Math 557 Sep 26

Midterm 1 Review

I Take-home Problem

Prove unique readability for the set of \mathcal{L} -formulas.

Let $\mathcal L$ be any finite language and let $\mathcal M$ be a finite $\mathcal L$ -structure. Show that there is an $\mathcal L$ -sentence φ such that

$$\mathcal{N} \models \varphi \iff \mathcal{N} \cong \mathcal{M}.$$

! Take-home Problem

Give an example of a language \mathcal{L} and an \mathcal{L} -sentence ψ such that

- there is at least one \mathcal{L} -structure A such that $A \models \psi$,
- for all L-structures A, if $A \models \psi$, then the universe A of A is infinite.

Take-home problem

Show that

$$\{\varphi \to \psi\} \vdash \exists x\varphi \to \exists x\psi$$
$$\{\varphi \to \psi\} \vdash \forall x\varphi \to \forall x\psi$$

Show that for every \mathcal{L} -formula φ ,

$$T_H \vdash_{\mathcal{L}_H} \varphi \iff T \vdash_{\mathcal{L}} \varphi$$

I Take-home Problem

Use the compactness theorem to show (without using the Axiom of Choice) that every set can be linearly ordered.

Try to strengthen this to:

Every partial order can be extended to a linear order.