

DNA sequencing alignment and QC

Alignment (mapping)

Outline

- Sequence alignment algorithms
- BAM files
- Quiz

Learning outcomes and course content

- Learning outcomes:
 - Understand how to apply technology to obtain relevant information from the cancer genome.
 - Understand the file formats used in high throughput sequencing.
 - Use the command line and running bioinformatic tools. (in exercise)
- Course content:
 - Processing of DNA and RNA sequencing data.
- Focus on DNA here, RNA is covered in on Monday

The DNA analysis process

The bioinformatic processing steps

DNA sequencing

Sequencing reads

Alignment – putting the puzzle pieces in the right place

The human reference genome

Some parts are easier than others...

Best case scenario

An error-free sequencing technology

Computers are rather good at finding *exact* matches.

Reality

Errors happen - frequently; work harder.

"Fuzzy" matching is much more computationally expensive.

Not only errors, but also true variants will differ from the reference

Read alignment to reference

Image: https://bds-au.vlabs.ac.in/exp/pairwise-sequence-alignment/theory.html

Read alignment algorithms attempt to solve this problem

- There are optimal solutions
 - → Smith-Waterman, Needleman-Wunsch
 - → Computationally expensive (i.e. slow)
- Faster solutions that make some compromises
 - → Hash based solutions
 - → Burrows-Wheeler transform
- Bwa: tool for doing Burrows-Wheeler alignment
 - → bwa-mem: Maximal Exact Match with Burrows-Wheeler, Smith-Waterman for extension and refinement, e.g. around mismatches, insertions, deletions
- Extensive algorithmic details are outside of the scope of this course
- Bottomline: aligners take raw read, determine alignment to reference genome and output a SAM/BAM file

SAM/BAM/CRAM files represent sequence alignments

- The specification: http://samtools.sourceforge.net/SAM1.pdf
- The SAM format consists of two sections:
 - → Header section
 - Used to describe source of data, reference sequence, method of alignment, etc.
 - → Alignment section
 - Used to describe the read, quality of the read, and alignment of the read to a region of the genome
- BAM/CRAM are compressed versions of SAM.
 - → BAM compressed using lossless BGZF format
 - → CRAM compressed further using knowledge of reference. May or may not be lossless
- BAM/CRAM files are usually 'indexed'
 - → A '.bai' file will be found beside the '.bam' file
- Indexing aims to achieve fast retrieval of alignments

Example SAM/BAM header section (abbreviated)

```
mgriffit@linus270 -> samtools view -H /gscmnt/gc13001/info/model_data/2891632684/build136494552/alignments/136080019.bam | grep -P "SN\:22|HD|RG|PG"
        VN:1.4 SO:coordinate
       SN:22 LN:51304566
                               UR:ftp://ftp.ncbi.nih.gov/genbank/genomes/Eukaryotes/vertebrates_mammals/Homo_sapiens/GRCh37/special_requests/GRCh37-lite.fa.gz AS:GRCh37-lite M5:a718acaa6135fdca8357d5bfe9
4211dd SP:Homo sapiens
       ID:2888721359 PL:illumina
                                       PU:D1BA4ACXX.3 LB:H_KA-452198-0817007-cDNA-3-lib1
                                                                                              PI:365 DS:paired end DT:2012-10-03T19:00:00-0500
                                                                                                                                                     SM:H_KA-452198-0817007 CN:WUGSC
       ID:2888721359 VN:2.0.8
                                       CL:tophat --library-type fr-secondstrand --bowtie-version=2.1.0
       ID:MarkDuplicates
                                PN:MarkDuplicates
                                                       PP:2888721359 WN:1.85(exported)
                                                                                              CL:net.sf.picard.sam.MarkDuplicates INPUT=[/gscmnt/gc13001/info/build_merged_alignments/merged-alignment-blad
e10-2-5.gsc.wustl.edu-jwalker-15434-136080019/scratch-ILq6Y/H_KA-452198-0817007-cDNA-3-lib1-2888360300.bam] OUTPUT=/gscmnt/gc13001/info/build_merged_alignments/merged-alignment-blade10-2-5.gsc.wustl.edu-jw
alker-15434-136080019/scratch-ILg6Y/H_KA-452198-0817007-cDNA-3-lib1-2888360300-post_dup.bam METRICS_FILE=/gscmnt/gc13001/info/build_merged_alignments/merged-alignment-blade10-2-5.gsc.wustl.edu-jwalker-1543
4-136080019/staging-liuJS/H KA-452198-0817007-cDNA-3-lib1-2888360300.metrics REMOVE DUPLICATES=false ASSUME SORTED=true MAX FILE HANDLES FOR READ ENDS MAP=9500 TMP DIR=[/gscmnt/gc13001/info/build merged al
ignments/merged-alignment-blade10-2-5.gsc.wustl.edu-jwalker-15434-136080019/scratch-ILg6Y] VALIDATION_STRINGENCY=SILENT MAX_RECORDS_IN_RAM=500000 PROGRAM_RECORD_ID=MarkDuplicates PROGRAM_GROUP_NAME=Mark
Duplicates MAX SEQUENCES FOR DISK READ ENDS MAP=50000 SORTING COLLECTION SIZE RATIO=0.25 READ NAME REGEX=[a-zA-Z0-9]+:[0-9]+:[0-9]+):([0-9]+):([0-9]+):* OPTICAL DUPLICATE PIXEL DISTANCE=100 VERBOSITY=INFO
QUIET=false COMPRESSION_LEVEL=5 CREATE_INDEX=false CREATE_MD5_FILE=false
mgriffit@linus270 <>
```

