Math 4301 Mathematical Analysis I Lecture 3

Topic: Monotone Sequence Property

- Summary of Previous Lecture
- Archimedean Property

We say that an ordered field \mathbb{F} satisfies the *archimedean* property if for every $x \in \mathbb{F}$, there is $n \in \mathbb{N}$, such that,

x < n.

We say that \mathbb{F} is an archimedean field if \mathbb{F} satisfies the archimedean property.

• **Definition** Let \mathbb{F} be an ordered field and $S \subseteq \mathbb{F}$. A number $M \in \mathbb{F}$ is called an *upper bound* for S if for all $x \in S$,

 $x \leq M$.

- **Definition** A number $\beta \in \mathbb{F}$ is called the least upper bound (or supremum) for S if
- i) β is an upper bound of S, and
- ii) if β' is an upper bound for S, then $\beta \leq \beta'$.
- The least upper bound for S is denoted by $\sup S$, i.e.

 $\beta = \sup S$.

 \bullet If S is not bounded above, then

$$\sup S = +\infty.$$

• If $S = \emptyset$, then

$$\sup S = -\infty.$$

• The least upper bound property

Every nonempty and bounded above subset $S \subseteq \mathbb{F}$ has the least upper bound, that is, there is $\beta \in \mathbb{F}$, such that

$$\beta = \sup S$$
.

- **Definition** An ordered field \mathbb{F} is called *complete* if \mathbb{F} satisfies the least upper bound property.
- \bullet Theorem Every complete ordered field $\mathbb F$ is Archimedean.
- **Theorem** There exists a unique (up to an isomorphism of ordered fields) complete ordered field that we call the field of real numbers \mathbb{R} .
- Proposition $\mathbb{Q} \subset \mathbb{R}$ is dense in \mathbb{R} . That is,
- i) If $x, y \in \mathbb{R}$ and x < y, then there is $r \in \mathbb{Q}$, such that,

$$x < r < y$$
.

ii) If $x \in \mathbb{R}$, $\epsilon > 0$, then there is $r \in \mathbb{Q}$ with

$$|x-r|<\epsilon$$
.

• Proposition Equation

$$x^2 = 2$$

has no solutions in \mathbb{Q} .

• **Proposition** There is $\alpha \in \mathbb{R}$, $\alpha > 0$ such that

$$\alpha^2 = 2$$
.

- **Proposition** \mathbb{Q} is not a complete ordered field.
- **Definition** Let $\{x_n\}$ be a sequence in \mathbb{F} and $x \in \mathbb{F}$. We say that $\{x_n\}$ converges to x if for every $\epsilon > 0$, there is $N \in \mathbb{N}$, such that, for all $n \in \mathbb{N}$, if n > N, then

$$|x_n - x| < \epsilon$$
.

• We write

$$\lim_{n \to \infty} x_n = x$$

or $x_n \to x$ as $n \to \infty$.

• **Proposition** In an ordered field \mathbb{F} , if $x_n \to x$ and $x_n \to y$ as $n \to \infty$, then

$$x = y$$
.

• Proposition In any ordered field $\mathbb F$ a convergent sequence is bounded.

Monotone Sequence Property

• Recall, a sequence $\{x_n\}$ is said to be increasing (nondecreasing) if, for all $n \in \mathbb{N}$,

$$x_n < x_{n+1} \ (x_n \le x_{n+1}).$$

• Analogously, we define a decreasing (nonincerasing) sequence.

Monotone Sequence Property (MSP)

Let \mathbb{F} be an ordered field. We say that \mathbb{F} has the monotone sequence property if every nondecreasing and bounded above sequence in \mathbb{F} converges to a point in \mathbb{F} .

- We show that the monotone sequence property (MSP) is **equivalent** to the least upper bound property (LUB).
- In particular, we can define a complete ordered field as follows.

Completeness Property (CP)

An ordered field is said to be *complete* if it satisfies the *monotone sequence property*. **Example** Assume that \mathbb{F} is a complete ordered field.

Let
$$x_n = (1 - \frac{1}{n})$$
. Since

$$\frac{1}{n+1}<\frac{1}{n},$$

it follows that

$$-\frac{1}{n} < -\frac{1}{n+1},$$

so

$$x_n = 1 - \frac{1}{n} < 1 - \frac{1}{n+1} = x_{n+1}.$$

- Therefore, $\{x_n\}$ increases.
- Furthermore, since $\frac{1}{n} > 0$,

$$-\frac{1}{n} < 0.$$

• Thus,

$$\underbrace{\left(1-\frac{1}{n}\right)}_{x}<1,$$

so for all $n \in \mathbb{N}$,

$$|x_n| < 1,$$

i.e. $\{x_n\}$ is bounded.

