

# Compliance Testing, LLC

**Previously Flom Test Lab** EMI, EMC, RF Testing Experts Since 1963 toll-free: (866)311-3268 fax: (480)926-3598

http://www.ComplianceTesting.com info@ComplianceTesting.com

# **Test Report**

Prepared for: Packet Power, LLC

Model: P5T1

**Description: Smart Power Cable** 

Serial Number: S/N

FCC ID: WCGP5T1 IC: 8751A-P5T1

To

FCC Part 15.247 FHSS

Date of Issue: January 30, 2015

On the behalf of the applicant: Packet Power, LLC

2716 Summer St NE

Minneapolis, MN 55413

Attention of: Steve VanTassel, CEO

Ph: (612) 396-8704

E-mail: steve@packetpower.com

Prepared by **Compliance Testing, LLC** 1724 S. Nevada Way Mesa, AZ 85204 (480) 926-3100 phone / (480) 926-3598 fax

www.compliancetesting.com Project No: p14b0018

**Alex Macon** 

**Project Test Engineer** 

This report may not be reproduced, except in full, without written permission from Compliance Testing. All results contained herein relate only to the samples tested.

# **Test Report Revision History**

| Revision | Date              | Revised By | Reason for Revision                                                                       |
|----------|-------------------|------------|-------------------------------------------------------------------------------------------|
| 1.0      | December 15, 2014 | Alex Macon | Original Document                                                                         |
| 2.0      | January 30, 2015  | Alex Macon | Updated Timing explanation, added Restricted Band plot and added antenna gain information |
|          |                   |            |                                                                                           |
|          |                   |            |                                                                                           |



# **Table of Contents**

| <u>Description</u>                                   | <u>Page</u> |
|------------------------------------------------------|-------------|
| The applicant has been cautioned as to the following | 5           |
| Standard Test Conditions and Engineering Practices   | 6           |
| Peak Output Power                                    | 10          |
| Radiated Spurious Emissions                          | 11          |
| Emissions at Band Edges                              | 12          |
| Occupied Bandwidth                                   | 15          |
| Dwell Time                                           | 16          |
| Number of Hopping Channels                           | 17          |
| A/C Powerline Conducted Emissions                    | 18          |
| Test Equipment Utilized                              | 20          |



#### ILAC / A2LA

Compliance Testing, LLC, has been accredited in accordance with the recognized International Standard ISO/IEC 17025:2005. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to the joint ISO-ILAC-IAF Communiqué dated January 2009).

The tests results contained within this test report all fall within our scope of accreditation, unless noted in the table below.

Please refer to http://www.compliancetesting.com/labscope.html for current scope of accreditation.

Testing Certificate Number: 2152.01



FCC Site Reg. #349717

IC Site Reg. #2044A-2

Non-accredited tests contained in this report:

N/A



#### The applicant has been cautioned as to the following

#### 15.21 - Information to User

The user's manual or instruction manual for an intentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

#### 15.27(a) - Special Accessories

Equipment marketed to a consumer must be capable of complying with the necessary regulations in the configuration in which the equipment is marketed. Where special accessories, such as shielded cables and/or special connectors are required to enable an unintentional or intentional radiator to comply with the emission limits in this part, the equipment must be marketed with, i.e. shipped and sold with, those special accessories. However, in lieu of shipping or packaging the special accessories with the unintentional or intentional radiator, the responsible party may employ other methods of ensuring that the special accessories are provided to the consumer, without an additional charge.

Information detailing any alternative method used to supply the special accessories for a grant of equipment authorization or retained in the verification records, as appropriate. The party responsible for the equipment, as detailed in 2.909 of this chapter, shall ensure that these special accessories are provided with the equipment. The instruction manual for such devices shall include appropriate instructions on the first page of text concerned with the installation of the device that these special accessories must be used with the device. It is the responsibility of the user to use the needed special accessories supplied with the equipment.

