Topología I – Resolución examen convocatoria extraordinaria

1.- En \mathbb{R}^2 se considera la familia de subconjuntos:

$$\mathcal{B} = \{U \times \{y\} \mid U \in \mathcal{T}_u, y \in \mathbb{R}\} .$$

a) Prueba que $\mathcal B$ es una base para alguna topología $\mathcal T$ en $\mathbb R^2$. En primer lugar observemos que $\mathbb R^2 = \bigcup_{y \in \mathbb R} (\mathbb R \times \{y\})$. Además para $U \times \{y\}, \ U' \times \{y'\}$ $\in \mathcal B$ tenemos que

$$(U \times \{y\}) \cap (U' \times \{y'\}) = (U \cap U') \times (\{y\} \cap \{y'\})$$

Es claro que

$$(U \times \{y\}) \cap (U' \times \{y'\}) = \begin{cases} \varnothing & \text{si } y \neq y' \\ (U \cap U') \times \{y\} & \text{si } y = y' \end{cases}$$

por lo que la intersección de dos elementos de \mathcal{B} es otro elemento de \mathcal{B} .

Otra forma: Observemos que

$$\mathcal{B} = \{B_1 \times B_2 \mid B_1 \in \mathcal{B}_1, B_2 \in \mathcal{B}_2\} ,$$

donde $\mathcal{B}_1 = \mathcal{T}_u$ es una base de $(\mathbb{R}, \mathcal{T}_u)$ y $\mathcal{B}_2 = \{\{y\} \mid y \in \mathbb{R}\}$ es una base de $(\mathbb{R}, \mathcal{T}_D)$, \mathcal{T}_D la topología discreta. Por lo visto en clase sabemos que \mathcal{B} es una base de la topología $\mathcal{T}_u \times \mathcal{T}_D$.

b) Prueba que $(\mathbb{R}^2, \mathcal{T})$ verifica el primer axioma de numerabilidad (encontrando en cada punto una base de entornos adecuada) pero no el segundo. Veamos que $\mathcal{B}_{(x,y)} = \{(x-\frac{1}{n},x+\frac{1}{n})\times\{y\}\mid n\in\mathbb{N}\}$ es una base de entornos en (x,y) de \mathcal{T} . Es claro que los elementos de $\mathcal{B}_{(x,y)}$ son entornos de (x,y) porque son abiertos básicos que contienen a (x,y). Consideremos ahora $V\in\mathcal{N}_{(x,y)}^{\mathcal{T}}$ entonces sabemos que existe $\widetilde{U}\in\mathcal{T}$ tal que $(x,y)\in\widetilde{U}\subset V$. Pero entonces como \mathcal{B} es base de \mathcal{T} tenemos que existe $U\in\mathcal{T}_u$ tal que $(x,y)\in U\times\{y\}\subset\widetilde{U}\subset V$. Basta observar ahora que $\mathcal{B}_x=\{(x-\frac{1}{n},x+\frac{1}{n})\mid n\in\mathbb{N}\}$ es una base de entornos en x de \mathcal{T}_u .

Veamos que $(\mathbb{R}^2, \mathcal{T})$ no verifica el segundo axioma de numerabilidad. Para ello basta observar que si denotamos $S = \{0\} \times \mathbb{R}$ se tiene que $\mathcal{T}_{|S} = \mathcal{T}_D$, donde \mathcal{T}_D es la topología discreta. Como (S, \mathcal{T}_D) no verifica el segundo axioma de numerabilidad y esta propiedad es hereditaria concluimos que $(\mathbb{R}^2, \mathcal{T})$ no puede verificar este axioma.

Otra forma de comprobar que no es 2AN: Del apartado a) tenemos que $(\mathbb{R}^2, \mathcal{T}) = (\mathbb{R} \times \mathbb{R}, \mathcal{T}_u \times \mathcal{T}_D)$. Por tanto $(\mathbb{R}^2, \mathcal{T})$ no es 2AN porque uno de los factores del producto $(\mathbb{R}, \mathcal{T}_D)$ no es 2AN.

c) ¿Es $(\mathbb{R}^2, \mathcal{T})$ un espacio Hausdorff?

Es Hausdoff por ser producto de dos espacios topológicos Hausdorff.

d) Calcula las componentes conexas de $(\mathbb{R}^2, \mathcal{T})$.

Observemos que $\{\mathbb{R} \times \{y\}\}_{y \in \mathbb{R}}$ es una partición por abiertos conexos de \mathbb{R}^2 . Por un ejercicio visto en clase tenemos que esas son las componentes conexas de $(\mathbb{R}^2, \mathcal{T})$.

e) Dado $A = \{(x, y) \in \mathbb{R}^2 \mid x = y\}$ identifica la topología $\mathcal{T}_{|A}$. Comprobemos que $\mathcal{T}_{|A} = \mathcal{T}_D$. Para ello basta observar que para cada $y \in \mathbb{R}$ tenemos

$$(\mathbb{R} \times \{y\}) \cap A = \{(y, y)\}\$$

y por tanto todos los puntos de A pertenecen a $\mathcal{T}_{|A}$.

f) Describe los subconjuntos compactos de $(\mathbb{R}^2, \mathcal{T})$. Veamos que los subconjuntos compactos de $(\mathbb{R}^2, \mathcal{T})$ son de la forma

$$\left\{ K \subset \mathbb{R}^2 \mid K = \bigcup_{i=1}^n (K_i \times \{y_i\}), K_i \text{ compacto de } (\mathbb{R}, \mathcal{T}_u), n \in \mathbb{N} \right\} .$$

Es claro que los subconjuntos de esa forma son compactos en $(\mathbb{R}^2, \mathcal{T})$ ya que son unión finita de subconjuntos de la forma $K_i \times \{y_i\}$ que son compactos por ser producto de compactos.

