A logarithmic approximation algorithm for MIN-VERTEX-COVER

```
Initialize U=\emptyset. while (E is not empty) { Find a vertex u\in V of largest (remaining) degree. Add u to U. Delete from E all the (remaining) edges with u as one endpoint. } Return U.
```

Tightness of the approximation ratio

The logarithmic approximation factor for the greedy vertex cover algorithm is optimal

A 2-approximation algorithm for MIN-VERTEX-COVER

```
Initialize U=\emptyset. while (E is not empty) { Pick any edge e=(u,v) from E. Add u and v to U. Remove u and v from V. Remove from E all edges incident on u or v. } Return U.
```


A 2-approximation algorithm for ETSP

Compute a minimum spanning tree T of G under the given cost function. Choose an arbitrary vertex u_0 of T.

Treat T as a tree rooted at u_0 .

Impose an arbitrary ordering on the children of each node.

Make a pre-order traversal of T (starting at the root u_0).

Suppose that the traversal returns the list $u_0,u_1,u_2,\ldots,u_{n-1}$ of visited nodes.

Return the Hamiltonian cycle $Z = (u_0, u_1, u_2, \dots, u_{n-1}, u_0)$.

(b) Computation of an MST

(c) Preorder traversal of MST

(d) The TSP cycle