Google Colab (Google Colaboratory) ile Makine Öğrenmesi ve Derin Öğrenme Sklearn & Keras Test Ortamı Hazırlanması

FERDİ GÜL –

contact@ferdigul.com

İÇİNDEKİLER

- 1. Colab Nedir?
- 2. Geliştirme Ortamının Hazırlanması
 - 2.1 Google Drive'da çalışma klasörü oluşturma
 - 2.2 Google Drive'da çalışma klasörü oluşturma:
 - 2.3 Yeni Notebook Ortamının Kurulması
 - a. Colab Hesabına Giriş
 - b. Yeni Notebook hesabı oluşturma
 - c. Google Drive Çalışma ortamı Colab Bağlaması
 - 2.4 GPU Ayarlaması
 - 2.5 Run the sample
- 3. Projeye Hazır Hale Getirme
- 4. SKLEARN Kütüphanesi ile Doğrusal Regresyon Analizi
- 5. KERAS Convolutional Neural Network (CNN) ile MNIST Rakım Tanıma Problemini Çözme
 - 5.1 !python komutu ile Çalıştırma
 - 5.2 Jupyter Notebook ile Çalıştırma

KAYNAKÇA

1. Colab

- Ücretsiz Araştırma Topluluğu
- Chrome, Firefox, Safari
- Jupyter Notebook
- Tesla K80 GPU Free
- Python2.7 ve python3.6

2.2 Google Drive'da Çalışma Klasörü Oluşturma:

2.2 Çalışma Dosyalarımızın Drive Ortamına Yüklenmesi

https://drive.google.com/file/d/15w4C2zP9PGTDjCFA5Cr9_NjY3ahjY4_-/view?usp=sharing

2. Yeni Notebook Ortamının Kurulması

a. Colab Hesabına Giriş:

#Link: http://colab.research.google.com/

b. Yeni Notebook Oluşturma

2. Yeni Notebook Ortamının Kurulması

c. Google Drive Çalışma Ortamı Colab Bağlantısı

File>"Located in Drive"

23 Yeni Notebook Ortamının Kurulması

SON GÖRÜNÜM

My Drive > Colab_Uygulama	*
Folders	
data	
Files	
the sales	run2.ipynb
	port datetime int(datetime.datetime.now()) pt-get install -y -qq software-properties-co dd-apt-repository -y pps:alessandro-strade/p pt-get update -qq 2>&1 > /dev/null pt-get -y install -qq google-drive-ocamlfuse om google.colab import auth th.authenticate_user() om oauth2client.client import GoogleCredentieds - GoogleCredentials.get application defa port getpass codle-drive-ocamlfuse -headless -id=(creds.c
test.py	co run2.ipynb

Google drive üzerinde projemizin olduğu dizine gittiğimizde; oluşacak son görünüm yukarıdaki gibi oluşması beklenmektedir.

2.4 GPU Ayarlaması

İlk önce run2.ipyndb>Open with>Google Colaboratory diyerek notebookumuzu CoLab üzerinde açabiliriz.

2.4 GPU Ayarlaması

Ardından **Edit>Notebook Settings** özelliği ile ücretsiz bize sunulan GPU hizmetinden yararlanabiliriz.

Dökümanı kaydettiğimizde, kod hücrelerindeki çıktıların atılıp atılmayacağını bize söylemektedir.

Omit code cell output when saving this notebook

24 GPU Ayarlaması

GPU Kontrol Etme

import tensorflow as tf
tf.test.gpu_device_name()

25 Run the sample:

```
from datetime import datetime

a=datetime.now()

print(a)

C 2019-11-28 18:15:37.336756
```

Not-1: Yeni Kod Bloğu ya da yorum satırı eklemek için sol üstteki bölümleri kullanabiliriz:

```
+ Code + Text
```

Not-2: Notebookta sadece blokları çalıştırmak için "Ctrl+Enter" diyebiliriz ya da Runtime>Run all ile tüm blokları adım adım çalıştırabiliriz.

