EE604A - DIGITAL IMAGE PROCESSING ASSIGNMENT

Satya Prakash Panuganti, 14610

30 August, 2017

Solution 1

Solution 2

Solution 3

Solution 4

We are assuming that $\eta_i(x_1, y_1)$ and $\eta_j(x_2, y_2)$ are independent if $i \neq j$ or $x_1 \neq x_2$ or $y_1 \neq y_w$.

$$\therefore if \ i \neq j, \ E[\eta_i(x,y)\eta_j(x,y)] = 0 \tag{1}$$

$$We \ have, \ g_{i}(x,y) = f_{i}(x,y) + \eta_{i}(x,y)$$

$$Also, \ f_{i}(x,y) = f(x,y)$$

$$Now, \ \hat{g}(x,y) = \frac{1}{K} \sum_{i=1}^{K} g_{i}(x,y)$$

$$= \frac{1}{K} K f(x,y) + \frac{1}{K} \sum_{i=1}^{K} \eta_{i}(x,y)$$

$$= f(x,y) + \frac{1}{K} \sum_{i=1}^{K} \eta_{i}(x,y)$$

$$Now, \ noise \ variance, \ E[(g(\hat{x},y) - f(x,y))^{2}] = E[(\frac{1}{K} \sum_{i=1}^{K} \eta_{i}(x,y))^{2}]$$

$$= \frac{1}{K^{2}} \sum_{i=1}^{K} \sum_{j=1}^{K} E[\eta_{i}(x,y)\eta_{j}(x,y)]$$

$$= \frac{1}{K^{2}} \sum_{i=1}^{K} E[\eta_{i}(x,y)^{2}] \qquad from \ (1)$$

$$= \frac{1}{K^{2}} \sum_{i=1}^{K} \sigma^{2} \qquad \because \ E[\eta_{i}(x,y)^{2}] = \sigma^{2}$$

$$= \frac{\sigma^{2}}{K}$$

$$q.e.d$$

Assignment 2 Page 1/3

Solution 5

Let $f(x, y, z) : \Re^3 \to \Re$. Let $[u \ v \ w]^T$ be the position of $[x \ y \ z]^T$ in a rotated cooridnate frame. The relationship between $[u \ v \ w]^T$ and $[x \ y \ z]^T$ is given by :

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} = R \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 (2)

where,
$$R = [R_1 \ R_2 \ R_3]$$
 (3)

$$= \begin{bmatrix} R_{11} & R_{12} & R_{13} \\ R_{21} & R_{22} & R_{23} \\ R_{31} & R_{32} & R_{33} \end{bmatrix}$$
(4)

Known properties of R, $|R_1| = 1$ (5)

$$|R_2| = 1 \tag{6}$$

$$R_1^T R_2 = 0 (7)$$

$$R_3 = R_1 \times R_2 \tag{8}$$

$$\implies |R_3| = 1 \tag{9}$$

$$R_1^T R_3 = R_2^T R_3 = 0 (10)$$

$$R^{-1} = R^T \tag{11}$$

We can also write,
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = R^T \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$
 from (2), (9) (12)

$$Now, \nabla^2 f(u, v, w) = \frac{\partial^2 f}{\partial^2 u} + \frac{\partial^2 f}{\partial^2 v} + \frac{\partial^2 f}{\partial^2 w}$$
 (13)

$$\frac{\partial f}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial u}$$
(14)

$$=R_{11}\frac{\partial f}{\partial x}+R_{12}\frac{\partial f}{\partial y}+R_{13}\frac{\partial f}{\partial z} \qquad from (4), (10) \qquad (15)$$

Similarly,
$$\frac{\partial f}{\partial v} = R_{21} \frac{\partial f}{\partial x} + R_{22} \frac{\partial f}{\partial y} + R_{23} \frac{\partial f}{\partial z}$$
 (16)

$$\frac{\partial f}{\partial w} = R_{31} \frac{\partial f}{\partial x} + R_{32} \frac{\partial f}{\partial y} + R_{33} \frac{\partial f}{\partial z}$$
 (17)

Assignment 2 Page 2/3

On performing (17) + (18) + (19), we get using (5), (6), (7), (9) and (10)

$$\frac{\partial^2 f}{\partial^2 u} + \frac{\partial^2 f}{\partial^2 v} + \frac{\partial^2 f}{\partial^2 w} = \frac{\partial^2 f}{\partial^2 u} + \frac{\partial^2 f}{\partial^2 v} + \frac{\partial^2 f}{\partial^2 w}$$
 (22)

 $+R_{33}R_{31}\frac{\partial^2 f}{\partial x \partial z}+R_{33}R_{32}\frac{\partial^2 f}{\partial u \partial z}+R_{33}^2\frac{\partial^2 f}{\partial z^2}$

$$\implies \nabla^2 f(u, v, w) = \frac{\partial^2 f}{\partial^2 u} + \frac{\partial^2 f}{\partial^2 v} + \frac{\partial^2 f}{\partial^2 w}$$
 (23)

$$= \frac{\partial^2 f}{\partial^2 x} + \frac{\partial^2 f}{\partial^2 y} + \frac{\partial^2 f}{\partial^2 z} \qquad from (22)$$

(21)

$$= \nabla^2 f(x, y, z) \tag{25}$$

q.e.d

Solution 6

Assignment 2 Page 3 / 3