

特点

- 可计时基于 32.768kHz 晶体的秒,分,小时,星期,天,月和年
- 带有世纪标志
- 宽工作电压范围: 2.0~5.5V
- 低休眠电流: 典型值为 0.25 µ A (V_{DD}=3.0V, T_A=25°C)
 - I²C总线从地址:读,0A3H;写,0A2H
- 应用
 - 便携仪器
 - 移动电话
 - 门禁

- 可编程时钟输出频率为: 32.768kHz, 1024Hz, 32Hz, 1Hz
 - 报警和定时器
 - 掉电检测器
 - 内部集成振荡电容
 - 封装形式: DIP8、SOP8 和 MSOP8
 - 漏极开路中断引脚
 - 复费率电度表、IC 卡水表、IC 卡煤气表
 - 传真机

概述

HYM8563 是一款低功耗CMOS实时时钟/日历芯片,它提供一个可编程的时钟输出,一个中断输出和一个掉电检测器,所有的地址和数据都通过I²C总线接口串行传递。最大总线速度为 400Kbits/s,每次读写数据后,内嵌的字地址寄存器会自动递增。

方框图和管脚功能

图 1.方框图

管脚说明

管脚序号	符号	功能描述	管脚序号	符号	功能描述
1	OSCI	振荡器输入	5	SDA	串行数据 I/0
2	0SC0	振荡器输出	6	SCL	串行时钟输入
3	INT	中断输出(开漏)	7	CLKOUT	时钟输出 (开漏)
4	V_{SS}	地	8	V_{DD}	正电源

最大额定值

参数	符号	最小值	最大值	单位
电源电压	$V_{ m DD}$	-0.5	+6.5	V
电源电流	I_{DD}	-50	+50	mA
SCL 和 SDA 管脚输入电压	V	-0.5	+6.5	V
OSCI 管脚输入电压	$ V_{I}$	-0.5	$V_{DD}+0.5$	V
CLKOUT 和INT 管脚输出电压	Vo	-0.5	+6.5	V
所有输入口的直流输入电流	$I_{\rm I}$	-10	+10	mA
所有输出口的直流输出电流	I_{O}	-10	+10	mA
总损耗功率	P		300	mW
工作温度	T_{A}	-40	+85	$^{\circ}$ C
贮存温度	T_{S}	-65	+150	$^{\circ}$ C

电气特性参数

直流电特性 (如无特别说明, V_{DD}=1.8~5.5V, V_{SS}=0V; T_A=-40~+85℃; f_{osc}=32. 768kHz; 石英晶片Rs=40k Ω, C_L=8pF)

参数	符号	测试条件	最小值	典型值	最大值	单位
电源						
工作电压		I ² C总线失效,T _A = 25℃ ^[1]	1.8	_	5.5	V
工作电压 	37	I ² C总线有效,f=400kHz ^[1]	2.0	_	5.5	V
提供可靠的时钟/日历 数据时的工作电压	$ m V_{DD}$	T _A =25°C	$V_{\rm low}$	_	5.5	V
工作电流 1	I_{DD1}	f _{SCL} =400kHz	_	_	800	μА

