Formal

Chandler

May 2025

1 Introduction

[12pt]article amsmath, amssymb geometry setspace graphicx margin=1in The Complete Theory of Everything

Unified Horizon Framework Based on Recursive Entropy Geometry Chandler Ayotte May 2025

Abstract

This work presents a complete Theory of Everything in which all physical phenomena—including gravity, quantum fields, time, mass, entropy, dark energy, and consciousness—emerge from the flow of entropy across closed 2D surfaces embedded in a higher-dimensional manifold. By eliminating undefined singularities and instead modeling the universe as a recursive structure of memory-encoding horizons, this framework resolves the major incompatibilities between general relativity and quantum mechanics. Time is treated as a derived phenomenon emerging from surface tension in gravitational potential. A new identity field Ψ_{∞} is defined as the recursive limit of entropy-potential coupling. The model unifies all fundamental interactions, predicts dark energy as compounded horizon tension, and offers a path toward resolving the origin of consciousness.

Contents

1	Int	roduction	1
2	Postulates and Definitions		
	2.1	Postulate I: Surface Entropy Geometry	4
	2.2	Postulate II: Time from Gravitational Potential	;
	2.3	Postulate III: Recursive Identity Field Ψ_{∞}	
	2.4	Postulate IV: Horizon as Memory and Radiation	
	2.5	Postulate V: Noether Conservation in Entropy Fields	

3	Mathematical Derivations					
	3.1	2.1 Induced Metric and Surface Area	3			
	3.2	2.2 Gravitational Potential from Entropy Gradient	3			
	3.3	2.3 Time from Gravitational Potential	3			
	3.4	2.4 Variation of the Entropy Lagrangian	3			
	3.5	2.5 Identity Field Definition	4			
	3.6	2.6 Noether Current	4			
4	Grand Unification Extensions					
	4.1	3.1 Gauge Field Embedding	4			
	4.2	3.2 Suggested Symmetry Groups	4			
	4.3	3.3 Entropy-Gauge Lagrangian	4			
	4.4	3.4 Symmetry Breaking	4			
	4.5	3.5 Matter Coupling	4			
5	Predictions and Testable Outcomes 4					
	5.1	4.1 Dark Energy	4			
	5.2	4.2 Time Asymmetry	4			
	5.3	4.3 Consciousness	5			
	5.4	4.4 Quantum Anomalies	5			
	5.5	4.5 Gravitational Delay	5			
6	Phi	losophical Closure	5			
	6.1	6.1 Terminal Identity Theorem	5			
	6.2	6.2 Completion of $\overrightarrow{GR} + \overrightarrow{QM} \dots \dots \dots \dots \dots$	5			
	6.3	6.3 Identity as Limit of Action	5			
	6.4	6.4 The Ayotte Equation	5			
	6.5	A.1 Surface Variation	5			
	6.6	A.2 Entropy Wave Equation	5			
	6.7	A.3 Recursive Potential Fixed Point	5			
	6.8	A.4 Convergence Proof	6			

2 Postulates and Definitions

2.1 Postulate I: Surface Entropy Geometry

Let Σ be a smooth, closed, orientable 2D surface embedded in a 4D Lorentzian manifold M, with metric $g_{\mu\nu}$. Define entropy over Σ as:

$$S = \frac{k_B c^3}{4\hbar G} \int_{\Sigma} \sqrt{\gamma} \, d^2 \sigma \tag{1}$$

2.2 Postulate II: Time from Gravitational Potential

Proper time τ is derived from an entropy-coupled gravitational potential Φ :

$$d\tau = dt\sqrt{1 + \frac{2\Phi}{c^2}}, \quad where \quad \Phi = \nabla S \cdot \nabla \Phi$$
 (2)

2.3 Postulate III: Recursive Identity Field Ψ_{∞}

$$\Psi_{\infty}(x) = R_0(x) + \sum_{n=1}^{\infty} \alpha_n \left(\nabla S_n \cdot \nabla \Phi_n \right), \quad \alpha_n \sim \frac{1}{n^p}, \ p > 1$$
 (3)

2.4 Postulate IV: Horizon as Memory and Radiation

$$\langle N_{\omega} \rangle = \frac{1}{e^{\hbar \omega / k_B T_H} - 1}, \quad T_H = \frac{\hbar c^3}{8\pi G M k_B}$$
 (4)

2.5 Postulate V: Noether Conservation in Entropy Fields

$$\mathcal{L}_S = \frac{1}{2} g^{\mu\nu} \partial_{\mu} S \, \partial_{\nu} S - V(S) \tag{5}$$

