NORMES ET DISTANCES

Exercice 1. Soit $\theta : \mathbb{R}_+ \to \mathbb{R}_+$ une fonction nulle en 0 et croissante. On dit que θ est sous-additive si $\theta(u+v) \leq \theta(u) + \theta(v)$ pour tous $u, v \in \mathbb{R}_+$.

- a. (i) Montrer que si θ est dérivable et θ' est décroissante, alors θ est sous-additive.
 - (ii) Montrer que si θ est sous-additive et $\theta(u) = 0$ pour un certain u > 0, alors $\theta(v) = 0$ pour tout $v \in \mathbb{R}_+$.
- (iii) Vérifier que $\theta_1: u \mapsto \min(u, 1)$ et $\theta_2: u \mapsto u/(1+u)$ sont sous-additives.
- b. On suppose que θ est sous-additive et non identiquement nulle. Soit (E,d) un espace métrique. Montrer que $d'=\theta\circ d$ est une distance sur E.
- c. On prend $E = \mathbb{R}$, muni de la distance usuelle d. On note d_1' et d_2' les distances sur \mathbb{R} associée à θ_1' et θ_2' .
 - (i) Soit p, q deux entiers relatifs distincts. Que vaut $d'_1(p,q)$?
 - (ii) Les distances d'_1 et d'_2 sont-elles équivalentes à d?

Exercice 2. On considère $X = \mathbb{R}^2$ et on pose, pour $(x, y), (x', y') \in X$:

$$d((x,y),(x',y')) = \begin{cases} |y'-y| & \text{si } x = x', \\ |x'-x| + |y| + |y'| & \text{si } x \neq x'. \end{cases}$$

- a. Montrer que d est une distance.
- b. Montrer que $d((x,y),(0,0)) = N_1(x,y)$. La distance d est-elle équivalente à la distance associée à N_1 ? Est-elle associée à une norme?
- c. Représenter la boule ouverte B((x,y),r). On distinguera les cas $r \ge |y|, \ 0 < r < |y|$.

Exercice 3. Soit $X = \mathcal{P}(\mathbb{N}^*)$ l'ensemble des sous-ensembles de \mathbb{N}^* . On munit \mathbb{N}^* de la distance usuelle d(a,b) = |b-a| et on note $d(A,B) = \inf\{d(a,b) \mid a \in A, b \in B\}$ la « distance » associée entre deux parties de \mathbb{N}^* .

a. Montrer que $d(n, A) = k \Rightarrow \exists a \in A \ d(n, a) = k$. Est-vrai dans tout espace métrique? Donner des exemples de parties $A, B, C \in X$ telles que $d(A, B) = 0, A \neq B$, et d(A, C) > d(A, B) + d(B, C).

Pour $A \in X$ et $k \in \mathbb{N}^*$ on note $A_k = \{n \in \mathbb{N}^* \mid d(n, A) \le k\}$.

Pour $A, B \in X$ on pose $\delta(A, B) = \min\{k \in \mathbb{N}^* \mid A \subset B_k \text{ et } B \subset A_k\}.$

- b. Montrer que $A \subset B \Rightarrow A_k \subset B_k$ pour tout k, et que $(A_k)_l = A_{k+l}$.
- c. Montrer que δ est une distance sur X. Donner des exemples de parties $A, B, C \subset \mathbb{N}^*$ pour lesquelles l'inégalité triangulaire est une égalité.

Exercice 4. Soit $X = \mathcal{P}(\mathbb{N}^*)$ l'ensemble des sous-ensembles de \mathbb{N}^* .

- a. Rappelons qu'on note $A \triangle B = (A \cup B) \setminus (A \cap B)$ la différence symétrique de $A, B \in X$. Montrer que A = B ssi $A \triangle B = \emptyset$.
- b. Pour tous $A, B \in X$ on pose $\delta(A, B) = (\min(A \triangle B))^{-1}$, en convenant que $\delta(A, A) = 0$. Montrer que $\delta(A, B) < 1/n \iff A \cap [1, n] = B \cap [1, n]$.
- c. Montrer que δ est une distance sur X. Est-elle équivalente à celle de l'exercice précédent?

Exercice 5. On fixe des réels a, b et on pose N(x, y) = a|x| + b|y| pour $(x, y) \in \mathbb{R}^2$.

- a. À quelle condition sur a, b l'application N est-elle une semi-norme sur \mathbb{R}^2 ? une norme?
- b. Lorsque N est une norme, montrer qu'elle est équivalente à la norme euclidienne canonique.

