Computer-generated proof of affine involution toggling property

Eric MARBERG

Yifeng ZHANG

March 23, 2020

Contents

1	Setup	1
2	Case A1 2.1 Subcase (i) 2.2 Subcase (ii) 2.3 Subcase (iii)	2 2 3 8
3	Case A2 3.1 Subcase (i) 3.2 Subcase (ii) 3.3 Subcase (iii)	10
4	Case A3 4.1 Subcase (i) 4.2 Subcase (ii) 4.3 Subcase (iii)	29
5	Case B1 5.1 Subcase (i) 5.2 Subcase (ii) 5.3 Subcase (iii)	48
6	Case B2 6.1 Subcase (i) 6.2 Subcase (ii) 6.3 Subcase (iii)	56
7	Case B3 7.1 Subcase (i) 7.2 Subcase (ii) 7.3 Subcase (iii)	75
8	Case C1 8.1 Subcase (i) 8.2 Subcase (ii) 8.3 Subcase (iii) 1	94
	9.1 Subcase (i) 9.2 Subcase (ii) 9.3 Subcase (iii)	14

1 Setup

Let n be a positive integer. For the definition of the affine symmetric group \tilde{S}_n , see [2]. Fix an affine permutation $w \in \tilde{S}_n$ and an involution $y = y^{-1} \in \tilde{S}_n$. We set $y_a = y(a)$ for $a \in \mathbb{Z}$ and define

$$Cyc(y) = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : a \le b = y_a\}.$$

As a shorthand, we write $w^{-1} = -a - b - c - \cdots - d$ — to mean that $w_a < w_b < w_c < \cdots < w_d$.

Lemma 1. One has $w \in \mathcal{A}(y)$ if and only if for all $(a,b),(a',b') \in \operatorname{Cyc}(y)$, the following properties hold:

- (Y1) If a < b then $w^{-1} = -b a a$
- (Y2) If a < a' < b' < b then $w^{-1} \neq -b a' a a$ and $w^{-1} \neq -b b' a .$
- (Y3) If a < a' and b < b' then $w^{-1} = -a b' ...$

Proof. This is equivalent to [2, Theorem 7.6].

Fix integers i < j that are not congruent modulo n. Let $t_{ij} \in \tilde{S}_n$ be the reflection that interchanges i and j while fixing all integers not congruent to i or j modulo n. Write \lessdot for the covering relation in the Bruhat order on \tilde{S}_n .

Lemma 2. One has $w \leqslant wt_{ij}$ if and only if the following property holds:

(T)
$$w^{-1} = -i - j$$
 but if $i < e < j$ then $w^{-1} \neq -i - e - j$.

Moreover, if i' and j' are integers with $i - i' = j - j' \in n\mathbb{Z}$, then property (T) is equivalent to the following:

(U)
$$w^{-1} = -i' - j'$$
 but if $i' < e < j'$ then $w^{-1} \neq -i' - e - j'$.

Proof. This is equivalent to [1, Proposition 8.3.6].

Recall the definition of the operator τ_{ij}^n from [2, §8] and let $z = z^{-1} = \tau_{ij}^n(y) \in \tilde{S}_n$.

Lemma 3. Suppose $w \in \mathcal{A}(y)$ and $w \leqslant wt_{ij}$ and $y = \tau_{ij}^n(y)$. Then one of the following cases occurs:

- (A1) $i < j = y_i < y_i$ and $w^{-1} = -y_i i j .$
- (A2) $i < j < y_i < y_i$ and $w^{-1} = -y_i y_i i j .$
- (A3) $i < y_i < j < y_i$ and $w^{-1} = -y_i i j y_i ...$
- (B1) $y_i < i = y_i < j \text{ and } w^{-1} = -i j y_i .$
- (B2) $y_i < i < y_i < j \text{ and } w^{-1} = -y_i i j y_j .$
- (B3) $y_i < y_i < i < j \text{ and } w^{-1} = -i j y_i y_i .$
- (C1) $i < j < y_j < y_i$ and $w^{-1} = -y_i i y_j j .$
- (C2) $y_i < y_i < i < j \text{ and } w^{-1} = -i y_i j y_i .$

Proof. By definition, the only way one can have $y = \tau_{ij}^n(y)$ outside the given cases is if $y_j = i < j = y_i$ or $y_j < i < j < y_i$, but then any element $w \in \mathcal{A}(y)$ has $w^{-1} = -j - i - i$ by Lemma 1 so it cannot hold that $w < wt_{ij}$. When y corresponds to the one of the given cases, the possibilities for $w \in \mathcal{A}(y)$ with $w < wt_{ij}$ are completely determined by Lemmas 1 and 2.

Theorem. Suppose $w \in \mathcal{A}(y)$ and $w \lessdot wt_{ij}$ and $y = \tau_{ij}^n(y)$. Define

$$k = \begin{cases} j & \text{in cases (A1)-(A3)} \\ y_j & \text{in cases (B1)-(B3) and (C1)-(C2)} \end{cases} \quad \text{and} \quad l = \begin{cases} y_i & \text{in cases (A1)-(A3) and (C1)-(C2)} \\ i & \text{in cases (B1)-(B3)}. \end{cases}$$

Then $k < l \notin k + n\mathbb{Z}$ and $w \neq wt_{ij}t_{kl} \in \mathcal{A}(y)$.

The proof of this statement occupies the rest of this computer-generated document.

Proof. By hypothesis, we are in one of the eight cases in Lemma 3. The sets $\{i, y_i\} + n\mathbb{Z}$ and $\{j, y_j\} + n\mathbb{Z}$ are therefore disjoint. Note that if $i \neq y_i$ then the sets $i + n\mathbb{Z}$ and $y_i + n\mathbb{Z}$ are disjoint, and that if $j \neq y_j$ then the sets $j + n\mathbb{Z}$ and $y_i + n\mathbb{Z}$ are disjoint.

Let $v = wt_{ij}t_{kl}$. To show that $v \in \mathcal{A}(y)$, it suffices by Lemma 1 to check that if $(a, b), (a', b') \in \text{Cyc}(y)$ then the following properties hold:

- (V1) If a < b then $v^{-1} = -b a ...$
- (V2) If a < a' < b' < b then $v^{-1} \neq -b a' a a$ and $v^{-1} \neq -b b' a a$.
- (V3) If a < a' and b < b' then $v^{-1} = -a b' ...$

Let $E = \{i, j, y_i, y_i\}$. Then $v_a = w_a$ for all integers $a \notin E + n\mathbb{Z}$, and $\operatorname{Cyc}(y) = \operatorname{Cyc}^1(y) \sqcup \operatorname{Cyc}^2(y) \sqcup \operatorname{Cyc}^3(y)$ where

$$Cyc^{1}(y) = \{(a, b) \in Cyc(y) : a, b \in E\},\$$

$$Cyc^{2}(y) = \{(a, b) \in Cyc(y) : a, b \notin E + n\mathbb{Z}\},\$$

$$Cyc^{3}(y) = \{(a + mn, b + mn) : 0 \neq m \in \mathbb{Z} \text{ and } (a, b) \in Cyc^{1}(y)\}.$$

When $(a, b), (a', b') \in \operatorname{Cyc}^2(y)$, properties (V1)-(V3) are equivalent to (Y1)-(Y3) and therefore hold since $w \in \mathcal{A}(y)$. It remains to check properties (V1)-(V3) in the following cases:

- (i) When $(a, b), (a', b') \in Cyc^{1}(y)$.
- (ii) When one of the pairs (a, b), (a', b') belongs to $\operatorname{Cyc}^1(y)$ while the other belongs to $\operatorname{Cyc}^2(y)$.
- (iii) When $(a, b) \in \operatorname{Cyc}^1(y)$ and $(a', b') \in \operatorname{Cyc}^3(y)$.

We check directly that properties (V1)-(V3) hold in cases (i), (ii), and (iii) for each of the eight cases in Lemma 3.

2 Case A1

Suppose $i < j = y_i < y_i$ and $w^{-1} = -y_i - i - j$ — so that $k = j < y_i = l$.

2.1 Subcase (i)

In this case $v = wt_{ij}t_{kl}$ is such that

$$v^{-1} = -j - y_i - i - .$$

When $(a, b), (a', b') \in \operatorname{Cyc}^1(y) = \{(i, y_i), (j, j)\}$, properties (V1)-(V3) are equivalent to the following conditions which evidently hold:

- $(Z1) \Leftrightarrow (wt)^{-1} = -y_i i .$
- $(Z2) \Leftrightarrow (wt)^{-1} \neq -y_i j i .$
- $(Z3) \Leftrightarrow (no condition).$

Thus properties (V1)-(V3) hold whenever (a, b), (a', b') are as in case (i) and $i < j = y_j < y_i$.

2.2 Subcase (ii)

Suppose R is an integer such that $(R, R) \in \operatorname{Cyc}^2(y)$, so that $R = y_R \notin \{i, j, y_i\} + n\mathbb{Z}$.

- 1. Suppose $i < j < y_i < R$.
 - (a) If $w^{-1} = -y_i R i j$ then (Y3) fails for (a, b) = (j, j) and (a', b') = (R, R).
 - (b) If $w^{-1} = -y_i i R j$ then (Y3) fails for (a, b) = (j, j) and (a', b') = (R, R).
 - (c) If $w^{-1} = -R y_i i j$ then (Y3) fails for (a, b) = (j, j) and (a', b') = (R, R).

Recall that $(k,l) = (j,y_i)$. We conclude that if $i < j < y_i < R$ and then one of the following holds:

•
$$w^{-1} = -y_i - i - j - R$$
 and $v^{-1} = -j - y_i - i - R$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(i, y_i), (j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathbf{Z}1) \Leftrightarrow (wt)^{-1} = -y_i - i - .$$

$$(Z2) \Leftrightarrow (no condition).$$

$$(\mathbf{Z3}) \Leftrightarrow (wt)^{-1} = -i - R - \text{ and } (wt)^{-1} = -j - R -.$$

2. Suppose $i < R < j < y_i$.

(a) If
$$w^{-1} = -y_i - i - R - j$$
— then (T) fails.

(b) If
$$w^{-1} = -y_i - R - i - j$$
— then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (R, R)$.

(c) If
$$w^{-1} = -y_i - i - j - R$$
— then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (j, j)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i < R < j < y_i$ and then one of the following holds:

•
$$w^{-1} = -R - y_i - i - j$$
 and $v^{-1} = -R - j - y_i - i$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(i, y_i), (j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -y_i - i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_i - R - i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -R - j - .$$

3. Suppose $i < j < R < y_i$.

(a) If
$$w^{-1} = -y_i - R - i - j$$
— then (Y3) fails for $(a, b) = (j, j)$ and $(a', b') = (R, R)$.

(b) If
$$w^{-1} = -y_i - i - R - j$$
— then (Y3) fails for $(a, b) = (j, j)$ and $(a', b') = (R, R)$.

(c) If
$$w^{-1} = -R - y_i - i - j$$
— then (Y3) fails for $(a, b) = (j, j)$ and $(a', b') = (R, R)$.

Recall that $(k,l) = (j,y_i)$. We conclude that if $i < j < R < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_i - i - j - R$$
 and $v^{-1} = -j - y_i - i - R$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(i, y_i), (j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -y_i - i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_i - R - i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -j - R - .$$

4. Suppose $R < i < j < y_i$.

(a) If
$$w^{-1} = -y_i - R - i - j$$
— then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -y_i - i - R - j$$
— then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_i - i - j - R$$
— then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (j, j)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $R < i < j < y_i$ and then one of the following holds:

•
$$w^{-1} = -R - y_i - i - j$$
 and $v^{-1} = -R - j - y_i - i$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(i, y_i), (j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -y_i - i - .$$

$$(Z2) \Leftrightarrow (no condition).$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -R - j - \text{and } (wt)^{-1} = -R - y_i - .$$

Next suppose P < Q are integers with $(P,Q) \in \operatorname{Cyc}^2(y)$, so that $Q = y_P$ and $P,Q \notin \{i,j,y_i\} + n\mathbb{Z}$.

1. Suppose $P < i < j < Q < y_i$.

(a) If
$$w^{-1} = -y_i - i - Q - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -y_i - i - j - Q - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_i - Q - i - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_i - i - Q - P - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -Q - y_i - i - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(f) If
$$w^{-1} = -Q - y_i - i - P - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -Q - y_i - P - i - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(h) If
$$w^{-1} = -y_i - Q - P - i - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(i) If
$$w^{-1} = -y_i - Q - i - P - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $P < i < j < Q < y_i$ and then one of the following holds:

•
$$w^{-1} = -Q - P - y_i - i - j$$
 and $v^{-1} = -Q - P - j - y_i - i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(i, y_i), (j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -y_i - i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -Q-j-P-.$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - y_i - .$$

2. Suppose $P < i < Q < j < y_i$.

(a) If
$$w^{-1} = -y_i - i - Q - j - P$$
— then (T) fails.

(b) If
$$w^{-1} = -y_i - i - Q - P - j$$
 then (T) fails.

(c) If
$$w^{-1} = -y_i - i - j - Q - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_i - Q - i - j - P$$
 then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(e) If
$$w^{-1} = -Q - y_i - i - j - P$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(f) If
$$w^{-1} = -Q - y_i - i - P - j$$
 then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(g) If
$$w^{-1} = -Q - y_i - P - i - j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

$$\text{(h) If } w^{-1} = -y_i - Q - P - i - j - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (i,y_i).$$

(i) If
$$w^{-1} = -y_i - Q - i - P - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $P < i < Q < j < y_i$ and then one of the following holds:

$$\bullet \ w^{-1} = -Q - P - y_i - i - j - \ \text{and} \ v^{-1} = -Q - P - j - y_i - i - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(i, y_i), (j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -y_i - i - .$$

 $(Z2) \Leftrightarrow (\text{no condition}).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - j - \text{ and } (wt)^{-1} = -P - y_i - .$$

3. Suppose $i < j < y_i < P < Q$.

(a) If
$$w^{-1} = -y_i - Q - i - j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(b) If
$$w^{-1} = -Q - P - y_i - i - j$$
— then (Y3) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

(c) If
$$w^{-1} = -Q - y_i - i - j - P$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(d) If
$$w^{-1} = -Q - y_i - i - P - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(e) If
$$w^{-1} = -Q - y_i - P - i - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

- (f) If $w^{-1} = -y_i Q P i j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- (g) If $w^{-1} = -y_i Q i P j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- (h) If $w^{-1} = -y_i i Q j P$ then (Y3) fails for (a, b) = (j, j) and (a', b') = (P, Q).
- (i) If $w^{-1} = -y_i i Q P j$ then (Y3) fails for (a, b) = (j, j) and (a', b') = (P, Q).

Recall that $(k, l) = (j, y_i)$. We conclude that if $i < j < y_i < P < Q$ and then one of the following holds:

•
$$w^{-1} = -y_i - i - j - Q - P - \text{ and } v^{-1} = -j - y_i - i - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(i, y_i), (j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

- $(Z1) \Leftrightarrow (wt)^{-1} = -Q P \text{ and } (wt)^{-1} = -y_i i .$
- $(Z2) \Leftrightarrow (no condition).$
- $(Z3) \Leftrightarrow (wt)^{-1} = -i Q \text{ and } (wt)^{-1} = -j Q .$
- 4. Suppose $i < j < P < y_i < Q$.

(a) If
$$w^{-1} = -y_i - Q - i - j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(b) If
$$w^{-1} = -Q - P - y_i - i - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(c) If
$$w^{-1} = -Q - y_i - i - j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(d) If
$$w^{-1} = -Q - y_i - i - P - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(e) If
$$w^{-1} = -Q - y_i - P - i - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(f) If
$$w^{-1} = -y_i - Q - P - i - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(g) If
$$w^{-1} = -y_i - Q - i - P - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(h) If
$$w^{-1} = -y_i - i - Q - j - P$$
— then (Y3) fails for $(a, b) = (j, j)$ and $(a', b') = (P, Q)$.

(i) If
$$w^{-1} = -y_i - i - Q - P - j$$
— then (Y3) fails for $(a, b) = (j, j)$ and $(a', b') = (P, Q)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i < j < P < y_i < Q$ and then one of the following holds:

•
$$w^{-1} = -y_i - i - j - Q - P - \text{ and } v^{-1} = -j - y_i - i - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(i, y_i), (j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow$$
 $(wt)^{-1} = -Q - P - \text{and } (wt)^{-1} = -y_i - i - .$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - Q - \text{ and } (wt)^{-1} = -j - Q - .$$

- 5. Suppose $i < P < j < Q < y_i$.
 - (a) If $w^{-1} = -y_i i Q P j$ then (T) fails.
 - (b) If $w^{-1} = -Q y_i i P j$ then (T) fails.
 - (c) If $w^{-1} = -y_i Q i P j$ then (T) fails.
 - (d) If $w^{-1} = -y_i i Q j P$ then (Y2) fails for (a, b) = (P, Q) and (a', b') = (j, j).
 - (e) If $w^{-1} = -Q y_i i j P$ then (Y2) fails for (a, b) = (P, Q) and (a', b') = (j, j).
 - (f) If $w^{-1} = -y_i Q i j P$ then (Y2) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
 - (g) If $w^{-1} = -Q y_i P i j$ then (Y2) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
 - (h) If $w^{-1} = -y_i Q P i j$ then (Y2) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).

Recall that $(k, l) = (j, y_i)$. We conclude that if $i < P < j < Q < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_i - i - j - Q - P - \text{ and } v^{-1} = -j - y_i - i - Q - P - .$$

•
$$w^{-1} = -Q - P - y_i - i - j$$
 and $v^{-1} = -Q - P - j - y_i - i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(i, y_i), (j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -y_i - i - .$$

$$(Z2) \Leftrightarrow \begin{cases} (wt)^{-1} \neq -Q - j - P - \text{ and } \\ (wt)^{-1} \neq -y_i - P - i - \text{ and } (wt)^{-1} \neq -y_i - Q - i - . \end{cases}$$

 $(Z3) \Leftrightarrow (\text{no condition}).$

6. Suppose $i < P < Q < j < y_i$.

(a) If
$$w^{-1} = -y_i - i - Q - j - P$$
 — then (T) fails.

(b) If
$$w^{-1} = -y_i - i - Q - P - j$$
 then (T) fails.

(c) If
$$w^{-1} = -Q - y_i - i - P - j$$
— then (T) fails.

(d) If
$$w^{-1} = -y_i - Q - i - P - j$$
 then (T) fails.

(e) If
$$w^{-1} = -y_i - Q - i - j - P$$
— then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(f) If
$$w^{-1} = -Q - y_i - P - i - j$$
— then (Y2) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

(g) If
$$w^{-1} = -y_i - Q - P - i - j$$
— then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(h) If
$$w^{-1} = -y_i - i - j - Q - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, j)$.

(i) If
$$w^{-1} = -Q - y_i - i - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, j)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i < P < Q < j < y_i$ and then one of the following holds:

•
$$w^{-1} = -Q - P - y_i - i - j$$
 and $v^{-1} = -Q - P - j - y_i - i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(i, y_i), (j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -y_i - i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_i - P - i - \text{ and } (wt)^{-1} \neq -y_i - Q - i - i$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - i - .$$

7. Suppose $P < Q < i < j < y_i$.

(a) If
$$w^{-1} = -y_i - i - Q - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -y_i - i - j - Q - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_i - Q - i - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_i - i - Q - P - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -Q - y_i - i - j - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(f) If
$$w^{-1} = -Q - y_i - i - P - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -Q - y_i - P - i - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(h) If
$$w^{-1} = -y_i - Q - P - i - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(i) If
$$w^{-1} = -y_i - Q - i - P - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $P < Q < i < j < y_i$ and then one of the following holds:

•
$$w^{-1} = -Q - P - y_i - i - j$$
 and $v^{-1} = -Q - P - j - y_i - i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(i, y_i), (j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -y_i - i - .$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - j - \text{ and } (wt)^{-1} = -P - y_i - .$$

8. Suppose $i < P < j < y_i < Q$.

- (a) If $w^{-1} = -y_i i Q P j$ then (T) fails.
- (b) If $w^{-1} = -Q y_i i P j$ then (T) fails.
- (c) If $w^{-1} = -y_i Q i P j$ then (T) fails.
- (d) If $w^{-1} = -y_i i Q j P$ then (Y2) fails for (a, b) = (P, Q) and (a', b') = (j, j).
- (e) If $w^{-1} = -y_i Q i j P$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- $\text{(f) If } w^{-1} = Q P y_i i j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$
- (g) If $w^{-1} = -Q y_i i j P$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- (h) If $w^{-1} = -Q y_i P i j$ then (Y3) fails for $(a,b) = (i,y_i)$ and (a',b') = (P,Q).
- (i) If $w^{-1} = -y_i Q P i j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).

Recall that $(k, l) = (j, y_i)$. We conclude that if $i < P < j < y_i < Q$ and then one of the following holds:

•
$$w^{-1} = -y_i - i - j - Q - P - \text{ and } v^{-1} = -j - y_i - i - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(i, y_i), (j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -y_i - i - .$$

$$(\mathbf{Z2}) \Leftrightarrow (wt)^{-1} \neq -Q - j - P - .$$

$$(\mathbf{Z3}) \Leftrightarrow (wt)^{-1} = -i - Q -.$$

9. Suppose $P < i < j < y_i < Q$.

(a) If
$$w^{-1} = -y_i - Q - i - j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -Q - y_i - i - j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -Q - y_i - i - P - j$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -Q - y_i - P - i - j$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -y_i - Q - i - P - j$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(f) If
$$w^{-1} = -y_i - i - Q - j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, j)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $P < i < j < y_i < Q$ and then one of the following holds:

•
$$w^{-1} = -Q - P - y_i - i - j$$
 and $v^{-1} = -Q - P - j - y_i - i$.

•
$$w^{-1} = -v_i - Q - P - i - j - \text{ and } v^{-1} = -i - Q - P - v_i - i - i$$

•
$$w^{-1} = -y_i - i - Q - P - j$$
 and $v^{-1} = -j - y_i - Q - P - i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(i, y_i), (j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -y_i - i - .$$

$$(\mathbf{Z2}) \Leftrightarrow \begin{cases} (wt)^{-1} \neq -Q - i - P - \text{ and } (wt)^{-1} \neq -Q - y_i - P - \text{ and } \\ (wt)^{-1} \neq -Q - j - P - . \end{cases}$$

 $(Z3) \Leftrightarrow (no condition)$

10. Suppose $i < j < P < Q < y_i$.

(a) If
$$w^{-1} = -y_i - Q - i - j - P$$
— then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(b) If
$$w^{-1} = -Q - y_i - P - i - j$$
— then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(c) If
$$w^{-1} = -y_i - Q - P - i - j$$
— then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(d) If
$$w^{-1} = -y_i - Q - i - P - j$$
— then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(e) If
$$w^{-1} = -y_i - i - Q - j - P$$
— then (Y3) fails for $(a, b) = (j, j)$ and $(a', b') = (P, Q)$.

$$\text{(f) If } w^{-1}=-y_i-i-Q-P-j-\text{ then (Y3) fails for } (a,b)=(j,j) \text{ and } (a',b')=(P,Q).$$

- (g) If $w^{-1} = -Q P y_i i j$ then (Y3) fails for (a,b) = (j,j) and (a',b') = (P,Q).
- (h) If $w^{-1} = -Q y_i i j P$ then (Y3) fails for (a, b) = (j, j) and (a', b') = (P, Q).
- (i) If $w^{-1} = -Q y_i i P j$ then (Y3) fails for (a, b) = (j, j) and (a', b') = (P, Q).

Recall that $(k, l) = (j, y_i)$. We conclude that if $i < j < P < Q < y_i$ and then one of the following holds:

$$\bullet \ w^{-1} = -y_i - i - j - Q - P - \ \text{and} \ v^{-1} = -j - y_i - i - Q - P -.$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(i, y_i), (j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -y_i - i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_i - P - i - \text{ and } (wt)^{-1} \neq -y_i - Q - i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -j - Q - .$$

We conclude that properties (V1)-(V3) hold whenever (a, b), (a', b') are as in cases (i) or (ii) and $i < j = y_j < y_i$.

2.3 Subcase (iii)

Suppose i' and j' are integers such that $0 \neq i - i' = j - j' \in n\mathbb{Z}$, so that w(i) - w(i') = w(j) - w(j') = i - i'.

- 1. Suppose $i' < j' < i < j < y_{i'} < y_i$.
 - (a) If $w^{-1} = -y_{i'} y_i i' j' i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (b) If $w^{-1} = -y_{i'} y_i i' i j' j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (c) If $w^{-1} = -y_{i'} i' y_i j' i j$ then (Y3) fails for (a, b) = (j', j') and $(a', b') = (i, y_i)$.
 - (d) If $w^{-1} = -y_{i'} i' y_i i j' j$ then (Y3) fails for (a, b) = (j', j') and $(a', b') = (i, y_i)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i' < j' < i < j < y_{i'} < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - j$$
 and $v^{-1} = -j' - y_{i'} - i' - j - y_i - i$.

When $(a, b) \in \text{Cyc}^1(y) = \{(i, y_i), (j, j)\}$ and $(a', b') \in \{(i', y_{i'}), (j', j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(V1) \Leftrightarrow (wt)^{-1} = -y_i - i - \text{ and } (wt)^{-1} = -y_{i'} - i' - .$$

- $(V2) \Leftrightarrow (no condition).$
- $(V3) \Leftrightarrow (no condition).$
- 2. Suppose $i' < j' < y_{i'} < i < j < y_i$.
 - (a) If $w^{-1} = -y_{i'} y_i i' j' i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (b) If $w^{-1} = -y_{i'} y_i i' i j' j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (c) If $w^{-1} = -y_{i'} i' y_i j' i j$ then (Y3) fails for (a, b) = (j', j') and $(a', b') = (i, y_i)$.
 - (d) If $w^{-1} = -y_{i'} i' y_i i j' j$ then (Y3) fails for (a, b) = (j', j') and $(a', b') = (i, y_i)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i' < j' < y_{i'} < i < j < y_i$ and then one of the following holds:

$$\bullet \ w^{-1} = -y_{i'} - i' - j' - y_i - i - j - \text{ and } v^{-1} = -j' - y_{i'} - i' - j - y_i - i - .$$

$$(V1) \Leftrightarrow (wt)^{-1} = -y_i - i - \text{ and } (wt)^{-1} = -y_{i'} - i' - .$$

- $(V2) \Leftrightarrow (\text{no condition}).$
- $(V3) \Leftrightarrow (no condition).$
- 3. Suppose $i' < i < j' < y_{i'} < j < y_i$.

(a) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - j$$
 then (T) fails.

- (b) If $w^{-1} = -y_{i'} y_i i' i j' j$ then (T) fails.
- (c) If $w^{-1} = -y_{i'} i' y_i j' i j$ then (Y2) fails for $(a, b) = (i, y_i)$ and (a', b') = (j', j').
- (d) If $w^{-1} = -y_{i'} y_i i' j' i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i' < i < j' < y_{i'} < j < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - j$$
 and $v^{-1} = -j' - y_{i'} - i' - j - y_i - i$.

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(i, y_i), (j, j)\}$ and $(a', b') \in \{(i', y_{i'}), (j', j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(V1) \Leftrightarrow (wt)^{-1} = -y_i - i - \text{ and } (wt)^{-1} = -y_{i'} - i' - .$$

$$(V2) \Leftrightarrow (wt)^{-1} \neq -y_i - j' - i - .$$

- $(V3) \Leftrightarrow (no condition).$
- 4. Suppose $i' < j' < i < y_{i'} < j < y_i$.

(a) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - i - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - j$$
— then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - j$$
— then (Y3) fails for $(a, b) = (j', j')$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - j$$
— then (Y3) fails for $(a, b) = (j', j')$ and $(a', b') = (i, y_i)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i' < j' < i < y_{i'} < j < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - j$$
 and $v^{-1} = -j' - y_{i'} - i' - j - y_i - i$.

When $(a, b) \in \text{Cyc}^1(y) = \{(i, y_i), (j, j)\}$ and $(a', b') \in \{(i', y_{i'}), (j', j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(V1) \Leftrightarrow (wt)^{-1} = -y_i - i - and (wt)^{-1} = -y_{i'} - i' - .$$

- $(V2) \Leftrightarrow (\text{no condition}).$
- $(V3) \Leftrightarrow (no condition).$
- 5. Suppose $i' < i < j' < j < y_{i'} < y_i$.
 - (a) If $w^{-1} = -y_{i'} i' y_i i j' j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} y_i i' i j' j$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} i' y_i j' i j$ then (Y2) fails for $(a, b) = (i, y_i)$ and (a', b') = (j', j').
 - (d) If $w^{-1} = -y_{i'} y_i i' j' i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i' < i < j' < j < y_{i'} < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - j$$
 and $v^{-1} = -j' - y_{i'} - i' - j - y_i - i$.

When $(a, b) \in \text{Cyc}^1(y) = \{(i, y_i), (j, j)\}$ and $(a', b') \in \{(i', y_{i'}), (j', j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(V1) \Leftrightarrow (wt)^{-1} = -y_i - i - \text{ and } (wt)^{-1} = -y_{i'} - i' - .$$

$$(V2) \Leftrightarrow (wt)^{-1} \neq -y_i - j' - i - .$$

 $(V3) \Leftrightarrow (no condition).$

We conclude that properties (V1)-(V3) hold for all $(a,b), (a',b') \in \text{Cyc}(y)$ when $i < j = y_i < y_i$.

3 Case A2

Suppose $i < j < y_i < y_i$ and $w^{-1} = -y_i - y_i - i - j$ — so that $k = j < y_i = l$.

3.1 Subcase (i)

In this case $v = wt_{ij}t_{kl}$ is such that

$$v^{-1} = -y_i - j - y_i - i - .$$

When $(a,b),(a',b') \in \operatorname{Cyc}^1(y) = \{(j,y_j),(i,y_i)\}$, properties (V1)-(V3) are equivalent to the following conditions which evidently hold:

$$(Z1) \Leftrightarrow (wt)^{-1} = -y_i - i - \text{ and } (wt)^{-1} = -y_i - j - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_i - j - i - \text{ and } (wt)^{-1} \neq -y_i - y_j - i - .$$

$$(Z3) \Leftrightarrow (no condition).$$

Thus properties (V1)-(V3) hold whenever (a, b), (a', b') are as in case (i) and $i < j < y_i < y_i$.

3.2 Subcase (ii)

Suppose R is an integer such that $(R,R) \in \text{Cyc}^2(y)$, so that $R = y_R \notin \{i,j,y_i,y_j\} + n\mathbb{Z}$.

- 1. Suppose $i < j < y_i < y_i < R$.
 - (a) If $w^{-1} = -y_j y_i R i j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (R, R).
 - (b) If $w^{-1} = -R y_j y_i i j$ then (Y3) fails for $(a,b) = (i,y_i)$ and (a',b') = (R,R).
 - (c) If $w^{-1} = -y_i R y_i i j$ then (Y3) fails for $(a,b) = (i,y_i)$ and (a',b') = (R,R).
 - (d) If $w^{-1} = -y_j y_i i R j$ then (Y3) fails for $(a, b) = (j, y_j)$ and (a', b') = (R, R).

Recall that $(k, l) = (j, y_i)$. We conclude that if $i < j < y_i < y_i < R$ and then one of the following holds:

•
$$w^{-1} = -y_j - y_i - i - j - R$$
 and $v^{-1} = -y_j - j - y_i - i - R$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -y_i - i - \text{ and } (wt)^{-1} = -y_i - j - .$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - R - \text{ and } (wt)^{-1} = -i - R - .$$

- 2. Suppose $i < j < y_j < R < y_i$.
 - (a) If $w^{-1} = -y_i y_i R i j$ then (Y2) fails for $(a,b) = (i,y_i)$ and (a',b') = (R,R).
 - (b) If $w^{-1} = -R y_j y_i i j$ then (Y3) fails for $(a,b) = (j,y_j)$ and (a',b') = (R,R).
 - (c) If $w^{-1} = -y_i y_i i R j$ then (Y3) fails for $(a, b) = (j, y_i)$ and (a', b') = (R, R).
 - (d) If $w^{-1} = -y_j R y_i i j$ then (Y3) fails for $(a,b) = (j,y_j)$ and (a',b') = (R,R).

Recall that $(k, l) = (j, y_i)$. We conclude that if $i < j < y_i < R < y_i$ and then one of the following holds:

$$\bullet \ w^{-1} = -y_j - y_i - i - j - R - \ \text{and} \ v^{-1} = -y_j - j - y_i - i - R -.$$

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -y_i - i - \text{ and } (wt)^{-1} = -y_j - j - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_i - R - i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - R - .$$

3. Suppose $i < j < R < y_i < y_i$.

(a) If
$$w^{-1} = -y_j - y_i - R - i - j$$
— then (Y2) fails for $(a,b) = (i,y_i)$ and $(a',b') = (R,R)$.

(b) If
$$w^{-1}=-y_j-y_i-i-R-j$$
— then (Y2) fails for $(a,b)=(j,y_j)$ and $(a',b')=(R,R)$.

(c) If
$$w^{-1} = -y_i - R - y_i - i - j$$
 then (Y2) fails for $(a, b) = (j, y_i)$ and $(a', b') = (R, R)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i < j < R < y_i < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_i - y_i - i - j - R$$
 and $v^{-1} = -y_i - j - y_i - i - R$.

•
$$w^{-1} = -R - y_i - y_i - i - j$$
 and $v^{-1} = -R - y_i - j - y_i - i$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -y_i - i - \text{ and } (wt)^{-1} = -y_i - j - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_i - R - i - \text{ and } (wt)^{-1} \neq -y_i - R - j - .$$

$$(Z3) \Leftrightarrow (no condition).$$

4. Suppose $i < R < j < y_i < y_i$.

(a) If
$$w^{-1} = -y_i - y_i - i - R - j$$
— then (T) fails.

(b) If
$$w^{-1} = -y_i - y_i - R - i - j$$
— then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (R, R)$.

(c) If
$$w^{-1} = -y_j - y_i - i - j - R$$
— then (Y3) fails for $(a,b) = (R,R)$ and $(a',b') = (j,y_j)$.

(d) If
$$w^{-1} = -y_j - R - y_i - i - j$$
 then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (j, y_j)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i < R < j < y_j < y_i$ and then one of the following holds:

•
$$w^{-1} = -R - y_i - y_i - i - j$$
 and $v^{-1} = -R - y_i - j - y_i - i$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -y_i - i - \text{ and } (wt)^{-1} = -y_i - j - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_i - R - i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -R - y_i - .$$

5. Suppose $R < i < j < y_j < y_i$.

(a) If
$$w^{-1} = -y_j - y_i - i - j - R$$
— then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -y_i - y_i - R - i - j$$
— then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_i - y_i - i - R - j$$
— then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_j - R - y_i - i - j$$
— then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (j, y_j)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $R < i < j < y_i < y_i$ and then one of the following holds:

•
$$w^{-1} = -R - y_i - y_i - i - j$$
 and $v^{-1} = -R - y_i - j - y_i - i$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -y_i - i - \text{ and } (wt)^{-1} = -y_i - j - .$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -R - y_i - \text{ and } (wt)^{-1} = -R - y_i - x_i$$

Next suppose P < Q are integers with $(P,Q) \in \text{Cyc}^2(y)$, so that $Q = y_P$ and $P,Q \notin \{i,j,y_i,y_i\} + n\mathbb{Z}$.

1. Suppose $P < i < j < Q < y_i < y_i$.

(a) If
$$w^{-1} = -y_i - y_i - i - j - Q - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -Q - y_i - y_i - i - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_j - y_i - Q - i - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_j - Q - y_i - i - j - P$$
— then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(e) If
$$w^{-1} = -y_j - Q - y_i - i - P - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(f) If
$$w^{-1} = -Q - y_j - y_i - i - P - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -y_j - y_i - i - Q - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

$$\text{(h) If } w^{-1}=-y_j-y_i-i-Q-P-j-\text{ then (Y3) fails for } (a,b)=(P,Q) \text{ and } (a',b')=(i,y_i).$$

(i) If
$$w^{-1} = -Q - y_j - y_i - P - i - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(j) If
$$w^{-1} = -y_j - y_i - Q - P - i - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(k) If
$$w^{-1} = -y_j - y_i - Q - i - P - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(l) If
$$w^{-1} = -y_j - Q - y_i - P - i - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(m) If
$$w^{-1} = -y_j - Q - P - y_i - i - j$$
 then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (j,y_j)$.

(n) If
$$w^{-1} = -Q - y_j - P - y_i - i - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $P < i < j < Q < y_i < y_i$ and then one of the following holds:

•
$$w^{-1} = -Q - P - y_j - y_i - i - j$$
 and $v^{-1} = -Q - P - y_j - j - y_i - i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathbf{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - y_i - \text{ and } (wt)^{-1} = -P - y_j - .$$

2. Suppose $P < i < Q < j < y_j < y_i$.

(a) If
$$w^{-1} = -y_i - y_i - i - Q - j - P$$
— then (T) fails.

(b) If
$$w^{-1} = -y_i - y_i - i - Q - P - j$$
 then (T) fails.

(c) If
$$w^{-1} = -y_j - y_i - i - j - Q - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -Q - y_i - y_i - i - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -y_j - y_i - Q - i - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(f) If
$$w^{-1} = -y_i - Q - y_i - i - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -y_j - Q - y_i - i - P - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(h) If
$$w^{-1} = -Q - y_j - y_i - i - P - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(i) If
$$w^{-1} = -Q - y_j - y_i - P - i - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(j) If
$$w^{-1} = -y_j - y_i - Q - P - i - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(k) If
$$w^{-1} = -y_j - y_i - Q - i - P - j$$
— then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(l) If
$$w^{-1} = -y_j - Q - y_i - P - i - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(m) If
$$w^{-1} = -y_i - Q - P - y_i - i - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_i)$.

(n) If
$$w^{-1} = -Q - y_i - P - y_i - i - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_i)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $P < i < Q < j < y_i < y_i$ and then one of the following holds:

•
$$w^{-1} = -Q - P - y_i - y_i - i - j$$
 and $v^{-1} = -Q - P - y_i - j - y_i - i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and} \\ (wt)^{-1} = -y_i - i - \text{ and} \\ (wt)^{-1} = -y_j - j - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - y_i - \text{ and } (wt)^{-1} = -P - y_i - .$$

- 3. Suppose $i < j < y_i < P < y_i < Q$.
 - (a) If $w^{-1} = -y_i Q P y_i i j$ then (Y3) fails for $(a,b) = (i,y_i)$ and (a',b') = (P,Q).
 - (b) If $w^{-1} = -Q y_j y_i i j P$ then (Y3) fails for $(a,b) = (i,y_i)$ and (a',b') = (P,Q).
 - (c) If $w^{-1} = -y_j y_i Q i j P$ then (Y3) fails for $(a,b) = (i,y_i)$ and (a',b') = (P,Q).
 - (d) If $w^{-1} = -y_j Q y_i i j P$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
 - (e) If $w^{-1} = -y_j Q y_i i P j$ then (Y3) fails for $(a,b) = (i,y_i)$ and (a',b') = (P,Q).
 - $\text{(f) If } w^{-1} = Q y_j y_i i P j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$
 - (g) If $w^{-1} = -Q y_j P y_i i j$ then (Y3) fails for $(a,b) = (i,y_i)$ and (a',b') = (P,Q).
 - $\text{(h) If } w^{-1} = Q P y_i y_i i j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$
 - (i) If $w^{-1} = -Q y_j y_i P i j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
 - (j) If $w^{-1} = -y_j y_i Q P i j$ then (Y3) fails for $(a,b) = (i,y_i)$ and (a',b') = (P,Q).
 - $\text{(k) If } w^{-1} = -y_j y_i Q i P j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$
 - (l) If $w^{-1} = -y_j Q y_i P i j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
 - (m) If $w^{-1} = -y_i y_i i Q j P$ then (Y3) fails for $(a, b) = (j, y_i)$ and (a', b') = (P, Q).
 - (n) If $w^{-1} = -y_j y_i i Q P j$ then (Y3) fails for $(a, b) = (j, y_j)$ and (a', b') = (P, Q).

Recall that $(k, l) = (j, y_i)$. We conclude that if $i < j < y_j < P < y_i < Q$ and then one of the following holds:

•
$$w^{-1} = -y_j - y_i - i - j - Q - P$$
 and $v^{-1} = -y_j - j - y_i - i - Q - P$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - . \end{cases}$$

- $(Z2) \Leftrightarrow (no condition).$
- $(Z3) \Leftrightarrow (wt)^{-1} = -i Q \text{ and } (wt)^{-1} = -i Q .$
- 4. Suppose $P < i < j < y_i < Q < y_i$.
 - (a) If $w^{-1} = -Q y_i P y_i i j$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (j, y_j)$.
 - (b) If $w^{-1} = -y_i y_i i j Q P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (c) If $w^{-1} = -Q y_j y_i i j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (d) If $w^{-1} = -y_i y_i Q i j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (e) If $w^{-1} = -y_i Q y_i i j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (f) If $w^{-1} = -y_j Q y_i i P j$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (i,y_i)$.
 - (g) If $w^{-1} = -Q y_j y_i i P j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (h) If $w^{-1} = -y_i y_i i Q j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (i) If $w^{-1} = -y_i y_i i Q P j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (j) If $w^{-1} = -Q y_j y_i P i j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (k) If $w^{-1} = -y_i y_i Q P i j$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (i,y_i)$.
 - (l) If $w^{-1} = -y_i y_i Q i P j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (m) If $w^{-1} = -y_i Q y_i P i j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $P < i < j < y_j < Q < y_i$ and then one of the following holds:

- $w^{-1} = -Q P y_i y_i i j$ and $v^{-1} = -Q P y_i j y_i i$.
- $w^{-1} = -y_i Q P y_i i j$ and $v^{-1} = -y_i Q P j y_i i$.

When (a, b) = (P, Q) and $(a', b') \in \text{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - . \end{cases}$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - y_i - .$$

5. Suppose $i < j < P < y_j < Q < y_i$.

(a) If
$$w^{-1} = -y_j - Q - P - y_i - i - j$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(b) If
$$w^{-1} = -Q - y_j - y_i - i - j - P$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(c) If
$$w^{-1} = -y_j - y_i - Q - i - j - P$$
— then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(d) If
$$w^{-1} = -y_i - Q - y_i - i - j - P$$
— then (Y3) fails for $(a, b) = (j, y_i)$ and $(a', b') = (P, Q)$.

(e) If
$$w^{-1} = -y_j - Q - y_i - i - P - j$$
— then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

$$\text{(f) If } w^{-1} = -Q - y_j - y_i - i - P - j - \text{ then (Y3) fails for } (a,b) = (j,y_j) \text{ and } (a',b') = (P,Q).$$

(g) If
$$w^{-1} = -y_j - y_i - i - Q - j - P$$
 then (Y3) fails for $(a,b) = (j,y_j)$ and $(a',b') = (P,Q)$.

(h) If
$$w^{-1} = -y_j - y_i - i - Q - P - j$$
— then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(i) If
$$w^{-1} = -Q - y_j - P - y_i - i - j$$
— then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

$$({\bf j}) \ \ {\rm If} \ w^{-1} = --Q - P - y_j - y_i - i - j - \ \ {\rm then} \ \ ({\bf Y3}) \ \ {\rm fails} \ \ {\rm for} \ \ (a,b) = (j,y_j) \ \ {\rm and} \ \ (a',b') = (P,Q).$$

$$\text{(k) If } w^{-1} = -Q - y_j - y_i - P - i - j - \text{ then (Y3) fails for } (a,b) = (j,y_j) \text{ and } (a',b') = (P,Q).$$

(l) If
$$w^{-1} = -y_j - y_i - Q - P - i - j$$
— then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(m) If
$$w^{-1} = -y_j - y_i - Q - i - P - j$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(n) If
$$w^{-1} = -y_j - Q - y_i - P - i - j$$
— then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i < j < P < y_j < Q < y_i$ and then one of the following holds:

$$\bullet \ w^{-1} = -y_j - y_i - i - j - Q - P - \ \text{and} \ v^{-1} = -y_j - j - y_i - i - Q - P -.$$

When (a, b) = (P, Q) and $(a', b') \in \text{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - . \end{cases}$$

$$(\mathbf{Z2}) \Leftrightarrow (wt)^{-1} \neq \cdots y_i \cdots P \cdots \text{ and } (wt)^{-1} \neq \cdots y_i \cdots Q \cdots i \cdots$$

$$(\mathbf{Z3}) \Leftrightarrow (wt)^{-1} = --j -\!\!\!- Q -\!\!\!-.$$

6. Suppose $i < P < j < y_j < Q < y_i$.

(a) If
$$w^{-1} = -y_j - Q - y_i - i - P - j$$
 then (T) fails.

(b) If
$$w^{-1} = -Q - y_j - y_i - i - P - j$$
 — then (T) fails.

(c) If
$$w^{-1} = -y_j - y_i - i - Q - P - j$$
 then (T) fails.

(d) If
$$w^{-1} = -y_j - y_i - Q - i - P - j$$
 then (T) fails.

(e) If
$$w^{-1} = -Q - y_j - y_i - i - j - P$$
— then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (j,y_j)$.

$$\text{(f) If } w^{-1} = -y_j - y_i - Q - i - j - P - \text{ then (Y2) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (j,y_j).$$

(g) If
$$w^{-1} = -y_j - Q - y_i - i - j - P$$
— then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (j,y_j)$.

$$\text{(h) If } w^{-1} = -y_j - y_i - i - Q - j - P - \text{ then (Y2) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (j,y_j).$$

$$\text{(i) If } w^{-1} = \cdots Q \cdots y_j \cdots P \cdots y_i \cdots j \cdots \text{ then (Y2) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (j,y_j).$$

(j) If
$$w^{-1} = -Q - y_j - y_i - P - i - j$$
— then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(k) If
$$w^{-1} = -y_i - y_i - Q - P - i - j$$
— then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(1) If
$$w^{-1} = -y_i - Q - y_i - P - i - j$$
— then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i < P < j < y_i < Q < y_i$ and then one of the following holds:

$$\bullet \ w^{-1} = -y_j - y_i - i - j - Q - P - \ \text{and} \ v^{-1} = -y_j - j - y_i - i - Q - P -.$$

•
$$w^{-1} = -Q - P - y_j - y_i - i - j$$
 and $v^{-1} = -Q - P - y_j - j - y_i - i$.

•
$$w^{-1} = -y_j - Q - P - y_i - i - j$$
 and $v^{-1} = -y_j - Q - P - j - y_i - i$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - . \end{cases}$$

$$(Z2) \Leftrightarrow \begin{cases} (wt)^{-1} \neq -Q - j - P - \text{ and } (wt)^{-1} \neq -Q - y_j - P - \text{ and } \\ (wt)^{-1} \neq -y_i - P - i - \text{ and } (wt)^{-1} \neq -y_i - Q - i - . \end{cases}$$

 $(Z3) \Leftrightarrow (no condition)$

7. Suppose $P < Q < i < j < y_j < y_i$.

(a) If
$$w^{-1} = -y_j - y_i - i - j - Q - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -Q - y_i - y_i - i - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_i - y_i - Q - i - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_i - Q - y_i - i - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -y_i - Q - y_i - i - P - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(f) If
$$w^{-1} = -Q - y_j - y_i - i - P - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -y_j - y_i - i - Q - j - P$$
— then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(h) If
$$w^{-1} = -y_j - y_i - i - Q - P - j$$
— then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(i) If
$$w^{-1} = -Q - y_j - y_i - P - i - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(j) If
$$w^{-1} = -y_j - y_i - Q - P - i - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(k) If
$$w^{-1} = -y_j - y_i - Q - i - P - j$$
 then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(1) If
$$w^{-1} = -y_i - Q - y_i - P - i - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(m) If
$$w^{-1} = -y_i - Q - P - y_i - i - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_i)$.

(n) If
$$w^{-1} = -Q - y_i - P - y_i - i - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_i)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $P < Q < i < j < y_j < y_i$ and then one of the following holds:

$$\bullet \ w^{-1} = -Q - P - y_j - y_i - i - j - \text{ and } v^{-1} = -Q - P - y_j - j - y_i - i -.$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - y_i - \text{ and } (wt)^{-1} = -P - y_j - .$$

8. Suppose $i < j < y_j < P < Q < y_i$.

(a) If
$$w^{-1} = -y_j - Q - P - y_i - i - j$$
— then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(b) If
$$w^{-1} = -Q - y_j - y_i - i - j - P$$
— then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

```
(c) If w^{-1} = -y_i - y_i - Q - i - j - P— then (Y3) fails for (a, b) = (j, y_i) and (a', b') = (P, Q).
```

(d) If
$$w^{-1} = -y_j - Q - y_i - i - j - P$$
— then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(e) If
$$w^{-1} = -y_j - Q - y_i - i - P - j$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(f) If
$$w^{-1} = -Q - y_j - y_i - i - P - j$$
— then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(g) If
$$w^{-1} = -y_j - y_i - i - Q - j - P$$
— then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(h) If
$$w^{-1} = -y_j - y_i - i - Q - P - j$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(i) If
$$w^{-1} = -Q - y_j - P - y_i - i - j$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(j) If
$$w^{-1} = -Q - P - y_j - y_i - i - j$$
— then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

$$\text{(k) If } w^{-1} = -Q - y_j - y_i - P - i - j - \text{ then (Y3) fails for } (a,b) = (j,y_j) \text{ and } (a',b') = (P,Q).$$

(1) If
$$w^{-1} = -y_i - y_i - Q - P - i - j$$
 then (Y3) fails for $(a, b) = (j, y_i)$ and $(a', b') = (P, Q)$.

(m) If
$$w^{-1} = -y_j - y_i - Q - i - P - j$$
 then (Y3) fails for $(a,b) = (j,y_j)$ and $(a',b') = (P,Q)$.

(n) If
$$w^{-1} = -y_j - Q - y_i - P - i - j$$
— then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i < j < y_i < P < Q < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_j - y_i - i - j - Q - P$$
 and $v^{-1} = -y_j - j - y_i - i - Q - P$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_i - P - i - \text{ and } (wt)^{-1} \neq -y_i - Q - i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -j - Q - .$$

9. Suppose $i < j < P < y_i < y_i < Q$.

(a) If
$$w^{-1} = -y_i - Q - P - y_i - i - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(b) If
$$w^{-1} = -Q - y_i - y_i - i - j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(c) If
$$w^{-1} = -y_j - y_i - Q - i - j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(d) If
$$w^{-1} = -y_j - Q - y_i - i - j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(e) If
$$w^{-1} = -y_i - Q - y_i - i - P - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(f) If
$$w^{-1} = -Q - y_j - y_i - i - P - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(g) If
$$w^{-1} = -Q - y_j - P - y_i - i - j$$
— then (Y3) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

(h) If
$$w^{-1} = -Q - P - y_j - y_i - i - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

$$\text{(i) If } w^{-1} = -Q - y_j - y_i - P - i - j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

$$({\bf j}) \ \ {\rm If} \ w^{-1} = --y_j - -y_i - Q - P - i - j - - \ \ {\rm then} \ \ ({\bf Y3}) \ \ {\rm fails} \ \ {\rm for} \ \ (a,b) = (i,y_i) \ \ {\rm and} \ \ (a',b') = (P,Q).$$

(k) If
$$w^{-1} = -y_i - y_i - Q - i - P - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(1) If
$$w^{-1} = -y_j - Q - y_i - P - i - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(m) If
$$w^{-1} = -y_j - y_i - i - Q - j - P$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(n) If
$$w^{-1} = -y_j - y_i - i - Q - P - j$$
— then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i < j < P < y_j < y_i < Q$ and then one of the following holds:

•
$$w^{-1} = -y_i - y_i - i - j - Q - P - \text{ and } v^{-1} = -y_i - j - y_i - i - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - . \end{cases}$$

 $(Z2) \Leftrightarrow (\text{no condition}).$

$$(\mathbf{Z3}) \Leftrightarrow (wt)^{-1} = -i - Q - \text{ and } (wt)^{-1} = -j - Q -.$$

10. Suppose $i < P < j < y_i < y_i < Q$.

(a) If
$$w^{-1} = -y_i - Q - y_i - i - P - j$$
 then (T) fails.

(b) If
$$w^{-1} = -Q - y_i - y_i - i - P - j$$
 then (T) fails.

(c) If
$$w^{-1} = -y_i - y_i - i - Q - P - j$$
 then (T) fails.

(d) If
$$w^{-1} = -y_i - y_i - Q - i - P - j$$
— then (T) fails.

(e) If
$$w^{-1} = -y_j - y_i - i - Q - j - P$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

$$\text{(f) If } w^{-1} = - y_j - Q - P - y_i - i - j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(g) If
$$w^{-1} = -Q - y_j - y_i - i - j - P$$
 — then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

$$\text{(h) If } w^{-1}=-y_j-y_i-Q-i-j-P- \text{ then (Y3) fails for } (a,b)=(i,y_i) \text{ and } (a',b')=(P,Q).$$

$$\text{(i) If } w^{-1} = - y_j - Q - y_i - i - j - P - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

$$(\mathbf{j}) \ \text{ If } w^{-1} = - Q - y_j - P - y_i - i - j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

$$\text{(k) If } w^{-1} = -Q - P - y_j - y_i - i - j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(l) If
$$w^{-1} = -Q - y_j - y_i - P - i - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(m) If
$$w^{-1} = -y_j - y_i - Q - P - i - j$$
 then (Y3) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

(n) If
$$w^{-1} = -y_j - Q - y_i - P - i - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i < P < j < y_i < y_i < Q$ and then one of the following holds:

•
$$w^{-1} = -y_i - y_i - i - j - Q - P - \text{ and } v^{-1} = -y_i - j - y_i - i - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \text{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -Q - j - P - \text{ and } (wt)^{-1} \neq -Q - y_j - P - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - Q - .$$

11. Suppose $i < j < P < Q < y_i < y_i$.

(a) If
$$w^{-1} = -y_i - y_i - Q - i - j - P$$
— then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(b) If
$$w^{-1} = -Q - y_j - y_i - P - i - j$$
— then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(c) If
$$w^{-1} = -y_j - y_i - Q - P - i - j$$
— then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(d) If
$$w^{-1} = -y_j - Q - y_i - P - i - j$$
— then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(e) If
$$w^{-1} = -y_j - Q - P - y_i - i - j$$
— then (Y2) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(f) If
$$w^{-1} = -y_j - Q - y_i - i - j - P$$
— then (Y2) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(g) If
$$w^{-1} = -y_j - Q - y_i - i - P - j$$
 then (Y2) fails for $(a,b) = (j,y_j)$ and $(a',b') = (P,Q)$.

