

Stream ciphers: stream encryption and LFSRs

Cryptography, Autumn 2021

Lecturers: J. Daemen, B. Mennink

September 9, 2021

Institute for Computing and Information Sciences Radboud University

Outline

Modular arithmetic

The one-time pad and stream encryption

Linear feedback shift registers

Attacks on stream ciphers

Modular arithmetic

Modular (clock) equivalence

Integers

$$\{\ldots,-4,-3,-2,-1,0,1,2,3,4,\ldots\}$$
 form the set of integers $\mathbb Z$

- ▶ On the clock, '1 o'clock' looks the same as '13 o'clock'
 - we say "1 and 13 are congruent modulo 12"
 - mathematically: write $1 \equiv 13 \pmod{12}$
- ► Extending it:

$$5 \equiv 29 \pmod{12}$$
 since $5 + (2 \cdot 12) = 29$
 $5 \equiv 53 \pmod{12}$ since $5 + (4 \cdot 12) = 53$
 $7 \equiv -5 \pmod{12}$ since $7 + (-1 \cdot 12) = -5$

Modular equivalence of integers

 $a, b \in \mathbb{Z}$ are congruent modulo $n \in \mathbb{N}$ if a - b is divisible by n

Modular arithmetic

- ▶ Reduction modulo *n* of an integer
 - returns its equivalent in the interval [0, n-1]
 - $c \leftarrow a \mod n$
 - c is the remainder after division of a by n
- ► Addition modulo *n* as an operation
 - (1) $c \leftarrow a + b$
 - (2) if $c \ge n$, $c \leftarrow c n$

Notation: $a + b \mod n$ or just a + b

- ▶ Multiplication modulo *n* as an operation
 - (1) $c \leftarrow a \cdot b$
 - (2) do the result modulo $n: c \leftarrow c \mod n$

Notation: $a \cdot b \mod n$ or just $a \cdot b$

▶ We speak of addition and multiplication in $\mathbb{Z}/n\mathbb{Z}$

The one-time pad and stream

encryption

The one-time pad

${\sf Encryption} :$

Decryption:

Bits are elements of $\mathbb{Z}/2\mathbb{Z}$ that are added modulo 2

Stream encryption

- ▶ One-time pad [wikipedia] gives perfect secrecy if
 - key has same length as all plaintext together
 - adversary has no information about the key bits

Stream encryption

Encryption where a keystream is bitwise added to plaintext

- Addition can be over other sets
- ▶ Historically one used the 26-letter alphabet a lot
 - letters map to $\mathbb{Z}/26\mathbb{Z}$: A = 0, B = 1, ...
 - addition of letters modulo 26: e.g. C + D = F
- ▶ Main point: encryption is a simple symbol-by-symbol operation

Stream ciphers

To make stream encryption practical: generate a long keystream Z from a short key K

Stream cipher [wikipedia]

Algorithm to convert a short key K into a long keystream Z

Questions we will address in this part of the course:

- ▶ How do we build a secure stream cipher?
- ▶ What does *secure* mean in the first place?

Stream cipher attempt: Vigenère cipher [wikipedia]

- ► Historical cipher for pen-and-paper encryption/decryption
- ▶ Operation
 - plaintext: sequence of letters
 - K: a password, e.g., LEMON
 - Z: K repeated all over, LEMONLEMONL ...
 - addition modulo 26 gives ciphertext
 - plaintext ATTACKATDAWN gives ciphertext LXFOPVEFRNHR
- ► Compact and efficient
- Problems:
 - knowledge of short plaintext sequence reveals full keystream:
 known plaintext attack
 - long ciphertext enciphered leak via letter frequencies: ciphertext-only attack

Linear feedback shift registers

Linear feedback shift register (LFSR)

- ► Goal: efficiently generate a non-repeating sequence Z
- Mechanism
 - circuit with state s that is regularly clocked
 - each cell contains a bit s_i
 - each clock cycle: cells move right $s_{i+1} \leftarrow s_i$
 - ... for some positions (feedback taps) $s_{i+1} \leftarrow s_i + s_{28}$
 - rightmost cell is output: $z \leftarrow s_{28}$
- ► Can be studied with *finite fields* [for info only]
- Maximum-length LFSR
 - If feedback taps are well chosen, cycle length is $2^n 1$

Galois vs Fibonacci LFSRs [for info only]

Galois LFSR:

Fibonacci LFSR:

- ▶ Different configurations but similar output sequences
- One can prove that ∀ Fibonacci LFSR, ∃ Galois LFSR generating same sequence Z
- ► Each has its own advantages
 - Galois is more parallel, Fibonacci more serial
 - Galois reveals finite field operation, Fibonacci recursion in sequence

LFSRs, continued

- ▶ LESR features
 - very simple to implement: just a shift and some XORs
 - keystream has good local statistical properties
 - bits of Z satisfy recurrence relation
- ▶ How to use it as a stream cipher?
 - write cipher key K in n-bit state (|K| = n)
 - each clock cycle a keystream bit z_t is generated
 - run for at most $2^n 1$ cycles
- ▶ Distinction between algorithm and key:
 - public algorithm AKA cipher: LFSR length and tap positions
 - security should be based on secrecy of K (Kerckhoffs principle)

