

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-100491

(43)Date of publication of application: 13.04.2001

(51)Int.Cl.

G03G 15/02 G03G 21/00

(21)Application number: 11-273981

(71)Applicant:

RICOH CO LTD

(22)Date of filing:

28.09.1999

(72)Inventor:

NAGAME HIROSHI

SAKON HIROTA TAKECHI RYUTA

NAKAJIMA AKIYO KOJIMA SHIGETO

(54) IMAGE FORMING METHOD AND LUBRICITY IMPARTING MEMBER DEVICE USED FOR THE SAME

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an image forming method by which the wear of a photoreceptor is suppressed, good toner transferability and toner cleanability are provided and good image quality is obtained. SOLUTION: The coefficient of friction is lowered by bringing a lubricity imparting member into contact with a photoreceptor and image formation is carried out

LEGAL STATUS

[Date of request for examination]

while this photoreceptor surface is worn.

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2001-100491 (P2001 - 100491A)

(43)公開日 平成13年4月13日(2001.4.13)

(51) Int.Cl. ⁷		識別記号	FΙ			テーマコード(参考)
G03G	15/02	102	G03G	15/02	102	2H003
•		101			101	2H034
	21/00			21/00		

審査請求 未請求 請求項の数6 OL (全 42 頁)

(21)出願番号	特顧平11-273981	(71) 出願人	000006747
			株式会社リコー
(22)出願日	平成11年9月28日(1999.9.28)		東京都大田区中馬込1丁目3番6号
		(72)発明者	永目 宏
			東京都大田区中馬込1丁目3番6号 株式
			会社リコー内
		(72)発明者	左近 洋太
			東京都大田区中馬込1丁目3番6号 株式
		•	会社リコー内
		(74)代理人	100074505
			弁理士 池浦 敏明

(54)【発明の名称】 画像形成方法及びそれに用いる潤滑性付与部材装置

(57)【要約】

【課題】 感光体の摩耗を抑制し、良好なトナー転写性 及びトナークリーニング性を有し、良好な画像品質が得 られる画像形成方法を提供する。

【解決手段】 感光体に潤滑性付与部材を接触させて摩 擦係数を低減し、この感光体表面を摩耗させながら画像 形成を行う。

最終頁に続く

【特許請求の範囲】

【請求項1】 感光体に帯電し、像露光を行い静電潜像を形成した後、現像剤で顕像化し、転写、クリーニング工程を経て画像形成を行う方法において、該帯電には帯電ロール方式の接触帯電装置を用い、及び潤滑性付与部材を該帯電ロールおよび該感光体の各々に単独に接触させ、該感光層の表面の摩擦係数を低減化することを特徴とする画像形成方法。

1

【請求項2】 感光体に帯電し、像露光を行い静電潜像を形成した後、現像剤で顕像化し、転写、クリーニング工程を経て画像形成を行う方法において、該帯電にはコロナ生成物の生成を抑制する部材で構成された帯電装置を用い、及び、該感光体の表面の摩擦係数を低減化するための潤滑性付与部材装置を該感光体の周囲に配置し稼動させることを特徴とする画像形成方法。

【請求項3】 感光体に帯電し、像露光を行い静電潜像を形成した後、現像剤で顕像化し、転写、クリーニング工程を経て画像形成を行う方法において、該感光体に潤滑性付与部材を接触させて該感光体の表面の摩擦係数を低減化した後、該潤滑性付与部材を有する感光体の表面 20 層を摩耗することを特徴とする画像形成方法。

【請求項4】 感光体の表面の摩擦係数が0.1~0.4の範囲にコントロールされることを特徴とする請求項1、2又は3記載の画像形成方法。

【請求項5】 少なくとも基体、弾性部材および潤滑性 付与部材で構成されていることを特徴とする潤滑性付与 部材装置

【請求項6】 少なくとも可動可能で丸棒もしくは扇形の断面をもつ棒状形態の基体と、弾性部材と、フィルム 状フッ素系樹脂の潤滑性付与部材とで構成されることを 特徴とする潤滑性付与部装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ファクシミリ、プリンター、電子写真複写機等での画像形成方法に関し、詳しくは、画像形成装置に使用される感光体での画像品質を長期に亘って安定して維持できる画像形成方法、及びそれに用いられる潤滑性付与部材装置に関する。

[0002]

【従来の技術】電子写真法を用いたファクシミリ、プリンター、電子写真複写機等の画像形成装置では感光体を中心に、帯電ー画像露光一現像一転写ークリーニングー除電等の各装置が配置され画像形成が行われる。感光体としては従来、硫化カドミウム、セレン化カドミウム、アモルファスセレン、アモルファスシリコンなどが実用化されてきたが、近年では作製が容易、高感度が得られる、低コストである、無公害である等の多くのメリットを有する有機系感光体が主流に使用されている。

【0003】有機系感光体には高抵抗で透明性が高く、がら、画像坦持体にブラシを介して常に適切な極性依存性がない高硬度のポリカーボネート系樹脂材料 50 する事によって、良好な画像の安定化を図る。

(Aポリカ、Cポリカ、Zポリカなど)が一般的に使用されるが、この材料をバインダーにして感光層を構成した場合、硬度が10~30kg/mm²と低く、また引っ張り強度が小さいため、脆く、摩耗しやすい。さらに、感光層表面には帯電時に使用される帯電装置から生じるコロナ生成物、さらにはトナー構成物、紙粉等が付着するため、解像性の低下、クリーニング性や転写効率の低下などで、画像の均一化が損なわれやすい。さらには、感光体の摩擦係数が高いため、ブレードクリーニングを使用した画像形成装置では、高周波音(ブレード鳴き)が発生する等の問題があった。従って、有機系感光体で、電気特性、光学特性などの諸特性を維持しながら、機械特性を向上させるのには限度があった。そのため、複写プロセス面からの検討が行われ幾つかの提案がなされている。以下に代表的な開示例を示す。

【0004】(1)特開昭53-133439号:ブレードを使用したトナー像のクリーニング後から画像形成までの間に液体状の潤滑剤(シリコーンオイル)を感光体表面に付与する事によって、感光体の傷つきによる画像欠陥が起こるのを予防し、ブレードのこすれ時の異常音の発生を防止する。

【0005】(2)特開昭56-51767号:感光体表面に付着した汚染物質を排除し、良好な画像を維持し続ける手段として、研磨剤と潤滑剤が交互に形成された像保持部材用潤滑研磨部材を設置し、研磨と潤滑剤付与を交互に行い、感光体に付着したトナー等を排除し、高画像品質位を維持する。

【0006】(3)特開昭56-113183号:外表面に潤滑剤を保有している回転自在の円筒状潤滑剤補給部材を、感光体に当接し、潤滑剤を感光体表面に供給する事によって、画像品質の安定化を図る。

【0007】(4)特開昭58-115468号:ブレードの感光体への当接点の上流又は下流側の感光体表面に不揮発性液体(シリコーンオイル)の塗布部材(例えば、シリコーンオイルを含浸したシリコーンゴムローラーやシリコーンゴムブレード等)を配置し、感光体に不揮発性液体を供給する。

【0008】(5)特開平3-269478号:クリーニングプレード先端部に薄層形成性を有する滑材(ケイ40酸マグネシウム、ステアリン酸亜鉛など)を塗布し、これを感光体表面に接触させて薄層状に塗布する。

【0009】(6)特開平6-342236号:固体疎水性潤滑剤(ステアリン酸亜鉛などの固体)を帯電ローラーを介して、画像坦持体(感光体)に潤滑剤を円滑に安定供給し、クリーニング不良やフィルミングの発生を防止する。

【0010】(7)特開平8-202226号:潤滑剤(ステアリン酸亜鉛など)の塗布量をコントロールしながら、画像坦持体にブラシを介して常に適切な量を供給する事によって、良好な画像の安定化を図る。

3

【0011】(8)特開平8-305233号:トナー 像を検知する手段を有する画像形成装置において、その 検知内容に基づいて、トナークリーニングブラシの回転 数をコントロールしながら、潤滑剤の感光体への供給量 を調整し、高品質画像の安定化を図る。

【0012】(9)特開平11-2994号:デジタル 方式の複写機と、フッ素系樹脂粉体を分散した層を最表 面に有する感光体との組み合わせで使用した場合、レー ザー光照射の際のスポットによる散乱のために、解像度 の劣化が起こる。この現象を回避するために、感光層上 10 に形成したフッ素系樹脂粉体を分散した層の代わりに、 トナーに対して離型性を示すフッ素樹脂を含有する材 料、もしくはバインダー樹脂中に10~90wt%分散 された材料を感光体表層に塗布する。

【0013】これらの開示例はいずれも潤滑剤を感光体表層に供給する事によって、画像品質の劣化防止、感光体の傷つき防止、耐摩耗性、転写効率(画像抜け防止)、クリーニング性の向上、画像流れ抑制、ブレードのめくれ防止、クリーニングブレードの延命等を行う事を意図とするものである。

【0014】しかし、前記した開示例(1)~(9)については利点も認められる一方で、なお下記のように幾つかの問題点を有している。

【0015】開示例(1)は潤滑性に優れたシリコーンオイルを感光体の塗布することで感光体の摩擦係数を低減化させ所期目的を達成させるものであるが、シリコーンオイルを常時安定した液層で感光体表面に供給する事は極めて難しい。また、シリコーンオイルは摩擦係数を低減化するには少ない量でも効果が高いため、常時供給された場合には、クリーニングブレードが滑り、感光体に固着したコロナ生成物等の汚染物質が除去されなくなり解像性低下を起こし、ついには画像流れに到る場合がある。

【0016】開示例(2)は良好な画像を維持し続けること目的としたものであり、巻き取り方式のベルトに酸化セリウム等の研磨剤層と、ポリテトラフルオロエチレン、ポリ弗化ビニリデンなどの潤滑層とを交互に形成し、感光層上に形成された付着物を研磨剤で削った後、潤滑剤で表面性を修復しながら、感光層表面を清浄に保持する方法である。しかし、此の方式では一定の成果が得られるが、研磨剤を使用するため、感光層表面が荒れやすく、不均一な削れが起こり画像品質が低下しやすい。さらに感光層が摩耗し、耐久性が短くなるなどの問題点を有する。

【0017】開示例(3)は細孔を有する布製のポーチなどに粉末状の潤滑剤を内在させ、その外表面に粉末状潤滑剤を保有させ、回転させながら常時感光体に潤滑剤を付与し、クリーニングブレードと感光体間の摩擦抵抗を低減化させる事を目的とするものであるが、回転体から粉末を補給する場合、飛散はどうしても避けられず、

周囲を汚しやすい。また、塗布を均一に薄層でコントロールする事が難しく、摩擦係数にバラツキを生じ易い。 塗布量が多すぎた場合には画像劣化にもつながる。

【0018】 開示例(4) は感光体及びクリーニングブ レードの損傷を抑制する事を目的とし、感光体に当接す るクリーニングプレードの上流側もしくは下流側に不揮 発性の液体 (シリコーンオイル) を含浸させたシリコー ンゴムやブレードを配置し、感光体に当接し、常時感光 体に供給するものである。此の方式はシリコーンオイル の使用で、潤滑性の効果が発現できるので、ブレードに 対する負担が軽減出来、目的を達成することが出来る。 しかし、シリコーンオイルを含浸させたブレード等を感 光体に常時接触させオイルを供給するため塗布量が多く なり易く、摩擦係数が下がりすぎ、感光体に固着したコ ロナ生成物などの低抵抗物質が除去されず、画像流れを 起こす危険性がある。また、連続的にオイル塗布を継続 した場合であっても、コロナ生成物などの汚染物質が徐 々に感光層上に蓄積され、感光体表層にオイル膜があった。 たとしても、摩擦係数が上昇する傾向が見られる。した がって、ひどい場合にはオイル塗布前のレベルにまで上 昇し、オイル塗布しているにも関わらず、ブレード鳴き に到る事もある。

【0019】開示例(5)はクリーニングブレードの先端部に薄層形成性を有する滑材を薄層状に塗布することによりクリーニングブレードのチャタリング、めくれを防止する事を目的とするものである。この方法は有効な手段であるが、長期使用中に滑材の補給が行われないと、潤滑作用が途切れてしまうため、クリーニングブレードと感光体との摩擦抵抗が上昇し、こすれによる高周波音を発生し、途中で目的を達成できなくなる可能性が大きい。特に摩擦係数が高くなる樹脂を使用した感光体では殆どの場合、高周波音が発生し、場合によっては感光体の回転を停止させ、画像形成装置に破損が生じる場合がある。

【0020】開示例(6)は潤滑剤を感光体の回転速度とは線速度の異なる帯電ローラーに一旦塗布し、それを感光体に再塗布し、感光体に潤滑効果を持たせるものである。此の方法は線速度を変える事によって塗布ムラをなくし、均一塗布を行う様にしたものであるが、ステアリン酸亜鉛の様な固形ワックスを使用しているため、帯電ローラーに塗布する場合、少しでも塗布が不均一になると、電気抵抗にムラを生じ易く、感光体の帯電均一性が失われ、画像欠陥(例えば、黒点、モヤムラなど)が発生しやすい危険性が生じる。また、帯電ローラーではコロナ放電法に比べオゾン、NOxの発生は少ないが、ステアリン酸亜鉛にコロナ生成物が巻き込まれ、解像性低下が派生する可能性がある。

【0021】開示例(7)はブラシに一旦塗布した潤滑 剤を感光体に塗布することによって、均一塗布性が向上 50 し、画像の均一化には好ましい方法である。潤滑性に優

40

5

れたステアリン酸亜鉛などを塗布すると、耐摩耗性にも 優れる。ただし、ステアリン酸亜鉛塗布を極薄層で均質 に塗布するコントロールが難しく、感光体に付着すると 厚くなり除去しにくいため、効果の持続性はあるが、帯 電過程で生成されるコロナ生成物(画像流れの主原因) 等の低抵抗物質、埃を巻き込みやすく、感光体表面の摩 擦係数も徐々に増加する傾向がある。ステアリン酸亜鉛 層が厚く形成されると掻き取り効果がさらに低下するた め、摩擦係数が低下し過ぎとなり、局部的な画像低 下を起こす危険性が大きい。したがって、コントロール を行う場合には、センサーのSN比を大きくとり、さら に極薄層とするための正確な塗布制御機能が要求され る。

【0022】開示例(8)はトナー像を検知する手段を有する画像形成装置において、その検知内容に基づいて、トナークリーニングブラシの回転数をコントロールしながら、潤滑剤の感光体への供給量を調整し、高品質画像の安定化を図るものである。しかし、此の方式は画像による判断で塗布量をコントロールするため、適正な判断が出来るが、局部的な劣化や僅かな劣化では殆ど対応できない。また、ステアリン酸亜鉛が連続に塗布される場合には、コロナ生成物などの汚染物質を取り込み、次第に感光体表面の摩擦係数が上昇し、コロナ生成物の影響で画像流れも生じ易くなる。

【0023】開示例(9)はフッ素系樹脂分散層を感光 層上に形成した場合に、レーザー光が照射されると散乱 が生じ、解像度が低下したり、転写効率が次第に低下す る現象が有るため、フッ素系樹脂分散層の代わりにフッ 素樹脂の粉末を感光層上に塗布するか、粉末を分散した 材料を感光体に押し当て塗布することでトナーに対する 離型層を形成し問題点の改善を図るものである。この事 により転写効率の低下が抑制され、さらには感光層の摩 耗も抑制される。しかし、フッ素樹脂層を感光層面に形 成することで 摩擦係数が低下し、トナーに対し優れた 離型性が発現され、感光体の摩耗も抑制されるものの、 画像品質及び感光体を適正な状態に維持するためには適 正な塗布条件で管理する必要がある。フッ素樹脂の必要 以上の塗布は過大な低摩擦化を起こし、画像流れの原因 になる。また、感光層の摩擦係数が低下することで、感 光層の膜厚減少が抑制されるが、反面クリーニングプレ 40 ードや、現像剤の滑りが生じ、画像濃度が大きく低下し たり、感光体にトナー固着が起こり、画像品質の低下の 要因ともなる。粉体状のフッ素樹脂を感光体に塗布した 後、ブレードでならす様な方式では、摩擦係数に偏りを 生じたり、局部的に粉体のまま固着する現象が起こり、 逆に画像品質を乱すことが起こる。さらに、フッ素樹脂 粉末を分散した部材で離型層を形成する場合には、感光 層を傷つけやすく、塗布層が不均一に成ったり、電荷移 動性に差違が生じ、画像品質に問題が生じる。

[0024]

【発明が解決しようとする課題】本発明の目的は、良好な画像品質を維持しつつ、感光体の摩耗を抑制し、良好なトナー像の転写性、トナークリーニング性を維持しうる画像形成方法それに有用な潤滑性付与部材装置を提供することである。

[0025]

【課題を解決するための手段】本発明によれば、第一に、感光体に帯電し、像露光を行い静電潜像を形成した後、現像剤で顕像化し、転写、クリーニング工程を経て画像形成を行う方法において、該帯電には帯電ロール方式の接触帯電装置を用い、及び潤滑性付与部材を該帯電ロールおよび該感光体の各々に単独に接触させ、該感光層の表面の摩擦係数を低減化することを特徴とする画像形成方法が提供される。

【0026】第二に、感光体に帯電し、像露光を行い静電潜像を形成した後、現像剤で顕像化し、転写、クリーニング工程を経て画像形成を行う方法において、該帯電にはコロナ生成物の生成を抑制する部材で構成された帯電装置を用い、及び、該感光体の表面の摩擦係数を低減化するための潤滑性付与部材装置を該感光体の周囲に配置し稼動させることを特徴とする画像形成方法が提供される。

【0027】第三に、感光体に帯電し、像露光を行い静電潜像を形成した後、現像剤で顕像化し、転写、クリーニング工程を経て画像形成を行う方法において、該感光体に潤滑性付与部材を接触させて該感光体の表面の摩擦係数を低減化した後、該潤滑性付与部材を有する感光体の表面層を摩耗することを特徴とする画像形成方法が提供される。

30 【0028】第四に、感光体の表面の摩擦係数が0.1 ~0.4の範囲にコントロールされることを特徴とする上記第一~三のいずれかに記載の画像形成方法が提供される。

【0029】第五に、少なくとも基体、弾性部材および 潤滑性付与部材で構成されていることを特徴とする潤滑 性付与部材装置が提供される。

【0030】第六に、少なくとも可動可能で丸棒もしく は扇形の断面をもつ棒状形態の基体と、弾性部材と、フィルム状フッ素系樹脂の潤滑性付与部材とで構成される ことを特徴とする潤滑性付与部装置が提供される。

[0031]

【発明の実施の形態】以下、本発明をさらに詳細に説明 する。

【0032】前記第一の発明は、帯電ロール方式の接触 帯電装置を使用して感光体に帯電し、像露光を行い静電 潜像を形成した後、現像剤で顕像化し、転写、クリーニ ング工程を経て画像形成を行う画像形成方法に於いて、 潤滑性付与部材を該帯電ロール及び感光体に各々単独に 作用させ摩擦係数を低減せしめることによって画像形成 50 を行うことを特徴とする画像形成方法である。

-4-

【0033】感光体の摩耗を抑制するためには感光体の 表面摩擦係数を下げればよい。しかし、帯電時に帯電ロ ールから生成されるコロナ生成物(オゾンやNOxな ど) は帯電ロールは勿論のこと、感光体をも汚染するた め、感光体及び帯電ロールにはコロナ生成物の生成に起 因して、潤滑性付与部材の削れ粉、現像剤(トナー)、 紙粉などが付着し易くなり、感光体の摩耗を促進させた り、画像品質の低下、ブレードクリーニングの摺擦音

. 7

(髙周波音) 等を起こす要因となる。これらの現象を改 善するためには、感光体の摩擦係数を下げることは勿論 のこと、帯電ロールに対しても対策が必要となる。この ため、第一の発明においては、感光体及び帯電ロールの 双方に対して潤滑性付与部材を作用させることの手法が 採られる。

【0034】この第一の発明の好ましい実施形態をあげ、 れば下記(1-1)~(1-5)のとおりである。

(1-1) 潤滑性付与部材がフッ素系樹脂であること。

(1-2) そのフッ素系樹脂がフィルム形状であるこ

(1-3) そのフィルム状のフッ素系樹脂が100~5 00μmの厚さであること。

(1-4) 接触帯電装置がクリーニング部材を有するこ ٤.

