Теорема существования и единственности решения дифференциального уравнения

А. И. Буфетов, Н. Б. Гончарук, Ю. С. Ильяшенко

10 февраля 2015 г.

В этом параграфе мы докажем теорему, которой пользовались в этом семестре уже много раз — теорему существования и единственности решения дифференциального уравнения.

Рассмотрим уравнение

$$\dot{x} = f(t, x),\tag{1}$$

где функция $f \colon \Omega \to \mathbb{R}^n$ определена на открытом множестве $\Omega \subset \mathbb{R} \times \mathbb{R}^n$.

Теорема 1. Пусть функция f непрерывна на Ω и липшицева по переменной x c константой Липшица L при любом фиксированном значении t:

$$|f(x,t) - f(y,t)| \le L|x - y|.$$

Тогда для любой точки $(t_0, x_0) \in \Omega$ уравнение (1) с начальным условием $x(t_0) = x_0$ имеет единственное локальное решение.

Следствие 2. В частности, для линейных уравнений $\dot{x} = A(t)x + b(t)$ с непрерывной правой частью локальное решение существует и единственно. Действительно, правая часть при фиксированном t — линейная функция, а потому липшицева.

В основе доказательства существования решения лежит метод Пикара (метод Пикара-Линделёфа), который позволяет приближённо находить решения уравнения (1). Этот метод описан в разделе 1.2.3 на примере уравнения $\dot{x}=x$; здесь мы кратко напомним его.

Метод Пикара

Заметим, что дифференциальное уравнение (1) с начальным условием $x(t_0)=x_0$ равносильно интегральному уравнению

$$x(t) = x_0 + \int_{t_0}^t f(\tau, x(\tau)) d\tau.$$
 (2)

Упражнение 1. Докажите это. Откуда следует, что функция x(t), удовлетворяющая интегральному уравнению, непрерывна? Дифференцируема?

Рассмотрим оператор A, который функцию ϕ переводит в функцию $(A\phi)$:

$$(A\phi)(t) = x_0 + \int_{t_0}^t f(\tau, \phi(\tau)) d\tau.$$
(3)

Тогда искомое решение дифференциального уравнения — это неподвижная точка оператора A.

Метод Пикара заключается в том, чтобы искать эту неподвижную точку как предел последовательности ϕ_n :

$$\phi_0(t) \equiv x_0, \quad \phi_1 = A\phi_0, \quad \phi_2 = A\phi_1, \dots$$

Наша задача — доказать, что такой метод работает в общем случае.

Мы приведем два доказательства теоремы 1. Для первого из них нам понадобится понятие полного метрического пространства и принцип сжимающих отображений.

1 Напоминание: полные метрические пространства и принцип сжимающих отображений.

Материал этого раздела полностью или частично содержался в курсе математического анализа. Читатель, знакомый с принципом сжимающих отображений в полном метрическом пространстве, может его пропустить.

Метрическое пространство — это множество X, на котором определено расстояние d(x,y) между его точками $x,y\in X$.

Определение 3. Пара (X, d) из множества X и функции $d: X \times X \to \mathbb{R}$ называется метрическим пространством с метрикой d, если функция d удовлетворяет следующим условиям.

- симметричность: d(x, y) = d(y, x).
- положительность: $d(x,y) \ge 0$; равенство достигается тогда и только тогда, когда x = y.
- неравенство треугольника: $d(x,y) + d(y,z) \ge d(x,z)$.

В метрических пространствах можно ввести определение сходящейся и фундаментальной последовательностей, дословно повторяющие аналогичные определения для отрезка.

Определение 4. Последовательность $\{x_n\}$ точек метрического пространства (X,d) называется сходящейся к точке a, если $d(x_n,a) \to 0$: другими словами,

$$\forall \varepsilon > 0 \,\exists N \in \mathbb{N} : \forall n > N \quad d(x_n, a) < \varepsilon.$$

Последовательность $\{x_n\}$ точек метрического пространства (X, d) называется ϕ ундаментальной, если с некоторого места точки последовательности близки друг к другу:

$$\forall \varepsilon > 0 \,\exists N \in \mathbb{N} : \, \forall n, m > N \quad d(x_n, x_m) < \varepsilon.$$

Упражнение 2. Докажите, что у последовательности точек метрического пространства может быть не более одного предела.

Упражнение 3. Докажите, что сходящаяся последовательность обязательно фундаментальна.

Упражнение 4. Приведите пример метрического пространства, в котором есть фундаментальная, но не сходящаяся последовательность.

Указание: если из метрического пространства выкинуть несколько точек, то свойство фундаментальности последовательности не нарушится, а вот предел может исчезнуть.

Как известно, фундаментальная последовательность вещественных чисел (а также точек \mathbb{R}^n) всегда имеет предел. Это свойство выполнено для достаточно широкого класса метрических пространств.

