Project Cold Storage

Table of Contents

1 Project Objective	3
2 Assumptions	3
3 Exploratory Data Analysis – Step by step approach	3
3.1 Environment Set up and Data Import	3
3.1.1 Install necessary Packages and Invoke Libraries3	
3.1.2 Set up working Directory	1
3.1.3 Import and Read the Dataset	!
3.2 Variable Identification	4
3.2.1 Variable Identification – Inferences4	
4 Conclusion	5
5 Appendix A – Source Code	

1 Project Objective

1. The objective of the report is to explore the Cold Storage data set ("Cold Storage Mar2018") and

("Cold_Storage_Temp_Data") importing the dataset in R and generate insights about the data set. This exploration report will consist of the following:

- Importing the dataset in R
- Understanding the structure of dataset
- Graphical exploration
- Descriptive statistics
- ➤ Insights from the dataset

2.Assumptions:

- 1. "Cold_Storage_Temp_Data" -> This dataset declares the summary of all seasons from 2016,365days temperature.
- 2. History of temperature is distributed equally.
- 3. We are expecting the null value 3.9-degree c should not be exceed by cold storage as we have maintained the most favourable level at the plant.

3.Exploratory Data Analysis – Step by Step Approach:

A Typical Data exploration activity consist of the following steps.

- 1. Environment Set up and Data Import
- 2. Variable Identification
- 3. Univariate Analysis
- 4. Bi-Variate Analysis
- 5. Variable Transformation / Feature Creation
- 6. Feature Exploration

3.1 Environment Set up and Data Import

3.1.1 Install necessary Packages and Invoke Libraries

Use this section to install necessary packages and invoke associated libraries. Having all the packages at the same places increases code readability.

3.1.2 Set up working Directory

Setting a working directory on starting of the R session makes importing and exporting data files and code files easier. Basically, working directory is the location/ folder on the PC where you have the data, codes etc. related to the project.

Please refer Appendix A for Source Code.

3.1.3 Read and Import the Dataset

The given dataset is in .csv format. Hence, the command 'read.csv' is used for importing the file.

Please refer Appendix A for Source Code.

1.1 Variable Identification

Mean(): mean of the dataset

Summary (): Complete summary of the dataset

Hist(): To represent the frequency of the values into ranges, and also it

represent the total number of values present in that dataset

Read.csv(): To understand the csv file

By(): To identify the summary of seasons.

Pnorm(): To Calculate the probability of going below temperature 2deg C

1-pnorm(): To raise the temperature of above 4deg c

Sd(): Standard Deviation

Str(): It is used to check the structure of dataset

t.test(): One Sample T Test observation

Boxplot(): comparing the distribution of data across dataset by drawing

boxplot for each of them.

Pvalue(): To check the hypothesis testing for rejecting or accepting the null value.

Zstat(): Have declared this function along with formula to do z test Nested "if-else": To check how much penalty should they charge for AMC Company

1.2 Summary of observation about each Variable

Box Plot of "Cold_Storage_Temp_Data"

Histogram of "Cold_Storage_Temp_Data"

Histogram of rithu\$Temperature

Histogram of "Cold_Storage_Mar2018"

Histogram of mydata\$Temperature

4. Diagnosis of Problem 1&2

Problem 1:

As per the problem if temperature will go above 2.5 % to =<5% then their should be penalty charges 10%.

As per the problem if temperature goes above 5% then their should be penalty charges 25%.

So from the calculation done in R Studio there is chances of going above temperature 4 degree 2.07% (0.02072629) which is within 0.05 ie 5%

And from calculation again we got the data temperature will go less than 2degree (0.02914744) 2.91% which is between 2.5% and 5%.

Hence above solution we can come to an conclusion that there must be a chance of giving 10% penalty charges.

Problem 2:

We can say Null Hypothesis = 3.9

Alternate Hypothesis is greater than 3.9

From the z test and T Test we have got P Value is 0.004711 and from problem alpha is 0.1

So as P Value is less than Alpha we can conclude we can reject the null hypothesis and accept the alternate hypothesis with a confidence level 90%.

Hence from both the test we can come an conclusion that the temperature will go above 3.9 Degree C.

5. Appendix A – Source Code

Solution 1:

```
###mean for all year - 2nd ques
setwd("G:/Projects")
getwd()
rithu=read.csv("Cold_Storage_Temp_Data.csv")
attach(rithu)
rithu
summary(rithu)
###sd for full year - 3rd ques
sd(Temperature)
###mean for all season - 1st ques
by(rithu,INDICES = Season,FUN = summary)
###Below 2 degree c - 4th ques
p1 = pnorm(2, mean = 2.963, sd = 0.508589)
p1
###Above 4 degree c - 5th ques
p2=1-pnorm(4,mean = 2.963,sd=0.508589)
p2
pnorm(2,mean = 2.963,sd=0.508589,lower.tail = TRUE)
#### Question 6
q=p1
if(q>0.025 && q<=0.05){
(penalty = '10%')
}else if (q>0.05){
```

```
(penalty = '25\%')
} else {
penalty='0%'
print(penalty)
boxplot(rithu$Temperature~rithu$Season,col=c("green","blue","red"
hist(rithu$Temperature,xlab = "Temperature",col="red")
Solution 2:
setwd("G:/Projects")
getwd()
mydata=read.csv("Cold Storage Mar2018.csv")
str(mydata)
summary(mydata)
sd=sd(mydata$Temperature)
sd
hist(mydata$Temperature)
boxplot(mydata$Temperature,horizontal = T)
scatter.smooth(mydata$Temperature)
### T Test
t.test(mydata$Temperature,alternative = "greater",paired =FALSE)
sample_mean=mean(mydata$Temperature)
sample mean
sqrt=sqrt(35)
### Z Test
xbar=3.9
Mu=sample mean
n=35
sd
```

```
zstat=(xbar-Mu)/(sd/(n^0.5))
zstat
```

P Valve pvalve=pt(zstat,34) pvalve

hist(mydata\$Temperature)
boxplot(mydata\$Temperature)
scatter.smooth(mydata\$Temperature)