

Tutorium

Wahrscheinlichketstheorie und Frequentistische Inferenz

BSc Psychologie WiSe 2022/23

Belinda Fleischmann

11. Erläutern Sie den Begriff des asymptotischen Erwartungstreue eines Schätzers

Definition (Asymptotische Erwartungstreue)

 $v:=v_1,...,v_n\sim p_\theta$ sei die Stichprobe eines parametrischen statistischen Produktmodells $\mathcal M$ und $\hat au_n$ sei ein Schätzer für au. $\hat au_n$ heißt asymptotisch erwartungstreu, wenn

$$\lim_{n \to \infty} \mathbb{E}_{\theta}(\hat{\tau}_n(v)) = \tau(\theta) \text{ für alle } \theta \in \Theta. \tag{1}$$

Bemerkungen

- Asymptotisch erwartungstreue Schätzer sind für "unendlich große" Stichproben erwartungstreu.
- Erwartungstreue Schätzer sind immer auch asymptotisch erwartungstreu.

12. Erläutern Sie den Begriff der Konsistenz eines Schätzers.

Definition (Konsistenz)

 $v:=v_1,...,v_n\sim p_{\theta}$ sei die Stichprobe eines parametrischen Statistischen Produktmodells $\mathcal M$ und $\hat{\tau}_n$ sei ein Schätzer von τ . Eine Folge von Schätzern $\hat{\tau}_1,\hat{\tau}_2,...$ wird dann eine *konsistente Folge von Schätzern* genannt, wenn für jedes $\epsilon>0$ und jedes $\theta\in\Theta$ gilt, dass

$$\lim_{n \to \infty} \mathbb{P}_{\theta} \left(|\hat{\tau}_n(v) - \tau(\theta)| \ge \epsilon \right) = 0.$$

Wenn $\hat{\tau}_1, \hat{\tau}_2, \ldots$ eine konsistente Folge von Schätzern ist, dann heißt $\hat{\tau}_n$ konsistenter Schätzer.

Bemerkungen

- Für $n \to \infty$ wird die Wahrscheinlichkeit, dass $\hat{\tau}_n(v)$ beliebig nah bei $\tau(\theta)$ liegt, groß.
- Für $n \to \infty$ wird die Wahrscheinlichkeit, dass $\hat{\tau}_n(v)$ von $\tau(\theta)$ abweicht, klein.
- · Diese Eigenschaften gelten für alle möglichen wahren, aber unbekannten, Parameterwerte.
- Die Konvergenz ist Konvergenz in Wahrscheinlichkeit.
- Konsistenz von Schätzern kann direkt oder mit Kriterien nachgewiesen werden.

SKF 13. Asymptotische Normalität

13. Erläutern Sie den Begriff der asymptotischen Normalität eines Schätzers.

Definition (Asymptotische Normalität)

 $v_1,\ldots,v_n\sim p_{ heta}$ sei die Stichprobe eines parametrischen Statistischen Produktmodells $\mathcal M$ und $\hat{\theta}_n$ sei ein Parameterschätzer für θ . Weiterhin sei $\tilde{\theta}\sim N(\mu,\sigma^2)$ eine normalverteilte Zufallsvariable mit Erwartungswertparameter μ und Varianzparameter σ^2 . Wenn $\hat{\theta}_n$ in Verteilung gegen $\tilde{\theta}$ konvergiert, dann heißt $\hat{\theta}_n$ asymptotisch normalverteilt und wir schreiben

$$\hat{\theta}_n \stackrel{a}{\sim} N(\mu, \sigma^2).$$
 (2)

Bemerkung

• Konvergenz in Verteilung heißt $\lim_{n\to\infty} P_n(\hat{\theta}_n) = P(\tilde{\theta})$.

SKF 14. Eigenschaften eines ML-Schätzers

14. Nennen Sie vier Eigenschaften eines Maximum-Likelihood Schätzers.

Theorem (Eigenschaften von Maximum-Likelihood Schätzern)

 $v_1,...,v_n\sim p_{\theta}$ sei die Stichprobe eines parametrischen statistischen Produktmodells $\mathcal M$ und $\hat\theta_n^{\mathsf{ML}}$ sei ein Maximum-Likelihood Schätzer für θ . Dann gilt, dass $\hat\theta_n^{\mathsf{ML}}$

- (1) nicht notwendigerweise erwartungstreu, aber
- (2) konsistent,
- (3) asymptotisch normalverteilt und
- (4) asymptotisch erwartungstreu.

Bemerkungen

Maximum-Likelihood Schätzer sind überdies asymptotisch effizient