An Introduction to Manifold

Chapter 1 Euclidean Spaces	
1. Smoon 1.1. 1.2.	oth Functions on a Euclidean Space 1 C^{∞} Analytic Functions 1 Taylor's Theorem with Remainder 2
2. Tang 2.1. 2.2. 2.3. 2.4. 2.5.	gent Vevtors in \mathbb{R}^n as Derivations2The Directional Derivative2Germs of Functions3Derivations at a Point4Vector Fields5Vector Fields as Derivations6
3.1. 3.2. 3.3. 3.4. 3.5. 3.6. 3.7. 3.8. 3.9.	Exterior Algebra of Multicovectors7Dual Spaces7Permutations8Multilinear Functions9The Permutation Action on Multilinear Functions9The Symmetrizing and Alternating Operators10The Tensor Product12The Wedge Product12Anticommutative of the Wedge Product13Associativity of the Wedge Product14A Basis for k -Covectors16
4. Diffe 4.1. 4.2. 4.3. 4.4. 4.5. 4.6. 4.7.	erential Forms on \mathbb{R}^n 17Differential 1-forms and the Differential of a Function18Differential k -Forms19Differential Forms as Multilinear Functions on Vector Fields21The Exterior Derivative22Closed Forms and Exact Forms24Applications to Vector calculus24Convention on Subscripts and Superscripts26

1. Smooth Functions on a Euclidean Space

The calculus of C^{∞} functions will be our primary tool for studying higher-dimensional manifolds.

1.1. C^{∞} Analytic Functions

Let $p=\left(p^{1},\cdots,p^{n}\right)$ be a point in an open subset $U\subset\mathbb{R}^{n}.$

Definition 1.1 Let k be a non-negative integer. A real-valued function $f:U\to\mathbb{R}$ is said to be C^k at p if its partial derivatives

$$\frac{\partial^j f}{\partial x_1^{i_1} \cdots \partial x_n^{i_n}} \tag{1}$$

of all orders $j \leq k$ exist and are continuous at p.

The function $f: U \to \mathbb{R}$ is C^{∞} at p if it is C^k at p for all $k \ge 0$.

A vector-valued function $f: U \to \mathbb{R}^m$ is said to be C^k at p if all of its components f^1, \dots, f^m are C^k at p.

 $f: U \to \mathbb{R}$ is said to be C^k on U if it is C^k at every point $p \in U$.

The set of all C^{∞} functions on U is denoted by $C^{\infty}(U)$ or $\mathcal{F}(U)$.

The function $f: U \to \mathbb{R}$ is real-analytic at p if in some neighborhood of p, it is equal to its Taylor series at p.

A real-analytic function is necessarily C^{∞} , but the converse is not true.

1.2. Taylor's Theorem with Remainder

Definition 1.2 A subset $S \subseteq \mathbb{R}^n$ is **star-shaped** with respect to a point $p \in S$ if for every point $x \in S$, the line segment from p to x lies entirely in S.

Lemma 1.3 Let $f \in C^{\infty}(U)$, where $U \subset \mathbb{R}^n$ is an open subset, star-shaped with respect to a point $p \in U$. Then there are functions $g_1(x), \dots, g_n(x) \in C^{\infty}(U)$ such that

$$f(x) = f(p) + \left(x^i - p^i\right)g_i(x), \quad g_i(x) = \frac{\partial f}{\partial x^i}(p). \tag{2}$$

If f is a C^{∞} function on an open subset U containing p, then there is an $\varepsilon > 0$ such that

$$p \in B(p,\varepsilon) \subset U, \tag{3}$$

where $B(p,\varepsilon) = \{x \in \mathbb{R}^n : ||x-p|| < \varepsilon\}$ is the open ball of radius ε centered at p, which is clearly star-shaped with respect to p.

2. Tangent Vevtors in \mathbb{R}^n as Derivations

In this section, we will find a characterization of tangent vectors in \mathbb{R}^n that will generalize to manifolds.

2.1. The Directional Derivative

To distinguish between points and vectors, we write a point in \mathbb{R}^n as $p = (p^1, \dots, p^n)$ and a vector in the tangent space at p, denoted by $T_p \mathbb{R}^n$, as

$$v = \begin{bmatrix} v^1 \\ \vdots \\ v^n \end{bmatrix} \text{ or } v = \langle v^1, \dots, v^n \rangle.$$
 (4)

We usually denote the standard basis of \mathbb{R}^n by e_1, \dots, e_n , then $v = v^i e_i$ for some $v^i \in \mathbb{R}$. The line through $p = (p^1, \dots, p^n)$ in the direction of $v = (v^1, \dots, v^n)$ has parametrization

$$c(t) = (p^{1} + tv^{1}, \dots, p^{n} + tv^{n}).$$
(5)

Definition 2.1 If f is C^{∞} in a neighborhood of p in \mathbb{R}^n , the **directional derivative** of f at p in the direction of v is defined as the limit

$$D_{v}f = \lim_{t \to 0} \frac{f(c(t)) - f(c(0))}{t}$$

$$= \frac{d}{dt} \Big|_{t=0} f(c(t))$$

$$= \frac{dc^{i}}{dt}(0) \frac{\partial f}{\partial x^{i}}(p)$$

$$= v^{i} \frac{\partial f}{\partial x^{i}}(p).$$
(6)

We write

$$D_v = v^i \frac{\partial}{\partial x^i} \bigg|_p \tag{7}$$

for the map from a function f to its directional derivative $D_v f$.

The association $v \to D_v$ offers a way to characterize tangent vectors as a certain operators on C^{∞} functions.

2.2. Germs of Functions

Definition 2.2 A **relation** on a set S is a subset R of $S \times S$. Given $x, y \in S$, we write $x \sim y$ if and only if $(x, y) \in R$.

A relation R is an **equivalence relation** if it satisfies the following properties for all $x, y, z \in S$:

- (i) Reflexivity: $x \sim x$,
- (ii) Symmetry: If $x \sim y$, then $y \sim x$,
- (iii) **Transitivity:** If $x \sim y$ and $y \sim z$, then $x \sim z$.

Consider the set of all pairs (f, U) where U is a neighborhood of p and $f: U \to \mathbb{R}$ is a C^{∞} function. We say that (f, U) is **equivalent** to (g, V) if there exists a neighborhood $W \subseteq (U \cap V)$ such that $f|_{W} = g|_{W}$.

Definition 2.3 The **germ** of f at p is the equivalence class of the pair (f, U). We write $C_p^{\infty}(\mathbb{R}^n)$, or simply C_p^{∞} , for the set of all germs of C^{∞} functions on \mathbb{R}^n at p.

Definition 2.4 An algebra over a field K is a vector space A over K with a multiplication map

$$\mu: A \times A \to A,\tag{8}$$

usually written $\mu(a,b)=a\cdot b$, that satisfies the following properties for all $a,b,c\in A$ and $r\in K$:

- (i) Associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$,
- (ii) **Distributivity:** $a \cdot (b+c) = a \cdot b + a \cdot c$ and $(a+b) \cdot c = a \cdot c + b \cdot c$,
- (iii) Homogeneity: $r(a \cdot b) = (ra) \cdot b = a \cdot (rb)$.

Usually we write the multiplication as simply ab instead of $a \cdot b$.

Definition 2.5 A map $L: V \to W$ between two vector spaces over the field K is said to be a **linear map** or a **linear operator** if for all $u, v \in V$ and $r \in K$:

- (i) L(u+v) = L(u) + L(v),
- (ii) L(ru) = rL(u).

To emphasize the scalars are in the field K, such a map is said to be K-linear.

Definition 2.6 If A and A' are algebras over a field K, an **algebra homomorphism** is a linear map $L: A \to A'$ that preserves the algebra multiplication: L(ab) = L(a)L(b) for all $a, b \in A$.

The addition and multiplication of functions induce corresponding operations on C_p^{∞} , making it into an algebra over \mathbb{R} .

2.3. Derivations at a Point

For each tangent vector $v \in T_p \mathbb{R}^n$, the directional derivative at p gives a map

$$D_v: C_p^{\infty} \to \mathbb{R}. \tag{9}$$

Definition 2.7 A linear map $D: C_p^{\infty} \to \mathbb{R}$ is called a **derivation** at p or a **point derivation** if it satisfies the Leibniz rule:

$$D(fg) = D(f)g(p) + f(p)D(g)$$
(10)

Denote the set of all derivations at p by $\mathcal{D}_p(\mathbb{R}^n)$, which is a vector space over \mathbb{R} .

