B Quantum Module

Figure 1 1/8th Octahedron (red) in the regular Octahedron.

Figure 2 Subdivisions of the 1/8th Octahedron into 6 A (blue) and 6 B (green) Quantum Modules.

Figure 3 Collection of 6 (3+ and 3-) B Quantum Modules.

Figure 4 Different orientations of a positive and negative B Quantum Module pair.

Figure 5 Single B Quantum Module within regular Octahedron.

Topology:

Vertices = 4

Edges = 6

Faces = 4 unequal triangles

Lengths:

EL ≡ Regular Tetrahedron edge length = Regular Octahedron edge length.

 $V1 \equiv Octahedron vertex.$

 $V2 \equiv Octahedron mid-edge point.$

 $V3 \equiv Half$ way from Octahedron center of volume to Octahedron face center.

 $V4 \equiv Octahedron center of volume.$

Edge Lengths:

$$V1.V2 = \frac{1}{2} EL$$

$$V1.V3 = \frac{3}{2\sqrt{6}}$$
 EL $\cong 0.612\ 372\ 436$ EL = DVV_{TETRAHEDRON}

$$V1.V4 = \frac{1}{\sqrt{2}}$$
 EL $\cong 0.707\ 106\ 781$ EL = DVV_{OCTAHEDRON}

$$V2.V3 = \frac{1}{2\sqrt{2}}$$
 EL ≈ 0.353553391 EL = DVE_{TETRAHEDRON}

$$V2.V4 = \frac{1}{2} EL = 0.5 EL = DVE_{OCTAHEDRON}$$

$$V3.V4 = \frac{1}{2\sqrt{6}}$$
 EL $\approx 0.204\ 124\ 145$ EL $= DVF_{TETRAHEDRON}$

Center of Face to Vertex:

DF(V1.V2.V3)V(V1) =
$$\frac{1}{2\sqrt{2}}$$
 EL ≈ 0.353553391 EL

DF(V1.V2.V3)V(V2) =
$$\frac{1}{2\sqrt{6}}$$
 EL \approx 0.204 124 145 EL

DF(V1.V2.V3)V(V3) =
$$\frac{1}{2\sqrt{3}}$$
 EL \cong 0.288 675 135 EL

DF(V1.V2.V4)V(V1) =
$$\frac{\sqrt{5}}{6}$$
 EL \approx 0.372 677 996 EL

DF(V1.V2.V4)V(V2) =
$$\frac{\sqrt{2}}{6}$$
 EL \approx 0.235 702 260 EL

DF(V1.V2.V4)V(V4) =
$$\frac{\sqrt{5}}{6}$$
 EL \approx 0.372 677 996 EL

DF(V1.V3.V4)V(V1) =
$$\frac{\sqrt{41}}{6\sqrt{6}}$$
 EL $\approx 0.435 677 421$ EL

DF(V1.V3.V4)V(V3) =
$$\frac{1}{3\sqrt{3}}$$
 EL ≈ 0.192450090 EL

DF(V1.V3.V4)V(V4) =
$$\frac{\sqrt{17}}{6\sqrt{6}}$$
 EL ≈ 0.280541804 EL

DF(V2.V3.V4)V(V2) =
$$\frac{\sqrt{17}}{6\sqrt{6}}$$
 EL $\approx 0.280 541 804$ EL

DF(V2.V3.V4)V(V3) =
$$\frac{1}{6\sqrt{3}}$$
 EL $\approx 0.096\ 225\ 045\ EL$

DF(V2.V3.V4)V(V4) =
$$\frac{\sqrt{11}}{6\sqrt{6}}$$
 EL $\approx 0.225 667 733$ EL

Center of Face to Mid-edge:

DF(V1.V2.V3)E(V1.V2) =
$$\frac{1}{4\sqrt{3}}$$
 EL ≈ 0.144337567 EL

DF(V1.V2.V3)E(V1.V3) =
$$\frac{1}{4\sqrt{6}}$$
 EL ≈ 0.102062073 EL

DF(V1.V2.V3)E(V2.V3) =
$$\frac{1}{4\sqrt{2}}$$
 EL ≈ 0.176776695 EL

DF(V1.V2.V4)E(V1.V2) =
$$\frac{\sqrt{5}}{12}$$
 EL \approx 0.186 338 998 EL

DF(V1.V2.V4)E(V1.V4) =
$$\frac{1}{6\sqrt{2}}$$
 EL \approx 0.117 851 130 EL

DF(V1.V2.V4)E(V2.V4) =
$$\frac{\sqrt{5}}{12}$$
 EL ≈ 0.186338998 EL

DF(V1.V3.V4)E(V1.V3) =
$$\frac{\sqrt{17}}{12\sqrt{6}}$$
 EL $\approx 0.140\ 270\ 902$ EL

DF(V1.V3.V4)E(V1.V4) =
$$\frac{1}{6\sqrt{3}}$$
 EL ≈ 0.096 225 045 EL

DF(V1.V3.V4)E(V3.V4) =
$$\frac{\sqrt{41}}{12\sqrt{6}}$$
 EL \approx 0.217 838 710 EL

