

1/8

FIG. 1(b)

S100

$$L_{jag} = r \cdot \frac{\theta_{cut} - \theta_{1} - \theta_{2} + \left(\frac{3}{8} (\beta_{1} + \beta_{2}) - \frac{1}{4} \sqrt{\beta_{1} \beta_{2}}\right) \cdot \left(\frac{\theta_{1}}{\beta_{1}} + \frac{\theta_{2}}{\beta_{2}}\right)}{\frac{3}{8} (\beta_{1} + \beta_{2}) - \frac{1}{4} \sqrt{\beta_{1} \beta_{2}}}$$

$$A = V_{L} \frac{\theta_{cut} - \theta_{1} - \theta_{2} - \frac{\beta_{1} + \beta_{2}}{2r} \left(L_{set} - \frac{r\theta_{1}}{\beta_{1}} - \frac{r\theta_{2}}{\beta_{2}}\right)}{L_{set} - \frac{r\theta_{1}}{\beta_{1}} - \frac{r\theta_{2}}{\beta_{2}}}$$

$$A_{jag} = -V_{L} \left(\frac{\beta_{1} + \beta_{2}}{8r} + \frac{\sqrt{\beta_{1} \beta_{2}}}{4r}\right)$$

$$T_{jag} = \frac{L_{jag} - r\left(\frac{\theta_{1}}{\beta_{1}} - \frac{\theta_{2}}{\beta_{2}}\right)}{V_{L}}$$

$$\alpha = Tan^{-1} \left(\frac{\sqrt{(\beta_{1} + \beta_{2} + 2\sqrt{\beta_{1} \beta_{2}})^{2} - (\beta_{1} - \beta_{2})^{2}}}{\beta_{1} - \beta_{2}}\right)$$

$$Tc = \frac{L_{set}}{V_{L}} \qquad T_{01} = \frac{\theta_{1}}{N_{r1}} \qquad T_{45} = \frac{\theta_{2}}{N_{r2}}$$

$$N_{r1} = \frac{\beta_{1}V_{L}}{r} \qquad N_{r2} = \frac{\beta_{2}V_{L}}{r} \qquad \theta_{cut} = \frac{2\pi}{M}$$

TRUE

$$\omega_2 = \frac{\pi}{T_{iag}}$$

$$T_{12} = \frac{\pi - \alpha}{\omega_2}$$

$$T_{34} = T_{iag} - T_{13}$$

$$\omega_{1} = \frac{2\pi}{T_{jag}}$$

$$\omega_{2} = \frac{\pi}{T_{jag}}$$

$$T_{12} = \frac{\pi - \alpha}{\omega_{2}}$$

$$T_{34} = T_{iag} - T_{12}$$

$$T_{23} = T_{c} - T_{01} - T_{12} - T_{34} - T_{45}$$

$$\Delta - \Delta$$

 $A = A_{iag}$

S102

S103

 $L_{jag} < L_{set}$?

$$T_{12} = \frac{T_c - T_{01} - T_{45}}{2}$$

$$T_{23} = 0$$

$$T_{34} = \frac{T_c - T_{01} - T_{45}}{2}$$

FALSE

$$T_{34} = \frac{T_c - T_{01} - T_{45}}{2}$$

$$\omega_1 = \frac{2\pi}{T_{12} + T_{34}}$$

$$\omega_2 = \frac{\pi}{T_{12} + T_{34}}$$

S101

END

