(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

PAIPO OMPLO

(43) International Publication Date 6 February 2003 (06.02.2003)

PCT

(10) International Publication Number WO 03/010141 A2

(51) International Patent Classification7: C07D 209/00

(21) International Application Number: PCT/CA02/01128

(22) International Filing Date: 18 July 2002 (18.07.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/307,674 25 July 2001 (25.07.2001) US 60/338,061 7 December 2001 (07.12.2001) US

(71) Applicant (for all designated States except US): BOEHRINGER INGELHEIM (CANADA) LTD. [CA/CA]; 2100 Cunard Street, Laval, Québec H7S 2G5 (CA).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BEAULIEU, Pierre, Louis [CA/CA]; 2100 Cunard Street, Laval, Québec H7S 2G5 (CA). FAZAL, Gulrez [CA/CA]; 2100 Cunard Street, Laval, Québec H7S 2G5 (CA). GOULET, Sylvie [CA/CA]; 2100 Cunard Street, Laval, Québec H7S 2G5 (CA). KUKOLJ, George [CA/CA]; 2100 Cunard Street, Laval, Québec H7S 2G5 (CA). POIRIER, Martin [CA/CA]; 2100 Cunard Street, Laval, Québec H7S 2G5 (CA). TSANTRIZOS, Youla, S. [CA/CA]; 2100 Cunard Street, Laval, Québec H7S 2G5 (CA). JOLICOEUR, Eric [CA/CA]; 2100 Cunard Street, Laval, Québec H7S 2G5 (CA). GILLARD, James [CA/CA]; 2100 Cunard Street,

Laval, Québec H7S 2G5 (CA). POUPART, Marc-André [CA/CA]; 2100 Cunard Street, Laval, Québec H7S 2G5 (CA). RANCOURT, Jean [CA/CA]; 2100 Cunard Street, Laval, Québec H7S 2G5 (CA).

- (74) Agent: BERNIER, Louise, G.; Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5 (CA).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: VIRAL POLYMERASE INHIBITORS

(57) Abstract: An isomer, enantiomer, diastereoisomer or tautomer of a compound, represented by formula I: wherein: A is O, S, NR¹, or CR¹, wherein R¹ is defined herein; represents either a single or a double bond;R² is selected from: H, halogen, R²¹, OR²¹, SR²¹, COOR²¹,SO₂N(R²²)₂, N(R²²)₂, CON(R²²)₂,NR²²C(O)R²² or NR²²C(O)NR²² wherein R²¹ and each R²² is defined herein; B is NR³ or CR³, with the proviso that one of A or B is either CR¹ or CR³, wherein R³ is defined herein; K is N or CR⁴, wherein R⁴ is defined herein; L is N or CR⁵, wherein R⁵ has the same definition as R⁴; M is N or CR⁷, wherein R⁷ has the same definition as R⁴; Y¹ is O or S; Z is N(R⁶⁰)R⁶ or OR⁶, wherein R^{6a} is H or alkyl or NR⁶¹R⁶² wherein R⁶¹ and R⁶² are defined herein; and R⁶ is H, alkyl, cycloalkyl, alkenyl, Het, alkyl-aryl, alkyl-Het; or R⁶ is wherein R⁷ and R⁸ and Q are as defined herein; Y² is O or S; R⁹ is H, (C₁₋₆ alkyl), (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆)alkyl-aryl or (C₁₋₆)alkyl-Het, all of which optionally substituted with R⁹⁰; or R⁹ is covalently bonded to either of R⁷ or R⁸ to form a 5- or 6-membered

heterocycle; a salt or a derivative thereof, as an inhibitor of HCV NS5B polymerase.

WO 03/010141 PCT/CA02/01128

1

VIRAL POLYMERASE INHIBITORS

TECHNICAL FIELD OF THE INVENTION

The invention relates to inhibitors of RNA dependent RNA polymerases, particularly those viral polymerases within the Flaviviridae family, more particularly to HCV polymerase.

BACKGROUND OF THE INVENTION

- About 30,000 new cases of hepatitis C virus (HCV) infection are estimated to occur in the United States each year (Kolykhalov, A.A.; Mihalik, K.; Feinstone, S.M.; Rice, 10 C.M.; 2000; J. Virol. 74: 2046-2051). HCV is not easily cleared by the hosts' immunological defences; as many as 85% of the people infected with HCV become chronically infected. Many of these persistent infections result in chronic liver disease, including cirrhosis and hepatocellular carcinoma (Hoofnagle, J.H.; 1997; 15 Hepatology 26: 15S-20S*). There are an estimated 170 million HCV carriers worldwide, and HCV-associated end-stage liver disease is now the leading cause of liver transplantation. In the United States alone, hepatitis C is responsible for 8,000 to 10,000 deaths annually. Without effective intervention, the number is expected to triple in the next 10 to 20 years. There is no vaccine to prevent HCV infection. Prolonged treatment of chronically infected patients with interferon or interferon and 20 ribavirin is the only currently approved therapy, but it achieves a sustained response in fewer than 50% of cases (Lindsay, K.L.; 1997; Hepatology 26: 71S-77S*, and Reichard, O.; Schvarcz, R.; Weiland, O.; 1997 Hepatology 26: 108S-111S*).
- HCV belongs to the family *Flaviviridae*, genus *hepacivirus*, which comprises three genera of small enveloped positive-strand RNA viruses (Rice, C.M.; 1996; "*Flaviviridae*: the viruses and their replication"; pp. 931-960 in *Fields Virology*, Fields, B.N.; Knipe, D.M.; Howley, P.M. (eds.); Lippincott-Raven Publishers, Philadelphia Pa. *). The 9.6 kb genome of HCV consists of a long open reading frame (ORF)
 flanked by 5' and 3' non-translated regions (NTR's). The HCV 5' NTR is 341 nucleotides in length and functions as an internal ribosome entry site for capindependent translation initiation (Lemon, S.H.; Honda, M.; 1997; *Semin. Virol.* 8: 274-288). The HCV polyprotein is cleaved co- and post-translationally into at least 10 individual polypeptides (Reed, K.E.; Rice, C.M.; 1999; *Curr. Top. Microbiol. Immunol.* 242: 55-84*). The structural proteins result from signal peptidases in the N-

WO 03/010141 PCT/CA02/01128

2

terminal portion of the polyprotein. Two viral proteases mediate downstream cleavages to produce non-structural (NS) proteins that function as components of the HCV RNA replicase. The NS2-3 protease spans the C-terminal half of the NS2 and the N-terminal one-third of NS3 and catalyses *cis* cleavage of the NS2/3 site.

The same portion of NS3 also encodes the catalytic domain of the NS3-4A serine protease that cleaves at four downstream sites. The C-terminal two-thirds of NS3 is highly conserved amongst HCV isolates, with RNA-binding, RNA-stimulated NTPase, and RNA unwinding activities. Although NS4B and the NS5A phosphoprotein are also likely components of the replicase, their specific roles are unknown. The C-terminal polyprotein cleavage product, NS5B, is the elongation subunit of the HCV replicase possessing RNA-dependent RNA polymerase (RdRp) activity (Behrens, S.E.; Tomei, L.; DeFrancesco, R.; 1996; *EMBO J.* 15: 12-22*; and Lohmann, V.; Körner, F.; Herian, U.; Bartenschlager, R.; 1997; *J. Virol.* 71: 8416-8428*). It has been recently demonstrated that mutations destroying NS5B activity abolish infectivity of RNA in a chimp model (Kolykhalov, A.A.; Mihalik, K.; Feinstone, S.M.; Rice, C.M.; 2000; *J. Virol.* 74: 2046-2051*).

The development of new and specific anti-HCV treatments is a high priority, and virus-specific functions essential for replication are the most attractive targets for drug development. The absence of RNA dependent RNA polymerases in mammals, and the fact that this enzyme appears to be essential to viral replication, would suggest that the NS5B polymerase is an ideal target for anti-HCV therapeutics. WO 00/06529 reports inhibitors of NS5B which are α , γ -diketoacids. WO 00/13708, WO 00/10573, WO 00/18231, and WO 01/47883 report inhibitors of NS5B proposed for treatment of HCV.

SUMMARY OF THE INVENTION

It is therefore an object of the invention to provide a novel series of compounds having improved inhibitory activity against HCV polymerase.

5

10

15

20

In a first aspect of the invention, there is provided an isomer, enantiomer, diastereoisomer or tautomer of a compound, represented by formula I:

$$R^2$$
 B
 K
 (I)

wherein:

10

25

30

A is O, S, NR^1 , or CR^1 , wherein R^1 is selected from the group consisting of: H, (C_{1-6}) alkyl optionally substituted with:

-halogen, OR^{11} , SR^{11} or $N(R^{12})_2$, wherein R^{11} and each R^{12} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl-aryl or (C_{1-6}) alkyl-Het, said aryl or Het optionally substituted with R^{10} ; or both R^{12} are covalently bonded together and to the nitrogen to which they are both attached to form a 5, 6 or 7-membered saturated heterocycle;

---- represents either a single or a double bond;

R² is selected from: halogen, R²¹, OR²¹, SR²¹, COOR²¹, SO₂N(R²²)₂, N(R²²)₂, , CON(R²²)₂, NR²²C(O)R²² or NR²²C(O)NR²² wherein R²¹ and each R²² is independently H, (C₁₋₆)alkyl, haloalkyl, (C₂₋₆)alkenyl, (C₃₋₇)cycloalkyl, (C₂₋₆)alkynyl, (C₅₋₇)cycloalkenyl, 6 or 10-membered aryl or Het, said R²¹ and R²² being optionally substituted with R²⁰;

or both R²² are bonded together to form a 5, 6 or 7-membered saturated heterocycle with the nitrogen to which they are attached;

B is NR³ or CR³, with the proviso that one of **A** or **B** is either CR¹ or CR³, wherein R³ is selected from (C_{1-6}) alkyl, haloalkyl, (C_{3-7}) cycloalkyl, (C_{5-7}) cycloalkenyl, (C_{6-10}) bicycloalkyl, (C_{6-10}) bicycloalkenyl, 6- or 10-membered aryl, Het, (C_{1-6}) alkyl-aryl or (C_{1-6}) alkyl-Het,

said alkyl, cycloalkyl, cycloakenyl, bicycloalkyl, bicycloalkenyl, aryl, Het, alkylaryl and alkyl-Het being optionally substituted with from 1 to 4 substituents selected from: halogen, or

a) (C₁₋₆)alkyl optionally substituted with:

- OR31 or SR31 wherein R31 is H, (C1-8alkyl), (C3-7)cycloalkyl,

10

15

20

25

30

 (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl-aryl or (C_{1-6}) alkyl-Het; or

- N(R³²)₂ wherein each R³² is independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆)alkyl-aryl or (C₁₋₆)alkyl-**Het**; or both R³² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;

b) OR^{33} wherein R^{33} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl-aryl or (C_{1-6}) alkyl-Het;

c) SR^{34} wherein R^{34} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl-aryl or (C_{1-6}) alkyl-Het; and

d) $N(R^{35})_2$ wherein each R^{35} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl-aryl or (C_{1-6}) alkyl-Het; or both R^{35} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;

K is N or CR⁴, wherein R⁴ is H, halogen, (C₁₋₆)alkyl, haloalkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl; or R⁴ is OR⁴¹ or SR⁴¹, COR⁴¹ or NR⁴¹COR⁴¹ wherein each R⁴¹ is independently H, (C₁₋₆)alkyl), (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl; or R⁴ is NR⁴²R⁴³ wherein R⁴² and R⁴³ are each independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, or both R⁴² and R⁴³ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;

L is N or CR5, wherein R5 has the same definition as R4 defined above;

M is N or CR^7 , wherein R^7 has the same definition as R^4 defined above;

Y¹ is O or S;

Z is OR⁶ wherein R⁶ is C₁₋₆alkyl substituted with:

- 1 to 4 substituents selected from: OPO₃H, NO₂, cyano, azido, C(=NH)NH₂,

30

C(=NH)NH(C₁₋₆)alkyl or C(=NH)NHCO(C₁₋₆)alkyl; or

- 1 to 4 substituents selected from:
- a) (C₁₋₆) alkyl or haloalkyl, (C₃₋₇)cycloalkyl, C₃₋₇ spirocycloalkyl optionally containing 1 or 2 heteroatom, (C₂₋₆)alkenyl, (C₂₋₈)alkynyl, (C₁₋₆) alkyl-(C₃₋₇)cycloalkyl, all of which optionally substituted with \mathbf{R}^{150} ;
- b) OR^{104} wherein R^{104} is $(C_{1-6}$ alkyl) substituted with R^{150} , (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R^{150} ;
- c) OCOR¹⁰⁵ wherein R¹⁰⁵ is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰; d) SR¹⁰⁸, SO₃H, SO₂N(R¹⁰⁸)₂ or SO₂N(R¹⁰⁸)C(O)R¹⁰⁸ wherein each R¹⁰⁸ is independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het or both R¹⁰⁸ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het or heterocycle being optionally substituted with R¹⁵⁰:
- e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, and R¹¹² is H, CN, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁵ is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, provided that when R¹¹¹ is H or unsubstituted alkyl, R¹¹² is not H or unsubstituted alkyl, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to
 - which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)**Het**, or heterocycle being optionally substituted with R¹⁵⁰;
 - f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰;

10

15

20

25

30

g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁₋₆)alkyl, (C₃₋₆) 7)cycloalkyl, (C1-6)alkyl-(C3-7)cycloalkyl, aryl, Het, (C1-6alkyl)aryl or (C1salkyl)Het, or R118 is covalently bonded to R119 and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; or R119 and R120 are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl, (C1-6)alkyl-(C3-7)cycloalkyl, aryl, Het, (C1-6alkyl)aryl or (C1-₆alkyl)Het or heterocycle being optionally substituted with R¹⁵⁰; h) $NR^{121}COCOR^{122}$ wherein R^{121} and R^{122} is each H, (C_{1-6}) alkyl, (C_{3}) . 7)cycloalkyl, (C1-6)alkyl-(C3-7)cycloalkyl, a 6- or 10-membered aryl, Het, (C1falkyl)aryl or (C1-falkyl)Het, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C_{1.6}alkyl)aryl or (C_{1.6}alkyl)Het being optionally substituted with R¹⁵⁰; or R122 is OR123 or N(R124)2 wherein R123 and each R124 is independently H, (C₁₋₆alkyl), (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆) 6alkyl)aryl or (C1-6alkyl)Het, or R124 is OH or O(C1-6alkyl) or both R124 are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C1-6alkyl)aryl or (C₁₋₆alkyl)Het and heterocycle being optionally substituted with R¹⁵⁰; i) COR^{127} wherein R^{127} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) 7)cycloalkyl, aryl, Het, (C1-6alkyl)aryl or (C1-6alkyl)Het, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰; j) COOR¹²⁸ wherein R^{128} is (C_{1-6}) alkyl substituted with R^{150} , (C_{3-7}) cycloalkyl, or(C1-6)alkyl-(C3-7)cycloalkyl, aryl, Het, (C1-6alkyl)aryl or (C1-6alkyl)Het, said (C3-7)cycloalkyl, or(C1-6)alkyl-(C3-7)cycloalkyl, aryl, Het, (C1-6alkyl)aryl and (C1-6alkyl)Het being optionally substituted with R150: k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁₋₆)alkyl, (C₃. 7)cycloalkyl, (C1-6)alkyl-(C3-7)cycloalkyl, aryl, Het, (C1-6alkyl)aryl or (C1falkyl) Het, or both R129 and R130 are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C1-ealkyl)aryl, (C_{1.6}alkyl)Het and heterocycle being optionally substituted with R¹⁵⁰; I) aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, all of which being optionally substituted with R¹⁵⁰: wherein R¹⁵⁰ is selected from:

- 1 to 3 substituents selected from: halogen, NO2, cyano, azido or
- 1 to 3 substituents selected from:
- a) (C_{1-6}) alkyl or haloalkyl, (C_{3-7})cycloalkyl, C_{3-7} spirocycloalkyl optionally containing 1 or 2 heteroatom, (C_{2-6})alkenyl, (C_{1-6}) alkyl-(C_{3-7})cycloalkyl, all of which optionally substituted with R^{160} ;
- **b)** OR^{104} wherein R^{104} is H, $(C_{1-6}alkyl)$, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ Het being optionally substituted with R^{160} ;
- c) OCOR¹⁰⁵ wherein R¹⁰⁵ is (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R¹⁵⁰:
- d) SR¹⁰⁸, SO₂N(R¹⁰⁸)₂ or SO₂N(R¹⁰⁸)C(O)R¹⁰⁸ wherein each R¹⁰⁸ is independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het** or both R¹⁰⁸ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het** or heterocycle being optionally substituted with R¹⁶⁰;
- e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or $(C_1$. $_6)$ alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl)aryl or (C_{1-6}) alkyl)Het, and R¹¹² is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl)aryl, (C_{1-6}) alkyl)Het, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁵ is (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl)aryl or (C_{1-6}) alkyl)Het, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C_{1-6}) alkyl)aryl or (C_{1-6}) alkyl)Het, or heterocycle being optionally substituted with R¹⁶⁰;
- f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted

5

15

20

25

with R160:

g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or R¹¹⁹ and R¹²⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het or heterocycle being optionally substituted with R^{160} ;

h) NR¹²¹COCOR¹²² wherein R¹²¹ is H, (C_{1-6}) alkyl optionally substituted with R¹⁶⁰, and R¹²² is OR¹²³ or N(R¹²⁴)₂ wherein R¹²³ and each R¹²⁴ is independently H, $(C_{1-6}$ alkyl), (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, or R¹²⁴ is OH or O(C₁₋₆alkyl) or both R¹²⁴ are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het and heterocycle being optionally substituted with R¹⁶⁰;

j) tetrazole, COOR¹²⁸ wherein R^{128} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl and $(C_{1-6}$ alkyl)Het being optionally substituted with R^{160} ; and

k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C_{1-6})alkyl, (C_{3-7})cycloalkyl, (C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, Het, (C_{1-6} alkyl)Het, or both R¹²⁹ and R¹³⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl, (C_{1-6} alkyl)Het and heterocycle being optionally substituted with R¹⁶⁰;

wherein R¹⁶⁰ is defined as 1 or 2 substituents selected from: tetrazole, halogen, CN, C₁₋₆alkyl, haloalkyl, COOR¹⁶¹, SO₃H, SO₂R¹⁶¹, OR¹⁶¹, N(R¹⁶²)₂, SO₂N(R¹⁶²)₂, NR¹⁶²COR¹⁶², or CON(R¹⁶²)₂, wherein R¹⁶¹ and each R¹⁶² is independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl; or both R¹⁶² are covalently bonded together and to the nitrogen to

5

10

15

20

25

20

25

30

which they are attached to form a 5, 6 or 7-membered saturated heterocycle;

or Z is OR6 wherein R6 is (C1.6alkyl)aryl substituted with:

- 5 1 to 4 substituents selected from: OPO_3H , azido, $C(=NH)NH_2$, $C(=NH)NH(C_{1-6})$ alkyl or $C(=NH)NHCO(C_{1-6})$ alkyl; or
 - 1 to 4 substituents selected from:
 - a) (C_{1-6}) alkyl substituted with R^{150a} , haloalkyl, (C_{3-7}) cycloalkyl, C_{3-7} spirocycloalkyl optionally containing 1 or 2 heteroatom, (C_{2-6}) alkenyl, (C_{2-8}) alkynyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, said haloalkyl, cycloalkyl, spirocycloalkyl, alkenyl, alkynyl and alkyl-cycloalkyl being optionally substituted with R^{150} , wherein R^{150a} is the same as R^{150} but is not $COOR^{150b}$, $N(R^{150b})_2$, $NR^{150b}C(O)R^{150b}$, OR^{150b} , SR^{150b} , SO_2R^{150b} , $SO_2N(R^{150b})_2$, wherein R^{150b} is H or unsubstituted C_{1-6} alkyl;
- b) OR¹⁰⁴ wherein R¹⁰⁴ is (C₁₋₆alkyl) substituted with R¹⁵⁰, (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰;
 - c) OCOR¹⁰⁵ wherein R¹⁰⁵ is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, Het, (C₁₋₆alkyl)aryl or (C₁₋₈alkyl)Het, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰;

d) SR^{108a}, SO₂N(R^{108a})₂ or SO₂N(R¹⁰⁸)C(O)R¹⁰⁸ wherein each R¹⁰⁸ is

- independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het or both \mathbf{R}^{108} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het or heterocycle being optionally substituted with \mathbf{R}^{150} , wherein \mathbf{R}^{108a} is the same as \mathbf{R}^{108} but is not H or unsubstituted C_{1-8} alkyl;
- e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, and R¹¹² is H, CN, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het, provided that when R¹¹¹ is H or unsubstituted alkyl, R¹¹² is not H or unsubstituted alkyl,
- or R¹¹² is also COOR¹¹⁵ or SO₂R^{115a} wherein R¹¹⁵ is H, (C₁₋₆)alkyl, (C₃₋₆