Onpedenehue 5. Метрическое пространство (X,d) называется nonhum, если любая фундаментальная последовательность точек этого пространства имеет предел.

Упражнение 5. Являются ли

- 1. (\mathbb{R}^2, d) , $\partial e \ d((x_1, x_2), (y_1, y_2)) = |x_1 y_1| + |x_2 y_2|$;
- 2. (\mathbb{R}^2,d) , $\operatorname{ede} d((x_1,x_2),(y_1,y_2)) = \max(|x_1-y_1|,|x_2-y_2|);$
- 3. (\mathbb{N},d) , где $d(n,m) = \frac{|n-m|}{1+|n-m|}$ (заметьте, что $d(n,m) \leq 1$, то есть все натуральные числа лежат внутри некоторого единичного шара).
- 4. (X,d), где $X=\{v\in\mathbb{R}^2\mid |v|<1\}$, $d(v_1,v_2)=\|v_1-v_2\|$ (здесь $\|\cdot\|$ обычная евклидова норма)

метрическими пространствами? полными метрическими пространствами?

Теорему 1 мы будем доказывать с помощью принципа сжимающих отображений.

Определение 6. Отображение A метрического пространства в себя называется *сжимающим*, если для некоторой константы $\alpha, 0 < \alpha < 1$, выполнено

$$d(Ax, Ay) < \alpha d(x, y). \tag{4}$$

Предложение 7 (Принцип сжимающих отображений). Любое сжимающее отображение A полного метрического пространства X в себя имеет единственную неподвижную точку x, Ax = x.

Доказательство. Если неподвижных точек хотя бы две — x и y, то d(Ax, Ay) = d(x, y), и неравенство (4) не выполнено.

Докажем, что неподвижная точка существует. Возьмём произвольную точку $x_0 \in X$ и последовательность её образов $\{x_n\}$ под действием A: $x_n = Ax_{n-1}$. Покажем, что предел этой последовательности является неподвижной точкой.

Действительно, этот предел существует: ведь для любых n < m

$$d(x_n, x_m) \leqslant \sum_{k=n}^{m-1} d(x_k, x_{k+1}) \leqslant \sum_{k=n}^{m-1} \alpha^k d(x_0, x_1) = d(x_0, x_1) \alpha^n \frac{1 - \alpha^{m-n}}{1 - \alpha} \leqslant d(x_0, x_1) \frac{\alpha^n}{1 - \alpha},$$

а это стремится к нулю при $n \to \infty$. Поэтому последовательность $\{x_n\}$ фундаментальна. Значит, она сходится к некоторой точке x.

Покажем, что x — неподвижная точка A. Действительно, $d(x_{n+1},Ax) \leqslant \alpha d(x_n,x)$, и $d(x_n,x) \to 0$; значит, $d(x_{n+1},Ax) \to 0$. Отсюда следует, что $x_n \to Ax$. Так как у последовательности может быть только один предел, то Ax = x.

2 Доказательство теоремы 1 с помощью принципа сжимающих отображений.

В этом разделе мы приведем первое доказательство теоремы о существовании и единственности решения дифференциального уравнения. Оно основано на том, что оператор A, определенный формулой (3), — сжимающий. Точнее, он сжимает на некотором подмножестве пространства $C([t_0-\varepsilon,t_0+\varepsilon])$ для правильно выбранного ε и правильно выбранной метрики в пространстве $C([t_0-\varepsilon,t_0+\varepsilon])$.

Ключевую роль играет такая оценка:

$$||A\phi(t) - A\psi(t)|| = \left\| \int_{t_0}^t f(\tau, \phi(\tau)) - f(\tau, \psi(\tau)) d\tau \right\| \le \int_{t_0}^t L||\phi(\tau) - \psi(\tau)|| d\tau \le L|t - t_0| \max_{\tau \in [t_0, t]} ||\phi(\tau) - \psi(\tau)||$$
(5)

(здесь $\|\cdot\|$ — обычная евклидова метрика в \mathbb{R}^n). Она подсказывает, что в качестве метрики можно взять такое расстояние между непрерывными функциями: для $\phi, \psi \in C([a,b])$

$$d(\phi, \psi) = \max_{[a,b]} \|\phi(t) - \psi(t)\|.$$
(6)

Эта метрика называется метрикой равномерной сходимости; следующее упражнение мотивирует это название.

Упражнение 6. Последовательность функций сходится в метрическом пространстве (C[a,b],d) тогда и только тогда, когда она равномерно сходится.

Следующее утверждение было доказано в курсе математического анализа. Оно называлось «критерий Коши равномерной сходимости последовательности функций».

Предложение 8. Пространство непрерывных функций C([a,b]) с метрикой (6) полно. Другими словами, фундаментальная (относительно метрики (6)) последовательность функций равномерно сходится.

