1 Exercícios CMOS

Implemente as funções abaixo em um circuito de transistores CMOS, você pode utilizar sinais complementares, por exemplo, A e \overline{A} . Não simplifique, apenas aplique De Morgan.

a) Projete um circuito CMOS para a seguinte função lógica:

$$F = \overline{\overline{A} \cdot \overline{B} + C}$$

b) Projete um circuito CMOS para a seguinte função:

$$F = (A + C) \cdot (A + B)$$

c) Projete um circuito CMOS para a seguinte função:

$$F = \overline{(A \cdot \overline{B}) + (C \cdot D) + \overline{E}}$$

d) Projete um circuito CMOS para a seguinte função:

$$F = (\overline{A} \cdot B) + (\overline{B \cdot C} \cdot A)$$

e) Projete um circuito CMOS para a seguinte função:

$$F = (\overline{A} \cdot B \cdot C) + (A \cdot \overline{B} \cdot C) + (A \cdot B \cdot \overline{C})$$

2 Exercícios Tempos de Propagação e Contaminação

Porta	$t_{ m propagação}$	$t_{ m contaminação}$
OR	4	3
AND	5	4
NOT	2	1
XOR	8	6
NOR	4	2
NAND	4	2
XNOR	7	3

De acordo com a tabela acima, calcule o tempo de propagação e de contaminação dos circuitos a seguir.

Figure 1: Circuito 1

Figure 2: Circuito 2

Figure 3: Circuito 3

Figure 4: Circuito 4

Figure 5: Circuito 5

3 Contadores Síncronos

Considere os seguintes tempos para o flip-flop, e os tempos de propagação das portas:

Tempo de Propagação	150
Tempo de setup	50

Porta	$t_{ m propagação}$
AND	20
OR	15

Calcule o período mínimo de clock para que cada contador funcione.

A partir do próximo, considere os seguintes tempos de clock skew (S):

S_1	20
S_2	30
S_3	15
S_4	40

Figure 8

4 Contadores Assíncronos

Desenhe o diagrama de onda dos contadores assíncronos abaixo, considere que o período de clock $(t_{\rm clk})$ é de 60 ns e que o atraso de cada flip-flop $(t_{\rm ps})$ é de 20 ns. Cada quadrículo equivale à 10 ns:

Figure 9

Figure 10

Figure 11

${\bf Respostas}$

Respostas 1

a) Circuito CMOS:

Figure 12: Circuito da letra "a"

b) Circuito CMOS:

Figure 13: Circuito da letra "b"

c) Circuito CMOS:

Figure 14: Circuito da letra "c"

d) Circuito CMOS:

Figure 15: Circuito lógico da resposta "d"

e) Circuito CMOS:

Figure 16: Circuito lógico da resposta "e"

Respostas 2

Circuito 1: $t_{\text{propagação}} = 17$, $t_{\text{contaminação}} = 6$ Circuito 2: $t_{\text{propagação}} = 17$, $t_{\text{contaminação}} = 6$ Circuito 3: $t_{\text{propagação}} = 17$, $t_{\text{contaminação}} = 6$ Circuito 4: $t_{\text{propagação}} = 21$, $t_{\text{contaminação}} = 7$ Circuito 5: $t_{\text{propagação}} = 22$, $t_{\text{contaminação}} = 6$

Respostas 3

Figura 6: $T_{min} > 240$ **Figura 7**: $T_{min} > 235$ **Figura 8**: $T_{min} > 260$

Respostas 4

Figure 17: Resposta figura 9

Figure 18: Resposta figura 10

Figure 19: Resposta figura 11