

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчёт по лабораторной работе №15 по курсу «Функциональное и логическое программирование»

Тема Формирование эффективных программ на Prolog
Студент Прянишников А.Н.
Группа <u>ИУ7-65Б</u>
Оценка (баллы)
Преподаватели Строганов Ю. В., Толпинская Н. Б.

Практическая часть

Для каждого случая пункта 2 обосновать необходимость всех условий тела. Для одного из вариантов ВОПРОСА и каждого варианта задания 2 составить таблицу, отражающую конкретный порядок работы системы: Т.к. резольвента хранится в виде стека, то состояние резольвенты требуется отображать в столбик: вершина – сверху! Новый шаг надо начинать с нового состояния резольвенты!

- 1. Максимум из двух чисел без использования отсечения и с использования отсечения.
- 2. Максимум из трёх чисел без использования отсечения и с использованием отсечения.

Для каждого случая пункта 2 обосновать необходимость всех условий тела. Для одного из вариантов ВОПРОСА и каждого варианта задания 2 составить таблицу, отражающую конкретный порядок работы системы.

Так как резольвента хранится в виде стека, то состояние резольвенты требуется отображать в столбик: вершина – сверху! Новый шаг надо начинать с нового состояния резольвенты!

На листинге 1 представлен код программы:

```
domains
    val = integer
4 predicates
    nondeterm max2(val, val, val)
    nondeterm max3(val, val, val, val)
    nondeterm max2opt(val, val, val)
    nondeterm max3opt(val, val, val, val)
10
11 clauses
    \max 2(X1, X2, X2) :- X2 >= X1.
12
    \max 2(X1, X2, X1) :- X1 >= X2.
13
14
15
    \max 3(X1, X2, X3, X3) :- X3 >= X1, X3 >= X2.
    \max 3(X1, X2, X3, X2) :- X2 >= X1, X2 >= X3.
    \max 3(X1, X2, X3, X1) :- X1 >= X2, X1 >= X3.
```

```
18
    max2opt(X1, X2, X2) :- X2 >= X1, !.
19
    max2opt(X1, _, X1).
20
21
    max3opt(X1, X2, X3, X3) :- X3 >= X2, X3 >= X1, !.
22
    max3opt(X1, X2, _, X1) :- X1 >= X2, !.
    max3opt(_, X2, _, X2).
24
25
26 goal
    % max2(1, 2, Max).
27
    % max3(1, 5, 2, Max).
28
   % max2opt(6, 3, Max).
    max3opt(1, 2, 3, Max).
```

В приложении 1 приведены таблицы для описания порядка ответа на вопрос, как выбираются знания.

Теоретические вопросы

1. Какое первое состояние резольвенты?

Стек, который содержит конъюнкцию целей, истинность которых система должна доказать, называется резольвентой. Первое состояние резольвенты - вопрос.

2. В каком случае система запускает алгоритм унификации? (Как эту необходимость на формальном уровне распознает система?)

Унификация – необходима для того, чтобы определить дальнейший путь поиска решений. Унификация заканчивается конкретизацией части переменных.

3. Каковы назначение и результат использования алгоритма унификации?

Алгоритм унификации – основной шаг с помощью которого система отвечает на вопросы унификации. На вход алгоритм принимает два терма, возвращает флаг успешности унификации, и если успешно, то подстановку.

4. В каких пределах программы уникальны переменные?

Областью действия переменной в Прологе является одно предложение. В разных предложениях может использоваться одно имя переменной для обозначения разных объектов.

5. Как применяется подстановка, полученная с помощью алгоритма унификации?

Пусть дан терм: (X_1, X_2, \dots, X_n) . Подстановка — множество пар, вида: $\{X_i = t_i\}$, где X_i — переменная, а t_i — терм.

В ходе выполнения программы выполняется связывание переменных с различными объектами, этот процесс назыв

6. Как меняется резольвента?

Резольвента меняется в 2 этапа:

- 1. Редукция замена подцели телом того правила, с заголовком которого успешно унифицируется данная подцель
- 2. Применение ко всей резольвенте подстановки.

Резольвента уменьшается, если удаётся унифицировать подцель с фактом. Система отвечает «Да», только когда резольвента становится пустой.

7. В каких случаях запускается механизм отката?

Механизм отката, который осуществляет откат программы к той точке, в которой выбирался унифицирующийся с последней подцелью дизъюнкт. Для этого точка, где выбирался один из возможных унифицируемых с подцелью дизъюнктов, запоминается в специальном стеке, для последующего возврата к ней и выбора альтернативы в случае неудачи. При откате все переменные, которые были означены в результате унификации после этой точки, опять становятся свободными.