

OfficeServ 500 Инструкция по установке

OfficeServ 500 ИНСТРУКЦИЯ ПО УСТАНОВКЕ

SAMSUNG ELECTRONICS CO. LTD.

Информация об издании

Samsung Electronics оставляет за собой право без предварительного предупреждения исправлять информацию в данном издании.

Copyright 2004

Samsung Electronics Co. Ltd.

Все права защищены. Запрещается воспроизведение любой части этого руководства в любой форме и любым способом – графическим, электронным или механическим, включая сканирование, запись на пленку, фотокопирование, использование систем воспроизведения информации — без письменного согласия издателя этого материала.

Август, 2004 г.

Предисловие

Система OfficeServ 500- это цифровая коммуникационная система, созданная как для работы в малых и средних офисах, так и для создания корпоративных сетей.

В данной инструкции представлена информация о сборке, о запуске системы и о подключении периферийных устройств.

Инструкция по установке состоит из 12 глав:

- 1. Требования к месту установки
- 2. Монтаж системы в одно/многоблочной конфигурации
- 3. Установка карт
- 4. Подготовка к запуску системы
- 5. Подключение внешних линий
- 6. Подключение внутренних телефонов
- 7. Подключение дополнительных устройств
- 8. Установка дочерних карт в системные телефоны
- 9. Программное обеспечение системы
- 10. Добавление карт
- 11. Запуск системы голосовой почты SVMi8
- 12. Описание и программирование дополнительных функций

Сопутствующая документация

Полная документация на коммуникационную систему OfficeServ 500 состоит из следующих документов:

- **Общее описание системы** содержит информацию об аппаратном обеспечении системы, ее конфигурации, основных функциях и спецификациях.
- · **Инструкция по установке** данная инструкция содержит полную информацию о сборке, подключении периферийных устройств и запуске системы.
- · **Инструкция по программированию** содержит полную информацию о программировании OfficeServ 500 с цифрового системного телефона на базе процедур MMC (Main Machine Code).

Содержание

Глава 1. ТРЕБОВАНИЯ К МЕСТУ УСТАНОВКИ	1-1
Глава 2. МОНТАЖ СИСТЕМЫ В ОДНО/МНОГОБЛОЧНОЙ КОНФИГУРАЦИИ	
Распаковка и проверка комплектации системы	2-1
Сборка системы в одноблочной конфигурации - настенная или напольная	2-2
Сборка системы в двухблочной конфигурации - напольная	2-5
Сборка системы в трехблочной конфигурации - напольная	2-7
Установка дополнительного блока	2-9
Монтаж системы в 19-дюймовую стойку	-10
Заземление2	-12
Подключение питания2	-14
Кроссировка кабелей	-16
Глава 3. УСТАНОВКА КАРТ	
Главный процессор МСР	3-1
Главный процессор МСР2	3-6
Карта сопроцессора SCP	3-8
Карта сопроцессора SCP2	3-9
Карта локального процессора LCP	-10
Карта локального процессора LCP2	-11
ESM — карта расширения коммутационного поля	-12
IPM— модуль межпроцессорной коммутации и дополнительной памяти 3-	-13
LAN — сетевая карта	-14
MISC — карта дополнительных сервисных функций	-15
SCM — карта DTMF приемника/расширения числа конференций	-17
MFM — карта дополнительных DTMF приемников	-18
RCM — карта R2MFC приемопередатчика/ЕвроАОН	-19
МОDEМ — дочерняя карта модема	-19
IOM — модуль ввода/вывода	-20
Карта ТRКВ	-21
Карта 6ТRК	-22
Карта 8ТRК	-22
Карта PRI	-22
Карта 8BSI	-23
Карта 4Е&М	-23
Карта DLI	-23
Карта 16DLI	-24
Карта SLI	-24
Карта 8SLI	-25
Карта 16SLI	-25
Карта 4BRI (S/T)	-26
Карта 8MWSLI	-26
Карта 16MWSLI	-27
Карта TEPRI	-28
Карта автосекретаря АА	
Карта голосовой почты SVMi8	
Карта голосовой почты SVMi16	

Карта VoIP мілоза ITM3	Карта 8WLI	3-35
Карты VoIP MGI1/ MGI2 3-40 Карта набора голосом VDIAL 3-43 Глава 4. ПОДГОТОВКА К ЗАПУСКУ СИСТЕМЫ 3-43 Определение количества источников питания 4-1 Системные телефоны с большим дисплеем 4-4 Подключение системы к питанию 4-5 Индикаторы карт процессоров 4-6 Проверка карт 4-7 Нумерация системы по умолчанию 4-7 Глава 5. ПОДКЛЮЧЕНИЕ ВНЕШНИХ ЛИНИЙ Аналоговые линии Е&М 5-3 Линии удаленного абонента ОРХ 5-4 Линии удаленного абонента ОРХ 5-4 Линии ISDN BRI. 5-5 Подключение WBS2 К карте 8BSI 5-8 Подключение WBS24 Combo к карте 8WLI 5-10 Глава 6. ПОДКЛЮЧЕНИЕ ВНУТРЕННИХ ТЕЛЕФОНОВ 6-1 Меры безопасности 6-1 Системные телефоны серии iDCS 6-1 Дополнительные модули iDCS AOM. 6-2 IP телефоны 6-3 Аналоговые телефоны 6-4 Домофон и электрический дверной замок 6-5 DECT базовые станции DBS 6-6 <t< td=""><td>Карта VoIP шлюза ITM3</td><td> 3-36</td></t<>	Карта VoIP шлюза ITM3	3-36
Карта набора голосом VDIAL 3-43 Глава 4. ПОДГОТОВКА К ЗАПУСКУ СИСТЕМЫ 4-1 Определение количества источников питания 4-1 Системные телефоны с большим дисплеем 4-4 Подключение системы к питанию 4-5 Индикаторы карт процессоров 4-6 Проверка карт 4-7 Нумерация системы по умолчанию 4-7 Глава 5. ПОДКЛЮЧЕНИЕ ВНЕШНИХ ЛИНИЙ 4-7 Аналоговые линии Loop Start 5-1 Соединительные линии E&M 5-3 Линии удаленного абонента OPX 5-4 Линии ISDN BRI 5-5 Подключение DBS к карте 8BSI 5-8 Подключение WBS24 Combo к карте 8WLI 5-10 Глава 6. ПОДКЛЮЧЕНИЕ ВНУТРЕННИХ ТЕЛЕФОНОВ 6-1 Меры безопасности 6-1 Системные телефоны серии iDCS 6-1 Дополнительные модули iDCS AOM 6-2 IP телефоны 6-3 Аналоговые телефоны 6-4 Домофон и электрический дверной замок 6-5 БЕСТ базовые станции DBS 6-6 Базовая станции WBS24 Combo 6	Карта VoIP MGI3	3-38
Глава 4. ПОДГОТОВКА К ЗАПУСКУ СИСТЕМЫ 4-1 Определение количества источников питания 4-1 Системные телефоны с большим дисплеем 4-5 Подключение системы к питанию 4-5 Индикаторы карт процессоров 4-6 Проверка карт 4-7 Нумерация системы по умолчанию 4-7 Глава 5. ПОДКЛЮЧЕНИЕ ВНЕШНИХ ЛИНИЙ 4-7 Аналоговые линии Loop Start 5-1 Соединительные линии Е&М 5-3 Линии удаленного абонента ОРХ 5-4 Линии ISDN BRI. 5-5 Подключение DBS к карте 8BSI 5-8 Подключение WBS24 Combo к карте 8WLI 5-10 Глава 6. ПОДКЛЮЧЕНИЕ ВНУТРЕННИХ ТЕЛЕФОНОВ 6-1 Меры безопасности 6-1 Системные телефоны серии iDCS 6-1 Дополнительные модули iDCS AOM 6-2 IP телефоны 6-3 Аналоговые телефоны 6-3 Аналоговые станции DBS 6-6 Базовая станция WBS24 Combo 6-8 Терминальное оборудование ISDN (ISDN-телефон, факс G4 и т.д.) 6-10 ГЛАВА 7. ПОДКЛЮЧЕНИЕ<	Карты VoIP MGI1/ MGI2	3-40
Определение количества источников питания 4-1 Системные телефоны с большим дисплеем 4-4 Подключение системы к питанию 4-5 Индикаторы карт процессоров. 4-6 Проверка карт — 4-7 Нумерация системы по умолчанию 4-7 Глава 5. ПОДКЛЮЧЕНИЕ ВНЕШНИХ ЛИНИЙ Аналоговые линии Loop Start 5-1 Соединительные линии E&M 5-3 Линии удаленного абонента ОРХ 5-4 Линии Е1/PRI 5-5 Линии ISDN BRI 5-6 Подключение DBS к карте 8BSI 5-8 Подключение WBS24 Combo к карте 8WLI 5-10 Глава 6. ПОДКЛЮЧЕНИЕ ВНУТРЕННИХ ТЕЛЕФОНОВ Меры безопасности 6-1 Системные телефоны серии iDCS 6-1 Дополнительные модули iDCS AOM 6-2 IP телефоны 6-3 Аналоговые телефоны дВS 6-6 Базовая станция DBS 6-6 Базовая станция WBS24 Combo 1 Траминальное оборудование ISDN (ISDN-телефон, факс G4 и т.д.) 6-10 ГЛАВА 7. ПОДКЛЮЧЕНИЕ ДОПОЛНИТЕЛЬНЫХ УСТРОЙСТВ Внешний источник музыки 7-1 Внешнее оповещение 7-2 Совместный звонок 7-3 Звонок на систему оповещения (SMDR/UCD/TRAFFIC/ALARMS) 7-4 Программирование скомпьютера 7-6 Внешняя голосовая почта/Автосекретарь 7-7 Батареи бесперебойного питания 48В 7-8 Глава 8. УСТАНОВКА ДОЧЕРНИХ КАРТ В СИСТЕМНЫЕ ТЕЛЕФОНЫ Цффровая карта серии iDCS (FKDBS) 8-1 Полнодуплексная карта iDCS (FKDBS) 8-1	Карта набора голосом VDIAL	3-43
Системные телефоны с большим дисплеем	Глава 4. ПОДГОТОВКА К ЗАПУСКУ СИСТЕМЫ	
Системные телефоны с большим дисплеем	Определение количества источников питания	4-1
Индикаторы карт процессоров. 4-6 Проверка карт. 4-7 Нумерация системы по умолчанию 4-7 Глава 5. ПОДКЛЮЧЕНИЕ ВНЕШНИХ ЛИНИЙ 4-7 Аналоговые линии Loop Start. 5-1 Соединительные линии E&M 5-3 Линии удаленного абонента OPX. 5-4 Линии ISDN BRI. 5-5 Подключение DBS к карте 8BSI. 5-8 Подключение WBS24 Combo к карте 8WLI. 5-10 Глава 6. ПОДКЛЮЧЕНИЕ ВНУТРЕННИХ ТЕЛЕФОНОВ 6-1 Меры безопасности 6-1 Системные телефоны серии iDCS 6-1 Дополнительные модули iDCS AOM. 6-2 IP телефоны 6-3 Аналоговые телефоны 6-3 Аналоговые телефоны 6-4 Домофон и электрический дверной замок 6-5 Базовая станция WBS24 Combo 6-8 Терминальное оборудование ISDN (ISDN-телефон, факс G4 и т.д.) 6-10 ГЛАВА 7. ПОДКЛЮЧЕНИЕ ДОПОЛНИТЕЛЬНЫХ УСТРОЙСТВ 8-8 Внешний источник музыки 7-1 Внешнай источник музыки 7-1 Внешнай источник музыки 7-1 Внешнай поточник музыки 7-		
Проверка карт. Нумерация системы по умолчанию 4.7 Глава 5. ПОДКЛЮЧЕНИЕ ВНЕШНИХ ЛИНИЙ Аналоговые линии Loop Start. 5.1 Соединительные линии Loop Start. 5.1 Соединительные линии E&M 5.3 Линии удаленного абонента ОРХ 5.4 Линии E1/PRI. 5.5 Линии ISDN BRI. 5.6 Подключение DBS к карте 8BSI 5.8 Подключение WBS24 Combo к карте 8WLI 5.10 Глава 6. ПОДКЛЮЧЕНИЕ ВНУТРЕННИХ ТЕЛЕФОНОВ Меры безопасности 6.1 Системные телефоны серии iDCS 6.1 Дополнительные модули iDCS AOM 6.2 IP телефоны 7.2 Домофон и электрический дверной замок 6.5 DECT базовые станции DBS 6.6 Базовая станции WBS24 Combo 6.8 Терминальное оборудование ISDN (ISDN-телефон, факс G4 и т.д.) 6.10 ГЛАВА 7. ПОДКЛЮЧЕНИЕ ДОПОЛНИТЕЛЬНЫХ УСТРОЙСТВ Внешний источник музыки 7.1 Внешнее оповещение 7.2 Совместный звонок 7.3 Звонок на систему оповещения 7.4 Программирование с компьютера 7.4 Программирование с компьютера 7.4 Программирование с компьютера 7.6 Внешняя голосовая почта/Автосекретарь 7.7 Батареи бесперебойного питания 48В 7.8 Глава 8. УСТАНОВКА ДОЧЕРНИХ КАРТ В СИСТЕМНЫЕ ТЕЛЕФОНЫ Цифровая карта серии iDCS (FKDBS) 8.1 Полнодуплексная карта iDCS (FKDBS) 8.1 Полнодуплексная карта iDCS (FKDBS) 8.1 Дочерняя цифровая карта КDB-DLI 8.2 Дочерняя цифровая карта КDB-DLI 8.2	Подключение системы к питанию	4-5
Проверка карт. Нумерация системы по умолчанию 4.7 Глава 5. ПОДКЛЮЧЕНИЕ ВНЕШНИХ ЛИНИЙ Аналоговые линии Loop Start. 5.1 Соединительные линии Loop Start. 5.1 Соединительные линии E&M 5.3 Линии удаленного абонента ОРХ 5.4 Линии E1/PRI. 5.5 Линии ISDN BRI. 5.6 Подключение DBS к карте 8BSI 5.8 Подключение WBS24 Combo к карте 8WLI 5.10 Глава 6. ПОДКЛЮЧЕНИЕ ВНУТРЕННИХ ТЕЛЕФОНОВ Меры безопасности 6.1 Системные телефоны серии iDCS 6.1 Дополнительные модули iDCS AOM 6.2 IP телефоны 7.2 Домофон и электрический дверной замок 6.5 DECT базовые станции DBS 6.6 Базовая станции WBS24 Combo 6.8 Терминальное оборудование ISDN (ISDN-телефон, факс G4 и т.д.) 6.10 ГЛАВА 7. ПОДКЛЮЧЕНИЕ ДОПОЛНИТЕЛЬНЫХ УСТРОЙСТВ Внешний источник музыки 7.1 Внешнее оповещение 7.2 Совместный звонок 7.3 Звонок на систему оповещения 7.4 Программирование с компьютера 7.4 Программирование с компьютера 7.4 Программирование с компьютера 7.6 Внешняя голосовая почта/Автосекретарь 7.7 Батареи бесперебойного питания 48В 7.8 Глава 8. УСТАНОВКА ДОЧЕРНИХ КАРТ В СИСТЕМНЫЕ ТЕЛЕФОНЫ Цифровая карта серии iDCS (FKDBS) 8.1 Полнодуплексная карта iDCS (FKDBS) 8.1 Полнодуплексная карта iDCS (FKDBS) 8.1 Дочерняя цифровая карта КDB-DLI 8.2 Дочерняя цифровая карта КDB-DLI 8.2	Индикаторы карт процессоров	4-6
Глава 5. ПОДКЛЮЧЕНИЕ ВНЕШНИХ ЛИНИЙ Аналоговые линии Loop Start. 5-1 Соединительные линии E&M 5-3 Линии удаленного абонента OPX. 5-4 Линии ISDN BRI. 5-5 Подключение DBS к карте 8BSI 5-8 Подключение WBS24 Combo к карте 8WLI 5-10 Глава 6. ПОДКЛЮЧЕНИЕ ВНУТРЕННИХ ТЕЛЕФОНОВ 6-1 Меры безопасности 6-1 Системные телефоны серии iDCS 6-1 Дополнительные модули iDCS AOM 6-2 IP телефоны 6-3 Аналоговые телефоны 6-4 Домофон и электрический дверной замок 6-5 БЕСТ базовые станции DBS 6-6 Базовая станция WBS24 Combo 6-8 Терминальное оборудование ISDN (ISDN-телефон, факс G4 и т.д.) 6-10 ГЛАВА 7. ПОДКЛЮЧЕНИЕ ДОПОЛНИТЕЛЬНЫХ УСТРОЙСТВ 7-1 Внешней оповещение 7-2 Совместный звонок 7-3 Звонок на систему оповещения 7-4 Информация о работе системы (SMDR/UCD/TRAFFIC/ALARMS) 7-4 Программирование с компьютера 7-6 Внешняя голосовая почта/Автосекретарь 7-7 Батареи бесперебо		
Аналоговые линии Loop Start	Нумерация системы по умолчанию	4-7
Соединительные линии E&M	Глава 5. ПОДКЛЮЧЕНИЕ ВНЕШНИХ ЛИНИЙ	
Линии удаленного абонента ОРХ. 5-4 Линии E1/PRI. 5-5 Линии ISDN BRI. 5-6 Подключение DBS к карте 8BSI. 5-8 Подключение WBS24 Combo к карте 8WLI 5-10 Глава 6. ПОДКЛЮЧЕНИЕ ВНУТРЕННИХ ТЕЛЕФОНОВ 6-1 Меры безопасности 6-1 Системные телефоны серии iDCS 6-1 Дополнительные модули iDCS AOM. 6-2 ІР телефоны 6-3 Аналоговые телефоны 6-3 Аналоговые телефоны 6-4 Домофон и электрический дверной замок 6-5 БЕСТ базовые станции DBS 6-6 Базовая станция WBS24 Combo 6-8 Терминальное оборудование ISDN (ISDN-телефон, факс G4 и т.д.) 6-10 ГЛАВА 7. ПОДКЛЮЧЕНИЕ ДОПОЛНИТЕЛЬНЫХ УСТРОЙСТВ Внешний источник музыки 7-1 Внешний источник музыки 7-1 Информация о работе системы (SMDR/UCD/TRAFFIC/ALARMS) 7-4 Информация о работе системы (SMDR/UCD/TRAFFIC/ALARMS) 7-4 Программирование с компьютера 7-6 Внешняя голосовая почта/Автосекретарь 7-7 Батареи бесперебойного питания 48В 7-8 <td< td=""><td>Аналоговые линии Loop Start</td><td> 5-1</td></td<>	Аналоговые линии Loop Start	5-1
Линии E1/PRI. 5-5 Линии ISDN BRI. 5-6 Подключение DBS к карте 8BSI 5-8 Подключение WBS24 Combo к карте 8WLI 5-10 Глава 6. ПОДКЛЮЧЕНИЕ ВНУТРЕННИХ ТЕЛЕФОНОВ 6-1 Меры безопасности 6-1 Системные телефоны серии iDCS 6-1 Дополнительные модули iDCS AOM. 6-2 IP телефоны 6-3 Аналоговые телефоны 6-4 Домофон и электрический дверной замок 6-5 DECT базовые станции DBS 6-6 Базовая станция WBS24 Combo 6-8 Терминальное оборудование ISDN (ISDN-телефон, факс G4 и т.д.) 6-10 ГЛАВА 7. ПОДКЛЮЧЕНИЕ ДОПОЛНИТЕЛЬНЫХ УСТРОЙСТВ Внешний источник музыки 7-1 Внешнее оповещение 7-2 Совместный звонок 7-3 Звонок на систему оповещения 7-4 Программирование с компьютера 7-6 Внешняя голосовая почта/Автосекретарь 7-7 Батареи бесперебойного питания 48В. 7-8 Глава 8. УСТАНОВКА ДОЧЕРНИХ КАРТ В СИСТЕМНЫЕ ТЕЛЕФОНЫ Цифровая карта серии iDCS (FKDBD) Аналоговая карта серии iDCS (FKDBD) 8-1	Соединительные линии Е&М	5-3
Линии ISDN BRI. 5-6 Подключение DBS к карте 8BSI 5-8 Подключение WBS24 Combo к карте 8WLI 5-10 Глава 6. ПОДКЛЮЧЕНИЕ ВНУТРЕННИХ ТЕЛЕФОНОВ 6-1 Меры безопасности 6-1 Системные телефоны серии iDCS 6-1 Дополнительные модули iDCS AOM 6-2 IP телефоны 6-3 Аналоговые телефоны 6-4 Домофон и электрический дверной замок 6-5 DECT базовые станции DBS 6-6 Базовая станция WBS24 Combo 6-8 Терминальное оборудование ISDN (ISDN-телефон, факс G4 и т.д.) 6-10 ГЛАВА 7. ПОДКЛЮЧЕНИЕ ДОПОЛНИТЕЛЬНЫХ УСТРОЙСТВ Внешний источник музыки 7-1 Внешнее оповещение 7-2 Совместный звонок 7-3 Звонок на систему оповещения 7-4 Информация о работе системы (SMDR/UCD/TRAFFIC/ALARMS) 7-4 Программирование с компьютера 7-6 Внешняя голосовая почта/Автосекретарь 7-7 Батареи бесперебойного питания 48В. 7-8 Глава 8. УСТАНОВКА ДОЧЕРНИХ КАРТ В СИСТЕМНЫЕ ТЕЛЕФОНЫ Цифровая карта серии iDCS (FKDBD) Аналоговая карта серии iDCS (FKDBD)	Линии удаленного абонента ОРХ	5-4
Подключение DBS к карте 8BSI. 5-8 Подключение WBS24 Combo к карте 8WLI 5-10 Глава 6. ПОДКЛЮЧЕНИЕ ВНУТРЕННИХ ТЕЛЕФОНОВ Меры безопасности 6-1 Системные телефоны серии iDCS 6-1 Дополнительные модули iDCS AOM 6-2 IP телефоны 6-3 Аналоговые телефоны 6-4 Домофон и электрический дверной замок 6-5 DECT базовые станции DBS 6-6 Базовая станция WBS24 Combo 6-8 Терминальное оборудование ISDN (ISDN-телефон, факс G4 и т.д.) 6-10 ГЛАВА 7. ПОДКЛЮЧЕНИЕ ДОПОЛНИТЕЛЬНЫХ УСТРОЙСТВ Внешний источник музыки 7-1 Внешнее оповещение 7-2 Совместный звонок 7-3 Звонок на систему оповещения 7-4 Информация о работе системы (SMDR/UCD/TRAFFIC/ALARMS) 7-4 Программирование с компьютера 7-6 Внешняя голосовая почта/Автосекретарь 7-7 Батареи бесперебойного питания 48В 7-8 Глава 8. УСТАНОВКА ДОЧЕРНИХ КАРТ В СИСТЕМНЫЕ ТЕЛЕФОНЫ Цифровая карта серии iDCS (FKDBS) 8-1 Полнодуплексная карта iDCS (FKDBS) 8-1 Дочерняя цифровая карта КDB-DLI 8-2 Дочерняя цифровая карта КDB-DLI 8-2		
Подключение WBS24 Combo к карте 8WLI 5-10 Глава 6. ПОДКЛЮЧЕНИЕ ВНУТРЕННИХ ТЕЛЕФОНОВ Меры безопасности 6-1 Системные телефоны серии iDCS 6-1 Дополнительные модули iDCS AOM 6-2 IP телефоны 6-3 Аналоговые телефоны 6-4 Домофон и электрический дверной замок 6-5 DECT базовые станции DBS 6-6 Базовая станция WBS24 Combo 6-8 Терминальное оборудование ISDN (ISDN-телефон, факс G4 и т.д.) 6-10 ГЛАВА 7. ПОДКЛЮЧЕНИЕ ДОПОЛНИТЕЛЬНЫХ УСТРОЙСТВ Внешний источник музыки 7-1 Внешнее оповещение 7-2 Совместный звонок 7-3 Звонок на систему оповещения 7-4 Информация о работе системы (SMDR/UCD/TRAFFIC/ALARMS) 7-4 Программирование с компьютера 7-6 Внешняя голосовая почта/Автосекретарь 7-7 Батареи бесперебойного питания 48В 7-8 Глава 8. УСТАНОВКА ДОЧЕРНИХ КАРТ В СИСТЕМНЫЕ ТЕЛЕФОНЫ Цифровая карта серии iDCS (FKDBD) 8-1 Аналоговая карта серии iDCS (FKDBS) 8-1 Полнодуплексная карта iDCS (FKDBF) 8-1 Дочерняя цифровая карта KDB-DLI 8-2 Дочерняя цифровая карта KDB-DLI 8-2	Линии ISDN BRI	5-6
Глава 6. ПОДКЛЮЧЕНИЕ ВНУТРЕННИХ ТЕЛЕФОНОВ Меры безопасности 6-1 Системные телефоны серии iDCS 6-1 Дополнительные модули iDCS AOM 6-2 IP телефоны 6-3 Аналоговые телефоны 6-4 Домофон и электрический дверной замок 6-5 DECT базовые станции DBS 6-6 Базовая станция WBS24 Combo 6-8 Терминальное оборудование ISDN (ISDN-телефон, факс G4 и т.д.) 6-10 ГЛАВА 7. ПОДКЛЮЧЕНИЕ ДОПОЛНИТЕЛЬНЫХ УСТРОЙСТВ Внешний источник музыки 7-1 Внешнее оповещение 7-2 Совместный звонок 7-3 Звонок на систему оповещения 7-4 Информация о работе системы (SMDR/UCD/TRAFFIC/ALARMS) 7-4 Программирование с компьютера 7-6 Внешняя голосовая почта/Автосекретарь 7-7 Батареи бесперебойного питания 48В 7-8 Глава 8. УСТАНОВКА ДОЧЕРНИХ КАРТ В СИСТЕМНЫЕ ТЕЛЕФОНЫ Цифровая карта серии iDCS (FKDBS) 8-1 Аналоговая карта серии iDCS (FKDBS) 8-1 Полнодуплексная карта карта КDB-DLI 8-2 Дочерняя цифровая карта КDB-DLI 8-2 Дочерняя цифровая карта КD	Подключение DBS к карте 8BSI	5-8
Глава 6. ПОДКЛЮЧЕНИЕ ВНУТРЕННИХ ТЕЛЕФОНОВ Меры безопасности 6-1 Системные телефоны серии iDCS 6-1 Дополнительные модули iDCS AOM 6-2 IP телефоны 6-3 Аналоговые телефоны 6-4 Домофон и электрический дверной замок 6-5 DECT базовые станции DBS 6-6 Базовая станция WBS24 Combo 6-8 Терминальное оборудование ISDN (ISDN-телефон, факс G4 и т.д.) 6-10 ГЛАВА 7. ПОДКЛЮЧЕНИЕ ДОПОЛНИТЕЛЬНЫХ УСТРОЙСТВ Внешний источник музыки 7-1 Внешнее оповещение 7-2 Совместный звонок 7-3 Звонок на систему оповещения 7-4 Информация о работе системы (SMDR/UCD/TRAFFIC/ALARMS) 7-4 Программирование с компьютера 7-6 Внешняя голосовая почта/Автосекретарь 7-7 Батареи бесперебойного питания 48В 7-8 Глава 8. УСТАНОВКА ДОЧЕРНИХ КАРТ В СИСТЕМНЫЕ ТЕЛЕФОНЫ Цифровая карта серии iDCS (FKDBS) 8-1 Аналоговая карта серии iDCS (FKDBS) 8-1 Полнодуплексная карта карта КDB-DLI 8-2 Дочерняя цифровая карта КDB-DLI 8-2 Дочерняя цифровая карта КD	Подключение WBS24 Combo к карте 8WLI	5-10
Системные телефоны серии iDCS 6-1 Дополнительные модули iDCS AOM. 6-2 IP телефоны 6-3 Аналоговые телефоны 6-4 Домофон и электрический дверной замок 6-5 DECT базовые станции DBS 6-6 Базовая станция WBS24 Combo 6-8 Терминальное оборудование ISDN (ISDN-телефон, факс G4 и т.д.) 6-10 ГЛАВА 7. ПОДКЛЮЧЕНИЕ ДОПОЛНИТЕЛЬНЫХ УСТРОЙСТВ Внешний источник музыки 7-1 Внешнее оповещение 7-2 Совместный звонок 7-3 Звонок на систему оповещения 7-4 Информация о работе системы (SMDR/UCD/TRAFFIC/ALARMS) 7-4 Программирование с компьютера 7-6 Внешняя голосовая почта/Автосекретарь 7-7 Батареи бесперебойного питания 48В 7-8 Глава 8. УСТАНОВКА ДОЧЕРНИХ КАРТ В СИСТЕМНЫЕ ТЕЛЕФОНЫ Цифровая карта серии iDCS (FKDBD) 8-1 Аналоговая карта серии iDCS (FKDBS) 8-1 Полнодуплексная карта iDCS (FKDBF) 8-1 Дочерняя цифровая карта KDB-DLI 8-2 Дочерняя цифровая карта KDB-SLI 8-2	·	
Дополнительные модули iDCS AOM. 6-2 IP телефоны 6-3 Аналоговые телефоны 6-4 Домофон и электрический дверной замок 6-5 DECT базовые станции DBS 6-6 Базовая станция WBS24 Combo 6-8 Терминальное оборудование ISDN (ISDN-телефон, факс G4 и т.д.) 6-10 ГЛАВА 7. ПОДКЛЮЧЕНИЕ ДОПОЛНИТЕЛЬНЫХ УСТРОЙСТВ Внешний источник музыки 7-1 Внешнее оповещение 7-2 Совместный звонок 7-3 Звонок на систему оповещения 7-4 Информация о работе системы (SMDR/UCD/TRAFFIC/ALARMS) 7-4 Программирование с компьютера 7-6 Внешняя голосовая почта/Автосекретарь 7-7 Батареи бесперебойного питания 48В. 7-8 Глава 8. УСТАНОВКА ДОЧЕРНИХ КАРТ В СИСТЕМНЫЕ ТЕЛЕФОНЫ Цифровая карта серии iDCS (FKDBD) 8-1 Аналоговая карта серии iDCS (FKDBF). 8-1 Дочерняя цифровая карта КDB-DLI 8-2 Дочерняя цифровая карта КDB-DLI 8-2	Меры безопасности	6-1
Дополнительные модули iDCS AOM. 6-2 IP телефоны 6-3 Аналоговые телефоны 6-4 Домофон и электрический дверной замок 6-5 DECT базовые станции DBS 6-6 Базовая станция WBS24 Combo 6-8 Терминальное оборудование ISDN (ISDN-телефон, факс G4 и т.д.) 6-10 ГЛАВА 7. ПОДКЛЮЧЕНИЕ ДОПОЛНИТЕЛЬНЫХ УСТРОЙСТВ Внешний источник музыки 7-1 Внешнее оповещение 7-2 Совместный звонок 7-3 Звонок на систему оповещения 7-4 Информация о работе системы (SMDR/UCD/TRAFFIC/ALARMS) 7-4 Программирование с компьютера 7-6 Внешняя голосовая почта/Автосекретарь 7-7 Батареи бесперебойного питания 48В. 7-8 Глава 8. УСТАНОВКА ДОЧЕРНИХ КАРТ В СИСТЕМНЫЕ ТЕЛЕФОНЫ Цифровая карта серии iDCS (FKDBD) 8-1 Аналоговая карта серии iDCS (FKDBF). 8-1 Дочерняя цифровая карта КDB-DLI 8-2 Дочерняя цифровая карта КDB-DLI 8-2	·	
IP телефоны 6-3 Аналоговые телефоны 6-4 Домофон и электрический дверной замок 6-5 DECT базовые станции DBS 6-6 Базовая станция WBS24 Combo 6-8 Терминальное оборудование ISDN (ISDN-телефон, факс G4 и т.д.) 6-10 ГЛАВА 7. ПОДКЛЮЧЕНИЕ ДОПОЛНИТЕЛЬНЫХ УСТРОЙСТВ 8 Внешний источник музыки 7-1 Внешнее оповещение 7-2 Совместный звонок 7-3 Звонок на систему оповещения 7-4 Информация о работе системы (SMDR/UCD/TRAFFIC/ALARMS) 7-4 Программирование с компьютера 7-6 Внешняя голосовая почта/Автосекретарь 7-7 Батареи бесперебойного питания 48В 7-8 Глава 8. УСТАНОВКА ДОЧЕРНИХ КАРТ В СИСТЕМНЫЕ ТЕЛЕФОНЫ Цифровая карта серии iDCS (FKDBD) 8-1 Аналоговая карта серии iDCS (FKDBS) 8-1 Полнодуплексная карта iDCS (FKDBF) 8-1 Дочерняя цифровая карта KDB-DLI 8-2 Дочерняя цифровая карта KDB-SLI 8-2		
Аналоговые телефоны6-4Домофон и электрический дверной замок6-5DECT базовые станции DBS6-6Базовая станция WBS24 Combo6-8Терминальное оборудование ISDN (ISDN-телефон, факс G4 и т.д.)6-10ГЛАВА 7. ПОДКЛЮЧЕНИЕ ДОПОЛНИТЕЛЬНЫХ УСТРОЙСТВВнешний источник музыки7-1Внешнее оповещение7-2Совместный звонок7-3Звонок на систему оповещения7-4Информация о работе системы (SMDR/UCD/TRAFFIC/ALARMS)7-4Программирование с компьютера7-6Внешняя голосовая почта/Автосекретарь7-7Батареи бесперебойного питания 48В7-8Глава 8. УСТАНОВКА ДОЧЕРНИХ КАРТ В СИСТЕМНЫЕ ТЕЛЕФОНЫЦифровая карта серии iDCS (FKDBD)8-1Аналоговая карта серии iDCS (FKDBS)8-1Полнодуплексная карта iDCS (FKDBF)8-1Дочерняя цифровая карта KDB-DLI8-2Дочерняя цифровая карта KDB-SLI8-2		
DECT базовые станции DBS 6-6 Базовая станция WBS24 Combo 6-8 Терминальное оборудование ISDN (ISDN-телефон, факс G4 и т.д.) 6-10 ГЛАВА 7. ПОДКЛЮЧЕНИЕ ДОПОЛНИТЕЛЬНЫХ УСТРОЙСТВ 8 Внешний источник музыки 7-1 Внешнее оповещение 7-2 Совместный звонок 7-3 Звонок на систему оповещения 7-4 Информация о работе системы (SMDR/UCD/TRAFFIC/ALARMS) 7-4 Программирование с компьютера 7-6 Внешняя голосовая почта/Автосекретарь 7-7 Батареи бесперебойного питания 48В 7-8 Глава 8. УСТАНОВКА ДОЧЕРНИХ КАРТ В СИСТЕМНЫЕ ТЕЛЕФОНЫ Цифровая карта серии iDCS (FKDBD) 8-1 Аналоговая карта серии iDCS (FKDBS) 8-1 Полнодуплексная карта iDCS (FKDBF) 8-1 Дочерняя цифровая карта KDB-DLI 8-2 Дочерняя цифровая карта KDB-SLI 8-2	Аналоговые телефоны	6-4
DECT базовые станции DBS 6-6 Базовая станция WBS24 Combo 6-8 Терминальное оборудование ISDN (ISDN-телефон, факс G4 и т.д.) 6-10 ГЛАВА 7. ПОДКЛЮЧЕНИЕ ДОПОЛНИТЕЛЬНЫХ УСТРОЙСТВ 8 Внешний источник музыки 7-1 Внешнее оповещение 7-2 Совместный звонок 7-3 Звонок на систему оповещения 7-4 Информация о работе системы (SMDR/UCD/TRAFFIC/ALARMS) 7-4 Программирование с компьютера 7-6 Внешняя голосовая почта/Автосекретарь 7-7 Батареи бесперебойного питания 48В 7-8 Глава 8. УСТАНОВКА ДОЧЕРНИХ КАРТ В СИСТЕМНЫЕ ТЕЛЕФОНЫ Цифровая карта серии iDCS (FKDBD) 8-1 Аналоговая карта серии iDCS (FKDBS) 8-1 Полнодуплексная карта iDCS (FKDBF) 8-1 Дочерняя цифровая карта KDB-DLI 8-2 Дочерняя цифровая карта KDB-SLI 8-2	Домофон и электрический дверной замок	6-5
Терминальное оборудование ISDN (ISDN-телефон, факс G4 и т.д.). 6-10 ГЛАВА 7. ПОДКЛЮЧЕНИЕ ДОПОЛНИТЕЛЬНЫХ УСТРОЙСТВ Внешний источник музыки. 7-1 Внешнее оповещение. 7-2 Совместный звонок 7-3 Звонок на систему оповещения 7-4 Информация о работе системы (SMDR/UCD/TRAFFIC/ALARMS) 7-4 Программирование с компьютера 7-6 Внешняя голосовая почта/Автосекретарь 7-7 Батареи бесперебойного питания 48В 7-8 Глава 8. УСТАНОВКА ДОЧЕРНИХ КАРТ В СИСТЕМНЫЕ ТЕЛЕФОНЫ Цифровая карта серии iDCS (FKDBD) 8-1 Аналоговая карта серии iDCS (FKDBS) 8-1 Полнодуплексная карта iDCS (FKDBF). 8-1 Дочерняя цифровая карта KDB-DLI 8-2 Дочерняя цифровая карта KDB-DLI 8-2		
ГЛАВА 7. ПОДКЛЮЧЕНИЕ ДОПОЛНИТЕЛЬНЫХ УСТРОЙСТВ Внешний источник музыки	Базовая станция WBS24 Combo	6-8
ГЛАВА 7. ПОДКЛЮЧЕНИЕ ДОПОЛНИТЕЛЬНЫХ УСТРОЙСТВ Внешний источник музыки		
Внешнее оповещение 7-2 Совместный звонок 7-3 Звонок на систему оповещения 7-4 Информация о работе системы (SMDR/UCD/TRAFFIC/ALARMS) 7-4 Программирование с компьютера 7-6 Внешняя голосовая почта/Автосекретарь 7-7 Батареи бесперебойного питания 48В 7-8 Глава 8. УСТАНОВКА ДОЧЕРНИХ КАРТ В СИСТЕМНЫЕ ТЕЛЕФОНЫ Цифровая карта серии iDCS (FKDBD) Аналоговая карта серии iDCS (FKDBS) 8-1 Полнодуплексная карта iDCS (FKDBF) 8-1 Дочерняя цифровая карта KDB-DLI 8-2 Дочерняя цифровая карта KDB-SLI 8-2	ГЛАВА 7. ПОДКЛЮЧЕНИЕ ДОПОЛНИТЕЛЬНЫХ УСТРОЙСТВ	
Совместный звонок 7-3 Звонок на систему оповещения 7-4 Информация о работе системы (SMDR/UCD/TRAFFIC/ALARMS) 7-4 Программирование с компьютера 7-6 Внешняя голосовая почта/Автосекретарь 7-7 Батареи бесперебойного питания 48В 7-8 Глава 8. УСТАНОВКА ДОЧЕРНИХ КАРТ В СИСТЕМНЫЕ ТЕЛЕФОНЫ Цифровая карта серии iDCS (FKDBD) Цифровая карта серии iDCS (FKDBS) 8-1 Полнодуплексная карта iDCS (FKDBF) 8-1 Дочерняя цифровая карта KDB-DLI 8-2 Дочерняя цифровая карта KDB-SLI 8-2	Внешний источник музыки	7-1
Звонок на систему оповещения 7-4 Информация о работе системы (SMDR/UCD/TRAFFIC/ALARMS) 7-4 Программирование с компьютера 7-6 Внешняя голосовая почта/Автосекретарь 7-7 Батареи бесперебойного питания 48В 7-8 Глава 8. УСТАНОВКА ДОЧЕРНИХ КАРТ В СИСТЕМНЫЕ ТЕЛЕФОНЫ Цифровая карта серии iDCS (FKDBD) 8-1 Аналоговая карта серии iDCS (FKDBS) 8-1 Полнодуплексная карта iDCS (FKDBF) 8-1 Дочерняя цифровая карта KDB-DLI 8-2 Дочерняя цифровая карта KDB-SLI 8-2	Внешнее оповещение	7-2
Информация о работе системы (SMDR/UCD/TRAFFIC/ALARMS) 7-4 Программирование с компьютера 7-6 Внешняя голосовая почта/Автосекретарь 7-7 Батареи бесперебойного питания 48В 7-8 Глава 8. УСТАНОВКА ДОЧЕРНИХ КАРТ В СИСТЕМНЫЕ ТЕЛЕФОНЫ Цифровая карта серии iDCS (FKDBD) 8-1 Аналоговая карта серии iDCS (FKDBS) 8-1 Полнодуплексная карта iDCS (FKDBF) 8-1 Дочерняя цифровая карта KDB-DLI 8-2 Дочерняя цифровая карта KDB-SLI 8-2	Совместный звонок	7-3
Программирование с компьютера 7-6 Внешняя голосовая почта/Автосекретарь 7-7 Батареи бесперебойного питания 48В 7-8 Глава 8. УСТАНОВКА ДОЧЕРНИХ КАРТ В СИСТЕМНЫЕ ТЕЛЕФОНЫ Цифровая карта серии iDCS (FKDBD) 8-1 Аналоговая карта серии iDCS (FKDBS) 8-1 Полнодуплексная карта iDCS (FKDBF) 8-1 Дочерняя цифровая карта KDB-DLI 8-2 Дочерняя цифровая карта KDB-SLI 8-2	Звонок на систему оповещения	7-4
Внешняя голосовая почта/Автосекретарь 7-7 Батареи бесперебойного питания 48В. 7-8 Глава 8. УСТАНОВКА ДОЧЕРНИХ КАРТ В СИСТЕМНЫЕ ТЕЛЕФОНЫ Цифровая карта серии iDCS (FKDBD) 8-1 Аналоговая карта серии iDCS (FKDBS) 8-1 Полнодуплексная карта iDCS (FKDBF) 8-1 Дочерняя цифровая карта KDB-DLI 8-2 Дочерняя цифровая карта KDB-SLI 8-2	Информация о работе системы (SMDR/UCD/TRAFFIC/ALARMS)	7-4
Батареи бесперебойного питания 48В.7-8Глава 8. УСТАНОВКА ДОЧЕРНИХ КАРТ В СИСТЕМНЫЕ ТЕЛЕФОНЫЦифровая карта серии iDCS (FKDBD)8-1Аналоговая карта серии iDCS (FKDBS)8-1Полнодуплексная карта iDCS (FKDBF)8-1Дочерняя цифровая карта KDB-DLI8-2Дочерняя цифровая карта KDB-SLI8-2	Программирование с компьютера	7-6
Глава 8. УСТАНОВКА ДОЧЕРНИХ КАРТ В СИСТЕМНЫЕ ТЕЛЕФОНЫ Цифровая карта серии iDCS (FKDBD)	Внешняя голосовая почта/Автосекретарь	7-7
Цифровая карта серии iDCS (FKDBD)8-1Аналоговая карта серии iDCS (FKDBS)8-1Полнодуплексная карта iDCS (FKDBF)8-1Дочерняя цифровая карта KDB-DLI8-2Дочерняя цифровая карта KDB-SLI8-2	Батареи бесперебойного питания 48В	7-8
Аналоговая карта серии iDCS (FKDBS)8-1Полнодуплексная карта iDCS (FKDBF)8-1Дочерняя цифровая карта KDB-DLI8-2Дочерняя цифровая карта KDB-SLI8-2	Глава 8. УСТАНОВКА ДОЧЕРНИХ КАРТ В СИСТЕМНЫЕ ТЕЛЕФОНЫ	
Полнодуплексная карта iDCS (FKDBF). 8-1 Дочерняя цифровая карта KDB-DLI 8-2 Дочерняя цифровая карта KDB-SLI 8-2	Цифровая карта серии iDCS (FKDBD)	8-1
Полнодуплексная карта iDCS (FKDBF). 8-1 Дочерняя цифровая карта KDB-DLI 8-2 Дочерняя цифровая карта KDB-SLI 8-2		
Дочерняя цифровая карта KDB-DLI		
Дочерняя цифровая карта KDB-SLI		
Способы подключения к дочерним картам	Способы подключения к дочерним картам	8-2

Глава 9. ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ СИСТЕМЫ
Операционная система и ПО карт9-1
Текущая база данных9-2
Глава 10. ДОБАВЛЕНИЕ КАРТ
Модернизация системы
Добавление карт внутренних и внешних линий
Определение числа DTMF-приемников
Установка карты автосекретаря АА10-3
Глава 11. ЗАПУСК СИСТЕМЫ ГОЛОСОВОЙ ПОЧТЫ SVMi-8
Введение11-1
Назначение индикаторов
Установка карты SVMi8
Проверка работоспособности11-3
Удаление карты SVMi8
Глава 12. ПРИМЕР ПРОГРАММИРОВАНИЯ КОРПОРАТИВНОЙ СЕТИ
Корпоративная сеть
Основные сетевые Q-SIG функции12-1
Обязательные сетевые Q-SIG функции12-2
Дополнительные сетевые Q-SIG функции12-3
Процедуры программирования12-5
Пример программирования12-16

ГЛАВА 1 ТРЕБОВАНИЯ К МЕСТУ УСТАНОВКИ

Глава 1 Требования к месту установки

При выборе места установки системы OfficeServ 500 необходимо руководствоваться следующими рекомендациями:

Рис. 1-1 Габаритные размеры

- · Место установки системы выбирается так, чтобы минимизировать длину прокладываемых кабелей. Смотрите инструкцию "Общее описание системы", главу "Спецификации", "Требования к кабелям".
- · Необходимо исключить попадание прямых солнечных лучей, повышенную влажность, попадание пыли, постоянную вибрацию, а также сильные магнитные и электростатические поля, которые сопровождают работу различных электродвигателей и копировальных машин.
- · К месту установки системы должно быть подведено питание от бытовой сети переменного тока. Применение различных удлинителей исключено.
- · Все кабели, подводимые к системе, не должны проходить вблизи ламп дневного света и электрических кабелей переменного тока бытового и промышленного электропитания.
- · Температура окружающей среды должна быть в пределах от 0 $^{\circ}$ С до 25 $^{\circ}$ С. Требуемая относительная влажность воздуха от 10% до 90% и без конденсации.
- \cdot Рекомендуется устанавливать систему в специальном, недоступном для посторонних лиц помещении.
- · Расстояние от верха системы и ее боков до каких-либо поверхностей не должно быть меньше 254 мм. Выполнение этого требования необходимо для удовлетворения условий вентиляции системы.
- · Нельзя устанавливать систему вблизи источников пожарного водоснабжения или других источников водоснабжения.
- · Место установки определяется в зависимости от устанавливаемой конфигурации настенной или напольной. Если система состоит из двух или трех блоков настенный монтаж не допустим.

Выполнение данных условий поможет правильно расположить систему и соблюсти условия эксплуатации для сохранения гарантийных прав.

ГЛАВА 2 МОНТАЖ СИСТЕМЫ В ОДНО/МНОГОБЛОЧНОЙ КОНФИГУРАЦИИ

Глава 2

Монтаж системы в одно/много-блочной конфигурации

Распаковка и проверка комплектации системы

Система OfficeServ 500 может состоять из одного, двух или трех блоков.

Одноблочная система может быть смонтирована на стене, на полу или установлена в стандартную 19-дюймовую стойку. Двух- или трехблочная система монтируется только на полу или устанавливается в стандартную 19-дюймовую стойку. Монтаж системы из двух или трех блоков на стену исключен.

Все блоки системы имеют одинаковую комплектацию. Если при распаковке обнаружены какие-либо механические повреждения, прекратите установку и обратитесь к поставщику.

Все блоки системы состоят из следующих основных частей:

- · Металлический корпус
- · Верхняя крышка
- Боковые панели
- · Передняя крышка
- Ножки для напольного монтажа
- Питающие АС и DC кабели
- Комплект для настенного монтажа (дюбели и шурупы)
- · Полный комплект плат (источники питания, процессоры, дочерние карты, карты внутренних и внешних линий).

Проверьте комплектность всего аппаратного и программного обеспечения монтируемой системы.

Сборка системы в одноблочной

конфигурации — настенная или напольная Система OfficeServ 500 в одноблочной конфигурал

Система OfficeServ 500 в одноблочной конфигурации может быть смонтирована как на стене, так и на полу. Для напольного монтажа необходимо установить специальные ножки, поставляемые в комплекте с базовым блоком, или отдельно поставляемые колеса с возможностью фиксации положения.

При настенном монтаже необходимо снять заднюю панель (рис. 2-1) и, используя ее как шаблон, разметить крепежные отверстия на стене, а затем ввернуть в них крепежные шурупы. Для удобства снимите переднюю и боковые панели. После чего прикрепите обратно заднюю панель и навесьте базовый блок на крепеж.

Рис. 2-1 Установка OfficeServ 500 на стену

Подключите кабель питания переменного тока к разъему на левой стороне блока. Не включайте питание системы до тех пор, пока в нее не будут установлены все карты и модули. Прикрепите обратно заднюю панель верхнего блока. Перед установкой в систему источника(ов) питания проверьте положение переключателя рабочего напряжения сети переменного тока 110B/220B (по умолчанию установлено 220B, рис. 2-3) в нужное положение. Обязательно проведите работы по заземлению системы (см. раздел "Заземление").

Настенный монтаж системы возможен только в одноблочной конфигурации. Если система состоит из двух или трех блоков, ее монтаж возможен только на полу или в стандартной 19-дюймовой стойке.

При напольном монтаже необходимо установить специальные ножки или колеса с фиксацией положения. Для этого положите базовый блок на пол задней панелью вниз. Используя поставляемые в комплекте крепежные винты, присоедините ножки или колеса по всем четырем углам блока (рис. 2-2).

Рис. 2-2 Установка ножек на базовый блок

Теперь можно установить источник(и) питания, процессор с дочерними картами и картой SmartCard, интерфейсные карты внутренних и внешних линий, и провести работы по кроссированию системы. Для правильного выполнения этих работ ознакомьтесь с разделами "Подключение питания", "Кроссировка кабелей" и с главами 3 и 4 данной инструкции.

Для предотвращения доступа посторонних лиц к аппаратному обеспечению системы установите и надежно закрепите переднюю декоративную панель.

Дополнительная металлическая пластина жесткости, расположенная внизу каждого блока (рис. 2-2), устанавливается только на основном блоке. При многоблочной конфигурации системы пластина с дополнительных блоков должна быть снята.

Глава 2

Сборка системы в двухблочной конфигурации — напольная

Убедитесь в полной комплектации базовых блоков. Блоки системы состоят из следующих основных частей:

- Металлический корпус.
- · Верхняя крышка.
- Боковые панели.
- Передняя крышка.
- Ножки для напольного монтажа.
- · Питающие АС и DC кабели.
- Комплект для напольного монтажа (ножки или колеса).
- · Комплект плат и модулей (источники питания, процессоры, дочерние карты, карты внутренних и внешних линий).

Проверьте комплектность всего аппаратного и программного обеспечения монтируемой системы.

- 1. При напольном монтаже необходимо установить специальные ножки или колеса с фиксацией положения. Для этого положите базовый блок на пол задней панелью вниз. Используя крепежные винты, поставляемые в комплекте, присоедините ножки или колеса по всем четырем углам блока. Снимите верхнюю, переднюю и левую боковую панели нижнего блока. Снимите переднюю, заднюю, левую боковую панели и нижнюю металлическую пластину жесткости.
- 2. Установите верхний блок на нижний так, чтобы совпали крепежные отверстия. Соедините блоки между собой четырьмя крепежными винтами по два спереди и сзади верхнего блока. Установите обратно заднюю панель верхнего блока. Подключите кабель питания переменного тока к разъему на левой стороне нижнего блока и соедините второй разъем этого блока с разъемом питания верхнего блока кабелем питания, поставляемым в комплекте с картой LCP/LCP2. Не включайте питание системы до тех пор, пока в нее не будут установлены все карты и модули. Перед установкой в систему источника(ов) питания проверьте положение переключателя рабочего напряжения сети переменного тока 110B/220B (по умолчанию установлено 220B, рис. 2-3) в нужное положение.
- 3. Обязательно проведите работы по заземлению системы (см. раздел "Заземление" стр. 2-12).
- 4. Установите обратно левые боковые панели, предварительно удалив на левой панели нижнего блока металлическую заглушку для свободного расположения питающих кабелей между блоками.

