

Working with sparse time series data in computational biology

Benedikt Venn

CSB

COMPUTATIONAL SYSTEMS BIOLOGY

- Biology bachelor and master studies@ RPTU Kaiserslautern
- ► PhD student @ Computational systems Biology (RPTU)

Daily business

0.0 h

0.5 h

measure protein abundance

	T0	T1
P001	342	497
P002	723	923
P003	305	629
•••		•••

0.0 h 0.5 h 1.0 h

measure protein abundance

T0 T1 T2

P001 342 497 85

P002 723 923 482

P003 305 629 539

...

T0 T3 P001 342 477 measure protein P002 723 923 482 500 abundance P003 305 539 281

m*n protein abundance matrix

P0002 P0003 P0004	342 723 305	497 923 629	85 482	477 500	785 856	821 889	505 335	427	
P0003 3 P0004 5 P0005 8	305			500	856	889	225		
P0004 5		629	F 2 0				222	175	
P0005 8			539	281	429	601	42	595	
	584	54	477	991	10	302	63	52	
•••	870	90	184	195	856	254	611	992	
	•••	•••	•••	•••	•••	•••	•••	•••	
P2000 5	501	414	416	89	27	720	794	780	
typícal bíologícal tíme course									

Zhang et al., 2022

- ► fslab package for statistical computing
 - ► Hypothesis testing
 - ► Signal processing
 - **▶** Interpolation
 - ► Regression
 - **▶** Descriptive statistics
 - **...**

data quality/PCA

FSharp.Stats.ML

- dimensionality reduction to reveal
 - ▶ global trends
 - ▶ data quality/replicate reproducibility

PCA score plot

clustering

FSharp.Stats.Clustering

- cluster data set in groups of similar behaviour
 - ▶ k means clustering with k=6

enrichment analyses identify common patterns

correlation networks

FSharp.Stats.Correlation

<u>fslab - correlation-network</u> <u>CSBlog - community-detection-vs-pca</u>

- construction of co-expression network
- ► allows identification of protein co-regulation and regulatory clusters

differential analysis

FSharp.Stats.Testing

ANOVA

0.6

0.5

statistical testing reveals differential protein abundance

$$p(t) = 4.7 + 35.3t - 34.6t^2 + 16.8t^3 - 4.5t^4 + 0.7t^5 - 0.05t^6 + 0.002t^7$$

- instead of 8 coefficients (polynomial) 4x7=28 coefficients are needed
 - ▶ 14 interpolation constraints
 - ► 6 slope continuity
 - 6 curvature continuity
 - 2 boundary conditions

$$p_1''(1) = 0$$

 $p_7''(8) = 0$ \leftarrow natural cubic spline

$$p_1'(1) = p_7'(8)$$

 $p_1''(1) = p_7''(8)$ \leftarrow periodic cubic spline


```
open FSharp.Stats
let x,y,slopes = ...
Interpolation.interpolate(x,y,InterpolationMethod.Step)
Interpolation.interpolate(x,y,InterpolationMethod.LinearSpline)
Interpolation.interpolate(x,y,InterpolationMethod.AkimaSubSpline)
Interpolation.interpolate(x,y,InterpolationMethod.CubicSpline CubicSpline.BoundaryCondition.Natural)
Interpolation.interpolate(x,y,InterpolationMethod.HermiteSpline (HermiteMethod.WithSlopes slopes))
Interpolation.interpolate(x,y,InterpolationMethod.Polynomial)
...
```


- Necessity to incorporate smoothness assumption
- Measurement variance serves as important information and should be considered
 - ▶ interpolation → regression

- ► Necessity to incorporate **smoothness** assumption
- ► Measurement variance serves as important information and should be considered
 - ▶ interpolation → regression
- ► Usage of constrained smoothing splines allows for accurate shape classification

Usage of constrained smoothing splines allows for accurate shape classification

