IN THE SPECIFICATION

Please amend the following paragraph [0027] as follows:

The third shifter element 206 may be used to implement $\lfloor (-1)^{a_{p-1}} \cdot 2^{n-2} \rfloor$. In the illustrative example of FIG. 2, the third shifter element 206 is shown for a 5-bit shifter circuit. In this example, if a_4 is equal to "0", then the computational result is "8", which according to Table 1, requires a left shift operation by eight bit positions. If a_4 is equal to "1", then the computational result is "-8" "-1", which according to Table 1, requires a right shift operation by eight bit positions. Thus, the third shifter element 206 may be implemented to perform a left shift operation by eight bit positions if a_4 is equal to "0", and to perform a right shift operation by eight bit positions if a_4 is equal to "1". Generally speaking, the third shifter element 206 may be implemented to perform a right or left shift operation by $2^{(n-2)}$ bit positions depending on the value of a_{n-1} .