(E-7)

The precursor drug is aciclovir of formula

(E-7a)

The precursor compound of A is the 4-hydroxybutyric acid.

The compound (E-6) is synthetized according to the procedure described in Example 3. Yield: 14%.

Elementary analysis:	С	H	N
Calculated	42.36%	4.74%	24.70%
Found	42.38%	4.77%	24.68%.

EXAMPLE 8

Preparation of (8S-cis)-10-[(3-amino-2,3,6-trideoxy-α-L-lixo-hexopyranosyl)oxy]-7,8,9,10-tetrahydro-6,8,11-trihydroxy-8-[(4-nitroxybutyroyloxy)acetyl)-1-methoxy-5,12-naphthacendione

(E-8)

The precursor drug is doxorubicin of formula (E-8a)

The precursor compound of B is the 4-hydroxybutyric acid. The compound is synthetized according to the procedure described in Example 1. Yield: 7%.

Elementary analysis:	С	H	N
Calculated	56.53%	5.20%	4.25%
Found	56.55%	5.22%	4.23%.

EXAMPLE 9

Preparation of di[1S-[1\alpha,3\alpha,7\beta,8\beta] (2S*,4S*),8\alpha\beta] 2-2-dimethyl butyric acid 1,2,3,7,8,8\alpha-hexahydro-3,7-dimethyl-8-[2-[tetrahydro-4-(6-nitroxyhexanoyloxy)-6-oxo-2H-pyran-2-yl]ethyl]-1-naphthalenyl ester

(E-9)

The precursor drug is simvastatine of formula

(E-9a)

The precursor of the bridging bond B is 6-hydroxyhexanoic acid.

a) Preparation of [1S-[1\alpha, 3\alpha, 7\beta, 8\beta (2S^*, 4S^*), 8\alpha\beta] 2-2-dimethyl

butyric acid 1,2,3,7,8,8\alpha-hexahydro-3,7-dimethyl-8-[2
[tetrahydro-4-(6-bromohexanoyloxy)-6-oxo-2H-pyran-2-yl]ethyl]
1-naphthalenyl ester

To a solution of simvastatine (4 g, 9.56 mmoles) in chloroform (50 ml) and N,N-dimethylformamide (20 ml), 6-bromo caproic acid (1.86 g, 9.56 mmoles), N,N'-dicyclohexylcarbodiimide (1.97 g, 9.56 mmoles) and 4-dimethyl amino pyridine (52 mg, 0.43 mmoles) are added. The reaction mixture is maintained under stirring at room temperature for 24 hours, then diluted with chloroform and washed with water. The organic phase, anhydrified with sodium sulphate, is evaporated at pressure. The crude product is purified chromatography on silica gel, eluting with n-hexane/ethyl acetate 1/1 (ratio by volume). [1S-[1 α ,3 α ,7 β ,8 β (2S*,4S*),8 $\alpha\beta$]] 2-2-dimethyl butyric acid 1,2,3,7,8,8 α -hexahydro-3,7-dimethyl-8-[2-[tetrahydro-4-(6-bromohexanoyloxy)-6-oxo-2H-pyran-2yl]ethyl]-1-naphthalenyl ester is obtained.

b) Preparation of [1S-[1\alpha, 3\alpha, 7\beta, 8\beta (2S*, 4S*), 8\alpha\beta] 2-2-dimethyl butyric acid 1,2,3,7,8,8\alpha-hexahydro-3,7-dimethyl-8-[2-[tetrahydro-4-(6-nitroxyhexanoyloxy)-6-oxo-2H-pyran-2-yl]ethyl]-1-naphthalenyl ester

1-naphthalenyl ester (1 g, 1.67 mmoles) in acetonitrile (60 ml) silver nitrate (0.57 g, 3.35 mmoles) is added. The reaction mixture is heated for 6 hours at 80°C away from light, then it is cooled to room temperature, filtered to remove the silver salts and the organic phase is evaporated under reduced pressure. The residue is purified by chromatography on silica gel, eluting with n-hexane/ethyl acetate 1/1 (ratio by volume). [15-[1 α ,3 α ,7 β ,8 β (2S*,4S*),8 α β] 2-2-dimethyl butyric acid 1,2,3,7,8,8 α -hexahydro-3,7-dimethyl-8-[2-[tetrahydro-4-(6-nitroxyhexanoyloxy)-6-oxo-2H-pyran-2-yl]ethyl]-1-naphthalenyl ester is obtained. Yield: 13%.

