James Queeney

Email: jqueeney@bu.edu · Website: jqueeney.github.io

RESEARCH INTERESTS

I am a fifth-year PhD candidate interested in developing theoretically supported deep reinforcement learning algorithms, with a focus on addressing barriers for real-world deployment. My current work considers the need for robustness, safety, and generalization in deep reinforcement learning.

EDUCATION

Boston University

Expected Summer 2023

PhD Candidate in Systems Engineering

Boston University

Jan 2022

MS in Systems Engineering

Colgate University

May 2013

BA in Mathematics and Mathematical Economics

• Class of 2013 Valedictorian, Honors in Mathematics, Phi Beta Kappa, Summa Cum Laude

RESEARCH EXPERIENCE

Doctoral Research Fellow

2019 - Present

Boston University - Advisors: Ioannis Paschalidis, Christos Cassandras

• Design robust, safe, and efficient deep reinforcement learning algorithms with performance guarantees

Research Intern Summer 2022

Mitsubishi Electric Research Laboratories - Host: Mouhacine Benosman

• Publication: Risk-averse model uncertainty for distributionally robust safe reinforcement learning

Research Assistant 2017 - 2018

Colgate University - Host: William Cipolli

• Implemented Bayesian non-parametric approaches to supervised learning with Polya trees

TEACHING AND OUTREACH

CISE Graduate Student Workshop Organizer

Jan 2023

Boston University Center for Information & Systems Engineering

• Reviewed abstracts, selected speakers, created schedule, and hosted workshop

Graduate Teaching Fellow

Fall 2022

Boston University – Optimization Theory and Methods (SE 674)

• Taught weekly recitation section and held office hours for graduate-level engineering course

Research Mentor Summer 2021

Boston University Research in Science & Engineering Program

• Advised high school student in reinforcement learning research project on rodent navigation

Graduate Teaching Fellow

Fall 2019

Boston University – Introduction to Programming for Engineers (EK 125)

• Led classes and lab sessions, held office hours, graded assignments, and managed TAs

INDUSTRY EXPERIENCE

Director of Operations Research Bargain Hunt	2017 - 2018
Private Equity Associate Thomas H. Lee Partners – Consumer & Healthcare Group	2015 - 2017
Investment Banking Analyst Bank of America Merrill Lynch – Mergers & Acquisitions Group	2013 - 2015

PUBLICATIONS

- Queeney, J., Ozcan, E. C., Paschalidis, I. C., and Cassandras, C. G. (2023). Optimal transport perturbations for safe reinforcement learning with robustness guarantees. arXiv preprint, arXiv:2301.13375.
- Queeney, J. and Benosman, M. (2023). Risk-averse model uncertainty for distributionally robust safe reinforcement learning. arXiv preprint, arXiv:2301.12593.
- Giammarino, V., Queeney, J., Carstensen, L. C., Hasselmo, M. E., and Paschalidis, I. C. (2022). Opportunities and challenges from using animal videos in reinforcement learning for navigation. arXiv preprint, arXiv:2209.12347.
- Queeney, J., Paschalidis, I. C., and Cassandras, C. G. (2022). Generalized policy improvement algorithms with theoretically supported sample reuse. arXiv preprint, arXiv:2206.13714.
- Queeney, J., Paschalidis, I. C., and Cassandras, C. G. (2021). Generalized proximal policy optimization with sample reuse. In *Advances in Neural Information Processing Systems*, volume 34. Curran Associates, Inc.
- Queeney, J., Paschalidis, I. C., and Cassandras, C. G. (2021). Uncertainty-aware policy optimization: A robust, adaptive trust region approach. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pages 9377-9385. AAAI Press.

PRESENTATIONS

- Safe reinforcement learning with robustness guarantees (2023). Massachusetts Institute of Technology Invited Talk, Cambridge, MA.
- Balancing stability and efficiency in deep reinforcement learning (2023). Harvard University Invited Talk, Cambridge, MA.
- Stable and efficient reinforcement learning with principled sample reuse (2022). CISE Graduate Student Workshop 8.0, Boston, MA. Best Presenter Award.
- Robust and efficient reinforcement learning from limited data (2021). Boston University Division of Systems Engineering Presentation, Boston, MA.
- Generalized proximal policy optimization with sample reuse (2021). 35th Conference on Neural Information Processing Systems (NeurIPS 2021), Virtual.
- Uncertainty-aware policy optimization: A robust, adaptive trust region approach (2021). CISE Best Student Paper Awards Presentation, Virtual. Best Student Paper Award Finalist.
- Uncertainty-aware policy optimization: A robust, adaptive trust region approach (2021). 35th AAAI Conference on Artificial Intelligence (AAAI 2021), Virtual.

HONORS AND AWARDS

• Doctoral Research Fellow, Boston University	2019 - Present
\bullet CISE Best Student Paper Award Finalist, $Boston\ University$	2022
\bullet CISE Graduate Student Workshop Best Presenter Award, $Boston\ University$	2022
\bullet CISE Best Student Paper Award Finalist, $Boston\ University$	2021
• Dean's Fellowship Award, Boston University	2018-2019
• Class of 2013 Valedictorian, Colgate University	2013
$ullet$ Osborne Mathematics Prize, $Colgate\ University$	2013
• Phi Beta Kappa Award, Colgate University	2013
• Phi Beta Kappa, Colgate University	2013
• Summa Cum Laude, Colgate University	2013
• Honors in Mathematics, Colgate University	2013
• John T. Mitchell Award, Colgate University	2012-2013
• Charles A. Dana Scholar, Colgate University	2011-2013
• Alumni Memorial Scholar, Colgate University	2009-2013
• Sisson Mathematics Prize, Colgate University	2010
• Dodge Prize, Colgate University	2010

SKILLS

- Programming Languages: Python, MATLAB, R
- Software: DeepMind Control Suite, Gurobi, MuJoCo, OpenAI Gym, TensorFlow