Forelesning - 11.02.22

FYS009-G 21H - Fysikk realfagskurs

Kapittel 15 - Kraft og bevegelse II

Forelesningene dekker i hovedsak boken *Rom-Stoff-Tid - Fysikk forkurs* fra Cappelen Damm. I tillegg til teorien gjennomgåes det endel simuleringer og regnede eksempler. De fleste eksemplene er orientert etter oppgaver fra boka, men også andre oppgaver og problemstillinger kan tæs opp.

Sirkelbevegelse med konstant fart

Repetisjon: Boka: side 409-413.

Regnet: Oppgave 15.340

Sirkelbevegelse når farten ikke er konstant

Vertikal sirkelbevegelse (Loop): Boka: side 414-415.

Regnet: Eksempel 15.9

Link: Vertikal sirkelbevegelse (Loop)

Regnet: Oppgave 15.336

Planpendel

Regnet: Eksempel 15.10

Link: Planpendel

Regnet: Oppgave 15.339

Regnet: Oppgave 15.346

Å løse sammensatte mekanikkoppgaver

Boka: side 417-420.

Regnet: Eksempel 15.11

Generelle løsningsstrategier

Regnet: Eksempel 15.12

15.336

Ei bøtte med vann blir svingt rundt i en vertikal sirkel med radius lik 1,00 m.

Hva er den minste farten bøtta kan ha på toppen av banen for at vannet ikke skal renne ut av bøtta?

Løsning:

Vi velger positiv y-retning nedover. Da er

$$N + G = m \, \frac{v^2}{r}$$

Dette gir

$$N = m\frac{v^2}{r} - G$$
 \Rightarrow $N = \frac{mv^2}{r} - mg$ \Rightarrow $N = m\left(\frac{v^2}{r} - g\right)$

For at vannet skal kunne «renne ut» må vi ha at N=0. Dette gir

$$\frac{v^2}{r} - g = 0$$
 \Rightarrow $v = \sqrt{rg} \simeq 3.13 \text{ m/s}$

15.339 +

I en planpendel er en kule festet til en lang snor. Pendelen, som er festet i taket, blir sluppet fra horisontal stilling.

Vis at snordraget er tre ganger så stort som tyngdekraften på kula når kula er i det laveste punktet.

Løsning:

Vi velger positiv *y*-retning oppover. Da blir kraften i bunnen lik

$$S - G = m \frac{v^2}{r}$$
 \Rightarrow $S = m \frac{v^2}{r} + mg$

Her må vi beregne hastigheten v på bunnpunktet. Vi bruker bevaring av mekanisk energi, og får med lengden på snora lik r = h at

$$\underbrace{mgr + \frac{1}{2}m(0)^2}_{\text{Startpunktet}} = \underbrace{mh(0) + \frac{1}{2}mv^2}_{\text{På bunnen}} \qquad \Rightarrow \qquad mgr = \frac{1}{2}mv^2$$

Dette gir at

$$v^2 = 2gr$$

Setter inn i likningen for *S*:

$$S = m\frac{v^2}{r} + mg$$
 \Rightarrow $S = m\frac{2gr}{r} + mg = 2mg + mg = 3mg$

LØST OPPGAVE 15.340

15.340

I en fornøyelsespark kan folk betale penger for å bli med en tur i et roterende rom. Rommet er sylinderformet med vertikale vegger (se bilde nedenfor). Radien er 5,0 m. Når rommet roterer med omløpstida 2,0 s, blir golvet i rommet senket.

- a) Hvor stor må hvilefriksjonen på en dame med massen 60 kg være for at hun ikke skal gli ned på det senkede golvet?
- b) Hvilket friksjonstall svarer dette til?

