ГУАП

ЦИФРОВАЯ КАФЕДРА

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЇ	Ă		
ПРЕПОДАВАТЕЛЬ			
канд. техн. наук, доц	ент		В.В. Боженко
должность, уч. степень, з		подпись, дата	инициалы, фамилия
	отчет о ла	АБОРАТОРНОЙ РАБОТЕ	№ 1
	Предвар	ительный анализ данных	
	по курсу:	Введение в анализ данны	x
РАБОТУ ВЫПОЛНИЛ			
СТУДЕНТ ГР. №	4917	подпись, дата	E.A. Ясиновский инициалы, фамилия
		подпись, дага	ипициалы, фамилих

Цель работы: осуществить предварительную обработку данных csv файла, выявить и устранить проблемы в данных, построить сводные таблицы по предоставленным данным.

Вариант 2: Файл salary.csv, в котором предоставлены данные о заработной плате разработчиков и инженеров IT сферы разделенные по годам, опыту работы, типу занятости (полная\неполная), валюте, размеру компании и стране компании.

```
import pandas as pd
import numpy as np
df = pd.read_csv("2salary.csv")
```

Рисунок 1 — Загрузил данные с помощью pandas

c	lf.head(20)											
	Unnamed: 0	work_year	experience_level	employment_type	job_title	salary	salary_currency	salary_in_usd	employee_residence	remote_ratio	company_location	company_size
		2020	MI	FT	Data Scientist	70000.0	EUR	79833	DE		DE	
		2020			Machine Learning Scientist	260000.0	USD	260000				
		2020	SE	FT	Big Data Engineer	85000.0	GBP	109024	GB	50	GB	М
		2020	MI		Product Data Analyst	20000.0	USD	20000	HN		HN	
		2020	SE		Machine Learning Engineer	150000.0	USD	150000	US	50	US	
		2020	EN		Data Analyst	72000.0	USD	72000		100		
		2020	SE	FT	Lead Data Scientist	190000.0	USD	190000	US	100	US	
		2020	MI		Data Scientist	11000000.0	HUF	35735				
		2020	MI		Business Data Analyst	135000.0	USD	135000	US	100	US	
		2020			Lead Data Engineer	125000.0	USD	125000	NZ		NZ	
10		2020	EN	FT	Data Scientist	45000.0	EUR	51321	FR		FR	
		2020	MI		Data Scientist	3000000.0	INR	40481	IN		IN	
		2020	EN		Data Scientist	35000.0	EUR	39916	FR		FR	М
		2020	MI		Lead Data Analyst	87000.0	USD	87000		100		
14	14	2020	MI		Data Analyst	85000.0	USD	85000	US	100	US	
		2020	MI		Data Analyst	8000.0	USD	8000	PK		PK	
16		2020	EN		Data Engineer	4450000.0	JPY	41689		100		
		2020			Big Data Engineer	100000.0	EUR	114047		100	GB	
		2020	EN		Data Science Consultant	423000.0	INR	5707	IN	50	IN	М
		2020	MI		Lead Data Engineer	56000.0	USD	56000	PT	100		М

Рисунок 2 -Вывел первые 20 строк

Рисунок 3 — Выполнил обзор данных в notebook с помощью MarkDown

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 610 entries, 0 to 609
Data columns (total 12 columns):
    Column
                       Non-Null Count Dtype
    Unnamed: 0
                      610 non-null
                                       int64
0
    work_year
1
                      610 non-null
                                       int64
    experience_level
                      610 non-null
                                      object
2
3
    employment_type
                       610 non-null
                                      object
4
    job title
                       610 non-null
                                      object
5
    salary
                      607 non-null
                                      float64
6
    salary_currency
                       609 non-null
                                       object
    salary_in_usd
                       610 non-null
                                       object
8
    employee_residence 610 non-null
                                       object
9
    remote_ratio
                       610 non-null
                                       int64
10 company_location
                       610 non-null
                                       object
11 company_size
                       610 non-null
                                       object
dtypes: float64(1), int64(3), object(8)
memory usage: 57.3+ KB
```

Рисунок 4 — Выполнение оценки данных с помощью метода info()

Изходя из полученного выше вывода можно увидеть, что всего у нас есть 610 строк данных, но сами данные корректны только в 607 строках, так как это минимальное число строк, где данные не равны null. В добавок можно заметить, что строковые значение здесь привелись к типу object, а у первого столбца (номера строки) остуствует имя

Рисунок 5 — Выявил проблемный столбец и исправил его

Рисунок 6 — Выявил пропуски в данных и удалил их

Рисунок 7 — Выявил явные дубликаты и удалил их

После удаление явных дубликатов, поищем неявные, делая выборку уникальных значений для различных столбцов.

