```
Wilsen Kosasih
HW7
604501335
1)
a)
P(A,B|K)
P(A,B,K) / P(K)
P(A,B,K) / P(K)
                     = P(A|B,K) P(B|K)
                     = P(A,B,K) P(B,K) / (P(B,K) P(K))
                     = P(A,B,K) / P(K)
   → LHS = RHS Proven
b)
P(A|B,K)
                                   = P(B|A,K)P(A|K)P(B|K)
P(A,B|K) / P(B|K)
                                   = P(B,A,K)P(A,K)P(B,K)/(P(A,K)P(K)P(K))
P(A,B|K) / P(B|K)
                                   = P(B,A,K)P(B,K) / (P(K) P(K))
P(A,B,K) P(B,K) / (P(K) P(K))
                                   = P(B,A,K)P(B,K) / (P(K) P(K))
   → LHS = RHS Proven
2)
Given:
P(Oil) = 0.5
P(Gas) = 0.2
P(Neither) = 0.3
P(+|Oil) = 0.9
P(+|Gas) = 0.3
P(+|Neither) = 0.1
P(+)
      = P(+|Oil)P(Oil) + P(+|Gas)P(Gas) + P(+|Neither)P(Neither)
       = 0.5*0.9 + 0.2*0.3 + 0.1*0.3
       = 0.54
P(Oil|+)
              = P(+|Oil) * P(Oil) / P(+)
              = 0.9 * 0.5/ 0.54
              = 0.83
```

→ 0.83

2	1
S	1

W	Black	Square	One	P
1	F	F	F	1/13
2	F	F	T	1/13
3	F	Т	F	1/13
4	F	Т	Т	1/13
5	Т	F	F	2/13
6	Т	F	Т	1/13
7	T	T	F	4/13
8	T	T	T	2/13

```
Ai) P(Black) = (2+1+4+2)/13 = 9/13
Aii) P(Square) = (1+1+4+2)/13 = 8/13
Aiii) P(Square | Black or One) = ((1+4+2)/13) / (11/13) = 7/11
```

Given gamma = Not black

- 1) alpha = square, beta = one are independent
- 2) alpha = square, beta = not one are independent

```
4)
a)
I (A, 0, {B,E})
I (B, 0, {A,C})
I (C, A, {B,D,E})
I (D, {A,B}, {C,E})
I (E, B, {A,C,D,F,G})
I (F, {C,D}, {A,B,E})
I (G, F, {A,B,C,D,E,H})
I (H, {E,F}, {A,B,C,D,G})
```

b)

1) d_separated(A, BH, E)

false, because H unblocks the path A-C-F-H-E

2) d_separated(G, D, E)

false, because D unblocks the path A-D-B-E

3) d_separated (AB,F,GH) true

c) P(A|B,C,D,E,F,G,H) * P(B|C,D,E,F,G,H) * P(C|D,E,F,G,H) * P(D|E,F,G,H) * P(E|F,G,H) * P(F|G,H) * P(G|H) * P(H)

d) a)
$$P(A = 0, B = 0)$$
 = $P(A=0) P(B=0)$ since A and B are independent = $0.8 * 0.3$ = 0.24

b)
$$P(E=1|A=1)$$
 = $P(E=1)$ since A and E are independent
= $P(E=1|B=0)P(B=0) + P(E=1|B=1)P(B=1)$
= $0.9 * 0.3 + 0.1 * 0.7$
= 0.34