

MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

UB Person Number:								Instructions: • Textbooks, calculators and any					
0 1 2 3 4 6 7 8 9	(a) (b) (c) (c) (d) (d) (d) (e) (e) (e) (e) (e) (e) (e) (e) (e) (e	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	0 1 2 0 4 6 6 7 8 9	0 1 2 3 4 5 6 7 8 6	0 1 2 3 4 5 6 8 9	0 1 2 3 4 5 6 7 9	© 1 2 3 4 6 6 7 8 9	You ◆ For	may us full cr	levices are e one sheet edit solve ng all relev	of notes.		
1		2		3		4	5	6	7	TOTAL	GRADE		

14	2	2	11	14	6	3	2	10	59	C-
1	2	3	4	5	6	7	PIAZZA	HILL	TOTAL	GRADE

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array} \right], \quad \mathbf{v}_2 = \left[\begin{array}{c} -1 \\ 1 \\ -3 \end{array} \right], \quad \mathbf{v}_3 = \left[\begin{array}{c} 1 \\ 2 \\ 0 \end{array} \right], \quad \mathbf{w} = \left[\begin{array}{c} -2 \\ 2 \\ b \end{array} \right]$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1, v_2, v_3\}$ linearly independent? Justify your answer.

$$\begin{bmatrix} 0 & 1 & 2 & 2 & 2 \\ 2 & -3 & 0 & 0 & 0 & 0 & 0 \\ 2 & -3 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{2} \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{2} \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & -10 & 0 & -14 \end{bmatrix} \xrightarrow{2} \begin{bmatrix} 1 & -1 & 1 & -2 \\ 2 & 0 & 1 & 2 \\ 0 & 0 & -10 & 0 & -14 \end{bmatrix} \xrightarrow{2} \begin{bmatrix} 1 & -1 & 1 & -2 \\ 2 & 0 & 1 & 2 \\ 0 & 0 & 1 & -14 \end{bmatrix}$$

b) a set is linearly independent if it has only one solution smeet there is a prior position in every column it is linearly independent.

There should not be, this is a mistale in the row reduction

2. (10 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix} \qquad e_i = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad e_3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \in \mathbb{R}^3$$

Compute A^{-1} .

$$\begin{bmatrix}
1 & -1 & 2 \\
1 & 0 & 1 \\
0 & 2 & -1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 2 & -1
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 2 & -1
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 2 & -1
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 2 & -1
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 2 & -1
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 2 & -1
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 2 & -1
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 2 & -1
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0$$

3. (10 points) Let A be the same matrix as in Problem 2, and let

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix} \qquad A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

Find a matrix C such that $A^TC = B$ (where A^T is the transpose of A).

$$A^{T} = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

(where
$$A^T$$
 is the transpose of A).

$$A^TC = B$$

$$\begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix} C = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 0 \\
0 & 1 & 2 \\
0 & -1 & -1
\end{bmatrix}
\leftarrow
\begin{bmatrix}
0 & 1 & 2 \\
2 & 1 & -1
\end{bmatrix}$$

$$(A^{T})^{T} = A$$

$$(A^{+}B)^{T} = A^{T} + B^{T}$$

$$(AB)^{T} = B^{T}A^{T}$$

$$(A^{+}B)^{T} = A^{T} + B^{T}$$

$$(AB)^{T} = B^{T}A^{T}$$

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

a) Find the standard matrix of T.

b) Find all vectors
$$\mathbf{u}$$
 satisfying $T(\mathbf{u}) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.
$$A = \begin{bmatrix} 1 & -2 \\ 1 & 1 \\ 1 & -3 \end{bmatrix}$$

$$T(e_1) = \{b\}$$

$$T(c_2) = \{c\}$$

$$T(e_1) = T\{b\} = \{c\}$$

$$T(e_2) = T\{b\} = \{c\}$$

$$\begin{bmatrix} 1 & -2 \\ 1 & -3 \end{bmatrix} C = \begin{bmatrix} 10 \\ -2 \end{bmatrix}$$

$$U = C_1 e_1 + C_2 e_2$$

$$T(u) = T(c_1 e_1) + T(c_2 e_2)$$

$$= C_1 T(e_1) + C_2 T(e_2)$$

$$= \left[T(e_1) + \left(\frac{c_2}{c_2}\right) - \left(\frac{c_1}{c_2}\right) - A \cdot U\right]$$

$$\left[\left(\frac{1}{1}\right) + \left(\frac{-2}{3}\right)\right]$$

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A \colon \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

$$T_{A}(v_{2}).$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 4 & 4 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 4 & 4 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 4 & 4 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 4 & 4 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 4 & 4 \end{bmatrix}$$

$$D_{A} = \begin{bmatrix} 1$$

- 6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If u, v, w are vectors in \mathbb{R}^3 such that $w + u \in \text{Span}(u, v)$ then $w \in \text{Span}(u, v)$.

W+U E spen (U, V)

A(v+w) = Av+An

WE Spen (UN) W= CU +CV

WIVESPU (U,N) & WE Spen (U,V)

WITU & Span (U,V) WIU = CUICY

WE Spen (U,V) +UE Spein (U,V)

b) If u,v,w are vectors in \mathbb{R}^3 such that the set $\{u,v,w\}$ is linearly independent then the set $\{u, v\}$ must be linearly independent.

True {U, V, W} is unearly independent, in every course is a pivot {U, v} must also be linearly independent because without w there will still be a pivot column in every column

7. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.

a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent

b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $u, v, w \in \mathbb{R}^2$ are vectors such that u is

p) If $I: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $u, v, w \in \mathbb{R}^2$ are vectors such that u is in Span(v, w) then T(u) must be in Span(T(v), T(w)). $T(u+v) = T(u) + T(v) \qquad U \in Span(v, w)$ $T(v) \in Span(v, w)$

COI(A) = row(B)