Real Analysis and Calculus.

MAIII

 $N = \{1, 2, 3, \dots\}$

· NÇZÇØÇRÇC Z={0,±1,±2,±3,...} • P={+/2,9≠0,p,9€Z}

Density property of φ . $R = \varphi \cup \varphi^c$

If z and y be any two national numbers and z < y, there exists a national number r such that z < r < y.

x < 10 ½(x+y) < y

Actually between any two national numbers a and y we can interpolate infinitely many national numbers.

Def! Let S be a subset of \mathbb{R} . A real number u is said to be an upper bound if $x \in S \Rightarrow x \leq u$.

A real number l is said to be an lower bound of S if $\alpha \in S \Rightarrow \alpha \gg l$.

Let S be a subset of R. S is said to be bounded above if S has an upper bound.

S is said to be bounded below if S has a lower

S is said to be a bounded set if S be bounded above as well as bounded below.

Example: $S = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots \}$ is bounded above, I being an upper bound. S is bounded below, 0 being a lower bound.

Definition: Let S be a subset of R. If S be bounded above, then an upper bound of S is said to be the subremum of S (or the least upper bound of S) if it is less than every upper bound of S.

If S be bounded below then a lower bound of S is said to be the infimum of S (or the greatest lower bound of S) if it is greater than every other lower bound of S.

Example: Let $S = \phi$. Every real number x is an upper bound of the set S and every real number x is a lower bound of S. S is a bounded set.

The supremum property of R.

Every non-empty subset of R that is bounded above has a least upper bound.

Theorem: Let S be a non-empty subset of IR, bounded below. Then S has an infimum.

Proof: Let lo be a lower bound of S. Let $T = \{l \in \mathbb{R} : l \text{ is a lower bound of S} \}$. Then T is a non-empty subset of \mathbb{R} because $lo \in T$.

Moreover, $\alpha \in T$ and $\alpha \in S \Rightarrow \alpha \leq \alpha$. This shows that T is bounded above. Thus T is a non-empty subset of \mathbb{R} , bounded below above. By the subremum property of \mathbb{R} , T has a subremum. Let T = T

Then (i) t & L for every t & T, since L is an upper bound of T.

and (ii) since every & & S is an upper bound of T and L=subt,

L & & for every & & S.

(i) shows that L is a lower bound of S and (ii) shows that L > any lower bound
of S. Consequently, L = inf S.

· Properties of supremum and infimum

Let S be a non-empty subset of \mathbb{R} , bounded above. Then sup S exists. Let $M = \sup S$.

Then MER and M satisfies the following conditions:

- (i) $x \in S \Rightarrow x \leq M$, and
- (ii) for each $\epsilon>0$, there exists an element $y \in y(\epsilon)$ in S such that $M=\epsilon \in y(\epsilon)$ $M-\epsilon < y \leq M$.

Let S be a non-empty subset of IR, bounded below. Then inf S exists. Let $m = \inf S$. Then $m \in IR$ and m exatisfies the following conditions:

- (i) $x \in S \Rightarrow x \in m$, and
- (i) for each $\epsilon > 0$, there exists an element $y(\epsilon)$ in S such that $m \leq y < m + \epsilon$.

* Archimedean property of R.

If $x,y \in \mathbb{R}$ and x>0, y>0 then there exists a natural number n such that ny>x.

or if $x \in \mathbb{R}$ then there exists a natural number n such that n > x.

or if $\alpha \in \mathbb{R}$ and $\alpha > 0$ then there exists a natural number n such that $0 < \frac{1}{n} < \alpha$.

If $x \in \mathbb{R}$ and x > 0 there exists a natural number $m + 1 \le x < m$.

- * Density property of R.
 - I) If x,y are real numbers with x < y then there exists a rational number or such that x< y.
 - ii) If 2, y are real numbers with 2<y then there exists an irrational number s such that x < s < y.

[Proof: Application of Archimedean property of IR]

* Trichotomy Low:

For any two real number x, $y \in \mathbb{R}_{e}$ either x < y or x = y or y < x.

* Real Sequence.

Def! A mapping $f: \mathbb{N} \to \mathbb{R}$ is said to be a sequence in \mathbb{R} , or a real sequence

The f-images f(1), f(2), f(3), ... are real numbers.

A sequence f is generally denoted by the symbol {f(n)}.

Also the symbol {f(1), f(2), f(3), ...} is used to denote the sequence f.

The symbols like {un}, {von}, {xn}, etc. shall also be used to denote a constant to denote a sequence.

Examples.

 $\{n\}$, $\{n^2\}$, $\{\frac{n}{n+1}\}$, $\{-j^n\}$, $\{\sin\frac{n\pi}{2}\}$ Oscillatory Sequence Constant sequence.

The sequence $f: \mathbb{N} \to \mathbb{R}$ by $f(n) = \sin \frac{n\pi}{2}$, $n \in \mathbb{N}$.

√ { The same sequence is {1,0,-1,0,1,0,...}. The range

* Bounded sequence. is $\S-1$, O, 1\\

* Sometimes it is convenient to specify f(i) and describe f(n+i) in terms of f(m) for all $n > \frac{1}{2} \le f(i) = 12$, $f(m+i) = \frac{12}{12} f(m)$ * Bounded sequence. $\{12, 1212$ exists a real number G such that f(n) < G for all ne M. G is said to be a upper bound of the requence.

A real sequence {f(n)} is said to be bounded below if there exists a real number g such that f(m) > g frall nt N.
g is said to be the lower bound of the sequence.

A real sequence {f(m)} is said to be a bounded sequence if there exist real numbers G and g such that $g \leq f(n) \leq G \quad \forall n \in \mathbb{N}$.

Examples: V & th? = {xn} o is the greatest lower bound, and
I no least upper bound of this sequence

> let {4n} = {n2} $\inf_{n \geq 1} y_n = 1$. then sup yn = 00

* The least upper bound of a real sequence \(\frac{1}{2} \) is a real number M (satisfying the following conditions:

(i) \(\int \int \mathre{M} \) \(\text{A} \) \(\text{N} \).

(i) f(n) ≤ M ¥n∈N,

(1) for each (pre-assigned) given E>0, there exists a natural number k such that f(k)>M-E.

· For a real sequence {xn7 bounded below, there exists a greatest lower bound and it is denoted by infanor glb an.

The greatest lower bound of a neal sequence on is a real number on satisfying the following conditions:

(i) an > m + n ∈ N,

(i) for any giren 670, there exists a natural number k such that no xx < m+E.

Ex: {2xn}= {(-1)} , {yn}={(-1)}n}

[6]