5. Теперь можно установить источники питания, процессор и сопроцессоры с дочерними картами и картой SmartCard, интерфейсные карты внутренних и внешних линий, и провести работы по кроссированию системы. Для правильного выполнения этих работ ознакомьтесь с разделами "Подключение питания", "Кроссировка кабелей" и главами 3 и 4 данной инструкции.

Для предотвращения доступа посторонних лиц к аппаратному обеспечению системы установите и надежно закрепите переднюю декоративную панель.

Гпава 2

Сборка системы в трехблочной конфигурации — напольная

Убедитесь в полной комплектации базовых блоков. Блоки системы состоят из следующих основных частей:

- Металлический корпус.
- Верхняя крышка.
- · Боковые панели.
- Передняя крышка.
- Ножки для напольного монтажа.
- · Питающие АС и DC кабели.
- Комплект для напольного монтажа (ножки или колеса).
- · Комплект плат и модулей (источники питания, процессоры, дочерние карты, карты внутренних и внешних линий).

Проверьте комплектность всего аппаратного и программного обеспечения монтируемой системы.

1. При напольном монтаже необходимо установить специальные ножки или колеса с фиксацией положения. Для этого положите базовый блок на пол задней панелью вниз. Используя крепежные винты, поставляемые в комплекте, присоедините ножки или колеса по всем четырем углам блока.

С нижнего блока снимите верхнюю, переднюю и левую боковую панели.

Со среднего блока снимите переднюю, заднюю, верхнюю, левую боковую панели и нижнюю металлическую пластину жесткости.

С верхнего блока снимите переднюю, заднюю, левую боковую панели и нижнюю металлическую пластину жесткости.

Рис. 2-3 Установка рабочего напряжения

- 2. Установите дополнительные блоки на нижний так, чтобы совпали крепежные отверстия. Соедините блоки между собой четырьмя крепежными винтами по два спереди и сзади верхнего блока. Установите обратно задние панели среднего и верхнего блока. Подключите кабель питания переменного тока к разъему на левой стороне нижнего блока и соедините второй разъем этого блока с разъемом питания среднего блока кабелем питания, поставляемым в комплекте с картой LCP/LCP2, и таким же образом подайте питание к верхнему блоку. Не включайте питание системы до тех пор, пока в нее не будут установлены все карты и модули. Перед установкой в систему источника(ов) питания проверьте положение переключателя рабочего напряжения сети переменного тока 110В/220В (по умолчанию установлено 220В, рис. 2-3) в нужное положение.
- 3. Обязательно проведите работы по заземлению системы (см. раздел "Заземление" стр. 28).
- 4. Установите обратно левые боковые панели, предварительно удалив на левой панели нижнего и среднего блоков металлическую заглушку для свободного прохода питающих кабелей между блоками.
- 5. Теперь можно установить источники питания, процессор и сопроцессоры с дочерними картами и картой SmartCard, интерфейсные карты внутренних и внешних линий, и провести работы по кроссированию системы. Для правильного выполнения этих работ ознакомьтесь с разделами "Подключение питания", "Кроссировка кабелей" и главами 3 и 4 данной инструкции.

Для предотвращения доступа посторонних лиц к аппаратному обеспечению системы установите и надежно закрепите переднюю декоративную панель.

Установка дополнительного блока

Прежде чем приступить к установке дополнительного блока, отключите систему от сети переменного тока AC и источников бесперебойного питания постоянного тока DC.

- 1. Отключите все источники питания постоянного и/или переменного тока AC и/или DC.
 - 2. Отключите все провода, подведенные к системе.
- 3. Проведите все работы по установке дополнительного блока в соответствии с рекомендациями, приведенными в разделах: "Сборка системы в двухблочной конфигурации", "Сборка системы в трехблочной конфигурации" и "Монтаж системы в 19-дюймовой стойке".
- 4. Установите в добавленный блок источник(и) питания PSU-B, карту процессора LCP/LCP2 и интерфейсные карты.
- 5. Соедините карту LCP/LCP2 с предыдущим блоком посредством СІС кабеля, поставляемым в комплекте с картой LCP/LCP2.
- 6. Подсоедините питание постоянного и/или переменного тока AC и/или DC.

Для предотвращения доступа посторонних лиц к аппаратному обеспечению системы установите и надежно закрепите переднюю декоративную панель.

После первого включения системы в новой конфигурации осуществите процедуру распознавания новых карт, используя программный код ММС806, и пронумеруйте порты всех добавленных ресурсов в ММС724 (см. Инструкцию по программированию)

Монтаж системы в 19-дюймовую стойку

Перед установкой блока в 19-дюймовую стойку необходимо удалить переднюю, верхнюю, боковые панели и нижнюю металлическую панель жесткости.

1. Удалите боковые скобы, предназначенные для установки боковых панелей (рис 2-4). Для монтажа блока в стойке они не нужны.

Рис. 2-4 Демонтаж боковых скоб

- 2. Удалите пластину для подключения заземляющего контура с левой стороны блока (рис 2-4).
- 3. Удалите фиксирующую скобу с правой стороны блока на отверстии для подведения кабелей.

4. Установите блоки в стойку на расстоянии 50 мм друг от друга по высоте и закрепите их в стойке 8 винтами (рис. 2-5).

Рис.2-5 Установка блока в 19-тидюймовую стойку

В случае разнесения блоков по вертикали для их соединения между собой применяется специальный кабель CICR, имеющий большую длину.

5. Обязательно проведите работы по заземлению системы (см. раздел "Заземление").

Для предотвращения доступа посторонних лиц к аппаратному обеспечению системы установите и надежно закрепите переднюю декоративную панель.

Заземление

Основное заземление системы осуществляется с помощью третьего провода, расположенного непосредственно в кабеле питания сети переменного тока АС. Такой же провод есть в кабелях питания для дополнительных блоков, поставляемых в комплекте с картой LCP/LCP2.

Опасное напряжение может попасть в систему в случае ее подключения к сети общего пользования по аналоговым внешним линиям. Перед подключением таких линий обязательно проведите работы по заземлению системы. Прежде чем снять заднюю панель обесточьте систему и отключите внешние аналоговые линии.

В некоторых случаях необходимо выполнить альтернативное заземление. Это необходимо, когда в заземленном проводе сетевого питания возникают различные промышленные шумы, которые мешают правильной работе цифровой шины системы, что может привести к некорректной работе. Альтернативное заземление требуется также, если в подводимом питании сети переменного тока отсутствует заземляющий контур. Альтернативное заземление необходимо и в том случае, если система питается через источники бесперебойного питания UPS, не имеющие сквозного провода заземления. Применять такие типы UPS не рекомендуется.

Альтернативное заземление

Альтернативное заземление требуется в следующих случаях:

- 1. В систему установлена карта PRI или TEPRI.
- 2. В систему установлены карты ITM3, MGI2, MGI3.
- 3. В сети переменного тока отсутствует заземляющий контур или в нем имеют место промышленные шумы.

Для подключения альтернативного заземляющего контура на левой боковой панели каждого блока есть металлическая пластина с фиксирующими винтами. Заземление осуществляется изолированным проводом сечением не менее 2,5 мм².

В многоблочной системе подводимый заземляющий контур должен быть рассчитан на ток не менее 25 А. Дополнительные блоки заземляются через пластину с винтами на левой боковой стороне каждого блока. Каждый дополнительный блок должен быть заземлен своим проводом (не последовательно) через такую же пластину основного блока.

Если в сети переменного тока имеется заземляющий контур, но есть необходимость применить альтернативное заземление, данный контур необходимо отсоединить от системы.

- 1. Удалите заднюю панель каждого блока (обратите внимание на предупреждение).
- 2. Отключите зелено-желтый провод, идущий от разъема подводимого питания.
- 3. Второй зелено-желтый провод заземления, подключенный к разъему на основной плате, закрепите обратно.
 - 4. Надежно заизолируйте клемму отключенного провода.

Правильно выполненное заземление предохранит систему от некорректной работы или выхода из строя различных устройств.

Перед подключением альтернативного заземления отсоедините разъемы кабелей от плат внешних аналоговых линий. Проявляйте особую осторожность при работе в зоне контактов и разъемов сети переменного тока. Поражение электрическим током может привести к серьезным травмам или даже смерти.

Основной задачей заземления является предохранение системы от сбоев из-за перепадов напряжения внешних аналоговых линий (например, такая ситуация возможна при замыкании провода сетевого напряжения на контакты городской линии на каком-либо удаленном кроссе). При попадании в систему таких напряжений они отправятся в заземляющий контур по заземляющему проводу.

Заземление также необходимо для корректной работы аналоговых соединительных линий типа Е&М, поскольку сигнализация между системами осуществляется по токовой петле через общий заземляющий контур.

Предусмотренная система заземления предохранит вашу систему от выхода из строя и сбоев, защитит порты внешних аналоговых линий и предотвратит попадание опасных напряжений в сеть общего пользования по этим линиям.

Подключение питания

Шнур питания от сети переменного тока подключается к входному разъему питания на левой боковой панели базового блока (рис. 2-6). Шнур поставляется в комплекте с базовым блоком и полностью аналогичен стандартному шнуру питания для компьютера.

Рис. 2-6

Не подключайте систему к сети переменного тока, не ознакомившись с главой 4 "Подготовка к запуску системы".

Источник питания OfficeServ (PSU-B)

В базовый и дополнительные блоки системы необходимо установить источники питания от сети переменного тока PSU-В. Предусмотрена возможность установить два источника питания в один блок. Второй источник необходим, если в блоке задействовано более 56 внутренних портов (см. главу 4 "Подготовка к запуску системы"). Перед установкой в систему источника(ов) питания проверьте положение переключателя рабочего напряжения сети переменного тока 110B/220B (по умолчанию — 220B, рис. 2-3) в нужное положение.

Не подключайте систему к сети переменного тока, не ознакомившись с главой 4 "Подготовка к запуску системы" данной инструкции.

Для установки второго источника питания в один блок необходимо предварительно снять в базовом блоке предохранительную пластиковую крышку. Перед этим обязательно отсоедините от системы шнур сетевого питания.

Батареи бесперебойного питания 48В

Для предотвращения выхода из строя источников питания системы используйте батареи со следующими характеристиками: рабочее напряжение батареи — 48В, напряжение заряда — 56В, ток заряда не более 0,45А, емкость батареи выбирается в соответствии с таблицей в главе "Спецификации" Общего описания системы. Каждый блок системы должен питаться от собственной батареи. Для предохранения батарей подсоединените их к системе через предохранитель (125В 5А).

При потере питания от сети переменного тока внешние батареи бесперебойного питания подают в систему напряжение — 48В, которое затем в источниках питания преобразуется в необходимое рабочее напряжение. Каждый источник питания имеет схему заряда батарей. При наличии питания в сети переменного тока источник питания формирует на клеммах батареи зарядное напряжение — 56В с током заряда до 0.45А. При подключении батарей к системе необходимо строго соблюдать их полярность.

В комплект с базовым блоком входит кабель подключения батарей бесперебойного питания (рис. 2-7). С одной стороны кабель заканчивается двухконтактным разъемом, а с другой — клеммами. Необходимо подсоединить разъем кабеля к гнезду на левой стороне базового блока, а клеммы соединить с соответствующими по полярности контактами аккумуляторной батареи.

Рис. 2-7

Подсоединяйте батареи, строго соблюдая их полярность. Неправильное подключение может привести к выходу из строя источников питания. Не подключайте систему к сети переменного тока или батареям бесперебойного питания, не ознакомившись с главой 4 "Подготовка к запуску системы".

Кроссировка кабелей

Для подключения периферийных устройств и внешних линий все интерфейсные карты снабжены 50-контактными разъемами типа Amphenol (исключая карты MGI2, MGI3, ITM3, PRI, TEPRI). От отдельно установленного кроссового оборудования кабели, заканчивающиеся такими разъемами, заводятся через специальное отверстие на правой стороне каждого блока.

Для удобства идентификации каждого кабеля промаркируйте их в соответствии с номером блока и слота. Кроссировка абонентских и внешних линий осуществляется двухпроводным проводом.

Рис. 2-8 Подключение кабелей к кроссу

ГЛАВА 3 УСТАНОВКА КАРТ

Глава 3 Установка карт

Перед установкой в систему проверьте все карты и модули. При обнаружении физических повреждений обратитесь к вашему поставщику оборудования Samsung.

Главный процессор МСР

Главный процессор МСР предназначен для управления всеми операциями в системе. Главный процессор МСР устанавливается в основной блок в специализированный слот номер 10, маркированный МСР/LСР. Установка процессора МСР необходима в любом случае при всех конфигурациях системы (кроме ситемы OfficeServ 500, построенной на процессоре МСР2). Для коммутации каналов в процессоре предусмотрена оперативная память, реализующая коммутационное поле на 256 ячеек. На карте имеется три платоместа для установки специализированных дочерних карт.

В случае сборки системы в многоблочной конфигурации на процессоре должна быть установлена дочерняя карта расширения коммутационного поля ESM. Карта главного процессора МСР содержит в себе следующие основные ресурсы:

- · 8 позиционный DIP-переключатель
- Переключатель резервного питания памяти
- · Слот для SmartMedia-карты
- · 12 светодиодов
- \cdot 3 платоместа для дочерних карт, одно из которых предназначено для карты MISC
 - Встроенный музыкальный источник МОН
 - · 2 последовательных порта RS232

Рис. 3-1 Карта главного процессора МСР

12 светодиодов, расположенных на торцевой стороне процессора, предназначены для контроля рабочего статуса самого процессора МСР, SmartMedia-карты, карты LAN и универсальных слотов 1-9. Описание индикации светодиодов приведено ниже.

Индикация светодиодов для М-системы

MP	OFF	На процессоре отсутствует питание.
IVII	ON	После загрузки мигание обозначает нормальный статус работы.
	OFF	Карта SmartMedia не установлена.
SM	ON	Если горит не мигая — SmartMedia-карта установлена и свободна. Если мигает — идет обращение (чтение/запись) к SmartMedia-карте.
LAN	OFF	На карте LAN отсутствует питание.
	ON	После загрузки мигание обозначает нормальный статус работы.
	OFF	Пустой слот или нет обращения к карте.
S1 _~ S9	ON	Если горит не мигая — один или несколько портов карты используется. Если мигает — карта не обслуживается из-за неисправности или она не описана в слоте (Карты TEPRI, PRI устанавливаются только в слоты 1, 2 или 3, в других случаях индикатор будет мигать)

Индикация светодиодов для L-системы

	OFF	На процессоре отсутствует питание
MP	ON	После загрузки мигание обозначает нормальный статус работы
	OFF	Карта SmartMedia не установлена
SM	ON	Если горит не мигая — SmartMedia-карта установлена и свободна. Если мигает — идет обращение (чтение/запись) к SmartMedia-карте
LAN	OFF	На карте LAN отсутствует питание
LAIN	ON	После загрузки мигание обозначает нормальный статус работы
S1	Не исг	пользуется
	Прием	(RX) по HDLC-каналу от карты SCP
S2	OFF	Связь с картой SCP отсутствует
	ON	Связь с картой SCP есть. Мигает — состояние приема данных
	Передача (TX) по HDLC-каналу на карту SCP	
S3	OFF	Связь с картой SCP отсутствует
ON		Связь с картой SCP есть. Мигает — состояние передачи данных
	Прием (RX) по HDLC-каналу от карты LCP 2 блока	
S4	OFF	Связь с картой LCP блока 2 отсутствует
	ON	Связь с картой LCP блока 2 есть. Мигает — состояние приема данных
	Перед	ача (TX) по HDLC-каналу на карту LCP блока 2
S5	OFF	Связь с картой LCP блока 2 отсутствует
	ON	Связь с картой LCP блока 2 есть. Мигает — состояние передачи данных
	Прием	(RX) по HDLC-каналу от карты LCP блока 3
S6	OFF	Связь с картой LCP блока 3 отсутствует
	ON	Связь с картой LCP блока 3 есть. Мигает — состояние приема данных
	Передача (TX) по HDLC-каналу на карту LCP блока 3	
S7	OFF	Связь с картой LCP блока 3 отсутствует
	ON	Связь с картой LCP блока 3 есть. Мигает — состояние передачи данных
S8	Не исг	ользуется
S9	Не исг	пользуется

На главном процессоре имеется три платоместа для установки специализированных дочерних карт (см. рис. 3-1). Все дочерние карты снабжены разъемами со специальным ключом, что предотвращает неправильную установку карт. На процессор МСР возможно установить следующие карты:

- · MISC: 2 внешних источника музыки, 1 интерфейс громкого оповещения, 1 интерфейс внешнего громкого вызова, 1 интерфейс совместного звонка, 2 программноуправляемых реле (устанавливается на МСР только в М-системе)
- · SCM: 12 дополнительных DTMF-приемников, 18 дополнительных конференций (устанавливается на МСР только в М-системе)
- \cdot MFM: 12 дополнительных DTMF-приемников и тон детекторов (устанавливается на MCP только в М-системе)
- · RCM: 14 детекторов CallerID, 8 приемопередатчиков сигнализации R2MFC (устанавливается на МСР только в М-системе)
- · IPM: 1 процессор MC68302 25 МГц, 1.5 Мб статической памяти SRAM, 4 Мб динамической памяти DRAM, 3 синхронных порта (для времяразделенной коммутации с процессорами SCP и LCP). Карта устанавливается при многоблочной конфигурации системы.
- · LAN: Интерфейс Ethernet 10Base-T, 0,5 Мб дополнительной статической SRAM памяти, 2 последовательных порта RS-232
- · ESM: 1024*1024 временных каналов коммутации. Карта устанавливается при многоблочной конфигурации системы.

Назначение платомест главного процессора МСР		
Платоместо	Типы дочерних карт	
LOC1	MFM, SCM, ESM*	
LOC2	MFM, SCM, RCM, LAN, IPM**	
LOC3	MFM, SCM, LAN, MISC	

^{*}Карта ESM должна быть установлена только в это платоместо для L-системы

^{**}Карта IPM должна быть установлена только в это платоместо для L-системы

Только эти типы карт могут быть установлены на определенные платоместа основного процессора МСР

Описание DIP-переключателей

ON (влево)		OFF (вправо)
4-значная нумерация внутренних линий	SW8	3-значная нумерация внутренних линий
4-значная нумерация групп внутренних телефонов	SW7	3-значная нумерация групп внутренних телефонов
4 значная нумерация внешних линий	SW6	3-значная нумерация внешних линий
APD включено	SW5	APD выключено
Страна	SW4	Страна
Страна	SW3	Страна
Страна	SW2	Страна
Страна	SW1	Страна

Страна OFF OFF OFF OFF Корея OFF OFF OFF ON США OFF OFF OFF ON Великобритания OFF OFF ON ON Италия OFF ON OFF OFF Австралия OFF ON OFF Новая Зеландия ON OFF ON ON OFF Голландия

 \cdot Переключатели с 1 по 4 предназначены для автоматической локализации системы при первом включении.

• Переключатель 5 используется для автообновления ПО.

ON

Россия/СНГ

OFF

OFF

ON

 \cdot Положение переключателей 1-4 имеет эффект только тогда, когда система была перегружена с предварительным сбросом статической памяти с помощью переключателя резервного питания статической памяти на процессоре МСР. Для России положение DIP-переключателей задано в таблице. Поэтому, после первого включения необходимо провести русификацию системы, используя код программирования ММС812.

Сборка процессора заключается в установке дочерних карт, выставлении DIP-переключателей в требуемое положение и включении резервного питания статической памяти для сохранения системных настроек при сбое питания.

Установите главный процессор МСР в основной блок в специализированный слот номер 10, называемый МСР/LСР (рис. 3-2). Убедитесь, что процессор вошел в свой слот плотно, до упора. Закрепите процессор в блоке двумя крепежными винтами. Слот МСР/LСР выполнен так, что в него не может быть установлена никакая другая карта, кроме как МСР или LСР для блока расширения. Соответственно, карту МСР или LСР невозможно установить в любой универсальный слот.

Не устанавливайте карту процессора МСР при включенном питании.

Рис. 3-2 Расположение процессора МСР

Главный процессор МСР2

Главный 32-разрядный процессор 2 (МСР2) предназначен для управления системой OfficeServ 500. Процессор МСР2 устанавливается в основной блок в специализированный слот номер 10, маркированный МСР/LСР.

В случае построения системы OfficeServ 500-L, необходимо установить на карте процессора MCP2 дополнительную дочернюю карту ESM. При необходимости подключения системы к локальной вычислительной сети нет необходимости установки карты LAN, так как данная функция для процессора MCP2 является интегрированной. Так же, как и карта MCP, процессор MCP2 оборудован разъемом для соединения с картой LCP2 дополнительного модуля.

Рис. 3.3 Карта главного процессора МСР2

Процедура установки, назначение светодиодов, назначение DIP-переключателей MCP2 абсолютно идентичны карте главного процессора MCP.

В отличии от МСР, к локальной сети карта МСР2 подключается через разъем RJ-45 на передней панели карты, называемый LAN. В случае необходимости подключения к локальной сети карты МСР необходимо установить дочернюю плату LAN и подключить сеть к RJ-45 разъему LAN на модуле IOM.

Назначение платомест главного процессора МСР2		
Платоместо	Типы дочерних карт	
LOC1	MFM, SCM, RCM, ESM*	
LOC2	MFM, SCM, RCM	
LOC3	MFM, SCM, RCM, MISC	

^{*} Карта ESM должна быть установлена только в это платоместо для L - системы

Карта сопроцессора SCP

Карта сопроцессора SCP применяется при построении многоблочной системы. Для обмена данными между главным процессором используется высокоскоростная системная шина. Устанавливается сопроцессор SCP в основной блок в специализированный слот 9. На карте имеется три платоместа для установки специализированных дочерних карт.

Назначение платомест сопроцессора SCP		
Платоместо Типы дочерних карт		
LOC1	MFM, SCM, RCM	
LOC2	MFM, RCM, MISC	
LOC3	MFM, RCM	

На определенное платоместо карты сопроцессора SCP может быть установлена только одна карта одного наименования.

Не устанавливайте карту сопроцессора SCP при включенном питании.

Рис. 3-4 Карта сопроцессора SCP

12 светодиодов, расположенных на торцевой стороне процессора, предназначены для контроля рабочего статуса сопроцессора SCP.

	Передача (TX) по HDLC-каналу на карту MCP	
TX	OFF	Связь с картой МСР отсутствует
	ON	Связь с картой МСР есть. Мигает — состояние передачи данных
	Прие	м (RX) по HDLC-каналу от карты MCP
RX	OFF	Связь с картой МСР отсутствует
	ON	Связь с картой МСР есть. Мигает — состояние приема данных
	Статус сопроцессора SCP	
SCP	OFF	На сопроцессоре отсутствует питание
	ON	После загрузки мигание обозначает нормальный статус работы
	Статус интерфейсных карт	
	OFF	Пустой слот или нет обращения к карте
S1 _~ S8	ON	Если горит не мигая — один или несколько портов карты используется. Если мигает — карта не обслуживается из-за неисправности или она не описана в слоте (Карты TEPRI, PRI устанавливаются только в слоты 1, 2 или 3, в других случаях индикатор будет мигать)
S9	Не используется	

Карта сопроцессора SCP2

Карта SCP2 применятся при построении системы OfficeServ 500-L для управления слотами основного блока и связи с картой основного процессора MCP2. Устанавливается сопроцессор SCP2 в основной блок в специализированный слот 9.

Основным отличием между картами SCP и SCP2 является объем оперативной памяти. Объем DRAM памяти у карты SCP составляет 2 Мб, в то время как карта SCP2 имеет вдвое больший объем DRAM памяти -4 Мб.

Больший объем памяти на карте SCP2 позволяет использовать в системе цифровые аппараты с большим дисплеем, IP-телефоны и строить беспроводную LAN сеть.

Назначение платомест и индикация светодиодов карты SCP2 полностью аналогичны карте SCP.

Карта локального процессора LCP

Карта локального процессора LCP применяется при построении многоблочной системы для управления вторым и третьим дополнительными блоками. Для обмена данными между главным процессором используется высокоскоростная системная шина. Устанавливается карта локального процессора LCP в дополнительный блок в специализированный слот 10 называемый MCP/LCP. На карте имеется три платоместа для установки специализированных дочерних карт.

Назначение платомест локального процессора LCP		
Платоместо Типы дочерних карт		
LOC1	MFM, RCM	
LOC2	MFM, RCM, MISC	
LOC3	MFM, RCM	

На карту локального процессора LCP на определенное платоместо может быть установлена только одна карта одного наименования.

Рис. 3-5 Карта локального процессора LCP

Установите карту локального процессора LCP в дополнительный блок в специализированный слот номер 10, называемый MCP/LCP. Убедитесь, что процессор вошел в свой слот плотно до упора. Закрепите процессор в блоке двумя крепежными винтами. Соедините процессор LCP с предыдущим блоком посредством СІС-кабеля, поставляемоего в комплекте с процессором LCP.

Не устанавливайте карту процессора LCP при включенном питании.

Слот MCP/LCP выполнен так, что в него не может быть установлена никакая другая карта, кроме как MCP или LCP для блока расширения. Соответственно, невозможно карту MCP или LCP установить в любой универсальный слот.

12 светодиодов, расположенных на торцевой стороне процессора предназначены для контроля рабочего статуса локального процессора LCP.

	Передача (TX) по HDLC-каналу на карту МСР		
TX	OFF	Связь с картой МСР отсутствует	
	ON	Связь с картой МСР есть. Мигает — состояние передачи данных	
	Прием (RX) по HDLC-каналу от карты MCP		
RX	OFF	Связь с картой МСР отсутствует	
	ON	Связь с картой МСР есть. Мигает — состояние приема данных	
	Статус сопроцессора LCP		
SCP	OFF	На локальном процессоре отсутствует питание	
	ON	После загрузки мигание обозначает нормальный статус работы	
	Статус интерфейсных карт		
	OFF	Пустой слот или нет обращения к карте	
S1 _~ S8	ON	Если горит не мигая — один или несколько портов карты используется. Если мигает — карта не обслуживается из-за неисправности или она не описана в слоте (Карты TEPRI, PRI устанавливаются только в слоты 1, 2 или 3; в других случаях индикатор будет мигать)	
S9	Не используется		

Карта локального процессора LCP2

Карта LCP2 применятся при построении системы OfficeServ 500-L для управления слотами дополнительных блоков и связи с картой основного процессора MCP2. Устанавливается карта LCP2 в дополнительный блок в специализированный слот 10, называемый MCP/LCP.

