ИЗПИТ

по ДИС1, специалност "Компютърни науки" 30 януари 2019г.

v -	
Име:	Фак.номер:

- 1. Нека A и B са непразни множества от реални числа и A е ограничено отгоре, а B е ограничено отдолу.
- (а) Дайте дефиниции на точна горна граница (супремум) на множеството A и точна долна граница (инфимум) на множеството B.
- (б) Докажете, че

$$\sup (A - B) = \sup A - \inf B$$
, and $A - B = \{a - b : a \in A, b \in B\}$.

- 2. Нека $\{a_n\}_{n=1}^{\infty}$ е редица от реални числа. Какво означава тази редица да е сходяща? Докажете, че частно на сходяща редица и сходяща редица, чиято граница не е нула, е сходяща редица.
- 3. Нека $D \subset \mathbb{R}$ и $x_0 \in \mathbb{R}$. Какво означава x_0 да е точка на сгъстяване на D? Дайте дефиниция на $\lim_{x \to x_0} f(x) = -\infty$ във формата на Хайне и във формата на Коши, където $f: D \longrightarrow \mathbb{R}$. Какво означава, че f(x) не клони към $-\infty$ в смисъл на Хайне, когато аргументът клони към x_0 ? Какво означава, че f(x) не клони към $-\infty$ в смисъл на Коши, когато аргументът клони към x_0 ? Докажете, че ако $\lim_{x \to x_0} f(x) = -\infty$ в смисъл на Коши, то f клони към $-\infty$, когато аргументът клони към x_0 , в смисъл на Хайне.
- 4. Дайте дефиниция на непрекъсната функция. Формулирайте Теоремата на Болцано (за междинните стойности). Нека функцията $f:[a,b] \longrightarrow \mathbb{R}$ е непрекъсната инекция. Докажете, че f е строго монотонна.
- 5. Напишете дефиницията за производна на функция в дадена точка. В кои точки е диференцируема функцията $f(x) := |(x-1)(x-3)^3|$? Формулирайте и докажете теоремата на Рол.
- 6. Формулирайте и докажете достатъчно условие една n-кратно диференцируема функция да има екстремум в дадена точка.
- 7. Изразете интеграла

$$I_n = \int \frac{\mathrm{d}x}{(x^2 + a^2)^n}$$

чрез I_{n-1} (тук a е положителен параметър и $n=2,3,4,\ldots$).