Bacterial filamentation: a bet for survival in stressful environments

Jesús Vélez Santiago

8/8/2022

Table of contents

W	/elcome	3	
	Abstract	3	
	Acknowledgements	3	
ln	troduction	4	
1	Image processing	6	
	1.1 Introduction	6	
	1.2 Preprocessing	7	
	1.3 Segmentation	7	
	1.4 Tracking	7	
	1.5 Manual corrections	8	
	1.6 Data extraction	8	
2	Experiment analysis	10	
3	Models to the rescue; filamentation abstraction	11	
4	Discussion	12	
Re	References		

Welcome

Abstract

Scientists have extensively studied the mechanisms that orchestrate the growth and division of bacterial cells. Cells adapt their shape and dimensions in response to variations in the intracellular and extracellular environments by integrating information about the presence of nutrients or harmful agents in the decision to grow or divide. Filamentation is a process that occurs when rod-shaped cells stop dividing but continue to grow, thus producing elongated cells (Wang et al. 2014; Wang, Yin, and Chen 2014; Jaimes-Lizcano, Hunn, and Papadopoulos 2014; Sheryl S. Justice et al. 2008). Some cells can naturally grow as filamentous, while others only do so under stressful conditions (Cayron, Dedieu, and Lesterlin 2020; S. S. Justice et al. 2006). Here, we use mathematical modeling and computational simulations to evaluate a toxic agent's intracellular concentration as a function of cell length. We show that filamentation can act as a strategy that promotes the resilience of a bacterial population under stressful environmental conditions.

Acknowledgements

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer tristique, sem egestas aliquam varius, arcu nisi ullamcorper lacus, quis convallis enim velit et arcu. Vestibulum lacus arcu, tempor non dapibus vitae, malesuada ut ipsum. Phasellus condimentum diam ex. Sed maximus a mauris vel aliquet.

Integer neque sapien, cursus eu viverra consequat, cursus congue dui. Maecenas est dui, rutrum vitae enim vel, varius scelerisque tortor. In vel dignissim orci. Integer varius neque mauris, mollis commodo libero fringilla sed. Nunc accumsan, libero id interdum dignissim, nulla nibh consectetur lorem, vel dignissim erat magna vitae ante. Aliquam at est lectus. Suspendisse nec sem euismod, condimentum neque sit amet, malesuada nibh. Aenean condimentum pharetra quam, id venenatis mauris tempor a.

Introduction

Antimicrobial resistance (AMR) can be considered one of the most critical health problems of the century. That is, microorganisms' ability to grow despite exposure to substances designed to inhibit their growth or kill them. In April 2014, the World Health Organization (WHO) published its first global report on AMR surveillance ("Editorial Board" 2014). Taking out of the darkness a common fear, a possible post-antibiotic future in which common infections or minor injuries can kill. Therefore, understanding the mechanisms of avoiding antibiotic action is essential for producing knowledge and developing strategies that reduce the generation of resistant bacteria.

Bacterial adaptability to hostile environmental conditions can be explained by different elements, not necessarily exclusive. For instance, mutational phenomena that allow bacteria to evade the mechanisms of action of certain antibiotics have been one of the most studied (Dever and Dermody 1991; Andersson 2005). However, the continuous technological development has allowed us to explore hypotheses where phenotypic heterogeneity is considered in detail, allowing us to study emergent behaviors in isogenic populations (Ackermann 2015). Thus, we have gone from studying bacterial communities as a whole to studying them from each of the cells that compose them and their emergent properties.

Single-cell microfluidics is one of the technologies that has made it possible to create and maintain the microenvironments necessary for studying bacteria (Yin and Marshall 2012). Among the most outstanding utilities of microfluidics, we can find the engineering of bacterial systems, microbial ecology, bacterial cell cycle, homeostasis, even cell shape, and geometry. The latter is one of the characteristics that allow the study of bacterial filamentation, a phenomenon that occurs when the cell stops dividing but continues to grow, thus producing elongated cells in the form of filaments.

Mathematical modeling is among the most common strategies to address the AMR problem. Mathematical modeling allows to pose real-life problems in a space filled with mathematical language, solve them, and test their solutions in a real-life living system (Verschaffel, Greer, and Corte 2002). Therefore, this approach can also be used to analyze in detail why a particular biological phenomenon is occurring, how its behavior can be modified, and, finally, to design specific experiments to determine their accuracy and usefulness.

This thesis describes and discusses how and why bacterial filamentation may be a general mechanism for cell survival upon exposure to toxic agents, such as antibiotics, based on experimental analyses and mathematical modeling. We divided this thesis into three chapters that

explain the methodologies used and take us one step closer to understanding filamentation with each chapter.