Obviously, the directional derivatives at p are all derivations at p, so there is a map

$$\phi: T_p(\mathbb{R}^n) \to \mathcal{D}_p(\mathbb{R}^n),$$

$$v \mapsto D_v = v^i \frac{\partial}{\partial x^i} \bigg|_{\mathbb{R}}.$$
(11)

Since D_v is clearly linear in v, ϕ is a linear map of vector spaces.

Lemma 2.8 If D is a point-derivation of C_p^{∞} , then D(c) = 0 for any constant function c.

Proof. By \mathbb{R} -linearity, D(c) = cD(1). By the Leibniz rule, we have

$$D(1) = D(1 \cdot 1)$$

$$= D(1) \cdot 1(p) + 1(p) \cdot D(1)$$

$$= 2D(1),$$
(12)

which implies that D(1) = 0, and therefore $D(c) = cD(1) = c \cdot 0 = 0$.

Lemma 2.9 The map $\phi: T_p(\mathbb{R}^n) \to \mathcal{D}_p(\mathbb{R}^n)$ is an isomorphism of vector spaces.

Proof. To show that ϕ is injective, suppose $\phi(v) = D_v = 0$ for some $v \in T_p(\mathbb{R}^n)$. For the coordinate functions x^j , we have

$$0 = D_v x^j = v^i \frac{\partial x^j}{\partial x^i} \bigg|_p$$

$$= v^i \delta_i^j$$

$$= v^j, \tag{13}$$

which implies that v = 0. Thus, ϕ is injective.

To show that ϕ is surjective, let $D \in \mathcal{D}_p(\mathbb{R}^n)$ and let (f, V) be a representative of a germ in C_p^{∞} . We may assume V is an open ball, hence star-shaped. From Taylor's theorem with remainder, we have

$$f(x) = f(p) + \left(x^i - p^i\right)g_i(x), \quad g_i(p) = \frac{\partial f}{\partial x^i}(p). \tag{14} \label{eq:14}$$

Applying D to both sides, we get

$$\begin{split} D(f(x)) &= D[f(p)] + D\big[\big(x^i - p^i\big)g_i(x)\big] \\ &= \big(Dx^i\big)g_i(p) + \big(p^i - p^i\big)Dg_i(x) \\ &= \big(Dx^i\big)g_i(p) \\ &= \big(Dx^i\big)\frac{\partial f}{\partial x^i}(p), \end{split} \tag{15}$$

which gives $D = D_v$ for $v = \langle Dx^1, \dots, Dx^n \rangle$. Thus, ϕ is surjective.

Under this vector space isomorphism $T_p(\mathbb{R}^n)\simeq \mathcal{D}_p(\mathbb{R}^n)$, we can identify tangent vectors with derivations at p, and the standard basis e_1,\cdots,e_n of $T_p(\mathbb{R}^n)$ with the set $\frac{\partial}{\partial x^1}\big|_p,\cdots,\frac{\partial}{\partial x^n}\big|_p$ of partial derivatives,

$$v = \langle v^1, \dots, v^n \rangle$$

$$= v^i e_i$$

$$= v^i \frac{\partial}{\partial x^i} \Big|_{r}.$$
(16)

2.4. Vector Fields

Definition 2.10 A vector field on an open subset $U \subseteq \mathbb{R}^n$ is a function that assigns to each point $p \in U$ a tangent vector $X_p \in T_p(\mathbb{R}^n)$. Since $T_p(\mathbb{R}^n)$ has basis $\frac{\partial}{\partial x^i}|_p$, we can write

$$X_p = a^i(p) \frac{\partial}{\partial x^i} \bigg|_p, \quad a^i(p) \in \mathbb{R}.$$
 (17)

Omitting p, we can write

$$X = a^{i} \frac{\partial}{\partial x^{i}} \quad \leftrightarrow \quad \begin{bmatrix} a^{1} \\ \vdots \\ a^{n} \end{bmatrix}, \tag{18}$$

where a^i are functions on U. We say that X is C^{∞} on U if all the coefficient functions a^i are C^{∞} on U.

The set of all C^{∞} vector fields on U is denoted by $\mathfrak{X}(U)$.

Definition 2.11 If R is a commutative ring with identity, a (left) R-module is an abelian group A with a scalar multiplication

$$\mu: R \times A \to A,\tag{19}$$

usually written $\mu(r,a) = ra$, such that for all $r, s \in R$ and $a, b \in A$,

- (i) Associativity: (rs)a = r(sa),
- (ii) **Identity:** 1a = a,
- (iii) Distributivity: r(a+b) = ra + rb and (r+s)a = ra + sa.

 $\mathfrak{X}(U)$ is a module over the ring $C^{\infty}(U)$ with the multiplication defined pointwise:

$$(fX)_p = f(p)X_p, (20)$$

for $f \in C^{\infty}(U), X \in \mathfrak{X}(U), p \in U$.

Definition 2.12 Let A and A' be R-modules. An R-module homomorphism from A to A' is a map $f: A \to A'$ that preserves both the addition and the scalar multiplication: for all $a, b \in A$ and $r \in R$,

- (i) f(a+b) = f(a) + f(b),
- (ii) f(ra) = rf(a).

2.5. Vector Fields as Derivations

If $X \in \mathfrak{X}(U)$ and $f \in C^{\infty}(U)$, we can define a new function Xf by

$$(Xf)(p) = X_p f \quad \text{for all } p \in U. \tag{21}$$

Writing $X = a^i \frac{\partial}{\partial x^i}$, we have

$$(Xf)(p) = a^{i}(p)\frac{\partial f}{\partial x^{i}}(p), \tag{22}$$

or

$$Xf = a^i \frac{\partial f}{\partial x^i},\tag{23}$$

which is a C^{∞} function on U. Thus, a C^{∞} vector field X induces an \mathbb{R} -linear map

$$X: C^{\infty}(U) \to C^{\infty}(U),$$

 $f \mapsto Xf.$ (24)

X(fg) satisfies the Leibniz rule:

$$X(fg) = (Xf)g + f(Xg). (25)$$

Definition 2.13 If A is an algebra over a field K, a **derivation** on A is a K-linear map $D: A \to A$ that satisfies the Leibniz rule:

$$D(ab) = (Da)b + a(Db) \quad \text{for all } a, b \in A.$$
 (26)

The set of all derivations on A is closed under addition and scalar multiplication and forms a vector space, denoted by Der(A).

We therefore have a map

$$\varphi : \mathfrak{X}(U) \to \operatorname{Der}(C^{\infty}(U)),$$

$$X \mapsto (f \mapsto Xf),$$
(27)

which is an isomorphism of vector spaces, just as the map $\phi: T_p(\mathbb{R}^n) \to \mathcal{D}_p(\mathbb{R}^n)$.

3. The Exterior Algebra of Multicovectors

3.1. Dual Spaces

Definition 3.1 If V and W are real vector spaces, we denote by $\operatorname{Hom}(V,W)$ the vector space of all linear maps $f:V\to W$.

The **dual space** V^{\vee} of V is the vector space of all the real-valued linear functions on V:

$$V^{\vee} = \operatorname{Hom}(V, \mathbb{R}). \tag{28}$$

The elements of V^{\vee} are called **covectors** or **1-covectors** on V.

In the rest of this section, assume V to be a finite-dimensional vector space. Let e_1, \dots, e_n be a basis of V. Then every $v \in V$ is uniquely a linear combination $v = v^i e_i$ with $v^i \in \mathbb{R}$. Let $\alpha^i : V \to \mathbb{R}$ be the linear function that picks out the ith coordinate, $\alpha^i(v) = v^i$. Note that

$$\alpha^i (e_j) = \delta^i_j. \tag{29}$$

Proposition 3.2 The functions $\alpha^1, \dots, \alpha^n$ form a basis of V^{\vee} .

 $\textit{Proof.} \quad \text{Let } f \in V^{\vee} \text{ and } v = v^i e_i \in V, \text{ then}$

$$f(v) = v^{i} f(e_{i})$$

$$= f(e_{i})\alpha^{i}(v), \qquad (30)$$

which means $f = f(e_i)\alpha^i$, i.e., $\alpha^1, \dots, \alpha^n$ span V^{\vee} .

Suppose $c_i \alpha^i = 0$ for some $c_i \in \mathbb{R}$. Applying both sides to e_i gives

$$0 = c_i \alpha^i (e_j)$$

$$= c_i \delta^i_j$$

$$= c_j, \qquad (31)$$

which means $\alpha^1, \dots, \alpha^n$ are linear independent.

The basis $\alpha^1, \dots, \alpha^n$ of V^{\vee} is said to be dual to the basis e_1, \dots, e_n of V.

3.2. Permutations

Definition 3.3 Fix a positive integer k. A **permutation** of a set $A = \{1, \dots, k\}$ is a bijection $\sigma : A \to A$. σ can be thought of as a reordering of the list $1, \dots, k$ from $1, \dots, k$ to $\sigma(1), \dots, \sigma(k)$.

