Сравнение эффективности базовых моделей и моделей, предобученных для решения задачи анализа тональности текста, при дообучении для анализа тональности именованных сущностей

Подготовили Мария Кравчук, Элина Ожогова & Таисия Тыщишина

Постановка задачи: повторение

Таргетированный анализ тональности (TSC, target-dependent sentiment classification) — это подзадача анализа тональности, нацеленная на определение отношения к конкретным сущностям и их свойствам или темам.

aspect-1

aspect-2

Обзор существующих подходов: [Hamborg et al., 2021]

Появление эмбеддингов слов и глубокого обучения, включая нейронные языковые модели, такие как BERT, привело к скачку производительности во многих дисциплинах, связанных с NLP: в TSC, например, макро F1 выросла с 63.3 до 75.8. В то время как традиционные исследования TSC были сосредоточены на тщательном конструировании признаков и создании словарей, теперь исследователи занимаются разработкой нейронных архитектур и тонкой настройкой базовых языковых моделей.

Обзор существующих подходов: [Hamborg et al., 2021]

(о сложности TSC для новостных текстов)

Текст в новостных статьях отличается от текстов в социальных сетях тем, что авторы новостей обычно не выражают свое отношение к целевой аудитории явно, поскольку ожидается, что язык в новостях должен быть нейтральным. Сложность новостного TSC усугубляется тем, что разные читатели могут по-разному оценивать отношение статьи к целевой сущности.

Предыдущие подходы к TSC в основном используют словари эмоций, созданные вручную или расширяемые полуавтоматически.

- 2012-2014, конференция CLEF, соревнование RepLab (2 языка: en, es)
 - Разработана методология оценки и тестовые коллекции для двух задач мониторинга репутации: (1) классификация твитов в соответствии с измерениями репутации и (2) идентификация и категоризация лиц, формирующих общественное мнение [Enrique et al., 2014].
- 2015-2016, воркшопы SemEval (8 языков: en, ar, ch, du, fr, ru, es, tu)
 - Задача: определить отношение к конкретным характеристикам, обсуждаемым в отзывах пользователей [Pontiki et al., 2016].

Service was slow, but the people were friendly. → {trg: "Service", pol: "negative"}, {trg: "people", pol: "positive"}

2016-2017, воркшопы SemEval

Задача: определить отношение (положительное или отрицательное) к определённой теме, обсуждаемой в посте из социальной сети [Nakov et al., 2016]

"Общая тенденция … заключается в том, что большинство команд, занявших верхние позиции …, использовали глубокое обучение, включая CNNs, RNNs сети и эмбеддинги слов (универсальные или для конкретной задачи)".

[Sun et al., 2019]

Использование вспомогательного предложения для преобразования (T)ABSA из задачи классификации одного предложения в задачу классификации пар предложений. Получены передовые для того времени результаты (на основе предобученной модели BERT).

• [Shin et al., 2020]

AUTOPROMPT — подход к разработке автоматически сконструированных промптов, которые извлекают знания из предобученных MLM. Результаты анализа тональности показали, что в условии дефицита данных промптинг языковой модели может быть эффективнее, чем тонкая настройка.

Последним трендом в таргетированном анализе тональности является так называемый *структурированный анализ тональности*, который включает в себя извлечение из текстов кортежей, описывающих мнения в виде:

 $\langle h, t, e, p \rangle$, где h — носитель мнения, а p — тональность (положительная или отрицательная) по отношению к сущности t, выраженное посредством слова или фразы e.

SemEval 2022 фокусируется на предсказании кортежей (t, h, e, p).

Соревнования для русского языка

2015 г.

изучена оценка тональности на основе обзоров на рестораны и автомобили [Loukachevitch et al., 2015].

2015-2016 гг.

решение задачи мониторинга репутации банков и телекоммуникационных компаний в постах из социальной сети [Loukachevitch and Rubtsova, 2015]

2023 г.

RuSentNE-2023 [Golubev et al., 2023], [Kabaev et al., 2023]

Решения в рамках RuSentNE-2023

- Базовая модель: задача анализа тональности как классификация пары предложений (на основе ruBERT-base).
- 1 место

Применение разных моделей к (1) исходному предложению и (2) предложению с замененными маской сущностями (на основе RuRoBERTa-large, XLM-RoBERTa-large, RemBERT).

2 место

Использование модели RuRoBERTa-large, выделение именованных сущностей с помощью пунктуации или токена <[NE]>, борьба с дисбалансом методом взвешивания классов (WINS).

Анализ данных RuSentNE-2023: Датасет

- Датасет: Wikinews => NEREL => RuSentNE => RuSentNE-2023
- **NEREL:** из Wikinews извлечены тексты с большим количеством именованных сущностей, размечены 29 типов именованных сущностей и 49 типов отношений между ними [Loukachevitch et al., 2021]
- **RuSentNE**: 400 текстов из NEREL с наибольшей относительной долей оценочной лексики, размеченные сущности использованы как таргеты; 12 типов сущностей, 11 типов отношений
- **RuSentNE-2023:** выбраны наиболее частотные сущности из RuSentNE, разметка отношений преобразована в разметку тональности сущностей
- Итого: 6637 предложения в обучающей выборке, 2845 в валидационной,
 1947 в тестовой

Анализ данных RuSentNE-2023: Датасет

• Итоговая разметка: сущность, тип сущности, метка класса (-1, 0, 1)

sentence	entity	entity_tag	label
Восемь бадминтонисток были дисквалифицированы на Олимпийских играх	бадминтонисток	PROFESSION	-1
Ещё недавно, после завершения матча сборной России и Португалии, Юрий приезжал в Тамбов с семьёй.	Португалии	COUNTRY	0
Владислав первым заметил возгорание и начал тушить его.	Владислав	PERSON	1

Распределение сущностей в датасете

Обучающая выборка

Тестовая выборка

Распределение классов в датасете

Большинство примеров в обучающей выборке относятся к нейтральному

классу.