Chapter 1 describes the fundamental process to identify and quantify the properties of each cell over time, for example, its length, the amount of internal toxin, and the amount of resistance to the toxin.

Chapter 2 used the data processed in the previous chapter to explore bacterial filamentation at the population and single-cell level. Data exploration allowed us to simultaneously observe the behavior of filamentation and its properties in heterogeneous populations. For reference, one population with an antibiotic resistance gene located on the chromosome and another on multicopy plasmids.

Finally, in Chapter 3, we postulated a mathematical model that considers the relationship of cell surface area and volume to the uptake of a toxic agent diffusing into the medium. This model allowed us to specifically evaluate the effect of filamentation in an environment similar to that observed experimentally. Thus, experiments and models work together to learn more about a biological phenomenon to help understand and combat the AMR problem.

1 Image processing

1.1 Introduction

With the progress of technology, optical and fluorescence microscopy has become a fundamental tool for the characterization and understanding of the bacterial world. Microscopy has allowed humanity to extend its senses to observe the unknown world with exciting new perspectives that they might never otherwise have envisioned. Furthermore, microscopy offers a clear advantage over other techniques used to characterize bacteria since it can acquire data from living cells in spatial resolution (Schermelleh et al. 2019).

Including the discovery of fluorescent proteins (e.g., GFP and DsRed) and improvements in fluorescent reporters, it is possible to specifically label specific cellular components and track cellular functions (Specht, Braselmann, and Palmer 2017). On the other hand, mechanical and intellectual development of microfluidic research techniques provides an excellent opportunity to overcome bio-medical and chemical techniques (Convery and Gadegaard 2019). Collectively, it is possible to study communities of bacteria at the level of individual cells (Balaban et al. 2004; Elowitz et al. 2002).

Although all this technological development has provided a significant advance for the scientific community, after acquiring fluorescence images, the extraction of quantitative properties from these images is crucial, but unfortunately, a difficult step for analyzing experiments. Not so long ago, image analysis in biology relied on manual quantification. However, manual analysis suffers from two main problems: 1) accuracy and 2) scalability (that is, analyzing miles or more images). Fortunately, improvements in image accuracy and computational image analysis capabilities are revolutionizing the quantification of biological processes through (Caicedo et al. 2017; Smith et al. 2018). Therefore, the manual correction required to analyze the experiments is minimal.

Here, we used a series of programs in μJ (https://github.com/ccg-esb-lab/uJ), which consists of an ImageJ macro library (mainly) for quantifying unicellular bacterial dynamics in microfluidic devices (Schneider, Rasband, and Eliceiri 2012). The specific steps used are described below and are summarized in Figure ?@fig-something.

1.2 Preprocessing

We exported the figures obtained by the NIS-Elements software (RRID:SCR_014329) from the microfluidics experiments in TIFF (Tagged Image File Format) format. Each figure was named as follows: experimentxyc1t001 where experiment indicates the name assigned to the experiment, xy the trap number, c the fluorescence channel, and t the passage of time.

Subsequently, we compile the images, rename them and save them as images in different folders. We maintained the classification by fluorescence channels and phase contrast, and within the channel folder, it is the sub-classification by trap number.

1.3 Segmentation

To determine which parts of the photographs correspond to cells, we carry out an image segmentation analysis. Segmentation consists of classification at the pixel level, which allows us to define the pixels that give identity to the limit of a cell, its interior, and the image's background (everything that is not a cell). A new image is generated from the above, known as the segmentation mask, containing only the pixels that identify cells.

To build the segmentation mask, we used *Deepcell* (Van Valen et al. 2016). *Deepcell* is a network trained with a robust set of images that people previously classified as cells. However, the generation of the segmentation masks is not absolved of errors (see also Section 1.5). Sometimes we must correct them manually due to 1) mistakenly identifying two or more cells as one, 2) identifying two or more cells when it is only one cell, and 3) failing to identify a cell.

1.4 Tracking

From the image segmentation, we obtain ROI files (region of interest), which contain coordinates of the position of individual cells in each photograph (Brinkmann 2008). Tracking is the tracking of a region of interest in a consecutive series of images. In this case, the tracking generates the identification of the lineages, that is, the ancestry of each cell.

We read the ROI files in Python through the *shapely* package, which efficiently reconstructs polygons, thus calculating the length of the cells (10.5555/1593511?; shapely2007?). Also, in Python using ROI files, we track cells with the k-nearest neighbors algorithm that uses various properties such as fluorescence intensity, length, and shape of each cell, to identify cell lineages (Altman 1992).

