Discrete Math Study Guide

Ziyad Rahman Email zrahman3004@gmail.com

Contents

1	Logical Symbols		
	1.1	Logical "And", "Or", and "Not"	2
	1.2	The Conditional	2
		1.2.1 Alternate Language	2
		1.2.2 Truth Table	2
	1.3	The Biconditional	2
2	Log	ical Laws	2
	2.1	Associative Law	2
	2.2	Communicative Law	2
	2.3	Idempotent Law	3
	2.4	Absorption Law	3
	2.5	Distributive Law	3
	2.6	De Morgan's Law	3
	2.7	Double Negation Law	3
	2.8	Tautologies and Contradictions	3
		2.8.1 Tautologies	3
		2.8.2 Contradictions	3
3	Intr	roducing Proofs	4
	3.1	Notation	4
	3.2	Writing Proofs	4
	3.3	General Strategies for Proofs	
	3.4	Proving Negated Statements	4

1 Logical Symbols

1.1 Logical "And", "Or", and "Not"

The are the absolute basic logical symbols. Basically anything can be written in terms of these.

$$\wedge = \text{And}$$

$$\vee = Or$$

$$\neg = \text{Not}$$

1.2 The Conditional

Definition: $P \to Q$ means "P implies Q". It can also be written with basic logical operators as $\neg P \lor Q$.

1.2.1 Alternate Language

Here are a few other ways that $P \to Q$ can be written in English.

- 1. Q, if P
- 2. P only if Q
- 3. P is a sufficient condition for Q
- 4. Q is a necessary condition for P

1.2.2 Truth Table

Hello there.

1.3 The Biconditional

2 Logical Laws

2.1 Associative Law

$$(P \lor Q) \lor R = P \lor (Q \lor R)$$

$$(P \wedge Q) \vee R = P \wedge (Q \wedge R)$$

2.2 Communicative Law

$$P \lor Q = Q \lor P$$

$$P \wedge Q = Q \wedge P$$

2.3 Idempotent Law

$$P\vee P=P$$

$$P \wedge P = P$$

2.4 Absorption Law

$$P \lor (P \land Q) = P$$

$$P \wedge (P \vee Q) = P$$

2.5 Distributive Law

$$P \lor (Q \land R) = (P \lor Q) \land (P \lor R)$$

$$P \wedge (Q \vee R) = (P \wedge Q) \vee (P \wedge R)$$

2.6 De Morgan's Law

$$\neg (P \lor Q) = (\neg P \land \neg Q)$$

$$\neg (P \land Q) = (\neg P \lor \neg Q)$$

2.7 Double Negation Law

$$\neg \neg P = P$$

2.8 Tautologies and Contradictions

2.8.1 Tautologies

Tautology: A formula that is always *true* independent of the truth values of its statements.

$$P \wedge \text{Tautology} = P$$

 $P \vee \text{Tautology} = \text{Tautology}$

 \neg Tautology = Contradiction

2.8.2 Contradictions

Contradiction: A formula that is always *false* independent of the truth values of its statements.

$$P \wedge \text{Contradiction} = \text{Contradiction}$$

$$P \vee \text{Contradiction} = P$$

$$\neg$$
Contradiction = Tautology

- 3 Introducing Proofs
- 3.1 Notation
- 3.2 Writing Proofs
- 3.3 General Strategies for Proofs
- 3.4 Proving Negated Statements