Faster Matroid Partition Algorithms

Tatsuya Terao

Kyoto University

HJ 2025 @Tokyo May 26, 2025

Summary

Result

Three fast algorithms for matroid partition

- Algorithm 1.
 - $\widetilde{O}(kn\sqrt{p})$ independence queries
- Algorithm 2.
 - $\tilde{O}(k'^{1/3}np + kn)$ independence queries
- Algorithm 3.
 - $\widetilde{O}((n+k)\sqrt{p})$ rank queries

n = #elements, k = #matroids p =solution size, $k' = \min \{k, p\}$

Summary

Result

Three fast algorithms for matroid partition

- Algorithm 1.
 - $\widetilde{O}(kn\sqrt{p})$ independence queries
- Algorithm 2.
 - $\tilde{O}(k'^{1/3}np + kn)$ independence queries
- Algorithm 3.
 - $\widetilde{O}((n+k)\sqrt{p})$ rank queries

n = #elements, k = #matroids p =solution size, $k' = \min \{k, p\}$

Summary

Result

Three fast algorithm

the first improvement since [Cunningham'86]

- Algorithm 1.
 - $\widetilde{O}(kn\sqrt{p})$ independence queries
- Algorithm 2.
 - $\tilde{O}(k'^{1/3}np + kn)$ independence queries
- Algorithm 3.
 - $\widetilde{O}((n+k)\sqrt{p})$ rank queries

A new approach

Edge Recycling Augmentation

<u>Outline</u>

- Summary
- Preliminaries
 - -Matroid
 - -Matroid Intersection
 - -Matroid Partition
- Result
 - -Faster Matroid Partition Algorithms
- Idea
 - -Blocking Flow
 - -Edge Recycling Augmentation
- Conclusion

Matroid $\mathcal{M} = (V, \mathcal{I})$

Def

A finite set V and non-empty family of **independent** sets $\mathcal{I} \subseteq 2^V$ such that

- \circ $S' \subseteq S \in \mathcal{I} \implies S' \in \mathcal{I}$
- $S, T \in \mathcal{I}, |S| > |T| \Longrightarrow \exists e \in S T \text{ s.t. } T \cup \{e\} \in \mathcal{I}$

E.g. • Graphic Matroid

Linear Matroid

$$egin{bmatrix} 0 & 1 & 2 & 0 \ 3 & 1 & 2 & 3 \ 2 & 0 & 1 & 3 \ 1 & 2 & 3 & 0 \ \end{bmatrix}$$
 $V= ext{row vectors}$ $\mathcal{I}= ext{linearly independent}$

Matroid $\mathcal{M} = (V, \mathcal{I})$

Def

A finite set V and non-empty family of **independent** sets $\mathcal{I} \subseteq 2^V$ such that

- $\bullet S' \subseteq S \in \mathcal{I} \implies S' \in \mathcal{I}$
- $S, T \in \mathcal{I}, |S| > |T| \Longrightarrow \exists e \in S T \text{ s.t. } T \cup \{e\} \in \mathcal{I}$

Algorithm accesses a matroid through an **oracle**

Matroid $\mathcal{M} = (V, \mathcal{I})$

Def

A finite set V and non-empty family of **independent** sets $\mathcal{I} \subseteq 2^V$ such that

- $S, T \in \mathcal{I}, |S| > |T| \Longrightarrow \exists e \in S T \text{ s.t. } T \cup \{e\} \in \mathcal{I}$

Algorithm accesses a matroid through an **oracle**

• Independence oracle query: Is $S \in \mathcal{I}$?

