NOTE: We decided to include only 2 graphs in each section (histogram, boxplot, bar graph, ridge density plot, scatter plot) to reduce the length of the report. While doing analysis we looked at all the plots and code for all plots is included in rmd file.

1.Dataset Introduction

The dataset records typing speed of a group of 51 different individuals who have access to the passcode ".tie5Roanl" where each row corresponds to the record of time an individual takes to type the passcode to get access to a system. While an individual has access to the system, no other individual has access to the system. Below is the description of each column in the dataset: The column "X" is row-id ranging from 351 to 20400. The column "subject" contains list of 51 different individuals where each user is assigned with an unique identifier encoded as s002, s003 and so on (note that they are not in sequence from s001 to s051). The column "sessionIndex" is a continuous block of time where an individual has had access to the system. Only one user will be associated with a given session. In our dataset, sessionIndex takes value either 7 or 8 that means we are provided with the information of users participating in session 7 and session 8. The column "rep" is the repetition of the individual passcode entries within a session, which in our dataset ranges from 1 to 50. There are 31 columns that represent the timing information for the passcode. The name of the column encodes the type of timing information. Column names of the form "H.keyname" represents a hold time for the named key, meaning the time from when key was pressed to when it was released. Column names of the form "DD.key1_name.key2_name" represents a keydown-keydown time for the named keys meaning the time from when key1 was pressed to when key2 was pressed. Column names "UD.key1" name.key2 name" represents a keyup-keydown time for the named keys meaning the time from when key1 was released to when key2 was pressed. We observed in our dataset that all column of the type UD.key1 name.key2 name, except some, have negative values. And, the times in the column type "DD.key1" name.key2" name" is the addition of the times in the two columns "H.keyname" and "UD.key1" name.key2" name". For example Consider row 1 observation for user s002: DD.period.t = H.period + UD.period.t 0.3573 = 0.1391 + 0.2182 And this is true for all other observations.

In passcode data analysis we are working with three datasets namely:

- 1.known.csv: This csv file contains 1776 observations over 35 columns where the individual who entered the passcode is known.
- 2.Unknown.csv: This csv file contains 1795 observations over 33 columns where the individual who entered the passcode is unknown.
- 3. Questioned.csv: This csv file contains 12 sessions where we need to predict the individual who had access to the system.

2. Data Exploration

Checking for NA values We checked for missing values and found out that there are no missing values in the dataset.

As mentioned before, there are 51 different individuals recorded in "subject" column who have access to the system, meaning "subject" is a factor variable with 51 levels. The below plot shows the number of observations that belong to each subject and we can notice that the observations are not evenly distributed. The user "s011" logged into system total 9 times which is the least number in our dataset. The user "s026" logged into to system total 43 times which is the maximum in our dataset. There are other users who have same number of occurrences in our dataset, for eg. users s020, s032, s056 logged into system for total 20 times, user s022, s025, s029, s036 logged into system for total 22 times and so on.

Let us look at the subjects and their occurrences in our dataset grouped by session index. As explained before, session index is the time slot when an individual had access to the system. In our dataset we have two session index values: 7 and 8. There are more occurrences for session index 8 compared to session index 7, to be specific 349 observations for session index 7 and 1427 observations for session index 8. One thing to be noted that session index 8 has occurrences of all subject values where as session index 7 does not. The following plots gives a clear idea:

Frequency Distribution of subjects for sessionIndex 8

Looking at independent variables

\mathbf{X}

x variable is a row id and hence we removed it from our datset.

Histogram for H variables from known and unknown data:

The histogram of the H variables of passcode from known and unknown file has a bell shaped curve meaning their distribution are normal. Few of them are slightly skewed, the reason being most of the values are close to zero and in real world the data follows close to normal distribution.

Known Data: Histogram for H.period

Known Data: Histogram for H.t


```
[1] "session.id"
                           "rep"
                                              "H.period"
##
                           "UD.period.t"
                                              "H.t"
##
    [4] "DD.period.t"
   [7] "DD.t.i"
                           "UD.t.i"
                                              "H.i"
                           "UD.i.e"
                                             "H.e"
## [10] "DD.i.e"
## [13] "DD.e.five"
                           "UD.e.five"
                                              "H.five"
   [16] "DD.five.Shift.r" "UD.five.Shift.r" "H.Shift.r"
  [19] "DD.Shift.r.o"
                           "UD.Shift.r.o"
                                              "H.o"
                           "UD.o.a"
  [22] "DD.o.a"
                                              "H.a"
  [25] "DD.a.n"
                           "UD.a.n"
                                              "H.n"
## [28] "DD.n.1"
                           "UD.n.1"
                                              "H.1"
## [31] "DD.1.Return"
                                              "H.Return"
                           "UD.1.Return"
```

Known Data: Histogram for H.period

Known Data: Histogram for H.t

Histogram for UD variables from known and unknown data:

The distribution of UD variables from known and unknown file are rightly-skewed. The up-down time of most of the users while typing passcode are takes smaller values.

```
##
    [1] "X"
                           "subject"
                                              "sessionIndex"
    [4] "rep"
                           "H.period"
                                              "DD.period.t"
##
                           "H.t"
                                              "DD.t.i"
##
    [7] "UD.period.t"
  [10] "UD.t.i"
                           "H.i"
                                              "DD.i.e"
##
  [13] "UD.i.e"
                           "H.e"
                                              "DD.e.five"
  [16] "UD.e.five"
                           "H.five"
                                              "DD.five.Shift.r"
       "UD.five.Shift.r"
                           "H.Shift.r"
                                              "DD.Shift.r.o"
##
   [19]
                                              "DD.o.a"
   [22] "UD.Shift.r.o"
                           "H.o"
   [25] "UD.o.a"
                                              "DD.a.n"
                           "H.a"
##
                                              "DD.n.1"
   [28] "UD.a.n"
                           "H.n"
##
   [31]
       "UD.n.1"
                           "H.1"
                                              "DD.1.Return"
   [34] "UD.1.Return"
                           "H.Return"
                           "UD.t.i"
       "UD.period.t"
                                              "UD.i.e"
    [4] "UD.e.five"
                           "UD.five.Shift.r"
                                              "UD.Shift.r.o"
##
   [7] "UD.o.a"
                           "UD.a.n"
                                              "UD.n.1"
## [10] "UD.1.Return"
```

