

Index of FFT lab on Intuition Drill

Lab 1 — Meet the Players: fo, fs, and N

Focus: How signal frequency (f_0), sampling frequency (f_s), and number of samples (N) connect.

Goal: Understand $\Delta f = f_s / N$ and how it decides bin spacing.

Drill: Pick N = 8, $f_s = 8$ Hz $\rightarrow \Delta f = 1$ Hz. Place a 2 Hz sine and see it *exactly* in bin 2.

Lab 2 — When the Bins Fit Like Lego

Focus: Perfect bin alignment (integer multiples of Δf).

Goal: See how a signal with exactly k·∆f Hz frequency lands in one bin with no

leakage.

Drill: Keep $f_s = 32$ Hz, $N = 8 \rightarrow \Delta f = 4$ Hz. Try signals at 4 Hz, 8 Hz, 12 Hz.

Lab 3 — When the Lego Bricks Don't Fit

Focus: Spectral leakage.

Goal: Observe what happens when fo is *not* a bin frequency.

Drill: With $f_s = 32$ Hz, $N = 8 \rightarrow \Delta f = 4$ Hz, put $f_0 = 5$ Hz and see the spread in bins.

Lab 4 — The Window Effect

Focus: Why the FFT assumes the signal repeats forever.

Goal: Show how the rectangular window causes leakage, and how Hamming/Hann

windows reduce it.

Drill: Use same 5 Hz case from Chapter 3, compare no window vs. Hann.

Lab 5 — Time-Frequency Tradeoff

Focus: How N controls resolution.

Goal: See Δf get smaller as N grows, improving your ability to separate close

frequencies.

Drill: Compare N = 8 vs. N = 64 for two signals at 10 Hz and 11 Hz.

Lab 6 — The Mirror World

Focus: Positive and negative frequencies.

Goal: Understand fftfreq output and symmetry for real signals. **Drill:** Plot np.fft.fftfreq and watch bins > f_s/2 become negative.

Lab 7 — Phase is Not Just Decoration

Focus: Interpreting FFT phase output.

Goal: Connect time-domain shift with phase change in frequency domain.

Drill: Delay a sine wave by ¼ cycle and see a 90° phase shift in its bin.

Lab 8 — DC: The Quiet Tenant at 0 Hz

Focus: Why bin 0 means "average value."

Goal: Add a constant offset to your signal and see it appear only at bin 0.

Drill: Sine wave vs. sine wave + 3.

Lab 9 — Aliasing: Folding Beyond Nyquist

Focus: What happens when $f_0 > f_s/2$.

Goal: Show how high-frequency signals masquerade as lower ones.

Drill: $f_s = 32$ Hz, generate $f_0 = 20$ Hz and 28 Hz; watch folding.

Lab 10 — Building the FFT Reflex

Focus: Putting it all together to read FFT plots like a story.

Goal: Predict before running: location, height, width, and phase of peaks.

Drill: Randomly choose f₀, f_s, N — predict FFT outcome, then verify.