12. 10. 2017

Tvrzení: Pokud (G, E, D) splňuje perfect secrecy, pak platí $|\mathcal{K}| \geq |\mathcal{M}|$.

Důkaz: Nechť $|\mathcal{K}| < |\mathcal{M}|$. Nechť M je rovnoměrné pravděpodobnostní rozdělení na \mathcal{M} . Nechť $c \in \mathcal{C}$:

$$Pr[E_k(M) = c] > 0$$

 $\mathcal{M}(c) := \{ m \mid m = D_k(c) \text{ pro } k \in \mathcal{K} \}$

Platí $|\mathcal{M}(c)| \leq |\mathcal{K}| < |\mathcal{M}|$, tedy $\exists m' \in \mathcal{M} : m' \notin \mathcal{M}(c)$.

Závěrem dostáváme:
$$Pr[M=m' \mid \mathcal{C}=c] = 0 \neq Pr[M=m'] = 1/|\mathcal{M}|$$

Kde můžeme slevit v nárocích na bezpečnost? První možností je předpokládat, že Eve je stále výpočetně neomezená, což vede na statistical security.

Statistical security

Definice: Nechť X, Y jsou náhodné proměnné nad S. Řekneme, že X, Y jsou statistically ε -indistinguishable, pokud

$$\forall T \subseteq S : |Pr[X \in T] - Pr[Y \in T]| \le \varepsilon.$$

T je statistický test.

Definice: (G, E, D) splňuje statistical ε -indistinguishability, pokud $\forall m_0 \forall m_1 \in \mathcal{M}$ jsou náhodné proměnné $E_k(m_0)$ a $E_k(m_1)$ statistically ε -indistinguishable, tj.

$$|Pr[E_k(m_0) \in T] - Pr[E_k(m_1) \in T]| \le \varepsilon.$$

Adversary má pravděpodobnost $\leq \varepsilon$ nalézt m z c.

Podobně jako pro perfect secrecy platí $|\mathcal{K}| \geq (1 - \varepsilon)|\mathcal{M}|$.

Computational security

Jaká je výhoda kryptografie s důkazy? Z důkazů lze odvodit rozumný parametr, který nám dá délky klíčů, a napoví, s jakou pravděpodobností adversary prolomí protokol.

Asymptotická formalizace

- "security parameter", Alice a Bob zvolí $n \in \mathbb{N}$
- Efektivní adversary PPT (probabilistic polynomial time), pro každý security parametr má program běžící čas poly(n) (neuniformní)
- (G, E, D) v fixním polynomiálním čase
- $|\mathcal{M}|$ závisí na n: $\mathcal{M} = \bigcup_n \mathcal{M}_n$, kde např. $\mathcal{M}_n = \{0,1\}^n$

Definice: Funkce $\varepsilon : \mathbb{N} \to [0,1]$ je negligible (zanedbatelná), pokud:

$$\forall c \in \mathbb{N} \,\exists n_c \in \mathbb{N} \,\forall n > n_c : \varepsilon(n) < \frac{1}{n^c}$$

Příkladem negligible funkcí jsou 2^{-n} , $n^{-\log(n)}$, $2^{-\sqrt{n}}$.

Definice: (G, E, D) na prostoru zpráv $\mathcal{M} = \bigcup_n \mathcal{M}_n$, kde délka všech zpráv v \mathcal{M}_n je stejná, splňuje indistinguishability ciphertextů, pokud \forall PPT $A \exists$ negligible ε takové, že

$$\forall m_0, m_1 \in \mathcal{M}_n : |Pr[A(E_k(m_0)) = 1] - Pr[A(E_k(m_1)) = 1]| \le \varepsilon(n)$$

Pravděpodobnost je přes $k \leftarrow G(1^n)$ a náhodné mince E a A. Ciphertext má vždy délku $\geq n$.

Definice, kterou nebudeme používat: (ε, t) secure, pokud $\forall A$ běžící v čase t platí podmínka.

Asymptotická vs. konkrétní definice: t ve specifickém výpočetním modelu (2^{100} cyklů CPU) (G,E,D) v čase $\ll t,\, \varepsilon \leq 2^{-100}$

Cíl: (G, E, D), kde $|\mathcal{K}| \ll |\mathcal{M}$.

Příklad, který nefunguje:

Pravděpodobnostní OTP:

$$\mathcal{K} = \{0, 1\}^n \ \mathcal{M} = \{0, 1\}^{2n}$$

$$E_k(m) = i_1, \dots, i_{2n} \leftarrow \{1, \dots, n\}$$

$$c = (i_1, \dots, i_{2n}, m \oplus (k_{i_1}, k_{i_2}, \dots, k_{i_{2n}})$$

$$G(1^n): k \leftarrow \{0,1\}^n$$

Definice: (G, E, D) nad $\mathcal{M} = \bigcup_n \mathcal{M}_n$, kde délka všech zpráv v \mathcal{M}_n je stejná, splňuje guessing indistinguishability ciphertextů, pokud \forall PPT $A \exists$ negligible ε tak, že A zvítězí v následující hře s pravděpodobností nejvýše $\frac{1}{2} + \varepsilon(n)$.

- 1. A zvolí $m_0, m_1 \in \mathcal{M}_n$
- 2. $k \leftarrow G(1^n)$ a $b \leftarrow \{0, 1\}$
- 3. A dostane $E_k(m_b)$ a vrátí b'
- 4. A zvítězí, pokud b = b'

Tvrzení: (G, E, D) splňuje indistinguishability ciphertextů právě tehdy, když splňuje guessing indistinguishability ciphertextů.

Důkaz: "\(\infty\)" Mějme \mathcal{A}_i pro $m_0^*, m_1^* \in \mathcal{M}$, kde

$$|Pr[\mathcal{A}_i(E_k(m_0^*)) = 1] - Pr[\mathcal{A}_i(E_k(m_1^*)) = 1]| \ge \frac{1}{p(n)}$$

pro $p \in poly(n)$.

Zkonstruujeme \mathcal{A}_{gi} : 1) zvol m_0^* , m_1^* 3) pro c odpověz $\mathcal{A}_i(c)$

 \mathcal{A}_{gi} zvítězí s pravděpodobností $\geq \frac{1}{2} + \frac{1}{2p(n)}$.

"⇒"Obdobně.

Definice: (G, E, D) nad $\mathcal{M} = \bigcup_n \mathcal{M}_n$, kde délka všech zpráv v \mathcal{M}_n je stejná, splňuje semantic security, pokud \forall PPT $A \exists$ PPT A' takový, že pro všechna rozdělení M nad \mathcal{M} a každou funkci $f : \mathcal{M} \to \{0,1\}^*$ platí:

$$Pr[A(E_k(M)) = f(M)] \le Pr[A'(1^n) = f(M)] + \operatorname{negl}(n)$$

Autory definice jsou Goldwasser a Micali. f je libovolná funkce jako například f(m) = m nebo f(m) = 50. bit m.

Tvrzení: (Bez důkazu) (G, E, D) splňuje semantic security právě tehdy, když splňuje indistinguishability ciphertextů.