10

15

20

25

30

substituted with R¹⁵⁰;

 $_{7}$)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, and R^{115a} is the same as R¹¹⁵ but is not H or unsubstituted alkyl, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or heterocycle being optionally substituted with R¹⁵⁰;

- f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each (C_{1-6})alkyl substituted with R¹⁵⁰, (C_{3-7})cycloalkyl, (C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)Het, said (C_{3-7})cycloalkyl, (C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)Het being optionally substituted with R¹⁵⁰;
- g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or R¹¹⁸ is covalently bonded to R¹¹⁹ and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; or R¹¹⁹ and R¹²⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het or heterocycle being optionally substituted with R¹⁵⁰;
- h) NR¹²¹COCOR¹²² wherein R¹²¹ and R¹²² is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, a 6- or 10-membered aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰; or R¹²² is OR¹²³ or N(R¹²⁴)₂ wherein R¹²³ and each R¹²⁴ is independently H, (C₁₋₆alkyl), (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or R¹²⁴ is OH or O(C₁₋₆alkyl) or both R¹²⁴ are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het and heterocycle being optionally substituted with R¹⁵⁰; i) COR¹²⁷ wherein R¹²⁷ is (C₁₋₆)alkyl substituted with R¹⁵⁰, (C₃₋₇)cycloalkyl or (C₁₋₆alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)Het, said cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally
- j) COOR¹²⁸ wherein R^{128} is (C₁₋₆)alkyl substituted with R^{150} , (C₃₋₇)cycloalkyl, or(C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said (C₃₋₇)cycloalkyl,

WO 03/010141

 $_{7}$)cycloalkyl, or(C $_{1-6}$)alkyl-(C $_{3-7}$)cycloalkyl, aryl, **Het**, (C $_{1-6}$ alkyl)aryl and (C $_{1-6}$ alkyl)**Het** being optionally substituted with \mathbf{R}^{150} ;

- k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁₋₆)alkyl, (C₃. $_{7}$)cycloalkyl, (C₁₋₈)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, provided that when R¹²⁹ is H or unsubstituted alkyl, R¹³⁰ is not H or unsubstituted alkyl,
- or both R¹²⁹ and R¹³⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)**Het** and heterocycle being optionally substituted with R¹⁵⁰;
- I) aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, all of which being optionally substituted with \mathbf{R}^{150} ; and wherein \mathbf{R}^{150} is
 - -1 to 3 substituents selected from: halogen, NO2, cyano or azido;
 - 1 to 3 substituents selected from:
 - a) (C₁₋₆) alkyl or haloalkyl, (C₃₋₇)cycloalkyl, C₃₋₇ spirocycloalkyl optionally containing 1 or 2 heteroatom, (C₂₋₆)alkenyl, (C₂₋₈)alkynyl, (C₁₋₆) alkyl-(C₃₋₇)cycloalkyl, all of which optionally substituted with R¹⁶⁰;
 - **b)** OR^{104} wherein R^{104} is H, $(C_{1-6}alkyl)$, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ Het being optionally substituted with R^{160} ;
 - c) OCOR¹⁰⁵ wherein R¹⁰⁵ is (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R¹⁵⁰;
 - d) SR^{108} , $SO_2N(R^{108})_2$ or $SO_2N(R^{108})C(O)R^{108}$ wherein each R^{108} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het or both R^{108} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het or heterocycle being optionally substituted with R^{160} ;
 - e) $NR^{111}R^{112}$ wherein R^{111} is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)

15

10

5

20

25

 $_{6}$)alkyl-(C_{3-7})cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)Het, and R^{112} is H, CN, (C_{1-6})alkyl, (C_{3-7})cycloalkyl or (C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl, (C_{1-6} alkyl)Het, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R^{115} is (C_{1-6})alkyl, (C_{3-7})cycloalkyl, or (C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)Het, or both R^{111} and R^{112} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)Het, or heterocycle being optionally substituted with R^{160} ;

10

5

f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, said (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het** being optionally substituted with R¹⁶⁰;

15

g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or R¹¹⁹ and R¹²⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het or heterocycle being optionally substituted with R¹⁶⁰;

20

h) NR¹²¹COCOR¹²² wherein R¹²¹ is H, (C_{1-6}) alkyl optionally substituted with R¹⁶⁰; and R¹²² is OR¹²³ or N(R¹²⁴)₂ wherein R¹²³ and each R¹²⁴ is independently H, $(C_{1-6}$ alkyl), (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, or R¹²⁴ is OH or O(C_{1-6} alkyl) or both R¹²⁴ are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het and heterocycle being optionally substituted with R¹⁶⁰;

25

j) tetrazole, $COOR^{128}$ wherein R^{128} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl)aryl and (C_{1-6}) alkyl)Het being optionally substituted with R^{160} ; and

WO 03/010141 PCT/CA02/01128

13

k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁. 6)alkyl, (C3-7)cycloalkyl, (C1-6)alkyl-(C3-7)cycloalkyl, aryl, Het, (C1ealkyl)aryl or (C1-salkyl)Het, or both R129 and R130 are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl. cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C1-6alkyl)aryl, (C1-6alkyl)Het and heterocycle being optionally substituted with R160:

> wherein, R¹⁶⁰ is defined as 1 or 2 substituents selected from: tetrazole, halogen, CN, C₁₋₆alkyl, haloalkyl, COOR¹⁶¹, SO₃H, SO_2R^{161} , OR^{161} , $N(R^{162})_2$, $SO_2N(R^{162})_2$, $NR^{162}COR^{162}$ or CON(R¹⁶²)₂, wherein R¹⁶¹ and R¹⁶² are as defined above;

or Z is OR^5 wherein R^6 is, (C_{3-6}) cycloalkyl, (C_{2-6}) alkenyl, 6- or 10-membered aryl, Het, (C₁₋₆)alkyl-Het, wherein said cycloalkyl, alkenyl, aryl, Het or alkyl-Het, is optionally substituted with R60;

or Z is N(R^{6a})R⁶, wherein R^{6a} is H or (C₁₋₆alkyl) and

5

10

15

20

25

30

R⁶ is (C₁₋₆)alkyl optionally substituted with:

- 1 to 4 substituents selected from: OPO₃H, NO₂, cyano, azido, C(=NH)NH₂, $C(=NH)NH(C_{1-6})$ alkyl or $C(=NH)NHCO(C_{1-6})$ alkyl; or
- 1 to 4 substituents selected from:
- a) (C₁₋₆) alkyl substituted with R^{150a} , haloalkyl substituted with R^{150} , (C₃₋ 7)cycloalkyl, C37 spirocycloalkyl optionally containing 1 or 2 heteroatom, (C_{2-6}) alkenyl, (C_{2-8}) alkynyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, all of which optionally substituted with \mathbf{R}^{150} , wherein \mathbf{R}^{150a} is the same as \mathbf{R}^{150} but is not halogen, OH, O(C₁₋₆alkyl), COOH, COO(C₁₋₆alkyl), NH₂, NH(C₁₋₆alkyl) and N(C₁₋₆alkyl)₂; b) OR104 wherein R104 is (C1-6alkyl) substituted with R150, (C3-7)cycloalkyl, or (C1.6)alkyl-(C3.7)cycloalkyl, aryl, Het, (C1.6alkyl)aryl or (C1.6alkyl)Het, said cycloalkyl, aryl, Het, (C1-6alkyl)aryl or (C1-6alkyl)Het being optionally substituted with R150:
- c) OCOR¹⁰⁵ wherein R^{105} is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇) 7)cycloalkyl, Het, (C1-6alkyl)aryl or (C1-6alkyl)Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with \mathbf{R}^{150} ; d) SR^{108} , SO_3H , $SO_2N(R^{108})_2$ or $SO_2N(R^{108})C(O)R^{108}$ wherein each R^{108} is

10

15

20

25

30

independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het or both \mathbf{R}^{108} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het or heterocycle being optionally substituted with \mathbf{R}^{150} ;

- e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, and R¹¹² is H, CN, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁵ is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, provided that when R¹¹¹ is H or unsubstituted alkyl, R¹¹² is not H or unsubstituted alkyl, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or heterocycle being optionally substituted with R¹⁵⁰;
- f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰;
- g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C_{1-6})alkyl, (C_{3-7})cycloalkyl, (C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)Het, or R¹¹⁸ is covalently bonded to R¹¹⁹ and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; or R¹¹⁹ and R¹²⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl, (C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)Het or heterocycle being optionally substituted with R¹⁵⁰;
- h) NR¹²¹COCOR¹²² wherein R¹²¹ and R¹²² is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, a 6- or 10-membered aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰; or R¹²² is OR¹²³ or N(R¹²⁴)₂ wherein R¹²³ and each R¹²⁴ is independently H, (C₁₋₆alkyl), (C₃₋₇)cycloalkyl, or (C₁₋₆alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl-(C₁₋₆alkyl

6alkyl)aryl or (C₁₋₆alkyl)**Het,** or R¹²⁴ is OH or O(C₁₋₆alkyl) or both R¹²⁴ are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het** and heterocycle being optionally substituted with R¹⁵⁰;

5

i) COR^{127} wherein R^{127} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R^{150} ; i) $COOR^{128}$ wherein R^{128} is (C_{1-6}) alkyl substituted with R^{150} , (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl and (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl and (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl and (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl and (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl and (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl aryl aryl aryl, Het

10

k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or both R¹²⁹ and R¹³⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het and heterocycle being optionally substituted with R¹⁵⁰;

1) aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, all of which being optionally

15

I) aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, all of which being optionally substituted with \mathbf{R}^{150} , wherein \mathbf{R}^{150} is selected from:

20

- 1 to 3 substituents selected from: halogen, NO₂, cyano, azido or
- 1 to 3 substituents selected from:

a) (C_{1-6}) alkyl or haloalkyl, (C_{3-7}) cycloalkyl, C_{3-7} spirocycloalkyl optionally containing 1 or 2 heteroatom, (C_{2-6}) alkenyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, all of which optionally substituted with \mathbf{R}^{160} ;

25

b) OR^{104} wherein R^{104} is H, $(C_{1-6}alkyl)$, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ Het being optionally substituted with R^{160} :

- c) OCOR¹⁰⁵ wherein R¹⁰⁵ is (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R¹⁶⁰;
- d) SR^{108} , $SO_2N(R^{108})_2$ or $SO_2N(R^{108})C(O)R^{108}$ wherein each R^{108} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7})

PCT/CA02/01128

₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het** or both **R**¹⁰⁸ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het** or heterocycle being optionally substituted with **R**¹⁶⁰;

e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, and R¹¹² is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁵ is (C₁₋₆alkyl, (C₃₋₇)cycloalkyl, or (C₁₋₆alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl,

cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, or heterocycle being optionally substituted with R^{160} ;

1) $NR^{116}COR^{117}$ wherein R^{116} and R^{117} is each H, (C_{1-6}) alkyl, (C_{3-6})

7)cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with \mathbf{R}^{160} ;

g) $NR^{118}CONR^{119}R^{120}$, wherein R^{118} , R^{119} and R^{120} is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or R^{119} and R^{120} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het or heterocycle being optionally substituted with R^{160} ;

h) NR¹²¹COCOR¹²² wherein R¹²¹ is H, (C_{1-6}) alkyl optionally substituted with R¹⁶⁰, and R¹²² is OR¹²³ or N(R¹²⁴)₂ wherein R¹²³ and each R¹²⁴ is independently H, $(C_{1-6}$ alkyl), (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, or R¹²⁴ is OH or O(C_{1-6} alkyl) or both R¹²⁴ are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het and heterocycle

5

10

15

20

25

10

15

20

being optionally substituted with R160;

j) tetrazole, $COOR^{128}$ wherein R^{128} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl and $(C_{1-6}$ alkyl)Het being optionally substituted with R^{160} ; and

k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁. $_6$)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁. $_6$ alkyl)aryl or (C₁₋₆alkyl)Het, or both R¹²⁹ and R¹³⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het and heterocycle being optionally substituted with R¹⁶⁰;

wherein R^{160} is defined as 1 or 2 substituents selected from: tetrazole, halogen, CN, C_{1-6} alkyl, haloalkyl, COOR¹⁶¹, SO₃H, SO₂R¹⁶¹, OR¹⁶¹, N(R¹⁶²)₂, SO₂N(R¹⁶²)₂, NR¹⁶²COR¹⁶² or CON(R¹⁶²)₂, wherein R¹⁶¹ and R¹⁶² are as defined above;

or **Z** is $N(R^{6a})R^6$ wherein R^{6a} is as defined above and R^6 is (C_{3-6}) cycloalkyl, (C_{2-6}) alkenyl, 6- or 10-membered aryl, Het, (C_{1-6}) alkyl-aryl, (C_{1-6}) alkyl-Het, wherein said alkyl, cycloalkyl, alkenyl, aryl, Het, alkyl-aryl, or alkyl-Het, are all optionally substituted with R^{60} :

or Z is OR^6 or $N(R^{6a})R^6$ wherein R^{6a} is as defined above and R^6 is:

25

wherein \mathbf{R}^7 and \mathbf{R}^8 are each independently H, (C_{1-6}) alkyl, haloalkyl, (C_{3-7}) cycloalkyl, 6-or 10-membered aryl, Het, (C_{1-6}) alkyl-aryl, (C_{1-6}) alkyl-Het, wherein said alkyl, cycloalkyl, aryl, Het, (C_{1-6}) alkyl-aryl, (C_{1-6}) alkyl-Het are optionally substituted with \mathbf{R}^{70} ; or

R⁷ and R⁸ are covalently bonded together to form second (C₃₋₇)cycloalkyl or a 4, 5- or 6-membered heterocycle having from 1 to 3 heteroatom selected from O, N, and S; or when Z is N(R^{6a})R⁶, either of R⁷ or R⁸ is covalently bonded to R^{6a} to form a

nitrogen-containing 5-or 6-membered heterocycle;

Y² is O or S;

20

R⁹ is H, (C₁₋₆ alkyl), (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆)alkyl-aryl or (C₁₋₆)alkyl-Het, all of which optionally substituted with R⁹⁰; or R⁹ is covalently bonded to either of R⁷ or R⁸ to form a 5- or 6-membered heterocycle;

Q is a 6- or 10-membered aryl, **Het**, (C₁₋₆) alkyl-aryl, (C₁₋₆) alkyl-**Het**, (C₁₋₆) alkyl-10 CONH-aryl or (C₁₋₆) alkyl-CONH-**Het**, all of which being optionally substituted with:

or a salt or a derivative thereof;

wherein **Het** is defined as 5- or 6-membered heterocycle having 1 to 4 heteroatoms selected from O, N, and S, or a 9- or 10-membered heterobicycle having 1 to 5 heteroatoms selected from O, N and S; and

 R^{10} , R^{20} , R^{60} , R^{70} , R^{90} and R^{100} is each defined as:

- 1 to 4 substituents selected from: halogen, OPO $_3$ H, NO $_2$, cyano, azido, C(=NH)NH $_2$, C(=NH)NH(C $_{1-6}$)alkyl or C(=NH)NHCO(C $_{1-6}$)alkyl; or
- 1 to 4 substituents selected from:
- a) (C₁₋₆) alkyl or haloalkyl, (C₃₋₇)cycloalkyl, C₃₋₇ spirocycloalkyl optionally containing 1 or 2 heteroatom, (C₂₋₆)alkenyl, (C₂₋₈)alkynyl, (C₁₋₆) alkyl-(C₃₋₇)cycloalkyl, all of which optionally substituted with \mathbf{R}^{150} ;
- b) OR¹⁰⁴ wherein R¹⁰⁴ is H, (C₁₋₆alkyl), (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰:
- c) OCOR¹⁰⁵ wherein R¹⁰⁵ is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃.

 7)cycloalkyl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰;

 d) SR¹⁰⁸, SO₂N(R¹⁰⁸)₂ or SO₂N(R¹⁰⁸)C(O)R¹⁰⁸ wherein each R¹⁰⁸ is

10

15

20

25

30

19

independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het or both R¹⁰⁸ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C1. galkyl)aryl or (C1-galkyl)Het or heterocycle being optionally substituted with R¹⁵⁰:

- e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇) 7)cycloalkyl, aryl, Het, (C1-salkyl)aryl or (C1-salkyl)Het, and R112 is H, CN, (C1-6)alkyl, (C3-7)cycloalkyl or (C1-6)alkyl-(C3-7)cycloalkyl, aryl, Het, (C1-6alkyl)aryl, (C₁₋₆alkyl)Het, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁵ is (C₁₋₆)alkyl, (C₃₋₆ 7)cycloalkyl, or (C16)alkyl-(C37)cycloalkyl, aryl, Het, (C16alkyl)aryl or (C1 salkyl) Het, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C1-ealkyl)aryl or (C1-ealkyl)Het, or heterocycle being optionally substituted with R¹⁵⁰:
- f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said (C₁. 6) alkyl, (C3-7) cycloalkyl, (C1-6) alkyl-(C3-7) cycloalkyl, aryl, Het, (C1-6 alkyl) aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰;
- g) $NR^{118}CONR^{119}R^{120}$, wherein R^{118} , R^{119} and R^{120} is each H, (C_{1-6}) alkyl, (C_{3-6}) 7)cycloalkyl, (C1-6)alkyl-(C3-7)cycloalkyl, aryl, Het, (C1-6alkyl)aryl or (C1-6alkyl) Het, or R118 is covalently bonded to R119 and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle: or R¹¹⁹ and R¹²⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl, (C1-6)alkyl-(C3-7)cycloalkyl, aryl, Het, (C1-6alkyl)aryl or (C1-₆alkyl)**Het** or heterocycle being optionally substituted with R¹⁵⁰;
- h) NR¹²¹COCOR¹²² wherein R¹²¹ and R¹²² is each H, (C₁₋₆)alkyl, (C₃₋₆) 7)cycloalkyl, (C₁₋₅)alkyl-(C₃₋₇)cycloalkyl, a 6- or 10-membered arvl, Het. (C₁₋₇) 6alkyl)aryl or (C1-6alkyl)Het, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het. (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰; or R¹²² is OR¹²³ or N(R¹²⁴)₂ wherein R¹²³ and each R¹²⁴ is independently H. (C₁₋₆alkyl), (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆ 6alkyl)aryl or (C1.6alkyl)Het, or R124 is OH or O(C1.6alkyl) or both R124 are

PCT/CA02/01128

covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het and heterocycle being optionally substituted with R^{150} ; i) COR^{127} wherein R^{127} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7})

 $_{7}$)cycloalkyl, aryl, Het, (C $_{1\text{-6}}$ alkyl)aryl or (C $_{1\text{-6}}$ alkyl)Het, said alkyl, cycloalkyl, aryl, Het, (C $_{1\text{-6}}$ alkyl)aryl or (C $_{1\text{-6}}$ alkyl)Het being optionally substituted with \mathbf{R}^{150} ;

j) COOR¹²⁸ wherein R^{128} is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or(C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or(C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl and (C₁₋₆alkyl)Het being optionally substituted with R^{150} ;

k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, or both R¹²⁹ and R¹³⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)**Het** and heterocycle being optionally substituted with R¹⁵⁰;

I) aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, all of which being optionally substituted with R^{150} ; and

wherein R150 is defined as:

- 1 to 3 substituents selected from: halogen, OPO₃H, NO₂, cyano, azido, C(=NH)NH₂, C(=NH)NH(C₁₋₆)alkyl or C(=NH)NHCO(C₁₋₆)alkyl; or

- 1 to 3 substituents selected from:

a) (C_{1-6}) alkyl or haloalkyl, (C_{3-7})cycloalkyl, C_{3-7} spirocycloalkyl optionally containing 1 or 2 heteroatom, (C_{2-6})alkenyl, (C_{2-8})alkynyl, (C_{1-6}) alkyl-(C_{3-7})cycloalkyl, all of which optionally substituted with R^{160} ;

b) OR^{104} wherein R^{104} is H, $(C_{1-6}alkyl)$, (C_{3-7}) cycloalkyl, or $(C_{1-6})alkyl-(C_{3-7})$ cycloalkyl, aryl, Het, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}alkyl)$ aryl or $(\dot{C}_{1-6}alkyl)$ Het being optionally substituted with R^{160} ;

c) OCOR¹⁰⁵ wherein R¹⁰⁵ is (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R¹⁶⁰;

