Continuité des fonctions d'une variable réelle : activité

Dans le dessin ci-dessous, la courbe en trait plein représente la fonction g et la courbe en trait pointillé représente la fonction f.

1. En terme de représentation graphique, quelle est la différence entre les deux courbes?

La courbe représentant f a des sauts, tandis que la courbe représentant g ne contient pas de sauts.

On dit que l'on peut tracer la courbe représentant f ne peut être tracée sans lever le crayon tandis que c'est le cas pour la courbe représentant g.

On dit que la fonction f est discontinue et que la fonction g est continue.

- **2.** Donner la valeur de g(0) et g(1). Graphiquement, on peut en déduire que $g(0) = \frac{1}{2}$ et $g(1) = \frac{3}{2}$.
- 3. Déterminer:

$$\lim_{x \to 0^{+}} f(x) = \frac{1}{2}$$

$$\lim_{x \to 0^{-}} f(x) = -\frac{1}{2}$$

$$\lim_{x \to 1^{+}} f(x) = \frac{3}{2}$$

$$\lim_{x \to 1^{-}} f(x) = \frac{1}{2}$$

4. Que dire de f(0) et f(1)?

Comme la limite à gauche et à droite de f en 0 sont différentes, il n'existe pas d'image de 0 par f: on dit que la fonction n'est pas continue en 0. Idem pour 1.

TG TG

5. Donner le nombre de solutions de g(x) = 0.8 sur $]-\infty; +\infty[$ et le nombre de solutions sur $[0; +\infty[$.

Graphiquement, on constate que cette équation a deux solutions sur] – ∞ ; $+\infty$ [mais une seule solution sur $[0; +\infty[$.

- **6.** Quelle est la monotonie de g sur $]-\infty;+\infty[$? La fonction g semble décroissante sur $]-\infty;0]$ et croissante sur $[0;+\infty[$.
- 7. Donner le nombre de solutions de f(x) = 0.8 sur] $-\infty$; $+\infty$ [et le nombre de solutions sur $[0; +\infty[$.

Cette équation n'a aucune solution sur] $-\infty$; $+\infty$ [.

8. Donner une conclusion sur les solutions des équations $h(x) = \alpha$ sur [a; b] quand $h(a) < \alpha$ et $h(b) > \alpha$ ou quand $h(a) > \alpha$ et $h(b) < \alpha$ avec h une fonction continue.

Si f est continue sur [a;b] avec $h(a) < \alpha$ et $h(b) > \alpha$ ou quand $h(a) > \alpha$ et $h(b) < \alpha$, alors l'équation $f(x) = \alpha$ admet au moins une solution sur [a;b].

Si de plus f est monotone sur [a;b], alors la solution est unique; c'est ce qu'on appelle le théorème des valeurs intermédiaires.