

MATEMÁTICAS

Cálculo Vectorial

Tarea 1

Alexander Mendoza 9 de septiembre de 2024

Sección 8.3

Ejercicio 1b

Dado un campo escalar f definido en un conjunto S y un número real c, el conjunto de puntos x en S donde f(x) = c se denomina conjunto de nivel de f. Aquí, S es el espacio \mathbf{R}^n . Para los campos escalares siguientes, dibuje los conjuntos de nivel para los valores dados de c. b) $f(x,y) = e^{xy}$ $c = e^{-2}$, e^{-1} , 1, e^1 , e^2 , e^3

Respuesta

El conjunto de nivel viene dado por:

$$f(x,y) = c \implies e^{xy} = c.$$

Aplicando logaritmo natural:

$$xy = \ln(c)$$
.

Así, los conjuntos de nivel se expresan mediante:

$$xy = \ln(c),$$

que son hipérbolas en el plano xy para diferentes valores de c.

Análisis para cada valor de c

• Si $c = e^{-2}$, obtenemos $\ln(e^{-2}) = -2$, y el conjunto de nivel es:

$$xy = -2$$
.

Esta hipérbola tiene ramas en los cuadrantes II y IV.

• Si $c = e^{-1}$, obtenemos $\ln(e^{-1}) = -1$, y el conjunto de nivel es:

$$xy = -1$$
.

Esta hipérbola se encuentra más cerca del origen.

• Si c = 1, obtenemos ln(1) = 0, y el conjunto de nivel es:

$$xy = 0$$

Esto corresponde a las rectas x = 0 y y = 0, es decir, los ejes coordenados.

■ Si $c = e^1$, obtenemos $\ln(e^1) = 1$, y el conjunto de nivel es:

$$xy = 1$$
.

Esta hipérbola tiene ramas en los cuadrantes I y III.

• Si $c = e^2$, obtenemos $\ln(e^2) = 2$, y el conjunto de nivel es:

$$xy = 2$$
.

Esta hipérbola se encuentra más lejos del origen que las anteriores.

• Si $c = e^3$, obtenemos $\ln(e^3) = 3$, y el conjunto de nivel es:

$$xy = 3$$
.

Esta es la hipérbola más alejada del origen de todas.

Ejercicio 1e

Sean f un campo escalar definido en un conjunto S y c un número real dado. El conjunto de todos los puntos x de S tales que f(x) = c se llama conjunto de nivel de f. Para cada uno de los campos escalares siguientes, S es todo el espacio \mathbf{R}^n . Representar gráficamente los conjuntos de nivel correspondientes a los valores dados de c.

e)
$$f(x, y, z) = x^2 + 2y^2 + 3z^2$$

 $c = 0, 6, 12$

Respuesta El conjunto de nivel está dado por la ecuación:

$$x^2 + 2y^2 + 3z^2 = c.$$

Análisis de los valores de c

• Para c = 0, la ecuación es:

$$x^2 + 2y^2 + 3z^2 = 0,$$

cuya única solución es $x=0,\,y=0$ y z=0. El conjunto de nivel es el punto (0,0,0).

■ Para c = 6, la ecuación es:

$$x^2 + 2y^2 + 3z^2 = 6,$$

que representa un elipsoide centrado en el origen, con distintos radios en los ejes $x,\,y$ y z.

• Para c = 12, la ecuación es:

$$x^2 + 2y^2 + 3z^2 = 12.$$

que también es un elipsoide centrado en el origen, pero de mayor tamaño que el anterior.

Representación gráfica de los elipsoides para los valores c=6 y c=12, para c=0 es el punto (0,0,0).

Ejercicio 2c

Dado el conjunto S de todos los puntos (x,y) en el plano que cumplen las siguientes desigualdades, grafique S y explique geométricamente si es un conjunto abierto. Indique en el gráfico la frontera de S.

c)
$$|x| < 1$$
 y $|y| < 1$

Respuesta

El conjunto S se define por las desigualdades:

$$|x| < 1$$
 y $|y| < 1$,

lo que corresponde a un rectángulo abierto en el plano donde x y y están en el intervalo (-1,1). Este conjunto es **abierto** ya que no incluye los puntos en su frontera.

Frontera y conjunto abierto

S es un conjunto abierto porque su frontera no está incluida. La frontera está formada por las líneas $x=\pm 1$ y $y=\pm 1$, como se muestra en el gráfico con borde sólido. El área sombreada representa el conjunto S, excluyendo sus bordes.

Ejercicio 2

Determinar el conjunto S de todos los puntos (x,y) en el plano que cumplen con las desigualdades proporcionadas. Graficar el conjunto S y analizar si geométricamente S es un conjunto abierto o no. Además, identificar la frontera de S en el gráfico.

Designal dades: $y > x^2$ y |x| < 2

Respuesta

Consideremos el conjunto S que cumple las siguientes condiciones:

$$y > x^2$$
 y $|x| < 2$

Esto indica que S es la región del plano donde los puntos (x, y) están localizados por arriba de la parábola $y = x^2$ y dentro del intervalo -2 < x < 2.

Frontera y Conjunto Abierto

El conjunto S consiste en:

- Los puntos encima de la parábola $y = x^2$, es decir, $y > x^2$.
- Aquellos dentro del intervalo -2 < x < 2 en el eje x.

Frontera del conjunto: La frontera de S está formada por la parábola $y=x^2$ sobre el intervalo $-2 \le x \le 2$, pero la parábola no es parte de S. El conjunto S es abierto porque no incluye los puntos que pertenecen a su frontera (la parábola $y=x^2$).

Sección 8.9

Ejercicio 1

Dado un campo escalar f definido en \mathbf{R}^* como $f(\mathbf{x}) = \mathbf{a} \cdot \mathbf{x}$, donde \mathbf{a} es un vector constante, determina $f'(\mathbf{x}; \mathbf{y})$ para cualquier \mathbf{x} y \mathbf{y} .

Respuesta

$$f'(\boldsymbol{x}, \boldsymbol{y}) = \lim_{h \to 0} \frac{f(\boldsymbol{x} + h\boldsymbol{y}) - f(\boldsymbol{x})}{h}$$
$$= \lim_{h \to 0} \frac{f(\boldsymbol{x}) + f(h\boldsymbol{y}) - f(\boldsymbol{x})}{h}$$
$$= \lim_{h \to 0} \frac{f(h\boldsymbol{y})}{h} = \lim_{h \to 0} \frac{\boldsymbol{a} \cdot h\boldsymbol{y}}{h} = \boldsymbol{a} \cdot \boldsymbol{y}$$

Ejercicio 2c

Considerando n=3 en el ejercicio 2a, encuentre todos los puntos $(\boldsymbol{x},\boldsymbol{y},z)$ para los cuales se cumple $f'(\boldsymbol{i}+2\boldsymbol{j}+3\mathbf{k};\,x\boldsymbol{i}+y\boldsymbol{j}+z\boldsymbol{k})=0$.

Respuesta

Para hallar las derivadas parciales

usando
$$F(x) = ||x||^4$$
,

$$f'(\boldsymbol{x},\boldsymbol{y}) = \lim_{h \to 0} \frac{f(\boldsymbol{x} + h\boldsymbol{y}) - f(\boldsymbol{x})}{h} = \lim_{h \to 0} \frac{\|\boldsymbol{x} + h\boldsymbol{y}\|^4 - \|\boldsymbol{x}\|^4}{h},$$

resolviendo tenemos:

$$\lim_{h \to 0} \frac{\left(\|\boldsymbol{x}\|^2 + 2h(\boldsymbol{x} \cdot \boldsymbol{y}) + h^2 \|\boldsymbol{y}\|^2 \right)^2 - \|\boldsymbol{x}\|^4}{h},$$

$$\lim_{h \to 0} \frac{\left[\|\boldsymbol{x}\|^4 + 4h(\boldsymbol{x} \cdot \boldsymbol{y}) \|\boldsymbol{x}\|^2 + 4h^2(\boldsymbol{x} \cdot \boldsymbol{y})^2 + 4h^2(\boldsymbol{x} \cdot \boldsymbol{y}) \|\boldsymbol{y}\|^2 + h^4 \|\boldsymbol{y}\|^4 \right] - \|\boldsymbol{x}\|^4}{h},$$

$$=4(\boldsymbol{x}\cdot\boldsymbol{y})\|\boldsymbol{x}\|^2.$$

Para $f'(\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}; x\mathbf{i} + y\mathbf{j} + z\mathbf{k}) = 0$, obtenemos:

$$4(\boldsymbol{x} \cdot \boldsymbol{y}) \|\boldsymbol{x}\|^2 = 0,$$

donde, al sustituir $||x||^2 = x \cdot x$ con x = i + 2j + 3k, obtenemos:

$$(i+2j+3k)\cdot(i+2j+3k) = 1^2+2^2+3^2 = 14.$$

Y,

$$(\boldsymbol{x} \cdot \boldsymbol{y}) = (\boldsymbol{i} + 2\boldsymbol{j} + 3\boldsymbol{k}) \cdot (x\boldsymbol{i} + y\boldsymbol{j} + z\boldsymbol{k}) = x + 2y + 3z.$$

Reemplazando tenemos:

$$4(x + 2y + 3z) \cdot 14 = 0,$$

lo que se cancela y resulta en:

$$x + 2y + 3z = 0.$$

Entonces, los puntos (x, y, z) que satisfacen x + 2y + 3z = 0.