1.5 Manual corrections

For cell-tracking manual correction, we used *Napari*, an open-source python-based tool designed to explore, annotate, and analyze large multidimensional images (**sofroniew2021a?**). Our custom cell-viewer allows us to easy lineage data visualization, custom-plotting, and lineage-correction. Code for our cell-viewer is available on https://github.com/ccg-esb-lab/uJ/tree/master/single-channel.

We produced high-throughput data of thousands of cells with a single-cell resolution to the end of the lineages manual reconstruction. We obtained data about time-series of fluorescent intensity, morphological properties of individual cells (e.g., elongation, duplication rate), and time-resolved population-level statistics (e.g., probability of survival to the antibiotic shock).

1.6 Data extraction

We construct a file in columnar format through image processing that contains the information necessary to analyze each experiment (*i.e.*, chromosomal and plasmids) in its different traps (*i.e.*, XY identifier). See Table 1.1 for a full description of the output data. Subsequently, the table was analyzed in R for statistical computation and plotting (see Chapter 2) (\mathbf{R} -base?).

Table 1.1: Resulting table from image processing.

Column Description

experimentation identifier of the experiment.

trapID Unique identifier of the trap used.

lineageIDUnique integer of the stem cell and its ancestry.

cellID Unique identification number for each cell existing since the beginning of the experiment or generated later.

motherIPRepresents the identification number of the stem cell that gave rise to the progeny. trackID Indicates the x-y coordinates where the cell being tracked starts.

roiID Indicates the x-y position in which the cell is located, followed after each photograph.

frame Number of the photograph in the sequence of photographs taken, indicating the elapsed time (10 minutes per frame).

length Cell length.

division Indicates cell division events, represented by the value 1 when they occur and 0 otherwise.

GFP Represents the relative fluorescence intensity in each cell by green fluorescent protein (*i.e.*, GFP).

DsRed Represents the relative fluorescence intensity for cells generated by rhodamine's internalization (i.e., DsRed); an indicator of cell death events.

Column Description

tracking Dectaremine how good or bad the tracking of a cell was.

state Indicates the state of the cell determined from its length and fluorescence thresholds.

-1 for death, 0 for normal, and 1 for filamentation (see Section

?@sec-experiment-general-preprocessing for detailed information).

2 Experiment analysis

3 Models to the rescue; filamentation abstraction

4 Discussion

Bacterial cell survival is part of a complex biological system, which is one of the fundamental problems of the health sector in this century. In this work, we have analyzed the role of filamentation in cell survival through multiple levels of complexity. Inquiring, one step at a time, into the ecology of bacterial stress.

First, we exposed two bacterial strains, one with an antibiotic resistance gene on the chromosome and one on multicopy plasmids, in a stressful environment with ampicillin. In both cases, we observed four states in the cells at the end of the experiment: live filamented, live non-filamented, dead filamented, and dead non-filamented cells. By inspecting the specific characteristics of each category, we were able to identify that cell length was indeed related to the probability of survival. In addition, we showed that each cell's inherent resistance defined whether or not filamentation would occur for the plasmid strain, where low resistance values were conducive to filamentation.

However, the growth rate was critical in determining the final cellular state. We observed that moderate growths mainly were related to survival. In contrast, rapid growth was associated with cell death. Previous findings, in addition, could have other explanations that are not mutually exclusive, such as the cell cycle or how fast a given cell was dividing. So the contribution of these variables in conjunction with filamentation could be a future study of interest to improve our understanding of cell survival.

Our next step was to abstract the fundamental information to define a mathematical model that would help us better understand the workings of filamentation in cell survival. We postulated a mathematical model built from a system of differential equations that considers the cell's geometric relationships (i.e., a pill shape) against exposure to a toxic substance in the environment. We assume that the consumption of antibiotics by the cell is perceived through its surface area (SA), while the cell volume (V) defines its concentration. Consequently, since the rate of change of SA is lower than V, this results in a transient reduction in the intracellular concentration of the toxin.

In the experiments, we showed how cells begin to filament upon a pulse of antibiotics, and from this, it would begin their bid for survival. The model allowed us to consider thousands of different cells to precisely determine the impact of filamentation on their survival. For instance, upon incremental exposure to the toxic substance, a cell can increase its lifetime window by simply growing. If the antibiotic wears off before the cell reaches a threshold of death for some reason, it will have paid off; the cell will have won the bet, and it will have survived.

