DMLR @ICML'23

Data for Agriculture

Challenges and Opportunities in East Africa

Dina Machuve, PhD 29th July 2023

Who am I?

Dina Machuve

Agenda

- 1. Background
- 2. Data 4 Agriculture in East Africa
 - a. Use Case 1 Poultry Diseases Diagnostics
 - b. Use Case 2 Cassava Diseases Detection
 - c. Use Case 3 Lacuna Fund
- 3. Challenges and Opportunities

Overview

Agriculture is the backbone of the economy

EAST AFRICA

- 7 partner states
- Agriculture = Crop production + Livestock
- Population: 283.7 million (2021)
- 70% are smallholder farmers
- GDP: US\$ 305.3 bil (2021)

Source: www.eac.int

Poultry health matters

TANZANIA

- Low poultry productivity from diseases
- Lack of trusted poultry data
- Chickens: 36 mil
- Households with chickens: 4.6 mil
- Population: 56.32 mil (2018)
- GDP: US\$ 55.5 bil (2019)

Poultry diseases monitoring now

Salmonella, Newcastle and Coccidiosis poultry diseases:

- Diagnosed by lab procedures using droppings samples
- It takes 3 -4 days to get results
- Clinical signs
- Access to the services by farmers is expensive and limited
- Extension officers lack tools for rapid diagnostics

Motivation

Image data is better than lab data in developing countries

- **Ubiquity** of mobile phones in developing countries:
 - 60.3 mil mobile phone subscriptions in Tanzania
 - o 31.1 mil internet subscriptions on mobile
 - 515 mil unique mobile subscriptions in Africa
 - Mobile phones as a sensor

Images form a universal data format

Project Objectives

Project goals

Specific Objectives:

- 1. Generation of Training/Testing dataset for poultry diseases diagnostics
- 2. Dataset curation
- 3. Diagnostics/Modeling

Expected Outcome: Establishing an annotated dataset and a deep learning model for detecting three poultry diseases at the farm level

Task

Workflow

Step 1 & 2

Step 3

Generation of Training/Testing dataset for poultry diseases

diagnostics

Data collection tool

Used Open Data Kit (ODK)

Dataset on Google Sheets

729 23/09/20 09:21 23/09/20 09:22 23/09/20

730 23/09/20 09:22 23/09/20 09:22 23/09/20

732 23/09/20 09:23 23/09/20 09:24 23/09/20

733 23/09/20 09:24 23/09/20 09:24 23/09/20

734 23/09/20 09:25 23/09/20 09:25 23/09/20

735 | 23/09/20 09:25 | 23/09/20 09:26 | 23/09/20

23/09/20 09:22 23/09/20 09:23 23/09/20

Poultry Fec...

Image data collection at farms

Inoculation and monitoring

Lab labelled data: PCR diagnostics

- Used Polymerase Chain Reaction (PCR) diagnostics to annotate the laboratorylabeled fecal samples.
- We collected fecal images and fecal samples from poultry farms.
- Established a high-quality labelled dataset of 1,255 poultry fecal images

PCR RESULTS
FOR
SALMONELLA
(38
SAMPLES)
USING InVA
141 AND InVA
139 PRIMERS
Result:
3 are -ve and
35 are +ve lie
between 200
- 300Bp

Dataset: Chicken Droppings Images

Class	Farm- labelled lmages	Lab- labelled lmages
Healthy	2,057	347
Coccidiosis	2,103	373
Salmonella	2,276	349
Newcastle	376	186
TOTAL	6,812	1,255

Coccidiosis

Salmonella

Poultry Diseases Diagnostics

- Deep CNN model was developed to diagnose healthy and unhealthy poultry fecal images
- Architectures: baseline CNN, VGG16, InceptionV3, MobileNetV2 and Xception
- Dataset on training: Farm and laboratory labeled fecal images
- Dataset on testing: Farm labeled fecal images
- Goal: deployment of the model on smartphones to help farmers distinguish diseased from healthy poultry based on fecal images

Crop Diseases Monitoring

Crop diseases monitoring - Uganda

- Crop disease monitoring at farm level involves agricultural extension officers
 - Ratio (1:1,500) of extension officers to farmers is too low
- The trend on mobile apps for agriculture indicate the shift to automated solutions using ML and computer vision on crop diseases detection
 - The feedback to farmers is not instant
 - o It takes 5-7 days before a farmer can get feedback
 - Lack of real-time feedback information to farmers leads to low productivity

Agronomic Q&A Dataset

- Pilot study engaging 100 farmers
- Q&A pairs on staple food crops such as cassava, maize and beans
- Questions obtained from farmers through interviews and mobile app
- Answers were given by agricultural experts
- A new dataset **3,939** question-answer pairs
 - Crowd-sourced from the farmers

Agronomic recommender system

- Established using ML and NLP techniques
- Training on retrieval models: RetBERT,
 HayStack and Seq2seq
- Deployment of model on smartphone
 - o Disease diagnosis interface
 - and Q&A interface

Challenges

Open Questions

- Published datasets for further research what new knowledge will be generated that benefits the farmers?
- How do we incentivize farmers to use these digital tools?
- How do we reach farmers that don't own smartphones?
- Farmers in East Africa continue to have limited access to data:
 - Low level of literacy
 - Access to digital extension and advisory services dominantly through radio

Opportunities

Use Case 3

Dataset Gap

- World's first collaborative fund to correct gaps and biases in data for Al
- ML Datasets in Agriculture:
 - Ground image data smallholder farmers' fields in Kenya
 - Maize plot location and yield data in East Africa
 - IoT Fish Pond monitoring dataset
 - Crop Pest and Disease Diagnosis Crop imagery and spectrometry data

Opportunities on Data

- Robust end-user tools addressing the farmers needs
 - Using native languages Swahili is dominant in East Africa
 - Used in production level and not ending on pilot stages
- Legal framework on data to protect contributors (farmers)
- Capacity building of local researchers and developers to develop solutions addressing local problems

THANK YOU