32	0	14	6	0	-1	0	0
$u_3 = 2$	0	1	1	1	-1	0	0
$u_1 = 2$	1	0	0	0	1	0	0
$u_6 = 1$	0	-1	0	-1	1	1	0
$u_7 = 4$	0	2	0	-1	1	0	1

To compute the new reduced costs, we want to set \bar{c}_3 to 0, so we subtract $6 \times$ Row 1 from Row 0 to get the tableau

20	0	8	0	-6	5	0	0
$u_3 = 2$	0	1	1	1	-1	0	0
$u_1=2$	1	0	0	0	1	0	0
$u_6 = 1$	0	-1	0	-1	1	1	0
$u_7 = 4$	0	2	0	-1	1	0	1

Next we pick $j^+=2$ as the incoming column. We have the ratios (for positive entries on Column 2)

and since the minimum is 2, we pick the outgoing column to be Column $k^-=3$. The pivot 1 is indicated in red and the new basis is K=(2,1,6,7). Next we apply row operations to reduce Column 2 to the first vector of the identity matrix I_4 . For this, we add Row 1 to Row 3 and subtract $2 \times \text{Row } 1$ from Row 4 to obtain the tableau:

20	0	8	0	-6	5	0	0
$u_2 = 2$	0	1	1	1	-1	0	0
$u_1 = 2$	1	0	0	0	1	0	0
$u_6 = 3$	0	0	1	0	0	1	0
$u_7 = 0$	0	0	-2	-3	3	0	1

To compute the new reduced costs, we want to set \overline{c}_2 to 0, so we subtract $8 \times$ Row 1 from Row 0 to get the tableau

4		0		-14	13	0	0
$u_2=2$	0	1	1	1	-1	0	0
$u_1=2$	l .				1	0	0
$u_6 = 3$	0	0	1	0	0	1	0
$u_7 = 0$	0	0	-2	-3	3	0	1

The only possible incoming column corresponds to $j^+=5$. We have the ratios (for positive entries on Column 5)