Boolean algebra, logic diagrams and truth tables

Kjartan Halvorsen

April 15, 2020

AND and OR

$$a, b \in \{0, 1\}$$

AND

а	b	a AND b, ab
0	0	0
0	1	0
1	0	0
1	1	1

Closed circuit $\Leftrightarrow 1$ Open circuit $\Leftrightarrow 0$

$$a - b - ab$$

OR

а	b	$a ext{ OR } b, a+b$
0	0	0
0	1	1
1	0	1
1	1	1

NAND and NOR

$$a, b \in \{0, 1\}$$

NAND

NOR

Boolean algebra, contd

$$x,y,z\in\{0,1\}$$

	Property	Dual
Properties of 0 and 1	x + 0 = x	$x \cdot 0 = 0$
	x + 1 = 1	$x \cdot 1 = x$
Idempotency	x + x = x	$x \cdot x = x$
Complementarity	$x + \overline{x} = 1$	$x \cdot \overline{x} = 0$
Involution	$\overline{\overline{x}} = x$	
Commutative	x + y = y + x	$x \cdot y = y \cdot x$
Associative	(x+y)+z=x+(y+z)	(xy)z=z(yz)
Distributive	$x \cdot (y+z) = xy + xz$	x + yz = (x + y)(x + z)

Boolean algebra, contd

$$x,y \in \{0,1\}$$

	Theorem	Dual
Absorption	x + xy = x(1+y) = x	x(x+y)=x
Logic adjacency	$xy + x\overline{y} = x(y + \overline{y}) = x$	$(x+y)(x+\overline{y})=x$
De Morgan's	$\overline{x+y} = \overline{x} \cdot \overline{y}$	$\overline{xy} = \overline{x} + \overline{y}$

DeMorgan's theorem

From wikipedia

Simplify functions

1.
$$f = (a+b)(a+c)$$

2.
$$f = a + \overline{a}b$$

Logic diagram → function

Determine the function represented by the logic diagrams

Function → logic diagram

Draw the diagram corresponding to the boolean function

1.
$$f = (a+b)(a+c)$$

2.
$$f = a + \overline{a}b$$

Group exercise

- 1. Enter breakout room
- 2. One of you downloads and shares this presentation
- 3. Work together on the problems in the previous three slides
 - 3.1 Simplify functions
 - 3.2 Determine function from logic diagram
 - 3.3 Draw logic diagram from function