Diszkrét matematika 1

Komplex számok

Mérai László merai@inf.elte.hu

Komputeralgebra Tanszék

2025 tavasz

Komplex számok

$$(\cos t + i \cdot \sin t)^n = \cos(n \cdot t) + i \cdot \sin(n \cdot t)$$

Komplex számok trigonometrikus alakja

Legyen $z = a + bi \in \mathbb{C} \setminus \{0\}$.

- Az r = |z| az $(a, b) \in \mathbb{R}^2$ vektor hossza.
- A $\varphi = \arg(z) \in [0, 2\pi)$ az (a, b) vektor irányszöge, a z argumentuma.
- Ekkor $a = r \cos \varphi$ és $b = r \sin \varphi$, így $z = r(\cos \varphi + i \sin \varphi)$

Definíció

Az $z = a + bi \in \mathbb{C} \setminus \{0\}$ komplex szám trigonometrikus alakja:

$$z = r(\cos \varphi + i \sin \varphi)$$
, ahol $a = \text{Re}(z) = r \cos \varphi$ és $b = \text{Im}(z) = r \sin \varphi$

Komplex számok trigonometrikus alakja, példák

Példa

$$z = 1$$
: $|z| = 1$, $arg(z) = 0$
 $\implies z = 1(\cos 0 + i \sin 0)$

 $\implies z = \sqrt{2}(\cos(\pi/4) + i\sin(\pi/4))$

Komplex számok trigonometrikus alakja, szorzás

Legyen $z, w \in \mathbb{C} \setminus \{0\}$ nem-nulla komplex számok:

$$z = |z|(\cos \varphi + i \sin \varphi), \quad w = |w|(\cos \psi + i \sin \psi)$$

A szorzatuk:

$$zw = |z|(\cos\varphi + i\sin\varphi) \cdot |w|(\cos\psi + i\sin\psi)$$
$$= |z||w|(\cos\varphi\cos\psi - \sin\varphi\sin\psi + i(\cos\varphi\sin\psi + \sin\varphi\cos\psi))$$

Addíciós képletek:

$$\cos(\varphi+\psi)=\cos\varphi\cos\psi-\sin\varphi\sin\psi\quad\sin(\varphi+\psi)=\cos\varphi\sin\psi+\sin\varphi\cos\psi$$
 Így

$$zw = |z||w|(\cos(\varphi + \psi) + i\sin(\varphi + \psi)).$$

Tétel (Biz: Id fent)

Legyenek $z, w \in \mathbb{C} \setminus \{0\}$ nem-nulla komplex számok:

$$z = |z|(\cos \varphi + i \sin \varphi), \quad w = |w|(\cos \psi + i \sin \psi)$$

Ekkor $zw = |z||w|(\cos(\varphi + \psi) + i\sin(\varphi + \psi)).$

Komplex számok trigonometrikus alakja, szorzás

$$zw = |z||w|(\cos(\varphi + \psi) + i\sin(\varphi + \psi)).$$

Ekkor

- A szorzat abszolút értéke: |zw| = |z||w|.
- A szorzat argumentuma:
 - ha $0 \le \arg z + \arg w < 2\pi$, akkor $\arg(zw) = \arg z + \arg w$;
 - ha $2\pi \le \arg z + \arg w \le 4\pi$, akkor $\arg(zw) = \arg z + \arg w 2\pi$.

A \sin , \cos függvények 2π szerint periodikusak, az argumentum meghatározásnál redukálni kell az argumentumok összegét.

Példa

- $(1+i)^2 = 1 + 2i + i^2 = 2i$
- \bullet $(1+i)^3 = 1+3i+3i^2+i^3 = -2+2i$
- \bullet $(1+i)^4 = 1 + 4i + 6i^2 + 4i^3 + i^4 = -4$

Általában,

- $z = 1 + i = \sqrt{2}(\cos(\pi/4) + i\sin(\pi/4))$
- Így $(1+i)^4 = \sqrt{2}^4(\cos(4 \cdot \pi/4) + i\sin(4 \cdot \pi/4)) = 4(\cos \pi + i\sin \pi) = -4$

Moivre-azonosságok

Tétel (Biz: HF)

Legyen $z, w \in \mathbb{C} \setminus \{0\}$ nem-nulla komplex számok: $z = |z|(\cos \varphi + i \sin \varphi), w = |w|(\cos \psi + i \sin \psi),$

és legyen $n \in \mathbb{N}$. Ekkor

- $zw = |z||w|(\cos(\varphi + \psi) + i\sin(\varphi + \psi))$
- $\frac{z}{w} = \frac{|z|}{|w|} (\cos(\varphi \psi) + i\sin(\varphi \psi))$
- $z^n = |z|^n (\cos n\varphi + i \sin n\varphi)$
- A szögek rendre összeadódnak, kivonódnak, szorzódnak.
- Az argumentumot ezek után redukcióval kapjuk!