Доказательность бункций $\{f_n\}$ фундаментальна. Тогда для любого t последовательность $f_n(t)$ тем более фундаментальна, ведь $|f_n(t) - f_m(t)| \leq \max |f_n(t) - f_m(t)| = d(f_n, f_m)$. Значит, при фиксированном t числовая последовательность $f_n(t)$ сходится; её предел обозначим f(t). Осталось заметить, что

$$|f_n(t) - f(t)| = \lim_{m \to \infty} |f_n(t) - f_m(t)|, \text{ if } |f_n(t) - f_m(t)| \leq d(f_n, f_m),$$

поэтому оценка на разность $|f_n(t) - f(t)|$ не зависит от t. Значит, последовательность функций f_n равномерно сходится к f. Функция f непрерывна как равномерный предел непрерывных функций, поэтому принадлежит пространству C([a,b]).

Теперь опишем множество, на котором оператор A сжимает. Рассмотрим такое компактное множество Π , что $(t_0, x_0) \in \Pi \subset \Omega$, и положим $M = \max_{\Pi} \|f\|$. Рассмотрим настолько малое ε , что

- 1. $L\varepsilon < 1$;
- 2. конус $K_{(t_0,x_0)}=\{(t,x)\mid |t-t_0|<arepsilon,\, \|x-x_0\|\leqslant M|t-t_0|\}$ содержится в П.

В качестве пространства, на котором будет действовать A, возьмём пространство Ξ непрерывных функций, графики которых лежат в конусе $K_{(t_0,x_0)}$:

$$\Xi = \{ \phi \in C([t_0 - \varepsilon, t_0 + \varepsilon]) \mid ||\phi(t) - x_0|| \leqslant M|t - t_0| \}.$$

Заметим, что любое решение x(t) дифференциального уравнения (1) с начальным условием $x(t_0) = x_0$, определенное на отрезке $[t_0 - \varepsilon, t_0 + \varepsilon]$, принадлежит пространству Ξ . Действительно, производная функции x(t) равна f(t,x), поэтому её норма не превосходит M; значит, $||x(t) - x_0|| \le M|t - t_0|$.

Упражнение 7. Проверьте, что множество $\Xi \subset C([t_0 - \varepsilon, t_0 + \varepsilon])$ с метрикой (6) полно.

Указание: по предыдущему предложению, любая фундаментальная последовательность в этом множестве имеет предел из $C([t_0-\varepsilon,t_0+\varepsilon])$. Осталось доказать, что этот предел лежит в Ξ , то есть что график предельной функции не может выйти за пределы конуса $K_{(t_0,x_0)}$.

Проверим, что A отображает пространство Ξ в себя и сжимает. Сначала надо проверить, что значение $A\phi$ определено, то есть что значение $f(\tau,\phi(\tau))$ определено для любого $\tau\in[t_0-\varepsilon,t_0+\varepsilon]$. Это следует из того, что все точки графика функции ϕ лежат в конусе $K_{(t_0,x_0)}\subset\Pi\subset\Omega$, на котором f определено. Теперь проверим, что $A\phi\in\Xi$. Понятно, что $A\phi$ — непрерывная функция переменной t; неравенство

$$||A\phi(t) - x_0|| = \left\| \int_{t_0}^t f(\tau, \phi(\tau)) d\tau \right\| \le M|t - t_0|,$$

показывает, что график функции $A\phi$ лежит в конусе $K_{(t_0,x_0)}$. Итак, $A\phi \in \Xi$. В силу неравенства (5), $d(A\phi,A\psi) \leq d(\phi,\psi)L\varepsilon$, поэтому A сжимает.

По теореме о сжимающем отображении, оператор A имеет единственную неподвижную точку. Эта неподвижная точка и является локальным (определённым на $[t_0 - \varepsilon, t_0 + \varepsilon]$) решением уравнения (1). Заодно мы доказали, что на достаточно малой окрестности точки t_0 решение уравнения (1) единственно. Теорема 1 доказана.

Величина ε определяется из требований $L\varepsilon < 1$ и $K_{(t_0,x_0)} \subset \Pi$. В частности, если цилиндр $\Pi = [t_0 - a, t_0 + a] \times B_b(x_0)$ содержится в Ω , и $M = \max_{\Pi} \|f\|$, то в качестве ε можно взять

$$\varepsilon = \min(a, \frac{b}{M}, \frac{1}{L}). \tag{7}$$

3 Другое доказательство теоремы 1.

