Notation

Throughout:

- Chain complexes are $C_{\bullet} = C$, or $C_{\bullet, \bullet}$.
- Homology of a complex C is $h_n(C)$.
- Double complexes are almost always homologically oriented:

 $d^{<}$ has bidegree (-1,0) and d^{\vee} has bidegree (0,-1).

and almost always first quadrant.

• EC^r_{pq} is the (homological) vertical filtration of a double complex and ER^r_{pq} is the horizontal filtration.

- We will transpose horizontal filtrations to orient like vertical filtrations so that we need
 not worry about the interchange of indices.
- Vertical and horizontal homology of a double complex C are denoted H^v(C) and H^h(C), respectively.

Recall

A spectral sequence is a collection of modules $\{E_{pq}^r\}$ for all $p, q \in \mathbf{Z}$ (for us $p \geq 0$ often and $q \geq 0$ always) and $r \geq a$ (for us a = 0) such that

- For each r there exist differentials $d^r: E^r_{pq} \to E^r_{p-r,q+r-1}$. That is, arrows on page r go r left and r-1 up.
- There are isomorphisms $E_{pq}^{r+1} \cong \ker d_{pq}^r / \operatorname{im} d_{p+r,q-r+1}^r$. That is, objects on page r+1 are homology modules of the objects on page r.

A double complex C that is first quadrant has bounded filtrations (both vertical and horizontal), and thus by last time

$$EC_{pq}^2 \Rightarrow h_{p+q}(\operatorname{Tot}^{\oplus}(C)) \Leftarrow ER_{pq}^2.$$

Balancing Tor

The left-derived functors $\mathbf{L}_n(A \otimes_R -)(B)$ and $\mathbf{L}_n(- \otimes_R B)(A)$ are isomorphic; we call both $\mathrm{Tor}_n^R(A,B)$.

Balancing Tor

The left-derived functors $\mathbf{L}_n(A \otimes_R -)(B)$ and $\mathbf{L}_n(- \otimes_R B)(A)$ are isomorphic; we call both $\mathrm{Tor}_n^R(A,B)$.

Universal Coefficient Theorem

If C is a complex of free abelian groups and A is an abelian group, then there exists a split short exact sequence

$$0 \to h_n(C) \otimes A \to h_n(C \otimes A) \to \operatorname{Tor}_1(h_{n-1}(C), A) \to 0.$$

Balancing Tor

The left-derived functors $\mathbf{L}_n(A \otimes_R -)(B)$ and $\mathbf{L}_n(- \otimes_R B)(A)$ are isomorphic; we call both $\mathrm{Tor}_n^R(A,B)$.

Universal Coefficient Theorem

If C is a complex of free abelian groups and A is an abelian group, then there exists a split short exact sequence

$$0 \to h_n(C) \otimes A \to h_n(C \otimes A) \to \operatorname{Tor}_1(h_{n-1}(C), A) \to 0.$$

Balancing Ext

The right-derived functors $\mathbf{R}^n \operatorname{Hom}_R(A, -)(B)$ and $\mathbf{R}^n \operatorname{Hom}_R(-, B)(A)$ are isomorphic; we call both $\operatorname{Ext}_R^n(A, B)$.

Let A and B be R-modules, so A has projective resolution

$$\cdots \xrightarrow{d_P} P_3 \xrightarrow{d_P} P_2 \xrightarrow{d_P} P_1 \xrightarrow{d_P} P_0 \xrightarrow{\varepsilon_A} A \to 0$$

and B has projective resolution

$$\cdots \xrightarrow{d_Q} Q_3 \xrightarrow{d_Q} Q_2 \xrightarrow{d_Q} Q_1 \xrightarrow{d_Q} Q_0 \xrightarrow{\varepsilon_B} B \to 0.$$

To compute the left-derived functor $\mathbf{L}_n(A \otimes -)(B)$, we can compute (independent of choice of Q_{\bullet})

$$\mathbf{L}_n(A\otimes -)(B) = h_n(A\otimes Q_{\bullet})$$

and similarly,

$$\mathbf{L}_n(-\otimes B)(A) = h_n(P_{\bullet} \otimes B).$$

Goal: show that

$$\mathbf{L}_n(A \otimes -)(B) \cong \mathbf{L}_n(-\otimes B)(A)$$

for all n.

