

Programación declarativa

Grado en Inteligencia Artificial Universidad Rey Juan Carlos

Presentación

- Profesorado
- Contexto
- Contenido
- Planificación
- Evaluación
- Material

Profesorado

• Juan Manuel Serrano: <u>juanmanuel.serrano@urjc.es</u>

Despacho 024, del edificio departamental II

Tutorías: contactar por correo electrónico

• Miguel Ángel Rodríguez (apoyo a prácticas): miguel.rodriguez@urjc.es

Departamental II - Despacho 118

Tutorías: contactar por correo electrónico

Architecture Consulting Training Community Team Trusted by Contact

Your software architecture companion

Boosting digital transformation through functional programming & language-driven architectures

Our services

Request your solution

BBVA

Tecsisa

https://www.meetup.com/Scala-Programming-Madrid/

Crear un nuev

https://www.meetup.com/es-ES/fp-madrid/

EVERYTHING EVERYWHERE ALL WITH KDB/Q

- Madrid International Lab
- 道 30.01.2024
- (1) 17:00h 20:30h

Agenda

Javier Sabio. BBVA Data science in q.

Esperanza López. Squarepoint Capital Real-Time Insights: Exploring kdb Use-Cases.

Jesús López. Habla Computing PyKX: a gateway drug into q.

Alfonso Campo. KX KDB.Al: vector databases in action.

Daniel Moreno. First Derivative From Wall Street to Formula 1.

Sponsored by

Presentación

- Profesorado
- Contexto
- Contenido
- Planificación
- Evaluación
- Material

	CURSO 1											
Semestre	Materia	Asignatura	Carácter ¹	Créditos	Departamento	Áreas						
1	Humanidades	Antecedentes y Desarrollo de la Inteligencia Artificial (HUM)	FBC	6	CELCACHJHLM, CCACLSIEIO	HC, ATC, CCIA, EIO, LSI						
1	Matemáticas	Matemática Discreta y Álgebra	FBR	6	MACIMTE, CCACLSIEIO	MA, ATC, CCIA, EIO, LSI						
1	Matemáticas	Cálculo	FBR	6	MACIMTE, CCACLSIEIO	MA, ATC, CCIA, EIO, LSI						
1	Matemáticas	Lógica	FBR	6	MACIMTE, CCACLSIEIO	MA, ATC, CCIA, EIO, LSI						
1	Informática	Programación I	FBC	6	CCACLSIEIO	ATC, CCIA, EIO, LSI						
2	Deontología	Etica y Legislación en Inteligencia Artificial (DEONTOLOGÍA)	FBC	6	DPICP, CCACLSIEIO	CPA, DA, DC, DFT, ATC, CCIA, EIO, LSI						
2	Estadística	Probabilidad y Estadística	FBR	6	CCACLSIEIO	ATC, CCIA, EIO, LSI						
2	Programación	Programación II	ОВ	6	CCACLSIEIO	ATC, CCIA, EIO, LSI						
2	Programación	Programación Declarativa	ОВ	6	CCACLSIEIO	ATC, CCIA, EIO, LSI						
2	Física	Fundamentos de Arquitectura de Computadores	FBR	6	CCACLSIEIO	ATC, CCIA, EIO, LSI						
TOTAL DE	CURSO: 60 ECTS											

	CURSO 2											
Semestr e	Materia	Asignatura	Carácter ²	Créditos	Departamento	Áreas						
Anual	Idioma	Idioma Moderno	FBC	6								
1	Empresa	Métodos Operativos y Estadísticos de Gestión	FBR	6	CCACLSIEIO	ATC, CCIA, EIO, LSI						
1	Programación	Estructuras de Datos I	ОВ	6	CCACLSIEIO	ATC, CCIA, EIO, LSI						
1	Informática	Algoritmos	ОВ	6	CCACLSIEIO	ATC, CCIA, EIO, LSI						
1	Informática	Informática Teórica y Lenguajes Formales	ОВ	6	CCACLSIEIO	ATC, CCIA, EIO, LSI						
2	Programación	Estructuras de Datos II	ОВ	6	CCACLSIEIO	ATĆ, CCIA, EIO, LSI						
2	Informática	Sistemas Operativos	ОВ	6	CCACLSIEIO	ATC, CCIA, EIO, LSI						
2	Informática	Bases de Datos	ОВ	6	CCACLSIEIO	ATC, CCIA, EIO, LSI						
2	Aprendizaje automático	Aprendizaje Automático I	ОВ	6	CCACLSIEIO	ATC, CCIA, EIO, LSI						
2	Resolución inteligente de problemas	Algoritmos de Búsqueda I	ОВ	6	CCACLSIEIO	ATC, CCIA, EIO, LSI						
TOTAL DE	CURSO: 60 ECT	S				6						

