SINGAPORE POLYTECHNIC 2019 / 2020 Semester 2 Exam

Module Name: Engineering Mathematics II

Module Code: MS2216/MS4216/MS6216

Course: DCHE/DASE/DCPE/DEB/DEEE/DES/DESM/DARE/DBEN/DCEP/DME/DMRO

Year: 2 FT Page 1 of 6

No.	SOLUTION				TOTAL MARKS		
А	b, b, c, d, a						10
B1a	Let $u = 2x^2 \to \frac{du}{dx} = 4x \to \frac{1}{4}du = xdx$ $\int x \sin(2x^2) dx = \frac{1}{4} \int \sin u du = \frac{1}{4} (-\cos u) + C = -\frac{1}{4} \cos(2x^2) + C$						
B1b	$\int_0^{\pi} 2t \cos t dt$ $= \left[2t \sin t + 2 \cos t \right]_0^{\pi}$ $= \left[2\pi \sin \pi + 2 \cos \pi \right] - \left[(0 - 2 - 2) \right]$ $= -4$ Alternate solution: $\int_0^{\pi} 2t \cos t dt = \left[2t \sin t \right]_0^{\pi} - \left[2 \cos t \right]_0^{\pi} = $	$\int_0^{\pi} 2\sin t a$	<u>-</u> It	u 2t < 2 < 0	$dv + \cos t \sin t - \cos t$		10
B2	$h = \frac{3-0}{6} = \frac{1}{2}$ $x_0 \qquad x_1$ $0 \qquad 0.5$ $f(x) \qquad 1 \qquad 1.118$ Simpson's rule formula gi $A \approx \frac{1}{3}h(y_0 + y_6 + 4(y_1 + y_1))$ $= \frac{1}{3}(\frac{1}{2})(1+3.162+4(1.11))$	$(y_3 + y_5) + 2$			x ₅ 2.5 2.693	x ₆ 3 3.162	
	$=5.653 \approx 5.65 \text{ (correct to 2 dp)}$					10	

SINGAPORE POLYTECHNIC 2019 / 2020 Semester 2 Exam

Module Name: Engineering Mathematics II

Module Code: MS2216/MS4216/MS6216

Course: DCHE/DASE/DCPE/DEB/DEEE/DES/DESM/DARE/DBEN/DCEP/DME/DMRO

Year: 2 FT Page 2 of 6

No.	SOLUTION	TOTAL MARKS
ВЗа	$T = 2\pi \rightarrow \omega_0 = \frac{2\pi}{T} = 1 \rightarrow a_0 = \frac{1}{T} \int_0^{T/2} f(t) dt = \frac{2}{2\pi} \int_0^{\pi/2} 4 dt = 2$	
B3b	$a_n = \frac{8}{n\pi} \sin\left(\frac{n\pi}{2}\right) \rightarrow a_1 = \frac{8}{\pi}, \ a_2 = 0, \ a_3 = -\frac{8}{3\pi}$	
ВЗс	$f(t) = a_0 + a_1 \cos \omega t + a_2 \cos 2\omega t + a_3 \cos 3\omega t + \cdots$	
	$=2+\frac{8}{\pi}\cos\omega t-\frac{8}{3\pi}\cos3\omega t+\cdots$	10
B4a	$\frac{dy}{dx} = 2xy \implies \frac{dy}{y} = 2xdx \implies \int \frac{1}{y} dy = \int 2xdx$	
	$ \ln y = x^2 + C \text{or} y = Ae^{x^2} $	
B4b	$(i) \int_{4}^{12} (1+2x)^2 dx = \frac{1}{2} \left(\frac{(1+2x)^3}{3} \right)_{4}^{12} = \frac{1}{6} (25^3 - 9^3) = \frac{7448}{3}$	
	(ii) $y_{avg} = \frac{1}{12 - 4} \int_{4}^{12} (1 + 2x)^2 dx = \frac{7448}{8(3)} = 310.33$	
	Alternate way for (i):	
	$\int_{4}^{12} (1+2x)^2 dx = \int_{4}^{12} (1+4x+4x^2) dx = \left(x+2x^2+4\frac{x^3}{3}\right)_{4}^{12}$	
	$= \left([12-4] + 2[12^2 - 4^2] + \frac{4}{3}[12^3 - 4^3] \right) = \frac{7448}{3}$	10
В5а	$\mathcal{L}\left\{t^3 - 5\cos 3t\right\} = \frac{3!}{s^{3+1}} - 5 \cdot \frac{s}{s^2 + 3^2} = \frac{6}{s^4} - \frac{5s}{(s^2 + 9)}$	
B5b	$\mathcal{L}\left\{4t\cos 2t + 3e^{2t}\right\} = \frac{4\left(s^2 - 2^2\right)}{\left(s^2 + 2^2\right)^2} + \frac{3}{s - 2} = \frac{4\left(s^2 - 4\right)}{\left(s^2 + 4\right)^2} + \frac{3}{s - 2}$	
B5c	$\mathcal{L}\{\sin \pi t\} = \frac{\pi}{s^2 + \pi^2}$	
	$\mathcal{L}\left\{\sin \pi t\right\} = \frac{\pi}{s^2 + \pi^2}$ $\mathcal{L}\left\{e^{-t}\sin \pi t\right\} = \frac{\pi}{s^2 + \pi^2}\Big _{s \to s+1} = \frac{\pi}{(s+1)^2 + \pi^2}$	
		10

