

Materialwissenschaften

Prof. Peter Müller-Buschbaum, TUM School of Natural Sciences

Kapitel 8: Mechanische Eigenschaften von Polymeren

- 8.1 Strukturen von Polymermaterialien
- 8.2 Thermoplastische Elastomere
- 8.3 Spannungs-Dehnungs-Verhalten
- 8.4 Viskoelastische Deformation
- 8.5 Elastomere
- 8.6 Teilkristalline Polymere
- 8.7 Zusammenfassung
- W. D. Callister, D.G. Rethwisch: Materialwissenschaften und Werkstofftechnik. Wiley-VCH. Kapitel 14 und 15.
- J. P. Mercier, G. Zambelli, W. Kurz: Introduction to Material Science. Elsevier, 2002. Kapitel 11 und 12.
- D. R. Askeland: Materialwissenschaften. Spektrum. Kapitel 15.

8.1 Strukturen von Polymermaterialien

- natürlich vorkommende Polymere:
 Holz, Gummi, Baumwolle, Wolle, Leder, Seide, ...
 Proteine, Enzyme, Stärke, Zellulose, ...
- synthetische Polymere: Plastik-, Gummi- und Faserwerkstoffe
- mechanische Eigenschaften abhängig vom strukturellen Aufbau, nämlich der Molekülstruktur und der mesoskopischen Struktur, z.B. der Kristallinität

Breite Anwendungsgebiete von Polymeren

durch sehr unterschiedliche Eigenschaften, z.B. in Auto

Molekularer Aufbau

Monomer (Wiederholungseinheit) mit Molmasse M_{mon}

$$+ CH_2 - CH_2 \rightarrow_n$$

Polymer: Aufgebaut aus Monomeren

lineare Makromoleküle oft: lange Kette aus Kohlenstoffatomen

beachte: C-C-Bindungswinkel ist 109°

Sequenz oder Wiederholungseinheit

n: Anzahl der Monomere, "Polymerisationsgrad D_P ", ~100-10.000 Molmasse des Polymers $M = D_P M_{\text{mon}}$ $M \sim 10.000 - 10^6 \text{ g/mol}$

Beispiele für Polymere

Molekulare Architektur und Form

- Homopolymer: Polymer besteht aus <u>einer</u> Art Monomere
- Copolymer: Polymer besteht aus zwei Arten von Monomeren
- Funktionalität: Anzahl der Bindungen, die ein Monomer eingehen kann wenn drei oder mehr Bindungen möglich sind, ermöglicht dies eine Netzwerkstruktur (z.B. Phenolformaldehyd)

Einfachbindungen (-C-C-) frei drehbar

→ zahlreiche Biegungen, Knicke Schlaufen, Verdrehungen

 \rightarrow wichtig für Elastizität

Verzweigungen

unverzweigt (linear):

zwischen den Ketten van-der-Waalsund Wasserstoffbrücken-Bindungen, z.B. Polyethylen hoher Dichte (PE-HD)

verzweigt: an Hauptketten kürzere Seitenketten → reduzierte Dichte, z.B. Polyethylen niederer Dichte (PE-LD)

stark vernetzt: Duroplaste, z.B. Epoxide, Polyurethane

leicht vernetzt: Elastomere, z.B. Gummi ("vulkanisiert")

Duroplaste

auch "thermisch aushärtende Polymere", "thermosets"

irreversibles Aushärten während Verarbeitung

Temperaturerhöhung

- → Erzeugen großer Anzahl kovalenter Bindungen zwischen Ketten
- → diese Bindungen halten Ketten zusammen
- → Vernetzung von 10-50 % der Monomere

härter und stabiler als Thermoplaste, höhere Formstabilität

z.B. Phenole, Silikon, Melamin, Epoxidharz,

Polyvinylidenfluorid (PVDF)

Polytetrafluorethylen (PTFE),

Polyurethan, Polyimid

Duroplaste

Formpressen: Verarbeitung von Duroplasten

- 1. Die Formmasse wird vorgewärmt
- 2. Einfüllen und Dosieren der Formmasse in das Werkzeug
- 3. Verflüssigen der Formmasse und gegebenenfalls Entlüftung zwecks Entgasen sowie Abziehen des Kondensations-Wasserdampfs
- 4. Formen des Formteils = Formpressen
- 5. Aushärten / Ausreagieren
- 6. Entformen des Formteils
- 7. Entgratung des Werkstücks