3.1 Существование решения

Другой способ доказывать существование решения дифференциального уравнения — это исследовать саму последовательность итераций $\phi_0 \equiv x_0, \phi_1 = A\phi_0, \dots$ и доказывать, что эта последовательность сходится. Размер окрестности $[t_0 - \varepsilon, t_0 + \varepsilon]$, на которой мы ищем решение, определим

из условия $\varepsilon = \min(a, \frac{b}{M})$, где a и b удовлетворяют соотношению $\Pi = [t_0 - a, t_0 + a] \times B_b(x_0) \subset \Omega$ и $M = \max_{\Pi} \|f\|$. Заметим, что этот размер больше, чем в предыдущем разделе, и не зависит от значения L.

Докажем, что все функции $\phi_n(t) = A^n \phi_0$ определены, то есть значение $f(\tau, \phi_n(\tau))$ определено при любом $\tau \in [t_0, t]$. Достаточно показать, что $(\tau, \phi_n(\tau)) \in \Pi$: ведь $\Pi \subset \Omega$, а функция f определена на Ω . Утверждение $(\tau, \phi_n(\tau)) \in \Pi$ мы докажем по индукции. База (n=0) очевидна; пусть $(\tau, \phi_{n-1}(\tau)) \in \Pi$, тогда

$$\|\phi_n(\tau) - x_0\| = \left\| \int_{t_0}^{\tau} f(v, \phi_{n-1}(v)) dv \right\| \leqslant |\tau - t_0| M \leqslant \varepsilon M \leqslant b,$$

откуда $(\tau,\phi_n(\tau))\in \Pi.$ Переход индукции доказан.

Чтобы доказать, что последовательность $\{\phi_n\}$ сходится, нам понадобится такая оценка:

Лемма 9. При $t \in [t_0 - \varepsilon, t_0 + \varepsilon]$ выполнено

$$\|\phi_{n+1}(t) - \phi_n(t)\| \le M \frac{L^n}{(n+1)!} |t - t_0|^{n+1}.$$

Заметим, что тот факт, что A сжимает (см. предыдущий раздел), позволяет получить более слабую оценку $\|\phi_{n+1}(t) - \phi_n(t)\| \leq ML^n |t - t_0|^{n+1}$.

Доказательство. Будем считать, что $t>t_0$; в случае $t< t_0$ доказательство аналогично. Утверждение мы докажем индукцией по n. Для n=0 имеем $\|\phi_1(t)-\phi_0(t)\| \leqslant \|\int_{t_0}^t f(\tau,x_0)d\tau\| \leqslant M(t-t_0)$, что и требовалось. Пусть утверждение уже доказано для n=k-1, тогда для n=k получаем

$$\|\phi_{k+1}(t) - \phi_k(t)\| = \left\| \int_{t_0}^t f(\tau, \phi_k(\tau)) - f(\tau, \phi_{k-1}(\tau)) d\tau \right\| \le$$

$$\le L \int_{t_0}^t \|\phi_k(\tau) - \phi_{k-1}(\tau)\| d\tau \le L \cdot M \frac{L^{k-1}}{k!} \int_{t_0}^t (\tau - t_0)^k d\tau = M \frac{L^k}{(k+1)!} (t - t_0)^{k+1}.$$

В последнем неравенстве мы применили предположение индукции.

Из этой леммы следует, что последовательность функций $\phi_n(t)$ равномерно сходится на отрезке $[t_0-\varepsilon,t_0+\varepsilon]$. Действительно, легко оценить $\max_{t\in[t_0-\varepsilon,t_0+\varepsilon]}\|\phi_n(t)-\phi_m(t)\|$ и убедиться, что эта величина стремится к нулю, когда n и m независимо стремятся к бесконечности. Поэтому мы можем воспользоваться предложением 8 и получить, что существует равномерный предел $x(t)=\lim_{n\to\infty}\phi_n(t)$.

Докажем, что он удовлетворяет уравнению (2). Заметим, что

$$\max_{t \in [t_0 - \varepsilon, t_0 + \varepsilon]} \|f(t, \phi_n(t)) - f(t, x(t))\| \leqslant L \max_{t \in [t_0 - \varepsilon, t_0 + \varepsilon]} \|\phi_n(t) - x(t)\|,$$

поэтому $f(t,\phi_n(t))$ равномерно сходится к f(t,x(t)). Перейдем к пределу в равенстве

$$\phi_{n+1}(t) = x_0 + \int_{t_0}^t f(\tau, \phi_n(\tau)) d\tau,$$

пользуясь тем, что под знаком интеграла можно переходить к равномерному пределу. Мы получим, что функция x(t) удовлетворяет равенству (2).

