

Basics of RDD

What is RDD?

Dataset:

Collection of data elements.

e.g. Array, Tables, Data frame (R), collections of mongodb

Distributed:

Parts Multiple machines

Resilient:

Recovers on Failure

A collection of elements partitioned across cluster

A collection of elements partitioned across cluster

- An immutable distributed collection of objects.
- Split in partitions which may be on multiple nodes
- Can contain any data type:
 - o Python,
 - o Java,
 - Scala objects
 - o including user defined classes

- RDD Can be persisted in memory
- RDD Auto recover from node failures
- Can have any data type but has a special dataset type for key-value
- Supports two type of operations:
 - Transformation
 - Action

Creating RDD - Scala

Method 1: By Directly Loading a file from remote

>>var lines = sc.textFile("/data/mr/wordcount/input/big.txt")

Method 2: By distributing existing object

- >> val arr = 1 to 10000
- >> var nums = sc.parallelize(arr)


```
var linesRdd = sc.textFile("/data/mr/wordcount/input/big.txt")
var words = linesRdd.flatMap(x => x.split(" "))
var wordsKv = words.map(x => (x, 1))
//def myfunc(x:Int, y:Int): Int = x + y
var output = wordsKv.reduceByKey(_ + _)
output.take(10)
or
output.saveAsTextFile("my_result")
```


RDD Operations

RDD - Operations: Transformation

- Transformations are operations on RDDs
- return a new RDD
- such as map() and filter()

RDD - Operations: Transformation

- Transformations are operations on RDDs
- return a new RDD
- such as map() and filter()

Map Transformation

- Map is a transformation
- That runs provided function against each element of RDD
- And creates a new RDD from the results of execution function

Map Transformation - Scala

- > val arr = 1 to 10000
- > val nums = sc.parallelize(arr)
- def multiplyByTwo(x:Int):Int = x*2
- multiplyByTwo(5) 10
- var dbls = nums.map(multiplyByTwo);
- dbls.take(5)
 [2, 4, 6, 8, 10]

Transformations - filter() - scala

- > var arr = 1 to 1000
- var nums = sc.parallelize(arr)
- def isEven(x:Int):Boolean = x%2 == 0
- var evens =
 nums.filter(isEven)
- > evens.take(3)
- > [2, 4, 6]

RDD - Operations : Actions

- Causes the full execution of transformations
- Involves both spark driver as well as the nodes
- Example Take(): Brings back the data to driver

Action Example - take()

- > val arr = 1 to 1000000
- val nums = sc.parallelize(arr)
- def multipleByTwo(x:Int):Int = x*2
- var dbls =
 nums.map(multipleByTwo);
- > dbls.take(5)
- > [2, 4, 6, 8, 10]

Action Example - saveAsTextFile()

To save the results in HDFS or Any other file system Call saveAsTextFile(directoryName)

It would create directory
And save the results inside it
If directory exists, it would throw error.

Action Example - saveAsTextFile()

val arr = 1 to 1000 val nums = sc.parallelize(arr) def multipleByTwo(x:Int):Int = x*2

var dbls = nums.map(multipleByTwo);
dbls.saveAsTextFile("mydirectory")
Check the HDFS home directory

RDD Operations

	Transformation	Action
Examples	map()	take()
Returns	Another RDD	Local value
Executes	Lazily	Immediately. Executes transformations

Lazy Evaluation Example - The waiter takes orders patiently

Ok.
One cheese burger
Two soups
Two plates of Noodles
Anything else, sir?

The chef is able to optimize because of clubbing multiple order together

Instant Evaluation

Let me get a cheese burger for you. I'll be right back!

Cheese Burger...

And Soup?

The soup order will be taken once the waiter is back.

Instant Evaluation

The usual programing languages have instant evaluation.

As you as you type: var x = 2+10.

It doesn't wait. It immediately evaluates.

