CMSC204 Kartchner

V(StateGraph) = {Oregon, Alaska, Texas, Hawaii, Vermont, NewYork, California} E(StateGraph) = {(Alaska, Oregon), (Hawaii, Alaska), (Hawaii, Texas), (Texas, Hawaii), (Hawaii, California), (Hawaii, New York), (Texas, Vermont), (Vermont, California), (Vermont, Alaska)}

1. Draw the StateGraph

1. Describe the graph pictured above, using the formal graph notation.

 $V(StateGraph) = \{Oregon, Alaska, Texas, Hawaii, Vermont, New York, California\}$

E(StateGraph) = {{Alaska, Oregon}, {Hawaii, Alaska}, {Hawaii, Texas}, {Texas, Hawaii}, {Hawaii, California}, {Hawaii, New York}, {Texas, Vermont}, {Vermont, California}, {Vermont, Alaska}}

- 2. a. Is there a path from Oregon to any other state in the graph? No
- b. Is there a path from Hawaii to every other state in the graph? Yes
- c. From which state(s) in the graph is there a path to Hawaii? Texas

3. a. Show the adjacency matrix that would describe the edges in the graph. Store the vertices in alphabetical order

States				
Alaska				
California				
Hawaii				
New York				
Oregon				
Texas				
Vermont				

A	C	Н	NY	O	T	V
0	0	1	0	0	0	1
0	0	1	0	0	0	1
0	0	0	0	0	1	0
0	0	1	0	0	0	0
1	0	0	0	0	0	0
0	0	1	0	0	0	0
0	0	0	0	0	1	0

3. b. Show the adjacency lists that would describe the edges in the graph

- 4 a. Which of the following lists the graph nodes in depth first order beginning with E?
- A) E, G, F, C, D, B, A
- B) G, A, E, C, B, F, D
- C) E, G, A, D, F, C, B
- D) E, C, F, B, A, D, G
- 4 b. Which of the following lists the graph nodes in breadth first order beginning at F?
 - A) F, C, D, A, B, E, G
 - B) F, D, C, A, B, C, G
 - C) F, C, D, B, G, A, E
 - D) a, b, and c are all breadth first traversals

5. Find the shortest distance from Atlanta to every other city

Atlanta \rightarrow Washington = 600

Atlanta \rightarrow Houston = 800

Atlanta \rightarrow Dallas = 1900

Atlanta \rightarrow Austin = 2100

Atlanta \rightarrow Denver = 2680

Atlanta → Chicago = 2800

6. Find the minimal spanning tree using Prim's algorithm. Use 0 as the source vertex . Show the steps.

MST: 0

Step 1: 3<7

MST: 0 2

Step 2: 1<8

MST: 0 2 5

Step 3: 2<3

MST: 0 2 5 1

Step 4: 5<7

MST: 0 2 5 1 3

Step 4: 3<6

MST: 0 2 5 1 3 4

7. Find the minimal spanning tree using Kruskal's algorithm. Show the weights in order and the steps.

- 2-5 (1)
- 5-1 (2)
- 5-4 (3)
- 2-0 (3)
- 1-3 (5)

8. Find the minimal spanning tree using the algorithm you prefer. Use Minneapolis/St. Paul as the source vertex

9. List the nodes of the graph in a breadth first topological ordering. Show the steps using arrays predCount, topologicalOrder and a queue

predCount	topologicalOrder	queue
0113322022		0 7
0013312022	0	7 1
0013211021	0 7	1
0002100021	071	2 5 6
0002000021	0712	5 6 4
0002000021	07125	6 4
0001000001	071256	4 8
0000000001	0712564	8 3
00000000000	07125648	3 9
00000000000	071256483	9
00000000000	0712564839	

10. List the nodes of the graph in a breadth first topological ordering.

Start
Discrete Math
Programming 1
Programming 2
Computer Organization
Algorithms
High-Level Languages
Operating Systems
Theory of Computation
Compilers
Senior Seminar
End