CLKOUT 有效 (FE=1)		f _{SCL} =100kHz	_	_	200	μА		
		$f_{SCL}=0Hz$, $T_A=25^{\circ}C^{[2]}$						
		V _{DD} =5.0V	_	275	550	nA		
工作由法 2		V _{DD} =3.0V	_	250	500	nA		
工作电流 2	T	V _{DD} =2.0V	_	225	450	nA		
CLKOUT 禁止 (FE=0)	I_{DD2}	f_{SCL} =0Hz, T_A = -40 \sim +85 $^{\circ}$ C	[2]					
(TE=0)		V _{DD} =5.0V	_	500	750	nA		
		V _{DD} =3.0V	_	400	650	nA		
		V _{DD} =2.0V	_	400	600	nA		
		$f_{SCL}=0Hz$, $T_A=25^{\circ}C^{[2]}$						
		V _{DD} =5.0V	_	825	1600	nA		
		$V_{DD}=3.0V$	_	550	1000	nA		
工作电流 3	T	V _{DD} =2.0V	_	425	800	nA		
CLKOUT=32.768kHz	I_{DD3}	$f_{SCL}=0Hz$, $T_{A}=-40\sim+85^{\circ}C^{[2]}$						
		V _{DD} =5.0V	_	950	1700	nA		
		$V_{DD}=3.0V$	_	650	1100	nA		
		$V_{DD}=2.0V$	_	500	900	nA		
输入								
低电平输入电压	$V_{\rm IL}$		V_{SS}	_	$0.3V_{DD}$	V		
高电平输入电压	V_{IH}		$0.7V_{DD}$	_	V_{DD}	V		
输入漏电流	I_{LI}	$V_{I}=V_{DD}$ 或 V_{SS}	-1	0	+1	μA		
输入电容	C_{I}	[3]	_	<u> </u>	8	pF		
输出								
SDA 低电平输出电流	I_{OLS}	$V_{OL} = 0.4V, V_{DD} = 5.0V$	-3	_	_	mA		
INT低电平输出电流	I_{OLI}	$V_{OL} = 0.4V, V_{DD} = 5.0V$	-1	_	_	mA		
CLKOUT 低电平输出电流	I_{OLC}	$V_{OL} = 0.4V, V_{DD} = 5.0V$	-1		_	mA		
CLKOUT 高电平输出电流	I_{OHC}	$V_{OL} = 4.6V, V_{DD} = 5.0V$	1		_	mA		
输出漏电流	I_{LO}	VO=V _{DD} 或V _{SS}	-1	0	+1	μА		
电压检测器								
掉电检测电压	V_{LOW}	$T_A = 25 ^{\circ}C$	_	0.9	1.0	V		

- 1、加电时振荡器可靠起动: V_{DD} (最小值,加电时)= V_{DD} (最小值)+0.3V
- 2、定时器源时钟=1/60Hz; SCL和SDA都为 V_{DD}
- 3、在样品基础上测试

交流特性(如无特别说明, $V_{DD}=1.8\sim5.5V$, $V_{SS}=0V$; $T_A=-40\sim+85$ °C; $f_{osc}=32.768$ kHz;石英晶体Rs=40k Ω , $C_L=8$ pF)

参数	符号	测试条件	最小值	典型值	最大值	单位
振荡器						
精确负载电容	C_{INT}		15	25	35	pF
振荡器稳定性	$\Delta f_{OSC} / f_{OSC}$	Δ V _{DD} =200mV, T _A =25°C	_	2×10 ⁻⁷	_	
石英晶体参数(f=32.76	8kHz)					
串联电阻	R_S		_	_	40	kΩ
并联负载电容	C_{L}		_	10	_	pF

微调电容	C_{T}		5	_	25	pF
CLKOUT 输出						
CLKOUT 占空因数	δ _{CLKOUT}	[1]	_	50	_	%
I2C总线定时特性 ^{[2] [3]}						
SCL 时钟周期	f_{SCL}	[4]	_	_	400	kHz
起动条件保持时间	t _{HDSTA}		0.6	_	_	μ_{S}
重复起动条件建立 时间	t _{SUSTA}		0.6	_	_	μ_{S}
SCL 低电平时间	t_{LOW}		1.3	_	_	μ_{S}
SCL 高电平时间	t _{HIGH}		0.6	_	_	μ_{S}
SCL 和 SDA 的上升沿时间	$t_{\rm r}$		_	_	0.3	μ_{S}
SCL 和 SDA 的下降沿时间	t_{f}		_	_	0.3	μς
总线负载电容	C_b		_	_	400	pF
数据建立时间	t_{SUDAT}		100	_	_	ns
数据保持时间	t _{HDDAT}		0	_		ns
停止条件建立时间	t _{SUSTO}		0.6	_		μ_{S}
可接受的总线尖峰 宽度	t_{SW}		_	_	50	ns

