ЛАБОРАТОРНАЯ РАБОТА №5 ПОСЛЕДОВАТЕЛЬНЫЙ ИНТЕРФЕЙС SPI. АКСЕЛЕРОМЕТР

В соответствии с вариантом задания написать программу, которая с заданной частотой и точностью измеряла показания акселерометра по выбранной оси. Полученные данные вывести на экран в заданном формате (можно округлять до целых). Используя измеренные данные определить угол отклонения платы от оси координат при условии, что плата находится в состоянии покоя. Если рассчитанный угол лежит в заданных пределах — зажечь светодиод.

Для отображения использовать шрифт из лабораторной работы №4. НЕ забыть согласовать скорость отображения данных на экране и скорость считывания данных.

Не допускается активный опрос флагов при приеме данных от акселерометра, а также подключение к проекту каких-либо файлов, за исключением:

- 1. "msp430.h;
- 2. "HAL_Dogs102x6.h" (из всей библиотеки допускается использование ТОЛЬКО Dogs102x6_writeCommand и Dogs102x6 writeData);
 - 3. библиотек языка С;
 - 4. написанных самостоятельно.

Варианты заданий на лабораторную работу

№	Ось	Частота, Гц	Диапазон	Формат вывода на экран	LED	Угол,°	
						min	max
1	X	400	2g	100 ⋅ g	1	60	120
2	Y	100	2g	$10 \cdot ярд / c^2$	2	45	135
3	Z	40	2g	$1000 \cdot $ миль / c^2	3	- 135	-45
4	X	100	2g	$1000 \cdot \phi y_T/c^2$	4	- 180	0
5	Y	40	2g	$100 \cdot \phi y_T/c^2$	5	- 120	- 60
6	Z	400	2g	1000 ⋅ g	6	30	150
7	X	40	2g	1 · дюйм/с²	7	45	135
8	Y	400	2g	$10000 \cdot \text{m/c}^2$	8	0	180
9	Z	100	2g	100 · ярд / с²	1	60	120
10	X	400	8g	$1000 \cdot \text{m/c}^2$	2	- 135	-45
11	Y	100	8g	$10000 \cdot$ миль / c^2	3	60	120
12	Z	40	8g	10 ⋅ g	4	- 150	- 30
13	X	100	8g	$10 \cdot$ дюйм/ c^2	5	0	180
14	Y	40	8g	$100 \cdot \text{m/c}^2$	6	30	150
15	Z	400	8g	$100 \cdot$ дюйм/ c^2	7	- 120	- 60
16	X	40	8g	$1000 \cdot ярд / c^2$	8	- 150	- 30