## **UNIDAD 7: MATRICES Y DETERMINANTES.**

Se llama matriz de clase m x n a todo arreglo rectangular con m filas y n columnas, siendo m y n números naturales. Al conjunto de todas las matrices de clase m x n, lo notaremos:

$$K^{mxn}$$

donde puede ser el conjunto numérico Q, C, R.

Una matriz se representa con letra mayúscula y los elementos de dicha matriz se representan con letras minúsculas. Cada elemento de la matriz tiene dos subíndices, el primero indica la fila a la que pertenece y el segundo la columna.

# **MATRICES ESPECIALES:**

De acuerdo a la disposición o naturaleza de sus elementos se pueden clasificar en:

- MATRIZ CUADRADA: Una matrizes cuadrada si y solo si, tiene el mismo número de filas que de columnas.(m=n).
- MATRIZ RECTANGULAR: Una matriz es rectangular si y solo si, el número de filas no coincide con el de columnas.(m ≠ n).
- MATRIZ FILA: Es aquella que tiene una sola fila (m = 1).
- MATRIZ COLUMNA: Es aquella que tiene una sola columna.
- MATRIZ NULA: Es la que tiene todos sus elementos nulos.
- MATRIZ TRASPUESTA: Dada una matriz A, se llama matriz traspuesta de A, a la matriz cuyas filas son las columnas de A y cuyas columnas son las filas de A. Por lo tanto, si A es una matriz de clase m x n, la traspuesta de A es una matriz de clase n x m
- MATRIZ OPUESTA: Dada la matriz A, indicamos su opuesta como –A y es la matriz que se obtiene con todos los elementos opuestos de A.

### MATRICES CUADRAS PARTICULARES:

• MATRIZ TRIANGULAR SUPERIOR: Una matriz es una matriz triangular superior si y solo si, los elementos situados por debajo de la diagonal principal son ceros

$$A = [a_{ij}]_{nxn}$$
 es una matriz triangular superior, si y solo si,  $a_{ij} = 0, \forall i > j$ 

 MATRIZ TRIANGULAR INFERIOR: Una matriz es una matriz triangular inferior, si y solo si, los elementos situados por encima de la diagonal principal son ceros

$$A = [a_{ij}]_{nxn}$$
 es una matriz triangular inferior, si y solo si,  $a_{ij} = 0, \forall i < j$ 

• MATRIZ DIAGONAL: Una matriz es una matriz diagonal, si y solo si, los elementos que no pertenecen a la diagonal principal son nulos

$$A = [a_{ij}]_{nxn}$$
 es una matriz diagonal, si y solo si,  $a_{ij} = 0, \forall i \neq j$ 

- MATRIZ ESCALAR: Una matriz es escalar, si y solo si, es una matriz diagonal en la que los elementos de la diagonal principal son iguales entre sí.
- **MATRIZ IDENTIDAD:** Una matriz es identidad, si y solo si, los elementos de la diagonal principal de una matriz escalar de clase nxn son iguales a 1.
- MATRIZ SIMETRICA: Son aquellas matrices que coinciden con su transpuesta

### SUMA DE MATRICES

Dos matrices son conformables para la suma, si y sólo si, son de la misma clase. La suma de dos matrices de la misma clase, es otra matriz, de la misma clase que las dadas; y cada coeficiente de esta matriz se obtiene sumando los coeficientes de las matrices dadas que están en la misma posición.



# Propiedades de la Suma de Matrices

La suma de matrices verifica las siguientes propiedades:

1) Propiedad Asociativa:

$$\forall A, B, C \in K^{mxn} : (A+B)+C = A+(B+C)$$

2) Propiedad Conmutativa:

$$\forall A, B \in K^{mxn} : A + B = B + A$$

3) Existencia de elemento neutro:

$$\exists N \in K^{mxn} / \forall A \in K^{mxn} : A + N = N + A = A$$
$$N = \begin{bmatrix} 0_{ii} \end{bmatrix}_{mxn}$$

4) Existencia de elemento opuesto:

$$\forall A \in K^{mxn} : \exists A' \in K^{mxn} / A + A' = A' + A = N$$
$$A' = [-a_{ii}]_{mxn}$$

## **DIFERENCIA DE MATRICES:**

Dada dos matrices de la misma clase, la diferencia  $\mathbf{A} - \mathbf{B}$  la podemos expresar como  $\mathbf{A} + (-\mathbf{B})$ , es decir la suma de la matriz A y la opuesta de B.

