CHEM-102

HYBRIDIZATION OF ATOMIC ORBITALS

Hybridization was introduced to explain molecular structure when the valence bond theory failed to correctly predict them. Definition of Hybridization

Hybridization is actually a process in which atomic orbitals having different shape and energy intermix to form a set of same number of orbitals which have same shape and energy.

Hybridization is the combination of atomic orbitals like s, p, d or f to give the equivalent orbitals which are known as hybrid orbitals. This phenomenon is known as Hybridization. There is sp³, sp², sp etc. hybridization and also dsp²,dsp³, sp³d² etc. when considering d-orbital.

The new orbitals have the same total electron capacity as the old ones.

HYBRIDIATION RULES

- (1)Hybridize the CENTRAL ATOM ONLY (others as needed)
- Only use valence shell electrons.
- The number of hybrid orbitals formed = number of atomic orbitals used.
- Hybrid orbitals get 1 electron for a σ -bond, 2 electrons for a lone pair.
- Remaining electrons go into un-hybridized orbitals = π bonds.

SP Hybridization Definition

The process of hybridization in which one s orbital and one p-orbital of the same atom overlap to produce two hybrid orbital is known as sp-hybridization.

- In *sp* hybridization *sp* orbitals are linearly oriented.
- two *sp* orbitals will be at 180 degrees to each other.
- Remaining P_v and P_z un hybrid orbitals lie perpendicular to the plane of sp-orbital. s and p Orbitals
- Combining to Form Two sp Orbitals

sp Hybridization in BeCl₂

- Two of the Be atom's four valence orbitals will mix to yield two hybrid orbitals.
- When atomic orbitals hybridize, the valence electrons occupy the newly created orbitals.
- The Be atom had two valence electrons, so each of the sp orbitals gets one of these electrons.
- Each of these electrons pairs up with the unpaired electron on a chlorine atom.

- The two electrons that were originally in the s orbital are now distributed to the two sp orbitals, which are half filled.
- > These half-filled hybrid orbitals will overlap with orbitals from the chlorine atoms to form two identical σ bonds.

Energy Level Diagrams for sp Orbitals

Orbital Energy-Level Diagrams For Isolated and Bonded Be.

sp Hybridization in Ethyne

Molecular formula of ethyne is C_2H_2 . In ethyne, each carbon atom is sp-hybridized. In this way, four sp-orbital are generated.

Energy level diagram of C atom in s-p hybridization

S-p hybridization of central C atom in ethyne

The linear shape, or 180° angle, is formed because electron repulsion is minimized the greatest, in this position.

Summary

- **sp** occurs when a C has 2 attached groups
- **sp** has 50% s and 50% p character
- The 2 sp hybrids point in opposite directions at 180° to each other
- Each sp hybrid is involved in a σ bond
- The remaining **p** orbitals forms the 2π bonds
- View a triple bond as a $\sigma + 2\pi$ bonds

Sp² Hybridization Definition

The process of hybridization in which one s orbital and two p-orbital overlap to produce three hybrid orbitals is known as $\rm sp^2$ HYBRIDIZATION or TRIGONAL

HYBRIDIZATION.

These orbital are coplanar and directed towards the corners of an equilateral triangle at an angle of 120° from each other. The fourth un hybrid Pz-orbital lies at right angle to the plane of $\mathrm{Sp^2}$ -orbitals.

Sp² hybridization in BF₃

In boron tri fluoride Boron atom has three outer-shell electrons in its ground state. The 2s orbital and two of the 2p orbitals hybridize; one empty p-orbital remains.

Sp2 Hybridization in Ethene

Energy level diagram of C in sp² hybridization

These hybridized orbitals align themselves in the tri-gonal planar structure.

Summary

- sp² occurs when a C has 3 attached groups.
- sp² has 33% s and 67% p character.
- the 3 sp² hybrids point towards the corners of a triangle at 120° to each other.
- each sp^2 hybrid is involved in a σ bond.
- the remaining **p** orbital forms the π bond.
- view a double bond as a $\sigma + \pi$ bond.

Sp³ hybridization Definition

- The process of hybridization in which one s orbital and three p-orbitals overlap to produce
 - four hybrid-orbital is known as Sp³ hybridization.
- These hybrid-orbital are identical in shape and energy.
- sp³ hybrid orbitals are oriented at bond angle of 109.5° from each other.
- sp³-orbital are arranged in tetrahedral fashion.

.

Sp³ hybridization in CH₄

Energy level diagram of C in CH4

- One s-orbital (2s) and three p-orbital (2px, 2py, 2pz) overlap to produce four Sp³-hybrid orbitals.
- These Sp³- hybrid orbital are at a angle of 109.5° from each other.
- These Sp³-orbitals are attached at the corner of a tetrahedron.

Sp³ Hybridization in Ethane

After this hybridization, carbon now has four equivalent orbitals that are used to bond to the hydrogens in methane

 $sp^3\, hybridization\ in\ ethane$

Summary

- **sp**³occurs when a C has 4 attached groups
- sp³ has 25% s and 75% p character
- the 4 ${\bf sp^3}$ hybrids point towards the corners of a tetrahedron at 109.5° to each other
- each sp^3 hybrid is involved in a σ bond