3.2 Единственность локального решения

С помощью таких же соображений, как и в лемме 9, можно доказать и единственность локального решения дифференциального уравнения. Действительно, пусть x и y — два разных решения уравнения (1), определенных на отрезке $[t_0, t_0 + c]$. По индукции можно доказать такую оценку:

$$||A^n x(t) - A^n y(t)|| \le L^n \frac{(t - t_0)^n}{n!} \max_{[t_0, t_0 + c]} ||x(t) - y(t)||.$$
(8)

База индукции (n=0) очевидна. Переход следует из такого неравенства:

$$||A^{n+1}x(t) - A^{n+1}y(t)|| = \left\| \int_{t_0}^t f(\tau, A^n x(\tau)) - f(\tau, A^n y(\tau)) d\tau \right\| \le$$

$$\le L \int_{t_0}^t ||A^n x(\tau) - A^n y(\tau)|| d\tau \le L \frac{L^n}{n!} \int_{t_0}^t (\tau - t_0)^n d\tau \max_{[t_0, t_0 + c]} ||x(t) - y(t)|| =$$

$$= \frac{L^{n+1}}{(n+1)!} (t - t_0)^{n+1} \max_{[t_0, t_0 + c]} ||x(t) - y(t)||. \tag{9}$$

Но правая часть равенства (8) стремится к нулю при $n \to \infty$, а левая часть равна ||x(t) - y(t)||, так как Ax = x, Ay = y. Противоречие.

4 Уточнения теоремы существования и единственности и их следствия.

4.1 Теорема о непрерывной зависимости от начальных условий

Допустим, некоторое дифференциальное уравнение описывает какой-нибудь процесс в природе — например, изменение температуры воздуха. Что, если начальное условие известно нам неточно (с точностью до 0.001 градуса Цельсия)? Насколько сильно мы можем ошибиться в прогнозе температуры?

Первый, достаточно грубый ответ на этот вопрос дает теорема о непрерывной зависимости от начальных условий. Она утверждает, что если достаточно точно померить начальное условие, то можно добиться любой наперед заданной точности прогноза¹. Более точный ответ — производную решения по начальному условию — можно получить с помощью уравнения в вариациях, которое мы обсудим в следующем семестре.

Пусть $x(t, t_0, x_0)$ — решение уравнения (1) с начальным условием $x(t_0) = x_0$.

Теорема 10 (Локальная теорема о непрерывности фазового потока). В условиях теоремы 1 для любой точки $(t_0, x_0) \in \Omega$ существует её окрестность $\tilde{\Pi}$ и $\varepsilon > 0$, такие, что отображение $(t, t_0, x_0) \mapsto x(t, t_0, x_0)$ определено на $[t_0 - \varepsilon, t_0 + \varepsilon] \times \tilde{\Pi}$ и непрерывно по совокупности переменных.

Доказательство. Пусть a, b таковы, что $\Pi_{a,b} = [t_0 - a, t_0 + a] \times B_b(x_0) \subset \Omega$. Пусть $M = \max_{\Pi_{a,b}} \|f\|$. Возьмем маленькое δ , например,

$$\delta = \min(\frac{a}{3}, \frac{b}{2(M+1)}, \frac{1}{2L}). \tag{10}$$

Пусть $\tilde{\Pi} = B_{\delta}((t_0, x_0)).$

Для начальной точки $(t'_0, x'_0) \in \tilde{\Pi}$ мы имеем $\varepsilon = \min(a - \delta, \frac{b - \delta}{M}, \frac{1}{L})$ (по формуле (7)), так как параллеленинед $\Pi_{a-\delta,b-\delta}$ с центром в точке (t'_0, x'_0) лежит в Ω . Значит, соответствующее решение определено на интервале $[t'_0 - \varepsilon, t'_0 + \varepsilon] \supset [t_0 - \varepsilon + \delta, t_0 + \varepsilon - \delta]$. Положим $\varepsilon' = \varepsilon - \delta$; заметим, что $\varepsilon' > 0$ (именно здесь мы используем условие (10)).

Для каждого начального условия $(t'_0, x'_0) \in \tilde{\Pi}$ рассмотрим последовательность итераций $\phi_n(t)$ на отрезке $[t_0 - \varepsilon', t_0 + \varepsilon']$; обозначим её $\phi_n(t, t'_0, x'_0)$. Посмотрим на оценку из леммы 9. Из неё следует оценка

$$\|\phi_{n+1}(t,t_0',x_0') - \phi_n(t,t_0',x_0')\| \le M \frac{L^n}{(n+1)!} (\varepsilon')^{n+1}.$$

Эта оценка не зависит от x_0', t_0' . Значит, сходимость $\phi_n(t, t_0', x_0') \to x(t, t_0', x_0')$ будет равномерна по t_0', x_0' . Но все функции $\phi_n(t, t_0', x_0')$ непрерывны по совокупности переменных. Действительно, для $\phi_0(t, t_0', x_0') = \equiv x_0'$ это очевидно, а для $\phi_{n+1} = A\phi_n$ — следует из теоремы о непрерывной зависимости интеграла от параметров t_0', x_0' и от переменного верхнего предела t.