Attacks on stream ciphers

Attacks on LFSR: exhaustive key search

- ▶ Setting: adversary gets C and C = P + Z with P a meaningful plaintext: ciphertext-only attack
- ► Exhaustive key search
 - make a guess K' for the value of K
 - generate the corresponding keystream Z'
 - compute P' = C + Z' and check if P' is meaningful
 - if so, ready. Otherwise, keep on guessing
- ▶ Implications
 - for k-bit key, probability to find key after N guesses: $N2^{-k}$
- ▶ Generically true for any cipher if adversary has $\geq k$ output bits

Lesson learnt: upper bound to the security strength s **of a cipher** Security strength s of a cipher with a k-bit key is at most k

Attack on LFSR: state reconstruction using linear algebra

- ▶ Setting: adversary can obtain n subsequent bits of keystream z_t : known plaintext attack
- ▶ Actually, *n* keystream bits allow reconstructing the full state!
 - make sure you see why that is
 - countermeasure: decimate the keystream
 - so we only give out one bit per 10 (or so) cycles, creating holes
- ▶ This is not good enough, due to linearity of LFSR
 - update function of LFSR is linear function

Linearity

A function f is linear (over $\mathbb{Z}/2\mathbb{Z}$) if f(x+y)=f(x)+f(y)If f_1 and f_2 are linear, $f_2\circ f_1$ is linear

LFSR state update: matrix multiplication

LFSR state reconstruction using linear algebra (cont'd)

- ▶ We have $s^t \leftarrow M \cdot s^{t-1}$ and $s^t \leftarrow M \cdot M \cdot s^{t-2} = M^2 s^{t-2}$, etc.
 - hence $s^t = M^t s^0$ and $s^0 = K$ so $s^t = M^t K$
 - ullet for some iterations, adversary knows z, the bit s_{28} of s^t
 - last row of $s^t = M^t K$ lefthand known: 1 linear equation of K
 - if we have n or more such equations, we can solve for K
 - solving: Gaussian elimination with negligible effort: $O(n^3)$
- ▶ This is generic: linear ciphers can be broken with linear algebra

Lesson learnt: need for non-linearity

Purely linear ciphers offer no security

Filtered LFSR

- ▶ Introduce a non-linear output function
 - instead of using an LFSR statebit as keystream bit $z_t = s_{n-1}^t$
 - ... compute z as a function of statebits: $z = f(s_0, ... s_{n-1})$
 - ... with f a non-linear function
- ► Example on this slide: a 16-to-1 multiplexer
 - z selected from a position in a range of 16 possibilities
 - by address bits: $z = s_A$ with $A = 1 + s_{18} + 2s_{21} + 4s_{24} + 8s_{27}$
- ▶ It is a non-linear function. See for example a 2-to-1 multiplexer
 - address bit s_0 and range [1,2]: $z = s_{(s_0+1)} = (s_0+1)s_1 + s_0s_2$
- ▶ Uncertainty on where output bit comes from complicates attacks
- Attacks are still possible but require more sophistication

Filtered LFSR and guess-and-determine attack

- ▶ Setting: adversary can obtain n subsequent bits of keystream z_t : known plaintext attack
- ▶ Principle of a guess-and-determine attack
 - make a guess for a subset of the bits of the state
 - \bullet combined with output Z, this determines other statebits
- ▶ In our specific MUX-LFSR case here:
 - \bullet given address bits, we can locate where z_t comes from
 - guessing 4 bits of state s^t gives us one statebit of s^t for free
 - ullet we can transfer the knowledge of s^t to s^{t+1}
 - then guess 4 more statebits and get one more statebit for free
 - this will be faster than exhaustive key search

Filtered LFSR and guess-and-determine attack

- Recursive algorithm specific for our LFSR example
 - starting for all possible values of rightmost 10 bits
 - for two guesses of bit in position indicated with "?"
 - ▶ use output **z** to determine the statebit *chosen* by the mux
 - ▶ if contradiction, cut this branch
 - ▶ else, fill in in LFSR and repeat procedure
 - tree search where each node has at most two children
 - ▶ only one child if value of "?" is known
 - ▶ no children if contradiction
 - LFSR state with all bits known and no contradiction: ready!

Combiner LFSR and divide-and-conquer attacks

- ▶ Combiner LFSR:
 - non-linear output function taking bits from several LFSRs
 - real-world content-scrambling cipher (for pay TV in 80s):

- ▶ Divide-and-conquer attack, adversary has Z (known plaintext)
 - guess state of top LFSR
 - \bullet each byte z_i allows reconstructing output byte of bottom LFSR
 - 4 output bytes z_t give 32 output bits of bottom LFSR
 - should satisfy recurrence relationship
 - total complexity: some subtractions modulo 2⁸ and checking recurrence relation for about 2¹⁷ guesses