■ Комментарии к тесту

В множественном выборе есть хотя бы один правильный ответ. Их может быть как один, так и несколько. Полный балл будет ставиться только в том случае, если выбраны все верные ответы и не выбраны все неверные ответы.

В заданиях, где нужно ввести число, в данном тесте, ответ всегда целочисленный. Засчитываться будет только точное совпадение

- При подсчете разбиений на тестовую и обучающую выборки порядок объектов не важен
- Метод ближайших центроидов осуществляет классификацию, в которой усреднением по объектам класса вычисляется центроид каждого класса, а для нового объекта назначается тот класс, центроид которого ближе.
- В метрических методах используется Евклидова ф-ция расстояния, если не оговорено иначе.
- Обозначим N число объектов обучающей выборки, D-число признаков, C-число классов.
- Под "простотой" и "сложностью" моделей понимается не сложность алгоритма или вычислений, а ее негибкость и гибкость соответственно, т.е. способность адаптироваться к данным обучающей выборки. Если речь идет о сложности вычислений, то это называется "вычислительной простотой" и "вычислительной сложностью".
- Критерий качества функция, максимизируя которую выбирается наилучшая модель. Функция потерь функция, минимизируя которую выбирается наилучшая модель.
- Отличие функции близости и функции расстояния на примере метода K ближайших соседей: ближайшие соседи сортируются по возрастанию ф-ции расстояния либо сортируются по убыванию ф-ции близости.
- $x^{(i)}, z^{(i)}$ -- i-й признак объекта x(z).

В тестовых заданиях первая галочка — правильный ответ, вторая галочка — выбранный ответ. Цвет обозначает, правильно ли в данном пункте поставлена галочка. Если все пункты верные (галочки совпадают / все пункты зеленые), то за задание ставится полный балл, в противном случае ставится 0 баллов.

1. При взвешенном обобщении метода K
ближайших соседей более близким объектам
нужно сопоставлять

✓	✓	более	высокий	і ве
		более	низкий і	зес

Балл: 2.0

Комментарий к правильному ответу:

2. Нам нужно получить оценку эмпирического риска на тестовой выборке. Сравните подход кросс-валидации и отдельной валидационной выборки, полученной как фрагмент обучающей. Какой метод ближе оценит качество итоговой модели на тестовой выборке, обученной по всей обучающей выборке?

≡

- Оценка кросс-валидации
- Оценка по валидационной выборке

Балл: 2.0

Комментарий к правильному ответу:

- 3. Выберите функции расстояния, которые сделают прогнозы методом K ближайших соседей независимыми к масштабированию признаков:
 - $lacksymbol{\mathbb{Z}}$ Канберра $rac{1}{D}\sum_{i=1}^{D}rac{|x^{(i)}-z^{(i)}|}{|x^{(i)}+z^{(i)}|}$
 - lacksquare Евклидово $\sqrt{\sum_{i=1}^D (x^{(i)}-z^{(i)})^2}$
 - lacksquare Ланса-Уильямса $rac{\sum_{i=1}^{D}|x^{(i)}-z^{(i)}|}{\sum_{i=1}^{D}|x^{(i)}+z^{(i)}|}$
 - lacksquare $L_p=\sqrt[p]{\sum_{i=1}^D(x^{(i)}-z^{(i)})^p}$

Балл: 2.0

Комментарий к правильному ответу:

4. Дана выборка из 10 объектов. Сколькими способами её можно разбить на две выборки, обучающую и тестовую, так, чтобы в тестовой оказалось ровно два объекта?

Ответ: 45

Правильный ответ: 45.0

Погрешность: 0.0

Балл: 2.0

Комментарий к правильному ответу:

 C_{10}^2 --- количество способов выбрать два объекта из 10, которых мы включим в тестовую выборку.

5. В задаче классификации с двумя классами дана выборка из 10 объектов, по 5 объектов в каждом классе. Сколькими способами её можно разбить на две выборки, обучающую и тестовую, так, чтобы в тестовой оказалось ровно два объекта и они принадлежали разным классам?

Ответ: 25

Правильный ответ: 25.0

Погрешность: 0.0

Балл: 2.0

Комментарий к правильному ответу:

(5 способов выбрать 1 объект класса А) · (5 способов выбрать 1 объект класса Б)

6. В задаче классификации с двумя классами дана выборка из 8 объектов, по 4 объекта в каждом классе. Сколькими способами её можно разбить на обучающую и тестовую так, чтобы в обеих оказалось по 2 объекта каждого класса?

Ответ: 36

Правильный ответ: 36.0

Погрешность: 0.0

Балл: 2.0

Комментарий к правильному ответу:

 $(C_4^2$ способов выбрать 2 объекта класса А) \cdot $(C_4^2$ способов выбрать 2 объекта класса Б) = $6 \cdot 6$

7. При взвешенном обобщении метода K ближайших соседей с весами равными обратным величинам расстояний до объектов, прогноз в некоторой достаточно малой окрестности объектов-выбросов (имеющих класс не совпадающий с классом всех окружающих объектов):

будет	совпадать	с классом	окружающих	объектов

☑ ☑ будет совпадать с классом выброса

Балл: 2.0

Комментарий к правильному ответу:

 Рассмотрим многоклассовую классификацию методом K ближайших соседей с равномерными весами. Может ли возникать ситуация, что два класса набирают одинаковый рейтинг (равные дискриминантные функции)?

Не може

🗌 🗹 Не может для нечетного К

Может даже для нечетного К

Балл: 0

Комментарий к правильному ответу: