CS420: Operating Systems

Cryptography

James Moscola Department of Engineering & Computer Science York College of Pennsylvania

Cryptography as a Security Tool

- Broadest security tool available when communicating with unknown users over a network
 - An eavesdropper may be listening to your communication
 - Encryption can prevent an eavesdropper from reading messages
 - Difficult to know what machine you are communicating with over network
 - Authentication can confirm the identity of remote machine

Cryptography as a Security Tool (cont.)

- Means to constrain potential senders (sources) and / or receivers (destinations) of messages
 - Based on secrets (keys)
 - Enables
 - Confirmation of source
 - Receipt of message only by certain destination
 - Trust relationship between sender and receiver

Secure Communication Over Insecure Medium

Encryption

- Encryption algorithm consists of
 - Set K of keys
 - Set M of Messages
 - Set C of ciphertexts (encrypted messages)
 - A function E : K → (M→C). That is, for each k ∈ K, E(k) is a function for generating ciphertexts from messages
 - Both E and E(k) for any k should be efficiently computable functions
 - A function D : K → (C → M). That is, for each k ∈ K, D(k) is a function for generating messages from ciphertexts
 - Both D and D(k) for any k should be efficiently computable functions
- An encryption algorithm must provide this essential property: Given a ciphertext c ∈ C, a computer
 can compute m such that E(k)(m) = c only if it possesses D(k)
 - Thus, a computer holding D(k) can decrypt ciphertexts to the plaintexts used to produce them, but a computer not holding D(k) cannot decrypt ciphertexts
 - Since ciphertexts are generally exposed (for example, sent on the network), it is important that it be infeasible to derive D(k) from the ciphertexts

Symmetric Encryption

- Same key used to encrypt and decrypt
 - E(k) can be derived from D(k), and vice versa
 - Requires sender and receiver to know a shared secret key

- DES is a commonly used symmetric block-encryption algorithm
 - Encrypts a block of data at a time
 - Triple-DES considered more secure (DES applied 3 times)
- Advanced Encryption Standard (AES) is widely used (favored by many)

Diffie Hellman Key Exchange

- Does not require sender / receiver know a shared secret key
 - Sender and receiver each have two keys: a shared public key and a private key
 - These keys are used to create a shared secret key

- Does NOT provide authentication
- Vulnerable to man-in-the-middle attacks
 - Another public key cryptography technique that avoids this problem is RSA

Asymmetric Encryption

- Public-key encryption based on each user having two keys:
 - shared public key published key used to encrypt data
 - **private key** key known only to individual user used to decrypt data

- Must be an encryption scheme that can be made public without making it easy to figure out the decryption scheme
 - RSA block cipher is common
 - Efficient algorithm for testing whether or not a number is prime
 - No efficient algorithm is know for finding the prime factors of a number

Asymmetric Encryption (Cont.)

- Formally, it is computationally infeasible to derive $D(k_d\,,\,N)$ from $E(k_e\,,\,N)$, and so $E(k_e\,,\,N)$ need not be kept secret and can be widely disseminated
 - E(k_e, N) (or just k_e) is the public key
 - D(k_d, N) (or just k_d) is the private key
 - N is the product of two large, randomly chosen prime numbers p and q (for example, p and q are 512 bits each)
 - Encryption algorithm is $E(k_e, N)(m) = m^k_e \mod N$, where k_e satisfies $k_e k_d \mod (p-1)(q-1) = 1$
 - The decryption algorithm is then $D(k_d, N)(c) = c^k_d \mod N$

Encryption/Decryption with RSA Asymmetric Cryptography

Authentication

Constraining set of potential senders of a message

- Complementary and sometimes redundant to encryption
- Also can prove message unmodified

Algorithm components

- A set K of keys
- A set M of messages
- A set A of authenticators
- A function S : $K \rightarrow (M \rightarrow A)$
 - That is, for each $k \in K$, S(k) is a function for generating authenticators from messages
 - Both S and S(k) for any k should be efficiently computable functions
- A function V : K → (M× A→ {true, false}). That is, for each k ∈ K, V(k) is a function for verifying authenticators on messages
 - Both V and V(k) for any k should be efficiently computable functions

Authentication – Digital Signature

- Based on asymmetric keys and digital signature algorithm
- Authenticators produced are digital signatures
- In a digital-signature algorithm, computationally infeasible to derive S(k_s) from V(k_v)
 - V is a one-way function
 - Thus, k_v is the public key and k_s is the private key
- Consider the RSA digital-signature algorithm
 - Similar to the RSA encryption algorithm, but the key use is reversed
 - Digital signature of message S(k_s)(m) = H(m)^{ks} mod N
 - The key k_s again is a pair d, N, where N is the product of two large, randomly chosen prime numbers p and q
 - Verification algorithm is $V(k_v)(m, a) = (a^{kv} \mod N = H(m))$
 - Where k_v satisfies $k_v k_s \mod (p-1)(q-1) = 1$

Digital Certificates

Proof of who or what owns a public key

Public key digitally signed a trusted party

 Trusted party receives proof of identification from entity and certifies that public key belongs to entity

- Certificate authority are trusted party their public keys included with web browser distributions
 - They vouch for other authorities via digitally signing their keys, and so on