Part I

```
# Install a Drive FUSE wrapper.
# https://github.com/astrada/google-drive-ocamlfuse
```

!apt-get install -y -qq software-properties-common python-software-properties module-init-tools !add-apt-repository -y ppa:alessandro-strada/ppa 2>&1 > /dev/null !apt-get update -qq 2>&1 > /dev/null !apt-get -y install -qq google-drive-ocamlfuse fuse

Part II

Generate auth tokens for Colab from google.colab import auth auth.authenticate_user()

Part III

Generate creds for the Drive FUSE library.

from oauth2client.client import GoogleCredentials creds = GoogleCredentials.get_application_default() import getpass

!google-drive-ocamlfuse -headless -id={creds.client_id} -secret={creds.client_secret} < /dev/null 2>&1 | grep URL vcode = getpass.getpass()

!echo {vcode} | google-drive-ocamlfuse -headless -id={creds.client_id} -secret={creds.client_secret}

Part IV

Create a directory and mount Google Drive using that directory.

!mkdir -p drive !google-drive-ocamlfuse drive E: Package 'python-software-properties' has no installation candidate Selecting previously unselected package google-drive-ocamIfuse. (Reading database ... 145605 files and directories currently installed.) Preparing to unpack .../google-drive-ocamIfuse_0.7.14-0ubuntu1~ubuntu18.04.1_amd64.deb ... Unpacking google-drive-ocamIfuse (0.7.14-0ubuntu1-ubuntu18.04.1) ... Setting up google-drive-ocamIfuse (0.7.14-0ubuntu18.04.1) ... Processing triggers for man-db (2.8.3-2ubuntu0.1) ... Go to the following link in your browser:

https://accounts.google.com/o/oauth2/auth?code_challenge=w_-CsvZh100b0zB8prpTDiywCRiKEYhLAhDZEzypfPl&prompt=select_account&code_challenge=w_-CsvZh100b0zB8prpTDiywCRiKEYhLAhDZEzypfPl&prompt=select_account&code_challenge=w_-CsvZh100b0zB8prpTDiywCRiKEYhLAhDZEzypfPl&prompt=select_account&code_challenge=w_-CsvZh100b0zB8prpTDiywCRiKEYhLAhDZEzypfPl&prompt=select_account&code_challenge=w_-CsvZh100b0zB8prpTDiywCRiKEYhLAhDZEzypfPl&prompt=select_account&code_challenge=w_-CsvZh100b0zB8prpTDiywCRiKEYhLAhDZEzypfPl&prompt=select_account&code_challenge=w_-CsvZh100b0zB8prpTDiywCRiKEYhLAhDZEzypfPl&prompt=select_account&code_challenge=w_-CsvZh100b0zB8prpTDiywCRiKEYhLAhDZEzypfPl&prompt=select_account&code_challenge=w_-CsvZh100b0zB8prpTDiywCRiKEYhLAhDZEzypfPl&prompt=select_account&code_challenge=w_-CsvZh100b0zB8prpTDiywCRiKEYhLAhDZEzypfPl&prompt=select_account&code_challenge=w_-CsvZh100b0zB8prpTDiywCRiKEYhLAhDZEzypfPl&prompt=select_account&code_challenge=w_-CsvZh100b0zB8prpTDiywCRiKEYhLAhDZEzypfPl&prompt=select_account&code_challenge=w_-CsvZh100b0zB8prpTDiywCRiKEYhLAhDZEzypfPl&prompt=select_account&code_challenge=w_-CsvZh100b0zB8prpTDiywCRiKEYhLAhDZEzypfPl&prompt=select_account&code_challenge=w_-CsvZh100b0zB8prpTDiywCRiKEYhLAhDZEzypfPl&prompt=select_account&code_challenge=w_-CsvZh100b0zB8prpTDiywCRiKEYhLAhDZEzypfPl&prompt=select_account&cdode_challenge=w_-CsvZh100b0zB8prpTDiywCRiKEYhLAhDZEzypfPl&prompt=select_account&cdode_challenge=w_-CsvZh100b0zB8prpTDiywCRiKEYhLAhDZEzypfPl&prompt=select_account&cdode_challenge=w_

Google

Oturum aç

Lütfen bu kodu kopyalayın, uygulamanıza geçin ve kodu oraya yapıştırın:

4/twG17dK_5FfIgrM4iHS4JQn4vEe_tk1lU7F8JcTdeHUzI9wF

Part V

print ('Files in Drive:') !ls drive/

```
[34] print ('Files in Drive:')
!ls drive/

Files in Drive:
'Colab Notebooks' Colab_Uygulama foo.txt ls
```

File pathimize sys kütüphanesinden yararlanarak projemizde göstermemiz önemlidir.

Colab proje klasörümüz içindeki "plot_linear.py" kodlarını çalıştırdığımızda ise aşağıdaki gibi çizim elde ettik:

Automatically created module for IPython interactive environment Coefficients: [938.23786125]

Mean squared error: 2548.07 Variance score: 0.47

#Githublink:

https://github.com/justmarkham/scikit-learn-videos/blob/master/06 linear regression.ipynb

06_linear_regression.ipynb isimli dosyayı **"linear_regression.ipynb"** olarak değiştirip Colab
Proje klasörümüzün içine attıktan sonra githubdan
indirdiğimiz "data" klasörünüde aynı şekilde driverda
aynı dizinde yer alacak şekilde import edebiliriz.

Bu sefer notebook olarak çalıştırmak için "linear_regression.ipynb" isimli dosyaya sağ tıklayıp Colab üzerinde açabiliriz.

GPU kullanmak istersek yine aynı şekilde Edit>Notebook Settings

https://colab.research.google.com/drive/1AQ0wfbdOe5hkLOeqGA P5BZwv-zoJ3gQ?authuser=1#scrollTo=GiwFIP5bVaeN

Sonuçlarımızı visualize etmek için;

!pip install seaborn

Şeklinde seaborn kütüphanesini yüklü değilse yüklemeliyiz.

```
[ ] # Install a Drive FUSE wrapper.
    # https://github.com/astrada/google-drive-ocamlfuse
     !apt-get install -y -qq software-properties-common python-software-properties module-init-tools
    !add-apt-repository -y ppa:alessandro-strada/ppa 2>&1 > /dev/null
     !apt-get update -qq 2>&1 > /dev/null
     !apt-get -y install -qq google-drive-ocamlfuse fuse
    E: Package 'python-software-properties' has no installation candidate
    # Generate auth tokens for Colab
     from google.colab import auth
    auth.authenticate user()
    # Generate creds for the Drive FUSE library.
    from oauth2client.client import GoogleCredentials
    creds = GoogleCredentials.get application default()
     import getpass
     !google-drive-ocamlfuse -headless -id={creds.client id} -secret={creds.client secret} < /dev/null 2>&1 | grep URL
    vcode = getpass.getpass()
     !echo {vcode} | google-drive-ocamlfuse -headless -id={creds.client id} -secret={creds.client secret}
    . . . . . . . . . .
```

```
[ ] # Create a directory and mount Google Drive using that directory.
!mkdir -p drive

[ ] !google-drive-ocamlfuse drive

[ ] !pip install seaborn

[ ] print ('Files in Drive:')
!ls drive/

[ Files in Drive:
    'Colab Notebooks' Colab_Uygulama foo.txt ls
```

```
import sys
sys.path.insert(0, 'drive/Colab_Uygulama')

# conventional way to import pandas
import pandas as pd
```

```
[ ] # Create a directory and mount Google Drive using that directory.
!mkdir -p drive

[ ] !google-drive-ocamlfuse drive

[ ] !pip install seaborn

[ ] print ('Files in Drive:')
!ls drive/

C> Files in Drive:
'Colab Notebooks' Colab Uygulama foo.txt ls
```

File pathimize sys kütüphanesinden yararlanarak projemizde göstermemiz önemlidir.

```
import sys
sys.path.insert(0, 'drive/Colab_Uygulama')

# conventional way to import pandas
import pandas as pd
```