DF(V2.V3.V4)E(V2.V3) =
$$\frac{\sqrt{11}}{12\sqrt{6}}$$
 EL ≈ 0.112833867 EL

DF(V2.V3.V4)E(V2.V4) =
$$\frac{1}{12\sqrt{3}}$$
 EL ≈ 0.048 112 522 EL

DF(V2.V3.V4)E(V3.V4) =
$$\frac{\sqrt{17}}{12\sqrt{6}}$$
 EL $\approx 0.140\ 270\ 902$ EL

Center of Volume to Vertex:

DVV(V1) =
$$\frac{\sqrt{71}}{8\sqrt{6}}$$
 EL $\approx 0.429 995 155$ EL

DVV(V2) =
$$\frac{\sqrt{23}}{8\sqrt{6}}$$
 EL ≈ 0.244736253 EL

DVV(V3) =
$$\frac{\sqrt{5}}{8\sqrt{2}}$$
 EL $\approx 0.197 642 354$ EL

DVV(V4) =
$$\frac{\sqrt{13}}{8\sqrt{2}}$$
 EL ≈ 0.244736253 EL

Center of Volume to Mid-edge:

DVE(V1.V2) =
$$\frac{\sqrt{23}}{8\sqrt{6}}$$
 EL ≈ 0.244736253 EL

DVE(V1.V3) =
$$\frac{\sqrt{7}}{8\sqrt{6}}$$
 EL $\approx 0.135\ 015\ 431\ EL$

DVE(V1.V4) =
$$\frac{\sqrt{7}}{8\sqrt{6}}$$
 EL $\approx 0.135\ 015\ 431\ EL$

DVE(V2.V3) =
$$\frac{\sqrt{7}}{8\sqrt{6}}$$
 EL $\approx 0.135\ 015\ 431\ EL$

DVE(V2.V4) =
$$\frac{\sqrt{7}}{8\sqrt{6}}$$
 EL $\approx 0.135\ 015\ 431\ EL$

DVE(V3.V4) =
$$\frac{\sqrt{23}}{8\sqrt{6}}$$
 EL ≈ 0.244736253 EL

Center of Volume to Face Center:

DVF(V1.V2.V3) =
$$\frac{\sqrt{13}}{24\sqrt{2}}$$
 EL $\approx 0.106\ 229\ 573$ EL

DVF(V1.V2.V4) =
$$\frac{\sqrt{5}}{24\sqrt{2}}$$
 EL $\approx 0.065 880 785$ EL

DVF(V1.V3.V4) =
$$\frac{\sqrt{23}}{24\sqrt{6}}$$
 EL ≈ 0.081578751 EL

DVF(V2.V3.V4) =
$$\frac{\sqrt{71}}{24\sqrt{6}}$$
 EL ≈ 0.143331718 EL

Areas:

$$V1.V2.V3 = \frac{1}{8\sqrt{2}} EL^2 \cong 0.088388348 EL^2$$

$$V1.V2.V4 = \frac{1}{8} EL^2 = 0.125 EL^2$$

$$V1.V3.V4 = \frac{1}{12\sqrt{2}} EL^2 \approx 0.058925565 EL^2$$

$$V2.V3.V4 = \frac{1}{24\sqrt{2}} EL^2 \cong 0.029 462 783 EL^2$$

Total face area =
$$\frac{1+\sqrt{2}}{8}$$
 EL² ≈ 0.301776695 EL²

$$= \frac{1+\sqrt{2}}{2} (V1.V2)^{2} \approx 1.207 \ 106 \ 781 (V1.V2)^{2}$$

Volume:

Cubic measure volume equation =
$$\frac{1}{144\sqrt{2}}$$
 EL³ $\approx 0.004 \ 910 \ 464 \ EL$ ³.

Synergetics' Tetra-volume equation =
$$\frac{1}{24}$$
 EL³ $\approx 0.041 666 667$ EL³

Angles:

Face Angles:

Sum of face angles = 720°

Face V1.V2.V3:

$$V2.V1.V3 = \arcsin\left(\frac{1}{\sqrt{3}}\right) \approx 35.264\ 389\ 683^{\circ}$$

$$V1.V2.V3 = 90^{\circ}$$

$$V1.V3.V2 = \arccos\left(\frac{1}{\sqrt{3}}\right) \approx 54.735 610 317^{\circ}$$

Face V1.V2.V4:

$$V2.V1.V4 = 45^{\circ}$$

$$V1.V2.V4 = 90^{\circ}$$

$$V1.V4.V2 = 45^{\circ}$$

Face V1.V3.V4:

$$V3.V1.V4 = \arcsin\left(\frac{1}{\sqrt{3}}\right) - \arccos\left(\frac{2\sqrt{2}}{3}\right) \approx 15.793\ 169\ 048^{\circ}$$

$$V1.V3.V4 = 90^{\circ} + \arccos\left(\frac{2\sqrt{2}}{3}\right) \approx 109.471\ 220\ 634^{\circ}$$

$$V1.V4.V3 = \arccos\left(\frac{1}{\sqrt{3}}\right) \approx 54.735\ 610\ 317^{\circ}$$