• Therefore, $\{x_n\}$ converges in \mathbb{F} .

Remark There are two formulations for the Completeness Property

LUB Every nonempty and bounded above subset $S \subseteq \mathbb{F}$ has a least upper bound in \mathbb{F} .

MSP Every nondecreasing sequence that is bounded above converges.

• Question: Is LUB equivalent to MSP?

Proposition If \mathbb{F} satisfies the monotone sequence property then \mathbb{F} is archimedean.

Proof. Suppose that \mathbb{F} is not archimedean.

• Thus, there is $x \in \mathbb{F}$, such that, for all $n \in \mathbb{N}$,

$$n \leq x$$
.

• Therefore, the sequence

$$x_n = n$$

is bounded above by x.

 \bullet Since

$$x_n = n < (n+1) = x_{n+1},$$

the sequence $\{x_n\}$ increases.

• Since \mathbb{F} satisfies (MSP), there is $a \in \mathbb{F}$, such that,

$$a = \lim_{n \to \infty} x_n.$$

• Thus, for $\epsilon = \frac{1}{2}$, there is $N \in \mathbb{N}$, such that, for every n > N,

$$|x_n - a| < \frac{1}{2}.$$

• Let n > N, then (n+1) > n > N, and

$$x_{n+1} - x_n = (n+1) - n = 1.$$

• Consequently,

$$1 = |x_{n+1} - x_n| = |(x_{n+1} - a) + (a - x_n)|$$

$$\leq |x_{n+1} - a| + |x_n - a|$$

$$< \frac{1}{2} + \frac{1}{2} = 1, \text{ so}$$

• 1 < 1, a contradiction.

This completes our proof. \blacksquare

• Theorem If \mathbb{F} has the least upper bound property then \mathbb{F} satisfies the monotone sequence property.

Proof. Let $\{x_n\}$ be a nondecreasing and bounded sequence in \mathbb{F} .

• Consider

$$S = \{x_n : n \in \mathbb{N}\}.$$

• Notice that $x_1 \in S$, so

$$S \neq \emptyset$$
.

• Moreover, since $\{x_n\}$ is bounded, there is $K \in \mathbb{F}$, such that, for all $n \in \mathbb{N}$,

$$|x_n| \leq K$$
.

• Therefore, for all $n \in \mathbb{N}$,

$$-K \le x_n \le K$$
,

i.e. we showed that, for every $x \in S$,

$$x \leq K$$
.

- Therefore S is nonempty and bounded subset of \mathbb{F} .
- Since \mathbb{F} satisfies (LUB), it follows that

$$\sup S \in \mathbb{F}$$
.

- Let $\alpha = \sup S \in \mathbb{F}$.
- We show that,

$$\lim_{n \to \infty} x_n = \alpha,$$

- Let $\epsilon > 0$ be given.
- Since $\alpha = \sup S$ is the least upper bound for S,

$$\alpha - \epsilon < \alpha$$

is not an upper bound of S.

• Therefore, there is, $x \in S$, such that

$$\alpha - \epsilon < x$$
.

• Since $x \in S$,

$$x = x_N$$

for some $N \in \mathbb{N}$.

• Therefore,

$$\alpha - \epsilon < x_N$$

• Let n > N, then $x_N \leq x_n$, so

$$\alpha - \epsilon < x_N \le x_n$$

• Since α is an upper bound for S,

$$x_n \leq \alpha$$
,

for all $n \in \mathbb{N}$.

• Therefore,

$$\alpha - \epsilon < x_N \le x_n \le \alpha < \alpha + \epsilon$$
.

• So, if n > N, then

$$\alpha - \epsilon < x_n < \alpha + \epsilon$$
, so $|x_n - \alpha| < \epsilon$.

• We showed that:

For every $\epsilon > 0$, there is $N \in \mathbb{N}$, such that for all n > N,

$$|x_n - \alpha| < \epsilon$$
.

• Hence, by the definition

$$\lim_{n \to \infty} x_n = \alpha$$

as claimed.

This finishes our proof. ■

- Exercise Show that in a complete ordered field \mathbb{F} the sequence $\left\{\frac{1}{n}\right\}$ converges to 0.
- Indeed, as we showed before, in an ordered field with the least upper bound property,

$$\inf S = 0,$$

where $S = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$.

• Since $\left\{\frac{1}{n}\right\}$ is decreasing and bounded $(0 < \frac{1}{n} \le 1$, for all $n \in \mathbb{N}$), one shows that

$$0 = \inf S = \lim_{n \to \infty} \frac{1}{n}.$$

Exercise Show that in a complete ordered field \mathbb{F} the sequence $\left\{\frac{1}{2^n}\right\}$ converges to 0.

