Примерни решения на Домашно №2

Задача 1: Нека $n \in \mathbb{N}^+$. Нека $S(n) = \{-n, -n+1, \dots, -2, -1, 1, 2, \dots, n-1, n\}$. Нека P(X) и Q(X) са предикати с домейн $2^{S(n)}$, дефинирани така:

- \bullet P(X) е "X не съдържа последователни положителни числа", а
- Q(X) е "X не съдържа двойка числа със сума 0".

Нека

$$T(n) = \{ X \subseteq S(n) \mid P(X) \land Q(X) \}$$

Намерете |T(n)| като първо съставите подходящо рекурентно уравнение и после решите това рекурентно уравнение.

Решение: Да видим как изглежда T(n) за малки n.

- $S(1) = \{-1, 1\}$. $2^{S(1)} = \{\emptyset, \{-1\}, \{1\}, \{-1, 1\}\}$. $T(1) = \{\emptyset, \{-1\}, \{1\}\}$, понеже $\neg Q(\{-1, 1\})$.
- $S(2) = \{-2, -1, 1, 2\}.$

$$2^{S(2)} = \left\{ \emptyset, \{-2\}, \{-1\}, \{1\}, \{2\}, \{-2, -1\}, \{-2, 1\}, \{-2, 2\}, \{-1, 1\}, \{-1, 2\}, \{1, 2\}, \{-2, -1, 1\}, \{-2, -1, 2\}, \{-2, 1, 2\}, \{-2, -1, 1\}, \{-2, -1, -1, 2\} \right\}$$

Тогава
$$T(2) = \{\emptyset, \{-2\}, \{-1\}, \{1\}, \{2\}, \{-2, -1\}, \{-2, 1\}, \{-1, 2\}\}.$$

• $S(3) = \{-3, -2, -1, 1, 2, 3\}$. Тъй като $|2^{S(3)}| = 64$ е прекалено голямо за работа на ръка, ще генерираме T(3) директно, а не чрез генериране на $2^{S(3)}$ и елиминиране на елементи. Празното множество и шестте едноелементни подмножества са в T(3):

$$\emptyset, \{-3\}, \{-2\}, \{-1\}, \{1\}, \{2\}, \{3\} \in T(3)$$

Всички двуелементни подмножества с отрицателни елементи са в T(3):

$$\{-3, -2\}, \{-3, -1\}, \{-2, -1\} \in T(3)$$

От двуелементните с един отрицателен и един положителен елемент, в T(3) са тези:

$$\{-3,1\}, \{-3,2\}, \{-2,1\}, \{-2,3\}, \{-1,2\}, \{-1,3\} \in T(3)$$

От двуелементните с положителни елементи, само $\{1,3\}$ е в T(3):

$$\{1,3\} \in T(3)$$

Разглеждаме триелементните. Очевидно

$$\{-3, -2, -1\} \in T(3)$$

От триелементните с два отрицателни елемента, в T(3) са тези:

$$\{-3, -2, 1\}, \{-3, -1, 2\}, \{-2, -1, 3\} \in T(3)$$

От триелементните с един отрицателен елемент, само $\{-2, 1, 3\}$ е в T(3):

$$\{-2,1,3\} \in T(3)$$

Триелементни без отрицателни елементи в T(3) няма. Четириелементни в T(3) също няма, което влече, че няма и петелементни, и шестелементи. Тогава

$$T(3) = \{\emptyset, \{-3\}, \{-2\}, \{-1\}, \{1\}, \{2\}, \{3\}, \{-3, -2\}, \{-3, -1\}, \{-2, -1\}, \{-3, 1\}, \{-3, 2\}, \{-2, 1\}, \{-2, 3\}, \{-1, 2\}, \{-1, 3\}, \{1, 3\}, \{-3, -2, -1\}, \{-3, -2, 1\}, \{-3, -1, 2\}, \{-2, -1, 3\}, \{-2, 1, 3\}\}$$

И така, |T(1)| = 3, |T(2)| = 8 и |T(3)| = 22.