```
for i in df.columns[2:]:
       print(df[i].unique())
Output exceeds the size limit. Open the full output data in a text editor
[2020 2021 2022]
['MI' 'SE' 'EN' 'EX']
['FT' 'CT' 'PT' 'FL']
['Data Scientist' 'Machine Learning Scientist' 'Big Data Engineer'
 'Product Data Analyst' 'Machine Learning Engineer' 'Data Analyst'
 'Lead Data Scientist' 'Business Data Analyst' 'Lead Data Engineer'
 'Lead Data Analyst' 'Data Engineer' 'Data Science Consultant'
 'BI Data Analyst' 'Director of Data Science' 'Research Scientist'
 'Machine Learning Manager' 'Data Engineering Manager'
 'Machine Learning Infrastructure Engineer' 'ML Engineer' 'AI Scientist'
 'Computer Vision Engineer' 'Principal Data Scientist'
 'Data Science Manager' 'Head of Data' '3D Computer Vision Researcher'
 'Data Analytics Engineer' 'Applied Data Scientist'
 'Marketing Data Analyst' 'Cloud Data Engineer' 'Financial Data Analyst'
 'Computer Vision Software Engineer' 'Director of Data Engineering'
 'Data Science Engineer' 'Principal Data Engineer'
 'Machine Learning Developer' 'Applied Machine Learning Scientist'
 'Data Analytics Manager' 'Head of Data Science' 'Data Specialist'
 'Data Architect' 'Finance Data Analyst' 'Principal Data Analyst'
 'Big Data Architect' 'Staff Data Scientist' 'Analytics Engineer'
 'ETL Developer' 'Head of Machine Learning' 'NLP Engineer'
 'Lead Machine Learning Engineer' 'Data Analytics Lead' 'DataScientist'
 'Data AnalyticsManager']
           260000
   70000
                     85000
                               20000 150000
                                                 72000 190000 11000000
  135000
           125000
                     45000 3000000
                                        35000
                                                 87000
                                                           8000 4450000
 'MX' 'CA' 'AT' 'NG' 'ES' 'PT' 'DK' 'IT' 'HR' 'LU' 'PL' 'SG' 'RO' 'IQ'
 'BR' 'BE' 'UA' 'IL' 'RU' 'MT' 'CL' 'IR' 'CO' 'MD' 'KE' 'SI' 'CH' 'VN'
 'AS' 'TR' 'CZ' 'DZ' 'EE' 'MY' 'AU' 'IE']
['L' 'S' 'M']
```

Рисунок 8 — Поиск неявных дубликатов

На первый взгляд из полученного анализа видно, что неявные дубликаты могут быть только в названиях должностей. Например, Lead Data Scientics и Lead Data Analyst выглядят как одна и таже должность, так же как и Data Science Engineer и Big Data Engineer, однако нельзя сказать, точно, что это одна и та же дожность, поэтому эти неявные дубликаты мы оставим нетронутыми.

```
df['salary_in_usd'] = df['salary_in_usd'].replace('d210000','210000')
   df =df.astype({'salary':'int64','salary_in_usd':'int64'})
   df.dtypes
                      int64
index
                      int64
row_number
work_year
                      int64
experience_level
                     object
employment_type
                     object
                     object
job_title
                      int64
salary
salary_currency
                     object
salary_in_usd
                     int64
employee_residence
                    object
remote_ratio
                     int64
company_location
                     object
company_size
                     object
dtype: object
```

Рисунок 9 — Исправил неверные типы данных в столбцах

После подготовки данных к анализу произвел небольшой анализ данных с помощью сводных таблиц.

Рисунок 10 — Средняя ЗП для специалистов разных уровней опыта

Из этой таблицы видна вполне очевидная закономерность: чем больше опыт работы - тем больше средняя зп

inder colum value	x=['e nns=[es='s	.vot_table[df experience_le 'work_year'] alary_in_usd p.mean]	vel'],	
work_year		2020	2021	2022
experience_l	evel			
	EN	63648.6000	59101.021277	65423.428571
	EX	202416.5000	223752.727273	178313.846154
	MI	85950.0625	85490.088889	91193.956044
	SE	137240.5000	126596.188406	142592.333333

Рисунок 11 — Средняя ЗП специалистов разного уровня по годам

Исходя из данной таблицы можно увидеть, что в 2021 в целом произошло падение заработной платны специалистов всех уровней, кроме Expert, у них в 2021 году 3П была максимальной, однако в 2022 году все поменялось, специалисты этого уровня в 2022 году получали наименьшую 3П за все 3 года, представленных в файле, а специалисты уровнем ниже наоборот - получали в 2022 году самую высокую зп.

table = pd.pivot table	_table(df,ind	lex=['employee
	mean	len
	remote_ratio	remote_ratio
employee_residence		
AE	66.666667	3
AR	100.000000	1
AT	16.666667	3
AU	83.333333	3
BE	75.000000	2
BG	100.000000	1
ВО	100.000000	1
BR	66.666667	6
CA	75.862069	29
CH	0.000000	1
CL	100.000000	1
CN	0.000000	1
00	50.000000	1
CZ	50.000000	1
DE DK	56.000000	25 2
DZ	50.000000	1
EE	100.000000	1
ES	90.000000	15
FR	55.555556	18
GB	45.454545	44
GR	80.769231	13
HK	50.000000	1

Рисунок 12 — Количество сотрудников в каждой стране и их частота появления в офисе

Изходя из этой таблицы можно узнать сколько работников в каждой стране, и какой способ работы для них наиболее предпочтителен (удаленный, полуудаленный, либо офисный)

Ссылка на Jupyter Notebook проект на GitHub - https://github.com/EgorYasinovskiy/Data-Analys/tree/master/JIP1