Chap 6: Arcs Paramétrés

 ${\mathcal G}$ plan affine euclidien muni d'un RON (O,\vec{i},\vec{j})

I. Fonctions à valeurs vectorielles

$$f \begin{cases} F \to \mathbb{R}^2 \\ t \mapsto f(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} \qquad \lim_{t \to a} f(t) = l \Leftrightarrow \lim_{t \to a} ||f(t) - l|| = 0 \Leftrightarrow \begin{cases} \lim_{t \to a} x(t) = l_1 \\ \lim_{t \to a} y(t) = l_2 \end{cases} \text{ où } l \begin{pmatrix} l_1 \\ l_2 \end{pmatrix}$$

f est continue en a si $\lim_{t\to a} f(t) = f(a) \Leftrightarrow x$ et y sont continues en a

 $f \text{ est d\'erivable en } a \text{ si } g \begin{cases} I \setminus \{a\} & \to \mathbb{R}^2 \\ t & \mapsto \frac{f(t) - f(a)}{t - a} \end{cases} \text{ admet une limite } l \text{ en } a. \text{ Dans ce cas, } f'(a) = l$

$$\varphi \begin{cases} I \to \mathbb{R}^2 \\ t \mapsto \langle \overrightarrow{f}(t) | \overrightarrow{g}(t) \rangle \end{cases} \qquad \varphi'(t) = \langle \overrightarrow{f}'(t) | \overrightarrow{g}(t) \rangle + \langle \overrightarrow{f}(t) | \overrightarrow{g}'(t) \rangle \text{ (idem pour det)}$$

$$\Rightarrow \psi : t \mapsto \left\| \overrightarrow{f}(t) \right\|^2 \qquad \psi' = 2\overrightarrow{f} \cdot \overrightarrow{f} \qquad \Rightarrow \psi_0 = \sqrt{\psi} : t \mapsto \left\| \overrightarrow{f}(t) \right\| \qquad \psi_0' = \frac{\overrightarrow{f} \cdot \overrightarrow{f}}{\left\| \overrightarrow{f} \right\|}$$

II. Courbes paramétrées

Arc paramétré : donnée d'un couple (I,\overrightarrow{f}) avec I intervalle de \mathbb{R} et $\overrightarrow{f}:I\to\mathbb{R}^2$

$$\Rightarrow \text{Application } \gamma \begin{cases} I \to \mathcal{P} \\ t \mapsto M(t) \ tq \ \overline{OM(t)} = \overrightarrow{f}(t) \end{cases}$$

Support de l'arc paramétré : $\Gamma = \{M(t), t \in I\}$

(NE PAS CONFONDRE L'ARC ET SON SUPPORT)

Point $M(t_0)$ régulier si $\overrightarrow{f}'(t_0) \neq 0$ (singulier sinon)

Si régulier en $M(t_0)$: la courbe admet une tangente en $M(t_0)$ dirigée par $\overrightarrow{f}(t_0)$

Preuve: passer par $\vec{f}(t_0 + h) = \vec{f}(t_0) + h \cdot \vec{f}(t_0) + h \vec{\varepsilon}(t)$ $\vec{\varepsilon}(t) \xrightarrow[t \to t_0]{} \vec{0}$, définir N(h) avec ça, sans ε

Interprétation cinématique : M(t) représente la position de M au temps t

Le support Γ est la trajectoire du point M

$$\vec{v}(t) = \vec{f}'(t) = \frac{dOM}{dt}(t)$$
 est le vecteur vitesse à l'instant t $(||\vec{f}'(t)||$ est la vitesse)

Si
$$\vec{f} \in \mathcal{C}^2(I, \mathbb{R}^2)$$
, \vec{f} " $(t) = \frac{d\vec{v}}{dt}(t) = \frac{d^2 \overrightarrow{OM}}{dt^2}(t) = \vec{a}(t)$ est l'accélération du point M à l'instant t

III. Etude d'un arc paramétré

1. Trouver et restreindre l'intervalle d'étude

Chercher une périodicité, une parité.

x et y impairs : symétrie centrale x pair, y impair : sym/(Ox) x et y pairs : M(t) = M(-t)

2. Etudier les variations

Points singuliers, limites, valeurs particulières

3. Branches infinies

a)
$$x(t) \xrightarrow[t \to a]{} \infty$$
 $y(t) \xrightarrow[t \to a]{} l$

$$y(t) \xrightarrow[t \to a]{} t$$

Asymptote horizontale

(Asymptote verticale si y et x sont intervertis)

b)
$$x(t) \to \infty$$
 $y(t) \to \infty$

$$y(t) \rightarrow \infty$$

Si
$$\frac{y(t)}{x(t)} \rightarrow \infty$$
: Branche parabolique de direction (Oy)

Si
$$\frac{y(t)}{x(t)} \rightarrow 0$$
: Branche parabolique de direction (Ox)

Si
$$\frac{y(t)}{x(t)} \rightarrow \alpha \in \mathbb{R}$$
:

• Si
$$\lim_{t \to a} (y(t) - \alpha x(t)) = \beta \in \mathbb{R}$$
 : asymptote : $\Delta : y = \alpha x + \beta$

• Si
$$\lim_{t\to a} (y(t) - \alpha x(t)) = \infty$$
: branche parabolique de direction $y = \alpha x$

Sinon (pas de limite), on ne peut rien dire

Sinon, on ne peut rien dire

Position par rapport à l'asymptote : signe de
$$x(t)-l$$
 ou $y(t)-\alpha x(t)-\beta$

