Матанализ

Тюленев Александр Иванович (Конспектировал Иван-Чай) 08.09.2023

Содержание

1 Какое-то доказательство

Здесь должно быть доказательство того, что из леммы Кантора и леммы архимеда следует аксиома непрерывности, но оно комплексное и ненулевая действительная часть появится, тогда и только тогда, когда выйдет запись лекции на лектории фпми. Прошу понять и простить.

2 Счетные и несчетные множества

- **Def 1.** Отображение $f: X \to Y$ называется биекцией из X на Y, если оно и сюрьекция и инъекция \Leftrightarrow оно обратимо.
- **Def 2.** Множество X называется конечным, если $\exists n \in \mathbb{N}$ и биекция X на $\{1, \ldots n\}$, в противном случае оно называется бесконечным.
- **Def 3.** Будем говорить, что X и Y равномощны, если \exists биекция X на Y. Обозначим равномощность множеств A и B, как $A \leftrightarrow B$.
- **Def 4.** Будем говорить, что мощность множествва Y не меньше мощности X, если $\exists Y' \subset Y : Y \ u \ X$ равномощны.
- **Def 5.** Множество X называется счетным, если оно бесконечно и X равномощно \mathbb{N} .
- **Def 6.** Множество X называется несчетным, если оно бесконечно u не равномощно \mathbb{N} .
- $\mathbf{Th.}\ \mathbb{Q}$ счетно.

Доказательство. "Разместим" все рациональные числа в "таблице"

$N \setminus \mathbb{Z}$	0	1	-1	2	-2	
1	0	1	-1	2	-2	
2	0	$\frac{1}{2}$	$-\frac{1}{2}$	1	-1	
3	0	$\frac{1}{3}$	$-\frac{1}{3}$	$\frac{2}{3}$	$-\frac{2}{3}$	
:	:	:	÷	:	÷	٠

Будем двигаться "по змейке при этом пропуская повторяющиеся числа. За счет этого получим инъекцию из \mathbb{N} в Q. Т.к. $\forall a = \frac{p}{q}$ найдется квадрат в котором есть это число змейка в него попадет \Rightarrow это сюрьекция.

Th. Множество \mathbb{R} - несчетно

Доказательство. \mathbb{R} бесконечно, поскольку содержит \mathbb{N} , покажем, что $\neg \mathbb{N} \leftrightarrow \mathbb{R}$ Допустим, что $\exists \mathbb{N} \leftrightarrow^x \mathbb{R}, x(n) \equiv x_n$

Построим последовательность $J_k \subset J_{k-1} \dots J_3 \subset J_2 \subset J_1 : \forall k \in \mathbb{N}$ $x_k \notin J_k \Rightarrow \{x_1, x_2 \dots x_k\} \cap J_k = \emptyset \forall k \in \mathbb{N}$

Ex 1. Доказать $\mathbb{N} \leftrightarrow \mathbb{Z}, \mathbb{N} \leftrightarrow \mathbb{Q}$.

Ех 2. Докозать, что $[0,1] \leftrightarrow (0,1] \leftrightarrow [0,1) \leftrightarrow (0,1) \leftrightarrow \mathbb{R}$.

3 Последовательности

Def 7. Последовательностью будем называть отображение $x: N \to \mathbb{R}$ При этом $x(n) \equiv X \quad \forall n \in \mathbb{N}$.

Def 8. Элементом последовательности называется пара (n, x_n) .

Def 9. При этом числа $x_n, n \in \mathbb{N}$ называют значениями последовательности.

Def 10. Вся последовательность обозначается $\{x_n\} \equiv \{x_n\}_{n=1}^{\infty}$.

Def 11. $\widehat{\mathbb{R}} := \overline{\mathbb{R}} \cap \{\infty\}.$

Def 12. Ecnu $a \in \mathbb{R}$, mo $U(a) = (a - \varepsilon, a + \varepsilon)$.

Def 13. $U(+\infty) := (\frac{1}{\varepsilon}, +\infty)$.

Def 14. $U(-\infty) := (-\frac{1}{\varepsilon}, -\infty)$.

Def 15. $U(\infty) := (-\frac{1}{\varepsilon}, -\infty) \cap (\frac{1}{\varepsilon}, +\infty).$

4 Пределы

Def 16. Будем говорить, что элемент $a \in \mathbb{R}$ является пределом числовой последовательности $\{x_n\}$ и писать $\lim_{n\to\infty} X_n = a$, если $\forall \varepsilon > 0 \exists N = N(\varepsilon) \in \mathbb{N} : \forall n \geq N(\varepsilon) \hookrightarrow x_n \in U_{\varepsilon}(a)$.

St. $\Pi pumep$:

$$\lim_{n\to\infty}\frac{1}{n}=0.$$

Доказательство. $\forall \varepsilon > 0 \exists N(\varepsilon) = \left[\frac{1}{\varepsilon}\right] + 1 \in \mathbb{N}$:

$$\forall \quad n \ge N(\varepsilon) \hookrightarrow \frac{1}{n} \le \frac{1}{N(\varepsilon)} \le \frac{1}{\left[\frac{1}{\varepsilon}\right] + 1} \le \frac{1}{\frac{1}{\varepsilon}} = \varepsilon.$$