Module Interface Specification for RSSC

Xingzhi Liu

December 18, 2020

1 Revision History

Date	Version	Notes
Nov. 19, 2020	1.0	Initial Release
Dec. 18, 2020	1.1	Revision 1

2 Symbols, Abbreviations and Acronyms

See SRS Documentation at https://github.com/XingzhiMac/CAS741-Proj/

The table that follows summarizes the symbols used in this document that are not mentioned in SRS.

symbol	unit	description
\forall	-	for all
\neg	-	not
\Rightarrow	-	implies/leads to
:=	-	equal by definition

Contents

1	Symbols, Abbreviations and Acronyms				
2					
3					
4	Not	cation	1		
5	Mo	dule Decomposition	2		
6	MIS	S of Control Module	4		
	6.1	Module	4		
	6.2	Uses	4		
	6.3	Syntax	4		
		6.3.1 Exported Constants	4		
		6.3.2 Exported Access Programs	4		
	6.4	Semantics	4		
		6.4.1 State Variables	4		
		6.4.2 Access Routine Semantics	4		
7	MIS	S of Input Parameters Module	6		
	7.1	Module	6		
	7.2	Uses	6		
	7.3	Syntax	6		
		7.3.1 Exported Constants	6		
		7.3.2 Exported Access Programs	6		
	7.4	Semantics	6		
		7.4.1 State Variables	6		
		7.4.2 Environment Variables	7		
		7.4.3 Assumptions	7		
		7.4.4 Access Routine Semantics	7		
		7.4.5 Local Functions	9		
8	MIS	S of Point Module	10		
	8.1	Module	10		
	8.2	Uses	10		
	8.3	Syntax	10		
		8.3.1 Exported Constants	10		
		8.3.2 Exported Access Programs	10		
	8.4	Semantics	10		
		8.4.1 State Variables	10		
		8.4.2 Environment Variables	10		

		8.4.3 Assumptions	10
		8.4.4 Access Routine Semantics	10
		8.4.5 Local Functions	11
9	MIS	S of Wall Module	12
J	9.1	Module	12
	9.1	Uses	$\frac{12}{12}$
	9.3	Syntax	$\frac{12}{12}$
	9.5	9.3.1 Exported Constants	$\frac{12}{12}$
		9.3.2 Exported Access Programs	$\frac{12}{12}$
	9.4	Semantics	$\frac{12}{12}$
	9.4	9.4.1 State Variables	12 12
			13
		1	13
		9.4.4 Access Routine Semantics	13
		9.4.5 Local Functions	15
10	MIS	S of Floor Map Module	16
	10.1	Module	16
	10.2	Uses	16
	10.3	Syntax	16
		10.3.1 Exported Constants	16
		10.3.2 Exported Access Programs	16
	10.4	Semantics	16
		10.4.1 State Variables	16
		10.4.2 Environment Variables	16
		10.4.3 Assumptions	16
		10.4.4 Access Routine Semantics	16
		10.4.5 Local Functions	17
11		S of Equation Finder	18
		Module	18
		Uses	18
	11.3	Syntax	18
		11.3.1 Exported Constants	18
		11.3.2 Exported Access Programs	18
	11.4	Semantics	18
		11.4.1 State Variables	18
		11.4.2 Environment Variables	18
		11.4.3 Assumptions	18
		11.4.4 Access Routine Semantics	18
		11.4.5. Local Functions	10

12	MIS	S of Linear Signal Path Module	20
	12.1	Module	20
	12.2	Uses	20
	12.3	Syntax	20
		12.3.1 Exported Constants	20
		12.3.2 Exported Access Programs	20
	12.4	Semantics	20
		12.4.1 State Variables	20
		12.4.2 Environment Variables	20
		12.4.3 Assumptions	21
		12.4.4 Access Routine Semantics	21
		12.4.5 Local Functions	21
		12.1.0 Eocta I taleotolis	41
13	MIS	S of Intersection Module	22
	13.1	Module	22
		Uses	22
		Syntax	22
		13.3.1 Exported Constants	22
		13.3.2 Exported Access Programs	22
	13.4	Semantics	22
		13.4.1 State Variables	$\frac{-}{22}$
		13.4.2 Environment Variables	22
		13.4.3 Assumptions	22
		13.4.4 Access Routine Semantics	22
		13.4.5 Local Functions	23
		10.1.0 Eocta I taleotolis	20
14	MIS	S of Linear Path Loss Module	24
	14.1	Module	24
		Uses	24
		Syntax	24
		14.3.1 Exported Constants	24
		14.3.2 Exported Access Programs	24
	14.4	Semantics	24
		14.4.1 State Variables	24
		14.4.2 Environment Variables	24
		14.4.3 Assumptions	24
		14.4.4 Access Routine Semantics	24
		14.4.5 Local Functions	25
		11.1.0 Local I differential	20
15	MIS	S of Line-Of-Sight Signal Module	26
-		Module	26
		Uses	26
		Syntax	26
	10.0	~,	_0

