2 Přímý a inverzní geometrický model

1. Sestavte geometrický popis 3 DoF planárního manipulátoru, viz Obrázek 1, délky ramen budou voleny:

(i_1	a_2	a_3
	2	1.5	0.5

- 2. Vyřešte DGM pomocí D-H úmluvy s využitím homogenních transformačních matic.
- 3. Vyřešte IGM manipulátoru, diskutujte a znázorněte případná vícenásobná řešení úlohy.
- 4. Vytvořte simulační model v prostředí Matlab/Simulink/SimMechanics
 - jako parametry bloků modelu využijte prvky hom.trans.matic pro kloubové souřadnice v domovské poloze manipulátoru
 - z modelu vytvořte subsystém, který bude mít na vstupu vektor kloubových souřadnic $Q=[q_1\ q_2\ q_3]^T$ a na výstupu vektor zobecněných souřadnic koncového efektoru $X=[x\ y\ \varphi]^T$
 - Vytvořte funkci pro výpočet přímé geometrické úlohy $\mathtt{X} = \mathtt{DGM}(\mathtt{par}, \mathtt{Q})$, kde X a Q viz výše a $par = [a_1 \ a_2 \ a_3]^T$
 - Vytvořte funkci pro výpočet inverzní geometrické úlohy Q = IGM(par, X)
 - Ověřte funkce DGM, IGM vůči modelu vytvořenému v SimMechanics

Obrázek 1: 3 DoF planární manipulátor