Matematik B F2021 Forelæsning 6 (uge 11)

FMEA: 1.5-1.6

Egenværdier og egenvektorer, diagonalisering af matricer

I dag

- Egenværdier og egenvektorer (1.5)
 - Definition og generelt om bestemmelse af egenværdier og egenvektorer for n x n-matricer
 - 2 x 2-matricer: Eksempel og generelle resultater
 - Eksempel med 3 x 3-matrix og nogle generelle resultater for n x n matricer
- Anvendelse: "Markov kæde"
 - Indkomstfordeling over tid
- Diagonalisering af matricer (1.6)
 - Hvad betyder diagonalisering, hvorfor er det nyttigt, hvordan gør man det (egenværdier og egenvektorer er vigtige!)
 - Spec. fokus på symmetriske matricer ("Spektralsætn.")

Egenværdier og egenvektorer (1.5)

Lad **A** være en $n \times n$ matrix

"Egenværdiproblemet" for **A**:

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$$

Hvis $\lambda \in \mathbb{R}$ og søjlevektoren $\mathbf{x} \neq \mathbf{0}$ løser denne ligning, så siger vi, at λ er en egenværdi for \mathbf{A} og \mathbf{x} er en egenvektor for \mathbf{A} (hørende til egenværdien λ)

Egenværdiproblemet kan omskrives til:

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$$

For ethvert λ er dette et homogent lineært ligningssystem med koefficientmatrix $\mathbf{A} - \lambda \mathbf{I}$

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$$

"Ikke trivie" " λ er en egenværdi for **A** netop hvis det homogene ligningssystem har en løsning $\mathbf{x} \neq \mathbf{0}$

Husk! (EMEA Thm 16.8.2, forelæsning 4)

Et homogent lineært ligningssystem med n ligninger, n ubekendte har ikke-trivielle løsninger netop hvis determinanten af koefficientmatricen er nul

Heraf får vi:

$$\lambda$$
 er en egenværdi for \mathbf{A}
 \Leftrightarrow
 $|\mathbf{A} - \lambda \mathbf{I}| = 0$

Hvis λ er en egenværdi fås de tilhørende egenvektorer **x** som de ikke-trivielle løsninger til $(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$

$$|\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix}$$

Dette bliver et polynomium af grad n i den variable λ og kaldes det karakteristiske polynomium for \mathbf{A} :

$$p(\lambda) = |\mathbf{A} - \lambda \mathbf{I}|$$

Egenværdierne for **A** er altså netop rødderne i det karakteristiske polynomium, dvs. de værdier af λ , der opfylder $p(\lambda) = 0$

En $n \times n$ matrix **A** har således højst n egenværdier

(Hvis man tillader komplekse tal som egenværdier og tæller "med multiplicitet", så har den netop n egenværdier. Men vi betragter kun reelle egenværdier!)

2x2 matricer

 $\mathbf{A} = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$ Vi starter med et eksempel:

Lad os finde alle egenværdier og de tilhørende egenvektorer

Korahteristish pol:

$$p(\lambda) = |A - \lambda I| = \begin{vmatrix} 1-\lambda & 3 \\ 3 & 1-\lambda \end{vmatrix} = (1-\lambda)(1-\lambda) - 9 = \lambda^2 - 2\lambda + 1 - 9$$

$$= \lambda^2 - 2\lambda - 8$$

$$= (\lambda + 2)(\lambda - 4)$$

Egenværdier:
$$\lambda_1 = -2$$
, $\lambda_2 = 4$

Egenvektorer hørende til
$$\lambda_1 = -2$$
: $(A - \lambda_1 I) = 0$
 $A - \lambda_1 I = A + 2I = \begin{pmatrix} 3 & 3 \\ 3 & 3 \end{pmatrix}$, dus. $\log : \begin{pmatrix} 3 & 3 \\ 3 & 3 \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

Gauss:
$$\begin{pmatrix} 3 & 3 \\ 3 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \rightarrow \begin{array}{l} X_1 = -X_2 \\ X_2 = t \end{array}$$
 (frivar.) Egenveltorerne: $X_1 = \begin{pmatrix} -t \\ t \end{pmatrix} = t \begin{pmatrix} -1 \\ 1 \end{pmatrix}$, 6 t $\neq 0$.