		15.3.1	Exported Constants	26
		15.3.2	Exported Access Programs	26
	15.4	Semant	t <mark>ics</mark>	26
		15.4.1	State Variables	26
			Environment Variables	
			Assumptions	
			Access Routine Semantics	
			Local Functions	
		10.1.0	Zoom I mionolis	
16	MIS	of $Sp\epsilon$	ecular Reflection Module	28
	16.1	Module	2	28
	16.2	Uses .		28
			Exported Constants	
			Exported Access Programs	
	16.4		tics	
	10.1		State Variables	
			Environment Variables	
			Assumptions	
			Access Routine Semantics	
			Local Functions	
		10.4.0	Local Functions	25
17	MIS	of Firs	st-Order Reflection Signal Module	30
17			st-Order Reflection Signal Module	
17	17.1	Module	e	30
17	17.1 17.2	Module Uses .	e	30 30
17	17.1 17.2	Module Uses . Syntax		30 30 30
17	17.1 17.2	Module Uses Syntax 17.3.1	Exported Constants	30 30 30 30 30
17	17.1 17.2 17.3	Module Uses Syntax 17.3.1 17.3.2	Exported Constants Exported Access Programs	30 30 30 30 30 30
17	17.1 17.2 17.3	Module Uses Syntax 17.3.1 17.3.2 Semant	Exported Constants Exported Access Programs	30 30 30 30 30 30 30
17	17.1 17.2 17.3	Module Uses . Syntax 17.3.1 17.3.2 Semant 17.4.1	Exported Constants Exported Access Programs tics State Variables	30 30 30 30 30 30 30 30 30
17	17.1 17.2 17.3	Module Uses . Syntax 17.3.1 17.3.2 Semant 17.4.1 17.4.2	Exported Constants Exported Access Programs State Variables Environment Variables	30 30 30 30 30 30 30 30 30
17	17.1 17.2 17.3	Module Uses . Syntax 17.3.1 17.3.2 Semant 17.4.1 17.4.2 17.4.3	Exported Constants Exported Access Programs tics State Variables Environment Variables Assumptions	30 30 30 30 30 30 30 30 30 30 31
17	17.1 17.2 17.3	Module Uses . Syntax 17.3.1 17.3.2 Semant 17.4.1 17.4.2 17.4.3 17.4.4	Exported Constants Exported Access Programs Cics State Variables Environment Variables Assumptions Access Routine Semantics	30 30 30 30 30 30 30 30 31 31
17	17.1 17.2 17.3	Module Uses . Syntax 17.3.1 17.3.2 Semant 17.4.1 17.4.2 17.4.3 17.4.4	Exported Constants Exported Access Programs tics State Variables Environment Variables Assumptions	30 30 30 30 30 30 30 30 31 31
	17.1 17.2 17.3 17.4	Module Uses . Syntax 17.3.1 17.3.2 Semant 17.4.1 17.4.2 17.4.3 17.4.4 17.4.5	Exported Constants Exported Access Programs tics State Variables Environment Variables Assumptions Access Routine Semantics Local Functions	30 30 30 30 30 30 30 30 31 31 32
	17.1 17.2 17.3 17.4	Module Uses . Syntax 17.3.1 17.3.2 Semant 17.4.1 17.4.2 17.4.3 17.4.4 17.4.5 of Rec	Exported Constants Exported Access Programs tics State Variables Environment Variables Assumptions Access Routine Semantics Local Functions ceived Signal Strength Module	30 30 30 30 30 30 30 31 31 32 33
	17.1 17.2 17.3 17.4 MIS 18.1	Module Uses . Syntax 17.3.1 17.3.2 Semant 17.4.1 17.4.2 17.4.3 17.4.4 17.4.5 of Rec Module	Exported Constants Exported Access Programs tics State Variables Environment Variables Assumptions Access Routine Semantics Local Functions ceived Signal Strength Module	30 30 30 30 30 30 30 31 31 31 32 33 33
	17.1 17.2 17.3 17.4 MIS 18.1 18.2	Module Uses Syntax 17.3.1 17.3.2 Semant 17.4.1 17.4.2 17.4.3 17.4.4 17.4.5 S of Rec Module Uses	Exported Constants Exported Access Programs tics State Variables Environment Variables Assumptions Access Routine Semantics Local Functions ceived Signal Strength Module	30 30 30 30 30 30 30 31 31 32 33 33 33
	17.1 17.2 17.3 17.4 MIS 18.1 18.2	Module Uses . Syntax 17.3.1 17.3.2 Semant 17.4.1 17.4.2 17.4.3 17.4.4 17.4.5 of Rec Module Uses . Syntax	Exported Constants Exported Access Programs tics State Variables Environment Variables Assumptions Access Routine Semantics Local Functions ceived Signal Strength Module	30 30 30 30 30 30 30 31 31 32 33 33 33 33 33
	17.1 17.2 17.3 17.4 MIS 18.1 18.2	Module Uses Syntax 17.3.1 17.3.2 Semant 17.4.1 17.4.2 17.4.3 17.4.4 17.4.5 Sof Rec Module Uses Syntax 18.3.1	Exported Constants Exported Access Programs tics State Variables Environment Variables Assumptions Access Routine Semantics Local Functions ceived Signal Strength Module	30 30 30 30 30 30 30 30 30 30 30 30 30 3
	17.1 17.2 17.3 17.4 MIS 18.1 18.2 18.3	Module Uses Syntax 17.3.1 17.3.2 Semant 17.4.1 17.4.2 17.4.3 17.4.4 17.4.5 of Rec Module Uses Syntax 18.3.1 18.3.2	Exported Constants Exported Access Programs bics State Variables Environment Variables Assumptions Access Routine Semantics Local Functions ceived Signal Strength Module Exported Constants Exported Access Programs	30 30 30 30 30 30 30 30 30 30 30 30 30 3
	17.1 17.2 17.3 17.4 MIS 18.1 18.2 18.3	Module Uses Syntax 17.3.1 17.3.2 Semant 17.4.1 17.4.2 17.4.3 17.4.4 17.4.5 of Rec Module Uses Syntax 18.3.1 18.3.2 Semant	Exported Constants Exported Access Programs tics State Variables Environment Variables Assumptions Access Routine Semantics Local Functions ceived Signal Strength Module	30 30 30 30 30 30 30 30 30 30 30 30 30 3