A simple way to describe a permutation is by its matrix

$$M(\sigma) = \begin{bmatrix} 1 & \cdots & k \\ \sigma(1) & \cdots & \sigma(k) \end{bmatrix}. \tag{32}$$

The **cyclic permutation**, $(a_1 \cdots a_r)$ where a_i are distinct, is the permutation σ such that $\sigma(a_1) = a_2, \cdots, \sigma(a_{r-1}) = a_r, \sigma(a_r) = a(1)$ and fixes all other elements of A. A cyclic permutation (a_1, \cdots, a_r) is called a **cycle of length** r or a **r-cycle**.

A **transposition** is a 2-cycle, i.e., a cycle of the form $(a_1 \ a_2)$ that interchanges a_1 and a_2 and fixes all other elements of A.

Two cycles $(a_1 \cdots a_r)$ and $(b_1 \cdots b_s)$ are **disjoint** if $a_i \neq b_j$ for all i and j.

The **product** $\tau \sigma$ of two permutations σ and τ of A is the composition $\tau \circ \sigma$.

Any permutation can be written as a product of disjoint cycles $(a_1 \cdots a_r)(b_1 \cdots b_s) \cdots$

Definition 3.4 Let S_k be the set of all permutations of the set $\{1, \dots, k\}$. A permutation is **even** or **odd** if it can be expressed as a product of an even or odd number of transpositions, respectively.

The **sign** of a permutation $\sigma \in S_k$ is defined as

$$\operatorname{sgn}(\sigma) = \begin{cases} 1, & \text{if } \sigma \text{ is even} \\ -1, & \text{if } \sigma \text{ is odd.} \end{cases}$$
 (33)

Clearly, $\operatorname{sgn}(\sigma\tau) = \operatorname{sgn}(\sigma) \operatorname{sgn}(\tau)$ for all $\sigma, \tau \in S_k$.

Generally, the r-cycle can be decomposed into r-1 transpositions:

$$(a_1 \cdots a_r) = (a_1 \ a_r)(a_1 \ a_{r-1}) \cdots (a_1 \ a_2), \tag{34}$$

which means that an r-cycle is even if r is odd and odd if r is even. Thus one way to compute the sign of a permutation is to decompose it into a product of disjoint cycles and count the number of even-length cycles.

Definition 3.5 An **inversion** of a permutation σ is an ordered pair $(\sigma(i), \sigma(j))$ such that i < j but $\sigma(i) > \sigma(j)$.

The second way to compute the sign of a permutation is to count the number of inversions.

Proposition 3.6 A permutation σ can be written as a product of as many transpositions as the number of inversions it has, so σ is even if and only if it has an even number of inversions.

3.3. Multilinear Functions

Definition 3.7 Denote by $V^k = V \times \cdots \times V$ the Cartesian product of k copies of a real vector space V. A function $f: V^k \to \mathbb{R}$ is called k-linear if it is linear in each of its k arguments:

$$f(\dots, av + bw, \dots) = af(\dots, v, \dots) + bf(\dots, w, \dots)$$
(35)

for all $a, b \in \mathbb{R}$ and $v, w \in V$. Instead of 2-linear and 3-linear, it is customary to say bilinear and trilinear, respectively.

A k-linear function on V is also called a k-tensor on V. We denote the vector space of all k-tensors on V by $L_k(V)$, k is called the **degree** of the tensor f.

Example 3.8

- (i) The dot product $f(v, w) = v \cdot w$ on \mathbb{R}^n is bilinear.
- (ii) The determinant $f(v_1,\cdots,v_n)=\det[v_1\,\cdots\,v_n]$ on \mathbb{R}^n is n-linear.

Definition 3.9 A k-linear function $f: V^k \to \mathbb{R}$ is symmetric if

$$f\left(v_{\sigma(1)},\cdots,v_{\sigma(k)}\right)=f(v_1,\cdots,v_k) \tag{36}$$

for all permutations $\sigma \in S_k$.

A k-linear function $f: V^k \to \mathbb{R}$ is alternating if

$$f\left(v_{\sigma(1)}, \cdots, v_{\sigma(k)}\right) = [\operatorname{sgn}(\sigma)] f(v_1, \cdots, v_k) \tag{37}$$

for all permutations $\sigma \in S_k$.

Example 3.10

- (i) The dot product $f(v, w) = v \cdot w$ on \mathbb{R}^n is symmetric.
- (ii) The determinant $f(v_1, \dots, v_n) = \det[v_1 \dots v_n]$ on \mathbb{R}^n is alternating.
- (iii) The cross product $f(v, w) = v \times w$ on \mathbb{R}^3 is alternating.

We are escrecially interested in the space $A_k(V)$ of all alternating k-linear functions on V for k > 0. They are also called **alternating** k-tensors, k-covectors, or multicovectors of degree k on V.

Definition 3.11 The vector space of all alternating k-linear functions on V is denoted by $A_k(V)$, the elements of $A_k(V)$ are also called **alternating** k-tensors, k-covectors, or multicovectors of degree k on V.

For k=0, we define a 0-covector to be a constant, so $A_0(V)=\mathbb{R}$.

For k = 1, a 1-covector is simply a covector.

3.4. The Permutation Action on Multilinear Functions

Definition 3.12 If $f \in L_k(V)$ and $\sigma \in S_k$ is a permutation, we define a new k-linear function σf by

$$(\sigma f)(v_1, \dots, v_k) = f(v_{\sigma(1)}, \dots, v_{\sigma(k)}). \tag{38}$$

Thus f is symmetric if and only if $\sigma f = f$ for all $\sigma \in S_k$, and f is alternating if and only if $\sigma f = [\operatorname{sgn}(\sigma)]f$ for all $\sigma \in S_k$.

When there is only one argument, the permutation group S_1 is the identity group and a 1-linear function is both symmetric and alternating. In particular,

$$A_1(V) = L_1(V) = V^{\vee}. (39)$$

 $\textbf{Lemma 3.13} \quad \text{If } \sigma,\tau \in S_k \text{ and } f \in L_k(V) \text{, then } \tau(\sigma f) = (\tau \sigma)f.$

Proof. For $v_1, \dots, v_k \in V$, we have

$$\begin{split} (\tau(\sigma f))(v_1,\cdots,v_k) &= (\sigma f) \Big(v_{\tau(1)},\cdots,v_{\tau(k)}\Big) \\ &= f\Big(v_{\sigma(\tau(1))},\cdots,v_{\sigma(\tau(k))}\Big) \\ &= f\Big(v_{(\tau\sigma)(1)},\cdots,v_{(\tau\sigma)(k)}\Big) \\ &= (\tau\sigma) f(v_1,\cdots,v_k). \end{split} \tag{40}$$

Definition 3.14 If G is a group and X is a set, a map

$$G \times X \to X,$$

 $(\sigma, x) \mapsto \sigma \cdot x$ (41)

is called a **left action** of G on X if for all $\sigma, \tau \in G$ and $x \in X$,

- (i) $e \cdot x = x$, where e is the identity element of G,
- (ii) $\tau \cdot (\sigma \cdot x) = (\tau \sigma) \cdot x$.

The **orbit** of an element $x \in X$ is the set

$$Gx := \{ \sigma \cdot x \in X \mid \sigma \in G \} \tag{42}$$

A **right action** of G on X is defined similarly: it is a map

$$X \times G \to X,$$

 $(x,\sigma) \mapsto x \cdot \sigma$ (43)

such that for all $\sigma, \tau \in G$ and $x \in X$,

- (i) $x \cdot e = x$,
- (ii) $(x \cdot \tau) \cdot \sigma = x \cdot (\tau \sigma)$.

In this terminology, we have defined a left action of S_k on $L_k(V)$.

3.5. The Symmetrizing and Alternating Operators

Definition 3.15 Given any k-linear function f on V, we can make a symmetric k-linear function Sf by

$$(Sf)(v_1,\cdots,v_k) = \sum_{\sigma \in S_k} f\Big(v_{\sigma(1)},\cdots,v_{\sigma(k)}\Big) \tag{44} \label{eq:44}$$

or, in our new sharthand, the **symmetric operator** S is defined by

$$Sf = \sum_{\sigma \in S_k} \sigma f. \tag{45}$$

Similarly, the **alternating operator** A is defined by

$$Af = \sum_{\sigma \in S_k} [\operatorname{sgn}(\sigma)] \sigma f. \tag{46}$$

Proposition 3.16 If f is a k-linear function on V, then

- (i) Sf is symmetric,
- (ii) Af is alternating.

Proof.