20

15

5

10

25

PCT/CA02/01128

5

10

15

20

25

30

d) SR¹⁰⁸, SO₂N(R¹⁰⁸)₂ or SO₂N(R¹⁰⁸)C(O)R¹⁰⁸ wherein each R¹⁰⁸ is independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋ 7)cycloalkyl, aryl, Het, (C1-6alkyl)aryl or (C1-6alkyl)Het or both R108 are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C1-ealkyl)aryl or (C1-ealkyl)Het or heterocycle being optionally substituted with R160; e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆) 6)alkyl-(C3-7)cycloalkyl, aryl, Het, (C1-6alkyl)aryl or (C1-6alkyl)Het, and R^{112} is H. CN, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl, (C_{1-6} alkyl)Het , $COOR^{115}$ or SO_2R^{115} wherein R^{115} is (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}aikyl)aryl$ or $(C_{1-6}aikyl)$ Het, or both R^{111} and R^{112} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C1-ealkyl)aryl or (C1-ealkyl)Het, or heterocycle being optionally substituted with R¹⁶⁰; f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C₁₋₆)alkyl, (C₃₋ 7)cycloalkyl, (C1-6)alkyl-(C3-7)cycloalkyl, aryl, Het, (C1-6alkyl)aryl or (C1-₆alkyl)Het, said (C_{1-6})alkyl, (C_{3-7})cycloalkyl, (C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, Het, (C1-salkyl)aryl or (C1-salkyl)Het being optionally substituted with R160: g) $NR^{118}CONR^{119}R^{120}$, wherein R^{118} , R^{119} and R^{120} is each H, (C₁₋ 6)alkyl, (C3-7)cycloalkyl, (C1-6)alkyl-(C3-7)cycloalkyl, aryl, Het, (C1-6alkyl)aryl or (C1-6alkyl)Het, or R118 is covalently bonded to R119 and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, or R119 and R120 are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, (C1-6)alkyl-(C3-7)cycloalkyl, aryl, Het, (C1-8alkyl)aryl or (C1-8alkyl)Het or heterocycle being optionally substituted with R¹⁶⁰; h) NR¹²¹COCOR¹²² wherein R¹²¹ and R¹²² is each H, (C₁₋₆)alkyl, (C₃-7)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, a 6- or 10-membered aryl, Het, (C1.falkyl)aryl or (C1.falkyl)Het, said alkyl, cycloalkyl, alkyl-cycloalkyl,

aryl, Het, (C1-salkyl)aryl or (C1-salkyl)Het being optionally substituted with R^{160} , or R^{122} is OR^{123} or $N(R^{124})_2$ wherein R^{123} and each R^{124} is independently H, (C₁₋₆alkyl), (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇) 7)cycloalkyl, aryl, Het, (C1-salkyl)aryl or (C1-salkyl)Het, or R124 is OH or $O(C_{1-6}alkyl)$ or both R^{124} are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkylcycloalkyl, aryl, Het, (C1-6alkyl)aryl or (C1-6alkyl)Het and heterocycle being optionally substituted with R160;

- i) COR¹²⁷ wherein R¹²⁷ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C3-7)cycloalkyl, aryl, Het, (C1-6alkyl)aryl or (C1-6alkyl)Het, said alkyl, cycloalkyl, aryl, Het, (C1-alkyl)aryl or (C1-alkyl)Het being optionally substituted with R160;
- i) tetrazole, COOR¹²⁸ wherein R¹²⁸ is H, (C_{1.6})alkyl, (C_{3.7})cycloalkyl, or(C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said (C1-6)alkyl, (C3-7)cycloalkyl, or(C1-6)alkyl-(C3-7)cycloalkyl, aryl. Het. (C₁₋₆alkyl)aryl and (C₁₋₆alkyl)Het being optionally substituted with R¹⁶⁰; and
- k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁₋ 6) alkyi, (C3-7) cycloalkyi, (C1-6) alkyi-(C3-7) cycloalkyi, aryi, Het, (C1salkyl)arvl or (C1salkyl)Het, or both R129 and R130 are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C1-6alkyl)aryl, (C1-6alkyl)Het and heterocycle being optionally substituted with R¹⁶⁰;

wherein R¹⁶⁰ is defined as 1 or 2 substituents selected from: tetrazole, halogen, CN, C₁₋₈alkyl, haloalkyl, COOR¹⁶¹, SO₃H, SR^{161} , SO_2R^{161} , OR^{161} , $N(R^{162})_2$, $SO_2N(R^{162})_2$, $NR^{162}COR^{162}$ or CON(R162)2, wherein R161 and each R162 is independently H, (C1-6)alkyl, (C3-7)cycloalkyl or (C1-6)alkyl-(C3-7)cycloalkyl; or both R¹⁶² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle,

or a salt thereof, with the proviso that, when A is CH, R² is phenyl or N-butyl, B is NR³, R³ is Me, K is

5

10

15

20

25

Alternatively, in a first aspect of the invention, there is provided a compound represented by Formula la:

5 wherein:

15

20

25

A is O, S, NR¹, or CR¹;

B is NR3 or CR3;

R¹ is selected from the group consisting of: H, (C₁₋₆)alkyl, benzyl, (C₁₋₆ alkyl)-(C₆₋₁₀aryl), (C₁₋₆ alkyl)-5- or 6-membered heterocycle having 1 to 4 heteroatoms selected from O, N, and S, and 5- or 6-membered heterocycle having 1 to 4 heteroatoms selected from O, N and S,

wherein said benzyl and said heteroatom are optionally substituted with from 1 to 4 substituents selected from the group consisting of: COOH, COO(C_{1-6} alkyl), halogen, and (C_{1-6} alkyl);

 R^2 is selected from the group consisting of: H, halogen, (C_{1-6}) alkyl; (C_{3-7}) cycloalkyl, phenyl, 5- or 6-membered heterocycle having 1 to 4 heteroatoms selected from O, N, and S, pyridine-N-oxide, and 9- or 10-membered heterobicycle having 1 to 4 heteroatoms selected from O, N and S,

said phenyl, heterocycle and heterobicycle being optionally substituted with from 1 to 4 substituents selected from the group consisting of: halogen, $C(halogen)_3$, $(C_{1-6})alkyl$, OH, $O(C_{1-6})alkyl$, OH, OH

R³ is selected from the group consisting of: 5-, 6- or 7-membered heterocycle having 1 to 4 heteroatoms selected from O, N, and S, norbornane, (C₃₋₇)cycloalkyl and (C₃₋₇)cycloalkyl-(C₁₋₆ alkyl);

M is N, CR⁴, or COR⁵, wherein R⁴ is selected from the group consisting of: H,

WO 03/010141 PCT/CA02/01128

24

halogen, and (C_{1-6} alkyl); and R^5 is selected from the group consisting of: H and (C_{1-6} alkyl);

K and L is N or CH;

5

---- represents either a single or a double bond;

Y is O or S:

Z is OR⁶ or NR⁶R^{6a}

10

 \mathbf{R}^6 is selected from the group consisting of: H, (C_{1-6}) alkyl, (C_{3-6}) cycloalkyl, (C_{3-6}) cycloalkyl, (C_{3-6}) cycloalkyl, (C_{6-10}) aryl, (C_{6-10}) aryl, (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{3-6}) cycloalkyl, (C_{2-6}) alkenyl, (C_{6-10}) aryl, (C_{2-6}) alkenyl, (C_{1-6}) alkyl, (C_{1-6}) alkyl, (C_{1-6}) aryl, (C_{1-6}) aryl, (C_{1-6}) alkyl-5- or 6-atom heterocycle, having 1 to 4 heteroatoms selected from O, N and S, and 9- or 10-atom heterobicycle having 1 to 4 heteroatoms selected from O, N and S;

wherein said alkyl, cycloalkyl, aryl, alkenyl, heterocycle are all optionally substituted with from 1 to 4 substituents selected from: OH, COOH, COO(C_{1-6})alkyl, (C_{1-6})alkyl, (C_{1-6})alkyl-hydroxy, phenyl, benzyloxy, halogen, (C_{2-4})alkenyl, (C_{2-4})alkenyl-(C_{1-6})alkyl-COOH, 5- or 6-membered heterocycle having 1 to 4 heteroatoms selected from O, N and S,

wherein said alkyl, cycloalkyl, aryl, alkenyl and heterocycle being optionally substituted with from 1 to 4 substituents selected from: $(C_{1-6}$ alkyl), CF_3 , OH, COOH, $NHC(C_{1-6}$ alkyl)₂, $NHCO(C_{1-6}$ alkyl), NH_2 , $NH(C_{1-6}$ alkyl), and $N(C_{1-6}$ alkyl)₂;

25

20

9- or 10-membered heterobicycle having 1 to 4 heteroatoms selected from O, N and S, said heterobicycle being optionally substituted with from 1 to 4 substituents selected from:

30 substituents selected from

halogen, OPO₃H, sulfonamido, SO₃H, SO₂CH₃, -CONH₂, -COCH₃, (C₁₋₃)alkyl, (C₂₋₄alkenyl)COOH, tetrazolyl, COOH, -CONH₂, triazolyl, OH, NO₂, NH₂, -O(C₁₋₆ alkyl)COOH, hydantoin, benzoyleneurea, (C₁₋₄)alkoxy, cyano, azido, -O-(C₁₋₆)alkyl COOH, -O-(C₁₋₆)alkyl COO-(C₁₋₆)alkyl, NHCO(C₁₋₆)alkyl

6 alkyl), -NHCOCOOH, -NHCOCONHOH,-NHCOCONH₂,
-NHCOCONHCH₃, -NHCO(C₁-6)alkyl-COOH,
-NHCOCONH(C₁-6)alkyl-COOH, -NHCO(C₃-7)cycloalkylCOOH, -NHCONH(C6-10)aryl-COOH, - NHCONH(C6-10)arylCOO(C₁-6)alkyl, - NHCONH(C₁-6)alkyl-COOH,- NHCONH(C₁-6)alkyl-COO(C₁-6)alkyl, - NHCONH(C₁-6)alkyl-(C₂-6)alkenylCOOH, - NH(C₁-6)alkyl-(C6-10)aryl-O(C₁-6)alkyl-COOH, - NH(C₁-6)alkyl-(C6-10)aryl-O(C₁-6)alkyl-(C6-10)aryl-COOH, -NHCONH₂,
-NHCO(C₁-6)hydroxyalkyl COOH, -OCO(C₁-6)hydroxyalkyl
COOH, (C₃-6)cycloalkyl COOH,

6- or 10-membered aryl being optionally substituted with from 1 to 4 substituents selected from:

15

20

5

10

halogen, OPO₃H, sulfonamido, SO₃H, SO₂CH₃, -CONH₂, -COCH₃, (C₁₋₃)alkyl, (C₂₋₄alkenyl)COOH, tetrazolyl, COOH, -CONH₂, triazolyl, OH, NO₂, NH₂, -O(C₁₋₆ alkyl)COOH, hydantoin, benzoyleneurea, (C₁₋₄)alkoxy, cyano, azido, -O-(C₁₋₆)alkyl COOH, -O-(C₁₋₆)alkyl COO-(C₁₋₆)alkyl, NHCO(C₁₋₆ alkyl), -NHCOCOOH, -NHCOCONHOH,-NHCOCONH₂, -NHCOCONHCH₃, -NHCO(C₁₋₆)alkyl-COOH, -NHCOCONH(C₁₋₆)alkyl-COOH, -NHCOCONH(C₁₋₆)alkyl-COOH, -NHCONH(C₆₋₁₀)aryl-COOH, -NHCONH(C₆₋₁₀)aryl-COOH, -NHCONH(C₁₋₆)alkyl, - NHCONH(C₁₋₆)alkyl-COOH, -NHCONH(C₁₋₆)alkyl-COOH, -NHCONH(C₁₋₆)alkyl-COOH, -NHCONH(C₁₋₆)alkyl-COOH, -NHCONH(C₁₋₆)alkyl-COOH, -NHCONH₂, -NHCONH

25

-NHSO₂CF₃;

coumarin, (C_{1-6}) alkyl-amino, NH $(C_{1-6}$ alkyl), C(halogen)₃, -NH (C_{2-4}) acyl, -NH (C_{6-10}) aroyl, -O $(C_{1-6}$ alkyl)-Het;

5 R^{6a} is H or (C₁₋₆ alkyl) covalently bonded to either R^7 or R^8 to form pyrrolidine;

or Z is

wherein

W is CR⁷R⁸ wherein R⁷ and R⁸ are each independently H, (C₁₋₆ alkyl), (C₃₋₇ cycloalkyl), (C₁₋₆ alkyl)phenyl, (C₁₋₆ alkyl)-(C₃₋₇ cycloalkyl), (C₃₋₇ cycloalkyl)-(C₁₋₆ alkyl), (C₃₋₇ cycloalkyl)-(C₁₋₆ alkyl), (C₃₋₇ cycloalkyl)-(C₂₋₄ alkenyl), (C₁₋₆ alkyl)-OH, phenyl, CH₂biphenyl, 5- or 6-membered heterocycle having from1 to 4 heteroatoms selected from O, N, and S, 9- or 10-membered heterobicycle having 1 to 4 heteroatoms selected from O, N, and S, (C₁₋₆ alkyl)-5- or 6-membered heterocycle having from1 to 4 heteroatoms selected from O, N, and S, or (C₁₋₆ alkyl)-9- or 10-membered heterobicycle having 1 to 4 heteroatoms selected from O, N, and S, or R⁷ and R⁸ are covalently bonded together to form (C₃₋₇ cycloalkyl), 4-, 5- or 6-membered heterocycle having from1 to 4 heteroatoms selected from O, N, and S; or one of R⁷ or R⁸ is covalently bonded to R⁹ to form a pyrrolidine; wherein said alkyl, cycloalkyl, heterocycle, heterobicycle, phenyl are

wherein said alkyl, cycloalkyl, heterocycle, heterobicycle, phenyl are optionally substituted with from 1 to 4 substituents selected from the group consisting of: OH, COOH, (C₁₋₆ alkyl), (C₂₋₄ alkenyl), CONH₂, NH₂, NH(C₁₋₆ alkyl), N(C₁₋₆ alkyl)₂, NHCOCOOH, NHCOCON(C₁₋₆ alkyl)₂, NHCOCONH(C₁₋₆ alkyl), SH, S(C₁₋₆ alkyl), NHC(=NH)NH₂, halogen, and COO(C₁₋₆alkyl);

R9 is H or (C1-6 alkyl); and

25

Q is selected from the group consisting of: (C₁₋₃alkyl)CONHaryl, 6-, 9-, or 10-membered aryl, biphenyl, 5- or 6-atom heterocycle having 1 to 4 heteroatoms selected from O, N and S, 9- or 10-membered heterobicycle having 1 to 4 heteroatoms selected from O, N and S;

10

15

20

25

wherein said aryl, biphenyl, heterocycle and heterobicycle are all optionally substituted with from 1 to 4 substituents selected from: OH, COOH, COO(C_{1-6})alkyl, (C_{1-6})alkyl, (C_{1-6})alkylCOOH, (C_{1-6} alkyl)(C_{2-4} alkynyl), (C_{1-6})alkyl-hydroxy, phenyl, benzyloxy, halogen, (C_{2-4})alkenyl, (C_{2-4})alkenyl-(C_{1-6})alkyl-COOH, 5- or 6-membered second heterocycle having 1 to 4 heteroatoms selected from O, N and S, NH-5- or 6- membered second heterocycle having 1 to 4 heteroatoms selected from O, N, and S,

wherein said second heterocycle and phenyl being optionally substituted with from 1 to 4 substituents selected from: $(C_{1-6} \text{ alkyl})$, CF_3 , OH, $(C_{1-6} \text{ alkyl}) COOH$, $O(C_{1-6} \text{ alkyl}) COOH$, $(C_{1-6} \text{ a$

halogen, OPO₃H, benzyl, sulfonamido, SH, SOCH₃, SO₃H, SO₂CH₃, S(C₁₋₆ alkyl)COOH, -CONH₂, -COCH₃, (C₁₋₃)alkyl, (C₂₋₄alkenyl)COOH wherein said alkenyl is optionally substituted with from 1 to 2 (C₁₋₆ alkyl) substituents,

 $(C_{24}\text{alkenyl}) \text{COO}(C_{1-6}\text{alkyl}), \text{ tetrazolyl}, \text{COOH, triazolyl}, \text{OH, NO}_2, \text{NH}_2, \text{,} - O(C_{1-6}\text{ alkyl}) \text{COOH, hydantoin, benzoyleneurea, } (C_{1-4})\text{alkoxy, } (C_{1-4})\text{alkoxy}(C_{1-6}\text{ alkyl}) \text{COOH, cyano, azido, -O-}(C_{1-6})\text{alkyl} \text{COOH, -O-}(C_{1-6})\text{alkyl} \text{COOH, -NHCOCONHOH, -NHCOCONH}_2, -NHCOCONHCH}_3, -NHCO(C_{1-6})\text{alkyl-COOH, -NHCOCONH}(C_{1-6})\text{alkyl-COOH, -NHCOCONH}(C_{1-6})\text{alkyl-COOH, -NHCONH}(C_{6-10})\text{aryl-COOH, - NHCONH}(C_{6-10})\text{aryl-COOH, - NHCONH}(C_{1-6})\text{alkyl-COOH, - NHCONH}(C_{1-6})\text{alkyl-COOH, - NHCONH}(C_{1-6})\text{alkyl-COOH, - NHCONH}(C_{1-6})\text{alkyl-COOH, - NHCONH}(C_{1-6})\text{alkyl-COOH, - NHCONH}_2, -NHCONH(C_{1-6})\text{alkyl-(C}_{2-6})\text{alkenyl-COOH, - NHCH}_2\text{COOH, -NHCONH}_2, -NHCO(C_{1-6})\text{hydroxyalkyl COOH, -OCO(C}_{1-6})\text{hydroxyalkyl COOH, -OCO(C}_{1-6})\text{hydroxyal$

-NHSO₂CF₃, coumarin, (C_{1-6}) alkyl-amino, NH(C_{1-6} alkyl)₂, C(halogen)₃, -NH(C_{2-4})acyl, -NH(C_{6-10})aroyl, -CONH(C_{1-6} alkyl), -CO(C_{1-8})alkyl-COOH, -CONH(C_{1-6})alkyl-COOH, -CO-NH-alanyl, -CONH(C_{2-4})alkylN(C_{1-6} alkyl)₂, -CONH(C_{2-4}) alkyl-Het

WO 03/010141 PCT/CA02/01128

28

- -CONH(C2-4) alkyl-(COOH)-Het -CONH(C1-2 alkyl) (OH)(C1-2 alkyl)OH,
- -CONH(C₁₋₆) alkyl-COOH, -CONH(C₆₋₁₀ aryl), -CONH-Het,
- -CONH(C_{6-10}) aryl-COOH, -CONH(C_{6-10}) aryl-COO(C_{1-6}) alkyl,
- -CONH(C_{1-6}) alkyl-COO(C_{1-6}) alkyl, -CONH(C_{6-10}) aryl-(C_{1-6})alkyl-COOH, and
- -CONH(C₆₋₁₀) aryl-(C₂₋₆)alkenyl-COOH,

or a salt thereof.

5

10

20

25

In a third aspect of the invention, there is provided a compound of the formula I, or a pharmaceutically acceptable salt thereof, as an inhibitor of RNA dependent RNA polymerase activity of the enzyme NS5B, encoded by HCV.

In a fourth aspect of the invention, there is provided a compound of the formula I, or a pharmaceutically acceptable salt thereof, as an inhibitor of HCV replication.

In a fifth aspect of the invention, there is provided a method of treating or preventing HCV infection in a mammal, comprising administering to the mammal an effective amount of a compound of formula I, or a pharmaceutically acceptable salt thereof.

In a sixth aspect of the invention, there is provided a pharmaceutical composition for the treatment or prevention of HCV infection, comprising an effective amount of a compound of formula I, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.

According to a specific embodiment, the pharmaceutical compositions of this invention comprise an additional immunomodulatory agent. Examples of additional immunomodulatory agents include but are not limited to, α -, β -, δ - γ -, and ω - interferons.

According to an alternate embodiment, the pharmaceutical compositions of this invention may additionally comprise an antiviral agent. Examples of antiviral agents include, ribavirin and amantadine.

