Fast Reroute in P4: Keep Calm and Enjoy Programmability

Marco Chiesa
KTH Royal Institute of Technology

Joint project with:

Roshan Sedar

Michael Borokhovich

Gianni Antichi

Stefan Schmid

Fast Reroute (FRR)

What is FRR?

- forwarding rules conditional on port status
- e.g., IP Loop-Free Alternates

Fast Reroute (FRR)

What is FRR?

- forwarding rules conditional on port status
- e.g., IP Loop-Free Alternates

Pros:

- reduce network downtime (≤50ms)
 - no need to invoke control-plane

Cons:

- increase forwarding space occupancy
 - proactively stores backup forwarding rules

How do we implement FRR in P4?

FRR entails solving two orthogonal problems:

- computing **network-wide** conditional rules
- supporting conditional forwarding in each switch

match/actions

controller

tcp-port = 179 >> FRR₁ tcp-port = 22 >> FRR₂

FRR actions

FRR₁ >> fwd 1 2 3 FRR₂ >> fwd 2 3 1

P4 switch

Supporting coton dition and fear ward Rig im 1247.4 switch

FRR entails solving two orthogonal problems:

- 1. computing **network-wide** conditional rules
- 2. supporting conditional forwarding in each switch stput P4 switch

1st approach: recirculation

Input

 $FRR_1 = 1234$

FRR₂ = 2 3 4 1

FRR₃ = 3 4 1 2

 $FRR_4 = 4123$

match	action			
out	fwd	write & recirculate C		
1	1	out := 2		
2	X	out := 3		
3	3	out := 4		
4	4	out := 1		

port 2 fails port 3 fails

a set of circular FRR actions

throughput reduction

1st requirement for FRR primitive

high throughput

match	action		match	action		match	action		match	action
FRR = 1	fwd(1)	_	FRR = 1	fwd(2)		FRR = 1	fwd(3)	_	FRR = 1	fwd(4)
		//			/			//		

match	action		match	action		match	action		match	action
FRR = 1	` '	_	FRR = 1	fwd(2)	_	FRR = 1	fwd(3)	_	FRR = 1	fwd(4)
FRR = 2	fwd(2)		FRR = 2	fwd(3)		FRR = 2	fwd(4)		FRR = 2	fwd(1)
		/			//			/		

match	action
FRR = 1	fwd(1)
FRR = 2	fwd(2)
FRR = 3	fwd(3)

	match	action	
	FRR = 1	fwd(2)	r
•	FRR = 2	fwd(3)	
	FRR = 3	fwd(4)	C

	matcn	action
	FRR = 1	fwd(3)
>	FRR = 2	fwd(4)
	FRR = 3	fwd(1)

match	action
FRR = 1	fwd(4)
FRR = 2	fwd(1)
FRR = 3	fwd(2)

match	action
FRR = 1	fwd(1)
FRR = 2	fwd(2)
FRR = 3	fwd(3)
FRR = 4	fwd(4)

	match	action
	FRR = 1	fwd(2)
>	FRR = 2	fwd(3)
	FRR = 3	fwd(4)
	FRR = 4	fwd(1)

	FRR = 4	fwd(2)
	FRR = 3	fwd(1)
>	FRR = 2	fwd(4)
	FRR = 1	fwd(3)
	matcn	action

match	action
FRR = 1	fwd(4)
FRR = 2	fwd(1)
FRR = 3	fwd(2)
FRR = 4	fwd(3)

Input

FRR₁ = 1 2 3 4 FRR₂ = 2 3 4 1 FRR₃ = 3 4 1 2 FRR₄ = 4 1 2 3

action

match	action
FRR = 1	fwd(1)
FRR = 2	fv.(2)
FRR = 3	fw.(3)
FRR = 4	fwd(4)

match

	match	action
	FRR = 1	f y ((3)
•	FRR = 2	fwd(4)
	FRR = 3	fwd(1)
	FRR = 4	fy (2)

match	action
FRR = 1	fwd(4)
FRR = 2	fwd(1)
FRR = 3	f).(1(2)
FRR = 4	f (3)

port 2 fails port 3 fails

increased latency waste of resources at each stage

2nd requirements for FRR primitive

high throughput

low forwarding latency

Input

FRR₁ = 1 2 3 4 FRR₂ = 2 3 4 1 FRR₃ = 3 4 1 2 FRR₄ = 4 1 2 3

match		action
FRR	port status	fwd
FRR = 2	***	2
FRR = 2	* * 1 *	3
FRR = 2	* * * 1	4
FRR = 2	1 * * *	1

port status
1011

P4 register

Input

FRR₁ = 1 2 3 4 FRR₂ = 2 3 4 1 FRR₃ = 3 4 1 2 FRR₄ = 4 1 2 3

match		action
FRR	port status	fwd
FRR = 2	***	2
FRR = 2	* * * *	3
FRR = 2	* * * 1	4
FRR = 2	1 * * *	1

port status
1001

P4 register

Input

packet metadata	port status
O FRR = 4	1001

match		action
FRR	port status	fwd
FRR = 1	1 * * *	1
FRR = 1	* 1 * *	2
FRR = 1	* * 1 *	3
FRR = 1	* * * 1	4
FRR = 4	* * * 1	4
FRR = 4	1 * * *	1
FRR = 4	* 1 * *	2
FRR = 4	* * 1 *	3

port status

1001

P4 register

Final requirements for FRR primitive

high throughput

low forwarding latency

efficient reroute

"port status" P4 register

How much state for "naïve TCAM"?