- 1、无特别说明f_{CLKOUT}=32.768kHz
- 2、所有定时数值在工作电压范围内(T_A 条件下)有效,参考输入电压 V_{SS} 到 V_{DD} 之间变化是 V_{IL} 和 V_{IH} 的值
- 3、I2C 总线在两个起动和一个停止条件下的访问时间必须小于 1s

功能描述

HYM8563 有 16 个 8 位寄存器,一个可自动增量的地址寄存器,一个内置 32.768kHz振荡器(带有一个内部集成的电容),一个分频器(用于给实时时钟RTC提供时钟源),一个可编程时钟输出,一个定时器,一个报警器,一个掉电检测器和一个 400kHz的I²C总线接口。

所有 16 个寄存器设计成可寻址的 8 位并行寄存器,但不是所有位都有用。第二个寄存器(内部地址 00H, 01H) 用作控制寄存器和状态寄存器,地址 02H~08H 用于时钟计数器(秒到年计数器),地址 09H~0CH 用于报警寄存器(定义报警条件),地址 0DH 用于控制 CLKOUT 管脚的输出频率,地址 0EH 和 0FH 分别用作定时器控制寄存器和定时器寄存器。秒、分钟、小时、日、月、年、分钟报警、小时报警、日报警寄存器的编码格式为 BCD 码,星期和星期报警寄存器不以 BCD 格式编码。

报警功能模式

一个或多个报警寄存器 MSB(AE=Alarm Enable 报警使能位)清 0 时,相应的报警条件有效,这样,一个报警将在每分钟至每星期范围内产生一次。设置报警标志位 AF(控制/状态寄存器 2 的位 3)用于产生中断,AF 只能用软件清除。

定时器

8 位的倒计数器(地址 0FH)由定时器控制寄存器(地址 0EH,参见表 22)控制,定时器控制寄存器用于设定定时器的频率(4096Hz,64Hz,1Hz 或 1/60Hz),以及设定定时器有效或无效。定时器从软件设置的 8 位二进制数倒计数,每次倒计数结束时,定时器设置标志位 TF(参见表 4), TF 用于产生一个中断(INT),每个倒计数周期产生一个脉冲作为中断信号,定时器标志位 TF 只能用软件清除。TI/TP(参见表 4)控制中断产生的条件。当读定时器时,返回当前倒计数的数值。

CLKOUT 输出

管脚 CLKOUT 可以输出可编程的方波。CLKOUT 频率寄存器(地址 0DH,参见表 20)决定输出方波的频率,可以输出 32.768kHz(缺省值),1024Hz,32Hz 和 1Hz 的方波。CLKOUT 为漏极开路输出管脚,通电时有效,无效时为高阻抗。

复位

HYM8563 内置一个复位电路,当振荡器停止工作时,复位电路开始工作。在复位状态下,I²C总线被初始化,所有寄存器(包括地址指针)除TF、VL、TD1、TD0、TESTC、AE位被置为逻辑1外,都将被清零。

寄存器结构

表 1. 寄存器概况

标明"一"的位无效,标明"0"的位应置为逻辑0。

地址	寄存器名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
00Н	控制/状态寄存器1	1	0	0	0	0	0	0	0
01H	控制/状态寄存器 2	0	0	0	TI/TP	AF	TF	AIE	TIE
ODH	CLKOUT 频率寄存器	FE	_	_		_	_	FD1	FD0
0EH	定时器控制寄存器	TE	_	_		_	_	TD1	TD0
0FH	定时器倒计数寄存器		定时器倒计数数值						

表 2. BCD 格式寄存器概况

标明"一"的位无效

地址	寄存器名称	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
02H	秒				00~59	BCD 码格	各式数		
03H	分钟				00~59	BCD 码格	各式数		
04H	小时				00	\sim 23BCD	码格式	数	
05H	日			— 01~31BCD 码格式数					
06Н	星期				<u> </u>				
07H	月/世纪	С		─ 01~12BCD 码格式数					
08H	年			00	\sim 99BCD	码格式	数		
09Н	分钟报警	AE			00~59	BCD 码格	各式数		
OAH	小时报警 AE — 00~23BCD 码格式数		数						
OBH	日报警	AE		01~31BCD 码格式数					
ОСН	星期报警	AE						0~6	