(1-5) そのクリーニング部材が発泡ウレタン樹脂で あること。

【0035】これらの実施形態(これらは単独で又は2 以上の併用であってもよい)に説明を加えれば次のとお りである。

【0036】上記(1-1)の画像形成方法:潤滑性付 与部材の好適な材料は多くの種類があるが、中でも乾式 30 で、電気特性が高く、極薄層を形成しやすく、光学的に も影響を与えないフッ素系樹脂が好適である。

【0037】上記(1-2)の画像形成方法:フッ素系 樹脂には幾つかの形態があるが、感光体及び帯電ロール に対して摺擦して使用するため、硬い形態のものは使用 できない。ソフトに接触させるためには弾力性に富む弾 性部材を裏打ちして使用できるフィルム状のものが好適 である。

【0038】上記(1-3)の画像形成方法:フィルム 状のフッ素系樹脂の厚みは弾性部材を介在させないか、 弾性部材の効果を活かしながら使用する方法があるが、 そのいずれにも使用できる好適な膜厚は100~500 μ mで、100μmより薄いと耐久性に乏しく、500 μmより厚いと弾性部材の効果を発揮できない。

【0039】上記(1-4)の画像形成方法:感光体上 のトナークリーニングにはゴムブレードを使用するのが 効率よくクリーニングするのに好適であるが、使用して いく内にブレード先端部が摩耗し、トナーの抜けが起こ るようになる。このため、接触している帯電ロールにも トナー汚れが起こり、長時間使用していると真っ黒にな

り、感光体への帯電が不均一となったり、感光体を劣化 させる原因にもなる。帯電ロールには潤滑性付与部材を 当接し、摩擦係数を低下させてトナー固着を抑制させる が、トナー付着が多い場合には形成された潤滑性付与部 材層の効果も下がり、長時間に亘る効果は期待できな い。従って、接触帯電装置には潤滑性付与部材に帯電ロ ール上のトナーを排除するクリーニング部材を併用して 使用することが重要である。このことによって、長期に 亘って使用した場合でも帯電が安定し、感光体の表面性 10 に対しても汚染が防止でき、更に感光層の異常な削れも 抑制できるなどの良好な結果が生じる。

ング部材として発泡ウレタン樹脂を使用することによっ て、トナーが効率よく除去でき、また発泡ウレタン樹脂 の有する微小な孔のためにトナーの飛散が抑制できる。 【0041】前記第二の発明は、感光体に電荷を付与 し、像露光を行い静電潜像を形成した後、現像剤で顕像 化し、転写、クリーニング工程を経て画像形成を行う画 像形成方法に於いて、コロナ生成物の生成を抑制する部 材で構成された帯電装置を用い、及び該感光体の表面の 摩擦係数を低減化するための潤滑性付与部材装置を該感 光体周囲に配置し稼働させることを特徴とする画像形成

方法である。

【0040】上記(1-5)の画像形成方法:クリーニ

【0042】帯電の際に生じるコロナ生成物に起因して 起こる画像流れ現象、機械特性の劣化(摩耗、スクラッ チなど) の発生もしくは抑制するために帯電装置にコロ ナ生成物の生成を抑制する部材で構成された帯電装置 と、感光層の表面摩擦係数を低減化して、感光層の摩耗 を抑制し、トナーの付着力を軽減化し、転写効率並びに クリーニング性を向上させ、ブレード鳴きを解消するた めの潤滑性付与部材装置とを使用することによって、所 期目的を達成する。この場合の帯電装置は一般に接触帯 電装置で行われるが、非接触帯電装置であっても全く問 題はない。

【0043】この第二の発明の好ましい実施形態をあげ れば下記(2-1)~(2-6)のとおりである。

【0044】(2-1)潤滑性付与部材装置がフッ素系 樹脂を主体として構成されていること。

(2-2) 潤滑性付与部材装置が少なくとも基体と弾性 部材とフッ素系樹脂で構成され、感光体との対向面にフ ッ素系樹脂ついで弾性部材が積層された構造であるこ

(2-3) コロナ生成物を抑制する部材が活性炭素繊維 であること。

(2-4) 感光体に電荷を付与する帯電装置が100% 活性炭素繊維、もしくは60%以上90%以下の活性炭 素繊維を含有する部材で構成されていること。

(2-5) 帯電装置が固定式もしくは回転式の部材で構 成されていること。

(2-6) 帯電装置が直流もしくは交番電流を重量した

直流で駆動されること。

【0045】これらの実施形態(これらは単独で又は2以上の併用であってもよい)に説明を加えれば次のとおりである。

9

【0046】上記(2-1)の画像形成方法:潤滑性付与部材装置を構成する部材として、感光体の摩擦係数を低減化させるに極めて効果の大きいフッ素系樹脂を使用することにより、所期目的を簡単に効率よく実施せしめる

【0047】上記(2-2)の画像形成方法:感光体の摩擦係数を低減化させるには潤滑性付与部材を感光体に作用させる必要があるが、最も効率よく行う為には、潤滑性付与部材としてのフッ素系樹脂を感光体に摺擦する方法が効果的である。しかしながら、摺擦することによって、硬度の低い感光体は傷付きの危険性がある。この傷付きを最小限に留めるためには、潤滑性付与部材(フッ素系樹脂)を弾性部材と併用使用するのが最も効果的である。すなわち、感光体側にフッ素系樹脂、その裏面に弾性部材を積層するような形で構成することにより、衝撃や異物の影響を吸収し、潤滑性付与部材を感光体にソフトに接触させることにより、感光体が受けるダメージを最小限に抑え、潤滑性付与部材の効果を最大限に発揮させ、所期目的を達成させる。

【0048】上記(2-3)の画像形成方法:オゾン、窒素酸化物などのコロナ生成物は極めて細かい微粒子であるため、分解するためにはそれに応じた機能を有する部材が必要となる。感光体に特に影響の大きいオゾン、窒素酸化物の両イオン種に対して吸着もしくは分解するような触媒作用を有するものは殆ど無く、どちらか一方にたいしてのみ効果が有るものが大半である。しかし、吸着、分解作用には多少差違があるが、感光体に特に画像流れ現象を起こさせる窒素酸化物を除去せしめ、且つオゾンをも効率よく吸着もしくは分解させる部材として活性炭素繊維がある。ただし、活性炭素繊維の分解・触媒作用は原材料によって差違があり、ポリアクリルニトリル系の活性炭素繊維(ACF)を使用するのが最も有効である。

【0049】上記(2-4)の画像形成方法:感光体に 帯電装置で電荷を付与するためには、 帯電部材自体が抵 抗体である必要がある。更に、オゾン、窒素酸化物など のコロナ生成物を吸収するためには帯電装置を構成する 部材が前記コロナ生成物を吸着し、もしくは分解するだけの機能を有しておく必要がある。すなわち、活性炭素 繊維自体は抵抗体であり、これを達成するには100% の活性炭素繊維か、 帯電部材を構成する部材中に60% 以上90%以下の活性炭素繊維を含有させた帯電部材で 実現できる。活性炭素繊維には各種形態の物があり、必 要に応じて選択して使用することが可能であり、吸着、 分解作用の面では100%の活性炭素繊維が最も優れ る。 【0050】上記(2-5)の画像形成方法:帯電装置はブレード状、ブラシ状等で構成される固定式の帯電装置あるいはロール形式の帯電装置のいずれでも構成され、両方とも差違が少なく、効果も高い。

【0051】上記(2-6)の画像形成方法:感光体に 帯電するには帯電部材に電圧の印加が必要となるが、こ の場合の印加電流は直流もしくは交番電流を重畳した直 流が使用できる。交番電流を重畳した直流を使用した場 合にはより安定した画像形成が望めるが、通常は直流印 10 加で十分な高画質、高安定性が得られる。

【0052】前記第三の発明は、感光体に帯電、像露光を行い静電潜像を形成した後、現像剤で顕像化し、転写、クリーニング工程を経て画像形成を行う画像形成方法に於いて、潤滑性付与部材を感光体に作用する事によって該感光体表面の摩擦係数を低減化した後、感光体上に付与した潤滑性付与部材を含む感光層表面層を摩耗させながら画像形成を行うことを特徴とする画像形成方法である。

摩擦係数を必要なレベルまで低下させた後に、感光体上 に付与した潤滑性付与部材を含む感光層最表面層を摩耗 させながら画像形成を行う事で達成できる。

【0054】この第三の発明の好ましい実施形態(これらは単独で又は複数の併用であってもよい)をあげれば下記(3-1)、(3-2)のとおりである。

(3-1) 潤滑性付与部材を感光体へ作用させた後の、 感光体の表面摩擦係数が0.2以下であること。

(3-2) 感光体が有機感光体であること。

【0055】これらの実施形態が(これらは単独で又は 複数の併用であってもよい)に説明を加えれば次のとお りである。

【0056】上記(3-1)の画像形成方法:画像形成 前の摩擦係数を一旦0.2以下にまで低減させた後作像 する事によって、感光層の摩耗は制限され、汚染物質を 含む最表層の摩耗が程良く進行するため、感光層の清浄 化は保たれ、常に良好な画像品質が維持可能となる。

【0057】上記(3-2)の画像形成方法:セレンやアモルファスシリコン感光体などの硬い感光体を使用した場合には、傷ついたり、塗布膜が不均一に成りやすく50所定の特性が得られ難いが、有機系感光体の場合、適当

20

11

に削れるため、汚染物質が付着しても除去されやすく、 塗布膜が比較的均一に成るため、全面に亘って均一な画 像を呈することが可能である。

【0058】前記第四の発明は、上記第一、第二及び第三の発明において、感光体表面の摩擦係数を0.1~0.4の範囲にコントロールして画像形成を行う方法である。感光層表面にできるだけダメージを与えないで、感光層の摩耗を抑制し、画像品質を安定に維持し、ブレード鳴きなどの異音を発生させないようにするためには感光体の表面摩擦係数を0.1以上0.4以下の範囲内でコントロールされるのが最も良い。

【0059】前記第五の発明は、少なくとも基体、弾性部材および潤滑性付与部材で構成されていることを特像とする潤滑性付与部材装置である。

【0060】画像品質を長期に亘って安定に維持し、高耐久性を図る手段として前記のような潤滑性付与部材装置を用いれば、像担持体(ここでは感光体を指す)にスクラッチなどのダメージを与えることなく、表面摩擦係数を低く抑制維持することが可能である。このためには、基本的に感光体表面の摩擦係数を低減化させる潤滑性付与部材と感光体にソフトに均一に当接するための弾性部材の少なくとも2種の部材で構成するのが好ましい。

【0061】この第五の発明の好ましい実施形態(これらは単独で又は2以上の併用であってもよい)をあげれば下記(5-1) \sim (5-4)のおりである。

【0062】(5-1) 潤滑性付与部材がフッ素系樹脂であり、好ましくは、膜厚50~300μmのフィルム 状フッ素樹脂であること。

(5-2) 潤滑性付与部材装置は少なくとも有効現像幅もしくはそれ以上の幅を有し、像担持体側に面する側より順に潤滑性付与部材、弾性部材と積層されていること。

(5-3) 潤滑性付与部材装置が像担持体を摩擦計数化 するための単独のユニットとして、もしくはプロセスカ ートリッジに組み込まれ使用されること。

(5-4) クリーニング装置と帯電装置との間に像担持体を低摩擦係数化するため潤滑性付与部材装置をトレーディング方向になるように設置し、潤滑性付与部材装置が像担持体を摺擦することによって0.2 mm以上のニップを形成し、0.1~0.4の摩擦係数で画像形成方法を行うこと。

【0063】これらの実施形態(これらは単独で又は複数の併用であってもよい)に説明を加えれば次のとおりである。

【0064】上記(5-1)の潤滑性付与部材装置:感光体の摩擦係数を効率よく低下させる潤滑性付与部材としては、フッ素系樹脂が最適であり、感光体へのダメージを小さく長期的に安定した摩擦係数を維持させる部材は50~300μmの膜厚のフッ素系樹脂フィルムを好

適とする。

【0065】上記(5-2)の潤滑性付与部材装置:画像品質をコピー紙全域に亘って均一にするためには、感光体の長手方向の少なくとも有効現像幅もしくはそれ以上の幅で潤滑性付与部材装置を構成し、摺擦により低摩擦係数化する。潤滑性付与部材を感光体側とし、その上面に弾性部材を積層する構造とする。感光体に当接する部位は接着層を介在させても良いし、介在させなくとも良い。好適な特性を持つ弾性部材の使用及び適切な範囲の荷重により、潤滑性付与部材は感光体に均等かつソフトに掛かるため、前記部材による感光体の傷つきは抑制され、部材自体の長寿命も果たすことが可能となる。

【0066】上記(5-3)の潤滑性付与部材装置:潤滑性付与部材装置は単一のユニットとして使用することもできるが、帯電装置、現像装置、トナークリーニング装置等を組み込んだプロカートリッジの中に設置し、使用することもできる。後者の場合は一体化により取扱いに有利となる。

【0067】上記(5-4)の潤滑性付与部材装置を用いた画像形成方法:潤滑性付与部材装置はクリーニング装置と帯電装置との間にトレーディング方向になるように設置し、潤滑性付与部材の接触幅(ニップ)を少なくとも0.2 mm以上になるような荷重を掛け、摩擦係数を0.1~0.4の範囲に設定して画像形成方法を行うのが有利である。この様な条件に設定し画像形成を行うことにより、潤滑性付与部材は感光体にソフトに当接されるため、感光体が受けるダーメージが抑制され、感光層の膜厚摩耗及び感光体表面層汚染が適切に抑制されるため、安定した画像を維持できる。また、潤滑性付与部材の当接圧が軽減化されるために摩耗速度が緩やかになり、潤滑性付与部材装置の延命も図ることができる。

【0068】前記第六の発明は、少なくとも可動可能で 丸棒もしくは扇形の断面をもつ棒状形態の基体と、弾性 部材と、フィルム状フッ素系樹脂の潤滑性付与部材とか ら構成されていることを特徴とする潤滑性付与部材装置 である。

【0069】像担持体への機械的、化学的ダメージを少なくし、感光層の摩耗を抑制し、表層を清浄な状態に維持し、さらにブレード鳴きなどの異音を防止し、安定した画像品質を長期に亘って維持するためには、感光体表層の摩擦係数を低減化することが最も有効な手段である。この手段としては感光体に直接潤滑性付与部材(潤滑剤)を付与することで効能が得られるが、ただ接触させた場合には機械的ダメージが大きくなり、また、不均一に成りやすい。これを防止するために変形がないもしくは極めて少ない基体の上に感光体にソフトに接触するための弾性部材で構成し、さらにこの上に感光体と直接接触し、感光体の摩擦係数を低減化するフィルム状の潤滑性付与部材(ここではフッ素系樹脂)で構成することにより所期目的を達成することができる。更に必要に応

じて形状は自由に設計できる。さらに、感光体の特性を 長期に亘って維持するためには潤滑性付与部材装置自体 の耐久性も長くする必要がある。潤滑性付与部材は感光 体に接触して作用するため、摩耗が起こり、薄膜フィル ム程耐久性が短い。したがって、潤滑性付与部材が感光 体と接触する位置は適時変化するのが望ましい。このた め、感光体との当接位置が常時もしくは適時変更可能な 形態の丸棒状もしくは断面が扇形型の棒状の形態をした 基体にするのが望ましい。

13

【0070】この第六の発明の好ましい実施形態をあげ れば下記(6-1)~(6-9)のとおりである。

【0071】 (6-1) 少なくとも、像担持体に当接し 摩擦係数を低減化する手段が、有効現像長もしくはトナ ークリーニングブレード長のどちらか長い方の長さと同 等もしくはそれ以上の長さを有し、像担持体に面する側 より順に潤滑性付与部材、弾性部材が積層されているこ

(6-2) 像担持体に当接し摩擦係数を低減化させる手 段が回転する事によって行われること。

(6-3) 像担持体に当接し摩擦係数を低減化させる手 段が、一定複写枚数毎或いは一定複写時間毎に像担持体 との当接位置を変化させながら摩擦係数を低減化させる こと。

(6-4) 逆回転防止機構を有し、正回転時のピッチが 1 mm以上である。

(6-5) フィルム形態のフッ素系樹脂の膜厚が50~ 400μmであること。

(6-6) 基体と弾性部材との接着処理が接着剤を使用 して行われていること。

(6-7) フィルム形態のフッ素系樹脂の端面処理が接 30 着剤を使用して行われていること。

(6-8) 潤滑性付与部材装置が像担持体を低摩擦係数 化する為の単独のユニットとして、もしくはプロセスカ ートリッジに組み込まれ使用されること。

(6-9) クリーニング装置と帯電装置との間に潤滑性 付与部材装置を配置し作用させる事によって、像担持体 の摩擦係数を0.10~0.4の範囲でコントロールし 画像形成を行うこと。

【0072】これらの実施形態が(これらは単独で又は 複数の併用であってもよい) に説明を加えれば次のとお 40 りである。

【0073】上記(6-1)の潤滑性付与部材装置:画 像品質を全領域に亘って均一にするためには、少なくと もクリーニングブレードの長さもしくはそれ以上の長さ に亘る潤滑性付与部材装置の作用領域が確保されている ことが望ましい。

【0074】上記(6-2)の潤滑性付与部材装置:潤 滑性付与部材の耐久性と異物混入による像担持体にスク ラッチなどの機械的なダメージ、さらには潤滑性付与部

るためには、潤滑性付与部材は回転させ当接位置を常に 変化させることによって達成できる。

[0075]上記(6-3)の潤滑性付与部材装置:像 担持体にダメージを与えない程度の負荷(当接圧)を像 担持体に与え、摩擦係数を低減化するには潤滑性付与部 材を或る一定複写時間もしくは或る一定複写枚数作用さ せる方法でも達成できる。

【0076】上記(6-4)の潤滑性付与部材装置:潤 滑性付与部材を或る一定複写時間ごとにもしくは或る一 定複写枚数ごとに作用させる方法では部材の耐久性を長 くするために、当接する位置を少しづつ変えることが望 ましい。この場合、潤滑性付与部材が逆回転して、以前・ に使用した位置に戻ることは好ましくないので、逆回転 を防止するストッパー機構(逆回転防止機構)を付設 し、正回転時の回転ピッチが感光体に当接したときの部 材のニップと同等の幅が必要であり、そのニップは1m・ m以上あれば所期目的は達成できる。

【0077】上記(6-5)の潤滑性付与部材装置:本 発明では潤滑性付与部材であるフッ素樹脂フィルムの厚 みは50~400μmを使用するのが好適である。

【0078】上記(6-6)の潤滑性付与部材装置:像 担持体にソフトに潤滑性付与部材を接触させるための弾 性部材は基体に装着しただけでは移動するため、所期の 特性が得られない。弾性部材には基体に装着できるよう に加工成形した筒状の部材とシート状の部材が使用でき る。此の両者に対して収縮させず、良好な接着性を有す る接着剤を使用するのが最も良い方法である。

【0079】上記 (6-7) の潤滑性付与部材装置:フ ィルム状のフッ素系樹脂を弾性部材上に張るためには1. ヶ所、もしくは両端も含めた3ヶ所の端面処理が必要に なるが、ここに於いてもフッ素系樹脂に対して接着性良 好な、或いはフッ素系樹脂に接着性改良を施して接着剤 を使用する事によって安定した、均一な摩擦係数の低減 化が実現できる。

【0080】上記(6-8)の潤滑性付与部材装置:潤 滑性付与部材装置は単独で或いは小径ローラーにするこ とにより、プロセスカートリッジに組み込んで使用する ことができる。

【0081】上記(6-9)の潤滑性付与部材装置を用 いた画像形成方法:潤滑性付与部材装置の設置位置はク リーニング装置と帯電装置との間にするのが最も良く、 本発明で構成された潤滑性付与部材では像担持体の摩擦 係数を0.1~0.4にコントロールすることで、感光 層の摩耗を抑制し、感光層の清浄化を保ち、潤滑性付与 部材の耐久性を長寿命化し、均一な画像品質を維持する ことができる。

【0082】続いて、本発明を図面に従ってより詳細に 説明する。図1は本発明の第一の画像形成方法の実施例 の概略を表わしたものである。感光体に帯電ロール方式 材、トナーなどの固着を排除し均一な画像形成を行わせ 50 でクリーニング部材を内蔵した接触帯電装置により(土)

400~1000V程度に帯電される。感光体にはセレン系、シリコン系、有機系等の感光体があるが、本発明では有機系感光体(OPC)が好適である。感光体の構成はマイナス帯電、プラス帯電によって異なり図2

(a) ~ 図2 (d) に示す構成がある。

【0083】図2(a)は導電性支持体41上に下引き層42を形成し、その上に電荷輸送材と電荷発生材を一体化した感光層45を形成した単層タイプの感光体、図2(b)は導電性支持体41上に電荷発生層43、ついで電荷輸送層44を形成した機能分離型の感光体、図2(c)は導電性支持体41上に下引き層42を形成し、その上に電荷発生層43、電荷輸送層44を形成した機能分離型の感光体、図2(d)はさらに電荷輸送層44の上に保護層46を形成した感光体である。プラス帯電の場合は図2(a)の構成が、マイナス帯電の場合は図2(b)〜図2(d)の構成の感光体が多く使用される。電荷輸送層44を上面に形成する主な理由は耐久性を延ばす事にある。電荷発生層を最上面に形成する場合には、殆どの場合保護層を必要とする。また、図2