Known Data: Histogram for UD.period.t

Known Data: Histogram for UD.t.i


```
[1] "session.id"
                           "rep"
                                              "H.period"
##
##
    [4] "DD.period.t"
                           "UD.period.t"
                                              "H.t"
   [7] "DD.t.i"
                           "UD.t.i"
                                              "H.i"
## [10] "DD.i.e"
                           "UD.i.e"
                                              "H.e"
## [13] "DD.e.five"
                           "UD.e.five"
                                              "H.five"
   [16] "DD.five.Shift.r" "UD.five.Shift.r"
                                              "H.Shift.r"
                           "UD.Shift.r.o"
                                              "H.o"
   [19] "DD.Shift.r.o"
   [22] "DD.o.a"
                           "UD.o.a"
                                              "H.a"
                           "UD.a.n"
                                              "H.n"
   [25] "DD.a.n"
   [28] "DD.n.1"
                           "UD.n.1"
                                              "H.1"
##
   [31] "DD.1.Return"
                           "UD.1.Return"
                                              "H.Return"
    [1] "UD.period.t"
                           "UD.t.i"
                                              "UD.i.e"
##
##
    [4] "UD.e.five"
                           "UD.five.Shift.r" "UD.Shift.r.o"
   [7] "UD.o.a"
                           "UD.a.n"
                                              "UD.n.1"
##
## [10] "UD.1.Return"
```

Known Data: Histogram for UD.period.t

Known Data: Histogram for UD.t.i

Distribution of DD variables:

Since DD variables are highly skewed, the information they carry are not different than combined information of H variables and UD variables, hence we decided to not include them in our model.

```
##
    [1] "X"
                           "subject"
                                              "sessionIndex"
    [4] "rep"
                           "H.period"
                                              "DD.period.t"
##
                           "H.t"
##
    [7] "UD.period.t"
                                              "DD.t.i"
  [10] "UD.t.i"
                           "H.i"
                                              "DD.i.e"
##
  [13] "UD.i.e"
                           "H.e"
                                              "DD.e.five"
  [16] "UD.e.five"
                           "H.five"
                                              "DD.five.Shift.r"
       "UD.five.Shift.r" "H.Shift.r"
                                              "DD.Shift.r.o"
##
  [19]
                                              "DD.o.a"
   [22] "UD.Shift.r.o"
                           "H.o"
   [25] "UD.o.a"
                                              "DD.a.n"
                           "H.a"
                                              "DD.n.1"
   [28] "UD.a.n"
                           "H.n"
##
   [31] "UD.n.1"
                           "H.1"
                                              "DD.1.Return"
   [34] "UD.1.Return"
                           "H.Return"
                           "UD.t.i"
    [1] "UD.period.t"
                                              "UD.i.e"
    [4] "UD.e.five"
                           "UD.five.Shift.r" "UD.Shift.r.o"
##
   [7] "UD.o.a"
                           "UD.a.n"
                                              "UD.n.1"
## [10] "UD.1.Return"
```

Known Data: Histogram for DD.period.t

Known Data: Histogram for DD.t.i


```
[1] "session.id"
                           "rep"
                                              "H.period"
##
##
    [4] "DD.period.t"
                           "UD.period.t"
                                              "H.t"
   [7] "DD.t.i"
                           "UD.t.i"
                                              "H.i"
##
## [10] "DD.i.e"
                           "UD.i.e"
                                              "H.e"
## [13] "DD.e.five"
                           "UD.e.five"
                                              "H.five"
   [16] "DD.five.Shift.r" "UD.five.Shift.r"
                                              "H.Shift.r"
                           "UD.Shift.r.o"
                                              "H.o"
   [19] "DD.Shift.r.o"
   [22] "DD.o.a"
                           "UD.o.a"
                                              "H.a"
                           "UD.a.n"
                                              "H.n"
   [25] "DD.a.n"
   [28] "DD.n.1"
                           "UD.n.1"
                                              "H.1"
##
   [31] "DD.1.Return"
                           "UD.1.Return"
                                              "H.Return"
    [1] "DD.period.t"
                           "DD.t.i"
                                              "DD.i.e"
##
##
    [4] "DD.e.five"
                           "DD.five.Shift.r" "DD.Shift.r.o"
   [7] "DD.o.a"
                           "DD.a.n"
                                              "DD.n.1"
##
## [10] "DD.1.Return"
```

Known Data: Histogram for DD.period.t

Known Data: Histogram for DD.t.i

rep

rep is the count of an individual's passcode entries within a session. It takes values from 1 repetition to maximum 50 repetition. There can be different possibilities for a user to enter passcode multiple times in a session: the user types a passcode and leaves the system for some time, the system gets locked if not used for a particular time, so the next time user wants to use the system within same session he needs to enter the passcode again. Other possibility is, user enters wrong passcode and tried multiple times when is a session or the system is designed in a way that it asks user to enter passcode randomly. Since rep variable doesn't carry useful information in predicting user in a session based on typing speed also we are not provided with clear details about rep variable in the document, therefore we decided to not include this variable in our model building process.

Let us look at the three scatter plots for all users: hold time for period key vs hold time of t key, hold time of five key vs hold time of capital r key and hold time of l key vs hold time of return key. We can see a strong positive linear relationship among the variables and some observations belonging to different classes overlap. The 51 different users are not easily distuniguishable.

