On the Relationship Between Equivariant Predictive Models and Structural Causal Model Identification

Grace Yin
Department of Statistics
University of British Columbia
MSC Presentation

April 19, 2022

Structural Causal Model (SCM)

$$\begin{cases} Z := f_1(N_Z) \\ T := f_2(N_T) \\ R := f_3(Z, T, N_R) \\ N_Z, N_T, N_R \text{ are jointly independent noise terms} \end{cases}$$

Structural Causal Model (SCM)

$$\begin{cases} Z := f_1(N_Z) \\ T := f_2(N_T) \\ R := f_3(Z, T, N_R) \\ N_Z, N_T, N_R \text{ are jointly independent noise terms} \end{cases}$$

Structural Causal Model (SCM) [2]

Definition

A structural causal model (SCM) $\mathfrak{C} := (G, S, P_N)$ consists of a collection S of d (structural) assignments

$$X_j := f_j(PA_j, N_j), j = 1, \cdots, d$$

where $PA_j \subset \{X_1, \dots, X_d\} \setminus \{X_j\}$ are parents of X_j and $P_N = P_{N_1, \dots, N_d}$ is the joint (product) distribution over the noise variables which are assumed to be jointly independent. G = (V, E) is the graph contains vertices and edges.

Structural Causal Models (SCM)

intervention: $do(\cdots)$: sets the variable value, without changing other nodes

treatment: T = A or T = B

stone size treatment

Structural Causal Models (SCM)

intervention: $do(\cdots)$: sets the variable value, without changing other nodes

treatment: T = A or T = B

stone size treatment

Z

T

R

survival rate

Question: Suppose there are two candidate SCMs, how can we identify which one is correct?

 X_1 X_2 Y

Figure: SCM 2

- Potential solution: conditional independence test
 - High computational costs [1]

- the functional assignment: $Y := f(X, E) = \beta_0 + \beta_1 X + E$
- has constant risk for $X' \leftarrow X + a, a \in \mathbb{R}(+)$
- Our approach: apply constant risk theorem
 - across interventions described by the action of a group

- Potential solution: conditional independence test
 - High computational costs [1]

- the functional assignment: $Y := f(X, E) = \beta_0 + \beta_1 X + E$
- has constant risk for $X' \leftarrow X + a, a \in \mathbb{R}(+)$
- Our approach: apply constant risk theorem
 - across interventions described by the action of a group

- Potential solution: conditional independence test
 - High computational costs [1]

- the functional assignment: $Y := f(X, E) = \beta_0 + \beta_1 X + E$
- has constant risk for $X' \leftarrow X + a, a \in \mathbb{R}(+)$
- Our approach: apply constant risk theorem
 - across interventions described by the action of a group

Background and Notation

joint distribution of (X, Y):

$$\tilde{P}=P\otimes Q_{x},$$

P: marginal distribution on (X, \mathcal{X})

 Q_x : conditional distribution (Markov kernel) from $(\mathbf{X}, \mathcal{X})$ into $(\mathbf{Y}, \mathcal{Y})$ risk function is defined as

$$R(\tilde{P},
ho) = \int_{\mathcal{X} imes \mathcal{Y} imes \mathcal{Z}} P(dx) Q_{x}(dy)
ho_{x}(dz) L(y, z).$$

 ρ : decision procedure $\mathbf{X} \times \mathcal{Z} \to [0,1]$ where (\mathbf{Z},\mathcal{Z}) is the decision space L: loss function $\mathcal{Y} \times \mathcal{Z} \to [-\infty,\infty)$.