• The converse of the above theorem is true, namely

Theorem In an ordered field \mathbb{F} with the monotone sequence property the following properties hold:

- i) (Least upper bound property) Every nonempty and bounded above subset $S \subseteq \mathbb{F}$ has the least upper bound in \mathbb{F} .
- ii) (Greatest lower bound property) Every nonempty and bounded below subset $S \subseteq \mathbb{F}$ has the greatest lower bound in \mathbb{F} .

Proof. For i), let M be an upper bound for S (i.e. for all $x \in S$, $x \leq M$) and fix $n \in \mathbb{N}$.

• Consider sequence

$$M - \frac{1}{2^n}, \ M - \frac{2}{2^n}, \ M - \frac{3}{2^n}, \ \dots$$

• Let k_n be the least positive integer k such that

$$M-\frac{k}{2^n}$$

is not an upper bound of S, i.e.

$$k_n = \min \left\{ k \in \mathbb{N} : \exists x \in S \ni M - \frac{k}{2^n} < x \right\}$$

• Notice that such k_n exists:

Since $S \neq \emptyset$ we let $x \in S$.

Since \mathbb{F} is Archimedean, there is $k \in \mathbb{N}$, such that

$$M - \frac{k}{2^n} < x$$

(show this).

• Let

$$b_n = M - \frac{k_n}{2^n}$$

and notice that

 b_n is not an upper bound for S, for all $n \in \mathbb{N}$.

• Since k_n the least positive integer k such that

$$M-\frac{k}{2^n}$$

is not an upper bound of S,

$$M - \frac{k_n - 1}{2^n} = \left(M - \frac{k_n}{2^n}\right) + \frac{1}{2^n}$$
$$= b_n + \frac{1}{2^n}$$

is an upper bound of S.

• Thus,

$$b_n + \frac{1}{2^n}$$

is an upper bound for S.

• Furthermore, we see that

$$b_1 \le b_2 \le ...$$

and

$$b_n = M - \frac{k_n}{2^n} \le M,$$

- It follows that $\{b_n\}$ is monotonically increasing and bounded above.
- Since \mathbb{F} satisfies the monotone sequence property, $\{b_n\}$ converges in \mathbb{F} .
- Let $b_n \to b \in \mathbb{F}$ as $n \to \infty$.
- We show that:

$$\sup S = b.$$

• Notice that

$$b_n \leq b$$
,

for all $n \in \mathbb{N}$.

Indeed, suppose that

$$b_N > b$$
,

for some $N \in \mathbb{N}$.

Since $\{b_n\}$ increases

$$b_N \leq b_n$$

for all n > N.

Therefore,

$$b_N \leq \lim_{n \to \infty} b_n$$
 (show this)

Hence,

$$b < b_N \le \lim_{n \to \infty} b_n = b$$
$$b < b$$

a contradiction.

• We show that b is an upper bound for S.

Suppose b is not an upper bound for S.

Then there is $x \in S$ such that

(i.e. b is not an upper bound of S).

Let

$$\epsilon = (x - b) > 0.$$

Since $\frac{1}{2^n} \to 0$ as $n \to \infty$, there is $n \in \mathbb{N}$, such that

$$\frac{1}{2^n} < \epsilon.$$

Now, as we showed, $b_n \leq b$, hence,

$$x = b + (x - b)$$

$$= b + \epsilon$$

$$\geq b_n + \epsilon$$

$$> b_n + \frac{1}{2^n}.$$

A contradiction, since by our construction

$$b_n + \frac{1}{2^n}$$

is an upper bound for S.

• It follows that, for all $x \in S$,

$$x \leq b$$
.

• Since $b_n \to b$, for $\epsilon > 0$, there is $N \in \mathbb{N}$, such that

$$b - b_N = |b - b_N| < \epsilon.$$

• Since b_N is not an upper bound for S, there is $x \in S$, such that

$$b_N \leq x$$
.

• It follows that

$$-x \leq -b_N$$
.

• Hence,

$$b - x \le b - b_N < \epsilon$$

and, in particular

$$b - x < \epsilon$$

 $\bullet\,$ It follows that

$$b - \epsilon < x$$
.

• Therefore, the number

$$b - \epsilon$$

is not an upper bound of S.

- In summary, we showed that:
 - i) The number b is an upper bound for S;
 - ii) For any $\epsilon > 0$, there is $x \in S$, such that

$$b - \epsilon < x$$
.

• Hence,

$$b = \sup S$$

as claimed. \blacksquare

• Remark As we showed above:

(MSP) is **equivalent** to (LUB)

In particular, since \mathbb{R} is complete,

Every monotone and bounded sequence $\{x_n\} \subseteq \mathbb{R}$ converges in \mathbb{R} .

