Decomposable context-specific models

Yulia Alexandr (UC Berkeley)
(joint work with Eliana Duarte and Julian Vill)

CEG Workshop at the University of Warwick September 5, 2022

Staged trees

We start with a staged tree \mathcal{T} . The leaves of \mathcal{T} represent all possible outcomes of a sequence of events.

Let $\Theta_{\mathcal{T}}$ denote the parameter space of conditional probability tables. Let $\mathcal{M}_{(\mathcal{T},\Theta)}$ denote all probability distributions that factor according to $(\mathcal{T},\Theta_{\mathcal{T}})$.

 $\mathcal{M}_{(\mathcal{T},\Theta)} = \Delta_7$, because all labels are distinct!

Staged trees

We start with a staged tree \mathcal{T} . The leaves of \mathcal{T} represent all possible outcomes of a sequence of events.

Let $\Theta_{\mathcal{T}}$ denote the parameter space of conditional probability tables. Let $\mathcal{M}_{(\mathcal{T},\Theta)}$ denote all probability distributions that factor according to $(\mathcal{T},\Theta_{\mathcal{T}})$.

$$\mathcal{M}_{(\mathcal{T},\Theta)} = \{(p_1,\ldots,p_8) \in \Delta_7 : \\ p_1p_4 = p_3p_2, p_4p_6 = p_2p_8, p_3p_6 = p_1p_8, \\ p_4p_5 = p_2p_7, p_3p_5 = p_1p_7, p_5p_8 = p_7p_6\},$$

because some vertices are in the same stage!

CStrees

A *CStree* is a staged tree such that:

- only vertices in the same level can be in the same stage,
- $\theta(x_1 \cdots x_{k-1} \to x_1 \cdots x_{k-1} x_k) = \theta(y_1 \cdots y_{k-1} \to y_1 \cdots y_{k-1} x_k)$ whenever the nodes $x_1 \cdots x_{k-1}$ and $y_1 \cdots y_{k-1}$ are in the same stage,
- for every stage $S \subseteq L_{k-1}$, there is some context $X_C = x_C$ such that

$$S = \bigcup_{y \in \mathcal{R}_{[k-1] \setminus C}} \{x_C y\}$$

For the pink stage, the stage-defining context is $\{X_1X_3 = 10\}$.

Algebraic approach to CStrees

Every CStree model has an associated *algebraic variety*. The staged tree model we saw earlier

$$\mathcal{M}_{(\mathcal{T},\Theta)} = \{ (p_1, \dots, p_8) \in \Delta_7 : p_1 p_4 - p_3 p_2 = 0, p_4 p_6 - p_2 p_8 = 0,$$

$$p_3 p_6 - p_1 p_8 = 0, p_4 p_5 - p_2 p_7 = 0,$$

$$p_3 p_5 - p_1 p_7 = 0, p_5 p_8 - p_7 p_6 = 0 \}$$

is also a CStree model. Note it is defined by binomial equations! In general, consider the ring homomorphism

$$\psi_{\mathcal{T}} \colon \mathbb{R}[p_{\mathsf{x}} \colon \mathsf{x} \in \mathcal{R}] \to \mathbb{R}[\Theta_{\mathcal{T}}], \quad p_{\mathsf{x}} \mapsto \prod_{e \in E(r \to \mathsf{x})} \theta(e).$$

A CStree model is the vanishing set of the ideal $\ker(\psi_T)$ inside $\Delta_{|\mathcal{R}|-1}$. When the kernel is generated by binomials, the model is *toric*.

Interpolating polynomial

For any vertex $v = x_1 \cdots x_{k-1}$ in a CStree we define the *interpolating polynomial* in $\mathbb{R}[\theta(e): e \in E]$:

$$t(v) := \sum_{\mathsf{z} \in \mathcal{R}_{[
ho] \setminus [k-1]}} \left(\prod_{e \in E(v
ightarrow v\mathsf{z})} heta(e)
ight).$$

$$t(v_3) = \theta_5 + \theta_6$$

 $t(v_4) = \theta_5 + \theta_6$
 $t(v_1) = \theta_3(\theta_5 + \theta_6) + \theta_4(\theta_5 + \theta_6)$

Duarte and Solus showed that any directed acyclic graph (DAG) model is also a CStree model. Thus, to any DAG G, we may associate a CStree \mathcal{T}_G .

Theorem (Duarte, Solus)

The DAG G is perfect if and only if \mathcal{T}_G is balanced.

Balanced: for any v, w in the same stage and for every pair of children v_i, v_i and w_i, w_i with $\theta(v \to v_i) = \theta(w \to w_i) \& \theta(v \to v_i) = \theta(w \to w_i)$, we have $|t(v_i)t(w_i) = t(w_i)t(v_i)|$.

Perfect: parents of every vertex form a clique.

$$t(v_3)t(v_6) = t(v_4)t(v_5) \quad X_1 \to X_2 \to X_3$$

$$(\theta_5 + \theta_6)(\theta_7 + \theta_8) = (\theta_7 + \theta_8)(\theta_5 + \theta_6) \quad X_2 \leftarrow X_1 \to X_3$$

$$\implies \text{balanced!} \quad \text{non-perfect:}$$

 $X_1 \rightarrow X_2 \leftarrow X_2$

Duarte and Solus showed that any directed acyclic graph (DAG) model is also a CStree model. Thus, to any DAG G, we may associate a CStree \mathcal{T}_G .