Основным отличием между картами LCP и LCP2 является объем оперативной памяти. Объем DRAM памяти у карты LCP составляет 2 Мб, в то время как карта LCP2 имеет вдвое больший объем DRAM памяти -4 Мб.

Назначение платомест и индикация светодиодов карты LCP2 полностью аналогично карте LCP.

ESM — карта расширения коммутационного поля

Эта карта устанавливается в первое платоместо LOC1 главного процессора MCP/MCP2 и необходима при работе многоблочной системы (рис. 3-1). Карта ESM предназначена для увеличения коммутационного поля системы с 512 до 1024 каналов.

Для установки карты разберите защитный корпус главного процессора МСР, вывернув два шурупа на боковой стороне процессора (рис. 3-7). Присоедините карту ESM к трем разъемам первого платоместа LOC1 и, аккуратно надавив на места разъемов, убедитесь, что карта встала до упора по всем трем разъемам. После того, как все требуемые дочерние карты установлены в главный процессор МСР/МСР2, соберите пластиковый корпус.

Рис. 3-6 Карта ESM

Рис. 3-7 Расположение крепежных винтов карт МСР и LCP

IPM — модуль межпроцессорной коммутации и дополнительной памяти

Эта дочерняя карта устанавливается на второе платоместо LOC2 главного процессора МСР (рис. 3-1) и необходима при построении многоблочной системы или при работе одноблочной системы с использованием программного обеспечения L-версии. Карта IPM служит для расширения статической SRAM и динамической DRAM памяти системы и предназначена для образования канала связи между главным МСР и дополнительными процессорами SCP и LCP.

Для установки карты разберите защитный корпус главного процессора МСР, вывернув два шурупа на боковой стороне процессора (рис. 3-7). Присоедините карту ІРМ к трем разъемам второго платоместа LOC2 и, аккуратно надавив на места разъемов, убедитесь, что карта встала до упора по всем трем разъемам. После того, как все требуемые дочерние карты установлены в главный процессор МСР, соберите пластиковый корпус.

Установите переключатель резервного питания памяти карты IPM в положение ON только после того, как карта установлена на главный процессор MCP (рис. 3-1 и 3-8).

Не устанавливайте эту карту на процессор МСР2.

Рис. 3-8 Карта ІРМ

LAN — сетевая карта

Эта дочерняя карта устанавливается на третье платоместо LOC3 главного процессора MCP (рис. 3-1) в многоблочной системе или в одноблочной системе с использованием программного обеспечения L-версии.

Для М-системы, при наличии карты MISC карта LAN устанавливается на второе платоместо LOC2 главного процессора MCP. Карта LAN обеспечивает расширение статической памяти SRAM, обеспечивает еще два 3 и 4 последовательных порта RS-232 и порт Ethernet 10Base-T.

Для установки карты разберите защитный корпус главного процессора МСР, вывернув два шурупа на боковой стороне процессора (рис. 3-7). Присоедините карту LAN к трем разъемам второго LOC2 или третьего LOC3 платоместа и, аккуратно надавив на места разъемов, убедитесь, что карта встала до упора по всем трем разъемам. После того, как все требуемые дочерние карты установлены в главный процессор МСР, соберите пластиковый корпус.

Установите переключатель резервного питания памяти карты LAN в положение ON только после того, как карта установлена на главный процессор МСР (рис. 3-1 и 3-8).

Не устанавливайте эту карту на процессор МСР2.

Рис. 3-9 Карта LAN

MISC — карта дополнительных сервисных функций

Карта MICS должна быть установлена в третье LOC3 платоместо главного процессора MCP/MCP2 (рис. 3-1) при одноблочной конфигурации или на второе платоместо LOC2 дополнительных процессоров SCP/SCP2 (рис. 3-3) и LCP/LCP2 (рис. 3-4) при многоблочной конфигурации. В системе может быть установлено до 3-х карт MISC — по одной в каждый блок.

Карта MISC предоставляет возможность подключить источник внешней музыки, систему внешнего оповещения, интерфейс совместного звонка, интерфейс внешнего громкого вызова и два управляемых реле.

Для установки карты разберите защитный корпус процессоров MCP/MCP2 или LCP/LCP2 (рис. 3-7), вывернув два шурупа на боковой стороне процессора. При установке карты в сопроцессор SCP/SCP2 (рис. 3-11) необходимо его разобрать, сняв два пластиковых фиксатора и вывернув четыре шурупа. Присоедините карту MISC к трем разъемам своего платоместа и, аккуратно надавив на места разъемов, убедитесь, что карта встала до упора по всем трем разъемам. После того, как все требуемые дочерние карты установлены в процессоры MCP/MCP2, LCP/LCP2, SCP/SCP2, соберите пластиковый корпус.

Рис. 3-10 Карта MISC

Рис. 3-11 Снятие корпуса с карты SCP

SCM — карта DTMF приемника / расширения числа конференций

Эта дочерняя карта устанавливается на основной MCP/MCP2 или дополнительный SCP/SCP2 процессор. В одноблочной системе карта SCM должна быть установлена в любое свободное платоместо главного процессора MCP/MCP2. В многоблочной системе карта SCM должна быть размещена на сопроцессоре SCP/SCP2 в первом платоместе LOC1. В системе разрешается устанавливать только одну карту SCM. Установка этой карты позволяет расширить количество одновременных конференций с 6 до 24. Кроме того, на карте имеется 12 дополнительных DTMF-приемников.

Для установки карты разберите защитный корпус процессоров MCP/MCP2 (рис. 3-7), вывернув два шурупа на боковой стороне процессора. При установке карты в сопроцессор SCP/SCP2 (рис. 3-11) необходимо его разобрать, сняв два пластиковых фиксатора и вывернув четыре шурупа. Присоедините карту SCM к трем разъемам первого платоместа LOC1 и, аккуратно надавив на места разъемов, убедитесь, что карта встала до упора по всем трем разъемам. После того, как все требуемые дочерние карты установлены в процессоры MCP/MCP2 или SCP/SCP2, соберите пластиковый корпус.

В системе разрешается устанавливать только одну карту SCM. Запрещается в одном процессоре устанавливать SCM и MFM карты одновременно.

Рис. 3-12 Карта SCM

MFM — карта дополнительных DTMF-приемников

Карта МFМ может быть установлена в любое свободное платоместо любого процессора (рис. 3-1, 3-3, 3-5). Главная задача этой карты — расширение числа цифровых сигнальных процессоров, осуществляющих прием и распознавание DTMF-сигналов. Каждая MFM-карта содержит 12 таких приемников.

Для установки карты разберите защитный корпус процессоров MCP/MCP2 или LCP/LCP2 (рис. 3-7), вывернув два шурупа на боковой стороне процессора. Для установки карты в сопроцессор SCP/SCP2 (рис. 3-11) необходимо его разобрать, сняв два пластиковых фиксатора и вывернув четыре шурупа. Присоедините карту MFM к трем разъемам своего платоместа и, аккуратно надавив на места разъемов, убедитесь, что карта встала до упора по всем трем разъемам. После того, как все требуемые дочерние карты установлены в процессоры MCP/MCP2, SCP/SCP2, LCP/LCP2, соберите пластиковый корпус.

На любом процессоре может быть установлена только одна карта MFM. Запрещается в одном процессоре устанавливать SCM и MFM карты одновременно.

Рис. 3-13 Карта МҒМ

RCM — карта R2MFC приемопередатчика/ ЕвроАОН

Рис. 3-14 Карта RCM

Основная функция этой карты состоит в декодировании сигнала определения номера CallerID (14 приемников), предоставляемого телефонными компаниями по аналоговым внешним линиям. Второй функцией карты является наличие 8 приемопередатчиков сигнализации R2MFC. Карта RCM может быть установлена на второе LOC2 платоместо главного процессора MCP/MCP2 (рис. 3-1) или на любое платоместо процессоров SCP/SCP2 или LCP/LCP2 (рис. 3-4, 3-5). В системе может быть установлено до трех таких карт, по одной в каждый блок.

Для установки карты разберите защитный корпус процессоров MCP/MCP2 или LCP/LCP2 (рис. 3-7), вывернув два шурупа на боковой стороне процессора. При установке карты в сопроцессор SCP/SCP2 (рис. 3-11) необходимо его разобрать, сняв два пластиковых фиксатора и вывернув четыре шурупа. Присоедините карту RCM к трем разъемам своего платоместа и, аккуратно надавив на места разъемов, убедитесь, что карта встала до упора по всем трем разъемам. После того, как все требуемые дочерние карты установлены в процессоры MCP/MCP2, SCP/SCP2, LCP/LCP2, соберите пластиковый корпус.

МОDEM — дочерняя карта модема

Рис. 3-15 Карта Modem

Карта МОДЕМ устанавливается на модуле ІОМ (рис. 3-15). Карта модема поддерживает протокол 56К/V.90 и позволяет удаленно программировать/администрировать систему через телефонную сеть. Устанавливается модем на специальное платоместо на модуле ввода/вывода ІОМ.

Установите карту модема на разъемы до совпадения ключевых отверстий и, аккуратно надавив на места разъемов, добейтесь, чтобы карта встала до упора в оба разъема.

IOM — модуль ввода / вывода

Модуль IOM устанавливается в специальный слот основного блока (рис. 3-17). Вдвиньте модуль IOM в слот и аккуратно надавите на центр до полного входа модуля в слот. Закрепите модуль IOM в слоте двумя крепежными винтами.

Рис. 3-16 Модуль ЮМ

Рис. 3-17 Нумерация и название слотов

Карта TRKB

Карта TRKB устанавливается в любой универсальный слот любого блока. Отведите в стороны пластиковые фиксаторы и вдвиньте карту в слот до упора. Защелкните пластиковые фиксаторы на место.

Рис. 3-18а Интерфейсные карты

Все интерфейсные карты (6TRK, 8TRK, E&M, DLI, 16DLI, SLI, 16SLI, 8MWSLI, 16MWSLI) устанавливаются в систему аналогично карте TRKB

Карта 6TRK

Карта 6TRK устанавливается в любой универсальный слот любого блока. Отведите в стороны пластиковые фиксаторы и вдвиньте карту в слот до упора. Защелкните пластиковые фиксаторы на место.

Карта 8TRK

Карта 8TRK устанавливается в любой универсальный слот любого блока. Отведите в стороны пластиковые фиксаторы и вдвиньте карту в слот до упора. Защелкните пластиковые фиксаторы на место.

Карта PRI

Карта PRI может быть установлена в слоты 1, 2 или 3 любого блока. Карта предназначена для подключения цифрового канала ISDN PRI с сигнализацией EuroISDN. Отведите в стороны пластиковые фиксаторы и вдвиньте карту в слот до упора. Защелкните пластиковые фиксаторы на место.

Не устанавливайте карту при включенном питании системы.

Рис. 3-186 Карта PRI

Карта 8BSI

Карта 8BSI (контроллер DECT базовых станций) может быть установлена в слоты 1, 2 или 3 любого блока. Если в L-системе необходимо установить несколько карт 8BSI, они должны быть установлены только в одном блоке в слоты 1, 2 и 3 друг за другом. Если в одном блоке надо установить карты TEPRI, PRI, BRI и 8BSI, то они должны быть расположены именно в таком порядке в слотах 1, 2, 3. Это связано с тем, что при использовании карт BRI или PRI система берет от этих внешних каналов сигнал синхронизации, а приоритетность слотов по синхронизации определяется его номером. Первый слот приоритетнее второго, а второй — третьего. Если в блоке нет карт TEPRI, PRI, BRI, то карта 8BSI может быть размещена в 1 слоте.

Отведите в стороны пластиковые фиксаторы и вдвиньте карту в слот до упора. Защелкните пластиковые фиксаторы на место.

Не устанавливайте карту при включенном питании системы. В L-систему в слоты 1, 2 и 3 одного блока могут быть установлены максимум 3 карты.

Карта 4Е&М

Карта 4Е&М устанавливается в любой универсальный слот любого блока. Отведите в стороны пластиковые фиксаторы и вдвиньте карту в слот до упора. Защелкните пластиковые фиксаторы на место.

	Нет усиления		+34dB		+6.0dB	
	Tx	Rx	Tx	Rx	Tx	Rx
Порт 1	Bce OFF	Bce OFF	J10 ON	J30 ON	J10, J20 ON	J30, J40 ON
Порт 2	Bce OFF	Bce OFF	J11 ON	J31 ON	J11, J21 ON	J31, J41 ON
Порт 3	Bce OFF	Bce OFF	J12 ON	J32 ON	J12, J22 ON	J32, J42 ON
Порт 4	Bce OFF	Bce OFF	J13 ON	J33 ON	J13, J31 ON	J33, J43 ON

Карта DLI

В любых универсальных слотах одного блока может быть установлено до 7 карт DLI. Отведите в стороны пластиковые фиксаторы и вдвиньте карту в слот до упора. Защелкните пластиковые фиксаторы на место.

Если в одном блоке установлен только один источник питания PSU-B, то в этом блоке может быть не более 56 внутренних по энергопотреблению портов. Если в одном блоке установлено два источника питания PSU-B, то в этом блоке может быть не более 120 внутренних по энергопотреблению портов. Подробнее — в главе 4 "Подготовка к запуску системы".

Карта 16DLI

В любых универсальных слотах любого блока может быть установлено до 7 карт 16DLI. Отведите в стороны пластиковые фиксаторы и вдвиньте карту в слот до упора. Защелкните пластиковые фиксаторы на место.

- 1. Если в одном блоке установлен только один источник питания PSU-B, то в этом блоке может быть не более 56 внутренних по энергопотреблению портов. Если в одном блоке установлено два источника питания PSU-B, то в этом блоке может быть не более 120 внутренних по энергопотреблению портов. Подробнее в главе 4 "Подготовка к запуску системы".
- 2. Подключение дочерних карт к системным телефонам, работающим от этой карты, невозможно.

Карта SLI

Карта SLI может быть установлена в любой универсальный слот любого блока. Отведите в стороны пластиковые фиксаторы и вдвиньте карту в слот до упора. Защелкните пластиковые фиксаторы на место.

Карта автоматически определяет тип набора Пульс или Тон аналогового телефона, подключенного к этой карте.

- 1. Если в одном блоке установлен только один источник питания PSU-B, то в этом блоке может быть не более 56 внутренних по энергопотреблению портов. Если в одном блоке установлено два источника питания PSU-B, то в этом блоке может быть не более 120 внутренних по энергопотреблению портов. Подробнее в главе 4 "Подготовка к запуску системы".
- 2. Параметры вызывного сигнала: 25Гц, 80В, форма меандр.
- 3. Напряжение шлейфа при положенной трубке 48В.

Карта 8SLI

Карта 8SLI может быть установлена в любой универсальный слот блока. Отведите в стороны пластиковые фиксаторы и вдвиньте карту в слот до упора. Защелкните пластиковые фиксаторы на место.

Карта автоматически определяет тип набора Пульс или Тон аналогового телефона, подключенного к этой карте. Карта не имеет собственных DTMF-приемников. Поэтому при установке большого количества таких карт может потребоваться установка дополнительных MFM-карт DTMF-приемников.

- 1. Если в одном блоке установлен только один источник питания PSU-B, то в этом блоке может быть не более 56 внутренних по энергопотреблению портов. Если в одном блоке установлено два источника питания PSU-B, то в этом блоке может быть не более 120 внутренних по энергопотреблению портов. Подробнее в главе 4 "Подготовка к запуску системы".
- 2. Параметры вызывного сигнала: 25Гц, 80В, форма меандр.
- 3. Напряжение шлейфа при положенной трубке 48В.

Карта 16SLI

Карта 16SLI может быть установлена в любой универсальный слот блока. Отведите в стороны пластиковые фиксаторы и вдвиньте карту в слот до упора. Защелкните пластиковые фиксаторы на место.

Карта автоматически определяет тип набора Пульс или Тон аналогового телефона, подключенного к этой карте. Карта не имеет собственных DTMF-приемников. Поэтому при установке большого количества таких карт может потребоваться установка дополнительных MFM-карт DTMF-приемников.

- 1. Если в одном блоке установлен только один источник питания PSU-B, то в этом блоке может быть не более 56 внутренних по энергопотреблению портов. Если в одном блоке установлено два источника питания PSU-B, то в этом блоке может быть не более 120 внутренних по энергопотреблению портов. Подробнее в главе 4 "Подготовка к запуску системы".
- 2. Параметры вызывного сигнала: 25Гц, 80В, форма меандр.
- 3. Напряжение шлейфа при положенной трубке 24В.

Kapтa 4BRI (S/T)

Карта BRI может быть установлена в любой универсальный слот блока. Отведите в стороны пластиковые фиксаторы и вдвиньте карту в слот до упора. Защелкните пластиковые фиксаторы на место.

Для каждого порта имеется пара DIP-переключателей на блоке переключателей S7, предназначенных для включения внутренних терминирующих 100 Ом резисторов.

Не устанавливайте карту при включенном питании системы.

Kaрта 8MWSLI

Карта 8MWSLI может быть установлена в любой универсальный слот блока. Отведите в стороны пластиковые фиксаторы и вдвиньте карту в слот до упора. Защелкните пластиковые фиксаторы на место.

Карта автоматически определяет тип набора Пульс или Тон аналогового телефона, подключенного к этой карте. Карта обладает возможностью генерировать сигнал (90-100В постоянного напряжения) ожидающего сообщения для аналоговых аппаратов, имеющих такой индикатор. Карта не имеет собственных DTMF-приемников. Поэтому при установке большого количества таких карт может потребоваться установка дополнительных MFM-карт DTMF-приемников.

- 1. Если в одном блоке установлен только один источник питания PSU-B, то в этом блоке может быть не более 56 внутренних по энергопотреблению портов. Если в одном блоке установлено два источника питания PSU-B, то в этом блоке может быть не более 120 внутренних по энергопотреблению портов. Подробнее в главе 4 "Подготовка к запуску системы".
- 2. Параметры вызывного сигнала: 25Гц, 80В, форма меандр.
- 3. Напряжение шлейфа при положенной трубке 48В.

Kapтa 16MWSLI

Карта 16MWSLI может быть установлена в любой универсальный слот одного блока. Отведите в стороны пластиковые фиксаторы и вдвиньте карту в слот до упора. Защелкните пластиковые фиксаторы на место.

Карта автоматически определяет тип набора Пульс или Тон аналогового телефона, подключенного к этой карте. Карта обладает возможностью генерировать сигнал (90-100В постоянного напряжения) ожидающего сообщения для аналоговых аппаратов, имеющих такой индикатор. Карта не имеет собственных DTMF-приемников. Поэтому при установке большого количества таких карт может потребоваться установка дополнительных MFM-карт DTMF-приемников.

- 1. Если в одном блоке установлен только один источник питания PSU-B, то в этом блоке может быть не более 56 внутренних по энергопотреблению портов. Если в одном блоке установлено два источника питания PSU-B, то в этом блоке может быть не более 120 внутренних по энергопотреблению портов. Подробнее в главе 4 "Подготовка к запуску системы".
- 2. Параметры вызывного сигнала: 25Гц, 80В, форма меандр.
- 3. Напряжение шлейфа при положенной трубке 24В.

Карта TEPRI

Карта устанавливается в универсальные слоты 1, 2 или 3 любого блока. Это — универсальная карта для подключения по одному интерфейсу E1 (30+D) с возможностью работы в режимах Network и User. Карта может быть установлена в режим работы по сигнализации R2MFC или ISDN PRI с сигнализацией EuroISDN и Q-SIG. Первые четыре светодиодных индикатора на торце карты отвечают за состояние цифрового канала (Sync — синхронизация, AIS, Loss — физический уровень, Layer2 — канальный уровень). Нижние четыре индикатора отвечают за режим работы карты. По умолчанию внешняя синхронизация запрашивается системой с карт PRI сначала на слоте 1, потом на 2, потом на 3 базового блока и затем в таком же порядке на дополнительных блоках, сначала на втором, потом на третьем.

Два разъема RJ-45 служат для подключения цифрового канала и различаются только номерами контактов приема RX и передачи ТХ. Режим работы карты задается DIP-переключателями (рис. 3-19). Для доступа к переключателям необходимо разобрать пластиковый защитный корпус, сняв пластиковые фиксаторы и вывернув четыре крепежных шурупа (рис. 3-20).

В систему может быть установлено до 9 карт PRI/TEPRI, по 3 в каждый блок. Отведите в стороны пластиковые фиксаторы и вдвиньте карту в слот до упора. Защелкните пластиковые фиксаторы на место.

На карте есть кнопка перезагрузки Reset для перезапуска карты вручную.

Последовательный порт RS-232 на торце карты предназначен для трэйса и мониторинга работы карты и используется инженерами сервис-центров Samsung для определения причин неправильного функционирования карты.

Не устанавливайте карту при включенном питании системы.

Назначение DIP переключателей

№ переключателя	OFF	ON	
1	E1	T1	
2	E1/T1	PRI	
3	30B+D	30B	
4	USER	NETWORK	
5		AFT	
6	Не используется	Не используется	
7	Не используется	Не используется	
8	Зарезервировано	По умолчанию	

Предупреждение: DIP-переключатель 8 должен быть в положении ON.

Описание светодиодных индикаторов карты TEPRI

Название	Назначение	Норма	Ошибка	
SYN	Синхронизация отсутствует. Означает рассогласование по синхронизации или полное отсутствие канала.	OFF	ON	
LOS	Сигнал отсутствует. Отсутствует входной сигнал ИКМ	OFF	ON	
AIS	Индикатор ошибок. Означает наличие приема ошибок в канале	OFF	ON	
L2	Активность канального уровня. Наличие сообщения канального уровня	ON	OFF	
IPC	Синхронизация с процессором установлена	OFF карта является передатчиком синхронизации		
CLK	Статус сигнала синхронизации	ON карта является приемником синхронизации		
MODE	Индикаторы ТР1 и ТР2 индицируют режим работы канала	TP1	TP2	
	E1	OFF	OFF	
	E1 PRI	OFF	ON	
	Т1	ON	OFF	
	T1 PRI	ON	ON	

Рис. 3-19 Карта TEPRI

Рис. 3-20 Снятие корпуса с карты TEPRI

Карта автосекретаря АА

В систему в любой универсальный слот можно установить до 5 карт AA Отведите в стороны пластиковые фиксаторы и вдвиньте карту в слот до упора. Защелкните пластиковые фиксаторы на место.

Рис. 3-20 Карта АА

Не устанавливайте карту при включенном питании системы.

Карта голосовой почты SVMi8

Перед установкой карты SVMi8 в систему убедитесь, что программное обеспечение на жестком HDD-диске корректно сконфигурировано. На карту SVMi8 можно установить одну дочернюю карту для увеличения количества голосовых каналов с 4 до 8.

Карту SVMi8 можно установить в любой универсальный слот любого блока. В систему OfficeServ 500 устанавливается только одна карта голосовой почты SVMi8. Карта занимает 8 внутренних портов питания.

Перед установкой карты обязательно отключите питание системы.

Отведите в стороны пластиковые фиксаторы и вдвиньте карту в слот до упора. Защелкните пластиковые фиксаторы на место. Убедитесь, что для работы карты имеется достаточно источников питания и лимит внутренних портов в блоке не превышен.

Теперь переходите к главе 11 "Запуск системы голосовой почты SVMi8".

Рис. 3-22 Карта SVMi-8

Не устанавливайте данную карту при включенном питании системы.

Карта голосовой почты SVMi-16

Так же как и карта SVMi-8, данная карта базируется на платформе персонального компьютера. Карта SVMi-16 устанавливается непосредственно в систему OfficeServ 500 и является одной из ее составных частей. Только одна карта может быть установлена в систему в любой универсальный слот. Основные компоненты карты SVMi-16 приведены на рисунке ниже.

Рис. 3.23 Карта SVMi-16

(1) SBC (SVMi-16 Основная плата)

Плата SBC (Single Board Computer) практически является компьютером, который непосредственно подключается к системе OfficeServ 500. На основной плате имеются разъемы для подключения носителя информации (HDD или Compact Flash карта) и дополнительных модулей голосовых каналов VPM.

(2) Последовательный интерфейс RS-232

К данному интерфейсу может быть подключен локальный компьютер или модем для администрирования системы голосовой почты непосредственно у системы или удаленно.

(3) Кнопка сброса

Кнопка RST предназначена для перезагрузки карты SVMi16. После установки карты SVMi-16 и включения системы необходимо, нажав кнопку RST, провести инициализацию карты SVMi-16. В момент инициализации все звонки соединения с картой SVMi-16 будут разорваны. Поэтому необходимо проявлять осторожность, выбирая момент перезагрузки карты SVMi-16, так как данные в открытых для записи информации файлах могут быть повреждены.

- 1) Не устанавливайте данную карту при включенном питании системы. 2) Проявляйте осторожность, выбирая момент перезагрузки карты
- 2) Проявляите осторожность, выбирая момент перезагрузки карты SVMi-16, данные в открытых для записи информации файлах могут быть повреждены.

(4) Разъемы для установки модуля VPM

Данные разъемы предназначены для установки двух дополнительных модулей VPM. На каждой карте VPM или Fax VPM имеется два разъема для их установки на основной плате SBC.

(5) Основная память

Для работы процессора на основной плате имеется карта 32-битной динамической памяти.

(6) Compact Flash память или жесткий HDD диск

Жесткий диск или Compact Flash память предназначены для размещения операционной системы карты SVMi-16, для хранения системных сообщений и содержимого пользовательских почтовых ящиков.

Общее время записи различных сообщения зависит от размера памяти носителя информации, которая измеряется в Мегабайтах. Носители информации, используемые в картах SVMi-16, позволяют записать до 100 часов информации. Все типы носителей информации, используемые в картах SVMi-16, поставляются компанией SAMSUNG. Жесткий диск или Compact Flash память могут быть сняты с карты SVMi-16 для обновления программного обеспечения или устранения возникших неполадок. С платой SBC носители информации соединяются посредством 4 винтов и шлейфа. Дополнительные 4 контакта на жестком диске не используются.

(7) Модули голосовых каналов (VPM)

Каждый модуль VPM имеет 4 голосовых канала. Это означает, что в базовой конфигурации карта SVMi-16 содержит 8 голосовых каналов. При установке двух модулей VPM карта SVMi-16 будет иметь 16 голосовых каналов.

