Pácticas de Aprendizaje Automático con Julia

Tabla de contenidos

Pr	efaci		3			
	Lice	ncia	3			
1	Intro	oducción	5			
	1.1	El REPL de Julia	6			
	1.2	El gestor de paquetes de Julia	6			
	1.3		7			
	1.4	-	7			
	1.5	Operadores booleanos	8			
	1.6	Funciones de redondeo				
	1.7	Funciones de división	9			
	1.8	Funciones para el signo y el valor absoluto	0			
	1.9	Raíces, exponenciales y logaritmos	1			
	1.10	Funciones trigonométricas	2			
		Funciones trigonométricas inversas	3			
		Precedencia de operadores	4			
		Definición de variables	5			
2	Preprocesamiento de datos					
	2.1	Ejercicios Resueltos	6			
	2.2	Ejercicios propuestos	0			
3	Reg	resión 3	3			
	3.1	Ejercicios Resueltos	3			
4	Árb	oles de decisión 4	1			
	4.1	Ejercicios Resueltos 4	1			

Prefacio

¡Bienvenido a Prácticas de Aprendizaje Automático con Julia!

Este libro presenta una recopilación de prácticas de Aprendizaje Automático (Machine Learning) con el lenguaje de programación Julia.

No es un libro para aprender a programar con Julia, ya que solo enseña el uso del lenguaje y de algunos de sus paquetes para implementar los algoritmos más comunes de Aprendizaje Automático. Para quienes estén interesados en aprender a programar en este Julia, os recomiendo leer este manual de Julia.

Licencia

Esta obra está bajo una licencia Reconocimiento – No comercial – Compartir bajo la misma licencia 3.0 España de Creative Commons. Para ver una copia de esta licencia, visite https://creativecommons.org/licenses/by-nc-sa/3.0/es/.

Con esta licencia eres libre de:

- Copiar, distribuir y mostrar este trabajo.
- Realizar modificaciones de este trabajo.

Bajo las siguientes condiciones:

- Reconocimiento. Debe reconocer los créditos de la obra de la manera especificada por el autor o el licenciador (pero no de una manera que sugiera que tiene su apoyo o apoyan el uso que hace de su obra).
- No comercial. No puede utilizar esta obra para fines comerciales.
- Compartir bajo la misma licencia. Si altera o transforma esta obra, o genera una obra derivada, sólo puede distribuir la obra generada bajo una licencia idéntica a ésta.

Al reutilizar o distribuir la obra, tiene que dejar bien claro los términos de la licencia de esta obra.

Estas condiciones pueden no aplicarse si se obtiene el permiso del titular de los derechos de autor.

Nada en esta licencia menoscaba o restringe los derechos morales del autor.

1 Introducción

La gran potencia de cálculo alcanzada por los ordenadores en las últimas décadas ha convertido a los mismos en poderosas herramientas al servicio de todas aquellas disciplinas que, como las matemáticas, requieren cálculos largos y complejos.

Julia es un lenguaje de programación especialmente orientado al cálculo numérico y el análisis de datos. Julia permite además realizar cálculos simbólicos y dispone de una gran biblioteca de paquetes con aplicaciones en muy diversas áreas de las Matemáticas como Cálculo, Álgebra, Geometría, Matemática Discreta o Estadística.

La ventaja de Julia frente a otros programas habituales de cálculo como Mathematica, MATLAB o Sage radica en su potencia de cálculo y su velocidad (equiparable al lenguaje C), lo que lo hace ideal para manejar grandes volúmenes de datos o realizar tareas que requieran largos y complejos cálculos. Además, es software libre por lo que resulta ideal para introducirlo en el aula como soporte computacional para los modelos matemáticos sin coste alguno.

En el siguiente enlace se explica el procedimiento de instalación de Julia.

Existen también varios entornos de desarrollo online que permiten ejecutar código en Julia sin necesidad de instalarlo en nuestro ordenador, como por ejemplo Replit, Cocalc o Codeanywhere.

El objetivo de esta práctica es introducir al alumno en la utilización de este lenguaje, enseñándole a realizar las operaciones básicas más habituales en Cálculo.

1.1 El REPL de Julia

Para arrancar el REPL^(REPL es el acrónimo de Read, Evaluate, Print and Loop, que describe el funcionamiento del compilador de Julia) de julia basta con abrir una terminal y teclear julia.

1.2 El gestor de paquetes de Julia

Julia viene con varios paquetes básicos preinstalados, como por ejemplo el paquete LinearAlgebra que define funciones básicas del Álgebra Lineal, pero en estas prácticas utilizaremos otros muchos paquetes que añaden más funcionalidades que no vienen instalados por defecto y tendremos que instalarlos aparte. Julia tiene un potente gestor de paquetes que facilita la búsqueda, instalación, actualización y eliminación de paquetes.

Por defecto el gestor de paquetes utiliza el repositorio de paquetes oficial pero se pueden instalar paquetes de otros repositorios.

Para entrar en el modo de gestión de paquetes hay que teclear]. Esto produce un cambio en el *prompt* del REPL de Julia.

Los comandos más habituales son:

- add p: Instala el paquete p en el entorno activo de Julia.
- update: Actualiza los paquetes del entorno activo de Julia.
- status: Muestra los paquetes instalados y sus versiones en el entorno activo de Julia.

• remove p: Elimina el paquete p del entorno activo de Julia.

```
i Ejemplo

Para instalar el paquete SymPy para cálculo simbólico basta con teclear add Sympy.

(@v1.7) pkg> add SymPy

Updating registry at `~/.julia/registries/General.toml`

Resolving package versions...

Updating `~/.julia/environments/v1.7/Project.toml`

[24249f21] + SymPy v1.1.6

Updating `~/.julia/environments/v1.7/Manifest.toml`

[3709ef60] + CommonEq v0.2.0

[38540f10] + CommonSolve v0.2.1

[438e738f] + PyCall v1.93.1

[24249f21] + SymPy v1.1.6
```

1.3 Operadores aritméticos.

El uso más simple de Julia es la realización de operaciones aritméticas como en una calculadora. En Julia se utilizan los siguientes operadores.

Operador	Descripción
x + y	Suma
х - у	Resta
x * y	Producto
х / у	División
x ÷ y	Cociente división entera
х % у	Resto división entera
x ^ y	Potencia

1.4 Operadores de comparación

Operador	Descripción
==	Igualdad
!=,	Desigualdad
<	Menor que
<=,	Menor o igual que

Operador	Descripción
>	Mayor que
>=,	Mayor o igual que

1.5 Operadores booleanos

Operador	Descripción
!x	Negación
x && y	Conjunción (y)
x y	Disyunción (o)

Existen también un montón de funciones predefinidas habituales en Cálculo.

1.6 Funciones de redondeo

Función	Descripción
round(x)	Devuelve el entero más próximo a x
<pre>round(x, digits = n)</pre>	Devuelve al valor más próximo a ${\tt x}$ con ${\tt n}$
	decimales
floor(x)	Redondea x al próximo entero menor
ceil(x)	Redondea x al próximo entero mayor
trunc(x)	Devuelve la parte entera de ${\tt x}$

```
i Ejemplo
julia> round(2.7)
3.0
julia> floor(2.7)
2.0
julia> floor(-2.7)
-3.0
julia> ceil(2.7)
3.0
julia> ceil(-2.7)
-2.0
julia> trunc(2.7)
2.0
julia> trunc(-2.7)
-2.0
julia> round(2.5)
2.0
julia> round(2.786, digits = 2)
```

1.7 Funciones de división

Función	Descripción
div(x,y), x÷y	Cociente de la división entera
fld(x,y)	Cociente de la división entera redondeado hacia abajo
<pre>cld(x,y)</pre>	Cociente de la división entera redondeado hacia arriba
rem(x,y), x%y	Resto de la división entera. Se cumple $x == div(x,y)*y +$
	rem(x,y)
mod(x,y)	Módulo con respecto a y. Se cumple $x == fld(x,y)*y + mod(x,y)$
gcd(x,y)	Máximo común divisor positivo de x, y,
lcm(x,y)	Mínimo común múltiplo positivo de x, y,

```
i Ejemplo

julia> div(5,3)
1

julia> cld(5,3)
2

julia> 5%3
2

julia> -5%3
-2

julia> mod(5,3)
2

julia> mod(-5,3)
1

julia> gcd(12,18)
6

julia> lcm(12,18)
36
```

1.8 Funciones para el signo y el valor absoluto

Función	Descripción
abs(x)	Valor absoluto de x
sign(x)	Devuelve -1 si \mathbf{x} es positivo, -1 si es negativo y 0 si es 0.

```
i Ejemplo

julia> abs(2.5)
2.5

julia> abs(-2.5)
2.5

julia> sign(-2.5)
-1.0

julia> sign(0)
0

julia> sign(2.5)
1.0
```

1.9 Raíces, exponenciales y logaritmos

Función	Descripción
$sqrt(x), \sqrt{x}$	Raíz cuadrada de x
cbrt(x), x	Raíz cúbica de \mathbf{x}
exp(x)	Exponencial de \mathbf{x}
log(x)	Logaritmo neperiano de \mathbf{x}
log(b,x)	Logaritmo en base ${\tt b}$ de ${\tt x}$
log2(x)	Logaritmo en base 2 de \mathbf{x}
log10(x)	Logaritmo en base 10 de x

```
i Ejemplo
julia> sqrt(4)
2.0
julia> cbrt(27)
3.0
julia> exp(1)
2.718281828459045
julia> exp(-Inf)
0.0
julia> log(1)
0.0
julia> log(0)
-Inf
julia > log(-1)
ERROR: DomainError with -1.0:
log will only return a complex result if called with a complex argument.
julia > log(-1+0im)
0.0 + 3.141592653589793im
julia > log2(2^3)
3.0
```

1.10 Funciones trigonométricas

Función	Descripción
hypot(x,y)	Hipotenusa del triángulo rectángulo con catetos ${\tt x}$ e ${\tt y}$
sin(x)	Seno del ángulo x en radianes
sind(x)	Seno del ángulo x en grados
cos(x)	Coseno del ángulo ${\tt x}$ en radianes
cosd(x)	Coseno del ángulo x en grados
tan(x)	Tangente del ángulo ${\bf x}$ en radianes

Función	Descripción
tand(x)	Tangente del ángulo x en grados
sec(x)	Secante del ángulo x en radianes
csc(x)	Cosecante del ángulo ${\bf x}$ en radianes
cot(x)	Cotangente del ángulo ${\bf x}$ en radianes

```
i Ejemplo
julia> sin(/2)
1.0
julia> cos(/2)
6.123233995736766e-17
julia> cosd(90)
0.0
julia> tan(/4)
0.99999999999999
julia> tand(45)
1.0
julia> tan(/2)
1.633123935319537e16
julia> tand(90)
Inf
julia> \sin(/4)^2 + \cos(/4)^2
1.0
```

1.11 Funciones trigonométricas inversas

Función	Descripción
asin(x)	Arcoseno (inversa del seno) de x en radianes
asind(x)	Arcoseno (inversa del seno) de x en grados
acos(x)	Arcocoseno (inversa del coseno) de x en radianes
acosd(x)	Arcocoseno (inversa del coseno) de ${\tt x}$ en grados

Función	Descripción
atan(x)	Arcotangente (inversa de la tangente) de x en radianes
atand(x)	Arcotangente (inversa de la tangente) de ${\bf x}$ en grados
asec(x)	Arcosecante (inversa de la secante) de x en radianes
acsc(x)	Arcocosecante (inversa de la cosecante) de x en radianes
acot(x)	Arcocotangente (inversa de la cotangente) de ${\tt x}$ en radianes

```
i Ejemplo

julia> asin(1)
1.5707963267948966

julia> asind(1)
90.0

julia> acos(-1)
3.141592653589793

julia> atan(1)
0.7853981633974483

julia> atand(tan(/4))
45.0
```

1.12 Precedencia de operadores

A la hora de evaluar una expresión aritmética, Julia evalúa los operadores según el siguiente orden de prioridad (de mayor a menor prioridad).