Да видим как T(n+1) се получава от T(n). Нека

$$A(n+1) = \{X \in T(n+1) : -n-1 \not\in X \land n+1 \not\in X\}$$

$$B(n+1) = \{X \in T(n+1) : -n-1 \in X \land n+1 \not\in X\}$$

$$C(n+1) = \{X \in T(n+1) : -n-1 \not\in X \land n+1 \in X\}$$

$$D(n+1) = \{X \in T(n+1) : -n-1 \in X \land n+1 \in X\}$$

Очевидно $\{A(n+1), B(n+1), C(n+1), D(n+1)\}$ е разбиване на T(n+1). Съгласно принципа на разбиването,

$$|T(n+1)| = |A(n+1)| + |B(n+1)| + |C(n+1)| + |D(n+1)|$$

Обаче $D(n+1)=\emptyset$, защото по условие не е разрешено да се съдържа елемент и неговото отрицание. Тогава

$$|T(n+1)| = |A(n+1)| + |B(n+1)| + |C(n+1)|$$

- Очевидно |A(n+1)| = |T(n)|, понеже A(n+1) = T(n).
- $\forall X \in T(n): X \cup \{\{-n-1\}\} \in B(n+1)$ и $\forall X \in B(n+1): X \setminus \{\{-n-1\}\} \in T(n)$. Заключаваме, че има биекция между T(n) и B(n+1). Тогава |B(n+1)| = |T(n)|.
- Да намерим |C(n+1)|. Всяко множество в C(n+1) не съдържа n заради изискването да няма съседни положителни елементи. Всяко множество в C(n+1) не съдържа -n-1 по конструкция. Числото -n обаче може да се съдържа в елементите на C(n+1). Нека

$$C^{-}(n+1) = \{X \in C(n+1) : -n \in X\}$$

 $C^{+}(n+1) = \{X \in C(n+1) : -n \notin X\}$

Очевидно $\{C^{-}(n+1), C^{+}(n+1)\}$ е разбиване на C(n+1).

- Всеки елемент на $C^-(n+1)$ съдържа -n, но не съдържа n. Очевидно съществува биекция между $C^-(n+1)$ и T(n-1).
- Всеки елемент на $C^+(n+1)$ не съдържа нито -n, нито n. Очевидно съществува биекция между $C^+(n+1)$ и T(n-1).

Както видяхме в примера горе, $C(2+1) = \{\{3\}, \{-2,3\}, \{-1,3\}, \{1,3\}, \{-2,-1,3\}\}, \{-2,1,3\}\}$, а $C^-(2+1) = \{\{-2,3\}, \{-2,-1,3\}, \{-2,1,3\}\}$ и $C^+(2+1) = \{\{3\}, \{-1,3\}, \{1,3\}\}$. Наистина има по една биекция между всяко от тях и $T(1) = \{\emptyset, \{-1\}, \{1\}\}$.

Заключаваме, че |C(n+1)| = 2|T(n-1)| за $n \ge 3$.

Тогава

$$|T(n)| = egin{cases} 3, & \text{ако } n = 1, \\ 8, & \text{ако } n = 2, \\ 2|T(n-1)| + 2|T(n-2)|, & \text{ако } n \geq 3 \end{cases}$$

Решението е

$$|T(n)| = \left((-1/3)\sqrt{3} + 1/2 \right) \left(-\sqrt{3} + 1 \right)^n + \left((1/3)\sqrt{3} + 1/2 \right) \left(1 + \sqrt{3} \right)^n$$

Бърза проверка с тази формула показва, че наистина |T(1)|=3, |T(2)|=8 и |T(3)|=22.

Задача 2: Даден е граф G. Докажете, че поне единият от G и \overline{G} е свързан.

Решение: Да допуснем, че G не е свързан. Ще докажем, че \overline{G} е свързан. Очевидно $|V(G)| \geq 2$. Разглеждаме произволни $u,v \in V(G)$. Следните две възможности са взаимно изключващи се и изчерпателни.

