 avec } p+1 \ge 2).$$

En sommant cette relation pour tout $k \in [0, n-1]$ et en utilisant la relation de Chasles, on a donc

$$I_{p} = \sum_{k=0}^{n-1} \frac{1}{p!} \int_{k}^{k+1} B_{p}(x - \lfloor x \rfloor) g^{(p)}(x) dx$$

$$= \sum_{k=0}^{n-1} \frac{1}{p!} \left(\frac{b_{p+1}}{p+1} (g^{(p)}(k+1) - g^{(p)}(k)) - \frac{1}{p+1} \int_{k}^{k+1} B_{p+1}(x - \lfloor x \rfloor) g^{(p+1)}(x) dx \right)$$

$$= \frac{b_{p+1}}{(p+1)!} \sum_{k=0}^{n-1} (g^{(p)}(k+1) - g^{(p)}(k)) - \frac{1}{(p+1)!} \sum_{k=0}^{n-1} \int_{k}^{k+1} B_{p+1}(x - \lfloor x \rfloor) g^{(p+1)}(x) dx$$

$$= \frac{b_{p+1}}{(p+1)!} (g^{(p)}(n) - g^{(p)}(0)) - I_{p+1},$$

donc $I_p + I_{p+1} = \frac{b_{p+1}}{(p+1)!} (g^{(p)}(n) - g^{(p)}(0)).$ Par suite, pour tout $m \ge 2$,

$$\begin{split} \sum_{p=2}^{m} \frac{(-1)^{p-1}b_p}{p!} \left(g^{(p-1)}(n) - g^{(p-1)}(0)\right) &= \sum_{p=2}^{m} (-1)^{p-1} (I_p + I_{p-1}) \quad (\operatorname{car} \ p - 1 \ge 1) \\ &= \sum_{p=2}^{m} (-1)^{p-1} I_{p-1} + \sum_{p=2}^{m} (-1)^{p-1} I_p \\ &= \sum_{p=1}^{m-1} (-1)^p I_p - \sum_{p=2}^{m} (-1)^p I_p \\ &= -I_1 - (-1)^m I_m \quad (\text{téléscopage}) \\ &= \int_0^n g(x) dx - \sum_{k=0}^{n-1} \frac{g(k+1) + g(k)}{2} - (-1)^m I_m. \quad \text{cqfd.} \end{split}$$

39. Posons le changement de variable affine $x = a + th \Leftrightarrow t = (x - a)/h$. On a alors dx = hdt, donc

$$\int_a^b f(x)dx = \int_0^n f(a+th)hdt = \int_0^n g(t)dt$$

en posant $g: t \in [0, n] \mapsto hf(a+th)$, qui est de classe \mathcal{C}^{∞} sur [0, n] comme composée de fonctions de classe \mathcal{C}^{∞} . De plus, pour tout $p \in \mathbb{N}$, pour tout $t \in [0, n]$, $g^{(p)}(t) = h^{p+1}f^{(p)}(a+th)$.

Soit alors $m \ge 1$. D'après la forume établie à la question précédente avec " $m = 2m \ge 2$," on a :

$$\int_{a}^{b} f(x)dx = \int_{0}^{n} g(t)dt$$

$$= \sum_{k=0}^{n-1} \frac{g(k) + g(k+1)}{2} + \sum_{p=2}^{2m} \frac{(-1)^{p-1}b_{p}}{p!} (g^{(p-1)}(n) - g^{(p-1)}(0)) + \frac{(-1)^{2m}}{(2m)!} \int_{0}^{n} B_{2m}(x - \lfloor x \rfloor) g^{(2m)}(x) dx$$

$$= \sum_{k=0}^{n-1} \frac{hf(a+kh) + hf(a+(k+1)h)}{2} + \sum_{p=2}^{2m} \frac{(-1)^{p-1}b_{p}}{p!} (h^{p}f^{(p-1)}(a+nh) - h^{p}f^{(p-1)}(a+0h))$$

$$+ \frac{1}{(2m)!} \int_{0}^{n} B_{2m}(x - \lfloor x \rfloor) h^{2m+1} f^{(2m)}(a+xh) dx$$

$$= h \sum_{k=0}^{n-1} \frac{f(a_{k}) + f(a_{k+1})}{2} + \sum_{p=1}^{m} \frac{(-1)^{2p-1}b_{2p}}{(2p)!} (h^{2p}f^{(2p-1)}(b) - h^{2p}f^{(2p-1)}(a))$$

$$+ \frac{1}{(2m)!} \int_{0}^{n} B_{2m}(x - \lfloor x \rfloor) h^{2m+1} f^{(2m)}(a+xh) dx$$

$$(car b_{2p+1} = 0 \text{ pour tout } p \ge 1, \text{ donc il ne reste que les termes pairs dans la somme})$$

$$= T_{n}(f) - \sum_{p=1}^{m} \frac{b_{2p}h^{2p}}{(2p)!} (f^{(2p-1)}(b) - f^{(2p-1)}(a)) + \frac{h^{2m}}{(2m)!} \int_{a}^{b} B_{2m}((t-a)/h - \lfloor (t-a)/h \rfloor) f^{(2m)}(t) dt$$

$$(changement de variable affine $t = a + xh \Leftrightarrow x = (t-a)/h$, avec $dx = dt/h$)
$$= T_{n}(f) - \sum_{p=1}^{m} \frac{\gamma_{2p}}{n^{2p}} + \rho_{2m}(n),$$$$

en posant $\rho_{2m}(n) = \frac{h^{2m}}{(2m)!} \int_a^b B_{2m}((t-a)/h - \lfloor (t-a)/h \rfloor) f^{(2m)}(t) dt$. Enfin, par positivité de l'intégrale,

$$|\rho_{2m}(n)| = \left| \frac{h^{2m}}{(2m)!} \int_{a}^{b} B_{2m}((t-a)/h - \lfloor (t-a)/h \rfloor) f^{(2m)}(t) dt \right|$$

$$\leq \frac{h^{2m}}{(2m)!} \int_{a}^{b} |B_{2m}(\underbrace{(t-a)/h - \lfloor (t-a)/h \rfloor})|.|f^{(2m)}(t)| dt$$

$$\leq \frac{((b-a)/n)^{2m}}{(2m)!} \int_{a}^{b} \|B_{2m}\|_{\infty}^{[0,1]} \|f^{(2m)}\|_{\infty}^{[a,b]} dt$$

$$= \frac{(b-a)^{2m+1} \|B_{2m}\|_{\infty}^{[0,1]} \|f^{(2m)}\|_{\infty}^{[a,b]}}{(2m)!n^{2m}} = \frac{C_{2m}}{n^{2m}}$$

en posant
$$C_{2m} = \frac{(b-a)^{2m+1} \|B_{2m}\|_{\infty}^{[0,1]} \|f^{(2m)}\|_{\infty}^{[a,b]}}{(2m)!}$$