		18.4.2 Environment Variables	33
		18.4.3 Assumptions	33
		18.4.4 Access Routine Semantics	33
		18.4.5 Local Functions	34
19	MIS	of Output Module	3 5
	19.1	Module	35
	19.2	Uses	35
	19.3	Syntax	35
		19.3.1 Exported Constants	35
		19.3.2 Exported Access Programs	35
	19.4		35
			35
		19.4.2 Environment Variables	35
		19.4.3 Access Routine Semantics	35
		19.4.4 Local Functions	35
20	MIS	of Specification Parameters	86
	20.1	Module	36
	20.2	Uses	36
	20.3	Syntax	36
		20.3.1 Exported Constants	36
	20.4	Semantics	36

3 Introduction

The following document details the Module Interface Specifications for Radio Signal Strength Calculator. It is intended to ease navigation through the program for design and maintenance purposes.

Complementary documents include the System Requirement Specifications and Module Guide. The full documentation and implementation can be found at https://github.com/XingzhiMac/CAS741-Proj/.

4 Notation

The structure of the MIS for modules comes from Hoffman and Strooper (1995), with the addition that template modules have been adapted from Ghezzi et al. (2003). The mathematical notation comes from Chapter 3 of Hoffman and Strooper (1995). For instance, the symbol := is used for a multiple assignment statement and conditional rules follow the form $(c_1 \Rightarrow r_1|c_2 \Rightarrow r_2|...|c_n \Rightarrow r_n)$.

The following table summarizes the primitive data types used by RSSC.

Data Type	Notation	Description
Boolean	Boolean	a 1-bit data with two possible values (0 and 1)
character	char	a single symbol or digit
integer	\mathbb{Z}	a number without a fractional component in $(-\infty, \infty)$
natural number	\mathbb{N}	a number without a fractional component in $[1, \infty)$
non-negative integer	\mathbb{N}_0	a number without a fractional component in $[0, \infty)$
real	\mathbb{R}	any number in $(-\infty, \infty)$

The specification of RSSC uses some derived data types: sets, strings, and tuples. Sets are lists filled with elements of the same data type. In this document, a set of data in type T is represented as set[T]. Strings are lists of characters. Tuples contain a list of values, potentially of different types.

In addition, RSSC defines the following classes as its unique data types: Point (defined in section 8), Wall (defined in section 9), FloorMap (defined in section 10), LinearPath (defined in section 12), LineOfSight (defined in section 15), and FirstOrderReflection (defined in section 17).

5 Module Decomposition

The following table is taken directly from the Module Guide document for this project.

Level 1	Level 2	
Hardware-Hiding		
	Input Parameters	
Behaviour-Hiding	Output	
	Control Module	
	Received Signal Strength	
	Specification Parameters Module	
	Point	
Software Decision	Wall	
	Floor Map	
	Equation Finder	
	Linear Signal Path	
	Intersection	
	Linear Path Loss	
	Line-Of-Sight Signal	
	Specular Reflection	
	First Order Reflection Signal	

Table 1: Module Hierarchy

6 MIS of Control Module

6.1 Module

main

6.2 Uses

Param (section 7), FloorMap(section 10), ReceivedSignalStrength(section 18), Output(section 19)

6.3 Syntax

6.3.1 Exported Constants

6.3.2 Exported Access Programs

Name	In	Out	Exceptions
main	-	-	-

6.4 Semantics

6.4.1 State Variables

None

6.4.2 Access Routine Semantics

main():

• transition: Modify the state of Param module and the environment variables for the Output module by following these steps:

Get (filenameTSM: string), (filenameSP: string), (filenameWALL: string), and (filenameOut: string) from user

Param.load_params(filenameTSM, filenameSP, filenameWALL)

```
map = FloorMap.create()
```

```
[P_{sp}^{dBm}] := \text{empty set} For (sampling\_point : Point) in Param.[Pos_{sp}]: P_{sp}^{dBm} := \text{ReceivedSignalStrength.get\_received\_power}(map, \, sampling\_point) Add P_{sp}^{dBm} into the set [P_{sp}^{dBm}]
```

Output.output(filename Out, Param.[Pos_{sp}], [P_{sp}^{dBm}])

7 MIS of Input Parameters Module

7.1 Module

Param

7.2 Uses

SpecParam (section 20), Point (section 8)

7.3 Syntax

7.3.1 Exported Constants

None

7.3.2 Exported Access Programs

Name	In	Out	Exceptions
load_params	s1: string, s2: string, s3: string	-	FileError
verify_params	-	-	badTransmittance, badReflectance, bad- TransmissionPower, badSignalFrequency, badPosition, inconsis- tentWallParams
Pos_{tsm}	-	Point	-
$[Pos_{sp}]$	-	set[Point]	-
[C]	-	set[Point]	-
[D]	-	set[Point]	-
[T]	-	$\operatorname{set}[\mathbb{R}]$	-
[R]	-	$\operatorname{set}[\mathbb{R}]$	-
P_{tsm}^{dBm}	-	\mathbb{R}	-
f	-	\mathbb{R}	-

7.4 Semantics

7.4.1 State Variables

 Pos_{tsm} : Point $[Pos_{sp}]$: set[Point]

```
[C]: set[Point]

[D]: set[R]

[R]: set[R]

[R]: set[R]

P_{tsm}^{dBm}: \mathbb{R}

f: \mathbb{R}

length_C: \mathbb{R}

length_T: \mathbb{R}

length_R: \mathbb{R}
```

7.4.2 Environment Variables

tsmFile: set[string] spFile: set[string] wallFile: set[string]

7.4.3 Assumptions

- load_params will be called before any of the state variables be accessed.
- tsmFile contains the string equivalents of the numeric values for Pos_{tsm} , P_{tsm}^{dBm} and f, each on a new line.
- spFile contains the string equivalents of elements in the user-input item $[Pos_{sp}]$, each on a new line, in the form of two numbers separated with a comma.
- wallFile contains the string equivalents of elements in the user-input items [C], [D], [T], and [R]. Each line is in the form of 6 numbers separated by 5 commas (each line should be " $x_{C_x}, y_{C_x}, x_{D_x}, y_{D_x}, T_x, R_x$ ").

