CLUSTERING

Lecture 10

MALI, 2024

CLUSTERING

- What is clustering?
- k-means clustering
- Agglomerative clustering
- DBSCAN
- Application

WHAT IS CLUSTERING?

grouping data: unlabeled version of classification

Nost data

in the world

I want to know what this bird in my garden is

The corresponding websites tell me it's a common linnet

DIFFERENCE FROM CLASSIFICATION?

At no point did ue label the inages. We just sau/figured out that Some were similar measure of similarity

CLUSTERING

- What is clustering?
- k-means clustering
- Agglomerative clustering
- DBSCAN
- Application

- I. Assign k(=3) random points as **centroids**
- 2. Group the data by their distance to the centroids

- I. Assign k(=3) random points as **centroids**
- 2. Group the data by their distance to the centroids
- 3. Move the centroids to the cluster centers

- I. Assign k(=3) random points as **centroids**
- 2. Group the data by their distance to the centroids
- 3. Move the centroids to the cluster centers
- 4. Regroup the data

- I. Assign k(=3) random points as **centroids**
- 2. Group the data by their distance to the centroids
- 3. Move the centroids to the cluster centers
- 4. Regroup the data
- 5. Repeat 3-4 until nothing changes

- I. Assign k(=3) random points as **centroids**
- 2. Group the data by their distance to the centroids
- 3. Move the centroids to the cluster centers
- 4. Regroup the data
- 5. Repeat 3-4 until nothing changes

- 1. Assign k(=3) random points as **centroids**
- 2. Group the data by their distance to the centroids
- 3. Move the centroids to the cluster centers
- 4. Regroup the data
- 5. Repeat 3-4 until nothing changes

A FEW THINGS WE HAVE TO DEAL WITH

The value of k

The initial centroich

Solution 1: Try different, randomized initializations and compare the **costs** of the final clusterings

Solution 2: Choose the initial centroids based on the distance to the previous ones

Choose the point furthest away They to select different points from different cluster is and outliers

Solution 3: Choose "far away but random" points ("k-means++")

assign a distance-based probability of pidning next point

THE NUMBER OF CLUSTERS (k)

THE NUMBER OF CLUSTERS (k)

The easy way: You cheady know it (domain knowledge)

The hard way: "The elbow method"

cost fuctions $C = \sum_{i}^{n} ||x_i - \mu(x_i)||^2$ always decreases with k

WHERE k-MEANS FAILS

CODE EXAMPLE

Jupyter Notebook Clustering methods

CLUSTERING

- What is clustering?
- k-means clustering
- Agglomerative clustering
- DBSCAN
- Application

AGGLOMERATIVE CLUSTERING

let each point be its own cluster while there are more than I cluster: merge the two closest clusters

AGGLOMERATIVE CLUSTERING

THE DISTANCE BETWEEN CLUSTERS

"single link"
(min distance)

> sensitive to
outliers/ucise

"complete link"

(max distance)

nay break

large desters

several offers...

"Word's method"
(change in cost function)

I difficulty unth

different sizes/

veired shapes

CODE EXAMPLE

Jupyter Notebook Clustering methods

CLUSTERING

- What is clustering?
- k-means clustering
- Agglomerative clustering
- DBSCAN
- Application

DBSCAN

density-based spatial clustering of applications with noise

magnetition points into dense regions separated by not so dense regions

• How do we measure density?

= number of points în a circle of radius &

• What is a dense region?

= density of at least n points

I. Draw a circle of radius ϵ around every point. This region is the ϵ -neighbourhood.

- I. Draw a circle of radius ϵ around every point. This region is the ϵ -neighbourhood.
- 2. If the ε-neighbourhood contains at least n (=4) points, we consider the point a **core** point •.

- Draw a circle of radius ε around every point.
 This region is the ε-neighbourhood.
- 2. If the ε-neighbourhood contains at least n (=4) points, we consider the point a **core** point •.
- 3. If the point is not a core point, but is in the ε-neighbourhood of one, it is a **border** point ...

- Draw a circle of radius ε around every point.
 This region is the ε-neighbourhood.
- 2. If the ε-neighbourhood contains at least n (=4) points, we consider the point a **core** point •.
- 3. If the point is not a core point, but is in the ε-neighbourhood of one, it is a **border** point ...
- 4. Otherwise, it is a **noise** point **.**

- Draw a circle of radius ε around every point.
 This region is the ε-neighbourhood.
- 2. If the ε-neighbourhood contains at least n (=4) points, we consider the point a **core** point •.
- 3. If the point is not a core point, but is in the ε-neighbourhood of one, it is a **border** point ...
- 4. Otherwise, it is a **noise** point **.**
- 5. Get rid of **noise** points.

- Draw a circle of radius ε around every point.
 This region is the ε-neighbourhood.
- 2. If the ε-neighbourhood contains at least n (=4) points, we consider the point a **core** point •.
- 3. If the point is not a core point, but is in the ε-neighbourhood of one, it is a **border** point ...
- 4. Otherwise, it is a **noise** point **.**
- 5. Get rid of **noise** points.
- 6. All **core** points reachable through each other's ε-neighbourhoods belong to the same cluster.

- Draw a circle of radius ε around every point.
 This region is the ε-neighbourhood.
- 2. If the ε-neighbourhood contains at least n (=4) points, we consider the point a **core** point •.
- 3. If the point is not a core point, but is in the ε-neighbourhood of one, it is a **border** point ...
- 4. Otherwise, it is a **noise** point **.**
- 5. Get rid of **noise** points.
- 6. All **core** points reachable through each other's ε-neighbourhoods belong to the same cluster.
- 7. All **border** points are assigned to the cluster of closest core point.

DETERMINING ε AND n

CODE EXAMPLE

Jupyter Notebook Clustering methods

COMPARING THE MODELS

	Pros	Cons
k-means clustering	Efficient	Can't handle no ise/outliers Can't handle meiral shapes Enitialization User must provide k
Agglomerative clustering	No a prier huculedge of Holvsters needed	Dendrograms can be ambiguous Computationally heavy Each distance metric has its own problems
DBSCAN	Weird shapes Handles outliers No apriori huculedy of # clusters needed	Trouble with différent densities

CLUSTERING

- What is clustering?
- k-means clustering
- Agglomerative clustering
- DBSCAN
- Application

APPLICATION: IMAGE SEGMENTATION

Jupyter Notebook Image segmentation

OUR ANALYSIS SHOWS THAT THERE ARE THREE KINDS OF PEOPLE IN THE WORLD: THOSE WHO USE K-MEANS CLUSTERING WITH K=3, AND TWO OTHER TYPES WHOSE QUALITATIVE INTERPRETATION 15 UNCLEAR.