Cálculo Numérico: Lista de Integração Numérica

Prof: Felipe Figueiredo

http://sites.google.com/site/proffelipefigueiredo

Versão: 20150526

1 Formulário

Seja $I = \int_a^b f(x) dx$ a integral de f(x) no intervalo [a, b]. Seja h = b - a.

Pela regra do trapézio, podemos aproximar numericamente o valor de I por:

$$I \approx \frac{h}{2} \left(f(a) + f(b) \right)$$

Pela regra dos trapézios repetidos, podemos aproximar numericamente o valor de I com:

$$I \approx \frac{h}{2}(f(x_0) + f(x_1) + f(x_1) + f(x_2) + \dots + f(x_{n-1}) + f(x_n)) =$$

$$= \frac{h}{2}(f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + f(x_n))$$

2 Exercícios

- 1. Encontre uma aproximação das seguintes integrais com o método dos trapézios repetidos, com a quantidade de subdivisões requerida:
 - (a) $f(x) = x^2$, em [1, 2], com 4 subdivisões
 - (b) $f(x) = \sqrt{x}$ em [1, 2], com 5 subdivisões
 - (c) $f(x) = \ln(x)$, em [1, 4], com 3 subdivisões
 - (d) $f(x) = \operatorname{sen} x$, em [-3.14, 3.14], com 4 subdivisões
 - (e) $f(x) = 2^x$, em [0, 2], com 4 subdivisões
 - (f) $f(x) = \frac{1}{1+x}$, em [0, 1], com 2 subdivisões
- 2. Aproxime as seguintes integrais usando a regra dos trapézios, com um único trapézio, isto é, sem subdividir o intervalo de integração.

(a)
$$\int_{1}^{1.5} x^2 \ln x \, dx$$

(b)
$$\int_{1}^{1.6} \frac{2x}{x^2 - 4} dx$$

(c)
$$\int_{-0.25}^{0.25} \cos^2 x \, dx$$

3 Problemas

3. Considere a seguinte tabela:

Use a regra dos trapézios repetidos para encontrar a integral para aproximar a integral $\int_0^2 f(x) dx$.

1

- 4. A função $f(x) = e^{(x^2)}$ não possui primitiva, que pode ser encontrada pelas técnicas de integração do Cálculo, mas sua integral definida pode ser aproximada numericamente. Encontre uma aproximação de $I = \int_0^1 e^{x^2} dx$ usando a regra dos trapézios com 4 subdivisões.
- 5. Como o logaritmo natural $\ln(x)$ é a primitiva de $\frac{1}{x}$, podemos aproximar o valor do logaritmo usando a integração numérica.
 - (a) Encontre uma aproximação de $\ln(2)$ integrando numericamente $f(x) = \frac{1}{x}$ em [1,2], usando um único trapézio (isto é: h = 1).
 - (b) Encontre a mesma integral numérica, usando 2 trapézios
 - (c) Use sua calculadora ou computador para encontrar o valor de ln(2) e calcule o erro absoluto entre as respostas dos itens anteriores e este valor.
- 6. (Burden & Faires 2010 adaptado) Uma chapa corrugada é construída comprimindo uma chapada de metal até que ela forme uma onda senoidal.

Um cliente precisa que você construa uma chapa corrugada com meio metro de comprimento, e que a altura de cada onda seja de 1cm. O problema de encontrar o comprimento da chapa plana inicial é equivalente a determinar o comprimento da curva $f(x) = \operatorname{sen} x$. Do Cálculo Integral, sabe-se que este comprimento é dado pela integral $\int_0^{50} \sqrt{1-(f'(x))^2} \, \mathrm{d}x = \int_0^{50} \sqrt{1-\cos^2 x} \, \mathrm{d}x$. Qual é o comprimento da chapa plana necessário para produzir a chapa corrugada que o cliente deseja?

7. (Burden & Faires 2010 - adaptado) Um carro de corrida completa uma volta na pista em 84 segundos. Um radar portátil afere a velocidade do carro (em m/s) a cada 6 segundos, que estão representados na tabela a seguir.

tempo	0	6	12	18	24	30	36	42	48	54	60	66	72	78	84
velocidade	37	40	45	47	44	40	36	33	30	25	23	27	31	35	37
Qual é o comprimento da pista?															