La resta de dos matrices de la misma clase, es otra matriz, de la misma clase que las dadas; y cada coeficiente de esta matriz se obtiene restando los coeficientes de las matrices dadas que están en

### PRODUCTO DE UNA MATRIZ POR UN ESCALAR:

El producto de una matriz por un escalar es otra matriz que se obtiene multiplicando cada elemento de la matriz por dicho número.

Dada una matriz  $A = [a_{ij}]_{mxn}$  y un escalar  $c \in K$ 

Se define la matriz:  $c.A = c.[a_{ij}]_{mxn} = [c.a_{ij}]_{mxn} \quad \forall i, \forall j$ 

# PRODUCTO DE UNA MATRIZ:

Dadas las matrices  $A = [a_{ij}]_{mxn} y B = [b_{ij}]_{pxq}$ 

- Dos matrices son conformables para el producto, si y solo si, el número de columnas de la primera matriz es igual al número de filas de la segunda. (n = p)
- El producto de A.B es una matriz de clase mxq.
- Si n ≠ p, el producto A.B no está definido y se dice que A y B no son conformables para el producto.

PROPIEDADES DEL PROD. DE UNA MATRIZ CUADRADA

- 1) Ley de Cierre  $\forall A, B \in K^{nxn} : A.B \in K^{nxn}$
- 2) Propiedad Asociativa:

$$\forall A, B, C \in K^{nxn} : (A.B).C = A.(B.C)$$

3) Existencia de elemento neutro:

$$\exists I_n \in K^{nxn} / \forall A \in K^{nxn} : A.I_n = I_n.A = A$$

**OPERACIONES ELEMENTALES DE FILAS** 

Dada una matriz, se llaman operaciones elementales de filas a las siguientes:

- \* Permutación de dos filas: La fila  $F_i$  se reemplaza por la fila  $F_j$  y la fila  $F_j$  se reemplaza por la fila  $F_i$  (Se indica:  $F_i \leftrightarrow F_j$ )
- \* Reemplazo de todos los elementos de una fila por su producto por un escalar distinto de cero. (Se indica:  $k.F_i \rightarrow F_i$ ).
- Reemplazo de una fila por su suma con otra.

(Se indica:  $F_i + k.F_j \rightarrow F_i$ ).

### MATRICES EQUIVALENTES

Se dice que A es equivalente a B, si B se obtiene de A, por la sucesiva aplicación de un número finito de operaciones elementales.

## RANGO DE UNA MATRIZ

Sea  $A = [a_{ij}]_{mxn}$ 

Se llama rango fila de A al máximo número de filas linealmente independientes de A. Se llama rango columna de A al máximo número de columnas linealmente independientes de A. Teorema: El rango fila de toda matriz es igual a su rango columna.

#### PROPIEDADES DEL RANGO:

- El rango fila de la matriz nula, de cualquier clase, es cero
- El rango fila de la matriz identidad de clase nxn, es n.
- Dos matrices equivalentes por fila tienen el mismo rango fila

### MATRICES ESCALONADAS

Una matriz es escalonada si, y solo si, verifica las dos condiciones siguientes:

- Las filas nulas, si existen, están después de todas las no nulas.
- En cada una de las filas no nulas, el número de ceros que precede al primer elemento no nulo es mayor que el anterior

Propiedad: El rango fila de una matriz escalonada, es igual al número de filas no nulas de esa matriz

MATRIZ ADJUNTA:

Dada una matriz $A = [a_{ij}]_{nxn}$ Llamamos matriz adjunta del elemento  $a_{ij}$  a la matriz de clase (n-1) x (n-1) que se obtiene al eliminar la fila i y la columna j de A.

