



# Power Mezzenine testing for HCAL backend upgrade during LS1

Raman Khurana SINP Kolkata, INDIA

India CMS Meeting, 4<sup>th</sup> - 6<sup>th</sup> April 2013

4<sup>th</sup> April/2012 India CMS Meeting Raman Khurana

### Need of upgrade

- With increase in LHC Energy & luminosity large amount of data has to be processed.
- Number of channels will increase
  - To store information of more depth in the detector.
- Very high speed DAQ needed.
  - Problem : Current VME based system doesn't support data transfer rate which we will need after LS1.
  - No industrial support available.
  - Solution : μTCA based system.
- This lead to change of electronics also.

#### μTCA



- Consist of 12 AMC (µHTR) cards.
  - recieves data from FEE.
- 2 MCH Modules
  - MCH1 (commercial): to provide power to all AMC cards, backplane & general house keeping of the crate.
  - MCH2 (customised for CMS): distribution of LHC clock and fast control signal
- Power Modules

#### Data flow in HF



## Role of backend electronics :

- Receive a continuous stream of ADC and TDC (raw optical data rate 4.8 Gbps).
- Calculate trigger primitives.
- Transmit the trigger primitives over optical fiber to the calorimeter trigger system.
- Pipeline the ADC, TDC, and trigger primitive data for the full Level 1 trigger latency period.
- use the occupancy of the forward calorimeter to measure of the LHC luminosity

#### What is AMC?



**PPOD RX PPOD TX** 

**Front FPGA**  **Back FPGA** 

**Optical** connector

APM 1.8 V PM 1.0 V MMC

**EPROM** 

**PM 1.0 V** PM 3.3

**APM 2.5 V** 

#### Need of PM test

- Power mezzanine provide required volatages to various parts of the  $\mu HTR$ .
- In any experiment power supply is the part which fails often or have problem.
  - If PM fails or malfunctions then we loose data collection efficiency
  - So, all power modules of the  $\mu HTR$  card will be tested for 20 hours.
- Each PM/APM have I2C chip on it which provides a unique id to the PM/APM.
  - Useful in maintaining database.
- I2C allow serial communication to other devices via two lines.
  - In our case SUB-20 is accessing the PM via I2C bus.
- 2 ADC continuously monitors T, V, I and digital I/O of the chip.
- Goal is to test all PM/APM @ SINP before mounting on μHTR.
- Current design of  $\mu HTR$  allows replacing the PM/APM in case of failure.



#### Test Setup @ SINP





- PM is mounted on the test board as shown on left.
- Test board conneted to 12 V supply (~100W).
- SUB-20 is connected to PC via micro USB cable
- SUB-20 can talk to PM/APM via I2C chip on them.
- This configuration allows us to monitor the temperature, voltage and current drawn by the PM/APM.
- test carried out for 20 hrs for each PM/APM to monitor its stability.

#### How test is conducted?

- Connect the test board to power supply
- Switch on the cooling fan.
- Connect the SUB-20 module and PC via μUSB cable.
- If this is done : ready for test !!
- Test is conducted by a C++ code using already implemented functions inside libsub and libusb.
- Code structure :
  - (A) Interface SUB-20 & PC
    - To check if SUB-20 module is connected
    - How many SUB-20 are connected
  - (B) Interface PM to SUB-20
    - Check connections and communicate with I2C bus inside PM
  - Main
    - Running & steering A & B
    - Which test to run
    - For how long
    - Debugging .,...

#### How test is conducted?



#### **Plans**

- All needed setup is now available for testing.
- We will test all PM/APM @ SINP before mounting them on  $\mu$ HTR card.
- Test new μHTR cards at P5 once they are ready for pre-production review.

#### **SUB-20**

- SUB-20 is a versatile and efficient bridge device providing simple interconnect between PC (USB host) and different HW devices.
- Connect to HW via popular interfaces such as I2C, SPI, MDIO, RS232, RS485, SMBus, ModBus, IR
- It is also a full "any to any" converter between all supported interfaces and I/O features.
- SUB-20 is a powerful I/O controller with 32 GPIO, 8 Analog Inputs, PWM Outputs, Edge DEtectors, LCD, Leds and push buttons.



#### I2C Bus

- The Inter-integrated circuit bus
- Two wire, low-medium speed communication bus developed by Philips Semiconductors in the early 1980s.
  - Bus = a path for electronic signal
- Aim : reduce the manufacturing costs of electronic products
  - provides a low-cost, powerful, chip-to-chip communication link.
- Old days:
  - chip-to-chip communications used many wires in a parallel interface
  - often requiring ICs to have 24, 28, or more pins.
  - Many of these pins were used for inter-chip addressing, selection, control, and data transfers
  - In a parallel interface, 8 data bits are typically transferred from a sender IC to a receiver IC in a single operation

#### • Now:

- performs chip-to-chip communications using only two wires in a serial interface
- allowing ICs to communicate with fewer pins
- The two wires in the I2C Bus are called Clock (SCL) and Data (SDA)
- These two wires carry addressing, selection, control, and data, one bit at a time.
- The SDA wire carries the data, while the SCL wire synchronizes the sender and receiver during the transfer.





#### Cheat Sheet

| VME    | VERSAbus Memory card                            |
|--------|-------------------------------------------------|
| uTCA   | Micro Telecommunications Computing Architecture |
| AMC    | Advanced Mezzanine Card                         |
| MCH    | UTCA carrier Hub                                |
| MMC    | Mezzanine micro-controller card.                |
| uHTR   | Micro HCAL trigger & readout card               |
| FEE    | Front end electronics                           |
| I2C    | IIC = inter integrated circuit                  |
| FPGA   | Field programable gated array                   |
| PM/APM | Power module/Auxilary power module              |

#### Cheat Sheet

| PPOD | Pluggable, Parallel-Fiber-Optic Transmitter / Receiver    |
|------|-----------------------------------------------------------|
| MTP  | Multi-fiber Termination Push-on : optical fibre connector |
|      |                                                           |
|      |                                                           |
|      |                                                           |
|      |                                                           |
|      |                                                           |
|      |                                                           |
|      |                                                           |
|      |                                                           |

#### MCH1

- Support for 12 AMCs, 2 cooling units, 1-4 power modules
- GigaBit Ethernet switching
- PCI Express switching
- Management Controller (MCMC)