Problemas 4

Introdução à Física Quântica

(Os problemas assinalados com *Griffiths* são retirados do livro *Revolutions in Twentieth Century Physics*, David J. Griffiths, Cambridge University Press (2013); os problemas assinalados com *Scarani* são retirados do livro *Six Quantum Pieces*, Valerio Scarani, World Scientific (2010).

Quantificação e comprimento de onda de de Broglie

1. (*Griffiths, Cap. 3, P1*) Os lasers de hélio-néon emitem luz com um comprimento de onda de 6.338×10^{-7} m. Qual é a energia de um fotão do feixe de luz deste laser?

[Sol.: 3.14×10⁻¹⁹ J]

2. (*Griffiths, Cap. 3, P2*) Quantos fotões são emitidos por uma lâmpada de 100 W num minuto? Admita que a lâmpada emite luz monocromática, amarela, de frequência 5×10^{14} Hz.

[Sol.: 1.81×10²²]

- **3.** (*Griffiths*, *Cap. 3*, *P3*) Luz com comprimento de onda de 4.5×10^{-7} m incide num pedaço de metal, provocando a extração de eletrões por efeito fotoelétrico. A função de trabalho (energia necessária para arrancar um eletrão) deste metal vale 2×10^{-19} J.
- a) Qual é a energia de um fotão incidente?
- b) Qual é a energia (máxima) de cada um dos eletrões extraídos?

[Sol.: a) 4.42×10⁻¹⁹ J; b) 2.42×10⁻¹⁹ J]

4. (*Griffiths*, *Cap. 3*, *P5*) Determine o comprimento de onda de de Broglie de uma bola de beisebol de massa 2 kg que se desloca à velocidade de 33 m/s.

[Sol.: 1.00×10⁻³⁵ m]

5. (*Griffiths*, *Cap.* 3, *P6*) Um eletrão desloca-se a uma velocidade tal que o seu comprimento de onda é igual ao da luz amarela (consulte a tabela 1.1 do livro). Qual é a sua velocidade?

[Sol.: 1230 m/s]

Sobreposição de estados e entrelaçamento

6. (Scarani, Cap. 1, Ex. 1.3) Seja

$$|\alpha\rangle = \cos \alpha |H\rangle + \sin \alpha |V\rangle$$

$$|\alpha^{\perp}\rangle = \sin \alpha |H\rangle - \cos \alpha |V\rangle$$

- a) Prove que $\{|\alpha\rangle, |\alpha^{\perp}\rangle\}$ constitui uma base para qualquer α .
- b) Seja $|\beta\rangle = \cos\beta |H\rangle + \sin\beta |V\rangle$. Calcule as probabilidades de, dado β , encontrar α $(P(\alpha|\beta))$ ou $\alpha^{\perp}(P(\alpha^{\perp}|\beta))$.

[Sol.:
$$P(\alpha|\beta) = \cos^2(\alpha - \beta)$$
; $P(\alpha^{\perp}|\beta) = \sin^2(\alpha - \beta)$]

7. Considere uma partícula no estado quântico definido pelo vetor estado

$$|\psi\rangle = \sum_i a_i \, |\phi_i\rangle$$
,

Utilize a regra de Born para mostrar que:

- a) $\sum_{i} |a_{i}|^{2} = 1$
- b) a probabilidade de, ao realizar uma medida, a partícula ficar no estado $|\phi_i\rangle$ é dada por $|a_i|^2$.

8. Uma determinada partícula está num estado quântico definido pelo vetor estado

$$|\psi\rangle = 0.1|\leftarrow\rangle + 0.3i|\uparrow\rangle + 0.5|\rightarrow\rangle - 0.4|\downarrow\rangle + a|\leftrightarrow\rangle$$

Qual é a probabilidade de a partícula, ao se efetuar uma medida, ficar no estado $|\leftrightarrow\rangle$? [Sol.: 0.49]

9. Um protão encontra-se no estado de spin descrito por

$$|\psi\rangle = \frac{1}{2}|\uparrow\rangle + \frac{\sqrt{3}}{2}|\downarrow\rangle$$

Qual é a probabilidade de, ao efetuar uma medida, encontrar o protão no estado $|\uparrow\rangle$ e qual a probabilidade de o encontrar no estado $|\downarrow\rangle$?