Step One: Build the double complex $P \otimes Q$.

Step Two: Take the vertical filtration EC_{pq}^0 .

Step Two: Take the vertical filtration EC_{pq}^0 .

Since each P_i is projective, the following sequence is exact for all i:

$$\begin{array}{c} \vdots \\ \downarrow \\ P_i \otimes Q_3 \\ d_Q \downarrow \\ P_i \otimes Q_2 \\ d_Q \downarrow \\ P_i \otimes Q_1 \\ \downarrow \\ P_i \otimes Q_0 \\ \downarrow \\ P_i \otimes B \\ \downarrow \\ 0 \end{array}$$

Hence $H^{v}(P \otimes Q) = h_{n}(P_{i} \otimes Q) = 0$ for all $n \neq 0$, and

$$h_0(P_i \otimes Q) = \operatorname{coker} \left(P_i \otimes Q_1 \xrightarrow{d_Q} P_i \otimes Q_0 \right) = P_i \otimes B.$$

Step Three: Build page 1, where $EC_{pq}^1 = H^v(P \otimes Q)$, and d^1 goes 1 left and 1-1=0 up.

		1			
	:	:	:	:	
0	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	
0 ← P ₀	$0 \otimes B \longleftarrow P_1$	$\otimes B \longleftarrow P_2$	$\otimes B \longleftarrow P_3$	$_{3}\otimes B\longleftarrow$	
	0	0	0	0	

$$0 \longleftarrow P_0 \otimes B \longleftarrow P_1 \otimes B \longleftarrow P_2 \otimes B \longleftarrow P_3 \otimes B \longleftarrow \cdots$$

Computing $h_n(P \otimes B)$ is, by definition, $\mathbf{L}_n(-\otimes B)(A)$, since P is a projective resolution of A. Hence our page 2 looks like

At this point, our homology has stabilized, since for any n, page 2 has

and computing homology just returns $\mathbf{L}_n(-\otimes B)(A)$. All subsequent pages are as above, and

$$EC_{pq}^2 = H_p^h(H_q^v(P \otimes Q)) \Rightarrow h_{p+q}(\operatorname{Tot}^{\oplus}(P \otimes Q)).$$

Step Four: Take the horizontal filtration ER_{pq}^0 .

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \\ 0 \longleftarrow P_0 \otimes Q_3 \xleftarrow[d_P \otimes \mathrm{id}]} P_1 \otimes Q_3 \xleftarrow[d_P \otimes \mathrm{id}]} P_2 \otimes Q_3 \xleftarrow[d_P \otimes \mathrm{id}]} P_3 \otimes Q_3 \longleftarrow \cdots \\ 0 \longleftarrow P_0 \otimes Q_2 \xleftarrow[d_P \otimes \mathrm{id}]} P_1 \otimes Q_2 \xleftarrow[d_P \otimes \mathrm{id}]} P_2 \otimes Q_2 \xleftarrow[d_P \otimes \mathrm{id}]} P_3 \otimes Q_2 \longleftarrow \cdots \\ 0 \longleftarrow P_0 \otimes Q_1 \xleftarrow[d_P \otimes \mathrm{id}]} P_1 \otimes Q_1 \xleftarrow[d_P \otimes \mathrm{id}]} P_2 \otimes Q_1 \xleftarrow[d_P \otimes \mathrm{id}]} P_3 \otimes Q_1 \longleftarrow \cdots \\ 0 \longleftarrow P_0 \otimes Q_0 \xleftarrow[d_P \otimes \mathrm{id}]} P_1 \otimes Q_0 \xleftarrow[d_P \otimes \mathrm{id}]} P_2 \otimes Q_0 \xleftarrow[d_P \otimes \mathrm{id}]} P_3 \otimes Q_0 \longleftarrow \cdots \\ 0 \longleftarrow 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0$$

Step Four B: Reorient to avoid fiddling with indices.

