Berkeley AI/ML Capstone 05/2025

Restaurant
Success and
Revenue
Prediction
Model Analysis

What is a measurement of success?

Google Rating?

Social Media Followers?

Annual Revenue?

Years in Business?

Average Meal Price?

High Monthly Marketing Budget?

Ultimately...

Profit is objectively the paramount measurement of success

The goal of this project is to identify the best models for restaurant success classification and for revenue prediction

... and to provide information that may help restaurants improve their profit margins and their recipes for success

The Data

https://www.kaggle.com/datasets/liyangng/restaurant-success-prediction/data

1000 data points

- 4 Categorical Features
 - City
 - Cuisine Type
 - Delivery Service
 - Success Label
- 9 Numerical Features
 - Average Meal Price
 - Seating Capacity
 - Years in Business
 - Google Rating
 - Social Media Followers
 - Weekend Reservations
 - Staff Count
 - Marketing Budget
 - Health Inspection Score
 - Annual Revenue

The First Look

A Deeper Look...

The correlation heatmap (left) shows the features that shows some direct effect on restaurant success and is then confirmed via the scatterplot (above).

Model Types

Classification Models

- Dummy
- Logistic Regression
- K-Nearest Neighbors
- Decision Tree
- Random Forest

Regression Models

- SVM
- Linear Regression
- Lasso
- Random Forest

Classification Models

For restaurant success

Logistic Regression (LogReg)

A statistical model used for binary classification

K-Nearest Neighbors (KNN)

A simple, non-parametric algorithm used for classification Decision Tree (DT)

An algorithm that recursively splits data into branches based on the features that provide the best separation until all nodes belong to a class

Random Forest (RF)

An ensemble learning method that builds multiple decision trees and combines their outputs to improve accuracy and prevent overfitting

Classification Model Analysis

LogReg and KNN models performed better than expected, recording a 82% and 94% test accuracy, respectively.

GridSearchCV was then applied to determine the best hyperparameters per each model. Results from the enhanced models were similar to the initial model performances.

Decision Tree and Random Forest models both recorded a 100% training accuracy, while both testing accuracies regressed by ~3%

KNN, DT, RF all had a precision score and recall score above 90%. These two models also had a low MSE and a high R2 Score.

For this dataset and this task, DT and RF seem like good models to use for predicting success.

Precision Score It answers the question: "Of all the positive predictions made by the model, how many were actually correct?

MSE

It measures the average squared difference between the actual (true) values and the predicted values. Low MSE means higher prediction accuracy.

R^2 Score

It is a measurement of how well the models is at explaining variability. Higher R^2 scores indicate higher model accuracy

Regression Models

For annual revenue prediction

Linear Regression (LinReg)

A fundamental machine learning algorithm used to model the relationship between a dependent variable and one or more independent variables

Lasso

A Linear Regression technique that should help with feature selection and thus reduce overfitting Support Vector Regression (SVR)

Predicts continuous values by finding a function that fits the data within a certain margin of tolerance, ignoring outliers Random Forest (RF)

An ensemble machine learning method that uses multiple decision trees to predict a continuous output

Predictive Model Analysis

Unlike the results of the Classification models, the Linear Regression (LinReg), Random Forest (RFR), Lasso, and SVR models all had a low testing accuracy.

GridSearchCV was then applied to determine the best hyperparameters per each model. Results from the enhanced models were no different to the initial regression model performances.

Such drastic results suggests the data is too scattered, and an unbiased model that ensures high accuracy and high precision cannot be created

LinReg, RFR, Lasso, and SVR all seemed to have a high MAE and MSE score while also having a low R2 score.

For this dataset and this task, there doesn't seem to be any models that have a high accuracy to use for predicting annual revenue.

MAE

It is the average of the absolute differences between the predicted and actual values. Lower MAE means higher prediction accuracy.

MSE

It measures the average squared difference between the actual (true) values and the predicted values. Low MSE means higher prediction accuracy.

R^2 Score

It is a measurement of how well the models is at explaining variability. Higher R^2 scores indicate higher model accuracy

Model Results Summary

Classification

With DT and RF, you can accurately classify a restaurant as successful or not successful with over 95% accuracy.

The results of the DT and RF models have little variance and low error and thus is proven to be both precise and accurate

Regression

RFR had the best training accuracy, but recorded a surprisingly low test accuracy, which suggests that the models may be over biased.

All regression models tested performed poorly on this data, implying that the features available do not capture the complexity of what drives annual revenue

Our Results

The best models to use for Restaurant Success classification are Decision Tree and Random Forest

There were no models found to run a good-quality Revenue prediction with this dataset

Your Takeaways

Use social media and boost your monthly marketing budget

Restaurants that prioritized a higher monthly marketing budget and a greater online presence were classified as successful.

- \$5,000 to \$20,000
- 10,000 Instagram/TikTok followers

Revenue Prediction Requires More Quality Data

The dataset features were not able to capture what really drives annual revenue

The Next Steps...

Conduct studies that gather additional data, i.e.

- Foot Traffic metrics and Table Turnover rate
- Most effective means of marketing
- Customer satisfaction and repeatability

Thank you