```
In [69]: import pandas as pd
          import numpy as np
         import matplotlib.pyplot as plt
          import seaborn as sns
         from datetime import timedelta
         from datetime import datetime as dt
         from sklearn.linear model import LogisticRegression
         from sklearn import metrics
         from sklearn.model selection import train test split
         from sklearn.preprocessing import StandardScaler, MinMaxScaler
         from xgboost import XGBClassifier
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.naive bayes import GaussianNB
         from sklearn.cluster import KMeans, MeanShift, estimate bandwidth
         from sklearn.metrics import confusion matrix
         from sklearn.metrics import f1 score
         from sklearn.ensemble import ExtraTreesClassifier
          %matplotlib inline
```

```
In [2]: # data set include 3 csv files
d1= "activity_log.csv"
d2= "enrollment_list.csv"
d3= "train_label.csv"
```

```
In [3]: df_1 = pd.read_csv(d1)
    df_1.head()
```

Out[3]:

event	time	enrollment_id	
navigate	2014-05-31T12:43:20	1	0
navigate	2014-05-31T12:43:50	1	1
access	2014-05-31T12:44:10	1	2
navigate	2014-05-31T12:56:32	1	3
access	2014-05-31T12:56:53	1	4

Out[4]:

course_id	user_id	enrollment_id	
ev4oSPQOjeL5QAf5oF72ooYu	Mv7P1v8fRDifebDlgli2Vl1Z	1	0
kxtZS4d61l2cEp0BZ3e6HzOH	xR26xfShRqzZY2EcRUj1yUtH	2	1
TRrZ9gGs6MrmfBbpM1B9hzbn	7Ls723Xz49U2sCOqIKKtFMiW	3	2
nknoexvjeVdLxiDT0VODT9CV	RqpfcyRE7XYeyNurvR8s5i9T	4	3
djBWhu0JoDsrQ2a6Kzg6B4E2	1lxywohA3Ug7ok0p2MEDnFHY	5	4

```
In [5]: # category of event
list(set(df_1.event.values))
```

Out[5]: ['problem', 'access', 'video', 'discussion', 'page_close', 'wiki', 'navigate']

```
In [6]: #format the time
    df_1['time'] = pd.to_datetime(df_1['time'])
    df_1.dtypes
```

Out[7]:

max	min	event	enrollment_id	
2014-06-01 14:00:30	2014-05-31 12:44:10	access	1	0
2014-06-01 14:00:21	2014-05-31 12:43:20	navigate	1	1
2014-06-01 13:40:31	2014-05-31 12:59:40	problem	1	2
2014-06-04 03:16:11	2014-06-04 02:58:59	access	2	3
2014-06-04 02:58:37	2014-06-04 02:57:03	discussion	2	4

Out[10]:

	enrollment_id	event	min	max	day_duration	mins_duration
0	1	access	2014-05-31 12:44:10	2014-06-01 14:00:30	1	1516.333333
1	1	navigate	2014-05-31 12:43:20	2014-06-01 14:00:21	1	1517.016667
2	1	problem	2014-05-31 12:59:40	2014-06-01 13:40:31	1	1480.850000
3	2	access	2014-06-04 02:58:59	2014-06-04 03:16:11	0	17.200000
4	2	discussion	2014-06-04 02:57:03	2014-06-04 02:58:37	0	1.566667

```
In [11]: df_1_1.drop(['min', 'max'],axis= 1, inplace=True)
    df_1_1.head()
```

Out[11]:

	enrollment_id	event	day_duration	mins_duration
0	1	access	1	1516.333333
1	1	navigate	1	1517.016667
2	1	problem	1	1480.850000
3	2	access	0	17.200000
4	2	discussion	0	1.566667

Out[12]:

	enrollment_id	day_duration_access	day_duration_discussion	day_duration_navigate	day_duration_page_close	day_duration_problem
0	1	1.0	0.0	1.0	0.0	1.0
1	2	0.0	0.0	0.0	0.0	0.0
2	3	3.0	0.0	3.0	3.0	0.0
3	4	0.0	0.0	0.0	0.0	0.0
4	5	0.0	0.0	0.0	0.0	0.0

