#### Teoria da Computação

Lema do Bombeamento Thiago Alves Rocha

Vamos fazer um autômato para a linguagem a seguir:

```
\{0^n1^n \mid n \ge 0\}
```

- $\bullet$  {0 n 1 n | n  $\geq$  0}
  - Será que é possível?

- Chamamos a classe de linguagens aceitas por AFDs de linguagens regulares
- Se não for possível construir um AFD para a linguagem então ela não é regular

Mas como podemos ter certeza de que não é possível construir um AFD ou AFD ou ER?

#### Propriedades de LR

- ♦ {w ∈ {0,1}\* | tem um número par de 0's e um número par de 1's}
- Quantidade de estados é 4
- Vamos analisar strings com tamanho maior ou igual a 4

#### Propriedades de LR

- String aceita pela linguagem com tamanho maior ou igual ao número de estados
  - Garante que algum estado seja repetido no processamento
  - Existe alguma estrutura na string que se repete
  - O estado repetido pode ocorrer no início do processamento

#### Lema do Bombeamento

```
Para toda linguagem regular L
existe um inteiro k, tal que
para toda string w ∈ L com |w| ≥ k
existe uma forma de fazer w = xyz
tal que:
```

 $|xy| \le k$ . |y| > 0. Para todo i  $\ge 0$ , xyz está em L.

#### Lema do Bombeamento

- k é número de estados do AFD A tal que L(A) = L
- y é a string que pode ser repetida por conta do ciclo
- |w| ≥ k para repetir pelo menos um estado
- ♦ |xy| ≤ k pois a repetição pode ocorrer antes de visitar todos os estados

- Seja L regular
- L tem um AFD com k estados
- ♦ Suponha  $w = a_1a_2...a_m e m \ge k$
- Algum estado foi visitado mais de uma vez: vamos escolher o primeiro que se repete e chamar de q

- Depois de processar ai e ai chegamos em q
- Podemos dividir w em xyz da seguinte forma:
- $\bullet x = a_1 a_2 \dots a_i$
- $\diamond y = a_{i+1}a_{i+2}...a_{j}$
- $\diamond z = a_{j+1}a_{j+2}...a_m$

Podemos dividir w em xyz da seguinte forma:



- String x pode ser vazia no caso em que i=0
- String z pode ser vazia no caso em que j=m
- String y não pode ser vazia pois j>i
  - Processamento da string y volta para o estado q
  - |y| > 0

- ♦ |xy| ≤ k pois estamos escolhendo a primeira repetição de estado que pode ocorrer antes de visitar todos
- Quando i = 0 temos que xz está em L
  - O AFD não percorre o ciclo
- ◆xyiz está em L
  - Percorrer o ciclo do AFD i vezes

#### Lema do Bombeamento

- O lema mostra uma propriedade das linguagens regulares
- Podemos usar o lema para mostrar que uma linguagem não é regular

- ◆L = {0 $^n$ 1 $^n$  | n ≥ 0} não é regular
  - Suponha L regular
  - Existe a constante k do lema
  - Seja  $w = 0 k1 k \in L$
  - Para dividir w em xyz com |xy| ≤ k e |y| > 0 temos que ter
    - y = 0 i com i > 0

- ◆L = {0 $^n$ 1 $^n$  | n ≥ 0} não é regular
  - Suponha L regular
  - Existe a constante k do lema
  - Seja  $w = 0 k1 k \in L$
  - Para fazer w = xyz
  - y = 0; com i > 0
  - > xz = 0 > 1 > 1 > 1
  - Mas 0<sup>k-1-i</sup>0<sup>1</sup>1<sup>k</sup> ∉ L pela definição de L
  - Absurdo!

- ♦L =  $\{w \in \{0,1\}^* \mid w \text{ tem a mesma} \}$ quantidade de 0's e 1's $\}$  não é regular
  - Suponha L regular
  - Temos a constante k do lema
  - Se escolhermos w = (01)<sup>k</sup>?

