

Problem E: Prime Number Lover

Time limit: 2s; Memory limit: 250 MB

Mr. PNL (Prime Number Lover) loves prime numbers so much, and he does not love composite numbers. He defines that, "A sequence of integers is called a beautiful sequence if and only if the number of prime numbers in it is greater than or equal to the number of composite numbers in it." For example, (1,3,2,6) is a beautiful sequence, and (4,2,6,9) is not a beautiful sequence.

You are given a sequence **A** of length n. Help Mr. PNL to count the number of pairs (l, r), $(1 \le l \le r \le n)$ such that the contiguous subsequence $(\mathbf{A}_l, \mathbf{A}_{l+1}, ..., \mathbf{A}_r)$ of **A** is a beautiful sequence.

Input

The first line is an integer n. $(1 \le n \le 10^5)$

The second line contains n integers representing the number A_i of sequence A, where $1 \le A_i \le 10^6$

Output

The number of beautiful subsequence.

Examples

Input	Output
3	3
124	
4	9
1235	