Capítol 1: Machine Learning

Aina Palacios

Aina Palacios

- Enginyera de Telecomunicacions especialitzada en Audiovisuals
- Màster en Tecnologías Avançades especialitzada en deep learning en Multimèdia!
- Experiència en programació web i machine learning.
- Mentora a IT Academy de **DataScience**

https://www.linkedin.com/in/ainapc/

ainaPali#2617

Objectius

- Aprendre conceptes bàsics sobre l'Intel·ligència artificial
- Veure perquè s'utilitza
- Bases matemàtiques i dades
- Machine Learning
- Crear el nostre entorn d'execució per aplicar Intel·ligència artificial
- Deep Learning
- Practicar els conceptes

Intel·ligència artificial

"Part informàtica dedicada al desenvolupament d'algorismes que permet a una màquina prendre decisions intel·ligents o, si més no, comportar-se com si tingués una intel·ligència semblant a la humana"

Esta inteligencia artificial ayuda a los radiólogos a diagnosticar el cáncer de mama

RAQUEL HOLGADO / NOTICIA / 17.07.2022 - 08:00H

Experto cree que la inteligencia artificial ayudará a "objetivar la subjetividad" dentro de "unos 10 años"

Google despide a uno de sus ingenieros por afirmar que su Inteligencia Artificial "es capaz de sentir"

Artificial Intelligence Has a Problem With Gender and Racial Bias. Here's How to Solve It

ARTIFICIAL INTELLIGENCE

Any technique which enables computers to mimic human behavior

1960s

1950s

MACHINE LEARNING

Al techniques that give computers the ability to learn without being explicitly programmed to do so

2000s

1990s

DEEP LEARNING

2010s

A subset of ML which make the computation of multi-layer neural networks feasible

https://www.linkedin.com/pulse/what-artificial-intelligence-without-machine-learning-claudia-pohlink/

1980s

1970s

Deep Learning Nova evolució del Machine Learning basat en la forma que aprenen els humans. Basat en Neural Networks **Machine Learning** Algoritmes que analitzen les dades, aprenen d'elles i fan decisions respecte al que han après Intel·ligència artificial Tot allò que engloba comportaments intel·ligents.

Symbolic AI -> Conegut com a GOFAI (Good old fashioned AI), es basa en el concepte que la intel·ligència és extrapolable del cos biològic, i que la informació pot ser entesa com a símbols. Symbolic AI tracta d'aportar coneixement humà i comportament directament als programes computacionals.

Basades en if/then rules.

- ChatBots
- Automatització

Moltes vegades aquest tipus de pràctica s'utilitza d'acompanyament en el Machine Learning

Machine Learning

Traditional use of computers

Dins de l'Intel·ligència Artifical, tenim el **Machine Learning**.

Consisteix en la utilització d'algoritmes per donar la capacitat a les màquines d'identificar patrons en un conjunt de dades històriques amb l'objectiu de proporcionar decisions automàtiques intel·ligents.

Podem trobar molts tipus de **models** per a cada tipus de problema a resoldre.

Machine learning at training phase

Classical Machine Learning

Classification Regression (Divide the (Divide the socks by Color) Ties by Length) Eg. Identity Fraud Detection

Eg. Market Forecasting

Clustering (Divide by Similarity) Eg. Targeted Marketing

Association (Identify Sequences) Eg. Customer Recommendation Dimensionality Reduction

(Wider Dependencies)

Eg. Big Data Visualization

Obj: Predications & Predictive Models Pattern/ Structure Recognition

How **Supervised** Machine Learning Works

STEPI

Provide the machine learning algorithm categorized or "labeled" input and output data from to learn STEP 2

Feed the machine new, unlabeled information to see if it tags new data appropriately. If not, continue refining the algorithm

TYPES OF PROBLEMS TO WHICH IT'S SUITED

CLASSIFICATION

Sorting items into categories

REGRESSION

Identifying real values (dollars, weight, etc.)

Features are extracted the CCD image (e.g. brightness, length, width) and a computer takes decisions that are executed by the robot.

How **Unsupervised** Machine Learning Works

STEPI

Provide the machine learning algorithm uncategorized, unlabeled input data to see what patterns it finds

STEP 2

Observe and learn from the patterns the machine identifies

TYPES OF PROBLEMS TO WHICH IT'S SUITED

CLUSTERING

Identifying similarities in groups

For Example: Are there patterns in the data to indicate certain patients will respond better to this treatment than others?

ANOMALY DETECTION

Identifying abnormalities in data

For Example: Is a hacker intruding in our network?