(i) For $\tau \in S_k$, we have

$$\begin{split} (\tau Sf) &= \sum_{\sigma \in S_k} \tau(\sigma f) \\ &= \sum_{\sigma \in S_k} (\tau \sigma) f \\ &= Sf, \end{split} \tag{47}$$

which means Sf is symmetric.

(i) For $\tau \in S_k$, we have

$$\begin{split} (\tau A f) &= \sum_{\sigma \in S_k} [\operatorname{sgn}(\sigma)] \tau(\sigma f) \\ &= \sum_{\sigma \in S_k} [\operatorname{sgn}(\sigma)] (\tau \sigma) f \\ &= [\operatorname{sgn}(\tau)] \sum_{\sigma \in S_k} [\operatorname{sgn}(\tau \sigma)] (\tau \sigma) f \\ &= [\operatorname{sgn}(\tau)] A f, \end{split} \tag{48}$$

which means Af is alternating.

Lemma 3.17 If $f \in A_k(V)$, then Af = (k!)f.

Proof. Since $f \in A_k(V)$, we have $\sigma f = [\operatorname{sgn}(\sigma)]f$ for all $\sigma \in S_k$. Thus,

$$Af = \sum_{\sigma \in S_k} [\operatorname{sgn}(\sigma)] \sigma f$$

$$= \sum_{\sigma \in S_k} [\operatorname{sgn}(\sigma)] [\operatorname{sgn}(\sigma)] f$$

$$= \sum_{\sigma \in S_k} f$$

$$= (k!) f. \tag{49}$$

3.6. The Tensor Product

Definition 3.18 Let $f \in L_k(V)$ and $g \in L_l(V)$. The **tensor product** of f and g is the k+l-linear function $f \otimes g$ defined by

$$(f \otimes g)(v_1, \dots, v_k, v_{k+1}, \dots, v_{k+l}) = f(v_1, \dots, v_k)g(v_{k+1}, \dots, v_{k+l}). \tag{50}$$

Example 3.19 Bilinear maps. Let e_1, \dots, e_n be a basis of $V, \alpha^1, \dots, \alpha^n$ the dual basis of V^{\vee} , and

$$\langle , \rangle : V \times V \to \mathbb{R}$$
 (51)

a bilinear map on V. Set $g_{ij} = \langle e_i, e_j \rangle \in \mathbb{R}$. If $v = v^i e_i$ and $w = w^i e_i$, with $v^i = \alpha^i(v)$, $w^i = \alpha^i(w)$ and the bilinearity, we can express $\langle \ , \ \rangle$ in terms of the tensor product:

$$\begin{split} \langle v, w \rangle &= v^i w^j \langle e_i, e_j \rangle \\ &= \alpha^i(v) \alpha^j(w) g_{ij} \\ &= g_{ij} (\alpha^i \otimes \alpha^j)(v, w). \end{split} \tag{52}$$

Hence, $\langle \ , \ \rangle = g_{ij}(\alpha^i \otimes \alpha^j)$. This notation is often used to describe an inner product on V.

Proposition 3.20 The tensor product is associative: $(f \otimes g) \otimes h = f \otimes (g \otimes h)$ for multilinear functions f, g, h on V.

Proof. For $f \in L_k(V)$, $g \in L_l(V)$, and $h \in L_m(V)$, we have

$$\begin{split} [(f \otimes g) \otimes h] \big(v_1, \cdots, v_{k+l+m} \big) &= (f \otimes g) \big(v_1, \cdots, v_{k+l} \big) h \big(v_{k+l+1}, \cdots, v_{k+l+m} \big) \\ &= f(v_1, \cdots, v_k) g \big(v_{k+1}, \cdots, v_{k+l} \big) h \big(v_{k+l+1}, \cdots, v_{k+l+m} \big) \\ &= f(v_1, \cdots, v_k) \big(g \otimes h \big) \big(v_{k+1}, \cdots, v_{k+l+m} \big) \\ &= [f \otimes (g \otimes h)] \big(v_1, \cdots, v_{k+l+m} \big), \end{split} \tag{53}$$

which means $(f \otimes g) \otimes h = f \otimes (g \otimes h)$.

3.7. The Wedge Product

Definition 3.21 For $f \in A_k(V)$ and $g \in A_l(V)$, the wedge product or exterior product of f and g is the (k+l)-linear function $f \wedge g$ defined by

$$(f \wedge g) = \frac{1}{k!l!} A(f \otimes g), \tag{54}$$

or explicitly,

$$(f \wedge g)\big(v_1, \cdots, v_{k+l}\big) = \frac{1}{k!l!} \sum_{\sigma \in S_{k+l}} [\operatorname{sgn}(\sigma)] f\Big(v_{\sigma(1)}, \cdots, v_{\sigma(k)}\Big) g\Big(v_{\sigma(k+1)}, \cdots, v_{\sigma(k+l)}\Big) \quad (55)$$

By Proposition 3.16, the wedge product $f \wedge g \in A_{k+l}(V)$ When k = 0, the element $f \in A_0(V)$ is a constant c, (55) gives

$$\begin{split} (c \wedge g)(v_1, \cdots, v_l) &= \frac{1}{0! l!} \sum_{\sigma \in S_l} [\operatorname{sgn}(\sigma)] cg \Big(v_{\sigma(1)}, \cdots, v_{\sigma(l)} \Big) \\ &= \frac{c}{l!} \sum_{\sigma \in S_l} [\operatorname{sgn}(\sigma)] g \Big(v_{\sigma(1)}, \cdots, v_{\sigma(l)} \Big) \\ &= cg(v_1, \cdots, v_l), \end{split} \tag{56}$$

which means $(c \wedge g) = cg$, is a scalar multiplication.

Example 3.22 For $f \in A_2(V)$ and $g \in A_1(V)$,

$$\begin{split} A(f\otimes g) &= f(v_1,v_2)g(v_3) - f(v_1,v_3)g(v_2) - f(v_2,v_1)g(v_3) \\ &+ f(v_2,v_3)g(v_1) + f(v_3,v_1)g(v_2) - f(v_3,v_2)g(v_1), \end{split} \tag{57}$$

where $f(v_1, v_2)g(v_3) = -f(v_2, v_1)g(v_3)$ and so on.

Therefore, dividing by 2, we have

$$(f\wedge g)(v_1,v_2,v_3)=f(v_1,v_2)g(v_3)-f(v_1,v_3)g(v_2)+f(v_2,v_3)g(v_1). \tag{58}$$

One way to avoid redundancy in the definition of $f \wedge g$ is to stipulate that in the sum (55), $\sigma(1), \dots, \sigma(k)$ be in ascending order and $\sigma(k+1), \dots, \sigma(k+l)$ be in ascending order.

Definition 3.23 A permutation $\sigma \in S_{k+l}$ is called a (k, l)-shuffle if

$$\sigma(1) < \dots < \sigma(k) \text{ and } \sigma(k+1) < \dots < \sigma(k+l).$$
 (59)

Then (55) can be rewritten asy

$$(f \wedge g)\big(v_1, \cdots, v_{k+l}\big) = \sum_{\substack{(k,l) - \text{shuffles} \\ -}} [\operatorname{sgn}(\sigma)] f\big(v_{\sigma(1)}, \cdots, v_{\sigma(k)}\big) g\big(v_{\sigma(k+1)}, \cdots, v_{\sigma(k+l)}\big), \ (60)$$

which is a sum of $\binom{k+l}{k}$ terms, instead of (k+l)! terms.

Example 3.24 For $f, g \in A_2(V)$.

$$(f \wedge g)(v_1, v_2, v_3, v_4) = f(v_1, v_2)g(v_3, v_4) - f(v_1, v_3)g(v_2, v_4) + f(v_1, v_4)g(v_2, v_3) \\ + f(v_2, v_3)g(v_1, v_4) - f(v_2, v_4)g(v_1, v_3) + f(v_3, v_4)g(v_1, v_2)$$
(61)

3.8. Anticommutative of the Wedge Product

Proposition 3.25 The wedge product is **anticommutative**: if $f \in A_k(V)$ and $g \in A_l(V)$, then

$$f \wedge g = (-1)^{kl} g \wedge f. \tag{62}$$

Proof. Define $\tau \in S_{k+l}$ to be the permutation

$$\tau = \begin{bmatrix} 1 & \cdots & l & l+1 & \cdots & l+k \\ k+1 & \cdots & k+l & 1 & \cdots & k \end{bmatrix}.$$
 (63)

Then

$$\sigma(1) = \sigma \tau(l+1), \dots, \sigma(k) = \sigma \tau(l+k),$$

$$\sigma(k+1) = \sigma \tau(1), \dots, \sigma(k+l) = \sigma \tau(l).$$
(64)

For any $v_1, \dots, v_{k+l} \in V$, we have

$$\begin{split} A(f\otimes g)\big(v_1,\cdots,v_{k+l}\big) &= \sum_{\sigma\in S_{k+l}}[\mathrm{sgn}(\sigma)]f\big(v_{\sigma(1)},\cdots,v_{\sigma(k)}\big)g\big(v_{\sigma(k+1)},\cdots,v_{\sigma(k+l)}\big) \\ &= \sum_{\sigma\in S_{k+l}}[\mathrm{sgn}(\sigma)]f\big(v_{\sigma\tau(l+1)},\cdots,v_{\sigma\tau(l+k)}\big)g\big(v_{\sigma\tau(1)},\cdots,v_{\sigma\tau(l)}\big) \\ &= \mathrm{sgn}(\tau)\sum_{\sigma\in S_{k+l}}[\mathrm{sgn}(\sigma\tau)]g\big(v_{\sigma\tau(1)},\cdots,v_{\sigma\tau(l)}\big)f\big(v_{\sigma\tau(l+1)},\cdots,v_{\sigma\tau(l+k)}\big) \\ &= \mathrm{sgn}(\tau)A(g\otimes f)\big(v_1,\cdots,v_{k+l}\big), \end{split} \tag{65}$$

which means

$$A(f \otimes g) = [\operatorname{sgn}(\tau)] A(g \otimes f). \tag{66}$$

Dividing by k!l!, we have

$$(f \wedge g) = [\operatorname{sgn}(\tau)](g \wedge f). \tag{67}$$

For every $i \in [k+1, k+l], j \in [1, k], (i, j)$ is an inversion of τ , so $[\operatorname{sgn}(\tau)] = (-1)^{kl}$, and therefore

$$f \wedge g = (-1)^{kl} g \wedge f. \tag{68}$$

Corollary 3.26 If $f \in A_k(V)$ with odd k, then $f \wedge f = 0$.

Proof. By the anticommutative property of the wedge product, we have

$$f \wedge f = (-1)^{k^2} f \wedge f = -f \wedge f, \tag{69}$$

which implies that $f \wedge f = 0$.

3.9. Associativity of the Wedge Product

Lemma 3.27 Suppose $f \in L_k(V)$ and $g \in L_l(V)$, then

- (i) $A(A(f) \otimes g) = k! A(f \otimes g)$,
- (ii) $A(f \otimes A(g)) = l!A(f \otimes g)$.

Proof.

(i) By definition,

$$\begin{split} A(A(f) \otimes g) &= \sum_{\sigma \in S_{k+l}} [\operatorname{sgn}(\sigma)] \sigma \Bigg(\left[\sum_{\tau \in S_k} [\operatorname{sgn}(\tau)] \tau f \right] \otimes g \Bigg) \\ &= \sum_{\sigma \in S_{k+l}} \sum_{\tau \in S_k} [\operatorname{sgn}(\sigma)] [\operatorname{sgn}(\tau)] \sigma \tau f \otimes g. \end{split} \tag{70}$$

For each $\mu \in S_{k+l}$ and each $\tau \in S_k$, there is a unique $\sigma = \mu \tau^{-1} \in S_{k+l}$ such that $\mu = \sigma \tau$. Then (70) can be rewritten as

$$A(A(f) \otimes g) = k! \sum_{\mu \in S_{k+l}} [\operatorname{sgn}(\mu)] \mu f \otimes g$$
$$= k! A(f \otimes g). \tag{71}$$

(ii) It can be shown similarly that

$$A(f \otimes A(g)) = l! A(f \otimes g). \tag{72}$$

Proposition 3.28 If $f \in A_k(V), g \in A_l(V)$ and $h \in A_m(V)$, then

$$(f \wedge g) \wedge h = f \wedge (g \wedge h) \tag{73}$$

Proof. By definition,

$$(f \wedge g) \wedge h = \frac{1}{(k+l)!m!} A((f \wedge g) \otimes h)$$

$$= \frac{1}{(k+l)!m!} \frac{1}{k!l!} A(A(f \otimes g) \otimes h)$$

$$= \frac{(k+l)!}{(k+l)!m!k!l!} A((f \otimes g) \otimes h)$$

$$= \frac{1}{k!l!m!} A((f \otimes g) \otimes h). \tag{74}$$

Similarly,

$$f \wedge (g \wedge h) = \frac{1}{k!(l+m)!} \frac{1}{l!m!} A(f \otimes (g \otimes h))$$
$$= \frac{1}{k!l!m!} A(f \otimes (g \otimes h)). \tag{75}$$

Since $(f \otimes g) \otimes h = f \otimes (g \otimes h)$, we have

$$(f \wedge g) \wedge h = f \wedge (g \wedge h). \tag{76}$$

By associativity, we can omit parentheses and simply write $f \wedge g \wedge h$.

$$f_1 \wedge \dots \wedge f_r = \frac{1}{(d_1)! \dots (d_r)!} A(f_1 \otimes \dots \otimes f_r). \tag{77}$$

 $\textbf{Proposition 3.30} \quad \text{If } \alpha^1, \cdots, \alpha^k \in V^{\vee} \text{ and } v_1, \cdots, v_k \in V, \text{ then}$

$$(\alpha^1 \wedge \dots \wedge \alpha^k)(v_1, \dots, v_k) = \det[\alpha^i(v_j)], \tag{78}$$

where $\left[\alpha^{i}(v_{i})\right]$ is the matrix whose (i, j)th entry is $\alpha^{i}(v_{i})$.

Proof. By Corollary 3.29, we have

$$\begin{split} \left(\alpha^1 \wedge \dots \wedge \alpha^k\right) &(v_1, \dots, v_k) = A \left(\alpha^1 \otimes \dots \otimes \alpha^k\right) &(v_1, \dots, v_k) \\ &= \sum_{\sigma \in S_k} [\operatorname{sgn}(\sigma)] \alpha^1 \Big(v_{\sigma(1)}\Big) \dots \alpha^k \Big(v_{\sigma(k)}\Big) \\ &= \det \left[\alpha^i \Big(v_j\Big)\right] \end{split} \tag{79}$$

Definition 3.31 An algebra A over a field K is said to be **graded** if it can be written as a direct sum $A = \bigoplus_{k=0}^{\infty} A^k$ over K such that the multiplication map sends $A^k \times A^l$ into A^{k+l} . The notation $A = \bigoplus_{k=0}^{\infty} A^k$ means that each nonzero element of A can be written uniquely as a finite sum

$$a = a_{i_1} + \dots + a_{i_m}, \tag{80}$$

where $a_{i_i} \neq 0 \in A^{i_j}$.

A graded algebra $A = \bigoplus_{k=0}^{\infty} A^k$ is called **anticommutative** or **graded commutative** if for all $a \in A^k$ and $b \in A^l$,

$$ab = (-1)^{kl}ba. (81)$$

A homomorphism of graded algebras is an algebra homomorphism that preserves the degree.

Example 3.32 The polynomial algebra $A = \mathbb{R}[x,y]$ is graded by degree; A^k consists of all homogeneous polynomials of total degree k in x and y.

Definition 3.33 For a finite-dimensional vector space V, say of dimension n, the exterior algebra or Grassmann algebra of multivectors on V is the graded algebra

$$A_*(V) = \bigoplus_{k=0}^{\infty} A_k(V) = \bigoplus_{k=0}^{n} A_k(V), \tag{82}$$

with the wedge product as multiplication.

3.10. A Basis for k-Covectors

Let e_1, \cdots, e_n be a basis for V and $\alpha^1, \cdots, \alpha^n$ be the dual basis for V^\vee . Introduce the multi-index notation

$$I = (i_1, \dots, i_k) \tag{83}$$

and write e_I for $(e_{i_1}, \dots, e_{i_k})$ and α^I for $(\alpha^{i_1}, \dots, \alpha^{i_k})$.

A k-linear function f on V is completely determined by its values on all k-tuples $\left(e_{i_1}, \cdots, e_{i_k}\right)$. If f is alternating, then it is completely determined by its values on $\left(e_{i_1}, \cdots, e_{i_k}\right)$ with $1 \leq i_1 < \cdots < i_k \leq n$; that is, it suffices to consider e_I with I in strictly ascending order.