Exercice 6. On note N_2 la norme euclidienne canonique sur \mathbb{R}^2 . Soit $q:(x,y)\mapsto ax^2+bxy+cy^2$ est une forme quadratique définie-positive sur \mathbb{R}^2 , on note N_q la norme associée.

- a. Montrer que $2|xy| \le x^2 + y^2$ pour tout $(x, y) \in \mathbb{R}^2$.
- b. Rappeler à quelles conditions sur a, b, c la forme quadratique q est définie-positive.
- c. Expliquer pour quoi on peut trouver $a' \in]0, a[, c' \in]0, c[$ tels que $b^2 \leq 4a'c'.$
- d. Montrer que N_2 et N_q sont équivalentes.

Exercice 7. On pose $N(x,y) = \max(|x|,|x+y|)$ et $P(x,y) = \sup_{0 \le t \le 1} |x+ty|$, pour tout $(x,y) \in \mathbb{R}^2$. On note N_2 la norme euclidienne canonique sur \mathbb{R}^2 .

- a. Montrer que N, P sont des normes sur \mathbb{R}^2 .
- b. Montrer que $N(x,y) \ge \frac{1}{2}|y|$ pour tout $(x,y) \in \mathbb{R}^2$.
- c. Montrer que N et P sont équivalentes à N_2 .

Exercice 8. On considère $E=\mathbb{Q}^2$ et on pose $N(x,y)=|x+y\sqrt{2}|$ pour tout $(x,y)\in E$.

- a. Montrer que N est une norme sur le \mathbb{Q} -espace vectoriel E.
- b. On fixe $n \in \mathbb{N}^*$. Montrer qu'il existe un entier relatif a_n tel que $N(a_n, 10^n) < 1$.
- c. La norme N est-elle équivalente à la norme N_1 ?

Exercice 9. Calculer la norme des applications linéaires suivantes :

- $f: (\mathbb{R}^2, \|\cdot\|_{\infty}) \to (\mathbb{R}, |\cdot|), (x, y) \mapsto 2x + 3y,$
- $\begin{array}{l} -g: (\mathbb{R}^3, \|\cdot\|_1) \to (\mathbb{R}, |\cdot|), \ (x,y,z) \mapsto \pi x + y \pi z, \\ -h: (\mathbb{R}^3, \|\cdot\|_1) \to (\mathbb{R}^2, \|\cdot\|_\infty), \ (x,y,z) \mapsto (x+y,2y+z), \\ -i: (\mathbb{R}^2, \|\cdot\|_\infty) \to (\mathbb{R}^2, \|\cdot\|_1), \ (x,y) \mapsto (x+y,x-y). \end{array}$

Exercice 10. On note E l'ensemble des suites réelles bornées sur \mathbb{R} . Soit $(\sum a_n)$ une série convergente à termes positifs. Pour $x = (x_n)_n \in E$ on note $N(x) = \sum a_n |x_n|$.

- a. Montrer que E est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$, et que N est une semi-norme sur E.
- b. À quelle condition N est-elle une norme sur E? On pourra noter e_p la suite $(\delta_{p,n})_n$ et calculer $N(e_p)$ pour tout p.
- c. On suppose que N est une norme. Est-elle équivalente à la norme $N_{\infty}: x \mapsto \sup_n |x_n|$? Obtient-on une norme équivalente à N si on remplace $(a_n)_n$ par $(a_n/n)_n$? par $(\operatorname{sh} a_n)_n$?

Exercice 11. Soit E l'espace des suites complexes presque nulles sur \mathbb{N} , muni de la norme N_2 . On fixe une suite bornée $(a_n)_n$ et on considère les endomorphismes D, M, S définis comme suit :

$$D((x_n)_n) = (x_{n+1})_n$$
, $M((x_n)_n) = (a_n x_n)_n$, et $S((x_n)_n) = (y_n)_n$ où $y_n = \sum_{k=n}^{\infty} \frac{x_k}{2^k}$.

Montrer que D, M, S sont bornés et calculer les normes d'opérateur de D et M.

Exercice 12. On considère l'espace $E = \mathbb{R}[X]$ et on pose, pour $P = \sum_{i=0}^{n} a_i X^i \in E$:

$$N(P) = \sup_{i} |a_i|$$
 et $N'(P) = \sup_{t \in [0,1]} |P(t)|$.

On définit par ailleurs des endomorphismes de E en posant

$$f(P) = P', \quad g(P) = (X+1)P \quad \text{et} \quad h_{\alpha}(P) = P(\alpha), \quad \text{pour } \alpha \in \mathbb{R}.$$

- a. Montrer que N et N' sont des normes sur E.
- b. Les applications f, g, h_1, h_2 sont-elles bornées relativement à N? à N'? Le cas échéant, calculer leurs normes d'opérateurs.
- c. Les normes N, N' sont-elles équivalentes?

Exercice 13. On considère l'espace $E = C^1([0,1],\mathbb{R})$ et les applications de E dans \mathbb{R} définies comme suit :

$$N_{\infty}(f) = ||f||_{\infty} = \sup_{t \in [0,1]} |f(t)|, \quad P_1(f) = ||f||_{\infty} + ||f'||_{\infty}, \quad P_2(f) = |f(0)| + ||f'||_{\infty}.$$

- a. Montrer que P_1 et P_2 sont des normes. Rappeler comment on démontre que $f' = 0 \Longrightarrow f$ constante.
- b. Montrer que les normes P_1 et P_2 sont équivalentes. Sont-elles équivalentes à N_{∞} ?
- c. Pour lesquelles des ces normes la forme linéaire $\varphi: E \to \mathbb{R}, \ \varphi(f) = f'(0)$ est-elle bornée? Lorsque φ est bornée, montrer que $\|\varphi\| = 1$ dans E'. Cette norme est-elle atteinte?

Exercice 14. On considère l'espace vectoriel $E = C^1([0,1], \mathbb{R})$ et le sous-espace $F = \{f \in E \mid f(0) = 0\}$. Pour tout élément $f \in E$ on pose

$$N(f) = ||f||_{\infty} + ||f'||_{\infty}$$
 et $N'(f) = ||f + f'||_{\infty}$.

- a. Montrer que N est une norme sur E, et que N' est une semi-norme. N' est-elle une norme?
- b. Résoudre l'équation différentielle f + f' = 0. En déduire que la restriction de N' à F est une norme.
- c. On fixe $g \in C([0,1], \mathbb{R})$. Résoudre l'équation différentielle f+f'=g. On pourra utiliser la méthode de variation de la constante, c'est-à-dire rechercher f sous la forme $f(t) = \lambda(t)e^{-t}$. Y a-t-il une solution dans F?
- d. En utilisant la question précédente, montrer que les normes N et N' sont équivalentes sur F.

Exercice 15. Calculer la norme des formes linéaires

$$\varphi: f \mapsto \int_{-1}^{1} f(t) dt, \quad \psi: f \mapsto \int_{0}^{1} f(t) dt - \int_{-1}^{0} f(t) dt,$$

définies sur l'espace $C([-1,1],\mathbb{R})$ muni de la norme de la convergence uniforme. Ces normes sont-elles atteintes?

Exercice 16. On considère l'espace $E = C([0,1],\mathbb{R})$ muni de la norme de la convergence uniforme. On dit que $f \in E$ est positive, et on note $f \geq 0$, si $f(x) \geq 0$ pour tout $x \in [0,1]$. On dit qu'une forme linéaire $\varphi \in E^*$ est positive si $f \ge 0 \Rightarrow \varphi(f) \ge 0.$

- a. Montrer qu'une forme linéaire positive est bornée. On pourra considérer $g: x \mapsto ||f|| f(x)$.
- b. Appliquer ce qui précède à $\varphi_1: f \mapsto f(1)$ et $\varphi_2: f \mapsto \int_0^1 f$. Montrer directement que ces formes linéaires sont bornées.

Exercice 17. (partiel 2011-2012)

On considère l'espace vectoriel $E = C([0,1], \mathbb{R})$ des fonctions réelles continues sur [0,1].

Pour $f \in E$ on pose $||f|| = \sup_{t \in [0,1]} |tf(t)|$.

On définit par ailleurs des formes linéaires φ , $\psi \in E^*$ en posant

$$\varphi(f) = \int_0^1 t^2 f(t) dt$$
 et $\psi(f) = f(0)$.

- a. Montrer que $\|\cdot\|$ est une norme sur E.
- b. Montrer que la forme linéaire φ est bornée.
- c. Pour $n \in \mathbb{N}^*$ on considère $f_n \in E$ donnée par $f_n(t) = (t + \frac{1}{n})^{-1}$.
 - (i) Montrer que $||f_n|| \le 1$ et calculer $\psi(f_n)$ pour tout n.
 - (ii) La forme linéaire ψ est-elle bornée?
- d. Montrer que $\|\varphi\| = \frac{1}{2}$.

Exercice 18. Si N, N' sont deux normes sur $E = \mathbb{R}^n$, on note $||M||_{N \to N'}$ la norme d'opérateur d'une matrice $M = (m_{ij}) \in M_n(\mathbb{R})$ vue comme application linéaire de (\mathbb{R}^n, N) vers (\mathbb{R}^n, N') .