- 3 Mathematical Derivations
- 3.1 2.1 Induced Metric and Surface Area

$$\gamma_{ab} = g_{\mu\nu} \frac{\partial x^{\mu}}{\partial \sigma^{a}} \frac{\partial x^{\nu}}{\partial \sigma^{b}} \tag{6}$$

$$A = \int_{\Sigma} \sqrt{\det(\gamma_{ab})} \, d^2 \sigma \tag{7}$$

$$S = \alpha A, \quad \alpha = \frac{k_B c^3}{4\hbar G} \tag{8}$$

3.2 2.2 Gravitational Potential from Entropy Gradient

$$\Phi_{n+1}(x) = \nabla^{\mu} S_n(x) \cdot \nabla_{\mu} \Phi_n(x) \tag{9}$$

3.3 2.3 Time from Gravitational Potential

$$d\tau = dt\sqrt{1 + \frac{2\Phi}{c^2}}\tag{10}$$

3.4 2.4 Variation of the Entropy Lagrangian

$$S + \frac{dV}{dS} = 0 \tag{11}$$

3.5 2.5 Identity Field Definition

$$\Psi_{\infty}(x) = \lim_{n \to \infty} \left[R_0(x) + \sum_{k=1}^n \alpha_k \left(\nabla^{\mu} S_k \cdot \nabla_{\mu} \Phi_k \right) \right]$$
 (12)

3.6 2.6 Noether Current

$$J^{\mu} = g^{\mu\nu} \partial_{\nu} S \cdot \xi^{\lambda} \partial_{\lambda} S \tag{13}$$

$$\nabla_{\mu}J^{\mu} = 0 \tag{14}$$

4 Grand Unification Extensions

4.1 3.1 Gauge Field Embedding

$$F^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + f^{abc} A^b_\mu A^c_\nu \tag{15}$$

4.2 3.2 Suggested Symmetry Groups

 $SU(5), SO(10), E_6$

4.3 3.3 Entropy-Gauge Lagrangian

$$\mathcal{L}_{SG} = \frac{1}{2} g^{\mu\nu} D_{\mu} S D_{\nu} S - V(S) - \frac{1}{4} F^{a}_{\mu\nu} F^{a\mu\nu}$$
 (16)

4.4 3.4 Symmetry Breaking

$$G \to H, \quad \mathcal{L}_{mass} = \frac{1}{2} g^2 S_0^2 A_\mu^a A^{a\mu}$$
 (17)

4.5 3.5 Matter Coupling

$$\mathcal{L}_{\psi} = i\bar{\psi}\gamma^{\mu}D_{\mu}\psi - y\bar{\psi}S\psi \tag{18}$$

5 Predictions and Testable Outcomes

5.1 4.1 Dark Energy

$$\Lambda \propto \sum_{i} \left(\nabla^{\mu} S_{i} \cdot \nabla_{\mu} \Phi_{i} \right) \tag{19}$$

5.2 4.2 Time Asymmetry

Entropy recursion defines the arrow of time.

5.3 4.3 Consciousness

$$\Psi_{\infty}(x) = \lim_{n \to \infty} R^n(x), \quad R(x) = \nabla^{\mu} S \cdot \nabla_{\mu} \Phi$$
 (20)

5.4 4.4 Quantum Anomalies

Boundary encodings affect oscillations.

5.5 4.5 Gravitational Delay

$$\Delta t \approx \int \left(1 + \frac{2\nabla^{\mu} S \cdot \nabla_{\mu} \Phi}{c^2} \right) d\ell \tag{21}$$

6 Philosophical Closure

6.1 6.1 Terminal Identity Theorem

$$\Psi_{\infty}(x) = \lim_{n \to \infty} R^n(x) \tag{22}$$

6.2 6.2 Completion of GR + QM

Spacetime and quantum fields are projections of recursive entropy logic.

6.3 Identity as Limit of Action

$$\mathcal{A}_{\infty} = \lim_{n \to \infty} \int_{\Sigma_n} \mathcal{L}_S \, d^4 x \tag{23}$$

6.4 6.4 The Ayotte Equation

$$\lim_{n \to \infty} R^n(x) = \Psi_{\infty}(x) \tag{24}$$

Appendix A: Full Mathematical Derivations

6.5 A.1 Surface Variation

$$\delta S = \alpha \int_{\Sigma} \frac{1}{2} \sqrt{\gamma} \, \gamma^{ab} \delta \gamma_{ab} \, d^2 \sigma \tag{25}$$

6.6 A.2 Entropy Wave Equation

$$S + \frac{dV}{dS} = 0 (26)$$

6.7 A.3 Recursive Potential Fixed Point

$$\Phi(x) = \nabla^{\mu} S(x) \cdot \nabla_{\mu} \Phi(x) \tag{27}$$

6.8 A.4 Convergence Proof

$$\sum_{n=1}^{\infty} \alpha_n (\nabla S_n \cdot \nabla \Phi_n) converges for \alpha_n \sim \frac{1}{n^p}, \ p > 1$$
 (28)

References

References

- [1] J. D. Bekenstein, Black holes and entropy, Phys. Rev. D, 7(8):2333, 1973.
- [2] S. W. Hawking, Particle creation by black holes, Comm. Math. Phys. 43, 1975.
- [3] L. Susskind, The world as a hologram, J. Math. Phys. 36, 1995.
- [4] E. Noether, Invariante Variationsprobleme, 1918.
- [5] C. Ayotte, The Complete Theory of Everything, Zenodo (2025), https://doi.org/10.5281/zenodo.15242691
- [6] C. Ayotte, Resolution of All Unresolved Physical Phenomena, Zenodo (2025),

https://doi.org/10.5281/zenodo.15243096