

Hello!

- David Gundry
 - Visiting lecturer at YSJ
 - Games Design /Research
 - d.gundry@yorksj.ac.uk

Overview

- The Course
 - Materials
 - Assessment
 - Content
- What is Mathematics? (Parts I, II, and III)

The Course

Course Materials

- Lectures
 - Online at https://mathsforcs.netlify.app
 - Videos, questions, exercises
 - Complete in your own time
- Attend practicals on Fridays

Practicals

- Software
 - Microsoft Teams
 - Replit https://repl.it
- Problem-based
 - Materials online in advance if you want them

Assessment

- Coursework assignment
 - Multiple parts
 - Demonstrating knowledge and skills taught in the course
 - Apply knowledge to solve problems
- Prepare by completing questions from lectures and practicals

Content

Week	Торіс	Lab Date
Week 1	Introduction (No preparation required for this week)	25/09/2020
Week 2	Numerical Systems	02/10/2020
Week 3	Modular Arithmetic	09/10/2020
Week 4	Asymptotic Complexity	16/10/2020
Week 5	Propositional Logic	23/10/2020
Week 6	Set Theory	30/10/2020
Week 7	Proof	06/11/2020
Week 8	Descriptive Statistics	13/11/2020
Week 9	(Reading week)	20/11/2020
Week 10	Probability	27/11/2020
Week 11	Inferential Statistics	04/12/2020
Week 12	TBD	11/12/2020

Why was it invented?

- Problem solving
 - Area of fields
 - Inheritance
 - Taxes
 - Distribution of grain

Babylonians

- Algorithmic
- Base 60 number system (many different units)
- Zero as a placeholder

Indians

- Astronomy
- Calculating very big numbers
- Positional notation
- Oral transmission in verse
- Decimal number system

Greeks

- Aristocratic
- Geometry
- Proof from Axoims
- Euclid

Pythagoras

Islamic Empire

- Algebra
- Algorithms
- Still written in prose

Muhammad ibn Musa al-Khwarizmi

What is it?

- Solving problems
- Patterns
- Language to abstract these things

Mathematical Language

- Way of expressing problems and their solutions
 - Verse
 - Prose
 - Symbols
- To communicate knowledge

What sort of knowledge?

- Games
 - Drawing curves
 - Graphics/shaders
 - Path-finding
 - Physics engines
 - Simulations

- Software Engineering
 - Complexity
 - Networks
 - AI
 - Big data

Why Maths?

- Benefits of using maths for this
 - Precise
 - Unambiguous
 - Easy to interpret (once you know how)
 - Concise
- Perfect if you want to implement an algorithm

Maths as a Formal Language

- Formal Language
 - A
 - A→B
 - ∴ B
- Truth

Maths as Symbol Manipulation

Translation

- "My field should be 100m², but the markers have been washed away. I know it's 10m long. How wide should it be?"
- 100 = 10w

Derivation

- 100 = 10w
- 10 = w
- w = 10

Translation

- w = 10
- Means that the width of my field should be 10m

Abstraction

- Take only the things we think are essential
- Represent a complex system in terms of simple concepts
- Separate ideas from physical objects

Truth

- If our axioms are true, our conclusions are true
- All mathematical truth is relative to the truth of its axioms
- How we get to those axioms, however...

Meaning

- Our symbols are meaningful if there is some kind of isomorphism between our formal system and the real world
- Why does it need to be meaningful?
 - Formal systems are games
 - Some are useful, some not, some unexpectedly so
 - Usefulness, like a game, is not the point

Hilbert's Program

- Idealy we want out maths to be
 - Consistent
 - Complete

Gödel

- But any system complex enough to encode algebra is provably not complete
- There will always be things that are true that we can't prove
 - We can't know everything

Numbers

- Like 4
- How do we write them down?
 - Numerical Systems
- How do we add them up?
 - Algebra
- What if we change the rules?
 - Modular Arithmetic

Algebra ("reunion of broken parts")

Equations

- [some stuff] = [some other stuff]
- $y = ax^2 + bx + c$
- Do stuff to both sides
 - i.e. derive new equations that must also be true

Functions

•
$$f(x) = ax^2 + bx + c$$

$$- f(1) = a + b + c$$

$$- f(2) = 4a + 2b + c$$

- f(3)

Important for algorithms

- How fast does a function grow?
 - Asymptotic Complexity

Logic

- Reasoning
 - If I am wearing socks I am not cold
 - I am wearing socks
 - I am not cold
- Propositional Logic
 - If A implies B, and A, then B
- Predicate Logic
- Second-order logic

Sets

- Like the **set** of natural numbers < 4
 - $-\{0,1,2,3\}$
- Foundational in Mathematics
 - We may not be able to know everything, but we can know most stuff because of Set Theory

Graphs

- And extending the idea of a set, we could have a graph:
 - A set of nodes
 - A set of edges

Probability

- Using numbers to say how likely things are.
- The real world is messy
 - We never know things for sure
 - Things are just more or less likely
- We can model uncertainty using Probability

Statistics

- How do we make compelling arguments about this messy world?
 - Giving science a reliable foundation
 - By applying probability theory to our observations of the world using Statistics

The End

- See you on Friday
- No preparation required this week