NAME:								CIRCLE:		veck :30am	Zweck 2:30pm
1	/10	2	/12	3	/8	4	/8	5	/12		
6	/10	7	/10	8	/10	9	/12	10	/8	Т	/100

MATH 2415 Final Exam, Fall 2015 (Zweck)

No books or notes! You may use a scientific calculator provided it does not allow for access to the internet. Show all work and give complete explanations. This 2 hours 45 mins exam is worth 100 points.

- (1) [10 pts]
- (a) Find the area of the parallelogram with vertices (1,1), (3,4), (5,6) and (7,9).

(b) Calculate the vector projection of $\mathbf{u} = (1, 2, -4)$ onto $\mathbf{v} = (3, -2, 1)$.

1	Ω	[10		T (Υ 1	.1		\mathbf{D}^2		1 1	((1	1	(9	4	\ C.	Λ.	/ 1	_	/0
(2.1	112	DESI	Let (i ne	tne c	nirve in	K.~	parametrize	n nv	(x, y)	$= \mathbf{r} u$	=	$1.5 \cos t$	4 SIN T	1 tor	() <	$\sim T_c$	$< \pi$	12.
١	-,		P ~~		~ ~	0220 0			POLLOGIZZO	~ ~./	(~,9)	- (-	,	(3000	, - ~ ,	,	~ _	_ ~	_ ~	, -:

(a) Sketch the curve C.

(b) Calculate $\int_C f \, ds$ where f(x,y) = xy.

(c) Let $\mathbf{F}(x,y) = y\mathbf{i} + x^2\mathbf{j}$. Find a function g = g(t) and numbers a and b so that $\int_C \mathbf{F} \cdot d\mathbf{r} = \int_a^b g(t) \, dt$.

(3) [8 pts] Find the limit if it exists, or show that the limit does not exist.

(a)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2}$$

(4)	[8	pts	Let	z =	f((x, y)	=	$3x^2$	+	4xy	+	$5y^2$
١		/	L	Pool		~) (\sim , g ,		Ju		±~ 9	- 1	~ 9

(a) Calculate the equation of the tangent plane to the graph of f at $(x_0, y_0) = (2, -1)$.

(b) Suppose that an ant is walking on a hot plate in the xy-plane and that the function z = f(x, y) given above is the temperature of the hot plate at the point (x, y). Suppose that at time t = 0 the position of the ant is $\mathbf{x} = (2, -1)$ and the velocity of the ant is $\mathbf{v} = (4, 3)$. What is the rate of change of the temperature of the ant's feet at time t = 0?

(5) [12 pts] Find the absolute maximum and absolute minimum of the function f(x,y) = x + y - xy on the triangle in the xy-plane with vertices (0,0), (4,0), and (0,2).

(6) [10 pts] Use spherical coordinates to calculate the triple integral $\iiint_E z \, dV$, where E is the solid region inside the sphere $x^2 + y^2 + z^2 = 4$ and above the cone $z = \sqrt{x^2 + y^2}$.

(7) [10 pts]

Let E be the solid region in \mathbb{R}^3 bounded by the surfaces $z = 1 - y^2$, y = x - 1, x = 0, and z = 0.

(a) Sketch E. Is $\iiint_E y \, dV$ positive or negative? Why?

(b) Calculate $\iiint_E y \, dV$.

(8) [10 pts] Use the Change of Variables Theorem to evaluate the integral $\iint_R y \, dA$, where R is the quadrilateral region bounded by the lines x+2y=2, x+2y=4, x=0, and y=0. **Hint:** Let u=x+2y and v=y.

(10) [8 pts](a) Define what it means for a vector field to be conservative.
(b) Define what it means for the integral of a vector field to be independent of path.
(c) Prove that if F is a conservative vector field then $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path.
Pledge: I have neither given nor received aid on this exam
Signature: