CLASSIFYING QUESTIONS

SHRI SHRUTHI SHRIDHAR SOWMYA S SUNDARAM

 Identify the type of question being asked by the user with these categories - Who, What, When, Affirmation (Yes / No) or Unknown.

- Identify the type of question being asked by the user with these categories - Who, What, When, Affirmation (Yes / No) or Unknown.
- Build an interface to display it to the user, and validate your model's response with that of the user's actual intent.

- Identify the type of question being asked by the user with these categories - Who, What, When, Affirmation (Yes / No) or Unknown.
- Build an interface to display it to the user, and validate your model's response with that of the user's actual intent.
- Show analytics of performance

- Identify the type of question being asked by the user with these categories - Who, What, When, Affirmation (Yes / No) or Unknown.
- Build an interface to display it to the user, and validate your model's response with that of the user's actual intent.
- Show analytics of performance
- Improve performance dynamically

DATASET ANALYSIS

- No of samples 1483
- Distribution
- Missing class labels taken as unknown

Category	Number
What	574
Who	371
When	89
Affirmation	103
Unknown	342

CHALLENGES

- Key challenge is differentiating affirmation and unknown
- If we take conventional word2vec approaches all question words such as who, what, when, why, how etc may have similar values. Hence classifying between them might be difficult.

Class imbalance may make the model weak for affirmation

APPROACHES ATTEMPTED

- Multiple Classifiers after applying mean of glove
- Using first two words of sentence and building glove
- Applying over-sampling to balance training
- Rules based on Stanford parse trees

APPROACH - 1

- Multiple Classifiers after applying mean of glove
- After splitting dataset into 80-20% for training and test, we evaluated various models

Classifier	Test Accuracy
Logistic Regression	0.68
SVM	0.67
Random forest classifier	0.52
Multi Layer Perceptron	0.64

APPROACH - 2

- Multiple Classifiers after applying mean of glove on first 2 words
- After splitting dataset into 80-20% for training and test, we evaluated various models

Classifier	Test Accuracy
Logistic Regression	0.89
SVM	0.89
Random forest classifier	0.74
Multi Layer Perceptron	0.91

APPROACH - 3

- Sampled all datasets equally to minority class
- Performed badly, all accuracies ~ 0.2

APPROACH - 4

- Wrote rules on POS tags
- Moderate performance human intensive approach

POST MODEL BUILD

- Chose multi layer perceptron with 2 hidden layers 150 and 10 nodes
- Trained on entire dataset before launching interface

INTERFACE

- Desktop interface
- Trained on entire dataset before launching interface
- Functionalities
 - Query Model
 - Check Model against User Intent
 - See statistics of queries in this session
 - Retrain model

TECH DETAILS

- Python 3
- Sklearn
- NumPy
- Tkinter
- Gensim

Compute

Check

Analytics

Analytics

FUTURE WORK

- Experiments with doc2vec
- Partially rule based and partially trained
- Associate a control logic for re-training
- With more data deep architectures can be trained

APPLICATIONS

- Chatbot pre-processing
- Automated feedback design