Let us look at the hold time distribution of keys period,t,Shift+r, five, a ,Return for three different users s002, s003, s004. All plots below show gaussian distribution of hold times which is a good indication and we can clearly see some difference in hold time speed of different users. Some graphs show significant difference like hold time for keys period, Shift+r,a and return key.

From above graphs we can clearly say that there is difference in typing speed of 3 users. In our dataset we have 51 different users. To look at the difference in distribution of hold times for passcode of all 51 users, we used density ridge plots. We saw in previous scatter plot that for few users timing were overlapping but we are not sure if they have the same timing. From following plots we can clearly see that none of the users have same time distribution and we can say that all 51 users have different time speed for typing passcode.

NOTE: We looked at the distribution plots of all keys in passcode for 51 different users and decided to include only 2 plots in the report. Code for all plots are in rmd file.

Next we want to see if the sessionIndex makes any difference in the typing speed of 51 different users. We performed t tests of H variables (since they have normal distribution, we assumed equal variance between the two groups, reps in each group are small) to see if the hold time of keys in passcode is different for a user in session 7 and session 8. As explained before, out of 51 users only 22 users have information in both the sessions hence we will look for only these 22 users. Below is the hypothesis testing stated:

Null hypothesis: The true mean of a user in session 7 and session 8 are same.

Alternative hypethesis: The true mean of a user in session 7 and session 8 are different.

user005 user7

```
## H.period
             "0.225579834416413"
                                   "0.0708745587538702"
## H.t
             "0.545272645204014"
                                   "0.572557460555183"
                                   "0.0645041952352453"
## H.i
             "0.476874256989693"
             "0.021307921198305"
## H.e
                                   "0.577592793967863"
## H.five
             "0.0924234540223777" "0.509625732677777"
## H.Shift.R "0.306290817106458"
                                   "0.434301719766681"
## H.o
             "0.0527723432570757" "0.381313646237267"
## H.a
             "0.540384306124343"
                                   "0.247488611171574"
## H.n
             "0.279285596854102"
                                   "0.573592323013656"
             "0.0145530560866159" "0.00135371518612777"
## H.1
## H.Return
             "0.833146451991467"
                                   "0.31824673899244"
             user8
                                     user12
## H.period
             "0.401363950778124"
                                     "0.333914890073025"
                                     "0.2866039231881"
## H.t
             "0.139962571246605"
## H.i
             "0.0134458980339771"
                                     "0.0734554273963594"
## H.e
             "0.812484220387221"
                                     "0.207009300737539"
             "0.876418994616681"
## H.five
                                     "0.154206395273636"
## H.Shift.R "9.82159936634696e-06"
                                    "0.817933222590262"
             "0.00413147536316708"
                                     "0.467881782527705"
## H.o
## H.a
             "0.334021173414902"
                                     "0.699722274707588"
## H.n
             "0.00047081789411014"
                                     "0.435506212167137"
## H.1
             "0.0463089227299904"
                                     "0.0853198565691602"
## H.Return "2.18624820878992e-05" "0.609600138471278"
             user20
                                     user21
## H.period
             "0.00844321461338779"
                                     "0.617655349248006"
## H.t
             "0.00162579780525935"
                                     "0.892034810273689"
## H.i
             "8.42290761764362e-05"
                                     "0.48658576883861"
             "9.52093647610005e-05"
## H.e
                                    "0.838600690437507"
             "0.368844455540884"
                                     "0.255342006414334"
## H.five
## H.Shift.R "0.0116106046162763"
                                     "0.0101974626807535"
## H.o
             "9.63330022373983e-05"
                                     "0.666246025886427"
## H.a
             "1.34198664346111e-09"
                                     "0.715201029667283"
## H.n
             "0.0592615467594185"
                                     "0.954180656467369"
             "0.680544021991278"
## H.1
                                     "0.545242093499037"
## H.Return
             "0.000542824417687539" "0.0855340189261078"
##
             user24
                                     user26
## H.period
             "1.65823102897691e-05"
                                    "0.00352475381397672"
## H.t
             "0.189375339061276"
                                     "0.000254560671205553"
## H.i
             "0.148053770480619"
                                     "0.0113793245601963"
## H.e
             "0.00758490362298845"
                                     "0.00529999515582406"
                                     "0.000356557781545018"
## H.five
             "0.724475636080838"
## H.Shift.R "0.343773727824329"
                                     "0.0285097458158995"
## H.o
             "0.143579471882819"
                                     "0.000337029920072124"
             "0.410567997362882"
                                     "0.0499654584138109"
## H.a
## H.n
             "0.378405752240207"
                                     "4.67130042178878e-05"
             "0.000180407476444732"
## H.1
                                     "0.0361175742239147"
## H.Return
             "0.0404869489922391"
                                     "2.32022320147722e-05"
##
             user28
                                     user29
## H.period
             "0.166661973620788"
                                     "0.810744140336191"
## H.t
             "0.0550667357568428"
                                     "0.894315610148951"
## H.i
             "0.000711812474928928"
                                     "0.111389141503794"
             "0.847163362508696"
## H.e
                                     "0.745851937866652"
## H.five
             "0.323317374418668"
                                     "0.030873394042799"
## H.Shift.R "0.430445257732535"
                                     "0.0839103090988839"
```

```
## H.o
             "0.162842545081353"
                                     "0.473780770516468"
## H.a
             "0.0862600616241837"
                                     "0.27065513975624"
## H.n
             "0.000102608201388674"
                                     "0.232729794464214"
             "0.00632890919860983"
## H.1
                                     "0.0630656311053334"
## H.Return
             "0.562727944295733"
                                     "0.0330853053124272"
##
             user34
                                    user36
## H.period
             "0.128712238556508"
                                    "1.01620476994585e-06"
## H.t
             "0.475706469383037"
                                    "0.146212980569398"
## H.i
             "0.408814462127697"
                                    "0.0135582142372756"
             "0.946886215006021"
## H.e
                                    "0.532597596116292"
## H.five
             "0.852986886758542"
                                    "0.0295664398959654"
## H.Shift.R "0.185055475139817"
                                    "0.02038919381454"
## H.o
             "0.00772899813547368" "0.0239448533855768"
## H.a
             "0.489089064009973"
                                    "0.822091558085858"
## H.n
             "0.550513665289851"
                                    "0.042140904440006"
## H.1
             "0.980235118187839"
                                    "0.0161130405048637"
             "0.0766366981477668"
                                    "0.000895162562500594"
## H.Return
##
             user39
                                    user42
                                                           user43
             "0.850255215335797"
                                    "0.0646206504117537"
                                                           "0.57133489283432"
## H.period
## H.t
             "0.224381430915735"
                                    "0.353229656310427"
                                                           "0.604635180671272"
## H i
             "0.0444722481932356"
                                    "0.00379306757300097" "0.495183872620964"
## H.e
             "0.951015682785717"
                                                           "0.514575719273243"
                                    "0.371261404364565"
             "0.660125679932164"
                                                           "0.128655233351432"
## H.five
                                    "0.35568141353991"
## H.Shift.R "0.00497412535234979" "0.0179873840735458"
                                                           "0.261090630324435"
## H.o
             "0.00480774793516476" "0.230416303753862"
                                                           "0.686560099634664"
## H.a
             "0.760693758620665"
                                    "0.025073281839468"
                                                           "0.59476226806888"
## H.n
             "0.532461259664645"
                                    "0.703658414012703"
                                                           "0.234484365067517"
             "0.479574624730272"
## H.1
                                    "0.903009450237153"
                                                           "0.882438455918992"
             "0.870791191642201"
                                                           "0.0580067971553835"
## H.Return
                                    "0.326937778915909"
##
             user49
                                  user50
                                                        user51
             "0.286719454245317" "0.241955598797504"
## H.period
                                                        "0.197131165803971"
## H.t
             "0.85046045184996"
                                  "0.694385931659781"
                                                        "0.187092313868757"
                                                        "2.27216647878969e-05"
## H.i
             "0.108352104058063" "0.288225127744256"
             "0.571752835493471" "0.675431243798576"
                                                        "0.851727916326838"
## H.e
## H.five
             "0.313712207235443" "0.0146981215717976"
                                                       "0.0169020857603508"
## H.Shift.R "0.217575704188229" "0.677842756274673"
                                                        "0.349890630839619"
## H.o
             "0.805238816330714" "0.567196139185435"
                                                        "0.00867665816667034"
## H.a
             "0.89687850094998"
                                  "0.0128310968591037" "6.96833322103789e-05"
## H.n
             "0.173833532838457" "0.9319657581373"
                                                        "0.0860166000651058"
## H.1
             "0.206706886409095" "0.154536857809193"
                                                        "0.00432087690481967"
                                                        "0.41112727943859"
## H.Return
             "0.22883184819255"
                                  "0.654336973083915"
##
             user52
                                     user53
                                                           user56
## H.period
             "0.466628782321676"
                                     "0.385895674077047"
                                                           "0.177236940890561"
                                     "0.457725910881009"
                                                           "0.779770872670086"
## H.t
             "0.0627798813073075"
## H.i
             "0.0352768051730583"
                                     "0.613285279287619"
                                                           "0.0896661490318603"
             "0.000231249531536023"
                                     "0.115191833272705"
                                                           "0.745836719250522"
## H.e
## H.five
             "0.0030753237890513"
                                     "0.474972710674768"
                                                           "0.350143450261018"
                                     "0.0348872477893859" "0.28838942168223"
## H.Shift.R "0.00019356971662815"
## H.o
             "0.00536982300136739"
                                     "0.91434447794166"
                                                           "0.952611378644901"
             "0.424000319014745"
                                     "0.521742867892809"
## H.a
                                                           "0.396817054596021"
## H.n
             "0.186752472747405"
                                     "0.771885001540263"
                                                           "0.385718665854819"
## H.1
             "0.634069011499597"
                                     "0.508921162134625"
                                                           "0.946364246744355"
## H.Return "0.794953232631625"
                                     "0.932185085132435"
                                                           "0.158845725728041"
##
```

```
## H.period
              "4"
## H.t
              "4"
## H.i
## H.e
              "4"
              "4"
## H.five
## H.Shift.R "4"
              "4"
## H.o
              "4"
## H.a
              "4"
## H.n
              "4"
## H.1
              "4"
## H.Return
```