Deep Learning

Machine Learning

Deep Learning

El **Deep Learning** és una part del Machine Learning on el seu algoritme es basa a imitar el comportament de les Xarxes Neuronals humanes per poder efectuar Classificació, Regressió, Unsupervised i Reinforcement.

Aquest tipus de xarxes necessiten moltes dades i treballa molt bé en Computes Vision i NLP (Natural Language Processing)

Data Science

Data Science és un camp que estudia les dades i com extreure la informació d'aquestes.

Moltes vegades es dirà que Data Science no forma part de l'IA, però per aplicar-la bé, és necessari poder proporcionar al nostre model la informació de la millor manera possible. Així com un estudi i una neteja d'aquestes dades.

Al vs. Data Science vs. Machine Learning

1. Entorn de treball

Anaconda

Link

Jupyter Notebook

<u>Link</u>

Github

Per poder treballar amb repositoris, compartir codi i tenir una còpia de les teves tasques

SQL i BD

Necessitem conèixer com s'estructuren les bases de dades per poder seleccionar i gestionar les dades d'interès

2. Tipus de dades

Quan treballem en dades a IA, el que tenim són mostres, dades significatives d'alguna cosa en particular. Aquest conjunt de mostres formarà el nostre Data Set. Aquestes mostres poden venir de moltes formes diferents. A Python podem distingir entre aquest tipus de dades i més:

- **Text** -> Strings
- **Numèric** -> Integers, float, complex
- **Seqüències** -> List, tuple, range, array
- Mapes/Objectes -> Diccionaris python

Les nostres bases de dades poden contenir guardades les dades en aquests formats:

- Numèriques -> Boolean, Integer, Float, Nan...
- Categòriques -> Identifiers, Strings and Chars, Objects
- Ordinal -> Dades que poden ser mesurades entre elles (Notable, excel·lent, aprovat,...)
- Imatges
- Text

Numpy

NumPy és una llibreria de Python especialitzada en el càlcul numèric i anàlisi de dades, especialment per a un gran volum de dades. Treballa molt més ràpid les dades que Python

Pandas

Pandas és una llibreria de Python especialitzada en el maneig i l'anàlisi d'estructures de dades. Defineix les estroctures en Numpy. Contè molts mètodes que ens permeten treballar fàcilment

3. Anàlisis estadístic

És necessari abans de posar-nos a aplicar l'intel·ligència artificial entendre les nostres dades. El nostre coneixement sobre aquestes pot influir molt a l'hora d'obtenir els millors resultats.

Imaginem que tenim unes dades numèriques i volem fer una anàlisi d'aquestes. Quines coses són necessàries entendre?

Median (Middle) Mode (Most) The number which is in the middle or the middle value. Median: 9

Vean (Average) The total of the numbers divided by how many numbers there are. 11 7 11 18 9 7 6 23 7 11+7+11+18+9+7+6+23+7=99 99/9 = 11

 Desviació estàndard (std) -> Número que descriu la distribució de les dades. Si és baix, vol dir que els valors estan a prop del valor mitjà, si és gran, vol dir que estan lluny de la mitjana.

• **Percentil** -> Et dona el valor que descriu un percentatge donat de les mostres inferiors

- Quantil -> Divideix les dades en trossos de la mateixa probabilitat.
- **Correlació** -> Relació entre variables. Pot ser positiva o negativa

Outlier -> Valor que s'allunya massa de la moda. Valor atípic.

25

Estadística descriptiva

Moltes vegades la representació visual de les dades ens dona informació clara sobre aquestes. Acompanyar les nostres dades amb gràfiques és clau per entendre-les. Per visualitzar gràfiques a Python, podem utilitzar aquestes dues llibreries:

- Seaborn
- <u>Matplotlib</u>

Aquesta pàgina també ens dona un ventall de totes les gràfiques disponibles:

Python Graph Gallery

Les distribucions de les dades poden ser en forma:

- Continua: les dades tenen un nombre infinit de possibilitats (com per exemple la temperatura)
- Discreta: les dades tenen un nombre determinat de possibilitats (com per exemple el dia del teu naixement)

stadísti Anàlisis

Histograma o distribució -> Representació de la mostra. En
l'eix X, el valor. En l'eix Y, la freqüència d'aparició.

Normal Distribution -> Distribució que sol aparèixer amb molta freqüència en dades reals. Forma acampanada. La mitjana i la mediana són molt properes.

BoxPlot

Aquest tipus de representació de les dades ens dona un ràpid anàlisis de les dades mostrades. Ens dona informació sobre els quantils, la **media** i a més ens representa els outliers.

Ja hem acabat la primera part!

Gràcies a tots!