Categoría Operadores	Asociatividad
Funciones exp, log, sin, etc.	
Exponenciación	Derecha
Unarios + - √	Derecha
Fracciones //	Izquierda
Multiplicación/ % & \ ÷	Izquierda
Adición + -	Izquierda
Comparaciones >= <= == != !==	
Asignaciones += -= *= /= //= ^= ÷= %= = &=	Derecha

Cuando se quiera evaluar un operador con menor prioridad antes que otro con mayor prioridad, hay que utilizar paréntesis.

```
i Ejemplo

julia> 1 + 4 ^ 2 / 2 - 3
6.0

julia> (1 + 4 ^ 2) / 2 - 3
5.5

julia> (1 + 4) ^ 2 / 2 - 3
9.5

julia> 1 + 4 ^ 2 / (2 - 3)
-15.0

julia> (1 + 4 ^ 2) / (2 - 3)
-17.0
```

1.13 Definición de variables

Para definir variables se pueden utilizar cualquier carácter Unicode. Los nombres de las variables pueden contener más de una letra y, en tal caso, pueden usarse también números, pero siempre debe comenzar por una letra. Así, para Julia, la expresión xy, no se interpreta como el producto de la variable x por la variable y, sino como la variable xy. Además, se distingue entre mayúsculas y minúsculas, así que no es lo mismo xy que xy.

2 Preprocesamiento de datos

Esta práctica contiene ejercicios que muestran como preprocesar un conjunto de datos con Julia. El preprocesamiento de datos es una tarea fundamental en la construcción de modelos de aprendizaje automático que consiste en la limpieza, transformación y preparación de los datos para que puedan alimentar el proceso de entrenamiento de los modelos, así como para la evaluación de su rendimiento. El preprocesamiento de datos incluye tareas como

- Limpieza de datos.
- Imputación de valores perdidos.
- Recodificación de variables.
- Creación de nuevas variables.
- Transformación de variables.
- Selección de variables.
- Fusión de datos.
- Reestructuración del conjunto de datos.
- División del conjunto de datos en subconjuntos de entrenamiento y prueba.

2.1 Ejercicios Resueltos

Para la realización de esta práctica se requieren los siguientes paquetes:

```
using CSV # Para la lectura de archivos CSV.
using DataFrames # Para el manejo de datos tabulares.
using PrettyTables # Para mostrar tablas formateadas.
using Plots # Para el dibujo de gráficas.
using Makie # Para obtener gráficos interactivos.
```

Ejercicio 2.1. La siguiente tabla contiene los ingresos y gastos de una empresa durante el primer trimestre del año.

a. Crear un data frame con los datos de la tabla.

i Ayuda

Utilizar la función DataFrame del paquete DataFrames para partir el rango de valores en intervalos y asociar a cada intervalo una categoría.

```
🅊 Solución
using DataFrames
df = DataFrame(
    Mes = ["Enero", "Febrero", "Marzo", "Abril"],
    Ingresos = [45000, 41500, 51200, 49700],
    Gastos = [33400, 35400, 35600, 36300],
    Impuestos = [6450, 6300, 7100, 6850]
    )
      Mes
             Ingresos
                       Gastos
                               Impuestos
              Int64
                       Int64
                                  Int64
     String
              45000
                       33400
                                  6450
 1
     Enero
 2
    Febrero
              41500
                       35400
                                  6300
 3
    Marzo
              51200
                       35600
                                  7100
 4
              49700
                       36300
                                  6850
     Abril
```

b. Crear una nueva columna con los beneficios de cada mes (ingresos - gastos - impuestos).

c. Crear una nueva columna con la variable Balance con dos posibles categorías: positivo si ha habido beneficios y negativo si ha habido pérdidas.

d. Filtrar el conjunto de datos para quedarse con los nombres de los meses y los beneficios de los meses con balance positivo.

Ejercicio 2.2. El fichero colesterol.csv contiene información de una muestra de pacientes donde se han medido la edad, el sexo, el peso, la altura y el nivel de colesterol, además de su nombre.

a. Crear un data frame con los datos de todos los pacientes del estudio a partir del fichero colesterol.csv.

i Ayuda

Utilizar la función CSV.read del paquete CSV para crear und data frame a partir de un fichero CSV. Si el fichero está en una url, utilizar la función download(url) para descargar el fichero y después leerlo con la función [CSV.read].

	nombre	edad	sexo	peso	altura	colesterol
	String	Int64	String1	Float64?	Float64	Float64?
1	José Luis Martínez Izquierdo	18	Н	85.0	1.79	182.0
2	Rosa Díaz Díaz	32	${f M}$	65.0	1.73	232.0
3	Javier García Sánchez	24	${ m H}$	missing	1.81	191.0
4	Carmen López Pinzón	35	${f M}$	65.0	1.7	200.0
5	Marisa López Collado	46	${ m M}$	51.0	1.58	148.0
6	Antonio Ruiz Cruz	68	${ m H}$	66.0	1.74	249.0
7	Antonio Fernández Ocaña	51	${ m H}$	62.0	1.72	276.0
8	Pilar Martín González	22	${f M}$	60.0	1.66	missing
9	Pedro Gálvez Tenorio	35	${ m H}$	90.0	1.94	241.0
10	Santiago Reillo Manzano	46	${ m H}$	75.0	1.85	280.0
11	Macarena Álvarez Luna	53	\mathbf{M}	55.0	1.62	262.0
12	José María de la Guía Sanz	58	${ m H}$	78.0	1.87	198.0
13	Miguel Angel Cuadrado Gutiérrez	27	${ m H}$	109.0	1.98	210.0
14	Carolina Rubio Moreno	20	${\bf M}$	61.0	1.77	194.0
	•					

b. Crear una nueva columna con el índice de masa corporal, usando la siguiente fórmula

$$\mathrm{IMC} = \frac{\mathrm{Peso}\ (\mathrm{kg})}{\mathrm{Altura}\ (\mathrm{cm})^2}$$

```
    Solución

df.imc = df.peso ./ (df.altura .^ 2)
df
```

	nombre	edad	sexo	peso	altura	colesterol	
	String	Int64	String1	Float64?	Float64	Float64?	
1	José Luis Martínez Izquierdo	18	Н	85.0	1.79	182.0	
2	Rosa Díaz Díaz	32	\mathbf{M}	65.0	1.73	232.0	•••
3	Javier García Sánchez	24	Η	missing	1.81	191.0	
4	Carmen López Pinzón	35	\mathbf{M}	65.0	1.7	200.0	
5	Marisa López Collado	46	\mathbf{M}	51.0	1.58	148.0	
6	Antonio Ruiz Cruz	68	Η	66.0	1.74	249.0	
7	Antonio Fernández Ocaña	51	Н	62.0	1.72	276.0	
8	Pilar Martín González	22	\mathbf{M}	60.0	1.66	missing	
9	Pedro Gálvez Tenorio	35	Η	90.0	1.94	241.0	
10	Santiago Reillo Manzano	46	Η	75.0	1.85	280.0	
11	Macarena Álvarez Luna	53	M	55.0	1.62	262.0	
12	José María de la Guía Sanz	58	Н	78.0	1.87	198.0	
13	Miguel Angel Cuadrado Gutiérrez	27	Н	109.0	1.98	210.0	
14	Carolina Rubio Moreno	20	${\bf M}$	61.0	1.77	194.0	

c. Crear una nueva columna con la variable obesidad recodificando la columna imc en las siguientes categorías.

Rango IMC	Categoría
Menor de 18.5	Bajo peso
De 18.5 a 24.5	Saludable
$\mathrm{De}\ 24.5\ \mathrm{a}\ 30$	Sobrepeso
Mayor de 30	Obeso

i Ayuda

Utilizar la función cut del paquete CategoricalArrays para partir el rango de valores en intervalos y asociar a cada intervalo una categoría.

		nombre	edad	sexo	peso	altura	colesterol	
		String	Int64	String1	Float64?	Float64	Float64?	
-	1	José Luis Martínez Izquierdo	18	Н	85.0	1.79	182.0	
	2	Rosa Díaz Díaz	32	\mathbf{M}	65.0	1.73	232.0	
	3	Javier García Sánchez	24	Η	missing	1.81	191.0	
	4	Carmen López Pinzón	35	M	65.0	1.7	200.0	
	5	Marisa López Collado	46	\mathbf{M}	51.0	1.58	148.0	
	6	Antonio Ruiz Cruz	68	Η	66.0	1.74	249.0	
	7	Antonio Fernández Ocaña	51	Η	62.0	1.72	276.0	
	8	Pilar Martín González	22	\mathbf{M}	60.0	1.66	missing	
	9	Pedro Gálvez Tenorio	35	Η	90.0	1.94	241.0	
	10	Santiago Reillo Manzano	46	Η	75.0	1.85	280.0	
	11	Macarena Álvarez Luna	53	M	55.0	1.62	262.0	
	12	José María de la Guía Sanz	58	Η	78.0	1.87	198.0	
	13	Miguel Angel Cuadrado Gutiérrez	27	Н	109.0	1.98	210.0	
	14	Carolina Rubio Moreno	20	M	61.0	1.77	194.0	
		ı						

d. Seleccionar las columnas nombre, sexo y edad.

• So	Solución						
df[:	df[:, [:nombre, :sexo, :edad]]						
	nombre	sexo	edad				
	String	String1	Int64				
1	José Luis Martínez Izquierdo	Н	18				
2	Rosa Díaz Díaz	${ m M}$	32				
3	Javier García Sánchez	${ m H}$	24				
4	Carmen López Pinzón	${f M}$	35				
5	Marisa López Collado	${ m M}$	46				
6	Antonio Ruiz Cruz	${ m H}$	68				
7	Antonio Fernández Ocaña	${ m H}$	51				
8	Pilar Martín González	${ m M}$	22				
9	Pedro Gálvez Tenorio	${ m H}$	35				
10	Santiago Reillo Manzano	${ m H}$	46				
11	Macarena Álvarez Luna	${ m M}$	53				
12	José María de la Guía Sanz	${ m H}$	58				
13	Miguel Angel Cuadrado Gutiérrez	${ m H}$	27				
14	Carolina Rubio Moreno	${\bf M}$	20				

e. Anonimizar los datos eliminando la columna nombre.

i Ayuda

Utilizar la función select del paquete DataFrames para seleccionar las columnas deseadas y eliminar las columnas no deseadas. Existe también la función select! que modifica el data frame original eliminando las columnas no seleccionadas.

• Sc	lución						
sele	ct(df,	Not(:nor	nbre))				
	edad	sexo	peso	altura	colesterol	imc	obesidad
	Int64	String1	Float64?	Float64	Float64?	Float64?	Cat?
1	18	Н	85.0	1.79	182.0	26.5285	Sobrepeso
2	32	${ m M}$	65.0	1.73	232.0	21.7181	Saludable
3	24	Η	missing	1.81	191.0	missing	missing
4	35	${ m M}$	65.0	1.7	200.0	22.4913	Saludable
5	46	${ m M}$	51.0	1.58	148.0	20.4294	Saludable
6	68	H	66.0	1.74	249.0	21.7994	Saludable
7	51	H	62.0	1.72	276.0	20.9573	Saludable
8	22	${ m M}$	60.0	1.66	missing	21.7738	Saludable
9	35	H	90.0	1.94	241.0	23.9133	Saludable
10	46	Η	75.0	1.85	280.0	21.9138	Saludable
11	53	${ m M}$	55.0	1.62	262.0	20.9572	Saludable
12	58	Η	78.0	1.87	198.0	22.3055	Saludable
13	27	Η	109.0	1.98	210.0	27.8033	Sobrepeso
14	20	M	61.0	1.77	194.0	19.4708	Saludable

f. Reordenar las columnas poniendo la columna sexo antes que la columna edad.

```
Solución
select(df, Cols(:sexo, :edad, Not(:sexo, :edad)))
```