Out[13]:

event	enrollment_id	access	discussion	navigate	page_close	problem	video	wiki
0	1	27.0	0.0	8.0	0.0	79.0	0.0	0.0
1	2	7.0	4.0	3.0	4.0	0.0	3.0	1.0
2	3	34.0	1.0	6.0	7.0	0.0	9.0	0.0
3	4	54.0	4.0	6.0	46.0	21.0	31.0	1.0
4	5	0.0	0.0	2.0	0.0	0.0	0.0	0.0

Out[14]:

	index	enrollment_id	day_duration_access	day_duration_discussion	day_duration_navigate	day_duration_page_close	day_duration_p
0	0	1	1.0	0.0	1.0	0.0	
1	1	2	0.0	0.0	0.0	0.0	
2	2	3	3.0	0.0	3.0	3.0	
3	3	4	0.0	0.0	0.0	0.0	
4	4	5	0.0	0.0	0.0	0.0	

5 rows × 23 columns

```
In [16]: df_final.drop('index',axis=1,inplace=True)
    df_final.head()
```

Out[16]:

	enrollment_id	day_duration_access	day_duration_discussion	day_duration_navigate	day_duration_page_close	day_duration_problem
0	1	1.0	0.0	1.0	0.0	1.0
1	2	0.0	0.0	0.0	0.0	0.0
2	3	3.0	0.0	3.0	3.0	0.0
3	4	0.0	0.0	0.0	0.0	0.0
4	5	0.0	0.0	0.0	0.0	0.0

5 rows × 22 columns

Out[17]:

course_id	user_id	enrollment_id	
ev4oSPQOjeL5QAf5oF72ooYu	Mv7P1v8fRDifebDlgli2Vl1Z	1	0
kxtZS4d61l2cEp0BZ3e6HzOH	xR26xfShRqzZY2EcRUj1yUtH	2	1
TRrZ9gGs6MrmfBbpM1B9hzbn	7Ls723Xz49U2sCOqIKKtFMiW	3	2
nknoexvjeVdLxiDT0VODT9CV	RqpfcyRE7XYeyNurvR8s5i9T	4	3
djBWhu0JoDsrQ2a6Kzg6B4E2	1lxywohA3Ug7ok0p2MEDnFHY	5	4

```
In [18]: df_2_g=df_2.groupby('user_id')['course_id'].count().reset_index(name = 'count').sort_values(by ='count',ascen ding = False)
    len(df_2_g['count']>1)/df_2.shape[0]
```

Out[18]: 0.6569162615519902

Out[19]:

	enrollment_id	dropout_prob
0	1	1
1	2	1
2	3	0
3	4	1
4	5	1


```
In [23]: def statbyfeature(data,features):
    user_stat =dict()
    user = data['user_id'].nunique()
    for feature in features:
        seg = data[['user_id',feature]]
        seg_res = seg.groupby('user_id')[feature].nunique().reset_index(name = feature+"_nums")
        user_stat[feature] = seg_res
    res = user_stat[features[0]]
    for feature in features[1:]:
        res = pd.merge(res,user_stat[feature],on= 'user_id')
    return res
```

```
In [27]: # merge "enrollment_list.csv" and "train_label.csv"
    df = pd.merge(df_2,df_3, on = 'enrollment_id')
    df.head()
```

Out[27]:

dropout_prob	course_id	user_id	enrollment_id	
1	ev4oSPQOjeL5QAf5oF72ooYu	Mv7P1v8fRDifebDlgli2Vl1Z	1	0
1	kxtZS4d61l2cEp0BZ3e6HzOH	xR26xfShRqzZY2EcRUj1yUtH	2	1
0	TRrZ9gGs6MrmfBbpM1B9hzbn	7Ls723Xz49U2sCOqIKKtFMiW	3	2
1	nknoexvjeVdLxiDT0VODT9CV	RqpfcyRE7XYeyNurvR8s5i9T	4	3
1	djBWhu0JoDsrQ2a6Kzg6B4E2	1lxywohA3Ug7ok0p2MEDnFHY	5	4

```
In [28]: features = ['user_id','course_id']

df1 = statbyfeature(df,['course_id'])
    df = pd.merge(df,df1,on='user_id')
    df = df.merge(df.groupby('course_id')['user_id'].nunique().reset_index(name = 'user_id_nums'),on ='course_id')

df.head()
```