Conversely, if a cell can not grow as a filament, it will depend entirely on its inherent resistance levels.

In addition to the increase in the expected lifetime of the cell upon exposure to a toxic agent, the model showed us that filamentation could confer an increase in the Minimum Inhibitory Concentration (MIC). So if a cell can grow as filament, a higher amount of the toxic agent will be needed to kill it. However, bacteria generally live in heterogeneous populations, and sometimes their inherent resistance levels will play a vital role in their survival.

The model showed us that heterogeneity in toxin-antitoxin response systems could represent a double-edged sword for cell survival depending on the time of exposure to the toxin. Heterogeneity could be favorable for survival if the time of exposure to the toxic agent is longer than the time at which the population without heterogeneity dies completely, while it would be detrimental otherwise. Thus, globally, filamentation, both at the individual and population scale, is crucial for resilience.

However, although our model's advantages are its simplicity, ease of interpretation, and reproducibility of the biological phenomenon in question, it also entails limitations to be considered in further work.

Our model assumes zero growth if the cell does not reach the filamentation threshold. While this may be true at the population average level, the reality is that cells are constantly growing and dividing. Integrating constant growth and division events could help us understand in more detail how, under what conditions, and why filamentation might be beneficial or detrimental when considering new transition states.

Another limiting factor is the lack of a system that penalizes prolonged filamentation. Once the cell filaments, our model considers only two possible scenarios, the cell can either continue with filamentation for its entire lifetime or die from crossing a toxic agent threshold. However, we can suggest that maintaining a filamentary state carries an energetic and membrane material cost that may be difficult to supply. Thus, a cell could die from spending too long in the filamentation state if exposure to the toxic agent does not cease.

The model does not consider what happens after the death of a cell or its interactions with other population members. We could hypothesize different scenarios: for instance, filament cells could absorb a more significant amount of the toxic agent so that some surrounding cells will not perceive much threat. On the other hand, if a cell dies, eventually, the capabilities of the cell membrane disappear, and its contents can diffuse into the environment. Hence, this would represent an increase in the toxic agent's local concentration that nearby cells could acquire. How would this change the overall dynamics of the system? What would be the new cellular states when evaluating filamentation in the context of cellular communities?

In conclusion, although we based our model on experimental evidence, it does not consider all possible biological aspects. However, this allowed us to analyze and better understand filamentation as a mechanism capable of increasing the resilience of a bacterial population against a toxic agent exposure, for example, antibiotics. Therefore, the generation of new models and experiments to understand filamentation in-depth and its implications for bacterial survival will be necessary to help us combat the current problem of antibiotic resistance.

References

- Ackermann, Martin. 2015. "A Functional Perspective on Phenotypic Heterogeneity in Microorganisms." Nature Reviews Microbiology 13 (8): 497–508. https://doi.org/10.1038/nrmicro3491.
- Altman, N. S. 1992. "An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression." The American Statistician 46 (3): 175–85. https://doi.org/10.1080/00031305.1992. 10475879.
- Andersson, Dan I. 2005. "The Ways in Which Bacteria Resist Antibiotics." *International Journal of Risk and Safety in Medicine* 17 (3-4): 111–16.
- Balaban, Nathalie Q., Jack Merrin, Remy Chait, Lukasz Kowalik, and Stanislas Leibler. 2004. "Bacterial Persistence as a Phenotypic Switch." *Science* 305 (5690): 1622–25. https://doi.org/10.1126/science.1099390.
- Brinkmann, Ron. 2008. The Art and Science of Digital Compositing, Second Edition: Techniques for Visual Effects, Animation and Motion Graphics (the Morgan Kaufmann Series in ... Morgan Kaufmann Series in Computer Graphics). 2nd ed. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
- Caicedo, Juan C, Sam Cooper, Florian Heigwer, Scott Warchal, Peng Qiu, Csaba Molnar, Aliaksei S Vasilevich, et al. 2017. "Data-Analysis Strategies for Image-Based Cell Profiling." *Nature Methods* 14 (9): 849–63. https://doi.org/10.1038/nmeth.4397.
- Cayron, Julien, Annick Dedieu, and Christian Lesterlin. 2020. "Bacterial Filament Division Dynamics Allows Rapid Post-Stress Cell Proliferation." http://dx.doi.org/10.1101/2020. 03.16.993345.
- Convery, Neil, and Nikolaj Gadegaard. 2019. "30 Years of Microfluidics." *Micro and Nano Engineering* 2 (March): 76–91. https://doi.org/10.1016/j.mne.2019.01.003.
- Dever, L. A., and T. S. Dermody. 1991. "Mechanisms of bacterial resistance to antibiotics." *Archives of Internal Medicine* 151 (5): 886–95.
- "Editorial Board." 2014. Journal of Global Antimicrobial Resistance 2 (2): ii. https://doi.org/10.1016/S2213-7165(14)00044-7.
- Elowitz, Michael B., Arnold J. Levine, Eric D. Siggia, and Peter S. Swain. 2002. "Stochastic Gene Expression in a Single Cell." *Science* 297 (5584): 1183–86. https://doi.org/10.1126/science.1070919.
- Jaimes-Lizcano, Yuly A., Dayton D. Hunn, and Kyriakos D. Papadopoulos. 2014. "Filamentous Escherichia Coli Cells Swimming in Tapered Microcapillaries." Research in Microbiology 165 (3): 166–74. https://doi.org/10.1016/j.resmic.2014.01.007.
- Justice, S. S., D. A. Hunstad, P. C. Seed, and S. J. Hultgren. 2006. "Filamentation by Escherichia Coli Subverts Innate Defenses During Urinary Tract Infection." *Proceedings*