Gör üd üğ ügibi "data/Advertising.csv" dataset dosyamız okunabildi.

```
# read CSV file from the 'data' subdirectory using a relative path
data = pd.read_csv('drive/Colab_Uygulama/data/Advertising.csv', index_col=0)

# display the first 5 rows
data.head()
```

C,		TV	Radio	Newspaper	Sales
	1	230.1	37.8	69.2	22.1
	2	44.5	39.3	45.1	10.4
	3	17.2	45.9	69.3	9.3
	4	151.5	41.3	58.5	18.5
	5	180.8	10.8	58.4	12.9

Seaborn kütüphanesi ile TV, Radio, Newspaper öz gibi niteliklerini visualize ettiğimizde aşağıdaki sonuç olacaktır.

Sklearn kütüphanesinin doğrusal regresyon analizi için aşağıdaki kütüphane import adımını unutmamamız gerekmektedir:

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)
```

Modelimizin coefficients değerleri için aşağıdakileri girebiliriz.

```
▼ Interpreting model coefficients

[48] # print the intercept and coefficients
    print(linreg.intercept_)
    print(linreg.coef_)

[3.87696662231793
    [0.04656457 0.17915812 0.00345046]

[49] # pair the feature names with the coefficients
    list(zip(feature_cols, linreg.coef_))

[5. [('TV', 0.046564567874150295),
    ('Radio', 0.17915812245088839),
    ('Newspaper', 0.0034504647111804343)]
```



```
# compute the RMSE of our predictions
print(np.sqrt(metrics.mean_squared_error(y_test, y_pred)))
```

Prediction ımızın RMSE yani Root Mean

1.3879034699382888

RMSE'in güzelliği ise, MSE'den daha popülerdir ve "y" unitlerde yorumlanabilir olma özelliğidir.

5.1 !python Komutu ile Çalıştırma

run2.ipynb daha önce oluşturduğumuz notebook üzerinde çalıştırabiliriz.

"rakam_tanisma_CNN_MNIST.py" dosyasını driverımıza ekledikten sonra Colab üzerinde Çalıştırmak için şu komutu girebiliriz.

```
!python3 drive/Colab_Uygulama/rakam_tanima_CNN_MNIST.py
```

Ardından outputumuz aşağıdaki gibi olması beklenmektedir:

12 adımda gerçekleşen işlemler listelendi. Test kaybı ve doğruluğumuz listelenmiştir.

```
2019-11-28 22:55:44.564331: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
Epoch 2/12
60000/60000 [================= ] - 4s 66us/step - loss: 0.0908 - acc: 0.9728 - val_loss: 0.0416 - val_acc: 0.9857
Epoch 3/12
60000/60000 [========================= - - 4s 66us/step - loss: 0.0688 - acc: 0.9796 - val loss: 0.0362 - val acc: 0.9870
Epoch 4/12
60000/60000 [================ - - 4s 66us/step - loss: 0.0557 - acc: 0.9834 - val loss: 0.0330 - val acc: 0.9882
Epoch 5/12
60000/60000 [=================== - - 4s 68us/step - loss: 0.0471 - acc: 0.9858 - val loss: 0.0292 - val acc: 0.9901
Epoch 6/12
Epoch 7/12
Epoch 9/12
60000/60000 [============== ] - 4s 66us/step - loss: 0.0324 - acc: 0.9904 - val_loss: 0.0261 - val_acc: 0.9907
Enoch 10/12
60000/60000 [============= ] - 4s 67us/step - loss: 0.0291 - acc: 0.9909 - val loss: 0.0239 - val acc: 0.9920
Epoch 11/12
60000/60000 [========== ] - 4s 66us/step - loss: 0.0282 - acc: 0.9912 - val loss: 0.0241 - val acc: 0.9915
Test loss: 0.024907596350954554
Test accuracy: 0.9917
```

5.2 Jupyter Notebook ile Çalıştırma

Notebook olarak çalıştırmak istiyorsak yine 3. Konuda olduğu gibi aynı adımları izleyebiliriz.

https://github.com/deeplearningturkiye/pratik-derin-ogrenme-uygulamalari/tree/master/KERAS/notebooks

5.2 Jupyter Notebook ile

Hazır CoLab Ortamı

https://colab.research.google.com/drive/1IYydl3gSz1sKdxrKUclBrFm6TC8zbM6P?authuser=1#scrollTo=KU0N

<u>BitONcNg</u> Githubtaki CNN ile MNIST rakam tanıma notebook'u indirilip 3. bölümdeki gibi colab projemizde açalım:

5.2 Jupyter Notebook ile

