MATH 239 Tutorial 4 Problems

- 1. Prove that $\{01,011,101\}^*$ is an ambiguous expression.
- 2. Prove that $\{101, 110\}^*$ is an unambiguous expression.
- 3. Determine an unambiguous decomposition for each of the following sets of strings. Then determine the generating series of each set with respect to the length of the string.
 - (a) The set of binary strings that begin and end with the same bit.
 - (b) The set of binary strings where the length of each block of 0's is not divisible by 3.
 - (c) The set of binary strings where every block of 1's of even length cannot be followed by at least 50's.
 - (d) The set of binary strings that begins with a 1, and other than the last 2 bits, the i-th bit is different from the (i + 2)-th bit.
- 4. Let k be a fixed positive integer. Let S be the set of binary strings with no k consecutive 1's, and let b_n be the number of strings in S of length n. Prove that for $n \ge k$,

$$b_n = \sum_{i=1}^k b_{n-i}.$$

Give a combinatorial proof of this recurrence.

Additional exercises

- 1. Determine the generating series for the set of binary strings where every block of 0's cannot be followed by a block of 1's of equal or greater length.
- 2. Prove that $\{00, 101, 11\}^*$ is an unambiguous expression.
- 3. Question 4 above suggests that if S is the set of all binary strings with no 2 consecutive 1's, then the number of strings of length n satisfies the Fibonacci recurrence $b_n = b_{n-1} + b_{n-2}$ with initial conditions $b_0 = 1, b_1 = 2, b_2 = 3$. From class, the number a_n of compositions of n where each part is odd also satisfies the same recurrence, with different initial conditions $a_0 = a_1 = a_2 = 1$. By comparing the two sequences, we can then conclude that for $n \ge 0$, the number of binary strings in S with length n is equal to the number of compositions of n + 2 where each part is odd. Find a bijection between these two sets of objects.