Matroid Intersection

Input : two matroids $\mathcal{M}_1 = (V, \mathcal{I}_1), \mathcal{M}_2 = (V, \mathcal{I}_2)$

Find : maximum **common independent set** $S \in \mathcal{I}_1 \cap \mathcal{I}_2$

E.g. Bipartite Matching

V = edges

 $J_1 = \text{each left vertex has at most 1 edge}$

 $J_2 =$ each right vertex has at most 1 edge

given: $(V, \mathcal{I}_1), (V, \mathcal{I}_2)$ max |S| s.t. $S \in \mathcal{I}_1 \cap \mathcal{I}_2$

Algorithm for Matroid Intersection

[Edmonds 1970, Aigner-Dowling 1971, Lawler 1975]

Exchange graph G(S)

given: $(V, \mathcal{I}_1), (V, \mathcal{I}_2)$ max |S| s.t. $S \in \mathcal{I}_1 \cap \mathcal{I}_2$

Algorithm for Matroid Intersection

[Edmonds 1970, Aigner-Dowling 1971, Lawler 1975]

Prior Work on Matroid Intersection

given: $(V, \mathcal{I}_1), (V, \mathcal{I}_2)$ max |S| s.t. $S \in \mathcal{I}_1 \cap \mathcal{I}_2$ n = |V|, r = sol. size

Independence query complexity

1970s	Edmonds, Lawler, Aigner-Dowling	$O(nr^2)$
1986	Cunningham	$O(nr^{3/2})$
2015	Lee-Sidford-Wong	$\tilde{O}(n^2)$
2019	Nguyễn, Chakrabarty-Lee-Sidford-Singla-Wong	$\tilde{O}(nr)$
2021	Blikstad-v.d.Brand-Mukhopadhyay-Nanongkai	$\tilde{O}(n^{9/5})$
2021	Blikstad	$\tilde{O}(nr^{3/4})$

given: $(V, \mathcal{I}_1), (V, \mathcal{I}_2)$ $\max |S|$ s.t. $S \in \mathcal{I}_1 \cap \mathcal{I}_2$

Algorithm for Matroid Intersection

[Edmonds 1970, Aigner-Dowling 1971, Lawler 1975]

Construct exchange graph G(S) explicitly

Tool for Faster Matroid Intersection

[Nguy \tilde{e} n 2019, Chakrabarty et al. 2019]

Input : $\mathcal{M} = (V, \mathcal{I}), S \in \mathcal{I}, v \in V \setminus S, B \subseteq S$

Find : $u \in B$ s.t. $S - u + v \in \mathcal{I}$

Tool for Faster Matroid Intersection

[Nguy \tilde{e} n 2019, Chakrabarty et al. 2019]

Input : $\mathcal{M} = (V, \mathcal{I}), S \in \mathcal{I}, v \in V \setminus S, B \subseteq S$

Find : $u \in B$ s.t. $S - u + v \in \mathcal{I}$

O(log|B|) independence query using binary search

Tool for Faster Matroid Intersection

[Nguy \tilde{e} n 2019, Chakrabarty et al. 2019]

Input : $\mathcal{M} = (V, \mathcal{I}), S \in \mathcal{I}, v \in V \setminus S, B \subseteq S$

Find : $u \in B$ s.t. $S - u + v \in \mathcal{I}$

 $O(\log|B|)$ independence query using **binary search**

read not construct exchange graph G(S) explicitly

Matroid Partition

Input : k matroids $\mathcal{M}_1 = (V, \mathcal{I}_1), ..., \mathcal{M}_k = (V, \mathcal{I}_k)$

Find: maximum partitionable set $S \subseteq V$

There exists a partition $S = S_1 \cup \cdots \cup S_k$ s.t. $S_i \in \mathcal{I}_i$

Matroid Partition

Input : k matroids $\mathcal{M}_1 = (V, \mathcal{I}_1), ..., \mathcal{M}_k = (V, \mathcal{I}_k)$

Find: maximum partitionable set $S \subseteq V$

There exists a partition $S = S_1 \cup \cdots \cup S_k$ s.t. $S_i \in \mathcal{I}_i$

E.g. *k*-forest

Find a maximum-size union of k forests

Matroid Partition and Matroid Intersection

Matroid partition can be solved by the reduction to matroid intersection

Intersection of two matroids on $V \times \{1, ..., k\}$

Matroid Partition and Matroid Intersection

Matroid partition can be solved by the reduction to matroid intersection

Intersection of two matroids on $V \times \{1, ..., k\}$

The size of ground set is kn: large \Longrightarrow too many queries!

