Unit #3

Jan. 27, 2023

PROBLEMS

Due Friday Feb. 3, 2023 @ 4pm

- 1. For each of the following pairs of "true" functions $f(\mathbf{x})$ and model functions $\hat{f}(\mathbf{x};\boldsymbol{\beta})$, determine: (i) whether the model function is linear in the parameters β ; (ii) whether there is underfitting in the model; and (iii) if there is no underfitting, what are the true model parameters β ?
 - (a) $f(x) = (1+x)^2$ and $\hat{f}(x; \beta) = \beta_0 + \beta_1 x + \beta_2 x^2$.
 - (b) f(x) = 1/(2-x) 2 and $\hat{f}(x; a_0, a_1, b_0, b_1) = (a_0 + a_1 x)/(b_0 + b_1 x)$.
 - (c) $f(\mathbf{x}) = (x_1 x_2)^2$ and $\widehat{f}(\mathbf{x}; a, b_1, b_2, c_1, c_2) = a + b_1 x_1 + b_2 x_2 + c_1 x_1^2 + c_2 x_2^2$. (d) $f(\mathbf{x}) = 3 \ln(x_1 x_2 / x_3)$ and $\widehat{f}(\mathbf{x}; \boldsymbol{\beta}) = \sum_{j=1}^3 \beta_j \ln(x_j)$
- 2. A medical researcher is trying to choose between three model orders d. To evaluate the models, she uses 10-fold cross validation, which gave the following results.

Model	Training	Test	Test
order	$\overline{ ext{RSS}}_d$	$\overline{\mathrm{RSS}}_d$	$stdv(RSS_d)$
d=1	2.0	2.01	0.25
d=2	0.7	0.72	0.06
d=3	0.65	0.70	0.07

Note that the last column is the *unbiased* version of the sample standard deviation, i.e., $\operatorname{stdv}(\operatorname{RSS}_d) = \sqrt{\frac{1}{K-1}\sum_{k=1}^K (\operatorname{RSS}_{d,k} - \overline{\operatorname{RSS}}_d)^2}$, not the standard error. Which model should be selected based on the "one standard error rule"?

- 3. Consider a random variable x with $\mathbb{E}\{x\} = \mu$ and $\operatorname{var}\{x\} = v$, and another random variable ϵ with $\mathbb{E}\{\epsilon\}=0$ and $\operatorname{var}\{\epsilon\}=\sigma^2$, where ϵ and x are independent. Finally, suppose $y=x+\epsilon$. Evaluate the following expectations:
 - (a) $\mathbb{E}\{x^2\}$
 - (b) $\mathbb{E}\{xy\}$
 - (c) $\mathbb{E}\{y^2\}$
 - (d) $\mathbb{E}\{y|x\}$
 - (e) $\mathbb{E}\{y^2|x\}$

P. Schniter, 2023

4. Suppose that some training data $\{(x_i, y_i)\}_{i=1}^n$ was generated from a noisy linear model

$$y_i = f(x_i) + \epsilon_i, \quad f(x_i) = \beta x_i.$$

For prediction, we assume the linear model

$$\widehat{y} = \widehat{f}(x; \widehat{\beta}) = \widehat{\beta}x,$$

with $\widehat{\beta}$ computed using a least-squares (LS) fit to the training data. Finally, we wonder how our prediction will fare on test data (x, y) generated via

$$y = f(x) + \epsilon$$
.

You can assume that $\{\epsilon_i\}$ and ϵ are mutually independent, zero-mean, σ^2 -variance random variables that are independent of $\{x_i\}$ and x.

- (a) Derive an expression for the LS $\widehat{\beta}$ in terms of $\{(x_i, y_i)\}_{i=1}^n$ by first writing an expression for RSS and then zeroing its partial derivative with respect to $\widehat{\beta}$.
- (b) Write $\widehat{\beta}$ in terms of β and $\{(x_i, \epsilon_i)\}_{i=1}^n$.
- (c) What is the bias $\mathbb{E}\{\hat{y} y \mid x\}$? Is the predictor biased or unbiased? For this and remaining parts, you can assume that the training $x_i = 1$ for all i, but please keep the test x generic.
- (d) What is the mean-squared error $\mathbb{E}\{(\hat{y}-y)^2 \mid x\}$?
- (e) What is the variance of the prediction, $\operatorname{var}\{\widehat{y} \mid x\}$?
- (f) Compute the irreducible error by subtracting the prediction variance and the squared bias from the MSE. Does it turn out as expected?