$$\mathbf{A} = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$$

Egenveltorer horande til
$$\lambda_2 = 4$$
:
 $A - \lambda_2 I = A - 4I = \begin{pmatrix} -3 & 3 \\ 3 & -3 \end{pmatrix}$, dus. (as $\begin{pmatrix} -3 & 3 \\ 3 & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

Egenveltorer horende fil
$$\lambda_z = 4$$
:

 $A - \lambda_z T = A - 4I = \begin{pmatrix} -3 & 3 \\ 3 & -3 \end{pmatrix}$, dus. (os $\begin{pmatrix} -3 & 3 \\ 3 & -3 \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

Gauss: $\begin{pmatrix} -3 & 3 \\ 3 & -3 \end{pmatrix} \sim \begin{pmatrix} 1 - 1 \\ 0 & 0 \end{pmatrix} \rightarrow \begin{array}{c} x_1 = x_2 \\ x_2 = t \\ -x_2 = t \end{array}$

Egenveltorer: $\begin{array}{c} x_1 = x_2 \\ x_2 = t \\ -x_3 = t \end{array}$

Grafisk:
$$x_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$x_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$x_1 = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$$

De to egenveltorer er ortogonale!

Generel
$$2 \times 2$$
 matrix

Generel
$$2 \times 2$$
 matrix: $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$

Karakteristisk polynomium:

$$p(\lambda) = \begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{vmatrix} = (a_{11} - \lambda)(a_{22} - \lambda) - a_{12} a_{21}$$

$$= \lambda^{2} - (a_{11} + a_{22}) \lambda + (a_{11} a_{22} - a_{12} a_{21})$$

Hvis λ_1, λ_2 er rødder i $p(\lambda)$ (altså egenværdier for **A**) har vi:

$$p(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2) = \lambda^2 - (\lambda_1 + \lambda_2)\lambda + \lambda_1\lambda_2$$

Altså har vi generelt om egenværdier (når de eksisterer):

$$\rightarrow$$
 (i) $\lambda_1 + \lambda_2 = a_{11} + a_{22} = \operatorname{tr}(\mathbf{A})$ "sporet" (trace) af \mathbf{A}

(ii)
$$\lambda_1 \lambda_2 = a_{11} a_{22} - a_{12} a_{21} = |\mathbf{A}|$$

(gælder også hvis $p(\lambda)$ har en dobbeltrod, altså hvis $\lambda_1 = \lambda_2$)

Heraf fås resultater om fortegn på egenværdierne, se nederst s.20

Kan vi se på en matrix, om den har (reelle) egenværdier?

$$p(\lambda) = \lambda^2 - (a_{11} + a_{22})\lambda + (a_{11}a_{22} - a_{12}a_{21})$$

Diskriminant:

$$D = (a_{11} + a_{22})^2 - 4(a_{11}a_{22} - a_{12}a_{21})$$

$$= a_{11}^2 + a_{22}^2 + 2a_{11}a_{22} - 4a_{11}a_{22} + 4a_{12}a_{21}$$

$$= (a_{11} - a_{22})^2 + 4a_{12}a_{21}$$

$$= (a_{11} - a_{22})^2 + 4a_{12}a_{21}$$

For symmetrisk matrix $(a_{12} = a_{21})$ er $D \ge 0$

En symmetrisk 2×2 matrix har altid mindst en (reel) egenværdi!

NB: Symmetri er en tilstrækkelig betingelse for eksistens af (reelle) egenværdier, men *ikke* en nødvendig betingelse. Ikke-symmetriske matricer kan sagtens have (reelle) egenværdier.

Øvelse

$$\mathbf{A} = \begin{pmatrix} 1 & 4 \\ \frac{1}{2} & 2 \end{pmatrix}$$

- 1) Find alle egenværdier
- 2) Find for hver egenværdi alle de tilhørende egenvektorer pingo.coactum.de (131061):

 Stem på de vektorer, der er egenvektorer

$$\mathbf{A} = \begin{pmatrix} 1 & 4 \\ \frac{1}{2} & 2 \end{pmatrix}$$
Egenvelt. horerde til $\lambda_2 = 3$: $\begin{pmatrix} -2 & 4 \\ \frac{1}{2} & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
Egenveltorer: $X_2 = t \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ to.