Так как равномерный предел непрерывных функций непрерывен, функция $x(t,t_0,x_0)$ непрерывна по совокупности переменных. \Box

 $^{^{1}}$ Мы считаем, что наше уравнение абсолютно точно описывает процесс, и что решение уравнения вычисляется абсолютно точно. В действительности так, конечно, не бывает

Теорема 11 (Глобальная теорема о непрерывности фазового потока). В условиях теоремы 1 пусть x(t) — решение уравнения (1), причем $x(t_1) = x_1, x(t_2) = x_2$. Тогда существуют окрестности $x_1 \in U_1, x_2 \in U_2$, для которых отображение потока $\Phi_{t_1,t_2} \colon U_1 \to U_2$ — гомеоморфизм.

Доказательства. Идея доказательства заключается в том, чтобы представить отображение потока Φ_{t_1,t_2} в виде композиции локальных отображений потока $\Phi_{\tau_i,\tau_{i+1}}$, для каждого из которых применима предыдущая теорема.

Применим локальную теорему о непрерывности фазового потока для каждой точки $(t,x(t)),t\in[t_1,t_2]$. Получим, что каждому значению t соответствует своя окрестность I, для которой любое отображение потока $\Phi_{\tau,v},\, \tau,v\in I$, непрерывно в окрестности точки $x(\tau)$. Из открытых интервалов I выберем конечное подпокрытие $\bigcup I_k$ отрезка $[t_1,t_2]$. Возьмём набор точек $\tau_k\in I_k\cap I_{k+1},\, t_1<\tau_1<\tau_2<\cdots<\tau_2<\cdots<\tau_n< t_2$.

Заметим, что отображение потока Φ_{t_1,t_2} является композицией отображений $\Phi_{t_1,\tau_1}=x(\tau_1,t_1,\cdot),$ $\Phi_{\tau_1,\tau_2}=x(\tau_2,\tau_1,\cdot)$ и т.д. Каждое из этих отображений непрерывно по локальной теореме о непрерывности фазового потока. Значит, их композиция Φ_{t_1,t_2} тоже непрерывна в некоторой окрестности U_1 точки x_1 .

Итак, Φ_{t_1,t_2} — непрерывное отображение U_1 на свой образ $\Phi(U_1)=U_2$. Это отображение инъективно: если под действием отображения потока две точки переходят в одну, то через эту одну точку проходят две интегральные кривые нашего уравнения, поэтому не выполнена теорема существования и единственности. Обратное отображение Φ_{t_1,t_2}^{-1} также непрерывно, так как оно совпадает с отображением потока Φ_{t_2,t_1} . Тем самым, Φ_{t_1,t_2} — гомеоморфизм.

4.2 Теоремы о выходе за границу компакта. Область определения решения уравнения

Теорема о существовании и единственности решения уравнения не запрещает ситуацию, при которой решение определено только на некотором интервале $(t_0-\varepsilon,t_0+\varepsilon)$, а за точку $t_0+\varepsilon$ не продолжается. Следующая теорема объясняет, в какой ситуации такое возможно. В частности, если на отрезке $[t_0-\varepsilon,t_0+\varepsilon]$ значение решения находится внутри некоторого компакта, такого не происходит.

Теорема 12 (Теорема о выходе за границу компакта). В условиях теоремы 1, пусть $K \subset \Omega$ – компакт. Пусть $(t_0, x_0) \in K$. Тогда существует решение x(t) уравнения (1) с начальным условием $x(t_0) = x_0$, которое выходит за границу K: для некоторого $t_1 > t_0$

$$(t_1, x(t_1)) \notin K$$
.

Доказательство. Заметим, что разные решения, в силу теоремы 1, могут отличаться только областью определения. Рассмотрим решение x(t) с максимальной по включению областью определения, содержащейся в множестве $\{t \in \mathbb{R} \mid t > t_0\}$. Пусть это решение не выходит за границу компакта: для каждого $t > t_0$ либо $(t, x(t)) \in K$, либо x(t) не определено.

Пусть $M = \max_K ||f||$.

В каждой точке $(t,x) \in K$ рассмотрим цилиндр $C_{t,x,a,b} = [t-a,t+a] \times B_b(x)$, целиком лежащий в Ω . Уменьшим цилиндры вдвое и сделаем их открытыми. Мы получили открытое покрытие компакта K. Выберем из него конечное подпокрытие. Теперь у нас есть конечное количество цилиндров $C_{t_i,x_i,a_i/2,b_i/2}$, $i=1,\ldots,N$, покрывающих K и таких, что вдвое большие цилиндры C_{t_i,x_i,a_i,b_i} лежат R

Пусть $a=\min a_i, b=\min b_i$. Каждая точка $(t'_0,x'_0)\in K$ лежит в каком-то цилиндре $C_{t_i,x_i,a_i/2,b_i/2}$, и поэтому цилиндр $C_{t'_0,x'_0,a/2,b/2}\subset C_{t_i,x_i,a_i,b_i}$ целиком лежит в Ω . Значит, решение с начальным условием $(t'_0,x'_0)\in K$ определено на отрезке $[t'_0-\varepsilon,t'_0+\varepsilon]$, где величина $\varepsilon=\min(a/2,\frac{b}{2M},\frac{1}{L})$ не зависит от t'_0,x'_0 . Итак, область определения функции x(t) вместе с любой точкой t'_0 содержит её ε -окрестность, где ε фиксировано и не зависит от t'_0 . Отсюда следует, что функция x(t) определена на луче $t>t_0$. Но тогда график функции x(t) — неограниченное множество, поэтому он не может содержаться в ограниченном множестве K.

