34. (New) A frame structure for a communication system, each frame having 15 slots and each slot having N number of pilot bits, where $2 \le N \le 16$, such that there are N number of pilot bit patterns of 15 bits in the frame, wherein the improvement comprises N number of pilot bit patterns having at least one of the following pilot bit patterns:

Slot No	1234	15
Pilot bit patter	m 1 = (1 0 0 0 1 1 1 1	0101100)
	$m 2 = (1 \ 0 \ 1 \ 0 \ Q \ 1 \ 1 \ Q$	
Pilot bit patter	rn 3 = (1 1 0 0 0) 0 0	1101011)
Pilot bit patter	rn 4 = (0 0 1 0 1 0 0)	NQ 1 1 1 0 1 1)
	m 5 = (1 1 1 0 1 0 1 1	
Pilot bit patter	rm 6 = (1 1 0 1 1 1 0 0)	00010100)
Pilot bit patter	m7 = (10011010	1111000)
Pilot bit patte	rn 8= (0 0 0 0 1 1 1 0	1100101)

Cox. (2)

wherein any one of the pilot bit patterns allows at least one of channel estimation and frame synchronization.

Docket No. K-090B

36. (New) A frame structure for an uplink Dedicated Physical Control Channel (DPCCH) in a communication system, wherein the improvement comprises each frame of the uplink DPCCH having 15 slots and N_{pilot} number of pilot bits in each slot, where $3 \le N_{pilot} \le 8$ and pilot bit patterns comprise at least one of the following based on N_{pilot} number of pilot bits:

		wher	1 N _{pi}	_{lot} = 5			wl	nen N	l _{pilot} =	= 6	
Bit #	9/	1	2	3	4	0	1	2	3	4	5
Slot #0	1	1	1	1	0	1	1	1	1	1	0
1	0	(A)	1	1	0	1	0	0	1	์	0
2	0	ુ ૧ે	\ 1	0	1	1	0	J	1	0	1
3	0	0	<i>\</i>	0	0	1	0	0	1	0	0
4	1	0	1	0	ป	1	1	0	1	0	1
5	1	1	1	3	0	1	1	ป	1	1	0
6	1	1	1	0	0	1	1	1	1	0	0
7	1	_ 0	1	0	0	1	1	0	1	0	0
8	0	1	1	, 1	0	$\sqrt{1}$	0	1	1	์ ๆ	0
9	1	1	1	្វា	1	│	୍ଶ	1	1	. 1	- 1
10	0	∵ીં	1	0	1	1	Q	1	1	0	1
11	1	0	1	* 1	1	1	1	(0)	1	ป	1
12	1	0	1	0	0	1	1	12	1	0	0
13	0	0	1	1	1	1	0	0	\1	ા	1
14	0	0	1	. 1	1	1	0	0	X	ି 1	1

BI

Docket No. K-090B

Ś	Gury.
B	1

		when N _{pilot} = 7								when N _{pilot} = 8							
Bit #	0	1	2	3	4	5	6	0	1	2	3	4	5	6	7		
Slot #0	1	1	1	1	M	0	1	1	1	1	1	1	1	1	0		
1	1	0	0	1	1	0	1	1	0	1	0	1	1	1	0		
2	1	0	¶ .:	1	0	F	1	1	0	1	1	1	0	1	ર્		
3	1	0	0	1	0	0	\searrow 1	1	0	1	0	1	0	1	(0		
4	1	1	0	1	0	I	1	1	1	1	0	1	0	1	1		
5	1	1	า	1	1	0	1	V	1	1	1	1	ป	1	(0		
6	1	1	1	1	0	0	1	1`	1	1	9	1	0	1	(
7	1	1	0	1	0	0	1	1	F	1	0	1	0	1	(0		
8	1	0	1	1	1	0	1	1	0	\ 1	1	1	1	1	(
9	1	1	1	1	1	1	1	1	1	入	1	1	1	1	1		
10	1	0	ป	1	0	1	1	1	. (0)	1	ીશ	1	0	1	4		
11	1	1	0	1	์ 1	1	1	1	1	1	0	_ 1	1	1	. 4		
12	1	1	0	1	0	0	1	1	1	1	0	X	0	1	(
13	1	0	0	1	1	1	1	1	0	1	0	1	1	1	9		
14	1	0	0	1	1	1	1	1	0	1	0	1	3	1	9		

wherein shaded pilot bit patterns allow at least one of channel estimation and frame

synchronization.