According to another alternate embodiment, the pharmaceutical compositions of this invention may additionally comprise other inhibitors of HCV protease.

15

29

According to yet another alternate embodiment, the pharmaceutical compositions of this invention may additionally comprise an inhibitor of other targets in the HCV life cycle, such as helicase, polymerase, metalloprotease or IRES.

In a seventh aspect of the invention, there is provided a use of a compound of formula I, for the manufacture of a medicament for the treatment of HCV infection.

In a eighth aspect of the invention, there is provided a use of a compound of formula I, to prevent HCV infection.

In an ninth aspect of the invention, there is provided a use of a compound of formula I, as an HCV polymerase inhibitor.

In a tenth aspect of the invention, there is provided an intermediate of formula (1a) or (1b):

wherein A, B, K, L, and M are as described herein and PG is H or a carboxy protecting group.

In a eleventh aspect of the invention, there is provided a process for producing compounds of formula (iii),

wherein A, R², B, K, L, M, and PG are as described herein, comprising:

a) coupling, in the presence of a metal catalyst (such as, for example, Pd, Ni, Ru, Cu), a base and an additive (such as a phosphine ligand, Cu salt, Li salt, ammonium salt, CsF) in an appropriate solvent, intermediate (1a)

1a

with R^2 -X, wherein R^1 , R^3 , K, L, M and PG are as described herein and X is (bt not limited to): $Sn(C_{1-6}alkyl)_3$, $Sn(aryl)_3$, metal halide, $B(OH)_2$, and $B(O(C_{1-6})alkyl)_2$ to produce compounds of formula (iii).

5

In an alternative to the eleventh aspect of the invention, there is provided a process for producing compounds of formula (iii),

wherein A, R2, B, K, L, M, and PG are as described herein,

10 comprising:

20

b) coupling, in the presence of a metal catalyst (such as, for example, Pd, Ni, Ru, Cu), a base and an additive (such as a phosphine ligand, Cu salt, Li salt, ammonium salt, CsF) in an appropriate solvent, intermediate (1b)

1b

with R²-X', wherein X' is halide, OSO₂(C₁₋₆alkyl), OSO₂Ar, OSO₂CF₃ and the like, and M is a metal such as Li, Sn(C₁₋₆alkyl)₃, Sn(aryl)₃, B(OH)₂, B(OC₁₋₆alkyl)₂, metal halide, to produce compounds of formula (iii).

In an thirteenth aspect of the invention, there is provided an intermediate compound represented by formula 1c:

10

wherein A, R2, B, K, L, M, R7 and R8 are as defined herein, or a salt, or a derivative

thereof.

In an fourteenth aspect of the invention, there is provided a process for producing compounds of formula I, comprising:

a) coupling, in a mixture containing an aprotic solvent, or no solvent, a coupling agent, and at a temperature of about 20 °C to about 170 °C, and intermediate 1c:

10

with amine Q-NH₂ so as to produce compounds of formula I, wherein A, R^2 , B, R^7 , R^8 , Q, K, L, and M are as defined herein.

10

20

In an fifteenth aspect of the invention, there is provided an intermediate compound represented by formula 1d:

1d

wherein A, R^2 , B, K, L, M, R^7 and R^8 are as defined herein or a salt or a derivative thereof.

In a sixteenth aspect of the invention, there is provided a process for producing compounds of formula I, comprising:

a) coupling, in a mixture containing an appropriate solvent, or no solvent, a coupling agent, and at a temperature of about 20 °C to about 170 °C, and intermediate 1d:

1d

with amine Q-NH₂ so as to produce compounds of formula I, wherein A, R^2 , B, R^7 , R^8 , Q, K, L, and M are as defined herein.

25 In a seventeenth aspect of the invention, there is provided a method of treating or

WO 03/010141

preventing HCV infection in a mammal, comprising administering to the mammal an effective amount of a compound of formula I, or a pharmaceutically acceptable salt thereof in combination with another anti-HCV agent.

5 DETAILED DESCRIPTION OF THE INVENTION

Definitions

The following definitions apply unless otherwise noted:

As used herein, the terms "(C₁₋₃) alkyl", "(C₁₋₄) alkyl" or "(C₁₋₆) alkyl", either alone or in combination with another radical, are intended to mean acyclic straight or branched chain alkyl radicals containing up to three, four and six carbon atoms respectively. Examples of such radicals include methyl, ethyl, propyl, butyl, hexyl, 1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl.

As used herein, the term "(C₂₋₆) alkenyl", either alone or in combination with another radical, is intended to mean an unsaturated, acyclic straight chain radical containing two to six carbon atoms.

As used herein, the term (C₂₋₆) alkynyl^{**} either alone or in combination with another group, is intended to mean an unsaturated, acyclic straight chain sp hybridized radical containing 2 to six carbon atoms.

As used herein. the term "(C₃₋₇) cycloalkyl", either alone or in combination with another radical, means a cycloalkyl radical containing from three to seven carbon atoms and includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl.

As used herein, the term "(C₅₋₇)cycloalkenyl", either alone or in combination with another radical, means an unsaturated cyclic radical containing five to seven carbon atoms.

30

35

25

As used herein, the term "carboxy protecting group" defines protecting groups that can be used during coupling and are listed in Greene, "Protective Groups in Organic Chemistry", John Wiley & Sons, New York (1981) and "The Peptides: Analysis, Synthesis, Biology", Vol. 3, Academic Press, New York (1981), the disclosures of which are hereby incorporated by reference.

30

The α -carboxyl group of the C-terminal residue is usually protected as an ester (CPG) that can be cleaved to give the carboxylic acid. Protecting groups that can be used include: 1) alkyl esters such as methyl, trimethylsilylethyl and t-butyl, 2) aralkyl esters such as benzyl and substituted benzyl, or 3) esters that can be cleaved by mild base treatment or mild reductive means such as trichloroethyl and phenacyl esters.

As used herein, the term "aryl", or "6- or 10-membered aryl" either alone or in combination with another radical means aromatic radical containing six or ten carbon atoms, for example phenyl or naphthyl.

As used herein the term heteroatom means O, S or N.

As used herein, the term "heterocycle", either alone or in combination with another radical, means a monovalent radical derived by removal of a hydrogen from a five-, six-, or seven-membered saturated or unsaturated (including aromatic) heterocycle containing from one to four heteroatoms selected from nitrogen, oxygen and sulfur. Furthermore, "heterobicyclic" as used herein, means a heterocycle as defined above fused to one or more other cycle, be it a heterocycle or any other cycle. Examples of such heterocycles include, but are not limited to, pyrrolidine, tetrahydrofuran, thiazolidine, pyrrole, thiophene, coumarin, hydantoin, diazepine, 1H-imidazole, isoxazole, thiazole, tetrazole, piperidine, 1,4-dioxane, 4-morpholine, pyridine, pyridine-N-oxide, pyrimidine, thiazolo[4,5-b]-pyridine, quinoline, or indole, or the following heterocycles:

$$\begin{cases} \begin{array}{c} O \\ S \\ S \\ \end{array} \\ \begin{array}{c} O \\ \end{array} \\ \\ \begin{array}{c} O \\ \end{array} \\ \begin{array}{c}$$

As used herein, the term "9- or 10-membered heterobicycle" or "heterobicycle" either alone or in combination with another radical, means a heterocycle as defined above fused to one or more other cycle, be it a heterocycle or any other cycle. Examples of such heterobicycles include, but are not limited to, thiazolo[4,5-b]-pyridine, quinoline, or indole, or the following:

As used herein, the term "Het" defines a 5- or 6-membered heterocycle having 1 to 4 heteroatoms selected from O, N, and S, or a 9- or 10-membered heterobicycle having 1 to 5 heteroatoms wherever possible, selected from O, N and S.

As used herein, the term "halo" means a halogen atom and includes fluorine, chlorine, bromine and iodine.

10

20

25

As used herein, the term "haloalkyl" is intended to mean an alkyl that is described above in which each hydrogen atom may be successively replaced by a halogen atom, for example CH₂Br or CF₃.

As used herein, the term "metal halide" is intended to mean any metal that is bonded to a halogen atom for use in a metal-catalyzed cross-coupling reaction. Examples of such metal halides include, but are not limited to, -MgCl, -CuCl, or -ZnCl and the like.

As used herein, the term "OH" refers to a hydroxyl group. It is well known to one skilled in the art that hydroxyl groups may be substituted by functional group equivalents. Examples of such functional group equivalents that are contemplated by this invention include, but are not limited to, ethers, sulfhydryls, and primary, secondary or tertiary amines.

- As used herein, the term "SH" refers to a sulfhydryl group. It is intended within the scope of the present invention that , whenever a "SH" or "SR" group is present, it can also be substituted by any other appropriate oxidation state such as SOR, SO₂R, or SO₃R.
- 30 It is intended that the term "substituted" when applied in conjunction with a radical

WO 03/010141 PCT/CA02/01128

having more than one moiety such as C_{1-6} alkyl-aryl, or C_{1-6} alkyl-Het, such substitution applies to both moieties i.e. both the alkyl and aryl or Het moieties can be substituted with the defined substituents.

As used herein, the term "COOH" refers to a carboxylic acid group. It is well known to one skilled in the art that carboxylic acid groups may be substituted by functional group equivalents. Examples of such functional group equivalents that are contemplated by this invention include, but are not limited to, esters, amides, boronic acids or tetrazole.

10

25

30

35

As used herein, the term "functional group equivalent" is intended to mean an element or a substituted derivative thereof, that is replaceable by another element that has similar electronic, hybridization or bonding properties.

As used herein, the term "metal catalyst" is intended to mean a metal such as palladium (0) or palladium (2) that is bonded to a leaving group for use in a cross-coupling reaction. Examples of such palladium catalysts include, but are not limited to, Pd(Ph₃)₄, Pd/C, Pd(OAc)₂, PdCl₂, and the like. Alternative metals that can catalyze cross-coupling reactions include, but are not limited to: Ni(acac)₂, Ni(OAc)₂, or NiCl₂.

As used herein, the term "derivative" is intended to mean "detectable label", "affinity tag" or "photoreactive group". The term "detectable label" refers to any group that may be linked to the polymerase or to a compound of the present invention such that when the compound is associated with the polymerase target, such label allows recognition either directly or indirectly of the compound such that it can be detected, measured and quantified. Examples of such "labels" are intended to include, but are not limited to, fluorescent labels, chemiluminescent labels, colorimetric labels, enzymatic markers, radioactive isotopes and affinity tags such as biotin. Such labels are attached to the compound or to the polymerase by well known methods. The term "affinity tag" means a ligand (that is linked to the polymerase or to a compound of the present invention) whose strong affinity for a receptor can be used to extract from a solution the entity to which the ligand is attached. Examples of such ligands include biotin or a derivative thereof, a histidine polypeptide, a polyarginine, an amylose sugar moiety or a defined epitope recognizable by a

specific antibody. Such affinity tags are attached to the compound or to the polymerase by well-known methods.

The term "photoreactive group" means a group that is transformed, upon activation by light, from an inert group to a reactive species, such as a free radical. Examples of such groups include, but are not limited to, benzophenones, azides, and the like.

As used herein, the term "pharmaceutically acceptable salt" includes those derived from pharmaceutically acceptable bases and is non-toxic. Examples of suitable bases include choline, ethanolamine and ethylenediamine. Na⁺, K⁺, and Ca⁺⁺ salts are also contemplated to be within the scope of the invention (also see Pharmaceutical salts, Birge, S.M. et al., J. Pharm. Sci., (1977), <u>66</u>, 1-19, incorporated herein by reference).

15 Preferred embodiments

Core:

10

20

Preferably, compounds of the present invention have the following formula (II):

$$R^{2} \xrightarrow{R^{3}} K \xrightarrow{I} (II)$$

wherein, preferably, A is O, S, or NR1.

More preferably, A is NR¹.

Preferably, compounds of the present invention have the following formula (III):

$$R^{2}$$

$$R^{2}$$

$$K$$

$$K$$

$$(IIII)$$

25 wherein, preferably, **B** is NR³.

With respect to compounds of formula (II) and (III), preferably, M, K and L is CH or

WO 03/010141

N. More preferably, M, K and L is CH.

More preferably, compounds of the present invention have the following formulae:

$$R^2$$
 R^3
 R^3

10

5

<u>R¹:</u>

Preferably \mathbf{R}^1 is selected from the group consisting of: H or (C_{1-6}) alkyl. More preferably, \mathbf{R}^1 is H, CH₃, isopropyl, or isobutyl. Even more preferably, \mathbf{R}^1 is H or CH₃. Most preferably, \mathbf{R}^1 is CH₃.

15

20

R²:

Preferably, $\mathbf{R^2}$ is $CON(\mathbf{R^{22}})_2$, wherein each $\mathbf{R^{22}}$ is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{5-7}) cycloalkenyl, 6 or 10-membered aryl or **Het**, or both $\mathbf{R^{22}}$ are bonded together to form a 5, 6 or 7-membered saturated heterocycle with the nitrogen to which they are attached;

or R^2 is selected from: H, halogen, (C_{1-6}) alkyl, haloalkyl, (C_{2-6}) alkenyl, (C_{5-7}) cycloalkenyl, 6 or 10-membered aryl or Het; wherein each of said alkyl, haloalkyl, (C_{2-6}) alkenyl, (C_{5-7}) cycloalkenyl, aryl or Het is optionally substituted with R^{20} , wherein

R²⁰ is defined as:

- ~ 1 to 4 substituents selected from: halogen, NO₂, cyano, azido, $C(=NH)NH_2$, $C(=NH)NH(C_{1-6})$ alkyl or $C(=NH)NHCO(C_{1-6})$ alkyl; or
- 1 to 4 substituents selected from:
- a) (C₁₋₆) alkyl or haloalkyl, (C₃₋₇)cycloalkyl, (C₂₋₆)alkenyl, (C₂₋₈)alkynyl, (C₁₋₆)
 alkyl-(C₃₋₇)cycloalkyl, all of which optionally substituted with R¹⁵⁰;
 - **b)** OR^{104} wherein R^{104} is H, $(C_{1-6}$ alkyl), (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R^{150} .
 - c) OCOR¹⁰⁵ wherein R^{105} is (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R^{150} ;
- d) SR¹⁰⁸, SO₂N(R¹⁰⁸)₂ or SO₂N(R¹⁰⁸)C(O)R¹⁰⁸ wherein each R¹⁰⁸ is independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het or both R¹⁰⁸ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het or heterocycle being optionally substituted with R¹⁵⁰;
 - e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, and R¹¹² is H, CN, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁵ is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁
- 7)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or heterocycle being optionally substituted with R¹⁵⁰;
- f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said (C₁₋₆alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰;
 - g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁₋₆)alkyl, (C₃₋₆)

WO 03/010141

7)cycloalkyl, (C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl or (C_{1-6} salkyi)Het, or R¹¹⁸ is covalently bonded to R¹¹⁹ and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle: or R119 and R120 are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; 5 said alkyl, cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁. salkyl) Het or heterocycle being optionally substituted with R150; h) NR¹²¹COCOR¹²² wherein R¹²¹ and R¹²² is each H, (C₁₋₆)alkyl, (C₃₋₁ 7)cycloalkyl, (C1-6)alkyl-(C3-7)cycloalkyl, a 6- or 10-membered aryl, Het, (C1salkyl)aryl or (C1.salkyl)Het, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, 10 (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰; or R122 is OR123 or N(R124)2 wherein R123 and each R124 is independently H, (C1-6alkyl), (C3-7)cycloalkyl, or (C1-6)alkyl-(C3-7)cycloalkyl, aryl, Het, (C1. ealkyl)aryl or (C1-salkyl)Het, or R124 is OH or O(C1-salkyl) or both R124 are covalently bonded together to form a 5, 6 or 7-membered saturated 15 heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C1-alkyl)aryl or (C_{1.s}alkyl)Het and heterocycle being optionally substituted with R¹⁵⁰; i) COR¹²⁷ wherein R¹²⁷ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇) 7)cycloalkyl, aryl, Het, (C1-alkyl)aryl or (C1-alkyl)Het, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰; 20 i) COOR¹²⁸ wherein R^{128} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) 7)cycloalkyl, aryl, Het, (C1-6alkyl)aryl or (C1-6alkyl)Het, said (C1-6)alkyl, (C3-7)cycloalkyl, or(C₁₋₈)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₈alkyl)aryl and (C₁₋₁ 6alkyl)Het being optionally substituted with R150; k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁₋₆)alkyl, (C₃₋₁ 25 7)cycloalkyl, (C1-6)alkyl-(C3-7)cycloalkyl, aryl, Het, (C1-6alkyl)aryl or (C1salkyl) Het, or both R129 and R130 are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₈alkyl)Het and heterocycle being optionally substituted with R¹⁵⁰; 30 I) aryl, Het, (C1-6alkyl)aryl or (C1-6alkyl)Het, all of which being optionally substituted with R¹⁵⁰, wherein R¹⁵⁰ is preferably:

- 1 to 3 substituents selected from: halogen, NO2, cyano or azido; or
- 1 to 3 substituents selected from:

a) (C_{1-6}) alkyl or haloalkyl, (C_{3-7})cycloalkyl, (C_{2-6})alkenyl, (C_{2-6})alkynyl, (C_{1-6}) alkyl-(C_{3-7})cycloalkyl, all of which optionally substituted with R^{160} ;

b) OR¹⁰⁴ wherein R¹⁰⁴ is H, (C₁₋₆alkyl) or (C₃₋₇)cycloalkyl, said alkyl or cycloalkyl optionally substituted with R¹⁶⁰;

d) SR^{108} , SO_3H , $SO_2N(R^{108})_2$ or $SO_2N(R^{108})C(O)R^{108}$ wherein each R^{108} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, or both R^{108} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het and heterocycle being optionally substituted with R^{160} ;

e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C₁₋₆)alkyl, or (C₃₋₇)cycloalkyl, and R¹¹² is H, (C₁₋₆)alkyl or (C₃₋₇)cycloalkyl, COOR¹¹⁵ or SO_2R^{115} wherein R¹¹⁵ is (C₁₋₆)alkyl or (C₃₋₇)cycloalkyl, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl and heterocycle being optionally substituted with R¹⁶⁰;

f) $NR^{116}COR^{117}$ wherein R^{116} and R^{117} is each H, (C_{1-6}) alkyl or (C_{3-7}) cycloalkyl said (C_{1-6}) alkyl and (C_{3-7}) cycloalkyl being optionally substituted with R^{160} ;

g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁. ₆)alkyl or (C₃₋₇)cycloalkyl, or R¹¹⁸ is covalently bonded to R¹¹⁹ and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, or R¹¹⁹ and R¹²⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, and heterocycle being optionally substituted with R¹⁶⁰;

h) NR¹²¹COCOR¹²² wherein R¹²¹ is H, (C_{1-6}) alkyl or (C_{3-7}) cycloalkyl, said alkyl and cycloalkyl being optionally substituted with R¹⁶⁰; or R¹²² is OR¹²³ or N(R¹²⁴)₂ wherein R¹²³ and each R¹²⁴ is independently H, $(C_{1-6}$ alkyl) or (C_{3-7}) cycloalkyl, or both R¹²⁴ are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl and heterocycle being optionally substituted with R¹⁶⁰;

i) COR¹²⁷ wherein R¹²⁷ is H, (C₁₋₆)alkyl or (C₃₋₇)cycloalkyl, said alkyl

5

WO 03/010141

10

15

20

25

PCT/CA02/01128

and cycloalkyl being optionally substituted with R160;

i) $COOR^{128}$ wherein R^{128} is H, (C_{1-6}) alkyl or (C_{3-7}) cycloalkyl, said (C_{1-6}) alkyl and (C_{3-7}) cycloalkyl being optionally substituted with R^{160} ; and

5

k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁. s)alkyl or (C3-7)cycloalkyl, or both R129 and R130 are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl and heterocycle being optionally substituted with R160;

10

wherein R¹⁶⁰ is defined as 1 or 2 substituents selected from: halogen, CN, C₁₋₆alkyl, haloalkyl, COOR¹⁶¹, OR¹⁶¹, N(R¹⁶²)₂, SO₂N(R¹⁶²)₂, NR¹⁶²COR¹⁶² or CON(R¹⁶²)₂, wherein R¹⁶¹ and each R162 is independently H, (C1-6) alkyl, (C3-7) cycloalkyl or (C1. 6)alkyl-(C3-7)cycloalkyl; or both R162 are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle.