Example In a complete ordered field \mathbb{F} let

$$x_0 = 0$$

and

$$x_{n+1} = \sqrt{x_n + 2}, n \ge 0.$$

Show that $\{x_n\}$ converges.

• Indeed, we show that

$$0 \le x_n < 2$$

and $\{x_n\}$ is monotonically increasing.

• Clearly,

$$0 < x_1 = \sqrt{2} < 2$$

and assume that

$$0 \le x_n < 2.$$

• Therefore,

$$x_n + 2 < 4$$
,

so

$$\sqrt{x_n+2} < \sqrt{4},$$

thus

$$x_{n+1} = \sqrt{x_n + 2} < 2,$$

hence

$$0 \le x_{n+1} < 2.$$

• By PMI, for all $n \in \mathbb{N}$,

$$0 \le x_n < 2.$$

• Since

$$x_{n+1} - x_n = \sqrt{x_n + 2} - x_n$$

$$= \frac{(\sqrt{x_n + 2} - x_n)(\sqrt{x_n + 2} + x_n)}{(\sqrt{x_n + 2} + x_n)}$$

$$= \frac{x_n + 2 - x_n^2}{\sqrt{x_n + 2} + x_n}$$

$$= \frac{(x_n + 1)(2 - x_n)}{\sqrt{x_n + 2} + x_n}$$
> 0,

it follows that

$$x_{n+1} > x_n,$$

for all $n \in \mathbb{N}$.

- Hence {x_n} is monotone and bounded, since the field is complete,
 MSP holds in F, so {x_n} converges.
- We find its limit.
- \bullet Let

$$a = \lim_{n \to \infty} x_n .$$

• Since

$$x_{n+1} = \sqrt{x_n + 2},$$
$$x_{n+1}^2 = x_n + 2.$$

• Since

$$\lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} x_n = a,$$

it follows that

$$a^{2} = \lim_{n \to \infty} x_{n+1} \cdot \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} x_{n+1}^{2}$$

$$= \lim_{n \to \infty} (x_{n} + 2)$$

$$= \lim_{n \to \infty} x_{n} + 2$$

$$= a + 2.$$

• Thus,

$$a^2 = a + 2$$

- Hence a = 2 or a = -1.
- However, $x_n \geq 0$, for all $n \in \mathbb{N}$, so

$$a = \lim_{n \to \infty} x_n \ge 0$$
, so $a = 2$.

• It follows that

$$a = \lim_{n \to \infty} x_n = 2.$$

Proposition Let $\{x_n\}$ be the sequence defined by

$$x_n = \sum_{k=1}^n \frac{1}{k}.$$

Then $\{x_n\}$ monotonically increasing, unbounded, and it does not converge.

Proof. Clearly,

$$x_{n+1} - x_n = \sum_{k=1}^{n+1} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k}$$
$$= \frac{1}{n+1}$$
$$> 0$$

- Therefore, $\{x_n\}$ is monotonically increasing.
- We show that $\{x_n\}$ is **not bounded above**.
- Let $M \in \mathbb{R}$, M > 0.
- We show that there is $k \in \mathbb{N}$, such that

$$x_k > M$$
.

• Since \mathbb{R} is archimedean, there is $n \in \mathbb{N}$, such that

$$2M < n$$
.

• Let $k=2^n$, then

$$x_{k} = x_{2^{n}} = 1 + \frac{1}{2} + \underbrace{\frac{1}{3} + \frac{1}{4}}_{2} + \dots + \underbrace{\frac{1}{2^{n-1} + 1}}_{2^{n-1} + 1} + \underbrace{\frac{1}{2^{n-1} + 2}}_{2^{n-1}} + \dots + \underbrace{\frac{1}{2^{n}}}_{2^{n-1}}$$

$$\geq \left(1 + \frac{1}{2}\right) + 2 \cdot \frac{1}{4} + 4 \cdot \frac{1}{8} + \dots + 2^{n-1} \cdot \frac{1}{2^{n}}$$

$$= 1 + \underbrace{\frac{1}{2} + \frac{1}{2} + \dots + \frac{1}{2}}_{n}$$

$$= 1 + \frac{n}{2}$$

$$> 1 + M > M.$$

• It follows that

$$x_k > M$$
.

- Therefore, $\{x_n\}$ is unbounded.
- Since convergent sequence must be bounded, it follows that $\{x_n\}$ does not converge.

This finishes our proof. \blacksquare

• Remark If a sequence $\{x_n\}$ is monotonically increasing and unbounded above, then we say that $\{x_n\}$ diverges to ∞ and we write

$$x_n \to \infty \text{ as } n \to \infty.$$

Definition A sequence $x_n \to \infty$ as $n \to \infty$, if for any $M \in \mathbb{F}$, there is $N \in \mathbb{N}$, such that, for all $n \geq N$,

$$x_n \geq M$$
.

