Question

A student in materials sciences wants to determine the refraction index n_2 of a certain material using Snell's law of refraction. He put a sample of this material in a container filled with air at a certain pressure, with a goniometer.

Snell's law.

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

Assume the refraction index of the pressurized air, n_1 , is knows with an uncertainty σ_{n_1} .

The student measures both θ_1 and θ_2 with the same goniometer. Both angles have a systematic uncertainty σ_{θ} .

How do these uncertainties propagate to the measurement of n_2 ? Are the uncertainties on θ_1 and θ_2 likely to be correlated?

Figure 1: A refraction experiment [photo credits clemson.edu].

Exercise

- 1. Write a function that computes n_2 given the measurements of n_1 , θ_1 and θ_2 .
- 2. Write a function that computes the uncertainty on n_2 given the measurements of n_1 , θ_1 and θ_2 and their respective uncertainties, and the correlation coefficient ρ of θ_1 and θ_2 .

- you can "factorize" this problem and keep your code simpler by developing separate functions to compute all the needed partial derivatives.
- 3. What is the likeliest value of ρ ? Call it $\bar{\rho}$. Compute n_2 and its uncertainty given the following data:
 - $n_1 = 1.0010 \pm 0.0005$
 - $\theta_1 = (46 \pm 1)^{\circ}$
 - $\theta_2 = (38 \pm 1)^{\circ}$

Pay attention to the units and perform the appropriate conversions (degrees versus radians)...

Store $\bar{\rho}$, n_2 and σ_{n_2} in the results dictionary in correlated.py.