Two data samples are independent if they come from unrelated populations and the samples does not affect each other. Since most of the p-values are greater than 0.05, we fail to reject the null hypothesis and conclude that sessionIndex 7 and 8 does not make any difference in typing speed of users. Since session 7 and session 8 does not make any difference in typing measurements we decided to not include this variable in our model building.

1: Our main goal was to design a good classifier. So, before jumping into directly fitting all the predictors into different classifier methods. We decided to check the correlation between predictors. And, hence the following chart obtained.

By looking at the above correlation chart, we can easily see that some predictors are highly correlated with each other. For example, the correlation coefficient between **DD.period.t** and **UD.period.t** is 0.98, hence these are highly correlated predictors. In fact, there are other 9 pairs of predictors which are behaving the same nature. Hence, multicolinearity is expected if all the predictors are used to build a classifier.

2: Another method we deployed to obtain importance of predictors is we produced box plots between one predictor versus all the classes on a single plot. And, hence we produced 31 those plots. As to show those 31 boxplots in this report we felt unnecessary, and hence we decided to show following 4 plots.

By looking at the above plots we can clearly see that there is a clear distinction between the most of the users to their typing speeds when they were helding down the password keys \mathbf{period} and \mathbf{t} . However, there is not clear distinction between the most of the users on such that the time between pressing down the . key to the time to press down the \mathbf{t} key, and the time between the . key coming up to the time to press down the \mathbf{t} key. We obtained the same patterns as mentioned in preceding sentences. Hence, we somehow convienced that those \mathbf{H} predictors would play the significant roles to build a classifier.

