Studieremo alcune tecniche per il progetto di algoritmi e di strutture dati:

Programmazione dinamica

Algoritmi golosi

Analisi ammortizzata

Vedremo poi alcuni tipi di strutture dati importanti per le applicazioni:

B-alberi

Strutture dati per insiemi disgiunti

Esempio

I	1	2	3	4	5	6	7	8	9	10
p_1	1	5	8	9	10	17	17	20	24	30

Lunghezza asta n	Ricavo massimo r _n	Suddivisione ottima
1	1	1
2	5	2
3	8	3
4	10	2+2
5	13	2+3
6	17	6
7	18	1+6 o 2+2+3
8	22	2+6
9	25	3+6
10	30	10

Programmazione Dinamica

Esempio: taglio delle aste

Problema del taglio delle aste

E' data un'asta metallica di lunghezza *n* che deve essere tagliata in pezzi di lunghezza intera (con un costo di taglio trascurabile).

Per ogni lunghezza l = 1,...,n è dato il prezzo p_l a cui si possono vendere i pezzi di quella lunghezza.

Si vuole decidere come tagliare l'asta in modo da rendere massimo il ricavo della vendita dei pezzi ottenuti.

Un'asta di lunghezza n può essere tagliata in 2^{n-1} modi distinti in quanto abbiamo una opzione tra tagliare o non tagliare in ogni posizione intera 1 ,...,n-1.

Ad esempio per n = 4 abbiamo i seguenti 8 modi

Suddivisioni

4 1+1+2 1+3 1+2+1 2+2 2+1+1 3+1 1+1+1+1 In generale il ricavo massimo r_n o è il costo p_n dell'asta intera oppure si ottiene effettuando un primo taglio in posizione i e quindi sommando i ricavi massimi del primo e del secondo pezzo, ossia

$$r_n = r_i + r_{n-i}$$

Quindi

$$r_n = \begin{cases} p_1 & \text{se } n = 1\\ \max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, ..., r_{n-1} + r_1) & \text{se } n > 1 \end{cases}$$

Osserviamo che la soluzione ottima del problema di ottiene da soluzioni ottime di sottoproblemi. Diciamo che il problema ha *sottostruttura ottima*.

Albero di ricorsione per n = 42
1
0
0
0

Lo stesso problema di dimensione 2 viene risolto due volte, quello di dimensione 1 quattro volte e quello di dimensione 0 otto volte.

Questo spiega la complessità 2^n .

Ripetizione dei sottoproblemi!!

Otteniamo una struttura ricorsiva più semplice se invece di scegliere la posizione i di un primo taglio intermedio scegliamo la lunghezza i del primo pezzo per cui $r_n = p_i + r_{n-i}$

$$r_n = \begin{cases} 0 & \text{se } n = 0 \\ \max_{1 \le i \le n} (p_i + r_{n-i}) & \text{se } n > 0 \end{cases}$$

Cut-Rod(p, n)
if
$$n == 0$$

return 0
 $q = -1$
for $i = 1$ to n
 $q = \max(q, p[i] + Cut-Rod(p, n-i))$
return q

Possiamo ridurre la complessità evitando di risolvere più volte gli stessi problemi.

Un primo modo per farlo è dotare l'algoritmo di un blocco note in cui ricordare le soluzioni dei problemi già risolti: metodo top-down con annotazione.

Un secondo modo per farlo è calcolare prima i problemi più piccoli memorizzandone le soluzioni e poi usare tali soluzioni per risolvere i problemi più grandi: metodo bottom-up.

```
Versione top-down con annotazione:
Memoized-Cut-Rod(p, n)
                      // inizializza il blocco note
  for i = 0 to n
    r[i] = -1
                                         T(n) = \Theta(n^2)
  return Cut-Rod-Aux(p, n, r)
Cut-Rod-Aux(p, j, r)
 if r[i] \ge 0 // il problema è già stato risolto
    return r[j]
 if j == 0
    q = 0
  else q = -1
      for i = 1 to j
        q = \max(q, p[i] + Cut-Rod-Aux(p, j-i, r))
 r[j] = q
 return q
```

Versione bottom-up:

```
Bottom-Up-Cut-Rod(p, n)

r[0] = 0 // il problema più semplice

for j = 1 to n

q = -1

for i = 1 to j

q = \max(q, p[i] + r[j-i])

r[j] = q

return r[n]

T(n) = \Theta(n^2)
```

Versione bottom-up estesa per calcolare la soluzione ottima e non solo il suo valore

```
Extended-Bottom-Up-Cut-Rod(p, n)

r[0] = 0

for j = 1 to n

q = -1

for i = 1 to j

if q < p[i] + r[j - i]

q = p[i] + r[j - i]

s[j] = i // memorizzo il taglio ottimo

r[j] = q

return r ed s
```

La seguente procedura calcola e stampa la soluzione ottima:

```
Print-Cut-Rod-Solution( p, n)
  (r, s) = Extended-Bottom-Up-Cut-Rod( p, n)
  j = n
  while j > 0
    print s[j]
    j = j - s[j]
```

Moltiplicazione di matrici

L'algoritmo per moltiplicare due matrici A e B di dimensioni $p \times q$ e $q \times r$ è:

```
Matrix-Multiply(A, B)

for i = 1 to A.rows

for j = 1 to B.columns

C[i, j] = 0

for k = 1 to A.columns

C[i, j] = C[i, j] + A[i, k] B[k, j]

return C
```

Esso richiede $p \times q \times r$ prodotti scalari

Esempio:

Per calcolare il prodotto $A_1A_2A_3$ di 3 matrici di dimensioni 200 \times 5, 5 \times 100, 100 \times 5 possiamo:

a) moltiplicare A_1 per A_2 (100000 prodotti scalari) e poi moltiplicare per A_3 la matrice 200×100 ottenuta (100000 prodotti scalari).