Theorem (Duarte, Solus)

The DAG G is perfect if and only if \mathcal{T}_G is balanced.

Balanced: for any v, w in the same stage and for every pair of children v_i, v_j and w_i, w_j with $\theta(v \to v_i) = \theta(w \to w_i) \& \theta(v \to v_j) = \theta(w \to w_j)$, we have $t(v_i)t(w_j) = t(w_i)t(v_j)$.

Perfect: parents of every vertex form a clique.

Theorem (Duarte, Görgen)

A staged tree $(\mathcal{T}, \Theta_{\mathcal{T}})$ is balanced if and only if $\mathcal{M}_{(\mathcal{T}, \Theta)}$ is toric.

Not every CStree represents a DAG. However, to any CStree we may associate a **collection** of DAGs [Duarte and Solus]. Let $\mathcal T$ be a CStree.

• For any stage $S \subset L_{k-1}$, distributions in $\mathcal{M}_{\mathcal{T},\Theta}$ entail CSI statements

$$X_k \perp \!\!\! \perp X_{[k-1]\setminus C}|X_C = \mathsf{x}_C$$

where C is the set of all indices ℓ such that all elements in S have the same outcome for X_{ℓ} . Here C is a (stage-defining) *context*.

- \bullet Let $\mathcal{J}(\mathcal{T})$ be all the CSI statements implied by these statements.
- By the absorption axiom, there exists a collection of contexts $\mathcal{C}_{\mathcal{T}} = \{X_C = \mathsf{x}_C\}$ such that for any $X_A \perp \!\!\!\perp X_B | X_S, X_C = \mathsf{x}_C \in \mathcal{J}(\mathcal{T})$ there is no $\mathcal{T} \subseteq C$ such that $X_A \perp \!\!\!\perp X_B | X_{S \cup \mathcal{T}}, X_{C \setminus \mathcal{T}} = \mathsf{x}_{C \setminus \mathcal{T}} \in \mathcal{J}(\mathcal{T})$. These are the *minimal contexts* of \mathcal{T} .
- To each such $X_C = \mathsf{x}_C \in \mathcal{C}_T$, we can associate a *minimal context DAG G* $_{X_C = \mathsf{x}_C}$ via the I-MAP.

Main question: can we relate the *balanced* property of CStrees to the *perfect* property of the associated minimal context DAGs?

Initial conjecture: A CStree is balanced if and only if all of its minimal context DAGs are perfect.

Main question: can we relate the *balanced* property of CStrees to the *perfect* property of the associated minimal context DAGs?

Initial conjecture: A CStree is balanced if and only if all of its minimal context DAGs are perfect. **FALSE!**

Proposition (A., Duarte, Vill)

If $\mathcal T$ is a CStree with only perfect minimal context DAGs, it is balanced.

Let p be the total number of random variables in T.

Theorem (A., Duarte, Vill)

A CStree with p=3 is balanced if and only if all of its minimal context DAGs are perfect.

For $p \ge 4$, there are balanced CStrees with non-perfect minimal context DAGs.

Counterexample

The minimal contexts of \mathcal{T} are $\{\varnothing, X_1=0, X_1=1\}$.

 G_{\varnothing} is not perfect!!

Balanced vs. perfect: saturated statements

We can still describe a balanced CStree by a finite collection of perfect DAGs using ALGEBRA.

We say the CSI statement $X_A \perp X_B | X_S, X_C = x_C$ is *saturated* if $A \cup B \cup C \cup S = [p]$. Let $Sat(\mathcal{T})$ be the set of all saturated CSI statements in $\mathcal{J}(\mathcal{T})$.

Theorem (A., Duarte, Vill)

If $\mathcal T$ is a balanced CStree, then $\ker(\psi_{\mathcal T})$ is generated by the binomials associated to all saturated CSI statements in $\mathcal J(\mathcal T)$, i.e.

$$\mathsf{ker}(\psi_{\mathcal{T}}) = \mathit{I}_{\mathsf{Sat}(\mathcal{T})}$$
 .

Proof uses inductive construction and toric fiber products!

Balanced vs. perfect: moralization

A moralization of a DAG G is another DAG G^m obtained from G by "marrying" any two "unmarried" parents of each vertex.

To any DAG G, we may associated an ideal generated by polynomials that entail all d-separation statements that hold in G. Let Sat(G) denote the set of all saturated d-separation (CSI) statements implied by G.

Proposition (Sullivant)

A saturated CSI statement is implied by G if and only it is implied by G^m .

Balanced vs. perfect: moralization

Theorem (A., Duarte, Vill)

A CStree \mathcal{T} is balanced if and only if

$$\ker(\psi_{\mathcal{T}}) = \sum_{X_C = \mathsf{x}_C \in \mathcal{C}_{\mathcal{T}}} I_{\mathit{Sat}(G^m_{X_C = \mathsf{x}_C})}.$$

In particular, every balanced CStree can **algebraically** be described by a finite collection of perfect DAGs.

Thanks!