3 Obtaining Classifiers

We used createDataPartition method from caret package which creates balanced splits of the data. The random sampling occurs within each class and it preserves the overall class distribution of the data. Below table shows 51 classes and count of observations in each class for original data, train data and split data.

i: Multinomial logistics regression

Multinomial logistic regression is a classification method used for multiclass classification problems where the dependent variable is nominal which in our case is subject variable having 51 classes. We are trying to make predictions based on linear combinations of the observed features including all the available variables, only H variables and combination of H and UD variables. We preented Model accuracy and class specific accuracy in our analysis. The multinomial logistics Model accuracy is presented in Table 1 below:

Table 1: Accuracy for GLM Model with H predictors only:

Model	Methods	Accuracy
Model	Methods	Accuracy
Glm using multinom function	Train	0.848987108655617
Glm using multinom function	Test	0.776811594202899
Glm using multinom function	5-fold	0.782113

The model accuracy on test dataset achieved is 77.68116%. We tried 5-fold cross validation approach to look for any improvements in model performance. The model accuracy improved slightly, and it is reported as 78.2113%. The class S054 have the lowest class specific accuracy of 42.86%, originally it had 14 reps and it predicted only 6. Moreover, we can see most of the class specific accuracy is low. Hence we can conclude that multinomial logistics model performance tends to decrease for the response variable with more than 2 classes. Next we will look how LDA performs, since it is a popular method for multi-class classification problems with more than 2 classes.

ii: LDA

Linear Discriminate Analysis (LDA) is a method that uses a linear combination of the observed variables to separate the observations into 2 (or more) classes. A key feature of the LDA is the assumption that the distribution of each individual class type is normal. The method for linear discriminate analysis was conducted using the "lda" function from the "MASS" library in R. The same basic structure was used for model building and accuracy estimating. The accuracy results are presented in Table 2 below.

Test accuracy for LDA model with H predictors only:

Table 2: Accuracy Table for LDA having only H predictors:

Model	Method	Accuracy
LDA having only H predictors	Train	0.818600368324125
LDA having only H predictors	Test	0.815942028985507
LDA having only H predictors	LOOCV	0.810380645177326
LDA having only H predictors	5-fold	0.811373873873874

From Table 2, we observed that the test accuracy (81.6%) performs slightly better than LOOVC (81%) and k-fold (81.1%). With regards to the subject specific accuracy, the model performs well on the subject (s0011) with the lowest rep of 4. The model correctly predicted 3 out of 4 reps (75%) in s0011. This shows that the model is performing well in terms of predicting small reps

iii: LDA Model with H and UD predictors

Table 3: Accuracy for LDA having only H and UD predictors:

Model	Method	Accuracy
LDA having only H and UD predictors	Train	0.901473296500921
LDA having only H and UD predictors	Test	0.879710144927536
LDA having only H and UD predictors	LOOCV	0.880673834502745
LDA having only H and UD predictors	5-fold	0.873873873873874

Table 3 above displayed the accuracy rate of LDA model with H and UD predictors only. It showed that the LOOCV is performing well in term of overall accuracy (88.1%) as compared to test accuracy and K-fold approach. The subject specific accuracy in Appendix showed that most of the subject specific accuracy are very high with some correctly predicting all the reps within a subject especially for s010, s017, s022, s024, s025 obtaining 100% subject specific accuracy rate. This shows that the model is performing well.

iv: Implementation of PCA on LDA

The scree plot for PCA can be obtained as:

By looking at the scree plot we can say that 21 principle components have explained almost 100% variablity on the data. Hence using 21 principle components for further analysis.

[1] 0.09363296

[1] 0.1426554

Table 4: Test accuracy for PCA on LDA model

Model	Method	Accuracy
Applying PCA on LDA Applying PCA on LDA	Train Test	$\begin{array}{c} 0.0936329588014981 \\ 0.142655367231638 \end{array}$

V: Bagging and Random Forest using all predictors

Vi: Bagging

Bagging involves creating multiple copies of the original training data set using the bootstrap, fitting a separate decision tree on individual copy, and then combining all the trees in order to create a single predictive model. In bagging, each tree is built on a bootstrap data set which is independent of the other trees. Generally, it considers m = p (number of predictors in the model). Implementing a bagging model on the train dataset and assessing the training and testing accuracy, k-fold and loovy yields the output shown in Table 4 below.

Table 5: Accuracy for bagging can be given as:

Model	Method	Accuracy
Bagging having all predictors	Train	1
Bagging having all predictors	Test	0.921739130434783
Bagging having all predictors	LOOCV	0.91441441
Bagging having all predictors	5-fold	0.939708510982033

Table 4 displayed the accuracy rate of model with bagging. The k-fold approach appears to be performing well in term of overall accuracy (93.8%) as compared to test accuracy (92.17%) and LOOCV approach (91.44%). The subject specific accuracy in the bagging model seems to be performing better than the LD model, with greater proportion of the subject specific accuracy being 100%. This model performs better than LDA model with H and UD predictors.

Vi: Random Forest

Random Forest is an ensemble model that constructs a number of decision trees at training time and output the class that is the mode of the classes output by individual trees. It basically averages the predictions made by tree models to make predictions. Random Forest gives more improved prediction compared to boosting. It considers the important variables first by building randomly different tree models. It considers $\mathbf{m} = \operatorname{sqrt}(\mathbf{p})$ in the place of mtry for random forests of classification trees, where mtry is number of predictors in the model. Implementing a random forest model on the train dataset and assessing the training and testing accuracy of the model yields the output shown in Table below.