PINGO: (-4) og (-4) er egenvehtorer, de purige er ihke EXTRA: (1 4) har mindst en egen værdi netophuis det karalit. pol. har mindst en rod, dus. netop hvis distrininanten er større end eller lig nol. $P(\lambda) = \begin{vmatrix} 1-\lambda & 4 \\ \frac{9}{2} & 2-\lambda \end{vmatrix} = (1-\lambda)(2-\lambda) - 2q$ = $\lambda^2 - 3\lambda + 2(1-q)$ $D = 9 - 4 \cdot 2(1-a) = 1 + 8a.$ 0.20 (=) 1+89.20 (=) $0.2-\frac{1}{8}$

Egenværdier og egenvektorer for 3x3 matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 2 & 2 & 3 \end{pmatrix}$$

Vi finder alle egenværdier og egenvektorerne hørende til en af egenværdierne

Det karakteristiske polynomium:

$$p(\lambda) = |\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} 1 - \lambda & 0 & 2 \\ 0 & 1 - \lambda & 2 \\ 2 & 2 & 3 - \lambda \end{vmatrix}$$

$$= (1 - \lambda) \left((1 - \lambda)(3 - \lambda) - 4 \right) + 2 \left(-7(1 - \lambda) \right)$$

$$= (1 - \lambda) \left((1 - \lambda)(3 - \lambda) - 4 \right)$$

$$p(\lambda) = (1 - \lambda)(\lambda^2 - 4\lambda - 5)$$
 Egenværdier: $\lambda_1 = -1$, $\lambda_2 = 1$, $\lambda_3 = 5$ (nulreglen + dishriminant metoden)

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 2 & 2 & 3 \end{pmatrix}$$

Lad os finde egenvektorerne hørende til egenværdien
$$\lambda = -1$$

Vi skal løse flg lineære ligningssystem: $(\mathbf{A} + \mathbf{I})\mathbf{x} = \mathbf{0}$
 $(A - \sum \mathbf{I})\underline{x}$

$$\begin{pmatrix} 2 & 0 & 2 \\ 0 & 2 & 2 \\ 2 & 2 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$A + \mathbf{T}$$

Fauss:

$$\begin{pmatrix} 2 & 0 & 2 \\ 0 & 2 & 2 \end{pmatrix}$$
 realle op. $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 2 & 2 & 4 \end{pmatrix}$ $\sim \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} X_1 = -X_3 \\ X_2 = -X_3 \\ X_3 = t & (fri vor.) \end{pmatrix}$

Egenventorer:
$$X = \begin{pmatrix} -t \\ -t \end{pmatrix} = t \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$
, $t \neq 0$

Tilsvarende fås egenvektorer for hver af de to andre egenværdier

For
$$\lambda = 1$$
: $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = t \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ For $\lambda = 5$: $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = t \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$ $(t \neq 0)$

Generelle resultater (n x n matricer)

(i) $\lambda_1 + \lambda_2 + \ldots + \lambda_n = a_{11} + a_{22} + \ldots + a_{nn} = tr(\mathbf{A})$ (ii) $\lambda_1 \cdot \lambda_2 \cdot \ldots \cdot \lambda_n = |\mathbf{A}|$ Bemærk, at $p(\lambda)$ kan skrives: $p(\lambda) = (-1)^n (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n)$ Fx. hvis $p(\lambda)$ har en dobbeltrod som i flg simple eksempel: $\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ $p(\lambda) = (1-\lambda)(1-\lambda)(2-\lambda) = -(\lambda-1)(\lambda-1)(\lambda-2)$ Egen værdier: $\lambda_1 = 1, \quad \lambda_2 = 1, \quad \lambda_3 = 2$ Resultaterne gælder også, hvis nogle af λ_i 'erne er ens.