(h) If
$$w^{-1} = -Q - y_j - y_i - i - P - j$$
— then (Y2) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(i) If
$$w^{-1} = -y_j - y_i - i - Q - j - P$$
— then (Y2) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(j) If
$$w^{-1} = -y_j - y_i - i - Q - P - j$$
— then (Y2) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(k) If
$$w^{-1} = -Q - y_j - P - y_i - i - j$$
— then (Y2) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(1) If
$$w^{-1} = -y_j - y_i - Q - i - P - j$$
 then (Y2) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i < j < P < Q < y_i < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_i - y_i - i - j - Q - P - \text{ and } v^{-1} = -y_i - j - y_i - i - Q - P - .$$

•
$$w^{-1} = -Q - P - y_i - y_i - i - j$$
 and $v^{-1} = -Q - P - y_i - j - y_i - i$.

$$\bullet \ \, w^{-1} = -Q - y_j - y_i - i - j - P - \ \, \text{and} \, \, v^{-1} = -Q - y_j - j - y_i - i - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - . \end{cases}$$

$$(Z2) \Leftrightarrow \begin{cases} (wt)^{-1} \neq -y_i - P - i - \text{ and } (wt)^{-1} \neq -y_i - Q - i - \text{ and } \\ (wt)^{-1} \neq -y_j - P - j - \text{ and } (wt)^{-1} \neq -y_j - Q - j - . \end{cases}$$

 $(Z3) \Leftrightarrow (no condition)$

12. Suppose $i < P < j < Q < y_j < y_i$.

(a) If
$$w^{-1} = -y_j - Q - y_i - i - P - j$$
 — then (T) fails.

(b) If
$$w^{-1} = -Q - y_j - y_i - i - P - j$$
 then (T) fails.

(c) If
$$w^{-1} = -y_j - y_i - i - Q - P - j$$
— then (T) fails.

(d) If
$$w^{-1} = -y_i - y_i - Q - i - P - j$$
 then (T) fails.

(e) If
$$w^{-1} = -y_j - y_i - i - j - Q - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(f) If
$$w^{-1} = -y_j - Q - P - y_i - i - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(g) If
$$w^{-1} = -Q - y_i - y_i - i - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_i)$.

(h) If
$$w^{-1} = -y_i - y_i - Q - i - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_i)$.

(i) If
$$w^{-1} = -y_j - Q - y_i - i - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(j) If
$$w^{-1} = -y_j - y_i - i - Q - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(k) If
$$w^{-1} = -Q - y_j - P - y_i - i - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(l) If
$$w^{-1} = -Q - y_j - y_i - P - i - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(m) If
$$w^{-1} = -y_j - y_i - Q - P - i - j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (j,y_j)$.

(n) If
$$w^{-1} = -y_i - Q - y_i - P - i - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i < P < j < Q < y_i < y_i$ and then one of the following holds:

$$\bullet \ w^{-1} = -Q - P - y_j - y_i - i - j - \text{ and } v^{-1} = -Q - P - y_j - j - y_i - i - .$$

When (a, b) = (P, Q) and $(a', b') \in \text{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_i - P - i - \text{ and } (wt)^{-1} \neq -y_i - Q - i - .$$

$$(\mathbf{Z3}) \Leftrightarrow (wt)^{-1} = -P - y_j -.$$

13. Suppose $i < j < y_j < y_i < P < Q$.

(a) If
$$w^{-1} = -y_j - Q - P - y_i - i - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(b) If
$$w^{-1} = -Q - y_j - y_i - i - j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(c) If
$$w^{-1} = -y_j - y_i - Q - i - j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

$$\text{(d) If } w^{-1} = -y_j - Q - y_i - i - j - P - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(e) If
$$w^{-1} = -y_j - Q - y_i - i - P - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

$$\text{(f) If } w^{-1} = -Q - y_j - y_i - i - P - j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(g) If
$$w^{-1} = -Q - y_j - P - y_i - i - j$$
— then (Y3) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

$$\text{(h) If } w^{-1} = \cdots Q \cdots P \cdots y_j \cdots y_i \cdots i \cdots j \cdots \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

$$\text{(i) If } w^{-1} = - Q - y_j - y_i - P - i - j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

$$(\mathbf{j}) \ \text{ If } w^{-1} = - y_j - y_i - Q - P - i - j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

$$\text{(k) If } w^{-1} = -y_j - y_i - Q - i - P - j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(l) If
$$w^{-1} = -y_j - Q - y_i - P - i - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(m) If
$$w^{-1} = -y_i - y_i - i - Q - j - P$$
 then (Y3) fails for $(a, b) = (j, y_i)$ and $(a', b') = (P, Q)$.

(n) If
$$w^{-1} = -y_j - y_i - i - Q - P - j$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i < j < y_i < y_i < P < Q$ and then one of the following holds:

•
$$w^{-1} = -y_j - y_i - i - j - Q - P$$
 and $v^{-1} = -y_j - j - y_i - i - Q - P$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

$$(\mathbf{Z3}) \Leftrightarrow (wt)^{-1} = -i - Q - \text{ and } (wt)^{-1} = -j - Q - .$$

14. Suppose $P < i < j < y_i < y_i < Q$.

(a) If
$$w^{-1} = -Q - y_i - y_i - i - j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -y_j - y_i - Q - i - j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_i - Q - y_i - i - j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_i - Q - y_i - i - P - j$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -Q - y_j - y_i - i - P - j$$
— then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(f) If
$$w^{-1} = -Q - y_j - y_i - P - i - j$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -y_j - y_i - Q - i - P - j$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(h) If
$$w^{-1} = -y_j - Q - y_i - P - i - j$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(i) If
$$w^{-1} = -y_i - y_i - i - Q - j - P$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_i)$.

(j) If
$$w^{-1} = -Q - y_j - P - y_i - i - j$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $P < i < j < y_i < y_i < Q$ and then one of the following holds:

•
$$w^{-1} = -y_j - y_i - i - j - Q - P - \text{ and } v^{-1} = -y_j - j - y_i - i - Q - P - .$$

•
$$w^{-1} = -y_i - y_i - i - Q - P - j$$
 and $v^{-1} = -y_i - j - y_i - Q - P - i$.

•
$$w^{-1} = -Q - P - y_j - y_i - i - j$$
 and $v^{-1} = -Q - P - y_j - j - y_i - i - i$.

•
$$w^{-1} = -y_i - Q - P - y_i - i - j$$
 and $v^{-1} = -y_i - Q - P - j - y_i - i$.

•
$$w^{-1} = -y_i - y_i - Q - P - i - j$$
 and $v^{-1} = -y_i - j - Q - P - y_i - i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - . \end{cases}$$

(Z2)
$$\Leftrightarrow$$
 $\begin{cases} (wt)^{-1} \neq -Q - i - P - \text{ and } (wt)^{-1} \neq -Q - y_i - P - \text{ and } (wt)^{-1} \neq -Q - y_j - P - \text{ and } (wt)^{-1} \neq -Q - y_j - P - . \end{cases}$

 $(Z3) \Leftrightarrow (no condition)$

15. Suppose $i < P < Q < j < y_j < y_i$.

(a) If
$$w^{-1} = -y_j - Q - y_i - i - P - j$$
 then (T) fails.

(b) If
$$w^{-1} = -Q - y_i - y_i - i - P - j$$
— then (T) fails.

(c) If
$$w^{-1} = -y_i - y_i - i - Q - j - P$$
 then (T) fails.

(d) If
$$w^{-1} = -y_i - y_i - i - Q - P - j$$
 then (T) fails.

(e) If
$$w^{-1} = -y_i - y_i - Q - i - P - j$$
 then (T) fails.

(f) If
$$w^{-1} = -y_i - y_i - i - j - Q - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_i)$.

(g) If
$$w^{-1} = -y_i - Q - P - y_i - i - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_i)$.

(h) If
$$w^{-1} = -Q - y_i - y_i - i - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_i)$.

(i) If
$$w^{-1} = -y_i - y_i - Q - i - j - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_i)$.

(j) If
$$w^{-1} = -y_i - Q - y_i - i - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_i)$.

(k) If
$$w^{-1} = -Q - y_j - P - y_i - i - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(1) If
$$w^{-1} = -Q - y_i - y_i - P - i - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_i)$.

(m) If
$$w^{-1} = -y_j - y_i - Q - P - i - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(n) If
$$w^{-1} = -y_i - Q - y_i - P - i - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_i)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i < P < Q < j < y_i < y_i$ and then one of the following holds:

•
$$w^{-1} = -Q - P - y_j - y_i - i - j$$
 and $v^{-1} = -Q - P - y_j - j - y_i - i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - . \end{cases}$$

$$(\mathbf{Z3}) \Leftrightarrow (wt)^{-1} = -P - y_j - .$$

We conclude that properties (V1)-(V3) hold whenever (a, b), (a', b') are as in cases (i) or (ii) and $i < j < y_i < y_i$.

3.3 Subcase (iii)

Suppose i' and j' are integers such that $0 \neq i - i' = j - j' \in n\mathbb{Z}$, so that w(i) - w(i') = w(j) - w(j') = i - i'.

1. Suppose $i' < i < j' < j < y_{i'} < y_i < y_{i'} < y_i$.

(a) If
$$w^{-1} = -y_{j'} - y_j - y_{i'} - i' - y_i - i - j' - j$$
— then (T) fails.

(b) If
$$w^{-1} = -y_{i'} - y_i - y_{i'} - y_i - i' - i - j' - j$$
— then (T) fails.

(c) If
$$w^{-1} = -y_{i'} - y_{i'} - y_i - i' - y_i - i - j' - j$$
 then (T) fails.

(d) If
$$w^{-1} = -y_{i'} - y_{i'} - y_i - y_i - i' - i - j' - j$$
 then (T) fails.

(e) If
$$w^{-1} = -y_{i'} - y_{i'} - i' - y_i - y_i - i - j' - j$$
 then (T) fails.

(f) If
$$w^{-1} = -y_{i'} - y_i - y_{i'} - y_i - i' - j' - i - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -y_{i'} - y_{i'} - y_i - y_i - i' - j' - i - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(h) If
$$w^{-1} = -y_{j'} - y_j - y_{i'} - i' - y_i - j' - i - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.

(i) If
$$w^{-1} = -y_{j'} - y_{i'} - i' - y_j - j' - y_i - i - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.

(j) If
$$w^{-1} = -y_{j'} - y_j - y_{i'} - i' - j' - y_i - i - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.

- (k) If $w^{-1} = -y_{i'} y_{i'} y_i i' y_i j' i j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.
- $\text{(l) If } w^{-1} = y_{j'} y_{i'} y_j i' j' y_i i j \text{then (Y3) fails for } (a,b) = (j',y_{j'}) \text{ and } (a',b') = (j,y_j).$
- (m) If $w^{-1} = -y_{i'} y_{i'} i' y_i j' i j$ then (Y3) fails for $(a, b) = (j', y_{i'})$ and $(a', b') = (j, y_i)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i' < i < j' < j < y_{j'} < y_j < y_{i'} < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - y_{i'} - i' - j' - y_i - y_i - i - j$$
 and $v^{-1} = -y_{i'} - j' - y_{i'} - i' - y_i - j - y_i - i$.

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ and $(a', b') \in \{(j', y_{j'}), (i', y_{i'})\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(V1) \Leftrightarrow \begin{cases} (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - \text{ and } \\ (wt)^{-1} = -y_{j'} - j' - . \end{cases}$$

- $(V2) \Leftrightarrow (wt)^{-1} \neq -y_i j' i \text{ and } (wt)^{-1} \neq -y_i y_{i'} i i$
- $(V3) \Leftrightarrow (no condition).$
- 2. Suppose $i' < j' < i < y_{j'} < j < y_j < y_{i'} < y_i$.
 - (a) If $w^{-1} = -y_{j'} y_j y_{i'} y_i i' j' i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (b) If $w^{-1} = -y_{i'} y_i y_{i'} y_i i' i j' j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (c) If $w^{-1} = -y_{i'} y_{i'} y_i y_i i' j' i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (d) If $w^{-1} = -y_{i'} y_{i'} y_i y_i i' i j' j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (e) If $w^{-1} = -y_{i'} y_i y_{i'} i' y_i j' i j$ then (Y3) fails for $(a, b) = (j', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (f) If $w^{-1} = -y_{i'} y_i y_{i'} i' y_i i j' j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (g) If $w^{-1} = -y_{i'} y_{i'} y_i i' y_i j' i j$ then (Y3) fails for $(a, b) = (j', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (h) If $w^{-1} = -y_{i'} y_{i'} y_i i' y_i i j' j$ then (Y3) fails for $(a, b) = (j', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (i) If $w^{-1} = -y_{i'} y_{i'} i' y_i j' i j$ then (Y3) fails for $(a, b) = (j', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (j) If $w^{-1} = -y_{j'} y_{i'} i' y_j y_i i j' j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (k) If $w^{-1} = -y_{j'} y_{i'} i' y_j j' y_i i j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.
 - (1) If $w^{-1} = -y_{i'} y_i y_{i'} i' j' y_i i j$ then (Y3) fails for $(a, b) = (j', y_{i'})$ and $(a', b') = (j, y_i)$.
 - (m) If $w^{-1} = -y_{j'} y_{i'} y_j i' j' y_i i j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i' < j' < i < y_{j'} < j < y_i < y_{i'} < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - y_{i'} - i' - j' - y_i - y_i - i - j$$
 and $v^{-1} = -y_{i'} - j' - y_{i'} - i' - y_i - j - y_i - i - i$.

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - \text{ and } \\ (wt)^{-1} = -y_{j'} - j' - . \end{cases}$$

- $(V2) \Leftrightarrow (no condition).$
- $(V3) \Leftrightarrow (\text{no condition}).$
- 3. Suppose $i' < j' < y_{i'} < i < y_{i'} < j < y_i < y_i$.
 - (a) If $w^{-1} = -y_{i'} y_i y_{i'} y_i i' j' i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (b) If $w^{-1} = -y_{j'} y_j y_{i'} y_i i' i j' j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

- (c) If $w^{-1} = -y_{j'} y_{i'} y_j y_i i' j' i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- (d) If $w^{-1} = -y_{j'} y_{i'} y_j y_i i' i j' j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- (e) If $w^{-1} = -y_{j'} y_j y_{i'} i' y_i j' i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_j)$.
- $\text{(f) If } w^{-1} = y_{j'} y_j y_{i'} i' y_i i j' j \text{then (Y3) fails for } (a,b) = (i',y_{i'}) \text{ and } (a',b') = (j,y_j).$
- (g) If $w^{-1} = -y_{j'} y_j y_{i'} i' j' y_i i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_j)$.
- (h) If $w^{-1} = -y_{i'} y_{i'} y_i i' y_i j' i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_j)$.
- (i) If $w^{-1} = -y_{i'} y_{i'} y_i i' y_i i j' j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_i)$.
- (j) If $w^{-1} = -y_{j'} y_{i'} y_j i' j' y_i i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_j)$.
- (k) If $w^{-1} = -y_{i'} y_{i'} i' y_i j' i j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
- $\text{(1) If } w^{-1} = y_{i'} y_{i'} i' y_j y_i i j' j \text{ then (Y3) fails for } (a,b) = (j',y_{j'}) \text{ and } (a',b') = (i,y_i).$
- $\text{(m) If } w^{-1} = -y_{j'} y_{i'} i' y_j j' y_i i j \text{ then (Y3) fails for } (a,b) = (j',y_{j'}) \text{ and } (a',b') = (j,y_j).$

Recall that $(k, l) = (j, y_i)$. We conclude that if $i' < j' < y_{j'} < i < y_{i'} < j < y_j < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - y_{i'} - i' - j' - y_i - y_i - i - j$$
 and $v^{-1} = -y_{i'} - j' - y_{i'} - i' - y_i - j - y_i - i - .$

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ and $(a', b') \in \{(j', y_{j'}), (i', y_{i'})\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - \text{ and } \\ (wt)^{-1} = -y_{j'} - j' - . \end{cases}$$

- $(V2) \Leftrightarrow (no condition).$
- $(V3) \Leftrightarrow (no condition).$
- 4. Suppose $i' < i < j' < j < y_{i'} < y_{i'} < y_i < y_i$.
 - (a) If $w^{-1} = -y_{i'} y_i y_{i'} i' y_i i j' j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} y_i y_{i'} y_i i' i j' j$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} y_{i'} y_i i' y_i i j' j$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} y_{i'} y_i y_i i' i j' j$ then (T) fails.
 - (e) If $w^{-1} = -y_{i'} y_{i'} i' y_j y_i i j' j$ then (T) fails.
 - (f) If $w^{-1} = -y_{i'} y_i y_{i'} y_i i' j' i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (g) If $w^{-1} = -y_{i'} y_{i'} y_i y_i i' j' i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$
 - (h) If $w^{-1} = -y_{i'} y_i y_{i'} i' y_i j' i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_i)$.
 - (i) If $w^{-1} = -y_{i'} y_i y_{i'} i' j' y_i i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_i)$.
 - (i) If $w^{-1} = -y_{i'} y_{i'} y_i i' y_i j' i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_j)$.
 - (k) If $w^{-1} = -y_{i'} y_{i'} y_i i' j' y_i i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_i)$.
 - (l) If $w^{-1} = -y_{j'} y_{i'} i' y_j j' y_i i j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.
 - (m) If $w^{-1} = -y_{i'} y_{i'} i' y_i j' i j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i' < i < j' < j < y_{j'} < y_{i'} < y_j < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_{j'} - y_{i'} - i' - j' - y_j - y_i - i - j$$
 and $v^{-1} = -y_{j'} - j' - y_{i'} - i' - y_j - j - y_i - i - i$.

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - \text{ and } \\ (wt)^{-1} = -y_{j'} - j' - . \end{cases}$$

$$(V2) \Leftrightarrow (wt)^{-1} \neq -y_i - j' - i - \text{ and } (wt)^{-1} \neq -y_i - y_{j'} - i - .$$

- $(V3) \Leftrightarrow (no condition).$
- 5. Suppose $i' < j' < i < y_{j'} < j < y_{i'} < y_j < y_i$.

(a) If
$$w^{-1} = -y_{j'} - y_j - y_{i'} - y_i - i' - j' - i - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -y_{j'} - y_j - y_{i'} - y_i - i' - i - j' - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_{i'} - y_{i'} - y_i - y_i - i' - j' - i - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

$$\text{(d) If } w^{-1} = -y_{j'} - y_{i'} - y_j - y_i - i' - i - j' - j - \text{ then (Y3) fails for } (a,b) = (i',y_{i'}) \text{ and } (a',b') = (i,y_i).$$

(e) If
$$w^{-1} = -y_{j'} - y_j - y_{i'} - i' - y_i - j' - i - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_j)$.

(f) If
$$w^{-1} = -y_{j'} - y_j - y_{i'} - i' - y_i - i - j' - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_j)$.

(g) If
$$w^{-1} = -y_{j'} - y_j - y_{i'} - i' - j' - y_i - i - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_j)$.

(h) If
$$w^{-1} = -y_{j'} - y_{i'} - y_j - i' - y_i - j' - i - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_j)$.

(i) If
$$w^{-1} = -y_{i'} - y_{i'} - y_i - i' - y_i - i - j' - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_j)$.

(j) If
$$w^{-1} = -y_{j'} - y_{i'} - y_j - i' - j' - y_i - i - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_j)$.

(k) If
$$w^{-1} = -y_{i'} - y_{i'} - i' - y_i - j' - i - j$$
 then (Y3) fails for $(a, b) = (j', y_{i'})$ and $(a', b') = (i, y_i)$.

$$\text{(l) If } w^{-1} = - y_{j'} - y_{i'} - i' - y_j - y_i - i - j' - j - \text{then (Y3) fails for } (a,b) = (j',y_{j'}) \text{ and } (a',b') = (i,y_i).$$

(m) If
$$w^{-1} = -y_{j'} - y_{i'} - i' - y_j - j' - y_i - i - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i' < j' < i < y_{j'} < j < y_{i'} < y_j < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - y_{i'} - i' - j' - y_i - y_i - i - j$$
 and $v^{-1} = -y_{i'} - j' - y_{i'} - i' - y_i - j - y_i - i$.

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - \text{ and } \\ (wt)^{-1} = -y_{j'} - j' - . \end{cases}$$

- $(V2) \Leftrightarrow (\text{no condition}).$
- $(V3) \Leftrightarrow (no condition).$
- 6. Suppose $i' < i < j' < y_{i'} < j < y_i < y_{i'} < y_i$.

(a) If
$$w^{-1} = -y_{i'} - y_i - y_{i'} - i' - y_i - i - j' - j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_{i'} - y_i - y_{i'} - y_i - i' - i - j' - j$$
 then (T) fails.

(c) If
$$w^{-1} = -y_{i'} - y_{i'} - y_i - i' - y_i - i - j' - j$$
 then (T) fails.

(d) If
$$w^{-1} = -y_{i'} - y_{i'} - y_i - y_i - i' - i - j' - j$$
 then (T) fails.

(e) If
$$w^{-1} = -y_{i'} - y_{i'} - i' - y_i - y_i - i - j' - j$$
 then (T) fails.

(f) If
$$w^{-1} = -y_{j'} - y_j - y_{i'} - y_i - i' - j' - i - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -y_{j'} - y_{i'} - y_j - y_i - i' - j' - i - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

$$\text{(h) If } w^{-1} = - y_{j'} - y_j - y_{i'} - i' - y_i - j' - i - j - \text{then (Y3) fails for } (a,b) = (j',y_{j'}) \text{ and } (a',b') = (j,y_j).$$

(i) If
$$w^{-1} = -y_{j'} - y_{i'} - i' - y_j - j' - y_i - i - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.

(j) If
$$w^{-1} = -y_{j'} - y_j - y_{i'} - i' - j' - y_i - i - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.

- (k) If $w^{-1} = -y_{i'} y_{i'} y_i i' y_i j' i j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.
- $\text{(l) If } w^{-1} = y_{j'} y_{i'} y_j i' j' y_i i j \text{then (Y3) fails for } (a,b) = (j',y_{j'}) \text{ and } (a',b') = (j,y_j).$
- (m) If $w^{-1} = -y_{i'} y_{i'} i' y_i j' i j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i' < i < j' < y_{j'} < j < y_{j'} < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - y_{i'} - i' - j' - y_i - i - j - \text{and } v^{-1} = -y_{i'} - j' - y_{i'} - i' - y_i - j - y_i - i - .$$

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ and $(a', b') \in \{(j', y_{j'}), (i', y_{i'})\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(V1) \Leftrightarrow \begin{cases} (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - \text{ and } \\ (wt)^{-1} = -y_{j'} - j' - . \end{cases}$$

- $(V2) \Leftrightarrow (wt)^{-1} \neq -y_i j' i \text{ and } (wt)^{-1} \neq -y_i y_{j'} i i$
- $(V3) \Leftrightarrow (no condition).$
- 7. Suppose $i' < j' < i < j < y_{j'} < y_j < y_{i'} < y_i$.

(a) If
$$w^{-1} = -y_{j'} - y_j - y_{i'} - y_i - i' - j' - i - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -y_{i'} - y_i - y_{i'} - y_i - i' - i - j' - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_{i'} - y_{i'} - y_i - y_i - i' - j' - i - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_{i'} - y_{i'} - y_i - y_i - i' - i - j' - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -y_{j'} - y_j - y_{i'} - i' - y_i - j' - i - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(f) If
$$w^{-1} = -y_{j'} - y_j - y_{i'} - i' - y_i - i - j' - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -y_{j'} - y_{i'} - y_j - i' - y_i - j' - i - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(h) If
$$w^{-1} = -y_{i'} - y_{i'} - y_i - i' - y_i - i - j' - j$$
 then (Y3) fails for $(a, b) = (j', y_{i'})$ and $(a', b') = (i, y_i)$.

(i) If
$$w^{-1} = -y_{j'} - y_{i'} - i' - y_j - y_i - j' - i - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(j) If
$$w^{-1} = -y_{j'} - y_{i'} - i' - y_j - y_i - i - j' - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(k) If
$$w^{-1} = -y_{j'} - y_{i'} - i' - y_j - j' - y_i - i - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.

(1) If
$$w^{-1} = -y_{i'} - y_i - y_{i'} - i' - j' - y_i - i - j$$
 then (Y3) fails for $(a, b) = (j', y_{i'})$ and $(a', b') = (j, y_i)$.

(m) If
$$w^{-1} = -y_{j'} - y_{i'} - y_j - i' - j' - y_i - i - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i' < j' < i < j < y_{j'} < y_j < y_{i'} < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_{j'} - y_{i'} - i' - j' - y_i - i - j - \text{and } v^{-1} = -y_{j'} - j' - y_{i'} - i' - y_j - j - y_i - i - .$$

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - \text{ and } \\ (wt)^{-1} = -y_{j'} - j' - . \end{cases}$$

- $(V2) \Leftrightarrow (no condition).$
- $(V3) \Leftrightarrow (\text{no condition}).$
- 8. Suppose $i' < j' < y_{i'} < y_{i'} < i < j < y_i < y_i$

(a) If
$$w^{-1} = -y_{i'} - y_i - y_{i'} - y_i - i' - j' - i - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -y_{j'} - y_j - y_{i'} - y_i - i' - i - j' - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

```
(c) If w^{-1} = -y_{i'} - y_{i'} - y_i - y_i - i' - j' - i - j then (Y3) fails for (a, b) = (i', y_{i'}) and (a', b') = (i, y_i).
```

(d) If
$$w^{-1} = -y_{j'} - y_{i'} - y_j - y_i - i' - i - j' - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -y_{j'} - y_j - y_{i'} - i' - y_i - j' - i - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_j)$.

$$\text{(f) If } w^{-1} = - y_{j'} - y_j - y_{i'} - i' - y_i - i - j' - j - \text{then (Y3) fails for } (a,b) = (i',y_{i'}) \text{ and } (a',b') = (j,y_j).$$

(g) If
$$w^{-1} = -y_{j'} - y_j - y_{i'} - i' - j' - y_i - i - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_j)$.

(h) If
$$w^{-1} = -y_{j'} - y_{i'} - y_j - i' - y_i - j' - i - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_j)$.

(i) If
$$w^{-1} = -y_{i'} - y_{i'} - y_i - i' - y_i - i - j' - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_i)$.

$$(1) \quad \text{if } w = g_j \quad g_i \quad g_j \quad v \quad g_i \quad v \quad j \quad \text{then } (10) \text{ terms for } (w, v) = (v, g_i) \text{ and } (w, v) = (j, g_j).$$

$$\text{(j) If } w^{-1} = - -y_{j'} - -y_{i'} - y_j - i' - j' - y_i - i - j - - \text{ then (Y3) fails for } (a,b) = (i',y_{i'}) \text{ and } (a',b') = (j,y_j).$$

(k) If
$$w^{-1} = -y_{j'} - y_{i'} - i' - y_j - y_i - j' - i - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

$$\text{(l) If } w^{-1} = - y_{j'} - y_{i'} - i' - y_j - y_i - i - j' - j - \text{ then (Y3) fails for } (a,b) = (j',y_{j'}) \text{ and } (a',b') = (i,y_i).$$

$$\text{(m) If } w^{-1} = -y_{j'} - y_{i'} - i' - y_j - j' - y_i - i - j - \text{ then (Y3) fails for } (a,b) = (j',y_{j'}) \text{ and } (a',b') = (j,y_j).$$

Recall that $(k,l) = (j,y_i)$. We conclude that if $i' < j' < y_{i'} < y_{i'} < i < j < y_i < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - y_{i'} - i' - j' - y_i - y_i - i - j$$
 and $v^{-1} = -y_{i'} - j' - y_{i'} - i' - y_i - j - y_i - i - i$.

When $(a,b) \in \operatorname{Cyc}^1(y) = \{(j,y_i),(i,y_i)\}$ and $(a',b') \in \{(j',y_{j'}),(i',y_{i'})\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - \text{ and } \\ (wt)^{-1} = -y_{i'} - j' - . \end{cases}$$

- $(V2) \Leftrightarrow (\text{no condition}).$
- $(V3) \Leftrightarrow (no condition).$
- 9. Suppose $i' < j' < y_{i'} < i < j < y_i < y_{i'} < y_i$.

(a) If
$$w^{-1} = -y_{j'} - y_j - y_{i'} - y_i - i' - j' - i - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -y_{j'} - y_j - y_{i'} - y_i - i' - i - j' - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_{j'} - y_{i'} - y_j - y_i - i' - j' - i - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_{j'} - y_{i'} - y_j - y_i - i' - i - j' - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -y_{j'} - y_j - y_{i'} - i' - y_i - j' - i - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(f) If
$$w^{-1} = -y_{j'} - y_j - y_{i'} - i' - y_i - i - j' - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -y_{j'} - y_{i'} - y_j - i' - y_i - j' - i - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(h) If
$$w^{-1} = -y_{j'} - y_{i'} - y_j - i' - y_i - i - j' - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(i) If
$$w^{-1} = -y_{j'} - y_{i'} - i' - y_j - y_i - j' - i - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(j) If
$$w^{-1} = -y_{j'} - y_{i'} - i' - y_j - y_i - i - j' - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(k) If
$$w^{-1} = -y_{i'} - y_{i'} - i' - y_i - j' - y_i - i - j$$
 then (Y3) fails for $(a, b) = (j', y_{i'})$ and $(a', b') = (j, y_i)$.

(l) If
$$w^{-1} = -y_{j'} - y_j - y_{i'} - i' - j' - y_i - i - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.

(m) If
$$w^{-1} = -y_{i'} - y_{i'} - y_i - i' - j' - y_i - i - j$$
 then (Y3) fails for $(a, b) = (j', y_{i'})$ and $(a', b') = (j, y_i)$.

Recall that $(k,l) = (j,y_i)$. We conclude that if $i' < j' < y_{i'} < i < j < y_i < y_{i'} < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_{j'} - y_{i'} - i' - j' - y_j - y_i - i - j$$
 and $v^{-1} = -y_{j'} - j' - y_{i'} - i' - y_j - j - y_i - i$.

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - \text{ and } \\ (wt)^{-1} = -y_{j'} - j' - . \end{cases}$$

- $(V2) \Leftrightarrow (no condition).$
- $(V3) \Leftrightarrow (no condition).$
- 10. Suppose $i' < j' < i < j < y_{j'} < y_{i'} < y_j < y_i$.

(a) If
$$w^{-1} = -y_{j'} - y_j - y_{i'} - y_i - i' - j' - i - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -y_{j'} - y_j - y_{i'} - y_i - i' - i - j' - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_{j'} - y_{i'} - y_j - y_i - i' - j' - i - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_{j'} - y_{i'} - y_j - y_i - i' - i - j' - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -y_{j'} - y_j - y_{i'} - i' - y_i - j' - i - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_j)$.

(f) If
$$w^{-1} = -y_{j'} - y_j - y_{i'} - i' - y_i - i - j' - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_j)$.

(g) If
$$w^{-1} = -y_{j'} - y_j - y_{i'} - i' - j' - y_i - i - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_j)$.

(h) If
$$w^{-1} = -y_{j'} - y_{i'} - y_j - i' - y_i - j' - i - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_j)$.

(i) If
$$w^{-1} = -y_{i'} - y_{i'} - y_i - i' - y_i - i - j' - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_j)$.

(j) If
$$w^{-1} = -y_{i'} - y_{i'} - y_i - i' - j' - y_i - i - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_i)$.

(k) If
$$w^{-1} = -y_{i'} - y_{i'} - i' - y_i - j' - i - j$$
 then (Y3) fails for $(a, b) = (j', y_{i'})$ and $(a', b') = (i, y_i)$.

(1) If
$$w^{-1} = -y_{j'} - y_{i'} - i' - y_j - y_i - i - j' - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(m) If
$$w^{-1} = -y_{j'} - y_{i'} - i' - y_j - j' - y_i - i - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i' < j' < i < j < y_{j'} < y_{i'} < y_j < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - y_{i'} - i' - j' - y_i - y_i - i - j$$
 and $v^{-1} = -y_{i'} - j' - y_{i'} - i' - y_i - j - y_i - i$.

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - \text{ and } \\ (wt)^{-1} = -y_{j'} - j' - . \end{cases}$$

- $(V2) \Leftrightarrow (no condition).$
- $(V3) \Leftrightarrow (no condition).$
- 11. Suppose $i' < j' < y_{j'} < i < j < y_{i'} < y_j < y_i$.

(a) If
$$w^{-1} = -y_{i'} - y_i - y_{i'} - y_i - i' - j' - i - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -y_{j'} - y_j - y_{i'} - y_i - i' - i - j' - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_{i'} - y_{i'} - y_i - y_i - i' - j' - i - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_{j'} - y_{i'} - y_j - y_i - i' - i - j' - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -y_{j'} - y_j - y_{i'} - i' - y_i - j' - i - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_j)$.

(f) If
$$w^{-1} = -y_{j'} - y_j - y_{i'} - i' - y_i - i - j' - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_j)$.

(g) If
$$w^{-1} = -y_{i'} - y_i - y_{i'} - i' - j' - y_i - i - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_i)$.

(h) If
$$w^{-1} = -y_{i'} - y_{i'} - y_i - i' - y_i - j' - i - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_i)$.

(i) If
$$w^{-1} = -y_{j'} - y_{i'} - y_j - i' - y_i - i - j' - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_j)$.

(j) If
$$w^{-1} = -y_{j'} - y_{i'} - y_j - i' - j' - y_i - i - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_j)$.

- (k) If $w^{-1} = -y_{i'} y_{i'} i' y_i j' i j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
- (l) If $w^{-1} = -y_{j'} y_{i'} i' y_j y_i i j' j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
- (m) If $w^{-1} = -y_{i'} y_{i'} i' y_i j' y_i i j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i' < j' < y_{j'} < i < j < y_{i'} < y_j < y_i$ and then one of the following holds:

$$\bullet \ w^{-1} = - y_{j'} - y_{i'} - i' - j' - y_j - y_i - i - j - \text{ and } v^{-1} = - y_{j'} - j' - y_{i'} - i' - y_j - j - y_i - i - .$$

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ and $(a', b') \in \{(j', y_{j'}), (i', y_{i'})\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\text{V1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - \text{ and } \\ (wt)^{-1} = -y_{j'} - j' - . \end{cases}$$

- $(V2) \Leftrightarrow (\text{no condition}).$
- $(V3) \Leftrightarrow (no condition).$
- 12. Suppose $i' < i < j' < y_{j'} < y_{i'} < j < y_j < y_i$.
 - (a) If $w^{-1} = -y_{i'} y_i y_{i'} i' y_i i j' j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} y_i y_{i'} y_i i' i j' j$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} y_{i'} y_j i' y_i i j' j$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} y_{i'} y_i y_i i' i j' j$ then (T) fails.
 - (e) If $w^{-1} = -y_{i'} y_{i'} i' y_i y_i i j' j$ then (T) fails.
 - (f) If $w^{-1} = -y_{j'} y_j y_{i'} y_i i' j' i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (g) If $w^{-1} = -y_{i'} y_{i'} y_i y_i i' j' i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (h) If $w^{-1} = -y_{i'} y_i y_{i'} i' y_i j' i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_j)$.
 - (i) If $w^{-1} = -y_{j'} y_j y_{i'} i' j' y_i i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_j)$.
 - (j) If $w^{-1} = -y_{j'} y_{i'} y_j i' y_i j' i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_j)$.
 - (k) If $w^{-1} = -y_{j'} y_{i'} y_j i' j' y_i i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_j)$.
 - (l) If $w^{-1} = -y_{j'} y_{i'} i' y_j j' y_i i j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.
 - (m) If $w^{-1} = -y_{j'} y_{i'} i' y_j y_i j' i j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i' < i < j' < y_{j'} < y_{i'} < j < y_j < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - y_{i'} - i' - j' - y_i - i - j - \text{and } v^{-1} = -y_{i'} - j' - y_{i'} - i' - y_i - j - y_i - i - .$$

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - \text{ and } \\ (wt)^{-1} = -y_{j'} - j' - . \end{cases}$$

- $(V2) \Leftrightarrow (wt)^{-1} \neq -y_i j' i \text{ and } (wt)^{-1} \neq -y_i y_{i'} i i$
- $(V3) \Leftrightarrow (no condition).$
- 13. Suppose $i' < j' < i < y_{i'} < y_{i'} < j < y_i < y_i$.
 - (a) If $w^{-1} = -y_{i'} y_i y_{i'} y_i i' j' i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (b) If $w^{-1} = -y_{j'} y_j y_{i'} y_i i' i j' j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

- (c) If $w^{-1} = -y_{j'} y_{i'} y_j y_i i' j' i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- (d) If $w^{-1} = -y_{j'} y_{i'} y_j y_i i' i j' j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- (e) If $w^{-1} = -y_{j'} y_j y_{i'} i' y_i j' i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_j)$.
- $\text{(f) If } w^{-1} = y_{j'} y_j y_{i'} i' y_i i j' j \text{then (Y3) fails for } (a,b) = (i',y_{i'}) \text{ and } (a',b') = (j,y_j).$
- (g) If $w^{-1} = -y_{j'} y_j y_{i'} i' j' y_i i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_j)$.
- (h) If $w^{-1} = -y_{j'} y_{i'} y_j i' y_i j' i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_j)$.
- (i) If $w^{-1} = -y_{i'} y_{i'} y_i i' y_i i' j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_i)$.
- (j) If $w^{-1} = -y_{j'} y_{i'} y_j i' j' y_i i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_j)$.
- (k) If $w^{-1} = -y_{i'} y_{i'} i' y_i j' i j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
- $\text{(1) If } w^{-1} = y_{i'} y_{i'} i' y_j y_i i j' j \text{ then (Y3) fails for } (a,b) = (j',y_{j'}) \text{ and } (a',b') = (i,y_i).$
- $\text{(m) If } w^{-1} = -y_{j'} y_{i'} i' y_j j' y_i i j \text{ then (Y3) fails for } (a,b) = (j',y_{j'}) \text{ and } (a',b') = (j,y_j).$

Recall that $(k, l) = (j, y_i)$. We conclude that if $i' < j' < i < y_{j'} < y_{i'} < j < y_j < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - y_{i'} - i' - j' - y_i - y_i - i - j$$
 and $v^{-1} = -y_{i'} - j' - y_{i'} - i' - y_i - j - y_i - i - .$

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ and $(a', b') \in \{(j', y_{j'}), (i', y_{i'})\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - \text{ and } \\ (wt)^{-1} = -y_{j'} - j' - . \end{cases}$$

- $(V2) \Leftrightarrow (no condition).$
- $(V3) \Leftrightarrow (no condition).$
- 14. Suppose $i' < i < j' < y_{i'} < j < y_{i'} < y_i < y_i$.
 - (a) If $w^{-1} = -y_{i'} y_i y_{i'} i' y_i i j' j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} y_i y_{i'} y_i i' i j' j$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} y_{i'} y_i i' y_i i j' j$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} y_{i'} y_i y_i i' i j' j$ then (T) fails.
 - (e) If $w^{-1} = -y_{i'} y_{i'} i' y_j y_i i j' j$ then (T) fails.
 - (f) If $w^{-1} = -y_{j'} y_i y_{i'} y_i i' j' i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (g) If $w^{-1} = -y_{i'} y_{i'} y_i y_i i' j' i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$
 - (h) If $w^{-1} = -y_{i'} y_i y_{i'} i' y_i j' i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_i)$.
 - (i) If $w^{-1} = -y_{i'} y_i y_{i'} i' j' y_i i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_i)$.
 - (i) If $w^{-1} = -y_{i'} y_{i'} y_i i' y_i j' i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_j)$.
 - (k) If $w^{-1} = -y_{i'} y_{i'} y_i i' j' y_i i j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (j, y_i)$.
 - (l) If $w^{-1} = -y_{j'} y_{i'} i' y_j j' y_i i j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.
 - (m) If $w^{-1} = -y_{i'} y_{i'} i' y_i j' i j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (j, y_j)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i' < i < j' < y_{j'} < j < y_{i'} < y_j < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_{j'} - y_{i'} - i' - j' - y_j - y_i - i - j$$
 and $v^{-1} = -y_{j'} - j' - y_{i'} - i' - y_j - j - y_i - i$.

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - \text{ and } \\ (wt)^{-1} = -y_{j'} - j' - . \end{cases}$$

$$(V2) \Leftrightarrow (wt)^{-1} \neq -y_i - j' - i - \text{ and } (wt)^{-1} \neq -y_i - y_{j'} - i - .$$

 $(V3) \Leftrightarrow (no condition).$

We conclude that properties (V1)-(V3) hold for all $(a,b), (a',b') \in \text{Cyc}(y)$ when $i < j < y_j < y_i$.

4 Case A3

Suppose $i < y_j < j < y_i$ and $w^{-1} = -y_i - i - j - y_j$ — so that $k = j < y_i = l$.

4.1 Subcase (i)

In this case $v = wt_{ij}t_{kl}$ is such that

$$v^{-1} = -j - y_i - i - y_j - .$$

When $(a,b),(a',b') \in \operatorname{Cyc}^1(y) = \{(y_j,j),(i,y_i)\}$, properties (V1)-(V3) are equivalent to the following conditions which evidently hold:

$$(Z1) \Leftrightarrow (wt)^{-1} = -j - y_j - \text{ and } (wt)^{-1} = -y_i - i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_i - y_j - i - \text{ and } (wt)^{-1} \neq -y_i - j - i - .$$

 $(Z3) \Leftrightarrow (no condition).$

Thus properties (V1)-(V3) hold whenever (a, b), (a', b') are as in case (i) and $i < y_j < j < y_i$.

4.2 Subcase (ii)

Suppose R is an integer such that $(R,R) \in \text{Cyc}^2(y)$, so that $R = y_R \notin \{i,j,y_i,y_j\} + n\mathbb{Z}$.

- 1. Suppose $i < y_j < j < y_i < R$.
 - (a) If $w^{-1} = -R y_i i j y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (R, R).
 - (b) If $w^{-1} = -y_i R i j y_j$ then (Y3) fails for $(a,b) = (i,y_i)$ and (a',b') = (R,R).
 - (c) If $w^{-1} = -y_i i j R y_j$ then (Y3) fails for $(a,b) = (y_j,j)$ and (a',b') = (R,R).
 - (d) If $w^{-1} = -y_i i R j y_j$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (R, R).

Recall that $(k, l) = (j, y_i)$. We conclude that if $i < y_j < j < y_i < R$ and then one of the following holds:

•
$$w^{-1} = -y_i - i - j - y_j - R$$
 and $v^{-1} = -j - y_i - i - y_j - R$.

When (a,b) = (R,R) and $(a',b') \in \operatorname{Cyc}^1(y) = \{(y_j,j),(i,y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -j - y_j - \text{ and } (wt)^{-1} = -y_i - i - .$$

 $(Z2) \Leftrightarrow (\text{no condition}).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - R - \text{ and } (wt)^{-1} = -y_i - R - .$$

- 2. Suppose $i < y_j < j < R < y_i$.
 - (a) If $w^{-1} = -y_i R i j y_i$ then (Y2) fails for $(a, b) = (i, y_i)$ and (a', b') = (R, R).
 - (b) If $w^{-1} = -y_i i j R y_j$ then (Y3) fails for $(a,b) = (y_j,j)$ and (a',b') = (R,R).
 - (c) If $w^{-1} = -y_i i R j y_j$ then (Y3) fails for $(a,b) = (y_j,j)$ and (a',b') = (R,R).
 - $\text{(d) If } w^{-1} = -R y_i i j y_j \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (R,R).$

Recall that $(k, l) = (j, y_i)$. We conclude that if $i < y_j < j < R < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_i - i - j - y_j - R$$
 and $v^{-1} = -j - y_i - i - y_j - R$.

When (a,b) = (R,R) and $(a',b') \in \operatorname{Cyc}^1(y) = \{(y_j,j),(i,y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -j - y_j - \text{ and } (wt)^{-1} = -y_i - i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_i - R - i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -y_i - R - .$$

3. Suppose $i < y_i < R < j < y_i$.

(a) If
$$w^{-1} = -y_i - i - R - j - y_j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_i - R - i - j - y_j$$
 then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (R, R)$.

(c) If
$$w^{-1} = -y_i - i - j - R - y_j$$
 then (Y2) fails for $(a, b) = (y_j, j)$ and $(a', b') = (R, R)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i < y_i < R < j < y_i$ and then one of the following holds:

•
$$w^{-1} = -R - y_i - i - j - y_i$$
 and $v^{-1} = -R - j - y_i - i - y_i$.

•
$$w^{-1} = -y_i - i - j - y_j - R$$
 and $v^{-1} = -j - y_i - i - y_j - R$.

When (a,b) = (R,R) and $(a',b') \in \operatorname{Cyc}^1(y) = \{(y_j,j),(i,y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -j - y_i - \text{ and } (wt)^{-1} = -y_i - i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - R - y_i - \text{ and } (wt)^{-1} \neq -y_i - R - i - .$$

$$(Z3) \Leftrightarrow (no condition).$$

4. Suppose $i < R < y_i < j < y_i$.

(a) If
$$w^{-1} = -y_i - i - R - j - y_i$$
 then (T) fails.

(b) If
$$w^{-1} = -y_i - R - i - j - y_j$$
 then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (R, R)$.

(c) If
$$w^{-1} = -y_i - i - j - R - y_j$$
 then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (y_i, j)$.

(d) If
$$w^{-1} = -y_i - i - j - y_j - R$$
— then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (y_j, j)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i < R < y_i < j < y_i$ and then one of the following holds:

•
$$w^{-1} = -R - y_i - i - j - y_j$$
 and $v^{-1} = -R - j - y_i - i - y_j$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_j, j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -j - y_j - \text{ and } (wt)^{-1} = -y_i - i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_i - R - i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -R - j - .$$

5. Suppose $R < i < y_i < j < y_i$.

(a) If
$$w^{-1} = -y_i - i - j - R - y_j$$
 then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -y_i - i - R - j - y_j$$
 — then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_i - R - i - j - y_j$$
 — then (Y3) fails for $(a,b) = (R,R)$ and $(a',b') = (i,y_i)$.

(d) If
$$w^{-1} = -y_i - i - j - y_j - R$$
— then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (i, y_i)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $R < i < y_i < j < y_i$ and then one of the following holds:

•
$$w^{-1} = -R - y_i - i - j - y_j$$
 and $v^{-1} = -R - j - y_i - i - y_j$.

When (a,b) = (R,R) and $(a',b') \in \operatorname{Cyc}^1(y) = \{(y_j,j),(i,y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -j - y_j - \text{ and } (wt)^{-1} = -y_i - i - .$$

$$(Z2) \Leftrightarrow (no condition).$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -R - j - \text{ and } (wt)^{-1} = -R - y_i - .$$

Next suppose P < Q are integers with $(P,Q) \in \operatorname{Cyc}^2(y)$, so that $Q = y_P$ and $P,Q \notin \{i,j,y_i,y_j\} + n\mathbb{Z}$.

1. Suppose $P < i < y_j < Q < j < y_i$.

(a) If
$$w^{-1} = -y_i - i - Q - P - j - y_j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_i - i - Q - j - P - y_i$$
 then (T) fails.

(c) If
$$w^{-1} = -y_i - i - Q - j - y_j - P$$
 then (T) fails.

$$\text{(d) If } w^{-1} = -Q - y_i - i - j - y_j - P - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (i,y_i).$$

(e) If
$$w^{-1} = -Q - y_i - i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(f) If
$$w^{-1} = -y_i - i - j - Q - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -y_i - i - j - Q - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(h) If
$$w^{-1} = -Q - y_i - P - i - j - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(i) If
$$w^{-1} = -y_i - Q - i - j - y_j - P$$
 then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(j) If
$$w^{-1} = -y_i - Q - i - j - P - y_j$$
 — then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(k) If
$$w^{-1} = -y_i - Q - i - P - j - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(l) If
$$w^{-1} = -y_i - i - j - y_j - Q - P$$
 — then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(m) If
$$w^{-1} = -y_i - Q - P - i - j - y_j$$
 — then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(n) If
$$w^{-1} = -Q - y_i - i - P - j - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $P < i < y_j < Q < j < y_i$ and then one of the following holds:

•
$$w^{-1} = -Q - P - y_i - i - j - y_j$$
 and $v^{-1} = -Q - P - j - y_i - i - y_j$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_j, j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -y_i - i - . \end{cases}$$

 $(Z2) \Leftrightarrow (\text{no condition}).$

(Z3)
$$\Leftrightarrow$$
 $(wt)^{-1} = -P - j - \text{and } (wt)^{-1} = -P - y_i - y_i$

2. Suppose $P < i < Q < y_i < j < y_i$.

(a) If
$$w^{-1} = -y_i - i - Q - P - j - y_j$$
 — then (T) fails.

(b) If
$$w^{-1} = -y_i - i - Q - j - P - y_i$$
 then (T) fails.

(c) If
$$w^{-1} = -y_i - i - Q - j - y_j - P$$
— then (T) fails.

(d) If
$$w^{-1} = -Q - y_i - i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -Q - y_i - i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(f) If
$$w^{-1} = -y_i - i - j - Q - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -y_i - i - j - Q - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(h) If
$$w^{-1} = -Q - y_i - P - i - j - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(i) If
$$w^{-1} = -y_i - Q - i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(j) If
$$w^{-1} = -y_i - Q - i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(k) If
$$w^{-1} = -y_i - Q - i - P - j - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(l) If
$$w^{-1} = -y_i - i - j - y_j - Q - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

$$\text{(m) If } w^{-1} = -y_i - Q - P - i - j - y_j - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (i,y_i).$$

(n) If
$$w^{-1} = -Q - y_i - i - P - j - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $P < i < Q < y_i < j < y_i$ and then one of the following holds:

•
$$w^{-1} = -Q - P - y_i - i - j - y_j$$
 and $v^{-1} = -Q - P - j - y_i - i - y_j$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_j, j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -y_i - i - . \end{cases}$$

- $(Z2) \Leftrightarrow (no condition).$
- $(Z3) \Leftrightarrow (wt)^{-1} = -P j \text{ and } (wt)^{-1} = -P y_i .$
- 3. Suppose $i < y_i < j < P < y_i < Q$.

(a) If
$$w^{-1} = -Q - y_i - i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(b) If
$$w^{-1} = -Q - y_i - i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(c) If
$$w^{-1} = -Q - P - y_i - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(d) If
$$w^{-1} = -Q - y_i - P - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

$$\text{(e) If } w^{-1} = -y_i - Q - i - j - y_j - P - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

$$\text{(f) If } w^{-1} = - y_i - Q - i - j - P - y_j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(g) If
$$w^{-1} = -y_i - Q - i - P - j - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(h) If
$$w^{-1} = -y_i - Q - P - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(i) If
$$w^{-1} = -Q - y_i - i - P - j - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(j) If
$$w^{-1} = -y_i - i - j - Q - P - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(k) If
$$w^{-1} = -y_i - i - j - Q - y_j - P$$
— then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(1) If
$$w^{-1} = -y_i - i - Q - P - j - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(m) If
$$w^{-1} = -y_i - i - Q - j - P - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(n) If
$$w^{-1} = -y_i - i - Q - j - y_j - P$$
— then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i < y_j < j < P < y_i < Q$ and then one of the following holds:

•
$$w^{-1} = -y_i - i - j - y_j - Q - P$$
 and $v^{-1} = -j - y_i - i - y_j - Q - P$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_j, j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -y_i - i - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - Q - \text{ and } (wt)^{-1} = -y_i - Q - .$$

- 4. Suppose $P < i < y_i < j < Q < y_i$.
 - (a) If $w^{-1} = -Q y_i i j y_j P$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (i,y_i)$.
 - (b) If $w^{-1} = -Q y_i i j P y_j$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (i,y_i)$.
 - (c) If $w^{-1} = -y_i i j Q P y_j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - $\text{(d) If } w^{-1} = -y_i i j Q y_j P \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (i,y_i).$
 - (e) If $w^{-1} = -Q y_i P i j y_i$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (f) If $w^{-1} = -y_i Q i j y_j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -y_i - Q - i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(h) If
$$w^{-1} = -y_i - i - Q - P - j - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(i) If
$$w^{-1} = -y_i - i - Q - j - P - y_j$$
 then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(j) If
$$w^{-1} = -y_i - Q - i - P - j - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(k) If
$$w^{-1} = -y_i - i - j - y_j - Q - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(l) If
$$w^{-1} = -y_i - Q - P - i - j - y_j$$
 — then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(m) If
$$w^{-1} = -y_i - i - Q - j - y_j - P$$
 — then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(n) If
$$w^{-1} = -Q - y_i - i - P - j - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $P < i < y_j < j < Q < y_i$ and then one of the following holds:

$$\bullet \ w^{-1} = -Q - P - y_i - i - j - y_j - \text{ and } v^{-1} = -Q - P - j - y_i - i - y_j -.$$

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(y) = \{(y_j,j),(i,y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -y_i - i - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -Q - y_j - P - \text{ and } (wt)^{-1} \neq -Q - j - P - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - y_i - .$$

5. Suppose $i < y_i < P < j < Q < y_i$.

(a) If
$$w^{-1} = -y_i - i - Q - P - j - y_j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_i - Q - i - P - j - y_j$$
 then (T) fails.

(c) If
$$w^{-1} = -Q - y_i - i - P - j - y_j$$
 then (T) fails.

(d) If
$$w^{-1} = -Q - y_i - i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(e) If
$$w^{-1} = -Q - y_i - i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

$$\text{(f) If } w^{-1} = -Q - P - y_i - i - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

(g) If
$$w^{-1} = -y_i - i - j - Q - P - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(h) If
$$w^{-1} = -y_i - i - j - Q - y_j - P$$
— then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(i) If
$$w^{-1} = -Q - y_i - P - i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(j) If
$$w^{-1} = -y_i - Q - i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(k) If
$$w^{-1} = -y_i - Q - i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(l) If
$$w^{-1} = -y_i - i - Q - j - P - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(m) If
$$w^{-1} = -y_i - Q - P - i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(n) If
$$w^{-1} = -y_i - i - Q - j - y_j - P$$
— then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i < y_j < P < j < Q < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_i - i - j - y_i - Q - P - \text{ and } v^{-1} = -j - y_i - i - y_i - Q - P - .$$

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(y) = \{(y_j,j),(i,y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -y_i - i - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_i - P - i - \text{ and } (wt)^{-1} \neq -y_i - Q - i - i$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -y_i - Q - .$$

6. Suppose $i < P < y_i < j < Q < y_i$.

(a) If
$$w^{-1} = -y_i - i - Q - P - j - y_j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_i - Q - i - P - j - y_j$$
 then (T) fails.