[Sol.:
$$P_{\uparrow} = 0.25$$
; $P_{\downarrow} = 0.75$]

10. Se tivermos duas partículas em que uma pode estar nos estados $|A\rangle$ ou $|B\rangle$, e a segunda pode estar nos estados $|\uparrow\rangle$, $|\downarrow\rangle$, $|\leftarrow\rangle$ ou $|\rightarrow\rangle$, quais são os estados possíveis das duas partículas?

[Sol.:
$$|A \uparrow\rangle$$
, $|A \downarrow\rangle$, $|A \leftarrow\rangle$, $|A \rightarrow\rangle$, $|B \uparrow\rangle$, $|B \downarrow\rangle$, $|B \leftarrow\rangle$, $|B \rightarrow\rangle$]

11. Considere um trio de partículas que podem, cada uma, estar num estado $|0\rangle$ ou $|1\rangle$.

O seu vetor estado é dado por:

$$|\psi\rangle = 0.1|000\rangle + 0.3535(1+i)|001\rangle + 0.2|010\rangle - 0.1|100\rangle + 0.5|011\rangle - 0.361|101\rangle + 0.55|111\rangle$$

- a) Qual é o estado mais provável, após uma medida?
- b) Se fizer 200 medidas em 200 sistemas idênticos a este, quantas vezes espera obter o estado $|010\rangle$?
- c) Se fizer 20 medidas no mesmo sistema, quantas vezes espera obter o estado |010\?
- d) Qual é a probabilidade de, ao medir apenas a primeira das três partículas, a encontrar no estado $|0\rangle$?
- e) Há alguma combinação de medidas que nunca aconteça?

[Sol.: a) |111\rangle; b) 8; c) 20 ou zero; d) 0.55; e) sim: |110\rangle]

12. (Scarani, Cap. 1, Ex. 1.4) Considere os seguintes estados de dois fotões $|\psi_1\rangle = \frac{1}{2}(|HH\rangle + |HV\rangle + |VH\rangle + |VV\rangle),$ $|\psi_2\rangle = \frac{1}{2}(|HH\rangle + |HV\rangle + |VH\rangle - |VV\rangle),$ $|\psi_3\rangle = \frac{1}{2}|HH\rangle + \frac{\sqrt{3}}{2\sqrt{2}}(|VH\rangle + |VV\rangle),$ $|\psi_4\rangle = \cos\theta |HH\rangle + \sin\theta |VV\rangle.$

- a) Verifique que todos os estados estão normalizados.
- b) Quais são os estados não entrelaçados? Exprima-os como um produto explícito de estados com um só fotão.

[Sol.: b) estado não entrelaçado, $|\psi_1
angle=rac{1}{\sqrt{2}}(|H
angle+|V
angle)\otimesrac{1}{\sqrt{2}}(|H
angle+|V
angle)=|lpha=\pi/4
angle\otimes|eta=\pi/4
angle$]

13. (*Scarani*, *Cap. 1*, *Ex. 1.5*) Considere $|\alpha\rangle$ e $|\alpha^{\perp}\rangle$, tal como definidos no problema 6. Verifique que

$$\frac{1}{\sqrt{2}}(|\alpha\rangle|\alpha\rangle + |\alpha^{\perp}\rangle|\alpha^{\perp}\rangle) = \frac{1}{\sqrt{2}}(|H\rangle|H\rangle + |V\rangle|V\rangle)$$

O que é que acontece se os dois fotões que se encontram neste estado forem medidos na mesma base?

[Sol.: as polarizações dos dois fotões são sempre iguais (estão perfeitamente correlacionadas)]