Optimization and Numerical Methods Solutions

Thom Volker

27-10-2022

Table of contents

Preface		3
1	Chapter 1	4
2	Chapter 2 2.1 Exercises (2.7 in the notes)	5
3	Chapter 3	7
Re	References	

Preface

This project has two purposes. First, it is an attempt to organize my solutions to the course Optimization and Numerical Methods in a structured way. Second, it provides a justification to try and learn Quarto.

1 Chapter 1

No exercises.

2 Chapter 2

Chapter 2 is the first chapter that actually entails exercises.

2.1 Exercises (2.7 in the notes)

1. Consider the multinomial likelihood in Equation 2.1 for a model (for a two-way contingency table) assuming independence. Can you simplify the likelihood?

$$\sum_{j=1}^{R} \sum_{k=1}^{C} n_{jk} \ln(\pi_{jk}) \qquad \qquad \sum_{j=1}^{R} \sum_{k=1}^{C} \pi_{jk} = 1$$
 (2.1)

Solution

$$\ell(\pi) = \sum_{j=1}^{R} \sum_{k=1}^{C} n_{jk} \ln(\pi_{jk})$$

$$= \sum_{j=1}^{R} \sum_{k=1}^{C} n_{jk} \ln(\pi_{j+} \cdot \pi_{+k})$$

$$= \sum_{j=1}^{R} \sum_{k=1}^{C} n_{jk} \ln \pi_{j+} + n_{jk} \ln \pi_{+k}$$

$$= \sum_{j=1}^{R} n_{j+} \ln \pi_{j+} + \sum_{k=1}^{C} n_{+k} \ln \pi_{+k}$$
(2.2)

2. In a mixed model, optimization is carried out using the marginal likelihood (the likelihood with the random effects integrated out). Define the marginal likelihood for the one-way random effects ANOVA model.

One-way random effects ANOVA with group-specific effects $\mu_j \sim \mathcal{N}(0, \sigma_\mu^2),$ and

$$y_{ij} = \beta + \mu_j + \epsilon_{ij},$$

with $\epsilon \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$, with a groups indexed j, and n_j individuals in every group.

Solution

So, the likelihood consists of two components. For the individuals within each group, we have

$$\prod_{i=1}^{n_j} \frac{1}{\sqrt{2\pi\sigma_\epsilon^2}} \exp{\left(-\frac{(y_{ij}-\beta-\mu_j)^2}{2\sigma_\epsilon^2}\right)},$$

whereas for the groups themselves, we have

$$\prod_{j=1}^{a} \frac{1}{\sqrt{2\pi\sigma_{\mu}^2}} \exp\left(-\frac{\mu_j^2}{2\sigma_{\mu}^2}\right).$$

Combining these components, and integrating out the random effects, we obtain the marginal likelihood

$$\prod_{j=1}^a \int \prod_{i=1}^{n_j} \frac{1}{\sqrt{2\pi\sigma_\epsilon^2}} \exp\Bigg(-\frac{(y_{ij}-\beta-\mu_j)^2}{2\sigma_\epsilon^2}\Bigg) \frac{1}{\sqrt{2\pi\sigma_\mu^2}} \exp\Bigg(-\frac{\mu_j^2}{2\sigma_\mu^2}\Bigg) d\mu_j.$$

3. Suppose you do a simple linear regression analysis using a t_{ν} -distribution for the residuals (density: $f_{\nu}(y) = C\sqrt{\lambda} \Big(1 + \frac{\lambda(y-\mu)^2}{\nu}\Big)^{-\frac{\nu+1}{2}}$ where μ is the mean (for $\nu > 1$), λ is a scale parameter and C is a normalizing constraint that does not depend on μ or λ). Define the (log-)likelihood for n observations (y_i, x_i) , such that $\mu_i = \beta_0 + \beta_1 x_i$. Solution

$$\begin{split} L(\beta) &= \prod_{i=1}^n C \sqrt{\lambda} \left(1 + \frac{\lambda (y_i - \beta_0 - \beta_1 x_i)^2}{\nu} \right)^{-\frac{\nu+1}{2}}, \\ \ell(\beta) &= N \ln C + \frac{N}{2} \ln \lambda - \sum_{i=1}^n \frac{\nu+1}{2} \ln \left(1 + \frac{\lambda (y_i - \beta_0 - \beta_1 x_i)^2}{\nu} \right) \end{split}$$

3 Chapter 3

References