15

More preferably, R² is selected from: aryl or Het, each optionally monosubstituted or disubstituted with substituents selected from the group consisting of: halogen,

haloalkyl, N₃, or 20

- (C₁₋₆)alkyl optionally substituted with OH, O(C₁₋₆)alkyl or SO₂(C₁₋₆ a) alkyl);
- b) (C₁₋₆)alkoxy;

25

 $NR^{111}R^{112}$ wherein both R^{111} and R^{112} are independently H, (C₁₋₆)alkyl, e) (C₃₋₇)cycloalkyl, or R¹¹² is 6- or 10-membered aryl, Het, (C₁₋₆)alkyl-aryl or (C₁₋₆)alkyl-Het; or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a nitrogencontaining heterocycle, each of said alkyl, cycloalkyl, aryl, Het, alkyland or alkyl-Het; being optionally substituted with halogen or:

- OR^{2h} or N(R^{2h})₂, wherein each R^{2h} is independently H, (C₁₋ s)alkyl, or both R2h are covalently bonded together and to the nitrogen to which they are attached to form a nitrogencontaining heterocycle;
- NHCOR¹¹⁷ wherein R¹¹⁷ is (C₁₋₆)alkyl, O(C₁₋₆)alkyl or O(C₃₋₇)cycloalkyl; f)

- i) CO-aryl; and
- k) CONH₂, CONH(C₁₋₆alkyl), CON(C₁₋₆alkyl)₂, CONH-aryl, or CONHC₁₋₆alkyl aryl.
- Still, more preferably, R² is anyl or **Het**, each optionally monosubstituted or disubstituted with substituents selected from the group consisting of: halogen, haloalkyl, or
 - a) (C₁₋₆)alkyl optionally substituted with OH, O(C₁₋₆)alkyl or SO₂(C₁₋₆)alkyl);
- 10 b) (C₁₋₆)alkoxy; and
 - e) NR¹¹¹R¹¹² wherein both R¹¹¹ and R¹¹² are independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or R¹¹² is 6- or 10-membered aryl, Het, (C₁₋₆)alkyl-aryl or (C₁₋₆)alkyl-Het; or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a nitrogencontaining heterocycle, each of said alkyl, cycloalkyl, aryl, Het, alkyl-aryl or alkyl-Het; or being optionally substituted with halogen or:
 - OR^{2h} or $N(R^{2h})_2$, wherein each R^{2h} is independently H, (C₁. ₆)alkyl, or both R^{2h} are covalently bonded together and to the nitrogen to which they are attached to form a nitrogencontaining heterocycle.

20

15

Even more preferably, R² is phenyl or a heterocycle selected from:

25 as defined above.

Even more preferably, R² is selected from the group consisting of: H, Br, CONHCH₃, CON(CH₃)₂, CONH₂, CH=CH₂,

Still more preferably, $\mathbf{R}^{\mathbf{2}}$ is selected from:

Most preferably, R² is selected from:

 R^3 :

5

10

15

20

Preferably, \mathbb{R}^3 is selected from (C_{3-7}) cycloalkyl, (C_{3-7}) cycloalkenyl, (C_{6-10}) bicycloalkyl, (C_{6-10}) bicycloalkenyl, 6- or 10-membered aryl, or Het. More preferably, \mathbb{R}^3 is (C_{3-7}) cycloalkyl. Most preferably, \mathbb{R}^3 is cyclopentyl, or cyclohexyl.

<u>Y:</u>

Preferably Y¹ is O.

<u>Z:</u>

Preferably, **Z** is OR⁶ wherein R⁶ is (C₁₋₆alkyl)aryl substituted with:

- 1 to 4 substituents selected from:
- a) (C₁₋₆)alkyl substituted with R^{150a}, haloalkyl, (C₃₋₇)cycloalkyl, C₃₋₇ spirocycloalkyl optionally containing 1 or 2 heteroatom, (C₂₋₆)alkenyl, (C₂₋₈)alkynyl, (C₁₋₆) alkyl-(C₃₋₇)cycloalkyl, said haloalkyl, cycloalkyl, spirocycloalkyl, alkenyl, alkynyl and alkyl-cycloalkyl being optionally substituted with R¹⁵⁰, wherein R^{150a} is the same as R¹⁵⁰ but is not COOR^{150b}, N(R^{150b})₂, NR^{150b}C(O)R^{150b}, OR^{150b}, SR^{150b}, SO₂R^{150b}, SO₂N(R^{150b})₂, wherein R^{150b} is H or unsubstituted C₁₋₆alkyl;
 - b) OR^{104} wherein R^{104} is $(C_{1-6}$ alkyl) substituted with R^{150} , (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R^{150} :
- d) SR^{108a}, SO₂N(R^{108a})₂ or SO₂N(R¹⁰⁸)C(O)R¹⁰⁸ wherein each R¹⁰⁸ is independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het or both R¹⁰⁸ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het or heterocycle being optionally substituted with

10

15

20

25

30

 R^{150} , wherein R^{108a} is the same as R^{108} but is not H or unsubstituted C_{1-6} alkyl; e) $NR^{111}R^{112}$ wherein R^{111} is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇) 7)cycloalkyl, aryl, Het, (C₁₋₈alkyl)aryl or (C₁₋₆alkyl)Het, and R¹¹² is H, CN, (C₁. $_{6}$)alkyl, (C_{3-7})cycloalkyl or (C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl, $(C_{1,s}alkyl)$ Het, provided that when R^{111} is H or unsubstituted alkyl, R^{112} is not H or unsubstituted alkyl, or R¹¹² is also COOR¹¹⁵ or SO₂R^{115a} wherein R¹¹⁵ is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) ealkyl)aryl or (Ct.ealkyl)Het, and R115a is the same as R115 but is not H or unsubstituted alkyl, or both R111 and R112 are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C1-6alkyl)aryl or (C1ealkyl)Het, or heterocycle being optionally substituted with R150; f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each (C₁₋₆)alkyl substituted with R^{150} , (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or (C_{1-6}) ealkyl) Het, said (C3-7) cycloalkyl, (C1-6) alkyl-(C3-7) cycloalkyl, aryl, Het, (C1-6alkyl)aryl or (C1-6alkyl)Het being optionally substituted with R150; g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁₋₆)alkyl, (C₃₋₆) 7)cycloalkyl, (C1-6)alkyl-(C3-7)cycloalkyl, aryl, Het, (C1-6alkyl)aryl or (C1ealkyl)Het, or R118 is covalently bonded to R119 and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; or R119 and R120 are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₁ falkyl) **Het** or heterocycle being optionally substituted with R¹⁵⁰; h) $NR^{121}COCOR^{122}$ wherein R^{121} is H or $C_{1\text{-e}}$ alkyl and R^{122} is OR^{123} or N(R¹²⁴)₂ wherein R¹²³ and each R¹²⁴ is independently H, (C₁₋₆alkyl), (C₃₋₁ 7)cycloalkyl, or (C1-6)alkyl-(C3-7)cycloalkyl, aryl, Het, (C1-8alkyl)aryl or (C1falkyl) Het, or R124 is OH or O(C1-falkyl) or both R124 are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl. cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C1-6alkyl)aryl or (C1-6alkyl)Het and heterocycle being optionally substituted with R¹⁵⁰; j) COOR¹²⁸ wherein R^{128} is (C_{1-6}) alkyl substituted with R^{150} , (C_{3-7}) cycloalkyl, or(C1.6)alkyl-(C3.7)cycloalkyl, aryl, Het, (C1.6alkyl)aryl or (C1.6alkyl)Het, said (C3. 7)cycloalkyl, or(C1-6)alkyl-(C3-7)cycloalkyl, aryl, Het, (C1-6alkyl)aryl and (C1salkyl)Het being optionally substituted with R150;

- **k)** CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, provided that when R¹²⁹ is H or unsubstituted alkyl, R¹³⁰ is not H or unsubstituted alkyl, or both R¹²⁹ and R¹³⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)**Het** and heterocycle being optionally substituted with R¹⁵⁰.
- I) aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, all of which being optionally substituted with R¹⁵⁰; wherein R¹⁵⁰ is:
 - 1 to 3 substituents selected from: halogen or azido; or
 - 1 to 3 substituents selected from:
 - a) (C_{1-6}) alkyl or haloalkyl, (C_{3-7})cycloalkyl, C_{3-7} spirocycloalkyl optionally containing 1 or 2 heteroatom, (C_{2-6})alkenyl, (C_{2-8})alkynyl, (C_{1-6}) alkyl-(C_{3-7})cycloalkyl, all of which optionally substituted with R^{160} ;
 - **b)** OR^{104} wherein R^{104} is H, $(C_{1-6}alkyl)$, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ Het being optionally substituted with R^{160} :
 - d) SR^{108} , $SO_2N(R^{108})_2$ or $SO_2N(R^{108})C(O)R^{108}$ wherein each R^{108} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het or both R^{108} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het or heterocycle being optionally substituted with R^{160} ;
 - e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, and R¹¹² is H, CN, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁵ is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are

10

5

15

20

25

attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, or heterocycle being optionally substituted with \mathbf{R}^{160} ;

- f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁸ and R¹¹⁷ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁶⁰;
- g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C_{1-6})alkyl, (C_{3-7})cycloalkyl, (C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, Het, (C_{1-6})alkyl)aryl or (C_{1-6} alkyl)Het, or R¹¹⁹ and R¹²⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl, (C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)Het or heterocycle being optionally substituted with R¹⁶⁰;
- h) NR¹²¹COCOR¹²² wherein R¹²¹ is H, (C₁₋₆)alkyl and R¹²² is OR¹²³ or N(R¹²⁴)₂ wherein R¹²³ and each R¹²⁴ is independently H, (C₁₋₆alkyl), (C₃₋₇)cycloalkyl, or (C₁₋₆alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or R¹²⁴ is OH or O(C₁₋₆alkyl) or both R¹²⁴ are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het and heterocycle being optionally substituted with R¹⁶⁰;
- j) tetrazole, COOR¹²⁸ wherein R^{128} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl) aryl or (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl) aryl and (C_{1-6}) alkyl) Het being optionally substituted with R^{160} ; and
- k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or both R¹²⁹ and R¹³⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het and

5

10

15

20

25

heterocycle being optionally substituted with R160;

wherein, R^{160} is defined as 1 or 2 substituents selected from: tetrazole, halogen, CN, C_{1-6} alkyl, haloalkyl, COOR¹⁶¹, SO₃H, SO₂R¹⁶¹, OR¹⁶¹, N(R¹⁶²)₂, SO₂N(R¹⁶²)₂, NR¹⁶²COR¹⁶² or CON(R¹⁶²)₂, wherein R¹⁶¹ and R¹⁶² are as defined above.

5

10

15

20

25

30

More preferably, **Z** is OR^6 wherein R^6 is $(C_{1-6}alkyl)$ and substituted with:

- 1 to 4 substituents selected from:
- a) (C₁₋₆)alkyl substituted with R^{150a}, haloalkyl, (C₃₋₇)cycloalkyl, C₃₋₇ spirocycloalkyl optionally containing 1 or 2 heteroatom, (C₂₋₆)alkenyl, (C₂₋₈)alkynyl, (C₁₋₆) alkyl-(C₃₋₇)cycloalkyl, said haloalkyl, cycloalkyl, spirocycloalkyl, alkenyl, alkynyl and alkyl-cycloalkyl being optionally substituted with R¹⁵⁰, wherein R^{150a} is the same as R¹⁵⁰ but is not COOR^{150b}, N(R^{150b})₂, NR^{150b}C(O)R^{150b}, OR^{150b}, SR^{150b}, SO₂R^{150b}, SO₂N(R^{150b})₂, wherein R^{150b} is H or unsubstituted C₁₋₆alkyl;
- b) OR^{104} wherein R^{104} is $(C_{1-6}$ alkyl) substituted with R^{150} , (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R^{150} ;
- d) SO_3H , $SO_2N(R^{108a})_2$ or $SO_2N(R^{108})C(O)R^{108}$ wherein each R^{108} is independently H, (C_{1-6}) alkyl and aryl, said alkyl and aryl being optionally substituted with R^{150} , wherein R^{108a} is the same as R^{108} but is not H or unsubstituted C_{1-6} alkyl;
- e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C_{1-6})alkyl, (C_{3-7})cycloalkyl or (C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)Het, and R¹¹² is H, (C_{1-6})alkyl, provided that when R¹¹¹ is H or unsubstituted alkyl, R¹¹² is not H or unsubstituted alkyl, or R¹¹² is also COOR¹¹⁵ or SO₂R^{115a} wherein R¹¹⁵ is H, (C_{1-6} alkyl or (C_{1-6} alkyl)aryl, and R^{115a} is C_{1-6} alkyl substituted with R¹⁵⁰ or (C_{1-6} alkyl)aryl, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)Het, or heterocycle being optionally substituted with R¹⁵⁰;
- f) $NR^{116}COR^{117}$ wherein R^{116} and R^{117} is each (C_{1-6}) alkyl substituted with R^{150} , (C_{3-7}) cycloalkyl, aryl, Het, said (C_{3-7}) cycloalkyl, aryl, Het being optionally

substituted with R150;

WO 03/010141

- g) $NR^{118}CONR^{119}R^{120}$, wherein R^{118} , R^{119} and R^{120} is each H, (C_{1-6}) alkyl, aryl, Het, said alkyl, aryl and Het being optionally substituted with R^{150} ;
- h) $NR^{121}COCOR^{122}$ wherein R^{121} is H or C_{1-6} alkyl and R^{122} is OR^{123} or $N(R^{124})_2$ wherein R^{123} and each R^{124} is independently H, $(C_{1-6}$ alkyl), aryl or Het, or R^{124} is OH or $O(C_{1-6}$ alkyl), said alkyl, aryl and Het being optionally substituted with R^{150} ;
- i) COOR¹²⁸ wherein R¹²⁸ is (C₁₋₆)alkyl substituted with R¹⁵⁰;
- k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁₋₆)alkyl, aryl or Het, provided that when R¹²⁹ is H or unsubstituted alkyl, R¹³⁰ is not H or unsubstituted alkyl, said alkyl, aryl and Het being optionally substituted with R¹⁵⁰:
- I) aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, all of which being optionally substituted with R^{150} ; wherein R^{150} is:
 - 1 to 3 substituents selected from: halogen or azido; or
 - 1 to 3 substituents selected from:
 - a) (C_{1-6}) alkyl or haloalkyl, (C_{2-6}) alkenyl, all of which optionally substituted with \mathbf{R}^{160} ;
 - b) OR^{104} wherein R^{104} is H, (C_{1-6} alkyl), aryl or Het, said alkyl, aryl and Het being optionally substituted with R^{160} ;
 - d) SR^{108} , $SO_2N(R^{108})_2$ or $SO_2N(R^{108})C(O)R^{108}$ wherein each R^{108} is independently H, (C_{1-6}) alkyl, aryl or Het, said alkyl, aryl and Het being optionally substituted with R^{160} ;
 - e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C₁₋₆)alkyl, aryl or Het, and R¹¹² is H, (C₁₋₆)alkyl, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁵ is (C₁₋₆)alkyl, said alkyl, aryl or Het being optionally substituted with R¹⁶⁰;
 - f) $NR^{116}COR^{117}$ wherein R^{116} and R^{117} is each H, (C_{1-6}) alkyl, aryl or Het, said alkyl, aryl and Het being optionally substituted with R^{160} ;
 - g) $NR^{118}CONR^{119}R^{120}$, wherein R^{118} , R^{119} and R^{120} is each H, (C₁₋₆)alkyl, aryl or Het, said alkyl, aryl and Het being optionally substituted with R^{150} ;
 - h) $NR^{121}COCOR^{122}$ wherein R^{121} is H, (C_{1-6}) alkyl and R^{122} is OR^{123} or $N(R^{124})_2$ wherein R^{123} and each R^{124} is independently H, $(C_{1-6}$ alkyl), and represent the second of the second

15

5

10

20

25

optionally substituted with R160;

- j) tetrazole, $COOR^{128}$ wherein R^{128} is H, (C_{1-6}) alkyl optionally substituted with R^{160} ; and
- **k)** CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁. ₆)alkyl, aryl or **Het**, said alkyl, aryl and **Het** being optionally substituted with R¹⁶⁰;

wherein, R^{160} is defined as 1 or 2 substituents selected from: tetrazole, halogen, CN, C_{1-6} alkyl, haloalkyl, $COOR^{161}$, SO_3H , SO_2R^{161} , OR^{161} , $N(R^{162})_2$, $SO_2N(R^{162})_2$, $NR^{162}COR^{162}$ or $CON(R^{162})_2$, wherein R^{161} and R^{162} are as defined above.

10

20

25

5

Even more preferably, **Z** is OR^6 wherein R^6 is (C_{2-6}) alkenyl, (C_{1-6}) alkyl-**Het**, wherein said alkenyl or alkyl-**Het**, is optionally substituted with R^{60} , wherein preferably R^{60} is:

- 1 to 4 substituents selected from: halogen; or

- 1 to 4 substituents selected from:

- a) (C_{1-6}) alkyl or haloalkyl, (C_{3-7})cycloalkyl, C_{3-7} spirocycloalkyl optionally containing 1 or 2 heteroatom, (C_{2-6})alkenyl, (C_{2-8})alkynyl, (C_{1-6}) alkyl-(C_{3-7})cycloalkyl, all of which optionally substituted with \mathbf{R}^{150} ;
- b) OR^{104} wherein R^{104} is H, $(C_{1-6}$ alkyl), (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R^{150} .
- d) SR¹⁰⁸, SO₂N(R¹⁰⁸)₂ or SO₂N(R¹⁰⁸)C(O)R¹⁰⁸ wherein each R¹⁰⁸ is independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het or both R¹⁰⁸ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het or heterocycle being optionally substituted with R¹⁵⁰:

e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, and R¹¹² is H, CN, (C₁₋₆alkyl, (C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁵ is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl) or (C₁₋₆alkyl) aryl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)

10

15

20

25

30

₆alkyl)**Het**, or both **R**¹¹¹ and **R**¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, or heterocycle being optionally substituted with **R**¹⁵⁰;

- f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰;
- g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or R¹¹⁸ is covalently bonded to R¹¹⁹ and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; or R¹¹⁹ and R¹²⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het or heterocycle being optionally substituted with R¹⁵⁰;
 h) NR¹²¹COCOR¹²² wherein R¹²¹ is H, (C₁₋₆)alkyl optionally substituted with
- R^{150} , and R^{122} is OR^{123} or $N(R^{124})_2$ wherein R^{123} and each R^{124} is independently H, $(C_{1-6}$ alkyl), (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, or R^{124} is OH or $O(C_{1-6}$ alkyl) or both R^{124} are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het and heterocycle being optionally substituted with R^{150} ;
- i) COR¹²⁷ wherein R^{127} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- $(C_3$ 7)cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R^{150} ; i) COOR¹²⁸ wherein R^{128} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- $(C_3$ 7)cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said (C_{1-6}) alkyl- $(C_3$ 7)cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl and (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl and (C_{1-6}) alkyl)Het being optionally substituted with (C_{1-6})
- k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or both R¹²⁹ and R¹³⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated

heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl, $(C_{1-6}$ alkyl)Het and heterocycle being optionally substituted with R^{150} ; I) aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, all of which being optionally substituted with R^{150} , wherein R^{150} is defined as:

5

- 1 to 3 substituents selected from: halogen or azido; or

- 1 to 3 substituents selected from:

a) (C₁₋₆) alkyl or haloalkyl, (C₃₋₇)cycloalkyl, C₃₋₇ spirocycloalkyl optionally containing 1 or 2 heteroatom, (C₂₋₆)alkenyl, (C₂₋₈)alkynyl, (C₁₋₆) alkyl-(C₃₋₇)cycloalkyl, all of which optionally substituted with \mathbf{R}^{160} ;

10

b) OR^{104} wherein R^{104} is H, $(C_{1-6}alkyl)$, (C_{3-7}) cycloalkyl, or $(C_{1-6})alkyl-(C_{3-7})$ cycloalkyl, aryl, Het, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ Het being optionally substituted with R^{160} ;

15

d) SR^{108} , $SO_2N(R^{108})_2$ or $SO_2N(R^{108})C(O)R^{108}$ wherein each R^{108} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het or both R^{108} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het or heterocycle being optionally substituted with R^{160} ;

20

e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl) aryl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl) aryl, (C_{1-6}) alkyl) Het, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl) aryl or (C_{1-6}) alkyl) Het, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C_{1-6}) alkyl) aryl or (C_{1-6}) alkyl) Het, or heterocycle being optionally substituted with R¹⁶⁰;

25

f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C_{1-6})alkyl, (C_3 . 7)cycloalkyl, (C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)Het, said (C_{1-6})alkyl, (C_{3-7})cycloalkyl, (C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)Het being optionally substituted

with **R**¹⁶⁰;

g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁. 6)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁. 6alkyl)aryl or (C₁₋₆alkyl)Het, or R¹¹⁸ is covalently bonded to R¹¹⁹ and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, or R¹¹⁹ and R¹²⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, (C₁. 6)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het or heterocycle being optionally substituted with R¹⁶⁰:

h) NR¹²¹COCOR¹²² wherein R¹²¹ is H or (C_{1-6}) alkyl optionally substituted with R¹⁶⁰, and R¹²² is OR¹²³ or N(R¹²⁴)₂ wherein R¹²³ and each R¹²⁴ is independently H, $(C_{1-6}$ alkyl), (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, or R¹²⁴ is OH or O(C₁₋₆alkyl) or both R¹²⁴ are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het and heterocycle being optionally substituted with R¹⁶⁰;

j) tetrazole, COOR¹²⁸ wherein R^{128} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl) aryl or (C_{1-6}) alkyl) Het, said (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl) aryl and (C_{1-6}) alkyl) Het being optionally substituted with R^{160} ; and

k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, or both R¹²⁹ and R¹³⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)**Het** and heterocycle being optionally substituted with R¹⁶⁰;

wherein R¹⁶⁰ is defined as 1 or 2 substituents selected from: tetrazole, halogen, CN, C₁₋₆alkyl, haloalkyl, COOR¹⁶¹, SO₃H, SR¹⁶¹, SO₂R¹⁶¹, OR¹⁶¹, N(R¹⁶²)₂, SO₂N(R¹⁶²)₂, NR¹⁶²COR¹⁶² or CON(R¹⁶²)₂, wherein R¹⁶¹ and each R¹⁶² is independently H,

5

10

15

20

25

 (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl; or both \mathbf{R}^{162} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle.

