Congratulations! You passed!

Grade received 100% Latest Submission Grade 100% To pass 80% or higher

Go to next item

1. The inverse Jacobian J^{-1} for a parallel robot maps the end-effector twist $\mathcal V$ to the actuated joint velocities $\dot{\theta}$, and therefore the inverse Jacobian has n rows (if there are n actuators) and 6 columns (since a twist is 6-dimensional).

1/1 point

If the twist \mathcal{V} consists of a 1 in the i'th element and zeros in all other elements, then what is the corresponding vector of actuated joint velocities $\dot{\theta}$?

- $\bigcirc \ \, \text{ The } i \text{'th row of } J^{-1}.$
- igodelight The i'th column of J^{-1} .
 - **⊘** Correct
- 2. For the 3xRRR planar parallel mechanism shown below, let ϕ be the orientation of the end-effector frame and $p \in \mathbb{R}^2$ be the vector p expressed in fixed frame coordinates. Let $a_i \in \mathbb{R}^2$ be the vector a_i expressed in fixed frame coordinates and $b_i \in \mathbb{R}^2$ be the vector b_i expressed in the moving body frame coordinates. Define vector $d_i = p + Rb_i a_i$ for i = 1, 2, 3, where

$$R = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}$$

Derive a set of independent equations relating (ϕ, p) and $(\theta_1, \theta_2, \theta_3)$. Which of the following is correct?

- $(p + Rb_i a_i)^2 = 2L^2(1 + \cos \theta_i), i = 1, 2, 3.$
- $(p + Rb_i a_i)^{\mathsf{T}} (p + Rb_i a_i) = 2L^2 (1 \sin \theta_i), i = 1, 2, 3.$
- $(p + Rb_i a_i)^{\mathsf{T}} (p + Rb_i a_i) = 2L^2 (1 + \cos \theta_i), i = 1, 2, 3.$
- **⊘** Correct