Introduction to Propositional Logic

Shirley Chu

De La Salle University

update January 20, 2020

Introduction to Logic

- Rules of logic gives precise meaning to statements.
- These rules are used to determine validity of mathematical arguments.

Definition

The area of logic that deals with propositions is called **propositional logic** or **propositional calculus**, developed by the Greek philosopher Aristotle.

Propositions

Definition

A **proposition** is a declarative sentence that is either **true** or **false**, **but not both**.

Which of the following are propositions?

- 1 De La Salle University is located in Manila.
- Who are you?
- **3** Cebu City is the capital of the Philippines.
- 4 Be careful.
- 5 x + y = 25

Compound Propositions

Definition

Compound propositions are formed by combining one or more existing propositions using logical operators.

Representations

Propositional variables or *statement variables* are letters used to represent propositions.

Convention: Lowercase letters are used as propositional variables.

Example:

- Let *m* denote the statement "Manila is the capital of the Philippines.".
- Let *p* denote the statement "I will pass CCDSTRU.".

Truth values are denoted by **T** for *true* and **F** for *false*.

Truth table displays the relationships between the truth values of propositions.

Logical Connectives

Definition

Logical connectives or **logical operators** or **boolean operators** are used to form compound propositions.

Negation

Definition

The **negation of the proposition** p, denoted by $\neg p$ and read as not p, is the statement: It is not the case of p. The truth value of $\neg p$ is the opposite of the truth value of p.

- The negation of *I will sleep early tonight*.
 - In English: I will not sleep early tonight.
 - Using Expressions: Let s be I will sleep early tonight. Translation: ¬s
- The negation of *It is raining*.
 - In English: *It is not raining.*
 - Using Expressions: Let r be lt is raining. Translation: $\neg r$

Truth Table for $\neg p$

Table: Truth Table for $\neg p$

Conjunction

Definition

The **conjunction of the propositions** p **and** q is denoted by $p \wedge q$.

The truth value of $p \land q$ is true iff both p and q are true.

- I will sleep early tonight and I will eat breakfast tomorrow morning.
 - Let s be I will sleep early tonight.
 Let b be I will eat breakfast tomorrow morning.
 - Translation: $s \wedge b$
- I woke up early, but I am late for class.
 - Let w be I woke up early. Let c be I am late for class.
 - Translation: $w \wedge c$

Truth Table for $p \wedge q$

Table: Truth Table for $p \wedge q$

$$\begin{array}{c|cccc} p & q & p \wedge q \\ \hline T & T & T \\ T & F & F \\ F & T & F \\ F & F & F \end{array}$$

Disjunction a.k.a. Inclusive-Or

Definition

The disjunction of the propositions p and q is denoted by $p \lor q$. The truth value of $p \lor q$ is true when either p or q is true.

- Either I wake up early, or I am late for class.
 - Let w be I wake up early. Let c be I am late for class.
 - Translation: $w \lor c$
- I will sleep early tonight or I will not eat breakfast tomorrow morning.
 - Let s be I will sleep early tonight.
 Let b be I will eat breakfast tomorrow morning.
 - Translation: $s \lor \neg b$

Truth Table for $p \lor q$

Table: Truth Table for $p \lor q$

Exclusive-Or

Definition

The exclusive-or of the propositions p and q is denoted by $p \oplus q$.

The truth value of $p \oplus q$ is true when either p or q is true, but not both.

- The steak comes with soup or dessert.
 - Let s be The steak comes with soup.
 Let d be The steak comes with dessert.
 - Translation: *s* ⊕ *d*
- I will sleep early tonight or I will not eat breakfast tomorrow morning, but not both.
 - Let s be I will sleep early tonight.

 Let b be I will eat breakfast tomorrow morning.
 - Translation: $s \oplus \neg b$

Truth Table for $p \oplus q$

Table: Truth Table for $p \oplus q$

p	q	$p \oplus q$
Τ	Т	F
Τ	F	Т
F	Т	Т
F	F	F

Implication

Definition

The **conditional statement** $p \rightarrow q$ is read as *if* p *then* q. The truth value of $p \rightarrow q$ is false when p is true and q is false.

p is the *hypothesis*, antecedent or premise. q is the conclusion or consequence. Example:

- If I wake up early, I will eat breakfast.
 - Let w be I wake up early. Let b be I will eat breakfast.
 - Translation: $w \rightarrow b$
- I pass the exam whenever I study.
 - Let *p* be *l* pass the exam. Let *s* be *l* study.
 - Translation: $s \rightarrow p$

Truth Table for $p \rightarrow q$

Table: Truth Table for $p \rightarrow q$

p	q	p o q
Τ	Т	Т
Т	F	F
F	Т	Т
F	F	Т

 $p \rightarrow q$ may be translated as:

- lacksquare p is sufficient for q
- \blacksquare q is necessary for p
- \blacksquare q when p
- q whenever p
- p only if q
- \blacksquare q unless $\neg p$
- \blacksquare q follows from p

Converse, Contrapositive and Inverse

Given a implication statement $p \rightarrow q$:

Biconditional

Definition

The **biconditional statement** $p \leftrightarrow q$ is read as p if and only if q. The truth value of $p \leftrightarrow q$ is true when both p and q have the same truth value, false otherwise.

- I pass the exam if and only if I study.
 - Let *p* be *l* pass the exam. Let *s* be *l* study.
 - Translation: $p \leftrightarrow s$

Truth Table for $p \leftrightarrow q$

Table: Truth Table for $p \leftrightarrow q$

р	q	$p \leftrightarrow q$			
Т	Т	T			
Т	F	F			
F	Т	F			
F	F	Т			

 $p \leftrightarrow q$ may be translated as:

- lacksquare p is necessary and sufficient for q
- p if and only if q
- If *p* then *q* and conversely.

Summary

Summary	Not	And	Or	Xor	Implies	lff
p q	_¬ <i>p</i>	<i>p</i> ∧ <i>q</i>	$p \lor q$	<i>p</i> ⊕ <i>q</i>	$p \rightarrow q$	$p \leftrightarrow q$
TT	_	T	T	F	T	T
ΤF	'	F	T	T	F	F
FT	_	F	T	T	T	F
FF	'	F	F	F	T	T

Exercise 1

Translate the following English statements to propositions.

- 1 It is sunny.
- 2 I answered the assignment, but I did not submit it.
- 3 I will remember to send you my address only if you send me an email message.
- 4 Either I go to school or I go to the mall.
- 5 I will eat breakfast or I will walk to school, or both.

Exercise 2

Answer the following.

- Determine how many rows will appear in the truth tables of these propositions?
 - 1 $p \land \neg q$
 - $p \lor \neg p$
- 2 Construct the truth tables for the following propositions.
 - 1 $p \land \neg p$
 - $p \oplus (p \lor q)$
 - $(p \vee \neg q) \to q$

Reference

Discrete Mathematics and Its Applications, 7^{th} edition by Kenneth Rosen