(c) If
$$w^{-1} = -Q - y_i - i - P - j - y_j$$
 then (T) fails.

$$\text{(d) If } w^{-1} = - Q - y_i - i - j - y_j - P - \text{ then (Y2) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$$

(e) If
$$w^{-1} = -Q - y_i - i - j - P - y_j$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

$$\text{(f) If } w^{-1} = -y_i - i - j - Q - y_j - P - \text{ then (Y2) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$$

(g) If
$$w^{-1} = -y_i - Q - i - j - y_j - P$$
 — then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_j,j)$.

(h) If
$$w^{-1} = -y_i - i - Q - j - P - y_j$$
 — then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(i) If
$$w^{-1} = -y_i - i - Q - j - y_j - P$$
 — then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_j,j)$.

$$(\mathbf{j}) \ \text{ If } w^{-1} = - Q - y_i - P - i - j - y_j - \text{ then (Y2) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

$$\text{(k) If } w^{-1} = -y_i - Q - i - j - P - y_j - \text{ then (Y2) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(l) If
$$w^{-1} = -y_i - Q - P - i - j - y_j$$
 then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i < P < y_j < j < Q < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_i - i - j - y_j - Q - P$$
 and $v^{-1} = -j - y_i - i - y_j - Q - P$.

•
$$w^{-1} = -Q - P - y_i - i - j - y_j$$
 and $v^{-1} = -Q - P - j - y_i - i - y_j$.

•
$$w^{-1} = -y_i - i - j - Q - P - y_j - \text{ and } v^{-1} = -j - y_i - i - Q - P - y_j - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_j, j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and} \\ (wt)^{-1} = -j - y_j - \text{ and} \\ (wt)^{-1} = -y_i - i - . \end{cases}$$

$$(xt)^{-1} = -y_i - i - .$$

$$(Z2) \Leftrightarrow \begin{cases} (wt)^{-1} \neq -Q - y_j - P - \text{ and } (wt)^{-1} \neq -Q - j - P - \text{ and } \\ (wt)^{-1} \neq -y_i - P - i - \text{ and } (wt)^{-1} \neq -y_i - Q - i - . \end{cases}$$

 $(Z3) \Leftrightarrow (no condition).$

7. Suppose $P < Q < i < y_i < j < y_i$.

(a) If
$$w^{-1} = -Q - y_i - i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -Q - y_i - i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_i - i - j - Q - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_i - i - j - Q - y_j - P$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(e) If
$$w^{-1} = -Q - y_i - P - i - j - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

$$\text{(f) If } w^{-1} = - y_i - Q - i - j - y_j - P - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (i,y_i).$$

(g) If
$$w^{-1} = -y_i - Q - i - j - P - y_j$$
 — then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

$$\text{(h) If } w^{-1}=-y_i-i-Q-P-j-y_j- \text{ then (Y3) fails for } (a,b)=(P,Q) \text{ and } (a',b')=(i,y_i).$$

$$\text{(i) If } w^{-1} = - y_i - i - Q - j - P - y_j - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (i,y_i).$$

(j) If
$$w^{-1} = -y_i - Q - i - P - j - y_j$$
 — then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(k) If
$$w^{-1} = -y_i - i - j - y_j - Q - P$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(l) If
$$w^{-1} = -y_i - Q - P - i - j - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(m) If
$$w^{-1} = -y_i - i - Q - j - y_j - P$$
 — then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

$$\text{(n) If } w^{-1} = - Q - y_i - i - P - j - y_j - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (i,y_i).$$

Recall that $(k, l) = (j, y_i)$. We conclude that if $P < Q < i < y_j < j < y_i$ and then one of the following holds:

•
$$w^{-1} = -Q - P - y_i - i - j - y_i - \text{ and } v^{-1} = -Q - P - j - y_i - i - y_i - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_j, j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -y_i - i - . \end{cases}$$

 $(Z2) \Leftrightarrow (\text{no condition}).$

(Z3)
$$\Leftrightarrow$$
 $(wt)^{-1} = -P - j - \text{and } (wt)^{-1} = -P - y_i - .$

8. Suppose $i < y_i < j < P < Q < y_i$.

(a) If
$$w^{-1} = -Q - y_i - i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(b) If
$$w^{-1} = -Q - y_i - i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(c) If
$$w^{-1} = -Q - P - y_i - i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

$$\text{(d) If } w^{-1} = -y_i - i - j - Q - P - y_j - \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

(e) If
$$w^{-1} = -y_i - i - j - Q - y_j - P$$
 — then (Y3) fails for $(a,b) = (y_j,j)$ and $(a',b') = (P,Q)$.

$$\text{(f) If } w^{-1} = - Q - y_i - P - i - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

(g) If
$$w^{-1} = -y_i - Q - i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

$$\text{(h) If } w^{-1}=-y_i-Q-i-j-P-y_j-\text{ then (Y3) fails for } (a,b)=(y_j,j) \text{ and } (a',b')=(P,Q).$$

(i) If
$$w^{-1} = -y_i - i - Q - P - j - y_j$$
 — then (Y3) fails for $(a,b) = (y_j,j)$ and $(a',b') = (P,Q)$.

(j) If
$$w^{-1} = -y_i - i - Q - j - P - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(k) If
$$w^{-1} = -y_i - Q - i - P - j - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(l) If
$$w^{-1} = -y_i - Q - P - i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(m) If
$$w^{-1} = -y_i - i - Q - j - y_j - P$$
 — then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(n) If
$$w^{-1} = -Q - y_i - i - P - j - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i < y_i < j < P < Q < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_i - i - j - y_j - Q - P$$
 and $v^{-1} = -j - y_i - i - y_j - Q - P$.

When (a,b)=(P,Q) and $(a',b')\in \operatorname{Cyc}^1(y)=\{(y_j,j),(i,y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -y_i - i - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_i - P - i - \text{ and } (wt)^{-1} \neq -y_i - Q - i - .$$

$$(\mathbf{Z3}) \Leftrightarrow (wt)^{-1} = -y_j - Q - .$$

9. Suppose $i < y_j < P < j < y_i < Q$.

(a) If
$$w^{-1} = -y_i - i - Q - P - j - y_j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_i - Q - i - P - j - y_i$$
 then (T) fails.

(c) If
$$w^{-1} = -Q - y_i - i - P - j - y_i$$
 then (T) fails.

(d) If
$$w^{-1} = -Q - y_i - i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(e) If
$$w^{-1} = -Q - y_i - i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(f) If
$$w^{-1} = -Q - P - y_i - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(g) If
$$w^{-1} = -Q - y_i - P - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

$$\text{(h) If } w^{-1} = - y_i - Q - i - j - y_j - P - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

$$\text{(i) If } w^{-1} = \cdots y_i \cdots Q \cdots i \cdots j \cdots P \cdots y_j \cdots \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

- (j) If $w^{-1} = -y_i Q P i j y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- $\text{(k) If } w^{-1} = -y_i i j Q P y_j \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$
- $\text{(1) If } w^{-1} = -y_i i j Q y_j P \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$
- (m) If $w^{-1} = -y_i i Q j P y_j$ then (Y3) fails for $(a,b) = (y_j,j)$ and (a',b') = (P,Q).
- $\text{(n) If } w^{-1} = -y_i i Q j y_j P \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$

Recall that $(k, l) = (j, y_i)$. We conclude that if $i < y_j < P < j < y_i < Q$ and then one of the following holds:

•
$$w^{-1} = -y_i - i - j - y_j - Q - P$$
 and $v^{-1} = -j - y_i - i - y_j - Q - P$.

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(y) = \{(y_j,j),(i,y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -y_i - i - . \end{cases}$$

- $(Z2) \Leftrightarrow (no condition).$
- $(\mathbf{Z3}) \Leftrightarrow (wt)^{-1} = -i Q \text{ and } (wt)^{-1} = -y_i Q -.$
- 10. Suppose $i < P < y_i < j < y_i < Q$.
 - (a) If $w^{-1} = -y_i i Q P j y_j$ then (T) fails.
 - (b) If $w^{-1} = -y_i Q i P j y_i$ then (T) fails.
 - (c) If $w^{-1} = -Q y_i i P j y_j$ then (T) fails.
 - (d) If $w^{-1} = -y_i i j Q y_j P$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - (e) If $w^{-1} = -y_i i Q j P y_j$ then (Y2) fails for (a,b) = (P,Q) and $(a',b') = (y_j,j)$.
 - $\text{(f) If } w^{-1} = -y_i i Q j y_j P \text{ then (Y2) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$
 - (g) If $w^{-1} = -Q y_i i j y_j P$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
 - (h) If $w^{-1} = -Q y_i i j P y_i$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
 - (i) If $w^{-1} = -Q P y_i i j y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
 - (j) If $w^{-1} = -Q y_i P i j y_i$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
 - (k) If $w^{-1} = -y_i Q i j y_j P$ then (Y3) fails for $(a,b) = (i,y_i)$ and (a',b') = (P,Q).
 - (l) If $w^{-1} = -y_i Q i j P y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
 - $\text{(m) If } w^{-1} = -y_i Q P i j y_j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$

Recall that $(k, l) = (j, y_i)$. We conclude that if $i < P < y_j < j < y_i < Q$ and then one of the following holds:

- $\bullet \ w^{-1} = -y_i i j y_j Q P \ \text{and} \ v^{-1} = -j y_i i y_j Q P -.$
- $w^{-1} = -y_i i j Q P y_j$ and $v^{-1} = -j y_i i Q P y_j$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_j, j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -y_i - i - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -Q - y_j - P - \text{ and } (wt)^{-1} \neq -Q - j - P - .$$

- $(\mathbf{Z3}) \Leftrightarrow (wt)^{-1} = -i Q .$
- 11. Suppose $i < y_i < P < Q < j < y_i$.
 - (a) If $w^{-1} = -y_i i Q P j y_j$ then (T) fails.
 - (b) If $w^{-1} = -y_i i Q j P y_j$ then (T) fails.

- (c) If $w^{-1} = -y_i Q i P j y_i$ then (T) fails.
- (d) If $w^{-1} = -y_i i Q j y_j P$ then (T) fails.
- (e) If $w^{-1} = -Q y_i i P j y_i$ then (T) fails.
- (f) If $w^{-1} = -Q y_i P i j y_j$ then (Y2) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- (g) If $w^{-1} = -y_i Q i j y_i P$ then (Y2) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- $\text{(h) If } w^{-1} = -y_i Q P i j y_j \text{ then (Y2) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$
- (i) If $w^{-1} = -Q y_i i j P y_j$ then (Y2) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).
- (j) If $w^{-1} = -y_i i j Q P y_j$ then (Y2) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).
- (k) If $w^{-1} = -y_i i j Q y_j P$ then (Y2) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).
- $\text{(1) If } w^{-1} = -y_i Q i j P y_j \text{ then (Y2) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$

Recall that $(k, l) = (j, y_i)$. We conclude that if $i < y_i < P < Q < j < y_i$ and then one of the following holds:

- $w^{-1} = -Q y_i i j y_j P$ and $v^{-1} = -Q j y_i i y_j P$.
- $w^{-1} = -Q P y_i i j y_j$ and $v^{-1} = -Q P j y_i i y_j$
- $w^{-1} = -y_i i j y_j Q P$ and $v^{-1} = -j y_i i y_j Q P$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_j, j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -y_i - i - . \end{cases}$$

$$(Z2) \Leftrightarrow \begin{cases} (wt)^{-1} \neq -j - P - y_j - \text{ and } (wt)^{-1} \neq -j - Q - y_j - \text{ and } \\ (wt)^{-1} \neq -y_i - P - i - \text{ and } (wt)^{-1} \neq -y_i - Q - i - . \end{cases}$$

 $(Z3) \Leftrightarrow (no condition).$

12. Suppose $i < P < y_j < Q < j < y_i$.

- (a) If $w^{-1} = -y_i i Q P j y_j$ then (T) fails.
- (b) If $w^{-1} = -y_i i Q j P y_i$ then (T) fails.
- (c) If $w^{-1} = -y_i Q i P j y_i$ then (T) fails.
- (d) If $w^{-1} = -y_i i Q j y_j P$ then (T) fails.
- (e) If $w^{-1} = -Q y_i i P j y_j$ then (T) fails.
- (f) If $w^{-1} = -Q y_i P i j y_j$ then (Y2) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- (g) If $w^{-1} = -y_i Q P i j y_j$ then (Y2) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- (h) If $w^{-1} = -Q y_i i j y_j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
- (i) If $w^{-1} = -Q y_i i j P y_i$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
- $\text{(j) If } w^{-1}=-y_i-i-j-Q-P-y_j-\text{ then (Y3) fails for } (a,b)=(P,Q) \text{ and } (a',b')=(y_j,j).$
- $\text{(k) If } w^{-1} = -y_i i j Q y_j P \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$
- (l) If $w^{-1} = -y_i Q i j y_j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
- (m) If $w^{-1} = -y_i Q i j P y_j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
- (n) If $w^{-1} = -y_i i j y_j Q P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i < P < y_j < Q < j < y_i$ and then one of the following holds:

•
$$w^{-1} = -Q - P - y_i - i - j - y_j - \text{ and } v^{-1} = -Q - P - j - y_i - i - y_j - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_j, j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -y_i - i - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_i - P - i - \text{ and } (wt)^{-1} \neq -y_i - Q - i - i$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - j - .$$

13. Suppose $i < y_j < j < y_i < P < Q$.

$$\text{(a) If } w^{-1} = - Q - y_i - i - j - y_j - P - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

$$\text{(b) If } w^{-1} = - Q - y_i - i - j - P - y_j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

$$\text{(c) If } w^{-1} = -Q - P - y_i - i - j - y_j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(d) If
$$w^{-1} = -Q - y_i - P - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(e) If
$$w^{-1} = -y_i - Q - i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

$$\text{(f) If } w^{-1} = -y_i - Q - i - j - P - y_j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(g) If
$$w^{-1} = -y_i - Q - i - P - j - y_j$$
 — then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

$$\text{(h) If } w^{-1} = - y_i - Q - P - i - j - y_j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(i) If
$$w^{-1} = -Q - y_i - i - P - j - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(j) If
$$w^{-1} = -y_i - i - j - Q - P - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

$$\text{(k) If } w^{-1} = -y_i - i - j - Q - y_j - P - \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

(l) If
$$w^{-1} = -y_i - i - Q - P - j - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

$$\text{(m) If } w^{-1} = -y_i - i - Q - j - P - y_j - \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

$$\text{(n) If } w^{-1} = -y_i - i - Q - j - y_j - P - \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

Recall that $(k, l) = (j, y_i)$. We conclude that if $i < y_i < j < y_i < P < Q$ and then one of the following holds:

•
$$w^{-1} = -y_i - i - j - y_j - Q - P$$
 and $v^{-1} = -j - y_i - i - y_j - Q - P$.

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(y) = \{(y_j,j),(i,y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -y_i - i - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - Q - \text{ and } (wt)^{-1} = -y_i - Q - .$$

14. Suppose $P < i < y_i < j < y_i < Q$.

(a) If
$$w^{-1} = -Q - y_i - i - j - y_j - P$$
— then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(b) If
$$w^{-1} = -Q - y_i - i - j - P - y_j$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

$$\text{(c) If } w^{-1} = -Q - y_i - P - i - j - y_j - \text{ then (Y2) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (i,y_i).$$

(d) If
$$w^{-1} = -y_i - Q - i - j - y_j - P$$
— then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(e) If
$$w^{-1} = -y_i - Q - i - j - P - y_j$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(f) If
$$w^{-1} = -y_i - Q - i - P - j - y_j$$
 — then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -Q - y_i - i - P - j - y_j$$
 — then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

$$\text{(h) If } w^{-1} = -y_i - i - j - Q - y_j - P - \text{ then (Y2) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$$

(i) If
$$w^{-1} = -y_i - i - Q - j - P - y_j$$
 — then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_j,j)$.

(j) If
$$w^{-1} = -y_i - i - Q - j - y_j - P$$
 — then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_j,j)$.

Recall that $(k,l) = (j,y_i)$. We conclude that if $P < i < y_i < j < y_i < Q$ and then one of the following holds:

•
$$w^{-1} = -y_i - i - Q - P - j - y_i$$
 and $v^{-1} = -j - y_i - Q - P - i - y_i$.

•
$$w^{-1} = -Q - P - y_i - i - j - y_j$$
 and $v^{-1} = -Q - P - j - y_i - i - y_j$.

•
$$w^{-1} = -y_i - i - j - y_j - Q - P$$
 and $v^{-1} = -j - y_i - i - y_j - Q - P$.

•
$$w^{-1} = -y_i - Q - P - i - j - y_j$$
 and $v^{-1} = -j - Q - P - y_i - i - y_j$.

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(y) = \{(y_j,j),(i,y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -y_i - i - . \end{cases}$$

$$(Z2) \Leftrightarrow \begin{cases} (wt)^{-1} \neq -Q - i - P - \text{ and } (wt)^{-1} \neq -Q - y_i - P - \text{ and } \\ (wt)^{-1} \neq -Q - y_j - P - \text{ and } (wt)^{-1} \neq -Q - j - P - . \end{cases}$$

 $(Z3) \Leftrightarrow (no condition)$

15. Suppose $i < P < Q < y_i < j < y_i$.

(a) If
$$w^{-1} = -y_i - i - Q - P - j - y_j$$
 — then (T) fails.

(b) If
$$w^{-1} = -y_i - i - Q - j - P - y_j$$
 then (T) fails.

(c) If
$$w^{-1} = -y_i - Q - i - P - j - y_j$$
 then (T) fails.

(d) If
$$w^{-1} = -y_i - i - Q - j - y_j - P$$
— then (T) fails.

(e) If
$$w^{-1} = -Q - y_i - i - P - j - y_j$$
 then (T) fails.

(f) If
$$w^{-1} = -Q - y_i - P - i - j - y_j$$
 then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(g) If
$$w^{-1} = -y_i - Q - P - i - j - y_j$$
 then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(h) If
$$w^{-1} = -Q - y_i - i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(i) If
$$w^{-1} = -Q - y_i - i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(j) If
$$w^{-1} = -y_i - i - j - Q - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(k) If
$$w^{-1} = -y_i - i - j - Q - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(l) If
$$w^{-1} = -y_i - Q - i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(m) If
$$w^{-1} = -y_i - Q - i - j - P - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_j,j)$.

(n) If
$$w^{-1} = -y_i - i - j - y_j - Q - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i < P < Q < y_i < j < y_i$ and then one of the following holds:

$$\bullet \ w^{-1} = -Q - P - y_i - i - j - y_j - \text{ and } v^{-1} = -Q - P - j - y_i - i - y_j -.$$

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(y) = \{(y_j,j),(i,y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -y_i - i - . \end{cases}$$

$$({\bf Z3}) \Leftrightarrow (wt)^{-1} = -P - j -.$$

We conclude that properties (V1)-(V3) hold whenever (a, b), (a', b') are as in cases (i) or (ii) and $i < y_j < j < y_i$.

4.3 Subcase (iii)

Suppose i' and j' are integers such that $0 \neq i - i' = j - j' \in n\mathbb{Z}$, so that w(i) - w(i') = w(j) - w(j') = i - i'.

- 1. Suppose $i' < i < y_{j'} < y_i < j' < j < y_{i'} < y_i$.
 - (a) If $w^{-1} = -y_{i'} i' y_i i j' j y_{j'} y_j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} i' y_i i j' y_{j'} j y_j$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} i' y_i j' i y_{j'} j y_j$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} i' j' y_i i y_{j'} j y_j$ then (T) fails.
 - (e) If $w^{-1} = -y_{i'} y_i i' j' i y_{j'} j y_j$ then (T) fails.
 - (f) If $w^{-1} = -y_{i'} y_i i' i j' j y_{i'} y_i$ then (T) fails.
 - (g) If $w^{-1} = -y_{i'} y_i i' i j' y_{j'} j y_j$ then (T) fails.
 - (h) If $w^{-1} = -y_{i'} i' y_i j' y_{j'} i j y_j$ then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (y_{j'}, j')$.
 - (i) If $w^{-1} = -y_{i'} i' j' y_i y_{j'} i j y_j$ then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (y_{j'}, j')$.
 - (j) If $w^{-1} = -y_{i'} y_i i' j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (k) If $w^{-1} = -y_{i'} y_i i' j' y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (l) If $w^{-1} = -y_{i'} i' y_i j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.
 - (m) If $w^{-1} = -y_{i'} i' j' y_i i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i' < i < y_{j'} < y_j < j' < j < y_{i'} < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_{j'} - y_i - i - j - y_j$$
 and $v^{-1} = -j' - y_{i'} - i' - y_{j'} - j - y_i - i - y_j$.

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(y_j, j), (i, y_i)\}$ and $(a', b') \in \{(y_{j'}, j'), (i', y_{i'})\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - . \end{cases}$$

- $(V2) \Leftrightarrow (wt)^{-1} \neq -y_i y_{j'} i \text{ and } (wt)^{-1} \neq -y_i j' i .$
- $(V3) \Leftrightarrow (no condition).$
- 2. Suppose $i' < y_{i'} < i < j' < y_i < j < y_{i'} < y_i$.
 - (a) If $w^{-1} = -y_{i'} i' y_i i j' j y_{j'} y_i$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} i' y_i i j' y_{i'} j y_i$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} y_i i' i j' j y_{j'} y_j$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} y_i i' i j' y_{j'} j y_j$ then (T) fails.
 - (e) If $w^{-1} = -y_{i'} y_i i' j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (f) If $w^{-1} = -y_{i'} y_i i' j' y_{i'} i j y_i$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (g) If $w^{-1} = -y_{i'} y_i i' j' i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (h) If $w^{-1} = -y_{i'} i' y_i j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (i) If $w^{-1} = -y_{i'} i' y_i j' i y_{i'} j y_i$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (j) If $w^{-1} = -y_{i'} i' j' y_i i j y_{j'} y_j$ then (Y3) fails for $(a,b) = (y_{j'},j')$ and $(a',b') = (i,y_i)$.
 - (k) If $w^{-1} = -y_{i'} i' j' y_i i y_{i'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (1) If $w^{-1} = -y_{i'} i' y_i j' y_{i'} i j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - $\text{(m) If } w^{-1} = -y_{i'} i' j' y_i y_{j'} i j y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (i,y_i).$

Recall that $(k, l) = (j, y_i)$. We conclude that if $i' < y_{j'} < i < j' < y_j < j < y_{i'} < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_{i'} - y_i - i - j - y_i$$
 and $v^{-1} = -j' - y_{i'} - i' - y_{i'} - j - y_i - i - y_i$.

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(y_j, j), (i, y_i)\}$ and $(a', b') \in \{(y_{j'}, j'), (i', y_{i'})\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(V1) \Leftrightarrow \begin{cases} (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - . \end{cases}$$

- $(V2) \Leftrightarrow (\text{no condition}).$
- $(V3) \Leftrightarrow (no condition).$
- 3. Suppose $i' < y_{j'} < j' < i < y_{i'} < y_j < j < y_i$.

(a) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - y_{j'} - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(f) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(h) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(i) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(j) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(k) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

$$\text{(l) If } w^{-1} = - y_{i'} - i' - y_i - j' - y_{j'} - i - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (i,y_i).$$

(m) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - y_{j'} - i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i' < y_{j'} < j' < i < y_{i'} < y_j < j < y_i$ and then one of the following holds:

$$\bullet \ w^{-1} = -y_{i'} - i' - j' - y_{j'} - y_i - i - j - y_j - \text{ and } v^{-1} = -j' - y_{i'} - i' - y_{j'} - j - y_i - i - y_j - .$$

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(y_j, j), (i, y_i)\}$ and $(a', b') \in \{(y_{j'}, j'), (i', y_{i'})\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - . \end{cases}$$

- $(V2) \Leftrightarrow (\text{no condition}).$
- $(V3) \Leftrightarrow (no condition).$
- 4. Suppose $i' < i < y_{i'} < y_i < j' < y_{i'} < j < y_i$.

(a) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - j - y_{j'} - y_j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - y_{j'} - j - y_j$$
 then (T) fails.

(c) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - y_{j'} - j - y_j$$
 then (T) fails.

(d) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - y_{j'} - j - y_j$$
 then (T) fails.

(e) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - i - y_{j'} - j - y_j$$
 then (T) fails.

- (f) If $w^{-1} = -y_{i'} y_i i' i j' j y_{j'} y_j$ then (T) fails.
- (g) If $w^{-1} = -y_{i'} y_i i' i j' y_{j'} j y_j$ then (T) fails.
- (h) If $w^{-1} = -y_{i'} i' y_i j' y_{i'} i j y_j$ then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (y_{j'}, j')$.
- (i) If $w^{-1} = -y_{i'} i' j' y_i y_{j'} i j y_j$ then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (y_{j'}, j')$.
- (j) If $w^{-1} = -y_{i'} y_i i' j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- (k) If $w^{-1} = -y_{i'} y_i i' j' y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- (l) If $w^{-1} = -y_{i'} i' y_i j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.
- $\text{(m) If } w^{-1} = y_{i'} i' j' y_i i j y_{j'} y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$

Recall that $(k, l) = (j, y_i)$. We conclude that if $i' < i < y_{j'} < y_j < j' < y_{i'} < j < y_i$ and then one of the following holds:

$$\bullet \ w^{-1} = -y_{i'} - i' - j' - y_{j'} - y_i - i - j - y_j - \text{ and } v^{-1} = -j' - y_{i'} - i' - y_{j'} - j - y_i - i - y_j - .$$

When $(a,b) \in \operatorname{Cyc}^1(y) = \{(y_j,j),(i,y_i)\}$ and $(a',b') \in \{(y_{j'},j'),(i',y_{i'})\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(V1) \Leftrightarrow \begin{cases} (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - . \end{cases}$$

- $(V2) \Leftrightarrow (wt)^{-1} \neq -y_i y_{j'} i \text{ and } (wt)^{-1} \neq -y_i j' i .$
- $(V3) \Leftrightarrow (no condition).$
- 5. Suppose $i' < y_{j'} < i < j' < y_j < y_{i'} < j < y_i$.
 - (a) If $w^{-1} = -y_{i'} i' y_i i j' j y_{j'} y_j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} i' y_i i j' y_{j'} j y_j$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} y_i i' i j' j y_{j'} y_j$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} y_i i' i j' y_{i'} j y_i$ then (T) fails.
 - (e) If $w^{-1} = -y_{i'} y_i i' j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (f) If $w^{-1} = -y_{i'} y_i i' j' y_{j'} i j y_i$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (g) If $w^{-1} = -y_{i'} y_i i' j' i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - $\text{(h) If } w^{-1} = y_{i'} i' y_i j' i j y_{i'} y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (i,y_i).$
 - (i) If $w^{-1} = -y_{i'} i' y_i j' i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (j) If $w^{-1} = -y_{i'} i' j' y_i i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (k) If $w^{-1} = -y_{i'} i' j' y_i i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (l) If $w^{-1} = -y_{i'} i' y_i j' y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - $\text{(m) If } w^{-1} = -y_{i'} i' j' y_i y_{j'} i j y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (i,y_i).$

Recall that $(k, l) = (j, y_i)$. We conclude that if $i' < y_{j'} < i < j' < y_j < y_{i'} < j < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_{i'} - y_i - i - j - y_j$$
 and $v^{-1} = -j' - y_{i'} - i' - y_{j'} - j - y_i - i - y_j$.

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(y_j, j), (i, y_i)\}$ and $(a', b') \in \{(y_{j'}, j'), (i', y_{i'})\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - . \end{cases}$$

- $(V2) \Leftrightarrow (\text{no condition}).$
- $(V3) \Leftrightarrow (no condition).$
- 6. Suppose $i' < i < y_{j'} < j' < y_j < j < y_{i'} < y_i$.
 - (a) If $w^{-1} = -y_{i'} i' y_i i j' j y_{j'} y_j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} i' y_i i j' y_{j'} j y_j$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} i' y_i j' i y_{j'} j y_j$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} i' j' y_i i y_{j'} j y_j$ then (T) fails.
 - (e) If $w^{-1} = -y_{i'} y_i i' j' i y_{j'} j y_j$ then (T) fails.
 - (f) If $w^{-1} = -y_{i'} y_i i' i j' j y_{i'} y_i$ then (T) fails.
 - (g) If $w^{-1} = -y_{i'} y_i i' i j' y_{j'} j y_j$ then (T) fails.
 - (h) If $w^{-1} = -y_{i'} i' y_i j' y_{j'} i j y_j$ then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (y_{j'}, j')$.
 - (i) If $w^{-1} = -y_{i'} i' j' y_i y_{j'} i j y_j$ then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (y_{j'}, j')$.
 - $\text{(j) If } w^{-1} = -y_{i'} y_i i' j' i j y_{j'} y_j \text{ then (Y3) fails for } (a,b) = (i',y_{i'}) \text{ and } (a',b') = (i,y_i).$
 - (k) If $w^{-1} = -y_{i'} y_i i' j' y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (l) If $w^{-1} = -y_{i'} i' y_i j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.
 - $\text{(m) If } w^{-1} = -y_{i'} i' j' y_i i j y_{j'} y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$

Recall that $(k, l) = (j, y_i)$. We conclude that if $i' < i < y_{j'} < j' < y_j < j < y_{i'} < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_{j'} - y_i - i - j - y_j$$
 and $v^{-1} = -j' - y_{i'} - i' - y_{j'} - j - y_i - i - y_j$.

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(y_j, j), (i, y_i)\}$ and $(a', b') \in \{(y_{j'}, j'), (i', y_{i'})\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(V1) \Leftrightarrow \begin{cases} (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - . \end{cases}$$

- $(V2) \Leftrightarrow (wt)^{-1} \neq -y_i y_{i'} i \text{ and } (wt)^{-1} \neq -y_i i' i .$
- $(V3) \Leftrightarrow (no condition).$
- 7. Suppose $i' < y_{i'} < i < y_i < j' < j < y_{i'} < y_i$.
 - (a) If $w^{-1} = -y_{i'} i' y_i i j' j y_{j'} y_j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} i' y_i i j' y_{j'} j y_j$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} y_i i' i j' j y_{j'} y_j$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} y_i i' i j' y_{j'} j y_j$ then (T) fails.
 - (e) If $w^{-1} = -y_{i'} y_i i' j' i j y_{j'} y_i$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (f) If $w^{-1} = -y_{i'} y_i i' j' y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (g) If $w^{-1} = -y_{i'} y_i i' j' i y_{i'} j y_i$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - $\text{(h) If } w^{-1} = y_{i'} i' y_i j' i j y_{j'} y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (i,y_i).$
 - (i) If $w^{-1} = -y_{i'} i' y_i j' i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (i) If $w^{-1} = -y_{i'} i' j' y_i i j y_{i'} y_j$ then (Y3) fails for $(a,b) = (y_{j'},j')$ and $(a',b') = (i,y_i)$.
 - (k) If $w^{-1} = -y_{i'} i' j' y_i i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (l) If $w^{-1} = -y_{i'} i' y_i j' y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - $\text{(m) If } w^{-1} = y_{i'} i' j' y_i y_{j'} i j y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (i,y_i).$

Recall that $(k, l) = (j, y_i)$. We conclude that if $i' < y_{j'} < i < y_j < j' < j < y_{i'} < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_{i'} - y_i - i - j - y_i$$
 and $v^{-1} = -j' - y_{i'} - i' - y_{i'} - j - y_i - i - y_i$.

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(y_j, j), (i, y_i)\}$ and $(a', b') \in \{(y_{j'}, j'), (i', y_{i'})\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - . \end{cases}$$

- $(V2) \Leftrightarrow (\text{no condition}).$
- $(V3) \Leftrightarrow (no condition).$
- 8. Suppose $i' < y_{j'} < j' < y_{i'} < i < y_j < j < y_i$.

(a) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - y_{j'} - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

$$\text{(f) If } w^{-1} = -y_{i'} - i' - y_i - i - j' - j - y_{j'} - y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (i,y_i).$$

(g) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(h) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(i) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(j) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(k) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(l) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - y_{j'} - i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

$$\text{(m) If } w^{-1} = -y_{i'} - i' - j' - y_i - y_{j'} - i - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (i,y_i).$$

Recall that $(k, l) = (j, y_i)$. We conclude that if $i' < y_{j'} < j' < y_{i'} < i < y_j < j < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_{i'} - y_i - i - j - y_i$$
 and $v^{-1} = -j' - y_{i'} - i' - y_{i'} - j - y_i - i - y_i$.

When $(a,b) \in \operatorname{Cyc}^1(y) = \{(y_j,j),(i,y_i)\}$ and $(a',b') \in \{(y_{j'},j'),(i',y_{i'})\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - . \end{cases}$$

- $(V2) \Leftrightarrow (no condition).$
- $(V3) \Leftrightarrow (no condition).$
- 9. Suppose $i' < y_{i'} < j' < i < y_i < j < y_{i'} < y_i$.

(a) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - y_{j'} - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

$$\text{(f) If } w^{-1} = - y_{i'} - i' - y_i - i - j' - j - y_{j'} - y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (i,y_i).$$

(g) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

- $\text{(h) If } w^{-1} = y_{i'} i' y_i i j' y_{j'} j y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (i,y_i).$
- (i) If $w^{-1} = -y_{i'} i' y_i j' i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
- (j) If $w^{-1} = -y_{i'} i' j' y_i i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
- $\text{(k) If } w^{-1} = y_{i'} i' j' y_i i y_{j'} j y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (i,y_i).$
- (l) If $w^{-1} = -y_{i'} i' y_i j' y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
- (m) If $w^{-1} = -y_{i'} i' j' y_i y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i' < y_{j'} < j' < i < y_j < j < y_{i'} < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_{j'} - y_i - i - j - y_j$$
 and $v^{-1} = -j' - y_{i'} - i' - y_{j'} - j - y_i - i - y_j$.

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(y_j, j), (i, y_i)\}$ and $(a', b') \in \{(y_{j'}, j'), (i', y_{i'})\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(V1) \Leftrightarrow \begin{cases} (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - . \end{cases}$$

- $(V2) \Leftrightarrow (\text{no condition}).$
- $(V3) \Leftrightarrow (no condition).$
- 10. Suppose $i' < y_{i'} < i < y_i < j' < y_{i'} < j < y_i$.
 - (a) If $w^{-1} = -y_{i'} i' y_i i j' j y_{j'} y_j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} i' y_i i j' y_{j'} j y_j$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} y_i i' i j' j y_{j'} y_j$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} y_i i' i j' y_{i'} j y_i$ then (T) fails.
 - (e) If $w^{-1} = -y_{i'} y_i i' j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (f) If $w^{-1} = -y_{i'} y_i i' j' y_{i'} i j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (g) If $w^{-1} = -y_{i'} y_i i' j' i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (h) If $w^{-1} = -y_{i'} i' y_i j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (i) If $w^{-1} = -y_{i'} i' y_i j' i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (j) If $w^{-1} = -y_{i'} i' j' y_i i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (k) If $w^{-1} = -y_{i'} i' j' y_i i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (l) If $w^{-1} = -y_{i'} i' y_i j' y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - $\text{(m) If } w^{-1} = y_{i'} i' j' y_i y_{j'} i j y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (i,y_i).$

Recall that $(k, l) = (j, y_i)$. We conclude that if $i' < y_{j'} < i < y_j < j' < y_{i'} < j < y_i$ and then one of the following holds:

$$\bullet \ w^{-1} = -y_{i'} - i' - j' - y_{j'} - y_i - i - j - y_j - \text{ and } v^{-1} = -j' - y_{i'} - i' - y_{j'} - j - y_i - i - y_j - .$$

When $(a,b) \in \operatorname{Cyc}^1(y) = \{(y_j,j),(i,y_i)\}$ and $(a',b') \in \{(y_{j'},j'),(i',y_{i'})\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(V1) \Leftrightarrow \begin{cases} (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - . \end{cases}$$

- $(V2) \Leftrightarrow (no condition).$
- $(V3) \Leftrightarrow (no condition).$

- 11. Suppose $i' < y_{j'} < j' < i < y_j < y_{i'} < j < y_i$.
 - (a) If $w^{-1} = -y_{i'} y_i i' j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (b) If $w^{-1} = -y_{i'} y_i i' j' y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (c) If $w^{-1} = -y_{i'} y_i i' j' i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (d) If $w^{-1} = -y_{i'} y_i i' i j' j y_{j'} y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - $\text{(e) If } w^{-1} = -y_{i'} y_i i' i j' y_{j'} j y_j \text{ then (Y3) fails for } (a,b) = (i',y_{i'}) \text{ and } (a',b') = (i,y_i).$
 - $\text{(f) If } w^{-1} = -y_{i'} i' y_i i j' j y_{j'} y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (i,y_i).$
 - (g) If $w^{-1} = -y_{i'} i' y_i j' i j y_{j'} y_j$ then (Y3) fails for $(a,b) = (y_{j'},j')$ and $(a',b') = (i,y_i)$.
 - $\text{(h) If } w^{-1} = y_{i'} i' y_i i j' y_{j'} j y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (i,y_i).$
 - (i) If $w^{-1} = -y_{i'} i' y_i j' i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (j) If $w^{-1} = -y_{i'} i' j' y_i i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (k) If $w^{-1} = -y_{i'} i' j' y_i i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (1) If $w^{-1} = -y_{i'} i' y_i j' y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - $\text{(m) If } w^{-1} = -y_{i'} i' j' y_i y_{j'} i j y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (i,y_i).$

Recall that $(k, l) = (j, y_i)$. We conclude that if $i' < y_{j'} < j' < i < y_j < y_{i'} < j < y_i$ and then one of the following holds:

$$\bullet \ w^{-1} = -y_{i'} - i' - j' - y_{j'} - y_i - i - j - y_j - \text{ and } v^{-1} = -j' - y_{i'} - i' - y_{j'} - j - y_i - i - y_j - .$$

When $(a, b) \in \text{Cyc}^1(y) = \{(y_j, j), (i, y_i)\}$ and $(a', b') \in \{(y_{j'}, j'), (i', y_{i'})\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(V1) \Leftrightarrow \begin{cases} (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - . \end{cases}$$

- $(V2) \Leftrightarrow (no condition).$
- $(V3) \Leftrightarrow (no condition).$
- 12. Suppose $i' < i < y_{i'} < j' < y_{i'} < y_i < j < y_i$.
 - (a) If $w^{-1} = -y_{i'} i' y_i i j' j y_{j'} y_j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} i' y_i i j' y_{i'} j y_j$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} i' y_i j' i y_{i'} j y_j$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} i' j' y_i i y_{j'} j y_j$ then (T) fails.
 - (e) If $w^{-1} = -y_{i'} y_i i' j' i y_{j'} j y_j$ then (T) fails.
 - (f) If $w^{-1} = -y_{i'} y_i i' i j' j y_{j'} y_j$ then (T) fails.
 - (g) If $w^{-1} = -y_{i'} y_i i' i j' y_{j'} j y_j$ then (T) fails.
 - (h) If $w^{-1} = -y_{i'} i' y_i j' y_{i'} i j y_j$ then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (y_{j'}, j')$.
 - $\text{(i) If } w^{-1} = -y_{i'} i' j' y_i y_{j'} i j y_j \text{ then (Y2) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (y_{j'},j').$
 - (i) If $w^{-1} = -y_{i'} y_i i' j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (k) If $w^{-1} = -y_{i'} y_i i' j' y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - $\text{(l) If } w^{-1} = y_{i'} i' y_i j' i j y_{j'} y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$
 - $\text{(m) If } w^{-1} = -y_{i'} i' j' y_i i j y_{j'} y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$

Recall that $(k, l) = (j, y_i)$. We conclude that if $i' < i < y_{j'} < j' < y_{i'} < y_j < j < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_{i'} - y_i - i - j - y_i$$
 and $v^{-1} = -j' - y_{i'} - i' - y_{i'} - j - y_i - i - y_i$.

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(y_j, j), (i, y_i)\}$ and $(a', b') \in \{(y_{j'}, j'), (i', y_{i'})\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - . \end{cases}$$

$$(V2) \Leftrightarrow (wt)^{-1} \neq -y_i - y_{j'} - i - \text{ and } (wt)^{-1} \neq -y_i - j' - i - .$$

- $(V3) \Leftrightarrow (no condition).$
- 13. Suppose $i' < y_{j'} < i < j' < y_{i'} < y_j < j < y_i$.

(a) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - j - y_{j'} - y_j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - y_{j'} - j - y_j$$
 then (T) fails.

(c) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - j - y_{j'} - y_j$$
 then (T) fails.

(d) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - y_{i'} - j - y_i$$
 then (T) fails.

(e) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(f) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - y_{j'} - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(h) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(i) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(j) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(k) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(l) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - y_{j'} - i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(m) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - y_{j'} - i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i' < y_{j'} < i < j' < y_{i'} < y_j < j < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_{j'} - y_i - i - j - y_j$$
 and $v^{-1} = -j' - y_{i'} - i' - y_{j'} - j - y_i - i - y_j$.

When $(a,b) \in \operatorname{Cyc}^1(y) = \{(y_j,j),(i,y_i)\}$ and $(a',b') \in \{(y_{j'},j'),(i',y_{i'})\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - . \end{cases}$$

- $(V2) \Leftrightarrow (\text{no condition}).$
- $(V3) \Leftrightarrow (\text{no condition}).$
- 14. Suppose $i' < i < y_{i'} < j' < y_i < y_{i'} < j < y_i$.

(a) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - j - y_{j'} - y_i$$
 then (T) fails.

(b) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - y_{j'} - j - y_j$$
 then (T) fails.

(c) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - y_{j'} - j - y_j$$
 then (T) fails.

(d) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - y_{j'} - j - y_j$$
— then (T) fails.

(e) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - i - y_{j'} - j - y_j$$
 then (T) fails.

(f) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - j - y_{i'} - y_i$$
 then (T) fails.

(g) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - y_{j'} - j - y_j$$
 then (T) fails.

$$\text{(h) If } w^{-1} = -y_{i'} - i' - y_i - j' - y_{j'} - i - j - y_j - \text{ then (Y2) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (y_{j'},j').$$

(i) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - y_{j'} - i - j - y_j$$
 then (Y2) fails for $(a,b) = (i,y_i)$ and $(a',b') = (y_{j'},j')$.

$$(j) \ \ \text{If} \ w^{-1} = - y_{i'} - y_i - i' - j' - i - j - y_{j'} - y_j - \text{ then (Y3) fails for } (a,b) = (i',y_{i'}) \ \ \text{and } (a',b') = (i,y_i).$$

(k) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - y_{j'} - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(l) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - j - y_{j'} - y_j$$
 — then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

(m) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

Recall that $(k, l) = (j, y_i)$. We conclude that if $i' < i < y_{j'} < j' < y_j < y_{i'} < j < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_{j'} - y_i - i - j - y_j$$
 and $v^{-1} = -j' - y_{i'} - i' - y_{j'} - j - y_i - i - y_j$.

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(y_j, j), (i, y_i)\}$ and $(a', b') \in \{(y_{j'}, j'), (i', y_{i'})\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - . \end{cases}$$

$$(V2) \Leftrightarrow (wt)^{-1} \neq -y_i - y_{j'} - i - \text{ and } (wt)^{-1} \neq -y_i - j' - i - .$$

 $(V3) \Leftrightarrow (no condition).$

We conclude that properties (V1)-(V3) hold for all $(a,b), (a',b') \in \text{Cyc}(y)$ when $i < y_j < j < y_i$.

5 Case B1

Suppose $y_i < y_i = i < j$ and $w^{-1} = -i - j - y_j$ — so that $k = y_i < i = l$.

5.1 Subcase (i)

In this case $v = wt_{ij}t_{kl}$ is such that

$$v^{-1} = -j - y_i - i - .$$

When $(a, b), (a', b') \in \operatorname{Cyc}^1(y) = \{(y_j, j), (i, i)\}$, properties (V1)-(V3) are equivalent to the following conditions which evidently hold:

$$(\mathbf{Z}1) \Leftrightarrow (wt)^{-1} = -j - y_j - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j-i-y_i-.$$

 $(Z3) \Leftrightarrow (no condition).$

Thus properties (V1)-(V3) hold whenever (a, b), (a', b') are as in case (i) and $y_j < y_i = i < j$.

5.2 Subcase (ii)

Suppose R is an integer such that $(R, R) \in \operatorname{Cyc}^2(y)$, so that $R = y_R \notin \{i, j, y_i\} + n\mathbb{Z}$.

1. Suppose $y_j < i < j < R$.

(a) If
$$w^{-1} = -R - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i, i)$ and $(a', b') = (R, R)$.

(b) If
$$w^{-1} = -i - j - R - y_j$$
 then (Y3) fails for $(a,b) = (y_j,j)$ and $(a',b') = (R,R)$.

(c) If
$$w^{-1} = -i - R - j - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (R, R)$.

Recall that $(k, l) = (y_i, i)$. We conclude that if $y_i < i < j < R$ and then one of the following holds:

•
$$w^{-1} = -i - j - y_j - R$$
 and $v^{-1} = -j - y_j - i - R$.

When (a, b) = (R, R) and $(a', b') \in \text{Cyc}^1(y) = \{(y_j, j), (i, i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -j - y_i - .$$

$$(Z2) \Leftrightarrow (no condition).$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - R - \text{and } (wt)^{-1} = -y_i - R - .$$

2. Suppose $y_i < R < i < j$.

(a) If
$$w^{-1} = -i - j - R - y_j$$
 — then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (i, i)$.

(b) If
$$w^{-1} = -i - j - y_j - R$$
— then (Y3) fails for $(a,b) = (R,R)$ and $(a',b') = (i,i)$.

(c) If
$$w^{-1} = -i - R - j - y_j$$
 then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (i, i)$.

Recall that $(k, l) = (y_i, i)$. We conclude that if $y_i < R < i < j$ and then one of the following holds:

•
$$w^{-1} = -R - i - j - y_j - \text{ and } v^{-1} = -R - j - y_j - i - .$$

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_j, j), (i, i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathbf{Z}1) \Leftrightarrow (wt)^{-1} = -j - y_j - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - R - y_j - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -R-i-.$$

3. Suppose $y_i < i < R < j$.

(a) If
$$w^{-1} = -i - R - j - y_i$$
 then (T) fails.

(b) If
$$w^{-1} = -i - j - R - y_j$$
 then (Y2) fails for $(a, b) = (y_j, j)$ and $(a', b') = (R, R)$.

(c) If
$$w^{-1} = -R - i - j - y_i$$
 then (Y3) fails for $(a, b) = (i, i)$ and $(a', b') = (R, R)$.

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_j < i < R < j$ and then one of the following holds:

•
$$w^{-1} = -i - j - y_j - R$$
— and $v^{-1} = -j - y_j - i - R$ —.

When (a, b) = (R, R) and $(a', b') \in \text{Cyc}^1(y) = \{(y_j, j), (i, i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -j - y_i - x_i$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - R - y_i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - R - .$$

4. Suppose $R < y_i < i < j$.

(a) If
$$w^{-1} = -i - j - R - y_i$$
 then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (i, i)$.

(b) If
$$w^{-1} = -i - j - y_j - R$$
— then (Y3) fails for $(a,b) = (R,R)$ and $(a',b') = (i,i)$.

(c) If
$$w^{-1} = -i - R - j - y_j$$
 then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (i, i)$.

Recall that $(k, l) = (y_i, i)$. We conclude that if $R < y_i < i < j$ and then one of the following holds:

•
$$w^{-1} = -R - i - j - y_j$$
 and $v^{-1} = -R - j - y_j - i - i$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_j, j), (i, i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -j - y_i - .$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -R - i - \text{ and } (wt)^{-1} = -R - j - .$$

Next suppose P < Q are integers with $(P,Q) \in \operatorname{Cyc}^2(y)$, so that $Q = y_P$ and $P,Q \notin \{i,j,y_i\} + n\mathbb{Z}$.

1. Suppose $P < y_i < i < Q < j$.

(a) If
$$w^{-1} = -i - Q - P - j - y_j$$
 — then (T) fails.

- (b) If $w^{-1} = -i Q j y_i P$ then (T) fails.
- (c) If $w^{-1} = -i Q j P y_j$ then (T) fails.
- (d) If $w^{-1} = -Q i P j y_j$ then (Y2) fails for (a, b) = (P, Q) and (a', b') = (i, i).
- (e) If $w^{-1}=-i-j-y_j-Q-P$ then (Y3) fails for (a,b)=(P,Q) and $(a',b')=(y_j,j)$.
- (f) If $w^{-1} = -i j Q y_j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
- (g) If $w^{-1} = -Q i j P y_j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
- (h) If $w^{-1} = -i j Q P y_j$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (y_j,j)$.
- (i) If $w^{-1} = -Q i j y_j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.

Recall that $(k, l) = (y_j, i)$. We conclude that if $P < y_j < i < Q < j$ and then one of the following holds:

•
$$w^{-1} = -Q - P - i - j - y_i - \text{ and } v^{-1} = -Q - P - j - y_i - i - .$$

When (a, b) = (P, Q) and $(a', b') \in \text{Cyc}^1(y) = \{(y_j, j), (i, i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - y_i - .$$

- $(Z2) \Leftrightarrow (wt)^{-1} \neq -Q i P .$
- $(Z3) \Leftrightarrow (wt)^{-1} = -P j .$
- 2. Suppose $P < y_i < Q < i < j$.
 - (a) If $w^{-1} = -i Q P j y_j$ then (Y3) fails for (a,b) = (P,Q) and (a',b') = (i,i).
 - (b) If $w^{-1} = -Q i P j y_j$ then (Y3) fails for (a,b) = (P,Q) and (a',b') = (i,i).
 - (c) If $w^{-1} = -i j y_i Q P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - (d) If $w^{-1} = -i j Q y_i P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - (e) If $w^{-1} = -Q i j P y_i$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - (f) If $w^{-1} = -i Q j y_i P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_i, j)$.
 - (g) If $w^{-1} = -i j Q P y_j$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (y_j,j)$
 - (h) If $w^{-1} = -i Q j P y_j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - (i) If $w^{-1} = -Q i j y_i P$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (y_j,j)$.

Recall that $(k, l) = (y_i, i)$. We conclude that if $P < y_j < Q < i < j$ and then one of the following holds:

•
$$w^{-1} = -Q - P - i - j - y_j - \text{ and } v^{-1} = -Q - P - j - y_j - i - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_j, j), (i, i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

- $(\mathbf{Z}\mathbf{1}) \Leftrightarrow (wt)^{-1} = -Q P \text{ and } (wt)^{-1} = -j y_j -.$
- $(Z2) \Leftrightarrow (no condition).$
- $(Z3) \Leftrightarrow (wt)^{-1} = -P i \text{ and } (wt)^{-1} = -P j .$
- 3. Suppose $y_i < i < j < P < Q$.
 - (a) If $w^{-1} = -i j Q y_j P$ then (Y3) fails for $(a,b) = (y_j,j)$ and (a',b') = (P,Q).
 - (b) If $w^{-1}=-i-Q-P-j-y_j$ then (Y3) fails for $(a,b)=(y_j,j)$ and (a',b')=(P,Q).
 - (c) If $w^{-1} = -Q i j P y_j$ then (Y3) fails for $(a,b) = (y_j,j)$ and (a',b') = (P,Q).
 - (d) If $w^{-1} = -Q i P j y_j$ then (Y3) fails for $(a,b) = (y_j,j)$ and (a',b') = (P,Q).
 - (e) If $w^{-1} = -Q P i j y_j$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).
 - (f) If $w^{-1} = -i Q j y_j P$ then (Y3) fails for $(a,b) = (y_j,j)$ and (a',b') = (P,Q).
 - (g) If $w^{-1} = -i j Q P y_i$ then (Y3) fails for $(a,b) = (y_j,j)$ and (a',b') = (P,Q).
 - $\text{(h) If } w^{-1} = -i Q j P y_j \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$

(i) If
$$w^{-1} = -Q - i - j - y_j - P$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_j < i < j < P < Q$ and then one of the following holds:

•
$$w^{-1} = -i - j - y_j - Q - P -$$
and $v^{-1} = -j - y_j - i - Q - P -$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_j, j), (i, i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - y_j - .$$

$$(Z2) \Leftrightarrow (no condition).$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - Q - \text{ and } (wt)^{-1} = -y_i - Q - .$$

4. Suppose $y_i < i < P < j < Q$.

(a) If
$$w^{-1} = -i - Q - P - j - y_i$$
 then (T) fails.

(b) If
$$w^{-1} = -Q - i - P - j - y_i$$
 then (T) fails.

(c) If
$$w^{-1} = -i - j - Q - y_j - P$$
 then (Y3) fails for $(a,b) = (y_j,j)$ and $(a',b') = (P,Q)$.

(d) If
$$w^{-1} = -Q - i - j - P - y_j$$
 then (Y3) fails for $(a,b) = (y_j,j)$ and $(a',b') = (P,Q)$.

(e) If
$$w^{-1} = -Q - P - i - j - y_j$$
 then (Y3) fails for $(a,b) = (y_j,j)$ and $(a',b') = (P,Q)$.

(f) If
$$w^{-1} = -i - Q - j - y_j - P$$
— then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(g) If
$$w^{-1}=-i-j-Q-P-y_j$$
— then (Y3) fails for $(a,b)=(y_j,j)$ and $(a',b')=(P,Q)$.

(h) If
$$w^{-1} = -i - Q - j - P - y_j$$
 — then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(i) If
$$w^{-1} = -Q - i - j - y_j - P$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

Recall that $(k, l) = (y_i, i)$. We conclude that if $y_i < i < P < j < Q$ and then one of the following holds:

$$\bullet \ w^{-1} = -i - j - y_j - Q - P - \ \text{and} \ v^{-1} = -j - y_j - i - Q - P -.$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_j, j), (i, i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - y_j - .$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - Q - \text{ and } (wt)^{-1} = -y_i - Q - .$$

5. Suppose $y_i < P < i < Q < j$.

(a) If
$$w^{-1} = -i - Q - P - j - y_j$$
 — then (T) fails.

(b) If
$$w^{-1} = -i - Q - j - y_j - P$$
— then (T) fails.

(c) If
$$w^{-1} = -i - Q - j - P - y_j$$
 then (T) fails.

(d) If
$$w^{-1} = -Q - i - P - j - y_j$$
 — then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,i)$.