Следствие 13 (Теорема о выходе за границу компакта в автономном случае). Пусть автономное дифференциальное уравнение удовлетворяет условиям теоремы существования и единственности. Пусть $K \subset \mathbb{R}^n$ — компактное подмножество фазового пространства. Тогда всякая фазовая кривая автономного уравнения либо выходит за границу компакта K, либо определена для всех $t \in \mathbb{R}$.

Другими словами, если решение определено не на всей числовой оси, то оно уходит на бесконечность за конечное время.

Доказательство. Применим предыдущую теорему для компакта $[-C,C] \times K \subset \Omega, C$ — произвольное вещественное число. Получим, что решение выходит за границу этого компакта. Это значит, что либо для некоторого t выполнено $x(t) \notin K$, либо x(t) определено при некотором t > C.

В первом случае фазовая кривая выходит за границу K. Если для всех C реализуется второй случай, то решение определено для сколь угодно большого t. Значит, оно определено для всех t > 0.

То же самое рассуждение можно повторить для t<0, если в уравнении формально заменить t на -t.

Следующее утверждение есть простое следствие теоремы 11.

Следствие 14. В условиях теоремы 1, пусть x(t) — решение уравнения (1), определенное на отрезке [0,T], с начальным условием $x(0) = x_0$. Тогда решение $\tilde{x}(t)$ с достаточно близким начальным условием \tilde{x}_0 тоже определено на отрезке [0,T].

Доказательство. По теореме 11, отображение потока Φ_{t_1,t_2} определено в окрестности $U_1 \ni x_0$. Это и означает, что решения с начальными условиями $\tilde{x} \in U_1$ определены на отрезке [0,T].

Следующее утверждение дает достаточное условие того, что решение уравнения НЕ уходит на бесконечность за конечное время. Для этого правая часть уравнения должна быть невелика: тогда производная \dot{x} тоже невелика, и решение не успевает уйти не бесконечность.

Предложение 15. Пусть $||f(t,\vec{x})|| \leq C(1+||\vec{x}||)$. Тогда решение уравнения (1) определено при любом $t \in \mathbb{R}$.

Доказательство. Идея доказательства заключается в том, чтобы доказать, что x растет не быстрее некоторой экспоненты e^{lt} . Как угадать, для какого l мы должны доказывать оценку? Не будем пока фиксировать l, а положим $\vec{y}(t) = \vec{x}(t) \cdot e^{-lt}, l > 0$; тогда функция \vec{y} удовлетворяет дифференциальному уравнению

$$\dot{\vec{y}} = \dot{\vec{x}} \cdot e^{-lt} - l\vec{x} \cdot e^{-lt} = f(t, ye^{lt})e^{-lt} - ly. \tag{11}$$

Посмотрим, как меняется $\|\vec{y}\|$; наша цель — подобрать l таким образом, чтобы $\|\vec{y}\|$ было ограничено. Имеем

$$\frac{1}{2}\frac{d}{dt}\langle y,y\rangle = \langle \dot{y},y(t)\rangle = \langle f(t,x)\cdot e^{-lt},y\rangle - l\langle y,y\rangle \leqslant C(1+\|x\|)e^{-lt}\|y\| - l\|y\|^2 \leqslant \\ \leqslant C\|y\| + C\|y\|^2 - l\|y\|^2.$$

При достаточно большом l это выражение отрицательно. Значит, $\|\vec{y}\|$ убывает, то есть фазовая кривая уравнения (11) не может выйти за границу компакта — шара радиуса $\|\vec{y}(0)\|$. Итак, y(t) (а значит — и x(t)) определено при любом t.

Такая же выкладка позволяет оценить, на каком интервале [-T, T] определено решение уравнения (при некоторых ограничениях на правую часть).

5 Уравнения, для которых задача Коши имеет несколько решений.