Se llama matriz adjunta de A y anotamos Adj A, a la traspuesta de la matriz que se obtiene al reemplazar cada elemento de A por sus respectivos adjuntos

Ejemplo: 
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 3 & 4 & 1 \\ 5 & 0 & 1 \end{bmatrix}$$

$$Adj \ A = \begin{bmatrix} \begin{vmatrix} 4 & 1 \\ 0 & 1 \end{vmatrix} & -\begin{vmatrix} 3 & 1 \\ 5 & 1 \end{vmatrix} & \begin{vmatrix} 3 & 4 \\ 5 & 0 \end{vmatrix} \\ -\begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} & \begin{vmatrix} 2 & 1 \\ 5 & 1 \end{vmatrix} & -\begin{vmatrix} 2 & 1 \\ 5 & 0 \end{vmatrix} \\ \begin{vmatrix} 5 & 1 \end{vmatrix} & -\begin{vmatrix} 2 & 1 \\ 5 & 0 \end{vmatrix} \\ \begin{vmatrix} 1 & 1 \\ 4 & 1 \end{vmatrix} & -\begin{vmatrix} 2 & 1 \\ 3 & 1 \end{vmatrix} & \begin{vmatrix} 2 & 1 \\ 3 & 4 \end{vmatrix} \end{bmatrix}^{T} = \begin{bmatrix} 4 & 2 & -20 \\ -1 & -3 & 5 \\ -3 & 1 & 5 \end{bmatrix}^{T} = \begin{bmatrix} 4 & -1 & -3 \\ 2 & -3 & 1 \\ -20 & 5 & 5 \end{bmatrix}$$

# **DETERMINANTES:**

El determinante correspondiente a una matriz cuadrada A, es el valor de la suma de determinados productos que se realizan con los elementos que componen la matriz.

#### PROPIEDADES DE LOS DETERMINANTES:

- Si una matriz tiene dos filas o dos columnas iguales, su determinante es cero
- Si una matriz tiene una fila o una columna nula, su determinante es cero.
- El determinante del producto de dos matrices de la misma clase, es igual al producto de los determinantes de las matrices
- El determinante de una matriz triangular (superior o inferior) o diagonal, es igual al producto de los elementos de la diagonal principal.
- El determinante de la matriz identidad de cualquier orden es 1.
- Si se multiplica un escalar no nulo por una fila o columna de una matriz, el determinante de la nueva matriz será igual al determinante de la matriz multiplicado por el escalar.
- Si en una matriz se permutan dos filas o dos columnas, el determinante de la nueva matriz es el opuesto del determinante de la primera
- Si una matriz tiene dos o más filas (o columnas) linealmente dependientes, su determinante es cero.
- Si una matriz tiene sus filas proporcionales, su determinante es nulo.

• El determinante de una matriz es igual al de su traspuesta.

# MATRIZ INVERSA

Una matriz  $A = [a_{ij}]_{nxn}$  es regular, inversible o no singular si y solo si, existe una matriz de la misma clase (notada  $A^{-1}$ ) tal que multiplicada a izquierda y derecha por A, da por resultado la matriz identidad de la misma clase.

$$A = [a_{ij}]_{nxn}$$
 es inversible  $\Leftrightarrow \exists A^{-1} / A.A^{-1} = A^{-1}.A = I_n$ 

Propiedad: Una matriz cuadrada de clase nxn es inversible si, y solo si, su rango fila es igual a n.

### **CALCULO:**

Sea  $A = [a_{ij}]_{nxn}$  y A inversible. La matriz inversa de A es igual a la matriz adjunta de A dividida por el determinante de A.

$$A^{-1} = \frac{Adj A}{|A|}$$