7.4.4 Access Routine Semantics

Param. $Pos_{tsm}()$:

- output: $out := Pos_{tsm}$
- exception: none

Param.[Pos_{sp}]():

- output: $out := [Pos_{sp}]$
- exception: none

Param.[C]():

- output: out := [C]
- exception: none

Param.[D]():

- output: out := [D]
- exception: none

Param.[T]():

- output: out := [T]
- exception: none

Param.[R]():

- output: out := [R]
- exception: none

Param. $P_{tsm}^{dBm}()$:

- $\bullet \ \text{output:} \ out := P_{tsm}^{dBm}$
- exception: none

Param.f():

- \bullet output: out := f
- exception: none

Param. $length_C()$:

- ullet output: out := number of elements in the user-input item [C]
- exception: none

Param. $length_D()$:

- output: out := number of elements in the user-input item [D]
- exception: none

Param. $length_T()$:

• output: out := number of elements in the user-input item [T]

• exception: none

Param.length_R():

- output: out := number of elements in the user-input item [R]
- exception: none

load_params(s1: string, s2: string, s3: string):

• transition:

The file names s1, s2, and s3 are associated with tsmFile, spFile, and wallsFile respectively.

The state variables are modified with the following procedures:

- 1. Read data from the three files to populate the state variables from ?? (from Pos_{tsm}
- 2. Store the lengths of [C], [D], [T], and [R] as $length_C$, $length_D$, $length_T$, and $length_R$ respectively.
- 3. verify_params()
- exception: exc := any of the file names (s1, s2, or s3) cannot be found OR of any file'sformat (tsmFile, spFile, or wallsFile) is incorrect ⇒ FileError

verify_params():

- output: out := none
- exception: exc :=
 - $\neg (T_{min} \leq T_x \leq T_{max} \ \forall \ T_x \in [T]) \Rightarrow \text{badTransmittance}$
 - $\neg (R_{min} \leq R_x \leq R_{max} \ \forall \ R_x \in [R]) \Rightarrow \text{badReflectance}$
 - $\neg (P_{min}^{dBm} \leq P_{tsm}^{dBm} \leq P_{max}^{dBm}) \Rightarrow \text{badTransmissionPower}$ $\neg (f_{min} \leq f \leq f_{max}) \Rightarrow \text{badSignalFrequency}$

 - $\neg (x_{min} \le x_{C_x} \le x_{max} \ \forall \ C_x \in [C]) \Rightarrow \text{badPosition}$
 - $\neg (y_{min} \leq y_{C_x} \leq y_{max} \ \forall \ C_x \in [C]) \Rightarrow \text{badPosition}$
 - $\neg (x_{min} \le x_{D_x} \le x_{max} \ \forall \ D_x \in [D]) \Rightarrow \text{badPosition}$
 - $\neg (y_{min} \leq y_{D_x} \leq y_{max} \ \forall \ D_x \in [D]) \Rightarrow \text{badPosition}$
 - $\neg (length_C = length_D = length_T = length_R) \Rightarrow inconsistent Wall Params$

Local Functions 7.4.5

8 MIS of Point Module

8.1 Module

Point

8.2 Uses

None

8.3 Syntax

8.3.1 Exported Constants

None

8.3.2 Exported Access Programs

Name	In	Out	Exceptions
create	x _coordinate: \mathbb{R} ,	Point	-
	y_coordinate: \mathbb{R}		
$\operatorname{set_coordinates}$	x -coordinate: \mathbb{R} ,	-	-
	y_coordinate: \mathbb{R}		
${\tt get_coordinates}$	-	$x: \mathbb{R}, y: \mathbb{R}$	-

8.4 Semantics

8.4.1 State Variables

 $x:\mathbb{R}$

 $y: \mathbb{R}$

8.4.2 Environment Variables

None

8.4.3 Assumptions

None

8.4.4 Access Routine Semantics

create(x_coordinate: \mathbb{R} , y_coordinate: \mathbb{R}):

```
• transition:
```

 $x := x_coordinate$ $y := y_coordinate$

• output: out := self

 $set_coordinates(x_coordinate: \ \mathbb{R}, \ y_coordinate: \ \mathbb{R}):$

• transition:

 $x := x_coordinate$ $y := y_coordinate$

• output: none

get_coordinates():

• output: out := x, y

8.4.5 Local Functions

9 MIS of Wall Module

9.1 Module

Wall

9.2 Uses

Point (section 8), EquationFinder (section 11)