寄存器1

表 3 寄存器 1 (地址 00H) 位描述

位号	符号	描述
7	1	读取时常为1
6~0		缺省值为逻辑 0

控制/状态寄存器 2

位 TF 和 AF: 当一个报警发生时, AF 被置为逻辑 1。类似的, 在定时器的倒数计数结束时, TF 被置为逻辑 1。只能通过软件来修改这两位的值。如果在应用中同时需要用到定时器和报警中断, 可以通过读这两个字节来确定中断源。在一个写周期中清除位时, 为了防止重写标志位, 需要执行一个逻辑与操作。

位 TIE 和 AIE: 这两位用来激活中断的产生。当 AIE 和 TIE 被置位时,中断为这两位的逻辑或。

表 4. 控制/状态寄存器 2 (地址 01H) 的位描述

位号	符号	描述
7, 6, 5		缺省值为逻辑 0
4	TI/TP	TI/TP=0: 当 TF 有效时, INT 有效(取决于 TIE 的状态) TI/TP=1: INT, 脉冲有效, 见表 5(取决于 TIE 的状态) 注意: 若 AF 和 AIE 都有效时,则 INT 一直有效
3	AF	AF=0: 读操作时,报警标志无效;写操作时,报警标志被清除 AF=1: 读操作时,报警标志有效;写操作时,报警标志保持不变
2	TF	TF=0: 读操作时,定时器标志无效;写操作时,定时器标志被清除 TF=1: 读操作时,定时器标志有效;写操作时,定时器标志保持不变
1	AIE	AIE=0: 报警中断被禁止 AIE=1: 报警中断被使能
0	TIE	TIE=0: 定时器中断被禁止 TIE=1: 定时器中断被使能

表 5. **INT**操作(位 TI/TP=1)

时钟源(Hz)	~INT周期 ^[1]				
P) 7年7年(日2)	n=1 ^[2]	n >1			
4096	1/8192	1/4096			
64	1/128	1/64			
1	1/64	1/64			
1/60	1/64	1/64			

[1]、TF 和**INT**同时有效

[2]、n 为倒计数定时器的数值, 当 n=0 时, 定时器停止工作

秒、分钟和小时寄存器

表 6. 秒/VL 寄存器(地址 02H)位描述

位号	符号	描述
6~0	(秒)	代表 BCD 格式的当前秒数值,值为 00~99,例如: 1011001 代表 59 秒
7	_	无效

表 7. 分钟寄存器 (地址 03H) 位描述

位号	符号	描述
7	_	无效
6~0	(分钟)	代表 BCD 格式的当前分钟数值,值为 00~59

表 8. 小时寄存器(地址 04H)位描述

位号	符号	描述
7, 6	_	无效
5~0	(小时)	代表 BCD 格式的当前小时数值,值为 00~23

日、星期、月/世纪和年寄存器

表 9. 日寄存器 (地址 05H) 位描述

位号	符号	描述
7, 6	_	无效
5~0	(目)	代表 BCD 格式的当前日数值,值为 01~31。当年计数器的值是闰年是, HYM8583 自动给二月增加一个值,使其成为 29 天

表 10. 星期寄存器 (地址 06H) 位描述

位	1号	符号	描述
7	~3	_	无效
2	~0	(星期)	代表当前星期数值,值为0~6。见表11,这些位也可有用户重新分配

表 11. 星期分配表

日	位 2	位 1	位 0
星期日	0	0	0
星期一	0	0	1
星期二	0	1	0
星期三	0	1	1
星期四	1	0	0
星期五	1	0	1
星期六	1	1	0

表 12. 月/世纪寄存器 (地址 07H) 位描述

位号	符号	描述
7	С	世纪位: C=0 指定世纪数为 20XX; C=1 指定世纪数为 19XX, "XX" 为年寄存器中的值,见表 14。当年由 99 变为 00 时,世纪为会改变。
6, 5	_	无效
4~0	(月)	代表 BCD 格式的当前月份数值,值为 01~12,见表 13