Elementary analysis:	С	H	N
Calculated	62.71%	7.97%	2.35%
Found	62.74%	7.99%	2.33%

EXAMPLE 10

Preparation of 6-(nitroxy)hexanoic acid theophylline ester

The precursor drug is diphylline of formula:

(E-10a)

The precursor compound of B is the 6-hydroxyhexanoic acid.

The compound of formula (E-10) is synthetized according to the procedure described in Example 9. Yield: 23%.

Elementary analysis: C H N
Calculated 44.76% 5.39% 16.31%
Found 44.77% 5.41% 16.33%.

EXAMPLE 11

Preparation of 9-[4-nitroxy]butyroylamino]-1,2,3,4-tetrahydroacridine

(E-11)

The precursor drug is tacrine of formula

(E-11a)

The precursor compound of B is the 4-hydroxybutyric acid.

a) Preparation of 9-[4-bromo]butyroylamino]-1,2,3,4tetrahydroacridine

To a solution of tacrine (4 g, 20.17 mmoles) in chloroform . (50 ml) and N, N-dimethylformamide (15 ml), 4 bromobutyroylchloride (3.5 ml, 30.25 mmoles) is added. The reaction mixture is maintained under stirring at room temperature for 6 hours and then diluted with chloroform and washed with water. The organic phase, anhydrified with sodium sulphate, is evaporated at reduced pressure. The crude product is purged by chromatography on silica gel, eluting with n-hexane/ethyl acetate 8/2 (ratio by volume). bromo)butyroylamino]-1,2,3,4-tetrahydroacridine is obtained.

b) Preparation of 9-[4-nitroxy]butyroylamino]-1,2,3,4-tetrahydroacridine

To a solution of 9-[4-bromo)butyroylamino]-1,2,3,4-tetrahydroacridine (3.5 g, 10.56 mmoles) in acetonitrile (150 ml) silver nitrate (2.08 g, 12.68 mmoles) is added. The reaction mixture is heated at 80°C under stirring for 6 hours away from light. It is cooled to room temperature, filtered to remove the silver salts and evaporated under reduced pressure. The residue is purified by chromatography on silica gel, eluting with n-hexane/ethyl acetate 8/2 (ratio by volume). 9-[4-nitroxy)butyroylamino]-1,2,3,4-tetrahydroacridine is obtained. Yield: 33%.

Elementary analysis:	С	H	N
Calculated	62.00%	5.81%	12.76%
Found	62.02%	5.83%	12.77%

EXAMPLE 12

Preparation of (S)-α-(2-chlorophenyl)-6,7-dihydrothieno
[3,2-c-]-pyridin-5(4H)acetic acid 5-(nitroxy)ethylthioethylester

The precursor drug is clopidrogel of formula:

(E-12a)

The precursor compound of A is the thiodiethylenglycol of formula $HO-(CH_2)_2-S-(CH_2)_2-OH$.

The compound of formula (E-12) is synthetized according to the procedure described in Example 5, using thiodiethylenglycol in substitution of diethylenglycol. Yield: 56%.

Elementary analysis: C H N Cl S Calculated 49.94% 4.63% 6.13% 7.76% 14.03% Found 49.93% 4.63% 6.10% 7.75% 14.01%

EXAMPLE 13

<u>Preparation of 5-methoxy-2-[[4-(4-nitroxybutyroyloxy)-3, 5-dimethyl-2-pyridinyl) methyl|sulphinyl|-1H-benzoimidazol</u>

MeO

$$\begin{array}{c}
H \\
O \\
N
\end{array}$$
 $\begin{array}{c}
OCO(CH_2)_3ONO_2 \\
OCH_3
\end{array}$
 $\begin{array}{c}
CH_3
\end{array}$

The precursor drug is demethylomeprazol of formula:

(E-13a)

The precursor compound of B is 4-hydroxybutyric acid.

The compound of formula (E-13) is synthetized according to the procedure described in Example 1. Yield: 22%.

Elementary analysis: C H N S
Calculated 51.94% 4.79% 12.12% 6.93
Found 51.93% 4.77% 12.11% 6.94%