Example SAM/BAM alignment section (only 10 alignments shown)

mgriffit@linus270 >> samtools view -f 3 -F 1804 /gscmnt/gc13001/info/model_data/2891632684/build136494552/alignments/136080019.bam head HWI-ST495_129147882:3:2114:15769:38646 99 1 11306 3 100M = 11508 302 ACTGCGGGGCCCTCTTGCTTACTGTATAGTGGTGGCACGCCGCCTGCTGCAGGACATTGCAGGGTCCTCTTGCTCAAGGTGTAGTGGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCA
HAIT CTADE 120147002.2.2114.15760.20646 00 1 11206 2 100M - 11500 202 ACTCCCCCCCCCTCTTACTCCTACCCCCCCCCCCCCCC
CCFFFFFHHGHJJJJJJJJJJHGJJJJJJJHGJJJJJJHFDDDDDDDDDD
1 XN:i:0 XO:i:0 CP:i:102519765 AS:i:-5 XS:A:+ YT:Z:UU
HWI-ST495_129147882:3:2114:15769:38646 147 1 11508 3 100M = 11306 -302 ACTCCTAAATATGGGATTCCTGGGTTTAAAAGTATAAAATATGTTTAATTTGTGAACTGATTACCATCAGAATTGTACTGTTCTGTATCCCACC
;5:CDCDCDECEFCD@9E=?7EEIIIHCEGGIJJJJIJJJHF@?00IHHFFGG?*JJJJJGHGEIJJJJJJJJJJHHCIEJJJHFHHGHFFEDFCCB
1 XN:i:0 XO:i:0 CP:i:102519563 AS:i:-6 XS:A:+ YT:Z:UU
HWI-ST495_129147882:3:1210:1257:16203 163 1 11810 3 100M = 12055 345 CCTGCATGTAGTTTAAACGAGATTGCCAGCACCGGGTATCATTCAT
CC:FFFFFHFHAFGGIIIJJJEEHGIGGGIJIJJGI?@EHIGIJDGHIHIGGIJJJJJJJJJGHHHHGHFFFCDDDDDDCDCCCCCA;>@-@AA@:AA>AA CC:Z:15 MD:Z:100 PG:Z:MarkDuplicates RG:Z:2888721359 XG:i:0 NH:i:2 HI:i:0 NM:i:0 XM
0 XN:i:0 XO:i:0 CP:i:102519261 AS:i:0 XS:A:- YT:Z:UU
HWI-ST495_129147882:3:1210:1257:16203 83 1 12055 3 100M = 11810 -345 GAGCACTGGAGTGGGAGGGAGGAGCCATGCCTAGAGTGGGCCCTTGTTCATCTTCTGCACCCTGTTGTCTGCATGTAACTTAA
CC>4C>DCCCACACDCC?BDCEE@ECFFFFHHHHHIJJJIIJJIIIHHEHIIGJIJJJJJIIJJJIIJJJ
0 XN:i:0 XO:i:0 CP:i:102519016 AS:i:0 XS:A:+ YT:Z:UU
HWI-ST495_129147882:3:2111:3117:78828 163 1 12634 3 100M = 12746 212 GCCCTTCCCCAGAGCTGCAGAGAGAGAGAGAGAGGACGACTGTGGAGTGTTGCACAGGTGTTGCACAGGTGTAGAGAGAG
@FFFFFDHHHH9FHGIIFGAFDHEGII>GHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
1 XN:i:0 XO:i:0 CP:i:102518437 AS:i:-5 XS:A:- YT:Z:UU
HWI-ST495_129147882:3:2111:3117:78828 83 1 12746 3 100M = 12634 -212 GGGAGTGGCCTCCTACGGGGCCCTCACGGGCCTCTCCTGTCTCCTGGATGCCCCTCTGATGCCCCTCTTGATCTTCCCTGTGAT
DCABDBDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
1 XN:i:0 XO:i:0 CP:i:102518325 AS:i:-5 XS:A:- YT:Z:UU
HWI-ST495_129147882:3:1102:4242:26638 99 1 13503 3 100M = 13779 376 CGCTGTGCCCTTTGCTCTGCCCGGTGGGAGAGGGGTGTTTGTCATGGGCCTGGTCTGCAGGGGATCCTGCTACAAAGGTGAAACCCAGGAGAGTGTGT
CCFFFFFHHHHHJJJJJJJJJJJJJJJJJJJJJJJJJJJ
0 XN:i:0 XO:i:0 CP:i:114357414 AS:i:0 XS:A:+ YT:Z:UU
HWI-ST495_129147882:3:1309:15328:74082 99 1 13534 3 100M = 13780 346 AGACGGTGTTTGTCATGGGCCTGGTCTGCAGAGGGTGTGGAAACCCAGGAGGTGTTGCCAGGAGTGTTGCCAGGACCCAGGCACA
CCFFFADHHHHFIJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ
0 XN:i:0 XO:i:0 CP:i:114357383 AS:i:0 XS:A:+ YT:Z:UU
HWI-ST495_129147882:3:1308:10126:19636 99 1 13779 3 100M = 14027 348 CCTCTGCAGGAGGCTGCCATTTGTCCTGCCCACCTTCTTAGAAGCCGAGCCGAGCCCATCTGCTACTAGATAACTAAAGTTAGC
CCFFFFFHHGHHJJJJJJJJJJJJJJJJJJJJJJJJJJJJ
0 XN:i:0 XO:i:0 CP:i:114357140 AS:i:0 XS:A:+ YT:Z:UU
HWI-ST495_129147882:3:1102:4242:26638 147 1 13779 3 100M = 13503 -376 CCTCTGCAGGAGGCTGCCATTTGTCCTGCCCACCTTCTTAGAAGCCGAGCCGAGCCCACCTTCTAGAAGCTAAAGTTAGC
##DCCDDDCCBBBABCCDDDCBDDBBDHC?=GIJJIIIJJIGIIIJJHJJJJJJJGGIIJJJJJJJJJJJ
0 XN:i:0 XO:i:0 CP:i:114357140 AS:i:0 XS:A:+ YT:Z:UU
mgriffit@linus270 <>

