Messtechnik 1

Grundlagen Drehspulmesser

1.1.1 Windungen im Wickelraum

$$A_W = N \cdot d^2$$

Wickelraum A_W

NAnzahl der Windungen

 d^2 Drahtdurchmesser m^2

Elektrisches Moment

$$M_{el} = A \cdot N \cdot B \cdot I$$

NAnzahl der Windungen Ι

Stromstärke

 m^2 AFläche

A

 \mathbf{T}

BFeldstärke

1.1.3 Mechanisches Moment

$$M_{mech} = \alpha \cdot D$$

DFederkonstante $N m/90^{\circ}$

Ausschlagwinkel α

1.1.4 Zeigerausschlag

$$\alpha = I \cdot \frac{A \cdot N \cdot B}{D}$$

NAnzahl der Windungen

Ι Stromstärke Α

 m^2 \boldsymbol{A} Fläche

Federkonstante Nm

1.1.5 Strommessung mit Nebenwiderstand

$$(I - I_M)R_N = I_M(R_M + R_V)$$

$$R_N = \frac{I_M(R_M + R_V)}{I - I_M}$$

I_M	Messwerkstrom	A
	1mA oder 100μA	
I	Stromstärke	A
R_M	Spulenwiederstand (Kupfer*)	Ω
R_N		Ω
_		_

^{*}Temperaturkoeffizient Kupfer: 4%/10K

1.1.6 Güteklasse mit Temperaturkoeffizient

$$G = \frac{R_M}{R_M + R_V} \cdot 4\% / 10 \text{K}$$

G	Güteklasse	
R_M	Spulenwiederstand (Kupfer*)	Ω
R_N		Ω
R_{xx}		Ω

1.1.7 Rückwirkungsfehler Strommessung

$$F_I = \frac{I_M - I_0}{I_0} = -\frac{R_M}{R_0 + R_L + R_M}$$

F_{I}	systemischer Fehler	
I_0		A
I_M		A
R_0		Ω
R_L	Lastwiderstand	Ω
R_M	Spulenwiederstand (Kupfer*)	Ω

1.1.8 Spannungsmesser

$$R_V = \frac{U}{I_M} - R_M$$

I_M		A
R_M	Spulenwiederstand (Kupfer*)	Ω
R_V	Vorwiderstand	Ω
U	Spannung	V

1.1.9 Rückwirkungsfehler Spannungsmessung

$$F_{U} = \frac{U_{M} - U_{0}}{U_{0}} = -\frac{R_{0}}{R_{0} + R_{i}}$$

$$U_{M} = \frac{U_{0}}{R_{0} + R_{i}}R_{i}$$

$$R_{i} = R_{M} + R_{V}$$

$$F_U$$
 systemischer Fehler V
 U_0 V
 U_M V
 R_0 Ω
 R_i Ω
 R_M Spulenwiederstand (Kupfer*) Ω
 R_V Vorwiderstand Ω

1.2 Grundlagen DVN

1.2.1 DVN Genauigkeit Bit

$$B(n) = \frac{\log(2 \cdot 10^n)}{\log(2)}$$

n Stellen der Anzeige \mathbb{N}

1.2.2 DVN Genauigkeit %

$$e_r = \frac{1}{2 \cdot 10^n - 1}$$

$$e_r = \frac{1}{2^{B(n)} - 1}$$

n Stellen der Anzeige \mathbb{N}

1.2.3 Anzeigen Auflösung

Bestimmung durch den Kehrwert der Anzeige. Beispiel für $3\frac{1}{2}$

$$0.5\cdot 10^{-3}$$

1.2.4 Spanning pro Digit

$$I_{Dig} = I \cdot n$$

n Kehrwert der Anzeige $Mess_{max}$ Max Wert Messbereich

1.2.5 Rückwirkungsfehler

Dieser ist größer als bei Analogen Messverfahren denn $R_P \geq R_M$.

$$F_I = \frac{I_M - I_0}{I_0} = -\frac{R_P}{R_0 + R_L + R_P}$$

$$I_0$$

$$I_M$$

$$R_0$$

$$R_L$$
 Lastwiderstand

 F_I

1.2.6 Rückwirkungsfehler Spannungsmessung

$F_U = \frac{R_i R_P}{R_i + R_P} - R_P =$	R_P
$F_U = \frac{R_I + R_P}{R_P} =$	$=-\frac{1}{R_i+R_P}$

F_U	systemischer Fehler	
U_0		V
U_M		V
R_0		Ω
R_i		Ω
R_M	Spulenwiederstand (Kupfer*)	Ω
R_V	Vorwiderstand	Ω

systemischer Fehler

A

A

 Ω

 $\Omega \\ \Omega$