Universidade Federal do Rio Grande do Sul Instituto de Informática

Organização de Computadores Aula 07

Bloco de controle multi-ciclo Projeto com FSM – Máquina de Estados Finitos

Introdução

- Na aula passada foi visto o caminho de dados para uma unidade multiciclo, com a determinação dos sinais de controle necessários para ativá-los,
- Agora veremos a Implementação da Unidade de Controle Multiciclo,
- Na unidade de controle Mono-ciclo foi empregado Tabelas de Verdade ,
- No Multiciclo é um pouco mais complicado pois as instruções são executadas por passos, ciclos,
- Vamos ver duas técnicas:
 - Baseado numa Máquina de Estados Finitos FSM (nesta aula),
 - Microprogramação (próxima aula).

Bloco de controle – projeto com FSM

- 1. Sinais de controle
- 2. Máquina de estados finitos

Busca e decodificação de instruções

Instruções de referência à memória

Instruções de tipo R

Instrução de desvio condicional (branch)

Instrução de desvio incondicional (jump)

3. Implementando a FSM

1. Sinais de controle

Sinais de controle de 1 bit

Nome do sinal	Efeito quando inativo	Efeito quando ativo
RegDst	O número do registrador-destino no banco de registradores vem do campo rt	O número do registrador-destino no banco de registradores vem do campo rd.
EscReg	Nenhum	O registrador de propósito geral selecionado pelo número do registrador de escrita é atualizado com o valor da entrada Dado de Escrita.
UALFonteA	O primeiro operando da UAL é o PC	O primeiro operando da UAL vem do registrador A.
LerMem	Nenhum	O conteúdo da memória no endereço especificado na entrada Endereço é colocado na saída Dado de Saída.
EscMem	- Nenhum -	O conteúdo da memória no endereço especificado na entrada Endereço é substituído pelo valor na entrada Dado a ser Escrito.
MemParaReg	O valor colocado na entrada Dado a ser Escrito do banco de registradores vem de UALOut.	O valor na entrada Dado a ser Escrito do banco de registradores vem do MDR.
louD	O PC é usado para fornecer o endereço da unidade de memória.	UALSaída é usada para fornecer o endereço para a unidade de memória.
IREsc	Nenhum	A saída da unidade de memória é escrita no IR.
PCEsc	Nenhum	O PC é atualizado. A fonte é controlada pelo sinal FontePC.
PCEscCond	Nenhum	O PC é atualizado se a saída Zero da UAL também estiver ativa.

Sinais de Controle de 2 bits

Nome do sinal	Valor	Efeito
UALOp	00	A UAL efetua uma operação de soma.
	01	A UAL efetua uma operação de subtração.
	10	O campo funct (função) da instrução determina a operação da UAL.
	00	A segunda entrada da UAL vem do registrador B.
rateoraticaco para re-	01	A segunda entrada da UAL é a constante 4.
UALFonteB	10	A segunda entrada da UAL é a extensão do sinal dos 16 bits menos significativos do IR.
	11	A segunda entrada da UAL é a extensão do sinal dos 16 bits menos significativos do IR deslocados 2 bits à esquerda.
Lette up care no b	00	A saída da UAL (PC + 4) é enviada ao PC para atualizar seu valor.
FontePC	01	O conteúdo de UALSaída (o endereço-alvo do desvio condicional) é enviado ao PC para atualizar seu valor.
one Alerremondos. P Zose II de Lista, com	10	O endereço-alvo do desvio incondicional (IR[25-0]), deslocado 2 bits à esquerda e concatenado com PC + 4[31-28] é enviado ao PC para atualizar seu valor.

Sinais de controle

MemRead = 1	Ler conteúdo da memória
MemWrite = 1	Escrever conteúdo na memória
ALUSeIA = 0	PC é primeiro operando para ALU
ALUSeIA = 1	Registrador A é primeiro operando para ALU
ALUSeIB = 00	Registrador B é segundo operando para ALU
ALUSeIB = 01	Constante = 4 é segundo operando para ALU
ALUSeIB = 10	Deslocamento (estendido p/ 32 bits) é segundo operando para ALU
ALUSeIB = 11	Deslocamento (estendido p/ 32 bits e deslocado 2 bits p/ esq.) é 2º operando p/ ALU
RegDst = 0	Registrador a ser escrito é especificado pelo campo rt
RegDst = 1	Registrador a ser escrito é especificado pelo campo rd
RegWrite = 1	Escrever conteúdo em registrador
MemtoReg = 0	Valor a ser escrito em registrador vem do registrador da saída da ALU (ALUout)
MemtoReg = 1	Valor a ser escrito em registrador vem do registrador de dados da memória (MDR)
lorD = 0	Endereço em memória vem do PC
lorD = 1	Endereço em memória vem da ALU
IRWrite = 1	Armazenar instrução no IR

