

24 King

FIG.3

FIG.4

FIG.5

F16.9

FIG.10

FIG.11

		CDR1					
Germline Hybridoma Germline Germline Germline	VH6 D5. 1.4 JH4 D(N1) hMu	AGACCCTCTC AGACCCTCTC	ACTCACCTGT ACTCACCTGT	GCCATCTCCG GCCATCTCCG	GGGACAGTGT	CTCTAGCAAC CTCTAGCGAC	50 50
			CDI	R2		¥110	•
Germline Hybridoma Germline Germline	VH6 D5. 1.4 JH4 D(N1)					GCCTTGAGTG GCCTTGAGTG	100 100
Germline	hMu					· · · · · · · · · · · · · · · · · · ·	
			VI	46			
Germline	V1-16 D5. 1.4 JH4 D(N1) hMu	GCTGGGAAGG GCTGGGAAGG	ACATACTACA ACATACTACA	GGTCCAAGTG GGTCCAAGTG	GTATAATGAT GTATAATGAT	TATGCAGTAT TATGCAGTUT	150 150
			V				
Hybridomo Germline	VH6 D5. 1.4 JH4 D(N1) hMu					GAACCAGTTC GAACCAGTTC	
			VI				
Germline Hybridomo Germline	JH4					IGTATTACTG IGTATTACTG	
Germline	D(N1)						
Germline	hMu			46. ———			
				Ŧ			252
Hybridomo Germline Germline	VH6 D5. 1.4 JH4 D(N1) hMu	TGCAAGAGAT	ATAGCACTGC	CTGGCGTCCT	CTTGACTAGC	TGGGGCCAGG TGGGGCCAAG	259 300 20
			ATAGCAGE AG	CTGG			15
		VH6	Dt	NI —	JH4		

FIG.12A

Germline VH6 Hybridoma D5. 1.4 Germline JH4	GAACCCTGGT GAACCCTGGT	CACCGTCTCC	TCAGGGAGTG	CATCCGCCCC	AACCCTTTTC	350 43
Germline D(N1) Germline hMu	JH		- —GGGAGTG	CATCCGCCCC	AACCCTTTIC	27
Germline VH6 Hybridoma D5. 1.4 Germline JH4	CCCCTCGTCT	CCTGTGAGAA	TTCCCCGTCG	GATACGAGCA	GCGTGGCCGT	259 400 43
Germline D(N1) Germline hMu	CCCCTCGTCT			GATACGAGCA		15 77

FIG.12B

Germline B3 Hybridoma D5 1.4 Germline JK3 Germline CK	GACATCGIGA		C TCCAGACTC		T CTCTGGGCG
Germline 83 Hybridoma D5 1.4 Germline JK3 Germline CK	GAGGGCCACC	ATCAACTGCA ATCAAGTGCA	A AGTCCAGCC	A GAGIGITITE	TACAGGICCA TACAGGITCCA
Germline B3 Hybridomo D5 1.4 Germline JK3 Germline CK	PCAATAAGAA GCAATAAGAA	CTACTTAGCT	TGGTACCAGO	AGAAACCAGG AGAAACCAGG	ACAGCCTCCT ACAGCCTCCT
Germline B3 Hybridoma D5 1.4 Germline JK3 Germline CK	AMERICEICA AMACTIACTCA	TTTACTGGGC TTTACTGGGC	CDR2 ATCTACCCGG ATCTACCCGG	GAATCCGGGG GAATCCGGGG	TCCCTGACCG TCCCTGACCG
Germline B3 Hybridoma D5 1.4 Germline JK3 Germline CK	ATTCACTGGC ATTCACTGGC	AGCGGGTCTG	GGACAGATTT GGACAGATTT —————————————————————————————————	CACTCTCACC	ATGAGCAGCC ATGGGCAGCC
Sermline B3 dybridoma D5 1.4 dermline JK3 dermline CK	TGCAGGCTGA A	AGATGTGGCA AGATGTGGCA	GTTTATTACT	GTCAGCAATA GTCAGCAATA	TTATAGTACT TTATAGTATT
ybridoma D5 1.4 (CC————————————————————————————————————	ICCCCCTCC	GACCAAAGTG 	GATATCAAAC	GAACTGTGGC GAACTGTGGC

FIG.13A

Germline B3 Hybridoma D5 1.4	1	TGCACCATCT	GTCTTCATCT	TCCCGCCATC	TGATGAGCAG	TTGAAATCTG
Germline JK3 Germline CK		TGCACCATCT	GICTTCATCT	TCCCGCCATC	TGATGAGCAG	
				0.1		•
Germline B3 Hybridoma D5 1.	4	GAACTGCCTC	TGTTGTGTGC	CTGCTGAATA	ACTTCTATCC	CAGAGAGGCC
Germline JK3 Germline CK		GAACTGCCTC	TGTTGTGTGC	CTGCTGAATA CK	ACTTCTATCC	CAGAGAGGCC
·						
Germline B3 Hybridoma D5 1.	4	AAAGTACAGT	GGAAGGTGGA	TAACGCCCTC	CAATCGGGTT	GGGGAAAAA
Germline JK3 Germline CK		AAAGTACAGT	GGAAGGTGGA	TAACGCCCTC	CAATCGGGT-	