Por otra parte, como hemos comentado en el apartado d) se tiene que $\{\mathbb{R} \times \{y\}\}_{y \in \mathbb{R}}$ es una partición por abiertos de \mathbb{R}^2 , en particular un recubrimiento por abiertos de \mathbb{R}^2 . Por tanto si K es un compacto de $(\mathbb{R}^2, \mathcal{T})$ debe estar contenido en una cantidad

finita de esta rectas horizontales, es decir $K \subset \bigcup_{i=1}^{n} (\mathbb{R} \times \{y_i\})$, para $n \in \mathbb{N}$. Además

 $K \cap (\mathbb{R} \times \{y_i\}) = K_i \times \{y_i\}$ es un cerrado de K que es compacto y por tanto debe ser un compacto de $(\mathbb{R} \times \{y_i\}, \mathcal{T}_{|\mathbb{R} \times \{y_i\}})$. De aquí si denotamos p_1 la proyección en el primer factor del producto tenemos que $K_i = p_1(K_i \times \{y_i\})$ debe ser un compacto de $(\mathbb{R}, \mathcal{T}_u)$.

- 3.- Estudia de forma razonada las siguientes cuestiones:
 - a) En \mathbb{R} consideramos la topología \mathcal{T} dada por la base $\mathcal{B} = \{[x, +\infty) \mid x \in \mathbb{R}\}$. Prueba que $f: (\mathbb{R}, \mathcal{T}) \to (\mathbb{R}, \mathcal{T})$ es una aplicación continua si y solo si es creciente.

Observemos que una base de entornos en $x \in \mathbb{R}$ para esta topología es $\mathcal{B}_x = \{[x, +\infty[\}$

Supongamos que f es continua y sean $a, b \in \mathbb{R}$ con $a \leq b$. Por ser f continua tenemos que $f^{-1}([f(a), +\infty[)$ es un abierto que contiene a a. Por tanto $[a, +\infty[\subset f^{-1}([f(a), +\infty[)$ y como $b \in [a, +\infty[$ tenemos que $f(b) \in f(f^{-1}([f(a), +\infty[)) \subset [f(a), +\infty[$. Así $f(a) \leq f(b)$ y f es creciente.

Supongamos ahora que f es creciente. Veamos que f es continua en $a \in \mathbb{R}$. Consideremos $[f(a), +\infty[$ que es el único elemento de la base de entornos $\mathcal{B}_{f(a)}$. Basta ver que $f([a, +\infty[) \subset [f(a), +\infty[$. Efectivamente, si $b \in [a, +\infty[$ tenemos $f(a) \leq f(b)$ por ser la aplicación creciente. De aquí $f(b) \in [f(a), +\infty[$ y se tiene la inclusión buscada.

b) En $X = [0,1] \times \{-1,1\}$ se considera la relación de equivalencia

$$(x,t)R(y,s)$$
 si y solo si $(x,t)=(y,s)$ o $x=y=0$ o $x=y=1$.

Prueba que $(X/R, \mathcal{T}_{u|X}/R)$ es homeomorfo a $(\mathbb{S}^1, \mathcal{T}_{u|\mathbb{S}^1})$.

Definimos la aplicación $f: X \to \mathbb{S}^1$ dada por:

$$f(x,t) = \begin{cases} (\cos(\pi(1-x)), \sin(\pi(1-x)) & \text{si } t=1\\ (\cos(\pi(1+x)), \sin(\pi(1+x)) & \text{si } t=-1 \end{cases}$$

Es claro que esta aplicación es sobreyectiva y continua por el Lema del pegado. Además es cerrada por el Lema de la aplicación cerrada (va de un compacto en un Hausdorff). Por tanto tenemos que f es una identificación. Por otra parte es fácil comprobar que dos puntos se relacionan si y solo si tienen la misma imagen por f y así $R = R_f$. Por tanto la aplicación inducida $\tilde{f}: (X/R, \mathcal{T}_{u|X}/R) \to (\mathbb{S}^1, \mathcal{T}_{u|\mathbb{S}^1})$ es un homeomorfismo.

c) Sea $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ una aplicación entre espacios topológicos tal que f(A) es compacto en (Y,\mathcal{T}') para cada A compacto en (X,\mathcal{T}) . ¿Es f continua?

No, es fácil construir un contraejemplo. Podemos considerar el espacio de Sierpinski, es decir $(\{0,1\},\mathcal{T})$ donde $\mathcal{T}=\{\varnothing,\{0\},\{0,1\}\}$. Como la topología es finita todo subconjunto es compacto y por tanto toda aplicación $f:(\{0,1\},\mathcal{T})\to(\{0,1\},\mathcal{T})$ lleva compactos en compactos. Sin embargo la aplicación f dada por f(0)=1 y f(1)=0 no es continua puesto que $f^{-1}(\{0\})=\{1\}$ que no es un abierto de \mathcal{T} .