SINGAPORE POLYTECHNIC 2019 / 2020 Semester 2 Exam

Module Name: Engineering Mathematics II

Module Code: MS2216/MS4216/MS6216

Course: DCHE/DASE/DCPE/DEB/DEEE/DES/DESM/DARE/DBEN/DCEP/DME/DMRO

Year: 2 FT Page 3 of 6

No.	SOLUTION	TOTAL MARKS
B6a	$\mathcal{L}^{-1}\left\{\frac{3}{4s} + \frac{5}{s^4} - \frac{5s}{s^2 + 4}\right\} = \mathcal{L}^{-1}\left\{\frac{3}{4} \cdot \frac{1}{s} + \frac{5}{3!} \cdot \frac{3!}{s^{3+1}} - 5 \cdot \frac{s}{s^2 + 2^2}\right\}$	
	$= \frac{3}{4} + \frac{5}{6}t^3 - 5\cos 2t$	
B6b	$\frac{s-3}{(s-1)(s-2)} = \frac{A}{s-1} + \frac{B}{s-2}$	
	$A = \frac{s-3}{s-2}\Big _{s=1} = 2$, $B = \frac{s-3}{s-1}\Big _{s=2} = -1$	
	$\mathcal{L}^{-1}\left\{\frac{s-3}{(s-1)(s-2)}\right\} = \mathcal{L}^{-1}\left\{2 \cdot \frac{1}{s-1} - \frac{1}{s-2}\right\} = 2e^t - e^{2t}$	10
В7а	$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 3y = 0$	
	Aux. equation is: $\lambda^2 + 4\lambda + 3 = 0$	
	Thus: $(\lambda + 1)(\lambda + 3) = 0 \Rightarrow \lambda = -1, -3$	
	\therefore the general solution is: $y = Ae^{-x} + Be^{-3x}$	
B7b	$y = Ae^{-x} + Be^{-3x} \rightarrow \frac{dy}{dx} = y' = -Ae^{-x} - 3Be^{-3x}$	
	given $y(0) = 2$, i.e. $2 = A + B (1)$	
	given $y'(0) = -4$, i.e. $-4 = -A - 3B - (2)$	
	hence $A = 1$, and $B = 1$	
	Thus the particular solution is: $y = e^{-x} + e^{-3x}$	10
C1	Let $x = \text{length}$, $y = \text{width}$ and $z = \text{height}$.	
	Volume $V = xyz$	
	Then $\ln V = \ln x + \ln y + \ln z$	
	And $\frac{\partial(\ln V)}{\partial x} = \frac{1}{x}$, $\frac{\partial(\ln V)}{\partial y} = \frac{1}{y}$ and $\frac{\partial(\ln V)}{\partial z} = \frac{1}{z}$	