Существует два типа модулей VPM.

- 1. Модуль 4 VPM содержит 4 канала обработки речи. На карте SVMi-16 может быть установлено как один, так и два таких модуля.
- 2. Модуль 4 VPM (3 Voice+1 Fax) содержит 4 канала обработки речи, один из которых может применяться для обработки сигнала факса.

Карта 8WLI

Карта 8WLI предназначена для построения WLAN беспроводных сетей на основе системы OfficeServ 500. Данная карта является контроллером базовых станций WBS24Combo, которые выступают в качестве точек доступа к беспроводной сети WLAN.

Для связи карты 8WLI с базовыми станциями применяется два цифровых интерфейса архитектуры 2B+1D аналогичных ISDN U-интерфейсам. В системе OfficeServ 500 M-версии может быть установлена одна карта 8WLI в слоты S1, S2 или S3. В системе OfficeServ 500 L-версии может быть установлено до трех карт 8WLI. Карты должны находиться только в одном базовом или дополнительных блоках в слотах S1, S2 или S3.

Питающее напряжение базовых станций -48 V DC подается между двумя парами интерфейса подключения.

Рис 3.24 Карта 8WLI

Карта VoIP шлюза ITM3

Система OfficeServ 500, построенная на процессоре МСР, поддерживает встроенный шлюз IP-телефонии карту — ITM3. Карта обеспечивает 8 голосовых каналов, которые могут быть расширены до 16 посредством дочерней карты ITM3D (рис. 3-25).

Карту ITM3 можно установить в любой универсальный слот любого блока. В систему OfficeServ 500 устанавливается до 6 карт ITM3 — по две в каждый блок. Перед установкой карты обязательно отключите питание системы. Отведите в стороны пластиковые фиксаторы и вдвиньте карту в слот до упора. Защелкните пластиковые фиксаторы на место. Убедитесь, что для работы карты имеется достаточно источников питания и лимит внутренних портов в блоке не превышен.

Загрузка карты после включения системы занимает около 3 минут. В этот момент светодиод на процессоре MCP/SCP/LCP, отвечающий за статус слота, в котором установлена эта карта, мигает с интервалом 100 мсек. После того, как карта загрузится, светодиод должен погаснуть.

На карте имеется кнопка перезагрузки Reset для перезапуска карты вручную.

Последовательный порт RS-232 на торце карты предназначен для трэйса и мониторинга работы карты и используется инженерами сервис-центров Samsung для определения причин неправильного функционирования карты.

Карта ITM3 не имеет никаких дополнительных переключателей.

Описание светодиодных индикаторов карты ITM3

Название	Назначение
PWR	Наличие питания на карте
SW1	Мигает в момент исполнения процедур стека протоколов Н.323
TX	Горит при скорости сетевого соединения 100 М. Не горит при скорости сетевого соединения 10 М
RX	Горит при скорости соединениния с сетью 10/100 М
RUN	Светодиод подключен к 8 разрядной адресной шине процессора карты ITM3. Горит в момент загрузки и означает, что процессор работает. После загрузки мигает с очень большой частотой.
SW2	Мигает в момент операции пакетной передачи
SW3	Означает готовность карты к работе
SW4	Медленно мигает после загрузки операционной системы

Рис. 3-25 Карта VoIP шлюза ITM3

Не устанавливайте карту при включенном питании системы.

VoIP карта MGI3

Карта MGI3 применяется только в системах OfficeServ 500, построенных на основе процессора MCP2, в качестве VoIP шлюза, обработчика пакетов передаваемых с IP-телефонов и других MGI карт при объединении нескольких систем в корпоративную сеть. Карта MGI3 не осуществляет обмена сигнализацией по протоколу H.323 или SIP. Ее предназначение состоит в обработке пакетов, содержащих голосовую информацию. Обработкой сигнальных пакетов занимается карта главного процессора MCP2. Карта обеспечивает 8 голосовых каналов, которые могут быть расширены до 16 посредством дочерней карты. В систему устанавливается до 6 карт MGI3, по две в каждый блок в любой универсальный слот. Количество карт MGI3 не зависит от наличия в системе карт MGI1/2.

Основные управляющие элементы карты MGI3 (такие как порты LAN и RS232, клавиша Reset и назначение переключателей) абсолютно аналогичны таким же элементам карты ITM3.

Назначение светодиодных индикаторов карты MGI3 приведено ниже:

Рис. 3.26 Назначение светодиодных индикаторов карты MGI3

Индикатор	Цвет	Описание
PWR	Зеленый	Наличие питания на карте MGI3. Горит: Питание в норме Не горит: Питание отсутствует
SRV	Зеленый	Готовность к обработке голоса. Мигает: Сервис доступен. Не горит: Сервис недоступен.
Tx	Зеленый	Состояние передачи в Ethernet. Мигает: Идет передача данных. Не горит: Нет передачи данных.
Rx	Зеленый	Состояние приема от Ethernet. Мигает: Идет прием данных. Не горит: Нет приема данных.

Индикатор	Цвет	Описание
RUN	Зеленый	Рабочее состояние карты MGI3. Горит: Карта MGI3 нормально функционирует. Не горит: Карта MGI3 не работает.
IPC	Зеленый	Обмен данными между картой MGI3 и системой. Мигает: Передается сообщение. Не горит: Нет сообщений.
DSP	Зеленый	Нагрузка на DSP голосовые каналы. Мигает: DSP канал используется. Частота мигания/использование каналов: Раз в 1 секунду: 1-4 канала Каждые 0,5 секунд: 5-8 каналов Каждые 0,25 секунд: 9-12 каналов Каждые 0,125 секунд: 13-15 каналов Горит непрерывно: Все 16 каналов Не горит: DSP не используются
MOD	Зеленый	Прием RTP пакетов. Мигает: RTP пакеты принимаются нормально. Не горит: На приеме нет RTP данных.

VoIP карты MGI1/ MGI2

Карты MGI1 и MGI2 применяются только в системах OfficeServ 500, построенных на основе процессора MCP2, в качестве VoIP шлюза, обработчика пакетов передаваемых с IP-телефонов и других MGI карт при объединении нескольких систем в корпоративную сеть. Карты MGI1/2 не осуществляют обмена сигнализацией по протоколу H.323 или SIP. Их предназначение состоит в обработке пакетов, содержащих голосовую информацию. Обработкой сигнальных пакетов занимается карта главного процессора MCP2. Карты MGI1/2 обеспечивают 16 голосовых каналов. В каждый блок системы OfficeServ 500 может быть установлено до 5 карт MGI1/2. Таким образом, система OfficeServ 500-М может содержать до 80 VoIP каналов, а система OfficeServ 500-L — до 240. Количество карт MGI1/2 не зависит от наличия в системе карт MGI3.

Рис 3.27 Карты VoIP MGI1/MGI2

(1) Светодиодные индикаторы.

Индикатор	Цвет	Описание	
PWR	Зеленый	Наличие питания на карте MGI1/2. Горит: Питание в норме Не горит: Питание отсутствует	
RUN	Зеленый	Рабочее состояние карты MGI1/2. Мигает: Карта MGI1/2 нормально функционирует. Не горит: Карта MGI1/2 не работает.	
Rx	Зеленый	Состояние приема от Ethernet. Мигает: Идет прием данных. Не горит: Нет приема данных.	
Tx	Зеленый	Состояние передачи в Ethernet. Мигает: Идет передача данных. Не горит: Нет передачи данных.	
SRV	Зеленый	Готовность к обработке голоса. Горит: Сервис доступен. Мигает: Модифицируется программа или загружается конфигурация. Не горит: Сервис недоступен.	
DSP	Зеленый	Нагрузка на DSP голосовые каналы. Не горит: DSP не используются. Мигает: частота/использование каналов: Каждые 400 мсек.: 1-7 каналов. Каждые 200 мсек.: 8-11 каналов. Каждые 100 мсек.: 12-15 каналов. Горит непрерывно: Все 16 каналов.	
IPC	Зеленый	Обмен данными между картой MGI1/2 и системой. Мигает: Есть связь с системой. Не горит: Нет связи с системой	
MOD	Зеленый	Статус загрузки карты MGI1/2. Не горит: Карта нормально загрузилась и работает. Горит: Карта не загрузилась.	

(2) LAN порт

Разъем RJ-45 на передней панели MGI карт предназначен для подключения к сети Ethernet.

(3) Последовательный интерфейс RS232

К данному порту подключается кабель от персонального компьютера (PC), порт используется для мониторинга функционирования карты MGI.

(4) Кнопка сброса

Данная кнопка предназначена для перезагрузки карты MGI.

(5) Разъем J3

Данный разъем предназначен для перезаписи конфигурации логической CPLD микросхемы.

Карта голосового набора VDIAL

Карта VDIAL устанавливается в любой универсальный слот системы OfficeServ 500, построенной на основе процессора MCP2. Карта VDIAL предназначена для вызова и набора номера из персональной записной книжки абонентов. После нажатия клавишу VDIAL абоненту необходимо произнести имя записи. В памяти карты хранятся аналогичные записи. Карта сверяет произнесенную запись с имеющимися в памяти записями и, в случае совпадения сигналов, вызывает из памяти системы и набирает соответствующий телефонный номер.

Конденсатор С5 емкостью 1Φ позволяет, при потере питания системы, сохранять записи в памяти карты в течение одной недели. Для очистки памяти с записями можно воспользоваться процедурой программирования системы или на короткое время замкнуть контакты переключателя J2.

Карта VDIAL может быть сконфигурирована в двух вариантах:

- Режим 1: 2 канала, 7 пользователей, 20 записей (всего 280 записей)
- Режим 2: 1 канала, 5 пользователей, 40 записей (всего 200 записей)

Переключатель JP1 предназначен для выбора алгоритма кодирования речи — A-LAW или μ -LAW.

Основные компоненты карты VDIAL показаны на рисунке ниже.

Не устанавливайте карту при включенном питании системы.

Рис. 3.27 Карта VDIAL

ГЛАВА 4 ПОДГОТОВКА К ЗАПУСКУ СИСТЕМЫ

Глава 4 Подготовка к запуску системы

Определение количества источников питания

Энергопотребление (48В) системы OfficeServ 500 определяется количеством внутренних портов (SEPU-Station Equipment Power Unit). Система автоматически определяет количество внутренних портов и распределяет их между источниками питания. Например, если в блоке установлен только один источник питания или второй вышел из строя, будут работать только первые 56 внутренних портов. Поэтому надо распределить карты, потребляющие питание 48В так, чтобы в каждом блоке было не более 56 (при одном источнике) и 120 (при двух источниках) внутренних портов.

Энергоемкость источников питания OfficeServ 500

- \cdot В 1 слот питания установлен источник PSU-В 56 внутренних портов (SEPU)
- \cdot Во 2 слот питания установлен источник PSU-B или PSU-60 еще 64 внутренних порта (SEPU)

Потребление питания (48B) карт OfficeServ 500

Название	Количество внутренних портов/SEPU
16DLI, 16SLI, 16MWSLI, 8DLI	16
8SLI, 8MWSLI, BRI(S0), SVMi8, MGI1/MGI2	8
8BSI	24
4SLI, E&M	4
PRI, TEPRI, AA, TRKB, 6TRK, 8TRK	0 (потребляют только 5В)

При помощи программного кода MMC806 "Переустановка карт" можно проверить, какое для каждой карты количество портов и каким источником питания обслуживается.

- P:1 означает, что в 1 слот установлен источник питания PSU-В
- P:2 означает, что во 2 слот установлен источник питания PSU-B.
- Р:В означает, что во 2 слот установлен источник питания PSU-60.
- P:N означает, что: карта не требует источника питания (48B), либо имеющегося питания для обслуживания этой карты не хватает, либо источник питания вышел из строя.
 - [хх] означает количество портов на карте, запитанных системой.

Индикация дисплея

С:1=16DLI карта установлена в 1 блоке S:7=16DLI карта установлена в 7 слоте P:2=16DLI карта обслуживается вторым источником питания PSU-B [08]= только первые 8 портов обслуживаются

Пример

В одноблочной системе установлен только один источник PSU-B. В блок установлены карты TEPRI (слот 1), 8BSI (слот 2), 16DLI (слот 3), 16DLI(слот 4), 16MWSLI (слот 5), AA (слот 6).

Энергопотребление питания 48В составит: 0+24+16+16+16+0=72 SEPU

Таким образом, источник питания PSU-B питает карты следующим образом: 24 SEPU для 8BSI, 16 SEPU для 16DLI, 16 SEPU для 16DLI и не подает питания на карту 16MWSLI. Проверив распределение питания в MMC806, можно убедиться, что для карты 16MWSLI источник питания не задан (P:N). Это означает, что для работы карты 16MWSLI в систему необходимо добавить второй источник питания — PSU-B или PSU-60.

В каждый блок системы можно установить два источника питания. Первый источник питания должен быть марки PSU-B. Он обслуживает все 10 слотов (9 — универсальных и 1 — слот процессора), но позволяет установить не более 56 внутренних портов. Дополнительный источник питания марки PSU-B или PSU 60 увеличивает количество обслуживаемых портов еще на 64.

Различные карты, установленные в систему, имеют различный приоритет по питанию 48В. Например, если Вы добавили в блок карту SVMi8, а для нее не хватило питания, то система снимет питание с карты 8SLI (если нет менее приоритетных карт) и запустит карту SVMi8. В случае, если все карты имеют одинаковый приоритет по питанию, система отключит последние 8 портов, начиная с последней карты, требующей питания 48В.

Название	Энергопотребление в SEPU	Приоритет	Примечание
8BSI	24	1	
16DLI	16	1	Каждый В-канал расценивается как порт
8DLI	16	1	
16SLI	16	1	
16MWSLI	16	1	
SVMi8	8	1	
8SLI	8	2	
8MWSLI	8	2	
4BRI	8	2	Каждый В-канал расценивается как порт
SLI	4	4	
E&M	4	4	
MGI1/2	8	2	

Приоритетность карт по питанию

В программном коде ММС806 всегда можно определить, от какого источника запитана та или иная карта:

- Р:1 Означает, что карта запитана от первого источника питания
- Р:2 Означает, что карта запитана от второго источника питания
- P:N Означает, что карта не запитана или не требует питания 48B

Системные телефоны с большим дисплеем

Энергопотребление одного цифрового телефона с большим дисплеем соответствует энергопотреблению трех обычных цифровых аппаратов.

Для правильного использования карт 16DLI необходимо подсчитать суммарное энергопотребление всех аппаратов подключаемых к одной карте.

• Максимальная мощность, подаваемая на карту, позволяет запитать 24 цифровых аппарата.

В случае, если общее энергопотребление обычных цифровых аппаратов и аппаратов с большим дисплеем превысит 24, система автоматически отключит питание карты.

Пример

Допустим, что к карте 16DLI подключено 8 аппаратов с большим дисплеем:

Суммарное энергопотребление составит 24 аппарата (3 x 8). В таком случае оставшиеся 8 портов карты 16DLI будут отключены от питания.

- Если Вам необходимо использовать все порты карты 16DLI, то конфигурация подключения аппаратов может быть следующей: 4 цифровых аппарата с большим дисплеем и 12 обычных цифровых аппаратов. В этом случае суммарное энергопотребление составит 24 аппарата (4х3+12).
- В случае, если Вы подключили цифровой аппарат с большим дисплеем и часть уже работающих аппаратов прекратила функционировать, проверьте еще раз суммарное энергопотребление.

Подключение системы к питанию

После того, как система смонтирована, необходимо убедиться, что все аппаратное обеспечение функционирует правильно. Для этого перед первым включением настоятельно рекомендуется отключить от системы все периферийное оборудование и внешние линии.

Убедитесь, что переключатель напряжения сети переменного тока установлен в нужное положение (рис. 4-1)

Рис. 4-1

Источник питания PSU-В имеет два предохранителя сети переменного тока: на фазном и на нейтральном проводе. Поэтому, прежде чем проводить какие-либо работы с источником питания, отсоедините систему от сети переменного тока, отключив шнур питания.

Убедившись, что переключатель напряжения сети переменного тока установлен в нужное положение, установите источники питания во все блоки. Проверьте, все ли блоки соединены между собой кабелем СІС высокоскоростной шины данных HDLC. Соедините блоки между собой шнурами питания и подключите прибор к сети переменного тока.

Предохранители

Назначение	PSU-B	PSU-60	Примечание	
АС фаза	AC250V 5A(F1)	AC250V 5A	Источник питания PSU-60 имеет один	
АС нейтраль	AC250V 5A(F2)		предохранитель сети переменного тока	
Батареи бесперебойного питания	AC125V 5A(F4)	AC250V 5A		
Выход - 48В	AC125V 5A(F3)	AC250V 5A		

Включите все выключатели питания (положение ON) на всех блоках. Светодиод MP на процессоре MCP/MCP2 загорится, а светодиод SM начнет мигать. Это означает, что питание подано на процессор и началась загрузка. Светодиоды ТХ и RX на процессорах SCP/SCP2 и LCP/LCP2 должны мигать. Следовательно, питание на них подано, и они запустились. Если светодиод SM на MCP/MCP2 не горит и не мигает, это означает, что установлена неисправная карта SmartMedia. Отключите питание, замените карту и повторите попытку запуска. Если и в этом случае система не запустилась, выключите питание, выньте процессор МСР/МСР2 и убедитесь, что все дочерние карты стоят на своих местах. Помните, что при построении системы L-версии должны быть установлены карты SCP/SCP2, IPM и ESM при построении системы на базе процессора МСР. Если все установлено правильно, а система не запускается, отсоедините все дополнительные блоки и повторите попытку для определения неисправности. Если после включения ни один светодиод не светится, проверьте предохранители и переключатель напряжения сети переменного тока (рис. 4-1).

Если выходит из строя предохранитель - 48В, это может означать, что в блоке установлена дефектная карта, постарайтесь определить ее и заменить. Если и в этом случае система не запускается, замените источники питания.

Если на процессоре дополнительного блока LCP/LCP2 не светится ни один светодиод, попробуйте извлечь все карты и, поочередно вставляя их, определить неисправную. Если и после этого система не запускается, проверьте источники питания (переключатель рабочего напряжения и предохранители). Необходимо переустановить соединительный кабель СІС, заменить источники питания или процессор LCP/LCP2. Если причина не найдена, обратитесь к специалистам сервис-центра Samsung.

Индикаторы карт процессоров

Если система нормально загрузилась, светодиод MP на процессоре MCP/MCP2 должен мигать, а светодиод SM должен гореть постоянно. Это означает, что процессор нормально запустился и в нем установлена рабочая карта SmartMedia. Индикаторы HDLC на процессорах SCP/SCP2 и LCP/LCP2 должны мигать, а индикаторы состояния слотов на них должны погаснуть.

Проверка карт

Прежде чем подсоединять к системе к периферийные устройства, подключите, через переходник, только один системный телефон к любой DLI-карте. Телефон должен запуститься и показать свой внутренний номер и дату. Следующим шагом необходимо провести процедуру локализации системы, используя ММС812. Произойдет перезагрузка системы с установками по умолчанию для Вашего региона. Далее необходимо проверить версии программного обеспечения системы и карт, используя ММС805 (обратитесь к поставщику за информацией о наличии последних версий и их совместимости). Используя ММС806, проверьте, правильно ли система распознала все карты и все ли они правильно запитаны. Теперь можно присоединить все периферийное оборудование. В этот момент рекомендуется еще раз перезагрузить систему, используя ММС811. Подробнее о процедурах программирования смотрите в "Инструкции по программированию".

Нумерация системы по умолчанию

В момент загрузки системы по умолчанию она автоматически распознает все карты и нумерует их порты. В зависимости от положения DIP-переключателей на карте главного процессора МСР нумерация по умолчанию может быть трех- или четырехзначной. Нумерация портов проводится в зависимости от типа карты по возрастанию от первого слота к последнему.

Например, если в систему установлена карта внешних линий 8TRK в 1-й слот, то первый порт C1/S1/P1 (первый блок, первый слот, первый порт) получит номер 701. Если в следующий слот установлена карта TRKB, то последний порт на ней C1/S2/P4 (первый блок, второй слот, четвертый порт) получит номер 712.

Внутренние телефоны нумеруются по умолчанию по такому же принципу. Первый внутренний порт в первом блоке получит номер 201. Следующий первый порт на внутренней карте, установленной в следующем слоте, получит номер 201 + количество портов на первой карте. Самый первый по порядку внутренний порт по умолчанию автоматически заносится в группу оператора и отвечает на все звонки, поступающие с внешних линий. Поэтому рекомендуется, чтобы первая внутренняя карта в системе была именно цифровая DLI.

В системе предусмотрена гибкая нумерация портов и сервисных функций. Ее всегда можно изменить, используя ММС724 "План нумерации системы".

Если какие либо интерфейсные карты добавлены после первого включения системы, порты на ней необходимо пронумеровать вручную. Данный пример приведен для трехзначной нумерации портов. В зависимости от положения DIP переключателей на карте главного процессора МСР нумерация по умолчанию может быть трех- или четырехзначной (см. Главу 3, раздел "Главный процессор МСР").

ГЛАВА 5 ПОДКЛЮЧЕНИЕ ВНЕШНИХ ЛИНИЙ

Глава 5 Подключение внешних линий

Для сведения к минимуму риска травмы при подключении внешних линий, выполняйте следующие правила:

- Не производите монтаж телефонных коммуникаций во время грозы.
- \cdot Не устанавливайте телефонные разъемы в сырых местах, за исключением тех случаев, когда разъемы разработаны специально для использования в таких местах.
- · Не прикасайтесь к неизолированным проводам или контактам, не отключив телефонную линию от подающего кросса.
- · Будьте внимательны при проведении технических работ с телефонными линиями.

Аналоговые линии Loop Start

Используя витую пару сечением 0,5 мм, подключите с помощью кросса городские линии к внешним портам (рис. 5-1 и 5-2).

Рис. 5-1 Подключение внешних линий к карте TRKB

(остальные не используются)

ПРИМЕЧАНИЕ: ТОЛЬКО LOOP START АНАЛОГОВЫЕ ЛИНИИ МОГУТ БЫТЬ ПОДКЛЮЧЕНЫ К КАРТАМ 6TRK И 8TRK

Рис. 5-2 Подключение внешних линий к картам 6 и 8ТКК

Соединительные линии Е&М

Используя три витых пары на одну линию сечением 0,5 мм, подключите с помощью кросса линии E&M к портам E&M-карты (рис. 5-3).

(остальные не используются)

Рис. 5-3 Подключение соединительных линий Е&М

Линии удаленного абонента ОРХ

Используя витую пару сечением 0,5 мм, подключите с помощью кросса порты карты SLI к телефонной компании (рис. 5-4). Порты карты SLI специально разработаны для выноса аналогового внутреннего номера OfficeServ 500 через телефонную компанию. Поэтому цепи карты SLI имеют схему защиты от перенапряжения или повышенного тока. Использование для этих целей аналоговых портов SLI других карт требует применения внешнего устройства защиты.

При подключении SLI-портов через телефонную компанию необходимо изменить режим подачи вызывного напряжения на ${\rm CO}$ в программном коде MMC208.

Рис. 5-4 Подключение линий OPX к карте SLI

Линии E1/PRI

Подключение цифровых каналов E1 осуществляется через RJ-45 разъем T1 на карте TEPRI. Подключите порт карты к сетевому окончанию NT1 кабелем, поставляемым с картой TEPRI, или используйте для этого витую пару 5 категории и джеки RJ-45 (рис. 5-5).

Постарайтесь расположить систему не далее 5 м от сетевого окончания NT1.

Рис. 5-5 Подключение линий E1/PRI

Линии ISDN BRI

Порты карты BRI могут использоваться для подключения ISDN BRI терминалов (TE) или ISDN BRI внешних линий (NT1).

В случае, если далее по S-шине от NT1 подключены дополнительные ISDN-терминалы, не имеющие внутреннего терминирования, необходимо на концах шины установить сопротивления, номиналом 100 Ом.

Порядок подключения ISDN-терминалов описан на рис. 5-6а и в главе 6 "Подключение внутренних телефонов"

Рис. 5-6а Подключение ISDN терминалов ТЕ

Рис. 5-66 Подключение ISDN внешним линиям NT1

Подключение DBS к карте 8BSI

Карта 8BSI (контроллер DECT базовых станций) может быть установлена в слоты 1, 2 или 3 любого блока. Если в L-системе есть необходимость установить несколько карт 8BSI, они должны быть установлены только в одном блоке в слоты 1, 2 и 3 друг за другом. Если в одном блоке есть необходимость установить карты TEPRI, PRI, BRI и 8BSI, то они должны быть расположены именно в таком порядке в слотах 1, 2, 3. Это связано с тем, что при использовании карт BRI или PRI система берет от этих внешних каналов сигнал синхронизации, а приоритетность слотов по синхронизации определяется номером слота. Первый слот приоритетнее второго, второй приоритетнее третьего. Если в блоке нет карт TEPRI, PRI, BRI, то карта 8BSI может быть размещена в 1 слоте.

В L-систему в слоты 1, 2 и 3 одного блока можно установить максимум 3 карты.

Отведите в стороны пластиковые фиксаторы и вдвиньте карту в слот до упора. Защелкните пластиковые фиксаторы на место.

Не устанавливайте данную карту при включенном питании системы.

Рис. 5-7а

КАБЕЛЬ ОТ РОЗЕТКИ RJ-45 К БАЗОВОЙ СТАНЦИИ DBS

PO3ETKA RJ-45 OT 8BSI

РАЗЪЕМ RJ-45 OT DBS

Кабель	Две пары
Сечение	0,6 мм или 0,4 мм
Длина	600м или 400м
Интерфейс	2xU - интерфейса или 4 В-канала

Рис. 5-76 Кабель между розеткой RJ-45 и базовой станцией DBS

Подключение WBS24 к карте 8WLI

Использование беспроводных WLAN телефонов возможно только в системе OfficeServ 500, построенной на процессоре MCP2.

Беспроводная сеть WLAN строится на основе следующих компонентов:

- Карта 8WLI: Контроллер базовых станций
- WBS24 Combo: Базовая станция (точка доступа)
- WIP5000: Беспроводный IP телефон

Карта 8WLI (контроллер WBS24 Combo базовых станций) может быть установлена в слоты 1, 2 или 3 любого блока. Если в L-системе есть необходимость установить несколько карт 8WLI, они должны быть установлены только в одном блоке в слоты 1, 2 и 3 друг за другом. В случае, если в одном блоке есть необходимость установить карты TEPRI, PRI, BRI и 8BSI, то должны быть расположены именно в таком порядке в слотах 1, 2, 3. Это связано с тем, что в случае использования карт BRI или PRI система берет от этих внешних каналов сигнал синхронизации, а приоритетность слотов по синхронизации определяется номером слота. Первый слот приоритетнее второго, а второй приоритетнее третьего. Если в блоке нет карт TEPRI, PRI, BRI, то карта 8WLI может быть размещена в 1 слоте.

Отведите в стороны пластиковые фиксаторы и вдвиньте карту в слот до упора. Защелкните пластиковые фиксаторы на место.

Максимально возможные конфигурации WLAN сети

Наименование	OfficeServ 500 построена на процессоре МСР2		
	OfficeServ 500-M	OfficeServ 500-L	
Карта 8WLI	1	3	
Базовая станция WBS24	8	24	
Максимальное количество трубок	48	240	
Максимальное количество разговоров	32	96	

КАБЕЛЬ ОТ РОЗЕТКИ RJ-45 К БАЗОВОЙ СТАНЦИИ WBS24 COMBO

PO3ETKA RJ-45 OT 8WLI

PA3ЪEM RJ-45 OT WBS24 COMBO

Кабель	Две пары		
Сечение	0,6 мм или 0,4 мм		
Длина	600м или 400м		
Интерфейс	2xU - интерфейса или 4 В-канала		

Рис. 5-8a Кабель между розеткой RJ-45 и базовой станцией WBS24 Combo

Рис. 5-8б

ГЛАВА 6 ПОДКЛЮЧЕНИЕ ВНУТРЕННИХ ТЕЛЕФОНОВ

Глава 6 Подключение внутренних телефонов

Меры безопасности

Для сведения к минимуму риска травмы при подключении внешних линий, выполняйте следующие правила:

- Не производите монтаж телефонных коммуникаций во время грозы
- · Не устанавливайте телефонные разъемы в сырых местах за исключением тех случаев, когда разъемы разработаны специально для использования в таких местах.
- · Не прикасайтесь к неизолированным проводам или контактам, не отключив телефонную линию от подающего кросса.
- \cdot Будьте внимательны при проведении технических работ с телефонными линиями.

Системные телефоны iDCS

Система OfficeServ 500 поддерживает два типа цифровых карт, к которым можно подключить цифровые системные телефоны: 8DLI и 16DLI. Используя витую пару сечением 0,5 мм, подключите системные телефоны к портам карт 8DLI или 16 DLI (рис. 6-1) или к установленной в системный телефон дочерней карте KDB-DLI.

Для предотвращения выхода из строя портов DLI используйте телефонный шнур, поставляемый в комплекте с аппаратом или любой другой, заведомо исправный. Ни в коем случае не подключайте аналоговые телефоны, факсы, модемы к портам DLI.

Если вы заменили телефон на порту DLI на телефон с меньшим количеством программируемых клавиш, система автоматически их сбросит по шаблону, задаваемому в ММС723. Клавиши придется запрограммировать заново через ММС722 или восстановить их, предварительно сохранив в ММС721. Все это относится и к системным телефонам семейства DCS.

ПОДКЛЮЧЕНИЕ К ЛЮБОМУ ПОРТУ КАРТЫ DLI

Рис. 6-1 Подключение системных телефонов

Дополнительные модули iDCS AOM

Система OfficeServ 500 поддерживает два типа консолей AOM: на 64 и 48 клавиш. Максимальное количество применяемых модулей AOM описано ниже.

Система	DCS 48 клавиш	IDCS 64 клавиши
OfficeServ 500 M	Ограничено только числом DLI портов	Максимум 8
OfficeServ 500 L	Ограничено только числом DLI портов	Максимум 32

Используя витую пару сечением 0,5 мм, подключите модули AOM к портам карт 8DLI или 16 DLI (рис. 6-1), или к установленной в системный телефон дочерней карте KDB-DLI. Назначение консолей и системных телефонов для работы в паре производится в MMC209.

Для предотвращения выхода из строя портов DLI используйте телефонный шнур, поставляемый в комплекте с модулем, или любой другой, заведомо исправный.

ІР-телефоны

В системе OfficeServ 500, построенной на базе процессора МСР2, имеется возможность подключения IP телефонов.

Ниже приведена процедура установления соединения между обычным цифровым аппаратом и IP телефоном:

Когда цифровой телефон пытается установить соединение с IP-аппаратом, главный процессор МСР2, подключенный к Ethernet сети, посылает сигнальный пакет установления соединения на IP-адрес IP-телефона. После установления соединения цифровой телефон кодирует речь в ИКМ цифровой сигнал и посылает его на карту MGI1/2/3 через карту 16DLI. Далее карта MGI1/2/3 конвертирует полученный ИКМ код в IP-пакеты и по Ethernet сети отправляет на IP-телефон. В свою очередь IP-телефон распаковывает полученные пакеты, конвертирует данные в аналоговый сигнал и передает их в телефонную трубку. Аналоговый сигнал с IP-телефона, запакованный в пакеты, направляется на карту MGI1/2/3. Затем в карте MGI1/2/3 полученная информация распаковывается и передается как ИКМ сигнал через карту 16DLI обратно в цифровой телефон. Цифровой телефон в свою очередь декодирует полученный ИКМ код в аналоговый сигнал и направляет его в телефонную трубку.

Для использования в составе системы IP-телефонов необходимо иметь IP-телефоны, карту MGI1/2/3 и процессор MCP2, подключенные к Ethernet сети. Структура организации сети приведена на рисунке ниже.

OfficeServ 500

MCP2 MGI1/2/3 IP коммутатор 16DLI Ethernet Прифровой телефон При телефон

Рис. 6.2 Подключение IP телефонов

Аналоговые телефоны

Система OfficeServ 500 поддерживает 5 типов карт для подключения аналоговых телефонов SLI, 8/16SLI и 8/16MWSLI. Используя витую пару сечением 0.5 мм, подключите телефоны к портам карт 8/16SLI и 8/16MWSLI (рис. 6-3) или к установленной в системный телефон дочерней карте KDB-SLI.

Для предотвращения выхода из строя портов SLI используйте телефонный шнур, поставляемый в комплекте с телефоном, или любой другой, заведомо исправный.

Телефоны с индикатором ожидающего сообщения должны быть подключены к картам 8MWSLI или 16MWSLI.

КОНТАКТЫ НА 25 ПАРНОМ РАЗЪЕМЕ ОДНА ВИТАЯ ПАРА 16DLI Контакты Порт 8DLI DLI TIF DLI TIF 26 DLI RING DLI TIP DLI RING DLI TIP 27 2 DLI RING DLI RING 28 3 30 DLI RING DLI RING DLI TIP 4 DLI RING DLI RING 31 DLI TIP 5 DLI RING DLI RING 123456 33 6 **DLI RING DLI RING** DLI TIP DLI RING DLI TIP DLI TIP 35 7 8 DLI RING DLI RING 11 DLI TIP 9 DLI RING 39 10 DLI RING 14 DLI TIP 11 DLI RING 42 12 17 DLI RING АНАЛОГОВЫЙ ТЕЛЕФОН 18 DLI TIP 13 DLI RING 45 14 DLI RING 20 21 47 DLI TIP 15 **DLI RING** 16 **DLI RING** (остальные не используются)

Рис. 6-3 Подключение аналоговых телефонов

Домофон и электрический дверной замок

Используя витую пару сечением 0,5 мм, подключите с помощью кросса модуль управления домофоном DPIM к любому порту DLI или к установленной в системный телефон дочерней карте KDB-DLI (рис. 6-4). Затем подключите модуль управления домофоном DPIM к домофону, используя витую пару #24 AWG или #26 AWG.

Для предотвращения выхода из строя портов DLI используйте заведомо исправный телефонный шнур.

МОДУЛЬ УПРАВЛЕНИЯ ДОМОФОНОМ (DPIM) К КОНТРОЛЛЕРУ ЗАМКА ДОМОФОН ОДНА ВИТАЯ ПАРА К КАРТЕ DLI ДОМОФОН

Рис. 6-4 Подключение домофона и дверного замка

После установки управляемого электрического замка подключите соответствующие контакты модуля управления домофоном DPIM к контактам управления замком. Используя код MMC 501, запрограммируйте время срабатывания замка. (См. разделы о программировании домофона в Инструкции по программированию). Реле управления электрическим замком может коммутировать контур с напряжением не более 24В DC при токе до 1А.

Не коммутируйте через реле сетевое питание замка.

DECT базовые станции DBS

Описание DECT

Система OfficeServ 500 имеет встроенную систему микросотовой связи DECT. Для реализации этой функции необходимы карты 8BSI, базовые станции DBS и DECT-трубки. Пользователи трубок, являясь полноценными внутренними абонентами, могут свободно перемещаться по всей зоне охвата DECT-сети не прерывая разговоров. Система OfficeServ 500 М-версии поддерживает только 1 карту 8BSI. В систему OfficeServ 500 L-версии можно установить до 3 карт 8BSI.

Карта 8BSI может быть установлена в слоты 1, 2 или 3 любого блока. Если есть необходимость установить в L-системе несколько карт 8BSI, они должны быть установлены только в одном блоке в слоты 1, 2 и 3 друг за другом. Максимальная удаленность базовой станции от системы при использовании витой пары сечением 0,64 мм составит 600 м. При использовании витой пары сечением 0,4 мм — 400 м. Соедините DBS с картой 8BSI так, как показано на рис. 6-4.

Структура DECT сети OfficeServ 500 М-версии

Карта 8BSI должна быть установлена только в слот 1, 2 или 3.

К карте 8BSI можно подключить 8 базовых станций DBS. Каждая DBS поддерживает 4 одновременных разговора. Всего одновременных разговоров может быть 32. В системе можно зарегистрировать 48 DECT трубок.

Структура DECT сети OfficeServ 500 L-версии

Карты 8BSI должны быть установлены только в одном блоке в слоты 1, 2 и 3 друг за другом.

Всего может быть установлено 3 карты 8BSI. К карте 8BSI можно подключить 8 базовых станций DBS. Каждая DBS поддерживает 4 одновременных разговора. Одна карта позволяет вести 32 одновременных разговоров. В системе можно зарегистрировать 192 DECT трубки.

Емкость DECT-системы

	OfficeServ 500 - M	OfficeServ 500 - L
Количество BSI	1	3
Количество DBS	8	24
Количество пользователей	48	192
Одновременных разговоров	32	96

- 1) Максимальное число трубок зависит от типа системы.
- 2) Максимальное количество пользователей означает максимальное количество трубок, зарегистрированных в системе.
- 3) Максимальное число одновременных разговоров зависит от количества базовых станций DBS. Одна DBS поддерживает 4 одновременных разговора.

(остальные не используются)

Рис. 6-4 Подключение базовых станций DBS

Базовая станция WBS24 Combo

Базовая станция WBS24 состоит двух частей — проводной и беспроводной.

Проводная составляющая в свою очередь так же делится на две части. Одна часть базируется на интерфейсе ISDN BRI и предназначена для соединения базовой станции с телефонной системой. Вторая часть основывается на интерфейсе Ethernet IEEE 802.3 и предназначена для подключения к локальной вычислительной сети. Радио часть базовой станции предназначена для работы в беспроводной сети стандарта IEEE 802.11b 2.4ГГц.

Интерфейсы ISDN BRI построены на National Semiconductor DASL микросхеме (Данный ISDN BRI интерфейс не стандартный, использующий протокол, разработанный в компании SAMSUNG).

Скорость передачи данных по такому интерфейсу 144Кбит/сек. Позволяет организовать два В - разговорных и один D - канал данных. Эти интерфейсы предназначены для взаимодействия с телефонной системой и для ведения разговоров между беспроводными IP терминалами и системой.

Проводной интерфейс Ethernet 10/100Base-T предназначен для связи базовой станции с локальной вычислительной сетью.

Максимальная скорость передачи данных в беспроводной части базовой станции составляет от 5 Мбит/сек. до 6 Мбит/сек. Одна базовая станция WBS24 позволяет вести до 4 одновременных разговоров с беспроводных IP терминалов, и около 20 пользователей персональных компьютеров могут подключиться через беспроводный интерфейс к локальной вычислительной сети. Основные функции базовой станции WBS24 приведены ниже.

- Беспроводная сеть стандарта IEEE 802.11b 2.4ГГц
- LAN интерфейс Ethernet IEEE 802.3
- 2B+1D ISDN BRI интерфейс со скоростью передачи 144Кбит/сек
- Поддержка беспроводных ІР-терминалов
- Точка доступа к локальной вычислительной сети по беспроводному интерфейсу WLAN
 - Идентификация пакетов с данными и речью
 - Кодирование и сжатие ИКМ речевой информации

Назначение индикаторов WBS24

Индикатор	Порт	Название	Описание
1	-	PWR	Отражает наличие питания на WBS24
2	11	WLAN	Состояние обмена по WLAN Горит: Есть подключение по WLAN Не горит: Нет подключений по WLAN.
3	12	LAN	Подключение к Ethernet - Горит: Сеть подключена. - Не горит: Сеть не подключена.
4	4	WLI	Состояние подключения к карте WLI - Горит: Есть соединение Не горит: Нет соединения.
5	3	LD1	Статус занятости канала В Горит: Занято 2 канала В Мигает: Занят один канал В Не горит: Нет занятых каналов В.
6	25	LD2	Статус занятости канала В Горит: Занято 4 канала В Мигает: Занято 3 канала В Не горит: Занято от 0 до 2 каналов В.

Загрузка голосовых каналов

Занятые каналы	LD1	LD2
Нет	Не горит	Не горит
BCH1	Мигает	Не горит
BCH2	Горит	Не горит
BCH3	Горит	Мигает
BCH4	Горит	Горит

Терминальное оборудование ISDN (ISDN-телефон, факс G4 и т.д.)

Карта BRI позволяет построить внутреннюю ISDN S_0 шину и подключить к ней различные ISDN-терминалы. Режим работы S устанавливается в коде MMC423. Внутренние ISDN-номера на каждый ISDN-порт распределяются в коде MMC424. Если на шине S_0 установлены ISDN-терминалы, требующие питания по шине, задайте его в MMC428. После того как ISDN-функции карты BRI запрограммированы, перегрузите карту BRI кодом MMC425. Более подробно эти процедуры описаны в "Инструкции по программированию".

В соответствии с правилами построения стандартной ISDN BRI S_0 шины, подключите к ней ISDN-терминалы двумя витыми парами сечением 0,5 мм (рис. 5-6б).

ГЛАВА 7 ПОДКЛЮЧЕНИЕ ДОПОЛНИТЕЛЬНЫХ УСТРОЙСТВ

Глава 7. Подключение дополнительных устройств

Внешний источник музыки

Подключите внешний источник музыки к входному разъему на дочерней карте MISC (рис 7-1).

Для каждой внешней линии программируется режим ожидания с прослушиванием музыки от внешнего источника, прослушиванием системных тоновых сигналов или отсутствием музыки. Для каждого телефона задается источник фоновой музыки или ее отсутствие. За более подробной информацией обратитесь к Инструкции по программированию (коды ММС408 и ММС308).

Рис. 7-1 Подключение внешнего источника музыки

В качестве источника внешней музыки применяйте заведомо исправное устройство. Все выходы карты MISC и коммутирующие контакты должны быть надежно изолированы друг от друга. Избегайте попадания напряжения сети переменного тока АС на порты карты MISC.

Внешнее оповещение

Каждая дочерняя карта MISC содержит один порт громкого оповещения (EXTERNAL PAGING), один порт аудио сигнала (LOUD BELL) о вызове и две пары коммутирующих контактов. Подключите линейный вход внешнего усилителя к выходу громкого оповещения или к устройству аудио оповещения о вызове (рис. 7-2). Динамики громкого оповещения или аудиосигнала подключаются к выходу усилителя через коммутирующие реле. Таким образом, от одного выхода громкого оповещения на карте MISC можно получить две зоны внешнего оповещения. Номер коммутирующего реле должен быть занесен в зону внешнего оповещения в коде программирования ММС605. Подача внешнего аудиосигнала при поступлении вызова на какой-либо внутренний телефон программируется в ММС205.

Рис. 7-2 Подключение внешнего оповещения

В качестве усилителя и динамиков применяйте заведомо исправные устройства. Все выходы карты MISC и коммутирующие контакты должны быть надежно изолированы друг от друга. Избегайте попадания напряжения сети переменного тока AC на порты карты MISC.

Совместный звонок

Подключите к соответствующим контактам карты MISC внешнее звонящее устройство (рис 7-3). Используя код программирования ММС204, выберите ПРЕРЫВИСТЫЙ или НЕПРЕРЫВНЫЙ звонок. При прерывистом звонке режим вызова аналогичен звонку, пришедшему от внешней линии.

После подключения звонящего устройства, назначьте его в качестве члена соответствующей группы аппаратов. (Воспользуйтесь кодом MMC601). При установке внешнего звонка выполните следующие действия:

- \cdot Подключите внешнее звонящее устройство к соответствующей паре контактов.
 - · Выберите прерывистый или непрерывный звонок.
- · Укажите группу внутренних аппаратов (hunt group), использующих внешний звонок.
- \cdot Укажите внешние линии, звонки с которых поступают на эту группу аппаратов (hunt group).

Внешний звонок может использоваться группой внутренних аппаратов (hunt group), отдельными аппаратами и универсальным отвечающим (UA). Реле, управляющее звонящим устройством, рассчитано на параметры не более 24V DC, 1A

В качестве совместного звонка применяйте заведомо исправные устройства. Все выходы карты MISC и коммутирующие контакты должны быть надежно изолированы друг от друга. Избегайте попадания напряжения сети переменного тока AC на порты карты MISC.

Рис. 7-3 Подключение совместного звонка

Звонок на систему оповещения

После установки внешней системы оповещения некоторые входящие городские звонки могут сопровождаться оповещением Ring Over Page. Назначьте вызовы с внешних линий на группу внутренних аппаратов hunt group. Используя код ММС 601, назначьте внешнее устройство громкого оповещения членом этой группы внутренних аппаратов hunt group. Звонок на систему оповещения Ring Over Page может использоваться в каждом из планов работы системы Ring Plan.

Информация о работе системы (SMDR / UCD / TRAFFIC / ALARMS)

Для вывода информации о звонках SMDR, о работе групп универсального распределения вызовов UCD, статистики о нагрузке TRAF-FIC и информации о сбоях ALARM к системе можно подключить компьютер или принтер с последовательным интерфейсом RS-232 (рис. 7-5 и 7-6). Для этого на базовом блоке может быть до 4 портов RS-232 (рис. 7-4). Назначение каждого порта и параметры передачи задаются в коде MMC804. Параметры вывода информации о звонках SMDR задаются в коде MMC725.

В системе, построенной на МСР, доступно 4 порта: SIO1-SIO4. В системе, построенной на МСР2, доступно 2 порта: SIO3 и SIO4.

Рис. 7-4 Местоположение портов RS-232

Рис. 7-5 Распайка кабеля для подключения принтера

Рис. 7-6 Распайка кабеля для подключения компьютера

В момент подключения к портам RS-232 внешних устройств выключайте питание системы. Подключения принтера осуществляйте только к его последовательному порту RS-232, ни в коем случае не к LPT.

Программирование с компьютера

Система OfficeServ 500 может программироваться с компьютера посредством программы OfficeServ Manager через последовательный RS-232 порт (см. рис. 7-4) или по локальной сети (для этого на процессоре МСР должна быть установлена карта LAN). При отсутствии локальной сети компьютер может быть подключен непосредственно к карте LAN реег-tореег кабелем с перекрещенными приемными и передающими парами. Параметры LAN карты устанавливаются в программном коде ММС830. IP-адрес системы или последовательный порт, для доступа в систему, должны быть установлены в настройках программы OfficeServ Manager.

Ниже приведена структура подключения персонального компьютера для программирования системы OfficeServ 500, построенной на процессоре МСР.

Рис 7.7 Структура подключения к системе OfficeServ 500 на основе МСР

Ниже приведена структура подключения персонального компьютера для программирования системы OfficeServ 500 построенной на процессоре MCP2.

Рис 7.8 Структура подключения к системе OfficeServ 500 на основе МСР2

Распайка кабеля последовательного интерфейса приведена на рис. 7-6. Если есть необходимость программировать систему по интерфейсу RS-232 на расстоянии более 5 м, используйте экранированный кабель. Максимальная длина кабеля не может превышать 10 м. Скорость передачи через порт RS-232 настраивается в программном коде MMC804 и в настройках программы OfficeServ Manager соответственно.

Для программирования с компьютера в MMC804 доступны следующие порты RS-232:

Конфигурация системы	Выбранный в ММС804 порт	Подключаемый на ІОМ порт
MCP без карты LAN	Порт 1∼2	SIO1~SIO2
MCP с картой LAN	Порт 1∼4	SIO1~SIO4
MCP2	Порт 2~3	SIO2~SIO3

Внешняя голосовая почта/Автосекретарь

Система позволяет использовать внешнюю систему Голосовая почта/Автосекретарь (VM/AA), подключаемую к аналоговым SLI-портам (см. главу 6). Информация по программированию SLI-портов для работы с внешней системой голосовой почты описана в Инструкции по программированию в кодах ММС207, ММС601 и ММС726.

Батареи бесперебойного питания 48В

Источники питания системы OfficeServ 500 PSU-B и PSU-60 имеют схему подключения батарей бесперебойного питания для питания системы при отсутствии напряжения в сети переменного тока АС и для заряда батарей при его наличии.

Батарею бесперебойного питания — 48B можно собрать из нескольких аккумуляторов с рабочим напряжением 12B или 6B, соединив их последовательно (рис 7-7). Емкость батареи должна быть не менее 6Aч и не может превышать 20Aч на один источник питания. Для подключения батарей используйте кабель, поставляемый в комплекте с базовым блоком.

При установке батарей бесперебойного питания соблюдайте следующие меры предосторожности:

- · Устанавливайте батареи только в помещении, где есть пожарная сигнализация. Некоторые батареи в момент заряда могут выделять ядовитый газ, поэтому в таком помещении должна быть система вентиляции.
- · Не размещайте батареи непосредственно на бетонном полу. Это может привести к их быстрой разрядке.
- · Соблюдайте правила эксплуатации и обслуживания батарей, выдвигаемые их разработчиком.
- \cdot Для сохранности батарей можно осуществить их подсоединение к системе через предохранитель (125В 5А).

Рис. 7-9

ГЛАВА 8 УСТАНОВКА ДОЧЕРНИХ КАРТ В СИСТЕМНЫЕ ТЕЛЕФОНЫ

Глава 8 Установка дочерних карт в системные телефоны

Цифровая карта серии iDCS (FKDBD)

Эта дочерняя карта устанавливается в 18- и 28-клавишные системные телефоны серии iDCS и позволяет вывести из телефона еще один цифровой DLI-порт. К нему можно дополнительно подключить системный телефон, контроллер домофона DPIM или модуль расширения клавиш АОМ. Устанавливается дочерняя карта только в системный телефон, подключенный к карте 8DLI, и использует второй В-канал. Через дочернюю карту может быть подключено только одно цифровое устройство. Параллельное подключение цифровых устройств строго запрещается. Это может привести к выходу из строя порта DLI, системного телефона и дочерней карты.

Аналоговая карта серии iDCS (FKDBS)

Эта дочерняя карта устанавливается в 18- и 28-клавишные системные телефоны серии iDCS и позволяет вывести из телефона еще один аналоговый SLI-порт. К нему можно подключить еще один аналоговый телефон, факс, модем и т.п. Устанавливается дочерняя карта только в системный телефон, подключенный к карте 8DLI, и использует второй В-канал. Установка нескольких параллельных аппаратов на один порт может привести к его неправильному функционированию или даже выходу из строя.

Порт, полученный при использовании карты FKDBS, не обладает схемой защиты от перенапряжения и избыточного тока в режиме работы OPX с телефонной компанией.

Полнодуплексная карта iDCS (FKDBF)

Данная дочерняя карта устанавливается в 18- и 28-клавишные системные телефоны серии iDCS. Без этой карты, при разговоре через громкоговоритель системного телефона, связь осуществляется в "полудуплексном" режиме. Это означает, что при разговоре через громкоговоритель можно либо говорить, либо слушать собеседника. Установка дочерней карты FKDBF позволяет вести полноценную связь при работе через громкоговоритель системного телефона. Кроме того на карте имеются разъемы для подключения 3-х внешних микрофонов, которые могут быть установлены на столе для ведения конференции. Для подключения или отключения микрофонов должна быть запрограммирована клавиша EXTMIC.

Дочерняя цифровая карта KDB-DLI

Дочерняя карта KDb-DLI устанавливается в 12- или 24-клавишный системный телефон серии DCS и позволяет подключить дополнительно одно цифровое устройство, например, системный телефон, модуль AOM или DPIM. Карта может быть установлена только в системный телефон, подключенный к 8-портовой карте DLI. Каждая такая карта обслуживает только одно цифровое устройство. Подключение других параллельных устройств исключено, это может привести к выходу из строя дочерней карты или системного телефона.

Дочерняя цифровая карта KDB-SLI

Дочерняя карта KDb-SLI устанавливается в 12- или 24-клавишный системный телефон серии DCS и позволяет подключить дополнительно один однолинейный SLT аналоговый телефон. Карта может быть установлена только в системный телефон, подключенный к 8-портовой карте DLI. Каждая такая карта обслуживает только одно цифровое устройство. Подключение других параллельных устройств исключено, это может привести к выходу из строя дочерней карты или системного телефона. К порту, полученному с использованием такой карты, рекомендуется подключать только один телефон. Установка нескольких параллельных аппаратов на один порт может привести к его неправильному функционированию или даже выходу из строя.

Порт, полученный при использовании карты KDB-SLI, не обладает схемой защиты от перенапряжения и избыточного тока в режиме работы OPX с телефонной компанией.

Способы подключения к дочерним картам

Существуют два способа вывода дополнительного порта от дочерних карт.

В первом случае дополнительный телефон можно подключить непосредственно в месте установки карты.

Во втором случае к системному телефону можно подвести двухпарную проводку, и по второй паре возвратить дополнительный порт обратно на кросс для дополнительного использования.

