Beginning Activities for Section 8.1

Mathematical Reasoning: Writing and Proof, Version 3

Beginning Activity 1 (The Greatest Common Divisor)

- 1. A nonzero integer m divides an integer n provided that there is an integer q such that $n = m \cdot q$.
- **2.** The nonzero integer m does not divide the integer n means that for all $q \in \mathbb{Z}$, $n \neq m \cdot q$.
- **3.** {1, 2, 3, 4, 6, 8, 12, 16, 24, 48}
- **5.** {1, 2, 3, 4, 6, 12}
- **4.** {1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 84}
- **6.** gcd(48, 84) = 12

7.

		Common Divisors	
a	b	of a and b	gcd(a,b)
8	-12	1, 2, 4	4
0	5	1, 5	5
8	27	1	1
28	42	1, 2, 7, 14	14

8. One possible conjecture is: Any common divisor of a and b divides gcd(a, b).

Beginning Activity 2 (The GCD and the Division Algorithm)

The Division Algorithm. Let a and b be integers with b > 0. Then, there exist unique integers q and r such that a = bq + r and $0 \le r < b$.

1.

Ī	а	b	gcd(a,b)	Remainder r	gcd(b,r)
Ī	44	12	4	8	4
Ī	75	21	3	12	3
Ī	50	33	1	17	1

2. Let a and b be integers with b > 0. If q and r are integers such that a = bq + r and $0 \le r < b$, then $\gcd(a, b) = \gcd(b, r)$.

We will prove a somewhat more general result in this section (Lemma 8.1). This will be the crucial result for the Euclidean Algorithm, which provides a method to find the greatest common divisor of two integers.

