W3. Decision Tree and Random Forest

김선 서울대학교 컴퓨터 공학부 생물정보 연구소

Contents

Decision Trees

- What is a Decision Tree
- Sample Decision Trees
- Constructing a Decision Tree
- Splitting a Decision Tree
 - GINI index, Entropy (Information Gain)
- Pruning a Decision Trees

Random Forests

- Bagging/Bootstrap
- Constructing a Random Forest
- Variable importance

What is a Decision Tree?

- A branch of artificial intelligence, concerned with the design and development of algorithms that allow computers to evolve behaviors based on empirical data.
- As intelligence requires knowledge, it is necessary for the computers to acquire knowledge.

Decision Tree Algorithms

- The basic idea behind any decision tree algorithm is as follows:
 - Choose the best attribute(s) to split the remaining instances and make that attribute a decision node
 - Repeat this process for recursively for each child
 - Stop when:
 - All the instances have the same target attribute value
 - There are no more attributes
 - There are no more instances

Predicting Credit Approval Status

If Salary < 20000 and customer works for SKT what is the credit approval status of the customer?

Credit: Professor Kyuseok Shim

- In this decision tree, we made a series of Boolean decisions and followed the corresponding branch
 - Is the salary above 20K?
 - Does the customer work for SKT?
- By answering each of these yes/no questions, we then came to a conclusion on how long our commute might take

- •We did not have represent this tree graphically
- •We could have represented as a set of rules. However, this may be much harder to read…

How to Create a Decision Tree

- We first make a list of attributes that we can measure
 - These attributes (for now) must be discrete
- We then choose a target attribute that we want to predict
- Then create an experience table that lists what we have seen in the past

Constructing Classifier

Database (training set)

Credit: Professor Kyuseok Shim

Prediction

Input Data

Credit: Professor Kyuseok Shim

Pros And Cons of Decision Tree

• Pros

- Fast execution time
- Generated rules are easy to interpret by humans
 - c.f. neural networks
- Scale well for large data sets
- Can handle high dimensional data (i.e. many columns)

Cons

- Cannot capture correlations among attributes
- Consider only axis-parallel cuts

Decision Tree Algorithm

- A decision tree is created in two phases:
 - Building Phase
 - Recursively split nodes using best splitting attribute for node until all the examples in each node belong to one class
 - Pruning Phase
 - Prune leaf nodes recursively to prevent overfitting
 - Smaller imperfect decision tree generally achieves better accuracy

Building Phase

- General tree-growth algorithm (binary tree)
 Partition(Data S)
 - If (all points in S are of the same class) then return;
 - for each attribute A do
 - evaluate splits on attribute A;
 - Use best split to partition S into S1 and S2;
 - Partition(S1);
 - Partition(S2);

- Credit risk를 measure 함 신용카드 회사에서 신용 카드 발급을 위하여 새로운 신청자에 대한 카드 발급 결정
 - 4000만 명의 신용카드 고객이 있는 미국의 어느 은행에서는 새로운 신용 카드 고객의 과거 사실로 부터 가장 이익을 많이 내 줄 수 있는 고객과 또 손 해를 끼칠 수 있는 고객을 찾아내 회사의 이익을 증대시켰다고 함.

Example Decision Tree

- Segregate the students based on target variable (playing cricket or not) with attributes "Gender" and "Class"
- The decision tree below has been split by Class.

Split on Class

How can we get best split?

- Select the attribute that is most useful for classifying training set
- GINI index and entropy
 - Statistical properties
 - Measure how well an attribute separates the training set
 - $Entropy(T) = -\sum p_j \times log_2(p_j)$
 - GINI Index $(T) = 1 \sum p_i^2$

- Each attribute list will be partitioned into two lists, one for each child
- Splitting attribute
 - Scan the attribute list, apply the split test, and move records to one of the two new lists
- Non-splitting attribute
 - Cannot apply the split test on non-splitting attributes
 - Use rid to split attribute lists

GINI index (1)

•GINI Index for a given node T:

GINI Index(T) =
$$1 - \sum p_j^2$$

- where j is the class label
- Maximum $(1 1/n_c)$ when records are equally distributed among all classes, implying least interesting information
- Minimum (0.0) when all records belong to one class, implying most interesting information

Computing GINI index

$GINI\ Index(T) = 1 - \sum p_j^2$

Split on Gender		
GINI(Female)	$1 - 0.2^2 - 0.8^2$	=0.35
GINI(Male)	$1 - 0.65^2 - 0.35^2$	=0.455

Split on Class		
GINI(Class IX)	$1 - 0.43^2 - 0.57^2$	=0.49
GINI(Class X)	$1 - 0.56^2 - 0.44^2$	=0.5264

Splitting based on GINI

- •Used in CART, SLIQ, SPRINT.
- When a node p is split into k partitions (children), the quality of split is computed as,

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where, n_i = number of records at child i, n_i = number of records at node p.

