Proof of the Theorems of Relationships between Propositions

The theoretical foundation in Denfet offer several readily available theorems, which can greatly simplify the analysis. Firstly, it is easy to see that the strong refinement relationships are transitive:

Theorem 1. If there exist a $p_i
ightharpoonup p_j$ (or $p_i
ightharpoonup p_j$) and a $p_j
ightharpoonup p_k$ (or $p_j
ightharpoonup p_k$), then we have $p_i
ightharpoonup p_k$ (or $p_i
ightharpoonup p_k$).

Proof. The proof is straightforward: $p_i \Rightarrow p_j$ (or $p_i \Leftarrow p_j$) and $p_j \Rightarrow p_k$ (or $p_j \Leftarrow p_k$) mean that $\forall y_a \leq y_b : y_a \in p_i \& y_b \in p_j$ while $\int_{\alpha}^{\beta} g_i(y) dy < \int_{\alpha}^{\beta} g_j(y) dy$; at the same time, $\forall y_b \leq y_c : y_b \in p_j \& y_c \in p_k$ while $\int_{\alpha}^{\beta} g_j(y) dy < \int_{\alpha}^{\beta} g_k(y) dy$. Therefore, we have $\forall y_a \leq y_c : y_a \in p_i \& y_c \in p_k$ while $\int_{\alpha}^{\beta} g_i(y) dy < \int_{\alpha}^{\beta} g_k(y) dy$, i.e., $p_i \Rightarrow p_k$ (or $p_i \Leftarrow p_k$).

A similar theorem exists for multi-dimensional refinement:

Theorem 2. If there exist a $\overline{p}_i
ightharpoonup \overline{p}_j$ (or $\overline{p}_i
ightharpoonup \overline{p}_j$) and a $\overline{p}_j
ightharpoonup \overline{p}_k$ (or $\overline{p}_j
ightharpoonup \overline{p}_k$), then we have $\overline{p}_i
ightharpoonup \overline{p}_k$ (or $\overline{p}_i
ightharpoonup \overline{p}_k$).

Proof. This can be proved as that of Theorem 1.

It is also clear that there can be some straightforward correlations between single- and multidimensional refinement. Specifically, for a given set of measured configurations y, we have:

Theorem 3. Given \overline{p}_i , if we solely perform an arbitrary number of $p_{\alpha} \rightrightarrows p_{\beta}$ (or $p_{\alpha} \leftrightharpoons p_{\beta}$): $p_{\alpha} \in \overline{p}_i$ & $p_{\beta} \in \overline{p}_i$, then there will be $\overline{p}_i \rightrightarrows \overline{p}_i$ (or $\overline{p}_i \leftrightharpoons \overline{p}_i$).

Proof. This can be proved by contradiction. Suppose that under such a case it is possible to have $\overline{p}_i \to \overline{p}_j$ (or $\overline{p}_i \leftarrow \overline{p}_j$), it means that $\exists \overline{y}_a \in \mathcal{Y} : \nexists \overline{y}_b \in \mathcal{Y} : \overline{g}_j(\overline{y}_b) \prec \overline{g}_i(\overline{y}_a)$, that is, at least one point \overline{y}_k over \overline{p}_i is nondominated to other points over \overline{p}_j . Clearly, for this to be true, it requires at least one dimension of \overline{y}_k to have higher satisfaction on $p_\alpha \in \overline{p}_i$ than that on $p_\beta \in \overline{p}_j$, i.e., $p_\alpha \to p_\beta$, $p_\alpha \leftarrow p_\beta$, or $p_\alpha \rightleftharpoons p_\beta$ (or lower in the case of $\overline{p}_i \leftarrow \overline{p}_j$ which implies $p_\alpha \leftarrow p_\beta$, $p_\alpha \to p_\beta$, or $p_\alpha \rightleftharpoons p_\beta$). This, however, contradicts the fact that we solely perform an arbitrary number of $p_\alpha \rightleftharpoons p_\beta$ (or $p_\alpha \rightleftharpoons p_\beta$). The same proof procedure is applicable for proving the impossibility of $\overline{p}_i \equiv \overline{p}_j$.

Theorem 4. Given \overline{p}_i , if we perform an arbitrary number of mixed $p_{\alpha} \rightrightarrows p_{\beta}$ and $p_{\alpha} \leftrightharpoons p_{\beta} : p_{\alpha} \in \overline{p}_i$ & $p_{\beta} \in \overline{p}_j$, then there will never be $\overline{p}_i \rightrightarrows \overline{p}_j$ or $\overline{p}_i \leftrightharpoons \overline{p}_j$.

Proof. Again, we can prove this theorem by contradiction. Suppose that it is possible to have $\overline{p}_i \rightrightarrows \overline{p}_j$ (or $\overline{p}_i \leftrightharpoons \overline{p}_j$), it implies $\forall \overline{y}_a \in \mathcal{Y} : \exists \overline{y}_b \in \mathcal{Y} : \overline{g}_j(\overline{y}_b) \prec \overline{g}_i(\overline{y}_a)$ (or $\overline{g}_j(\overline{y}_b) \succ \overline{g}_i(\overline{y}_a)$ for $\overline{p}_i \leftrightharpoons \overline{p}_j$), that is, all points over \overline{p}_i needs to be dominated by (or dominates for $\overline{p}_i \leftrightharpoons \overline{p}_j$) at least one point \overline{y}_k on \overline{p}_j . Therefore, it requires all dimensions of \overline{y}_k to have higher (or at least equal) satisfaction on $p_\beta \in \overline{p}_j$ than that on $p_\alpha \in \overline{p}_i$, i.e., there is only sole $p_\alpha \rightrightarrows p_\beta$ (or lower in the case of $\overline{p}_i \leftrightharpoons \overline{p}_j$ which implies sole $p_\alpha \leftrightharpoons p_\beta$). This clearly contradicts the fact that we perform an arbitrary number of mixed $p_\alpha \rightrightarrows p_\beta$ and $p_\alpha \leftrightharpoons p_\beta$.

The other actions of refinements, e.g., solely performing weak refinement on single propositions, could lead to any possible results, i.e., weak, strong, or equally-satisfiable refinement.