Sinais de controle para o PC

PCWrite = 1	PC é carregado; fonte é controlada por PCSource
PCWriteCond = 1	PC é carregado se saída Zero da ALU está ligada

PCSource	00	Saída da ALU é enviada para o PC
	01	Conteúdo do registrador ALUout é enviado para o PC
	10	Endereço de destino do Jump enviado para o PC

2. Máquina de estados finitos - FSM

Estado 0 Busca e Decodificação de Instruções

Estado 1 Busca dos Valores dos Registradores

FSM: busca e decodificação de instruções

FSM: busca e decodificação de instruções

• estado 0 – busca da instrução

IorD = 0: PC é fonte de endereço para a memória

MemRead: ler instrução da memória

IRWrite: escrever instrução no IR

ALUSelA = 0: PC é primeiro operando para ALU

ALUSelB = 01: constante 4 é segundo operando para ALU

- ALUOp = 00: ALU soma PC + 4

PCSource = 00: Saída da ALU é enviada para o PC

PCWrite: PC é escrito com PC + 4

- estado 1 decodificação da instrução, busca dos valores dos registradores, cálculo do endereço de desvio condicional (branch)
 - ALUSelA = 0: PC é primeiro operando para ALU
 - ALUSelB = 10: deslocamento é segundo operando para ALU
 - ALUOp = 00: ALU soma PC + deslocamento

Estado 0 - Busca de instrução

Estado 1 - Decodificação de instrução (+ leitura de registradores, + cálculo de end. branch)

Estados 2, 3, 4 e 5 Instruções de Referência à Memória

FSM: instruções de referência à memória

FSM: instruções de referência à memória

- estado 2 cálculo do endereço efetivo
 - ALUSelA = 1: registrador base é primeiro operando para ALU
 - ALUSelB = 10: deslocamento é segundo operando para ALU
 - ALUOp = 00: ALU soma base + deslocamento
- estado 3 acesso de leitura na memória
 - IorD = 1: endereço de memória vem da ALU
 - MemRead: leitura na memória
- estado 4 escrita em registrador
 - MemtoReg = 1: valor para registrador vem da memória
 - RegDst = 0: registrador a ser escrito especificado pelo campo rd
 - RegWrite: escrita em registrador
- estado 5 acesso de escrita na memória
 - IorD = 1: endereço de memória vem da ALU
 - MemWrite: escrita na memória

Estado 2 - cálculo do endereço efetivo

Estado 3 – acesso de leitura na memória (load)

Estado 4 – escrita em registrador (load)

Estado 5 – acesso de escrita na memória (store)

Estados 6 e 7 Instruções de tipo R

FSM: instruções de tipo R

Estado 6 - execução da operação na ALU

Estado 7 - escrita em registrador

Estado 8 Instrução de Desvio Condicional

FSM: instrução de desvio condicional (branch)

Estado 8 - término do desvio condicional

Estado 9 Instrução de Desvio Incondicional

FSM: instrução de desvio incondicional (jump)

Estado 9 - término do desvio incondicional

Máquina de Estados Finitos com todos Estados

Máquina de Estados Finitos com todos Estados

3. Implementando a FSM

A Lógica de Controle pode ser implementada empregando:

- Portas Lógicas
- PLA

Implementando a FSM

Implementando o Controle da FSM

Implementando com PLA

Implemantação com ROM

- ROM = "Read Only Memory"
 - valores das posições de memória são fixados antes do tempo
- A ROM pode ser empregada para implementar a tabela de verdades
 - se o endereço é m-bits, podemos endereçar 2m entradas na ROM
 - as saídas são os bits de dados que apontam para o endereço.
 m é a "altura", e n é o "largura" igual ao número de saídas.

FIM