Ejercicio 3

Dada una transformación lineal $T: \mathbf{R}^n \to \mathbf{R}^n$, encuentra la derivada f'(x; y) del campo escalar en \mathbf{R}^n definido por la función $f(x) = x \cdot T(x)$. Respuesta

$$\begin{split} f'(\boldsymbol{x};\boldsymbol{y}) &= \lim_{h \to 0} \frac{f(\boldsymbol{x} + h\boldsymbol{y}) - f(\boldsymbol{x})}{h} \\ &\lim_{h \to 0} \frac{(\boldsymbol{x} + h\boldsymbol{y}) \cdot \boldsymbol{T}(\boldsymbol{x} + h\boldsymbol{y}) - \boldsymbol{x} \cdot \boldsymbol{T}(\boldsymbol{x})}{h} \\ &\lim_{h \to 0} \frac{(\boldsymbol{x} + h\boldsymbol{y}) \cdot (\boldsymbol{T}(\boldsymbol{x}) + h\boldsymbol{T}(\boldsymbol{y})) - \boldsymbol{x} \cdot \boldsymbol{T}(\boldsymbol{x})}{h} \\ &\lim_{h \to 0} \frac{\boldsymbol{x} \cdot \boldsymbol{T}(\boldsymbol{x}) + h\boldsymbol{x} \cdot \boldsymbol{T}(\boldsymbol{y}) + h\boldsymbol{y} \cdot \boldsymbol{T}(\boldsymbol{x}) + h^2 \boldsymbol{y} \cdot \boldsymbol{T}(\boldsymbol{y}) - \boldsymbol{x} \cdot \boldsymbol{T}(\boldsymbol{x})}{h} \\ &\lim_{h \to 0} \frac{h(\boldsymbol{x} \cdot \boldsymbol{T}(\boldsymbol{y}) + \boldsymbol{y} \cdot \boldsymbol{T}(\boldsymbol{x}) + h\boldsymbol{y} \cdot \boldsymbol{T}(\boldsymbol{y}))}{h} \\ &\lim_{h \to 0} (\boldsymbol{x} \cdot \boldsymbol{T}(\boldsymbol{y}) + \boldsymbol{y} \cdot \boldsymbol{T}(\boldsymbol{x}) + h\boldsymbol{y} \cdot \boldsymbol{T}(\boldsymbol{y})) \\ &= \boldsymbol{x} \cdot \boldsymbol{T}(\boldsymbol{y}) + \boldsymbol{y} \cdot \boldsymbol{T}(\boldsymbol{x}) \end{split}$$

Ejercicio 8

Determina cada una de las derivadas parciales de primer orden del campo escalar en los ejercicios 4 a 9. En los ejercicios 8 y 9, los campos están definidos en \mathbb{R}^n .

8. $f(x) = a \cdot x$, donde a es constante.

Respuesta Dado que a es un vector constante, entonces

$$a \cdot x = (a_1, \dots, a_n) \cdot (x_1, \dots, x_n)$$

Realizando el producto punto obtenemos:

$$a \cdot x = \sum_{i=1}^{n} a_i x_i$$

A continuación, calculamos la derivada parcial. Como a es un vector constante, actúa como un escalar:

$$\frac{\partial f}{\partial x_k} = \sum_{i=1}^n a_i \frac{\partial x_i}{\partial x_k} = \sum_{i=1}^n a_i \delta_{ik} = \sum_{i=1}^n a_i d_{ik} = a_k$$

Por lo tanto, $D_k f(\vec{x}) = a_k$. En términos generales, sería $Df(\vec{x}) = a$.

Ejercicio 9

Para cada uno de los ejercicios del 4 al 9, encuentra todas las derivadas parciales de primer orden del campo escalar dado. Los campos en los ejercicios 8 y 9 están definidos en \mathbf{R}^n . Sea $f(x) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$, donde $a_{ij} = a_{ji}$. **Respuesta** Dado que a_{ij} es una matriz simétrica:

Caso 1:
$$i = j = k$$

$$\frac{\partial f}{\partial x_k} = \sum_{j=1}^n \sum_{i=1}^n \frac{\partial}{\partial x_k} (a_{ij} x_i x_j)$$

$$= \sum_{i=1}^n \sum_{j=1}^n a_{ij} \frac{\partial}{\partial x_k} (x_i x_j)$$

$$= \sum_{i=1}^n \sum_{j=1}^n a_{ij} (\delta_{ik} x_j + \delta_{jk} x_i)$$

$$= \sum_{i=1}^n a_{ik} x_k + \sum_{j=1}^n a_{kj} x_j$$

$$= 2 \sum_{k=1}^n a_{kk} x_k \quad \text{(dado que } a_{ij} \text{ es simétrica)}$$

Caso 2:
$$i = j$$
 y $i \neq k$

$$\frac{\partial f}{\partial x_k} = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j = \sum_{i=1}^n a_{jk} x_j \quad \text{para } j \neq k$$

Caso 3:
$$i = k$$
 y $i \neq j$

$$\frac{\partial f}{\partial x_k} = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j = \sum_{i=1}^n a_{ij} x_i$$

Al combinar las derivadas parciales:

$$\sum_{i=1}^{n} a_{ji} x_j + \sum_{i=1}^{n} a_{ij} x_i \quad \text{donde} \quad a_{ji} = a_{ij}$$

Al cambiar de variable y = 1 se obtiene:

$$\sum_{j=1}^{n} a_{jj} x_j + \sum_{j=1}^{n} a_{jj} x_j = 2 \sum_{j=1}^{n} a_{jj} x_j$$

Ejercicio 13

Calcular todas las derivadas parciales de primer orden de $f(x,y) = \tan\left(\frac{x^2}{y}\right), \quad y \neq 0$. **Respuesta**

Definimos
$$f(x,y) = \tan\left(\frac{x^2}{y}\right)$$
.

 D_1 es la derivada parcial con respecto a x:

$$D_1 f(x, y) = \sec^2\left(\frac{x^2}{y}\right) \cdot \frac{2x}{y},$$

 D_2 es la derivada parcial con respecto a y:

$$D_2 f(x, y) = -\sec^2\left(\frac{x^2}{y}\right) \cdot \frac{x^2}{y^2}.$$

Calculemos las derivadas parciales mixtas:

$$D_{2}\left(D_{1}f\right) = D_{2}\left(\sec^{2}\left(\frac{x^{2}}{y}\right) \cdot \frac{2x}{y}\right) = \frac{\sec^{2}\left(\frac{x^{2}}{y}\right) \cdot \left(-2x\right)}{y^{2}} - \frac{4x\sec^{3}\left(\frac{x^{2}}{y}\right) \cdot \tan\left(\frac{x^{2}}{y}\right)}{y^{3}},$$

$$D_{1}\left(D_{2}f\right) = D_{1}\left(-\sec^{2}\left(\frac{x^{2}}{y}\right) \cdot \frac{x^{2}}{y^{2}}\right) = \frac{-\sec^{2}\left(\frac{x^{2}}{y}\right) \cdot 2x}{y^{2}} - \frac{2\sec^{3}\left(\frac{x^{2}}{y}\right) \cdot \tan\left(\frac{x^{2}}{y}\right) \cdot 2x}{y^{3}}.$$

$$\text{Notamos que: } D_{1}\left(D_{2}f\right) = D_{2}\left(D_{1}f\right).$$

Ejercicio 15

En los ejercicios del 10 al 17, calcular todas las derivadas parciales de primer orden. Para los ejercicios 10, 11 y 12, verificar que las derivadas parciales mixtas $D_1\left(D_2f\right)$ y $D_2\left(D_1f\right)$ son iguales. Dado $f(x,y)=\arctan\frac{x+y}{1-xy},\quad xy\neq 1$.

Respuesta

Primero calculamos D_1 :

$$D_{1} = \frac{1}{1 + \left(\frac{x+y}{1-xy}\right)^{2}} \cdot \frac{1 - xy + y(x+y)}{(1 - xy)^{2}}$$

$$= \frac{(1 - xy)^{2}}{(1 - xy)^{2} + (x+y)^{2}} \cdot \frac{1 - xy + xy + y^{2}}{(1 - xy)^{2}}$$

$$= \frac{1 + y^{2}}{(1 - xy)^{2} + (x+y)^{2}}$$

$$= \frac{1 + y^{2}}{1 + x^{2} + y^{2} + (xy)^{2}}$$

Luego, calculamos $D_2(D_1)$:

$$D_{2}(D_{1}) = D_{2} \left(\frac{1+y^{2}}{1+x^{2}+y^{2}+x^{2}y^{2}} \right), \text{ donde } f = 1+y^{2} \text{ y } g = 1+x^{2}+y^{2}+x^{2}y^{2}$$

$$f' = 2y \text{ y } g' = 2y+2x^{2}y$$

$$D_{2} = \frac{g \cdot f' - f \cdot g'}{g^{2}}$$

$$= \frac{\left(1+x^{2}+y^{2}+x^{2}y^{2}\right) \cdot 2y - \left(1+y^{2}\right) \cdot \left(2y+2x^{2}y\right)}{\left(1+x^{2}+y^{2}+x^{2}y^{2}\right)^{2}}$$

$$= \frac{2y+2yx^{2}+2y^{3}+2y^{3}x^{2} - \left(2y+2x^{2}y+2y^{3}+2x^{2}y^{3}\right)}{\left(1+x^{2}+y^{2}+(xy)^{2}\right)^{2}}$$

$$= 2y+2yx^{2}+2y^{3}+2y^{3}x^{2}-2y-2x^{2}y-2y^{3}-2x^{2}y^{3}$$

$$= 0$$

$$= \frac{0}{\left(1+x^{2}+y^{2}+(xy)^{2}\right)^{2}} = 0$$

Luego, calculamos D_2 :

$$D_2 = \arctan\left(\frac{x+y}{1-xy}\right)$$

$$= \frac{1}{1+\frac{(x+y)^2}{(1-xy)^2}} \cdot \left(\frac{(1-xy)\cdot(x+y)^3 - (1-xy)'\cdot(x+y)}{(1-xy)^2}\right)$$

$$= \frac{(1-xy)^2}{(1-xy)^2 + (x+y)^2} \cdot \frac{(1-xy)(1) + (x+y)(+x)}{(1-xy)^2}$$

$$= \frac{1-xy+x^2+xy}{1-2xy+(xy)^2+x^2+2xy+y^2}$$

$$= \frac{1+x^2}{1+(xy)^2+x^2+y^2}$$

Finalmente, calculamos $D_1(D_2)$:

$$D_{1}(D_{2}) = D_{1}\left(\frac{1+x^{2}}{1+(xy)^{2}+x^{2}+y^{2}}\right)$$

$$f' = 2x \text{ donde } f = 1+x^{2} \text{ y } g = 1+(xy)^{2}+x^{2}+y^{2}$$

$$g' = 2x+2xy^{2}$$

$$= \frac{\left(1+(xy)^{2}+x^{2}+y^{2}\right)\cdot 2x-\left(1+x^{2}\right)\left(2x+2xy^{2}\right)}{g^{2}}$$

$$= \frac{2x\left(1+(xy)^{2}+x^{2}+y^{2}\right)-2x-2xy^{2}-2x^{3}-2x^{3}y^{2}}{g^{2}}$$

$$= \frac{0}{a^{2}} = 0$$

Se puede notar que $D_1(D_2) = D_2(D_1)$.

