

UNIVERSIDAD INDUSTRIAL DE SANTANDER

Escuela de Ingenierías Eléctrica, Electrónica y de Telecomunicaciones E3T FUNDAMENTOS DE CIRCUITOS ANALÓGICOS. Prof.: Javier Ardila

Taller de refuerzo #7: Respuesta en Frecuencia de los Amplificadores CMOS.

En todos los problemas asuma los transistores operando en región de saturación.

1. Estime la respuesta en frecuencia de la ganancia en modo diferencial Vout/Vin (s) para el amplificador que se muestra en la **Figura 1**. Donde Cc representa capacitores de acoplamiento, CL un capacitor de carga y los valores VA , VB , y VC son tensiones de DC. Recuerde que deben quedar explícitos los polos de baja y alta frecuencia así como la ganancia de banda media. Además, los transistores M2 y M3 se diseñaron con longitudes de canal altas, lo cual permite despreciar el efecto de modulación de canal (λ2,3≈0) sólo en este par de transistores; considere este efecto en los demás transistores y asuma y = 0 para todos.

Figura 1

2. Se requiere conocer la respuesta de alta frecuencia del circuito mostrado en la **Figura 2**, por lo tanto es necesario considerar las capacitancias de los transistores. Basado en lo anterior, estime una expresión para la función de transferencia Vout/Vin. Desprecie el efecto de modulación de canal pero considere el efecto cuerpo donde sea necesario.

UNIVERSIDAD INDUSTRIAL DE SANTANDER

Escuela de Ingenierías Eléctrica, Electrónica y de Telecomunicaciones E3T FUNDAMENTOS DE CIRCUITOS ANALÓGICOS. Prof.: Javier Ardila

Figura 2

3. Una señal en el dominio de corriente se pasa a través del espejo simple mostrado en la **Figura 3**. Use el método de asociación de polos con nodos junto con la ganancia de banda plana para estimar la función de transferencia lout/lin. Esta determinará el comportamiento a alta frecuencia del circuito, ya que solo interactúan las capacitancias de los transistores. Considere el efecto de modulación de canal y utilice el teorema de Miller donde sea necesario para simplificar el análisis. Además, bosqueje el diagrama de Bode.

Figura 3

4. Asumiendo $\lambda = \gamma = 0$, calcule la impedancia de entrada Zin y la función de transferencia vout/vin del circuito de la **Figura 4**.

UNIVERSIDAD INDUSTRIAL DE SANTANDER

Escuela de Ingenierías Eléctrica, Electrónica y de Telecomunicaciones E3T FUNDAMENTOS DE CIRCUITOS ANALÓGICOS. Prof.: Javier Ardila

Figura 4

5. El circuito de la **Figura 5** muestra un amplificador de entrada diferencial y salida simple. Estímese la respuesta en frecuencia del CMRR. Justifique sus suposiciones o aproximaciones donde sea necesario. Considere γ = 0 para todos los transistores.

Figura 5