```
#Install a Drive FUSE wrapper.
    # https://github.com/astrada/google-drive-ocamlfuse
    !apt-get install -v -qq software-properties-common python-software-properties module-init-tools
    !add-apt-repository -y ppa:alessandro-strada/ppa 2>&1 > /dev/null
    !apt-get update -qq 2>&1 > /dev/null
    !apt-get -y install -qq google-drive-ocamlfuse fuse
r. E: Package 'python-software-properties' has no installation candidate
    Selecting previously unselected package google-drive-ocamlfuse.
    (Reading database ... 145605 files and directories currently installed.)
    Preparing to unpack .../google-drive-ocamlfuse 0.7.14-0ubuntu1~ubuntu18.04.1 amd64.deb ...
    Unpacking google-drive-ocamlfuse (0.7.14-0ubuntu1~ubuntu18.04.1) ...
    Setting up google-drive-ocamlfuse (0.7.14-0ubuntu1~ubuntu18.04.1) ...
    Processing triggers for man-db (2.8.3-2ubuntu0.1) ...
 1 # Generate auth tokens for Colab
    from google.colab import auth
    auth.authenticate user()
[ ] # Generate creds for the Drive FUSE library.
    from oauth2client.client import GoogleCredentials
    creds = GoogleCredentials.get_application_default()
    import getpass
    !google-drive-ocamlfuse -headless -id={creds.client_id} -secret={creds.client_secret} < /dev/null 2>&1 | grep URL
    vcode = getpass.getpass()
    !echo {vcode} | google-drive-ocamlfuse -headless -id={creds.client_id} -secret={creds.client_secret}
```

Bu adımları daha önce yapmıştık ancak sıfırdan yaptığımızı varsayarsak gereksinimleri daha önce yüklememiş gibi ilerleyelim:

5.2 Jupyter Notebook ile

Bu adımları daha önce yapmıştık ancak sıfırdan yaptığımızı varsayarsak gereksinimleri daha önce yüklememiş gibi ilerleyelim:

5.2 Jupyter Notebook ile

Test accuracy: 0.9918

```
Epoch 8/12
60000/60000 [============] - 9s 152us/step - loss: 0.0342 - acc: 0.9900 - val loss: 0.0322 - val acc: 0.9900
Epoch 9/12
60000/60000 [============] - 9s 152us/step - loss: 0.0305 - acc: 0.9905 - val loss: 0.0276 - val acc: 0.9912
Epoch 10/12
60000/60000 [============] - 9s 152us/step - loss: 0.0283 - acc: 0.9914 - val loss: 0.0254 - val acc: 0.9919
Epoch 11/12
60000/60000 [============] - 9s 153us/step - loss: 0.0259 - acc: 0.9922 - val_loss: 0.0290 - val_acc: 0.9907
Epoch 12/12
<keras.callbacks.History at 0x7fb1b162be10>
# test işlemini gerçekleştirelim ve sonuçları ekrana yazdıralım
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
Test loss: 0.0276763818390541
```

<u>KAYNAKÇA</u>

Proje Link:

https://drive.google.com/drive/folders/1hKfz_wl0ViCaHaXppu81HBVMdA5hSPNF?usp=sharing

https://github.com/justmarkham/scikit-learn-videos

https://medium.com/deep-learning-turkiye/google-colab-ile-%C3%BCcretsiz-gpu- kullan%C4%B1m%C4%B1-30fdb7dd822e

https://stackoverflow.com/questions/48967757/cant-read-a-file-in-google-colaboratory

TEŞEKKÜRLER ©