- The lower the GINI_{split} the better the split
 - Minimum GINI_{split}=0

Computing GINI index

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

Split on Gender		
GINI(Female)	$1 - 0.2^2 - 0.8^2$	=0.32
GINI(Male)	$1 - 0.65^2 - 0.35^2$	=0.455
GINISplit	(10/30)*0.32+(20 /30)*0.455	=0.41

Split on Class			
GINI(Class IX)	$1 - 0.43^2 - 0.57^2$	=0.49	
GINI(Class X)	$1 - 0.56^2 - 0.44^2$	=0.5264	
GINISplit	(14/30)*0.49+(16 /30)*0.5264	=0.514333	

Gender wins the split so it should be placed on the root

Entropy (INFO)

• Entropy at a given node T:

$$Entropy(T) = -\sum p_j \times log_2(p_j)$$

(NOTE: j is the relative frequency of class j at node T.

- Measures homogeneity of a node.
 - Maximum (log n_c) when records are equally distributed among all classes implying least information
 - Minimum (0.0) when all records belong to one class, implying most information
- Entropy based computations are similar to the GINI index computations

Computing GINI index

$Entropy(T) = -\sum p_j \times log_2(p_j)$

Split on Gender		
Entropy(Parent)	-(15/30) log2 (15/30) – (15/30) log2 (15/30)	=1
Entropy(Female)	-(2/10) log2 (2/10) – (8/10) log2 (8/10)	=0.72
Entropy(Male)	-(13/20) log2 (13/20) - (7/20) log2 (7/20)	=0.93

Split on Class		
Entropy(Parent)	-(15/30) log2 (15/30) - (15/30) log2 (15/30)	=1
Entropy(Class IX)	-(6/14) log2 (6/14) - (8/14) log2 (8/14)	=0.99
Entropy(Class X)	-(9/16) log2 (9/16) - (7/16) log2 (7/16)	=0.99

Splitting based on Entropy

•Information Gain

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)\right)$$

Parent Node, p is split into k partitions; n_i is number of records in partition i

- Measures Reduction in Entropy achieved because of the split.
 Choose the split that achieves most reduction (maximizes GAIN)
- Used in ID3 and C4.5
- Disadvantage: Tends to prefer splits that result in large number of partitions, each being small but pure.

Splitting based on Entropy

• Gain ratio:

GainRATIO
$$_{split} = \frac{GAIN_{split}}{SplitINFO}$$
 SplitINFO $= -\sum_{i=1}^{k} \frac{n_{i}}{n} \log \frac{n_{i}}{n}$

Parent Node, p is split into k partitions n_i is the number of records in partition i

- Adjusts Information Gain by the entropy of the partitioning (SplitINFO). Higher entropy partitioning (large number of small partitions) is penalized!
- Used in C4.5
- Designed to overcome the disadvantage of Information Gain
- The higher the GainRATIO the better the split

Computing GINI index

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_{i}}{n} Entropy(i)\right)$$

$$GainRATIO_{split} = \frac{GAIN_{split}}{SplitINFO}$$

$$SplitINFO = -\sum_{i=1}^{k} \frac{n_i}{n} \log \frac{n_i}{n}$$

Split on Class

Split on Gender			
Entropy(Parent)	-(15/30) log2 (15/30) - (15/30) log2 (15/30)	=1	
Entropy(Female)	-(2/10) log2 (2/10) – (8/10) log2 (8/10)	=0.72	
Entropy(Male)	-(13/20) log2 (13/20) - (7/20) log2 (7/20)	=0.93	
Gain(Gender)	1-((10/30*0.72)+(20/30)*0.93)	=0.14	
SplitINFO(Gender)	-(10/30*log(10/30)+20/30*log(20/30))	=0.9183	
GainRATIO(Gender)	0.14/0.9183	=0.1525	