- of the National Academy of Sciences 103 (52): 19884-89. https://doi.org/10.1073/pnas.0606329104.
- Justice, Sheryl S., David A. Hunstad, Lynette Cegelski, and Scott J. Hultgren. 2008. "Morphological Plasticity as a Bacterial Survival Strategy." Nature Reviews Microbiology 6 (2): 162–68. https://doi.org/10.1038/nrmicro1820.
- Schermelleh, Lothar, Alexia Ferrand, Thomas Huser, Christian Eggeling, Markus Sauer, Oliver Biehlmaier, and Gregor P. C. Drummen. 2019. "Super-Resolution Microscopy Demystified." *Nature Cell Biology* 21 (1): 72–84. https://doi.org/10.1038/s41556-018-0251-8.
- Schneider, Caroline A, Wayne S Rasband, and Kevin W Eliceiri. 2012. "NIH Image to ImageJ: 25 Years of Image Analysis." *Nature Methods* 9 (7): 671–75. https://doi.org/10.1038/nmeth.2089.
- Smith, Kevin, Filippo Piccinini, Tamas Balassa, Krisztian Koos, Tivadar Danka, Hossein Azizpour, and Peter Horvath. 2018. "Phenotypic Image Analysis Software Tools for Exploring and Understanding Big Image Data from Cell-Based Assays." Cell Systems 6 (6): 636–53. https://doi.org/10.1016/j.cels.2018.06.001.
- Specht, Elizabeth A., Esther Braselmann, and Amy E. Palmer. 2017. "A Critical and Comparative Review of Fluorescent Tools for Live-Cell Imaging." *Annual Review of Physiology* 79 (1): 93–117. https://doi.org/10.1146/annurev-physiol-022516-034055.
- Van Valen, David A., Takamasa Kudo, Keara M. Lane, Derek N. Macklin, Nicolas T. Quach, Mialy M. DeFelice, Inbal Maayan, Yu Tanouchi, Euan A. Ashley, and Markus W. Covert. 2016. "Deep Learning Automates the Quantitative Analysis of Individual Cells in Live-Cell Imaging Experiments." Edited by Martin Meier-Schellersheim. *PLOS Computational Biology* 12 (11): e1005177. https://doi.org/10.1371/journal.pcbi.1005177.
- Verschaffel, Lieven, Brian Greer, and Erik de Corte. 2002. "Everyday Knowledge and Mathematical Modeling of School Word Problems." In, 257–76. Springer Netherlands. https://doi.org/10.1007/978-94-017-3194-2_16.
- Wang, Ying, Hong Wu, Xiaoran Jiang, and Guo-Qiang Chen. 2014. "Engineering Escherichia Coli for Enhanced Production of Poly(3-Hydroxybutyrate-Co-4-Hydroxybutyrate) in Larger Cellular Space." *Metabolic Engineering* 25 (September): 183–93. https://doi.org/10.1016/j.ymben.2014.07.010.
- Wang, Ying, Jin Yin, and Guo-Qiang Chen. 2014. "Polyhydroxyalkanoates, Challenges and Opportunities." Current Opinion in Biotechnology 30 (December): 59–65. https://doi.org/10.1016/j.copbio.2014.06.001.
- Yin, Huabing, and Damian Marshall. 2012. "Microfluidics for Single Cell Analysis." Current Opinion in Biotechnology 23 (1): 110–19. https://doi.org/10.1016/j.copbio.2011.11.002.