			CURSO 3			
Semestre	Materia	Asignatura	Carácter ³	Créditos	Departament o	Áreas
1	Resolución inteligente de problemas	Algoritmos de Búsqueda II	ОВ	6	CCACLSIEIO	ATC, CCIA, EIO, LSI
1	Informática	Ingeniería del Software	ОВ	6	CCACLSIEIO	ATC, CCIA, EIO, LSI
1	Aprendizaje automático	Aprendizaje Automático II	ОВ	6	CCACLSIEIO	ATC, CCIA, EIO, LSI
1	Representació n de conocimiento	Representación de Conocimiento y Razonamiento I	ОВ	6	CCACLSIEIO	ATC, CCIA, EIO, LSI
1	Informática	Inteligencia Ambiental y Computación Ubicua	ОВ	6	CCACLSIEIO	ATC, CCIA, EIO, LSI
2	Procesamiento de lenguaje natural	Procesamiento de Lenguaje Natural I	ОВ	6	CCACLSIEIO	ATC, CCIA, EIO, LSI
2	Representació n de conocimiento	Representación de Conocimiento y Razonamiento II	ОВ	6	CCACLSIEIO	ATC, CCIA, EIO, LSI
2	Percepción y actuación computacional	Visión Artificial	ОВ	6	CCACLSIEIO	ATC, CCIA, EIO, LSI
2	Percepción y actuación computacional	Robótica	ОВ	6	CCACLSIEIO	ATC, CCIA, EIO, LSI
2	Tecnologías inteligentes	Sistemas Multi- agente	ОВ	6	CCACLSIEIO	ATC, CCIA, EIO, LSI

	MÓDULO DE OPTATIVAS										
Curso	Semestr e	Materia	Asignatura	Crédito s ECTS	Departament 0	Áreas					
4	1	Tecnologías inteligentes	Interfaces de Usuario Inteligentes	6	CCACLSIEIO	ATC, CCIA, EIO, LSI					
4	1	Procesamiento de lenguaje natural	Procesamiento de Lenguaje Natural II	6	CCACLSIEIO	ATC, CCIA, EIO, LSI					
4	1	Aprendizaje automático	Aprendizaje Automático III	6	CCACLSIEIO	ATC, CCIA, EIO, LSI					
4	1	Resolución inteligente de problemas	Planificación	6	CCACLSIEIO	ATC, CCIA, EIO, LSI					
4	2	Algoritmia	Algoritmos para la Toma de Decisiones	6	CCACLSIEIO	ATC, CCIA, EIO, LSI					
4	2	Aplicaciones de la Inteligencia Artificial	Inteligencia Artificial en Ciberseguridad	6	CCACLSIEIO	ATC, CCIA, EIO, LSI					
4	2	Empresa	Técnicas de Organización y Control de Gestión Empresarial	6	EE, CCACLSIEIO	EFC, ATC, CCIA, EIO, LSI					
4	2	Aplicaciones de la Inteligencia Artificial	Aplicaciones de la Inteligencia Artificial	6	CCACLSIEIO	ATC, CCIA, EIO, LSI					

Presentación

- Profesorado
- Contexto
- Contenido
- Planificación
- Evaluación
- Material

Programación declarativa

- Dado un dominio y una forma de resolver los problemas de dicho dominio, la programación declarativa tiene por objetivo implementar la solución de la forma más cercana a dicho patrón de resolución de problemas
 - Patrones de transformación de datos
 - Resolución lógica de problemas mediante deducción
 - Problemas de satisfacción de restricciones
 - o etc.
- Estrechamente relacionado con los lenguajes específicos de dominio
 - SQL: lenguaje de consulta y actualización sobre modelos de datos relacionales
 - Ópticas: lenguajes de consulta sobre modelos de datos algebraicos
 - etc.

Paradigmas de programación declarativa

Dos paradigmas principales:

- Programación funcional
 - Razonamos sobre la forma de resolver un problema en términos de funciones y tipos algebraicos de datos, y un mecanismo computacional de reescritura
- Programación lógica
 - Razonamos en términos de declaraciones lógicas y mecanismos de deducción automática

En este curso:

- Nos centraremos principalmente en la programación funcional
- Los lenguajes de programación lógica (Prolog) se verán en asignaturas posteriores
- No obstante, la lógica está íntimamente ligada a la programación funcional, y es parte esencial de este curso

¿Por qué la programación declarativa?

Si quieres que tus programas sean fácilmente

- Comprensibles
- Testables
- Mantenibles
- Reutilizables
- Modificables
- Optimizables
- ...

¿Cómo consigue la programación funcional satisfacer los requisitos no-funcionales de la programación declarativa?

- Modularity FTW!
 - functions
 - parametric polymorphism
 - higher-order functions
 - Type classes (ad-hoc polymorphism)
 - Languages (domain-specific languages)
 - datatype generics
 - lazy evaluation

¿Qué es la modularidad?

- Código monolítico
 - Diferentes conceptos entre-mezclados
 - Difícil de entender, probar, reutilizar, mantener, etc.