Face V2.V3.V4:

$$V3.V2.V4 = \arccos\left(\frac{2\sqrt{2}}{3}\right) \cong 19.471\ 220\ 634^{\circ}$$

$$V2.V3.V4 = 90^{\circ} + \arccos\left(\frac{\sqrt{2}}{\sqrt{3}}\right) \cong 125.264\ 389\ 683^{\circ}$$

$$V2.V4.V3 = \arcsin\left(\frac{1}{\sqrt{3}}\right) \cong 35.264\ 389\ 683^{\circ}$$

Central Angles (identified by edge labels):

$$V1.V2 = \arccos\left(\frac{-1}{\sqrt{1633}}\right) \approx 91.417\ 992\ 307^{\circ}$$

$$V1.V3 = \arccos\left(\frac{-29\sqrt{12}}{6\sqrt{355}}\right) \approx 152.702\ 163\ 172^{\circ}$$

$$V1.V4 = \arccos\left(\frac{-41\sqrt{12}}{6\sqrt{923}}\right) \approx 141.183\ 029\ 765^{\circ}$$

$$V2.V3 = \arccos\left(\frac{-5\sqrt{12}}{6\sqrt{115}}\right) \approx 105.616\ 129\ 405^{\circ}$$

$$V2.V4 = \arccos\left(\frac{-17\sqrt{12}}{6\sqrt{299}}\right) \cong 124.583\ 973\ 480^{\circ}$$

$$V3.V4 = \arccos\left(\frac{19}{3\sqrt{65}}\right) \approx 38.228\ 117\ 494^{\circ}$$

<u>Dihedral Angles (identified by edge labels):</u>

V1.V2 =
$$\arcsin\left(\frac{\sqrt{2}}{\sqrt{3}}\right) - \arccos\left(\frac{\sqrt{2}}{\sqrt{3}}\right) \approx 19.471\ 220\ 634^{\circ}$$

$$V1.V3 = 120^{\circ}$$

$$V1.V4 = 45^{\circ}$$

$$V2.V3 = 90^{\circ}$$

$$V2.V4 = 90^{\circ}$$

$$V3.V4 = 60^{\circ}$$

Vertex Coordinates (X, Y, Z):

$$V1 = \left(\frac{-3}{8}, \frac{-1}{4\sqrt{3}}, \frac{-3}{8\sqrt{6}}\right) EL$$

$$\approx (-0.375, -0.144337567, -0.153093109) EL$$

$$V2 = \left(\frac{1}{8}, \frac{-1}{4\sqrt{3}}, \frac{-3}{8\sqrt{6}}\right) EL$$

$$\approx (0.125, -0.144 \ 337 \ 567, -0.153 \ 093 \ 109) EL$$

$$V3 = \left(\frac{1}{8}, \frac{1}{4\sqrt{3}}, \frac{1}{8\sqrt{6}}\right) EL$$

$$\approx (0.125, 0.144 337 567, 0.051 031 036) EL$$

$$V4 = \left(\frac{1}{8}, \frac{1}{4\sqrt{3}}, \frac{5}{8\sqrt{6}}\right) EL$$

$$\approx (0.125, 0.144 337 567, 0.255 155 182) EL$$

Unfolded Vertex Coordinates (X, Y):

Figure 7 Layout for the B Quantum Module.

$$\alpha = \arccos\left(\frac{\sqrt{2}}{\sqrt{3}}\right) \approx 35.264\ 389\ 683^{\circ}$$

$$\beta = 45^{\circ} + \arccos\left(\frac{\sqrt{2}}{\sqrt{3}}\right) \approx 99.735 61^{\circ}$$

$$V1 = (0.5, 0.5) EL$$

$$V2 = (0.5, 0.0) EL$$

$$V3_1 = \left(\frac{1}{2\sqrt{6}}\cos(\beta), \frac{1}{2\sqrt{6}}\sin(\beta)\right) EL \cong (-0.03451, 0.201185) EL$$

$$V3_2 = \left(\frac{1}{2\sqrt{6}}\cos(\alpha), \frac{-1}{2\sqrt{6}}\sin(\alpha)\right) EL \cong (0.166\ 667, -0.117\ 851) EL$$

$$V3_3 = \left(\frac{1+\sqrt{2}}{2\sqrt{2}}, 0.0\right) EL \cong (0.853553, 0.0) EL$$

$$V4 = (0.0, 0.0) EL$$

Comments:

The B Quantum Module is also constructed from 1/8th Octahedron, which is a sub-polyhedron of the Octahedron.

There are 2 different B Quantum Modules labeled B+ and B-. These are mirror images of each other. The B+ Quantum Model can be opened and folded into the B- Quantum Model and visa versa.

The B Quantum Module does not fill all-space by itself.

The dual of the B Quantum Module is another (different) irregular Tetrahedron which is not considered further in this text.