Out[28]:

	enrollment_id	user_id	course_id	dropout_prob	course_id_nums	user_id_nums
(1	Mv7P1v8fRDifebDlgli2Vl1Z	ev4oSPQOjeL5QAf5oF72ooYu	1	1	2819
1	10	j5ZHV45UBuKGT6sh9xpKebmX	ev4oSPQOjeL5QAf5oF72ooYu	1	1	2819
2	2 19	3drllw6edZ7wcz6ttlW1rAdx	ev4oSPQOjeL5QAf5oF72ooYu	1	1	2819
3	3 24	BnlQkllgZzlwM9pQFXL5b0tx	ev4oSPQOjeL5QAf5oF72ooYu	1	1	2819
2	36756	1tXfa1rxy8JDbfsS7YL99taf	ev4oSPQOjeL5QAf5oF72ooYu	1	12	2819

dfff2.drop(['dropout_prob','course_id'],axis=1,inplace=True)

Out[30]:

	enrollment_id	course_id_risk
0	1	0.826534
1	10	0.826534
2	19	0.826534
3	24	0.826534
4	36756	0.826534

dfff2.head()

```
In [32]: # merge the two different features generated dataset
df_final_2 = dfff.merge(dfff2,on='enrollment_id')
```

```
In [33]: df_final_2.head()
```

Out[33]:

enrollment_id		user_id	course_id	dropout_prob course_id_nums		user_id_nums	user_id_risk
0	1	Mv7P1v8fRDifebDlgli2Vl1Z	ev4oSPQOjeL5QAf5oF72ooYu	1	1	2819	1.000000
1	10	j5ZHV45UBuKGT6sh9xpKebmX	ev4oSPQOjeL5QAf5oF72ooYu	1	1	2819	1.000000
2	19	3drllw6edZ7wcz6ttlW1rAdx	ev4oSPQOjeL5QAf5oF72ooYu	1	1	2819	1.000000
3	24	BnlQkllgZzlwM9pQFXL5b0tx	ev4oSPQOjeL5QAf5oF72ooYu	1	1	2819	1.000000
4	36756	1tXfa1rxy8JDbfsS7YL99taf	ev4oSPQOjeL5QAf5oF72ooYu	1	12	2819	0.666667

```
In [34]: # merge the all feature generated dataset
    df_f = df_final.merge(df_final_2,on = 'enrollment_id')
    df_f.head()
```

Out[34]:

	enrollment_id	day_duration_access	day_duration_discussion	day_duration_navigate	day_duration_page_close	day_duration_problem
0	1	1.0	0.0	1.0	0.0	1.0
1	2	0.0	0.0	0.0	0.0	0.0
2	3	3.0	0.0	3.0	3.0	0.0
3	4	0.0	0.0	0.0	0.0	0.0
4	5	0.0	0.0	0.0	0.0	0.0

5 rows × 29 columns

Exploratory Data Analysis

```
In [91]: # users and course risk analysis
    features =['user_id','course_id']
    index =0
    plt.figure(figsize=(20,10))

for f in features:
    index +=1
    data = df.groupby(f)['dropout_prob'].sum().sort_values(ascending=False).reset_index(name = 'dropout coun t')[:20]
    plt.subplot(2,1,index)
    plt.title("Risky "+str(f)+"--#dropout")
    plt.xlabel(fea)
    sns.barplot(y=f,x ='dropout count',data =data)
    plt.show()
```



```
In [111]: # event histogram
features = ['access', 'discussion', 'navigate', 'page_close', 'problem', 'video','wiki']
index = 0
plt.figure(figsize= (20,20))
data = df_f
for f in features:
    index += 1
    plt.subplot(4,3,index)
    plt.xlabel(f)
    sns.distplot(data[f],kde = True, bins =5,color= 'b',kde_kws = {"color":'r',"lw":2,"label":f})
```


50

100

wiki

150

200

250

```
In [138]: # event risk line chart
features = ['access', 'discussion', 'navigate', 'page_close', 'problem', 'video','wiki']
index = 0
plt.figure(figsize= (20,20))
data =df_f
colors = ['','r','c','m','y','k','g','b']
for _,f in enumerate(features):
    index += 1
    plt.subplot(4,3,index)

d = data.groupby('video')['dropout_prob'].sum()/(data.shape[0])
plt.title('event:'+str(f)+ ' dropout risk')
plt.xlabel(""+str(f)+" count")
d.plot(color= colors[index], linewidth=2)
```


