Math 255B Lecture 3 Notes

Daniel Raban

January 10, 2019

1 The Fredholm-Riesz Theorem

1.1 The Fredholm-Riesz theorem

Theorem 1.1 (Fredholm-Riesz). Let B be a Banach space, and let $T \in \mathcal{L}(B,B)$ be compact. Then 1-T is Fredholm, and $\operatorname{ind}(1-T)=0$.

Remark 1.1. If B is a Hilbert space, we can prove this more easily by using the fact that compact operators can be approximated by finite rank operators.

Proposition 1.1. Let $T \in \mathcal{L}(B,B)$ be compact. Then

- 1. ker(1-T) is finite dimensional.
- 2. im(1-T) is closed.
- *Proof.* 1. Let $x_n \in \ker(1-T)$ with $||x_n|| \leq 1$. Then $x_n = Tx_n$ has a convergent subsequence. Then the identity map on $\ker(1-T)$ is compact, so $\dim \ker(1-T) < \infty$ (by Riesz's theorem).
 - 2. Let $y \in \overline{\operatorname{im}(1-T)}$, and let $x_n \in B$ be such that $y_n = (1-T)x_n \to y$. Consider $\operatorname{dist}(x_n, \ker(1-T)) = \inf_{z \in \ker(1-T)} \|x_n z\|$. There exists some $z_n \in \ker(1-T)$ realizing this infimum: $\|x_n z_n\| = \operatorname{dist}(x_n, \ker(1-T))$.

We claim that the sequence $(x_n - z_n)$ is bounded: otherwise, $||x - n - z_n|| \to \infty$ along a subsequence. Let $w_n = \frac{x_n - z_n}{||x_n - z_n||}$, so

$$(1-T)w_n = \frac{(1-T)(x_n - z_n)}{\|x_n - z_n\|} = \frac{\eta_n}{\|x_n - z_n\|} \to 0.$$

Passing to a subsequence, we may assume that $Tw_n \to v \in B$ and then $w_n \to v$, where $v \in \ker(1-T)$. Now

$$\operatorname{dist}(w_n, \ker(1-T)) = \inf_{z \in \ker(1-T)} \frac{\|x_n - z_n - z\|}{\|x_n - z_n\|} = \frac{\operatorname{dist}(x_n, \ker(1-T))}{\|x_n - z_n\|} = 1$$

for all n. This proves the claim.

Passing to a subsequence, we may assume that $T(x_n - z_n) \to \ell \in B$. Also, $y_n = (1 - T)(x_n - z_n) \to y$, so $x_n - z_n \to y + \ell = g$. Since T is continuous, $(1 - T)g = \lim_{n \to \infty} (1 - T)(x_n - z_n) = y$. So $y \in \text{im}(1 - T)$.

1.2 Adjoints of inclusions and quotients

To show that dim coker $< \infty$, we will use duality arguments:

Definition 1.1. If B_1, B_2 are Banach spaces with duals B_1^*, B_2^* and bilinear maps $\langle x, \xi \rangle_j$: $B_j \times B_j^* \to \mathbb{C}$ and if $T \in \mathcal{L}(B_1, B_2)$, then the **adjoint** $T^*\mathcal{L}(B_2^*, B_1^*)$ is defined by

$$\langle Tx, \eta \rangle_2 = \langle x, T^*\eta \rangle_1 \qquad \forall x \in B_1, \eta \in B_2^*.$$

Definition 1.2. If B is a Banach space and $W \subseteq B$ is a closed subspace, the **annihilator** $W^o \subseteq B^*$ is given by

$$W^o = \{ \xi \in B^* : \langle x, \xi \rangle = 0 \, \forall x \in W \}.$$

Proposition 1.2. Let B be a Banach space, and let $W \subseteq B$ be a closed subspace.

- 1. Let $i: W \to B$ be the inclusion map. Then $i^*: B^* \to W^*$ vanishes on W^o and induces an isometric bijection $B^*/W^o \to W^*$.
- 2. Let $q: B \to B/W$ be the quotient map. Then the adjoint $q^*: (B/W)^* \to B^*$ is an isometry with the range W^o .

Proof. 1. We have $\langle ix, \xi \rangle = \langle x, i^* \xi \rangle$, so $i^* \xi$ is the restriction of ξ to W. So $\ker i^* = W^o$. $i^* : B^* \to W^*$ is surjective by Hahn-Banach.

2. We have $\langle qx, \eta \rangle = \langle x, q^*\eta \rangle$, so $q^*: (B/W)^* \to B^*$ sends $q^*\eta$ to $x \mapsto \langle qx, \eta \rangle$. So if $q^*\eta = 0$, then $\eta = 0$; i.e. q^* is injective. Also, im $q^* \subseteq W^o$, and in fact, im $q^* = W^o$: If $\xi \in W^o$, define η by $\langle qx, \eta \rangle = \langle x, \xi \rangle$ and $\xi = q^*\eta$. Check that the norms are equal. \square

1.3 Proof of the Fredholm-Riesz theorem

Recall that $T \in \mathcal{L}(B, B)$ is compact. We want to show that $\operatorname{coker}(1 - T)$ is finite dimensional, and we know that it is closed.

Proof. Apply $(B/W)^* \cong W^o$ with $W = \operatorname{im}(!-T)$.

$$(im(1-T))^o = \{\xi \in B^* : \langle (1-Tx,\xi) = 0 \,\forall x \in B\} = \ker(1-T^*).$$

 T^* is compact, so $\dim \operatorname{im}(1-T)$. This shows that $(\operatorname{coker}(1-T))^* \cong \ker(1-T^*)$, so $\dim \operatorname{coker}(1-T) = \dim \ker(1-T^*) < \infty$. So 1-T is Fredholm.

Finally, for $0 \le t \le 1$,

$$\operatorname{ind}(1-T) = \operatorname{ind}(1-tT) = \operatorname{ind} 1 = 0.$$