(c) の様な機能分離型の感光体の耐摩耗性を更に延ば すために、図2(d)のように保護層が形成される事も ある。

【0084】電荷輸送材量のバインダー樹脂は各種ポリカーボネート樹脂(A型ポリカ、C型ポリカ、Z型ポリカ等)やポリオレフィン樹脂などが用いられることが多く、ドナーで正孔移動度を高められる。特にポリカーボネート樹脂が望まれて使用されるのは、耐候性が良好、極性依存性がない、耐摩耗性に優れる、光透過性に優れる等の性質を有するためである。

【0085】感光体にプラスもしくはマイナス電荷の付与(荷電)が行われた後、画像露光系により画像露光が感光体面に行われる。アナログ複写機の場合、ハロゲンランプや蛍光灯などの露光ランプで照射された原稿像が可視光投影され、デジタルの場合にはCCD(電荷結合素子)で読みとられた原稿像が630~780mmのLDやLEDのデジタル信号に変換されて、感光体上に結像される。結像によって感光層では電荷分離が行われ、感光体に潜像形成が行われる。原稿に応じた潜像形成が行われた感光体は現像装置で現像剤により現像が行われ、潜像は顕像化(トナー像)される。

【0086】次に、感光体上のトナー像は転写分離装置によりコピー用紙に転写後、分離され、定着装置に送られハードコピーとなる。一方、感光体は転写後、クリーニング装置(クリーニングブレードのみ、もしくはこれとクリーニングブラシとの組み合わせで構成)で感光体表面に付着しているトナーが清掃され、除電装置で残留潜像が消去され、一連の複写プロセスは終了する。

【0087】本発明の第一の画像形成方法では所期目的 を達成するために、図1に示したように、クリーニング 装置106と接触帯電装置102との間に感光体の摩擦 50 16

係数を低減化するための潤滑性付与部材装置(フィルム 状フッ素系樹脂) 1 1 1、接触帯電装置 1 0 2 の帯電ロ ールの摩擦係数を低減化する為の潤滑性付与部材装置 (フィルム状フッ素系樹脂) 1 1 2 が取り付けられる。 【 0 0 8 8】ここでの感光体用の潤滑性付与部材装置 1 1 1 は基本的には基体、弾性部材及び潤滑性付与部材 (フッ素系樹脂=PTFE)で構成され、接触帯電装置 における帯電ロール用の潤滑性付与部材装置は基体、弾 性部材および潤滑性付与部材(フッ素系樹脂=PTF E)もしくは基体に直接潤滑性付与部材(フッ素系樹脂 =PTFE)が貼り付けられた簡単な構造で構成され る。潤滑剤付与部材装置 1 1 1、1 1 2 は常時作用(接 触)させる必要はないが、少なくとも接触帯電装置 1 0 2が作動している間は作用させるのが望ましい。

【0089】ここで、従来の複写プロセス上で発生する問題点について説明する。有機系感光体の材料には前記したように主にはポリカーボネート樹脂(ポリカA,ポリカC,ポリカZ等)が使用される。一方、クリーニングブレードにはクリーニング性や耐久性の点からポリウレタン系ゴム材質のブレードが使用される。

【0090】画像形成装置に感光体を装着した状態では クリーニングブレードー感光体間の摩擦抵抗が極めて大 きいため、そのままでは感光体に駆動力が伝達されても 回転できない。一般には感光体とブレードにトナーやポ リフッ化ビニリデンなどの粉末を塗布したりする事で感 光体が回転するようにしているが、付与した潤滑性付与 部材が消費されると、感光体の摩擦係数が上昇し、使用 中に高周波音が発生し、騒音問題を引き起こすことも有 る。また、感光体に潜像を形成する前工程として、感光 体に帯電する必要があるが、この帯電手段にはコロナ帯 電法もしくは接触帯電法が一般的に用いられ、直流電圧 もしくは交流重畳直流電圧が印加される。これらの帯電 器では帯電の際に放電を伴うため、電荷以外に副産物と して、オゾン(O3)や窒素酸化物(NOx)などの感光 体の特性を劣化させる有害なコロナ生成物が発生する。 【0091】本発明の第一の画像形成方法では、帯電手

段が帯電ロールを採用した接触帯電法であるが、接触帯電方法では帯電するための印加電圧をコロナ帯電法の1/4~1/6程度に設定するため、コロナ帯電法に比ベオゾンの発生量は1/100~1/200程度、窒素酸化物は1/50~1/100程度と少なくなるが、感光体の極間近で起こるため、コロナ生成物の影響はほぼ100%近く感光体に作用する。感光体への影響はコロナ生成物の発生量が少ない分、接触帯電法の方が良好であるが、解像度の低下などは少ない量でも寄与率が高く、また、除去されない限り蓄積性を持つため、長時間の使用で、画像流れへと発展し、光学的あるいは機械的劣化を引き起こす。

【0092】オゾンは環境面での危険なガス種にも指定 されており、化学的性質として漂白作用や強力な酸化作

用があるため、感光体の構成物質の分子間結合を切断し たり、感光体の輸送能力、感光性機能を低下させる。し たがって、感光層には製造時、必要に応じて、2,6一 ジー t ープチルー p ークレソール、プチル化ヒドロキシ アニソール等のモノフェノール化合物、2,2 'ーメチ レンービスー (4-エチルー6-t-ブチルフェノー ル) 等のビスフェノール系化合物、1,3,5-トリメ チルー2,4,6-トリス(3,5-ジーt-ブチルー 4-ヒドロキシベンジル) ベンゼン等の高分子フェノー ル系化合物、ハイドロキノン類、有機燐化合物類等の酸 化防止剤もしくは酸化抑制剤あるいは可塑剤を重量比で 1~20%添加される場合がある。この処理によりオゾ ンが層中への浸透していくことは抑制できるが、感光層 表面は常にオゾンに晒されているため、酸化防止剤の機 能の低下又は消失と共に、表面抵抗が低下し大気中の水 分が吸着しやすくなり画像品質低下を招く。

【0093】一方、窒素酸化物の場合には大気中の水分 と結合し硝酸となり、感光層への吸着により電気抵抗低 下を引き起こすが、硝酸の場合は酸化防止剤の機能が働 き難く、感光層へ浸透し感光層の抵抗低下を起こし、画 20 像流れ等の画像品質の低下を招く。

【0094】また、感光体がコロナ生成物により汚染さ れると、摩擦係数が大きく(摩擦抵抗増加)なり、高周 波音が発生し、画像の局部的な転写不良、クリーニング 性能の低下が起こりやすくなり、更に感光層の摩耗が促 進される。

【0095】したがって、高品位画像を長期に亘って維 持するためには、これらの問題を回避する手段が必要と なる。なお、感光体表面の摩擦係数を上げる主要因はコ ロナ生成物であるが、その他にトナーの構成物質(帯電 制御剤などの被覆剤など)、紙に含まれる結着剤など、 感光層の削れ紛、定着装置から出るガス成分などが摩擦 係数を上げる要因となる。

【0096】そこで、本発明の第一の画像形成方法では 帯電ロールを使用した接触帯電装置を使用した複写プロ セスに適用されるものである。前記した問題点を抑制 し、改善する方法は感光体に潤滑性付与部材を作用させ ることによって、感光体表面の摩擦係数を低減化するこ とによって達成可能であるが、15万枚或いは20万 枚、さらにはそれ以上に亘る画像品質が必要な場合に は、感光体へのみの潤滑性付与部材の作用だけでは不十 分であることから、更に帯電ロールの摩擦係数の低減化 を図ることで、更なる感光体の長寿命化並びに良好な画 像品質の維持が達成可能となる。

【0097】感光体に於いては表面摩擦係数を低減化す ることによって、現像剤及びクリーニングブレードとの 接触抵抗を低下させ、感光体表層の摩耗を抑え、更にト ナーや紙粉などの異物が付着するのを抑制する。帯電ロ ールに於いては帯電の際に生成されるコロナ物の粘着性 を弱める、或いは封じることによって、前記した異物な どが帯電ロールに付着するのを防止し、更に帯電ロール

の押圧で感光体に異物が固着しやすくなるのを抑制す

【0098】摩擦係数を低減化させる潤滑性付与部材に は、下記に示すように幾つかの材料が有る。

【0099】固体系では、オレイン酸鉛、オレイン酸亜 鉛、オレイン酸銅、ステアリン酸亜鉛、ステアリン酸コ バルト、ステアリン酸鉄、ステアリン酸銅、パルミチン 酸亜鉛、パルミチン酸銅、リノレン酸亜鉛等の金属脂肪 酸;フッ化亜鉛、滑石(タルク)類;フッ素を含有する 高分子で、ポリテトラフルオロエチレン(四フッ化エチ レン PTFE、商品名:テフロン)、ポリクロロトリ フルオロエチレン (PCTFE)、テトラフルオロエチ レンとエチレンとの共重合体 (ETFE)、ポリビニリ デンフルオライド (PVDF)、テトラフルオロエチレ ンとオキサフルオロプロピレンとの共重合物(FE

- P)、ポリクロロトリフルオロエチレン(PCTF
- E)、ポリトリフルオロクロルエチレン(PTFC
- E) 、ジクロルジフルオロエチレン、ポリトリフルオロ エチレン (PTFE) 等のフッ素系樹脂;フッ素樹脂を 繊維化したフッ素繊維にポリフルオロカーボン、ポリテ トラフルオロエチレン等の繊維物がある。

【0100】液体系では、鯨油、スクワランオイルなど の動物性オイル系;菜種油、紅花油、ゴマ油、椿油、糠 油などの植物性のオイル系;パラフィンやナフテン系の 鉱物油石油系;エステル系、ポリエーテル系、炭化水素 系、シリコーン系、フッ素系の合成油系等がある。シリ コーンオイルには、メチルフェニルオイル、ジメチルシ リコーンオイル、シリコーンポリエーテル共重合体のオー イル類、変性シリコーンオイルとしてはフッ素変性、エ ポキシ変性、アルコール変性、アルキル変性、アミノ変 性等のシリコーンオイルなどがある。

【0101】フッ素系のオイルとしては、フルオロカー ボン油、パーフルオロエーテル油などがある。これらの 液体の中では特にシリコーンオイルもしくはフッ素系の オイルが化学的安定性、不揮発性の面で優れている。

【0102】潤滑グリース系では、増稠剤としてカルシ ウム石鹸グリス、ナトリウム石鹸グリス、リチウム石鹸 グリス、カルシウムコンプレックスグリス、バリウムコ 40 ンプレックスグリス等の石鹸系グリスの他、ベントン、 ファインシリカ、銅フタロシアニンアリル尿素などの非 石鹸系のグリスがあり、これらの基油としてはジエステ ル油、シリコーン油、フルオロカーボン油、ユーコン油 等を用いたものである。グリースの場合には、フッ素系 グリス、シリコーン系グリス、シリコーン-フッ素系の シリコーン、フッ素系の合成潤滑グリス等は特に優れた 潤滑性を示す。

【0103】これらの潤滑性付与部材は、感光体の摩擦 係数を低減化するにはいずれも優れた潤滑剤であり、本 発明にも適用可能な材料であるが、電子写真特性を阻害

20

19

しない物性(十分な潤滑性を有する、電気抵抗が10¹⁴ Ω·cm以上、屈折率が1.0に近似、化学的に安定で変質しない等)を有し、感光体を汚染させず、取扱いが容易、感光体に当接したときに擦り傷を与えにくい、感光体表面に簡単に薄層を形成できる、安価である、構成が簡単であるなどの材料が望ましい。

【0104】これらの用件を満たし、本発明で使用するのに好適な潤滑性付与部材としては、ポリテトラフルオロエチレン(PTFE)があげられる。PTFEは物体と潤擦することにより、比較的容易に転移させることができ、物体表面の摩擦係数を後述するオイラーベルト方式で測定したときに0.2以下の極めて低い摩擦係数にすることが可能であり、自由に摩擦係数が設定可能である。感光体や帯電ロールは回転して使用されるために、それらに接するように固定して設置しさえすれば、容易に摩擦係数を低減化させることができる。但し、感光体や帯電ロールは傷つきやすい物質で構成されているため、傷つかない程度の接触圧(当接圧)でソフトに接触させることが必要である。

【0105】図3に感光体表面の摩擦係数を低減化するのに有用な潤滑剤付与部材装置装置113の例を示す。(a)はステンレススチール(SUS)やアルミニウム(A1)、鉄(Fe)或いは樹脂などの厚さ0.1~1mm程度の板を基体(113a)として、ポリウレタンゴム、ウレタンフォーム等の弾性部材113c)を貼り付け成形した形状である。図3(b)はウレタンフォームなどの発泡樹脂を弾性部材113c)で包んだ形状のPTFE(潤滑性付与部材113c)で包んだ形状のものである。いずれも、目的を達するもので有ればこれらの形状に限定されるものではない。

【0106】感光体への当接圧が高いと摺擦傷が入りやすくなるため、摩擦係数が満足する範囲で可能な限り低い方が望ましい。後述する当接圧の測定法で上質紙片(厚さ85μm、幅30mm)を感光体とPTFE間に無理なく挿入できる15g前後の当接圧が適当である。【0107】図4に帯電ロールの摩擦係数を低減化させるのに有用な潤滑性付与部材装置114の例を示す。図4(a)はステンレススチール(SUS)やアルミニウム(A1)、鉄(Fe)或いは樹脂などの板を基体114aとし、これに直接PTFE(潤滑性付与部材114c)を貼り付けたものであり、図4(b)は弾性部材114c)を貼り付けたものであり、図4(b)は弾性部材114bを基体114aとPTFE(潤滑性付与部材114c)の間に挟んだサンドイッチ構造のものである。【0108】帯電ロールは表面硬度が少し硬めの材料(フッ素樹脂とヒドリンゴムの混合物など)で構成され

ているため、弾性部材を介在しなくとも、帯電ロールが 容易に回転する程度の当接範囲内で有れば十分使用でき るが、長期的には弾性部材を介在させた方が好ましい。

【0109】これらの部材に関しては目的を達するもの 50 E (潤滑性付与部材)を設けることが効果的である。

で有れば上記の形状に限定されるものではない。

【0110】 PTFEの膜厚は $100\sim400\mu$ mの厚さのものが好ましく、通常は $200\sim400\mu$ mの厚さがあれば良い。 100μ mより薄いと弾性部材の効果がより一層発揮できるようになるが、耐久性が無く、 400μ mより厚いと耐久性は有るが、弾力性に乏しくなるため、弾性部材の機能が働かなくなり、感光体ないし帯電ロールに対してのソフトな接触性が欠落するし、より一層の成形均一性、変形し難さが求められる。

【0111】弾性部材は反発弾性の高い、柔らかい素材が好ましく、厚さ0.5~3mm程度の厚さのものが好適である。ゴムであれば硬度30度前後のエチレンプロピレンジエンゴムやネオプレンゴム、またフォームであれば例えばイノアック社のエステル系のウレタンフォームSP-80R、SM-55、RS等の発泡体が使用できる。ウレタンフォームはいずれも弾性力、接着性、耐久性の面で優れたものである。

【0112】感光体表面にPTFEを作用させた時の摩 擦係数は、低いほど感光層の摩耗速度が低下するため望 ましいが、低い (例えば0.1前後) と現像剤やクリー ニングブレードが滑り、感光体表面の残留トナーは良好 にクリーニングできるものの、感光層の摩耗が少なくな るため、固着した異物や帯電ロールで生成されたコロナ 生成物の感光体表層からの除去能力が著しく低下し、ハ ーフトーン画像に白斑点が生じたり、文字画像のシャー プ性の低下や、解像性低下、さらには90%程度の高湿 状態で画像流れが起こるようになる。一方、摩擦係数が 高いと (例えば0. 4前後) 画像劣化の問題は無くなる が、感光層表層の摩耗が促進され、耐久性に問題が出て くる。したがって、好適な範囲は後述するオイラーベル ト法を使用して、0.1~0.4の範囲、好ましくは 0. 25前後の値(いずれも平均値)に設定できるよう にするのが望ましい。帯電ロールへの当接圧は帯電ロー ルの材質にもよるが、一般的には感光体よりも耐擦性を 有するため、もう少し高めに設定することが可能であ

【0113】接触帯電装置には帯電ロールがトナー汚染を生じたときのクリーニング部材が必要である。クリーニング部材としては感光体表面からトナーを除去しやすく、その除去したトナーが脱離しにくく、コロナ生成物などで変質しにくい材質のものが望ましい。例えばフェルト状のものや紙製品、プラスチック製品などが有るが、好適にはウレタンフォームが最適である。厚みは2~5mm程度有れば良く、通常は3mm程度の厚みのものが使用しやすい。帯電ロールはコロナ生成物により汚染されているため、トナーを始めとする異物が付着しやすく前記したようにトナーにより真っ黒になるばかりではなく、感光体にも付着し、画像品質を劣化させる。此の現象を回避するためと、帯電ロールに当接してPTFE(潤滑性付与部材)を設けることが効果的である。

30

40

22

【0114】次に潤滑性付与部材装置の取り付け位置に ついて説明する。潤滑性付与部材装置111、112の 取り付け位置は図1の例ではそれぞれクリーニング装置 106、接触帯電装置102のところに設置されている が、潤滑性付与部材装置自体が小寸法のものであるた め、スペースが有れば図1のような形式でなくても、分 離した形で設置することもできる。接触帯電装置102 のための潤滑剤付与部材装置112は帯電ロールの回転 方向に対して逆方向でも順方向でも良好な結果が得られ るが、好ましくは図1に示すような順方向が望ましい。 【0115】この方式はプロセスカートリッジに組み込 むことも可能である。図5は本発明の実施例、比較例の 効果で使用したプロセスカートリッジに組み込んだ構成 例を示したものである。102aが接触帯電装置の帯電 ロール、102bが帯電ロールのクリーニング部材、1 12が帯電ロール用の潤滑性付与部材装置である。

21

【0116】本発明でいう摩擦係数は下記測定方式で算 出したものとする。まず測定用の感光体を固定する。一 方、ベルトとして厚さ85μm、幅30mm、長さ29 Ommにカットした上質紙を用意する。この上質紙を前 記の感光体の上に乗せ、ベルト端部の一方に100gの 分銅を取り付け、もう一方の片端に重量を測るデジタル ・フォース・ゲージを取り付け、デジタル・フォース・ ゲージをゆっくり引き、ベルトが移動開始する時の重量 を読みとり、次の式で静止摩擦係数を計算する。

 $\mu s = 2 / \pi \times 1 n \text{ (F/W)}$

F:読みとり荷重 ただし、µ s:静止摩擦係数 π:円周率 W:分銅の重さ なお、本測定法(オイラー・ベルト方式)についての関 連記ことは特開平9-166919号にも示されてい る。

【0117】当接圧に関しては本発明では次のように規 定する。長さ100mm、幅30mm、厚さ85μmの 上質紙 (ベルト) を感光体と潤滑性付与部材の間に挿入 し、前記のデジタル・フォース・ゲージで引っ張り、ベ ルトが引き出され、最大に振れた目盛りを読みとり、そ の値を本発明での当接圧と規定する。単位はgである。

【0118】本発明の第二の画像形成方法では上記と同 様の感光体が用いられ、これに帯電装置(接触もしくは 非接触帯電装置)により(生)400~1000V程度 に帯電される。本発明においては、帯電装置はコロナ生 成物の生成を抑制する部材で構成され、感光体にコロナ 生成物の影響が及ばないような形で電圧が印加される。 図6にはロール形式の接触帯電装置で図示して有るが、 ブレード形式、ブラシ形式なども使用される。

【0119】感光体に荷電を与える帯電手段には図6に 示す接触帯電法の他にコロナ帯電法が一般に採用される が、接触帯電法は感光体に102~1012Ω・cm程度 の抵抗性を持つプラシやロール状の導電体に1000V するが、コロナ帯電法ではシールドケース内に帳架され た40~80μmの金属線に4000V~8000Vの 電圧を印加し感光体を帯電する。此の両者に共通な現象 としては両者とも放電現象が伴うため、帯電時に電荷以 外の副産物として、感光体の特性を劣化させるオゾン

(O3) や窒素酸化物 (NOx) などのコロナ生成物が 発生する点である。

【0120】先に触れたように、コロナ生成物は感光体 表層に付着することで摩擦係数を大きくし(摩擦抵抗の 増加)、画像の局部的な転写不良、クリーニング性能の 低下、高周波音(ブレード鳴き=ブレードの摺擦圧が増 加し、感光体が振動しキーンという不連続音が発生す る、ひどくなると、ブレードの巻き込みが起こり、感光 体がロックされる)の発生、感光層の摩耗促進などを起 こす。なお、摩擦係数を上昇させる要因としては感光体 材料、コロナ生成物以外にも現像剤、トナーの構成物質 (帯電制御剤など)、紙に含まれる結着剤、感光体の削 れ粉、定着装置から出るガス成分などがある。

【0121】したがって、高品位画像を長期に亘って維 持するためには、帯電装置からの影響を可能な限り排除 することが重要となる。

【0122】このため、帯電の際に帯電装置から生成さ れるコロナ生成物の影響を排除する方法としては、①感 光体表面に付着したコロナ生成物を速やかに除去する、 ②帯電装置から生成されるコロナ生成物を感光体に付着 する前に除去するか、もしくは生成しないようにする、 の2方法が考えられる。

