Whole Lung Tissue vs. BAL Fluid 16S Sequencing Analysis (Trimmed Dataset)

Jennifer M. Baker

August 18, 2020 (updated)

This report was created with:

R version 4.0.2 (2020-06-22)

Platform: x86 64-apple-darwin17.0 (64-bit)

 $\textbf{locale:} \ en_US.UTF-8||en_$

attached base packages: stats, graphics, grDevices, utils, datasets, methods and base

other attached packages: pander(v.0.6.3), cbmbtools(v.0.0.0.9034), vegan(v.2.5-6), lattice(v.0.20-41), permute(v.0.9-5), ggpubr(v.0.4.0), knitr(v.1.29), scales(v.1.1.1), gtools(v.3.8.2), tidyselect(v.1.1.0), forcats(v.0.5.0), stringr(v.1.4.0), dplyr(v.1.0.1), purrr(v.0.3.4), readr(v.1.3.1), tidyr(v.1.1.1), tibble(v.3.0.3), ggplot2(v.3.3.2) and tidyverse(v.1.3.0)

loaded via a namespace (and not attached): httr(v.1.4.2), jsonlite(v.1.7.0), splines(v.4.0.2), carData(v.3.0-4), modelr(v.0.1.8), asserthat(v.0.2.1), blob(v.1.2.1), cellranger(v.1.1.0), yaml(v.2.2.1), pillar(v.1.4.6), backports(v.1.1.8), glue(v.1.4.1), digest(v.0.6.25), ggsignif(v.0.6.0), rvest(v.0.3.6), colorspace(v.1.4-1), Matrix(v.1.2-18), htmltools(v.0.5.0), pkgconfig(v.2.0.3), broom(v.0.7.0), haven(v.2.3.1), openxlsx(v.4.1.5), rio(v.0.5.16), mgcv(v.1.8-31), generics(v.0.0.2), car(v.3.0-9), ellipsis(v.0.3.1), withr(v.2.2.0), cli(v.2.0.2), magrittr(v.1.5), crayon(v.1.3.4), readxl(v.1.3.1), evaluate(v.0.14), fs(v.1.5.0), fansi(v.0.4.1), nlme(v.3.1-148), MASS(v.7.3-51.6), rstatix(v.0.6.0), xml2(v.1.3.2), foreign(v.0.8-80), tools(v.4.0.2), data.table(v.1.13.0), hms(v.0.5.3), lifecycle(v.0.2.0), munsell(v.0.5.0), reprex(v.0.3.0), cluster(v.2.1.0), zip(v.2.0.4), compiler(v.4.0.2), rlang(v.0.4.7), grid(v.4.0.2), rstudioapi(v.0.11), rmarkdown(v.2.3), codetools(v.0.2-16), gtable(v.0.3.0), abind(v.1.4-5), DBI(v.1.1.0), curl(v.4.3), R6(v.2.4.1), lubridate(v.1.7.9), stringi(v.1.4.6), parallel(v.4.0.2), Rcpp(v.1.0.5), vctrs(v.0.3.2), dbplyr(v.1.4.4) and xfun(v.0.16)

I. 16S rRNA gene amplicon quantification

Hypothesis testing - 16S rRNA gene amplicon quantification

Kruskal-Wallis rank sum test

data: Gene_16S_copies_per_mL by Sample_Type
Kruskal-Wallis chi-squared = 29.276, df = 6, p-value = 5.394e-05

Pairwise comparisons using Wilcoxon rank sum exact test

data: ddpcr\$Gene_16S_copies_per_mL and ddpcr\$Sample_Type

	NTC	Iso_Ctrl	PBS	Syringe_Rinse	Homog_Ctrl	BAL
Iso_Ctrl	0.64000	-	-	_	_	-
PBS	0.58947	0.40000	-	_	_	-
Syringe_Rinse	0.42353	0.03333	0.40000	_	_	-
Homog_Ctrl	0.58947	0.16667	0.42353	0.40000	_	-
BAL	0.22238	0.00839	0.31818	0.27082	0.90909	-
Lung	0.00839	0.00262	0.07955	0.00839	0.07955	0.00023

P value adjustment method: BH

II. Quality Checks - Confirmation of Sufficient Reads

2.1 MiSeq Reads by Sample Type

2.2 OTU Counts by Sample Type

III. Principal Component Analysis

3.1 Lung Samples vs. Sampling Controls

Principal Component 1 (13.7% explained)

```
Call:
adonis(formula = adonis.hel.df.wbn ~ otu.df.lungsamp.sampctrls$RA_Groups,
                                                                               permutations = 10000, me
Permutation: free
Number of permutations: 10000
Terms added sequentially (first to last)
                                    Df SumsOfSqs MeanSqs F.Model
                                                                      R2
otu.df.lungsamp.sampctrls$RA_Groups
                                          3.9786 1.98931 2.4485 0.16379
Residuals
                                    25
                                         20.3117 0.81247
                                                                 0.83621
Total
                                    27
                                         24.2903
                                                                 1.00000
                                       Pr(>F)
otu.df.lungsamp.sampctrls$RA_Groups 9.999e-05 ***
Residuals
Total
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Call:
adonis(formula = adonis.hel.bl ~ adonis.otudf.bl$Sample_Type,
                                                                   permutations = 10000, method = "eucl
```