Table 6: Accuracy for Random forest model:

Model	Method	Accuracy
Rf having all predictors	Train	1
Rf having all predictors	Test	0.957971014492754
Rf having all predictors	K-fold	0.782094362962576
Rf having all predictors	LOOCV	0.96171171

In Table 5 above, it can be observed that loov method records the highest accuracy rate of 96.2% compared to test accuracy (96%). K-fold performed below test and loov with 78.2% accuracy rate. The subject specific accuracy in the random forest model seems to be performing well with majority of the subjects correctly predicting the reps in each subject.

Vii: Boosting

Unlike bagging, in boosting the subset creation is not random and depends upon the performance of the previous models: every new subsets contains the elements that were (likely to be) misclassified by previous models. Hence, in boosting, the trees are grown sequentially: that is each tree is grown using information

from previously grown trees. Boosting does not involve bootstrap sampling; instead each tree is fit on a modified version of the original data set.

[1] 0.0893186

[1] 0.1768116

Table 7: Test accuracy for boosting model

Model	Method	Accuracy
Bagging having all predictors	Train	0.0000-00000000
Bagging having all predictors	Test	0.17681159420289

In Table 6, overall accuracy for test data is 78%, which is quite lower than random forest model and bagging model. The class S054 have the lowest class specific accuracy of 42.86%, originally it had 14 reps and it predicted only 6. Moreover, we can see most of the class specific accuracy is low. Hence we can conclude that multinomial logistics model performance tends to decrease for the response variable with more than 2 classes. Next we will look how LDA performs, since it is a popular method for multi-class classification problems with more than 2 classes.

Viii:SVM Full model

Table 8: Test accuracy for SVM full model

Models	Methods	Accuracy
SVM using linear kernel	Train Accuray	97.4234
SVM using linear kernel	Test Accuracy	85.29412
SVM using poly kernel	Train Accuray	97.4234
SVM using poly kernel	Test Accuracy	85.29412
SVM using radial kernel	Train Accuray	99.3036
SVM using radial kernel	Test Accuracy	88.82353

Ix: SVM having H and UD:

SVM with kernel value radial performed well compared to SVM kernel values linear and poly. There is not much difference between model accuracy of SVM linear and SVM radial, hence let us look at the class specific accuracy of predicted data using both model.

Table 9: Test accuracy for SVM having H and UD:

Models	Methods	Accuracy
SVM using radial kernel	2.99442896935933	Train
SVM using radial kernel	2.94117647058824	Test set

Selection of model:

Base on model performance (accuracy rate), our recommended model is the random forest. This is because the model possesses high overall predictive accuracy (96.2%) and subject specific prediction of individual reps are very high. The subject specific accuracy in the random forest model have majority predicting 100% of the reps in each subject. Also, considering subjects with smaller reps, the model predicted greater proportion for subjects with smaller reps.

Appendice

Class specific performances on test data using Multinom() function i.e GLM metthod:

Accuracy in each class	Correctly predicted by the model	Number of repetitions in each class on test data	
66.6666	12	18	s002
83.3333	10	12	s003
66.6666	8	12	s004
44.4444	8	18	s005
78.5714	11	14	s007
42.8571	6	14	s008
100.0000	12	12	s010
75.0000	3	4	s011
66.6666	10	15	s012
91.6666	11	12	s013
50.0000	8	16	s015
77.7777	14	18	s016
84.6153	11	13	s017
66.6666	10	15	s018
85.0000	17	20	s019
60.0000	6	10	s020
62.5000	5	8	s021
80.0000	8	10	s022
100.0000	13	13	s024
90.0000	9	10	s025
85.7142	18	21	s026
84.6153	11	13	s027
93.3333	14	15	s028
80.0000	8	10	s029
93.7500	15	16	s030
76.4705	13	17	s031
50.0000	5	10	s032
75.0000	9	12	s033
66.6666	6	9	s034
58.3333	7	12	s035
90.0000	9	10	s036
88.888	16	18	s037
92.8571	13	14	s038
100.0000	12	12	s039
75.0000	12	16	s040
100.0000	14	14	s041
66.6666	4	6	s042
87.5000	7	8	s043
88.888	16	18	s044

	Number of repetitions in each class on test data	Correctly predicted by the model	Accuracy in each class
$\overline{\mathrm{s}046}$	14	6	42.85714
s047	17	9	52.94118
s048	10	10	100.00000
s049	14	7	50.00000
s050	18	16	88.88889
s051	14	13	92.85714
s052	16	15	93.75000
s053	16	15	93.75000
s054	14	6	42.85714
s055	18	18	100.00000
s056	10	9	90.00000
s057	14	11	78.57143

Accuracy in each class vs subject for GLM

Class specific performances on test data for LDA having only H predictors:

	Number of repetitions in each class on test data	Correctly predicted by the model	Accuracy in each class
$\overline{\mathrm{s}002}$	18	16	88.88889
s003	12	10	83.33333
s004	12	8	66.66667
s005	18	14	77.77778
s007	14	10	71.42857
s008	14	7	50.00000
s010	12	12	100.00000
s011	4	3	75.00000
s012	15	13	86.66667
s013	12	10	83.33333
s015	16	10	62.50000
s016	18	15	83.33333
s017	13	13	100.00000
s018	15	11	73.33333

	Number of repetitions in each class on test data	Correctly predicted by the model	Accuracy in each class
s019	20	19	95.00000
s020	10	5	50.00000
s021	8	5	62.50000
s022	10	9	90.00000
s024	13	13	100.00000
s025	10	9	90.00000
s026	21	18	85.71429
s027	13	11	84.61538
s028	15	15	100.00000
s029	10	7	70.00000
s030	16	15	93.75000
s031	17	14	82.35294
s032	10	6	60.00000
s033	12	9	75.00000
s034	9	7	77.77778
s035	12	9	75.00000
s036	10	9	90.00000
s037	18	17	94.44444
s038	14	14	100.00000
s039	12	12	100.00000
s040	16	14	87.50000
s041	14	13	92.85714
s042	6	5	83.33333
s043	8	7	87.50000
s044	18	17	94.44444
s046	14	7	50.00000
s047	17	9	52.94118
s048	10	7	70.00000
s049	14	9	64.28571
s050	18	16	88.88889
s051	14	12	85.71429
s052	16	15	93.75000
s053	16	14	87.50000
s054	14	8	57.14286
s055	18	18	100.00000
s056	10	9	90.00000
s057	14	8	57.14286