Analogously, $x_n \to -\infty$ as $n \to \infty$, if for any $M \in \mathbb{F}$, there is $N \in \mathbb{N}$, such that, for all $n \geq N$,

$$x_n \leq M$$
.

Proposition The sequence $\{x_n\}$ defined by

$$x_n = \left(1 + \frac{1}{n}\right)^n$$

is strictly monotone increasing and converges to a limit e, where

$$2 < e < 3$$
.

Proof. Using the binomial theorem

$$\begin{split} \left(1 + \frac{1}{n}\right)^n &= \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k} \\ &= 1 + n \cdot \frac{1}{n} + \frac{n\left(n-1\right)}{2!} \cdot \frac{1}{n^2} + \dots + \frac{n\left(n-1\right) \cdot \dots \cdot 2 \cdot 1}{n!} \cdot \frac{1}{n^n} \\ &= 2 + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \frac{1}{3!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) + \dots + \frac{1}{n!} \cdot \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdot \dots \cdot \frac{2}{n} \cdot \frac{1}{n} \end{split}$$

- Each term in the sum is positive and increases as n increases and the number of terms increases with n.
- Therefore, $\{x_n\}$ is strictly increasing and

$$x_n > 2$$

for all $n \geq 2$.

• Since

$$0 \le \left(1 - \frac{k}{n}\right) < 1, \text{ for } 1 \le k \le n,$$

it follows that

$$\left(1+\frac{1}{n}\right)^n < 2+\frac{1}{2!}+\frac{1}{3!}+\ldots+\frac{1}{n!}.$$

• Since for $n \ge 1$,

$$n! \geq 2^{n-1}$$
,

it follows that

$$\left(1 + \frac{1}{n}\right)^{n} < 2 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$$

$$< 2 + \frac{1}{2} + \frac{1}{2^{2}} + \dots + \frac{1}{2^{n-1}}$$

$$= 2 + \frac{1}{2} \frac{1 - \left(\frac{1}{2}\right)^{n}}{1 - \frac{1}{2}}$$

$$< 2 + 1 = 3.$$

- So the sequence $\{x_n\}$ is bounded above by a number strictly less that 3.
- Since $\{x_n\}$ is increasing and bounded, and \mathbb{R} is complete,
- it follows that $\{x_n\}$ converges.

We let

$$e = \lim_{n \to \infty} x_n,$$

then 2 < e < 3.

This finishes our proof. \blacksquare

• Cauchy Sequences

Definition A sequence $\{x_n\}$ of real numbers is called a Cauchy sequence if for every $\epsilon > 0$ there is $N \in \mathbb{N}$, such that, for $m, n \geq N$,

$$|x_m - x_n| < \epsilon$$
.

Example Let $x_n = \frac{1}{n}, n = 1, 2,$

We show that $\{x_n\}$ is a Cauchy sequence.

- Let $\epsilon > 0$ be given.
- Since \mathbb{R} is archimedean, there is $N \in \mathbb{N}$, such that

$$\frac{1}{N} < \frac{\epsilon}{2}$$

• Let n, m > N, then

$$|x_n - x_m| \leq |x_n| + |x_m|$$

$$= \frac{1}{n} + \frac{1}{m}$$

$$< \frac{1}{N} + \frac{1}{N}$$

$$= \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Proposition Every convergent sequence is Cauchy.

Proof. Let $x_n \to x$ as $n \to \infty$ and take $\epsilon > 0$.

• By the definition, there is $N \in \mathbb{N}$, such that, for n > N,

$$|x_n - x| < \frac{\epsilon}{2}.$$

• Therefore, if m, n > N,

$$|x_n - x_m| = |(x_n - x) + (x - x_m)|$$

$$\leq |x_n - x| + |x_m - x|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

• So, $\{x_n\}$ is Cauchy.

This finishes our argument. ■

• Proposition Every Cauchy sequence is bounded.

Proof. Let $\epsilon = 1$.

• Since $\{x_n\}$ is Cauchy, there is $N \in \mathbb{N}$, such that, for all n, m > N

$$|x_m - x_n| < 1.$$

• In particular,

$$N + 1 > N$$
,

so for all n > N,

$$|x_{N+1} - x_n| < 1.$$

• Hence, for n > N,

$$|x_n| = |(x_n - x_{N+1}) + x_{N+1}|$$

 $\leq |x_n - x_{N+1}| + |x_{N+1}|$
 $< 1 + |x_{N+1}|.$

• Let

$$K = \max\left\{ \left| x_1 \right|, \dots \left| x_N \right| \right\}.$$

• Then

$$|x_n| \le K$$
, for $n = 1, 2, ..., N$.