#### **Standard Test Conditions and Engineering Practices**

All tests and measurement data shown were performed in accordance with FCC Rules and Regulations, Volume II; Part 2 and the following individual Parts: 15.247 Operation within bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

Except as noted herein, the following conditions and procedures were observed during the testing:

In accordance with ANSI C63.4-2009, ANSI C63.10-2009, FCC DA 00-705, and unless otherwise indicated in the specific measurement results, the ambient temperature of the actual EUT was maintained within the range of 10 to 40C (50 to 104F) unless the particular equipment requirements specified testing over a different temperature range. Also, unless otherwise indicated, the humidity levels were in the range of 10% to 90% relative humidity.

| Environmental Conditions                      |             |               |  |  |
|-----------------------------------------------|-------------|---------------|--|--|
| Temperature Humidity Pressure (°C) (%) (mbar) |             |               |  |  |
| 24.3 – 21.7                                   | 36.4 – 41.9 | 967.1 – 971.2 |  |  |

Measurement results, unless otherwise noted, are worst case measurements.

# **Test Results Summary**

| Specification                          | Test Name                         | Pass,<br>Fail, N/A | Comments                                 |
|----------------------------------------|-----------------------------------|--------------------|------------------------------------------|
| 15.247(b)                              | Peak Output Power                 | Pass               |                                          |
| 15.247(d) Conducted Spurious Emissions |                                   | N/A                | Device incorporates an integral antenna. |
| 15.247(d), 15.209(a),<br>15.205        | Radiated Spurious Emissions       | Pass               |                                          |
| 15.247(d), 15.209(a),<br>15.205        | Emissions At Band Edges           | Pass               |                                          |
| 15.247(a)                              | Occupied Bandwidth                | Pass               |                                          |
| 15.247(a)                              | Dwell Time                        | Pass               |                                          |
| 15.247(a)                              | Number of Hopping Channels        | Pass               |                                          |
| 15.207                                 | A/C Powerline Conducted Emissions | Pass               |                                          |



EUT Description Model: P5T1

**Description:** Smart Power Cable

Firmware: N/A

Software: NMX Packet Power URL

**Serial Number:** N/A **Additional Information:** 

The EUT is an inline voltage and current meter which incorporates a 900 MHz radio with an integral antenna.

# **EUT Operation during Tests**

EUT was placed in test modes using the NMX PacketPower URL paired with the node configurator.

# 15.203: Antenna Requirement:

| X | The antenna is permanently attached to the EUT |
|---|------------------------------------------------|
|   | The antenna uses a unique coupling             |
|   | The EUT must be professionally installed       |
|   | The antenna requirement does not apply         |
|   |                                                |



#### **Accessories:**

| Qty | Description       | Manufacturer | Model               | S/N |
|-----|-------------------|--------------|---------------------|-----|
| 1   | Node Configurator | Packet Power | 63E1-0200-2014-001D | N/A |

Cables: None

Modifications: None



**Peak Output Power** 

Peak Output Power Name of Test: Engineer: Alex Macon **Test Equipment Utilized:** i00103, i00379, i00428 Test Date: 12/3/14

#### **Test Procedure**

The EUT was tested in a semi-anechoic chamber set 3m from the receiving antenna. A spectrum analyzer was used to verify that the EUT met the requirements. The antenna and cable correction factors were summed and entered into the spectrum analyzer as an offset to ensure accurate readings. The EUT incorporates a 9dBi antenna

## **Test Setup**



# **Transmitter Peak Output Power**

| Tuned Frequency (MHz) | Recorded Measurement | Specification Limit | Result |
|-----------------------|----------------------|---------------------|--------|
| 902.4                 | 78.5 uW              | 1 Watt              | Pass   |
| 914.8                 | 78.3 uW              | 1 Watt              | Pass   |
| 927.6                 | 97.5 uW              | 1 Watt              | Pass   |



#### **Radiated Spurious Emissions**

Name of Test: Radiated Spurious Emissions
Test Equipment Utilized: i00271, i00349, i00379, i00428

Engineer: Alex Macon
Test Date: 12/10/14

#### **Test Procedure**

The EUT was tested in a semi-anechoic chamber set 3m from the receiving antenna. A spectrum analyzer was used to verify that the EUT met the requirements for Radiated Spurious Emissions. The antenna and cable correction factors were summed with the amplifier gain and entered into the spectrum analyzer as an offset to ensure accurate readings. The spectrum for each tuned frequency was examined to the 10<sup>th</sup> harmonic.