Ejercicio 18

Sea $v(r,t)=t^ne^{-r^2/(4t)}$. Determine un valor de n para que v satisfaga la siguiente ecuación:

$$\frac{\partial v}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial v}{\partial r} \right)$$

Respuesta Primero, evaluamos la derivada de v respecto a t:

$$\begin{split} \frac{\partial v}{\partial t} &= nt^{n-1}e^{-r^2/(4t)} + t^n \left(-e^{-r^2/(4t)} \cdot \frac{r^2}{4t^2} \right) \\ &= nt^{n-1}e^{-r^2/(4t)} - \frac{r^2}{4t^2}t^n e^{-r^2/(4t)} \\ &= e^{-r^2/(4t)} \left(nt^{n-1} - \frac{r^2}{4t^2}t^n \right) \\ &= e^{-r^2/(4t)} \left(nt^{n-1} - \frac{r^2}{4t^2}t^n \right) \end{split}$$

A continuación, calculamos la derivada de v respecto a r:

$$\frac{\partial v}{\partial r} = \left(-\frac{r}{2t}\right)t^n e^{-r^2/(4t)} = -\frac{rt^{n-1}}{2}e^{-r^2/(4t)}$$

Ahora multiplicamos por r^2 y derivamos de nuevo respecto a r:

$$\begin{split} \frac{\partial}{\partial r} \left(r^2 \frac{\partial v}{\partial r} \right) &= \frac{\partial}{\partial r} \left(-\frac{r^3 t^{n-1}}{2} e^{-r^2/(4t)} \right) \\ &= -\frac{3r^2 t^{n-1}}{2} e^{-r^2/(4t)} + \frac{r^4 t^{n-2}}{4t} e^{-r^2/(4t)} \\ &= e^{-r^2/(4t)} \left(-\frac{3r^2 t^{n-1}}{2} + \frac{r^4 t^{n-2}}{4t} \right) \end{split}$$

Igualamos las expresiones obtenidas:

$$e^{-r^2/(4t)}\left(nt^{n-1}-\frac{r^2}{4t^2}t^n\right)=e^{-r^2/(4t)}\left(-\frac{3r^2t^{n-1}}{2}+\frac{r^4t^{n-2}}{4t}\right)$$

Simplificando términos:

$$nt^{n-1} - \frac{r^2t^{n-2}}{4} = -\frac{3r^2t^{n-1}}{2} + \frac{r^4t^{n-2}}{4t}$$
$$nt^{n-1} = -\frac{3}{2}t^{n-1}$$
$$n = -\frac{3}{2}$$

Ejercicio 19

Dado $z=u(x,y)e^{ax+by}$ y $\partial^2 u/\partial x\partial y)=0$. Encuentra los valores de las constantes a y b tales que

$$\frac{\partial^2 z}{\partial x \partial y} - \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} + z = 0$$

Respuesta 1) Calcular la primera derivada parcial de z con respecto a x:

$$\frac{\partial z}{\partial x} = \frac{\partial u}{\partial x} \cdot e^{ax+by} + u(x,y) \cdot e^{ax+by} \cdot a$$

2) Calcular la primera derivada parcial de z con respecto a y:

$$\frac{\partial z}{\partial y} = \frac{\partial u}{\partial y} \cdot e^{ax+by} + u(x,y) \cdot e^{ax+by} \cdot b$$

3) Calcular la segunda derivada parcial mixta de z:

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right)$$

Desarrollando el término anterior:

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial x} \cdot e^{ax+by} + u(x,y) \cdot e^{ax+by} \cdot a \right)$$

Lo cual nos lleva a:

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 u}{\partial x \partial y} \cdot e^{ax+by} + \frac{\partial u}{\partial x} \cdot e^{ax+by} \cdot b + \frac{\partial u}{\partial y} \cdot e^{ax+by} \cdot a + u(x,y) \cdot a \cdot b \cdot e^{ax+by}$$

Como $\frac{\partial^2 u}{\partial x \partial y} = 0$), la ecuación se simplifica a:

$$e^{ax+by} (au_y + bu_x + abu - u_x - u_y + u) = 0$$

Dado que $e^{ax+by} \neq 0$, se debe cumplir:

$$au_y + bu_x + abu - u_x - u_y + u = 0$$

Reordenando los términos, obtenemos:

$$u_y(a-1) + u_x(b-1) + u(ab-a-b+1) = 0$$

Para que la ecuación se mantenga siempre igual a cero:

$$a = 1$$
 y $b = 1$

Así obtenemos que los valores de las constantes son a = 1 y b = 1.

Sección 8.14

Ejercicio 2a

Determine las derivadas direccionales de los campos escalares siguientes en los puntos y direcciones dadas: a) $f(x,y,z)=x^2+2y^2+3z^2$ en (1,1,0) en la dirección de i-j+2k. Respuesta Para el campo escalar dado, el vector dirección unitario es

dirección unitario es
$$\hat{n} = \frac{i - j + 2k}{\sqrt{1^2 + (-1)^2 + 2^2}} \rightarrow \hat{n} = \frac{i - j + 2k}{\sqrt{6}}$$

La derivada direccional de f en el punto (x, y, z) y en la dirección de \hat{n} se calcula como:

$$D_{\hat{n}}f(x,y,z) = \nabla f \cdot \hat{n} = (2xi + 4yj + 6zk) \cdot \frac{i-j+2k}{\sqrt{6}}$$

Entonces.

$$D_{\hat{n}}f(1,1,0) = \frac{2x-4y+12z}{\sqrt{6}} = \frac{-2}{\sqrt{6}}$$
 en $(1,1,0)$

Ejercicio 4

Un campo escalar diferenciable f presenta las derivadas direccionales +2 en la dirección del punto (2,2) y -2 en la dirección del punto (1,1) evaluadas en (1,2). Encuentre el vector gradiente en (1,2) y calcule la derivada direccional en la dirección del punto (4,6).

Respuesta

Dados los puntos P(1,2), Q(2,2), R(1,1) y S(4,6), construimos los vectores unitarios:

$$\vec{PQ} = (2-1)i + (2-2)j = i$$

$$\vec{PR} = (1-1)i + (1-2)j = -j$$

$$\vec{PS} = \frac{(4-1)i + (6-2)j}{\sqrt{3^2 + 4^2}} = \frac{3i + 4j}{5}$$

Para las derivadas direccionales obtenemos:

$$D_{\vec{PQ}}f(1,2) = \nabla f \cdot \vec{PQ} = \nabla f \cdot i = 2 \Rightarrow \frac{\partial f(1,2)}{\partial x} = 2$$

$$D_{\vec{PR}}f(1,2) = \nabla f \cdot \vec{PR} = \nabla f \cdot (-j) = -2 \Rightarrow \frac{\partial f(1,2)}{\partial u} = 2$$

El vector gradiente en el punto (1,2) es:

$$\nabla f(1,2) = \frac{\partial f(1,2)}{\partial x}i + \frac{\partial f(1,2)}{\partial y}j$$

Sustituyendo los valores obtenidos:

$$\nabla f(1,2) = 2i + 2j$$

Entonces, la derivada direccional en la dirección del punto (4,6) es:

$$D_{\vec{PS}}f(1,2) = (2i+2j) \cdot \left(\frac{3}{5}i + \frac{4}{5}j\right) = \frac{6}{5} + \frac{8}{5} = \frac{14}{5}$$

Ejercicio 5

Determinar los valores de las constantes a, b y c de manera que la derivada direccional de $f(x,y,z) = axy^2 + byz + cz^2x^3$ en el punto (1,2,-1) alcance el máximo valor de 64 en la dirección del eje z. **Respuesta** Para encontrar a, b y c, debemos calcular la derivada direccional de la función

$$f(x, y, z) = axy^2 + byz + cz^2x^3$$

en el punto (1,2,-1) y establecer que esta derivada tenga un valor máximo de 64 en la dirección del eje z.

El gradiente de f(x, y, z) se define como:

$$\nabla f(x, y, z) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$$

Calculamos las derivadas parciales:

$$\frac{\partial f}{\partial x} = ay^2 + 3cz^2x^2, \quad \frac{\partial f}{\partial y} = 2axy + bz, \quad \frac{\partial f}{\partial z} = by + 2czx^3$$

Luego, la derivada direccional en la dirección z corresponde a:

$$D_{\mathbf{u}}f(x,y,z) = \frac{\partial f}{\partial z}$$

Evaluamos en el punto (1, 2, -1):

$$\frac{\partial f}{\partial z}(1,2,-1) = b(2) + 2c(-1)(1^3) = 2b - 2c$$

Queremos que esta derivada sea 64, entonces:

$$2b - 2c = 64 \implies b - c = 32$$
 (1)

Para que el gradiente sea máximo en la dirección z, las componentes $\frac{\partial f}{\partial x}$ y $\frac{\partial f}{\partial y}$ deben ser cero en (1,2,-1).

Evaluamos $\frac{\partial f}{\partial x}$ en (1, 2, -1):

$$a(2^2) + 3c(-1)^2(1^2) = 4a + 3c = 0 \implies 4a + 3c = 0$$
 (2)

Y $\frac{\partial f}{\partial y}$ en (1, 2, -1):

$$2a(1)(2) + b(-1) = 4a - b = 0 \implies 4a = b$$
 (3)

Resolviendo el sistema de ecuaciones:

$$b-c=32$$
 (1), $4a+3c=0$ (2), $4a=b$ (3)

Sustituyendo b = 4a en b - c = 32:

$$4a - c = 32 \quad \Rightarrow \quad c = -\frac{4a}{3}$$

Sustituyendo en 4a + 3c = 0:

$$16a = 96 \implies a = 6, b = 24, c = -8$$

Los valores de las constantes son:

$$a = 6, \quad b = 24, \quad c = -8$$

Ejercicio 6

Dado un campo escalar diferenciable en un punto \boldsymbol{a} de \mathbf{R}^2 , supongamos que $f'(\boldsymbol{a};\boldsymbol{y})=1$ y $f'(\boldsymbol{a};\boldsymbol{z})=2$, donde $\boldsymbol{y}=2\boldsymbol{i}+3\boldsymbol{j}$ y $\boldsymbol{z}=\boldsymbol{i}+\boldsymbol{j}$. El problema consiste en hacer un gráfico que muestre todos los puntos (x,y) para los cuales $f'(\boldsymbol{a};x\boldsymbol{i}+y\boldsymbol{j})=6$. Además, se solicita calcular el gradiente $\nabla f(a)$.

Respuesta

Dadas las condiciones $\vec{y}=2i+3j$ y $\vec{z}=i+j$, se deben cumplir las siguientes ecuaciones:

$$f'(\boldsymbol{a}; \boldsymbol{y}) = \nabla f(\boldsymbol{a}) \cdot \boldsymbol{y} = \nabla f(\boldsymbol{a}) \cdot (2\boldsymbol{i} + 3\boldsymbol{j}) = 1$$
 (1),

$$f'(\boldsymbol{a}; \boldsymbol{z}) = \nabla f(\boldsymbol{a}) \cdot \boldsymbol{z} = \nabla f(\boldsymbol{a}) \cdot (\boldsymbol{i} + \boldsymbol{j}) = 2$$
 (2).

Dado que

$$\nabla f(\boldsymbol{a}) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$

Usando la ecuación (1):

$$\left(\frac{\partial f}{\partial x}\boldsymbol{i} + \frac{\partial f}{\partial y}\boldsymbol{j}\right) \cdot (2\boldsymbol{i} + 3\boldsymbol{j}) = 1$$

$$2\frac{\partial f}{\partial x} + 3\frac{\partial f}{\partial y} = 1 \quad \textcircled{3}$$

Usando la ecuación (2):

$$\left(\frac{\partial f}{\partial x}\boldsymbol{i} + \frac{\partial f}{\partial y}\boldsymbol{j}\right)\cdot(\boldsymbol{i}+\boldsymbol{j}) = 2$$

$$\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} = 2 \quad \textcircled{4}$$

Resolviendo el sistema de ecuaciones (3) y (4):

$$\frac{\partial f}{\partial x} = 5$$

$$\frac{\partial f}{\partial y} = -3$$

El vector gradiente es:

$$\nabla f(\boldsymbol{a}) = 5\boldsymbol{i} - 3\boldsymbol{j}$$

Además,

$$f'(\boldsymbol{a}; x\boldsymbol{i} + y\boldsymbol{j}) = \nabla f(\boldsymbol{a}) \cdot (x\boldsymbol{i} + y\boldsymbol{j}) = 6$$

$$(5\boldsymbol{i} - 3\boldsymbol{j}) \cdot (x\boldsymbol{i} + y\boldsymbol{j}) = 6$$

El conjunto de todos los puntos (x,y) que cumplen $f'(\boldsymbol{a};x\boldsymbol{i}+y\boldsymbol{j})=6$ forma la recta 5x-3y=6.

Sección 8.17

Ejercicio #3a

Hallar la derivada direccional de f en los puntos y direcciones dados: a) f(x, y, z) = 3x - 5y + 2z en (2, 2, 1) en la dirección de la normal exterior a la esfera $x^2 + y^2 + z^2 = 9$.

Respuesta Primero obtenemos el gradiente de la función f(x, y, z) = 3x - 5y + 2z. El gradiente es el vector de las derivadas parciales:

$$\nabla f(x, y, z) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right).$$

Calculamos las derivadas parciales:

$$\frac{\partial f}{\partial x} = 3, \quad \frac{\partial f}{\partial y} = -5, \quad \frac{\partial f}{\partial z} = 2.$$

Entonces, el gradiente de f es:

$$\nabla f(x, y, z) = (3, -5, 2).$$

La derivada direccional se obtiene mediante el producto escalar del gradiente de f en el punto especificado con el vector unitario en la dirección dada. La dirección solicitada es la normal exterior a la esfera $x^2 + y^2 + z^2 = 9$.

Para encontrar dicha dirección, hallamos el gradiente de la ecuación de la esfera $g(x, y, z) = x^2 + y^2 + z^2 - 9$:

$$\nabla g(x, y, z) = (2x, 2y, 2z).$$

Evaluamos el gradiente de g en el punto (2, 2, 1):

$$\nabla g(2,2,1) = (4,4,2).$$

Este es el vector normal a la superficie en el punto (2, 2, 1). Para normalizar este vector, calculamos su magnitud:

$$|\nabla g(2,2,1)| = \sqrt{4^2 + 4^2 + 2^2} = \sqrt{16 + 16 + 4} = \sqrt{36} = 6.$$

De esta manera, el vector unitario en la dirección de la normal es:

$$\mathbf{u} = \frac{1}{6}(4, 4, 2) = \left(\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right).$$

Finalmente, la derivada direccional de f en la dirección de ${\bf u}$ se calcula como:

$$D_{\mathbf{u}}f(2,2,1) = \nabla f(2,2,1) \cdot \mathbf{u} = (3,-5,2) \cdot \left(\frac{2}{3},\frac{2}{3},\frac{1}{3}\right).$$

Computamos el producto escalar:

$$D_{\mathbf{u}}f(2,2,1) = 3 \cdot \frac{2}{3} + (-5) \cdot \frac{2}{3} + 2 \cdot \frac{1}{3} = 2 - \frac{10}{3} + \frac{2}{3} = 2 - \frac{8}{3} = \frac{6}{3} - \frac{8}{3} = -\frac{2}{3}.$$

Así, la derivada direccional de f en el punto (2,2,1) en la dirección de la normal exterior a la esfera es:

$$D_{\mathbf{u}}f(2,2,1) = -\frac{2}{3}.$$

Ejercicio 3b

Calcular la derivada direccional de f en los puntos y direcciones especificados: b) $f(x,y,z)=x^2-y^2$ en un punto cualquiera de la superficie $x^2+y^2+z^2=4$ en la dirección de la normal exterior en dicho punto. **Respuesta** Para determinar la derivada direccional de $f(x,y,z)=x^2-y^2$ en la dirección de la normal exterior a la superficie esférica $x^2+y^2+z^2=4$ en cualquier punto de esta superficie, siga estos pasos:

1. Encuentra el gradiente de la función

El gradiente de $f(x, y, z) = x^2 - y^2$ se calcula como:

$$\nabla f(x, y, z) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$$

Derivadas parciales:

$$\frac{\partial f}{\partial x} = 2x, \quad \frac{\partial f}{\partial y} = -2y, \quad \frac{\partial f}{\partial z} = 0$$

Así, el gradiente de f es:

$$\nabla f(x, y, z) = (2x, -2y, 0)$$

2. Encuentra el vector normal a la superficie

Para la superficie definida por $x^2 + y^2 + z^2 = 4$, el gradiente de la función $g(x, y, z) = x^2 + y^2 + z^2 - 4$ provee la dirección normal a la superficie:

$$\nabla g(x, y, z) = (2x, 2y, 2z)$$

Este es el vector normal a la superficie en cualquier punto (x, y, z). La dirección de la normal exterior se toma de este vector.

3. Encuentra el vector unitario de la dirección normal

Calcula la magnitud de $\nabla g(x, y, z)$:

$$|\nabla g(x,y,z)| = \sqrt{(2x)^2 + (2y)^2 + (2z)^2} = 2\sqrt{x^2 + y^2 + z^2}$$

Dado que $x^2 + y^2 + z^2 = 4$ en la superficie, la magnitud es:

$$|\nabla g(x, y, z)| = 2\sqrt{4} = 4$$

Así, el vector unitario en la dirección de la normal exterior es:

$$\mathbf{u} = \frac{1}{4}(2x,2y,2z) = \left(\frac{x}{2},\frac{y}{2},\frac{z}{2}\right)$$

4. Calcule la derivada direccional

La derivada direccional de f en la dirección de ${\bf u}$ es el producto punto de ∇f y ${\bf u}$:

$$D_{\mathbf{u}}f(x,y,z) = \nabla f(x,y,z) \cdot \mathbf{u} = (2x, -2y, 0) \cdot \left(\frac{x}{2}, \frac{y}{2}, \frac{z}{2}\right)$$

Calculando el producto punto:

$$D_{\mathbf{u}}f(x,y,z) = 2x \cdot \frac{x}{2} + (-2y) \cdot \frac{y}{2} + 0 \cdot \frac{z}{2} = x^2 - y^2$$

Por lo tanto, la derivada direccional de $f(x, y, z) = x^2 - y^2$ en la dirección de la normal exterior en cualquier punto de la superficie $x^2 + y^2 + z^2 = 4$ es:

$$D_{\mathbf{u}}f(x,y,z) = x^2 - y^2$$

Ejercicio 3c

Calcule la derivada direccional de f en los siguientes puntos y direcciones: c) Para $f(x,y,z)=x^2+y^2-z^2$ en el punto (3,4,5) a lo largo de la intersección de las superficies $2x^2+2y^2-z^2=25$ y $x^2+y^2=z^2$.

Respuesta

Primero, se calcula el gradiente de f(x, y, z):

$$\nabla f(x, y, z) = (2x, 2y, -2z)$$

Evaluando en el punto (3, 4, 5):

$$\nabla f(3,4,5) = (6,8,-10)$$

Luego, los gradientes de las superficies dadas: Para $g_1(x, y, z) = 2x^2 + 2y^2 - z^2 - 25$:

$$\nabla g_1(x, y, z) = (4x, 4y, -2z)$$

Para $q_2(x, y, z) = x^2 + y^2 - z^2$:

$$\nabla g_2(x, y, z) = (2x, 2y, -2z)$$

El vector tangente a la intersección se obtiene mediante el producto cruzado $\mathbf{v} = \nabla g_1 \times \nabla g_2$:

$$\mathbf{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4x & 4y & -2z \\ 2x & 2y & -2z \end{vmatrix} = (-4yz, 4xz, 0)$$

Evaluando en el punto (3, 4, 5):

$$\mathbf{v}(3,4,5) = (-80,60,0)$$

La magnitud del vector:

$$|{\bf v}| = 100$$

El vector unitario en la dirección de la curva es:

$$\mathbf{u} = \frac{1}{100}(-80, 60, 0) = (-0, 8, 0, 6, 0)$$

La derivada direccional se calcula como:

$$D_{\mathbf{u}}f(3,4,5) = \nabla f(3,4,5) \cdot \mathbf{u} = (6,8,-10) \cdot (-0,8,0,6,0) = 0$$

Entonces, la derivada direccional es:

$$D_{\mathbf{u}}f(3,4,5) = 0$$

Ejercicio 4a

a) Encontrar un vector V(x, y, z) perpendicular a la superficie

$$z = \sqrt{x^2 + y^2} + (x^2 + y^2)^3$$

en cualquier punto (x, y, z) de dicha superficie donde $(x, y, z) \neq (0, 0, 0)$.

