Project Sigma

Algebraic Geometry

Yunhai Xiang

May 9, 2021

Contents

1 Affine Algebraic Sets

5

CONTENTS 4

Chapter 1

Affine Algebraic Sets

Let k be a field and $n \in \mathbb{N}$, then the *affine space* $\mathbf{A}^n(k)$ of dimension n, or simply \mathbf{A}^n if it does not cause confusion, is the same structure as the n-dimensional vector space k^n over k, except with affine maps as morphisms, where an affine map is a linear map shifted by a constant. In this course note, unless otherwise specified, I will take $k = \mathbf{C}$ the set of complex numbers.

Definition 1.0.1. Suppose that $S \subseteq k[X_1, ..., X_n]$ for some $n \in \mathbb{N}$, we define

$$\mathcal{V}(S) = \{ x \in \mathbf{A}^n(k) : \forall f \in S, f(x) = 0 \}$$

as the set of zeros of S. Subsets of $A^n(k)$ that are sets of zeros of some S are called (affine) algebraic.

For example, in $\mathbf{A}^2(\mathbf{R})$, the sets $\mathcal{V}(Y)$ and $\mathcal{V}(X)$ are the x-axis and the y-axis, the set $\mathcal{V}(X,Y)$ is the origin. The set $\mathcal{V}(f)$, where $f \in k[X,Y]$ is polynomial of degree 2, is known as a *conic section*, for example, the circle $\mathcal{V}(X^2+Y^2-1)$, the parabola $\mathcal{V}(Y-X^2)$, and the hyperbola $\mathcal{V}(XY-1)$. These are all examples of algebraic sets. We should also mention examples of non-algebraic sets. The set \mathbf{Z} considered as a subset of $\mathbf{A}^1(\mathbf{R})$ is obviously not algebraic. Next, we claim that to find all algebraic sets, we need not consider all subsets of $k[X_1,\ldots,X_n]$. Let R be a commutative ring.

Theorem 1.0.2. *R* is noetherian iff all ideals $I \subseteq R$ are finitely generated.

Theorem 1.0.3 (Hilbert's Basis theorem). If R is noetherian, then so is $R[X_1, \ldots, X_n]$.

Corollary 1.0.4. The ring $k[X_1, ..., X_n]$ is noetherian.

Thus for $S \subseteq k[X_1, ..., X_n]$, the ideal $\langle S \rangle = (f_1, ..., f_m)$ for some $f_1, ..., f_m \in k[X_1, ..., X_n]$. We claim that $\mathcal{V}(S) = \mathcal{V}(\langle S \rangle) = \mathcal{V}(f_1, ..., f_m)$. Obviously

Definition 1.0.5. Let $X \subseteq \mathbf{A}^n(k)$, then define the ideal $\mathcal{I}(X)$ of $k[X_1, \dots, X_n]$ as

$$\mathcal{I}(X) = \{ f \in k[X_1, \dots, X_n] : \forall p \in X, f(p) = 0 \}$$

which is a well-defined ideal as we can verify easily.

Lemma 1.0.6. Suppose that *I* is an ideal of $k[X_1, ..., X_n]$, then

$$\mathcal{I}(\mathcal{V}(I)) = \sqrt{I}$$

where the radical $\sqrt{I} = \{r \in R : \exists n > 0, r^n \in I\}.$

Theorem 1.0.7 (Hilbert's Nullstellensatz). There is a bijective correspondance

{radical ideals of
$$k[X_1, ..., X_n]$$
} \longleftrightarrow {algebraic sets of $\mathbf{A}^n(k)$ }

given by
$$I \mapsto \mathcal{V}(I)$$
 and $X \mapsto \mathcal{I}(X)$.

Proof. Note that each V(I) is an algebraic set, and each $\mathcal{I}(X)$ is a radical ideal, so these maps are well defined. Next, for an ideal I,