Permutation: free

Number of permutations: 10000

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

adonis.otudf.bl\$Sample_Type 1 2.4653 2.46530 3.1702 0.14975 9.999e-05 ***

Residuals 18 13.9976 0.77764 0.85025 Total 19 16.4629 1.00000

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Call:

adonis(formula = adonis.hel.wn ~ adonis.otudf.wn\$RA_Groups, permutations = 10000, method = "euclid

Permutation: free

Number of permutations: 10000

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

adonis.otudf.wn\$RA_Groups 1 2.5349 2.5349 3.403 0.17539 2e-04 ***

Residuals 16 11.9183 0.7449 0.82461 Total 17 14.4532 1.00000

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Call:

adonis(formula = adonis.hel.bn ~ adonis.otudf.bn\$Organ, permutations = 10000, method = "euclidean"

Permutation: free

Number of permutations: 10000

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

adonis.otudf.bn\$0rgan 1 0.9148 0.91483 0.99522 0.05856 0.464

Residuals 16 14.7076 0.91922 0.94144 Total 17 15.6224 1.00000

3.2 Lung Samples v. Isolation Controls

Principal Component 1 (12.1% explained)

```
Call: adonis(formula = otu.good.lungsamp.isoctrls_hel ~ otu.df.lungsamp.isoctrls$Sample_Type, permutation
```

Permutation: free

Number of permutations: 10000

Terms added sequentially (first to last)

```
Df SumsOfSqs MeanSqs F.Model R2 otu.df.lungsamp.isoctrls$Sample_Type 3 5.1542 1.71806 2.0821 0.18239 Residuals 28 23.1047 0.82517 0.81761 Total 28.2589 1.00000 Pr(>F)
```

otu.df.lungsamp.isoctrls\$Sample_Type 9.999e-05 ***

Residuals

Total

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Call:

adonis(formula = adonis.hel.il ~ adonis.otudf.il\$RA_Groups, permutations = 10000, method = "euclid

Permutation: free

Number of permutations: 10000

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

adonis.otudf.il\$RA_Groups 1 2.7451 2.74511 3.5179 0.14958 9.999e-05 ***

Residuals 20 15.6065 0.78032 0.85042 Total 21 18.3516 1.00000

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Call:

adonis(formula = adonis.hel.ib ~ adonis.otudf.ib\$RA_Groups, permutations = 10000,

method = "euclid

Permutation: free

Number of permutations: 10000

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

adonis.otudf.ib\$RA_Groups 1 1.2087 1.20866 1.3141 0.06165 0.07029 .

Residuals 20 18.3957 0.91978 0.93835 Total 21 19.6044 1.00000

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

3.3 Lung Samples vs. Sequencing Controls

Principal Component 1 (13.5% explained)

```
Call:
adonis(formula = otu.good.lungsamp.seqctrls_hel ~ otu.df.lungsamp.seqctrls$Sample_Type,
                                                                                               permutatio:
```

Permutation: free

Number of permutations: 10000

Terms added sequentially (first to last)

```
Df SumsOfSqs MeanSqs F.Model
                                             8.141 2.71353 3.3839 0.16334
otu.df.lungsamp.seqctrls$Sample_Type
                                      3
Residuals
                                      52
                                            41.698 0.80188
                                                                   0.83666
Total
                                      55
                                            49.838
                                                                   1.00000
                                         Pr(>F)
```

otu.df.lungsamp.seqctrls\$Sample_Type 9.999e-05 ***

Residuals

Total

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

adonis(formula = adonis.hel.sl ~ adonis.otudf.sl\$RA_Groups, permutations = 10000, method = "euclid

Permutation: free

Number of permutations: 10000

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

adonis.otudf.sl\$RA_Groups 1 4.395 4.3950 5.4853 0.11085 9.999e-05 ***

Residuals 44 35.255 0.8012 0.88915 Total 45 39.650 1.00000

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Call:

adonis(formula = adonis.hel.sb ~ adonis.otudf.sb\$RA_Groups, permutations = 10000,

method = "euclid

Permutation: free

Number of permutations: 10000

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

adonis.otudf.sb\$RA_Groups 1 2.069 2.06931 2.3933 0.05159 4e-04 ***

Residuals 44 38.044 0.86463 0.94841 Total 45 40.113 1.00000

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

3.4 Lung Samples vs. Tongue

Permutation: free

Number of permutations: 10000

Principal Component 1 (10.5% explained)

```
Call:
adonis(formula = otu.good.tong.lungsamp_hel ~ otu.df.tong.lungsamp$Sample_Type,
                                                                                     permutations = 100
Permutation: free
Number of permutations: 10000
Terms added sequentially (first to last)
                                 Df SumsOfSqs MeanSqs F.Model
otu.df.tong.lungsamp$Sample_Type
                                        3.981 1.99073 2.6492 0.12526 9.999e-05
Residuals
                                 37
                                       27.803 0.75144
                                                              0.87474
Total
                                 39
                                       31.785
                                                              1.00000
otu.df.tong.lungsamp$Sample_Type ***
Residuals
Total
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
adonis(formula = adonis.hel.tl ~ adonis.otudf.tl$Sample_Type,
                                                                   permutations = 10000, method = "eucl
```