• Therefore, for all $n \in \mathbb{N}$,

$$|x_n| \le \max\{K, 1 + |x_{N+1}|\}.$$

Therefore, $\{x_n\}$ is bounded.

• **Definition** Let $\{x_n\}$ be a sequence and

be an increasing sequence of positive integers, then the sequence

$$x_{n(1)}, x_{n(2)}, \dots$$
, that is x_{n_1}, x_{n_1}, \dots

is called a subsequence of the sequence $\{x_n\}$.

Example Let $x_n = (-1)^n$, then

$$x_{2k} = (-1)^{2k} = 1$$

and

$$x_{2k+1} = (-1)^{2k+1} = -1$$

are subsequences

Our goal is to prove the following result:

Theorem Every Cauchy sequence in \mathbb{R} converges.

Theorem (Bolzano-Weierstrass) Every bounded sequence $\{x_n\}$ in \mathbb{R} has a convergent subsequence $\{x_{n_k}\}$.

Proof. Since $\{x_n\}$ is bounded,

• there is $M \geq 0$, such that, for all $n \in \mathbb{N}$,

$$-M \le x_n \le M$$
.

• Consider the interval

$$I = [-M, M]$$

and its subintervals

$$[-M, 0]$$
 and $[0, M]$.

- At least one of then must contain x_n for infinite number of $n \in \mathbb{N}$.
- Call this subinterval I_0 and select $n_0 \in \mathbb{N}$ with

$$x_{n_0} \in I_0$$
.

 Split I₀ into half and let I₁ be a subinterval for which

$$x_n \in I_1$$

for infinitely many $n \in \mathbb{N}$.

• Since there are infinitely many $n \in \mathbb{N}$, for which $x_n \in I_1$, there is $n_1 > n_0$, such that

$$x_{n_1} \in I_1$$
.

• We continue in such a manner to obtain sequence of subintervals I_k , indices

$$n_k > n_{k-1} > \dots > n_1 > n_0$$

and points

$$x_{n_k} \in I_k$$
.

We observe that:

- $I_0 \supseteq I_1 \supseteq I_2 \supseteq \dots$
- $I_k = [a_k, b_k]$ with

$$b_k - a_k = \frac{M}{2^k}.$$

- $n_0 < n_1 < n_2 < \dots < n_k < \dots$
- $x_{n_k} \in I_k$.
- We show that $\{x_{n_k}\}$ converges.
- Consider the sequence $\{a_k\}$ of the left ends of intervals I_k .
- Since $I_{k+1} \subset I_k$, for all $k \in \mathbb{N}$, we see that

$$a_0 \le a_1 \le ...,$$

so the sequence $\{a_k\}$ is monotonically increasing.

• The sequence $\{a_k\}$ is also **bounded** since

$$a_k \in I_k \subset I$$
,

so

$$-M \le a_k \le M$$
.

- By completeness property of \mathbb{R} :
- $\{a_k\}$ converges to some real number $x \in I$ (why $x \in I$?)
- Now, we ready to show that subsequence $\{x_{n_k}\}$ also converges to x.

• Indeed, for all $k \in \mathbb{N}$:

$$|x_{n_k} - x| = |(x_{n_k} - a_k) + (a_k - x)|$$

 $\leq |x_{n_k} - a_k| + |a_k - x|$

• Since $x_{n_k} \in I_k$, i.e.

$$a_k \le x_{n_k} \le b_k$$

it follows that

$$\max\{|x_{n_k} - a_k|, |x_{n_k} - b_k|\} \leq |I_k|$$

$$= b_k - a_k$$

$$\leq \frac{M}{2^k}.$$

• Let $\epsilon > 0$ be given.

 \bullet Since

$$\frac{M}{2^k} \to 0,$$

there is $N_1 \in \mathbb{N}$, such that, for $k > N_1$,

$$\frac{M}{2^k} < \frac{\epsilon}{2}.$$

• Since $\{a_k\}$ converges to x, there is $N_2 \in \mathbb{N}$, such that, for $k > N_2$,

$$|a_k - x| < \frac{\epsilon}{2}.$$

• Thus, if $k > \max\{N_1, N_2\}$,

$$\begin{aligned} |x_{n_k} - x| &\leq & |x_{n_k} - a_k| + |a_k - x| \\ &< & \frac{M}{2^k} + \frac{\epsilon}{2} \\ &< & \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \end{aligned}$$

 $\bullet\,$ It follows that

$$\lim_{k \to \infty} x_{n_k} = x,$$

so $\{x_{n_k}\}$ is a convergent subsequence of $\{x_n\}$.

