אלגברה ליניארית 1 סמסטר א' תשפ"ד תרגילים הוכחות

שאלה 1 הוכיחו: תהי $A\in\mathbb{R}^{n imes n}$ אם A הפיכה אז למערכת

$$A\mathbf{x} = b, \qquad b \neq 0$$
,

קיים פתרון אחד והוא יחיד.

. $\operatorname{dim}\left(\operatorname{Nul}\,A\right)=0$ אם $A\in\mathbb{R}^{n imes n}$ הוכיחו: תהי

שאלה 3 הוכיחו: תהי $A\in\mathbb{R}^{n imes n}$ אם למערכת

$$A\mathbf{x} = b$$
, $b \neq \bar{0}$

. $\dim\left(\operatorname{Nul}(A)\right)=0$ קיים רק פתרון אחד והוא יחיד אז

שאלה 4 תהי $A\in\mathbb{R}^{n imes n}$ אם למערכת

$$A\mathbf{x} = b$$
, $b \neq \bar{0}$.

יש יותר מפתרון אחד אז A לא הפיכה.

שאלה $\mathbf{x}\in\mathbb{F}^{1 imes n}$ וקטור שורה. הוכיחו שי $\mathbf{x}\in\mathbb{F}^n$ וקטור שורה. הוכיחו שי $A\in\mathbb{F}^{n imes n}$ אוכיחו שי $A\in\mathbb{F}^{n imes n}$ התנאים הבאים שקולים:

- $\mathbf{x}=ar{\mathbf{0}}$ הוא $A\cdot\mathbf{x}=ar{\mathbf{0}}$ הפתרון היחיד של המערכת.
 - בת"ל. A בת"ל.
 - AB=I -כך ש- $B\in\mathbb{F}^{n imes n}$ קיימת מטריצה (3)
- $\mathbf{y}=ar{\mathbf{0}}$ הפתרון היחיד של המערכת y $\mathbf{A}=ar{\mathbf{0}}$ הפתרון היחיד
 - בת"ל. A בת"ל.
 - .CA=I -כך ש- כך כך כר מטריצה מטריצה (6)
 - .הפיכה A (7)

שאלה 6

. וקטור עמודה. הוכיחו כי התנאים הבאים שקולים: $\mathbf{x} \in \mathbb{F}^n$ אטריצה ריבועית, $A \in \mathbb{F}^{n \times n}$

- .הפיכה A (1)
- $\mathbf{x}=ar{\mathbf{0}}$ יש רק את הפתרון $A\cdot\mathbf{x}=ar{\mathbf{0}}$ מערכת (2)
 - I המדורגת של A היא
 - . יש לפחות פתרון אחד $A\cdot \mathbf{x}=b$ למערכת (4)
- AB=I -כך ש- $B\in\mathbb{F}^{n imes n}$ קיימת מצטריצה (5)

שאלה 7 תהי $A\in\mathbb{F}^{n imes n}$ ויהי וקטור שמקיים שת המשוואה ההומוגנית $A\in\mathbb{F}^{n imes n}$

$$A \cdot u = \bar{0}$$
.

|A|=0 אז u
eq ar 0 הוכיחו

שאלה 8 יהי U תת מרחב של \mathbb{R}^n . נניח שU=m נניח שU=m נניח שלה 8 יהי U יהי U תת מרחב של U. נניח שU=m פורשת את U.

שאלה 9 יהי $U \subseteq W$ תתי מרחבים של \mathbb{R}^n . הוכיחו:

- $.\dim U \leq \dim W$.1
- .U=W אם $\dim U=\dim W$.2

 $A\in\mathbb{R}^{m imes n}$ ותהי , $\dim(V)=m$ ו שאלה 10 ו נניח ש ליניארית. ליניארית. תהי ותהי הטענדרטית של תהי או המטריצה המייצגת הסטנדרטית של T:U o V

התנאים הבאים שקולים:

- על. T (א)
- (ב) במדורגת המתקבלת מ-A קיים איבר מוביל בכל
 - \mathbb{R}^m עמודות A פורשות את (ג

שאלה 11 תהי $A\in\mathbb{F}^{m imes n}$. הוכיחו כי התנאים הבאים שקולים:

- $\operatorname{.rank}(A) = n$ (1)
- \mathbb{R}^n את פורשות אל (2)
- \mathbb{R}^m -בת"ל ב- (3)
- . פתרון $\mathbf{x}=ar{\mathbf{0}}$ הוא $A\mathbf{x}=ar{\mathbf{0}}$ המערכת של היחיד של הפתרון היחיד. $\mathbf{x}\in\mathbb{F}^n$ נתון

שאלה 12 תהי תהי $A\in\mathbb{F}^{m imes n}$. הוכיחו כי התנאים הבאים שקולים:

- $\operatorname{.rank}(A) = m$ (1)
- \mathbb{R}^m את פורשות של A
 - \mathbb{R}^n -בת"ל ב- (3)

שאלה 13

תהי T:V o W העתקה ליניארית.

$$\dim V = \dim (\ker T) + \dim (\operatorname{Im} T)$$

פתרונות

שאלה $A\mathbf{x}=b$ בההופכית ונקבל את הפיכה אז נכפיל את הפיכה $A\mathbf{x}=b$

$$A^{-1} \cdot A \cdot \mathbf{x} = A^{-1}b \quad \Rightarrow \quad \mathbf{x} = A^{-1}b$$
.

יהי אז $A\mathbf{x}_2=b$ ו- $A\mathbf{x}_1=b$ כך ש- $\mathbf{x}_1\neq\mathbf{x}_2$ כך ש- $\mathbf{x}_1,\mathbf{x}_2$ ו- $\mathbf{x}_1,\mathbf{x}_2$ יחידות: נניח שקיימים

$$A(\mathbf{x}_1 - \mathbf{x}_2) = b - b = 0$$

ונקבל הפיכה אז נכפיל בההופכית ונקבל A

$$A^{-1}A(\mathbf{x}_1 - \mathbf{x}_2) = A^{-1} \cdot 0 = 0 \qquad \Rightarrow \qquad I \cdot (\mathbf{x}_1 - \mathbf{x}_2) = 0 \qquad \Rightarrow \qquad \mathbf{x}_1 - \mathbf{x}_2 = 0 \qquad \Rightarrow \qquad \mathbf{x}_1 = \mathbf{x}_2 \; .$$
 סתירה.

 $\mathbf{x}_1
eq ar{0}$ מטריצה הפיכה. נניח שלמערכת $A \cdot \mathbf{x} = ar{0}$ מטריצה הפיכה. מטריצה מטריצה מטריצה אז $A \in \mathbb{R}^{n imes n}$

$$A \cdot \mathbf{x}_1 = \bar{0}$$

ונקבל A^{-1} ב- ונקבל מצד אמאל ב- A^{-1} ונקבל A

$$A^{-1} \cdot A \cdot \mathbf{x}_1 = A^{-1} \cdot \bar{\mathbf{0}} \qquad \Rightarrow \qquad \mathbf{x}_1 = \bar{\mathbf{0}} \ .$$

סתירה.

שאלה 3 למערכת

$$A\mathbf{x} = b$$
, $b \neq \bar{0}$,

יש פתרון $A\cdot {f x}=ar 0$ קיים פתרון $A\cdot {f x}=ar 0$ אז למערכת . ${
m dim}\,({
m Nul}(A))
eq 0$ נניח ש- ${
m s.}$ גניח ב- ${
m s.}$ נניח ש-

$$A \cdot (\mathbf{x}_1 + \mathbf{x}_2) = A \cdot \mathbf{x}_1 + A \cdot \mathbf{x}_2 = b + 0 = b.$$

. סתירה. $(\mathbf{x}_1+\mathbf{x}_2)$ -ו $\mathbf{x}_1:A\cdot\mathbf{x}=b$ סתירה. סתירה

A וגם ($b \neq \bar{0}$ ו- $\mathbf{x}_1 \neq \mathbf{x}_2$ (כאשר $\mathbf{x}_2 \neq \mathbf{x}_2$ וגם אז (כאשר $\mathbf{x}_1 \neq \mathbf{x}_2$ וגם אז (ביח דרך השלילה. נניח שר \mathbf{x}_2 אז (כאשר אז)

$$A\mathbf{x}_1 = b$$

-1

 $Ax_2 = b$

לכן

$$A\cdot(\mathbf{x}_1-\mathbf{x}_2)=b-b=\bar{0}\ .$$

ונקבל שמאל שמאל ב- A^{-1} מצד שמאל ונקבל A^{-1} הפיכה אז

$$A^{-1} \cdot A \cdot (\mathbf{x}_1 - \mathbf{x}_2) = A^{-1} \cdot \bar{\mathbf{0}} \quad \Rightarrow \quad I \cdot (\mathbf{x}_1 - \mathbf{x}_2) = \bar{\mathbf{0}} \quad \Rightarrow \quad \mathbf{x}_1 - \mathbf{x}_2 = \bar{\mathbf{0}} \quad \Rightarrow \quad \mathbf{x}_1 = \mathbf{x}_2 \ .$$

סתירה.

שאלה 5

(2) ((1) ●

$$\mathbf{x}=ar{0}$$
 אם הפתרון היחיד של המערכת . $\mathbf{x}=egin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$ -ו $A=egin{pmatrix} |& & | & & | \\ c_1 & c_2 & \cdots & c_n \\ |& & & | \end{pmatrix}$ נרשום

$$\begin{pmatrix} \begin{vmatrix} & & & & | \\ c_1 & c_2 & \cdots & c_n \\ | & | & & | \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_1c_1 + x_2c_2 + \ldots + x_nc_n = \bar{0}$$

בת"ל. c_1, c_2, \ldots, c_n ולכן העמודות $x_1 = 0, x_2 = 0, \ldots, x_n = 0$ בת"ל.

(3) (€(2) •

לכן קיימים .span $\{m{c}_1,m{c}_2,\dots,m{c}_n\}=\mathbb{F}^n$ לכן קיימים . $A=egin{pmatrix} |&&&&|\\ m{c}_1&m{c}_2&\cdots&m{c}_n\\&&&&|\\ \end{pmatrix}$ נרשום $A=egin{pmatrix} |&&&&|\\ m{c}_1&m{c}_2&\cdots&m{c}_n\\&&&&|\\ \m{c}_1&\m{c}_2&\cdots&m{c}_n\\\\&&&&|\\ \m{c}_1&\m{c}_2&\cdots&m{c}_n\\\\&&&&|\\ \m{c}_1&\m{c}_2&\cdots&m{c}_n\\\\&&&&|\\ \m{c}_1&\m{c}_2&\cdots&m{c}_n\\\\&&&|\\ \m{c}_1&\m{c}_2&\cdots&\m{c}_n\\\\&&&|\\ \m{c}_1&\m{c}_2&\cdots&\m{c}_n\\\\&&|\\ \m{c}_1&\m{c}_2&\cdots&\m{$

$$b_{11}\mathbf{c}_{1} + b_{21}\mathbf{c}_{2} + \ldots + b_{n1}\mathbf{c}_{n} = \begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix} ,$$

$$b_{12}\mathbf{c}_{1} + b_{22}\mathbf{c}_{2} + \ldots + b_{n2}\mathbf{c}_{n} = \begin{pmatrix} 0\\1\\\vdots\\0 \end{pmatrix} ,$$

$$b_{1n}\mathbf{c}_{1} + b_{2n}\mathbf{c}_{2} + \ldots + b_{nn}\mathbf{c}_{n} = \begin{pmatrix} 0\\0\\\vdots\\1 \end{pmatrix} .$$

$$\vdots$$

$$B=egin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \ b_{21} & b_{22} & \dots & b_{2n} \ dots & dots & \ddots & dots \ b_{n1} & b_{n2} & \dots & b_{nn} \end{pmatrix}$$

$$A \cdot B = \begin{pmatrix} | & | & & | \\ \mathbf{c}_1 & \mathbf{c}_2 & \cdots & \mathbf{c}_n \\ | & | & & | \end{pmatrix} \cdot \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nn} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix} ,$$

כלומר

$$AB = I$$
.

