Obsah

20	Stac	cionární a nestacionární magnetické pole	1
	20.1	Magnetické pole	1
			1
		20.1.2 Nestacionární mag. pole	1
		20.1.3 Ampérovo pravidlo pravé ruky	1
	20.2		1
		20.2.1 Nabité částice v mag. poli	2
		20.2.2 Působení mag. pole na vodič	2
		20.2.3 Magnetické pole paralelních vodičů	4
	20.3		4
		20.3.1 Přímý vodič	4
		20.3.2 Cívky	5
	20.4	Magnetický indukční tok	5
	20.5	Energie magnetického pole cívky	5
	20.6	Magnetické vlastnosti látek	5
		20.6.1 Permeabilita	5
		20.6.2 Diamagnetické látky	6
			6
		20.6.4 Feromagnetické látky	6
			6
	20.7		6
		20.7.1 Indukčnost	7
		20.7.2 Vlastní indukce	7
	20.8	Foucaltovy proudy	7

20 Stacionární a nestacionární magnetické pole

20.1 Magnetické pole

- vektorové pole okolo pohybujícího se náboje nebo permanentního magnetu
- působení magnetické síly přitahování, odpuzování, působení na el. náboje
- magnetické siločáry uzavřené smyčky znázorňující magnetické pole
- vytvářeno magnety
 - permanentní magnety stálé magnetické pole, nerosty
 - dočasný magnet magnetický materiál pouze dočasně za určitého stavu
 - * působením permanentního magnetu feromagnetické materiály magnetické při styku s permanentním magnetem
 - * elektromagnety tvorba magnetického pole při průchodu el. proudu
- části magnetu
 - -severní a jižní pól (domluvený) začátek a konec magnetických siločár, přitahování nesouhlasných
 - netečné pásmu střed magnetu, nepůsobení mag. síly

20.1.1 Stacionární mag. pole

- neměnné v čase
- veličiny jej charakterizující konstantní
- zdroj stacionární magnet, vodič s konstantní mag. polem

20.1.2 Nestacionární mag. pole

- proměnné vlastnosti v čase
- zdroj
 - pohybující se zdroj stacionárního mag. pole
 - vodič s proměnným proudem
- důvod elektromagnetické indukce

20.1.3 Ampérovo pravidlo pravé ruky

- pravidlo určující směr siločár mag. pole
- vodič
 - palec směr proudu
 - prsty směr siločár
- cívka
 - prsty směr proudu
 - palec směr siločár

Obr. 20.1: Ampérovo pravidlo pravé ruky

20.2 Magnetická indukce

- značka \vec{B} , jednotky T (tesla), další N·A⁻¹·m⁻¹
- vektorová veličina popisující silové účinky mag. pole
- tvoří vektorové pole
- směr mag. indukce popsán magnetickými siločárami

20.2.1 Nabité částice v mag. poli

- Lorenzova síla síla působící na pohybující se nabitou částici v mag. polem
- popis síly veličinou magnetické indukce
- obecný tvar

$$\vec{F}_{\rm m} = Q(\vec{v} \times \vec{B})$$

- Q náboj částice
- $-\vec{v}$ vektor rychlosti částice
- zjednodušený tvar pro velikost $F_{\rm m}$

$$F_{\rm m} = QvB\sin\alpha$$

 $-\alpha$ – úhel \vec{v} a \vec{B}

Obr. 20.2: Nákres situace nabité částice v mag. poli

Obr. 20.3: Pohyb kladně nabité částice v mag. poli

Obr. 20.4: Pohyb záporně nabité částice v mag. poli

20.2.2 Působení mag. pole na vodič

- mag. pole působí na vodič sílou
- výslednice působení magnetických sil na elektrony ve vodiči

$$F = BIl \sin \alpha$$

- -l délka vodiče v poli
- I proud procházející vodičem
- $-\alpha$ úhel vodiče a \vec{B} , kolmé $\alpha = 90^{\circ}$
- předpoklad homogenního mag. pole, respektive konstantní mag. indukce
- odvození

$$F = QvB \sin \alpha$$

$$F = Q \frac{l}{t} B \sin \alpha$$
 Považujme Q za celkový náboj, který projde vodičem délky l za čas t
$$F = IlB \sin \alpha$$

• odvození obecného tvaru

$$\vec{F} = Q\vec{v} \times \vec{B} \quad \Rightarrow \quad d\vec{F} = dQ\vec{v} \times \vec{B}$$
$$d\vec{F} = \frac{dQ}{dt} dt\vec{v} \times \vec{B}$$
$$d\vec{F} = I dl \times \vec{B}$$
$$F = I \int_{k} dl \times B$$

– k – parametrická křivka vodiče

Flemingovo levé ruky

- prostředníček směr proudu
- ukazováček směr vektoru \vec{B}
- palec směr $\vec{F}_{\rm m}$