In totale 200000 prodotti scalari.

b) moltiplicare A_2 per A_3 (2500 prodotti scalari) e poi moltiplicare A_1 per la matrice 5×5 ottenuta (5000 prodotti scalari).

In totale 7500 prodotti scalari.

Problema della moltiplicazione di matrici

Si deve calcolare il prodotto

$$A_1A_2 \dots A_n$$

di *n* matrici di dimensioni

$$p_0 \times p_1, p_1 \times p_2, \dots, p_{n-1} \times p_n$$

Poiché il prodotto di matrici è associativo possiamo calcolarlo in molti modi.

Vogliamo trovare il modo per minimizzare il numero totale di prodotti scalari.

In quanti modi possiamo calcolare il prodotto?

Tanti quante sono le parentesizzazioni possibili del prodotto $A_1 A_2 \dots A_n$.

Ad esempio per n = 4:

$$(A_1 (A_2 (A_3 A_4)))$$

$$(A_1 ((A_2 A_3) A_4))$$

$$((A_1 A_2) (A_3 A_4))$$

$$((A_1 (A_2 A_3)) A_4)$$

$$(((A_1 A_2) A_3) A_4)$$

Il numero P(n) di parentesizzazioni possibili del prodotto $A_1 A_2 \dots A_n$ di n matrici si esprime ricorsivamente come segue:

$$P(n) = \begin{cases} 1 & \text{se } n = 1 \\ \sum_{k=1}^{n-1} P(k)P(n-k) & \text{se } n > 1 \end{cases}$$

Si può dimostrare che P(n) cresce in modo esponenziale.

Quindi, tranne per valori di *n* molto piccoli, non è possibile enumerare tutte le parentesizzazioni.

Passo 2: soluzione ricorsiva

Prendiamo come sottoproblemi il calcolo dei prodotti parziali $A_{i..j}$ delle matrici $A_i...A_j$.

Ricordiamo che la generica matrice A_i ha dimensioni $p_{i-1} \times p_i$.

Di conseguenza la matrice prodotto parziale $A_{i..j}$ è una matrice $p_{i-1} \times p_j$ con lo stesso numero p_{i-1} di righe della prima matrice A_i e lo stesso numero p_j di colonne dell'ultima matrice A_j .

Passo 1: struttura di una parentesizzazione ottima

Supponiamo che una parentesizzazione ottima di $A_1 A_2 ... A_n$ preveda come ultima operazione il prodotto tra la matrice $A_{1..k}$ (prodotto delle prime k matrici $A_1 ... A_k$) e la matrice $A_{k+1..n}$ (prodotto delle ultime n-k matrici $A_{k+1} ... A_n$).

Le parentesizzazioni di $A_1 \dots A_k$ e di $A_{k+1} \dots A_n$ sono parentesizzazioni ottime per il calcolo di $A_{1\dots k}$ e di $A_{k+1\dots n}$.

Perché?

Se i = j allora $A_{i..j} = A_i$ ed m[i,i] = 0.

Se i < j allora $A_{i..j} = A_i ... A_j$ si può calcolare come prodotto delle due matrici $A_{i..k}$ e $A_{k+1..j}$ con k compreso tra i e j-1.

Il costo di questo prodotto è $p_{i-1}p_kp_i$.

Quindi

$$m[i,j] = \begin{cases} 0 & \text{se } i = j \\ \min_{i \le k < j} (m[i,k] + m[k+1,j] + p_{i-1}p_kp_j) & \text{se } i < j \end{cases}$$

Passo 3 Esempio

Esempio			1	2	3	4	5	6	j
	30	1	M_{11} $m = 0$	A ₁₂ 15750	A ₁₃ 7900	A ₁₄ 9400	A ₁₅ 11900	A ₁₆ 15125	
$A_1 \ 30 \times 35$ $A_2 \ 35 \times 15$	30	1	k v	1	1	3	3	3	
$A_{3} 15 \times 5$	35	2		M_{22} $m = 0$	A ₂₃ 2625	A ₂₄ 4375	A ₂₅ 7125	A_{26} 10500	
A_4 5×10				k	2 A ₃₃	3 A ₃₄	3 A ₃₅	3 A ₃₆	
$A_5 10 \times 20$ $A_6 20 \times 25$	15	3			m 0	750	1500	5375	
A ₆ 20x23	_				K	A_{44}	A ₄₅	A ₄₆	
	5	4				m 0 k	1000	3500 5	
	10	5					A_{55} $m = 0$	A ₅₆ 5000	
							n 0 1.	5000	