# **Test Setup**



| Detector Settings | RBW   | VBW   |
|-------------------|-------|-------|
| Peak              | 1 MHz | 3 MHz |
| Average           | 1 MHz | 30 Hz |

# **Radiated Spurious Emissions**

| Tuned<br>Frequency<br>(MHz) | Emission<br>Frequency<br>(MHz) | Peak Monitored<br>Level<br>(dBuV/m) | Peak Limit<br>(dBuV/m) | Average<br>Monitored Level<br>(dBuV/m) | Average<br>Limit<br>(dBuV/m) | Result |
|-----------------------------|--------------------------------|-------------------------------------|------------------------|----------------------------------------|------------------------------|--------|
| 902.4                       | 1810.0                         | 45.15                               | 74.0                   | Note 1                                 | 54.0                         | Pass   |
| 902.4                       | 2260.0                         | 39.76                               | 74.0                   | Note 1                                 | 54.0                         | Pass   |
| 902.4                       | 2710.0                         | 36.86                               | 74.0                   | Note 1                                 | 54.0                         | Pass   |
| 914.8                       | 1832.5                         | 47.02                               | 74.0                   | Note 1                                 | 54.0                         | Pass   |
| 914.8                       | 2282.5                         | 41.28                               | 74.0                   | Note 1                                 | 54.0                         | Pass   |
| 914.8                       | 2755.0                         | 37.61                               | 74                     | Note 1                                 | 54.0                         | Pass   |
| 927.6                       | 1855.0                         | 47.59                               | 74.0                   | Note 1                                 | 54.0                         | Pass   |
| 927.6                       | 2327.5                         | 42.01                               | 74.0                   | Note 1                                 | 54.0                         | Pass   |
| 927.6                       | 2777.5                         | 37.53                               | 74.0                   | Note 1                                 | 54.0                         | Pass   |

Note 1: Peak emission is below Average Limit.

No other emissions were detectable. All emissions were greater than 20dB below their respective limit.



**Emissions at Band Edges** 

Name of Test:Emissions at Band EdgesEngineer: Alex MaconTest Equipment Utilized:i00103, i00379, i00428Test Date:12/3/14

#### **Test Procedure**

The EUT was tested in a 3 meter semi-anechoic chamber. A spectrum analyzer was used to verify that the EUT met the requirements for band edge with both peak and average measurements. The cable and transducer correction factors were input into the analyzer as a reference level offset to ensure accurate readings.

#### **Test Setup**



# **Band Edge Emissions Summary**

| Tuned Frequency<br>(MHz) | Emission Frequency (MHz) | Monitored Level | Detector | Limit   | Result |
|--------------------------|--------------------------|-----------------|----------|---------|--------|
| 902.4                    | 901.9                    | -26.88 dBc      | Peak     | -20 dBc | Pass   |
| 927.6                    | 928.04                   | -23.57 dBc      | Peak     | -20 dBc | Pass   |

# Band Edge 902.4 MHz



# Band Edge 927.8 MHz



#### Restricted Band 960 - 1000 MHz



#### Restricted Band 1000 - 1240 MHz



**Restricted Band Emissions Summary** 

| Tuned<br>Frequency<br>(MHz) | Emission<br>Frequency<br>(MHz) | Peak Monitored<br>Level<br>(dBuV/m) | Peak Limit<br>(dBuV/m) | Average<br>Monitored Level<br>(dBuV/m) | Average<br>Limit<br>(dBuV/m) | Result |
|-----------------------------|--------------------------------|-------------------------------------|------------------------|----------------------------------------|------------------------------|--------|
| 927.6                       | 1019.8                         | 53.5                                | 74.0                   | N/A                                    | 54.0                         | Pass   |



#### **Occupied Bandwidth**

Name of Test:Occupied BandwidthEngineer: Alex MaconTest Equipment Utilized:i00103, i00379, i00428Test Date: 12/3/14

#### **Test Procedure**

The EUT was tested in a 3 meter semi-anechoic chamber. The Span was set wide enough to capture the entire transmitting spectrum and the resolution bandwidth was set to at least 1% of the span. The analyzer was set to max hold and when the entire spectrum was captured, the 20dB and 99% bandwidths were measured to verify that the bandwidth met the specification.



# 20 dB Bandwidth Summary

| Frequency<br>(MHz) | Recorded Measurement (kHz) |
|--------------------|----------------------------|
| 902.4              | 216                        |
| 914.8              | 214                        |
| 927.6              | 216                        |

### 99% Bandwidth Summary

| Frequency<br>(MHz) | Recorded Measurement (kHz) |
|--------------------|----------------------------|
| 902.4              | 207                        |
| 914.8              | 201                        |
| 927.6              | 201                        |



**Dwell Time** 

Name of Test:Dwell TimeEngineer: Alex MaconTest Equipment Utilized:i00103, i00379, i00428Test Date: 12/4/14

#### **Test Procedure**

The EUT was tested in a 3 meter semi-anechoic chamber. The EUT was set to hopping mode with the spectrum analyzer set to a 0 Hz span. A single transmission was captured and the dwell time was recorded.



