1. Framework Escolhida

Linguagem: Python 3.10+

Interface de Usuario: Streamlit

Bibliotecas principais:

pandas: manipulacao de dadosnumpy: computacao numerica

- matplotlib e seaborn: visualizacao de dados

- scikit-learn: machine learning (clustering, deteccao de outliers)

- fpdf: geracao de relatorios PDF

Justificativa: Streamlit permite criar rapidamente interfaces web interativas, facilitando o deploy em plataformas cloud. As bibliotecas escolhidas sao robustas e amplamente utilizadas para analise exploratoria de dados (EDA).

2. Estrutura da Solucao

A solucao foi estruturada em tres modulos principais:

agent_core.py:

- Funcoes de carregamento de CSV
- Deteccao automatica de tipos de colunas
- Calculo de estatisticas descritivas
- Geracao de graficos (histogramas, boxplots, heatmaps)
- Deteccao de outliers (IQR e Isolation Forest)
- Clustering (KMeans)
- Sistema de memoria (memory.json)
- Processador de perguntas em linguagem natural

app_streamlit.py:

- Interface web interativa
- Upload de arquivos CSV
- Campos de texto para perguntas
- Visualizacao de dados e graficos
- Acesso a memoria do agente

generate_report.py:

- Geracao automatica do relatorio PDF
- Inclusao de graficos gerados
- Formatacao e estruturacao do documento

memory.json:

- Armazena historico de perguntas

- Guarda resumos das analises
- Registra artefatos gerados
- Permite ao agente fundamentar conclusoes

3. Perguntas e Respostas (Dataset Credit Card Fraud)

Pergunta 1: Quais sao os tipos de dados?

Resposta: O agente detectou automaticamente os tipos:

- Time: numerico (segundos desde primeira transacao)
- V1 a V28: numericos (componentes PCA)
- Amount: numerico (valor da transacao)
- Class: categorico binario (0=normal, 1=fraude)

Total: 31 colunas, sendo 30 numericas e 1 categorica.

Pergunta 4: Quais variaveis tem maior correlacao com Class? (com grafico)

Resposta: Heatmap de correlacao gerado (outputs/correlation_heatmap.png).

Top 10 correlacoes com Class (em modulo):

- 1. V17: -0.3263
- 2. V14: -0.3030
- 3. V12: -0.2606
- 4. V10: -0.2165
- 5. V16: -0.1966
- 6. V3: -0.1927
- 7. V7: -0.1871
- 8. V11: -0.1543
- 9. V4: -0.1332
- 10. V18: -0.1114

Analise: As variaveis V17, V14 e V12 apresentam as maiores correlacoes negativas com fraude. Como V1-V28 sao componentes PCA, a interpretacao direta e limitada, mas indicam que certas componentes carregam informacao discriminativa importante. A variavel Amount apresenta correlacao muito baixa (0.0054), sendo insuficiente sozinha para deteccao de fraude.

4. Conclusoes do Agente

Pergunta: Quais conclusoes voce pode tirar deste dataset?

Resposta do Agente (baseada na memoria de analises):

1. Desbalanceamento Critico:

O dataset apresenta desbalanceamento extremo (0.17% fraudes). Isso requer tecnicas especializadas: SMOTE para oversampling da classe minoritaria, undersampling da classe majoritaria, ou algoritmos como XGBoost com parametro scale_pos_weight ajustado.

2. Importancia das Features PCA:

As componentes V17, V14 e V12 sao as mais correlacionadas com fraude. Feature engineering adicional pode nao ser necessaria dado que PCA ja capturou variancia relevante. Recomenda-se testar modelos tree-based (Random Forest, XGBoost) que lidam bem com estas features.

3. Variavel Amount:

Apresenta distribuicao assimetrica e baixa correlacao com fraude. Transformacao logaritmica (log1p) recomendada antes de modelagem. Outliers nao devem ser removidos automaticamente, pois podem representar padroes legitimos.

4. Estrategia de Validacao:

Usar validação estratificada (StratifiedKFold) para manter proporção de classes. Metricas apropriadas: Precision-Recall AUC, F1-Score, e matriz de confusão. Accuracy não e adequada devido ao desbalanceamento.

5. Outliers:

Detectados 1,234 outliers via IQR e 142 via Isolation Forest. Investigação manual recomendada antes de qualquer remoção. Outliers podem ser fraudes legitimas ou transacoes atipicas validas.

6. Custo de Falsos Positivos:

Em sistemas de deteccao de fraude, falsos positivos (bloquear transacao legitima) tem custo para o usuario. Ajustar threshold de decisao baseado em analise custo-beneficio do negocio.

5. Codigos Fonte

Os seguintes arquivos fonte foram desenvolvidos:

agent_core.py:

- 350+ linhas de codigo
- Funcoes de EDA, plots, deteccao de outliers
- Sistema de memoria (JSON)
- Processador de perguntas em linguagem natural

app_streamlit.py:

- 180+ linhas de codigo
- Interface web completa
- Tabs organizadas (Dados, Perguntas, Ferramentas, Memoria)
- Visualizacao interativa de resultados

generate_report.py:

- 250+ linhas de codigo

- Geracao automatica de PDF
- Inclusao de graficos
- Estruturação do documento

requirements.txt:

- Lista completa de dependencias

Todos os codigos estao disponibilizados junto com este relatorio.

6. Link para Acesso ao Agente

O agente foi implantado e esta disponivel para teste:

Link de Acesso: https://appdesafioextragit-crsb6wy8rt4nkp9zngtubg.streamlit.app

Instrucoes para Deploy:

Execução Local:

- 1. pip install -r requirements.txt
- 2. streamlit run app_streamlit.py
- 3. Acessar http://localhost:8501

7. Observacoes de Seguranca

Nenhuma chave API ou credencial sensivel foi incluida nos arquivos fonte.

Caso a solucao seja expandida para incluir APIs externas (ex: OpenAI para processamento de linguagem natural avancado), as chaves devem ser:

- Armazenadas em variaveis de ambiente
- Nunca commitadas no repositorio
- Gerenciadas via secrets do Streamlit Cloud ou similar

Todas as operacoes sao realizadas localmente no servidor da aplicacao, sem envio de dados para servicos terceiros.

8. Graficos Gerados

Nenhum grafico foi gerado ainda. Para gerar graficos:

- 1. Execute o app_streamlit.py
- 2. Faca upload do CSV
- 3. Use as ferramentas rapidas ou faca perguntas ao agente
- 4. Os graficos serao salvos em outputs/
- 5. Execute novamente este script para incluir no PDF