ГЛАВА 9 ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ СИСТЕМЫ

Глава 9 Программное обеспечение системы

Операционная система и ПО карт

Операционная система и программное обеспечение основных карт системы OfficeServ 500 располагаются на 16Мб SmartMedia-карте, устанавливаемой в главный процессор МСР или на 32Мб SmartMedia-карте, устанавливаемой в главный процессор МСР2. Карта является аналогом жесткого диска HDD, что увеличивает скорость загрузки системы. На карте находятся файлы запуска и программного обеспечения процессоров МСР/МСР2, SCP/SCP2, LCP/LCP2 (для этих процессоров один и тот же файл), дочерней карты LAN и карты TEPRI. На SmartMedia-карту можно сохранять текущую версию рабочей базы данных как в ручном, так и в автоматическом режиме.

На SmartMedia-карте может быть записано программное обеспечение двух версий системы OfficeServ 500-M и OfficeServ 500-L. Назначение файлов показано в таблице.

Тип	IDCS500-M	IDCS500-L
MCP	MCPMXXXX.PGM	MCPLXXXX.PGM
MCP2	MCPMxxxx.PRE	MCPLxxxx.PRE
SCP/LCP	Нет	SCPXXXX.PGM
SCP2/LCP2	Нет	SCP2xxxx.PRE
LAN	LANVXXX.PGM	LANVXXX.PGM
TEPRI	PRI_VXXXX.PGM	PRI_VXXXX.PGM
База данных	DATABASE.MCP	DATABASE.MCP

- 1. Просмотр файлов и обновление системы возможно в ММС818.
- 2. XXXX и XXX могут означать версию или дату создания файла.
- 3. При сохранении или загрузке текущей базы данных имя файла DATA-BASE.MCP в MMC815 не отражается, так как он всегда имеет такое название.

Замена программного обеспечения на новое осуществляется через SmartMedia-карту кодом MMC818. Новое программное обеспечение может быть записано на специальном программаторе или загружено на карту через LAN посредством программы OfficeServ Manager. После установки карты с новой версией системы или загрузки версии по LAN, можно запустить процедуру вручную из MMC818 или сделать это автоматически, перегрузив систему. Для этого DIP-переключатель AFT на главном процессоре должен стоять в положении ON.

После удачного обновления системы (по LAN) можно удалить ненужные теперь файлы старой версии через MMC819 или программу OfficeServ Manager.

Будьте осторожны при удалении файлов. Никогда не удаляйте файлы STARTUP.SYS и AFTXXXX.PGM, если у вас нет под рукой специального программатора SmartMedia-карт. Если это произошло, обратитесь в сервисный центр Samsung для восстановления содержимого карты.

Текущая база данных

Рабочая база данных системы находится в статической памяти SRAM, имеет резервное питание от конденсатора большой емкости и располагается в основном на карте главного процессора MCP/MCP2 в М-версии.

В L-версии основная часть базы данных распределена между памятью SRAM главного процессора MCP/MCP2 и дочерней карты IPM. Информация о некоторых дополнительных функциях хранится на карте LAN.

Текущее состояние всей статической памяти может быть сохранено вручную или автоматически по времени в один файл данных database.mcp из программного кода MMC815. Таким же образом настройки системы можно восстановить, загрузив их из базы данных обратно в статическую память.

Наряду с этим конфигурацию системы можно сохранять, редактировать и загружать посредством компьютера и программного обеспечения OfficeServ Manager. База данных, загруженная с компьютера, не заносится автоматически на SmartMedia-карту, так как она непосредственно загружается в SRAM системы.

ГЛАВА 10 ДОБАВЛЕНИЕ КАРТ

Глава 10 Добавление карт

Модернизация системы

Следующая процедура предназначена для перехода с системы на базе процессора МСР на систему, использующую процессор МСР2.

Подготовка

- Приготовьте процессор МСР2.
- Если модернизируется система L, приготовьте карты SCP2 и LCP2.
- Приготовьте SmartMedia-карту с программным обеспечением для системы на основе процессора MCP2.
 - Сохраните текущую версию базы данных на SmartMedia-карту.
- Сохраните текущую версию базы данных в компьютер при помощи программы OfficeServ Manager и конвертируйте ее для новой системы.
- Подготовьте к установке новое аппаратное обеспечение, такое как 8WLI, WBS24 и WIP5000M для беспроводной WLAN сети, IP-телефоны, MGI карты и цифровые телефоны с большим дисплеем.

Порядок модернизации

- 1) Выключите систему.
- 2) Замените карты SCP и LCP на SCP2 и LCP2 соответственно.
- 3) Установите в универсальные слоты платы, не требующие процедуры переустановки или добавления.
- 4) Переустановите дочерние платы с карты MCP на соответствующие платоместа на карте MCP2 (исключая ESM и LAN). Также переустановите дочерние платы с карт SCP/LCP на соответствующие платоместа на картах SCP2/LCP2.
- 5) При необходимости добавьте дополнительные платы, необходимые для дальнейшей работы системы на основе процессора МСР2.
- 6) Переключите LAN кабель с платы IOM на соответствующий порт на карте MCP2.
- 7) Для процессора МСР2 доступны только порты SIO2 и SIO3 на плате IOM. Переключите использовавшиеся соединения на эти порты.
 - 8) Задайте использовавшиеся ранее сервисы на эти порты в ММС804.
- 9) Установите новую SmartMedia-карту с соответствующим программным обеспечением в процессор MCP2.

- 10) Включите систему.
- 11) По истечении 1 минуты проверьте, что система нормально функционирует. Установите в ММС830 параметры LAN карты и загрузите ранее сохраненную и сконвертированную базу данных посредством OfficeServ Manager. Далее можно приступить к программированию новых функций.

Добавление карт внутренних и внешних линий

1. Снимите переднюю панель блока, в котором необходимо разместить новую карту. Отведите в стороны пластиковые фиксаторы и вдвиньте карту в требуемый слот до упора. Защелкните пластиковые фиксаторы.

При установке или удалении карт из системы всегда отключайте питание.

- 2. После того, как новая карта установлена, система должна ее распознать. Для этой процедуры предназначен код ММС806. Проводите данную процедуру каждый раз, когда вы устанавливаете новую карту.
- 3. После того, как новая карта установлена и распознана, необходимо провести нумерацию ее портов. План нумерации портов находится в коде ММС724. Поиск нужного порта ведется по его техническому номеру в соответствии с номером блока и слота (рис. 10-1).

Рис. 10-1 Нумерация блоков и слотов.

Определение числа DTMF-приемников

Для распознавания DTMF-сигналов система OfficeServ 500 использует цифровые сигнальные процессоры DSP. При разной конфигурации и нагрузке для использования различных функций может потребоваться различное количество DSP-процессоров. Для корректной работы необходимо иметь такое количество DSP-процессоров, что бы для выполнения операции распознавания DTMF-сигналов в любой момент времени был найден один свободный. На каждом базовом блоке находится 4 DSP-процессора. В блоках могут быть установлены дополнительные дочерние карты MFM — на каждой по 12 DSP-процессоров. Все приемники находятся в общем использовании различными картами для распознавания DTMF-сигналов. Как только сигнал распознан, DSP-процессор освобождается для дальнейшего использования.

Следующие карты используют DTMF-приемники: E&M, DISA линии, цифровые E1 R2DTMF линии, 8SLI, 8MWSLI, 16SLI, 16MWSLI.

Пример конфигурации:

Одноблочная конфигурация с 16SLI-картой и цифровым каналом E1R2DTMF. В основном блоке есть 4 DSP-процессора. Этого явно недостаточно, так как в такой конфигурации количество единомоментных входящих по E1 и совершаемых внутренними абонентами вызовов часто будет превышать 4. Поэтому необходимо установить дополнительную карту MFM и увеличить количество DSP до 16.

Kapta 4SLI и дочерние карты FKDBS и KDB-SLI имеют собственные DSPпроцессоры и не используют общие DSP.

Карта АА имеет 8 собственных DSP-процессоров, использует их сама и не отдает их в общее использование. Это означает, что в любой момент времени карта АА может принять и обработать 8 входящих вызовов одновременно.

Установка карты автосекретаря АА

Для установки карты АА надо выполнить следующие действия:

- Перед установкой карты выключите питание системы
- После установки карты АА проведите ее распознавание через ММС806
- · После процедуры распознавания проведите нумерацию портов как для карт внутренних и внешних линий. По умолчанию для этого в системе зарезервированы номера 3951-3990. Присвоение таких номеров не вызовет конфликтов с остальными номерами портов и сервисных функций.

ГЛАВА 11 ЗАПУСК СИСТЕМЫ ГОЛОСОВОЙ ПОЧТЫ SVMI8

Глава 11 Запуск системы голосовой почты SVMi8

Введение

Данная глава посвящена операциям, которые надо выполнить для успешного запуска карты интегрированной голосовой почты SVMi8, и включает информацию о назначении индикаторов и энергопотреблению.

Назначение индикаторов

На торце карты имеется два светодиодных индикатора. Один индикатор HDD мигает зеленым цветом в момент обращения к жесткому диску. Состояние индикатора активности карты RUN описывает таблица:

RUN	Состояние карты
Горит красным	Карта не загружена
Не горит	Карта не работает
Горит зеленым	Карта загружена и работает
Мигает зеленым	Идет процесс загрузки карты

Кнопка сброса

Красная кнопка сброса RST на торце карты позволяет в любой момент вручную перезагрузить карту SVMi8 (см. пункт "Установка карты SVMi8").

Нажатие данной кнопки приводит к приостановке всех соединений с картой и ее перезагрузке.

Энергопотребление

Карта SVMi8 расценивается системой как 8 внутренних портов энергопотребления. Поэтому сразу убедитесь, что у источников питания есть свободный ресурс для запитывания этой карты.

Установка карты SVMi8

Для успешного запуска карты SVMi8 необходимо выполнить следующие шаги:

1. Обследование

Распакуйте карту, убедитесь, что она промаркирована именно SVMi8 и не имеет физических повреждений.

2. Установка

Выключите питание системы. Карта SVMi8 может быть установлена в любой универсальный слот любого блока. Отведите в стороны пластиковые фиксаторы и вдвиньте карту в требуемый слот до упора. Защелкните пластиковые фиксаторы на место.

3. Включение питания

После установки карты в слот включите питание системы.

4. Подтверждение правильности установки

После нормальной загрузки карты светодиод RUN должен постоянно гореть, а светодиод HDD должен погаснуть.

5. Программные установки

Для начала работы с картой SVMi8 требуется выполнить следующие программные установки:

MMC601: Все порты карты SVMi8 должны быть занесены в группу VM голосовой почты (по умолчанию таковой является группа 529 или 5029 для М-системы и 549 или 5049 для L-системы). Выберите режим занятия портов почты SEQUENTAL или DISTRIBUTE.

ММС207: Убедитесь, что порты карты SVMi8 появились в этом коде и стоят в сервисе VMAA

Если Вы хотите использовать голосовую почту в качестве автосекретаря, запрограммируйте в ММС406 входящие вызовы от внешних линий на группу 529.

Если Вы хотите использовать голосовую почту как персонального почтового ящика, запрограммируйте в MMC102 переадресацию вызовов на группу 529.

- **ММС406**: Для использования карты SVMi8 в качестве автосекретаря входящие вызовы направляются на группу 529
- **MMC102**: Для использования карты SVMi8 в качестве персонального почтового ящика, установите переадресацию вызовов на группу 529.
- **ММС714**: Для использования карты SVMi8 в качестве автосекретаря для цифровых каналов, направьте вызовы на группу 529.
- **ММС751**: Поставьте в положение NO, если вы не хотите, чтобы у внутреннего абонента был заведен персональный почтовый ящик.

6. Инициализация карты SVMi8

Для того, чтобы произошло автоматическое переконфигурирование голосовой почты, после исполнения всех предыдущих процедур нажмите кнопку RST.

Проверка работоспособности

- 1. Позвоните на порт карты SVMi8 и получите ее ответ.
- 2. Позвоните на группу портов карты SVMi8 и получите ее ответ.

Если вы дважды получили ответ, то карта работает правильно и установка успешно завершена.

Теперь вы можете приступить к выполнению системных настроек карты SVMi8 (режимов, сообщений и т.п.)

Удаление карты SVMi8

Для удаления карты SVMi8 проделайте следующие шаги:

- 1. В MMC754 приостановите (HALT) все процессы в карте SVMi8. Это предохранит жесткий диск от потери данных.
 - 2. Убедитесь, что светодиод RUN погас.
 - 3. Выключите питание системы.
 - 4. Удалите карту SVMi8.

ГЛАВА 12 ПРИМЕР ПРОГРАММИРОВАНИЯ КОРПОРАТИВНОЙ СЕТИ

Глава 12 Пример программирования корпоративной сети

Корпоративная сеть

Данная функция позволяет объединять в единую сеть несколько распределенных систем.

Рис 12.1 Структура сети из систем OfficeServ 500

Системы OfficeServ 500 могут быть связаны в единую корпоративную сеть через интерфейсы ISDN PRI и VoIP по сигнализации Q-SIG.

Основные сетевые Q-SIG функции

Следующие функции являются основными при построении корпоративной сети:

1) Межсистемные вызовы

Эта функция позволяет вызывать абонентов другой системы так же, как абонентов своей системы.

2) Распределение входящих вызовов

Эта функция позволяет отправлять поступающие звонки с внешних линий к абонентам другой системы без каких либо дополнительных действий.

3) Исходящие вызовы

Эта функция позволяет использовать для исходящих вызовов внешние линии другой системы так же, как и внешние линии своей системы.

Обязательные сетевые Q-SIG функции

При построении корпоративной сети на системах OfficeServ 500 могут быть обеспечены следующие свойственные для Q-SIG функции.

1) Единый план нумерации

Данная функция позволяет каждому абоненту в корпоративной сети иметь свой уникальный, единый для всей сети внутренний номер.

2) Идентификация Номера/Имени звонящего

Данная функция позволяет отражать имена и номера вызывающих абонентов при сетевых межсистемных звонках.

3) Идентификация Номера/Имени ответившего

Данная функция позволяет отражать имена и номера отвечающих на вызовы абонентов при сетевых межсистемных звонках.

4) Отражение прохождения вызова

Данная функция позволяет отражать информацию о прохождении сетевого вызова (перевод, переадресация, обратный вызов и т.д.), в точно таком же формате, как и внутри одной системы.

5) Оптимизация коммутаций

Данная функция позволяет высвобождать межсистемные каналы при возврате вызова из другой системы в систему, на которую этот вызов поступил. То есть, если входящий вызов поступил через одну систему в другую, а потом при переводе или переадресации был возвращен обратно в первую систему, то в течение некоторого времени, петля в межсистемном канале, образовавшаяся при такой коммутации, будет освобождена, а соединение такого разговора возьмет на себя, принявшая вызов система.

6) Единый оператор

В сети из нескольких систем можно указать группу единого для всей сети оператора. Из любого узла сети единый оператор становится доступен нажатием цифры "0". В случае, если требуется возвращать (recall) не отвеченные вызовы на оператора, в каждой из систем необходимо иметь свою локальную группу оператора.

7) Трансляция номера при переводе вызова

Данная функция позволяет транслировать номер вызывающей стороны при переводе входящего вызова в другую систему.

Дополнительные сетевые Q-SIG функции

Следующие дополнительные функции могут быть реализованы при использовании сигнализации Q-SIG:

1) Перевод вызовов и возврат непереведенного вызова

Вызов, полученный на одном узле, может быть переведен на аппарат или группу аппаратов в другом узле сети. В случае, если абонентом первой системы производится несопровождаемый перевод вызова во вторую систему и этот вызов не будет отвечен, он будет возвращен назад на переводящего абонента по истечении соответствующего таймера во второй системе.

2) Отображение имени

Данная функция позволяет отражать имена и номера вызывающих абонентов при сетевых межсистемных звонках в соответствии с установками каждой системы.

3) Переадресация всех вызовов (CFU)

Данный сервис полностью похож на перенаправление всех вызовов All Call внутри системы, но получателем такого вызова является абонент другой системы Вашей корпоративной сети.

4) Переадресация вызовов при занятом аппарате (CFB)

Данный сервис полностью похож на переадресации вызовов при занятости аппарата — Busy, но получателем такого вызова является абонент другой системы Вашей корпоративной сети.

5) Переадресация вызовов при отсутствии ответа (CFNR)

Данный сервис полностью похож на переадресацию вызовов при не ответе на вызов - No Answer, но получателем такого вызова является абонент другой системы Вашей корпоративной сети.

6) Режим ожидания/постановки на ожидание освобождения

Данная функция позволяет устанавливать режим ожидания высвобождения занятого абонента.

7) Вторжение в разговор

Данная функция работает абсолютно идентично сервису вторжения Executive Barge-In (Override) внутри одиночной системы.

8) Постановка вызова на занятого абонента (CCBS)

Данная функция работает аналогично обратному вызову с занятого абонента Busy Station Call Back. То есть абонент первой системы совершает вызов на занятого абонента второй системы и устанавливает режим обратного вызова Call Back с высвобождением канала в потоке PRI. Как только вызываемый абонент освобождается, происходит обратный звонок вызываемым абоненту. Ответив на обратный вызов, вызывающий абонент повторяет попытку дозвониться до освободившегося абонента второй системы.

9) Постановка вызова на не отвечающего абонента (CCNR)

Данная функция работает аналогично обратному вызову с не отвечающего абонента No Answer Call Back. То есть абонент первой системы совершает вызов на не отвечающего абонента второй системы и устанавливает режим обратного вызова Call Back с высвобождением канала в потоке PRI. Как только вызываемый абонент воспользуется своим аппаратом, происходит обратный звонок вызывавшему абоненту. Ответив на обратный вызов, вызывающий абонент повторяет попытку дозвониться до появившегося абонента второй системы.

10) Режим "Не беспокоить" и его обход (DND/DND Override)

В случае, если на абоненте другой системы установлен режим DND "Не беспокоить", то вызывающий абонент будет получать специальный сигнал, отличающийся от сигнала "Занято". При получении такого сигнала, вызывающий абонент может воспользоваться сервисом обхода режима "Не беспокоить".

11) Замена маршрута соединения

Данная функция позволяет изменить маршрут уже ведущегося в сети разговора.

12) Единая система голосовой почты с индикацией ожидающего сообщения.

Данная функция может быть реализована только при использовании карты SVMi8 - интегрированной системы голосовой почты. Абоненты одной системы могут переадресовать вызовы (CFNR, CFB и CFU) на группу голосовой почты другой системы, а так же получать от нее уведомление об оставленных для них вызовах на клавише VMSG.

Процедуры программирования

Для построения корпоративной сети на основе систем OfficeServ 500 необходимо задать следующие параметры: Нумерация узлов и абонентов, маршрутизация входящих и исходящих вызовов, параметры для реализации дополнительных функций.

Установка основных параметров

Следующие основные параметры должны быть установлены:

1) MMC821. Назначение PRI каналов корпоративной сети

При соединении систем через каналы ISDN PRI, TEPRI карта должна быть подготовлена следующим образом. В одной из систем переключатель S1-4 должен быть в положении 'Network', а на другой в положении 'User'. На системе, в которой установлена 'User' карта, на этом слоте должен быть задан приоритет синхронизации в MMC826. Режим набора номера в MMC427 должен быть 'Enblock'

2) ММС830. Параметры сетевой карты

В данной процедуре устанавливается IP-адрес, шлюз и маска подсети сетевой карты процессора. После изменения этих параметров необходимо перезапустить сетевую карту.

3) ММС831. Параметры карт MGI

Карта MGI является получателем голосовых пакетов при построении сети на базе VoIP.

В данной процедуре устанавливается IP-адрес, шлюз и маска подсети с карты MGI. После изменения этих параметров карту необходимо перезапустить.

4) ММС615. Групирорвка карт MGI

В данной процедуре необходимо задать порты карты MGI для их использования с сервисом "VoIP Networking".

Задание плана нумерации систем

Далее необходимо задать планы нумерации систем:

- Link ID: Идентификационный префикс систем. Необходимо для всех узлов сети задать данный префикс. Префиксы разных систем не должны совпадать.
- Signal G/W: При построении сети на базе VoIP необходимо для всех узлов указать IP-адрес сетевой карты процессора MCP2.
- При построении корпоративной сети на базе VoIP для каждого IP-адреса узлов сети обязательно должен быть указан Link ID префикс.
- При прохождении вызова через корпоративную сеть система OfficeServ 500 определяет направление вызова по Link ID префиксу и Номеру абонента. Если Link ID префикс совпадает с номером системы, принявшей вызов, то он удаляется и полученный номер отправляется на ММС714. Если Link ID префикс совпадает с номером системы принявшей вызов, то он направляется на ММС710 для совершения транзитного вызова. Если для полученного номера в ММС710 не будет найдено соответствующей записи, то система удалит из полученного номера Link ID префикс и отправит его на обработку в ММС714.

2) ММС724. План нумерации системы

- STN DIAL NO: Необходимо во всех системах сети задать всем внутренним абонентам уникальные номера абонентов.
- STNG DIAL NUMBER: Необходимо во всех системах сети всем группам внутренних абонентов, использующимся при звонках в сети, задать уникальные номера групп абонентов.
- NTWK LCR DIAL NO: Данный номер означает первые цифры номеров абонентов (групп абонентов) других систем. При наборе такого номера система автоматически переходит к MMC824 для формирования полного номера абонента в другой системе.
- VOIP NET DIAL NO: Данный номер является виртуальным номером порта VoIP при его использования для связи в корпоративной сети. Как правило, нет необходимости изменять нумерацию этих портов. Данные номера применяются при формировании групп внешних линий в ММС603.
- MGI DIAL NO: Номера голосовых каналов карты MGI. Как правило, нет необходимости изменять нумерацию этих портов. Данные номера применяются при формировании групп MGI портов для разделения их между VoIP сервисами в MMC615.

3) ММС824. Трансляция сетевых номеров

Данная процедура вызывается при наборе одного из номеров N-LCR, заданных в MMC724. Если для 01 N-LCR комбинации в MMC724 , был установлен номер «22», то он будет отражаться в поле «a».

В поле «**b**» необходимо задать комбинацию из префикса удаленной системы и первых цифр номера, заданных как N-LCR код.

Ниже приведено описания всех полей:

- 01: Номер N-LCR кода согласно ММС724.
- 22: N-LCR код, заданный в ММС724.
- 09122: Комбинация, состоящая из Link ID префикса(091)+N-LCR код (22). Данная комбинация означает, что в удаленной системе с префиксом 091 находятся внутренние номера с 2200 по 2299. Этот же Link ID префикс должен быть описан в поле 'DIGIT' в MMC710.
- SZ:4: Данная запись означает, что в системе с префиксом '091' все внутренние абоненты начинающиеся с цифр '22' имеют 4-значные номера.
- MAX:07: Общая длина отправляемого номера состоящая из Link ID префикса(091) и внутреннего номера абонента 22хх. Очень важно правильно задать значение данного поля при 'ENBLOCK' способе посылки номера. В данном случае при наборе 7-значного номера система пошлет его немедленно. Если бы данное поле имело большее значение, то при наборе 7-значного номера система продолжала бы ожидать оставшиеся цифры и только потом послала бы незаконченный номер.
- MB:N: Данная опция предназначена для автоматического создания голосовых ящиков в корпоративной системе голосовой почты SVMi-4/8/16. Если значение данного поля будет задано как 'Y', то для абонентов 2200-2299 автоматически будет создано 100 голосовых ящиков. Будьте осторожны при использовании данной функции, так как количество голосовых ящиков в системах SVMi ограничено.

Маршрутизация входящих и исходящих вызовов

Распределение входящих вызовов

1) ММС724. Установки PRI

В этом коде устанавливаются параметры, необходимые для работы каналов в потоке PRI.

- Channel Any: Режим занятия каналов. YES если при выходе на конкретный В-канал он занят, то система предоставит следующий свободный В-канал. (Режим Preferred). NO если при выходе на конкретный В-канал он занят, то система выдаст сигнал занято. (Режим Exclusive). Если вы хотите использовать дополнительные Q-SIG функции (в частности call back постановка вызова от занятого абонента), то рекомендуется установить этот параметр как 'NO'.
- PRI Mode: Способ доступа в систему. DDI путем передачи в систему номера DID и его трансляции в MMC 714. NORMAL по занятию одного из каналов вызов передается на абонента в соответствии с MMC 406. При применении карты TEPRI для построения корпоративной сети данная опция должна быть установлена в режим 'DDI'.
- DLSEND: Режим посылки номера. ENBLOCK значит, что весь номер посылается одним блоком по истечении времени ISDN INT DGT TM (см. MMC 501) после ввода последней цифры номера. OVERLAP значит, что номер посылается по одной цифре. При применении карты TEPRI для построения корпоративной сети данная опция должна быть установлена в режим 'ENBLOCK'.
- CLI Table: Для каждого В-канала задается номер таблицы в ММС 323, из которой при транзитном звонке в сеть общего пользования будет послан CLIP номер внутреннего абонента.
- NB TYPE: Формат ISDN номера. При транзитном звонке в сеть общего пользования будет послан CLIP номер в указанном формате.

2) ММС714. Таблица трансляции DID номеров.

В данной таблице указывается направление вызовов в зависимости от приходящих в систему номеров. В качестве назначения вызова могут выступать внутренние телефоны, группы внутренних телефонов, внешние линии, группы внешних линий, код LCR и номера абонентов в удаленных системах в соответствии с кодами N-LCR

Ниже приведены описания всех полей:

- (001~999): Номер записи
- DGT: Поступающий в систему номер. Символ '*' является указанием любой цифры от 0 до 9.
- MOH SOURCE: MOH источник музыки на удержании для каждого DID вызова. Если данное поле обозначено, как 'NONE', до данная функция работает в соответствии с MMC409.
- 1~6: Устройство, на которое будут направляться вызовы во всех режимах работы системы. Это может быть внутренний аппарат/группа аппаратов или внешняя линия/группа линий. Символ В означает, что принятый номер соответствует внутреннему телефону, группе внутренних телефонов, внешней линии, группе внешних линий, коду LCR или номеру абонента в удаленных системах в соответствии с кодами N-LCR в плане нумерации системы.
- СW: Включение/выключение (YES/NO) индикации ожидающего вызова. В случае, если опция включена, DID вызов, поступивший на занятого абонента/группу абонентов, будет ожидать ответа. При работе в корпоративной сети данная опция не задействована.
- DELETE: Количество первых принятых цифр номера, которые будут удалены от принятого номера.
- NAME: Имена DID-номеров набираются аналогично именам номеров быстрого набора.