1		1 1	1		1,	1 , 1	
	sexo	edad	nombre	peso	altura	colesterol	
	String1	Int64	String	Float64?	Float64	Float64?	
1	Н	18	José Luis Martínez Izquierdo	85.0	1.79	182.0	
2	M	32	Rosa Díaz Díaz	65.0	1.73	232.0	
3	Η	24	Javier García Sánchez	missing	1.81	191.0	
4	${ m M}$	35	Carmen López Pinzón	65.0	1.7	200.0	
5	${ m M}$	46	Marisa López Collado	51.0	1.58	148.0	
6	Η	68	Antonio Ruiz Cruz	66.0	1.74	249.0	
7	Η	51	Antonio Fernández Ocaña	62.0	1.72	276.0	
8	${ m M}$	22	Pilar Martín González	60.0	1.66	missing	
9	Η	35	Pedro Gálvez Tenorio	90.0	1.94	241.0	
10	Η	46	Santiago Reillo Manzano	75.0	1.85	280.0	
11	M	53	Macarena Álvarez Luna	55.0	1.62	262.0	
12	${ m H}$	58	José María de la Guía Sanz	78.0	1.87	198.0	
13	${ m H}$	27	Miguel Angel Cuadrado Gutiérrez	109.0	1.98	210.0	
14	M	20	Carolina Rubio Moreno	61.0	1.77	194.0	

g. Filtrar el data frame para quedarse con las mujeres.

h. Filtrar el data frame para quedarse con los hombres mayores de 30 años.

```
    Solución

df[(df.sexo .== "H") .& (df.edad .> 30), :]
```

	nombre	edad	sexo	peso	altura	colesterol	imc	
	String	Int64	String1	Float64?	Float64	Float 64?	Float64?	
1	Antonio Ruiz Cruz	68	Н	66.0	1.74	249.0	21.7994	
2	Antonio Fernández Ocaña	51	Η	62.0	1.72	276.0	20.9573	
3	Pedro Gálvez Tenorio	35	Η	90.0	1.94	241.0	23.9133	
4	Santiago Reillo Manzano	46	Η	75.0	1.85	280.0	21.9138	
5	José María de la Guía Sanz	58	Н	78.0	1.87	198.0	22.3055	
'	!							

i. Filtrar el data frame para quedarse con las filas sin valores perdidos.

i Ayuda

Utilizar la función dropmissing del paquete DataFrames para eliminar las filas con valores perdidos.

• So										
dron										
ar op	dropmissing(df)									
	nombre	edad	sexo	peso	altura	colesterol	imc			
	String	Int64	String1	Float64	Float64	Float64	Floate			
1	José Luis Martínez Izquierdo	18	Η	85.0	1.79	182.0	26.528			
2	Rosa Díaz Díaz	32	${ m M}$	65.0	1.73	232.0	21.718			
3	Carmen López Pinzón	35	${ m M}$	65.0	1.7	200.0	22.491			
4	Marisa López Collado	46	${ m M}$	51.0	1.58	148.0	20.429			
5	Antonio Ruiz Cruz	68	Η	66.0	1.74	249.0	21.799			
6	Antonio Fernández Ocaña	51	H	62.0	1.72	276.0	20.957			
7	Pedro Gálvez Tenorio	35	${ m H}$	90.0	1.94	241.0	23.913			
8	Santiago Reillo Manzano	46	${ m H}$	75.0	1.85	280.0	21.913			
9	Macarena Álvarez Luna	53	${ m M}$	55.0	1.62	262.0	20.957			
10	José María de la Guía Sanz	58	${ m H}$	78.0	1.87	198.0	22.305			
11	Miguel Angel Cuadrado Gutiérrez	27	${ m H}$	109.0	1.98	210.0	27.803			
12	Carolina Rubio Moreno	20	${ m M}$	61.0	1.77	194.0	19.470			
'	ı									

j. Filtrar el data frame para eliminar las filas con datos perdidos en la columna colesterol.

i Ayuda

Utilizar la función dropmissing, col donde col es el nombre de la columna que contiene los valores perdidos.

Solución dropmissing(df, :colesterol) nombre edad sexo peso altura colesterol String Int64 Float64? Float64 Float64 String1 1 José Luis Martínez Izquierdo 85.0 182.0 18 Η 1.79 2 Rosa Díaz Díaz 32 Μ 65.01.73 232.0 3 Javier García Sánchez 24 Η missing1.81 191.0 4 Carmen López Pinzón 35 Μ 65.01.7200.0 5 Marisa López Collado 46 Μ 51.0 1.58 148.0 Antonio Ruiz Cruz 6 68 Η 66.0 1.74 249.0 7 Antonio Fernández Ocaña 51 Η 62.0 1.72 276.0 8 Pedro Gálvez Tenorio 35 Η 90.0 1.94 241.0 9 Santiago Reillo Manzano 46 Η 75.0 1.85 280.010 Macarena Álvarez Luna 53 Μ 55.0 1.62 262.0 José María de la Guía Sanz 58 Η 78.0 11 1.87 198.0 12 Miguel Angel Cuadrado Gutiérrez 27 Η 109.0 1.98 210.0 Carolina Rubio Moreno 13 20 Μ 61.01.77 194.0

k. Imputar los valores perdidos en la columna colesterol con la media de los valores no perdidos.

i Ayuda

Utilizar la función coalesce para reemplazar los valores perdidos por otros valores.

```
Solución

using Statistics
media_colesterol = mean(skipmissing(df.colesterol))
df.colesterol = coalesce.(df.colesterol, media_colesterol)
df
```

					_		
	nombre	edad	sexo	peso	altura	colesterol	
	String	Int64	String1	Float64?	Float64	Float64	
1	José Luis Martínez Izquierdo	18	Н	85.0	1.79	182.0	•••
2	Rosa Díaz Díaz	32	${\bf M}$	65.0	1.73	232.0	•••
3	Javier García Sánchez	24	Η	missing	1.81	191.0	•••
4	Carmen López Pinzón	35	${\bf M}$	65.0	1.7	200.0	
5	Marisa López Collado	46	${ m M}$	51.0	1.58	148.0	
6	Antonio Ruiz Cruz	68	Η	66.0	1.74	249.0	
7	Antonio Fernández Ocaña	51	Η	62.0	1.72	276.0	
8	Pilar Martín González	22	${ m M}$	60.0	1.66	220.231	
9	Pedro Gálvez Tenorio	35	Η	90.0	1.94	241.0	
10	Santiago Reillo Manzano	46	Η	75.0	1.85	280.0	
11	Macarena Álvarez Luna	53	M	55.0	1.62	262.0	
12	José María de la Guía Sanz	58	Н	78.0	1.87	198.0	
13	Miguel Angel Cuadrado Gutiérrez	27	Н	109.0	1.98	210.0	
14	Carolina Rubio Moreno	20	${ m M}$	61.0	1.77	194.0	
	į.						

l. Ordenar el data frame según la columna nombre.

i Ayuda

Utilizar la función **sort** para ordenar las filas del data frame según los valores de una o varias columnas. Utilizar el parámetro **rev** para especificar mediante un vector de booleanos si el orden es ascendente o descendente.

Solución

sort(df, :nombre)

		1	edad			1.	1 , 1	
١.		nombre		sexo	peso	altura	colesterol	
		String		String1	Float64?	Float64	Float64	
	1	Antonio Fernández Ocaña	51	Η	62.0	1.72	276.0	
	2	Antonio Ruiz Cruz	68	H	66.0	1.74	249.0	
	3	Carmen López Pinzón	35	${ m M}$	65.0	1.7	200.0	
	4	Carolina Rubio Moreno	20	\mathbf{M}	61.0	1.77	194.0	
	5	Javier García Sánchez	24	H	missing	1.81	191.0	
	6	José Luis Martínez Izquierdo	18	H	85.0	1.79	182.0	
	7	José María de la Guía Sanz	58	H	78.0	1.87	198.0	
	8	Macarena Álvarez Luna	53	${ m M}$	55.0	1.62	262.0	
	9	Marisa López Collado	46	\mathbf{M}	51.0	1.58	148.0	
	10	Miguel Angel Cuadrado Gutiérrez	27	Η	109.0	1.98	210.0	
	11	Pedro Gálvez Tenorio	35	Η	90.0	1.94	241.0	
	12	Pilar Martín González	22	\mathbf{M}	60.0	1.66	220.231	
	13	Rosa Díaz Díaz	32	${\bf M}$	65.0	1.73	232.0	
	14	Santiago Reillo Manzano	46	Н	75.0	1.85	280.0	
	,							

m. Ordenar el data frame ascendentemente por la columna sexo y descendentemente por la columna edad.

• Sc							
sort							
	nombre edad			peso	altura	colesterol	
	String	Int64	String1	Float64?	Float64	Float64	
1	Antonio Ruiz Cruz	68	Н	66.0	1.74	249.0	
2	José María de la Guía Sanz	58	Η	78.0	1.87	198.0	
3	Antonio Fernández Ocaña	51	Η	62.0	1.72	276.0	
4	Santiago Reillo Manzano	46	${ m H}$	75.0	1.85	280.0	
5	Pedro Gálvez Tenorio	35	${ m H}$	90.0	1.94	241.0	
6	Miguel Angel Cuadrado Gutiérrez	27	${ m H}$	109.0	1.98	210.0	
7	Javier García Sánchez	24	${ m H}$	missing	1.81	191.0	
8	José Luis Martínez Izquierdo	18	${ m H}$	85.0	1.79	182.0	
9	Macarena Álvarez Luna	53	${ m M}$	55.0	1.62	262.0	
10	Marisa López Collado	46	${ m M}$	51.0	1.58	148.0	
11	Carmen López Pinzón	35	${ m M}$	65.0	1.7	200.0	
12	Rosa Díaz Díaz	32	${\rm M}$	65.0	1.73	232.0	
13	Pilar Martín González	22	${\rm M}$	60.0	1.66	220.231	
14	Carolina Rubio Moreno	20	${ m M}$	61.0	1.77	194.0	

Ejercicio 2.3. El fichero notas-curso2.csv contiene información de las notas de los alumnos de un curso.

a. Crear un data frame con los datos de los alumnos del curso a partir del fichero notas-curso2.csv.

💡 Solución using CSV, DataFrames df = CSV.read(download("https://aprendeconalf.es/aprendizaje-automatico-practicassexo turno trabaja notaA notaB notaC notaD notaE grupo String7 String1 Float64 Float64? Float64? Float64? Float64 String7 String1 Tarde \mathbf{C} Ν 5.2 6.3 3.4 2.3 2.0 1 Mujer Ν 2 Hombre Mañana A 5.7 5.7 4.2 3.5 2.7 3 Hombre Mañana В Ν 8.3 8.8 8.8 8.0 5.54 Hombre Mañana В Ν 6.16.84.0 3.52.25 Hombre Mañana Ν 6.2 5.0 4.4 Α 9.03.7 S 6 Hombre A 9.5 Mañana 8.6 8.9 8.4 3.9 7 Mujer Mañana Α Ν 6.77.9 5.64.84.2 \mathbf{C} S8 Mujer Tarde 4.1 5.21.7 0.31.0 9 Tarde C Ν 5.0 Hombre 5.0 3.3 2.7 6.0 C 10 Hombre Tarde Ν 5.3 6.34.8 3.6 2.3 Ν 11 Mujer Mañana Α 7.8missing 6.56.72.812 Hombre Mañana Ν 6.5Α 8.0 5.03.23.3Ν 13 Hombre В 6.6Mañana 7.6 5.34.0 1.0 В Ν 14 Hombre Mañana 6.26.75.34.74.7 15 Hombre Mañana В Ν 5.2 4.1 5.8 5.0 1.9 В S16 Hombre Mañana 8.7 missing 7.6 6.39.3 17 Mujer Mañana В Ν 6.76.3 5.32.8 6.8C Ν 18 Mujer Tarde 3.1 4.8 2.7 1.8 1.0 Hombre Mañana В Ν 7.1 10.0 5.94.92.5 19 20 Hombre Mañana В S5.3 4.8 2.8 0.94.2 21 Hombre Mañana A Ν 4.4 6.1 2.9 1.9 2.4 22 Mujer Tarde \mathbf{C} S5.7 4.2 6.43.3 1.0 \mathbf{C} S 23 Mujer Tarde 4.53.9 3.52.6 2.2 \mathbf{C} Ν 24 Mujer Tarde 4.9 4.4 5.2 3.7 0.425Hombre Tarde \mathbf{C} Ν 5.14.56.45.60.526 В Ν Hombre Mañana 3.5 3.9 4.0 3.7 1.7 27 Mujer Mañana Α Ν 7.3 6.8 6.1 5.4 1.8 Ν 28 Hombre Mañana В 6.27.9 3.51.9 3.129 Ν 2.9 Mujer Mañana Α 4.37.41.7 0.230 Hombre Mañana В Ν 7.9 7.0 0.47.6 6.1

b. Obtener el número de datos perdidos en cada columna.