Docket No. K-090B

Serial No. 09/376,373

36. (New) A frame structure for a Random Access Channel (RACH) in a communication system, wherein the improvement comprises each frame of the RACH having 15 slots and Npilot number of pilot bits in each slot, where Npilot=8, and pilot bit patterns comprise

Support.

B1

				N _{pilo}	t = 8			
Bit #	0	1	2	3	4	5	6	7
Slot #0	1	1	<u>\</u> 1	1	1	1	1	0
1	1	0	A	0	1	1	1	0
2	1	0	1 \	. 1	1	0	1	1
3	1	0	1	Q	1	0	1	0
4	1	1	1	(O)	1	0	1	1
5	1	1	1	11 8	1	1	1	0
6	1	1	1	1	A	0	1	0
7	1	1	1	0	1	. 0	1	0
8	1	0	1	1	1	1	1	0
9	1	1	1	1	1	Tr.	1	1
10	1	0	1	1	1	(0)	\1	1
11	1	1	1	0	1	1	X	1
12	1	1	1	0	1	0	1 `	0
13	1	0	1	0	1	1	1	M
14	1	0	1	0	1	1	1	1

wherein shaded pilot bit patterns allow at least one of channel estimation and frame synchronization.

Docket No. K-090B

(New) A frame structure for a downlink Dedicated Physical Control Channel (DPCCH) in a communication system, wherein the improvement comprises each frame of the downlink DPCCH having 15 slots and N_{pilot} number of pilot bits in each slot, where $2 \le N_{pilot} \le 6$, and pilot bit patterns comprise at least one of the following based on N_{pilot} number of pilot bits:

	when N _{pilot} = 2		N _{pilot}		when N _{pilot} = 8				when N _{pilot} = 16								
Symbol #	0	0	1	0	1	2	3	0	1	2	3	4	5	6	7		
Slot #0	11	11	11	11	11	1/1	100	11	11	11	10	11	11	11	100		
1	000	11	000	11	000	11	100	11	000	11	10	11	111	11	000		
2	01	11	01	11	01	11	01	11	01	11	01	11	10	11	000		
3	00	11	000	11	000	11	100	11	00	11	00	11	01	11	100		
4	10	11	10	11	100	11	01	11	100	11	0 1	11	111	11	111		
5	11	11	11	11	111	11	10	11	111	11	100	11	01	11	01		
6	11	11	111	11	111	11	000	11	111	11	00	11	10	11	111		
7	10	11	10	11	10	11	000	11,1	100	11	00	11	10	11	000		
8	01	11	01	11	01	11	100	1入	01	11	100	11	00	11	111		
9	11	11	111	11	111	11	111	11 `	111	11	111	11	00	11	111		
10	. 01	11	01	11	01	11	01	11	\Q1	11	01	11	111	11	10		
11	10	11	10	11	100	11	111	11	10	11	111	11	00	11	100		
12	10	11	10	11	100	11	000	11	10	11	00	11	01	11	01		
13	00	11	00	11	000	11	111	11	00	11	111	11	00	11	000		
14	000	11	000	11	000	11	111	11	00	14	111	11	10	11	01		

wherein shaded pilot bit patterns allow at least one of channel estimation and frame synchronization.

Docket No. K-090B

Serial No. 09/376,373

(New) A frame structure for a downlink Dedicated Physical Control Channel (DPCCH) using Space Time Transmit Diversity (STTD) encoding in a communication system, wherein the improvement comprises each frame of the downlink DPCCH having 15 slots and Npilot number of pilot bits in each slot, where $2 \le N_{\text{pilot}} \le 16$, and pilot bit patterns comprise at least one of the following based on Npilot number of pilot bits:

			_												
	wh	en	ly ú	nen N	l _{pilot} =	= 8			wh	en N	pilot =	16			
	Npilo	t = 4													
Symbol #	0	1	0	X	2	3	0	1_	2_	3	4	5	6	7	
Slot #0	01	10	11	000	00	10	11	00	00	100	11	000	00	10	
1	100	10	11	000	<i>\</i> Ø0	01	11	000	00	01	11	100	00	10	
2	111	10	11	111	00/	000	11	111	00	000	11	100	00	111	
3	100	10	11	100	00	100 1	11	10	00	01	11	000	00	000	
4	00	10	11	111	00	100	11	111	00	111	11	01	00	10	
5	01	10	11	000	00	10	11	000	00	100	11	111	00	000	
6	01	10	11	100	00	100	111	10	00	100	11	01	00	111	
7	000	10	11	100	00	111	11入	100	00	111	11	100	00	111	
8	111	10	11	00	00	000	11	1	00	000	11	01	00	01	
9	01	10	11	01	00	100	11	0%	00	100	11	01	00	01	
10	11	10	11	111	00	000	11	111	√Q0	000	11	000	00	100	
11	000	10	11	01	00	111	11	01	00/	111	11	000	00	01	
12	00	10	11	10	00	111	11	100	00	ેશ્૧	11	111	00	000	
13	10	10	11	01	00	01	11	01	00	0%	11	100	00	@ 1	
14	10	10_	11	01	00	01	11	01	00	01	1	11	00	111	

wherein shaded pilot bit patterns allow at least one channel estimation and frame synchronization.

7

Supply

131 131

Docket No. K-090B

39. (New) A frame structure for a Secondary Common Control Physical Channel (S-CCPCH) in a communication system, wherein the improvement comprises each frame of the S-CCPCH having 15 slots and N_{pilot} number of pilot bits in each slot, where 8≤ N_{pilot}≤ 16, and pilot bit patterns comprise at least one of the following based on N_{pilot} number of pilot bits:

	١	when N	pilot = 8	3			V	hen N	pilot = 1	6		
Symbol #	0	1	2	3	0	1	2	3	4	5	6	7
Slot #0	11	111	11	10	11	11	11	10	11	11	11	10
1 1	11	000	11	100	11	000	11	100	11	111	11	000
2	11	01	11	01	11	01	11	01	11	100	11	00
3	11	000	11	000	11	000	11	000	11	01	11	10
4	11	100	11	01	11 `	10	11	01	11	111	11	111
5	11	111	11	100	11	ীপ্ৰ	11	10	11	01	11	01
6	11	111	11	000	11	11	11	000	11	100	11	111
7	11	100	11	000	11	10	\11	000	11	100	11	000
8	11	01	11	100	11	01	14	10	11	000	11	111
9	11	111	11	11	11	11	11	11	11	000	11	111
10	11	01	11	01	11	01	11	PQ	11	11	11	100
11	11	100	11	111	11	100	11	યુક્ત	11	000	11	100
12	11	100	11	000	11	100	11	000	11	01	11	01
13	11	000	11	111	11	000	11	11	11	000	11	000
14	11	000	11	11	11	000	11	111	M	10	11	01

wherein shaded pilot bit patterns allow at least one channel estimation and frame synchronization.

8

Subject.

(D)

Docket No. K-090B

Serial No. 09/376,373

New) A frame structure for a Secondary Common Control Physical Channel (S-CCPCH) using Space Time Transmit Diversity (STTD) encoding in a communication system, wherein the improvement comprises each frame of the S-CCPCH having 15 slots and Npilot number of pilot bits in each slot, where $8 \le N_{pilot} \le 16$, and pilot bit patterns comprise at least one of the following based on Npilot number of pilot bits:

		Npilo	t = 8 🔪					Npilot	= 16			
Symbol #	0	1	2	3	0	1	2	3	4	5	6	7
Slot #0	11	000	00	10	11	00	00	10	11	00	00	10
1	11	000	00	01	\11	000	00	01	11	100	00	10
2	11	11	00	000	7(1	111	00	000	11	100	00	11
3	11	10	00	01	11	100	00	01	11	00	00	000
4	11	11	00	111	11 `	11	00	111	11	01	00	10
5	11	000	00	100	11	Q	00	10	11	111	00	000
6	11	100	00	100	11	10	00	10	11	01	00	111
7	11	100	00	111	11	10	00	11	11	100	00	111
8	11	00	00	00	11	000	\ 00	000	11	01	00	01
9	11	01	00	100	11	01	дÓ	100	11	01	00	01
10	11	111	00	000	11	111	00	000	11	00	00	10
11	11	01	00	111	11	01	00	111	11	00	00	01
12	11	10	00	11	11	10	00	দৈৰ্	11	111	00	000
13	11	01	00	01	11	01	00	01	11	10	00	01
14	11	01	00	01	11_	01	00	<u>01</u>	11	111	00	11

wherein shaded pilot bit patterns allow at least one channel estimation and frame

synchronization.