Obr. 20.5: Flemingovo pravidlo levé ruky

20.2.3 Magnetické pole paralelních vodičů

• vzájemné působení důvodem magnetických polí – působení magnetickou silou

magnetické pole prvního vodiče působí na druhý vodič

$$F = BIl \cos \alpha \Rightarrow F = B_1 I_2 l$$

$$F = \frac{\mu}{2\pi} \cdot \frac{I_1}{d} \cdot I_2 l$$

$$F = \frac{\mu}{2\pi} \frac{I_1 I_2}{d} l$$

stejný směr proudu – přitahování; rozdílný směr – odpuzování

20.3 Vytváření magnetického pole

20.3.1 Přímý vodič

- siločáry ve tvaru soustředných kružnic
- velikost indukce

$$B = \frac{\mu}{2\pi} \cdot \frac{I}{d}$$

- $-\mu = \mu_0 \mu_r$ permeabilita prostředí
- d vzdálenost od vodiče

20.3.2 Cívky

- tvar pole shodný s tyčovým magnetem
- solenoid průměr cívky mnohem menší než délka, pole uvnitř homogenní
- velikost indukce

$$B = \mu \frac{NI}{l}$$

- N počet závitů
- l délka cívky

20.4 Magnetický indukční tok

- taky tok magnetické indukce
- značka Φ (velké fí), jednotky Wb (weber)
 - také jednotky T·m²
- úhrnný tok magnetické indukce svislou plochou (míra počtu indukčních čar procházející plochou)

$$\Phi = \int_{S} B \cdot dS \quad \Rightarrow \quad \Phi = BS \cos \alpha$$

- S rovinná plocha
- $-\alpha$ úhel mezi \vec{B} a normálových vektorem plochy

20.5 Energie magnetického pole cívky

- práce potřebná pro indukování proudu na cívce
- nutno překonat elektromotorické napětí na cívce $U_{\rm i} = -L\Delta I/\Delta t$

$$\Delta E_{\rm m} = W = UQ = |U_{\rm i}| I\Delta t = L\frac{\Delta I}{\Delta t} I\Delta t = \Phi \Delta I$$
$$dE = \Phi dI$$

celková energie rovna ploše pod grafem závislosti magnetického indukčního toku na proudu

$$E = \int_0^{I_0} \Phi \, dI = \int_0^{I_0} LI \, dI$$
$$E = \frac{1}{2} LI_0^2$$

20.6 Magnetické vlastnosti látek

- vytváření elementárního mag. pole elektrony
- součet polí \rightarrow celkové pole
- celkové pole závislé na uspořádaní elektronů

20.6.1 Permeabilita

- značka $\mu,$ jednotky ${\rm N}{\cdot}{\rm A}^{-2}$ nebo ${\rm H}{\cdot}{\rm m}^{-1}$ (henry na metr)
- účinek materiálu/prostředí na výsledné účinky působícího magnetického pole

•

$$\mu = \frac{B}{H}$$

- H intenzita magnetického pole, jednotky $\mathrm{A}{\cdot}\mathrm{m}^{-1}$
 - * na rozdíl od indukce nebere v potaz vliv vázaných magnetických proudů
 - * vliv pouze vnějších magnetických polí
- permeabilita vakua $\mu_0 = 4\pi \cdot 10^{-7} \,\mathrm{N\cdot A^{-2}}$

20.6.2 Diamagnetické látky

- $\mu_{\rm r} < 1$ zeslabení externího mag. pole
- vzácné plyny, měď, rtuť, nekovové materiály, kapaliny, organické látky...

20.6.3 Paramagnetické látky

- $\mu_{\rm r}>1$ (mírně větší)-externí mag. pole \rightarrow mírné zesílení + vytvoření vlastního
- mag. pole nelze uspořádat, bez vnějšího si jej neudrží
- hliník, sodík, draslík, platina, kyslík, uran, hořčík...

20.6.4 Feromagnetické látky

- $\mu_{\rm r}\gg 1$
- značné zesílení mag. pole
- ztráta vlastní při určité teplotě (Curieova teplota)
 - -chladnutí bez mag. pole \rightarrow zničení struktury, přestává být magnetický
- železo, kobalt, nikl; hlavně v krystalech

Ferimagnetické látky (ferity)

- sloučeniny Fe₂O₃ a oxidy dalších kovů
- mnohem větší odpor než feromagnetické magnety
- v praxi široce používané

20.6.5 (Magnetické) hystereze

- hystereze
 - chování dynamického systému
 - výstupní veličina závislá nejen na proměnné, ale i na předchozím stavu
- magnetická hystereze hysterezní křivka
 - uzavřená křivka magnetování
 - popis magnetizace materiálu v závislosti na intenzitě magnetického pole a předchozím stavu
 - užší křivka → jednodušší magnetizace/odmagnetování

Obr. 20.6: Magnetická hysterezní křivka

20.7 Elektromagnetická indukce

- vznik indukovaného elektrického pole vytvořeno nestacionárním mag. polem
- při změně mag. toku deformace vodiče, průchod polem...
- Faradayův zákon elmag. indukce udává velikost indukovaného napětí $U_{\rm i}$

$$U_{\rm i} = -\frac{\Delta\Phi}{\Delta t} = -\frac{\mathrm{d}\Phi}{\mathrm{d}t}$$

Lensův zákon – mag. pole vybuzené indukcí působí proti směru pohybu vnějšího pole

20.7.1 Indukčnost

- značka L, jednotky H (henry)
- schopnost
 - vodivých těles vytvářet mag. pole v závislosti na protékajícím proudu
 - indukovat napětí ve vodiči při změně mag. pole
- základní vlastnost cívek

20.7.2 Vlastní indukce

- indukované el. pole v uzavřeném vodiči při změně mag. pole v důsledku změny proudu na vodiči
- mag. tok úměrný el. proudu

$$\Phi = LI$$

-L-indukčnost

• indukované napětí

$$U_{\rm i} = -\frac{\Delta\Phi}{\Delta t} = -L\frac{\Delta I}{\Delta t}$$

20.8 Foucaltovy proudy

- tzv. vířivé proudy
- vznik v plošných nebo objemových vodičích při změně mag. toku
- vznik opačné reakce zeslabení mag. toku; největší zeslabení uprostřed průřezu
- využití

- stabilizace ručiček tachometru
- indukční brzda
- $-\,$ indukční vařiče, metalurgie využití tepelných účinků
- indukční pece