Gender wins the split so it should be placed on the root

Split on Class		
Entropy(Parent)	-(15/30) log2 (15/30) – (15/30) log2 (15/30)	=1
Entropy(Class IX)	-(6/14) log2 (6/14) – (8/14) log2 (8/14)	=0.99
Entropy(Class X)	-(9/16) log2 (9/16) – (7/16) log2 (7/16)	=0.99
Gain(Class)	1-((14/30)*0.99+(16/30)*0.99))	=0.01
SplitINFO(Class)	-(14/30*log(14/30)+16/30*log(16/30))	=0.9968
GainRATIO(Class)	0.01/0.9968	=0.01

Comparison among Splitting Criteria

• For a 2-class problem

Avoiding overfitting by Pruning

- Problem: Overfitting
 - Overfitting results in decision trees that are more complex than necessary
 - Many branches of the decision tree will reflect anomalies in the training data due to noise or outliers
 - Poor accuracy for unseen samples
- Smaller imperfect decision tree generally achieves better accuracy
- Prune leaf nodes recursively to prevent overfitting
- Two types of pruning:
 - Pre-pruning (forward pruning)
 - Post-pruning (backward pruning)

Pruning example

- Smaller imperfect decision tree generally achieves better accuracy
- Prune leaf nodes recursively to prevent overfitting

Credit: Professor Kyuseok Shim

Pre-pruning

- In pre-pruning, we decide during the building process when to stop adding attributes (possibly based on their information gain)
 - Stop the algorithm before it becomes a fully-grown tree
 - Typical stopping conditions for a node:
 - Stop if all instances belong to the same class
 - Stop if all the attribute values are the same
- However, this may be problematic Why?
 - Sometimes attributes individually do not contribute much to a decision, but combined, they may have a significant impact

Post-pruning

- Post-pruning waits until the full decision tree has built and then prunes the attributes
 - Trim the nodes of the decision tree in a bottom-up fashion
 - If generalization error improves after trimming, replace subtree by a leaf node.
 - Class label of leaf node is determined from majority class of instances in the sub-tree
 - Can use MDL for post-pruning
- Two techniques:
 - Subtree Replacement
 - Subtree Raising

Subtree replacement

Bottom-up

 Consider replacing a tree only after considering all its subtrees

Credit: J. Furnkranz

Subtree replacement

- Delete node B
- Redistribute instances of leaves 4 and 5 into C

Credit: J. Furnkranz

Problems with Decision Trees

- While decision trees classify quickly, the time for building a tree may be higher than another type of classifier
- Decision trees suffer from a problem of errors propagating throughout a tree
 - A very serious problem as the number of classes increases

- Since decision trees work by a series of local decisions, what happens when one of these local decisions is wrong?
 - Every decision from that point on may be wrong
 - We may never return to the correct path of the tree

Bagging

 Bagging or bootstrap aggregation a technique for reducing the variance of an estimated prediction function.

• For classification, a *committee* of trees each cast a vote for the predicted class.

Credit: Oznur Tastan

Bootstrap

• The basic idea:

- randomly draw datasets with replacement from the
- training data, each sample the same size as the original training set

Bagging

Create bootstrap samples from the training data M features N examples

Construct a decision tree

Bagging

$$Z = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$$

 Z^{*b} where = 1,.., B..

$$\hat{f}_{\text{bag}}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{*b}(x).$$

The prediction at input x when bootstrap sample b is used for training

http://www-stat.stanford.edu/~hastie/Papers/ESLII.pdf (Chapter 8.7)

Bagging: an simulated example

- Generated a sample of size N = 30, with two classes and p = 5 features, each having a standard Gaussian distribution with pairwise Correlation 0.95.
- The response Y was generated according to $Pr(Y = 1/x1 \le 0.5) = 0.2$, Pr(Y = 0/x1 > 0.5) = 0.8.

Bagging

Notice the bootstrap trees are different than the original tree

 Random forest classifier, an extension to bagging which uses de-correlated trees.

Training Data

Create bootstrap samples from the training data

Construct a decision tree

At each node in choosing the split feature choose only among *m*<*M* features

Variable importance

- Random Forests output the list of predictor variables and their importance (i.e., importance variable)
- The importance variable can be measured by:
 - GINI index based
 - total decrease in node impurities from splitting on the variable, averaged over all trees
 - permutation test of variables (usually used)
 - If a variable is not important then rearranging the values of that variable will not degrade prediction accuracy

Permutation based