Código modular

- Cada aspecto del código se encuentra paquetizado en diferentes módulos
- Fácilmente comprensible, testable, reutilizable, etc.

Modularidad: ¡alta cohesión y bajo acoplamiento!

Principales hitos de la programación funcional

- 1930s- Lambda calculus (Church)
- 1958- LISP (McCarthy)
- 1970s- ML (Milner), HOPE
- 1986- Erlang
- 1987- Haskell
- 1990- Monads in Haskell (Wadler)
- 2004- Scala (Odersky)
- 2005- F# (Don Syme)
- 2007- Clojure (Hickey)
- 2009- Akka
- 2010 Spark 0.1
- 2014- Java8, Swift (Apple)
- 2021- Scala 3

https://insights.stackoverflow.com/survey/2021

¿Por qué Scala?

Tema 1. Introducción.

PARTE I

Tema 2. Lenguajes fuertemente tipados

Tema 3. Tipos algebraicos de datos

Tema 4. Programación lógica: Curry-Howard

PARTE II

Tema 5. Funciones y tipos de datos recursivos

Tema 6. Programación modular: funciones de orden superior

Tema 7. Aplicaciones

Parte I: dar cera, pulir cera

Deducción Natural: Ejemplo

$$T[s \land (p \lor q), p \rightarrow \neg r, q \rightarrow \neg r] \vdash s \land \neg r$$

- 1. $s \land (p \lor q)$ premisa
- 2. $p \lor q$ $E_{\wedge}(1)$
- 3. $p \rightarrow \neg r$ premisa
- 4. $q \rightarrow \neg r$ premisa
- 5. $\neg r$ $E_{\vee}(2,3,4)$
- 6. s $E_{\wedge}(1)$
- 7. $s \wedge \neg r$ $I_{\wedge}(5,6)$

```
type and[p, q] = (p, q)
type or[p, q] = Either[p, q]
type implies[p, q] = p => q
type not[p] = implies[p, Nothing]
```

```
defined type and
defined type or
defined type implies
defined type not
```

Parte II: aplicaciones

. . .

Presentación

- Profesorado
- Contexto
- Contenido
- Evaluación
- Planificación
- Material

Evaluación

- Dos convocatorias: ordinaria (mayo) y extraordinaria (junio)
- En cada convocatoria la evaluación se divide en dos exámenes:
 - PRUEBA 1: Temas 1-4
 - o PRUEBA 2: Temas 5-7
- Para aprobar la asignatura es necesario compensar los dos exámenes (≥ 4) y sacar una nota media ≥ 5 (cada examen cuenta un 50% en la nota final)
- Los exámenes compensados en la convocatoria ordinaria se guardan para la convocatoria de junio
- Las pruebas se realizarán en el aula de informática

Presentación

- Profesorado
- Contexto
- Contenido
- Evaluación
- Planificación
- Material

Planificación

	Enero										
L	M X J V S I										
1	2	3	4	5	6	7					
8	9	10	11	12	13	14					
15	16	17	18	19	20	21					
22	23	24	25	² 26	27	28					
29	30	² 31									

	Febrero										
L	M	X	J	V	S	D					
			1	3 2	3	4					
5	6	³	8	3 9	10	11					
12	13	3 14	15	3 16	17	18					
19	20	3 21	22	4 23	24	25					
26	27	28	29								

Planificación

	Marzo							A bri	il				
L	M	X	J	V	S	D	L	M	X	J	V	S	D
				<u>4</u> 1	2	3	1	2	6 3	4	<u>6</u> 5	6	7
4	5	4 6	7	<u>4</u> 8	9	10	8	9	6 10	11	6 12	13	14
11	12	4 13	14	15 EXAMEN P1	16	17	15	16	6 17	18	6 19	20	21
18	19	5 20	21	22	23	24	22	23	6 24	25	6 26	27	28
25	26	27	28	29	30	31	29	30					

Planificación

	Mayo										
L	M X J V S										
		1	2	<u>7</u> 3	4	5					
6	7	7 8	9	10	11	12					
13	14	15	16	17	18	19					
20	EXAMEN P2	22	23	24	25	26					
27	28	29	30	31							

	Junio										
L	M	X	S	D							
					1	2					
3	4	5	6	7	8	9					
10	11	12	13	14	15	16					
17	18	19	20	21	22	23					
24	25 EXAMEN	26	27	28	29	30					

Presentación

- Profesorado
- Contexto
- Contenido
- Evaluación
- Planificación
- Material

https://github.com/jserranohidalgo/urjc-gia-pd

Bibliografía

Programming in Scala

M. Odersky, L. Spoons, B. Venners

Essential Scala

Noel Welsh, Dave Gurnell

Bibliografía

Functional Programming, Simplified

Alvin Alexander

Functional programming in Scala

Chiusano, Bjarnason

http://www.scala-lang.org/documentation/