This finishes our proof. \blacksquare

• Example Is $x_n = \sin(n)$, n = 1, 2, ... a bounded sequence?

 \bullet Since

$$-1 \le \sin\left(n\right) \le 1,$$

it follows that

$$-1 \le x_n \le 1$$

• By the **B-W** Theorem, $\{x_n\}$ has a convergent subsequence

$$x_{n_k} = \sin\left(n_k\right),\,$$

k = 1, 2, ... with the limit $x \in [-1, 1]$.

Exercise Show that $\{e^{\sin(3n)}\}$ has convergent subsequence.

Lemma Let $\{x_n\}$ be a Cauchy sequence and $\{x_{n_k}\}$ be a subsequence of $\{x_n\}$.

If $\{x_{n_k}\}$ converges to x then $\{x_n\}$ converges to x.

Proof. Let $\epsilon > 0$ be given.

• Since $\{x_n\}$ is Cauchy, there is $N \in \mathbb{N}$, such that, for all m, n > N,

$$|x_m - x_n| < \frac{\epsilon}{2}.$$

• Since $\{x_{n_k}\}$ converges to x, there is K > N, such that

$$|x_{n_K} - x| < \frac{\epsilon}{2}.$$

• Now, if $m > \max\{N, K\}$, then $m > n_K$ and

$$|x_m - x| = |(x_m - x_{n_K}) + (x_{n_K} - x)|$$

$$\leq |x_m - x_{k_K}| + |x_{n_K} - x|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

• Therefore, $x_n \to x$ as $n \to \infty$.

This finishes our proof. ■

• **Remark** The sequence $x_n = \frac{1}{n}$ is Cauchy in $\mathbb{R} \setminus \{0\}$, but it does not converge in $\mathbb{R} \setminus \{0\}$ since $0 \notin \mathbb{R} \setminus \{0\}$.

Theorem Every Cauchy sequence $\{x_n\}$ in \mathbb{R} converges to some point in \mathbb{R} .

Proof. Since Cauchy sequence $\{x_n\}$ is bounded, by (B-W),

- $\{x_n\}$ has convergent subsequence $\{x_{n_k}\}$.
- If $x_{n_k} \to x$, then, by Lemma,

$$x_n \to x$$
, as $n \to \infty$

so $\{x_n\}$ is convergent.

• Example Assume that $\{x_n\}$ is a sequence of real numbers such that

$$|x_n - x_{n+1}| < \frac{1}{2^n},$$

for all $n \in \mathbb{N}$. Show that $\{x_n\}$ converges.

• We show that $\{x_n\}$ is a Cauchy sequence.

- Let m = n + k, where k > 0.
- Then

$$|x_{n} - x_{n+k}| = |(x_{n} - x_{n+1}) + (x_{n+1} - x_{n+2}) + \dots + (x_{n+k-1} - x_{n+k})|$$

$$\leq |x_{n} - x_{n+1}| + |x_{n+1} - x_{n+2}| + \dots + |x_{n+k-1} - x_{n+k}|$$

$$\leq \frac{1}{2^{n}} + \frac{1}{2^{n+1}} + \dots + \frac{1}{2^{n+k-1}} = \frac{1}{2^{n}} \left(1 + \frac{1}{2} + \dots + \frac{1}{2^{k-1}}\right)$$

$$= \frac{1}{2^{n}} \cdot \frac{1 - \left(\frac{1}{2}\right)^{k}}{1 - \frac{1}{2}}$$

$$\leq \frac{1}{2^{n}} \cdot \frac{1}{1 - \frac{1}{2}}$$

$$= \frac{1}{2^{n-1}} \leq \frac{1}{n}.$$

- Let $\epsilon > 0$ be given.
- There is $N \in \mathbb{N}$, such that

$$\frac{1}{N} < \epsilon$$
.

• Therefore, for all m, n > N, if m = n + k, k > 0, then

$$|x_n - x_m| < \frac{1}{n} < \frac{1}{N} < \epsilon.$$

- We showed that $\{x_n\}$ is a Cauchy sequence.
- From the theorem above, it follows that $\{x_n\}$ converges. Review Susequences
- It important to remember that a sequence $\{x_n\}$ is a function

$$X : \mathbb{N} \to \mathbb{R},$$

$$X(n) = x_n,$$

• hence, if

$$n : \mathbb{N} \to \mathbb{N},$$
 $n(k) = n_k,$

is strictly increasing (so n(k) < n(k+1), for all k) then

$$X \circ n : \mathbb{N} \to \mathbb{R}$$
,

is defined by

$$(X \circ n)(k) = X(n(k)) = X(n_k) = x_{n_k}$$

is a subsequence of the sequence $\{x_n\}$.

