

Introduction to PCB

Outline

- Overview
- What is a PCB and how it is made
- PCB Design procedure
 - Design Intent
 - Schematic Capture
 - Board Layout
 - Design Transfer

Why use PCBs

Pros and Cons

Pros

- Repeatable with low incremental labor cost
- Lower and more repeatable parasitic capacitance
- Better signal integrity
- Shorter route length
- Ground planes

Cons

- High initial investment: \$30 to \$1k
- Several days of waiting for fabrication
- Need careful planning
- Hard to change (less flexibility compared to bread board)

History

- Invented in 1903
- Common use by the 1920s
 - Radios, gramophones
 - Sheets of Bakelite, cardboard, wood, etc
 - Brass rivets for connections, all Through hole components
 - Single sided
- 1947 First 2 layer PCBs
- 1960 First 4 layer PCBs
- 1960s / 1980s

What is a PCB

- Printed Circuit Board
- Holds and connects components in a circuit
- Patterned sheets or copper foil
- Laminated sheets with multiple interconnected layers

Layers

- Conductor
 - Almost always copper
 - Alternatives: silver, gold
- Board material
 - Fiber-glass + resin (glass transition at 135 C, decomposition at 315 C
 - Polyimide for flexible PCBs
 - Metal for extreme power densities
 - Teflon for high frequency boards
- Solder mask for trace cover
 - Often green, makes soldering easier
 - Environment protection but not reliable electrical insulation
- Silk screen
 - Typical white color text or documentation on board

How is a PCB made

PCB Design Intent

- Draw out functional block diagram of circuit system
- Draw out roughly implementation of each functional block
- Choose key components (IC chips, operational amplifiers, etc.)
- Confirm that you actually need a PCB
- Double check bread board implementation
- Make sure that no significant modification is needed
- Identify constrains in bandwidth, operation range, power and etc.

PCB Design Software

- Altium Designer
- NI Multisim/Ultiboard (We will use this)
- CircuitMaker
- Upverter
- KiCad
- DipTrace
- Eagle
- PADS/Dx Disaster

Schematic Capture

Schematic Capture

- Captures and formalizes design intent
- Select components
 - Add to library if necessary
 - Download SPICE model from vendor
- Group into sub-circuits
- Add connectivity
- Conduct simulation if needed
- Export to PDF for discussion
- Primary communication method
 - Include relevant calculations
 - Leave brief comment and pin function
 - Use neat connection

PCB Layout

Layout

- Pull parts and connections from schematic
- Arrange by sub-scircuit into rough groups
- Initial placement
 - Connectors, power, switches
 - Fast digital, analog
 - Slow digital, analog
 - High current or voltage
 - Radio frequency communication
- Route the wires
 - Consider wire thickness
 - Use ground plate and/or vias
- Refine routing and placement

Trace Space

- Determines maximum voltage
- •~1.5V to 25V per mil (0.001 in.)
- Wider trace and space is cheaper

Table 4 - CLEARANCES and CREEPAGE DISTANCES for MAINS CIRCUITS

	Values for CLEAR- ANCE (see note 1)	Values for CREEPAGE DISTANCES								
Voltage line-to- neutral a.c. r.m.s. or d.c.		POLLUTION DEGREE 1		POLLUTION DEGREE 2				POLLUTION DEGREE 3		
		Printed wiring boards	All material groups	Printed wiring boards	Material group I	Material group II	Material group III	Material group I	Material group II	Material group III
		CTI ≥ 100	CTI ≥ 100	CTI ≥ 100	CTI ≥ 600	CTI ≥ 400	CTI ≥ 100	CTI ≥ 600	CTI ≥ 400	CTI ≥ 100
V	Mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
>50 ≤100	0.1	0.1	0.25	0.16	0.71	1.0	1.4	1.8	2.0	2.2
>100 ≤150	0.5	0.5	0.5	0.5	0.8	1.1	1.6	2.0	2.2	2.5
>150 ≤300	1.5	1.5	1.5	1.5	1.5	2.1	3.0	3.8	4.1	4.7
>300 ≤600	3.0	3.0	3.0	3.0	3.0	4.3	6.0	7.5	8.3	9.4

NOTE 1 Minimum values for clearance for different POLLUTION DEGREES are

POLLUTION DEGREE 2: 0.2 mm:

POLLUTION DEGREE 3: 0.8 mm.

NOTE 2 Values specified are for BASIC INSULATION or SUPPLEMENTARY INSULATION. Values for REINFORCED INSULATION are twice the values for basic insulation.

Trace Width

- Main consideration for thermal dissipation
- Trace dissipation determines current capacity
 - Outer layers dissipate more

Layer	0.5 oz	1 oz	2oz
Inner	100 mil/A	50 mil/A	25 mil/A
Outer	20 mil/A	10 mil/A	5 mil/A

- Most online calculators use very old data
 - Modern glue delaminates at higher temperatures
 - Assume infinite trace with no extra heat sinks

PCB Drilling

- Denoted as Via in software
- Minimize number of drilling
- Maximize minimum drill bit size
- Minimize number of drill sizes
- Blind and buried drilling are expensive
 - Holes that start/stop in the middle of board

Symbol	Hit Count	Tool Size	Plated	Hole Type
	101	20mil (0.508mm)	PTH	Round
0	4	40mil <1.D16mm>	PTH	Round
*	4	52mil (1.321mm)	PTH	Round
∇	8	66.929mil (1.7mm)	PTH	Round
n	2	125.984mil (3.2mm)	PTH	Round
O	4	190mil (4.826mm)	PTH	Round
	123 Total			

Common Mistakes

- Poor thermal management
- Sub-circuit coupling
 - Switch mode power amplifier can generate ripple signals
 - Small spacing between high frequency lines
- Poor grounding
 - Loop management in general
- Poor bypassing
 - Bypass capacitors too far away
 - Coupled with signal line crossing
- Using the auto-router
 - Usually do a not so good job
- Almost impossible to solder

Thermal Relief

- Used for via connecting to ground copper plane
- Added for ease of soldering to save time and cost
- Gives better chance for desolder
- Reducing thermal conductivity significantly
- Reducing conductance marginally
- Not used for high frequency or high current channels.

Design Transfer

Gerbers

- Image of one layer of PCB board
- Copper, solder mask, silk screen, etc.
- No real standard for which image is which layer

NC Drill

- Location and size of drill hits
- Bill of Materials
 - Components to purchase and solder
 - Can include vendor information if added
 - Biggest source of error in transfer

PCB Fabrication

3rd Party Vendors

- Sunstone is quickest to respond via live chat
- 4PCB offers student price package
- OSH Park has nice service
- Sencore is good for volume production but is slow to start
- AMI has local stores
- Use Taobao if you are in China, much cheaper even including shipping, good for most design

In House Fabrication

- 1 layer usually done a CNC router with tiny mill bits
- Use FR1 substrate instead of FR4 material (harmful glass dust)
- Various tooling available: <u>Othermill</u>, <u>LPKF Machines</u>

Homework Exercise

- Go through some tutorials for Multisim and Ultiboard online
- Create schematic capture in Multisim for a bandpass filter
- Computer values to allow band pass at 1 kHz to 100 kHz
- Utilize AD8021 or other OpAmps of your choice to simulate response
- Create board layout and remember to add bypass capacitors

Thank You!