Accuracy in each class vs subject for LDA only H predictors

Class specific performances on test data for LDA having only H and UD predictors:

	Number of repetitions in each class on test data	Correctly predicted by the model	Accuracy in each class
s002	18	16	88.88889
s003	12	9	75.00000
s004	12	10	83.33333
s005	18	15	83.33333
s007	14	12	85.71429
s008	14	10	71.42857
s010	12	12	100.00000
s011	4	3	75.00000
s012	15	14	93.33333
s013	12	11	91.66667
s015	16	11	68.75000
s016	18	17	94.44444
s017	13	13	100.00000
s018	15	14	93.33333
s019	20	19	95.00000
s020	10	9	90.00000
s021	8	7	87.50000
s022	10	10	100.00000
s024	13	13	100.00000
s025	10	10	100.00000
s026	21	18	85.71429
s027	13	12	92.30769
s028	15	15	100.00000
s029	10	8	80.00000
s030	16	16	100.00000
s031	17	13	76.47059
s032	10	7	70.00000
s033	12	10	83.33333
s034	9	9	100.00000
s035	12	8	66.66667
s036	10	10	100.00000

	Number of repetitions in each class on test data	Correctly predicted by the model	Accuracy in each class
s037	18	17	94.44444
s038	14	13	92.85714
s039	12	11	91.66667
s040	16	13	81.25000
s041	14	12	85.71429
s042	6	6	100.00000
s043	8	7	87.50000
s044	18	18	100.00000
s046	14	10	71.42857
s047	17	11	64.70588
s048	10	9	90.00000
s049	14	11	78.57143
s050	18	15	83.33333
s051	14	13	92.85714
s052	16	16	100.00000
s053	16	15	93.75000
s054	14	11	78.57143
s055	18	18	100.00000
s056	10	9	90.00000
s057	14	11	78.57143

Accuracy in each class vs subject for LDA having only H and UD predictors:

Class specific performances on test data for bagging can be given by:

	Number of repetitions in each class on test data	Correctly predicted by the model	Accuracy in each class
s002	18	18	100.00000
s003	12	10	83.33333
s004	12	11	91.66667
s005	18	16	88.88889
s007	14	11	78.57143
s008	14	13	92.85714

	Number of repetitions in each class on test data	Correctly predicted by the model	Accuracy in each class
010	12	12	100.00000
011	4	3	75.00000
012	15	14	93.33333
013	12	12	100.00000
015	16	13	81.25000
016	18	18	100.00000
017	13	13	100.00000
018	15	15	100.00000
019	20	20	100.00000
020	10	5	50.00000
021	8	8	100.00000
022	10	10	100.00000
024	13	13	100.00000
025	10	8	80.00000
026	21	20	95.23810
027	13	12	92.30769
028	15	15	100.00000
029	10	8	80.00000
030	16	16	100.00000
031	17	16	94.11765
032	10	7	70.00000
033	12	10	83.33333
034	9	6	66.66667
035	12	10	83.3333
036	10	9	90.00000
037	18	17	94.44444
038	14	14	100.00000
039	12	12	100.00000
040	16	13	81.25000
041	14	14	100.00000
042	6	6	100.00000
043	8	8	100.00000
044	18	18	100.00000
046	14	12	85.71429
$040 \\ 047$	17	13	76.47059
048	10	10	100.00000
049	10	13	92.85714
	18	18	100.00000
050			
051	$\begin{array}{c} 14\\16\end{array}$	11 16	78.57143 100.00000
052			
053	16	16	100.00000
054	14	14	100.00000
055	18	18	100.00000
056	10	9	90.00000
057	14	12	85.71429

Accuracy in each class vs subject for bagging:

Class specific performances on test data for random forest can be given by:

s002 s003 s004 s005 s007 s008 s010 s011 s012 s013 s015			
s004 s005 s007 s008 s010 s011 s012 s013 s015 s016	18	18	100.00000
s005 s007 s008 s010 s011 s012 s013 s015 s016	12	11	91.66667
s007 s008 s010 s011 s012 s013 s015 s016	12	11	91.66667
s008 s010 s011 s012 s013 s015 s016 s017	18	18	100.00000
s010 s011 s012 s013 s015 s016 s017	14	11	78.57143
s011 s012 s013 s015 s016 s017	14	13	92.85714
s012 s013 s015 s016 s017	12	12	100.00000
s013 s015 s016 s017	4	3	75.00000
s015 s016 s017	15	15	100.00000
s016 s017	12	12	100.00000
s017	16	14	87.50000
	18	18	100.00000
010	13	13	100.00000
s018	15	15	100.00000
s019	20	20	100.00000
s020	10	6	60.00000
s021	8	8	100.00000
s022	10	10	100.00000
s024	13	13	100.00000
s025	10	9	90.00000
s026	21	20	95.23810
s027	13	13	100.00000
s028	15	15	100.00000
s029	10	9	90.00000
s030	16	16	100.00000
s031	17	15	88.23529
s032	10	7	70.00000
s033	12	11	91.66667
s034	9	7	77.77778
s035	12	12	100.00000
s036	10	12	100.00000

	Number of repetitions in each class on test data	Correctly predicted by the model	Accuracy in each class
s037	18	18	100.00000
s038	14	14	100.00000
s039	12	12	100.00000
s040	16	14	87.50000
s041	14	13	92.85714
s042	6	6	100.00000
s043	8	8	100.00000
s044	18	18	100.00000
s046	14	14	100.00000
s047	17	16	94.11765
s048	10	10	100.00000
s049	14	14	100.00000
s050	18	18	100.00000
s051	14	14	100.00000
s052	16	16	100.00000
s053	16	16	100.00000
s054	14	14	100.00000
s055	18	18	100.00000
s056	10	10	100.00000
s057	14	13	92.85714