Vivi \diamond Chapter 1 \diamond (16/26) **Lemma 3.34** Let e_1, \dots, e_n be a basis for V and $\alpha^1, \dots, \alpha^n$ be the dual basis for V^{\vee} . If $I = (1 \leq i_1 < \dots < i_k \leq n)$ and $J = (1 \leq j_1 < \dots < j_k \leq n)$ are two strictly ascending multi-indices of length k, then

$$\alpha^I(e_J) = \delta^I_J = \begin{cases} 1 \text{ for } I = J \\ 0 \text{ for } I \neq J. \end{cases} \tag{84}$$

Proof. By Proposition 3.30,

$$\alpha^{I}(e_{J}) = \det\left[\alpha^{i}(e_{j})\right]_{i \in I, j \in J}.$$
(85)

If $I=J, \; \left[\alpha^i \left(e_j\right)\right]$ is the identity matrix, so $\alpha^I (e_J)=1.$

If $I \neq J$, we compare them term by term until th terms differ:

$$i_1 = j_1, \dots, i_{l-1} = j_{l-1}, i_l \neq j_l, \dots.$$
 (86)

Without loss of generality, we can assume $i_l < j_l$. Then $i_l \neq j_1, \cdots, j_{l-1}$, and $i_l \neq j_{l+1}, \cdots, j_k$, so the l-th row of $\left[\alpha^i(e_j)\right]$ will be all zeros. Thus, $\alpha^I(e_J) = 0$.

Proposition 3.35 The alternating k-linear function α^I , $I = (i_1 < \dots < i_k)$, form a basis for $A_k(V)$.

Proof. To show linear independence, suppose $c_I \alpha^I = 0$ for some $c_I \in \mathbb{R}$. Applying both sides to e_J gives

$$0 = c_I \alpha^I(e_J)$$

$$= c_I \delta^I_J$$

$$= c_J,$$
(87)

which means $c_J=0$ for all J, so α^I are linearly independent.

To show that they span $A_k(V)$, let $f \in A_k(V)$ and $g = f(e_I)\alpha^I$. Then

$$\begin{split} g(e_J) &= f(e_I)\alpha^I(e_J) \\ &= f(e_I)\delta^I_J \\ &= f(e_J), \end{split} \tag{88}$$

which means $f=g=f(e_I)\alpha^I$, so f is a linear combination of α^I . Thus, α^I span $A_k(V)$. \square

Corollary 3.36 If V is n-dimensional, then the dimension of $A_k(V)$ is $\binom{n}{k}$.

Corollary 3.37 If $k > \dim V$, then $A_k(V) = 0$.

4. Differential Forms on \mathbb{R}^n

Differential forms extend Grassmann's exterior algebra from the tangent space at a point to an entire manifold.

In this section, we will study differential forms on an open set of \mathbb{R}^n .

4.1. Differential 1-forms and the Differential of a Function

Definition 4.1 The **cotangent space** to \mathbb{R}^n at p, denoted by $T_p^*(\mathbb{R}^n)$, is defined to be the dual space $(T_p\mathbb{R}^n)^\vee$ of the tangent space $T_p\mathbb{R}^n$.

Definition 4.2 In parallel with the definition of a vector field, a **covector field** or a **differential 1-form** on an open set $U \subset \mathbb{R}^n$ is a function ω that assigns to each point $p \in U$ a covector $\omega_p \in T_p^*(\mathbb{R}^n)$,

$$\omega: U \to \bigcup_{p \in U} T_p^*(\mathbb{R}^n),$$

$$p \to \omega_p \in T_p^*(\mathbb{R}^n).$$
(89)

Note that in the union $\bigcup_{p\in U} T_p^*(\mathbb{R}^n)$, the sets $T_p^*(\mathbb{R}^n)$ are disjoint. We call a differential 1-form a **1-form** for short.

Definition 4.3 For any $f \in C^{\infty}(U)$, the **differential** of f is the 1-form df defined, for $p \in U$ and $X_p \in T_pU$, by

$$(\mathrm{d}f)_p (X_p) = X_p f. \tag{90}$$

The directional derivative sets a bilinear pairing

$$\begin{split} T_p(\mathbb{R}^n) \times C_p^\infty(\mathbb{R}^n) &\to \mathbb{R}, \\ \left(X_p, f\right) &\mapsto \langle X_p, f \rangle = X_p f. \end{split} \tag{91}$$

One may think of a tangent vector as a function on the second argument of the pairing: $\langle X_p, \cdot \rangle$, then the differential can be thought of as a function on the first argument of the pairing:

$$(\mathrm{d}f)_p = \langle \cdot, f \rangle, \tag{92}$$

which is also written as $df|_{p}$.

Proposition 4.4 If $\{x^1, \dots, x^n\}$ are the coordinates of \mathbb{R}^n , then at each point $p \in \mathbb{R}^n$, $\{(\mathrm{d} x^1)_p, \dots, (\mathrm{d} x^n)_p\}$ is the basis for $T_p^*(\mathbb{R}^n)$ dual to the basis $\{\frac{\partial}{\partial x^1}\big|_p, \dots, \frac{\partial}{\partial x^n}\big|_p\}$ of $T_p(\mathbb{R}^n)$.

Proof. By definition,

$$(\mathrm{d}x^{i})_{p} \left(\frac{\partial}{\partial x^{j}} \Big|_{p} \right) = \frac{\partial}{\partial x^{j}} \Big|_{p} x^{i}$$

$$= \frac{\partial x^{i}}{\partial x^{j}} \Big|_{p}$$

$$= \delta^{i}_{j}. \tag{93}$$

If ω is a 1-form on an open set $U \subset \mathbb{R}^n$, then by Proposition 4.4, at each point $p \in U$, ω can be expressed as

$$\omega_p = \omega_i(p) (\mathrm{d} x^i)_p, \tag{94}$$

for some $\omega_i(p) \in \mathbb{R}$. As p varies over U, the coefficients ω_i become functions on U. Thus, we can write

$$\omega = \omega_i \, \mathrm{d}x^i. \tag{95}$$

A covector field ω is said to be C^{∞} on U if the coefficients ω_i are all C^{∞} functions on U.

Proposition 4.5 If $f \in C^{\infty}(U)$, then

$$\mathrm{d}f = \frac{\partial f}{\partial x^i} \, \mathrm{d}x^i. \tag{96}$$

Proof. By Proposition 4.4, we have

$$\mathrm{d}f = (\mathrm{d}f)_i \, \mathrm{d}x^i, \tag{97}$$

applying both sides to $\frac{\partial}{\partial x^j}$ gives

$$df\left(\frac{\partial}{\partial x^{j}}\right) = (df)_{i}(dx^{i})\left(\frac{\partial}{\partial x^{j}}\right)$$

$$= (df)_{i}\frac{\partial x^{i}}{\partial x^{j}}$$

$$= (df)_{i}\delta^{i}_{j}$$

$$= (df)_{i}. \tag{98}$$

Therefore, we have

$$df = df \left(\frac{\partial}{\partial x^{j}}\right) dx^{j}$$

$$= \frac{\partial f}{\partial x^{j}} dx^{j}$$
(99)

This also shows that if f is a C^{∞} function on U, then df is a C^{∞} 1-form on U.

4.2. Differential *k*-Forms

Definition 4.6 Generally, a differential form ω of degree k or k-form on an open set $U \subset \mathbb{R}^n$ is a function that assigns to each point $p \in U$ an alternating k-linear function $\omega_p \in A_k(T_p\mathbb{R}^n)$.

By Proposition 3.35, a basis for $A_k(T_p\mathbb{R}^n)$ is

$$\mathrm{d}x_n^I = \mathrm{d}x_n^{i_1} \wedge \dots \wedge \mathrm{d}x_n^{i_k}, \quad 1 \le i_1 < \dots < i_k \le n. \tag{100}$$

Therefore, at each point $p \in U$, ω_p is a linear combination

$$\omega_p = \omega_I(p) \, \mathrm{d} x_p^I, \quad 1 \leq i_1 < \dots < i_k \leq n, \tag{101} \label{eq:local_problem}$$

and a k-form ω on U can be expressed as

$$\omega = \omega_I \, \mathrm{d} x^I, \tag{102}$$

with function coefficients $\omega_I: U \to \mathbb{R}$. We say that a k-form ω is C^{∞} on U if the coefficients $\omega_I \in C^{\infty}(U)$.

Denote by $\Omega^k(U)$ the vector space of all C^{∞} k-forms on U. A 0-form assigns to each point $p \in U$ an element of $A_0(T_p\mathbb{R}^n) = \mathbb{R}$. Thus a 0-form is simply a C^{∞} function on U, so $\Omega^0(U) = C^{\infty}(U)$.

There are no nonzero k-forms on \mathbb{R}^n for k > n. This is because when k > n, in $\mathrm{d} x^I$ at least two of the 1-forms $\mathrm{d} x^{i_\alpha}$ will be the same, forcing $\mathrm{d} x^I = 0$.