5

10

15

20

25

30

Even more preferably, R⁶⁰ is:

- 1 to 4 substituents selected from: halogen; or
- 1 to 4 substituents selected from:
- a) (C₁₋₆) alkyl or haloalkyl, (C₃₋₇)cycloalkyl, C₃₋₇ spirocycloalkyl optionally containing 1 or 2 heteroatom, (C₂₋₆)alkenyl, (C₂₋₈)alkynyl, (C₁₋₆) alkyl-(C₃₋₇)cycloalkyl, all of which optionally substituted with R¹⁵⁰;
 - b) OR^{104} wherein R^{104} is H, $(C_{1-6}alkyl)$, (C_{3-7}) cycloalkyl, or $(C_{1-6})alkyl$ - (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ Het being optionally substituted with R^{150} .
 - d) SO_3H , $SO_2N(R^{108})_2$ or $SO_2N(R^{108})C(O)R^{108}$ wherein each R^{108} is independently H, (C_{1-6}) alkyl or aryl, said alkyl and aryl being optionally substituted with R^{150} ;
 - e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, and R¹¹² is H, (C_{1-6}) alkyl, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁵ is (C_{1-6}) alkyl or $(C_{1-6}$ alkyl)aryl, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, or heterocycle being optionally substituted with R¹⁵⁰;
 - f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, aryl or Het, said (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, aryl or Het being optionally substituted with R¹⁵⁰:
 - g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁₋₆)alkyl, aryl or **Het**, said alkyl, aryl and **Het** being optionally substituted with R¹⁵⁰;
 - **h)** $NR^{121}COCOR^{122}$ wherein R^{121} is H or (C_{1-6}) alkyl, and R^{122} is OR^{123} or $N(R^{124})_2$ wherein R^{123} and each R^{124} is independently H, $(C_{1-6}$ alkyl), aryl or Het, or R^{124} is OH or $O(C_{1-6}$ alkyl), said alkyl, aryl and Het being optionally substituted with R^{150} ;

- j) COOR¹²⁸ wherein R¹²⁸ is H or (C₁₋₆)alkyl optionally substituted with R¹⁵⁰:
- k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H. (C₁₋₆)alkyl, arvl or Het, said alkyl, aryl and Het being optionally substituted with R150;
- 1) aryl, Het, (C₁₋₈alkyl)aryl or (C₁₋₈alkyl)Het, all of which being optionally substituted with R150, wherein R150 is defined as:
 - 1 to 3 substituents selected from: halogen; or
 - 1 to 3 substituents selected from:
 - a) (C1-6) alkyl or haloalkyl, (C2-6) alkenyl, all of which optionally substituted with R160:
 - b) OR104 wherein R104 is H, (C1.6alkyl), aryl or Het, said alkyl, aryl and Het being optionally substituted with R¹⁶⁰;
 - d) SR^{108} , $SO_2N(R^{108})_2$ or $SO_2N(R^{108})C(O)R^{108}$ wherein each R^{108} is independently H, (C₁₋₆)alkyl, aryl or Het, said alkyl, aryl and Het being optionally substituted with R160;
 - e) $NR^{111}R^{112}$ wherein R^{111} is H, (C_{1-6}) alkyl, aryl or Het, and R^{112} is H, (C₁₋₆)alkyl, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁵ is (C₁₋₆)alkyl or and, said alkyl, aryl and Het being optionally substituted with R160;
 - f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C₁₋₆)alkyl, aryl or Het, said alkyl, aryl and Het being optionally substituted with R¹⁶⁰;
 - g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H. (C₁. 6) alkyl, aryl or Het, said alkyl, aryl and Het being optionally substituted with **R**160:
 - h) NR¹²¹COCOR¹²² wherein R¹²¹ is H or (C₁₋₆)alkyl optionally substituted with R160, and R122 is OR123 or N(R124), wherein R123 and each R¹²⁴ is independently H, (C₁₋₈alkyl), and or Het, or R¹²⁴ is OH or O(C1-6alkyl), said alkyl, aryl and Het being optionally substituted with R160;
 - j) tetrazole, COOR¹²⁸ wherein R¹²⁸ is H or (C₁₋₆)alkyl optionally substituted with R160; and
 - k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H. (C₁₋ 6) alkyl, aryl or Het, said alkyl, aryl and Het being optionally substituted with R160:

wherein R¹⁶⁰ is defined as 1 or 2 substituents selected from: tetrazole, halogen, CN, C₁₋₆alkyl, haloalkyl, COOR¹⁶¹, SO₃H,

10

5

15

20

25

15

20

25

30

 SR^{161} , SO_2R^{161} , OR^{161} , $N(R^{162})_2$, $SO_2N(R^{162})_2$, $NR^{162}COR^{162}$ or $CON(R^{162})_2$, wherein R^{161} and each R^{162} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl; or both R^{162} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle.

Most preferably, Z is $N(R^{6a})R^6$ wherein R^{6a} is H or C_{1-6} alkyl. More preferably, R^{6a} is H.

- Preferably, \mathbf{R}^6 is (C_{2-6}) alkenyl, aryl, \mathbf{Het} , (C_{1-6}) alkyl-aryl, (C_{1-6}) alkyl- \mathbf{Het} , wherein said alkenyl, aryl, \mathbf{Het} , alkyl-aryl or alkyl- \mathbf{Het} , are all optionally substituted with:
 - 1 to 4 substituents selected from: halogen, OPO $_3$ H, NO $_2$, cyano, azido, C(=NH)NH $_2$, C(=NH)NH(C $_{1-6}$)alkyl or C(=NH)NHCO(C $_{1-6}$)alkyl; or
 - 1 to 4 substituents selected from:
 - a) (C₁₋₆) alkyl or haloalkyl, (C₃₋₇)cycloalkyl, C₃₋₇ spirocycloalkyl optionally containing 1 or 2 heteroatom, (C₂₋₆)alkenyl, (C₂₋₈)alkynyl, (C₁₋₆) alkyl-(C₃₋₇)cycloalkyl, all of which optionally substituted with R¹⁵⁰;
 - **b)** OR^{104} wherein R^{104} is H, $(C_{1-6}alkyl)$, (C_{3-7}) cycloalkyl, or $(C_{1-6})alkyl-(C_{3-7})$ cycloalkyl, aryl, Het, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ Het being optionally substituted with R^{150} :
 - d) SR¹⁰⁸, SO₂NH(C₁₋₆alkyl) or SO₂NHC(O)C₁₋₆alkyl;
 - e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, and R¹¹² is H, CN, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁵ is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or heterocycle being optionally substituted with R¹⁵⁰;
 - f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said (C₁₋₆alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or

10

15

20

25

30

(C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰;

- g) $NR^{118}CONR^{119}R^{120}$, wherein R^{118} , R^{119} and R^{120} is each H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl) aryl or (C_{1-6}) alkyl)Het, or R^{118} is covalently bonded to R^{119} and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; or R^{119} and R^{120} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl)aryl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl)aryl or (C_{1-6})
- h) NR¹²¹COCOR¹²² wherein R¹²¹ and R¹²² is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, a 6- or 10-membered aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰; or R¹²² is OR¹²³ or N(R¹²⁴)₂ wherein R¹²³ and each R¹²⁴ is independently H, (C₁₋₆alkyl), (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or R¹²⁴ is OH or O(C₁₋₆alkyl) or both R¹²⁴ are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het and heterocycle being optionally substituted with R¹⁵⁰;
 - i) COR¹²⁷ wherein R¹²⁷ is H, (C₁₋₈)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₈alkyl)aryl or (C₁₋₆alkyl)**Het**, said alkyl, cycloalkyl, aryl, **Het**, (C₁₋₈alkyl)aryl or (C₁₋₆alkyl)**Het** being optionally substituted with R¹⁵⁰; i) COOR¹²⁸ wherein R¹²⁸ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or(C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, said (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or(C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl and (C₁₋₆alkyl)**Het** being optionally substituted with R¹⁵⁰;
 - k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or both R¹²⁹ and R¹³⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het and heterocycle being optionally substituted with R¹⁵⁰;

 I) aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, all of which being optionally substituted with R¹⁵⁰, wherein, preferably, R¹⁵⁰ is selected from:

- 1 to 3 substituents selected from: halogen, NO2, cyano or azido; or
- 1 to 3 substituents selected from:
- a) (C_{1-6}) alkyl or haloalkyl, (C_{3-7}) cycloalkyl, C_{3-7} spirocycloalkyl optionally containing 1 or 2 heteroatom, (C_{2-6}) alkenyl, (C_{2-8}) alkynyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, all of which optionally substituted with R^{160} ;
- **b)** OR^{104} wherein R^{104} is H, $(C_{1-6}$ alkyl), (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R^{160} :
- d) SR^{108} , $SO_2N(R^{108})_2$ or $SO_2N(R^{108})C(O)R^{108}$ wherein each R^{108} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het or both R^{108} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het or heterocycle being optionally substituted with R^{160} ;
- e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, and R¹¹² is H, CN, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁵ is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or heterocycle being optionally substituted with R¹⁶⁰;
- f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, said (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het** being optionally substituted with R¹⁶⁰;
- g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or R¹¹⁹ and R¹²⁰ are covalently bonded

10

15

20

25

together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl, (C₁. ₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het** or heterocycle being optionally substituted with **R**¹⁶⁰;

5

h) NR¹²¹COCOR¹²² wherein R¹²¹ is H or (C_{1-6}) alkyl optionally substituted with R¹⁶⁰; and R¹²² is OR¹²³ or N(R¹²⁴)₂ wherein R¹²³ and each R¹²⁴ is independently H, $(C_{1-6}$ alkyl), (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, or R¹²⁴ is OH or O(C₁₋₆alkyl) or both R¹²⁴ are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het and heterocycle being optionally substituted with R¹⁶⁰:

10

j) tetrazole, COOR¹²⁸ wherein R^{128} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl and $(C_{1-6}$ alkyl)Het being optionally substituted with R^{160} ; and

15

k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁. $_6$)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, or both R¹²⁹ and R¹³⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)**Het** and heterocycle being optionally substituted with R¹⁵⁰:

20

25

wherein R^{160} is defined as 1 or 2 substituents selected from: tetrazole, halogen, CN, C_{1-6} alkyl, haloalkyl, COOR¹⁶¹, SO₃H, SO₂R¹⁶¹, OR¹⁶¹, N(R¹⁶²)₂, SO₂N(R¹⁶²)₂, NR¹⁶²COR¹⁶² or CON(R¹⁶²)₂, wherein R¹⁶¹ and each R¹⁶² is independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl; or both R¹⁶² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered

30

More preferably, R⁶ is (C₂₋₆)alkenyl, aryl, Het, (C₁₋₆)alkyl-aryl, (C₁₋₆)alkyl-Het, wherein

saturated heterocycle.

10

15

20

25

30

said alkenyl, aryl, Het, alkyl-aryl, or alkyl-Het, are all optionally substituted with:

- 1 to 4 substituents selected from: halogen, NO2, cyano, azido; or
- 1 to 4 substituents selected from:
- a) (C_{1-6}) alkyl or haloalkyl, (C_{3-7})cycloalkyl, C_{3-7} spirocycloalkyl optionally containing 1 or 2 heteroatom, (C_{2-6})alkenyl, (C_{2-8})alkynyl, (C_{1-6}) alkyl-(C_{3-7})cycloalkyl, all of which optionally substituted with \mathbf{R}^{150} ;
- **b)** OR^{104} wherein R^{104} is H, $(C_{1-6}$ alkyl), (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R^{150} :
- d) SH, S(C₁₋₆alkyl), SO₃H, SO₂NH(C₁₋₆alkyl) or SO₂NHC(O)C₁₋₆alkyl;
- e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C_{1-6})alkyl, (C_{3-7})cycloalkyl or (C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)Het, and R¹¹² is H, CN, (C_{1-6})alkyl, (C_{3-7})cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl, (C_{1-6} alkyl)Het, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁵ is (C_{1-6})alkyl, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)Het, or heterocycle being optionally substituted with R¹⁵⁰;
- f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, said (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl being optionally substituted with R¹⁵⁰;
- g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or R¹¹⁹ and R¹²⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl or heterocycle being optionally substituted with R¹⁵⁰;
- **h)** NR¹²¹COCOR¹²² wherein R¹²¹ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, said alkyl, cycloalkyl being optionally substituted with R¹⁵⁰, or R¹²² is OR¹²³ or N(R¹²⁴)₂ wherein R¹²³ and each R¹²⁴ is independently H, (C₁₋₆alkyl) or (C₃₋₇)cycloalkyl, or R¹²⁴ is OH or O(C₁₋₆alkyl) or both R¹²⁴ are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl and heterocycle being optionally substituted with R¹⁵⁰;
- j) COOR¹²⁸ wherein R¹²⁸ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or(C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said (C₁₋₆alkyl, (C₃₋₇)cycloalkyl, Aryl, Het, (C₁₋₆alkyl, (C₃₋₇)cycloalkyl, Aryl, Aryl, Het, (C₁₋₆alkyl, (C₃₋₇)cycloalkyl, Aryl, Aryl

10

15

20

25

30

 $_{7}$)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl and (C₁₋₆alkyl)**Het** being optionally substituted with \mathbf{R}^{150} ;

- k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, and (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰;
- I) aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, all of which being optionally substituted with **R**¹⁵⁰, wherein, preferably, **R**¹⁵⁰ is selected from:
 - 1 to 3 substituents selected from: halogen, NO2, cyano or azido; or
 - 1 to 3 substituents selected from:
 - a) (C_{1-6}) alkyl or haloalkyl, (C_{3-7})cycloalkyl, C_{3-7} spirocycloalkyl optionally containing 1 or 2 heteroatom, (C_{2-6})alkenyl, (C_{2-8})alkynyl, (C_{1-6}) alkyl-(C_{3-7})cycloalkyl, all of which optionally substituted with R^{160} ;
 - **b)** OR¹⁰⁴ wherein R¹⁰⁴ is H, (C₁₋₆alkyl), (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, said alkyl, cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het** being optionally substituted with R¹⁶⁰;
 - d) SH, S(C₁₋₆alkyl), SO₃H, SO₂N(R¹⁰⁸)₂ or SO₂N(R¹⁰⁸)C(O)R¹⁰⁸ wherein each R¹⁰⁸ is independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het or both R¹⁰⁸ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het or heterocycle being optionally substituted with R¹⁶⁰;
 - e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, and R¹¹² is H, CN, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁵ is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or heterocycle being optionally substituted with R¹⁶⁰;

f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁶⁰;

5

g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or R¹¹⁹ and R¹²⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het or heterocycle being optionally substituted with R¹⁶⁰;

10

h) NR¹²¹COCOR¹²² wherein R¹²¹ is H, (C_{1-6}) alkyl optionally substituted with R¹⁶⁰; and R¹²² is OR¹²³ or N(R¹²⁴)₂ wherein R¹²³ and each R¹²⁴ is independently H, $(C_{1-6}$ alkyl), (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, or R¹²⁴ is OH or O(C₁₋₆alkyl) or both R¹²⁴ are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het and heterocycle being optionally substituted with R¹⁶⁰;

15

j) tetrazole, $COOR^{128}$ wherein R^{128} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl)aryl and (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl)aryl and (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6})

20

and

k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or both R¹²⁹ and R¹³⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het and heterocycle being optionally substituted with R¹⁶⁰;

25

wherein, preferably, R¹⁶⁰ is defined as 1 or 2 substituents selected from: tetrazole, halogen, CN, C₁₋₆alkyl, haloalkyl,

30 -

15

20

25

COOR¹⁶¹, SO₃H, SO₂R¹⁶¹, OR¹⁶¹, N(R¹⁶²)₂, SO₂N(R¹⁶²)₂, NR¹⁶²COR¹⁶² or CON(R¹⁶²)₂, wherein R¹⁶¹ and each R¹⁶² is independently H or (C₁₋₆)alkyl.

- Most preferably, R^6 is C_{2-6} alkenyl, phenyl, (C_{1-6}) alkyl-aryl, (C_{1-6}) alkyl-Het, wherein said alkenyl, phenyl and the alkyl portion of said alkyl-aryl, or alkyl-Het, are optionally substituted with 1 to 3 of:
 - a) (C_{1-6}) alkyl C_{3-7} spirocycloalkyl optionally containing 1 or 2 heteroatom, (C_{2-6})alkenyl, all of which optionally substituted with C_{1-6} alkyl or C_{1-6} alkoxy; NH₂, NH(Me) or N(Me)₂
 - e) NHR¹¹² wherein R¹¹² is aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het, said aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, being optionally substituted with R¹⁵⁰; j) COOH;
 - k) $CONR^{129}R^{130}$ wherein R^{129} and R^{130} are independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl, and $(C_{1-6}$ alkyl)Het being optionally substituted with R^{150} ;
 - I) phenyl or **Het**, both optionally substituted with \mathbf{R}^{150} , wherein, preferably, \mathbf{R}^{150} is selected from:
 - 1 or 2 substituents selected from: halogen, NO2, cyano or azido;
 - 1 or 2 substituents selected from:
 - **a)** (C₁₋₆) alkyl or (C₂₋₆)alkenyl, both optionally substituted with COOH or CONH₂;
 - b) OR¹⁰⁴ wherein R¹⁰⁴ is H or (C₁₋₆alkyl) optionally substituted with COOH;
 - h) NHCOCOOH;
 - j) COOH; and
 - k) CONH2

30 Preferably, Z is

Diamides:

10

15

20

25

5 Most preferably, R⁶ is:

$$R^7$$
 R^8 R^9 N Q

wherein, preferably, \mathbf{R}^7 and \mathbf{R}^8 are each independently H, (C_{1-6}) alkyl, haloalkyl, (C_{3-7}) cycloalkyl, 6- or 10-membered aryl, **Het**, (C_{1-6}) alkyl-aryl, (C_{1-6}) alkyl-Het, wherein said alkyl, cycloalkyl, aryl, **Het**, (C_{1-6}) alkyl-aryl, (C_{1-6}) alkyl-Het are optionally substituted with \mathbf{R}^{70} ; or

 R^7 and R^8 are covalently bonded together to form second (C_{3-7})cycloalkyl or a 4, 5- or 6-membered heterocycle having from 1 to 3 heteroatom selected from O, N, and S; or when Z is $N(R^{6a})R^6$, either of R^7 or R^8 is covalently bonded to R^{6a} to form a nitrogen-containing 5-or 6-membered heterocycle; wherein, preferably, R^{70} is selected from:

- 1 to 4 substituents selected from: halogen, NO2, cyano, azido; or
- 1 to 4 substituents selected from:
- a) (C_{1-6}) alkyl or haloalkyl, (C_{3-7})cycloalkyl, C_{3-7} spirocycloalkyl optionally containing 1 or 2 heteroatom, (C_{2-6})alkenyl, (C_{2-8})alkynyl, (C_{1-6}) alkyl-(C_{3-7})cycloalkyl, all of which optionally substituted with \mathbf{R}^{150} ;
- **b)** OR¹⁰⁴ wherein R¹⁰⁴ is H, (C₁₋₆alkyl), (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰;
- d) SR^{108} , $SO_2N(R^{108})_2$ or $SO_2N(R^{108})C(O)R^{108}$ wherein each R^{108} is

10

15

20

25

30

independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, **Het**, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)**Het** or both \mathbf{R}^{108} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, **Het**, $(C_{1-6}$ alkyl)**Het** or heterocycle being optionally substituted with \mathbf{R}^{150} :

- e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, and R¹¹² is H, CN, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁵ is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or heterocycle being optionally substituted with R¹⁵⁰;
- f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰;
- g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or R¹¹⁸ is covalently bonded to R¹¹⁹ and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; or R¹¹⁹ and R¹²⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het or heterocycle being optionally substituted with R¹⁵⁰;
 h) NR¹²¹COCOR¹²² wherein R¹²¹ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-
- (C₃₋₇)cycloalkyl, a 6- or 10-membered aryl, Het, (C₁₋₆alkyl)aryl or (C₁.