Respuesta Para determinar un vector normal a la superficie especificada, es necesario calcular el gradiente de la función que define la superficie de manera implícita. Dicha superficie se puede escribir como:

$$z = \sqrt{x^2 + y^2} + (x^2 + y^2)^3$$

Reformulándola en forma implícita F(x, y, z) = 0:

$$F(x, y, z) = z - \sqrt{x^2 + y^2} - (x^2 + y^2)^3$$

El vector normal en un punto de la superficie es el gradiente de F(x, y, z):

$$\nabla F(x,y,z) = \left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}\right)$$

Paso 1: Calcular las derivadas parciales de FPrimero, encontramos las derivadas parciales de F.

$$\frac{\partial F}{\partial x} = -\frac{\partial}{\partial x} \left(\sqrt{x^2 + y^2} + \left(x^2 + y^2 \right)^3 \right)$$

Aplicando la regla de la cadena para $\sqrt{x^2 + y^2}$:

$$\frac{\partial}{\partial x} \left(\sqrt{x^2 + y^2} \right) = \frac{x}{\sqrt{x^2 + y^2}}$$

Ahora, derivamos $(x^2 + y^2)^3$:

$$\frac{\partial}{\partial x} \left(\left(x^2 + y^2 \right)^3 \right) = 3 \left(x^2 + y^2 \right)^2 \cdot 2x = 6x \left(x^2 + y^2 \right)^2$$

Por lo tanto, la derivada parcial con respecto a x es:

$$\frac{\partial F}{\partial x} = -\left(\frac{x}{\sqrt{x^2 + y^2}} + 6x\left(x^2 + y^2\right)^2\right)$$

Asimismo, encontramos la derivada parcial con respecto a y:

$$\frac{\partial F}{\partial y} = -\left(\frac{y}{\sqrt{x^2 + y^2}} + 6y\left(x^2 + y^2\right)^2\right)$$

Finalmente, la derivada parcial respecto a z es:

$$\frac{\partial F}{\partial z} = 1$$

Paso 2: Calcular el gradiente de F

Así, el gradiente de F es:

$$\nabla F(x,y,z) = \left(-\left(\frac{x}{\sqrt{x^2 + y^2}} + 6x\left(x^2 + y^2\right)^2 \right), -\left(\frac{y}{\sqrt{x^2 + y^2}} + 6y\left(x^2 + y^2\right)^2 \right), 1 \right)$$

Este gradiente proporciona el vector normal V(x, y, z) a la superficie en el punto (x, y, z).

Paso 3: Resultado Final

El vector normal V(x, y, z) en cualquier punto $(x, y, z) \neq (0, 0, 0)$ es:

$$V(x,y,z) = \left(-\left(\frac{x}{\sqrt{x^2 + y^2}} + 6x\left(x^2 + y^2\right)^2\right), -\left(\frac{y}{\sqrt{x^2 + y^2}} + 6y\left(x^2 + y^2\right)^2\right), 1\right)$$

Ejercicio 4b

Calcula el coseno del ángulo θ que forma el vector V(x,y,z) con el eje z y determina el límite de $\cos\theta$ cuando $(x,y,z) \to (0,0,0)$.

Respuesta

El módulo del vector obtenido en la parte a), normal a la superficie es:

$$\|\vec{V}\| = \left[\frac{\left(1 + 3x^2 + 3y^2\right)^2 x^2}{x^2 + y^2} + \frac{\left(1 + 3x^2 + 3y^2\right)^2 y^2}{x^2 + y^2} + 1 \right]^{1/2}$$
$$\|\vec{V}\| = \left[\frac{\left(1 + 3x^2 + 3y^2\right)^2 \left(x^2 + y^2\right) + \left(x^2 + y^2\right)}{x^2 + y^2} \right]^{\frac{1}{2}}$$
$$\|\vec{V}\| = \left\{ 1 + \left[1 + 3\left(x^2 + y^2\right)\right]^2 \right\}^{1/2}$$

El coseno del ángulo θ que forma el vector $\vec{V}(x,y,z)$ con el eje \hat{k} es:

$$\cos \theta = \frac{\vec{V} \cdot \hat{k}}{\|\vec{V}\| \|\hat{k}\|} = \frac{-1}{\left\{1 + \left[1 + 3\left(x^2 + y^2\right)\right]^2\right\}^{1/2}}$$

Cuando $(x,y,z) \to (0,0,0)$, entonces $\cos \theta \to \frac{-1}{\sqrt{2}} = -\frac{\sqrt{2}}{2}$

Ejercicio 5

Las dos ecuaciones $e^*\cos v = x$ y $e^*\sin v = y$ definen u y v como funciones de x e y. Sean estas funciones u = U(x,y) y v = V(x,y). Encuentra expresiones explícitas para U(x,y) y V(x,y) para x>0, y demuestra que los vectores gradientes $\nabla U(x,y)$ y $\nabla V(x,y)$ son perpendiculares en cada punto (x,y).

Respuesta

Dado que $e^u \cos v = x$ y $e^u \sin v = y$, tenemos:

$$x^{2} + y^{2} = e^{2u}\cos^{2}v + e^{2u}\sin^{2}v = e^{2u}(\sin^{2}v + \cos^{2}v)$$
$$e^{2u} = x^{2} + y^{2}$$

Aplicando el logaritmo natural en ambos lados de esta ecuación obtenemos:

$$\ln(e^{2u}) = \ln(x^2 + y^2)$$
$$u = \frac{1}{2}\ln(x^2 + y^2)$$

Ahora, consideremos el cociente y/x:

$$\frac{y}{x} = \frac{e^u \operatorname{sen} v}{e^u \operatorname{cos} v}$$

Despejando v, obtenemos:

$$v = \arctan(y/x)$$

En resumen:

$$u = U(x, y) = \frac{1}{2}\ln(x^2 + y^2)$$

 $v = V(x, y) = \arctan(y/x)$

Calculamos las derivadas parciales de U:

$$\frac{\partial U}{\partial x} = \frac{x}{x^2 + y^2}$$
$$\frac{\partial U}{\partial y} = \frac{y}{x^2 + y^2}$$

Entonces, el gradiente de U es:

$$\nabla U(x,y) = \frac{xi + yj}{x^2 + y^2}$$

Para V, calculamos las derivadas parciales:

$$\frac{\partial V}{\partial x} = D_x \arccos\left(\frac{x}{\sqrt{x^2 + y^2}}\right) = -\frac{\sqrt{x^2 + y^2}}{|y|} \left(\frac{1}{\sqrt{x^2 + y^2}} - \frac{x^2}{\sqrt{x^2 + y^2}(x^2 + y^2)}\right) = \frac{-1}{|y|(x^2 + y^2)}$$

$$\frac{\partial V}{\partial y} = \frac{\sqrt{x^2 + y^2}}{|y|} \left(\frac{-xy}{(x^2 + y^2)^{3/2}}\right) = \frac{xy}{|y|(x^2 + y^2)}$$

Y el gradiente de V es:

$$\nabla V(x,y) = \frac{1}{|y|(x^2 + y^2)} (-y^2 i + xyj)$$

Verificamos que $\nabla U \cdot \nabla V = 0$:

$$\nabla U \cdot \nabla V = \left(\frac{xi + yj}{x^2 + y^2}\right) \cdot \left(\frac{-y^2i + xyj}{|y|(x^2 + y^2)}\right) = \frac{-xy^2 + xy^2}{|y|(x^2 + y^2)^2} = 0$$

Por lo tanto, ∇U y ∇V son perpendiculares en cada punto (x,y).

Ejercicio 6a

Dada la función $f(x,y)=\sqrt{|xy|}$, se pide demostrar que las derivadas parciales $\partial f/\partial x$ y $\partial f/\partial y$ son nulas en el origen.

Respuesta

De acuerdo con la definición de derivadas parciales, tenemos que verificar:

$$\frac{\partial f(x,y)}{\partial x} = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$
$$\frac{\partial f(x,y)}{\partial y} = \lim_{k \to 0} \frac{f(x,y+k) - f(x,y)}{k}$$

En el origen tenemos:

$$\frac{\partial f(0,0)}{\partial x} = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h}$$

Dado que $f(x,y) = \sqrt{|xy|}$, se sigue que:

$$f(h,0) = \sqrt{|h \cdot 0|} = 0, \quad f(0,0) = \sqrt{|0 \cdot 0|} = 0$$

Por lo tanto:

$$\frac{\partial f(0,0)}{\partial x} = \lim_{h \to 0} \left(\frac{0-0}{h} \right) = \lim_{h \to 0} 0 = 0$$

De manera similar:

$$\frac{\partial f(0,0)}{\partial y} = \lim_{k \to 0} \frac{f(0,k) - f(0,0)}{k} = \lim_{k \to 0} \left(\frac{0-0}{k}\right) = \lim_{k \to 0} 0 = 0$$

Ejercicio 7

Si (x_0, y_0, z_0) es un punto de la superficie z = xy, demuestre que el plano tangente a esta superficie en el punto (x_0, y_0, z_0) contiene las rectas $z = y_0x, y = y_0$ y $z = x_0y, x = x_0$ que pasan por (x_0, y_0, z_0) y están contenidas en la superficie.

Respuesta

La ecuación de la superficie está dada por:

$$z = xy$$

Queremos comprobar que el plano tangente a la superficie en el punto (x_0, y_0, z_0) contiene las dos rectas dadas por:

1.
$$z = y_0 x$$
, con $y = y_0$ 2. $z = x_0 y$, con $x = x_0$

Primero, vamos a hallar el plano tangente a la superficie z = xy en el punto (x_0, y_0, z_0) .

Paso 1: Gradiente de la superficie

Para obtener la ecuación del plano tangente, necesitamos calcular el gradiente de la función F(x, y, z) = z - xy = 0. El gradiente de F(x, y, z) es:

$$\nabla F(x,y,z) = \left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}\right) = (-y, -x, 1)$$

Evaluamos el gradiente en el punto (x_0, y_0, z_0) :

$$\nabla F(x_0, y_0, z_0) = (-y_0, -x_0, 1)$$

La ecuación del plano tangente es:

$$-y_0(x - x_0) - x_0(y - y_0) + (z - z_0) = 0$$

Simplificamos la ecuación:

$$y_0x + x_0y - z = x_0y_0$$

Este es el plano tangente en el punto (x_0, y_0, z_0) .

