Correction

d'après Mines de Sup 2001

Partie I

- 1. $b = u_1 au_0$ donc b est déterminé de manière unique.
- 2.a $E_1^{(0)}$ correspond à l'ensemble des suites arithmétiques i.e. l'ensemble des suites réelles pour lesquelles il existe $b \in \mathbb{R}$ tel que $\forall n \in \mathbb{N}, u_n = u_0 + nb$.
- 2.b $E_0^{(0)}$ correspond à l'ensemble des suites constantes à partir du rang 1.
- 3. $E_a^{(0)} \subset \mathbb{R}^{\mathbb{N}}$, en prenant b = 0, la suite nulle appartient à $E_a^{(0)}$.

Soit $\lambda, \mu \in \mathbb{R}$ et $(u_n), (v_n) \in E_a^{(0)}$.

$$\forall n \in \mathbb{N}, \lambda u_{n+1} + \mu v_{n+1} = a(\lambda u_n + \mu v_n) + b \text{ avec } b = \lambda b_u + \mu b_v \text{ donc } \lambda(u_n) + \mu(v_n) \in E_a^{(0)} \,.$$

Ainsi $E_a^{(0)}$ est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$ et c'est un donc un \mathbb{R} - espace vectoriel.

4. Supposons $\lambda x + \mu y = 0$ i.e. $\forall n \in \mathbb{N}, \lambda . 1 + \mu a^n = 0$.

Pour n=0, on a $\lambda + \mu = 0$ et pour n=1, on a $\lambda + a\mu = 0$.

$$\begin{cases} \lambda + \mu = 0 \\ \lambda + a\mu = 0 \end{cases} \begin{cases} \lambda = -\mu \\ (a-1)\mu = 0 \end{cases} \begin{cases} \lambda = 0 \\ \mu = 0 \end{cases} \text{ puisque } a \neq 1.$$

Ainsi (x,y) est une famille libre.

$$x \in E_a^{(0)}$$
 avec $b_x = 1 - a$ car $1 = a \cdot 1 + (1 - a)$.

$$y \in E_a^{(0)}$$
 avec $b_u = 0$ car $a^{n+1} = a.a^n + 0$.

5.a
$$\begin{cases} \lambda x_0 + \mu y_0 = u_0 \\ \lambda x_1 + \mu y_1 = u_1 \end{cases} \Leftrightarrow \begin{cases} \lambda + \mu = u_0 \\ \lambda + a\mu = u_1 \end{cases} \Leftrightarrow \begin{cases} \lambda = u_0 - \mu \\ (a-1)\mu = u_1 - u_0 \end{cases} \Leftrightarrow \begin{cases} \lambda = (au_0 - u_1)/(a-1) \\ \mu = (u_1 - u_0)/(a-1) \end{cases}.$$

5.b Convenons de poser $b = b_u$.

$$b=u_{\scriptscriptstyle \rm I}-au_{\scriptscriptstyle \rm O}=\lambda(x_{\scriptscriptstyle \rm I}-ax_{\scriptscriptstyle \rm O})+(y_{\scriptscriptstyle \rm I}-ay_{\scriptscriptstyle \rm O})=\lambda b_{\scriptscriptstyle x}+\mu b_{\scriptscriptstyle y} \ \ ({\rm en\ fait}\ \ u\mapsto b_{\scriptscriptstyle u}\ \ {\rm est\ lin\'eaire}).$$

Raisonnons par récurrence sur $n \in \mathbb{N}$:

Pour n = 0: ok

Supposons la propriété établie au rang n > 0:

$$u_{n+1} = au_n + b = a(\lambda x_n + \mu y_n) + \lambda b_x + \mu b_y = \lambda (ax_n + b_x) + \mu (ay_n + b_y) = \lambda x_{n+1} + \mu y_{n+1}.$$

Récurrence établie.

- 5.c La famille (x,y) est génératrice de $E_a^{(0)}$ puisque $\forall u \in E_a^{(0)}, \exists (\lambda,\mu) \in \mathbb{R}, u = \lambda.x + \mu.y$. Ainsi (x,y) est une base de $E_a^{(0)}$.
- $6. \qquad E_a^{(0)} = \left\{ (u_n) \in \mathbb{R}^{\mathbb{N}}; \exists (\lambda, \mu) \in \mathbb{R}, \forall n \in \mathbb{N}, u_n = \lambda + \mu a^n \right\} \text{ et } \dim E_a^{(0)} = 2.$

Partie II

1.a L'application φ introduite est clairement une application linéaire.

