HEAAN library

HEAAN

Kyoohyung Han May 23, 2018

Seoul National University

HEAAN scheme

HEAAN Scheme

HEAAN library is a library that supports operations between encrypted array of complex numbers. The Security of this scheme is decided by logQ, logN with fixed standard deviation $\sigma = 3.2$. If you use Martin's LWE parameter estimator, you can check the security of the scheme 1 .

encode :
$$(m_1, \ldots, m_\ell) \in \mathbb{C}^\ell \Rightarrow \lfloor \Delta \cdot m(x) \rceil \in \mathbb{Z}[X]/(X^N + 1)$$
.

The ciphertext is pair of polynomial $(a(x), b(x)) \in \mathcal{R}_Q$ such that

$$b(x) = -a(x)s(x) + \lfloor \Delta \cdot m(x) \rfloor + e(x) \text{ for } m(x) \in \mathbb{R}[X]/(X^N + 1)$$

for secret key s(x), $\mathcal{R} = \mathbb{Z}[X]/(X^N + 1)$ and $\mathcal{R}_Q = \mathcal{R}/Q\mathcal{R}$.

1

¹https://bitbucket.org/malb/lwe-estimator

Functionality

- encode: input $\vec{m} \in \mathbb{C}^{\ell}$, output integer polynomial m(x).
- decode: input m(x), output array of complex number \vec{m} .
- encrypt: input \vec{m} , encode it and return a ciphertext (a(x), b(x)).
- decrypt: input (a(x), b(x)), decrypt and decode it and return \vec{m} .
- add: input two ciphertext, return encryption of $\vec{m}_1 + \vec{m}_2$.
- square: input a ciphertext, return encryption of $\vec{m} \circ \vec{m}$.
- mult: input two ciphertext, return encryption of $\vec{m}_1 \circ \vec{m}_2$.
- rotate: input a ciphertext, return encryption of rotated \vec{m} .

²o means element-wise multiplication

How to use HEAAN library?

Pre-computations

First, we need to decide Δ and depth of target circuit L. This will decide $Q = \Delta^L$. Using security parameter λ and LWE parameter estimator, we will choose N which is the dimension of polynomial 3 .

Context context(logN, logQ);

⇒ compute matrices for encoding and decoding. This class includes **encode** and **decode** function.

```
ZZX mx = context.encode(mvec,slots,pBits);
```

 \Rightarrow this will return encoded result which is an integer polynomial m(x). Here pBits is logarithm of Δ with base 2.

³https://github.com/kimandrik/HEAAN

Key Generation

In HEAAN scheme, we need additional public key which is a pair of polynomial in \mathcal{R}^2_{PQ} . Here P is called special modulus that has same bit size with Q^4 .

SecretKey sk(logN, h);

 \Rightarrow generate a sparse secret polynomial s(x)⁵.

Scheme scheme(sk, context);

⇒ generate two public keys in below:

$$pk_{enc} = (a(x), -a(x)s(x) + e(x)) \in \mathcal{R}_{PQ}^{2}$$

$$pk_{mult} = (a(x), -a(x)s(x) + P \cdot s^{2}(x) + e(x)) \in \mathcal{R}_{PQ}^{2}$$

⁵This polynomial has only h number of non-zero elements $\in \{-1, 1\}$

 $^{^4}$ Now, the security is based on hardness of RLWE problem with (2logQ, logN, σ)

Key Generation

If users of this library need slot rotation functionality, they need to generate public keys corresponding it.

```
scheme.addConjKey(sk);
scheme.addLeftRotKey(sk,i);
scheme.addRightRotKey(sk.i);
```

⇒ generate public keys for left rotation and right rotations.

$$\mathsf{pk}_{leftRot,i} = (a(x), -a(x)s(x) + Ps(x^k) + e(x)) \in \mathcal{R}^2_{PQ}$$

for $k=5^i \mod 2N$ (k=2N-1 in case of conjugation and $k=5^{-i}$ in case of right rotation). This key is used for left rotation of our plaintext array with index i. If you call **scheme.addLeftRotKeys** and **scheme.addRightRotKeys** is will generate all keys for power of two rotations.