表 13. 月份分配表

月份	位 4	位 3	位 2	位 1	位 0
一月	0	0	0	0	1
二月	0	0	0	1	0
三月	0	0	0	1	1
四月	0	0	1	0	0
五月	0	0	1	0	1
六月	0	0	1	1	0
七月	0	0	1	1	1
八月	0	1	0	0	0
九月	0	1	0	0	1
十月	1	0	0	0	0
十一月	1	0	0	0	1
十二月	1	0	0	1	0

表 14. 年寄存器 (地址 08H) 位描述

位号	符号	描述
$7\sim0$	(年)	代表 BCD 格式的当前年数值,值为 00~99

报警控制寄存器

当一个或多个报警寄存器写入合法的分钟、小时、日或星期数值并且它们相应的 AE (Alarm Enable) 位为逻辑 0,以及这些数值与当前的分钟、小时、日或星期数值相等,标志位 AF (Alarm Flag) 被设置,AF 保存设置值直到被软件消除为止,AF 被清除后,只有在时间增量与报警条件再次相匹配时才可再被设置。报警寄存器在它们相应位 AE 置为逻辑 1 时将被忽略。

表 15. 分钟报警寄存器(地址 09H)位描述

位号	符号	描述
7	AE	AE=0,分钟报警有效; AE=1,分钟报警无效
6~0	分钟报警	代表 BCD 格式的分钟报警数值,值为 00~59

表 16. 小时报警寄存器(地址 0AH)位描述

位号	符号	描述
7	AE	AE=0,小时报警有效; AE=1,小时报警无效
23	小时报警	代表 BCD 格式的小时报警数值,值为 00~59

表 17. 日报警寄存器(地址 0BH)位描述

位号	符号	描述
7	AE	AE=0, 日报警有效; AE=1, 日报警无效
6~0	日报警	代表 BCD 格式的日报警数值,值为 00~31

表 18. 星期报警寄存器(地址 0CH)位描述

位号	符号	描述
7	AE	AE=0,星期报警有效; AE=1,星期报警无效
6~0	星期报警	代表 BCD 格式的星期报警数值,值为 00~59

CLKOUT 频率寄存器

表 19. CLKOUT 频率寄存器 (地址 0DH) 位描述

位号	符号	描述	
7	FE	FE=0: CLKOUT 输出被禁止并设成高阻抗	
1		FE=1: CLKOUT 输出有效	
6~2	_	无效	
1	FD1	用于控制CLKOUT的频率输出管脚(f _{CLKOUT}),见表 20	
0	FD0	用于控制CLKOUT的频率输出管脚(f _{CLKOUT}),见表 20	

表 20. CLKOUT 频率选择表

FD1	FD0	f_{CLKOUT}
0	0	32. 768kHz
0	1	1024Hz
1	0	32Hz
1	1	1Hz

倒计数定时器寄存器

定时器寄存器是一个 8 位字节的倒计数定时器,它由定时器控制器中的位TE决定有效或无效,定时器的时钟也可以由定时器控制器选择,其它定时器功能,如中断产生,由控制/状态寄存器 2 控制。为了能精确读回倒计数的数值, I^2 C总线时钟SCL的频率应至少为所选定定时器时钟频率的两倍。

表 21. 定时器控制寄存器(地址 0EH)位描述

位号	符号	描述		
7	TE	TE=0: 定时器无效; TE=1: 定时器有效		
6~2	_	无用		
1	TD1	定时器时钟频率选择位,决定倒计数定时器的时钟频率,见表22,不		
0		用时 TD1 和 TD0 应设为"11"(1/60Hz),以降低电源损耗		

表 22. 定时器时钟频率选择

TD1	TD0	定时器时钟频率(Hz)	
0	0	4096	
0	1	64	
1	0	1	
1	1	1/60	

表 23. 定时器倒计数数值寄存器 (地址 0FH) 位描述

位号符号		描述		
$7 \sim 0$	定时器倒计数数值	倒计数数值 "n",倒计数周期=n/时钟频率		

串行接口

HYM8563 采用的是串行I²C总线接口。

I2C总线特性

I²C总线通过两条线SDA和SCL在不同的芯片和模块间传递信息。SDA为串行数据线,SCL为串行时钟线,两条线必须用一个上拉电阻与正电源相连。数据只在总线不忙时才可传送。

系统配置参见图 10,产生信息的器件是传送器,接收信息的器件是接收器,控制信息的器件是主器件,

受控制的器件是从器件。

图10. I2C总线系统配置图

起动 (START) 和停止 (STOP) 条件

总线不忙时,数据线和时钟线保持高电平,数据线在下降沿、时钟线为高电平时为起动条件(S),数据线在上升沿、时钟线为高电平时为停止条件(P)参见图 11。

图11: I2C总线的起动(START)和停止(STOP)条件定义

位传送

每个时钟脉冲传送一个数据位,SDA 线上的数据在时钟脉冲高电平时应保持稳定,否则 SDA 线上的数据将成为上面提到的控制信号,参见图 12。

图12. I2C总线上的位传送

应答位

在起动条件和停止条件之间发送器发给接收器的数据数量没有限制。每个8位字节后加一个应答标志位,发送器产生高电平的应答标志位,这时主器件产生一个附加应答标志时钟脉冲。从接收器必须在接收到每个字节后产生一个应答标志位,主接收器也必须在接收从发送器发送的每个字节后产生一个应答标志

位。在应答标志位时钟脉冲出现时,SDA 线应保持低电平(应考虑起动和保持时间)。发送器应在送器应在 从器件接收最后一个字节时变为低电平,使接收器产生应答标志位,这时主器件可产生停止条件。

I2C总线协议

注意:用I²C总线传递数据前,接收器件应先标明地址,在I²C总线起动后,这个地址与第一个传送字节一起被传送。HYM8563可以作为一个从接收器或从发送器,这时,时钟信号线SCL只能是输入信号线,数据信号线SDA是一条双向信号线。

HYM8563 的从地址参见图 14。

时钟/日历的读/写周期

HYM8563 的串行I²C总线读/写周期有三种配置,参见图 15,16,17,图中字地址是 4 个位的数,用于指出下一个要访问的寄存器,字地址的高四位无用。

图15. 主发送器到从接收器(写模式)

图16.设置字地址后主器件读数据(写地址,读数据)

图17. 主器件读从器件第一个字节数据后的数据(读模式)

典型应用电路图

石英晶体频率调整

方法 1: 定值0SCI电容——计算所需的电容平均值,用此值的定值电容,通电后在CLKOUT管脚上测出的频率应为 32.768kHz,测出的频率值偏差取决于石英晶体,电容偏差和器件之间的偏差(平均为±5×10⁻⁶)。平均偏差可控制在±5分钟/年。

方法 2: OSCI 微调电容——可通过调整 OSCI 管脚的微调电容使振荡器频率达到精确值,通电时可测出 CLKOUT 管脚上的频率值为 32.768kHz。

方法 3: 0SCO 输出——直接测出 0SCO 的输出 (考虑测试探头的电容)。

定购信息

型号	温度范围	封装形式	
HYM8563		DIP8	
HYM8563T	-40∼+85°C	SOP8	
HYM8563S		MSOP8	

封装尺寸

SYMBOL	MILLIMETER		
BIMBOL	MIN	NOM	MAX
A		_	1.10
A1	0.05	_	0.15
A2	0.75	0.85	0.95
A3	0.30	0.35	0.40
b	0.29	_	0.38
b1	0.28	0.30	0.33
с	0.15	_	0.20
c1	0.14	0.152	0.16
D	2.90	3.00	3.10
Е	4.70	4.90	5.10
E1	2.90	3.00	3.10
e	0.65BSC		
L	0.40	_	0.70
L1	0.95BSC		
θ	0	_	8°
L/F载体尺寸 (mil)	71*96		