9.3 Syntax

9.3.1 Exported Constants

None

9.3.2 Exported Access Programs

Name	In	Out	Exceptions
create	start: Point, end: Point	Wall	invalidWall
set_start_point	Point	-	invalid Wall
$\operatorname{set_end_point}$	Point	-	invalid Wall
get_start_point	-	Point	-
$\operatorname{get_end_point}$	-	Point	-
$set_transmittance$	\mathbb{R}	-	-
$set_reflectance$	\mathbb{R}	-	-
$get_transmittance$	-	\mathbb{R}	-
$get_reflectance$	-	\mathbb{R}	-
get_unit_normal	-	$n1:\mathbb{R},\ n2:\mathbb{R}$	-
get_line_equation	-	$m1: \mathbb{R}, \ m2: \mathbb{R}, \ k: \mathbb{R}$	_

9.4 Semantics

9.4.1 State Variables

 C_x : Point D_x : Point T_x : \mathbb{R}

 $R_x : \mathbb{R}$ $m1 : \mathbb{R}$

```
m2: \mathbb{R}
k: \mathbb{R}
n1: \mathbb{R}
n2: \mathbb{R}
```

9.4.2 Environment Variables

None

9.4.3 Assumptions

None

9.4.4 Access Routine Semantics

create(start: Point, end: Point, transmittance: \mathbb{R} , reflectance: \mathbb{R}):

• transition:

 $C_x := \text{start}$

 $D_x := end$

 $T_x := \text{transmittance}$

 $R_x := \text{reflectance}$

Use Equation Finder Module to find equation parameters:

 $m1, m2, k := \text{EquationFinder.find_equation(start, end)}$

Find the unit normal vector:

 $n1, n2 := \text{find_unit_normal}(C_x, D_x)$

- output: out := self
- exception: $exc := C_x$ and D_x have the same coordinates \Rightarrow invalidWall set_start_point(start: Point):
 - transition:

```
C_x := \text{start}
```

Use Equation Finder Module to find equation parameters:

 $m1, m2, k := \text{EquationFinder.find_equation}(C_x, D_x)$

Find the unit normal vector:

 $n1, n2 := \text{find_unit_normal}(C_x, D_x)$

- output: none
- exception: $exc := C_x$ and D_x have the same coordinates \Rightarrow invalidWall set_end_point(end: Point):
 - transition:

```
D_x := end
```

Use Equation Finder Module to find equation parameters: $m1, m2, k := \text{EquationFinder.find_equation}(C_x, D_x)$

Find the unit normal vector: $n1, n2 := \text{find_unit_normal}(C_x, D_x)$

- output: none
- exception: $exc := C_x$ and D_x have the same coordinates \Rightarrow invalidWall get_start_point():
 - output: $out := C_x$
 - exception: none

get_end_point():

- output: $out := D_x$
- exception: none

 $set_{transmittance}(transmittance: \mathbb{R}):$

- transition: $T_x := \text{transmittance}$
- output: none
- exception: none

 $set_reflectance(resistance: \mathbb{R}):$

- transition: $R_x := \text{resistance}$
- output: none
- exception: none

get_transmittance():

• output: out := T

• exception: none

get_reflectance():

• output: out := R

• exception: none

get_unit_normal():

 \bullet output: out := n1, n2

• exception: none

get_line_equation():

• output: out := m1, m2, k

• exception: none

9.4.5 Local Functions

 $\operatorname{find_unit_normal}(C_x, D_x)$:

• transition:

$$x_{C_x}, y_{C_x} := C_x.\operatorname{get_coordinates}()$$

$$x_{D_x}, y_{D_x} := D_x.\text{get_coordinates}()$$

$$\begin{bmatrix} n1 & n2 \end{bmatrix} := \begin{bmatrix} (x_{D_x} - x_{C_x}) & (y_{D_x} - y_{C_x}) \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \cdot \frac{1}{\sqrt{(y_{D_x} - y_{C_x})^2 + (x_{D_x} - x_{C_x})^2}}$$

• output: out := n1, n2

• exception: none

10 MIS of Floor Map Module

10.1 Module

FloorMap

10.2 Uses

Param(section 7), Point(section 8), Wall(section 9)

10.3 Syntax

10.3.1 Exported Constants

None

10.3.2 Exported Access Programs

Name	In	Out	Exceptions
create	-	FloorMap	-
get _wall	\mathbb{N}_0	Wall	invalid Index
get_map	-	FloorMap	-

10.4 Semantics

10.4.1 State Variables

wall_list: set[Wall] wall_list_length: \mathbb{N}_0

10.4.2 Environment Variables

None

10.4.3 Assumptions

create() will be called before the FloorMap object can be accessed.

10.4.4 Access Routine Semantics

create():

```
• transition:
      Get parameters of all walls from Input Parameters Module (section 7):
      Let list_C = Param.[C]();
      Let list_D = Param.[D]();
      Let list_T = Param.[T]();
      Let list_R = Param.[R]();
      Then:
      wall_list_length := Param.length_C()
      Then create wall_list as such:
      for i = \{0, 1, 2, \dots, (\text{wall\_list\_length - 1})\},\
      \text{wall\_list}(i) := \text{Wall.create}(list_C(i), list_D(i), list_T(i), list_R(i))
   • output: out := self
   • exception: none
get_wall(index: \mathbb{N}_0):
   • output: out := wall_list(index)
   • exception: exc := \neg(0 \le index \le wall\_list\_length - 1) \Rightarrow invalidIndex
get_map():
   • output: out := self
   • exception: none
```

10.4.5 Local Functions

11 MIS of Equation Finder

11.1 Module

EquationFinder

11.2 Uses

Point(section 8)

11.3 Syntax

11.3.1 Exported Constants

None

11.3.2 Exported Access Programs

Name	In	Out	Exceptions
find_equation	start: Point,	m1: \mathbb{R} , m2: \mathbb{R} ,	-
	end: Point	k: ℝ	

11.4 Semantics

11.4.1 State Variables

None

11.4.2 Environment Variables

None

11.4.3 Assumptions

None

11.4.4 Access Routine Semantics

find_equation(start: Point, end: Point):

• output:

Let
$$x_{C_x}, y_{C_x} = \text{start.get_coordinates}();$$

Let $x_{D_x}, y_{D_x} = \text{end.get_coordinates}();$
Then
$$m1 := \begin{cases} -\frac{y_{D_x} - y_{C_x}}{x_{D_x} - x_{C_x}} & \text{if } x_{D_x} - x_{C_x} \neq 0 \\ 1 & \text{else} \end{cases}$$

$$m2 := \begin{cases} 1 & \text{if } x_{D_x} - x_{C_x} \neq 0 \\ 0 & \text{else} \end{cases}$$

$$k := m1 \cdot x_{C_x} + m2 \cdot y_{C_x} = m1 \cdot x_{D_x} + m2 \cdot y_{D_x}$$

$$out := m1, m2, k$$

• exception: none

11.4.5 Local Functions

12 MIS of Linear Signal Path Module

12.1 Module

LinearPath

12.2 Uses

Point (section 8), EquationFinder (section 11)

12.3 Syntax

12.3.1 Exported Constants

None

12.3.2 Exported Access Programs

Name	In	Out	Exceptions
create	start: Point, end: Point	LinearPath	-
$get_equation$	-	$m1: \mathbb{R}, \ m2: \mathbb{R}, \ k: \mathbb{R}$	-
get_start_point	-	Point	-
get_end_point	-	Point	-
get_length	-	\mathbb{R}	_

12.4 Semantics

12.4.1 State Variables

E: Point

F: Point

 $m1:\mathbb{R}$

 $m2:\mathbb{R}$

 $k: \mathbb{R}$

 $length:\mathbb{R}$

12.4.2 Environment Variables

12.4.3 Assumptions

None

12.4.4 Access Routine Semantics

create(start: Point, end: Point):

• transition:

E := startF := end

Use Equation Finder Module to find the path's equation parameters:

 $m1, m2, k := \text{EquationFinder.find_equation}(E, F)$

Let $x_E, y_E = E.get_coordinates();$

Let $x_F, y_F = F.\text{get_coordinates}();$

The find the physical length of the linear path:

length := $\sqrt{(x_E - x_F)^2 + (y_E - y_F)^2}$

- \bullet output: out := self
- exception: none

get_equation():

- output: out := m1, m2, k
- exception: none

get_start_point():

- output: out := E
- exception: none

get_end_point():

- output: out := F
- exception: none

get_length():

- output: out := length
- exception: none

12.4.5 Local Functions

13 MIS of Intersection Module

13.1 Module

Intersection

13.2 Uses

Point (section 8), Wall (section 9), LinearPath (section 12)

13.3 Syntax

13.3.1 Exported Constants

None

13.3.2 Exported Access Programs

Name	In	Out	Exceptions
find_intersection	Wall, Lin- earPath	Point	_
is_valid	Wall, Lin- earPath	Boolean	-

13.4 Semantics

13.4.1 State Variables

None

13.4.2 Environment Variables

None

13.4.3 Assumptions

None

13.4.4 Access Routine Semantics

find_intersection(wall: Wall, path: LinearPath):

• output: Let
$$M = \begin{bmatrix} wall.m1 & wall.m2 \\ path.m1 & path.m2 \end{bmatrix}$$
;

Let
$$K = \begin{bmatrix} wall.k \\ path.k \end{bmatrix}$$
;
$$t' := \text{Point.create}(x,y) \text{ such that } M \begin{bmatrix} x \\ y \end{bmatrix} = K, \text{ if } det(M) \neq 0; \text{ or } t' := \text{Point.create}(0,0), \text{ if } det(M) = 0.$$

$$out := t'$$

• exception: none

is_valid(wall: Wall, path: LinearPath):

• output:

Let
$$M = \begin{bmatrix} wall.m1 & wall.m2 \\ path.m1 & path.m2 \end{bmatrix}$$
;
Let $K = \begin{bmatrix} wall.k \\ path.k \end{bmatrix}$;

If $det(M) \neq 0$,

$$t' := \text{Point.create}(x, y) \text{ such that } M \begin{bmatrix} x \\ y \end{bmatrix} = K$$

If

 $\max(\min(wall.C_x.x, wall.D_x.x), \min(path.C_x.x, path.D_x.x)) < t'.x < \min(\max(wall.C_x.x, wall.D_x.x))$ $\max(\min(wall.C_x.y, wall.D_x.y), \min(path.C_x.y, path.D_x.y)) < t'.x < \min(\max(wall.C_x.y, wall.D_x.y))$

Ind := 1;

otherwise Ind := 0.

If det(M) = 0,

Ind := 0.

out := Ind

• exception: none

13.4.5**Local Functions**

14 MIS of Linear Path Loss Module

14.1 Module

LinearLoss

14.2 Uses

FloorMap (section 10), LinearPath (section 12), Intersection (section 13)

14.3 Syntax

14.3.1 Exported Constants

None

14.3.2 Exported Access Programs

Name	In	Out	Exceptions
find_linear_path_loss	path:LinearPath, f: \mathbb{R}	\mathbb{R}	-

14.4 Semantics

14.4.1 State Variables

None

14.4.2 Environment Variables

None

14.4.3 Assumptions

FloorMap.create() will be called before calling FloorMap.get_map().