Step Four B: Reorient to avoid fiddling with indices.

Since each Q_i is projective, the following sequence is exact for all i:

$$\begin{array}{c} \vdots \\ \downarrow \\ P_3 \otimes Q_i \\ \downarrow^{d_P} \\ P_2 \otimes Q_i \\ \downarrow^{d_P} \\ P_1 \otimes Q_i \\ \downarrow^{d_P} \\ P_0 \otimes Q_i \\ \downarrow^{d_P} \\ A \otimes Q_i \\ \downarrow^{0} \\ \end{array}$$

Hence $H^h(P \otimes Q) = h_n(P \otimes Q_i) = 0$ for all $n \neq 0$, and

$$h_0(P \otimes Q_i) = \operatorname{coker} \left(P_1 \otimes Q_i \xrightarrow{d_P} P_0 \otimes Q_i \right) = A \otimes Q_i.$$

Step Five: Build page 1, where $ER_{pq}^1 = H^h(P \otimes Q)$, and d^1 goes 1 left and 1-1=0 up.

		1						
	:	i.	:	:				
0	0	0	0	0				
0	0	0	0	0				
0	0	0	0	0				
$0 \longleftarrow A \otimes Q_0 \longleftarrow A \otimes Q_1 \longleftarrow A \otimes Q_2 \longleftarrow A \otimes Q_3 \longleftarrow \cdots$								
	0	0	0	0				

$$0 \longleftarrow A \otimes Q_0 \longleftarrow A \otimes Q_1 \longleftarrow A \otimes Q_2 \longleftarrow A \otimes Q_3 \longleftarrow \cdots$$

Computing $h_n(A \otimes Q)$ is, by definition, $\mathbf{L}_n(A \otimes -)(B)$, since Q is a projective resolution of B. Hence our page 2 looks like

At this point, our homology has stabilized, since for any n, page 2 has

and computing homology just returns $\mathbf{L}_n(A \otimes -)(B)$. All subsequent pages are as above, and

$$ER_{pq}^2 = H_p^v(H_q^h(P \otimes Q)) \Rightarrow h_{p+q}(\operatorname{Tot}^{\oplus}(P \otimes Q)).$$

Our reorientation did not disturb the total degree of any entry, since we only interchanged p and q. Hence since both

$$EC_{pq}^2 \Rightarrow h_{p+q}(\operatorname{Tot}^{\oplus}(P \otimes Q)) \Leftarrow ER_{pq}^2$$

and both spectral sequences collapse having only $\mathbf{L}_n(-\otimes B)(A)$ or $\mathbf{L}_n(A\otimes -)(B)$ in total degree n, we see that

$$\mathbf{L}_n(A \otimes -)(B) \cong h_n(\mathrm{Tot}^{\oplus}(P \otimes Q)) \cong \mathbf{L}_n(- \otimes B)(A),$$

as desired.

Given an abelian group A and a complex C:

$$\cdots \xrightarrow{d_C} C_{n+1} \xrightarrow{d_C} C_n \xrightarrow{d_C} C_{n-1} \xrightarrow{d_C} \cdots,$$

take a projective resolution of A:

$$\cdots \xrightarrow{d_P} P_3 \xrightarrow{d_P} P_2 \xrightarrow{d_P} P_1 \xrightarrow{d_P} P_0 \xrightarrow{\varepsilon_A} A \to 0.$$