Szorzás, példák

Példa

$$i = \cos(\pi/2) + i\sin(\pi/2) \Longrightarrow \qquad i \cdot z$$

$$i \cdot z = |z| \cdot (\cos(\varphi + \pi/2) + i\sin(\varphi + \pi/2))$$
(algebrai alakban: $i \cdot (a + bi) = -b + ia$)
$$\frac{1}{2} + i\frac{\sqrt{3}}{2} = \cos(\pi/3) + i\sin(\pi/3) \Longrightarrow$$

$$\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) \cdot z = |z| \cdot (\cos(\varphi + \pi/3) + i\sin(\varphi + \pi/3))$$

Szorzás, példák

Példa

$$2i = 2(\cos(\pi/2) + i\sin(\pi/2)) \Longrightarrow$$

$$2i \cdot z = 2|z| \cdot (\cos(\varphi + \pi/2) + i\sin(\varphi + \pi/2))$$

Geometriai jelentés:

Egy $w \in \mathbb{C} \setminus \{0\}$ komplex számmal való szorzás: nyújtva-forgatás

- |w|-szeres nyújtás
- arg(w) szöggel való forgatás.

Komplex számok hatványa

Példa

Legyen $z = \cos(\pi/6) + i\sin(\pi/6) = \sqrt{3}/2 + i/2$. Ekkor z hatványai:

•
$$z^2 = \cos(2\pi/6) + i\sin(2\pi/6)$$

$$z^3 = \cos(3\pi/6) + i\sin(3\pi/6) = i$$

•
$$z^4 = \cos(4\pi/6) + i\sin(4\pi/6)$$

•
$$z^5 = \cos(5\pi/6) + i\sin(5\pi/6)$$

...

..

•
$$z^{12} = \cos(12\pi/6) + i\sin(12\pi/6) = 1 = z^0$$

Komplex számok hatványai, példa

Példa

Számoljuk ki $\left(\frac{1+i}{\sqrt{2}}\right)^8$ hatványt.

- Az alap trigonometrikus alakja: $\frac{1+i}{\sqrt{2}} = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2} = \cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)$
- Így a hatvány:

$$\left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right)^8 = \cos\left(8 \cdot \frac{\pi}{4}\right) + i\sin\left(8 \cdot \frac{\pi}{4}\right) = \cos\left(2\pi\right) + i\sin\left(2\pi\right) = 1$$

De sok olyan z komplex szám van, melyre $z^8 = 1$:

•
$$1^8 = 1$$
, $(-1)^8 = 1$, $i^8 = 1$, $(-i)^8 = 1$

$$\bullet \left(\frac{1+i}{\sqrt{2}}\right)^8 = 1, \left((-1) \cdot \frac{1+i}{\sqrt{2}}\right)^8 = 1$$

• Sốt
$$\left(\pm i \cdot \frac{1+i}{\sqrt{2}}\right)^8 = 1$$

Gyökvonás

Legyen
$$z = |z|(\cos \varphi + i \sin \varphi)$$
, $w = |w|(\cos \psi + i \sin \psi)$. Ekkor $z = w \iff |z| = |w| \text{ és } \varphi = \psi + 2k\pi, \ k \in \mathbb{Z}$

Adott $w \in \mathbb{C}$ számra keressük a $z^n = w$ egyenlet megoldásait. Ekkor

$$z^{n} = |z|^{n}(\cos(n\varphi) + i\sin(n\varphi)) = |w|(\cos\psi + i\sin\psi) = w$$

ĺgy

$$|z| = |w|^{1/n}$$
 és $n\varphi = \psi + 2k\pi$ $\left(\Longrightarrow \varphi = \frac{\psi}{n} + \frac{2k\pi}{n}\right)$

Hány lényegesen különböző megoldás van:

$$\frac{\psi}{n}$$
, $\frac{\psi}{n} + \frac{2\pi}{n}$, $\frac{\psi}{n} + \frac{4\pi}{n}$, ..., $\frac{\psi}{n} + \frac{2(n-1)\pi}{n}$

De
$$\sin\left(\frac{\psi}{n}\right) = \sin\left(\frac{\psi}{n} + \frac{2n\pi}{n}\right)$$
 és $\cos\left(\frac{\psi}{n}\right) = \cos\left(\frac{\psi}{n} + \frac{2n\pi}{n}\right)$,

így pontosan n különböző megoldás lesz: $\frac{\psi}{n} + \frac{2k\pi}{n}$ $(k = 0, 1, \dots, n-1)$.

Komplex számok gyökei

Tétel (Biz.: ld. fönt)

Legyen $w\in\mathbb{C}\setminus\{0\}$ komplex szám $w=|w|(\cos\psi+i\sin\psi)$ trigonometrikus alakkal. Ekkor a $z^n=w,\,z\in\mathbb{C}$ egyenlet megoldásai

$$z_k = |w|^{1/n}(\cos\varphi_k + i\sin\varphi_k): \quad \varphi_k = \frac{\psi}{n} + \frac{2k\pi}{n}, \quad k = 0, 1, \dots, n-1$$

Példa

- Mi lesz $z^2 = 1$ egyenlet megoldása (spoiler: ± 1).
 - $w = 1 = 1 \cdot (\cos 0 + i \sin 0)$.
 - |z| = 1
 - $z^2 = \cos 2\varphi + i \sin 2\varphi = \cos 0 + i \sin 0 = 1$
 - $2\varphi = 0 + 2k\pi \Longrightarrow \varphi = 0 + k\pi \ (k = 0, 1).$
 - $z_0 = \cos 0 + i \sin 0 = 1$, $z_1 = \cos \pi + i \sin \pi = -1$