Input:

- switch with *k* ports
- 10 circular set of FRR actions

Naïve TCAM FRR:

• k² number of TCAM entries

For *k*= 24

5.760 TCAM entries!

For
$$k = 48$$

- 23.040 TCAM entries!
- 10 pods in a datacenter with F10 FRR [nsdi-13]
- 10 destinations with the "k arcdisjoint" FRR mechanism [ton-16]

Input

FRR₁ = 1 2 3 4 FRR₂ = 2 3 4 1 FRR₃ = 3 4 1 2 FRR₄ = 4 1 2 3

packet metadata	port status
FRR = 2	1111

frr_ports

 $b_1b_2b_3b_4b_5b_6b_7$

Encoding FRR input:

- add a packet metadata field frr_ports
- map bits to the switch ports

Input

FRR₁ = 1 2 3 4 FRR₂ = 2 3 4 1 FRR₃ = 3 4 1 2 FRR₄ = 4 1 2 3

packet metadata	port status
FRR = 2	1111

Encoding FRR input:

- add a packet metadata field frr_ports
- map bits to the switch ports
- set bit to 1 to include a port
- set bit to 0 to skip a port

Input

packet metadata	port status
FRR = 2	1111

match	action write frr_ports
FRR = 1	1111000
FRR = 2	0111100
FRR = 3	0011110
FRR = 4	0001111

Encoding FRR input:

- add a packet metadata field frr_ports
- map bits to the switch ports
- set bit to 1 to include a port
- set bit to 0 to skip a port

bit-to-port mapping is: 1234123

Input

packet metadata	port status
FRR = 2	1111

match	action write
	frr_ports
FRR = 1	1111000
FRR = 2	0111100
FRR = 3	0011110
FRR = 4	0001111

match		action
frr_ports		fwd
1 * * * * * *		1

Input

pac	ket metadata	port status
0	FRR = 2	1111

match	action write frr_ports
FRR = 1	1111000
=	
FRR = 2	0111100
FRR = 3	0011110
FRR = 4	0001111

match		action
frr_ports	port status	fwd
1*****	1 * * *	1
*1*****	* 1 * *	2
1**	* * 1 *	3
* * * 1 * * *	* * * 1	4
* * * * 1 * *	1 * * *	1
* * * * * 1 *	* 1 * *	2
* * * * * * 1	* * 1 *	3

Input

pac	ket metadata	port status	
0	FRR = 2	1011	port 2 fails

match	action write
matem	frr_ports
FRR = 1	1111000
FRR = 2	0111100
FRR = 3	0011110
FRR = 4	0001111

match		action
frr_ports	port status	fwd
1*****	1 * * *	1
*1*****	* 1 * *	2
1**	* * 1 *	3
* * * 1 * * *	* * * 1	4
* * * * 1 * *	1 * * *	1
* * * * * 1 *	* 1 * *	2
* * * * * * 1	* * 1 *	3

Input

FRR₁ = 1 2 3 4 FRR₂ = 2 3 4 1 FRR₃ = 3 4 1 2 FRR₄ = 4 1 2 3

pac	ket metadata	port status
0	FRR = 2	1001

ports 2 and 3 fail

match	action write frr_ports
FRR = 1	1111000
FRR = 2	0111100
FRR = 3	0011110
FRR = 4	0001111

match		action
frr_ports	port status	fwd
1*****	1 * * *	1
*1*****	* 1 * *	2
1**	* * 1 *	3
* * * 1 * * *	* * * 1	4
* * * * 1 * *	1 * * *	1
* * * * * 1 *	* 1 * *	2
* * * * * * 1	* * 1 *	3

Input

packet metadata		port status
0	FRR = 4	1111

match	action write frr_ports
FRR = 1	1111000
FRR = 2	0111100
FRR = 3	0011110
FRR = 4	0001111

match		action
frr_ports	port status	fwd
1*****	1 * * *	1
*1****	* 1 * *	2
* * 1 * * * *	* * 1 *	3
* * * 1 * * *	* * * 1	4
* * * * 1 * *	1 * * *	1
* * * * * 1 *	* 1 * *	2
* * * * * * 1	* * 1 *	3

How much space does this encoding save?

Input:

- switch with *k* ports
- 10 circular set of FRR actions

Without encoding:

• k² number of TCAM entries

With encoding:

• 2k-1 number of TCAM entries

For k = 24

- 92% less TCAM entries
- 470 instead of 5.760

For
$$k = 48$$

- 96% less TCAM entries
- 950 instead of 23.040

Implementing existing FRR mechanisms

Why circular FRR sequences?

 Provide resiliency to multiple link failures with small overhead

F10 FRR [NSDI'13]:

 iterates through upward and downward datacenter links

Depth-First-Search FRR [HotSDN'13]:

iterates through children nodes

K-arc disjoint FRR [Infocom'16]:

iterates through k spanning trees

Implementing existing FRR mechanisms

Why circular FRR sequences?

 Provide resiliency to multiple link failures with small overhead

Depth-First-Search FRR [HotSDN'13]:

- iterates through children nodes
- caution: skip parent node

OpenFlow vs P4 (k = 48):

- 56.448 vs 190 TCAM entries
- **99.7%** reduction

Preliminary Mininet evaluation:

Towards a P4 FRR primitive

high throughput

low forwarding latency

efficient reroute

Transform FRR input into a P4 program:

- based on a mix of naïve and encoding TCAM-based approaches
- many challenging optimization problems

Summary

Fast Reroute is a critical functionality in today's network

requires high throughput, low latency, fast reactivity, small state overhead

P4 does not define an FRR built-in primitive

compilers must program the P4 pipeline

We propose a relatively simple TCAM-based FRR primitive

- based on bit-level mapping of ports
- no FRR-tailored hardware support
- future work:
 - optimize mapping computation
 - evaluation on real switches

R. Sedar et al.

"Supporting Emerging Applications With Low-Latency Failover in P4"

In ACM SIGCOMM workshop **NEAT 2018**

Thank you!