Accuracy in each class vs subject for random forest can be given by:

Class specific performances on test data for boosting can be given by:

	Number of repetitions in each class on test data	Correctly predicted by the model	Accuracy in each class
s002	18	17	94.44444
s003	12	10	83.33333
s004	12	10	83.33333
s005	18	15	83.33333
s007	14	11	78.57143
s008	14	13	92.85714

	Number of repetitions in each class on test data	Correctly predicted by the model	Accuracy in each class
s010	12	11	91.66667
s011	4	1	25.00000
s012	15	11	73.33333
s013	12	11	91.66667
s015	16	11	68.75000
s016	18	16	88.88889
s017	13	13	100.00000
s018	15	14	93.33333
s019	20	19	95.00000
s020	10	1	10.00000
s021	8	6	75.00000
s022	10	10	100.00000
s024	13	13	100.00000
s025	10	9	90.00000
s026	21	20	95.23810
s027	13	11	84.61538
s028	15	13	86.66667
s029	10	4	40.00000
s030	16	16	100.00000
s031	17	9	52.94118
s032	10	3	30.00000
s033	12	10	83.33333
s034	9	2	22.22222
s035	12	9	75.00000
s036	10	10	100.00000
s037	18	16	88.88889
s038	14	12	85.71429
s039	12	10	83.33333
s040	16	12	75.00000
s041	14	12	85.71429
s042	6	6	100.00000
s043	8	8	100.00000
s044	18	18	100.00000
s046	14	10	71.42857
s047	17	13	76.47059
s048	10	7	70.00000
s049	14	11	78.57143
s050	18	15	83.33333
s050	14	8	57.14286
s051	16	16	100.00000
s052	16	15	93.75000
s053	14	14	100.00000
s054	18	18	100.00000
s056	10	8	80.00000
s050	10	10	71.42857
1606	14	10	11.42001

Accuracy in each class vs subject for boosting can be given by:

class cpecific performance of PCA on LDA

	Number of repetitions in each class on test data	Correctly predicted by the model	Accuracy in each class
$\overline{\mathrm{s}002}$	25	23	92.00000
s003	13	11	84.61538
s004	14	11	78.57143
s005	20	19	95.00000
s007	16	14	87.50000
s008	13	10	76.92308
s010	13	12	92.30769
s011	3	2	66.66667
s012	18	15	83.33333
s013	8	5	62.50000
s015	13	12	92.30769
s016	13	11	84.61538
s017	14	14	100.00000
s018	11	9	81.81818
s019	20	20	100.00000
s020	12	9	75.00000
s021	7	6	85.71429
s022	11	11	100.00000
s024	12	12	100.00000
s025	10	9	90.00000
s026	24	21	87.50000
s027	12	10	83.33333
s028	14	13	92.85714
s029	14	9	64.28571
s030	16	16	100.00000
s031	20	14	70.00000
s032	10	4	40.00000
s033	11	11	100.00000
s034	7	6	85.71429
s035	15	11	73.33333

	Number of repetitions in each class on test data	Correctly predicted by the model	Accuracy in each class
s036	8	8	100.00000
s037	15	15	100.00000
s038	14	13	92.85714
s039	11	9	81.81818
s040	15	14	93.33333
s041	14	13	92.85714
s042	9	9	100.00000
s043	5	5	100.00000
s044	21	20	95.23810
s046	22	12	54.54545
s047	20	14	70.00000
s048	10	6	60.00000
s049	11	10	90.90909
s050	22	16	72.72727
s051	10	10	100.00000
s052	15	15	100.00000
s053	17	17	100.00000
s054	14	13	92.85714
s055	19	19	100.00000
s056	9	7	77.77778
s057	18	12	66.66667

Accuracy in each class vs subject for pca + lda

class specific performance of ${ m SVM}$

- $\mbox{\tt \#\#}$ [1] "Number of repetitions in each class on test data"
- ## [2] "Correctly predicted by the model"

	Reps of test data	Correctly predicted by the model	Accuracy in each class
s002	18	0	0.00000
s003	12	0	0.00000

	Reps of test data	Correctly predicted by the model	Accuracy in each class
s004	12	0	0.00000
s005	18	0	0.00000
s007	14	0	0.00000
s008	14	0	0.00000
s010	12	0	0.00000
s011	4	0	0.00000
s012	15	0	0.00000
s013	12	0	0.00000
s015	16	0	0.00000
s016	18	0	0.00000
s017	13	0	0.00000
s018	15	0	0.00000
s019	20	0	0.00000
s020	10	0	0.00000
s021	8	0	0.00000
s022	10	0	0.00000
s024	13	0	0.00000
s025	10	0	0.00000
s026	21	10	47.61905
s027	13	0	0.00000
s028	15	0	0.00000
s029	10	0	0.00000
s030	16	0	0.00000
s031	17	0	0.00000
s032	10	0	0.00000
s033	12	0	0.00000
s034	9	0	0.00000
s035	12	0	0.00000
s036	10	0	0.00000
s037	18	0	0.00000
s038	14	0	0.00000
s039	12	0	0.00000
s040	16	0	0.00000
s041	14	0	0.00000
s042	6	0	0.00000
s043	8	0	0.00000
s044	18	0	0.00000
s046	14	0	0.00000
s047	17	0	0.00000
s048	10	0	0.00000
s049	14	0	0.00000
s050	18	0	0.00000
s051	14	0	0.00000
s052	16	0	0.00000
s053	16	0	0.00000
s054	14	0	0.00000
s055	18	0	0.00000
s056	10	0	0.00000
s057	14	0	0.00000