【0123】ところが、①の方法では付着したコロナ生 成物のみを削り取るのが感光体の耐久性(膜厚維持)の 面から望ましいが、実際には感光体には凹凸があり、均 一に付着物のみを削り取ることは難しい。画像形成装置 ではブレードクリーニング、現像装置が稼働中常に感光 体を摺擦しているため、感光層に付着したコロナ生成物 等の汚染物質は常時削り取られており、画像への影響が 抑えられる。ただし、感光層表層の削れが多いため、感 光体の寿命が短くなると云う問題点を有する。

【0124】そこで、本発明の第二の画像形成方法で は、前記②の方法が採用される。②の方法では、コロナ 生成物の生成を抑制する手段としてオゾン及び窒素酸化 物の除去に特に有効な触媒ないし分解作用を有する材料 を利用する方法がある。コロナ生成物を排除する方法と して、帯電装置の周囲に触媒もしくは分解作用を有する 部材を配置することができるが、接触帯電装置のように 感光体に接触もしくは極く近接して配置されるような場 合には、設置が難しく、効果も薄い。このため、効果を 高めるには帯電装置を触媒もしくは分解作用を有する材 料で構成するのが最適である。

【0125】一般に、オゾンや窒素酸化物を吸着した り、分解したりする触媒には下記に示すような材料が知 ~ 2000 V程度の電圧を印加し、接触させながら帯電 50 られる。オゾンに関しては例えば、シリカゲル、活性ジ

ルコニア、ゼオライト、活性アルミナ、活性炭、活性炭 素繊維、Ti-Ni-Zr系の酸化物、二酸化チタン-アルミン酸石灰ーマンガン酸化物系、Cu-Mn系、ア ルミナーシリカゲル系、テルペノイド等がある。窒素酸 化物に関しては例えば、活性炭、活性炭素繊維、二酸化 チタンーアルミン酸石灰ーマンガン酸化物系、消石灰ー 活性炭ー炭酸カルシウム系、Pt-A12 O3系等があ る。

【0126】上記に示す材料を1種あるいは2種以上を アクリル樹脂やニトリル、ポリウレタン等のゴムの中に 添加して帯電装置とすることが可能である。ただし、上 記に示した活性炭素繊維以外の大半の材料は微粉末にす ると触媒としての機能が無くなり、また樹脂やゴム材に 添加して接触帯電装置として使用した場合、感光体を傷 つけたり、摩耗させたりする恐れがある。

【0127】活性炭素繊維は無害であり、オゾン、窒素 酸化物の両者に有効な除去機能を持ち、それ自体が導電 性で単独で使用することもでき、また必要に応じて加工 も可能であるので、帯電部材とした場合、本発明を達成 するに最も好ましい部材である。

【0128】活性炭素繊維にはポリアクリルニトリル (PAN) 系繊維 [(C3NH3) n] やセルロース系繊 維 [(C6 H10 O5) n]、フェノール系樹脂 [(C63 H 55·O11) n] 繊維、ピッチ系 [C124 H80 NO) n] 繊 維があり、5~15μm径の極細繊維を原材料として、 まず、200~500℃程度の温度で耐炎化が施され る。この状態では吸着性能はほとんどなく、単なる炭素 繊維である。この炭素化された繊維をさらに炭酸ガスな どの賦活ガス雰囲気中で600~1000℃に加熱(賦 活化) すると、繊維壁に直径10~40Å程度の微細孔 (ミクロポア) が形成される。この微細孔が吸着機能と 密接な関係があり、吸着される分子の大きさに適した孔 径を持つため、活性炭のようなマクロポアの多い吸着剤 よりも吸着特性に優れたものになる。繊維のポア径が1 00 Å程度に大きいと、窒素繊維の分子径よりも大きく 成り過ぎるため吸着性能は低下する。

【0129】この吸着機能を持つ活性炭素繊維の成分は 殆どが炭素(ほぼ90%以上)であり、それ以外は僅か な水素及び/又は窒素、残りは灰分で構成される。効果 を最大限に発揮させるためには活性炭素繊維を単体で使 用するのが最も好ましい。

【0130】活性炭素繊維は排水、飲料水、排気ガス、 タバコの煙等の浄化、冷蔵庫の脱臭などの環境材のほ か、近年では複写機のオゾン処理用としても採用され

【0131】除去機能は活性炭素繊維の壁面に形成され た極微細なポアに化学物質の分子が入り込み吸着され、 あるいは分解される(吸着、分解機能)。吸着性能はN Ox、SOx、オゾン、トルエンガス、メルカプタン、 塩素、アンモニア、硫化水素、硫化メチルなどに有効で 50 れる活性炭素繊維は一般に多い程望ましいが、使用状況

あり、これらの特性は従来の脱臭剤である活性炭(椰子 殻活性炭など)よりも更に優れたものである。吸着特性 は一般に比表面積 (m²/g) が大きくなるに従い向上 すると言われているが、分子の大きさによって左右され ることもあるので、一致しないこともあり得る。

【0132】代表的な活性炭素繊維は前述したセルロー ス系やフェノール系等4乃至5種の繊維系を出発材料と するものであるが、その中でもポリアクリルニトリル繊 維系 (PAN系) から形成されたものは窒素原子が2~ 5%程度含有されるものである。窒素-炭素比(N/ C) と窒素酸化物 (NOx) の吸着特性との間にはほぼ 相関性があり、N/Cが0.3~0.7(%)以上では NOxの吸着特性向上が認められることから、この窒素 原子がNOxの吸着に寄与しているものと考えられる。 すなわち、窒素原子を含まないセルロース系やフェノー ル系の繊維系よりも窒素原子を含むポリアクリルニトリ ル繊維系は、帯電時に生成されるNOx等に対して優れ た吸着、分解特性を示し、また、機械的強度も大きいた め、画像坦持体の帯電部材としてポリアクリルニトリル 繊維系を用いるのが特に有効である。 20

【0133】活性炭素繊維は用途別に、フェルト、ト ウ、織物、不織布等6~10種の形態があり、単体で使 用することも可能であるが、繊維の長さをおよそ100 μ m以下に粉砕し、紙、樹脂、ゴム等に均一分散しシー トに加工したり、ロール状にして使用する。一般的には 環境改善に用いられるが、近年では医学への応用研究も 成されている。これらの活性炭素繊維は鐘紡、ユニチ カ、旭化成工業、東邦レーヨン、東邦ベスロン、東洋紡 續、群栄化学など各社で製造している。

【0134】帯電装置の形態として、接触帯電形式のロ ール状では図7 (a) 及び図8 (a)、ブレード状では 図7 (b) 及び図8 (b) 、ブラシ状では図7 (c) の 様に構成でき、非接触帯電形式では図7 (d)及び図8 (c) 及び(d) の様に構成できる。例えば、図7

(a) 及び図8 (a) のロール状の帯電装置では、活性 炭素繊維を120μm以下、好ましくは60~5μm程 度の長さに粉砕し、前記したアクリル系樹脂やゴム材に 60%以上添加したロールを帯電部材として使用する。 添加する材料は活性炭素繊維単体で十分であるが、導電 性微粉末等と一緒にゴム材などと混練し作製することも 可能である。

【0135】これらの形態は使用される装置や目的等に 応じた設計がなされる。吸着・触媒材の中には粉砕し、 樹脂等に練り込むなどの加工を施すと、吸着と密接な関 係があるポアが塞がったり、あるいは粉砕によって効果 が失われたり、高温下で効果を発揮するものなども含ま れており、所期性能を発現しなかったり、感光体に接触 した場合、損傷を与えたりする可能性が大きい。したが って、機能を保持する量を添加する必要がある。添加さ

40

20

30

40

25 に応じて設計すれば良く、60%以上添加することで、 機能を維持することができる。

【0136】60%以下ではコロナ生成物の吸着機能が不十分であり、多い方がコロナ生成物の除去作用が高くなり望ましいといえるが、分散系の帯電部材では分散量が余り多いと、分散した活性炭素繊維による弊害(例えば、現像剤中に混入し、画像劣化の原因となる)が起こるので、最大でも92%程度が限度である。帯電ロールの駆動方式は自重で感光体と連れ回りする方式でも良いし、別個モーターで駆動させる方式でも良い。

【0137】図7(b)及び図8(b)に示すブレード形式、図7(c)に示すブラシ形式のもの、図7(d)及び図8(b)(c)では固定して使用されるため、活性炭素繊維100%のもの(例えば織物形態など)が使用でき、コロナ生成物の除去機能は100%発揮される。

【0138】また、図7(d)や図8(c)(d)の場合は活性炭素繊維をポリエチレンテレフタレートなどの $100\sim300\mu$ m程度のフィルムに貼り付け両端固定とし、感光体より $0.1\sim0.5$ mm程度離して、活性炭素繊維が感光体に対向するように設置する。活性炭素繊維の幅は1cm程度有ればよい。好ましい形態としては繊維長が $1\sim5$ mm程度の織物形態やフェルト形態、籐形態の活性炭素繊維を使用すれば良く、製品としては例えばFW310、410、FE200,300等の製品(いずれも東邦レーヨン製)がある。

【0139】活性炭素繊維は $10^2\Omega$ ・c m程度の低抵抗体であるので、帯電部材を誘電体に接触させ、回転する感光体に当接しながら前記帯電部材に電圧を印加すれば、ほぼパッシェンの法則に従って、誘電体に電荷を付与(帯電)することができる直線性の良い帯電部材であり、電気抵抗が低いために環境安定性に優れている。ただし、活性炭素繊維を摺擦形式の帯電装置に使用した場合、パッシェンの法則に従わない電荷注入も行われる場合もあり、計算で出した帯電特性より、 $100\sim150$ V程度帯電特性が良くなる。

【0140】したがって、活性炭素繊維を帯電部材として使用した場合、安定した帯電性が可能である。しかし、一方では、電気抵抗が低いために、感光体に剥離した部分があると、剥離部が焼損して拡大したり、ラッシュカレントが流れて電源がショートし破損されたり、帯電特性が不安定になったりする危険性がある。これの問題点を回避するためには、必要以上に帯電々位を上げないことは勿論のこと、電源部と帯電部材(装置)の間に抵抗体を接続することで対処する。この場合の抵抗体は通常のソリッド抵抗で十分であるが、有機導電性粉末やカーボン粉末、金属酸化微粉末等を分散した導電性ゴムや樹脂シートの様な抵抗体であってもよい。

【0141】活性炭素繊維は一本の繊維径が $5\sim15\mu$ mと細く脆い。したがって、繊維の先端が各所に亘って

感光体に接するような形態のもの、例えば、不織布、フェルトなどの形態のものは折れや擦り切れなどが起こりやすく、その際の微粉末は帯電安定性や画像に悪影響を与え、また、感光体にスクラッチを与え、磨耗の原因にもなりうるため、目的に応じた形態を採用したり、加工を行い使用するのが望ましい。

26

【0142】各種形態の中でもできるだけ織り目の細かい、引っ張り強度が強い織物が耐久性に最も優れ、画像 坦持体との接触性を十分に確保し、且つスクラッチなど の機械的ダメージを与えないような硬さの弾性部材 (スポンジ、フェルトなど)を内在させることによって、感光体が必要以上の力で当接させないことによって、感光体および帯電部材自体の磨耗を抑制し、コロナ放電法に 同等の良好な画像品質を確保できる。

【0143】織物の形態を帯電部材として使用する場合にはローラーのように回転させず、固定して使用するのが望ましい。ところが、織物の形態では画像のS/Nは織り目の大きさに依存して帯電ムラが左右される傾向がある。この問題を解決する手段はできるだけ細かい織り目の素材を用い、少なくとも帯電時の間固定し、感光体とのニップを1~8mm好ましくは2~6mmに設定するようにして稼働させると、織り目は顕像化されず、SN比の良好な画像が得られる。織り目が大きかったり、接触幅が十分に取れない場合には、画像上に周方向の縞模様が発生したり、鱗状の模様が発生し、また、十分なS/Nを稼ぐのに必要以上の帯電々位を画像坦持体に付与する必要があり、この様な場合には画像坦持体の放電破壊が起こる危険性を有している。

【0144】図9に図7(b)及び図8(b)に織物形態の活性炭素繊維(東邦レーョン製、FW210)を使用したときのブレード形式の帯電特性の一例を示す。活性炭素繊維は $10^2\Omega \cdot c$ mと極めて低い抵抗を有しているため、高圧電源に接続した場合、感光体にピンホールなどの欠陥が有ると、ショートし、電源が破壊される危険性がある。

【0145】そのショートを回避するために、抵抗を電源と帯電部材間に直列に接続する必要があるが、抵抗値により感光体に帯電される電位が左右される。通常は1MΩ前後の抵抗を接続し使用する。図9から、例えば一600Vの電位を得るためには帯電部材に−1000~−1200V程度の電圧を印加すればよいことが判る。

【0146】図10には実際の画像形成装置に帯電装置を装着し、稼働状態での帯電装置から生成されるオゾンの除去特性についての実際例を示す。100%(織物形態(東邦レーヨン製FW210)使用ブレード形式の帯電装置)を除いて、アクリル系の樹脂に分散したロール形式の帯電装置の例である。40%分散ではオゾンが検知されるまでの時間は10時間程度であるが、60%になると80時間程度、100%の活性炭素繊維では550時間程度は十分にオゾンが除去されていることが判

る。

【0147】窒素酸化物についてはここでは記載していないが、窒素酸化物に関しては100%の活性炭素繊維を使用した場合、500時間後でも全く検知されていない。

27

【0148】なお、オゾンの検知システムにはガステック (株) 製の検知管を、窒素酸化物の検知にはダイレック製の化学発光方式窒素酸化物測定装置 (DY-108400) をそれぞれ用いた。

【0149】次に、感光体の摩耗を抑制し、クリーニングブレードからの高周波音を発生させず、転写効率を維持し、高画質を長期間に亘って安定に維持しう為の方法について説明する。摩擦係数を低いレベルで維持する手段としては、①感光体の表層に低摩擦係数するための層を一層形成するか、あるいは感光層中に添加(分散)する(内添法)、②感光体表層に潤滑性付与部材を塗布する(外添法)がある。①に示す内添法はフッ素樹脂やシリコーンオイルなどが使用されるが、ブレードクリーニングや現像剤で潤滑性付与部剤が失われやすく、効果の持続性という面で問題がある。これに対し、②に示す外添法は必要に応じて外部より潤滑性付与部材を補給するため、効果の持続性という面では有利となる。

【0150】外添可能な潤滑性付与部材としては前記の潤滑剤があげられる。ただし、本発明の第二の画像形成方法においては電子写真特性を阻害しない物性(十分な潤滑性を有する、電気抵抗で10¹⁴ Ω・cm以上、屈折率が1.0前後、化学的に安定で変質しない等)を有し、良好なトナー像を形成し、感光体を汚染させず、傷つけること無しに感光体表層に簡単に薄層を形成できることが必要である。

【0151】これらの条件から以上記載した潤滑性付与部材の中で乾式で取扱いが簡便で、本発明の目的にかなう材料としては、ポリテトラフルオロエチレン(PTFE)、四フッ化エチレンとパーフロロアルキルビニールエーテル共重合体(PFA)、四フッ化エチレンー六フッ化プロピレン共重合体(FEP)があり、特に、ポリテトラフルオロエチレン(PTFE)は有効である。上記フッ素系樹脂は回転している感光体にスクラッチが入らない程度の荷重で摺擦することにより、感光体表層の摩擦係数を0.4(オイラーベルト方式による)以下に低減化することができ、その中でもポリテトラフルオロエチレン(PTFE)は容易に低摩擦係数化することが可能である。

【0152】感光体表層の摩擦係数を低減化することにより、感光層の摩耗は抑制され、トナー像の転写効率、クリーニング性能は向上し、感光体からの高周波音は皆無とすることができる。ただし、フッ素系樹脂部材の摺擦条件で摩擦係数は大きく変化する。

【0153】一定の荷重(当接圧)をかけながらフッ素 系樹脂部材を感光体に当接し、回転する感光体を摺擦す ることにより、フッ素微粒子が感光体に付着するが、感 光体にフッ素系樹脂を直接当接して行う方式では、転移 量は少なく徐々に行われるため、帯電ロールがフッ素系 樹脂で汚染されることは殆ど無く、帯電特性に対する影 響は皆無である。付着したフッ素系樹脂微粒子はクリー ニングブレード及び現像剤で削られるため、極端に低摩 擦係数化しない限り、付着したフッ素系樹脂は適当量消 費され、汚染物質の堆積が必要以上に行われず、また、 フッ素系樹脂微粉末は極めて微粒子であるため感光体に 付着した場合でも全く光像を遮ることもなく、また、電 荷を邪魔することもないため、付着したことによる画像 劣化は小さく、適当な摺擦回数を処理すれば、所望の摩

28

【0154】此の点がステアリン酸亜鉛やその他の潤滑性付与部材などをブランなどで強制的に削り、間接的にでも感光体に付与する方式とは大きく異なるところであり、此の部材及び方式の優れている点である。

擦係数を得ることができる。

【0155】摩擦係数は0.4以下0.1以上に設定されれば良く、一般の好適な範囲は0.2~0.3であるが、コロナ生成物の生成を抑制した帯電装置を使用する様な場合には、0.2以下でも使用可能であり、感光層の摩耗抑制といった面からも有効である。

【0156】好適な摩擦係数を得るためには、潤滑性付与部材(ここではポリテトラフルオロエチレン(PTFE、商品名例えばニトフロン、テフロン等)のフィルムが好適に使用される)を感光体に0.2mm以上のニップ(接触幅)で当接させる。通常は0.5~2mm程度有ればよい。当接圧の強弱を変化させることによって、摩擦係数は0.1~0.6の間で変化する。したがって、接触幅が感光体長手方向でほぼ同じ様な接触幅となるように設定し、適当な当接圧を加えれば、摩擦係数を適正なレベルに維持可能である。

【0157】この方式は感光体と摺擦させることによって摩擦係数を低減化させる方式であるため、感光体の摩擦係数を低減化させる効率は高く、コントロールも容易であるが、適当なニップ。を得る際には、当接圧も重要になり、あまり当接圧を高くすると、潤滑性付与部材での摩耗量は少なくなるが、異物が混入したときに感光体に局部的にスクラッチが入りやすくなる。従って必要以上の当接圧を加えることは得策ではない。一方、当接圧が軽くなった場合には、所定の摩擦係数が得られなくなり、また、不均一になりやすい。

【0158】摩擦係数は潤滑性付与部材を感光体に当接することにより、容易に低減化が可能であるが、感光体にダメージを与えずに常に安定した摩擦係数を得るには、感光体に適当な当接圧でソフトに均等に当接する必要がある。此の手段としては弾性部材を併用することである。

【0159】弾性部材としては適度な密度、硬さ、引っ 50 張り強度、延び等の特性を有し、熱的、機械的、化学的

30

29

に安定した部材のシートが好ましく、装置化する際に潤滑性付与部材に弾性部材を積層する。既述のとおり、弾性部材として適したものにはウレタン系の発泡部材等があり、特性例としては密度30~80(kg/m³)、引っ張り強度1.5~2(kg/cm²)、伸び60%以上等である。シートの厚みは装置の大きさや取り付けスペースによって左右されるが、通常は1.5~3mm程度の厚さが有ればよい。ここで使用される弾性部材としては、例えばイノアック社のRS、RP-80R、SM-55、EMO等の商品(いずれもウレタンフォーム)が好適である。

【0160】また、潤滑性付与部材としては、本発明の第一の画像形成方法の説明で述べたものがそのまま適用できる。この他、例えばニチアス社やデュポン社などのフッ素樹脂フィルム($50\sim300\mu$ m厚、PTFE)が使用できるが、特にこれらの銘柄に限定されるものではない。厚みとしては $50\sim300\mu$ m程度が使用できるが、耐久性を考えると 250μ mや 300μ m程度が望ましい。余り厚い場合には硬さが増すため、感光層に局部的にスクラッチが入りやすくなり、画像品質上好ましくない。

【0161】潤滑性付与部材装置の他の構造の例としては図11もしくは図12の様にし、感光体側から順に潤滑性付与部材214c、接着層214d、弾性部材214bの順に構成する。但し、図11は接着層214dを弾性部材214bの全面に亘って使用した場合、図12は感光体と当接する部位の内側には使用しない場合を示す。どちらを使用するかは潤滑性付与部材の厚さや形態によって変わる。

【0162】これらの潤滑性付与部材装置214の取り付けは図13に示すように感光体の回転方法にトレーディング方向で設置し、単体のユニットとして、あるいはプロセスカートリッジの中に組み込むことができる。潤滑性付与部材は常時当接しておく必要はなく、解除機構を付設し、間欠的に潤滑剤を付与することもできる。また、ここでは特に記載していないが、潤滑性付与部材をクリーニングブラシ、もしくは他のブラシ、塗布装置等に当接させ、それらの部材をを介して感光体に塗布する方法もある。画像形成装置の状況によって選択することが可能である。

【0163】次に潤滑性付与部材の取り付け位置について説明する。潤滑剤付与部材の取り付け位置の好適な位置はトナークリーニング装置と帯電装置との間が好適である。潤滑性付与部材が感光体に当接され、良好な効果得られるためには、感光体表面は清浄化された状態であること、及び作像中でも潤滑性付与部材装置が動作可能なことがである。一つの原稿からの複写が数枚程度で済めば、アイドリング中に作動させることも可能であり、帯電装置と現像装置の間に設定することもできる。ただし、多数枚を複写する場合には、付与間隔が開きするる

ために、付与された潤滑剤がクリーニングブレードや現像剤で除去されてしまい潤滑剤を付与した効果が薄れてしまう。 したがって、トナークリーニング装置と帯電装置との間が好適である。

【0164】図13は、図11に示した層形成のものを 潤滑性付与部材装置214としてクリーニング装置20 6に併設した例であり、図14は図3(b)と同様なの ものを潤滑性付与装置213としてクリーニング装置に 併設した例であるが、単独に設置しても良い。クリーニ ング装置に併設する方式は極めてシンプルであるため、 5~10mm程度のスペースが有れば十分に設置が可能 である。潤滑性付与部材装置の取り付け時には感光体に ニップを有するように取り付ける。

【0165】本発明では触媒・分解作用を有する帯電装置と潤滑性付与部材装置とを併用使用することによって、通常では画像流れが起こるような低摩擦係数になっても、画像流れなどの画像品質低下が生じない。したがって、感光体の長寿命が図れ、且つ良好な画像を維持することができる。

【0166】本発明の第三の画像形成方法においても所期目的を達成するために、感光体に摩擦係数を低減化するための潤滑性付与部材を作用させる。潤滑剤付与部材には前記のものが適用され、所期目的を達成できるので有れば固体でも液体でも良い。感光体へ付与する方式としては摺擦して塗布する方式、噴霧方式などがあり、感光体に対しほぼ均一に付与され、感光体にダメージを与えず、画像欠陥を起こさないもので有れば方式として特に限定されない。また、潤滑性付与部材装置311の取り付け位置は図15に示した様に、クリーニング装置306と帯電装置302との間が好ましいが、複写前後のアイドリング時に潤滑性付与部材を作用させるので有れば、感光体は清浄化された状態にあればよいので、上記位置以外の領域に設置されても問題はない。

【0167】潤滑性付与部材装置は感光体に常時作用されるものではなく、画像形成前に、あるいはクリーニング装置と帯電装置との間等の画像形成非行使領域において、潤滑性付与部材装置を作用させ、感光体の摩擦係数が0.1以下になったら、作用を停止し、付与した潤滑剤を摩耗させながら複写を行う。複写が進み感光体上の摩擦係数が0.4近傍まで上昇したら、再び潤滑性付与部材装置を感光体に作用させる繰り返し動作で画像形成を行う。潤滑性付与部材装置の作用間隔は感光体の表面情報、例えば表面抵抗の大小の形で読みとり、その情報で潤滑性付与部材装置をオン、オフさせたり、摩擦係数を摩擦抵抗などの特性で管理したり、複写枚数などでコントロールする事もできる。

【0168】この本発明の第三の画像形成方法では接触 帯電法、コロナ帯電法のいずれでも使用でき、ほぼ清浄 な感光体表層に潤滑性付与部材を付与する事によって摩 50 擦係数を一旦低くした後、感光体表層に付着した潤滑性

40

付与部材を摩耗させながら、画像形成を行う。潤滑性付与部材は図16(a)、(b)、(c)、もしくは図17(a)、(b)、(c)に図示するような方法で感光体に付与される。

【0169】例えば、ポリテトラフルオロエチレン(PTFE)などの固形状フッ素系樹脂を潤滑性付与部材311cとして使用する場合には、図16(a)の様に基体311aに弾性部材311bを介した構成にし感光体に直接接触させるか、図17(a)の様に塗布ローラー(ゴムローラーやブラシなど)315に一旦塗布した後、感光体に潤滑性を与える方法等の他、図示はしていないが帯電ローラーを介した方法もある。図16(a)の場合、ポリテトラフルオロエチレン(PTFE)は50~300μm程度のフィルム、図17(a)の場合には、更に厚手のフィルムやブロックを用いることが出来る。弾性部材314bは反発弾性の高い、柔らかい素材が好ましく、2~5mm程度の厚さのものが使用できる。市販品ではイノアック社のウレタンフォームSP-80R、RS等の発泡体が好適である。

【0170】フッ素系樹脂は削れやすく、削れた粉末は容易に感光体に転移するので、塗布ローラーを介した塗布に於いても感光体表層を0.15程度の摩擦係数に低減化できる。

【0171】シリコーン系オイルやフッ素系オイルあるいはグリース類を使用する場合には、図16(b)や図17(b)の方式等で行うことが出来る。オイルやグリースを含浸させた或いは内在させたウレタンフォーム、フェルト、硝子ウール、炭素繊維など保湿材311dと、被覆材及び保護材としてポリエステル繊維もしくはポリウレタン樹脂繊維などとの混織りの耐摩耗性の高い不織布等311eとで構成された潤滑性付与部材311を感光体に当接し、感光体が若干光沢が出る程度に1、2回摺擦する事によって、感光体表層を0.2以下の低摩擦係数に出来る。使用されるオイルは不乾性で、展性が有るため一回の塗布で、効果が持続する。

【0172】オイル粘度は100CS程度では摩擦係数を低減化するには不十分で、300CS以上、好ましくは1000CSや3000CS程度の高粘度のオイルが好ましい。塗布は感光体が僅かに光沢を持つ程度に薄く、均一に塗布する。塗布膜厚が厚くなった場合には、トナー付着による汚れや、接触帯電方式では帯電ローラーにオイルが付着し滑ったり、トナー汚れが起こり画像品質に乱れが起こりやすくなる。

【0173】ステアリン酸亜鉛などの固形ワックスの場合には、図17(c)の様な塗布ローラー(ブラシ)を介して、感光体に塗布するのが均一化するが有効である。ステアリン酸亜鉛の場合も、塗布ローラーを数回転させるだけで、容易に摩擦係数を0.2以下に下げることが出来、感光体の摩耗を抑制し、高耐久化を図ることが出来る。

【0174】しかしながら、これらの潤滑性付与部材は一般的には連続的に使用される場合が多く、0.2程度の低い摩擦係数が数100~数千枚に亘って継続した場合には、次のような問題が起こりやすくなる。例えば、シリコーン系オイルやフッ素系オイルを使用した場合には、コロナ生成物などの汚染物質がオイル層を通して感

32

光体に付着し、摩擦係数を上昇させる。また、汚染物質の付着により感光体表層の表面抵抗が低下するため、解像性低下が起こりやすく成り、60%RH程度の常湿環境でも画像流れが発生する。一方、ステアリン酸亜鉛などの固形ワックスを使用した場合にも同様にコロナ生成物をステアリン酸亜鉛に取り込みやすく、それによる解像性低下が起こる。

【0175】上記二種はいずれも塗布状態によって左右 されるが、塗布量が多くなるにしたがい、解像性低下が 早くなるため、塗布量に付いては十分なコントロールが 必要となる。

【0176】フッ素系樹脂を使用した場合には、摩擦係数が0.2~0.3の間に設定(好ましくは0.25前後)されるような十分なコントロールが行われれば、90%RHなどの高湿環境でも画像流れが起こるようなことはない。しかし、上記条件をはずれ、0.2近傍又はそれ以下で摩擦係数が長時間に亘って維持された場合に、60%RH程度の常湿環境でも解像性低下が生じる事がある。さらには、摩擦係数が低いために起こる摩耗力の低下のため、異物が固着し易くなり、トナーやフッ素系樹脂の混合物が除去されずに感光体上に粒状に固着した場合には、白斑点として画像に出ることがある。

【0177】感光層の摩耗は図18に示すように、摩擦係数に左右され、摩擦係数が低くなるほど、感光層の削れは少なくなり、感光体の寿命を延ばすことが可能となる。しかし、寿命が延びることは感光体に付着した汚染物質の削れも少なくなることを意味しており、前記したような問題点が生じ易くなる。したがって、此の問題を改善する手段としては、既に指摘したように、異常画像を発生しない程度に表面に付着した汚染物質を含む層を摩耗し、感光体表層を清浄状態に維持しながら、画像形成を行う事で改善可能である。

【0178】 摩擦係数が0.2以下に低下する事があっても、コロナ生成物などの低抵抗物質が付着しない限り、画像劣化に到ることはない。すなわち、感光体が汚染されていない状態で摩擦係数が0.2以下に低下したとしても、画像劣化を起こす要因がないから、潤滑性付与部材を感光体に付与する事によって0.2以下に摩擦係数を下げた後、付与した潤滑性付与部材及びその樹脂を含む感光層の最表面層を摩耗させながら画像形成を行う事で、感光体に付着した汚染物質も適当に削れ、感光体はほぼ清浄化された状態に維持されるため、画像劣化は回避できる。システム上では、潤滑性付与部材装置は50 例えばソレノイドやカム等を使用し、離接制御を行い、

摩擦係数が 0. 2以下になるように潤滑性付与部材の付 与のコントロールを行う。

【0179】摩擦係数は潤滑剤の種類により到達する最小レベルは変わる。例えば、フッ素系樹脂(ポリテトラフルオロエチレン)が十分に感光体に転移した場合には0.1前後、シリコーンオイルは0.08程度、ステアリン酸亜鉛は0.05~0.07程度である。しかし、複写プロセス内では0.15前後であり、この程度有れば十分である。

【0180】摩擦係数のレベルにより感光層の削れ量が 左右されるため、上限値は0.4程度までの範囲で使用 するのが望ましい。ただし、一時的に0.5程度までア ップしたとしても、数枚程度の複写で有れば、殆ど問題 とすることはないが、数十枚程度の複写が継続された場 合には膜削れが進むので、0. 4以下に抑えることが望 ましい。摩擦係数のコントロールはたとえば、感光層上 の摩擦抵抗を測定できる装置を付設しておき、その装置 からの信号を潤滑性付与部材の塗布装置にフィードバッ クし、塗布を行う様にすればよい。また予め、摩擦係数 の推移が判っていれば、枚数管理で行うことも出来る。 【0181】図19に3000CSと300CSのシリ コーンオイルを感光体に1回塗布した後作像し、50枚 作像後に再付与した時の摩擦係数の推移を示す。300 CSの方が付与1枚目の摩擦係数が高くなっているた め、3000CSのシリコーンオイルより早く0.4レ ベルまで達する。したがって、複写枚数で管理する場合 には、オイルの粘度によって制御条件を変更すればよ い。なお、原稿のサイズや文字数などで変動するので、 原稿に応じて付与間隔をコントロールするか、感光体表 面抵抗の情報を潤滑性付与部材のコントロール部にフィ

【0182】この例では潤滑性付与部材装置は摩擦係数が0.2以下から大凡0.4の間では不作動とし、0.4を越える点で作動を開始する様に設定されるか、或る一定枚数を作像した後に潤滑性付与部材装置が作動するように設定される。この事により、感光体に接触して機能を果たすクリーニング装置や、現像剤、コピー用紙などの感光体に対する抵抗力が適当に制御され、感光体表層の清浄化がほぼ保たれ、画像品質の劣化が抑制される。さらに、トナーの感光体への密着力を緩和するため、トナーのクリーニング性が向上し、転写性も向上する。

ードバックして、付与間隔を設定すればよい。

【0183】ところで、摩擦係数を一旦下げた後に感光層を少しずつ摩耗させる方法には研磨装置を付設する方法とクリーニングブレード及び現像装置の削れ機能をそのまま使用する方法がある。前者の場合にはスペースが必要となり、摩耗をコントロールする事も必要となるが、後者の場合には何ら処置を施す必要もなく、摩耗もほぼ均一で、徐々に摩耗するため、本発明では後者の方法が望ましい。

34

【0184】すなわち、潤滑性付与部材装置を適当な位置に配置し、画像形成前もしくはクリーニング装置と帯電装置との間等の画像形成非行使領域で潤滑性付与部材を感光体に作用させて摩擦係数を一旦0.2以下に下げた後、潤滑性付与部材の作用を停止し、感光体に付与した潤滑剤を摩耗させながら画像形成を行う。画像形成を行うに従い、感光層上に付与された潤滑剤がまず徐々に摩耗しはじめ、更にトナー並びにコロナ生成物などの汚染物質が摩耗する。摩耗が進行し、感光体の摩擦係数が0.4程度まで上昇したら、再び潤滑性付与部材を感光体に作用させ、摩擦係数を0.2以下(0.1が限度である)にする。以下この繰り返しになるが、この方法によって、必要以上に感光層が摩耗することが抑制される。

【0185】その結果、摩擦係数の変化は大きくなるが、低摩擦係数が長時間に亘って維持されることは無くなり、感光体に汚染物質が蓄積することもないため、感光層の摩耗は潤滑性付与部材装置を作用させないときに比べ進行速度は遅くなり、感光体表層の汚染が抑制されるため、高画像品質を維持でき、感光体の寿命並びにその他のクリーニング性、転写効率などの低下を抑制する事が可能となる。

【0186】また、潤滑性付与部材は常時使用されるわけではないので、消費量は従来の連続使用時の数分の1~数十分の1に抑制でき、部品としての寿命も長くすることが出来る。さらに、感光体に潤滑性付与部材を当接して使用するような場合には、当接法によっては感光体が傷付く場合が有るが、必要なときに感光体に作用させるため、感光体の傷つきが大幅に少なくなり、画像品質並びに感光体の耐久性にも好結果を与える。

【0187】次に潤滑性付与部材装置の取り付け位置について説明する。潤滑性付与部材装置例としては、図16(a)、(b)、(c)に示すような感光体に直接付与される構成のもの、図17(a)、(b)、(c)の様な塗布ローラーもしくは塗布ブラシを介して付与される構成のものなどで示される装置を、トナークリーニング装置と現像装置との間の感光体表層の清浄化位置にセットする。ただし、必ず此の位置である必要はなく、感光体が清浄化された後に作用すれば良いため、スペースが許せば前記以外の領域にセットされても良い。

【0188】感光体に清浄化が必要な理由は、潤滑剤付与部材を感光体に当接したり、あるいは噴霧などの状態で感光体表層を偏り無く低摩擦係数化する事が必要なためである。図20はPTFE、ステアリン酸亜鉛の2種の潤滑性付与部材を使用し、画像形成前に感光体表面を低摩擦係数化したのちの画像形成での摩擦係数の挙動を表したものである。

【0189】本発明の第四の画像形成方法は、上記第一 ~三の画像形成方法においては感光体表面の摩擦係数を 50 0.1~0.4にコントロールするというものである が、その理由は既述のとおりである。

【0190】本発明の第五の潤滑性付与部材装置はプロセスカートリッジ(図21)にし、又は単独のユニット(図22)としてトナーブレードクリーニング装置と帯電装置との間に設置するのが好ましい。

【0191】図23、図24及び25は、本発明の潤滑性付与部材装置511を構成する基体511a、弾性部材511b、および潤滑性付与部材511cの位置関係を表した三例である。図中、511dは接着層である。

【0192】この潤滑性付与部材装置511は、例えばアルミニウムやステンレス・スチール、燐青銅板などの厚さ0.2~1mmの金属板等の他、塩化ビニール、アクリル、ポリカーボネートなどの厚さ1~2mm樹脂板などをL型に加工した基体511aに、接着剤を用いて弾性部材511bと潤滑性付与部材(フィルム)511 cを張り合わせ作製する。接着剤は特に限定はない。弾性部材を劣化させず、しみこみが少なく、経年変化の無い適度の粘度を有する1液性もしくは2液性の接着剤の他、両面テープなどがあるが、高接着性の両面テープは簡便で、仕上がりも良好である。両面テープでは例えば、3M社の#442は基体、PTFE、弾性部材等に強固に接着するため、きわめて有用性が高い。

【0193】図23は弾性部材511bを貼り付ける基体511aの前面側(帯電装置方向)および潤滑性付与部材511cを貼り付ける基体511aの後面側(クリーンニング装置方向)に、基体の先端部から弾性部材の先端部まで連続的に接着剤を塗布し、弾性部材および潤滑性付与部材を張り合わせ作製した潤滑性付与部材装置の例である。弾性部材は基体先端より5~10mm程度長く伸ばし、潤滑性付与部材は更に0.5~1mm程度長めに伸ばし接着する。この様にすることで、潤滑性付与部材が感光体に均等に接し、接着層及び弾性部材が感光体に接触することがなく、部材による感光体へのダメージは起こらずソフト接触が可能となる。

【0194】図24は図23と殆ど同じであるが、弾性部材を貼り付ける基体側面の接着層と潤滑性付与部材を貼り付ける弾性部材上の接着層が連続的でなく分離されている点が異なる。この様にすることで、接着剤の影響が軽減され、感光体への当接圧の負担を軽くすることが可能となる。

【0195】図25は別の例で、弾性部材511b、潤滑性付与部材511cとも基体511aの前面側(帯電装置側)に設定した例である。

【0196】なお、ここで使用される弾性部材の例としては、例えばイノアック社のRS、RP-80R、SM-55、EMO等の商品(いずれもウレタンフォーム)が好適である。また、潤滑性付与部材としては、例えばニチアス社フッ素樹脂フィルム(50~300μm厚、PTFE)が使用できるが、特にこれらの銘柄に限定されるものではない。

36

【0197】これらの潤滑性付与部材装置の取り付け方法は図26に示すように感光体の回転方法に(トレーディング方向に)設置し、単体のユニットとして、あるいはプロセスカートリッジの中に組み込むことが出来る。なお、感光体に対する潤滑性付与部材の当接圧は前記当接圧の測定法によれば、10~30gの範囲が好適で、通常は20g前後の値に設定する。

【0198】本発明の第六の潤滑性付与部材装置611 の適当な取付け位置は、図27に示した本発明の第五の 例と同じく、トナークリーニング装置606と帯電装置 602との間である。

【0199】図28及び図29に本発明の潤滑性付与部材装置構成の概略図(断面図)をしめす。図28は基体611aに丸棒を使用したローラー方式の潤滑性付与部材装置の断面図であり、図29は扇形の棒状の基体611a′を使用した潤滑性付与部材装置である。

【0200】基体にはアルミニウム、真鍮、ステンレススティールなどの金属、ベークライト、塩化ビニール、アクリル、ポリカーボネート、デルリン等の各種樹脂製品が使用される。強度、変形が無ければ、内部は空洞であっても良い。

【0201】此の基体の上に、感光体とのソフト当接を実現するために、弾性部材611bが積層される。弾性部材には前記したような特性の部材が好適で、さらには接着剤が使用できる部材が望ましい。弾性部材は筒型に加工成形したもの、シート状の形態のいずれも使用できる。弾性部材を基体に保持するためには基体内に折り込むか、カシメを使用して保持する方法、接着剤を使用する方法等があるが、前記二種の方法はズレを生じたり、浮きを生じたりする可能性があり、得策ではない。

【0202】それに対し、接着剤を使用する方法は必要な箇所に接着剤を塗布して接着することにより、ズレや歪みのない状態を設定できるため、本発明では接着剤を使用するのが好適である。接着剤にはコニシ、セメダイン、東亞合成化学等の製造会社で作製されている1液性、2液性の塩化ビニール系やアクリル樹脂系、シアノボンド系などが使用できるが、弾性部材を劣化させない部材で有れば、前記接着剤以外の殆どの製品が使用可能である。また、両面テープは取扱いに簡便性を有するため有効性が高い。たとえば、3M社の高接着性を示す#442、ST-416P、4591HH等は特に良好である。接着剤を使用する位置は基体全面に使用するか、必要に応じて弾性部材2の端部等、数カ所に使用する。

【0203】潤滑性付与部材は例えばニチアス社やダイキン工業、日東工業、三井フロロケミカル等で製造されているフッ素系樹脂フィルムが殆ど使用可能であり、特にこれらの銘柄に限定されるものではない。

【0204】潤滑性付与部材はフィルム状のテトラフル オロエチレン (PTFE) で、膜厚は50~400μm 50 が使用できる。使用する膜厚は要求される耐久枚数に応

37

じて適宜変化させればよいが、膜厚が厚くなるにしたが い、弾性部材の機能が果たせなくなるので、実用的には 薄い方が好ましい。 100μmの厚みのフッ素系樹脂フ ィルムを使用すれば、基体の直径にも左右されるが、た とえば、 φ 1 0 mmの丸棒に 2 mm厚の弾性部材を使用 し、その上から100μmのフッ素系樹脂フィルムを使 用した場合には少なくとも、40万枚程度或いはそれ以 上の使用は可能である。丸棒以外には扇形の形状のもの が使用でき、扇形の基体を使用した場合には適用幅が制 限される分、耐久枚数が短く成るが、20万枚程度の耐 久性で有れば100μm前後の膜厚のフッ素樹脂フィル ムでも十分実用性が得られる。更に耐久性を必要とする 場合には、更に300~400μm程度の厚めのフッ素 樹脂フィルムを使用すれば、耐久枚数を延ばすことも可 能となる。