The Average Dwell time in a 20 second span is 10ms which is below the limit of 400ms

<u>Due to the infrequent duty of the transmitter in normal operation, it was deemed impractical to measure the dwell time</u> using a spectrum analyzer. The manufacturer has provided a detailed timing document to determine compliance.



**Number of Hopping Channels** 

Name of Test:Number of Hopping ChannelsEngineer: Alex MaconTest Equipment Utilized:i00103, i00379, i00428Test Date: 12/4/14

#### **Test Procedure**

The EUT was tested in a 3 meter semi-anechoic chamber. The Span was set to the specified band end points. The EUT was then set to operate in hopping mode. The MAX HOLD function of the spectrum analyzer was utilized to verify the number of hopping cannels.

# Test Setup Spectrum Analyzer

# **Number of Hopping Channels**



64 hopping channels were plotted.



#### A/C Powerline Conducted Emissions

Name of Test: **Test Equipment Utilized:**  A/C Powerline Conducted Emissions i00033, i00123, i00362, i00446, i00447 Engineer: Alex Macon Test Date: 12/5/14







\*The 1.31 MHz and 1.58 MHz emissions are ambient signals and are not created by the EUT



**Line 1 Neutral Avg Detector** 

| Frequency  | Measured<br>Value<br>(dBuV) | LISN<br>Correction Factor<br>(dB) | Cable Loss<br>(dB) | Transient<br>Limiter<br>(dB) | Final Data<br>(dBuV) | Limit<br>(dBuV) | Avg<br>Margin<br>(dB) |
|------------|-----------------------------|-----------------------------------|--------------------|------------------------------|----------------------|-----------------|-----------------------|
| 157.26 KHz | 25.65                       | 0.23                              | 0.02               | 10.2                         | 36.097               | 55.793          | -19.695               |
| 155.65 KHz | 26.63                       | 0.24                              | 0.02               | 10.2                         | 37.09                | 55.839          | -18.748               |
| 155.38 KHz | 25.79                       | 0.25                              | 0.02               | 10.2                         | 36.253               | 55.846          | -19.593               |
| 153.41 KHz | 25.73                       | 0.27                              | 0.02               | 10.2                         | 36.216               | 55.903          | -19.687               |
| 152.74 KHz | 24.89                       | 0.27                              | 0.02               | 10.2                         | 35.379               | 55.922          | -20.542               |
| 151.73 KHz | 24.71                       | 0.28                              | 0.02               | 10.2                         | 35.216               | 55.951          | -20.735               |

**Line 2 Phase Avg Detector** 

| Frequency  | Measured<br>Value<br>(dBuV) | LISN<br>Correction Factor<br>(dB) | Cable Loss<br>(dB) | Transient<br>Limiter<br>(dB) | Final Data<br>(dBuV) | Limit<br>(dBuV) | Avg<br>Margin<br>(dB) |
|------------|-----------------------------|-----------------------------------|--------------------|------------------------------|----------------------|-----------------|-----------------------|
| 157.73 KHz | 25.97                       | 0.22                              | 0.02               | 10.2                         | 36.413               | 55.779          | -19.366               |
| 157.26 KHz | 26.73                       | 0.23                              | 0.02               | 10.2                         | 37.177               | 55.793          | -18.615               |
| 156.6 KHz  | 25.91                       | 0.23                              | 0.02               | 10.2                         | 36.361               | 55.811          | -19.451               |
| 155.49 KHz | 26.52                       | 0.25                              | 0.02               | 10.2                         | 36.988               | 55.843          | -18.855               |
| 152.56 KHz | 25.3                        | 0.27                              | 0.02               | 10.2                         | 35.791               | 55.927          | -20.136               |
| 150.41 KHz | 24.19                       | 0.3                               | 0.02               | 10.2                         | 34.709               | 55.988          | -21.279               |