given: $(V, \mathcal{I}_1), \dots, (V, \mathcal{I}_k)$ max $|S_1 \cup \dots \cup S_k|$ s.t. $S_i \in \mathcal{I}_i(\forall i)$

Algorithm for Matroid Partition

[Edmonds 1968]

given: $(V, \mathcal{I}_1), \dots, (V, \mathcal{I}_k)$ max $|S_1 \cup \dots \cup S_k|$ s.t. $S_i \in \mathcal{I}_i(\forall i)$

Algorithm for Matroid Partition

[Edmonds 1968]

Compressed exchange graph $G(S_1, ..., S_k)$

given: $(V, \mathcal{I}_1), ..., (V, \mathcal{I}_k)$ max $|S_1 \cup \cdots \cup S_k|$ s.t. $S_i \in \mathcal{I}_i(\forall i)$ n = |V|, k = #matroids, p = sol. size

Prior Work on Matroid Partition n = |V|, k = #matroids, p = sol. size

Independence query Complexity

1968	Edmonds	$O(np^2 + kn)$
1986	Cunningham	$O(np^{3/2} + kn)$

given: $(V, \mathcal{I}_1), ..., (V, \mathcal{I}_k)$ max $|S_1 \cup \cdots \cup S_k|$ s.t. $S_i \in \mathcal{I}_i(\forall i)$ n = |V|, k = #matroids. p = sol. size

Prior Work on Matroid Partition n = |V|, k = #matroids, p = sol. size

Independence query Complexity

1968	Edmonds	$O(np^2 + kn)$
1986	Cunningham	$O(np^{3/2} + kn)$
2023	This work	$\widetilde{O}(kn\sqrt{p})$
2023	This work	$\widetilde{O}(k^{1/3}np + kn)$

Prior Work on Matroid Partition

Independence query complexity

1968	Edmonds	$O(np^2 + kn)$
1986	Cunningham	$O(np^{3/2} + kn)$
2023	This work	$\widetilde{O}(kn\sqrt{p})$
2023	This work	$\widetilde{O}(k'^{1/3}np + kn)$

Algorithm 1: Blocking Flow + Binary Search

Thm1

Matroid partition can be solved using $\tilde{O}(kn\sqrt{p})$ independence queries

n = |V|, k = #matroids p =solution size

given: $(V, \mathcal{I}_1), \dots, (V, \mathcal{I}_k)$ max $|S_1 \cup \dots \cup S_k|$ s.t. $S_i \in \mathcal{I}_i(\forall i)$ n = |V|, k = # matroids, p = sol. size

Algorithm 1: Blocking Flow

Thm1

Matroid partition can be solved using $\tilde{O}(kn\sqrt{p})$ independence queries

<u>Idea</u>

Blocking Flow [Cunningham 1986]

Binary Seach

[Nguy \tilde{e} n 2019, Chakrabarty et al. 2019]

Finding multiple augmenting paths of the same length in one phase

given: $(V, \mathcal{I}_1), \dots, (V, \mathcal{I}_k)$ max $|S_1 \cup \dots \cup S_k|$ s.t. $S_i \in \mathcal{I}_i(\forall i)$ n = |V|, k = # matroids, p = sol. size

Algorithm 1: Blocking Flow

Thm1

Matroid partition can be solved using $\tilde{O}(kn\sqrt{p})$ independence queries

Algorithm

Repeat:

Step 1: Breadth First Search

Step 2: Find multiple augmenting paths

given: $(V, \mathcal{I}_1), ..., (V, \mathcal{I}_k)$ max $|S_1 \cup \cdots \cup S_k|$ s.t. $S_i \in \mathcal{I}_i(\forall i)$ n = |V|, k = # matroids, p = sol. size

Algorithm 1: Blocking Flow

Thm1

Matroid partition can be solved using $\tilde{O}(kn\sqrt{p})$ independence queries

<u>Algorithm</u>

Repeat:

Step 1: Breadth First Search

Step 2: Find multiple augmenting paths

 $\longleftarrow \widetilde{O}(kn)$ queries

 $\longleftarrow \widetilde{O}(kn)$ queries

Fact: $\Theta(\sqrt{p})$ phases are required

given: $(V, \mathcal{I}_1), \dots, (V, \mathcal{I}_k)$ max $|S_1 \cup \dots \cup S_k|$ s.t. $S_i \in \mathcal{I}_i(\forall i)$ n = |V|, k = #matroids, p = sol. size

Algorithm 1: Blocking Flow

Thm1

Matroid partition can be solved using $\tilde{O}(kn\sqrt{p})$ independence queries

given: $(V, \mathcal{I}_1), \dots, (V, \mathcal{I}_k)$ max $|S_1 \cup \dots \cup S_k|$ s.t. $S_i \in \mathcal{I}_i(\forall i)$ n = |V|, k = # matroids, p = sol. size

Algorithm 1: Blocking Flow

Thm1

Matroid partition can be solved using $\tilde{O}(kn\sqrt{p})$ independence queries

Despite of **binary search** technique, Alg. 1 is worse than [Cun 86].

given: $(V, \mathcal{I}_1), \dots, (V, \mathcal{I}_k)$ max $|S_1 \cup \dots \cup S_k|$ s.t. $S_i \in \mathcal{I}_i(\forall i)$ n = |V|, k = # matroids, p = sol. size

Algorithm 1: Blocking Flow

Thm1

Matroid partition can be solved using $\tilde{O}(kn\sqrt{p})$ independence queries

Despite of binary search technique, Alg. 1 is worse than [Cun 86].

Q. Better Algorithm when k is large?

Algorithm 2

Thm2

Matroid partition can be solved using $\tilde{O}(k'^{1/3}np + kn)$ independence queries

compute all edges E^* of $G(S_1,...,S_k)$

O(np) queries

Algorithm 2: Hybrid Approach

Thm2

Matroid partition can be solved using $\tilde{O}(k'^{1/3}np + kn)$ independence queries

Algorithm 2: Hybrid Approach

```
Thm2
```

Matroid partition can be solved using $\tilde{O}(k'^{1/3}np + kn)$ independence queries

Step 1. Apply **Blocking Flow** (Algorithm 1)

Algorithm 2: Hybrid Approach

Thm2

Matroid partition can be solved using $\tilde{O}(k'^{1/3}np + kn)$ independence queries

Step 1. Apply Blocking Flow (Algorithm 1)

Step 2. Apply Edge Recycling Augmentation

Algorithm 2: Hybrid Approach

Thm2

Matroid partition can be solved using $\tilde{O}(k'^{1/3}np + kn)$ independence queries

Step 1. Apply **Blocking Flow** (Algorithm 1) in $\Theta(\frac{p}{k'^{2/3}})$ phases

Step 2. Apply Edge Recycling Augmentation

Algorithm 2: Hybrid Approach

Thm2

Matroid partition can be solved using $\tilde{O}(k'^{1/3}np + kn)$ independence queries

Step 1. Apply Blocking Flow (Algorithm 1) in $\Theta(\frac{p}{k'^{2/3}})$ phases

Step 2. Apply Edge Recycling Augmentation

Lemma: $\Theta(k'^{1/3})$ phases are required in Step 2

Algorithm 2: Hybrid Approach

Thm2

Matroid partition can be solved using $\tilde{O}(k'^{1/3}np + kn)$ independence queries

Step 1. Apply Blocking Flow (Algorithm 1) in $\Theta(\frac{p}{k'^{2/3}})$ phases

One phase uses $\tilde{O}(k'n)$ queries

Step 2. Apply Edge Recycling Augmentation

One phase uses $\tilde{O}(np)$ queries

Lemma: $\Theta(k'^{1/3})$ phases are required in Step 2

Conclusion

Improve the independence query complexity of Matroid Partition

- Use Binary Search Technique [Nguyễn 2019, Chakrabarty et al. 2019]
- A new approach: Edge Recycling Augmentation

- Q. Further improvement?
- Q. Apply an idea of Edge Recycling Augmentation to other problems?