【0205】潤滑性付与部材の適用長さは少なくとも有 効現像長さ及びトナークリーニングブレード長さと同等 の長さか、もしくはそれより2mm程度長くすることが 望ましい。これは感光体を長期に亘って使用した場合、 現像剤及びクリーニングブレードによって、感光層に削 20 れを生じ、段差が出来る事によって、潤滑性付与部材の 当接にムラを生じ、感光層の膜削れ、ひいては画像品質 のムラに影響が及ぶのを極力回避するためである。潤滑 性付与部材の長さが短い場合には、特に両端で浮きが生 じ、摩擦係数の上昇を招き、感光層の膜削れが促進され

【0206】図30は一定枚数、或いは一定時間毎に感 光体との当接位置を変化させることを目的とするギア6 11 f を使用した機構の一部を示す説明図である。此の 機構は潤滑性付与部材を連続的に回転させる方法では特 30 に必要とするものではない。一方、固定して使用する方 法では一定のピッチで回転し、逆回転を防止する必要が ある。すなわち、潤滑性付与部材装置には図30に示す ような一定のピッチで送り出し及び逆回転を防止する鍵 状のレバー611gを付設したギアが取り付けられてい る。潤滑性付与部材の基体にはソレノイドで回転するよ うな部材が取り付けられ、そのソレノイドはタイマー、 もしくはカウンターからの信号を受けて動作する回路を 有する。回転するピッチ(移動幅)はニップより若干広 以上に設定するのが望ましく、通常は2~3mmのピッ チで移動するようにギアを形成する。此の機構により、

一度使用されたニップ部に戻ることが無く、一定の間隔

[下引き層用塗工液]

アルキッド樹脂(ベッコゾール 1307-60-EL,

メラミン樹脂 (スーパーベッカミン G-821-60,

大日本インキ化学工業製)

大日本インキ化学工業製)

4部

6部

酸化チタン

40部

メチルエチルケトン

200部

で安定に感光体の摩擦係数を保持することが可能とな る。レバーに関してもソレノイドのオン、オフで開閉さ せることが出来る。

【0207】別の駆動方法としては、一定のピッチで回 転させる方法として、ステッピングモーターと軸を直結 させ、タイマーもしくはカウンターからの信号を受け て、ステッピングモーターが稼働するようにさせること もできる。更に、別の駆動方法としては、感光体の回転 を利用する方法がある。此の方法は感光体の回転に合わ せて、潤滑性付与部材を回転させるが、その回転は前記 ピッチに相当するだけの回転で、ギアと鍵状レバーで一 定ピッチ以上に回転しないような形状に成っている。

【0208】感光体に対する潤滑性付与部材の当接圧は 前記当接圧の測定法によれば、5~30gの範囲が良好 で、通常は10~20g程度が好適である。

【0209】これらの潤滑性付与部材装置は単独で、も しくは帯電装置、現像装置、クリーニング装置などとの 組み合わせで構成されるプロセスカートリッジに組み込 むことが出来る。プロセスカートリッジに組み込むこと で、ハンドリングが便利となる。

[0210]

【実施例】次に、実施例及び比較例を挙げて本発明を具 体的に説明する。ここでの部は重量基準である。

【0211】 (評価方法1) 効果確認用の装置として、 帯電ロール形式の接触帯電装置、感光体及びブレードク リーニングで構成されるプロセスカートリッジを内蔵す る電子写真複写機(イマジオMF420機、リコー製) を用意し、以下に示す条件で作成した感光体を搭載し評 価を行った。評価方法は連続通紙とし、適時、指定の原 稿による画像評価、前出方法による摩擦係数、フィッシ ャー社の渦電流式の膜厚計(MMS)による膜厚の測定 を行う。通紙複写枚数はA4サイズ横送りとし、200 00枚で評価を行う。評価環境は22~24℃/60~ 70%RH、および30℃/90%RHである。

【0212】(感光体の作製法)厚さ1.2mm、φ3 0 mmのアルミニウムドラムに下記処方の下引き層用途 工液、電荷発生層用塗工液、電荷輸送層用塗工液を順次 途布し、各層形成毎に乾燥することにより、厚さ3.5 ~4 µ mの下引き層、厚さ0. 2~0. 25 µ mの電荷 めになるように形成するが、ピッチは少なくとも1mm 40 発生層、厚さ26~30μmの電荷輸送層をそれぞれ形 成し、電子写真感光体作製した。

[0213]

[0214]

[電荷発生層用塗工液]

5部 オキソチタニウムフタロシアニン 2部 ポリビニルブチラール (UCC製:XYHL) 80部 テトラヒドロフラン (THF)

[0215]

[電荷輸送層用塗工液]

ビスフェーノルA型ポリカーボネート(帝人:パンライトK1300)

下記構造の低分子電荷輸送物質

【化1】

塩化メチレン

メチルフェニルシリコーンオイル (50cs)

100部

10部

数滴

【0216】 (実施例1~2) 感光体の摩擦係数を低減 20 場合を比較例2、さらに、接触帯電装置のクリーニング 化するための潤滑性付与部材装置として、厚さ0.3m mのステンレス板のウレタンフォーム(イノアック社 製、SP80R)、両面テープ (3M社#442) を使 用して、図3 (b) に示す形状のもの(実施例1で使 用)を作製した。次に、帯電ロールの摩擦係数を低減化 するための潤滑性付与部材装置として、厚み0.3 mm のアルミニウム板、200μmのPTFE (ニチアス社 製、TOMBO#9001)、厚み2mmのウレタンフ オーム (イノアック社SP80R) 両面テープ (3M社 製、#442)を使用して、図4(b)に示す形状のも の(実施例2で使用)を作製し、厚さ3mmのウレタン フォーム(イノアック社製、EMOと同等品)をクリー ニング部材として内蔵させた帯電カバー部に設置した。 これらの各部材の設置図は図1の複写プロセスに示す通 りである。感光体に対する潤滑性付与部材装置の当接圧 は前記測定法に従い約18gであった。これらの評価方 法1による効果確認結果を表1に示す。

【0217】感光層の摩擦係数は0.25前後の数値を 示し、感光層の摩耗量も1万枚当り夫々0.13、0. 15μmと良好であった。感光体へのトナー等の固着は 40 殆どなく、高湿環境でも画像の乱れは皆無であった。さ らに、帯電ロールのトナー汚れは薄く汚れた程度で、1 00μm、300μmのPTFE使用時とも画像品質へ の影響はほぼ皆無であった。いずれも、感光体の高周波 音は発生しなかった。

【0218】 (比較例1~3) 感光体及び帯電ロールに 潤滑性付与部材装置を設置しないで評価した場合を比較 例1、感光体にのみ実施例1に示す300μmのPTF Eで作製した潤滑性付与部材を設定し、当接圧を25g にアップして実施例2より更なる低摩擦係数化を図った 50

部材を外し、実施例1に示す100μmのPTFEを用 いた感光体用のPTFE帯電ロール用の200μmのP TFEとの組み合わせの場合を比較例3とする。これら の評価方法1による結果を表1に示す。

【0219】PTFEを感光体及び帯電ロールに作用さ

せなかった場合には、感光体の摩耗が1万枚当たり0.

85μmと多く、帯電ロールへのトナー固着もかなり悪 かった。また、感光体の高周波音は微かではあるが発生 した。帯電部材へPTFEを作用させなかった場合に は、帯電ロールのトナー汚れは比較例1よりは良く、画 像品質への影響はハーフトーン画像で少し筋状の模様が 確認された。一方、感光体へのフッ素樹脂の固まりを含 むトナー固着が見られ、それに対応するような白い斑点 が濃いハーフトーン画像に確認された。感光体及び帯電 ロールにPTFEを作用させ、帯電ロールにクリーニン グ部材を内蔵させなかった場合には、感光体にトナー等 の固着が多く、又帯電ロールへのトナー固着もかなり悪 く、ハーフトーン画像に大きなムラが発生した。

[0220]

【表1】

或每三十 30°C/ 90%RH 良好 電話なほぼばん 番汚れほぼめ かなら かなり 用い かなり 思い 関が多 関少国少奢し落し 噩 多图 ÷ **聚光** 斯斯 85 ö ö ö ö 54 摩擦係数 ö ö ö ö 4 ö ö ö ö ö 30°C/ 90%RH 6.3 2 rs. ø. (本/mm) 解像度 5万枚後 ~ ė. ம் 22 2 . ĸ. ŵ 11--11 選 拼触浓圈 育 搟 妆 £ E Įī, 発弃 無 猟 200 200 ß E E Įz, 300 濉 20 8 300 2 က 実施 比較1 東路

(感光層の摩耗量は1万枚当たりの摩耗を示す。)

【0221】(評価方法2)効果確認用の装置として電子写真複写機(リコー製イマジオMF200感光体直径は30mmφ]、もしくはイマジオ420 [感光体直径は80mmφ])を使用し、以下に示す評価方法及び条件で作成した感光体を搭載し評価した。評価方法は、5万枚の通紙を行いながら、適時、指定の原稿による画像評価、前出方法による摩擦係数、フィッシャー社の渦電流式の膜厚計による膜厚の測定および、前記した装置を10使用してオゾン及び窒素酸化物の測定を行う。測定環境は22~24℃/66~70%RH、および30℃/90%RHである。

【0222】(感光体の作製法)アルミニウムドラムを基体として下記処方の下引き層用塗工液、電荷発生層用塗工液、電荷輸送層用塗工液を順次塗布し、各層形成毎に乾燥することにより、厚さ3.5~4μmの下引き層、厚さ0.2~0.25μmの電荷発生層、厚さ26~28μmの電荷輸送層を失々形成し、電子写真感光体を作成した。

20 [0223]

30

〔下引き層用塗工液〕

アルキッド樹脂(ベッコゾール1307-60-EL、

大日本インキ化学工業製)

6部

メラミン樹脂(スーパーベッカミンG-821-60、

大日本インキ化学工業製)

4部 40部

メチルエチルケトン

200部

[0224]

[電荷発生層用塗工液]

酸化チタン

下記構造のトリスアゾ顔料

2. 5部

[化2]

ポリビニルブチラール (UCC: XYHL)

0.5部

200部

シクロヘキサノン メチルエチルケトン

80部

[0225]

[電荷輸送層用塗工液]

ビスフェーノルA型ポリカーボネート (帝人:パンライトK1300) 下記構造の低分子電荷輸送物質

10部

10部

[化3]

20

塩化メチレン

メチルフェニルシリコーンオイル (50 c s)

100部

【0226】 (実施例3) 評価用の電子写真複写機とし てイマジオ420機を用意した。帯電部材として織物状 の活性炭素繊維(東邦レーヨン社製、FW210、活性 炭素繊維100%) を用意し、弾性部材として3mm厚 のウレタンフォーム(イノアック社製、ウレタンフォー ムRS)、ホルダーとして3mm厚のアクリル樹脂を用 意し図8(b)に示すような構造の帯電装置を作成し、 感光体との接触幅(ニップ)が4~5mm幅になるよう に設定した。一方、潤滑性付与部材装置として、250 μmの厚さのポリテトラフルオロエチレン (PTFE) (ニチアス社製、TOMBO9001) に弾性部材とし て2mm厚のウレタンフォーム(イノアック社製、ウレ タンフォームSP-80R)、基体として0.3mm厚 のステンレス (SUS 304) 板を使用し、図11の ような構成で図13に示す構造の潤滑性付与部材装置を 作製し、感光体ユニットのクリーニング装置にニップが 40 0.8~1.5 mmになるように取り付けた。この時の 当接圧は通紙評価後の摩擦係数が0.2以下になるよう に約35gに設定した。帯電々位は高圧電源と帯電装置 間に1MQの抵抗を接続し、直流電圧のみを印加し、帯 電々位が一700~750Vになるように印加電圧を調 節し、5万枚の通紙の評価で行った。評価方法2による 結果を表2に示す。表中、常湿環境は22-24℃/6 6-70%RH、高湿環境は30℃/90%RHを、0 3はオゾン、NOxは窒素酸化物を夫々指す。

機としてイマジオ420機を用意した。帯電部材として ヒドリンゴムの表層にフッ素系樹脂/ヒドリンゴムを保 護層として被覆した15mmoの帯電ローラで構成され た帯電装置(感光体との連れ回り方式)、潤滑性付与部 材装置として250μmの厚さのポリテトラフルオロエ 30 チレン (PTFE) (ニチアス社製、TOMBO 90 01) に弾性部材として2mm厚のウレタンフォーム (イノアック社製、ウレタンフォームSP-80R)、 基体として0.3mm厚のステンレス(SUS 30 4) 板を使用し、図11の様な構成で図13に示す構造 の潤滑性付与部材装置を作製し、感光体ユニットのクリ ーニング装置にニップが O. 8~1.5 mmになるよう に取り付けた。この時の当接圧は通紙評価後の摩擦係数 が 0. 2以下になるように設定する場合を比較例 4とす る。帯電部材として織物形態の活性炭素繊維(東邦レー ョン社製、FW210、活性炭素繊維100%)を用意 し、弾性部材として3mm厚のウレタンフォーム(イノ アック社製、ウレタンフォームRS)、ホルダーとして 3mm厚のアクリル樹脂を用意し図8(b)に示すよう な構造の帯電装置を作製した。潤滑性付与部材装置を設 置しない場合を比較例5とする。比較例4及び5の帯電 電位は実施例3と同様直流電圧のみを印加し-700~ -750Vに設定し、5万枚通紙で評価した。

【0227】 (比較例4及び5) 評価用の電子写真複写 50

【0228】評価方法2による結果を表2に示す。 【表2】

画像品質の低下は抑制されているが、潤滑性付与部材装 置を使用していないため、感光層の削れが多くなった。 【0230】 (実施例4~6) 評価用の電子写真複写機 としてイマジオ420機を用意した。帯電部材として硬 度11~12度、厚さ2mmのポリマー発泡体(イノア ック製、ウレタンフォーム、商品名ポロンLE-20) に繊維径5~15μm、長さ20~40μmの活性炭素 繊維を70%、85%、90%分散した厚さ300 µ m のアクリル系樹脂(東邦レーヨン製試作品)をスプレー 10 糊で張り合わせたシートを直径15mm、長さ270) mmの真鍮ロットに同じく、スプレー糊を使用し、隙間 ・ 無く螺旋状に張り、帯電チャージャーユニットに組み込 みロール式帯電装置(感光体との連れ回り方式)を作製 した。潤滑性付与部材としてニチアス社の250μmの フッ素樹脂フィルム(PTFE、商品名:TOMBO 9001)、弾性部材として2mm厚のウレタンフォー ム (イノアック社製SP-80R)、基体として0.3 mm厚のステンレス板 (SUS 304) を用意し、図 9に示す形状の潤滑性付与部材を作製し、実施例/と同 20 じ様に評価用装置に組み込んだ。帯電々位は高圧電源と 帯電装置間に1MΩの抵抗を接続し、実施例3同様、直 流電圧のみを印加し-700~-750Vに設定し、5 万枚通紙で評価した。潤滑性付与部材の当接圧は30~ 35gにセットした。これらを順に実施例4、5、6と する。評価方法2による結果を表2に示す。

> [0231] 【表3】

30

 北 公 V	超池存住口	(本/百	te mm)	68000	品	A	磨糠保鞍	感光層 摩耗盘	0.1 発生量	Nox 発生品
桥亀狹爾	对被	常溫環境	高極環境	常恆頻塊	商極環境	初期	ラン後	(μm/ 5万枚)	(m d d)	(m d d)
有り	有力	6.3	5.6	異常なし	異常なし	0.39	0.16	0.15	0	٥
無い	有り	5.6	2.0以下	異常なし	画像流れ	0.42	0. 42 0. 19	0.09	0.5	0.03
価の	第し	6.3	5.6	異常なし	異常なし	0.41	0.61	1.5	0	0

【0229】実施例3ではオゾン、窒素酸化物の除去機 40 能を有する帯電装置、感光体表面の摩擦係数を低減化す る潤滑性付与部材装置を使用することで、摩擦係数が低 く押さえられ画像品質品質の低下が抑制され良好な解像 度が得られ、また感光層の摩耗も少なかった。これに対 し、比較例4では感光層の摩耗が抑えられているが、通 常のオゾン、窒素酸化物を除去できない接触帯電装置を 使用したため、窒素酸化物が感光体に付着し、画像流れ の要因となり、画像品質の低下を起こした。一方、比較 例5はオゾン、窒素酸化物除去可能な接触帯電装置を使 用することにより低摩擦係数でも画像流れは起こらず、

(23)

	4	<u>7 </u>		
Nox 独生日	(m d d)	0	0	0
0, 独	(m d d)	0	0	0
級所權無	(μ四/ 5万枚)	0.18	0.16	0.16
(保数	ランダ	0.21	0.18	91.0
降撥	初期	0.43	0.38	0.46
黑麗	南極環境	異常なし	異常なし	Æ
国	常福環境	異常なし	異然なし	減
REE mm)	高值環境	5.0	6.3	6.3
解像度 (木/mm)	常福環境	5.6	5.6	6.3
潤滑性付与	材裝體	有的	# D	本の
0, NOx 除井	带電装置	有り	本の	本の
		田格色人	分を発	多

5mm、長さ270mmの真鍮ロットに同じく、スプレ 一糊を使用し、隙間無く螺旋状に張り、帯電チャージャ ーユニットに組み込みロール式帯電装置(感光体との連 れ回り方式)を作製した。(実施例7、8) 一方、帯電部材として織物形態の活性炭素繊維(東邦レ ーヨン社製FW210、活性炭素繊維100%)を用意 し、弾性部材として3mm厚のウレタン樹脂系の発泡材 (イノアック社製、ウレタンフォームRS)、ホルダー として3mm厚のアクリル樹脂を用意し図8(b)に示 10 すような構造の帯電装置を作製した。 (実施例9) 潤滑性付与部材としてニチアス社の300μmのフッ素 樹脂フィルム (PTFE、商品名: TOMBO 900. 1)、弾性部材としてイノアック社の2mm厚のSP-80R、基体として0. 3mm厚のステンレス板(SU S 304) 用意し、図13に示す形状の潤滑性付与部 材を作製し、実施例3と同じ様に評価用装置に組み込ん だ。帯電々位は直流電圧を-800V、交流電圧を2K V/1kHzの交流を重畳した直流電圧を印加し-70 0 V目標に設定し、5万枚通紙で評価した。潤滑性付与 20 部材の当接圧は約30gにセットした。評価方法2によ

【0233】 【表4】

る結果を表4に示す。

30

40

5万枚評価では70%~90%分散の帯電装置のいずれ に対しても特に目立つような異常は発生せずほぼ均一な ハーフトーン良好な、解像性の高い画像が得られた。

【0232】 (実施例 $7\sim9$) 評価用の電子写真複写機 としてイマジオ420機を用意した。帯電部材として硬度 $11\sim12$ 度、厚さ2mmのポリマー発泡体(イノアック製、商品名ポロンLE-20)に繊維系 $5\sim15\mu$ m、長さ $20\sim40\mu$ mの活性炭素繊維を70%、85%分散した厚さ 300μ mのアクリル系樹脂(東邦レーョン製試作品)をスプレー糊で張り合わせた物を直径1

織物形態の活性炭素繊維(東邦レーヨン社製FW21 0、活性炭素繊維100%)を用意し、弾性部材として 3 mm厚のウレタン樹脂系の発泡材 (イノアック社製、 ウレタンフォームRS)をU字型に曲げ、ホルダーとし て3mm厚のアクリル樹脂を用意し図8(b)に示すよ うな構造の固定式の帯電装置を作成した。潤滑性付与部 材としてニチアス社の300μmのフッ素樹脂フィルム (PTFE、商品名: TOMBO 9001)、彈性部 材としてイノアック社の2mm厚のSP-80R、基体 10 として 0. 3 m m 厚のステンレス板 (SUS 304) を用意し、図13に示す形状の潤滑性付与部材を作製 し、評価用装置に組み込んだ。帯電々位は直流電圧を一 800V、交流電圧を2KV/1kHzの交流を重畳し た直流電圧を印加し-700V目標に設定し、5万枚通 紙で評価した。潤滑性付与部材の当接圧は15~25g にセットし、摩擦係数が 0. 25程度になるようにセッ トした。比較例6は通常の帯電装置(比較例4と同様) を使用し、潤滑性付与部材を使用した場合、比較例7は 活性炭素繊維を使用した帯電装置のみで、潤滑性付与部 20 材が無い場合である。評価方法2による結果を表5に示 す。

【0235】 【表5】

30

40

49 E 発生量 Š ۵ 0 0 ٥ (mdd) 5 発って 0 极光图摩耗配 (4日/ 5万枚(X) 0.2 ö ö 8 ö ö ī 解被係 4 ₽ ö 0 铙 4 翘 若干) 異常/ 短短 (be 国復品質 ВK 異常なし 異常なし 常温環境 鈱 W. ė, 超距 ı, ဖ (本/mm) 解傻度 茶泡漿漿 9 ö ĸ; 置滑性付与 部村装置 有り 有存 茶井 0. NOx 除去 带電装置 有力の力 征 6 œ 窦施例, 実施例 (実施例