Actions: Lazy Evaluation

- 1. Every time we call an action, entire RDD must be computed from scratch
- 2. Everytime d gets executed, a,b,c would be run
 - a. lines = sc.textFile("myfile");
 - b. fewlines = lines.filter(...)
 - c. uppercaselines = fewlines.map(...)
 - d. uppercaselines.count()
- 3. When we call a transformation, it is not evaluated immediately.
- 4. It helps Spark optimize the performance
- 5. Similar to Pig, tensorflow etc.
- Instead of thinking RDD as dataset, think of it as the instruction on how to compute data

Actions: Lazy Evaluation - Optimization - Scala


```
def Map1(x:String):String =
                                         def Map3(x:String):String={
x.trim();
                                            var y = x.trim();
                                            return y.toUpperCase();
def Map2(x:String):String =
x.toUpperCase();
                                         lines = sc.textFile(...)
var lines = sc.textFile(...)
                                         lines2 = lines.map(Map3);
var lines1 = lines.map(Map1);
var lines2 = lines1.map(Map2);
                                         lines2.collect()
lines2.collect()
```


Lineage Graph

Spark Code

lines = sc.textFile("myfile"); fewlines = lines.filter(...) uppercaselines = fewlines.map(...) lowercaselines = fewlines.map(...)

uppercaselines.count()

Transformations:: flatMap() - Scala

To convert one record of an RDD into multiple records.

Transformations:: flatMap() - Scala

- var linesRDD = sc.parallelize(Array("this is a dog", "named jerry"))
- def toWords(line:String):Array[String]= line.split(" ")
- var wordsRDD = linesRDD.flatMap(toWords)
- > wordsRDD.collect()
- > ['this', 'is', 'a', 'dog', 'named', 'jerry']

How is it different from Map()?

- In case of map() the resulting rdd and input rdd having same number of elements.
- map() can only convert one to one while flatMap could convert one to many.

What would happen if map() is used

- var linesRDD = sc.parallelize(Array("this is a dog", "named jerry"))
- def toWords(line:String):Array[String]= line.split(" ")
- var wordsRDD1 = linesRDD.map(toWords)
- wordsRDD1.collect()
- > [['this', 'is', 'a', 'dog'], ['named', 'jerry']]

FlatMap

- Very similar to Hadoop's Map()
- Can give out 0 or more records

FlatMap

- · Can emulate map as well as filter
- · Can produce many as well as no value which empty array as output
 - If it give out single value, it behaves like map().
 - If it gives out empty array, it behaves like filter.

flatMap as map

- > val arr = 1 to 10000
- val nums = sc.parallelize(arr)
- def multiplyByTwo(x:Int) = Array(x*2)
- multiplyByTwo(5) Array(10)
- var dbls = nums.flatMap(multiplyByTwo);
- dbls.take(5) [2, 4, 6, 8, 10]

flatMap as filter

- > var arr = 1 to 1000
- var nums = sc.parallelize(arr)
- def isEven(x:Int):Array[Int] = {
- if(x%2 == 0) Array(x)

res8: Array[Int] = Array(2, 4, 6)

- else Array()
- > }

- var evens = nums.flatMap(isEven)
- > evens.take(3)
- > [2, 4, 6]

Transformations:: Union

- var a = sc.parallelize(Array('1','2','3'));
- var b = sc.parallelize(Array('A','B','C'));
- > var c=a.union(b)
- Note: doesn't remove duplicates
- c.collect();
 [1, 2, 3, 'A', 'B', 'C']

Transformations:: union()

RDD lineage graph created during log analysis

Actions: saveAsTextFile() - Scala

Saves all the elements into HDFS as text files.

- var a = sc.parallelize(Array(1,2,3, 4, 5, 6, 7));
- a.saveAsTextFile("myresult");
- > // Check the HDFS.
- //There should myresult folder in your home directory.

Actions: collect() - Scala

Brings all the elements back to you. Data must fit into memory.

Mostly it is impractical.

- var a = sc.parallelize(Array(1,2,3, 4, 5, 6, 7));
- a org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[16] at parallelize at <console>:21
- var localarray = a.collect();
- > localarray [1, 2, 3, 4, 5, 6, 7]

Actions: take() - Scala

Bring only few elements to the driver.