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)
adonis.otudf.tl\$Sample_Type 1 1.0639 1.0639 1.5348 0.05197 0.009199 **

Posiduals

Residuals 28 19.4097 0.6932 0.94803 Total 29 20.4736 1.00000

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Call:

adonis(formula = adonis.hel.tb ~ adonis.otudf.tb\$Sample_Type, permutations = 10000, method = "eucl

Permutation: free

Number of permutations: 10000

Terms added sequentially (first to last)

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

adonis.otudf.tb\$Sample_Type 1 2.6012 2.60116 3.2809 0.10489 9.999e-05 ***

Residuals 28 22.1989 0.79282 0.89511 Total 29 24.8001 1.00000

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

3.5 Lung vs. Tongue vs. Negative Controls

Principal Component 1 (11.6% explained)

IV. Diversity Indices

4.1 Alpha Diversity - Rarified Richness

Tukey multiple comparisons of means 95% family-wise confidence level

Fit: aov(formula = tukey_otu_df[, "Unique_Otus_per_1k_reads"] ~ tukey_otu_df[, "Alpha_Div_Groups"])

\$`tukey_otu_df[, "Alpha_Div_Groups"]`

	diff	lwr	upr
Isolation Control-BAL	-10.612291	-27.844847	6.6202640
Lung-BAL	20.846543	2.847725	38.8453597
Sampling Control-BAL	-2.528455	-21.619083	16.5621736
Sequencing Control-BAL	-13.515401	-27.901951	0.8711478
Lung-Isolation Control	31.458834	14.226279	48.6913895
Sampling Control-Isolation Control	8.083837	-10.286129	26.4538024
Sequencing Control-Isolation Control	-2.903110	-16.318636	10.5124164
Sampling Control-Lung	-23.374997	-42.465626	-4.2843690
Sequencing Control-Lung	-34.361944	-48.748493	-19.9753948
Sequencing Control-Sampling Control	-10.986946	-26.718045	4.7441525
	p adj		
Isolation Control-BAL	0.4262449		
Lung-BAL	0.0150895		
Sampling Control-BAL	0.9958863		
Sequencing Control-BAL	0.0757056		
Lung-Isolation Control	0.0000253		
Sampling Control-Isolation Control	0.7329503		
Sequencing Control-Isolation Control	0.9737499		
Sampling Control-Lung	0.0087438		
Sequencing Control-Lung	0.0000000		
Sequencing Control-Sampling Control	0.2986417		

4.2 Alpha Diversity - Shannon Diversity Index

Sample Type

Tukey multiple comparisons of means 95% family-wise confidence level

Fit: aov(formula = tukey_otu_df[, "Shannon"] ~ tukey_otu_df[, "Alpha_Div_Groups"])

\$`tukey_otu_df[, "Alpha_Div_Groups"]`

	diff	lwr	upr	p adj
Isolation Control-BAL	-0.9947478	-1.8477479	-0.1417477	0.0141500
Lung-BAL	0.5850532	-0.3058764	1.4759827	0.3602822
Sampling Control-BAL	-0.5859416	-1.5309150	0.3590319	0.4191854
Sequencing Control-BAL	-1.2226705	-1.9347952	-0.5105458	0.0000800
Lung-Isolation Control	1.5798009	0.7268008	2.4328010	0.0000190
Sampling Control-Isolation Control	0.4088062	-0.5004949	1.3181074	0.7171772
Sequencing Control-Isolation Control	-0.2279227	-0.8919824	0.4361369	0.8716711
Sampling Control-Lung	-1.1709947	-2.1159682	-0.2260213	0.0077170
Sequencing Control-Lung	-1.8077237	-2.5198483	-1.0955990	0.0000000
Sequencing Control-Sampling Control	-0.6367289	-1.4154079	0.1419501	0.1606002

4.3 Beta Diversity - Bray-Curtis dissimilarity Index within Sample Type

[1] 88 2

Pairwise comparisons using Wilcoxon rank sum test with continuity correction

 $\tt data: bray_dist_lbtce_long_mut_filt_uniq\$BC_Index \ and \ bray_dist_lbtce_long_mut_filt_uniq\$Sample_Type$

BAL Blank Cecum Lung
Blank 0.27300 - - - Cecum < 2e-16 < 2e-16 - Lung 1.3e-10 5.2e-07 < 2e-16 Tongue < 2e-16 2.2e-11 < 2e-16 0.00026

P value adjustment method: BH

4.4 Bray-Curtis dissimilarity - Lung Samples vs. Matched Tongue Samples

Wilcoxon rank sum exact test

data: BC_Index by Comparison_Type
W = 95, p-value = 0.0002057

alternative hypothesis: true location shift is not equal to 0

V. Relative Abundance

5.1 Ordered by Lung OTUs

5.2 Ordered by Pooled Negative Control OTUs

5.3 Ordered by Tongue OTUs

