Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 3 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження ітераційних циклічних алгоритмів»

Варіант 30

Виконав студент ІП-12 Тарасюк Євгеній Сергійович

Перевірив _____

Київ 2021

Лабораторна робота 3.

Дослідження ітераційних циклічних алгоритмів.

Мета: дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Задача 30 (варіант 30). Обчислити $x = a^{(1/p)}$, використовуючи принцип розв'язання (фото 1) з точністю, заданою користувачем. Значення a, p (p!=1, p!=2) ввести з клавіатури.

Фото 1:

Приближенное вычисление корней производится с помощью биноминального ряда

$$(1+x)^m = 1 + mx + \frac{m(m-1)}{2!}x^2 + \dots + \frac{m(m-1)\dots(m-n+1)}{n!}x^n + \dots {(\mid x \mid \leq \underline{1})}.$$

Имеем

$$\sqrt[10]{1027} = \left(2^{10} + 3\right)^{\frac{1}{10}} = 2\left(1 + \frac{3}{2^{10}}\right)^{\frac{1}{10}} =$$

$$= 2 + \frac{3}{10 \cdot 2^9} + \frac{\frac{1}{10}\left(\frac{1}{10} - 1\right) \cdot 3^2}{2! \cdot 2^{19}} + \frac{\frac{1}{10}\left(\frac{1}{10} - 1\right)\left(\frac{1}{10} - 2\right) \cdot 3^3}{3! \cdot 2^{29}} + \dots$$

Полученный ряд является рядом Лейбница, и значит, погрешность от отбрасывания членов, начиная с третьего, по абсолютной величине меньше: $\frac{3^4}{10^2 \cdot 2^{20}} < 0{,}0001 \; .$

Сохраняя поэтому только два члена разложения, будем иметь

$$\sqrt[10]{1027} = 2 + \frac{3}{10 \cdot 2^9} = 2,0006.$$

Розв'язок.

1. Постановка задачі.

Початкові дані - це два дійсні числа та одне ціле, додаткових чисел для розв'язку не потрібно. Результатом розв'язку ϵ дійсне число. Використовуватимемо стандартні логічні та арифметичні операції, а також функції для запобігання нагромадженням однакових операцій у коді.

2. Побудова математичної моделі

Таблиця змінних та функцій:

Змінні та функції	Тип	Ім'я	Призначення
Число num (в умові - а)	Ціле число	num	Збереження початкових даних (число, з якого потрібно знайти корінь)
Число р	Ціле число	p	Збереження початкових даних (показник кореня)
Точність	Дійсне число	eps	Збереження початкових даних (точність)
"стеля" числа num	Ціле число	a	Збереження числа num, округленого вгору
Число р2	Ціле число	p2	Допоміжна змінна для позначення степеня двійки при бінарному

			пошуку "стелі" числа пит на множині цілих чисел
Фунція ceil_pos	Функція, повертає одне з трьох значень ("більше", "менше", "правильно")	ceil_pos(a, p, num)	Допоміжна функція для пошуку "стелі" числа пит
Число b	Дійсне число	b	Збереження даних про різницю числа пит та числа а^р
Число п	Ціле число	n	Порядковий номер члена біноміального ряду
Число preans	Дійсне число	preans	Збереження суми доданків біноміального ряду
Число res	Дійсне число	res	Допоміжна змінна для збереження проміжних значень функцій
Функція fact	Функція, ціле число	fact(n)	Функція, що розраховує факторіал числа
Функція mult	Функція, дійсне число	mult(p,n)	Функція, що розраховує добуток для членів біноміального ряду

Кінцевий	Змінна	Eq	Збереження
результат	логічного типу		даних про
			результат

3. Псевдокод алгоритму

Початок	Функція ceil pos(a, p, num):		
Введення пит, р, ерѕ	Функція сеи_pos(a, p, num). Початок		
p2 = -1	Якщо ((a-1)^p < num) та (a^p >= num): $res = \text{``правильно''}$		
a = 0			
Поки <i>ceil_pos(a, p, num)</i> = "менше":	Інакше якщо :		
p2 += 1	res = "більше"		
$a = 2^p2$	Інакше:		
Все поки	res = "менше"		
Поки <i>ceil_pos(a, p, num)</i> != "правильно":	Повернути res		
p2 -= 1	Кінець.		
Якщо $ceil_pos(a, p, num) =$ "більше":	Ф ункція <i>mult(p, n)</i> :		
a -= 2^p2	Початок res = 1		
Інакше:			
a += 2^p2	Для і на проміжку [0,n): res *= 1/(p-i)		
Все якщо			
$b = num - a^p$	Кінець циклу		
n = 1	Повернути res		
preans = 1	Кінець. Функція <i>fact(n)</i> : Початок		
Поки $ add(a, p, b, n) \ge eps$:			
ans $+= add(a, p, b, n)$			
n += 1			

Виведення ans*a

Кінець.

Кінець.

Функція fact(n):
Початок

гез = 1
Для і на проміжку [1,n]:
гез *= і
Кінець циклу
Повернути гез
Кінець.

Функція add(a, p, b, n):
Початок
Повернути (b/a^p)^n*mult(p,n)/fact(n)
Кінець.

4. Блок схема алгоритму

5. Випробування алгоритму.

Перевіримо правильність алгоритму для різних вхідних даних:

```
Початок
                                                                Початок
        Введення num = 234, p = 5, eps = 10^{(-5)}
                                                                         Введення num = 1027, p = 10, eps = 10^{(-3)}
        p2 = -1
                                                                        p2 = -1
        a = 0
                                                                        a = 0
        Поки ceil\ pos(a, p, num) = "менше":
                                                                        Поки ceil\ pos(a, p, num) = "менше":
                 p2 += 1
                                                                                 p2 += 1
                a = 2^p2
                                                                                 a = 2^p2
        Все поки
                                                                        Все поки
        Поки ceil_pos(a, p, num) != "правильно":
                                                                        Поки ceil\ pos(a, p, num) != "правильно":
                 p2 = 1
                                                                                 p2 = 1
                 Якщо ceil\ pos(a, p, num) = "більше":
                                                                                 Якщо ceil\ pos(a, p, num) = "більше":
                         a = 2^p2
                                                                                         a = 2^p2
                 Інакше:
                                                                                 Інакше:
                         a += 2^p2
                                                                                         a += 2^p2
                 Все якщо \{a = 3\}
                                                                                 Все якщо \{a = 3\}
        b = num - a^p \{ b = -9 \}
                                                                        b = num - a^p
        n = 1
                                                                        n = 1
        preans = 1
                                                                        preans = 1
        Поки |add(a, p, b, n)| \ge eps:
                                                                        Поки |add(a, p, b, n)| \ge eps:
                 ans += add(a, p, b, n)
                                                                                 ans += add(a, p, b, n)
                 {n = 1 \ add = -0.00010973936899862827}
                                                                                 {n=33 \ add = -0.0011222275406986707}
                 n = 2 add = -2.4386526444139617e-06}
                                                                                 n = 34 add = -0.001067033491355216
                 n += 1
                                                                                 n = 35 \text{ add} = -0.0010155232067703957}
        Виведення ans*a = 2.977448559670782
                                                                                 n += 1
Кінець.
                                                                        Виведення ans*a = 2.081253987007137
```

6. Висновки

Було досліджено подання операторів повторення дій та набуто практичних навичок їх використання під час складання циклічних програмних специфікацій.

Кінець.