(4) (€(3) •

אם $A=ar{0}$, אז לפי (3), אם

$$\mathbf{y} \cdot A \cdot B = \bar{\mathbf{0}} \cdot B = 0 \qquad \Rightarrow \qquad \mathbf{y} \cdot I = 0 \qquad \Rightarrow \qquad \mathbf{y} = \bar{\mathbf{0}} \ .$$

(5) ((4) ●

גרשום $\mathbf{y}\cdot A\cdot=ar{0}$ ו- $A\cdot=egin{pmatrix} -&r_1&-\\-&r_2&-\\&\vdots&\\-&r_n&-\end{pmatrix}$ אם הפתרון היחיד של המערכת $\mathbf{y}=\begin{pmatrix} -&r_1&-\\-&r_2&-\\&\vdots&\\-&r_n&-\end{pmatrix}$ נרשום $\mathbf{y}\cdot A\cdot=ar{0}$

$$(y_1 \ y_2 \ \cdots \ y_n) \cdot \begin{pmatrix} - \ r_1 \ - \ r_2 \ - \ \vdots \ - \ r_n \ - \end{pmatrix} = y_1 r_1 + y_2 r_2 + \ldots + y_n r_n = \bar{0}$$

. בת"ל. r_1, r_2, \ldots, r_n ולכן השורות $y_1 = 0, y_2 = 0, \ldots, y_n = 0$ בת"ל.

(6) ((5) ●

לכן קיימים .span
$$\{m{r}_1,m{r}_2,\dots,m{r}_n\}=\mathbb{F}^{1 imes n}$$
 אם השורות של $A=egin{pmatrix} -&m{r}_1&-\\-&m{r}_2&-\\&\vdots&\\-&m{r}_n&-\end{pmatrix}$ נרשום כך ש-

$$c_{11}\mathbf{r}_{1} + c_{12}\mathbf{r}_{2} + \ldots + c_{1n}\mathbf{r}_{n} = \begin{pmatrix} 1 & 0 & \ldots & 0 \end{pmatrix} ,$$

$$c_{21}\mathbf{r}_{1} + c_{22}\mathbf{r}_{2} + \ldots + b_{2n}\mathbf{r}_{n} = \begin{pmatrix} 0 & 1 & \ldots & 0 \end{pmatrix} ,$$

$$c_{n1}\mathbf{r}_{1} + c_{n2}\mathbf{r}_{2} + \ldots + c_{nn}\mathbf{r}_{n} = \begin{pmatrix} 0 & 0 & \ldots & 1 \end{pmatrix} .$$
(*2)

רה (*2) אז אפשר לרשום
$$C = \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nn} \end{pmatrix}$$

$$C \cdot A = \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nn} \end{pmatrix} \cdot \begin{pmatrix} - & \boldsymbol{r}_1 & - \\ - & \boldsymbol{r}_2 & - \\ & \vdots & \\ - & \boldsymbol{r}_n & - \end{pmatrix} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix} ,$$

כלומר

CA = I.

(5)⇔(2) ●

נוכיח (2)⇒(5)

השורות של $\mathbf{y}=\bar{\mathbf{0}}$ הוא $\mathbf{y}\cdot A=\bar{\mathbf{0}}$ הפתרון היחיד של $\mathbf{A}=B=B$ השורות של $\mathbf{A}=B$ השורות של $\mathbf{A}=B$ בת"ל.

נוכיח (5)⇒(2)

העמודות של $\mathbf{x}=\bar{0}$ הוא $A\cdot\mathbf{x}=\bar{0}$ הפתרון היחיד של C בת"ל קיימת כך ש- C העמודות של $A\cdot\mathbf{x}=\bar{0}$ בת"ל.

(7)⇐(5) •

-ט כך כלומר C כלומר (6), כלומר (5)

CA = I

נכפיל מצד שמאל ב-A ונקבל

 $ACA = A \Rightarrow AC = I$.

-כלומר קיימת C כך ש

CA = AC = I,

.לכן A הפיכה

<u>(7)</u> (2) •

-כך שB כך שB כלומר (2) \Leftarrow

AB = I

נכפיל מצד ימין ב-A ונקבל

 $ABA = A \Rightarrow BA = I$.

-כלומר קיימת B כך ש

AB = BA = I,

A לכן A הפיכה

שאלה 6

(2) ((1) •

אם A^{-1} הפיכה אז קיימת A^{-1} . לכן

 $A\mathbf{x} = \bar{\mathbf{0}} \qquad \Rightarrow \qquad A^{-1}A\mathbf{x} = A^{-1}\bar{\mathbf{0}} = \bar{\mathbf{0}} \qquad \Rightarrow \qquad \mathbf{x} = \bar{\mathbf{0}} \ .$

(3) (€(2) •

נניח שלמערכת I -ש אינה שווה ל- $x=ar{0}$ אבל הפתרון אינה שווה ל- $A\cdot x=ar{0}$ נניח שלמערכת של המערכת, ונסמן את המטריצה המדורגת ב-U:

$$(A|\bar{0}) \rightarrow (U|\bar{0})$$
.