Si
$$P \in \ker \varphi$$
 alors $P \in \mathbb{R}_p[X]$ et $P(0) = P(1) = \dots = P(p) = 0$.

P étant de degré inférieur à p et possédant p+1 racines, c'est le polynôme nul.

Ainsi φ est une application linaire injective.

De plus dim $\mathbb{R}_p[X] = p+1 = \dim \mathbb{R}^{p+1}$ donc par le théorème d'isomorphisme c'est un isomorphisme.

1.b Si P et \tilde{P} sont deux polynômes solutions du problème posé alors :

$$\varphi(P) = (u_1 - au_0, u_2 - au_1, \dots, u_{n+1} - au_n) = \varphi(\tilde{P}) \text{ et par injectivit\'e de } \varphi \text{ on obtient } P = \tilde{P}.$$

Le polynôme P est donc unique.

2. $E_a^{(p)} \subset \mathbb{R}^{\mathbb{N}}$, la suite nulle appartient à $E_a^{(p)}$ (en prenant P = 0).

Soit
$$\lambda, \mu \in \mathbb{R}$$
 et $(u_n), (v_n) \in E_a^{(p)}$.

$$\forall n \in \mathbb{N}, \lambda u_{n+1} + \mu v_{n+1} = \lambda (au_n + P_u(n)) + \mu (av_n + P_v(n)) = a(\lambda u_n + \mu v_n) + P(n)$$

avec
$$P = \lambda P_u + \mu P_v$$
 (= $P_{\lambda u + \mu v}$). Ainsi $\lambda(u_n) + \mu(v_n) \in E_a^{(p)}$.

 $E_{\circ}^{(p)}$ est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$, c'est donc un \mathbb{R} - espace vectoriel.

3. En vertu des calculs ci-dessus :

$$\forall \lambda, \mu \in \mathbb{R}, \forall (u_{\scriptscriptstyle n}), (v_{\scriptscriptstyle n}) \in E_a^{(p)} \text{ on a } P_{\lambda u + \mu v} = \lambda P_u + \mu P_v \text{ i.e. } \theta(\lambda u + \mu v) = \lambda \theta(u) + \mu \theta(v) \; .$$

Ainsi θ est une application linéaire de $E_a^{(p)}$ vers $\mathbb{R}_p[X]$.

4. Soit $u \in \ker \theta$. On a $P_u = 0$ donc $\forall n \in \mathbb{N}, u_{n+1} = au_n$ puis $\forall n \in \mathbb{N}, u_n = a^n u_0$

$$\ker\theta=\operatorname{Vect}(y)\ \operatorname{avec}\ y=(a^n)_{n\in\mathbb{N}}\ .$$

5.a Puisque
$$a \neq 1$$
 et $Q_k = (1-a)X^k + \sum_{\ell=0}^{k-1} C_k^{\ell} X^{\ell}$ on a $\deg Q_k = k$.

- 5.b La famille $(Q_0, Q_1, ..., Q_p)$ est une famille de polynômes de degrés étagés, c'est donc une base de $\mathbb{R}_p[X]$.
- 6.a Soit $k \in \{0,1,...,p\}$ et u la suite de terme général $u_n = n^k$.

On a
$$\forall n \in \mathbb{N}, u_{n+1} = (n+1)^k = an^k + (n+1)^k - an^k = au_n + Q_k(n)$$
.

Ainsi $u \in E_a^{(p)}$ et $\theta(u) = Q_k$ d'où $Q_k \in \operatorname{Im} \theta$.

- 6.b L'application linéaire θ est surjective car $\mathbb{R}_p[X] = \operatorname{Vect}(Q_0, ..., Q_p) \subset \operatorname{Im} \theta$ puis $\mathbb{R}_p[X] = \operatorname{Im} \theta$.
- 7. En vertu du théorème du rang : $\dim E_a^{(p)} = \operatorname{rg}(\theta) + \dim \ker \theta = (p+1) + 1 = p+2$.
- 8. On a déjà vu ci-dessus $x^{(0)}, \dots, x^{(p)}, y \in E_a^{(p)}$.

Supposons
$$\lambda_0 x^{(0)} + \cdots + \lambda_n x^{(p)} + \mu y = 0$$
.

En appliquant
$$\theta$$
 on obtient: $\lambda_0 \theta(x^{(0)}) + \dots + \lambda_n \theta(x^{(p)}) + \mu \theta(y) = 0$ i.e. $\lambda_0 Q_0 + \dots + \lambda_n Q_n + \mu \times 0 = 0$.

Or
$$(Q_0,...,Q_n)$$
 est libre donc $\lambda_0 = ... = \lambda_n = 0$.