- u и v не са съседи в G. Тогава те са съседи в \overline{G} , така че $(u,v) \in E(\overline{G})$, така че има път между тях в \overline{G} .
- u и v са съседи в G. Тогава те са върхове от една и съща свързана компонента G_1 на G. Тъй като G не е свързан по конструкция, той има поне още една свързана компонента G_2 . Нека x е произволен връх от G_2 . В G, нито върховете u и x са съседи, нито върховете v и x са съседи. Тогава $(u,x) \in E(\overline{G})$ и $(v,x) \in E(\overline{G})$. Тогава в \overline{G} съществува път между u и v, а именно пътят u,x,v.

Доказахме, че за произволни $u,v\in V(G)$ е вярно, че в \overline{G} има път между тях. Но $V(G)=V(\overline{G})$ по дефиниция. Тогава за произволни $u,v\in V(\overline{G})$ е вярно, че в \overline{G} има път между тях. Тогава \overline{G} е свързан. \square

Задача 3: Нека G=(V,E) е граф и $u\in V$. Докажете, че $\overline{G-u}=\overline{G}-u$.

Решение: За краткост дефинираме $V_u = V \setminus \{u\}, \ \mathcal{I}(u) = \{e \in E \mid u \in e\}, \ \mathcal{V} = \{X \subseteq V : |X| = 2\}, \overline{E} = \mathcal{V} \setminus E, \ \overline{\mathcal{I}}(u) = \{e \in \overline{E} \mid u \in e\} \ \text{и} \ \mathcal{V}_u = \{X \subseteq V_u : |X| = 2\}.$ По определение,

$$G - u = (V_u, E \setminus \mathcal{I}(u))$$

$$\overline{G} = (V, \overline{E})$$

$$\overline{G - u} = (V_u, \mathcal{V}_u \setminus (E \setminus \mathcal{I}(u)))$$

$$\overline{G} - u = (V_u, \overline{E} \setminus \overline{\mathcal{I}}(u))$$

За да докажем, че $\overline{G-u}=\overline{G}-u$, трябва да докажем, че

$$(V_u, \mathcal{V}_u \setminus (E \setminus \mathcal{I}(u))) = (V_u, \overline{E} \setminus \overline{\mathcal{I}}(u)) \tag{1}$$

Съгласно изучаваното на лекции свойство на наредените двойки

$$(a,b) = (c,d) \leftrightarrow a = b \land c = d,$$

за да докажем (1), достатъчно е да докажем

$$\mathcal{V}_u \setminus (E \setminus \mathcal{I}(u)) = \overline{E} \setminus \overline{\mathcal{I}}(u) \tag{2}$$

Първо забелязваме, че $\mathcal{V}_u \setminus (E \setminus \mathcal{I}(u)) = \mathcal{V}_u \setminus E$, понеже \mathcal{V}_u е множеството от двуелементните подмножества върхове, които не съдържат u, така че дали

- ullet от \mathcal{V}_u няма да вземем тези двуелементни подмножество върхове, които са ребра в G, които не съдържат върха u, или
- \bullet от \mathcal{V}_u няма да вземем всички двуелементни подмножество върхове, които са ребра в G,

води до един и същи резултат. Тогава това, което се иска да докажем, е

$$\mathcal{V}_u \setminus E = \overline{E} \setminus \overline{\mathcal{I}}(u) \tag{3}$$

Множеството вляво се състои от всички двуелементни подмножества върхове, които не съдържат u и не са ребра в G. Множеството вдясно се състои от всички двуелементни подмножества върхове, които не са ребра в G, без не-ребрата, които съдържат u. Очевидно това е едно и също множество.

Задача 4: Нека G е граф, който е изоморфен на своето допълнение \overline{G} . Докажете, че G има срязващ връх тогава и само тогава, когато G има връх от степен 1.

Решение: Граф, който е изоморфен на допълнението си, се нарича *самодопълнителен*, на английски self complementary. Нека G е самодопълнителен. Първо забелязваме, че G е свързан и \overline{G} е свързан. Ето защо. От **Задача 2** знаем, че поне единият от G и \overline{G} е свързан. Ако G не е свързан, то \overline{G} задължително е свързан и тогава G и \overline{G} не са изоморфии. С аналогичен аргумент показваме, че \overline{G} също е свързан.

- В едната посока на доказателството, нека G има връх u от степен 1. Нека реброто, инцидентно с u, е e=(u,v). Ще докажем, че $d(v)\neq 1$. Да допуснем, че d(v)=1. Тогава $G=(\{u,v\},\{e\})$ или една от свързаните компоненти на G е $(\{u,v\},\{e\})$. Но, както вече забелязахме, G е свързан, така че има само една свързана компонента. Тогава $G=(\{u,v\},\{e\})$. Но този граф не е самодопълнителен, понеже допълнението му е $(\{u,v\},\emptyset)$. Тогава $d(v)\neq 1$. Тогава $d(v)\geq 2$, така че v има поне още един съсед освен u. Тогава v е срязващ връх.
- В другата посока на доказателството, нека G има срязващ връх u. Разглеждаме G-u и $\overline{G-u}$. Щом u е срязващ връх, G-u има k свързани компоненти G_1,\ldots,G_k за някое $k\geq 2$. Тогава за всеки $x\in V(G_1)$ и всеки $y\in V(G_2)\cup\cdots\cup V(G_k)$ е вярно, че x и y не са съседи в G-u. Тогава за всеки $x\in V(G_1)$ и всеки $y\in V(G_2)\cup\cdots\cup V(G_k)$ е вярно, че x и y са съседи в $\overline{G-u}$.

За краткост на записа дефинираме, че $\overline{Guкликa}$ е пълен двуделен граф; за такъв на лекции използвахме означението " $K_{p,q}$ ". Току-що показахме, че $\overline{G-u}$ има покриваща биклика, като дяловете са, примерно, $V(G_1)$ и $V(G_2)\cup\dots\cup V(G_k)$. Съгласно **Задача 3**, $\overline{G-u}=\overline{G}-u$. Тогава $\overline{G}-u$ има покриваща биклика. Тъй като G е самодопълнителен, G трябва да има връх v, такъв че G-v има покриваща биклика. Нека покриващата биклика на G-v е $K_{p,q}$ с дялове V' и V'', където p=|V'| и q=|V''|. Очевидно $V'\cup V''=V\setminus \{v\}$ и $V'\cap V''=\emptyset$, така че p+q=|V|-1.

 $K_{p,q}$ е свързан граф, понеже е биклика: за всеки $x,y \in V' \cup V''$, ако x и y са от различни дялове, те са съседи по дефиниция, а ако са от един и същи дял, БОО от V', x е съсед на някой z от V'' и y е съсед на същия z, така че има път x,z,y между x и y.

Забелязваме, че $u \neq v$, защото G - u не е свързан по конструкция, а G - v е свързан, понеже има покриващ свързан граф $K_{p,q}$.

Нека w е връх на G, различен и от u, и от v (такъв съществува). Щом $w \neq v$, със сигурност $w \in V' \cup V''$. БОО, нека $w \in V'$.

Помним, че връх u е срязващ връх и свързаните компоненти на G-u са G_1, \ldots, G_k . БОО, нека $w \in V(G_1)$. Ще докажем, че всеки връх s на G-u, различен и от w, и от v, е връх от V'.

• Да допуснем, че $s \notin V(G_1)$. Тогава в G-u няма ребро (s,w), понеже s и w са от различни свързани компоненти на G-u. Но тогава в G също няма ребро (s,w), понеже изтриването на u не би засегнало това хипотетично ребро.

Знаем, че V' и V'' са дяловете на покриваща биклика на на G-v. Ако s беше във V'', щеше да има ребро (s,w) в G-v, така че щеше да има ребро (s,w) и в G. Но, както вече видяхме, ребро (s,w) в G няма. Ерго, $s \notin V''$.

Тогава $s \in V'$. Заключаваме, че всеки връх на G - u, който не е в G_1 (където е w) и е различен от v, се намира във V'.

• Да допуснем, че $s \in V(G_1)$. Разглеждаме произволен връх t от G-u, който не е в G_1 .

В G-u няма ребро (s,t), понеже s и t са върхове от различни свързани компоненти на G-u. Очевидно нито един от s и t не е връх u, така че в G също няма ребро (s,t).

Но тогава в G-v също няма ребро (s,t): такова не може да се появи с изтриването на връх v. Ерго, s и t са върхове от един и същи дял измежду V' и V''. Но t не може да се намира във V''; ако t беше във V'', щеше да има ребро (w,t), понеже $K_{p,q}$ е покриваща биклика. Ребро (w,t) обаче няма, понеже w е връх в G_1 , а t е връх от друга свързана компонента. Щом t не е във V'', трябва t да е във V'. Но тогава и s е във V'.

Доказахме, че всеки връх на G-u, който не е нито w, нито v, се намира във V'. По допускане, $w \in V'$, така че $w \notin V''$. По конструкция, $v \notin V''$. Но V'' е непразно. Единственият връх на G-v, който може да бъде във V'', е връх u. Заключаваме, че $V''=\{u\}$, а $V'=V\setminus\{u,v\}$. Но тогава u е съсед на всеки връх от V', понеже V' и V'' са дяловете на биклика. Тогава степента

Но тогава u е съсед на всеки връх от V', понеже V' и V'' са дяловете на биклика. Тогава степента на u в \overline{G} е поне n-2. Тогава степента на u в \overline{G} е най-много 1. Забележете, че тя не може да е 0, понеже тогава \overline{G} би имал изолиран връх и не би бил свързан, а, както вече видяхме, \overline{G} е свързан. Тогава степента на u в \overline{G} е точно 1. Тъй като G е самодопълнителен, в G също има връх от степен 1, и неговият съсед е срязващ връх. Което и трябваше да покажем.

Задача 5: На лекции доказахме, че граф е двуделен тстк няма нечетни цикли. Тук се иска да докажете по-слабо твърдение:

Ако граф няма нечетни цикли, то той е двуделен.

но с доказателство по индукция.

10 т.

10 т.

- Докажете твърдението с индукция по броя на ребрата.
- Докажете твърдението с индукция по броя на върховете.

Решение: Ето доказателство с индукция по броя на ребрата m. Базовият случай е m=0. Графът с нула ребра няма цикли, в частност няма нечетни цикли, и наистина е двуделен – всяко разбиване на множеството от върховете на два дяла генерира двуделен граф.

Да допуснем, че за произволно $m \geq 0$, всеки граф без нечетни цикли с m ребра е двуделен. Разглеждаме произволен граф G = (V, E) без нечетни цикли с m+1 ребра. Нека e = (u, v) е произволно ребро в G. Изтриваме e от G, получавайки граф G' с m ребра и без нечетни цикли – изтриването на ребро не може да доведе до появата на нечетен цикъл. Очевидно V(G') = V. Да кажем, че E(G') = E'; очевидно $E' = E \setminus \{e\}$.

Съгласно индуктивното допускане, G' е двуделен. Нека дяловете са V_1 и V_2 . По дефиниция, за всяко ребро от E', единият край е от V_1 , а другият от V_2 . Ще докажем, че G също е двуделен.