אם $U\neq I$ אז ב- U יש שורת אפסים. U מרטריצה ריבועית ולכן יהיה לפחות משתנה חופשי אחד. לכן למערכת $U\neq I$ יהיו אינסוף פתרונות. סתירה.

(4) (€(3) •

היא $A\mathbf{x}=b$ המטריצה של המורחבת של

(A|b).

לפי (3) המדורגת של A היא I לכן אחרי דירוג נקבל

$$(A|b) \to (I|c)$$

 $\mathbf{x} = c$ יש פתרון יחיד: $A\mathbf{x} = b$ כאשר כאור. לכן למערכת

(5) ((4) ●

$$A$$
x $=e_i$ למערכת (4) לפי $e_1=egin{pmatrix}1\\0\\\vdots\\0\end{pmatrix},e_2=egin{pmatrix}0\\1\\\vdots\\0\end{pmatrix},\dots,e_n=egin{pmatrix}0\\0\\\vdots\\1\end{pmatrix}$ למערכת $I=egin{pmatrix}e_1&e_2&\cdots e_n\end{pmatrix}$ נרשום $I=egin{pmatrix}e_1&e_2&\cdots e_n\end{pmatrix}$

-ש יחידה כך $C=\begin{pmatrix} |&|&&|\\ c_1&c_2&\dots&c_n\\ |&|&&| \end{pmatrix}$ איים פתרון יחיד $\mathbf{x}=c_i$ לכל $\mathbf{x}=c_i$ לכל $\mathbf{x}=c_i$

$$AC = I$$
.

(1)⇐**(5)** •

נגיח ש-AC=I אז

$$ACA = A \Rightarrow CA = I$$
.

לכן הפיכה. A כך ש- AC = CA = I לכן קיימת כי קיימת לכן לכן הפיכה.

 A^{-1} -ב שמאל מצד שמאל ב- A^{-1} נניח ש- $\bar{0}$ ו $u \neq \bar{0}$ ו - $u \neq \bar{0}$ ו אז A הפיכה, כלומר ההופכית ביימת. נכפיל מצד שמאל ב- $u \neq \bar{0}$ ונקבל

$$A^{-1} \cdot A \cdot u = \bar{0} \qquad \Rightarrow \qquad u = \bar{0} \ .$$

סתירה.

\Rightarrow 8 שאלה

U את פורשת ש פורשת העלילה את בת"ל. נוכיח ברך העלילה את B

m -ניח ש U. בבסיס חדש יהיו יותר מ- B כדי לקבל בסיס של U. בבסיס חדש יהיו יותר מ- נניח ש B לא פורשת את U. אז ניתן להוסיף וקטורים. ז"א D . מתירה.

 \leq

B נניח שB פורשת את B ו B נניח

. $\dim(U) < m$ וקטורים. ז"א m וקטורים מ- בבסיס החדש יהיו פחות מ- וקטורים. ז"א מיען להוריד מ- B וקטורים. ז"א סתירה.

 $.k = \dim(W)$ יהי B בסיס של .U נסמן יהי B יהי

- לכן העירה. אז פתירה. אז א המ"ל של וקטורים של Wשבה של המ"ל בת"ל קבוצה בת"ל קבוצה בת"ל אז המות אז לוקטורים. B אז המות $\dim(U) > \dim(W)$. $\dim U < \dim W$
- פורשת B וקטורים. לכן, B וקטורים אז שבה ש M שבה אז פורשת בת"ל של וקטורים אז אז שבה B קבוצה בת"ל אז B הוקטורים. לכן B את B=U את את B=U

שאלה 11

(2)⇔(1) □

 $row(A) \subseteq \mathbb{F}^n$

 $\operatorname{crow}(A) = \mathbb{F}^n$ לכן לכן $\dim(\operatorname{row} A) = n$ -1

(3)⇔(2) □

לפי (2), n עמודות של n אז $\operatorname{row}(A)=n$ אז $\operatorname{row}(A)=n$ מכיוון שה- n עמודות של $\operatorname{row}(A)=n$ לפי (2), אז הן.