Background and Notation

- \bullet $\mathcal{G}\colon$ a group acting measurably on \boldsymbol{X} and \boldsymbol{Y}
- $g \in \mathcal{G}$: a group action, $\Phi(g, x) = gx$
- conditional shift: $g_x \tilde{P} = (P \circ g_x^{-1}) \otimes Q_x$ for $g_x \in \mathcal{G}$

Background and Notation

Equivariance

$$f(gx) = g'f(x)$$

Invariance

$$f(gx) = f(x)$$

Figures adapted from Daniel E. Worrall

Constant Risk Theorem

equivariant markov kernel:

$$Q_{\mathsf{g}\mathsf{x}} = Q_{\mathsf{x}} \circ \mathsf{g}^{-1}$$

• invariant loss function:

$$L(gy,gz)=L(y,z)$$

• equivariant decision procedure ρ :

$$\rho_{\mathsf{gx}} = \rho \circ \mathsf{g}^{-1}$$

Theorem

For an invariant loss function L, the risk of a decision procedure ρ is constant under the conditional shift $g_x \tilde{P}$ for any group action $g_x \in \mathcal{G}$, if ρ is equivariant and the kernel Q_x is equivariant. i.e.,

$$\forall g_{\mathsf{x}} \in \mathcal{G}, \ R(\rho, g_{\mathsf{x}} \tilde{P}) = R(\rho, \tilde{P})$$

Identify the Structure of SCM

$$egin{cases} X_1 \sim \mathcal{N}(0,\sigma^2) \ Y := egin{array}{c} eta_1 X_1 + arepsilon_y \ X_2 := egin{array}{c} eta_2 Y + arepsilon_2 \end{cases}$$

with $\varepsilon_2 \sim \mathcal{N}(0,1)$, $\varepsilon_{\nu} \sim \mathcal{N}(0,\sigma^2)$

Figure: SCM 2
$$\begin{cases} X_1 \sim \mathcal{N}(0, \sigma^2) \\ X_2 := \varepsilon_2 \\ Y := \beta_1 X_1 + \beta_2 X_2 + \varepsilon_y \end{cases}$$

$$egin{cases} X_1 \sim \mathcal{N}(0,\sigma^2) \ Y := egin{array}{c} eta_1 X_1 + arepsilon_y \ X_2 := eta_2 Y + arepsilon_2 \end{cases}$$

$$\begin{cases} X_1 \sim \mathcal{N}(0, \sigma^2) \\ X_2 := \varepsilon_2 \\ Y := \beta_1 X_1 + \beta_2 X_2 + \varepsilon_y \end{cases}$$

intervention :
$$\begin{cases} X_1' \leftarrow X_1 + g_1 \\ X_2' \leftarrow X_2 + g_2 \end{cases}$$

$$X_1 \sim \mathcal{N}(0, \sigma^2)$$

$$\begin{cases} X_1 \sim \mathcal{N}(0, \sigma^2) \\ Y := \beta_1 X_1 + \varepsilon_y \\ X_2 := \beta_2 Y + \varepsilon_2 \end{cases}$$

$$X_2 := \beta_2 Y + \varepsilon_2$$

Figure: SCM 2

$$\begin{cases} X_1 \sim \mathcal{N}(0, \sigma^2) \\ X_2 := \varepsilon_2 \\ Y := \frac{\beta_1 X_1 + \beta_2 X_2}{2} + \varepsilon_y \end{cases}$$

intervention :
$$\begin{cases} X_1' \leftarrow X_1 + g_1 \\ X_2' \leftarrow X_2 + g_2 \end{cases}$$

Simulation experiments:

- simulate data from SCM 1
- simulate estimated coefficients in shifting environment 0
- compute risk for three models in different shifting environments

$$\begin{cases} \ell_1: \hat{y} = & \hat{\beta}_0 + \hat{\beta}_1 \\ \text{depend on } X_1 \end{cases} x_1$$

$$\ell_2: \hat{y} = & \hat{\alpha}_0 + \hat{\alpha}_1 \\ \text{depend on } X_2 \end{cases}$$

$$\ell_3: \hat{y} = & \hat{\gamma}_0 + & \hat{\gamma}_1 x_1 + & \hat{\gamma}_2 \\ \text{depend on } X_1 & X_2 \end{cases}$$

loss function: least square loss function

$$R(\rho,P)=\int_{\mathcal{X} imes\mathcal{Y}} \mathit{L}(y,f(x)) dP(x,y), ext{ where }
ho=\delta_{f(x)}$$

Simulation experiments:

- simulate data from SCM 1
- simulate estimated coefficients in shifting environment 0
- compute risk for three models in different shifting environments

$$\ell_1: \hat{y} = \hat{\beta}_0 + \hat{\beta}_1 \quad x_1$$

$$\ell_2: \hat{y} = \hat{\alpha}_0 + \hat{\alpha}_1 \quad x_2$$

$$\ell_3: \hat{y} = \hat{\gamma}_0 + \hat{\gamma}_1 \quad x_1 + \hat{\gamma}_2 \quad x_2$$
depend on $x_1 \& x_2$

loss function: least square loss function

$$R(\rho, P) = \int_{\mathcal{X} \times \mathcal{V}} L(y, f(x)) dP(x, y), \text{ where } \rho = \delta_{f(x)}$$

Simulation experiments:

- simulate data from SCM 1
- simulate estimated coefficients in shifting environment 0
- compute risk for three models in different shifting environments

$$\begin{cases} \ell_1: \hat{y} = \underbrace{\hat{\beta}_0 + \hat{\beta}_1}_{\text{depend on } X_1} x_1 \\ \ell_2: \hat{y} = \underbrace{\hat{\alpha}_0 + \hat{\alpha}_1}_{\text{depend on } X_2} x_2 \\ \ell_3: \hat{y} = \underbrace{\hat{\gamma}_0 + \underbrace{\hat{\gamma}_1}_{X_1} x_1 + \underbrace{\hat{\gamma}_2}_{X_2}}_{\text{depend on } X_1 \& X_2} x_2 \end{cases}$$

loss function: least square loss function

$$R(\rho, P) = \int_{\mathcal{X} \times \mathcal{Y}} L(y, f(x)) dP(x, y), \text{ where } \rho = \delta_{f(x)}$$

Simulation experiments:

- simulate data from SCM 1
- simulate estimated coefficients in shifting environment 0
- compute risk for three models in different shifting environments

$$\begin{cases} \ell_1: \hat{y} = \underbrace{\hat{\beta}_0 + \hat{\beta}_1}_{\text{depend on } X_1} x_1 \\ \ell_2: \hat{y} = \underbrace{\hat{\alpha}_0 + \hat{\alpha}_1}_{\text{depend on } X_2} x_2 \\ \ell_3: \hat{y} = \underbrace{\hat{\gamma}_0 + \underbrace{\hat{\gamma}_1}_{\text{x_1}} x_1 + \underbrace{\hat{\gamma}_2}_{\text{depend on } X_1 \& X_2} x_2 \end{cases}$$

loss function: least square loss function risk function:

$$R(\rho, P) = \int_{\mathcal{X} \times \mathcal{Y}} L(y, f(x)) dP(x, y), \text{ where } \rho = \delta_{f(x)}$$

The simulation results verified our constant risk theorem.

- shifting X_1 : constant risk for all three predictive models
- shifting X_2 : only ℓ_1 has constant risk

Differences between constant risk approach and risk minimization approach

• a crossover among three predictive models when shifting X_1 and X_2

Sample size can influence the constant risk results:

- simulated \hat{eta}_0 and \hat{eta}_1 for ℓ_1
- sample size $n_1 = 1000$ vs sample size $n_2 = 100000$
- empirical risks: $\hat{R}(g) \propto (\beta_0 \hat{\beta}_0)^2 + (x_{1,i} + g)^2 (\beta_1 \hat{\beta}_1)^2$

Potential Extension

Potential directions:

- Apply on other examples of SCMs
- Identify the theoretical interconnection between the risk function among linear regression models
- Implement algorithms
- Explore non-linear predictive models

Reference

- J. Peters, P. Bühlmann, and N. Meinshausen.
 Causal inference using invariant prediction: identification and confidence intervals.
 2015.
- [2] J. Peters, D. Janzing, and B. Schlkopf. *Elements of Causal Inference: Foundations and Learning Algorithms.*The MIT Press, 2017.
- [3] E. van der Pol.

 Geometric deep learning and reinforcement learning, February 2021.

Acknowledgement

Special thanks to:

- my supervisor: Prof. Ben Bloem-Reddy
- the various members of the UBC Department of Statistics

Github QR code:

Thank You for Listening!