FIG.13B

FIG.14

FIG. 16A

[CAGTCTCCATCCTCCCTGTCTGCATCTGTAGGCGACAGAGTCACCATCACTTGCCAGGCGAGTC
AGGACATTAGTAAGTTTTTAAGTTGGTTTCAACAGAAACCAGGGAAAGCCCCTAAACTCCTGATC
TACGGTACATCCTATTTGGAAACCGGGGTCCCATCAAGTTTCAGTGGAAGTGGATCTGGGACAGA
TTTTACTCTCACCATCAGCAGCCTGCAGCCTGAAGATGTTGCAACATATTTCTGTAACAGNATG
ATGATCTCCC][ATACACTTTCGGCCCTGGGACCAAAGTGGATATCAAAC]GAACTGTGGCTGCAC
CATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCC
TGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCC

FIG. 16B

16/18

[AGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAGCTATGGCATGCACTGGNTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGAAATATCATATGATGGAAGTAATAAA

TACTATGTAGACTCCGTGAAGGGCCGACTCACCATCTCCAGAGACAATTCATATGATGGAAGAACACGCTGT

ATCTGCAAATGAACAGCCTGAGAGCTGAGGACCACGGCTGTGTTATTACTGTGCGAGAGAT][CCGAC

TGGGGAT][CTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAG]CCTCCACCAAGG

GCCCATCGGTCTTCCCCCTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGC(GC)GGCCCT

GGGCTGCCTGGTCCAAGGACTACTTCCCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCTC

TGACCAG

FIG. 16C

[CTGACNCAGTCTCCAGACTCCCTGGCTGTGTCTCTGGGCGAGAGGGCCACCATCAACTGCAAGT CCAGCCAGAGTGTTTTATACATCTCCAACAATAMACTACTTAGCTTGGTACCAGCAGAAACCA GGACAGTCTCCTAAACTGCTCATTTACTGGGCATCTACCCGGAAATICCGGGGTCCCTGACCGATT CAGTGGCAGCGGGTCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGGCTGAAGATGTG GCAGTTTATTACTGTCAACAGTATTATGATACTCC][ATTCACTTTCGGCCCTGGGACCAAAGTGGGAAAAAACTCTGGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAA TCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGGCCAAAGTACAGTG GAAGGTGGNTAACGCCCCA

FIG. 16D

FIG. 16E

[TGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGC
GAGTCAGGACATTAGTAACTATTTAAATTGGTATCAACAGAAAGCAGGGAAAGCCCCTAAGGTCC
TGATCTACGCTGCATCCAATTTGGAAGCAGGGGTCCCATCAAGGTTCAGTGGAAGTGGATCTGGG
ACAGATTTTACTTTCACCATCAGCAGCCTGCAGCCTGAAGATATTGCAACATATTATTGTCAACA
CTATGATAATCTJA[CTCACTTTCGGCGGAGGGACCAAGGTAGAGATCAAAC]GAACTGTGGCTGC
ACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAA1CTGGACTGCCTCTGTTGTGTG
CCTGCTGAATAACTTCTATCCCAGAGAGGGCCAAAGTACAGTGGAAGGTGG

FIG. 16F

18/18

AGTCTCTGAAGATCTCCTGTAAGGGT1CTGGATACAGCT11ACCAGCTAC1GGATCGGC1GGGTG

CGCCAGATGCCCGGGAAAGGCCTGGAG1GGATGGGGATCA1C1ATCCTGGTGAC1CTGATACCA

GATACAGCCCGTCCTTCCAAGGCCAGGTCACCA1C1CAGCCGACAAG1CCATCAGCACCGCCTA

CCTGCAGTGGAGCAGCCTGAAGGCCTCGGACACCGCCATGTA11ACTGTGCGAGACAJ[GGACGG

TG][ACTCCTT1GACTACTGGGGCCAGGGAACCCTGGTCACCG1C1CCTCAG]CCTCCACCAAGGG

CCCATCGGTCTTCCCCCTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGC(GC)GGCCC1G

GGCTGCCTGGTCCAAGGACTACT1CCCCCGAACCGGTGACGG1G1CGTGGAACTCAGGCGC1CTT

GACCAGCGGCGTGCACACCTTCCCACTGCCA

FIG. 16G

FIG. 16H