(e) If
$$w^{-1} = -Q - i - j - y_j - P$$
— then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,i)$.

$$\text{(f) If } w^{-1}=-i-j-Q-y_j-P-\text{ then (Y2) fails for } (a,b)=(y_j,j) \text{ and } (a',b')=(P,Q).$$

(g) If
$$w^{-1} = -Q - i - j - P - y_i$$
 then (Y2) fails for $(a, b) = (y_i, j)$ and $(a', b') = (P, Q)$.

(h) If
$$w^{-1} = -i - j - Q - P - y_j$$
 — then (Y2) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

Recall that $(k, l) = (y_i, i)$. We conclude that if $y_i < P < i < Q < j$ and then one of the following holds:

$$\bullet \ w^{-1} = -Q - P - i - j - y_j - \text{ and } v^{-1} = -Q - P - j - y_j - i -.$$

•
$$w^{-1} = -i - j - y_i - Q - P - \text{ and } v^{-1} = -j - y_i - i - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_j, j), (i, i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - y_i - .$$

$$(\mathbf{Z2}) \Leftrightarrow \begin{cases} (wt)^{-1} \neq -Q - i - P - \text{ and } \\ (wt)^{-1} \neq -j - P - y_j - \text{ and } (wt)^{-1} \neq -j - Q - y_j - . \end{cases}$$

 $(Z3) \Leftrightarrow (no condition).$

6. Suppose $y_j < P < Q < i < j$.

(a) If
$$w^{-1} = -i - j - Q - y_j - P$$
— then (Y2) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(b) If
$$w^{-1} = -Q - i - j - P - y_j$$
 then (Y2) fails for $(a,b) = (y_j,j)$ and $(a',b') = (P,Q)$.

(c) If
$$w^{-1} = -i - j - Q - P - y_j$$
 — then (Y2) fails for $(a,b) = (y_j,j)$ and $(a',b') = (P,Q)$.

(d) If
$$w^{-1} = -i - Q - j - P - y_j$$
 then (Y2) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(e) If
$$w^{-1}=-i-j-y_j-Q-P$$
— then (Y3) fails for $(a,b)=(P,Q)$ and $(a',b')=(i,i)$.

(f) If
$$w^{-1} = -i - Q - P - j - y_i$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, i)$.

(g) If
$$w^{-1} = -Q - i - P - j - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, i)$.

(h) If
$$w^{-1} = -i - Q - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, i)$.

(i) If
$$w^{-1} = -Q - i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, i)$.

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_j < P < Q < i < j$ and then one of the following holds:

•
$$w^{-1} = -Q - P - i - j - y_j$$
 and $v^{-1} = -Q - P - j - y_j - i - .$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_j, j), (i, i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - y_j - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - P - y_i - \text{ and } (wt)^{-1} \neq -j - Q - y_i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - i - .$$

7. Suppose $P < Q < y_i < i < j$.

(a) If
$$w^{-1}=-i-Q-P-j-y_j$$
— then (Y3) fails for $(a,b)=(P,Q)$ and $(a',b')=(i,i)$.

(b) If
$$w^{-1} = -Q - i - P - j - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,i)$.

(c) If
$$w^{-1} = -i - j - y_j - Q - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(d) If
$$w^{-1} = -i - j - Q - y_j - P$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_j,j)$.

(e) If
$$w^{-1} = -Q - i - j - P - y_i$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, j)$.

(f) If
$$w^{-1} = -i - Q - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(g) If
$$w^{-1} = -i - j - Q - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(h) If
$$w^{-1} = -i - Q - j - P - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_j,j)$.

(i) If
$$w^{-1} = -Q - i - j - y_i - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, j)$.

Recall that $(k, l) = (y_i, i)$. We conclude that if $P < Q < y_i < i < j$ and then one of the following holds:

•
$$w^{-1} = -Q - P - i - j - y_j$$
 and $v^{-1} = -Q - P - j - y_j - i - .$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_j, j), (i, i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - y_i - .$$

 $(Z2) \Leftrightarrow (\text{no condition}).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - i - \text{ and } (wt)^{-1} = -P - j - .$$

8. Suppose $y_i < P < i < j < Q$.

(a) If
$$w^{-1} = -i - j - Q - y_j - P$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(b) If
$$w^{-1} = -i - Q - P - j - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(c) If
$$w^{-1} = -Q - i - j - P - y_j$$
 — then (Y3) fails for $(a,b) = (y_j,j)$ and $(a',b') = (P,Q)$.

- (d) If $w^{-1} = -Q i P j y_i$ then (Y3) fails for $(a, b) = (y_i, j)$ and (a', b') = (P, Q).
- (e) If $w^{-1} = -Q P i j y_j$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).
- (f) If $w^{-1} = -i Q j y_j P$ then (Y3) fails for $(a,b) = (y_j,j)$ and (a',b') = (P,Q).
- (g) If $w^{-1} = -i j Q P y_j$ then (Y3) fails for $(a,b) = (y_j,j)$ and (a',b') = (P,Q).
- $\text{(h) If } w^{-1} = -i Q j P y_j \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$
- (i) If $w^{-1} = -Q i j y_j P$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).

Recall that $(k, l) = (y_i, i)$. We conclude that if $y_i < P < i < j < Q$ and then one of the following holds:

•
$$w^{-1} = -i - j - y_i - Q - P - \text{ and } v^{-1} = -j - y_i - i - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \text{Cyc}^1(y) = \{(y_j, j), (i, i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - y_j - .$$

$$(\mathbf{Z}2) \Leftrightarrow (wt)^{-1} \neq -Q-i-P-.$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -y_i - Q - .$$

- 9. Suppose $P < y_j < i < j < Q$.
 - (a) If $w^{-1} = -Q i P j y_j$ then (Y2) fails for (a,b) = (P,Q) and (a',b') = (i,i).
 - (b) If $w^{-1} = -i j Q y_j P$ then (Y2) fails for (a,b) = (P,Q) and $(a',b') = (y_j,j)$.
 - (c) If $w^{-1} = -Q i j P y_j$ then (Y2) fails for (a,b) = (P,Q) and $(a',b') = (y_j,j)$.
 - (d) If $w^{-1} = -i Q j y_j P$ then (Y2) fails for (a,b) = (P,Q) and $(a',b') = (y_j,j)$.
 - (e) If $w^{-1} = -i Q j P y_j$ then (Y2) fails for (a,b) = (P,Q) and $(a',b') = (y_j,j)$.
 - (f) If $w^{-1} = -Q i j y_j P$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.

Recall that $(k, l) = (y_i, i)$. We conclude that if $P < y_i < i < j < Q$ and then one of the following holds:

- $\bullet \ w^{-1} = -i j Q P y_j \text{ and } v^{-1} = -j y_j Q P i -.$
- $w^{-1} = -i Q P j y_j \text{ and } v^{-1} = -j Q P y_j i .$
- $w^{-1} = -i j y_i Q P \text{ and } v^{-1} = -j y_i i Q P .$
- $w^{-1} = -Q P i j y_i \text{ and } v^{-1} = -Q P j y_i i .$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_j, j), (i, i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathbf{Z}\mathbf{1}) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - y_j -.$$

$$(\mathrm{Z2}) \Leftrightarrow \begin{cases} (wt)^{-1} \neq -Q - i - P - \text{ and } \\ (wt)^{-1} \neq -Q - y_j - P - \text{ and } (wt)^{-1} \neq -Q - j - P - . \end{cases}$$

 $(Z3) \Leftrightarrow (no condition).$

- 10. Suppose $y_j < i < P < Q < j$.
 - (a) If $w^{-1} = -i Q P j y_i$ then (T) fails.
 - (b) If $w^{-1} = -Q i P j y_i$ then (T) fails.
 - (c) If $w^{-1} = -i Q j y_i P$ then (T) fails.
 - (d) If $w^{-1} = -i Q j P y_j$ then (T) fails.
 - (e) If $w^{-1} = -i j Q y_j P$ then (Y2) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).
 - (f) If $w^{-1} = -Q i j P y_j$ then (Y2) fails for $(a,b) = (y_j,j)$ and (a',b') = (P,Q).
 - (g) If $w^{-1} = -i j Q P y_j$ then (Y2) fails for $(a,b) = (y_j,j)$ and (a',b') = (P,Q)
 - $\text{(h) If } w^{-1} = \cdots Q \cdots P \cdots i \cdots j \cdots y_j \cdots \text{ then (Y3) fails for } (a,b) = (i,i) \text{ and } (a',b') = (P,Q).$
 - (i) If $w^{-1} = -Q i j y_j P$ then (Y3) fails for (a,b) = (i,i) and (a',b') = (P,Q).

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_j < i < P < Q < j$ and then one of the following holds:

•
$$w^{-1} = -i - j - y_i - Q - P - \text{ and } v^{-1} = -j - y_i - i - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_j, j), (i, i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -Q - P - \text{ and } (wt)^{-1} = -j - y_i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - P - y_i - \text{ and } (wt)^{-1} \neq -j - Q - y_i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - Q - .$$

We conclude that properties (V1)-(V3) hold whenever (a, b), (a', b') are as in cases (i) or (ii) and $y_i < y_i = i < j$.

5.3 Subcase (iii)

Suppose i' and j' are integers such that $0 \neq i - i' = j - j' \in n\mathbb{Z}$, so that w(i) - w(i') = w(j) - w(j') = i - i'.

- 1. Suppose $y_{j'} < i' < y_j < i < j' < j$.
 - (a) If $w^{-1} = -i' i j' y_{j'} j y_j$ then (T) fails.
 - (b) If $w^{-1} = -i' i j' j y_{j'} y_j$ then (T) fails.
 - (c) If $w^{-1} = -i' j' i y_{j'} j y_{j}$ then (Y2) fails for $(a, b) = (y_{j'}, j')$ and (a', b') = (i, i).
 - (d) If $w^{-1} = -i' j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

Recall that $(k, l) = (y_i, i)$. We conclude that if $y_{i'} < i' < y_i < i < j' < j$ and then one of the following holds:

•
$$w^{-1} = -i' - j' - y_{i'} - i - j - y_i$$
 and $v^{-1} = -j' - y_{i'} - i' - j - y_i - i - .$

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(y_j, j), (i, i)\}$ and $(a', b') \in \{(y_{j'}, j'), (i', i')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

- $(V1) \Leftrightarrow (wt)^{-1} = -j y_i \text{ and } (wt)^{-1} = -j' y_{i'} .$
- $(V2) \Leftrightarrow (\text{no condition}).$
- $(V3) \Leftrightarrow (\text{no condition}).$
- 2. Suppose $y_{i'} < i' < j' < y_i < i < j$.
 - (a) If $w^{-1} = -i' i j' y_{i'} j y_i$ then (Y3) fails for $(a,b) = (y_{j'},j')$ and (a',b') = (i,i).
 - (b) If $w^{-1} = -i' j' i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and (a', b') = (i, i).
 - (c) If $w^{-1} = -i' j' i j y_{j'} y_j$ then (Y3) fails for $(a,b) = (y_{j'},j')$ and $(a',b') = (y_j,j)$.
 - (d) If $w^{-1} = -i' i j' j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

Recall that $(k, l) = (y_i, i)$. We conclude that if $y_{i'} < i' < j' < y_i < i < j$ and then one of the following holds:

•
$$w^{-1} = -i' - j' - y_{i'} - i - j - y_i$$
 and $v^{-1} = -j' - y_{i'} - i' - j - y_i - i - .$

When $(a, b) \in \text{Cyc}^1(y) = \{(y_j, j), (i, i)\}$ and $(a', b') \in \{(y_{j'}, j'), (i', i')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

- $(V1) \Leftrightarrow (wt)^{-1} = -j y_i \text{ and } (wt)^{-1} = -j' y_{i'} .$
- $(V2) \Leftrightarrow (\text{no condition}).$
- $(V3) \Leftrightarrow (no condition).$
- 3. Suppose $y_{i'} < y_i < i' < j' < i < j$.
 - (a) If $w^{-1} = -i' i j' y_{i'} j y_i$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and (a', b') = (i, i).
 - $\text{(b) If } w^{-1} = -i' j' i y_{j'} j y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (i,i).$
 - (c) If $w^{-1} = -i' j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.
 - $\text{(d) If } w^{-1} = -i' i j' j y_{j'} y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$

Recall that $(k, l) = (y_i, i)$. We conclude that if $y_{i'} < y_i < i' < j' < i < j$ and then one of the following holds:

$$\bullet \ w^{-1} = -i' - j' - y_{j'} - i - j - y_j - \text{ and } v^{-1} = -j' - y_{j'} - i' - j - y_j - i - .$$

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(y_j, j), (i, i)\}$ and $(a', b') \in \{(y_{j'}, j'), (i', i')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(V1) \Leftrightarrow (wt)^{-1} = -j - y_j - \text{and } (wt)^{-1} = -j' - y_{j'} - .$$

$$(V2) \Leftrightarrow (wt)^{-1} \neq -j-i'-y_i-.$$

$$(V3) \Leftrightarrow (no condition).$$

4. Suppose $y_{j'} < i' < y_j < j' < i < j$.

(a) If
$$w^{-1} = -i' - i - j' - y_{j'} - j - y_j$$
 then (Y3) fails for $(a,b) = (y_{j'},j')$ and $(a',b') = (i,i)$.

(b) If
$$w^{-1} = -i' - j' - i - y_{j'} - j - y_{j}$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, i)$.

(c) If
$$w^{-1} = -i' - j' - i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a,b) = (y_{j'},j')$ and $(a',b') = (y_j,j)$.

(d) If
$$w^{-1} = -i' - i - j' - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_{j'} < i' < y_j < j' < i < j$ and then one of the following holds:

$$\bullet \ w^{-1} = -i' - j' - y_{j'} - i - j - y_j - \text{ and } v^{-1} = -j' - y_{j'} - i' - j - y_j - i - .$$

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(y_j, j), (i, i)\}$ and $(a', b') \in \{(y_{j'}, j'), (i', i')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(V1) \Leftrightarrow (wt)^{-1} = -j - y_j - \text{and } (wt)^{-1} = -j' - y_{j'} - .$$

- $(V2) \Leftrightarrow (\text{no condition}).$
- $(V3) \Leftrightarrow (no condition).$
- 5. Suppose $y_{j'} < y_j < i' < i < j' < j$.

(a) If
$$w^{-1} = -i' - i - j' - y_{i'} - j - y_i$$
 then (T) fails.

(b) If
$$w^{-1} = -i' - i - j' - j - y_{j'} - y_j$$
 — then (T) fails.

(c) If
$$w^{-1} = -i' - j' - i - y_{j'} - j - y_j$$
 — then (Y2) fails for $(a,b) = (y_{j'},j')$ and $(a',b') = (i,i)$.

(d) If
$$w^{-1} = -i' - j' - i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

Recall that $(k, l) = (y_i, i)$. We conclude that if $y_{i'} < y_i < i' < i < j' < j$ and then one of the following holds:

•
$$w^{-1} = -i' - j' - y_{i'} - i - j - y_i$$
 and $v^{-1} = -j' - y_{i'} - i' - j - y_i - i - .$

When $(a, b) \in \text{Cyc}^1(y) = \{(y_j, j), (i, i)\}$ and $(a', b') \in \{(y_{j'}, j'), (i', i')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(V1) \Leftrightarrow (wt)^{-1} = -j - y_j - \text{and } (wt)^{-1} = -j' - y_{j'} - .$$

$$(V2) \Leftrightarrow (wt)^{-1} \neq -j-i'-y_j-.$$

 $(V3) \Leftrightarrow (no condition).$

We conclude that properties (V1)-(V3) hold for all $(a,b), (a',b') \in \text{Cyc}(y)$ when $y_i < y_i = i < j$.

6 Case B2

Suppose $y_j < i < y_i < j$ and $w^{-1} = -y_i - i - j - y_j$ so that $k = y_j < i = l$.

6.1 Subcase (i)

In this case $v = wt_{ij}t_{kl}$ is such that

$$v^{-1} = -y_i - j - y_j - i - .$$

When $(a,b),(a',b') \in \operatorname{Cyc}^1(y) = \{(i,y_i),(y_j,j)\}$, properties (V1)-(V3) are equivalent to the following conditions which evidently hold:

$$(Z1) \Leftrightarrow (wt)^{-1} = -j - y_j - \text{ and } (wt)^{-1} = -y_i - i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - i - y_j - \text{ and } (wt)^{-1} \neq -j - y_i - y_j - .$$

$$(Z3) \Leftrightarrow (no condition).$$

Thus properties (V1)-(V3) hold whenever (a, b), (a', b') are as in case (i) and $y_i < i < y_i < j$.

6.2 Subcase (ii)

Suppose R is an integer such that $(R,R) \in \text{Cyc}^2(y)$, so that $R = y_R \notin \{i,j,y_i,y_j\} + n\mathbb{Z}$.

- 1. Suppose $y_j < i < y_i < j < R$.
 - (a) If $w^{-1} = -R y_i i j y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (R, R).
 - (b) If $w^{-1} = -y_i R i j y_j$ then (Y3) fails for $(a,b) = (i,y_i)$ and (a',b') = (R,R).
 - (c) If $w^{-1} = -y_i i R j y_j$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (R, R).
 - (d) If $w^{-1} = -y_i i j R y_j$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (R, R).

Recall that $(k, l) = (y_i, i)$. We conclude that if $y_i < i < y_i < j < R$ and then one of the following holds:

•
$$w^{-1} = -y_i - i - j - y_j - R$$
 and $v^{-1} = -y_i - j - y_j - i - R$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(i, y_i), (y_j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathbf{Z}\mathbf{1}) \Leftrightarrow (wt)^{-1} = --j --y_j -- \text{ and } (wt)^{-1} = --y_i -- i --.$$

- $(Z2) \Leftrightarrow (no condition).$
- $(\mathbf{Z3}) \Leftrightarrow (wt)^{-1} = -i R \text{ and } (wt)^{-1} = -y_i R -.$
- 2. Suppose $y_i < i < y_i < R < j$.
 - (a) If $w^{-1} = -y_i i R j y_j$ then (T) fails.
 - (b) If $w^{-1} = -y_i i j R y_j$ then (Y2) fails for $(a,b) = (y_j,j)$ and (a',b') = (R,R).
 - (c) If $w^{-1} = -R y_i i j y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (R, R).
 - (d) If $w^{-1} = -y_i R i j y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (R, R).

Recall that $(k, l) = (y_i, i)$. We conclude that if $y_i < i < y_i < R < j$ and then one of the following holds:

$$\bullet \ \, w^{-1} = - y_i - i - j - y_j - R - \ \, \text{and} \, \, v^{-1} = - y_i - j - y_j - i - R - .$$

When (a,b) = (R,R) and $(a',b') \in \operatorname{Cyc}^1(y) = \{(i,y_i),(y_j,j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -i - y_i - \text{ and } (wt)^{-1} = -y_i - i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - R - y_i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - R - .$$

- 3. Suppose $y_i < i < R < y_i < j$.
 - (a) If $w^{-1} = -y_i i R j y_i$ then (T) fails.
 - (b) If $w^{-1} = -y_i R i j y_j$ then (Y2) fails for $(a, b) = (i, y_i)$ and (a', b') = (R, R).

(c) If
$$w^{-1} = -y_i - i - j - R - y_j$$
 then (Y2) fails for $(a, b) = (y_i, j)$ and $(a', b') = (R, R)$.

Recall that $(k, l) = (y_i, i)$. We conclude that if $y_i < i < R < y_i < j$ and then one of the following holds:

•
$$w^{-1} = -R - y_i - i - j - y_j - \text{ and } v^{-1} = -R - y_i - j - y_j - i - .$$

•
$$w^{-1} = -y_i - i - j - y_j - R$$
 and $v^{-1} = -y_i - j - y_j - i - R$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(i, y_i), (y_j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -j - y_i - \text{ and } (wt)^{-1} = -y_i - i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - R - y_i - \text{ and } (wt)^{-1} \neq -y_i - R - i - .$$

$$(Z3) \Leftrightarrow (no condition).$$

4. Suppose $y_i < R < i < y_i < j$.

(a) If
$$w^{-1} = -y_i - i - j - R - y_j$$
 then (Y2) fails for $(a,b) = (y_j,j)$ and $(a',b') = (R,R)$.

(b) If
$$w^{-1} = -y_i - i - R - j - y_j$$
 — then (Y3) fails for $(a,b) = (R,R)$ and $(a',b') = (i,y_i)$.

(c) If
$$w^{-1} = -y_i - R - i - j - y_j$$
 then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_i - i - j - y_j - R$$
— then (Y3) fails for $(a,b) = (R,R)$ and $(a',b') = (i,y_i)$.

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_j < R < i < y_i < j$ and then one of the following holds:

•
$$w^{-1} = -R - y_i - i - j - y_j - \text{ and } v^{-1} = -R - y_i - j - y_j - i - .$$

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(i, y_i), (y_j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -j - y_i - \text{ and } (wt)^{-1} = -y_i - i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - R - y_j - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -R - y_i - .$$

5. Suppose $R < y_i < i < y_i < j$.

(a) If
$$w^{-1} = -y_i - i - R - j - y_j$$
 then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -y_i - R - i - j - y_j$$
 — then (Y3) fails for $(a,b) = (R,R)$ and $(a',b') = (i,y_i)$.

(c) If
$$w^{-1} = -y_i - i - j - y_j - R$$
— then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_i - i - j - R - y_j$$
 — then (Y3) fails for $(a,b) = (R,R)$ and $(a',b') = (i,y_i)$.

Recall that $(k, l) = (y_i, i)$. We conclude that if $R < y_j < i < y_i < j$ and then one of the following holds:

•
$$w^{-1} = -R - y_i - i - j - y_j$$
 and $v^{-1} = -R - y_i - j - y_j - i - .$

When (a,b) = (R,R) and $(a',b') \in \operatorname{Cyc}^1(y) = \{(i,y_i),(y_j,j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -j - y_j - \text{ and } (wt)^{-1} = -y_i - i - .$$

 $(Z2) \Leftrightarrow (\text{no condition}).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -R - j - \text{ and } (wt)^{-1} = -R - y_i - .$$

Next suppose P < Q are integers with $(P,Q) \in \text{Cyc}^2(y)$, so that $Q = y_P$ and $P,Q \notin \{i,j,y_i,y_j\} + n\mathbb{Z}$.

1. Suppose $P < y_i < i < Q < y_i < j$.

(a) If
$$w^{-1} = -y_i - i - Q - j - P - y_i$$
 then (T) fails.

(b) If
$$w^{-1} = -y_i - i - Q - P - j - y_j$$
 then (T) fails.

(c) If
$$w^{-1} = -y_i - i - Q - j - y_j - P$$
 then (T) fails.

(d) If
$$w^{-1} = -y_i - i - j - Q - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -Q - y_i - P - i - j - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(f) If
$$w^{-1} = -y_i - Q - i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -y_i - i - j - Q - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

$$\text{(h) If } w^{-1} = -y_i - Q - P - i - j - y_j - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (i,y_i).$$

(i) If
$$w^{-1} = -y_i - Q - i - P - j - y_j$$
 — then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(j) If
$$w^{-1} = -Q - y_i - i - j - y_j - P$$
 — then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(k) If
$$w^{-1} = -y_i - Q - i - j - P - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(l) If
$$w^{-1} = -Q - y_i - i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(m) If
$$w^{-1} = -y_i - i - j - y_j - Q - P$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(n) If
$$w^{-1} = -Q - y_i - i - P - j - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

Recall that $(k, l) = (y_j, i)$. We conclude that if $P < y_j < i < Q < y_i < j$ and then one of the following holds:

•
$$w^{-1} = -Q - P - y_i - i - j - y_j$$
 and $v^{-1} = -Q - P - y_i - j - y_j - i - .$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(i, y_i), (y_j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -y_i - i - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

(Z3)
$$\Leftrightarrow$$
 $(wt)^{-1} = -P - j - \text{and } (wt)^{-1} = -P - y_i - .$

2. Suppose $P < y_j < Q < i < y_i < j$.

(a) If
$$w^{-1} = -y_i - i - j - Q - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -Q - y_i - P - i - j - y_j$$
 — then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_i - Q - i - j - y_j - P$$
— then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

$$\text{(d) If } w^{-1} = -y_i - i - j - Q - P - y_j - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (i,y_i).$$

(e) If
$$w^{-1} = -y_i - i - Q - j - P - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

$$\text{(f) If } w^{-1} = -y_i - i - Q - P - j - y_j - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (i,y_i).$$

(g) If
$$w^{-1} = -y_i - Q - P - i - j - y_j$$
 — then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(h) If
$$w^{-1} = -y_i - Q - i - P - j - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(i) If
$$w^{-1} = -Q - y_i - i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(j) If
$$w^{-1} = -y_i - Q - i - j - P - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(k) If
$$w^{-1} = -Q - y_i - i - j - P - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

$$\text{(l) If } w^{-1} = - y_i - i - Q - j - y_j - P - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (i,y_i).$$

$$\text{(m) If } w^{-1} = -y_i - i - j - y_j - Q - P - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (i,y_i).$$

(n) If
$$w^{-1} = -Q - y_i - i - P - j - y_j$$
 — then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

Recall that $(k, l) = (y_j, i)$. We conclude that if $P < y_j < Q < i < y_i < j$ and then one of the following holds:

$$\bullet \ \, w^{-1} = -Q - P - y_i - i - j - y_j - \ \, \text{and} \, \, v^{-1} = -Q - P - y_i - j - y_j - i - .$$

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(y) = \{(i,y_i),(y_j,j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -y_i - i - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - j - \text{ and } (wt)^{-1} = -P - y_i - .$$

- 3. Suppose $y_j < i < y_i < P < j < Q$.
 - (a) If $w^{-1} = -y_i i Q P j y_j$ then (T) fails.
 - (b) If $w^{-1} = -y_i Q i P j y_j$ then (T) fails.
 - (c) If $w^{-1} = -Q y_i i P j y_j$ then (T) fails.
 - $\text{(d) If } w^{-1} = Q y_i P i j y_j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$
 - (e) If $w^{-1} = -y_i Q i j y_j P$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
 - $\text{(f) If } w^{-1} = Q P y_i i j y_j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$
 - (g) If $w^{-1} = -y_i Q P i j y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
 - $\text{(h) If } w^{-1} = Q y_i i j y_j P \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$
 - $\text{(i) If } w^{-1} = -y_i Q i j P y_j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$
 - $(\mathbf{j}) \ \text{ If } w^{-1} = Q y_i i j P y_j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$
 - (k) If $w^{-1} = -y_i i j Q y_j P$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).
 - (l) If $w^{-1} = -y_i i j Q P y_j$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).
 - (m) If $w^{-1} = -y_i i Q j P y_j$ then (Y3) fails for $(a,b) = (y_j,j)$ and (a',b') = (P,Q).
 - (n) If $w^{-1} = -y_i i Q j y_j P$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_j < i < y_i < P < j < Q$ and then one of the following holds:

•
$$w^{-1} = -y_i - i - j - y_i - Q - P - \text{ and } v^{-1} = -y_i - j - y_i - i - Q - P - .$$

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(y) = \{(i,y_i),(y_j,j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -y_i - i - . \end{cases}$$

- $(Z2) \Leftrightarrow (no condition).$
- $(Z3) \Leftrightarrow (wt)^{-1} = -i Q \text{ and } (wt)^{-1} = -y_i Q .$
- 4. Suppose $P < y_i < i < y_i < Q < j$.
 - (a) If $w^{-1} = -y_i i Q j P y_j$ then (T) fails.
 - (b) If $w^{-1} = -y_i i Q P j y_j$ then (T) fails.
 - (c) If $w^{-1} = -y_i i Q j y_i P$ then (T) fails.
 - (d) If $w^{-1} = -Q y_i P i j y_j$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (e) If $w^{-1}=-y_i-Q-i-P-j-y_j$ then (Y2) fails for (a,b)=(P,Q) and $(a',b')=(i,y_i)$.
 - (f) If $w^{-1} = -Q y_i i P j y_j$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (g) If $w^{-1} = -y_i i j Q y_i P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - $\text{(h) If } w^{-1} = -y_i Q i j y_j P \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$
 - (i) If $w^{-1} = -y_i i j Q P y_j$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (y_j,j)$.
 - (j) If $w^{-1} = -Q y_i i j y_i P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - (k) If $w^{-1} = -y_i Q i j P y_j$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (y_j,j)$.
 - (l) If $w^{-1} = -Q y_i i j P y_j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - $\text{(m) If } w^{-1} = -y_i i j y_j Q P \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$

Recall that $(k, l) = (y_i, i)$. We conclude that if $P < y_j < i < y_i < Q < j$ and then one of the following holds:

- $\bullet \ w^{-1} = -Q P y_i i j y_j \text{ and } v^{-1} = -Q P y_i j y_j i -.$
- $w^{-1} = -y_i Q P i j y_i \text{ and } v^{-1} = -y_i Q P j y_i i .$

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(y) = \{(i,y_i),(y_j,j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -y_i - i - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -Q - i - P - \text{ and } (wt)^{-1} \neq -Q - y_i - P - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - j - .$$

- 5. Suppose $y_j < i < P < y_i < Q < j$.
 - (a) If $w^{-1} = -y_i i Q j P y_j$ then (T) fails.
 - (b) If $w^{-1} = -y_i i Q P j y_j$ then (T) fails.
 - (c) If $w^{-1} = -y_i Q i P j y_j$ then (T) fails.
 - (d) If $w^{-1} = -y_i i Q j y_j P$ then (T) fails.
 - (e) If $w^{-1} = -Q y_i i P j y_j$ then (T) fails.
 - (f) If $w^{-1} = -y_i i j Q y_j P$ then (Y2) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).
 - (g) If $w^{-1} = -y_i i j Q P y_j$ then (Y2) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).
 - (h) If $w^{-1} = -Q y_i P i j y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
 - (i) If $w^{-1} = -y_i Q i j y_j P$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
 - (j) If $w^{-1} = -Q P y_i i j y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
 - $\text{(k) If } w^{-1} = -y_i Q P i j y_j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$
 - $\text{(l) If } w^{-1} = Q y_i i j y_i P \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$
 - (m) If $w^{-1} = -y_i Q i j P y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
 - (n) If $w^{-1} = -Q y_i i j P y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_j < i < P < y_i < Q < j$ and then one of the following holds:

•
$$w^{-1} = -y_i - i - j - y_j - Q - P$$
 and $v^{-1} = -y_i - j - y_j - i - Q - P$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(i, y_i), (y_j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -y_i - i - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - P - y_j - \text{ and } (wt)^{-1} \neq -j - Q - y_j - .$$

$$(\mathbf{Z}3) \Leftrightarrow (wt)^{-1} = -i - Q - .$$

- 6. Suppose $y_i < P < i < y_i < Q < j$.
 - (a) If $w^{-1} = -y_i i Q j P y_j$ then (T) fails.
 - (b) If $w^{-1} = -y_i i Q P j y_i$ then (T) fails.
 - (c) If $w^{-1} = -y_i i Q j y_j P$ then (T) fails.
 - (d) If $w^{-1} = -Q y_i P i j y_j$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (e) If $w^{-1} = -y_i Q i j y_j P$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (f) If $w^{-1} = -y_i Q i P j y_j$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (g) If $w^{-1} = -Q y_i i j y_i P$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (h) If $w^{-1} = -y_i Q i j P y_j$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
 - (i) If $w^{-1} = -Q y_i i j P y_j$ then (Y2) fails for (a,b) = (P,Q) and $(a',b') = (i,y_i)$.
 - (j) If $w^{-1} = -Q y_i i P j y_j$ then (Y2) fails for (a,b) = (P,Q) and $(a',b') = (i,y_i)$.

(k) If
$$w^{-1} = -y_i - i - j - Q - y_j - P$$
— then (Y2) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(l) If
$$w^{-1} = -y_i - i - j - Q - P - y_j$$
 then (Y2) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

Recall that $(k, l) = (y_i, i)$. We conclude that if $y_i < P < i < y_i < Q < j$ and then one of the following holds:

$$\bullet \ \ w^{-1} = -y_i - i - j - y_j - Q - P - \ \ \text{and} \ \ v^{-1} = -y_i - j - y_j - i - Q - P -.$$

$$\bullet \ w^{-1} = -Q - P - y_i - i - j - y_j - \text{ and } v^{-1} = -Q - P - y_i - j - y_j - i -.$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(i, y_i), (y_j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -y_i - i - . \end{cases}$$

$$(Z2) \Leftrightarrow \begin{cases} (wt)^{-1} \neq -Q - i - P - \text{ and } (wt)^{-1} \neq -Q - y_i - P - \text{ and } \\ (wt)^{-1} \neq -j - P - y_j - \text{ and } (wt)^{-1} \neq -j - Q - y_j - . \end{cases}$$

 $(Z3) \Leftrightarrow (no condition)$

7. Suppose $P < Q < y_j < i < y_i < j$.

(a) If
$$w^{-1} = -y_i - i - j - Q - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -Q - y_i - P - i - j - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_i - Q - i - j - y_j - P$$
— then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(d) If
$$w^{-1} = -y_i - i - j - Q - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1}=-y_i-i-Q-j-P-y_j$$
— then (Y3) fails for $(a,b)=(P,Q)$ and $(a',b')=(i,y_i)$.

$$\text{(f) If } w^{-1} = -y_i - i - Q - P - j - y_j - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (i,y_i).$$

(g) If
$$w^{-1} = -y_i - Q - P - i - j - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(h) If
$$w^{-1} = -y_i - Q - i - P - j - y_j$$
 — then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(i) If
$$w^{-1} = -Q - y_i - i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(j) If
$$w^{-1} = -y_i - Q - i - j - P - y_j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(k) If
$$w^{-1} = -Q - y_i - i - j - P - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(l) If
$$w^{-1} = -y_i - i - Q - j - y_j - P$$
— then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(m) If
$$w^{-1} = -y_i - i - j - y_j - Q - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(n) If
$$w^{-1} = -Q - y_i - i - P - j - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

Recall that $(k, l) = (y_j, i)$. We conclude that if $P < Q < y_j < i < y_i < j$ and then one of the following holds:

$$\bullet \ w^{-1} = -Q - P - y_i - i - j - y_j - \text{ and } v^{-1} = -Q - P - y_i - j - y_j - i -.$$

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(y) = \{(i,y_i),(y_j,j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -y_i - i - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - j - \text{ and } (wt)^{-1} = -P - y_i - .$$

8. Suppose $y_i < i < y_i < P < Q < j$.

(a) If
$$w^{-1} = -y_i - i - Q - j - P - y_j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_i - i - Q - P - j - y_i$$
 then (T) fails.

- (c) If $w^{-1} = -y_i Q i P j y_i$ then (T) fails.
- (d) If $w^{-1} = -y_i i Q j y_j P$ then (T) fails.
- (e) If $w^{-1} = -Q y_i i P j y_i$ then (T) fails.
- (f) If $w^{-1} = -y_i i j Q y_i P$ then (Y2) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).
- (g) If $w^{-1} = -y_i i j Q P y_j$ then (Y2) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).
- $\text{(h) If } w^{-1} = Q y_i P i j y_i \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$
- (i) If $w^{-1} = -y_i Q i j y_i P$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- (j) If $w^{-1} = -Q P y_i i j y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- $\text{(k) If } w^{-1} = -y_i Q P i j y_j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$
- $\text{(1) If } w^{-1} = Q y_i i j y_i P \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$
- (m) If $w^{-1} = -y_i Q i j P y_i$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- $\text{(n) If } w^{-1} = Q y_i i j P y_i \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$

Recall that $(k, l) = (y_i, i)$. We conclude that if $y_i < i < y_i < P < Q < j$ and then one of the following holds:

•
$$w^{-1} = -y_i - i - j - y_j - Q - P$$
 and $v^{-1} = -y_i - j - y_j - i - Q - P$.

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(y) = \{(i,y_i),(y_j,j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -y_i - i - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - P - y_j - \text{ and } (wt)^{-1} \neq -j - Q - y_j - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - Q - .$$

- 9. Suppose $y_i < i < P < y_i < j < Q$.
 - (a) If $w^{-1} = -y_i i Q P j y_i$ then (T) fails.
 - (b) If $w^{-1} = -y_i Q i P j y_j$ then (T) fails.
 - (c) If $w^{-1} = -Q y_i i P j y_j$ then (T) fails.
 - (d) If $w^{-1} = -Q y_i P i j y_i$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
 - (e) If $w^{-1} = -y_i Q i j y_i P$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
 - (f) If $w^{-1} = -Q P y_i i j y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
 - (g) If $w^{-1} = -y_i Q P i j y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
 - (h) If $w^{-1} = -Q y_i i j y_j P$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
 - (i) If $w^{-1} = -y_i Q i j P y_j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
 - (j) If $w^{-1} = -Q y_i i j P y_i$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
 - (k) If $w^{-1} = -y_i i j Q y_j P$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).
 - (l) If $w^{-1} = -y_i i j Q P y_j$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q). (m) If $w^{-1} = -y_i - i - Q - j - P - y_j$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).

 - (n) If $w^{-1} = -y_i i Q j y_j P$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).

Recall that $(k, l) = (y_i, i)$. We conclude that if $y_i < i < P < y_i < j < Q$ and then one of the following holds:

•
$$w^{-1} = -y_i - i - j - y_j - Q - P$$
 and $v^{-1} = -y_i - j - y_j - i - Q - P$.

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(y) = \{(i,y_i),(y_i,j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -y_i - i - . \end{cases}$$

 $(Z2) \Leftrightarrow (\text{no condition}).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - Q - \text{ and } (wt)^{-1} = -y_i - Q - .$$

10. Suppose $y_i < P < i < y_i < j < Q$.

(a) If
$$w^{-1} = -y_i - i - j - Q - y_j - P$$
— then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(b) If
$$w^{-1} = -Q - y_i - P - i - j - y_j$$
 then (Y3) fails for $(a,b) = (y_j,j)$ and $(a',b') = (P,Q)$.

(c) If
$$w^{-1} = -y_i - Q - i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(d) If
$$w^{-1} = -Q - P - y_i - i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(e) If
$$w^{-1} = -y_i - i - j - Q - P - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

$$\text{(f) If } w^{-1} = -y_i - i - Q - j - P - y_j - \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

$$\text{(g) If } w^{-1} = -y_i - i - Q - P - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

(h) If
$$w^{-1} = -y_i - Q - P - i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(i) If
$$w^{-1} = -y_i - Q - i - P - j - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(j) If
$$w^{-1} = -Q - y_i - i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

$$\text{(k) If } w^{-1} = -y_i - Q - i - j - P - y_j - \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

(l) If
$$w^{-1} = -Q - y_i - i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(m) If
$$w^{-1} = -y_i - i - Q - j - y_j - P$$
 — then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(n) If
$$w^{-1} = -Q - y_i - i - P - j - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

Recall that $(k, l) = (y_i, i)$. We conclude that if $y_i < P < i < y_i < j < Q$ and then one of the following holds:

•
$$w^{-1} = -y_i - i - j - y_j - Q - P$$
 and $v^{-1} = -y_i - j - y_j - i - Q - P$.

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(y) = \{(i,y_i),(y_j,j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -y_i - i - . \end{cases}$$

$$(\mathbf{Z2}) \Leftrightarrow (wt)^{-1} \neq \cdots Q - i \cdots P - \text{and } (wt)^{-1} \neq \cdots Q - y_i \cdots P - \cdots$$

$$({\bf Z}3) \Leftrightarrow (wt)^{-1} = - y_j - Q - .$$

11. Suppose $y_i < i < P < Q < y_i < j$.

(a) If
$$w^{-1} = -y_i - i - Q - j - P - y_j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_i - i - Q - P - j - y_j$$
 — then (T) fails.

(c) If
$$w^{-1} = -y_i - Q - i - P - j - y_j$$
 — then (T) fails.

(d) If
$$w^{-1} = -y_i - i - Q - j - y_j - P$$
 — then (T) fails.

(e) If
$$w^{-1} = -Q - y_i - i - P - j - y_j$$
 — then (T) fails.

$$\text{(f) If } w^{-1} = - Q - y_i - P - i - j - y_j - \text{ then (Y2) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(g) If
$$w^{-1} = -y_i - Q - i - j - y_j - P$$
— then (Y2) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

(h) If
$$w^{-1} = -y_i - Q - P - i - j - y_j$$
 then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

$$\text{(i) If } w^{-1} = -y_i - i - j - Q - y_j - P - \text{ then (Y2) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

(j) If
$$w^{-1} = -y_i - i - j - Q - P - y_j$$
 then (Y2) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(k) If
$$w^{-1} = -y_i - Q - i - j - P - y_j$$
 — then (Y2) fails for $(a,b) = (y_j,j)$ and $(a',b') = (P,Q)$.

(l) If
$$w^{-1} = -Q - y_i - i - j - P - y_j$$
 then (Y2) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

Recall that $(k, l) = (y_i, i)$. We conclude that if $y_i < i < P < Q < y_i < j$ and then one of the following holds:

•
$$w^{-1} = -y_i - i - j - y_i - Q - P - \text{ and } v^{-1} = -y_i - j - y_j - i - Q - P - .$$

•
$$w^{-1} = -Q - P - y_i - i - j - y_j - \text{ and } v^{-1} = -Q - P - y_i - j - y_j - i - i$$

$$\bullet \ \, w^{-1} = -Q - y_i - i - j - y_j - P - \ \, \text{and} \, \, v^{-1} = -Q - y_i - j - y_j - i - P - .$$

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(y) = \{(i,y_i),(y_j,j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -y_i - i - . \end{cases}$$

$$(Z2) \Leftrightarrow \begin{cases} (wt)^{-1} \neq -j - P - y_j - \text{ and } (wt)^{-1} \neq -j - Q - y_j - \text{ and } \\ (wt)^{-1} \neq -y_i - P - i - \text{ and } (wt)^{-1} \neq -y_i - Q - i - . \end{cases}$$

 $(Z3) \Leftrightarrow (no condition)$

12. Suppose $y_j < P < i < Q < y_i < j$.

(a) If
$$w^{-1} = -y_i - i - Q - j - P - y_j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_i - i - Q - P - j - y_j$$
 — then (T) fails.

(c) If
$$w^{-1} = -y_i - i - Q - j - y_j - P$$
— then (T) fails.

$$\text{(d) If } w^{-1} = -y_i - i - j - Q - y_j - P - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (i,y_i).$$

(e) If
$$w^{-1} = -Q - y_i - P - i - j - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(f) If
$$w^{-1} = -y_i - Q - i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -y_i - i - j - Q - P - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

$$\text{(h) If } w^{-1} = -y_i - Q - P - i - j - y_j - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (i,y_i).$$

(i) If
$$w^{-1} = -y_i - Q - i - P - j - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(j) If
$$w^{-1} = -Q - y_i - i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(k) If
$$w^{-1} = -y_i - Q - i - j - P - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(l) If
$$w^{-1} = -Q - y_i - i - j - P - y_j$$
 — then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(m) If
$$w^{-1} = -y_i - i - j - y_j - Q - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(n) If
$$w^{-1} = -Q - y_i - i - P - j - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_j < P < i < Q < y_i < j$ and then one of the following holds:

•
$$w^{-1} = -Q - P - y_i - i - j - y_j$$
 and $v^{-1} = -Q - P - y_i - j - y_j - i$.

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(y) = \{(i,y_i),(y_j,j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and} \\ (wt)^{-1} = -j - y_j - \text{ and} \\ (wt)^{-1} = -y_i - i - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - P - y_j - \text{ and } (wt)^{-1} \neq -j - Q - y_j - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - y_i - .$$

13. Suppose $y_j < i < y_i < j < P < Q$.

(a) If
$$w^{-1} = -Q - y_i - P - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(b) If
$$w^{-1} = -y_i - Q - i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(c) If
$$w^{-1} = -Q - P - y_i - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

$$\text{(d) If } w^{-1} = -y_i - Q - P - i - j - y_j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(e) If
$$w^{-1} = -y_i - Q - i - P - j - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

$$\text{(f) If } w^{-1} = - Q - y_i - i - j - y_j - P - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(g) If
$$w^{-1} = -y_i - Q - i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(h) If
$$w^{-1} = -Q - y_i - i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(i) If
$$w^{-1} = -Q - y_i - i - P - j - y_j$$
 then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(j) If
$$w^{-1} = -y_i - i - j - Q - y_j - P$$
— then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(k) If
$$w^{-1} = -y_i - i - j - Q - P - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(1) If
$$w^{-1} = -y_i - i - Q - j - P - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

$$\text{(m) If } w^{-1} = -y_i - i - Q - P - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

$$\text{(n) If } w^{-1} = - y_i - i - Q - j - y_j - P - \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_j < i < y_i < j < P < Q$ and then one of the following holds:

•
$$w^{-1} = -y_i - i - j - y_j - Q - P$$
 and $v^{-1} = -y_i - j - y_j - i - Q - P$.

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(y) = \{(i,y_i),(y_j,j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -y_i - i - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

$$(\mathbf{Z3}) \Leftrightarrow (wt)^{-1} = -i - Q - \text{ and } (wt)^{-1} = -y_j - Q -.$$

14. Suppose $P < y_i < i < y_i < j < Q$.

(a) If
$$w^{-1} = -Q - y_i - P - i - j - y_i$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -y_i - Q - i - j - y_j - P$$
 — then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(c) If
$$w^{-1} = -y_i - Q - i - P - j - y_j$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -Q - y_i - i - j - y_j - P$$
 — then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -y_i - Q - i - j - P - y_j$$
 then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(f) If
$$w^{-1} = -Q - y_i - i - j - P - y_j$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -Q - y_i - i - P - j - y_j$$
 — then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(h) If
$$w^{-1} = -y_i - i - j - Q - y_j - P$$
 then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_j,j)$.

(i) If
$$w^{-1} = -y_i - i - Q - j - P - y_j$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(j) If
$$w^{-1} = -y_i - i - Q - j - y_j - P$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

Recall that $(k, l) = (y_i, i)$. We conclude that if $P < y_i < i < y_i < j < Q$ and then one of the following holds:

•
$$w^{-1} = -y_i - i - j - y_j - Q - P - \text{ and } v^{-1} = -y_i - j - y_j - i - Q - P - .$$

•
$$w^{-1} = -y_i - i - j - Q - P - y_j - \text{ and } v^{-1} = -y_i - j - y_j - Q - P - i - .$$

•
$$w^{-1} = -y_i - i - Q - P - j - y_j - \text{ and } v^{-1} = -y_i - j - Q - P - y_j - i - i$$

•
$$w^{-1} = -Q - P - y_i - i - j - y_i$$
 and $v^{-1} = -Q - P - y_i - j - y_i - i - .$

•
$$w^{-1} = -y_i - Q - P - i - j - y_i$$
 and $v^{-1} = -y_i - Q - P - j - y_i - i - i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(i, y_i), (y_j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -y_i - i - . \end{cases}$$

(Z2)
$$\Leftrightarrow$$
 $\begin{cases} (wt)^{-1} \neq -Q - i - P - \text{ and } (wt)^{-1} \neq -Q - y_i - P - \text{ and } (wt)^{-1} \neq -Q - j - P - \text{ and } (wt)^{-1} \neq -Q - j - P - . \end{cases}$

 $(Z3) \Leftrightarrow (no condition)$

15. Suppose $y_i < P < Q < i < y_i < j$.

(a) If
$$w^{-1} = -y_i - i - j - Q - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -Q - y_i - P - i - j - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_i - Q - i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_i - i - j - Q - P - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(e) If
$$w^{-1} = -y_i - i - Q - j - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(f) If
$$w^{-1} = -y_i - i - Q - P - j - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -y_i - Q - P - i - j - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(h) If
$$w^{-1} = -y_i - Q - i - P - j - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(i) If
$$w^{-1} = -Q - y_i - i - j - y_j - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(j) If
$$w^{-1} = -y_i - Q - i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(k) If
$$w^{-1} = -Q - y_i - i - j - P - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(1) If
$$w^{-1} = -y_i - i - Q - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(m) If
$$w^{-1} = -y_i - i - j - y_j - Q - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(n) If
$$w^{-1} = -Q - y_i - i - P - j - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_j < P < Q < i < y_i < j$ and then one of the following holds:

•
$$w^{-1} = -Q - P - y_i - i - j - y_j$$
 and $v^{-1} = -Q - P - y_i - j - y_j - i - .$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(i, y_i), (y_j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -y_i - i - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - P - y_j - \text{ and } (wt)^{-1} \neq -j - Q - y_j - ...$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - y_i - .$$

We conclude that properties (V1)-(V3) hold whenever (a, b), (a', b') are as in cases (i) or (ii) and $y_j < i < y_i < j$.

6.3 Subcase (iii)

Suppose i' and j' are integers such that $0 \neq i - i' = j - j' \in n\mathbb{Z}$, so that w(i) - w(i') = w(j) - w(j') = i - i'.

1. Suppose $y_{j'} < y_j < i' < i < y_{i'} < y_i < j' < j$.

(a) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - j - y_{j'} - y_j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - y_{i'} - j - y_i$$
 then (T) fails.

(c) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - y_{j'} - j - y_i$$
 then (T) fails.

(d) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - j - y_{j'} - y_j$$
 then (T) fails.

(e) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - y_{j'} - j - y_j$$
 then (U) fails.

(f) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - y_{j'} - i - j - y_j$$
 then (U) fails.

(g) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - j - y_{j'} - y_j$$
 then (U) fails.

$$\text{(h) If } w^{-1} = - y_{i'} - i' - j' - y_i - y_{j'} - i - j - y_j - \text{ then (Y2) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (i,y_i).$$

(i) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - y_{j'} - j - y_j$$
 then (Y2) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(j) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

- (k) If $w^{-1} = -y_{i'} y_i i' j' y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- (l) If $w^{-1} = -y_{i'} y_i i' j' i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- $\text{(m) If } w^{-1} = y_{i'} i' j' y_i i j y_{j'} y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_{j'} < y_j < i' < i < y_{i'} < y_i < j' < j$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_{i'} - y_i - i - j - y_i$$
 and $v^{-1} = -y_{i'} - j' - y_{i'} - i' - y_i - j - y_i - i$.

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(i, y_i), (y_j, j)\}$ and $(a', b') \in \{(i', y_{i'}), (y_{j'}, j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(V1) \Leftrightarrow \begin{cases} (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - . \end{cases}$$

- $(V2) \Leftrightarrow (wt)^{-1} \neq -j-i'-y_j$ and $(wt)^{-1} \neq -j-y_{i'}-y_j$.
- $(V3) \Leftrightarrow (no condition).$
- 2. Suppose $y_{j'} < i' < y_j < y_{i'} < i < y_i < j' < j$.
 - (a) If $w^{-1} = -y_{i'} y_i i' i j' j y_{j'} y_j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} i' y_i i j' y_{i'} j y_i$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} y_i i' i j' y_{i'} j y_i$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} i' y_i i j' j y_{j'} y_j$ then (T) fails.
 - (e) If $w^{-1} = -y_{i'} i' y_i j' i y_{j'} j y_j$ then (U) fails.
 - (f) If $w^{-1} = -y_{i'} i' y_i j' y_{j'} i j y_j$ then (U) fails.
 - (g) If $w^{-1} = -y_{i'} i' y_i j' i j y_{j'} y_j$ then (U) fails.
 - (h) If $w^{-1} = -y_{i'} i' j' y_i y_{j'} i j y_j$ then (Y2) fails for $(a, b) = (y_{i'}, j')$ and $(a', b') = (i, y_i)$.
 - (i) If $w^{-1} = -y_{i'} i' j' y_i i y_{j'} j y_j$ then (Y2) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (j) If $w^{-1} = -y_{i'} y_i i' j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (k) If $w^{-1} = -y_{i'} y_i i' j' y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (l) If $w^{-1} = -y_{i'} y_i i' j' i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (m) If $w^{-1} = -y_{i'} i' j' y_i i j y_{i'} y_i$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_{j'} < i' < y_j < y_{i'} < i < y_i < j' < j$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_{i'} - y_i - i - j - y_i$$
 and $v^{-1} = -y_{i'} - j' - y_{i'} - i' - y_i - j - y_i - i - .$

When $(a,b) \in \operatorname{Cyc}^1(y) = \{(i,y_i), (y_j,j)\}$ and $(a',b') \in \{(i',y_{i'}), (y_{j'},j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - . \end{cases}$$

- $(V2) \Leftrightarrow (\text{no condition}).$
- $(V3) \Leftrightarrow (no condition).$
- 3. Suppose $y_{i'} < i' < y_{i'} < y_i < j' < i < y_i < j$.
 - (a) If $w^{-1} = -y_{i'} y_i i' i j' j y_{j'} y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (b) If $w^{-1} = -y_{i'} y_i i' j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

- (c) If $w^{-1} = -y_{i'} y_i i' j' y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- (d) If $w^{-1} = -y_{i'} y_i i' i j' y_{j'} j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- (e) If $w^{-1} = -y_{i'} y_i i' j' i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- $\text{(f) If } w^{-1} = -y_{i'} i' y_i i j' y_{j'} j y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (i,y_i).$
- (g) If $w^{-1} = -y_{i'} i' y_i j' i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
- (h) If $w^{-1} = -y_{i'} i' j' y_i i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
- (i) If $w^{-1} = -y_{i'} i' j' y_i y_{i'} i j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
- (j) If $w^{-1} = -y_{i'} i' j' y_i i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
- (k) If $w^{-1} = -y_{i'} i' y_i j' y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
- (l) If $w^{-1} = -y_{i'} i' y_i i j' j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
- $\text{(m) If } w^{-1} = -y_{i'} i' y_i j' i j y_{j'} y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (i,y_i).$

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_{j'} < i' < y_{i'} < y_j < j' < i < y_i < j$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_{i'} - y_i - i - j - y_j$$
 and $v^{-1} = -y_{i'} - j' - y_{i'} - i' - y_i - j - y_i - i - .$

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(i, y_i), (y_j, j)\}$ and $(a', b') \in \{(i', y_{i'}), (y_{j'}, j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(V1) \Leftrightarrow \begin{cases} (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - . \end{cases}$$

- $(V2) \Leftrightarrow (no condition).$
- $(V3) \Leftrightarrow (no condition).$
- 4. Suppose $y_{i'} < y_i < i' < i < y_{i'} < j' < y_i < j$.
 - (a) If $w^{-1} = -y_{i'} y_i i' i j' j y_{j'} y_j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} i' y_i i j' y_{i'} j y_i$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} y_i i' i j' y_{j'} j y_j$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} i' y_i i j' j y_{i'} y_i$ then (T) fails.
 - (e) If $w^{-1} = -y_{i'} y_i i' j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (f) If $w^{-1} = -y_{i'} y_i i' j' y_{i'} i j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (g) If $w^{-1} = -y_{i'} y_i i' j' i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (h) If $w^{-1} = -y_{i'} i' y_i j' i y_{j'} j y_i$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (i) If $w^{-1} = -y_{i'} i' j' y_i i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (j) If $w^{-1} = -y_{i'} i' j' y_i y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (k) If $w^{-1} = -y_{i'} i' j' y_i i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (l) If $w^{-1} = -y_{i'} i' y_i j' y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - $\text{(m) If } w^{-1} = -y_{i'} i' y_i j' i j y_{i'} y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (i,y_i).$

Recall that $(k,l) = (y_j,i)$. We conclude that if $y_{j'} < y_j < i' < i < y_{i'} < j' < y_i < j$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_{i'} - y_i - i - j - y_j$$
 and $v^{-1} = -y_{i'} - j' - y_{i'} - i' - y_i - j - y_j - i - .$

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(i, y_i), (y_j, j)\}$ and $(a', b') \in \{(i', y_{i'}), (y_{j'}, j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(V1) \Leftrightarrow \begin{cases} (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - . \end{cases}$$

$$(V2) \Leftrightarrow (wt)^{-1} \neq -j-i'-y_j$$
 and $(wt)^{-1} \neq -j-y_{i'}-y_j$.

