Variables de contrôle pour un modèle GARCH

Marwen Khelifa Rim Salhi Taha Habib

30 Avril 2024

- Introduction
- 2 Q1: MCMC
- 3 Q2 : Ajout de variables de contrôle
- 4 Q3 : Sélection de variables de contrôle
- Bilan et Conclusion

- Introduction
- 2 Q1: MCMC
- 3 Q2 : Ajout de variables de contrôle
- 4 Q3 : Sélection de variables de contrôle
- Bilan et Conclusion

Introduction

Le but de ce projet est d'estimer les paramètres d'un modèle GARCH(1,1) en utilisant des variables de contrôle.

Nous avons en tout développé 4 méthodes pour estimer ces paramètres, le but de l'ajout de variables de contrôle étant de diminuer la variance de ces estimations.

Le modèle GARCH(1,1)

La série $(r_t)_{t>0}$ suit un modèle GARCH(1,1) si $r_t|_{t=1}$ suit une loi $N(0,h_t)$, où :

$$h_t = \omega_0 + \omega_1 r_{t-1}^2 + \omega_2 h_{t-1}$$

La suite $(h_t)_{t>0}$ est la suite des variances conditionelles, et $(r_t)_{t>0}$ peut par exemple symboliser la suite de retours sur investissement.

Notre but ici est donc d'estimer les paramètres ω_0 , ω_1 et ω_2 à partir d'une série $(r_t)_{t>0}$

- Introduction
- 2 Q1: MCMC
- 3 Q2 : Ajout de variables de contrôle
- 4 Q3 : Sélection de variables de contrôle
- Bilan et Conclusion

Cadre Bayesien

- On a donc : $\pi((r_t)|\omega_0, \omega_1, \omega_2) = \prod_{t=1}^T \frac{1}{\sqrt{2\pi h_t}} e^{\frac{-r_t^2}{2h_t}}$
- On utilise comme prior une loi normale centrée réduite pour chaque ω_i : $\pi(\omega_i) = \frac{1}{\sqrt{2\pi}}e^{-\frac{\omega_i^2}{2}}$

On en déduit donc la loi postérieure par la formule de Bayes :

$$\pi(\omega_0, \, \omega_1, \, \omega_2|(\mathbf{r}_t)) = \frac{1}{Z} \, \pi((\mathbf{r}_t)|\omega_0, \, \omega_1, \, \omega_2) \, \pi(\omega_0, \, \omega_1, \, \omega_2)$$

$$\pi(\omega_0, \, \omega_1, \, \omega_2 | (\mathbf{r}_t)) = \frac{1}{Z} e^{-\frac{1}{2}(\omega_0^2 + \omega_1^2 + \omega_2^2) - \frac{1}{2} \sum_{t=1}^T [\frac{r_t^2}{h_t} + \ln(h_t)]}$$

Cadre Bayesien (suite)

Deux remarques :

- Ce n'est pas une loi normale, car h_t dépend des ω_i !
- Ce n'est pas exactement la loi postérieure, car les ω_i doivent remplir les conditions de positivité et de stationnarité : $\omega_i > 0$ pour tout i=0,1,2 et $\omega_1 + \omega_2 < 1$ Ces conditions pourront être imposées dans l'algorithme qui suit.

Algorithme de Metropolis-Hastings

- L'algorithme de Metropolis-Hastings est une méthode particulièrement utile pour créer des échantillons sur des lois dont la densité est complexe et difficile à uniformiser.
- L'idée est de générer une chaine de Markov dont la loi invariante sera la loi postérieure qui nous intéresse.
- Ici, on fait tourner trois algorithmes de Metropolis "en parallèle" pour chaque ω_i .
- Les moyennes empiriques des ω_i sur le régime stationnaire va alors converger vers l'espérence de la loi postérieure.
- Pour imposer les conditions de positivité et de stationnarité, on rejette tout nouvel état de $(\omega_0, \omega_1, \omega_2)$ si ces conditions ne sont pas respectées.