Solución describe(df)[:, [:variable, :nmissing]] nmissing variable Symbol Int64 1 0 sexo2 turno0 3 0 grupo 4 0 trabaja 5 0 notaA 6 notaB 5 7 notaC1 2 8 notaD 9 2 notaE

c. Recodificar la variable grupo en una colección de columnas binarias.

i Ayuda

Utilizar la función onehotbatch del paquete OneHotArrays para recodificar una variable categórica en una colección de columnas binarias.

```
    Solución

using OneHotArrays
codificacion = permutedims(onehotbatch(df.grupo, unique(df.grupo)))
hcat(df, DataFrame(codificacion, :auto))
```

i										
		sexo	turno	grupo	trabaja	notaA	notaB	notaC	notaD	notaE
		String7	String7	String1	String1	Float64	Float64?	Float64?	Float64?	Float64
L	1	Mujer	Tarde	С	N	5.2	6.3	3.4	2.3	2.0
	2	Hombre	Mañana	A	N	5.7	5.7	4.2	3.5	2.7
	3	Hombre	Mañana	В	N	8.3	8.8	8.8	8.0	5.5
	4	Hombre	Mañana	В	N	6.1	6.8	4.0	3.5	2.2
	5	Hombre	Mañana	A	N	6.2	9.0	5.0	4.4	3.7
	6	Hombre	Mañana	A	\mathbf{S}	8.6	8.9	9.5	8.4	3.9
	7	Mujer	Mañana	A	N	6.7	7.9	5.6	4.8	4.2
	8	Mujer	Tarde	\mathbf{C}	\mathbf{S}	4.1	5.2	1.7	0.3	1.0
	9	Hombre	Tarde	$^{\mathrm{C}}$	N	5.0	5.0	3.3	2.7	6.0
	10	Hombre	Tarde	$^{\mathrm{C}}$	N	5.3	6.3	4.8	3.6	2.3
	11	Mujer	Mañana	A	N	7.8	missing	6.5	6.7	2.8
	12	Hombre	Mañana	A	N	6.5	8.0	5.0	3.2	3.3
	13	Hombre	Mañana	В	N	6.6	7.6	5.3	4.0	1.0
	14	Hombre	Mañana	В	N	6.2	6.7	5.3	4.7	4.7
	15	Hombre	Mañana	В	N	5.2	4.1	5.8	5.0	1.9
	16	Hombre	Mañana	В	\mathbf{S}	8.7	missing	7.6	6.3	9.3
	17	Mujer	Mañana	В	N	6.7	6.3	6.8	5.3	2.8
	18	Mujer	Tarde	\mathbf{C}	N	3.1	4.8	2.7	1.8	1.0
	19	Hombre	Mañana	В	N	7.1	10.0	5.9	4.9	2.5
	20	Hombre	Mañana	В	\mathbf{S}	5.3	4.8	2.8	0.9	4.2
	21	Hombre	Mañana	A	N	4.4	6.1	2.9	1.9	2.4
	22	Mujer	Tarde	\mathbf{C}	\mathbf{S}	5.7	6.4	4.2	3.3	1.0
	23	Mujer	Tarde	\mathbf{C}	\mathbf{S}	4.5	3.9	3.5	2.6	2.2
	24	Mujer	Tarde	\mathbf{C}	N	4.9	4.4	5.2	3.7	0.4
	25	Hombre	Tarde	\mathbf{C}	N	5.1	4.5	6.4	5.6	0.5
	26	Hombre	Mañana	В	N	3.5	3.9	4.0	3.7	1.7
	27	Mujer	Mañana	A	N	7.3	6.8	6.1	5.4	1.8
	28	Hombre	Mañana	В	N	6.2	7.9	3.5	1.9	3.1
	29	Mujer	Mañana	A	N	4.3	7.4	2.9	1.7	0.2
	30	Hombre	Mañana	В	N	7.9	7.6	7.0	6.1	0.4

2.2 Ejercicios propuestos

Ejercicio 2.4. El fichero vinos.csv contiene información sobre las características de una muestra de vinos portugueses de la denominación "Vinho Verde". Las variables que contiene son:

Variable	Descripción	Tipo (unidades)
tipo	Tipo de vino	Categórica
		(blanco, tinto)
meses.barrica	Mesesde envejecimiento en barrica	Numérica(meses)
acided.fija	Cantidadde ácidotartárico	Numérica(g/dm3)
acided.volatil	Cantidad de ácido acético	Numérica(g/dm3)
acido.citrico	Cantidad de ácidocítrico	Numérica(g/dm3)
azucar.residual	Cantidad de azúcarremanente después de	Numérica(g/dm3)
	la fermentación	, , , ,
cloruro.sodico	Cantidad de clorurosódico	Numérica(g/dm3)
dioxido.azufre.libre	Cantidad de dióxido de azufreen formalibre	Numérica(mg/dm3)
dioxido.azufre.total	Cantidadde dióxido de azufretotal en	Numérica(mg/dm3)
	forma libre o ligada	
densidad	Densidad	Numérica(g/cm3)
ph	m pH	Numérica(0-
		14)
sulfatos	Cantidadde sulfato de potasio	Numérica(g/dm3)
alcohol	Porcentajede contenidode alcohol	Numérica(0-
		100)
calidad	Calificación otorgada porun panel de	Numérica(0-
	expertos	10)

- a. Crear un data frame con los datos de los vinos a partir del fichero vinos.csv.
- b. Obtener el número de valores perdidos en cada columna.
- c. Imputar los valores perdidos del alcohol con la media de los valores no perdidos para cada tipo de vino.
- d. Crear la variable categórica Envejecimiento recodificando la variable meses.barrica en las siguientes categorías.

Rango en meses	Categoría
Menos de 3	Joven
Entre 3 y 12	Crianza
Entre 12 y 18	Reserva
Más de 18	Gran reserva

e. Crear la variable categórica Dulzor recodificando la variable azucar.residual en las siguientes categorías.

Rango azúcar	Categoría
Menos de 4	Seco
Más de 4 y menos de 12	Semiseco
Más de 12 y menos de 45	Semidulce
Más de 45	Dulce

- f. Filtrar el conjunto de datos para quedarse con los vinos Reserva o Gran Reserva con una calidad superior a 7 y ordenar el data frame por calidad de forma descendente.
- g. ¿Cuántos vinos blancos con un contenido en alcohol superior al 12% y una calidad superior a 8 hay en el conjunto de datos?
- h. ¿Cuáles son los 10 mejores vinos tintos crianza secos?

3 Regresión

Los modelos de aprendizaje basados en regresión son modelos bastante simples que pueden utilizarse para predecir variables cuantitativas (regresión lineal) o cualitativas (regresión logística). Esta práctica contiene ejercicios que muestran como construir modelos de aprendizaje de regresión lineal y regresión logística con Julia.

3.1 Ejercicios Resueltos

Para la realización de esta práctica se requieren los siguientes paquetes:

```
using CSV # Para la lectura de archivos CSV.
using DataFrames # Para el manejo de datos tabulares.
using PrettyTables # Para mostrar tablas formateadas.
using Plots # Para el dibujo de gráficas.
using GLMakie # Para obtener gráficos interactivos.
```

Ejercicio 3.1. El conjunto de datos viviendas. csv contiene información sobre el precio de venta de viviendas en una ciudad.

a. Cargar los datos del archivo viviendas.csv en un data frame.

b. Dibujar un diagrama de dispersión entre el precio y el area de las viviendas.

c. Definir un modelo lineal que explique el precio en función del área de las viviendas.

i Ayuda

Un modelo lineal tiene encuación $y = \theta_1 + \theta_2 x$.

```
    Solución

precio(area, ) = [1] .+ [2] * area

precio (generic function with 1 method)

Observa que la función precio está vectorizada, lo que significa que puede recibir un vector de áreas y devolver un vector de precios.
```

d. Inicializar los parámetros del modelo lineal con valores nulos y dibujar el modelo sobre el diagrama de dispersión.

e. Definir una función de costo para el modelo lineal y evaluar el coste para el modelo lineal construido con los parámetros iniciales. A la vista del coste obtenido, ¿cómo de bueno es el modelo?

i Ayuda

La función de coste para un modelo lineal es el error cuadrático medio.

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

donde h_{θ} es el modelo, $h_{\theta}(x^{(i)})$ es la predicción del modelo para el ejemplo *i*-ésimo, $y^{(i)}$ es el valor real observado para el ejemplo *i*-ésimo, y m es el número de ejemplos.

Solución

```
function coste(, X, Y)
    m = length(Y)
    return sum((precio(X, ) .- Y).^2) / (2 * m)
end

coste(, df.area, df.precio)
```

1.3106916364659266e13

La función de coste nos da una medida de lo lejos que están las predicciones del modelo de los valores reales observados. En este caso, el coste es muy alto, lo que indica que el modelo no es bueno.

f. ¿En qué dirección debemos modificar los parámetros del modelo para mejorar el modelo?

Para minimizar la función de coste, debemos modificar los parámetros del modelo en la dirección opuesta al gradiente de la función de coste, ya que el gradiente de una función indica la dirección de mayor crecimiento de la función.

g. Crear una función para modificar los pesos del modelo lineal mediante el algoritmo del gradiente descendente, y aplicarla a los parámetros actuales tomando una tasa de aprendizaje de 10^{-8} . ¿Cómo han cambiado los parámetros del modelo? Dibujar el modelo actualizado sobre el diagrama de dispersión. ¿Cómo ha cambiado el coste?

i Ayuda

El algoritmo del gradiente descendente actualiza los parámetros del modelo de acuerdo a la siguiente regla:

$$\theta_j = \theta_j - \alpha \frac{\partial J(\theta)}{\partial \theta_j}$$

donde α es la tasa de aprendizaje y $\frac{\partial J(\theta)}{\partial \theta_j}$ es la derivada parcial de la función de coste con respecto al parámetro θ_j .

Solución

```
function gradiente_descendente!(, X, Y, )
    # Calculamos el número de ejemplos
    m = length(Y)
    # Actualizamos el término independiente del modelo lineal.
    [1] -= * sum(precio(X, ) - Y) / m
    # Actualizamos la pendiente del modelo lineal.
    [2] -= * sum((precio(X, ) - Y) .* X) / m
    return
end
```

gradiente_descendente! (generic function with 1 method)

Aplicamos la función a los parámetros del modelo actual y mostramos los nuevos parámetros.

```
gradiente_descendente!( , df.area, df.precio, 1e-8)
```

2-element Vector{Float64}:

0.04766729247706422

267.22919804579385

Dibujamos el nuevo modelo.