14.4.4 Access Routine Semantics

find_linear_path_loss (path: LinearPath, $freq : \mathbb{R}$):

• output:

The output is dependent on two parameters: FSPL and T_{total} . Update FSPL:

map: FloorMap.get_map() $FSPL := (\frac{4\pi \cdot path.length}{3 \times 10^8})^2$

```
\begin{aligned} &\text{Update } T_{total} \colon \\ &T_{total} := \Pi_{x=0}^{N_w}(wall_x \cdot T_x^{Ind_{t,x}}) \\ &\text{Where} \\ &N_w := map.\text{wall\_list\_length - 1} \\ &wall_x := \text{map.get\_wall}(x) \\ &Ind_{t,x} := \text{Intersection.is\_valid}(wall_x, path) \\ &out := \frac{T_{total}}{FSPL} \end{aligned}
```

• exception: none

14.4.5 Local Functions

15 MIS of Line-Of-Sight Signal Module

15.1 Module

LineOfSight

15.2 Uses

Param (section 7), Point (section 8), LinearPath (section 12), LinearLoss (section 14)

15.3 Syntax

15.3.1 Exported Constants

 $\phi_{LOS} := 0$

15.3.2 Exported Access Programs

Name	In	Out	Exceptions
create	sampling_point: Point	LineOfSight	-
get_path_length	-	\mathbb{R}	-
${\rm get_amplitude}$	-	\mathbb{R}	-
get_phase_angle	-	\mathbb{R}	-

15.4 Semantics

15.4.1 State Variables

 Pos_{sp} : Point $d_{tsm,sp}$: \mathbb{R} P_{LOS} : \mathbb{R}

15.4.2 Environment Variables

None

15.4.3 Assumptions

15.4.4 **Access Routine Semantics**

create(sampling_point: Point):

```
• transition:
        Update Pos_{sp}:
       Pos_{sp} := sampling\_point
       Update d_{tsm,sp}:
        freq := Param.f()
       Pos_{tsm} := Param.Pos_{tsm}()
       path := LinearPath.create(Pos_{tsm}, Pos_{sp})
       d_{tsm,sp} := path.get\_length()
       Update P_{LOS}:
       P_{tsm}^{dBm} := \underset{10}{\text{Param.}} P_{tsm}^{dBm}()
P_{tsm} := 10^{\frac{P_{tsm}^{dBm} - 30}{10}}
       P_{LOS} := P_{tsm} \cdot \text{LinearLoss.find\_linear\_path\_loss}(path, freq)
    • output: out := self
    • exception: none
get_path_length():
```

- - output: $out := d_{tsm,sp}$
 - exception: none

get_amplitude():

- output: $out := P_{LOS}$
- exception: none

get_phase_angle():

- output: $out := \phi_{LOS}$
- exception: none

Local Functions 15.4.5

16 MIS of Specular Reflection Module

16.1 Module

Specular

16.2 Uses

Point (section 8), Wall (section 9), LinearPath (section 12), Intersection (section 13)

16.3 Syntax

16.3.1 Exported Constants

None

16.3.2 Exported Access Programs

Name	In	Out	Exceptions
get_mirrored_paths	$wall_x$:Wall,	$path_{RS1}$:LinearPath,	-
	start:Point,	$path_{RS2}$:LinearPath,	
	end:Point	$Ind_{r,x}$: Boolean	

16.4 Semantics

16.4.1 State Variables

None

16.4.2 Environment Variables

None

16.4.3 Assumptions

None

16.4.4 Access Routine Semantics

 ${\tt get_mirrored_paths}(wall_x{:}{\tt Wall},\,start{:}{\tt Point},\,end{:}{\tt Point}){:}$

• output:

Let
$$n := \begin{bmatrix} wall_x.n1 & wall_x.n2 \end{bmatrix};$$

Let $t := \begin{bmatrix} wall_x.C_x.x & wall_x.C_x.y \end{bmatrix};$

```
Let p := [start.x \ start.y)];

Then solve [p'_x \ p'_y] = p - 2n(n \cdot (p - t))

for the values of p'_x and p'_y.

let p' := \text{Point.create}(p'_x, p'_y);

Let mirrored\_path := \text{LinearPath.create}(p', end);

Then t' := \text{Intersection.find\_intersection}(wall_x, mirrored\_path);

Ind_{r,x} := \text{Intersection.is\_valid}(wall_x, mirrored\_path);

path_{RS1} := \text{LinearPath.create}(p, t');

path_{RS2} := \text{LinearPath.create}(t', end);

out := path_{RS1}, path_{RS2}, Ind_{r,x}
```

• exception: none

16.4.5 Local Functions

17 MIS of First-Order Reflection Signal Module

17.1 Module

FirstOrderReflection

17.2 Uses

Param (section 7), Wall (section 9), LinearLoss (section 12), LineOfSight (section 15), Specular (section 16)

17.3 Syntax

17.3.1 Exported Constants

None

17.3.2 Exported Access Programs

Name	In	Out	Exceptions
create	$wall_x$: Wall, $sampling_point$: Point, LOS : LineOfSight	FirstOrderReflection	-
$get_amplitude$	-	\mathbb{R}	-
${\tt get_phase_angle}$	-	\mathbb{R}	-