帯電電圧に交流を重畳した場合には添加量が少ない場合に比べ、オゾンが僅かに発生する傾向が見られたが、窒素酸化物は検出限界以下で量的には不明であった。高湿環境では若干筋模様が発生したが、常温環境では異常は特になく、ハーフトーン画像での均一性という点では直流電圧印加時よりも向上が見られた。織物形態で作製した帯電装置でも画像品質の向上が見られ、均一性の面では極めて良好であった。

【0234】 (比較例6及び7) 評価用の電子写真複写機としてイマジオ420機を用意した。帯電部材として

50

ا هير	51 2		\neg
Nox 程生盘	(ш а а)	0.02	
03 発生庫	(m d d)	0.1	0
鸡光面 帮郑斯	(μ四/ 5万枚)	0.5	1.9
摩梅係数	ラン後	0.23	0.65
摩擦	附位	0.51	0.37
品質	高温環境	画像流れ	異常なし
10000000000000000000000000000000000000	常過環境	異常なし	(i€
袋房(10円)	南温環境	2.4	6.3
(本人	常短環境	5.6	5.6.
超语性付与	部材装置	有り	無し
0- NOx 除去	并電装置	第一	有り
		7 85 63 6	比較例7

W210、活性炭素繊維100%)を用意し、弾性部材 として2mm厚のウレタンフォーム (イノアック社製、 ウレタンフォームRS)、ホルダーとして2mm厚のア クリル樹脂を用意し図8 (b) に示すような構造の帯電 装置を作製した。一方、潤滑性付与部材装置として、2 50μmの厚さのポリテトラフルオロエチレン (PTF E) (ニチアス社製、TOMBO 9001) に弾性部 材として2mm厚のウレタンフォーム (イノアック社 製, ウレタンフォームSP-80R)、基体として0. 10 3 mm厚のステンレス (SUS) 板を使用し、図11の 様な構成で図13に示す構造の潤滑性付与部材装置を作 製し、感光体ユニットのクリーニング装置にニップが $0.8\sim1.5$ mmになるように取り付けた。この時の 当接圧は約15~35gの間で設定し、通紙評価後の摩 擦係数が0.35前後(実施例10)、0.25前後 (実施例11)、及び0.2以下(実施例12)の夫々 の数値を示すように設定した。帯電々位は直流電圧のみ とし、1ΜΩの抵抗を介しての表面電位が-700~-750 Vになるように設定し、5万枚の通紙の評価で行 20 った。これらの評価方法2による結果を表6に示す。 [0237] 【表6】

52

比較例6では帯電装置にコロナ生成物の触媒・分解作用 40 を有しないため、高湿環境では画像流れが発生し、実用 性が無かった。一方、比較例7では潤滑性付与部材装置 が無いため、感光層の削れが多くなり、画像流れの発生 はなかった。比較例4では潤滑性付与部材装置がないた めと、帯電装置による感光層削れが多かったために、コ ロナ生成物の触媒・分解作用の効果は明確ではなかっ

【0236】 (実施例10~12) 評価用の電子写真複 写機としてイマジオMF200機を用意した。帯電部材 として織物形態の活性炭素繊維(東邦レーヨン社製、F

製、ウレタンフォームRS)、ホルダーとして2mm厚 E d Nox 発生量 のアクリル樹脂を用意し図8 (b) に示すような構造の _ 帯電装置を作成し、従来セットして有った帯電チャージ ャー内に組み込んだ。潤滑性付与部材装置は装着しなか (bpm) 0.3 発生量 った。帯電々位は直流電圧のみを印加し、一700~一 0 lo 750 Vを目標に設定し、5万枚の通紙の評価で行っ た。比較例8の場合はコロナ生成物除去機能を有する帯 **观光面** 帮郑 (4日/8万代) 電装置を装着した場合、比較例9は通常の帯電装置(比 0.85 較例4に同じ)を夫々示す。これらの評価方法2による 10 結果を表7に示す。 レン後 0.26 [0239] 0 【表7】 0.45

20

30

40

实施例 实施例 摩擦係数に応じて感光層の膜削れが推移するが、いずれ の実施例に於いても良好な結果が見られた。又、感光層 に若干スクラッチが発生したが、画像に影響は見られな かった。実施例12においては低摩擦係数にも関わら ず、画像劣化は認められなかった。

53

異常なし

異常なし

6.3 6.3

9 6.3

有り有り

有 有り 有り 征

က် 'n

乍

海姆斯 與第7

华阁联邦

高温環境

常温環境

潤滑性付与 部材装置

03.NOx 除去 带電装置

配数保数

回做品質

解發度(本/mm)

【0238】 (比較例8及び9) 評価用の電子写真複写 機としてイマジオMF200機を用意した。帯電部材と して織物形態の活性炭素繊維(東邦レーヨン社製、FW 210、活性炭素繊維100%)を用意し、弾性部材と して2mm厚のウレタン樹脂系の発泡材(イノアック社

	0, NOx 除共	温浴件付与	解像度 (本/mm)	像度 /mm)	画	X 00	强	摩擦係数	码光园 摩耗盘	0, 発生量	Nox 発生量
	帯電装置	部村装置	常阻環境	高温環境	常溫漢境	角嶺蝦塘	机场	ラン後	(μm/ 5万枚)	(m d d)	(шаа)
平数位18	有り	無し	6.3	5.0	異常なし	異常なし	0.51	0.62	5.6	0	0
比较到9	兼し	第し	5.6	6.3	異常なし	異常なし	0.37	9.0	4.5	0.08	0.01

潤滑性付与部材装置を装着しないことによって、感光層の削れが実施例10~12に比して明らかに大きかった。これは摩擦係数が0.6以上と大きいためと思われる。比較例8においては感光層にスクラッチが多くなり、そのため感光層の摩耗も多くなった。また、比較例9においては微かに高周波音が発生した。

56

【0240】(評価方法3)効果確認用の装置として、解除機構を設けた潤滑性付与部材装置を取り付けた電子写真複写機(イマジオ420機もしくはDA355機リ10 コー製)を用意し、以下に示す条件で作成した感光体を搭載し評価を行った。評価方法は連続通紙とし、適時、指定の原稿による画像評価、前出方法による摩擦係数、フィッシャー社の渦電流式の膜厚計(MMS)による膜厚の測定を行う。通紙複写枚数はA4サイズ横送りとし、20000枚で評価を行う。評価環境は22~24℃/60~70%RH、および30℃/90%RHである。

[0242]

30

40

[下引き層用塗工液]

アルキッド樹脂(ベッコゾール1307-60-EL、

メラミン樹脂 (スーパーベッカミンG-821-60、

大日本インキ化学工業製)

6 部

大日本インキ化学工業製)

4部 40部

メチルエチルケトン

200部

[0243]

〔電荷発生層用塗工液〕

酸化チタン

下記構造のトリスアゾ顔料

2. 5部

【化4】

ポリビニルブチラール (UCC: XYHL)

シクロヘキサノン

メチルエチルケトン

0.5部

200部80部

[0244]

[電荷輸送層用塗工液]

ビスフェーノルA型ポリカーボネート

(帝人:パンライトK1300)

10部

下記構造の低分子電荷輸送物質

【化5】

20

塩化メチレン

メチルフェニルシリコーンオイル (50 c s)

100部

【0245】(実施例13~15)評価用の電子写真複写機として、潤滑性付与部材が複写枚数に応じて、感光体とオン、オフを繰り返すように改造したイマジオ420機を用意した。潤滑性付与部材にはニチアス社の300μmのフッ素樹脂(PTFE)フィルム(商品名:TOMBO9001)、弾性部材として2mm厚のウレタンフォーム(イノアック社SP-80R)、基体として0.3mm厚のステンレス板を用意し、図16(a)に示す様な構成の潤滑性付与部材装置を作製した。一方、フェルトに3000CSのシリコーンオイルを含浸させた保湿材とカネボウ社のクラウゼン生地使用の不織布で図16(b)の様な潤滑性付与部材を作製した。

【0246】フッ素樹脂(PTFE)フィルムからなる 潤滑性付与部材装置を感光体の回転の順方向に成るよう に、評価機の感光体ユニットの除電ランプ側に取り付け、感光体との当接幅(ニップ)が 3 mm前後に成るように $35\sim40$ g の当接圧を印加した(実施例 1 3)。一方、シリコーンオイルからなる潤滑性付与部材の方は ニップが $3\sim5$ mmに成るように設定した(実施例 1 4)。

【0247】さらに、潤滑性付与部材にはニチアス社の 300μmのフッ素樹脂(PTFE)フィルム(商品 名:TOMBO9001)、弾性部材として2mm厚の ウレタンフォーム(イノアック社SP80R)、基体と して 0. 3 mm厚のステンレス板を用意し、図 16 (a) に示す様な構成の潤滑性付与部材装置を作製し、感光体とのニップが 1. $5 \sim 2 \text{ mm}$ に成るように設定した。当接圧は $17 \sim 20 \text{ g}$ とした(実施例 15)。

【0248】コロナ帯電器には帯電々位が-700~750Vになるように印加電圧を調節し、40枚間隔で3万枚の通紙評価を実施した。フッ素樹脂(PTFE)フィルムを潤滑性付与部材装置とした場合には、複写間のアイドリング時間中に複写開始まで当接させ低摩擦係数化させ、シリコーンオイルを使用した場合には、潤滑性付与部材が感光体に2周当接する様に手動操作し低摩擦係数化させた。評価方法3による結果を表8に示す。表中、常湿環境は22~24℃/60~70%RH、高湿環境は30℃/90%RHである。

【0249】実施例13、14に付いては潤滑性付与部40 材の効果が十分あり、感光層の削れも良好で、画像劣化なく抑制効果の高い好結果が得られた。実施例15に関しても効果は見られた。しかし、摩擦係数が0.2以下にまで達しなかったことから、40枚設定では、摩擦係数が大きくなり、それに伴い感光層の削れが多い目になった。これらの評価方法3による結果を表8に示す。

[0250]

【表8】

		解像度(本/mm)	画像品質		摩拉	京係数		感光層摩耗量
	酒滑性 付与部材	常湿環境 (初期)	高湿環境 (3万枚後)	高湿環境 (3万枚後)	初期	1枚目	40 枚目	ラン後	(μm/5 万枚)
実施例 13	PTFE	5. 6	7.1	異常なく 良好	0. 38	0. 19	0. 42	0. 28	1.0
実施例 14	3000 csSiOil	6. 3	6. 3	異常なく 良好	0. 41	0. 14	0. 34	0. 32	0. 75
実施例 15	PTFE	5. 6	6. 3	異常なく 良好	0. 44	0. 26	0. 56	0. 38	2. 1

写機として、実施例13、14に示すと同じ装置を使用 し、潤滑性付与部材の作動コントロール系が複写中常時 作動するように条件変更した。潤滑性付与部材は実施例 13及び14と同等のものである。フッ素樹脂(PTF E) フィルムを使用した潤滑性付与部材装置では、感光 体との当接圧を30~35gに設定し、ニップが3mm 前後になるように成るように、感光体ユニットの除電ラ ンプ側に取り付けた(比較例10)。シリコーンオイル (3000CS) を潤滑性付与部材とした場合には感光 体とのニップが3~5mmに成るように、感光体に当接 20 した (比較例12)。さらに、潤滑性付与部材を設置し ない (比較例12) 場合についても評価した。コロナ帯 電器には帯電々位が一700~750Vになるように印 加電圧を調節し、連続で3万枚の通紙評価を実施した。 【0252】評価方法3による結果を表9に示す。表 中、常湿環境は22~24℃/60~70%RH、高湿 環境は30℃/90%RHである。PTFEを潤滑性付 与部材とした場合には、摩擦係数は0.15~0.2の 間で推移したため、常湿環境では、解像性の崩れは無か ったが、高湿環境では解像性低下を生じた。シリコーン * 30

【0251】 (比較例10~12) 評価用の電子写真複 10*オイルの場合には常湿環境でも、局部的に画像流れが生 じ、高湿環境では全面に亘って、全く画像流れを生じ た。潤滑性付与部材を使用しない場合には画像品質上の 問題は生じなかったが、感光層削れが、実施例13、1 4及び15に比して大幅な削れを示した。

> 【0253】 (比較例13) 評価用の電子写真複写機と して、クリーニング装置内のクリーニングブラシを介し て感光体に潤滑性付与部材が連続的に付与されるように 改造したイマジオDA355機を用意した。潤滑性付与 部材には10×5×300 (mm) の大きさに加工成形 したステアリン酸亜鉛バーを両面テープを使用して支持 体に取り付けた。帯電々位は一700~750Vとし、 連続通紙を行い3万枚の通紙評価を実施した。評価方法 3による結果を表9に示す。表中、常湿環境は22~2 4℃/60~70%RH、高湿環境は30℃/90%R Hである。感光層の膜削れは抑制されているが、画像流 れが局部的に常湿環境でも発生し、高湿環境では完全に 画像流れとなった。

[0254]

【表 9】

	NOR THE LAL	解像度(本/mm)	画像品質	摩擦	孫数	感光層摩耗量
	潤滑性 付与郎材	常湿環境 (初期)	高湿環境 (3 万枚後)	高温環境 (3 万枚後)	初期	ラン後	(μm/3 万枚)
比較例 10	PTFE	5. 0	4. 0	若干解像性 低下有り	0.39	0. 17	0. 2
比較例 11	3000 csSiOil	6. 3	2.0以下	画像流れ	0. 45	0. 32	0. 15
比較例 12	無し	5. 6	6. 3	異常なく 良好	0.42	0. 58	2. 7
比較例 13	ステアリン 酸亜鉛	5. 6	2.0以下	画像流れ	0.43	0. 35	0. 32

【0255】 (比較例14) 評価用の電子写真複写機と して、プラス帯電用に、潤滑性付与部材を複写枚数に応 じて、オン、オフを繰り返すように改造したイマジオ4 20機を用意した。潤滑性付与部材にはニチアス社の2 O O μ mのフッ素樹脂 (PTFE) フィルム (商品名: TOMBO9001)、弾性部材として2mm厚のウレ タンフォーム (イノアック社SP-80R)、基体とし て 0. 3 mm厚のステンレス板を用意し、図 16 (a)

素樹脂(PTFE)フィルムからなる潤滑性付与部材装 置は感光体の回転の順方向に成るように、評価機の感光 体ユニットの除電ランプ側に取り付け、感光体との当接 幅 (ニップ) が3mm前後に成るようにし、当接圧は3 0~35gとした。一方、感光体として、支持体温度を 45℃にして、約50 µ mの厚さに蒸着したセレン感光 体(三菱金属製、99、999%以上、真空蒸留セレン 使用)を用意した。この感光体を評価用の装置にセット に示す様な構成の潤滑性付与部材装置を作製した。フッ 50 し、40枚毎に潤滑性付与部材がオン、オフするように

セットし、3万枚の通紙評価を実施した。評価方法3による結果を表10に示す。セレン感光体を使用した場合には、潤滑性付与部材が良好に塗布されず、高湿環境下では黒ベタ画像に筋状模様、ハーフトーン画像にモヤム*

61

*ラを生じ、解像度に低下が見られた。

[0256]

【表10】

	VIII) II III.	解像度(本/mm)	画像品質	摩摸	係数	戚光層摩耗量
	阀滑性 付与部材	常湿環境 (初期)	髙湿環境 (3 万枚後)	高湿環境 (3万枚後)	初期	ラン後	(μm/3万枚)
比較例 14	PTFE、Se 系	5. 0	4.0	モヤ状ムラ	0. 24	0. 65	0.14

【0257】(評価方法4)効果確認用の装置として、ローラー帯電方式の電子写真複写機MF200(リコー製)及びローラー帯電方式に改造したFT420(リコー製)を用意し、以下に示す評価方法及び条件で評価を行った。評価方法は連続通紙を行い、1000~5000枚毎に指定の原稿による画像評価、前出方法による摩擦係数を測定し、1万枚毎にフィッシャー社の過電流式の膜厚計(型式MMS)による膜厚測定を上記測定項目に加えて行う。評価環境は22~24℃/60~70%RH、および30℃/90%RHである。

【0258】(感光体の作製法)評価方法3で用いたの 20 と同じ電子写真感光体と同じ。

【0259】 (実施例16~22) 潤滑性付与部材とし てニチアス社の25、50、100、200、250、 3.00、400μmのフッ素樹脂フィルム(PTFE、 商品名:TOMBO90001)、弾性部材としてイノ アック社の2mm厚のSP-80R、基体としてL型に 加工し、ネジ止め孔を7ヶ所空けた0.3mm圧、クリ ーニングブレードより両側1mm長くなると長さ337 mmのステンレス・スティール部材(SUS304)を 用意し、フッ素樹脂フィルム(PTFE)は290×1 2 (mm) に、弾性部材は290×11 (mm) に夫々 カットし、3M社の両面テープ#442を用いて、図2 4に示す形態の潤滑性付与部材装置を作製した。感光体 に当接する部位は弾性部材が基体の先端部から5mm、 フッ素樹脂フィルムが更に1mm長くなるように設定し た。この様にして作製した潤滑性付与部材装置を評価用 電子写真複写機(MF200、リコー製)のプロセスカ ートリッジのクリーニング部のネジ止め加工した金属支 持体にトレーディング方向になるようにセットし、前記 評価通紙枚数方式で最高で3万枚の通紙評価を行った。 当接圧は前記した測定法で15~30gの間でセットし た。評価方法4による結果を表11に示す。

【0260】フッ素樹脂フィルムの膜厚を変えることのよる特性上の問題は画像には顕在化せず、いずれも作像領域全面で良好な結果が得られた。但し、25μmの膜厚のフッ素樹脂フィルムでは感光体外観に与える影響は殆ど無く良好であったが、部材自体の耐久性が短い。400μmのフッ素樹脂フィルムは摩擦係数を低減化させる効果は全く問題ないが、部材自体の硬さのため弾性部材の機能が生かされず、感光体へのダメージが生じた。

10 それ以外の膜厚のフッ素樹脂フィルムによる潤滑性付与 部材装置では実用上の問題は殆ど生じなかった。

[0261]

【表11】

50

価用電子写真複写機 (MF200、リコー製) のプロセ スカートリッジのクリーニング部の金属支持体にトレー ディング方向になるようにネジ止めした。更に別の潤滑 性付与部材装置として、弾性部材に2mm厚のウレタン フォーム (商品名: RS、イノアック製) 、潤滑性付与 部材として200μmのフッ素樹脂フィルム(商品名: TOMBO#9001、ニチアス製)を実施例に示す基 体を用い、基体先端部より弾性部材を約3mm、フッ素 樹脂フィルムが約4mm出るように、両面テープでそれ 10 ぞれを張り合わせ潤滑性付与部材装置を作製した。この 時の各部材の取り付け方は図23の様に基体を挟んで両 側に接着層を用いて張り合わせる形であるが、フッ素樹 脂フィルムは基体に対して帯電装置側、弾性部材はクリ ーニング装置側になるように接着する。プロセスカート リッジに取り付け方はフッ素樹脂フィルムを内側に曲 げ、感光体に押し付けながらネジ止めする。 (比較例1 9) これらの評価方法4による結果を表12に示す。 【0263】表11から判るように、潤滑性付与部材装 置を設置しない場合は、感光層に大幅な削れが生じ、感 20 光体の耐久性に問題がある。フッ素樹脂フィルム単体の 場合には、摩擦係数を低減化させる効果は認められ、フ ッ素樹脂フィルムの厚い方が結果は良い。しかし、反発 弾性率が極めて低いために、若干の歪みが摩擦係数に暴 れを起こすため、長期使用には問題がある。 200 μm のフッ素樹脂をアルミニウムに接着し、当接した場合に は感光体との当接が不十分となり、摩擦係数に大きな暴 れ生じる。弾性部材とフッ素樹脂フィルムの組み合わせ で、カウンター方向に設置した場合には、感光体との接 着性も改善され、摩擦係数も低くできるが、摩擦係数に 30 暴れが見られ、フッ素樹脂のエッジ部で感光体にスクラ ッチを発生させやすく、先端部に付着したトナーが画像 品質を劣化させた。

[0264] 【表12】

強心存		解傻度(本/mm)	/mm)	画	回像品質	強強	摩擦係数	長米阿姆斯中	部材配入住
付与部材()	包数	ガンが	30°C/90%RH	ラン後	30°C/90%RH	城华	ラン袋	(µm/1万枚)	(万枚)
25	9	9 9	5.6	異常なく	異常なく	0.39	0.29	0.21	-
3 5	, c	2 3	5 6	異常たく	異常なく	0.45	0.24	0.20	2
3 2	9 6	2 6	25	1	異常なく	0.45	0.23	0.18	þ
201	3 4	9 4	6.3	国党なく	異常なく	0.53	0.24	0.12	6.5
969	o c	5 -	2 6	W	異常なく	0.48	0.22	0.11	8
300	5 15	3	2 2	異位なく	異常なく	0.44	0.23	0.15	12
60	6.3	6.3	5.0		筋状模模	0.44	0.15	90.0	16