 $(V3) \Leftrightarrow (no condition).$

5. Suppose $y_{j'} < i' < y_j < y_{i'} < i < j' < y_i < j$.

(a) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - j - y_{i'} - y_i$$
 then (T) fails.

(b) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - y_{j'} - j - y_j$$
— then (T) fails.

(c) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - y_{j'} - j - y_j$$
 then (T) fails.

(d) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - j - y_{j'} - y_j$$
 then (T) fails.

(e) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(f) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - y_{j'} - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(h) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(i) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(j) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - y_{j'} - i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(k) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

$$\text{(l) If } w^{-1} = -y_{i'} - i' - y_i - j' - y_{j'} - i - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (i,y_i).$$

(m) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_{j'} < i' < y_j < y_{i'} < i < j' < y_i < j$ and then one of the following holds:

$$\bullet \ w^{-1} = -y_{i'} - i' - j' - y_{j'} - y_i - i - j - y_j - \text{ and } v^{-1} = -y_{i'} - j' - y_{j'} - i' - y_i - j - y_j - i - .$$

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(i, y_i), (y_j, j)\}$ and $(a', b') \in \{(i', y_{i'}), (y_{j'}, j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - . \end{cases}$$

 $(V2) \Leftrightarrow (\text{no condition}).$

 $(V3) \Leftrightarrow (no condition).$

6. Suppose $y_{i'} < y_i < i' < y_{i'} < i < y_i < j' < j$.

(a) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - j - y_{i'} - y_i$$
 then (T) fails.

(b) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - y_{j'} - j - y_j$$
 then (T) fails.

(c) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - y_{j'} - j - y_i$$
 then (T) fails.

(d) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - j - y_{j'} - y_j$$
 then (T) fails.

(e) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - y_{i'} - j - y_i$$
 then (U) fails.

(f) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - y_{j'} - i - j - y_j$$
 then (U) fails.

(g) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - j - y_{j'} - y_j$$
 then (U) fails.

$$\text{(h) If } w^{-1} = - y_{i'} - i' - j' - y_i - y_{j'} - i - j - y_j - \text{ then (Y2) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (i,y_i).$$

(i) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - y_{j'} - j - y_j$$
 then (Y2) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

$$\text{(j) If } w^{-1} = -y_{i'} - y_i - i' - j' - i - j - y_{j'} - y_j - \text{ then (Y3) fails for } (a,b) = (i',y_{i'}) \text{ and } (a',b') = (i,y_i).$$

- (k) If $w^{-1} = -y_{i'} y_i i' j' y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- (l) If $w^{-1} = -y_{i'} y_i i' j' i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- (m) If $w^{-1} = -y_{i'} i' j' y_i i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_{j'} < y_j < i' < y_{i'} < i < y_i < j' < j$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_{i'} - y_i - i - j - y_j$$
 and $v^{-1} = -y_{i'} - j' - y_{i'} - i' - y_i - j - y_i - i$.

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(i, y_i), (y_j, j)\}$ and $(a', b') \in \{(i', y_{i'}), (y_{j'}, j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(V1) \Leftrightarrow \begin{cases} (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - . \end{cases}$$

$$(V2) \Leftrightarrow (wt)^{-1} \neq -j-i'-y_j$$
 and $(wt)^{-1} \neq -j-y_{i'}-y_j$.

- $(V3) \Leftrightarrow (no condition).$
- 7. Suppose $y_{j'} < i' < y_j < i < y_{i'} < y_i < j' < j$.
 - (a) If $w^{-1} = -y_{i'} y_i i' i j' j y_{j'} y_j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} i' y_i i j' y_{i'} j y_i$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} y_i i' i j' y_{j'} j y_j$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} i' y_i i j' j y_{j'} y_j$ then (T) fails.
 - (e) If $w^{-1} = -y_{i'} i' y_i j' i y_{j'} j y_j$ then (U) fails.
 - (f) If $w^{-1} = -y_{i'} i' y_i j' y_{j'} i j y_j$ then (U) fails.
 - (g) If $w^{-1} = -y_{i'} i' y_i j' i j y_{j'} y_j$ then (U) fails.
 - (h) If $w^{-1} = -y_{i'} i' j' y_i y_{j'} i j y_j$ then (Y2) fails for $(a, b) = (y_{i'}, j')$ and $(a', b') = (i, y_i)$.
 - (i) If $w^{-1} = -y_{i'} i' j' y_i i y_{j'} j y_j$ then (Y2) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (j) If $w^{-1} = -y_{i'} y_i i' j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (k) If $w^{-1} = -y_{i'} y_i i' j' y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (l) If $w^{-1} = -y_{i'} y_i i' j' i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (m) If $w^{-1} = -y_{i'} i' j' y_i i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_{j'} < i' < y_j < i < y_{i'} < y_i < j' < j$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_{i'} - y_i - i - j - y_i$$
 and $v^{-1} = -y_{i'} - j' - y_{i'} - i' - y_i - j - y_i - i$.

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(i, y_i), (y_j, j)\}$ and $(a', b') \in \{(i', y_{i'}), (y_{j'}, j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - . \end{cases}$$

- $(V2) \Leftrightarrow (no condition).$
- $(V3) \Leftrightarrow (no condition).$
- 8. Suppose $y_{i'} < i' < y_{i'} < j' < y_i < i < y_i < j$.
 - (a) If $w^{-1} = -y_{i'} y_i i' i j' j y_{j'} y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (b) If $w^{-1} = -y_{i'} y_i i' j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - y_{j'} - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(f) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(h) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(i) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - y_{j'} - i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(j) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - y_{j'} - j - y_j$$
— then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(k) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - y_{j'} - i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(l) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(m) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_{j'} < i' < y_{i'} < j' < y_j < i < y_i < j$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_{i'} - y_i - i - j - y_j$$
 and $v^{-1} = -y_{i'} - j' - y_{i'} - i' - y_i - j - y_i - i - .$

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(i, y_i), (y_j, j)\}$ and $(a', b') \in \{(i', y_{i'}), (y_{j'}, j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(V1) \Leftrightarrow \begin{cases} (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - . \end{cases}$$

 $(V2) \Leftrightarrow (no condition).$

 $(V3) \Leftrightarrow (no condition).$

9. Suppose $y_{j'} < i' < y_{i'} < y_j < i < y_i < j' < j$.

(a) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - j - y_{j'} - y_j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - y_{j'} - j - y_j$$
 then (T) fails.

(c) If
$$w^{-1} = -y_{i'} - y_i - i' - i - j' - y_{j'} - j - y_j$$
 then (T) fails.

(d) If
$$w^{-1} = -y_{i'} - i' - y_i - i - j' - j - y_{j'} - y_j$$
 then (T) fails.

(e) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - y_{i'} - j - y_i$$
 then (U) fails.

(f) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - y_{i'} - i - j - y_i$$
 then (U) fails.

(g) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - j - y_{j'} - y_j$$
 then (U) fails.

(h) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - y_{j'} - i - j - y_j$$
 then (Y2) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(i) If
$$w^{-1} = -y_{i'} - i' - j' - y_i - i - y_{j'} - j - y_j$$
 then (Y2) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

(j) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(k) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - y_{j'} - i - j - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(l) If
$$w^{-1} = -y_{i'} - y_i - i' - j' - i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

$$\text{(m) If } w^{-1} = -y_{i'} - i' - j' - y_i - i - j - y_{j'} - y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$$

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_{j'} < i' < y_{i'} < y_j < i < y_i < j' < j$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_{i'} - y_i - i - j - y_j$$
 and $v^{-1} = -y_{i'} - j' - y_{i'} - i' - y_i - j - y_j - i - .$

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(i, y_i), (y_j, j)\}$ and $(a', b') \in \{(i', y_{i'}), (y_{j'}, j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - . \end{cases}$$

- $(V2) \Leftrightarrow (no condition).$
- $(V3) \Leftrightarrow (no condition).$
- 10. Suppose $y_{j'} < i' < y_j < i < y_{i'} < j' < y_i < j$.
 - (a) If $w^{-1} = -y_{i'} y_i i' i j' j y_{j'} y_j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} i' y_i i j' y_{j'} j y_j$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} y_i i' i j' y_{j'} j y_j$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} i' y_i i j' j y_{i'} y_i$ then (T) fails.
 - (e) If $w^{-1} = -y_{i'} y_i i' j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (f) If $w^{-1} = -y_{i'} y_i i' j' y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (g) If $w^{-1} = -y_{i'} y_i i' j' i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (h) If $w^{-1} = -y_{i'} i' y_i j' i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (i) If $w^{-1} = -y_{i'} i' j' y_i i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (j) If $w^{-1} = -y_{i'} i' j' y_i y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (k) If $w^{-1} = -y_{i'} i' j' y_i i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (l) If $w^{-1} = -y_{i'} i' y_i j' y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (m) If $w^{-1} = -y_{i'} i' y_i j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_{j'} < i' < y_j < i < y_{i'} < j' < y_i < j$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_{i'} - y_i - i - j - y_i$$
 and $v^{-1} = -y_{i'} - j' - y_{i'} - i' - y_i - j - y_i - i - i$.

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(i, y_i), (y_j, j)\}$ and $(a', b') \in \{(i', y_{i'}), (y_{j'}, j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(V1) \Leftrightarrow \begin{cases} (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - . \end{cases}$$

- $(V2) \Leftrightarrow (no condition).$
- $(V3) \Leftrightarrow (no condition).$
- 11. Suppose $y_{j'} < i' < y_{i'} < y_j < i < j' < y_i < j$.
 - (a) If $w^{-1} = -y_{i'} y_i i' i j' j y_{i'} y_j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} i' y_i i j' y_{i'} j y_i$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} y_i i' i j' y_{i'} j y_j$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} i' y_i i j' j y_{j'} y_j$ then (T) fails.
 - (e) If $w^{-1} = -y_{i'} y_i i' j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (f) If $w^{-1} = -y_{i'} y_i i' j' y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (g) If $w^{-1} = -y_{i'} y_i i' j' i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (h) If $w^{-1} = -y_{i'} i' y_i j' i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (i) If $w^{-1} = -y_{i'} i' j' y_i i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (j) If $w^{-1} = -y_{i'} i' j' y_i y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

- $\text{(k) If } w^{-1} = y_{i'} i' j' y_i i y_{j'} j y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (i,y_i).$
- (l) If $w^{-1} = -y_{i'} i' y_i j' y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
- $\text{(m) If } w^{-1} = -y_{i'} i' y_i j' i j y_{j'} y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (i,y_i).$

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_{j'} < i' < y_{i'} < y_j < i < j' < y_i < j$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_{i'} - y_i - i - j - y_i$$
 and $v^{-1} = -y_{i'} - j' - y_{i'} - i' - y_i - j - y_i - i$.

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(i, y_i), (y_j, j)\}$ and $(a', b') \in \{(i', y_{i'}), (y_{j'}, j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(V1) \Leftrightarrow \begin{cases} (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - . \end{cases}$$

- $(V2) \Leftrightarrow (\text{no condition}).$
- $(V3) \Leftrightarrow (no condition).$
- 12. Suppose $y_{j'} < y_j < i' < y_{i'} < j' < i < y_i < j$.
 - (a) If $w^{-1} = -y_{i'} y_i i' i j' j y_{j'} y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (b) If $w^{-1} = -y_{i'} y_i i' j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (c) If $w^{-1} = -y_{i'} y_i i' j' y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (d) If $w^{-1} = -y_{i'} y_i i' i j' y_{j'} j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (e) If $w^{-1} = -y_{i'} y_i i' j' i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (f) If $w^{-1} = -y_{i'} i' y_i i j' y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (g) If $w^{-1} = -y_{i'} i' y_i j' i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (h) If $w^{-1} = -y_{i'} i' j' y_i i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (i) If $w^{-1} = -y_{i'} i' j' y_i y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (j) If $w^{-1} = -y_{i'} i' j' y_i i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (k) If $w^{-1} = -y_{i'} i' y_i j' y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (l) If $w^{-1} = -y_{i'} i' y_i i j' j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (m) If $w^{-1} = -y_{i'} i' y_i j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_{j'} < y_j < i' < y_{i'} < j' < i < y_i < j$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_{j'} - y_i - i - j - y_j$$
 and $v^{-1} = -y_{i'} - j' - y_{j'} - i' - y_i - j - y_j - i -$.

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(i, y_i), (y_j, j)\}$ and $(a', b') \in \{(i', y_{i'}), (y_{j'}, j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(V1) \Leftrightarrow \begin{cases} (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - . \end{cases}$$

- $(V2) \Leftrightarrow (wt)^{-1} \neq -j-i'-y_i$ and $(wt)^{-1} \neq -j-y_{i'}-y_i$.
- $(V3) \Leftrightarrow (no condition).$
- 13. Suppose $y_{i'} < i' < y_i < y_{i'} < j' < i < y_i < j$.
 - (a) If $w^{-1} = -y_{i'} y_i i' i j' j y_{j'} y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (b) If $w^{-1} = -y_{i'} y_i i' j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

- (c) If $w^{-1} = -y_{i'} y_i i' j' y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- (d) If $w^{-1} = -y_{i'} y_i i' i j' y_{j'} j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- (e) If $w^{-1} = -y_{i'} y_i i' j' i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
- $\text{(f) If } w^{-1} = -y_{i'} i' y_i i j' y_{j'} j y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (i,y_i).$
- (g) If $w^{-1} = -y_{i'} i' y_i j' i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
- (h) If $w^{-1} = -y_{i'} i' j' y_i i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
- (i) If $w^{-1} = -y_{i'} i' j' y_i y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
- (i) If $w^{-1} = -y_{i'} i' j' y_i i y_{j'} j y_i$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
- (k) If $w^{-1} = -y_{i'} i' y_i j' y_{j'} i j y_j$ then (Y3) fails for $(a, b) = (y_{i'}, j')$ and $(a', b') = (i, y_i)$.
- $\text{(1) If } w^{-1} = -y_{i'} i' y_i i j' j y_{j'} y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (i,y_i).$
- $\text{(m) If } w^{-1} = y_{i'} i' y_i j' i j y_{j'} y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (i,y_i).$

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_{j'} < i' < y_j < y_{i'} < j' < i < y_i < j$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_{i'} - y_i - i - j - y_i$$
 and $v^{-1} = -y_{i'} - j' - y_{i'} - i' - y_i - j - y_i - i - .$

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(i, y_i), (y_j, j)\}$ and $(a', b') \in \{(i', y_{i'}), (y_{j'}, j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(V1) \Leftrightarrow \begin{cases} (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - . \end{cases}$$

- $(V2) \Leftrightarrow (no condition).$
- $(V3) \Leftrightarrow (no condition).$
- 14. Suppose $y_{j'} < y_j < i' < y_{i'} < i < j' < y_i < j$.
 - (a) If $w^{-1} = -y_{i'} y_i i' i j' j y_{j'} y_j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} i' y_i i j' y_{i'} j y_i$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} y_i i' i j' y_{j'} j y_j$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} i' y_i i j' j y_{i'} y_i$ then (T) fails.
 - (e) If $w^{-1} = -y_{i'} y_i i' j' i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (f) If $w^{-1} = -y_{i'} y_i i' j' y_{i'} i j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (g) If $w^{-1} = -y_{i'} y_i i' j' i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (h) If $w^{-1} = -y_{i'} i' y_i j' i y_{i'} j y_i$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (i) If $w^{-1} = -y_{i'} i' j' y_i i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - (i) If $w^{-1} = -y_{i'} i' j' y_i y_{j'} i j y_j$ then (Y3) fails for $(a,b) = (y_{j'},j')$ and $(a',b') = (i,y_i)$.
 - (k) If $w^{-1} = -y_{i'} i' j' y_i i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (i, y_i)$.
 - $\text{(l) If } w^{-1} = y_{i'} i' y_i j' y_{j'} i j y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (i,y_i).$
 - $\text{(m) If } w^{-1} = -y_{i'} i' y_i j' i j y_{i'} y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (i,y_i).$

Recall that $(k,l) = (y_j,i)$. We conclude that if $y_{j'} < y_j < i' < y_{i'} < i < j' < y_i < j$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - j' - y_{i'} - y_i - i - j - y_i$$
 and $v^{-1} = -y_{i'} - j' - y_{i'} - i' - y_i - j - y_i - i - .$

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(i, y_i), (y_j, j)\}$ and $(a', b') \in \{(i', y_{i'}), (y_{j'}, j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - . \end{cases}$$

$$(V2) \Leftrightarrow (wt)^{-1} \neq -j-i'-y_j$$
 and $(wt)^{-1} \neq -j-y_{i'}-y_j$.

 $(V3) \Leftrightarrow (no condition).$

We conclude that properties (V1)-(V3) hold for all $(a, b), (a', b') \in \text{Cyc}(y)$ when $y_j < i < y_i < j$.

7 Case B3

Suppose $y_j < y_i < i < j$ and $w^{-1} = -i - j - y_j - y_i$ so that $k = y_j < i = l$.

7.1 Subcase (i)

In this case $v = wt_{ij}t_{kl}$ is such that

$$v^{-1} = -j - y_j - i - y_i - .$$

When $(a,b),(a',b') \in \operatorname{Cyc}^1(y) = \{(y_i,i),(y_j,j)\}$, properties (V1)-(V3) are equivalent to the following conditions which evidently hold:

$$(Z1) \Leftrightarrow (wt)^{-1} = -i - y_i - \text{ and } (wt)^{-1} = -j - y_j - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - y_i - y_i - \text{ and } (wt)^{-1} \neq -j - i - y_i - .$$

 $(Z3) \Leftrightarrow (no condition).$

Thus properties (V1)-(V3) hold whenever (a, b), (a', b') are as in case (i) and $y_i < y_i < i < j$.

7.2 Subcase (ii)

Suppose R is an integer such that $(R,R) \in \operatorname{Cyc}^2(y)$, so that $R = y_R \notin \{i,j,y_i,y_j\} + n\mathbb{Z}$.

- 1. Suppose $y_i < y_i < i < j < R$.
 - (a) If $w^{-1} = -i j y_j R y_i$ then (Y3) fails for $(a,b) = (y_i,i)$ and (a',b') = (R,R).
 - (b) If $w^{-1} = -i j R y_j y_i$ then (Y3) fails for $(a,b) = (y_j,j)$ and (a',b') = (R,R).
 - (c) If $w^{-1} = -R i j y_j y_i$ then (Y3) fails for $(a,b) = (y_j,j)$ and (a',b') = (R,R).
 - (d) If $w^{-1} = -i R j y_i y_i$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (R, R).

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_j < y_i < i < j < R$ and then one of the following holds:

•
$$w^{-1} = -i - j - y_j - y_i - R$$
 and $v^{-1} = -j - y_j - i - y_i - R$.

When (a,b) = (R,R) and $(a',b') \in \operatorname{Cyc}^1(y) = \{(y_i,i),(y_j,j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathbf{Z}\mathbf{1}) \Leftrightarrow (wt)^{-1} = -i - y_i - \text{and } (wt)^{-1} = -j - y_j -.$$

 $(Z2) \Leftrightarrow (\text{no condition}).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -y_i - R - \text{ and } (wt)^{-1} = -y_i - R - .$$

- 2. Suppose $y_j < y_i < i < R < j$.
 - (a) If $w^{-1} = -i R j y_i y_i$ then (T) fails.
 - (b) If $w^{-1} = -i j R y_j y_i$ then (Y2) fails for $(a, b) = (y_j, j)$ and (a', b') = (R, R).
 - (c) If $w^{-1} = -R i j y_j y_i$ then (Y3) fails for $(a,b) = (y_i,i)$ and (a',b') = (R,R).
 - $\text{(d) If } w^{-1} = -i j y_j R y_i \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (R,R).$

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_j < y_i < i < R < j$ and then one of the following holds:

•
$$w^{-1} = -i - j - y_i - y_i - R$$
 and $v^{-1} = -j - y_i - i - y_i - R$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -i - y_i - \text{and } (wt)^{-1} = -j - y_j - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - R - y_i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -y_i - R - .$$

3. Suppose $y_i < y_i < R < i < j$.

(a) If
$$w^{-1} = -i - j - y_j - R - y_i$$
 then (Y2) fails for $(a,b) = (y_i,i)$ and $(a',b') = (R,R)$.

(b) If
$$w^{-1} = -i - R - j - y_j - y_i$$
 then (Y2) fails for $(a, b) = (y_i, i)$ and $(a', b') = (R, R)$.

(c) If
$$w^{-1} = -i - j - R - y_j - y_i$$
 then (Y2) fails for $(a,b) = (y_j,j)$ and $(a',b') = (R,R)$.

Recall that $(k, l) = (y_i, i)$. We conclude that if $y_i < y_i < R < i < j$ and then one of the following holds:

•
$$w^{-1} = -i - j - y_i - y_i - R$$
 and $v^{-1} = -j - y_i - i - y_i - R$.

•
$$w^{-1} = -R - i - j - y_j - y_i$$
 and $v^{-1} = -R - j - y_j - i - y_i$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -i - y_i - \text{ and } (wt)^{-1} = -j - y_j - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -i - R - y_i - \text{ and } (wt)^{-1} \neq -j - R - y_j - .$$

$$(Z3) \Leftrightarrow (no condition).$$

4. Suppose $y_i < R < y_i < i < j$.

(a) If
$$w^{-1} = -i - j - R - y_j - y_i$$
 then (Y2) fails for $(a,b) = (y_j,j)$ and $(a',b') = (R,R)$.

(b) If
$$w^{-1} = -i - j - y_j - y_i - R$$
— then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (y_i, i)$.

(c) If
$$w^{-1} = -i - j - y_j - R - y_i$$
 then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (y_i, i)$.

(d) If
$$w^{-1} = -i - R - j - y_i - y_i$$
 then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (y_i, i)$.

Recall that $(k,l) = (y_i,i)$. We conclude that if $y_i < R < y_i < i < j$ and then one of the following holds:

•
$$w^{-1} = -R - i - j - y_i - y_i$$
 and $v^{-1} = -R - j - y_i - i - y_i$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -i - y_i - \text{ and } (wt)^{-1} = -j - y_i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - R - y_i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -R - i - .$$

5. Suppose $R < y_i < y_i < i < j$.

(a) If
$$w^{-1} = -i - R - j - y_i - y_i$$
 then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (y_i, i)$.

(b) If
$$w^{-1} = -i - j - y_j - y_i - R$$
— then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (y_j, j)$.

(c) If
$$w^{-1} = -i - j - R - y_j - y_i$$
 then (Y3) fails for $(a,b) = (R,R)$ and $(a',b') = (y_j,j)$.

(d) If
$$w^{-1} = -i - j - y_j - R - y_i$$
 then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (y_j, j)$.

Recall that $(k,l) = (y_i,i)$. We conclude that if $R < y_i < y_i < i < j$ and then one of the following holds:

•
$$w^{-1} = -R - i - j - y_j - y_i$$
 and $v^{-1} = -R - j - y_j - i - y_i$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -i - y_i - \text{ and } (wt)^{-1} = -j - y_j - .$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -R - i - \text{ and } (wt)^{-1} = -R - j - .$$

Next suppose P < Q are integers with $(P,Q) \in \operatorname{Cyc}^2(y)$, so that $Q = y_P$ and $P,Q \notin \{i,j,y_i,y_j\} + n\mathbb{Z}$.

1. Suppose $P < y_i < y_i < Q < i < j$.

(a) If
$$w^{-1} = -i - Q - P - j - y_j - y_i$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(b) If
$$w^{-1} = -Q - i - P - j - y_j - y_i$$
 then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(c) If
$$w^{-1} = -i - j - y_j - y_i - Q - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(d) If
$$w^{-1} = -Q - i - j - y_j - y_i - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(e) If
$$w^{-1} = -i - j - Q - y_j - y_i - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(f) If
$$w^{-1} = -i - Q - j - y_j - y_i - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(g) If
$$w^{-1} = -i - Q - j - y_j - P - y_i$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(h) If
$$w^{-1} = -Q - i - j - y_j - P - y_i$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(i) If
$$w^{-1} = -i - j - y_j - Q - y_i - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(j) If
$$w^{-1} = -i - j - y_j - Q - P - y_i$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(k) If
$$w^{-1} = -Q - i - j - P - y_j - y_i$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

$$\text{(l) If } w^{-1} = -i - j - Q - P - y_j - y_i - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$$

(m) If
$$w^{-1} = -i - j - Q - y_j - P - y_i$$
 then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_j,j)$.

$$\text{(n) If } w^{-1} = -i - Q - j - P - y_j - y_i - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$$

Recall that $(k, l) = (y_j, i)$. We conclude that if $P < y_j < y_i < Q < i < j$ and then one of the following holds:

$$\bullet \ w^{-1} = -Q - P - i - j - y_j - y_i - \text{ and } v^{-1} = -Q - P - j - y_j - i - y_i - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -j - y_j - . \end{cases}$$

 $(Z2) \Leftrightarrow (\text{no condition}).$

(Z3)
$$\Leftrightarrow (wt)^{-1} = -P - i$$
 and $(wt)^{-1} = -P - j$.

2. Suppose $P < y_i < Q < y_i < i < j$.

(a) If
$$w^{-1} = -i - Q - P - j - y_j - y_i$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(b) If
$$w^{-1} = -Q - i - P - j - y_j - y_i$$
 then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(c) If
$$w^{-1} = -i - j - y_j - y_i - Q - P$$
 then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_j,j)$.

(d) If
$$w^{-1} = -Q - i - j - y_j - y_i - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(e) If
$$w^{-1} = -i - j - Q - y_j - y_i - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(f) If
$$w^{-1} = -i - Q - j - y_j - y_i - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(g) If
$$w^{-1} = -i - Q - j - y_j - P - y_i$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

$$\text{(h) If } w^{-1} = \cdots Q - i - j - y_j - P - y_i - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$$

$$\text{(i) If } w^{-1} = -i - j - y_j - Q - y_i - P - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$$

(j) If
$$w^{-1} = -i - j - y_j - Q - P - y_i$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(k) If
$$w^{-1} = -Q - i - j - P - y_j - y_i$$
 then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_j,j)$.

$$\text{(l) If } w^{-1} = -i - j - Q - P - y_j - y_i - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$$

(m) If
$$w^{-1} = -i - j - Q - y_j - P - y_i$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_j,j)$.

(n) If
$$w^{-1} = -i - Q - j - P - y_j - y_i$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

Recall that $(k, l) = (y_j, i)$. We conclude that if $P < y_j < Q < y_i < i < j$ and then one of the following holds:

$$\bullet \ w^{-1} = -Q - P - i - j - y_j - y_i - \text{ and } v^{-1} = -Q - P - j - y_j - i - y_i -.$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -j - y_j - . \end{cases}$$

- $(Z2) \Leftrightarrow (no condition).$
- $(Z3) \Leftrightarrow (wt)^{-1} = -P i \text{ and } (wt)^{-1} = -P j i$
- 3. Suppose $y_j < y_i < i < P < j < Q$.
 - (a) If $w^{-1} = -i Q P j y_i y_i$ then (T) fails.
 - (b) If $w^{-1} = -Q i P j y_i y_i$ then (T) fails.
 - (c) If $w^{-1} = -i j y_i Q y_i P$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (P, Q).
 - (d) If $w^{-1} = -i j y_i Q P y_i$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (P, Q).
 - (e) If $w^{-1} = -Q i j y_j y_i P$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).
 - (f) If $w^{-1} = -i j Q y_i y_i P$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).
 - (g) If $w^{-1} = -i Q j y_j y_i P$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).
 - (h) If $w^{-1} = -i Q j y_j P y_i$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).
 - (i) If $w^{-1} = -Q i j y_j P y_i$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).
 - (j) If $w^{-1} = -Q P i j y_i y_i$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).
 - (k) If $w^{-1} = -Q i j P y_j y_i$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).
 - $\text{(l) If } w^{-1} = -i j Q P y_j y_i \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$
 - $\text{(m) If } w^{-1} = -i j Q y_j P y_i \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$
 - (n) If $w^{-1} = -i Q j P y_i y_i$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_j < y_i < i < P < j < Q$ and then one of the following holds:

$$\bullet \ w^{-1} = -i - j - y_j - y_i - Q - P - \ \text{and} \ v^{-1} = -j - y_j - i - y_i - Q - P -.$$

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(y) = \{(y_i,i),(y_j,j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -j - y_j - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -y_i - Q - \text{ and } (wt)^{-1} = -y_i - Q - .$$

- 4. Suppose $P < y_i < y_i < i < Q < j$.
 - (a) If $w^{-1} = -i Q P j y_i y_i$ then (T) fails.
 - (b) If $w^{-1} = -i Q j y_j y_i P$ then (T) fails.
 - (c) If $w^{-1} = -i Q j y_j P y_i$ then (T) fails.
 - (d) If $w^{-1} = -i Q j P y_j y_i$ then (T) fails.
 - (e) If $w^{-1} = -Q i P j y_j y_i$ then (Y2) fails for (a,b) = (P,Q) and $(a',b') = (y_i,i)$.
 - $\text{(f) If } w^{-1} = -i j y_j y_i Q P \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$

(g) If
$$w^{-1} = -Q - i - j - y_i - y_i - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, j)$.

(h) If
$$w^{-1} = -i - j - Q - y_i - y_i - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, j)$.

(i) If
$$w^{-1} = -Q - i - j - y_j - P - y_i$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(j) If
$$w^{-1} = -i - j - y_j - Q - y_i - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(k) If
$$w^{-1} = -i - j - y_j - Q - P - y_i$$
 then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_j,j)$.

(l) If
$$w^{-1} = -Q - i - j - P - y_j - y_i$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(m) If
$$w^{-1} = -i - j - Q - P - y_j - y_i$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(n) If
$$w^{-1} = -i - j - Q - y_j - P - y_i$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

Recall that $(k, l) = (y_j, i)$. We conclude that if $P < y_j < y_i < i < Q < j$ and then one of the following holds:

•
$$w^{-1} = -Q - P - i - j - y_j - y_i$$
 and $v^{-1} = -Q - P - j - y_j - i - y_i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -j - y_j - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -Q - y_i - P - \text{ and } (wt)^{-1} \neq -Q - i - P - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - j - .$$

5. Suppose $y_i < y_i < P < i < Q < j$.

(a) If
$$w^{-1} = -i - Q - P - j - y_j - y_i$$
 then (T) fails.

(b) If
$$w^{-1} = -i - Q - j - y_i - y_i - P$$
 then (T) fails.

(c) If
$$w^{-1} = -i - Q - j - y_j - P - y_i$$
 then (T) fails.

(d) If
$$w^{-1} = -i - Q - j - P - y_i - y_i$$
 then (T) fails.

(e) If
$$w^{-1} = -Q - i - j - y_j - y_i - P$$
— then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(f) If
$$w^{-1} = -i - j - Q - y_i - y_i - P$$
— then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(g) If
$$w^{-1} = -Q - i - j - y_j - P - y_i$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(h) If
$$w^{-1} = -i - j - y_j - Q - y_i - P$$
— then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(i) If
$$w^{-1} = -i - j - y_i - Q - P - y_i$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

$$({\bf j}) \ \ {\rm If} \ w^{-1} = --Q - i - P - j - y_j - y_i - \ \ {\rm then} \ ({\bf Y3}) \ \ {\rm fails} \ \ {\rm for} \ \ (a,b) = (y_i,i) \ \ {\rm and} \ \ (a',b') = (P,Q).$$

$$\text{(k) If } w^{-1} = - Q - P - i - j - y_j - y_i - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

(l) If
$$w^{-1} = -Q - i - j - P - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(m) If
$$w^{-1} = -i - j - Q - P - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

$$\text{(n) If } w^{-1} = -i - j - Q - y_j - P - y_i - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

Recall that $(k, l) = (y_i, i)$. We conclude that if $y_i < y_i < P < i < Q < j$ and then one of the following holds:

•
$$w^{-1} = -i - j - y_i - y_i - Q - P - \text{ and } v^{-1} = -j - y_i - i - y_i - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -j - y_j - . \end{cases}$$

(Z2)
$$\Leftrightarrow (wt)^{-1} \neq -j - P - y_j - \text{ and } (wt)^{-1} \neq -j - Q - y_j - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -y_i - Q - .$$

6. Suppose $y_i < P < y_i < i < Q < j$.

(a) If
$$w^{-1} = -i - Q - P - j - y_j - y_i$$
 then (T) fails.

(b) If
$$w^{-1} = -i - Q - j - y_j - y_i - P$$
 then (T) fails.

(c) If
$$w^{-1} = -i - Q - j - y_i - P - y_i$$
 then (T) fails.

(d) If
$$w^{-1} = -i - Q - j - P - y_i - y_i$$
 then (T) fails.

(e) If
$$w^{-1} = -Q - i - j - y_j - y_i - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(f) If
$$w^{-1} = -i - j - Q - y_j - y_i - P$$
— then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(g) If
$$w^{-1} = -Q - i - j - y_j - P - y_i$$
 then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

$$\text{(h) If } w^{-1} = -i - j - y_j - Q - y_i - P - \text{ then (Y2) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$$

(i) If
$$w^{-1} = -Q - i - P - j - y_j - y_i$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

$$(\mathbf{j}) \ \text{ If } w^{-1} = -Q - i - j - P - y_j - y_i - \text{ then } (\mathbf{Y2}) \text{ fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

$$\text{(k) If } w^{-1} = -i - j - Q - P - y_j - y_i - \text{ then (Y2) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

$$\text{(l) If } w^{-1}=-i-j-Q-y_j-P-y_i-\text{ then (Y2) fails for } (a,b)=(y_j,j) \text{ and } (a',b')=(P,Q).$$

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_j < P < y_i < i < Q < j$ and then one of the following holds:

•
$$w^{-1} = -i - j - y_i - y_i - Q - P - \text{ and } v^{-1} = -j - y_i - i - y_i - Q - P - .$$

•
$$w^{-1} = -i - j - y_j - Q - P - y_i$$
 and $v^{-1} = -j - y_j - i - Q - P - y_i$.

•
$$w^{-1} = -Q - P - i - j - y_i - y_i - \text{ and } v^{-1} = -Q - P - j - y_i - i - y_i - i$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and} \\ (wt)^{-1} = -i - y_i - \text{ and} \\ (wt)^{-1} = -j - y_j - . \end{cases}$$

$$(wt)^{-1} = -j - y_j - .$$

$$(Z2) \Leftrightarrow \begin{cases} (wt)^{-1} \neq -Q - y_i - P - \text{ and } (wt)^{-1} \neq -Q - i - P - \text{ and } \\ (wt)^{-1} \neq -j - P - y_j - \text{ and } (wt)^{-1} \neq -j - Q - y_j - . \end{cases}$$

 $(Z3) \Leftrightarrow (no condition).$

7. Suppose $P < Q < y_i < y_i < i < j$.

(a) If
$$w^{-1} = -i - Q - P - j - y_j - y_i$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(b) If
$$w^{-1} = -Q - i - P - j - y_j - y_i$$
 then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(c) If
$$w^{-1} = -i - j - y_j - y_i - Q - P$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_j,j)$.

$$\text{(d) If } w^{-1} = -Q - i - j - y_j - y_i - P - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$$

(e) If
$$w^{-1} = -i - j - Q - y_j - y_i - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

$$\text{(f) If } w^{-1} = -i - Q - j - y_j - y_i - P - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$$

(g) If
$$w^{-1} = -i - Q - j - y_j - P - y_i$$
 then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_j,j)$.

$$\text{(h) If } w^{-1} = -Q - i - j - y_j - P - y_i - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$$

$$\text{(i) If } w^{-1}=-i-j-y_j-Q-y_i-P-\text{ then (Y3) fails for } (a,b)=(P,Q) \text{ and } (a',b')=(y_j,j).$$

(j) If
$$w^{-1} = -i - j - y_j - Q - P - y_i$$
 then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_j,j)$.

$$\text{(k) If } w^{-1} = -Q - i - j - P - y_j - y_i - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$$

(l) If
$$w^{-1} = -i - j - Q - P - y_j - y_i$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(m) If
$$w^{-1} = -i - j - Q - y_j - P - y_i$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

$$\text{(n) If } w^{-1} = -i - Q - j - P - y_j - y_i - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$$

Recall that $(k, l) = (y_j, i)$. We conclude that if $P < Q < y_j < y_i < i < j$ and then one of the following holds:

•
$$w^{-1} = -Q - P - i - j - y_i - y_i$$
 and $v^{-1} = -Q - P - j - y_i - i - y_i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -j - y_j - . \end{cases}$$

 $(Z2) \Leftrightarrow (\text{no condition}).$

$$(\mathbf{Z3}) \Leftrightarrow (wt)^{-1} = -P - i - \text{ and } (wt)^{-1} = -P - j - .$$

- 8. Suppose $y_i < y_i < i < P < Q < j$.
 - (a) If $w^{-1} = -i Q P j y_j y_i$ then (T) fails.
 - (b) If $w^{-1} = -i Q j y_i y_i P$ then (T) fails.
 - (c) If $w^{-1} = -i Q j y_j P y_i$ then (T) fails.
 - (d) If $w^{-1} = -Q i P j y_i y_i$ then (T) fails.
 - (e) If $w^{-1} = -i Q j P y_i y_i$ then (T) fails.
 - $\text{(f) If } w^{-1} = -Q i j y_j y_i P \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$
 - (g) If $w^{-1} = -i j Q y_j y_i P$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (P, Q).
 - (h) If $w^{-1} = -Q i j y_j P y_i$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (P, Q).
 - (i) If $w^{-1} = -i j y_j Q y_i P$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (P, Q).
 - $(\mathbf{j}) \ \text{ If } w^{-1} = --i j y_j Q P y_i \text{ then } (\mathbf{Y3}) \ \text{ fails for } (a,b) = (y_i,i) \ \text{ and } (a',b') = (P,Q).$
 - (k) If $w^{-1} = -Q P i j y_j y_i$ then (Y3) fails for $(a,b) = (y_i,i)$ and (a',b') = (P,Q).
 - $\text{(l) If } w^{-1} = Q i j P y_j y_i \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$
 - (m) If $w^{-1} = -i j Q P y_j y_i$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (P, Q).
 - (n) If $w^{-1} = -i j Q y_j P y_i$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (P, Q).

Recall that $(k, l) = (y_i, i)$. We conclude that if $y_i < y_i < i < P < Q < j$ and then one of the following holds:

•
$$w^{-1} = -i - j - y_j - y_i - Q - P$$
 and $v^{-1} = -j - y_j - i - y_i - Q - P$.

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(y) = \{(y_i,i),(y_j,j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -j - y_j - . \end{cases}$$

$$(\mathbf{Z2}) \Leftrightarrow (wt)^{-1} \neq -j - P - y_j - \text{ and } (wt)^{-1} \neq -j - Q - y_j - .$$

$$(\mathbf{Z3}) \Leftrightarrow (wt)^{-1} = -y_i - Q - .$$

- 9. Suppose $y_j < y_i < P < i < j < Q$.
 - (a) If $w^{-1} = -i j y_i Q y_i P$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (P, Q).
 - (b) If $w^{-1} = -i j y_i Q P y_i$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (P, Q).
 - (c) If $w^{-1} = -i Q P j y_i y_i$ then (Y3) fails for $(a, b) = (y_i, j)$ and (a', b') = (P, Q).
 - (d) If $w^{-1} = -Q i j y_i y_i P$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).
 - (e) If $w^{-1} = -i j Q y_i y_i P$ then (Y3) fails for $(a, b) = (y_i, j)$ and (a', b') = (P, Q).
 - (f) If $w^{-1} = -i Q j y_i y_i P$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).
 - (g) If $w^{-1} = -i Q j y_i P y_i$ then (Y3) fails for $(a,b) = (y_j,j)$ and (a',b') = (P,Q).
 - $\text{(h) If } w^{-1} = -Q i j y_i P y_i \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$
 - $\text{(i) If } w^{-1} = \cdots Q i \cdots P \cdots j \cdots y_j \cdots y_i \cdots \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$

- (j) If $w^{-1} = -Q P i j y_j y_i$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).
- $\text{(k) If } w^{-1} = -Q i j P y_j y_i \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$
- $\text{(l) If } w^{-1}=-i-j-Q-P-y_i-y_i-\text{ then (Y3) fails for } (a,b)=(y_j,j) \text{ and } (a',b')=(P,Q).$
- (m) If $w^{-1} = -i j Q y_j P y_i$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).
- (n) If $w^{-1} = -i Q j P y_j y_i$ then (Y3) fails for $(a,b) = (y_j,j)$ and (a',b') = (P,Q).

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_j < y_i < P < i < j < Q$ and then one of the following holds:

•
$$w^{-1} = -i - j - y_i - y_i - Q - P$$
 and $v^{-1} = -j - y_j - i - y_i - Q - P$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -j - y_j - . \end{cases}$$

- $(Z2) \Leftrightarrow (no condition).$
- $(Z3) \Leftrightarrow (wt)^{-1} = -y_i Q \text{ and } (wt)^{-1} = -y_i Q .$
- 10. Suppose $y_j < P < y_i < i < j < Q$.
 - (a) If $w^{-1} = -i j y_j Q y_i P$ then (Y2) fails for (a,b) = (P,Q) and $(a',b') = (y_i,i)$.
 - (b) If $w^{-1} = -i Q P j y_i y_i$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).
 - (c) If $w^{-1} = -Q i j y_i y_i P$ then (Y3) fails for $(a, b) = (y_i, j)$ and (a', b') = (P, Q).
 - (d) If $w^{-1} = -i j Q y_j y_i P$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).
 - (e) If $w^{-1} = -i Q j y_j y_i P$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).
 - $\text{(f) If } w^{-1} = -i Q j y_j P y_i \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$
 - (g) If $w^{-1} = -Q i j y_j P y_i$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).
 - (h) If $w^{-1} = -Q i P j y_j y_i$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).
 - (i) If $w^{-1} = -Q P i j y_i y_i$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).
 - (j) If $w^{-1} = -Q i j P y_i y_i$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).
 - (k) If $w^{-1} = -i j Q P y_j y_i$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).
 - $\text{(l) If } w^{-1} = -i j Q y_j P y_i \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$
 - (m) If $w^{-1} = -i Q j P y_i y_i$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).

Recall that $(k, l) = (y_i, i)$. We conclude that if $y_i < P < y_i < i < j < Q$ and then one of the following holds:

- $w^{-1} = -i j y_j y_i Q P$ and $v^{-1} = -j y_j i y_i Q P$.
- $w^{-1} = -i j y_j Q P y_i$ and $v^{-1} = -j y_j i Q P y_i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and} \\ (wt)^{-1} = -i - y_i - \text{ and} \\ (wt)^{-1} = -j - y_j - . \end{cases}$$

- $(Z2) \Leftrightarrow (wt)^{-1} \neq -Q y_i P \text{ and } (wt)^{-1} \neq -Q i P .$
- $(Z3) \Leftrightarrow (wt)^{-1} = -y_i Q .$
- 11. Suppose $y_i < y_i < P < Q < i < j$.
 - (a) If $w^{-1} = -i Q P j y_j y_i$ then (Y2) fails for $(a, b) = (y_i, i)$ and (a', b') = (P, Q).
 - $\text{(b) If } w^{-1} = -i Q j y_j y_i P \text{ then (Y2) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$

(c) If
$$w^{-1} = -i - Q - j - y_i - P - y_i$$
 then (Y2) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(d) If
$$w^{-1} = -Q - i - j - y_j - P - y_i$$
 then (Y2) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(e) If
$$w^{-1} = -i - j - y_j - Q - y_i - P$$
— then (Y2) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

$$\text{(f) If } w^{-1} = -i - j - y_j - Q - P - y_i - \text{ then (Y2) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

(g) If
$$w^{-1} = -Q - i - P - j - y_j - y_i$$
 then (Y2) fails for $(a,b) = (y_i,i)$ and $(a',b') = (P,Q)$.

(h) If
$$w^{-1} = -i - j - Q - y_j - P - y_i$$
 then (Y2) fails for $(a,b) = (y_i,i)$ and $(a',b') = (P,Q)$.

$$\text{(i) If } w^{-1} = -i - j - Q - y_j - y_i - P - \text{ then (Y2) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

(j) If
$$w^{-1} = -Q - i - j - P - y_j - y_i$$
 then (Y2) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

$$\text{(k) If } w^{-1} = -i - j - Q - P - y_j - y_i - \text{ then (Y2) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

(l) If
$$w^{-1} = -i - Q - j - P - y_j - y_i$$
 then (Y2) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

Recall that $(k,l) = (y_i,i)$. We conclude that if $y_i < y_i < P < Q < i < j$ and then one of the following holds:

•
$$w^{-1} = -i - j - y_i - y_i - Q - P - \text{ and } v^{-1} = -j - y_i - i - y_i - Q - P - .$$

•
$$w^{-1} = -Q - P - i - j - y_j - y_i$$
 and $v^{-1} = -Q - P - j - y_j - i - y_i$.

$$\bullet \ w^{-1} = -Q - i - j - y_j - y_i - P - \ \text{and} \ v^{-1} = -Q - j - y_j - i - y_i - P -.$$

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(y) = \{(y_i,i),(y_j,j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -j - y_j - . \end{cases}$$

$$(Z2) \Leftrightarrow \begin{cases} (wt)^{-1} \neq -i - P - y_i - \text{ and } (wt)^{-1} \neq -i - Q - y_i - \text{ and } \\ (wt)^{-1} \neq -j - P - y_j - \text{ and } (wt)^{-1} \neq -j - Q - y_j - . \end{cases}$$

 $(Z3) \Leftrightarrow (no condition)$

12. Suppose $y_i < P < y_i < Q < i < j$.

(a) If
$$w^{-1} = -i - j - y_j - y_i - Q - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

$$\text{(b) If } w^{-1} = -i - Q - P - j - y_j - y_i - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$$

(c) If
$$w^{-1} = -Q - i - j - y_j - y_i - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(d) If
$$w^{-1} = -i - j - Q - y_j - y_i - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(e) If
$$w^{-1} = -i - Q - j - y_j - y_i - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

$$\text{(f) If } w^{-1} = -i - Q - j - y_j - P - y_i - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$$

(g) If
$$w^{-1} = -Q - i - j - y_j - P - y_i$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

$$\text{(h) If } w^{-1} = -i - j - y_j - Q - y_i - P - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$$

(i) If
$$w^{-1} = -i - j - y_j - Q - P - y_i$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(j) If
$$w^{-1} = -Q - i - P - j - y_j - y_i$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

$$\text{(k) If } w^{-1} = - Q - i - j - P - y_j - y_i - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$$

(l) If
$$w^{-1} = -i - j - Q - P - y_j - y_i$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.
(m) If $w^{-1} = -i - j - Q - y_j - P - y_i$ then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(m) If
$$w^{-1} = -i - j - Q - y_j - P - y_i$$
 then (Y3) falls for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(n) If
$$w^{-1} = -i - Q - j - P - y_j - y_i$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_j < P < y_i < Q < i < j$ and then one of the following holds:

$$\bullet \ \, w^{-1} = -Q - P - i - j - y_j - y_i - \text{ and } v^{-1} = -Q - P - j - y_j - i - y_i - .$$

When (a,b)=(P,Q) and $(a',b')\in \operatorname{Cyc}^1(y)=\{(y_i,i),(y_i,j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -j - y_j - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - P - y_j - \text{ and } (wt)^{-1} \neq -j - Q - y_j - ...$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - i - .$$

13. Suppose $y_j < y_i < i < j < P < Q$.

(a) If
$$w^{-1} = -i - j - y_j - Q - y_i - P$$
 then (Y3) fails for $(a,b) = (y_i,i)$ and $(a',b') = (P,Q)$.

(b) If
$$w^{-1} = -i - j - y_j - Q - P - y_i$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

(c) If
$$w^{-1} = -i - Q - P - j - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

$$\text{(d) If } w^{-1} = -Q - i - j - y_j - y_i - P - \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

(e) If
$$w^{-1} = -i - j - Q - y_j - y_i - P$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(f) If
$$w^{-1} = -i - Q - j - y_j - y_i - P$$
— then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(g) If
$$w^{-1} = -i - Q - j - y_j - P - y_i$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(h) If
$$w^{-1} = -Q - i - j - y_j - P - y_i$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(i) If
$$w^{-1} = -Q - i - P - j - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(j) If
$$w^{-1} = -Q - P - i - j - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

$$\text{(k) If } w^{-1} = -Q - i - j - P - y_j - y_i - \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

(l) If
$$w^{-1} = -i - j - Q - P - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

$$\text{(m) If } w^{-1}=-i-j-Q-y_j-P-y_i-\text{ then (Y3) fails for } (a,b)=(y_j,j) \text{ and } (a',b')=(P,Q).$$

(n) If
$$w^{-1} = -i - Q - j - P - y_j - y_i$$
 then (Y3) fails for $(a,b) = (y_j,j)$ and $(a',b') = (P,Q)$.

Recall that $(k, l) = (y_i, i)$. We conclude that if $y_i < y_i < i < j < P < Q$ and then one of the following holds:

•
$$w^{-1} = -i - j - y_i - y_i - Q - P - \text{ and } v^{-1} = -j - y_i - i - y_i - Q - P - .$$

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(y) = \{(y_i,i),(y_j,j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -j - y_j - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -y_i - Q - \text{ and } (wt)^{-1} = -y_i - Q - .$$

14. Suppose $P < y_j < y_i < i < j < Q$.

(a) If
$$w^{-1} = -i - j - y_j - Q - y_i - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(b) If
$$w^{-1} = -Q - i - P - j - y_j - y_i$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(c) If
$$w^{-1} = -Q - i - j - y_j - y_i - P$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(d) If
$$w^{-1} = -i - j - Q - y_j - y_i - P$$
 then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_j,j)$.

(e) If
$$w^{-1} = -i - Q - j - y_j - y_i - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(f) If
$$w^{-1} = -i - Q - j - y_j - P - y_i$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(g) If
$$w^{-1} = -Q - i - j - y_j - P - y_i$$
 then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_j,j)$.

(h) If
$$w^{-1} = -Q - i - j - P - y_j - y_i$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

$$\text{(i) If } w^{-1} = -i - j - Q - y_j - P - y_i - \text{ then (Y2) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$$

(j) If
$$w^{-1} = -i - Q - j - P - y_j - y_i$$
 then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_j,j)$.

Recall that $(k,l) = (y_i,i)$. We conclude that if $P < y_i < y_i < i < j < Q$ and then one of the following holds:

•
$$w^{-1} = -i - j - y_i - y_i - Q - P - \text{ and } v^{-1} = -j - y_i - i - y_i - Q - P - .$$

•
$$w^{-1} = -i - j - y_j - Q - P - y_i$$
 and $v^{-1} = -j - y_j - i - Q - P - y_i$.

•
$$w^{-1} = -Q - P - i - j - y_j - y_i$$
 and $v^{-1} = -Q - P - j - y_j - i - y_i$.

•
$$w^{-1} = -i - Q - P - j - y_j - y_i$$
 and $v^{-1} = -j - Q - P - y_j - i - y_i$.

•
$$w^{-1} = -i - j - Q - P - y_i - y_i$$
 and $v^{-1} = -j - y_i - Q - P - i - y_i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -j - y_j - . \end{cases}$$

(Z2)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} \neq -Q - y_i - P - \text{ and } (wt)^{-1} \neq -Q - i - P - \text{ and } (wt)^{-1} \neq -Q - i - P - \text{ and } (wt)^{-1} \neq -Q - j - P - \text{ and } (wt)^{-1} \neq -Q - j - P - \text{.} \end{cases}$$

 $(Z3) \Leftrightarrow (no condition).$

15. Suppose $y_j < P < Q < y_i < i < j$.

(a) If
$$w^{-1} = -i - j - y_j - y_i - Q - P$$
 — then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(b) If
$$w^{-1} = -i - Q - P - j - y_j - y_i$$
 then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(c) If
$$w^{-1} = -Q - i - j - y_j - y_i - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(d) If
$$w^{-1} = -i - j - Q - y_j - y_i - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(e) If
$$w^{-1} = -i - Q - j - y_j - y_i - P$$
— then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(f) If
$$w^{-1} = -i - Q - j - y_j - P - y_i$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(g) If
$$w^{-1} = -Q - i - j - y_j - P - y_i$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(h) If
$$w^{-1} = -i - j - y_j - Q - y_i - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(i) If
$$w^{-1} = -i - j - y_j - Q - P - y_i$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(j) If
$$w^{-1} = -Q - i - P - j - y_j - y_i$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(k) If
$$w^{-1} = -Q - i - j - P - y_j - y_i$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(l) If
$$w^{-1} = -i - j - Q - P - y_j - y_i$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(m) If
$$w^{-1} = -i - j - Q - y_j - P - y_i$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(n) If
$$w^{-1} = -i - Q - j - P - y_j - y_i$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_j < P < Q < y_i < i < j$ and then one of the following holds:

$$\bullet \ w^{-1} = -Q - P - i - j - y_j - y_i - \text{ and } v^{-1} = -Q - P - j - y_j - i - y_i -.$$

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(y) = \{(y_i,i),(y_j,j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -j - y_j - . \end{cases}$$

$$(\mathbf{Z2}) \Leftrightarrow (wt)^{-1} \neq -j - P - y_j - \text{ and } (wt)^{-1} \neq -j - Q - y_j -.$$

$$(\mathbf{Z3}) \Leftrightarrow (wt)^{-1} = -P - i -.$$

We conclude that properties (V1)-(V3) hold whenever (a, b), (a', b') are as in cases (i) or (ii) and $y_i < y_i < i < j$.