Løsning:

a) Tegningen viser et tverrsnitt av tønna der *G* er tyngdekraften på damen, og kreftene fra underlaget (tønneveggen) er normalkraften *N* og friksjonskraften *R*. Dersom hun ikke skal gli ned fra veggen, vet vi fra Newtons 2. lov for de vertikale kreftene på damen at

$$\Sigma F_y = ma_y$$

$$R - G = 0 \qquad \text{der } G = mg$$

$$R = mg$$

$$R = 60 \text{ kg} \cdot 9,81 \text{ N} = 588,6 \text{ N}$$

Svar: Friksjonskraften på damen er 0,59 kN.

b) For de horisontale kreftene får vi

$$\Sigma F_x = ma_x \qquad \text{der } a_x = \frac{v^2}{r} = \frac{4\pi^2 r}{T^2}$$

$$N = m \frac{4\pi^2 r}{T^2} \tag{1}$$

Fra sammenhengen mellom friksjonskraft og normalkraft, $R = \mu N$, får vi når vi setter inn uttrykkene for R og N:

$$\mu = \frac{R}{N}$$

$$= \frac{mg}{m\frac{4\pi^2 r}{T^2}} = \frac{gT^2}{4\pi^2 r}$$

$$= \frac{9.81 \text{ N/kg} \cdot (2.0 \text{ s})^2}{4\pi^2 \cdot 5.0 \text{ m}} = 0.1987$$

Svar: Friksjonstallet må være 0,20.

Vi kan selvsagt også finne svaret ved å regne ut *verdien* for *N* først ved hjelp av likning 1 og så sette denne verdien inn i likning 2.

15.346

Idet Tarzan står på toppen av en 5,0 m høy klippe, ser han at han må redde sønnen sin fra en krokodille. Tarzan griper tak i en 20 m lang lian og slenger seg nedover mot sønnen, se figuren nedenfor. Tarzan og sønnen har massene 100 kg og 25 kg.

- a) Hvilken fart får Tarzan rett før han redder sønnen fra den forferdelige skjebnen?
- b) Tegn en figur som viser kreftene på Tarzan rett før han griper tak i sønnen. Lianen henger da vertikalt.
 - Bestem kreftene på Tarzan.
- Finn farten til Tarzan og sønnen rett etter at sønnen er reddet.
- d) Hvor høyt svinger de videre ut? Du kan se bort fra alle typer friksjon.

Løsning:

(a) Vi bruker igjen bevarelse av mekanisk energi og får

$$\underbrace{mgh + \frac{1}{2}\,m(0)^2}_{\text{Startpunktet}} = \underbrace{mh(0) + \frac{1}{2}\,mv^2}_{\text{På bunnen}} \qquad \Rightarrow \qquad mgh = \frac{1}{2}\,mv^2$$

Dette gir

$$v = \sqrt{2gh} \simeq 9.90 \text{ m/s}$$

(b) Kreftene som virker på Tarzan når han befinner seg på bunnpunktet er

Vi setter

$$S - G = m \frac{v^2}{r}$$
 \Rightarrow $S = m \frac{v^2}{r} + mg = m \left(\frac{v^2}{r} + g\right) \simeq \underline{1471 \text{ N}}$

Vi finner også $G = mg \simeq 981 \text{ N}.$

(c) Vi bruker da bevarelse av bevegelsesmengde. Vi setter indeksen T for Tarzan og S for sønnen, og f for før de treffer hverandre, og e for etter.

Positiv retning er mot venstre.

$$\underbrace{m_{T,f}v_{T,f} + m_{S,f}v_{S,f}}_{\text{Før}} = \underbrace{m_{T,e}v_{T,e} + m_{S,e}v_{S,e}}_{\text{Etter}}$$

Forenklinger:

$$m_{T,f} = m_{T,e} = m_T$$

$$m_{S,f} = m_{S,e} = m_S$$

$$v_{S,f} = 0$$

$$v_{T,e} = v_{S,e} = v$$

Da får vi

$$m_T v_{T,f} = (m_T + m_S) v$$
 \Rightarrow $v = \frac{m_T + m_S}{m_T v_{T,f}} \simeq \frac{7.92 \text{ m/s}}{\text{s}}$

(d) Bevarelse av mekanisk energi igjen

$$\underbrace{mg(0) + \frac{1}{2}\,mv^2}_{\text{Startpunktet}} = \underbrace{mgh + \frac{1}{2}\,m(0)^2}_{\text{På bunnen}}$$

Dette gir

$$\frac{1}{2}mv^2 = mgh$$
 \Rightarrow $h = \frac{mv^2}{2g} \simeq \underline{3.2 \text{ m}}$