Se observa que ahora la recta está más cerca de la nube de puntos, por lo que el modelo ha mejorado. Calculamos el coste del nuevo modelo.

```
coste(, df.area, df.precio)
7.080823787113201e12
```

h. Repetir el proceso de actualización de los parámetros del modelo mediante el algoritmo del gradiente descendente durante 9 iteraciones más y dibujar los modelos actualizados.

i. Dibujar un gráfico con la evolución del coste del modelo a lo largo de las iteraciones. ¿Cómo se comporta el coste a lo largo de las iteraciones?

```
Solución
costes = Float64[]
for i = 1:10
    gradiente_descendente!(, df.area, df.precio, 1e-8)
    push!(costes, coste(, df.area, df.precio))
end
costes
10-element Vector{Float64}:
4.230808760870044e12
2.882906194020343e12
2.2454213686913755e12
 1.9439256128790886e12
 1.8013344680594421e12
 1.7338965877160208e12
 1.7020021263374993e12
 1.6869177748236997e12
 1.6797836937723748e12
 1.6764096595632322e12
El coste del modelo disminuye en cada iteración, lo que indica que el modelo
está mejorando. Esto se debe a que el algoritmo del gradiente descendente
modifica los parámetros del modelo en la dirección que minimiza la función
```

j. ¿Hasta qué iteración habrá que llegar para conseguir un reducción del coste menor de un 0.0001%?

de coste.

```
② Solución

= [0.0, 0.0]
costes = [0, coste(, df.area, df.precio)]
i = 1
while abs(costes[end] - costes[end-1]) / costes[end-1] > 0.000001
i += 1
gradiente_descendente!(, df.area, df.precio, 1e-8)
push!(costes, coste(, df.area, df.precio))
end
i

23
En este caso, el algoritmo del gradiente descendente converge en 1000 iteraciones.
```

k. ¿Qué sucede si se utiliza una tasa de aprendizaje $\alpha=0.0001?$ ¿Cómo afecta al coste y a la convergencia del modelo?

```
Solución
 = [0.0, 0.0]
costes = [coste( , df.area, df.precio)]
for i = 1:10
    gradiente_descendente!(, df.area, df.precio, 0.0001)
    push!(costes, coste(, df.area, df.precio))
end
costes
11-element Vector{Float64}:
 1.3106916364659266e13
 1.114133369099188e20
 1.0856750832581238e27
 1.05794371802143e34
 1.0309206941949286e41
 1.004587918634273e48
 9.789277603492545e54
 9.539230386975057e61
 9.29557011881276e68
 9.058133657380397e75
 8.826762028174244e82
Si la tasa de aprendizaje es demasiado grande, el algoritmo del gradiente
descendente puede no converger y el coste puede oscilar en lugar de disminuir.
En este caso, el coste aumenta en cada iteración, lo que indica que la tasa de
```

aprendizaje es demasiado grande.

4 Árboles de decisión

Los árboles de decisión son modelos de aprendizaje simples e intuitivos que pueden utilizarse para tanto para predecir variables cuantitativas (regresión) como categóricas (clasificación). Esta práctica contiene ejercicios que muestran como construir modelos de aprendizaje basados en árboles de decisión con Julia.

4.1 Ejercicios Resueltos

Para la realización de esta práctica se requieren los siguientes paquetes:

```
using CSV # Para la lectura de archivos CSV.
using DataFrames # Para el manejo de datos tabulares.
using Tidier # Para el preprocesamiento de datos.
using PrettyTables # Para mostrar tablas formateadas.
using Plots # Para el dibujo de gráficas.
using GLMakie # Para obtener gráficos interactivos.
using AlgebraOfGraphics # Para generar gráficos mediante la gramática de gráficos.
using DecisionTree # Para construir árboles de decisión.
using GraphMakie # Para la visualización de árboles de decisión.
```

Ejercicio 4.1. El conjunto de datos tenis.csv contiene información sobre las condiciones meteorológicas de varios días y si se pudo jugar al tenis o no.

a. Cargar los datos del archivo tenis.csv en un data frame.

```
    Solución

using CSV, DataFrames

df = CSV.read(download("https://aprendeconalf.es/aprendizaje-automatico-practicas-
```

	Cielo	Temperatura	Humedad	Viento	Tenis
	String15	String15	String7	String7	String3
1	Soleado	Caluroso	Alta	Suave	No
2	Soleado	Caluroso	Alta	Fuerte	No
3	Nublado	Caluroso	Alta	Suave	Sí
4	Lluvioso	Moderado	Alta	Suave	Sí
5	Lluvioso	Frío	Normal	Suave	Sí
6	Lluvioso	Frío	Normal	Fuerte	No
7	Nublado	Frío	Normal	Fuerte	Sí
8	Soleado	Moderado	Alta	Suave	No
9	Soleado	Frío	Normal	Suave	Sí
10	Lluvioso	Moderado	Normal	Suave	Sí
11	Soleado	Moderado	Normal	Fuerte	Sí
12	Nublado	Moderado	Alta	Fuerte	Sí
13	Nublado	Caluroso	Normal	Suave	Sí
14	Lluvioso	Moderado	Alta	Fuerte	No

b. Crear un diagrama de barras que muestre la distribución de frecuencias de cada variable meteorológica según si se pudo jugar al tenis o no. ¿Qué variable meteorológica parece tener más influencia en la decisión de jugar al tenis?

```
Solución
using GLMakie, AlgebraOfGraphics
function frecuencias(df::DataFrame, var::Symbol)
    # Calculamos el número de días de cada clase que se juega al tenis.
    frec = combine(groupby(df, [var, :Tenis]), nrow => :Días)
    # Dibujamos el diagrama de barras.
    plt = data(frec) *
    mapping(var, :Dias, stack = :Tenis, color = :Tenis, ) *
    visual(BarPlot)
    # Devolvemos el gráfico.
    return plt
end
fig = Figure()
draw!(fig[1, 1], frecuencias(df, :Cielo))
draw!(fig[1, 2], frecuencias(df, :Temperatura))
draw!(fig[1, 3], frecuencias(df, :Humedad))
draw!(fig[1, 4], frecuencias(df, :Viento))
fig
```

The `resolution

Warning: Found `resolution` in the theme when creating a `Scene` @ Makie ~/.julia/packages/Makie/ux0Te/src/scenes.jl:238

A la vista de las frecuencias de cada variable, las variable Cielo y Humedad parecen ser las que más influye en la decisión de jugar al tenis.

- c. Calcular la impureza del conjunto de datos utilizando el índice de Gini. ¿Qué variable meteorológica parece tener más influencia en la decisión de jugar al tenis?
 - i Ayuda

El índice de Gini se calcula mediante la fórmula

$$GI = 1 - \sum_{i=1}^{n} p_i^2$$

donde \boldsymbol{p}_i es la proporción de cada clase en el conjunto de datos y \boldsymbol{n} es el número de clases.

El índice de Gini toma valores entre 0 y $1-\frac{1}{n}$ (0.5 en el caso de clasificación binaria), donde 0 indica que todas las instancias pertenecen a una sola clase (mínima impureza) y $1-\frac{1}{n}$ indica que las instancias están distribuidas uniformemente entre todas las clases (máxima impureza).

```
function gini(df::DataFrame, var::Symbol)
    # Calculamos el número de ejemplos.
    n = nrow(df)
    # Calculamos las frecuencias absolutas de cada clase.
    frec = combine(groupby(df, var), nrow => :ni)
    # Calculamos la proporción de cada clase.
    frec.p = frec.ni ./ n
    # Calculamos el índice de Gini.
    gini = 1 - sum(frec.p .^ 2)
    return gini
end

g0 = gini(df, :Tenis)
0.4591836734693877
```

d. ¿Qué reducción del índice Gini se obtiene si dividimos el conjunto de ejemplos según la variable Humedad? ¿Y si dividimos el conjunto con respecto a la variable Viento?

i Ayuda

La reducción del índice de Gini se calcula como la diferencia entre el índice de Gini del conjunto original y el índice de Gini del conjunto dividido.

$$\Delta GI = GI_{original} - GI_{dividido}$$

donde el índice de Gini del conjunto dividido es la media ponderada de los índices de Gini de los subconjuntos resultantes de la división.

Solución

Calculamos primero la reducción del índice de Gini al dividir el conjunto de ejemplos según la variable Humedad.

```
using Tidier
# Dividimos el conjunto de ejemplos según la variable Humedad.
df_humedad_alta = Ofilter(df, Humedad == "Alta")
df_humedad_normal = @filter(df, Humedad == "Normal")
# Calculamos los tamaños de los subconjuntos de ejemplos.
n = nrow(df_humedad_alta), nrow(df_humedad_normal)
# Calculamos el índice de Gini de cada subconjunto.
gis = gini(df_humedad_alta, :Tenis), gini(df_humedad_normal, :Tenis)
# Calculamos media ponderada de los índices de Gini de los subconjuntos
g_humedad = sum(gis .* n) / sum(n)
# Calculamos la reducción del índice de Gini.
g0 - g_humedad
0.09183673469387743
Calculamos ahora la reducción del índice de Gini al dividir el conjunto de
ejemplos según la variable Viento.
# Dividimos el conjunto de ejemplos según la variable `Viento`
df_viento_fuerte = Ofilter(df, Viento == "Fuerte")
df_viento_suave = Ofilter(df, Viento == "Suave")
# Calculamos los tamaños de los subconjuntos de ejemplos
n = nrow(df_viento_fuerte), nrow(df_viento_suave)
# Calculamos el índice de Gini de cada subconjunto
gis = gini(df_viento_fuerte, :Tenis), gini(df_viento_suave, :Tenis)
# Calculamos media ponderada de los índices de Gini de los subconjuntos
g_viento = sum(gis .* n) / sum(n)
# Calculamos la reducción del índice de Gini
g0 - g_viento
```

0.030612244897959162

Como se puede observar, la reducción del índice de Gini al dividir el conjunto de ejemplos según la variable Humedad es mayor que la reducción del índice de Gini al dividir el conjunto con respecto a la variable Viento. Por lo tanto, la variable Humedad parece tener más influencia en la decisión de jugar al tenis y sería la variable que se debería elegir para dividir el conjunto de ejemplos.

e. Construir un árbol de decisión que explique si se puede jugar al tenis en función de las variables meteorológicas.

i Ayuda

Usar la función DecisionTreeClassifier del paquete DecisionTree.jl. Los parámetros más importantes de esta función son:

- max_depth: Profundidad máxima del árbol. Si no se indica, el árbol crecerá hasta que todas las hojas sean puras o hasta que todas las hojas contengan menos de min_samples_split ejemplos.
- min_samples_leaf: Número mínimo de ejemplos en una hoja (1 por defecto).
- min_samples_split: Número mínimo de ejemplos para dividir un nodo (2 por defecto).
- min_impurity_decrease: Reducción mínima de la impureza para dividir un nodo (0 por defecto).
- post-prune: Si se indica true, se poda el árbol después de que se ha construido. La poda reduce el tamaño del árbol eliminando nodos que no aportan información útil.
- merge_purity_threshold: Umbral de pureza para fusionar nodos. Si se indica, se fusionan los nodos que tienen una pureza menor que este umbral.
- feature_importance: Indica la medida para calcular la importancia de las variables a la hora de dividir el conjunto de datos. Puede ser :impurity o :split. Si no se indica, se utiliza la impureza de Gini.
- rng: Indica la semilla para la generación de números aleatorios. Si no se indica, se utiliza el generador de números aleatorios por defecto.

```
Solución
using DecisionTree, CategoricalArrays
# Variables predictoras.
X = Matrix(select(df, Not(:Tenis)))
# Variable objetivo.
y = df.Tenis
# Convertir las variables categóricas a enteros.
X = hcat([levelcode.(categorical(X[:, j])) for j in 1:size(X, 2)]...)
# Convertir la variable objetivo a enteros.
y = levelcode.(categorical(y))
tree = DecisionTreeClassifier(max_depth=3)
fit!(tree, X, y)
DecisionTreeClassifier
max_depth:
                           3
min_samples_leaf:
                           1
min_samples_split:
min_purity_increase:
pruning_purity_threshold: 1.0
n subfeatures:
```

classes: [1, 2]
root: Decision Tree
Leaves: 6
Depth: 3

f. Visualizar el árbol de decisión construido.

i Ayuda
Usar la función plot_tree del paquete DecisionTree.jl.

Ejercicio 4.2. El conjunto de datos pingüinos.csv contiene un conjunto de datos sobre tres eEspecie de pingüinos con las siguientes variables:

- Especie: Especie de pingüino, comúnmente Adelie, Chinstrap o Gentoo.
- Isla: Isla del archipiélago Palmer donde se realizó la observación.
- Longitud pico: Longitud del pico en mm.
- Profundidad_pico: Profundidad del pico en mm
- Longitud_ala: Longitud de la aleta en mm.
- Peso: Masa corporal en gramos.
- Sexo: Sexo
- a. Cargar los datos del archivo pinguïnos.csv en un data frame.