Résultats

Figure: Trajectoires pour un algorithme de Metropolis classique. Paramètres utilisés : $\omega_0 = 1$, $\omega_1 = 0.7$, $\omega_2 = 0.2$

- Introduction
- 2 Q1 : MCMC
- 3 Q2 : Ajout de variables de contrôle
- 4 Q3 : Sélection de variables de contrôle
- Bilan et Conclusion

Variables de contrôle : fondations théoriques

Soit H l'opérateur Hamiltonien de type "Schrödinger" et Ψ une "fonction d'essai" infiniement différentiable et à support compact.

Si $H\sqrt{\pi(\omega_0,\omega_1,\omega_2\mid (r_t))}=0$ avec π la densité de la loi postérieure des ω_i , alors la fonction renormalisée :

$$f_i(\omega_0, \omega_1, \omega_2) = \omega_i + \frac{H\Psi(\omega_0, \omega_1, \omega_2)}{\sqrt{\pi(\omega_0, \omega_1, \omega_2|(r_t))}}$$

a la même espérance que la variable aléatoire ω_i , mais peut avoir une variance moindre. On supposera comme dans l'article d'Antonietta Mira que la condition citée plus haut est satisfaite.

Bilan et Conclusion

Variables de contrôle

On choisit $\Psi(\omega_0, \omega_1, \omega_2) = P(\omega_0, \omega_1, \omega_2) \sqrt{\pi(\omega_0, \omega_1, \omega_2 \mid (r_t))}$ avec P un polynome. Dans ce cas, la fonction renormalisée sera :

$$f_i(\omega_0, \omega_1, \omega_2) = \omega_i - \frac{1}{2}\Delta P(\omega_0, \omega_1, \omega_2) + \nabla P(\omega_0, \omega_1, \omega_2) \cdot z$$

où :
$$z = -\frac{1}{2}\nabla ln(\pi(\omega_0, \omega_1, \omega_2 \mid (r_t))).$$

$$\Delta = \frac{\partial^2}{\partial^2 \omega_0} + \frac{\partial^2}{\partial^2 \omega_1} + \frac{\partial^2}{\partial^2 \omega_2}$$
 (Laplacien)

$$\nabla = (\frac{\partial}{\partial \omega_0}, \frac{\partial}{\partial \omega_1}, \frac{\partial}{\partial \omega_2})$$
 (Gradient)

Cas particulier : polynome de degré 1

Si $P(x) = a^T x$ est un polynome de degré 1 où $x = (\omega_0, \omega_1, \omega_2)^T$, alors la fonction renormalisée devient :

$$f_i(\omega_0, \omega_1, \omega_2) = \omega_i - a_i^T z$$

Et le choix optimal de a pour limiter la variance de f_i est : $a_i = -E[zz^T]E[z\omega_i]$ pour i=0,1,2

On reconnait alors que $-a_i$ est le coefficient de la régression MCO de f_i sur z.

Implémentation de la méthode ZV-MCMC

Pour implémenter cette méthode ZV-MCMC avec ces variables de contrôle, on fait un algorithme en deux étapes :

- On fait d'abord une première simulation MCMC "courte", pour ensuite régresser chaque ω_i sur z pour obtenir les vecteurs a_0, a_1, a_2
- On fait une seconde simulation longue où nos estimateurs seront cette fois les moyennes empiriques des $f_i(\omega_0, \omega_1, \omega_2)$, qui peuvent être calculés avec les ω_i de cette simulation grace aux a_i de la première simulation.

Résultats

Figure: Trajectoires des f_i . Paramètres utilisés : $\omega_0 = 1$, $\omega_1 = 0.7$, $\omega_2 = 0.2$

- Introduction
- 2 Q1: MCMC
- 3 Q2 : Ajout de variables de contrôle
- 4 Q3 : Sélection de variables de contrôle
- Bilan et Conclusion

Cas d'un polynome de degré 2

Si $P(x) = a^T x + \frac{1}{2} x^T B x$ est un polynome de degré 2 où $x = (\omega_0, \omega_1, \omega_2)^T$, la fonction renormalisée devient cette fois :

$$f_i(\omega_0,\omega_1,\omega_2) = \omega_i - \frac{1}{2}tr(B) + (a+Bx)^Tz$$

On a donc ici à considérer 12 variables de contrôle au lieu de 3 :

$$z_0$$
, z_1 , z_2 ,
 $z_0\omega_0$, $z_1\omega_0$, $z_2\omega_0$,
 $z_0\omega_1$, $z_1\omega_1$, $z_2\omega_1$,
 $z_0\omega_2$, $z_1\omega_2$, $z_2\omega_2$

Sélection de variables de controle

La complexité d'une regression OLS est de $O(d^2N)$ avec d la dimension et N la taille de l'échantillon. On doit donc réduire notre nombre de variables de contrôle. Pour ce faire, on implémente deux méthode.

Méthode dichotomique avec LASSO

La première est une recherche dichotomique utilisant des régressions LASSO : pour chaque ω_i , on fait d'abord une régression LASSO avec un coefficient de pénalisation μ , puis :

- ullet si on obtient strictement plus de 3 coefficients non nuls (sans compter la constante), on augmente μ
- si on obtient strictement moins de 3 coefficients non nuls (sans compter la constante), on diminue μ

lorsqu'on a sélectionné les 3 variables de contrôle, on fait une régression OLS classique de ω_i sur celles-ci et on obtient ainsi le vecteur a_i de manière similaire à l'algorithme présenté précédemment.

Résultats

Figure: Trajectoires des f_i avec des variables de contrôle choisies par dichotomie + LASSO.

Paramètres utilisés : $\omega_0=1$, $\omega_1=0.7$, $\omega_2=0.2$

Méthode "intuitive"

La seconde méthode que nous avons implémenté est plus intuitive : on choisit tous les triplets de variables de contrôle où z_0 , z_1 et z_2 apparaissent une seule fois chacun, on fait une régression OLS de chaque ω_i sur chaque triplet et pour chaque ω_i , on sélectionne le triplet où on obtient le meilleur R^2 .

Cela fait $3 * 4^3 = 192$ régressions OLS à faire avec 3 variables, ce qui est raisonnable.

On obtient de bien meilleurs résultats avec cette méthode qu'avec la précédente, mais elle ne serait pas possible en plus grande dimension.

Résultats

Figure: Trajectoires des f_i avec des variables de contrôle choisies "intuitivement".

Paramètres utilisés : $\omega_0 = 1$, $\omega_1 = 0.7$, $\omega_2 = 0.2$

- Introduction
- 2 Q1 : MCMC
- 3 Q2 : Ajout de variables de contrôle
- 4 Q3 : Sélection de variables de contrôle
- 6 Bilan et Conclusion

Bilan

Conclusion

On obtient avec l'ajout de variables de contrôle en utilisant un polynome de degré 1 une variance environ 15, 13 et 21 fois plus petite pour ω_0 , ω_1 et ω_2 respectivement.

On obtient en utilisant un polynome de degré 2 avec la méthode "intuitive" une variance environ 113, 125 et 45 fois plus petite pour ω_0 , ω_1 et ω_2 respectivement.

Nous obtenont donc des résultats cohérents avec ceux de l'article d'Antonietta Mira pour le polynome de degré 1, mais pas pour celui de degré 2.

Table 1 GARCH variance reduction: 95 % confidence interval for the ratio of the variances of ordinary MCMC estimators and ZV-MCMC estimator

	$\hat{\omega}_1$	$\hat{\omega}_2$	$\hat{\omega}_3$
1st Degree $P(x)$	8-18	13-28	12–27
2nd Degree $P(x)$	1200-2700	6100-13500	6200-13800
3rd Degree $P(x)$	21000-47000	48000-107000	26000-58000

