Магістерська робота Алгоритми кластеризації даних великих об'ємів

виконав Волощук О.Р. керівник доц. Годич О.В.

16 червня 2011 р.

Задача кластеризації

Нехай D — множина точок n-вимірного простору.

Означення

Кластеризацією $C = \{C \mid C \subseteq D\}$ називається таке розбиття D на підмножини, для якого виконується $\cup_{C_i \in C} = D$ і $\forall C_i, C_j \in C : C_i \cap C_{j \neq i} = \emptyset$. Множини C_i називаються кластерами.

Процес видобування знань

Застосування

- розпізнавання зображень, мови
- соціологія
- медицина
- маркетингові дослідження

Алгоритми

- K-means
- ► DBSCAN
- ▶ UPGMA
- ► Neighbor-joining

Тестові дані

Тестування швидкодії алгоритмів проводилось на наборі даних розміром до 100000 об'єктів розмірності $8,\ 32$ та 64. Кожен об'єкт вибірки — вектор, всі компоненти якого лежать у проміжку (-1;1) та є випадковими величинами.

Критерії оцінки ефективності

Ефективнсть реалізації кожного алгоритму оцінювалась в першу чергу за часом роботи.

Для усіх алгоритмів час виконання одної ітерації не змінюється на протязі всього часу роботи, тому оцінювати можна зміни часу виконання ітерації.

K-means — оптимізації

K-means — загальний час роботи

DBSCAN — оптимізації

DBSCAN — загальний час роботи

Neighbor-joining — оптимізації

Neighbor-joining — залежність часу одної ітерації від розміру вхідних даних

Neighbor-joining — оптимізації

Neighbor-joining — залежність часу одної ітерації від розміру вхідних даних

UPGMA — час ітерації