Copolymere

bestehen aus zwei chemisch verschiedenen Arten von Monomeren

statistisches Copolymer,

- z.B. Styrol-Butadien-Kautschuk
- → Autoreifen

Blockcopolymer, z. B. schlagzähes Polystyrol aus Styrol und Butadien – gummiartige Butadiendomänen verhindern Ausbreitung von Rissen im Material

Pfropfcopolymer, z.B. Polybutadien-Hauptkette mit Polystyrol-Seitenketten

- → flexible Hauptketten absorbieren Energie
- → schlagzähes Polystyrol

Glasbildung oder Kristallisation

Verhalten von Thermoplasten als Funktion der Temperatur:

bei niedrigen Temperaturen Glasbildung oder Kristallisation

je nach Mikrostruktur und thermischem Protokoll, d.h. Wahl der Kühlrate

Teilkristalline Polymere

Polyethylen: orthorhombisch

- regelmäßige Packung von Polymerketten zu geordneten Bereichen
 - → Elementarzelle
- einzelne Ketten durchlaufen zahlreiche Elementarzellen
- Polymermaterialien oft nur teilkristallin wegen Defekten oder Knicken in der Kette, Verschlaufungen, zu hoher Abkühlrate ...

- kristalline Bereiche umgeben von amorphen Bereichen
- Kristallite: 10-20 nm dicke Plättchen, laterale Größe 10-50 μm
- Ketten gefaltet
- zahlreiche Arten von Defekten

Teilkristalline Polymere

- Bildung von Sphäroliten aus der Schmelze
 → kugelförmige Objekte
- Kristallite wachsen von Nukleationszentrum radial nach außen
- dazwischen amorphes Material

Sphärulite in amorpher Nylon-Matrix

(200-fache Vergrößerung)

W. D. Callister, D.G. Rethwisch: Materialwissenschaften und Werkstofftechnik. Wiley-VCH.

D. R. Askeland: Materialwissenschaften. Spektrum.

8.2 Thermoplastische Elastomere

auch "Thermoplaste"

- Erweichen bei Erhitzung
- Erstarren bei Abkühlung
- vollständig reversibel

Temperaturerhöhung

- → thermische Bewegung
- → Verringerung der zwischenmolekularen Wechselwirkungen und der van-der-Waals-Kräfte

unverzweigte Polymere und flexible Polymere mit wenigen Seitenketten z.B. Polycarbonat (PC), Polyethylen (PE), Polystyrol (PS), Polypropylen (PP), Polyvinylchlorid (PVC), Polyethylenterephthalat (PET), Teflon

Thermoplastische Elastomere aus Blockcopolymeren

B. F. Goodrich Co., in den späten 1950'ern:

Polyurethane: Multiblockcopolymere aus harten und weichen Segmenten

→ Stoßdämpfer, soft coatings...

D:
$$OCN \longrightarrow CH_2 \longrightarrow NCO$$
 PEO: Poly(ethylenoxid) $H \longrightarrow O \longrightarrow NCO$

N. Hadjichristidis, S. Pispas, G. Floudas: Block Copolymers: Synthetic Strategies, Physical Properties, and Applications. Chapter 21. Wiley 2003.

Thermoplastische Elastomere aus Blockcopolymeren

Shell 1965: "Kraton"

- thermoplastische Elastomere aus Polystyrol (PS)
- 25-40 Massen-% PS (Glastemperatur ~100 °C)
- → Schuhe, Kleber, Kabelisolierung, ...
- \rightarrow Formen bei T > 100 °C, elastisch bei Zimmertemperatur

N. Hadjichristidis, S. Pispas, G. Floudas: Block Copolymers: Synthetic Strategies, Physical Properties, and Applications. Chapter 21. Wiley 2003.

Spannungs-Dehnungs-Kurven von thermoplastischen Elastomeren

Kombination von hoher Zugfestigkeit und hoher Duktilität

weiche Segmente/Blöcke

→ starke Dehnbarkeit

harte Segmente/Blöcke

→ physikalische Vernetzung

N. Hadjichristidis, S. Pispas, G. Floudas: Block Copolymers: Synthetic Strategies, Physical Properties, and Applications. Chapter 21. Wiley 2003.