- Да допуснем, че e е мост в G. Тогава, по дефиниция, G' има една свързана компонента повече от G, като u и v, които са в една и съща свързана компонента H на G, се оказват в различни свързани компоненти на G'. Да кажем, че в G', връх u принадлежи на свързаната компонента G_u , а връх v принадлежи на свързаната компонента G_v . Очевидно $G_u \cup G_v$, плюс реброто e, е H. Ако $u \in V_1$ и $v \in V_2$ или $u \in V_2$ и $v \in V_1$, то G очевидно е двуделен, защото за всяко ребро от E, включително и e, единият край е от V_1 , а другият от V_2 .
 - Да допуснем, че и u, и v са от единия дял на G'. БОО, нека $u, v \in V_1$. Тогава "преместваме" всеки връх x от G_v в другия дял измежду V_1 и V_2 : ако $x \in V_1$, слагаме x във V_2 , а ако $x \in V_2$, слагаме x във V_1 . Тези премествания променят дяловете. Нека новите дялове се казват U_1 и U_2 . Очевидно $U_1 \cup U_2 = V$ и $U_1 \cap U_2 = \emptyset$, така че U_1 и U_2 са разбиване на V. Също така е очевидно, че за всяко ребро на G, единият край е в U_1 , а другият, в U_2 . Ерго, G е двуделен.
- Да допуснем, че e не е мост в G. Тогава e е ребро от поне един цикъл c в G, защото ребро е мост тстк е ребро от един или повече цикли. Цикълът c е четен по конструкция в G нечетни цикли няма.

Да кажем, че множеството от ребрата на c е E(c), като очевидно $e \in E(c)$. След изтриването на e, цикълът c се превръща в път p с нечетна дължина, като u и v са краищата на p. Но p е път в G', а G' е двуделен от индуктивното допускане. Тогава за всяко ребро на p, единият край е във V_1 , а другият край е във V_2 . Освен това, единият от u и v е във V_1 , а другият е във V_2 – това следва веднага от факта, че |p| е нечетно число. Щом u и v са в различни дялове, добавянето на реброто e към G' не "разваля" двуделността с дялове V_1 и V_2 , така че и G е двуделен.

Ето доказателство със силна индукция по броя на върховете n. Базовият случай е n=1. Графът с един връх няма ребра, поради което няма цикли, поради което няма нечетни цикли, и наистина е двуделен – всяко разбиване на множеството от върховете на два дяла генерира двуделен граф.

Да допуснем, че за произволно $n \geq 1$, всеки граф без нечетни цикли с не повече от n върхове е двуделен. Разглеждаме произволен граф G=(V,E) без нечетни цикли с n+1 върхове. Нека u е произволен връх в G. Изтриваме u от G, получавайки свързани компоненти G_1,\ldots,G_k за някое $k\geq 1$. Всяка от тези свързани компоненти има не повече от n върхове и няма нечетни цикли, така че, съгласно индуктивното предположение, е двуделен граф. Да кажем, че дяловете на G_i са X_i и Y_i , за $1\leq i\leq k$.

Ще докажем, че за всяко G_i , в G има ребра между u и върхове от **само единия** дял на G_i . Да допуснем противното. БОО, нека съществува връх $a \in X_1$ и връх $b \in Y_1$, такива че $(u,a) \in E$ и $(u,b) \in E$. Но G_1 е свързан граф по конструкция. Тогава в G_1 съществува p път с краища a и b. Ключовото наблюдение е, че |p| е нечетно число, понеже G_1 е двуделен: във всеки двуделен граф с фиксирани дялове, всеки път, чиито краища са от различни дялове, има нечетна дължина, защото, по продължение на пътя, върховете се редуват по отношение на принадлежността си към дяловете. И така, p е път с нечетна дължина. Пътят p заедно с ребрата (u,a) и (u,b) образува нечетен цикъл в G, а по конструкция G няма нечетни цикли.

И така, за всяко G_i , в G има ребра между u и върхове от **само единия** дял на G_i . БОО, нека X_i е дялът на G_i , който съдържа върховете, които са съседи на u в G. Тогава $A = \bigcup_{i=1}^k X_i$ и $B = \{u\} \cup \bigcup_{i=1}^k Y_i$ представляват разбиване на V, такова че за всяко ребро на G, единият край е в A, а другият край е в B. Тогава G е двуделен граф.