Маршрутизация исходящих вызовов.

1) ММС210. Индивидуальные функции арендаторов

• LCR ENABLE: Данной опцией включается система исходящей маршрутизации LCR.

2) ММС310. Назначение класса исходящей маршрутизации

- В этом коде каждому аппарату может быть присвоен один из восьми классов исходящей маршрутизации.
- По умолчанию используется 1 класс, так как для связи с другой системой применяется один маршрут.

3) ММС603. Назначение внешних линий в группы

- Необходимо все порты карт TEPRI, назначенных для работы в корпоративной сети, объединить в группы внешних линий в зависимости от подключений к другим системам.
- Для построения корпоративной сети на базе VoIP все VoIP каналы должны быть объединены в одну группу. Номера каналов карт MGI, использующихся для VoIP корпоративной сети, находятся в MMC724 'VOIP NET DIAL NO'.

4) ММС 710. Выбор маршрута по набранному номеру

В зависимости от набранного номера система в данной процедуре автоматически определяет маршрут для направления вызова.

Ниже приведены описания всех полей:

- (0001~2000): Номера комбинаций. Ячейки для ввода набираемых номеров.
- DIGIT: Ячейки для ввода набираемых номеров. Для задания определенного маршрута достаточно ввести лишь первые несколько цифр набираемого номера. При построении корпоративной сети достаточно задать лишь Link ID префиксы, запрограммированные в ММС824.
 - LENGTH: Длина номера.
 - RT: Номер маршрута в таблице ММС712.

5) MMC711. Назначение временных зон для LCR сервиса

При поиске маршрута каждый день недели может быть разбит на 4 временные зоны.

Ниже приведены описания всех полей:

- SUN~SAT: День недели.
- \bullet A~D: Обозначение временной зоны. Необходимо создать только зону A, которая должна работать все 24 часа в сутки. (Необходимо запрограммировать A: 0000, B: 2359)
 - ННММ: Обозначение времени вводится в 24 часовом формате.
- LCRT: Укажите номер таблицы маршрутизации, которая задается в ММС712. Например, 1.

6) MMC712. Создание плана маршрутизации по LCR

Данная процедура предназначена для формирования планов маршрутизации при использовании сервиса LCR.

Ниже приведено описания всех полей:

- (01~32): Номер маршрута.
- (1~4): Номер временной зоны, заданной в ММС711. Выберите 1-ю временную зону.
 - С: Номер класса маршрутизации, задаваемый в ММС310.
- G: Номер группы внешних линий, используемой для данного маршрута.
 - М: Номер таблицы модификации номера задаваемой в ММС713.
- В случае, когда для корпоративной сети используется только VoIP интерфейс, достаточно использовать только один маршрут. Однако, если наряду с VoIP для того же маршрута используется и PRI канал, то необходимо в MMC310 всем абонентам задать класс маршрутизации 2 или выше, так как в данном случае будет использоваться 2 группы каналов: 'C:1 G:801' и 'C:2 G:802'. В этом случае группа 801 должна состоять из VoIP каналов, а группа 802 из каналов PRI.

7) ММС713. Модификация набранного номера

Данная процедура предназначена для автоматической модификации набираемого при исходящем вызове номера.

Ниже приведено описания всех полей:

- (001~200): Номер таблицы модификации.
- NOF DEL DGT: Количество удаляемых начальных цифр номера.
- І: Цифры, добавляемые в начале номера.
- А: Цифры, добавляемые в конце номера.

Настройки дополнительных функций

Для использования дополнительных функций необходимо запрограммировать следующие опции.

1) Отображение номера и имени абонента

- Ниже приведены опции, которые предназначены для отображения номера и имени абонента при звонках на другие системы сети.
- Необходимо задать уровень CONP в MMC823. Возможность отображения номера и имени абонента зависит от значения CONP.
 - 0: Номер и имя абонента не передается
 - 1: Номер и имя абонента посылается только в момент вызова или ответа.
 - 2: Номер и имя абонента посылается только на занятого абонента.
- 3: Номер и имя абонента посылается, как в момент вызова или ответа, так и на занятого абонента.

Возможность отображения номера и имени абонента в сигнализации Q-SIG базируется на нижеприведенных опциях MMC823. Рекомендуется использовать установки по умолчанию, так как бывают случаи, когда имя и номер абонента передается согласно установке уровня CONP независимо от данных установок. (Установки по умолчанию позволяют передавать имя и номер абонента)

- Отображение номера абонента (CLIP): Y
- Запрет отображения номера абонента (CLIR): N
- Отображение имени абонента (CNIP): Y
- Запрет отображения имени абонента (CNIR): N
- Обход запрета отображения имени абонента (CNIRO): Y
- Отображение номера ответившего абонента (COLP): Y
- Запрет отображения номера ответившего абонента (COLR): N
- Отображение имени ответившего абонента (CONP): Y
- Запрет отображения имени ответившего абонента (CONR): N
- Обход запрета отображения имени ответившего абонента (CONRO): Y
- Иногда в Q-SIG сигнализации передается только имя абонента. Поэтому в системах OfficeServ 500 в MMC825 имеется опция 'Add Number To Name'. При включении данной номер абонента добавляется к имени абонента в поле передачи имени.

2) Автоматическая оптимизация коммутаций

- Если входящий вызов поступил через одну систему в другую, а потом при переводе или переадресации был возвращен обратно в первую систему, то в течение некоторого времени петля в межсистемном канале, образовавшаяся при такой коммутации, будет освобождена за время 'Route Optimize Time' (задавается в MMC501). Соединение такого разговора возьмет на себя, принявшая вызов система
 - Данная функция активизируется опцией 'PATH REPL.' В ММС823.

3) Единый оператор

Для того, чтобы задать единого оператора для всей сети, необходимо первые цифры группы оператора задать как N-LCR код в ММС724, и задать Link ID код + N-LCR код группы оператора в ММС824.

4) Возврат непереведенного вызова

- В случае, если переведенный в другую систему вызов не был отвечен, то он возвратится обратно в исходную систему по истечении времени 'Transfer Recall Time' (задавается в MMC501). Вызов возвратится на абонента, совершавшего перевод.
 - Опция 'СТ RE-ROUTE' в ММС823 должна быть отключена.

5) Переадресация вызовов

- Пользователи системного телефона могут установить функцию переадресации двумя способами: (1) при помощи ММС102, или (2) введя код данной функции, задаваемый в ММС724.
- У абонента, желающего пользоваться функцией переадресации, опция 'Forward' в ММС701 должна быть включена.
- При необходимости переадресации вызова в другую систему опция 'EXT FWD' в MMC701 должна быть включена.
- В случае, если абоненту необходимо переадресовывать внутренние вызовы на другие системы сети, опция 'ICM EXT FWD' в MMC201 должна быть включена. Если абоненту необходимо переадресовывать вешние вызовы на другие системы сети, то необходимо на тех линиях, с которых должна проходить переадресация, в MMC400 включить опцию 'Trunk Forward'.
- Для возможности переадресовывать все поступающие вызовы на другие системы сети в MMC823 необходимо включить опцию 'CFU'.
- Для возможности переадресовывать все поступающие вызовы на другие системы сети в момент занятости аппарата в ММС823 необходимо включить опцию 'CFB'.
- Для возможности переадресовывать все поступающие вызовы на другие системы сети в момент отсутствия ответа на вызов, в MMC823 необходимо включить опцию 'CFNR'.

6) Ожидающий вызов занятому абоненту

- В случае, если вызываемый абонент в другой системе занят, имеется возможность подать сигнал занятому абоненту. Для разрешения данной функции включите опцию 'Call Offer' в MMC823.
- В случае, если опция 'Path Retention' в MMC 823 включена, сигнал занятому абоненту будет подаваться автоматически.

7) Вторжение в разговор

Данная функция позволяет вторгнуться в уже ведущийся разговор в другой системе сети. Для этого необходимо запрограммировать следующие опции:

Необходимо задать опцию 'Barge In Type' в MMC206 как 'With Tone' или 'Without Tone'. Также необходимо включить опцию в MMC701 для тех абонентов, которые имеют право вторжения и отключить опцию 'Secure' для тех абонентов, к которым вторжение возможно.

• Далее в ММС823 для классов сервиса абонентов, имеющих право вторжения в удаленные системы необходимо включить 'СІ'. Здесь же необходимо задать уровень приоритета вторжения 'СІ САРАВІL', который у вторгающегося абонента должен быть выше, чем уровень 'СІ РКОТЕСТ'. Если данные уровни одинаковы, то вторжение невозможно.

8) Обратный вызов

В случае, если вызываемый абонент в другой системе занят или не отвечает, имеется возможность установить функцию обратного вызова от этого абонента. Для возможности использовать данную функцию необходимо запрограммировать следующие опции:

- Для постановки обратного вызова на занятого абонента необходимо включить опцию 'CCBS' в MMC823.
- Для постановки обратного вызова на не отвечающего абонента необходимо включить опцию 'CCNR' в MMC823.
- Функция обратного вызова работает только при использовании функции автоматического поиска маршрута.
- Функция установки обратного вызова на абонента другой системы использует дополнительный сигнальный канал. По завершению процедуры установки обратного вызова данный канал будет освобожден. Для того, чтобы всегда иметь возможность активизировать данную функцию, можно включить резервирование канала 'СС РАТН RSV'. Для того, чтобы зарезервировать обратный канал для уже установленного конкретного обратного вызова, необходимо включить опцию 'СС SIG CONN'. В случае, если обратный вызов возвращается на занятого абонента, имеется возможность автоматически поставить на него повторный обратный вызов. Для этого необходимо включить функцию 'СС SVC RETN'.

9) Не беспокоить/Обход режима Не беспокоить

- При звонке на абонента удаленной системы, на котором установлен режим DND, будет прослушиваться акустический сигнал 'Занято', Для того, чтобы в данной ситуации сигнал DND отличался от сигнала 'Занято', необходимо включить опцию 'DND tone' в MMC823.
- При звонке на абонента удаленной системы, на котором установлен режим DND, имеется возможность обойти режим «Не беспокоить» и совершить вызов на такого абонента. Для этого необходимо включить опцию 'DNDO' в MMC823. Здесь же необходимо задать уровень приоритета обхода 'DNDO CAPABL', который у обходящего абонента должен быть выше, чем уровень 'DNDO PROTECT' запрета обхода режима DND. Если данные уровни одинаковы, то обход невозможен.
- Функция DND работает для межсистемных вызовов только при включенной опции 'TRK INC.DND' в MMC400.

10) Оптимизация коммутаций

Если входящий вызов поступил через одну систему в другую, а потом при переводе или переадресации был возвращен обратно в первую систему, то, нажав клавишу РТНК, можно немедленно освободить петлю в межсистемном канале, образовавшуюся при такой коммутации. Для использования функции оптимизации коммутаций опция 'PATH REPL' в ММС823 должна быть включена.

11) Единая система голосовой почты

Для того, что бы иметь единую систему голосовой почты SVMi в корпоративной сети, необходимо запрограммировать следующие опции:

- Для каждого абонента сети, которому требуется иметь сервис голосовой почты необходимо в карте SVMi завести голосовой почтовый ящик. Для того, чтобы система автоматически создала голосовые ящики для абонентов, указанных в MMC751, необходимо включить опцию 'MB' в MMC824.
- Номера абонентов, имеющих голосовой ящик, не должны совпадать, так как система голосовой почты идентифицирует своих абонентов по системному номеру абонента.
- Для систем, в которых карта SVMi не установлена, необходимо в MMC825 включить опцию 'Use Remote VM' и задать 'Remote VM Number' номер группы портов голосовой почты в удаленной системе. Для доступа к почтовым ящикам необходимо запрограммировать кнопку VMMSG.
- При поступлении транзитного вызова может передаваться номер звонящего абонента, в начале которого будет задаваться Link ID номер узла. При звонке же на систему голосовой почты данный префикс должен быть удален. Для этого необходимо в MMC825 включить опцию 'Remote CID Number'.

Пример программирования

На рисунке 12.2 приведена конфигурация корпоративной сети из систем OfficeServ 500, использующей как VoIP каналы, так и каналы PRI.

Рис. 12.2 Пример конфигурации корпоративной сети

Программирование системы А

ММС820 Назначение сетевого идентификатора

Index	Link ID	Signal G/W	
SELF	091	168.219.100.100	
SYS01	092	168.219.110.110	
SYS02	093	<het></het>	Не задано, так как используется только канал PRI.
SYS03	094	168.219.120.120	

ММС821 Назначение каналов для корпоративной сети

Установите карты TEPRI для систем В и С как Q-Signaling.

ММС724 План нумерации системы

STN Dial Number Задайте номера внутренних абонентов 2000~2099.

STNG Dial Number Задайте номера групп

внутренних абонентов 5000~5079.

TRKG Dial Number Задайте номера групп внешних линий 800, 801,

802 и 803.

FEAT Dial Number Задайте для сервиса LCR код 9. Для совершения

исходящего вызова набирайте 9 и телефонный

номер.

NTWK LCR Dial No IDX-01: 21 -> MMC824 данный индекс (21) будет

обрабатывать вызовы на номера 2100~2199.

IDX-02: 22 IDX-03: 23 IDX-04: 24 IDX-05: 25 IDX-06: 26 IDX-07: 51 IDX-08: 52

IDX-09: 53

ММС824 Маршрутизация в корпоративной сети

Index	Phone No.	Converted No.	SZ	Max	MB	
01	21	09221	4	7	Υ	Вызовы на аппараты системы В
02	22	09222	4	7	Υ	
03	23	09223	4	7	Υ	
04	24	09324	4	7	Υ	Вызовы на аппараты системы С
05	25	09325	4	7	Υ	
06	26	09426	4	7	Υ	Вызовы на аппараты системы D
07	51	09251	4	7	N	Вызовы на группы аппаратов системы В
08	52	09352	4	7	N	Вызовы на группы аппаратов системы С
09	53	09453	4	7	N	Вызовы на группы аппаратов системы D

ММС714 Таблица трансляции DID номеров

Entry	Digit	МОН	->1~6	CW	Delete	Name	
001	2***	-	В	-	0	-	Повтор номеров 2100~2699
002	5***	-	В	-	0	-	Вызовы оператора и системы голосовой почты
003	9	-	9	-	1	-	

ММС310 Класс исходящей маршрутизации

Установите для всех абонентов класс 2.

ММС603 Назначение внешних линий в группы

800	Занесите в данную группу внешние линии для связи с ТФОП
801	Занесите в данную группу TEPRI каналы для связи с системой В
802	Занесите в данную группу TEPRI каналы для связи с системой С
803	Занесите в данную группу VoIP каналы

ММС710 Таблицы выбора маршрута по набранному номеру

Index	Digit	Length	LCRT	
0001	810	15	4	Для международных вызовов
0002	8	11	4	Для междугородних вызовов
0003	01	2	4	Для экстренных служб
0004	02	2	4	
0005	03	2	4	
0006	04	2	4	
0007	06	2	4	
8000	07	2	4	
0009	08	2	4	
0010	092	7	1	Для вызовов на систему В
0011	093	7	2	Для вызовов на систему С
0012	094	7	3	Для вызовов на систему D
0013	1	7	4	
0014	2	7	4	Для местных вызовов
0015	3	7	4	
0016	4	7	4	
0017	5	7	4	
0018	6	7	4	
0019	7	7	4	
0020	9	7	4	

ММС712 Создание плана маршрутизации по LCR

Table	Time	Class	Route	Modify	
01	1	1	803	-	Направить вызовы на группу 803.
		2	801	-	Направить вызовы на группу 801, когда все линии в группе 803 заняты.
02	1	1	802	-	
03	1	1	803	-	
04	1	1	800	-	

Пример программирования корпоративной сети

ММС601 Назначение аппаратов в группы

5000 Создайте группу операторов

5049 Задайте в эту группу порты карты SVMi

ММС825 Назначение сетевых функций

ADD Number To Name Yes
Use Remote Voice Mail No
Remote CID Number Yes

Глава 12

Программирование системы В

ММС820 Назначение сетевого идентификатора

Index	Link ID	Signal G/W
SELF	092	168.219.110.110
SYS01	091	168.219.100.100
SYS02	093	
SYS03	094	168.219.120.120

ММС821 Назначение каналов для корпоративной сети

Установите карту TEPRI для систем A как Q-Signaling.

ММС724 План нумерации системы

STN Dial Number Задайте номера внутренних абонентов 2100~2399.

STNG Dial Number Задайте номера групп внутренних абонентов

5100~5179.

TRKG Dial Number Задайте номера групп внешних линий 800 и 803.

FEAT Dial Number Задайте для сервиса LCR код 9. Для совершения

исходящего вызова набирайте 9 и телефонный

номер.

NTWK LCR Dial No IDX-01: 20

IDX-02: 24 IDX-03: 25 IDX-04: 26 IDX-05: 50 IDX-06: 52

IDX-07: 53

ММС824 Маршрутизация в корпоративной сети

Index	Phone No.	Converted No.	SZ	Max	МВ
01	20	09120	4	7	N
02	24	09324	4	7	N
03	25	09325	4	7	N
04	26	09426	4	7	N
05	50	09150	4	7	N
06	52	09352	4	7	N
07	53	09453	4	7	N

Program 714 Таблица трансляции DID номеров

Entry	Digit	МОН	a1~6	CW	Delete	Name
001	2***	-	В	-	0	-
002	5***	-	В	-	0	-

ММС310 Класс исходящей маршрутизации

Установите для всех абонентов класс 2.

ММС603 Назначение внешних линий в группы

800 Занесите в данную группу TEPRI каналы для связи с системой А 803 Занесите в данную группу VoIP каналы

ММС710 Таблица выбора маршрута по набранному номеру

Index	Digit	Length	LCRT	
0001	810	15	3	Для Международных вызовов через систему А
0002	8	11	3	Для Междугородних вызовов через систему А
0003	01	2	3	Для вызовов экстренных служб через систему А
0004	02	2	3	
0005	03	2	3	
0006	04	2	3	
0007	06	2	3	
8000	07	2	3	
0009	08	2	3	
0010	091	7	1	Для вызовов на систему А
0011	093	7	1	Для вызовов на систему С через систему А
0012	094	7	2	Для вызовов на систему D
0013	1	3	3	Для местных вызовов через систему А
0014	2	7	3	
0015	3	7	3	
0016	4	7	3	
0017	5	7	3	
0018	6	7	3	
0019	7	7	3	
0020	9	7	3	

ММС712 Создание плана маршрутизации по LCR

Table	Time	Class	Route	Modify	
01	1	1	803	-	
		2	800	-	
02	1	1	803	-	
03	1	1	803	001	Для внешних вызовов через систему А
		2	800	001	

ММС713 Модификация набранного номера

Table	Delete	Insert	Append	
001	0	0919	-	Добавлен номер Link ID системы А (091) и цифра (9)
				для доступа к внешним линиям системы А

ММС825 Назначение сетевых функций

ADD Number To Name Yes
Use Remote Voice Mail Yes
Remote VM Number 5049

Программирование системы С

ММС820 Назначение сетевого идентификатора

Index	Link ID	Signal G/W
SELF	093	
SYS01	091	168.219.100.100
SYS02	092	168.219.110.110
SYS03	094	168.219.120.120

ММС821 Назначение каналов для корпоративной сети

Установите карту TEPRI для систем A как Q-Signaling.

ММС724 План нумерации системы

STN Dial Number Задайте номера внутренних абонентов 2400~2599

STNG Dial Number Задайте номера групп внутренних абонентов

5200~5279

TRKG Dial Number Задайте номер группы внешних линий 800

FEAT Dial Number Задайте для сервиса LCR код 9. Для совершения

исходящего вызова набирайте 9 и телефонный

номер.

NTWK LCR Dial No IDX-01: 20

IDX-02: 21 IDX-03: 22 IDX-04: 23 IDX-05: 26 IDX-06: 50 IDX-07: 51 IDX-08: 53

ММС824 Маршрутизация в корпоративной сети

Index	Phone No.	Converted No.	SZ	Max	МВ
01	20	09120	4	7	N
02	21	09221	4	7	N
03	22	09222	4	7	N
04	23	09223	4	7	N
05	26	09426	4	7	N
06	50	09150	4	7	N
07	51	09251	4	7	N
08	53	09453	4	7	N

ММС714 Таблица трансляции DID номеров

Entry	Digit	МОН	a1~6	cw	Delete	Name
001	2***	-	В	-	0	-
002	5***	-	В	-	0	-

ММС710 Таблица выбора маршрута по набранному номеру

Index	Digit	Length	LCRT	
0001	810	15	2	Для Международных вызовов через систему А
0002	8	11	2	Для Междугородних вызовов через систему А
0003	01	2	2	Для вызовов экстренных служб через систему А
0004	02	2	2	
0005	03	2	2	
0006	04	2	2	
0007	06	2	2	
8000	07	2	2	
0009	08	2	2	
0010	091	7	1	Для вызовов на систему А
0011	092	7	1	Для вызовов на систему В через систему А
0012	094	7	1	Для вызовов на систему В через систему А
0013	1	7	2	Для местных вызовов через систему А
0014	2	7	2	
0015	3	7	2	
0016	4	7	2	
0017	5	7	2	
0018	6	7	2	
0019	7	7	2	
0020	9	7	2	

ММС712 Создание плана маршрутизации по LCR

Table	Time	Class	Route	Modify	
01	1	1	800	-	
02	1	1	800	001	Для внешних вызовов через систему А

ММС713 Модификация набранного номера

Та	able	Delete	Insert	Append	
0	001	0	0919	-	Добавлен номер Link ID системы А (091) и цифра (9)
					для доступа к внешним линиям системы А

ММС825 Назначение сетевых функций

ADD Number To Name Yes
Use Remote Voice Mail Yes
Remote VM Number 5049

Глава 12

Программирование системы D

ММС820 Назначение сетевого идентификатора

Index	Link ID	Signal G/W
SELF	094	168.219.120.120
SYS01	091	168.219.100.100
SYS02	092	168.219.110.110
SYS03	093	

ММС724 План нумерации системы

STN Dial Number Задайте номера внутренних абонентов 2600~2699

STNG Dial Number Задайте номера групп внутренних абонентов

5300~5379

TRKG Dial Number Задайте номер группы внешних линий 803

FEAT Dial Number Задайте для сервиса LCR код 9. Для совершения

исходящего вызова набирайте 9 и телефонный

номер.

NTWK LCR Dial No IDX-01: 20

IDX-02: 21 IDX-03: 22 IDX-04: 23 IDX-05: 24 IDX-06: 25

IDX-08: 51 IDX-09: 52

IDX-07: 50

ММС824 Маршрутизация в корпоративной сети

Index	Phone No.	Converted No.	SZ	Max	МВ
01	20	09120	4	7	N
02	21	09221	4	7	N
03	22	09222	4	7	N
04	23	09223	4	7	N
05	24	09324	4	7	N
06	25	09325	4	7	N
07	50	09150	4	7	N
08	51	09251	4	7	N
09	52	09352	4	7	N

ММС714 Таблица трансляции DID номеров

Entry	Digit	МОН	a1~6	CW	Delete	Name
001	2***	-	В	-	0	-
002	5***	-	В	-	0	-

ММС603 Назначение внешних линий в группы

803 Занесите в данную группу VoIP каналы.

ММС710 Таблица выбора маршрута по набранному номеру

Index	Digit	Length	LCRT	
0001	810	15	2	Для Международных вызовов через систему А
0002	8	11	2	Для Междугородних вызовов через систему А
0003	01	9	2	Для вызовов экстренных служб через систему А
0004	02	10	2	
0005	03	10	2	
0006	04	10	2	
0007	06	10	2	
8000	07	10	2	
0009	08	10	2	
0010	091	7	1	Для вызовов на систему А
0011	092	7	1	Для вызовов на систему В
0012	093	7	1	Для вызовов на систему С через систему А
0013	1	3	2	Для местных вызовов через систему А
0014	2	7	2	
0015	3	7	2	
0016	4	7	2	
0017	5	7	2	
0018	6	7	2	
0019	7	7	2	
0020	9	7	2	

ММС712 Создание плана маршрутизации по LCR

Table	Time	Class	Route	Modify	
01	1	1	803	-	
02	1	1	803	001	Для внешних вызовов через систему А

ММС713 Модификация набранного номера

Table	Delete	Insert	Append	
001	0	0919	-	Добавлен номер Link ID системы A (091) и цифра (9)
				для доступа к внешним линиям системы А

ММС825 Назначение сетевых функций

ADD Number To Name Yes
Use Remote Voice Mail Yes
Remote VM Number 5049

Информация о сертификации продукции

Малая УАТС OfficeServ 500

производства фирмы Samsung Electronics Co., Ltd. Сертифицирована органом по сертификации аппаратуры связи и радиоэлектронной аппаратуры

"Инита"

Сертификат соответствия	POCC KR.ME88.B00193
Сертификат соответствия выдан	03.06.04
Сертификат соответствия действителен до	03.06.07
Малая УАТС OfficeServ 500 соответствует нормативных документов	ГОСТ Р 51287-99 ГОСТ Р 30428-96

OC/1-Y-361

Срок службы: не менее 3 лет

Vendor:

Samsung Electronics Co., Ltd.

Address:

19th Fl, Joong-Ang libo Bldg., 7, Soonhwa-Dong, Choong-Ku, Seoul, Korea 100-759 Изготовитель:

Самсунг Электроникс Ко. Лтд.

Адрес:

Корея, 100-759, Сеул, Чунг-Ку, Сунхва-Донг 7,

здание Чунг-Анг Ильбо, 19 эт.

OfficeServ 500 Инструкция по установке

©2004 SAMSUNG Electronics Co., Ltd. Защищено законом об авторских правах.

Данное руководство является интеллектуальной собственностью Компании SAMSUNG ELECTRONICS, Лтд.

Никакая информация, содержащаяся здесь, не может быть скопирована, переведена, расшифрована или дублирована в любых коммерческих целях или раскрыта третьим лицам в любой форме без предварительного письменного согласия Компании SAMSUNG Electronics Co., Ltd.

Производитель оставляет за собой право вносить технические изменения при модификации аппарата без предварительного уведомления.

Наш сайт: www.samsung.ru