7.3 Subcase (iii)

Suppose i' and j' are integers such that $0 \neq i - i' = j - j' \in n\mathbb{Z}$, so that w(i) - w(i') = w(j) - w(j') = i - i'.

- 1. Suppose $y_{i'} < y_i < y_{i'} < y_i < i' < i < j' < j$.
 - (a) If $w^{-1} = -i' i j' y_{j'} j y_{i'} y_j y_i$ then (T) fails.
 - (b) If $w^{-1} = -i' i j' y_{j'} j y_j y_{i'} y_i$ then (T) fails.
 - (c) If $w^{-1} = -i' i j' j y_{j'} y_{i'} y_j y_i$ then (T) fails.
 - (d) If $w^{-1} = -i' i j' y_{i'} y_{i'} j y_j y_i$ then (T) fails.
 - (e) If $w^{-1} = -i' i j' j y_{j'} y_j y_{i'} y_i$ then (T) fails.
 - (f) If $w^{-1} = -i' j' y_{i'} i y_{i'} j y_j y_i$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (g) If $w^{-1} = -i' j' i y_{i'} j y_{i'} y_i y_i$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (h) If $w^{-1} = -i' j' i y_{j'} j y_j y_{i'} y_i$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (i) If $w^{-1} = -i' j' i y_{j'} y_{i'} j y_j y_i$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (j) If $w^{-1} = -i' j' y_{j'} i j y_{i'} y_j y_i$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (k) If $w^{-1} = -i' j' y_{j'} i j y_j y_{i'} y_i$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (l) If $w^{-1} = -i' j' i j y_{j'} y_{i'} y_j y_i$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.
 - $\text{(m) If } w^{-1} = -i' j' i j y_{j'} y_j y_{i'} y_i \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_{j'} < y_j < y_{i'} < y_i < i' < i < j' < j$ and then one of the following holds:

•
$$w^{-1} = -i' - j' - y_{i'} - y_{i'} - i - j - y_i - y_i$$
 and $v^{-1} = -j' - y_{i'} - i' - y_{i'} - j - y_i - i - y_i$.

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ and $(a', b') \in \{(y_{i'}, i'), (y_{j'}, j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -i' - y_{i'} - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - . \end{cases}$$

- $(V2) \Leftrightarrow (wt)^{-1} \neq -j y_{i'} y_{j} \text{ and } (wt)^{-1} \neq -j i' y_{j} .$
- $(V3) \Leftrightarrow (no condition).$
- 2. Suppose $y_{i'} < y_{i'} < y_i < i' < y_i < i < j' < j$.
 - (a) If $w^{-1} = -i' i j' y_{i'} j y_{i'} y_i y_i$ then (T) fails.
 - (b) If $w^{-1} = -i' i j' y_{i'} j y_i y_{i'} y_i$ then (T) fails.
 - (c) If $w^{-1} = -i' i j' j y_{i'} y_{i'} y_j y_i$ then (T) fails.
 - (d) If $w^{-1} = -i' i j' y_{i'} y_{i'} j y_j y_i$ then (T) fails.
 - (e) If $w^{-1} = -i' i j' j y_{i'} y_i y_{i'} y_i$ then (T) fails.
 - (f) If $w^{-1} = -i' j' y_{i'} i y_{i'} j y_i y_i$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (g) If $w^{-1} = -i' j' i y_{i'} y_{i'} j y_j y_i$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (h) If $w^{-1} = -i' j' i y_{j'} j y_{i'} y_j y_i$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_j, j)$.
 - (i) If $w^{-1} = -i' j' i y_{i'} j y_i y_{i'} y_i$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_j, j)$.
 - (j) If $w^{-1} = -i' j' y_{i'} i j y_{i'} y_j y_i$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_j, j)$.
 - (k) If $w^{-1} = -i' j' y_{i'} i j y_i y_{i'} y_i$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_j, j)$.
 - (l) If $w^{-1} = -i' j' i j y_{j'} y_{i'} y_j y_i$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.
 - $\text{(m) If } w^{-1} = -i' j' i j y_{j'} y_j y_{i'} y_i \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_{j'} < y_{i'} < y_j < i' < y_i < i < j' < j$ and then one of the following holds:

•
$$w^{-1} = -i' - j' - y_{i'} - y_{i'} - i - j - y_i - y_i$$
 and $v^{-1} = -j' - y_{i'} - i' - y_{i'} - j - y_i - i - y_i$.

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ and $(a', b') \in \{(y_{i'}, i'), (y_{j'}, j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -i' - y_{i'} - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - . \end{cases}$$

- $(V2) \Leftrightarrow (\text{no condition}).$
- $(V3) \Leftrightarrow (no condition).$
- 3. Suppose $y_{j'} < y_{i'} < i' < y_j < j' < y_i < i < j$.

(a) If
$$w^{-1} = -i' - j' - y_{j'} - i - y_{i'} - j - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(b) If
$$w^{-1} = -i' - j' - y_{j'} - i - j - y_{i'} - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_j, j)$.

(c) If
$$w^{-1} = -i' - j' - y_{j'} - i - j - y_j - y_{i'} - y_i$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_j, j)$.

(d) If
$$w^{-1} = -i' - i - j' - y_{j'} - j - y_{i'} - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(e) If
$$w^{-1} = -i' - i - j' - y_{j'} - j - y_j - y_{i'} - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(f) If
$$w^{-1} = -i' - i - j' - y_{j'} - y_{i'} - j - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(g) If
$$w^{-1} = -i' - j' - i - y_{j'} - j - y_{i'} - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(h) If
$$w^{-1} = -i' - j' - i - y_{j'} - j - y_j - y_{i'} - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(i) If
$$w^{-1} = -i' - j' - i - y_{j'} - y_{i'} - j - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

$$\text{(j) If } w^{-1} = -i' - i - j' - j - y_{j'} - y_{i'} - y_j - y_i - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$$

(k) If
$$w^{-1} = -i' - i - j' - j - y_{j'} - y_j - y_{i'} - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

$$\text{(l) If } w^{-1} = -i' - j' - i - j - y_{j'} - y_{i'} - y_j - y_i - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$$

$$\text{(m) If } w^{-1} = -i' - j' - i - j - y_{j'} - y_j - y_{i'} - y_i - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$$

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_{j'} < y_{i'} < i' < y_j < j' < y_i < i < j$ and then one of the following holds:

$$\bullet \ w^{-1} = -i' - j' - y_{j'} - y_{i'} - i - j - y_j - y_i - \text{ and } v^{-1} = -j' - y_{j'} - i' - y_{i'} - j - y_j - i - y_i - \dots$$

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ and $(a', b') \in \{(y_{i'}, i'), (y_{j'}, j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -i' - y_{i'} - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - . \end{cases}$$

- $(V2) \Leftrightarrow (\text{no condition}).$
- $(V3) \Leftrightarrow (no condition).$
- 4. Suppose $y_{j'} < y_j < y_{i'} < y_i < i' < j' < i < j$.

(a) If
$$w^{-1} = -i' - j' - y_{j'} - i - y_{i'} - j - y_j - y_i$$
 then (Y3) fails for $(a,b) = (y_{i'},i')$ and $(a',b') = (y_i,i)$.

(b) If
$$w^{-1} = -i' - j' - y_{j'} - i - j - y_{i'} - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(c) If
$$w^{-1} = -i' - j' - y_{j'} - i - j - y_j - y_{i'} - y_i$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(d) If
$$w^{-1} = -i' - i - j' - y_{j'} - j - y_{i'} - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(e) If
$$w^{-1} = -i' - i - j' - y_{j'} - j - y_j - y_{i'} - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(f) If
$$w^{-1} = -i' - i - j' - y_{j'} - y_{i'} - j - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(g) If
$$w^{-1} = -i' - j' - i - y_{j'} - j - y_{i'} - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(h) If
$$w^{-1} = -i' - j' - i - y_{j'} - j - y_j - y_{i'} - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(i) If
$$w^{-1} = -i' - j' - i - y_{j'} - y_{i'} - j - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(j) If
$$w^{-1} = -i' - i - j' - j - y_{j'} - y_{i'} - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

(k) If
$$w^{-1} = -i' - i - j' - j - y_{j'} - y_j - y_{i'} - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

$$\text{(l) If } w^{-1} = -i' - j' - i - j - y_{j'} - y_{i'} - y_j - y_i - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$$

(m) If
$$w^{-1} = -i' - j' - i - j - y_{j'} - y_j - y_{i'} - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_{j'} < y_j < y_{i'} < y_i < i' < j' < i < j$ and then one of the following holds:

•
$$w^{-1} = -i' - j' - y_{i'} - y_{i'} - i - j - y_i - y_i$$
 and $v^{-1} = -j' - y_{i'} - i' - y_{i'} - j - y_i - i - y_i$.

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ and $(a', b') \in \{(y_{i'}, i'), (y_{j'}, j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -i' - y_{i'} - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{i'} - . \end{cases}$$

$$(V2) \Leftrightarrow (wt)^{-1} \neq -j - y_{i'} - y_j - \text{ and } (wt)^{-1} \neq -j - i' - y_j - .$$

 $(V3) \Leftrightarrow (no condition).$

5. Suppose $y_{i'} < y_{i'} < y_i < i' < y_i < j' < i < j$.

(a) If
$$w^{-1} = -i' - j' - y_{j'} - i - y_{i'} - j - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(b) If
$$w^{-1} = -i' - j' - y_{j'} - i - j - y_{i'} - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_j, j)$.

(c) If
$$w^{-1} = -i' - j' - y_{j'} - i - j - y_j - y_{i'} - y_i$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_j, j)$.

(d) If
$$w^{-1} = -i' - i - j' - y_{j'} - j - y_{i'} - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(e) If
$$w^{-1} = -i' - i - j' - y_{j'} - j - y_j - y_{i'} - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(f) If
$$w^{-1} = -i' - i - j' - y_{i'} - y_{i'} - j - y_{j} - y_{i}$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_{i}, i)$.

(g) If
$$w^{-1} = -i' - j' - i - y_{j'} - j - y_{i'} - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(h) If
$$w^{-1} = -i' - j' - i - y_{j'} - j - y_{i} - y_{i'} - y_{i}$$
 then (Y3) fails for $(a, b) = (y_{i'}, j')$ and $(a', b') = (y_{i}, i)$.

(i) If
$$w^{-1} = -i' - j' - i - y_{j'} - y_{i'} - j - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(j) If
$$w^{-1} = -i' - i - j' - j - y_{i'} - y_{i'} - y_i - then$$
 (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

(k) If
$$w^{-1} = -i' - i - j' - j - y_{j'} - y_j - y_{i'} - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

(l) If
$$w^{-1} = -i' - j' - i - j - y_{j'} - y_{i'} - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

$$\text{(m) If } w^{-1} = -i' - j' - i - j - y_{j'} - y_j - y_{i'} - y_i - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$$

Recall that $(k,l) = (y_j,i)$. We conclude that if $y_{j'} < y_{i'} < y_j < i' < y_i < j' < i < j$ and then one of the following holds:

•
$$w^{-1} = -i' - j' - y_{i'} - y_{i'} - i - j - y_i - y_i$$
 and $v^{-1} = -j' - y_{i'} - i' - y_{i'} - j - y_i - i - y_i$.

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ and $(a', b') \in \{(y_{i'}, i'), (y_{j'}, j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -i' - y_{i'} - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - . \end{cases}$$

- $(V2) \Leftrightarrow (\text{no condition}).$
- $(V3) \Leftrightarrow (no condition).$
- 6. Suppose $y_{j'} < y_j < y_{i'} < i' < y_i < i < j' < j$.
 - (a) If $w^{-1} = -i' i j' y_{j'} j y_{i'} y_j y_i$ then (T) fails.
 - (b) If $w^{-1} = -i' i j' y_{j'} j y_j y_{i'} y_i$ then (T) fails.
 - (c) If $w^{-1} = -i' i j' j y_{j'} y_{i'} y_j y_i$ then (T) fails.
 - (d) If $w^{-1} = -i' i j' y_{j'} y_{i'} j y_j y_i$ then (T) fails.
 - (e) If $w^{-1} = -i' i j' j y_{i'} y_i y_{i'} y_i$ then (T) fails.
 - (f) If $w^{-1} = -i' j' y_{i'} i y_{i'} j y_j y_i$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (g) If $w^{-1} = -i' j' i y_{j'} j y_{i'} y_j y_i$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (h) If $w^{-1} = -i' j' i y_{j'} j y_j y_{i'} y_i$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (i) If $w^{-1} = -i' j' i y_{j'} y_{i'} j y_j y_i$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (j) If $w^{-1} = -i' j' y_{i'} i j y_{i'} y_j y_i$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (k) If $w^{-1} = -i' j' y_{j'} i j y_j y_{i'} y_i$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (l) If $w^{-1} = -i' j' i j y_{j'} y_{i'} y_j y_i$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.
 - $\text{(m) If } w^{-1} = -i' j' i j y_{j'} y_j y_{i'} y_i \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_{j'} < y_j < y_{i'} < i' < y_i < i < j' < j$ and then one of the following holds:

•
$$w^{-1} = -i' - j' - y_{i'} - y_{i'} - i - j - y_i - y_i$$
 and $v^{-1} = -j' - y_{i'} - i' - y_{i'} - j - y_j - i - y_i$.

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ and $(a', b') \in \{(y_{i'}, i'), (y_{j'}, j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -i' - y_{i'} - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - . \end{cases}$$

- $(V2) \Leftrightarrow (wt)^{-1} \neq -j y_{i'} y_{j} \text{ and } (wt)^{-1} \neq -j i' y_{i} y_{j} y_{i'} y_{j} y_{j'} y_{j$
- $(V3) \Leftrightarrow (no condition).$
- 7. Suppose $y_{i'} < y_{i'} < y_i < y_i < i' < i < j' < j$.
 - (a) If $w^{-1} = -i' i j' y_{i'} j y_{i'} y_i y_i$ then (T) fails.
 - (b) If $w^{-1} = -i' i j' y_{i'} j y_j y_{i'} y_i$ then (T) fails.
 - (c) If $w^{-1} = -i' i j' j y_{i'} y_{i'} y_j y_i$ then (T) fails.
 - (d) If $w^{-1} = -i' i j' y_{i'} y_{i'} j y_j y_i$ then (T) fails.
 - (e) If $w^{-1} = -i' i j' j y_{i'} y_j y_{i'} y_i$ then (T) fails.
 - (f) If $w^{-1} = -i' j' y_{i'} i y_{i'} j y_j y_i$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (g) If $w^{-1} = -i' j' i y_{i'} y_{i'} j y_i y_i$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (h) If $w^{-1} = -i' j' i y_{i'} j y_{i'} y_j y_i$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_j, j)$.
 - (i) If $w^{-1} = -i' j' i y_{j'} j y_j y_{i'} y_i$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_j, j)$.
 - (j) If $w^{-1} = -i' j' y_{i'} i j y_{i'} y_j y_i$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_j, j)$.
 - (k) If $w^{-1} = -i' j' y_{i'} i j y_i y_{i'} y_i$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_j, j)$.
 - $\text{(l) If } w^{-1} = -i' j' i j y_{j'} y_{i'} y_j y_i \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$
 - $\text{(m) If } w^{-1} = -i' j' i j y_{j'} y_j y_{i'} y_i \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_{j'} < y_{i'} < y_j < y_i < i' < i < j' < j$ and then one of the following holds:

•
$$w^{-1} = -i' - j' - y_{i'} - y_{i'} - i - j - y_i - y_i$$
 and $v^{-1} = -j' - y_{i'} - i' - y_{i'} - j - y_i - i - y_i$.

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ and $(a', b') \in \{(y_{i'}, i'), (y_{j'}, j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -i' - y_{i'} - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - . \end{cases}$$

- $(V2) \Leftrightarrow (no condition).$
- $(V3) \Leftrightarrow (no condition).$
- 8. Suppose $y_{i'} < y_{i'} < i' < j' < y_i < i < j$.

(a) If
$$w^{-1} = -i' - j' - y_{j'} - i - y_{i'} - j - y_j - y_i$$
 then (Y3) fails for $(a,b) = (y_{i'},i')$ and $(a',b') = (y_i,i)$.

(b) If
$$w^{-1} = -i' - j' - y_{j'} - i - j - y_{i'} - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_j, j)$.

(c) If
$$w^{-1} = -i' - j' - y_{j'} - i - j - y_j - y_{i'} - y_i$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_j, j)$.

(d) If
$$w^{-1} = -i' - i - j' - y_{j'} - j - y_{i'} - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(e) If
$$w^{-1} = -i' - i - j' - y_{j'} - j - y_j - y_{i'} - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(f) If
$$w^{-1} = -i' - i - j' - y_{j'} - y_{i'} - j - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(g) If
$$w^{-1} = -i' - j' - i - y_{j'} - j - y_{i'} - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(h) If
$$w^{-1} = -i' - j' - i - y_{j'} - j - y_j - y_{i'} - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(i) If
$$w^{-1} = -i' - j' - i - y_{j'} - y_{i'} - j - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(j) If
$$w^{-1} = -i' - i - j' - j - y_{j'} - y_{i'} - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

(k) If
$$w^{-1} = -i' - i - j' - j - y_{j'} - y_j - y_{i'} - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

(l) If
$$w^{-1} = -i' - j' - i - j - y_{j'} - y_{i'} - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

(m) If
$$w^{-1} = -i' - j' - i - j - y_{j'} - y_j - y_{i'} - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_{j'} < y_{i'} < i' < j' < y_j < y_i < i < j$ and then one of the following holds:

•
$$w^{-1} = -i' - j' - y_{i'} - y_{i'} - i - j - y_i - y_i$$
 and $v^{-1} = -j' - y_{i'} - i' - y_{i'} - j - y_j - i - y_i$.

When $(a,b) \in \operatorname{Cyc}^1(y) = \{(y_i,i),(y_j,j)\}$ and $(a',b') \in \{(y_{i'},i'),(y_{j'},j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\text{V1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -i' - y_{i'} - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - . \end{cases}$$

- $(V2) \Leftrightarrow (no condition).$
- $(V3) \Leftrightarrow (no condition).$
- 9. Suppose $y_{i'} < y_{i'} < i' < y_i < y_i < i < j' < j$.

(a) If
$$w^{-1} = -i' - i - j' - y_{j'} - j - y_{i'} - y_j - y_i$$
 then (T) fails.

(b) If
$$w^{-1} = -i' - i - j' - y_{i'} - j - y_{i} - y_{i'} - y_{i'}$$
 then (T) fails.

(c) If
$$w^{-1} = -i' - i - j' - j - y_{j'} - y_{i'} - y_j - y_i$$
 then (T) fails.

(d) If
$$w^{-1} = -i' - i - j' - y_{j'} - y_{i'} - j - y_j - y_i$$
 then (T) fails.

(e) If
$$w^{-1} = -i' - i - j' - j - y_{j'} - y_j - y_{i'} - y_i$$
 then (T) fails.

(f) If
$$w^{-1} = -i' - j' - y_{j'} - i - y_{i'} - j - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(g) If
$$w^{-1} = -i' - j' - i - y_{j'} - y_{i'} - j - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

- (h) If $w^{-1} = -i' j' i y_{i'} j y_{i'} y_j y_i$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_j, j)$.
- (i) If $w^{-1} = -i' j' i y_{j'} j y_j y_{i'} y_i$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_j, j)$.
- (j) If $w^{-1} = -i' j' y_{j'} i j y_{i'} y_j y_i$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_j, j)$.
- (k) If $w^{-1} = -i' j' y_{j'} i j y_j y_{i'} y_i$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_j, j)$.
- $\text{(l) If } w^{-1} = -i' j' i j y_{j'} y_{i'} y_j y_i \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$
- $\text{(m) If } w^{-1} = -i' j' i j y_{j'} y_j y_{i'} y_i \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_{j'} < y_{i'} < i' < y_j < y_i < i < j' < j$ and then one of the following holds:

•
$$w^{-1} = -i' - j' - y_{i'} - y_{i'} - i - j - y_i - y_i$$
 and $v^{-1} = -j' - y_{i'} - i' - y_{i'} - j - y_i - i - y_i$.

When $(a,b) \in \operatorname{Cyc}^1(y) = \{(y_i,i),(y_j,j)\}$ and $(a',b') \in \{(y_{i'},i'),(y_{j'},j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -i' - y_{i'} - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - . \end{cases}$$

- $(V2) \Leftrightarrow (\text{no condition}).$
- $(V3) \Leftrightarrow (no condition).$
- 10. Suppose $y_{i'} < y_{i'} < y_i < y_i < i' < j' < i < j$.
 - (a) If $w^{-1} = -i' j' y_{j'} i y_{i'} j y_j y_i$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (b) If $w^{-1} = -i' j' y_{j'} i j y_{i'} y_j y_i$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_j, j)$.
 - (c) If $w^{-1} = -i' j' y_{j'} i j y_j y_{i'} y_i$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_j, j)$.
 - (d) If $w^{-1} = -i' i j' y_{j'} j y_{i'} y_j y_i$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (e) If $w^{-1} = -i' i j' y_{j'} j y_j y_{i'} y_i$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (f) If $w^{-1} = -i' i j' y_{j'} y_{i'} j y_j y_i$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (g) If $w^{-1} = -i' j' i y_{j'} j y_{i'} y_j y_i$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (h) If $w^{-1} = -i' j' i y_{j'} j y_j y_{i'} y_i$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (i) If $w^{-1} = -i' j' i y_{j'} y_{i'} j y_j y_i$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (j) If $w^{-1} = -i' i j' j y_{i'} y_{i'} y_j y_i$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.
 - (k) If $w^{-1} = -i' i j' j y_{j'} y_j y_{i'} y_i$ then (Y3) fails for $(a,b) = (y_{j'},j')$ and $(a',b') = (y_j,j)$.
 - (1) If $w^{-1} = -i' j' i j y_{j'} y_{i'} y_j y_i$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.
 - $\text{(m) If } w^{-1} = -i' j' i j y_{j'} y_j y_{i'} y_i \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_{j'} < y_{i'} < y_j < y_i < i' < j' < i < j$ and then one of the following holds:

$$\bullet \ w^{-1} = -i' - j' - y_{j'} - y_{i'} - i - j - y_j - y_i - \text{ and } v^{-1} = -j' - y_{j'} - i' - y_{i'} - j - y_j - i - y_i - \dots$$

When $(a,b) \in \operatorname{Cyc}^1(y) = \{(y_i,i),(y_j,j)\}$ and $(a',b') \in \{(y_{i'},i'),(y_{j'},j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -i' - y_{i'} - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - . \end{cases}$$

- $(V2) \Leftrightarrow (no condition).$
- $(V3) \Leftrightarrow (no condition).$

- 11. Suppose $y_{j'} < y_{i'} < i' < y_j < y_i < j' < i < j$.
 - $\text{(a) If } w^{-1} = -i' j' y_{j'} i y_{i'} j y_j y_i \text{ then (Y3) fails for } (a,b) = (y_{i'},i') \text{ and } (a',b') = (y_i,i).$
 - (b) If $w^{-1} = -i' j' y_{j'} i j y_{i'} y_j y_i$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_j, j)$.
 - (c) If $w^{-1} = -i' j' y_{j'} i j y_j y_{i'} y_i$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_j, j)$.
 - (d) If $w^{-1} = -i' i j' y_{j'} j y_{i'} y_j y_i$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (e) If $w^{-1} = -i' i j' y_{i'} j y_i y_{i'} y_i$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - $\text{(f) If } w^{-1} = -i' i j' y_{i'} y_{i'} j y_{j} y_{i} \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_i,i).$
 - $\text{(g) If } w^{-1} = -i' j' i y_{j'} j y_{i'} y_j y_i \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_i,i).$
 - (h) If $w^{-1} = -i' j' i y_{j'} j y_j y_{i'} y_i$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (i) If $w^{-1} = -i' j' i y_{j'} y_{i'} j y_j y_i$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (j) If $w^{-1} = -i' i j' j y_{i'} y_{i'} y_j y_i$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.
 - (k) If $w^{-1} = -i' i j' j y_{j'} y_j y_{i'} y_i$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.
 - (l) If $w^{-1} = -i' j' i j y_{j'} y_{i'} y_j y_i$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.
 - $\text{(m) If } w^{-1} = -i' j' i j y_{i'} y_i y_{i'} y_i \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_{j'} < y_{i'} < i' < y_j < y_i < j' < i < j$ and then one of the following holds:

•
$$w^{-1} = -i' - j' - y_{i'} - y_{i'} - i - j - y_i - y_i$$
 and $v^{-1} = -j' - y_{i'} - i' - y_{i'} - j - y_i - i - y_i$.

When $(a, b) \in \text{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ and $(a', b') \in \{(y_{i'}, i'), (y_{j'}, j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\text{V1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -i' - y_{i'} - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - . \end{cases}$$

- $(V2) \Leftrightarrow (\text{no condition}).$
- $(V3) \Leftrightarrow (no condition).$
- 12. Suppose $y_{i'} < y_i < y_{i'} < i' < j' < y_i < i < j$.
 - (a) If $w^{-1} = -i' j' y_{i'} i y_{i'} j y_j y_i$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (b) If $w^{-1} = -i' j' y_{i'} i j y_{i'} y_j y_i$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (c) If $w^{-1} = -i' j' y_{i'} i j y_{i} y_{i'} y_{i'}$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (d) If $w^{-1} = -i' i j' y_{i'} j y_{i'} y_j y_i$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (e) If $w^{-1} = -i' i j' y_{j'} j y_j y_{i'} y_i$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (f) If $w^{-1} = -i' i j' y_{i'} y_{i'} j y_j y_i$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (g) If $w^{-1} = -i' j' i y_{j'} j y_{i'} y_j y_i$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (h) If $w^{-1} = -i' j' i y_{i'} j y_i y_{i'} y_i$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (i) If $w^{-1} = -i' j' i y_{j'} y_{i'} j y_j y_i$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (j) If $w^{-1} = -i' i j' j y_{i'} y_{i'} y_j y_i$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.
 - $\text{(k) If } w^{-1} = -i' i j' j y_{j'} y_{j} y_{i'} y_{i} \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_{j},j).$
 - (l) If $w^{-1} = -i' j' i j y_{j'} y_{i'} y_j y_i$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.
 - $\text{(m) If } w^{-1} = -i' j' i j y_{j'} y_j y_{i'} y_i \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_{j'} < y_j < y_{i'} < i' < j' < y_i < i < j$ and then one of the following holds:

•
$$w^{-1} = -i' - j' - y_{i'} - y_{i'} - i - j - y_i - y_i$$
 and $v^{-1} = -j' - y_{i'} - i' - y_{i'} - j - y_i - i - y_i$.

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ and $(a', b') \in \{(y_{i'}, i'), (y_{j'}, j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -i' - y_{i'} - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - . \end{cases}$$

 $(V2) \Leftrightarrow (wt)^{-1} \neq -j - y_{i'} - y_{j} - \text{ and } (wt)^{-1} \neq -j - i' - y_{j} - .$

 $(V3) \Leftrightarrow (no condition).$

13. Suppose $y_{i'} < y_{i'} < y_i < i' < j' < y_i < i < j$.

(a) If
$$w^{-1} = -i' - j' - y_{j'} - i - y_{i'} - j - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(b) If
$$w^{-1} = -i' - j' - y_{i'} - i - j - y_{i'} - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_j, j)$.

(c) If
$$w^{-1} = -i' - j' - y_{j'} - i - j - y_j - y_{i'} - y_i$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_j, j)$.

(d) If
$$w^{-1} = -i' - i - j' - y_{j'} - j - y_{i'} - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(e) If
$$w^{-1} = -i' - i - j' - y_{j'} - j - y_j - y_{i'} - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(f) If
$$w^{-1} = -i' - i - j' - y_{j'} - y_{i'} - j - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(g) If
$$w^{-1} = -i' - j' - i - y_{j'} - j - y_{i'} - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(h) If
$$w^{-1} = -i' - j' - i - y_{j'} - j - y_j - y_{i'} - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(i) If
$$w^{-1} = -i' - j' - i - y_{j'} - y_{i'} - j - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(j) If
$$w^{-1} = -i' - i - j' - j - y_{j'} - y_{i'} - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

(k) If
$$w^{-1} = -i' - i - j' - j - y_{j'} - y_j - y_{i'} - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

$$\text{(l) If } w^{-1} = -i' - j' - i - j - y_{j'} - y_{i'} - y_j - y_i - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$$

$$\text{(m) If } w^{-1} = -i' - j' - i - j - y_{j'} - y_j - y_{i'} - y_i - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$$

Recall that $(k,l) = (y_j,i)$. We conclude that if $y_{j'} < y_{i'} < y_j < i' < j' < y_i < i < j$ and then one of the following holds:

•
$$w^{-1} = -i' - j' - y_{i'} - y_{i'} - i - j - y_i - y_i$$
 and $v^{-1} = -j' - y_{i'} - i' - y_{i'} - j - y_i - i - y_i$.

When $(a,b) \in \operatorname{Cyc}^1(y) = \{(y_i,i),(y_j,j)\}$ and $(a',b') \in \{(y_{i'},i'),(y_{j'},j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -i' - y_{i'} - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - . \end{cases}$$

 $(V2) \Leftrightarrow (\text{no condition}).$

 $(V3) \Leftrightarrow (\text{no condition}).$

14. Suppose $y_{i'} < y_i < y_{i'} < i' < y_i < j' < i < j$.

(a) If
$$w^{-1} = -i' - j' - y_{j'} - i - y_{i'} - j - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(b) If
$$w^{-1} = -i' - j' - y_{j'} - i - j - y_{i'} - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(c) If
$$w^{-1} = -i' - j' - y_{i'} - i - j - y_{i} - y_{i'} - y_{i}$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(d) If
$$w^{-1} = -i' - i - j' - y_{j'} - j - y_{i'} - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(e) If
$$w^{-1} = -i' - i - j' - y_{j'} - j - y_j - y_{i'} - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(f) If
$$w^{-1} = -i' - i - j' - y_{j'} - y_{i'} - j - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(g) If
$$w^{-1} = -i' - j' - i - y_{j'} - j - y_{i'} - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(h) If
$$w^{-1} = -i' - j' - i - y_{j'} - j - y_j - y_{i'} - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(i) If
$$w^{-1} = -i' - j' - i - y_{j'} - y_{i'} - j - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(j) If
$$w^{-1} = -i' - i - j' - j - y_{j'} - y_{i'} - y_j - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

(k) If
$$w^{-1} = -i' - i - j' - j - y_{j'} - y_j - y_{i'} - y_i$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

$$\text{(l) If } w^{-1} = -i' - j' - i - j - y_{j'} - y_{i'} - y_j - y_i - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$$

$$\text{(m) If } w^{-1} = -i' - j' - i - j - y_{j'} - y_j - y_{i'} - y_i - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$$

Recall that $(k, l) = (y_j, i)$. We conclude that if $y_{j'} < y_j < y_{i'} < i' < y_i < j' < i < j$ and then one of the following holds:

•
$$w^{-1} = -i' - j' - y_{i'} - y_{i'} - i - j - y_i - y_i$$
 and $v^{-1} = -j' - y_{i'} - i' - y_{i'} - j - y_i - i - y_i$.

When $(a,b) \in \operatorname{Cyc}^1(y) = \{(y_i,i),(y_j,j)\}$ and $(a',b') \in \{(y_{i'},i'),(y_{j'},j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -i' - y_{i'} - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - . \end{cases}$$

$$(V2) \Leftrightarrow (wt)^{-1} \neq -j - y_{i'} - y_j - \text{ and } (wt)^{-1} \neq -j - i' - y_j - .$$

 $(V3) \Leftrightarrow (no condition).$

We conclude that properties (V1)-(V3) hold for all $(a,b), (a',b') \in \text{Cyc}(y)$ when $y_i < y_i < i < j$.

8 Case C1

Suppose $i < j < y_j < y_i$ and $w^{-1} = -y_i - i - y_j - j$ — so that $k = y_j < y_i = l$.

8.1 Subcase (i)

In this case $v = wt_{ij}t_{kl}$ is such that

$$v^{-1} = -y_i - j - y_i - i - .$$

When $(a,b),(a',b') \in \operatorname{Cyc}^1(y) = \{(j,y_j),(i,y_i)\}$, properties (V1)-(V3) are equivalent to the following conditions which evidently hold:

$$(Z1) \Leftrightarrow (wt)^{-1} = -y_i - i - \text{ and } (wt)^{-1} = -y_i - j - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_i - j - i - \text{ and } (wt)^{-1} \neq -y_i - y_i - i - .$$

 $(Z3) \Leftrightarrow (no condition).$

Thus properties (V1)-(V3) hold whenever (a, b), (a', b') are as in case (i) and $i < j < y_i < y_i$.

8.2 Subcase (ii)

Suppose R is an integer such that $(R,R) \in \operatorname{Cyc}^2(y)$, so that $R = y_R \notin \{i,j,y_i,y_i\} + n\mathbb{Z}$.

1. Suppose $i < j < y_i < y_i < R$.

(a) If
$$w^{-1} = -R - y_i - i - y_j - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (R, R)$.

(b) If
$$w^{-1} = -y_i - R - i - y_j - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (R, R)$.

(c) If
$$w^{-1} = -y_i - i - y_j - R - j$$
 then (Y3) fails for $(a,b) = (j,y_j)$ and $(a',b') = (R,R)$.

(d) If
$$w^{-1} = -y_i - i - R - y_j - j$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (R, R)$.

Recall that $(k, l) = (y_i, y_i)$. We conclude that if $i < j < y_i < R$ and then one of the following holds:

$$\bullet \ w^{-1} = - y_i - i - y_j - j - R - \ \text{and} \ v^{-1} = - y_j - j - y_i - i - R -.$$

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -y_i - i - \text{ and } (wt)^{-1} = -y_i - j - .$$

$$(Z2) \Leftrightarrow (\text{no condition}).$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - R - \text{ and } (wt)^{-1} = -j - R - .$$

2. Suppose $i < j < y_j < R < y_i$.

(a) If
$$w^{-1} = -y_i - R - i - y_j - j$$
— then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (R, R)$.

(b) If
$$w^{-1} = -y_i - i - y_j - R - j$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (R, R)$.

(c) If
$$w^{-1} = -y_i - i - R - y_j - j$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (R, R)$.

(d) If
$$w^{-1} = -R - y_i - i - y_j - j$$
— then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (R, R)$.

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $i < j < y_j < R < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_i - i - y_j - j - R$$
 and $v^{-1} = -y_j - j - y_i - i - R$.

When (a,b) = (R,R) and $(a',b') \in \operatorname{Cyc}^1(y) = \{(j,y_j),(i,y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -y_i - i - \text{ and } (wt)^{-1} = -y_i - j - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_i - R - i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -j - R - .$$

3. Suppose $i < j < R < y_i < y_i$.

(a) If
$$w^{-1} = -y_i - R - i - y_j - j$$
— then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (R, R)$.

(b) If
$$w^{-1} = -y_i - i - y_j - R - j$$
— then (Y2) fails for $(a, b) = (j, y_j)$ and $(a', b') = (R, R)$.

Recall that $(k, l) = (y_i, y_i)$. We conclude that if $i < j < R < y_i < y_i$ and then one of the following holds:

•
$$w^{-1} = -R - y_i - i - y_j - j$$
 and $v^{-1} = -R - y_j - j - y_i - i$.

•
$$w^{-1} = -y_i - i - R - y_i - j$$
 and $v^{-1} = -y_i - j - R - y_i - i$.

•
$$w^{-1} = -y_i - i - y_i - j - R$$
 and $v^{-1} = -y_i - j - y_i - i - R$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -y_i - i - \text{ and } (wt)^{-1} = -y_i - j - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_i - R - i - \text{ and } (wt)^{-1} \neq -y_i - R - j - .$$

 $(Z3) \Leftrightarrow (no condition).$

4. Suppose $i < R < j < y_j < y_i$.

(a) If
$$w^{-1} = -y_i - i - y_j - R - j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_i - i - R - y_j - j$$
— then (T) fails.

(c) If
$$w^{-1} = -y_i - R - i - y_j - j$$
— then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (R, R)$.

(d) If
$$w^{-1} = -y_i - i - y_j - j - R$$
— then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (j, y_j)$.

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $i < R < j < y_j < y_i$ and then one of the following holds:

•
$$w^{-1} = -R - y_i - i - y_j - j$$
 and $v^{-1} = -R - y_i - j - y_i - i$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -y_i - i - \text{ and } (wt)^{-1} = -y_i - j - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_i - R - i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -R - y_i - .$$

5. Suppose $R < i < j < y_i < y_i$.

(a) If
$$w^{-1} = -y_i - i - y_j - R - j$$
 then (Y3) fails for $(a,b) = (R,R)$ and $(a',b') = (i,y_i)$.

(b) If
$$w^{-1} = -y_i - i - R - y_j - j$$
— then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_i - R - i - y_j - j$$
— then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_i - i - y_j - j - R$$
— then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (i, y_i)$.

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $R < i < j < y_j < y_i$ and then one of the following holds:

•
$$w^{-1} = -R - y_i - i - y_j - j$$
 and $v^{-1} = -R - y_j - j - y_i - i$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -y_i - i - \text{ and } (wt)^{-1} = -y_j - j - .$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -R - y_i - \text{ and } (wt)^{-1} = -R - y_i - .$$

Next suppose P < Q are integers with $(P,Q) \in \operatorname{Cyc}^2(y)$, so that $Q = y_P$ and $P,Q \notin \{i,j,y_i,y_j\} + n\mathbb{Z}$.

1. Suppose $P < i < j < Q < y_j < y_i$.

(a) If
$$w^{-1} = -Q - y_i - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -Q - y_i - i - y_j - P - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_i - i - y_j - Q - P - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_i - i - y_j - Q - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -Q - y_i - P - i - y_j - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(f) If
$$w^{-1} = -y_i - Q - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -y_i - Q - i - y_j - P - j$$
 then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

$$\text{(h) If } w^{-1} = -y_i - i - Q - P - y_j - j - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (i,y_i).$$

(i) If
$$w^{-1} = -y_i - i - Q - y_j - P - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(j) If
$$w^{-1} = -y_i - Q - i - P - y_j - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

$$\text{(k) If } w^{-1} = -y_i - i - y_j - j - Q - P - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (i,y_i).$$

(l) If
$$w^{-1} = -y_i - Q - P - i - y_j - j$$
— then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(m) If
$$w^{-1} = -y_i - i - Q - y_j - j - P$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(n) If
$$w^{-1} = -Q - y_i - i - P - y_j - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

Recall that $(k, l) = (y_i, y_i)$. We conclude that if $P < i < j < Q < y_i < y_i$ and then one of the following holds:

$$\bullet \ \, w^{-1} = -Q - P - y_i - i - y_j - j - \ \, \text{and} \, \, v^{-1} = -Q - P - y_j - j - y_i - i - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathbf{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - y_i - \text{and } (wt)^{-1} = -P - y_j - .$$

2. Suppose $P < i < Q < j < y_j < y_i$.

(a) If
$$w^{-1} = -y_i - i - y_j - Q - P - j$$
 then (T) fails.

- (b) If $w^{-1} = -y_i i y_j Q j P$ then (T) fails.
- (c) If $w^{-1} = -y_i i Q P y_j j$ then (T) fails.
- (d) If $w^{-1} = -y_i i Q y_j P j$ then (T) fails.
- (e) If $w^{-1} = -y_i i Q y_j j P$ then (T) fails.
- (f) If $w^{-1} = -Q y_i i y_j j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
- (g) If $w^{-1} = -Q y_i i y_j P j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
- $\text{(h) If } w^{-1} = -Q y_i P i y_j j \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (i,y_i).$
- (i) If $w^{-1} = -y_i Q i y_j j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
- (j) If $w^{-1} = -y_i Q i y_j P j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
- (k) If $w^{-1} = -y_i Q i P y_i j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
- (1) If $w^{-1} = -y_i i y_j j Q P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.
- (m) If $w^{-1} = -y_i Q P i y_j j$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (i,y_i)$.
- (n) If $w^{-1} = -Q y_i i P y_j j$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (i, y_i)$.

Recall that $(k, l) = (y_i, y_i)$. We conclude that if $P < i < Q < j < y_i < y_i$ and then one of the following holds:

•
$$w^{-1} = -Q - P - y_i - i - y_j - j$$
 and $v^{-1} = -Q - P - y_j - j - y_i - i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - . \end{cases}$$

- $(Z2) \Leftrightarrow (no condition).$
- $(Z3) \Leftrightarrow (wt)^{-1} = -P y_i \text{and } (wt)^{-1} = -P y_i .$

3. Suppose $i < j < y_i < P < y_i < Q$.

- (a) If $w^{-1} = -Q y_i i y_i j P$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- (b) If $w^{-1} = -Q y_i i y_i P j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- (c) If $w^{-1} = -Q P y_i i y_j j$ then (Y3) fails for $(a,b) = (i,y_i)$ and (a',b') = (P,Q).
- (d) If $w^{-1} = -Q y_i P i y_i j$ then (Y3) fails for $(a,b) = (i,y_i)$ and (a',b') = (P,Q).
- (e) If $w^{-1} = -y_i Q i y_j j P$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- (f) If $w^{-1} = -y_i Q i y_j P j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- $\text{(g) If } w^{-1} = -y_i Q i P y_j j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$
- $\text{(h) If } w^{-1} = -y_i Q P i y_i j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$
- $\text{(i) If } w^{-1} = \cdots Q \cdots y_i \cdots i \cdots P \cdots y_j \cdots j \cdots \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$
- (j) If $w^{-1} = -y_i i y_j Q P j$ then (Y3) fails for $(a, b) = (j, y_j)$ and (a', b') = (P, Q).
- $\begin{array}{l} \text{(k) If } w^{-1} = -y_i i y_j Q j P \text{ then (Y3) fails for } (a,b) = (j,y_j) \text{ and } (a',b') = (P,Q). \\ \text{(l) If } w^{-1} = -y_i i Q P y_j j \text{ then (Y3) fails for } (a,b) = (j,y_j) \text{ and } (a',b') = (P,Q). \\ \end{array}$
- (m) If $w^{-1} = -y_i i Q y_j P j$ then (Y3) fails for $(a,b) = (j,y_j)$ and (a',b') = (P,Q).
- $\text{(n) If } w^{-1} = -y_i i Q y_i j P \text{ then (Y3) fails for } (a,b) = (j,y_j) \text{ and } (a',b') = (P,Q).$

Recall that $(k, l) = (y_i, y_i)$. We conclude that if $i < j < y_j < P < y_i < Q$ and then one of the following holds:

•
$$w^{-1} = -y_i - i - y_j - j - Q - P - \text{ and } v^{-1} = -y_j - j - y_i - i - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - . \end{cases}$$

 $(Z2) \Leftrightarrow (\text{no condition}).$

$$(\mathbf{Z3}) \Leftrightarrow (wt)^{-1} = -i - Q - \text{ and } (wt)^{-1} = -j - Q -.$$

4. Suppose $P < i < j < y_i < Q < y_i$.

(a) If
$$w^{-1} = -Q - y_i - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -Q - y_i - i - y_j - P - j$$
— then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(c) If
$$w^{-1} = -y_i - i - y_j - Q - P - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_i - i - y_j - Q - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -Q - y_i - P - i - y_j - j$$
— then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(f) If
$$w^{-1} = -y_i - Q - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -y_i - Q - i - y_j - P - j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

$$\text{(h) If } w^{-1} = -y_i - i - Q - P - y_j - j - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (i,y_i).$$

(i) If
$$w^{-1} = -y_i - i - Q - y_j - P - j$$
 then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(j) If
$$w^{-1} = -y_i - Q - i - P - y_j - j$$
— then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

$$\text{(k) If } w^{-1} = -y_i - i - y_j - j - Q - P - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (i,y_i).$$

(l) If
$$w^{-1} = -y_i - Q - P - i - y_j - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(m) If
$$w^{-1} = -y_i - i - Q - y_j - j - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(n) If
$$w^{-1} = -Q - y_i - i - P - y_j - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

Recall that $(k, l) = (y_i, y_i)$. We conclude that if $P < i < j < y_i < Q < y_i$ and then one of the following holds:

•
$$w^{-1} = -Q - P - y_i - i - y_j - j$$
 and $v^{-1} = -Q - P - y_j - j - y_i - i$.

When (a, b) = (P, Q) and $(a', b') \in \text{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - . \end{cases}$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - y_i - .$$

5. Suppose $i < j < P < y_i < Q < y_i$.

(a) If
$$w^{-1} = -Q - y_i - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(b) If
$$w^{-1} = -Q - y_i - i - y_j - P - j$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(c) If
$$w^{-1} = -Q - P - y_i - i - y_j - j$$
 then (Y3) fails for $(a,b) = (j,y_j)$ and $(a',b') = (P,Q)$.

$$\text{(d) If } w^{-1}=-y_i-i-y_j-Q-P-j-\text{ then (Y3) fails for } (a,b)=(j,y_j) \text{ and } (a',b')=(P,Q).$$

(e) If
$$w^{-1} = -y_i - i - y_j - Q - j - P$$
— then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

$$\text{(f) If } w^{-1} = - Q - y_i - P - i - y_j - j - \text{ then (Y3) fails for } (a,b) = (j,y_j) \text{ and } (a',b') = (P,Q).$$

(g) If
$$w^{-1} = -y_i - Q - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(h) If
$$w^{-1} = -y_i - Q - i - y_j - P - j$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(i) If
$$w^{-1} = -y_i - i - Q - P - y_j - j$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(j) If
$$w^{-1} = -y_i - i - Q - y_j - P - j$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(k) If
$$w^{-1} = -y_i - Q - i - P - y_j - j$$
— then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

$$\text{(l) If } w^{-1} = \cdots y_i \cdots Q \cdots P \cdots i \cdots y_j \cdots j \cdots \text{ then (Y3) fails for } (a,b) = (j,y_j) \text{ and } (a',b') = (P,Q).$$

(m) If
$$w^{-1} = -y_i - i - Q - y_j - j - P$$
— then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(n) If
$$w^{-1} = -Q - y_i - i - P - y_j - j$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

Recall that $(k, l) = (y_i, y_i)$. We conclude that if $i < j < P < y_i < Q < y_i$ and then one of the following holds:

$$\bullet \ w^{-1} = -y_i - i - y_j - j - Q - P - \ \text{and} \ v^{-1} = -y_j - j - y_i - i - Q - P -.$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_i - P - i - \text{ and } (wt)^{-1} \neq -y_i - Q - i - i$$

$$(\mathbf{Z3}) \Leftrightarrow (wt)^{-1} = -j - Q - .$$

6. Suppose $i < P < j < y_j < Q < y_i$.

(a) If
$$w^{-1} = -Q - y_i - i - y_j - P - j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_i - i - y_i - Q - P - j$$
 then (T) fails.

(c) If
$$w^{-1} = -y_i - Q - i - y_j - P - j$$
 then (T) fails.

(d) If
$$w^{-1} = -y_i - i - Q - P - y_j - j$$
 then (T) fails.

(e) If
$$w^{-1} = -y_i - i - Q - y_j - P - j$$
 then (T) fails.

(f) If
$$w^{-1} = -y_i - Q - i - P - y_i - j$$
 then (T) fails.

(g) If
$$w^{-1} = -Q - y_i - i - P - y_j - j$$
— then (T) fails.

(h) If
$$w^{-1} = -Q - y_i - i - y_j - j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(i) If
$$w^{-1} = -y_i - i - y_j - Q - j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(j) If
$$w^{-1} = -y_i - Q - i - y_j - j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

$$\text{(k) If } w^{-1} = -y_i - i - Q - y_j - j - P - \text{ then (Y2) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (j,y_j).$$

(l) If
$$w^{-1} = -Q - y_i - P - i - y_j - j$$
 then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(m) If
$$w^{-1} = -y_i - Q - P - i - y_j - j$$
 then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

Recall that $(k, l) = (y_i, y_i)$. We conclude that if $i < P < j < y_i < Q < y_i$ and then one of the following holds:

•
$$w^{-1} = -Q - P - y_i - i - y_i - j$$
 and $v^{-1} = -Q - P - y_i - j - y_i - i$.

•
$$w^{-1} = -u_i - i - u_i - j - Q - P - \text{ and } v^{-1} = -u_i - j - u_i - i - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \text{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and} \\ (wt)^{-1} = -y_i - i - \text{ and} \\ (wt)^{-1} = -y_j - j - . \end{cases}$$

$$(wt)^{-1} = -y_j - j - .$$

$$(Z2) \Leftrightarrow \begin{cases} (wt)^{-1} \neq -Q - j - P - \text{ and } (wt)^{-1} \neq -Q - y_j - P - \text{ and } \\ (wt)^{-1} \neq -y_i - P - i - \text{ and } (wt)^{-1} \neq -y_i - Q - i - . \end{cases}$$

 $(Z3) \Leftrightarrow (no condition).$

7. Suppose $P < Q < i < j < y_i < y_i$.

(a) If
$$w^{-1} = -Q - y_i - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -Q - y_i - i - y_j - P - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_i - i - y_j - Q - P - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_i - i - y_j - Q - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -Q - y_i - P - i - y_j - j$$
 then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(f) If
$$w^{-1} = -y_i - Q - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -y_i - Q - i - y_j - P - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(h) If
$$w^{-1} = -y_i - i - Q - P - y_j - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(i) If
$$w^{-1} = -y_i - i - Q - y_j - P - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(j) If
$$w^{-1} = -y_i - Q - i - P - y_j - j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(k) If
$$w^{-1} = -y_i - i - y_j - j - Q - P$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(l) If
$$w^{-1} = -y_i - Q - P - i - y_j - j$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(m) If
$$w^{-1} = -y_i - i - Q - y_j - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(n) If
$$w^{-1} = -Q - y_i - i - P - y_j - j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

Recall that $(k, l) = (y_i, y_i)$. We conclude that if $P < Q < i < j < y_i < y_i$ and then one of the following holds:

•
$$w^{-1} = -Q - P - y_i - i - y_i - j$$
 and $v^{-1} = -Q - P - y_i - j - y_i - i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - y_i - \text{and } (wt)^{-1} = -P - y_j - .$$

8. Suppose $i < j < y_j < P < Q < y_i$.

(a) If
$$w^{-1} = -Q - y_i - i - y_j - j - P$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(b) If
$$w^{-1} = -Q - y_i - i - y_j - P - j$$
— then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(c) If
$$w^{-1} = -Q - P - y_i - i - y_j - j$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(d) If
$$w^{-1} = -y_i - i - y_j - Q - P - j$$
— then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(e) If
$$w^{-1} = -y_i - i - y_j - Q - j - P$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(f) If
$$w^{-1} = -Q - y_i - P - i - y_j - j$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(g) If
$$w^{-1} = -y_i - Q - i - y_j - j - P$$
— then (Y3) fails for $(a,b) = (j,y_j)$ and $(a',b') = (P,Q)$.

$$\text{(h) If } w^{-1}=-y_i-Q-i-y_j-P-j-\text{ then (Y3) fails for } (a,b)=(j,y_j) \text{ and } (a',b')=(P,Q).$$

$$\text{(i) If } w^{-1} = - y_i - i - Q - P - y_j - j - \text{ then (Y3) fails for } (a,b) = (j,y_j) \text{ and } (a',b') = (P,Q).$$

(j) If
$$w^{-1} = -y_i - i - Q - y_j - P - j$$
— then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(k) If
$$w^{-1} = -y_i - Q - i - P - y_j - j$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(1) If
$$w^{-1} = -y_i - Q - P - i - y_j - j$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

$$\text{(m) If } w^{-1} = - y_i - i - Q - y_j - j - P - \text{ then (Y3) fails for } (a,b) = (j,y_j) \text{ and } (a',b') = (P,Q).$$

$$\text{(n) If } w^{-1} = \cdots Q \cdots y_i \cdots i \cdots P \cdots y_j \cdots j \cdots \text{ then (Y3) fails for } (a,b) = (j,y_j) \text{ and } (a',b') = (P,Q).$$

Recall that $(k, l) = (y_i, y_i)$. We conclude that if $i < j < y_j < P < Q < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_i - i - y_j - j - Q - P - \text{ and } v^{-1} = -y_j - j - y_i - i - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_i - P - i - \text{ and } (wt)^{-1} \neq -y_i - Q - i - i$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -j - Q - .$$

9. Suppose $i < j < P < y_j < y_i < Q$.

$$\text{(a) If } w^{-1} = - Q - y_i - i - y_j - j - P - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(b) If
$$w^{-1} = -Q - y_i - i - y_j - P - j$$
 then (Y3) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

(c) If
$$w^{-1} = -Q - P - y_i - i - y_j - j$$
— then (Y3) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

$$\text{(d) If } w^{-1} = -Q - y_i - P - i - y_j - j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(e) If
$$w^{-1} = -y_i - Q - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

$$\text{(f) If } w^{-1}=-y_i-Q-i-y_j-P-j-\text{ then (Y3) fails for } (a,b)=(i,y_i) \text{ and } (a',b')=(P,Q).$$

(g) If
$$w^{-1} = -y_i - Q - i - P - y_j - j$$
 — then (Y3) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

$$\text{(h) If } w^{-1} = - y_i - Q - P - i - y_j - j - \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$$

(i) If
$$w^{-1} = -Q - y_i - i - P - y_j - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(j) If
$$w^{-1} = -y_i - i - y_j - Q - P - j$$
— then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

$$\text{(k) If } w^{-1} = -y_i - i - y_j - Q - j - P - \text{ then (Y3) fails for } (a,b) = (j,y_j) \text{ and } (a',b') = (P,Q).$$

(l) If
$$w^{-1} = -y_i - i - Q - P - y_j - j$$
— then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(m) If
$$w^{-1} = -y_i - i - Q - y_j - P - j$$
 then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(n) If
$$w^{-1} = -y_i - i - Q - y_j - j - P$$
— then (Y3) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $i < j < P < y_j < y_i < Q$ and then one of the following holds:

•
$$w^{-1} = -y_i - i - y_j - j - Q - P$$
 and $v^{-1} = -y_j - j - y_i - i - Q - P$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - Q - \text{ and } (wt)^{-1} = -j - Q - .$$

10. Suppose $i < P < j < y_i < y_i < Q$.

(a) If
$$w^{-1} = -Q - y_i - i - y_j - P - j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_i - i - y_j - Q - P - j$$
 then (T) fails.

