Coq-Metatheory for Smol-Zooid

A Gentle Adventure Mechanising Message Passing Concurrency Systems, Act 3

David Castro-Perez, Francisco Ferreira, Lorenzo Gheri, Martin Vassor, and Nobuko Yoshida

DisCoTec 2022 Lucca, 13-06-2022 Imperial College London

The MPST World, as We Know It

Zooid

D. Castro-Perez, F. Ferreira, L. Gheri, and N. Yoshida. <u>Zooid: a DSL for certified multiparty computation:</u> from mechanised metatheory to certified multiparty processes. <u>PLDI 2021</u>

Introducing the Metatheory of Smol-Zooid Types

- unravelling preserves projection; focus on coinduction (1st square)
- trace equivalence; focus on soundness $(2^{\rm nd}\ {\rm square})$

https://github.com/emtst/GentleAdventure/act3

Formalisation of Global and Local Types

Inductively Defined Datatypes Coinductively Defined Datatypes

$$\begin{array}{lll} {\sf G} & ::= {\sf end} & & {\sf G}^{\sf c} ::= {\sf end}^{\sf c} \\ & | \ \mu X.{\sf G} & | \ p \to q : ({\sf S}).{\sf G}^{\sf c} \\ & | \ p \to q : ({\sf S}).{\sf G}^{\sf c} \\ & | \ p \to q : ({\sf S}).{\sf G}^{\sf c} \\ \end{array}$$

Formalisation of Global and Local Types

$$\begin{aligned} \mathsf{G} &= \mu X.\mathsf{p} \to \mathsf{q} : (\mathsf{S}).X & \xrightarrow{\Re} & \mathsf{G^c} &= \mathsf{p} \to \mathsf{q} : (\mathsf{S}).\mathsf{G^c} \\ & & & \downarrow^{\mathsf{l}^c} & & \\ & & \downarrow^{\mathsf{l}^c} & & \downarrow^{\mathsf{l}^c} \\ & & \mathsf{G} \upharpoonright_{\mathsf{p}} = \mu X.![\mathsf{q}]; (\mathsf{S}).X & & & & \\ & & \mathsf{G} \upharpoonright_{\mathsf{q}} = \mu X.?[\mathsf{p}]; (\mathsf{S}).X & & & & \\ & & & \mathsf{M} & & & \\ \end{aligned}$$

Abandoning Inductive Datatypes

Theorem (Unravelling preserves projections)

Given G, L, G^c and L^c, such that (a) G|r = L, (b) G \Re G^c, and (c) L \Re L^c, then G^c |cr L^c.

Proof.

By coinduction. :)

Abandoning Inductive Datatypes

Theorem (Unravelling preserves projections)

Given G, L, G^c and L^c, such that (a) G|r = L, (b) G \Re G^c, and (c) L \Re L^c, then G^c |cr L^c.

 $\longrightarrow \mathsf{Coq}$

Proof.

By coinduction. :)

Type Semantics for Zooid

With Love, from p to q

p sends:

q receives:

Tools for our LTS

Actions. !pqS and ?qpS

(Local) Environments. E such that, $E(p) = L^c_p$ where $G^c \upharpoonright^c p L^c_p$

Queues and Queue Environments. Q, buffers for asynchronous communication.

Tools for our LTS

Actions. !pqS and ?qpS

(Local) Environments. E such that, $E(p) = L^c_p$ where $G^c \upharpoonright^c p L^c_p$

Queues and Queue Environments. Q, buffers for asynchronous communication.

Theorems

Theorem (Step Soundness)

If $G^c \xrightarrow{a} G^{c'}$ and $G^c \upharpoonright \upharpoonright (E,Q)$, there exist E' and Q' such that $G^{c'} \upharpoonright \upharpoonright (E',Q')$ and $(E,Q) \xrightarrow{a} (E',Q')$.

Theorem (Step Completeness)

If $(E,Q) \xrightarrow{a} (E',Q')$ and $G^c \upharpoonright \upharpoonright (E,Q)$, there exist $G^{c'}$ such that $G^{c'} \upharpoonright \upharpoonright (E',Q')$ and $G^c \xrightarrow{a} G^{c'}$.

Theorem (Trace equivalence)

If $\mathsf{G^c} \upharpoonright \upharpoonright (E,Q)$, then $tr^g t\mathsf{G^c}$ if and only if $tr^l t(E,Q)$.

Lemma, to give the flavour

Lemma, to give the flavour

You Suffer...

- Formal proofs are not easy.
- Proof design is the key.
- Proof techniques are to be taken seriously: (co)induction, functions VS relations, treatment of bindings...
- D. Castro-Perez, F. Ferreira, L. Gheri, and N. Yoshida. "Zooid: a DSL for certified multiparty computation: from mechanised metatheory to certified multiparty processes". PLDI 2021.
 DOI: https://doi.org/10.1145/3453483.3454041
 website: http://mrg.doc.ic.ac.uk/publications/zooid-paper/
- → This tutorial is available at https://github.com/emtst/GentleAdventure

... but Why?

Formal proofs are not easy

¹Aydemir et al. "Mechanized Metatheory for the Masses: The POPLmark challenge." 2005

... but Why?

Formal proofs are not easy, but useful and fun!

As witnessed, e.g., by the influential POPLmark Challenge¹...

¹Aydemir et al. "Mechanized Metatheory for the Masses: The POPLmark challenge." 2005

... but Why?

Formal proofs are not easy, but useful and fun!

As witnessed, e.g., by the influential POPLmark Challenge¹...

Towards a Concurrent Calculi Formalisation Benchmark

Challenge problems:

- name passing and scope extrusion
- linearity and behavioural type systems
- coinduction and reasoning about process algebras

¹Aydemir et al. "Mechanized Metatheory for the Masses: The POPLmark challenge." 2005

The Future is Unwritten... But Sketched!

- Concurrent Benchmark website: https://concurrentbenchmark.github.io/
- This tutorial: https://github.com/emtst/GentleAdventure

The Future is Unwritten... But Sketched!

- Concurrent Benchmark website: https://concurrentbenchmark.github.io/
 - This tutorial: https://github.com/emtst/GentleAdventure

THANK YOU!