Цель и задачи

Цель:

Сравнить качество базовых и предобученных (анализу тональности текстов) моделей при обучении анализу тональности к именованным сущностям.

Задачи:

- 1. Выравнивание количества данных в разных классах с помощью автоматического перефразирования
- 2. Обучение базовой LLM на полученном датасете
- 3. Обучение предобученной анализу тональности текстов LLM
- 4. Оценка качества

Расширение датасета

Для борьбы с дисбалансом классов планируется расширить набор данных положительного и отрицательного классов с помощью автоматического перефразирования.

Модель для перефразирования: rut5-base-paraphraser* (парафразер для предложений на русском языке, обученный на корпусах субтитров и новостных заголовков).

print(paraphrase('Владислав первым заметил возгорание и начал тушить его.'))

Владислав первый заметил пожар и начал его тушить.

^{*}https://huggingface.co/cointegrated/rut5-base-paraphraser

Планируемая модель

Для сравнения были выбраны:

- Модель, ранее не обучавшаяся на задаче анализа тональности:
 rubert-base-cased* (обучена на русскоязычной википедии и новостных текстах)
- Модель, обученная для анализа тональности текста: rubert-base-cased-sentiment** (обучена на отзывах и текстах из социальных сетей с разметкой тональности)

*https://huggingface.co/DeepPavlov/rubert-base-cased

^{**}https://huggingface.co/blanchefort/rubert-base-cased-sentiment

Литература

Enrique et al., 2014 – Amigó, E., Carrillo-de-Albornoz, J., Chugur, I., Corujo, A., Gonzalo, J., Meij, E., ... & Spina, D. (2014). Overview of replab 2014: author profiling and reputation dimensions for online reputation management. In Information Access Evaluation. Multilinguality, Multimodality, and Interaction: 5th International Conference of the CLEF Initiative, CLEF 2014, Sheffield, UK, September 15-18, 2014. Proceedings 5 (pp. 307-322). Springer International Publishing.

Golubev et al., 2023 – Golubev, A., Rusnachenko, N., & Loukachevitch, N. (2023). RuSentNE-2023: Evaluating entity-oriented sentiment analysis on Russian news texts. arXiv preprint arXiv:2305.17679.

Hamborg et al., 2021 – Hamborg, F., Donnay, K., & Gipp, B. (2021). Towards target-dependent sentiment classification in news articles. In Diversity, Divergence, Dialogue: 16th International Conference, iConference 2021, Beijing, China, March 17–31, 2021, Proceedings, Part II 16 (pp. 156-166). Springer International Publishing.

Kabaev et al., 2023 – Kabaev, A., Podberezko, P., Kaznacheev, A., & Abdullayeva, S. (2023). HAlf-MAsked Model for named entity sentiment analysis. arXiv preprint arXiv:2308.15793.

Loukachevitch et al., 2015 – Loukachevitch, N., Blinov, P., Kotelnikov, E., Rubtsova, Y., Ivanov, V., & Tutubalina, E. (2015). SentiRuEval: testing object-oriented sentiment analysis systems in Russian. SCOPUS22217932-2015-2-14-SID84952793847.

Литература

Loukachevitch et al., 2021 – Loukachevitch, N., Artemova, E., Batura, T., Braslavski, P., Denisov, I., Ivanov, V., ... & Tutubalina, E. (2021). NEREL: A Russian dataset with nested named entities, relations and events. arXiv preprint arXiv:2108.13112.

Loukachevitch and Rubtsova, 2015 – Loukachevitch, N., & Rubtsova, Y. (2015). Entity-oriented sentiment analysis of tweets: results and problems. In Text, Speech, and Dialogue: 18th International Conference, TSD 2015, Pilsen, Czech Republic, September 14-17, 2015, Proceedings 18 (pp. 551-559). Springer International Publishing.

Nakov et al., 2016 – Nakov, P., Ritter, A., Rosenthal, S., Sebastiani, F., & Stoyanov, V. (2019). SemEval-2016 task 4: Sentiment analysis in Twitter. arXiv preprint arXiv:1912.01973.

Pontiki et al., 2016 – Pontiki, M., Galanis, D., Papageorgiou, H., Androutsopoulos, I., Manandhar, S., Al-Smadi, M., ... & Eryiğit, G. (2016, January). Semeval-2016 task 5: Aspect based sentiment analysis. In International workshop on semantic evaluation (pp. 19-30).

Shin et al., 2020 – Shin, T., Razeghi, Y., Logan IV, R. L., Wallace, E., & Singh, S. (2020). Autoprompt: Eliciting knowledge from language models with automatically generated prompts. arXiv preprint arXiv:2010.15980.

Sun et al., 2019 – Sun, C., Huang, L., & Qiu, X. (2019). Utilizing BERT for aspect-based sentiment analysis via constructing auxiliary sentence. arXiv preprint arXiv:1903.09588.