# **Line 1 Neutral QP Detector**

| Frequency  | Measured<br>Value<br>(dBuV) | LISN<br>Correction Factor<br>(dB) | Cable Loss<br>(dB) | Transient<br>Limiter<br>(dB) | Final Data<br>(dBuV) | Limit<br>(dBuV) | QP<br>Margin<br>(dB) |
|------------|-----------------------------|-----------------------------------|--------------------|------------------------------|----------------------|-----------------|----------------------|
| 157.26 KHz | 45.09                       | 0.227                             | 0.02               | 10.2                         | 55.537               | 65.793          | -10.255              |
| 155.65 KHz | 45.24                       | 0.244                             | 0.02               | 10.2                         | 55.704               | 65.839          | -10.135              |
| 155.38 KHz | 45.42                       | 0.246                             | 0.02               | 10.2                         | 55.886               | 65.846          | -9.96                |
| 153.41 KHz | 45.03                       | 0.266                             | 0.02               | 10.2                         | 55.516               | 65.903          | -10.387              |
| 152.74 KHz | 44.11                       | 0.273                             | 0.02               | 10.2                         | 54.603               | 65.922          | -11.319              |
| 151.73 KHz | 44.38                       | 0.283                             | 0.02               | 10.2                         | 54.883               | 65.951          | -11.068              |

# **Line 2 Phase QP Detector**

| Frequency  | Measured<br>Value<br>(dBuV) | LISN<br>Correction Factor<br>(dB) | Cable Loss<br>(dB) | Transient<br>Limiter<br>(dB) | Final Data<br>(dBuV) | Limit<br>(dBuV) | QP<br>Margin<br>(dB) |
|------------|-----------------------------|-----------------------------------|--------------------|------------------------------|----------------------|-----------------|----------------------|
| 157.73 KHz | 45.61                       | 0.22                              | 0.02               | 10.2                         | 56.053               | 65.779          | -9.726               |
| 157.26 KHz | 44.87                       | 0.23                              | 0.02               | 10.2                         | 55.317               | 65.793          | -10.475              |
| 156.6 KHz  | 45.2                        | 0.23                              | 0.02               | 10.2                         | 55.654               | 65.811          | -10.157              |
| 155.49 KHz | 44.86                       | 0.25                              | 0.02               | 10.2                         | 55.325               | 65.843          | -10.518              |
| 152.56 KHz | 43.85                       | 0.27                              | 0.02               | 10.2                         | 54.344               | 65.927          | -11.582              |
| 150.41 KHz | 43.34                       | 0.3                               | 0.02               | 10.2                         | 53.856               | 65.988          | -12.132              |



# **Test Equipment Utilized**

| Description                      | Manufacturer | Model #                          | CT Asset # | Last Cal Date        | Cal Due Date |
|----------------------------------|--------------|----------------------------------|------------|----------------------|--------------|
| EMI Receiver                     | HP           | 8546A                            | i00033     | 2/24/14              | 2/24/15      |
| Horn Antenna                     | EMCO         | 3115                             | i00103     | 12/11/12             | 12/11/14     |
| High Pass Filter                 | Trilithic    | 4HX3400-3-XX                     | i00177     | Verified on: 12/5/14 |              |
| Horn Antenna, Amplified          | ARA          | DRG-118/A                        | i00271     | 5/8/14               | 5/8/16       |
| Humidity / Temp Meter            | Newport      | IBTHX-W-5                        | i00282     | 3/24/14              | 3/24/15      |
| Voltmeter                        | Fluke        | 87111                            | i00319     | 2/22/14              | 2/22/15      |
| Bi-Log Antenna                   | Schaffner    | CBL 6111D                        | i00349     | 10/8/13              | 10/8/15      |
| AC Power Source                  | Behlman      | BL 6000                          | i00362     | Verified on: 12/5/14 |              |
| EMI Analyzer                     | Agilent      | E7405A                           | i00379     | 1/14/14              | 1/14/15      |
| Thermo Hygrometer                | Omega        | RH81                             | i00408     | 4/15/13              | 4/15/15      |
| 3 Meter Semi-Anechoic<br>Chamber | Panashield   | 3 Meter Semi-Anechoic<br>Chamber | i00428     | 11/26/13             | 11/26/15     |
| LISN                             | COM-Power    | LI-125                           | i00446     | 7/25/14              | 7/25/15      |
| LISN                             | COM-Power    | LI-125A                          | i00447     | 7/25/14              | 7/25/15      |

In addition to the above listed equipment standard RF connectors and cables were utilized in the testing of the described equipment. Prior to testing these components were tested to verify proper operation.

**END OF TEST REPORT**