Gruppen: Faktorgruppen

Aufgaben zu Normalteilern und Faktorgruppen

Aufgabe 1

Sei G eine Gruppe und $H \subseteq G$ eine Untergruppe mit $gHg^{-1} \subseteq H$ für alle $g \in G$. Zeige, dass H ein Normalteiler ist.

Aufgabe 2

Sei G eine Gruppe und $N, H \subseteq H$ zwei Normalteiler. Es gelte weiterhin $N \subseteq H$.

a) Zeige: N ist Normalteiler in H.

b) Zeige: H/N ist Normalteiler in G/H.

Aufgabe 3

Sei *G* eine beliebige Gruppe.

Wir definieren das Zentrum von G als $Z(G) := \{h \in G \mid hg = gh \forall g \in G\}$, d.h. das Zentrum besteht aus allen Elementen in G, die mit allen anderen Elementen in G kommutieren.

a) Zeige: Z(G) ist ein Normalteiler von G.

b) Angenommen, es ist $G/Z(G) = \{eZ(G), gZ(G), g^2Z(G), ...\} = \{g^iZ(G) | i \in \mathbb{Z}\}$ für ein $g \in G$ (eine solche Gruppe nennt man zyklisch). Dabei sei

$$g^{i} = \begin{cases} g \cdot g \dots g & i > 0 \\ e & i = 0 \\ g^{-1} \cdot g^{-1} \dots g^{-1} & i < 0 \end{cases}$$

Zeige: Dann ist G abelsch.

Aufgabe 4

a) Berechne in $\mathbb{Z}/5\mathbb{Z}$:

• [2] - [4]

• $[3] \cdot ([4] + [3])$

• [3]12354546767456

b) Bestimme die Lösung(en) der Gleichung $[x]^3 = [1]$ in $\mathbb{Z}/3\mathbb{Z}$, $\mathbb{Z}/5\mathbb{Z}$ und $\mathbb{Z}/7\mathbb{Z}$.

1

Aufgabe 5 (Satz von Wilson)

Sei G eine endliche abelsche Gruppe und $a := \prod_{g \in G} g$ (d.h. a ist das Produkt aller Elemente in G).

a) Zeige eine allgemein gruppentheoretische Aussage:

$$a = \prod_{g \in G: g^2 = e} g.$$

Folgere: $a^2 = e$.

b) Betrachte die (additive) Gruppe $\mathbb{Z}/p\mathbb{Z}$ für eine Primzahl p. Welches sind die Elemente in $\mathbb{Z}/p\mathbb{Z}$, die ein Inverses bezüglich der Multiplikation besitzen?

Anleitung:

Betrache für festes $[0] \neq [x] \in \mathbb{Z}/p\mathbb{Z}$ die Menge $M = \{[x][y] \mid [0] \neq [y] \in \mathbb{Z}/p\mathbb{Z}\}$. Zeige, dass $[0] \notin M$ und dass die Elemente in M paarweise verschieden sind (beides z.B. über eine Widerspruchsannahme), also insbesondere $[1] \in M$.

c) Die Menge der Elemente, die ein Inverses bezüglich der Multiplikation besitzen, ist eine Gruppe bzgl. Multiplikation (wer will, kann das nachweisen). Wir bezeichnen sie mit $(\mathbb{Z}/p\mathbb{Z})^{\times}$. Folgere aus a) und b):

$$[(p-1)!] = [-1] \text{ in } \mathbb{Z}/p\mathbb{Z}.$$

Aufgaben zum Satz von Lagrange

Aufgabe 6

Sei G eine endliche Gruppe und $g \in G$. Wir definieren die Ordnung von g, ord(g), als die Ordnung der von g erzeugten Untergruppe $H = \{e, g, g^2, \dots, g^m\}$, wobei $0 \neq m < \infty$ minimal mit $g^m \neq e$.

- a) Zeige:
 - Die Definition von H ist sinnvoll (d.h. zeige, dass es ein $n \in \mathbb{Z}$ geben muss mit $g^n = e$).
 - $H \subseteq G$ ist tatsächlich eine Untergruppe
 - ord(g) teilt #G
- b) Folgere für Z(G) wie in Aufgabe 3 definiert, gilt: [G:Z(G)] ist keine Primzahl.

Aufgabe 7

Sei G eine endliche Gruppe und $H, K \subseteq G$ zwei Untergruppen, deren Ordnungen keinen gemeinsamen Teiler haben. Zeige: $H \cap K = \{e\}$.

Hinweis: Verwende Aufgabe 6.

Aufgabe 8

Sei G eine endliche Gruppe. Zeige: Für alle $g \in G$ gilt

$$g^{\#G}=e.$$

Hinweis: Verwende Aufgabe 6.