4. Points multiples

Résoudre
$$\begin{cases} x(t_1) = x(t_2) \\ y(t_1) = y(t_2) \end{cases}$$

5. Points particuliers

On les places avec leur vecteur tangent $\overrightarrow{T} = \overrightarrow{f}'(t_{
m o})$

$$\begin{vmatrix} x - x(t_0) & x'(t_0) \\ y - y(t_0) & y'(t_0) \end{vmatrix} = 0 \Leftrightarrow y'(t_0)x - x'(t_0)y - x(t_0)y'(t_0) + y(t_0)x'(t_0) = 0$$
Tangente:

6. Points singuliers

On remonte à la première dérivée n-ième qui n'est pas nulle.

$$\overrightarrow{OM(t_0 + h)} = \overrightarrow{OM(t_0)} + \frac{h^n}{n!} \overrightarrow{f}^{(n)}(t_0) + h^n \overrightarrow{\varepsilon}(h)$$

(pour n pair, c'est un point de rebroussement)

7. On trace

IV. Coordonnées polaires

$$\varphi \begin{cases} \mathbb{R} \to \mathbb{R}^2 \\ \theta \mapsto \overrightarrow{u_{\theta}} = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} \qquad \qquad \psi \begin{cases} \mathbb{R} \to \mathbb{R} \\ \theta \mapsto \overrightarrow{v_{\theta}} = \begin{pmatrix} -\sin \theta \\ \cos \theta \end{pmatrix} \qquad \qquad \varphi' = \psi \qquad \qquad \overrightarrow{u'_{\theta(t)}} = \theta'(t) \overrightarrow{v_{\theta(t)}}$$

Pour un arc défini en coordonnées polaires par $\theta(t)$ et $\rho(t)$

$$\vec{u}(t) = \rho(t) \overrightarrow{u_{\theta(t)}}$$

$$\vec{v}(t) = \vec{u}'(t) = \rho'(t) \overrightarrow{u_{\theta(t)}} + \rho(t) \theta'(t) \overrightarrow{v_{\theta(t)}}$$

$$\vec{a}(t) = \vec{v}'(t) = (\rho''(t) - \rho(t)(\theta'(t))^2) \overrightarrow{u_{\theta(t)}} + (2\rho'(t)\theta'(t) + \rho(t)\theta''(t)) \overrightarrow{v_{\theta(t)}}$$

Avec les fonctions :
$$\vec{u} = \rho \cdot \overrightarrow{u_{\theta}}$$
 $\vec{v} = \vec{u}' = \rho' \cdot \overrightarrow{u_{\theta}} + \rho \cdot \theta' \cdot \overrightarrow{v_{\theta}}$ $\vec{a} = \vec{v}' = (\rho'' - \rho \cdot \theta'^2) \overrightarrow{u_{\theta}} + (2\rho' \cdot \theta' + \rho \cdot \theta'') \overrightarrow{v_{\theta}}$

Si on suppose $\theta(t) = t$

$$\vec{u}(\theta) = \rho(\theta) \vec{u_{\theta}}$$

$$\vec{v}(\theta) = \rho'(\theta)\vec{u_{\theta}} + \rho(\theta)\vec{v_{\theta}}$$

$$\vec{a}(\theta) = (\rho''(\theta) - \rho(\theta))\vec{u_{\theta}} + 2\rho'(\theta)\vec{v_{\theta}}$$

1. Restriction de l'intervalle d'étude

Périodicité : uniquement avec $2k\pi$

$$\rho$$
 paire : symétrie (Ox) ρ impaire : (Oy)

$$\rho(\theta + \pi) = -\rho(\theta) : M(\theta) = M(\theta + \pi) \qquad \qquad \rho(\theta + \pi) = \rho(\theta) : O$$

2. Variations

Point singulier : $\rho'(\theta) = \rho(\theta) = 0$

3. Points multiples

$$M(\theta_1) = M(\theta_2) \Leftrightarrow \begin{cases} \theta_1 \equiv \theta_2 \ [2\pi] \\ \rho(\theta_1) = \rho(\theta_2) \end{cases}$$
 ou
$$\begin{cases} \theta_1 \equiv \theta_2 + \pi \ [2\pi] \\ \rho(\theta_1) = -\rho(\theta_2) \end{cases}$$

4. Branches asymptotiques

$$\rho(\theta) \xrightarrow[\theta \to a]{} \infty$$

a)
$$a = \infty$$

On a une spirale

b)
$$a \neq 0 \left\lceil \frac{\pi}{2} \right\rceil$$

$$\frac{y(\theta)}{x(\theta)} = \tan \theta \to \tan a$$

On étudie $y(\theta) - \tan a \cdot x(\theta) = \frac{1}{\cos a} \rho(\theta) \sin(\theta - a)$

• Si
$$\frac{1}{\cos a} \rho(\theta) \sin(\theta - a) \to \beta \in \mathbb{R}$$
 : asymptote $y = \tan a \cdot x + \frac{\beta}{\cos a}$

Mathématiques – cours : Chap 6 : Arc Paramétrés

• Si $\frac{1}{\cos a} \rho(\theta) \sin(\theta - a) \rightarrow \infty$: branche parabolique de direction $y = \tan a \cdot x$

c)
$$a = 0 \left[\frac{\pi}{2} \right]$$

On regarde si $x(\theta) \rightarrow \infty$ et $y(\theta) \rightarrow \infty$

Voir a)

5. Points singuliers

Si ρ " $(\theta_0) \neq 0$, tangente dirigée par $\overrightarrow{u_{\theta_0}}$

6. On trace

Points particuliers et vecteurs tangents.

Exemples importants:

Droite :
$$\rho(\theta) = \frac{d}{\cos(\theta - \alpha)}$$

Cercle passant par $O: \rho(\theta) = 2R\cos(\theta - \alpha)$

Cardioïde : $\rho(\theta) = a(1 = \cos \theta)$ $(\alpha > 0)$