BAM header section provides general information about alignment strategy

- Used to describe source of data, reference sequence, method of alignment, etc.
- Each section begins with character '@' followed by a two-letter record type code. These are followed by two-letter tags and values
- @HD The header line
 - → VN: format version
 - → SO: Sorting order of alignments
- @SQ Reference sequence dictionary
 - → SN: reference sequence name
 - → LN: reference sequence length SP: species
- @RG Read group
 - → ID: read group identifier
 - → CN: name of sequencing center
 - → SM: sample name
- @PG Program
 - → PN: program name
 - → VN: program version

BAM alignment section provides details for each read alignment

Col	Field	Type	Regexp/Range	Brief description
1	QNAME	String	[!-?A-~]{1,255}	Query template NAME
$\bigstar 2$	FLAG	Int	$[0,2^{16}-1]$	bitwise FLAG
3	RNAME	String	* [!-()+-<>-~][!-~]*	Reference sequence NAME
4	POS	Int	[0,2 ²⁹ -1]	1-based leftmost mapping POSition
5	MAPQ	Int	$[0,2^{8}-1]$	MAPping Quality
$\bigstar 6$	CIGAR	String	* ([0-9]+[MIDNSHPX=])+	CIGAR string
7	RNEXT	String	* = [!-()+-<>-~][!-~]*	Ref. name of the mate/next segment
8	PNEXT	Int	[0,2 ²⁹ -1]	Position of the mate/next segment
9	TLEN	Int	$[-2^{29}+1,2^{29}-1]$	observed Template LENgth
10	SEQ	String	* [A-Za-z=.]+	segment SEQuence
11	QUAL	String	[!-~]+	ASCII of Phred-scaled base QUALity+33

SAM flags describe several alignment properties in a single number

- http://broadinstitute.github.io/picard/ explain-flags.html
- 12 bitwise flags describing the alignment
- These flags are stored as a binary string of length 11 instead of 11 columns of data
- Value of '1' indicates the flag is set. e.g. 00100000000
- All combinations can be represented as a number from 1 to 2048 (i.e. 2¹¹-1). This number is used in the BAM/SAM file. You can specify 'required' or 'filter' flags in samtools view using the '-f' and '-F' options respectively