SINGAPORE POLYTECHNIC 2019 / 2020 Semester 2 Exam

Module Name: Engineering Mathematics II

Module Code: MS2216/MS4216/MS6216

Course: DCHE/DASE/DCPE/DEB/DEEE/DES/DESM/DARE/DBEN/DCEP/DME/DMRO

Year: 2 FT Page 4 of 6

No.	SOLUTION		
	Thus $\frac{\Delta V}{V} \approx \frac{\partial (\ln V)}{\partial x} \Delta x + \frac{\partial (\ln V)}{\partial y} \Delta y + \frac{\partial (\ln V)}{\partial z} \Delta z = \frac{\Delta x}{x} + \frac{\Delta y}{y} + \frac{\Delta z}{z}$		
	The estimated percentage error for the volume is given by		
	$\frac{\Delta V}{V} \cdot 100\% \approx \frac{\Delta x}{x} \cdot 100\% + \frac{\Delta y}{y} \cdot 100\% + \frac{\Delta z}{z} \cdot 100\%$ $= 1\% + 1\% + 1\% = 3\%$		
	The estimated percentage error for the volume is approximately 3% too large.	11	
	Alternate solution:		
	Let $x = \text{length}$, $y = \text{width}$ and $z = \text{height}$.		
	Volume $V = xyz$ And $\frac{\partial V}{\partial x} = yz$, $\frac{\partial V}{\partial y} = xz$ and $\frac{\partial V}{\partial z} = xy$		
	Thus $\frac{\Delta V}{V} \approx \frac{\partial V}{\partial x} \frac{\Delta x}{V} + \frac{\partial V}{\partial y} \frac{\Delta y}{V} + \frac{\partial V}{\partial z} \frac{\Delta z}{V}$		
	$= yz\frac{\Delta x}{xyz} + xz\frac{\Delta y}{xyz} + xy\frac{\Delta z}{xyz} = \frac{\Delta x}{x} + \frac{\Delta y}{y} + \frac{\Delta z}{z}$		
	The estimated percentage error for the volume is given by		
	$\frac{\Delta V}{V} \times 100\% \approx \frac{\Delta x}{x} \times 100\% + \frac{\Delta y}{y} \times 100\% + \frac{\Delta z}{z} \times 100\%$		
	= 1% + 1% + 1% $= 3%$		
	The estimated percentage error for the volume is approximately 3% too large	(11)	

SINGAPORE POLYTECHNIC 2019 / 2020 Semester 2 Exam

Module Name: Engineering Mathematics II

Module Code: MS2216/MS4216/MS6216

Course: DCHE/DASE/DCPE/DEB/DEEE/DES/DESM/DARE/DBEN/DCEP/DME/DMRO

Year: 2 FT Page 5 of 6

No.	SOLUTION	
C2a	Let <i>T</i> be the temperature of the body	
	According to Newton's law of cooling,	
	$\frac{dT}{dt} = -k\left(T - T_s\right) = -k(T - 20)$	
	$\int \frac{1}{T - 20} dT = \int -k dt$	
	$ \ln T - 20 = -kt + C $	
	$T(t) = 20 + e^{-kt+C} = 20 + Ae^{-kt}$	
	We know that $T(10) = 75$, $T(20) = 50$, hence	
	$75 = 20 + Ae^{-10k} \to 55 = Ae^{-10k} (1)$	
	$50 = 20 + Ae^{-20k} \to 30 = Ae^{-20k} (2)$	
	Solving for k and A by dividing (1) by (2):	
	$\frac{55}{30} = e^{10k} \to k = \frac{1}{10} \ln \left(\frac{55}{30} \right) = 0.06$	
	Sub into (1): $55 = Ae^{-10k} \rightarrow A = 55e^{10k} = 100.83$	
	$T(t) = 20 + 100.83e^{-0.06t}$	
C2b	$T(0) = 20 + 100.83e^{-0.06(0)} = 120.83$ °C	
C2c	Now the rate of change of temperature has an additional term	
	(-5 °C/min)	
	$\frac{dT}{dt} = -k\left(T - T_s\right) - 5$	14
СЗа	$\frac{d^2x}{dt^2} + 4x = 3\cos(2t)$	
	$\frac{d^2x}{dt^2} + 4x = 3\cos(2t)$ $x(0) = 0.5 \text{ and } x'(0) = 0$	

SINGAPORE POLYTECHNIC 2019 / 2020 Semester 2 Exam

Module Name: Engineering Mathematics II

Module Code: MS2216/MS4216/MS6216

Course: DCHE/DASE/DCPE/DEB/DEEE/DES/DESM/DARE/DBEN/DCEP/DME/DMRO

Year: 2 FT Page 6 of 6

No.	SOLUTION	TOTAL MARKS
C3b	Let $X = \mathcal{L}\{x(t)\}$	
	$s^{2}X - sx(0) - x'(0) + 4X = \frac{3s}{s^{2} + 4}$	
	since $x(0) = \frac{1}{2}$ and $x'(0) = 0$,	
	$s^2 X - \frac{1}{2}s + 4X = \frac{3s}{s^2 + 4}$	
	$\left(s^2 + 4\right)X = \frac{3s}{s^2 + 4} + \frac{1}{2}s$	
	$X = \frac{3s}{(s^2 + 4)^2} + \frac{s}{2(s^2 + 4)}$	
	$x(t) = \mathcal{L}^{-1} \left\{ \frac{3}{4} \frac{(2)(2)s}{(s^2 + 2^2)^2} + \frac{1}{2} \frac{s}{s^2 + 2^2} \right\}$	
	$=\frac{3}{4}t\sin(2t)+\frac{1}{2}\cos(2t)$	
C3c	When $t = 1$ sec,	
	$x = \frac{3}{4}\sin(2) + \frac{1}{2}\cos(2) = 0.47$ m	
	The mass will be 0.47 m below the equilibrium position.	15