Model runs report for Spatial BRP MS

Bosley et al. SPASAM
02 May, 2017

HAKE

The following plot and tables show model specifications and results for hake model runs

Parameter values for mat/selectivity

Table 1: Table continues below

Age	init.N	Μ	wt.age.pop	wt.age.catch	mat.1
1	3125000	0.226	0.101	0.101	0.32
2	2492869	0.226	0.273	0.273	0.79
3	1988607	0.226	0.377	0.377	0.88
4	1586348	0.226	0.473	0.473	0.94
5	1265458	0.226	0.545	0.545	0.98
6	1009479	0.226	0.622	0.622	1
7	805280	0.226	0.674	0.674	1
8	642386	0.226	0.754	0.754	1
9	512443	0.226	0.805	0.805	1
10	408785	0.226	0.833	0.833	1
11	326095	0.226	0.909	0.909	1
12	260132	0.226	0.952	0.952	1
13	207512	0.226	0.938	0.938	1
14	165536	0.226	0.918	0.918	1
15	132051	0.226	0.982	0.982	1

Table 2: Table continues below

mat.2	mat.pan	mat.GB	fish.sel	sur.sel	fish.sel_GB
0	0.1067	0	0	0	0
0.41	0.5367	0.12	0.12	0.35	0.12
0.69	0.7533	0.54	0.54	0.61	0.54
0.84	0.8733	0.71	0.66	0.64	0.71
0.98	0.98	0.87	0.81	0.66	0.87
1	1	1	1	1	1
1	1	1	1	1	1
1	1	1	1	1	1
1	1	1	1	1	1
1	1	1	1	1	1
1	1	1	1	1	1
1	1	1	1	1	1
1	1	1	1	1	1
1	1	1	1	1	1
_ 1	1	1	1	1	1

fish.caa.err	sur.caa.err
0.3292	0.3292
0.3292	0.3292
0.3469	0.3469
0.3686	0.3686
0.3953	0.3953
0.4281	0.4281
0.4684	0.4684
0.5178	0.5178
0.5786	0.5786
0.6533	0.6533
0.7451	0.7451
0.8578	0.8578
0.9963	0.9963
1.167	1.167
1.376	1.376

Parameter values apportionment

Primary Movement

X	X.1	FROM.AREA	X.2	X.3	X.4
		1		2	
TO AREA	Age	1	2	1	2
	1	0.95	0.05	0.05	0.95
	2	0.95	0.05	0.05	0.95
	3	0.8	0.2	0.05	0.95
	4	0.8	0.2	0.05	0.95
	5	0.5	0.5	0.05	0.95
	6	0.2	0.8	0.05	0.95
	7	0.2	0.8	0.05	0.95
	8	0.1	0.9	0.05	0.95
	9	0.1	0.9	0.05	0.95
	10	0.1	0.9	0.05	0.95
	11	0.1	0.9	0.05	0.95
	12	0.1	0.9	0.05	0.95
	13	0.1	0.9	0.05	0.95
	14	0.1	0.9	0.05	0.95
	15	0.1	0.9	0.05	0.95

Alternate Movement

X	X.1	FROM.AREA	X.2	X.3	X.4
		1		2	
TO AREA	Age	1	2	1	2
	1	0.7	0.3	0.2	0.8
	2	0.7	0.3	0.2	0.8
	3	0.6	0.4	0.2	0.8
	4	0.6	0.4	0.2	0.8
	5	0.5	0.5	0.2	0.8
	6	0.5	0.5	0.2	0.8
	7	0.4	0.6	0.2	0.8
	8	0.4	0.6	0.2	0.8
	9	0.4	0.6	0.2	0.8
	10	0.4	0.6	0.2	0.8
	11	0.2	0.8	0.2	0.8
	12	0.2	0.8	0.2	0.8
	13	0.2	0.8	0.2	0.8
	14	0.2	0.8	0.2	0.8
	15	0.2	0.8	0.2	0.8

	X	X.1	FROM.AREA	X.2	X.3	X.4
--	---	-----	-----------	-----	-----	-----

Parameter values apportionment

Hake recruitment apportionment by model run

Model	Area 1(S)	Area 2(N)
G & B	0.3	0.7
SPASAM	0.9	0.1
SPASAM - alt	0.8	0.2

Looking at maturity values

Looking at selectivity values

Specifications for model runs

<u> </u>	D
Scenario	Description
G&B	from run #4 G&B output
1	G&B tspawn and init abund (matching), tspawn = 0.25
1.1	no larval movement
1.2	tspawn = 0
1.3	new initial abundance
1.4	update selectivity/maturity
2	new apportionment
3	new movement/G&B apportionment
4	new movment and apportionment
5	new mismatch maturity - equal by region
6	maturity vary by region (BASE)
7	Base model (6) with equal apportion
7.1	Same as above with recruit apportion $==2$
8	rec apportion alternative (20/80)
9	stochastic recruitment
10	stochastic apportion (random devs)
10.1	recruit apportion fully random - uniform
11	movement alternative
12	both movement/apportion alternative
13	panmictic
14	metapopulation

Model run results

In these plots the red diamonds represent South (Area 1) and the blue squares represent North (Area 2). Red dotted lines and black circles are the panmictic population levels @ MSY. Population totals aggregated over areas are represented in grey.

