A Differential Testing Framework to Identify Critical AV Failures Leveraging Arbitrary Inputs

Trey Woodlief¹, Carl Hildebrandt¹, Sebastian Elbaum

University of Virginia

Trey Woodlief

CHARTERED 1693

I am joining William & Mary Fall'25 as Assistant Prof

AV Failures

How do AVs work?

Goal: produce safe outputs for every input

How do AVs work?

Validate: produce safe outputs for every input

Validation

Test Inputs

IEEE Spectrum Tesla's Autopilot Depends on a Deluge of Data

Q Type to search

In 2015, Tesla obtained sensor data from 1 million miles every 10 hours

PHILIPP MANDLER/UNSPLASH

In Shadow Mode, operating on Tesla vehicles since 2016, if the car's Autopilot computer is not controlling the car, it is simulating the driving process in parallel with the human driver. When its own predictions do not match the driver's behavior, this might trigger the recording of a short "snapshot" of the car's cameras, speed, acceleration, and other parameters for later uploading to Tesla. Snapshots are also triggered when a Tesla crashes.

Test Oracles

Existing Test Suites

Existing Test Suites

Existing Test Suites

How do we get enough labeled data? What if the original label is wrong?

Cautious Aggressive Drunk Distracted

- Use unlabeled data
- Leverage multiple systems to find the correct answer

Cautious Aggressive Drunk Distracted

- Use unlabeled data
- Leverage multiple systems to find the correct answer

Statistical Outlier Detection

This requires knowing the distribution!

Building an Oracle

- Confidence
- Severity
- Duration

DiffTest4AV Approach

DiffTest4AV Approach

Why do we need confidence?

Confidence Through Outliers

$$Q = \frac{\max_{i} |Y_i - \overline{Y}|}{Y_{max} - Y_{min}}$$

SAMPLE CRITERIA FOR TESTING OUTLYING OBSERVATIONS

by Frank E. Grubbs

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the University of Michigan.

Confidence: Grubbs's Q Test

$$Q = \frac{gap}{spread} = \frac{18.56}{26.01} = .71$$

Confidence: Grubbs's Q Test

Confidence: Grubbs's Q Test

Threshold by Confidence

Confidence: 97.3%

The Need for Confidence

$$Q = \frac{gap}{spread} = \frac{10.7}{36.4} = .26$$

Confidence: 57.6%

DiffTest4AV Approach

The Need for Severity

$$Q = \frac{gap}{spread} = \frac{0.16}{0.27} = .59$$

confidence = 92.3%

Finding High Impact Failures

Confidence: 92.3%

Severity: 0.16°

Finding High Impact Failures

Confidence: 97.3%

Severity: 18.56°

DiffTest4AV Approach

Continuous failures escalate to system failures

Continuous failures escalate to system failures

Continuous failures escalate to system failures

Option 1: Filter by minimum confidence 98.65%

Continuous failures escalate to system failures

Option 1: Filter by minimum confidence 98.65%

Option 2: Cumulative Confidence

93.37%

$$\prod_{i=j}^{j+m} confidence(t_i)$$

Continuous failures escalate to system failures

Option 1: Filter by minimum confidence

Option 2: Cumulative Confidence

$$\prod_{i=j}^{j+m} confidence(t_i)$$

Study

- RQ1: High-confidence failures
- RQ2: High-confidence & High-severity failures
- RQ3: High-impact & long-running failures

Experiment Setup: AV

comma.ai OpenPilot

Experiment Setup: AV

- comma.ai OpenPilot
 - Apr 2022 (AV1)
 - Jul 2022 (AV2)
 - Nov 2022 (AV3)
 - Mar 2023 (AV4)
 - Jun 2023 (SUT)

Experiment Setup: Data

- comma.ai 2016
 - 11 videos; 391,843 images
- comma.ai 2k19
 - 2035 videos; 1,825,111 images
- External JUtah
 - 50 videos; 2,362,708 images

Some Interesting Data

- At 90% Confidence:
 - External JUtah has the most failures, but ~2% >10°
 - Comma.ai 2k19 has <u>all</u> the >50° failures and the longest failure

Takeaways

From 4,579,662 inputs
identify 81 (0.002%)
high-impact failures at
90% confidence and 50° severity
Including failures up to 72 frames (4.8s)

Takeaways

IEEE Spectrum Tesla's Autopilot Depends on a Deluge of Data

Q Type to search

In 2015, Tesla obtained 1 million miles every 10 hours

Even if Tesla failed 1 million times less often, DiffTest4AV would find 31 failures per year!

PHILIPP MANDLER/UNSPLASH

In Shadow Mode, operating on Tesla vehicles since 2016, if the car's Autopilot computer is not controlling the car, it is simulating the driving process in parallel with the human driver. When its own predictions do not match the driver's behavior, this might trigger the recording of a short "snapshot" of the car's cameras, speed, acceleration, and other parameters for later uploading to Tesla. Snapshots are also triggered when a Tesla crashes.

Future Work

Removing False Positives:
 Check Requirement Preconditions: ODD

Limitations of openpilot ALC and LDW

• When in sharp curves, like on-off ram s, intersections etc. ; openpilot is designed to be limited in the amount of steering torque it can produce.

Multidimensional Behavior

 Statistical Assumptions & Oracle Strength

Questions?

https://github.com/less-lab-uva/DiffTest4AV

A Differential Testing Framework to Identify Critical AV Failures Leveraging Arbitrary Inputs

Fig. 2: DIFFTEST4AV pipeline for a single test case \vec{T} .

Experimental Results: Confidence vs Severity

Experimental Results: Confidence vs Severity

Experimental Results: Confidence vs Severity

Study

- RQ1: High-confidence failures
- RQ2: High-confidence & High-severity failures
- RQ3: High-impact & long-running failures

Experimental Results: Duration

Frames

	50%	75%	90%	95%	99%
10°	72	58	34	22	14
20 °	64	56	34	22	14
30°	52	48	34	20	14
40 °	42	42	27	19	11
50 °	33	33	27	19	5

