1)
$$y'' + xy' + y = 0$$
, $y(0) = 2$, $y'(0) = 0$
 $y = \phi(x)$ is a sol. $x_0 = 0$.
Siven that $\phi(0) = 2$ and $\phi'(0) = 0$.
 $y = \phi(x)$ is a sol. then plug in the eq.
 $\phi'' + x \cdot \phi' + \phi = 0$
(1) $\phi''(x) = -x \cdot \phi'(x) - \phi'(x)$
Take derivative
(2) $\phi'''(x) = (-1) \cdot \phi'(x) - x \cdot \phi''(x) - \phi'(x)$
Once more,
(3) $\phi'''(x) = (-1) \cdot \phi''(x) - 1\phi''(x) - x\phi''(x) - \phi'(x)$
From (1) equation, $\phi'''(0) = -0 \cdot \phi'(0) = -0 \cdot \phi''(0) = -0 \cdot \phi''(0) - 0 \cdot \phi''(0) - \phi''(0) = 2 + 2 + 0 + 2 = 6 x$
From (3), $\phi''''(0) = -1 \cdot \phi''(0) - \phi''(0) - 0 \cdot \phi'''(0) - \phi''(0) = 2 + 2 + 0 + 2 = 6 x$

2. Let $y = \phi(x)$ be a solution of the initial value problem. First note that

$$y'' = -(\sin x)y' - (\cos x)y.$$

Differentiating twice,

$$y''' = -(\sin x)y'' - 2(\cos x)y' + (\sin x)y$$

$$y^{(4)} = -(\sin x)y''' - 3(\cos x)y'' + 3(\sin x)y' + (\cos x)y.$$

Given that $\phi(0) = 0$ and $\phi'(0) = -1$, the first equation gives $\phi''(0) = 0$ and the last two equations give $\phi'''(0) = 2$ and $\phi^{(4)}(0) = 0$.

5. Clearly, p(x) = 4 and q(x) = 6x are analytic for all x. Hence the series solutions converge everywhere.

5)
$$(x^2-2x-3)$$
 $y''+xy'+4y=0$. $X_0=5$, $X_0=-5$, $X_0=0$

$$y'''+\frac{x}{(x-3)(x+1)}$$
 $y''+\frac{4}{(x-3)(x+1)}y'=0$.

If $X_0=5$ then
$$y''+\frac{x}{(x-3)(x+1)}$$
 $y''+\frac{4}{(x-3)(x+1)}y'=0$.

So , $\rho=2$ units.

Interval should not contain discontinuity points $\{3,-1\}$ interval should not $\{1,2,3\}$ $\{2,-1\}$ $\{2,-1\}$ $\{3,-1\}$ $\{3,-1\}$ $\{3,-1\}$ $\{4,2,3\}$ $\{$

8. The only root of P(x) = x is zero. Hence $\rho_{min} = 2$.

(1)
$$y'' + (sh \times) y = 0$$

 $sih \times = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \cdot x^{2n+1}$
 $y' = \sum_{n=0}^{\infty} a_n y' \cdot x^n$
 $y'' = \sum_{n=0}^{\infty} n \cdot a_n x^{n-1}$
 $y'' = \sum_{n=2}^{\infty} n \cdot (n-1) \cdot a_n \cdot x^{n-2}$
 $y'' = \sum_{n=2}^{\infty} n \cdot (n-1) \cdot a_n \cdot x^{n-2}$
 $y'' = \sum_{n=2}^{\infty} n \cdot (n-1) \cdot a_n \cdot x^{n-2}$
 $y'' = \sum_{n=2}^{\infty} n \cdot (n-1) \cdot a_n \cdot x^{n-2}$
 $y'' = \sum_{n=2}^{\infty} n \cdot (n-1) \cdot a_n \cdot x^{n-2}$
 $y'' = \sum_{n=2}^{\infty} n \cdot (n-1) \cdot a_n \cdot x^{n-2}$
 $y'' = \sum_{n=2}^{\infty} n \cdot (n-1) \cdot a_n \cdot x^{n-2}$
 $y'' = \sum_{n=2}^{\infty} n \cdot (n-1) \cdot a_n \cdot x^{n-2}$
 $y'' = \sum_{n=2}^{\infty} n \cdot (n-1) \cdot a_n \cdot x^{n-2}$
 $y'' = \sum_{n=2}^{\infty} n \cdot (n-1) \cdot a_n \cdot x^{n-2}$
 $y'' = \sum_{n=2}^{\infty} n \cdot (n-1) \cdot a_n \cdot x^{n-2}$
 $y'' = \sum_{n=2}^{\infty} n \cdot (n-1) \cdot a_n \cdot x^{n-2}$
 $y'' = \sum_{n=2}^{\infty} n \cdot (n-1) \cdot a_n \cdot x^{n-2}$
 $y'' = \sum_{n=2}^{\infty} n \cdot (n-1) \cdot a_n \cdot x^{n-2}$
 $y'' = \sum_{n=2}^{\infty} n \cdot (n-1) \cdot a_n \cdot x^{n-2}$
 $y'' = \sum_{n=2}^{\infty} n \cdot (n-1) \cdot a_n \cdot x^{n-2}$
 $y'' = \sum_{n=2}^{\infty} n \cdot (n-1) \cdot a_n \cdot x^{n-2}$
 $y'' = \sum_{n=2}^{\infty} n \cdot (n-1) \cdot a_n \cdot x^{n-2}$
 $y'' = \sum_{n=2}^{\infty} n \cdot (n-1) \cdot a_n \cdot x^{n-2}$
 $y'' = \sum_{n=2}^{\infty} n \cdot (n-1) \cdot a_n \cdot x^{n-2}$
 $y'' = \sum_{n=2}^{\infty} n \cdot (n-1) \cdot a_n \cdot x^{n-2}$
 $y'' = \sum_{n=2}^{\infty} n \cdot (n-1) \cdot a_n \cdot x^{n-2}$
 $y'' = \sum_{n=2}^{\infty} n \cdot (n-1) \cdot a_n \cdot x^{n-2}$
 $y'' = \sum_{n=2}^{\infty} n \cdot (n-1) \cdot a_n \cdot x^{n-2}$
 $y'' = \sum_{n=2}^{\infty} n \cdot (n-1) \cdot a_n \cdot x^{n-2}$
 $y'' = \sum_{n=2}^{\infty} n \cdot a_n \cdot x^{n-2}$
 $y'' = \sum_{n=2}^{\infty}$