17.4 Semantics

17.4.1 State Variables

 Pos_{sp} : Point

 $path_{RS1}$: LinearPath $path_{RS2}$: LinearPath $Ind_{r,x}$: Boolean

 P_{FORS} : \mathbb{R} ϕ_{FORS} : \mathbb{R}

17.4.2 Environment Variables

17.4.3 Assumptions

• exception: none

None

17.4.4 Access Routine Semantics

create($wall_x$:Wall, sampling_point: Point, LOS: LineOfSight):

```
• transition:
       Update Pos_{sp}:
       Pos_{sp} := sampling\_point
       Update path_{RS1}, path_{RS2}, and Ind_{r.x}:
       freq := Param.f()
       Pos_{tsm} := Param.Pos_{tsm}()
      path_{RS1}, path_{RS2}, Ind_{r,x} := Specular.get_mirrored_paths(wall_x, Pos_{tsm}, Pos_{sp})
       Update P_{FORS}:
      If Ind_{r,x} = 1:
       P_{tsm}^{dBm} := \text{Param.} P_{tsm}^{dBm}()
      P_{tsm} := 10^{\frac{P_{tsm}^{dBm} - 30}{10}}
      transmittance_{RS1} := LinearLoss.find\_linear\_path\_loss(path_{RS1}, freq)
      transmittance_{RS2} := LinearLoss.find_linear_path_loss(path_{RS2}, freq)
      P_{FORS} := P_{tsm} \cdot transmittance_{RS1} \cdot transmittance_{RS2} \cdot wall_x.get\_reflectance()
       Otherwise:
       P_{FORS} := 0
       Update \phi_{FORS}:
       If Ind_{r,x} = 1:
      \phi_{FORS} := 2\pi f \frac{path_{RS1}.length + path_{RS2}.length - LOS.d_{tsm,sp}}{3\times10^8} Otherwise:
       \phi_{FORS} := 0
    • output: out := self
    • exception: none
get_amplitude():
    • output: out := P_{FORS}
    • exception: none
get_phase_angle():
    • output: out := \phi_{FORS}
```

17.4.5 Local Functions

18 MIS of Received Signal Strength Module

18.1 Module

Received Signal Strength

18.2 Uses

FloorMap (section 10), LineOfSight (section 15), FirstOrderReflection (section 17)

18.3 Syntax

18.3.1 Exported Constants

None

18.3.2 Exported Access Programs

Name	In		Out	Exceptions
get_received_power	map:	FloorMap,	\mathbb{R}	invalid Received Strength
	sampling	g_point :		
	Point			

18.4 Semantics

18.4.1 State Variables

None

18.4.2 Environment Variables

None

18.4.3 Assumptions

FloorMap.create() will be called before calling FloorMap.get_map() in this module.

18.4.4 Access Routine Semantics

get_received_power(map: FloorMap, sampling_point: Point):

• output:

```
Get Floor Map:

map := FloorMap.get_map()

map\_complexity := map.wall\_list\_length - 1
```

```
Find Line-Of-Sight Signal LOS := \text{LineOfSight.create}(sampling\_point)
Find First-Order reflection signals by wall:
For x in (0, 1, 2, ..., map\_complexity):
wall_x := map.\text{get\_wall}(x)
FORS(x) := \text{FirstOrderReflection.create}(wall_x, sampling\_point, LOS)
Find total received signal:
P_{LOS} := LOS.\text{get\_amplitude}()
\phi_{LOS} := LOS.\text{get\_phase\_angle}()
P_{FORS_x} := FORS(x).\text{get\_amplitude}()
\phi_{FORS_x} := FORS(x).\text{get\_phase\_angle}()
P_{sp} \angle \phi_{sp} := P_{LOS} \angle \phi_{LOS} + \sum_{x=0}^{map\_complexity} P_{FORS_x} \angle \phi_{FORS_x}
P_{sp}^{dBm} := 30 + 10 \log_{10}(P_{sp})
out := P_{sp}^{dBm}
• exception: exc := (P_{tsm}^{dBm} \le P_{sp}^{dBm}) \Rightarrow \text{invalidReceivedStrength}
```

18.4.5 Local Functions

19 MIS of Output Module

19.1 Module

Output

19.2 Uses

Param (section 7), Point (section 8)

19.3 Syntax

19.3.1 Exported Constants

None

19.3.2 Exported Access Programs

Name	${f In}$	Out	Exceptions
output	fname: string, $[Pos_{sp}]$: set $[Point]$, $[P_{sp}^{dBm}]$: set $[\mathbb{R}]$	-	-

19.4 Semantics

19.4.1 State Variables

None

19.4.2 Environment Variables

file: a text file

19.4.3 Access Routine Semantics

output (fname, $[Pos_{sp}],\,[P_{sp}^{dBm}])$:

- transition: write to environment variable named fname the calculated received signal strengths $[P_{sp}^{dBm}]$ and their corresponding sampling points in $[Pos_{sp}]$. Each line of the output file will be 3 numbers separated by comma: $[Pos_{sp}.x, Pos_{sp}.y, P_{sp}^{dBm}]$.
- exception: none

19.4.4 Local Functions

20 MIS of Specification Parameters

20.1 Module

 ${\bf Spec Param}$

20.2 Uses

None

20.3 Syntax

20.3.1 Exported Constants

```
From Table 2 in SRS: P_{max}^{dBm} := 15 \text{ (dBm)} P_{min}^{dBm} := -30 \text{ (dBm)} f_{min} := 30 \text{ (Hz)} f_{max} := 3 \times 10^{11} \text{ (Hz)} x_{min} := -20 \text{ (m)} x_{max} := 20 \text{ (m)} y_{min} := -20 \text{ (m)} y_{max} := 20 \text{ (m)}
```

20.4 Semantics

N/A

References

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software Engineering. Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 2003.

Daniel M. Hoffman and Paul A. Strooper. Software Design, Automated Testing, and Maintenance: A Practical Approach. International Thomson Computer Press, New York, NY, USA, 1995. URL http://citeseer.ist.psu.edu/428727.html.