Entropy measurement tool

Create a small command-line tool called "entropy" that analyzes a single file and outputs some entropy metrics. It should split the file into small blocks and calculate a single entropy index for each block.

This tool can be used to identify compressed and uncompressed areas within the file.

Arguments

entropy [-b <blocksize>] <filename>

is the path of the file to analyze <filename>

-b <blocksize> optional argument that specifies the block-size in bytes. The

default block-size is 1024 bytes.

Calculation

The entropy for a block can be calculated as
$$e = -\sum_{\substack{for\ every\\byte\ b}} P_b\ \cdot\ log_2\ P_b$$

Where P_b is the relative frequency of byte b within the block. $P_b = \frac{number\ of\ byte-b\ present}{block\ size}$

Take a look at https://en.wikipedia.org/wiki/Entropy (information theory) to get a more detailed description of the information theoretical idea of entropy.

Output

The tool should include a detailed report and a summary report.

Detailed report:

For every block, the tool should output the block number as well as the block entropy.

Summary report:

In addition, the tool should output, the number of blocks with low entropy (< 2) and high entropy (> 7).

Sample output

./entropy sample.dat

entropy report for sample.dat

	•
block#	entropy
0	0.19
1	2.44
2	7.89
3	7.87
4	7.92
5	7.95

Low entropy blocks: 1 High entropy blocks: 4