For $n \times n$ matrix **A** med n (reelle) egenværdier: "sporet" (trace) af **A**

En symmetrisk $n \times n$ matrix har altid mindst en (reel) egenværdi! Hvis de tælles "med multiplicitet", har den netop n (reelle) egenværdier

Anvendelse ("Markov kæde")

Befolkning inddelt i indkomstgrupper: Lav, Mellem, Høj I løbet af periode (fx 10 år) bevægelse ml. grupperne:

Dette system kan beskrives vha "Transitions-matrix":

$$\mathbf{T} = \begin{pmatrix} \frac{4}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{5} & \frac{3}{5} & \frac{1}{5} \\ 0 & \frac{1}{5} & \frac{3}{5} \end{pmatrix}$$

Antag initial fordeling af befolkning (t=0):

$$\mathbf{v}_0 = \begin{pmatrix} v_L \\ v_M \\ v_H \end{pmatrix} \qquad (\text{hvor } v_L + v_M + v_H = 1)$$

Efter en periode (t=1) er fordelingen så:

$$\mathbf{v}_{1} = \mathbf{T}\mathbf{v}_{0} = \begin{pmatrix} \frac{4}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{5} & \frac{3}{5} & \frac{1}{5} \\ 0 & \frac{1}{5} & \frac{3}{5} \end{pmatrix} \begin{pmatrix} v_{L} \\ v_{M} \\ v_{H} \end{pmatrix} = \begin{pmatrix} \frac{4}{5}v_{L} + \frac{1}{5}v_{M} + \frac{1}{5}v_{H} \\ \frac{1}{5}v_{L} + \frac{3}{5}v_{M} + \frac{1}{5}v_{H} \\ 0v_{L} + \frac{1}{5}v_{M} + \frac{3}{5}v_{H} \end{pmatrix}$$

Efter to perioder (t=2) er den: $\mathbf{v}_2 = \mathbf{T}\mathbf{v}_1 = \mathbf{T}^2\mathbf{v}_0$

$$\mathbf{v}_2 = \mathbf{T}\mathbf{v}_1 = \mathbf{T}^2\mathbf{v}_0$$

Og efter m perioder (t=m): $\mathbf{v}_m = \mathbf{T}^m \mathbf{v}_0$

$$\mathbf{v}_m = \mathbf{T}^m \mathbf{v}_0$$

$$\mathbf{v}_m = \mathbf{T}^m \mathbf{v}_0$$

Hvis vi vil kende fordelingen efter m perioder, skal vi altså udregne matrix-potensen \mathbf{T}^m

Hvad sker der "på lang sigt?"

• "Steady state"-fordeling $\mathbf{s} \in \mathbb{R}^3$ (med $s_L + s_M + s_H = 1$):

$$Ts = 5$$

- ullet Egenvektor for $\, {f T} \,$ hørende til egenværdien 1 !!!
- For alle initial for delinger \mathbf{v}_0 vil

$$\mathbf{T}^m \mathbf{v}_0 \to \mathbf{s} \quad \text{når} \quad m \to \infty$$

• På lang sigt vil indkomstfordelingen altså være givet ved steady state-fordelingen S

I vores eksempel med transitionsmatrix

$$\mathbf{T} = \begin{pmatrix} \frac{4}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{5} & \frac{3}{5} & \frac{1}{5} \\ 0 & \frac{1}{5} & \frac{3}{5} \end{pmatrix}$$

er egenvektorerne hørende til egenværdien 1 på

formen

hørende til egenværdien 1 på
$$(T-l\cdot T) \times = 0$$

$$\times = t \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$
 $(t \neq 0)$

Steady state-fordelingen er den egenvektor, der opfylder, at koordinaterne summer til 1:

$$\mathbf{s} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{3} \\ \frac{1}{6} \end{pmatrix}$$

Diagonalisering af matricer (1.6)

Lad A være en $n \times n$ matrix

A siges at være diagonaliserbar (diagonalizable), hvis der findes en invertibel $n \times n$ matrix P og en $n \times n$ diagonalmatrix D så

$$\mathbf{P}^{-1}\mathbf{AP} = \mathbf{D}$$

Hvorfor er vi interesserede i diagonaliserbare matricer?