Solución

using CSV, DataFrames

df = CSV.read(download("https://aprendeconalf.es/aprendizaje-automatico-practicas-

aı	ODV.I Caa	(aowiiioaa)	noops.,, aprono	icconair.cb/aprena	12ajo datom	acico piaco	1000
	Especie	Isla	Longitud_pico	Profundidad_pico	Longitud_a		Sea
	String15	String15	Float64?	Float64?	Int64?	Int64?	Strin
1	Adelie	Torgersen	39.1	18.7	181	3750	mac
2	Adelie	Torgersen	39.5	17.4	186	3800	hem
3	Adelie	Torgersen	40.3	18.0	195	3250	hem
4	Adelie	Torgersen	missing	missing	missing	missing	miss
5	Adelie	Torgersen	36.7	19.3	193	3450	hem
6	Adelie	Torgersen	39.3	20.6	190	3650	mac
7	Adelie	Torgersen	38.9	17.8	181	3625	hem
8	Adelie	Torgersen	39.2	19.6	195	4675	mac
9	Adelie	Torgersen	34.1	18.1	193	3475	miss
10	Adelie	Torgersen	42.0	20.2	190	4250	miss
11	Adelie	Torgersen	37.8	17.1	186	3300	miss
12	Adelie	Torgersen	37.8	17.3	180	3700	miss
13	Adelie	Torgersen	41.1	17.6	182	3200	hem
14	Adelie	Torgersen	38.6	21.2	191	3800	mac
15	Adelie	Torgersen	34.6	21.1	198	4400	mac
16	Adelie	Torgersen	36.6	17.8	185	3700	hem
17	Adelie	Torgersen	38.7	19.0	195	3450	hem
18	Adelie	Torgersen	42.5	20.7	197	4500	mac
19	Adelie	Torgersen	34.4	18.4	184	3325	hem
20	Adelie	Torgersen	46.0	21.5	194	4200	mac
21	Adelie	Biscoe	37.8	18.3	174	3400	hem
22	Adelie	Biscoe	37.7	18.7	180	3600	mac
23	Adelie	Biscoe	35.9	19.2	189	3800	hem
24	Adelie	Biscoe	38.2	18.1	185	3950	mac
25	Adelie	Biscoe	38.8	17.2	180	3800	mac
26	Adelie	Biscoe	35.3	18.9	187	3800	hem
27	Adelie	Biscoe	40.6	18.6	183	3550	mac
28	Adelie	Biscoe	40.5	17.9	187	3200	hem
29	Adelie	Biscoe	37.9	18.6	172	3150	hem
30	Adelie	Biscoe	40.5	18.9	180	3950	mac

b. Hacer un análisis de los datos perdidos en el data frame.

c. Eliminar del data frame los casos con valores perdidos.

					1		
	Especie	Isla	Longitud_pico	Profundidad_pico	Longitud_al		Sexo
	String15	String15	Float64	Float64	Int64	Int64	String7
1	Adelie	Torgersen	39.1	18.7	181	3750	macho
2	Adelie	Torgersen	39.5	17.4	186	3800	hembra
3	Adelie	Torgersen	40.3	18.0	195	3250	hembra
4	Adelie	Torgersen	36.7	19.3	193	3450	hembra
5	Adelie	Torgersen	39.3	20.6	190	3650	macho
6	Adelie	Torgersen	38.9	17.8	181	3625	hembra
7	Adelie	Torgersen	39.2	19.6	195	4675	macho
8	Adelie	Torgersen	41.1	17.6	182	3200	hembra
9	Adelie	Torgersen	38.6	21.2	191	3800	macho
10	Adelie	Torgersen	34.6	21.1	198	4400	macho
11	Adelie	Torgersen	36.6	17.8	185	3700	hembra
12	Adelie	Torgersen	38.7	19.0	195	3450	hembra
13	Adelie	Torgersen	42.5	20.7	197	4500	macho
14	Adelie	Torgersen	34.4	18.4	184	3325	hembra
15	Adelie	Torgersen	46.0	21.5	194	4200	macho
16	Adelie	Biscoe	37.8	18.3	174	3400	hembra
17	Adelie	Biscoe	37.7	18.7	180	3600	macho
18	Adelie	Biscoe	35.9	19.2	189	3800	hembra
19	Adelie	Biscoe	38.2	18.1	185	3950	macho
20	Adelie	Biscoe	38.8	17.2	180	3800	macho
21	Adelie	Biscoe	35.3	18.9	187	3800	hembra
22	Adelie	Biscoe	40.6	18.6	183	3550	macho
23	Adelie	Biscoe	40.5	17.9	187	3200	hembra
24	Adelie	Biscoe	37.9	18.6	172	3150	hembra
25	Adelie	Biscoe	40.5	18.9	180	3950	macho
26	Adelie	Dream	39.5	16.7	178	3250	hembra
27	Adelie	Dream	37.2	18.1	178	3900	macho
28	Adelie	Dream	39.5	17.8	188	3300	hembra
29	Adelie	Dream	40.9	18.9	184	3900	macho
30	Adelie	Dream	36.4	17.0	195	3325	hembra

d. Crear diagramas que muestren la distribución de frecuencias de cada variable según la especie de pingüino. ¿Qué variable parece tener más influencia en la especie de pingüino?

Para las variables cualitativas dibujamos diagramas de barras.

```
using GLMakie, AlgebraOfGraphics
frec_isla = combine(groupby(df, [:Isla, :Especie]), nrow => :Frecuencia)
data(frec_isla) *
   mapping(:Isla, :Frecuencia, stack = :Especie, color =:Especie) *
   visual(BarPlot) |> draw
 Warning: Found `resolution` in the theme when creating a `Scene`.
                                                                      The `resolution
 @ Makie ~/.julia/packages/Makie/ux0Te/src/scenes.jl:238
    150
                                                       Especie
  Frecuencia
    100
                                                        Adelie
                                                        Chinstrap
                                                        Gentoo
     50
      0
             Biscoe
                          Dream
                                      Torgersen
                            Isla
frec_sexo = combine(groupby(df, [:Sexo, :Especie]), nrow => :Frecuencia)
data(frec_sexo) *
   mapping(:Sexo, :Frecuencia, stack = :Especie, color =:Especie) *
   visual(BarPlot) |> draw
 Warning: Found `resolution` in the theme when creating a `Scene`.
                                                                      The `resolutio
 @ Makie ~/.julia/packages/Makie/ux0Te/src/scenes.jl:238
```


Para las variables cuantitativas dibujamos diagramas de cajas.

```
function cajas(df, var, clase)
    data(df) *
        mapping(clase, var, color = clase) *
        visual(BoxPlot) |>
        draw
end

cajas(df, :Longitud_pico, :Especie)
```

Warning: Found `resolution` in the theme when creating a `Scene`. @ Makie ~/.julia/packages/Makie/ux0Te/src/scenes.jl:238

The `resolution

Warning: Found `resolution` in the theme when creating a `Scene` @ Makie ~/.julia/packages/Makie/ux0Te/src/scenes.jl:238

Warning: Found `resolution` in the theme when creating a `Scene`

The `resolution

The `resolution

e. ¿Cuál es la reducción de la impureza del conjunto de datos si dividimos el conjunto de datos en dos conjuntos según si la longitud del pico es mayor o menor que 44

mm?

```
Solución
using Tidier
function gini(df::DataFrame, var::Symbol)
    n = nrow(df)
    frec = combine(groupby(df, var), nrow => :ni)
    frec.p = frec.ni ./ n
    gini = 1 - sum(frec.p.^2)
    return gini
end
function reduccion_impureza(df::DataFrame, var::Symbol, val::Number)
    # Dividimos el conjunto de ejemplos según la longitud del pico es menor de 44.
    df_menor = @eval @filter($df, $var <= $val)</pre>
    df_mayor = @eval @filter($df, $var > $val)
    # Calculamos los tamaños de los subconjuntos de ejemplos.
    n = nrow(df_menor), nrow(df_mayor)
    # Calculamos el índice de Gini de cada subconjunto.
    gis = gini(df_menor, :Especie), gini(df_mayor, :Especie)
    # Calculamos media ponderada de los índices de Gini de los subconjuntos.
    g1 = sum(gis .* n) / sum(n)
    # Calculamos la reducción del índice de Gini.
    gini(df, :Especie) - g1
end
reduccion_impureza(df, :Longitud_pico, 44)
0.26577182779353914
```

f. Determinar el valor óptimo de división del conjunto de datos según la longitud del pico. Para ello, calcular la reducción de la impureza para cada valor de longitud del pico y dibujar el resultado.

Dibujamos la reducción de la impureza en función de la longitud del pico.

```
using Plots
# Valores únicos de longitud del pico.
valores = unique(df.Longitud_pico)
# Reducción de la impureza para cada valor.
reducciones = [reduccion_impureza(df, :Longitud_pico, val) for val in valores]
# Graficamos el resultado.
Plots.scatter(valores, reducciones, xlabel = "Longitud del pico", ylabel = "Reducciones",
   0.3
Reducción de la impureza
   0.2
   0.1
   0.0
                         40
                                    45
                                              50
                                                         55
                                                                    60
                             Longitud del pico
Y ahora obtenemos el valor óptimo de división del conjunto de datos según
la longitud del pico.
val_optimo = valores[argmax(reducciones)]
42.3
```

g. Dividir aleatoriamente el dataframe en un conjunto de entrenamiento y un conjunto de test con proporciones 3/4 y 1/4 respectivamente.

i Ayuda

Utilizar la función **shuffle** del paquete **Random** para barajar el dataframe y luego dividirlo en dos subconjuntos.

```
    Solución

using Random
# Establecemos la semilla para la reproducibilidad.
Random.seed!(1234)
# Barajamos el dataframe.

df = shuffle(df)
# Dividimos el dataframe en un conjunto de entrenamiento y un conjunto de test.

n = nrow(df)

df_test = df[1:div(n, 4), :]

df_train = df[div(n, 4)+1:end, :]
```

	Especie	Isla	$Longitud_pico$	Profundidad_pico	$Longitud_{_}$	ala P	eso	Sex
	String15	String15	Float64	Float64	Int64		t64	String
1	Adelie	Dream	39.0	18.7	185	36	650	mach
2	Chinstrap	Dream	52.8	20.0	205	45	550	mach
3	Chinstrap	Dream	55.8	19.8	207	40	000	mach
4	Adelie	Torgersen	35.1	19.4	193	42	200	mach
5	Adelie	Torgersen	34.6	21.1	198	44	100	mach
6	Gentoo	Biscoe	50.0	15.2	218	57	700	mach
7	Chinstrap	Dream	50.6	19.4	193	38	300	mach
8	Chinstrap	Dream	43.5	18.1	202	34	100	hemb
9	Adelie	Dream	36.9	18.6	189	35	500	hemb
10	Adelie	Dream	36.6	18.4	184	34	175	hemb
11	Chinstrap	Dream	46.6	17.8	193	38	800	hemb
12	Gentoo	Biscoe	50.8	17.3	228	56	600	mach
13	Chinstrap	Dream	52.2	18.8	197	34	150	mach
14	Adelie	Dream	39.6	18.8	190	46	600	mach
15	Adelie	Torgersen	42.8	18.5	195	42	250	mach
16	Adelie	Biscoe	36.5	16.6	181	28	350	hemb
17	Gentoo	Biscoe	49.1	14.8	220	51	150	hemb
18	Chinstrap	Dream	43.2	16.6	187	29	900	hemb
19	Gentoo	Biscoe	43.3	13.4	209	44	100	hemb
20	Gentoo	Biscoe	49.5	16.1	224	56	650	mach
21	Adelie	Biscoe	37.8	20.0	190	42	250	mach
22	Gentoo	Biscoe	50.4	15.3	224	55	550	mach
23	Adelie	Biscoe	45.6	20.3	191	46	600	mach
24	Chinstrap	Dream	45.4	18.7	188	35	525	hemb
25	Adelie	Dream	39.2	18.6	190	42	250	mach
26	Gentoo	Biscoe	48.4	14.4	203	46	325	hemb
27	Adelie	Torgersen	35.2	15.9	186	30)50	hemb
28	Gentoo	Biscoe	48.4	16.3	220	54	100	mach
29	Adelie	Dream	33.1	16.1	178	29	900	hemb
30	Adelie	Dream	36.8	18.5	193	35	500	hemb
			•••	•••				
	•							

h. Construir un árbol de decisión con el conjunto de entrenamiento sin tener en cuenta la variable Isla y visualizarlo.

```
Solución
using DecisionTree, CategoricalArrays
# Variables predictivas.
X_train = Matrix(select(df_train, Not(:Isla, :Especie)))
# Variable objetivo.
y_train = df_train.Especie
# Convertir las variables categóricas a enteros.
X_train = hcat([levelcode.(categorical(X_train[:, j])) for j in 1:size(X_train, 2)
# Convertir la variable objetivo a enteros
y_train = levelcode.(categorical(y_train))
# Construimos el árbol de decisión con profundidad máxima 3.
tree = DecisionTreeClassifier(max_depth = 3)
fit!(tree, X_train, y_train)
print_tree(tree, feature_names=names(df)[3:end])
Feature 3: "Longitud_ala" < 29.0 ?
  Feature 1: "Longitud_pico" < 62.0 ?
      1:96/96
      Feature 1: "Longitud_pico" < 87.0 ?
          2 : 10/20
          2: 37/38
  Feature 2: "Profundidad_pico" < 46.0 ?
      3:90/90
      Feature 1: "Longitud_pico" < 109.0 ?
          1: 2/2
          2 : 4/4
```

i. Predecir la especie de los pingüinos del conjunto de test y calcular la matriz de confusión de las predicciones.