We wish to compute $h_n(C_{\bullet} \otimes A)$. The universal coefficient theorem will relate this homology to the homology of the chain complex $h_n(C)$. By definition,

$$h_n(C) = \frac{\ker d_C}{\lim d_C}.$$

Thus, we have a short exact sequence

$$0 \to \operatorname{im} d_C \to \ker d_C \to h_n(C) \to 0.$$

$$0 \to \operatorname{im} d_C \to \ker d_C \to h_n(C) \to 0$$

Since C is assumed to be comprised of free abelian groups and subgroups of free abelian groups are free abelian, $\ker d_C$ and $\operatorname{im} d_C$ are free abelian. Hence the above short exact sequence is a free (projective, flat) resolution of $h_n(C)$, and thus

$$\operatorname{Tor}_{i\geq 2}(h_n(C), A) = 0$$

 $\operatorname{Tor}_1(h_n(C), A)$
 $\operatorname{Tor}_0(h_n(C), A) \cong h_n(C) \otimes A$

Once again, build a tensor double complex $C \otimes P$.

Let's build ER_{pq}^0 .

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\cdots \longleftarrow C_{n-1} \otimes P_3 \longleftarrow C_n \otimes P_3 \longleftarrow C_{n+1} \otimes P_3 \longleftarrow \cdots$$

$$\cdots \longleftarrow C_{n-1} \otimes P_2 \longleftarrow C_n \otimes P_2 \longleftarrow C_{n+1} \otimes P_2 \longleftarrow \cdots$$

$$\cdots \longleftarrow C_{n-1} \otimes P_1 \longleftarrow C_n \otimes P_1 \longleftarrow C_{n+1} \otimes P_1 \longleftarrow \cdots$$

$$\cdots \longleftarrow C_{n-1} \otimes P_0 \longleftarrow C_n \otimes P_0 \longleftarrow C_{n+1} \otimes P_0 \longleftarrow \cdots$$

$$0 \qquad 0 \qquad 0$$

And again transpose.

And again transpose.

As P_i is projective, $H^h(C \otimes P) = h_n(C \otimes P_i) = h_n(C) \otimes P_i$.

Hence we have ER_{pq}^1 :

Hence we have ER_{pq}^1 :

```
\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \\ 0 \longleftarrow h_{n+1}(C) \otimes P_0 \longleftarrow h_{n+1}(C) \otimes P_1 \longleftarrow h_{n+1}(C) \otimes P_2 \longleftarrow h_{n+1}(C) \otimes P_3 \longleftarrow \cdots \\ 0 \longleftarrow h_n(C) \otimes P_0 \longleftarrow h_n(C) \otimes P_1 \longleftarrow h_n(C) \otimes P_2 \longleftarrow h_n(C) \otimes P_3 \longleftarrow \cdots \\ 0 \longleftarrow h_{n-1}(C) \otimes P_0 \longleftarrow h_{n-1}(C) \otimes P_1 \longleftarrow h_{n-1}(C) \otimes P_2 \longleftarrow h_{n-1}(C) \otimes P_3 \longleftarrow \cdots \\ \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots
```

By definition, the homology of an above row is $\operatorname{Tor}_i(h_n(C), A)$. By prior work, we know what $\operatorname{Tor}_i(h_n(C), A)$ is. Hence we can write page 2:

ER_{pq}^2 :

 ER_{pq}^2 :

Notice that on page 2 and all subsequent pages, the homology stabilizes, since page 2 is supported in two columns and all differentials will move $r \geq 2$ left. Hence we are taking homology of

$$0 \to M \to 0$$
,

which just gives M again.