• Thus each strictly increasing function

$$n: \mathbb{N} \to \mathbb{N}$$

gives a subsequence of $\{x_n\}$.

• In our example

$$x_n = X(n) = (-1)^{n+1}$$

and let

$$n: \mathbb{N} \to \mathbb{N}$$

be defined by,

$$n\left(k\right) = n_k = 2k,$$

then clearly n is strictly increasing and

$$x_{2k} = x_{n_k} = (X \circ n) (k)$$

$$= X (n (k)) = X (2k)$$

$$= (-1)^{(2k)+1}$$

$$= -1$$

• if we take $n: \mathbb{N} \to \mathbb{N}$ defined by,

$$n\left(k\right) = n_k = 2k - 1,$$

then clearly n is strictly increasing and

$$x_{2k-1} = x_{n_k} = (X \circ n) (k)$$

= $X (n (k)) = X (2k - 1)$
= $(-1)^{(2k-1)+1}$
= 1.

- In such a way we obtained two different subsequences of $\{x_n\}$.
- The first is defined as $x_{2k} = -1$, for all k and the second is $x_{2k-1} = 1$, for all k.
- We see though that different strictly increasing function $n: \mathbb{N} \to \mathbb{N}$ may still yield same subsequences.
- For instance, if

$$x_n = X\left(n\right) = \left(-1\right)^{n+1}$$

and we take

$$n:\mathbb{N}\to\mathbb{N}$$

defined by

$$n(k) = 2k,$$

then clearly n is strictly increasing and

$$x_{2k} = (X \circ n)(k)$$

= $X(n(k)) = X(2k)$
= $(-1)^{2k+1}$
= -1 .

• However, the function,

$$m:\mathbb{N}\to\mathbb{N}$$

defined by,

$$m(k) = 4k$$

is also strictly increasing and

$$(X \circ m)(k) = X(m(k))$$

= $X(4k) = (-1)^{4k+1}$
= -1

is also a subsequence of $\{x_n\}$.

• We see however that

$$(X \circ n)(k) = (X \circ m)(k)$$
, for all $k \in \mathbb{N}$.

• Therefore, for a given subsequence $\{x_{n_k}\}$ of $\{x_n\}$ there might be several strictly increasing functions

$$n: \mathbb{N} \to \mathbb{N}$$
,

such that

$$x_{n_k} = (X \circ n)(k).$$

• Finally, we notice that every strictly increasing function

$$n: \mathbb{N} \to \mathbb{N}$$

determines an infinite naturally ordered set which is the image of \mathbb{N} via n, that is

$$S = n(\mathbb{N}) = \{n(k) : k = 1, 2, ...\}$$

= $\{n_1, n_2, ...\}$

and each infinite naturally ordered subset

$$\{n_1, n_2, \ldots\} \subseteq \mathbb{N}$$

determines a unique strictly increasing function

$$\begin{array}{rcl} n & : & \mathbb{N} \to \mathbb{N}, \text{ defined by setting} \\ n\left(k\right) & = & n_k \end{array}$$

• Therefore, each naturally ordered subset

$$\{n_1, n_2, \ldots\} \subseteq \mathbb{N}$$

determines a unique subsequence

$$x_{n_k} = (X \circ n)(k)$$

• Furthermore, since

$$x_{n_k} = (X \circ n)(k) = X(n_k)$$
, for all $k = 1, 2, ...$

we may also view each subsequence $\{x_{n_k}\}$ of $\{x_n\}$ as a restriction of X to the subset $\{n_1, n_2, ...\} \subseteq \mathbb{N}$.

• Therefore, there is a surjective map from the set of all strictly increasing functions

$$n: \mathbb{N} \to \mathbb{N}$$

(equivalently naturally ordered subsets of \mathbb{N}) to the set of all subsequences of $\{x_n\}$.

Exercise Find a bounded sequence with three subsequences converging to three different numbers.

Solution For $n \in \mathbb{N}$, let

$$x_n = \begin{cases} \frac{1}{n} & if & n = 3k\\ 1 - \frac{1}{n} & if & n = 3k + 1\\ 2 + \frac{1}{n} & if & n = 3k + 2 \end{cases}.$$

• We see that

$$x_{3k} = \frac{1}{3k},$$

 $x_{3k+1} = 1 - \frac{1}{3k+1},$ and
 $x_{3k+2} = 2 + \frac{1}{3k+2}.$

• One shows that

$$\lim_{k \to \infty} x_{3k} = 0,$$

$$\lim_{k \to \infty} x_{3k+1} = 1, \text{ and}$$

$$\lim_{k \to \infty} x_{3k+2} = 2.$$