i Ayuda

Utilizar la función confmat del paquete StatisticalMeaures para barajar el dataframe y luego dividirlo en dos subconjuntos.

```
Solución
using StatisticalMeasures
# Variables predictivas
X_test = Matrix(select(df_test, Not(:Isla, :Especie)))
# Variable objetivo
y_test = df_test.Especie
# Convertir las variables categóricas a enteros
X_test = hcat([levelcode.(categorical(X_test[:, j])) for j in 1:size(X_test, 2)]..
# Convertir la variable objetivo a enteros
y_test = levelcode.(categorical(y_test))
# Predecimos la especie de pingüino del conjunto de test
y_pred = predict(tree, X_test)
# Calculamos la precisión del modelo
confmat(y_pred, y_test)
           Ground Truth
Predicted 1
               2
                    3
           38 11
                    9
               6
    3
           0
               0
                    19
```

j. Calcular la precisión del modelo.

i Ayuda

La precisión es la proporción de predicciones correctas sobre el total de predicciones.

Utilizar la función accuracy del paquete StatisticalMeaures para calcular la precisión del modelo.

```
Solución

# Calculamos la precisión del modelo
accuracy(y_pred, y_test)

0.7590361445783133
```

Ejercicio 4.3. El fichero vinos.csv contiene información sobre las características de una muestra de vinos portugueses de la denominación "Vinho Verde". Las variables que contiene son:

Variable	Descripción	Tipo (unidades)
tipo	Tipo de vino	Categórica
		(blanco, tinto)
meses.barrica	Mesesde envejecimiento en barrica	Numérica(meses)
acided.fija	Cantidadde ácidotartárico	Numérica(g/dm3)
acided.volatil	Cantidad de ácido acético	Numérica(g/dm3)
acido.citrico	Cantidad de ácidocítrico	Numérica(g/dm3)
azucar.residual	Cantidad de azúcarremanente después de	Numérica(g/dm3)
	la fermentación	
cloruro.sodico	Cantidad de clorurosódico	Numérica(g/dm3)
dioxido.azufre.libre	Cantidad de dióxido de azufreen formalibre	Numérica(mg/dm3)
dioxido.azufre.total	Cantidadde dióxido de azufretotal en	Numérica(mg/dm3)
	forma libre o ligada	
densidad	Densidad	Numérica(g/cm3)
ph	pН	Numérica(0-
		14)
sulfatos	Cantidadde sulfato de potasio	Numérica(g/dm3)
alcohol	Porcentajede contenidode alcohol	Numérica(0-
	-	100)
calidad	Calificación otorgada porun panel de	Numérica(0-
	expertos	10)

a. Crear un data frame con los datos de los vinos a partir del fichero vinos.csv.

	tipo	meses barrica	acided_fija	acided volatil	acido citrico	azucar_residual	
_	String7	Int64	Float64	Float64	Float64	Float64	
1	blanco	0	7.0	0.27	0.36	20.7	_
2	blanco	0	6.3	0.3	0.34	1.6	
3	blanco	0	8.1	0.28	0.4	6.9	
4	blanco	0	7.2	0.23	0.32	8.5	
5	blanco	0	6.2	0.32	0.16	7.0	
6	blanco	0	8.1	0.22	0.43	1.5	
7	blanco	0	8.1	0.27	0.41	1.45	
8	blanco	0	8.6	0.23	0.4	4.2	
9	blanco	0	7.9	0.18	0.37	1.2	
10	blanco	0	6.6	0.16	0.4	1.5	
11	blanco	0	8.3	0.42	0.62	19.25	
12	blanco	0	6.6	0.17	0.38	1.5	
13	blanco	0	6.3	0.48	0.04	1.1	
14	blanco	0	6.2	0.66	0.48	1.2	
15	blanco	0	7.4	0.34	0.42	1.1	
16	blanco	0	6.5	0.31	0.14	7.5	
17	blanco	0	6.4	0.31	0.38	2.9	
18	blanco	0	6.8	0.26	0.42	1.7	
19	blanco	0	7.6	0.67	0.14	1.5	
20	blanco	0	6.6	0.27	0.41	1.3	
21	blanco	0	7.0	0.25	0.32	9.0	
22	blanco	0	6.9	0.24	0.35	1.0	
23	blanco	0	7.0	0.28	0.39	8.7	
24	blanco	0	7.4	0.27	0.48	1.1	
25	blanco	0	7.2	0.32	0.36	2.0	
26	blanco	0	8.5	0.24	0.39	10.4	
27	blanco	0	8.3	0.14	0.34	1.1	
28	blanco	0	7.4	0.25	0.36	2.05	
29	blanco	0	6.2	0.12	0.34	1.5	
30	blanco	0	5.8	0.27	0.2	14.95	
					•••		

b. Mostrar los tipos de cada variable del data frame.

i Ayuda

Usar la función ${\tt schema}$ del paquete ${\tt MLJ}$.

```
    Solución

using MLJ
schema(df)

WARNING: using MLJ.fit! in module Main conflicts with an existing identifier.
```

WARNING: using MLJ.predict in module Main conflicts with an existing identifier.

names	scitypes	types
tipo	Textual	String7
meses_barrica	Count	Int64
acided_fija	Continuous	Float64
acided_volatil	Continuous	Float64
acido_citrico	Continuous	Float64
azucar_residual	Continuous	Float64
cloruro_sodico	Continuous	Float64
dioxido_azufre_libre	Continuous	Float64
dioxido_azufre_total	Continuous	Float64
densidad	Continuous	Float64
ph	Continuous	Float64
sulfatos	Continuous	Float64
alcohol	Continuous	Float64
calidad	Count	Int64

c. Hacer un análisis de los datos perdidos en el data frame.

	variable	nmissing
	Symbol	Int64
1	tipo	0
2	$meses_barrica$	0
3	acided_fija	0
4	$acided_volatil$	0
5	acido_citrico	0
6	azucar_residual	0
7	cloruro_sodico	0
8	dioxido_azufre_libre	0
9	$dioxido_azufre_total$	0
10	densidad	0
11	ph	0
12	sulfatos	0
13	alcohol	0
14	calidad	0

d. Mostrar la distribución de frecuencias de las variables cuantitativas del data frame mediante histogramas.

```
wsing GLMakie
fig = Figure()
ax = [Axis(fig[trunc(Int, i / 3), i % 3], title = names(df)[i+2]) for i in 0:12]
for i in 1:13
    hist!(ax[i], df[!, i+1], strokewidth = 0.5, strokecolor = (:white, 0.5))
end
fig
Warning: Found `resolution` in the theme when creating a `Scene`. The `resolution` @ Makie ~/.julia/packages/Makie/uxOTe/src/scenes.jl:238
```


e. Se considera que un vino es bueno si tiene una puntuación de calidad mayor que 6.5. Recodificar la variable calidad en una variable categórica que tome el valor 1 si la calidad es mayor que 6.5 y 0 en caso contrario.

f. Descomponer el data frame en un data frame con las variables predictivas y un vector con la variable objetivo bueno.

```
Solución
y, X = unpack(df, ==(:calidad), rng = 123)
(CategoricalValue{String, UInt32}[" ", "
                                               ", " ", "
                                                             ", "
                                                                    ", "
                 meses_barrica acided_fija
                                               acided_volatil
                                                                acido_citrico
        tipo
        String7
                 Int64
                                 Float64
                                               Float64
                                                                 Float64
                                                                                 Fl
        blanco
                              0
                                          6.7
                                                         0.5
                                                                          0.36
    1
                                          6.3
    2
        blanco
                              0
                                                         0.2
                                                                          0.3
    3
                              0
                                          6.2
                                                         0.35
                                                                          0.03
       blanco
    4
        tinto
                              3
                                          8.0
                                                         0.39
                                                                          0.3
    5
                                          7.9
                              0
                                                         0.255
                                                                          0.26
       blanco
    6
       blanco
                              0
                                          6.1
                                                         0.31
                                                                          0.37
    7
        blanco
                              0
                                          6.8
                                                         0.28
                                                                          0.36
    8
        blanco
                              0
                                          8.2
                                                         0.34
                                                                          0.49
    9
                              0
                                          6.7
                                                         0.48
                                                                          0.02
        tinto
   10
                              0
                                          7.4
                                                         0.35
                                                                          0.2
        blanco
                              5
                                          7.5
                                                                          0.06
   11
                                                         0.53
        tinto
 5311
                              0
                                          7.2
                                                         0.14
                                                                          0.35
        blanco
                                                                          0.24
 5312
        tinto
                              3
                                          7.6
                                                         0.41
 5313
        tinto
                              0
                                          7.3
                                                         0.4
                                                                          0.3
                                          7.1
                                                                          0.28
 5314
        tinto
                              4
                                                         0.48
 5315
        blanco
                              0
                                          6.4
                                                         0.29
                                                                          0.2
                                                                          0.29
 5316
        blanco
                              0
                                          9.4
                                                         0.24
 5317
        blanco
                              0
                                          6.3
                                                         0.25
                                                                          0.27
```

5318	blanco	0	5.5	0.16	0.26
5319	blanco	0	7.4	0.36	0.32
5320	blanco	0	7.6	0.51	0.24
				8 columns	and 5299 rows omitted)

g. Para poder entrenar un modelo de un arbol de decisión, las variables predictivas deben ser cuantitativas. Transmformar las variables categóricas en variables numéricas.

```
Solución
# Convertir las variables categóricas a enteros.
coerce!(X, :tipo => OrderedFactor, :meses_barrica => Continuous)
schema(X)
 names
                        scitypes
                                           types
                                           CategoricalValue{String7, UInt32}
 tipo
                        OrderedFactor{2}
 meses_barrica
                        Continuous
                                           Float64
                        Continuous
                                           Float64
 acided_fija
 acided_volatil
                        Continuous
                                           Float64
 acido_citrico
                        Continuous
                                           Float64
 azucar_residual
                        Continuous
                                           Float64
 cloruro_sodico
                        Continuous
                                           Float64
                                           Float64
 dioxido_azufre_libre
                        Continuous
 dioxido_azufre_total
                        Continuous
                                           Float64
 densidad
                        Continuous
                                           Float64
                        Continuous
                                           Float64
 ph
 sulfatos
                        Continuous
                                           Float64
 alcohol
                        Continuous
                                           Float64
```

h. Definir un modelo de árbol de decisión con profundidad máxima 3.

i Ayuda

Cargar el modelo DecisionTreeClassifier del paquete DecisionTree con la macros @iload.

```
Solución
# Cargamos el tipo de modelo.
Tree = Oiload DecisionTreeClassifier pkg = "DecisionTree"
# Instanciamos el modelo con sus parámetros.
arbol = Tree(max_depth =3, rng = 123)
[ Info: For silent loading, specify `verbosity=0`.
{\tt import\ MLJDecisionTreeInterface}
DecisionTreeClassifier(
 max_depth = 3,
 min_samples_leaf = 1,
 min_samples_split = 2,
 min_purity_increase = 0.0,
 n_subfeatures = 0,
 post_prune = false,
 merge_purity_threshold = 1.0,
 display_depth = 5,
  feature_importance = :impurity,
  rng = 123)
```

i. Evaluar el modelo tomando un 70% de ejemplos en el conjunto de entrenamiento y un 30% en el conjunto de test. Utilizar como métrica la precisión.

i Ayuda

Usar la función evaluate del paquete MLJ para evaluar el modelo. Los parámetros más importantes de esta función son:

- resampling: Indica el método de muestreo para definir los conjuntos de entrenamiento y test. Los métodos más habituales son:
 - Holdout(fraction_train = p): Divide el conjunto de datos tomando una proporción de p ejemplos en el conjunto de entrenamiento y 1-p en el conjunto de test.
 - CV(nfolds = n, shuffle = true|false): Utiliza validación cruzada con n iteraciones. Si se indica shuffle = true, se utiliza validación cruzada aleatoria.
 - StratifiedCV(nfolds = n, shuffle = true|false): Utiliza validación cruzada estratificada con n iteraciones. Si se indica shuffle = true, se utiliza validación cruzada estratificada aleatoria.
 - InSample(): Utiliza el conjunto de entrenamiento como conjunto de test.