This is more practical than collect()

- var a = sc.parallelize(Array(1,2,3, 4, 5, 6, 7));
- var localarray = a.take(4);
- ➤ localarray [1, 2, 3, 4]

Actions: count() - Scala

To find out how many elements are there in an RDD.

Works in distributed fashion.

- var a = sc.parallelize(Array(1,2,3, 4, 5, 6, 7), 3);
- > var mycount = a.count();
- > mycount

7

More Actions - Reduce()

Aggregate elements of dataset using a function:

- Takes 2 arguments and returns only one
- Commutative and associative for parallelism
- Return type of function has to be same as argument

- var seq = sc.parallelize(1 to 100)
- def sum(x: Int, y:Int):Int = {return x+y}
- > var total = seq.reduce(sum);

total: Int = 5050

More Actions - Reduce()


```
|scala> var seq = sc.parallelize(1 to 100)
seq: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at
scala> def sum(x: Int, y:Int):Int = {return x+y}
sum: (x: Int, y: Int)Int

scala> var total = seq.reduce(sum);
total: Int = 5050
```


More Actions - Reduce()

To confirm, you could use the formula for summation of natural numbers

- = n*(n+1)/2
- = 100*101/2
- = 5050

How does reduce work?

For avg(), can we use reduce?

The way we had computed summation using reduce, Can we compute the average in the same way?

```
>> var seq = sc.parallelize(Array(3.0, 7, 13, 16, 19))
>> def avg(x: Double, y:Double):Double = {return (x+y)/2}
>> var total = seq.reduce(avg);
total: Double = 9.875
```

Which is wrong. The correct average of 3, 7, 13, 16, 19 is 11.6.

```
[scala> var total = seq.reduce(avg);
total: Double = 10.8125
[scala> var total = seq.reduce(avg);
total: Double = 8.375
[scala> var total = seq.reduce(avg);
total: Double = 13.25
```


Why average with reduce is wrong?

Why average with reduce is wrong?

$$\frac{(3+7+13)}{3}$$

$$\frac{\frac{3+7}{2}+13}{2}$$

But sum is ok

$$3 + 4 + 5$$

$$4 + (3+5)$$

(4 + 3) + 5

(3+4)+5

Reduce

A reduce function must be commutative and associative otherwise the results could be unpredictable and wrong.

Commutative

If changing the order of inputs does not make any difference to output, the function is commutative.

Examples

Addition

$$2 + 3 = 3 + 2$$

Multiplication

$$2 * 3 = 3*2$$

Average:

$$(3+4+5)/3 = (4+3+5)/3$$

Euclidean Distance:

$$\sqrt{(x1-x2)^2+(y1-y2)^2}$$

$$= \sqrt{(x^2 - x^1)^2 + (y^2 - y^1)^2}$$

Non Commutative

Division

2/3 not eq 3/2

Subtraction

Exponent / power

Associative

Associative property:

Can add or multiply regardless of how the numbers are grouped.

By 'grouped' we mean 'how you use parenthesis'.

$$2+7+5=2+7+5$$

 $(2+7)+5=2+(7+5)$
 $(9)+5=2+(12)$
 $14=14$

Examples

Multiplication: (3*4)*2=3*(4*2)

Min:

Min(Min(3,4), 30)

= Min(3, Min(4, 30)) = 3Max:

Max(Max(3,4), 30)

= Max(3, Min(4, 30)) = 30

Non Associative

Division:

(3/3) / 4 not equal to 2 / (3/4)

Subtraction:

$$(2-3)-1!=2-(3-1)$$

Exponent / power:

Average:

avg(avg(2, 3), 4) != avg(avg(2, 4), 3)

CLOUD x LAB

Solving Some Problems with Spark

Approach I - So, how to compute average?

Approach 1

- var rdd = sc.parallelize(Array(1.0,2,3, 4, 5, 6, 7), 3);
- var avg = rdd.reduce(_ + _) / rdd.count();

What's wrong with this approach?

We are computing RDD twice - during reduce and during count.

Can we compute sum and count in a single reduce?

Approach 2 - So, how to compute average?

Approach 2 - So, how to compute average?