Therefore ER_{pq}^{∞} :

 $\vdots \qquad \qquad \vdots$ $0 \qquad h_{n+1}(C) \otimes A \qquad \operatorname{Tor}_1(h_{n+1}(C), A) \qquad 0$ $0 \qquad h_n(C) \otimes A \qquad \operatorname{Tor}_1(h_n(C), A) \qquad 0$ $0 \qquad h_{n-1}(C) \otimes A \qquad \operatorname{Tor}_1(h_{n-1}(C), A) \qquad 0$ $\vdots \qquad \qquad \vdots$

Therefore ER_{pq}^{∞} :

$$\vdots \qquad \qquad \vdots \\ 0 \qquad h_{n+1}(C) \otimes A \qquad \operatorname{Tor}_1(h_{n+1}(C),A) \qquad 0 \\ 0 \qquad h_n(C) \otimes A \qquad \operatorname{Tor}_1(h_n(C),A) \qquad 0 \\ 0 \qquad h_{n-1}(C) \otimes A \qquad \operatorname{Tor}_1(h_{n-1}(C),A) \qquad 0 \\ \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

Since page infinity also gives us homology of the totalization which is $h_n(C \otimes A)$, we see that

Therefore ER_{pq}^{∞} :

Since page infinity also gives us homology of the totalization which is $h_n(C \otimes A)$, we see that

$$h_n(C \otimes A) \cong h_n(C) \otimes A \oplus \operatorname{Tor}_1(h_{n-1}(C), A),$$

as desired.

Balancing Ext

Let A and B be R-modules, so A has projective resolution

$$\cdots \rightarrow P_3 \rightarrow P_2 \rightarrow P_1 \rightarrow P_0 \rightarrow A \rightarrow 0$$

and B has injective resolution

$$0 \to B \to I^0 \to I^1 \to I^2 \to I^3 \to \cdots$$

To compute the right-derived (covariant) functor $\mathbf{R}^n \operatorname{Hom}(A, -)(B)$, we can compute

$$\mathbf{R}^n \operatorname{Hom}(A, -)(B) = h^n(\operatorname{Hom}(A, I^{\bullet}))$$

and to compute the right-derived (contravariant) functor $\mathbf{R}^n \operatorname{Hom}(-,B)(A)$, we can compute

$$\mathbf{R}^n \operatorname{Hom}(-, B)(A) = h^n (\operatorname{Hom}(P_{\bullet}, B)).$$

Recall that

$$\mathbf{R}^{i\geq 1}\operatorname{Hom}(A,-)(B)=0$$

if B is injective and

$$\mathbf{R}^{i \ge 1} \operatorname{Hom}(-, B)(A) = 0$$

if A is projective, since

$$0 \to B \to B \to 0$$

and

$$0 \to A \to A \to 0$$

are injective/projective resolutions.

Just like with \otimes , we can build a Hom double complex. We build Hom(P,I) (differentials suppressed). Note it is cohomologically indexed.

Take a vertical filtration EC_0^{pq} . (Arrows in cohomological spectral sequences on page r will go r right and r-1 down.)

For any i, we see that

 $H_v(\operatorname{Hom}(P,I)) = h^n(\operatorname{Hom}(P_i,I)) = 0$ for $n \neq 0$ since P_i is projective, and $h^0(\operatorname{Hom}(P_i,I)) = \operatorname{Hom}(P_i,B)$. Hence we can write page 1:

Page 1, EC_1^{pq} :

 $0 \qquad 0 \qquad 0 \qquad 0 \qquad 0$ $0 \longrightarrow \operatorname{Hom}(P_0, B) \longrightarrow \operatorname{Hom}(P_1, B) \longrightarrow \operatorname{Hom}(P_2, B) \longrightarrow \operatorname{Hom}(P_3, B) \longrightarrow \cdots$ $0 \qquad 0 \qquad 0 \qquad 0 \qquad 0$

Page 1, EC_1^{pq} :

0

$$0 \qquad 0 \qquad 0 \qquad 0 \qquad 0$$

$$0 \longrightarrow \operatorname{Hom}(P_0, B) \longrightarrow \operatorname{Hom}(P_1, B) \longrightarrow \operatorname{Hom}(P_2, B) \longrightarrow \operatorname{Hom}(P_3, B) \longrightarrow \cdots$$

Take cohomology here to get page 2, which we see will henceforth stabilize as $EC_2^{pq} = EC_3^{pq} = \cdots = EC_{\infty}^{pq}$:

0
$$\mathbf{R}^0 \operatorname{Hom}(-, B)(A)$$
 $\mathbf{R}^1 \operatorname{Hom}(-, B)(A)$ $\mathbf{R}^2 \operatorname{Hom}(-, B)(A)$ $\mathbf{R}^3 \operatorname{Hom}(-, B)(A)$...

since $h^n(\operatorname{Hom}(P_{\bullet}, B)) = \mathbf{R}^n \operatorname{Hom}(-, B)(A)$.

