Eligibility Traces for Options

Ayush Jain

April 20th, 2017

Motivation

- Problem of Temporal Abstraction
 - Connect high and low level behavior with minimum changes to RL framework.
 - How ??? Options
- Intra-Option Learning
 - Take advantage of each fragment of experience
 - Incremental, step-by-step updates

- Eligibility Traces
 - Interpolation between TD(0) and MC
 - Implement λ-Return, control biasvariance tradeoff
- Off-Policy Evaluation
 - Enable agent to use experience to learn about many different policies, each belonging to a different macro-action

Options framework

A Markov option o : (I \in S, π :S x A \rightarrow [0,1], β :S \rightarrow [0,1])

Hierarchical policy over options – μ : S x A \rightarrow [0,1]

- An initializable option is selected with probability $\mu(o|s)$
- Option's internal policy is followed to select actions
- Option terminates with $\beta(s)$, new option is selected again with μ

Intra-Option Learning

- Take advantage of each fragment of experience
- SMDP learning: option executed to termination keeping track of rewards, update applied only to the option taken
- Intra-Option learning: after each primitive action, update every option that could have taken that action, based on reward observed and bootstrapping from next state's value

Off-Policy Evaluation

Per-Decision Importance Sampling Approach

- Weigh updates with a factor correcting trajectory probability; or simply product of importance sampling ratios for 0 – t
- Behavior policy b needs to be known, high variance if π and b are too different.

Tree Backup

- Combine value estimates for actions with their probabilities under the target policy
- New target is formed using old estimates of values for actions not taken and new estimate of value for the action taken, iterated over many steps
- Behavior b can be unknown, cuts traces quickly

Recognizers

- Function c: S x A → [0,1] indicates to what extend an action is recognized in a state. Recognizer with a behavior policy defines target policy.
- Π: $c(s,a)xb(s,a)/\mu$, where recognition probability $\mu = \Sigma c(s,a)xb(s,a)$

Traces for Options

On blackboard

Results