Verarbeitung thermoplastischer Elastomere: Spritzguss

- Pelletmaterial wird aus Granulatbehälter in Zylinder gebracht und in Heizkammer gedrückt
- thermoplastisches Material bildet viskose Flüssigkeit
- wird durch Düse in Hohlraum der Form gedrückt, wo es erstarrt
- Form wird geöffnet
- → alle möglichen Kleinteile, Spielzeug, ...

W. D. Callister, D.G. Rethwisch: Materialwissenschaften und Werkstofftechnik. Wiley-VCH. https://www.hesse-kunststoffverarbeitung.de/files/my_files/pic/kunststoff-spritzguss-formen.jpg

Verarbeitung thermoplastischer Elastomere: Extrudieren

- Schnecke treibt pelletiertes Material nach vorn, dieses wird dabei kompaktiert und geschmolzen und bildet kontinuierlichen viskosen Massestrom
- Extrusion durch geformte Düse
- Verfestigung durch Gebläse oder ein Bad
- → Rundstäbe, Rohre, Platten,...

Verarbeitung thermoplastischer Elastomere: 3D-Druck

- "additive Fertigung", Drucken zahlreicher Schichten
- Drucken eines 3D-Objekts anhand eines digitalen Entwurfs
- basiert auf Extruder
- evtl. Härten (Vernetzen) durch UV-Bestrahlung
- → ganz neue Formen zugänglich

8.3 Spannungs-Dehnungs-Kurven von Polymermaterialien

- charakteristische Größen: Elastizitätsmodul, Fließgrenze, Zugfestigkeit
- oft Spannungs-Dehnungs-Versuch ausreichend
- wichtige Parameter: Deformationsrate, Temperatur, Umgebungsvariablen

A: sprödes Polymermaterial elastische Verformung, dann Bruch

B: plastisches Material elastische Dehnung, dann Fließen

C: hochelastisches Elastomer vollständig elastische Deformation

W. D. Callister, D.G. Rethwisch: Materialwissenschaften und Werkstofftechnik. Wiley-VCH.

Spannungs-Dehnungs-Kurven

Bestimmung der mechanischen Größen: Durchführung wie bei Metallen

Unterschiede:

Elastizitätsmodul:

MPa – einige GPa (vgl. Metalle: 40-400 GPa, s. Kapitel 5)

- maximale Zugfestigkeit viel geringer als bei Metallen (vgl. Metalle: 50-3000 MPa, s. Kapitel 7)
- Dehnbarkeit wesentlich h\u00f6her als bei Metallen

Kunststoff	E-Modul (MPa)
PB	450
PE-X	800
PP-R	800
PP-B	1000
PE 100	1200
PP-H	1300
PP	1700
PP-HM	1800
PP-MD	1700 - 3600 abhängig von Veredelung
PVC-U	3000
GFK	4000 - 39000

Spannungs-Dehnungs-Kurven

Beispiel: unterschiedliche Kunststoffe

Temperaturabhängigkeit

Beispiel: Poly(methylmethacrylat) (Plexiglas)

je höher die Temperatur

- desto niedriger der Elastizitätsmodul
- desto geringer die Zugfestigkeit
- desto höher die Verformbarkeit

von spröde bei 4 °C zu plastisch bei 60 °C

Dehnrate hat analogen Effekt:

Verringerung der Dehnrate hat ähnlichen Effekt wie Temperaturerhöhung

8.4 Viskoelastische Polymermaterialien

mechanisches Verhalten hängt ab von

- der Zeit
- der Temperatur
- → definiere Relaxationsmodul

$$E_r(t) = \frac{\sigma(t)}{\varepsilon_0}$$

 $\sigma(t)$: gemessene

zeitabhängige Spannung

 ε_0 : konstante Dehnung

 $E_r(t)$ ist auch Funktion der Temperatur:

- $E_r(t)$ nimmt mit der Zeit ab
- je größer die Temperatur, desto geringer $E_r(t)$

Charakteristische Temperaturbereiche

Beispiel: amorphes Polystyrol

- Referenzzeit $t_1 = 10 s$ gewählt
- aufgetragen: $\log E_r(t)$ als Funktion der Temperatur