- a. Montrer que $||M||_{N_1 \to N_1} = \max_j \sum_i |m_{ij}|$.
- b. Montrer que $||M||_{N_{\infty}\to N_{\infty}} = \max_{i} \sum_{j} |m_{ij}|$.

c. Montrer que $||M||_{N_{\infty} \to N_1} \le \sum_{ij} |m_{ij}|$. Donner un exemple de matrice M telle que cette inégalité soit une égalité, et un exemple tel qu'elle soit stricte.

Exercice 19. On munit \mathbb{R}^n de la norme N_2 , et on note $\|\cdot\|_{\text{op}} = \|\cdot\|_{N_2 \to N_2}$ la norme d'opérateur associée sur $M_n(\mathbb{R})$. On pose par ailleurs, pour $A, B \in M_n(\mathbb{C}), (A|B) = \text{Tr}({}^t\!AB)$ et $\|A\|_2^2 = \text{Tr}({}^t\!AA)$.

- a. Vérifier que $(A, B) \mapsto (A|B)$ est une forme bilinéaire $M_n(\mathbb{R})$.
- b. Calculer (A|A) en fonction des coefficients de $A=(a_{ij})$. En déduire que la forme bilinéaire considérée est définie-positive.
- c. Montrer les inégalités $||A||_{\text{op}} \leq ||A||_2 \leq \sqrt{n} ||A||_{\text{op}}$. On pourra calculer la trace en utilisant une BON de \mathbb{R}^n .
- d. Quel argument permet de montrer sans calcul que ${}^{t}AA$ est diagonalisable en BON? Montrer que les valeurs propres de ${}^{t}AA$ sont positives.
- e. En utilisant la question précédente, montrer que $||A||_2^2$ est égal à la somme des valeurs propres de ${}^t\!AA$.
- f. De même, montrer que $||A||_{\text{op}}^2$ est égal à la plus grande valeur propre de ${}^t\!AA$.
- g. Retrouver les inégalités de la question c.

Exercice 20. Soit E un espace vectoriel normé non nul et $u, v \in L'(E)$. On suppose que $u \circ v - v \circ u = \lambda \mathrm{Id}$.

- a. Montrer que $u \circ v^{n+1} v^{n+1} \circ u = \lambda(n+1)v^n$ pour tout n.
- b. Montrer qu'on a forcément $\lambda = 0$.
- c. On prend $E = C^{\infty}([0,1])$, muni de la norme de la convergence uniforme $N = \|\cdot\|_{\infty}$. On pose u(f) = f' et $v(f) = (t \mapsto tf(t))$. Calculer $u \circ v v \circ u$. Conclusion?
- d. On conserve l'espace E et les endomorphismes u,v de la question précédente. On considère la norme $N':f\mapsto \|f\|_{\infty}+\|f'\|_{\infty}$ sur E. Montrer que u et v sont bornés pour la norme $\|\cdot\|_{N'\to N}$. Conclusion?

Exercice 21. (partiel 2011-2012)

Soit $f: \mathbb{R}^2 \to \mathbb{R}^3$ une application linéaire, et M sa matrice dans les bases canoniques. On munit \mathbb{R}^2 de la norme N_2 , \mathbb{R}^3 de la norme N_1 , et on note ||f|| la norme d'opérateur associée pour f. Par ailleurs on pose

$$P(M) = |a| + |b| + |c| + |d| + |e| + |f|$$
 si $M = \begin{pmatrix} a & b \\ c & d \\ e & f \end{pmatrix}$.

- a. Montrer que P est une norme sur $M_{3,2}(\mathbb{R})$.
- b. Exprimer f(x,y) en fonction de a, b, c, d, e, f, x, y. En déduire que $||f|| \le P(M)$.
- c. On prend f(x, y) = (x + y, 2x y, x y).
 - (i) À l'aide de la question 2, donner un majorant pour ||f||.
 - (ii) En calculant f(4,-1) donner un minorant pour ||f||.
- ${\bf d.} \ \ Cette \ question \ est \ moins \ facile.$

On conserve la fonction f de la question 3.

- (i) Démontrer l'inégalité $|X|+|Y|+\frac{1}{2}|X+3Y|\leq \sqrt{\frac{17}{2}}\sqrt{X^2+Y^2},$ pour tous $X,\,Y\in\mathbb{R}.$
- (ii) En posant X = x + y, Y = x y, montrer que $||f|| = \sqrt{17}$.