1. F for each area

2. Depletion

4. MSY Harvest rate

Stochasitic recruitment

Stochasitic apportionment

PHASE 2 Examples

TAC allocation based on survey biomass

Low Error (SD = 0.2)

High Error (SD = 0.5)

TAC Allocation based on Rec Index

This time looking at yeild

Low Error (SD = 0.5

High Error (SD = 0.8)

SABLEFISH

MSY_Search range for test = 0.005 - 0.8 by 0.05 Sablefish recruitment apportionment by model run

Model	Area 1	Area 2	Area 3
BASE	0.4369	0.301	0.269

Table 8: Table continues below

Age	Μ	Init.N	wt.age.pop.male	wt.age.pop.female
1	0.1	15.54	0.97	0.92
2	0.1	14.06	1.46	1.48
3	0.1	12.73	1.88	2.05
4	0.1	11.51	2.22	2.6
5	0.1	10.42	2.48	3.09
6	0.1	9.43	2.67	3.52
7	0.1	8.53	2.81	3.89
8	0.1	7.72	2.91	4.19
9	0.1	6.98	2.99	4.44
10	0.1	6.32	3.04	4.65
11	0.1	5.72	3.07	4.81
12	0.1	5.17	3.1	4.95
13	0.1	4.68	3.12	5.05
14	0.1	4.24	3.13	5.14
15	0.1	3.83	3.14	5.21
16	0.1	3.47	3.15	5.26
17	0.1	3.14	3.15	5.3
18	0.1	2.84	3.15	5.34
19	0.1	2.57	3.16	5.36
20	0.1	2.32	3.16	5.38
21	0.1	2.1	3.16	5.4
22	0.1	1.9	3.16	5.41
23	0.1	1.72	3.16	5.43
24	0.1	1.56	3.16	5.43
25	0.1	1.41	3.16	5.44
26	0.1	1.28	3.16	5.45
27	0.1	1.15	3.16	5.45
28	0.1	1.04	3.16	5.45
29	0.1	0.95	3.16	5.45
30	0.1	0.86	3.16	5.46

Table 9: Table continues below

wt.age.pop.ave	mat.1	${\it fish.sel.male 1}$	fish.sel.female1
0.94	0.01	0	0
1.47	0.02	0.39	0
1.96	0.08	1	1
2.41	0.2	1	1
2.78	0.39	1	1

wt.age.pop.ave	mat.1	${\it fish.sel.male 1}$	fish.sel.female1
3.1	0.6	1	1
3.35	0.77	1	1
3.55	0.86	1	1
3.71	0.92	1	1
3.84	0.95	1	1
3.94	0.97	1	1
4.02	0.98	1	1
4.09	0.99	1	1
4.14	0.99	1	1
4.17	0.99	1	1
4.2	0.99	1	1
4.23	1	1	1
4.25	1	1	1
4.26	1	1	1
4.27	1	1	1
4.28	1	1	1
4.29	1	1	1
4.29	1	1	1
4.3	1	1	1
4.3	1	1	1
4.3	1	1	1
4.31	1	1	1
4.31	1	1	1
4.31	1	1	1
4.31	1	1	1

Table 10: Table continues below

fish.sel.ave1	fish.sel.male2	fish.sel.female2	fish.sel.ave2
0	0.01	0	0.01
0.2	0.07	0.04	0.05
1	0.32	0.42	0.37
1	0.76	0.93	0.84
1	0.95	1	0.97
1	0.99	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1

fish.sel.ave1	${\it fish.sel.male 2}$	${\it fish.sel.female 2}$	fish.sel.ave2
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1

Table 11: Table continues below

fish.sel.male3	fish.sel.female3	fish.sel.ave3	sur.sel
0	0.01	0.01	0
0	0.04	0.02	0
0	0.11	0.06	0.23
0.95	0.28	0.61	0.98
1	0.55	0.77	1
1	0.79	0.89	1
1	0.92	0.96	1
1	0.97	0.99	1
1	0.99	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1

fish.caa.err	sur.caa.err	sel.pan
0.05	0.15	0.01
0.05	0.15	0.08
0.05	0.15	0.39
0.05	0.15	0.8
0.05	0.15	0.95

fish.caa.err	sur.caa.err	sel.pan
0.05	0.15	0.99
0.05	0.15	1
0.05	0.15	1
0.05	0.15	1
0.05	0.15	1
0.05	0.15	1
0.05	0.15	1
0.05	0.15	1
0.05	0.15	1
0.05	0.15	1
0.05	0.15	1
0.05	0.15	1
0.05	0.15	1
0.05	0.15	1
0.05	0.15	1
0.05	0.15	1
0.05	0.15	1
0.05	0.15	1
0.05	0.15	1
0.05	0.15	1
0.05	0.15	1
0.05	0.15	1
0.05	0.15	1
0.05	0.15	1
0.05	0.15	1

Menhaden