- ♦L =  $\{w \in \{0,1\}^* \mid w \text{ tem a mesma} \}$ quantidade de 0's e 1's $\}$  não é regular
  - Suponha L regular
  - Temos a constante k do lema
  - Se escolhermos w = (01)<sup>k</sup>?
    - Não funciona!

- ♦L =  $\{w \in \{0,1\}^* \mid w \text{ tem a mesma} \}$ quantidade de 0's e 1's $\}$  não é regular
  - Suponha L regular
  - Temos a constante k do lema
  - Seja  $w = 0 \times 1 \times \in L$
  - Usar a mesma ideia da anterior

- ♦L =  $\{w \in \{0,1\}^* \mid w \text{ tem a mesma} \}$ quantidade de 0's e 1's $\}$  não é regular
- Outra forma:
  - Suponha L regular
  - ▶ Logo, L n 0\*1\* é regular
  - Mas L ∩  $0*1* = \{0^n1^n \mid n \ge 0\}$
  - Absurdo! Pois já provamos que não é regular!

- ♦L =  $\{ww \mid w \in \{0,1\}^*\}$  não é regular
  - Suponha L regular
  - Temos a constante k do lema
  - Se escolhermos  $w = 0 \times 0 \times ?$

- ♦L =  $\{ww \mid w \in \{0,1\}^*\}$  não é regular
  - Suponha L regular
  - Temos a constante k do lema
  - Se escolhermos  $w = 0^k0^k$ ?
    - Não funciona!

- ♦L =  $\{ww \mid w \in \{0,1\}^*\}$  não é regular
  - Suponha L regular
  - Temos a constante k do lema
  - Se escolhermos  $w = 0 \times 10 \times 1 \in L$ ?

- ♦L =  $\{ww \mid w \in \{0,1\}^*\}$  não é regular
  - Suponha L regular
  - Temos a constante k do lema
  - Seja w =  $0 \times 10 \times 1 \in L$
  - Podemos fazer w = xyz
  - y é formado apenas por 0's
  - xy²z ∈ L pelo Lema do Bombeamento
  - Mas xy²z ∉ L pela definição de L

- ◆L = {1<sup>n²</sup> | n ≥ 0} não é regular
  - Suponha L regular
  - Temos a constante k do lema
  - Seja w =  $1^{k^2} \in L$
  - Podemos fazer w = xyz de acordo com o lema
  - $|xyz| = k^2$

- $|xyz| = k^2$
- Como |y| > 0,  $k^2 < |xy^2z|$
- Como  $|xy| \le k$ ,  $|y| \le k$  e também
- $| k^2 < |xy^2z| \le k^2 + k$ , logo
- $|x|^2 < |xy^2z| \le k^2 + k < (k+1)^2$
- ▶ Logo, xy²z ∈ L pelo Lema
- Mas xy²z ∉ L pois o tamanho está entre dois quadrados perfeitos consecutivos

- $\bullet$ L =  $\{0^{i}1^{j} | i > j\}$  não é regular
  - Suponha L regular
  - Temos a constante k do lema
  - Seja w =  $0^{k+1}1^k \in L$
  - Podemos fazer w = xyz com as condições do lema
  - Logo, y é formado por 0's

- $\bullet$ L =  $\{0^{i}1^{j} | i > j\}$  não é regular
  - xyoz ∈ L pelo Lema do Bombeamento
  - Mas xyoz ∉ L pois a quantidade de 0's é maior ou igual a de 1's.
  - Absurdo!

# Importância

- Provar que uma linguagem não é regular é importante
- Em geral, uma linguagem que não é regular não pode ser processada por um AFD, AFN ou ER

# Importância

- A linguagem dos documentos XML não é regular
- ◆L<sub>XML</sub> = {w ∈ ASCII\* | w é um documento XML} não é regular
- Não é possível construir um AFD para verificar se um documento XML está correto