

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Telephone: +86-755-26648640 Fax: +86-755-26648637 Website:

Report Template Version: V03 www.cga-cert.com

Report Template Revision Date: Mar.1st, 2017

Test Report

Report No.: CQASZ20190200042E-06

Azpen Shenzhen MingTel Digital Technology CO., LTD. Applicant:

Address of Applicant: 2nd F, 9th Building, DeTai Industrial Park, Longhua District, Shenzhen, China

Manufacturer: Azpen Shenzhen MingTel Digital Technology CO., LTD.

Address of

Manufacturer:

2nd F, 9th Building, DeTai Industrial Park, Longhua District, Shenzhen, China

Equipment Under Test (EUT):

10.1"Quad Core Dual SIM 4G Calling Tablet **Product:**

G1058A, G1058, G1058B, G1058H, G1058S, G7XX, G8XX, G9XX, G10XX, All Model No.:

A7XX, A8XX, A9XX, A10XX (X represents 0 to 9,A to Z Blank)

G1058A **Test Model No.:**

N/A **Brand Name:**

FCC ID: 2AEHNG1058

Standards: 47 CFR Part 15, Subpart C **Date of Test:** 2019-03-04 to 2019-07-03

Date of Issue: 2019-07-03

Test Result: PASS*

Tested By:

(Tiny You)

Reviewed By:

(Aaron Ma)

Approved By: (Jack Ai)

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.

^{*} In the configuration tested, the EUT complied with the standards specified above.

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20190200042E-06	Rev.01	Initial report	2019-07-03

Report No.: CQASZ20190200042E-06

2 Test Summary

Test Item	Test Requirement	Test method	Result
Radiated Spurious	47 CFR Part 15, Subpart C Section		
-	15.205/15.209,	ANSI C63.10 2013	PASS
Emissions	RSS-Gen Issue 5		

Note: The simultaneously transmission mode

3 Contents

			Page
1	VER	SION	2
2	TES	T SUMMARY	3
3	CON	ITENTS	4
4	GEN	IERAL INFORMATION	5
	4.1	CLIENT INFORMATION	5
	4.2	GENERAL DESCRIPTION OF EUT	
	4.3	TEST ENVIRONMENT AND MODE	6
	4.4	DESCRIPTION OF SUPPORT UNITS	6
	4.5	TEST LOCATION	
	4.6	TEST FACILITY	
	4.7	STATEMENT OF THE MEASUREMENT UNCERTAINTY	
	4.8	DEVIATION FROM STANDARDS	
	4.9	ABNORMALITIES FROM STANDARD CONDITIONS	
	4.10	OTHER INFORMATION REQUESTED BY THE CUSTOMER	8
	4.11	EQUIPMENT LIST	9
5	TES	T RESULTS AND MEASUREMENT DATA	10
	5.1	RADIATED SPURIOUS EMISSIONS	10
	5.1.1		
	5.1.2		
6	РНО	TOGRAPHS - EUT TEST SETUP	16
	6.1	RADIATED SPURIOUS EMISSION	16

Report No.: CQASZ20190200042E-06

4 General Information

4.1 Client Information

Applicant:	Azpen Shenzhen MingTel Digital Technology CO., LTD.
Address of Applicant:	2nd F, 9th Building, DeTai Industrial Park, Longhua District, Shenzhen, China
Manufacturer:	Azpen Shenzhen MingTel Digital Technology CO., LTD.
Address of Manufacturer:	2nd F, 9th Building, DeTai Industrial Park, Longhua District, Shenzhen, China

4.2 General Description of EUT

Product Name:	10.1"Quad Core Dual SIM 4G Calling Tablet
Model No.:	G1058A, G1058, G1058B, G1058H, G1058S, G7XX, G8XX, G9XX, G10XX, A7XX, A8XX, A9XX, A10XX (X represents 0 to 9,A to Z Blank)
Test Model No.:	G1058A
Trade Mark:	N/A
Hardware Version:	U101 MAIN PCB V2.0
Software Version:	U101.M.V0.2.XHD.20171220.2894
EUT Supports Radios application	GSM/GPRS/EDGE 850,1900 WCDMA/HSDPA/HSUPA Band II&V LTE Band 2&4&5&12 Wlan 2.4GHz 802.11b/g/n(HT20&HT40) Bluetooth V3.0+EDR&Bluetooth V4.0 BLE
Sample Type:	☐ Mobile ☐ Portable ☐ Fix Location
Power Supply:	lithium battery: DC3.7V 6000mA; Charge by Adapter Adapter:
	Model: K-T100502000U
	Input: AC100-240V 50/60Hz 0.35A(Max); Output: DC5V 2000mA