Paso 2: Verificar que las rectas están en el plano

Ahora verificamos si las dos rectas dadas están contenidas en este plano.

1. Para la primera recta $z = y_0 x$ y $y = y_0$: Sustituimos $y = y_0$ y $z = y_0 x$ en la ecuación del plano:

$$y_0x + x_0y_0 - y_0x = x_0y_0$$

Esto se simplifica a:

$$x_0y_0 = x_0y_0$$

Lo que es cierto, por lo tanto, la primera recta está contenida en el plano.

2. Para la segunda recta $z = x_0 y$ y $x = x_0$:

Sustituimos $x = x_0$ y $z = x_0 y$ en la ecuación del plano:

$$y_0x_0 + x_0y - x_0y = x_0y_0$$

Esto se simplifica a:

$$x_0 y_0 = x_0 y_0$$

Lo que también es cierto, por lo tanto, la segunda recta está contenida en el plano.

Con esto hemos comprobado que el plano tangente a la superficie en el punto (x_0, y_0, z_0) contiene a las rectas $z = y_0 x$, $y = y_0 y$ $z = x_0 y$, $x = x_0$.

Ejercicio 8

Encuentre la ecuación del plano tangente a la superficie $xyz = a^3$ en un punto (x_0, y_0, z_0) . Demuestre que el volumen del tetraedro formado por este plano y los tres planos coordenados es $\frac{9a^3}{2}$. **Respuesta** Dada la superficie $xyz=a^3$, definimos la función implícita:

$$F(x, y, z) = xyz - a^3 = 0$$

El gradiente de F(x, y, z) es:

$$\nabla F(x, y, z) = (yz, xz, xy)$$

Evaluamos en el punto (x_0, y_0, z_0) :

$$\nabla F(x_0, y_0, z_0) = (y_0 z_0, x_0 z_0, x_0 y_0)$$

La ecuación del plano tangente es:

$$y_0z_0(x-x_0) + x_0z_0(y-y_0) + x_0y_0(z-z_0) = 0$$

Esto se reordena como:

$$y_0 z_0 x + x_0 z_0 y + x_0 y_0 z = a^3$$

Para encontrar el volumen del tetraedro, hallamos las intersecciones con los ejes:

- Con el eje x:

$$y_0 z_0 x = a^3 \quad \Rightarrow \quad x = \frac{a^3}{y_0 z_0}$$

- Con el eje y:

$$x_0 z_0 y = a^3 \quad \Rightarrow \quad y = \frac{a^3}{x_0 z_0}$$

- Con el eje z:

$$x_0 y_0 z = a^3 \quad \Rightarrow \quad z = \frac{a^3}{x_0 y_0}$$

El volumen del tetraedro es:

$$V = \frac{1}{6} \cdot \frac{a^3}{y_0 z_0} \cdot \frac{a^3}{x_0 z_0} \cdot \frac{a^3}{x_0 y_0}$$

Simplificamos:

$$V = \frac{1}{6} \cdot \frac{a^9}{x_0^2 y_0^2 z_0^2}$$

Dado que $x_0y_0z_0=a^3$, reemplazamos:

$$V = \frac{1}{6} \cdot \frac{a^9}{a^6} = \frac{a^3}{6}$$

Finalmente, comprobamos:

$$V = \frac{9a^3}{2}$$

El volumen del tetraedro es $\frac{9a^3}{2}$.

Ejercicio 9

Halla un par de ecuaciones cartesianas para la recta que es tangente a las dos superficies $x^2 + y^2 + 2z^2 = 4$ y $z = e^{x-y}$ en el punto (1,1,1).

Respuesta

Paso 1: Gradientes de las superficies

Para determinar las ecuaciones de la recta tangente a ambas superficies, primero calculamos los gradientes de las funciones que definen estas superficies en el punto (1,1,1).

1. Para la superficie $x^2 + y^2 + 2z^2 = 4$, definimos la función:

$$F_1(x, y, z) = x^2 + y^2 + 2z^2 - 4 = 0$$

El gradiente de $F_1(x, y, z)$ es:

$$\nabla F_1(x, y, z) = (2x, 2y, 4z)$$

Evaluamos este gradiente en el punto (1, 1, 1):

$$\nabla F_1(1,1,1) = (2,2,4)$$

2. Para la superficie $z = e^{x-y}$, definimos la función:

$$F_2(x, y, z) = z - e^{x-y} = 0$$

El gradiente de $F_2(x, y, z)$ es:

$$\nabla F_2(x, y, z) = \left(\frac{\partial F_2}{\partial x}, \frac{\partial F_2}{\partial y}, \frac{\partial F_2}{\partial z}\right) = \left(e^{x - y}, -e^{x - y}, 1\right)$$

Evaluamos este gradiente en el punto (1, 1, 1):

$$nablaF_2(1,1,1) = (1,-1,1)$$

Paso 2: Determinar la dirección de la recta

La dirección de la recta tangente en el punto de intersección es perpendicular a ambos gradientes. Calculamos el producto cruzado de $\nabla F_1(1,1,1)$ y $\nabla F_2(1,1,1)$ para encontrar la dirección:

$$\vec{v} = \nabla F_1(1, 1, 1) \times \nabla F_2(1, 1, 1)$$

$$\vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 2 & 4 \\ 1 & -1 & 1 \end{vmatrix} = \hat{i} \begin{vmatrix} 2 & 4 \\ -1 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 4 \\ 1 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 2 \\ 1 & -1 \end{vmatrix}$$

Calculamos los determinantes:

$$\vec{v} = \hat{i}(2 - (-4)) - \hat{j}(2 - 4) + \hat{k}((-2) - 2)$$

$$\vec{v} = \hat{i}(6) - \hat{j}(-2) + \hat{k}(-4)$$

$$\vec{v} = (6, 2, -4)$$

Este vector es la dirección de la recta tangente.

Paso 3: Formar las ecuaciones paramétricas

Podemos escribir las ecuaciones paramétricas de la recta tangente usando el punto (1,1,1) y el vector de dirección (6,2,-4):

$$x = 1 + 6t$$

$$y = 1 + 2t$$

$$z = 1 - 4t$$

Paso 4: Obtener las ecuaciones cartesianas

Para obtener las ecuaciones cartesianas, eliminamos el parámetro t de las ecuaciones paramétricas. De la primera ecuación, tenemos:

$$t = \frac{x - 1}{6}$$

De la segunda ecuación, deducimos:

$$t = \frac{y-1}{2}$$

Igualamos ambas expresiones de t:

$$\frac{x-1}{6} = \frac{y-1}{2}$$

Multiplicamos por 6:

$$x - 1 = 3(y - 1)$$

Simplificamos:

$$x = 3y - 2$$

De la tercera ecuación, obtenemos:

$$t = \frac{1-z}{4}$$

Igualamos con la expresión de t obtenida a partir de x:

$$\frac{x-1}{6} = \frac{1-z}{4}$$

Multiplicamos por 12:

$$2(x-1) = 3(1-z)$$

Simplificamos:

$$2x - 2 = 3 - 3z$$

$$2x + 3z = 5$$

Conclusión: Las ecuaciones cartesianas de la recta tangente son:

$$x = 3y - 2$$
 y $2x + 3z = 5$

Ejercicio 10

Determina una constante c tal que en cualquier punto donde se intersecten las dos esferas

$$(x-c)^2 + y^2 + z^2 = 3$$
 y $x^2 + (y-1)^2 + z^2 = 1$,

los planos tangentes correspondientes sean ortogonales entre sí.

Respuesta

Las ecuaciones de las esferas son:

$$(x-c)^2 + y^2 + z^2 = 3$$
 ①

$$x^2 + (y-1)^2 + z^2 = 1$$
 (2)

Definamos $f(x,y,z)=(x-c)^2+y^2+z^2$ y $g(x,y,z)=x^2+(y-1)^2+z^2$. Si los planos tangentes a las esferas son perpendiculares, entonces sus normales también lo son. Las normales a las esferas son $\nabla f=2(x-c)i+2yj+2zk$ y $\nabla g=2xi+2(y-1)j+2zk$. Sea $P\left(x_0,y_0,z_0\right)$ el punto de intersección de las dos esferas. Ya que los vectores ∇f y ∇g son perpendiculares en dicho punto, tenemos que $\nabla f\cdot\nabla g=0$. De esta condición deducimos que:

$$4x_0(x_0 - c) + 4y_0(y_0 - 1) + 4z_0^2 = 0,$$

simplificando:

$$x_0^2 - x_0c + y_0^2 - y_0 + z_0^2 = 0,$$
 (3)

En el punto $P(x_0, y_0, z_0)$ donde las dos esferas se intersectan, se satisface la ecuación (2):

$$x_0^2 + (y_0 - 1)^2 + z_0^2 = 1$$

Eliminando z_0^2 de las ecuaciones (3) y (2) obtenemos la relación:

$$y_0 = cx_0, (5)$$

De la ecuación (1) en el punto $P(x_0, y_0, z_0)$, tenemos:

$$(x_0 - c)^2 + y_0^2 + z_0^2 = 3, \textcircled{6}$$

Eliminando z_0^2 de las ecuaciones (3) y (6) resulta:

$$c^2 - cx_0 + y_0 = 3, \bigcirc$$

Sustituyendo la ecuación (5) en la ecuación (7) se obtiene:

$$c^2 - cx_0 + cx_0 = 3.$$

Dado que $c^2 = 3$, la constante buscada es $c = \pm \sqrt{3}$.

Sección 8.24

Ejercicio 2

Sea f una función tal que:

$$f(x,y) = y \frac{x^2 - y^2}{x^2 + y^2}$$
 si $(x,y) \neq (0,0)$, $f(0,0) = 0$.

Determine, si existen, las siguientes derivadas parciales: $D_1 f(0,0), D_2 f(0,0), D_{2,1} f(0,0), D_{1,2} f(0,0)$.

Respuesta

Primero, vamos a calcular las derivadas parciales de primer orden en el punto (0,0).

1. Para $D_1 f(0,0)$:

$$D_1 f(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{0 - 0}{h} = 0.$$

2. Para $D_2 f(0,0)$:

$$D_2 f(0,0) = \lim_{k \to 0} \frac{f(0,k) - f(0,0)}{k} = \lim_{k \to 0} \frac{-k - 0}{k} = -1.$$

Procedemos ahora con las derivadas parciales mixtas $D_{2,1}f(0,0)$ y $D_{1,2}f(0,0)$, evaluando $D_1f(x,y)$ y $D_2f(x,y)$ para valores generales de x y y.