15

5

10

20

25 p

 $A_{6..6}$

m = 0

35

 $A_{1..1}A_{2..6}$: $0+10500+30\times35\times25=36750$ $A_{1..2}A_{3..6}$: $15750+5375+30\times15\times25=32375$ $A_{1..3}A_{4..6}$: $7900+3500+3005\times25=15150$ $A_{1..4}A_{5..6}$: $9400+5000+30\times10\times25=21900$

 $A_{1..5}A_{6..6}$: 11900+0+30×20×25 = 26900

Passo 3: calcolo del costo minimo

```
Matrix-Chain-Order(p, n)

for i = 1 to n

m[i, i] = 0

for j = 2 to n

for i = j-1 downto 1

m[i, j] = \infty

for k = i to j-1

q = m[i, k] + m[k+1, j] + p_{i-1}p_kp_j

if q < m[i, j]

m[i, j] = q

s[i, j] = k

return m, s

Complessità: O(n^3)
```

Passo 4 Esempio

A_1	30×35
A_2	35×15
A_3	15×5
A_4	5×10
A_5	10×20
A_6	20×25

```
A_{1..4}
        A_{1..1}
                     A_{1..2}
                                                          A_{1..5}
1
                                                          A_{2..5}
2
                                 A_{3..3}
                                                          A_{3..5}
                                                                       A_{3..6}
                                              A_{3..4}
3
                                              A_{4..4}
                                                           A_{4..5}
4
       A_{1..6}
                                                          A_{5..5}
                                                                       A_{5..6}
       (A_{1..3} A_{4..6})
                                                                       A_{6..6}
```

Passo 4:

stampa della soluzione ottima

```
Print-Optimal-Parens(s, i, j)

if i == j

print "A<sub>i</sub>"

else

k = s[i, j]

print "("

Print-Optimal-Parens(s, i, k)

print "x"

Print-Optimal-Parens(s, k+1, j)

print ")"

Complessità: O(n)
```

Calcolo del prodotto di una sequenza di matrici

```
\begin{aligned} &\textit{Matrix-Chain-Multiply}(A_1...A_n, i, j, s) \\ &\textit{if } i == j \\ &\textit{return } A_i \\ &\textit{else} \\ &k = s[i, j] \\ &A = \textit{Matrix-Chain-Multiply}(A_1...A_n, i, k, s) \\ &B = \textit{Matrix-Chain-Multiply}(A_1...A_n, k+1, j, s) \\ &\textit{return Matrix-Multiply}(A, B) \end{aligned}
```

Si potrebbe anche usare direttamente la definizione ricorsiva del costo minimo per il prodotto di matrici

$$m[i,j] = \begin{cases} 0 & \text{se } i = j \\ \min_{i \le k < j} (m[i,k] + m[k+1,j] + p_{i-1}p_k p_j) & \text{se } i < j \end{cases}$$

per calcolarlo ricorsivamente senza usare le matrici *m* ed *s*.

```
Rec-Matrix-Chain-Cost(p, i, j)

if i = j
return 0

else

cmin = \infty
for k = i to j-1

q = Rec-Matrix-Chain-Cost(p, i, k) +
Rec-Matrix-Chain-Cost(p, k+1, j) + p_{i-1}p_kp_j
if q < cmin
cmin = q
return cmin

Complessità T(n) con n = j-i+1

T(n) = \begin{cases} a & \text{se } n = 1 \\ a + \sum_{h=1}^{n-1} \left( T(h) + T(n-h) + b \right) & \text{se } n > 1 \end{cases}
```

$$T(n) = \begin{cases} a & \text{se } n = 1\\ a + \sum_{h=1}^{n-1} \left(T(h) + T(n-h) + b \right) & \text{se } n > 1 \end{cases}$$

Per sostituzione si può dimostrare che

$$T(n) \ge c2^{n-1}$$

dove $c = \min(a,b)$.

Quindi
$$T(n) = \Omega(2^n)$$
.

Causa della complessità esponenziale:

La complessità diventa esponenziale perché vengono risolti più volte gli stessi sottoproblemi.

```
Memoized-Chain-Cost(p, i, j, m)

if m[i, j] = \infty

if i == j

m[i, j] = 0

else

for k = i to j-1

q = Memoized-Chain-Cost(p, i, k, M)

+ Memoized-Chain-Cost(p, k+1, j, M)

+ p_{i-1}p_kp_j

if q < m[i, j]

m[i, j] = q

return m[i, j]

Complessità: O(n^3)
```

Possiamo evitare il ricalcolo dei costi minimi dei sottoproblemi dotando la procedura ricorsiva di un blocco notes (una matrice *m* di dimensione *n*×*n*) in cui annotare i costi minimi dei sottoproblemi già risolti.

```
Memoized-Matrix-Chain-Order(p, n)

for i = 1 to n

for j = i to n do

m[i, j] = \infty

return Memoized-Chain-Cost(p, 1, n, m)
```