#importing the libraries
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn import metrics
from matplotlib import style

#loading the csv data into pandas data frame
insurance_data = pd.read_csv('/content/insurance.csv')

#Basic information of the given data
insurance data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1338 entries, 0 to 1337 Data columns (total 7 columns): Column Non-Null Count Dtype _____ 0 age 1338 non-null int64 1338 non-null object 1 sex 2 bmi 1338 non-null float64 3 children 1338 non-null int64 4 smoker 1338 non-null object 1338 non-null object 5 region

6 charges 1338 non-null float64 dtypes: float64(2), int64(2), object(3) memory usage: 73.3+ KB

#loading the first five rows from the given data set
insurance_data.head()

charges	region	smoker	children	bmi	sex	age	
16884.92400	southwest	yes	0	27.900	female	19	0
1725.55230	southeast	no	1	33.770	male	18	1
4449.46200	southeast	no	3	33.000	male	28	2
21984.47061	northwest	no	0	22.705	male	33	3
3866.85520	northwest	no	0	28.880	male	32	4

#loading the last five rows from the given data set
insurance_data.tail()

	age	sex	bmi	children	smoker	region	charges	
1333	50	male	30.97	3	no	northwest	10600.5483	
1334	18	female	31.92	0	no	northeast	2205.9808	
				_				

#checking the total rows and columns from the given data set insurance_data.shape

(1338, 7)

#statistical measure of the given data set
insurance_data.describe()

	age	bmi	children	charges	•
count	1338.000000	1338.000000	1338.000000	1338.000000	
mean	39.207025	30.663397	1.094918	13270.422265	
std	14.049960	6.098187	1.205493	12110.011237	
min	18.000000	15.960000	0.000000	1121.873900	
25%	27.000000	26.296250	0.000000	4740.287150	
50%	39.000000	30.400000	1.000000	9382.033000	
75%	51.000000	34.693750	2.000000	16639.912515	
max	64.000000	53.130000	5.000000	63770.428010	

#Finding the sum of the missing values of the given data set
insurance_data.isnull().sum()

age 0
sex 0
bmi 0
children 0
smoker 0
region 0
charges 0
dtype: int64

#setting the figure size
plt.figure(figsize=(5,5))
style.use('ggplot')
sns.countplot(x='sex',data=insurance_data)
plt.title("Gender Distribution")
plt.show()

sns.countplot(x='smoker',data=insurance_data)
plt.title('Smoker distribution')
plt.show()

sns.countplot(x='children',data=insurance_data)
plt.title("Children Status")
plt.show()

sns.countplot(x='region',data=insurance_data)
plt.title('Region')
plt.show()

#checking the price range
sns.barplot(x='region',y='charges',data=insurance_data)
plt.title("Region vs Charge")
plt.show()

sns.barplot(x='sex',y='charges',data=insurance_data)
plt.title(' vs charge')
plt.show()


```
plt.figure(figsize=(5,5))
sns.barplot(x='sex', y='charges',hue='smoker', data=insurance_data)
plt.title('Charges for smokers')
```

Text(0.5, 1.0, 'Charges for smokers')


```
fig, axes = plt.subplots(1,3, figsize=(15,5), sharey=True)
fig.suptitle('Visualizing categorical columns')
sns.boxenplot(x='smoker', y= 'charges', data=insurance_data, ax=axes[0])
sns.boxenplot(x='sex', y= 'charges', data=insurance_data, ax=axes[1])
sns.boxenplot(x='region', y= 'charges', data=insurance_data, ax=axes[2])
```

<matplotlib.axes._subplots.AxesSubplot at 0x7fae1f9d4410>

Visualizing categorical columns

insurance_data[['age','bmi','children','charges']].hist(bins=30, figsize=(10,10), color='blue')
plt.show()

plt.figure(figsize=(10,7))
sns.heatmap(insurance_data.corr(), annot = True)
plt.show()

insurance_data['sex'] = insurance_data['sex'].apply({'male':0, 'female':1}.get)

```
insurance_data['smoker'] = insurance_data['smoker'].apply({'yes':1, 'no':0}.get)
insurance_data['region'] = insurance_data['region'].apply({'southwest':1, 'southeast':2, 'northwest':3, 'northeast':4}.get)
X = insurance_data.drop(['charges', 'sex'], axis=1)
y = insurance_data.charges
#splitting the data into train and test
X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.3, random_state=42)
print("X_train shape: ", X_train.shape)
print("X_test shape: ", X_test.shape)
print("y_train shpae: ", y_train.shape)
print("y_test shape: ", y_test.shape)
     X_train shape: (936, 5)
    X_test shape: (402, 5)
    y_train shpae: (936,)
    y_test shape: (402,)
#Using Linear Regression
linreg = LinearRegression()
data = {'age':50, 'bmi':25, 'children':2, 'smoker':1, 'region':2}
index = [0]
cust_insurance_data = pd.DataFrame(data, index)
cust_insurance_data
         age bmi children smoker region
                                         2
      0 50
              25
```