Det
$$z = b_1 + w_1 x_1 + w_2 x_2$$
. Then $h(z) = \sigma(z)$, $y = \frac{1}{1 + e^{-z}}$, then $\sigma'(z) = \frac{e^{-z}}{1 + e^{-z}}$ = $1/(1 + e^{-z})$ ($1 - \frac{1}{1 + e^{-z}}$) = $0/(1 - 0/(2))$ Consider MSE loss of SGD is $L = \frac{1}{2} \ln h - y \ln^2$. Hence, $\frac{3L}{3Z} = \frac{3L}{3h} = \frac{3L}{3Z} = \frac{3L}{3w} = \frac{3L$

2) a)
$$\sigma(x) = \frac{1}{1+e^{-x}}$$
 $\sigma'(x) = \sigma(x)(1-\sigma(x))$
Hence $\sigma'' = \sigma'(1-\sigma) - \sigma \sigma'$
 $= \sigma'(1-2\sigma) = \sigma(1-\sigma)(1-2\sigma)$
 $\sigma'' = \sigma''(1-\sigma) - (\sigma')^2 - \sigma \sigma''$
 $= \sigma'''(1-2\sigma) - 2 \sigma(1-\sigma)$
 $= \sigma(1-\sigma)(1-b\sigma + b\sigma^2)$

b)
$$\sigma(x) = \frac{1}{1+e^{-x}} = \frac{e^{\frac{x}{2}}}{e^{\frac{x}{2}} + e^{\frac{x}{2}}}$$

$$= \frac{1}{2} \left(\frac{e^{\frac{x}{2}} - e^{-\frac{x}{2}}}{e^{\frac{x}{2}} + e^{-\frac{x}{2}}} + 1 \right) = \frac{1}{2} \left(\arctan\left(\frac{x}{2}\right) + 1 \right)$$