Train Model and evaluate

```
In [36]: x = df_f.drop(['enrollment_id','user_id','course_id','dropout_prob'],axis=1)
y = df_f['dropout_prob']
x.shape

Out[36]: (72325, 25)

In [66]: # split training and test dataset
x_train,x_test ,y_train, y_test = train_test_split(StandardScaler().fit_transform(x),y,test_size =.33,random_state = 42)
```

In [147]: #model build and performance evaluate def pred model(x train, x test , y train, y test): Lg = LogisticRegression(max_iter = 2000) eval set = [(x test, y test)] Xgboost= XGBClassifier(eval metric=["error", "logloss"], eval set=eval set,verbose=True, objective='binary:logistic', n estimators=100) gnb = GaussianNB() rdf = RandomForestClassifier(max_depth=10, random_state=0) models name = ["LogisticRegression","XGBoost","GaussianNB","RandomForest"] models = [Lg,Xgboost,gnb,rdf] for index,model in enumerate(models): model.fit(x_train,y_train) fpr,tpr, _ = metrics.roc_curve(y_test,model.predict_proba(x_test)[:,1]) auc = metrics.auc(fpr,tpr) y pred = model.predict(x test) v pred train = model.predict(x train) f1 test = f1 score(y test, y pred,average='micro') f1 train = f1 score(y train, y pred train, average='micro') print(f'AUC score: {auc:4.3f}') print(f"train score: {model.score(x train,y train):4.3f}") print(f"test score: {model.score(x test,y test):4.3f}") print("F1 score for train dataset: ",f"{f1 train:4.3f}") print("F1 score for test dataset: ",f"{f1_test:4.3f}") print() pred model(x train, x test , y train, y test)

*******LogisticRegression*****

AUC score: 0.991 train score: 0.958 test score: 0.957

F1 score for train dataset: 0.958 F1 score for test dataset: 0.957

*******XGBoost*****

AUC score: 0.992 train score: 0.985 test score: 0.960

F1 score for train dataset: 0.985 F1 score for test dataset: 0.960

*******GaussianNB*****

AUC score: 0.943 train score: 0.873 test score: 0.871

F1 score for train dataset: 0.873 F1 score for test dataset: 0.871

********RandomForest******

AUC score: 0.992 train score: 0.970 test score: 0.961

F1 score for train dataset: 0.970 F1 score for test dataset: 0.961

Feature importance analysis

```
In [81]: # Build a forest and compute the feature importances
         forest = ExtraTreesClassifier(n estimators=250,
                                       random state=0)
         forest.fit(x, y)
         importances = forest.feature importances
         std = np.std([tree.feature importances for tree in forest.estimators ],
                       axis=0)
         indices = np.argsort(importances)[::-1][:10]
         # Print the feature ranking
         print("Feature ranking:")
         for f in range(10):
             print("%d. feature %d: %s, (%f)" % (f + 1, indices[f], features[indices[f]], importances[indices[f]]))
         # Plot the feature importances of the forest
         plt.figure()
         plt.title("Feature importances")
         plt.barh(range(10), importances[indices][::-1],
                color="r", yerr=std[indices], align="center")
         #plt.xticks(range(10), features[indices],rotation = 90)
         plt.yticks(range(10), features[indices])
         #plt.xlim([-1, x.shape[1]])
         plt.show()
```

Feature ranking:

- 1. feature 23: user id risk, (0.529231)
- 2. feature 7: mins duration access, (0.044646)
- 3. feature 4: day_duration_problem, (0.038590)
- 4. feature 11: mins_duration_problem, (0.036919)
- 5. feature 10: mins_duration_page_close, (0.036340)
- 6. feature 0: day_duration_access, (0.031480)
- 7. feature 9: mins_duration_navigate, (0.031035)
- 8. feature 3: day_duration_page_close, (0.030489)
- 9. feature 2: day_duration_navigate, (0.026075)
- 10. feature 12: mins_duration_video, (0.023930)