Homomorphic Addition

There are various version of homomorphic addition. Notice that we can do addition between plaintext and ciphertext also.

```
cipher3 = scheme.add(cipher1, cipher2);
scheme.addAndEqual(cipher1, cipher2);
cipher2 = scheme.addConst(cipher1, const);
```

⇒ these algorithms are quite fast. addition between two ciphertexts only takes about <u>10ms to 20ms</u> for commonly used parameters. Note that **addAndEqual** will update first input to the result ciphertext, and this is slightly faster because of memory allocation timing.

Homomorphic Addition

```
Homomorphic Addition time = 19.48 ms
-----
dvec: 0.429113 (expected = 0.428984)
dvec: 0.886836 (expected = 0.886822)
dvec: 1.55806 (expected = 1.55808)
dvec: 0.683899 (expected = 0.683982)
dvec: 1.13934 (expected = 1.13933)
```

Homomorphic Multiplication

There are various version of homomorphic multiplication. Notice that we can do multiplication between plaintext and ciphertext also.

```
cipher2 = scheme.square(cipher1);
cipher2 = scheme.squareAndEqual(cipher1);
cipher3 = scheme.mult(cipher1, cipher2);
scheme.multAndEqual(cipher1, cipher2);
cipher2 = scheme.multByConst(cipher1, const);
```

 \Rightarrow those algorithms except multByConst use pk_{mult} that we generate at the first step. This takes about 100ms to 1000ms depends on the parameters like depth L and Δ .

Homomorphic Rescaling

The result of homomorphic multiplication has scaling factor Δ^2 . So we need to re-scaling it. Here **pBits** is logarithm of Δ with base 2.

```
cipher2 = scheme.reScaleBy(cipher1, pBits);
scheme.reScaleByAndEqual(cipher1, pBits);
```

 \Rightarrow this will change to scaling factor Δ^2 to Δ . The result ciphertext has modulus Q/Δ .

Homomorphic Multiplication and Rescaling

```
Homomorphic Multiplication time = 315.924 ms
-----
dvec: -0.584994 (expected = -0.584978)
dvec: -0.126959 (expected = -0.126956)
dvec: 0.361808 (expected = 0.361819)
dvec: 0.019111 (expected = 0.0191251)
dvec: 0.0169387 (expected = 0.0169513)
```

Homomorphic Rotation

Because the plaintext is an array of real (or complex) element, we need rotation (or shifting) operation for efficiency.

```
cipher2 = scheme.leftRotateBy(cipher1, i);
scheme.leftRotateByAndEqual(cipher1, i);
cipher2 = scheme.rightRotateBy(cipher1, i);
scheme.rightRotateByAndEqual(cipher1, i);
```

 \Rightarrow each rotation need corresponding public key. If there is no corresponding public key, this will combine power of two shifting automatically.

Homomorphic Rotation

```
Homomorphic Rotation time = 143.653 ms
------
dvec: 0.968041 (expected = 0.96837)
dvec: 0.775928 (expected = 0.775818)
dvec: 0.582578 (expected = 0.582289)
dvec: 0.70814 (expected = 0.708524)
dvec: 0.666356 (expected = 0.666725)
```

Put All together

```
// Key Generation
Context context(logN, logQ);
SecretKev sk(logN);
Scheme scheme(sk, context);
scheme.addLeftRotKev(sk, 1);
// Encrypt
Ciphertext cipher1 = scheme.encrypt(mvec1, slots, pBits, logQ);
Ciphertext cipher2 = scheme.encrypt(mvec2, slots, pBits, logQ);
// Homomorphic Operations
Ciphertext addCipher = scheme.add(cipher1, cipher2);
Ciphertext multCipher = scheme.mult(cipher1, cipher2);
scheme.reScaleByAndEqual(multCipher, pBits);
Ciphertext rotCipher = scheme.leftRotate(cipher1, 1);
// Decrypt
complex<double>* dvecAdd = scheme.decrypt(sk, addCipher);
complex<double>* dvecMult = scheme.decrypt(sk, multCipher);
complex<double>* dvecRot = scheme.decrypt(sk, rotCipher);
```