Если правая часть уравнения не липшицева, это не значит, что решение уравнения не существует. Но оно может не быть единственным (например, для уравнения $\dot{x}=|x|^{1/2}$ или $\dot{x}=x^{1/3}$). Верна следующая

Теорема 16 (Теорема Пеано). Пусть $\Pi \subset \Omega$, $\Pi = \{(t,x) \mid |t-t_0| \leqslant a, |x-x_0| \leqslant b\}$. Пусть $\max_{\Pi} \|f\| = M$, $\alpha = \min(a, \frac{b}{M})$. Тогда уравнение (1) с начальным условием $x(t_0) = x_0$ имеет хотя бы одно решение, определенное на интервале $[t_0 - \alpha, t_0 + \alpha]$.

Доказательство основано на построении последовательности функций, аналогичной последовательности ϕ_n : если бы эта последовательность сходилась, она сходилась бы к решению уравнения. В условиях теоремы Пеано эта последовательность уже не будет сходиться. Однако, если нам удастся выбрать из неё равномерно сходящуюся *подпоследовательность*, то предел этой подпоследовательности будет решением уравнения.

Поэтому естественно задать вопрос: Пусть $f_k \in C[0,1]$. При каких условиях из последовательности $\{f_n\}$ можно выбрать равномерно сходящуюся подпоследовательность?

Видно, что это можно сделать не всегда.

Упражнение 8. Докажите, что из последовательности $f_k(t) = \sin kt$ нельзя выбрать равномерно сходящуюся подпоследовательность.

Следующая теорема даёт достаточное условие того, что из последовательности функций можно выбрать равномерно сходящуюся подпоследовательность.

Теорема 17 (Теорема Арцела–Асколи). Пусть последовательность непрерывных функций $\{f_n\}$

- 1. ограниченна в совокупности: $\sup |f_n(t)| < +\infty;$
- 2. равностепенно непрерывна:

$$\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall n \,(|t_1 - t_2| < \delta \,\Rightarrow\, |f_n(t_1) - f_n(t_2)| < \varepsilon).$$

Другими словами, достаточно близкие точки под действием всех функций f_n переходят в близкие.

Tогда из последовательности $\{f_n\}$ можно выбрать равномерно сходящуюся подпоследовательность.

Выведем отсюда теорему Пеано.

Доказательство теоремы Пеано. Построим последовательность кусочно-линейных функций $\varphi_n(t)$ с помощью метода приближений Эйлера (см. раздел 1.2.2): точки излома кусочно-линейной функции $\varphi_n(t)$ — это точки $a < t_1 < \dots < t_n < b, \ t_k - t_{k+1} = \frac{b-a}{n}$. Сгладим эти функции вблизи точек излома так, чтобы производная сглаженной функции оказалась монотонна, а разность между функцией и её сглаживанием стремилась к нулю с ростом n. Получим последовательность функций $\overline{\varphi}_n$. Наклон ломаных Эйлера ограничен величиной $\max \|f\|$, поэтому последовательность $\overline{\varphi}_n$ удовлетворяет теореме Арцела—Асколи. Выберем из неё равномерно сходящуюся подпоследовательность; её предел — $\varphi(t)$ — одно из решений дифференциального уравнения.

Рис. 1: Трёхзвенная ломаная Эйлера и её сглаживание

Действительно, производная кусочно-линейной функции φ_n на отрезке $[t_k, t_{k+1}]$ равна $\alpha_k := \varphi'_n(t) = f(t_k, \varphi_n(t_k))$. После сглаживания выполняется неравенство

$$\overline{\varphi}'_n(t) \in [\alpha_k, \alpha_{k-1}] \cup [\alpha_k, \alpha_{k+1}],$$

то есть

$$\overline{\varphi}'_n(t) \in [f(t_{k-1}, \varphi_n(t_{k-1})), f(t_k, \varphi_n(t_k))] \cup [f(t_k, \varphi_n(t_k)), f(t_{k+1}, \varphi_n(t_{k+1}))].$$

Так как функция f непрерывна, отрезки $[f(t_k, \varphi_n(t_k)), f(t_{k+1}, \varphi_n(t_{k+1}))]$ с ростом n сжимаются и стремятся к точке $f(t, \varphi(t))$ (так как точка $(t_k, \varphi_n(t_k))$ и точка $(t_{k+1}, \varphi(t_{k+1}))$ стремятся к точке $(t, \varphi(t))$). Поэтому

$$\varphi'(t) = f(t, \varphi(t)),$$

что и требовалось.

Более подробное доказательство (и доказательство теоремы Арцела–Асколи) можно найти в следующих книгах:

- 1. И. Г. Петровский, «Лекции по теории обыкновенных дифференциальных уравнений».
- 2. А. Н. Колмогоров, С. В. Фомин, «Элементы теории функций и функционального анализа».
- 3. Ф. Хартман, «Обыкновенные дифференциальные уравнения».

В последней книге идея доказательства теоремы Пеано несколько другая: она состоит в том, чтобы построить последовательность гладких функций f_n , стремящихся к f, и сперва решить уравнения с правыми частями f_n , а потом рассмотреть предел таких решений.