Das Hooksche Gesetz

 $Sophia\ Brechmann\\ sophia.brechmann@tu-dortmund.de$

 $Simon~Kugler\\simon.kugler@tu-dortmund.de$

Deadline: Dienstag, 14.11.2023

Inhaltsverzeichnis

1	Ziel	3
2	Durchführung	3
3	Auswertung	3

1 Ziel

In diesem Versuch wird die Federkonstante D einer Feder bestimmt, in dem man diese auslenkt.

2 Durchführung

Der Versuch wird online über die Seite der Uni Duisburg-Essen ausgeführt: http://kallisto.didaktik.physik.uni-due.de/IBEs/Hooke.php Eine vertikal aufgehangende Feder wird per Schnur über eine Umlenkrolle ausgelenkt. Das Ende der Schnur liegt an einem Lineal an, an welchem die Auslenkung Δx abgetragen wird. An der Umlenkrolle wird die dafür benötigte Kraft F in Newton N gemessen und auf einem Laptop angezeigt.

3 Auswertung

Folgende Messwerte wurden bestimmt:

Tabelle 1: Messwerte des Versuchs "Hooksches Gesetz".

$\Delta x [\mathrm{cm}]$	F[N]	$D[{ m N/m}]$
$2,5\pm 0,5$	$0,07\pm0,01$	2,800
$4,5\ \pm0,5$	$0,\!13\pm0,\!01$	2,889
$9{,}0\ \pm0{,}5$	$0,\!27\pm0,01$	3,000
$13,5\pm 0,5$	$0,39\pm0,01$	2,889
$21,0\pm 0,5$	$0,62{\pm}0,01$	2,952
$23,5{\pm}0,5$	$0,69 \pm 0,01$	2,936
$29,0\pm 0,5$	$0,86{\pm}0,01$	2,966
$34,5{\pm}0,5$	$1,03\pm 0,01$	2,986
$38,0\pm 0,5$	$1,13\pm 0,01$	2,974
$42,5{\pm}0,5$	$1,26\pm0,01$	2,965

Berechnet man aus den 10 bzw. 20 Werten jeweils über die Beziehung $D=\frac{F}{\Delta x}$ die Federkonstante und berechnet daraus den Mittelwert, ergibt sich: $\overline{D}=29,357\mathrm{N/m}$.

Mit Fehlerrechnung erhält man folgende Abweichung für D:

$$\begin{split} \Delta D &= \sqrt{(\frac{d}{dF}(\frac{F}{\Delta x}))^2 \cdot (\Delta F)^2 + (\frac{d}{d\Delta x}(\frac{F}{\Delta x}))^2 (\Delta(\Delta x))^2} \\ &= \sqrt{\frac{1}{(0,218\text{m})^2} \cdot (0,01\text{N})^2 + (-\frac{6,18\text{N}}{(0,218\text{m})^2})^2 \cdot (0,005\text{m})^2} \\ &= 0.65\frac{\text{N}}{\text{m}} \\ \Rightarrow D &= (2,936 \pm 0.65)\frac{\text{N}}{\text{m}} \end{split}$$

Nun wird die Federkonstante D mithilfe einer linearen Regression berechnet. Graphisch sieht eine durch die Messwerte gelegte lineare Funktion wie folgt aus:

Mittels Python lassen sich die Koeffizienten, welche zur Bestimmung einer Funktion der Form g(x) = ax + b von nöten sind, bestimmen:

$$a = 2,982 \pm 0,011$$

 $b = -0,005 \pm 0,003$

Die Gerade wird also durch die Vorschrift $g(x)=(2,982\pm0,01)x-0,005$ beschrieben. Die Steigung entspricht unserer Federkonstante, genau dem Verhältnis zwischen Δx und F. Der y-Achsenabschnitt müsste eigentlich im Nullpunkt liegen, jedoch kommt hier durch Messunsicherheiten die Abweichung zustande. So kann die Federkonstante genauer bestimmt werden. Damit ist:

$$D = (2,98 \pm 0,01) \frac{\text{N}}{\text{m}}$$

Da wir uns nicht sicher waren, welcher Weg genau mit "linearer Ausgleichsrechnung" gemeint ist, haben wir auch noch folgende - die Methode der kleinen Quadrate - verwendet: Hierbei ist \vec{r} der Residuenvektor, $\vec{\Delta x}$ die Ansammlung unserer Messwerte in einem und \vec{C} der Vektor für die Kraftmesswerte. D wird dann durch x dargestellt.

Es gilt: $\vec{r} = D \cdot \vec{\Delta x} - \vec{F}$, außerdem $A^T \cdot A \cdot x = A^T \cdot \vec{C}$.

$$\Rightarrow (\vec{\Delta x})^T \cdot (\vec{\Delta x}) \cdot x = (\vec{\Delta x})^T \cdot \vec{C}$$

ergibt mit eingesetzten Werten und den daraus resultierenden Skalarprodukten:

6564,
$$5\text{cm}^2 \cdot x = 194, 655\text{cm} \cdot \text{N}$$

 $\Leftrightarrow x = 2, 97 \frac{\text{N}}{\text{m}}$

Da wir uns nicht sicher waren, wie man bei Skalarprodukten den Fehler berechnet (evtl. eine Summe über die Fehler jeder Zeile/Spalte?), haben wir die Fehllerrechnung hier ausgelassen.