(c) If
$$w^{-1} = -y_i - Q - i - y_j - P - j$$
 then (T) fails.

(d) If
$$w^{-1} = -y_i - i - Q - P - y_i - j$$
 then (T) fails.

(e) If
$$w^{-1} = -y_i - i - Q - y_j - P - j$$
 then (T) fails.

(f) If
$$w^{-1} = -y_i - Q - i - P - y_j - j$$
 then (T) fails.

(g) If
$$w^{-1} = -Q - y_i - i - P - y_j - j$$
 then (T) fails.

$$\text{(h) If } w^{-1} = -y_i - i - y_j - Q - j - P - \text{ then (Y2) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (j,y_j).$$

(i) If
$$w^{-1} = -y_i - i - Q - y_i - j - P$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_i)$.

(j) If
$$w^{-1} = -Q - y_i - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(k) If
$$w^{-1} = -Q - P - y_i - i - y_j - j$$
 then (Y3) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

(l) If
$$w^{-1} = -Q - y_i - P - i - y_j - j$$
 then (Y3) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

(m) If
$$w^{-1} = -y_i - Q - i - y_j - j - P$$
 — then (Y3) fails for $(a,b) = (i,y_i)$ and $(a',b') = (P,Q)$.

(n) If
$$w^{-1} = -y_i - Q - P - i - y_j - j$$
— then (Y3) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $i < P < j < y_j < y_i < Q$ and then one of the following holds:

•
$$w^{-1} = -y_i - i - y_j - j - Q - P - \text{ and } v^{-1} = -y_j - j - y_i - i - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \text{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - . \end{cases}$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - Q - .$$

11. Suppose $i < j < P < Q < y_i < y_i$.

(a) If
$$w^{-1} = -Q - y_i - P - i - y_j - j$$
— then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(b) If
$$w^{-1} = -y_i - Q - i - y_j - j - P$$
— then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(c) If
$$w^{-1} = -y_i - Q - i - P - y_j - j$$
— then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(d) If
$$w^{-1} = -y_i - Q - P - i - y_j - j$$
 then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

$$\text{(e) If } w^{-1} = -Q - y_i - i - y_j - P - j - \text{ then (Y2) fails for } (a,b) = (j,y_j) \text{ and } (a',b') = (P,Q).$$

(f) If
$$w^{-1} = -y_i - i - y_j - Q - P - j$$
 then (Y2) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(g) If
$$w^{-1} = -y_i - i - y_j - Q - j - P$$
— then (Y2) fails for $(a,b) = (j,y_j)$ and $(a',b') = (P,Q)$.

(h) If
$$w^{-1} = -y_i - Q - i - y_j - P - j$$
— then (Y2) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

(i) If
$$w^{-1} = -y_i - i - Q - y_j - P - j$$
 then (Y2) fails for $(a, b) = (j, y_j)$ and $(a', b') = (P, Q)$.

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $i < j < P < Q < y_j < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_i - i - Q - P - y_j - j$$
 and $v^{-1} = -y_j - j - Q - P - y_i - i$.

•
$$w^{-1} = -Q - y_i - i - y_j - j - P$$
 and $v^{-1} = -Q - y_j - j - y_i - i - P$.

•
$$w^{-1} = -Q - P - y_i - i - y_j - j$$
 and $v^{-1} = -Q - P - y_j - j - y_i - i$.

•
$$w^{-1} = -y_i - i - y_j - j - Q - P$$
 and $v^{-1} = -y_j - j - y_i - i - Q - P$.

•
$$w^{-1} = -Q - y_i - i - P - y_j - j$$
 and $v^{-1} = -Q - y_j - j - P - y_i - i$

$$\bullet \ w^{-1} = -y_i - i - Q - y_j - j - P - \ \text{and} \ v^{-1} = -y_j - j - Q - y_i - i - P -$$

When (a, b) = (P, Q) and $(a', b') \in \text{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - . \end{cases}$$

$$(Z2) \Leftrightarrow \begin{cases} (wt)^{-1} \neq -y_i - P - i - \text{ and } (wt)^{-1} \neq -y_i - Q - i - \text{ and } \\ (wt)^{-1} \neq -y_j - P - j - \text{ and } (wt)^{-1} \neq -y_j - Q - j - . \end{cases}$$

 $(Z3) \Leftrightarrow (no condition).$

12. Suppose $i < P < j < Q < y_i < y_i$.

(a) If
$$w^{-1} = -Q - y_i - i - y_j - P - j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_i - i - y_i - Q - P - j$$
 then (T) fails.

(c) If
$$w^{-1} = -y_i - Q - i - y_j - P - j$$
 then (T) fails.

(d) If
$$w^{-1} = -y_i - i - Q - P - y_i - j$$
 then (T) fails.

(e) If
$$w^{-1} = -y_i - i - Q - y_j - P - j$$
 then (T) fails.

(f) If
$$w^{-1} = -y_i - Q - i - P - y_i - j$$
 then (T) fails.

(g) If
$$w^{-1} = -Q - y_i - i - P - y_i - j$$
 then (T) fails.

- $\text{(h) If } w^{-1} = -Q y_i P i y_i j \text{ then (Y2) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$
- (i) If $w^{-1} = -y_i Q P i y_j j$ then (Y2) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- (j) If $w^{-1} = -Q y_i i y_j j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (j, y_j)$.
- (k) If $w^{-1} = -y_i i y_j Q j P$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (j,y_j)$.
- (l) If $w^{-1} = -y_i Q i y_j j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (j, y_j)$.
- (m) If $w^{-1} = -y_i i y_j j Q P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (j, y_j)$.
- (n) If $w^{-1} = -y_i i Q y_j j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (j, y_j)$.

Recall that $(k, l) = (y_i, y_i)$. We conclude that if $i < P < j < Q < y_i < y_i$ and then one of the following holds:

$$\bullet \ w^{-1} = -Q - P - y_i - i - y_j - j - \text{ and } v^{-1} = -Q - P - y_j - j - y_i - i - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - . \end{cases}$$

- $(Z2) \Leftrightarrow (wt)^{-1} \neq -y_i P i \text{ and } (wt)^{-1} \neq -y_i Q i .$
- $(Z3) \Leftrightarrow (wt)^{-1} = -P y_i .$

13. Suppose $i < j < y_j < y_i < P < Q$.

- (a) If $w^{-1} = -Q y_i i y_j j P$ then (Y3) fails for $(a,b) = (i,y_i)$ and (a',b') = (P,Q).
- (b) If $w^{-1} = -Q y_i i y_j P j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- $\text{(c) If } w^{-1} = Q P y_i i y_j j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$
- $\text{(d) If } w^{-1} = -Q y_i P i y_j j \text{ then (Y3) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (P,Q).$
- (e) If $w^{-1} = -y_i Q i y_j j P$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- (f) If $w^{-1} = -y_i Q i y_j P j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- (g) If $w^{-1} = -y_i Q i P y_i j$ then (Y3) fails for $(a,b) = (i,y_i)$ and (a',b') = (P,Q).
- (h) If $w^{-1} = -y_i Q P i y_i j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- (i) If $w^{-1} = -Q y_i i P y_j j$ then (Y3) fails for $(a, b) = (i, y_i)$ and (a', b') = (P, Q).
- $(\mathbf{j}) \ \text{ If } w^{-1} = y_i i y_j Q P j \text{ then (Y3) fails for } (a,b) = (j,y_j) \text{ and } (a',b') = (P,Q).$
- $\text{(k) If } w^{-1} = -y_i i y_j Q j P \text{ then (Y3) fails for } (a,b) = (j,y_j) \text{ and } (a',b') = (P,Q).$
- (l) If $w^{-1} = -y_i i Q P y_j j$ then (Y3) fails for $(a, b) = (j, y_j)$ and (a', b') = (P, Q).
- (m) If $w^{-1} = -y_i i Q y_j P j$ then (Y3) fails for $(a, b) = (j, y_j)$ and (a', b') = (P, Q).
- (n) If $w^{-1} = -y_i i Q y_i j P$ then (Y3) fails for $(a, b) = (j, y_j)$ and (a', b') = (P, Q).

Recall that $(k, l) = (y_i, y_i)$. We conclude that if $i < j < y_i < P < Q$ and then one of the following holds:

•
$$w^{-1} = -y_i - i - y_i - j - Q - P - \text{ and } v^{-1} = -y_i - j - y_i - i - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -i - Q - \text{ and } (wt)^{-1} = -j - Q - .$$

14. Suppose $P < i < j < y_j < y_i < Q$.

(a) If
$$w^{-1} = -Q - y_i - i - y_j - j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -Q - y_i - i - y_j - P - j$$
 then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

(c) If
$$w^{-1} = -Q - y_i - P - i - y_j - j$$
— then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (i,y_i)$.

$$\text{(d) If } w^{-1} = - y_i - Q - i - y_j - j - P - \text{ then (Y2) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (i,y_i).$$

(e) If
$$w^{-1} = -y_i - Q - i - y_j - P - j$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(f) If
$$w^{-1} = -y_i - Q - i - P - y_j - j$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -Q - y_i - i - P - y_j - j$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (i, y_i)$.

$$\text{(h) If } w^{-1} = -y_i - i - y_j - Q - j - P - \text{ then (Y2) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (j,y_j).$$

(i) If
$$w^{-1} = -y_i - i - Q - y_j - P - j$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(j) If
$$w^{-1} = -y_i - i - Q - y_j - j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

Recall that $(k, l) = (y_i, y_i)$. We conclude that if $P < i < j < y_i < y_i < Q$ and then one of the following holds:

•
$$w^{-1} = -y_i - i - Q - P - y_j - j$$
 and $v^{-1} = -y_j - j - Q - P - y_i - i$.

•
$$w^{-1} = -Q - P - y_i - i - y_i - j - \text{ and } v^{-1} = -Q - P - y_i - j - y_i - i - i$$

•
$$w^{-1} = -y_i - i - y_j - j - Q - P - \text{ and } v^{-1} = -y_j - j - y_i - i - Q - P - .$$

•
$$w^{-1} = -y_i - i - y_j - Q - P - j$$
 and $v^{-1} = -y_j - j - y_i - Q - P - i$.

•
$$w^{-1} = -y_i - Q - P - i - y_i - j$$
 and $v^{-1} = -y_i - Q - P - j - y_i - i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$\begin{split} &(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - . \end{cases} \\ &(\mathrm{Z2}) \Leftrightarrow \begin{cases} (wt)^{-1} \neq -Q - i - P - \text{ and } (wt)^{-1} \neq -Q - y_i - P - \text{ and } \\ (wt)^{-1} \neq -Q - j - P - \text{ and } (wt)^{-1} \neq -Q - y_j - P - . \end{cases}$$

 $(Z3) \Leftrightarrow (no condition)$

15. Suppose $i < P < Q < j < y_i < y_i$.

(a) If
$$w^{-1} = -Q - y_i - i - y_j - P - j$$
 then (T) fails.

(b) If
$$w^{-1} = -y_i - i - y_j - Q - P - j$$
 then (T) fails.

(c) If
$$w^{-1} = -y_i - i - y_i - Q - j - P$$
 then (T) fails.

(d) If
$$w^{-1} = -y_i - Q - i - y_j - P - j$$
 then (T) fails.

(e) If
$$w^{-1} = -y_i - i - Q - P - y_i - j$$
 then (T) fails.

(f) If
$$w^{-1} = -y_i - i - Q - y_j - P - j$$
 — then (T) fails.

(g) If
$$w^{-1} = -y_i - Q - i - P - y_j - j$$
— then (T) fails.

(h) If
$$w^{-1} = -y_i - i - Q - y_i - j - P$$
 then (T) fails.

(i) If
$$w^{-1} = -Q - y_i - i - P - y_j - j$$
 then (T) fails.

(j) If
$$w^{-1} = -Q - y_i - P - i - y_j - j$$
— then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(k) If
$$w^{-1} = -y_i - Q - P - i - y_j - j$$
— then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (P, Q)$.

(l) If
$$w^{-1} = -Q - y_i - i - y_j - j - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(m) If
$$w^{-1} = -y_i - Q - i - y_j - j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

(n) If
$$w^{-1} = -y_i - i - y_j - j - Q - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (j, y_j)$.

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $i < P < Q < j < y_j < y_i$ and then one of the following holds:

•
$$w^{-1} = -Q - P - y_i - i - y_i - j - \text{ and } v^{-1} = -Q - P - y_i - j - y_i - i - i$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and} \\ (wt)^{-1} = -y_i - i - \text{ and} \\ (wt)^{-1} = -y_j - j - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -y_i - P - i - \text{ and } (wt)^{-1} \neq -y_i - Q - i - i$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - y_i - .$$

We conclude that properties (V1)-(V3) hold whenever (a, b), (a', b') are as in cases (i) or (ii) and $i < j < y_i < y_i$.

8.3 Subcase (iii)

Suppose i' and j' are integers such that $0 \neq i - i' = j - j' \in n\mathbb{Z}$, so that w(i) - w(i') = w(j) - w(j') = i - i'.

- 1. Suppose $i' < i < j' < j < y_{i'} < y_i < y_{i'} < y_i$.
 - (a) If $w^{-1} = -y_{i'} i' y_i i y_{i'} y_i j' j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} y_i i' y_{j'} i y_j j' j$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} i' y_i y_{j'} i y_j j' j$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} i' y_i i y_{j'} j' y_j j$ then (T) fails.
 - (e) If $w^{-1} = -y_{i'} i' y_i y_{j'} i j' y_j j$ then (T) fails.
 - (f) If $w^{-1} = -y_{i'} i' y_{j'} y_i i y_j j' j$ then (T) fails.
 - (g) If $w^{-1} = -y_{i'} i' y_{j'} y_i i j' y_j j$ then (T) fails.
 - (h) If $w^{-1} = -y_{i'} y_i i' y_{j'} i j' y_j j$ then (T) fails.
 - (i) If $w^{-1} = -y_{i'} y_i i' i y_{i'} y_i j' j$ then (T) fails.
 - (i) If $w^{-1} = -y_{i'} y_i i' i y_{i'} j' y_i j$ then (T) fails.
 - (k) If $w^{-1} = -y_{i'} i' y_i j' i y_j j$ then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (j', y_{j'})$.
 - (1) If $w^{-1} = -y_{i'} i' y_{j'} y_i j' i y_j j$ then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (j', y_{j'})$.
 - (m) If $w^{-1} = -y_{i'} y_i i' y_{j'} j' i y_j j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $i' < i < j' < j < y_{j'} < y_j < y_{i'} < y_i$ and then one of the following holds:

$$\bullet \ w^{-1} = -y_{i'} - i' - y_{j'} - j' - y_i - i - y_j - j - \text{ and } v^{-1} = -y_{j'} - j' - y_{i'} - i' - y_j - j - y_i - i - .$$

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ and $(a', b') \in \{(j', y_{j'}), (i', y_{i'})\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - \text{ and } \\ (wt)^{-1} = -y_{j'} - j' - . \end{cases}$$

- $(V2) \Leftrightarrow (wt)^{-1} \neq -y_i j' i \text{ and } (wt)^{-1} \neq -y_i y_{j'} i .$
- $(V3) \Leftrightarrow (no condition).$
- 2. Suppose $i' < j' < i < y_{j'} < j < y_j < y_{i'} < y_i$.
 - (a) If $w^{-1} = -y_{i'} i' y_i i y_{j'} y_j j' j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} i' y_i i y_{j'} j' y_j j$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} y_i i' i y_{i'} y_i j' j$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} y_i i' i y_{j'} j' y_i j$ then (T) fails.
 - (e) If $w^{-1} = -y_{i'} y_i i' y_{j'} i y_j j' j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(f) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - j' - i - y_j - j$$
— then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - i - j' - y_j - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(h) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{i'} - i - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(i) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{j'} - i - j' - y_j - j$$
— then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

$$\text{(j) If } w^{-1} = - y_{i'} - i' - y_{j'} - y_i - i - y_j - j' - j - \text{ then (Y3) fails for } (a,b) = (j',y_{j'}) \text{ and } (a',b') = (i,y_i).$$

(k) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - i - j' - y_j - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(l) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - y_j - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(m) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - j' - i - y_j - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $i' < j' < i < y_{j'} < j < y_j < y_{i'} < y_i$ and then one of the following holds:

$$\bullet \ w^{-1} = -y_{i'} - i' - y_{j'} - j' - y_i - i - y_j - j - \text{ and } v^{-1} = -y_{j'} - j' - y_{i'} - i' - y_j - j - y_i - i - .$$

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ and $(a', b') \in \{(j', y_{j'}), (i', y_{i'})\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - \text{ and } \\ (wt)^{-1} = -y_{j'} - j' - . \end{cases}$$

- $(V2) \Leftrightarrow (no condition).$
- $(V3) \Leftrightarrow (no condition).$

3. Suppose $i' < j' < y_{j'} < i < y_{i'} < j < y_j < y_i$.

(a) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - i - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - j' - i - y_j - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - i - j' - y_j - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_{i'} - y_i - i' - i - y_{j'} - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -y_{i'} - y_i - i' - i - y_{j'} - j' - y_j - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(f) If
$$w^{-1} = -y_{i'} - i' - y_i - i - y_{j'} - j - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{j'} - i - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(h) If
$$w^{-1} = -y_{i'} - i' - y_i - i - y_{j'} - j' - y_j - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(i) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{j'} - i - j' - y_j - j$$
— then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(j) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - i - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(k) If
$$w^{-1} = -y_{i'} - i' - y_{i'} - y_i - i - j' - y_j - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(1) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{i'} - j' - i - y_j - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(m) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - j' - i - y_j - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $i' < j' < y_{j'} < i < y_{i'} < j < y_j < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - y_{i'} - j' - y_i - i - y_i - j$$
 and $v^{-1} = -y_{i'} - j' - y_{i'} - i' - y_i - j - y_i - i$.

When $(a,b) \in \operatorname{Cyc}^1(y) = \{(j,y_j),(i,y_i)\}$ and $(a',b') \in \{(j',y_{j'}),(i',y_{i'})\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - \text{ and } \\ (wt)^{-1} = -y_{i'} - j' - . \end{cases}$$

- $(V2) \Leftrightarrow (no condition).$
- $(V3) \Leftrightarrow (no condition).$
- 4. Suppose $i' < i < j' < j < y_{j'} < y_{i'} < y_j < y_i$.
 - (a) If $w^{-1} = -y_{i'} i' y_i i y_{j'} y_j j' j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} y_i i' y_{j'} i y_i j' j$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} i' y_i y_{j'} i y_j j' j$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} i' y_i i y_{j'} j' y_j j$ then (T) fails.
 - (e) If $w^{-1} = -y_{i'} i' y_i y_{j'} i j' y_j j$ then (T) fails.
 - (f) If $w^{-1} = -y_{i'} i' y_{j'} y_i i y_j j' j$ then (T) fails.
 - (g) If $w^{-1} = -y_{i'} i' y_{j'} y_i i j' y_j j$ then (T) fails.
 - (h) If $w^{-1} = -y_{i'} y_i i' y_{j'} i j' y_j j$ then (T) fails.
 - (i) If $w^{-1} = -y_{i'} y_i i' i y_{j'} y_j j' j$ then (T) fails.
 - (j) If $w^{-1} = -y_{i'} y_i i' i y_{j'} j' y_j j$ then (T) fails.
 - (k) If $w^{-1} = -y_{i'} i' y_i y_{j'} j' i y_j j$ then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (j', y_{j'})$.
 - $\text{(l) If } w^{-1} = y_{i'} i' y_{j'} y_i j' i y_j j \text{ then (Y2) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (j',y_{j'}).$
 - (m) If $w^{-1} = -y_{i'} y_i i' y_{j'} j' i y_j j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $i' < i < j' < j < y_{j'} < y_{i'} < y_j < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - y_{j'} - j' - y_i - i - y_j - j$$
 and $v^{-1} = -y_{j'} - j' - y_{i'} - i' - y_j - j - y_i - i$.

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ and $(a', b') \in \{(j', y_{j'}), (i', y_{i'})\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - \text{ and } \\ (wt)^{-1} = -y_{j'} - j' - . \end{cases}$$

- $(V2) \Leftrightarrow (wt)^{-1} \neq -y_i j' i \text{ and } (wt)^{-1} \neq -y_i y_{j'} i .$
- $(V3) \Leftrightarrow (no condition).$
- 5. Suppose $i' < j' < i < y_{j'} < j < y_{i'} < y_j < y_i$.
 - (a) If $w^{-1} = -y_{i'} i' y_i i y_{i'} y_i j' j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} i' y_i i y_{j'} j' y_j j$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} y_i i' i y_{j'} y_j j' j$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} y_i i' i y_{j'} j' y_i j$ then (T) fails.
 - (e) If $w^{-1} = -y_{i'} y_i i' y_{j'} i y_j j' j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - $\text{(f) If } w^{-1} = -y_{i'} y_i i' y_{j'} j' i y_j j \text{ then (Y3) fails for } (a,b) = (i',y_{i'}) \text{ and } (a',b') = (i,y_i).$
 - (g) If $w^{-1} = -y_{i'} y_i i' y_{j'} i j' y_j j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (h) If $w^{-1} = -y_{i'} i' y_i y_{j'} i y_j j' j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (i) If $w^{-1} = -y_{i'} i' y_i y_{j'} i j' y_j j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (i) If $w^{-1} = -y_{i'} i' y_{i'} y_i i y_i j' j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (k) If $w^{-1} = -y_{i'} i' y_{i'} y_i i j' y_j j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (l) If $w^{-1} = -y_{i'} i' y_i y_{j'} j' i y_j j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - $\text{(m) If } w^{-1} = -y_{i'} i' y_{j'} y_i j' i y_j j \text{ then (Y3) fails for } (a,b) = (j',y_{j'}) \text{ and } (a',b') = (i,y_i).$

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $i' < j' < i < y_{j'} < j < y_{i'} < y_j < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - y_{j'} - j' - y_i - i - y_j - j$$
 and $v^{-1} = -y_{j'} - j' - y_{i'} - i' - y_j - j - y_i - i$.

When $(a, b) \in \text{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ and $(a', b') \in \{(j', y_{j'}), (i', y_{i'})\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(V1) \Leftrightarrow \begin{cases} (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - \text{ and } \\ (wt)^{-1} = -y_{j'} - j' - . \end{cases}$$

- $(V2) \Leftrightarrow (no condition).$
- $(V3) \Leftrightarrow (no condition).$
- 6. Suppose $i' < i < j' < y_{j'} < j < y_j < y_{i'} < y_i$.

(a) If
$$w^{-1} = -y_{i'} - i' - y_i - i - y_{j'} - y_j - j' - j$$
— then (T) fails.

(b) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - i - y_j - j' - j$$
— then (T) fails.

(c) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{j'} - i - y_j - j' - j$$
— then (T) fails.

(d) If
$$w^{-1} = -y_{i'} - i' - y_i - i - y_{j'} - j' - y_i - j$$
 then (T) fails.

(e) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{j'} - i - j' - y_j - j$$
— then (T) fails.

(f) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - i - y_j - j' - j$$
— then (T) fails.

(g) If
$$w^{-1} = -y_{i'} - i' - y_{i'} - y_i - i - j' - y_i - j$$
 then (T) fails.

(h) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - i - j' - y_i - j$$
 then (T) fails.

(i) If
$$w^{-1} = -y_{i'} - y_i - i' - i - y_{j'} - y_j - j' - j$$
— then (T) fails.

(j) If
$$w^{-1} = -y_{i'} - y_i - i' - i - y_{i'} - j' - y_i - j$$
 then (T) fails.

(k) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - y_j - j$$
 then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (j', y_{i'})$.

(1) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - j' - i - y_j - j$$
 then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (j', y_{j'})$.

(m) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - j' - i - y_j - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $i' < i < j' < y_{j'} < j < y_j < y_{i'} < y_i$ and then one of the following holds:

$$\bullet \ \ w^{-1} = -y_{i'} - i' - y_{j'} - j' - y_i - i - y_j - j - \ \ \text{and} \ \ v^{-1} = -y_{j'} - j' - y_{i'} - i' - y_j - j - y_i - i - .$$

When $(a,b) \in \operatorname{Cyc}^1(y) = \{(j,y_j),(i,y_i)\}$ and $(a',b') \in \{(j',y_{j'}),(i',y_{i'})\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - \text{ and } \\ (wt)^{-1} = -y_{j'} - j' - . \end{cases}$$

$$(V2) \Leftrightarrow (wt)^{-1} \neq -y_i - j' - i - \text{ and } (wt)^{-1} \neq -y_i - y_{j'} - i - i$$

- $(V3) \Leftrightarrow (no condition).$
- 7. Suppose $i' < j' < i < j < y_{i'} < y_i < y_{i'} < y_i$

(a) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - i - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - j' - i - y_j - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - i - j' - y_j - j$$
— then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_{i'} - y_i - i' - i - y_{j'} - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -y_{i'} - y_i - i' - i - y_{j'} - j' - y_j - j$$
— then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(f) If
$$w^{-1} = -y_{i'} - i' - y_i - i - y_{j'} - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{j'} - i - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

- (h) If $w^{-1} = -y_{i'} i' y_i i y_{j'} j' y_j j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
- (i) If $w^{-1} = -y_{i'} i' y_i y_{j'} i j' y_j j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
- (j) If $w^{-1} = -y_{i'} i' y_{j'} y_i i y_j j' j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
- (k) If $w^{-1} = -y_{i'} i' y_{j'} y_i i j' y_j j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
- (1) If $w^{-1} = -y_{i'} i' y_i y_{j'} j' i y_j j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
- (m) If $w^{-1} = -y_{i'} i' y_{j'} y_i j' i y_j j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $i' < j' < i < j < y_{j'} < y_j < y_{i'} < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - y_{i'} - j' - y_i - i - y_i - j$$
 and $v^{-1} = -y_{i'} - j' - y_{i'} - i' - y_i - j - y_i - i$.

When $(a, b) \in \text{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ and $(a', b') \in \{(j', y_{j'}), (i', y_{i'})\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - \text{ and } \\ (wt)^{-1} = -y_{j'} - j' - . \end{cases}$$

- $(V2) \Leftrightarrow (no condition).$
- $(V3) \Leftrightarrow (no condition).$
- 8. Suppose $i' < j' < y_{i'} < y_{i'} < i < j < y_i < y_i$
 - (a) If $w^{-1} = -y_{i'} y_i i' y_{j'} i y_j j' j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (b) If $w^{-1} = -y_{i'} y_i i' y_{j'} j' i y_j j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (c) If $w^{-1} = -y_{i'} y_i i' y_{j'} i j' y_j j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (d) If $w^{-1} = -y_{i'} y_i i' i y_{j'} y_j j' j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (e) If $w^{-1} = -y_{i'} y_i i' i y_{j'} j' y_j j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (f) If $w^{-1} = -y_{i'} i' y_i i y_{j'} j' j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (g) If $w^{-1} = -y_{i'} i' y_i y_{j'} i y_j j' j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (h) If $w^{-1} = -y_{i'} i' y_i i y_{j'} j' y_j j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (i) If $w^{-1} = -y_{i'} i' y_i y_{j'} i j' y_j j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (i) If $w^{-1} = -y_{i'} i' y_{i'} y_i i y_i j' j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - $\text{(k) If } w^{-1} = -y_{i'} i' y_{j'} y_i i j' y_j j \text{ then (Y3) fails for } (a,b) = (j',y_{j'}) \text{ and } (a',b') = (i,y_i) ($
 - (1) If $w^{-1} = -y_{i'} i' y_i y_{j'} j' i y_j j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - $\text{(m) If } w^{-1} = -y_{i'} i' y_{i'} y_i j' i y_j j \text{ then (Y3) fails for } (a,b) = (j',y_{j'}) \text{ and } (a',b') = (i,y_i).$

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $i' < j' < y_{j'} < y_{i'} < i < j < y_j < y_i$ and then one of the following holds:

$$\bullet \ w^{-1} = -y_{i'} - i' - y_{j'} - j' - y_i - i - y_j - j - \text{ and } v^{-1} = -y_{j'} - j' - y_{i'} - i' - y_j - j - y_i - i - .$$

When $(a,b) \in \operatorname{Cyc}^1(y) = \{(j,y_j), (i,y_i)\}$ and $(a',b') \in \{(j',y_{j'}), (i',y_{i'})\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - \text{ and } \\ (wt)^{-1} = -y_{j'} - j' - . \end{cases}$$

- $(V2) \Leftrightarrow (\text{no condition}).$
- $(V3) \Leftrightarrow (no condition).$

- 9. Suppose $i' < j' < y_{j'} < i < j < y_j < y_{i'} < y_i$.
 - (a) If $w^{-1} = -y_{i'} y_i i' y_{j'} i y_j j' j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (b) If $w^{-1} = -y_{i'} y_i i' y_{j'} j' i y_j j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (c) If $w^{-1} = -y_{i'} y_i i' y_{j'} i j' y_j j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - $\text{(d) If } w^{-1} = -y_{i'} y_i i' i y_{j'} y_j j' j \text{ then (Y3) fails for } (a,b) = (i',y_{i'}) \text{ and } (a',b') = (i,y_i).$
 - (e) If $w^{-1} = -y_{i'} y_i i' i y_{j'} j' y_j j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (f) If $w^{-1} = -y_{i'} i' y_i i y_{i'} y_i j' j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (g) If $w^{-1} = -y_{i'} i' y_i y_{j'} i y_j j' j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (h) If $w^{-1} = -y_{i'} i' y_i i y_{j'} j' y_j j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (i) If $w^{-1} = -y_{i'} i' y_i y_{j'} i j' y_j j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (j) If $w^{-1} = -y_{i'} i' y_{j'} y_i i y_j j' j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (k) If $w^{-1} = -y_{i'} i' y_{j'} y_i i j' y_j j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (l) If $w^{-1} = -y_{i'} i' y_i j' i y_j j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - $\text{(m) If } w^{-1} = -y_{i'} i' y_{j'} y_i j' i y_j j \text{ then (Y3) fails for } (a,b) = (j',y_{j'}) \text{ and } (a',b') = (i,y_i).$

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $i' < j' < y_{j'} < i < j < y_j < y_{i'} < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - y_{j'} - j' - y_i - i - y_j - j$$
 and $v^{-1} = -y_{j'} - j' - y_{i'} - i' - y_j - j - y_i - i$.

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ and $(a', b') \in \{(j', y_{j'}), (i', y_{i'})\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\text{V1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - \text{ and } \\ (wt)^{-1} = -y_{j'} - j' - . \end{cases}$$

- $(V2) \Leftrightarrow (no condition).$
- $(V3) \Leftrightarrow (no condition).$
- 10. Suppose $i' < j' < i < j < y_{i'} < y_{i'} < y_i < y_i$.
 - (a) If $w^{-1} = -y_{i'} y_i i' y_{j'} i y_j j' j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (b) If $w^{-1} = -y_{i'} y_i i' y_{j'} j' i y_j j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (c) If $w^{-1} = -y_{i'} y_i i' y_{j'} i j' y_j j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (d) If $w^{-1} = -y_{i'} y_i i' i y_{j'} y_j j' j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (e) If $w^{-1} = -y_{i'} y_i i' i y_{j'} j' y_j j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (f) If $w^{-1} = -y_{i'} i' y_i i y_{j'} j' j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (g) If $w^{-1} = -y_{i'} i' y_i y_{j'} i y_j j' j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (h) If $w^{-1} = -y_{i'} i' y_i i y_{i'} j' y_j j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (i) If $w^{-1} = -y_{i'} i' y_i y_{j'} i j' y_j j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (j) If $w^{-1} = -y_{i'} i' y_{j'} y_i i y_j j' j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (k) If $w^{-1} = -y_{i'} i' y_{j'} y_i i j' y_j j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (l) If $w^{-1} = -y_{i'} i' y_i y_{j'} j' i y_j j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - $\text{(m) If } w^{-1} = \cdot y_{i'} \cdot i' \cdot y_{j'} \cdot y_i \cdot j' \cdot i \cdot y_j \cdot j \cdot \text{ then (Y3) fails for } (a,b) = (j',y_{j'}) \text{ and } (a',b') = (i,y_i).$

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $i' < j' < i < j < y_{j'} < y_{i'} < y_j < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - y_{i'} - j' - y_i - i - y_i - j$$
 and $v^{-1} = -y_{i'} - j' - y_{i'} - i' - y_i - j - y_i - i$.

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ and $(a', b') \in \{(j', y_{j'}), (i', y_{i'})\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - \text{ and } \\ (wt)^{-1} = -y_{j'} - j' - . \end{cases}$$

- $(V2) \Leftrightarrow (\text{no condition}).$
- $(V3) \Leftrightarrow (no condition).$
- 11. Suppose $i' < j' < y_{j'} < i < j < y_{i'} < y_j < y_i$.

(a) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - i - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(b) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - j' - i - y_j - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(c) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - i - j' - y_j - j$$
— then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(d) If
$$w^{-1} = -y_{i'} - y_i - i' - i - y_{j'} - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(e) If
$$w^{-1} = -y_{i'} - y_i - i' - i - y_{j'} - j' - y_j - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

(f) If
$$w^{-1} = -y_{i'} - i' - y_i - i - y_{j'} - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(g) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{j'} - i - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(h) If
$$w^{-1} = -y_{i'} - i' - y_i - i - y_{j'} - j' - y_i - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(i) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{j'} - i - j' - y_j - j$$
— then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(j) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - i - y_j - j' - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(k) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - i - j' - y_j - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

(l) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{j'} - j' - i - y_j - j$$
 then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

$$\text{(m) If } w^{-1} = -y_{i'} - i' - y_{j'} - y_i - j' - i - y_j - j - \text{ then (Y3) fails for } (a,b) = (j',y_{j'}) \text{ and } (a',b') = (i,y_i).$$

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $i' < j' < y_{j'} < i < j < y_{i'} < y_j < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - y_{i'} - j' - y_i - i - y_j - j$$
 and $v^{-1} = -y_{i'} - j' - y_{i'} - i' - y_j - j - y_i - i$.

When $(a,b) \in \operatorname{Cyc}^1(y) = \{(j,y_j),(i,y_i)\}$ and $(a',b') \in \{(j',y_{j'}),(i',y_{i'})\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - \text{ and } \\ (wt)^{-1} = -y_{j'} - j' - . \end{cases}$$

- $(V2) \Leftrightarrow (no condition).$
- $(V3) \Leftrightarrow (\text{no condition}).$
- 12. Suppose $i' < i < j' < y_{i'} < y_{i'} < j < y_i < y_i$.

(a) If
$$w^{-1} = -y_{i'} - i' - y_i - i - y_{j'} - y_j - j' - j$$
— then (T) fails.

(b) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - i - y_i - j' - j$$
 then (T) fails.

(c) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{j'} - i - y_j - j' - j$$
— then (T) fails.

(d) If
$$w^{-1} = -y_{i'} - i' - y_i - i - y_{j'} - j' - y_i - j$$
 then (T) fails.

(e) If
$$w^{-1} = -u_{i'} - i' - u_i - u_{i'} - i - j' - u_i - j$$
 then (T) fails.

(f) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - i - y_j - j' - j$$
 then (T) fails.

(g) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - i - j' - y_j - j$$
— then (T) fails.

(h) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - i - j' - y_j - j$$
— then (T) fails.

- (i) If $w^{-1} = -y_{i'} y_i i' i y_{j'} y_i j' j$ then (T) fails.
- (j) If $w^{-1} = -y_{i'} y_i i' i y_{j'} j' y_j j$ then (T) fails.
- $\text{(k) If } w^{-1} = y_{i'} i' y_i y_{j'} j' i y_j j \text{ then (Y2) fails for } (a,b) = (i,y_i) \text{ and } (a',b') = (j',y_{j'}).$
- (l) If $w^{-1} = -y_{i'} i' y_{j'} y_i j' i y_j j$ then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (j', y_{j'})$.
- (m) If $w^{-1} = -y_{i'} y_i i' y_{j'} j' i y_j j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $i' < i < j' < y_{j'} < y_{i'} < j < y_j < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - y_{j'} - j' - y_i - i - y_j - j$$
 and $v^{-1} = -y_{j'} - j' - y_{i'} - i' - y_j - j - y_i - i$.

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ and $(a', b') \in \{(j', y_{j'}), (i', y_{i'})\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(V1) \Leftrightarrow \begin{cases} (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - \text{ and } \\ (wt)^{-1} = -y_{j'} - j' - . \end{cases}$$

- $(V2) \Leftrightarrow (wt)^{-1} \neq -y_i j' i \text{ and } (wt)^{-1} \neq -y_i y_{i'} i .$
- $(V3) \Leftrightarrow (no condition).$
- 13. Suppose $i' < j' < i < y_{j'} < y_{i'} < j < y_j < y_i$.
 - (a) If $w^{-1} = -y_{i'} i' y_i i y_{j'} y_j j' j$ then (T) fails.
 - (b) If $w^{-1} = -y_{i'} i' y_i i y_{j'} j' y_i j$ then (T) fails.
 - (c) If $w^{-1} = -y_{i'} y_i i' i y_{i'} y_i j' j$ then (T) fails.
 - (d) If $w^{-1} = -y_{i'} y_i i' i y_{j'} j' y_j j$ then (T) fails.
 - (e) If $w^{-1} = -y_{i'} y_i i' y_{j'} i y_j j' j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (f) If $w^{-1} = -y_{i'} y_i i' y_{j'} j' i y_j j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (g) If $w^{-1} = -y_{i'} y_i i' y_{j'} i j' y_j j$ then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.
 - (h) If $w^{-1} = -y_{i'} i' y_i y_{j'} i y_j j' j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (i) If $w^{-1} = -y_{i'} i' y_i y_{j'} i j' y_j j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (j) If $w^{-1} = -y_{i'} i' y_{j'} y_i i y_j j' j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (k) If $w^{-1} = -y_{i'} i' y_{i'} y_i i j' y_j j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (l) If $w^{-1} = -y_{i'} i' y_i y_{j'} j' i y_j j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.
 - (m) If $w^{-1} = -y_{i'} i' y_{i'} y_i j' i y_j j$ then (Y3) fails for $(a, b) = (j', y_{j'})$ and $(a', b') = (i, y_i)$.

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $i' < j' < i < y_{j'} < y_{i'} < j < y_j < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - y_{j'} - j' - y_i - i - y_j - j$$
 and $v^{-1} = -y_{j'} - j' - y_{i'} - i' - y_j - j - y_i - i$.

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(j, y_j), (i, y_i)\}$ and $(a', b') \in \{(j', y_{j'}), (i', y_{i'})\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - \text{ and } \\ (wt)^{-1} = -y_{j'} - j' - . \end{cases}$$

- $(V2) \Leftrightarrow (\text{no condition}).$
- $(V3) \Leftrightarrow (no condition).$
- 14. Suppose $i' < i < j' < y_{i'} < j < y_{i'} < y_i < y_i$.

(a) If
$$w^{-1} = -y_{i'} - i' - y_i - i - y_{j'} - y_j - j' - j$$
— then (T) fails.

(b) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - i - y_j - j' - j$$
 then (T) fails.

(c) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{j'} - i - y_j - j' - j$$
— then (T) fails.

(d) If
$$w^{-1} = -y_{i'} - i' - y_i - i - y_{j'} - j' - y_j - j$$
— then (T) fails.

(e) If
$$w^{-1} = -y_{i'} - i' - y_i - y_{j'} - i - j' - y_j - j$$
— then (T) fails.

(f) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - i - y_j - j' - j$$
— then (T) fails.

(g) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - i - j' - y_j - j$$
— then (T) fails.

(h) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - i - j' - y_j - j$$
— then (T) fails.

(i) If
$$w^{-1} = -y_{i'} - y_i - i' - i - y_{j'} - y_j - j' - j$$
— then (T) fails.

(j) If
$$w^{-1} = -y_{i'} - y_i - i' - i - y_{j'} - j' - y_j - j$$
— then (T) fails.

(k) If
$$w^{-1} = -y_{i'} - i' - y_i - j' - i - y_j - j$$
 then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (j', y_{i'})$.

(l) If
$$w^{-1} = -y_{i'} - i' - y_{j'} - y_i - j' - i - y_j - j$$
 then (Y2) fails for $(a, b) = (i, y_i)$ and $(a', b') = (j', y_{j'})$.

(m) If
$$w^{-1} = -y_{i'} - y_i - i' - y_{j'} - j' - i - y_j - j$$
 then (Y3) fails for $(a, b) = (i', y_{i'})$ and $(a', b') = (i, y_i)$.

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $i' < i < j' < y_{j'} < j < y_{i'} < y_j < y_i$ and then one of the following holds:

•
$$w^{-1} = -y_{i'} - i' - y_{i'} - j' - y_i - i - y_j - j$$
 and $v^{-1} = -y_{i'} - j' - y_{i'} - i' - y_j - j - y_i - i$.

When $(a,b) \in \operatorname{Cyc}^1(y) = \{(j,y_j),(i,y_i)\}$ and $(a',b') \in \{(j',y_{j'}),(i',y_{i'})\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(V1) \Leftrightarrow \begin{cases} (wt)^{-1} = -y_i - i - \text{ and } \\ (wt)^{-1} = -y_j - j - \text{ and } \\ (wt)^{-1} = -y_{i'} - i' - \text{ and } \\ (wt)^{-1} = -y_{j'} - j' - . \end{cases}$$

$$(V2) \Leftrightarrow (wt)^{-1} \neq -y_i - j' - i - \text{ and } (wt)^{-1} \neq -y_i - y_{j'} - i - .$$

 $(V3) \Leftrightarrow (no condition).$

We conclude that properties (V1)-(V3) hold for all $(a,b), (a',b') \in \text{Cyc}(y)$ when $i < j < y_i < y_i$.

9 Case C2

Suppose $y_i < y_i < i < j$ and $w^{-1} = -i - y_i - j - y_j$ — so that $k = y_j < y_i = l$.

9.1 Subcase (i)

In this case $v = wt_{ij}t_{kl}$ is such that

$$v^{-1} = -j - y_j - i - y_i - .$$

When $(a,b),(a',b') \in \operatorname{Cyc}^1(y) = \{(y_i,i),(y_j,j)\}$, properties (V1)-(V3) are equivalent to the following conditions which evidently hold:

$$(Z1) \Leftrightarrow (wt)^{-1} = -i - y_i - \text{ and } (wt)^{-1} = -j - y_i - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -i - y_i - y_i - y_i - \text{and } (wt)^{-1} \neq -i - i - y_i - .$$

 $(Z3) \Leftrightarrow (no condition).$

Thus properties (V1)-(V3) hold whenever (a, b), (a', b') are as in case (i) and $y_i < y_i < i < j$.

9.2 Subcase (ii)

Suppose R is an integer such that $(R, R) \in \operatorname{Cyc}^2(y)$, so that $R = y_R \notin \{i, j, y_i, y_i\} + n\mathbb{Z}$.

- 1. Suppose $y_i < y_i < i < j < R$.
 - (a) If $w^{-1} = -R i y_i j y_j$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (R, R).
 - (b) If $w^{-1} = -i R y_i j y_j$ then (Y3) fails for $(a,b) = (y_i,i)$ and (a',b') = (R,R).
 - (c) If $w^{-1} = -i y_i R j y_j$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (R, R).
 - $\text{(d) If } w^{-1}=-i-y_i-j-R-y_j-\text{ then (Y3) fails for } (a,b)=(y_j,j) \text{ and } (a',b')=(R,R).$

Recall that $(k, l) = (y_i, y_i)$. We conclude that if $y_i < y_i < i < j < R$ and then one of the following holds:

•
$$w^{-1} = -i - y_i - j - y_j - R$$
 and $v^{-1} = -j - y_j - i - y_i - R$.

When (a,b) = (R,R) and $(a',b') \in \operatorname{Cyc}^1(y) = \{(y_i,i),(y_j,j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

- $(Z1) \Leftrightarrow (wt)^{-1} = -i y_i \text{ and } (wt)^{-1} = -j y_i .$
- $(Z2) \Leftrightarrow (no condition).$
- $(Z3) \Leftrightarrow (wt)^{-1} = -y_i R \text{ and } (wt)^{-1} = -y_j R .$
- 2. Suppose $y_j < y_i < i < R < j$.
 - (a) If $w^{-1} = -i y_i R j y_j$ then (T) fails.
 - (b) If $w^{-1} = -i R y_i j y_j$ then (T) fails.
 - (c) If $w^{-1} = -i y_i j R y_j$ then (Y2) fails for $(a,b) = (y_j,j)$ and (a',b') = (R,R).
 - (d) If $w^{-1} = -R i y_i j y_j$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (R, R).

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $y_j < y_i < i < R < j$ and then one of the following holds:

$$\bullet \ \, w^{-1} = -i - y_i - j - y_j - R - \ \, \text{and} \, \, v^{-1} = -j - y_j - i - y_i - R - .$$

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

- $(Z1) \Leftrightarrow (wt)^{-1} = -i y_i \text{and } (wt)^{-1} = -j y_i .$
- $(\mathbf{Z2}) \Leftrightarrow (wt)^{-1} \neq -j R y_j .$
- $(\mathbf{Z3}) \Leftrightarrow (wt)^{-1} = -y_i R .$
- 3. Suppose $y_j < y_i < R < i < j$.
 - (a) If $w^{-1}=-i-R-y_i-j-y_j$ then (Y2) fails for $(a,b)=(y_i,i)$ and (a',b')=(R,R).
 - (b) If $w^{-1} = -i y_i j R y_j$ then (Y2) fails for $(a,b) = (y_j,j)$ and (a',b') = (R,R).

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $y_j < y_i < R < i < j$ and then one of the following holds:

- $\bullet \ \, w^{-1} = -i y_i R j y_j \ \, \text{and} \, \, v^{-1} = -j y_j R i y_i .$
- $\bullet \ w^{-1} = -R i y_i j y_j \text{ and } v^{-1} = -R j y_j i y_i -.$
- $w^{-1} = -i y_i j y_j R$ and $v^{-1} = -j y_j i y_i R$.

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

- $(\mathbf{Z}\mathbf{1}) \Leftrightarrow (wt)^{-1} = -i y_i \text{ and } (wt)^{-1} = -j y_j -.$
- $(Z2) \Leftrightarrow (wt)^{-1} \neq -i R y_i \text{ and } (wt)^{-1} \neq -j R y_j .$
- $(Z3) \Leftrightarrow (no condition).$
- 4. Suppose $y_j < R < y_i < i < j$.

- (a) If $w^{-1} = -i y_i j R y_j$ then (Y2) fails for $(a, b) = (y_j, j)$ and (a', b') = (R, R).
- (b) If $w^{-1} = -i y_i R j y_j$ then (Y3) fails for (a, b) = (R, R) and $(a', b') = (y_i, i)$.
- (c) If $w^{-1} = -i R y_i j y_j$ then (Y3) fails for (a, b) = (R, R) and $(a', b') = (y_i, i)$.
- (d) If $w^{-1} = -i y_i j y_j R$ then (Y3) fails for (a, b) = (R, R) and $(a', b') = (y_i, i)$.

Recall that $(k, l) = (y_i, y_i)$. We conclude that if $y_i < R < y_i < i < j$ and then one of the following holds:

•
$$w^{-1} = -R - i - y_i - j - y_j - \text{ and } v^{-1} = -R - j - y_j - i - y_i - .$$

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow (wt)^{-1} = -i - y_i - \text{ and } (wt)^{-1} = -j - y_j - .$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - R - y_j - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -R - i - .$$

5. Suppose $R < y_i < y_i < i < j$.

(a) If
$$w^{-1} = -i - y_i - R - j - y_j$$
 — then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (y_i, i)$.

(b) If
$$w^{-1} = -i - R - y_i - j - y_j$$
 — then (Y3) fails for $(a,b) = (R,R)$ and $(a',b') = (y_i,i)$.

(c) If
$$w^{-1} = -i - y_i - j - y_j - R$$
— then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (y_i, i)$.

(d) If
$$w^{-1} = -i - y_i - j - R - y_j$$
 then (Y3) fails for $(a, b) = (R, R)$ and $(a', b') = (y_i, i)$.

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $R < y_j < y_i < i < j$ and then one of the following holds:

•
$$w^{-1} = -R - i - y_i - j - y_j - \text{ and } v^{-1} = -R - j - y_j - i - y_i - .$$

When (a, b) = (R, R) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathbf{Z}\mathbf{1}) \Leftrightarrow (wt)^{-1} = -i - y_i - \text{ and } (wt)^{-1} = -j - y_j -.$$

 $(Z2) \Leftrightarrow (\text{no condition}).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -R - i - \text{ and } (wt)^{-1} = -R - i - .$$

Next suppose P < Q are integers with $(P,Q) \in \operatorname{Cyc}^2(y)$, so that $Q = y_P$ and $P, Q \notin \{i, j, y_i, y_i\} + n\mathbb{Z}$.

1. Suppose $P < y_i < y_i < Q < i < j$.

(a) If
$$w^{-1} = -i - y_i - j - Q - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(b) If
$$w^{-1} = -Q - i - P - y_i - j - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(c) If
$$w^{-1} = -i - Q - y_i - j - y_j - P$$
— then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(d) If
$$w^{-1} = -i - y_i - j - Q - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(e) If
$$w^{-1} = -i - y_i - Q - j - P - y_j$$
 then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(f) If
$$w^{-1} = -i - y_i - Q - P - j - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(g) If
$$w^{-1} = -i - Q - P - y_i - j - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

$$\text{(h) If } w^{-1} = -i - Q - y_i - P - j - y_j - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$$

$$\text{(i) If } w^{-1} = - Q - i - y_i - j - y_j - P - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$$

(j) If
$$w^{-1} = -i - Q - y_i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(k) If
$$w^{-1} = -Q - i - y_i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(l) If
$$w^{-1} = -i - y_i - Q - j - y_j - P$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(m) If
$$w^{-1} = -i - y_i - j - y_i - Q - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

$$\text{(n) If } w^{-1} = -Q - i - y_i - P - j - y_j - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$$

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $P < y_i < y_i < Q < i < j$ and then one of the following holds:

•
$$w^{-1} = -Q - P - i - y_i - j - y_j - \text{ and } v^{-1} = -Q - P - j - y_j - i - y_i - i$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -j - y_j - . \end{cases}$$

- $(Z2) \Leftrightarrow (no condition).$
- $(\mathbf{Z3}) \Leftrightarrow (wt)^{-1} = -P i \text{ and } (wt)^{-1} = -P j -.$
- 2. Suppose $P < y_j < Q < y_i < i < j$.

(a) If
$$w^{-1} = -i - y_i - j - Q - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(b) If
$$w^{-1} = -Q - i - P - y_i - j - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(c) If
$$w^{-1} = -i - Q - y_i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(d) If
$$w^{-1} = -i - y_i - j - Q - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(e) If
$$w^{-1} = -i - y_i - Q - j - P - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(f) If
$$w^{-1} = -i - y_i - Q - P - j - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(g) If
$$w^{-1} = -i - Q - P - y_i - j - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

$$\text{(h) If } w^{-1} = -i - Q - y_i - P - j - y_j - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$$

$$\text{(i) If } w^{-1} = - Q - i - y_i - j - y_j - P - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$$

(j) If
$$w^{-1} = -i - Q - y_i - j - P - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

$$\text{(k) If } w^{-1} = - Q - i - y_i - j - P - y_j - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$$

(l) If
$$w^{-1} = -i - y_i - Q - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(m) If
$$w^{-1} = -i - y_i - j - y_j - Q - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(n) If
$$w^{-1} = -Q - i - y_i - P - j - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $P < y_j < Q < y_i < i < j$ and then one of the following holds:

•
$$w^{-1} = -Q - P - i - y_i - j - y_j$$
 and $v^{-1} = -Q - P - j - y_j - i - y_i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -j - y_j - . \end{cases}$$

 $(Z2) \Leftrightarrow (\text{no condition}).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - i - \text{ and } (wt)^{-1} = -P - j - i$$

- 3. Suppose $y_j < y_i < i < P < j < Q$.
 - (a) If $w^{-1} = -Q i P y_i j y_j$ then (T) fails.
 - (b) If $w^{-1} = -i y_i Q P j y_i$ then (T) fails.
 - (c) If $w^{-1} = -i Q P y_i j y_j$ then (T) fails.
 - (d) If $w^{-1} = -i Q y_i P j y_i$ then (T) fails.
 - (e) If $w^{-1} = -Q i y_i P j y_j$ then (T) fails.
 - $\text{(f) If } w^{-1} = -i Q y_i j y_i P \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$
 - (g) If $w^{-1} = -Q P i y_i j y_j$ then (Y3) fails for $(a,b) = (y_i,i)$ and (a',b') = (P,Q).
 - $\text{(h) If } w^{-1} = -Q i y_i j y_j P \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$
 - $\text{(i) If } w^{-1} = -i Q y_i j P y_j \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$

- (j) If $w^{-1} = -Q i y_i j P y_j$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (P, Q).
- $\text{(k) If } w^{-1} = -i y_i j Q y_j P \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$
- $\text{(l) If } w^{-1} = -i y_i j Q P y_j \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$
- (m) If $w^{-1} = -i y_i Q j P y_j$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).
- $\text{(n) If } w^{-1} = -i y_i Q j y_j P \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$

Recall that $(k, l) = (y_i, y_i)$. We conclude that if $y_i < y_i < i < P < j < Q$ and then one of the following holds:

•
$$w^{-1} = -i - y_i - j - y_j - Q - P - \text{ and } v^{-1} = -j - y_j - i - y_i - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -j - y_j - . \end{cases}$$

- $(Z2) \Leftrightarrow (no condition).$
- $(Z3) \Leftrightarrow (wt)^{-1} = -y_i Q \text{ and } (wt)^{-1} = -y_i Q .$
- 4. Suppose $P < y_i < y_i < i < Q < j$.
 - (a) If $w^{-1} = -i Q y_i j y_j P$ then (T) fails.
 - (b) If $w^{-1} = -i y_i Q j P y_j$ then (T) fails.
 - (c) If $w^{-1} = -i y_i Q P j y_j$ then (T) fails.
 - (d) If $w^{-1} = -i Q P y_i j y_j$ then (T) fails.
 - (e) If $w^{-1} = -i Q y_i P j y_j$ then (T) fails.
 - (f) If $w^{-1} = -i Q y_i j P y_i$ then (T) fails.
 - (g) If $w^{-1} = -i y_i Q j y_j P$ then (T) fails.
 - (h) If $w^{-1} = -Q i P y_i j y_j$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.
 - (i) If $w^{-1} = -Q i y_i P j y_j$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.
 - (j) If $w^{-1} = -i y_i j Q y_j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - (k) If $w^{-1} = -i y_i j Q P y_j$ then (Y3) fails for (a,b) = (P,Q) and $(a',b') = (y_j,j)$.
 - (l) If $w^{-1} = -Q i y_i j y_j P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.
 - $\text{(m) If } w^{-1} = -Q i y_i j P y_j \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_j,j).$
 - (n) If $w^{-1} = -i y_i j y_i Q P$ then (Y3) fails for (a, b) = (P, Q) and $(a', b') = (y_j, j)$.