ם (3)⇔(4) לפי (3): נשרום □

$$A\mathbf{x} = \bar{\mathbf{0}} . \tag{#1}$$

נרשום $A=egin{pmatrix} |x| & 1 \leq i \leq n \end{pmatrix}$ לכל $a_i \in \mathbb{F}^m$, A העמודות של $a_i \in \mathbb{F}^m$, A העמודות של $A=egin{pmatrix} |x| & |$

$$A\mathbf{x} = \bar{0} \quad \Rightarrow \quad x_1c_1 + x_2c_2 + \dots + x_nc_n = \bar{0} \ .$$
 (#2)

לפי (3), $x_1=x_2=\ldots=x_n=0$ מתקיים רק אם (#2) בת"ל לכן בת"ל (בי (x_1,x_2,\cdots,x_n) לפי (אם (x_1,x_2,\cdots,x_n) בת"ל לכן הפתרון היחיד של (#1) הוא

(1)⇔**(4)** □

לפי (4) הפתרון היחיד של המערכת . $A\mathbf{x}=\bar{0}$ הוא $A\mathbf{x}=\bar{0}$ הוא התערכת של $A\mathbf{x}=\bar{0}$ העמודות של $A\mathbf{x}=\bar{0}$ בת"ל. לכן . $\mathrm{dim}(\mathrm{col}\ A)=n$

שאלה 12

(2)⇔(1) □

 $\operatorname{col}\left(A
ight)=\mathbb{F}^{m}$,פי (1), $\operatorname{dim}(\operatorname{col}A)=m$ לכן לפי

(3)⇔(2) □

לפי (2), m שורות של A שורות של .rank(A)=m אז היא m שורות של .rank(A)=m אז הן בת"ל. m אז הן בת"ל.

(1)⇔**(3)** □

 $\operatorname{crank}(A) = m$ ולכן, $\operatorname{dim}(\operatorname{row} A) = m$, ולכן $\operatorname{dim}(\operatorname{row} A) = m$

יהי (ראו הגדרה ער וקטור פאר ער וקטור ב אפשר לרשום בצורה (ער ואי ואנדרה וקטור ב T (ראו הגדרה ואנדרה ואנדר ואנדר ואנדר ואנדר ביס של T ביס של ואנדר וואנדר ואנדר ואנדר וואנדר וו

V פורשת B (1

אם $T(\mathbf{v}) \in \operatorname{Im} T$ אז $\mathbf{v} \in V$ אם

$$T(\mathbf{v}) = t_1 T(e_1) + \ldots + t_r T(e_r)$$
, $t_i \in \mathbb{R}$.

אזי v לכן א לכן ינארי אל ($\{f_1,\dots,f_k\}$ לינארי אירוף לינארי א לכן היסטור א איר ייער א איר א לכן א איר א לכן הוקטור הא לכן הוקטורים ב פון א לכן הוקטורים ב ב

בת"ל B

נניח

$$t_1e_1 + \ldots + t_re_r + s_1f_1 + \ldots + s_kf_k = \bar{0}$$
 (#)

עבור סקלרים אזי $t_i \in \mathbb{R}$ ו אזי

$$t_1T(e_1) + \ldots + t_rT(e_r) + s_1T(f_1) + \ldots + s_kT(f_k) = \bar{0}$$
 (*1)

אבל
$$T(f_i) = \bar{0}$$
 לכן

$$t_1T(e_1) + \ldots + t_rT(e_r) = \bar{0}$$

 $t_1=\ldots=t_r=0$ בת"ל, לכן $\{T(e_1),\ldots,T(e_r)\}$ בסיט של Im T בסיט של בסיט לכן בסיט אמכאן (#) במכאן הופך ל

$$s_1 f_1 + \ldots + s_k f_k = \bar{0}$$
 (*2)

ע בסה"כ אכן הי"כ המ"ל לכן $s_1=\ldots=s_k=0$ לכן קבוצה בת"ל לכן $\{f_1,\ldots,f_k\}$ לכן לכן $\{f_1,\ldots,f_k\}$ בסיס של B