

Faculty of Engineering and Technology

Electrical and Computer Engineering Department

INFORMATION RETRIEVAL WITH APPLICATIONS OF NLP ENCS5342

Assignment #4

Prepared by: Mazen Batrawi - 1190102

Instructor: Dr. Adnan Yahya

Section: 1

BIRZEIT

JUNE-2023

Rank	docID	Graded Relevance	Binary Relevance
1	43	3	1
2	531	0	0
3	183	4	1
4	102	2	1
5	10	2	1
6	1051	0	0
7	1031	1	1
8	332	1	1
9	573	0	0
10	128	2	1

A) Precision = Relevant retrieved / documents retrieved

$$P@6 = 4 / 6 = 0.6667$$

$$P@10 = 7 / 10 = 0.7$$

B) Recall = relevant retrieved / relevant documents

$$R@6 = 4 / 7 = 0.571$$

$$R@10 = 7 / 7 = 1$$

C) For the maximization needed, we have to put at least 6 relevant documents at the beginning, so that P@6 will become 1.

Rank	docID	Graded Relevance	Binary Relevance
1	43	3	1
2	128	2	1
3	183	4	1
4	102	2	1
5	10	2	1
6	1031	1	1
7	1051	0	0
8	332	1	1
9	573	0	0
10	531	0	0

- D) The value of P@10 will always be 7/10 in this example, because the number of relevant documents is 7, and for any permutation, when we are at row 10, we must have seen the 7 relevant documents, so the answer will be 7/10 = 0.7.
- E) From the above table, the recall at 6 is 6 / 7, which is the maximum we can get.
- F) The value of R@10 will always be 7/7 in this example, because the number of relevant documents is 7, and for any permutation, when we are at row 10, we must have seen the 7 relevant documents, so the answer will be 7/7 = 1.
- G) The average precision AP is:

Rank	docID	Graded	Binary Relevance	Precision
		Relevance		
1	43	3	1	1 / 1 = 1
2	531	0	0	1/2 = 0.5
3	183	4	1	2/3 = 0.6667
4	102	2	1	3/4 = 0.75
5	10	2	1	4/5 = 0.8
6	1051	0	0	4 / 6 = 0.667
7	1031	1	1	5 / 7 = 0.714
8	332	1	1	6 / 8 = 0.75
9	573	0	0	6 / 9 = 0.6667
10	128	2	1	7 / 10 = 0.7

$$AP = (1/1 + 2/3 + 3/4 + 4/5 + 5/7 + 6/8 + 7/10) / 7 = 0.769$$

H) To maximize the AP, we have to put all relevant documents at the beginning. The idea is to increase the numerator of APs equation, and to increase it, we have to guarantee the

maximum precision achievable at each entry. The following table will demonstrate the solution:

Rank	docID	Graded	Binary Relevance	Precision
		Relevance		
1	43	3	1	1 / 1 = 1
2	128	2	1	2/2 = 1
3	183	4	1	3 / 3 = 1
4	102	2	1	4 / 4 = 1
5	10	2	1	5 / 5 = 1
6	1031	1	1	6 / 6 = 1
7	332	1	1	7 / 7 = 1
8	1051	0	0	7 / 8 = 0.875
9	573	0	0	7 / 9 = 0.7778
10	531	0	0	7 / 10 = 0.7

$$AP = (1+1+1+1+1+1+1) / 7 = 1.$$

I) See the below table:

J)

Rank	docID	Graded	Log n	Rel / Log _n	GCG _n
		Relevance			
1	43	3	-	-	3
2	531	0	1	0	3
3	183	4	1.58	2.53	5.53
4	102	2	2	1	6.53
5	10	2	2.32	0.86	7.39

1. The ideal top documents are found using the graded relevance, the higher graded relevance the higher rank.

The documents are, in order: 183, 43, 102, 10, 128.

2.

Rank	docID	Graded	Log n	Rel / Log _n	GCG _n
		Relevance			
1	183	4	-	-	4
2	43	3	1	3	7
3	102	2	1.58	1.27	8.27
4	10	2	2	1	9.27
5	128	2	2.32	0.86	10.13

3. NDCG5 = DCG5 / IDCG5 = 7.39 / 10.13 = 0.729

K)

Rank	docID	Graded	Binary	Recall	Precision
		Relevance	Relevance		
1	43	3	1	0.143	1
2	531	0	0	0.143	0.5
3	183	4	1	0.286	0.6667
4	102	2	1	0.429	0.75
5	10	2	1	0.571	0.8
6	1051	0	0	0.571	0.6667
7	1031	1	1	0.714	0.714
8	332	1	1	0.857	0.75
9	573	0	0	0.857	0.6667
10	128	2	1	1	0.7

Recall	Precision
0.143	1
0.143	0.5
0.286	0.6667
0.429	0.75
0.571	0.8
0.571	0.6667
0.714	0.714
0.857	0.75
0.857	0.6667
1	0.7

Company	Bid	CTR	Bid * CTR	Rank	Paid
A	1	0.08	0.08	5	minimum
В	2	0.05	0.10	4	1.61
С	3	0.07	0.21	1	2.8671
D	4	0.04	0.16	3	2.51
Е	5	0.04	0.20	2	4.01

• Piad (Rank 1) = Bid2 * CTR2 / CTR1 = 0.20 / 0.07 = 2.8571

The second price auction rule says that the advertiser pays the minimum amount necessary to maintain their position in the auction (plus 1 cent). So, the paid value for the first rank will be 2.8671.

- Piad (Rank 2) = Bid3 * CTR3 / CTR2 = 0.16 / 0.04 = 4, plus 1 cent = 4.01
- Piad (Rank 3) = Bid4 * CTR4 / CTR3 = 0.10 / 0.04 = 2.5, plus 1 cent = 2.51
- Piad (Rank 4) = Bid5 * CTR5 / CTR4 = 0.08 / 0.05 = 1.6, plus 1 cent = 1.61

Q.3

 $A(x) = x \mod 5$

 $B(x) = (3x + 1) \mod 5$

 $C(x) = (2x + 1) \bmod 5$

	Doc1	Doc2	Doc3
A(x)	∞	∞	∞
B (x)	∞	∞	∞
C (x)	∞	∞	∞
A(1) = 1	1 1	1 1	- ∞
B(1) = 4	4 4	4 4	- ∞
C(1) = 3	3 3	3 3	- ∞
A(2) = 2	2 1	2 1	2 2
B(2) = 2	2 2	2 2	2 2
C(2) = 0	0 0	0 0	0 0
A(3) = 3	3 1	- 1	3 2
B(3) = 0	0 0	- 2	0 0
C(3) = 2	2 0	- 0	2 0
A(4) = 4	- 1	4 1	4 2
B(4) = 3	- 0	3 2	3 0
C(4) = 4	- 0	4 0	4 0
A(5) = 0	- 1	- 1	0 0
B(5) = 1	- 0	- 2	1 0
C(5) = 1	- 0	- 0	1 0

$$J(D1, D2) = 2/3 = 0.667$$

$$J(D1, D3) = 2/3 = 0.677$$

$$J(D2, D3) = 1/3 = 0.333$$