Definition 4.7 The wedge product of a k form ω and an l-form τ on an open set U is defined pointwise:

$$(\omega \wedge \tau)_p = \omega_p \wedge \tau_p \in A_{k+l}(T_p \mathbb{R}^n). \tag{103}$$

In terms of coordinates, if $\omega = \omega_I dx^I$ and $\tau = \tau_J dx^J$, then

$$\omega \wedge \tau = \omega_I \tau_J \, \mathrm{d}x^I \wedge \mathrm{d}x^J, \tag{104}$$

where if I and J are not disjoint, then $dx^I \wedge dx^J = 0$. Hence, the sum is actually over disjoint I and J.

This also shows that the wedge product of two C^{∞} forms is C^{∞} . So the wedge product is a bilinear map

$$\wedge: \Omega^k(U) \times \Omega^l(U) \to \Omega^{k+l}(U), \tag{105}$$

which is associative and anticommutative.

In case one of the factors has degree 0, say k = 0, the wedge product

$$\wedge: \Omega^0(U) \times \Omega^l(U) \to \Omega^l(U) \tag{106}$$

is the pointwise multiplication of a C^{∞} l-form by a C^{∞} function:

$$(f \wedge \tau)_p = f(p) \wedge \tau_p = f(p)\tau_p. \tag{107}$$

Example 4.8 Let x, y, z be the coordinates on \mathbb{R}^3 . The C^{∞} 1-form on \mathbb{R}^3 is given by

$$f \, \mathrm{d}x + g \, \mathrm{d}y + h \, \mathrm{d}z,\tag{108}$$

where $f, g, h \in C^{\infty}(\mathbb{R}^3)$ are functions. The C^{∞} 2-form is given by

$$f \, \mathrm{d}y \wedge \mathrm{d}z + g \, \mathrm{d}x \wedge \mathrm{d}z + h \, \mathrm{d}x \wedge \mathrm{d}y, \tag{109}$$

and the C^{∞} 3-form is given by

$$f \, \mathrm{d}x \wedge \mathrm{d}y \wedge \mathrm{d}z. \tag{110}$$

Example 4.9 Let x^1, x^2, x^3, x^4 be the coordinates on \mathbb{R}^4 and p a point in \mathbb{R}^4 . A basis for $A_3(T_p\mathbb{R}^4)$ is

$$\left\{ dx_p^1 \wedge dx_p^2 \wedge dx_p^3, dx_p^1, dx_p^1 \wedge dx_p^2 \wedge dx_p^4, dx_p^1 \wedge dx_p^3 \wedge dx_p^4, dx_p^2 \wedge dx_p^3 \wedge dx_p^4 \right\}$$

$$(111)$$

With the wedge product as multiplication and the degree of a form as the grading, the direct sum $\Omega^*(U) = \bigoplus_{k=0}^n \Omega^k(U)$ becomes an anticommutative graded algebra over \mathbb{R} . Since one can multiply C^{∞} k-forms by C^{∞} functions, the set $\Omega^k(U)$ of C^{∞} k-forms on U is both a vector space over \mathbb{R} and a module over $C^{\infty}(U)$, then $\Omega^*(U) = \bigoplus_{k=0}^n \Omega^k(U)$ is also a module over $C^{\infty}(U)$.

4.3. Differential Forms as Multilinear Functions on Vector Fields

For $\omega \in \Omega^1(U)$ and $X \in \mathfrak{X}(U)$, we define a function $\omega(X)$ on U by

$$\omega(X)(p) = \omega_p \left(X_p \right), \tag{112}$$

or written in coordinates,

$$\omega = \omega_i \, \mathrm{d} x^i, \quad X = X^i \frac{\partial}{\partial x^i}, \text{for } \omega_i, X^i \in C^\infty(U), \tag{113}$$

So,

$$\begin{split} \omega(X) &= \omega_i \, \mathrm{d} x^i \bigg(X^j \frac{\partial}{\partial x^j} \bigg) \\ &= \omega_i X^j \frac{\partial x^i}{\partial x^j} \\ &= \omega_i X^j \delta^i_j \\ &= \omega_i X^i, \end{split} \tag{114}$$

which is C^{∞} on U. Thus, a C^{∞} 1-form on U gives eise to a map from $\mathfrak{X}(U)$ to $C^{\infty}(U)$.

Proposition 4.10 The map ω is linear over the ring $C^{\infty}(U)$: for $f \in C^{\infty}(U)$,

$$\omega(fX) = f\omega(X). \tag{115}$$

Proof. By definition,

$$\begin{split} (\omega(fX))_p &= \omega_p \big((fX)_p \big) \\ &= \omega_p \big(f(p) X_p \big) \\ &= f(p) \omega_p \big(X_p \big) \\ &= (f\omega(X))_p. \end{split} \tag{116}$$

Let $\mathcal{F}(U) = C^{\infty}(U)$, a 1-form ω on U gives rise to an $\mathcal{F}(U)$ -linear map $\mathfrak{X}(U) \to C^{\infty}(U)$. Similarly, a k-form ω on U gives rise to a k-linear map over $\mathcal{F}(U)$,

$$\begin{split} \mathfrak{X}(U) \times \cdots \times \mathfrak{X}(U) &\to \mathcal{F}(U), \\ (X_1, \cdots, X_k) &\mapsto \omega(X_1, \cdots, X_k). \end{split} \tag{117}$$

Example 4.11 Let $\omega \in \Omega^2(\mathbb{R}^3)$ and $\tau \in \Omega^1(\mathbb{R}^3)$. If $X, Y, Z \in \mathfrak{X}(M)$, then

$$(\omega \wedge \tau)(X, Y, Z) = \omega(X, Y)\tau(Z) + \omega(Y, Z)\tau(X) - \omega(X, Z)\tau(Y) \tag{118}$$

4.4. The Exterior Derivative

Definition 4.12

(i) The **exterior derivative** of $f \in \Omega^0(U) = C^{\infty}(U)$ is the 1-form df defined, by Proposition 4.5, by

$$\mathrm{d}f = \frac{\partial f}{\partial x^i} \, \mathrm{d}x^i. \tag{119}$$

(ii) For $k \geq 1$, if $\omega = \omega_I dx^I \in \Omega^k(U)$, the **exterior derivative** of ω is the (k+1)-form $d\omega$ defined by

$$d\omega = d\omega_I dx^I$$

$$= \left(\frac{\partial \omega_I}{\partial x^i} dx^i\right) \wedge dx^I \in \Omega^{k+1}(U)$$
(120)

Example 4.13 Let $\omega = f dx + g dy \in \mathbb{R}^2$, where $f, g \in C^{\infty}(\mathbb{R}^2)$. With simplified notation, $f_x = \frac{\partial f}{\partial x}$, then

$$\begin{split} \mathrm{d}\omega &= \mathrm{d}f \wedge \mathrm{d}x + \mathrm{d}g \wedge \mathrm{d}y \\ &= \left(f_x \, \mathrm{d}x + f_y \, \mathrm{d}y \right) \wedge \mathrm{d}x + \left(g_x \, \mathrm{d}x + g_y \, \mathrm{d}y \right) \wedge \mathrm{d}y \\ &= \left(g_x - f_y \right) \mathrm{d}x \wedge \mathrm{d}y \end{split} \tag{121}$$

Definition 4.14 Let $A = \bigoplus_{k=0}^{\infty} A^k$ be a graded algebra over a field K. An **anti-derivation** of the graded algebra A is a K-linear map $D: A \to A$ such that for $a \in A^k$ and $b \in A^l$,

$$D(ab) = (Da)b + (-1)^k a Db. (122)$$

If there is an integer m such that the antiderivation D sends A^k to A^{k+m} for all k, then we say that it is an antiderivation of **degree** m. By defining $A_k = 0$ for k < 0, the grading of the graded algebra A can be extended to negative integers, and the degree m of an antiderivation D can be negative. (An example of an antiderivation of degree -1 is interior multiplication.)

Proposition 4.15

(i) The **exterior differentiation** d : $\Omega^*(U) \to \Omega^*(U)$ is an antiderivation of degree 1:

$$d(\omega \wedge \tau) = (d\omega) \wedge \tau + (-1)^{\deg \omega} \omega \wedge (d\tau). \tag{123}$$

(ii) $d^2 = 0$.

(iii) If $f \in C^{\infty}(U)$ and $X \in \mathfrak{X}(U)$, then

$$(\mathrm{d}f)(X) = Xf. \tag{124}$$

Proof.

