DESIGNAND ANALYSIS OF ALGORITHMS (DAA)

Module1 - Introduction Radhika Chapaneri

Function of Growth rate

Functions in order of increasing growth rate

Aysmptotic Performance

- How does algorithm behave as the problem size gets very large?
- When we look at input sizes large enough to make only the order of growth of the running time relevant, we are studying the asymptotic efficiency of algorithms.
- For example: $an^2 + bn + c$: $O(n^2)$
 - Ignore actual and abstract statement costs
 - Highest-order term is what counts: Remember, we are doing asymptotic analysis. As the input size grows larger it is the high order term that dominates

Asymptotic Notations

- Asymptotic Efficiency: When we look at input sizes large enough to make only the order of growth of the running time relevant, we are studying the asymptotic efficiency of algorithms.
- Asymptotic Notations: The notations we use to describe the asymptotic running time of an algorithm
- Three commonly used asymptotic notations are
 - Θ tight bound
 - O upper bound
 - Ω- lower bound

Big – Oh notation

f(n) = O(g(n)): there exist positive constants c and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$

Big-Oh Notation

- f(n) = 3n+2 g(n) = n
- Is f(n) = O(n)?
- $f(n) \le c g(n)$
- \cdot 3n+2 ≤ c n

•
$$f(n) = 3n+2 g(n) = n$$

• Is
$$f(n) = O(n)$$
?

•
$$f(n) \le c g(n)$$

$$\cdot$$
 3n+2 ≤ c n

- Suppose c = 4 and n0=2
- 3n+2 ≤ 4n

- f(n) = 2n+3 g(n) = n
- Is f(n) = O(n)?
- $f(n) \le c g(n)$

Omega notation

 $f(n) = \Omega(g(n))$: there exist positive constants c and n_0 such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0$

- f(n) = 3n+2 g(n) = n
- Is $f(n) = \Omega(n)$
- $f(n) \ge c g(n)$

Theta notation

 $f(n) = \Theta(g(n))$: there exist positive constants c_1, c_2 , and n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$

- Import matplotlib.pyplot as plt
- Import numpy as np
- x = np.arange(0, 10)
- y1 = 2*(x**2) + 3*x+1
- y2 = x
- plt.plot(x, y1, label = 'f(n)')
- plt.plot(x, y2, label = 'g(n)')
- plt.grid()
- plt.show()

Recurrence

- Recurrence relations are useful for expressing the running times of recursive algorithms
- When an algorithm contains a recursive call to itself, we can often describe its running time by a *recurrence equation* or *recurrence*, which describes the overall running time on a problem of size n in terms of the running time on smaller inputs.
- We can then use mathematical tools to solve the recurrence and provide bounds on the performance of the algorithm.

Methods for solving Recurrence Relations

Substitution method:

- Make a guess
- Verify the guess using induction

Recursion trees:

- Visualize how the recurrence unfolds
- May lead to a guess to be verified using substitution
- If done carefully, may lead to an exact solution

Master theorem:

 "Cook-book" solution to a common class of recurrence relations

The Master Method

"Cookbook" approach for solving recurrences of the form

$$T(n) = aT(n/b) + f(n)$$

- $a \ge 1$, b > 1 are constants.
- f(n) is asymptotically positive.
- The recurrence describes the running time of an algorithm that divides a problem of size n into a subproblems, each of size n/b, where a and b are positive constants. The a subproblems are solved recursively, each in time T (n/b). The function f (n) encompasses the cost of dividing the problem and combining the results of the subproblems.
- To solve such equation we require memorization of three cases.

The Master Theorem

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and Let T(n) be defined on nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n)$$

T(n) can be bounded asymptotically in three cases:

- 1. If $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if, for some constant c < 1 and all sufficiently large n, we have $a \cdot f(n/b) \le c f(n)$, then $T(n) = \Theta(f(n))$.

The Master Method

- In each of the three cases, we compare the function f(n) with the function $n^{\log_b a}$. Intuitively, the larger of the two functions determines the solution to the recurrence.
- If, as in case 1, the function $n^{\log_b a}$ is the larger, then the solution is $T(n) = \Theta(n^{\log_b a})$.
- If, as in case 3, the function f(n) is the larger, then the solution is $T(n) = \Theta(f(n))$.
- If, as in case 2, the two functions are the same size, we multiply by a logarithmic factor, and the solution is $T(n) = \Theta(n^{\log_b a} \lg n)$.

Case 1:

Compare f(n) with $n^{\log_b a}$:

```
f(n) = O(n^{\log_b a - \varepsilon}) for some constant \varepsilon > 0.
```

f(n) grows polynomially slower than $n^{\log_{b^a}}$ (by an n^{ϵ} factor).

Solution:
$$T(n) = \Theta(n^{\log_b a})$$
.

Example:

- T(n) = 9T(n/3) + n
 - a=9, b=3, f(n) = n
 - $n^{\log_b a} = n^{\log_3 9} = \Theta(n^2)$
 - Since $f(n) = O(n^{\log_3 9 \epsilon})$, where $\epsilon = 1$, case 1 applies:
 - Thus the solution is $T(n) = \Theta(n^2)$

Examples

```
Ex. T(n) = 4T(n/2) + n^2

a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2.

Case 2: f(n) = \Theta(n^2 \lg^0 n), that is, k = 0.

T(n) = \Theta(n^2 \lg n).
```

Examples

Ex.
$$T(n) = 4T(n/2) + n^3$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^3.$
Case 3: $f(n) = \Omega(n^{2+\epsilon})$ for $\epsilon = 1$
and $4(cn/2)^3 \le cn^3$ (reg. cond.) for $c = 1/2$.
 $\therefore T(n) = \Theta(n^3).$

Ex.
$$T(n) = 4T(n/2) + n^2/\lg n$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2/\lg n.$
Master method does not apply. In particular, for every constant $\varepsilon > 0$, we have $n^{\varepsilon} = \omega(\lg n)$.

For master's theorem problem – refer notebook.