LLM

Firoz Hasan

Overview of LLM

- LLM is a subset of DL.
- Parts of Generative AI.
- It refers to large general purpose language models that can be pre-trained and then fine-tuned for specific purpose.
- It used to train for solving common language problems.

- Large
 - Large training dataset
 - Large number of parameters.
 - Are called Hyper parameters.
 - Are basically the memories and the knowledge that the machine learned from the model training.
 - It defines the skill of a model in solving a problem such as predictive text.

- General purpose
 - Common Problem
 - Resource Restriction
- Pre-trained and fine-tuned
 - Pre-trained :for a general purpose with a large dataset.
 - Fine-tuned: it for specific aims with a much smaller dataset.

How much does it cost?

Renting

Invidia A100: \$1-2 per GPU per hour

⇒ 10b model: \$150,000

100b model: \$1,500,000

Buying

Invidia A100: ~\$10,000

⇒ GPU Cluster: ~\$10,000 x 1000 = \$10,000,000

Training Energy Cost (100b model): ~1,000 megawatt hour [3]

4 Key Steps

- 1. Data Curation
- 2. Model Architecture
- 3. Training at Scale
- 4. Evaluation

Step 1: Data Curation

The quality of your model is driven by the quality of your data

Step 1: Data Curation

Where do we get all these data?

The internet e.g. web pages, wikipedia, forums, books, scientific articles, code bases, e

Public datasets

- Common Crawl (Colossal Clean Crawled Corpus i.e. C4, Falcon RefinedWeb)
- · The Pile [6]
- Hugging Face Datasets

Private data sources e.g. FinPile (BloombergGPT) drawn from Bloomberg archives [1]

Use an LLM e.g. Alpaca - an LLM trained on structured text generated by GPT-3^[7]

Step 1: Data Curation

How do we prepare the data?

Quality Filtering - remove "low-quality" text from dataset

Classifier-based

Heuristic-based

De-duplication - several instances of same (or very similar) text can bias model and disrupt training

Step 1: Data Curation

Dataset Diversity

Step 1: Data Curation

How do we prepare the data?

Quality Filtering - remove "low-quality" text from dataset

Transformers

Neural network architecture that uses attention mechanisms

Attention mechanism - learns dependencies between different elements of a sequence based on position and content [13]

"I hit the baseball with a bat"

"I hit the bat with a baseball"

3 Types of Transformers [14, 15]

Encoder-only - encoder translates tokens into a semantically meaningful representation |

Decoder-only - similar to encoder but does not allow self-attention with future elements

[13, 15]

Encoder-decoder - combines both and allows cross-attention | tasks: translation

Other Design Choices

Residual Connections - allow intermediate training values to bypass hidden layers [14]

Figure 4. Various usages of activation in Table 2. All these units consist of the same components — only the orders are different.

Other Design Choices

Residual Connections - allow intermediate training values to bypass hidden layers

Layer Normalization - re-scaling values between layers based on their mean and standard deviation

Activation Functions - introduce non-linearities into model e.g. GeLU, ReLU, Swish, SwiGLU, GeGLU

Step 2: Model Architecture

Other Design Choices

Residual Connections - allow intermediate training values to bypass hidden layers

Layer Normalization - re-scaling values between layers based on their mean and standard

Step 2: Model Architecture

How big do I make it?

If model is too big or trained too long, it can overfit

If model is too small or not trained long enough, it can underperform

Parameters	FLOPs	Tokens
400 Million	1.92e+19	8.0 Billion
1 Billion	1.21e+20	20.2 Billion
10 Billion	1.23e+22	205.1 Billion
67 Billion	5.76e+23	1.5 Trillion
175 Billion	3.85e+24	3.7 Trillion
280 Billion	9.90e+24	5.9 Trillion
520 Billion	3.43e+25	11.0 Trillion
1 Trillion	1.27e+26	21.2 Trillion
10 Trillion	1.30e+28	216.2 Trillion

Step 3: Training at Scale

3 Training Techniques

Mixed Precision Training - uses both 32-bit and 16-bit floating point data types [8, 22]

3D Parallelism - combination of pipeline, model, and data parallelism[8]

- Pipeline Parallelism distributes transformer layers across multiple GPUs
- Model Parallelism decomposes parameter matrix operation into multiple matrix multiplies distributed across multiple GPUs
- Data Parallelism distributes training data across multiple GPUs

Step 3: Training at Scale

Training Stability

Checkpointing - takes a snapshot of model artifacts so training can resume from that point [8]

Weight Decay - regularization strategy that penalizes large parameter values by adding a term (e.g. L2 norm of weights) to the loss function or changing the parameter update rule [8, 24]

Step 3: Training at Scale

Hyperparameters

Batch Size: (Static) typically ~16M tokens. (Dynamic) GPT-3 increased from 32K to 3.2M

Learning Rate: (Dynamic) learning rate increases linearly until reaching a maximum value then reduces via a cosine decay until the learning rate is about 10% of its max value [8]

Optimizer: Adam-based optimizers are most commonly used for LLMs [8]

Dropout: typical values between 0.2 and 0.5 [32]

Step 4: Evaluation

Benchmark Dataset (Open LLM Leaderboard)

Step 4: Evaluation

Multiple-choice Tasks e.g. ARC, Hellaswag, MMLU

Step 4: Evaluation

Multiple-choice Tasks e.g. ARC, Hellaswag, MMLU

Step 4: Evaluation

Open-ended Tasks e.g. TruthfulQA

Human Evaluation - a person scores completion based on ground truth, guidelir

NLP Metrics - quantify completion quality via metrics such as Perplexity, BLEU,

Auxiliary Fine-tuned LLM - use LLM to compare completions to ground truth [30]

What's Next?

Base models are typically a starting point, not final solution

Prompt Engineering

→

Model fine-tuning

LLM use cases

- Single model can be used different tasks.
- It trained petabytes of data and generative billions of parameters are smart enough to solve different tasks.

- ✓it requires minimal field training data to when you tailor then to solve specific problem
- ✓it obtain decent performance even with little domain training data.
- ✓it can be used for
 - ✓ few-shot(refers to train a model with minimal data
 - ✓ zero-shot(A model can recognize things that have not explicitly been taught in the training before.
- ✓ Its performance grow by adding more data and parameter.

Prompt Engineering

- Prompt design is the process of creating a prompt that is tailored to the specific task that the system is being asked to perform.
- Prompt Engineering
 - Process of creating a prompt that is designed to improve performance.
- Generic Language models
 - Predict the next word based on the language in the training data.
- Instruction tuned
 - Trained to predict a response to the instructions given in the input
 - Summarizes the text for example

- Dialog-tuned language model
 - It is a special case of instruction tuned where requests are typically framed as a question to chatbot.
 - Tuning. it is a task that you want to perform.

The process of adapting a model to a new domain or set of customs use cases by training the model or new data.