 6alkyl)Het, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰, and R¹²² is OR¹²³ or N(R¹²⁴)₂ wherein R¹²³ and each R¹²⁴ is independently H, (C₁₋₆alkyl), (C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or R¹²⁴ is OH or O(C₁₋₆alkyl) or both R¹²⁴ are covalently bonded

together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het** and heterocycle being optionally substituted with **R**¹⁵⁰;

- i) COR¹²⁷ wherein R¹²⁷ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰; j) COOR¹²⁸ wherein R¹²⁸ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or(C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or(C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl and (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰;
- k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or both R¹²⁹ and R¹³⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het and heterocycle being optionally substituted with R¹⁵⁰;

 I) aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, all of which being optionally
- substituted with R¹⁵⁰, wherein, preferably, R¹⁵⁰ is selected from:
 - 1 to 3 substituents selected from: halogen, NO2, cyano, azido; or
 - 1 to 3 substituents selected from:

5

10

15

20

25

- **a)** (C_{1-6}) alkyl or haloalkyl, (C_{3-7})cycloalkyl, C_{3-7} spirocycloalkyl optionally containing 1 or 2 heteroatom, (C_{2-6})alkenyl, (C_{2-8})alkynyl, all of which optionally substituted with R^{160} ;
- b) OR¹⁰⁴ wherein R¹⁰⁴ is H, (C₁₋₆alkyl) or (C₃₋₇)cycloalkyl, said alkyl and cycloalkyl being optionally substituted with R¹⁶⁰;
- d) SR^{108} , $SO_2N(R^{108})_2$ wherein R^{108} is H, (C_{1-6}) alkyl or (C_{3-7}) cycloalkyl, said alkyl or cycloalkyl being optionally substituted with R^{160} ;
- e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C₁₋₆)alkyl or (C₃₋₇)cycloalkyl, and R¹¹² is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁵ is (C₁₋₆alkyl, (C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl,

cycloalkyl, aryl, Het, $(C_{1-6}alkyl)aryl$ or $(C_{1-6}alkyl)$ Het, or heterocycle being optionally substituted with R^{160} ;

- f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C₁₋₆)alkyl or (C₃₋₇)cycloalkyl, said (C₁₋₆)alkyl or (C₃₋₇)cycloalkyl being optionally substituted with R¹⁶⁰;
- g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁₋₆)alkyl or (C₃₋₇)cycloalkyl; or R¹¹⁹ and R¹²⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl or heterocycle being optionally substituted with R¹⁶⁰;
- h) NR¹²¹COCOR¹²² wherein R¹²¹ is H, (C_{1-6}) alkyl or (C_{3-7}) cycloalkyl, said alkyl or cycloalkyl being optionally substituted with R¹⁶⁰; or R¹²² is OR¹²³ or N(R¹²⁴)₂ wherein R¹²³ and each R¹²⁴ is independently H, $(C_{1-6}$ alkyl) or (C_{3-7}) cycloalkyl, or R¹²⁴ is OH or O(C₁₋₆alkyl) or both R¹²⁴ are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl and heterocycle being optionally substituted with R¹⁶⁰;
- j) tetrazole, $COOR^{128}$ wherein R^{128} is H, (C_{1-6}) alkyl or (C_{3-7}) cycloalkyl, said (C_{1-6}) alkyl and (C_{3-7}) cycloalkyl being optionally substituted with R^{160} ; and
- k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁₋₆)alkyl or (C₃₋₇)cycloalkyl, or both R¹²⁹ and R¹³⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl and heterocycle being optionally substituted with R¹⁶⁰;

wherein R^{160} is defined as 1 or 2 substituents selected from: tetrazole, halogen, CN, C_{1-6} alkyl, haloalkyl, COOR¹⁶¹, OR¹⁶¹, $N(R^{162})_2$ or CON($R^{162})_2$, wherein R^{161} and each R^{162} is independently H or (C_{1-6})alkyl.

More preferably, R^7 and R^8 are each independently H, (C_{1-6}) alkyl, haloalkyl, (C_{3-7}) cycloalkyl, 6- or 10-membered aryl, Het, (C_{1-6}) alkyl-aryl, (C_{1-6}) alkyl-Het, all of which optionally substituted with from 1 to 4 substituents selected from halogen or:

a) (C₁₋₆)alkyl; and

10

5

15

20

25

10

15

20

25

b) N(R^{8a'})₂, COR^{8a}, or SO₂R^{8a"} COOR^{8a}, COCOOR^{8a}, CON(R^{8a'})₂, COCON(R^{8a'})₂, wherein each R^{8a} or R^{8a'} are independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl; or each R^{8a'} are independently covalently bonded together and to the nitrogen to which they are both bonded to form a 5, 6 or 7-membered saturated heterocycle; or R^{8a"} is independently (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl.

or R⁷ and R⁸ are covalently bonded together to form (C₃₋₇)cycloalkyl, 4, 5- or 6-membered heterocycle having from 1 to 3 heteroatom selected from O, N, and S.

Most preferably, R⁷ and R⁸ are each independently H, (C₁₋₈)alkyl, haloalkyl, (C₃₋₇)cycloalkyl, 6- or 10-membered aryl, **Het**, (C₁₋₆)alkyl-aryl, (C₁₋₆)alkyl-**Het**; or R⁷ and R⁸ are covalently bonded together to form cyclopropyl, cyclobutyl, cyclopentyl, pyrrolidine, piperidine, tetrahydrofuran, tetrahydropyran, or pentamethylene sulfide; wherein said alkyl, haloalkyl, (C₃₋₇)cycloalkyl, 6- or 10-membered aryl, **Het**, (C₁₋₆)alkyl-aryl, (C₁₋₆)alkyl-**Het**, cyclopropyl, cyclobutyl, cyclopentyl, pyrrolidine, piperidine, tetrahydrofuran, tetrahydropyran, or pentamethylene sulfide are optionally monosubstituted with substituents selected from:

- a) (C₁₋₆)alkyl; and
- c) NH₂, N(CH₂CH)₂, COCH₃, or SO₂CH₃.

Even more preferably, R7 and R8 are selected from:

R7 and R8 together form:

Most preferably, R⁷ and R⁸ are selected from the group consisting of:

10 R9:

Preferably R⁹ is H; or R⁹ is covalently bonded to either of R⁷ or R⁸ to form a 5- or 6-membered heterocycle. More preferably, R⁹ is H.

<u>Q:</u>

Preferably, **Q** is a 6- or 10-membered aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)-Het, all of which being optionally substituted with:

15

20

25

30

wherein R100 is:

- 1 to 4 substituents selected from: halogen, NO2, cyano or azido; or
- 1 to 4 substituents selected from:
- a) (C_{1-6}) alkyl or haloalkyl, (C_{3-7})cycloalkyl, (C_{2-6})alkenyl, (C_{2-8})alkynyl, (C_{1-6}) alkyl-(C_{3-7})cycloalkyl, all of which optionally substituted with \mathbf{R}^{150} ;
- **b)** OR¹⁰⁴ wherein R¹⁰⁴ is H, (C₁₋₆alkyl), (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, said alkyl, cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het** being optionally substituted with \mathbf{R}^{150} :
- d) SR¹⁰⁸ wherein R¹⁰⁸ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, all of which being optionally substituted with R¹⁵⁰;
 - e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, and R¹¹² is H, CN, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁵ is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or (C₁₋₆alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or heterocycle being optionally substituted with R¹⁵⁰;
 - f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰;
 - g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or R¹¹⁸ is covalently bonded to R¹¹⁹ and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; or R¹¹⁹ and R¹²⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het or heterocycle being optionally substituted with R¹⁵⁰;
 - h) NR¹²¹COCOR¹²² wherein R¹²¹ and R¹²² is each H, (C₁₋₆)alkyl, (C₃₋₆)

PCT/CA02/01128

5

10

15

20

25

30

74

7)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, a 6- or 10-membered aryl, Het, (C₁: ealkyl)aryl or (C1-ealkyl)Het, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰; or R^{122} is OR^{123} or $N(R^{124})_2$ wherein R^{123} and each R^{124} is independently H, $(C_{1-6}alkyl)$, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_1$. salkyl)aryl or $(C_{1-6}$ alkyl)Het, or R^{124} is OH or O(C_{1-6} alkyl) or both R^{124} are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C1-6alkyl)aryl or $(C_{1-6}alkyl)$ **Het** and heterocycle being optionally substituted with R^{150} ; i) COOR¹²⁸ wherein R¹²⁸ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or(C₁₋₆)alkyl-(C₃₋₇) 7)cycloalkyl, aryl, Het, (C1-6alkyl)aryl or (C1-6alkyl)Het, said (C1-6)alkyl, (C3-7)cycloalkyl, or(C1-6)alkyl-(C3-7)cycloalkyl, aryl, Het, (C1-6alkyl)aryl and (C1-6alkyl)Het being optionally substituted with R150; k) $CONR^{129}R^{130}$ wherein R^{129} and R^{130} are independently H, (C_{1-6}) alkyl, (C_{3-6})

7)cycloalkyl, (C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl or (C_{1-6} _{salkyl})Het, or both R^{129} and R^{130} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C₁-alkyl)aryl, (C_{1.6}alkyl)Het and heterocycle being optionally substituted with R¹⁵⁰;

i) aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, all of which being optionally substituted with R150;

wherein R150 is selected from:

- 1 to 3 substituents selected from: halogen, NO2, cyano or azido; or
- 1 to 3 substituents selected from:

a) (C1-6) alkyl or haloalkyl, (C3-7)cycloalkyl, C3-7 spirocycloalkyl optionally containing 1 or 2 heteroatom, (C2-6)alkenyl, (C2-8)alkynyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, all of which optionally substituted with \mathbf{R}^{160} ;

- b) OR^{104} wherein R^{104} is H, $(C_{1-6}$ alkyl), (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl-(C3-7)cycloalkyl, aryl, Het, (C1-6alkyl)aryl or (C1-6alkyl)Het, said alkyl, cycloalkyl, aryl, Het, (C1-salkyl)aryl or (C1-salkyl)Het being optionally substituted with R160;
- d) SR^{108} , $SO_2N(R^{108})_2$ or $SO_2N(R^{108})C(O)R^{108}$ wherein each R^{108} is independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋ $_{7}$)cycloalkyl, aryl, Het, (C $_{1\text{-6}}$ alkyl)aryl or (C $_{1\text{-6}}$ alkyl)Het or both \mathbf{R}^{108} are

covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, $(C_{1-8}alkyl)aryl$ or $(C_{1-8}alkyl)Het$ or heterocycle being optionally substituted with R^{160} ;

5

e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or $(C_1$. $_6)$ alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl)aryl or (C_{1-6}) alkyl)Het, and R¹¹² is H, CN, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl)aryl, (C_{1-6}) alkyl)Het or SO_2R^{115} wherein R¹¹⁵ is (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl)aryl or (C_{1-6}) alkyl)Het, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C_{1-6}) alkyl)aryl or (C_{1-6}) alkyl)Het, or heterocycle being optionally substituted with R¹⁶⁰;

10

f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, said (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het** being optionally substituted with R^{160} ;

15

20

30

- g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁. $_{6}$)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁. $_{6}$ alkyl)aryl or (C₁₋₆alkyl)Het, or R¹¹⁸ is covalently bonded to R¹¹⁹ and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, or R¹¹⁹ and R¹²⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, (C₁. $_{6}$)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het or heterocycle being optionally substituted with R¹⁶⁰;
- h) NR¹²¹COCOR¹²² wherein R¹²¹ is H, (C₁₋₆)alkyl optionally substituted with R¹⁶⁰, and R¹²² is OR¹²³ or N(R¹²⁴)₂ wherein R¹²³ and each R¹²⁴ is independently H, (C₁₋₆alkyl), (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or R¹²⁴ is OH or O(C₁₋₆alkyl) or both R¹²⁴ are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-

cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het and heterocycle being optionally substituted with R^{160} ;

j) tetrazole, $COOR^{128}$ wherein R^{128} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl) or (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, (C_{1-6}) alkyl) aryl and (C_{1-6}) alkyl) Het being optionally substituted with R^{160} ; and

k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or both R¹²⁹ and R¹³⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het and heterocycle being optionally substituted with R¹⁶⁰;

wherein R^{160} is defined as 1 or 2 substituents selected from: tetrazole, halogen, CN, C_{1-6} alkyl, haloalkyl, COOR¹⁶¹, SO₃H, SR¹⁶¹, SO₂R¹⁶¹, OR¹⁶¹, N(R¹⁶²)₂, SO₂N(R¹⁶²)₂, NR¹⁶²COR¹⁶² or CON(R¹⁶²)₂, wherein R¹⁶¹ and each R¹⁶² is independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl; or both R¹⁶² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle.

More preferably, \mathbf{Q} is a 6- or 10-membered aryl, \mathbf{Het} , $(C_{1-6}alkyl)$ aryl or $(C_{1-6}alkyl)$ -Het, all of which being optionally substituted with:

- 1 to 4 substituents selected from: halogen,NO2, cyano or azido; or
- 1 to 4 substituents selected from:
- a) (C_{1-6}) alkyl or haloalkyl, (C_{3-7})cycloalkyl, (C_{2-6})alkenyl, (C_{2-8})alkynyl, (C_{1-6}) alkyl-(C_{3-7})cycloalkyl, all of which optionally substituted with R^{150} ;
- b) OR¹⁰⁴ wherein R¹⁰⁴ is H, (C₁₋₆alkyl), (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰:
- d) SR^{108} , $SO_2N(R^{108})_2$ or $SO_2N(R^{108})C(O)R^{108}$ wherein each R^{108} is

10

5

WO 03/010141

15

20

25

10

15

20

25

30

independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het** or both **R**¹⁰⁸ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het** or heterocycle being optionally substituted with **R**¹⁵⁰;

- e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, and R¹¹² is H, CN, (C₁₋₆alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl, (C₁₋₆alkyl)Het, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁵ is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, or heterocycle being optionally substituted with R¹⁵⁰;
- f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰;
- g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het**, or R¹¹⁹ and R¹²⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, **Het**, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)**Het** or heterocycle being optionally substituted with R¹⁵⁰;
- h) NR¹²¹COCOR¹²² wherein R¹²¹ is H, (C_{1-6}) alkyl optionally substituted with R¹⁵⁰, and R¹²² is OR¹²³ or N(R¹²⁴)₂ wherein R¹²³ and each R¹²⁴ is independently H, $(C_{1-6}$ alkyl), (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, or R¹²⁴ is OH or O(C_{1-6} alkyl) or both R¹²⁴ are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het and heterocycle being optionally substituted with R¹⁵⁰; i) COOR¹²⁸ wherein R¹²⁸ is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7})

 $_{7}$)cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)Het, said (C_{1-6})alkyl, (C_{3-7})cycloalkyl, or(C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl and (C_{1-6} alkyl)Het being optionally substituted with \mathbf{R}^{150} ;

- k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C_{1-6})alkyl, (C_{3-7})cycloalkyl, (C_{1-6})alkyl-(C_{3-7})cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl or (C_{1-6} alkyl)Het, or both R¹²⁹ and R¹³⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, alkyl-cycloalkyl, aryl, Het, (C_{1-6} alkyl)aryl, (C_{1-6} alkyl)Het and heterocycle being optionally substituted with R¹⁵⁰;
- l) aryl, **Het**, (C1-6alkyl)aryl or (C1-6alkyl)**Het**, all of which being optionally substituted with R¹⁵⁰, wherein R¹⁵⁰ is preferably selected from:
 - 1 to 3 substituents selected from: halogen, NO2, cyano or azido; or
 - 1 to 3 substituents selected from:
 - a) (C_{1-6}) alkyl or haloalkyl, (C_{3-7}) cycloalkyl, (C_{2-6}) alkenyl, (C_{2-8}) alkynyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, all of which optionally substituted with R^{160} ;
 - b) OR^{104} wherein R^{104} is H, $(C_{1-6}$ alkyl), (C_{3-7}) cycloalkyl, or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, aryl, Het, said alkyl, cycloalkyl, aryl and Het being optionally substituted with R^{160} ;
 - c) OCOR¹⁰⁵ wherein R^{105} is (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het, said alkyl, cycloalkyl, aryl, Het, $(C_{1-6}$ alkyl)aryl or $(C_{1-6}$ alkyl)Het being optionally substituted with R^{160} ;
 - d) SR^{108} , $SO_2N(R^{108})_2$ or $SO_2N(R^{108})C(O)R^{108}$ wherein each R^{108} is independently H, $(C_{1\cdot6})$ alkyl, $(C_{3\cdot7})$ cycloalkyl or both R^{108} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl or heterocycle being optionally substituted with R^{160} ;
 - e) NR¹¹¹R¹¹² wherein R¹¹¹ is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁. $_{6}$)alkyl-(C₃₋₇)cycloalkyl, and R¹¹² is H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁. $_{6}$)alkyl-(C₃₋₇)cycloalkyl, COOR¹¹⁵ or SO₂R¹¹⁵ wherein R¹¹⁵ is (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl, aryl, Het, (C₁. $_{6}$ alkyl)aryl or (C₁₋₆alkyl)Het, or heterocycle being optionally substituted

10

5

15

20

25

with R160:

f) NR¹¹⁶COR¹¹⁷ wherein R¹¹⁶ and R¹¹⁷ is each H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁶⁰;

g) NR¹¹⁸CONR¹¹⁹R¹²⁰, wherein R¹¹⁸, R¹¹⁹ and R¹²⁰ is each H, (C₁. 6)alkyl, (C₃₋₇)cycloalkyl, or R¹¹⁹ and R¹²⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle; said alkyl, cycloalkyl or heterocycle being optionally substituted with R¹⁶⁰;

h) NR¹²¹COCOR¹²² wherein R¹²¹ is H, (C₁₋₆)alkyl optionally substituted with R¹⁶⁰; or R¹²² is OR¹²³ or N(R¹²⁴)₂ wherein R¹²³ and each R¹²⁴ is independently H, (C₁₋₆alkyl) or (C₃₋₇)cycloalkyl, or R¹²⁴ is OH or O(C₁₋₆alkyl), or both R¹²⁴ are covalently bonded together to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl and heterocycle being optionally substituted with R¹⁶⁰;

i) tetrazole, COOR¹²⁸ wherein R^{128} is H, (C_{1-6}) alkyl or (C_{3-7}) cycloalkyl, said (C_{1-6}) alkyl and (C_{3-7}) cycloalkyl being optionally substituted with R^{160} ; and

k) CONR¹²⁹R¹³⁰ wherein R¹²⁹ and R¹³⁰ are independently H, (C₁. ₆)alkyl or (C₃₋₇)cycloalkyl, or both R¹²⁹ and R¹³⁰ are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle, said alkyl, cycloalkyl and heterocycle being optionally substituted with R¹⁶⁰;

wherein R^{160} is defined as 1 or 2 substituents selected from: tetrazole, halogen, CN, C_{1-8} alkyl, haloalkyl, COOR¹⁶¹, SO₃H, SO₂R¹⁶¹, OR¹⁶¹, N(R¹⁶²)₂, SO₂N(R¹⁶²)₂, NR¹⁶²COR¹⁶² or CON(R¹⁶²)₂, wherein R¹⁶¹ and each R¹⁶² is independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl; or both R¹⁶² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle.