Recall that $(k, l) = (y_i, y_i)$. We conclude that if $P < y_i < y_i < i < Q < j$ and then one of the following holds:

•
$$w^{-1} = -Q - P - i - y_i - j - y_j$$
 and $v^{-1} = -Q - P - j - y_j - i - y_i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and} \\ (wt)^{-1} = -i - y_i - \text{ and} \\ (wt)^{-1} = -j - y_j - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -Q - y_i - P - \text{ and } (wt)^{-1} \neq -Q - i - P - .$$

- $(Z3) \Leftrightarrow (wt)^{-1} = -P i .$
- 5. Suppose $y_i < y_i < P < i < Q < j$.
 - (a) If $w^{-1} = -i Q y_i j y_j P$ then (T) fails.
 - (b) If $w^{-1} = -i y_i Q j P y_i$ then (T) fails.

- (c) If $w^{-1} = -i y_i Q P j y_j$ then (T) fails.
- (d) If $w^{-1} = -i Q P y_i j y_j$ then (T) fails.
- (e) If $w^{-1} = -i Q y_i P j y_j$ then (T) fails.
- (f) If $w^{-1} = -i Q y_i j P y_j$ then (T) fails.
- (g) If $w^{-1} = -i y_i Q j y_j P$ then (T) fails.
- (h) If $w^{-1} = -i y_i j Q y_j P$ then (Y2) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).
- (i) If $w^{-1} = -i y_i j Q P y_j$ then (Y2) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).
- $(\mathbf{j}) \ \text{ If } w^{-1} = \cdots Q \cdots i \cdots P \cdots y_i \cdots j \cdots y_j \cdots \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$
- $\text{(k) If } w^{-1} = -Q P i y_i j y_j \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$
- (l) If $w^{-1} = -Q i y_i j y_j P$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (P, Q).
- (m) If $w^{-1} = -Q i y_i j P y_j$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (P, Q).
- (n) If $w^{-1} = -Q i y_i P j y_j$ then (Y3) fails for $(a,b) = (y_i,i)$ and (a',b') = (P,Q).

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $y_j < y_i < P < i < Q < j$ and then one of the following holds:

•
$$w^{-1} = -i - y_i - j - y_j - Q - P - \text{ and } v^{-1} = -j - y_j - i - y_i - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -j - y_j - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - P - y_i - \text{ and } (wt)^{-1} \neq -j - Q - y_i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -y_i - Q - .$$

6. Suppose $y_i < P < y_i < i < Q < j$.

- (a) If $w^{-1} = -i Q y_i j y_i P$ then (T) fails.
- (b) If $w^{-1} = -i y_i Q j P y_i$ then (T) fails.
- (c) If $w^{-1} = -i y_i Q P j y_j$ then (T) fails.
- (d) If $w^{-1} = -i Q P y_i j y_j$ then (T) fails.
- (e) If $w^{-1} = -i Q y_i P j y_j$ then (T) fails.
- (f) If $w^{-1} = -i Q y_i j P y_j$ then (T) fails.
- (g) If $w^{-1} = -i y_i Q j y_j P$ then (T) fails.
- (h) If $w^{-1} = -Q i P y_i j y_j$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.
- (i) If $w^{-1} = -Q i y_i j y_j P$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.
- (j) If $w^{-1} = -Q i y_i j P y_j$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.
- (k) If $w^{-1} = -Q i y_i P j y_j$ then (Y2) fails for (a, b) = (P, Q) and $(a', b') = (y_i, i)$.
- (l) If $w^{-1} = -i y_i j Q y_j P$ then (Y2) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).
- (m) If $w^{-1} = -i y_i j Q P y_j$ then (Y2) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $y_j < P < y_i < i < Q < j$ and then one of the following holds:

•
$$w^{-1} = -Q - P - i - y_i - j - y_j - \text{ and } v^{-1} = -Q - P - j - y_j - i - y_i - i$$

•
$$w^{-1} = -i - y_i - j - y_j - Q - P - \text{ and } v^{-1} = -j - y_i - i - y_i - Q - P - .$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -j - y_j - . \end{cases}$$

$$(Z2) \Leftrightarrow \begin{cases} (wt)^{-1} \neq -Q - y_i - P - \text{ and } (wt)^{-1} \neq -Q - i - P - \text{ and } \\ (wt)^{-1} \neq -j - P - y_j - \text{ and } (wt)^{-1} \neq -j - Q - y_j - . \end{cases}$$

 $(Z3) \Leftrightarrow (no condition)$

7. Suppose $P < Q < y_j < y_i < i < j$.

(a) If
$$w^{-1} = -i - y_i - j - Q - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(b) If
$$w^{-1} = -Q - i - P - y_i - j - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(c) If
$$w^{-1} = -i - Q - y_i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

$$\text{(d) If } w^{-1} = -i - y_i - j - Q - P - y_j - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$$

(e) If
$$w^{-1}=-i-y_i-Q-j-P-y_j$$
— then (Y3) fails for $(a,b)=(P,Q)$ and $(a',b')=(y_i,i)$.

(f) If
$$w^{-1} = -i - y_i - Q - P - j - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(g) If
$$w^{-1} = -i - Q - P - y_i - j - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

$$\text{(h) If } w^{-1} = -i - Q - y_i - P - j - y_j - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$$

(i) If
$$w^{-1} = -Q - i - y_i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(j) If
$$w^{-1} = -i - Q - y_i - j - P - y_j$$
 then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(k) If
$$w^{-1} = -Q - i - y_i - j - P - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(l) If
$$w^{-1} = -i - y_i - Q - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(m) If
$$w^{-1} = -i - y_i - j - y_j - Q - P$$
 — then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

$$\text{(n) If } w^{-1} = -Q - i - y_i - P - j - y_j - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$$

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $P < Q < y_j < y_i < i < j$ and then one of the following holds:

$$\bullet \ w^{-1} = -Q - P - i - y_i - j - y_j - \text{ and } v^{-1} = -Q - P - j - y_j - i - y_i -.$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -j - y_j - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

$$(\mathbf{Z3}) \Leftrightarrow (wt)^{-1} = -P - i - \text{ and } (wt)^{-1} = -P - j - i - \mathbf{Z} = -\mathbf{Z} = -\mathbf{Z$$

8. Suppose $y_i < y_i < i < P < Q < j$.

(a) If
$$w^{-1} = -Q - i - P - y_i - j - y_j$$
 then (T) fails.

(b) If
$$w^{-1} = -i - Q - y_i - j - y_j - P$$
— then (T) fails.

(c) If
$$w^{-1} = -i - y_i - Q - j - P - y_j$$
 then (T) fails.

(d) If
$$w^{-1} = -i - y_i - Q - P - j - y_i$$
 then (T) fails.

(e) If
$$w^{-1} = -i - Q - P - y_i - j - y_j$$
 then (T) fails.

(f) If
$$w^{-1} = -i - Q - y_i - P - j - y_j$$
 — then (T) fails.

(g) If
$$w^{-1} = -i - Q - y_i - j - P - y_j$$
 — then (T) fails.

(h) If
$$w^{-1} = -i - y_i - Q - j - y_j - P$$
— then (T) fails.

(i) If
$$w^{-1} = -Q - i - y_i - P - j - y_j$$
 then (T) fails.

(j) If
$$w^{-1} = -i - y_i - j - Q - y_j - P$$
— then (Y2) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

$$\text{(k) If } w^{-1} = -i - y_i - j - Q - P - y_j - \text{ then (Y2) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

- $\text{(l) If } w^{-1} = Q P i y_i j y_j \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$
- (m) If $w^{-1} = -Q i y_i j y_j P$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (P, Q).
- $\text{(n) If } w^{-1} = Q i y_i j P y_j \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $y_j < y_i < i < P < Q < j$ and then one of the following holds:

$$\bullet \ w^{-1} = -i - y_i - j - y_j - Q - P - \ \text{and} \ v^{-1} = -j - y_j - i - y_i - Q - P -.$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -j - y_j - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - P - y_i - \text{ and } (wt)^{-1} \neq -j - Q - y_i - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -y_i - Q - .$$

- 9. Suppose $y_j < y_i < P < i < j < Q$.
 - (a) If $w^{-1} = -Q i P y_i j y_j$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (P, Q).
 - (b) If $w^{-1} = -i Q y_i j y_j P$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (P, Q).
 - (c) If $w^{-1} = -Q P i y_i j y_j$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (P, Q).
 - (d) If $w^{-1} = -i Q P y_i j y_j$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (P, Q).
 - (e) If $w^{-1} = -i Q y_i P j y_j$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (P, Q).
 - $\text{(f) If } w^{-1} = -Q i y_i j y_j P \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$
 - (g) If $w^{-1} = -i Q y_i j P y_j$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (P, Q).
 - $\text{(h) If } w^{-1} = Q i y_i j P y_j \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$
 - (i) If $w^{-1} = -Q i y_i P j y_j$ then (Y3) fails for $(a, b) = (y_i, i)$ and (a', b') = (P, Q).
 - $(\mathbf{j}) \ \text{ If } w^{-1} = -i y_i j Q y_j P \text{ then } (\mathbf{Y3}) \text{ fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$
 - $\text{(k) If } w^{-1} = -i y_i j Q P y_j \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$
 - $\text{(l) If } w^{-1} = -i y_i Q j P y_j \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$
 - (m) If $w^{-1} = -i y_i Q P j y_j$ then (Y3) fails for $(a, b) = (y_j, j)$ and (a', b') = (P, Q).
 - $\text{(n) If } w^{-1}=-i-y_i-Q-j-y_j-P- \text{ then (Y3) fails for } (a,b)=(y_j,j) \text{ and } (a',b')=(P,Q).$

Recall that $(k,l) = (y_i, y_i)$. We conclude that if $y_i < y_i < P < i < j < Q$ and then one of the following holds:

•
$$w^{-1} = -i - y_i - j - y_j - Q - P - \text{ and } v^{-1} = -j - y_j - i - y_i - Q - P - .$$

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(y) = \{(y_i,i),(y_j,j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -j - y_j - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -y_i - Q - \text{ and } (wt)^{-1} = -y_i - Q - .$$

- 10. Suppose $y_i < P < y_i < i < j < Q$.
 - (a) If $w^{-1} = -i y_i j Q y_j P$ then (Y3) fails for $(a,b) = (y_j,j)$ and (a',b') = (P,Q).
 - $\text{(b) If } w^{-1} = \cdots Q \cdots i \cdots P \cdots y_i \cdots j \cdots y_j \cdots \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$
 - (c) If $w^{-1} = -i Q y_i j y_j P$ then (Y3) fails for $(a,b) = (y_j,j)$ and (a',b') = (P,Q).
 - $\text{(d) If } w^{-1} = -Q P i y_i j y_j \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$

(e) If
$$w^{-1} = -i - y_i - j - Q - P - y_j$$
 — then (Y3) fails for $(a,b) = (y_j,j)$ and $(a',b') = (P,Q)$.

(f) If
$$w^{-1} = -i - y_i - Q - j - P - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(g) If
$$w^{-1} = -i - y_i - Q - P - j - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(h) If
$$w^{-1} = -i - Q - P - y_i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(i) If
$$w^{-1} = -i - Q - y_i - P - j - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

$$(j) \ \ \text{If} \ w^{-1} = -Q - i - y_i - j - y_j - P - \ \ \text{then (Y3) fails for } (a,b) = (y_j,j) \ \ \text{and} \ \ (a',b') = (P,Q).$$

$$\text{(k) If } w^{-1} = -i - Q - y_i - j - P - y_j - \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

(1) If
$$w^{-1} = -Q - i - y_i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

(m) If
$$w^{-1} = -i - y_i - Q - j - y_j - P$$
 — then (Y3) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

$$\text{(n) If } w^{-1} = \cdots Q - i \cdots y_i \cdots P \cdots j \cdots y_j \cdots \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $y_j < P < y_i < i < j < Q$ and then one of the following holds:

•
$$w^{-1} = -i - y_i - j - y_j - Q - P$$
 and $v^{-1} = -j - y_j - i - y_i - Q - P$.

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(y) = \{(y_i,i),(y_j,j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -j - y_j - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -Q - y_i - P - \text{ and } (wt)^{-1} \neq -Q - i - P - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -y_j - Q - .$$

11. Suppose $y_i < y_i < P < Q < i < j$.

(a) If
$$w^{-1} = -Q - i - P - y_i - j - y_j$$
 then (Y2) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

$$\text{(b) If } w^{-1}=-i-Q-y_i-j-y_j-P- \text{ then (Y2) fails for } (a,b)=(y_i,i) \text{ and } (a',b')=(P,Q).$$

(c) If
$$w^{-1} = -i - Q - P - y_i - j - y_j$$
 then (Y2) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

$$\text{(d) If } w^{-1}=-i-Q-y_i-P-j-y_j-\text{ then (Y2) fails for } (a,b)=(y_i,i) \text{ and } (a',b')=(P,Q).$$

(e) If
$$w^{-1} = -i - y_i - j - Q - y_j - P$$
 then (Y2) fails for $(a,b) = (y_j,j)$ and $(a',b') = (P,Q)$.

(f) If
$$w^{-1} = -i - y_i - j - Q - P - y_j$$
 then (Y2) fails for $(a,b) = (y_j,j)$ and $(a',b') = (P,Q)$.

(g) If
$$w^{-1} = -i - y_i - Q - j - P - y_j$$
 then (Y2) fails for $(a,b) = (y_j,j)$ and $(a',b') = (P,Q)$.

$$\text{(h) If } w^{-1}=-i-Q-y_i-j-P-y_j-\text{ then (Y2) fails for } (a,b)=(y_j,j) \text{ and } (a',b')=(P,Q).$$

(i) If
$$w^{-1} = -Q - i - y_i - j - P - y_j$$
 then (Y2) fails for $(a, b) = (y_j, j)$ and $(a', b') = (P, Q)$.

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $y_j < y_i < P < Q < i < j$ and then one of the following holds:

•
$$w^{-1} = -i - y_i - j - y_j - Q - P - \text{ and } v^{-1} = -j - y_j - i - y_i - Q - P - .$$

•
$$w^{-1} = -Q - i - y_i - j - y_j - P$$
 and $v^{-1} = -Q - j - y_j - i - y_i - P$.

•
$$w^{-1} = -i - y_i - Q - j - y_j - P - \text{ and } v^{-1} = -j - y_i - Q - i - y_i - P - .$$

•
$$w^{-1} = -Q - i - y_i - P - j - y_j$$
 and $v^{-1} = -Q - j - y_j - P - i - y_i$.

•
$$w^{-1} = -Q - P - i - y_i - j - y_j$$
 and $v^{-1} = -Q - P - j - y_j - i - y_i$.

•
$$w^{-1} = -i - y_i - Q - P - j - y_i$$
 and $v^{-1} = -j - y_i - Q - P - i - y_i$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -j - y_j - . \end{cases}$$

$$({\rm Z2}) \Leftrightarrow \begin{cases} (wt)^{-1} \neq -i - P - y_i - \text{ and } (wt)^{-1} \neq -i - Q - y_i - \text{ and } \\ (wt)^{-1} \neq -j - P - y_j - \text{ and } (wt)^{-1} \neq -j - Q - y_j - . \end{cases}$$

 $(Z3) \Leftrightarrow (no condition)$

12. Suppose $y_j < P < y_i < Q < i < j$.

(a) If
$$w^{-1} = -i - y_i - j - Q - y_j - P$$
 — then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(b) If
$$w^{-1} = -Q - i - P - y_i - j - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(c) If
$$w^{-1} = -i - Q - y_i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

$$\text{(d) If } w^{-1} = -i - y_i - j - Q - P - y_j - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$$

(e) If
$$w^{-1} = -i - y_i - Q - j - P - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

$$\text{(f) If } w^{-1} = -i - y_i - Q - P - j - y_j - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$$

(g) If
$$w^{-1} = -i - Q - P - y_i - j - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

$$\text{(h) If } w^{-1}=-i-Q-y_i-P-j-y_j-\text{ then (Y3) fails for } (a,b)=(P,Q) \text{ and } (a',b')=(y_i,i).$$

(i) If
$$w^{-1} = -Q - i - y_i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(j) If
$$w^{-1} = -i - Q - y_i - j - P - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(k) If
$$w^{-1} = -Q - i - y_i - j - P - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(l) If
$$w^{-1} = -i - y_i - Q - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

$$\text{(m) If } w^{-1} = -i - y_i - j - y_j - Q - P - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$$

(n) If
$$w^{-1} = -Q - i - y_i - P - j - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $y_j < P < y_i < Q < i < j$ and then one of the following holds:

•
$$w^{-1} = -Q - P - i - y_i - j - y_j - \text{ and } v^{-1} = -Q - P - j - y_j - i - y_i - i$$

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(Z1) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -j - y_j - . \end{cases}$$

$$(\mathbf{Z2}) \Leftrightarrow (wt)^{-1} \neq --j - P - y_j - \text{ and } (wt)^{-1} \neq --j - Q - y_j -.$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - i - .$$

13. Suppose $y_i < y_i < i < j < P < Q$.

(a) If
$$w^{-1} = -Q - i - P - y_i - j - y_j$$
 then (Y3) fails for $(a,b) = (y_i,i)$ and $(a',b') = (P,Q)$.

$$\text{(b) If } w^{-1} = -i - Q - y_i - j - y_j - P - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

$$\text{(c) If } w^{-1} = - Q - P - i - y_i - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

$$\text{(d) If } w^{-1} = -i - Q - P - y_i - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

(e) If
$$w^{-1} = -i - Q - y_i - P - j - y_j$$
 then (Y3) fails for $(a,b) = (y_i,i)$ and $(a',b') = (P,Q)$.

$$\text{(f) If } w^{-1} = -Q - i - y_i - j - y_j - P - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

(g) If
$$w^{-1} = -i - Q - y_i - j - P - y_j$$
 — then (Y3) fails for $(a,b) = (y_i,i)$ and $(a',b') = (P,Q)$.

$$\text{(h) If } w^{-1} = -Q - i - y_i - j - P - y_j - \text{ then (Y3) fails for } (a,b) = (y_i,i) \text{ and } (a',b') = (P,Q).$$

(i) If
$$w^{-1} = -Q - i - y_i - P - j - y_j$$
 then (Y3) fails for $(a, b) = (y_i, i)$ and $(a', b') = (P, Q)$.

$$(j) \ \text{ If } w^{-1} = -i - y_i - j - Q - y_j - P - \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

$$\text{(k) If } w^{-1} = -i - y_i - j - Q - P - y_j - \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

$$\text{(l) If } w^{-1} = -i - y_i - Q - j - P - y_j - \text{ then (Y3) fails for } (a,b) = (y_j,j) \text{ and } (a',b') = (P,Q).$$

$$\text{(m) If } w^{-1}=-i-y_i-Q-P-j-y_j-\text{ then (Y3) fails for } (a,b)=(y_j,j) \text{ and } (a',b')=(P,Q).$$

$$\text{(n) If } w^{-1}=-i-y_i-Q-j-y_j-P- \text{ then (Y3) fails for } (a,b)=(y_j,j) \text{ and } (a',b')=(P,Q).$$

Recall that $(k, l) = (y_i, y_i)$. We conclude that if $y_i < y_i < i < j < P < Q$ and then one of the following holds:

•
$$w^{-1} = -i - y_i - j - y_j - Q - P$$
 and $v^{-1} = -j - y_j - i - y_i - Q - P$.

When (a, b) = (P, Q) and $(a', b') \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -j - y_j - . \end{cases}$$

 $(Z2) \Leftrightarrow (no condition).$

$$(Z3) \Leftrightarrow (wt)^{-1} = -y_i - Q - \text{ and } (wt)^{-1} = -y_j - Q - .$$

14. Suppose $P < y_i < y_i < i < j < Q$.

(a) If
$$w^{-1} = -Q - i - P - y_i - j - y_j$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(b) If
$$w^{-1} = -i - Q - y_i - j - y_j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(c) If
$$w^{-1} = -i - Q - y_i - P - j - y_j$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

$$\text{(d) If } w^{-1} = -Q - i - y_i - j - y_j - P - \text{ then (Y2) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$$

(e) If
$$w^{-1} = -i - Q - y_i - j - P - y_j$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

$$\text{(f) If } w^{-1} = -Q - i - y_i - j - P - y_j - \text{ then (Y2) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$$

(g) If
$$w^{-1} = -Q - i - y_i - P - j - y_j$$
 — then (Y2) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(h) If
$$w^{-1} = -i - y_i - j - Q - y_j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(i) If
$$w^{-1} = -i - y_i - Q - j - P - y_j$$
 then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

(j) If
$$w^{-1} = -i - y_i - Q - j - y_j - P$$
— then (Y2) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_j, j)$.

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $P < y_j < y_i < i < j < Q$ and then one of the following holds:

•
$$w^{-1} = -i - y_i - j - y_j - Q - P - \text{ and } v^{-1} = -j - y_j - i - y_i - Q - P - .$$

•
$$w^{-1} = -i - y_i - j - Q - P - y_j$$
 and $v^{-1} = -j - y_j - i - Q - P - y_i$.

•
$$w^{-1} = -i - y_i - Q - P - j - y_j - \text{ and } v^{-1} = -j - y_j - Q - P - i - y_i - .$$

$$\bullet \ w^{-1} = -Q - P - i - y_i - j - y_j - \text{ and } v^{-1} = -Q - P - j - y_j - i - y_i - j - y_j - i - y_j -$$

$$\bullet \ \ w^{-1} = -i - Q - P - y_i - j - y_j - \ \ \text{and} \ \ v^{-1} = -j - Q - P - y_j - i - y_i - j - y_j - i - y_j - y_j - i - y_j - i - y_j - y_j - i - y_j -$$

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(y) = \{(y_i,i),(y_j,j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(Z1)
$$\Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -j - y_j - . \end{cases}$$

$$(Z2) \Leftrightarrow \begin{cases} (wt)^{-1} \neq -Q - y_i - P - \text{ and } (wt)^{-1} \neq -Q - i - P - \text{ and } (wt)^{-1} \neq -Q - i - P - \text{ and } (wt)^{-1} \neq -Q - j - P - . \end{cases}$$

 $(Z3) \Leftrightarrow (no condition).$

15. Suppose $y_i < P < Q < y_i < i < j$.

(a) If
$$w^{-1} = -i - y_i - j - Q - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(b) If
$$w^{-1} = -Q - i - P - y_i - j - y_j$$
 then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(c) If
$$w^{-1} = -i - Q - y_i - j - y_j - P$$
— then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(d) If
$$w^{-1} = -i - y_i - j - Q - P - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(e) If
$$w^{-1} = -i - y_i - Q - j - P - y_j$$
 then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

$$\text{(f) If } w^{-1}=-i-y_i-Q-P-j-y_j-\text{ then (Y3) fails for } (a,b)=(P,Q) \text{ and } (a',b')=(y_i,i).$$

(g) If
$$w^{-1} = -i - Q - P - y_i - j - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

$$\text{(h) If } w^{-1} = -i - Q - y_i - P - j - y_j - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$$

(i) If
$$w^{-1} = -Q - i - y_i - j - y_j - P$$
 then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

(j) If
$$w^{-1} = -i - Q - y_i - j - P - y_j$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(k) If
$$w^{-1} = -Q - i - y_i - j - P - y_j$$
 then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

$$\text{(l) If } w^{-1} = -i - y_i - Q - j - y_j - P - \text{ then (Y3) fails for } (a,b) = (P,Q) \text{ and } (a',b') = (y_i,i).$$

(m) If
$$w^{-1} = -i - y_i - j - y_j - Q - P$$
 then (Y3) fails for $(a, b) = (P, Q)$ and $(a', b') = (y_i, i)$.

(n) If
$$w^{-1} = -Q - i - y_i - P - j - y_j$$
 — then (Y3) fails for $(a,b) = (P,Q)$ and $(a',b') = (y_i,i)$.

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $y_j < P < Q < y_i < i < j$ and then one of the following holds:

$$\bullet \ w^{-1} = -Q - P - i - y_i - j - y_j - \text{ and } v^{-1} = -Q - P - j - y_j - i - y_i -.$$

When (a,b) = (P,Q) and $(a',b') \in \operatorname{Cyc}^1(y) = \{(y_i,i),(y_j,j)\}$ or vice versa, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

$$(\mathrm{Z1}) \Leftrightarrow \begin{cases} (wt)^{-1} = -Q - P - \text{ and } \\ (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -j - y_j - . \end{cases}$$

$$(Z2) \Leftrightarrow (wt)^{-1} \neq -j - P - y_j - \text{ and } (wt)^{-1} \neq -j - Q - y_j - .$$

$$(Z3) \Leftrightarrow (wt)^{-1} = -P - i - .$$

We conclude that properties (V1)-(V3) hold whenever (a, b), (a', b') are as in cases (i) or (ii) and $y_i < y_i < i < j$.

9.3 Subcase (iii)

Suppose i' and j' are integers such that $0 \neq i - i' = j - j' \in n\mathbb{Z}$, so that w(i) - w(i') = w(j) - w(j') = i - i'.

1. Suppose $y_{i'} < y_i < y_{i'} < y_i < i' < i < j' < j$.

(a) If
$$w^{-1} = -i' - i - y_{i'} - y_i - j' - j - y_{j'} - y_j$$
 — then (T) fails.

(b) If
$$w^{-1} = -i' - y_{i'} - i - y_i - j' - y_{j'} - j - y_j$$
 then (T) fails.

(c) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_i - j - y_{j'} - y_j$$
 then (T) fails.

(d) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_{j'} - y_i - j - y_j$$
 then (T) fails.

(e) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_i - y_{j'} - j - y_j$$
 — then (T) fails.

(f) If
$$w^{-1} = -i' - i - y_{i'} - y_i - j' - y_{j'} - j - y_j$$
 then (T) fails.

(g) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_i - y_{j'} - j - y_j$$
 then (T) fails.

(h) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_{j'} - y_i - j - y_j$$
 then (T) fails.
(i) If $w^{-1} = -i' - y_{i'} - i - y_i - j' - j - y_{i'} - y_i$ then (T) fails.

(j) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_i - j - y_{j'} - y_i$$
 then (T) fails.

(k) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_{j'} - y_i - j - y_j$$
 then (Y2) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(1) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_i - y_{j'} - j - y_j$$
 then (Y2) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

$$\text{(m) If } w^{-1} = -i' - y_{i'} - j' - i - y_i - j - y_{j'} - y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_j,j).$$

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $y_{j'} < y_j < y_{i'} < y_i < i' < i < j' < j$ and then one of the following holds:

•
$$w^{-1} = -i' - y_{i'} - j' - y_{j'} - i - y_i - j - y_j$$
 and $v^{-1} = -j' - y_{j'} - i' - y_{i'} - j - y_j - i - y_i$.

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ and $(a', b') \in \{(y_{i'}, i'), (y_{j'}, j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -i' - y_{i'} - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - . \end{cases}$$

$$(V2) \Leftrightarrow (wt)^{-1} \neq -j - y_{i'} - y_j - \text{and } (wt)^{-1} \neq -j - i' - y_j - .$$

- $(V3) \Leftrightarrow (no condition).$
- 2. Suppose $y_{j'} < y_{i'} < y_j < i' < y_i < i < j' < j$.

(a) If
$$w^{-1} = -i' - i - y_{i'} - y_i - j' - j - y_{j'} - y_j$$
— then (T) fails.

(b) If
$$w^{-1} = -i' - y_{i'} - i - y_i - j' - y_{j'} - j - y_j$$
 then (T) fails.

(c) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_i - j - y_{j'} - y_j$$
 then (T) fails.

(d) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_{i'} - y_i - j - y_j$$
 then (T) fails.

(e) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_i - y_{j'} - j - y_j$$
 then (T) fails.

(f) If
$$w^{-1} = -i' - i - y_{i'} - y_i - j' - y_{j'} - j - y_j$$
 then (T) fails.

(g) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_i - y_{j'} - j - y_j$$
 then (T) fails.

(h) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_{j'} - y_i - j - y_j$$
— then (T) fails.

(i) If
$$w^{-1} = -i' - y_{i'} - i - y_i - j' - j - y_{j'} - y_j$$
 then (T) fails.

(j) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_i - j - y_{j'} - y_i$$
 then (T) fails.

(k) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_{j'} - y_i - j - y_j$$
 then (Y2) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(l) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_i - y_{j'} - j - y_j$$
 then (Y2) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(m) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $y_{j'} < y_{i'} < y_j < i' < y_i < i < j' < j$ and then one of the following holds:

$$\bullet \ \ w^{-1} = -i' - y_{i'} - j' - y_{j'} - i - y_i - j - y_j - \ \ \text{and} \ \ v^{-1} = -j' - y_{j'} - i' - y_{i'} - j - y_j - i - y_i -$$

When $(a,b) \in \operatorname{Cyc}^1(y) = \{(y_i,i),(y_j,j)\}$ and $(a',b') \in \{(y_{i'},i'),(y_{j'},j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -i' - y_{i'} - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - . \end{cases}$$

- $(V2) \Leftrightarrow (\text{no condition}).$
- $(V3) \Leftrightarrow (no condition).$
- 3. Suppose $y_{i'} < y_{i'} < i' < y_i < j' < y_i < i < j$.

(a) If
$$w^{-1} = -i' - i - y_{i'} - y_i - j' - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(b) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(c) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_{j'} - y_i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(d) If
$$w^{-1} = -i' - i - y_{i'} - y_i - j' - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(e) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(f) If
$$w^{-1} = -i' - y_{i'} - i - y_i - j' - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(g) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

$$\text{(h) If } w^{-1} = -i' - y_{i'} - j' - i - y_i - j - y_{j'} - y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_i,i).$$

(i) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_{j'} - y_i - j - y_j$$
 — then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(j) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

- (k) If $w^{-1} = -i' y_{i'} i j' y_{i'} y_i j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
- (l) If $w^{-1} = -i' y_{i'} i y_i j' j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
- $\text{(m) If } w^{-1} = -i' y_{i'} i j' y_i j y_{j'} y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_i,i).$

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $y_{j'} < y_{i'} < i' < y_j < j' < y_i < i < j$ and then one of the following holds:

•
$$w^{-1} = -i' - y_{i'} - j' - y_{j'} - i - y_i - j - y_j$$
 and $v^{-1} = -j' - y_{i'} - i' - y_{i'} - j - y_j - i - y_i$.

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ and $(a', b') \in \{(y_{i'}, i'), (y_{j'}, j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -i' - y_{i'} - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - . \end{cases}$$

- $(V2) \Leftrightarrow (\text{no condition}).$
- $(V3) \Leftrightarrow (no condition).$
- 4. Suppose $y_{j'} < y_j < y_{i'} < y_i < i' < j' < i < j$.
 - (a) If $w^{-1} = -i' i y_{i'} y_i j' j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (b) If $w^{-1} = -i' i y_{i'} j' y_i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (c) If $w^{-1} = -i' i y_{i'} j' y_{j'} y_i j y_j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (d) If $w^{-1} = -i' i y_{i'} y_i j' y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (e) If $w^{-1} = -i' i y_{i'} j' y_i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (f) If $w^{-1} = -i' y_{i'} i y_i j' y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (g) If $w^{-1} = -i' y_{i'} i j' y_i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (h) If $w^{-1} = -i' y_{i'} j' i y_i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (i) If $w^{-1} = -i' y_{i'} j' i y_{j'} y_i j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (j) If $w^{-1} = -i' y_{i'} j' i y_i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (k) If $w^{-1} = -i' y_{i'} i j' y_{j'} y_i j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - $\text{(l) If } w^{-1} = -i' y_{i'} i y_i j' j y_{j'} y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_i,i).$
 - (m) If $w^{-1} = -i' y_{i'} i j' y_i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $y_{j'} < y_j < y_{i'} < y_i < i' < j' < i < j$ and then one of the following holds:

•
$$w^{-1} = -i' - y_{i'} - j' - y_{i'} - i - y_i - j - y_i$$
 and $v^{-1} = -j' - y_{i'} - i' - y_{i'} - j - y_i - i - y_i$.

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ and $(a', b') \in \{(y_{i'}, i'), (y_{j'}, j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -i' - y_{i'} - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - . \end{cases}$$

- $(V2) \Leftrightarrow (wt)^{-1} \neq -j y_{i'} y_{j} \text{ and } (wt)^{-1} \neq -j i' y_{j} .$
- $(V3) \Leftrightarrow (\text{no condition}).$
- 5. Suppose $y_{i'} < y_{i'} < y_i < i' < y_i < j' < i < j$.
 - (a) If $w^{-1} = -i' i y_{i'} y_i j' j y_{j'} y_j$ then (U) fails.
 - (b) If $w^{-1} = -i' y_{i'} i y_i j' y_{j'} j y_j$ then (U) fails.

- (c) If $w^{-1} = -i' i y_{i'} y_i j' y_{j'} j y_j$ then (U) fails.
- (d) If $w^{-1} = -i' y_{i'} i y_i j' j y_{j'} y_j$ then (U) fails.
- (e) If $w^{-1} = -i' i y_{i'} j' y_i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
- (f) If $w^{-1} = -i' i y_{i'} j' y_{j'} y_i j y_j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
- (g) If $w^{-1} = -i' i y_{i'} j' y_i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
- $\text{(h) If } w^{-1} = -i' y_{i'} i j' y_i y_{j'} j y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_i,i).$
- (i) If $w^{-1} = -i' y_{i'} j' i y_i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
- (j) If $w^{-1} = -i' y_{i'} j' i y_{j'} y_i j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
- (k) If $w^{-1} = -i' y_{i'} j' i y_i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
- (l) If $w^{-1} = -i' y_{i'} i j' y_{j'} y_i j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
- (m) If $w^{-1} = -i' y_{i'} i j' y_i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $y_{j'} < y_{i'} < y_j < i' < y_i < j' < i < j$ and then one of the following holds:

•
$$w^{-1} = -i' - y_{i'} - j' - y_{i'} - i - y_i - j - y_j$$
 and $v^{-1} = -j' - y_{i'} - i' - y_{i'} - j - y_i - i - y_i$.

When $(a,b) \in \operatorname{Cyc}^1(y) = \{(y_i,i),(y_j,j)\}$ and $(a',b') \in \{(y_{i'},i'),(y_{j'},j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -i' - y_{i'} - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{i'} - . \end{cases}$$

- $(V2) \Leftrightarrow (no condition).$
- $(V3) \Leftrightarrow (no condition).$
- 6. Suppose $y_{i'} < y_i < y_{i'} < i' < y_i < i < j' < j$.
 - (a) If $w^{-1} = -i' i y_{i'} y_i j' j y_{j'} y_j$ then (T) fails.
 - (b) If $w^{-1} = -i' y_{i'} i y_i j' y_{i'} j y_i$ then (T) fails.
 - (c) If $w^{-1} = -i' i y_{i'} j' y_i j y_{j'} y_j$ then (T) fails.
 - (d) If $w^{-1} = -i' i y_{i'} j' y_{i'} y_i j y_i$ then (T) fails.
 - (e) If $w^{-1} = -i' y_{i'} i j' y_i y_{i'} j y_i$ then (T) fails.
 - (f) If $w^{-1} = -i' i y_{i'} y_i j' y_{j'} j y_j$ then (T) fails.
 - (g) If $w^{-1} = -i' i y_{i'} j' y_i y_{j'} j y_j$ then (T) fails.
 - (h) If $w^{-1} = -i' y_{i'} i j' y_{j'} y_i j y_j$ then (T) fails.
 - (i) If $w^{-1} = -i' y_{i'} i y_i j' j y_{j'} y_j$ then (T) fails.
 - (j) If $w^{-1} = -i' y_{i'} i j' y_i j y_{j'} y_j$ then (T) fails.
 - (k) If $w^{-1} = -i' y_{i'} j' i y_{i'} j y_i$ then (Y2) fails for $(a, b) = (y_{i'}, j')$ and $(a', b') = (y_i, i)$.
 - (l) If $w^{-1} = -i' y_{i'} j' i y_i y_{j'} j y_j$ then (Y2) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (m) If $w^{-1} = -i' y_{i'} j' i y_i j y_{j'} y_i$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $y_{j'} < y_j < y_{i'} < i' < y_i < i < j' < j$ and then one of the following holds:

$$\bullet \ \ w^{-1} = -i' - y_{i'} - j' - y_{j'} - i - y_i - j - y_j - \text{ and } v^{-1} = -j' - y_{j'} - i' - y_{i'} - j - y_j - i - y_i -$$

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ and $(a', b') \in \{(y_{i'}, i'), (y_{j'}, j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -i' - y_{i'} - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - . \end{cases}$$

$$(V2) \Leftrightarrow (wt)^{-1} \neq -j - y_{i'} - y_j - \text{ and } (wt)^{-1} \neq -j - i' - y_j - .$$

 $(V3) \Leftrightarrow (no condition).$

7. Suppose $y_{j'} < y_{i'} < y_j < y_i < i' < i < j' < j$.

(a) If
$$w^{-1} = -i' - i - y_{i'} - y_i - j' - j - y_{j'} - y_j$$
 then (T) fails.

(b) If
$$w^{-1} = -i' - y_{i'} - i - y_i - j' - y_{j'} - j - y_j$$
 then (T) fails.

(c) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_i - j - y_{j'} - y_j$$
 then (T) fails.

(d) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_{i'} - y_i - j - y_j$$
 then (T) fails.

(e) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_i - y_{j'} - j - y_j$$
 then (T) fails.

(f) If
$$w^{-1} = -i' - i - y_{i'} - y_i - j' - y_{j'} - j - y_j$$
 then (T) fails.

(g) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_i - y_{j'} - j - y_j$$
 then (T) fails.

(h) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_{j'} - y_i - j - y_j$$
— then (T) fails.

(i) If
$$w^{-1} = -i' - y_{i'} - i - y_i - j' - j - y_{j'} - y_j$$
 then (T) fails.

(j) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_i - j - y_{i'} - y_i$$
 then (T) fails.

(k) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_{j'} - y_i - j - y_j$$
 then (Y2) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(l) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_i - y_{j'} - j - y_j$$
 then (Y2) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(m) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $y_{j'} < y_{i'} < y_j < y_i < i' < i < j' < j$ and then one of the following holds:

$$\bullet \ \ w^{-1} = -i' - y_{i'} - j' - y_{j'} - i - y_i - j - y_j - \ \ \text{and} \ \ v^{-1} = -j' - y_{j'} - i' - y_{i'} - j - y_j - i - y_i -$$

When $(a,b) \in \operatorname{Cyc}^1(y) = \{(y_i,i),(y_j,j)\}$ and $(a',b') \in \{(y_{i'},i'),(y_{j'},j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -i' - y_{i'} - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - . \end{cases}$$

 $(V2) \Leftrightarrow (\text{no condition}).$

 $(V3) \Leftrightarrow (no condition).$

8. Suppose $y_{i'} < y_{i'} < i' < j' < y_i < y_i < i < j$.

(a) If
$$w^{-1} = -i' - i - y_{i'} - y_i - j' - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(b) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(c) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_{j'} - y_i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(d) If
$$w^{-1} = -i' - i - y_{i'} - y_i - j' - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(e) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

$$\text{(f) If } w^{-1} = -i' - y_{i'} - i - y_i - j' - y_{j'} - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_i,i).$$

(g) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

$$\text{(h) If } w^{-1} = -i' - y_{i'} - j' - i - y_i - j - y_{j'} - y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_i,i).$$

(i) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_{j'} - y_i - j - y_j$$
 — then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(j) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

- (k) If $w^{-1} = -i' y_{i'} i j' y_{i'} y_i j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
- (l) If $w^{-1} = -i' y_{i'} i y_i j' j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
- $\text{(m) If } w^{-1} = -i' y_{i'} i j' y_i j y_{j'} y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_i,i).$

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $y_{j'} < y_{i'} < i' < j' < y_j < y_i < i < j$ and then one of the following holds:

$$\bullet \ w^{-1} = -i' - y_{i'} - j' - y_{j'} - i - y_i - j - y_j - \text{ and } v^{-1} = -j' - y_{j'} - i' - y_{i'} - j - y_j - i - y_i - y$$

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ and $(a', b') \in \{(y_{i'}, i'), (y_{j'}, j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -i' - y_{i'} - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - . \end{cases}$$

- $(V2) \Leftrightarrow (no condition).$
- $(V3) \Leftrightarrow (no condition).$
- 9. Suppose $y_{j'} < y_{i'} < i' < y_j < y_i < i < j' < j$.
 - (a) If $w^{-1} = -i' i y_{i'} y_i j' j y_{j'} y_j$ then (T) fails.
 - (b) If $w^{-1} = -i' y_{i'} i y_i j' y_{j'} j y_j$ then (T) fails.
 - (c) If $w^{-1} = -i' i y_{i'} j' y_i j y_{j'} y_j$ then (T) fails.
 - (d) If $w^{-1} = -i' i y_{i'} j' y_{i'} y_i j y_j$ then (T) fails.
 - (e) If $w^{-1} = -i' y_{i'} i j' y_i y_{j'} j y_j$ then (T) fails.
 - (f) If $w^{-1} = -i' i y_{i'} y_i j' y_{j'} j y_j$ then (T) fails.
 - (g) If $w^{-1} = -i' i y_{i'} j' y_i y_{j'} j y_j$ then (T) fails.
 - (h) If $w^{-1} = -i' y_{i'} i j' y_{i'} y_i j y_j$ then (T) fails.
 - (i) If $w^{-1} = -i' y_{i'} i y_i j' j y_{j'} y_j$ then (T) fails.
 - (i) If $w^{-1} = -i' y_{i'} i j' y_i j y_{i'} y_i$ then (T) fails.
 - (k) If $w^{-1} = -i' y_{i'} j' i y_{j'} y_i j y_j$ then (Y2) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (l) If $w^{-1} = -i' y_{i'} j' i y_i y_{j'} j y_j$ then (Y2) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (m) If $w^{-1} = -i' y_{i'} j' i y_i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_j, j)$.

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $y_{j'} < y_{i'} < i' < y_j < y_i < i < j' < j$ and then one of the following holds:

•
$$w^{-1} = -i' - y_{i'} - j' - y_{i'} - i - y_i - j - y_i$$
 and $v^{-1} = -j' - y_{i'} - i' - y_{i'} - j - y_i - i - y_i$.

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ and $(a', b') \in \{(y_{i'}, i'), (y_{j'}, j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -i' - y_{i'} - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - . \end{cases}$$

- $(V2) \Leftrightarrow (no condition).$
- $(V3) \Leftrightarrow (\text{no condition}).$
- 10. Suppose $y_{i'} < y_{i'} < y_i < y_i < i' < j' < i < j$.
 - (a) If $w^{-1} = -i' i y_{i'} y_i j' j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (b) If $w^{-1} = -i' i y_{i'} j' y_i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

- (c) If $w^{-1} = -i' i y_{i'} j' y_{j'} y_i j y_j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
- (d) If $w^{-1} = -i' i y_{i'} y_i j' y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
- (e) If $w^{-1} = -i' i y_{i'} j' y_i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
- (f) If $w^{-1} = -i' y_{i'} i y_i j' y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
- (g) If $w^{-1} = -i' y_{i'} i j' y_i y_{i'} j y_j$ then (Y3) fails for $(a,b) = (y_{j'},j')$ and $(a',b') = (y_i,i)$.
- (h) If $w^{-1} = -i' y_{i'} j' i y_i j y_{i'} y_i$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
- (i) If $w^{-1} = -i' y_{i'} j' i y_{j'} y_i j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
- $\text{(j) If } w^{-1} = -i' y_{i'} j' i y_i y_{j'} j y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_i,i).$
- (k) If $w^{-1} = -i' y_{i'} i j' y_{j'} y_i j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
- (l) If $w^{-1} = -i' y_{i'} i y_i j' j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
- (m) If $w^{-1} = -i' y_{i'} i j' y_i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $y_{j'} < y_{i'} < y_j < y_i < i' < j' < i < j$ and then one of the following holds:

•
$$w^{-1} = -i' - y_{i'} - j' - y_{i'} - i - y_i - j - y_j$$
 and $v^{-1} = -j' - y_{i'} - i' - y_{i'} - j - y_j - i - y_i$.

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ and $(a', b') \in \{(y_{i'}, i'), (y_{j'}, j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -i' - y_{i'} - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{i'} - . \end{cases}$$

- $(V2) \Leftrightarrow (no condition).$
- $(V3) \Leftrightarrow (no condition).$
- 11. Suppose $y_{i'} < y_{i'} < i' < y_i < y_i < j' < i < j$.
 - (a) If $w^{-1} = -i' i y_{i'} y_i j' j y_{j'} y_j$ then (U) fails.
 - (b) If $w^{-1} = -i' y_{i'} i y_i j' y_{i'} j y_i$ then (U) fails.
 - (c) If $w^{-1} = -i' i y_{i'} y_i j' y_{j'} j y_j$ then (U) fails.
 - (d) If $w^{-1} = -i' y_{i'} i y_i j' j y_{j'} y_j$ then (U) fails.
 - (e) If $w^{-1} = -i' i y_{i'} j' y_i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - $\text{(f) If } w^{-1} = -i' i y_{i'} j' y_{j'} y_i j y_j \text{ then (Y3) fails for } (a,b) = (y_{i'},i') \text{ and } (a',b') = (y_i,i).$
 - (g) If $w^{-1} = -i' i y_{i'} j' y_i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (h) If $w^{-1} = -i' y_{i'} i j' y_i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (i) If $w^{-1} = -i' y_{i'} j' i y_i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (j) If $w^{-1} = -i' y_{i'} j' i y_{j'} y_i j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (k) If $w^{-1} = -i' y_{i'} j' i y_i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - $\text{(1) If } w^{-1} = -i' y_{i'} i j' y_{j'} y_i j y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_i,i).$
 - $\text{(m) If } w^{-1} = -i' y_{i'} i j' y_i j y_{i'} y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_i,i).$

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $y_{j'} < y_{i'} < i' < y_j < y_i < j' < i < j$ and then one of the following holds:

•
$$w^{-1} = -i' - y_{i'} - j' - y_{j'} - i - y_i - j - y_j$$
 and $v^{-1} = -j' - y_{j'} - i' - y_{i'} - j - y_j - i - y_i$.

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ and $(a', b') \in \{(y_{i'}, i'), (y_{j'}, j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -i' - y_{i'} - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - . \end{cases}$$

- $(V2) \Leftrightarrow (\text{no condition}).$
- $(V3) \Leftrightarrow (no condition).$
- 12. Suppose $y_{j'} < y_j < y_{i'} < i' < j' < y_i < i < j$.

(a) If
$$w^{-1} = -i' - i - y_{i'} - y_i - j' - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(b) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(c) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_{j'} - y_i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(d) If
$$w^{-1} = -i' - i - y_{i'} - y_i - j' - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(e) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(f) If
$$w^{-1} = -i' - y_{i'} - i - y_i - j' - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(g) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(h) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(i) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_{j'} - y_i - j - y_j$$
 — then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(j) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(k) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_{j'} - y_i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(l) If
$$w^{-1} = -i' - y_{i'} - i - y_i - j' - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

$$\text{(m) If } w^{-1} = -i' - y_{i'} - i - j' - y_i - j - y_{j'} - y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_i,i).$$

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $y_{j'} < y_j < y_{i'} < i' < j' < y_i < i < j$ and then one of the following holds:

•
$$w^{-1} = -i' - u_{i'} - i' - u_{i'} - i - u_i - i - u_i - i - u_i$$
 and $v^{-1} = -i' - u_{i'} - i' - u_{i'} - i - u_i - i - u_i$.

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ and $(a', b') \in \{(y_{i'}, i'), (y_{j'}, j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -i' - y_{i'} - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - . \end{cases}$$

$$(V2) \Leftrightarrow (wt)^{-1} \neq -j - y_{i'} - y_{j} - \text{ and } (wt)^{-1} \neq -j - i' - y_{j} - .$$

 $(V3) \Leftrightarrow (no condition).$

13. Suppose $y_{i'} < y_{i'} < y_i < i' < j' < y_i < i < j$.

(a) If
$$w^{-1} = -i' - i - y_{i'} - y_i - j' - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(b) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_i - j - y_{j'} - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(c) If
$$w^{-1} = -i' - i - y_{i'} - j' - y_{j'} - y_i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

(d) If
$$w^{-1} = -i' - i - y_{i'} - y_i - j' - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.

$$\text{(e) If } w^{-1} = -i' - i - y_{i'} - j' - y_i - y_{j'} - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_{i'},i') \text{ and } (a',b') = (y_i,i).$$

$$\text{(f) If } w^{-1} = -i' - y_{i'} - i - y_i - j' - y_{j'} - j - y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_i,i).$$

(g) If
$$w^{-1} = -i' - y_{i'} - i - j' - y_i - y_{j'} - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

$$\text{(h) If } w^{-1} = -i' - y_{i'} - j' - i - y_i - j - y_{j'} - y_j - \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_i,i).$$

(i) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_{j'} - y_i - j - y_j$$
 then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

(j) If
$$w^{-1} = -i' - y_{i'} - j' - i - y_i - y_{j'} - j - y_j$$
 — then (Y3) fails for $(a,b) = (y_{j'},j')$ and $(a',b') = (y_i,i)$.

- (k) If $w^{-1} = -i' y_{i'} i j' y_{i'} y_i j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
- (l) If $w^{-1} = -i' y_{i'} i y_i j' j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
- (m) If $w^{-1} = -i' y_{i'} i j' y_i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $y_{j'} < y_{i'} < y_j < i' < j' < y_i < i < j$ and then one of the following holds:

•
$$w^{-1} = -i' - y_{i'} - j' - y_{j'} - i - y_i - j - y_j$$
 and $v^{-1} = -j' - y_{j'} - i' - y_{i'} - j - y_j - i - y_i$.

When $(a,b) \in \operatorname{Cyc}^1(y) = \{(y_i,i),(y_j,j)\}$ and $(a',b') \in \{(y_{i'},i'),(y_{j'},j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -i' - y_{i'} - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - . \end{cases}$$

- $(V2) \Leftrightarrow (\text{no condition}).$
- $(V3) \Leftrightarrow (no condition).$
- 14. Suppose $y_{j'} < y_j < y_{i'} < i' < y_i < j' < i < j$.
 - (a) If $w^{-1} = -i' i y_{i'} y_i j' j y_{j'} y_j$ then (U) fails.
 - (b) If $w^{-1} = -i' y_{i'} i y_i j' y_{j'} j y_j$ then (U) fails.
 - (c) If $w^{-1} = -i' i y_{i'} y_i j' y_{j'} j y_j$ then (U) fails.
 - (d) If $w^{-1} = -i' y_{i'} i y_i j' j y_{j'} y_j$ then (U) fails.
 - (e) If $w^{-1} = -i' i y_{i'} j' y_i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (f) If $w^{-1} = -i' i y_{i'} j' y_{j'} y_i j y_j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (g) If $w^{-1} = -i' i y_{i'} j' y_i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{i'}, i')$ and $(a', b') = (y_i, i)$.
 - (h) If $w^{-1} = -i' y_{i'} i j' y_i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (i) If $w^{-1} = -i' y_{i'} j' i y_i j y_{j'} y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (j) If $w^{-1} = -i' y_{i'} j' i y_{j'} y_i j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (k) If $w^{-1} = -i' y_{i'} j' i y_i y_{j'} j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - (l) If $w^{-1} = -i' y_{i'} i j' y_{j'} y_i j y_j$ then (Y3) fails for $(a, b) = (y_{j'}, j')$ and $(a', b') = (y_i, i)$.
 - $\text{(m) If } w^{-1} = -i' y_{i'} i j' y_i j y_{j'} y_j \text{ then (Y3) fails for } (a,b) = (y_{j'},j') \text{ and } (a',b') = (y_i,i).$

Recall that $(k, l) = (y_j, y_i)$. We conclude that if $y_{j'} < y_j < y_{i'} < i' < y_i < j' < i < j$ and then one of the following holds:

•
$$w^{-1} = -i' - y_{i'} - j' - y_{j'} - i - y_i - j - y_j$$
 and $v^{-1} = -j' - y_{j'} - i' - y_{i'} - j - y_j - i - y_i$.

When $(a, b) \in \operatorname{Cyc}^1(y) = \{(y_i, i), (y_j, j)\}$ and $(a', b') \in \{(y_{i'}, i'), (y_{j'}, j')\}$, properties (V1)-(V3) correspond to the following conditions which hold in each of the available cases for v:

(V1)
$$\Leftrightarrow$$

$$\begin{cases} (wt)^{-1} = -i - y_i - \text{ and } \\ (wt)^{-1} = -i' - y_{i'} - \text{ and } \\ (wt)^{-1} = -j - y_j - \text{ and } \\ (wt)^{-1} = -j' - y_{j'} - . \end{cases}$$

- $(V2) \Leftrightarrow (wt)^{-1} \neq -j y_{i'} y_j \text{and } (wt)^{-1} \neq -j i' y_i .$
- $(V3) \Leftrightarrow (no condition).$

We conclude that properties (V1)-(V3) hold for all $(a,b), (a',b') \in \text{Cyc}(y)$ when $y_i < y_i < i < j$.

10 Conclusion

It follows from this exhaustive case analysis that properties (V1)-(V3) hold for all pairs $(a,b), (a',b') \in \text{Cyc}(y)$. We conclude by Lemma 1 that $wt_{ij}t_{kl} \in \mathcal{A}(y)$. This completes the proof of the theorem.

References

- [1] A. Björner and F. Brenti, *Combinatorics of Coxeter groups*, Graduate Texts in Mathematics 231, Springer, New York, 2005.
- [2] E. Marberg, On some actions of the 0-Hecke monoids of affine symmetric groups, J. Combin. Theory Ser. A 161 (2019), 178–219.