On the other hand, ER_0^{pq} :

```
0 \longrightarrow \operatorname{Hom}(P_0, I^3) \longrightarrow \operatorname{Hom}(P_1, I^3) \longrightarrow \operatorname{Hom}(P_2, I^3) \longrightarrow \operatorname{Hom}(P_3, I^3) \longrightarrow \cdots
0 \longrightarrow \operatorname{Hom}(P_0, I^2) \longrightarrow \operatorname{Hom}(P_1, I^2) \longrightarrow \operatorname{Hom}(P_2, I^2) \longrightarrow \operatorname{Hom}(P_3, I^2) \longrightarrow \cdots
0 \longrightarrow \operatorname{Hom}(P_0, I^1) \longrightarrow \operatorname{Hom}(P_1, I^1) \longrightarrow \operatorname{Hom}(P_2, I^1) \longrightarrow \operatorname{Hom}(P_3, I^1) \longrightarrow \cdots
0 \longrightarrow \operatorname{Hom}(P_0, I^0) \longrightarrow \operatorname{Hom}(P_1, I^0) \longrightarrow \operatorname{Hom}(P_2, I^0) \longrightarrow \operatorname{Hom}(P_3, I^0) \longrightarrow \cdots
```

On the other hand, ER_0^{pq} (reoriented):

For any i, we see that

 $H_h(\operatorname{Hom}(P,I)) = h^n(\operatorname{Hom}(P,I^i)) = 0$ for $n \neq 0$ since I^i is injective, and $h^0(\operatorname{Hom}(P,I^i)) = \operatorname{Hom}(A,I^i)$. Hence we can write page 1:

Page 1, ER_1^{pq} :

Page 1, ER_1^{pq} :

$$0 \qquad 0 \qquad 0 \qquad 0 \qquad 0$$

$$0 \longrightarrow \operatorname{Hom}(A, I^0) \longrightarrow \operatorname{Hom}(A, I^1) \longrightarrow \operatorname{Hom}(A, I^2) \longrightarrow \operatorname{Hom}(A, I^3) \longrightarrow \cdots$$

$$0 \qquad 0 \qquad 0 \qquad 0 \qquad 0$$

Take cohomology here to get page 2, which we see will henceforth stabilize as $ER_2^{pq} = ER_3^{pq} = \cdots = ER_{\infty}^{pq}$:

Therefore, we have that since

$$EC \Rightarrow h^n(\operatorname{Tot}^{\oplus}(\operatorname{Hom}(P,I))) \Leftarrow ER,$$

and both EC and ER collapse, we get in degree n

$$\mathbf{R}^n \operatorname{Hom}(-, B)(A) \cong h^n(\operatorname{Tot}^{\oplus}(\operatorname{Hom}(P, I))) \cong \mathbf{R}^n \operatorname{Hom}(A, -)(B).$$

Therefore, we have that since

$$EC \Rightarrow h^n(\operatorname{Tot}^{\oplus}(\operatorname{Hom}(P,I))) \Leftarrow ER,$$

and both EC and ER collapse, we get in degree n

$$\mathbf{R}^n \operatorname{Hom}(-, B)(A) \cong h^n(\operatorname{Tot}^{\oplus}(\operatorname{Hom}(P, I))) \cong \mathbf{R}^n \operatorname{Hom}(A, -)(B).$$

"Perfectly balanced, as all things should be."