- var rdd = sc.parallelize(Array(1.0,2,3, 4, 5, 6, 7), 3);
- var rdd_count = rdd.map((_, 1))
- ightharpoonup var (sum, count) = rdd_count.reduce((x, y) => (x._1 + y._1, x._2 + y._2))
- > var avg = sum / count

avg: Double = 4.0

Comparision of the two approaches?

Approach 1:

0.023900 + 0.065180

= 0.08908 seconds ~ 89 ms

Approach2:

0.058654 seconds ~ 58 ms

Approximately 2X difference.

$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

The Standard Deviation is a measure of how spread out numbers are.

$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

Basics of RDD

1. Work out the Mean (the simple average of the numbers)

$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

- 1. Work out the Mean (the simple average of the numbers)
- 2. Then for each number: subtract the Mean and square the result

$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

- 1. Work out the Mean (the simple average of the numbers)
- 2. Then for each number: subtract the Mean and square the result
- 3. Then work out the mean of those squared differences.

$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

- Work out the Mean (the simple average of the numbers)
- Then for each number: subtract the Mean and square the result
- Then work out the mean of those squared differences.
- 4. Take the square root of that and we are done!

Lets calculate SD of 2 3 5 6

$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

Lets calculate SD of 2 3 5 6

Already Computed in Previous problem

$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

I. Mean of numbers is µ = (2 + 3 + 5 + 6) / 4 => 4

Lets calculate SD of 2 3 5 6

Already Computed in Previous problem

$$\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$

Can be done using map()

► 1. Mean of numbers is
$$\mu$$

= $(2 + 3 + 5 + 6) / 4 => 4$

$$^{-}$$
 2. \times - μ = (-2, -1, 1, 2)

3.
$$(x_1 - \mu)^2 = (4, 1, 1, 4)$$

Lets calculate SD of 2 3 5 6

Already Computed in Previous problem

Can be done using map()

Requires reduce.

- 1. Mean of numbers is μ = (2 + 3 + 5 + 6) / 4 => 4
- $^{-}$ 2. \times μ = (-2, -1, 1, 2)
- **3.** $(x_1 \mu)^2 = (4, 1, 1, 4)$
- $^{\bullet}$ 4. $\sum (x_i \mu)^2 = 10$

Lets calculate SD of 2 3 5 6

Already Computed in Previous problem

$$\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$

Can be done using map()

Requires reduce.

Can be performed locally

1. Mean of numbers is
$$\mu$$

= $(2 + 3 + 5 + 6) / 4 => 4$

$*$
 2. \times - μ = (-2, -1, 1, 2)

3.
$$(x_1 - \mu)^2 = (4, 1, 1, 4)$$

$$^{\bullet}$$
4. $\sum (x_i - \mu)^2 = 10$

⇒ 5.
$$\sqrt{1/N} \sum (x_i - \mu)^2 = \sqrt{10/4} = \sqrt{2.5} = 1.5811$$

var rdd = sc.parallelize(Array(2, 3, 5, 6))

```
> var rdd = sc.parallelize(Array(2, 3, 5, 6))
//Mean or average of numbers is μ
> var rdd_count = rdd.map((_, 1))
> var (sum, count) = rdd_count.reduce((x, y) => (x._1 + y._1, x._2 + y._2))
> var avg = sum / count
// (x<sub>i</sub> - μ)<sup>2</sup>
```



```
> var rdd = sc.parallelize(Array(2, 3, 5, 6))

//Mean or average of numbers is μ
> var rdd_count = rdd.map((_, 1))
> var (sum, count) = rdd_count.reduce((x, y) => (x._1 + y._1, x._2 + y._2))
> var avg = sum / count

// (x<sub>i</sub> - μ)<sup>2</sup>
> var sqdiff = rdd.map(_ - avg).map(x => x*x)
```



```
var rdd = sc.parallelize(Array(2, 3, 5, 6))
//Mean or average of numbers is µ
var rdd count = rdd.map(( , 1))
\rightarrow var (sum, count) = rdd_count.reduce((x, y) => (x._1 + y._1, x._2 + y._2))
> var avg = sum / count
//(x_1 - \mu)^2
> var sqdiff = rdd.map( - avg).map(x => x*x)
1/\sum (x_1 - \mu)^2
var sum_sqdiff = sqdiff.reduce(_ + _)
```

```
var rdd = sc.parallelize(Array(2, 3, 5, 6))
//Mean or average of numbers is µ
var rdd count = rdd.map(( , 1))
\rightarrow var (sum, count) = rdd_count.reduce((x, y) => (x._1 + y._1, x._2 + y._2))
> var avg = sum / count
//(x_1 - \mu)^2
var sqdiff = rdd.map( - avg).map(x => x*x)
1/\sum (x_1 - \mu)^2
var sum sqdiff = sqdiff.reduce( + )
1/\sqrt{1/N} \sum (x_i - \mu)^2
> import math.;
var sd = sqrt(sum_sqdiff*1.0/count)
```