【0262】 (比較例15~19) 潤滑性付与部材装置 40 を使用しない場合(比較例15)、潤滑性付与部材とし てニチアス社の200、300μmのフッ素樹脂フィル ム (PTFE、商品名: TOMBO9001) を使用し 弾性部材を接着せずに作製した潤滑性付与部材装置(比 較例16及び17)、L型加工した0.5mm厚、幅5 mmのアルミニウム部材を基体に接着剤で留め、0.5 mmのゴムシート(アスカーC硬度約40度)を両面テ ープ (スコッチ#422) ではり、その上から200μ mフッ素樹脂フィルムを両面テープで張り作製した潤滑 性付与部材装置(比較例18)のそれぞれについて、評 50

30

40

ープ#442を用いて、図24のような形状の潤滑性付 与部材装置を作製した。この潤滑性付与部材装置を評価 用電子写真複写機(FT420、リコー製)の感光体ユ ニット部にトレーディング方向で設置し、5万枚の通紙 評価を実施した。この評価方法4による結果を表13に 示す。効果は実施例16~22に示す結果とほぼ同様な 好結果が得られ、実用上の問題点は画像上生じなかっ た。

66

[0266] 【表13】 10

	通海柱	Ŀ	解像度(本/	(mm)	画像。	数品質	摩擦/	(係数	馬卡阿爾斯爾	_
	在中部技 (中m)	初期	多ング	30°C/90%RII	ラン後	30°C/90%RII	初期	ラン後	(μm/1.万枚)	
実施例 23	100	5.6	5.6	5.6	異常なく	異常なく	0.56	0.23	0.12	
实施例 24	200	6.3	5.6	6.3	異常なく	異常なく	0.53	0.24	0.00	

			_	65		
成本体表面		اد	摩擦係数ムラ大	摩擦係数ムラ中	摩睺係数ムラ大	路販完数ムラ中
威光層磨耗量	(μm/1万枚)	0.82	0.59	0.31	0.52	0.32
摩擦係数	ラン後	0. 51	0.38	0.32	0.42	0. 27
摩擦	初期	0.43	0.39	0.45	0.48	0.42
画像品質	30°C/90%RH	異常なく	異常なく	異常なく	加 状模模	筋状模做
画	アン後	異常なく	異能なく	異常なく	筋状模糊	筋状模様
/mm)	30°C/90%RH	6.3	6.3	5.6	6.3	4.5
解像度(本/	ラン後	5.6	7.1	6.3	5.6	6.3
	初期	5.6	6.3	5.6	5.6	5.6
潤滑性付与部材	散定方式	瀬つ		300μm単体	200μm アルミ止め	200 m カウンター方向
		比較例 15	元数 应 16	比較例 17	比較例 18	比較例 19

65

【0265】(実施例23及び24)潤滑性付与部材と してニチアス社の100及び200μmのフッ素樹脂フ ィルム (PTFE、商品名:TOMBO9001)、弾 性部材としてイノアック社の2mm厚のSP-80R、 基体としてL型に加工し、ネジ止めが可能なように孔を 空けた0. 3 mm厚、長さ325 mmのステンレス・ス ティール部材 (SUS304) を用意し、フッ素フィル ム (PTFE) は325×15 (mm) に、弾性部材は 325×10 (mm) に夫々カットし、3M社の両面テ 50 材質、寸法のものを用意し、図5に示す方法で両面テー

【0267】 (実施例25~28) 弾性部材として硬 さ、密度の異なる2種のウレタンフォーム (SP-80 R、RS)、潤滑性付与部材として250μmの厚さの フッ素樹脂フィルム(商品名: TOMBO#9001、 ニチアス社製)、基体は実施例16~21に示すと同じ プを使用し潤滑性付与部材装置を作製した。感光体に当接する部位の寸法は弾性部材が基体先端より4mm、フッ素樹脂フィルムが5mmの幅とした。ニップの幅は潤滑性付与部材装置の先端部が感光体に当接する際の角度を微妙に調整することにより当接圧を調節した。作製した潤滑性付与部材装置は評価用電子写真複写機(MF200、リコー製)のプロセスカートリッジのクリーニング部金属支持体にトレーディング方向になるようにネジ止めし、2万枚の通紙評価を実施した。評価方法4による結果を表14に示す。

【0268】表14に示すように、ニップが小さくなるに従い、摩擦係数が低下し、感光体の摩耗は増加するが、ニップが0.1mm程度では摩擦係数に対する寄与は僅かであるが、0.2mm以上あれば実用的には問題ないレベルである。部材の2万枚終了後の削れは約50μm程度であるので、フッ素樹脂部材は耐久性は問題はない

【0269】【表14】

10

20

(mm) 初期 ラン後 30℃/90%RH ラン後 3 0.2-0.35 5.6 6.3 5.6 問題なし 0.5-0.8 5 6.3 5.6 問題なし 1.3-2 6.3 5.6 6.3 問題なし 0.1-0.2 5.6 7.1 6.3 問題なし		11 34		解读度(木/	/mm))国	圆像品質	路梯份	(保数	吸光陷除耗量
5.6 6.3 5.6 問題なし 問題なし 5 6.3 5.6 旬、3 問題なし 6.3 5.6 6.3 問題なし 問題なし 5.6 7.1 6.3 問題なし 問題なし		(E E)	初期	アン後	30°C/90%RH	ラン後	30°C/90%RH	初期	ラン後	(μm/1万枚)
5 6.3 5.6 問題なし 問題なし 6.3 5.6 6.3 問題なし 5.6 7.1 6.3 問題なし 問題なし	実施例 25	0. 2-0. 35	5.8	6.3	5.6	問題なし	問題なし	0.39	0. 29	0.37
1.3-2 6.3 5.6 6.3 開題なし 0 1-0 2 5.6 7.1 6.3 問題なし	実施例 26	0.5-0.8	5	6.3	5.6	هدا	問題なし	0.51	0.23	0.19
0 1-0 5 6 7 1 6 3 問題なし 問題なし	実施例 27	1.3-2	6.3	5.6	6.3	問題なし	問題なし	0.48	0.21	0.1
1	实施例 28	0.1-0.2	5.6	7.1	6.3	問題なし	問題なし	0.43	0.45	0.68

68

30

【0270】(評価方法5)効果確認用の装置として、 帯電装置をローラー帯電方式に、潤滑性付与部材装置は 感光体ユニットに取り付けるように改造した評価用の電 子写真複写機(イマジオFT420、リコー製)を用意 した。評価方法は連続通紙を行い、5000~1000 40 0枚毎に指定の原稿による画像評価、前出方法による摩 擦係数を測定し、1万枚毎にフィッシャー社の過電流式 の膜厚計(型式MMS)による膜厚測定を上記測定項目 に加えて行う。評価枚数は5万枚とした。評価環境は2 2~24℃/60~65%RH、および30℃/90% RHである。

【0271】 (潤滑性付与部材装置の作製) 潤滑性付与 部材は 0 1 0 mmに切削加工したアルミニウム棒に、接着剤として両面テープ (3 M社、#442) を使用し、2 mm厚のウレタンフォームシート (イノアック社のS P-80R) を張り付け、その上から50~400 μ m

*囲に設定した。

の厚みのフッ素樹脂フィルム(ニチアス社、TOMBO #9001PTFE)を、同じく前記両面テープを使用 し端部に凹凸が出ないように均一に貼り付け、フッ素樹 脂フィルムの合わせ部分は糊付き薄膜テフロンテープで 処理した。この様にして作製した潤滑性付与部材のシャ フトに、ウレタンゴムのOリングをはめ、連続に回転す る方法、2mmピッチで回転する様にするためのギアと **鍵状のレバー、ステッピングモーターを付設し、一定枚** 数毎に当接位置をずらす様にして、潤滑性付与部材を感 光体に当接する方法の2種の方法が確認できるように、 夫々別の感光体ユニットに取り付け、1万枚毎に手動で ・オン、オフを行った。なお、潤滑性付与部材の感光体に 対する当接圧は本発明に示す測定法で10~30gの範*

【0272】 (感光体の作製法) 厚さ1.2mm、 ø1 00mmのアルミニウムドラムを浸漬塗工機にセット し、まず、下記処方の下引き層用塗工液で塗工を行い、 130℃30分乾燥後3.5~4μmの下引き層(U L)、ついで電荷発生層用塗工液で塗工を行い、70℃ 10分間乾燥後、0.2~0.25μmの電荷発生層 (CGL)を製膜下。さらに、電荷輸送層用塗工液で塗 工を行い、120℃25分乾燥後、25~26μmの電 10 荷輸送層 (CTL) を夫々形成して評価用の電子写真感 光体を作製した。

6部

70

[0273]

[下引き層用塗工液]

アルキッド樹脂 (ベッコゾール 1307-60-EL, 大日本インキ化学工業製)

メラミン樹脂 (スーパーベッカミン G-821-60,

4部 大日本インキ化学工業製)

酸化チタン(CR-EL、石原産業製) 40部

メチルエチルケトン 200部

[0274]

[電荷発生層用塗工液]

オキソチタニウムフタロシアニン顔料 5部 ポリビニルブチラール (UCC: XYHL) 2部 テトラヒドロフラン (THF) 80部

[0275]

[電荷輸送層塗工液]

ビスフェノールA型ポリカーボネート (帝人:パンライトC1300)

下記構造の低分子電荷輸送物質

【化6】

10部

テトラヒドロフラン (THF) メチルフェニルシリコーンオイル (50 c s)

100部

10部

数適

に前記した両面テープ、弾性部材、テフロンテープ等の 材料、潤滑性付与部材として50、100、400 µ m の膜厚のフッ素樹脂フィルム(ニチアス社製PTFE、 商品名:TOMBO#9001)を使用し、連続回転可 能な潤滑性付与部材装置を完成し、感光体ユニットに取 り付けた。この感光体ユニットを評価用の電子写真複写 機に取り付け、5万枚の通紙評価を行った。これらを順 に実施例29、30、31として評価方法5による結果 を表15に示す。表15から明らかなように、実施例に

【0276】(実施例29~31)アルミニウムの丸棒 40 画像品質良好であり、部材の変形なく、異常は全く生じ なかった。

【0277】(比較例20及び21)潤滑性付与部材装 置を装着しないで、評価を行う場合を比較例20、アル ミニウムの丸棒に実施例30に示す100μmのフッ素 樹脂フィルムを潤滑性付与部材として、順に弾性部材、 潤滑性付与部材を巻き付け、端部のみをテフロンテープ (テフロンはデュポン社の商標) で抑えて作製した潤滑 性付与部材装置で評価する場合を比較例21として、結 果を表15に示す。表15に示すように、潤滑性付与部 示す50~400μmのフッ素樹脂を使用した装置では 50 材を使用しない場合には、感光層の摩耗が大きく、接着

71

剤を使用しないで、端部のみテフロンテープで抑えた場合は、ズレを生じ、皺を生じ、摩擦係数に暴れを生じ、 画像品質も筋模様が発生した。なお、表中、常温常湿は *90%RHを示す。 【0278】 【表15】

22~23℃/60~65%RH、髙温髙湿は30℃/*

	PTFE膜厚	摩擦係数		画像品質		感光層摩耗量	部材変形
	(µm)	初期	ラン後	常温・常湿	高温・高湿	(µ m/l 万枚)	有・無
実施例 27	50	0. 43	0. 28	良好	良好	1.4	無し
実施例 28	100	0. 39	0. 26	良好	良好	1.1	無し
実施例 29	400	0. 42	0. 23	良好	良好	1. 3	無し
比較例 20	_	0. 38	0. 56	良好	良好	4. 2	_
比較例 21	100	0. 39	0. 52-0. 23	良好	若干筋模様	2. 1	一般少 し発生

20

30

【0279】(実施例32及び33)前記した実施例に したがい作製した固定式の潤滑性付与部材装置を用い、 1万枚毎に手動でスイッチをオン・オフする事によっ て、2mmづつ回転させ、当接位置をずらしながら特性 評価を行った。その結果を表16に示す。潤滑性付与部 材装置を固定して使用する場合には、回転して使用する 場合に比べ、摩擦係数が少し低下する傾向があり、それ に伴い、感光層の摩耗も抑えられる傾向が確認された。 潤滑性付与部材装置の摩耗は1万枚当たり、約20μm 程度であり、耐久性的には全く問題はなかった。画像品 質的には100μm、400μmのフッ素樹脂フィルム 使用時とも、実用上殆ど問題ない程度の品質を示した。 【0280】 (比較例22) アルミニウムの上に両面テ ープを張り、その上から200μmのフッ素樹脂フィル ムを張り合わせ、実施例32及び33と同様な潤滑性付 与部材装置を作製し、評価を行った。結果を表16に示 す。弾性部材を使用しない場合には、接着剤の影響がフ ッ素樹脂の凹凸となり、又、ニップを稼ぐことが出来な いため、摩擦係数を低下させることが出来ず、その結 果、感光層の摩耗が促進され、画像品質的にはムラの多 い画像となった。

【0281】 【表16】

部材変形 無っ The second 無い 锤 级光層摩耗量 (E #) 南面・南海 ほぼ良好 両像ムラ 良好 画像品質 能 良好良好 回飯人 常温 άQ 0.23 5万枚 摩擦係数 初期 0.43 = o ဝ 5万枚後のニッ 0.8 1.5 0.9 1.2 (mm) PTFE膜厚 (m m) 5 5 20 寒施例 32 実施例 比較例

40

【0282】 (実施例34~37) 実施例32、33に 50 示す作製法により、100μmのフッ素樹脂フィルムを 使用し作製した固定式の潤滑性付与部材装置を用い、当 接圧を大凡5g~35gの間で変化させることにより、 通紙ランニング中の摩擦係数を変化させ、特性評価を実 施した。5万枚後の摩擦係数は表17に示すとおりであ る。摩擦係数が0.12程度となった場合には、潤滑性 付与部材の効果が良く効き、感光層の摩耗抑制が大きか った。画像品質的には常湿環境では問題は生じなかった が、高温高湿環境では、少し画像流れが生じ、横方向で は文字太り、縦方向では文字細りが生じた。実施例34* *~37のような摩擦係数を少し高くした場合には、感光 層の削れは摩擦係数に応じて進行するが、画像品質的に は問題はなかった。しかし、摩擦係数が0.44にもな ると、感光層の摩耗が進行し、耐久性の上から問題が起 こるようになるが、潤滑性付与部材を使用しない比較例 20よりも効果は少し見られた。

74

[0283]

【表17】

	摩擦係数		画像	品質	感光層摩耗量	部材変形
	初期	5万枚後	常温・常温	高温・高湿	(µm)	有・無
実施例 33	0. 43	0. 12	良好	少し文字太り	0.76	無し
実施例 34	0.39	0. 25	良好	良好	1. 1	無し
実施例 35	0.42	0.35	良好	良好	1.52	無し
実施例 36	0.38	0.44	良好	良好	3. 1	無し

[0284]

【発明の効果】請求項1記載の画像形成方法によれば、 潤滑性付与部材を感光体のみならず帯電ロールに作用さ せることで、摩擦係数を低減し、感光体並びに帯電ロー ルへのコロナ物の吸着を緩和する。その結果、感光層の 20 摩耗は抑制され、トナー等のクリーニング性が向上し、 画像品質の低下が少なくなり、感光体の長期的な使用を 可能とし、安定した画像が提供できる。また、クリーニ ングブレードが感光体と擦れる際に発する高周波音の発 生は皆無である。

【0285】請求項2記載の画像形成方法によれば、コ ロナ生成物の生成を抑制した帯電装置を使用することに よって、感光体の特性劣化を抑制し、潤滑性付与部材装 置を感光体表層に作用させることによって、感光体表層 の摩擦係数を低く抑制させる事によって、感光体の摩耗 30 与部材装置の構成を説明する図である。 を大幅に抑制し、感光体の特性が劣化することなく、長 期に亘って高品質の画像を提供する事ができた。

【0286】請求項3記載の画像形成方法によれば、潤 滑性付与部材装置で感光体に画像形成前に作用させ摩擦 係数を0.2以下に一旦下げた後、前記潤滑性付与部材 装置を解除し、感光層表面に付着したコロナ生成物等の 汚染物質および潤滑性付与部材を摩耗させながら画像形 成することによって、感光層表面が常に清浄な状態に保 たれる結果、ハーフトーン画像の再現性が良くなり、解 像性も良好な画像品質で維持され、さらに感光層の摩耗 40 る。 も抑制できた。

【0287】請求項4記載の画像形成方法によれば、摩 擦係数0.1~0.4の範囲で画像形成が行なわれるた め、感光体の寿命を延ばし、安定した画像品質が維持さ れる。

【0288】請求項5記載の潤滑性付与部材装置によれ ば、感光体の摩擦係数を効率的に、ダメージを与えない 様に低減化させるためには少なくとも基体と弾性部材、 潤滑性付与部材が必要であり、この構成の部材を感光体 に作用させることによって、感光体の摩耗を抑制させ、

交換無しに長期に亘って使用することが可能となり、ま た画像品質の劣化も少ないため、長期に亘って、髙品位 の画像を提供することが可能となる。

【0289】請求項6記載の潤滑性付与部材装置は、特 定の基体と弾性部材及びフィルム形態の潤滑性付与部材 装置から構成される装置であり、この構成の装置を画像 形成装置に搭載し、動作させることによって、特性を安 定して維持することが可能となる。さらには、クリーニ ングブレードの摩耗も抑制できるため、ブレードの寿命 もアップさせることが可能となる。

【図面の簡単な説明】

【図1】本発明の複写プロセスの概略図である。

【図2】感光体の構成を示す概略図である。

【図3】感光体の摩擦係数を低減化するための潤滑性付

【図4】帯電ロールの摩擦係数を低減化するための潤滑 性付与部材装置の構成を説明する図である。

【図5】接触帯電装置の構成およびクリーニング装置に 潤滑性付与部材装置を設置した状態の一例を説明する概 略図である。

【図6】本発明の複写プロセスの概略図である。

【図7】帯電装置の形態を説明する概略図で、(a)は ロール形式、(b)はブレード形式、(c)はブラシ形 式、(d)はフェルト形態を用いた非接触帯電装置であ

【図8】 (a) はロール形式、(b) はブレード形式、

(c)及び(d)はフェルト形態を用いた非接触帯電装 置の具体的な構成を示す概略図である。

【図9】織物形態の場合の帯電特性を示すグラフであ る。

【図10】活性炭素繊維の分散量とオゾン発生までの時 間の関係を示すグラフである。

【図11】潤滑性付与部材装置の層構成を説明する概略

【図12】潤滑性付与部材装置の層構成を説明する概略 50

図である。

【図13】潤滑性付与部材装置をクリーニング装置に装着した例を示す概略図である。

75

【図14】別の形態の潤滑性付与部材装置をクリーニング装置に装着した例を示す概略図である。

【図15】本発明の複写プロセスの概略図である。

【図16】潤滑性付与部材装置の構成及び取り付け方法 を説明する図である。

【図17】別の潤滑性付与部材装置の構成及び取り付け 方法を説明する図である。

【図18】感光層の削れ量の摩擦係数依存性を示す一例 である。

【図19】複写の途中で潤滑性付与部材の再塗布の工程 を入れたときの摩擦係数の推移を示す一例である。

【図20】2種の潤滑性付与部材を使用し、画像形成前 に低摩擦係数化したのちの画像形成での摩擦係数の挙動 を説明する図である。

【図21】プロセスカートリッジに潤滑性付与部材装置 を組み込んだ本発明の複写プロセスの概略図である。

【図22】クリーニング装置と帯電装置の間に単体の潤滑性付与部材装置を組み込んだ本発明の複写プロセスの概略図である。

【図23】潤滑性付与部材装置を説明する概略図である。

【図24】潤滑性付与部材装置を説明する別の概略図である。

【図25】潤滑性付与部材装置を説明する更に別の概略 図である。

【図26】潤滑性付与部材装置をブレードクリーニング 方式のクリーニング装置にトレーディング方式で取り付けた例を示す説明である。

【図27】プロセスカートリッジに潤滑性付与部材装置を組み込んだ本発明の複写プロセスの概略図である。

10 【図28】基体の丸棒を用いた潤滑性付与部材装置の構成を説明する斯面図の1例である。

【図29】扇形の基体を用いた別の潤滑性付与部材装置。 の構成を説明する断面図の1例である。

【図30】一定枚数或いは一定時間毎に潤滑性付与部材装置を回転させ、固定して使用するためのギアを用いた方式の説明図である。

【符号の説明】

41:導電性支持体

42:下引き層

43:電荷発生層

44:電荷輸送層

45:感光層

46:保護層

【図30】

フロントページの続き

(72)発明者 武市 隆太 東京都大田区中馬込1丁目3番6号 株式 会社リコー内

(72)発明者 中嶋 章代 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (72)発明者 小島 成人 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 Fターム(参考) 2H003 AA12 BB11 CC01 CC05 EE08

2H034 AA07