(i) For $\omega = \omega_I dx^I$ and $\tau = \tau_I dx^J$, we have

$$\begin{split} \mathrm{d}(\omega \wedge \tau) &= \mathrm{d}(\omega_I \tau_J \, \mathrm{d} x^I \wedge \mathrm{d} x^J) \\ &= \frac{\partial (\omega_I \tau_J)}{\partial x^i} \, \mathrm{d} x^i \wedge \mathrm{d} x^I \wedge \mathrm{d} x^J \\ &= \frac{\partial \omega_I}{\partial x^i} \tau_J \, \mathrm{d} x^i \wedge \mathrm{d} x^I \wedge \mathrm{d} x^J + \omega_I \frac{\partial \tau_J}{\partial x^i} \, \mathrm{d} x^i \wedge \mathrm{d} x^I \wedge \mathrm{d} x^J \\ &= \frac{\partial \omega_I}{\partial x^i} \, \mathrm{d} x^i \wedge \mathrm{d} x^I \wedge \tau_J \, \mathrm{d} x^J + (-1)^{\deg \omega} \omega_I \, \mathrm{d} x^I \wedge \frac{\partial \tau_J}{\partial x^i} \, \mathrm{d} x^i \wedge \mathrm{d} x^J \\ &= (\mathrm{d} \omega) \wedge \tau + (-1)^{\deg \omega} \omega \wedge (\mathrm{d} \tau). \end{split} \tag{125}$$

(ii) For $\omega = \omega_I \, \mathrm{d} x^I$, we have

$$d^{2}\omega = d(d\omega)$$

$$= d\left(\frac{\partial \omega_{I}}{\partial x^{i}} dx^{i} \wedge dx^{I}\right)$$

$$= \frac{\partial^{2}\omega_{I}}{\partial x^{j}\partial x^{i}} dx^{j} \wedge dx^{i} \wedge dx^{I}, \qquad (126)$$

where if i = j, then $dx^j \wedge dx^i = 0$; if $i \neq j$, then $\frac{\partial \omega_I}{\partial x^j \partial x^i} = \frac{\partial \omega_I}{\partial x^i \partial x^j}$, so

$$d^{2}\omega = \frac{\partial^{2}\omega_{I}}{\partial x^{j}\partial x^{i}} dx^{j} \wedge dx^{i} \wedge dx^{I}$$

$$= \frac{\partial^{2}\omega_{I}}{\partial x^{i}\partial x^{j}} dx^{i} \wedge dx^{j} \wedge dx^{I}$$

$$= -\frac{\partial^{2}\omega_{I}}{\partial x^{j}\partial x^{i}} dx^{j} \wedge dx^{i} \wedge dx^{I}, \qquad (127)$$

which means $d^2\omega = 0$.

(iii) This is just the definition of Xf.

Proposition 4.16 Proposition 4.15 uniquely characterizes exterior differentiation on an open set $U \subset \mathbb{R}^n$, i.e., if $D: \Omega^*(U) \to \Omega^*(U)$ satisfies Proposition 4.15, then D = d.

Proof. From Proposition 4.15 (ii), $D dx^i = DDx^i = 0$, then

$$D(\mathrm{d}x^I) = D(\mathrm{d}x^{i_1} \wedge \dots \wedge \mathrm{d}x^{i_k}) = 0. \tag{128}$$

Finally, for $\omega = f \, \mathrm{d} x^I$,

$$D(\omega) = D(f dx^{I})$$

$$= (Df) \wedge dx^{I} + fD(dx^{I})$$

$$= (df) \wedge dx^{I}$$

$$= d(f dx^{I})$$

$$= d\omega,$$
(129)

which means D = d on $\Omega^*(U)$.

4.5. Closed Forms and Exact Forms

Definition 4.17 A k-form ω is said to be **closed** if $d\omega = 0$, and **exact** if there exists a (k-1)-form τ such that $\omega = d\tau$. Since $d(d\tau) = 0$, every exact form is closed.

Example 4.18 The 1-form $\omega = \frac{1}{x^2 + y^2} (-y dx + x dy)$ on $\mathbb{R}^2 - \{(0,0)\}$ is closed:

$$d\omega = \frac{\partial}{\partial y} \left(-\frac{y}{x^2 + y^2} \right) dy \wedge dx + \frac{\partial}{\partial x} \left(\frac{x}{x^2 + y^2} \right) dx \wedge dy$$

$$= \left(\frac{x^2 + y^2 - 2x^2}{(x^2 + y^2)^2} + \frac{x^2 + y^2 - 2y^2}{(x^2 + y^2)^2} \right) dx \wedge dy$$

$$= 0. \tag{130}$$

Definition 4.19 A collection of vector spaces $\{V^k\}_{k=0}^{\infty}$ with linear maps $d_k: V^k \to V^{k+1}$ such that $d_{k+1} \circ d_k = 0$ is called a **differential complex** or a **cochain complex**. For any open set $U \subset \mathbb{R}^n$, the exterior derivative d makes $\Omega^*(U)$ into a differential complex, called the **de Rham complex** of U:

$$0 \to \Omega^0(U) \xrightarrow{\mathrm{d}} \Omega^1(U) \xrightarrow{\mathrm{d}} \Omega^2(U) \xrightarrow{\mathrm{d}} \cdots. \tag{131}$$

The closed forms are the elements of the kernel of d and the exact forms are the elements of the image of d.

4.6. Applications to Vector calculus

A 1-form with vector fields on U can be identified via

$$P \, \mathrm{d}x + Q \, \mathrm{d}y + R \, \mathrm{d}z \longleftrightarrow \begin{bmatrix} P \\ Q \\ R \end{bmatrix}. \tag{132}$$

A 2-form with vector fields on U can be identified via

$$P \, \mathrm{d}y \wedge \mathrm{d}z + Q \, \mathrm{d}z \wedge \mathrm{d}x + R \, \mathrm{d}x \wedge \mathrm{d}y \longleftrightarrow \begin{bmatrix} P \\ Q \\ R \end{bmatrix}. \tag{133}$$

A 3-form with vector fields on U can be identified via

$$f \, \mathrm{d}x \wedge \mathrm{d}y \wedge \mathrm{d}z \longleftrightarrow f. \tag{134}$$

In terms of these identifications, the exterior derivative of a 0-form is

$$df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz \longleftrightarrow \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \end{bmatrix} = \text{grad } f;$$
 (135)

the exterior derivative of a 1-form is

$$\begin{split} \mathrm{d}(P\,\mathrm{d}x + Q\,\mathrm{d}y + R\,\mathrm{d}z) \\ &= \left(R_y - Q_z\right)\mathrm{d}y \wedge \mathrm{d}z + \left(P_z - R_x\right)\mathrm{d}z \wedge \mathrm{d}x + \left(Q_x - P_y\right)\mathrm{d}x \wedge \mathrm{d}y \\ &\longleftrightarrow \begin{bmatrix} R_y - Q_z \\ P_z - R_x \\ Q_x - P_y \end{bmatrix} = \mathrm{curl} \begin{bmatrix} P \\ Q \\ R \end{bmatrix}; \end{split} \tag{136}$$

the exterior derivative of a 2-form is

$$d(P dy \wedge dz + Q dz \wedge dx + R dx \wedge dy)$$

$$= (P_x + Q_y + R_z) dx \wedge dy \wedge dz$$

$$\longleftrightarrow P_x + Q_y + R_z = \text{div} \begin{bmatrix} P \\ Q \\ R \end{bmatrix}.$$
(137)

In summary,

$$\Omega^{0}(U) \xrightarrow{\mathrm{d}} \Omega^{1}(U) \xrightarrow{\mathrm{d}} \Omega^{2}(U) \xrightarrow{\mathrm{d}} \Omega^{3}(U)
\simeq \downarrow \qquad \qquad \simeq \downarrow \simeq \downarrow \qquad \qquad \simeq \downarrow
\mathcal{F}(U) \xrightarrow{\mathrm{grad}} \mathfrak{X}(U) \xrightarrow{\mathrm{curl}} \mathfrak{X}(U) \xrightarrow{\mathrm{div}} \mathcal{F}(U).$$
(138)

Proposition 4.20

(i)
$$\operatorname{curl} (\operatorname{grad} f) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$
(ii) $\operatorname{div} \left(\operatorname{curl} \begin{bmatrix} P \\ Q \\ R \end{bmatrix} \right) = 0.$

(iii) On \mathbb{R}^3 , a vector fielf F is the gradient of some scalar function f if and only if curl F = 0, i.e., a 1-form is exact if and only if it is closed on \mathbb{R}^3 .

Whether Proposition 4.20 (iii) is true for a region U depends only on the topology of U.

Definition 4.21 The quatient vector space

$$H^{k}(U) = \frac{\{\text{closed } k\text{-forms on } U\}}{\{\text{exact } k\text{-forms on } U\}}$$
(139)

measures the failure of closed forms to be exact, and is called the k-th de Rham cohomology of U.

Lemma 4.22 (Poincaré lemma) For $k \geq 1$, every closed k-form on \mathbb{R}^n is exact, leading to the vanishing of $H^k(\mathbb{R}^n)$.

4.7. Convention on Subscripts and Superscripts