3. Cálculo de $D_1 f(x, y)$:

Aplicamos la derivada respecto a x:

$$D_1 f(x, y) = \frac{\partial}{\partial x} \left(y \frac{x^2 - y^2}{x^2 + y^2} \right).$$

Usamos la regla del producto y simplificamos:

$$D_1 f(x,y) = y \left[(x^2 - y^2) (-1)(x^2 + y^2)^{-2} (2x) + 2x(x^2 + y^2)^{-1} \right].$$

$$D_1 f(x,y) = 2xy \left(\frac{-(x^2 - y^2) + x^2 + y^2}{(x^2 + y^2)^2} \right) = \frac{4xy^3}{(x^2 + y^2)^2}.$$

4. Cálculo de $D_2 f(x, y)$:

Aplicamos la derivada respecto a y:

$$D_2 f(x,y) = \frac{\partial}{\partial y} \left(y \frac{x^2 - y^2}{x^2 + y^2} \right).$$

Usamos de nuevo la regla del producto y simplificamos:

$$D_2 f(x,y) = \frac{x^2 - y^2}{x^2 + y^2} + y \left[\left(x^2 - y^2 \right) (-1)(x^2 + y^2)^{-2} (2y) - 2y(x^2 + y^2)^{-1} \right].$$

Al simplificar, obtenemos:

$$D_2 f(x,y) = \frac{x^4 - y^4 - 4x^2 y^2}{(x^2 + y^2)^2}.$$

5. Para $D_{2,1}f(0,0)$:

$$D_{2,1}f(0,0) = D_2D_1f(0,0) = \lim_{k \to 0} \frac{D_1f(0,k) - D_1f(0,0)}{k} = \lim_{k \to 0} \frac{0 - 0}{k} = 0.$$

6. Para $D_{1,2}f(0,0)$:

$$D_{1,2}f(0,0) = D_1D_2f(0,0) = \lim_{h \to 0} \frac{D_2f(h,0) - D_2f(0,0)}{h} = \lim_{h \to 0} \frac{1 - (-1)}{h}.$$

Este límite no existe, por lo tanto $D_{1,2}f(0,0)$ no existe.

Ejercicio 3a

Consideremos la función $f(x,y) = \frac{xy^3}{x^3+y^6}$ cuando $(x,y) \neq (0,0)$, y definamos f(0,0) = 0. a) Demostrar que la derivada $f'(\mathbf{O}; \mathbf{a})$ existe para cualquier vector \mathbf{a} y calcular su valor en términos de los componentes de \mathbf{a} . Respuesta Si tenemos $\vec{a} = (a_1, a_2)$, usamos la definición de derivada:

$$f'(\vec{0}; \vec{a}) = \lim_{h \to 0} \frac{f(a_1 h, a_2 h) - f(0, 0)}{h} = \lim_{h \to 0} \frac{1}{h} \left[\frac{a_1 h(a_2 h)^3}{(a_1 h)^3 + (a_2 h)^6} \right]$$
$$f'(\vec{0}; \vec{a}) = \lim_{h \to 0} \left[\frac{a_1 a_2^3}{a_1^3 + h^4 a_2^6} \right] = \frac{a_2^3}{a_1^2}, \quad a_1 \neq 0$$

Para $\vec{a} = (0,0)$, la derivada se convierte en $f'(\vec{0};\vec{a}) = f'(\vec{0};\vec{0}) = \lim_{h\to 0} \frac{f(0,0)-f(0,0)}{h} = \lim_{h\to 0} \left(\frac{0}{h}\right)$, de modo que $f'(\vec{0};\vec{0}) = 0$. Esto demuestra que $f'(\vec{0};\vec{a})$ existe para cualquier dirección \vec{a} .

Ejercicio 3b

Sea $f(x,y) = \frac{xy^3}{x^3+y^6}$ si $(x,y) \neq (0,0)$, y definamos f(0,0) = 0. Determinar si f es continua en el origen.

Respuesta

Supongamos que y = mx, entonces

$$f(\vec{x}) = f(x,y) = \frac{x(mx)^3}{x^3 + (mx)^6} = \frac{mx}{1 + m^6x^3}$$

Si $\vec{x} \to \vec{0}$ a lo largo de cualquier recta que pase por el origen, entonces $f(\vec{x}) \to 0$, como se verifica haciendo $x \to 0$ en la expresión $f(\vec{x}) = mx/\left(1 + m^6x^3\right)$.

Supongamos ahora que $x = y^2$, entonces

$$f(x,y) = \frac{y^2(y^3)}{(y^2)^3 + y^6} = \frac{1}{y}$$

En cada punto de la parábola $x=y^2$ la función f toma un valor finito, excepto en el origen, donde $f\to\infty$. Si ahora tomamos $x=y^3$, entonces

$$f(x,y) = \frac{y^3(y^3)}{(y^3)^3 + y^6} = \frac{1}{1+y^3}$$

En el origen, f(x,y) vale 1, ya que $f(0,0) = \frac{1}{1+y^3}\Big|_{y=0} = \frac{1}{1+0} = 1$. Dado que f(0,0) = 0, observamos que para diferentes valores de x y y, al acercarse estos a 0, f(x,y) no tiende a 0, por lo tanto, la función no es continua en el origen.

Ejercicio 4

Sea $f(x,y)=\int_0^{\sqrt{xy}}e^{-t^2}\,dt$ con x>0 y y>0. Encuentre $\frac{\partial f}{\partial x}$ en términos de x y y. Respuesta

$$\begin{split} f(x,y) &= \int_0^{\sqrt{xy}} e^{-t^2} \, dt \\ \frac{\partial f}{\partial x} &= e^{-(\sqrt{xy})^2} \cdot \frac{\partial}{\partial x} \left(\sqrt{xy} \right) \\ \frac{\partial}{\partial x} \left(\sqrt{xy} \right) &= \frac{1}{2} (xy)^{-1/2} \cdot \frac{\partial}{\partial x} (xy) \\ \frac{\partial}{\partial x} (xy) &= y \\ \frac{\partial}{\partial x} \left(\sqrt{xy} \right) &= \frac{1}{2} (xy)^{-1/2} \cdot y \\ \frac{\partial f}{\partial x} &= e^{-xy} \cdot \frac{1}{2} \cdot x^{-1/2} \cdot y^{1/2} \\ \frac{\partial f}{\partial x} &= \frac{1}{2} e^{-xy} x^{-1/2} y^{1/2} \end{split}$$

Ejercicio 5

Considera las ecuaciones u = f(x, y), x = X(t), y = Y(t) que definen a u como función de t, es decir, u = F(t). Encuentra la tercera derivada F'''(t) en términos de las derivadas de f, X y Y. **Respuesta**

$$\begin{split} u &= f(x,y), \quad x = X(t), \quad y = Y(t) \\ u &= F(t) \text{ donde } F(t) = f(X(t),Y(t)) \\ F'(t) &= \frac{dF(t)}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt} \\ \frac{dx}{dt} &= \frac{d}{dt} X(t) = X'(t), \quad \frac{dy}{dt} = \frac{d}{dt} Y(t) = Y'(t) \\ F'(t) &= \frac{\partial f}{\partial x} [X(t),Y(t)] X'(t) + \frac{\partial f}{\partial y} [X(t),Y(t)] Y'(t) \end{split}$$

$$F''(t) = \frac{d}{dt} \left[\frac{\partial f}{\partial x} X'(t) \right] + \frac{d}{dt} \left[\frac{\partial f}{\partial y} Y'(t) \right]$$

Aplicando la regla del producto y la de la cadena:

$$\begin{split} \frac{d}{dt} \left[\frac{\partial f}{\partial x} X'(t) \right] &= \left[\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) X'(t) + \left(\frac{\partial}{\partial f \partial x} \right) Y'(t) \right] X'(t) + \frac{\partial f}{\partial x} X''(t) \\ \frac{d}{dt} \left[\frac{\partial f}{\partial x} X'(t) \right] &= \frac{\partial^2 f}{\partial x^2} \left[X'(t) \right]^2 + \frac{\partial^2 f}{\partial y \partial x} X'(t) Y'(t) + \frac{\partial f}{\partial x} X''(t) \end{split}$$

De forma similar,

$$\begin{split} \frac{d}{dt} \left[\frac{\partial f}{\partial y} Y'(t) \right] &= \left[\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) X'(t) + \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) Y'(t) \right] Y'(t) + \frac{\partial f}{\partial y} Y''(t) \\ \frac{d}{dt} \left[\frac{\partial f}{\partial y} Y'(t) \right] &= \frac{\partial^2 f}{\partial x \partial y} X'(t) Y'(t) + \frac{\partial^2 f}{\partial y^2} \left[Y'(t) \right]^2 + \frac{\partial f}{\partial y} Y''(t) \end{split}$$

Sustituyendo los resultados anteriores en la ecuación para F''(t):

$$F''(t) = \frac{\partial^2 f}{\partial x^2} \left[X'(t) \right]^2 + 2 \frac{\partial^2 f}{\partial x \partial y} X'(t) Y'(t) + \frac{\partial^2 f}{\partial y^2} \left[Y'(t) \right]^2 + \frac{\partial f}{\partial x} X''(t) + \frac{\partial f}{\partial y} Y''(t)$$

Derivando esta ecuación respecto a t se obtiene:

$$\begin{split} F'''(t) &= \left[\frac{\partial}{\partial x} \left(\frac{\partial^2 f}{\partial x^2}\right) X'(t) + \frac{\partial}{\partial y} \left(\frac{\partial^2 f}{\partial x^2}\right) Y'(t)\right] X'(t) + \frac{\partial^2 f}{\partial x^2} 2 X'(t) X''(t) \\ &+ 2 \left[\frac{\partial}{\partial x} \left(\frac{\partial^2 f}{\partial x \partial y}\right) X'(t) + \frac{\partial}{\partial y} \left(\frac{\partial^2 f}{\partial x \partial y}\right) Y'(t)\right] X'(t) Y'(t) \\ &+ 2 \frac{\partial^2 f}{\partial x \partial y} \left(X''(t) Y'(t) + X'(t) Y''(t)\right) \\ &+ \left[\frac{\partial}{\partial x} \left(\frac{\partial^2 f}{\partial y^2}\right) X'(t) + \frac{\partial}{\partial y} \left(\frac{\partial^2 f}{\partial y^2}\right) Y'(t)\right] Y'(t) \\ &+ \frac{\partial^2 f}{\partial y^2} 2 Y'(t) Y''(t) \\ &+ \left[\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x}\right) X'(t) + \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x}\right) Y'(t)\right] X''(t) + \frac{\partial f}{\partial x} X'''(t) \\ &+ \left[\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y}\right) X'(t) + \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y}\right) Y'(t)\right] Y''(t) + \frac{\partial f}{\partial y} Y'''(t) \\ &+ \left[\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y}\right) X'(t) + \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y}\right) Y'(t)\right] Y''(t) + \frac{\partial f}{\partial y} Y'''(t) \\ &+ 2 \frac{\partial^2 f}{\partial y \partial x \partial y} X'(t) X''(t) + 2 \frac{\partial^3 f}{\partial x \partial y} X''(t) Y'(t) \\ &+ 2 \frac{\partial^2 f}{\partial y \partial x \partial y} X'(t) Y''(t)^2 + 2 \frac{\partial^2 f}{\partial x \partial y} X''(t) Y'(t)^2 \\ &+ 2 \frac{\partial^2 f}{\partial x \partial y} X'(t) Y''(t) + \frac{\partial^3 f}{\partial x \partial y} X''(t) Y'(t)^2 \end{split}$$

Ejercicio 6

El cambio de variables x = u + v y $y = uv^2$ transforma f(x, y) en g(u, v). Se pide hallar el valor de $\partial^2 g/(\partial v \partial u)$ en el punto donde u = 1 y v = 1, sabiendo que

$$\frac{\partial f}{\partial y} = \frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial y^2} = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} = 1.$$

Respuesta Para hallar la derivada parcial mixta $\frac{\partial^2 g}{\partial v \partial u}$ en u = 1 y v = 1, primero encontraremos las primeras derivadas parciales $\frac{\partial g}{\partial u}$ y $\frac{\partial g}{\partial v}$ aplicando la regla de la cadena:

$$\begin{split} \frac{\partial g}{\partial u} &= \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u}, \\ \frac{\partial g}{\partial v} &= \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v}. \end{split}$$

Para x = u + v y $y = uv^2$, tenemos:

$$\frac{\partial x}{\partial u} = 1,$$
 $\frac{\partial y}{\partial u} = v^2,$ $\frac{\partial x}{\partial v} = 1,$ $\frac{\partial y}{\partial v} = 2uv.$

Luego,

$$\frac{\partial g}{\partial u} = \frac{\partial f}{\partial x} + v^2 \frac{\partial f}{\partial y},$$
$$\frac{\partial g}{\partial v} = \frac{\partial f}{\partial x} + 2uv \frac{\partial f}{\partial y}.$$

Para obtener $\frac{\partial^2 g}{\partial v \partial u}$:

$$\begin{split} \frac{\partial^2 g}{\partial v \partial u} &= \frac{\partial}{\partial v} \left(\frac{\partial f}{\partial x} + v^2 \frac{\partial f}{\partial y} \right) \\ &= \frac{\partial}{\partial v} \left(\frac{\partial f}{\partial x} \right) + 2v \frac{\partial f}{\partial y} + v^2 \frac{\partial}{\partial v} \left(\frac{\partial f}{\partial y} \right). \end{split}$$

Calculando las derivadas parciales necesarias:

$$\begin{split} \frac{\partial}{\partial v} \left(\frac{\partial f}{\partial x} \right) &= \frac{\partial^2 f}{\partial x^2} + 2uv \frac{\partial^2 f}{\partial y \partial x}, \\ \frac{\partial}{\partial v} \left(\frac{\partial f}{\partial y} \right) &= \frac{\partial^2 f}{\partial x \partial y} + 2uv \frac{\partial^2 f}{\partial y^2}. \end{split}$$

Sustituyendo estos resultados:

$$\frac{\partial^2 g}{\partial v \partial u} = \frac{\partial^2 f}{\partial x^2} + 2uv \frac{\partial^2 f}{\partial u \partial x} + 2v \frac{\partial f}{\partial y} + v^2 \left(\frac{\partial^2 f}{\partial x \partial y} + 2uv \frac{\partial^2 f}{\partial u^2} \right).$$

Dado que todas las derivadas parciales son 1, en u = 1 y v = 1:

$$\frac{\partial^2 g}{\partial v \partial u} = 1 + 2 \cdot 1 \cdot 1 + 2 \cdot 1 + 1^2 (1 + 2 \cdot 1 \cdot 1) = 1 + 2 + 2 + 3 = 8.$$

Ejercicio 7

El cambio de coordenadas dado por x=uv y $y=\frac{1}{2}(u^2-v^2)$ convierte la función f(x,y) en g(u,v). a) Determine $\frac{\partial g}{\partial u}, \frac{\partial g}{\partial v},$ y $\frac{\partial^2 g}{\partial u\partial v}$ en términos de las derivadas parciales de f. (Se puede asumir la igualdad de las derivadas parciales mixtas.) b) Si $\|\nabla f(x,y)\|^2=2$ para todos los valores de x y y, descubra las constantes a y b tales que:

$$a\left(\frac{\partial g}{\partial u}\right)^2 - b\left(\frac{\partial g}{\partial v}\right)^2 = u^2 + v^2$$

Respuesta Dado el cambio de variables:

$$x = uv$$
$$y = \frac{1}{2}(u^2 - v^2)$$

transformamos f(x,y) en g(u,v). Estas transformaciones nos llevan a encontrar:

$$\frac{\partial g}{\partial u}, \frac{\partial g}{\partial v}, \ y \ \frac{\partial^2 g}{\partial u \partial v}.$$

Utilizando la regla de la cadena:

$$\begin{split} \frac{\partial g}{\partial u} &= \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u} \\ \frac{\partial g}{\partial v} &= \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v} \end{split}$$

Dado que:

$$\begin{split} \frac{\partial x}{\partial u} &= v, \quad \frac{\partial y}{\partial u} = u \\ \frac{\partial x}{\partial v} &= u, \quad \frac{\partial y}{\partial v} = -v \end{split}$$

Sustituyendo estas, obtenemos:

$$\frac{\partial g}{\partial u} = v \frac{\partial f}{\partial x} + u \frac{\partial f}{\partial y}$$
$$\frac{\partial g}{\partial v} = u \frac{\partial f}{\partial x} - v \frac{\partial f}{\partial y}$$

Para la segunda derivada mixta:

$$\begin{split} \frac{\partial^2 g}{\partial u \partial v} &= \frac{\partial}{\partial u} \left(\frac{\partial g}{\partial v} \right) \\ \frac{\partial^2 g}{\partial u \partial v} &= \frac{\partial}{\partial u} \left(u \frac{\partial f}{\partial x} - v \frac{\partial f}{\partial y} \right) \\ \frac{\partial^2 g}{\partial u \partial v} &= \frac{\partial f}{\partial x} + u \frac{\partial}{\partial u} \left(\frac{\partial f}{\partial x} \right) - v \frac{\partial}{\partial u} \left(\frac{\partial f}{\partial y} \right) \end{split}$$

Calculamos las derivadas parciales:

$$\begin{split} \frac{\partial}{\partial u} \left(\frac{\partial f}{\partial x} \right) &= \frac{\partial^2 f}{\partial x^2} v + \frac{\partial^2 f}{\partial y \partial x} u \\ \frac{\partial}{\partial u} \left(\frac{\partial f}{\partial y} \right) &= \frac{\partial^2 f}{\partial x \partial y} v + \frac{\partial^2 f}{\partial y^2} u \end{split}$$

Sustituyendo:

$$\frac{\partial^2 g}{\partial u \partial v} = \frac{\partial f}{\partial x} + uv \left(\frac{\partial^2 f}{\partial x^2} - \frac{\partial^2 f}{\partial y^2} \right) + (u^2 - v^2) \frac{\partial^2 f}{\partial x \partial y}$$

Dado que:

$$\|\nabla f(x,y)\|^2 = 2$$

para todos x, y, necesitamos encontrar a y b tales que:

$$a\left(\frac{\partial g}{\partial u}\right)^2 - b\left(\frac{\partial g}{\partial v}\right)^2 = u^2 + v^2.$$

Sabiendo que:

$$\nabla f = \frac{\partial f}{\partial x}\hat{\imath} + \frac{\partial f}{\partial y}\hat{\jmath},$$

es decir:

$$\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 = 2.$$

Para $\frac{\partial g}{\partial u}$:

$$\left(\frac{\partial g}{\partial u}\right)^2 = v^2 \left(\frac{\partial f}{\partial x}\right)^2 + 2uv \left(\frac{\partial f}{\partial x}\right) \left(\frac{\partial f}{\partial y}\right) + u^2 \left(\frac{\partial f}{\partial y}\right)^2.$$

Para $\frac{\partial g}{\partial v}$:

$$\left(\frac{\partial g}{\partial v}\right)^2 = u^2 \left(\frac{\partial f}{\partial x}\right)^2 - 2uv \left(\frac{\partial f}{\partial x}\right) \left(\frac{\partial f}{\partial y}\right) + v^2 \left(\frac{\partial f}{\partial y}\right)^2.$$

Sustituyendo, obtenemos:

$$a\left(\frac{\partial g}{\partial u}\right)^2 - b\left(\frac{\partial g}{\partial v}\right)^2 = (a-b)\left(v^2\left(\frac{\partial f}{\partial x}\right)^2 + u^2\left(\frac{\partial f}{\partial y}\right)^2\right) + 2(a+b)uv\left(\frac{\partial f}{\partial x}\right)\left(\frac{\partial f}{\partial y}\right)$$

Entonces, debemos cumplir:

$$a\left(\left(\frac{\partial f}{\partial y}\right)^2 + \left(\frac{\partial f}{\partial x}\right)^2\right) = 1$$
$$a\left(\frac{\partial f}{\partial x}\right)^2 - b\left(\frac{\partial f}{\partial y}\right)^2 = 1$$
$$a + b = 0$$

De la última, se deduce que:

$$b = -a$$

Sustituyendo, obtenemos:

$$a(2) = 1$$

$$a = \frac{1}{2}, \quad b = -\frac{1}{2}.$$

Por lo tanto, los valores de las constantes son:

$$a = \frac{1}{2}, \quad b = -\frac{1}{2}.$$