Introduction to Machine Learning

Homework 5: Gradient Calculations and Nonlinear Optimization

Prof. Sundeep Rangan

1. Suppose we want to fit a model,

$$\hat{y} = \frac{1}{w_0 + \sum_{j=1}^d w_j x_j},$$

for parameters **w**. Given training data (\mathbf{x}_i, y_i) , i = 1, ..., n, a nonlinear least squares fit could use the loss function,

$$J(\mathbf{w}) = \sum_{i=1}^{n} \left[y_i - \frac{1}{w_0 + \sum_{j=1}^{d} w_j x_{ij}} \right]^2$$

(a) Find a function $g(\mathbf{z})$ and matrix **A** such that the loss function is given by,

$$J(\mathbf{w}) = g(\mathbf{z}), \quad \mathbf{z} = \mathbf{A}\mathbf{w},$$

and $g(\mathbf{z})$ is factorizable, meaning $g(\mathbf{z}) = \sum_i g_i(z_i)$ for some functions $g_i(z_i)$.

- (b) What is the gradient $\nabla J(\mathbf{w})$?
- (c) What is the gradient descent update for \mathbf{w} ?
- (d) Write a few lines of python code to compute the loss function $J(\mathbf{w})$ and $\nabla J(\mathbf{w})$.
- 2. Matrix minimization. Consider the problem of finding a matrix $\mathbf{P} \in \mathbb{R}^{m \times m}$ to minimize the loss function,

$$J(\mathbf{P}) = \sum_{i=1}^{n} \left[\frac{z_i}{y_i} - \ln(z_i) \right], \quad z_i = \mathbf{x}_i^\mathsf{T} \mathbf{P} \mathbf{x}_i.$$

The problem arises in wireless communications where an m-antenna receiver wishes to estimate a spatial covariance matrix \mathbf{P} from n power measurements. In this setting, $y_i > 0$ is the i-th receive power measurement and \mathbf{x}_i is the beamforming direction for that measurement. In reality, the quantities would be complex, but for simplicity we will just look at the real-valued case. See the following article for more details:

Eliasi, Parisa A., Sundeep Rangan, and Theodore S. Rappaport. "Low-rank spatial channel estimation for millimeter wave cellular systems," *IEEE Transactions on Wireless Communications* 16.5 (2017): 2748-2759.

- (a) What is the gradient $\nabla_{\mathbf{P}} z_i$?
- (b) What is the gradient $\nabla_{\mathbf{P}}J(\mathbf{P})$?

- (c) Write a few lines of python code to evaluate $J(\mathbf{P})$ and $\nabla_{\mathbf{P}}J(\mathbf{P})$ given data \mathbf{x}_i and y_i .
- (d) See if you can rewrite (c) without a for loop.
- 3. Nested optimization. Suppose we are given a loss function $J(\mathbf{w}_1, \mathbf{w}_2)$ with two parameter vectors \mathbf{w}_1 and \mathbf{w}_2 . In some cases, it is easy to minimize over one of the sets of parameters, say \mathbf{w}_2 , while holding the other parameter vector (say, \mathbf{w}_1) constant. In this case, one could perform the following nested minimization: Define

$$J_1(\mathbf{w}_1) := \min_{\mathbf{w}_2} J(\mathbf{w}_1, \mathbf{w}_2), \quad \widehat{\mathbf{w}}_2(\mathbf{w}_1) := \arg\min_{\mathbf{w}_2} J(\mathbf{w}_1, \mathbf{w}_2),$$

which represent the minimum and argument of the loss function over \mathbf{w}_2 holding \mathbf{w}_1 constant. Then,

$$\widehat{\mathbf{w}}_1 = \underset{\mathbf{w}_1}{\operatorname{arg\,min}} J_1(\mathbf{w}_1) = \underset{\mathbf{w}_1}{\operatorname{arg\,min}} \underset{\mathbf{w}_2}{\operatorname{min}} J(\mathbf{w}_1, \mathbf{w}_2).$$

Hence, we can find the optimal \mathbf{w}_1 by minimizing $J_1(\mathbf{w}_1)$ instead of minimizing $J(\mathbf{w}_1, \mathbf{w}_2)$ over \mathbf{w}_1 and \mathbf{w}_2 .

(a) What is the gradient,

$$\nabla_{\mathbf{w}_1} J_1(\mathbf{w}_1)$$

in terms of the gradients $\nabla_{\mathbf{w}_1} J(\mathbf{w}_1, \mathbf{w}_2)$ and $\nabla_{\mathbf{w}_2} J(\mathbf{w}_1, \mathbf{w}_2)$?

(b) Suppose we want to minimize a nonlinear least squares,

$$J(\mathbf{a}, \mathbf{b}) := \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{d} b_j e^{-a_j x_i} \right)^2,$$

over two parameters **a** and **b**. Given parameters **a**, describe how we can minimize over **b**. That is, how can we compute,

$$\hat{\mathbf{b}} := \arg\min_{\mathbf{a}} J(\mathbf{a}, \mathbf{b}).$$

(c) In the above example, how would we compute the gradients,

$$\nabla_{\mathbf{a}} J(\mathbf{a}, \mathbf{b}).$$