- measures: Indica las métricas a utilizar para evaluar el modelo. Las métricas más habituales son:
 - cross_entropy: Pérdida de entropía cruzada.
 - confusion_matrix: Matriz de confusión.
 - true_positive_rate: Tasa de verdaderos positivos.
 - true_negative_rate: Tasa de verdaderos negativos.
 - ppv: Valor predictivo positivo.
 - npv: Valor predictivo negativo.
 - accuracy: Precisión.

Se puede indicar más de una en un vector.

```
evaluate(arbol, X, y, resampling = Holdout(fraction_train = 0.7, rng = 123), measure
PerformanceEvaluation object with these fields:
   model, measure, operation,
   measurement, per_fold, per_observation,
   fitted_params_per_fold, report_per_fold,
   train_test_rows, resampling, repeats
Extract:

measure operation measurement

Accuracy() predict_mode 0.843
```

j. Evaluar el modelo mediante validación cruzada estratificada usando las métricas de la pérdida de entropía cruzada, la matriz de confusión, la tasa de verdaderos positivos, la tasa de verdaderos negativos, el valor predictivo positivo, el valor predictivo negativo y la precisión. ¿Es un buen modelo?

```
Solución

evaluate(arbol, X, y, resampling = StratifiedCV(rng = 123), measures = [cross_entr

Evaluating over 6 folds: 33%[======> ] ETA: 0:00:02Evaluating of

PerformanceEvaluation object with these fields:
   model, measure, operation,
   measurement, per_fold, per_observation,
   fitted_params_per_fold, report_per_fold,
   train_test_rows, resampling, repeats
```

```
Extract:
    measure
                                operation
                                              measurement
                                              0.375
   LogLoss(
                               predict
       tol = 2.22045e-16)
 В
   ConfusionMatrix(
                               predict_mode ConfusionMatrix{2}([3821534 78
       levels = nothing,
      perm = nothing,
      rev = nothing,
       checks = true)
   TruePositiveRate(
                               predict_mode
                                              0.128
      levels = nothing,
      rev = nothing,
       checks = true)
 D
    TrueNegativeRate(
                               predict_mode
                                              1.0
       levels = nothing,
       rev = nothing,
       checks = true)
   PositivePredictiveValue( predict_mode
                                              0.994
       levels = nothing,
       rev = nothing,
       checks = true)
 F
    NegativePredictiveValue( predict_mode
                                              0.83
       levels = nothing,
       rev = nothing,
                                                     1 column and 2 rows omitted
    per_fold
    [0.391, 0.394, 0.35, 0.358, 0.365, 0.391]
 Α
     ConfusionMatrix{2, true, CategoricalValue{String, UInt32}}[ConfusionMatr
 В
     [0.125, 0.167, 0.155, 0.112, 0.113, 0.0952]
 С
 D
     [1.0, 0.999, 1.0, 1.0, 1.0, 1.0]
 Ε
     [1.0, 0.966, 1.0, 1.0, 1.0, 1.0]
 F
     [0.83, 0.837, 0.835, 0.827, 0.828, 0.825]
     [0.834, 0.841, 0.84, 0.831, 0.832, 0.828]
                                                               2 columns omitted
```

La precisión del modelo es de 0.834 que no está mal, pero si consdieramos la

tasa de verdadero positivos, que es 0.13 y la tasa de verdaderos negativos, que es prácticamente 1, el modelo tiene un buen rendimiento en la clasificación de los vinos malos, pero un mal rendimiento en la clasificación de los vinos buenos. Por lo tanto, no podemos decir que sea un buen modelo.

k. Construir árboles de decisión con profundidades máximas de 2 a 10 y evaluar el modelo con validación cruzada estratificada. ¿Cuál es la profundidad máxima que da mejor resultado?

i Ayuda

Usar la función TunedModel del paquete MLJ para ajustar los parámetros del modelo.

Los parámetros más importantes de esta función son:

- model: Indica el modelo a ajustar.
- resampling: Indica el método de muestreo para definir los conjuntos de entrenamiento y test.
- tuning: Indica el método de ajuste de los parámetros del modelo. Los métodos más habituales son:
 - Grid(resolution = n): Ajusta los parámetros del modelo utilizando una cuadrícula de búsqueda con n valores.
 - RandomSearch(resolution = n): Ajusta los parámetros del modelo utilizando una búsqueda aleatoria con n valores.
- range: Indica el rango de valores a utilizar para ajustar los parámetros del modelo. Se puede indicar un rango de valores o un vector de valores.
- measure: Indica la métrica a utilizar para evaluar el modelo.

```
Solución
# Instanciamos el modelo de árbol de decisión.
arbol = Tree()
# Definimos el rango de valores a utilizar para ajustar los parámetros del modelo.
r = range(arbol, :max_depth, lower=2, upper=10)
# Ajustamos los parámetros del modelo utilizando una cuadrícula de búsqueda con 9
arbol_parametrizado = TunedModel(
   model = arbol,
   resampling = StratifiedCV(rng = 123),
   tuning = Grid(resolution = 9),
   range = r,
   measure = accuracy)
# Definimos una máquina de aprendizaje con el modelo, las variables predictivas y
mach = machine(arbol_parametrizado, X, y)
# Ajustamos los parámetros del modelo.
MLJ.fit!(mach)
# Mostramos los parámetros del mejor modelo.
fitted_params(mach).best_model
[ Info: Training machine(ProbabilisticTunedModel(model = DecisionTreeClassifier(ma
[ Info: Attempting to evaluate 9 models.
Evaluating over 9 metamodels: 22%[====>
                                                            ] ETA: 0:00:03Evaluat
DecisionTreeClassifier(
 max_depth = 5,
 min_samples_leaf = 1,
 min_samples_split = 2,
 min_purity_increase = 0.0,
 n_subfeatures = 0,
 post_prune = false,
 merge_purity_threshold = 1.0,
 display_depth = 5,
  feature_importance = :impurity,
 rng = TaskLocalRNG())
```

l. Dibujar la curva de aprendizaje del modelo en función de la profundidad del árbol de decisión.

i Ayuda

Usar la función learning_curve del paquete MLJ para dibujar la curva de aprendizaje. Los parámetros más importantes de esta función son:

- mach: Indica la máquina de aprendizaje a utilizar.
- range: Indica el rango de valores a utilizar para ajustar los parámetros del modelo.
- resampling: Indica el método de muestreo para definir los conjuntos de entrenamiento y test.
- measure: Indica la métrica a utilizar para evaluar el modelo.
- rngs: Indica la semilla para la generación de números aleatorios. Se pueden indicar varias semillas en un vector y se genera una curva de aprendizaje para cada semilla.

```
Solución
# Instanciamos el modelo de árbol de decisión.
arbol = Tree()
# Definimos una máquina de aprendizaje con el modelo, las variables predictivas y
mach = machine(arbol, X, y)
# Definimos el rango de valores a utilizar para ajustar los parámetros del modelo.
r = range(arbol, :max_depth, lower=2, upper=10)
# Dibujamos la curva de aprendizaje.
curva = learning_curve(mach, range = r, resampling = StratifiedCV(rng = 123), meas
# Dibujamos la curva de aprendizaje.
fig = Figure()
ax = Axis(fig[1, 1], title = "Curva de aprendizaje", xlabel = "Profundidad del árb
Makie.scatter!(ax, curva.parameter_values, curva.measurements)
fig
[ Info: Training machine(ProbabilisticTunedModel(model = DecisionTreeClassifier(machine))
[ Info: Attempting to evaluate 9 models.
Evaluating over 9 metamodels: 22%[====>
                                                             ] ETA: 0:00:01Evaluat
 Warning: Found `resolution` in the theme when creating a `Scene`.
                                                                    The `resolution
 @ Makie ~/.julia/packages/Makie/ux0Te/src/scenes.jl:238
```


m. Construir un árbol de decisión con la profundidad máxima que da mejor resultado y visualizarlo.

```
Solución
# Instanciamos el modelo de árbol de decisión.
arbol = Tree(max_depth = 4)
# Definimos una máquina de aprendizaje con el modelo, las variables predictivas y
mach = machine(arbol, X, y)
# Ajustamos los parámetros del modelo.
MLJ.fit!(mach)
# Visualizamos el árbol de decisión.
fitted_params(mach).tree
[ Info: Training machine(DecisionTreeClassifier(max_depth = 4, ...), ...).
alcohol < 10.62
  meses_barrica < 8.5
    acided_volatil < 0.3125
       acided_volatil < 0.2025
             (408/496)
             (1095/1172)
       meses\_barrica < 5.5
              (1334/1345)
              (51/58)
```

n. ¿Cuál es la importancia de cada variable en el modelo?

i Ayuda

Usar la función feature_importances del paquete DecisionTree para calcular la importancia de cada variable.

```
Solución
# Calculamos la importancia de cada variable.
feature_importances(mach)
13-element Vector{Pair{Symbol, Float64}}:
              :alcohol => 0.5303315899204789
        :meses_barrica => 0.26854115615561525
       :acided_volatil => 0.1040970236546446
       :cloruro_sodico => 0.09703023026926123
                 :tipo \Rightarrow 0.0
          :acided_fija => 0.0
        :acido_citrico => 0.0
      :azucar_residual => 0.0
 :dioxido_azufre_libre => 0.0
 :dioxido_azufre_total => 0.0
             :densidad => 0.0
                   :ph => 0.0
             :sulfatos => 0.0
```

o. Predecir la calidad de los 10 primeros vinos del conjunto de ejemplos.

i Ayuda

Usar la función predict del paquete DecisionTree para predecir las probabilidades de pertenecer a cada clase un ejemplo o conjunto de ejemplos. Usar la función predict_mode del paquete DecisionTree para predecir la clase de un ejemplo o conjunto de ejemplos.

```
Solución
Primero calculamos las probabilidades de cada clase.
MLJ.predict(mach, X[1:10, :])
10-element CategoricalDistributions.UnivariateFiniteVector{OrderedFactor{2}, String
UnivariateFinite{OrderedFactor{2}}(
                                        =>0.992,
                                                    =>0.00818)
UnivariateFinite{OrderedFactor{2}}(
                                        =>0.823,
                                                    =>0.177)
UnivariateFinite{OrderedFactor{2}}(
                                        =>0.992,
                                                    =>0.00818)
UnivariateFinite{OrderedFactor{2}}(
                                        =>0.992,
                                                    =>0.00818)
UnivariateFinite{OrderedFactor{2}}(
                                        =>0.647,
                                                    =>0.353)
UnivariateFinite{OrderedFactor{2}}(
                                        =>0.647,
                                                    =>0.353)
UnivariateFinite{OrderedFactor{2}}(
                                        =>0.647,
                                                    =>0.353)
UnivariateFinite{OrderedFactor{2}}(
                                        =>0.878,
                                                    =>0.122)
UnivariateFinite{OrderedFactor{2}}(
                                                    =>0.00818)
                                        =>0.992,
 UnivariateFinite{OrderedFactor{2}}(
                                        =>0.992,
                                                    =>0.00818)
Y ahora predecimos la clase.
predict_mode(mach, X[1:10, :])
10-element CategoricalArray{String,1,UInt32}:
    "
```