So, how to compute Standard deviation?

- a. var rdd = sc.parallelize(Array(2, 3, 5, 6))
- b. //Mean or average of numbers is μ
 i. var rdd, sount = rdd map/(1)
 - i. var rdd_count = rdd.map((_, 1))
 - ii. var (sum, count) = rdd_count.reduce($(x, y) => (x._1 + y._1, x._2 + y._2)$) iii. var avg = sum / count
- c. $// (x_i \mu)^2$
- d. var sqdiff = rdd.map(_ avg).map(x => x*x)
- e. $// \sum (x_i \mu)^2$ f. var sum_sqdiff = sqdiff.reduce(_ + _)
- g. $//\sqrt{1/N} \sum (x_i \mu)^2$ h. import math._;
- i. var sd = sqrt(sum_sqdiff*1.0/count)
- 2. sd: Double = 1.5811388300841898

The objective of the exercise is to pick a random sample from huge data.

Though there is a method provided in RDD but we are creating our own.

The objective of the exercise is to pick a random sample from huge data. Though there is a method provided in RDD but we are creating our own.

1. Lets try to understand it for say picking 50% records.

The objective of the exercise is to pick a random sample from huge data. Though there is a method provided in RDD but we are creating our own.

- Lets try to understand it for say picking 50% records.
- The approach is very simple. We pick a record from RDD and do a coin toss. If its head, keep the element otherwise discard it. It can be achieved using filter.

The objective of the exercise is to pick a random sample from huge data. Though there is a method provided in RDD but we are creating our own.

- 1. Lets try to understand it for say picking 50% records.
- The approach is very simple. We pick a record from RDD and do a coin toss. If its head, keep the element otherwise discard it. It can be achieved using filter.
- For picking any fraction, we might use a coin having 100s of faces or in other words a random number generator.

The objective of the exercise is to pick a random sample from huge data. Though there is a method provided in RDD but we are creating our own.

- 1. Lets try to understand it for say picking 50% records.
- The approach is very simple. We pick a record from RDD and do a coin toss. If its head, keep the element otherwise discard it. It can be achieved using filter.
- For picking any fraction, we might use a coin having 100s of faces or in other words a random number generator.
- 4. Please notice that it would not give the sample of exact size

var rdd = sc.parallelize(1 to 1000);

- var rdd = sc.parallelize(1 to 1000);
- > var fraction = 0.1

- var rdd = sc.parallelize(1 to 1000);
- > var fraction = 0.1
- def cointoss(x:Int): Boolean = scala.util.Random.nextFloat() <= fraction</p>

- var rdd = sc.parallelize(1 to 1000);
- > var fraction = 0.1
- def cointoss(x:Int): Boolean = scala.util.Random.nextFloat() <= fraction</p>
- var myrdd = rdd.filter(cointoss)

- var rdd = sc.parallelize(1 to 1000);
- > var fraction = 0.1
- def cointoss(x:Int): Boolean = scala.util.Random.nextFloat() <= fraction</p>
- var myrdd = rdd.filter(cointoss)
- > var localsample = myrdd.collect()
- > localsample.length

Basics of RDD

Thank you!