W. D. Callister, D.G. Rethwisch: Materialwissenschaften und Werkstofftechnik. Wiley-VCH.

Charakteristische Temperaturbereiche

- → hoher Modul bei niedriger Temperatur
- \rightarrow starker Abfall bei Glastemperatur T_g
- → bei höheren Temperaturen:
 gummiartiges Plateau,
 elastisches und plastisches Verhalten
- → dann gummiartiges Fließen
- → dann viskoses Fließen

bei Vernetzung: gummiartiges Plateau setzt sich zu hohen Temperaturen fort

8.5 Elastomere

- starke und reversible Deformation möglich
- niedriger Elastizitätsmodul, hängt von Spannung ab
- nichtgedehnter Zustand: vernetzte Ketten, stark geknäult
- Dehnung → Auffalten der Ketten, Verlängerung in Zugrichtung
- Nachlassen der Spannung
 - → sofortiges Annehmen der ursprünglichen Konformation
- Grund: Entropieerniedrigung beim Dehnen
- Erhöhung der Temperatur beim Dehnen bzw.
 Erhöhung des Elastizitätsmoduls mit der Temperatur

8.6 Teilkristalline Polymere

an oberer Fließgrenze: Einschnürung darin richten sich Polymerketten aus, so dass sie parallel zur Dehnungsrichtung sind

- → lokale Verstärkung
- → weitere Verlängerung der Einschnürung
- W. D. Callister, D.G. Rethwisch: Materialwissenschaften und Werkstofftechnik. Wiley-VCH. D. R. Askeland: Materialwissenschaften. Spektrum.

Molekulare Prozesse

elastische Deformation:

- zunächst Streckung der amorphen Ketten
- dann Zunahme der Dicke der lamellaren Kristallite durch Verbiegung und Streckung der Ketten im kristallinen Bereich

Übergang zur plastischen Deformation:

- Ketten gleiten in den Lamellen aneinander entlang
- Lamellen verkanten
- Kristallite brechen auf
- Segmente und amorphe Ketten richten sich in Richtung der Dehnung aus

Spinnenseide

ein Material aus Proteinen mit hoher Festigkeit (0,02-1,7 GPa) und hoher Dehnbarkeit (10-500 %)

→ extrem hohe Zähigkeit und viskoelastisches Verhalten

Major Ampullate (MA) Silk Die Spinne frame, radii, lifeline **Pyriform Silk** produziert attachment to substrates Flagelliform (Flag) sieben Silk verschiedene capture spiral **Aciniform Silk** Arten von prey wrapping and egg Aggregate Silk Spinnenseide case sticky coating on in verschiedenen capture spiral Cylindriform Silk Drüsen. egg case **Minor Ampullate** (Mi) Silk auxiliary spiral and web reinforcement

Mechanische Eigenschaften der Spinnenseide

major ampullate: höchste Festigkeit (1.5 Gpa) capture spiral: höchste Dehnbarkeit

Grund für Unterschiede:

verschiedene Fibroin Sequenzen

→ verschiedene Anteile kristalliner β-Faltblätter

für alle untersuchten Arten:

- elastischer Bereich bis 1-2 % Dehnung
- Fließgrenze
- zweiter linearer Bereich, außer bei minor ampullate

bei Dehnung passiert in amorphen Bereichen:

- Aufbrechen von H-Bindungen
- Orientierung der Segmente
- ...

Abstimmbare mechanische Eigenschaften

von Thermoplasten zu Elastomeren: Isotaktische Blockcopolymere auf Basis von Polypropylen

Topologische Auswirkungen auf die mechanischen Eigenschaften

eines selbstorganisierten Blockcopolymers PS-b-PDMS

Hohes E-Modul durch Netzwerktopologie (d. h. dreidimensionale, zusammenhängende Bereiche aus hartem PS und weichem PDMS)

8.7 Zusammenfassung

Polymere: lange kettenförmige Moleküle aus Wiederholungseinheiten

- Homo-/Copolymere, verzweigte Polymere, vernetzte Polymere
- thermoplastische Elastomere / Duroplaste
- teilkristalline Polymere

spröde / plastische / hochelastische Polymermaterialien

mechanische Eigenschaften stark temperaturabhängig: Glasübergang, gummiartiges Plateau, viskoses Fließen

Elastomere: Ausrichtung der Ketten unter Dehnung

teilkristalline Polymere: Abschnüren unter Dehnung Streckung der amorphen Ketten, Verdickung der Kristallite, Gleiten der Ketten in Kristalliten, Aufbrechen der Kristallite und Ausrichten