4.3 Test Environment and Mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	52 % RH
Atmospheric Pressure:	1008 mbar
The following test modes were adjusted	during the tests:
Operation mode	Description of the operation mode
a: GSM(Voice/ Data) + WLAN(Data)	GSM850 CH251
	802.11n(HT20)mode CH11
b: WCDMA(Voice/ Data) + WLAN(Data)	WCDMA Band II CH9400
	802.11n(HT20)mode CH11
c: LTE(Data) + WLAN(Data)	LTE Band 5 QPSK Channel Bandwidth 10 MHz MCH 1RB24
	802.11n(HT20)mode CH11
d: GSM(Voice/ Data) + Bluetooth(Data)	GSM850 CH251
	BDR GFSK MCH
e: WCDMA(Voice/ Data) + Bluetooth(Data)	WCDMA Band II CH9400
	BDR GFSK MCH
f: LTE(Data) + Bluetooth(Data)	LTE Band 5 QPSK Channel Bandwidth 10 MHz MCH 1RB24
	BDR GFSK MCH

4.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Remark	FCC certification
_	-	-	-	-

Report No.: CQASZ20190200042E-06

4.5 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.,

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua New District, Shenzhen, Guangdong, China

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L5785)

CNAS has accredited Shenzhen Huaxia Testing Technology Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

Report No.: CQASZ20190200042E-06

4.7 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** quality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CQA laboratory is reported:

Test	Range	Uncertainty	Notes
Radiated Emission	Below 1GHz	±5.12dB	(1)
Radiated Emission	Above 1GHz	±4.60dB	(1)
Conducted Disturbance	0.15~30MHz	±3.34dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

4.8 Deviation from Standards

None.

4.9 Abnormalities from Standard Conditions

None.

4.10 Other Information Requested by the Customer

None.

4.11 Equipment List

Test Equipment	Manufacturer	Model No.	Instrument No.	Calibration Date	Calibration Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2018/9/26	2019/9/25
Spectrum analyzer	R&S	FSU26	CQA-038	2018/10/28	2019/10/27
Preamplifier	MITEQ	AFS4-00010300-18- 10P-4	CQA-035	2018/9/26	2019/9/25
Preamplifier	MITEQ	AMF-6D-02001800- 29-20P	CQA-036	2018/11/2	2019/11/1
Loop antenna	Schwarzbeck	FMZB1516	CQA-087	2018/10/28	2020/10/27
Bilog Antenna	R&S	HL562	CQA-011	2018/9/26	2020/9/25
Horn Antenna	R&S	HF906	CQA-012	2018/9/26	2020/9/25
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2018/9/26	2020/9/25
Coaxial Cable (Above 1GHz)	CQA	N/A	C019	2018/9/26	2019/9/25
Coaxial Cable (Below 1GHz)	CQA	N/A	C020	2018/9/26	2019/9/25

5 Test results and Measurement Data

5.1 Radiated Spurious Emissions

Test Requirement:	47 CFR Part 15C Section	n 15 209 and 15 20)5		
root requirement.	RSS-Gen Issue 5	1 10.200 and 10.20	,0,		
Test Method:	ANSI C63.10 2013				
Test Site:	Measurement Distance:	3m (Semi-Anechoi	c Chambar)		
Receiver Setup:		<u> </u>		\ (5)44	
Receiver Setup.	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	_	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak
	Above 1GHz	Peak	1MHz	3MHz	Peak
	Above IGHZ	Peak	1MHz	10Hz	Average
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
	1.705MHz-30MHz	30	-	-	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3
	applicable to the e	therwise specified, above the maximu quipment under tes ated by the device.	ım permitted st. This peak	average emi	ssion limit

Report No.: CQASZ20190200042E-06

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

1) Below 1G: The EUT was placed on the top of a rotating table 0.8

Test Procedure:

- meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. Note: For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- The EUT was set 3 meters away from the interference-receiving antenna. which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

