Computer Organization I

Lecture 3: von Neumann Architecture (Part I)

- ✓ General Architecture of von Neumann Machine
 - Memory Subsystem;
 - Arithmetic Logic Unit;
 - Control Unit;

- ✓ Understand how the von Neumann machine works
- ✓ Understand the main functions of components included in von Neumann architecture

von Neumann Architecture - why it is important?

 All computers more or less based on the same basic design, the von Neumann Architecture! what ever it be a multi-million dollar mainframe or a Palm Pilot.

 The von Neumann architecture describes a general framework, or structure, that a computer's hardware, programming, and data should follow.

von Neumann Architecture? - what is von Neumann architecture?

von Neumann Architecture - how von Neumann computer works?

- Memory, also RAM (Random Access Memory)
 - Consists of many memory cells (storage units) of a fixed size.
 - Each cell has an address associated with it: 0, 1, ...
 - Each cell has two important characteristics:
 - (1) its address (where it is),
 - (2) its contents (what's stored at the given location).

Memory width (W)

 How many bits is each memory cell, typically one <u>byte</u> (=8 bits)

Address width (N)

- How many bits used to represent each address, determines the maximum memory size = <u>address space</u>
- If address width is N-bits, then address space is 2^N (0,1,..., 2^N-1)

Address space

 the number of uniquely identifiable memory locations.


```
For example, for a 256 Mbyte memory, suppose its memory width is 8 bits (or 1 bytes)
```

What is its address space? 228

What is its address width?

28

For another example a memory space is as follows:

000	
001	
010	
011	
100	0000 0110
101	
110	0000 0010
111	

- what is its memory width?8 bits
- what is its address space?8 bytes
- what is its address width?
- what is the content of memory location address (4 = 100)?
 (6 = 0000 0110)

Measurements about RAM Size & Speed

Memory sizes:

- Kilobyte (KB) = 2^{10} = 1,024 bytes ~ 1 thousand
- Megabyte(MB) = 2^{20} = 1,048,576 bytes ~ 1 million
- Gigabyte (GB)= 2^{30} = 1,073,741,824 bytes ~ 1 billion

Memory access time (read from/ write to memory)

-50-75 nanoseconds (1 nsec. = 0.00000001 sec.)

RAM is:

volatile (can only store when power is on)

Operations on Memory

- Fetch (address):
 - Fetch a copy of the content of memory cell with the specified address.
 - Non-destructive, copies value in memory cell.
- Store (address, value):
 - Store the specific value into the memory cell specified by address.
 - Destructive, overwrites the previous value of the memory cell.

Interface to Memory

How does processing unit get data to/from memory?

MAR: Memory Address Register

MDR: Memory Data Register

- Fetch (Address):
 - 1. Load the address (A) into the MAR.
 - 2. Copy the content of memory cell with specified address into MDR.
- Store (Address, Value):
 - 1. Load the address into MAR; load the value into MDR
 - 2. copy content of MDR into memory cell with specified address.

- The ALU (Arithmetic/Logic Unit) performs
 - mathematical operations (+, -, x, /, ...)
 - logic operations (=, <, >, and, or, not, ...)
- In today's computers integrated into the CPU
- Consists of:
 - Circuits to do the arithmetic/logic operations.
 - Registers (fast storage units) to store intermediate computational results.
 - Bus that connects the two.

von Neumann Architecture - what is the structure of ALU subsystem?

• Registers:

- very fast local memory cells, that store operands of operations and intermediate results.
- <u>CCR</u> (condition code register),
 a special purpose register
 that stores the result of <, = ,
 > operations

• ALU circuitry:

- Contains an array of circuits to do mathematical/logic operations.
- Bus: Data path interconnecting the registers to the ALU circuitry.

von Neumann Architecture - what is control unit subsystem?

- Program is stored in memory
 - as machine language instructions, in binary
- The task of the <u>control unit</u> is to execute programs by repeatedly:
 - Fetch from memory the next instruction to be executed.
 - Decode it, that is, determine what is to be done.
 - Execute it by issuing the appropriate signals to the ALU, memory, and I/O subsystems.
 - Continues until the HALT instruction

von Neumann Architecture - what is control unit subsystem?

Machine Language Instructions

- A machine language instruction consists of:
 - Operation code/opcode, telling which operation to perform
 - Address field(s)/operands, telling the memory addresses of the values on which the operation works.
- For Example: ADD X, Y (Add content of memory locations X and Y, and store back in memory location Y).
- Assume: opcode for ADD is 9, and addresses X=99, Y=100

Opcode (8 bits)	Address 1 (16 bits)	Address 2 (16 bits)
00001001	000000001100011	000000001100100