5

10

15

20

25

Most preferably, **Q** is a 6- or 10-membered aryl or **Het**, both being optionally substituted with:

- 1 to 3 halogen, NO2, cyano, azido; or
- 1 to 3 substituents selected from:
- a) first (C₁₋₆) alkyl or haloalkyl, first (C₃₋₇)cycloalkyl, (C₂₋₆)alkenyl, (C₂₋₈)alkynyl,
 (C₁₋₆) alkyl-(C₃₋₇)cycloalkyl, all of which are optionally substituted with R¹⁵⁰;
 - **b)** OR¹⁰⁴ wherein R¹⁰⁴ is H, (C₁₋₆alkyl);
 - d) SO₂NHR¹⁰⁸ wherein R¹⁰⁸ is H or (C₁₋₆)alkyl;
 - e) NR¹¹¹R¹¹² wherein both R¹¹¹ and R¹¹² are independently H or (C₁₋₆)alkyl;
- 10. f) NHCOR¹¹⁷ wherein R^{116} is H or (C₁₋₆)alkyl;
 - g) NHCONR¹¹⁹R¹²⁰, wherein R¹¹⁹ and R¹²⁰ is each independently H or (C₁₋₆)alkyl;
 - h) NHCOCOR¹²² wherein R¹²² is OR¹²³ or N(R¹²⁴)₂ wherein R¹²³ and each R¹²⁴ is independently H or (C_{1-6} alkyl);
- j) COOR¹²⁸ wherein R¹²⁸ is H, (C₁₋₆)alkyl;
 - k) CONHR¹³⁰ wherein R¹³⁰ is H, (C₁₋₆)alkyl;
 - I) 6- or 10-membered aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het, said aryl, Het, (C₁₋₆alkyl)aryl or (C₁₋₆alkyl)Het being optionally substituted with R¹⁵⁰; and wherein, preferably, R¹⁵⁰ is selected from:
 - 1 to 3 halogens; or

20

25

- 1 to 3 substituents selected from:
- a) first (C_{1-6}) alkyl or haloalkyl, first (C_{3-7})cycloalkyl, (C_{2-6})alkenyl, (C_{2-6})alkynyl, (C_{1-6}) alkyl-(C_{3-7})cycloalkyl, all of which are optionally substituted with tetrazole, OR^{102} , $COOR^{102}$, wherein R^{102} is H or (C_{1-6})alkyl;
- b) OR¹⁰⁴ wherein R¹⁰⁴ is H, (C₁₋₆alkyl); ...
- d) SO₂NHR¹⁰⁸ wherein R¹⁰⁸ is H or (C₁₋₆)alkyl;
- e) $NR^{111}R^{112}$ wherein both R^{111} and R^{112} are independently H or (C₁. ₆)alkyl;
- f) NHCOR¹¹⁷ wherein R¹¹⁶ is H or (C₁₋₆)alkyl; and
- h) NHCOCOR¹²² wherein R¹²² is OR^{123} or $N(R^{124})_2$ wherein R¹²³ and each R¹²⁴ is independently H or $(C_{1-6}alkyl)$;
- j) COOR¹²⁸ wherein R¹²⁸ is H, (C₁₋₆)alkyl; and
- k) CONHR¹³⁰ wherein R¹³⁰ is H, (C₁₋₆)alkyl.

More preferably **Q** is selected from:

Most preferably, Q is selected from:

Specific embodiments

Included within the scope of this invention are all compounds of formula I as presented in Tables 1 to 9.

10 Polymerase activity

The ability of the compounds of formula (I) to inhibit RNA synthesis by the RNA dependent RNA polymerase of HCV can be demonstrated by any assay capable of measuring RNA dependent RNA polymerase activity. A suitable assay is described in the examples.

15

Specificity for RNA dependent RNA polymerase activity

To demonstrate that the compounds of the invention act by specific inhibition of HCV polymerase, the compounds may be tested for inhibitory activity in a DNA dependent RNA polymerase assay.

WO 03/010141

When a compound of formula (I), or one of its therapeutically acceptable salts, is employed as an antiviral agent, it is administered orally, topically or systemically to mammals, e.g. humans, rabbits or mice, in a vehicle comprising one or more pharmaceutically acceptable carriers, the proportion of which is determined by the solubility and chemical nature of the compound, chosen route of administration and standard biological practice.

For oral administration, the compound or a therapeutically acceptable salt thereof can be formulated in unit dosage forms such as capsules or tablets each containing a predetermined amount of the active ingredient, ranging from about 25 to 500 mg, in a pharmaceutically acceptable carrier.

For topical administration, the compound can be formulated in pharmaceutically accepted vehicles containing 0.1 to 5 percent, preferably 0.5 to 5 percent, of the active agent. Such formulations can be in the form of a solution, cream or lotion.

For parenteral administration, the compound of formula (I) is administered by either intravenous, subcutaneous or intramuscular injection, in compositions with pharmaceutically acceptable vehicles or carriers. For administration by injection, it is preferred to use the compounds in solution in a sterile aqueous vehicle which may also contain other solutes such as buffers or preservatives as well as sufficient quantities of pharmaceutically acceptable salts or of glucose to make the solution isotonic.

25

30

35

20

10

15

Suitable vehicles or carriers for the above noted formulations are described in pharmaceutical texts, e.g. in "Remington's The Science and Practice of Pharmacy", 19th ed., Mack Publishing Company, Easton, Penn., 1995, or in "Pharmaceutical Dosage Forms And Drugs Delivery Systems", 6th ed., H.C. Ansel et al., Eds., Williams & Wilkins, Baltimore, Maryland, 1995.

The dosage of the compound will vary with the form of administration and the particular active agent chosen. Furthermore, it will vary with the particular host under treatment. Generally, treatment is initiated with small increments until the optimum effect under the circumstance is reached. In general, the compound of formula I is

WO 03/010141 PCT/CA02/01128

most desirably administered at a concentration level that will generally afford antivirally effective results without causing any harmful or deleterious side effects.

For oral administration, the compound or a therapeutically acceptable salt is administered in the range of 10 to 200 mg per kilogram of body weight per day, with a preferred range of 25 to 150 mg per kilogram.

For systemic administration, the compound of formula (I) is administered at a dosage of 10 mg to 150 mg per kilogram of body weight per day, although the aforementioned variations will occur. A dosage level that is in the range of from about 10 mg to 100 mg per kilogram of body weight per day is most desirably employed in order to achieve effective results.

When the compositions of this invention comprise a combination of a compound of formula I and one or more additional therapeutic or prophylactic agent, both the compound and the additional agent should be present at dosage levels of between about 10 to 100%, and more preferably between about 10 and 80% of the dosage normally administered in a monotherapy regimen.

When these compounds or their pharmaceutically acceptable salts are formulated together with a pharmaceutically acceptable carrier, the resulting composition may be administered *in vivo* to mammals, such as man, to inhibit HCV polymerase or to treat or prevent HCV virus infection. Such treatment may also be achieved using the compounds of this invention in combination with agents which include, but are not limited to: immunomodulatory agents, such as α -, β -, or γ -interferons; other antiviral agents such as ribavirin, amantadine; other inhibitors of HCV NS5B polymerase; inhibitors of other targets in the HCV life cycle, which include but not limited to, helicase, NS2/3 protease, NS3 protease, or internal ribosome entry site (IRES); or combinations thereof. The additional agents may be combined with the compounds of this invention to create a single dosage form. Alternatively these additional agents may be separately administered to a mammal as part of a multiple dosage form.

Methodology and Synthesis

10

15

20

25

30

35

Indole derivatives or analogs according to the present invention can be prepared from known monocyclic aromatic compounds by adapting known literature sequences such as those described by J.W. Ellingboe et al. (*Tet. Lett.* **1997**, *38*,

10

15

20

7963) and S. Cacchi et al. (*Tet. Lett.* 1992, 33, 3915). Scheme 1, shown below wherein R¹, R², R³, R⁶, K, L, and M are as described herein illustrate how these procedures can be adapted to the synthesis of compounds of formula 1 of this invention.

In carrying out the route illustrated in Scheme 1, a suitably protected form of 3trifluoroacetamido-4-iodobenzoic acid I(i) is reacted with an alkyne I(ii) in the presence of a metal catalyst (e.g. a palladium metal complex such as PdC_k(PPh₃)₂, Pd₂dba₃, Pd(PPh₃)₄ and the like), a base (Et₃N, DIEA and the like or an inorganic basic salt including metal carbonates, fluorides and phosphates), and optionally in the presence of an additional phosphine ligand (triaryl or heteroarylphosphine, dppe, dppf, dppp and the like). Suitable solvents for this reaction include DMF, dioxane, THF, DME, toluene, MeCN, DMA and the like at temperatures ranging from 20 °C to 170 °C, or alternatively without solvent by heating the components together. Alternatively, the cross-coupling reaction can be carried out on a suitably protected form of 3-amino-4-iodobenzoate and the amino group can be trifluoroacetylated in the subsequent step as described by J.W. Ellingboe et al. (Tet. Lett. 1997, 38, 7963). Reaction of the above diarylalkynes I(iii) with an enol triflate under cross-coupling conditions similar to those described above gives after hydrogenation of the douple bond, indole derivatives I(iv). Enol triflates are known and can be prepared from the corresponding ketones by following known literature methods (for example, cyclohexene triflate can be prepared from cyclohexanone, triflic anhydride and a

20

hindered organic base such as 2,6-di-*tert*-butyl-4-methylpyridine). The hydrogenation of the double bond originally present in R¹ can be carried out with hydrogen gas or a hydrogen donor (ammonium formate, formic acid and the like) in the presence of a metal catalyst (preferably Pd) in a suitable solvent (lower alkyl alcohols, THF etc.).

Finally, following hydrolysis of the ester protecting group in **I(iv)**, the resulting 6-carboxyindole derivative **I(v)** is converted to compounds of formula 1 by coupling with the appropriate amine of formula H₂N-R⁶. Condensation of the 6-indolecarboxylic acid with amines H₂N-R⁶ can be accomplished using standard amide bond forming reagents such as TBTU,HATU, BOP,BroP, EDAC, DCC, isobutyl chloroformate and the like, or by activation of the carboxyl group by conversion to the corresponding acid chloride prior to condensation with an amine. Any remaining protecting group is removed following this step to give compounds of formula **1**.

Alternatively, compounds of formula 1 can be prepared by elaboration from a preexisiting indole core by following adaptations of literature procedures as described, for example, by P. Gharagozloo et al. (*Tetrahedron* 1996, 52, 10185) or K. Freter (*J. Org. Chem.* 1975, 40, 2525). Such a methodology is illustrated in Scheme 2:

Scheme 2

WO 03/010141 PCT/CA02/01128

88

In carrying the route illustrated in Scheme 2, commercially available 6indolecarboxylic acid 2(i), which can also be prepared according to the method of S. Kamiya et al. (Chem. Pharm. Bull. 1995, 43, 1692) is used as the starting material. The indole 2(i) is reacted with a ketone 2(ii) under basic or acidic aldol-type conditions. Suitable conditions to affect this condensation include strong bases such as alkali metal hydroxides, alkoxides and hydrides in solvents such as lower alkyl alcohols (MeOH, EtOH, tertBuOH etc.), THF, dioxane, DMF, DMSO, DMA and the like at reaction temperature ranging from -20 °C to 120 °C. Alternatively, the condensation can be carried out under acid conditions using organic or mineral acids or both. Appropriate conditions include mixtures of AcOH and aqueous phosphoric acid at temperatures ranging from 15°C to 120 °C. Following protection of the carboxylic acid group in the form of an ester (usually lower alkyl) using known methods, the indole nitrogen can be alkylated with R3 if desired. Reaction conditions to alkylate the nitrogen of an indole derivative are well known to those skilled in the art and include the use of strong bases such as alkali metal hydrides, hydroxides, amides, alkoxides and alkylmetals, in the appropriate solvent (such as THF, dioxane, DME, DMF, MeCN, DMSO, alcohols and the like) at temperatures ranging from -78 °C to 140 °C. An electrophilic form of R3 is used for the alkylation of the indole anion. Such electrophilic species include iodides, bromides, chlorides and sulfonate esters (mesylates, tosylate, brosylate or triflate). Halogenation (usually bromination, but also iodination) of the 2-position of the indole 2(iv) gives 2(v). Suitable halogenating agents include, for example, elemental bromine, N-bromosuccinimide, pyridine tribromide, dibromohydantoin and the corresponding iodo derivatives. Suitable solvents for this reaction are inert to reactive halogenating agents and include for example hydrocarbons, chlorinated hydrocarbons (DCM, CCl4, CHCl3), ethers (THF, DME, dioxane), acetic acid, ethyl acetate, IPA, and mixtures of these solvents. Reaction temperature ranges from -40 °C to 100 °C. A method of choice to carry out the bromination of indoles as shown in Scheme 2 was described by L. Chu (Tet. Lett. 1997, 38, 3871).

30

35

10

15

20

25

The 2-bromoindole derivatives **2(v)** can be converted directly to fully substituted key intermediates **I(v)** through a cross-coupling reaction with aryl or heteroaryl boronic acids, boronate esters or trialkylstannane derivatives. These boron or tin organometallic species are from commercial sources or can be prepared by standard literature procedures. Cross-coupling with organoboron reagents can be

15

20

30

WO 03/010141 PCT/CA02/01128

89

carried out by any variations of the Suzuki cross-coupling reaction reported in the literature. This usually involves the use of a transition metal catalyst (usually Pd°), triaryl or triheteroarylphosphine ligands, an additive such as an inorganic chloride (e.g. LiCl), and a base (usually an aqueous inorganic base such as sodium or potassium carbonate or phosphate). The reaction is usually carried out in an alcoholic solvent (EtOH), DME, toluene, THF and the like at temperatures ranging from 25 °C to 140 °C.

Cross-coupling with tin reagents can be carried out by any variations of the Stille cross-coupling reaction reported in the literature. This usually involves the use of a transition metal catalyst (usually Pd°), triaryl or triheteroaryl phosphine ligands, and an additive such as an inorganic chloride (e.g. LiCl) or iodide (e.g. Cul). Suitable solvents for this reaction include toluene, DMF, THF, DME and the like at temperatures ranging from 25 °C to 140 °C. Intermediate I(v) is then converted to compounds of formula 1 as described for Scheme 1.

Alternatively, the 2-bromoindole intermediate **2(v)** can be trans-metallated to an organotin species (or organozinc) and used in Stille-type cross-coupling reactions under conditions described above. In this case, aromatic and heteroaromatic halides (chlorides, bromides, iodides) or triflates are used to introduce R². The conversion of 2-bromoindole derivatives **2(v)** to the corresponding organotin species **2(vi)** is carried out via initial low-temperature (usually –78 ° to –30 °C) halogen-metal exchange using an alkyllithium reagent (e.g. nBuLi or *tert*-BuLi) or using lithium metal. The transient 2-lithioindole species is then trapped with a trialkyltin halide (e.g. nBu₃SnCl or Me₃SnCl). Alternatively, the lithioindole intermediate can be trapped with zinc chloride to form the corresponding organozincate which can also undergo transition metal-catalyzed cross-coupling with aromatic and heteroaromatic halides or triflates as described, for example, by M. Rowley (*J. Med. Chem.* **2001**, **44**, 1603).

The present invention also encompasses compounds of formula 1 where the carboxylic group is in the 5-position of the indole system. The synthesis of such compounds is based on adaptation of literature procedures and is depicted in Scheme 3:

WO 03/010141

PCT/CA02/01128

In carrying out the synthetic route illustrated in Scheme 3, ethyl 4-acetamido-3-iodobenzoate 3(i) undergoes metal catalyzed cross-coupling with an alkyne 3(ii) to give a 2,3-disubstituted-5-indolecarboxylate 3(iii) according to an adaptation of a procedure described by A. Bedeschi et al. (*Tet. Lett.* 1997, 38, 2307). The indole derivative 3(iii) is then alkylated on nitrogen with electrophilic R¹ groups (halides, sulfonate esters) under the action of a base such as alkali metal hydroxides, fluorides, hydrides amides, alkyllithium, phosphabases and the like, to give 3(iv). Suitable solvents for this alkylation include DMF, DMA, DMSO, MeCN, THF, dioxane, DME and the like. Following saponification of the ester group with an alkaline solution, the resulting 5-indolecarboxylic acid derivative 3(v) is coupled to H₂N-R⁶ using an amide bond forming reagent as described previously (Scheme 1), to give compounds of formula I.

EXAMPLES

5

10

15

The present invention is illustrated in further detail by the following non-limiting

20 examples. All reactions were performed in a nitrogen or argon atmosphere.

Temperatures are given in degrees Celsius. Flash chromatography was performed on silica gel. Solution percentages or ratios express a volume to volume relationship, unless stated otherwise. Mass spectral analyses were recorded using electrospray mass spectrometry. Abbreviations or symbols used herein include:

PCT/CA02/01128 WO 03/010141

92

EtOH: ethanol

DBU: 1,8-diazabicyclo[5.4.0]under-7-ene

BOC: tert-butyloxycarbonyl Cbz: carbobenzyloxy carbonyl

PrOH: isopropanol

NMP: N-methylpyrrolidone

EDC: 1-(3-dimethylaminopropyl)-3-ethyl carbodiimide hydrochloride RNAsin: A ribonuclease inhibitor marketed by Promega Corporation

Tris: 2-amino-2-hydroxymethyl-1,3-propanediol

UMP: uridine 5'-monophosphate 10

UTP: uridine 5'-triphosphate

IPA: isopropyl acetate

Examples 1-45 illustrate methods of synthesis of representative compounds of this 15 invention.

EXAMPLE 1

Methyl 3-amino-4-iodobenzoate:

20

3-Amino-4-iodobenzoic acid (13.35 g, 50.8 mmol) was added to MeOH (150mL) and SOCI₂ (4.8 mL, 65.8 mmol, 1.3 equivalent) was added. The mixture was refluxed for WO 03/010141 PCT/CA02/01128

3 h and then volatiles were removed under reduced pressure. The residue was coevaporated three times with MeOH and dried in vacuo (15.23 g).

93

Methyl 3-trifluoroacetamido-4-iodobenzoate:

The aniline derivative from above (14.53 g, 52 mmol) was dissolved in DCM (200 mL) and TFAA (15 mL, 104 mmol) was added. The dark purple solution was refluxed overnight. Volatiles were removed under reduced pressure and the residue was passed through a short pad of silica gel using DCM as eluent. The desired product was obtained as a pink solid (13.81 g).

10

4-Phenylethynyl-3-(2,2,2-trifluoro-ethanoylamino)-benzoic acid methyl ester:

The iodide from above (0.742 g, 2 mmol), phenylacetylene (0.37 mL, 3.9 mmol, 1.7 equivalent) and Et₃N (6 mL) were charged in a dry flask under argon. PdCl₂(PPh₃)₂ (0.241 g, 0.3 mmol) was added and the mixture was stirred at room temperature until judged complete by HPLC analysis (~5 h). The reaction mixture was concentrated to half volume under reduced pressure and diluted with water (80 mL). The mixture was extracted with EtOAc (3 x 100 mL) and the organic extract washed with 5% HCl (100 mL), after (100 mL) and brine (40 mL). After drying over MgSO₄, the residue was purified by flash chromatography using 20% EtOAc – hexane as eluent to give the desired cross-coupled alkyne as a tan solid (0.442 g).

20

25

30

15

Methyl 3-(cyclohexenyl)-2-phenylindole 6-carboxylate:

A flame-dried flask was charged with finely powdered anhydrous K₂CO₃ (0.153 g, 1.1 mmol) and the alkyne derivative from above (0.390 g, 1.1 mmol). Dry DMF (4 mL) was added and the suspension degassed with a stream of argon. The enol triflate derived from cyclohexanone, prepared following the procedure described by A.G. Martinez, M. Hanack et al. (*J. Heterocyclic Chem.* 1988, *25*, 1237 or equivalent methods described in the literature, (0.802 g, 3.3 mmol, 3 equivalents) was added followed by Pd(PPh₃)₄ (0.086 g, 0.07 mmol) and the mixture was stirred for 8 h at room temperature. DMF was removed under vacuum and the residue purified by flash chromatography using DCM as eluent (0.260 g).

Methyl 3-cyclohexyl-2-phenylindole-6-carboxylate:

The material from above was hydrogenated (1 atm H_2 gas) over 20% Pd(OH)₂ in the usual manner, using MeOH as solvent. The desired cyclohexane indole was