Report No.: CQASZ20190200042E-06

	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	g. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
	h. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Mode a: GSM(Voice/ Data) + WLAN(Data)
	Mode b: WCDMA(Voice/ Data) + WLAN(Data)
	Mode c: LTE(Data) + WLAN(Data)
	Mode d: GSM(Voice/ Data) + Bluetooth(Data)
	Mode e: WCDMA(Voice/ Data) + Bluetooth(Data)
	Mode f: LTE(Data) + Bluetooth(Data)
Final Test Mode:	Pretest the EUT at different test mode and found the Mode a which is worst case, the test worst case mode is recorded in the report.
	Only the worst case is recorded in the report.
Test Results:	Pass

5

6

Report No.: CQASZ20190200042E-06

VERTICAL

VERTICAL

5.1.1 Radiated emission below 1GHz

MHz~1	GHz_mode 1	is the wo	rst case								
st mode	e:	mode	a		Vertica	al					
en Lev	rel (dBuV/m)										
80											
70											
60											
50											
40											
20 1	1 2					Ĭ					6
	down day.		3 .	4	betalder .	harden harden	A STATE OF THE STA	المراجعة الم	(Mat-v ^{helen}	H _a leg ^{algeri}	
20	Adamada Maria Maria	Mary Mary Mary Market of the Control	3 Walland Devictor William	MANINAMINAN	not be a long of the with the best	handre de la	of the state of th	المالينية المالية الم	(Mairon de	H _p top ^{hysio}	
/**	Make and to have been any	Mary Mary Mary Mary Mary Mary Mary Mary	3 Withough Designative Control	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	المراجعة	Andrew Control	pe-phinaphiones with	الماميدة الماميدة الماميدة	(Msi-vin	agree de la	
20	50	Mary Mary Mary Mary Mary Mary Mary Mary	3 Withwellies Andrew 100		200 ncy (MHz)	Andrew Control		provident	en e	H _A tery April	1000
20	and all was a second	Read	ekietterreelveriste kaluteeri		200	Over			enter-m	H _a tery de ^{tal}	1000
20	and all was a second	Read	ekietterreelveriste kaluteeri	Freque	200 ncy (MHz)	Over		00			1000
20	50	Read	100 Factor	Freque	200 ncy (MHz) Limit Line	Over	50	00			
20	50	Read	100 Factor	Freque Level	200 ncy (MHz) Limit Line	Over Limit	50 Remark	00	Po	01/P	
20 10 30	50 Freq MHz	Read Level	100 Factor dB/m 17.71	Freque Level dBuV/m 29.84	200 ncy (MHz) Limit Line dBuV/m	Over Limit dB	Remark Peak	00	PO-	ol/p	hase
20 10 0 30	50 Freq MHz	Read Level dBuv	100 Factor dB/m 17.71	Freque Level dBuV/m 29.84 30.60	200 ncy (MHz) Limit Line dBuV/m 40.00	Over Limit dB -10.16 -9.40	Remark Peak Peak	00	PO	nl/P	hase

303.54 23.75 11.81 35.56 46.00 -10.44 Peak

890.73 13.66 20.38 34.04 46.00 -11.96 Peak

Report No.: CQASZ20190200042E-06

5.1.2 Transmitter emission above 1GHz

Test mode: mode a		Transmitting		Test c Frequency:		2462MHz+848.8MHz	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
1697.6	55.29	-11	44.29	74	-29.71	Peak	Н
2546.4	54.54	-8.3	46.24	74	-27.76	Peak	Н
2390	54.73	-9.2	45.53	74	-28.47	Peak	Н
2400	55.06	-9.39	45.67	74	-28.33	Peak	Н
2483.5	56.45	-9.29	47.16	74	-26.84	Peak	Н
4960	52.32	-4.03	48.29	74	-25.71	Peak	Н
7440	50.02	1.66	51.68	74	-22.32	Peak	Н
1697.6	54.77	-11	43.77	74	-30.23	Peak	V
2546.4	54.27	-8.3	45.97	74	-28.03	Peak	V
2390	55.35	-9.2	46.15	74	-27.85	Peak	V
2400	54.47	-9.39	45.08	74	-28.92	Peak	V
2483.5	57.52	-9.29	48.23	74	-25.77	Peak	V
4960	53.53	-4.03	49.50	74	-24.50	Peak	V
7440	49.38	1.66	51.04	74	-22.96	Peak	V

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level = Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

6 Photographs - EUT Test Setup

6.1 Radiated Spurious Emission

THE END