Federated Learning

Willy Fitra Hendria
ICL Graduate Assignment 1

Introduction

- Introduced in a paper entitled "Communication-Efficient Learning of Deep Networks from Decentralized Data", H. Brendan McMahan, et al
- The client's data doesn't need to be shared in order to learn a global model. Instead, the global model is learned by aggregating the locally-computed updates from each client devices.
- Addresses the concerns of privacy and communication costs.

Ideal Problems for Federated Learning

Have the following properties:

- 1) Training on real-world data provides a distinct advantage
- 2) The data is privacy sensitive or large in size
- 3) Labels on the data can be inferred naturally from user interaction

Federated Optimization

Several key properties that differ from typical distributed optimization problem:

- Non-IID
 - Any particular client's dataset will not be representative of the population distribution
- Unbalanced
 - Varying amounts of local training data
- Massively distributed
 - The number of clients to be much larger than the average number of examples per client
- Limited communication
 - Clients are frequently offline or on slow or expensive connections

Algorithm (FederatedAveraging)

Algorithm 1 FederatedAveraging. The K clients are indexed by k; B is the local minibatch size, E is the number of local epochs, and η is the learning rate.

Server executes:

```
initialize w_0 for each round t=1,2,\ldots do m\leftarrow\max(C\cdot K,1) S_t\leftarrow (random set of m clients) for each client k\in S_t in parallel do w_{t+1}^k\leftarrow \text{ClientUpdate}(k,w_t) w_{t+1}\leftarrow\sum_{k=1}^K\frac{n_k}{n}w_{t+1}^k
```

ClientUpdate(k, w): // Run on client k $\mathcal{B} \leftarrow (\text{split } \mathcal{P}_k \text{ into batches of size } B)$ for each local epoch i from 1 to E do for batch $b \in \mathcal{B}$ do $w \leftarrow w - \eta \nabla \ell(w; b)$ return w to server

- The amount of computation is controlled by three key parameters: C (Client Fraction), E (Local Epoch), and B (Local Minibatch).
- Models are locally-trained on each 1 client: $w_{t+1}^k \leftarrow \text{ClientUpdate}(k, w_t)$
- Central server averages the resulting models

$$w_{t+1} \leftarrow \sum_{k=1}^{K} \frac{n_k}{n} w_{t+1}^k$$

With E=1 and B= ∞ , it is corresponds to FedSGD

Source: McMahan, B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B. A. (2017). Communication-efficient learning of deep networks from decentralized data. In Artificial Intelligence and Statistics. 1273–1282.

2NN	II	D ——	——Non-IID ——			
C	$B = \infty$	B = 10	$B = \infty$	B = 10		
0.0	1455	316	4278	3275		
0.1	$1474 (1.0 \times)$	$87 (3.6 \times)$	$1796 (2.4 \times)$	$664 (4.9 \times)$		
0.2	$1658 (0.9 \times)$	$77(4.1\times)$	$1528 (2.8 \times)$	$619 (5.3 \times)$		
0.5	— (—)	$75(4.2\times)$	— (—)	$443 (7.4 \times)$		
1.0	— (—)	$70(4.5 \times)$	— (—)	$380 (8.6 \times)$		
CNN	K, E = 5					
0.0	387	50	1181	956		
0.1	$339 (1.1 \times)$	$18(2.8\times)$	$1100 (1.1 \times)$	$206(4.6\times)$		
0.2	$337(1.1\times)$	$18(2.8\times)$	$978 (1.2 \times)$	$200(4.8\times)$		
0.5	$164(2.4\times)$	$18(2.8\times)$	$1067 (1.1 \times)$	$261(3.7\times)$		
1.0	$246(1.6\times)$	$16(3.1\times)$	— (—)	$97(9.9\times)$		

With $B=\infty$, there is only a small advantage in increasing C. Using smaller B=10 shows a significant improvement in using C >= 0.1, especially in the non-IID case

MNIST CNN, 99% ACCURACY							
CNN	E B		1.1	u IID		Non-IID	
FEDSGD	1	00	1	626	483	315,7150-0703	
FEDAVG	5	00	5	179 (3.5×)	1000	$(0.5 \times)$	
FEDAVG	1	50	12	65 (9.6×)	600	(0.8×)	
FEDAVG	20	00	20	234 (2.7×)	672	$(0.7 \times)$	
FEDAVG	1	10	60	34 (18.4×)	350	(1.4×)	
FEDAVG	5	50	60	29 (21.6×)	334	(1.4×)	
FEDAVG	20	50	240	32 (19.6×)	426	(1.1×)	
FEDAVG	5	10	300	20 (31.3×)	229	(2.1×)	
FEDAVG	20	10	1200	18 (34.8×)	173	(2.8×)	

SHAKESPEARE	LSTM.	54%	ACCURACY

E B		2.5	IID	Non-IID	
1	00	1.0	2488	3906	
1	50	1.5	1635 (1.5×)	549 (7.1×)	
5	00	5.0	613 (4.1×)	597 (6.5×)	
1	10	7.4	460 (5.4×)	164 (23.8×)	
5	50	7.4	401 (6.2×)	152 (25.7×)	
5	10	37.1	192 (13.0×)	41 (95.3×)	
	1 1 5 1 5 5 5	1 50 5 ∞ 1 10 5 50	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

Source: McMahan, B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B. A. (2017). Communication-efficient learning of deep networks from decentralized data. In Artificial Intelligence and Statistics, 1273–1282.

MNIST 2NN	\boldsymbol{E}	B	u	IID	Non-IID
FEDSGD	1	∞	1	1468	1817
FEDAVG	10	∞	10	$156 (9.4 \times)$	1100 (1.7×)
FEDAVG	1	50	12	$144(10.2\times)$	1183 (1.5×
FEDAVG	20	∞	20	$92(16.0\times)$	957 (1.9×
FEDAVG	1	10	60	$92(16.0\times)$	831 (2.2×
FEDAVG	10	50	120	45 (32.6×)	881 (2.1×
FEDAVG	20	50	240	$39(37.6\times)$	835 (2.2×
FEDAVG	10	10	600	$34(43.2\times)$	497 (3.7×
FEDAVG	20	10	1200	32 (45.9×)	738 (2.5×

With C=0.1, adding more local updates per round (increase E & decrease B) can produce a dramatic decrease in communication costs

For very large E, FedAvg can plateau or diverge.

It may be useful to decay the amount of local computation per round (moving to smaller E or larger B)

Source: McMahan, B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B. A. (2017). Communication-efficient learning of deep networks from decentralized data. In Artificial Intelligence and Statistics, 1273–1282.

ACC.	80%		82%		85%	
SGD	18000	(—)	31000	(—)	99000	(—)
FEDSGD	3750	$(4.8\times)$	6600	(4.7×)	N/A	(-)
FEDAVG	280	$(64.3 \times)$	630	$(49.2 \times)$	2000 (4	49.5×)

On the CIFAR-10 dataset, FedAVG has less number of communication rounds compares to FedSGD and baseline SGD.

Source: McMahan, B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B. A. (2017). Communication-efficient learning of deep networks from decentralized data. In Artificial Intelligence and Statistics, 1273–1282.

On a large-scale LSTM experiment, FedSGD with η = 18.0 required 820 rounds to reach 10.5%, while FedAvg with η =9.0 reached an accuracy of 10.5% in only 35 rounds, which is 23X fewer than fedSGD.

Source: McMahan, B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B. A. (2017). Communication-efficient learning of deep networks from decentralized data. In Artificial Intelligence and Statistics, 1273–1282.