Hvilke matricer er diagonaliserbare?

Hvordan finder vi **P** og **D**?

Matrixpotenser for diagonaliserbare matricer:

Hvis
$$\mathbf{P}^{-1}\mathbf{AP} = \mathbf{D}$$
, så har vi $\mathbf{A} = \mathbf{PDP}^{-1}$

Heraf får vi:

$$\mathbf{A}^m = (\mathbf{P}\mathbf{D}\mathbf{P}^{-1})(\mathbf{P}\mathbf{D}\mathbf{P}^{-1})\dots(\mathbf{P}\mathbf{D}\mathbf{P}^{-1}) = \mathbf{P}\mathbf{D}^m\mathbf{P}^{-1}$$

Dette gør det forholdsvis nemt at udregne \mathbf{A}^m når vi kender \mathbf{P} og \mathbf{D} , idet vi har:

$$\mathbf{D}^{m} = \begin{pmatrix} d_{11} & 0 & \cdots & 0 \\ 0 & d_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{nn} \end{pmatrix}^{m} = \begin{pmatrix} d_{11}^{m} & 0 & \cdots & 0 \\ 0 & d_{22}^{m} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{nn} \end{pmatrix}$$

Theorem 1.6.1

En $n \times n$ matrix **A** er diagonaliserbar hvis og kun hvis den har n lineært uafhængige egenvektorer $\mathbf{x}_1, \dots, \mathbf{x}_n$. I så fald har vi

$$\mathbf{P}^{-1}\mathbf{AP} = \operatorname{diag}(\lambda_1, \dots, \lambda_n),$$

hvor \mathbf{P} er matricen med søjlerne $\mathbf{x}_1, \dots, \mathbf{x}_n$ og $\lambda_1, \dots, \lambda_n$ er de tilhørende egenværdier.

For at afgøre om **A** er diagonaliserbar og evt finde **P** og **D** vha denne sætning, må vi altså i gang med at angribe egenværdiproblemet!

En $n \times n$ matrix **P** siges at være ortogonal hvis $\mathbf{P'} = \mathbf{P}^{-1}$, altså hvis $\mathbf{P'P} = \mathbf{PP'} = \mathbf{I}$.

Theorem 1.6.2 ("Spektralsætn. for symm. matricer")

For enhver symmetrisk $n \times n$ matrix **A** gælder:

- (a) **A** har n (reelle) egenværdier $\lambda_1, \ldots, \lambda_n$, når de tælles med multiplicitet
- (b) Egenvektorer der hører til forskellige egenværdier er ortogonale
- (c) Der eksisterer en ortogonal matrix \mathbf{P} så $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$

P's søjlevektorer $\mathbf{v}_1, \dots, \mathbf{v}_n$ er egenvektorer hørende til egenværdierne $\lambda_1, \dots, \lambda_n \mod \|\mathbf{v}_1\| = \dots = \|\mathbf{v}_n\| = 1$.

Eksempel fra slide 13-15:

Eksempel fra sinde 13-15:
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 2 & 2 & 3 \end{pmatrix}$$
Symmetrisk matrix!

Vi vil nu diagionalisere den - og heldigvis har vi

Vi vil nu diagionalisere den - og heldigvis har vi allerede gjort en stor del af arbejdet...

Egenværdier:
$$\lambda_1 = -1$$
, $\lambda_2 = 1$, $\lambda_3 = 5$

Tilhørende egenvektorer:

$$\mathbf{x}_1 = t \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} \qquad \mathbf{x}_2 = t \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \qquad \mathbf{x}_3 = t \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 2 & 2 & 3 \end{pmatrix} \qquad \mathbf{x}_1 = -1, \ \lambda_2 = 1, \ \lambda_3 = 5$$

$$\mathbf{x}_1 = t \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} \quad \mathbf{x}_2 = t \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \quad \mathbf{x}_3 = t \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$

Vi mangler bare at "normalisere" egenvektorerne, dvs. for hver af dem at vælge t, så længden/normen er lig 1

$$P = \begin{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\$$

$$D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$

 $P^{-1}AP=D$

27