CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level

MARK SCHEME for the May/June 2013 series

9709 MATHEMATICS

9709/23 Paper 2, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL – May/June 2013	9709	23

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol [↑] implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL – May/June 2013	9709	23

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a "fortuitous" answer
ISW	Ignore Subsequent Working
MR	Misread
MR PA	Misread Premature Approximation (resulting in basically correct work that is insufficiently accurate)
	Premature Approximation (resulting in basically correct work that is insufficiently

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR–2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4		ge 4	Mark Scheme	Syllabus	Paper	
			GCE AS LEVEL – May/June 2013	9709	23	
1	<u>Eith</u>	State or imply non-modular equation $(2^x - 7)^2 = 1^2$, or corresponding pair of equation $(2^x - 7)^2 = 1^2$, where $(2^x - 7)^2 = 1^2$, or corresponding pair of equation $(2^x - 7)^2 = 1^2$, where $(2^x - 7)^2 = 1^2$, or corresponding pair of equation $(2^x - 7)^2 = 1^2$, where $(2^x - 7)^2 = 1^2$, or corresponding pair of equation $(2^x - 7)^2 = 1^2$, where $(2^x $		A1 B1 M1 A1		
	<u>Or</u>	State State Use	e or imply one value for 2^x , e.g. 8, by solving an equation or be answer 3 e second value for 2^x logarithmic method to solve an equation of the form $2^x = k$, we answer 2.58	-	B1 B1 B1 M1 A1	[5]
2	Use Obta Mak (dep	ain correct te reasonal endent on	$h(x^2)$ Idition or subtraction of logarithms quadratic equation in x ble solution attempt at a 3-term quadratic previous M marks) and no other solutions		M1 M1 A1 DM1	[5]
3	(i)	Use $\cos 4$ State corr Or Use \cos^2 Use \cos^2	$x = 2\sin x \cos x$ to convert integrand to $k \sin^2 2x$ $x = 1 - 2\sin^2 2x$ $= \cot \exp(x) = 1 - 2\cos(2x)$ $= \cot \exp(x) = 1 - \cos(2x)$ $= \cot \exp$	$\cos 2x$ only	M1 M1 A1 M1 M1	[3]
	(ii)	State corr	ect expression $\frac{1}{2} - \frac{1}{2}\cos 4x$ or equivalent ect integral $\frac{3}{2}x - \frac{3}{8}\sin 4x$, or equivalent o substitute limits, using exact values ven answer correctly		B1 M1 A1	[3]
4	(i)	Substitute Obtain a c Solve a re	Let $x = -\frac{3}{2}$, equate to zero Let $x = -1$ and equate to 8 Correct equation in any form Elevant pair of equations for a or for b a = 2 and $b = -6$		M1 M1 A1 M1 A1	[5]

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL – May/June 2013	9709	23

(ii) Attempt either division by 2x + 3 and reach a partial quotient of $x^2 + kx$, use of an identity or observation

Obtain quotient $x^2 - 4x + 3$

Obtain linear factors x - 1 and x - 3

A1

[Condone omission of repetition that 2x + 3 is a factor.]

A1

[If linear factors x - 1, x - 3 obtained by remainder theorem or inspection, award B2 + B1.]

[3]

5 (i) Use product rule to differentiate *y*Obtain correct derivative in any form

M1 A1

Use $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t}$

M1

Obtain given answer correctly

A1

[4]

(ii) Substitute t = 0 in $\frac{dy}{dx}$ and both parametric equations

B1

Obtain $\frac{dy}{dx} = 2$ and coordinates (1, 0)

B1

Form equation of the normal at their point, using negative reciprocal of their $\frac{dy}{dx}$

M1

State correct equation of normal $y = -\frac{1}{2}x + \frac{1}{2}$ or equivalent

A1 [4]

- 6 (i) Make a recognisable sketch of a relevant graph, e.g. $y = \cot x$ or y = 4x 2 B1

 Sketch a second relevant graph and justify the given statement B1 [2]
 - (ii) Consider sign of $4x 2 \cot x$ at x = 0.7 and x = 0.9, or equivalent Complete the argument correctly with appropriate calculations

A1 [2]

M1

(iii) Show that given equation is equivalent to $x = \frac{1 + 2 \tan x}{4 \tan x}$, or vice versa

B1 [1]

(iv) Use the iterative formula correctly at least once Obtain final answer 0.76

M1 A1

Show sufficient iterations to justify its accuracy to 2 d.p. or show there is a sign change in the interval (0.755, 0.765)

B1 [3]

	Page 6		Mark Scheme	Syllabus	Paper	^
			GCE AS LEVEL – May/June 2013	9709	23	
7	(i)	State $R =$	$\sqrt{29}$		B1	
		Use trig f	ormula to find α		M1	
		Obtain α	$=21.80^{0}$ with no errors seen		A1	[3]
	(ii)	Carry out	evaluation of $\sin^{-1}\left(\frac{4}{R}\right) \left(\approx 47.97^{\circ}\right)$		M1	
		Carry out	correct method for one correct answer		M1	
		Obtain on	e correct answer e.g. 13.1°		A1	
			correct method for a further answer		M1	
		Obtain re	maining 3 answers 55.1° , 193.1° , 235.1° and no others in the	range	A1	[5]
	(iii)	Greatest v	value of $10 \sin 2\theta + 4 \cos 2\theta = 2\sqrt{29}$		M1	
		$\frac{1}{116}$			A1	[2]