#	Binary	Decimal	Hexadecimal	Description
1	1	1	0x1	Read paired
2	10	2	0x2	Read mapped in proper pair
3	100	4	0x4	Read unmapped
4	1000	8	0x8	Mate unmapped
5	10000	16	0x10	Read reverse strand
6	100000	32	0x20	Mate reverse strand
7	1000000	64	0x40	First in pair
8	10000000	128	0x80	Second in pair
9	100000000	256	0x100	Not primary alignment
10	1000000000	512	0x200	Read fails platform/vendor quality checks
11	10000000000	1024	0x400	Read is PCR or optical duplicate
12	100000000000	2048	0x800	Supplementary alignment
Sum	00000000000	0	0x0	

CIGAR strings similarly describe the entire alignment in as few characters as possible

- The CIGAR string is a sequence of base lengths and associated 'operations' that are used to indicate which bases align to the reference (either a match or mismatch), are deleted, are inserted, represent introns, etc.
- e.g. 81M3D19M
 - → A 100 bp read consists of: 81 bases of alignment to reference (match), 3 bases of the reference deleted, 19 bases of alignment (match)

Op	BAM	Description
M	0	alignment match (can be a sequence match or mismatch)
I	1	insertion to the reference
D	2	deletion from the reference
N	3	skipped region from the reference
S	4	soft clipping (clipped sequences present in SEQ)
H	5	hard clipping (clipped sequences NOT present in SEQ)
P	6	padding (silent deletion from padded reference)
=	7	sequence match
X	8	sequence mismatch

Deduplication

- Each DNA molecule copied many times during library preparation
- Many reads are duplicates, representing the same original DNA molecule
- We want unique information for downstream processing
- Therefore: deduplication
- Picard MarkDuplicates:
 - → Group reads by start positions of read 1 and read 2
 - → Take the read with highest summed base quality score as the unique read
- Simplest form of deduplication

Alignment quiz

Menti.com

QC metrics for DNA sequencing

Outline

- Metrics
- Tools
- Correlations
 - Plots
- Quiz

Learning outcomes and course content

- Learning outcomes:
 - Understand how to apply technology to obtain relevant information from the cancer genome.
 - Perform quality control on DNA (and RNA) sequencing data for cancer sequencing purposes.
- Course content:
 - QC of both DNA (and RNA) sequencing data
- Focus on DNA here, RNA QC is covered in RNA lecture

Quality control metrics

- Was the sequencing successful or not?
- Many steps can go wrong
 - → Storage and transportation
 - → Extraction of DNA, DNA input amount
 - → Library prep, e.g. PCR amplification
 - → Capture
 - → Sequencing
 - → Demultiplexing
- Important with quality control metrics
- Is data quality "good enough"?
 - > Requirements can vary a lot depending on the experiment

Quality control metrics

- The most important metrics
 - → Coverage (after deduplication) the average number of (unique) reads covering the targeted regions, also known as depth
 - → Read count total number of reads for a sample
 - → Duplication rate what fraction of all reads where duplicates (not unique)
 - → Fold enrichment how much more the targeted regions are amplified compared to non-targeted regions, x-fold
 - → Contamination DNA from another source

Quality control metrics

- Example of tools for QC
 - → Picard CollectHsMetrics
 - Coverage, fold enrichment
 - → Picard MarkDuplicates
 - Read count, duplication rate
 - → GATK (v ≤3) ContEst
 - Contamination
- Input: bam files
- Output: txt tables,
 - can be parsed in e.g. R for plotting, summary tables etc.

Duplication rate vs read count

- Increasing number of reads give increasing duplication rate
- Small difference in DNA input amount (few ng)
- Higher input amount gives lower duplication rate

Coverage vs read count

- Including duplicates
 - Not de-duplicated
- Increasing number of reads give higher coverage
- No difference by input amount

Coverage vs read count

- Unique
 - De-duplicated
- Increasing number of reads give higher coverage
 - Up until a certain level
- Higher input amount gives higher unique coverage
- The max coverage possible depends on input amount
- When max coverage is reached, all unique DNA molecules have been sequenced and all additional reads will be duplicates

Fold enrichment vs read count

- Before de-duplication
- Independent of read count and input amount
- Related to the size of targeted regions
- What could be the cause of a deviating number?

Quality control quiz

Menti.com

Credits

- Malachi Griffith, Obi Griffith, Zachary Skidmore, Huiming Xia
 - → Lecture notes from the course "Introduction to bioinformatics for DNA and RNA sequence analysis (IBDRO1)", 29 October 2 November, 2018
 - → McDonell Genome Institute, Washington University of St Louis School of Medicine