La relation initiale donne alors $\mu y = 0$ et puisque $y \neq 0$ on obtient aussi $\mu = 0$.

Finalement la famille $(x^{(0)},...,x^{(p)},y)$ est libre.

 $(x^{(0)},\ldots,x^{(p)},y)$ est une famille libre formée de $p+2=\dim E_a^{(p)}$ éléments de $E_a^{(p)}$, c'est donc une base de $E_a^{(p)}$.

9. $u_n \in E_2^{(1)}$ donc $\exists ! (\alpha, \beta, \gamma) \in \mathbb{R}^3$ tel que $\forall n \in \mathbb{N}, u_n = \alpha + \beta n + \gamma 2^n$.

$$u_0 = -2$$
, $u_1 = 1$ et $u_2 = 5$ donc

$$\begin{cases} \alpha+\gamma=-2\\ \alpha+\beta+2\gamma=1\\ \alpha+2\beta+4\gamma=5 \end{cases} \begin{cases} \alpha=-2-\gamma\\ \beta+\gamma=3\\ 2\beta+3\gamma=7 \end{cases} \begin{cases} \alpha=-2-\gamma\\ \beta=3-\gamma\\ \gamma=1 \end{cases} \begin{cases} \alpha=-3\\ \beta=2\\ \gamma=1 \end{cases}$$

Finalement $\forall n \in \mathbb{N}, u_n = -3 + 2n + 2^n$.

Partie III

1. Les questions 1,2,3,4 de la partie II se reprennent dans les mêmes termes en notant que cette fois-ci $\ker \theta = \operatorname{Vect}(y)$ où y est la suite constante égale à 1.

Pour
$$k = \{0,1,...,p\}$$
, posons $Q_k = (X+1)^{k+1} - X^{k+1}$ polynôme de degré k .

Pour
$$x^{(k)}$$
 la suite définie par $x^{(k)}_n = n^{k+1}$ on observe $x^{(k)} \in E_1^{(p)}$ avec $\theta(x^{(k)}) = P_{x^{(k)}} = Q_k$.

La famille $(Q_0,...,Q_n)$ est une base de $\mathbb{R}_p[X]$ (car formée de polynômes de degrés étagés) et les Q_k appartiennent à $\operatorname{Im} \theta$. Par suite $\operatorname{Im} \theta = \mathbb{R}_p[X]$.

Comme en 7, on obtient $\dim E_1^{(p)} = p + 2$.

Comme en 8, la famille $(x^{(0)},...,x^{(p)},y)$ est une base de $E_1^{(p)}$. Ainsi

$$\begin{split} E_{\scriptscriptstyle 1}^{(p)} &= \left\{ (u_{\scriptscriptstyle n}) \in \mathbb{R}^{\mathbb{N}}; \exists (\lambda_{\scriptscriptstyle 0}, \ldots, \lambda_{\scriptscriptstyle p}, \mu) \in \mathbb{R}^{\scriptscriptstyle p+2}, \forall n \in \mathbb{N}, u_{\scriptscriptstyle n} = \lambda_{\scriptscriptstyle 0} n + \cdots + \lambda_{\scriptscriptstyle p} n^{\scriptscriptstyle p+1} + \mu \right\} \\ &= \left\{ (u_{\scriptscriptstyle n}) \in \mathbb{R}^{\mathbb{N}}; \exists \, Q \in \mathbb{R}_{\scriptscriptstyle p+1} \big[X \big], \forall n \in \mathbb{N}, u_{\scriptscriptstyle n} = Q(n) \right\} \end{split}$$

 $2. \qquad (u_{\scriptscriptstyle n}) \in E^1_{\scriptscriptstyle 1} \ \text{donc} \ \exists ! (\alpha,\beta,\gamma) \in \mathbb{R}^3 \ \text{tel que} \ \forall n \in \mathbb{N}, u_{\scriptscriptstyle n} = \alpha + \beta n + \gamma n^2 \,.$

$$u_{0} = -2 \; , \; u_{\rm 1} = -1 \; \, {\rm et} \; \, u_{\rm 2} = -6 \; \, {\rm donc} \; \,$$

$$\begin{cases} \alpha = -2 \\ \alpha + \beta + \gamma = -1 \\ \alpha + 2\beta + 4\gamma = -6 \end{cases} \begin{cases} \alpha = -2 \\ \beta + \gamma = 1 \\ \beta + 2\gamma = -2 \end{cases} \begin{cases} \alpha = -2 \\ \beta = 4 \\ \gamma = -3 \end{cases}.$$

Finalement $\forall n \in \mathbb{N}, u_n = -2 + 4n - 3n^2$.