13. The Taylor series expansion of $\cos x$, about $x_0 = 0$, is

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}.$$

Let $y = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n + \ldots$ Substituting into the ODE,

$$\left[\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}\right] \left[\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} x^n\right] + \sum_{n=1}^{\infty} n a_n x^n - 2 \sum_{n=0}^{\infty} a_n x^n = 0.$$

The coefficient of x^n in the product of the two series is

$$c_n = 2a_2b_n + 6a_3b_{n-1} + 12a_4b_{n-2} + \dots + (n+1)na_{n+1}b_1 + (n+2)(n+1)a_{n+2}b_0,$$

in which $\cos x = b_0 + b_1x + b_2x^2 + \dots + b_nx^n + \dots$ It follows that

$$2a_2 - 2a_0 + \sum_{n=1}^{\infty} c_n x^n + \sum_{n=1}^{\infty} (n-2)a_n x^n = 0.$$

Expanding the product of the series, it follows that

$$2a_2 - 2a_0 + 6a_3x + (-a_2 + 12a_4)x^2 + (-3a_3 + 20a_5)x^3 + \dots$$
$$\dots - a_1x + a_3x^3 + 2a_4x^4 + \dots = 0.$$

Setting the coefficients equal to zero, $a_2 - a_0 = 0$, $6a_3 - a_1 = 0$, $-a_2 + 12a_4 = 0$, $-3a_3 + 20a_5 + a_3 = 0$, Hence the general solution is

$$y(x) = a_0 + a_1 x + a_0 x^2 + a_1 \frac{x^3}{6} + a_0 \frac{x^4}{12} + a_1 \frac{x^5}{60} + a_0 \frac{x^6}{120} + a_1 \frac{x^7}{560} + \dots$$

We find that two linearly independent solutions $(W(y_1, y_2)(0) = 1)$ are

$$y_1(x) = 1 + x^2 + \frac{x^4}{12} + \frac{x^6}{120} + \dots$$

$$y_2(x) = x + \frac{x^3}{6} + \frac{x^5}{60} + \frac{x^7}{560} + \dots$$

The nearest zero of $P(x) = \cos x$ is at $x = \pm \pi/2$. Hence $\rho_{min} = \pi/2$.

15. Integrating by parts,

$$\begin{split} \int_0^A t e^{at} \cdot e^{-st} dt &= -\frac{t e^{(a-s)t}}{s-a} \Big|_0^A + \int_0^A \frac{1}{s-a} e^{(a-s)t} dt = \\ &= \frac{1 - e^{A(a-s)} + A(a-s)e^{A(a-s)}}{(s-a)^2} \,. \end{split}$$

Taking a limit, as $A \to \infty$,

$$\int_0^\infty t e^{at} \cdot e^{-st} dt = \frac{1}{(s-a)^2} .$$

Note that the limit exists as long as s > a.

17. Observe that $t \sinh at = (t e^{at} - t e^{-at})/2$. For any value of c,

$$\int_0^A t \, e^{ct} \cdot e^{-st} dt = -\frac{t \, e^{(c-s)t}}{s-c} \Big|_0^A + \int_0^A \frac{1}{s-c} e^{(c-s)t} dt =$$

$$= \frac{1 - e^{A(c-s)} + A(c-s)e^{A(c-s)}}{(s-c)^2}.$$

Taking a limit, as $A \to \infty$,

$$\int_0^\infty t e^{ct} \cdot e^{-st} dt = \frac{1}{(s-c)^2} .$$

Note that the limit exists as long as s > |c|. Therefore,

$$\int_0^\infty t \sinh at \cdot e^{-st} dt = \frac{1}{2} \left[\frac{1}{(s-a)^2} - \frac{1}{(s+a)^2} \right] = \frac{2as}{(s-a)^2 (s+a)^2} \,.$$

23. Using the definition of the Laplace transform and Problem 22, we get that

$$\mathcal{L}[f(t)] = \int_0^\infty e^{-st} f(t) dt = \int_0^3 e^{-st} t dt + \int_3^\infty e^{-st} dt =$$

$$= -\frac{3e^{-3s}}{s} - \frac{e^{-3s}}{s^2} + \frac{1}{s^2} + \frac{e^{-3s}}{s} = -\frac{(2s+1)e^{-3s}}{s^2} + \frac{1}{s^2}.$$

6.1

3.

The function f(t) is continuous.

7. Integration is a linear operation. It follows that

$$\int_0^A \cosh bt \cdot e^{-st} dt = \frac{1}{2} \int_0^A e^{bt} \cdot e^{-st} dt + \frac{1}{2} \int_0^A e^{-bt} \cdot e^{-st} dt =$$

$$= \frac{1}{2} \int_0^A e^{(b-s)t} dt + \frac{1}{2} \int_0^A e^{-(b+s)t} dt.$$

Hence

$$\int_0^A \cosh \, bt \cdot e^{-st} dt = \frac{1}{2} \left[\frac{1 - e^{(b-s)A}}{s-b} \right] + \frac{1}{2} \left[\frac{1 - e^{-(b+s)A}}{s+b} \right].$$

Taking a limit, as $A \to \infty$,

$$\int_0^\infty \cosh\,bt\cdot e^{-st}dt = \frac{1}{2}\left[\frac{1}{s-b}\right] + \frac{1}{2}\left[\frac{1}{s+b}\right] = \frac{s}{s^2-b^2}\,.$$

Note that the above is valid for s > |b|.

11. Using the linearity of the Laplace transform,

$$\mathcal{L}\left[\sin bt\right] = \frac{1}{2i}\mathcal{L}\left[e^{ibt}\right] - \frac{1}{2i}\mathcal{L}\left[e^{-ibt}\right].$$

Since

$$\int_0^\infty e^{(a+ib)t}e^{-st}dt = \frac{1}{s-a-ib} ,$$

we have

$$\int_0^\infty e^{\pm\,ibt}\,e^{-st}dt = \frac{1}{s\,\mp\,ib}\,.$$

Therefore

$$\mathcal{L}\left[\sin\,bt\right] = \frac{1}{2i} \left[\frac{1}{s-ib} - \frac{1}{s+ib} \right] = \frac{b}{s^2+b^2} \,.$$

The formula holds for s > 0.

f is piecewise continuous on the interval D&+63.

(5) a)
$$f(t) = t$$
. $F(s) = \int_{0}^{\infty} e^{-st} \cdot t \, dt$

integral by parts (,

$$= \lim_{A \to \infty} - t \cdot \frac{e^{-st}}{s} \int_{0}^{A} + \lim_{A \to \infty} \int_{0}^{A} e^{-st} \, dt$$

$$= 0 + \frac{1}{s^{2}} = \frac{1}{s^{2}}. \qquad s \times s \times s$$

b) $f(t) = t^{2}$. $F(s) = \int_{0}^{\infty} e^{-st} \, t^{2} \, dt$ integral by parts.

$$= \frac{2}{s^{3}}.$$
c) $f(t) = t^{n}$, $F(s) = \int_{0}^{\infty} e^{-st} \, t^{n} \, dt$ does from previous results.

(16)
$$f(t) = t \cdot \cos(at)$$
. We know; $\cos(at) = (e^{iat} + e^{-iat})/2$.
 $F(s) = \frac{1}{24} \left[\int_{0}^{\infty} t e^{iat} \int_{0}^{s} t e^{-iat-st} dt \right]$

$$= \frac{1}{2} \int_{0}^{\infty} t e^{ia-s} \int_{0}^{s} t e^{-iat-st} dt \int_{0}^{s} dt e^{-iat-s} dt \int_{0}^{s} dt e^{-iat-s} dt \int_{0}^{s} dt e^{-iat-s} dt \int_{0}^{s} dt e^{-iat-s} dt dt dt$$

$$= \frac{1}{2} \left[\frac{1}{(ia-s)^2} + \frac{1}{(ia+s)^2} \right], \text{ from } (s.a).$$

$$= \frac{s^2 - a^2}{(a^2 + s^2)^2}.$$